Esercizi di riepilogo Corso di Laurea in Informatica A.A. 2005-2006 Docente: Andrea Loi

1. Trovare le radici complesse del polinomio:

$$z^4 + i$$

e dire come sono disposte nel piano.

- 2. VERO O FALSO (giustificando la risposta).
 - Un polinomio di quarto grado a coefficienti complessi ammette sempre 4 radici.
 - Un polinomio di quarto grado a coefficienti complessi ammette sempre 4 radici distinte.
 - Esistono polinomi a coefficienti reali che non ammettono radici reali.
- 3. Si trovino i vettori del piano ortogonali ai seguenti:
 - -i + 2i
 - -2i-j
 - -i+j
 - -2i+j
 - -3i+4j
- 4. Provare che i vettori:

$$u = 2i - 3j; v = 3i + 2j$$

costituiscono una base del piano. Si esprimano inoltre i vettori della base $\mathcal{B} = \{i, j\}$ nella base $\mathcal{B}' = \{u, v\}$. Si scriva inoltre il vettore w = -5i + 2j nella base \mathcal{B}' , si scriva, infine, il vettore z = u + 2v nella base \mathcal{B} .

5. Per quali valori di m i vettori:

$$u = (m-2)i + mj; v = -2i + mj$$

costituiscono una base per il piano? Stesso esercizio con:

$$u = (m+3)i + (m+1)j; v = -3i + (m-1)j$$

6. Si determinino m e n in maniera tale che i vettori:

$$u = (m+3n)i + (2m+n-1)j; v = (3m+n)i - (3m+4n+2)j$$

soddisfino le seguenti condizioni:

- u=v
- u=-v
- u=2v
- -3u=2v
- -u+v=3i+5j
- 7. Si determini k in maniera tale che i vettori dello spazio:

$$u = (1, 2, 3); v = (0, k, 1); w = (1, 1, k)$$

Formino una base per lo spazio.

- 8. Si calcoli il complemento ortogonale dei sottospazi di \mathbb{R}^3 :
 - $S=\{ (1,0,1) \}$
 - $S = \{ (1, 2, 0) \}$
 - $S=\{ (1,1,1) \}$
 - $S=\{ (1,0,1); (0,1,0) \}$
 - $S = \{ (1,1,0); (0,2,1) \}$

- 9. Si proietti u = 2i + 3j k su v = -2i + 2j + k e w = 3i + j 2k su z = i + j + k. Dati inoltre $u' = (\lambda, 1, 2)$ e $v' = (1, \lambda, 2)$ si determini λ in modo che $pr_u(v) = pr_v(u)$
- 10. Calcolare il prodotto scalare e vettoriale tra i vettori $\mathbf{v} = \mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ e $\mathbf{w} = -3\mathbf{i} \mathbf{j} + \mathbf{k}$. Verificare inoltre la disuguaglianza di Cauchy–Schwarz.
- 11. Si determini λ in maniera tale che il triangolo di vertici i punti O=(0,0,0), $P_1=(1,\lambda,2)$ e $P_2=(1,2,1)$, abbia area pari a $\frac{\sqrt{3}}{2}$. Si dica di che tipo di triangolo si tratta.
- 12. Siano $\mathbf{v} = (1, 4, 0)$ e $\mathbf{w} = (1, -2, -1)$. Calcolare l'area del parallelogramma di vertici $O, \mathbf{v}, \mathbf{w}, \mathbf{w} + \mathbf{v}$. Tale parallelogramma è un rombo, un rettangolo e(o) un quadrato?
- 13. Sia \mathbf{v} un vettore di \mathbb{R}^n e λ un numero reale. Dimostrare che $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$.
- 14. VERO O FALSO (giustificando la risposta).
 - Per tutti i vettori $\|\mathbf{v}\|$ e $\|\mathbf{w}\|$ in \mathbb{R}^n

$$\|\mathbf{v} + \mathbf{w}\| = \|\mathbf{v}\| + \|\mathbf{w}\|.$$

- Esistono vettori $\|\mathbf{v}\|$ e $\|\mathbf{w}\|$ in \mathbb{R}^n

$$\|\mathbf{v} + \mathbf{w}\| = \|\mathbf{v}\| + \|\mathbf{w}\|.$$

- 15. Verificare che i vettori (1, 2, -1) e (-1, 0, -1) di \mathbb{R}^3 sono ortogonali. A partire da questi vettori costruire una base ortonormale di \mathbb{R}^3 . Fare lo stesso con i vettori (2, 2, 1) e (1, 1, -4).
- 16. VERO O FALSO (giustificando la risposta).
 - Se il prodotto di due matrici è uguale alla matrice nulla allora una delle due matrici è la matrice nulla.
 - Una matrice $n \times n$ è invertibile se solo se ha rango n.

- Se A e B sono due matrici invertibili $n \times n$ allora il loro prodotto è una matrice invertibile $n \times n$.
- Esitono due matrici A e B invertibili $n \times n$ tale che il loro prodotto non è invertibile.
- Per ogni matrice $A \ n \times n \ e \ k \in \mathbb{R}$ allora $\det(kA) = k \det A$.
- Esiste una matrice $A \in M_{n,n}$ e $k \in \mathbb{R}$ tale che $\det(kA) = k \det A$.
- 17. Per quali valori del parametro λ la matrice $A=\begin{pmatrix}0&0&\lambda\\1&1&-2\\1&0&1\end{pmatrix}$ è invertibile.
- 18. Trovare l'inversa (se possibile) della matrice $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$
- 19. Trovare i valori del parametro reale λ in modo tale che il seguente sistema nelle incognite x, y, z abbia: (a) una soluzione unica, (b) nessuna soluzione, (c) un numero infinito di soluzioni:

$$\begin{cases} x - y + z = \lambda \\ 2x + y - z = \lambda + 1 \\ 5x + y - z = \lambda \end{cases}$$

- 20. VERO O FALSO (giustificare le risposte)
 - Un sistema omogeneo è sempre compatibile
 - Un sistema omogeneo di 3 equazioni in 9 incognite ammette sempre soluzioni e queste dipendono da almeno 6 parametri.
 - Un sistema omogeneo di 3 equazioni in 9 incognite ammette sempre soluzioni e queste dipendono esattamente da 6 parametri.
 - Se $A \in M_{m,n}$ con m < n, allora il sistema omogeneo Ax = 0 ammette soluzioni non banali.

- 21. VERO O FALSO (giustificare):
 - 5 vettori in \mathbb{R}^6 sono sempre linearmente dipendenti;
 - -7 vettori in \mathbb{R}^5 sono linearmente dipendenti;
 - 6 vettori in \mathbb{R}^6 sono sempre linearmente indipendenti.
- 22. Dimostrare che

$$\left(\begin{array}{c}1\\0\\0\end{array}\right), \left(\begin{array}{c}1\\2\\3\end{array}\right), \left(\begin{array}{c}1\\1\\1\end{array}\right).$$

è una base \mathcal{B}' di \mathbb{R}^3 . Scrivere inoltre le coordinate del vettore $\begin{pmatrix} 1\\2\\0 \end{pmatrix}$

rispetto alla base \mathcal{B}' . Se $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ sono le coordinate di un vettore rispetto

alla base \mathcal{B}' quali sono le sue coordinate rispetto alla base \mathcal{B} ?

- 23. VERO O FALSO (giustificare le risposte) (Una matrice quadrata $A \in M_n$ è ortogonale se $AA^T = I_n$, dove A^T è la trasposta di A e I_n denota la matrice identità $n \times n$).
 - Tutte la matrici ortogonali hanno determinante uguale a 1;
 - $-\,$ Tutte la matrici 0rtogonali hanno determinante uguale a 1 oppure -1;
 - $-\,$ Esistono matrici ortogonali che non rappresentano una rotazione.
- 24. Per quali valori di λ i vettori $v_1 = 2\lambda \mathbf{i} + \mathbf{j}$ e $v_2 = \mathbf{j}$ sono linearmente indipendenti?
- 25. Provare che i vettori $\mathbf{v_1} = 2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $\mathbf{v_2} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v_3} = -\mathbf{i} 2\mathbf{j} + \mathbf{k}$ sono linearmente indipendenti. Dire, inoltre se il vettore \mathbf{j} è esprimibile come combinazione lineare di $\mathbf{v_1}$, $\mathbf{v_2}$ e $\mathbf{v_3}$, e se lo è, dire in quanti modi.

5

26. Dire se i seguenti vettori di \mathbb{R}^3 sono linearmente indipendenti; scrivere, quando possibile, un vettore come combinazione lineare dei rimanenti:

$$\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}.$$

Stessa domanda per i vettori

$$\left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}2\\1\\1\end{array}\right).$$

35. Provare che i vettori:

$$\left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}2\\2\\1\end{array}\right)$$

formano una base \mathcal{B} di \mathbb{R}^3 . Esprimere le coordinate del vettore

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

rispetto alla base \mathcal{B} .

36. Trovare una base del sottospazio vettoriale di \mathbb{R}^4 generato dai vettori:

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$