Отчёт по лабораторной работе 2

Система контроля версий Git

Зиборова Вероника Николаевна НММбд-02-24

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	12
4	Вопросы для самопроверки	13

Список иллюстраций

2.1	шаблонный репозиторий
2.2	параметры git
2.3	ssh ключ
2.4	импорт ключа
2.5	подготовка каталога
2.6	Маке создает нужные папки
2.7	git push
2.8	Репозиторий
2.9	git push
2.10	Репозиторий

Список таблиц

1 Цель работы

Целью работы является изучить идеологию и применение средств контроля версий. Приобрести практические навыки по работе с системой git.

2 Выполнение лабораторной работы

Регистрируюсь на гитхабе. Нахожу шаблонный репозиторий и создаю из него свой.

Рис. 2.1: шаблонный репозиторий

Сначала сделаем предварительную конфигурацию git, создаю пользователя и ставлю параметры.

```
vnziborova@fedora:~$ git config --global user.name "1132246825"
vnziborova@fedora:~$ git config --global user.email "1132246825@pfur.ru"
vnziborova@fedora:~$ git config --global core.quotepath false
vnziborova@fedora:~$ git config --global init.defaultBranch master
vnziborova@fedora:~$ git config --global core.autocrlf input
vnziborova@fedora:~$ git config --global core.safecrlf warn
vnziborova@fedora:~$
```

Рис. 2.2: параметры git

Далее создаю ключи для идентификации.

```
vnziborova@fedora:~$ ssh-keygen -C "1132246825 1032245449@pfur.ru"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/vnziborova/.ssh/id_rsa):
Created directory '/home/vnziborova/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/vnziborova/.ssh/id_rsa
Your public key has been saved in /home/vnziborova/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:tQmIhKEHetF9VFum6cMBK74aonvzeOeBMEo+iED+f8I 1132246825 1032245449@pfur.ru
The key's randomart image is:
+---[RSA 3072]----+
 . 0+.. .0.. 0
|.0.0....0 *
0.0 . 0.0 *
100
 .00
 +0..+ 0
 .+ooE.o
00.+0++
   ---[SHA256]----
 nziborova@fedora:~$
```

Рис. 2.3: ssh ключ

И добавляю ключ в профиль на гитхабе

Рис. 2.4: импорт ключа

Теперь я создаю рабочий каталог и клонирую туда репозиторий с гитхаба.

```
nziborova@fedora:~$
nziborova@fedora:~$ mkdir -p ~/work/study/2024-2025/"Архитектура компьютера"
vnziborova@fedora:~$ cd ~/work/study/2024-2025/"Архитектура компьютера"
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера$ git clone --rec
ursive git@github.com:1132246825/arch-pc.git
Клонирование в «arch-pc»...
The authenticity of host 'github.com (140.82.121.3)' can't be established.
ED25519 key fingerprint is SHA256:+DiY3wvvV6TuJJhbpZisF/zLDA0zPMSvHdkr4UvC0qU.
This key is not known by any other names.
Are you sure you want to continue connecting (ye∰/no/[fingerprint])? yes
Warning: Permanently added 'github.com' (ED25519) to the list of known hosts.
remote: Enumerating objects: 33, done.
remote: Counting objects: 100% (33/33), done.
remote: Compressing objects: 100% (32/32), done.
remote: Total 33 (delta 1), reused 18 (delta 0), pack-reused 0 (from 0)
Получение объектов: 100% (33/33), 18.81 КиБ | 3.76 МиБ/с, готово.
Определение изменений: 100% (1/1), готово.
Подмодуль «template/presentation» (https://github.com/yamadharma/academic-presen
tation-markdown-template.git) зарегистрирован по пути «template/presentation»
Подмодуль «template/report» (https://github.com/yamadharma/academic-laboratory-r
```

Рис. 2.5: подготовка каталога

Создаю курс и структуру папок

```
nziborova@fedora:~/work/study/2024-2025/Архитектура компьютера$
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера$ cd ~/work/study
/2024-2025/"Архитектура компьютера"/arch-pc
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ rm pack
age.json
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ echo ar
ch-pc > COURSE
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ make
Usage:
 make <target>
                                                             I
Targets:
                                 List of courses
                                 Generate directories structure
                                 Update submules
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ make pr
epare
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ ls
CHANGELOG.md COURSE LICENSE prepare
                                            README.en.md
                                                                README.md
                     Makefile presentation README.git-flow.md templat
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$
                                                CDC kove
```

Рис. 2.6: Make создает нужные папки

Отправляю в гитхаб

```
create mode 100644 presentation/report/pandoc/csl/gost-r-7-0-5-2008-numeric.csl
 create mode 100755 presentation/report/pandoc/filters/pandoc_eqnos.py
 create mode 100755 presentation/report/pandoc/filters/pandoc_fignos.py
 create mode 100755 presentation/report/pandoc/filters/pandoc_secnos.py
 create mode 100755 presentation/report/pandoc/filters/pandoc_tablenos.py
 create mode 100644 presentation/report/pandoc/filters/pandocxnos/__init__.py
 create mode 100644 presentation/report/pandoc/filters/pandocxnos/core.py
 create mode 100644 presentation/repprt/pandoc/filters/pandocxnos/main.py
 create mode 100644 presentation/repurt/pandoc/filters/pandocxnos/pandocattribut
create mode 100644 presentation/report/report.md
nziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ git pus/
Перечисление объектов: 37, готово.
Подсчет объектов: 100% (37/37), готово.
При сжатии изменений используется до 6 потоков
Сжатие объектов: 100% (29/29), готово.
Запись объектов: 100% (35/35), 341.26 КиБ | 3.02 МиБ/с, готово.
Total 35 (delta 4), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (4/4), completed with 1 local object.
To github.com:1132246825/arch-pc.git
   6f2d7cb..f2498c7 master -> master
 rnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$
```

Рис. 2.7: git push

Рис. 2.8: Репозиторий

Загружаю отчеты по работам на гитхаб.

```
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ git add
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ git com
mit -am lab01
[master a0522b0] lab01
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 labs/lab01/Л01_Зиборова_отчет.pdf..pdf
vnziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ git pus
Перечисление объектов: 8, готово.
Подсчет объектов: 100% (8/8), готово.
                                                                    I
При сжатии изменений используется до 6 потоков
Сжатие объектов: 100% (5/5), готово.
Запись объектов: 100% (5/5), 894.90 КиБ | 4.89 МиБ/с, готово.
Total 5 (delta 2), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To github.com:1132246825/arch-pc.git
   f2498c7..a0522b0 master -> master
/nziborova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$
```

Рис. 2.9: git push

Рис. 2.10: Репозиторий

3 Выводы

В ходе выполнения работы изучили работу с GitHub.

4 Вопросы для самопроверки

1. Что такое системы контроля версий (VCS) и для решения каких задач они предназначаются?

Системы контроля версий (VCS — Version Control Systems) — это инструменты, позволяющие отслеживать изменения в файлах, управлять версиями проектов, восстанавливать предыдущие состояния и координировать совместную работу над проектом. Основные задачи VCS: - Хранение истории изменений - Восстановление прошлых версий - Совместная работа нескольких разработчиков - Ветвление и слияние версий проекта - Снижение рисков потери данных

2. Объясните следующие понятия VCS и их отношения: хранилище, commit, история, рабочая копия.

Хранилище (репозиторий) — место, где хранятся все версии файлов проекта, включая их историю изменений. Это может быть локальный каталог на компьютере или удалённый сервер.

Commit — фиксация изменений в проекте. Каждый commit сохраняет текущие изменения и добавляет их в историю проекта.

История — последовательность commit'ов, представляющая эволюцию проекта. Она позволяет вернуться к любой версии проекта в прошлом.

Рабочая копия — локальная версия файлов проекта, с которой работает разработчик. Она может быть изменена до создания commit'a.

3. Что представляют собой и чем отличаются централизованные и децентрализованные VCS? Приведите примеры VCS каждого вида.

Централизованные VCS (CVCS) хранят все данные на одном сервере, к которому обращаются все разработчики. Примеры: SVN, CVS. Основной недостаток — зависимость от центрального сервера.

Децентрализованные VCS (DVCS) хранят полную копию репозитория у каждого разработчика, и обмен изменениями происходит напрямую между локальными копиями. Примеры: Git, Mercurial. Основное преимущество — отсутствие зависимости от центрального сервера и возможность работать автономно.

- 4. Опишите действия с VCS при единоличной работе с хранилищем.
- Инициализация репозитория (например, git init).
- Добавление файлов под контроль версий (git add).
- Фиксация изменений с созданием commit'ов (git commit).
- Работа с ветками (опционально).
- Просмотр истории изменений (git log).
- Откат к предыдущей версии (при необходимости, например, с помощью git checkout или git revert).
- 5. Опишите порядок работы с общим хранилищем VCS.
- Клонирование общего репозитория (git clone).
- Создание новой ветки для своей задачи (git checkout -b new-feature).
- Внесение изменений и создание commit'ов.
- Синхронизация с удалённым репозиторием (git pull для получения новых изменений).
- Отправка изменений в удалённый репозиторий (git push).
- Создание pull request'а для объединения изменений в основную ветку.

- 6. Каковы основные задачи, решаемые инструментальным средством git?
- Отслеживание изменений файлов
- Создание и управление ветками
- Совместная работа над проектом через pull requests и push/pull операций
- Разрешение конфликтов при слиянии изменений
- Поддержка распределённой модели работы с репозиториями
- Восстановление предыдущих версий проекта
- 7. Назовите и дайте краткую характеристику командам git.
- git init создание нового репозитория
- git clone клонирование удалённого репозитория
- git add добавление изменений в область подготовки
- git commit создание commit'a
- git status проверка состояния репозитория
- git log просмотр истории commit'ов
- git pull получение изменений из удалённого репозитория
- git push отправка изменений в удалённый репозиторий
- 8. Приведите примеры использования при работе с локальным и удалённым репозиториями.

Локальный репозиторий:

• Создание репозитория: git init

- Добавление файла: git add file.txt
- Фиксация изменений: git commit -m "Add file"

Удалённый репозиторий:

- Клонирование: git clone https://example.com/repo.git
- Получение изменений: git pull origin main
- Отправка изменений: git push origin main