Short Paper

- Alice Anonymous*,a, Bob Security^b, Cat Memes**,b, Derek Zoolander**,a
- ^aDepartment, Street, City, State, Zip
- ^bDepartment, Street, City, State, Zip

5 Abstract

6

7 Abstract

- Noise, as the term itself suggests, is most often seen a nuisance to ecological insight, a inconvenient reality that must be acknowledged, a haystack that must
- be stripped away to reveal the processes of interest underneath. Yet despite
- this well-earned reputation, noise is often interesting in its own right: noise can
- this well-earned reputation, noise is often interesting in its own right: noise can
- induce novel phenomena that could not be understood from some underlying
- determinstic model alone. Nor is all noise the same, and close examination
- of differences in frequency, color or magnitude can reveal insights that would
- otherwise be inaccessible. Yet with each aspect of stochasticity leading to some
- 16 new or unexpected behavior, the time is right to move beyond the familiar refrain
- of "everything is important" (Harrison et al., 2019). Stochastic phenomena can
- suggest new ways of inferring process from pattern, and thus spark more dialog
- 19 between theory and empirical perspectives that best advances the field as a
- whole. I highlight a few compelling examples, while observing that the study of
- stochastic phenomena are only beginning to make this translation into empirical
- 22 inference. There are rich opportunities at this interface in the years ahead.

^{*}Corresponding Author

^{**}Equal contribution

Email addresses: alice@example.com (Alice Anonymous), bob@example.com (Bob Security), cat@example.com (Cat Memes), derek@example.com (Derek Zoolander)

23 Introduction

- This is my awesome introduction that clearly defines the context and the
- 25 gaps I am going to address with this beautiful paper. I will also states the
- 26 hypotheses that I will test. It is going to be great, yeah yeah.
- 27 This introduction is going good, yes indeed, it will. And as it has been
- 28 proven before (Harrison et al., 2019; Ho and Budescu, 2019), this has not been
- 29 proven before. Evennn better!

30 Methods

- So I used a very cool method (Ho and Budescu, 2019). Yeah yeah, but see
- also (Harrison et al., 2019). Oh and there is also (Salih et al., 2000), or (Baird
- 33 et al., 2018).
- Here is the model I used (it is an awesome model):

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \underbrace{cn\left(1 - \frac{n}{N}\right)}_{\mathrm{birth}} - \underbrace{en}_{\mathrm{death}},\tag{1}$$

35 Results

- We can see that the variables increase and plato to a maximum value (Figure
- 1). But my favorite figure is Figure 2.

38 Discussion

39 Acknowledgements

- The author acknowledges feedback and advice from the editor, Tim Coulson
- and two anonymous reviewers. This work was supported in part by USDA
- National Institute of Food and Agriculture, Hatch project CA-B-INS-0162-H.

43 References

- 44 \begin{landscape}
- 45 \end{landscape}
- Baird, A., Álvarez-Noriega, M., Cumbo, V., Connolly, S., Dornelas, M.,
- Madin, J., 2018. Effects of tropical storms on the demography of reef corals.
- ⁴⁸ Mar. Ecol. Prog. Ser. 606, 29–38. doi:10.3354/meps12760
- 49 Harrison, H.B., Álvarez-Noriega, M., Baird, A.H., Heron, S.F., MacDonald,
- 50 C., Hughes, T.P., 2019. Back-to-back coral bleaching events on isolated atolls
- in the Coral Sea. Coral Reefs 38, 713-719. doi:10.1007/s00338-018-01749-6
- Ho, E.H., Budescu, D.V., 2019. Climate uncertainty communication. Nat.
- ⁵³ Clim. Chang. 9, 802–803. doi:10.1038/s41558-019-0606-6
- Salih, A., Larkum, A., Cox, G., Kühl, M., Hoegh-Guldberg, O., 2000. Fluo-
- rescent pigments in corals are photoprotective. Nature 408, 850–853. doi:10.1038/35048564

56 List of Figures

57	1	Population dynamics from a Gillespie simulation of the Levins	
58		model with large (N=1000, panel A) and small (N=100, panel	
59		B) number of sites (blue) show relatively weaker effects of demo-	
60		graphic noise in the bigger system. Models are otherwise iden-	
61		tical, with $e = 0.2$ and $c = 1$ (code in appendix A). Theoreti-	
62		cal predictions for mean and plus/minus one standard deviation	
63		shown in horizontal re dashed lines	7
64	2	The is my figure. It is awesome. Plus it does not use ggplot,	
65		which is even better. It shows the level of happiness relatively to	
66		the amount of cheese people eat	8

Figure 1: Population dynamics from a Gillespie simulation of the Levins model with large (N=1000, panel A) and small (N=100, panel B) number of sites (blue) show relatively weaker effects of demographic noise in the bigger system. Models are otherwise identical, with e=0.2 and c=1 (code in appendix A). Theoretical predictions for mean and plus/minus one standard deviation shown in horizontal re dashed lines.

Figure 2: The is my figure. It is a wesome. Plus it does not use ggplot, which is even better. It shows the level of happiness relatively to the amount of cheese people eat.