Office européen des brevets **European Patent Office**

Europäisches Patentamt

Ξ

EP 1 533 385 A1

EUROPEAN PATENT APPLICATION

(51) Int CI.7: C12Q 1/68, C07H 21/00

25.05.2005 Bulletin 2005/21 (43) Date of publication:

(21) Application number: 04077474.7

(22) Date of filing: 06.09.2004

AT BE BO CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR (84) Designated Contracting States: Designated Extension States: AL HR LT LV MK

Glad, Sanne Schroder

(72) Inventors:

(30) Priority: 05.09.2003 DK 200301276 05.09.2003 US 500265 P

(71) Applicant: Nuevolution A/S 2100 Copenhagen 0 (DK)

Representative: HOEIBERG A/S Slok, Frank Abilgaard 2750 Ballerup (DK) 3450 Allerod (DK) (4/2)

European Patent & Trademark Attorneys 1264 Copenhagen K (DK) Store Kongensgade 59A

Templated compounds for generation of encoded motecules and directional methods using

such compounds

(54)

Disclosed is a compound comprising a bifunctional chemical entity attached to a nucleoside derivative and a directing element capable of positioning the bifunctional chemical antity in a predominate direction. The compound is useful in the formation of encoded molecules by contacting a template nucletc acid with

one or a plurality of the compounds under conditions plate, and reacting the bifunctional chemical entities to that provide for the formation of a complementary temform an encoded molecule

EP 1 533 385 A1

Description

Fechnical Field of the Invention

[0001] The present invention relates to compounds comprising a bifunctional chemical entity, which during formation of an encoded molecule, is positioned in a predominate direction. The positioning in a preferred direction of the bifunctional chemical entity may entail among other things that a full length encoded molecule is formed. The present invention also relates to nucleotide analogues that are substrates for a polymerase and to a double stranded nucleic acid comprising the compounds of the invention.

Background of the Invention

õ

ation process requires a mRNA template and a plurality of charged tRNA building blocks. A ribosome is initially attached codons of the mRNA template. Concurrently with the recognition process a lpha-amino acid residue of the tRNA is reacted Biological systems allow for the synthesis of α-peptides by a process known as translation. The natural trans to the mRNA template and directs the recognition between anti-codons of tRNA building blocks and complementing with a nascent polypeptide to extent nascent polypeptide with a monomer unit. [0003] 5

plementary strand. Subsequent to, or simultaneous with the formation of the complementing template, the functional [0003] Recently, a method has been suggested in WO 02/103008 A2 (the content of which being incorporated herein in its entirety by reference) for producing other encoded molecules than lpha-peptides. According to one embodiment of this publication, a nucleic acid template and a plurality of nucleoside derivative building blocks carrying a functional entity is provided. Using the nucleic acid template, complementing nucleoside derivatives are incorporated into a comentities are reacted to form an encoded molecule. The end product of the process is a bifunctional complex comprising an encoded molecule attached to the complementing temptate. 8

around the nucleotide-linker bond. Fixing the chemical entities may be obtained by attaching the chemical entity not by one but by two covalent bonds (i.e. two linkers) to the nucleotide. The additional bond may be formed directly by one of the functionalities, or the two reactive groups may be attached by separate 'arms' on a fixed backbone. In the irst situation the additional bond may be broken during the reaction, whereas the additional bond in the latter should [0004] The present invention relates to certain aspects of the above publication, especially aspects in which a bifunctional chemical entity is attached to a nucleoside derivative, as a special situation arises when employing bifunctional chemical entities due to a potential free rotation around the linker-nucleotide bond. As illustrated in Fig. 1, a bifunctional chemical entity bears two different reactive groups 'X' and 'Y', e.g. both a nucleophile and an electrophile, where 'X' on one chemical entity is meant to react with 'Y' on the neighbour chemical entity, either directly or through a cross-linking agent. If all linker-chemical entity units orient Identically with respect to the parent nucleotide, directional polymerization will take place and a complete product of say 5 units will be formed. However, rotation around the linkersond of some, but not all, linker-chemical entities so that the relative orlentation of the two functionalities roverses directions. This unfavourable situation can be avoided by using fixed functional entities thereby preventing rotation leads to a clustering situation, where the reacting groups are arranged so that reaction can take place in two differen be constructed so that also this bond is cleavable after reaction, to release the final product. 53 8 33

[0005] The present invention aims at providing compounds which tends to be directed in a predominate direction so that a cluster formation is avoided. In general, directional encoding will lead to full-length products and in addition to products of known polarity. Thus an unambiguous relationship between the genetic information of the template and the encoded molecule may be obtained.

5

Summary of the Invention

4

The present invention concerns a compound comprising a bifunctional chemical entity attached to a nucleo-[0007] DNA made up of a double helix has an inherent twist of the backbone, positioning one base pair not on top of the previous but shifted by a certain distance and in turn rotated by 36 degrees. This means that the distance between side derivative and a directing element capable of positioning the bilunctional chemical entity in a predominate direction. neighbouring attachment points is larger (typically on the order of 4.4 Å) than the vertical distance between two base pairs (3.4 Å). In addition, the rotation results in different starting directions of the Unkers resulting in increasing distance between equal atoms of neighbouring stiff linkers. 8

nucleic acid strand or the functionality placed in the 5' direction can attack the neighbouring functionality positioned in the 3' direction of the nucleic acid strand. Due to the twist of DNA these two reactions are geometrically different, and in the 3' direction of the nucleic acid strand can attack a neighbouring functionality positioned in the 5' direction of the For bifunctional entities attached to a nucleotide, there are two possibilities of reaction: the functionality placed he reaction distance of the 3'-5' reaction is significantly shorter than the reaction distance of the 5'-3' reaction - simply [000B]

whereby directionality can be obtained without covalently constraining the linkers. By incorporating a directing element in the vicinity of the functional entity the bifunctional chemical entities will be influenced by the DNA environment. By due to the inherent twist of DNA. The present invention takes advantage of the geometry of the DNA double helix, careful design of linkers this can be utilised for directionality purposes.

configuration many different conformations are possible, but all of these result in the same 'most probable' product tween single atoms or groups of atoms may be an ionic attraction or repulsion. The interaction between groups of entation or direction of the bifunctional chemical entity is meant that the bifunctional chemical entity is prone to be positioned in a certain direction in more than 50%, preferably 70% and most preferred 90% of the time. The time a bifunctional entity is in a certain direction may be calculated by evaluating the possibility of each of the possible conformations. In general, the term conformation refers to individual structural orientations differing by simple rotation about single bonds. Different conformations may in addition give rise to different overall configurations, by which is meant an overall arrangement of bilunctional chemical entities on all modified nucleosides that give rise to one specific direction of reaction. As an example, four bifunctional chemical entities arranged with all 'X's' in the same direction corresponds to one specific configuration, and four bifunctional chemical entities arranged e.g. with two 'X's' pointing in one direction and the two other in the opposite direction corresponds to another specific configuration. Within one atoms may involve hydrophobic/hydrophilic interaction, van der Waal interaction etc. By preferred or predominate oriof a double helix nucleic acid. The interaction may be of any appropriate nature, e.g. the directing element is attracted or repulsed by major groove or internucleoside linkage atoms of a nucleic acid double helix. Importantly, the directing tion and/or repulsion may involve interaction between single atoms or between groups of atoms. The interaction be-Generally, the directing element interacts with one or more major groove atoms or an internucleoside linkage element must interact in a way that positions the bifunctional chemical entity in a certain preferred position. The attracsince the overall orientation (direction) of reactive groups is preserved.

between the directing element and the bifunctional chemical entity is 4Å or less. The term extended length means invention the directing element comprises an optionally substituted 5 , 6 , or 7-membered ring structure. In a preferred entity and the directing element within a certain distance. In a preferred aspect of the invention, the extended length [0010] The directing element may by chosen among a variety of different chemical components. In an aspect of the aspect the directing element comprises an aromatic or hetero-aromatic ring system. In order to obtain a sufficiently high influence of the directing element on the bifunctional entity, it may be desired to position the bifunctional chemical herein the conformation that leads to the longest distance.

52

8

5

9

the nucleoside derivative and the bifunctional chemical entity. In another embodiment the bifunctional chemical entity is positioned between a linkage to the nucleoside derivative and the directing element. In a still further aspect of the invention, the directing element is attached to a linkage connecting the bifunctional chemical entity and the nucleoside [0011] The directing element can be positioned relative to the bifunctional chemical entity and the nucleoside derivative in any appropriate way. In one aspect of the invention, the directing element is positioned in the inkage between

(0012) The functionalities of the bifunctional chemical entities may be chosen within a wide range of reactive groups. In one aspect of the invention, the two functionalities are capable of reacting with each other. Notably, the bifunctional chemical entity comprises a nucleophile and an electrophile as the two functionalities. An example of a nucleophille is an amine and an example of an electrophile Is a carboxylic acid or an ester. In an aspect of the invention, the functionalities are protected by suitable protection groups.

33

8

5

cleoside derivative through a spacing element. The spacing element serves a variety of functions when present, the element comprises a chemical bond which includes electrons from overlapping p-orbitals. Sultably, the spacing element [0013] The compound of the invention may be composed solety of the nucleoside derivative, the directing element and the bifunctional chemical entily. However, in some aspects the bifunctional chemical entity is attached to the numain function being distancing the bifunctional chemical entity from the nucleoside derivative. In one aspect, the spacing

[0014] The distance between the bifunctional chemical entity and the nucleoside derivative is sultably chosen such that a suttable reactivity is obtained. In certain aspects, the extended length between the bifunctional chemical entity includes a triple bond, an aromatic- or heteroaromatic ring system, or a hetero atom.

derivative may be a naturally occurring nucleobase or a synthetic nucleobase. In some aspects of the invention, the In preferred aspects of the invention, the bifunctional chemical entity is attached through a linker to the 5 position of [0015] The bifunctional chemical entity can be attached to any position of the nucleotide derivative. In a preferred aspect the bifunctional chemical entity is attached through a linker to the nucleobase of the nucleoside. The nucleobase nucleobase is selected among adenine, 7-deaza-adenine, uracil, guanidine, 7-deaza-guanidine, thymine, and cytosine. and the nucleoside is between 3 and 12Å.

20

5

5

[0016] The invention also relates to nucleotide analogues comprising the above nucleotide derivative attached to a bifunctional molecule. The nucleotide analogue may be incoporated into a complementary strand using various means, e.g. chemical ligation or enzymatic polymentation. Usually it is preferred to use a polymerase or a ligase to incorporate pyrimidine type nucleobases or the 7 or 8 position of purine type nucleobases.

example of a substrate for polymerases is nucleotide triphosphates. The nucleotide is usually a mononucleotide triphosphate but may be an oligonucleotide triphosphate as using the teaching of WO 01/16366, the content of which is the nucleotide analogue. Therefore, the nucleotide analogue is preferably a substrate for a polymerase or a ligase. An incorporated herein by reference. An example of a substrate for a ligase is an oligonucleotide monophosphate.

ment capable of positioning the bifunctional chemical entity in a predominate direction. In a preferred aspect, the directing element interacts with the major groove atoms or internucleoside linkage of a double helix nucleic acid. More preferred, the directing element comprises an optionally substituted 5-, 6-, or 7-membered ring structure. In some ical entity, wherein a nucleoside derivative comprising a bifunctional chemical entity further comprises a directing ele-The invention is furthermore directed to a method for directing the structural orientation of a bifunctional chemaspects, the directing element comprises an aromatic or hetero-aromatic ring system.

allows the genetic encoding of the bifunctional chemical entity in the final encoded molecule because it is possible to decode the template or alternatively the complementing template to estabilsh the synthesis history of the encoded The invention also relates to a method for obtaining an encoded molecule comprising contacting a template nucleic acid with one or a plurally of compounds according to the invention, under conditions that provide for the and incorporated into a complementary strand. When a polymerase is used for incorporation a primer is usually initially is incorporated into a complementary strand by extending the primer. In one aspect of the invention, native nucleobases or close analogous are used in the compounds of the invention to obtain a conventional Watson-Crick base pairing scenario, i.e. an A forms a specific base-pair with T and C forms a specific base-pair with G. The specific base-pairing formation of a complementary template, and reacting the bifunctional chemical entities to form an encoded molecule. The template comprises a sequence of nucleotides which is complemented by the compounds of the invention annealed to the template to obtain a site for the polymerase to bind. Subsequently, each of a plurality of nucleotides 8 5 5

The library of encoded molecules has a variety of uses, e.g. as possible ligands to a pharmaceutical interesting target (0020) In an aspect of the invention a plurality of templates is provided to produce a library of encoded molecules. or as a vehicle for carrying a pharmaceutical active substance into a tissue or cell of interest.

[0021] The encoded molecule is generally a polymer in the sense that a head-to-tail reaction of the bifunctional chemical entities occurs. It is to be understood that the units of the polymer may be identical or different and the type of reaction may vary over the encoded molecule. Using a single nucleobase in the compound of the invention allows for four different bifunctional chemical entities, if a one-to- one relationship between the genetic information of the nucleobase and the identity of the bifunctional chemical entity is to be maintained. However, using two or more nucleobases in the compound of the invention allows for the formation of a more diverse monomer composition. 8 23

[0022] The invention also is directed to a double stranded nucleic acid having one or more compounds of the invention incorporated therein. In a preferred aspect the bifunctional chemical entities have been reacted under conditions in which they had a predominate orientation. After the reaction or simultaneously with the reaction, one or more linking moieties may be cleaved to efficiently display the encoded molecule. 35

Brief Description of the Figures

[0023]

9

Fig. 1 shows a situation in which a cluster is formed due to lack of directionality of the bifunctional chemical entity.

Fig. 2 discloses a general composition of the compound of the Invention,

Fig. 3 shows a design of the linker in which the directing element is between a spacing element and a bifundional

Fig. 5 shows a design of the compound in which the bifunctional chemical entity is between the spacing element Fig. 4 discloses a design of the linker in which the directing element is attached to the spacing element.

5

Fig. 6 discloses a predominate position of a bifunctional entity of example 1 relative to the DNA double helix. and the directing element.

Fig. 7 shows a diagram of reaction distances as function of conformation energies for the compound of Example 1.

Fig. 8 depicts two conformations of the compound of example 2 when incorporated into a DNA double helix.

20

Fig. 9 discloses a diagram of reaction distance as function of conformation energies for the compound of Example 2.

Detailed Description of the invention

[0024] In the discussion of the present invention it is convenient to introduce the term linker, as a residue or chemical bond separating the bifunctional chemical entity (BE) and the nucleoside derivative (ND), see Fig. 2. The linker may or may not include a spacing element and/or the directing element. In a preferred aspect the linker is of a specified length and comprised of two elements: a spacing element (SE) and a directing element (DE), thereby ensuring reaction 55

in the vicinity of the double-stranded DNA (comprised of the template and the linked complementing units) providing a specific ovorall orlontation of bifunctional units and thereby a high degree of directionality of polymerisation.

[0025] The directing element can be linking the SE and the bifunctional chemical entity (Fig. 3), the DE can be attached the SE as a substituent so that the SE directly links the nucleoside derivative and the BE (Fig. 4), or atternatively, the DE can be attached at the outer side of the BE (Fig. 5).

typically no more than a favourable van-der-Waal distance just excluding water intrusion between the DNA and the [0026] The purpose of the spacing element is to ensure some distance between the BE and the nucleotide derivative an aromatic or heteroaromatic ring system, or a heteroatom such as O, S, or N. The minimum length of the spacing oloment is 0 atoms, i.e. the spacing element is absent. When present, the length of the spacing element may be any bifunctional chemical entity. The SE is praferably comprised of a chemical unit bearing π -electrons, i.e. a triple bond appropriate number of atoms. Usually, the number of atoms is 6 or less.

5

5

8

tween SE and BE attachment points, the DE usually has a minimum length of 3 atoms and a maximum length of 6 plus additional atoms from potential ring substituents. If the DE is attached at the outer end of the FE, the link should The purpose of the directing element is to position concurrent bifunctional chemical entities in a consistent manner, e.g. either all horizontally towards the major groove or all vertically towards the major groove. This is achieved through obtaining favourable interactions between major groove atoms of DNA and atoms of the DE and as well between the concurrent DE's. In addition, by use of various substituents, steric hindrance of one but not the other reaction can be achieved. The DE is proferably comprised of a substituted or unsubstituted 5-, 6-, or 7-membered aromatic/ hoteroaromatic ring system, characterised by potentially having a stacking effect. Counting the shortest distance beatoms. In cases where the DE is attached as a substituent at the SE or at the BE, the typical length is 3 to 6 atoms [0028] The total linker length (i.e. without the size of the bifunctional entity) is in general from 3 atoms and up to 11 atoms. Combining the different elements in the most efficient way results in a total length (including the bifunctional ontity) of botween 8 and 15 atoms, resulting in a typical extended length of 8 to 16 ${\sf A}$, and a typical non-extended length be through a specifically cleavable traceless construction; typically an orto-nitrobenzyl unit attached an amine. [0027]

mately 18 Å, a cross width of the major groove of approximately 17 Å, and a minimum distance between the linker attachment of the base and the closest phosphate group of the opposite strand of 12.5 Å. Detailed examples are given [0029] This length is comparable to the dimensions of the DNA double helix which has a total diameter of approxi-

of 8-12 A.

3

in the attached examples.

Nucleotides

g

8

[0030] The nucleotides used in the present invention may be linked together in a sequence of nucleotides, i.e. an oligonuclectide. Each nucleotide monomer is normally composed of two parts, namely a nucleobase molety, and a backbone. The backbone may in some cases be subdivided into a sugar moiety and an internucleoside linker.

33

[0031] The nucleobase molety may be selected among naturally occurring nucleobases as well as non-naturally occurring nucleobases. Thus, "nucleobase" includes not only the known purine and pyrimidine hetero-cycles, but also naturally occurring" nucleobases described in Benner et al., U.S. Pat No. 5,432,272. The term "nudeobase" is intended heterocyclic analogues and tautomers thereof. Illustrative examples of nucleobases are adenine, guanine, thymine, cytosine, uracil, purine, xanthine, diaminopurine, 8-oxo-N⁸-methyladenine, 7-deazaxanthine, 7-deazaguanine, N⁴,N⁴othanocylosin, N⁶,N⁶-ethano-2,6-diaminopurine, 5-methylcytosine, 5-(C³-C⁶)-alkynylcytosine, 5-fluorouracil, 5-bromouracil, pseudoisocytosine, 2-hydroxy-5-methyl-4-triazolopyridine, isocytosine, isoguanine, inosine and the "nonto cover these examples as well as anatogues and tautomers thereof. Especially interesting nucleobases are adenine, guanine, thymine, cytosine, 5-methylcytosine, and uracil, which are considered as the naturally occurring nucleobases.

\$

\$

8

2

EP 1 533 385 A1

Examples of suitable specific pairs of nucleobases are shown below

Natural Base Pairs

[0032] 60

5

Synthetic Base Pairs

5

[0033] 20

32

8

Synthetic purine bases pairring with natural pyrimidines

[0034]

5

Ş

8

55

(0035) Suitable examples of backbone units are shown below (B denotes a nucleobase):

5

8

52

5

9

£

2'-(3-hydraxy)propyi

33

ક્ષ

[0039] Preferred nucleic acid monomers include naturally occurring nucleosides forming part of the DNA as well as the RNA family connected through phosphodiester linkages. The members of the DNA family include deoxyadenosine, deoxythymdiane, and deoxycypdiane. The members of the RNA family include adenosine, guanosine, undifine, cytidine, and inosine. Inosine is a non-specific pating nucleoside and may be used as universal base because inosine are many isoenergatically with A, T, and C. Other compounds having the same ability of non-specifically base-paining with natural nucleobases have been formed. Suitable compounds which may be utilized in the present invention includes among others the compounds depicted below

EP 1 533 385 A1

Examples of Universal Bases:

[0033]

dP dK Nebularine

Examples 55 General [0040] Employing chemical entities having two different reacting groups capable of reacting with each other leads

to the possibility of two different reactions, either the 3' nucleophile reacts with the 5' electrophile (3'-5' reaction) or the 5' nucleophile reacts with the 3' electrophile (5'-3' reaction). As explained above, the structure of the DNA double helix leads to different geometric nature of the two reactions. By rational linker design this difference can be exploited re-builing in building blocks favouring one reaction directionality for the other, resulting in a larger fraction of full-length product and a known polarity.

[0041] Computer calculations can provide a measure of the probability of the two reactions. The purpose of these calculations is to analyse various modes of attack for each linker-BE construction, estimating the most probable reaction and thereby the most probable product. Therefore, the conformational space covered by the linker-BE unit and the zones occupied by the reactive groups needs to be estimated.

5

2

8

3

8

3

[0423] The conformational space of a specific linker-BE system, i.e. the range of the BE, can be estimated by doing a conformational searches can be performed employing various different software products and within these programs using different searching methods, as is standard knowledge within the flad. For systems of the size mentioned herein it is not possible to perform a converged conformational search, that is, to ensure that anough steps have been taken so that the complete potential energy surface has been covered and thereby that the located minimum energy conformation is truly the global minimum for the molecule. However, the purpose of these asiculations is to get a picture of the space allowed to be covered by a linker-BE unit and thereby to estimate the most likely approach of states between two BEs and the possibility for the reacting groups to got within reaction distance. Efficient conformational searching methods employing a rather limited number of steps fulfill this purpose.

[0043] By conformations are here meant individual structural orientations differing by simple rotation about single bonds. Different conformations may in addition give rise to different overall configurations, by which is meant an overall arrangement of the two reactive groups on all modified nucleotides that give rise to one specific direction of reaction. [0044] Referring to Fig. 1, the four linker-BE units arranged with all X's in the same direction corresponds to one specific configuration, and four linker-BE units arranged e.g. with two 'X's pointing in one direction and the two other in the opposite direction corresponds to another specific configuration. Within one configuration many different conformations are possible, but all of these result in the same 'most probable' product since the overall orientation (direction) of reactive groups is preserved.

[0045] The calculations performed in this investigation have employed the MacroModel8.0 software from Schrodinger Inc (MMOD80). Within this program package a series of different searching protocols are available, including the 'Mixed Monte Carlo Multiple Minimum'Low Mode' method (MCMM/LM), shown to be very effective in locating energy minima for large complicated systems.

[0046] Having covered the conformational space to a reasonable extent, the structures can be analysed, as follows. It is important to note, that the distances mentioned in the following are reactant distances, i.e. minimum energy distances, and will mover be in the range of reaction (i.e. transition state) distances. The possibility therefore exists that the reactant distances for a specific attack seems (avourable but that the two groups never can get closer than that, i.e. are incapable of gatting within realistic reaction distance. It is therefore necessary to analyse whether the minimum energy structures by simple dihedral rotations will result in structures having the two reacting groups within reaction

[0047] For every conformation within a specified energetic interval (e.g. within 50 kJ/mol from the 'global minimum'), the 3'-5' and 5'-3' distances are measured in A (d3' and d5', respectively) and the energy in kJ/mol. Subtracting 5'-3' from 3'-5' (d3'-d5') gives a measure of the absolute difference in distance between the two reactions. However, since any conformations where one of the two distances is short will lead to reaction it is necessary to divide by the min(d3', d5').

\$

5

[0048] That is, conformations capable of giving 3' reaction will show by large negative values, conformations leading to 5' reaction by large positive values, and non-reactive conformations will be identified by small positive or negative

8

22

Plotting these preference values as function of conformational energy and in addition colour code the bars according to min(d3',d5') such that the interesting conformations show in a significant colour leads to a very easy visualization of tho linkor directionality efficiency.

[0049] A favourable linker design with a large preference for only one of the reactions will thus be shown as having other exculsively large negative or large positive values. Small-value conformations do not constitute a problem with respect to cluster formation but will be 'dead' conformations and as a worst case scenario fead to small overall reaction probability, in addition, since the relative weight of a conformation adereases with increasing conformation energy.

EP 1 533 385 A1

more significance is placed on the lower energy conformatio

[0050] Examples of plots showing linkers leading to a) 3' preference and b) 5' preference are given in Fig. 7 and Fig. 9, respectively. The colour code is grey-scale in these figures, where conformations showing high directionality are shown as dark bars.

Another way of representing the directionality of a bifunctional entity is by numbers describing the perceniage of conformations being within a centain tendency towards a specified reaction direction. As an example of a threshold can be used (d3-d5)/min(d3,d5)-Q./5 indicative of 3' directionality and (d3'-d5)/min(d3',d5)-Q./5 indicative of 3' directionality and (d3'-d5)/min(d3',d5)-Q./5) indicative of 5' directionality, and the directionality of the linker is then given by %3'=#con((d3'-d5)/min(d3',d5)-Q./5)/fortial # conf. A twourable linker design will be shown by a large difference between the two numbers. In Figures 7 and 9 the corresponding % directionality mumber are indicated.

Example 1. Compound type ND-SE-DE-BE

5

[0051]

8

Computational details

23

8

8

foots] Double-stranded DNA with the base sequence 5'-GCTTTAG-3' (uppor strand) was built using HyparChem7 from HyparCube in cir in the most frequent B-conformation. The linker-BE units were built using ChemDraw Ultra 6.0 and Chem3D Ultra 6.0 strom Chem0ffice. Linker-BE units and DNA were imported into MMODB0. The linkers were than fused to the two mid nucleotides using the build feature in MMODB0, tusing the mathyl carbon atom of the T nucleotides with the appropriate linker atom, in effect creating a modified U nucleotide. In the calculation all DNA atoms were kept frozen, that is, were not allowed to move, in order to decrease the size of the systems and to avoid distortions within the DNA strand. The total system (keeping the DNA atoms frozen) was energy minimised (CONV, arg5-0.05) employing the OPLS-A4 force field (FFLD, arg1=11) and the GB/SA water solvation model supplied in MMODB0. Conformational analyses were performed using the MCAMALM method (LMCS keyword), running 1000 steps (agr 1=1000), exploring a random linear combination of the first 10 modes (arg3=-10), and with a minimum and maximum distance travelled by the fastest moving atom of 3 and 8 A, respectively (arg7=2, arg8=B). A maximum of 15 torsions (all within the two linker parts of the total system) were allowed to be changed in a MC step (MCNV, arg1=2, arg2=15) and the energy cutoff was 50 ku/mo (MCSS, arg5=50.0). Extended cut-off distances of 100, and 4 for van der Waal, electrostatics, and hydrogen bonds, respectively were used in all calculations. Finally each conformer was minimized by 500 PR Conjugate Gradient steps. The lowest energy conformation is displayed in Figure 6.

Results

8

ŧ,

\$

[0953] Running 1000 conformational search steps results in 393 unique conformations with the 'global' minimum located once. The lowest-energy conformation is displayed in Figure 6 and is clearly biased towards 3' reaction direction. The two linkers orient towards the DNA major groove in a regular way, providing stacking of the two directing elements (two benzene rings) and favourable van-der-Wasais interactions between linker and DNA atoms. This orientation results in a reaction distance for the 3' attack (amino group of the topmost bifunctional entity (3' end) reacting with the ester group of the lower building block (5' end)) of 5.5 A as compared to the distance for the 5' attack (amino group of the lower building block (5' end) reacting with the ester group of the distance for the 5' attack (amino group of the lower building block (5' end) reacting with the ester group of the distance for the 5' attack (amino group of the lower building block (5' end) reacting with the ester group of the distance for the 5' attack (amino brone here, that these structures are minimum energy structures and thus the distances will never be in transition state range (on the order of 2 A). However, a transition state leading to a minimum structure showing strong 3' preference (i.e. a significantly shorter 43' than d5') is taken as indicative of that linker being espate)

of leading to 3' directionality also at the transition structure level.

scribed in the text above. The plot shows a very clear tendency of this linker to favour a 3' reaction direction, since only very few and high-energy conformations result in positive valued bars. The corresponding %directionality numbers Figure 7 shows the directionality plot of the calculation, according to the reaction distance conversions deare %3'=36.6 and %5'=2.9.

[0055] Thus, use of this linker provides large 3' directionality and in addition, since %3' is a significant high number, a very high reaction probability.

Example 2. compound type ND-SE-DE-BE

[0056]

5

55

8

52

from HyperCube Inc in the most frequent B-conformation. The linker-FE units were built using ChemDraw Ultra 6.0 [0057] Double-stranded DNA with the base sequence 5'-GCTTTTAG-3' (upper strand) was built using HyperChem7 and Chem3D Ultra 6.0 from ChemOffice. Linker-FE units and DNA were imported into MMOD80. The linkers were then fused to the two mid nucleotides using the build feature in MMOD80, fusing the methyl carbon atom of the T within the DNA strand. The total system (keeping the DNA atoms frozen) was energy minimised (CONV, arg5=0.05) Conformational analyses were performed using the MCMM/LM method (LMCS keyword), running 1000 steps (arg i=1000), exploring a random linear combination of the first 10 modes (arg3=-10), and with a minimum and maximum of 100, 100, and 4 for van der Waal, electrostatics, and hydrogen bonds, respectively were used in all calculations. A maximum of 13 torsions (all within the two linker parts of the total system) were allowed to be changed in a MC step mized by 500 PR Conjugate Gradient steps. The lowest energy conformation is displayed in Figure 8 left, and a 5 nucleotides with the appropriate linker atom, in effect creating a modified U nucleotide. In the calculation all DNA atoms were kept frozen, that is, were not allowed to move, in order to decrease the size of the systems and to avoid distortions employing the OPLS-AA force field (FFLD, arg1=11) and the GB/SA water solvation model supplied in MMOD80. distance travelled by the fastest moving atom of 3 and 8 Å, respectively (arg7=3, arg8=8). Extended cut-off distances (MCNV, arg1=2, arg2=13) and the energy cut-off was 50 kJ/mol (MCSS, arg5≈50.0). Finally each conformer was minfavourable configuration in Figure 8 right.

8

છ

Results

\$

[0058] Running 1000 conformational search steps results in 566 unique conformations with the 'global' minimum as compared to 11.7 for 5' attack) and the reaction is unlikely. Conformation 16 shows a 5' biasing linker orientation formation 1 has a linker orientation presumably favouring 3' attack, however, the reaction distance is quite long (7.7 Å with a favourable 5' reaction distance (3.6 Å as compared to 8.9 for reaction from 3' direction), well in the range of being close to a reactive transition structure. An overall vertical arrangement for this linker gives a more favourable stacking interaction than a horizontal arrangement and allows for a closer proximity of the linkers and the DNA major located once. Two low-energy conformations are displayed in Figure 8 left and right, conf 1 and 16 respectively. Congroove. 5

#

S

55

[0059] Figure 9 shows the directionality plot of the calculation, according to the reaction distance conversions described above. It can be soen that the first few low-energy conformations are on the borderline of giving rise to 3' directed reactions (negative-valued bars). However, by far the majority of the subsequent conformations are biased towards 5' attack (large positive-valued bars), and the overall appearance of the plot is clearly towards 5' attack. The corresponding %directionality numbers are %3=1.4 and %5=21.6. Thus, use of the present linker provides large 5 directionality and in addition, since %5' is a high number, a high reaction probability.

20

Example 3. A summary of a series of linkers.

55

[0060] As described in the above examples it is possible by computational analyses to determine the likeliness of a

EP 1 533 385 A1

specific linker construction being directional or not. In the table below results are listed for a series of different linkers, demonstrating the broad application of the design rules set up in the present invention. All calculations have been performed as described in Examples 1 and 2.

.5%	1.0	0.8	9.0	8.0	34.2	0.7	2.5
%3,	9.5	7.2	16.9	29.2	0	7.1	15.3
	R=H	R=CH ₃	R=H	R=CH ₃	R=H	R=CH ₃	
				NH ₂		NH ₂	. Ch ₃
Linker + BE		NH ₂					
	ō.	5	50	s	30	SS.	9

73.3		33.2
0	94.0	0
H 22 5	40 Y Z NH	FON FLYS S.
VO.	ō ž	20 23

Example 4: Examples of general linker construction of the type ND-SE-DE-FE

30 [0061]

	Linker + BE	# SE	# DE	Total
32		atoms	atoms atoms	#
				뉽
				oms
9				
\$		0	က	ω
99				
		. 6	က	5
55	· · · · · · · · · · · · · · · · · · · ·			

60.2 0	7.2 3.8	1.4 21.6	5.9 11.9	13.3 1.0	36.6 2.9	10.2 0.5	0 24.6
Corresponding to the contract of the contract	S. S. MHA.	S. A. MH2		Z-HN S-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T	The state of the s		

5

9

			·	·	
15	15	o	5	5	12
4	4	4	rO	က	ro
. و	ဖ	0	2	. 2	8
> -0	THE SECOND SECON	- O	E STANDARD S	HO ON	Ho o
s 0t	12	52 50	8	35 04	£ 8

EP 1 533 385 A1

EP 1 533 385 A1

10	12	-	12	52	4	4
vo	ო	4	4	က်	4	4
0	4	2	ю	4	, ro	ιΩ
NH ₂	NH2	S. T. R.	S. 3. R.	44N 254N 2-8	0 2745 S	STATE OF STA

[0062]

8

33

8

33

\$

ŧ,

8

55

EP 1 533 385 A1

o	ω.
4	'n
4	ო
S. C.	NIN17

5

25 Example 6. Examples of general linker constructions of the type ND-SE-BE-DE

[0063]

3

33

20

Linker + BE	# SE	# SE # DE Total	Total
	atoms	atoms # at-	#at-
			oms
H O O	0		13
SON THE	တ	ro	51

9

£

i di

20

 A compound comprising a bifunctional chemical entity attached to a nucleoside derivative and a directing element capable of positioning the bifunctional chemical entity in a predominate direction.

- The compound of claim 1, wherein the directing element interacts with one or more major groove atoms or an internucleoside linkage of a double helix nucleic acid.
- The compound of claim 1 or 2, wherein the directing element comprises an optionally substituted 5-, 6-, or 7-membered ring structure.
- The compound of claim 3, wherein the directing element comprises an aromatic or hetero-aromatic ring system.
- The compound of claim 1 to 4, wherein the bifunctional chamical entity comprises a nucleophile and an electrophile
 as the two functionalities.
- . The compound wherein the functionalities are protected by suitable protection groups.

5

 The compound of claim 1 to 6, wherein the bifunctional chemical entity is attached to the nucleoside derivative through a spacing element.

55

- The compound of claim 7, wherein the spacing element comprises a chemical bond which includes electrons from overlapping p-orbitals.
 - The compound of claim 7 or 8, wherein the spacing element includes a triple bond, an aromatic or heteroaromatic ring system, or a hetero atom.
- 10. The compound of any of the claims 1 to 9, wherein the extended length between the bifunctional chemical entity and the nucleoside is between 3 and 12Å.
 - and the nucleoside is between 3 and 12A.

 11. The compound of any of the preceding claims, wherein the bifunctional chemical entity is attached through a linker to the nucleobase of the nucleoside.

52

 The compound of claim 11, wherein the nucleobase is selected among adenine, 7-deaze-adenine, uracil, guanidine, 7-deaze-guanidine, thymine, and cytosine.

8

8

25

33

- 13. The compound according to any of the preceding claims, wherein the bifunctional chemical entity is attached through a linker to the 5 position of pyrimidine type nucleobases or the 7 or 8 position of purine type nucleobases.
- 35 14. The compound according to any of the preceding claims, wherein the extended length between the directing element ment and the bifunctional chemical entity is 4Å or less.
 - Then compound according to claim 14, wherein the directing element is attracted or repulsed by major groove or internucleoside linkage atoms of a nucleic acid double helix.
- A nucleotide analogue comprising the compound according to any of the claims 1 to 15.

5

- 17. The nucleotide analogue of claim 16 being a substrate for a polymerase.
- 45 18. An oligonucleotide analogue comprising the compound according to any of the claims 1 to 15.
- 19. The oligonucleotide according to claim 18, being a substrate for a ligase.
- 20. A method for directing the structural orientation of a bifunctional chemical entity, wherein a nucleoside derivative comprising a bifunctional chemical entity further comprises a directing element capable of positioning the bifunctional chemical entity in a predominate direction.
- The method of claim 20, wherein the directing element interacts with the major groove atoms or internucleoside linkage of a double helix nucleic acid.

22

5

ŧ,

5

22. The method of claim 20 or 21, wherein the directing element comprises an optionally substituted 5-, 6-, or 7-membered fine structure.

25

EP 1 533 385 A1

- 23. The method of claims 20 to 22, wherein the directing element comprises an aromatic or hetero-aromatic ring
- 24. A method for obtaining an encoded molecule comprising Contacting a template nucleic acid with one or a plurality of compounds according to any of the claims 1 to 19, under conditions that provides for the formation of a complementary template, Reacting the bifunctional chemical entities to form an encoded molecule.

2

25. The method according to claim 24, wherein the template comprises an oligonucleotide and the conditions providing for the formation of a complementary template include a polymerase or a ligase.

- 26. The method according to claim 24 or 25, wherein the compound is comprised in a nucleotide triphosphate.
- 27. A polymer obtainable by the method according to any of the claims 24 to 26.
- A double stranded nucleic acid having one or more compounds according to any of the claims 1 to 18 incorporated therein.
- 29. The double stranded nucleic acid according to claim 28, wherein the bifunctional chemical entities have been zo reacted under conditions in which they had a predominate orientation.
- 30. The double stranded nucleic acid according to claim 28 or 29, wherein one or more linking moieties have been cleaved to display the encoded molecule.

X and Y reacts

no further reaction possible

EP 1 533 385 A1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 8

Fig. 7

Conformation energies kJ/mol

6,

(3b,8b)nim\(3b-8b)

%3'=36.6; %5'=2.9

83

Office **6**

European Patent

EUROPEAN SEARCH REPORT

Application Number EP 04 07 7474

TECHNICAL FIELDS BEARCHED (Int.Cl.7) CLASSIFICATION OF THE APPLICATION (INI.CI.7) C12Q1/68 C07H21/09 Gohlke, P C120 C07H Retevant to claim 1-30 1-17 GARTNER Z J ET AL: "Multistep small-molecule synthesis programmed by DNA templates" JOURNAL OF THE AMERICAN CHENICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, MASHINGTON, DC, WO 02/103008 A (NUEVOLUTION A/S; PEDERSEN, HENRIK, GOULLEKY, ALEX, HAAHR; SAMS, KLAKNEY 27 December 2002 (2002-12-27) * page 88 - page 94; figures 6.12,13,22,23,37 * GARTNER Z J ET AL: "THE GENERALITY OF DIM-TEMPLATED SYNTHESIS AS A BASIS FOR BOUVING MON-MAIURL SMALL HOLECULES.
JOURNAL OF THE AMERICAN CHENICAL SOCIETY.
AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, DOCUMENTS CONSIDERED TO BE RELEVANT US, 124, no. 35, (2002-09-04), pages 4 September 2002 (2002-09-04), pages 10304-10306, XP002265219 1SSN: 0802-7863 * the whole document * 31 March 2005 WD 02/066066 A (ENZON, INC) 29 August 2002 (2002-08-29) * figures 1,5; compounds 4A, 4B, 26 * Otation of document with indication, where appropriate, of relevant passages The present search report has been drawn up for all claims Munich Сатеролу

EP 1 533 385 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents clied in the above-mentioned European search report. The members are as confined with the European Patent Office 2DP its or. The European Patent Office is no row vy take of or these particulars which are meety given for the purpose of information.

31-03-2005

Publication Patent tamily date member(s)	A 27-12-2002 CA 24515; WD 0210300 WD 0210300 WD 0210300 WD 0210301 US 2604545118 US 2604454135 US 2604154135 US 26	066 A 29-08-2002 CA 2437986 A1 29 1361895 A1 19 JP 2084530736 T 07 MX PA93007391 A 04 WO 02066066 A1 29 US 2002161952 A1 31
Patent document Pad in search report	62163008 A 27	53

a.: member of the same putent family, corresponding document

X: perticularly relevant if taken abnes
Technology respects if combined with enother
document of the seme action of the
document of the seme action of
document of the seme action
document of the seme action
of non-written de document
p: intermediate document
p: intermediate document

CATEGORY OF OTTED DOCUMENTS

T : theory or pmodule underlying the invention E : earlier patient document, but published on, or earlier the fing date.
D : document dated in the application
L : document dated in the application.

2 | A For more details about this annex : see Official Journal of the European Patent Office, No. 1282

THIS PAGE BLAWK (USP)