8/11/2025

Wireshark

Network Traffic Analyzer

@SRCybersecurity

Task 5: Capture and Analyse Network Traffic Using Wireshark.

Objective: Capture live network packets and identify basic protocols and traffic types.

Tools: Wireshark (free).

<u>Deliverables:</u> A packet capture (.pcap) file and a short report of protocols identified along with scanned results screenshots.

Wireshark is the most common tool for capturing and analysing network traffic. Here's given following steps:

Task Breakdown and Instructions

2. Start capturing on your active network interface

- 1. Open Wireshark.
- 2. Select your **active network interface** (usually "Wi-Fi" or "Ethernet" depending on your connection).
- 3. Click the **blue shark fin icon** (top-left) to start the capture.

3. Browse a website or ping a server to generate traffic

- Visit a website like https://www.scanme.nmap.org
- On a terminal/command prompt and run: ping google.com

4. Stop capture after a minute

- Wait about 60 seconds.
- Return to Wireshark and click the red square icon to stop the capture.

5. Filter captured packets by protocol

In the top filter bar, try filters like:

o **ICMP:** (if you used ping)

Src ip: 142.251.222.110, Dst ip: 10.10.10.128

Timestamp: 15.915ms

Data: 40 bytes

o HTTP:

Src ip: 10.10.10.128 Port: 50986, Dst ip: 34.107.221.82 Port: 80

Timestamps 0.014996250ms

Data: 310 bytes

o TCP:

Src ip: 23.38.59.250 Port: 80, Dst ip: 10.10.10.128 Port: 33790

Timestamp: 0.008345064sec

Data: 60 bytes.

o TLS:

Src ip: 10.10.10.128 Port:44016, Dst ip: 172.64.41.4 Port: 443. Timestamp: 0.001502465 secs.

Data: 213 bytes.

o DNS:

Src ip: 10.10.10.2 Port: 53, Dst ip: 10.10.10.128 Port: 36773.

Timestamp: 0.0016046527 secs.

Data: 207 bytes

These filters will show only the selected protocol.

Total transmitted packets: 287.

Received: 287.

• **Time:** 317611ms.

Packet Loss: 0%.

6. Identify at least 3 different protocols in the capture

- You should see:
 - o **DNS** used for resolving domain names
 - o **TCP** transport layer protocol used by HTTP, HTTPS
 - o **HTTP** if you visited an unencrypted website
 - HTTPS encrypted web traffic (shows as TLS)
 - o **ICMP** if you used ping

7. Export the capture as a .pcap file

- 1. Go to File > Save As...
- 2. Choose a location and name, and save it as .pcapng or .pcap.

8. Summarize your findings and packet details

Here's a template summary you can fill out:

Network Capture Summary

- Total capture duration: 317611ms
- Traffic generated by: [Visited scanme.nmap.org or pinged google.com]
- Protocols observed:
 - 1. **DNS** Used to resolve domain names like google.com.
 - 2. **TCP** Transport protocol used by HTTP/HTTPS.
 - 3. HTTPS (TLS) Encrypted web traffic during website visit.
 - 4. **ICMP** Observed from ping command.

Packet Details

Protocol	Source IP	Dst IP	Info
DNS	10.10.10.2	10.10.10.128	Standard query response AAAA detectportal.firefox.com
TLS	10.10.10.128	172.64.41.1	TLSV1.2
ТСР	23.38.59.250	10.10.10.128	TCP Acknowledge (SYN, SYN-ACK, ACK)
HTTPS	10.10.10.128	23.38.59.250	Response via http/1.1
ICMP	142.251.222.110	10.10.10.128	Echo (ping) request and reply