0.0.1 Primo esercizio

$$J_2 = 1 \, Kg \, m^2$$
 $M_2 = 20 \, Kg$ $J1 = 2 \, Kg \, m^2$ $M_1 = 30 \, Kg$ $BE = 1 \, m$

$$AB = CD = 0.5 \, m$$
 $AD = BC = 0.8 \, m$ $F = 500 \, N$ $\omega = 5 \, rad/s$ $\dot{\omega} = 0.5 \, rad/s^2$

Il sistema rappresentato in figura é posto nel piano verticale.

L'asta AB, incernierata a terra in A, é collegata attraverso una cerniera in B all'asta BE che a sua volta é collegata attraverso una cerniera in C all'asta CD. Quest'ultima asta é incernierata a terra in D.

Si consideri trascurabile la massa dell'asta AB, mentre l'asta omogenea CD ha massa M_1 e momento d'inerzia baricentrico J_1 e l'asta omogenea BE ha massa M_2 e momento d'inerzia baricentrico J_2 . Sull'asta AB, che si muove con velocitá angolare ω e accelerazione angolare $\dot{\omega}$ note, agisce la coppia C_m incognita, mentre sul punto E é applicata in direzione verticale una forta \vec{F} nota.

Nota la geometria, si chiede di calcolare per la condizione di moto assegnata:

- 1. La velocità ed accelerazione del punto E.
- 2. La coppia C_m necessaria per garantire la condizione di moto assegnata.

0.0.2 Soluzione primo esercizio

Osservazioni importanti

- È vitale in questi esercizi intuire come il sistema si possa muovere.
- Nessuna asta cambia lunghezza (Questo può capitare in alcune condizioni, per esempio nel caso di *glifo oscillante* o di *compressore idraulico*).
- Gli unici oggetti con massa son l'asta BE e l'asta CD.
- Il sistema è posto sul piano verticale, quindi gli oggetti dotati di massa subiscono un'accelerazione verso il basso g e ovviamente una forza peso F_g che viene posta nel centro di massa.
- Nella struttura, le due aste inferiori agiscono come un doppio pendolo, ognuna ha le caratteristiche di una biella (o pendolo semplice). L'asta superiore, di conseguenza, sarà sempre parallela al suolo e non avrà mai moto rotatorio ma solo traslatorio.
- L'asta BE è un corpo rigido in moto unicamente traslatorio. La velocità ed accelerazione dovranno essere quindi uguale in qualsiasi punto (in particolare, $v_B = v_E$ e $a_B = a_E = a_{t_B} + a_{n_B}$).
- Il punto B può essere considerabile un punto posto su una circonferenza di raggio AB, con conseguenti leggi per velocità $(v_B = \omega r)$, accelerazione normale $(a_{n_B} = \frac{v_B^2}{r})$ ed accelerazione tangente $(a_{t_B} = \dot{\omega}r)$.

Primo punto Il calcolo di velocità ed accelerazione del punto E, in questo caso, risulta banale.

Riassumiamo i passaggi fondamentali per cui diventa immediato, già evidenziati più estensivamente nelle osservazioni sovrariportate:

- 1. L'asta BE é un corpo rigido in moto esclusivamente traslatorio. Ogni suo punto, quindi, possiede la medesima velocità ed accelerazione.
- 2. Il punto B è considerabile un punto posto su una circonferenza di raggio AB, per cui risultano applicabili le relative leggi del moto.
- 3. Per rispettare la condizione di moto assegnata (come la coppia C_m è direzionata) il versore \vec{t} sarà orientato a $\frac{\pi}{2} + \frac{\pi}{3}$, mentre il versore \vec{n} a $\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{2} = \pi + \frac{\pi}{3}$.

$$v_B = AB\omega = 2.5 \, m/s$$

$$\vec{v}_B = 2.5 \vec{t} \, m/s$$

$$a_{t_B} = AB\dot{\omega} = 0.25 \, m/s^2$$

$$a_{n_B} = \frac{v_B^2}{AB} = \frac{AB^2\omega^2}{AB} = AB\omega^2 = 12.5 \, m/s^2$$

$$\vec{a}_B = 0.25 \vec{t} + 12.5 \vec{n} \, m/s^2$$

Secondo punto Per calcolare la coppia C_m proseguo col bilancio di potenze (figura 2):

Calcolo le potenze totali:

$$\sum W_i = (\text{Coppie}) \bullet (\text{Velocità angolari})$$

$$+ (\text{Forze peso}) \bullet (\text{Velocità baricentriche})$$

$$+ (\text{Forze}) \bullet (\text{Velocità del punto di applicazione})$$

$$\sum W_i = \vec{C}_m \bullet \vec{\omega} + \vec{F}_{g_{BE}} \bullet \vec{v}_{g_{BE}} + \vec{F}_{g_{CD}} \bullet \vec{v}_{g_{CD}} + \vec{F} \bullet \vec{v}_E$$

La velocità baricentrica $v_{g_{BE}}$ è parte di un corpo rigido che non compie rotazioni, per cui è uguale a quella di qualsiasi altro punto. $v_{g_{BE}}=v_B$

La velocità baricentrica $v_{g_{CD}}$ è calcolabile tramite la formula usuale $v_{g_{CD}} = r\omega$, dove r è la distanza dal centro di rotazione, in questo caso D, al baricentro dell'asta CD, per cui $r = \frac{CD}{2}$ e la velocità angolare ω coincide a quella di A, per cui $v_{g_{CD}} = \frac{CD}{2}\omega$.

$$\sum W_i = \vec{C}_m \bullet \vec{\omega} + M_2 \vec{g} \bullet \vec{v}_B + M_1 \vec{g} \bullet (\frac{CD}{2} \vec{\omega}) + \vec{F} \bullet v_B$$

Risolvo il prodotto scalare, controllando direzione e verso dei vettori.

- 1. La coppia C_m e la velocità angolare ω sono date come orientate con stessa direzione e verso.
- 2. La velocità v_B , per garantire il moto assegnato, è orientata verso l'alto con un angolo di $\frac{\pi}{2} + \frac{\pi}{3}$. Ovviamente la forza peso è orientata verso il basso, per cui l'angolo compreso tra i due vettori sarà pari a $\pi \frac{\pi}{3}$.
- 3. Discorso analogo per l'asta CD.
- 4. Discorso analogo per l'asta BE

$$\sum W_{i} = C_{m}\omega + M_{2}gv_{B}\cos(\pi - \frac{\pi}{3}) + M_{1}g(\frac{CD}{2}\omega)\cos(\pi - \frac{\pi}{3}) + Fv_{B}\cos(\pi - \frac{\pi}{3})$$

$$= C_{m}\omega - \frac{1}{2}M_{2}g(AB\omega) - \frac{1}{2}M_{1}g(\frac{CD}{2}\omega) - \frac{1}{2}F(AB\omega)$$

$$= C_{m}\omega - \frac{1}{4}M_{2}g\omega - \frac{1}{8}M_{1}g\omega - \frac{1}{4}F\omega$$

$$E_{m_i} = \frac{1}{2} m_i v_{i_{baricentrica}}^2, \qquad E_{J_i} = \frac{1}{2} J_i \omega_i^2,$$

Figure 1: Teorema dell'energia cinetica per le masse e per i momenti di inerzia

Calcolo l'energia cinetica totale:

 $E_c = (T. dell'en. cinetica per le masse) + (T. dell'en. cinetica per i momenti di inerzia)$

$$E_c = \frac{1}{2}M_2v_{g_{BE}}^2 + \frac{1}{2}M_1v_{g_{CD}}^2 + \frac{1}{2}J_1\omega_{CD}^2 + \frac{1}{2}J_2\omega_{BC}^2$$

Alcune considerazioni sulle *velocità angolari* presenti nell'equazione:

- 1. Per le velocità vengono fatte le stesse considerazioni precedenti.
- 2. ω_{BC} è l'accelerazione angolare dell'asta BC, ma questa non ruota affatto, il moto che compie è solamente traslatorio. Quindi $\omega_{BC} = 0$.
- 3. ω_{CD} corrispende a ω_A .

$$E_c = \frac{1}{2}M_2v_B^2 + \frac{1}{2}M_1(\frac{CD}{2}\omega)^2 + \frac{1}{2}J_1\omega^2$$

$$= \frac{1}{2}M_2(AB\omega)^2 + \frac{1}{2}M_1(\frac{CD}{2}\omega)^2 + \frac{1}{2}J_1\omega^2$$

$$= \frac{M_2}{8}\omega^2 + \frac{M_1}{32}\omega^2 + \frac{1}{2}J_1\omega^2$$

$$\sum_{i=0}^{n} W_i = \frac{dE_c}{dt}$$

Figure 2: Bilancio delle potenze

Derivo l'energia cinetica totale e applico il bilancio delle potenze:

$$\frac{dE_c}{dt} = \frac{M_2}{4}\omega\dot{\omega} + \frac{M_1}{16}\omega\dot{\omega} + J_1\omega\dot{\omega}$$

$$C_m\omega - \frac{M_2}{4}g\omega - \frac{M_1}{8}g\omega - \frac{1}{4}F\omega = \frac{M_2}{4}\omega\dot{\omega} + \frac{M_1}{16}\omega\dot{\omega} + J_1\omega\dot{\omega}$$

Ora possiamo semplificare tutte le velocità angolari ω contemporaneamente:

$$C_m - \frac{M_2}{4}g - \frac{M_1}{8}g - \frac{1}{4}F = \frac{M_2}{4}\dot{\omega} + \frac{M_1}{16}\dot{\omega} + J_1\dot{\omega}$$
$$C_m - 5g - \frac{15}{4}g - 125 = 5\dot{\omega} + \frac{15}{8}\dot{\omega} + 2\dot{\omega}$$

$$C_m = 5\dot{\omega} + \frac{15}{8}\dot{\omega} + 2\dot{\omega} + \frac{35}{4}g + 125$$

$$C_m = \dot{\omega}(5 + \frac{15}{8} + 2) + \frac{35}{4}g + 125$$

$$C_m = \frac{1}{2}(5 + \frac{15}{8} + 2) + \frac{35}{4}g + 125$$

Posto $g = 9.81 m/s^2$ risolvo:

$$C_m = \frac{1}{2}(5 + \frac{15}{8} + 2) + \frac{35}{4}9.81 + 125$$
$$= 215,275Nm$$
$$\approx 215Nm$$