Ma/CS 6a

Class 13: Network Flow

By Adam Sheffer

The RAND Corporation

- American think tank composed of scientists.
- In the 50's helped decision concerning the nuclear race, space program, etc.
- Contributed to the development of many scientific techniques, such as game theory.

John von Neumann

Dr. Strangelove

- A document that was declassified in 1999 describes how RAND studied the Soviet train system.
- They studied the Soviet ability to transport things from place to place (e.g., Asian side to European side).

Recall: Directed Graphs

- In a directed graph (or digraph) every edge has a direction.
- A directed path is a path that follows the direction of the edges.

Flow Networks

• A *flow network* is a digraph G = (V, E), together with a *source* vertex $s \in V$, a *sink* vertex $t \in V$, and a *capacity function* $c: E \to \mathbb{N}$.

Flow in a Network

- Given a flow network G = (V, E, s, t, c), a flow in G is a function $f: E \to \mathbb{N}$ that satisfies
 - Every $e \in E$ satisfies $f(e) \le c(e)$.
 - Every $v \in V \setminus \{s, t\}$ satisfies

$$\sum_{(u,v)\in E} f(u,v) = \sum_{(v,w)\in E} f(v,w)$$

$$\text{Total flow}$$

$$\text{entering } v.$$

$$\text{Total flow}$$

$$\text{exiting } v.$$

Example: Flow

- The capacities are in red.
- The flow is in blue.

What is it Good For?

Pipe Network analysis

Transportation networks

Ecological food webs

Size of a Flow

 In any flow f, the flow coming out of s is equal to the flow getting into t, since nothing is allowed to accumulate at intermediate vertices.

• We refer to this quantity as the size of f (or |f|).

Maximum Flow

- We are usually interested in finding the maximum flow of a network.
- We wish to have an algorithm that receives a flow network, and finds a maximum flow of it.

An Initial Flow

- Find a path from s to t.
 - \circ For example, the path $s \to b \to d \to t$.
 - The flow that can pass in it is the minimum edge capacity – 2.

Increasing the Flow

- Find another path from s to t, among the edges that are not saturated $(f(e) \neq c(e))$.
 - For example, the path $s \to a \to t$.
 - The flow that can pass in it is the minimum edge capacity – 3.

Maximum Flow?

- We keep increasing the flow until there are no more paths of unsaturated edges.
- Does that mean that we have a maximum flow?
 - No! This network has a flow of size 10.

A Different Kind of Path

• We can go in the opposite direction of an edge e, if f(e) > 0.

• $s \rightarrow a \rightarrow d$ $\rightarrow c \rightarrow t$.

Residual Network

- Given a flow network (V, E, s, t, c), and a flow f, the residual network of f is a network with
 - The same set of vertices V, source s, and sink
 t.
 - Every edge $e \in E$ has the new capacity c'(e) = c(e) f(e).
 - For every edge $(u, v) \in E$, we add the edge (v, u) with capacity f(e).

Example: Residual Network

A network and a flow

The residual network

The Ford-Fulkerson Algorithm

- Start with a flow f of size zero.
- Repeat:
 - Build the residual network of *f* .
 - Find a path P from s to t in the residual network. If there is no such path, stop and return f.
 - Set $d = \min_{e \in P} c(e)$.
 - Increase the flow in f of every edge in P by d
 (for reverse edges, decrease the flow by d).

Not Efficient

 The algorithm can have a VERY large running time:

The Running Time

- What is an upper bound for the number of steps of the Ford-Fulkerson algorithm?
 - The size of the maximum flow |f|.
 - Running time of the algorithm: at most c|f|(|V|+|E|).
- We can improve the running time by using BFS to find a path in every residual network.
 - This gives a running time of $c|V||E|^2$.
 - Not in the material of this course!

#	Year	Discoverer(s)	Exact	Ballpark	Reference
1	1951	Dantzig	$O(n^2mU)$	n^2mU	[Dantzig 1951]
2	1955	Ford & Fulkerson	O(nmU)	nmU	[Ford and Fulkerson 1956]
3	1970	Dinitz Edmonds & Karp	$O(nm^2)$	nm²	[Dinitz 1970] [Edmonds and Karp 1972]
4	1970	Dinitz	$O(n^2m)$	n^2m	[Dinitz 1970]
5	1972	Edmonds & Karp Dinitz	$O(m^2 \log U)$	m^2	[Edmonds and Karp 1972] [Dinitz 1973]
6	1973	Dinitz Gabow	$O(nm \log U)$	nm	[Dinitz 1973] [Gabow 1985]
7	1974	Karzanov	$O(n^3)$		[Karzanov 1974]
8	1977	Cherkassky	$O(n^2\sqrt{m})$		[Cherkassky 1977]
9	1980	Galil & Naamad	$O(nm \log^2 n)$		[Galil and Naamad 1980]
10	1983	Sleator & Tarjan	$O(nm \log n)$		[Sleator and Tarjan 1983]
11	1986	Goldberg & Tarjan	$O(nm \log(n^2/m))$		[Goldberg and Tarjan 1988]
12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$		[Ahuja and Orlin 1989]
13	1987	Ahuja et al.	$O(nm \log(n\sqrt{\log U}/(m + 2))$		[Ahuja et al. 1989]
14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$		[Cheriyan and Hagerup 1995]
15	1990	Cheriyan et al.	$O(n^3/\log n)$		[Cheriyan et al. 1996]
16	1990	Alon	$O(nm + n^{8/3} \log n)$		[Alon 1990]
17	1992	King et al.	$O(nm + n^{2+\epsilon})$		[King et al. 1992]
18	1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$		[Phillips and Westbrook 1993]
19	1994	King et al.	$O(nm \log_{m/(n \log n)} n)$		[King et al. 1994]
20	1998	Goldberg & Rao	$O(m^{3/2} \log(n^2/m) \log U)$ $O(n^{2/3}m \log(n^2/m) \log U)$	$m^{3/2}$ $n^{2/3}m$	this paper this paper

A Recent Development

- In **2012**, an algorithm with a running time of c|V||E| was discovered.
- Combining the results of two groups:

J. Orlin

V. King

S. Rao

R. Tarjan

Irrational Capacities

$$r = \frac{-1+\sqrt{5}}{2} \approx .618...$$

- The missing capacities are all r + 2.
- Even though the size of the maximum flow is 2, Ford-Fulkerson might run forever!

Bounding the Size of the Maximum Flow

 Given a flow network, what is an easy upper bound for the size of the maximum flow?

$$|F| \leq \min \left\{ \sum_{(s,v)\in E} c(s,v), \sum_{(u,t)\in E} c(u,t) \right\}.$$

Cuts

- A *cut* is a partitioning of the vertices of the flow network into two sets S, T such that $s \in S$ and $t \in T$.
- The size of a cut is the sum of the capacities of the edges from S to T.

Cuts and Maximum Flow

- If there exists a cut of size d, no flow can be of size more than d.
 - Each part of the flow must pass through the cut.
 - $^{\circ}$ At most d can pass through the cut.

Max Flow - Min Cut

We saw that the size of the minimum cut
 > size of maximum flow.

• Max flow – min cut theorem. In every flow network, the size of the minimum cut *is equal* to the size of the maximum flow.

(s)

5

c

3

Proof: Max Flow – Min Cut

- Let f be a maximum flow of the network.
- In the residual network R of f, there is no path from s to t.
- Let S be the set of vertices that are accessible from s in R.
- Let $T = V \setminus S$. Then (S, T) is a cut.

The Cut (S, T): Claim 1

- Claim 1. An edge (u, v) such that $u \in S$ and $v \in T$ must be saturated in f.
 - \circ Since $u \in S$, there is a path from s to u in R.
 - If (u, v) is not saturated, there is a path from s to v in R. Contradicting that $v \in T$!

The Cut (S, T): Claim 2

- Claim 2. An edge (u, v) such that $u \in T$ and $v \in S$ cannot have flow through it in f.
 - Since $v \in S$, there is a path from s to v in R.
 - If f(u, v) > 0, there is a path from s to u in R. Contradicting that $u \in T$.

Completing the Proof

- *f* maximum flow.
- (S,T) a cut defined according to f.
 - Every edge from S to T is saturated in f.
 - Every edge e from T to S satisfies f(e) = 0.
- Thus, the size of the cut (S, T) is |f|.
- Thus, the minimum cut has size at most |f|.
- That is, the minimum cut is of size ≤ max flow.

Ford-Fulkerson Correctness

- Claim. A flow f is a maximum flow if and only if there are no s-t paths in the residual network R of f.
- ⇒: If there is an s-t path in R, we can increase f, so f is not a maximum flow.
- ←: If there are no s-t paths in R, we can define a cut of size |f| as before. This implies that |f| is the size of the min cut, so f is a maximum flow.

The End

- In the Vietnam war, the Vietcong used a series of underground tunnels called the Ho Chi Minh trail.
- The US was looking for the min cut to efficiently disconnect the south and the north parts of the system.
- The capacity of an edge is the difficulty of destroying it.

