

SpaceX Rocket Landing Success Analysis

By Vytautas Samalavicius July 24, 2022

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

• In this capstone, we will predict if the Falcon 9 first stage will land successfully.

• Price:

- SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars.
- Other providers cost upward of 165 million dollars each.
- Much of the savings is because SpaceX can reuse the first stage.
- Therefore if we can determine if the first stage will land, we can determine the cost of a launch.
- This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

INTRODUCTION

- Falcon 9 first stage could be reusable; therefore it is a big factor on saving money.
- This analysis aims to find out which parameters and circumstances are crucial for determining the success of first stage landing/retrieval.
- Booster Version, Payload Mass,
- Orbit, LaunchSite, and other parameters were included in analysis.

METHODOLOGY

- Data Collection:
 - Request to the SpaceX API
 - Clean the requested data
 - Performing web scraping to collect Falcon 9 historical launch records from a Wikipedia
- Data Wrangling by execute SQL queries, perform exploratory data analysis and determine training labels.
- Data Visualisation.
- Model Creation.

RESULTS

- Data Analysis insights
- Data Visualization: plots, dashboard screens, maps
- •Modeled Predictions: Logistic Regression, Support Vector Machine, k neighbours, Decission tree.

DATA ANALYSIS INSIGHTS

The number of launches on each site:

CCAFS SLC 40 55

KSC LC 39A 22

VAFB SLC 4E 13

Succefull Landings -60, other -30.

The number and occurrence of each orbit: GTO ISS **VLEO** 14 PO LEO SSO MEO ES-L1 **HEO SO GEO**

DATA ANALYSIS SQL RESULTS

- 1. %sql select distinct Launch_Site from SPACEXTBL
- 2. %sql select * from SPACEXTBL where Launch_Site like 'CCA%' limit 20
- 3. %sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL
- 4. %sql select avg(PAYLOAD_MASS__KG_) as avg from SPACEXTBL where booster_version = 'F9 v1.1'
- 5. %sql select date from SPACEXTBL WHERE "Landing _Outcome" Like '%ground pad%' and "Landing _Outcome" Like 'Success%'
- 6. %sql select distinct Booster_Version from SPACEXTBL
 Where PAYLOAD_MASS__KG_ >4000 and
 PAYLOAD_MASS__KG_ <6000 and "Landing_Outcome" Like
 '%drone ship%' and "Landing_Outcome" Like 'Success%'

- 7. %sql select count(mission_outcome) as Counted, mission_outcome from SPACEXTBL group by mission_outcome 8. %sql select booster_version,
- PAYLOAD_MASS__KG_ from SPACEXTBL where PAYLOAD_MASS__KG_ = (select max(PAYLOAD_MASS__KG_) from

SPACEXTBL)

- 9. %sql select substr(Date, 4, 2) as month,
 "Landing_Outcome", booster_version, Launch_si
 te from SPACEXTBL where substr(Date, 7, 4) =
 '2015' and "Landing_Outcome" Like '%Failure
 (drone ship)%'
- 10. %sql select "Landing_Outcome", date from SPACEXTBL where DATE BETWEEN '04-06-2010' AND '20-03-2017' order by date desc

DATA VISUALIZATION: PLOTS

DATA VISUALIZATION: DASHBOARD SCREENS

DATA VISUALIZATION: MAPS

Modeling Results

The Scores of modeling are:

- Logistic Regression = 0.83
- Support Vector Machine = 0.83
- k neighbours = 0.83
- Decission Tree = 0.55

DISCUSSION

Best way to predict the outcome of landing is by using: Logistic Regression, Support Vector Machine, and k neighbours

OVERALL FINDINGS & IMPLICATIONS

Data visualization reveals that Booster Version, Payload Mass, Orbit, Launch Site correlate with landing outcome.

The mentioned prediction models is sufficiently accurate (Score =0.83)

CONCLUSION

- Use of prediction models worked.
- Parameters for analysis were adequate.
- Further analysis would require more data and additional parameters discovered for model validation.

APPENDIX

