Roll No.

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech II Semester (SVEC-19) Regular Examinations August – 2021

ELECTRICAL MEASUREMENTS

[Electrical and Electronics Engineering]

Time: 3 hours			Max. Marks: 60					
	Answer One Question from each Unit All questions carry equal marks							
UNIT-I								
1.	a)	List and describe the different static characteristics of measuring instruments.	6 Marks	L1	CO1	PO1		
	b)	Explain the importance of damping mechanism in an instrument and how are they classified.	6 Marks	L2	CO1	PO1		
		(OR)						
2.	a)	Explain the construction details of attraction type moving iron instrument. Derive the Torque equation for moving iron instrument, and show that the scale is non-uniform.	6 Marks	L5	CO1	PO3		
	b)	The Ayrton universal shunt has a total resistance of 6000 Ω and galvanometer has a resistance of 2000 Ω . Determine the multiplying power of shunt for 1000 Ω , 2000 Ω and 3000 Ω tapping.	6 Marks	L3	CO1	PO2		
		UNIT-II						
3.	a)	Explain with a neat circuit of single phase Dynamometer type Wattmeter and derive the equation for deflection torque.	6 Marks	L2	CO2	PO1		
	b)	Draw the possible methods of connections of the pressure coil of a wattmeter and compare the errors.	6 Marks	L2	CO2	PO4		
		(OR)						
4.	a)	A 230V, 50Hz single phase energy meter has a constant of 200 revolutions per kWh. While supplying a non-inductive load of 4.4A at normal voltage, the meter takes 3 minutes for	6 Marks	L3	CO2	PO2		
	b)	10 revolutions. Calculate the percentage error of the instrument. Draw the connection diagram of a 3-phase energy meter and explain its working. How do you correct it, if it is found to be moving fast and justify your answer?	6 Marks	L4	CO2	PO6		
		UNIT-III						
5.	a)	A current transformer with turn's ratio 1:201 is rated as 1000/5A, 25VA. The core loss and magnetizing components of primary are 3A and 7A under rated conditions. Find the ratio and phase angle errors for full burden at 0.88 p.f leading.	6 Marks	L3	CO3	PO2		
	b)	Illustrate the ratio and phase angle errors in potential transformer and explain how to overcome.	6 Marks	L4	CO3	PO1		
		(OR)						
6.	a)	Draw the circuit diagram of Crompton's potentiometer and explain its working. Describe the steps used when measuring an unknown resistance.	6 Marks	L1	CO3	PO5		
	b)	A Potentiometer consisting of a resistance dial having 15 steps of 10Ω each and a series connected slide wire of $10~\Omega$ which is divided into 100 divisions. If the working current of the potentiometer is 15mA and each division of the slide wire can read accurately up to 1/5 of its span. Calculate the resolution of the potentiometer in volts.	6 Marks	L3	CO3	PO2		

		UNIT-IV					
7.	a)	Explain kelvin's double bridge for measurement of low	6 Marks	L2	CO4	PO3	
		resistance with neat circuit diagram and list out the assumptions					
		made.					
	b)	The four arms of a Wheatstone bridge are as follows AB= 5Ω ;	6 Marks	L3	CO4	PO4	
		BC=500 Ω ; CD=1000 Ω ; DA=100 Ω . The galvanometer has a					
		resistance of 100 Ω , a sensitivity of 5mm/ μ A and it is connected					
		across AC. A source of 5V DC is connected across BD. Calculate					
		the current through the galvanometer and its deflection, if the					
		resistance of arm DA is changed from 100Ω to 102Ω .					
		(OR)					
8.	a)	Show how the Wien's bridge can be used for the measurement of	6 Marks	L2	CO4	PO1	
		frequency in audio range. Derive the equation for frequency f .					
	b)	The four arms of an A.C. bridge network are as follows:	6 Marks	L3	CO4	PO4	
		Arm AB: an unknown capacitance; Arm BC: a standard capacitor					
		C3 of 1000pF; Arm CD: a non-inductive resistor R4 of 100 Ω in					
		parallel with a capacitor C4 of 0.01 µF; Arm DA: a non -					
		inductive resistor R2 of 1000 Ω . The A.C. supply is connected					
		across terminals B, D and the supply frequency is 50Hz. If the					
		bridge is balanced with the above values, determine the					
		components of the unknown impedance, while deriving the					
		balanced conditions.					
UNIT-V							
9.	a)	Explain how frequency can be measured using Lissajous patterns	6 Marks	L2	CO5	PO5	

9.	a)	Explain how frequency can be measured using Lissajous patterns	6 Marks	L2	CO5	PO5
		in CRO and give any two examples.				

- b) Explain in detail about the following characteristics of Digital 6 Marks L1 CO5 PO1 meters:
 - i) Resolution ii) Sensitivity iii) Accuracy, and compare with respect to analog meters.

(OR)

- 10 a) List the different types of DVM. Explain working principle of 6 Marks L2 CO5 PO1 ramp type Digital Voltmeter with diagram.
 - b) Describe the working of Digital frequency meter with a neat 6 Marks L2 CO5 PO1 diagram.

⊕⊕⊕⊕