The acceleration of a Ferris wheel car moving in a circular path and at constant speed is due to a change in direction. An acceleration of this nature is called a **centripetal acceleration.** The magnitude of a centripetal acceleration is given by the following equation:

centripetal acceleration

the acceleration directed toward the center of a circular path

CENTRIPETAL ACCELERATION

$$a_c = \frac{v_t^2}{r}$$

centripetal acceleration =
$$\frac{(\text{tangential speed})^2}{\text{radius of circular path}}$$

What is the direction of centripetal acceleration? To answer this question, consider **Figure 2(a).** At time t_i , an object is at point A and has tangential velocity $\mathbf{v_i}$. At time t_f , the object is at point B and has tangential velocity $\mathbf{v_f}$. Assume that $\mathbf{v_i}$ and $\mathbf{v_f}$ differ in direction but have the same magnitudes.

The change in velocity ($\Delta \mathbf{v} = \mathbf{v_f} - \mathbf{v_i}$) can be determined graphically, as shown by the vector triangle in **Figure 2(b).** Note that when Δt is very small, $\mathbf{v_f}$ will be almost parallel to $\mathbf{v_i}$. The vector $\Delta \mathbf{v}$ will be approximately perpendicular to $\mathbf{v_f}$ and $\mathbf{v_i}$ and will be pointing toward the center of the circle. Because the acceleration is in the direction of $\Delta \mathbf{v_i}$ the acceleration will also be directed toward the center of the circle. Centripetal acceleration is always directed toward the center of a circle. In fact, the word *centripetal* means "center seeking." This is the reason that the acceleration of an object in uniform circular motion is called *centripetal acceleration*.

Figure 2 (a) As the particle moves from A to B, the direction of the particle's velocity vector changes. (b) For short time intervals, $\Delta \mathbf{v}$ is directed

toward the center of the circle.

SAMPLE PROBLEM A

Centripetal Acceleration

PROBLEM

A test car moves at a constant speed around a circular track. If the car is 48.2 m from the track's center and has a centripetal acceleration of 8.05 m/s², what is the car's tangential speed?

SOLUTION

Given: r = 48.2 m $a_c = 8.05 \text{ m/s}^2$

Unknown: $v_t = ?$

Use the centripetal acceleration equation, and rearrange to solve for
$$v_t$$
.
$$a_c = \frac{v_t^2}{r}$$

$$v_t = \sqrt{a_c r} = \sqrt{(8.05 \text{ m/s}^2)(48.2 \text{ m})}$$

$$v_t = \sqrt{u_{c'}} - \sqrt{(6.03 \text{ m/s})}$$