Radartecnica

II Radar

- Apparato atto a rilevare oggetti che non possono essere osservati visivamente
 - Direzione
 - Distanza
 - Quota

Principio di funzionamento

- Antenna direzionale emette impulsi elettromagnetici
 - Oscilla entro un certo angolo per avere più visuale
- Se incontrano un corpo, questi impulsi (in parte) vengono riflessi e ritornano all'antenna
- In base a quanto tempo è passato da trasmissione a ricezione, calcolo la distanza

$$d = \frac{cT}{2}$$

Ok la distanza, ma la direzione e quota?

- Si usano antenne direzionali, che irradiano l'energia in uno stretto fascio
 - Se ho un ostacolo tra l'antenna e il bersaglio, questo non può essere individuato
- La direzione è espressa in termini di angolo formato dalla congiungente velivolo-bersaglio e dall'asse longitudinale del velivolo
 - Azimut
 - Elevazione

Ma se i due oggetti si muovono?

- Sfruttiamo l'effetto Doppler
 - Velocità relativa rispetto alla nave o al velivolo

Classificazione dei radar

- Funzionali
- Trasmissione
- Frequenza operativa
- Tipo di installazione

Caratteristiche funzionali

- Ricerca e scoperta
 - Esplorazione di un volume di spazio per individuare eventuali bersagli
- Tracciamento
 - Servono numerose informazioni continue sul bersaglio
- Illuminazione
- Mapping

Caratteristiche di trasmissione

- Radar impulsivi
 - Gli impulsi sono prodotti azionando ad intervalli regolari un oscillatore di potenza
 - Non coerente (fasi non correlate) o coerente
 - Se il tempo di andata e ritorno supera il periodo di ripetizione, ho ambiguità
 - Misura facilmente la distanza usando una sola antenna senza rumore tra trasmissione e ricezione
 - Alta potenza e banda larga

Caratteristiche di trasmissione

- Radar ad onda continua
 - Viene trasmessa una sola frequenza e larghezza di banda stretta
 - Difficile misurare la distanza, più facile la velocità del bersaglio
 - Antenne diverse in trasmissione e ricezione dato che è sempre attivo
 - Se moduliamo la frequenza si possono calcolare brevi distanze

Frequenza operativa

- Dalla scelta della frequenza dipendono la portata, la risoluzione angolare, le dimensioni, il peso, etc.
- Le dimensioni dell'antenna sono direttamente proporzionali alla lunghezza d'onda, che a sua volta è direttamente proporzionale alla potenza di trasmissione
- Frequenze elevate \rightarrow fascio piccolo \rightarrow maggiore risoluzione angolare $\lambda = \frac{V}{4}$