

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

DAQ for Test beam plans

Paul Rubinov HGC Testbeam 8 Oct 2015

Terminology Refresh

DAQ

Ethernet switch

ROCSI

. . .

FMC_IO

FMC_IO

ISO_POWER

ROCSI

- Read Out Controller with SKIROC Interface
 - Carrier Card
 - Mechanically compatible with inexpensive VME crates (but not a VME card)
 - 1. Zynq (running Linux)
 - 2. Gig Ethernet
 - 3. SFP+ site
 - 4. Timing and trigger

Current status: schematics in progress

ROCSI "stand in"

- Viable alternative(s) for ROCSI exist for EARLY stages of TB
 - Good: same Zynq, software, GBE, Interface to FMC_IO
 - OK: trigger can be kludged
 - BAD: no way to provide isolation

I think: ok for getting started, can be used for "couple" HGC modules

FMC_IO

Main interface to SKIROC

- Artix XC7A100T CSG324 (~6MB mem, 3.3V IO, no GTP)
- Can use isolated power supplied via FMC connector or externally supplied
- Designed to allow "kludged" clock/trigger
- If you had nothing else....

Current status:

all done, waiting for manufacturing

ISO Power

- Awaiting final review
 - Layout 100% done.... But I can't show it to you right now for technical reasons
 - this board is done in Mentor Expedition flow, not Altium like FMC_IO

Current status:

coming soon to screen near you!

Other stuff... Simulator board

- Debugging the SKIROC interface is key
- Optimizing SKIROC analog performance is key
 - Help this along by making a board that
 - Utilizes existing packaged SKIROCs
 - Simulates sensors
 - "what happens if the pixel capacitance is increased by x?"

This is a small board design to "simulate the sensor" Key features:

daisy chain for SKIROC readout connectors two SKIROC on board- can test differences of decoupling, etc simulated inputs (multiplexed)

Current status:

Going into layout any day....

Other stuff... Breakout board

- Debugging the SKIROC interface is key
- Optimizing SKIROC analog performance is key
 - Help this along by making a board that
 - Breaks out the lines on the flex cable
 - Allows addition of filters, terminators, pull ups, pull downs
 - Allows fixing interface errors (what?!)

Current status:

Just about ready to go

Next steps

- Software & Firmware (& PCB design/debug)
- Define transfer protocol Zynq ←→ FMC_IO

IPbus simplified protocol subset... doc in preparation

Outline of data flow architecture

Data transfer once per trigger

Data transfer once per spill

FMC_IO

- Steer SKIROC
- Data transfer
- Setup parameters

Zynq

- Memory mapped interface to FMC_IO
- Bidirectional control bus
- Data bus transfer

Ethernet

- Telnet for control
- File transfer for data

Summary

I think we have the start of a great team to work on DAQ

- Fermilab (Zoltan Gecse, Paul Rubinov, Cristian Gingu)
- Northwestern (Jia Fu Low, James Buehly)
- Univ of Mn (Erich Frahm)
- Things I think:
 - Will need to divide and conquer (define clear interfaces and responsibility)
 - Don't forget beam instrumentation (wire chambers, other?)
 - Many new things, be realistic about debug/revisions

BACKUPS

Backup

FPC

0.3 mm Pitch, 1.0 mm Height FPC Connector

FH26 Series

Metal fittings do no protrude outside of the connector body

■Features

1. Low-profile 0.3 mm pitch FPC connector

Ultra-thin design, 1.0 mm height, 3.2 mm width all add up to a compact, space saving form factor.

*30% reduction in PCB footprint

*40% reduction in weight

(Compared to our 0.3 mm pitch FH23 Series 51 position connector.)

2. Easy PCB Mounting

Might look a little like this

