EXAMENUL DE BACALAUREAT – 2010 Proba E c)

Probă scrisă la MATEMATICĂ Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

BAREM DE EVALUARE ȘI DE NOTARE

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

	(**************************************	
1.	$\log_2 \sqrt{6} - \log_2 \sqrt{3} = \log_2 \frac{\sqrt{6}}{\sqrt{3}} =$	2p
	$=\log_2\sqrt{2}=\frac{1}{2}$	3р
2.	f(5) = 0	3p
	$f(1) \cdot f(2) \cdot f(3) \cdot \dots \cdot f(10) = 0$	2p
3.	$2^x = y \Rightarrow y^2 - y - 12 = 0$	2p
	$y_1 = -3, y_2 = 4$	2p
	x=2	1p
4.	Card A = 9	2p
	Numărul submulțimilor cu două elemente este C_9^2	1p
	$C_9^2 = 36$	2 p
5.	$m = 6 + 20 \Rightarrow m = 26$	2p
	Mijlocul lui $[AB]$ este $M\left(\frac{5}{2},15\right)$	3 p
6.	$E(30^{\circ}) = \cos 30^{\circ} + \sin 60^{\circ} =$	2p
	$= \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$	3p

SUBIECTUL al II-lea (30 de puncte)

	(ev ue pui	
a.	Fie $x, y \in M, x = a + b\sqrt{2}, y = c + d\sqrt{2}$	2p
	$x + y = (a + c) + (b + d)\sqrt{2} \Rightarrow x + y \in M$	3 p
b.	Fie $x, y \in M, x = a + b\sqrt{2}, y = c + d\sqrt{2}$	1p
	$x \cdot y = ac + ad\sqrt{2} + bc\sqrt{2} + 2bd$	2p
	$x \cdot y = (ac + 2bd) + (ad + bc)\sqrt{2} \Rightarrow x \cdot y \in M$	2p
c.	$(1+\sqrt{2})^2 = 3+2\sqrt{2}$	2p
	$x \cdot \left(3 + 2\sqrt{2}\right) = 1 \Longrightarrow x = \frac{1}{3 + 2\sqrt{2}} = 3 - 2\sqrt{2} \in M$	3 p
d.	$\frac{1}{1+\sqrt{2}} \circ \frac{1}{3+2\sqrt{2}} = \frac{1}{1+\sqrt{2}} + \frac{1}{3+2\sqrt{2}} + \sqrt{2}$	2p
	$\frac{1}{1+\sqrt{2}} = -1+\sqrt{2}, \frac{1}{3+2\sqrt{2}} = 3-2\sqrt{2}$	2p
	$\frac{1}{1+\sqrt{2}} \circ \frac{1}{3+2\sqrt{2}} = 2+0 \cdot \sqrt{2} \in M$	1p

e.	$(x \circ y) \circ z = x + y + z + 2\sqrt{2}$ $x \circ (y \circ z) = x + y + z + 2\sqrt{2}$	2p 2p 1p
f.	Finalizare Asociativitatea din e)	1p
	Element neutru $e = -\sqrt{2} \in M$ Simetricul lui $x \in M$ este $x' = -x - 2\sqrt{2} \in M$	2p 2p

	Simetricul lui $x \in M$ este $x' = -x - 2\sqrt{2} \in M$	2p
SUBIECTUL al III-lea (30 de p		uncte)
a.	$M^{2} = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix} =$	1p
	$= \begin{pmatrix} 4-2 & 4-2 \\ -2+1 & -2+1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}$	4p
b.	$A(2010) = M + 2010I_2$	2p
	$A(2010) = \begin{pmatrix} 2012 & 2 \\ -1 & 2009 \end{pmatrix}$	3p
c.	$A(a) = \begin{pmatrix} a+2 & 2 \\ -1 & a-1 \end{pmatrix}$	2p
	$\det(A(a)) = a^2 + a$	2p
	$a \in \{1, -2\}$	1p
d.	$A^{-1}(1) \cdot A(1) = A(1) \cdot A^{-1}(1) = I_2$	2p
	Verificare	3 p
e.	$A(a) + (A(a))^t = \begin{pmatrix} 2a+4 & 1\\ 1 & 2a-2 \end{pmatrix}$	2p
	$\det(A(a) + (A(a))^{t}) = 4a^{2} + 4a - 9$	2p
	$4a^2 + 4a - 9 = \text{impar} \neq 0, \forall a \in \mathbb{Z}$	1p
f.	$X = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix} \cdot \left(A(1) \right)^{-1}$	2p
	$X = \begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix}$	3p