25

10

What is Claimed is:

- 1. A method for processing signal in a communication system having a plurality of antennas, comprising the steps of:
- (a) extracting a first signal mostly including a specific signal, and a second signal mostly including a signal other than the specific signal, from a signal received at the plurality of antennas;
 - (b) calculating an autocovariance matrix of each of the first and second signals;
- (c) dividing at least any one of the calculated autocovariance matrices into a diagonal component and a non-diagonal component, to separate the matrix into matrices of the components;
- (d) calculating a weighted value for the specific signal by using the separated autocovariance matrices; and,
- (e) applying the weighted value to a transmission, or reception signal related to the specific signal, and forwarding a signal having the weighted value applied thereto.
- 20 2. A method as claimed in claim 1, wherein the communication system is a CDMA type radio communication system, and the first signal is a signal the received signal is despread in a particular code.
 - 3. A method as claimed in claim 2, wherein the second signal is a signal before the received signal is despread in a particular code.
 - 4. A method as claimed in claim 1, wherein the received signal includes a vector having a number of elements equal to, or less than a number of the antennas.

10

20

25

- 5. A method as claimed in claim 4, wherein the autocovariance matrix has a number of rows or columns the same with the number of elements of the vector of the received signal.
- 6. A method as claimed in claim 1, wherein the calculated weighted value is a vector having a number of element the same with the number of rows or columns of the autocovariance matrix.
- 7. A method as claimed in claim 1, wherein the step (d) includes the step of obtaining a weighted vector which leads a ratio of a product of the autocovariance of the first signal and the weighted value to a product of the autocovariance of the second signal and the weighted value to a maximum.
- 8. A method as claimed in claim 7, wherein the separated matrix is the autocovariance matrix of the second signal.
- 9. A method as claimed in claim 8, wherein the weighted value \underline{w} can be calculated by $\underline{w} = \frac{\{R_{yy}(R_{xx}^D)^{-1} \lambda R_{xx}^O(R_{xx}^D)^{-1}\}\underline{w}}{\lambda}$, where \underline{x} denotes a second signal vector, \underline{y} denotes a first signal vector, \underline{x} denotes the autocovariance matrix of the \underline{x} , Ryy denotes the autocovariance matrix of the \underline{y} , \underline{x} denotes a matrix of diagonal components of the \underline{x} , \underline{x} denotes a matrix of non-diagonal components of the \underline{x} , \underline{x} denotes an inverse matrix of the \underline{x} , and \underline{x} denotes a greatest proper value of \underline{x} , which is a generalized Eigenvalue problem.

1994-299- 05-15

25

5

10

10. A method as claimed in claim 8, wherein the weighted value \underline{w} can be renewed with respect to a snapshot index 'k' and a following snapshot index (k+1) by $\underline{w}(k+1) = \frac{\{R_{yy}(R_{xx}^D)^{-1} - \lambda R_{xx}^O(R_{xx}^D)^{-1}\}\underline{w}(k)}{\lambda}, \text{ where } \underline{x} \text{ denotes a second signal vector, } \underline{y}$ denotes a first signal vector, Rxx denotes the autocovariance matrix of the \underline{x} , Ryy denotes the autocovariance matrix of the \underline{y} , Rxx^D denotes a matrix of diagonal components of the Rxx, Rxx^O denotes a matrix of non-diagonal components of the Rxx, (Rxx^D)-1 denotes an inverse matrix of the Rxx^D, and λ denotes a greatest proper value of Ryy \underline{w} - λ Rxx \underline{w} , which is a generalized Eigenvalue problem.

- 11. A method as claimed in claim 8 or 9, wherein the greatest proper value λ of Ryyw $\lambda Rxxw$, which is a generalized Eigenvalue problem, can be calculated by $\lambda = \frac{\underline{w}^H R_{yy} \underline{w}}{\underline{w}^H R_{xx} \underline{w}}$ with respect to 'H', the Hermitian operator.
- 12. A method as claimed in claim 7, wherein the separated matrix is an autocovariance matrix of the first signal.
 - 13. A method as claimed in claim 12, wherein the weight vector $\underline{\mathbf{w}}$ can be calculated by $\underline{\mathbf{w}} = (\lambda Rxx\underline{\mathbf{w}} Ryy^0\underline{\mathbf{w}})(Ryy^D)^{-1}$, where $\underline{\mathbf{x}}$ denotes a second signal vector, $\underline{\mathbf{y}}$ denotes a first signal vector, Rxx denotes the autocovariance matrix of the $\underline{\mathbf{x}}$, Ryy denotes the autocovariance matrix of the $\underline{\mathbf{y}}$, Ryy^D denotes a matrix of diagonal components of the Ryy, Ryy^D denotes a matrix of non-diagonal components of the Ryy, Ryy^D -1 denotes an inverse matrix of the

10

Ryy^D, and λ denotes a greatest proper value of Ryyw - λ Rxxw, which is a generalized Eigenvalue problem.

14. A method as claimed in claim 12, wherein the weight vector \underline{w} can be calculated by $\underline{w}(k+1) = \lambda Rxx\underline{w}(k)\underline{(Ryy^D)^{-1}} - Ryy^D\underline{w}(k)\underline{(Ryy^D)^{-1}}$, where \underline{x} denotes a second signal vector, \underline{y} denotes a first signal vector, $\underline{R}xx$ denotes the autocovariance matrix of the \underline{x} , $\underline{R}yy$ denotes the autocovariance matrix of the \underline{y} , $\underline{R}yy^D$ denotes a matrix of diagonal components of the $\underline{R}yy$, $\underline{R}yy^D$ denotes a matrix of non-diagonal components of the $\underline{R}yy$, $\underline{R}yy^D$ denotes an inverse matrix of the $\underline{R}yy^D$, and λ denotes a greatest proper value of $\underline{R}yy\underline{w} - \lambda \underline{R}xx\underline{w}$, which is a generalized Eigenvalue problem.

15. A method as claimed in claim 13 or 14, wherein the greatest proper value λ of Ryyw - $\lambda Rxxw$, which is a generalized Eigenvalue problem, can be calculated by $\lambda = \frac{\underline{w}^H R_{yy} \underline{w}}{\underline{w}^H R_{xx} \underline{w}}$ with respect to 'H', the Hermitian operator.