

and Computer Science

Incorporating a green component into the design and development of evolutionary algorithms

Iztok Fister, Damijan Novak, Vili Podgorelec, Iztok Fister Jr.

September 14, 2024

Agenda

Motivation
Contributions
Compact Evolutionary Algorithms
Green Evolutionary Algorithms
Proposed method
Experiments
Conclusion

Motivation

- The increasing computational demands of Artificial Intelligence (AI) are contributing to a growing carbon footprint.
- With the global push toward a green economy, reducing the environmental impact of AI is critical.
- Green Artificial Intelligence (Green AI) seeks to address this by focusing on more energy-efficient algorithms and reducing computational complexity.
- This work aligns with the green transition by proposing methods that aim to reduce both time complexity and environmental impact.
- To design a straightforward, modest algorithm incorporating a green component, with an aim of running this newly developed evolutionary algorithm on limited devices.

Contributions

- Proposal of Green Evolution Strategies aimed at minimizing time complexity and computational resource usage.
- Comparison with compact differential evolution on the CEC'14 benchmark suite.
- Findings show a marginal reduction in solution quality, offset by significant reductions in time complexity.
- A promising direction for future research in low-resource Al solutions.

Compact Evolutionary Algorithms (cEAs)

- Compact Evolutionary Algorithms (cEAs) replace real populations of individuals with a probability vector $PV = [\mu_i, \sigma_i]$.
- The probability vector is dynamically sampled from distributions like:
 - Normal distribution $\mathcal{N}(\mu, \sigma)$
 - Uniform distribution $\mathcal{U}(a,b)$
- The Normal distribution has a probability density function (PDF):

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \tag{1}$$

 For the Uniform distribution, values are sampled from the interval:

$$\mu - \sigma\sqrt{3} \le x \le \mu + \sigma\sqrt{3} \tag{2}$$

Evolution Strategies (ES)

- Origin: Developed in the 1960s by Rechenberg and Schwefel for numerical optimization.
- Key Features:
 - Operates on real-valued representations of individuals.
 - Excellent for global optimization, avoiding local optima.
 - Self-adaptation of mutation parameters.
- Individual Representation:

$$\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n, \alpha_1, \ldots, \alpha_k \rangle$$
 (3)

where σ are mutation step sizes and α are rotation angles.

• Mutation Operator:

$$\sigma' = \sigma \cdot \exp^{\tau \cdot \mathsf{N}(0,1)}, \quad x_i' = x_i + \sigma' \cdot \mathsf{N}(0,1) \tag{4}$$

• **Selection**: Typically (μ, λ) or $(\mu + \lambda)$ for green AI, using a single individual.

Green Evolutionary Algorithms (EAs)

Purpose of Green EAs:

- 1. Efficient operation on regular hardware to save power and reduce carbon footprint.
- 2. Ability to run complex EAs on limited hardware.
- Focus: Algorithms that work with small or single populations.
- Proposed Algorithms:
 - eXtended compact DE (XcDE): Combines features of cDE and UcDE.
 - Green ES (gES): Incorporates uncorrelated mutations with One Step Size and n Step Sizes from ES.
- Both algorithms sample from Normal, Uniform, and Cauchy distributions.

Extended Compact Differential Evolution (XcDE)

- XcDE extends the compact DE approach by integrating various probability distributions:
 - Normal
 - Uniform
 - Cauchy
- Random vector generation:

$$y_i^t = \begin{cases} \mathcal{N}(\mu_i^{(t)}, \sigma_i^{(t)}), & \text{if } PD = \text{Normal}, \\ \mathcal{U}(a_i^{(t)}, b_i^{(t)}), & \text{if } PD = \text{Uniform}, \\ \mathcal{C}(\mu_i^{(t)}, \sigma_i^{(t)}), & \text{otherwise.} \end{cases}$$
(5)

Pseudo-code highlights initialization and evolutionary steps.

XcDE Pseudo-Code

Key Parameters:

- Np: Virtual population size
- σ_0 : Initial standard deviation
- D: Problem dimension
- PD: Probability distribution
- a, b: Problem boundaries
- Algorithm process:
 - Initialization of population and boundaries.
 - Loop through generations: Update variables and step sizes.
 - Mutation and crossover steps guided by selected probability distributions.
- Algorithm aims to efficiently evolve solutions by updating probability vectors.

Purpose of Experimental Work

- The goal: Compare the proposed gES algorithm with XcDE in terms of:
 - Quality of results
 - Time complexity
- Three algorithms were compared:
 - UcDE
 - gES (uncorrelated mutation with one step size)
 - gES+ (uncorrelated mutation with n step sizes)
- Each algorithm was tested with three probability distributions:
 - Normal (-N), Cauchy (-C), and Uniform (-U)
- Example: gES with Normal distribution is noted as gES-N.

Comparative Analysis Results

Algorithm	Fri.	Nemenyi		Γ '	
		CD	S.	N 5	5
XcDE-U	4.83	[4.02,5.64]		ranks	
XcDE-C	4.26	[3.45,5.07]		s of	·
XcDE-N	3.77	[2.96,4.58]	‡	differences	,
gES-U	4.42	[3.61,5.23]	†	ffere	`
gES-C	4.69	[3.88,5.5]	†	ge d	,
gES-N	5.42	[4.61,6.23]	†	Average	
gES-U+	5.43	[4.62,6.24]	†	(₹ :	
gES-C+	6.61	[5.80,7.42]	Ì	,	
gES-N+	6.71	[5.90,7.52]	†	L `	XcDE-U XcDE-C XcDE-N gES-U gES-N gES-U+ gES-C+ gES-N+ Stochastic algorithms in test

Figure: Nemenyi post-hoc statistical test results

Comparative Analysis: Time Complexity

Algorithm	Normal		Cauc	hy	Uniform		Total
	Tot.	Avg.	Tot.	Avg.	Tot.	Avg.	Iotal
XcDE	719.93	24.00	628.38	20.95	507.39	16.91	1,855.70
gES	527.36	17.58	504.94	16.83	446.75	14.89	1,479.05
gES+	639.80	21.33	574.44	19.15	483.50	16.12	1,697.74
Total	1,887.09	20.97	1,707.76	18.98	1,437.64	15.97	5,032.49

Conclusion

- A new way of incorporating the green component into the evolutionary algorithm was explored.
- Method reduces the algorithm's complexity and enable the algorithm to run on limited hardware.
- Comprehensive experiments performed on the CEC 14 benchmark revealed that the proposed method was less complex and thus encouraged us to widen this approach to application areas.

Future challenge: Our goal for future research is to tailor this algorithm to the problem of Numerical Association Rule Mining and apply it to the application in Smart Agriculture.

Questions and discussion

