

Modelling an industrial bioseparation in the face of process variability

Edd Close^{a,b} (e.close@ucl.ac.uk)

Dan Bracewella, Eva Sorensenb, Jeffrey Salmc

- a. The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- b. Centre for Process Systems Engineering, Department of Chemical Engineering; University College London, Torrington Place, London, WC1E 7JE, UK.
- c. Pfizer Biopharmaceuticals, 1 Burtt Road, Andover, Massachusetts 01810, USA

Overview

- Problem definition
- Proposed solution
- Model development
- Results
- Concluding remarks

Problem definition

Molecule

Host cell protein DNA

Process

Equil / Load / Wash – 1M NaCl, pH 7 Elution – 20% Propylene Glycol, pH 7 Regeneration – 0.1M Na Acetate pH 4

OBJECTIVES

- Impurity removal (80kDa < 0.25%)
- Product recovery (> 52%)
- Percentage T in elution peak(25 < %T < 45)

PROBLEM: RESIN LOT-TO-LOT VARIABILITY

Proposed solution

Objective 1: Identify fixed design space

- Design Space
- CQA failure

Resin Lot Variability – Identify design space

- For multiple resin lots, narrow individual variable ranges
 - **SMALL** available design space
- ...and may EXCLUDE MANY FEASIBLE POINTS when design space is fixed

Objective 2: Identify adaptive design space

- Design Space
- CQA failure

Resin Lot Variability

Hypothesis: Advantageous to modify operating conditions based on RESIN LOT
- ADAPTIVE DESIGN SPACE

Summary

GIVEN: i, k, j, l DETERMINE: p, r

Model development

Approach

Goal: develop a model with sufficient accuracy for industry.

With this in mind:

- Minimize use of purified material Model calibration techniques
- Minimize experimental effort Make use of HTS expertise
- Minimize computational effort Use simple as possible model

Assumptions

- All product on column at end of wash is collected in the elution step
- Impurities in the feed stream had a negligible impact on the product separation

Model

Mass Transfer through Column

$$\frac{\partial C_i^m}{\partial t} + \frac{(1 - \epsilon_T)}{\epsilon_T} \cdot \frac{\partial C_i^{sp}}{\partial t} + u \cdot \frac{\partial C_i^m}{\partial z} = D_{A,i} \cdot \frac{\partial^2 C_i^m}{\partial z^2} \qquad \forall i = 1, \dots, N_C \quad z \in (0, L)$$

$$\forall i = 1, ..., N_C \quad z \in (0, L)$$

Mobile phase concentration

Stationary phase concentration

Apparent axial dispersion coefficient

Total column porosity Stationary phase saturation capacity

 $k_{a,i}$ Adsorption constant

Equilibrium Isotherm

$$C_i^{sp} = \frac{q_{s,i} \cdot k_{a,i} \cdot C_i^m}{1 + \sum k_{a,i} \cdot C_i^m}$$

$$\forall i = 1, \dots, N_C \quad z \in (0, L)$$

Procedure for model calibration

Initial model calibration experiments

High throughput batch adsorption

START

 Pulse injection of small unretained molecule

 $q_s k_{a,i} D_A \epsilon_T$

Parameter estimation

gPROMS

Model validation

- Small scale column runs on AKTA FPLC
- Elution peak product distribution
- Fractions taken during load and wash product distribution

END

Unsatisfactory model performance

Isotherm

Parameter	High	Low
q_s	6.39	6.45
$k_{a,1}$	6.33	4.30
$k_{a,2}$	2.30	1.49
$k_{a,3}$	1.01	0.52

☐ Isotherm prediction ☐ Experiment

Model validation after refinement

Load challenge (mg/ml)	1.5
Load concentration (mg/ml)	0.26
QQ load percentage	35
QT load percentage	35
TT load percentage	30

Parameter	Before	After
D_A	0.000229	0.003

Model predictions in detail

Results

Deterministic design space

■ For specific inlet concentrations, C_{IN} - determine region where CQA is met

Fixed probabilistic design space

COMBINATION OF LOW AND HIGH - Minimum of p(low) and p(high)

Conclusion: Fixing the design space is not an option

Adaptive probabilistic design space

p(low) or p(high) depending on resin lot in use

- Larger design space areas
- Enables operation in robust areas

Concluding remarks

Concluding remarks

- Better process understanding
- Optimum operation

- Quantify inherent risk due to uncertainty in
 - i. Upstream (feed stream)
 - ii. Controlled variables
 - iii. Manipulated variables
 - iv. Model parameters
- Identify where to prioritize R&D resources

Acknowledgements

- UCL Colleagues
- PPD Andover

Thank you!

An adaptive design space in chromatography

Edd Close^{a,b} (e.close@ucl.ac.uk)

Academic supervisors – Dan Bracewell^a and Eva Sorensen^b Industrial supervisor – Jeff Salm^c

- a. The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- b. Centre for Process Systems Engineering, Department of Chemical Engineering; University College London, Torrington Place, London, WC1E 7JE, UK.
- c. Pfizer Biopharmaceuticals, 1 Burtt Road, Andover, Massachusetts 01810, USA

