

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS

MATHEMATICAL LITERACY P2

2017

MARKING GUIDELINES

MARKS: 150

Codes	Explanation
M	Method
MA	Method with Accuracy
CA	Consistent Accuracy
A	Accuracy
C	Conversion
D	Define
J	Justification/Reason/Explain
S	Simplification
RD	Reading from a table OR a graph OR a diagram OR a map OR a plan
F	Choosing the correct formula
SF	Substitution in a formula
0	Opinion
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding Off
NP	No penalty for rounding OR omitting units
MCA	Method with consistent accuracy

These marking guidelines consist of 15 pages.

KEY TO TOPIC SYMBOL:

F = Finance; M = Measurement; MP = Maps, plans and other representations DH = Data Handling; P = Probability.

QUES	QUESTION 1 [39 Marks]		
Ques	Solution	Explanation	T&L
1.1.1	Probability = $\frac{3}{15} \checkmark A$ = 0,2 $\checkmark CA$	1A numerator 1A denominator 1CA simplification AO (3)	P L2
1.1.2	6 members scores decreased. As a percentage = $\frac{6}{15} $ $\angle A 00\% $ $\angle MA$ = 40% $\angle CA$	1A no. decreased 1MA percentage with denominator 15 1CA simplification AO (3)	D L2
1.1.3 (a)	Arranging scores in ascending or descending order: 27; 28; 30; 32 ; 34; 38; 41; 42 ; 43; 43; 44; 46 ; 53; 56; 62 ✓MA	1MA ordered data	D L2
	Median is 42. ✓✓A	2A median AO (3)	
1.1.3 (b)	43 ^{✓✓} A	2A mode (2)	D L2
1.1.3 (c)	$IQR = \text{upper quartile} - \text{lower quartile}$ $= Q_3 - Q_1$ $= \sqrt[4]{RT} \sqrt{RT}$ $= 46 - 32 \sqrt[4]{RT}$ $= 14 \sqrt[4]{CA}$	CA from 1.1.3(a) 1RT 46 1RT 32 1CA IQR value (3)	D L3
1.1.4	The interquartile range of 1 st tournament is smaller than that of the 2 nd tournament (i.e. 14 compared to 50) Range of scores is smaller (i.e. 35) in the 1 st tournament compared to a range of 90 points scored in 2 nd tournament. Majority improved their scores.	2J comparison 2J comparison	D L4
	OR		

Ques	Solution	Explanation	T&L
	Highest score by a player in 1^{st} tournament is 38 points less than a player in 2^{nd} tournament.	2J comparison	
	The interquartile range of 2 nd tournament is higher than that of the 1 st tournament (i.e. 50 points higher than 14 points).	2J comparison	
	The lowest score of tournament 2 is 17 less than the lowest score in tournament 1.		
	OR	OR	
	Players' performance in Tournament 1 were more consistent because the IQR is smaller and also the	2J comparison	
	range is smaller. ✓✓J	2J comparison (4)	
1.2.1	\checkmark MA Points: $3 \times 1 = 3$ $8 \times 2 = 16$ $3 \times 3 = 9$ \checkmark M Point scored = $3 + 16 + 9 = 28$	1MA point in relation to position (multiply) 1M adding points 1A accumulated points	D L3
	Player F ✓CA	1CA player	
	OR $ \checkmark MA \qquad \checkmark M \qquad \checkmark A $ $ 3 \times 1 + 8 \times 2 + 3 \times 3 = 28 \text{ points} $ Player F \checkmark CA	1MA balls multiply by points 1M adding 1A total points 1CA player AO (4)	
1.2.2	45 cm : 3,66 m ✓MA 0,45m : 3,66 m	1MAwriting in correct ratio 1C convert cm to m	M L2
	15 : 122 ✓CA	1CA simplification (no units)	
	OR	OR	
	45 cm : 3,66 m ✓MA		
	45 cm : 366 cm ✓ C	1MAwriting in correct ratio	
	15:122 ✓CA	1C convert m to cm 1CA simplification (no units) (3)	

Copyright reserved

Ques	Solution	Explanation	T&L
1.2.3	Shaded Area = $\pi r^2_{\text{(hoop)}} - \pi r^2_{\text{(ball)}}$ = 3,142 × (22,5cm) ² - 3,142 × (12,4cm) ² = 1 590,6375 cm ² - 483,11392 cm ² = 1 107.52 cm ² \checkmark CA	1A radius hoop 1A radius ball 1M subtracting 1SF correct values 1CA area in cm ² 1CA area occupied by the ball 1CA simplification OR	M L3
	OR	OK	
	Area of circle (hoop) = $\pi \times (\text{radius})^2$ = 3,142 × (22,5) ² \checkmark SF	1A radius 1SF correct values	
	$= 1.590,6375 \text{cm}^2 \checkmark \text{CA}$	1CA area	
	Area occupied by the ball = $\pi \times (\text{radius})^2$ = 3,142 × (12,4) ²	1A radius of a ball	
	$\checkmark CA$ = 483,11392 cm ² $\checkmark M$	1CA area occupied by the ball	
	Shaded area = $1590,6375 - 483,11392 \text{ cm}^2$	1M difference	
	$= 1 107,52358 \text{ cm}^2 \checkmark \text{CA}$	1CA simplification NPR (7)	
1.3	Proportional price money:	· · · · · · · · · · · · · · · · · · ·	F L4
	Y group share R8,1 mil $\times \frac{3}{9} = R2,7$ mil $\times \frac{3}{9} = MA$	1MA getting 9 1M multiply by ratio 1CA price money to share	
	Each member of Y group will receive = $\frac{2.7 \text{ million}}{5 \checkmark \text{M}}$	1M divide by 5	
	= R0,54 mil.√CA	1CA each member's share	
	$0.54 \times 10000000 = R540000$	1C to 1000's	
	The player was correct. O	10 conclusion based on calculation	

Ques	Solution	Explanation	T&L
	Group Y receives $\frac{3}{9}$ of the share $\checkmark \checkmark MA$ Each member receives $\frac{1}{5}$ $\checkmark A$ A player from $Y = \frac{3}{45} \times 8,1$ million	2MA correct ratio 1A each member's share 1M multiply with ratio	
	The statement is correct \checkmark O	1CA simplification 1C conversion 1O conclusion [max 4 marks if divided by 15 first to get 0,54 mil Max 5 marks if dividing by 3 instead of working with the ratio $\frac{3}{9}$] (7)	
		[39]	

QUESTION 2 (37)

Ques	Solution	Explanation	T&L
2.1.1 (a)	Amount × (106,18%) = R14,44 \checkmark A $K = R14,44 \div 106,18 \% \text{ or } 1,0618$	1RT correct values 1A dividing by 106,18% or dividing by 1,0618	F L2
	$= R13,599$ $= R13,60 \checkmark R$	1R value in rand (3)	
2.1.1 (b)	$Q = \frac{\sqrt{RT} \sqrt{M}}{R10,88} \times 100\% \sqrt{F}$ = 5,7 \(\sqrt{CA}\)	1RT correct values 1M subtracting values 1F percentage change 1CA simplification	D L2
	OR $ \checkmark RT $ $ -0.81 + 12.2 + 7.82 + 2.28 + 6.18 + 5.24 + 10.07 + 11.34 $	OR 1RT correct values 1M mean concept	
2.1.1	$+ Q = 6,00 \times 10$ $\checkmark M$ $Q = 60 - 54,32$ $\checkmark M$ $= 5,68$ $\checkmark CA$	1M subtracting values 1CA simplification NPR (4)	D
(c)	E =	1MA adding values 1MCA mean concept ÷10	L 2
	$= \frac{96,36}{10} \\ = 9,64 \checkmark CA$	1CA mean value (3)	
2.1.2	Apr. 2015 to Jan. 2016: both prices increased.	2J both increased	D L4
	Jan. 2016 to Apr. 2016: The price of the 600 g loaf of white bread remained the same (is constant).	1J 600 g constant	
	The price of the 700 g loaf of white bread increased OR	1J 700 g increased	

Ques	Solution	Explanation	T&L
	Per period per bread	600g:	
	600 g: Apr 2015 – Jan 2016 : The price increased. ✓J	1J increased	
	Jan 2016 – Apr 2016: The price remained the same. ✓ J	1J constant	
	700 g:	700g:	
	Apr 2015 – Jan 2016 : The price increased. ✓J	1J increased	
	Jan 2016 – Apr 2016 The price increased. ✓J	1J increased	
2.1.2		(4)	Е
2.1.3	He will have to adjust his spending to cater for the	2J explanation	F L4
	increased price. That is money that he was saving to		L,
	use for other things will be used for wheat products.	OR	
	OR //J	2J explanation	
	Will experience financial difficulties (i.e. unable to afford bread any longer).	23 explanation	
	OR	OR	
	If he buys the wheat products it will cost him more and	2J explanation	
	he will have less money to spend on other stuff \sqrt{J} OR	_	
	Can buy less and less	OR 2J explanation	
	OR	OR	
	Any other valid reason ✓✓ J	2J explanation (2)	
	✓MA		F
2.2	Increase in $2017 = 6.6\% \times R6.72$	1MA multiplying correct values	L3
	$= R0,44 \checkmark A$	1A increase amount	
	Increased price = $R6,72 + R0,44$ $\checkmark M$	1M adding	
	= R7,16 ✓CA	1CA increased price	
	Increase in $2018 = R7,16 \times 6\%$		
	$= R0.43 \checkmark CA$	1CA increase %	
	In annual desired = P.7.17 + P.0.42		
	Increased price = $R7,17 + R0,43$ = $R7,59 \checkmark CA$	1CA increased price	
		OR	
	OR	1MA multiplying correct	
	$\sqrt{MA} \sqrt{A} \sqrt{M}$ 2017: R6,72 × 1,066 = R 7,16 \sqrt{CA}	values 1A increase amount	
	2018: $R7,16 \times 1,06 = R7,59 \checkmark CA$	1M adding	
	OR	1CA increased price	
	\sqrt{M} $\sqrt{\Lambda}$ $\sqrt{\Lambda}$ $\sqrt{\Lambda}$ \sqrt{M}	1CA increase % 1CA increased price	
	$R6,72 \times 1,066 \times 1,06 = R7,59$ CA	(6)	

Copyright reserved

Ques	Solution	Explanation	T&L
2.3.1	$V = 690 \text{ mm} \times 445 \text{ mm} \times 180 \text{ mm}$ $\checkmark \checkmark \text{CA}$ = 55 269 000 mm ³	1SF correct values 2CA volume P if unit is wrong	M L2
2.3.2	Number of crates lengthwise $= \frac{2}{0,69} \checkmark C$ $= 2,89$ $\therefore 2 \text{ crates} \checkmark CA$ Number of crates breadthwise $= \frac{2}{0,445} = 4,4$ $\therefore 4 \text{ crates} \checkmark CA$ Now the remaining space is $0,62 \text{ m} \times 2 \text{ m}$ $\therefore \text{Turn crates: 1 more fit in } \left(\frac{0,62}{0,445}\right) \text{ and two down}$	1C conversion 1M dividing 1CA number length wise	M L3
	Total ✓M = (2 Lengthwise × 4 breadth wise + 2) × 9 on top of each other = 90 crates ✓CA ∴ 80 will fit ✓J	1M finding the total number 1CA number of crates	
	Layout:	(7)	

Ques	Solution	Explanation	T&L
2.3.3	Number of loaves = $80 \times 8 = 640$ \checkmark A Cost price per bread = $\frac{R5350}{640}$ \checkmark M = $R8,36$ \checkmark CA	1A total number of loaves 1M dividing 1CA cost price	F L3
	Number of loaves to break even = $\frac{FC}{SP - CP}$ = $\frac{R1720,70}{R11,50 - R8,36}$	1SF substitution (at least 2 correct values)	
	= 548	1CA number of whole loaves (5)	
		[37]	

QUESTION 3 (38 marks)

Ques	Solution	Explanation	T&L
3.1.1	Total population = $\frac{22574500}{41,1\%} \checkmark RT$	1RT correct values 1M dividing by %	D L3
	= 54 925 790,75	1CA population	
	≈ 54 925 800 people	1R number of people (4)	
3.1.2 (a)	$P_{\text{(White female)}} = \frac{2325100}{55908900} $ \checkmark MA	1MA numerator and denominator	P L3
	$= 0.042$ OR 4.2% OR $\frac{1}{24}$	1CA simplification AO (2)	
3.1.2 (b)	Total males = RSA population – Female population		P L3
	= 55 908 900 − 28 529 100 ✓ MA = 27 379 800 ✓ CA	1MA difference 1CA males total	
	$P_{\text{(male)}} = \frac{27379800}{55908900} \stackrel{\checkmark}{=} \text{CA}$ $= 0,489721672 \approx 0,49 \text{ OR } 48,97\%$	1CA probability	
	OR	OR	
	$P_{\text{(female)}} = \frac{28\ 529100}{55\ 908\ 900} = 0,51027 \approx 0,51\ \text{or } 51,03\%$	1A P(female)	
	$P_{\text{(male)}} = 1 - 0.51027$ or $1 - 0.51$ or $100\% - 51.03\%$	1M subtracting from 1	
	= 0,489721672 or 0,49 or 49,97% ✓ CA	1CA P(male) (3)	
3.1.3	$ \begin{array}{rcl} \checkmark MA \\ 2016 &= \frac{684100}{28529100} \times 100\% \\ &= 2,3979024 \approx 2,4\% \checkmark CA \end{array} $	1MA numerator and denominator 1M multiply by 100% 1CA percentage	D L4
	$2015 = \qquad \text{or} \qquad 2014 = \qquad \checkmark \text{MA}$ $\frac{673900}{28078700} \times 100\% \qquad \qquad \frac{664900}{27635900} \times 100\%$	1MA numerator and denominator	
	= 2,4%	1CA percentage	
	OR	OR	

Ques	Solution	Explanation	T&L
	✓MA ✓MA $ ✓M $ 2014: $100% - (80,2% + 8,9% + 8,5%) = 2,4%$ $ ✓ MA $ 2015: $100% - (80,4% + 8,9% + 8,3%) = 2,4%$ ✓CA 2016: $100% - 80,6% - 8,9% - 8,1% = 2,4%$	1MA subtracting from 100% 1M adding other values 1CA percentage 1MA another year 1CA another year	
3.2.1	Total distance of a space and a post $= 100 \text{ mm} + 40 \text{ mm}$ $= 140 \text{ mm} \qquad \checkmark A \qquad \qquad$	1A correct distance	M L2
	post = 3 460 mm − 100 mm = 3 360mm ✓ M or 3,460 m − 0,14 m = 3,360 m	1M subtracting	
	Number of small posts = $\frac{3360}{140}$ \checkmark M or $\frac{3,360}{140}$	1M dividing by 140	
	$= 24 \checkmark CA \qquad \qquad $	1CA number of small post [Accept 26 full marks] (4)	
3.2.2	Direct sunlight coming into the rooms through the windows for much longer.	2J sun and time OR	MP L4
	OR V J Sun spend most of the time on the north side of the house.	2J direction and time	
	OR	OR	
	It is the side on which the sun shines most of the time during the day.	2J sunshine (2)	
3.2.3	Open outward because they have short width $\checkmark \checkmark O$ OR Oesigned to store things, as such they will obstruct inward opening of the doors.	2O wideness OR 2O purpose	MP L4
	OR Storage space will be lost if doors open inwards	OR 2O space	
	OR	OR	
	Other rooms open inward because it is the entrance to the room.	1O way of opening 1O purpose (2)	

Ques	Solution	Explanation	T&L
3.2.4	Carpeted floor = Area of a Passage + Dining + Living rooms		M L3
	DR area = $3,3274 \times 3,6576$ \checkmark SF	1SF finding area	
	$= 12,17029824 \text{ m}^2 \checkmark \text{CA}$	1CA area of DR	
	LR area = $4,5720 \times 4,2672$		
	$= 19,5096384 \text{ m}^2$	1CA area of LR	
	Area of passage = 15% of $(12,17 + 19,51)$ m ²	1M finding 15%	
	$= 15 \% \text{ of } 31,68 \text{ m}^2$		
	$= 4,751990496 \text{ m}^2 $ $\checkmark \text{CA}$	1CA area of passage	
	Total area = 12,17 m ² + 19,51 m ² + 4,75 m ² \checkmark M = 36,43 m ² \checkmark CA \approx 37 m ² \checkmark R	1M adding 3 or 4 values 1CA total area 1R rounding [Max 6 marks if total area is calculated] (8)	
3.2.5	Labour Cost: R1 600 + 37 × R70 ✓MA	Area CA from 3.2.4 above 1MA finding labour	F L4
	= R1 600 + R2 590	1CA labour cost	
	= R4 190 ✓CA		
	Number of boxes = $37 \div 2,15$ \checkmark M = $17,209$ ≈ 18	1M dividing by 2,15	
	Cost for boxes flooring: 18 × R299,90 = R5 398,20 ✓ CA	1CA cost of boxes	
	Number of underlay rolls: $37 \div 10$ = 3,7 ≈ 4		
	Underlayer: $4 \times R56,90$	1CA underlayer cost	
	= R227,60	•	
	Total cost = R4 190 + R5 398,20+ R227,60	1MCA adding all 3 different cost types	
	$= R9 815,80 $ $\checkmark CA$	1CA total cost	
	The budget is sufficient. ✓O	10 conclusion (8)	
		[38]	

QUESTION 4 [36 marks]

Ques	Solution	Explanation	T&L
4.1.1	✓RT ✓RT ✓RT Tax bracket 3, 4 and 5 [Accept Tax bracket 1] OR	1RT bracket3 1RT bracket 4 1RT bracket 5 OR	F L2
	\$37 001 − \$87 000	1RT tax bracket 1RT tax bracket	
	\$180 001 and over. ✓RT [Accept \$0 – \$1 200]	1RT tax bracket	
4.1.2	Pay <u>extra</u> tax (2% on taxable income) ✓ ✓ O	20 reason	F L4
	OR ✓✓O The levy is an extra (additional, more) tax on their income.	OR 20 reason	
	OR	OR	
	Higher income earners are subjected to an extra tax in addition to usual income tax paid.	2O reason (2)	

Ques	Solution	Explanation	T&L
4.1.3	Tax due 2016: ✓RT ✓SF = \$54 547 + 45% × (\$289 303,26 - \$180 000)	1RT tax bracket 1 SF correct substitution	F L3/4
	= \$54 547 + 45% × \$109 303,26		
	=\$54 547 + \$49 186,47		
	=\$103 733,47 ✓CA	1CA tax due	
	Medical levy = \$289 303,26 × 2% = \$5 786,07 ✓ MA	1MA levy value	
	Total due = \$103 733,47 + \$5 786,07 = \$109 519,54 ✓ CA	1CA total due	
	Tax due 2017: \checkmark RT \checkmark SF = \$54 232 + 45% × (\$311 001 - \$180 000)	1RT tax bracket 1SF correct values	
	$= $54 \ 232 + 45\% \times $131 \ 001$		
	= \$54 232 + \$ 58 950,45		
	= \$113 182,45 ✓CA	1CA tax due	
	Medical levy = $2\% \times $311\ 001$ = $$6\ 220,02$		
	Total for 2017: \$113 182,45 + \$6 220,02 \checkmark CA = \$119 402,47	1CA total	
	Tax due difference: \$119 402,47 – \$109 519,54	1M finding difference	
	= \$9 882,93. ✓CA	1CA simplification	
	The statement is VALID. ✓O	10 conclusion (12)	
4.2.1	Mary Rose restaurant; Denmark hotel; Civic Centre	3A venues Accept hotel (3)	MP L2

Ques	Solution	Explanation	T&L
4.2.2	Because it runs over the river.	2O reason	MP L4
	OR	OR	
	Portions of the river not visible from above where the highway crosses or passes over the river.	2O reason (2)	
4.2.3	V✓RT V✓RT V✓RT North west OR NW OR West of North	2RT direction (2)	MP L2
4.2.4	Turn right walk along Walker Str ✓A Turn right into Strickland Str ✓A Pass South Coast Highway And turn left into Mount Shadforth Rd ✓A	1A route and turn 1A route and turn 1A turn and road	MP L3
	Restaurant will be on his right OR	OR	
	Turn SW into Walker Street and proceed. At the corner turn NW and continue. Cross South Coast Highway Turn W into Mount Shadforth Rd. The restaurant is on the northern side of the road.	1A route and turn 1A route and turn 1A turn and road	
4.2.5	Measured distance between = 23 mm ✓ ✓ MA	2MA measuring	MP L4
	Scale 23 mm is 100 m ✓ C	1C using scale	
	How long it will take him = Time = $\frac{\text{Distance}}{\text{Speed}} \checkmark \text{F}$	1F formula	
	$=\frac{100m}{1,1m/s} \checkmark A$	1A dividing by speed	
	= 90,91 seconds \checkmark CA \checkmark C \checkmark CA In minutes 90,909 \div 60 = 1,52 minutes.	1CA calculating time 1C divide by 60 1CA minutes	
	No. He can walk in less than 2 minutes at that speed.	10 conclusion	
	OR $ 2 \text{ min} = 120 \text{ sec} $ Distance = 1,1 m/s x 120 s = 132 m \checkmark CA Measured distance = 23 mm \checkmark \checkmark MA	OR 1C multiply by 60 1A time in seconds 1A multiply with speed 1F formula	
		1CA distance 2MA measurement	
	Scale 23 mm = 100 m ✓ C He will have passed the Indigo Cuisine [Accept measurements 23 mm to 25 mm]	1C using scale 1O conclusion (9)	
		[36]	

TOTAL: 150