Computer Networks: Data Link Layer

By,

Mr. Kumar Pudashine, (MEng, AIT)
CCNP (Security), CEH, ITIL Expert, ISO 27001, CISA, AcitivIdentity Certified
Information Technology Division,
Agricultural Development Bank,
Ramshahpath, Kathmandu
Nepal

OSI Layers: Position of Data Link Layer

Data Link Layer: Duties??

Data Link Layer: Sub Layers

Data Link Layer: IEEE Standards For LANs

Project 802

Data Link Layer: Error Detection

Parity Check: Even Parity Concept

CRC: Generator and Checker

CRC Generation: Sender Side

CRC Check: Receiver Side

CRC Polynomial

Polynomial

Checksum

Checksum Example: Sender Side

- Suppose the block of 16 bits is to be sent using a checksum of 8 bits. [10101001 00111001]
- Two 8 Bit Numbers are added.10101001 + 00111001 = 11100010
- one's Complement of 11100010 = 00011101
- The Pattern Sent is10101001 00111001 00011101

Checksum Example: Receiver Side

The Received data along with checksum is added

- Compute One's Complement of 11111111 = 00000000
- No Error in Transmission.

Error Correction

- Error Correction By Retransmission
 - Stop AND Wait ARQ
 - ✓ Go-Back-N ARQ
 - Selective Repeat ARQ
- ARQ => Automatic Repeat Request
- Error Correction By Forward Error Control
 - Hamming Code

Hamming Code: Data and Redundancy Bits

Number of Data Bits (m)	Number of Redundancy Bits (r)	Total Bits (m + r)		
1	2	3		
2	3	5		
3	3	6		
4	3	7		
5	4	9		
6	4	10		
7	4	11		

 $2^r \ge m+r+1$

Hamming Code: Position of Redundancy Bits

_	11	10	9	8	7	6	5	4	3	2	1
	d	d	d	<i>r</i> ₈	d	d	d	<i>r</i> ₄	d	<i>r</i> ₂	r_1

Hamming Code: Redundancy Bits

 r_1 will take care of these bits. 11 9 3 5 1 d d d d d d d *r*₈ r_4 r_2 r_1 r_2 will take care of these bits. 2 11 10 6 3 d d \mathbf{d} d d d d *r*₈ r_4 r_2 r_1 r_4 will take care of these bits. 7 6 5 4 d d d d d d d r_4 *r*₈ r_2 r_1 r_8 will take care of these bits. 11 **10** 9 8 d d d d d d d *r*₈ r_4 r_2 r_1

Hamming Code: Example of Redundancy Bit Calculation

Hamming Code: Error Detection

Stop and Wait ARQ: Normal Operation

Stop and Wait ARQ: Lost Frame

Stop and Wait ARQ: Lost ACK

Stop and Wait ARQ: Delayed ACK

Piggybacking: Bidirectional Transmission (Frame +ACK)

Go-Back-N ARQ: Sender Sliding Window

a. Before sliding

b. After sliding two frames

Go-Back-N ARQ: Receiver Sliding Window

Go-Back-N ARQ: Control Variables

Go-Back-N ARQ: Normal Operation

Go-Back-N ARQ: Lost Frame

Selective Repeat ARQ: Sender and Receiving Windows

Selective Repeat ARQ: Lost Frame

Multiple Access Protocols

Evolution of Random Access Protocols

Multiple Access: ALOHA

1. Pure ALOHA

If you have data to send, send the data. If message collides with other transmission try resending later.

2. Slotted ALOHA

Introduced discrete timeslots and increased the maximum throughput.

Collision in CSMA

Carrier Sense: Strategies

CSMA/CD: Algorithm

Controlled Access: Reservation Access Method

Controlled Access: Select (Primary intended to Send)

Controlled Access: Poll (Primary Intended to Receive)

Controlled Access: Token Passing

Data Link Protocols: HDLC

- High Level Data Link Control Protocol.
- Designed to support Half Duplex and Full Duplex Communication.
- It can be used over Point to Point and Multipoint Links.
- HDLC Provides two common modes of transmission
 - NRM (Normal Response Mode)
 - ABM (Asynchronous Balanced Mode)

Normal Response Mode: NRM

Asynchronous Balanced Mode: ABM

HDLC: Frame Format

HDLC: Frame Types

HDLC Frame Format: Discussions

- I-Frames => Information Frames
- I-Frames are used to transport User data and Control Information.
- S-Frames => Supervisory Frames
- S-Frames are used only to transport control information.
- U-Frames => Unnumbered Frames
- U-Frames are reserved for system management.
- It is intended for managing the link itself.

PPP: Frame Format

- Most Common Protocol For Point to Point Access.
- PPP Employs the version of HDLC.

PPP: Frame Format Discussions

- Flag Field: Identify the Boundaries of PPP. Value is 011111110
- Address Field: Uses Broadcast Address of 111111111.
- Control Field: It Contains 11000000 to show that Frame does not contain any Sequence Numbers and there is no Flow and Error Control.
- Protocol Field: Specifies what is carried in the data field.
- Data Field: Carries Either User data or other Information.
- FCS: Contains 2 byte or 4 byte CRC.

SLIP: Serial Line Internet Protocol

- Older Protocol Used by PCs to Connect to Internet Via Modem.
- Data Link Layer Protocol that Provides Connectivity Across Telephone Line and No Error Correction.
- Relies on Hardware For Error Checking and Correction.
- Supports only on TCP/IP.
- Not Used Much in Today's Environment.

ATM: Asynchronous Transfer Mode

- 1990s Standard for High Speed for Broadband Integrated Service Digital Network Architecture.
- Data Rate => 155 Mbps to 622 Mbps and Higher.
- Goal => Integrated Voice, Video and Data Transport.
- Provide QoS Requirements for Integrated Traffic.
- Root of Next Generation Telephony.
- Fixed Length Packets => Cells (Uses Virtual Circuit Approach).

ATM: Architecture??

ATM: Protocol Architecture

AAL (ATM Adaptation Layer)

- Used only at edge of ATM Network.
- Data Segmentation Reassembly.
- Analogous to Internet Transport Layer.

ATM Layer

- Analogous to Internet Network Layer.
- Cell Switching and Routing.

Physical Layer

Analogous to Internet Physical Layer.

ATM: Example ATM LAN

Frame Relay

- It is a Virtual Circuit Wide Area Networks.
- Designed to respond for new type of WAN in late 1980s.
- Prior to Frame Relay => X.25 were Used.
- Demerits of X.25
 - Low Data Rate (64 Kbps).
 - Flow and Error Control at Data Link Layer and Network Layer.
 - X.25 has its own Network Layer.
- Frame Relay Operates at Higher Speed (1.54 Mbps).
- It Operates in Physical and Data Link Layers.
- Can be easily used as a backbone Network.

Frame Relay Networks

Frame Relay Networks: Virtual Circuit Wide Area Network

VCI: Virtual Connection Identifier

VCI Phases: Three Phases of VCI

FRAD: Frame Relay Assembler Disassembler

ISDN: Integrated Service Digital Network

- ITU Standard For global Digital Communication.
- It was Developed in 1984 to replace Analog Telephone System.
- Allow the Complete Integration of both Voice, Video and Data Within a Single System.
- Two Types of ISDN
 - ✓ Basic Rate ISDN => Provides 2B+D Channels.
 - B Channel of 64 Kbps and D Channel of 16 Kbps.
 - B Channel for Data and D channel for Control.
 - Primary Rate ISDN => Provides 23B+D Channels.
 - Provides Data Rate of 1.544 Mbps.

Thank You