

Sirepo – software framework for X-ray optics simulations

Maksim S. Rakitin

Research Associate Photon Sciences (PS), NSLS-II, BNL

Introduction

optics

- Sirepo an open-source Python/JavaScript framework for cloud computing
- **SRW** (Synchrotron Radiation Workshop) allows to simulate synchrotron radiation and wavefront propagation through beamline
- SRW is written in C++ and has several interfaces

Distribution & Servers

Distribution:

- Source code:
 - Sirepo https://github.com/radiasoft/sirepo
 - SRW https://github.com/ochubar/SRW
- Docker containers https://hub.docker.com/r/radiasoft/sirepo/tags/
- Vagrant boxes https://atlas.hashicorp.com/radiasoft/boxes/sirepo

Servers:

- https://beta.sirepo.com/light globally available
- https://expdev.nsls2.bnl.gov/light behind BNL firewall
- http://nsls2expdev1.bnl.gov/light behind BNL firewall

Landing page

Source page

Beamline page

Data storage & exchange

On-Axis Spectrum from Filame

Photon Energy

· Beamline

Initial Wavefront Simulation Grid

Simulation Documentation URL

C Discard Changes to Example

♠ Export JSON Data File

A Open as a New Copy

Related Simulations

∳ Source

1.4e+15

Export:

☆ +

33.17

sity

Raw Data File Export Python Code

Interactive graphics

Closer to real world (electron beam)

Closer to real world (tab. undulator)

Flask

₩RabbitMQ

Closer to real world (mirror profiles)

Closer to real world (delta, atten. len.)

Data is dynamically queried from http://henke.lbl.gov/optical_constants/

		тне
	35.4m	
	CRL2▼	
Element Name	CRL2	8
Nominal Position [m]	35.4	
Focal Plane	Vertical	
Material of the CRL	Be	
Method of Getting Delta/Attenuation Length	Server http://henke.lbl.gov	
Refractive Index Decrement of Material 😉	4.207570e-6	
Attenuation Length [m] 😉	7.312960e-3	
CRL Focal Distance [m] ⊕	9.9028	
Shape	Parabolic Circular	
Horizontal Aperture Size [mm]	1	
Vertical Aperture Size [mm]	1.4	
Radius on Tip of Parabola [μm]	500	
Number of Lenses	6	
Wall Thickness at Tip of Parabola [µm]	80	

Element Name	Fiber ▼		8
Nominal Position [m]	20		
Plane of Focusing	Horizontal (fiber is parallel to vertical a	xis)	
Horizontal Center Position [m]	0		
Vertical Center Position [m]	0		
Method of Getting Delta/Attenuation Length	Server http://henke.lbl.gov		
	External	Core	
Material	В	W	
Refractive Index Decrement 😉	5.555666e-6	3.645069e-5	
Attenuation Length [m] 😉	2.861690e-3	4.218890e-6	
Diameter [m]	0.0001	0.00001	
	Close		

Flask

LRabbitMQ

Closer to real world (crystal data)

			Crysta	al •		
ain Parameters H	eight Profile					•
	E	lement Name	Crystal			
	Nomina	I Position [m]		34.85		
Mate	rial of the c	rystal			Miller's indic	es
		Silicon (X0h serve	er) v		h	1
					k	1
					1	1
Average photon 6		tal should be ented for [eV]		9000		
17	Diffraction plan	ne angle [rad]	0	22148235778774653		
		ry angle [rad]				
		on angle [rad]		0		
		thickness [m]		0.01		
Crystal ref	lecting planes			3.135531576941939		
			Real r	part of crystal	Imaginar	v part of
				arizability	crystal pol	
	0-th Four	er component		-0.000012073		2.2532e-7
	H-th Four	er component		0.0000063776		1.5706e-7
	-H-th Four	er component		0.0000063776		1.5706e-7
Outer	ard normal	voctor		Con	tral tangentia	Lycotor
	coordinate	-0.21430860069			ital coordinate	-0.0482635877697028
Vertical	coordinate	0.9517364118	334645	Verti	cal coordinate	0.21433677275776

Data is dynamically queried from http://x-server.gmca.aps.anl.gov/x0h.html

)				
			Elliptical	Mirror▼			
Dimensions	Mirror Error						•
	ı	Element Name	Elliptical M	irror			
	Nomin	al Position [m]			20		
Distance fro	om Source to Mirror	Center (p) [m]			20		
Distance from I	Distance from Mirror Center to Second Focus (q)		1.7				
		[m]					
	Tang	ential Size [m]		(0.5		
	Sa	gittal Size [m]		0.	01		
	Grazing	Angle [mrad]		3	3.6		
Coordina	ates of Central	Normal Vecto	or	Coordin	ates of	Central Ta	ngential Vector
	Horizontal		0			Horizontal	
	Vertical	0.9999935200069984		Vertical		-0.0035999922240050387	
	Longitudinal	-0.003599992224	10050387				

Closer to real world (multi-electrons)

Closer to real world (real samples)

New virtual beamlines

- NSLS-II CHX beamline (idealized and tabulated undulator)
- NSLS-II SMI beamline (low div. and normal div. modes)
- NSLS-II FMX beamline
- NSLS-II ESM beamline

- LCLS SXR beamline

Usage & contributions

Sirepo and SRW are used at the light source facilities around the world:

- NSLS-II
- LCLS
- APS
- ALS
- ELETTRA in Italy
- European XFEL in Germany
- ESRF and SOLEIL in France
- PSI in Switzerland
- Diamond Light Source in UK
- LNLS in Brazil

Interested? Try out today:

https://beta.sirepo.com/light

https://github.com/radiasoft/sirepo

Acknowledgements

- My supervisor Dr. Oleg Chubar (Tchoubar) (NSLS-II, BNL)
- Collaborators from RadiaSoft LLC:
 - David Bruhwiler
 - Rob Nagler
 - Paul Moeller
- Mikhail Zhernenkov (NSLS-II, BNL)
- Julien Lhermitte (CFN, BNL)
- Many other people who assisted and helped me.
- This work is supported in part by the US DOE Office of Science, Office of Basic Energy Sciences under SBIR awards DE-SC0006284 and DE-SC0011237.

