Topic: Rules of exponents

Question: Simplify the expression.

 $x \cdot x$

Answer choices:

 \mathbf{A} x^2

B 2x

C x

D 3x

Solution: A

We can rewrite the given expression.

$$x \cdot x$$

$$x^1 \cdot x^1$$

Then using the fact that

$$x^a x^b = x^{a+b}$$

and noticing that here we have a=1 and b=1, we get

$$x^{1+1}$$

$$x^2$$

Topic: Rules of exponents

Question: Simplify the expression.

$$x^2 \cdot x^2 \cdot x^5$$

Answer choices:

 $A x^{20}$

B x^4

 $C x^9$

D x^7

Solution: C

We'll use the fact that

$$x^a x^b = x^{a+b}$$

or, in this particular case,

$$x^a x^b x^c = x^{a+b+c}$$

Here we have a=2, b=2, and c=5, so we get

$$x^{2+2+5}$$

$$x^9$$

Topic: Rules of exponents

Question: Simplify the expression.

$$x^6 \div x^2$$

Answer choices:

 \mathbf{A} x^4

B x^3

C x^{12}

D x^8

Solution: A

When we divide two expressions with the same base, we subtract the exponents. The quotient

$$x^6 \div x^2$$

has like bases, since both bases are x. So we'll subtract the exponents, keeping the same base, and the result will be

$$x^{6-2} = x^4$$

