

SUPERVISORS:
Prof. Kennings
Prof. Khamesse

MOTIVATION

- 1.2 million Canadians have some form of visual loss, 4.1% of the group being completely blind
- The visually impaired are 50% less likely to take independent trips and 70% more likely to fall
- Traditional white canes can only provide minimal information about obstacles and paths

OUR SOLUTION

- Smart Cane
 - LiDAR
 - Stereo Camera (Oak-D-Lite)
 - Vibration Motor
 - Omnidirectional Wheel + motor:
 - Enclosure:
 - Battery, computation,
 and sensors mounted
 to cane with enclosure
 - Cover allows cane to be weather resistant, for use in various environments
 - Enclosure is a bottomheavy design that allows the sensors to self correct and stay right-side-up

ALTERNATIVE SOLUTIONS

- Solution #1: Tactile Display
 - Tactile pins push a
 pattern to communicate
 danger in environment
- Solution #2: Smart Walker:

FEATURES

Haptic feedback

Roadsign detection

for short and long

range precision

Foldable

 Powered wheels to guide user to avoid obstacles by turning and soft breaking

SOFTWARE DESIGN

FUTURE IMPROVEMENTS

- Audio feedback
- Change in elevation monitoring
- More advanced computer vision functionality (depth estimate) with LiDAR

ACKNOWLEDGEMENTS

