CSys - Databases Sam Robbins

Database Schemas

1 Transactions and concurrency control

- We need to trust a DBMS
- We need mechanisms to ensure that the database:
 - is reliable
 - remains in a consistent state
- Especially when
 - software/hardware failures
 - multiple users access the database simultaneously
- Database Recovery The process of restoring a database to a correct state after a failure
- Concurrency control protocols: prevent database accesses to interfere with each other
- Central notion in a DBMS:
 - Transaction: an action carried out by a single user/program which reads/updates the database
- At the end of a transaction:
 - database again in consistent state
 - valid integrity/referential constraints
- During the execution of a transaction
 - maybe in an inconsistent state
- A transaction can have two outcomes:
 - Committed completes successfully
 - Rolled back does not complete successfully
- Concurrency control: the process of managing simultaneous operations on the DB
- Two transactions may be:
 - both correct by themselves
 - but when executed simultaneously they may cause inconsistency in the database

2 Abstract data models

- Data definition model specifies entities/attributes/relationships/constraints for the stored data
- However, DDL is too low level to describe the data organisation in a simple way, understandable by most users
- We need a data model a collection of intuitive concepts describing data, their relationships and constraints

CSys - Databases Sam Robbins

3 Types of data organisation

- Three characterisations of data:
 - Structured data
 - * Data represented in strict format
 - * The DBMS checks to ensure that the data follows:
 - · the structures
 - · the integrity and referential constraints
 - Semi structured data
 - * Self describing data
 - * the "schema" information is mixed with the data values
 - * How do we end up with such data?
 - · sometimes ad-hoc
 - · not known in advance how it will be stored/managed
 - * This data may have some structure, but:
 - · not all the parts of the data have the same structure
 - · each data object may have different attributes that are not known in advance
 - Unstructured data
 - * Very limited indication of the type/structure of the data

4 Database design

- Conceptual design
 - Construct a first, high level model of the data: ER model
 - using the users' requirements specification
 - independently of any physical considerations
 - it serves as the fundamental understanding of the system
- Logical design
 - construct the relational data model of the data
 - Using the conceptual design map entities and relationships to tables
 - use normalization techniques to eliminate data redundancy and anomalies
- Physical design
 - describe the database implementation of the logical design
 - specific storage structures/ access methods/ security protection
 - aim is optimum performance