Геометрия-1

- 1. На сторонах AB и BC выбраны точки C_0 и A_0 от соответственно. Докажите, что $AC_0 = CA_0$ тогда и только тогда, когда точки A_0, C_0, B, B_1 лежат на одной окружности, где B_1 середина дуги CBA описанной окружности $\triangle ABC$.
- **2.** На сторонах AB и BC выбраны точки C_0 и A_0 соответственно. Докажите, что $AC_0 + CA_0 = AC$ тогда и только тогда, когда точки A_0, C_0, B, I лежат на одной окружности, где I центр вписанной окружности $\triangle ABC$.
- **3.** В треугольнике $ABC(\angle A > \angle C)$, B_1, I, M середина дуги ABC его описанной окружности, центр вписанной окружности и середина стороны AC соответственно. Докажите, что $\angle BB_1I = \angle IMA$.
- **4.** B_1 середина дуги ABC описанной окружности треугольника ABC, а M середина стороны AC. Докажите, что центры I_A и I_C окружностей, вписанных в треугольники AMB и CMB, и точки B и B_1 лежат на одной окружности.
- **5.** Пусть A_0, B_0, C_0 точки касания вневписанных окружностей с соответствующими сторона треугольника ABC. Описанные окружности треугольников A_0B_0C , AB_0C_0 и A_0BC_0 пересекают второй раз описанную окружность ω треугольника ABC в точках C_1, A_1 и B_1 соответственно. Докажите, что треугольник $A_1B_1C_1$ подобен треугольнику, образованному точками касания вписанной окружности треугольника ABC с его сторонами.
- 6. Пусть на сторонах BA и BC треугольника ABC выбраны точки C_0 и A_0 соответственно, а точки M и M_0 середины отрезков AC и A_0C_0 . Докажите, что если $AC_0 = CA_0$, то прямая MM_0 параллельна биссектрисе угла ABC.
- 7. Точки A_1, B_1, C_1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что $AB_1 AC_1 = CA_1 CB_1 = BC_1 BA_1$.
- а) Пусть I_A , I_B и I_C центры окружностей, вписанных в треугольники AB_1C_1 , A_1BC_1 и A_1B_1C , соответственно. Докажите, что центр окружности, описанной около треугольника $I_AI_BI_C$, совпадает с центром окружности, вписанной в треугольник ABC.
- б) Пусть O_A, O_B и O_C центры окружностей, описанных около треугольников AB_1C_1, A_1BC_1 и A_1B_1C , соответственно. Докажите, что центр окружности, вписанной в треугольник $O_AO_BO_C$, совпадает с центром окружности, вписанной в треугольник ABC.
- 8. Тругольник ABC(AB > BC) вписан в окружность Ω . На сторонах AB и BC выбраны точи M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P центр вписанной окружности треугольника AMK, а Q центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.