(b) Take the maximum allowed uncertainty Δx for the particle to be localized in the classically forbidden region as x_0 . Find the uncertainty this would cause in the energy of the particle. Can then one be sure that its energy E is less than V_0 . Region I

Region I

Classically Forbidden

region V = 0 a) for n >0, Surreding u egh $-\frac{h^2}{2m} \frac{3^2 \Psi}{3n^2} + Vo \Psi = E \Psi$ V = 0 $= \frac{1}{2m} \frac{\partial^2 \psi_1}{\partial n^2} = \frac{1}{2} \frac{1}{2} \psi_1$ $k_1 = \left(\frac{2mF}{k^2}\right)^{1/2}$ $\frac{\partial^2 \psi_1}{\partial n^2} + k_1^2 \psi_1 = 0$ Y1 = Aeikn + Be-ikn Region -2, V=Vo $-\frac{k^{2}}{2m} \frac{\partial^{2} \Psi_{2}}{\partial m^{2}} + V_{0}\Psi_{2} = E\Psi_{2}$ $\frac{\partial^2 \Psi_2}{\partial n^2} - \frac{2m}{k^2} \left(V_0 - E \right) \Psi_2 = 0$ Yz = (e-kin + Dekin Now, 41(0) = 4260) md 4 (n → a) = 0 = 0 =) A+B=-C $\therefore \gamma(n,t) = \begin{cases} Ae^{i(k,n-wt)} + Be^{-i(k,n+wt)} \\ (e^{-kzn}e^{-iwt}) \end{cases}$ $\frac{\left|\frac{\Psi(x_0)}{\Psi(v)}\right|^2}{\left|\Psi(v)\right|^2} = \frac{1}{e}$ $(\frac{2e^{-2k_{2}n_{0}}}{c^{2}} = 1 \Rightarrow 2k_{2}n_{0} = 1$ $(\frac{2e^{-2k_{2}n_{0}}}{c^{2}} = 1 + 2k_{2}n_{0} = 1$ $(\frac{2e^{-2k_{2}n_{0}}}{c^{2}} = 1 + 2k_{2}n_{0} = 1$ an-not given in ques? $\Delta n \Delta p > \frac{k}{2}$ $\Delta E > \left(\Delta P\right)^2 \rightarrow \Delta E = \hbar \frac{2k r^2}{2\pi} > \left(V_0 - E\right)$ · E+DE>Vo : Cant be sure that energy is lesser than Vo 2. Consider a potential V(x) = 0 for x < 0, $= -V_0$ for x > 0Consider a beam of non-relativistic particles of energy E>0 coming from $x\to -\infty$ and being incident on the potential. Calculate the reflection and transmission coefficients. (F) D Region I Ryim 1 $\psi_{1} = Ae^{ikin} + Be^{-ikin}$ $\psi_{2} = Ce^{ikin} + De^{-ikin}$ $k_{1} = \int \frac{2mE}{\hbar^{2}} \qquad k_{2} = \int \frac{2m(E+u_{0})}{\hbar^{2}}$ A+B= 1, D=0, no incidence from right /14 (A-B) = /k2 C Transmission = $\frac{|E|^2}{|E|^2}$, Reflection = $\left(\frac{|B|^2}{|A|^2}\right)$ B = (- 162/101 1+ 62/161 3. A potential barrier is defined by V = 0 eV for x < 0 and V = 7 eV for x > 0. A beam of electrons with energy 3 eV collides with this barrier from left. Find the value of x for which the probability of detecting the electron will be half the probability of detecting it at x = 0. 04. * A beam of particles of energy E and de Broglie wavelength λ , traveling along the positive x-axis in a potential free region, encounters a one-dimensional potential barrier of height V = E and width L. (a) Obtain an expression for the transmission coefficient. (b) Find the value of L (in terms of λ) for which the reflection coefficient will be half. De Brogile wavelength=1 Energy=E Energy.

Energy.

Y (an check movement direct using momentum operator. $Y(n) = \begin{cases} Ae^{ikn} + Be^{ikn} & n < 0 \\ (n + D) & 0 < n < 1 \end{cases}$ $\begin{cases} Cn + D & 0 < n < 1 \end{cases}$ $\begin{cases} Ee^{ikn} + Fe^{-ikn} & n > 0 \end{cases}$ Boundary wond hs: 0 Cout at n=0 => A+B=0 6 Cout at n=1 => Cl+D= breikl 1) Dift at n=0 => (B-A)ik = C Dift who not => (b)ikeikl = C No invidence from right => f=0 Transmissh well = 16/B12 $\frac{1}{2}\left(\frac{C}{ik} + D\right) = B, \quad CL+D = C$ ik D= C-CL $= \frac{1}{2} \left(\frac{2C - LL}{iK} \right) , \quad K = \frac{Ce^{-ikL}}{ik}$ $\left|\frac{|L|}{|B|}\right|^{2} = 4\left(\frac{(1/i|k|)^{2}}{2Ci+(l)^{2}} = \frac{4/k^{2}}{l^{2}+4/|l^{2}|} \Rightarrow \frac{4}{4+k^{2}l^{2}}$ when k= | 2m E Now, R+7:1 If 7=1/2, R=1/2 1 - 4 >>> 2
2
4 + |c^2|, 2 入= 丌し 5. A beam of particles of energy $E < V_0$ is incident on a barrier (see figure below) of height $V = 2V_0$. It is claimed that the solution is $\psi_I = A \exp(-k_1 x)$ for region I (0 < x < L) and $\psi_{II} = B \exp(-k_2 x)$ for region II (x > L), where $k_1 = \sqrt{\frac{2m(2V_0 - E)}{\hbar^2}}$ and $k_2 = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$. Is this claim correct? Justify your answer. V(x) = 0 $V(x) = 2V_0$ $V(x) = V_0$ Simply me and differentiability. Assuming they are correct: Continuity => Ae-kil = Be-kil

Differentiability => ki Ae-kil = kiBe-kil

Which gives ki = ki => Not- possible 6. * A beam of particles of mass m and energy $9V_0$ (V_0 is a positive constant with the dimension of energy) is incident from left on a barrier, as shown in figure below. V=0for x < 0, $V = 5V_0$ for $x \le d$ and $V = nV_0$ for x > d. Here n is a number, positive or negative and $d = \pi h/\sqrt{8mV_0}$. It is found that the transmission coefficient from x < 0region to x > d region is 0.75. (a) Find n. Are there more than one possible values for n? (b) Find the un-normalized wave function in all the regions in terms of the amplitude of the incident wave for each possible value of n. (c) Is there a phase change between the incident and the reflected beam at x=0? If yes, determine the phase change for each possible value of n. Give your answers by explaining all the steps and clearly writing the boundary conditions used / wrect n mas m, $F = 9 V_0$, $d = \frac{\pi t}{\sqrt{8mV_0}}$, T = 0.75R1: Yıln)= Aeikin + Be-ikin ki= J2mE 7 (0 : Yeln) = Ceiken + De-iken kz= \[\frac{2m(E-5 vo)}{1.2}\] 0 (n L d RTI: Y3(n) = Eeilc3n k3 = $\int 2m(E-nv_0) n>d$ (No incidence from night) $\frac{1}{t_1}$ $\frac{1}{2} = \frac{1}{2} = \frac{1}$ $\frac{1}{1} \frac{1}{1} \frac{1}$ Boundary und "s: D Cont at n=0 => A+B= C+D (D) Diff wt n=0 => k1(A-B) = k2(L-0) © content n=d =) ceikzd + De-ikzd = Eeikzd (and kzd=∏) -) C+D - - Eeik3d DiH wt n=d =) - (((-0) = E K3 e i k3 d Now, A+B=- Eeilisd, A-B= 1/2 (- Eks eiksd)

2A = - Feilcad - Eka eikad

 $= \frac{1}{4} = \frac{2e^{-1} (c_3 d)}{(1 + |c_3| |c_1|)} = \frac{3}{4} = \frac{k_3}{k_1} \left[\frac{4}{(1 + k_3 |c_1|)^2} \right]$

 $3t^2 - 10t + 3 = 0 \qquad 3t^2 - 9t - t + 3 = 0$

=) 3+(t-3)-1(t-3)=0

2A = - Feikad (1+ k3)

 $[(3 | k| = t =)] \frac{3}{11} (1+t)^{2} = t$

2A = - Feilish (1+ 163)

 $2B = -Fe^{ik3d} \left(1 - \frac{k3}{k_1} \right)$

 $2(= - Ee^{ik3d} \left(| + \frac{k3}{4} \right)$

 $20 = -Ee^{ik3d} \left(\frac{1-k3}{k2} \right)$

0 > Potential Barrier = 7ev

no = 3Å

E of putide = 5V

an atom to be 3 Å).

and solve each in terms of

7. A scanning tunneling microscope (STM) can be approximated as an electron tunneling

into a step potential $[V(x) = 0 \text{ for } x \leq 0, V(x) = V_0 \text{ for } x > 0]$. The tunneling current

(or probability) in an STM reduces exponentially as a function of the distance from the

sample. Considering only a single electron-electron interaction, an applied voltage of 5 V

and the sample work function of 7 eV, calculate the amplification in the tunneling current

if the separation is reduced from 2 atoms to 1 atom thickness (take approximate size of

Probability density over two atoms => IX |4(n)12

=> \ \ \ \ \ \ \ \ \ (2m_0) \ \ \ ^2

142 (m) 12

2

Tuts-Part 1

Scattering problems

2:55 PM

energy E ($< V_0$) approaches the barrier from left.

probability density at x = 0.

1. * A potential barrier is defined by V = 0 for x < 0 and $V = V_0$ for x > 0. Particles with

(a) Find the value of $x = x_0$ ($x_0 > 0$), for which the probability density is 1/e times the

Tuesday, 6 June 2023