Contactmoment 6: Respons computer lab

Important

Vooraleer je de oefeningen kan oplossen is het belangrijk om zowel de dataset te laden, het pakket car te activeren en ook de OLP2 Functies te activeren.

Oefening 1

Oefening 1

Is er een verschil tussen eerste en tweedejaars in technische geletterdheid (TAC.na) en is het zo dat het effect van "eigen inbreng in de les" (PISA_EigenInbreng) op de technische geletterdheid anders is voor eerste dan wel voor tweedejaars (Studiejaar)?

Vooraleer je deze analyse draait, maak je een dummyvariabele aan voor de variabele Studiejaar. Zorg ervoor dat deze dummy aanstaat voor de categorie "tweedejaars". Hanteer deze dummyvariabele in je verdere analyses.

We starten met het aanmaken van de dummy variabele en checken of we dit goed gedaan hebben door een tabel aan te maken waarin we de oorspronkelijke variabele kruisen met de aangemaakte dummy variabele.

Techniek\$Tweedejaars<-(Techniek\$Studiejaar=='2')*1
table(Techniek\$Studiejaar,Techniek\$Tweedejaars)

We schatten nu het model met daarin enerzijds de hoofdeffecten van PISA_EigenInbreng en Tweedejaars en anderzijds het interactie-effect tussen beide. (Je merkt in onderstaand

codeblok dat we werken met wat meer 'enters' en de code over lijnen spreiden om ze leesbaar te houden)

M_EigenInbreng <- lm(</pre>

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                              0.679370
                                         0.018249 37.228 < 2e-16 ***
PISA_EigenInbreng
                             -0.053860
                                         0.009498 -5.671 1.67e-08 ***
Tweedejaars
                              0.010221
                                         0.024576
                                                    0.416
                                                             0.678
                                         0.013114 -0.555
PISA_EigenInbreng:Tweedejaars -0.007273
                                                             0.579
Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2041 on 1675 degrees of freedom
```

(688 observations deleted due to missingness)
Multiple R-squared: 0.04447, Adjusted R-squared: 0.04275
F-statistic: 25.98 on 3 and 1675 DF, p-value: < 2.2e-16

De mate waarin leerlingen eigen inbreng mogen doen, het studiejaar waarin leerlingen zitten en de interactie tussen deze beide variabelen verklaren samen 4.28% van de variantie (R-kwadraat = 0.0428) in technische geletterdheid (TAC.na). We verwachten dat deze variabelen ook in de populatie een invloed gaan hebben op technische geletterdheid (F(3,1675) = 25.98, p < 0.001).

Aangaande de vraag of er een verschil is in technische geletterdheid tussen eerste- en tweedejaars studenten stellen we vast dat er geen statistisch significant effect is van de variabele Tweedejaars op TAC.na (=0.01, p=0.678).

De variabele PISA_EigenInbreng heeft wel een statistisch significant hoofdeffect (= -0.05, p < 0.05). Leerlingen die één eenheid hoger scoren op de mate waarin ze vinden eigen inbreng te mogen hebben in de les scoren 0.05 eenheden lager op technische geletterdheid. In de populatie verwachten we ook een effect gegeven de p-waarde die kleiner is dan 0.05. Onze hypothese met betrekking tot verschil in het effect van PISA_EigenInbreng tussen eerste- en tweedejaars dienen we te verwerpen. Het is niet zo dat leerlingen in het tweede jaar meer baat hebben bij het hebben van eigen inbreng in de les. Het interactie-effect van deze lesstijl met het jaar is niet significant (= -0.007, p = 0.579). Anders gesteld: leerlingen uit het eerste of tweede jaar hebben dezelfde mate van eigen inbreng nodig in de les om technisch geletterder te worden.

Oefening 2

Oefening 2

En hoe zit dat met de andere leerkrachtstijlen (PISA_Experimenteren; PISA_Orientatie)? Hebben die hetzelfde effect voor eerste en tweedejaars? Gebruik opnieuw de dummyvariabele (Tweedejaars) om deze hypotheses te toetsen. Toets elk van die hypotheses in een afzonderlijk model.

We gaan eerst de twee nieuwe modellen schatten, ééntje met daarin PISA_Experimenteren als voorspeller en ééntje met PISA_Orientatie als voorspeller.

```
M_Experimenteren <- lm(
   TAC.na ~ PISA_Experimenteren + Tweedejaars + PISA_Experimenteren * Tweedejaars,
   data = Techniek
)

M_Orientatie <- lm(
   TAC.na ~ PISA_Orientatie + Tweedejaars + PISA_Orientatie * Tweedejaars,
   data = Techniek
)</pre>
```

We bekijken de output voor beide modellen.

```
summary(M_Experimenteren)
```

Call:

```
lm(formula = TAC.na ~ PISA_Experimenteren + Tweedejaars + PISA_Experimenteren *
Tweedejaars, data = Techniek)
```

Residuals:

Min 1Q Median 3Q Max -0.59012 -0.16213 0.00697 0.18210 0.41744

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.582276 0.029566 19.694 <2e-16 *** PISA_Experimenteren 0.001171 0.012381 0.095 0.925 Tweedejaars 0.471 0.028006 0.038866 0.721 PISA_Experimenteren:Tweedejaars -0.011252 0.016513 -0.681 0.496

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2088 on 1675 degrees of freedom (688 observations deleted due to missingness)

Multiple R-squared: 0.000561, Adjusted R-squared: -0.001229

F-statistic: 0.3134 on 3 and 1675 DF, p-value: 0.8157

summary(M_Orientatie)

Call.

lm(formula = TAC.na ~ PISA_Orientatie + Tweedejaars + PISA_Orientatie *
Tweedejaars, data = Techniek)

Residuals:

Min 1Q Median 3Q Max -0.60970 -0.16449 0.00952 0.17363 0.42555

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.544560 0.028204 19.308 <2e-16 *** PISA_Orientatie 0.016128 0.010834 1.489 0.137 Tweedejaars -0.005354 0.035844 -0.149 0.881 PISA_Orientatie:Tweedejaars 0.005019 0.014177 0.354 0.723

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2083 on 1675 degrees of freedom (688 observations deleted due to missingness)

Multiple R-squared: 0.004543, Adjusted R-squared: 0.002761

F-statistic: 2.548 on 3 and 1675 DF, p-value: 0.05431

Wat beide andere lesstijlen betreft, blijkt dat de verklaarde variantie in technische geletterdheid (TAC.na) telkens verwaarloosbaar is (R-kwadraat Experimenteren= -0.0012, R-kwadraat Orientatie= 0.0028) en bovendien niet statistisch significant (p Experimenteren= 0.816, p Orientatie= 0.054). De onafhankelijke variabelen hebben dus geen effect op technische geletterdheid in de populatie. Bovendien is voor beide modellen zowel Tweedejaars (Experimenteren = -0.007, p = 0.471; Orientatie= 0.016, p = 0.137) als de interactie tussen Tweedejaars en lesstijl (Experimenteren Tweedejaars = -0.011, p = 0.496; OrientatieTweedejaars= 0.005, p = 0.723) niet statistisch significant. In de populatie vinden we deze effecten dus niet terug.

Oefening 3

Oefening 3

Tijdens een vorig contactmoment gingen we al na in welke mate de interesse van leerlingen in het project (Projectinteressant.z) en de mate van interesse in techniek voor het project (Interest.voor.z) een invloed hebben op de interesse na het project (Interest.na.z).

Op basis van een uitgebreide literatuurstudie vermoeden we echter dat de interesse in techniek na het project niet voor alle studierichtingen hetzelfde is.

- (a) Ga deze hypothese na. Zet de variabele Richting5cat eerst om in de nodige dummyvariabelen. Hanteer vervolgens de studierichting "Technisch" als referentiecategorie in je analyses. Maak ook de nodige gestandaardiseerde variabelen aan.
- (b) Interpreteer vervolgens ook de andere parameterschattingen.

(a)

We starten met het aanmaken van de nodige dummy-variabelen.

Note

Om te weten welke code van Richting5cat hoort bij welke studierichting grijp je best terug naar het codeboek.

In de onderstaande code maken we de dummy-variabelen aan. Soms voeren we nog een extra controle uit via het table() commando. Dat doen we hier niet. We zijn overtuigd dat we het goed deden!

```
Techniek$Technisch <- (Techniek$Richting5cat=='1')*1
Techniek$Kunst <- (Techniek$Richting5cat=='2')*1
```

```
Techniek$Latijn <- (Techniek$Richting5cat=='3')*1
Techniek$ModWet <- (Techniek$Richting5cat=='4')*1
Techniek$Handel <- (Techniek$Richting5cat=='5')*1
```

Daarnaast moeten we enkele variabelen standaardiseren.

```
Techniek$Projectinteressant.z <- scale(Techniek$Projectinteressant)
Techniek$Interest.voor.z <- scale(Techniek$Interest.voor)
Techniek$Interest.na.z <- scale(Techniek$Interest.na)
```

Nu zijn we klaar om het gevraagde model te schatten en de output op te vragen.

```
Model3a<-lm(
   Interest.na.z ~ Projectinteressant.z +
        Interest.voor.z +
        Kunst +
        Latijn +
        ModWet +
        Handel,
        data=Techniek
   )
   summary(Model3a)</pre>
```

Call:

```
lm(formula = Interest.na.z ~ Projectinteressant.z + Interest.voor.z +
    Kunst + Latijn + ModWet + Handel, data = Techniek)
```

Residuals:

```
Min 1Q Median 3Q Max -3.9210 -0.4538 0.0149 0.4781 2.7577
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
             (Intercept)
Projectinteressant.z 0.18773
                    0.01643 11.423 < 2e-16 ***
Interest.voor.z
            -0.02814 0.13274 -0.212
Kunst
                                 0.832
             Latijn
                    0.06355 -4.890 1.08e-06 ***
ModWet
             -0.31074
             -0.30135
Handel
                    0.07370 -4.089 4.49e-05 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.7497 on 2236 degrees of freedom (124 observations deleted due to missingness)

Multiple R-squared: 0.4403, Adjusted R-squared: 0.4388 F-statistic: 293.2 on 6 and 2236 DF, p-value: < 2.2e-16

De hypothese klopt! Uit de analyses blijkt dat leerlingen die gemiddeld scoren op Projectinteressant.z en Interest.voor.z maar les volgen in de studierichtingen Latijn (= -0.34, p < 0.001), Moderne Wetenschappen (= -0.311, p < 0.001) of Handel (= -0.301, p < 0.001) significant lager scoren op Interest.na.z in vergelijking met leerlingen uit een technische richting. Het verschil in score op Interest.na.z tussen leerlingen uit Kunst en leerlingen uit een technische richting is niet significant (= -0.028, p = 0.832).

(b)

Een leerling uit een technische richting die gemiddeld scoort op 'Projectinteressant.z' en op 'Interest.voor.z' behaalt een score van 0.281 SD boven het gemiddelde (0 = 0.281, p < 0.001). De kans dat het intercept in de populatie 0 bedraagt, is zeer klein (p < 0.001). We gaan er dus vanuit dat dit ook voor de populatie geldt. Als we het effect van Projectinteressant.z op Interest.na.z vergelijken met dat van Interest.voor.z op Interest.na.z, dan blijkt dat het effect van de laatste variabele groter is. We mogen beide effecten vergelijken, omdat het in beide gevallen om gestandaardiseerde variabelen gaat.

Interest.voor.z heeft een positief effect op Interest.na.z (=0.567, p < 0.001). Voor elke SD die een leerling hoger scoort op Interest.voor.z stijgt diens score op Interest.na.z met 0.567 SD, ongeacht de studierichting waarin de leerling les volgt en diens score op Project.interessant.z. (Ook de toename in Interest.na.z mogen we in SD's interpreteren aangezien ook deze variabele is gestandaardiseerd.) Aangezien de p-waarde kleiner is dan 0.05 verwachten we dit effect ook in de populatie terug te vinden. Hetzelfde geldt voor het effect van Projectinteressant.z. Eén SD hoger score op deze variabele leidt tot een toename van 0.188 SD op Interest.na.z (=0.188, p < 0.001), ongeacht de studierichting waarin een leerling les volgt en zijn score op Interest.voor.z.

Ten slotte blijkt dat dit model 43.9% van de variantie in Interest.na.z verklaart (adj. R-kwadraat = 0.439) De F-toets leert dat we dit ook in de populatie mogen verwachten (F(6,2236) = 293.2, p < 0.001). Dus ook de in populatie verklaren de onafhankelijke variabelen ene deel van de verschillen in interesse in techniek na het project.

Oefening 4

Oefening 4

Ten slotte verwachten we dat het effect van Interest.voor.z op interesse in techniek mogelijk anders is voor leerlingen uit de studierichting "Technisch".

- (a) Ga ook deze hypothese na. Rapporteer je bevindingen a.d.h.v. de output van je analyses.
- (b) Bereken de scores van volgende leerlingen in de steekproef en in de populatie:
 - een leerling die 0 scoort op alle onafhankelijke variabelen
 - een leerling uit een technische richting die 1SD hoger scoort op Interest.voor.z en 2 SD hoger scoort op Projectinteressant.z

(a)

Om deze onderzoeksvraag op een efficiënte wijze te vertalen in een model is het handiger om een andere referentiecategorie te nemen voor studierichting dan Technisch. In de code hieronder kiezen we ervoor om een andere grotere groep leerlingen te hanteren als refentiecategorie: de leerlingen uit Moderne Wetenschappen. Dit zie je in de code omdat de dummy variabele ModWetniet is opgenomen in het model. De vraag naar het interactie-effect vertalen we in het model door de term (Interest.voor.z * Technisch) op te nemen.

```
Model4 <- lm(
   Interest.na.z ~ Projectinteressant.z +
        Interest.voor.z +
        Technisch +
        Latijn +
        Kunst +
        Handel +
        (Interest.voor.z * Technisch),
        data=Techniek
   )
   summary(Model4)</pre>
```

```
Call:
```

```
lm(formula = Interest.na.z ~ Projectinteressant.z + Interest.voor.z +
    Technisch + Latijn + Kunst + Handel + (Interest.voor.z *
```

```
Technisch), data = Techniek)
```

Residuals:

```
Min 1Q Median 3Q Max -3.9124 -0.4541 0.0083 0.4787 2.7545
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-0.030234	0.023577	-1.282	0.19985	
Projectinteressant.z	0.187985	0.016437	11.437	< 2e-16	***
Interest.voor.z	0.563815	0.017519	32.183	< 2e-16	***
Technisch	0.253368	0.089634	2.827	0.00475	**
Latijn	-0.029504	0.036677	-0.804	0.42124	
Kunst	0.282396	0.120925	2.335	0.01962	*
Handel	0.008868	0.049540	0.179	0.85794	
<pre>Interest.voor.z:Technisch</pre>	0.066976	0.073794	0.908	0.36418	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7497 on 2235 degrees of freedom (124 observations deleted due to missingness)

Multiple R-squared: 0.4405, Adjusted R-squared: 0.4388 F-statistic: 251.4 on 7 and 2235 DF, p-value: < 2.2e-16

De vooropgestelde hypothese klopt niet! Uit de analyse blijkt dat het interactie-effect tussen Interest.voor.z en een technische studierichting volgen (Technisch) niet statistisch significant is (= 0.067, p = 0.364). Het effect van Interest.voor.z op Interest.na.z is in de populatie dus niet anders voor leerlingen uit een technische studierichting.

i Note

Als dit wel statistisch significant zou zijn, dan zou dat betekenen dat voor leerlingen uit een technische studierichting het effect van Interest.voor.z op Interest.na.z groter zou zijn. 1 SD hoger scoren op Interest.voor.z leidt dan voor een leerling uit een technische studierichting tot een toename van $0.631 \ (= 0.564 + 0.067)$ SD op Interest.na.z.

(b)

... is een leerling die gemiddeld scoort op alle onafhankelijke kwantitatieve variabelen en die tot de referentiecategorie behoort (Moderne Wetenschappen). Onze beste inschatting is dat

[&]quot;Een leerling die 0 scoort op alle onafhankelijke variabelen"

deze leerling zowel in de steekproef een score op Interest.na.z van -0.03 (= het intercept!) behaalt. Voor de populatie verwachten we dat zo'n leerling een score 0 behaalt (het intercept is immers niet statistisch significant).

"Een leerling uit een technische richting die 1 SD hoger scoort op Interest.voor.z en 2 SD hoger scoort op Projectinteressant.z"

Vooraleer we de berekeningen doen, schrijven we de regressievergelijking opnieuw op.

$$\begin{split} \text{Interest.na.Z} = & \beta_0 + \beta_1 \cdot \text{Projectinteressant.z} + \beta_2 \cdot \text{Interest.voor.z} + \\ & \beta_3 \cdot \text{Technisch} + \beta_4 \cdot \text{Latijn} + \beta_5 \cdot \text{Kunst} + \beta_6 \cdot \text{Handel} + \\ & \beta_7 \cdot (\text{Technisch} * \text{Interest.voor.z}) \end{split} \tag{1}$$

Voorspelde scores voor de steekproef:

Om de scores te berekenen voor de steekproef vullen we alle parameters in uit de output.

$$\begin{split} \text{Interest.na.Z} = & -0.03 + 0.188 \cdot \text{Projectinteressant.z} + 0.564 \cdot \text{Interest.voor.z} + \\ & 0.253 \cdot \text{Technisch} + -0.030 \cdot \text{Latijn} + 0.282 \cdot \text{Kunst} + 0.009 \cdot \text{Handel} + \\ & 0.067 \cdot (\text{Technisch} * \text{Interest.voor.z}) \end{split}$$

Nu we de parameters hebben ingevuld, kunnen we ook de waarden voor de variabelen invullen die de betrokken leerling behaalt.

Interest.na.Z =
$$-0.03 + 0.188 \cdot \frac{2}{2} + 0.564 \cdot \frac{1}{1} + 0.253 \cdot \frac{1}{1} + -0.030 \cdot \frac{0}{1} + 0.282 \cdot \frac{0}{1} + 0.009 \cdot \frac{0}{1} + 0.067 \cdot (\frac{1}{1} \cdot \frac{1}{1}) = 1.23$$
 (3)

Voorspelde scores voor de populatie:

Om de scores te berekenen voor de populatie vullen we enkel de statistisch significante parameters uit de output in onze vergelijking in. Parameters die niet statistisch significant zijn vervangen we door de waarde 0.

$$\begin{split} \text{Interest.na.Z} = & 0 + 0.188 \cdot \text{Projectinteressant.z} + 0.564 \cdot \text{Interest.voor.z} + \\ & 0.253 \cdot \text{Technisch} + 0 \cdot \text{Latijn} + 0.282 \cdot \text{Kunst} + 0 \cdot \text{Handel} + \\ & 0 \cdot \left(\text{Technisch} * \text{Interest.voor.z} \right) \end{split}$$

Vervolgens kunnen we de waarden invullen die de bewuste leerling behaalde op elk van de variabelen in ons model.

Interest.na.Z =0 + 0.188
$$\cdot$$
 2 + 0.564 \cdot 1+
0.253 \cdot 1 + 0 \cdot 0 + 0.282 \cdot 0 + 0 \cdot 0+
0 \cdot (1 * 1)= 1.193 (5)