

Data Provided: NONE

DEPARTMENT OF COMPUTER SCIENCE

Spring Semester 2019-2020

NETWORK PERFORMANCE ANALYSIS

2 hours

Answer BOTH questions

All questions carry equal weight. Figures in square brackets indicate the percentage of available marks allocated to each part of a question.

THIS PAGE IS BLANK

1. a) Consider an M/M/m queue in which there is one queue and m servers. The steady state probabilities for this system are

$$P_k = \left\{ egin{array}{ll} P_0 \left(rac{(m
ho)^k}{k!}
ight) & k < m \ P_0 \left(rac{m^m
ho^k}{m!}
ight) & k \geq m \end{array}
ight., \qquad
ho = rac{\lambda}{m \mu}.$$

- (i) What do λ and μ represent? Also, state the restriction on the value of ρ . [15%]
- (ii) Derive an expression for P_0 in terms of m and ρ . Simplify the expression as much as possible. [20%]
- b) Consider a switch in a computer network that has one input port and three output ports, and is modelled as an M/M/3 queue.
 - (i) Write down the expressions for the probabilities P_k for k < 3 and $k \ge 3$, and the restriction on the value of ρ . [10%]

$$P_0 = \left[1 + 3\rho + \frac{9}{2}\rho^2 + \frac{9\rho^3}{2(1-\rho)}\right]^{-1}.$$

(iii) Show that the average number of packets in the system is

$$P_0 \sum_{k=0}^{2} \frac{k(3\rho)^k}{k!} + \frac{9P_0}{2} \sum_{k=3}^{\infty} k\rho^k$$

and that this expression simplifies to

$$P_0\left[\frac{9\rho}{2(1-\rho)^2}-\frac{3\rho}{2}\right].$$

[40%]

- 2. a) The Poisson process is the arrival process that is most frequently used to model the behaviour of queues.
 - (i) Derive expressions for the mean and variance of the Poisson distribution at a specific time in terms of the rate λ . [25%]
 - (ii) What is the probability that there are no arrivals in the time interval T? [5%]
 - (iii) What is the probability that there is at least one arrival in the time interval T? [5%]
 - b) Consider an M/M/1 queue for which the arrival and service rates at state k are

$$\lambda_k = \lambda \alpha^k,$$
 $k \ge 0,$ $0 \le \alpha < 1$
 $\mu_k = \mu,$ $k \ge 1$

- (i) Calculate the probability P_k that there are k people in the system. Express your answer in terms of P_0 . State the restriction, if any, on the value of α . [20%]
- (ii) Deduce an expression for P_0 and calculate the probability that there are two or more people in the system. [15%]
- (iii) Calculate the average arrival rate and explain why the restriction on the value of α in 2b.(i) is necessary. [10%]
- (iv) Show that if $\frac{\lambda}{\mu} < 1$, then

$$P_0 > 1 - \frac{\lambda}{\mu}$$

[10%]

(v) Is the condition $\frac{\lambda}{\mu} < 1$ necessary for a steady state solution to exist? Can this solution exist for $\frac{\lambda}{\mu} \ge 1$? Explain your answer. [10%]

END OF QUESTION PAPER

COM4515 4