Type theory in type theory using single substitutions

Ambrus Kaposi Szumi Xie
TYPES, Copenhagen, 11 June 2024

Eötvös Loránd University, Budapest

Con: Set

Ty : Con \rightarrow Set

Var : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set$

Tm : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set$

Con: Set

Ty : Con \rightarrow Set

♦ : Con

Var : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set$

Tm : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set$

- \triangleright - : (Γ : Con) \rightarrow Ty Γ \rightarrow Con

Con : Set

Ty : Con \rightarrow Set

♦ : Con

Sub : Con \rightarrow Con \rightarrow Set

 $-[-]: Ty \Gamma \rightarrow Sub \Delta \Gamma \rightarrow Ty \Delta$

p : Sub $(\Gamma \triangleright A) \Gamma$

Var : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set$

Tm : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set$

 $- \triangleright - : (\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Con$

var : $Var \Gamma A \rightarrow Tm \Gamma A$

vz : $Var(\Gamma \triangleright A)(A[p])$

vs : $Var \Gamma A \rightarrow Var (\Gamma \triangleright B) (A[p])$

```
Var : (\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set
Con: Set
Tv : Con \rightarrow Set
                                                                            Tm : (\Gamma : Con) \rightarrow Tv \Gamma \rightarrow Set
         : Con
                                                                            - \triangleright - : (\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Con
Sub: Con \rightarrow Con \rightarrow Set
                                                                            var : Var \Gamma A \rightarrow Tm \Gamma A
-[-]: Ty \Gamma \rightarrow Sub \Delta \Gamma \rightarrow Ty \Delta
                                                                            vz : Var (\Gamma \triangleright A) (A [p])
         : Sub (Γ ⊳ A) Γ
                                                                                      : Var \Gamma A \rightarrow Var (\Gamma \triangleright B) (A [p])
                                                                            VS
\Pi : (A : T \lor \Gamma) \to T \lor (\Gamma \rhd A) \to T \lor \Gamma
                                                                      \Pi[]: (\Pi A B)[\sigma] = \Pi (A[\sigma])(B[\sigma\uparrow])
-\uparrow : (\sigma : Sub \Delta \Gamma) \rightarrow
            Sub (\Delta \triangleright A [\sigma]) (\Gamma \triangleright A)
```

```
Var : (\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set
Con: Set
Tv : Con \rightarrow Set
                                                                                 Tm : (\Gamma : Con) \rightarrow Tv \Gamma \rightarrow Set
         : Con
                                                                                 - \triangleright - : (\Gamma : Con) \rightarrow Tv \Gamma \rightarrow Con
Sub: Con \rightarrow Con \rightarrow Set
                                                                                 var : Var \Gamma A \rightarrow Tm \Gamma A
-[-]: Ty \Gamma \rightarrow Sub \Delta \Gamma \rightarrow Ty \Delta
                                                                                 vz : Var(\Gamma \triangleright A)(A[p])
         : Sub (Γ ⊳ A) Γ
                                                                                 vs : Var \Gamma A \rightarrow Var (\Gamma \triangleright B) (A \lceil p \rceil)
\Pi : (A : T \lor \Gamma) \to T \lor (\Gamma \rhd A) \to T \lor \Gamma
                                                                                \Pi[] : (\Pi A B)[\sigma] = \Pi (A[\sigma]) (B[\sigma \uparrow])
-\uparrow : (\sigma : Sub \Delta \Gamma) \rightarrow
                                                                                 lam : Tm (\Gamma \triangleright A) B \rightarrow \text{Tm } \Gamma (\Pi A B)
            Sub (\Delta \triangleright A [\sigma]) (\Gamma \triangleright A)
                                                                                 app : Tm \Gamma(\Pi A B) \rightarrow
\langle - \rangle: Tm \Gamma A \rightarrow \text{Sub } \Gamma (\Gamma \triangleright A)
                                                                                              (u: Tm \Gamma A) \rightarrow Tm \Gamma (B[\langle u \rangle])
```

$$-[-]: \operatorname{Tm} \Gamma A \to \operatorname{app} (\operatorname{lam} t) u = t[\langle u \rangle]$$
$$(\sigma: \operatorname{Sub} \Delta \Gamma) \to \operatorname{Tm} \Delta (A[\sigma])$$

$$-[-]: \operatorname{Tm} \Gamma A \to G$$

$$(\sigma: \operatorname{Sub} \Delta \Gamma) \to \operatorname{Tm} \Delta (A[\sigma])$$

$$A[\langle u \rangle][\sigma] = A[\sigma \uparrow][\langle u[\sigma] \rangle]$$

$$app (lam t) u = t[\langle u \rangle]$$

$$\underbrace{(lam t)[\sigma]}_{Tm \Delta ((\Pi A B)[\sigma])} = \underbrace{lam (t[\sigma \uparrow])}_{Tm \Delta (\Pi (A[\sigma]) (B[\sigma \uparrow]))}$$

$$\underbrace{(app t u)[\sigma]}_{Tm \Delta (B[\langle u \rangle][\sigma])} = \underbrace{app (t[\sigma]) (u[\sigma])}_{Tm \Delta (B[\sigma \uparrow][\langle u[\sigma] \rangle])}$$

$$-[-]: \operatorname{Tm} \Gamma A \to \operatorname{app} (\operatorname{lam} t) u = t[\langle u \rangle]$$

$$(\sigma: \operatorname{Sub} \Delta \Gamma) \to \operatorname{Tm} \Delta (A[\sigma]) \qquad (\operatorname{lam} t)[\sigma] = \operatorname{lam} (t[\sigma \uparrow])$$

$$\operatorname{Tm} \Delta ((\Pi A B)[\sigma]) \qquad \operatorname{Tm} \Delta (\Pi (A[\sigma]) (B[\sigma \uparrow]))$$

$$A[\langle u \rangle][\sigma] = A[\sigma \uparrow][\langle u [\sigma] \rangle] \qquad (\operatorname{app} t u)[\sigma] = \operatorname{app} (t[\sigma]) (u[\sigma])$$

$$\operatorname{Tm} \Delta (B[\langle u \rangle][\sigma]) \qquad \operatorname{Tm} \Delta (B[\sigma \uparrow][\langle u [\sigma] \rangle])$$

$$(\operatorname{var} x)[p] = \operatorname{var} (\operatorname{vs} x)$$

$$A[p][\langle u \rangle] = A \qquad (\operatorname{var} (\operatorname{vs} x))[\langle u \rangle] = u$$

$$(\operatorname{var} (\operatorname{vs} x))[\langle u \rangle] = \operatorname{var} x$$

$$A[p][\gamma \uparrow] = A[\gamma][p] \qquad (\operatorname{var} (\operatorname{vs} x))[\gamma \uparrow] = (\operatorname{var} x)[\gamma][p]$$

```
app (lam t) u = t \lceil \langle u \rangle \rceil
-[-]: Tm \Gamma A \rightarrow
             (\sigma : Sub \Delta \Gamma) \rightarrow Tm \Delta (A[\sigma])
                                                                                         (\operatorname{lam} t)[\sigma] = \operatorname{lam} (t[\sigma \uparrow])
                                                                                  Tm \Delta ((\Pi A B)[\sigma]) Tm \Delta (\Pi (A[\sigma]) (B[\sigma↑]))
A[\langle u \rangle][\sigma] = A[\sigma \uparrow][\langle u [\sigma] \rangle]
                                                                                     (app t u)[\sigma] = app (t[\sigma]) (u[\sigma])
                                                                                   Tm \Delta (B[\langle u \rangle][\sigma]) Tm \Delta (B[\sigma \uparrow 1][\langle u [\sigma] \rangle])
                                                                                         (var x)[p] = var (vs x)
                                                                                    (var vz)[\langle u \rangle] = u
A[p][\langle u \rangle] = A
                                                                              (\text{var}(\text{vs }x))[\langle u\rangle] = \text{var }x
A[p][v\uparrow] = A[v][p]
                                                                                     (var vz)[y\uparrow] = var vz
                                                                              (var (vs x))[v\uparrow] = (var x)[v][p]
A = A[p\uparrow][\langle var vz \rangle]
                                                                                                            t = lam (app (t[p]) (var vz))
```

Details

We have a generalized algebraic theory

The syntax is the initial algebra

Other presentations:

- Thomas Ehrhard's thesis (1988)
- category with families (Dybjer 1995)
- natural model (Awodey 2016)
- contextual category (Brunerie 2019)
- B-system and C-system (Ahrens et al. 2023)
- Coquand also discovered single substitution calculus independently

CwF models are not equivalent to ours, but the syntaxes are isomorphic

Formalization in Agda with postulated QIIT and SProp

Summary

Minimalistic definition of type theory

Any SOGAT has a single substitution GAT presentation (Kaposi & Xie: FSCD 2024)

Need to derive parallel substitions to prove normalization

Future work: coherent syntax of type theory?

$$(e:B[\langle u\rangle][\sigma]=B[\sigma\uparrow][\langle u[\sigma]\rangle])\to (\operatorname{app}\,t\,u)[\sigma]=_e\operatorname{app}(t[\sigma])(u[\sigma])$$

4