Analyse Mathématique

Cours n°2

EPITA Cyber 1 2024-2025

1 Sommes finies:

• Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

On appelle somme partielle d'ordre $n, n \in \mathbb{N}$, de la suite $(u_n)_{n \in \mathbb{N}}$ la quantité S_n définie par

$$s_n = \sum_{p=0}^{p=n} u_p$$

Ici, il y a n + 1 termes! De 0 à n.

• Soit $n_0 \in \mathbb{N}$. Soit $(u_n)_{n \geq n_0}$ une suite.

On appelle somme partielle d'ordre $n, n \geq n_0$, de la suite $(u_n)_{n \geq n_0}$ la quantité S_n définie par

$$s_n = \sum_{p=n_0}^{p=n} u_p$$

Ici, il y a $n - n_0 + 1$ termes. En effet, on compte de n_0 à n, donc de $n_0 + 0$ à $n_0 + (n - n_0)$ c.à.d. de 0 à $n - n_0$. On a alors $n - n_0 + 1$ termes.

• Soient (u_n) et (v_n) deux suites.

La suite, (w_n) , somme des suites (u_n) et (v_n) est définie par : $\forall n$, $w_n = u_n + v_n$. On a alors

$$\forall n$$
 , $\sum_{p=0}^{p=n} w_p = \sum_{p=0}^{p=n} u_p + \sum_{p=0}^{p=n} v_p$.

En effet,

$$\sum_{p=0}^{p=n} w_p = \sum_{p=0}^{p=n} (u_p + v_p)$$

$$= (u_0 + v_0) + (u_1 + v_1) \cdots + (u_n + v_n) = (u_0 + u_1 + \cdots + u_n) + (v_0 + v_1 + \cdots + v_n)$$

$$= \sum_{p=0}^{p=n} u_p + \sum_{p=0}^{p=n} v_p.$$

• Soient (u_n) une suite et $\alpha \in \mathbb{R}$.

La suite, (w_n) , produit de la suite (u_n) par le réel α est définie par : $\forall n$, $w_n = \alpha u_n$. On a alors,

$$\sum_{p=0}^{p=n} w_p = \alpha \sum_{p=0}^{p=n} u_p.$$

En effet,
$$\sum_{p=0}^{p=n} w_p = \sum_{p=0}^{p=n} \alpha u_p = (\alpha u_0) + (\alpha u_1) + \dots + (\alpha u_n)$$

= $\alpha (u_0 + u_1 + \dots + u_n) = \alpha \sum_{p=0}^{p=n} u_p$.

• Exemples :

1. Déterminer la somme

$$\sum_{p=0}^{p=n} (p+p^2).$$

$$\sum_{p=0}^{p=n} (p+p^2) = \sum_{p=0}^{p=n} p + \sum_{p=0}^{p=n} p^2.$$

Or on sait déjà que : $\sum_{p=0}^{p=n} p = \frac{n(n+1)}{2}$ et $\sum_{p=0}^{p=n} p^2 = \frac{n(n+1)(2n+1)}{6}$.

Donc,
$$\sum_{p=0}^{p=n} (p+p^2) = \frac{n(n+1)}{2} + \frac{n(n+1)(2n+1)}{6} = \frac{3n(n+1)+n(n+1)(2n+1)}{6} = \frac{n(n+1)(n+2)}{3}$$
.

2. Déterminer la somme

$$\sum_{p=0}^{p=n} 3p.$$

$$\sum_{p=0}^{p=n} 3p = 3 \sum_{p=0}^{p=n} p = 3 \frac{n(n+1)}{2}.$$

Car
$$\sum_{p=0}^{p=n} p = \frac{n(n+1)}{2}$$
.

• Exercices :

1. Calculer la somme finie :

$$1 + 2 + \cdots + 2025$$
.

2. Calculer la somme finie:

$$1936 + 1937 + \cdots + 2025.$$

3. On pose

$$S = 1 + \frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3 + (\frac{1}{3})^4.$$

Déterminer $S - \frac{1}{3}S$. Puis, en déduire S.

4. Montrer que : 1/2=1-1/2 , 1/6=1/2-1/3 , 1/12=1/3-1/4 , 1/20=1/4-1/5. En déduire la somme finie : 1/2+1/6+1/12+1/20

5. Calculer la somme finie:

$$\sum_{p=1}^{p=13} \ln \left(\frac{p+1}{p} \right).$$

2 Suite arithmétique :

• (u_n) est une suite arithmétique si :

$$\exists r \in \mathbb{R} ; \forall n \in \mathbb{N} , u_{n+1} = u_n + r$$

r est appelé raison de la suite arithmétique (u_n) .

Il est capital d'avoir u_0 pour déterminer tous les termes de la suite.

• On a déjà vu les suites de la forme :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} = au_n + b$.

Pour une suite arithmétique, a = 1 et b = r.

• Exemples :

- 1. (u_n) est une suite définie par : $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + 7$ et $u_0 = -2$. (u_n) est une suite arithmétique de raison r = 7 et de premier terme $u_0 = -2$. On a alors, $u_1 = u_0 + 7 = -2 + 7 = 5$, $u_2 = u_1 + 7 = 5 + 7 = 12$, \cdots
- 2. (u_n) est une suite définie par : $\forall n \in \mathbb{N}$, $u_{n+1} = u_n \frac{4}{3}$ et $u_0 = \frac{1}{3}$. (u_n) est une suite arithmétique de raison $r = -\frac{4}{3}$ et de premier terme $u_0 = \frac{1}{3}$. On a alors, $u_1 = u_0 \frac{4}{3} = \frac{1}{3} \frac{4}{3} = -1$, $u_2 = u_1 \frac{4}{3} = -1 \frac{4}{3} = -\frac{7}{3}$, \cdots
- **Méthode**: Pour montrer qu'une suite (u_n) est arithmétique, on peut chercher à montrer que : $\forall n \in \mathbb{N}$, $u_{n+1} u_n =$ une constante qu'on notera r.

• Exemples :

- 1. (u_n) est une suite définie par : $\forall n \in \mathbb{N}$, $u_n = 5n 4$. (u_n) est-elle une suite arithmétique? Soit $n \in \mathbb{N}$, $u_{n+1} u_n = 5(n+1) 4 (5n-4) = 5n + 5 4 5n + 4 = 5$. Alors (u_n) est une suite arithmétique de raison r = 5 et de premier terme $u_0 = -4$.
- 2. (u_n) est une suite définie par : $\forall n \in \mathbb{N}$, $u_n = n^2 + 3n 2$. (u_n) est-elle une suite arithmétique? Soit $n \in \mathbb{N}$, $u_{n+1} u_n = (n+1)^2 + 3(n+1) 2 (n^2 + 3n 2) = n^2 + 2n + 1 + 3n + 3 2 n^2 3n + 2 = 2n + 4$. 2n + 4 n'est pas une constante! Alors, (u_n) n'est pas une suite arithmétique.

• Soit (u_n) une suite arithmétique de raison r et de premier terme u_0 .

On a donc,
$$\forall n, u_{n+1} - u_n = r$$
.

On a, alors, les propriétés suivantes :

- 1. Si r > 0 alors (u_n) est strictement croissante.
- 2. Si r < 0 alors (u_n) est strictement décroissante.
- 3. Si r = 0 alors (u_n) est constante $(\forall n, u_n = u_0)$.
- Propriétés : Soit (u_n) une suite arithmétique de raison r et de premier terme u_0 .
 - 1. $\forall n \in \mathbb{N}$, $u_n = u_0 + nr$.
 - 2. $\forall n \in \mathbb{N}$, $u_n = u_1 + (n-1)r$.
 - 3. $\forall n \in \mathbb{N}$, $\forall p \in \mathbb{N}$, $u_n = u_p + (n-p)r$.
- Preuves : Soit (u_n) une suite arithmétique de raison r et de premier terme u_0 .
 - 1. On va montrer par récurrence que : $\forall n \in \mathbb{N}$, $u_n = u_0 + nr$.

On pose $P(n): u_n = u_0 + nr$.

- (a) Initialisation : P(0) est vraie? On a bien $u_0 = u_0 + 0r$. Donc P(0) est vraie.
- (b) Hérédité : Soit $n \in \mathbb{N}$. Supposons que $P(n) : u_n = u_0 + nr$ est vraie et montrons que $P(n+1) : u_{n+1} = u_0 + (n+1)r$ est vraie. $u_{n+1} = u_n + r = u_0 + nr + r = u_0 + (n+1)r$. Donc P(n+1) est vrai.
- (c) Conclusion : Initialisation + Hérédité, on alors : $\forall n \in \mathbb{N}$, $u_n = u_0 + nr$.
- 2. On va montrer que : $\forall n \in \mathbb{N}$, $u_n = u_1 + (n-1)r$. Soit $n \in \mathbb{N}$, d'après 1. on a : $u_n = u_0 + nr$. Donc $u_n = u_0 + (1-1+n)r = u_0 + r + (n-1)r = u_1 + (n-1)r$. On a bien, $\forall n \in \mathbb{N}$, $u_n = u_1 + (n-1)r$.
- 3. On va montrer que : $\forall n \in \mathbb{N}$, $\forall p \in \mathbb{N}$, $u_n = u_p + (n-p)r$. Soit $n \in \mathbb{N}$ et $p \in \mathbb{N}$, d'après 1. on a : $u_n = u_0 + nr$ et $u_p = u_0 + pr$. Donc $u_n - u_p = u_0 + nr - (u_0 + pr) = u_0 + nr - u_0 - pr = (n-p)r$. Donc $u_n = u_p + (n-p)r$. On a bien, $\forall n \in \mathbb{N}$, $\forall p \in \mathbb{N}$, $u_n = u_p + (n-p)r$.

• Exemple:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r=3 et de premier terme $u_0=5$.

1. Déterminer u_9 .

On a
$$\forall n \in \mathbb{N}$$
, $u_n = u_0 + nr$.
Donc $u_9 = u_0 + 9r = 5 + 9 \times 3 = 32$.

2. Déterminer u_{13} en fonction de u_7 .

On a
$$\forall n \in \mathbb{N}$$
, $\forall p \in \mathbb{N}$, $u_n = u_p + (n-p)r$.

Donc
$$u_{13} = u_7 + 6r = u_7 + 6 \times 3 = u_7 + 18$$
.

• Sommes finies d'une suite arithmétique :

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r=1 et de premier terme $u_0=0$. On pose

$$\forall n \in \mathbb{N} \quad , \quad S_n = \sum_{p=0}^{p=n} u_p.$$

c.à.d.

$$\forall n \in \mathbb{N}$$
 , $S_n = 1 + 2 + \dots + n$.

Donc,
$$S_n = u_0 + u_1 = \dots + u_n = 0 + 1 + \dots + n$$
.

D'où
$$S_n = 1 + 2 + 3 + \dots + (n-1) + n$$
 (1)

Et aussi,
$$S_n = n + (n-1) + \cdots + 2 + 1$$
 (2).

En additionnant, les deux égalités (1) et (2), on obtient :

$$2S_n = (1+n) + (1+n) + \dots + (1+n) = n(n+1).$$

Par suite $S_n = \frac{n(n+1)}{2}$.

(On a déjà démontrer ce résultat par récurrence!).

2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r=1 et de premier terme $u_0=0$. Soit $n_0\in\mathbb{N}$, On pose

$$\forall n \ge n_0 \quad , \quad T_n = \sum_{p=n_0}^{p=n} u_p.$$

c.à.d.

$$\forall n \in \mathbb{N}$$
 , $T_n = n_0 + (n_0 + 1) + \dots + n$.

Donc,
$$T_n = u_{n_0} + u_{n_0+1} + \dots + u_n = n_0 + (n_0 + 1) + \dots + n$$
.

D'où
$$T_n = n_0 + (n_0 + 1) + \dots + (n - 1) + n$$
. (1)

Et aussi,
$$T_n = n + (n-1) + \cdots + (n_0 - 1) + n_0$$
. (2).

En additionnant, les deux égalités (1) et (2), on obtient :

$$2T_n = (n + n_0) + (n + n_0) + \dots + (n + n_0) = (n - n_0 + 1)(n + n_0).$$

Par suite $T_n = \frac{(n-n_0+1)(n+n_0)}{2}$.

3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et de premier terme u_0 . On pose

$$\forall n \in \mathbb{N} \quad , \quad S_n = \sum_{p=0}^{p=n} u_p.$$

$$S_n = \sum_{p=0}^{p=n} u_p = \sum_{p=0}^{p=n} (u_0 + pr) = \sum_{p=0}^{p=n} u_0 + r \sum_{p=0}^{p=n} p$$

$$= (n+1)u_0 + r \frac{n(n+1)}{2} = (n+1)(u_0 + r \frac{n}{2}) = (n+1)\frac{2u_0 + rn}{2} = \frac{n+1}{2}(2u_0 + nr)$$

$$= \frac{n+1}{2}(u_0 + u_0 + nr)$$

$$= \frac{n+1}{2}(u_0 + u_n).$$
Donc
$$S_n = \frac{n+1}{2}(u_0 + u_n).$$

4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et de premier terme u_0 . Soit $n_0\in\mathbb{N}$, On pose

$$\forall n \geq n_0 \quad , \quad T_n = \sum_{p=n_0}^{p=n} u_p.$$

$$T_n = \sum_{p=n_0}^{p=n} u_p = \sum_{p=n_0}^{p=n} (u_0 + pr) = \sum_{p=n_0}^{p=n} u_0 + r \sum_{p=n_0}^{p=n} p$$

$$= (n - n_0 + 1)u_0 + r \frac{(n+n_0)(n-n_0+1)}{2} = (n - n_0 + 1)(u_0 + r \frac{n+n_0}{2})$$

$$= (n - n_0 + 1) \frac{2u_0 + r(n+n_0)}{2} = \frac{n-n_0+1}{2}(2u_0 + (n+n_0)r) = \frac{n-n_0+1}{2}(u_0 + u_0 + nr + n_0r)$$

$$= \frac{n-n_0+1}{2}(u_0 + n_0r + u_0 + nr) = \frac{n-n_0+1}{2}(u_{n_0} + u_n).$$
Donc
$$T_n = \frac{n-n_0+1}{2}(u_{n_0} + u_n).$$

 \bullet $\mathbf{Remarque}:$ La somme des termes successifs d'une suite arithmétique est de la forme :

$$SOMME = \frac{Nombre \ de \ termes}{2} \ (1er \ terme \ + \ Dernier \ terme)$$

• Exemple :

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r=2 et de premier terme $u_0=3$.

1. On pose
$$S_{13} = \sum_{p=0}^{p=13} u_p$$
. Calculer S_{13} .
On a $\forall n \in \mathbb{N}$; $S_n = \frac{n+1}{2}(u_0 + u_n)$.
Donc $S_{13} = \frac{13+1}{2}(u_0 + u_{13})$.
Or $u_{13} = u_0 + 13r = 3 + 13 \times 2 = 29$. Par suite $S_{13} = 7 \times 32 = 224$.

2. On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} . On a $\forall n \geq n_0$; $T_n = \frac{n - n_0 + 1}{2}$ $(u_{n_0} + u_n)$. Donc $T_{14} = \frac{14 - 5 + 1}{2}(u_5 + u_{14})$. Or $u_5 = u_0 + 5 \times r = 3 + 10 = 13$ et $u_{14} = u_0 + 14 \times r = 3 + 28 = 31$. Donc $T_{14} = 5 \times 44 = 220$.

• Caractérisation des suites arithmétiques :

Une suite (u_n) est une suite arithmétique de raison r et de premier terme u_0 SI ET SEULEMENT SI

$$\exists a \in \mathbb{R}, \exists b \in \mathbb{R} ; \forall n \in \mathbb{N}, u_n = an + b.$$

Et on a a = r et $b = u_0$.

En effet, supposons que (u_n) est une suite arithmétique de raison r et de premier terme u_0 . D'après la proposition précédente, $\forall n \in \mathbb{N}$, $u_n = u_0 + nr$. On a, donc, $u_n = an + b$ où a=r et $b=u_0$.

Réciproquent, supposons que : $\exists a \in \mathbb{R} , \exists b \in \mathbb{R} ; \forall n \in \mathbb{N} , u_n = an + b$. alors $u_{n+1} - u_n = a(n+1) + b - (an+b) = an + a + b - an - b = a$.

Donc (u_n) est une suite arithmétique de raison r=a et de premier terme $u_0=b$.

• Exercices :

1. Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N} \quad , \quad u_n = 2n + 1.$$

(a) Montrer que (u_n) est une suite arithmétique (on précisera sa raison r et son premier terme u_0).

Reponder de deux manières différentes à chacune des deux questions suivantes :

- (b) On pose $S_{23} = \sum_{p=0}^{p=23} u_p$. Calculer S_{23} . (c) On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .
- 2. Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} = u_n + 3$.

- (a) Montrer que (u_n) est une suite arithmétique (on précisera sa raison r.). Reponder aux deux questions suivantes sachant que $u_3 = 9$:
- (b) On pose $S_{23} = \sum_{p=0}^{p=23} u_p$. Calculer S_{23} .
- (c) On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .
- 3. Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N} \quad , \quad u_{n+1} = \frac{2u_n - 1}{u_n + 4} \quad et \quad u_0 = 0.$$

- (a) On pose $\forall n \in \mathbb{N}$, $v_n = \frac{1}{u_n + 1}$. Momtrer que la suite (v_n) est une suite arithmétique (on précisera sa raison ret son premier terme v_0).
- (b) Déterminer l'expression du terme général v_n en fonction de n. En déduire l'expression du terme général u_n .

3 Suites géométriques :

• (u_n) est une suite géométrique si :

$$\exists q \in \mathbb{R} ; \forall n \in \mathbb{N} , u_{n+1} = qu_n$$

q est appelée raison de la suite géométrique (u_n) .

Il est capital d'avoir u_0 pour déterminer tous les termes de la suite.

• On a déjà vu les suites de la forme :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} = au_n + b$.

Pour une suite géométrique, a = q et b = 0.

- Exemples: (u_n) est une suite définie par : $\forall n \in \mathbb{N}$, $u_{n+1} = 3u_n$ et $u_0 = -2$. (u_n) est une suite géométrique de raison q = 3 et de premier terme $u_0 = -2$. On a alors, $u_1 = 3u_0 = 3(-2) = -6$, $u_2 = 3u_1 = 3(-6) = -18$, \cdots
- Méthode : Pour montrer qu'une suite (u_n) est géométrique
 - 1. S'assurer que : $\forall n \in \mathbb{N}$, $u_n \neq 0$ (ou à partir d'un certain rang).
 - 2. Montrer que : $\forall n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n}$ = une constante qu'on notera q.

• Exemples :

- 1. (u_n) est une suite définie par : $\forall n \in \mathbb{N}$, $u_n = 4 \times 3^n$.
 - (u_n) est-elle une suite géométrique?
 - (a) $\forall n \in \mathbb{n}$, $u_n = 4 \times 3^n \neq 0$.
 - (b) Soit $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{4 \times 3^{n+1}}{4 \times 3^n} = 3$ une constante. Donc (u_n) est une suite géométrique de raison q = 3 et de premier terme $u_0 = 4$.
- 2. (u_n) est une suite définie par : $\forall n \in \mathbb{N}$, $u_n = n^2 + 3$.
 - (u_n) est-elle une suite géométrique?
 - (a) $\forall n \in \mathbb{n}$, $u_n = n^2 + 3 \neq 0$.
 - (b) Soit $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{(n+1)^2+3}{n^2+3} = \frac{n^2+2n+4}{n^2+3}$ n'est pas une constante! Alors, (u_n) n'est pas une suite géométrique.

- Propriétés : Soit (u_n) une suite géométrique de raison q et de premier terme u_0 .
 - 1. $\forall n \in \mathbb{N}$, $u_n = u_0 q^n$.
 - $2. \ \forall n \in \mathbb{N} \quad , \quad u_n = u_1 q^{n-1}.$
 - 3. $\forall n \in \mathbb{N}$, $\forall p \in \mathbb{N}$, $u_n = u_p q^{n-p}$.
- **Preuves**: Soit (u_n) une suite géométrique de raison q et de premier terme u_0 . On va supposer que $q \neq 0$ car si q = 0, il n'y a rien à démontrer!
 - 1. On va montrer par récurrence que : $\forall n \in \mathbb{N}$, $u_n = u_0 q^n$. On pose $P(n) : u_n = u_0 q^n$.
 - (a) Initialisation : P(0) est vraie? On a bien $u_0 = u_0 q^0 = u_0$. Donc P(0) est vraie.
 - (b) Hérédité : Supposons que P(n) : $u_n = u_0 q^n$ est vraie et montrons que P(n+1) : $u_{n+1} = u_0 q^{n+1}$ est vraie. $u_{n+1} = qu_n = qq^nu_0 = q^{n+1}u_0$. Donc P(n+1) est vrai.
 - (c) Conclusion : Initialisation + Hérédité, on alors : $\forall n \in \mathbb{N}$, $u_n = q^n u_0$.
 - 2. On va montrer que : $\forall n \in \mathbb{N}$, $u_n = u_1 q^{n-1}$. Soit $n \in \mathbb{N}$, d'après 1. on a : $u_n = q^n u_0$. Donc $u_n = q^{n-1} q u_0 = q^{n-1} u_1$. On a bien, $\forall n \in \mathbb{N}$, $u_n = q^{n-1} u_1$.
 - 3. On va montrer que : $\forall n \in \mathbb{N}$, $\forall p \in \mathbb{N}$, $u_n = q^{n-p}u_p$. Soit $n \in \mathbb{N}$ et $p \in \mathbb{N}$, on sait d'après 1. que $u_n = q^nu_0$ et $u_p = q^pu_0$. Donc $u_n = q^nu_0 = q^{n-p}q^pu_0 = q^{n-p}u_p$. On bien $\forall n \in \mathbb{N}$, $\forall p \in \mathbb{N}$, $u_n = q^{n-p}u_p$.
- Variation d'une suite géométrique :

Soit (u_n) une suite géométrique de raison q et de premier terme $u_0 \neq 0$.

On a:
$$\forall n \in \mathbb{N}$$
, $u_{n+1} - u_n = q^{n+1}u_0 - q^nu_0 = q^n(q-1)u_0$.

Par suite:

- 1. Si q > 1 alors
 - (a) Si $u_0 > 0$ alors la suite est strictement croissante.
 - (b) Si $u_0 < 0$ alors la suite est strictement décroissante.
- 2. Si 0 < q < 1 alors
 - (a) Si $u_0 > 0$ alors la suite est strictement décroissante.
 - (b) Si $u_0 < 0$ alors la suite est strictement croissante.
- 3. Si q = 0 ou q = 1 alors la suite est constante.
- 4. Si q < 0 alors la suite n'est pas monotone.

• Exemples :

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q=2 et de premier terme $u_0=3$.

1. Déterminer u_9 .

On a
$$\forall n \in \mathbb{N}$$
 , $u_n = q^n u_0$.

Donc
$$u_9 = q^9 u_0 = 3 \times 2^9$$
.

2. Déterminer u_{13} en fonction de u_7 .

On a
$$\forall n \in \mathbb{N}$$
 , $\forall p \in \mathbb{N}$, $u_n = q^{n-p}u_p$.

Donc
$$u_{13} = q^6 u_7 = 2^6 u_7$$
.

• Sommes finies d'une suite géométrique :

1. Soit (u_n) une suite géométrique de raison q et de premier terme $u_0=1$.

On pose

$$\forall n \in \mathbb{N} \quad , \quad S_n = \sum_{p=0}^{p=n} u_p.$$

c.à.d.

$$\forall n \in \mathbb{N} \quad , \quad S_n = 1 + q + q^2 + \dots + q^n.$$

(a) Si
$$q = 1$$
 alors $S_n = \sum_{p=0}^{p=n} 1 = 1 + 1 + \dots + 1 = n+1$.

(b) Si $q \neq 1$ Alors,

$$S_n = \sum_{p=0}^{p=n} u_p = \sum_{p=0}^{p=n} q^p = 1 + q + q^2 + \dots + q^n$$

et

$$qS_n = q + q^2 + q^3 + \dots + q^{n+1}$$

Par suite
$$S_n - qS_n = 1 + q + q^2 + \dots + q^n - (q + q^2 + \dots + q^{n+1}) = 1 - q^{n+1}$$
.

D'où
$$(1-q)S_n = 1 - q^{n+1}$$
. Alors, $S_n = \frac{1-q^{n+1}}{1-q}$.

Ainsi

$$1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}.$$

2. Soit (u_n) une suite géométrique de raison q et de premier terme $u_0 = 1$.

Soit $n_0 \in \mathbb{N}$, on pose

$$\forall n \ge n_0 \quad , \quad T_n = \sum_{p=n_0}^{p=n} u_p.$$

c.à.d.

$$\forall n \ge n_0$$
 , $T_n = q^{n_0} + q^{n_0+1} + \dots + q^n$.

- (a) Si q = 1 alors $T_n = \sum_{p=n_0}^{p=n} 1 = 1 + 1 + \dots + 1 = n n_0 + 1$.
- (b) Si $q \neq 1$ Alors,

$$T_n = \sum_{p=n_0}^{p=n} u_p = \sum_{p=n_0}^{p=n} q^p = q^{n_0} + q^{n_0+1} + \dots + q^n$$

et

$$qT_n = q^{n_0+1} + q^{n_0+2} + \dots + q^{n+1}.$$

Par suite
$$T_n - qT_n = q^{n_0} + q^{n_0+1} + \dots + q^n - (q^{n_0+1} + q^{n_0+1} + \dots + q^{n+1}) = q^{n_0} - q^{n+1}$$
.

D'où
$$(1-q)T_n = q^{n_0} - q^{n+1}$$
. Alors, $T_n = \frac{q^{n_0} - q^{n+1}}{1-q}$.

Ainsi

$$q^{n_0} + q^{n_0+1} + \dots + q^n = \frac{q^{n_0} - q^{n+1}}{1 - q}.$$

Donc

$$q^{n_0} + q^{n_0+1} + \dots + q^n = q^{n_0} \frac{1 - q^{n-n_0+1}}{1 - q}.$$

3. Soit (u_n) une suite géométrique de raison q et de premier terme u_0 .

On pose

$$\forall n \in \mathbb{N} \quad , \quad S_n = \sum_{p=0}^{p=n} u_p.$$

- (a) Si q = 1 alors $S_n = \sum_{p=0}^{p=n} u_p = \sum_{p=0}^{p=n} u_0 = u_0 + u_0 + \dots + u_0 = (n+1)u_0$.
- (b) Si $q \neq 1$ Alors,

$$S_n = \sum_{p=0}^{p=n} u_p = \sum_{p=0}^{p=n} u_0 q^p = u_0 \sum_{p=0}^{p=n} q^p = u_0 \frac{1-q^{n+1}}{1-q}.$$

Ainsi

$$S_n = \sum_{p=0}^{p=n} u_p = u_0 \frac{1 - q^{n+1}}{1 - q}.$$

4. Soit (u_n) une suite géométrique de raison q et de premier terme u_0 .

Soit $n_0 \in \mathbb{N}$, on pose

$$\forall n \ge n_0 \quad , \quad T_n = \sum_{p=n_0}^{p=n} u_p.$$

- (a) Si q = 1 alors $T_n = \sum_{p=n_0}^{p=n} u_0 = u_0 + u_0 + \dots + u_0 = (n n_0 + 1)u_0$.
- (b) Si $q \neq 1$ Alors,

$$T_n = \sum_{p=n_0}^{p=n} u_p = \sum_{p=n_0}^{p=n} u_0 q^p = u_0 \sum_{p=n_0}^{p=n} q^p = u_0 q^{n_0} \frac{1-q^{n-n_0+1}}{1-q} = u_{n_0} \frac{1-q^{n-n_0+1}}{1-q}.$$

Ainsi

$$T_n = \sum_{p=n_0}^{p=n} u_p = u_{n_0} \frac{1 - q^{n-n_0+1}}{1 - q}.$$

• Remarque :

La somme de termes successifs d'une suite géométrique est donnée par la formule suivante : Somme = 1 er terme (1-q**Nombre de termes)/(1-q).

• Exemple :

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q=2 et de premier terme $u_0=3$.

1. On pose $S_{13} = \sum_{p=0}^{p=13} u_p$. Calculer S_{13} .

On a
$$\forall n \in \mathbb{N}$$
 ; $S_n = u_0 \frac{1-q^{n+1}}{1-q}$.

Donc
$$S_{13} = u_0 \frac{1 - q^{14}}{1 - q} = 3 \frac{1 - 2^{14}}{1 - 2} = 3(2^{14} - 1).$$

2. On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .

On a
$$\forall n \ge n_0$$
 ; $T_n = u_{n_0} \frac{1 - q^{n - n_0 + 1}}{1 - q}$.

Donc
$$T_{14} = u_5 \frac{1-2^{10}}{1-2}$$

Or
$$u_5 = q^5 u_0 = 2^5 \times 3$$
.

Donc
$$T_{14} = 3 \times 2^5 (2^{10} - 1)$$
.

• Caractérisation d'une suite géométrique : (u_n) une suite géométrique de raison q, $q \neq 0$ et de premier terme $u_0, u_0 \neq 0$

SI ET SEULEMENT SI

$$\exists a \in \mathbb{R}^*, \exists b \in \mathbb{R}^*; \forall n \in \mathbb{N}, u_n = ba^n.$$

En effet, (u_n) une suite géométrique de raison $q, q \neq 0$ et de premier terme $u_0, u_0 \neq 0$ alors $\forall n \in \mathbb{N}$, $u_n = u_0 q^n$.

On a bien la forme $u_n = ba^n$ pour a = q et $b = u_0$.

Réciproquement, supposons que : $\forall n \in \mathbb{N}$, $u_n = ba^n$.

- 1. Comme $a \neq 0$ et $b \neq 0$ alors $\forall n \in \mathbb{N}$, $u_n \neq 0$.
- 2. Soit $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{ba^{n+1}}{ba^n} = a$ une constante.

Alors (u_n) une suite géométrique de raison q = a et de premier terme $u_0 = b$.

• Exercices :

1. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_n = 4 \times 3^n + 5n + 7$.

On pose

$$\forall n \in \mathbb{N} \quad , \quad S_n = \sum_{p=0}^{p=n} u_p.$$

Déterminer S_n .

2. Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N} \quad , \quad u_n = 5 \times 3^n.$$

(a) Montrer que (u_n) est une suite géométrique (on précisera sa raison r et son premier terme u_0).

Reponder de deux manières différentes à chacune des deux questions suivantes :

- (b) On pose $S_{23} = \sum_{p=0}^{p=23} u_p$. Calculer S_{23} .
- (c) On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .
- 3. Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N} \quad , \quad u_{n+1} = 3u_n.$$

- (a) Montrer que (u_n) est une suite arithmétique (on précisera sa raison r.). Reponder aux deux questions suivantes sachant que $u_3 = 27$:
- (b) On pose $S_{23} = \sum_{p=0}^{p=23} u_p$. Calculer S_{23} . (c) On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .
- 4. Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} = 3u_n + 4$ et $u_0 = 0$.

- (a) On pose $\forall n \in \mathbb{N}$, $v_n = u_n + 2$. Momtrer que la suite (v_n) est une suite géométrique (on précisera sa raison r et son premier terme v_0).
- (b) Déterminer l'expression du terme général v_n en fonction de n. En déduire l'expression du terme général u_n .
- (c) On pose

$$\forall n \in \mathbb{N} \quad , \quad S_n = \sum_{p=0}^{p=n} u_p.$$

Déterminer S_n .

5. Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N} \quad , \quad u_{n+1} = \frac{3u_n + 6}{u_n + 4} \quad et \quad u_0 = 0.$$

- (a) On pose $\forall n \in \mathbb{N}$, $v_n = \frac{u_n + 3}{u_n 2}$. Momtrer que la suite (v_n) est une suite géométrique (on précisera sa raison r et son premier terme v_0).
- (b) Déterminer l'expression du terme général v_n en fonction de n. En déduire l'expression du terme général u_n .