

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (W), Mumbai: 400058, India (Autonomous College of Affiliated to University of Mumbai)

End Semester Examination December 2022

Maxi Marks: 100 Class: T.E

Course code: CS301/IT301

Name of the course: Theory of Computation

Duration: 3 hours Semester: V

Branch: COMP/IT

Instructions:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q No		Max Marks	СО	BL
Q1 a	Differentiate between Nondeterministic finite automata and deterministic finite automata	5	1	4
Q1 b	Illustrate the formal definition of a Turing machine with the help of a diagram to answer the following questions and explain your reasoning. (a) Can a Turing machine ever write the blank symbol on its tape? (b) Can the tape alphabet Γ be the same as the input alphabet Σ? (c) Can a Turing machine contain just a single state?	5	4	4
Q1 c	Define the Context free grammar and context free language. Consider the following production: S → ASB ε A → aAS a B → SbS A bb a) Are there any useless symbols? Eliminate them if so. b) Eliminate ε-productions. c) Eliminate unit productions.	10	3	4
Q2 a	Design a Mealy machine to accept all strings ending with 00 or 11 and then convert it into Moore machine.	10	1	. 3
Q2 b	Define Arden's theorem Construct the regular expression corresponding to automata given below	10	1	3

Q3 a	Using Pumping Lemma Prove that Language $L = \{a^n b^{n/2} n \text{ is even number} \}$ is not regular.	5		2
Q3 b	Develop ε -NFA for the following regular expressions RE = $(a/b)*abb$ (b) RE = $a(a/b)*b / b(a/b)*a$	5		1
Q3 c	Describe the Context sensitive Lorentee	-		
	S-> aBC S-> SABC CA->AC BA->AB CB->BC aA->aa aB->ab bB->bb bC->bc cC->cc Derive the string "aabbcc" from the start symbol S.	10		2 3
Q4 a	Reduce the following production of grammar to Greibach Normal Form $S \to ABC$ $A \to a \mid b$ $B \to Bb \mid aa$ $C \to aC \mid CC \mid ba$	10	3	3
	Reduce the following production of grammar to Greibach Normal Form $S \rightarrow AB$ $A \rightarrow BSB \mid BB \mid b$ $B \rightarrow aAb \mid a$			
)4 b	Explain Chomsky Hierarchy and differentiate the recursive Languages and Recursive enumerable languages.	10	3	3
- 1	Design a Turing machine to compare two numbers m and n such that, input: 0 ^m 1 0 ⁿ output: X if m > n Y if m = n Z if m < n	10	4	3
	OR Design a Turing machine to perform following operation such that, nput: $0^m 1 \ 0^n$ Dutput: $P = m - n$ if $m > n$ $Q = 0$ if $m \le n$			
5 b E	Design a Push Down Automata for the language $\{w \in w^R \mid w \in (0+1)^* \text{ and } w^R \}$	10	4	3