Juan Carlos Llamas Núnez DNI: 11867802-D

Llegamos a una tabla donde todos los costes reducidos son majores o iguales que cero por lo que ya tenemos una solución ó phima que

hay algún coste reducido de una variable no básica que es O. Par tanto hay solución optima multiple. Introducinos en la base la variable no basia Xs y saramos la variable basia XI con lo que obtenemos la Signiente tabla:

_	×1	Xź	×3	1 ×4	j. ×5	- 1	
×y	0	1	0	1	0	2	Ï
X ₃	1	1	1	0	0	5	
X5	3	1	0	0	1	2	-
1	0	4	0	0	0	2-7	med :

Obtenemos otro solución optima (x) 0 . Por tanto, el conjunto (x) = 5 . Por tanto, el conjunto (x) = 5 . Yy 2 . Ys 2 . Ys 2 . Por tanto, el conjunto es decir,

$$\begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \lambda \begin{vmatrix} 24_3 \\ 0 \\ 13/3 \end{vmatrix} + (1-\lambda) \begin{vmatrix} 0 \\ 0 \\ 5 \\ 2 \end{vmatrix}$$
con $\lambda \in [0,1]$.

Para estos puntos la función objetivo toma el valor $z=7$.