When the distance between the Sun and the planet Mercury is 4.60×10^{10} m, the

(Total for Question 3 = 1 mark)

intensity of solar radiation at the surface of Mercury is $1.45 \times 10^4 \, \mathrm{W \, m^{-2}}$.

A $(1.45 \times 10^4) (\pi) (4.60 \times 10^{10})^2$

 \blacksquare **B** $(1.45 \times 10^4) (4\pi) (4.60 \times 10^{10})^2$

 \square C $\frac{(1.45 \times 10^4)}{(\pi)(4.60 \times 10^{10})^2}$

$\times \times$	> II
$\times \times$	
ìΥΥ	
	> II