UNITED STATES NAVAL ACADEMY

WEAPONS, ROBOTICS, AND CONTROL ENGINEERING

EW309corona Final Demonstration Overview

M. Kutzer

(1.1) Define Test Parameters

Target Range (cm)	
Target Diameter (cm)	
Probability of At Least One Hit	> pOne
Proportional Gain (Kp)	
Integral Gain (Ki)	> Ki
Derivative Gain (Kd)	> Kd
Turret Controller Stop Time	\rightarrow tf

(1.2) Calculate Target Statistics

[xBias,yBias,nShots] = NerfGunStats(targetRange,targetDiameter/2,pOne);

(1.3) Create Simulated Target

targetSpecs = createTargetSpecs(targetDiameter,xBias,yBias);

(2) Get Initial Target Image

im = getTargetImage(targetRange,[],targetSpecs);

(3.1) Locate Target in Pixels

[xPixels,yPixels] = STUDENTFUNCTION(im);

(3.2) Locate Target in Centimeters

[x_cm,y_cm] = STUDENTFUNCTION(targetRange,xPixels,yPixels);

(4) Calculate Desired Turret Angle

[thetaDesired] = STUDENTFUNCTION(xcm,xBias,targetRange);

(5.1) Package Control Parameters

(5.2) Rotate the Turret


```
tEval = linspace(0,tf,100);
[SSE,ts,t,theta] = sendCmdtoDcMotor('closed',cParams,tEval);
```

(6) Get Updated Target Image

Updated Target Image (640 x 480 pixels)

im = getTargetImageUpdate(theta(end));

(7) Repeat Steps (3) – (6) *OPTIONAL*

(8) Fire At Target

Updated Target Image with Shot Pattern (640 x 480 pixels)

im = getShotPatternImage(nShots);

(9.1) Analyze Results

EW309coronaPerforanceEval

