

Exercise 8C

Pure Mathematics 1

1 **a**
$$f(x) = x^7$$

 $f'(x) = 7x^6$

b
$$f(x) = x^8$$

 $f'(x) = 8x^7$

$$\mathbf{c} \quad \mathbf{f}(x) = x^4$$
$$\mathbf{f}'(x) = 4x^3$$

d
$$f(x) = x^{\frac{1}{3}}$$

 $f'(x) = \frac{1}{3}x^{\frac{1}{3}-1} = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}}}$

e
$$f(x) = x^{\frac{1}{4}}$$

 $f'(x) = \frac{1}{4}x^{\frac{1}{4}-1} = \frac{1}{4}x^{-\frac{3}{4}} = \frac{1}{4x^{\frac{3}{4}}}$

$$\mathbf{f} \quad \mathbf{f}(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$$

$$\mathbf{f}'(x) = \frac{1}{3}x^{\frac{1}{3}-1} = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}}}$$

g
$$f(x) = x^{-3}$$

 $f'(x) = -3x^{-3-1} = -3x^{-4}$

h
$$f(x) = x^{-4}$$

 $f'(x) = -4x^{-4-1} = -4x^{-5}$

i
$$f(x) = \frac{1}{x^2} = x^{-2}$$

 $f'(x) = -2x^{-2-1} = -2x^{-3} = -\frac{2}{x^3}$

$$\mathbf{j} \quad \mathbf{f}(x) = \frac{1}{x^5} = x^{-5}$$
$$\mathbf{f}'(x) = -5x^{-5-1} = -5x^{-6} = -\frac{5}{x^6}$$

$$\mathbf{k} \quad \mathbf{f}(x) = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$$

$$\mathbf{f}'(x) = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}} = -\frac{1}{2x^{\frac{3}{2}}}$$

1 I
$$f(x) = \frac{1}{\sqrt[3]{x}} = x^{-\frac{1}{3}}$$

 $f'(x) = -\frac{1}{3}x^{-\frac{1}{3}-1} = -\frac{1}{3}x^{-\frac{4}{3}} = -\frac{1}{3x^{\frac{4}{3}}}$

m
$$f(x) = x^3 \times x^6 = x^{3+6} = x^9$$

 $f'(x) = 9x^8$

n
$$f(x) = x^2 \times x^3 = x^5$$

 $f'(x) = 5x^4$

o
$$f(x) = x \times x^2 = x^3$$

 $f'(x) = 3x^2$

$$\mathbf{p} \quad \mathbf{f}(x) = \frac{x^2}{x^4} = x^{-2}$$
$$\mathbf{f}'(x) = -2x^{-2-1} = -2x^{-3} = -\frac{2}{x^3}$$

$$\mathbf{q}$$
 $f(x) = \frac{x^3}{x^2} = x$
 $f'(x) = 1x^0 = 1$

$$\mathbf{r} \quad \mathbf{f}(x) = \frac{x^6}{x^3} = x^3$$
$$\mathbf{f}'(x) = 3x^2$$

2 **a**
$$y = 3x^2$$

$$\frac{dy}{dx} = 2 \times 3x^{2-1} = 6x$$

b
$$y = 6x^9$$

 $\frac{dy}{dx} = 9 \times 6x^{9-1} = 54x^8$

c
$$y = \frac{1}{2}x^4$$

 $\frac{dy}{dx} = 4 \times \frac{1}{2}x^{4-1} = 2x^3$

d
$$y = 20x^{\frac{1}{4}}$$

 $\frac{dy}{dx} = \frac{1}{4} \times 20x^{\frac{1}{4}-1} = 5x^{-\frac{3}{4}} = \frac{5}{x^{\frac{3}{4}}}$

Pure Mathematics 1

2 e
$$y = 6x^{\frac{5}{4}}$$

$$\frac{dy}{dx} = \frac{5}{4} \times 6x^{\frac{5}{4} - 1} = \frac{15}{2}x^{\frac{1}{4}}$$

$$\mathbf{f} \quad y = 10x^{-1}$$
$$\frac{dy}{dx} = -1 \times 10x^{-1-1} = -10x^{-2}$$

$$\mathbf{g} \quad y = \frac{4x^6}{2x^3} = 2x^3$$
$$\frac{dy}{dx} = 3 \times 2x^{3-1} = 6x^2$$

h
$$y = \frac{x}{8x^5} = \frac{1}{8}x^{-4}$$

 $\frac{dy}{dx} = -4 \times \frac{1}{8}x^{-4-1} = -\frac{1}{2}x^{-5} = -\frac{1}{2x^5}$

i
$$y = -\frac{2}{\sqrt{x}} = -2x^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = \left(-\frac{1}{2}\right) \times (-2)x^{-\frac{1}{2}-1} = x^{-\frac{3}{2}} = \frac{1}{x^{\frac{3}{2}}}$$

$$\mathbf{j} \quad y = \sqrt{\frac{5x^4 \times 10x}{2x^2}} = 5x^{\frac{3}{2}}$$
$$\frac{dy}{dx} = \frac{3}{2} \times 5x^{\frac{3}{2} - 1} = \frac{15}{2}x^{\frac{1}{2}} = \frac{15\sqrt{x}}{2}$$

3 **a**
$$y = 3\sqrt{x} = 3x^{\frac{1}{2}}$$

 $\frac{dy}{dx} = \frac{1}{2} \times 3x^{\frac{1}{2}-1} = \frac{3}{2}x^{-\frac{1}{2}} = \frac{3}{2\sqrt{x}}$
When $x = 4$, $\frac{dy}{dx} = \frac{3}{2\sqrt{4}} = \frac{3}{4}$

b When
$$x = 9$$
, $\frac{dy}{dx} = \frac{3}{2\sqrt{9}} = \frac{3}{6} = \frac{1}{2}$

c When
$$x = \frac{1}{4}$$
, $\frac{dy}{dx} = \frac{3}{2\sqrt{\frac{1}{4}}} = \frac{3}{1} = 3$

d When
$$x = \frac{9}{16}$$
, $\frac{dy}{dx} = \frac{3}{2\sqrt{\frac{9}{16}}} = \frac{3}{\frac{3}{2}} = 2$

4
$$2y^{2} - x^{3} = 0$$

 $2y^{2} = x^{3}$
 $y^{2} = \frac{1}{2}x^{3}$
 $y = \frac{1}{\sqrt{2}}x^{\frac{3}{2}}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2} \times \frac{1}{\sqrt{2}} x^{\frac{3}{2}-1} = \frac{3}{2\sqrt{2}} x^{\frac{1}{2}} = \frac{3}{2} \sqrt{\frac{x}{2}}$$