10 Контрольная 1: 03/11/2020

Программа Математика и МААД

- 1. (10) Пусть даны последовательность множеств A_n и последовательность их характеристических функция χ_n . Доказать, что предел последовательности множеств A_n существует тогда и только тогда, когда существует предел характтеристических функций и, соответственно, что характеристической функцией $\overline{\lim}_{n\to\infty} A_n$ является функция $\overline{\lim}_{n\to\infty} \chi_n$, а характеристической функцией $\underline{\lim}_{n\to\infty} A_n$ является функция $\underline{\lim}_{n\to\infty} \chi_n$.
- 2. (3+3+4) Пусть μ счетно-аддитивная мера на полукольце $\mathfrak{A}\subset 2^X,\ \mu^*$ соответствующая внешняя мера.
 - (а) Доказать, что отношение $\mu^*(A\triangle B)=0$ является отношением эквивалентности и что функция $d(\tilde{A},\tilde{B})=\mu^*(A\triangle B)$, где $\tilde{A},\,\tilde{B}$ классы эквивалентности, содержащие A и B, задает расстояние на соответствующем фактормножестве \mathcal{M} .
 - (b) Доказать, что метрическое пространство ${\cal M}$ полно.
 - (c) Пусть $\mathfrak A$ подкольцо интервалов вида [a,b) на отрезке [0,1], $\mathcal M$ пространство, построенное ранее. Доказать, что $\mathcal M$ связно и некомпактно.
- 3. (10) Пусть каждое из множеств A_n , $n=1,2,\ldots$ состоит из цифр $0,1,2,\ldots,9$. Определим меру μ_n на A_n , полагая $\mu_n(B)=\operatorname{card}(B)/10$. Пусть μ мера на $A=\bigcap A_n$, являющаяся произведением мер μ_n . Рассмотрим отображение A в отрезок $[0,1]\colon \{x_n\}\to 0, x_1x_2x_3\ldots$ (бесконечная десятичная дробь). Доказать, что при этом отображении мера μ переходит в обычную меру Лебега на [0,1].
- 4. (10) Пусть f(x,y) есть количество точек $(j,k)\in\mathbb{Z}^2$, удовлетворяющих условию $j^2+k^2< x^2+y^2$, и $S:=\sum_{n\in\mathbb{Z}}e^{-n^2}$. Доказать, что

$$\int_{\mathbb{R}^2} f(x, y) e^{-(x^2 + y^2)} \, dx dy = \pi S^2.$$

5. (МААД, 10) Вычислить интеграл

$$\int_{S} |z| \, dH_2(x,y,z),$$

где поверхность S задается уравнениями $z^2-x^2-y^2=a^2, \; |z|\leq \sqrt{2}a.$

5. (М, 10) Пусть $E:=\{x=(x_1,x_2,x_3,x_4): \sqrt{x_2^2+x_3^2+x_4^2}\leq x_1\}$. Для заданного $t\in\mathbb{R}^4$ вычислить интеграл

$$\int_{E} e^{-\langle x,t\rangle} \, dx_1 dx_2 dx_3 dx_4.$$

Программа Математика и МААД

- 1. (10) Существует ли неограниченная функция $f: \mathbb{R} \to \mathbb{R}$, принадлежащая всем пространствам $L^p(\mathbb{R})$ для $1 \le p < +\infty$?
- 2. (3+3+4) Пусть μ счетно-аддитивная мера на полукольце $\mathfrak{A}\subset 2^X,\ \mu^*$ соответствующая внешняя мера.
 - (а) Доказать, что отношение $\mu^*(A\triangle B)=0$ является отношением эквивалентности и что функция $d(\tilde{A},\tilde{B})=\mu^*(A\triangle B)$, где $\tilde{A},\,\tilde{B}$ классы эквивалентности, содержащие A и B, задает расстояние на соответствующем фактормножестве \mathcal{M} .
 - (b) Доказать, что метрическое пространство ${\cal M}$ полно.
 - (c) Пусть \mathfrak{A} подкольцо интервалов вида [a,b) на отрезке [0,1], \mathcal{M} пространство, построенное ранее. Доказать, что \mathcal{M} связно и некомпактно.
- 3. (10) Пусть каждое из множеств A_n , $n=1,2,\ldots$ состоит из цифр $0,1,2,\ldots,9$. Определим меру μ_n на A_n , полагая $\mu_n(B)=\operatorname{card}(B)/10$. Пусть μ мера на $A=\bigcap A_n$, являющаяся произведением мер μ_n . Рассмотрим отображение A в отрезок $[0,1]\colon \{x_n\}\to 0, x_1x_2x_3\ldots$ (бесконечная десятичная дробь). Доказать, что при этом отображении мера μ переходит в обычную меру Лебега на [0,1].
- 4. (10) Пусть f(x,y) есть количество точек $(j,k) \in \mathbb{Z}^2$, удовлетворяющих условию $j^2 + k^2 < x^2 + y^2$, и $S := \sum_{n \in \mathbb{Z}} e^{-n^2}$. Доказать, что

$$\int_{\mathbb{R}^2} f(x, y) e^{-(x^2 + y^2)} \, dx dy = \pi S^2.$$

5. (МААД, 10) Вычислить интеграл

$$\int_{S} |z| dH_2(x, y, z),$$

где поверхность S задается уравнениями $z^2-x^2-y^2=a^2, \; |z|\leq \sqrt{2}a.$

5. (М, 10) Пусть $E:=\{x=(x_1,x_2,x_3,x_4):\sqrt{x_2^2+x_3^2+x_4^2}\leq x_1\}$. Для заданного $t\in\mathbb{R}^4$ вычислить интеграл

$$\int_{\Gamma} e^{-\langle x,t\rangle} dx.$$