QUESTION 1) [15 points]

a) [5 points]	b) [5 points]	c) [5 points]	
Both are unsigned.	Both are signed.	Both are signed (two's complement).	
X = 1000 0100 (132 decimal)	X = 0111 1000 (+120 decimal)	X = 1111 1011 (-5 decimal)	
Y = 1011 1010 (186 decimal)	Y = 0100 0110 (+70 decimal)	Y = 1111 1101 (-3 decimal)	
+	+	+	
1 0011 1110 (318 decimal, but with 9 bits)	1011 1110 (190 decimal, but max signed is +127)	1 1111 1000 (+504 decimal, but with 9 bits)	
0011 1110 (Actual = 62 decimal, carry discarded)	1011 1110 (or -66 decimal, same as 190)	1111 1000 (Actual = -8 decimal, carry discarded)	
FLAGS:	FLAGS:	FLAGS:	
Carry: Carry out of Result MSB (Most Significant) bit.	Negative: Result MSB is 1 (sign bit).	Carry: Carry out of Result MSB bit.	
Overflow: X MSB (1) + Y MSB (1)> Result MSB (0)	Overflow: X MSB (0) + Y MSB (0)> Result MSB (1)	Half Carry: Carry out of Result 3rd to 4th bit.	
		Negative: Result MSB bit is 1 (sign bit).	

QUESTION 2) [35 points]

a) [15 points] Addressable range is from 00 0000 to FF FFFF, which contains 6 hexadecimal digits. Since each hexadecimal digit is 4 bits, 6*4=24 bits are required as minimum number of address lines. Total addressable capacity of memory = $2^{24} = 2^4 * 2^{20} = 16$ MB

Memory Chip	Smallest Address	Biggest Address	Calculating Number of Locations = (Biggest - Smallest) + 1	Number of Locations (2 ²⁰ = 1 MB)	Capacity (Mega Bytes)
M1	00 0000	3F FFFF	3F FFFF - 00 0000> 3F FFFF 3F FFFF + 1> (40 0000) ₁₆ locations	4.2 ²⁰	4 MB
M2	40 0000	7F FFFF	7F FFFF - 40 0000> 3F FFFF (40 0000) ₁₆ locations	4.2 ²⁰	4 MB
M3	80 0000	BF FFFF	BF FFFF - 80 0000> 3F FFFF (40 0000) ₁₆ locations	4.2 ²⁰	4 MB
M4	C0 0000	DF FFFF	DF FFFF - C0 0000> 1F FFFF 1F FFFF + 1> (20 0000) ₁₆ locations	2.2 ²⁰	2 MB
EMPTY	E0 0000	FF FFFF	FF FFFF - E0 0000> 1F FFFF (20 0000) ₁₆ locations	2.2 ²⁰	2 MB

b) [20 points] The following is the shortest answer, other correct answers are also accepted.

To distinguish M4 from Empty addresses, A21 should be 0 (inverted A21) for M4's chip select, and should be 1 for Empty addresses. If A21 is not used in design (for M4 chip selection), empty addresses can select the M4 chip.

QUESTION 3) [20 points]

b) [5 points]

Frequency = 10 MHz

Clock period (seconds) = $\frac{1}{Frequency (Hertz)}$

$$= 1/(10 * 10^6) = 10^{-7}$$
 seconds

$$=10^{-7}*10^9$$
 nanoseconds = 100 nanoseconds

The STA instruction takes 5 clock periods to complete.

Therefore it takes 5 * 100 = 500 nanoseconds.

QUESTION 4) [30 points]

COUNT EQU 5 ; Number of elements in arrays ARRAY1 RMB 1 ORG ARRAY1 DAT 10,20,30,40,50 ARRAY2 RMB 1 ORG ARRAY2 DAT 60,70,80,90,100 TOTAL_ARRAY RMB COUNT AVG_ARRAY RMB COUNT START LDA CD, 0 ; Loop counter CONTINUE LDA SK, ARRAY1 LDA A, <SK+CD+0> LDA SK, ARRAY2 ADD A, <SK+CD+0> LDA SK, TOTAL_ARRAY STA A, <SK+CD+0> LDA SK, AVG_ARRAY LSR A ; Logical Shift Right (means divide by 2) STA A, <SK+CD+0> INC CD CMP CD, COUNT BLT CONTINUE INT

Totals and Averages of corresponding elements.

ARRAY1	ARRA	
10	60	
20	70	
30	80	
40	90	
50	100	

TOTAL_ARRAY		AVG_ARRAY	
70		35	
90		45	
110		55	
130		65	
150		75	
			-