Here I will show how well DCT performs on temporal decorrelation using one segment of the signal. I also illustrate the effects of removing the lowest highest frequency coefficients.

```
In [ ]: import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import idct

s = np.load('../test_data_sintef.npy')
```

DCT temporal coding

setup

```
In [ ]: # generate DCT basis
        pp = 500
        D = np.zeros((pp, pp))
        # generate DCT basis
        for k in range(pp):
            a = np.zeros(pp)
            a[k] = 1
            D[:, k] = idct(a, norm='ortho') # use idct on the atom
        # plot DCT matrix
        plt.figure()
        plt.imshow(D, cmap='gray')
        # plot one element from the DCT matrix
        k = 2
        plt.figure()
        plt.plot(D[:, k], 'b')
        plt.title(f'element: {k+1} from the DCT basis')
```

```
Out[ ]: Text(0.5, 1.0, 'element: 3 from the DCT basis')
```


element: 3 from the DCT basis


```
In []: def getDCT(temp):
    nSteps = int(s.shape[0]/pp)
    c_mat = np.zeros((pp, nSteps, s.shape[1]))

for j in range(s.shape[1]):
    for i in range(nSteps):
        c_mat[:,i,j] = D.T@temp[pp*i:pp*i + pp, j]
```

```
return c_mat

def getiDCT(temp):
    nSteps = int(s.shape[0]/pp)
    d_hat = np.zeros_like(s)

for j in range(s.shape[1]):
    for i in range(nSteps):
        d_hat[pp*i:pp*i + pp, j] = D@temp[:,i,j]

return d_hat
```

perform

```
In [ ]: temp = s.astype(int)
        # function to normalize each column of the dct coefficients
        def visualize_dct(c):
            for i in range(c.shape[0]):
                c[i,:] = 255* (c[i,:] - c[i,:].min()) / (c[i,:].max() - c[i,:].min())
            return c
        # perform DCT
        c_mat = getDCT(temp).astype(int)
        # flatten coefficient matrix
        c = c_mat.reshape(c_mat.shape[0]*c_mat.shape[1], c_mat.shape[2]).T
        # reduce the number of columns and rows for better visualization
        M = 60
        N = 50
        c_new = np.zeros((N,M))
        step_col = c_mat.shape[1] // M
        step\_row = c\_mat.shape[0] // (N)
        for j in range(N):
            for i in range(M):
                c_new[j,i] = np.mean(c_mat[j*step_row :j*step_row + step_row, i*step_col
        # visulaize the DCT coefficients
        plt.figure(figsize=[30,5])
        plt.imshow(visualize_dct(abs(c_new).T).T)
        plt.colorbar()
```

Out[]: <matplotlib.colorbar.Colorbar at 0x1ea68782750>

this shows the coefficients of the first channel, we see that the DC offset has the biggest contribution.

Threshold coefficients

Threshold to see how much loss we get from removing the highest frequency coefficients

```
In [ ]: # threshold coefficients
        n_remove = 100
        c_mat = getDCT(temp).astype(int)
        c_mat_th = c_mat[:-n_remove,:,:] # remove n_remove highest freqs
        temp_hat = getiDCT(np.pad(c_mat_th, ((0,n_remove), (0,0), (0,0)), 'constant', co
        # plot
        fig2, axs2 = plt.subplots(2,1)
        axs2[0].plot(temp[140:151,5])
        axs2[0].plot(temp_hat[140:151,5])
        axs2[0].legend(['Original', 'compressed'])
        axs2[1].plot(temp[40:200,5])
        axs2[1].plot(temp_hat[40:200,5])
        axs2[1].legend(['Original', 'compressed'])
        plt.show()
        # compute SNDR
        SNDR = 0
        for i in range(temp.shape[1]):
            P_d = np.linalg.norm(temp[:,i])
            P_error = np.linalg.norm(temp[:,i] - temp_hat[:,i])
```


Mean SNDR across channels: 17.94 dB