Последний листик с комплексными числами и многочленами

- 1. Найдите все такие n, что для любых двух корней $z_1, z_2 \neq 1$ многочлена $x^n 1$ верно, что один является степенью другого.
- **2.** Докажите, что многочлен $x^{66} + x^{55} + \ldots + x^{11} + 1$ делится на многочлен $x^6 + x^5 + \ldots + x + 1$.
- **3.** Пусть z_0, \ldots, z_{n-1} корни многочлена $z^n 1$ и дано число k. Найдите сумму $z_0^k + \ldots z_{n-1}^k$, если а) $k \in \mathbb{N}$; б) $k \in \mathbb{Z}$.
- **4.** Докажите, что композиция двух поворотов поворот. (Указание: вспомните, как записать в комплексных координатах поворот, геометрически мы верим, что вы сможете решить эту задачу.)
- 5. Пусть A, B, C, D точки единичной окружности. Докажите, что прямые AB и CD перпендикулярны тогда и только тогда, когда ab+cd=0.
- **6.** Докажите, что точки A, B и C расположены в вершинах правильного треугольника тогда и только тогда, когда $a^2 + b^2 + c^2 ab bc ca = 0$.
- 7. На единичной окружности с центром в начале координат отмечены две точки, с координатами a и b. Докажите, что касательные пересекаются в точке $\frac{2ab}{a+b}$.
- **8.** Обозначим через $[k]_q! = 1(1+q)\dots(1+q+\dots+q^k),\ k\in\mathbb{N}$. Докажите, что $[n]_q!$ делится на $[k]_q!\cdot[n-k]_q!$
- **9.** С помощью комплексных координат докажите теорему Наполеона. На сторонах треугольника во внешнюю сторону построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.