Probability 1

Chapter 09: Reminder - Sequences and Series

Dr. Daniel Flores-Agreda,

(based on the notes of Prof. Davide La Vecchia)

Spring Semester 2021

Sequences of real numbers

2 Limit of a sequences of real numbers

Series

Sequences of real numbers

Sequences of real numbers

- 2 Limit of a sequences of real numbers
- Series

3/9

Sequences of real numbers

Definition

A sequence is an ordered list of real numbers of the form

$$a_1, a_2, ..., a_n, ...$$

where each natural number $n \in \mathbb{N}$ corresponds exactly to a real number $a_n \in \mathbb{R}$. A sequence is denoted by $\{a_n\}_{n \in \mathbb{N}}$, where n is called the index of the sequence and a_n is its n-th term.

Remark: the sequence can contain infinite terms...

Example

The list of numbers

$$\left\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},...\right\}$$

is a sequence, where each natural number corresponds the real number $a_n = \frac{1}{n}$.

Limit of a sequences of real numbers

1 Sequences of real numbers

- 2 Limit of a sequences of real numbers
- Series

Limit of a sequences of real numbers

Definition

A real number $a \in \mathbb{R}$ (a is a finite number) is called the limit of a sequence $\{a_n\}_{n\in\mathbb{N}}$ if, for any $\epsilon>0$, a natural number $n(\epsilon)\in\mathbb{N}$ exists such that

$$|a_n - a| < \epsilon \quad \text{for all} \quad n \ge n(\epsilon).$$
 (1)

If for a given sequence $\{a_n\}_{n\in\mathbb{N}}$ the real number a satisfies (1), then we write

$$a = \lim_{n \to \infty} a_n$$
.

Example

The sequence $\{a_n\}_{n\in\mathbb{N}}$ with $a_n=\frac{1}{n}$, converges to zero.

Remark: loosely speaking, Eq. (1) states that, for $n \ge n(\epsilon)$, a_n is **always** close to a (or equivalently, the difference in absolute value between a_n and a is **never** large).

Series

Sequences of real numbers

- 2 Limit of a sequences of real numbers
- Series

7/9

Series

Definition

Let $\{a_k\}_{k\in\mathbb{N}}$ be a sequence. The sum of the first n terms of $\{a_k\}_{k\in\mathbb{N}}$:

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + ... + a_n$$

is called the *n*-th partial sum of $\{a_k\}_{k\in\mathbb{N}}$. The sequence $\{s_n\}_{n\in\mathbb{N}}$ of partial sums is called a series.

Remark: $s_n = s_{n-1} + a_n$.

Series

Example

Let us consider again the sequence $\{a_k\}_{k\in\mathbb{N}}$ with $a_k=\frac{1}{k}$. Its partial sums are

$$s_n = \sum_{k=1}^n a_k.$$

For instance, when n = 1, 2, 3 we have:

$$s_1 = 1$$

 $s_2 = 1 + \frac{1}{2} = \frac{3}{2}$
 $s_3 = 1 + \frac{1}{2} + \frac{1}{3} = s_2 + \frac{1}{3} = \frac{11}{6}$.