Feuille d'exercice n° 12 : Limite d'une fonction

Exercice 1 () Déterminer les limites des expressions suivantes, en justifiant vos calculs.

1)
$$\frac{x+2}{x^2 \ln x}$$
 lorsque $x \to 0^+$

2)
$$2x \ln(x + \sqrt{x})$$
 lorsque $x \to 0^+$

3)
$$\frac{x^3 - 2x^2 + 3}{x \ln x}$$
 lorsque $x \to +\infty$

4)
$$\frac{e^{\sqrt{x}+1}}{x+2}$$
 lorsque $x \to +\infty$

$$5) \frac{\ln(3x+1)}{2x} \quad \text{lorsque } x \to 0$$

5)
$$\frac{\ln(3x+1)}{2x}$$
 lorsque $x \to 0$
6) $\frac{x^x-1}{\ln(x+1)}$ lorsque $x \to 0^+$

7)
$$\frac{2}{x+1} \ln \left(\frac{x^3+4}{1-x^2} \right)$$
 lorsque $x \to -\infty$

8)
$$(x^2-1)\ln(7x^3+4x^2+3)$$
 lorsque $x \to (-1)^+$

9)
$$(x-2)^2 \ln(x^3-8)$$
 lorsque $x \to 2^+$

10)
$$\frac{x(x^x-1)}{\ln(x+1)}$$
 lorsque $x \to 0^+$

11)
$$(x \ln x - x \ln(x+2))$$
 lorsque $x \to +\infty$

12)
$$\frac{e^x - e^{x^2}}{x^2 - x}$$
 lorsque $x \to +\infty$

13)
$$(1+x)^{\ln x}$$
 lorsque $x \to 0^+$

14)
$$\left(\frac{x+1}{x-3}\right)^x$$
 lorsque $x \to +\infty$

15)
$$\left(\frac{x^3+5}{x^2+2}\right)^{\frac{x+1}{x^2+1}}$$
 lorsque $x \to +\infty$

16)
$$\left(\frac{e^x+1}{x+2}\right)^{\frac{1}{x+1}}$$
 lorsque $x\to +\infty$

17)
$$(\ln(1+x))^{\frac{1}{\ln x}}$$
 lorsque $x \to 0^+$

18)
$$\frac{x^{(x^{x-1})}}{x^{(x^x)}}$$
 lorsque $x \to +\infty$

19)
$$\frac{(x+1)^x}{x^{x+1}}$$
 lorsque $x \to +\infty$

20)
$$\frac{x\sqrt{\ln(x^2+1)}}{1+e^{x-3}} \quad \text{lorsque } x \to +\infty$$

Exercice 2 Soit $a, b \in \mathbb{R}_+^*$, étudier la limite en 0 des applications suivantes.

1)
$$x \mapsto \frac{x}{a} \left| \frac{b}{x} \right|$$

$$2) \ x \mapsto \frac{a}{x} \left| \frac{x}{b} \right|$$

Exercice 3 ($^{\infty}$) Soit f une fonction de \mathbb{R} dans \mathbb{R} croissante, telle que $f(u_n) \xrightarrow[n \to +\infty]{} +\infty$, où (u_n) est la suite de terme général n. Montrer que $f \xrightarrow{+\infty} +\infty$.

Montrer, en revenant à la définition de la limite, que $\frac{x^2 + \sin x}{(x+1)^2} \xrightarrow[x \to +\infty]{} 1$. Exercice 4

Exercice 5 ($^{\infty}$) Soit $\alpha, \beta \in \mathbb{R}_+^*$. Déterminer la limite en $+\infty$ de $x \mapsto x^{\alpha} \ln \left(1 + \frac{1}{x^{\beta}}\right)$.

Exercice 6 ($^{\circ}$) Montrer qu'une fonction périodique, non constante, n'admet pas de limite en $+\infty$.

Exercice 7 Soient $f, g: \mathbb{R} \to \mathbb{R}$ telles que f a une limite finie en $+\infty$, g est périodique et f+g est croissante. Montrer que g est constante.

