Idée. Une suite est une liste infinie de nombres : (1; 3; 5; 7; 9; 11; ...).

Définition. Une suite numérique est une fonction u à valeurs dans \mathbb{R} et définie sur \mathbb{N} (tous les entiers).

Une suite u associe à tout entier n, un réel noté u_n (au lieu de l'écriture habituelle u(n)).

On note la suite u parfois $(u_n)_{n\geq 0}$ ou juste (u_n) . Pour tout n, u_n est le terme général de rang n de la suite.

Attention : Il ne faut pas confondre u_n qui est en général un nombre et (u_n) qui désigne la fonction u.

Exemples. • (1; 2; 3; 4; ...) est une suite. • (-3; -4; -5; ...) est une suite. • (1; 2; 3; 4) n'est pas une suite.

- La suite (u_n) définie par $u_n = n^2 1$.
- On a u = (-1; 0; 3; 8; 15; 24; ...)
- La suite $(u_n)_{n\geq 6}$ définie $u_n=\frac{1}{n-5}$ (pour $n\geq 6$). On a $u=(u_6;u_7;u_8;...)=\left(1;\frac{1}{2};\frac{1}{3};\frac{1}{4};...\right)$
- La suite (u_n) définie par $u_0 = -6$ et $u_{n+1} = 3u_n + 15$. (Terme suivant = $3 \times \text{Terme} + 15$)

$$u_0 = 6$$

Pour n=0, on a $u_{0+1}=3u_0+15$, c'est-à-dire : $u_1=3\times(-6)+15=-3$ Pour n=1, on a $u_{1+1}=3u_1+15$, c'est-à-dire : $u_2=3\times(-3)+15=6$

$$u_1 = 3 \times (-6) + 15 = -3$$

$$u_2 = 3 \times (-3) + 15 = 6$$

On a u = (-6, -3, 6, 33, ...)

Remarque. Attention à ne pas confondre u_{n+1} qui désigne le terme suivant u_n , et $u_n + 1$.

Méthode. Pour représenter une suite dans un repère (voir 1.), on place les points de coordonnées $(n; u_n)$. **Méthode.** Si la suite est définie par $u_{n+1} = f(u_n)$, alors (voir 2.) on peut construire les termes à l'aide de la courbe représentative de la fonction f et de la droite d'équation y = x

1 On considère la suite (u_n) définie par $u_n = 2n - 1$. 2 On considère la suite (u_n) définie par $u_{n+1} = f(u_n)$.

Définition. Une suite (u_n) est **croissante** ssi, pour tout entier $n, u_{n+1} \ge u_n$.

Définition. Une suite (u_n) est **décroissante** ssi, pour tout entier n, $u_{n+1} \le u_n$.

Définition. Une suite (u_n) est **constante** ssi, pour tout entier n, $u_{n+1} = u_n$.

Définition. Comme pour les fonctions, si on remplace les inégalités larges par des inégalités strictes, on parle de suite strictement croissante, strictement décroissante.

Exemples. • (1; 3; 5; 19; 33; 200; ...) est une suite croissante (strictement).

- (1; 3; 5; 5; 5; 6; 8; 8; 10; 11; ...) est une suite croissante mais pas strictement croissante.
- (1; 0; -1; -3; -10; ...) est une suite décroissante.
- (1; -1; 2; -2; 3; -3; ...) n'est ni croissante, ni décroissante.
- (3; 3; 3; 3; 3; 3; ...) est une suite constante.
- Soit (u_n) la suite définie par $u_0 = 5$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + n^2 + 1$.

 $n^2 + 1 > 0$ donc $u_{n+1} > u_n$, donc la suite (u_n) est strictement croissante.

Exemples. Allure d'une suite croissante, d'une suite décroissante, et d'une suite non monotone.

Remarque. Il existe des suites qui ne sont pas croissantes ni décroissantes, comme la suite (u_n) définie par $u_n = (-1)^n$.

Définition. Une suite (u_n) est arithmétique ssi la différence de deux termes consécutifs est constante. Plus précisément, (u_n) est arithmétique ssi il existe un réel r, tel que pour tout $n \in \mathbb{N}$, on ait $u_{n+1} = u_n + r$. r est appelé raison de la suite arithmétique (u_n) .

Exemple. La suite (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$ est arithmétique de raison 3.

Propriété. Terme général d'une suite arithmétique. Soit (u_n) une suite arithmétique de raison r. (Deux termes distants de n rangs diffèrent de n fois la raison) Pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$

Pour tout $n \in \mathbb{N}$, $u_n = u_1 + (n-1)r$

Pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}$, $u_n = u_p + (n-p)r$

Exemple. Soit (v_n) la suite définie par $v_0 = 3$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n - 0.5$.

Cette suite est arithmétique de raison -0.5 et de premier terme 3. Donc, $v_n = 3 - 0.5n$.

Définition. Une suite (u_n) est géométrique ssi le quotient de deux termes consécutifs est constant. Plus précisément, (u_n) est géométrique s'il existe un réel q, tel que pour tout $n \in \mathbb{N}$, on ait $u_{n+1} = q \times u_n$. q est appelé raison de la suite géométrique (u_n) .

Exemple. La suite (u_n) définie par $u_0=0.5$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n$ est la suite géométrique de raison q = 2 et de premier terme $u_0 = 0.5$.

Propriété. Terme général d'une suite géométrique. Soit (u_n) une suite géométrique de raison q.

Pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n$ Pour tout $n \in \mathbb{N}$, $u_n = u_1 \times q^{n-1}$

Pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}$, $u_n = u_p \times q^{n-p}$

Exemple. La suite (u_n) définie par $u_0=0.5$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n$ est géométrique de raison q=2et de premier terme $u_0 = 0.5$, donc, pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n = 0.5 \times 2^n$.

Propriété. Somme des termes d'une suite <u>arithmétique</u> = nombre de termes $\times \frac{(1^{er} \text{ terme} + \text{dernier terme})}{(1^{er} \text{ terme} + \text{dernier terme})}$

Exemple. $1 + 2 + \dots + n = \frac{n \times (n+1)}{n}$

Propriété. Somme des termes d'une suite <u>géométrique</u> = 1^{er} terme $\times \frac{1-raison^{nombre de termes}}{1-raison^{nombre de termes}}$

Exemple. Soit $q \text{ un r\'eel} \neq 1$. $1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$