# **Electronic Circuits**

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Dr. Gökhan Bilgin gokhanb@ce.yildiz.edu.tr

# **FET Amplifiers**

### FETs provide:

- Excellent voltage gain High input impedance Low-power consumption Good frequency range

# **FET Small-Signal Model**

### Transconductance

The relationship of a change in  ${\rm I}_{\rm D}$  to the corresponding change in  ${\rm V}_{\rm GS}$  is called transconductance

Transconductance is denoted  $g_m$  and given by:

$$g_m = \frac{\Delta I_D}{\Delta V_{GG}}$$

# Graphical Determination of g<sub>m</sub>



# Mathematical Definitions of $g_m$

$$\begin{aligned} \mathbf{g}_{m} &= \frac{\Delta I_{D}}{\Delta V_{GS}} \\ \mathbf{g}_{m} &= \frac{2 I_{DSS}}{|V_{P}|} \left[ 1 - \frac{V_{GS}}{V_{P}} \right] \end{aligned}$$

Where 
$$V_{GS}$$
 =0V  $g_{m0}$  =  $\frac{2I_{DSS}}{|V_P|}$   $g_m$  =  $g_{m0} \int_{-\infty}^{\infty} 1 - \frac{V_{GS}}{N}$ 

$$V_P$$
  $\sqrt{I_{DSS}}$  
$$g_m = g_{m0} \left( 1 - \frac{V_{GS}}{V_P} \right) = g_{m0} \sqrt{\frac{I_D}{I_{DSS}}}$$

## **FET Impedance**

$$Z_i = \infty \Omega$$

$$Z_o = r_d = \frac{1}{y_{os}}$$

$$r_d = \frac{\Delta v_{DS}}{\Delta I_D} |_{V_{GS} = constant}$$
  
 $y_{os} = admittance parameter listed on FET specification sheets.$ 













































# Practical Applications Three-Channel Audio Mixer Silent Switching Phase Shift Networks Motion Detection System