Planche nº 2. Ensembles, relations, applications

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (*T)

Soient E et F deux ensembles. Montrer que $\mathscr{P}(E) = \mathscr{P}(F) \Leftrightarrow E = F$.

Exercice nº 2 (**T)

A et B sont des parties d'un ensemble E. Montrer que : $(A \cup B) \cap (B \cup C) \cap (C \cup A) = (A \cap B) \cup (B \cap C) \cup (C \cap A)$.

Exercice nº 3 (**T)

A et B sont des parties d'un ensemble E. Montrer que :

- 1) $(A\Delta B = A \cap B) \Leftrightarrow (A = B = \emptyset)$.
- **2)** $A\Delta B = B\Delta A$.
- 3) $(A\Delta B)\Delta C = A\Delta (B\Delta C)$.
- 4) $A\Delta B = \emptyset \Leftrightarrow A = B$.
- 5) $A\Delta C = B\Delta C \Leftrightarrow A = B$.

Exercice nº 4 (**IT)

Soit \mathscr{R} la relation définie dans \mathbb{R} par :

$$\forall (x,y) \in \mathbb{R}^2, \ x \mathscr{R} y \Leftrightarrow x e^y = y e^x.$$

- 1) Montrer que \mathcal{R} est une relation d'équivalence sur \mathbb{R} .
- 2) Pour chaque réel x, préciser le nombre d'éléments de la classe d'équivalence de x.

Exercice no 5 (**IT)

Soit E un ensemble. Montrer que la relation d'inclusion est une relation d'ordre sur $\mathcal{P}(\mathsf{E})$. Cette relation d'ordre est-elle partielle ou totale?

Exercice nº 6 (***IT)

Dans chacun des cas suivants, montrer que f réalise une bijection (encore notée f) de I sur J = f(I) à déterminer puis préciser f^{-1} :

- 1) $f(x) = x^2 4x + 3$, $I =]-\infty, 2]$.
- 2) $f(x) = \frac{2x-1}{x+2}$, $I =]-2, +\infty[$.
- 3) $f(x) = \sqrt{2x+3} 1$, $I = \left[-\frac{3}{2}, +\infty \right]$.
- 4) $f(x) = \frac{x}{1+|x|}$, $I = \mathbb{R}$.

Exercice no 7 (***IT)

Soient E un ensemble puis A une partie de E. Pour tout $X \in \mathscr{P}(E)$, on pose $\varphi_A(X) = X \cap A$ et $\psi_A(X) = X \cup A$. Montrer que

- 1) φ_A injective $\Leftrightarrow \varphi_A$ surjective $\Leftrightarrow A = E$.
- 2) ψ_A injective $\Leftrightarrow \psi_A$ surjective $\Leftrightarrow A = \emptyset$.

Exercice nº 8 (**IT)

Soient f une application d'un ensemble E vers un ensemble F et g une application de F vers un ensemble G. Montrer que : $(g \circ f \text{ injective}) \Rightarrow f \text{ injective})$ et $(g \circ f \text{ surjective}) \Rightarrow g \text{ surjective})$.

Exercice no 9 (**I)

Soit f une application d'un ensemble non vide E dans lui-même telle que $f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Exercice no 10 (**)

Parmi $f \circ g \circ h$, $g \circ h \circ f$ et $h \circ f \circ g$ deux sont injectives et une est surjective. Montrer que f, g et h sont bijectives.

Exercice no 11 (***IT)

f est une application d'un ensemble E dans lui-même. Montrer que :

- 1) a) f est injective $\Leftrightarrow \forall X \in \mathcal{P}(E), f^{-1}(f(X)) = X.$ b) f est injective $\Leftrightarrow \forall (X,Y) \in \mathcal{P}(E)^2, f(X \cap Y) = f(X) \cap f(Y).$
- 2) f est surjective $\Leftrightarrow \forall X \in \mathcal{P}(E), f(f^{-1}(X)) = X.$

Exercice nº 12 (***I) Théorème de Cantor :

- 1) Montrer qu'il existe une injection de E dans $\mathscr{P}(E)$.
- 2) En considérant la partie $A = \{x \in E \mid x \notin f(x)\}$, montrer qu'il n'existe pas de bijection f de E sur $\mathcal{P}(E)$.

Exercice n° 13 (****) (Une bijection entre \mathbb{N}^2 et \mathbb{N})

Soit $f: \mathbb{N}^2 \to \mathbb{N}$. Montrer que f est une bijection. Préciser, pour $n \in \mathbb{N}$ donné, le couple $(x,y) \mapsto y + \frac{(x+y)(x+y+1)}{2}$. (x,y) dont il est l'image.

Planche nº 3. Raisonnement par récurrence

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (**T)

Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $2^n > n$.

Exercice nº 2 (**T)

Montrer par récurrence que, pour tout $n \ge 4$, $n! \ge n^2$ (où $n! = 1 \times 2 \times ... \times n$).

Exercice no 3 (***)

Montrer par récurrence que, pour tout entier $n \ge 2$ est divisible par au moins un nombre premier.

Exercice nº 4 (**T)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$u_0 = 2$$
, $u_1 = 1$ et pour tout entier naturel n , $u_{n+2} - u_{n+1} - 6u_n = 0$.

Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n = (-2)^n + 3^n$.

Exercice no 5 (***I)

- 1) Montrer par récurrence que, pour tout naturel non nul n, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$. En calculant la différence $(k+1)^2 k^2$, trouver une démonstration directe de ce résultat.
- 2) Calculer de même les sommes $\sum_{k=1}^{n} k^2$, $\sum_{k=1}^{n} k^3$ et $\sum_{k=1}^{n} k^4$ (et mémoriser les résultats). On donne les identités remarquables $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ et $(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$.

Exercice nº 6 (**T)

- 1) Montrer par récurrence que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}$. Trouver une démonstration directe.
- 2) Montrer par récurrence que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$. Trouver une démonstration directe.

Exercice nº 7 (****)

Pour $n \ge 1$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que, pour $n \ge 2$, H_n n'est jamais un entier (indication : montrer par récurrence que H_n est le quotient d'un entier impair par un entier pair en distinguant les cas où n est pair et n est impair).

Exercice nº 8 (***)

Déterminer toutes les applications injectives de $\mathbb N$ vers $\mathbb N$ telles que :

$$\forall n \in \mathbb{N}, f(n) \leq n.$$