Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Базы данных

Отчет по лабораторной работе \mathbb{N}^4 Язык SQL-DML

Работу выполнил:

Графов Д.И. Группа: 33531/2 **Преподаватель:** Мяснов А.В.

 ${
m Cankt-}\Pi{
m erep}{
m бypr}$ 2019

Содержание

1.	. Цель работы													
2.	. Программа работы													
3.	3. Теоретическая информация													
4. Ход работы														
	4.1. Выполнение запросов из списка стандартных запросов	4												
	4.2. Выполнение индивидуального задания	7												
	4.2.1. Индивидуальное задание №1	7												
	4.2.2. Индивидуальное задание №2	10												
	4.2.3. Индивидуальное задание №3	11												
5.	Выводы	13												

1. Цель работы

Познакомить студентов с языком создания запросов управления данными SQL-DML.

2. Программа работы

- Изучение SQL-DML.
- Выполнение всех запросов из списка стандартных запросов. Демонстрация результатов преподавателю.
- Получение у преподавателя и реализация SQL-запросов в соответствии с индивидуальным заданием. Демонстрация результатов преподавателю.
- Сохранение в БД выполненных запросов SELECT в виде представлений, запросов INSERT, UPDATE или DELETE в виде XII. Выкладывание скрипта в GitLab.

3. Теоретическая информация

EXPLAIN Структура плана запроса представляет собой дерево узлов плана. Узлы на нижнем уровне дерева — это узлы сканирования, которые возвращают необработанные данные таблицы. Разным типам доступа к таблице соответствуют разные узлы: последовательное сканирование, сканирование индекса и сканирование битовой карты. Источниками строк могут быть не только таблицы, но и например, предложения VALUES и функции, возвращающие множества во FROM, и они представляются отдельными типами узлов сканирования. Если запрос требует объединения, агрегатных вычислений, сортировки или других операций с исходными строками, над узлами сканирования появляются узлы, обозначающие эти операции. И так как обычно операции могут выполняться разными способами, на этом уровне тоже могут быть узлы разных типов. В выводе команды EXPLAIN для каждого узла в дереве плана отводится одна строка, где показывается базовый тип узла плюс оценка стоимости выполнения данного узла, которую сделал для него планировщик. Если для узла выводятся дополнительные свойства, в вывод могут добавляться дополнительные строки, с отступом от основной информации узла. В самой первой строке (основной строке самого верхнего узла) выводится общая стоимость выполнения для всего плана; именно это значение планировщик старается минимизировать.

4. Ход работы

Каждая операция будет применена к одной таблице, так как для других выполнение будет аналогично.

4.1. Выполнение запросов из списка стандартных запросов

Листинг 1: common.sql

```
—-выборка всех данных из таблицы
2
  select *
3 from components;

    —выборка данных из одной таблицы при нескольких условиях, с использованием логических операций

6 — LIKE, BETWEEN, IN
7 select *
8 from components
9 where title like 'водка';
10 select *
11 from drinks
12 where alcohol between 30 and 100;
13 select *
14 from food
15 where title in ('начос', 'стрипсы');
16
17
  —-вычисляемое поле в запросе
18 select count (drink id)
19 from drinks;
20
21 — выборка всех данных с сортировкой по нескольким полям
22|\mathbf{select}|*
23 from places
24 order by address desc, place id;
25
26 — запрос, вычисляющий несколько совокупных характеристик таблиц
27 select max(drink id), min(place id)
28 from drinks,
29
        places;
30
31
  —выборка данных из связанных таблиц
32
  select d. title, p. title, p. address
33 from drinks d
34
            join places drinks pd on d.drink id = pd.drink id
35
            join places p on p. place id = pd. place id
36 where d.title = 'боярский'
37 order by d. title desc;
38
39
  —пример использования вложенного запроса
40 select dtitle
41 from (select drinks.title dtitle, c.title ctitle
42
         from drinks
43
                   left outer join components drinks cd on drinks.drink id = cd.

→ drink_id

                   left outer join components c on cd.component_id = c.component_id)
44
      \hookrightarrow as d
  where d.ctitle = 'водка';
45
46
47 insert into components (title, alcohol)
48 values ('апельсиновый сок', 0);
49
50 update components
  set title = 'jagermeister',
51
52
       alcohol = 35
53
  where component id = 5;
54
55 delete
```

```
from discounts
where discount_id = (select max(discount_id) from discounts);

delete
from places
where place_id not in (select place_id from supplies_drinks)
and place_id not in (select place_id from supplies_food);
```

Приведём некоторые примеры работы данного скрипта. Со всеми примерами можно ознакомиться, запустив скрипт, расположенный в репозитории. http://gitlab.icc.spbstu.ru/grafa/wine_card

Результаты

Рисунок 4.1. Выборка всех данных из таблицы

Рисунок 4.2. Оператор LIKE

Рисунок 4.3. Оператор BETWEEN

Рисунок 4.4. Оператор IN

4.2. Выполнение индивидуального задания

Мной было получено индивидуальное задание, состоящее из 3 частей:

- 1. Для каждого бара вывести топ-3 самых часто поставляемых за последний месяц единиц товара среди еды и напитков, рейтинг которых выше среднего по всем барам.
- 2. Вывести перечень напитков, у которых количество ингредиентов для приготовления больше среднего. Отсортировать по уменьшению градуса.
- 3. Для каждой акции вывести топ-3 напитков: самый крепкий алкогольный напиток, самый дешевый и самый большой по объему. Если для одной акции какие-то напитки в топ-3 совпадают, то выводить лишь один раз, без дублирования.

Для всех запросов необходимо привести план запроса и пояснения.

4.2.1. Индивидуальное задание №1

Структурно запрос можно разделить на 2 части: первая вычисляет требуемую выборку для напитков, вторая – для еды. Рассмотрим работу одного из подзапросов:

С помощью оператора join мы формируем выборку из MANY-MANY таблицы supplies_drinks и связанных с ней drinks и places. Затем с помощью оператора where ... and ... проводим фильтрацию по дате поставки (за последний месяц) и по рейтингу.

Затем вычисляем оконную функцию $row_number()$ over $(partition\ by\ p.place_id\ order\ by\ d.drink_id)$ toр для подсчёта количества напитков в каждом заведении.

Далее из получившегося запроса делаем подзапрос и с помощью условия $where\ top <= 3$ получаем топ-3 напитка для каждого бара с заданными условиями.

Листинг 2: individual 1.sql

```
-ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ
2
  (select *
3
   from (select distinct p.place id,
4
5
                           p. title
                 place title,
 6
                           p. address,
 7
                           p. rating
                place_rating,
8
                           d.drink_id
                item id,
 9
                           d.title
                item title
10
                           d.rating
                item rating,
11
                           row number() over (partition by p. place id order by d.
12
      → drink id) top
13
          from supplies drinks sd
                   join drinks d on sd.drink_id = d.drink_id
14
                   join places p on sd.place_id = p.place_id
15
          where date > (select (now() - interval '1_month'))
16
17
            and d.rating > (select avg(rating) from drinks)) as subquery
18
   where top \ll 3
19
  union
   (select *
20
21
   from (select distinct p. place id,
                           p. title
22
                place_title,
23
                           p.address,
24
                           p. rating
                place_rating,
25
                           f.food id
               item id,
26
                           f.title
                item title
27
                           f.rating
               item rating,
28
29
                           row number() over (partition by p. place id order by f.
      → food id) top
30
          from supplies food sd
31
                   join food f on sd.food id = f.food id
32
                   join places p on sd.place_id = p.place_id
          where date > (select (now() - interval '1_month'))
33
34
            and f.rating > (select avg(rating) from drinks)) as subquery
35
   where top \ll 3
36 order by place id, item_id;
```

Ниже приведён план первого подзапроса (до union), вычисленый с помощью оператора EXPLAIN ANALYSE. План запроса для второй части запроса аналогичен.

Листинг 3: План запроса

```
Subquery Scan on subquery (cost = 3338.03..3588.05 rows=3704 width=124) (actual \rightarrow time=32.642..32.830 rows=202 loops=1)
Filter: (subquery.top <= 3)
Rows Removed by Filter: 32
```

```
4 \rightarrow \text{HashAggregate} (cost = 3338.03..3449.15 rows = 11112 width = 124) (actual time
      \rightarrow = 32.640..32.800 rows=234 loops=1)
 5 Group Key: p. place id, p. title, p. address, p. rating, d. drink id, d. title, d.
       → rating, sd.date, row_number() OVER (?)
 6 InitPlan 1 (returns $0)
      Result (cost = 0.00..0.01 \text{ rows} = 1 \text{ width} = 8) (actual time = 0.004..0.004 \text{ rows} = 1)
       \hookrightarrow loops=1)
 8 InitPlan 2 (returns $1)
      Aggregate (cost = 3.28..3.29 rows=1 width=8) (actual time = 0.045..0.045 rows=1
      \rightarrow loops=1)
      Seg Scan on drinks (cost = 0.00..3.02 rows = 102 width = 8) (actual time
       \rightarrow = 0.005..0.018 rows=102 loops=1)
      WindowAgg (cost = 2862.47..3084.71 rows=11112 width=124) (actual time
11
      \rightarrow = 32.305..32.448 rows=234 loops=1)
  -> Sort (cost = 2862.47..2890.25 rows=11112 width=116) (actual time
      \rightarrow = 32.297..32.313 rows=234 loops=1)
13 Sort Key: p.place id, d.drink id
14 Sort Method: quicksort Memory: 73kB
|15| -> \text{ Hash Join } (\cos t = 8.20..2115.75 \text{ rows} = 11112 \text{ width} = 116) (actual time)
      \rightarrow = 0.382..32.075 rows=234 loops=1)
16 \mid \text{Hash Cond}: (\text{sd.place id} = \text{p.place id})
      Hash Join (\cos t = 3.70...2080.97 \text{ rows} = 11112 \text{ width} = 53) (actual time
       \rightarrow = 0.284..31.801 rows=234 loops=1)
18 \mid \text{Hash Cond}: (\text{sd.drink id} = \text{d.drink id})
      Seq Scan on supplies drinks sd (cost = 0.00..1986.12 \text{ rows} = 33337 \text{ width} = 16)
       \rightarrow actual time = 0.047..31.304 rows=426 loops=1)
20 Filter: (date > $0)
21 Rows Removed by Filter: 99584
22 \rightarrow \text{Hash} (cost = 3.28..3.28 rows=34 width=41) (actual time = 0.229..0.229 rows=54
       \rightarrow loops=1)
23 Buckets: 1024 Batches: 1 Memory Usage: 13kB
24 > Seq Scan on drinks d (cost = 0.00..3.28 rows=34 width=41) (actual time
      \rightarrow = 0.056..0.081 rows=54 loops=1)
25 | Filter: (rating > $1)
26 Rows Removed by Filter: 48
27|-> Hash (cost = 3.11..3.11 rows=111 width=67) (actual time = 0.090..0.090 rows=110
      \rightarrow loop s = 1)
28 Buckets: 1024 Batches: 1 Memory Usage: 18kB
29|-> Seq Scan on places p (cost = 0.00..3.11 rows=111 width=67) (actual time
       \rightarrow = 0.014..0.046 rows=110 loops=1)
30 Planning time: 0.596 ms
31 Execution time: 33.005 ms
```

I< < 2	04 rows > > 😘 🖩 🖈				Tab-sed (TSV) ∨ ± → View Query ×
pl	ace_id : place_title :	address ‡	place_rating ÷	item_id ÷ item_title	<pre>item_rating = date</pre>
1	12 rOmMllEorAq9TdrIE2uHn31JnK5pfYPeTQ5Tnz	Avx3IWASN	<null></null>	19 szHxmjJk3vIOz	8.25180908496088 2019-05-03 09:49:16.607492
2	12 rOmMllEorAq9TdrIE2uHn31JnK5pfYPeTQ5Tnz	Avx3IWASN	<null></null>	20 wbor9MMkRrzQWn15quEJovosv2R8H9QmB24qSPh	9.270990348339696 2019-05-03 20:28:13.319667 2
3	13 F18AMXFxuhFzp6usVWmovvB8NSJwT18AakfqerH1LI	5xxhbg3bvxeXIiApJ70cEDblgPlJNDY08I5fU	<null></null>	40 akR9Wlj24xFaP7dwjyhm0	7.9377052489492 2019-05-30 02:29:14.138629 1
4	13 F18AMXFxuhFzp6usVWmovvB8NSJwT18AakfqerH1LI	5xxhbq3bvxeXIiApJ70cEDblqPlJNDY08I5fU	<null></null>	90 AZZi4yFSYEiDeGtWtUdCp	8.541402616877896 2019-05-06 03:53:23.186458 2
5	13 F18AMXFxuhFzp6usVWmovvB8NSJwT18AakfqerH1LI	5xxhbg3bvxeXIiApJ70cEDblgPlJNDY08I5fU	<null></null>	100 SmoBHi	9.236733344952968 2019-06-01 16:53:29.232918 3
6	14 HO6CnXGpwStlJz1fo7	qwCX	<null></null>	7 e2jnCjlbdi29qbSxPAITzq9	9.403892213523688 2019-05-28 23:58:30.842160 1
7	14 H06CnXGpwStlJz1fo7	qwCX	<null></null>	14 lPaFNW7A3Eh6opmQH8bZ8H	7.593012264319161 2019-05-14 05:46:29.720841 2
8	14 HO6CnXGpwStlJz1fo7	gwCX	<null></null>	53 q8BewSQHXWSps0no5dl	6.441918909488162 2019-05-03 19:23:09.549124 3
9	15 S6NGoc9A5UnRXSQ0MI	1bwW4xt9SmDP7UH	<null></null>	48 Z2woplytIMgnoCnD9mGKhnXpNY1B0Ygoc7ki0D	9.547180639832085 2019-05-28 01:02:16.816047 1
10	15 S6NGoc9A5UnRXSQ0MI	1bwW4xt9SmDP7UH	<null></null>		7.178292282493561 2019-05-31 02:10:11.005807 2
11	16 TlPEsaifwOtPBg8qquTZ4VrMmN1KyctDLNhupy5UqRp4cyT	1vW7zm	<null></null>	17 roshSiloDIsal3xd9gCqOGLKjVTC8dIuleRCDWhRSN	w 9.384435179829346 2019-05-18 21:35:13.054260 1
12	16 TlPEsaifwOtPBg8gguTZ4VrMmN1KyctDLNhupy5UgRp4cyT	1vW7zm	<null></null>	70 rrV3RhrhaapRHZqFFThKBoq1MU0DF8Bi6Dk0Iyhsyr	l0Gl 6.2503873612993495 2019-05-15 11:46:24.112158 2
13	17 TuK8dCjMQDVR0eg2ehomTztFYcyUONRupgDAGS	UvrTQv4kGBNTRtK2QrsqMujWugHW4NM6Asu0a1oUC7	<null></null>	57 zmKZHsMGKLDdadplYy9H50Zb6q0FffA3F5e8HN	8.980759579500955 2019-06-01 11:25:11.880076 1
14	17 TuK8dCjMQDVR0eg2ehomTztFYcyUONRupgDAGS	UvrTQv4kGBNTRtK2QrsqMujWuqHW4NM6Asu0a1oUC7	<null></null>	59 WAEf6EmXOwDcxmIChjGIkG05bnK2rE	7.866210478456251 2019-05-15 02:36:42.078185 2
15	17 TuK8dCjMQDVROeg2ehomTztFYcyUONRupgDAGS	UvrTQv4kGBNTRtK2QrsqMujWugHW4NM6AsuOaloUC7	<null></null>	91 4FH9hqsip4yVYhbMVbCFaBlZY8xMwx7ybjgsvpPB0A	8p 9.709423153078607 2019-05-08 17:19:21.115841 3
16	18 ACKaS2u8e3RgAAb1YLVeOm5gdw34kPZ0lg	Vsc3g2byf0TcfsTJtb0D0PrPZKsDA	<null></null>	43 3AP3JJKtDqGVgUUQVu3e9V7	7.8551042691157935 2019-05-12 16:27:26.038176 1
17	18 ACKaS2u8e3RgAAb1YLVeOm5gdw34kPZ0lg	Vsc3g2byf0TcfsTJtb0D0PrPZKsDA	<null></null>	51 pSvqSnI4q5KlPLFqftN4QSdFnKT7W28awvvM	8.403230923519082 2019-05-18 23:13:17.731287 2
18	18 ACKaS2u8e3RgAAb1YLVeOm5gdw34kPZ0lg	Vsc3g2byf0TcfsTJtb0D0PrPZKsDA	<null></null>	57 zmKZHsMGKLDdadplYy9H50Zb6q0FffA3F5e8HN	8.980759579500955 2019-05-18 09:27:52.016515 3
19	21 lqyoIgB29NyMVZeidW8skDagD736HrG	ajwayt	<null></null>	33 eiqlV329Eg7rRhx3YB1TP0aVijdKkqGafkdWwqNkP0	9VrQf8 7.838268735743788 2019-05-19 22:10:39.422579 1
20	21 lqyoIgB29NyMVZeidW8skDagD736HrG	ajwayt	<null></null>	42 2LLDDxtY5HnRp8xPlWWBjBKGr3TDXpKu3Vn8t	7.444373525027923 2019-06-03 03:30:53.164078 2
21	21 lqyoIgB29NyMVZeidW8skDagD736HrG	ajwayt	<null></null>	68 J0V6Mi6v	6.928426192911285 2019-05-21 10:30:38.893200 3
22	23 5k1ND6k3KdEFCWelFCPwojx2QtcEmKlyPp4j2JJ7vIE	sNjc5o0isSOUQHWQhPVN2Jgfm9H8dKID0y2NbWvAxlYY	<null></null>	51 pSvqSnI4g5KlPLFgftN4QSdFnKT7W28awvvM	8.403230923519082 2019-06-02 23:27:30.535862
23	23 5k1ND6k3KdEFCWelFCPwojx2QtcEmKlyPp4j2JJ7vIE	sNjc5o0isSOUQHWQhPVN2Jgfm9H8dKID0y2NbWvAxlYY	<null></null>	73 BHmi89ErBJYR88oTfpvRBxsfE6GLV0mieEo	7.423737973250359 2019-05-28 21:35:22.879137 2
24	23 5k1ND6k3KdEFCWelFCPwojx2QtcEmKlyPp4j2JJ7vIE	sNjc5o0isSOUQHWQhPVN2Jgfm9H8dKID0y2NbWvAxlYY	<null></null>	91 4FH9hqsip4yVYhbMVbCFaBlZY8xMwx7ybjgsvpPB0A	8p 9.709423153078607 2019-05-09 00:07:12.935453 3
25	24 VlFcV2RwQmhtgZqhvKMegTrA05nfxLlIdkfgwa90H0Ik377ss9	QGwsQ7kebeYY3DfWSPHIqSLgl8iX4nyRvWZTLahMmKj4vzdC9	<null></null>	42 2LLDDxtY5HnRp8xPlWWBjBKGr3TDXpKu3Vn8t	7.444373525027923 2019-05-10 03:01:59.734340 1
26	24 VlFcV2RwQmhtgZqhvKMegTrA05nfxLlIdkfgwa90H0Ik377ss9	QGwsQ7kebeYY3DfWSPHIqSLgl8iX4nyRvWZTLahMmKj4vzdC9	<null></null>	48 Z2woplytIMgnoCnD9mGKhnXpNY1B0Ygoc7ki0D	9.547180639832085 2019-05-06 21:33:24.366160 2
27	24 VlFcV2RwQmhtgZqhvKMegTrA05nfxLlIdkfgwa90H0Ik377ss9	QGwsQ7kebeYY3DfWSPHIqSLgl8iX4nyRvWZTLahMmKj4vzdC9	<null></null>	76 5IsGMuZ0B8fHlcHdK7p9eaGLBd8H0	7.908029358583335 2019-05-14 06:04:47.688861 3
28	25 aHWpiAiJlpnNlaFy4	tcMBZwmcWCVjAj03pi9LfIYjx4u5Au9t	<null></null>	40 akR9Wlj24xFaP7dwjyhm0	7.9377052489492 2019-05-04 07:57:03.379952 1

Рисунок 4.5. Результат работы

4.2.2. Индивидуальное задание $N\hspace{-0.9em} \cdot \hspace{-0.9em} 2$

Сначала формируется выборка из пар значений типа напиток – количество компонентов.

 $(select\ d.\ drink_id,\ count(d.\ drink_id)\ components\ from\ drinks\ d\ join\ components_drinks\ cd\ on\ d.\ drink\ id\ =\ cd.\ drink\ id\ group\ by\ d.\ drink\ id)\ sub$

Затем получившаяся выбока присоединяется к таблице напитков по равенству drink_id. Далее вычисляем среднее соличество компонентов среди всех напитков и ограничиваем выборку с помощью оператора where. Наконец, группируем по drink_id, components и сортируем по убыванию значения alcohol.

Листинг 4: individual 2.sql

```
—ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ
3 select *
4 from (select d.drink_id, count(d.drink_id) components
        from drinks d
                 join components drinks cd on d.drink id = cd.drink id
6
7
        group by d.drink id) sub
           join drinks d on d.drink id = sub.drink id
  where components > (select avg(cnt)
                      from (select count(d.drink id) cnt
10
11
                             from drinks d
12
                                      join components drinks cd on d.drink id = cd.
     → drink id
                             group by d. drink id) sub)
14 group by d.drink id, sub.drink id, sub.components
15 order by alcohol desc;
```

Листинг 5: План запроса

```
(\cos t = 51.88..52.13 \text{ rows} = 102 \text{ width} = 97) \text{ (actual time} = 1.113..1.116 \text{ rows} = 50)
       \hookrightarrow loops=1)
 2 Sort Key: d. alcohol DESC
 3 Sort Method: quicksort Memory: 34kB
 4 InitPlan 1 (returns $0)
       Aggregate (\cos t = 20.48..20.49 \text{ rows} = 1 \text{ width} = 32) (actual time = 0.468..0.468
       \rightarrow rows=1 loops=1)
      HashAggregate (cost = 18.19..19.21 rows = 102 width = 12) (actual time
       \rightarrow = 0.427..0.446 rows=102 loops=1)
 7 Group Key: d 2.drink id
      Hash Join (cost = 4.29..15.40 rows=558 width=4) (actual time=0.046..0.262
      \rightarrow rows=558 loops=1)
 9 Hash Cond: (cd 1.drink id = d_2.drink_id)
10 > Seq Scan on components drinks cd 1 (cost=0.00..9.58 rows=558 width=4) (
      \rightarrow actual time = 0.006..0.066 rows=558 loops=1)
              (\cos t = 3.02..3.02 \text{ rows} = 102 \text{ width} = 4) (actual time = 0.035..0.035 \text{ rows} = 102)
  \rightarrow Hash
      \rightarrow loops=1)
12 Buckets: 1024 Batches: 1 Memory Usage: 12kB
|13| Seq Scan on drinks d 2 (cost = 0.00..3.02 rows=102 width=4) (actual time
      \rightarrow = 0.004..0.018 rows=102 loops=1)
14|-> HashAggregate (cost = 26.96..27.98 rows=102 width=97) (actual time
       \rightarrow =1.049..1.065 rows=50 loops=1)
15 Group Key: d.drink id, d 1.drink id, (count(d 1.drink id))
```

```
16|-> \text{ Hash Join} (cost = 22.90..26.19 rows=102 width=81) (actual time=0.985..1.023
                              \rightarrow rows=50 loops=1)
17 Hash Cond: (d.drink_id = d_1.drink_id)
18|-> \quad Seq \quad Scan \quad \textbf{on} \quad drinks \quad d \quad (cost=0.00..3.02 \quad rows=102 \quad width=69) \quad (actual \quad time) \quad drinks 
                              \rightarrow = 0.007..0.017 rows=102 loops=1)
|19| - |19| = |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| + |102| 
                              \rightarrow =50 loops=1)
20 Buckets: 1024 Batches: 1 Memory Usage: 11kB
21|-> HashAggregate (cost=19.58..20.60 rows=102 width=12) (actual time
                              \rightarrow = 0.920..0.960 rows=50 loops=1)
22 Group Key: d 1. drink id
23 Filter: ((\mathbf{count}(d_1.drink_id)) :: \mathbf{numeric} > \$0)
24 Rows Removed by Filter: 52
                              Hash Join
                                                                                           (cost = 4.29..15.40 \text{ rows} = 558 \text{ width} = 4) (actual time = 0.057..0.267)
                               \rightarrow rows=558 loops=1)
26 Hash Cond: (cd.drink id = d_1.drink_id)
                              Seq Scan on components drinks cd
                                                                                                                                                                                                                   (\cos t = 0.00..9.58 \text{ rows} = 558 \text{ width} = 4) (actual
                              \rightarrow time = 0.015..0.075 rows=558 loops=1)
28 \rightarrow \text{Hash} (cost = 3.02..3.02 rows=102 width=4) (actual time=0.038..0.038 rows=102)
                              \rightarrow loops=1)
29 Buckets: 1024 Batches: 1 Memory Usage: 12kB
30 \rightarrow Seq Scan on drinks d 1 (cost = 0.00..3.02 rows=102 width=4) (actual time
                               \rightarrow = 0.004..0.019 rows=102 loops=1)
31 Planning time: 0.496 ms
32 Execution time: 1.225 ms
```

< 4	< 50 rows > >	S 4	×						
	drink_id ÷	components ÷	drink_id ÷	title	\$ rating ÷	volume ÷	alcohol ‡	average_price ÷	drink_type
1	101	7	101	o99SaysKTQwdVGExjonuoHyhKuG1AbiRskNc6	1.9113625924617534	237	100	705	шоты
2	49	8	49	3GoB4wvvySza7ZFeUsfpngwgjvh	4.992381553203634	967	99	432	пиво и сидр
3	15	7	15	NJi8r8GBnk5tcTjeh8uI4	8.221540510344944	623	83	720	биттеры
4	65	7	65	yFBAjvKlBPEzTtSJDKwKFjES5pDk	1.0786376037317726	979	83	436	пиво и сидр
5	27	6	27	tgD8r	1.5816964014740487	726	82	851	текила
6	99	7	99	8JRpkqACAllvxPj1E38dzfyATj3o5bUCjFDmGsNz8Cm	3.8457526077164186	320	80	400	шоты
7	37	10	37	EW82IstL4F0bzWRoaGZA8ni6k4D1LQdHHEbi	6.05203362224787	895	80	777	ром
В	6	9	6		2.1080099193866895	779	79	916	ром
9	66	8	66	KqyDFk2jhXqlH9zygkcPXgPYR3gUj17nGfL	4.782681197396917	750	77	329	бренди и коньяк
10	26	10		XKq1yX367XXxVMartE8U6BVtRYXMac8	8.243115815152578	132	76	843	биттеры
1	93	7	93	yu	4.957555294701924	146	75	683	бренди и коньяк
2	45	10	45	JZ0FlfoLroJyHpQlKwE8UzM	4.423233602449926	688	65	209	текила
3	40	7	40	akR9Wlj24xFaP7dwjyhm0	7.9377052489492	745	64	311	коктейли
4	85	8	85	nKPZ0ECt	7.425067627972978	171	63	140	текила
5	58	7	58	dja2h3X3anFy3WqkfzEtCmy	6.382778480996955	791	63	853	водка и настойки
6	69	6	69	TilLLqzjFRQ1XL1nKPDIR7UsI6xxhp4UXt	7.823626203741262	184	63	967	коктейли
7	20	7	20	wbor9MMkRrzQWn15quEJovosv2R8H9QmB24qSPh	9.270990348339696	204	63	432	безалкогольные
8.	19	7	19	szHxmjJk3vI0z	8.25180908496088	779	58	405	пиво и сидр
9	31	8	31	dFNP0vm7MusfUkA0trTNG7ybB0hDm4DT6Tt2BNHzb	9.819899080892416	617	55	935	виски
0	8	7	8	7NKkE3LrtnhHsEqjCVdQC1JYrfi	1.2459038924453414	874	53	525	пиво и сидр
1	97	6	97	seG7yl403yzK7wMXnyojI	1.965267472606928	402	52	828	ром
2	3	10	3	On6T4tqKT9UeZ0yVEjajJYH6Au0MPjfucCKJijl	3.2454765658217597	313	51	991	пиво и сидр
3	98	7	98	7VkDEvJ6LqJqC646tyCVrGglWkNjt5ZgJrgOAC7JNoMKMsI	1.8822093360745336	288	47	582	вино
4	78	10		CMwwDKkcooIuLXxDU1Db8fR2u8nwnTx2Vez7411iZADtq1B	6.542531756313932	947	46	202	биттеры
5	100	8	100	SmoBHi	9.236733344952968	142	43	295	биттеры
6	9	10	9	hent	1.9464013709911676	447	43	155	бренди и коньяк
7	67	8	67	jwEE8NidPMSu7u5H	6.9840412399588	355	41		текила
8	54	8	54	Ww3II50XihCGWri0A2pwqmsKN3q5ejkpoyhyaQl6H4N7t6f	9.830799926371498	193	37	830	водка и настойки
9	11	8	11		1.8325152005514858	432	35	578	бренди и коньяк

Рисунок 4.6. Результат работы

4.2.3. Индивидуальное задание №3

С помощью оператора JOIN происходит объединение таблиц discounts и drinks по равенству поля drink_type. Таким образом, получем выборку из всевозможных акций на напитки. Далее получивщуюся выбоку ограничиваем с помощью оператора where ... or ... ог .. и требуемых условий.

Листинг 6: individual 3.sql

```
— ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ

2—3
3 select *
4 from discounts
5 join drinks on drinks.drink_type = discounts.drink_type
6 where alcohol = (select max(alcohol) from drinks)
7 or average_price = (select min(average_price) from drinks)
8 or volume = (select max(volume) from drinks)
9 group by discount_id, drink_id
10 order by alcohol desc , average_price, volume desc;
```

Листинг 7: План запроса

```
(\cos t = 69.02..69.94 \text{ rows} = 365 \text{ width} = 135) (actual time = 1.689..1.726 \text{ rows} = 420)
       \hookrightarrow loops=1)
 2 Sort Key: drinks.alcohol DESC, drinks.average price, drinks.volume DESC
  Sort Method: quicksort Memory: 136kB
  InitPlan 1 (returns $0)
      Aggregate (cost = 3.27..3.28 rows=1 width=8) (actual time=0.045..0.045 rows=1
      \rightarrow loops=1)
      Seq Scan on drinks drinks 1 (cost = 0.00..3.02 rows=102 width=8) (actual time
      \rightarrow = 0.004..0.020 rows=102 loops=1)
  InitPlan 2 (returns $1)
 8
      Aggregate (\cos t = 3.27..3.28 \text{ rows} = 1 \text{ width} = 8) (actual time = 0.041..0.041 \text{ rows} = 1)
      \rightarrow loops=1)
      Seq Scan on drinks drinks_2 \quad (cost = 0.00..3.02 \ rows = 102 \ width = 8) \ (actual \ time)
      \rightarrow = 0.004..0.018 rows=102 loops=1)
10 InitPlan 3 (returns $2)
  \rightarrow Aggregate (cost = 3.27..3.28 rows=1 width=8) (actual time = 0.038..0.038 rows=1
      \rightarrow loops=1)
12
  -> Seq Scan on drinks drinks 3 (cost = 0.00..3.02 rows=102 width=8) (actual time
      \rightarrow = 0.004..0.017 rows=102 loops=1)
13|-> HashAggregate (cost = 39.99..43.64 rows=365 width=135) (actual time
      \rightarrow =1.016..1.239 rows=420 loops=1)
14 Group Key: discounts.discount_id, drinks.drink_id
       Hash Join (cost = 3.83..38.16 rows=365 width=135) (actual time=0.203..0.709
      \rightarrow rows=420 loops=1)
16 Hash Cond: (discounts.drink type = drinks.drink type)
  \rightarrow Seq Scan on discounts (cost = 0.00..23.10 rows=1010 width=66) (actual time
17
      \rightarrow = 0.011..0.172 rows=1009 loops=1)
      Hash (\cos t = 3.79..3.79 \text{ rows} = 4 \text{ width} = 69) (actual time = 0.164..0.164 \text{ rows} = 4
18|->
      \rightarrow loops=1)
19 Buckets: 1024 Batches: 1 Memory Usage: 9kB
20|-> Seq Scan on drinks (cost = 0.00...3.79 \text{ rows} = 4 \text{ width} = 69) (actual time
      \rightarrow = 0.138..0.161 rows=4 loops=1)
21 Filter: ((alcohol = \$0) OR (average price = \$1) OR (volume = \$2))
22 Rows Removed by Filter: 98
23 Planning time: 0.722 ms
24 Execution time: 1.853 ms
```


Рисунок 4.7. Результат работы

5. Выводы

В ходе работы был изучен язык SQL-DML. Были созданы запросы к базе данных с использованием операторов выбора SELECT, INSERT, DELETE и UPDATE.

Для извлечения записей из таблиц в SQL определен оператор SELECT. Этот оператор возвращает ни одного, одно или множество строк, удовлетворяющих указанному условию и упорядоченных по заданному критерию.

Оператор SELECT позволяет возвращать не только множество значений полей, но и некоторые совокупные (агрегированные) характеристики, подсчитанные по всем или по указанным записям таблицы, например, SUM (<имя поля>) – сумма всех значений данного поля.

Также были рассмотрены и проанализированы планы запросов.