THE POON-DOMINGOS PARAMETER LEARNING ALGORITHM FOR IMAGE COMPLETION AND CLASSIFICATION ON SUM-PRODUCT NETWORKS

Renato Lui Geh

Computer Science
Institute of Mathematics and Statistics
University of São Paulo
renatolg@ime.usp.br

ABSTRACT. In this document we describe the Poon-Domingos [PD11] parameter learning algorithm for image classification and completion.

1. Structure

The Poon-Domingos algorithm uses a fixed structure and then learns the weights through generative learning. We first give an overview on how to build the structure given an image and then provide a pseudo-code algorithm for building such structure. In this document we assume instances as images. However, the Poon-Domingos structure allows for any object with local dependencies.

1.1. Overview

The Poon-Domingos structure models a probability distribution over a set of variables with local dependencies. On the plain, one could argue it models rectangular neighborhoods for each point in the space. In the article [PD11], Poon and Domingos use images as a dataset, with dependencies being rectangular pixel neighborhoods. Images are an example of local dependencies, since a pixel has possible dependencies with their neighbors.

Dennis and Ventura explain an intuition of how the Poon-Domingos structure algorithm works [DV12]. We expand on this intuition, giving insights on how such an algorithm is built and showing a pseudo-code visualization of it. Once we have shown how to build the SPN structure, we describe generative learning through gradient descent, and later expectation-maximization.

FIGURE 1. The Poon architecture with r=1 resolution and k=1 sum nodes per region on a 2×3 image. At each r resolution axis-aligned rectangular decomposition, we create k sum nodes. [DV12]

1.2. Definitions and properties

Definition 1.1 (Region). A Region \mathcal{R} is a rectangular part of an image. Let $p_0 = (x_0, y_0)$ and $p_1 = (x_1, y_1)$ be the top-left and bottom-right pixels of \mathcal{R} relative to the image. These are called the coordinates of \mathcal{R} .

Definition 1.2 (Region Node). A Region Node R has a one-to-one and onto mapping with a Region R. R has k internal nodes associated with it. If R is over an $r \times r$ set of pixels (i.e. the atomic unit), then R has k leaf nodes (e.g. k-mixture of gaussians). Else, R has k sum nodes.

Definition 1.3 (Decomposition). Let \mathcal{R} be a Region. A Decomposition \mathcal{D} is an axis-aligned partitioning of \mathcal{R} into two Regions \mathcal{R}_1 and \mathcal{R}_2 .

The decomposition \mathcal{D} of a Region \mathcal{R} involves a few steps. Let \mathcal{R}_1 and \mathcal{R}_2 be the resulting subregions product of the decomposition. The resulting subgraph of the SPN S of this decomposition is a DAG G. If \mathcal{R} is the entire image, then the root of G is a single sum node and G = S. Otherwise, then the root of G is a region node and thus the root of G is a set of K sum nodes. Let K be the root node of K. Region nodes K1 and K2 will both have K2 sum nodes (or univariate distributions for leaves). We shall denote as K1 the K2 the K3 sum node of region node K4. For each pairing of sum nodes (K1, K2, K2), we create a product node K3 and add K3 as children of K4. The set K5 once we have created all product nodes in this set, we add all of them as children of K6. If K6 is a region node, then adding K6 as children of K6 means, for every sum node K6 in K7, set product node K8 a child of K9.

Since a region node R is unique, we may have different decompositions in which the same region appears more than once. For this reason we should create a single Region Node for each possible region. We need a map function that takes the

FIGURE 2. A decomposition of a Region \mathcal{R} into two subregions \mathcal{R}_1 and \mathcal{R}_2 . The set Π of product nodes are the decomposition nodes that connect the unsplit image to the partitions. Each element $\pi \in \Pi$ connects a pairing of a sum node of \mathcal{R}_1 and of \mathcal{R}_2 .

top-left and bottom-right pixel positions of a region and maps it to a number for storage. Since every region is unique, we need a one-to-one and onto function.

Definition 1.4 (Region map function). A region map function is a function that maps a region into an integer. We define it as

$$f: \mathbb{Z}_m \times \mathbb{Z}_n \times \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_{m^2 n^2}$$
$$f(x_1, y_1, x_2, y_2) = ((y_1 m + x_1) m + x_2) n + y_2$$

where $x_1, x_2 \in \mathbb{Z}_m$ and $y_1, y_2 \in \mathbb{Z}_n$.

Proposition 1.1. The region map function is one-to-one and onto.

Proof. We first prove f is one-to-one. If f is injective, then $f(x_1, y_1, x_2, y_2) = f(x_1', y_1', x_2', y_2') \Rightarrow (x_1, y_1, x_2, y_2) = (x_1', y_1', x_2', y_2')$. Suppose $f(x_1, y_1, x_2, y_2) = f(x_1', y_1', x_2', y_2')$ for some $x_i \in \mathbb{Z}_m$ and $y_i \in \mathbb{Z}_n$. Then we have:

$$((y_1m + x_1)m + x_2)n + y_2 = ((y'_1m + x'_1)m + x'_2)n + y'_2$$

$$(m^2y_1 + mx_1 + x_2)n + y_2 = (m^2y'_1 + mx'_1 + x'_2)n + y'_2$$

$$m^2ny_1 + mnx_1 + nx_2 + y_2 = m^2ny'_1 + mnx'_1 + nx'_2 + y'_2$$

$$m^2n(y_1 - y'_1) + mn(x_1 - x'_1) + n(x_2 - x'_2) + (y_2 - y'_2) = 0$$

But m, n > 0. Therefore, it is easy to see that $x_i - x_i' = 0$ and $y_i - y_i' = 0$ is necessary for the equation to hold. Proof of surjection is simple. Since we know f is one-to-one and that $\mathbb{Z}_m \times \mathbb{Z}_n \times \mathbb{Z}_m \times \mathbb{Z}_n$ has the same number of elements as $\mathbb{Z}_{m^2n^2}$, than it follows that f must be onto.

Bijection of the region map function is necessary since we need the inverse function f^{-1} to be symmetrical to f. That is, we must be able to encode a region into

a number and later be able to find what region a number represents. We define the inverse function of f below.

Definition 1.5 (Inverse region map function). The inverse of the region map function is given by the decomposition of an integer $r \in \mathbb{Z}_{m^2n^2}$ into a tuple $(x_1, y_1, x_2, y_2) \in \mathbb{Z}_m \times \mathbb{Z}_n \times \mathbb{Z}_m \mathbb{Z}_n$. Let $g = f^{-1}$. We define g as an algorithm as follows

Algorithm 1 Function $g = f^{-1}$

```
Input r \in \mathbb{Z}_{m^2n^2}
Output (x_1, y_1, x_2, y_2) \in \mathbb{Z}_m \times \mathbb{Z}_n \times \mathbb{Z}_m \times \mathbb{Z}_n

1: y_2 \leftarrow i \mod n

2: Let c \in \mathbb{Z}_{m^2n^2}

3: c \leftarrow \frac{(r-y_2)}{n}

4: x_2 \leftarrow c \mod m

5: c \leftarrow \frac{c-x_2}{m}

6: x_1 \leftarrow c \mod m

7: y_1 \leftarrow \frac{c-x_1}{w}

8: return (x_1, y_1, x_2, y_2)
```

References

- [DV12] Aaron Dennis and Dan Ventura. "Learning the Architecture of Sum-Product Networks Using Clustering on Variables". In: *Advances in Neural Information Processing Systems* 25 (2012).
- [PD11] Hoifung Poon and Pedro Domingos. "Sum-Product Networks: A New Deep Architecture". In: *Uncertainty in Artificial Intelligence* 27 (2011).