Tema 1. Anàlisi d'algorismes

Estructures de Dades i Algorismes

FIB

Transparències d' Antoni Lozano (amb edicions menors d'altres professors)

Q12021 - 22

EDA, grup 30

- Teoria: Albert Oliveras
- Problemes: Gabriel Valiente (P31), Salvador Roura (P32)
- Laboratori: Gabriel Valiente (L31), Salvador Roura (L32), Antoni Lozano (L33)
- Email: oliveras@cs.upc.edu
- Despatx: 114, edifici Ω
- Avaluació:

```
NPP = nota de l'examen parcial de paper (entre 0 i 10)
NFO = nota de l'examen final d'ordinador (entre 0 i 10)
NFE = nota de l'examen final escrit (entre 0 i 10)
NJ = nota del joc (entre 0 i 10)
```

```
NOTA = min(10, max (30\% NPP + 30\% NFO + 30\% NFE + 20\% NJ)

30\% NFO + 60\% NFE + 20\% NJ))
```

Temari

- Anàlisi d'Algorismes. Cost en temps i espai. Cas pitjor, millor i mitjà. Notació asimptòtica. Càlcul del cost d'algorismes iteratius i recursius.
- Algorismes de Dividir i Vèncer. Mergesort. Quicksort. Algorisme de Karatsuba per multiplicar nombres llargs. Algorisme de Strassen per multiplicar matrius. Altres exemples.
- Oiccionaris. Operacions. Taules. Taules ordenades. Llistes. Llistes ordenades. Taules de dispersió. Arbres binaris de cerca. Arbres AVL.
- Oues amb Prioritats. Operacions. Heaps. Heapsort.
- Grafs. Operacions. Representació en matrius d'adjacència. Representació en llistes d'adjacència. Representació implícita. Recorregut en fondària (DFS). Recorregut en amplada (BFS). Ordenació topològica. Algorisme de Dijkstra per camins mínims un-a-tots.
- 6 Algorismes de Generació i Cerca Exhaustiva. Principis. Exemples.
- Nocions d'Intractabilitat i d'Indecidibilitat. Introducció bàsica a les classes P i NP, a les reduccions i a la NP-Completesa.

Tema 1. Anàlisi d'algorismes

- 1 Temps de càlcul i espai de memòria
 - Eficiència dels algorismes
 - Mida de l'entrada i cost
 - Ordre de magnitud
- 2 Notació asimptòtica
 - Notació asimptòtica: definicions
 - Notació asimptòtica: propietats
 - Formes de creixement
- 3 Cost dels algorismes
 - Algorismes no recursius
 - Algorismes recursius
 - Teoremes mestres

Tema 1. Anàlisi d'algorismes

- 1 Temps de càlcul i espai de memòria
 - Eficiència dels algorismes
 - Mida de l'entrada i cost
 - Ordre de magnitud
- 2 Notació asimptòtica
 - Notació asimptòtica: definicions
 - Notació asimptòtica: propietats
 - Formes de creixement
- 3 Cost dels algorismes
 - Algorismes no recursius
 - Algorismes recursius
 - Teoremes mestres

Objectius:

- Comparar solucions algorísmiques alternatives
- Millorar els algorismes existents
- Predir els recursos que farà servir un algorisme

Objectius:

- Comparar solucions algorísmiques alternatives
- Millorar els algorismes existents
- Predir els recursos que farà servir un algorisme

Objectius:

- Comparar solucions algorísmiques alternatives
- Millorar els algorismes existents
- Predir els recursos que farà servir un algorisme

Consideracions sobre l'eficiència:

- Depèn de la mida de les entrades
- És un concepte relatiu: hi intervenen compilador, màquina, ...
- Aquests factors afecten de forma lineal

Consideracions sobre l'eficiència:

- Depèn de la mida de les entrades
- És un concepte relatiu: hi intervenen compilador, màquina, ...
- Aquests factors afecten de forma lineal

Consideracions sobre l'eficiència:

- Depèn de la mida de les entrades
- És un concepte relatiu: hi intervenen compilador, màquina, ...
- Aquests factors afecten de forma lineal

Exemple 1: el problema de selecció

Problema de selecció

Donada una llista de *n* naturals, determinar el *k*-èsim més gran.

Primera solució

Ordenar els nombres en un vector de forma decreixent i retornar el *k*-èsim.

Segona solució

Escriure els *k* primers en un vector i ordenar-los de forma decreixent. Cada element següent es tracta per separat:

- si és més petit que el *k*-èsim del vector, es descarta;
- si no, se situa correctament en el vector i s'elimina el més petit.

Retornar l'element de la k-èsima posició.

Exemple 1: el problema de selecció

Problema de selecció

Donada una llista de *n* naturals, determinar el *k*-èsim més gran.

Primera solució

Ordenar els nombres en un vector de forma decreixent i retornar el k-èsim.

Segona solució

Escriure els *k* primers en un vector i ordenar-los de forma decreixent. Cada element següent es tracta per separat:

- si és més petit que el k-èsim del vector, es descarta;
- si no, se situa correctament en el vector i s'elimina el més petit.

Retornar l'element de la k-èsima posició.

Exemple 1: el problema de selecció

Problema de selecció

Donada una llista de *n* naturals, determinar el *k*-èsim més gran.

Primera solució

Ordenar els nombres en un vector de forma decreixent i retornar el k-èsim.

Segona solució

Escriure els *k* primers en un vector i ordenar-los de forma decreixent. Cada element següent es tracta per separat:

- si és més petit que el k-èsim del vector, es descarta;
- si no, se situa correctament en el vector i s'elimina el més petit.

Retornar l'element de la k-èsima posició.

Exemple 2: el mur infinit

Mur infinit

Estem davant d'un mur que s'allarga indefinidament en totes dues direccions. Volem trobar l'única porta que el travessa, però no sabem a quina distància està ni en quina direcció. Tot i que és fosc, portem una espelma que ens permet veure la porta quan ja hi som a prop.

Exemple 2: el mur infinit

Primera solució

- Avancem 1 metre i tornem a l'origen
- Retrocedim 2 metres i tornem a l'origen
- Avancem 3 metres i tornem a l'origen
- Retrocedim 4 metres i tornem a l'origen
- (recorrem sempre un metre més en direcció contrària)

Exemple 2: el mur infinit

Segona solució

- Avancem 1 metre i tornem a l'origen
- Retrocedim 2 metres i tornem a l'origen
- Avancem 4 metres i tornem a l'origen
- Retrocedim 8 metres i tornem a l'origen
- (recorrem sempre el doble de distància en direcció contrària)

Donat un algorisme A amb conjunt d'entrades E, el cost d'A (en temps, o en espai) es pot expressar com una funció

$$T: E \to \mathbb{R}^+$$
.

Però calcular T per cada entrada pot ser complicat i poc manejable.

És més útil agrupar les entrades amb la mateixa mida i estudiar el cost sobre aquestes entrades en conjunt.

Donat un algorisme A amb conjunt d'entrades E, el cost d'A (en temps, o en espai) es pot expressar com una funció

$$T: E \to \mathbb{R}^+$$
.

Però calcular *T* per cada entrada pot ser complicat i poc manejable.

Es més útil agrupar les entrades amb la mateixa mida, i estudiar el cost sobre aquestes entrades en conjunt.

Donat un algorisme A amb conjunt d'entrades E, el cost d'A (en temps, o en espai) es pot expressar com una funció

$$T: E \to \mathbb{R}^+$$
.

Però calcular *T* per cada entrada pot ser complicat i poc manejable.

És més útil agrupar les entrades amb la mateixa mida, i estudiar el cost sobre aquestes entrades en conjunt.

Mida

La mida d'una entrada x és el nombre de símbols necessari per codificar-la. Es representa amb |x|.

Tipus d'entrades

Nombres naturals — codificació en valor (en "unari")

$$|15| = 15$$

Nombres naturals — codificació en binari

$$|15| = 4$$
 perquè $15_{10} = 1111_2$

Llistes, vectors → nombre de components

$$|(23, 1, 7, 0, 12)| = 5$$

Mida

La mida d'una entrada x és el nombre de símbols necessari per codificar-la. Es representa amb |x|.

Tipus d'entrades

Nombres naturals → codificació en valor (en "unari")

$$|15| = 15$$

Nombres naturals → codificació en binari

$$|15| = 4 \text{ perquè } 15_{10} = 1111_2$$

Llistes, vectors → nombre de components

$$|(23, 1, 7, 0, 12)| = 5$$

- Cas pitjor. $T_{pitjor}(n) = \max\{T(x) \mid x \in E \land |x| = n\}$ Ofereix garanties sobre uns límits que l'algorisme no superarà.
- Cas millor. $T_{millor}(n) = \min\{T(x) \mid x \in E \land |x| = n\}$ Poc útil.
- Cas mig. T_{mig}(n) = ∑_{x∈E,|x|=n} Pr(x)T(x),
 on Pr(x) és la probabilitat d'escollir l'entrada x entre totes les de mida n
 Cal definir com es distribueix la probabilitat, i sol ser difícil de calcular.

- Cas pitjor. T_{pitjor}(n) = max{T(x) | x ∈ E ∧ |x| = n}
 Ofereix garanties sobre uns límits que l'algorisme no superarà.
- Cas millor. $T_{millor}(n) = \min\{T(x) \mid x \in E \land |x| = n\}$ Poc útil.
- Cas mig. $T_{mig}(n) = \sum_{x \in E, |x| = n} Pr(x) T(x)$, on Pr(x) és la probabilitat d'escollir l'entrada x entre totes les de mida n Cal definir com es distribueix la probabilitat, i sol ser difícil de calcular.

- Cas pitjor. T_{pitjor}(n) = max{T(x) | x ∈ E ∧ |x| = n}
 Ofereix garanties sobre uns límits que l'algorisme no superarà.
- Cas millor. $T_{millor}(n) = \min\{T(x) \mid x \in E \land |x| = n\}$ Poc útil.
- Cas mig. $T_{mig}(n) = \sum_{x \in E, |x| = n} Pr(x) T(x)$, on Pr(x) és la probabilitat d'escollir l'entrada x entre totes les de mida n Cal definir com es distribueix la probabilitat, i sol ser difícil de calcular.

Necessitem una notació que:

permeti expressar una fita superior de

$$T_{pitjor}(n) = \max\{T(x) \mid x \in E \land |x| = n\}.$$

(sabrem que l'algorisme no superarà la fita)

 que sigui independent de constants multiplicatives (així no dependrà de la implementació)

Notació O gran

Donada una funció f, $\mathcal{O}(f)$ representa la classe de funcions que "creixen com f o més a poc a poc".

Formalment, $g \in \mathcal{O}(f)$ si existeixen c > 0 i $n_0 \in \mathbb{N}$ tals que

$$\forall n \geq n_0 \quad g(n) \leq c \cdot f(n)$$

Necessitem una notació que:

permeti expressar una fita superior de

$$T_{pitjor}(n) = \max\{T(x) \mid x \in E \land |x| = n\}.$$

(sabrem que l'algorisme no superarà la fita)

 que sigui independent de constants multiplicatives (així no dependrà de la implementació)

Notació O gran

Donada una funció f, $\mathcal{O}(f)$ representa la classe de funcions que "creixen com f o més a poc a poc".

Formalment, $g \in \mathcal{O}(f)$ si existeixen c > 0 i $n_0 \in \mathbb{N}$ tals que

$$\forall n \geq n_0 \quad g(n) \leq c \cdot f(n).$$

Necessitem una notació que:

permeti expressar una fita superior de

$$T_{pitjor}(n) = \max\{T(x) \mid x \in E \land |x| = n\}.$$

(sabrem que l'algorisme no superarà la fita)

 que sigui independent de constants multiplicatives (així no dependrà de la implementació)

Notació O gran

Donada una funció f, $\mathcal{O}(f)$ representa la classe de funcions que "creixen com f o més a poc a poc".

Formalment, $g \in \mathcal{O}(f)$ si existeixen c > 0 i $n_0 \in \mathbb{N}$ tals que

$$\forall n \geq n_0 \quad g(n) \leq c \cdot f(n).$$

Necessitem una notació que:

permeti expressar una fita superior de

$$T_{pitjor}(n) = \max\{T(x) \mid x \in E \land |x| = n\}.$$

(sabrem que l'algorisme no superarà la fita)

 que sigui independent de constants multiplicatives (així no dependrà de la implementació)

Notació O gran

Donada una funció f, $\mathcal{O}(f)$ representa la classe de funcions que "creixen com f o més a poc a poc".

Formalment, $g \in \mathcal{O}(f)$ si existeixen c > 0 i $n_0 \in \mathbb{N}$ tals que

$$\forall n \geq n_0 \quad g(n) \leq c \cdot f(n).$$

Exemple

Sigui $f(n) = 3n^3 + 5n^2 - 7n + 41$. Llavors, podem afirmar que $f \in \mathcal{O}(n^3)$.

Per justificar-ho, només cal trobar c i n_0 que compleixin:

$$\forall n \geq n_0 \ f(n) \leq cn^3$$
.

Però $3n^3 + 5n^2 - 7n + 41 \le 8n^3 + 41$. Triem c = 9. Llavors,

$$8n^3+41\leq 9n^3 \Longleftrightarrow 41\leq n^3,$$

que es compleix a partir de $n_0 = 4$. Per tant,

$$\forall n \geq 4 \quad f(n) \leq 9n^3,$$

i llavors $f(n) = \mathcal{O}(n^3)$ amb c = 9 i $n_0 = 4$.

(De fet, és fàcil trobar constants c i n_0 més petites.)

Tema 1. Anàlisi d'algorismes

- Temps de càlcul i espai de memòria
 - Eficiència dels algorismes
 - Mida de l'entrada i cost
 - Ordre de magnitud
- 2 Notació asimptòtica
 - Notació asimptòtica: definicions
 - Notació asimptòtica: propietats
 - Formes de creixement
- 3 Cost dels algorismes
 - Algorismes no recursius
 - Algorismes recursius
 - Teoremes mestres

Notació asimptòtica: definicions

- La notació asimptòtica permet classificar les funcions segons com creixen "a la llarga".
- Se centra en el comportament de les funcions per a entrades grans. Per exemple, $10^6 n > n^2$ fins a un cert valor de n que podem trobar així:

$$10^6 n > n^2 \iff 10^6 > n$$
.

Per a $n \ge 10^6$, doncs, n^2 és més gran que $10^6 n$. En aquest cas, direm que la funció $g(n) = 10^6 n$ està fitada per $f(n) = n^2$ asimptòticament.

• La notació $\mathcal{O}(g)$, anomenada "O gran", representa el conjunt de funcions fitades asimptòticament per g.

Notació asimptòtica: definicions

Notació ⊖ ((a): fita exacta asimptòtica)

$$\Theta(g) = \{f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c_1, c_2 \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ c_1 g(n) \leq f(n) \leq c_2 g(n)\}$$

Notació O gran ((b): fita superior asimptòtica)

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \quad f(n) \leq c \cdot g(n) \}$$

Notació Ω ((c): fita inferior asimptòtica)

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \quad f(n) \geq c \cdot g(n) \}$$

Notació ⊖

Notació ⊖ (fita exacta asimptòtica)

$$\Theta(g) = \{f: \mathbb{N} \to \mathbb{R}^+ \mid \exists c_1, c_2 \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ c_1 g(n) \leq f(n) \leq c_2 g(n)\}$$

Exemples

- $75n \in \Theta(n)$
- $1023n^2 \notin \Theta(n)$
- $n^2 \notin \Theta(n)$
- $2^n \notin \Theta(2^{n^2})$
- $\Theta(n) \neq \Theta(n^2)$

Notació O gran

Notació O gran (fita superior asimptòtica)

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \quad f(n) \leq c \cdot g(n) \}$$

Exemples

- $3n^2 + 5n 7 \in \mathcal{O}(n^2)$
- n + 15 ∈ O(n)
- $\mathcal{O}(n^5) \subseteq \mathcal{O}(n^6)$
- $n^3 \notin \mathcal{O}(n^2)$
- $n^3 \in \mathcal{O}(2^n)$

Notació Ω

Notació Ω ((c): fita inferior asimptòtica)

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \quad f(n) \ge c \cdot g(n) \}$$

Exemples

- $2^n \in \Omega(n)$
- $n^2 \in \Omega(n)$
- $n \in \Omega(n)$
- $n \notin \Omega(n^2)$
- $\Omega(n^6) \subseteq \Omega(n^5)$

Relacions entre \mathcal{O} , Ω i Θ

Donades dues funcions f i g:

- $f \in \Omega(g) \iff g \in \mathcal{O}(f)$
- $\Theta(f) = \mathcal{O}(f) \cap \Omega(f)$
- $f \in \Theta(g) \iff f \in \mathcal{O}(g) \text{ i } f \in \Omega(g)$

Regles del límit

- $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in \mathcal{O}(g)$ però $f \notin \Omega(g)$
- $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f \in \Omega(g)$ però $f \notin \mathcal{O}(g)$
- $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$, on $0 < c < \infty \Rightarrow f \in \Theta(g)$ i $g \in \Theta(f)$

Propietats de l'O gran

- Reflexivitat. $f \in \mathcal{O}(f)$
- Transitivitat. $h \in \mathcal{O}(g) \land g \in \mathcal{O}(f) \Rightarrow h \in \mathcal{O}(f)$
- Caracterització. $g \in \mathcal{O}(f) \Longleftrightarrow \mathcal{O}(g) \subseteq \mathcal{O}(f)$
- Suma. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 + g_2 \in \mathcal{O}(f_1 + f_2) = \mathcal{O}(\max(f_1, f_2))$
- Producte. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 \cdot g_2 \in \mathcal{O}(f_1 \cdot f_2)$
- Invariancia multiplicativa. Per a tota constant $c \in \mathbb{R}^+$, $\mathcal{O}(f) = \mathcal{O}(c \cdot f)$

Propietats de l'O gran

- Reflexivitat. $f \in \mathcal{O}(f)$
- Transitivitat. $h \in \mathcal{O}(g) \land g \in \mathcal{O}(f) \Rightarrow h \in \mathcal{O}(f)$
- Caracterització. $g \in \mathcal{O}(f) \Longleftrightarrow \mathcal{O}(g) \subseteq \mathcal{O}(f)$
- Suma. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 + g_2 \in \mathcal{O}(f_1 + f_2) = \mathcal{O}(\max(f_1, f_2))$
- Producte. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 \cdot g_2 \in \mathcal{O}(f_1 \cdot f_2)$
- Invariància multiplicativa. Per a tota constant $c \in \mathbb{R}^+$, $\mathcal{O}(f) = \mathcal{O}(c \cdot f)$

Propietats de l'O gran

- Reflexivitat. $f \in \mathcal{O}(f)$
- Transitivitat. $h \in \mathcal{O}(g) \land g \in \mathcal{O}(f) \Rightarrow h \in \mathcal{O}(f)$
- Caracterització. $g \in \mathcal{O}(f) \Longleftrightarrow \mathcal{O}(g) \subseteq \mathcal{O}(f)$
- Suma. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 + g_2 \in \mathcal{O}(f_1 + f_2) = \mathcal{O}(\max(f_1, f_2))$
- Producte. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 \cdot g_2 \in \mathcal{O}(f_1 \cdot f_2)$
- Invariancia multiplicativa. Per a tota constant $c \in \mathbb{R}^+$, $\mathcal{O}(f) = \mathcal{O}(c \cdot f)$

Propietats de l'O gran

- Reflexivitat. $f \in \mathcal{O}(f)$
- Transitivitat. $h \in \mathcal{O}(g) \land g \in \mathcal{O}(f) \Rightarrow h \in \mathcal{O}(f)$
- Caracterització. $g \in \mathcal{O}(f) \Longleftrightarrow \mathcal{O}(g) \subseteq \mathcal{O}(f)$
- Suma. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 + g_2 \in \mathcal{O}(f_1 + f_2) = \mathcal{O}(\max(f_1, f_2))$
- *Producte.* $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 \cdot g_2 \in \mathcal{O}(f_1 \cdot f_2)$
- Invariància multiplicativa. Per a tota constant $c \in \mathbb{R}^+$, $\mathcal{O}(f) = \mathcal{O}(c \cdot f)$

Propietats de l'O gran

- Reflexivitat. $f \in \mathcal{O}(f)$
- Transitivitat. $h \in \mathcal{O}(g) \land g \in \mathcal{O}(f) \Rightarrow h \in \mathcal{O}(f)$
- Caracterització. $g \in \mathcal{O}(f) \Longleftrightarrow \mathcal{O}(g) \subseteq \mathcal{O}(f)$
- Suma. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 + g_2 \in \mathcal{O}(f_1 + f_2) = \mathcal{O}(\max(f_1, f_2))$
- Producte. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 \cdot g_2 \in \mathcal{O}(f_1 \cdot f_2)$
- Invariància multiplicativa. Per a tota constant $c \in \mathbb{R}^+$, $\mathcal{O}(f) = \mathcal{O}(c \cdot f)$

Propietats de l'O gran

- Reflexivitat. $f \in \mathcal{O}(f)$
- Transitivitat. $h \in \mathcal{O}(g) \land g \in \mathcal{O}(f) \Rightarrow h \in \mathcal{O}(f)$
- Caracterització. $g \in \mathcal{O}(f) \Longleftrightarrow \mathcal{O}(g) \subseteq \mathcal{O}(f)$
- Suma. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 + g_2 \in \mathcal{O}(f_1 + f_2) = \mathcal{O}(\max(f_1, f_2))$
- Producte. $g_1 \in \mathcal{O}(f_1) \land g_2 \in \mathcal{O}(f_2) \Rightarrow g_1 \cdot g_2 \in \mathcal{O}(f_1 \cdot f_2)$
- Invariància multiplicativa. Per a tota constant $c \in \mathbb{R}^+$, $\mathcal{O}(f) = \mathcal{O}(c \cdot f)$

Propietats de ⊖

- Reflexivitat. $f \in \Theta(f)$
- Transitivitat. $h \in \Theta(g) \land g \in \Theta(f) \Rightarrow h \in \Theta(f)$
- Simetria. $g \in \Theta(f) \Longleftrightarrow f \in \Theta(g) \Longleftrightarrow \Theta(g) = \Theta(f)$
- Suma. $g_1 \in \Theta(f_1) \land g_2 \in \Theta(f_2) \Rightarrow g_1 + g_2 \in \Theta(f_1 + f_2) = \Theta(\max(f_1, f_2))$
- Producte. $g_1 \in \Theta(f_1) \land g_2 \in \Theta(f_2) \Rightarrow g_1 \cdot g_2 \in \Theta(f_1 \cdot f_2)$
- Invariància multiplicativa. Per a tota constant $c \in \mathbb{R}^+$, $\Theta(f) = \Theta(c \cdot f)$

Notació de classes

Si \mathcal{F}_1 i \mathcal{F}_2 són classes de funcions (com ara $\mathcal{O}(f)$ o $\Omega(f)$), definim:

- **○** $\mathcal{F}_1 + \mathcal{F}_2 = \{ f + g \mid f \in \mathcal{F}_1 \land g \in \mathcal{F}_2 \}$
- $\bullet \ \mathcal{F}_1 \cdot \mathcal{F}_2 = \{ f \cdot g \mid f \in \mathcal{F}_1 \land g \in \mathcal{F}_2 \}$

Regles de la suma i el producte (segona versio)

Donades dues funcions f i g:

•
$$\mathcal{O}(f) + \mathcal{O}(g) = \mathcal{O}(f+g) = \mathcal{O}(\max\{f,g\})$$

•
$$\mathcal{O}(f) \cdot \mathcal{O}(g) = \mathcal{O}(f \cdot g)$$

$$\Theta(f) \cdot \Theta(g) = \Theta(f \cdot g)$$

Notació de classes

Si \mathcal{F}_1 i \mathcal{F}_2 són classes de funcions (com ara $\mathcal{O}(f)$ o $\Omega(f)$), definim:

Regles de la suma i el producte (segona versió)

Donades dues funcions f i g:

- $O(f) \cdot \mathcal{O}(g) = \mathcal{O}(f \cdot g)$
- $\Theta(f) + \Theta(g) = \Theta(f+g) = \Theta(\max\{f,g\})$
- $\Theta(f) \cdot \Theta(g) = \Theta(f \cdot g)$

Polinomis

Sigui $p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0$ amb $a_k > 0$. Aleshores $p(n) \in \Theta(n^k)$

Logarismes

Siguin a, b > 1. Aleshores $\log_a(n) \in \Theta(\log_b(n))$

Logarismes, polinomis i exponencials

Siguin a > 0, b > 0, c > 1:

- $(\ln n)^a \in \mathcal{O}(n^b)$ però $(\ln n)^a \notin \Omega(n^b)$ [de fet, $\lim_{n\to\infty} \frac{(\ln n)^a}{n^b} = 0$]
- $n^b \in \mathcal{O}(c^n)$ però $n^b \notin \Omega(c^n)$ [de fet, $\lim_{n \to \infty} \frac{n^b}{c^n} = 0$]

Exercici: Compara asimptòticament

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test bàsic de primalitat.
- Lineal $\Theta(n)$. Cerca sequencial en un vector
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadratic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test basic de primalitat.
- Lineal $\Theta(n)$. Cerca sequencial en un vector.
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test bàsic de primalitat.
- Lineal $\Theta(n)$. Cerca sequencial en un vector
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$.

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test bàsic de primalitat.
- Lineal $\Theta(n)$. Cerca sequencial en un vector.
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$.

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test bàsic de primalitat.
- Lineal $\Theta(n)$. Cerca seqüencial en un vector.
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- ullet Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida n imes n.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$.

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test bàsic de primalitat.
- Lineal $\Theta(n)$. Cerca seqüencial en un vector.
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$.

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test basic de primalitat.
- Lineal $\Theta(n)$. Cerca sequencial en un vector.
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test bàsic de primalitat.
- Lineal $\Theta(n)$. Cerca sequencial en un vector.
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test bàsic de primalitat.
- Lineal $\Theta(n)$. Cerca sequencial en un vector.
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$.

- Constant $\Theta(1)$. Decidir si un nombre és parell o senar.
- Logarítmic $\Theta(\log n)$. Cerca binària.
- Radical $\Theta(\sqrt{n})$. Test basic de primalitat.
- Lineal $\Theta(n)$. Cerca sequencial en un vector.
- Quasilineal $\Theta(n \log n)$. Ordenació eficient d'un vector.
- Quadràtic $\Theta(n^2)$. Suma de dues matrius quadrades de mida $n \times n$.
- Cúbic $\Theta(n^3)$. Producte de dues matrius quadrades de mida $n \times n$.
- Polinòmic $\Theta(n^k)$, per a $k \ge 1$ constant. Enumerar combinacions (n elements presos de k en k).
- Exponencial $\Theta(k^n)$, per a k constant. Cerca en un espai de configuracions (d'amplada k i alçada n).
- Altres funcions: $\Theta(n!)$, $\Theta(n^n)$.

Taula 1 (Garey/Johnson, Computers and Intractability)

Comparació de funcions polinòmiques i exponencials.

cost	10	20	30	40	50
n	0.00001 s	0.00002 s	0.00003 s	0.00004 s	0.00005 s
n²	0.0001 s	0.0004 s	0.0009 s	0.0016 s	0.0025 s
n^3	0.001 s	0.008 s	0.027 s	0.064 s	0.125 s
п ⁵	0.1 s	3.2 s	24.3 s	1.7 min	5.2 min
2^n	0.001 s	1.0 s	17.9 min	12.7 dies	35.7 anys
3 ⁿ	0.059 s	58 min	6.5 anys	3855 segles	2×10^8 segles

Taula 2 (Garey/Johnson, Computers and Intractability)

Efecte de les millores tecnològiques en algorismes polinòmics i exponencials

cost	tecnologia actual	tecnologia ×100	tecnologia ×1000
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n²	N_2	10 <i>N</i> ₂	31.6 <i>N</i> ₂
n^3	N_3	$4.64N_{3}$	10 <i>N</i> ₃
2 ⁿ	N_4	$N_4 + 6.64$	$N_4 + 9.97$
3 ⁿ	<i>N</i> ₅	$N_5 + 4.19$	$N_5 + 6.29$

Problema de selecció

Donada una llista de *n* naturals, determinar el *k*-èsim més gran.

Primera solució

Ordenar els nombres en un vector de forma decreixent i retornar el *k*-èsim.

Segona solució

Escriure els *k* primers en un vector i ordenar-los de forma decreixent. Cada element següent es tracta per separat:

- si és més petit que el k-èsim del vector, es descarta;
- si no, se situa correctament en el vector i s'elimina el més petit.

Problema de selecció

Donada una llista de *n* naturals, determinar el *k*-èsim més gran.

Primera solució

Ordenar els nombres en un vector de forma decreixent i retornar el k-èsim.

Segona solució

Escriure els *k* primers en un vector i ordenar-los de forma decreixent. Cada element següent es tracta per separat:

- si és més petit que el k-èsim del vector, es descarta;
- si no, se situa correctament en el vector i s'elimina el més petit.

Problema de selecció

Donada una llista de *n* naturals, determinar el *k*-èsim més gran.

Primera solució

Ordenar els nombres en un vector de forma decreixent i retornar el k-èsim.

Segona solució

Escriure els *k* primers en un vector i ordenar-los de forma decreixent. Cada element següent es tracta per separat:

- si és més petit que el k-èsim del vector, es descarta;
- si no, se situa correctament en el vector i s'elimina el més petit.

Problema de selecció

Donada una llista de *n* naturals, determinar el *k*-èsim més gran.

Primera solució

Ordenar els nombres en un vector de forma decreixent i retornar el k-èsim.

- amb un algorisme d'ordenació bàsic (bombolla, inserció): $\mathcal{O}(n^2)$
- amb un algorisme d'ordenació eficient: $\mathcal{O}(n \log n)$

Problema de selecció

Donada una llista de *n* naturals, determinar el *k*-èsim més gran.

Segona solució

Escriure els *k* primers en un vector i ordenar-los. Cada element següent es tracta per separat:

- si és més petit que el k-èsim del vector, es descarta;
- si no, se situa correctament en el vector i s'elimina el més petit.

$$\mathcal{O}((k\log k) + (n-k)\cdot k)$$

- Si k és constant, és $\mathcal{O}(k \cdot n) = \mathcal{O}(n)$
- Si $k = \lceil n/2 \rceil$, és $\mathcal{O}(\frac{n}{2} \cdot \frac{n}{2}) = \mathcal{O}(n^2)$

Exemple 2: el mur infinit

Mur infinit

Estem davant d'un mur que s'allarga indefinidament en totes dues direccions. Volem trobar l'única porta que el travessa, però no sabem a quina distància està ni en quina direcció. Tot i que és fosc, portem una espelma que ens permet veure la porta quan ja hi som a prop.

Exemple 2: el mur infinit

Primera solució

- Avancem 1 metre i tornem a l'origen
- Retrocedim 2 metres i tornem a l'origen
- Avancem 3 metres i tornem a l'origen
- Retrocedim 4 metres i tornem a l'origen
- (recorrem sempre un metre més en direcció contrària)

Temps quan la porta està a distància n:

$$T(n) = 2\sum_{i=1}^{n-1} i + n = 2\frac{(n-1)n}{2} + n = n^2 \in \mathcal{O}(n^2).$$

$$\left(\text{recordem que }\sum_{i=1}^{n-1}i=\frac{(n-1)n}{2}\right)$$

Exemple 2: el mur infinit

Segona solució

- Avancem 1 metre i tornem a l'origen
- Retrocedim 2 metres i tornem a l'origen
- Avancem 4 metres i tornem a l'origen
- Retrocedim 8 metres i tornem a l'origen
- (recorrem sempre el doble de distància en direcció contrària)

Si la porta es troba a distància $n = 2^k$, aleshores

$$T(n) = 2\sum_{i=0}^{k-1} 2^i + 2^k = 2(2^k - 1) + 2^k = 3n - 2 \in \mathcal{O}(n).$$

(recordem que
$$\sum_{i=0}^{k-1} 2^i = 2^k - 1$$
)

Tema 1. Anàlisi d'algorismes

- Temps de càlcul i espai de memòria
 - Eficiència dels algorismes
 - Mida de l'entrada i cost
 - Ordre de magnitud
- 2 Notació asimptòtica
 - Notació asimptòtica: definicions
 - Notació asimptòtica: propietats
 - Formes de creixement
- 3 Cost dels algorismes
 - Algorismes no recursius
 - Algorismes recursius
 - Teoremes mestres

Algorismes no recursius

Càlcul del cost (en temps):

- El cost d'una operació elemental és Θ(1). Això inclou:
 - una assignació de tipus bàsics (int, bool, double, ...)
 - un increment o decrement d'una variable de tipus bàsic
 - una operació aritmètica
 - una lectura o escriptura de tipus bàsic
 - una comparació
 - l'accés a una component d'un vector
- Avaluar una expressió té cost igual a la suma dels costos de les operacions que s'hi fan (incloses les crides a les funcions, si n'hi ha).
- El cost de return E és la suma del cost de l'avaluació de l'expressió E més el cost de copiar (assignar) el resultat.
- El cost del pas de paràmetres per referència és Θ(1)
- El cost de construir o copiar un vector de mida n (assignació, pas per valor, return) és Θ(n)

Algorismes no recursius

Si el cost d'un fragment F₁ és C₁ i el d'un fragment F₂ és C₂,
 llavors el cost de la composició seqüencial

$$F_1; F_2$$

és
$$C_1 + C_2$$
.

En general, si N és constant i cada fragment F_k té cost C_k , el cost de la composició seqüencial

$$F_1; F_2; \ldots; F_N$$

és
$$C_1 + C_2 + \cdots + C_N$$

Algorismes no recursius

 Si el cost d'un fragment F₁ és C₁, el d'un fragment F₂ és C₂ i el d'avaluar B és D, llavors el cost de la composició alternativa

if
$$(B) F_1$$
; else F_2

és $D+C_1$ si es compleix B, i $D+C_2$ altrament. En tot cas, el cost és $\leq D+\max(C_1,C_2)$.

• Si el cost de F durant la k-èsima iteració és C_k , el d'avaluar B és D_k i el nombre d'iteracions és N, llavors el cost de la composició iterativa

while
$$(B) F$$
;

$$\operatorname{\acute{e}s}\left(\textstyle\sum_{k=1}^{N}C_{k}+D_{k}\right)+D_{N+1}.$$

 Si el cost d'un fragment F₁ és C₁, el d'un fragment F₂ és C₂ i el d'avaluar B és D, llavors el cost de la composició alternativa

if
$$(B) F_1$$
; else F_2

és $D+C_1$ si es compleix B, i $D+C_2$ altrament. En tot cas, el cost és $\leq D+\max(C_1,C_2)$.

• Si el cost de F durant la k-èsima iteració és C_k , el d'avaluar B és D_k i el nombre d'iteracions és N, llavors el cost de la composició iterativa

while
$$(B) F$$
;

és
$$(\sum_{k=1}^{N} C_k + D_k) + D_{N+1}$$
.

Exemple d'ordenació per selecció

Passos per ordenar 5, 6, 1, 2, 0, 7, 4, 3 segons l'algorisme de selecció. En vermell, els elements ja ordenats.

En groc, els elements intercanviats pel màxim.

```
5 6 1 2 0 7 4 3
5 6 1 2 0 3 4 7
5 4 1 2 0 3 6 7
3 4 1 2 0 5 6 7
3 0 1 2 4 5 6 7
1 0 2 3 4 5 6 7
0 1 2 3 4 5 6 7
```

Ordenació per selecció

```
0 int posicio_maxim (const vector<int>& v, int m) {
1    int k = 0;
2    for (int i = 1; i <= m; ++i)
3        if (v[i] > v[k]) k = i;
4    return k; }

5 void ordena_seleccio (vector<int>& v, int n) {
6    for (int i = n-1; i >= 0; --i) {
7        int k = posicio_maxim(v, i);
8    swap(v[k], v[i]); }}
```

- 2, 6 Iteracions bucles: m 1 + 1 = m, n 1 + 1 = n.
 - 7 Cost $\Theta(i)$.

altres Instruccions de cost constant: $\Theta(1)$.

$$t_{sel}(n) = \Theta(1) + \sum_{i=1}^{n} (\Theta(i) + \Theta(1)) = \Theta(\sum_{i=1}^{n} i) = \Theta(\frac{n(n+1)}{2}) = \Theta(n^2)$$

Exemple d'ordenació per inserció

Passos per ordenar 5, 6, 1, 2, 0, 7, 4, 3 segons l'algorisme d'inserció. En vermell, els elements ja ordenats.

Entre parèntesis, el nombre de posicions que s'ha desplaçat l'element inserit.

```
5 6 1 2 0 7 4 3 (0)

5 6 1 2 0 7 4 3 (0)

1 5 6 2 0 7 4 3 (2)

1 2 5 6 0 7 4 3 (2)

0 1 2 5 6 7 4 3 (4)

0 1 2 5 6 7 4 3 (0)

0 1 2 4 5 6 7 3 (3)

0 1 2 3 4 5 6 7 (4)
```

Ordenació per inserció

- 0 Pas de paràmetres: $\Theta(1)$.
- 1 Iteracions bucle: $(n-1)-1+1=n-1=\Theta(n)$.
- 1,2 Condició d'iteració i línia 2: $\Theta(1)$.
 - 3 Iteracions bucle: entre 0 i k 1 0 + 1 = k.
- 4,5 Assignacions de cost $\Theta(1)$.

$$\Theta(1) + (\Theta(n) \times \Theta(1)) \le t_{ins}(n) \le \Theta(1) + \sum_{k=1}^{n-1} \Theta(k)$$

Tenim que el cost d'ordenar per inserció n elements és $t_{ins}(n)$ on:

$$\Theta(1) + (\Theta(n) \times \Theta(1)) \leq t_{ins}(n) \leq \Theta(1) + \sum_{k=1}^{n-1} \Theta(k)$$

Però

$$\sum_{k=1}^{n-1} k = 1 + 2 + \dots + (n-1) = \frac{(n-1)n}{2} \in \Theta(n^2).$$

Aleshores,

$$\sum_{k=1}^{n-1} \Theta(k) = \Theta(\sum_{k=1}^{n-1} k) = \Theta(n^2)$$

$$\Theta(n) < t_{ins}(n) < \Theta(n^2).$$

El cost d'un algorisme recursiu s'expressa sovint en forma de recurrència.

Definició

Una recurrència és una equació o una inequació que descriu una funció expressada en termes del seu valor per a entrades més petites.

Exemple

$$C(n) = \begin{cases} 1, & \text{si } n = 1 \\ C(n-1) + n, & \text{si } n \ge 2 \end{cases}$$

Per exemple, C(1) = 1, C(2) = 1 + 2 = 3 i C(3) = 3 + 3 = 6. Però voldríem una fórmula no recurrent per calcular el valor!

Resoldre la recurrència vol dir donar una forma tancada pel terme *n-*èsim.

El cost d'un algorisme recursiu s'expressa sovint en forma de recurrència.

Definició

Una recurrència és una equació o una inequació que descriu una funció expressada en termes del seu valor per a entrades més petites.

Exemple

$$C(n) = \begin{cases} 1, & \text{si } n = 1 \\ C(n-1) + n, & \text{si } n \geq 2 \end{cases}$$

Per exemple, C(1) = 1, C(2) = 1 + 2 = 3 i C(3) = 3 + 3 = 6. Però voldríem una fórmula no recurrent per calcular el valor!

Resoldre la recurrència vol dir donar una forma tancada pel terme *n*-èsim.

$$C(n) = \begin{cases} 1, & \text{si } n = 1 \\ C(n-1) + n, & \text{si } n \ge 2 \end{cases}$$

Solució

$$C(n) = C(n-1) + n$$

$$= C(n-2) + (n-1) + n$$

$$= C(n-3) + (n-2) + (n-1) + n$$

$$\vdots$$

$$= C(1) + 2 + \dots + (n-2) + (n-1) + n$$

$$= 1 + 2 + \dots + n$$

$$= \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \in \Theta(n^{2}).$$

Per trobar una recurrència que descrigui el cost d'un algorisme recursiu, hem de determinar:

- el paràmetre de recursió *n* (típicament la mida de l'entrada),
- el cost del cas inductiu
 - nombre de crides recursives
 - valors del paràmetre recursiu de les crides
 - cost dels càlculs extra no recursius

Cerca lineal recursiva

Mirar si un nombre x apareix en un vector a entre les posicions 0 i n-1 comparant-lo amb $a[0], a[1], \ldots, a[n-1]$.

Si el troba, retorna l'índex de la posició que conté x.

Altrament, retorna -1.

```
int cerca_lineal(const vector<int>& a, int n, int x) {
   if (n == 0) return -1;
   else if (a[n-1] == x) return n-1;
   else return cerca_lineal(a, n-1, x);
}
```

El paràmetre de la recursió és n, la mida del vector.

Definim la recurrència per a T(n), el cost (en el cas pitjor) de l'algorisme:

$$T(n) = T(n-1) + \Theta(1)$$

$$T(n) = T(n-1) + \Theta(1) \text{ per a } n \ge 1 \quad (i T(0) = \Theta(1))$$

Solució

$$T(n) = T(n-1) + \Theta(1)$$

$$= T(n-2) + 2 \cdot \Theta(1)$$

$$= T(n-3) + 3 \cdot \Theta(1)$$

$$\vdots$$

$$= T(1) + (n-1) \cdot \Theta(1)$$

$$= T(0) + n \cdot \Theta(1)$$

$$= (n+1) \cdot \Theta(1)$$

$$= \Theta(n+1) = \Theta(n).$$

Cerca binària recursiva

Mirar si un nombre x apareix en un vector ordenat a entre les posicions i i j per cerca binària.

Si el troba, retorna l'índex de la posició que conté x.

Altrament, retorna –1.

```
int cerca_binaria(const vector<int>& a,int i,int j,int x)
{ if (i <= j) {
       int k = (i + j) / 2;
       if (x < a[k])
           return cerca_binaria(a, i, k-1, x);
       else if (x > a[k])
           return cerca_binaria(a, k+1, j, x);
       else
           return k:
   else return -1;
```

```
int cerca binaria(const vector<int>& a,int i,int j,int x)
 if (i <= j) {
       int k = (i + j) / 2;
       if (x < a[k])
           return cerca_binaria(a, i, k-1, x);
       else if (x > a[k])
           return cerca binaria(a, k+1, j, x);
       else
           return k:
   else return -1;
```

El paràmetre de recursió és n = j - i + 1, la mida de l'interval a explorar. Definim la recurrència per a T(n), el cost (en cas pitjor) de l'algorisme:

$$T(n) = T(n/2) + \Theta(1)$$

$$T(n)=T(n/2)+\Theta(1)$$
 per a $n\geq 1$ (i $T(0)=\Theta(1)$).

Solució

$$T(n) = T(n/2) + \Theta(1)$$

$$= T(n/4) + 2 \cdot \Theta(1)$$

$$= T(n/8) + 3 \cdot \Theta(1)$$

$$\vdots$$

$$= T(n/2^{\log_2 n}) + \log_2 n \cdot \Theta(1)$$

$$= T(1) + \log_2 n \cdot \Theta(1)$$

$$= T(0) + (\log_2 n + 1) \cdot \Theta(1)$$

$$= (\log_2 n + 2) \cdot \Theta(1) = \Theta(\log n + 2) = \Theta(\log n).$$

Per sistematitzar l'anàlisi del cost dels algorismes recursius, els classifiquem en dos grups en funció de com divideixen el problema d'entrada en subproblemes en les crides recursives.

Sigui A un algorisme amb una entrada de mida n que fa a crides recursives i una feina addicional no recursiva de cost g(n). Llavors, si en les crides recursives els subproblemes tenen tots mida

• n-c, el cost d'A ve descrit per la recurrència

$$T(n) = a \cdot T(n-c) + g(n)$$

n/b, el cost d'A ve descrit per la recurrència

$$T(n) = a \cdot T(n/b) + g(n)$$

Les dues menes de recurrències anteriors:

- subtractives: $T(n) = a \cdot T(n-c) + g(n)$
- divisores: $T(n) = a \cdot T(n/b) + g(n)$

es poden resoldre amb els teoremes mestres que veurem a continuació.

Teorema mestre de recurrències subtractives

Sigui T(n) la recurrència

$$T(n) = \left\{ egin{array}{ll} f(n), & ext{si } 0 \leq n < n_0 \ a \cdot T(n-c) + g(n), & ext{si } n \geq n_0 \end{array}
ight.$$

on $n_0 \in \mathbb{N}$, $c \ge 1$, f és una funció arbitrària i $g \in \Theta(n^k)$ per a $k \ge 0$.

Aleshores,

$$T(n) \in \left\{ \begin{array}{ll} \Theta(n^k), & \text{si } a < 1 \\ \Theta(n^{k+1}), & \text{si } a = 1 \\ \Theta(a^{n/c}), & \text{si } a > 1 \end{array} \right.$$

Teorema mestre de recurrències subtractives

Sigui
$$T(n) = \begin{cases} f(n), & \text{si } 0 \le n < n_0 \\ a \cdot T(n-c) + g(n), & \text{si } n \ge n_0 \end{cases}$$

on $n_0 \in \mathbb{N}$, $c \ge 1$, f és una funció arbitrària i $g \in \Theta(n^k)$ per a $k \ge 0$.

Aleshores,

$$T(n) \in \left\{ \begin{array}{ll} \Theta(n^k), & \text{si } a < 1 \\ \Theta(n^{k+1}), & \text{si } a = 1 \\ \Theta(a^{n/c}), & \text{si } a > 1 \end{array} \right.$$

Exemple 1

Hem vist que el cost de l'algorisme recursiu de cerca lineal es pot descriure amb la recurrència $T(n) = T(n-1) + \Theta(1)$ per a $n \ge 1$ i $T(0) = \Theta(1)$.

Per tant, $n_0 = 1$, a = 1, c = 1, k = 0. Llavors, T(n) pertany al segon cas:

$$T(n) \in \Theta(n^{k+1}) = \Theta(n).$$

Teorema mestre de recurrències subtractives

Sigui
$$T(n) = \begin{cases} f(n), & \text{si } 0 \le n < n_0 \\ a \cdot T(n-c) + g(n), & \text{si } n \ge n_0 \end{cases}$$

on $n_0 \in \mathbb{N}$, $c \ge 1$, f és una funció arbitrària i $g \in \Theta(n^k)$ per a $k \ge 0$.

Aleshores,

$$T(n) \in \left\{ \begin{array}{ll} \Theta(n^k), & \text{si } a < 1 \\ \Theta(n^{k+1}), & \text{si } a = 1 \\ \Theta(a^{n/c}), & \text{si } a > 1 \end{array} \right.$$

Exemple 2

En la recurrència $T(n) = T(n-1) + \Theta(n)$, tenim els valors

$$a = 1$$
. $c = 1$. $k = 1$.

Llavors, T(n) pertany al segon cas:

$$T(n) \in \Theta(n^{k+1}) = \Theta(n^2).$$

Teorema mestre de recurrències subtractives

Sigui
$$T(n) = \begin{cases} f(n), & \text{si } 0 \le n < n_0 \\ a \cdot T(n-c) + g(n), & \text{si } n \ge n_0 \end{cases}$$

on $n_0 \in \mathbb{N}$, $c \ge 1$, f és una funció arbitrària i $g \in \Theta(n^k)$ per a $k \ge 0$.

Aleshores,

$$T(n) \in \left\{ \begin{array}{ll} \Theta(n^k), & \text{si } a < 1 \\ \Theta(n^{k+1}), & \text{si } a = 1 \\ \Theta(a^{n/c}), & \text{si } a > 1 \end{array} \right.$$

Exemple 3

En la recurrència $T(n) = 2 \cdot T(n-1) + \Theta(n)$, tenim els valors

$$a = 2$$
, $c = 1$, $k = 1$.

Llavors, T(n) pertany al tercer cas:

$$T(n) \in \Theta(2^n)$$
.

Teorema mestre de recurrències divisores

Sigui T(n) la recurrència

$$T(n) = \begin{cases} f(n), & \text{si } 0 \le n < n_0 \\ a \cdot T(n/b) + g(n), & \text{si } n \ge n_0 \end{cases}$$

on $n_0 \in \mathbb{N}$, b > 1, f és una funció arbitrària i $g \in \Theta(n^k)$ per a $k \ge 0$.

Sigui $\alpha = \log_b(a)$. Aleshores,

$$T(n) \in \left\{ egin{array}{ll} \Theta(n^k), & ext{si } lpha < k \ \Theta(n^k \log n), & ext{si } lpha = k \ \Theta(n^lpha), & ext{si } lpha > k \end{array}
ight.$$

Teorema mestre de recurrències divisores

Sigui
$$T(n) = \begin{cases} f(n), & \text{si } 0 \le n < n_0 \\ a \cdot T(n/b) + g(n), & \text{si } n \ge n_0 \end{cases}$$

on $n_0 \in \mathbb{N}$, b > 1, f és una funció arbitrària i $g \in \Theta(n^k)$ per a $k \ge 0$.

Sigui $\alpha = \log_b(a)$. Aleshores,

$$T(n) \in \left\{ egin{array}{ll} \Theta(n^k), & ext{si } lpha < k \ \Theta(n^k \log n), & ext{si } lpha = k \ \Theta(n^lpha), & ext{si } lpha > k \end{array}
ight.$$

Exemple 1

Hem vist que el cost de l'algorisme recursiu de cerca binària es pot descriure amb la recurrència $T(n) = T(n/2) + \Theta(1)$ per a $n \ge 1$ i $T(0) = \Theta(1)$.

Per tant, $n_0 = 1$, a = 1, b = 2, k = 0, $\alpha = 0$. Llavors, T(n) pertany al 2n cas:

$$T(n) \in \Theta(n^k \log n) = \Theta(\log n).$$

Exemple 2

Funció principal de l'ordenació per fusió (mergesort).

```
template <typename elem>
void ordenacio_fusio (vector<elem>& a, int e, int d) {
   if (e < d) {
      int m = (e + d) / 2;
      ordenacio_fusio(a, e, m);
      ordenacio_fusio(a, m + 1, d);
      fusionar(a, e, m, d);
}
</pre>
```

Tenint en compte que el cost de la crida fusionar (a, e, m, d) és $\Theta(n)$ (on n = d - e + 1), el cost total es pot expressar amb la recurrència:

$$T(n) = 2T(n/2) + \Theta(n)$$
 per a $n \ge 2$, i $T(1) = \Theta(1)$.

Teorema mestre de recurrències divisores

Sigui
$$T(n) = \begin{cases} f(n), & \text{si } 0 \le n < n_0 \\ a \cdot T(n/b) + g(n), & \text{si } n \ge n_0 \end{cases}$$

on $n_0 \in \mathbb{N}$, b > 1, f és una funció arbitrària i $g \in \Theta(n^k)$ per a $k \ge 0$.

Sigui $\alpha = \log_b(a)$. Aleshores,

$$T(n) \in \left\{ egin{array}{ll} \Theta(n^k), & ext{si } lpha < k \ \Theta(n^k \log n), & ext{si } lpha = k \ \Theta(n^lpha), & ext{si } lpha > k \end{array}
ight.$$

Exemple 2

Hem vist que el cost de l'ordenació per fusió es pot descriure amb la recurrència $T(n) = 2T(n/2) + \Theta(n)$ per a $n \ge 2$ i $T(1) = \Theta(1)$.

Per tant, $n_0 = 2$, a = 2, b = 2, k = 1, $\alpha = 1$. Llavors, T(n) pertany al 2n cas:

$$T(n) \in \Theta(n^k \log n) = \Theta(n \log n).$$

• Els nombres de Fibonacci estan definits per la recurrència f(k) = f(k-1) + f(k-2) per a $k \ge 2$, amb f(0) = 1 i f(1) = 1.

1a solució int fib(int k) { if (k <= 1) return 1; else return fib(k-1) + fib(k-2);</pre>

- El cost segueix la recurrència $T(k) = T(k-1) + T(k-2) + \Theta(1)$
- No podem aplicar directament el teorema mestre per resoldre-la!

Podem aproximar i llavors aplicar el teorema mestre: (noteu les inequacions i les O/Ω)

- $T(k) = T(k-1) + T(k-2) + \Theta(1) \le 2T(k-1) + \Theta(1)$ dóna $T(k) = O(2^k)$, i
- $T(k)=T(k-1)+T(k-2)+\Theta(1)\geq 2T(k-2)+\Theta(1)$ dóna $T(k)=\Omega(\sqrt{2}^k)$

Es pot demostrar que $T(k) = \Theta(\phi^k)$, on $\phi = \frac{1+\sqrt{5}}{2}$ (nombre d'or) Noteu que $\sqrt{2} = 1.414213562...$ i $\phi = 1.618033988...$

2a solució

```
int fib(int k) {
  if (k <= 1) return 1;
  int cur = 1;
  int pre = 1;
  for (int i = 1; i < k; ++i) {
    int tmp = pre;
    pre = cur;
    cur = cur + tmp;
  }
  return cur;
}</pre>
```

- Cada volta costa temps Θ(1)
- El cost és proporcional al nombre de voltes: $\Theta(k)$

Algorisme d'exponenciació ràpida

- Serveix per a calcular a^k
- $a^0 = 1$
- Si *k* és parell, $a^k = (a^{\frac{k}{2}})^2 = (a^{k \text{ div } 2})^2$
- Si k és senar, $a^k = a \cdot a^{k-1} = a \cdot (a^{\frac{k-1}{2}})^2 = a \cdot (a^{k \operatorname{div} 2})^2$

Algorisme d'exponenciació ràpida

- Assumim cost d'identity, *, construcció i còpia pel tipus T és $\Theta(1)$
- El cost T(k) segueix la recurrència $T(k) = T(k/2) + \Theta(1)$
- Aplicant el teorema mestre tenim que $T(k) = \Theta(\log(k))$

Per inducció es pot demostrar que

$$\begin{pmatrix} f(k+1) \\ f(k) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^k \begin{pmatrix} f(1) \\ f(0) \end{pmatrix} \text{ per tot } k \geq 0$$

3a solució

```
typedef vector<vector<int>> matrix;
int fib(int k) {
  matrix f = {{1, 1}, {1, 0}};
  matrix p = pow(f, k);
  return p[1][0] + p[1][1];
}
```

• Ja hem vist que el cost és $\Theta(\log(k))$

En termes de cost asimptòtic, l'algorisme d'ordenació per fusió és òptim:

Proposició

Tot algorisme d'ordenació basat en comparacions té cost $\Omega(n \log n)$.

Es pot argumentar fent servir arbres per representar els algorismes d'ordenació basats en comparacions.

Suposem que volem ordenar a_1 , a_2 i a_3 . Si $a_1 < a_2$, seguim per la branca esquerra; si no, per la dreta. Els rectangles representen les ordenacions trobades. L'alçada de l'arbre és el cost en cas pitjor.

Considerem un arbre que ordena *n* elements:

- cada fulla correspon a una permutació de {1,2,...,n}
- cada permutació de {1,2,...,n} ha d'aparèixer en alguna fulla (si una no hi aparegués, què passaria si es donés com a entrada?)

- com que hi ha n! permutacions de n elements, l'arbre té $\geq n!$ fulles
- tot arbre binari d'alçada d té $\leq 2^d$ fulles
- per tant, l'alçada del nostre arbre és almenys de $\log_2 n!$

El cost de l'algorisme representat per l'arbre és, per tant, $\Omega(\log n!)$. Com que

$$n! \ge n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot \lfloor n/2 \rfloor \ge (n/2)^{(n/2)}$$

tenim que

$$\log_2 n! \ge \log_2(n/2)^{(n/2)} = \frac{n}{2} \log_2(n/2) \in \Omega(n \log n).$$

Proposició

- com que hi ha n! permutacions de n elements, l'arbre té $\geq n!$ fulles
- tot arbre binari d'alçada d té $\leq 2^d$ fulles
- per tant, l'alçada del nostre arbre és almenys de $\log_2 n!$

El cost de l'algorisme representat per l'arbre és, per tant, $\Omega(\log n!)$. Com que

$$n! \ge n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot \lfloor n/2 \rfloor \ge (n/2)^{(n/2)}$$

tenim que

$$\log_2 n! \ge \log_2(n/2)^{(n/2)} = \frac{n}{2} \log_2(n/2) \in \Omega(n \log n).$$

Proposició

- com que hi ha n! permutacions de n elements, l'arbre té $\geq n!$ fulles
- tot arbre binari d'alçada d té $\leq 2^d$ fulles
- per tant, l'alçada del nostre arbre és almenys de log₂ n!

El cost de l'algorisme representat per l'arbre és, per tant, $\Omega(\log n!)$. Com que

$$n! \ge n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot \lfloor n/2 \rfloor \ge (n/2)^{(n/2)}$$

tenim que

$$\log_2 n! \ge \log_2(n/2)^{(n/2)} = \frac{n}{2} \log_2(n/2) \in \Omega(n \log n).$$

Proposició

- com que hi ha n! permutacions de n elements, l'arbre té $\geq n!$ fulles
- tot arbre binari d'alçada d té $\leq 2^d$ fulles
- per tant, l'alçada del nostre arbre és almenys de log₂ n!

El cost de l'algorisme representat per l'arbre és, per tant, $\Omega(\log n!)$. Com que

$$n! \geq n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot \lfloor n/2 \rfloor \geq (n/2)^{(n/2)}$$

tenim que

$$\log_2 n! \ge \log_2(n/2)^{(n/2)} = \frac{n}{2} \log_2(n/2) \in \Omega(n \log n).$$

Proposició

- com que hi ha n! permutacions de n elements, l'arbre té $\geq n!$ fulles
- tot arbre binari d'alçada d té $\leq 2^d$ fulles
- per tant, l'alçada del nostre arbre és almenys de log₂ n!

El cost de l'algorisme representat per l'arbre és, per tant, $\Omega(\log n!)$. Com que

$$n! \geq n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot \lfloor n/2 \rfloor \geq (n/2)^{(n/2)}$$

tenim que

$$\log_2 n! \ge \log_2(n/2)^{(n/2)} = \frac{n}{2} \log_2(n/2) \in \Omega(n \log n).$$

Proposició