INT 1. Рассмотрим распределение на булевых строках длины n, где вероятность того, что i+1 символ равен i-ому равна  $\frac{3}{4}$ . Чему равна энтропия данного распределения?

**INT 2.** Алисе сообщили значение случайной величины  $\alpha$ , а Бобу — значение некоторой функции  $f(\alpha)$ . Придумайте алгоритм, который позволит Алисе сообщить Бобу значение  $\alpha$ , передав в среднем не более  $H(\alpha \mid f(\alpha)) + 1$  битов.

## Определение

Пусть  $F\colon\{0,1\}^*\to\{0,1\}^*$  — вычислимая функция. Сложность описания x относительно F определим следующим образом:  $K_F(x):=\min\{|p|\mid F(p)=x\}.$ 

Будем говорить, что способ описания F не хуже G, обозначим  $F \prec G$ , если существует такая константа  $c_G$ , что для  $\forall x \in \{0,1\}^*, K_F(x) \leq K_G(x) + c_G$ .

Оптимальным будем называть такой способ описания U, который не хуже любого другого. Колмогоровской сложностью x будем называть значение  $K(x) \coloneqq K_U(x)$ .

InT 3. Докажите, что существует оптимальный способ описания F.

**InT 4.** Докажите, что ряд  $\sum_{x \in \{0,1\}^*} 2^{-\mathrm{K}(x)}$  расходится.

InT 5. Существует ли такой оптимальный способ описания U, что:

- а) величина колмогоровской сложности K(x) для любого слова x чётна?
- б) колмогоровская сложность любого слова x является степенью двойки?

**INT 6.** Пусть колмогоровская сложность матрицы смежности неориентированного графа на n вершинах без петель и кратных ребер не меньше  $\frac{n(n-1)}{2}$ . Покажите, что отсюда следует, что граф связен, если n достаточно велико.

