

RF Exposure Report

Report No.: SA160901E04

FCC ID: Z3M-E2100

Test Model: E2100

Received Date: Sep. 01, 2016

Test Date: Oct. 25 to Nov. 11, 2016

Issued Date: Jan. 05, 2017

Applicant: Greenwave Systems Pte. Ltd.

Address: 10 Science Park Road, #02-07/08, The Alpha (Science Park II), Singapore

117684

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

Report No.: SA160901E04 Page No. 1 / 7 Report Format Version: 6.1.1

Table of Contents

Relea	se Control Record	3
1	Certificate of Conformity	4
2	RF Exposure	
2.1	Limits For Maximum Permissible Exposure (MPE)	5
	MPE Calculation Formula	
2.3	Classification	5
	Antenna Gain	
2.5	Calculation Result Of Maximum Conducted Power	7

Release Control Record

Issue No.	Description	Date Issued
SA160901E04	Original release.	Jan. 05, 2017

1 Certificate of Conformity

Product: Wi-Fi Extender

Brand: NA

Test Model: E2100

Sample Status: MASS-PRODUCTION

Applicant: Greenwave Systems Pte. Ltd.

Test Date: Oct. 25 to Nov. 11, 2016

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

IEEE C95.1-1992

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Midoli Peng / Specialist

Approved by: , **Date:** Jan. 05, 2017

May Chen / Manager

2 RF Exposure

2.1 Limits For Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (minutes)	
Limits For General Population / Uncontrolled Exposure					
300-1500			F/1500	30	
1500-100,000			1.0	30	

F = Frequency in MHz

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 32cm away from the body of the user. So, this device is classified as **Mobile Device**.

Report No.: SA160901E04 Page No. 5 / 7 Report Format Version: 6.1.1

2.4 Antenna Gain

The antennas provided to the EUT, please refer to the following table:

No.	PCB Chain No	Brand	Antenna Gain(dBi) Including cable loss	Frequency range (GHz~GHz)	Antenna Type	Connector type	Cable Length (mm)	
2G-1	Chain2	WNC	4.62	2.4~2.4835	Dipole	i-pex(MHF)	75	
2G-2	Chain1	WNC	3.33	2.4~2.4835	Dipole	i-pex(MHF)	52	
2G-3	Chain0	WNC	3.63	2.4~2.4835	Dipole	i-pex(MHF)	187	
5G-5	Chain3	WNC	3.24	5.15~5.25	Dinala	: nav/MUIF)	171	
36-3	Chains	VVINC	3.24	5.25~5.35	Dipole	i-pex(MHF)		
5G-6	Chain2	WNC	4.39	5.15~5.25	Dinala	i pov(MUE)	187	
3G-6	Criairiz	VVNC	4.58	5.25~5.35	Dipole	i-pex(MHF)	107	
50.7	MANO	3.68	5.15~5.25	Dinala	i pov(MUE)	220		
5G-7	Chain1	WNC	3.62	5.25~5.35	Dipole	i-pex(MHF)	228	
5G-8	Chain	Chain	-8 Chain0 WNC 4.63	4.63	5.15~5.25	Dinole	i-pey(MHF)	237
3G-6	Chamb	VVINC	4.07	5.25~5.35	Dipole	i-pex(MHF)	231	
FC 1	Chain?	WNC	3.45	5.47~5.725	Dinala	i-pex(MHF)	171	
5G-1	Chain3	VVINC	3.45	5.725~5.85	Dipole		171	
50.0	WNC	4.28	5.47~5.725	Dinala	i-pex(MHF)	187		
5G-2 Chain2		4.47	5.725~5.85	Dipole		107		
FC 2 Chair 4	WNC	4.01	5.47~5.725	Dinala	i-pex(MHF)	220		
5G-3 Chain1		3.54	5.725~5.85	Dipole		228		
5C 4	Chain0	WNC	2.71	5.47~5.725	Dinala	: nov(MUIT)	007	
5G-4		Chainu	VVINC	2.95	5.725~5.85	Dipole	i-pex(MHF)	237

The Directional gain table:

Frequency (MHz)	Max Gain (dBi)
UNII-1 band	3.97
UNII-2A band	4.29
UNII-2C band	5.21
UNII-3 band	4.88

Note:

1. Non-TxBF mode & TxBF mode antenna gain refer to KDB 662911 F 2) f) (ii)

$$Directional Gain = 10 \cdot \log \left| \frac{\sum_{j=1}^{N_{SIS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right|$$

Each antenna is driven by no more than one spatial stream;

 $N_{\rm SS}$ = the number of independent spatial streams of data; N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not; G_k is the gain in dBi of the kth antenna.

Page No. 6 / 7 Report No.: SA160901E04 Report Format Version: 6.1.1

2.5 Calculation Result of Maximum Conducted Power

Frequency (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)
2412-2462	896.52	8.65	32	0.51056	1
5180-5240	767.196	3.97	32	0.14873	1
5260-5320	249.65	4.29	32	0.05210	1
5500-5720	231.867	5.21	32	0.05980	1
5745-5825	897.877	4.88	32	0.21464	1

NOTE:

2.4GHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 8.65dBi$

5 GHz: Directional gain = 3.97dBi(UN-II-1), 4.29dBi(UN-II-2A), 5.21dBi(UN-II-2C), 4.88dBi(UN-II-3)

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Simultaneously transmission condition.

Technology				
\\/\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	WLAN	WLAN		
WLAN (2.4GHz)	(5GHz <u-nii-1 &="" u-nii-2a="">)</u-nii-1>	(5GHz <u-nii-2c &="" u-nii-3="">)</u-nii-2c>		

0.51056/1 + 0.14873/1 + 0.21464/1 = 0.87393

Therefore the maximum calculations of above situations are less than the "1" limit.

--- END ---