Fundamentals of Series: Table II: Examples of Series Which Appear in Calculus

From the seven unpublished manuscripts of H. W. Gould Edited and Compiled by Jocelyn Quaintance

May 3, 2010

1 The Binomial Theorem

Remark 1.1 In this table, unless otherwise specified, n and r are nonnegative intergers, and x and z are arbitrary real or complex numbers. We also assume that for any real number x, [x] is the greatest integer in x.

1.1 Binomial Theorem

1.1.1 Basic Form with Integer Power

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} a^k$$
, where a is an arbitrary real or complex number (1.1)

1.1.2 Newton's Binomial Theorem

$$(1+x)^z = \sum_{k=0}^{\infty} {z \choose k} x^k$$
, where z is a real or complex number and $|x| < 1$ (1.2)

1.1.3 Applications of Newton's Binomial Theorem

$$\sum_{k=0}^{\infty} {2k \choose k} \frac{x^k}{2^{2k}} = \frac{1}{\sqrt{1-x}}, \qquad |x| < 1$$
 (1.3)

$$\sum_{k=0}^{\infty} \binom{2k}{k} \frac{1}{2^{3k}} = \sqrt{2} \tag{1.4}$$

$$\sum_{k=0}^{\infty} (-1)^k \binom{2k}{k} \frac{1}{2^{2k}} = \frac{\sqrt{2}}{2}$$
 (1.5)

$$-\sum_{k=0}^{\infty} {2k \choose k} \frac{x^k}{2^{2k}(2k-1)} = \sqrt{1-x}, \qquad |x| < 1$$
 (1.6)

$$\sum_{k=0}^{\infty} {2k \choose k} \frac{1}{2^{2k}(2k-1)} = 0 \tag{1.7}$$

$$\sum_{k=0}^{\infty} {2k \choose k} \frac{(-1)^k}{2^{2k}(2k-1)} = -\sqrt{2}$$
 (1.8)

1.2 Companion Binomial Theorem

Remark 1.2 In Section 1.2, we assume p is a nonnegative integer. We also assume a and b are arbitrary real or complex numbers.

Companion Binomial Theorem

$$\sum_{n=0}^{\infty} \binom{n+p}{n} x^n = \sum_{n=n}^{\infty} \binom{n}{p} x^{n-p} = \frac{1}{(1-x)^{p+1}}, \qquad |x| < 1$$
 (1.9)

1.2.1 Applications of Companion Binomial Theorem

$$\frac{1}{(a+b)^{p+1}} = \frac{1}{a^{p+1}} \sum_{k=0}^{\infty} (-1)^k \binom{k+p}{k} \frac{b^k}{a^k}, \qquad |\frac{b}{a}| < 1$$
 (1.10)

$$\frac{1}{(a-b)^{p+1}} = \frac{1}{a^{p+1}} \sum_{k=0}^{\infty} {k+p \choose k} \frac{b^k}{a^k}, \qquad |\frac{b}{a}| < 1$$
 (1.11)

$$\frac{1}{(1+x^m)^{p+1}} = \sum_{k=0}^{\infty} (-1)^k \binom{k+p}{k} x^{mk}, \qquad |x| < 1, \ m \in \Re$$
 (1.12)

$$\frac{1}{(1-x^m)^{p+1}} = \sum_{k=0}^{\infty} {k+p \choose k} x^{mk}, \qquad |x| < 1, \ m \in Re$$
 (1.13)

$$\frac{1}{(x^m+1)^{p+1}} = \sum_{k=0}^{\infty} (-1)^k \binom{k+p}{k} x^{-m(k+p+1)}, \qquad |x| > 1, \ m \in \Re$$
 (1.14)

$$\frac{1}{(x^m - 1)^{p+1}} = \sum_{k=0}^{\infty} {k+p \choose k} x^{-m(k+p+1)}, \qquad |x| > 1, \ m \in \Re$$
 (1.15)

1.2.2 Finite Version of Companion Binomial Theorem

$$\sum_{k=0}^{n} \binom{n+k}{k} \frac{1}{2^k} = 2^n \tag{1.16}$$

Variation of Finite Companion Binomial Theorem

$$\sum_{k=0}^{n} {2n-k \choose n} 2^k = 2^{2n} \tag{1.17}$$

Application of Finite Companion Binomial Theorem

$$\sum_{k=1}^{\infty} \binom{2n+k}{n} \frac{1}{2^k} = 2^{2n} \tag{1.18}$$

1.3 Binomial Theorem with Complex Exponents

Remark 1.3 The material in Section 1.3 is found in T. J. I'a. Bromwich's Introduction to the Theory of Infinite Series, Second Edition, 1949, Chapter 9, Article 96.

Let $\alpha, \beta \in \Re$. Let $i^2 \equiv -1$. Then,

$$(1+x)^{\alpha+\beta i} = \sum_{k=0}^{\infty} {\alpha+\beta i \choose k} x^k, \tag{1.19}$$

where

- a. The series is absolutely convergent for |x| < 1.
- b. If $\alpha > 0$, the series converges absolutely on the circle |x| = 1. Hence, the series is uniformly convergent within and on the circle |x| = 1.
- c. If $-1 < \alpha \le 0$, the series converges on the circle |x| = 1 except at x = -1.
- d. If $\alpha \leq -1$, the series diverges everywhere on the circle |x| = 1.

1.4 Applications of the Binomial Theorem

1.4.1 Derivatives of the Binomial Series

$$\sum_{k=0}^{n} \binom{n}{k} \binom{k}{r} x^k = x^r (1+x)^{n-r} \binom{n}{r}$$
(1.20)

$$\sum_{k=0}^{n} \binom{n}{k} \binom{k}{r} = 2^{n-r} \binom{n}{r} \tag{1.21}$$

$$\sum_{k=0}^{n} \binom{n}{k} \binom{k}{r} 2^k = 2^r 3^{n-r} \binom{n}{r}$$
 (1.22)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{k}{r} x^k = (-1)^r x^r (1-x)^{n-r} \binom{n}{r}$$
 (1.23)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} k 2^k = 2n(-1)^n \tag{1.24}$$

1.4.2 Expansions of $(1-x)^{-\frac{1}{2}}$

$$\sum_{k=0}^{\infty} (-1)^k {\binom{-1}{2} \choose k} x^k = \frac{1}{\sqrt{1-x}}, \qquad |x| < 1$$
 (1.25)

$$\sum_{k=0}^{\infty} {2k \choose k} \frac{x^k}{(1+x)^{2k+1}} = \frac{1}{1-x}, \qquad |x| < 1 \text{ or } |\frac{x}{1+x}| < 1$$
 (1.26)

$$\sum_{k=0}^{\infty} {2k \choose k} {k \choose r} \frac{x^k}{2^{2k}} = (1-x)^{-\frac{2r+1}{2}} \left(\frac{x}{4}\right)^r {2r \choose r}, \qquad |x| < 1$$
 (1.27)

$$\sum_{k=0}^{\infty} {2k \choose k} {k \choose r} \frac{1}{2^{3k}} = \frac{\sqrt{2}}{2^{2r}} {2r \choose r}$$
 (1.28)

$$\sum_{k=0}^{\infty} \binom{2k}{k} \frac{k}{2^{3k}} = \frac{\sqrt{2}}{2} \tag{1.29}$$

$$\sum_{k=0}^{\infty} {2k \choose k} \frac{k}{2^{2k}} x^k = \frac{x}{2(1-x)^{\frac{3}{2}}}, \qquad |x| < 1$$
 (1.30)

$$\sum_{k=0}^{\infty} {2k \choose k} \frac{2k+1}{2^{2k}} x^k = \frac{1}{(1-x)^{\frac{3}{2}}}, \qquad |x| < 1$$
 (1.31)

$$\sum_{k=0}^{\infty} \binom{2k}{k} \frac{2k+1}{2^{3k}} = \sqrt{8} \tag{1.32}$$

Bruckman's Formula Version 1

$$\sum_{k=0}^{n} {\binom{-1}{2} \choose k} {\binom{-1}{2} \choose n-k} \frac{1}{(2k+1)(2n-2k+1)} = \frac{-1}{2(n+1)^2 {\binom{-1}{2} \choose n-1}}$$
(1.33)

Bruckman's Formula Version 2

$$\sum_{k=0}^{n} {2k \choose k} {2n-2k \choose n-k} \frac{1}{(2k+1)(2n-2k+1)} = \frac{2^{4n+1}}{(n+1)^2 {2n+2 \choose n+1}}$$

$$= \frac{2^{4n}}{(n+1)(2n+1){2n \choose n}}$$
(1.34)

1.4.3 Expansions of $(1-x)^{\frac{1}{2}}$

$$\sum_{k=0}^{\infty} {2k \choose k} \frac{x^k}{4^k (2k-1)} = -(1-x)^{\frac{1}{2}}, \qquad |x| < 1$$
 (1.35)

$$\sum_{k=0}^{\infty} {2k+1 \choose k} \frac{z^{k+1}}{2k+1} = \frac{1 - (1-4z)^{\frac{1}{2}}}{2}, \qquad |z| < \frac{1}{4}$$
 (1.36)

1.4.4 Evaluation of $\sum_{k=0}^{n} {n \choose k} \frac{x^k}{k+1}$

$$\sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{k+1} = \frac{(x+1)^{n+1} - 1}{(n+1)x}, \qquad x \neq 0$$
 (1.37)

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{k+1} = \frac{2^{n+1} - 1}{n+1}$$
 (1.38)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{k+1} = \frac{1}{n+1}$$
 (1.39)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \frac{2^k}{k+1} = \frac{1}{2n+1}$$
 (1.40)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n+1}{k} \frac{2^k}{k+1} = \frac{2^{2n}}{n+1}$$
 (1.41)

$$\sum_{k=1}^{2n} (-1)^k \binom{2n}{k-1} \frac{2^k}{k+1} = \frac{2^{2n}}{n+1} - \frac{1}{2n+1}, \qquad n \ge 1$$
 (1.42)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{2k} \frac{x^{2k}}{2k+1} = \frac{(x+1)^{n+1} - (1-x)^{n+1}}{2(n+1)x}, \qquad x \neq 0$$
 (1.43)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{2k} \frac{1}{2k+1} = \frac{2^n}{n+1}$$
 (1.44)

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} {n \choose 2k+1} \frac{x^{2k}}{k+1} = \frac{(x+1)^{n+1} + (1-x)^{n+1} - 2}{(n+1)x^2}, \qquad x \neq 0$$
 (1.45)

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} \binom{n}{2k+1} \frac{1}{k+1} = \frac{2^{n+1}-2}{n+1}$$
 (1.46)

$$\sum_{k=0}^{n} \binom{n}{k} \frac{k!}{(k+r)!} x^k = \frac{n! \left((x+1)^{n+r} - \sum_{k=0}^{r-1} \binom{n+r}{k} x^k \right)}{(n+r)! x^r}, \qquad x \neq 0, \ r \geq 1$$
 (1.47)

$$\sum_{k=0}^{n} \binom{n}{k} \frac{x^{k+r}}{\binom{k+r}{k}} = \frac{(x+1)^{n+r} - \sum_{i=0}^{r-1} \binom{n+r}{i} x^{i}}{\binom{n+r}{n}}, \qquad r \ge 1$$
 (1.48)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{k!}{(k+r)!} = (-1)^{r+1} n! \sum_{k=0}^{r-1} (-1)^k \frac{1}{(n+r-k)!k!}, \qquad r \ge 1$$
 (1.49)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{\binom{k+r}{k}} \left((1-x)^{k+r} - \sum_{\alpha=0}^{r-1} (-1)^{\alpha} \binom{k+r}{\alpha} x^{\alpha} \right) = (-1)^r \frac{x^{n+r}}{\binom{n+r}{n}}, \ r \ge 1$$
 (1.50)

1.4.5 Expansions of $(t-a)^{n-1}(t-(a+nx))$

Remark 1.4 In the identities related to the expansion of $(t-a)^{n-1}(t-(a+nx))$, we assume, unless otherwise specified, that x, t, and a are nonzero real or complex numbers.

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} t^{n-k} a^{k-1} (a+kx) = (t-a)^{n-1} (t-(a+nx)), \qquad n \ge 1$$
 (1.51)

$$\lim_{a \to 0} \sum_{k=0}^{n} (-1)^k \binom{n}{k} t^{n-k} a^{k-1} (a+kx) = t^n - nxt^{n-1}, \qquad n \ge 1$$
 (1.52)

$$a^{n-1} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (a+kx) = \begin{cases} 0, & n \neq 0, 1 \\ -x, & n = 1 \\ 1, & n = 0 \end{cases}$$
 (1.53)

$$\sum_{k=0}^{n} (-1) \binom{n}{k} (f(x))^k (a+kx) =$$
 (1.54)

$$\left(1-f(x)\right)^{n-1}\left(a-(a+nx)f(x)\right), \qquad n\geq 1$$

$$\sum_{k=0}^{n} (-1) \binom{n}{k} (f(x))^k (a - kx) =$$
 (1.55)

$$(1-f(x))^{n-1} \left(a-(a-nx)f(x)\right), \ n \geq 1$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a+kx}{n^k} = \left(1 - \frac{1}{n}\right)^{n-1} \left(a - \left(\frac{a}{n} + x\right)\right), \qquad n \ge 1$$
 (1.56)

$$\lim_{n \to \infty} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a+kx}{n^k} = \frac{a-x}{e}$$
 (1.57)

$$\sum_{k=0}^{n} \binom{n}{k} \frac{a+kx}{n^k} = \left(1 + \frac{1}{n}\right)^{n-1} \left(a + \left(\frac{a}{n} + x\right)\right), \qquad n \ge 1$$
 (1.58)

$$\lim_{n \to \infty} \sum_{k=0}^{n} \binom{n}{k} \frac{a+kx}{n^k} = (a+x)e \tag{1.59}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a+kx}{2^k} = \frac{a-nx}{2^n}$$
 (1.60)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a+kx}{2^{nk}} = \left(1 - \frac{1}{2^n}\right)^{n-1} \left(a - \frac{a+nx}{2^n}\right), \qquad n \ge 1$$
 (1.61)

$$\lim_{n \to \infty} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a+kx}{2^{nk}} = a$$
 (1.62)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a+kx}{(a+nx)^k} = \left(1 - \frac{1}{a+nx}\right)^{n-1} (a-1), \qquad n \ge 1$$
 (1.63)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a+kx}{(a-nx)^k} = \left(1 - \frac{1}{a-nx}\right)^{n-1} \left(a - \frac{a+nx}{a-nx}\right), \qquad n \ge 1$$
 (1.64)

$$\sum_{k=0}^{n} (-1)^{k-1} \binom{n}{k} k \left(f(x) \right)^k = n f(x) \left(1 - f(x) \right)^{n-1}$$
 (1.65)

$$\sum_{k=0}^{n} (-1)^{k-1} \binom{n}{k} k^2 (f(x))^{k-1} = n (1 - f(x))^{n-1} - n(n-1)f(x) (1 - f(x))^{n-2}$$
 (1.66)

$$\sum_{k=0}^{n} \binom{n}{k} k^2 = 2^n \left(\frac{n^2 + n}{4} \right) \tag{1.67}$$

$$\sum_{k=0}^{n} \binom{n}{k} k^2 2^{k-1} = 3^{n-2} n(2n+1)$$
 (1.68)

$$\sum_{k=0}^{n} \binom{n}{k} a^k k = na(1+a)^{n-1}$$
 (1.69)

$$\sum_{k=0}^{n} \binom{n}{k} k = n2^{n-1} \tag{1.70}$$

$$\sum_{k=0}^{n} \binom{n}{k} k(k-1)x^{k-2} = n(n-1)(1+x)^{n-2}$$
(1.71)

$$\sum_{k=0}^{n} \binom{n}{k} k(k-1) = n(n-1)2^{n-2}$$
 (1.72)

1.4.6 Number Theoretic Result Due to Euler

Let
$$f(x) = \sum_{i=0}^{n} a_i x^i$$
. Then, $f(x)|f(x+f(x))$. (1.73)

1.5 Four Versions of the Multinomial Theorem

Remark 1.5 In Section 1.5, we will assume α is a nonnegative integer. We also assume that j_i is a nonnegative integer.

$$\left(\sum_{i=0}^{n} a_{i}\right)^{\alpha} = \sum_{\substack{\forall j \text{ such that} \\ \sum_{i=0}^{n} j_{i} = \alpha}} \frac{\alpha!}{j_{0}! j_{1}! j_{2}! ... j_{n}!} a_{0}^{j_{0}} a_{1}^{j_{1}} ... a_{n}^{j_{n}}$$
(1.74)

$$\left(\sum_{i=1}^{n} a_{i}\right)^{\alpha} = \sum_{\substack{\forall j \text{ such that} \\ \sum_{i=1}^{n} j_{i} = \alpha}} \frac{\alpha!}{j_{1}! j_{2}! ... j_{n}!} a_{1}^{j_{1}} a_{2}^{j_{2}} ... a_{n}^{j_{n}}$$
(1.75)

$$\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{\alpha} = \sum_{k=0}^{N < \infty} x^{k} \sum_{\substack{\forall j \text{ such that} \\ \sum_{i=0}^{n} j_{i} = \alpha, \sum_{i=1}^{n} i j_{i} = k}} \frac{\alpha!}{j_{0}! j_{1}! j_{2}! ... j_{n}!} a_{0}^{j_{0}} a_{1}^{j_{1}} ... a_{n}^{j_{n}}$$
(1.76)

$$\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{\alpha} = \sum_{k=0}^{N < \infty} x^{k} *$$

$$\sum_{\substack{\forall j \text{ such that} \\ j_{0} + \gamma = \alpha, \ \sum_{i=1}^{n} j_{i} = \gamma, \ \sum_{i=1}^{n} i j_{i} = k}} \binom{\alpha}{\gamma} a_{0}^{\alpha - \gamma} \frac{\gamma!}{j_{1}! j_{2}! ... j_{n}!} a_{1}^{j_{1}} a_{2}^{j_{2}} ... a_{n}^{j_{n}}$$

$$(1.77)$$

2 The Geometric Series

Remark 2.1 In this chapter, we will assume, unless otherwise specified, that a is a nonnegative integer and x is an arbitrary nonzero real or complex number.

2.1 The Basic Geometric Series

2.1.1 Finite Geometric Series

$$\sum_{k=a}^{n} x^{k} = x^{a} \frac{x^{n-a+1} - 1}{x - 1}, \qquad x \neq 1$$
 (2.1)

$$\sum_{k=a}^{n} \frac{1}{x^k} = \frac{1}{x^n} \frac{x^{n-a+1} - 1}{x - 1}, \qquad x \neq 1$$
 (2.2)

2.1.2 Infinite Geometric Series

$$\sum_{k=a}^{\infty} x^k = \frac{x^a}{1-x}, \qquad |x| < 1 \tag{2.3}$$

$$\sum_{k=a}^{\infty} x^{-k} = \frac{x^{1-a}}{x-1}, \qquad |x| > 1$$
 (2.4)

2.2 Derivatives of Geometric Series

$$\sum_{k=0}^{n} kx^{k-1} = \frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}, \qquad x \neq 1$$
 (2.5)

$$\lim_{x \to 1} \sum_{k=0}^{n} kx^k = \frac{n^2 + n}{2} = \sum_{k=0}^{n} k$$
 (2.6)

$$\sum_{k=0}^{n} k^2 x^k = \frac{n^2 x^{n+3} - (2n^2 + 2n - 1)x^{n+2} + (n+1)^2 x^{n+1} - x^2 - x}{(x-1)^3}, \qquad x \neq 1$$
 (2.7)

$$\sum_{k=0}^{n} k(k-1)2^k = (n^2 - 3n + 4)2^{n+1} - 2^3$$
 (2.8)

$$\sum_{k=0}^{n} k^2 2^k = (n^2 - 2n + 3)2^{n+1} - 6$$
 (2.9)

$$\sum_{k=0}^{n} k^2 3^k = \frac{(n^2 - n + 1)3^{n+1} - 3}{2}$$
 (2.10)

2.3 Integrals of Geometric Series

$$\ln(1+x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{k+1}}{k+1}, \qquad |x| < 1$$
 (2.11)

$$\ln 2 = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k}$$
(2.12)

2.4 Applications of Geometric Series

Remark 2.2 In the following two identities, let u and v be arbitrary nonzero real or complex numbers such that $uv \neq 1$.

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} (uv)^k + u \sum_{k=0}^{\left[\frac{n-2}{2}\right]} (uv)^k = \frac{(uv)^{\left[\frac{n+1}{2}\right]} - 1}{uv - 1} + u \frac{(uv)^{\left[\frac{n}{2}\right]} - 1}{uv - 1}, \qquad n \ge 1$$
 (2.13)

Remark 2.3 The following identity can be done as a formal calculation over the ring of power series. Otherwise, the reader may assume that appropriate condition hold so that the left sum is absolutely convergent.

$$\sum_{k=0}^{\infty} f(k) = \sum_{k=0}^{\infty} \frac{1}{2^{k+1}} \sum_{i=0}^{k} 2^{i} f(i)$$
 (2.14)

$$\sum_{k=0}^{\infty} \frac{x^{2^k}}{1 - x^{2^{k+1}}} = \frac{1}{1 - x}, \qquad |x| > 1$$
 (2.15)

$$\sum_{k=0}^{\infty} \frac{x^{2^k}}{1 - x^{2^{k+1}}} = \frac{x}{1 - x}, \qquad |x| < 1$$
 (2.16)

3 Bernoulli-Type Series and the Riemann Zeta Function

Remark 3.1 In this chapter, we will assume p and a are, unless otherwise specified, nonnegative integers.

3.1 Evaluation of $\sum_{k=1}^n k^p$

3.1.1 Reduction Formula

$$\sum_{k=a}^{n} k^{p} = n \sum_{k=a}^{n} k^{p-1} - \sum_{r=a}^{n-1} \sum_{k=a}^{r} k^{p-1}, \qquad p \ge 1, \quad n \ge 1$$
(3.1)

3.1.2 Iteration Formulas

Remark 3.2 In this subsection, we let r be a positive integer, and define $\sum_{(r)}^{n} f(k)$ to be the following r-fold sum:

$$\sum_{(r)}^{n} f(k) = \sum_{k_r=1}^{n} \sum_{k_{r-1}=1}^{k_r} \dots \sum_{k_2=1}^{k_3} \sum_{k=1}^{k_2} f(k) >$$

$$\sum_{(r)}^{n} 1 = \binom{n+r-1}{r} \tag{3.2}$$

$$\sum_{(r)}^{n} k = \binom{n+r}{r+1} \tag{3.3}$$

$$\sum_{(1)} k = \frac{n(n+1)}{2} \tag{3.4}$$

$$\sum_{(r)}^{n} k^2 = \frac{(2n+r)}{(r+2)!} \frac{(n+r)!}{(n-1)!}$$
(3.5)

$$\sum_{(1)}^{n} k^2 = \frac{n(n+1)(2n+1)}{3!} \tag{3.6}$$

$$\sum_{r=0}^{n} k^3 = \frac{6n^2 + r(6n + r - 1)}{(r+3)!} \frac{(n+r)!}{(n-1)!}$$
(3.7)

$$\sum_{(1)}^{n} k^3 = \frac{n^2(n+1)^2}{4} \tag{3.8}$$

$$\sum_{r=0}^{n} k^4 = \frac{(12n^2 + 12rn - r(5-r))(2n+r)}{(r+4)!} \frac{(n+r)!}{(n-1)!}$$
(3.9)

$$\sum_{(1)}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$
(3.10)

$$\sum_{(1)}^{n} k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$
 (3.11)

$$\sum_{(1)}^{n} k^{6} = \frac{n(n+1)(2n+1)(3n^{4}+6n^{3}-3n+1)}{42}$$
(3.12)

3.1.3 Euler's Expansion with Bernoulli Numbers

Remark 3.3 In this subsection, we let \mathcal{B}_k denote the k^{th} Bernoulli number. The exponential generating function of $(\mathcal{B}_k)_{n=0}^{\infty}$ is $\frac{x}{e^x-1}$. For values of the Bernoulli number sequence, the reader is referred to the Online Encyclopedia of Integer Sequences (OEIS).

$$\sum_{k=0}^{n-1} k^p = \sum_{k=0}^p \frac{p! n^{p-k+1}}{(p-k+1)! k!} \mathcal{B}_k, \qquad n \ge 1$$
 (3.13)

3.1.4 G. P. Miller's Determinant Expansion

$$\sum_{k=0}^{n} k^p = \frac{\det M}{(p+1)!},\tag{3.14}$$

where M is the $(p+1) \times (p+1)$ matrix whose entry $a_{i,j}$ is determined by

$$a_{i,j} = \begin{cases} (n+1)^{p+2-i} - (n+1), & j = 1\\ \binom{p+2-i}{j+1-i}, & j \ge i \text{ and } j \ne 1\\ 0, & j < i \text{ and } j \ne 1 \end{cases}$$
(3.15)

3.2 Evaluation of $\sum_{k=0}^{n} k^p x^k$

Remark 3.4 The reader should compare the formulas in this subsection with those in Section 2.2.

3.2.1 Differential Reduction Formula

$$\sum_{k=0}^{n} k^{p+1} x^k = x \frac{d}{dx} \sum_{k=0}^{n} k^p x^k$$
 (3.16)

3.2.2 Applications of Differential Reduction Formula

$$\sum_{k=0}^{n} k^{3} x^{k} = \frac{N}{(x-1)^{4}}, \quad \text{where for } x \neq 1,$$

$$\sum_{k=0}^{n} k^{3} x^{k} = \frac{N}{(x-1)^{4}}, \quad \text{where for } x \neq 1,$$

$$\sum_{k=0}^{n} k^{3} x^{k} = \frac{N}{(x-1)^{4}}, \quad \text{where for } x \neq 1,$$

$$\sum_{k=0}^{n} k^{3} x^{k} = \frac{N}{(x-1)^{4}}, \quad \text{where for } x \neq 1,$$

$$\sum_{k=0}^{n} k^{3} x^{k} = \frac{N}{(x-1)^{4}}, \quad \text{where for } x \neq 1,$$

$$\sum_{k=0}^{n} k^{3} x^{k} = \frac{N}{(x-1)^{4}}, \quad \text{where for } x \neq 1,$$

$$\sum_{k=0}^{n} k^{3} x^{k} = \frac{N}{(x-1)^{4}}, \quad \text{where for } x \neq 1,$$

$$\sum_{k=0}^{n} k^{3} x^{k} = \frac{N}{(x-1)^{4}}, \quad \text{where for } x \neq 1,$$

$$N = n^{3}x^{n+4} - (3n^{3} + 3n^{2} - 3n + 1)x^{n+3} + (3n^{3} + 6n^{2} - 4)x^{n+2} - (n+1)^{3}x^{n+1} + x^{3} + 4x^{2} + x^{2} + x^$$

$$\sum_{k=1}^{n-1} k \left(\frac{n}{n-1} \right)^{k-1} = (n-1)^2, \qquad n \ge 1$$
 (3.18)

$$\prod_{k=2}^{n} \left(1 + \frac{\left(\frac{n+1}{n}\right)^{k-1}}{k - \left(\frac{k+1}{k}\right)^{k-2}} \right) = n^2, \qquad n \ge 2$$
(3.19)

$$\sum_{k=1}^{n} \frac{k}{n^{k-1}} (n+1)^{k-1} = \sum_{k=1}^{n} \frac{k}{n^{k-1}} \binom{n+1}{k+1} = n^2 \qquad n \ge 1$$
 (3.20)

3.3 Evaluation of $\sum_{k=0}^{n} \binom{n}{k} k^p$

$$\sum_{r=0}^{n} \binom{n}{r} = 2^n \tag{3.21}$$

$$\sum_{r=0}^{n} \binom{n}{r} r = n2^{n-1} \tag{3.22}$$

$$\sum_{r=0}^{n} \binom{n}{r} r^2 = 2^{n-2} n(n+1)$$
 (3.23)

$$\sum_{r=0}^{n} \binom{n}{r} r^3 = 2^{n-3} n^2 (n+3)$$
 (3.24)

$$\sum_{r=0}^{n} \binom{n}{r} r^4 = 2^{n-4} n(n+1)(n^2 + 5n - 2)$$
(3.25)

3.3.1 Reduction Formula

$$n\sum_{r=0}^{n-1} \binom{n-1}{r} r^p = \sum_{k=0}^p \sum_{r=0}^n (-1)^k \binom{p}{k} \binom{n}{r} r^{p-k+1}, \qquad n \ge 1$$
 (3.26)

3.4 Riemann Zeta Function: $\zeta(p) = \sum_{k=1}^{\infty} \frac{1}{k^p}$

3.4.1 Convolution Identity

Remark 3.5 The following identity is found in "A New Method of Evaluating $\zeta(2n)$ ", by G.T. Williams, Amer. Math. Monthly, January 1953, Vol. 60, No. 1, pp. 19-25.

$$\sum_{k=2}^{n-1} \zeta(k)\zeta(n-k+1) = (n+2)\zeta(n+1) - 2\sum_{k=1}^{\infty} \frac{1}{k^n} \sum_{k=1}^{k} \frac{1}{j}, \qquad n \ge 3$$
 (3.27)

Extension of Convolution Identity

$$4\zeta(3) - 2\sum_{k=1}^{\infty} \frac{1}{k^2} \sum_{j=1}^{k} \frac{1}{j} = 0$$
(3.28)

3.4.2 Connections with Bernoulli Numbers

Remark 3.6 Recall that \mathcal{B}_n is the n^{th} Bernoulli number. See Remark 3.3.

$$\mathcal{B}_{2n} = (-1)^{n-1} \frac{(2n)!}{2^{2n-1}\pi^{2n}} \zeta(2n)$$
(3.29)

$$\sum_{k=1}^{n-1} \zeta(2k)\zeta(2n-2k) = \left(n + \frac{1}{2}\right)\zeta(2n), \qquad n \ge 2$$
 (3.30)

4 Finite Harmonic Series

4.1 Special Case of n^{th} Difference Inversion Formula

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{k+1} = \frac{1}{n+1}$$
 (4.1)

$$\sum_{j=1}^{n} \frac{1}{j} = \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} \frac{1}{k}, \qquad n \ge 1$$
 (4.2)

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \sum_{j=1}^{k} \frac{1}{j} = \frac{1}{n}, \qquad n \ge 1$$
 (4.3)

4.2 Even and Odd Finite Harmonic Series

$$\sum_{k=1}^{2n} \frac{1}{k} = \frac{2n+1}{2} \sum_{k=1}^{2n} \frac{1}{k(2n-k+1)} = (2n+1) \sum_{k=1}^{n} \frac{1}{k(2n-k+1)}, \qquad n \ge 1$$
 (4.4)

$$\sum_{k=1}^{2n+1} \frac{1}{k} = (2n+2) \sum_{k=1}^{n} \frac{1}{k(2n-k+2)} + \frac{1}{n+1}$$
 (4.5)

4.3 Harmonic Series as Limit of Binomial Coefficient

Remark 4.1 *In the following indentity, we let r be a positive integer.*

$$\sum_{k=1}^{n} \frac{1}{k} = \lim_{r \to 0} \frac{\binom{n+r}{r} - 1}{r\binom{n+r}{r}}$$
 (4.6)