MPO 624-2018/ Applied Data Analysis

Exam (Module 1)

30 Minutes, 30 points

1) For a probability distribution function (PDF) p(x), or a dataset $X = \{X_i\}$, fill in the following table:

	Name	Integral form	Bar notation
0 th moment			
1 st moment	mean		
2 nd moment			$\overline{X^2}$
3 rd moment		$\int_{-\infty}^{\infty} x^3 p(x) dx$	
4 th moment	(related to) kurtosis	- ∞	$\overline{X^4}$

(10 marks)

- 2) Suppose an anomaly dataset $Y' = \{Y'_i\}$ is a perfect fit to (that is, is exactly equal to) $5X'^3$. Sketch the scatterplot.
 - (a) Describe the results a,b of an order-2 polynomial fit:

$$Y' = aX' + bX'^2 + residual$$
 (whose RMS is minimized)?

(b) Describe the results a,b,c,d of an order-4 polynomial fit,

$$Y' = aX' + bX'^2 + cX'^3 + dX'^4 + residual$$
 (whose RMS is minimized)?

(6 marks)

3) If X= {3, -3, 0} and Y= {4, 4, -8}, are the **vectors** X and Y orthogonal? Are the **deviations** X' and Y' correlated?

(2 marks)

E) Suppose you wake up one day not feeling very well. You browse through the internet to find that your symptoms match with a disease Statisytis, an extremely rare disease affecting only 1 in every 100000 people in the world. You also learn that if that you have a Statisytis, the probability of exhibiting these symptoms is 0.95. Suppose that the symptoms are also 100% certain symptoms of flu, which is seen in 1% of the population during this season. What is he probability that you have Statisytis?
(9 marks)
s) Suppose variable V is a <i>standardized</i> version of V _{raw} , a Gaussian (Normal) distributed variable.
a. How much less likely (or probable) is a value of V=2 than a value of V=0?
a value of V=4 than a value of V=0?
the How many times will you see values of V very close to V=2, before you see a value very close to V=6? (Hint: The answer doesn't depend on the exact definition of "very close", for small enough tolerances – use the same math as a and b.).
(3 marks)