Insurance charges prediction

- 1) Dataset consists of 1338 records
- 2) 6 columns
- 3) Column names are
 - a) Age
 - b) Sex
 - c) Bmi
 - d) Children
 - e) Smoker
 - f) charges
- 4) Age and children fields are integer
- 5) Bmi and charges are float
- 6) Sex and smoker are objects
- 7) All the fields are non-null
- 8) There is no null values for all the columns
- 9) Data preprocessing:
 - a) Convert the "sex" object column to "sex_male" 0 or 1. 0 means female and 1 means male. Is an int field.
 - b) "Smoker" object column converted to "smoker_yes" 0 means non smoker and 1 means smoker. Is an int field.
 - c) Created a "independent" data set with all the columns without "charges"
 - d) Created a "dependent" data set with a "charges" column.
- 10) Different models are tried and their R-Score values are mentioned below.

11) Multilinear Regression:

```
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor.fit(X_train,y_train)
```

LinearRegression LinearRegression()

```
y_pred=regressor.predict(X_test)

from sklearn.metrics import r2_score
r_score=r2_score(y_test,y_pred)

r_score
```

0.7894790349867009

12) Support Vector machine(SVM): Tried with various hyper parameters and results are below.

Sno Kernel С R-Score 1 10 linear 0.00 100 0.54 2 linear 3 linear 500 0.63 4 linear 1000 0.63 5 linear 2000 0.69 0.76 6 linear 5000 10000 0.74 7 linear rbf 10 -0.08 8 9 rbf 100 -0.12 10 500 -0.12 rbf 11 rbf 1000 -0.12

12	rbf	2000	-0.11
13	rbf	5000	-0.07
14	rbf	10000	-0.02
15	sigmoid	10	-0.09
16	sigmoid	100	-0.12
17	sigmoid	500	-0.46
18	sigmoid	1000	-1.67
19	sigmoid	2000	-5.62
20	sigmoid	5000	-31.57
21	sigmoid	10000	-119.52
22	poly	10	-0.09
23	poly	100	-0.10
24	poly	500	-0.08
25	poly	1000	-0.06
26	poly	2000	0.00
27	poly	5000	0.15
28	poly	10000	0.35

- Best SVM model Kernel has "Linear" and C value is 5000 and R-Score is 0.76
- But is less than the multi linear regression model and its R-Score has 0.78

13) Decision tree with various hyper parameters

Sno	Criterion	Splitter/Estimat ors	Max_features	R-Score
1	squared_error	best	sqrt	0.70
2	squared_error	best	log2	0.69
3	squared_error	best	None	0.70
4	squared_error	random	sqrt	0.75
5	squared_error	random	log2	0.61
6	squared_error	random	None	0.70
7	friedman_mse	best	sqrt	0.69
8	friedman_mse	best	log2	0.66

9	friedman_mse	best	None	0.68
10	friedman_mse	random	sqrt	0.62
11	friedman_mse	random	log2	0.73
12	friedman_mse	random	None	0.73
13	absolute_error	best	sqrt	0.75
14	absolute_error	best	log2	0.71
15	absolute_error	best	None	0.67
16	absolute_error	random	sqrt	0.70
17	absolute_error	random	log2	0.66
18	absolute_error	random	None	0.71
19	poisson	best	sqrt	0.55
20	poisson	best	log2	0.71
21	poisson	best	None	0.73
22	poisson	random	sqrt	0.55
23	poisson	random	log2	0.69
24	poisson	random	None	0.64

• Best model is 0.75

- o 1) squared error , random and sqrt
- o 2) absolute error , best and sqrt
- But both are less then the multi linear regression model and its R-Score has 0.78

Random Forest:

Sno	Criterion	Splitter/Estima tors	Max_features	R-Score
1	squared_error	10	sqrt	0.8520006347
2	squared_error	10	log2	0.8520006347
3	squared_error	10		0.8330304134
4	squared_error	100	sqrt	0.8710271903
5	squared_error	100	log2	0.8710271903
6	squared_error	100		0.8538307913
7	friedman_mse	10	sqrt	0.8502777994
8	friedman_mse	10	log2	0.8502777994

9	friedman_mse	10		0.8331662678
10	friedman_mse	100	sqrt	0.8710544016
11	friedman_mse	100	log2	0.8710544016
12	friedman_mse	100		0.8540518935
13	absolute_error	10	sqrt	0.8574290081
14	absolute_error	10	log2	0.8574290081
15	absolute_error	10		0.8350635553
16	absolute_error	100	sqrt	0.8710685856
17	absolute_error	100	log2	0.8710685856
18	absolute_error	100		0.8520093621
19	poisson	10	sqrt	0.8544955286
20	poisson	10	log2	0.8544955286
21	poisson	10		0.831399104
22	poisson	100	sqrt	0.8680156985
23	poisson	100	log2	0.8680156985
24	poisson	100		0.8526334259

• absolute_erro, 100 has estimators and sqrt/log2 has the **0.87** is the R-Score is highest

Conclusion:

- Best model is Random forest with absolute_erro, 100 has estimators and sqrt/log2 has the 0.87 is the R-Score is highest
- Selected this model and deployment file created
- Predicted insurance charges from this model.