Week 8 8.2 Note

Lecture 25: Sample Surveys

1. Population and Samples

Population: the *full amount of information* being studied, collected though a *census* (普查).

Sample: part of the population.

- Limitations of a Census:
 - Collecting every unit of a population:
 - Is hard
 - Is time-consuming
 - Costs money
 - Needs lots of resources

Parameter: a *numerical fact* about the population which we are interested in.

Estimate (statistics): a *calculation* of sample values which **best predicts** the parameter.

• Quote: "The **estimate** is what the investigator knows. Th **parameter** is what the investigator wants to know.

2. Sample Bias

- Common Types of Bias:
 - 1. **Selection Bias (选择偏差)**: A systematic tendency to *exclude or include one type of person* from the sample.
 - 2. Non-response Bias (无反应偏差): Participants fail to complete surveys.
 - 3. **Interviewer Bias (访谈者偏差)**: A *distortion of response* related to the person questioning informants in research.
 - 4. **Measurement Bias**: The *form of the question* in the survey affects the response to the question.
 - Examples of measurement bias:
 - Bias in _question wording and order.
 - Example: Should a doctor be allowed to murder unborn children who can't defend themselves?
 - People forget details when recalling.
 - People may not tell the truth on **sensitive questions**.
 - Example: Do you use illegal drugs?
 - Question lacks clarity.
 - People may misinterpret on certain words or questions.
 - Attributes of the interview process.
 - Example: Start interviews at night.
- Warning about Bias and Sample Size:

- **Taking a larger sample can amplify the bias** instead of reducing if a section process is biased, because it **repeats the mistake on a larger scale**!
- How to pick a good sample?
 - Multi-stage cluster sampling (多层整群抽样):
 - A *probability sampling technique* which takes **samples in stages**, and individuals or clusers are **chosen at random** at each stage.

Multi-stage Sampling

- 。 Quota Sampling (定额抽样):
 - A non-probability sampling technique where the assembled sample has the same proportions of individuals as the entire population with respect to known characteristics, traits, or focused phenomenon.
 - This results in **unintentional bias** from the interviewers when they choose subjects to survey.

- o Convenience (Grab) Sampling (方便抽样):
 - A *non-probability sampling technique* where subjects are selected because of their **convenient accessibility**.
 - Not recommended except testing a pilot (initial) survey.

• Unavoidable Bias:

- Bias can happen even with a probability method determining the sample. For example: non-response bias.
- We always have **chance error** because the sample is only part of the population.
- Sampling & Non-sampling Error:
 - Estimate = Parameter + Bias + Chance Error
 - Estimate = Parameter + Non-sampling Error + Sampling Error
- Common Methods of Surveys:
 - Face-to-Face Interviews
 - Phone Interviews
 - o Self-administered Surveys
 - o Mail
 - o Online

Lecture 26: The Box Model for Sample Surveys

1. The Box Model: Modelling the Proportion (Mean) of a Sample

- Chance Errors in Sample Surveys:
 - We use **box model** to quantify *the likely size of the chance error* when estimating a proportion.
 - **Standard errors (SE)** measure *the variability across different samples* from the same population.

• Drawing a simple random sample:

- Modelling Sampling by a Box Model:
 - Consider a Simple random sample of 100 draws from 5000 individuals, where 2000 will vote A and 3000 will vote B.
 - We are interested in the proportion of A voters.
 - What is the chance that **the number of A voters is between 0.3 and 0.5**?
 - Steps:
 - Step 1: Draw a box model

- Step 2: Calculate the mean and SD of the box
 - The mean is $\frac{2000\times1+3000\times0}{5000}=0.4$.
 - The SD is $(1-0)\sqrt{2/5\times 3/5}=\sqrt{6}/5\approx 0.5$. [Note SE is rounded up here to simplify illustration.]
- Step 3: Calculate the EV and SE of the proportion (mean) of the sample
 - The EV of the Proportion of the draws is 0.4.
 - The SE of the Proportion of the draws is $\frac{0.5}{\sqrt{100}} = 0.05$.

- Step 4: Conclusion
 - We would expect a Sample Proportion of 0.4 (EV) with SE 0.05.
 - This means, it would not be unusual to get the proportion of A voters between $0.4 \pm 2 \times 0.05$ or even $0.4 \pm 3 \times 0.05$ (assuming a Normal curve).
- Step 5: Draw the normal curve

P(0.3 < sample Proportion < 0.5

In R

```
box = c(0,0,0,1,1)
# Or box = c(rep(0, 3), rep(1, 2))
c(mean(box),popsd(box)/sqrt(100))
## [1] 0.40000000 0.04898979
pnorm(2)-pnorm(-2)
## [1] 0.9544997
pnorm(0.5,0.4,0.05)-pnorm(0.3,0.4,0.05)
## [1] 0.9544997
pbinom(50,100,2/5)-pbinom(30,100,2/5)
## [1] 0.9584555
```

- Step 6: Calculate the chance
 - The x values (data points) are 0.3 and 0.5.
 - Z scores (standard units) are approximately -2 and 2. (Z score = (x EV)/SE)

- A similar solving process using Sum:
 - · Note the effect of the sample size *n* on the SE:

-
$$SE_{sum} = \sqrt{n} \times SD_{box}$$

-
$$SE_{proportion} = \frac{SD_{box}}{\sqrt{n}}$$
.

 This is an equivalent problem: What is the chance that the number of A voters is between 0.3 and 0.5? We model the Sum of the Sample.

box = $c(0,0,0,1,1)$
c(100*mean(box),sqrt(100)*popsd(box))
[1] 40.000000 4.898979
pnorm(50,40,5)-pnorm(30,40,5)
[1] 0.9544997

• Summary of Sample Survey:

Focus in the Sample	EV	SE
Sum	sample size \times mean $_{box}$	$\sqrt{\text{sample size}} \times \text{SD}_{box}$
Proportion (Mean)	mean _{box}	$\frac{\mathrm{SD}_{box}}{\sqrt{\mathrm{sample size}}}$

in R

Need multicon package in R

popsalc)

where n = size of sample (number of draws from the box).

2. The Correction Factor

- What affects accuracy?
 - The SE is determined by **the absolute size of the sample** when sampling **with replacement**.
 - The SE will be decreased by increasing the ratio of sample size to population size
 when sampling without replacement. When a higher proportion of the population is
 sampled, the variability will decrease.
 - When the sample is only **a small part of the population**, the size of the population has almost **no effect on the SE** of the estimate.

• Why sample size (n) determines accuracy?

Why sample size determines accuracy

- Assume Box1 is size N_1 (large) and Box2 is size N_2 (much_tsmaller).
- · Assume Box1 and Box2 both have 50% 0's and 50% 1's (modelled by 0 and 1).
- · Assume we sample *n* draws from each box with replacement.
- Both boxes have the same mean 0.5 and SD 0.5.
- Both boxes have the same EV_{Proportion}.

$$EV_{Box1} = EV_{Box2} = 0.5$$

· Both boxes have the same chance error.

$$SE_{Box1} = \frac{0.5}{\sqrt{n}} = SE_{Box2}$$

- Hence both boxes have the same accuracy in estimating the population proportion. Drawing with replacement, the box (0,1) is equivalent to (0,0,1,1) etc.
- Drawing without Replacement:
 - **Sample surveys are drawn without replacement** so it's different to box model (drawn with replacement)!
 - We need to use **correction factor** to adjust SE from the box model to get the exact SE.
 - Correction factor (finite population correction):

- if the population is a lot bigger than the sample, CF is almost 1.
 - Example:

Suppose that the sample size is fixed at 2,500. The table below summarises the correction factor (to 5 dp) for different population sizes.

	Population size	Correction factor
	5,000	0.70718
•	10,000	0.86607
	100,000	0.98743
	500,000	0.99750
	1,000,000	0.99875
	12,500,000	0.99990

Lecture 27: Bootstrapping & Confidence Intervals (Accuracy of Proportions)

1. Estimating the Population proportion Using Bootstrapping

- The gap in information:
 - Previously we found:
 - The EV of the sample proportion is equal to the population proportion.

$$EV_{proportion} = mean_{box} = population proportion$$

• The chance error is related to the SE of the sample proportion.

$$SE_{proportion} = \frac{SD_{box}}{\sqrt{\text{sample size}}}$$

■ However, the mean and SD of the box is unknown. The formulas above are useless in this case.

Bootstrapping: **estimating** the properties of **the population by using** the properties of a particular **sample**.

- When sampling from a 0-1 box, we **replace the unknown proportion of 1's** in the box (population) **by the known proportion of 1's** in a particular sample.
 - Steps:
 - Step 1: Create an approximate box (we don't know the real box!) -- box 1 which has the same proportion of 0s and 1s as the sample.

■ Step 2: Use the box model

Focus in the Sample	EV	SE
Sum	sample size \times mean _{box1}	$\sqrt{\text{sample size}} \times \text{SD}_{box1}$
Proportion (Mean)	mean _{box1}	$\frac{\mathrm{SD}_{box1}}{\sqrt{\mathrm{sample size}}}$

2. Confidence Interval

- Chance Error and Standard Error:
 - We have often taken the estimate of the chance error to be 1 unit of the SE.
 - The chance error, however, can be out by 2 or even 3 SEs. We can use **confidence intervals (CI)** to generalize.
- Confidence Intervals (CI) (置信区间):
 - For population proportion:
 - 68% confidence interval

sample proportion $\pm 1 \times SE$

95% confidence interval

sample proportion $\pm 2 \times SE$

99.7% confidence interval

sample proportion $\pm 3 \times SE$

- Interpreting CI:
 - For a 95% CI:
 - It is wrong to say "the probability that the interval contains the unknown parameter is 0.95." (cannot make conclusion on only 1 CI)
 - Rather, we say "if we worked out a series of CIs for a series of samples, then 95% of the CIs would contain the unknown parameter.

• Simulation:

Here we simulate the data story:

- Create a population of size 1000000, where the proportion of 1s ("Yes" votes) is 0.67.
- Draw a sample of size 1000 from the population, and calculate a 95% CI (black line) for the population proportion.
 - Repeat this sampling 100 times, forming 100 Cls.
 - Graph the 100 Cls. >
- Draw a red line to represent the true population proportion (0.67) and check how many CIs fall inside and outside the red line.
 - We expect approximately 95% of CIs to "cover" the true proportion.

Note: Unless we draw without replacement, the fpc applies for the SE, though here it is very close to 1 for the sample survey.

The true value of p was captured in the CI 72 percent of times