DEVOIR MAISON 1

Exercice 1 - BSB 2019 / Ex2

1. Pour calculer la limite en $-\infty$, j'utilise les résultats classiques d'opérations sur les limites :

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^x = 0$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} 1 + e^x = 1$$
Par quotient,
$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x) = 0.$$

J'en déduis que la représentation graphique \mathcal{C} de f admet une asymptote horizontale, au voisinage de $-\infty$, d'équation y = 0.

2. (a) Je pars de l'expression $\frac{1}{1+e^{-x}}$ et je multiplie numérateur et dénominateur par e^x pour obtenir l'expression de f(x):

$$\frac{1}{1+e^{-x}} = \frac{1 \times e^x}{(1+e^{-x}) \times e^x} = \frac{e^x}{e^x + e^0} = \frac{e^x}{1+e^x} = f(x).$$

J'ai bien montré que $f(x) = \frac{1}{1 + e^{-x}}$.

(b) Grâce à cette nouvelle expression, je calcule la limite de f en $+\infty$:

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} 1 = 1$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} 1 + e^{-x} = 1 + 0 = 1$$
 Par quotient,
$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x) = 1.$$

J'en déduis alors que la représentation graphique \mathcal{C} de f admet une seconde asymptote horizontale, au voisinage de $+\infty$, d'équation y=1.

3. (a) La fonction f est de la forme $f = \frac{u}{v}$, avec $u(x) = e^x$ et $v(x) = 1 + e^x$. Puisque $u'(x) = e^x$ et $v'(x) = e^x$, alors

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{e^x \times (1 + e^x) - e^x \times e^x}{(1 + e^x)^2} = \frac{e^x}{(1 + e^x)^2}$$

J'ai bien montré que pour tout $x \in \mathbb{R}$, $f'(x) = \frac{e^x}{(1 + e^x)^2}$

(b) Les variations de la fonction f s'obtiennent en étudiant le signe de f'(x). Ici, le signe est immédiat puisque le dénominateur est un carré et le numérateur est une exponentielle. Ainsi pour tout $x \in \mathbb{R}$, f'(x) > 0 et donc la fonction f est strictement croissante sur \mathbb{R} .

$$f(0) = \frac{e^0}{1+e^0} = \frac{1}{1+1} = \frac{1}{2}.$$

D'où le tableau de variation suivant :

x	$-\infty$	0	+∞
f	0	$\frac{1}{2}$	<u> </u>

(c) L'équation de la tangente à la courbe C_f au point d'abscisse a est donnée par la formule $y = f'(a) \times (x - a) + f(a)$. Ici a = 0 donc l'équation devient

$$y = f'(0) \times (x - 0) + f(0).$$

Or

$$f(0) = \frac{1}{2}$$
 et $f'(0) = \frac{e^0}{(1+e^0)^2} = \frac{1}{(1+1)^2} = \frac{1}{4}$.

Donc l'équation devient

$$y = \frac{1}{4}x + \frac{1}{2}$$
.

4. Je sais que la convexité de f s'obtient en étudiant le signe de la dérivée seconde f''(x). Comme $f''(x) = \frac{e^x(1-e^x)}{(1+e^x)^3}$ et que $\forall x \in \mathbb{R}, \ e^x > 0$ et $(1+e^x) > 0$, j'en déduis que le signe de f''(x) est donné par celui de $(1-e^x)$. Or $1-e^x \geqslant 0 \iff 1 \geqslant e^x \iff 0 \geqslant x$, donc j'en déduis que la fonction f est convexe sur l'intervalle $]-\infty,0[$ puis concave sur l'intervalle $]0,+\infty[$.

Le point de coordonnées $\left(0,\frac{1}{2}\right)$ est point d'inflexion : la tangente en ce point, calculée précédemment, traverse la courbe en ce point.

5. La courbe admet deux asymptotes horizontales, je connais l'équation de la tangente à la courbe en 0. Je suis donc capable de tracer l'allure de la courbe.

Exercice 2 - BSB 2019 / Ex3

1. Si la pièce amène FACE, alors le premier tirage s'effectue dans l'urne \mathcal{U}_2 et donc la boule tirée est rouge avec une probabilité $\frac{1}{2}$. Ainsi $P_F(R_1) = \frac{1}{2}$.

Au contraire, si la pièce amène PILE, alors le premier tirage s'effectue dans l'urne \mathcal{U}_1 et la boule tirée est rouge avec une probabilité 1. Autrement dit $P_{\overline{F}}(R_1) = 1$.

Alors d'après la formule des probabilités totales, comme $\{F, \overline{F}\}$ forme un système complet d'événements, la probabilité de tirer une boule rouge est donnée par

$$\begin{split} P(R_1) &= P(F \cap R_1) + P(\overline{F} \cap R_1) = P(F) \times P_F(R_1) + P(\overline{F}) \times P_{\overline{F}}(R_1) \\ &= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times 1 = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}. \end{split}$$

2. (a) Si la pièce amène FACE, alors les tirages s'effectuent dans l'urne \mathcal{U}_2 . D'après la formule des probabilités composées,

$$P_F(R_1 \cap R_2) = P_F(R_1) \times P_{F \cap R_1}(R_2) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}.$$

De même,

$$P_{\overline{F}}(R_1 \cap R_2) = P_{\overline{F}}(R_1) \times P_{\overline{F} \cap R_1}(R_2) = 1 \times 1 = 1.$$

Alors en appliquant la formule des probabilités totales, comme $\{F, \overline{F}\}$ forme un système complet d'événements, la probabilité de tirer deux boules rouges de suite est donnée par

$$P(R_1 \cap R_2) = P(F) \times P_F(R_1 \cap R_2) + P(\overline{F}) \times P_{\overline{F}}(R_1 \cap R_2)$$
$$= \frac{1}{2} \times \frac{1}{6} + \frac{1}{2} \times 1 = \frac{1}{12} + \frac{1}{2} = \frac{7}{12}.$$

(b) Je cherche ici $P_{R_1 \cap R_2}(\overline{F})$. D'après la formule des probabilités conditionnelles,

$$P_{R_1 \cap R_2}(\overline{F}) = \frac{P(\overline{F} \cap R_1 \cap R_2)}{P(R_1 \cap R_2)} = \frac{\frac{1}{2} \times 1}{\frac{7}{12}} = \frac{1}{2} \times \frac{12}{7} = \frac{6}{7}.$$

Si les deux boules tirées sont rouges, la probabilité que la pièce ait amené PILE est de $\frac{6}{7}$.

3. (a) Si une boule blanche est tirée au premier tirage, alors je sais qu'il s'agit de l'urne \mathcal{U}_2 , donc Y=1. Si au contraire une boule rouge est tirée, il peut s'agir de l'urne \mathcal{U}_1 ou de \mathcal{U}_2 et il faut donc faire au moins un autre tirage.

Si ce deuxième tirage donne une boule blanche, alors encore une fois, je sais qu'il s'agit de l'urne \mathcal{U}_2 , donc Y=2. Si au contraire une boule rouge est tirée, alors il peut encore s'agir de l'urne \mathcal{U}_1 ou de \mathcal{U}_2 . Il faut donc refaire un troisième tirage pour déterminer dans quelle urne l'on se trouve.

Au troisième tirage, si une boule blanche est tirée, alors il s'agit de l'urne \mathcal{U}_2 . Cependant, si une boule rouge est tirée alors ce ne peut être que l'urne \mathcal{U}_1 puisque seule l'urne \mathcal{U}_1 contient plus de 2 boules rouges.

Ainsi j'ai bien montré que $Y(\Omega) = [1,3]$.

(b) Comme expliqué à la question précédente, l'événement [Y = 1] ne se réalise que lorsqu'une boule blanche est tirée au premier tirage. Ceci n'est possible que si la boule a été tirée dans l'urne \mathcal{U}_2 et donc que la pièce a amené FACE.

Ainsi j'ai bien montré que

$$[Y=1]=F\cap B_1.$$

Alors d'après la formule des probabilités conditionnelles,

$$P(Y = 1) = P(F \cap B_1) = P(F) \times P_F(B_1) = \frac{1}{2} \times \frac{2}{4} = \frac{1}{4}.$$

(c) Par un raisonnement similaire à la question précédente, je peux montrer que

$$[Y=2]=F\cap R_1\cap B_2.$$

Alors d'après la formule des probabilités conditionnelles,

$$P(Y=2) = P(F \cap R_1 \cap B_2) = P(F) \times P_F(R_1) \times P_{F \cap R_1}(B_2) = \frac{1}{2} \times \frac{2}{4} \times \frac{2}{3} = \frac{1}{6}.$$

(d) Par complémentarité, j'obtiens que

$$P(Y = 3) = 1 - P(Y = 1) - P(Y = 2) = 1 - \frac{1}{4} - \frac{1}{6} = \frac{7}{12}.$$

(e) Je connais désormais la loi de Y donc je peux facilement calculer son espérance :

$$E(Y) = 1 \times P(Y = 1) + 2 \times P(Y = 2) + 3 \times P(Y = 3) = 1 \times \frac{1}{4} + 2 \times \frac{1}{6} + 3 \times \frac{7}{12} = \frac{1}{4} + \frac{1}{3} + \frac{7}{4} = 2 + \frac{1}{3} = \frac{7}{3}.$$

Exercice 3 - ESCP 2015 / Ex2

- 1. (a) Pour cette question, a = b = -1, donc la matrice M est la matrice $\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. Cette matrice carrée de taille 2 est inversible si et seulement si $1 \times (-1) - 1 \times (-1) \neq 0$. Or $1 \times (-1) - 1 \times (-1) = -1 - (-1) = 0$, donc la matrice M n'est pas inversible.
 - (b) Je commence par calculer M^2 :

$$M^2 = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1-1 & -1+1 \\ 1-1 & -1+1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0_2.$$

Puisque M^2 est la matrice nulle, alors pour tout $n \ge 2$,

$$M^n = M^2 \times M^{n-2} = 0_2 \times M^{n-2} = 0_2.$$

- 2. (a) Pour cette question, b = a, donc la matrice M est la matrice $\begin{pmatrix} 1 & a \\ 1 & a \end{pmatrix}$. Cette matrice carrée de taille 2 est inversible si et seulement si $1 \times a - 1 \times a \neq 0$. Or $1 \times a - 1 \times a = a - a = 0$, donc la matrice M n'est pas inversible.
 - (b) Je raisonne par récurrence sur $n \ge 2$.

Énoncé: Je note \mathcal{P}_n la propriété: $M^n = (1+a)^{n-1}M$.

Initialisation : Pour n = 2, je calcule M^2 et vérifie que $M^2 = (1+a) \times M = \begin{pmatrix} 1+a & a+a^2 \\ 1+a & a+a^2 \end{pmatrix}$.

$$M^{2} = \begin{pmatrix} 1 & a \\ 1 & a \end{pmatrix} \times \begin{pmatrix} 1 & a \\ 1 & a \end{pmatrix} = \begin{pmatrix} 1+a & a+a^{2} \\ 1+a & a+a^{2} \end{pmatrix} = (1+a) \times M.$$

Ainsi \mathcal{P}_2 est vraie.

Hérédité : Soit $n \ge 2$. Je suppose que \mathcal{P}_n vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, $M^n = (1+a)^{n-1}M$. Alors

$$M^{n+1} = M^n \times M = (1+a)^{n-1} M \times M = (1+a)^{n-1} M^2 = (1+a)^{n-1} \times (1+a) M = (1+a)^n M.$$

Donc $M^{n+1} = (1+a)^n M$. Finalement, \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est héréditaire et vraie pour n = 2, alors par principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout $n \ge 2$, *i.e.*

$$\forall n \geqslant 2, \quad M^n = (1+a)^{n-1} M.$$

3. Dans le cas général, la matrice M est la matrice $\begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix}$ et cette matrice carrée de taille 2 est inversible si et seulement si

$$1 \times b - 1 \times a \neq 0 \iff b - a \neq 0 \iff a \neq b$$
.

4. (a) Je cherche à exprimer la probabilité de l'événement [X = Y]. Les deux variables aléatoires doivent êtres égales mais peuvent prendre n'importe quelle valeur dans \mathbb{N}^* . Ainsi

$$[X = Y] = \{\omega \in \Omega \mid X(\omega) = Y(\omega)\} = \{\omega \in \Omega \mid X(\omega) = k \text{ et } Y(\omega) = k \text{ pour tout } k \in \mathbb{N}^*\}.$$

i.e.

$$\left[X=Y\right]=\bigcup_{k\in\mathbb{N}^*}\left\{\omega\in\Omega\mid X(\omega)=k\text{ et }Y(\omega)=k\right\}=\bigcup_{k\in\mathbb{N}^*}\left(\left[X=k\right]\cap\left[Y=k\right]\right).$$

Alors, par incompatibilité des événements puis par indépendances des variables aléatoires X et Y, j'obtiens que les probabilités concernées vérifient

$$P([X = Y]) = \sum_{k=1}^{+\infty} P([X = k] \cap [Y = k]) = \sum_{k=1}^{+\infty} P(X = k) \times P(Y = k).$$

Ainsi j'ai bien montré que $P(X = Y) = \sum_{k=1}^{+\infty} P(X = k) \times P(Y = k)$.

(b) Afin d'établir la convergence de cette somme, je passe par la somme partielle.

Pour
$$N \in \mathbb{N}^*$$
, je fixe $S_N = \sum_{k=1}^N p^2 q^{2k-2}$. Alors

$$S_N = \sum_{k=1}^N p^2 q^{2k-2} = p^2 \times \sum_{k=1}^N (q^2)^{k-1} = p^2 \times \sum_{n=0}^{N-1} (q^2)^n$$
 en posant $n = k-1$.

Je reconnais alors la somme partielle d'une série géométrique de raison q^2 . Puisque q = 1 - p avec 0 , alors <math>0 < q < 1 et par conséquent $0 < q^2 < 1$.

Donc la série géométrique est convergente et admet pour somme $\frac{1}{1-q^2}$. Alors

$$\sum_{k=1}^{+\infty} p^2 q^{2k-2} = \lim_{N \to +\infty} S_N = p^2 \times \frac{1}{1-q^2} = \frac{(1-q)^2}{1-q^2} = \frac{(1-q)^2}{(1+q)(1-q)} = \frac{1-q}{1+q}.$$

(c) L'événement A est l'événement contraire de [X = Y] puisque d'après la question $\mathbf{3}$, la matrice N n'est inversible que lorsque les deux variables aléatoires X et Y prennent des valeurs différentes. Donc

$$P(A) = 1 - P(X = Y).$$

Mais comme X et Y suivent toutes deux une loi géométrique de paramètre p, alors pour tout $k \in \mathbb{N}^*$, $P(X = k) = P(Y = k) = p \times (1 - p)^{k-1} = p \times q^{k-1}$. Donc

$$P(A) = 1 - \sum_{k=1}^{+\infty} P(X = k) \times P(Y = k) = 1 - \sum_{k=1}^{+\infty} pq^{k-1} \times pq^{k-1} = 1 - \sum_{k=1}^{+\infty} p^2q^{2k-2}.$$

Alors grâce au résultat de la question précédente, j'en déduis que

$$P(A) = 1 - \frac{1-q}{1+q} = \frac{1+q}{1+q} - \frac{1-q}{1+q} = \frac{1+q-(1-q)}{1+q} = \frac{2q}{1+q}.$$

5. (a) Pour tout réel $x \in \mathbb{R}$ et tout entier $n \in \mathbb{N}$, la formule du binôme de Newton me donne

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} \times x^k \times 1^{n-k} = \sum_{k=0}^n \binom{n}{k} x^k.$$

Puis en appliquant cette formule à l'entier $2n \in \mathbb{N}$, j'obtiens

$$(x+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} \times x^k \times 1^{2n-k} = \sum_{k=0}^{2n} {2n \choose k} x^k.$$

(b) Comme rappelé par l'énoncé, je sais que $(x+1)^{2n} = (x+1)^n (x+1)^n$, c'est-à-dire d'après la question précédente, en modifiant les variables de sommation pour plus de clarté,

$$\sum_{k=0}^{2n} \binom{2n}{k} x^k = \left(\sum_{i=0}^n \binom{n}{i} x^i\right) \times \left(\sum_{j=0}^n \binom{n}{j} x^j\right).$$

Ces deux quantités sont deux polynômes de degré 2n. Cette égalité implique donc 2n+1 égalités des coefficients de degré k pour tout $k \in [0,2n]$.

En particulier pour k = n, le coefficient à gauche vaut $\binom{2n}{n}$ tandis que le coefficient de

droite est la somme de tous les produits $\binom{n}{i}\binom{n}{j}$ pour les valeurs de i et de j entre 0 et n telles que i+j=n. Ainsi en posant k=i, alors j=n-k et j'obtiens bien la formule :

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}.$$

(c) Dans la question **4.a**), je n'ai pas utilisé les lois des variables aléatoires, donc la formule est toujours vraie dans ce cas précis. Cette fois en revanche, X et Y suivent toutes deux une loi binomiale de paramètres n et $p=\frac{1}{2}$ donc pour tout $k \in [0,n]$,

$$P(X=k) = P(Y=k) = \binom{n}{k} \times \left(\frac{1}{2}\right)^k \times \left(\frac{1}{2}\right)^{n-k} = \binom{n}{k} \times \left(\frac{1}{2}\right)^n = \frac{1}{2^n} \times \binom{n}{k}.$$

Donc

$$P(X = Y) = \sum_{k=1}^{+\infty} P(X = k) \times P(Y = k) = \sum_{k=1}^{+\infty} \frac{1}{2^n} \binom{n}{k} \times \frac{1}{2^n} \binom{n}{k} = \frac{1}{4^n} \sum_{k=1}^{+\infty} \binom{n}{k} \binom{n}{k}.$$

Or puisque par symétrie $\binom{n}{k} = \binom{n}{n-k}$, alors d'après la question précédente,

$$P(X=Y) = \frac{1}{4^n} \sum_{k=1}^{+\infty} \binom{n}{k} \binom{n}{n-k} = \frac{1}{4^n} \binom{2n}{n}.$$

(d) Pour les mêmes raisons que dans la question **4.c**), P(A) = 1 - P(X = Y) et donc

$$P(A) = 1 - \frac{1}{4^n} \binom{2n}{n}.$$