

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS CRATEÚS CIÊNCIA DA COMPUTAÇÃO E SISTEMAS DE INFORMAÇÃO

Nuno(a):	Matrícula:
Aluno(a):	Período: 2022.1
CRT0390 - Algoritmos em grafos	Prof. Rennan Dantas

N	Ο.	ta	•
IN	U	ια	.

 2^a . ETAPA

Instruções para resolução da lista:

- 1 A lista deve ser respondida de forma manuscrita, incluindo os grafos.
- 2 Use preferencialmente caneta esferográfica de tinta azul ou preta para escrever as respostas. Certifique-se de que as suas respostas estão legíveis.
- 3 Gere um PDF único com todas as suas respostas. Envie esse arquivo gerado pelo SIGAA.
 - 1. Seja (u,v) uma aresta de peso mínimo em um grafo conexo G. Mostre que (u,v) pertence a alguma árvore geradora mínima de G.
 - 2. Mostre que, se uma aresta (u,v) está contida em alguma árvore geradora mínima, então ela é uma aresta leve que cruza algum corte do grafo.
 - 3. Seja e uma aresta de peso máximo em algum ciclo do grafo conexo G=(V,E). Prove que existe uma árvore geradora mínima de G'=(V,E-e) que também é uma árvore geradora mínima de G. Isto é, existe uma árvore geradora mínima de G que não inclui e.
 - 4. Mostre que um grafo tem uma árvore geradora mínima única se, para todo corte do grafo, existe uma aresta leve única que cruza o corte. Mostre que a recíproca não é verdadeira, dando um contraexemplo.
 - 5. O algoritmo de Kruskal pode devolver diferentes árvores geradoras para o mesmo grafo de entrada G, dependendo de como as ligações são rompidas quando as arestas são ordenadas. Mostre que, para cada árvore geradora mínima T de G, existe um modo de ordenar as arestas de G no algoritmo de Kruskal, de tal forma que o algoritmo retorne T.
 - 6. Neste problema, apresentamos os pseudocódigos para três algoritmos diferentes na Figura 1. Cada um toma um grafo conexo e uma função peso como entrada e retorna um conjunto de arestas T. Para cada algoritmo, prove que T é uma árvore geradora mínima ou que T não é necessariamente uma árvore geradora mínima. Descreva também a implementação mais eficiente de cada algoritmo, quer ele calcule ou não uma árvore geradora mínima.
 - 7. [POSCOMP 2013 Adaptado] Assinale a alternativa que apresenta, corretamente, o algoritmo utilizado para determinar o caminho mínimo entre todos os pares de vértices de um grafo.
 - (a) Bellman-Ford
 - (b) Floyd-Warshall
 - (c) Dijkstra
 - (d) Kruskal
 - (e) Prim

Além disso, explique resumidamente como cada um desses algoritmos funcionam e qual o objetivo de cada um.

8. O professor Borden propõe um novo algoritmo de divisão e conquista para calcular árvores geradoras mínimas, que apresentamos a seguir. Dado um grafo G=(V,E), particione o conjunto V de vértices em dois conjuntos V_1 e V_2 , tais que a diferença entre $|V_1|$ e $|V_2|$ seja no máximo 1. Seja E_1 o conjunto de arestas incidentes somente em vértices de V_1 e seja E_2 o conjunto de arestas incidentes somente em vértices de V_2 . Resolva recursivamente um problema de árvore geradora mínima para cada um dos dois subgrafos $G_1=(V_1,E_1)$ e $G_2=(V_2,E_2)$. Finalmente, selecione a aresta de peso mínimo em E que cruza o corte (V_1,V_2) e use essa aresta para unir as duas árvores geradoras mínimas resultantes em uma única árvore geradora. Demonstre que o algoritmo calcula corretamente uma árvore geradora mínima de G ou dê um exemplo para o qual o algoritmo não funciona.

```
a. Maybe-MST-A(G, w)
         ordenar as arestas em ordem não crescente de pesos de arestas w
   2
   3
         for cada aresta e, tomada em ordem não crescente de peso
   4
                 if T - \{e\} é um grafo conexo
   5
                          T = T - e
   6
         return T
b. Maybe-MST-B(G, w)
         T = \emptyset
  2
         for cada aresta e, tomada em ordem arbitrária
  3
                 if T \cup \{e\} não tem nenhum ciclo
   4
                          T = T \cup \{e\}
   5
         return T
c. Maybe-MST-C(G, w)
         T = \emptyset
         for cada aresta e, tomada em ordem arbitrária
   3
                  T = T \cup \{e\}
   4
                 if T tem um ciclo c
   5
                          seja e' uma aresta de peso máximo em c
   6
                          T = T - \{e'\}
   7
         return T
```

Figura 1: Fonte: Livro Algoritmos - Cormen

- 9. Prove ou refute: Seja G=(V,E) um grafo dirigido ponderado com vértice fonte s e função peso $w:E\to\mathbb{R}$ e suponha que G não contenha nenhum ciclo negativo que possa ser alcançado de s. Então, para cada vértice $v\in V$, existe um caminho de s a v se e somente se BELLMAN-FORD termina com $v.d<\infty$ quando é executado em G.
- 10. Dê um exemplo simples de grafo dirigido com arestas de peso negativo para o qual o algoritmo de Dijkstra produz respostas incorretas. Explique o porquê.
- 11. Seja G=(V,E) um grafo dirigido ponderado com vértice fonte s e suponha G inicializado por INITIALIZE-SINGLE-SOURCE(G,s). Prove que, se uma sequência de etapas de relaxamento define s.p com um valor não NIL, então G contém um ciclo de peso negativo.
- 12. Seja G=(V,E) um grafo dirigido ponderado com função peso $w:E\to\mathbb{R}$ sem ciclos de peso negativo. Seja $s\in V$ o vértice fonte e suponha G inicializado por INITIALIZE-SINGLE-SOURCE(G,s). Prove que, para todo vértice $v\in V_p$, existe um caminho de s a v em G_p e que essa propriedade é mantida como um invariante para qualquer sequência de relaxamentos.
- 13. Seja G=(V,E) um grafo dirigido ponderado que não contém nenhum ciclo de peso negativo. Seja $s\in V$ o vértice fonte e suponha G inicializado por INITIALIZE-SINGLE-SOURCE(G,s). Prove que existe uma sequência de |V|-1 etapas de relaxamento que produz v.d=d(s,v) para todo $v\in V$.