§6.4*–General Logarithmic and Exponential **Functions**

Tom Lewis

Spring Semester 2015

General exponential functions

The derivative

The derivative

The logarithm to the base a.

Solving equations

Outline

General exponential functions

The derivative

The logarithm to the base a.

Solving equations

e as a limit

Let a > 0 be a real number and let r be a rational number. Show that

$$a^r = \exp(\ln(a^r)) = \exp(r\ln(a)).$$

General exponential functions

The derivative

The derivative

The logarithm to the base a.

Solving equations

Definition

For a > 0, it make sense to define

$$a^{x} = \exp(x \ln(a)).$$

for all $x \in \mathbb{R}$.

Suppose that your calculator has an e^x and $\ln x$ buttons, but no other buttons for exponentials and logarithms to other bases. How can we calculate $(\sqrt{2})^{\pi}$?

General exponential functions

The derivative

The derivative

The logarithm to the base a.

Solving equations

e as a limit

The laws of exponents

The laws of exponents are inherited from exp:

$$a^{x+y} = a^x a^y$$
 $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$.

In addition, we have the following two identities:

$$(ab)^x = a^x b^x$$
 $(a/b)^x = a^x/b^x$.

Sketch the graph of $y = a^x$ in each case: a = 1, a > 1, and 0 < a < 1.

General exponential functions

The derivative

The logarithm to the base a.

Solving equations

e as a limit

Theorem

•
$$\frac{d}{dx}a^x = a^x \ln(a)$$

• $\int a^x dx = \frac{a^x}{\ln(a)}$

Find y' in each case:

•
$$y = x2^{x^3}$$

•
$$y = \frac{2^x - 2^{-x}}{2^x + 2^{-x}}$$

General exponential functions

The derivative

The logarithm to the base a.

Solving equations

e as a limit

Problem

$$\bullet \int \frac{1}{1+2^{-x}} dx$$

Definition

For a > 0, we will use \log_a to denote the inverse of a^x . Thus

$$\log_a(x) = y$$
 iff $a^y = x$.

Theorem (Change of base formula)

The derivative

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

General exponential functions

The derivative

The logarithm to the base a.

Solving equations

e as a limit

Theorem

$$\frac{d}{dx}\log_a(x) = \frac{1}{x\ln(a)}$$

Find y' for each of the following:

The derivative

- $y = \log_{10}(x^2 + 3x + 5)$
- $y = x^x$

General exponential functions

The derivative

The logarithm to the base a.

Solving equations

e as a limit

Problem

In each case, solve for x:

- $2^x = \sqrt{2}/8$
- $2^x 35 \cdot 2^{-x} = 2$

Theorem

$$\lim_{h\to 0}\frac{\ln(1+h)}{h}=1$$

Corollary

$$\lim_{h \to 0} (1+h)^{1/h} = e.$$

General exponential functions

The derivative

The derivative

The logarithm to the base a.

Solving equations

e as a limit

Problem

Show that

$$\lim_{n\to\infty}\left(1+\frac{2}{n}\right)^n=e^2.$$