Elementi di teoria della Computazione Macchine di Turing

1. Data la Macchina di Turing M in figura, fornire la sequenza delle configurazioni quando M ha come input la sequenza aabbaaaa

(Nota a, R indica in forma abbreviata $a \to a, R$ e b, R indica $b \to b, R$, l simbolo |__| indica il blank)

2. Sia M la MdT in figura. Fornire la sequenza di configurazioni della computazione di M sugli input: $u = \epsilon$ e w = 01011.

0=Stato iniziale, 4=Stato accept, 5=Stato Reject

3. Relazione esistente tra problemi di decisione e riconoscimento di linguaggi: Dato il problema

CAMMINO

Input: Grafo G

Domanda: Esiste un cammino in G che contiene ogni vertice di G esattamente una volta? definire il linguaggio $L_{\texttt{CAMMINO}}$ corrispondente, spiegando la corrispondenza.

4. Relazione esistente tra problemi di decisione e riconoscimento di linguaggi: Dato il problema

INVERTI

Input: Matrice M

Domanda: La matrice M é invertibile?

definire il linguaggio L_{INVERTI} corrispondente, spiegando la corrispondenza.

5. Dire, giustificando la risposta, se è possibile utilizzare il teorema di Rice per mostrare che il seguente linguaggio è indecidibile.

 $L = \{\langle M \rangle \mid M$ è una MdT che si arresta su 11 e non si arresta su 00 $\}$.

6. Dimostrare che $A_{TM} \leq_m QEQ_{TM}$ con

$$QEQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ sono macchine di Turing deterministiche}$$

ed esiste un carattere b tale che $L(M_1) = \{b\} \circ L(M_2)\}.$

Suggerimento: considerare la funzione che associa a ogni stringa $\langle M, w \rangle$, dove M è una MdT e w è una stringa, la stringa $\langle M_1, M_2 \rangle$ dove $L(M_1) = \{bw\}$ ed M_2 rifiuta y se $y \neq w$, accetta y = w se e solo se M accetta w.

- 7. Dimostrare che $L = \{0x \mid x \in A_{TM}\}$ è indecidibile.
- 8. Fornire la definizione di insieme numerabile
 - Mostrare che l'insieme di tutte le coppie (i, j) dove $i \in j$ sono numeri interi con i < j rusulta numerabile.
 - Utilizzare il metodo della diagonalizzazione per mostrare che l'insieme $\{x \mid x \text{ \'e un numero reale t.c. } 0 \le x \le 1\}$ non \(\epsilon\) numerabile.
- 9. E' possibile utilizzare il Teorema di Rice per mostrare che i seguenti linguaggi risultano indecidibili? Giustificare le risposte

 $L_1 = \{\langle M \rangle | M$ é una MdT che accetta ogni input di lunghezza pari $\}$

 $L_2 = \{\langle M \rangle | M$ é una MdT che si arresta su ogni input di lunghezza pari $\}$

 $L_3 = \{ \langle M, w \rangle | M \text{ \'e una MdT e } |w| \text{ \'e pari} \}$

10. Sapendo che $X \leq_m Y$, quale delle seguenti affermazioni é vera?

Se X é indecidibile allora Y é indecidibile

Se Y é indecidibile allora X é indecidibile

motivare la risposta.

11. Si consideri il linguaggio

 $L = \{ \langle M \rangle | M$ é una MdT che accetta almeno una stringa di lunghezza dispari $\}$.

Dimostrare che L non é decidibile.

Non si puó invocare il Teorema di Rice (anche se se ne possono sfruttare le idee dimostrative).