

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Tranformers and BERT

Måns Magnusson Statistiska Institutionen Uppsala Universitet

17th of June 2024

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Section 1

Introduction

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

The Development of NLP

Figure: The development timeline (Zhao et al., 2023)

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Why and when neural networks?

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - i ositional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Why and when neural networks?

• Learning feature representations

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Why and when neural networks?

- Learning feature representations
- Good for "sensor" data

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Why and when neural networks?

- Learning feature representations
- Good for "sensor" data
- Needs a lot of data to learn complex representations (image, text, audio)

- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Learning Representations

Figure: Learning representations can be crucial (Goodfellow et al, 2017, Fig. 1.2)

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding

 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Different Network Architectures

- Different networks for different purposes
 - Feed-Forward Neural Network: Basic building block

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder
 Models
 - BERT
 - RoBERTa

Different Network Architectures

- Different networks for different purposes
 - Feed-Forward Neural Network: Basic building block
 - Convolutional Neural Networks: Computer Vision

- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Different Network Architectures

- Different networks for different purposes
 - Feed-Forward Neural Network: Basic building block
 - Convolutional Neural Networks: Computer Vision
 - Transformers: Textual data

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Section 2

(Recap) Feed-Forward Neural Networks

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Figure: A simple feed-forward network (Goodfellow et al, 2017, Fig. 6.2)

Important concepts:

Layers, neurons, input, output, weights, bias, architecture

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
- Architecture design
 The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Figure: A simple feed-forward network (Goodfellow et al, 2017, Fig. 6.2)

In mathematical notation:

$$y_i = \mathbf{w}^T g(\mathbf{W}^T \mathbf{x}_i + \mathbf{b}_1) + \mathbf{b}_2$$

where $\mathbf{w} \cdot \mathbf{W} \cdot \mathbf{h}_1$ and \mathbf{h}_2 is learned/estimated

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

$$y_i = \mathbf{w}^T g(\mathbf{W}^T \mathbf{x}_i + \mathbf{b}_1) + \mathbf{b}_2$$

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

$$y_i = \mathbf{w}^T g(\mathbf{W}^T \mathbf{x}_i + \mathbf{b}_1) + \mathbf{b}_2$$

$$W = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $w = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $b_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $b_2 = \begin{pmatrix} 0 \end{pmatrix}$

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

$$y_i = \mathbf{w}^T g(\mathbf{W}^T \mathbf{x}_i + \mathbf{b}_1) + \mathbf{b}_2$$

$$W = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, w = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, b_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \end{pmatrix}$$

$$g(z) = ReLU(z) = max(0, z)$$

(Recap) Feed-Forward Neural Networks

- Hidden Units
- Architecture design
- The Transformer
 - Attention
 Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

$$y_i = \mathbf{w}^T g(\mathbf{W}^T \mathbf{x}_i + \mathbf{b}_1) + \mathbf{b}_2$$

$$W = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $w = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $b_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $b_2 = \begin{pmatrix} 0 \end{pmatrix}$

$$g(z) = ReLU(z) = max(0, z)$$

$$x_i = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder
 - Models

 BERT
 - RoBERTa

$$y_i = \mathbf{w}^T g(\mathbf{W}^T \mathbf{x}_i + \mathbf{b}_1) + \mathbf{b}_2$$

$$W = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, w = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, b_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \end{pmatrix}$$

$$g(z) = ReLU(z) = max(0, z)$$

$$x_i = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,

$$y_i = \begin{pmatrix} 1 \\ -2 \end{pmatrix}^T \mathsf{ReLU} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] + (0)$$

(Recap) Feed-Forward Neural Networks

- Hidden Units
- Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

$$y_i = \mathbf{w}^T g(\mathbf{W}^T \mathbf{x}_i + \mathbf{b}_1) + \mathbf{b}_2$$

$$W = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $w = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $b_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $b_2 = \begin{pmatrix} 0 \end{pmatrix}$

$$g(z) = ReLU(z) = max(0, z)$$

$$x_i = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,

$$y_i = \begin{pmatrix} 1 \\ -2 \end{pmatrix}^T \mathsf{ReLU} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix}
ight] + \left(0
ight)$$

$$y_i = \begin{pmatrix} 1 \\ -2 \end{pmatrix}^T \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix} = 1$$

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Output units (g_L)

• Depend on the data *y*

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Output units (g_L)

- Depend on the data y
- Linear units for regression

$$\hat{y} = \mathbf{wh} + \mathbf{b}$$

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Output units (g_L)

- Depend on the data y
- Linear units for regression

$$\hat{y} = \mathbf{wh} + \mathbf{b}$$

• Bernoulli units for binary classification

$$\hat{y} = \sigma(\mathbf{wh} + \mathbf{b}),$$

where

$$\sigma(z) = \frac{1}{1 + \exp(-z)},$$

i.e. the logistic or sigmoid function.

• Other likelihoods can be used, such as Multinomial, Poisson, etc.

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - ...
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Activation functions (g_l)

 Historically g(z) has been the sigmoid or or hyperbolic tangent (tanh)

$$g_{\text{sigmoid}}(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$$

$$g_{tanh}(z) = \frac{\sinh z}{\cosh z} = \frac{e^{2z} - 1}{e^{2z} + 1}$$

- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Multi-Head Attention
 - ...
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Activation functions (g_l)

• Historically g(z) has been the sigmoid or or hyperbolic tangent (tanh)

$$g_{\text{sigmoid}}(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$$

$$g_{tanh}(z) = \frac{\sinh z}{\cosh z} = \frac{e^{2z} - 1}{e^{2z} + 1}$$

- Today, variants of Rectified linear unit (ReLU) is common
 - Easier to estimate with SGD
 - Easier for deep models

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Activation functions (g_l) : ReLU

$$g_{ReLU}(z) = max(0, z)$$

Figure: Rectified Linear Unit (Wikipedia)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Activation functions (g_l) : GeLU

$$g_{\mathsf{GeLU}}(z) = z\Phi(z)$$

where $\Phi(z)$ is a standard Gaussian.

Figure: Gaussian Error Linear Unit (Wikipedia)

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Activation functions (g_l) : ELU

$$g_{\mathsf{ELU}}(z) = egin{cases} lpha \left(e^z - 1
ight) & \mathsf{if} \ z \leq 0 \\ z & \mathsf{if} \ z > 0 \end{cases}$$

where α is commonly 1.

Figure: Exponential Linear Unit (Wikipedia)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Architecture design

- Architecture: the overall structure of the network
- Choices:
 - How many layers?
 - How many hidden units in each layer?
 - Activation functions?

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Depth matters

Figure: Depth vs. no of parameters (Goodfellow et al, 2017, Fig. 6.3)

UNIVERSITET

Introduction

- (Recap) Feed-Forward
 - Neural Networks

 Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Depth matters II

Figure: Effect of depth on accuracy (Goodfellow et al, 2017, Fig. 6.6)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Section 3

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

• Introduced by Vaswani et al. (2017): Attention is all you need.

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- Introduced by Vaswani et al. (2017): Attention is all you need.
- Behind the recent progress in NLP: BERT, Llama, GPT, etc.

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
 - Add and Normanze
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- Introduced by Vaswani et al. (2017):
 Attention is all you need.
- Behind the recent progress in NLP: BERT, Llama, GPT, etc.
- Benefits for textual data:
 - Enables more GPU parallelism
 - Better handling of long-range dependencies
 - Enable transfer learning for text data
 - Enables deeper networks for text

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder
 - Models

 BERT
 - BERTRoBERTa

- Introduced by Vaswani et al. (2017): Attention is all you need.
- Behind the recent progress in NLP: BERT, Llama, GPT, etc.
- Benefits for textual data:
 - Enables more GPU parallelism
 - Better handling of long-range dependencies
 - Enable transfer learning for text data
 - Enables deeper networks for text
- I will rely heavily on images from Allamar (2018) The Illustrated Transformer (recommended)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

A Sequence-to-Sequence Model

Figure: The basic block (Allamar, 2018)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Stacked Encoder-Decoder Structure

Figure: The Transformer layers (Allamar, 2018)

UNIVERSITET

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Transformer

Figure: The Transformer Architecture (Vaswani et al., 2017)

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Multi-Head Attention
 - Multi-Head Attentio
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

The encoder vs. the decoder

- Encoder:
 - Input: words
 - Output: contextualized embeddings
- Decoder:
 - Input: previous words (and contextualized embeddings from encoder)
 - Output: next word prediction

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

The Transformer Layer (Encoder layer)

Figure: The Encoder Layer (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Scaled Dot-Product Attention

Figure: Scaled Dot-Product Attention (Vaswani et al., 2017)

$$\mathsf{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \mathsf{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$$

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 Positional encoding
 - Add and Normalize
- Transformer-Encoder
 - Models
 - RoBERTa

Attention components

- (Q)uery: Word *i* query other words
- (K)ey: The other words return their key to i
- (V)alue: The value of the other words to i

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - AttentionMulti-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Computing Q, V and K

Figure: Attention heads (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Computing Self-Attention

Figure: Attention (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Multi-Head Attention

Figure: Scaled Dot-Product Attention (Vaswani et al., 2017)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 Architecture design
- The Transformer
 - I he I ransforme
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Attentions Heads

Figure: Attention heads (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Multi-head attention

Figure: Attention heads (Alammar, 2018b)

UNIVERSITET

Introduction

- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Multi-Head Attention example

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

Figure: Attention (Vaswani et al., 2017)

UNIVERSITET

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Positional Encoding

Figure: Attention heads (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

(Absolute) Positional Encoding

"The boy hit the ball" vs "The ball hit the boy"

Figure: Adding positional encodings to embeddings (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Positional encodings

"The boy hit the ball" vs "The ball hit the boy"

- 1. Absolute position encoding
- Relative position encoding:The distance between tokens are added as bias terms

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Multi-Head Attention
 - ---
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Positional encodings

"The boy hit the ball" vs "The ball hit the boy"

- 1. Absolute position encoding
- Relative position encoding: The distance between tokens are added as bias terms
- 3. Rotational positional encoding (RoPE, Su et al., 2022): Q and K are rotated by based on distance

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Add and Normalize

Figure: Add and Normalize (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Transformer

Figure: The Transformer Architecture (Vaswani et al., 2017)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Tokenization

Subword tokenization is commonly used

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Tokenization

- Subword tokenization is commonly used
- The main problem with tokenization
 - 1. Very large vocabulary size
 - 2. Out-of-vocabulary (OOV) tokens
 - 3. Different meanings of very similar words

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
- Architecture design
 The Transformer
 - Attention
 - Multi-Head Attention
 - Wulti-nead Attentio
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Tokenization

- Subword tokenization is commonly used
- The main problem with tokenization
 - 1. Very large vocabulary size
 - 2. Out-of-vocabulary (OOV) tokens
 - 3. Different meanings of very similar words
- Two common approaches:
 - 1. Byte-pair encoding (GPT-2, RoBERTa)
 - 2. WordPiece (BERT)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Byte-pair encoding

 Gage, Philip (1994). "A New Algorithm for Data Compression"

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Byte-pair encoding

- Gage, Philip (1994). "A New Algorithm for Data Compression"
 - Encode the most common pairs iteratively
 - 1. look for the most frequent pairing
 - 2. merge them
 - 3. repeat (until token or iteration limit)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder
 - Models
 BERT
 - RoBERTa

Byte-pair encoding

- Gage, Philip (1994). "A New Algorithm for Data Compression"
- Encode the most common pairs iteratively
 - 1. look for the most frequent pairing
 - 2. merge them
 - 3. repeat (until token or iteration limit)
- Example (Wikipedia): aaabdaaabac

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Multi-Head Attention
 - Positional encoding
 - Positional encoding
 Add and Normalize
- Transformer-Encoder
 - Models
 BERT
 - RoBERTa

Byte-pair encoding

- Gage, Philip (1994). "A New Algorithm for Data Compression"
- Encode the most common pairs iteratively
 - 1. look for the most frequent pairing
 - 2. merge them
 - 3. repeat (until token or iteration limit)
- Example (Wikipedia): aaabdaaabac

Step 1: ZabdZabac Z=aa

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Byte-pair encoding

- Gage, Philip (1994). "A New Algorithm for Data Compression"
- Encode the most common pairs iteratively
 - 1. look for the most frequent pairing
 - 2. merge them
 - 3. repeat (until token or iteration limit)
- Example (Wikipedia): aaabdaaabac

Step 1: ZabdZabac

Z=aa

Step 2: ZYdZYac

Z=aa

Y=ab

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder
 - Models
 - BERTRoBERTa

Byte-pair encoding

- Gage, Philip (1994). "A New Algorithm for Data Compression"
- Encode the most common pairs iteratively
 - 1. look for the most frequent pairing
 - 2. merge them
 - 3. repeat (until token or iteration limit)
- Example (Wikipedia): aaabdaaabac

Step 1: ZabdZabac

Z=aa

Step 2: ZYdZYac

Z=aa

Y=ab

Step 3: XdXac

Z=aa

Y=ab

X=ZY

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- 1. look for the most frequent pairing
- 2. merge them
- 3. repeat (until token or iteration limit)
- Example: 9:text_, 10:texting_,11:context_

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- 1. look for the most frequent pairing
- 2. merge them
- 3. repeat (until token or iteration limit)
- Example: 9:text_, 10:texting_,11:context_
 - Step 1 (most common: "te"): {te}

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Byte-pair encoding

- 1. look for the most frequent pairing
- 2. merge them
- 3. repeat (until token or iteration limit)
- Example: 9:text_, 10:texting_,11:context_

Step 1 (most common: "te"): {te}

...

Step i (most common: "text_"): {text_}

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- 1. look for the most frequent pairing
- 2. merge them
- 3. repeat (until token or iteration limit)
- Example: 9:text_, 10:texting_,11:context_

Step 1 (most common: "te"): {te}

. . .

Step i (most common: "text_"): {text_}

. . .

Step j (most common: "con"): {text_,con}

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- 1. look for the most frequent pairing
- 2. merge them
- 3. repeat (until token or iteration limit)
- Example: 9:text_, 10:texting_,11:context_

Step 1 (most common: "te"): {te}

..

Step i (most common: "text_"): {text_}

...

Step j (most common: "con"): {text_,con}

Step k (most common: "texting"): {text_,con,texting}

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- 1. look for the most frequent pairing
- 2. merge them
- 3. repeat (until token or iteration limit)
- Example: 9:text_, 10:texting_,11:context_

Step 1 (most common: "te"): {te}

..

Step i (most common: "text_"): {text_}

...

Step j (most common: "con"): {text_,con}

Step k (most common: "texting"): {text_,con,texting}

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

WordPiece

 BPE difficulty: Which pair to choose (if they are approx. equally frequent)?

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
- Architecture design
 The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

WordPiece

- BPE difficulty: Which pair to choose (if they are approx. equally frequent)?
- Schuster and Kaisuke (2012) present the WordPiece model

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

WordPiece

- BPE difficulty: Which pair to choose (if they are approx. equally frequent)?
- Schuster and Kaisuke (2012) present the WordPiece model
- Let P(i,j) be the probability of observing the pair ij and P(i) observing i.

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

WordPiece

- BPE difficulty: Which pair to choose (if they are approx. equally frequent)?
- Schuster and Kaisuke (2012) present the WordPiece model
- Let P(i,j) be the probability of observing the pair ij and P(i) observing i.
- BPE: Choose highest P(i,j)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

WordPiece

- BPE difficulty: Which pair to choose (if they are approx. equally frequent)?
- Schuster and Kaisuke (2012) present the WordPiece model
- Let P(i,j) be the probability of observing the pair ij and P(i) observing i.
- BPE: Choose highest P(i,j)
- Wordpiece: Choose highest P(i,j)/(P(i)P(j))

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Section 4

Transformer-Encoder Models

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Transformer-Encoder Models

Figure: The Transformer Architecture (Vaswani et al., 2017)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Transformer-Encoder Models

Figure: The Transformer Architecture (Vaswani et al., 2017)

Common models are BERT and RoBERTa

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder
 - Models
 BERT
 - RoBERTa

- Bidirectional Encoder Representations from Transformers (BERT)
- Introduced in Devlin et al. (2018)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - RERT
 - RoBERTa

- Bidirectional Encoder Representations from Transformers (BERT)
- Introduced in Devlin et al. (2018)
- State-of-the-Art in many text prediction tasks, such as
 - Named-Entity Recognition
 - Text Classification

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- Bidirectional Encoder Representations from Transformers (BERT)
- Introduced in Devlin et al. (2018)
- State-of-the-Art in many text prediction tasks, such as
 - Named-Entity Recognition
 - Text Classification
- Many flavors, such as RoBERTa, AIBERT, etc.

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
- Architecture design
 The Transformer
 - Attention
 - Multi-Head Attention
 - ...
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- Bidirectional Encoder Representations from Transformers (BERT)
- Introduced in Devlin et al. (2018)
- State-of-the-Art in many text prediction tasks, such as
 - Named-Entity Recognition
 - Text Classification
- Many flavors, such as RoBERTa, AIBERT, etc.
- Pre-trained on a large corpus

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder
 - Models
 BERT
 - RoBERTa

- Bidirectional Encoder Representations from Transformers (BERT)
- Introduced in Devlin et al. (2018)
- State-of-the-Art in many text prediction tasks, such as
 - Named-Entity Recognition
 - Text Classification
- Many flavors, such as RoBERTa, AIBERT, etc.
- Pre-trained on a large corpus
- Then fine-tuned for a specific problem

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- Bidirectional Encoder Representations from Transformers (BERT)
- Introduced in Devlin et al. (2018)
- State-of-the-Art in many text prediction tasks, such as
 - Named-Entity Recognition
 - Text Classification
- Many flavors, such as RoBERTa, AIBERT, etc.
- Pre-trained on a large corpus
- Then fine-tuned for a specific problem
- Available English, Swedish and many other languages (The National Library)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder
 - Models
 BERT
 - RoBERTa

- Bidirectional Encoder Representations from Transformers (BERT)
- Introduced in Devlin et al. (2018)
- State-of-the-Art in many text prediction tasks, such as
 - Named-Entity Recognition
 - Text Classification
- Many flavors, such as RoBERTa, AIBERT, etc.
- Pre-trained on a large corpus
- Then fine-tuned for a specific problem
- Available English, Swedish and many other languages (The National Library)
- And again, I rely o Alammar (2018) The illustrated BERT

UPPSALA UNIVERSITET

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

BERT and transfer learning

Figure: Using BERT for Transfer Learning (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

The BERT model

Figure: The BERT model (Alammar, 2018b)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

BERT Architecture

Figure: Opening up BERT (Alammar, 2018b)

UNIVERSITET

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Training Task 1: Masked Language Model

Figure: Masked Language Modeling (Alammar, 2018c)

UNIVERSITET

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Training task 2: Next Sentence Prediction

Figure: Next Sentence Prediction (Alammar, 2018c)

UNIVERSITET

Introduction

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Using BERT for Classification

Figure: Using BERT for classification (Alammar, 2018c)

Introduction

- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
- Attention
- Multi-Head Attention
- Positional encoding
- Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

BERT and Contextualized embeddings

Figure: Contextualized Embeddings (Alammar, 2018c)

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

Using Contextualized Embeddings

Figure: Using Contextualized Embeddings (Alammar, 2018c)

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
- The Transformer
 Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- RoBERTa uses a similar model as BERT with some important modifications
 - 1. Dynamic masking instead of Static masking

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 - The Transformer
 - Multi-Head Attention
 -
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- RoBERTa uses a similar model as BERT with some important modifications
 - 1. Dynamic masking instead of Static masking
 - 2. Longer sequences included compared to BERT

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 The Transformer
 - Attention
 - Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder
 Models
 - BERT
 - RoBERTa

- RoBERTa uses a similar model as BERT with some important modifications
 - 1. Dynamic masking instead of Static masking
 - 2. Longer sequences included compared to BERT
 - 3. No next sentence prediction

- Introduction
- (Recap) Feed-Forward
 Neural Networks
 - Hidden Units
 - Architecture design
 The Transformer
 - Attention
 - Attention
 Multi-Head Attention
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- RoBERTa uses a similar model as BERT with some important modifications
 - 1. Dynamic masking instead of Static masking
 - 2. Longer sequences included compared to BERT
 - 3. No next sentence prediction
 - 4. Increased vocabulary size

- Introduction
- (Recap) Feed-Forward Neural Networks
 - Hidden Units
 - Architecture design
 The Transformer
 - Attention
 - Multi-Head Attention
 - ...
 - Positional encoding
 - Add and Normalize
- Transformer-Encoder Models
 - BERT
 - RoBERTa

- RoBERTa uses a similar model as BERT with some important modifications
 - 1. Dynamic masking instead of Static masking
 - 2. Longer sequences included compared to BERT
 - 3. No next sentence prediction
 - 4. Increased vocabulary size
 - 5. Trained on more data (160Gb vs. 13 Gb), for longer and with larger batch sizes