Weekly Report NTUA 22/11/2019

George Bakas

Status Report

- Analysis:
 - Hands on Particle phase space as well
 - Efficiency
 - Acceptance
 - Response matrices
 - R_{yield} used as a transfer factor from SR_A to SR defined as: $R_{yield} = \frac{N_{SR}}{N_{SR_A}}$
 - Check if this quantity is stable in all Regions (0, 1, 2 btag) for every year
 - Signal Extraction for several variables

Efficiency and Acceptance for 2016, 2017 and 2018 (parton)

Acceptance '16,'17,'18

Efficiency and Acceptance for 2016, 2017 and 2018 (particle)

Particle Acceptance '16,'17,'18

Response Matrices (parton) vs JetPtO

2017

2018

1000

1200

1400 partonPt0 (GeV)

Response Reco-Parton jetPt0 2018

0.08

0.06

0.04

0.02

Response Matrices (particle) vs JetPtO

Response Reco-Particle jetPt0 2016 1400 0.0003 0.0003 0.0010 0.18 0.16 0.16 0.120 0.000 0.0000 0.0001 0.0016 0.0032 0.0001 0.014 0.12 0.12 0.14 0.12 0.14 0.12 0.16 0.000 0.0000

2017

2018

Response Reco-Particle jetPt0 2018

Signal Extraction

- Where x_{reco} is the respected variable of interest (ttbar mass,pt, rapidity, leading and subleading jetPt and |jetY|)
- We deploy a simultaneous fit in 3 regions (0,1,2 btag) because we do not have a pure Control Region.
 - Our data CR is ttbar contaminated

$$D(m^t)^{(i)} = N_{tt}^{(i)} T^{(i)}(m^t, k_{MassScale}, k_{MassResolution}) + N_{bkg}^{(i)} B(m^t) (1 + k_1 x) + N_{sub}^{(i)} O^{(i)}(m^t)$$

• We assume that $N_{tt}^{(0)} = (1 - e_b)^2 N_{tt}$, $N_{tt}^{(2)} = e_b^2 N_{tt}$ and $N_{tt}^{(1)} = 2(1 - e_b)e_b N_{tt}$ where e_b is the b tagging efficiency and N_{tt} is the total ttbar yield.

R_{yield} Calculation

2016

R_{yield} transfer factor 2016

2017

2018

Fiducial differential xsec

2016

Data vs MC (2016) for jetPt0

2017

Data vs MC 2017 for jetPt0

2018

Data vs MC 2018 for jetPt0

Fiducial differential xsec

2016

Data vs MC 2016 for mJJ

2017

Data vs MC 2017 for mJJ

2018

Data vs MC 2018 for mJJ

