15.9.67.

Cher Dieudonné,

Tes objections de ta lettre du 11 Septembre sont encore fondées. D'ailleurs, il ne me semble pas évident que le fait de pouvoir trouver p,q fixes tels qu'on ait des suites exactes A_n^p A_n^q M_n 0, permette de s'en tirer; tant mieux si tu y arrives. L'existence de ces p et q me semble d'autre part facile, en utlisant le

Lemme Soit A un anneau, M un A-module, (f_i)_{l i n} des éléments de A engendrant l'idéal unité, mxumxemtier supposons que pour tout i, le A_f-modu le M_f soit engendré par m_i générateurs. Alors M est engendré par m m_i générateurs.

Démonstration: soient g_j^i M_{f_i} (1 j m_i) les générateurs de M_{f_i} , on aura donc $g_j^i = h_j^i/f_i^{Nij}$, avec h_j^i M_i . Alors les h_j^i pour j fixes engendrent M_i sur l'ouvert $\operatorname{Spec}(A_f)$ de $\operatorname{Spec}(A_f)$, donc comme pour i varaible ces ouverts recouvrent $\operatorname{Spec}(A)$, al s'ensuit que les h_j^i pour i, j variables engendrent M_i , donc M_i , ce qui établit le lemme.

Revenant alors à la situation de 10.10.5, on sait que $M=\lim_{n\to\infty} M_n$ est un A-module de type fini, considérons alors un épimorphisme u: A^q M. Soient f_i A dont les images dans A_0 engendrent l'idéal unité, et tel que sur les specfé ouverts correspondants X_i de $X=\operatorname{Specf}(A)$, F admette une présentation finie, donc soit de la forme M_i , où M_i est un A_i —hodule de présentation finie. Alors u restreint à X_i définit un épimorphisme A_i^q M_i , et comme M_i est de présentation finie, il existe un homomorphisme A_i^q M_i , et comme M_i est de présentation finie, il existe un homomorphisme A_i^q M_i , or Tensorisant par A_i^q M_i , on en déduit une suite exacte $(A_i)_i^p$ $(A_i)_i^q$ $(M_i)_i^q$ $(A_i)_i^q$ $(A_i)_i$

où m est le nombre des f, , et mp est bien indépendant de n.

La difficulté qui reste semble rester est de trouver les suites exactes que tu demandes de telle façon qu'elles se recollent, pour n variable. Donc, u étant déjà choisi, de trouver un homomorphisme A^P A^Q demantant dont l'image soit Ker u ... Si tu y arrives, on pourrait présenter encore 10.10.5 sous forme de trois conditions équivalentes, mais en demandant dans b) une "preentation finie" uniformément en n" . Sinon, il faudrait trouver un contre-exemple à limiture l'implication a) c), car il me semble que la question devrait être tirée au clair. En tout état de cause, il faudra donner, en corollaire, l'équivalence des conditions suivantes, valables sans hypothèses noethériennes:

- a) F est localement libre de type fini.
- b) F est limite projective d'une suite (F_n) de O_{X_n} Modules loc libres de type fini qui se recoilent.
- c) F est isomorphe à un M , avec M un A-module projectif de type fini.

Pour la démonstration, on procède comme dans 10.10.5 en ut<u>i</u>lisant EGA IV 18.3.2.1. Ce lemme devrait d'ailleurs venir en corollaire 🗓 après O_T 7.2.9.

Pour les modifications que je préconaisais pour I 10.11, elles tombent à l'eau sû on n'arrive pas à arranger 10.10.5 sans hypothèses noethériennes; on peut cependant dire que si F sur X est de présentation finie, alors il est limite projective de faisceaux F_n de présentation finie sur les X_n qui se recollent (mais on n'a pas une réciproque), et que F est localement libre sis les F_n le sont. Et localement les autres énoncés du no 10.11. restent valables, sans hypothèse noemhérienne, sauf 10.7.11.2 et la partie "injectivité" dans 10.11.9 (sauf erreur).