$\begin{array}{c} \mathbf{Semantische} \ \mathbf{Beziehungen} \ \mathbf{in} \ \mathbf{Texten} \ \mathbf{mit} \\ \mathbf{Word2Vec} \end{array}$

BACHELORARBEIT

im Studiengang Medieninformatik (MI7) an der Hochschule der Medien in Stuttgart vorgelegt von Ruben Müller

im Juli 2015

Erstprüfer: Prof. Dr-Ing. Johannes Maucher,

Hochschule der Medien, Stuttgart

Zweitprüfer: M.Sc. Andreas Stiegler,

Hochschule der Medien, Stuttgart

Erklärung

Hiermit versichere ich, Ruben Müller, an Eides Statt, dass ich die vorliegende Bachelorarbeit mit dem Titel: SSemantische Beziehungen in Texten mit Word2Vecßelbständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich habe die Bedeutung der eidesstattlichen Versicherung und die prüfungsrechtlichen Folgen (§ 23 Abs. 2 Bachelor-SPO (7 Semester) der HdM) sowie die strafrechtlichen Folgen (gem. § 156 StGB) einer unrichtigen oder unvollständigen eidesstattlichen Versicherung zur Kenntnis genommen.

Filderstadt, den XX. Juli 2015

Ruben Müller

Kurzfassung

Diese Bachelorthesis beschäftigt sich mit der Analyse von semantischen Beziehungen innerhalb mit Word2Vec gelernten Modellen.

Dazu sollen zum einen schon der vorhandene allgemeine Wikipedia-Korpus gelernt und analysiert werden, was als semantisch ähnlich erkannt wird. Zum anderen soll ein Korpus über eine spezielle Domäne erstellt und gelernt werden. Welche spezielle Domäne analysiert und verglichen werden soll, wird im Laufe der Bearbeitung festgelegt.

Diese beiden Korpora sollen sich dann gegenüber gestellt und analysiert werden, was jeweils als semantisch ähnlich erkannt wird.

Ziel dieser Arbeit soll es sein, festzustellen ob ein allgemeiner Korpus oder ein spezieller Domänenkorpus genauere Resultate im Hinblick auf semantische Ähnlichkeiten erzielt. Anstatt eines allgemeinen Korpus zu verwenden, könnte es sich dann anbieten zwischen mehreren speziellen Korpora auszuwählen, je nachdem welche Domäne aktuell bearbeitet werden soll.

Abstract

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	1
	1.1	Motivation	1
	1.2	Problemstellung	1
	1.3	Aufbau der Arbeit	1
2	Dat	en und Vorverarbeitung	2
	2.1	Datenbasis	2
	2.2	Externe Programme und Hilfsmittel	2
	2.3	Vorverarbeitung	3
3	Wo	m rd2Vec	4
	3.1	Parameter	4
	3.2	CBOW	5
	3.3	Skip-gram	6
	3.4	Negative sampling	6
	3.5	Hierarchical softmax	6
	3.6	Distanz zwischen Vektoren im Word2Vec Modell	6
4	Wil	kipedia-Korpus	7
	4.1	Gesamtkorpus	7
	4.2	Teilkorpus	7
	4.3	Testdaten	7
		4.3.1 Vergleich und Analyse	7
5	Exp	perimente	8
	5.1	Synnonymsuche durch Rekursion	8
		5.1.1 Beschreibung	8
		5.1.2 Durchführung	8
		5.1.3 Interpretation/Ergebnis	8
	5.2	Konkretisierungen	9
		5.2.1 Beschreibung	9
		5.2.2 Durchführung	9
		5.2.3 Interpretation/Ergebnis	9

	5.3	Verall	gemeinerungen	10
		5.3.1	Beschreibung	10
		5.3.2	Durchführung	10
		5.3.3	Interpretation/Ergebnis	10
	5.4	Unters	schiedliche Beziehungen	11
		5.4.1	Beschreibung	11
		5.4.2	Durchführung	11
		5.4.3	Interpretation/Ergebnis	11
	5.5	Mehro	leutigkeit	12
		5.5.1	Beschreibung	12
		5.5.2	Durchführung	12
		5.5.3	Interpretation/Ergebnis	12
6	Fazi	it und	Ausblick	13
	6.1	Fazit		13
	6.2	Ausbli	ick	14
7	Anh	nang		19
	7.1	Testda	aten	19

Begriffsverzeichnis

$\mathbf{Begriff}$	Erklärung
Ähnliche Worte	Im Word2Vec-Modell mit der Methode most_similar() erhaltene Worte.
\mathbf{SVM}	Support Vector Machine
NBC	Naive Bayes Classifier
\mathbf{CBOW}	Continuous bag-of-words

Einleitung

- 1.1 Motivation
- 1.2 Problemstellung
- 1.3 Aufbau der Arbeit

Daten und Vorverarbeitung

2.1 Datenbasis

Zum erfolgreichen Training des Word2Vec Modells wird eine sehr große Menge an Daten gebraucht¹. Für den ersten Korpus wurde der komplette englischsprachige Wikipedia Korpus verwendet². Dieser enthält 8.392.453 Artikel, 242.144.317 Sätze und 2.919.802.692 Worte.

Der zweite in der Arbeit verwendete Korpus besteht auch aus Wikipedia Artikeln, allerdings wurden hier nur technologiespezifische Artikel verwendet. Der komplette englische Wikipedia Korpus wurde zuerst in die einzelnen Artikel aufgeteilt und diese wurden dann mit einem NBC in die Klassen tech, entertainment, sport, science, politic eingeteilt.

2.2 Externe Programme und Hilfsmittel

Dieser Abschnitt enthält eine Auflistung mit kurzen Beschreibungen, der in dieser Arbeit verwendeten Hilfsmittel und externen Programme.

 $\mathbf{gensim}(\check{\mathbf{R}}\mathbf{S}\mathbf{10})^3$ ist eine Bibliothek für Python. Sie enthält unter anderem eine performanzoptimierte Implementierung von Word2Vec.

Der NBC der zum Klassifizieren der Artikel verwendet wurde, ist der im DataMining Praktikum selbst implementierte.

 $^{^1\}mathrm{In}~(\mathrm{MSC}^+13)$ werden Trainingsdaten mit bis zu 30 Milliarden Wörtern benutzt.

 $^{^2}$ http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2, abgerufen am 09.04.2015

³https://radimrehurek.com/gensim/, abgerufen am 24.06.2015

2.3 Vorverarbeitung

Der komplette Wikipediadump kann als komprimierte XML-Datei heruntergeladen werden⁴ die entpackte XML-Datei hat eine Größe von 48,8 GB. Die Daten müssen zunächst bereinigt werden um als Trainingsdaten für Word2Vec Modelle zu dienen.

Um das Wiki-Markup, wie unter anderem Links, Referenzen oder Zitate, und die XML-Tags zu entfernen, kann ein schon vorgefertigtes Perl Skript von Matt Mahoney benutzt werden⁵, welches von Mikolov et al. auf der Google Code Seite von Word2Vec vorgeschlagen wird⁶. Dieses Skript wurde speziell zum Bereinigen von Wikipediadaten erstellt und wurde leicht verändert, sodass Zahlen, Satzzeichen und die Groß- und Kleinschreibung erhalten bleibt. Außerdem werden die Umlaute in ae, oe und ue umgewandelt. Da die bis hierher bereinigten Daten eine Gesamtgröße von 18 GB haben, ist es nötig die Daten weiter aufzubereiten, sodass sie als Input für die Klasse gensim.models.word2vec.LineSentence⁷, aus der Gensim Bibliothek dienen. Dazu müssen die einzelnen Sätze in je einer Zeile stehen, alle Worte klein geschrieben sein, frei von Satzzeichen und mit Leerzeichen getrennt sein.

Um den kompletten Wikipediadump in die einzelnen Wikipedia Artikel aufzuteilen muss die XML-Datei mittels eines SAX-Parsers geparst und dann in einzelne Dateien geschrieben werden. Diese einzelnen Dateien können dann mit dem Perl Skript gereinigt und dann mittels NBC klassifiziert werden. Nach der Klassifizierung können die Dateien wieder in eine große Datei zusammengefasst und weiter verarbeitet werden. Auch diese Daten müssen wie der Gesamtkorpus mit der Klasse gensim.models.word2vec.LineSentence verarbeitet werden.

 $^{^4}$ http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2, abgerufen am 09.04.2015

⁵http://mattmahoney.net/dc/textdata.html unter Appendix A, abgerufen am 25.06.2015

⁶https://code.google.com/p/word2vec/, abgerufen am 25.06.2015

⁷Diese Klasse kann auch als Input zum Trainieren des Word2Vec Modells genutzt werden.

Word2Vec

Im folgenden Kapitel wird kurz erklärt was Word2Vec¹ ist und welche wichtigen Parameter und Algorithmen bei der Berechnung von Word2Vec benutzt werden können.

In Word2Vec Modellen werden Worte als Vektoren dargestellt². Hier wird mittels distributed representation(MCCD13) ein n-dimensionaler Vektorraum erzeugt, in dem jedes Wort aus den Trainingsdaten durch einen Vektor dargestellt wird.

Als nächster Schritt werden die Vektoren in ein neuronales Netz gegeben und dort mittels eines Lernalgorithmus so verändert, dass Worte mit ähnlicher Bedeutung ähnliche Vektoren haben. So kann die Ähnlichkeit zwischen zwei Vektoren mit der Kosinusähnlichkeit berechnet werden (vgl. 3.6).

Die Berechnung der Wortvektoren kann mit neuronalen Netzen unterschiedlicher Architektur erreicht werden, CBOW oder Skip-gram. Desweiteren stehen unterschiedliche Lernalgorithmen für die neuronalen Netze zur Verfügung, hierarchical softmax und negative sampling.

Beim Training können unterschiedliche Parameter eingestellt werden.

3.1 Parameter

size

Mit dem Parameter *size* wird die Anzahl der Dimensionen der Wortvektoren eingestellt. In einem n-Dimensionalen Vektorraum nimmt n den Wert von *size* an.

window

window ist der maximale Abstand innerhalb eines Satzes zwischen benachbarten Worten,

¹https://code.google.com/p/word2vec/

²Word2Vec heißt wörtlich Wort zu Vektor.

Abbildung 3.1: CBOW und Skip-gram im Vergleich, übersetzt nach (MCCD13)

die zur Berechnung der Wordvektoren betrachtet werden.

min_count

Der Parameter min_count gibt an, wie oft ein Wort in den Testdaten mindestens vorkommen muss, um in das Wörterbuch aufgenommen zu werden.

negative

Dieser Parameter wird nur benötigt, wenn als Lernalgorithmus negative sampling verwendet wird. 3

3.2 CBOW

CBOW ist die Abkürzung für Continuous bag-of-words (dt. stetige Menge an Worten). Beim CBOW wird ein neuronales Netz ohne verdeckte Schichten (hidden layer) verwendet (MCCD13). Im CBOW Model wird aus dem Kontext, die Menge der Worte wird mit dem Parameter

 $^{^3}$ siehe 3.4

window angegeben, ein Wort vorhergesagt (siehe Abbildung 3.1).

3.3 Skip-gram

Beim Skip-gram Model wird auch wie beim CBOW Model ein neuronales Netz ohne verdeckte Schichten (hidden layer) verwendet (MCCD13). Allerdings wird nicht ein Wort aus dem Kontext vorhergesagt, sondern aus einem Wort wird der Kontext vorhergesagt (siehe Abbildung 3.1).

Mehrere verdeckte Schichten in neuronalen Netzen machen die Modelle genauer, allerdings kommt auch die meiste Komplexität des ganzen Models von solchen verdeckten Schichten (MCCD13). Mikolov et al. haben deshalb neuronale Netze ohne verdeckte Schichten bevorzugt, da damit sehr große Datenmengen viel effizienter gelernt werden konnten.

- 3.4 Negative sampling
- 3.5 Hierarchical softmax
- 3.6 Distanz zwischen Vektoren im Word2Vec Modell

Wikipedia-Korpus

- 4.1 Gesamtkorpus
- 4.2 Teilkorpus
- 4.3 Testdaten
- 4.3.1 Vergleich und Analyse

Experimente

In diesem Kapitel sollen die unterschiedlichen Korpora (Gesamtkorpus¹ und Techkorpus²) untersucht werden. Dies soll durch ausgewählte Fragestellungen realisiert werden.

Die Fragestellungen beziehen sich immer auf die Ergebnisse, die aus den Tastdaten 3 erhaltenen ähnlichen Worten.

Jedes Experiment ist in drei Teile aufgeteilt Beschreibung, Durchführung und Interpretation/Ergebnis.

5.1 Synnonymsuche durch Rekursion

5.1.1 Beschreibung

Es soll untersucht werden, ob man Synonyme zum Testwort erhält, wenn man die ähnlichen Worte dieses Testwortes erneut im Model mittels der Methode $most_similar()$ sucht.

5.1.2 Durchführung

.

5.1.3 Interpretation/Ergebnis

.

 $^{^{1}}$ vgl. 4.1

²vgl. 4.2

³vgl. 7.1

5.2 Konkretisierungen

5.2.1 Beschreibung

.

5.2.2 Durchführung

.

5.2.3 Interpretation/Ergebnis

.

- 5.3 Verallgemeinerungen
- 5.3.1 Beschreibung

.

5.3.2 Durchführung

.

5.3.3 Interpretation/Ergebnis

•

5.4 Unterschiedliche Beziehungen

5.4.1 Beschreibung

•

5.4.2 Durchführung

.

5.4.3 Interpretation/Ergebnis

٠

5.5 Mehrdeutigkeit

5.5.1 Beschreibung

.

5.5.2 Durchführung

.

5.5.3 Interpretation/Ergebnis

.

Fazit und Ausblick

6.1 Fazit

6.2 Ausblick

Quellenverzeichnis

Literaturverzeichnis

- [MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. CoRR, abs/1301.3781, 2013.
- [MSC $^+$ 13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. CoRR, abs/1310.4546, 2013.
 - [ŘS10] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/publication/884893/en.

papers und so

Tabellenverzeichnis

7.1	Testdaten Teil 1																	19
7.2	Testdaten Teil 2																	20

Abbildungsverzeichnis

3.1	CBOW und	Skip-gram im	Vergleich,	übersetzt nach	$(MCCD13) \dots$	5
-----	----------	--------------	------------	----------------	------------------	---

Anhang

7.1 Testdaten

	Tabelle	7.1:	Testdaten	Teil	1
--	---------	------	-----------	------	---

3d	3 ds	3g	4chan
4g	acer	acta	activision
adobe	amazon	android	anonymous
aol	apple	app	augmented
arcade	architecture	arpanet	asus
auto	automobile	battlefield	bing
biometrics	bitcoin	bittorrent	blackberry
blizzard	blogging	blog	bluray
broadband	browser	casual	chatroulette
chrome	chromebook	cispa	computing
console	cookies	craigslist	crowdfunding
crowdsourcing	cryptocurrency	cybercrime	cyberwar
darknet	data	dell	diablo
doodle	dotcom	drone	dropbox
e3	ebay	email	emoji
encryption	energy	engine	engineering
ereader	events	facebook	fat
filesharing	firefox	flickr	foursquare
gadget	game	gameplay	gamergate

Tabelle 7.2: Testdaten Teil 2

games	gaming	ghz	gmail
google	googlemail	gps	groupon
gta	hacking	halo	handheld
hardware	hashtag	hd	heartbleed
htc	html5	i	ibm
icloud	ie	imac	indie
instagram	intel	internet	ios
ipad	iphone	ipod	isp
itunes	keyboard	kickstarter	kindle
kinect	laptop	lenovo	lg
limewire	link	linkedin	linux
live	machinima	macintosh	macworld
malware	mario	megaupload	microsoft
minecraft	mmorpg	mobile	monitor
motoring	mouse	mozilla	myspace
nes	net	netbook	$_{ m nfs}$
nintendo	nokia	oracle	ouya
p2p	paypal	pc	phablet
phishing	photography	photoshop	pi
pinterest	piracy	pirate	platform
playback	playstation	pokemon	power
processor	programming	ps	ps2
ps3	ps4	psp	python
raider	ram	raspberry	rayman
recommendation	reddit	retro	robot
rpg	rts	safari	samsung
search	security	seo	skype
smartphone	smartphones	smartwatch	smartwatches
software	sonic	sony	sopa
spam	spotify	steam	stream
starcraft	stuxnet	sun	surface
symbian	tablet	technology	technophile
ted	telecom	television	tetris
titanfall	tomb	trojan	tumblr
twitch	twitter	viber	vine
virus	warcraft	web	whatsapp
wheel	wifi	wii	wikipedia
windows	windows7	wireless	worms
wow	xbox	xp	y2k
yahoo	youtube	zelda	zynga