ПОСТАНОВКА ЗАДАЧИ

Физическая модель

Полёт ракеты можно представить как взаимодействие основных сил, каждая из которых играет свою роль в формировании траектории. К ним относятся сила тяги двигателей, сила притяжения Земли и сила аэродинамического сопротивления воздуха. В нашей модели были учтены первые две из них как имеющие наибольшее влияние на скорость ракеты.

Ключевые параметры физической модели, влияющие на движение ракеты:

- **Масса ракеты**: Общая масса ракеты на старте складывается из массы топлива, сухой массы ступеней и массы полезной нагрузки. По мере сгорания топлива масса ракеты уменьшается, что значительно влияет на её ускорение.
- Удельный импульс двигателей: отношение тяги двигателя к секундному расходу массы топлива. Этот параметр показывает, насколько эффективно двигатель использует топливо для создания тяги. Удельный импульс определяется для каждой ступени ракеты отдельно.
- Тяга двигателя: сила тяги обеспечивает ускорение ракеты и преодоление силы тяжести.

Стоит отметить, что сила тяжести действует на ракету со стороны Земли и равна

$$G=m(t)*g,$$

где g – ускорение свободного падения, m(t) – текущая масса ракеты.

Основные параметры физической модели

Обозначени е		Значение для реального корабля	Значение для модели корабля в KSP – используется для расчета		Величина	Едини цы измер ения в СИ	
$m_{ m oб mas}$		287000	291289		Стартовая масса		
M_0		4725	870		Масса полезной нагрузки		
m_{01}		197500	202960			Macca	КГ
m_{0i}	m_{02}	77000	83551			заправленной	
	m_{03}	12500		3908		і-й ступени	
m_{1i}	m_{11}		50960			Масса і-й	а і-й ни без
	m_{12}		17851		ступени без		
	m_{13}		1308		топлива		
I_i	I_1	254 с	на Земле	285,3	2797,8	Удельный импульс двигателя і-й ступени	c M/c
			вакуум	310	3040,1		
	I ₂	315 c	на Земле	295,3	2895,9		
			вакуум	315	3089,1		
	I_3	326 c	вакуум	355	3481,4		
T_i	T_1	4000000	на Земле	40	04000		
			вакуум 4350000		50000	Тяга	
	T_2	940000	на Земле 88		81100	двигателя і-й	Н
			вакуум 940000		40000	ступени	
	T_3	55000	55000 (вакуум)				
g		9,81			Местное ускорение свободного падения	$\frac{M}{c^2}$	

Для расчета скорости ракеты использовались следующие формулы:

Искомая величина	Формула	Единицы измерения в СИ
Скорость ракеты	$V = V_{ch} - \Delta V_g$	
Формула Циолковского для многоступенчатой ракеты (характеристическая скорость ракеты)	$V_{ch} = \sum_{i=1}^{N} I_i \cdot \ln \left(\frac{M_0 + \sum_{j=i}^{N} m_{0j}}{M_0 + m_{1i} + \sum_{j=i+1}^{N} m_{0j}} \right)$	<u>м</u> с
Гравитационные потери скорости	$\Delta V_g = \int_0^t g \cdot (-\cos(\gamma(t)))dt$	

 $\gamma(t)$ - угол между вектором силы тяги двигателя и вектором местного ускорения свободного падения.

Математическая модель

Математическая модель описывает движение ракеты через систему уравнений.

Основные параметры:

Обозначение				Единицы	
		Значение	Величина	измерения	
				в СИ	
t		-	Время от старта	c	
$ au_1$		20	Время начала		
		20	поворота		
			Время	c	
	$ au_2$	200	окончания		
			поворота		
	N	3	Число ступеней		
	1 V	3	ракеты		
	m_1	1431	Скорость	КГ	
m_i	m_2	304	расхода топлива		
	m_3	16	і-й ступени	С	
		485	Общее время		
ι .	общ	403	работы ступеней	С	
	t_1	106	Время работы і- й ступени	c	
t_i	t_2	216			
	t_3	163	и ступени		
		π	Итоговый угол		
	ρ		наклона ракеты	рад.	
,		180	к горизонту	_	
			Коэффициент		
k			для		
			приближенного		
		3	расчета угла		
		$\frac{3}{4}$	между вектором		
			скорости ракеты		
			и нормалью к		
			горизонту		

Расчеты для каждой ступени ракеты

1. Скорость расхода топлива для каждой ступени:

$$\dot{m}_i = \frac{T_i}{I_i \cdot g}, [I] = c$$

1. Первая ступень:

$$\dot{m}_1 = \frac{4004000}{285.3 \cdot 9.81} \approx \frac{1431 \text{ KG}}{c}$$

2. Вторая ступень:

$$\dot{m}_2 = \frac{940000}{315 \cdot 9.81} \approx \frac{304 \text{ KG}}{c}$$

3. Третья ступень:

$$\dot{m}_3 = \frac{55000}{355 \cdot 9.81} \approx \frac{16 \text{ KG}}{c}$$

2. Время работы каждой ступени:

$$t_i = \frac{m_{0i} - m_{1i}}{\dot{m}_i}$$

1. Первая ступень:

$$t_1 = \frac{202960 - 50960}{1431} \approx 106 \text{ c}$$

2. Вторая ступень:

$$t_2 = \frac{83551 - 17851}{304} \approx 216 \,\mathrm{c}$$

3. Третья ступень:

$$t_3 = \frac{3908 - 1308}{16} \approx 163 \,\mathrm{c}$$

Общее время работы ступеней:

$$t_{\text{общ}} = t_1 + t_2 + t_3 = 106 + 216 + 163 = 485 \text{ c}$$

Формулы для расчета скорости и высоты ракеты

Для описания движения ракеты используются следующие основные формулы:

1. Скорость ракеты рассчитывается с помощью следующего уравнения:

$$V(t) = V_{ch}(t) - \Delta V_{a}(t)$$

где

$$V_{ch}(t) = \sum_{i=1}^{N} (t > \sum_{j=1}^{i-1} t_j) (I_i \cdot \ln \left(\frac{M_0 + \sum_{j=i}^{N} m_{0j}}{M_0 + \max(m_{1i}, m_{0i} - m_i * (t - \sum_{j=1}^{i-1} t_j)) + \sum_{j=i+1}^{N} m_{0j}} \right))$$

- характеристическая скорость многоступенчатой ракеты в момент времени t,

$$\Delta V_g(t) = \int_0^t g \cdot (-\cos(\gamma(t)))dt$$

- гравитационные потери скорости к моменту времени t.

При этом угол $\gamma(t)$ между вектором силы тяги двигателя и вектором местного ускорения свободного падения рассчитывается по формуле

$$\gamma(t) = (t < \tau_1) * \pi + (\tau_1 \le t \le \tau_2) * \max\left(\frac{\pi}{2} + \rho, \pi - \frac{\pi}{2} * \frac{t - \tau_1}{\tau_2 - \tau_1}\right) + (t > \tau_2)$$

$$* (\frac{\pi}{2} + \rho)$$

Таким образом, скорость ракеты в момент времени t равна:

$$V(t) = \sum_{i=1}^{N} (t > \sum_{j=1}^{i-1} t_j) (I_i \cdot \ln \left(\frac{M_0 + \sum_{j=i}^{N} m_{0j}}{M_0 + \max(m_{1i}, m_{0i} - m_i * (t - \sum_{j=1}^{i-1} t_j)) + \sum_{j=i+1}^{N} m_{0j}} \right)) - \int_0^t g \cdot (-\cos(\gamma(t))) dt$$

2. Высота ракеты определяется как интеграл скорости набора высоты ракетой:

$$h(t) = \int_{0}^{t} V_h(t)dt$$

где

$$\begin{split} V_h(t) &= \cos \bigl(\alpha(t)\bigr) \, V(t) \\ \alpha(t) &= (t < \tau_1) * 0 + (\tau_1 \le t \le \tau_2) * k * \frac{\pi}{2} * \frac{t - \tau_1}{\tau_2 - \tau_1} + (t > \tau_2) * k * \frac{\pi}{2} \end{split}$$

-угол между вертикалью и вектором скорости \vec{V} ракеты.

Таким образом, высота ракеты в момент времени t равна:

$$h(t) = \int_{0}^{t} \cos(\alpha(t)) V(t) dt$$

3. Произведение расчетов

Рисунок 1 Изменение скорости и высоты ракеты в зависимости от времени

Величина	Математическая модель	Моделирование в KSP	
Время	188 c		
Скорость	1922 м/с	1749 м/с	
Высота	103389 м	108462 м	

СРАВНЕНИЕ РЕЗУЛЬТАТОВ

1. Анализ графиков

Графики отражают скорость и высоту ракеты на промежутке времени от старта до достижения апогея 230 км (189 с). За это время успела отработать первая ступень (106 с) и большая часть второй ступени.

Полученные графики отражают ожидаемую динамику её полета:

- График скорости демонстрирует плавный рост в течение всей работы двигателей. С течением времени прирост скорости увеличивается, кроме момента отделения первой ступени, так как масса ракеты становится меньше, а тяга не уменьшается.
- График высоты показывает ее постоянное увеличение, а также ускорение набора высоты на первых ≈ 125 секундах полета. По мере разворота ракеты в горизонтальное положение темп увеличения высоты уменьшается.

Моделирование подтверждает, что основные параметры ракеты (тяга, удельный импульс и масса) согласуются с ожидаемой траекторией движения.

2. Абсолютная и относительная погрешности

Абсолютная погрешность

Абсолютная погрешность рассчитывается как:

$$\Delta_{\text{aбc}} = |x_{\text{моделирование}} - x_{\text{теория}}|$$

Относительная погрешность

Относительная погрешность рассчитывается как:

$$\Delta_{\text{отн}} = \frac{\Delta_{\text{аб}c}}{x_{\text{моделирование}}} \cdot 100\%$$

Погрешность в вычислениях скорости:

$$\Delta_{\text{a6c}} = |1749 - 1922| = 173 \left(\frac{\text{M}}{\text{c}}\right)$$

$$\Delta_{\text{oth}} = \frac{173}{1749} \cdot 100\% \approx 9.9\%$$

Погрешность в вычислениях высоты:

$$\Delta_{a6c} = |108462 - 103389| = 5073 \text{ (M)}$$

$$\Delta_{oth} = \frac{5073}{108462} \cdot 100\% \approx 4,7\%$$