

1 CLAIMS

2

3 Sub A2) What is claimed is:

4 1. A digital clock manager having a reference input
5 terminal, a skew input terminal, an output terminal, and a
6 frequency adjusted output terminal, the digital clock
7 manager comprising:8 a delay lock loop (DLL) coupled to the reference
9 input terminal, the skew input terminal, and the output
10 terminal; and11 a digital frequency synthesizer, coupled to the
12 delay lock loop and the frequency adjusted output
13 terminal.

14

15 2. The digital clock manager of Claim 1, wherein the
16 delay lock loop is configured to generate an output clock
17 signal on the output terminal which synchronizes a reference
18 clock signal on the reference input terminal with a skewed
19 clock signal on the skew input terminal.

20

21 3. The digital clock manager of Claim 1, wherein the
22 digital frequency synthesizer is configured to generate a
23 frequency adjusted clock signal on the frequency adjusted
24 output terminal and wherein the frequency adjusted clock
25 signal is synchronized with the output clock signal during
26 concurrences.

27

28 4. The digital clock manager of Claim 1, wherein the
29 delay lock loop comprises a DLL output circuit having a DLL
30 output delay.

31

32 5. The digital clock manager of Claim 4, wherein the
33 digital frequency synthesizer comprises a DFS output circuit
34 having a DFS output delay.

35

1 6. The digital clock manager of Claim 5, wherein the
2 DLL output delay is substantially equal to the DFS output
3 delay.

4

5 7. The digital clock manager of Claim 5, wherein the
6 DLL output circuit comprises a plurality of components and
7 the DFS output circuit comprises the same plurality of
8 components.

9

10 8. The digital clock manager of Claim 1, wherein the
11 delay lock loop drives a synchronizing clock signal to the
12 digital frequency synthesizer.

13

14 9. The digital clock manager of Claim 8, wherein the
15 delay lock loop is configured to generate an output clock
16 signal on the output terminal, wherein the output clock
17 signal lags the synchronizing clock signal by a DLL output
18 delay.

19

20 10. The digital clock manager of Claim 9, wherein the
21 digital frequency synthesizer is configured to generate a
22 frequency adjusted clock signal on the frequency adjusted
23 output terminal, wherein an active edge of the frequency
24 adjusted clock signal lags an active edge of the
25 synchronizing clock signal by a DFS output delay during a
26 concurrence period.

27

28 11. The digital clock manager of Claim 10, wherein the
29 DLL output delay is substantially equal to the DFS output
30 delay.

31

32 12. The digital clock manager of Claim 1, further
33 comprising a variable delay circuit coupled between the
34 delay lock loop and the output terminal.

35

1 13. The digital clock manager of Claim 1, further
2 comprising a variable delay circuit coupled between the
3 digital frequency synthesizer and the frequency adjusted
4 output terminal.

5
6 14. The digital clock manager of Claim 1, further
7 comprising a multiplexer having a first input terminal
8 coupled to the reference input terminal, a second input
9 terminal coupled to the delay lock loop, and an output
10 terminal coupled to the digital frequency synthesizer.

11
12 15. The digital clock manager of Claim 1, wherein the
13 delay lock loop is configured to provide a synchronizing
14 clock signal to the second input terminal of the
15 multiplexer.

16
17 16. The digital clock manager of Claim 15, wherein the
18 digital frequency synthesizer is configured to perform a
19 frequency search phase using a reference clock signal
20 provided to the reference input terminal.

21
22 17. The digital clock manager of Claim 16, wherein the
23 digital frequency synthesizer is configured to provide a
24 frequency adjusted clock signal based on the synchronizing
25 clock signal.

26
27 18. The digital clock manager of Claim 1, wherein the
28 digital frequency synthesizer performs a frequency search
29 while the delay lock loop is performing lock acquisition.

30
31 19. A method to generate an output clock signal and a
32 frequency adjusted clock signal from a reference signal,
33 wherein the output clock signal is synchronized with the
34 frequency adjusted clock signal during a concurrence; the
35 method comprising:

36 generating a synchronizing clock signal;

1 matching a DLL output delay with a DFS output
2 delay;
3 generating the output clock signal lagging the
4 synchronizing clock signal by the DLL output delay; and
5 generating the frequency adjusted clock signal so
6 that an active edge of the frequency adjusted clock
7 signal lags an active edge of the synchronizing clock
8 signal by the DFS output delay during the concurrence.
9

10 20. The method of Claim 19, wherein the step of
11 matching a DLL output delay with a DFS output delay
12 comprises synchronizing a DLL output circuit with a DFS
13 output circuit.

14
15 21. The method of Claim 19, further comprising
16 performing lock acquisition.

17
18 22. The method of Claim 21, further comprising
19 performing a frequency search during lock acquisition.