

Real Estate Price Class Estimation

Machine Learning In Finance – Group 1

Alexander Beck | Joel Blank | Pascal Müntener | Arthur Pavlics | Kenan Öztürk

Handling The Data

Features

- Feature selection
- Make composite features
- Dummies categorical features
- Scale all numericals

- Convert strings to numbers
- **NAN Values**
- No «real» NaN values

- 2) TotalBsmtSF 0.0909
- - OverallQual 0.0740

 - LotArea 0.0516
- 5) AgeWhenSold 0.0493
- 6) BsmtFinSF1 0.0469

 - AgeSinceRemod 0.0418
 - 2ndFlrSF 0.0413
- 9) ExterOual 0.0385
- 10) KitchenQual 0.0342
- 11) BsmtQual 0.0338
 - GarageCars 0.0319 OverallCond 0.0233

- - BedroomAbvGr 0.0164
- MSSubClass 30.0 0.0081 18) MSSubClass 60.0 0.0081

FireplaceQu 0.0205

HeatingQC 0.0174

GrLivArea 0.1113

Image 1 16.04.2023

Data Imbalance

Problem

Big imbalance

Solution

- Fuse class 4 and 5
- Upsampling
- Downsampling
- Tomek Links

Neural Net

Powerful tool, but not enough data

Accuracy: 78.2%

Boosted Random Forest

Best performing

Accuracy AdaBoost: 86% Accuracy Gradient Boost: 88.7%

Image: 4, 5

16.04.2023

Model Comparison

Ø1

02

Ø3

Gradient Boost

AdaBoost

Accuracy: 88.7% F1 Score: 0.88

Accuracy: 88.1% F1 Score: 0.88

Random Forest

Accuracy: 86% F1 Score: 0.85

GRADIENT BOOST:

[[8 7 0 0 0]

[1 184 5 0 1]

[0 6 54 3 0]

[0 0 5 11 2]

[0 0 0 3 3]]

RANDOM FOREST: [[8 7 0 0 0] [0 186 4 0 1] [0 10 49 4 0] [0 0 6 12 0]

Model Comparison

Ø1

02

Ø3

Decision Trees

Accuracy: 81.6% F1 Score: 0.82

DECISION TREES:
[[9 6 0 0 0]
[9 170 11 0 1]
[0 13 48 2 0]
[0 0 8 9 1]
[0 0 0 3 3]]

Neural Net

Accuracy: 78.2% F1 Score: 0.77

NEURAL NET: [[7 8 0 0 0] [1 181 8 1 0] [0 23 34 6 0] [0 1 10 7 0] [0 0 0 6 0]]

Minimal Working Example

Accuracy Rand. Forest 82%

Conclusion

- Baseline to beat: 62.33% (always guess most common class)
- All models beat this comfortably
- NNs may not be the best tool for this specific task

-> Hyperparameteroptimization

BIBLIOGRAPHICAL REFERENCES

References

Beck, A., Blank, J., Müntener, P., Pavlics, A. & Öztürk, K. (2023) Jupyter Notebooks – ML GROUP PROJECT.

Schmitt, T. (2019). house_prices [Datensatz]. OpenML. https://www.openml.org/search?type=data&sort=runs&id=42 165&status=active

Zimmermann, B. (2023). Jupyter Notebooks – Group Project: Minimal Working Expamle.

X

XX

X

Images

- Image 1,6,7,8,9,10: Beck, A., Blank, J., Müntener, P., Pavlics, A. & Öztürk, K. (2023) Jupyter Notebooks ML GROUP PROJECT.
- Image 2: Zimmermann, B. (2023). Jupyter Notebooks Group Project: Minimal Working Expamle.
- Image 3: TIBCO Software. (o. J.). What is a Neural Network?. Abgerufen am 14. April 2023 von https://www.tibco.com/reference-center/what-is-a-neural-network
- Image 4: ResearchGate. (o.J.). FIG. 1. Comparison between (a) random forest and (b) gradient boosting.... Abgerufen am 14. April 2023 von
- Image 5: StatQuest with Josh Starmer. (2019). *AdaBoost, Clearly Explained*. Abgerufen am 14. April 2023 von https://www.youtube.com/watch?v=LsK-xG1cLYA
- Image 11: Clipartix. (o. J.). *Ballpoint pen clipart free clipart images*. Abgerufen am 14. April 2023 von https://clipartix.com/pen-clipart-image-22207/

Slides: Slidesgo. (o. J.). *The Evolution of Invention in Canada Thesis*. Abgerufen am 14. April 2023 von https://slidesgo.com/theme/the-evolution-of-invention-in-canada-thesis#search-tech&position-34&results-354&rs=search

X

 \times \times

×