LECTURE 2 (MAY 15)

${\bf supremums, \, completeness, \, approximation} \\ {\bf theorem}$

Author

Tom Jeong

Contents

1	\mathbb{R} is	Complete	3
	1.1	prove the supremum of $[0,1]$ is $1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
	1.2	prove the supremum of $[0,1)$ is $1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
	1.3	Completeness of \mathbb{R}	4
	1.4	Prove that $\sqrt{2}$ is not rational	ŀ
	1.5	Approximation theorem for supremums	Ę
	1.6	Archimedian Principle	6

$1 \quad \mathbb{R} \text{ is Complete}$

Definition 1.1.

$$\forall E \subseteq \mathbb{R}$$

 $E \neq \emptyset$ and E is bounded above $\rightarrow E$ has a finite supremum

A set E is bounded above if there exists a number M such that $x \leq M$ for all $x \in E$. The supremum of E is the least upper bound of E.

$$\exists M \in \mathbb{R} \text{ such that } \forall e \in E, e < M$$

Definition 1.2. A set E is complete if every nonempty subset of E that is bounded above has a supremum in E.

If E is bdd above, $\rightarrow Sup(E) = \text{smallest upper bound of E}$.

1.1 prove the supremum of [0,1] is 1

$$[0,1] = \{ x \in \mathbb{R} | 0 \le x \le 1 \}$$

Proof 1.1. w.t.s. 1 is an upperbound, and 1 is smaller than any other upper bound.

- 1. 1 is an upperbound: this is true by definition of the interval [0, 1]
- 2. let M be an upper bound of [0, 1].

let M be an upper bound of [0, 1]

$$\rightarrow \forall x \in [0,1], x \leq M$$

$$\rightarrow 1 \leq M$$

 $\rightarrow 1$ is the smallest upper bound of [0, 1]

1.2 prove the supremum of [0,1) is 1

$$[0,1) = \{x \in \mathbb{R} | 0 \le x < 1\}$$

Proof 1.2. w.t.s. 1 is an upperbound, and 1 is smaller than any other upper bound.

- 1. 1 is an upperbound: this is true by definition of the interval [0, 1)
- 2. let M be an upper bound of [0, 1).

$$\begin{split} &\text{let } M \text{ be an upper bound of } [0,\,1) \\ &x \in [0,1) \to x \leq M \\ &\text{suppose } M < 1 \text{ (in particular } M \in [0,1)) \\ &1 - M > 0 \text{ (we take } 0 < \epsilon < 1 - M) \\ &\to \exists \epsilon > 0 \text{ such that } M + \epsilon < 1 \\ &\to M + \epsilon \in [0,1) \\ &\to \text{ then } M + \epsilon < M \text{(contradiction)} \end{split}$$

1.3 Completeness of \mathbb{R}

Theorem 1.3. \mathbb{R} is complete.

 $\forall E \subseteq \mathbb{R}$, E bdd above and nonempty \to E has a supremum in \mathbb{R} .

 \mathbb{Q} does not have this property e.g. $E = \{x | x \in \mathbb{Q} | x^2 < 2\}$ in \mathbb{Q} , E is bdd above, but E does not have a supremum in \mathbb{Q} .

1.4 Prove that $\sqrt{2}$ is not rational

Proof 1.4.

assume that $\sqrt{2}$ is rational

 $\rightarrow \sqrt{2} = \frac{a}{b}$ where a and b are integers that are relatively prime

$$\to 2 = \frac{a^2}{b^2}$$

$$\rightarrow 2b^2 = a^2$$

$$\rightarrow a^2$$
 is even

$$\rightarrow a$$
 is even

 $\rightarrow a = 2k$ where k is an integer

$$\rightarrow 2b^2 = 4k^2$$

$$\to b^2 = 2k^2$$

$$\rightarrow b^2$$
 is even

$$\rightarrow b$$
 is even

- $\rightarrow a$ and b are both even
- \rightarrow they are not relatively prime: contradiction

1.5 Approximation theorem for supremums

Theorem 1.5 (approximation for supremums). Let $E \subseteq \mathbb{R}$ be nonempty and bounded above.

Let $\sup(E) = s$

 $\rightarrow \forall \epsilon > 0, \, \exists e \in E \text{ such that } s - \epsilon \leq e \leq s$

Proof 1.6 (proof of Theorem 1.5). we will use proof by inversion

suppose not

$$\rightarrow \exists \epsilon > 0$$
 such that $\forall e \in E, e < s - \epsilon$

$$\rightarrow \forall e \in E, e < s - \epsilon$$

 $\rightarrow s - \epsilon$ is an upper bound of E

 $\Rightarrow \Leftarrow$

Note: if you take $\epsilon = \frac{1}{2^j}$ and $s = \sup(E)$, the approximation theorem says that:

 $\forall \epsilon_j > 0, \exists e_j \in E \text{ such that } s - \epsilon_j \leq e_j \leq s.$

 (e_j) has a limit: $\lim_{j\to\infty} e_j = s$ (more on this later)

1.6 Archimedian Principle

Lemma 1.7. If $F \subseteq \mathbb{N}(\subseteq \mathbb{R})$ has a supremum: $s = \sup(F) \to s \in F$

```
Proof 1.8. s = \sup(E) \in \mathbb{N} : (s+1)a > br s = \sup(F) let 0 < \epsilon < 1 by approximation theorem: \exists f \in F such that s - \epsilon \le f \le s suppose for contradiction s \notin F if s \notin F then f < s if f = s then s \in F s - \epsilon < f \le s
```

Theorem 1.9 (Archimedian Principle). given $a, b \in \mathbb{R}_{>0}, \ a > 0, \ \exists n \in \mathbb{N}$ such that na > b

Proof 1.10. either a > b or b < a

Case 1: a > b

let
$$n = 1$$

$$\rightarrow 1a > b$$

Case 2: a < b

$$1 < \frac{b}{a}$$

Consider $E = \{ na | n \in \mathbb{N} \land na < b \}$

Q: does E have a supremem (i.e does E have a least upper bound)?

can you find $M \in \mathbb{R}$ s.t. $\forall na \in E, na < M$

yes take M = b

 \rightarrow E is bounded above.

 \rightarrow E has a supremum call it s $s = \sup(E)$

let $\epsilon > 0$ by the approximation theorem,

 $\exists na \in \mathbb{E} \text{ such that } s - \epsilon \leq na \leq s = b$

take ϵ very small, and consider

$$\rightarrow a(n_{\epsilon}+1) > b$$
 we want $an_{\epsilon}+a > b$

suppose for any $\epsilon > 0$, $an_{\epsilon} + a \leq b$

$$\rightarrow s + a - \epsilon \le an_{\epsilon} + a \le b$$

$$\to s+a=\epsilon \leq b$$

$$\rightarrow s + a - b \le 0$$

 \rightarrow if s + a - b > 0 by taking $\epsilon <<<1$ contradiction

 \therefore s is a supremum of E: $na < s \le b$

 $\forall n \in \mathbb{N} \text{ such that } na < s \leq b$

$$\to 0 < (n+1)a - b < s+a-b \le a$$