Modelltheorie Übungsblatt 7

Aufgabe 1.

- a) Zeigen Sie, dass $S_n(T)$ kompakt (das heißt Haussdorff und überdeckungskompakt) ist.
- b) Zeigen Sie, dass die abgeschlossenen Teilmengen von $S_n(T)$ genau $\{p \in S_n(T) \mid \Sigma \subset p\}$ sind, mit Σ eine Menge von Formeln.

Aufgabe 2. Zeigen Sie, dass eine Theorie T genau dann Quantorenelimination hat, wenn jeder Typ bereits von seinen quantorenfreien Anteil impliziert wird.

Seien \mathcal{L} eine Sprache, \mathcal{M} eine \mathcal{L} -Struktur und A eine Teilmenge von M. Der algebraische Abschluss acl(A) von A ist die Vereinigung aller endlichen A-definierbaren Teilmengen von M. Es bedeutet, dass $a \in acl(A)$ genau dann wenn es eine $\mathcal{L}(A)$ -Formeln φ gibt, mit $\varphi(M)$ endlich und $\mathcal{M} \models \varphi(a)$.

Aufgabe 3.

- a) Seien \mathcal{L} eine abzählbare Sprache und T eine \mathcal{L} -Theorie. Zeigen Sie: Wenn T \aleph_0 kategorisch ist, ist der algebraische Abschluss einer endlichen Teilmenge von eines
 Models wieder endlich.
- b) Zeigen Sie, dass es keine \aleph_0 -kategorische \mathcal{L}_{Ring} -Theorie T gibt, die die Körperaxiome T_K enthält.

Aufgabe 4.

- a) Geben Sie eine Theorie an, die bis auf Isomorphie genau zwei abzählbare Modelle hat. Ist diese Theorie vollständig?
- b) Sei $\mathcal{L} = \{\langle c_1, c_2, \cdots \rangle\}$. Die \mathcal{L} -Theorie T bestehe aus DLO vereinigt mit:

$$\{c_i < c_i \mid i, j \in \mathbb{N}, i < j\}$$

Zeigen Sie, dass T bis auf Isomorphie genau drei abzählbare Modelle hat. Ist diese Theorie vollständig?

Abgabe bis Donnerstag, den 29.11, 10:00 Uhr

Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden.

Web-Seite: http://wwwmath.uni-muenster.de/u/franziska.jahnke/mt/