Übung 5

Aufgabe 5.1

(a) Ermitteln Sie Erwartungswert und Varianz zu den Aufgaben 2.5 sowie 3.4 und 3.5.

aus Aufg 2.5	0	1	2	3	
$P(X=x_i)$	0,024	0,188	0,452	0,336	

$$E(X) = 0.188 + 0.904 + 1.008 = 2.19$$

$$Var(X) = (0 - 2.19)^2 * 0.024 + (1 - 2.19)^2 * 0.188 + (2 - 2.19)^2 * 0.452 + (3 - 2.19)^2 * 0.336$$

aus Aufg. 3.4	0	1	2	3	4	>4
$P(X=x_i)$	0,5	0,2	0,1	0,1	0,1	0

$$E(X) = 0.2 + 0.2 + 0.3 + 0.4 = 1.1$$

$$Var(X) = _$$

aus Aufg. 3.5	2	1	0	
$P(X=x_i)$	0,72	0,26	0,02	

$$E(X) = 1.42 + 0.26 = 1.68$$

$$Var(X) = _$$

(b) Bestimmen Sie die Varianz zu den Aufgaben 4.1 und 4.4

aus Lösung 4.1: Keine Dichtefunktion, daher kein Erwartungswert, also auch keine Varianz

aus Lösung 4.4:

$$E(X) = \mu = \frac{3}{5}$$

$$egin{aligned} Var(x) &= \int (x-\mu)^2 f(x) dx = \int_0^1 (x-rac{3}{5})^2 (4x^3-3x^4) dx = \int_0^1 (x-rac{3}{5})^2 (4x^3-3x^4) dx \ &= [-rac{3x^7}{7} + rac{3x^6}{5} + rac{73x^5}{125} - rac{6x^4}{5} + + rac{12x^3}{5}]_0^1 = 0.035.. \end{aligned}$$

Aufgabe 5.2

Wir führen das Experiment durch "Dreimal hintereinander eine Münze werfen". Wir definieren

zwei Zufallsvariablen ${\cal X}$ und ${\cal Y}$ zu diesem Zufallsexperiment wie folgt:

X =	0 wenn im ersten Wurf "Kopf " geworfen wird
	1 sonst

Varianz:
$$\sum (X - \mu) * P(X)$$
 oder $E(X^2) - E(X)^2$

und Y= "Anzahl Würfe, die "Kopf" zeigen".

Bestimmen Sie Erwartungswert und Varianz von X;Y;X+Y sowie XY.

$$X = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$E(X) = 0.5 * 0 + 0.5 * 1 = 0.5$$

$$Var(X) = (0 - 0.5)^2 * 0.5 + (1 - 0.5)^2 * 0.5 = 0.25$$

$$E(Y) = \frac{3}{8} + 2 * \frac{3}{8} + 3 * \frac{1}{8} = 4 * \frac{3}{8} = 1.5$$

$$Var(Y) = \sum (x - \mu)^2 P(Y = x_i) = 0.75$$

X =	0	0	0	0	1	1	1	1
Y =	0	1	2	3	0	1	2	3
X * Y	0	0	0	0	0	1	2	3
	0	$\frac{1}{8}$	$\frac{2}{8}$	1/8	1/8	$\frac{2}{8}$	$\frac{1}{8}$	0

$$E(XY) = \frac{2}{8} + 2 * \frac{1}{8} = \frac{1}{2}$$

$$Var(XY) = \sum (XY - \mu) * P(XY) = 0.5$$

$$COV(X,Y) = E(X * Y) - E(X) * E(Y) = 0.5 - 0.75 = -0.25$$

Gibts eine Vorraussetzung bzgl der Abhängigkeiten?

$$E(X + Y) = E(X) + E(Y) = 0.5 + 1.5 = 2$$

$$Var(X + Y) = Var(X) + 2 * COV(X, Y) + Var(Y) = 0.25 + 2 - (-0.25) + 0.75 = 0.5$$

Aufgabe 5.3

Ein Computerhersteller erhält regelmäßig Lieferungen, die aus jeweils $N=100\,\rm Erz$ eugnissen bestehen. Aus statistischen Unterlagen geht hervor, dass die Zahl der in einer Lieferung enthaltenen Ausschussstücke eine Zufallsvariable ist, die binomialverteilt ist mit den

Parametern n=2 und p=0.1. Einer Lieferung mit unbekanntem Ausschussanteil werden m=10 Qualitatskontrollproben entnommen. Die gesamte Lieferung wird nur dann angenommen, wenn alle m=10 Erzeugnisse qualitätsgerecht sind.

(a) Wie groß ist die Wahrscheinlichkeit dafür, dass eine Lieferung k=0,1,2 Ausschussstücke enthält?

$$P(E) = \binom{n}{k} * p^k q^{n-k}$$

$$P(2) = {2 \choose 2} * 0.1^2 0.9^0 = 0.01$$

$$P(1) = {2 \choose 1} * 0.1^1 0.9^1 = 0.18$$

$$P(0) = {2 \choose 0} * 0.1^0 0.9^2 = 0.81$$

sinnvoll??

(b) Bestimmen Sie die Wahrscheinlichkeit dafür, dass eine Lieferung angenommen wird.

für den Fall k=0 81%

(c) Wie viel Sendungen muss der Computerhersteller durchschnittlich erhalten, damit insgesamt ein Ausschussstück erwartet werden muss?

$$E(X) = n * p = 2 * 0.1 = 0.2$$
 -> Durchschnittlich 5 Lieferungen erhalten

Aufgabe 5.4

In einer Werkstatt einer Computerfirma unterliege die zufällige Reparaturzeit eines Computers einer Exponentialverteilung mit dem Parameter $\lambda=0.5$.

Das bedeutet laut Wikipedia:

$$f(x) = egin{cases} \lambda e^{-\lambda x} & ext{fur } x \geq 0 \ 0 & ext{fur } x < 0 \end{cases}$$
 $F(x) = egin{cases} 1 - e^{-\lambda x} & ext{fur } x \geq 0 \ 0 & ext{fur } x < 0 \end{cases}$ $E(x) = \int_0^\infty \lambda x e^{-\lambda x} = rac{1}{\lambda}$

(a) Bestimmen Sie die Wahrscheinlichkeit dafür, dass zur Reparatur eines beliebigen Computers mindestens 3 Stunden aufgewendet werden müssen.

$$F(X >= 3) = 1 - F(3) = 1 - F(3) = 1 - (1 - e^{-\lambda x}) = e^{-0.5*3} = 0.2231...$$

(b) Wie viele Stunden werden im Durchschnitt zur Reparatur eines Computers benötigt?

$$E(x)=\int_0^\infty \lambda x e^{-\lambda x}=rac{1}{\lambda}=2$$

Aufgabe 5.5

Die Breite des Controllers auf einem USB-Stick $\it X$ in mm lässt sich als Zufallsvariable auffassen. $\it X$ sei normalverteilt und habe den Mittelwert= 10mm und die Standardabweichung $\sigma=0.02mm$.

Normalverteilung:

$$F(X) = rac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x}e^{-rac{1}{2}(rac{t-\mu}{\sigma})^2}dt$$

Diese Aufgabestellung ist offensichtlich sehr ähnlich zu Aufgabe 10c und d der Uni Stuttgart

(a) Wieviel Prozent Ausschuss sind zu erwarten, wenn die Breite um maximal +/-0.03mm vom Sollwert 10mm abweichen soll?

um aus der Tabelle ablesen zu können: $\Phi(z); z = \frac{k-\mu}{\sigma}$

Lösung aus Stuttgart:

$$P(9.97 \le X \le 10.03) = P(X \le 10.03) - P(X \le 9.97) = \Phi(\frac{10.03 - 10.0}{0.02}) - \Phi(\frac{9.97 - 10.0}{0.02})$$

= $\Phi(1.5) - \Phi(-1.5) = 0.8664$

$$\rightarrow Ausschuss = 1 - P(...) = 0.1336$$

$$(\Phi(1.5) = 0.93319 \rightarrow 2 * (1 - 0.93319) = 0.1336)$$

(b) Wie mussen die Toleranzgrenzen 10-c und 10+c gewählt werden, damit nicht mehr als 5% Ausschuss entstehen?

Lösung aus Stuttgart:

Das Quantil der Standardnormalverteilung für 97.5% (beidseitig) ist 1.96. Daraus berechnen wir für das Quantil der Normalverteilung mit $\mu=10$ und $\sigma=0.02$ den Wert 10+1.96*0.02. Die Grenzen sind also $10-0.039 \leq X \leq 10+0.039$.

Eigene Lösung:

(Einfach aus Tabelle gesucht wo 0.975 rauskommt -> 1.96)

$$c = 1.96 * \sigma = 0.0392$$

Neue Grenzen: 10mm + / - 0.0392mm