Лекция №9 27.10.23

Иерархическая модель данных (продолжение)

Схема иерархической базы данных

Схема иерархической модели - это совокупность отдельных деревьев, каждое дерево в рамках модели называется физической базой данных.

Каждая физическая иерархическая база данных удовлетворяет условиям:

- 1. В каждой физической базе данных существует 1 корневой сегмент
- 2. Каждый логически исходный сегмент может быть связан с произвольным количество подменённых сегментов
- 3. Каждый подменённый сегмент может быть связан только с 1 исходным сегментом

Пример физической записи:

Запись 1	Запись 2	

Описание иерархической базы данных

Физические записи в иерархической модели отличаются по длине и структуре. В рамках иерархической модели выделяют языки - DDL, DML.

Описание начинается с определения базы данных - оператор определения бд DBD Name<имя>, ACCESS = <тип доступа> . Где ACCESS = <тип доступа> - взаимосвязь физических записей. Их разделяют на:

- нам иерархически последовательный метод
- ГЕДАМ ИЕРАРХИЧЕСКИ ПРЯМОЙ МЕТОД
- нтрам иерархически индексно прямой метод
- INDEX ИНДЕКСНЫЙ МЕТОД

После описания определения базы данных идёт описание наборов данных - там задаётся устройство хранения базы данных и область переполнения. Далее идёт описание типов сегментов. Описание сегментов всегда начинается с описания корневого сегмента:

```
SEGM NAME = <имя сегмента> BYTES = <размер байтов>
FREQ = <> -- среднее кол-во экземпляров данного сегмента
PARENT = <> -- имя родительского сегмента
```

Далее идет описание полей:

```
FIELD NAME = <название поля>
START = <номер байта с которого он начинается>
BYTES = <размер поля>
TYPE = <тип данных>
```

В иерархическо модели могут быть только 3 типа данных:

- х шестнадцатеричный
- Р десятеричный

• с - символьный

В FIELD NAME МОЖНО УКАЗАТЬ ПРИЗНАК ПОСЛЕДОВАТЕЛЬНОСТИ SEQ.

Всё заканчивается вызовом процедуры генерации:

DBD GEN
FINISH
END

В системе может быть несколько баз данных - все они описываются таким образом.

Внешняя модель и навигационные операции

Внешняя модель - совокупность поддеревьев в физической базы данных с которыми работает данный пользователь. Каждый подграф обязательно должен содержать корневой тип сегмента.

Пример физической иерархической базы данных:

Необходимо построить 2 дерево:

Так физически будет выглядеть наша база данных.

В иерархической модели базы данных для доступа к базе данных у пользователя должна быть сформирована специальная среда, которая поддерживает в явном виде навигационные операции. Для этого в ней должны храниться:

- шаблоны всех записей логических баз данных
- указатели на текущий экземпляр сегмента данного типа

Все операции можно разделить на 3 группы:

1. Операторы поиска данных

```
• GET UNIQUE... WHERE...
```

2. Операторы поиска данных с возможностью модификации

```
• GET HOLD UNIQUE... WHERE...
• GET HOLD NEXT... WHERE...
```

3. Операторы модификации данных

```
DELETE
```

UPDATE

• INSERT <имя сегмента>

Способ перемещения от одного сегмента к другому - навигационный способ.

Пример такой иерархической модели - СУБД ИНЕС.

Структура иерархической базы данных

Субд Инес имеет следующую структуру данных:

1. **Терминальная вершина** - наименьшая поименованная единица данных. Для неё должен быть определён тип значения.

```
<Имя терминальной вершины> ::= <тип значения>
ФИО::=text
```

2. **Структура** - поименованная двухуровневая древовидная иерархическая конструкция.

```
<имя вершины структуры>::= STRUCT(подмененные вершины)
ВУЗ::=STRUCT(Название, Телефон, Адрес)
```

3. **Массив** - поименованная трехуровневая Древовидная иерархическая конструкция, реализуемая в базе данных п экземпляров однотипных подчинённых структур, имеющая в составе подчинённых терминальных структур первичный ключ. Подчинённых терминальных структур не именуется.

```
<имя вершины>::=ARK(
    имя первичного ключа |KEY|,
    имена подчинённой структуры
)
ФАКУЛЬТЕТЫ::=ARC(
    индекс Ф/KEY
    Название, Адрес
)
```

4. **Адресная ссылка** - поименованная конструкция для реализации сетевых связей в древовидном графе. Хранит адрес вершины, в которой хранятся данные.

```
<ums вершины адресной ссылки>::=REF'путь доступа от корневой вершины до структуры с д анными'
АдресREF::=REF'вуз.Адрес'
```


5. **База данных (дерево данных)** - поименованная Древовидная иерархическая конструкция с одним экземпляром корневой вершины, то есть совокупность терминальных вершин, структур, массивов, адресных ссылок.

Ограничения иерархической модели

- Используются только бинарные связи 1:1 и 1:м.
- Ориентация связей от корня к листьям.
- Каждый потомок имеет только одного предка.

- Никакой потомок не может существовать без родителя.
- Для представления данных используют только листья.
- Типы данных.
- Максимальное количество уровней иерархии в базе данных 64.

Вывод

Иерархическая база данных хорошо интерпретируется файловой системой. Эта модель ориентирована на запросы, направленные вниз по иерархии. Запросы, направленные вверх по иерархии, более сложные по реализации. Чтобы преобразовать в древовидную модель данных в графическую модель СУБД ИНЕС применяют дублирование и использование адресных ссылок.

Сетевая модель данных

Сетевая модель данных - логическая модель данных, состоящая из элементов данных, записей и связей типа 1:1, 1:м, м:1, м:м.