

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

The Ho-Ramamoorthy Algorithm

Instructor:

Dr. Avinash Gautam

Presented By:

- Keval Kulkarni
- Brijgopal Dixit
- Shouvik Chatterjee

Introduction

- Centralized deadlock detection in Distributed Systems.
- The Ho-Ramamoorthy algorithm based on two centralized deadlock detection approaches –
 - i. One Phase algorithm
 - ii. Two phase algorithm
- Deadlock is detected by Control site.
- Control site collects process status table from local sites.

Terminology

Control Site(Controller)

- Designated site that maintains the WFG of entire system.
- Checks it for the existence of deadlock cycles.

II. Status Table

Contains status of all the process includes resource locked or waited upon.

III. Resource Status Table

Keeps track of process that have locked or are waiting for resources.

IV. WFG

- Wait for graph
- Showing dependency between the processes.

The One-Phase Algorithm

- Each site maintains 2 status tables
 - i. Resource status table
 - ii. Process status table.
- Control site periodically collects these tables from each site.
- Control site then builds and analyze the WFG.
- Check for the cycles in WFG.
- If cycle is not present then system is free from deadlock
- Otherwise a deadlock is detected in system.

The Two-Phase Algorithm

- Each site maintains a status table of all processes initiated at that site.
- Controller requests the status table from each site.
- Controller then constructs WFG from these tables, searches for cycles.
- If no cycles, no deadlocks.
- Otherwise, (cycle exists): Request for state tables again.
- Construct WFG based only on common transactions in the 2 tables.
- If the same cycle is detected again, system is in deadlock.

Assumptions

- Number of Processes => 5 (P1-P5)
- Number of Resources => 4 (R1-R4)
- \square Number of Sites => 3
- Considering all the resources as global.
- Resources request generated randomly by Processes.

- **□ Processes** : P1,P2,P3,P4,P5
- **☐ Resources** : R1, R2, R3, R4
- ☐ Systems : Site-1, Site-2,

Control site

STEP-1

Site-1 Constructs Resource status and Process status table

	51tc -1 1t5 1					
	P1	P2	P3			
R1	1	0	-1			
R2	0	-1	1			
R3	0	-1	-1			
R4	0	0	0			

Site _1 RST

STEP-2

• Site-2 Construct *Resource status* and *Process status* table.

STEP-3

P5

• Control site collect tables from all local sites and construct Global process status table.

			R3	
P1	1	0	0	0
P2	0	-1	-1 -1	0
P3	1 0 -1	1	-1	0

R1 R2 R3 R4

Site-1

Site-2

	R1		R3		
P1	1	0	0	0	
P2	0	-1	-1	0	
P3	-1	1	-1	0	
P4	-1	-1	-1	0	
P1 P2 P3 P4 P5	-1	-1	1	1	

Control Site

STEP-3

• Controller constructs the WFG using status table.

 $P2 \longrightarrow R2 \quad R2 \longrightarrow P3$

P2 0 -1 -1 0 P3 -1 1 -1 0 P	$2 \longrightarrow P3 P2 \longrightarrow P5$
P2 0 -1 -1 0 P3 -1 1 -1 0 P	$r \rightarrow r \rightarrow$
	$B \longrightarrow P1 P3 \longrightarrow P5$
P4 -1 -1 -1 0	1 → D1 D4 → D2
P5 -1 -1 1 1	$1 \longrightarrow P1 P4 \longrightarrow P3$
P!	$5 \longrightarrow P1 P5 \longrightarrow P3$

STEP-4

- Controller constructs the WFG using status table and check for cycle.
- Nodes are represented as processes

STEP-1

Every site maintains status table.

Site-1

	R1	R2	R3	R4
P 1	0	0	-1	-1
P2	0	-1	-1	0
P3	0	-1	-1	1

Site id	Process id	Hold resource id	Requesting resource id
S1	P1		R3,R4
S1	P2		R2,R3
S1	Р3	R4	R2,R3

STEP-1

Site -2 maintains status table.

Site-2

	R1	R2	R3	R4
P 4	1	-1	1	0
P 5	0	1	0	-1

Site id	Process id	Hold resource id	Requesting resource id
S2	P4	R1,R3	R2
S2	P5	R2	R4

STEP-2

Controller requests the status table from each site.

Global Process Status Table

R1	R2	R3	R4
0	0	-1	-1
0	-1	-1	0
0	-1	-1	1
1	-1	1	0
0	1	0	-1
	0 0 0 0	0 0 0 -1 0 -1 1 -1	1 -1 1

Site-1

Site-2

STEP-3

- Controller then constructs WFG from these tables, searches for cycle.
- P1-->P3 i.e P1 is waiting for P3
- P1-->P4
- P2-->P4
- P2-->P5
- P3-->P4
- P3-->P5
- P4-->P5
- P5-->P3

Cycle found between processes: P3 and P5

STEP-4

 Deadlock Detected hence Controller request for state tables again and Construct WFG based only on common transactions in the two tables.

Old Table

	R1	R2	R3	R4
P 1	0	0	-1	-1
P2	0	-1	-1	0
P3	0	-1	-1	1
P 4	1	-1	1	0
P5	0	1	0	-1

New Table

	1/1	112	NJ	114
P1	0	0	-1	-1
P2	0	-1	-1	0
P3	0	-1	-1	1
P 4	1	-1	1	0
P5	0	1	0	-1
l				

R2 R3 R4

R1

Site -1

Site -2

STEP-5

• So, same cycle is detected again, system is in deadlock.

Deadlock Detected

Cycle found between processes: P5, P3

Thank You