our objectives.

To <u>identify</u> some physics concepts used in describing motion. To <u>classify</u> these physics concepts.

To relate them to each other using

Good afternoon, last Tuesday, we were able to. complete a concept map showing the relationships among various kinematic concepts : distance (x) displacement speed (v) velocity

Fundamental Concepts

Distance vs. Displacement

Distance (scalar)— total length of path, be it straight or not.

Displacement (vector)shortest path from initial point to final point.

Review

1. Your position indicates exactly where you are located.

Displacement vs Distance

2. Your VELOCITY measures how quickly your position changes.

Velocity vs Speed

3. Your **ACCELERATION** measures how quickly your velocity changes.

Review

4. In order for you to accelerate, something must exert a NET FORCE on you.

Units: m/s, km/hr, ft/s

5. The more mass you have, the more INERTIA you have, and the less acceleration you experience for a given force.

Newton's 2ND LAW OF MOTION

$$\vec{a} \quad \alpha \quad \vec{F}_{net}$$

•
$$\vec{a}$$
 α $\frac{1}{m}$

$$\bar{F}_{net} = m\bar{a}$$

Unit:

- ➤ Newton (N)
- ≽ kg-m/s²

Law of Inertia

If the velocity of an object is constant,

then,
$$\sum F = 0$$
 or $F_{net} = 0$

If
$$\sum F = 0$$
 or $F_{net} = 0$,

then the velocity of an object is constant.

FORCES COME IN PAIRS!

For a force \overrightarrow{F}_{AB} , there is another force \overrightarrow{F}_{BA} , where

$$\overrightarrow{\overline{F}}_{AB} = -\overrightarrow{\overline{F}}_{BA}$$