8D String Universality and Non-Simply-Connected Gauge Groups

 ${\it Based on 2008.10605} \\$ with Mirjam Cvetič, Markus Dierigl and Ling Lin

Hao Y. Zhang

University of Pennsylvania

Sep. 29, 2020

Section I: String Universality

I

Goal: String Universality
Focusing on 8D
Non-simply-connected Gauge Groups

II

F-theory on elliptic K3: 8D Vacua Mordell-Weil Group and Arithmetics TIT

Higher Form Center Symmetry B_4 Periodicity and Mixed Anomaly Anomaly-free 8D Theories

IV

> V Future Directions

String universality conjecture: All consistent theories of quantum gravity should come as low energy limits of string theory.

String universality conjecture: All consistent theories of quantum gravity should come as low energy limits of string theory. 10D $\mathcal{N}=1$ supergravities [Green, Schwarz, Witten, Vol.2]:

$$E_8 \times E_8$$
, $SO(32)$, $E_8 \times U(1)^{248}$, $U(1)^{496}$ (1)

The first two are realized in heterotic string theories. Long time puzzle: the last two theories are neither realized in string theory nor ruled out.

String universality conjecture: All consistent theories of quantum gravity should come as low energy limits of string theory.

10D $\mathcal{N}=1$ supergravities [Green, Schwarz, Witten, Vol.2]:

$$E_8 \times E_8$$
, $SO(32)$, $E_8 \times U(1)^{248}$, $U(1)^{496}$ (1)

The first two are realized in heterotic string theories. Long time puzzle: the last two theories are neither realized in string theory nor ruled out.

Solution: they are found inconsistent via the following non-stringy approaches:

- Via SUSY and Abelian gauge invariance [Adams, DeWolfe, Taylor '10]
- ightharpoonup Unitarity bound: rank ≤ 26 -d = 16 [Kim, Shiu, Vafa '19]

String universality conjecture: All consistent theories of quantum gravity should come as low energy limits of string theory. 10D $\mathcal{N}=1$ supergravities [Green, Schwarz, Witten, Vol.2]:

$$E_8 \times E_8$$
, $SO(32)$, $E_8 \times U(1)^{248}$, $U(1)^{496}$ (1)

The first two are realized in heterotic string theories. Long time puzzle: the last two theories are neither realized in string theory nor ruled out.

Solution: they are found inconsistent via the following non-stringy approaches:

- Via SUSY and Abelian gauge invariance [Adams, DeWolfe, Taylor '10]
- lacksquare Unitarity bound: rank $\leq 26\text{-d} = 16$ [Kim, Shiu, Vafa '19]

Global structure of standard model gauge group - candidates:

$$(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_n, \quad n = 1, 2, 3, 6$$
 (2)

Global structure of standard model gauge group - candidates:

$$(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_n, \quad n = 1, 2, 3, 6$$
 (2)

SU(2) vs $SO(3) \simeq SU(2)/\mathbb{Z}_2$: e.g., **2** rep. allowed/forbidden.

Global structure of standard model gauge group - candidates:

$$(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_n, \quad n = 1, 2, 3, 6$$
 (2)

SU(2) vs $SO(3) \simeq SU(2)/\mathbb{Z}_2$: e.g., **2** rep. allowed/forbidden.

Visible at the level of non-local objects: Wilson/'t Hooft lines, etc.

Global structure of standard model gauge group - candidates:

$$(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_n, \quad n = 1, 2, 3, 6$$
 (2)

SU(2) vs $SO(3) \simeq SU(2)/\mathbb{Z}_2$: e.g., **2** rep. allowed/forbidden.

Visible at the level of non-local objects: Wilson/'t Hooft lines, etc.

Focus on 8D theories: 8D string vacua exhibits intricate patterns in gauge groups global structure. Can also be understood in F-theory via arithmetic structure of elliptic K3s.

Global structure of standard model gauge group - candidates:

$$(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_n, \quad n = 1, 2, 3, 6$$
 (2)

SU(2) vs $SO(3) \simeq SU(2)/\mathbb{Z}_2$: e.g., **2** rep. allowed/forbidden.

Visible at the level of non-local objects: Wilson/'t Hooft lines, etc.

Focus on 8D theories: 8D string vacua exhibits intricate patterns in gauge groups global structure. Can also be understood in F-theory via arithmetic structure of elliptic K3s.

- Part II: Connection to F-theory arithmetics
- ▶ Part III: Connection to higher form symmetries

Section II: 8D Stringy Vacua and Arithmetics

I

Goal: String Universality Focusing on 8D

Non-simply-connected Gauge Groups

II

F-theory on elliptic K3: 8D Vacua Mordell-Weil Group and Arithmetics TTT

Higher Form Center Symmetry B_4 Periodicity and Mixed Anomaly Anomaly-free 8D Theories

IV

V
Future Directions

F-theory: Strong coupling version of type IIB, $SL(2,\mathbb{Z})$ geometrized. [Vafa '96; Morrison Vafa '96], review: [Weigand '18]

F-theory: Strong coupling version of type IIB, $SL(2,\mathbb{Z})$ geometrized. [Vafa '96; Morrison Vafa '96], review: [Weigand '18]

F-theory 8D SUGRA vacua corresponds to 24 7-branes of specific (p, q) types locating on the base \mathbb{P}^1 , whose overall monodromy is identity.

F-theory: Strong coupling version of type IIB, $SL(2,\mathbb{Z})$ geometrized. [Vafa '96; Morrison Vafa '96], review: [Weigand '18]

F-theory 8D SUGRA vacua corresponds to 24 7-branes of specific (p, q) types locating on the base \mathbb{P}^1 , whose overall monodromy is identity.

Elliptically fibered K3 perspective: Gauge group can be read off via Kodaira's classification. Generically 24 I_1 fibers, collision gives enhancement.

Mordell-Weil(MW) group of an elliptic fibration consists of all of its global sections. The group law is the fiberwise addition law of cubic curves. See [Cvetič, Lin '18] for a review in the F-theory context.

Mordell-Weil(MW) group of an elliptic fibration consists of all of its global sections. The group law is the fiberwise addition law of cubic curves. See [Cvetič, Lin '18] for a review in the F-theory context.

As a finitely generated Abelian group, one has:

$$MW(Y) = \mathbb{Z}^r \oplus \bigoplus_{i} \mathbb{Z}_{n_i}$$
 (3)

Mordell-Weil(MW) group of an elliptic fibration consists of all of its global sections. The group law is the fiberwise addition law of cubic curves. See [Cvetič, Lin '18] for a review in the F-theory context.

As a finitely generated Abelian group, one has:

$$MW(Y) = \mathbb{Z}^r \oplus \bigoplus_i \mathbb{Z}_{n_i}$$
 (3)

- ► Each free section gives a U(1) gauge symmetry [Morrison, Park '12], and a quotient $\frac{G_{nA} \times U(1)}{Z(G)}$ at the presence of G_{nA} [Cvetič. Lin '17].
- lacktriangle Each ℓ -torsional section gives a \mathbb{Z}_ℓ global quotient: Main

Geometric Properties in Elliptic K3s

Geometric Properties in Elliptic K3s

G	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[2, 2]	[4, 2]	[6, 2]	[3, 3]	[4, 4]	Total
$ \mathcal{P}^G $	2746	732	85	41	6	10	1	1	61	5	1	3	1	3693

Figure: A complete list of ADE fiber types in elliptic K3s [Shimada '00]. [n]: a \mathbb{Z}_n MW torsion, [n, m]: a $\mathbb{Z}_n \times \mathbb{Z}_m$ MW torsion.

Geometric Properties in Elliptic K3s

G	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[2, 2]	[4, 2]	[6, 2]	[3, 3]	[4, 4]	Total
$ \mathcal{P}^G $	2746	732	85	41	6	10	1	1	61	5	1	3	1	3693

Figure: A complete list of ADE fiber types in elliptic K3s [Shimada '00]. [n]: a \mathbb{Z}_n MW torsion, [n, m]: a $\mathbb{Z}_n \times \mathbb{Z}_m$ MW torsion.

Figure: k_i : # of component in I_{n_i} fiber intersected by the ℓ -torsional section.

For a K3 with only I_n fibers and a single ℓ -torsional section, the global gauge group is $(\bigotimes_i SU(n_i))/\mathbb{Z}_{\ell}$.

For a K3 with only I_n fibers and a single ℓ -torsional section, the global gauge group is $(\bigotimes_i SU(n_i))/\mathbb{Z}_{\ell}$.

But what is the embedding? Now $G = \bigotimes_i SU(n_i)$, and this (k_1, \ldots, k_s) is precisely the generator of the embedded \mathbb{Z}_ℓ quotient into the overall center $Z(G) = \bigotimes_i Z(G_i)$.

For a K3 with only I_n fibers and a single ℓ -torsional section, the global gauge group is $(\bigotimes_i SU(n_i))/\mathbb{Z}_{\ell}$.

But what is the embedding? Now $G = \bigotimes_i SU(n_i)$, and this (k_1, \ldots, k_s) is precisely the generator of the embedded \mathbb{Z}_ℓ quotient into the overall center $Z(G) = \bigotimes_i Z(G_i)$.

Not all embedding are allowed. [Miranda, Persson '88 '89 '91]:

$$q(k_1,\ldots,k_s)=\sum_{i=1}^s\frac{n_i-1}{2n_i}k_i^2\equiv 0 \mod \mathbb{Z}$$
 (4)

For a K3 with only I_n fibers and a single ℓ -torsional section, the global gauge group is $(\bigotimes_i SU(n_i))/\mathbb{Z}_{\ell}$.

But what is the embedding? Now $G = \bigotimes_i SU(n_i)$, and this (k_1, \ldots, k_s) is precisely the generator of the embedded \mathbb{Z}_ℓ quotient into the overall center $Z(G) = \bigotimes_i Z(G_i)$.

Not all embedding are allowed. [Miranda, Persson '88 '89 '91]:

$$q(k_1,\ldots,k_s)=\sum_{i=1}^s\frac{n_i-1}{2n_i}k_i^2\equiv 0 \mod \mathbb{Z}$$
 (4)

e.g. $G = SU(7)^3/\mathbb{Z}_7$ with a \mathbb{Z}_7 torsional section: $(k_1, k_2, k_3) = (1, 2, 3)$ is an allowed intersection pattern, corresponding to an allowed \mathbb{Z}_7 center embedding. However, $(k_1, k_2, k_3) = (1, 1, 1)$ is not allowed.

For a K3 with only I_n fibers and a single ℓ -torsional section, the global gauge group is $(\bigotimes_i SU(n_i))/\mathbb{Z}_{\ell}$.

But what is the embedding? Now $G = \bigotimes_i SU(n_i)$, and this (k_1, \ldots, k_s) is precisely the generator of the embedded \mathbb{Z}_ℓ quotient into the overall center $Z(G) = \bigotimes_i Z(G_i)$.

Not all embedding are allowed. [Miranda, Persson '88 '89 '91]:

$$q(k_1,...,k_s) = \sum_{i=1}^{s} \frac{n_i - 1}{2n_i} k_i^2 \equiv 0 \mod \mathbb{Z}$$
 (4)

e.g. $G = SU(7)^3/\mathbb{Z}_7$ with a \mathbb{Z}_7 torsional section: $(k_1, k_2, k_3) = (1, 2, 3)$ is an allowed intersection pattern, corresponding to an allowed \mathbb{Z}_7 center embedding. However, $(k_1, k_2, k_3) = (1, 1, 1)$ is not allowed.

Any field-theoretic reasons behind this?

Section III: Higher Form Symmetry and Mixed Anomalies

I
Goal: String Universality
Focusing on 8D
Non-simply-connected Gauge Groups

II

F-theory on elliptic K3: 8D Vacua Mordell-Weil Group and Arithmetics III

Higher Form Center Symmetry B_4 Periodicity and Mixed Anomaly Anomaly-free 8D Theories

IV

Comparison: Strong Evidence for 8D String Universality With G Non-simply-connected

V
Future Directions

The operators charged under a q-form global symmetry are of dimension q. They have to be Abelian for $q \geq 1$. [Gaiotto, Kapustin, Seiberg, Willett '14] Here we focus on the class of center higher form symmetries.

The operators charged under a q-form global symmetry are of dimension q. They have to be Abelian for $q \geq 1$. [Gaiotto, Kapustin, Seiberg, Willett '14] Here we focus on the class of center higher form symmetries.

A continuous example: 4D U(1) gauge theory: an *electric* 1-form global U(1) whose charged objects are the Wilson lines. (We ignore the magnetic symmetry for our purpose.)

The operators charged under a q-form global symmetry are of dimension q. They have to be Abelian for $q \geq 1$. [Gaiotto, Kapustin, Seiberg, Willett '14] Here we focus on the class of center higher form symmetries.

- A continuous example: 4D U(1) gauge theory: an electric 1-form global U(1) whose charged objects are the Wilson lines. (We ignore the magnetic symmetry for our purpose.)
- ▶ A discrete example: 4D SU(N) theory has a center $Z(SU(N)) = \mathbb{Z}_N$ -valued 1-form electric global symmetry charging the discrete Wilson lines. Main focus.

For G gauge theories without any matter charged under a subgroup $\Gamma \subset Z(G)$ of the center, it has a Γ -valued 1-form global symmetry.

For G gauge theories without any matter charged under a subgroup $\Gamma \subset Z(G)$ of the center, it has a Γ -valued 1-form global symmetry.

To gauge this 1-form global symmetry, one first couple it to a 2-form Γ -valued background gauge field C, reducing the electric global symmetry: $Z(G) \to Z(G)/\Gamma$.

For G gauge theories without any matter charged under a subgroup $\Gamma \subset Z(G)$ of the center, it has a Γ -valued 1-form global symmetry.

To gauge this 1-form global symmetry, one first couple it to a 2-form Γ -valued background gauge field C, reducing the electric global symmetry: $Z(G) \to Z(G)/\Gamma$.

One then sum over all possible C-configurations in the partition function, giving rise to a G/Γ partition function in the 0-form sector.

For G gauge theories without any matter charged under a subgroup $\Gamma \subset Z(G)$ of the center, it has a Γ -valued 1-form global symmetry.

To gauge this 1-form global symmetry, one first couple it to a 2-form Γ -valued background gauge field C, reducing the electric global symmetry: $Z(G) \to Z(G)/\Gamma$.

One then sum over all possible C-configurations in the partition function, giving rise to a G/Γ partition function in the 0-form sector.

In the end, the G bundle is twisted into a G/Γ bundle with a non-trivial Γ -valued second Stiefel-Whitney class.

In 4d Yang-Mills theories, there is a mixed anomaly between the 1-form global symmetry and the θ -periodicity [Córdova, Freed, Lam, Seiberg '19].

In 4d Yang-Mills theories, there is a mixed anomaly between the 1-form global symmetry and the θ -periodicity [Córdova, Freed, Lam, Seiberg 19].

 $\frac{i\theta}{8\pi^2}\int {\rm Tr}(F\wedge F)$ under a 1-form symmetry transformation and $\theta\to \theta+2\pi$ gains:

$$\mathcal{A}(\theta, C) = 2\pi i \alpha_{G} \int_{M_{4}} \mathcal{P}(C) \mod \mathbb{Z}$$
 (5)

In 4d Yang-Mills theories, there is a mixed anomaly between the 1-form global symmetry and the θ -periodicity [Córdova, Freed, Lam, Seiberg 19].

 $\frac{i\theta}{8\pi^2}\int {\rm Tr}(F\wedge F)$ under a 1-form symmetry transformation and $\theta\to \theta+2\pi$ gains:

$$\mathcal{A}(\theta, C) = 2\pi i \alpha_{G} \int_{M_{4}} \mathcal{P}(C) \mod \mathbb{Z}$$
 (5)

 α_G : G-dependent fractional group theory constant. e.g., $\alpha_G = \frac{N-1}{2N}$ for G = SU(N)

In 4d Yang-Mills theories, there is a mixed anomaly between the 1-form global symmetry and the θ -periodicity [Córdova, Freed, Lam, Seiberg 19].

 $\frac{i\theta}{8\pi^2}\int {\rm Tr}(F\wedge F)$ under a 1-form symmetry transformation and $\theta\to \theta+2\pi$ gains:

$$\mathcal{A}(\theta, C) = 2\pi i \alpha_{G} \int_{M_{4}} \mathcal{P}(C) \mod \mathbb{Z}$$
 (5)

 α_G : G-dependent fractional group theory constant. e.g., $\alpha_G = \frac{N-1}{2N}$ for G = SU(N)

 $\mathcal{P}(C)$: Pontryagin square of $C \in H^2(X, \mathbb{Z}_N)$, an integral element of the 4-th cohomology. ($\mathcal{P}(C)$ can be roughly understood as $C \wedge C$ when promoted to differential forms.)

In 8D $\mathcal{N}=1$, gravity multiplet contains B_2 [Salam, Sezgin '85]. It can be dualized to B_4 [Awada, Townsend '85] with coupling $(G=\bigotimes_i G_i)$:

$$\sum_{i} \int_{M_8} B_4 \wedge \frac{1}{2} \text{Tr}(F_i \wedge F_i) \tag{6}$$

In 8D $\mathcal{N}=1$, gravity multiplet contains B_2 [Salam, Sezgin '85]. It can be dualized to B_4 [Awada, Townsend '85] with coupling $(G=\bigotimes_i G_i)$:

$$\sum_{i} \int_{M_8} B_4 \wedge \frac{1}{2} \text{Tr}(F_i \wedge F_i) \tag{6}$$

A gauged $\Gamma \subset Z(G) = \bigotimes_i Z(G_i)$ should be coupled to $C^{(i)}$'s each valued in $Z(G_i)$, giving an instanton contribution:

$$I_4(G/\Gamma) = \sum_i \alpha_{G_i} \mathcal{P}(C^{(i)}) \mod \mathbb{Z}$$
 (7)

In 8D $\mathcal{N}=1$, gravity multiplet contains B_2 [Salam, Sezgin '85]. It can be dualized to B_4 [Awada, Townsend '85] with coupling $(G=\bigotimes_i G_i)$:

$$\sum_{i} \int_{\mathcal{M}_{8}} B_{4} \wedge \frac{1}{2} \operatorname{Tr}(F_{i} \wedge F_{i}) \tag{6}$$

A gauged $\Gamma \subset Z(G) = \bigotimes_i Z(G_i)$ should be coupled to $C^{(i)}$'s each valued in $Z(G_i)$, giving an instanton contribution:

$$I_4(G/\Gamma) = \sum_i \alpha_{G_i} \mathcal{P}(C^{(i)}) \mod \mathbb{Z}$$
 (7)

Together with the integral period shift $B_4 \rightarrow B_4 + b_4$, we obtain:

$$\mathcal{A}(b_4, C^{(i)}) = 2\pi i \sum_{i} \alpha_{G_i} \int_{M_8} b_4 \cup \mathcal{P}(C^{(i)}) \mod \mathbb{Z}$$
 (8)

In 8D $\mathcal{N}=1$, gravity multiplet contains B_2 [Salam, Sezgin '85]. It can be dualized to B_4 [Awada, Townsend '85] with coupling $(G=\bigotimes_i G_i)$:

$$\sum_{i} \int_{M_8} B_4 \wedge \frac{1}{2} \text{Tr}(F_i \wedge F_i) \tag{6}$$

A gauged $\Gamma \subset Z(G) = \bigotimes_i Z(G_i)$ should be coupled to $C^{(i)}$'s each valued in $Z(G_i)$, giving an instanton contribution:

$$I_4(G/\Gamma) = \sum_i \alpha_{G_i} \mathcal{P}(C^{(i)}) \mod \mathbb{Z}$$
 (7)

Together with the integral period shift $B_4 \rightarrow B_4 + b_4$, we obtain:

$$\mathcal{A}(b_4, C^{(i)}) = 2\pi i \sum_{i} \alpha_{G_i} \int_{M_8} b_4 \cup \mathcal{P}(C^{(i)}) \mod \mathbb{Z}$$
 (8)

In 6D theories, an analogous anomaly comes from a GS term $\int_{M_{\rm f}} \Omega_{ij} B^i \wedge {\rm Tr}(F^j \wedge F^j) \,_{\rm [Apruzzi, \, Dierigl, \, Lin \, '20]}. \label{eq:definition}$

$$\mathcal{A}(b_4, C^{(i)}) = 2\pi i \sum_{i} \alpha_{G_i} \int_{M_8} b_4 \cup \mathcal{P}(C^{(i)}) \mod \mathbb{Z}$$
 (9)

According to [Cordova, Ohmori '19], such mixed anomaly cannot be cancelled. It also gives a fractional electric B_4 charge, which is not consistent [Apruzzi, Dierigl, Lin '20]. So it must vanish modulo integer.

$$\mathcal{A}(b_4, C^{(i)}) = 2\pi i \sum_{i} \alpha_{G_i} \int_{M_8} b_4 \cup \mathcal{P}(C^{(i)}) \mod \mathbb{Z}$$
 (9)

According to [Cordova, Ohmori '19], such mixed anomaly cannot be cancelled. It also gives a fractional electric B_4 charge, which is not consistent [Apruzzi, Dierigl, Lin '20]. So it must vanish modulo integer.

 $\bigoplus_i SU(N_i)$ case: assuming we have a gauged \mathbb{Z}_ℓ factor with a \mathbb{Z}_ℓ -valued 2-form C field. We further set $C^{(i)} = k^i C$, namely the \mathbb{Z}_ℓ quotient of G/\mathbb{Z}_ℓ is generated by (k_1, \ldots, k_s) in Z(G). Then one has a constraint:

$$\sum_{i} \frac{N_i - 1}{2N_i} k_i^2 \in \mathbb{Z} \tag{10}$$

$$\mathcal{A}(b_4, C^{(i)}) = 2\pi i \sum_{i} \alpha_{G_i} \int_{M_8} b_4 \cup \mathcal{P}(C^{(i)}) \mod \mathbb{Z}$$
 (9)

According to [Cordova, Ohmori '19], such mixed anomaly cannot be cancelled. It also gives a fractional electric B_4 charge, which is not consistent [Apruzzi, Dierigl, Lin '20]. So it must vanish modulo integer.

 $\bigoplus_i SU(N_i)$ case: assuming we have a gauged \mathbb{Z}_ℓ factor with a \mathbb{Z}_ℓ -valued 2-form C field. We further set $C^{(i)} = k^i C$, namely the \mathbb{Z}_ℓ quotient of G/\mathbb{Z}_ℓ is generated by (k_1, \ldots, k_s) in Z(G). Then one has a constraint:

$$\sum_{i} \frac{N_i - 1}{2N_i} k_i^2 \in \mathbb{Z} \tag{10}$$

This is exactly the same as the arithmetic condition for elliptic K3s with only I_n singularities!

IV: Results and Conclusions

V
Future Directions

(a) Product-of-SU gauge groups. Assuming there is a non-trivial \mathbb{Z}_N gauged 1-form symmetry, also taking into account the rank $\leq 26-d=18$ unitarity bound [Kim, Shiu, Vafa '19]:

- (a) Product-of-SU gauge groups. Assuming there is a non-trivial \mathbb{Z}_N gauged 1-form symmetry, also taking into account the rank $\leq 26-d=18$ unitarity bound [Kim, Shiu, Vafa '19]:
 - ▶ For $N = p^k \ge 7$ power of prime, all anomaly free theories are realized via string theory.

- (a) Product-of-SU gauge groups. Assuming there is a non-trivial \mathbb{Z}_N gauged 1-form symmetry, also taking into account the rank $\leq 26-d=18$ unitarity bound [Kim, Shiu, Vafa '19]:
 - ▶ For $N = p^k \ge 7$ power of prime, all anomaly free theories are realized via string theory.
 - Exactly one anomaly free theory for $p^k = 7,8$ resp.
 - ▶ No anomaly free theories for $9 \le p^k \le 19$.

- (a) Product-of-SU gauge groups. Assuming there is a non-trivial \mathbb{Z}_N gauged 1-form symmetry, also taking into account the rank $\leq 26-d=18$ unitarity bound [Kim, Shiu, Vafa '19]:
 - ▶ For $N = p^k \ge 7$ power of prime, all anomaly free theories are realized via string theory.
 - Exactly one anomaly free theory for $p^k = 7,8$ resp.
 - ▶ No anomaly free theories for $9 \le p^k \le 19$.
 - ▶ N not a power of prime. If one assume that \mathbb{Z}_N acts faithfully on one simple G_i factor, then all such $10 \le N \le 18$ give no anomaly-free theories.

- (a) Product-of-SU gauge groups. Assuming there is a non-trivial \mathbb{Z}_N gauged 1-form symmetry, also taking into account the rank $\leq 26-d=18$ unitarity bound [Kim, Shiu, Vafa 19]:
 - ▶ For $N = p^k \ge 7$ power of prime, all anomaly free theories are realized via string theory.
 - Exactly one anomaly free theory for $p^k = 7,8$ resp.
 - ▶ No anomaly free theories for $9 \le p^k \le 19$.
 - ▶ *N* not a power of prime. If one assume that \mathbb{Z}_N acts faithfully on one simple G_i factor, then all such $10 \le N \le 18$ give no anomaly-free theories.
- (b) Single-factor gauge groups.

- (a) Product-of-SU gauge groups. Assuming there is a non-trivial \mathbb{Z}_N gauged 1-form symmetry, also taking into account the rank $\leq 26-d=18$ unitarity bound [Kim, Shiu, Vafa 19]:
 - ▶ For $N = p^k \ge 7$ power of prime, all anomaly free theories are realized via string theory.
 - Exactly one anomaly free theory for $p^k = 7,8$ resp.
 - ▶ No anomaly free theories for $9 \le p^k \le 19$.
 - ▶ *N* not a power of prime. If one assume that \mathbb{Z}_N acts faithfully on one simple G_i factor, then all such $10 \le N \le 18$ give no anomaly-free theories.
- (b) Single-factor gauge groups.
 - $ightharpoonup rac{SU(16)}{\mathbb{Z}_2}, \quad rac{SU(18)}{\mathbb{Z}_3}, \quad rac{{\sf Spin}(32)}{\mathbb{Z}_2}: {\sf F-theory\ on\ K3}$

- (a) Product-of-SU gauge groups. Assuming there is a non-trivial \mathbb{Z}_N gauged 1-form symmetry, also taking into account the rank $\leq 26-d=18$ unitarity bound [Kim, Shiu, Vafa 19]:
 - ▶ For $N = p^k \ge 7$ power of prime, all anomaly free theories are realized via string theory.
 - Exactly one anomaly free theory for $p^k = 7,8$ resp.
 - ▶ No anomaly free theories for $9 \le p^k \le 19$.
 - ▶ *N* not a power of prime. If one assume that \mathbb{Z}_N acts faithfully on one simple G_i factor, then all such $10 \le N \le 18$ give no anomaly-free theories.
- (b) Single-factor gauge groups.
 - $ightharpoonup rac{SU(16)}{\mathbb{Z}_2}, \quad rac{SU(18)}{\mathbb{Z}_3}, \quad rac{{\sf Spin}(32)}{\mathbb{Z}_2}: {\sf F-theory on K3}$
 - $ightharpoonup rac{\mathit{Sp}(4)}{\mathbb{Z}_2}, \quad rac{\mathit{Sp}(8)}{\mathbb{Z}_2}, \quad rac{\mathit{SU}(8)}{\mathbb{Z}_2}, \quad rac{\mathit{SU}(9)}{\mathbb{Z}_3}, \quad rac{\mathsf{Spin}(16)}{\mathbb{Z}_2} \colon \mathsf{8D} \; \mathsf{CHL}$

- (a) Product-of-SU gauge groups. Assuming there is a non-trivial \mathbb{Z}_N gauged 1-form symmetry, also taking into account the rank $\leq 26-d=18$ unitarity bound [Kim, Shiu, Vafa '19]:
 - ▶ For $N = p^k \ge 7$ power of prime, all anomaly free theories are realized via string theory.
 - Exactly one anomaly free theory for $p^k = 7,8$ resp.
 - ▶ No anomaly free theories for $9 \le p^k \le 19$.
 - N not a power of prime. If one assume that \mathbb{Z}_N acts faithfully on one simple G_i factor, then all such $10 \le N \le 18$ give no anomaly-free theories.
- (b) Single-factor gauge groups.
 - $ightharpoonup rac{SU(16)}{\mathbb{Z}_2}, \quad rac{SU(18)}{\mathbb{Z}_3}, \quad rac{\mathsf{Spin}(32)}{\mathbb{Z}_2} : \mathsf{F-theory} \ \mathsf{on} \ \mathsf{K3}$
 - $ightharpoonup rac{Sp(4)}{\mathbb{Z}_2}, \quad rac{Sp(8)}{\mathbb{Z}_2}, \quad rac{SU(8)}{\mathbb{Z}_2}, \quad rac{SU(9)}{\mathbb{Z}_3}, \quad rac{Spin(16)}{\mathbb{Z}_2} \colon \ 8D \ CHL$
 - $ightharpoonup rac{Sp(12)}{\mathbb{Z}_2}, \quad rac{Sp(16)}{\mathbb{Z}_2}$: Unknown

We have provided strong evidence for string universality for non-simply-connect non-Abelian gauge groups G/Z in eight dimensions.

▶ We observe intricate patterns and restrictions regarding global structure of gauge groups in 8D string vacua.

- ▶ We observe intricate patterns and restrictions regarding global structure of gauge groups in 8D string vacua.
 - ► This corresponds to patterns in arithmetic structures of elliptic fibrations in F-theory.

- ▶ We observe intricate patterns and restrictions regarding global structure of gauge groups in 8D string vacua.
 - ► This corresponds to patterns in arithmetic structures of elliptic fibrations in F-theory.
- ► Key supergravity constraint: the mixed anomaly bewteen center 1-form symmery and large gauge transformation of the B₄ supergravity field should vanish.

- ▶ We observe intricate patterns and restrictions regarding global structure of gauge groups in 8D string vacua.
 - ► This corresponds to patterns in arithmetic structures of elliptic fibrations in F-theory.
- Key supergravity constraint: the mixed anomaly bewteen center 1-form symmery and large gauge transformation of the B₄ supergravity field should vanish.
 - Such a constraint nicely matches with arithmetic properties of elliptic K3 surfaces in the pure I_n singularity case.

- ▶ We observe intricate patterns and restrictions regarding global structure of gauge groups in 8D string vacua.
 - ► This corresponds to patterns in arithmetic structures of elliptic fibrations in F-theory.
- Key supergravity constraint: the mixed anomaly bewteen center 1-form symmery and large gauge transformation of the B₄ supergravity field should vanish.
 - Such a constraint nicely matches with arithmetic properties of elliptic K3 surfaces in the pure I_n singularity case.
- Via this constraint we can ruled out a large family of apparantly consistent 8D $\mathcal{N}=1$ theories (with G non-simply-connected) that cannot be realized via string theory.

- ▶ We observe intricate patterns and restrictions regarding global structure of gauge groups in 8D string vacua.
 - ► This corresponds to patterns in arithmetic structures of elliptic fibrations in F-theory.
- Key supergravity constraint: the mixed anomaly bewteen center 1-form symmery and large gauge transformation of the B₄ supergravity field should vanish.
 - Such a constraint nicely matches with arithmetic properties of elliptic K3 surfaces in the pure I_n singularity case.
- Via this constraint we can ruled out a large family of apparantly consistent 8D $\mathcal{N}=1$ theories (with G non-simply-connected) that cannot be realized via string theory. \rightarrow Towards string universality in 8D.

 One can seek for new insights into the realization of 8D CHL string gauge groups with global quotients. (See also [Font, Fraiman, Graña, Núñez, Parra '20]

- One can seek for new insights into the realization of 8D CHL string gauge groups with global quotients. (See also [Font, Fraiman, Graña, Núñez, Parra '20]
- Incorporating the U(1)s will introduce additional global quotients $(G \times U(1))/Z(G)$ in F-theory [Cvetič, Lin '17]. One could seek for a field-theoretic explanation for this, possibly via unHiggsing.

- One can seek for new insights into the realization of 8D CHL string gauge groups with global quotients. (See also [Font, Fraiman, Graña, Núñez, Parra '20]
- Incorporating the U(1)s will introduce additional global quotients $(G \times U(1))/Z(G)$ in F-theory [Cvetič, Lin '17]. One could seek for a field-theoretic explanation for this, possibly via unHiggsing.
- ► Finally, we can compare this analysis with other swampland constraints. [McNamara, Vafa '19][Montero, Vafa '20]. In particular, the results obtained in [Montero, Vafa '20] regarding non-simply-connected gauge groups in 8D is consistent with ours.

Thanks!

