ELECTROMAGNETIC WAVES

DISPLACEMENT CURRENT-

Euveent that flows due to change in electric field is known as displacement current.

$$I = \frac{dq}{dt}$$

$$\phi_e = \frac{q}{\varepsilon_o} \qquad q = \phi_e \varepsilon_o$$

$$I = \frac{d}{dt} \phi_e \varepsilon_o$$

$$I_0 = \varepsilon_o \frac{d\phi_e}{dt}$$

· The magnitude of Io = magnitude of conduction current

MAXWELL'S MODIFICATION OF ACL

$$\oint \vec{B} \cdot d\vec{l} = \mathcal{H}_0 (i_c + i_b)$$

$$\oint \vec{B} \cdot d\vec{l} = \mathcal{H}_0 i_c \quad [\text{outside capacitor}, i_b = 0]$$

$$\oint \vec{B} \cdot d\vec{l} = \mathcal{H}_0 \cdot \mathcal{E}_0 \quad \frac{d\phi}{dt} \quad [\text{inside rapacitor}, i_c = 0]$$

FOUR EQUATIONS OF ELECTROMAGNETISM

- 1) yours theorem for electrostats \Rightarrow To find flux and EF $\oint \vec{E} \cdot \vec{dA} = \underbrace{Qen}_{\xi_0}$
- 2) yours theorem for magnetism \rightarrow To find flux and MF $\oint \vec{B} \cdot d\vec{A} = 0$

- 3. Maxwell's Ampere Bircuital Law $\phi \vec{B} \cdot d\vec{l} = 4_0 \left(i_c + \epsilon_o \frac{d\phi_e}{dt} \right)$
- This proves changing electric flux creates MF.
- 4. Faraday's law of electromagnetic induction

→ BE·AI= - dob

changing magnetic flux creates electric flux.

ELECTROMAGNETIC WAVES

A wave radiated by an accelerated or oscillatory charge in which varying magnetic field is the source of electric field and varying electric field is the source of magnetic field.

CHARACTERISTICS OF EM WAVES

- 1. The energy in EMW is divided on average equally between electric and magnetic fields.
- 2. The waves are transverse in nature.
- 3. EMW cavry energy and exert force and pressure
- 4. EMW ave not deflected by electric & magnetic field
- 5. EMW are transverse in nature i.e. electric field and magnetic fields are perpendicular to each other and to the direction of wave propagation.

ELECTROMAGNETIC SPECTRUM

The systematic sequential distribution of EMW in ascending or descending order of frequency or wavelength is known as electromagnetic spectrum.

1 Radio Wave -

· Wavelength range - >0.1 m · Frequency range - 104-109 Hz

· Peroduction - Rapid acceleration and deceleration of e.

· Netection - Receiver's racrials

· Uses - (i) In readio and TV communication

(ii) In astronomical field

(2) Microwaves

· Wavelength range - 0.1 m - 1 mm

· Frequency erange - 109 - 1011

· Peroduction - Klysteron valve or magnetron valve

· Detection - Point contact diodes

· Uses - (i) In RADAR communication

(11) For cooking purpose

3 Infrared wave

· Wavelength range - 1 mm - 700 nm

· Frequency range - 3×10" - 4×10"4

· Production - Vibration of atoms and molecules

Detection - Thermopile, Bolometer

. Uses - (i) In treatment of muscular complaints (ii) In knowing molecular structure

4. Visible rays

· Wavelength range - 700 nm to 400 nm

· Frequency range - 4×10¹⁴ - 8×10¹⁴ Hz

· Production - Electrons in atoms emit light when they move from one energy level to a lower energy level.

· Detection - The eye, photocells, photographic film

· Uses - (i) To see things

(ii) In optical instruments.

5. Ultraviolet Rays

· Wavelingth range - 400 nm - 1 mnm

· Frequency range - 8×10¹⁴ - 8×10¹⁶ Hz

· Production - Inner shell e in atoms moving from one energy level to a lower level.

· Detection - Photocells, photographic film

· Uses = (i) In burglar alarm

(ii) To kill germs in minerals

6. X-Rays

· Wavelength range - 1 nm - 10⁻³ nm

· Frequency range - 1 × 10 16 - 3 × 10 21

· Peroduction - X-ray tubes or inner shell e-

· Detection - Photographic film, Geiger tubes

· Uses - (i) In medical diagnosis

(ii) In detecting faults, cracks

7. Gamma Rayo

· Wavelength range - < 10⁻³ nm

· Frequency range - 5×10¹⁸ - 5×10²² Hz

· Production - Radioactive decay of the nucleus

· Detection - Photographic film, ionisation chamber

· Uses - (i) For food preservation by killing pathogenic microorganisms.

(ii) In radiotherapy for treatment of tumour and cancer.

1. A readio can tune into any station in the

7.5 MHz to 12 MHz band. What is the

corresponding wavelength?

NCERT

Sol' For 7.5 MHz band, Wavelength, $\lambda_1 = \frac{C}{V} = \frac{3 \times 10^8}{7.5 \times 10^6} = 40 \text{ m}$

For 12 MHz band,

Wavelength, $\lambda_2 = \frac{C}{v} = \frac{3 \times 10^8}{12 \times 10^6} = 25 \text{ m}$

So, wavelength range is from 25m - 40m.

2. About 5% of the power of a 100 W light bulb is connected to visible radiation. What is the average intensity of visible radiation at

(1) distance of 1 m from the bulb

(11) distance of 10 m?

Assume that the radiation is emitted isotropically

and neglect reflection.

Sol. (i) Intensity, $I = \underline{\text{Power of visible light}}$ Area

$$= \frac{100 \times (5/100)}{4\pi(1)^2}$$

 $= 0.4 \, \text{W/m}^2$

(ii)
$$I = \frac{100 \times \left(\frac{5}{100}\right)}{4\pi \left(10\right)^2}$$

 $= 4 \times 10^{-3} \, \text{W/m}^2$

3. The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is $B_0 = 510 \, \text{n}$ T. What is the amplitude of the electric field part of the vave?

Sol. $B_0 = 510 \,\text{nT} = 510 \times 10^9 \,\text{T}$ Speed of light in vacuum, $C = \frac{E_0}{B_0}$ where, E_0 is the of amplitude of electric field

part of the wave. $3 \times 10^8 = \frac{F_0}{510 \times 10^{-9}}$

Eo = 153 N/C

Thus, the amplitude of the electric field part of wave is 153 N/C.