Target Business Case Analysis

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
- 1. Data type of all columns in the "customers" table.

Sol.

Query:

SELECT COLUMN_NAME, data_type FROM tensile-spirit-350306.target_sql.INFORMATION_SCHEMA.COLUMNS WHERE table_name = 'customers';

Output:

JOB INFORMATION		RESULTS	JSON
Row //	COLUMN_NAME	~	data_type ▼
1	customer_id		STRING
2	customer_unique	_id	STRING
3	customer_zip_co	de_prefix	INT64
4	customer_city		STRING
5	customer_state		STRING

Insights:

Most columns in customers table are STRING type.

2. Get the time range between which the orders were placed.

Sol.

Query:

SELECT MIN(order_purchase_timestamp) AS order_start, MAX(order_purchase_timestamp) AS order_end FROM tensile-spirit-350306.target_sql.orders;

Output:

Insights:

The Market in Brazil was operational for 2 years.

3. Count the Cities & States of customers who ordered during the given period.

Sol.

Query:

SELECT COUNT(DISTINCT c.customer_city) AS Total_Cities, COUNT(DISTINCT c.customer_state) AS Total_States FROM tensile-spirit-350306.target_sql.customers AS c INNER JOIN tensile-spirit-350306.target_sql.orders AS o ON c.customer_id=o.customer_id;

Output:

Insights:

Target was operational in 4119 cities and 27 states across Brazil during the 2 years.

2. In-depth Exploration:

1. Is there a growing trend in the no. of orders placed over the past years?

Sol.

Query:

SELECT
EXTRACT(Year FROM order_purchase_timestamp) AS Year,
COUNT(order_id) AS order_count
FROM tensile-spirit-350306.target_sql.orders
GROUP BY Year
ORDER BY Year;

JOB IN	FORMATIO	N	F	RESULTS	JSON
Row //	Year ▼		11	order_count	▼
1		201	6		329
2		201	7	4	45101
3		201	8	ţ	54011

Insights:

Yes, there is an inclined trend in customer orders placed over the time period. From 2016 to 2017, no. of orders went too high in the trend however, after 2017, it slowed down a little.

2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Sol:

Query:

SELECT

EXTRACT(Month FROM order_purchase_timestamp) AS Month_Num,

FORMAT_TIMESTAMP('%B', order_purchase_timestamp) AS Month_Name,

COUNT(order_id) AS order_count

FROM tensile-spirit-350306.target_sql.orders

GROUP BY Month_Num,Month_Name

ORDER BY Month_Num Asc,Month_Name ASC;

JOB INFORM	MATION	RESULTS	JSON	EXECUTION DET	AILS
Row Mor	nth_Num ▼	Month_Name	•	order_count	· /
1	1	January			8069
2	2	February			8508
3	3	March			9893
4	4	April			9343
5	5	May		1	10573
6	6	June			9412
7	7	July		1	10318
8	8	August		1	10843
9	9	September			4305
10	10	October			4959

Insights:

From the above bar plot, we can see that yes there is some sort of seasonality in the no. of orders placed over the given period. From January to August, the orders were in inclined trend with a slight variation in between. However, the orders drastically fell in September and again went up in the trend.

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn
7-12 hrs : Mornings
13-18 hrs : Afternoon
19-23 hrs : Night

Sol. Query:

SELECT

CASE

WHEN EXTRACT(Hour FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN 'Dawn' WHEN EXTRACT(Hour FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN 'Mornings'

WHEN EXTRACT(Hour FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN 'Afternoon'

WHEN EXTRACT(Hour FROM order_purchase_timestamp) BETWEEN 19 AND 23 THEN 'Night' END AS Time_shift,

COUNT(order_id) AS order_count

FROM tensile-spirit-350306.target_sql.orders

GROUP BY Time_shift;

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION
Row /	Time_shift ▼	h	order_count	· //
1	Mornings		27	7733
2	Dawn		ţ	5242
3	Afternoon		38	3135
4	Night		28	3331

Insights:

From the plot, we can state that Brazillian customers mostly place their orders during **Afternoon**.

3. Evolution of E-commerce orders in the Brazil region:

1. Get the month on month no. of orders placed in each state.

Sol.

Query:

SELECT

 $\label{lem:count_format_timestamp} FORMAT_TIMESTAMP('\%B', order_purchase_timestamp) \ AS \ Month_Name, \\ COUNT(order_id) \ AS \ order_count,$

customer_state

FROM tensile-spirit-350306.target_sql.orders AS o inner join tensile-spirit-350306.target_sql.customers AS c

ON o.customer_id = c.customer_id

GROUP BY Month_Name, customer_state;

JOB IN	IFORMATION	RESULTS	JSON EX	ECUTION DETAILS
Row	Month_Name ▼		order_count ▼	customer_state ▼
1	November		1048	RJ
2	December		283	RS
3	December		2357	SP
4	February		196	DF
5	November		378	PR
6	April		92	MT
7	July		79	MA
8	July		40	AL
9	July		4381	SP
10	July		85	MT

2. How are the customers distributed across all the states?

Sol.

Query:

SELECT

customer_state,

COUNT(customer_id) AS Customer_cnt

FROM tensile-spirit-350306.target_sql.customers

GROUP BY customer_state

ORDER BY customer_state;

JOB IN	IFORMATION	RESULTS	JSON EX	ECUTIO
Row	customer_state	▼	Customer_cnt ▼	
1	AC		81	
2	AL		413	
3	AM		148	
4	AP		68	
5	BA		3380	
6	CE		1336	
7	DF		2140	
8	ES		2033	
9	GO		2020	
10	MA		747	

Insights:

From the above bar plot, we can state that Sao Paulo(SP) has the highest no. of customers while Roraima(RR) has the least no. of customers.

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

Sol.

Query:

WITH t AS(SELECT

EXTRACT(Year FROM o.order_purchase_timestamp) AS order_year, FORMAT_TIMESTAMP('%B', order_purchase_timestamp) AS order_Month,

SUM(p.payment_value) AS total_payment

FROM tensile-spirit-350306.target sql.orders AS o inner join tensile-spirit-

350306.target_sql.payments AS p on o.order_id=p.order_id

WHERE EXTRACT(Year FROM o.order_purchase_timestamp) IN(2017,2018) AND

EXTRACT(Month FROM o.order_purchase_timestamp) BETWEEN 1 AND 8

GROUP BY EXTRACT(Year FROM o.order_purchase_timestamp),FORMAT_TIMESTAMP('%B', order_purchase_timestamp))

SELECT

y_2017.order_Month,

((y_2018.total_payment-y_2017.total_payment)/y_2017.total_payment)*100 AS percentage_increase

FROM t AS y_2017 JOIN t AS y_2018 ON y_2017.order_Month = y_2018.order_Month and y_2017.order_year < y_2018.order_year;

JOB IN	JOB INFORMATION RESULTS		JSON	EXECUTION
Row	order_Month ▼	11	percentage_incre	ase
1	April		177.8407701149	
2	July		80.04245463390	
3	June		100.2596912456	
4	February		239.9918145445	
5	January		705.1266954171	
6	August		51.60600520477	
7	March		157.7786066709	
8	May		94.62734375677	

Insights:

From 2017 to 2018, the % increase in the cost of order was highest in January and lowest in August.

2. Calculate the Total & Average value of order price for each state.

Sol. Query:

```
With t AS (

SELECT
i.order_id,
o.customer_id,
sum(i.price) AS total_order_price
FROM tensile-spirit-350306.target_sql.order_items AS i inner join tensile-spirit-
350306.target_sql.orders AS o
on i.order_id=o.order_id
GROUP BY i.order_id, o.customer_id)

SELECT c.customer_state,
sum(t.total_order_price) AS total_price,
AVG(t.total_order_price) AS avg_price
FROM tensile-spirit-350306.target_sql.customers c INNER JOIN t on
c.customer_id = t.customer_id
GROUP BY customer_state;
```

Row /	customer_state ▼	total_price ▼	avg_price ▼
1	RN	83034.979999999	172.2717427385
2	CE	227254.70999999	171.2544913338
3	RS	750304.0200000	138.1266605301
4	SC	520553.3400000	144.1177574750
5	SP	5202955.050001	125.7511794561
6	MG	1585308.029999	137.3274454261
7	BA	511349.9900000	152.2781387730
8	RJ	1824092.669999	142.9315679360
9	GO	294591.9499999	146.7822371699
10	MA	119648.2199999	161.6867837837

The total value of order price is highest in Sao Paulo(SP) and least in Roraima(RR) and Amapa(AP).

The average value of customer order price is highest in Paraiba(PB) and least in Sao Paulo(SP).

3. Calculate the Total & Average value of order freight for each state.

Sol.

Query:

```
With t AS (
SELECT
i.order_id,
o.customer_id,
sum(i.freight_value) AS total_freight
FROM tensile-spirit-350306.target_sql.order_items AS i inner join tensile-spirit-
350306.target_sql.orders AS o
on i.order_id=o.order_id
GROUP BY i.order_id, o.customer_id)

SELECT c.customer_state,
sum(t.total_freight) AS total_order_freight,
AVG(t.total_freight) AS avg_order_freight
FROM tensile-spirit-350306.target_sql.customers c INNER JOIN t on
c.customer_id = t.customer_id
GROUP BY customer_state;
```

Row	customer_state ▼	total_order_freight /	avg_order_freight 💌
1	RN	18860.10000000	39.12883817427
2	CE	48351.589999999	36.43676714393
3	RS	135522.7400000	24.94895802650
4	SC	89660.26000000	24.82288482834
5	SP	718723.0699999	17.37095033232
6	MG	270853.4600000	23.46270443520
7	BA	100156.6799999	29.82628945801
8	RJ	305589.3100000	23.94525231155
9	GO	53114.979999999	26.46486297957
10	MA	31523.77000000	42.59968918918

The total value of order freight is highest for Sao Paulo(SP) and lowest for Roraima(RR).

The average value of order freight is highest for Roraima(RR) and lowest for Sao Paulo(SP).

5. Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

• **time_to_deliver** = order_delivered_customer_date - order_purchase_timestamp

 diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

Sol.

Query:

SELECT

order_id,

DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS
time_to_deliver,

DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY) AS diff_estimated_delivery

FROM tensile-spirit-350306.target_sql.orders

WHERE order_status = 'delivered'

LIMIT 10;

Output:

JOB IN	FORMATION	RESULTS	JSON EX	ECUTION DETAILS CHA
Row	order_id ▼	//	time_to_deliver ▼	diff_estimated_delivery
1	c158e9806f85a3	3877bdfd4f60	23	9
2	b60b53ad0bb7da	acacf2989fe2	12	-5
3	c830f223aae084	93ebecb52f2	12	12
4	a8aa2cd070eeac	7e4368cae3d	7	1
5	813c55ce9b6baa	8f879e064fbf	12	9
6	44558a1547e448	8b41c48c4087	1	5
7	036b791897847d	cdb8e39df794	6	0
8	1aba60c04110bc	dd421b250ea3	21	7
9	0312ecf90786de	f87f98aa19e0	7	0
10	635c894d068ac3	37e6e03dc54e	30	1

From the above bar plot based on the 10 order ids, we can state that delivery time is highest for order id *635c894d068ac37e6e03dc54eccb6189*.

The difference between estimated delivery time and actual delivery date of order is highest for the order id *c830f223aae08493ebecb52f29aa48ca* and lowest for order id *b60b53ad0bb7dacacf2989fe27ad567a* because the order was actually delivered 5 days before the estimated delivery date.

2. Find out the top 5 states with the highest & lowest average freight value.

Sol.

Query:

```
Output:
With t AS (
SELECT
i.order_id,
o.customer_id,
sum(i.freight_value) AS total_freight
FROM tensile-spirit-350306.target_sql.order_items AS i inner join tensile-spirit-
350306.target_sql.orders AS o
on i.order_id=o.order_id
GROUP BY i.order_id, o.customer_id)
SELECT c.customer state.
AVG(t.total_freight) AS highiest_avg_order_freight
FROM tensile-spirit-350306.target_sql.customers c INNER JOIN t on
c.customer_id = t.customer_id
GROUP BY customer_state
ORDER BY highiest_avg_order_freight DESC
LIMIT 5;
###------#
With t AS (
SELECT
i.order_id,
o.customer_id,
sum(i.freight_value) AS total_freight
FROM tensile-spirit-350306.target_sql.order_items AS i inner join tensile-spirit-
350306.target_sql.orders AS o
on i.order_id=o.order_id
GROUP BY i.order_id, o.customer_id)
SELECT c.customer_state,
AVG(t.total freight) AS lowest avg order freight
FROM tensile-spirit-350306.target_sql.customers c INNER JOIN t on
c.customer_id = t.customer_id
GROUP BY customer_state
ORDER BY lowest_avg_order_freight ASC
LIMIT 5:
```

Row //	customer_state 🔻	highiest_avg_order_freight 🔻	Row //	customer_state 🔻	lowest_avg_order_freight 🔻
1	RR	48.591086956521742	1	SP	17.370950332326089
2	PB	48.3453571428572	2	MG	23.46270443520438
3	RO	46.224210526315773	3	PR	23.579767907162864
4	AC	45.515432098765444	4	DF	23.823764705882333
5	PI	43.038945233265778	5	RJ	23.945252311550078

Insights:

Out of 27 states of Brazil based on highest average order freight, the top 5 states are Roraima(RR), Paraiba(PB), Rondonia (RO), Acre(AC) and Piaui(PI).

The top 5 states in Brazil Market, based on lowest average order freight are Sao Paulo(SP), Minas Gerais(MG), Parana(PR), Distrito Federal(DF) and Rio De Janerio(RJ).

3. Find out the top 5 states with the highest & lowest average delivery time.

Sol.

Query:

```
With cte AS
SELECT
order_id,
customer_id,
SUM(DATE DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)) AS
time_to_deliver
FROM tensile-spirit-350306.target_sql.orders
WHERE order_status = 'delivered'
GROUP BY order_id,customer_id
)
SELECT
c.customer_state,
AVG(cte.time_to_deliver) AS highiest_avg_delivery_time
FROM tensile-spirit-350306.target_sql.customers AS c INNER JOIN cte on c.customer_id=
cte.customer_id
GROUP BY c.customer_state
ORDER BY highiest_avg_delivery_time DESC
LIMIT 5:
##-----
With cte AS
SELECT
order id.
customer id.
SUM(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)) AS
time_to_deliver
FROM tensile-spirit-350306.target_sql.orders
WHERE order_status = 'delivered'
GROUP BY order id customer id
)
SELECT
c.customer_state,
AVG(cte.time_to_deliver) AS lowest_avg_delivery_time
FROM tensile-spirit-350306.target_sql.customers AS c INNER JOIN cte on c.customer_id=
cte.customer id
GROUP BY c.customer state
ORDER BY lowest_avg_delivery_time ASC
LIMIT 5;
```

Row /	customer_state ▼	highiest_avg_delivery_time 🔻	Row	customer_state ▼	lowest_avg_delivery_time 🔻
1	RR	28.975609756097562	1	SP	8.2980935447227253
2	AP	26.731343283582088	2	PR	11.526711354864963
3	AM	25.986206896551735	3	MG	11.542187775233405
4	AL	24.040302267002509	4	DF	12.509134615384614
5	PA	23.316067653276953	5	SC	14.475183305132523

The top 5 states in Brazil Market based on highest average delivery time are Roraima(RR), Amapa(AP), Amazonas(AM), Alagoas(AL) and Para(PA).

The top 5 states based on lowest average delivery time are Sao Paulo(SP), PR(Parana), Minas Gerais(MG), Distrito Federal (DF) and Santa Catarina(SC).

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

Sol.

```
Query:
WITH t AS
 SELECT order_id,
 customer_id,
 SUM(DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS
diff_estimated_delivery
 FROM tensile-spirit-350306.target_sql.orders
 WHERE order_status = 'delivered'
 GROUP BY order_id,customer_id
)
SELECT
c.customer_state,
AVG(t.diff_estimated_delivery) AS diff_avg_est_act
FROM tensile-spirit-350306.target_sql.customers AS c INNER JOIN t on t.customer_id =
c.customer_id
GROUP BY c.customer_state
ORDER BY diff_avg_est_act ASC
LIMIT 5:
```

FORMATION	RESULTS	JSON	EXECUTION DETAILS
customer_state	~	diff_avg_est_act	Y ₁
AL		7.947103274559	
MA		8.768479776847	·
SE		9.173134328358	l
ES		9.618546365914	
ВА		9.934889434889	·
	customer_state AL MA SE ES	customer_state ▼ AL MA SE ES	customer_state ✓ diff_avg_est_act AL 7.947103274559 MA 8.768479776847 SE 9.173134328358 ES 9.618546365914

The top 5 states in Brazil Market where order delivery is as fast as compared to the estimated date of delivery are Alagoas(AL), Maranhao(MA), Sergipe(SE), Espirito Santo(ES) and Bahia(BA).

6. Analysis based on the payments:

1. Find the month on month no. of orders placed using different payment types.

Sol.

Query:

SELECT

EXTRACT(Month FROM o.order_purchase_timestamp) AS Month_Num,

FORMAT_TIMESTAMP('%B', o.order_purchase_timestamp) AS Month_Name,

COUNT(o.order_id) AS order_cnt,

p.payment_type

FROM tensile-spirit-350306.target_sql.orders AS o INNER JOIN tensile-spirit-

350306.target_sql.payments AS p

ON o.order_id = p.order_id

GROUP BY Month_Num,Month_Name,payment_type

ORDER BY Month_Num;

Output:

JOB IN	IFORMATION	RESULTS JSON	EXI	ECUTION DETAILS	CHART PREVIEW	EXI
Row	Month_Num ▼	Month_Name ▼	11	order_cnt ▼	payment_type ▼	//
1	1	January		6103	credit_card	
2	1	January		1715	UPI	
3	1	January		477	voucher	
4	1	January		118	debit_card	
5	2	February		1723	UPI	
6	2	February		6609	credit_card	
7	2	February		424	voucher	
8	2	February		82	debit_card	
9	3	March		7707	credit_card	
10	3	March		1942	UPI	

From the plot, we can state that, maximum number of orders placed by Brazillian customers are through credit card.

2. Find the no. of orders placed on the basis of the payment installments that have been paid.

Sol.

Query:

SELECT

p.payment_installments,

COUNT(o.order_id) AS order_cnt

FROM tensile-spirit-350306.target_sql.orders AS o INNER JOIN tensile-spirit-

350306.target_sql.payments AS p

ON o.order_id=p.order_id

GROUP BY p.payment_installments

ORDER BY p.payment_installments;

Output:

JOB IN	FORMATION	RESULTS	JSON
Row	payment_installment	order_cnt	· //
1	0		2
2	1		52546
3	2		12413
4	3		10461
5	4		7098
6	5		5239
7	6		3920
8	7		1626
9	8		4268
10	9		644

From the above line plot, we can state that the number of orders placed by customers are highest when the instalment is 1 and gradually with the increase in no. of instalments, the no. of orders declined drastically.

Recommendations:

Target's operation in Brazil lasted for 2 years, spanning across 27 states which were driven by customer numbers, shipping efficiency, payment efficiency and customer satisfaction levels to name a few.

Based on above analysis, Target should have focused on below recommendations in order to make a turnaround in its operations.

- Out of 27 states, Sao Paulo was having the highest number of customers and Roraima was
 the lowest. Surprisingly, the average time of delivery to customers was highest in Roraima
 and lowest in Sao Paulo. This could have been the cause of lack of resources or
 geographical positioning of customers in the state of Roraima.
- States like Roraima, Paraiba, Rondonia had highest average order freight which is another factor for declined customer satisfaction level.
- Credit card was the most popular payment type for customers so analysts at Target should have focused on other payments types like UPI, debit card and should have provided some incentives or perks for using other payment types.
- It was observed that, number of customer orders were maximum when the No. of payment instalments were limited to 1,2 or 3. So, Target should have focused on customer order of products with lesser no. of instalments and should have added some benefits from customer perspective for products with more no. of instalments.