AE 551: Introduction to Optimal Control

Homework #9 Submission

(Due: 2020/06/12)

Instructor: Min-Jea Tahk Name: Joshua Julian Damanik, Student ID: 20194701

Solve the four problems treated in the paper "Coevolutionary Augmented Lagrangian Methods for Constrained Optimization" by using CEALM and PSO. The paper is included in the ZIP file of cealm_v20. For each problem, run the codes of CEALM and PSO for at least 10 times to find the best and worst results of each method.

- CEALM: Use the CEALM code posted on KLMS.
- PSO:
 - You can use any PSO code but you need to explicitly state the source of the code (for example, URL or the reference papers)
 - Describe in detail the PSO algorithm you use in the homework report. (Do not use any code you don't understand the details.)
 - Attach the code to your report.

(Solution) Code for PSO method is attached at the Appendix section. However, the rest of the code can be accessed from https://github.com/joshuadamanik/Homework-9.

For the CEALM method [1], the code used in this homework is the one provided at cealm_v20_ae551.zip. However, the code for the PSO method is created based on proposed algorithm [2] by Zambrano-Bigiarini, et al.

Algorithm 1: Standard Particle Swarm Optimization

```
for each particle: i \leftarrow 1, ..., N do
    initialize random particle's parameter: X_i \in U(X_{min}, X_{max});
    initialize random particle's velocity: V_i \in U(-(X_{max} - X_{min}), (X_{max} - X_{min}));
    initialize particle's best parameter: \bar{X}_i \leftarrow x_i;
    initialize swarm's best parameter: X^* \leftarrow \arg\min f(\bar{X}_i);
end
while termination criteria is not satisfied do
    for each particle: i \leftarrow 1, ..., N do
        for each dimension: j \leftarrow 1, \dots, M do
             initialize random numbers: r_p, r_g \in U(0,1);
             update particle's velocity: V_{i,j} \leftarrow \omega V_{i,j} + c_1 r_p(\bar{X}_{i,j} - X_{i,j}) + c_2 r_g(X_i^* - X_{i,j});
        update particle's parameter: X_i \leftarrow X_i + v_i;
        if f(X_i) < f(\bar{X}_i) then
             update particle's best parameter: \bar{X}_i \leftarrow X_i;
             if f(\bar{X}_i) < f(X^*) then
                 update swarm's best parameter: X^* \leftarrow \bar{X}_i;
             end
        end
    end
end
```

However, the algorithm 1 is an unconstrained optimization method. For constrained optimization, the objective function f(X) is replaced by augmented Lagrangian function $L_A(X,Y)$, defined as

$$L(X_i, \lambda_i, \mu_i) = f(X_i) + \rho \sum_{j=1}^{N_{ineq}} \max^2 \left\{ g_j(X_i) + \frac{\mu_{i,j}}{2\rho} \right\} + \sum_{j=1}^{N_{ineq}} \frac{\mu_{i,j}^2}{4\rho} + \lambda_i^T h(X_i) + \rho h(X_i)^T h(X_i)$$
 (1)

where $g(X_i) \leq 0$ is set of inequality constraints and $h(X_i) = 0$ is set of equality constraints with their Lagrange multiplier μ_i and λ_i respectively. The multiplier μ_i and λ_i is then combined into a particle object Y_i with dimension $N_{ineq} + N_{eq}$.

By using augmented Lagrangian function (eq. 1), the optimization is done in an unconstrained fashion by solving both the X and Y particles. But, instead of searching for minimum value, we need to find the maximum value for particle Y. Then, the swarm's best parameter both for X and Y are selected by using security strategy [1].

In addition, because all of the problems defined in this homework have restricted search space, the softwall algorithm [1] is added into the Standard PSO (algorithm 1). While the search space of particle X is defined in each problem, the search space for particle Y is defined as

$$Y_{min} = \begin{cases} 0, & \text{inequality constraint} \\ -10, & \text{equality constraint} \end{cases}$$
 (2)

$$Y_{max} = 10; (3)$$

$$\min f(X) = 5x_1 + 5x_2 + 5x_3 + 5x_4 - 5\sum_{i=1}^{4} x_i^2 - \sum_{i=5}^{1} 3x_i$$
(4)

subject to
$$2x_1 + 2x_2 + x_{10} + x_{11} \le 10$$
$$2x_1 + 2x_3 + x_{10} + x_{12} \le 10$$
$$2x_1 + 2x_3 + x_{10} + x_{12} \le 10$$
$$-8x_1 + x_{10} \le 0$$
$$-8x_2 + x_{11} \le 0$$
$$-8x_3 + x_{12} \le 0$$
$$-2x_4 - x_5 + x_{10} \le 0$$
$$-2x_6 - x_7 + x_{11} \le 0$$
$$-2x_8 - x_9 + x_{12} \le 0$$

search space: $0 \le x_i \le 1, i = 1, \dots, 9$; $0 \le x_i \le 10, i = 10, 11, 12$; $0 \le x_{13} \le 1$

Table 1: Cost comparison of CEALM and PSO. Lowest cost is labelled with bold.

Run	CEALM	PSO	Analytical
1	-15.0000	-13.6296	
2	-15.0000	-14.5906	
3	-15.0000	-4.7454	
4	-13.8281	-13.0326	
5	-15.0000	-14.1221	-15.0000
6	-15.0000	-4.5065	-15.0000
7	-13.8281	-13.1253	
8	-15.0000	-14.4504	
9	-15.0000	-3.8945	
10	-15.0000	-14.2518	

Table 2: Optimal parameter value of problem 1 with lowest cost

	CEALM	PSO		CEALM	PSO
x_1	1.0000	0.9993	y_1	0.0289	-0.0002
x_2	1.0000	0.9982	y_2	0.0754	-0.0004
x_3	1.0000	0.9995	y_3	0.1624	1.5536
x_4	1.0000	0.9999	y_4	0.0000	1.4803
x_5	1.0000	0.9991	y_5	0.0002	0.0763
x_6	1.0000	0.9999	y_6	0.0000	-0.0002
x_7	1.0000	0.9999	y_7	0.8247	2.6092
x_8	1.0000	0.9995	y_8	0.8140	-0.0005
x_9	1.0000	0.9990	y_9	0.7531	0.0017
x_{10}	3.0000	2.8896			
x_{11}	3.0000	2.7007			
x_{12}	3.0000	3.0186			
x_{13}	1.0000	0.9997			

(a) CEALM (b) PSO

Figure 1: Parameter X of problem 1 with lowest cost

Figure 2: Parameter Y of problem 1 with lowest cost

$$\min f(X) = x_1^2 + x_2^2 + x_1 x_2 - 14x_1 - 16x_2 + (x_3 - 10)^2 + 4(x_4 - 5)^2 + (x_5 - 3)^2 + 2(x_6 - 1)^2 + 5x_7^2 + 7(x_8 - 11)^2 + 2(x_9 - 10)^2 + (x_10 - 7)^2 + 45$$

$$\text{subject to} \quad 105 - 4x_1 - 5x_2 + 3x_7 - 9x_8 \ge 0$$

$$-3(x_1 - 2)^2 - 4(x_2 - 3)^2 - 2x_3^2 + 7x_4 + 120 \ge 0$$

$$-10x_1 + 8x_2 + 17x_7 - 2x_8 \ge 0$$

$$-x_1^2 - 2(x_2 - 2)^2 + 2x_1 x_2 - 14x_5 + 6x_6 \ge 0$$

$$8x_1 - 2x_2 - 5x_9 + 2x_{10} + 12 \ge 0$$

$$-5x_1^2 - 8x_2 - (x_3 - 6)^2 + 2x_4 + 40 \ge 0$$

$$3x_1 - 6x_2 - 12(x_9 - 8)^2 + 7x_{10} \ge 0$$

$$-0.5(x_1 - 8)^2 - 2(x_2 - 4) - 3x_5^2 + x_6 + 30 \ge 0$$

$$\text{search space:} \quad -10 \le x_i \le 10, i = 1, \dots, 10$$

Table 3: Cost comparison of CEALM and PSO. Lowest cost is labelled with bold.

Run	CEALM	PSO	Analytical
1	24.4014	356.8283	
2	24.3097	107.9832	
3	24.4034	105.9014	
4	24.3591	270.3384	
5	24.3325	63.6385	24.3060
6	24.3077	203.3939	24.5000
7	24.3547	170.0315	
8	24.3079	93.1403	
9	24.3078	61.1770	
10	24.3065	70.9870	

Table 4: Optimal parameter value of problem 2 with lowest cost

	CEALM	PSO		CEALM	PSO
x_1	2.1736	2.2521	y_1	1.7130	0.0000
x_2	2.3598	2.1415	y_2	0.0205	4.3195
x_3	8.7734	8.7517	y_3	0.4761	1.7603
x_4	5.0963	5.5805	y_4	0.2856	0.7250
x_5	0.9904	-0.9687	y_5	1.3778	5.3716
x_6	1.4318	2.3595	y_6	0.3054	13.0650
x_7	1.3247	1.7573	y_7	0.0001	7.4777
x_8	9.8312	9.4168	y_8	0.0004	13.7182
x_9	8.2833	8.0274			
x_{10}	8.3736	9.0898			

Figure 3: Parameter X of problem 2 with lowest cost

Figure 4: Parameter Y of problem 2 with lowest cost

$$\min f(X) = (x_1 - 10)^2 + 5(x_2 - 12)^2 + x_3^4 + 3(x_4 - 11)^2 + 10x_5^6 + 7x_6^2 + x_7^4 - 4x_6x_7 - 10x_6 - 8x_7$$
 (6)
subject to $127 - 2x_1^2 - 3x_2^4 - x_3 - 4x_4^2 - 5x_5 \ge 0$
 $282 - 7x_1 - 3x_2 - 10x_3^2 - x_4 + x_5 \ge 0$
 $196 - 23x_1 - x_2^2 - 6x_6^2 + 8x_7 \ge 0$
 $-4x_1^2 - x_2^2 + 3x_1x_2 - 2x_3^2 - 5x_6 + 11x_7 \ge 0$

search space:
$$-10 \le x_i \le 10, i = 1, ..., 7$$

Table 5: Cost comparison of CEALM and PSO. Lowest cost is labelled with bold.

Run	CEALM	PSO	Analytical
1	680.6305	686.4466	
2	680.6300	693.6093	
3	680.6301	10007452.1252	
4	680.6301	838.4517	
5	680.6303	39618.8533	680.6300
6	680.6300	698.7194	000.000
7	680.6314	681.0175	
8	680.6305	782.3090	
9	680.6300	803.8013	
10	680.6301	1307.3733	

Table 6: Optimal parameter value of problem 3 with lowest cost

	CEALM	PSO		CEALM	PSO
x_1	2.3303	2.3486	y_1	1.1404	0.6142
x_2	1.9511	1.9554	y_2	0.0001	0.0531
x_3	-0.4777	-0.0253	y_3	0.0002	3.3404
x_4	4.3665	4.3385	y_4	0.3685	0.1580
x_5	-0.6245	-0.6265			
x_6	1.0382	1.0181			
x_7	1.5941	1.5908			

Figure 5: Parameter X of problem 3 with lowest cost

Figure 6: Parameter Y of problem 3 with lowest cost

$$\min f(X) = x_1 + x_2 + x_3$$

$$\text{subject to} \quad 1 - 0.0025(x_4 + x_6) \ge 0$$

$$1 - 0.0025(x_5 + x_7 - x_4) \ge 0$$

$$1 - 0.01(x_8 - x_5) \ge 0$$

$$x_1x_6 - 833.33252x_4 - 100x_1 + 83333.333 \ge 0$$

$$x_2x_7 - 1250x_5 - x_2x_4 + 1250x_4 \ge 0$$

$$x_3x_8 - 1250000 - x_3x_5 + 2500x_5 \ge 0$$

search space: $100 \le x_1 \le 10000$; $1000 \le x_i \le 10000$, i = 2, 3; $10 \le x_i \le 1000$, $i = 4, \dots, 8$

Table 7: Cost comparison of CEALM and PSO. Lowest cost is labelled with bold.

Run	CEALM	PSO	Analytical
1	7107.6943	Infeasible	
2	7205.8859	Infeasible	
3	7122.9906	Infeasible	
4	7157.6723	Infeasible	
5	7140.7222	Infeasible	7049.3310
6	7122.7595	Infeasible	1043.3310
7	7145.1340	Infeasible	
8	7149.9819	Infeasible	
9	7156.5398	10016.9597	
10	7216.4679	Infeasible	

Table 8: Optimal parameter value of problem 4 with lowest cost

	CEALM	PSO		CEALM	PSO
x_1	572.9815	100.0000	y_1	0.0000	11.9362
x_2	1190.8736	836.9181	y_2	0.0002	9.7719
x_3	5343.8391	9080.0416	y_3	0.0000	20.1803
x_4	180.6481	89.9301	y_4	0.0002	9.5554
x_5	287.2824	202.5691	y_5	0.0000	4.9434
x_6	218.6001	194.7662	y_6	0.0000	199.5982
x_7	293.0581	272.1678			
x_8	387.2795	293.0828			

Figure 7: Parameter X of problem 4 with lowest cost

Figure 8: Parameter Y of problem 4 with lowest cost

Appendix

References

- [1] M.-J. Tahk and B.-C. Sun, "Coevolutionary augmented lagrangian methods for constrained optimization," *IEEE Transactions on Evolutionary Computation*, vol. 4, no. 2, p. 114–124, 2000.
- [2] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas, "Standard particle swarm optimisation 2011 at cec-2013: A baseline for future pso improvements," 2013 IEEE Congress on Evolutionary Computation, 2013.