Algorithmic Challenges: Suffix Array

Michael Levin

Higher School of Economics

Algorithms on Strings Data Structures and Algorithms

Outline

- Suffix Array
- 2 General Construction Strategy
- 3 Initialization
- 4 Sort Doubled Cyclic Shifts
- 5 Updating Classes and Full Algorithm

Construct Suffix Array

Input: String S

Output: All suffixes of S in lexicographic order

Alphabet

We assume the alphabet is ordered, that is, for any two different characters in the alphabet one of them is considered smaller than another. For example, in English

$$a' < b' < c' < \cdots < z'$$

Definition

String S is lexicographically smaller than string T if $S \neq T$ and there exist such i that:

- $0 \le i \le |S|$
 - S[0..i-1] = T[0..i-1] (assume S[0..-1] is an empty string)
 - Either i = |S| (then S is a prefix of T) or S[i] < T[i]

```
"ab" < "bc" (i = 0)
```

"abc" < "abd" (i = 2)

"abc" < "abcd" (i = 3)

Suffix Array Example

S = ababaaSuffixes in lexicographic order:

a

aa

ababaa

baa

babaa

Avoiding Prefix Rule

- Inconvenient rule: if S is a prefix of T, then S < T
- Append special character '\$' smaller than all other characters to the end of all strings
- If S is a prefix of T, then S\$ differs from T\$ in position i = |S|, and S < T[|S|], so S\$ < T\$

a\$

aa\$

abaa\$

baa\$

babaa\$

ababaa\$

S = "ababaa" $\Rightarrow S' =$ "ababaa\$" Suffixes in lexicographic order:

aa

abaa

baa

babaa

ahahaa

S= "ababaa" $\Rightarrow S'=$ "ababaa\$" Suffixes in lexicographic order:

Suffixes in lexicog

Total length of all suffixes is $1 + 2 + \cdots + |S| = \Theta(|S|^2)$

- Total length of all suffixes is $1 + 2 + \cdots + |S| = \Theta(|S|^2)$
- Storing them all is too much memory

- Total length of all suffixes is $1 + 2 + \cdots + |S| = \Theta(|S|^2)$
- Storing them all is too much memory
- Store the order of suffixes O(|S|)

- Total length of all suffixes is $1 + 2 + \cdots + |S| = \Theta(|S|^2)$
- Storing them all is too much memory
- Store the order of suffixes O(|S|)
- Suffix array is this order

S = ababaa\$

S = ababaa\$

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

S = ababaa\$

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

Suffix array: order = []

S = ababaa

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

Suffix array: order = [6]

```
S = ababaa
```

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

Suffix array: order = [6, 5]

S = ababaa

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

Suffix array: order = [6, 5, 4]

S = ababaa\$

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

Suffix array: order = [6, 5, 4, 2]

S = ababaa\$

Suffixes are numbered by their starting positions: ababaa\$ is 0, abaa\$ is 2
Suffix array: order = [6, 5, 4, 2, 0]

S = ababaa\$

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

Suffix array: order = [6, 5, 4, 2, 0, 3]

S = ababaa\$

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

Suffix array: order = [6, 5, 4, 2, 0, 3, 1]

S = ababaa\$

Suffixes are numbered by their starting positions: *ababaa*\$ is 0, *abaa*\$ is 2

Suffix array: order = [6, 5, 4, 2, 0, 3, 1]

OK, you know how to store suffix array

- OK, you know how to store suffix array
 - But how to construct it?

Outline

- Suffix Array
- 2 General Construction Strategy
- 3 Initialization
- 4 Sort Doubled Cyclic Shifts
- 5 Updating Classes and Full Algorithm

ababaa\$

ababaa\$

babaa\$a

abaa\$ab

baa\$aba

aa\$abab

a\$ababa

\$ababaa

ahahaa\$ \$ababaa habaa\$a a\$ababa abaa\$ab aa\$abab baa\$aba abaa\$ab aa\$abab ababaa\$ a\$ababa baa\$aba \$ababaa babaa\$a

ahahaa\$ \$ababaa habaa\$a a\$ababa abaa\$ab aa\$abab baa\$aba ahaa\$ab aa\$abab ababaa\$ baa\$aba a\$ababa \$ababaa babaa\$a

ababaa\$	\$ababaa	\$
babaa\$a	a\$ababa	a\$
abaa\$ab	aa\$abab	aa\$
baa\$aba	abaa\$ab	abaa\$
aa\$abab	ababaa\$	ababaa\$
a\$ababa	baa\$aba	baa\$
\$ababaa	babaa\$a	babaa\$

Lemma

After adding to the end of string S character S which is smaller than all other characters, sorting cyclic shifts of S and suffixes of S is equivalent.

Partial Cyclic Shifts

Definition

Substrings of cyclic string ${\cal S}$ are called partial cyclic shifts of ${\cal S}$

Cyclic shifts of length 4:

abab

Cyclic shifts of length 4:

abab baba

Cyclic shifts of length 4:

abab baba abaa

Cyclic shifts of length 4:

Cyclic shifts of length 4:

Cyclic shifts of length 4:

\$aba

 $lue{S}$ Start with sorting single characters of S

- Start with sorting single characters of S
- Cyclic shifts of length L=1 sorted

- Start with sorting single characters of *S*
- Cyclic shifts of length L=1 sorted
- While L < |S|, sort shifts of length 2L

- \blacksquare Start with sorting single characters of S
- Cyclic shifts of length L=1 sorted
- While L < |S|, sort shifts of length 2L
- If $L \ge |S|$, cyclic shifts of length L sort the same way as cyclic shifts of length |S|

S = ababaa\$

$$S = ababaa$$
\$

S = ababaa\$

order = [6, 0, 2, 4, 5, 1, 3]

- S = ababaa\$ 6 \$*a*
 - 5 a\$
 - 4 *aa*
 - 0 *ab*

 - 2 *ab*
 - 1 *ba*

S = ababaa\$

6 \$a 5 a\$

4 aa

0 ab 2 ab

S = ababaa\$

6 \$aba

5 a\$ab 4 aa\$a

2 abaa

0 abab

1 baba

3 baa\$

S = ababaa\$

6 \$aba

5 a\$ab

4 aa\$a

2 abaa

0 abab

order = [6, 5, 4, 2, 0, 3, 1]

- S = ababaa\$ 6 \$ababaa\$
 - 5 a\$ababaa
 - 4 aa\$ababa
 - 2 abaa\$aba 0 ababaa\$a
 - 3 baa\$abab

1 babaa\$ab

S = ababaa\$ order = [6, 5, 4, 2, 0, 3, 1]6 \$ababaa\$ 5 a\$ababaa

4 aa\$ababa 2 abaa\$aba 0 ababaa\$a

3 baa\$abab 1 babaa\$ab

S = ababaa\$
6 ababaa\$ order = [6, 5, 4, 2, 0, 3, 1]
5 ababaa\$

4 aa\$ababa 2 abaa\$aba

2 abaaşaba 0 ababaa\$a 3 baa\$abab 1 babaa\$ab

S = ababaa\$ 6 \$

5 a\$ 4 aa\$

2 abaa\$

1 babaa\$

order = [6, 5, 4, 2, 0, 3, 1]

Outline

- Suffix Array
- 2 General Construction Strategy
- 3 Initialization
- 4 Sort Doubled Cyclic Shifts
- 5 Updating Classes and Full Algorithm

Sorting single characters

■ Alphabet Σ has $|\Sigma|$ different characters

Sorting single characters

- Alphabet Σ has $|\Sigma|$ different characters
- Use counting sort to compute order of characters

SortCharacters(S)

```
order \leftarrow array of size |S|
count \leftarrow zero array of size |\Sigma|
for i from 0 to |S|-1:
   count[S[i]] \leftarrow count[S[i]] + 1
for j from 1 to |\Sigma| - 1:
   count[j] \leftarrow count[j] + count[j-1]
for i from |S|-1 down to 0:
   c \leftarrow S[i]
   count[c] \leftarrow count[c] - 1
                                 For each character, it contains the
   order[count[c]] \leftarrow i
                                  position in the sorted array of all
                                  the characters of the input string
return order
                                  right after the last such character
```

SortCharacters(S)

```
order \leftarrow array of size |S|
count \leftarrow zero array of size |\Sigma|
for i from 0 to |S|-1:
```

 $count[S[i]] \leftarrow count[S[i]] + 1$

$$egin{aligned} & count[S[i]] \leftarrow count[S[i]] + 1 \ & for j from 1 to $|\Sigma| - 1$: $& count[j] \leftarrow count[j] + count[j - 1] \end{aligned}$$$

for *j* from 1 to $|\Sigma| - 1$:

 $count[c] \leftarrow count[c] - 1$

 $order[count[c]] \leftarrow i$

 $c \leftarrow S[i]$

return order

$$egin{aligned} |i|| \leftarrow count[S[i]] + 1 \ & \text{om } 1 \text{ to } |\Sigma| - 1: \ & \leftarrow count[i] + count[i] \end{aligned}$$

for i from |S|-1 down to 0:

$$count[j-1]$$
 to 0 :

```
SortCharacters(S)
order \leftarrow array of size |S|
count \leftarrow zero array of size |\Sigma|
for i from 0 to |S|-1:
```

 $count[S[i]] \leftarrow count[S[i]] + 1$

for *j* from 1 to $|\Sigma| - 1$:

 $count[j] \leftarrow count[j] + count[j-1]$

 $count[c] \leftarrow count[c] - 1$

 $order[count[c]] \leftarrow i$

 $c \leftarrow S[i]$

return order

for i from |S|-1 down to 0:

SortCharacters(S) $order \leftarrow array of size |S|$ $count \leftarrow zero array of size |\Sigma|$ for *i* from 0 to |S|-1:

 $count[S[i]] \leftarrow count[S[i]] + 1$

for *j* from 1 to $|\Sigma| - 1$:

 $count[c] \leftarrow count[c] - 1$

 $order[count[c]] \leftarrow i$

 $c \leftarrow S[i]$

return order

 $count[j] \leftarrow count[j] + count[j-1]$ for i from |S|-1 down to 0:

```
SortCharacters(S)
order \leftarrow array of size |S|
count \leftarrow zero array of size |\Sigma|
for i from 0 to |S|-1:
```

 $count[S[i]] \leftarrow count[S[i]] + 1$

for *j* from 1 to $|\Sigma| - 1$: $count[j] \leftarrow count[j] + count[j-1]$

for i from |S|-1 down to 0:

 $count[c] \leftarrow count[c] - 1$

 $order[count[c]] \leftarrow i$

 $c \leftarrow S[i]$

return *order*

```
SortCharacters(S)
order \leftarrow array of size |S|
count \leftarrow zero array of size |\Sigma|
for i from 0 to |S|-1:
```

 $count[S[i]] \leftarrow count[S[i]] + 1$ for *j* from 1 to $|\Sigma| - 1$:

 $count[j] \leftarrow count[j] + count[j-1]$

for i from |S|-1 down to 0:

 $count[c] \leftarrow count[c] - 1$

 $order[count[c]] \leftarrow i$

 $c \leftarrow S[i]$

return *order*

Lemma

Running time of SortCharacters is $O(|S| + |\Sigma|)$.

Proof

We know this is the running time of the counting sort for |S| items that can take $|\Sigma|$ different values.

Equivalence classes

- C_i partial cyclic shift of length L starting in i
- C_i can be equal to C_j then they are in one equivalence class
- Compute class[i] number of different cyclic shifts of length L that are strictly smaller than C_i
- $lackbox{c}_i == C_j \Leftrightarrow class[i] == class[j]$

```
S = ababaa$
0 a
```


order = [6, 0, 2, 4, 5, 1, 3]


```
S = ababaa$
0 a
```


order = [6, 0, 2, 4, 5, 1, 3]

order = [6, 0, 2, 4, 5, 1, 3]

 $class = [\ , \ , \ , \ , \ , \ 0]$

```
S = ababaa$
                  order = [6, 0, 2, 4, 5, 1, 3]
                  class = [ \ , \ , \ , \ , \ , \ 0]
```

```
S = ababaa$
               order = [6, 0, 2, 4, 5, 1, 3]
               class = [1, , , , , , 0]
0 a
```

```
S = ababaa$
0 a
```


order = [6, 0, 2, 4, 5, 1, 3]class = [1, , , , , , 0]

```
S = ababaa\$
6 \quad \$ \qquad order = [6, 0, 2, 4, 5, 1, 3]
0 \quad a \quad class = [1, 1, 1, 1, 1, 1, 1]
2 \quad a
```

2 a 4 a 5 a

```
S = ababaa$
               order = [6, 0, 2, 4, 5, 1, 3]
               class = [1, , 1, , , , 0]
0 a
```

S = ababaa\$ order = [6, 0, 2, 4, 5, 1, 3]class = [1, , 1, , 1, , 0]0 a

$$S = ababaa$$
\$

order = [6, 0, 2, 4, 5, 1, 3]

S = ababaa\$ order = [6, 0, 2, 4, 5, 1, 3]class = [1, , 1, , 1, 1, 0]() a

```
S = ababaa$
0 a
```

order = [6, 0, 2, 4, 5, 1, 3]

class = [1, , 1, , 1, 1, 0]

S = ababaa\$ order = [6, 0, 2, 4, 5, 1, 3]class = [1, 2, 1, , 1, 1, 0]() a

$$S = ababaa\$$$
 $6 \quad \$ \qquad order = [6, 0, 2, 4, 5, 1, 3]$
 $0 \quad a \quad class = [1, 2, 1, 1, 1, 0]$
 $2 \quad a$
 $4 \quad a$

S = ababaa\$

6 \$ order = [6, 0, 2, 4, 5, 1, 3]

0 a class = [1, 2, 1, 2, 1, 1, 0]

S = ababaa\$

() a

$$class = [1, 2, 1, 2, 1, 1, 0]$$

order = [6, 0, 2, 4, 5, 1, 3]

avali index ke $class \leftarrow array of size |S|$ mamolan \$ e val mosavi |S| - 1 e $class[order[0]] \leftarrow 0$ for i from 1 to |S|-1: if $S[order[i]] \neq S[order[i-1]]$:

class[order[i]] = class[order[i-1]] + 1

else:

class[order[i]] = class[order[i-1]]

return class

 $class \leftarrow array of size |S|$ $class[order[0]] \leftarrow 0$ for *i* from 1 to |S| - 1:

return class

if $S[order[i]] \neq S[order[i-1]]$: class[order[i]] = class[order[i-1]] + 1else:

class[order[i]] = class[order[i-1]]

 $class \leftarrow array of size |S|$ $class[order[0]] \leftarrow 0$ for *i* from 1 to |S| - 1:

return class

class[order[i]] = class[order[i-1]] + 1else:

if $S[order[i]] \neq S[order[i-1]]$:

class[order[i]] = class[order[i-1]]

 $class \leftarrow array of size |S|$ $class[order[0]] \leftarrow 0$ for *i* from 1 to |S| - 1:

class[order[i]] = class[order[i-1]]

if $S[order[i]] \neq S[order[i-1]]$:

else:

return class

class[order[i]] = class[order[i-1]] + 1

 $class \leftarrow array of size |S|$ $class[order[0]] \leftarrow 0$ for *i* from 1 to |S| - 1:

else:

return class

if $S[order[i]] \neq S[order[i-1]]$: class[order[i]] = class[order[i-1]] + 1

class[order[i]] = class[order[i-1]]

 $class \leftarrow array of size |S|$ $class[order[0]] \leftarrow 0$ for *i* from 1 to |S| - 1:

else:

return class

if $S[order[i]] \neq S[order[i-1]]$: class[order[i]] = class[order[i-1]] + 1

class[order[i]] = class[order[i-1]]

```
class \leftarrow array of size |S|
class[order[0]] \leftarrow 0
```

class[order[i]] = class[order[i-1]]

```
for i from 1 to |S| - 1:
  if S[order[i]] \neq S[order[i-1]]:
```

return *class*

```
class[order[i]] = class[order[i-1]] + 1
else:
```

Lemma

The running time of ComputeCharClasses is O(|S|).

Proof

One for loop with O(|S|) iterations.

Outline

- Suffix Array
- 2 General Construction Strategy
- 3 Initialization
- 4 Sort Doubled Cyclic Shifts
- 5 Updating Classes and Full Algorithm

 C_i — cyclic shift of length L starting in i

- C_i cyclic shift of length L starting in i
- \mathbf{C}'_i doubled cyclic shift starting in i

- $lue{C}_i$ cyclic shift of length L starting in i
- \mathbf{C}_{i}' doubled cyclic shift starting in i
- $C'_i = C_i C_{i+L}$ concatenation of strings

- $lue{C}_i$ cyclic shift of length L starting in i
- \mathbf{C}'_i doubled cyclic shift starting in i
- $C'_i = C_i C_{i+L}$ concatenation of strings
- To compare C'_i with C'_j , it's sufficient to compare C_i with C_j and C_{i+L} with C_{j+L}

$$S = ababaa$$
\$

$$L=2$$

$$i = 2$$

 $C_i = C_2 = ab$

 $C_{i+L} = C_{2+2} = C_4 = aa$

 $C_i' = C_2' = abaa = C_2C_4$

Sorting pairs

First sort by second element of pair

Sorting pairs

- First sort by second element of pair
- Then **stable** sort by first element of pair

Legample
$$C_{6} = \$a$$

$$C_{5} = a\$$$

$$C_{4} = aa$$

$$C_{0} = ab$$

$$C_{2} = ab$$

$$C_{1} = ba$$

$$C_{3} = ba$$

 $C_3 = ba$

 C'_i — doubled cyclic shift starting in i

- C'_i doubled cyclic shift starting in i
- lacksquare C'_i is a pair (C_i, C_{i+L})

- C'_i doubled cyclic shift starting in i
- lacksquare C'_i is a pair (C_i, C_{i+L})
- $lacksquare C_{order[0]}, C_{order[1]}, \ldots, C_{order[|S|-1]}$ are already sorted

- C'_i doubled cyclic shift starting in i
- lacksquare C'_i is a pair (C_i, C_{i+L})
- lacksquare $C_{order[0]}, C_{order[1]}, \ldots, C_{order[|S|-1]}$ are already sorted
- Take doubled cyclic shifts starting exactly L counter-clockwise ("to the left")

- C'_i doubled cyclic shift starting in i
- C'_i is a pair (C_i, C_{i+L})
- lacksquare $C_{order[0]}, C_{order[1]}, \ldots, C_{order[|S|-1]}$ are already sorted
- Take doubled cyclic shifts starting exactly *L* counter-clockwise ("to the left")
- $C'_{order[0]-L}, C'_{order[1]-L}, \dots, C_{order[|S|-1]-L}$ are sorted by second element of pair

- $C'_{order[0]-L}, C'_{order[1]-L}, \dots, C_{order[|S|-1]-L}$ are sorted by second element of pair
- Need a stable sort by first elements of pairs
- Counting sort is stable!
- We know equivalence classes of single shifts for counting sort

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$

for i from |S|-1 down to 0:

 $count[cl] \leftarrow count[cl] - 1$ $newOrder[count[cl]] \leftarrow start$

return newOrder

 $start \leftarrow (order[i] - L + |S|) \mod |S|$ $cl \leftarrow class[start]$

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$ for i from |S|-1 down to 0:

 $start \leftarrow (order[i] - L + |S|) \mod |S|$

 $cl \leftarrow class[start]$

 $count[cl] \leftarrow count[cl] - 1$ $newOrder[count[cl]] \leftarrow start$

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$

for i from |S|-1 down to 0: $start \leftarrow (order[i] - L + |S|) \mod |S|$

 $cl \leftarrow class[start]$

 $count[cl] \leftarrow count[cl] - 1$ $newOrder[count[cl]] \leftarrow start$

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S| - 1: $count[class[i]] \leftarrow count[class[i]] + 1$

for j from 1 to |S|-1: $count[j] \leftarrow count[j] + count[j-1]$

for i from |S|-1 down to 0: $start \leftarrow (order[i] - L + |S|) \mod |S|$

 $cl \leftarrow class[start]$ $count[cl] \leftarrow count[cl] - 1$

 $newOrder[count[cl]] \leftarrow start$

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$ for i from |S|-1 down to 0:

 $cl \leftarrow class[start]$

 $count[cl] \leftarrow count[cl] - 1$ $newOrder[count[cl]] \leftarrow start$

return newOrder

 $start \leftarrow (order[i] - L + |S|) \mod |S|$

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$ for i from |S|-1 down to 0:

 $start \leftarrow (order[i] - L + |S|) \mod |S|$

 $cl \leftarrow class[start]$ $count[cl] \leftarrow count[cl] - 1$

 $newOrder[count[cl]] \leftarrow start$

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$ for i from |S|-1 down to 0:

 $count[cl] \leftarrow count[cl] - 1$ $newOrder[count[cl]] \leftarrow start$

return newOrder

 $start \leftarrow (order[i] - L + |S|) \mod |S|$ $cl \leftarrow class[start]$

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$ for i from |S|-1 down to 0:

 $cl \leftarrow class[start]$

 $count[cl] \leftarrow count[cl] - 1$ $newOrder[count[cl]] \leftarrow start$

return newOrder

 $start \leftarrow (order[i] - L + |S|) \mod |S|$

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$ for i from |S|-1 down to 0:

 $start \leftarrow (order[i] - L + |S|) \mod |S|$ $cl \leftarrow class[start]$

 $count[cl] \leftarrow count[cl] - 1$ $newOrder[count[cl]] \leftarrow start$

SortDoubled(*S*, *L*, order, class)

 $count \leftarrow zero array of size |S|$ $newOrder \leftarrow array of size |S|$ for *i* from 0 to |S|-1: $count[class[i]] \leftarrow count[class[i]] + 1$ for j from 1 to |S| - 1:

 $count[j] \leftarrow count[j] + count[j-1]$ for i from |S|-1 down to 0:

 $cl \leftarrow class[start]$

 $count[cl] \leftarrow count[cl] - 1$ $newOrder[count[cl]] \leftarrow start$

return newOrder

 $start \leftarrow (order[i] - L + |S|) \mod |S|$

The running time of SortDoubled is O(|S|).

Proof

Three for loops with O(|S|) iterations each.

Outline

- Suffix Array
- 2 General Construction Strategy
- 3 Initialization
- 4 Sort Doubled Cyclic Shifts
- 5 Updating Classes and Full Algorithm

Updating classes

Pairs are sorted — go through them in order, if a pair is different from previous, put it into a new class, otherwise put it into previous class

$$(P_1,P_2)==(Q_1,Q_2)\Leftrightarrow$$
 $(P_1==Q_1) ext{ and } (P_2==Q_2)$

 We know equivalence classes of elements of pairs

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [, , , , , ,]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 C'_{6} \$a (0,1) \(\leftarrow class = [1,2,1,2,1,1,0] \)
 C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]
 C'_{4} aa (1,1) newClass = [, , , , , ,]
 C'_{0} ab (1,2)
 C'_{2} ab (1,2)
 C'_{1} ba (2,1)
 C'_{3} ba (2,1)

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [, , , , , , , , ,]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} \ a\$ (1,0) \ newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} \ aa (1,1) \ newClass = [\ ,\ ,\ ,\ ,\ ,\ ,\ ,0]$
 $C'_{0} \ ab (1,2)$
 $C'_{2} \ ab (1,2)$
 $C'_{1} \ ba (2,1)$
 $C'_{3} \ ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [, , , , , 1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [, , , , , 1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} \ a\$ (1,0) \ newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} \ aa (1,1) \ newClass = [\ ,\ ,\ ,\ ,2,1,0]$
 $C'_{0} \ ab (1,2)$
 $C'_{2} \ ab (1,2)$
 $C'_{1} \ ba (2,1)$
 $C'_{3} \ ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [, , , , 2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [3, , , ,2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [3, , , ,2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [3, ,3, ,2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [3, ,3, ,2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [3,4,3, ,2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [3,4,3, ,2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [3,4,3,4,2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

$$S = ababaa\$$$
 $C'_{6} \$a (0,1) \leftarrow class = [1,2,1,2,1,1,0]$
 $C'_{5} a\$ (1,0) newOrder = [6,5,4,0,2,1,3]$
 $C'_{4} aa (1,1) newClass = [3,4,3,4,2,1,0]$
 $C'_{0} ab (1,2)$
 $C'_{2} ab (1,2)$
 $C'_{1} ba (2,1)$
 $C'_{3} ba (2,1)$

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
   mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}
```

if $class[cur] \neq class[prev]$ or

else:

return newClass

 $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
   mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}
```

if $class[cur] \neq class[prev]$ or $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

else: $newClass[cur] \leftarrow newClass[prev]$

return newClass

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
   mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}
```

if $class[cur] \neq class[prev]$ or

else:

return newClass

 $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
   mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}
```

if $class[cur] \neq class[prev]$ or

else:

return newClass

 $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
   cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
   mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}
```

if $class[cur] \neq class[prev]$ or

else:

return newClass

 $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
```

 $mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}$ if $class[cur] \neq class[prev]$ or $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

else:

return newClass

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
```

if $class[cur] \neq class[prev]$ or $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

else:

 $newClass[cur] \leftarrow newClass[prev]$

return newClass

 $mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}$

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
   mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}
```

if $class[cur] \neq class[prev]$ or

else:

return newClass

 $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
   mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}
```

if $class[cur] \neq class[prev]$ or

else:

return newClass

 $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
```

 $mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}$ if $class[cur] \neq class[prev]$ or $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

else: $newClass[cur] \leftarrow newClass[prev]$ return newClass

```
n \leftarrow |newOrder|
newClass \leftarrow array of size n
newClass[newOrder[0]] \leftarrow 0
for i from 1 to n-1:
  cur \leftarrow newOrder[i], prev \leftarrow newOrder[i-1]
```

if $class[cur] \neq class[prev]$ or $class[mid] \neq class[midPrev]$: $newClass[cur] \leftarrow newClass[prev] + 1$

else: $newClass[cur] \leftarrow newClass[prev]$ return newClass

 $mid \leftarrow (cur + L), midPrev \leftarrow (prev + L) \pmod{n}$

The running time of UpdateClasses is O(|S|).

Proof

One for loop with O(|S|) iterations.

 $order \leftarrow SortCharacters(S)$ $class \leftarrow ComputeCharClasses(S, order)$ $I \leftarrow 1$

while L < |S|: $order \leftarrow SortDoubled(S, L, order, class)$ $class \leftarrow UpdateClasses(order, class, L)$

 $I \leftarrow 2I$

 $order \leftarrow SortCharacters(S)$ $class \leftarrow ComputeCharClasses(S, order)$ $I \leftarrow 1$ while L < |S|: $order \leftarrow SortDoubled(S, L, order, class)$

 $class \leftarrow UpdateClasses(order, class, L)$ $I \leftarrow 2I$

 $order \leftarrow SortCharacters(S)$ $class \leftarrow ComputeCharClasses(S, order)$ $I \leftarrow 1$

while L < |S|: $order \leftarrow SortDoubled(S, L, order, class)$ $class \leftarrow UpdateClasses(order, class, L)$ $I \leftarrow 2I$

 $order \leftarrow SortCharacters(S)$ $class \leftarrow ComputeCharClasses(S, order)$ $I \leftarrow 1$

while L < |S|: $order \leftarrow SortDoubled(S, L, order, class)$ $class \leftarrow UpdateClasses(order, class, L)$

 $I \leftarrow 2I$

 $order \leftarrow SortCharacters(S)$ $class \leftarrow ComputeCharClasses(S, order)$ $I \leftarrow 1$

while L < |S|: $order \leftarrow SortDoubled(S, L, order, class)$ $class \leftarrow UpdateClasses(order, class, L)$

 $I \leftarrow 2I$

 $order \leftarrow SortCharacters(S)$ $class \leftarrow ComputeCharClasses(S, order)$ $I \leftarrow 1$

while L < |S|: $order \leftarrow SortDoubled(S, L, order, class)$ $class \leftarrow UpdateClasses(order, class, L)$ $I \leftarrow 2I$

 $order \leftarrow SortCharacters(S)$ $class \leftarrow ComputeCharClasses(S, order)$ $I \leftarrow 1$

while L < |S|: $order \leftarrow SortDoubled(S, L, order, class)$ $class \leftarrow UpdateClasses(order, class, L)$

 $I \leftarrow 2I$

 $order \leftarrow SortCharacters(S)$ $class \leftarrow ComputeCharClasses(S, order)$ $L \leftarrow 1$

 $L \leftarrow 1$ while L < |S|: $order \leftarrow \texttt{SortDoubled}(S, L, order, class)$ $class \leftarrow \texttt{UpdateClasses}(order, class, L)$

 $L \leftarrow 2L$ return *order*

 $order \leftarrow \texttt{SortCharacters}(S)$ $class \leftarrow \texttt{ComputeCharClasses}(S, order)$ $L \leftarrow 1$

 $L \leftarrow 1$ while L < |S|: $order \leftarrow \texttt{SortDoubled}(S, L, order, class)$ $class \leftarrow \texttt{UpdateClasses}(order, class, L)$ $L \leftarrow 2L$

The running time of BuildSuffixArray is $O(|S| \log |S| + |\Sigma|)$.

Proof

Initialization: SortCharacters in $O(|S| + |\Sigma|)$ and ComputeCharClasses in O(|S|)

The running time of BuildSuffixArray is $O(|S| \log |S| + |\Sigma|)$.

Proof

- Initialization: SortCharacters in $O(|S| + |\Sigma|)$ and ComputeCharClasses in O(|S|)
- While loop iteration: SortDoubled and UpdateClasses run in O(|S|)

The running time of BuildSuffixArray is $O(|S| \log |S| + |\Sigma|)$.

usually small

Proof quickSort --> O(|S|.log(S))

- Initialization: SortCharacters in $O(|S| + |\Sigma|)$ and ComputeCharClasses in O(|S|)
- lacktriangle While loop iteration: SortDoubled and UpdateClasses run in O(|S|)

O(S.195)

 $lacksquare O(\log |S|)$ iterations while L < |S|

Conclusion

- Can build suffix array of a string S in $O(|S| \log |S|)$ using O(|S|) memory
- Can also sort all cyclic shifts of a string S in $O(|S| \log |S|)$
- Suffix array enables many fast operations with the string
- Next lesson you will learn to construct suffix tree from suffix array in O(|S|) time, so you will be able to build suffix tree in total $O(|S| \log |S|)$ time!