洲江水学

本科实验报告

课程名称:	计算机网络基础					
实验名称:	动态路由协议 BGP 配置					
姓名:	彭子帆					
学 院:	计算机科学与技术学院					
系:	软件工程					
专 业:	软件工程					
学 号:	3170105860					
指导教师:	彭子帆					

2019 年 12 月 23 日

浙江大学实验报告

一、实验目的

- 1. 理解距离向量路由协议的工作原理。
- 2. 理解 BGP 协议的工作机制。
- 3. 掌握配置和调试 BGP 协议的方法。

二、实验内容

- 创建多种类型的网络,各自成为一个独立的 AS
- AS 内部路由器配置成启用 OSPF 路由协议
- 在同一个 AS 边界上的路由器启用 BGP 协议,形成邻居关系
- 在不同 AS 边界路由器上启用 BGP 协议,直连路由器之间建立邻居关系
- 观察各路由器上的路由表和 BGP 运行数据,并验证各 PC 能够相互 Ping 通
- 断开某些链路,观察 BGP 事件和路由表变化
- 在 AS 边界路由器上配置路由聚合
- 在 AS 间进行多径负载均衡

三、 主要仪器设备

PC 机、路由器、Console 连接线、直联网络线、交叉网络线。如果物理设备不足,可以使用模拟软件,建议使用 GNS3 软件,详情请参考《使用 GNS3 软件模拟 IOS 指南》。

四、操作方法与实验步骤

按照下面的拓扑图连接路由器和 PC 机。每个自治系统 (AS) 均分配 1 个独立的 AS 号。其中, AS 65003 内部运行 OSPF 路由协议, R6、R7、R8 分别代表一个 AS。

实验主要步骤:

● 配置路由器各接口的 IP 地址(除了 R1 的 f0/1、R2 的 f0/0 接口配置 IPv6 的地址外,其他均配置 IPv4 的地址),使直连的 2 个路由器能相互 Ping 通,为方便记忆,建议使用 192.168.xy.x/24、192.168.xy.y/24 形式的地址,其中 x,y 分别是相连路由器的编号,例如可以设置 R1 连接 R3 的 f1/0 接口 IP 为 192.168.13.1, R3 连接 R1 的 f1/0 接口 IP 为 192.168.13.3,其他类推;

- 在各 AS 边界路由器之间建立邻居关系;
- 在 AS 65003 内部的两头边界路由器 (R3、R5) 之间建立邻居关系;
- 在 AS 65003 内部启用 OSPF 路由协议,并启用重分发机制,让 OSPF 和 BGP 之间信息互通;
- 在 R8 上配置路由过滤, 使得到达 PC3 子网的路由不经过 AS 65008;
- 给 PC1、PC3 配置 IPv4 地址, 使用 10.0. x. y/24 的形式的私网地址, 其中 x 为子网号, y 为主机地址;
- 给 R1、R2、R6 的 f0/1 接口、R1、R6 的 f2/0 接口以及 PC2、PC4、PC5 配置 IPv6 的地址,使用 FEC0::x:y:z/112 形式的站点本地地址,其中 x、y 为子网号, z 为主机地址;
 - ▶ IPv6 的地址分配规则: FECO::/10 前缀的地址是 IPv6 站点本地地址段(site-local),相当于 IPv4 的私网地址段; FE8O::/10 前缀的地址是用于 IPv6 链路本地的地址段(link-local)。给接口配置 site-local 地址时会自动分配 link-local 地址,也可以手工配置 link-local 地址。由于同一个接口可以配置多个 IPv6 地址,为避免路由学习时产生多个 Next-hop,路由器只把 link-local 地址作为 Next-hop。路由器会自动通告 link-local 地址的前缀, PC 可以根据这些信息自动配置 link-local 地址,并发现路由。
- 在 R1 和 R2 之间建立隧道,使得配置了 IPv6 的主机之间能通过中间的 IPv4 网络相互通信。

BGP 知识点:

- 64512-65534 之间的 AS 号属于私有 AS 号,不在互联网出现。
- 两个路由器都在同一个 AS, 称为 iBGP 邻居, 链路称为内部 link。iBGP 邻居之间的链路可以为非直连链路,数据需要通过其他路由器转发。
- 两个路由器分属于不同的 AS, 称为 eBGP 邻居, 链路称为外部 link。
- BGP 路由状态: *表示有效路由,>表示最佳路由, i表示内部路由, r表示写入路由表时被拒绝, 原因可能是路由表中已存在优先级更高的同样路由。比如 OSPF 属于内部网关路由协议,优先级比外部网关路由协议 BGP 高。
- 多个 AS 之间互相连接,从 R1 到 R2 存在多条 AS 间的路径,例如:

65001->65003->65002

65001->65006->65007-65009->65002

65001->65006->65008->65009->65002

BGP 选择最佳路由的依据有很多, 默认是选择经过最少 AS 数量的路径, 不以接口速度带宽为标准。

- 路由器在发送 BGP 消息时,可能使用物理接口的 IP 地址作为源地址,这样会因为与对方配置的邻居地址不符,导致无法建立邻居关系。因此需要设置更新源为回环接口,可以避免这种情况发生。
- 同步功能是让 BGP 等待内部路由器 (如 R4) 学到了外部路由后才对外发布。重分发功能是把其他路由协议 (如 BGP) 学习到的路由添加到自己数据库中 (如 OSPF)。
- 路由聚合是将路由表中下一跳相同的多个网络合并成一个网络,这样可以减少路由表的大小,加速路由器转发处理速度。

BGP 相关命令:

● 在路由器 R1 上启用 BGP 协议,设置 AS 号,并宣告直连网络:

R1(config)# router bgp <AS-Number>

R1(config-router)# network x.x.x.x mask x.x.x.x

● 把对方增加为 AS 内部的邻居 (AS-Number 设置为相同的 AS 号)
R1 (config-router) # neighbor <IP-Address> remote-as <AS-Number>

● 对方增加为 AS 间的邻居 (IP-Address 为对方的 IP, AS-Number 设置为对方的 AS 号):
R1 (config-router) # neighbor ⟨IP-Address⟩ remote-as ⟨AS-Number⟩

● 查看邻居关系:

R1# show ip bgp neighbor

● 打开 bgp 调试:

R1# debug ip bgp

● 查看 BGP 数据库:

R1# show ip bgp

● 启用 BGP 同步功能:

R1(config-router)# synchronization

● 设置 BGP 更新源为回环接口 (IP-Addr 设置为对方的回环口 IP):

R1(config-router)# neighbor <IP-Addr> update-source loopback 0

● 在BGP中启用路由重分发功能,从 OSPF 中重分发路由信息:

R1(config)# router bgp <AS-Number>

R1(config-router)# redistribute ospf process-id>

● 在 OSPF 中启用重分发功能,从 BGP 中重分发路由信息:

R1(config)# router ospf process-id>

R1(config-router) # redistribute bgp <AS-Number> subnets

● 聚合路由 (summary-only 参数的含义是只传递聚合后的路由, as-set 参数的含义是在传播网络时加上 AS 属性, 避免出现循环路由):

R1(config-route)# aggregate-address <ip network> <subnet mask> summary-only as-set

● 设置允许多条路径:

R1(config-route)# maximum-paths 2

五、 实验数据记录和处理

以下实验记录需结合屏幕截图进行文字标注和描述,图片应大小合适、关键部分清晰可见(本文档中的截图仅用于示例,请更换成你自己的)。记录输入的命令时,直接粘帖文字即可(保留命令前面的提示符,如 R1#)。

1. 参考实验操作方法的说明,设计好每个 PC、路由器各接口的 IP 地址及掩码(除了 PC2、PC4、PC5 以及与之相连的路由器接口配置 IPv6 的地址外,其他均配置 IPv4 的地址),并标注在拓扑图上。

设计的拓扑图

----Part 1. 配置 iBGP-----

2. 分别在 R3、R4、R5 上配置回环端口、各物理接口的 IP 地址,激活 OSPF 动态路由协议,宣告直连 网络。其中进程 ID 请设置为学号的后 2 位(全 0 者往前取值)。

R3 配置命令:

R3(config)#interface f0/0
R3(config-if)# <u>ip address 192.168.34.3 255.255.255.0</u>
R3(config-if)# <u>no shutdown</u>
R3(config)#interface f1/0
R3(config-if)# <u>ip address 192.168.13.3 255.255.255.0</u>
R3(config-if)# <u>no shutdown</u>
R3(config)#interface loopback 0
R3(config-if)# <u>ip address 192.168.3.1 255.255.255.252</u>
R3(config)#router ospf 60
R3(config-router)# <u>network 192.168.0.0 0.0.255.255 area 0</u>
R4 配置命令:
R4(config)#interface f0/0
R4(config-if)# <u>ip address 192.168.34.4 255.255.255.0</u>
R4(config-if)# <u>no shutdown</u>
R4(config)#interface f0/1
R4(config-if)# <u>ip address 192.168.45.4 255.255.255.0</u>
N4(CONT1g-11)#1p address 192.108.49.4 299.299.0
R4(config-if)#no shutdown
R4(config-if)# <u>no shutdown</u>
R4(config-if)# <u>no shutdown</u> R4(config)#interface loopback 0
R4(config-if)#no shutdown R4(config)#interface loopback 0 R4(config-if)#ip address 192.168.4.1 255.255.255.252
R4(config-if)# <u>no shutdown</u> R4(config)#interface loopback 0 R4(config-if)# <u>ip address 192.168.4.1 255.255.255.252</u> R4(config)#router ospf <u>60</u>
R4(config-if)#no shutdown R4(config)#interface loopback 0 R4(config-if)#ip address 192.168.4.1 255.255.255.252 R4(config)#router ospf 60 R4(config-router)#network 192.168.0.0 0.0.255.255 area 0
R4(config-if)# <u>no shutdown</u> R4(config)#interface loopback 0 R4(config-if)# <u>ip address 192.168.4.1 255.255.255.252</u> R4(config)#router ospf <u>60</u> R4(config-router)# <u>network 192.168.0.0 0.0.255.255 area 0</u> R5 配置命令:
R4(config-if)#no shutdown R4(config)#interface loopback 0 R4(config-if)#ip address 192.168.4.1 255.255.255.252 R4(config)#router ospf 60 R4(config-router)#network 192.168.0.0 0.0.255.255 area 0 R5配置命令: R5(config)#interface f0/1
R4(config-if)# <u>no shutdown</u> R4(config)#interface loopback 0 R4(config-if)# <u>ip address 192.168.4.1 255.255.255.252</u> R4(config)#router ospf <u>60</u> R4(config-router)# <u>network 192.168.0.0 0.0.255.255 area 0</u> R5配置命令: R5(config)#interface f0/1 R5(config-if)# <u>ip address 192.168.45.5 255.255.255.0</u>
R4(config-if)#no shutdown R4(config)#interface loopback 0 R4(config-if)#ip address 192.168.4.1 255.255.255.252 R4(config)#router ospf 60 R4(config-router)#network 192.168.0.0 0.0.255.255 area 0 R5配置命令: R5(config)#interface f0/1 R5(config-if)#ip address 192.168.45.5 255.255.255.0 R5(config-if)#no shutdown
R4(config-if)#no shutdown R4(config)#interface loopback 0 R4(config-if)#ip address 192.168.4.1 255.255.255.252 R4(config)#router ospf 60 R4(config-router)#network 192.168.0.0 0.0.255.255 area 0 R5配置命令: R5(config)#interface f0/1 R5(config-if)#ip address 192.168.45.5 255.255.255.0 R5(config-if)#no shutdown R5(config)#interface f1/0
R4(config-if)#no shutdown R4(config)#interface loopback 0 R4(config-if)#ip address 192.168.4.1 255.255.255.252 R4(config)#router ospf 60 R4(config-router)#network 192.168.0.0 0.0.255.255 area 0 R5配置命令: R5(config)#interface f0/1 R5(config-if)#ip address 192.168.45.5 255.255.255.0 R5(config-if)#no shutdown R5(config)#interface f1/0 R5(config-if)#ip address 192.168.25.5 255.255.255.0
R4(config-if)#no shutdown R4(config)#interface loopback 0 R4(config-if)#ip address 192.168.4.1 255.255.255.252 R4(config)#router ospf 60 R4(config-router)#network 192.168.0.0 0.0.255.255 area 0 R5配置命令: R5(config)#interface f0/1 R5(config-if)#ip address 192.168.45.5 255.255.255.0 R5(config-if)#no shutdown R5(config-if)#ip address 192.168.25.5 255.255.255.0 R5(config-if)#ip address 192.168.25.5 255.255.255.0 R5(config-if)#no shutdown
R4(config-if)#no shutdown R4(config)#interface loopback 0 R4(config-if)#ip address 192.168.4.1 255.255.255.252 R4(config)#router ospf 60 R4(config-router)#network 192.168.0.0 0.0.255.255 area 0 R5配置命令: R5(config)#interface f0/1 R5(config-if)#ip address 192.168.45.5 255.255.255.0 R5(config-if)#no shutdown R5(config-if)#ip address 192.168.25.5 255.255.255.0 R5(config-if)#no shutdown R5(config-if)#no shutdown R5(config-if)#no shutdown R5(config-if)#no shutdown R5(config-if)#no shutdown

3. 查看 R3、R4、R5 的路由表,并在 R3 上用 Ping 测试与 R5 的回环口(用回环口作为源地址,命令: ping 〈*IP-addr*〉source loopback 0) 之间的联通性。

R3 路由表:

R4 路由表:

```
R4#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

O 192.168.13.0/24 [110/11] via 192.168.34.3, 00:00:53, FastEthernet0/0

C 192.168.45.0/24 is directly connected, FastEthernet0/1

192.168.25.0/24 [110/11] via 192.168.45.5, 00:00:53, FastEthernet0/1

192.168.4.0/30 is subnetted, 1 subnets

C 192.168.4.0 is directly connected, Loopback0

192.168.5.1 [110/11] via 192.168.45.5, 00:00:53, FastEthernet0/1

C 192.168.34.0/24 is directly connected, FastEthernet0/0

192.168.3.0/32 is subnetted, 1 subnets

O 192.168.3.0/32 is subnetted, 1 subnets

O 192.168.3.0/32 is subnetted, 1 subnets
```

R5 路由表:

```
RS#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

O 192.168.13.0/24 [110/21] via 192.168.45.4, 00:01:24, FastEthernet0/1

C 192.168.45.0/24 is directly connected, FastEthernet1/0

192.168.25.0/24 is directly connected, FastEthernet1/0

192.168.4.0/32 is subnetted, 1 subnets

O 192.168.5.0/30 is subnetted, 1 subnets

C 192.168.5.0 is directly connected, Loopback0

O 192.168.34.0/24 [110/20] via 192.168.45.4, 00:01:24, FastEthernet0/1

192.168.3.0/32 is subnetted, 1 subnets

O 192.168.3.1 [110/21] via 192.168.45.4, 00:01:25, FastEthernet0/1
```

R3→R5 的 Ping 结果:

```
R3#ping 192.168.5.1 source loopback 0

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.5.1, timeout is 2 seconds:

Packet sent with a source address of 192.168.3.1
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 24/37/48 ms
```

4. 启动 R3、R5 上的 BGP 协议(配置成同一个 AS), 宣告直连网络, 然后把对方增加为 AS 内部的邻居 (命令: neighbor 〈IP-Addrss〉 remote-as 〈AS-Number〉), IP-Address 为对方回环接口的 IP, AS-Number 设置为相同的 AS 号。

R3 配置命令:

```
R3(config)#router bgp 65003
R3(config-router)#network 192.168.34.0 mask 255.255.255.0
R3(config-router)#network 192.168.13.0 mask 255.255.255.0
R3(config-router)#neighbor 192.168.5.1 remote-as 65003
```

R5 配置命令:

R3(config-router)#exit

```
R5(config)#router bgp 65003
R5(config-router)#network 192.168.45.0 mask 255.255.255.0
R5(config-router)#network 192,168.25.0 mask 255.255.255.0
R5(config-router)#neighbor 192.168.3.1 remote-as 65003
R5(config-router)#exit
```

5. 分别在 R3、R5 上查看 BGP 邻居关系(命令: show ip bgp neighbor),标出 Link 类型和对方的 IP、连接状态。如果没有活动的 TCP 连接,打开调试开关(命令: debug ip bgp),查看错误原因。观察完毕关掉调试(命令: no debug ip bgp)。

R3 的邻居关系: 观察得知,邻居的 IP 是 192.168.5.1 ,链路类型属于 <u>internal link</u> ,状态是 <u>Active</u> ,但现象是没有活动的 TCP 连接。

```
R3#sh ip bgp neighbor
BGP neighbor is 192.168.5.1, remote AS 65003, internal link
BGP version 4, remote router 1D 0.0.0.0

BGP state = Active

Last read 00:01:52, last write 00:01:52, hold time is 180, keepalive interval is 60 seconds

Message statistics:

InQ depth is 0

OutQ depth is 0

Sent Rcvd

Opens: 0 0

Notifications: 0 0

Updates: 0 0

Keepalives: 0 0

Keepalives: 0 0

Total: 0 0

Default minimum time between advertisement runs is 0 seconds

For address family: IPv4 Unicast

BGP table version 3, neighbor version 0/0

Output queue size : 0

Index 1, Offset 0, Mask 0x2

1 update-group member

Sent Rcvd
```

```
Prefix activity:
 Prefixes Current:
 Prefixes Total:
 Implicit Withdraw:
 Explicit Withdraw:
 Used as bestpath:
                               n/a
 Used as multipath:
                               n/a
                                Outbound
                                            Inbound
Local Policy Denied Prefixes:
 Total:
Number of NLRIs in the update sent: max 0, min 0
Connections established 0; dropped 0
No active TCP connection
```

R5 的邻居关系: 观察得知, 邻居的 IP 是 192.168.3.1 , 链路类型属于 <u>internal link</u> , 状态是 <u>Active</u> , 但现象是没有活动的 TCP 连接。

```
R5#sh ip bgp ne<mark>ighbor</mark>
BGP version 4, remote router ID 0.0.0.0
 Last read 00:04:42, last write 00:04:42, hold time is 180, keepalive interval is 60 seconds
   InQ depth is 0
  OutQ depth is 0
  Opens:
   Updates:
   Total:
 Default minimum time between advertisement runs is 0 seconds
Output queue size : 0
 1 update-group member
 Prefix activity:
   Implicit Withdraw: Explicit Withdraw:
  Used as bestpath:
  Used as multipath:
                                 n/a
                                               Inbound
 Local Policy Denied Prefixes:
 Number of NLRIs in the update sent: max 0, min 0
 Connections established 0; dropped 0
 No active TCP connection
```

打开 debug 后的消息:错误原因是被对方拒绝连接,是因为 R3 默认使用了物理接口的 IP 地址作为源地址,而 R5 配置的邻居地址是 R3 的 回环接口的 IP 地址(即 192.168.34.3),因邻居地址不符被拒绝。

```
R3#debug ip bgp
BGP debugging is on for address family: IPv4 Unicast
R3#
R3#
*Mar 1 00:37:18.379: BGP: 192.168.5.1 open active, local address 192.168.34.3
*Mar 1 00:37:18.427: BGP: 192.168.5.1 open failed: Connection refused by remote host, open active delayed 324
58ms (35000ms max, 28% jitter)
```

6. 在 R3、R5 上设置 BGP 更新源为回环接口(命令: neighbor <IP-Addr> update-source loopback 0), 等待一会儿,再次查看邻居关系,标记连接状态是否已建立(ESTAB)。

R3 配置命令:

R3(config)#router bgp 65003

R3(config-router)#neighbor 192.168.5.1 update-source loopback 0

R5 配置命令:

R5(config)#router bgp 65003

R5(config-router)#neighbor 192.168.3.1 update-source loopback 0

R3 的邻居关系(选取关键信息进行截图): 观察得知,与 R5 的邻居关系已经建立,对方的连接端口是

loopback 0 .

```
R3#sh ip bgp nei

BGP neighbor is 192.168.5.1, remote A5 65003, internal link

BGP version 4, remote router ID 192.168.5.1

BGP state = Established, up for 00:00:58

Last read 00:00:58, last write 00:00:58, hold time is 180, keepalive interval is 60 seconds Neighbor capabilities:

Route refresh: advertised and received(old & new)

Address family IPv4 Unicast: advertised and received
```

```
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Connection is ECN Disabled, Mininum incoming TTL 0, Outgoing TTL 255
Local host: 192.168.3.1, Local port: 56739
Foreign host: 192.168.5.1 Foreign port: 179
```

R5 的邻居关系(选取关键信息进行截图): 观察得知,与 R3 的邻居关系已经建立,对方的连接端口是 $loopback\ 0$ 。

```
R5#sh bgp nei

BGP neighbor is 192.168.3.1, remote AS 65003, internal link

BGP version 4, remote router ID 192.168.3.1

BGP state = Established, up for 00:02:51

Last read 00:00:50, last write 00:00:50, hold time is 180, keepalive interval is 60 seconds Neighbor capabilities:

Route refresh: advertised and received(old & new)

Address family IPv4 Unicast: advertised and received
```

```
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Connection is ECN Disabled, Mininum incoming TTL 0, Outgoing TTL 255
Local host: 192.168.5.1, Local port: 179
Foreign host: 192.168.3.1, Foreign port: 56739
```

7. 在R3、R5上查看BGP数据库(命令: show ip bgp),并查看路由表信息。

R3 的 BGP 数据库(标出 iBGP 路由):观察得知,存在 2 条状态码 = r 的路由(表示没有成功写入路由表)。

```
R3#show ip bgp
BGP table version is 9, local router ID is 192.168.3.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path
*> 192.168.13.0 0.0.0.0 0 32768 i
t>i192.168.25.0 192.168.5.1 0 100 0 i
*> 192.168.34.0 0.0.0.0 0 32768 i
t>i192.168.34.0 192.168.5.1 0 100 0 i
```

R3 的路由表: 观察得知, 网络地址 192.168.45.0 、 192.168.25.0 在路由表中已存在比 BGP 优先级高的 OSPF 路由, 所以 BGP 的路由信息没有成功写入。

```
R3#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
           IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
    192.168.13.0/24 is directly connected, FastEthernet1/0
    192.168.45.0/24 [110/20] via 192.168.34.4, 00:47:46, FastEthernet0/0
    192.168.25.0/24 [110/21] via 192.168.34.4, 00:47:46, FastEthernet0/0
     192.168.5.0/32 is subnetted, 1 subnets
        192.168.5.1 [110/21] via 192.168.34.4, 00:47:46, FastEthernet0/0
     192.168.34.0/24 is directly connected, FastEthernet0/0
     192.168.3.0/30 is subnetted, 1 subnets
       192.168.3.0 is directly connected, Loopback0
```

R5 的 BGP 数据库 (标出 iBGP 路由):

```
R5#sh ip bgp
BGP table version is 9, local router ID is 192.168.5.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path r>i192.168.13.0 192.168.3.1 0 100 0 i
*> 192.168.25.0 0.0.0.0 0 32768 i
r>i192.168.34.0 192.168.3.1 0 100 0 i
*> 192.168.45.0 0.0.0.0 0 32768 i
```

R5 的路由表 (标出在 BGP 数据库中存在,但优先级更高的 OSPF 路由):

```
R5#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
      ia - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
0 192.168.13.0/24 [110/21] via 192.168.45.4, 00:49:30, FastEthernet0/1
     192.168.45.0/24 is directly connected, FastEthernet0/1
    192.168.25.0/24 is directly connected, FastEthernet1/0
    192.168.4.0/32 is subnetted, 1 subnets
        192.168.4.1 [110/11] via 192.168.45.4, 00:49:30, FastEthernet0/1
       192.168.5.0 is directly connected, Loopback0
   192.168.34.0/24 [110/20] via 192.168.45.4, 00:49:30, FastEthernet0/1
        192.168.3.1 [110/21] via 192.168.45.4, 00:49:32, FastEthernet0/1
```

----Part 2. 配置 eBGP-----

8. 在 R1、R2、R6、R7、R8 上激活路由器互联的接口,配置 IP 地址,启用 BGP 协议,每个路由器使用不同的 AS 号,宣告所有直连网络,把直接连接的对方增加为 AS 间的邻居(命令: neighbor <IP-Address> remote-as <AS-Number>), IP-Address 为对方的 IP, AS-Number 设置为对方的 AS 号。

R1 的配置命令: (截图仅供参考,请替换成文本形式的配置命令)

```
R1(config)#interface f1/0
R1(config-if)#ip address 192.168.13.1 255.255.255.0
R1(config-if)#no shutdown
R1(config)#interface f2/0
R1(config-if)#ip address 192.168.16.1 255.255.255.0
R1(config-if)#no shutdown
R1(config)#router bgp 65001
R1(config-router)#network 192.168.13.0 mask 255.255.255.0
R1(config-router)#network 192.168.16.0 mask 255.255.255.0
R1(config-router)#neighbor 192.168.13.3 remote-as 65003
R1(config-router)#neighbor 192.168.16.6 remote-as 65006
R2 的配置命令:
R2(config)#interface f1/0
R2(config-if)#ip address 192.168.25.2 255.255.255.0
R2(config-if)#no shutdown
R2(config)#interface f2/0
R2(config-if)#ip address 192.168.28.2 255.255.255.0
```

```
R2(config-if)#no shutdown
```

R2(config)#router bgp 65002

R2(config-router)#network 192.168.25.0 mask 255.255.255.0

R2(config-router)#network 192.168.28.0 mask 255.255.255.0

R2(config-router)#neighbor 192.168.25.5 remote-as 65003

R2(config-router)#neighbor 192.168.28.8 remote-as 65008

R6 的配置命令:

R6(config)#interface f0/0

R6(config-if)#ip address 192.168.67.6 255.255.255.0

R6(config-if)#no shutdown

R6(config)#interface f2/0

R6(config-if)#ip address 192.168.16.6 255.255.255.0

R6(config-if)#no shutdown

R6(config)#router bgp 65006

R6(config-router)#network 192.168.16.0 mask 255.255.255.0

R6(config-router)#network 192.168.67.0 mask 255.255.255.0

R6(config-router)#neighbor 192.168.16.1 remote-as 65001

R6(config-router)#neighbor 192.168.67.7 remote-as 65007

R7 的配置命令:

R7(config)#interface f0/0

R7(config-if)#ip address 192.168.67.7 255.255.255.0

R7(config-if)#no shutdown

R7(config)#interface f0/1

R7(config-if)#ip address 192.168.78.7 255.255.255.0

R7(config-if)#no shutdown

R7(config)#router bgp 65007

R7(config-router)#network 192.168.67.0 mask 255.255.255.0

R7(config-router)#network 192.168.78.0 mask 255.255.255.0

R7(config-router)#neighbor 192.168.67.6 remote-as 65006

R7(config-router)#neighbor 192.168.78.8 remote-as 65008

R8 的配置命令:

R8(config)#interface f0/1

R8(config-if)#ip address 192.168.78.8 255.255.255.0

R8(config-if)#no shutdown

R8(config)#interface f2/0

R8(config-if)#ip address 192.168.28.8 255.255.255.0

R8(config-if)#no shutdown

R8(config)#router bgp 65008

R8(config-router)#network 192.168.78.0 mask 255.255.255.0

R8(config-router)#network 192.168.28.0 mask 255.255.255.0

R8(config-router)#neighbor 192.168.78.7 remote-as 65007

R8(config-router)#neighbor 192.168.28.2 remote-as 65002

9. 在 R3、R5 上分配配置 R1、R2 为外部 BGP 邻居。

R3 的配置命令:

R3(config)#router bgp 65003
R3(config-router)#neighbor 192.168.13.1 remote-as 65001

R5 的配置命令:

R5(config)#router bgp 65003 R5(config-router)#neighbor 192.168.25.2 remote-as 65002

- 10. 在各路由器上查看邻居关系,标出 Link 类型和对方的 IP、连接状态(找出关键信息进行截图)。
- R1 的邻居关系: R1 的两个邻居的 IP 分别为 192.168.13.3 、 192.168.16.6 ,链路类型均为 external link 。

```
Rl#sh ip bgp nei
BGP neighbor is 192.168.13.3, remote AS 65003, external link
BGP version 4, remote router ID 192.168.3.1
BGP state = Established, up for 00:00:03
Last read 00:00:03, last write 00:00:03, hold time is 180, keepalive in
BGP neighbor is 192.168.16.6, remote AS 65006, external link
BGP version 4, remote router ID 192.168.67.6
BGP state = Established, up for 00:16:53
Last read 00:00:53, last write 00:00:53, hold time is 180, keep
```

R2 的邻居关系: R2 邻居的 IP 分别为 192.168.25.5 、 192.168.28.8 ,链路类型均为 external link 。

```
R2#sh ip bgp nei
BGP neighbor is 192.168.25.5, remote AS 65003, external link
BGP version 4, remote router ID 192.168.5.1
BGP state = Established, up for 00:11:22
Last read 00:00:22, last write 00:00:22, hold time is 180, keepalive interval is
BGP neighbor is 192.168.28.8, remote AS 65008, external link
BGP version 4, remote router ID 192.168.78.8
BGP state = Established, up for 00:15:34
Last read 00:00:34, last write 00:00:35, hold time is 180, keepalive interval is 60
```

R3 的邻居关系: R3 的 iGP 邻居的 IP 为 192.168.5.1 , eBGP 邻居的 IP 为 192.168.13.1 。

```
R3#sh ip bgp nei
BGP neighbor is .92.168.5.1, remote AS 65003, internal link
BGP version 4, remote router ID 192.168.5.1
BGF state = Established, up for 00:41:49
Last read 00:00:48, last write 00:00:48, hold time is 180, keepalive interval is 60 seconds

BGP neighbor is 192.168.13.1, remote AS 65001, external link
BGP version 4, remote router ID 192.168.16.1
BGF state - Established, up for 00:05:48
Last read 00:00:48, last write 00:00:48, hold time is 180, keepalive interval is 60 seconds
```

R5 的邻居关系: R3 的 iGP 邻居的 IP 为 192.168.3.1 , eBGP 邻居的 IP 为 192.168.25.2 。

```
R5#sh ip bgp nei
BGP neighbor is 192.168.3.1, remote AS 65003, internal link
BGP version 4, remote router ID 192.168.3.1
BGP state = Established, up for 00:43:25
Last read 00:00:24, last write 00:00:24, hold time is 180, keepalive interval is 60 seconds
BGP neighbor is 192.168.25.2, remote AS 65002, external link
BGP version 4, remote router ID 192.168.28.2
BGP state = Established, up for 00:16:40
Last read 00:00:41, last write 00:00:41, hold time is 180, keepalive interval is 60 seconds
```

R6 的邻居关系: R6 的两个邻居的 IP 分别为 192.168.16.1 、 192.168.67.7 ,链路类型均为 external link 。

```
R6#sh ip bgp nei

BGP neighbor is 192.168.16.1, remote AS 65001, external link

BGP version 4, remote router ID 192.168.16.1

BGP state = Established, up for 00:23:59

Last read 00:00:58, last write 00:00:58, hold time is 180, keepalive interval is 60 seconds

BGP neighbor is 192.168.67.7, remote AS 65007, external link

BGP version 4. remote router ID 192.168.78.7

BGP state = Established, up for 00:22:27

Last read 00:00:27, last write 00:00:27, hold time is 180, keepalive interval is 60 seconds
```

R7 的邻居关系: R7 的两个邻居的 IP 分别为 192.168.67.6 、192.168.78.8 ,链路类型均为 external link 。

```
BGP neighbor is 192.168.67.6, remote AS 65006, external link

BGP version 4, remote router ID 192.168.67.6

BGP state = Established, up for 00:23:10

Last read 00:00:09, last write 00:00:09, hold time is 180, keepalive interval is 60 seconds

BGP neighbor is 192.168.78.8, remote AS 65008, external link

BGP version 4, remote router ID 192.168.78.8

BGP state = Established, up for 00:21:58

Last read 00:00:57, last write 00:00:57, hold time is 180, keepalive interval is 60 seconds
```

R8 的邻居关系: R8 的两个邻居的 IP 分别为 192.168.28.2 、 192.168.78.7 ,链路类型均为 external link 。

```
R8#sh ip bgp nei
BGP neighbor is 192.168.28.2, remote AS 65002, external link
BGP version 4, remote router ID 192.168.28.2
BGP state = Established, up for 00:23:21
Last read 00:00:21, last write 00:00:21, hold time is 180, keepalive interval is 60 seconds

BGP neighbor is 192.168.78.7, remote AS 65007, external link
BGP version 4, remote router ID 192.168.78.7
BGP state = Established, up for 00:23:33
Last read 00:00:32, last write 00:00:32, hold time is 180, keepalive interval is 60 seconds
```

11. 等待一会儿,在路由器 R1 查看 BGP 数据库,标出到达 R2-R5 间子网、R6-R7 间子网、R7-R8 间子网以及 R2-R8 间子网的最佳路由(标记为 > 的为最佳路由)、经过的 AS 路径。

R1的BGP数据库:

```
Rl#sh ip bgp
BGP table version is 15, local router ID is 192.168.16.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
Origin codes: i - IGP, e - EGP, ? - incomplete
  Network
                    Next Hop
                                        Metric LocPrf Weight Path
   192.168.13.0
                    192.168.13.3
                                                            0 65003 i
                                                        32768 i
                    192.168.16.6
                                                            0 65006 i
   192,168,16.0
                                                        32768 i
                    192.168.13.3
 > 192.168.25.0
                                                            0 65003 i
 > 192.168.28.0
                    192.168.13.3
                                                            0 65003 65002 i
                    192.168.16.6
                                                            0 65006 65007 65008 i
> 192.168.34.0
                    192.168.13.3
  192.168.45.0
                    192.168.13.3
                                                            0 65003 i
                                                            0 65003 65002 65008 i
   192.168.78.0
                    192.168.13.3
                    192.168.16.6
```

观察得知: 到达 R2-R5 间子网的下一跳是 192.168.13.3 , 经过的 AS 路径为 65003 ; 到达 R6-R7 间子网的下一跳是 192.168.16.6 , 经过的 AS 路径为 65006 ; 到达 R7-R8 间子网的路由有 2 条,其中最佳路由的下一跳是 192.168.16.6 , 经过的 AS 路径最短,AS 号依次为 65006, 65007 ; 到达 R8-R2 间子网的路由有 2 条,其中最佳路由的下一跳是 192.168.13.3 , 经过的 AS 路径最短,AS 号依次为 65003, 65002 。

12. 在路由器 R2 查看 BGP 数据库,标出到达 R1-R3 间子网、R1-R6 间子网、R6-R7 间子网以及 R7-R8 间子网的最佳路由、经过的 AS 路径。

R2的BGP数据库:

```
R2#sh ip bgp
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
Origin codes: i - IGP, e - EGP, ? - incomplete
  Network
                   Next Hop
                                        Metric LocPrf Weight Path
                    192.168.25.5
                    192.168.25.5
*> 192.168.16.0
                                                            0 65003 65001 i
                    192.168.28.8
                                                            0 65008 65007 65006 i
   192.168.25.0
                    192.168.25.5
                                                            0 65003 i
                                                        32768 i
                    192.168.28.8
                                                            0 65008 i
   192.168.28.0
                                                        32768 i
  192.168.34.0
                    192.168.25.5
                                                            0 65003 i
  192.168.45.0
                    192.168.25.5
                                                            0 65003 i
   192.168.67.0
                    192.168.25.5
                    192.168.28.8
                                                            0 65008 65007 i
                    192.168.28.8
```

观察得知: 到达 R1-R3 间子网的下一跳是 192.168.25.5 , 经过的 AS 路径为 65003 ; 到达 R7-R8 间子网的下一跳是 192.168.28.8 , 经过的 AS 路径为 65008 ; 到达 R1-R6 间子网的路由有 2 条,其中最佳路由的下一跳是 192.168.25.5 , 经过的 AS 路径最短,AS 号依次为 65003, 65001 ; 到达 R6-R7 间子网的路由有 2 条,其中最佳路由的下一跳是 192.168.28.8 , 经过的 AS 路径最短,AS 号依次为 65008, 65007 。

13. 在路由器 R1 上查看路由表,标出到达 R2-R5 间子网、R6-R7 间子网、R7-R8 间子网以及 R2-R8 间子 网的路由,是否与 BGP 数据库中的最佳路由一致。

R1 的路由表: (与最佳路由是一致的)

14. 在路由器 R2 上查看路由表,标出到达 R1-R3 间子网、R1-R6 间子网、R6-R7 间子网以及 R7-R8 间子 网的路由,是否与 BGP 数据库中的最佳路由一致。

R2 的路由表: (与最佳路由是一致的)

```
R2#sh ip route
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
C 192.168.28.0/24 is directly connected, FastEthernet2/0
B 192.168.13.0/24 [20/0] via 192.168.25.5, 00:26:50
    192.168.45.0/24 [20/0] via 192.168.25.5, 00:26:50
     192.168.25.0/24 is directly connected, FastEthernet1/0
    192.168.78.0/24 [20/0] via 192.168.28.8, 00:29:24
     192.168.67.0/24 [20/0] via 192.168.28.8, 00:29:24
    192 168 34 0/24 [20/0] via 192 168 25 5 00.26.50
     192.168.16.0/24 [20/0] via 192.168.25.5, 00:17:44
```

15. 在路由器 R6 查看 BGP 数据库,标出到达 R2-R5 间子网的最佳路由、经过的 AS 路径。然后在 R1 上 关闭 R1-R3 互联端口后(命令: interface f1/0, shutdown),在 R6 上观察到达 R2-R5 间子网的最佳路由有无变化。

R6 的 BGP 数据库(当前): 到达 R2-R5 间子网的最佳路由的下一跳为 192.168.16.1。

```
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
              r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
  Network
                    Next Hop
                                         Metric LocPrf Weight Path
                    192.168.16.1
> 192.168.13.0
                                                            0 65001 i
                    192.168.16.1
                                                            0 65001 i
                                                        32768 i
*> 192.168.25.0
                    192.168.16.1
                                                            0 65001 65003 i
                    192.168.67.7
                                                            0 65007 65008 65002 i
                                                            0 65007 65008 i
> 192.168.34.0
                    192.168.16.1
   192.168.67.0
                    192.168.67.7
                                                            0 65007 i
```

R6 的 BGP 数据库 (断开连接后): 观察得知, 到达 R2-R5 间子网的最佳路由的下一跳变为 192.168.67.7 。

----Part 3. 路由重分发-----

16. 重新激活 R1-R3 之间的端口(命令: no shutdown),等待 R1 重新选择 R3 作为到达 R2-R8 间子网的最佳 BGP 路由。然后测试 R1 是否能 Ping 通 R2-R8 互联端口,并跟踪 R1 到该子网的路由(命令: traceroute ip-addr,如果提前终止,可按 Ctrl+6)。

Ping 结果:

```
R1#ping 192.168.28.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.28.2, timeout is 2 seconds:
UUUUUU
Success rate is 0 percent (0/5)
```

路由跟踪结果:得到的现象是在路由器<u>R4</u>中断了。

```
R1#traceroute 192.168.28.2

Type escape sequence to abort.
Tracing the route to 192.168.28.2

1 192.168.13.3 64 msec 16 msec 20 msec
2 192.168.34.4 [AS 65003] 28 msec 40 msec 40 msec
3 192.168.34.4 [AS 65003] !H !H !H
```

17. 查看 R3 的 BGP 数据库和路由表,标记到达 R2-R8 间子网的 BGP 最佳路由。查看 R4 的路由表是否存在 R2-R8 间子网的路由信息。

R3 的 BGP 数据库: 观察得知, 到达 R2-R8 间子网的最佳路由的下一跳 IP 地址是 192.168.25.2。

```
R3#sh ip bgp
BGP table version is 21, local router ID is 192.168.3.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
             r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
  Network
                   Next Hop
                                       Metric LocPrf Weight Path
                   192.168.13.1
                                                          0 65001 i
                                                          0 65001 i
>i192.168.25.0 192.168.5.1
*>i192.168.28.0 192.168.25.2
                                                 100 0 65002 i
> 192.168.34.0
                 0.0.0.0
                                                      32768 i
>i192.168.45.0
                   192.168.5.1
 > 192.168.67.0
                   192.168.13.1
                                                          0 65001 65006 i
                                                          0 65001 65006 65007 i
   192.168.78.0
                   192.168.13.1
                                                         0 65002 65008 i
```

R3 的路由表: 观察得知, 到达 R2-R8 间子网的下一跳 IP 地址 192.168.25.2 (属于 R2) 是由 BGP 写入的。去往该地址的下一跳 IP 地址 192.168.34.4 (属于 R4) 是由 OSPF 写入的。

R4 的路由表:观察得知,由于R4 上缺少相应的路由,因此不能Ping 通。默认情况下,未启用同步功能,BGP 就不会考虑 AS 内部是否存在相关路由,导致路由黑洞。

```
R4#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

O 192.168.13.0/24 [110/11] via 192.168.34.3, 01:43:12, FastEthernet0/0

C 192.168.45.0/24 is directly connected, FastEthernet0/1

192.168.40/30 is subnetted, 1 subnets

C 192.168.4.0 is directly connected, Loopback0

192.168.5.0/32 is subnetted, 1 subnets

O 192.168.5.1 [110/11] via 192.168.45.5, 01:43:12, FastEthernet0/1

C 192.168.34.0/24 is directly connected, FastEthernet0/0

192.168.3.1 [110/11] via 192.168.45.5, 01:43:12, FastEthernet0/1

C 192.168.3.0/32 is subnetted, 1 subnets
```

18. 打开 R3、R5 的 BGP 同步功能(命令: synchronization),等一会儿查看 R3、R1 到达 R2-R8 间子 网的 BGP 最佳路由是否发生变化。用 Ping 测试 R1 到达 R2-R8 互联端口的联通性,并跟踪路由。

R3 的配置命令:

R3(config)#router bgp 65003
R3(config-router)#synchronization

R5 的配置命令:

R5(config)#router bgp 65003
R5(config-router)#synchronization

R3 的 BGP 数据库: 观察得知, 到达 R2-R8 间子网的路由有 2 条, 其中最佳路由的下一跳为 (属于 R1), 因为同步功能打开后, BGP 判断 AS 内部缺少相应的路由, 因此不选择本 AS 作为转发路径。

```
R3#sh ip bgp
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
              r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
                                        Metric LocPrf Weight Path
  Network
                   Next Hop
   192.168.13.0
                    192.168.13.1
                                                           0 65001 i
 >i192.168.25.0
                 192.168.5.1
                                                           0 i
                192.168.13.1
> 192.168.28.0
                                                           0 65001 65006 65007 65008 i
                                                       32768 i
 i192.168.45.0
> 192.168.67.0
                    192.168.13.1
                                                           0 65001 65006 65007 i
                    192.168.13.1
                   192.168.25.2
                                                           0 65002 65008 i
```

R3 的路由表: 到达 R2-R8 间子网的下一跳 IP 为 192.168.13.1 , 属于路由器 R1 。

```
R3#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2
    i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
    ia - IS-IS inter area, * - candidate default, U - per-user static route
    0 - ODR, P - periodic downloaded static route

Gateway of last resort is not set

3    192.168.28.0/24 [20/0] via 192.168.13.1, 00:01:09
C    192.168.13.0/24 is directly connected, FastEthernet1/0
O    192.168.45.0/24 [110/20] via 192.168.34.4, 01:48:24, FastEthernet0/0
I92.168.78.0/24 [20/0] via 192.168.34.4, 01:48:24, FastEthernet0/0
I92.168.78.0/24 [20/0] via 192.168.34.4, 01:48:24, FastEthernet0/0
I92.168.4.1 [110/11] via 192.168.34.4, 01:48:24, FastEthernet0/0
I92.168.5.0/32 is subnetted, 1 subnets
O    192.168.5.1 [110/21] via 192.168.34.4, 01:48:25, FastEthernet0/0
I92.168.67.0/24 [20/0] via 192.168.13.1, 00:07:45
C   192.168.34.0/24 is directly connected, FastEthernet0/0
B   192.168.34.0/24 is directly connected, FastEthernet0/0
B   192.168.30 is subnetted, 1 subnets
C   192.168.30 is directly connected, Loopback0
```

R1 的 BGP 数据库: 观察得知, 到达 R2-R8 间子网的最佳路由的下一跳为 192.168.16.6 ,属于路由器 R6 。由于使用了水平分裂方式, R3 并没有向 R1 报告关于这个子网的路由, 因为 R3 选的下一跳是 R1。

Ping 结果:

```
Rl#ping 192.168.28.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.28.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 48/68/88 ms
```

路由跟踪结果:观察得知,依次经过了这些路由器: <u>R6</u>、<u>R7</u>、<u>R8</u>、<u>R2</u>。

```
Rl#traceroute 192.168.28.2

Type escape sequence to abort.
Tracing the route to 192.168.28.2

1 192.168.16.6 20 msec 20 msec 24 msec
2 192.168.67.7 [AS 65006] 20 msec 16 msec 20 msec
3 192.168.78.8 [AS 65007] 28 msec 28 msec 36 msec
4 192.168.28.2 [AS 65008] 40 msec 76 msec 52 msec
```

19. 在 R3、R5 的 OSPF 协议中启用 BGP 重分发功能(命令: router ospf 〈pid〉, redistribute bgp 〈AS-number〉 subnets〉), 等一会儿,查看 R3、R5 的 OSPF 数据库,以及 R4 的路由表是否出现了 AS 外部的路由信息。

R3 的配置命令:

R3(config)#router ospf 60
R3(config-router)#redistribute bgp 65003 subnets

R5 的配置命令:

R5(config)#router ospf 60

R5(config-router)#redistribute bgp 65003 subnets

R3 的 OSPF 数据库: 观察得知, OSPF 从 BGP 中重分发了 AS 外部链路的信息, 但是 R3-R1 的直连网络 192.168.25.0 没有被本路由器重分发。

R3#sh ip ospf database									
OSPF Router with ID (192.168.3.1) (Process ID 60)									
	Pouter Tink States (Area O)								
	Router Link States (Area 0)								
Link ID		ADV Router		Age		Seq#	Checksum	Link	count
192.168.3.1		192.168.3.1		73		0x80000006			
192.168.4.1		192.168.4.1		1006		0x80000006	0x0075E6	3	
192.168.5.1		192.168.5.1		43		0x80000006	0x00DA1F	3	
		Net Link Sta	tes	(Area 0	0)				
Link ID		ADV Router		Age		Seq#	Checksum		
192.168.34.	3	192.168.3.1		1176		0x80000004	0x004D12		
192.168.45.	4	192.168.4.1		1006		0x80000004	0x00D877		
Г		Type-5 AS Ex							
_									
Link ID		ADV Router		Age		Seq#	Checksum	Tag	
192.168.16.	0	192.168.3.1		72		0x80000001	0x00D795	65001	
192.168.16.		192.168.5.1		43		0x80000001	0x0086D6	65002	
192.168.28.		192.168.3.1		72		0x80000001	0x00530E	65001	
192.168.28.		192.168.5.1		43		0x80000001	0x00024F	65002	
192.168.67.		192.168.3.1		72		0x80000001	0x00A495	65001	
192.168.67.		192.168.5.1		47		0x80000001	0 x 0053D6	65002	
192.168.78.	0	192.168.3.1		77		0x80000001	0x002B04	65001	
192.168.78.	0	192.168.5.1		48		0x80000001	0x00D945	65002	

R5 的 OSPF 数据库: 观察得知, OSPF 从 BGP 中重分发了 AS 外部链路的信息, 但是 R5-R2 的直连网络 192.168.25.0 没有被本路由器重分发。

R5#sh ip	ospf da	itabase				
	OSPE	Router with ID	(192.168.5.1	l) (Process	ID 60)	
		Router Link Stat				
Link ID		ADV Router	Age	Seq#	Checksum	Link count
192.168.3	.1	192.168.3.1	157	0x80000006	0x007CA8	3
192.168.4	.1	192.168.4.1	1089	0x80000006	0x0075E6	3
192.168.5	.1	192.168.5.1	124	0x80000006	0x00DA1F	3
		Net Link States	(Area 0)			
Link ID		ADV Router	Age	Seq#	Checksum	
192.168.3	4.3	192.168.3.1	1261	0x80000004	0x004D12	
192.168.4	5.4	192.168.4.1	1089	0x80000004	0x00D877	
		Type-5 AS Extern				
Link ID		ADV Router	Age	Seg#	Checksum	Tag
		192.168.3.1	156	0x80000001		_
192.168.1	6.0	192.168.5.1	123	0x80000001	0x0086D6	65002
192.168.2	8.0	192.168.3.1	156	0x80000001	0x00530E	65001
192.168.2	8.0	192.168.5.1	123	0x80000001	0x00024F	65002
192.168.6	7.0	192.168.3.1	156	0x80000001	0x00A495	65001
192.168.6	7.0	192.168.5.1	132	0x80000001	0x0053D6	65002
192.168.7	8.0	192.168.3.1	166	0x80000001	0x002B04	65001
192.168.7	8.0	192.168.5.1	133	Cx80000001	0x00D945	65002

R4 的路由表: 观察得知, **R4** 上增加了 **AS** 外部的路由信息。此时,到达 **R2-R8** 间子网的下一跳为 <u>192.168.45.5</u> 和 <u>192.168.34.3</u> (优先级相同)。因为重分发后,OSPF 将在 **AS** 内部传播 **BGP** 的外部路由信息。

```
R4#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
      o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
O E2 192.168.28.0/24 [110/1] via 192.168.45.5, 00:03:42, FastEthernet0/1
                     [110/1] via 192.168.34.3, 00:03:42, FastEthernet0/0
     192.168.13.0/24 [110/11] via 192.168.34.3, 00:03:42, FastEthernet0/0
     192.168.45.0/24 is directly connected, FastEthernet0/1
    192.168.25.0/24 [110/11] via 192.168.45.5, 00:03:42, FastEthernet0/1
O E2 192.168.78.0/24 [110/1] via 192.168.45.5, 00:03:42, FastEthernet0/1
                    [110/1] via 192.168.34.3, 00:03:42, FastEthernet0/0
     192.168.4.0/30 is subnetted, 1 subnets
        192.168.4.0 is directly connected, Loopback0
     192.168.5.0/32 is subnetted, 1 subnets
O E2 192.168.67.0/24 [110/1] via 192.168.45.5, 00:03:43, FastEthernet0/1
                    [110/1] via 192.168.34.3, 00:03:43, FastEthernet0/0
C 192.168.34.0/24 is directly connected, FastEthernet0/0
D E2 192.168.16.0/24 [110/1] via 192.168.45.5, 00:03:47, FastEthernet0/1
                    [110/1] via 192.168.34.3, 00:03:47, FastEthernet0/0
     192.168.3.0/32 is subnetted, 1 subnets
       192.168.3.1 [110/11] via 192.168.34.3, 00:03:49, FastEthernet0/0
```

- 20. 在 R3 上清除 BGP 信息 (命令: clear ip bgp *),等待一段时间后,在 R1 上查看到达 R2-R8 间子 网的最佳 BGP 路由,以及 R1 的路由表,并在 R1 上跟踪到达 R2-R8 间子网的路由。
- **R1** 的 **BGP** 数据库: 观察得知,到达 **R2-R8** 间子网的路由有 2 条,其中最佳路由的下一跳为 <u>192.168.13.3</u> (属于路由器 <u>**R3**</u>)。

R1 的路由表: 到达 R2-R8 间子网的下一跳 IP 为 192.168.13.3 , 属于路由器 R3 。

路由跟踪结果:观察得知,依次经过了这些路由器: R3、R4、R5、R2。

```
Rl#trace 192.168.28.2

Type escape sequence to abort.
Tracing the route to 192.168.28.2

1 192.168.13.3 20 msec 8 msec 16 msec
2 192.168.34.4 [AS 65003] 20 msec 20 msec 16 msec
3 192.168.45.5 [AS 65003] 64 msec 48 msec 56 msec
4 192.168.25.2 [AS 65003] 44 msec 40 msec 40 msec
```

21. 在 R3 上的 BGP 中启用 OSPF 路由重分发功能(命令: router bgp 〈AS-bnumber〉, redistribute ospf 〈pid〉), 然后查看 R3 的 BGP 数据库,标记新增的路由信息。等待一会,在 R8 上查看 AS 65003 的内部相关路由信息是否存在。

R3 的配置命令:

R3(config)#router bgp 65003 R3(config-router)#redistribute ospf 60 R3 的 BGP 数据库: 观察得知,新增的路由分别是: __192.168.3.0 、__192.168.4.1 、__192.168.5.1 。因为重分发后,BGP 将在 AS 之间传播 OSPF 的内部路由信息。

R3#sh ip bgp BGP table version is 23, local router ID is 192.168.3.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete									
Network	Next Hop	Metric	LocPrf	Weight	Path				
*> 192.168.3.0/30	0.0.0.0	0		32768					
*> 192.168.4.1/32	192.168.34.4	11		32768					
*> 192.168.5.1/32	192.168.34.4	21		32768					
* 192.168.13.0	192.168.13.1	0		0	65001	i			
*>	0.0.0.0	0		32768	i				
* i	192.168.25.2	0	100	0	65002	65008	65007	65006	65001 :
*> 192.168.16.0	192.168.13.1	0		0	65001	i			
* i	192.168.25.2	0	100	0	65002	65008	65007	65006	i
*> 192.168.25.0	192.168.34.4	21		32768					
* i	192.168.5.1	0	100	0	i				
r>i192.168.28.0	192.168.25.2	0	100	0	65002	i			
*> 192.168.34.0	0.0.0.0	0		32768	i				
*> 192.168.45.0	192.168.34.4	20		32768					
* i	192.168.5.1	0	100	0	i				
*> 192.168.67.0	192.168.13.1			0	65001	65006	i		
* i	192.168.25.2	0	100	0	65002	65008	65007	i	
r 192.168.78.0	192.168.13.1			0	65001	65006	65007	i	
r>i_	192.168.25.2	0	100	0	65002	65008	i		

R8 的 **BGP** 数据库: 观察得知, **AS** 65003 内部子网的路由有<u>6</u>条, 其中到达 **R3** 的回环口的最佳路由的下一跳为 192.168.78.7 ,到达 **R4** 的回环口的最佳路由的下一跳为 192.168.78.7 。

22. 激活 R1 上的 f0/0 端口,配置 IP 地址,宣告 BGP 直连网络。配置 PC1 的 IP 地址和默认网关。

R1 的配置命令:

R1(config)#interface f0/0
R1(config-if)#ip address 192.168.20.1 255.255.255.0
R1(config-if)#no shutdown
R1(config)#router bgp 65001
R1(config-router)#network 192.168.20.0 mask 255.255.255.0

PC1 的配置命令:

PC1>ip 192.168.20.60 255.255.255.0 192.168.20.1

23. 激活 R2 上的 f0/0 端口,配置 IP 地址,宣告 BGP 直连网络。配置 PC3 的 IP 地址和默认网关。测试 PC1-PC3 之间的连通性。

R2 的配置命令:

R2(config)#interface f0/0
R2(config-if)#ip address 192.168.30.1 255.255.255.0
R2(config-if)#no shutdown
R2(config)#router bgp 65002
R2(config-router)#network 192.168.30.0 mask 255.255.255.0
PC3 的配置命令:

PC3>ip 192.168.30.60 255.255.255.0 192.168.30.1

Ping 结果截图:

```
PC-1> ping 192.168.30.60

192.168.30.60 icmp_seq=1 timeout

84 bytes from 192.168.30.60 icmp_seq=2 tt1=59 time=104.900 ms

84 bytes from 192.168.30.60 icmp_seq=3 tt1=59 time=92.423 ms

84 bytes from 192.168.30.60 icmp_seq=4 tt1=59 time=98.083 ms

84 bytes from 192.168.30.60 icmp_seq=5 tt1=59 time=87.025 ms
```

----Part 4. 路由过滤-----

24. 查看 R7 的 BGP 数据库中 PC3 所在子网的最佳路由。

R7 的 BGP 数据库: 当前, 到达 PC3 子网的最佳路由的下一跳是 192.168.78.8 。

```
R7#sh ip bgp 192.168.30.0

BGP routing table entry for 192.168.30.0/24, version 20

Paths: (1 available, best #1, table Default-IP-Routing-Table)

Flag: 0x820

Advertised to update-groups:

1

65008 65002

192.168.78.8 from 192.168.78.8 (192.168.78.8)

Origin IGP, localpref 100, valid, external, best
```

25. 在 R8 上创建访问列表(命令: access-list 〈id〉 deny 〈subnet〉〈mask〉),配置路由过滤(命令: neighbor〈router id〉 distribute-list〈access-list-id〉 out),用于抑制向 R7 传播关于 PC3 子 网的更新(这样可以实现前往 PC3 子网的数据不经过 AS 65008),等待一段时间后再次查看 R7、R8 的 BGP 数据库中 PC3 所在子网的最佳路由(可以通过命令 clear ip bgp *强制更新)。

R8 的配置命令:

```
R8(config)#access-list 1 deny 192.168.30.0 0.0.0.255
R8(config)#access-list 1 permit 0.0.0.0 255.255.255.255
R8(config)#router bgp 65008
R8(config-router)#neighbor 192.168.78.7 distribute-list 1 out
```

查看 R8 生效的访问列表: (访问列表是有顺序的,前面优先。如需修改,请全部删除后重新按顺序添加)

```
R8#sh access-lists
Standard IP access list 1
10 deny 192.168.30.0, wildcard bits 0.0.0.255
20 permit any
```

R8的BGP数据库:

```
R8#sh ip bgp
BGP table version is 20, local router ID is 192.168.78.8
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path
*> 192.168.3.0/30 192.168.78.7 0 65007 65006 65001 65003 ?
*> 192.168.4.1/32 192.168.78.7 0 65007 65006 65001 65003 ?
*> 192.168.5.1/32 192.168.78.7 0 65007 65006 65001 65003 ?
*> 192.168.13.0 192.168.78.7 0 65007 65006 65001 i
*> 192.168.13.0 192.168.78.7 0 65007 65006 65001 i
*> 192.168.20.0 192.168.78.7 0 65007 65006 65001 i
*> 192.168.20.0 192.168.78.7 0 65007 65006 65001 i
*> 192.168.20.0 192.168.28.2 0 0 65002 i
*> 192.168.28.0 192.168.28.2 0 0 65002 i
*> 192.168.30.0 192.168.28.2 0 0 65002 i
*> 192.168.34.0 192.168.28.2 0 0 65002 i
*> 192.168.34.0 192.168.28.2 0 0 65002 i
*> 192.168.34.0 192.168.28.2 0 65002 65003 i
*> 192.168.67.0 192.168.78.7 0 65007 65006 65001 65003 i
*> 192.168.45.0 192.168.78.7 0 65007 65006 65001 i
*> 192.168.78.0 192.168.78.7 0 65007 i
* 192.168.78.0 192.168.78.7 0 65007 i
```

R7的BGP数据库:

观察得知: R8 上到达 PC3 子网的最佳路由的下一跳是 192.168.28.2 , 该路由被过滤,没有传递给 R7,因此, R7 上到达 PC3 子网的最佳路由的下一跳是 192.168.67.6 , 数据不再经过 AS 65008 了。

----Part 5. IPv6 双栈路由-----

26. 激活 R1 上的 f0/1 端口,配置 IPv6 的 site-local 地址;给 f2/0 口配置 IPv6 的 site-local 地址。查看 IPv6 接口(命令: show ipv6 interface),标记自动分配的 link-local 地址。

R1 的配置命令: (截图仅供参考,请替换成文本形式)

R1(config)#interface f0/1

R1(config-if)#ipv6 address fec0::6500:101:1/112

R1(config-if)#no shutdown

R1(config-if)#interface f2/0

R1(config-if)#ipv6 address fec0::6500:16:1/112

R1(config-if)#exit

查看 R1 的 IPv6 接口:

```
Rl#sh ipv6 int
FastEthernet0/1 is up, line protocol is up
 Global unicast address(es):
   FEC0::6500:101:1, subnet is FEC0::6500:101:0/112
 Joined group address(es):
   FF02::1
   FF02::2
   FF02::1:FF01:1
   FF02::1:FF63:1
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
FastEthernet2/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::C601:7FF:FE63:20
   FEC0::6500:16:1, subnet is FEC0::6500:16:0/112
 Joined group address(es):
   FF02::1
   FF02::2
   FF02::1:FF16:1
   FF02::1:FF63:20
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
```

观察得知: 系统为 f0/1 端口自动分配的链路本地地址为 <u>FE80::C601:7FF:FE63:1</u>。 系统为 f2/0 端口自动分配的链路本地地址为 <u>FE80::C601:7FF:FE63:20</u>。

27. 给 R6 的 f2/0、f0/1 端口配置 IPv6 的 site-local 地址,查看 IPv6 接口,标记自动分配的 link-local 地址。在 R1 上分别测试到 R6 的 site-local 和 link-local 地址的连通性。

R6 的配置命令:

```
R6(config)#interface f2/0
R6(config-if)#ipv6 address fec0::6500:16:6/112
R6(config)#interface f0/1
R6(config-if)#ipv6 address fec0::6500:601:6/112
R6(config-if)#no shutdown

香看 R6 的 IPv6 接口:
```

```
R6#sh ipv6 int
FastEthernet0/1 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::C606:7FF:FEB0:1
 Global unicast address(es):
   FEC0::6500:601:6, subnet is FEC0::6500:601:0/112
 Joined group address(es):
   FF02::1:FF01:6
   FF02::1:FFB0:1
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
FastEthernet2/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::C606:7FF:FEB0:20
 Global unicast address(es):
   FEC0::6500:16:6, subnet is FEC0::6500:16:0/112
 Joined group address(es):
   FF02::2
   FF02::1:FF16:6
   FF02::1:FFB0:20
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
```

观察得知: 系统为 f0/1 端口自动分配的链路本地地址为_FE80::C606:7FF:FEB0:1_。 系统为 f2/0 端口自动分配的链路本地地址为 FE80::C606:7FF:FEB0:20 。

Ping 测试结果:

```
Rl#ping FEC0::6500:16:6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to FEC0::6500:16:6, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 16/31/48 ms
Rl#ping FE80::C606:7FF:FEB0:20
Output Interface: fastEthernet2/0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to FE80::C606:7FF:FEB0:20, timeout is 2 seconds:
Packet sent with a source address of FE80::C601:7FF:FE63:20
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 16/21/24 ms
```

28. 分别在 R1、R6 上启用 IPv6 单播路由(命令: ipv6 unicast-routing), 宣告直连网络, 互相设置对方为 IPv6 邻居。然后查看 IPv6 单播邻居信息(命令: show ip bgp ipv6 unicast neighbors)。

R1 的配置命令: (截图仅供参考,请替换成文本形式)

```
R1(config)#ipv6 unicast-routing
R1(config)#router bgp 65001
R1(config-router)#address-family ipv6
R1(config-router-af)#network fec0::6500:101:0/112
R1(config-router-af)#network fec0::6500:16:0/112
R1(config-router-af)#neighbor fec0::6500:16:6 remote-as 65006
R1(config-router-af)#exit
R1(config-router)#exit
```

R6 的配置命令:

```
R6(config)#ipv6 unicast-routing (启用 IPv6 单播路由)
R6(config)#router bgp 65006 (进入 BGP 配置)
R6(config-router)#address-family ipv6 (进入 IPv6 地址族配置模式)
R6(config-router-af)#network fec0::6500:16:0/112 (宣告直连网络)
R6(config-router-af)#network fec0::6500:601:0/112 (宣告直连网络)
R6(config-router-af)# neighbor fec0::6500:16:1 remote-as 65001 (设置邻居关系)
查看 R6 的 IPv6 的邻居信息:与 IPv6 地址_FEC0::6500:16:1 的邻居状态关系已为 Established。
```

```
R6#sh ip bgp ipv6 unicast neighbors

BGP neighbor is FECO::6500:16:1, remote AS 65001, external link

BGP version 4, remote router ID 192.168.16.1

BGP state = Established, up for 00:00:23

Last read 00:00:23, last write 00:00:23, hold time is 180, keepalive interval is 60 seconds
```

查看 R1 的 IPv6 的邻居信息: 与 IPv6 地址 FEC0::6500:16:6 的邻居状态关系已为 Established。

```
Rl#sh ip bgp ipv6 unicast nei

BGP neighbor is FEC0::6500:16:6, remote AS 65006, external link

BGP version 4. remote router ID 192.168.67.6

BGP state Established, up for 00:01:37

Last read 00:00:36, last write 00:00:36, hold time is 180, keepalive interval is 60 seconds

60 seconds
```

29. 给 PC2 配置 IPv6 的 site-local 地址(系统会自动配置链路本地的地址,并发现本地链路上的默认路由器,因此不需要配置默认路由器)。查看 IPv6 信息(命令: show ipv6),标出链路本地地址及路由器的 MAC 地址。测试下与 R1 的连通性。

PC2 的配置命令: (截图仅供参考,请替换成文本形式)

PC-2> ip FEC0::6500:101:2/112

查看 PC2 的 IPv6 配置:

```
PC-2> sh ipv6

NAME : PC-2[1]

LINK-LOCAL SCOPE : fe80::250:79ff:fe66:6801/64

GLOBAL SCOPE : fec0::6500:101:2/11

ROUTER LINK-LAYER : c4:01:07:84:00:01

MAC : 00:50:79:66:68:01

LPORT : 10070

RHOST:PORT : 127.0.0.1:10071

MTU: : 1500
```

链路本地地址为: fe80::250:79ff:fe66:6801/64 , 路由器的 MAC 地址为: c4:01:07:84:00:01 。

PC2→R1 的 Ping 测试结果:

```
PC-2> ping fec0::6500:101:1

fec0::6500:101:1 icmp6_seq=1 ttl=64 time=8.646 ms
fec0::6500:101:1 icmp6_seq=2 ttl=64 time=11.817 ms
fec0::6500:101:1 icmp6_seq=3 ttl=64 time=20.459 ms
fec0::6500:101:1 icmp6_seq=4 ttl=64 time=8.948 ms
fec0::6500:101:1 icmp6_seq=5 ttl=64 time=10.139 ms
```

30. 给 PC5 配置 IPv6 地址。查看 IPv6 信息,标出链路本地地址及路由器的 MAC 地址。测试下与 R6 的连通性。

PC5 的配置命令:

PC-5> ip fec0::6500:601:5/112

查看 PC5 的 IPv6 配置:

```
PC-5> sh ipv6

NAME : PC-5[1]
LINK-LOCAL SCOPE : fe80::250:79ff:fe66:6804/64
GLOBAL SCOPE : fec0::6500:601:5/112
ROUTER LINK-LAYER : c4:06:07:d1:00:01
MAC : 00:50:79:66:68:04
LPORT : 10076
RHOST:PORT : 127.0.0.1:10077
MTU: : 1500
```

链路本地地址为: <u>fe80::250:79ff:fe66:6804/64</u>,路由器的MAC地址为: <u>00:50:79:66:68:04</u>。

PC5→R6 的 Ping 测试结果:

```
PC-5> ping fec0::6500:601:6

fec0::6500:601:6 icmp6_seq=1 ttl=64 time=4.570 ms
fec0::6500:601:6 icmp6_seq=2 ttl=64 time=8.512 ms
fec0::6500:601:6 icmp6_seq=3 ttl=64 time=9.883 ms
fec0::6500:601:6 icmp6_seq=4 ttl=64 time=9.197 ms
fec0::6500:601:6 icmp6_seq=5 ttl=64 time=9.729 ms
```

31. 查看 R1 的 IPv6 路由表(命令: show ipv6 route),标出 BGP 路由,并测试 PC2 到 PC5 的连通性。

R1 的 IPv6 路由表:

```
Rl#sh ipv6 route
IPv6 Routing Table - 7 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
      U - Per-user Static route
      Il - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
      O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
      ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
  FE80::/10 [0/0]
    via ::, Nullo
   FEC0::6500:16:0/112 [0/0]
    via ::, FastEthernet2/0
   FEC0::6500:16:1/128 [0/0]
   FEC0::6500:101:0/112 [0/0]
    via ::, FastEthernet0/1
   FEC0::6500:101:1/128 [0/0]
    via ::, FastEthernet0/1
    via FE80::C606:7FF:FEB0:20, FastEthernet2/0
   via ::, Null0
```

PC5→PC2 的 Ping 测试结果:

```
PC-5> ping fec0::6500:101:2

fec0::6500:101:2 icmp6_seq=1 ttl=60 time=60.430 ms
fec0::6500:101:2 icmp6_seq=2 ttl=60 time=38.904 ms
fec0::6500:101:2 icmp6_seq=3 ttl=60 time=30.305 ms
fec0::6500:101:2 icmp6_seq=4 ttl=60 time=28.877 ms
fec0::6500:101:2 icmp6_seq=5 ttl=60 time=31.082 ms
```

32. 激活 R2 上的 f0/1 端口,配置 IPv6 的 site-local 地址;启用 IPv6 单播路由。给 PC4 配置 IPv6 地址,并测试下 PC4 和 R2、PC2 的连通性。

R2 的配置命令:

R2(config)#interface f0/1
R2(config-if)#ipv6 address fec0::6500:201:1/112
R2(config-if)#no shutdown
R2(config)#ipv6 unicast-routing

PC4 的配置命令:

PC-4>ip fec0::6500:201:2/112

PC4→R2 的 Ping 测试结果:

```
PC-4> ping fec0::6500:201:1

fec0::6500:201:1 icmp6_seq=1 ttl=64 time=11.943 ms
fec0::6500:201:1 icmp6_seq=2 ttl=64 time=8.444 ms
fec0::6500:201:1 icmp6_seq=3 ttl=64 time=10.484 ms
fec0::6500:201:1 icmp6_seq=4 ttl=64 time=10.908 ms
fec0::6500:201:1 icmp6_seq=5 ttl=64 time=9.279 ms
```

PC4→PC2 的 Ping 测试结果: 此时由于路由器 R2 没有 R1 的 IPv6 路由,无法 Ping 通。

```
PC-4> ping fec0::6500:101:2

*fec0::6500:201:1 icmp6_seq=1 ttl=64 time=17.690 ms (ICMP type:1, code:0, No route to destination)
*fec0::6500:201:1 icmp6_seq=2 ttl=64 time=19.388 ms (ICMP type:1, code:0, No route to destination)
*fec0::6500:201:1 icmp6_seq=3 ttl=64 time=8.681 ms (ICMP type:1, code:0, No route to destination)
*fec0::6500:201:1 icmp6_seq=4 ttl=64 time=20.100 ms (ICMP type:1, code:0, No route to destination)
*fec0::6500:201:1 icmp6_seq=5 ttl=64 time=8.779 ms (ICMP type:1, code:0, No route to destination)
```

33. 分别在 R1 和 R2 上创建 IPv6 隧道(命令: interface Tunnel 〈id〉),设置隧道 IPv6 地址(命令: ipv6 address 〈address〉/mask_length〉),设置隧道源接口(命令: tunnel source 〈interface number〉),设置隧道的目标 IPv4 地址(命令: tunnel destination 〈ipv4 address〉),设置隧道模式为手工配置(命令: tunnel mode ipv6ip〉。两路由器隧道的 IPv6 地址要在同一个子网,目标地址设置为对方的 IPv4 接口地址。隧道源接口必须使用配置了 IPv4 地址的接口。

R1 的配置命令:

R1(config)#interface Tunnel0
R1(config-if)#ipv6 address fec0::1020:10/112
R1(config-if)#tunnel source f1/0
R1(config-if)#tunnel destination 192.168.25.2
R1(config-if)#tunnel mode ipv6ip
R1(config-if)#exit

R2 的配置命令:

```
R2(config)#interface Tunnel0
R2(config-if)#ipv6 address fec0::1020:20/112
R2(config-if)#tunnel source f1/0
R2(config-if)#tunnel destination 192.168.13.1
R2(config-if)#tunnel mode ipv6ip
```

34. 在 R1、R2 上为对方的 IPv6 子网设置静态路由(命令: ipv6 route <ipv6 network> Tunnel <id>>), 下一跳为隧道接口。然后在 PC4 上测试到 PC2 之间的连通性。

R1 的配置命令:

R1(config)#ipv6 route fec0::6500:201:0/112 tunnel 0

R2 的配置命令:

R2(config)#ipv6 route fec0::6500:101:0/112 tunnel 0

PC4→PC2 的 Ping 测试结果:

```
PC-4> ping fec0::6500:101:2

fec0::6500:101:2 icmp6_seq=1 ttl=60 time=111.264 ms
fec0::6500:101:2 icmp6_seq=2 ttl=60 time=81.405 ms
fec0::6500:101:2 icmp6_seq=3 ttl=60 time=82.139 ms
fec0::6500:101:2 icmp6_seq=4 ttl=60 time=61.497 ms
fec0::6500:101:2 icmp6_seq=5 ttl=60 time=61.045 ms
```

35. 在 R2 上为 PC5 的子网设置静态路由,下一跳为隧道接口。然后在 PC5 上测试到 PC4 之间的连通性。如果不通,查看 R6 上的路由信息,思考下为什么。

R2 的配置命令:

R2(config)#ipv6 route fec0::6500:601:0/112 tunnel 0 (设置静态路由)
PC5→PC4 的 Ping 测试结果:观察得知,从路由器_R6_返回没有路由的错误。

```
PC-5> ping fec0::6500:201:2

*fec0::6500:601:6 icmp6_seq=1 tt1=64 time=44.675 ms (ICMP type:1, code:0, No route to destination)
*fec0::6500:601:6 icmp6_seq=2 tt1=64 time=9.008 ms (ICMP type:1, code:0, No route to destination)
*fec0::6500:601:6 icmp6_seq=3 tt1=64 time=9.320 ms (ICMP type:1, code:0, No route to destination)
*fec0::6500:601:6 icmp6_seq=4 tt1=64 time=9.762 ms (ICMP type:1, code:0, No route to destination)
*fec0::6500:601:6 icmp6_seq=5 tt1=64 time=9.741 ms (ICMP type:1, code:0, No route to destination)
```

R6 的 IPv6 路由表: 观察得知, R6 上没有 fec0::6500:201:0/112 (PC4 子网) 的路由。

36. 在 R1 的 BGP 中重分发 IPv6 的静态路由(命令: redistribute static), 然后查看 R6 的 BGP 数据库,标记新出现的 R2 的 IPv6 网络路由。再次在 PC5 上测试到 PC4 之间的连通性。

R1 的配置命令:

```
R1(config)#router bgp 65001
R1(config-router)#address-family ipv6
R1(config-router-af)#redistribute static
R1(config-router-af)#exit
R1(config-router)#exit
```

R6的BGP数据库:

```
R6#sh ip bgp ipv6 unicast
BGP table version is 7, local router ID is 192.168.67.6
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
              r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
                   Next Hop
                                      Metric LocPrf Weight Path
  Network
  FEC0::6500:16:0/112
                   FEC0::6500:16:1
                                                          0 65001 i
> FEC0::6500:101:0/112
                    FEC0::6500:16:1
                                                          0 65001 i
> FEC0::6500:201:0/112
                    FEC0::6500:16:1
                                                           0 65001 ?
> FEC0::6500:601:0/112
                                                       32768 i
```

R6 的路由表:

```
R6#sh ipv6 route
IPv6 Routing Table - 8 entries
      U - Per-user Static route
      Il - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
      O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
   FE80::/10 [0/0]
    via ::, Null0
    via ::, FastEthernet2/0
   FEC0::6500:16:6/128 [0/0]
    via ::, FastEthernet2/0
    via FE80::C601:7FF:FE63:20, FastEthernet2/0
    via FE80::C601:7FF:FE63:20, FastEthernet2/0
   FEC0::6500:601:0/112 [0/0]
    via ::, FastEthernet0/1
   FEC0::6500:601:6/128 [0/0]
    via ::, Null0
```

PC5→PC4 的 Ping 测试结果:

```
PC-5> ping fec0::6500:101:1

fec0::6500:101:1 icmp6_seq=1 ttl=63 time=34.486 ms
fec0::6500:101:1 icmp6_seq=2 ttl=63 time=18.951 ms
fec0::6500:101:1 icmp6_seq=3 ttl=63 time=19.983 ms
fec0::6500:101:1 icmp6_seq=4 ttl=63 time=18.752 ms
fec0::6500:101:1 icmp6_seq=5 ttl=63 time=30.095 ms
```

37. 整理各路由器的当前运行配置,选择与本实验相关的内容记录在文本文件中,每个设备一个文件,分别命名为 R1.txt、R2.txt 等,随实验报告一起打包上传。

见附带的文件夹-配置文件:

六、实验结果与分析

根据你观察到的实验数据和对实验原理的理解,分别解答以下问题:

● 在 AS 内部两个 BGP 邻居是否一定要直接连接?如果不直接连接,它们之间是如何获得到达对方的路由的?需要和 OSPF 那样建立虚链路吗?

不一定,可以为非直连链路,可以通过其他路由器进行转发。不需要建立虚链路。

- 默认情况下,BGP 根据什么条件决定最佳路由? 默认是选择经过最少 AS 数量的路径,不以接口速度带宽为标准。
- 为什么未启用同步时, R1 选择 AS65003 作为到达 R2 的转发路径时, R3 和 R5 的路由表都存在 去往 R2 的路由, 但实际却不能 Ping 通?

未启用同步功能,BGP 就不会考虑 AS 内部是否存在相关路由,导致路由黑洞。即使 R3、R5 的路由表存在去往 R2 的路由也不会考虑。

- 为什么关未启用路由重分发时,R4没有外部网络的路由? 路由重分发为单向重分发,在进行路由分发时,会向下通告BGP的直连路由,因此关闭路由重分发后,R4无法收到路由重分发时的路由信息,所以R4没有外部网络的路由。
- 为什么 PC 可以不设置 IPv6 的默认路由器?路由器可以吗? 给 PC 设置 site-local 地址时,系统会自动配置链路本地的地址,并发现本地链路上的默认路由

器, 所以可以不设置。

路由器不可以,需要设置单播路由等。

● R1 和 R2 两边的 IPv6 网络是采用什么技术通过 IPv4 的网络进行通信的? R6 的 IPv6 网络又是如何实现与 R2 的 IPv6 网络通信的?

R1和R2两边的IPv6网络是采用隧道技术通过IPv4的网络进行通信。

R6的 IPv6 网络通过设置静态路由实现与 R2的 IPv6 网络通信。

七、讨论,心得

在完成本实验后,你可能会有很多待解答的问题,你可以把它们记在这里,接下来的学习中,你也许会逐渐得到答案的,同时也可以让老师了解到你有哪些困惑,老师在课堂可以安排针对性地解惑。等到课程结束后,你再回头看看这些问题时你或许会有不同的见解:

- 1. 第3问中,我们查看当前路由器的路由表,回环接口 mask 为30,与指导截图32不一样,是什么原因?
- 2. 第 21 问中,在 R3 上的 BGP 中启用 OSPF 路由重分发功能,在 R8 的 BGP 数据库中只能看到 S 65003 内部子网的 5 条路由,为什么与实验指导的 9 条不一样,什么原因会造成这种情况? (最佳路由也相应发生了变化)

在实验过程中你可能会遇到的困难,并得到了宝贵的经验教训,请把它们记录下来,提供给其他人参考吧:

bgp 设置宣告网络、设置邻居路由器都会进行记录,要避免输错,如路由器 R1 设置 network 10.0.1.0 mask 255.255.255.0 错设置了 network 10.0.2.0 mask 255.255.255.0, 均会有记录。

你对本实验安排有哪些更好的建议呢?欢迎献计献策:

第 10 问中, R3 的邻居关系,问的应是 "R3 的 iBGP 邻居的 IP"而非"iGP", R5 的邻居关系同。R5 的邻居关系中有误:

R5 的邻居关系: R3 的 iGP 邻居的 IP 为______, eBGP 邻居的 IP 为_____。。