Logika cyfrowa

Lista zadań nr 2

Na zajęcia 11 i 13 marca 2024

Uwaga! Podczas zajęć należy znać pojęcia zapisane **wytłuszczoną czcionką**. W przypadku braku znajomości tych pojęć student może być ukarany punktami ujemnymi.

- 1. Za pomocą przekształceń algebry Boole'a znajdź najmniejsze wyrażenie w dysjunkcyjnej postaci normalnej równoważne $x\bar{y}\bar{z} + xyw + x\bar{y}z\bar{w}$.
- 2. Za pomocą przekształceń algebry Boole'a znajdź najmniejsze wyrażenie w koniunkcyjnej postaci normalnej równoważne $(x + z + w)(x + \bar{y} + z)(x + \bar{y} + \bar{z} + w)$.
- 3. Zaprojektuj najprostszy obwód typu **suma iloczynów** implementujący funkcję $f(x, y, z) = \sum m(1, 3, 4, 6, 7)$.
- 4. Zaprojektuj najprostszy obwód typu iloczyn sum implementujący funkcję $f(x, y, z) = \prod M(0, 2, 5)$.
- 5. Zaprojektuj najprostszy obwód o trzech wejściach i jednym wyjściu, który produkuje wyjście 1 wtedy i tylko wtedy, gdy dokładnie jedno lub dwa wejścia mają wartość 1, w przeciwnym wypadku produkuje wyjście 0.
- 6. Zaimplementuj funkcję opisaną poniższą tabelką logiczną używając wyłącznie bramek NAND.

x	y	z	Φ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

7. Napisz najmniejsze wyrażenie odpowiadające poniższej tabelce logicznej. Pamiętaj o wykorzystaniu wartości don't care.

\boldsymbol{x}	y	z	w	Φ
0	0	0	0	X
0	0	0	1	X
0	0	1	0	X
0	0	1	1	0
0	1	0	0	0
0	1	0	1	X
0	1	1	0	0
0	1	1	1	X
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	X
1	1	1	1	1

8. Czy w układzie odpowiadającym wyrażeniu z poprzedniego zadania może wystąpić **glitch**? Jeśli nie, wyjaśnij dlaczego. Jeśli tak, pokaż, jak zmodyfikować układ, aby wyeliminować glitch.