

KECERDASAN BUATAN

1 PENDAHULUAN

Dr. Prima Dewi Purnamasari Program Studi Teknik Komputer FTUI

Apakah yang dimaksud dengan Artificial Intelligence (AI)?

Science and engineering of making intelligent machines, especially intelligent computer program

John McCarthy, father of AI, 1956

Bidang yang berkaitan

Apakah Al = machine learning

Machine learning adalah salah satu bagian dari Al yang sedang sangat dikembangkan

AI: Ilmu yang berfokus pada penelitian dan pengembangan teori, metode, teknik, dan sistem aplikasi untuk merangsang dan memperluas kecerdasan manusia.

Machine learning: Bidang penelitian inti Al. Berfokus pada studi tentang bagaimana komputer dapat memperoleh pengetahuan atau keterampilan baru dengan menirukan atau melakukan pembelajaran perilaku manusia, dan mengatur ulang arsitektur pengetahuan yang ada untuk meningkatkan kinerjanya.

Deep learning: Bidang baru pembelajaran mesin. Konsep ini berasal dari penelitian lain pada artificial neural networks (ANN).

Tujuannya adalah untuk mensimulasikan otak manusia untuk menafsirkan data seperti gambar, suara, dan teks.

data mining focuses on analyzing input variables to predict a new output

machine learning extends to analyzing both input and output variables

CONTOH IMPLEMENTASI AI

Public sector

- Safe City
- Intelligent transport
- Disaster prediction

Education

- Personalization
- Attention improvement
- · Robot teacher

Healthcare

- Early prevention
- · Diagnosis assistance
- · Precision cure

Media

- Real-time translation
- Abstraction
- Inspection

Pharmacy

- Fast R&D
- Precise trial
- · Targeted medicine

Logistics

- · Routing planning
- Monitoring
- Auto sorting

Finance

- Doc process
- · Real-time fraud prevention
- · Up-sell

Insurance

- · Auto detection
- · Fraud prevention
- · Innovative service

Retail

- Staff-less shops
- · Real-time inventory
- Precise recommendations

Manufacturing

- Defect detection
- Industrial internet
- · Predictive maintenance

Telecom

- · Customer service
- Auto O&M

Oil and gas

- Localization
- · Remote maintenance
- Auto optimization
 Operation optimization

Agriculture

- Fertilization improvement Remote operation
- · Seeds development

Al Disputes

ALGORITHMIC BIAS

Algorithmic biases are mainly caused by data biases.

If we search with a name sounds like an African American, an advertisement for a tool used to search criminal records may be displayed. The advertisement, however, is not likely displayed in other cases.

Online advertisers tend to display advertisements of lower-priced goods to **female users**.

Google's image software once mistakenly labeled an image of black people as "gorilla".

PRIVACY ISSUES

In principle, technology companies can record each click, each page scrolling, time of viewing any content, and browsing history when users access the Internet.

Technology companies can know our privacy including where are we, where we go, what we have done, education background, consumption capabilities, and personal preferences based on our ridehailing records and consumption records.

SEEING = BELIEVING?

- https://www.youtube.com/watch?v=T76bK2t2r8g
- Deepfakes
- https://arstechnica.com/information-technology/2024/02/deepfake-scammer-walks-off-with-25-million-in-first-of-its-kind-ai-heist/

UNEMPLOYMENT?

• Jenis pekerjaan apa yang kira-kira bakal tergantikan oleh AI?

• https://www.weforum.org/publications/the-future-of-jobs-report-2023/infographics-2128e451e0/

DEVELOPMENT TRENDS OF AI TECHNOLOGIES

- Framework: easier-to-use development framework
- Algorithm: algorithm models with better performance and smaller size
- Computing power: comprehensive development of deviceedge-cloud computing
- Data: more comprehensive basic data service industry and more secure data sharing
- Scenario: continuous breakthroughs in industry applications

Apa yang akan dipelajari di kuliah ini?

DESKRIPSI MATA KULIAH

Mata kuliah ini adalah mata kuliah wajib di Kurikulum 2020 pada Program Studi Teknik Komputer. Namun demikian, mata kuliah ini juga dapat diambil oleh mahasiswa dari prodi lain yang memiliki minat untuk belajar mengenai machine learning dan artificial intelligence. Pada mata kuliah ini mahasiswa akan mempelajari dasar-dasar metode pembelajaran mesin untuk mengolah data sehingga dapat menghasilkan informasi secara otomatis.

CAPAIAN PEMBELAJARAN MATA KULIAH (CPMK)

- Mampu merancang penyelesaian permasalahan pengolahan data dengan pendekatan pembelajaran mesin (C6)
- 2. Mampu bekerjasama dalam tim untuk menyelesaikan proyek machine learning (A3)

SUB-CPMK

- 1.1 Mampu membedakan jenis-jenis pembelajaran mesin (C2)
- 1.2 Mampu melakukan tahapan persiapan data untuk digunakan dalam machine learning (C3)
- 1.3 Mampu mengimplementasikan metode regresi (C3)
- 1.4 Mampu mengimplementasikan metode pengelompokan (clustering) (C3)
- 1.5 Mampu mengevaluasi teknik klasifikasi non-ANN untuk penyelesaian permasalahan machine learning (C5)
- 1.6 Mampu mengevaluasi teknik klasifikasi ANN untuk penyelesaian permasalahan machine learning (C5)

- 1.7 Mampu mengevaluasi konsep dasar deep learning (C5)
- 1.8 Mampu mengevaluasi best practice dalam mengembangkan aplikasi deep learning (C5)
- 1.9 Mampu merancang penggunaan convolutional neural network dalam berbagai aplikasi sederhana (C6)
- 1.10 Mampu merancang penggunaan sequence models dalam berbagai aplikasi sederhana (C6)
- 2.1 Mampu menunjukkan tanggung jawab dalam kerja sama tim untuk menyelesaikan proyek (A3)
- 2.2 Mampu menunjukkan proses berpikir kritis dan kreatif dalam menyelesaikan permasalahan kelompok (A3)

- 1. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly, 2023
- 2. Ian Goodfellow, Deep Learning, MIT Press, 2016
- 3. Oliver Theobald, Machine Learning for Absolute Beginners: A Plain English Introduction, Independently published, 2018
- 4. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2011
- 5. Joel Gruss, Data Science from Scratch, O'Reilly, 2015

Bahan bacaan lain:

Andrew Ng, Deep Learning Specialization, Online Course at Coursera

Skills: Cognitive class.ai COGNITIVE CLASS.ai

- Basic: If you are new to Python
 - Python for Data Science
- Compulsory:
 - Machine Learning with Python → as Quiz 1 Score

Enroll kelas tersebut dari sekarang.

Pelajari secara mandiri (self-paced) materi dan Latihan (hands-on) yang ada.

Kerjakan semua Review Question dan Final Exam.

Kumpulkan sertifikat dan nilai sebagai nilai Quiz.

EMAS2

 $https://emas2.ui.ac.id/course/view.php?id=\pmb{87766}$

key: cerdas

PENDAHULUAN

Sub CPMK 1.1 Mampu membedakan jenisjenis pembelajaran mesin (C2)

Materi Pengenalan machine learning dan artificial intelligence

Referensi Theobald, ch. 1

- Mampu membedakan kasus regresi
- Mampu membedakan kasus clustering
- Mampu membedakan kasus klasifikasi

PERSIAPAN DATA

Sub CPMK 1.2 Mampu menjelaskan tahapan dalam machine learning (C3)

Materi Persiapan data, modelling, correctness, bias-variance, feature extraction & selection, training-testing

Referensi Theobald, ch. 2, 3, 4 & Gruss, ch 11

- Mampu menjelaskan tahap persiapan data
- Mampu menjelaskan tahap memodelkan machine learning
- Mampu menjelaskan bias & variance
- Mampu menjelaskan correctness
- Mampu menjelaskan feature extraction & selection
- Mampu menjelaskan strategi training, testing dan validation

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

REGRESI

Sub CPMK 1.3 Mampu mengimplementasikan metode regresi (C3)

Materi Simple linear regression, Gradient descent, Multiple regression

Referensi Gruss 14,15

- Mampu mengimplementasikan metode simple linear regression dengan metode statistik
- Mampu mengimplementasikan metode simple linear regression dengan metode gradient descent
- Mampu menjelaskan multiple regression

CLUSTERING

Sub CPMK 1.4 Mampu mengimplementasikan metode pengelompokan (clustering) (C3)

Materi Clustering, K-Means, Self Organizing Map (SOM)

Referensi Gruss chapter 19, Theobald chapter 7, Kohonen

- Mampu mengimplementasikan metode K-Means
- Mampu menjelaskan metode SOM

CLASSIFIER NON-ANN

Sub CPMK 1.5 Mampu mengevaluasi teknik klasifikasi untuk penyelesaian permasalahan machine learning (C5)

Materi KNN, Naïve Bayes, Logistic Regression, Decision Tree

Referensi Gruss, ch 12, 13, 16, 17

- Mampu mengevaluasi KNN classifier
- Mampu mengevaluasi Naïve Bayes classifier
- Mampu mengevaluasi Logistic Regression classifier
- Mampu mengevaluasi Decision Tree classifier

Sub CPMK 1.6 Mampu mengevaluasi teknik klasifikasi ANN untuk penyelesaian permasalahan machine learning (C5)

Materi Artificial Neural Networks, Back Propagation Neural Networks

Referensi Gruss chapter 19, Theobald chapter 9, Bishop chapter 5

- Mampu menjabarkan konsep BPNN utuk klasifikasi
- Mampu mengimplementasikan BPNN ke dalam program

PRINCIPAL COMPONENT ANALYSIS

Sub CPMK 1.7 Mampu merancang sistem pengenalan lengkap berbasis ANN (C6)

Materi Principal Compoent Analysis (PCA)

Referensi Lecture notes

Indikator:

Mampu mengimplementasikan reduksi dimensi fitur dengan PCA

DEEP LEARNING

Sub CPMK 1.7 Mampu merancang sistem pengenalan lengkap berbasis ANN (C6)

Materi Deep Learning: CNN, RNN, LSTM
Referensi Bahan bacaan dari Internet (Tensorflow, Keras)
Indikator:

Mampu mengimplementasikan konsep Deep learning untuk klasifikasi

PROYEK 1

Sub CPMK

- 1.5 Mampu mengevaluasi teknik klasifikasi non-ANN untuk penyelesaian permasalahan machine learning (C5)
- 2.1 Mampu menunjukkan proses berpikir kritis dan kreatif dalam menyelesaikan permasalahan kelompok (A3)
- 2.2 Mampu menunjukkan tanggung jawab dalam kerja sama tim untuk menyelesaikan proyek (A3)

Materi KNN, Naïve Bayes, Logistic Regression, Decision Tree

Referensi Gruss, ch 12, 13, 16, 17

- Mampu mengevaluasi Non-ANN classifier
- Mampu menunjukkan proses berpikir kritis dan kreatif dalam menyelesaikan permasalahan kelompok
- Mampu menunjukkan tanggung jawab dalam kerja sama tim untuk menyelesaikan proyek

PROYEK 2

Sub CPMK

- 1.7 Mampu merancang sistem pengenalan lengkap berbasis ANN (C6)
- 2.1 Mampu menunjukkan proses berpikir kritis dan kreatif dalam menyelesaikan permasalahan kelompok (A3)
- 2.2 Mampu menunjukkan tanggung jawab dalam kerja sama tim untuk menyelesaikan proyek (A3)

Materi Pemrosesan Data, ANN, PCA, DNN, CNN, RNN

Referensi Lecture Notes

- Mampu mengevaluasi ANN classifier
- Mampu menunjukkan proses berpikir kritis dan kreatif dalam menyelesaikan permasalahan kelompok
- Mampu menunjukkan tanggung jawab dalam kerja sama tim untuk menyelesaikan proyek

MACHINE LEARNING

WHAT IS MACHINE LEARNING?

Learn from experience

Human

data
Learn from experience

Machine Learning

Follow instructions

Machine

INPUT COMMAND VS INPUT DATA

Input Command Input

Command

Output

Action

Input Data

Input

Learning

Output

Data

Model

Action

SUPERVISED LEARNING

learning patterns from labeled datasets and decoding the relationship between input variables (independent variables) and their known output (dependent variable)

How Supervised Machine Learning Works

STEPI

Provide the machine learning algorithm categorized or "labeled" input and output data from to learn STEP 2

Feed the machine new, unlabeled information to see if it tags new data appropriately. If not, continue refining the algorithm

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLASSIFICATION

Sorting items into categories

REGRESSION

Identifying real values (dollars, weight, etc.)

REGRESSION

UNSUPERVISED LEARNING

focuses on analyzing relationships between input variables and uncovering hidden patterns that can be extracted to create new labels regarding possible outputs.

How **Unsupervised** Machine Learning Works

STEPI

Provide the machine learning algorithm uncategorized, unlabeled input data to see what patterns it finds

STEP 2

Observe and learn from the patterns the machine identifies

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLUSTERING

Identifying similarities in groups

For Example: Are there patterns in the data to indicate certain patients will respond better to this treatment than others?

ANOMALY DETECTION

Identifying abnormalities in data

For Example: Is a hacker intruding in our network?

REINFORCEMENT LEARNING

achieve a specific goal (output) by randomly trialing a vast number of possible input combinations and grading their performance

REINFORCEMENT LEARNING

http://www.sra.vjti.info/

Isilah daftar kelompok yang ada di EMAS

TK-01

- Jelaskan mengenai regresi, klasifikasi, dan clustering dalam machine learning
- 2. Jelaskan mengenai "generative Al" dan apa perbedaannya dengan 3 jenis algoritma tadi (regresi, klasifikasi, *clustering*)
- Buatlah contoh permasalahan untuk mengkategorikan contoh kasus dari ketiga algoritma machine learning:
 - Classification
 - Regression
 - Clustering

Masing-masing 1 kasus

Ambil dari referensi buku atau Internet (tulis sumbernya)

Masalah:

Misalkan Anda diminta untuk membuat sistem pengolahan data cuaca di Indonesia. Diinginkan sistem tersebut dapat memetakan daerah mana saja yang memiliki profil cuaca yang sama/mirip.

Jenis:

CLUSTERING

Success is no accident. It is hard work, perseverance, learning, studying, sacrifice and most of all, love of what you are doing or learning to do.

- Pele