

Grundbegriffe der Elektrotechnik Spannungen (1)

Blatt-Nr.: 2.3

Trennt man die positiven und die negativen Ladungen Q, in dem man Energie W_{zu} zuführt, so entsteht zwischen den getrennten Ladungen eine elektrische Spannung, die Quellenspannung U_0 .

Formeln:

Wenn ein Strom fließt, geben die Ladungen Q ihre Energie $W_{\rm ab}$ wieder ab. An den Bauteilen entsteht dadurch ein Spannungsfall, den man meist nur Spannung nennt.

 $U = \frac{W_{ab}}{Q}$

 In der Elektrotechnik unterscheidet man nach ihrer Entstehung zwei verschiedene Arten von Spannungen. Geben Sie in der Tabelle 1 die Benennungen, zugehörige Beispiele, Formelzeichen, Einheitenname und Einheitenzeichen für die beiden Spannungen an.

Tabelle 1: Elektrische Spannungen								
Entstehung der Spannung	Trennung der elektrischen Ladungen durch Energiezufuhr	Energieabgabe der elektrischen Ladungen bei Stromfluss						
Benennung	Quellenspannung	Spannungsfall						
der Spannung		Spannung						
	Solarzellen							
	Batterien							
	Lichtmaschine							
	Kraftwerksgeneratoren							
Beispiele	Dampf- turbine Kraftwerks- generator	Energiesparlampe Motor Kabel, Leitungen Haushaltsgerät						
Formelzeichen	U null	z.B.: U1, U2, Ux						
Einheitenname	Volt	Volt						
Einheitenzeichen	V	V						

2. Geben Sie für die Beispiele in der Tabelle 2 Werte für Spannungen an. Eventuell schätzen Sie die Werte.

Tabelle 2: Spannungsquellen und Verbraucher (Beispiele)						
Monozelle	1,5V	Spielzeugeisenbahn	12-16V			
Kfz-Batterie	12V	Lampen	12-230V			
Kraftwerksgeneratoren	20.000V	Hausanschluss	230/460			
Antennenspannung	0,000050V	Haushaltsgeräte	230V			

3. Rechnen Sie die Spannungswerte mit großen und kleinen Einheitenvorsätzen in die geforderte Einheit um.

0,4 kV =	V	320 mV =	V	1,2 MV =	V	0,5 V =	mV
1 mV =	V	36000 V =	kV	20 μV =	V	3500 mV =	V