Introduction to Machine Learning

DSCI6003

- What is Machine Learning?
 - What?
 - Why?
 - ML vs. Statistics
- Types of Learning
 - Supervised
 - Unsupervised
 - Semi-Supervised (ML2)
 - Reinforcement
- Supervised Learning
 - 3 Components of a model
 - ML Process
- Lab: Predicting Interest Rates

Field of study that gives computers the ability to learn without being explicitly programmed.

-Arthur Samuel circa 1959

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

-Tom M. Mitchell

Machine learning is **NOT**:

- Hard coded logic by programmer: ifs and elses...
- Predefined results: completely deterministic
- Burden is placed on programmer at design time
- Must anticipate all inputs to program, and react

Machine learning is:

- Automated knowledge acquisition through input
- Iterative improvement as more data is seen
- Adaptive Algorithms

Regression:

- Loan interest rate prediction
- Utilities: smart grid load forecasting
- Web: page traffic prediction
- Advertising <u>CTR prediction</u>

Classification:

- Spam Filtering and document classification
- Finance: Fraud detection and loan default prediction
- Sentiment Analysis: People like to do this with Tweets
- National Security: ??? PRISM!

Clustering:

- Product Marketing: Cohort Analysis
- Oncology: Malignant cell identification
- Computer Vision: entity recognition
- Census: demographics analysis

Quiz: Which category would Churn prediction fall into?

- Red: Clustering
- Blue: Classification
- Green: Regression
- Yellow: Other

MACHINE LEARNING VS. STATISTICS

Machine learning	Statistics	
network, graphs	model	
weights	parameters	
learning	fitting	
generalization	test set performance	
supervised learning	regression/classification	
unsupervised learning	density estimation, clustering	
large grant = \$1,000,000	$large \ grant = \$50,\!000$	
nice place to have a meeting:	nice place to have a meeting:	
Snowbird, Utah, French Alps	Las Vegas in August	

http://datavu.blogspot.com/2014/08/statistical-modeling-vs-machine-learning.html

The Spectrum of the Learning Arts

TYPES OF LEARNING

How can computers learn??!?

Supervised Learning

Training Data includes desired output

Unsupervised Learning

Training Data does not include desired output

Semi-supervised Learning

Training Data includes a few desired outputs

Reinforcement Learning

Rewards from sequence of actions

Supervised Learning

Training Data includes desired output

Example: Spam email classifier

Unsupervised Learning

Training Data does not include desired output

Different cluster analysis results on "mouse" data set: **Original Data** k-Means Clustering **EM Clustering** 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.5 -0.5 1 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Example: Group users into cohorts based on habits

Semi-supervised Learning

Training Data includes a few desired outputs

Example: What to do when you don't having enough labels

Reinforcement Learning (traditional AI)

Rewards from sequence of actions

Example: Autonomous Video game Player

Unlabeled Data

The Unreasonable Effectiveness of Data

Figure 1. Learning Curves for Confusion Set Disambiguation

Quiz:

You are the Dean of a college and you need an automated way to send dissertations to the right departments...

Quiz: Which model will you use to avoid having to read all these theses?

- Red: Naive Bayes
- Blue: Linear Regression
- Green: Logistic Regression
- Yellow: Other (neural nets)

Quiz 2:

You are a realtor trying to find undervalued houses on the market...

Quiz 2: Which model will you use to predict the market value of houses?

- Red: Naive Bayes
- Blue: Linear Regression
- Green: Logistic Regression
- Yellow: Other (neural nets)

INTRODUCTION TO SUPERVISED LEARNING

- Supervised Learning
 - 3 Components of a model
 - Hypothesis Function
 - Cost Function
 - Optimization Technique
 - Process
 - Labels vs. Features
 - Train
 - Test
 - Predict
- Lab: Predicting Interest Rates

Iris Dataset

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

Features (feature matrix)

Target

Train

Input: historical labeled data

+

(hypothesis) function with unknown parameter values , logistic, etc.>

Predict

Output: parameter values

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

Hypothesis Function

Parameters

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

What to learn an unknown target function f()

Input: labeled training set (xi, yi)

• yi = f(xi)

Output: hypothesis h() function "close" to f()

Many possible hypothesis families:

- Logistic
- Linear
- decision trees
- example-based (nearest neighbor)
- etc.

Throughout this class we will work to understand the answers the following questions:

- Which hypothesis space to choose?
- How do we measure goodness of fit?
- How do we balance goodness of fit with complexity?
- How do we make h() a good method?
- How do we pick the right kind of h()?
- How do we know if a good h() will predict well?

Throughout this class we will work to understand the answers the following questions:

Which hypothesis space to choose?
 Hypothesis Function

How do we measure goodness of fit?

Cost Function

- How do we balance goodness of fit with complexity?
 Regularization
- How do we make h() a good method?
 Optimization
- How do we pick the right kind of h()?

 Cross Validation
- How do we know if a good h() will predict well?
 Hold-out Evaluation

LAB: PREDICTING LOAN RATES (WITH SCIKIT-LEARN)