

Problem Domain

- 1. Customers leaving a service providing company is not good (for that company)
- 2. Some customers bring in a lot of business and when they leave it hurts the company
- 3. A company's best interest to figure out who is staying and who might leave
- 4. This is called customer churn and is generally measured as a percentage called churn rate
- 5. In this case for a cell phone service provider, it would be nice to determine this
- 6. A model to help find when a customer is getting to that point is best
- 7. Company can provide incentives to the leaving customers to retain their business

Overview of Methodology

- 1. Load data and explore what columns are or aren't useful
- 2. First model: Dummy Classifier
- 3. Second model: Random Forest Classifier model
- 4. Third model: Gradient Boosting
- 5. Between the 3 models we tried, we also tried various settings for each

Data Exploration

Base Model - Dummy Classifier

- 1. Dummy Classifier model gave us a baseline to improve
- 2. Tried 3 models with no modified settings to compare
- 3. Right away had improvements vs Dummy model

					$\overline{}$
NeighborsCla k***Results*					
	precision	recall	f1-score	support	
False	0.89	0.99	0.94	709	
True	0.87	0.27	0.41	125	
accuracy			0.88	834	
macro avg	0.88	0.63	0.68	834	
veighted avg	0.88	0.88	0.86	834	
======= RandomForest(****Results**					
	precision	recall	f1-score	support	
False	0.91	0.99	0.95	709	
True	0.89	0.45	0.60	125	
accuracy			0.91	834	
macro avg	0.90	0.72	0.77	834	
veighted avg	0.91	0.91	0.90	834	
 GradientBoost ****Results**					
	precision	recall	f1-score	support	
False	0.92	0.99	0.95	709	
True	0.86	0.50	0.63	125	
accuracy			0.91	834	
macro avg	0.89	0.74	0.79	834	
veighted avg	0.91	0.91	0.90	834	

Second Model - Random Forest Classifier

Final Model - Gradient Boosting

- 1. Predict if customers would cancel their accounts in the near future
- 2. Can't say with certainty which factor is most important
- 3. Can identify about 88% of customers who may leave
- 4. Pushing this further would have forced our model to be perfect
- 5. This causes issues when trying to generalize the model with new data

Specific Insights

- Feature Importances

-	Total Cost	0.45
-	Customer service Calls	0.13
-	International Plan	0.11

- More Data
 - Duration of plans
 - Sentiment Analysis of CS calls

Conclusion & Recommendations

- Successfully able to predict 88% of potential customer churn
- Found out what problems are most correlated with customers leaving
- Focus our efforts to increase customer retention
- Recommend collecting additional customer data for analysis:
 - Credit score
 - Regular payments
- 'total cost' being the highest coefficient in determining the churn
- Make sure the customers are on the correct plan for their usage