Demo-3

Variograms

Jeffrey Yarus

23 May, 2025

Contents

1	Demo Summary	1
2	Terminology, packages, and key functions from this Demo	1
3	Loading Packages	2
4	Create a database from the dataframe and select properties for analysis	4
5	Create the Basemap without the outlier	5
6	Outliers	6
7	Construction of the Variograms 7.1 The Omnidirectional Experimental Semivariogram	
	1.2 DITECTIONAL EXDELIMENTAL DEID- VALIOPIAMS	_ ^

1 Demo Summary

In this demo, the objective is to become familiar with how to construct both omnidirectional and directional variograms.

Here, the code begins as usual by reading in the data set, creating the assignment variables, identifying outliers, and removing the outliers. We are now ready to create variograms. Please be sure to read through the text I have included before each code chunk. .

First, run the script chunk by chunk. After the initial data frames are calculated, I create a data base called db as we did in the previous demo. This data base looks a lot like the data frame df and, as you recall, it contains the outliers. You will see that I correct for the outliers and create a data base without the outliers called **db_noout.db**. You will need to walk through the chunks one-at-a-time and change **db** in each chunk to **db_noout.db** in order to see the impact without the outlier. Take your time and feel free to swap the data bases back and forth to see the impact with the outlier and without.

2 Terminology, packages, and key functions from this Demo

1. Variogram Map: A Variogram map is a graph that that displays the change in variance in all directions from the origin located at its center. It is actually a polar plot and requires a "lot" of data to produce, so data sets that are sparse will not be very useful. Grid data, like satellite images, gravity, magnetics, geophysical surveys etc. produce excellent variogram maps.

3 Loading Packages

Run the code chunk below...

```
getwd()
```

[1] "/mnt/vstor/CSE_MSE_RXF131/cradle-members/sdle/jmy41/GIT/jmy-research/topics/RPS_N58"

As in the previous demos, we:

- Read in our data
- Create the tibble
- Ensure our categorical variables are designated as factors
- Create a backup data frame
- Remove the unnecessary variables from the tibble
- Create our assigned symbolic names
- Identify the outliers. all of this is being done in one code chunk.

Run the chunk below...

19 S_Siltstone 5019

```
file.name <- "../../data/WT-2D-all-outlier.csv"
df <- read_csv(file.name)</pre>
## Rows: 262 Columns: 11
## -- Column specification -----
## Delimiter: ","
## chr (1): F_Top
## dbl (10): N_Well, C_X_ft, C_Y_ft, L_3_FACIES, P_Delta_t, P_KH_md, P_PHI, P_P...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
  mutate(across(matches("N_|L_"), factor))
head(df, n = 20)
## # A tibble: 20 x 11
##
                  N_Well C_X_ft C_Y_ft L_3_FACIES P_Delta_t P_KH_md P_PHI P_PHI_pct
      F_Top
##
      <chr>
                  <fct>
                           <dbl>
                                  <dbl> <fct>
                                                        <dbl>
                                                                <dbl> <dbl>
                                                                                <dbl>
##
                           11564
                                   5691 2
                                                         60.8
                                                                 3.51 0.094
                                                                                   9.4
   1 S Siltstone 5001
  2 S Siltstone 5002
                           10679
                                  13706 2
                                                         59.1
                                                                 5.81 0.093
                                                                                   9.3
  3 S_Siltstone 5003
                           6311
                                  36307 1
                                                        55.9
                                                                 0.77 0.059
                                                                                   5.9
## 4 S Siltstone 5004
                           2754
                                                         52.5
                                                                                   4.4
                                  11437 1
                                                                 0.55 0.044
                           9386
                                                                                   9.9
## 5 S_Siltstone 5005
                                  24799 3
                                                         63.3
                                                                 6.29 0.099
## 6 S Siltstone 5006
                           10761
                                  24755 3
                                                         63.1
                                                                 2.9 0.099
                                                                                   9.9
## 7 S_Siltstone 5007
                           10769
                                  23463 3
                                                         65.9
                                                                12.3 0.113
                                                                                  11.3
                                                         57.9
## 8 S_Siltstone 5008
                           9145
                                  23413 1
                                                                 0.79 0.074
                                                                                  7.4
## 9 S_Siltstone 5009
                           8201
                                  23557 3
                                                         64.4
                                                                 8.19 0.104
                                                                                  10.4
                           6727
## 10 S_Siltstone 5010
                                  23472 1
                                                         55.8
                                                                 1.45 0.071
                                                                                   7.1
## 11 S_Siltstone 5011
                           3834
                                  23446 1
                                                         53.9
                                                                                   6.2
                                                                 1.6 0.062
## 12 S_Siltstone 5012
                           2780
                                  23494 1
                                                         54.8
                                                                 1.57 0.063
                                                                                   6.3
## 13 S_Siltstone 5013
                           3994
                                  22098 1
                                                         53.5
                                                                 1.51 0.06
                                                                                   6
## 14 S_Siltstone 5014
                           5482
                                  22214 1
                                                         53.9
                                                                 1.79 0.065
                                                                                   6.5
## 15 S_Siltstone 5015
                           6692
                                  22138 2
                                                         60.8
                                                                 8.21 0.091
                                                                                   9.1
## 16 S_Siltstone 5016
                                  22199 3
                                                         63.5
                                                                                  10
                           9324
                                                                 4.48 0.1
## 17 S Siltstone 5017
                           10817
                                  22305 2
                                                         61.7
                                                                 2.73 0.093
                                                                                   9.3
## 18 S_Siltstone 5018
                           10761
                                  20774 1
                                                        57.4
                                                                 2.68 0.073
                                                                                   7.3
```

62.5

3.42 0.096

9.6

9350

20761 3

```
8237 20748 1
## 20 S Siltstone 5020
                                                        57.2
                                                                3.82 0.079
                                                                                 7.9
## # i 2 more variables: P_Thickness <dbl>, P_Top_ft <dbl>
# Creating a duplicate tibble for later use, but eliminate unnecessary variables
df2 <- df %>%
  dplyr::select(L_3_FACIES:P_Top_ft)
# Creating Symbolic Inputs
xlon <- "C X ft"</pre>
ylat <- "C_Y_ft"</pre>
out_analysis <- "Raw (outlier analysis performed on raw data)"</pre>
property <-
  "P PHI pct" # The property you are selecting for analysis
## Data Analytics - Managing outliers
df <-
  df %>%
  mutate(
    iqr_val = IQR(!!sym(property)),
    # calculates the IQR value
    iqr_val_adj = ((iqr_val) * 1.5),
   third_q = quantile(!!sym(property), prob = 0.75, na.rm = TRUE),
    first_q = quantile(!!sym(property), prob = .25, na.rm = TRUE),
    # Creating a column of True and False, True = an outlier, False = not an
    #outlier
    outlier =
      (!!sym(property)) > (third_q + iqr_val_adj) |
      (!!sym(property) < (first_q - iqr_val_adj))</pre>
  )
df
## # A tibble: 262 x 16
##
     F Top
                  N_Well C_X_ft C_Y_ft L_3_FACIES P_Delta_t P_KH_md P_PHI P_PHI_pct
##
      <chr>
                  <fct>
                          <dbl> <dbl> <fct>
                                                      <dbl>
                                                             <dbl> <dbl>
                                                                               <dbl>
## 1 S_Siltstone 5001
                          11564
                                  5691 2
                                                        60.8
                                                                3.51 0.094
                                                                                 9.4
## 2 S_Siltstone 5002
                          10679 13706 2
                                                        59.1
                                                                5.81 0.093
                                                                                 9.3
                           6311
                                 36307 1
                                                                0.77 0.059
## 3 S_Siltstone 5003
                                                        55.9
                                                                                 5.9
## 4 S_Siltstone 5004
                           2754 11437 1
                                                        52.5
                                                                0.55 0.044
                                                                                 4.4
                                                                6.29 0.099
## 5 S Siltstone 5005
                           9386 24799 3
                                                        63.3
                                                                                 9.9
## 6 S Siltstone 5006
                          10761 24755 3
                                                        63.1
                                                               2.9 0.099
                                                                                 9.9
## 7 S Siltstone 5007
                          10769 23463 3
                                                        65.9
                                                              12.3 0.113
                                                                                11.3
## 8 S_Siltstone 5008
                           9145 23413 1
                                                        57.9
                                                               0.79 0.074
                                                                                 7.4
## 9 S_Siltstone 5009
                           8201 23557 3
                                                        64.4
                                                                8.19 0.104
                                                                                10.4
                                                                1.45 0.071
## 10 S Siltstone 5010
                           6727 23472 1
                                                        55.8
                                                                                 7.1
## # i 252 more rows
## # i 7 more variables: P Thickness <dbl>, P Top ft <dbl>, iqr val <dbl>,
## # iqr_val_adj <dbl>, third_q <dbl>, first_q <dbl>, outlier <lgl>
```

4 Create a database from the dataframe and select properties for analysis

Run the chunk below...

```
# creating a database with the outlier
db <-
  df %>%
  dplyr::select(-F_Top) %>% # dplyr provides a set of tools for efficiently
  #manipulating datasets in R
 db.create() %>%
  db.locate(c(xlon, ylat), "x") %>%
  db.locate(names = property, loctype = "z")
db@locators
## [1] "rank" "NA"
                      "x1"
                             "x2"
                                    "NA"
                                           "p1"
                                                  "p2"
                                                        "p3"
                                                                "z1"
                                                                      "p4"
## [11] "p5"
              "NA"
                      "NA"
                             "NA"
                                    "f1"
                                           "NA"
# Creating databases with no outliers
db_noout.db <-
  df %>%
  dplyr::select(-F_Top) %% # provides a set of tools for efficiently
  # manipulating datasets in R
  filter(outlier == FALSE) %>% # When FALSE, outliers will be "filtered out."
  db.create() %>%
  db.locate(c(xlon, ylat), "x") %>%
  db.locate(names = property, loctype = "z")
db_noout.db # The @ is addressor in S4 like the $ in S3
##
## Data Base Characteristics
## =========
##
## Data Base Summary
## -----
## File is organized as a set of isolated points
## Space dimension
                               = 2
## Number of Columns
                               = 16
## Maximum Number of UIDs
                               = 16
## Total number of samples
                             = 261
##
## Variables
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = N_Well - Locator = NA
## Column = 2 - Name = C_X_ft - Locator = x1
## Column = 3 - Name = C_Y_ft - Locator = x2
## Column = 4 - Name = L_3_FACIES - Locator = NA
## Column = 5 - Name = P_Delta_t - Locator = p1
## Column = 6 - Name = P_KH_md - Locator = p2
## Column = 7 - Name = P PHI - Locator = p3
## Column = 8 - Name = P_PHI_pct - Locator = z1
## Column = 9 - Name = P_Thickness - Locator = p4
```

```
## Column = 10 - Name = P_Top_ft - Locator = p5
## Column = 11 - Name = iqr_val - Locator = NA
## Column = 12 - Name = iqr_val_adj - Locator = NA
## Column = 13 - Name = third_q - Locator = NA
## Column = 14 - Name = first_q - Locator = f1
## Column = 15 - Name = outlier - Locator = NA
```

5 Create the Basemap without the outlier

In this code chunk the basemap without the outlier is reproduced.

(note, you will need to replace the database db_noout.db if you want to see the impact of the outlier)

Run the chunk below...

Basemap Color-coded by P_PHI_pct with No Outlier

xlim = c(-20000, 40000))

6 Outliers

The code cunck below displays the histogram fro the selected variable. Note the outlier on the far right of the histogram

Run the chunk below...

```
hist1 <- df %>%
  filter(outlier == FALSE) %>%
  ggplot(aes(x = !!sym(property))) +
 geom_histogram(
                      # Plots the histogram
   aes(y = ..density..),
   fill = "red",
   color = "white",
   bins = 31,
                              Smooths out the histogram and ensures center bin
   alpha = 0.6
                          # Provides transparency to histogram see CDF better
 geom_density(color = "black", size = 1) +  # Plots the Density Curve
 stat_ecdf(
   aes(y = ..y..),
   color = "blue",
   size = 1,
   linetype = "dashed"
                          # Plots the CPDF overlay
  ggtitle(sprintf("Fig 1b
                         %s WT Data", property)) +
 xlab(property) +
 ylab("Density / Cumulative Probability")
hist1
```


Fig 1b P_PHI_pct WT Data

Note the "Density" curve in black is a "Probability Distribution Function." It shows a smoothed, continuous estimate of the data distribution — helpful for spotting skewness, multimodality, or how normal (Gaussian) the data are. The blue curve is the "Cumulatie Probability distribution function" or CPDF.

7 Construction of the Variograms

The code chunks below calculates and plots the variograms. Initially, they do not correct for outliers. Replace the database (db) with the database that removes the outliers (db_noout.db). Observe the impact of the outlier.

7.1 The Omnidirectional Experimental Semivariogram

Look what happens in the variogram when you do not remove the outlier! To see the impact, be sure the data base is, "db". To see the impact without the outlier, change the data base name to, "db_noout".

Run the code chunk below...

```
vario.omni <- vario.calc(db_noout.db, nlag = 10)
plot(
  vario.omni,
  type = "o",
  pch = 19,
  cex = .8,
  pos.legend = 2,
  npairpt= TRUE,
  npairdw= FALSE,
  title = paste(property, "Experimental Ominidirectional Variogram"),
  xlab = "Lag distance",</pre>
```

P_PHI_pct Experimental Ominidirectional Variogram

rectional Variograms

7.2 Directional Experimental Semi- Variograms

The same process is followed for directional variograms. Note, however, that the number of arguments increases and we include the multiple directions we want to assess. When entering the directions, begin with the most northerly direction. If you enter only 2 directions, like c(90, 0), then RGeostats assumes you explicitly know the maximum and minimum directions of continuity. If you enter 3 or more directions, like, C(90, 45, 0) or c(90, 60, 30, 0), RGeostats will automatically calculate the directions of continuity if you are using the function "vario_calc()" along with "model.auto()." This is very handy and makes variogram modeling much easier.

In the code chunk below, we calculate the directional variograms for 2 directions, 3 directions, and 4 directions.

Run the chunk below...

```
#Using vario.calc() again, this time to calculate multiple specific directions
#such as 90, 45, and 0 degrees

data.2dir.vario <- vario.calc(db_noout.db, nlag = 10, dir = c(90, 0))
# using the following, c(82.3, 7.7)), instead of c(90, 0) for would be the more
# a two directions solution would be the more precise directions of continuity
plot(
    data.2dir.vario,
    type = "p",
    pch = 20,
    npairpt = TRUE,
    npairdw = FALSE,</pre>
```

```
pos.legend = 2,
cex = .8,
title = paste(property, "Experimental 2 Directional Variogram"),
xlab = "Lag distance",
ylab = expression(paste("Variance (", gamma, "(h))", sep = ""))
)
```

P_PHI_pct Experimental 2 Directional Variogram


```
data.3dir.vario <-
  vario.calc(db_noout.db, nlag = 10, dir = c(90, 45, 0))
plot(
  data.3dir.vario,
  type = "h",  # Note: type = "h" plots the histograms of the frequency
  pch = 20,
  npairpt = TRUE,
  npairdw = FALSE,
  pos.legend = 2,
  cex = .8,
  title = paste(property, "Experimental 3 Directional Variogram"),
  xlab = "Lag distance",
  ylab = expression(paste("Variance (", gamma, "(h))", sep = ""))
)</pre>
```

P_PHI_pct Experimental 3 Directional Variogram

Lag distance

```
data.4dir.vario <-
  vario.calc(db_noout.db, nlag = 10, dir = c(90, 60, 30, 0))
plot(
  data.4dir.vario,
  type = "o",
 pch = 20,
  cex = 0.8,
 npairpt = TRUE,
  npairdw = FALSE,
 legend = FALSE,
                        # suppress internal legend
 title = paste(property, "Experimental 4 Directional Variogram"),
 xlab = "Lag distance",
 ylab = expression(paste("Variance (", gamma, "(h))", sep = ""))
# Add your own legend w/custom size (RGeostat has a bug, hence the workaround)
legend(
  "bottom",
                                 # or any other position
 legend = c("0°", "45°", "90°", "135°"), # adjust as needed
 col = 1:4,
                                   # colors used for each direction
 lty = 1,
                                   # line type
 pch = 20,
                                   # point type
  cex = 0.7
                                       set the legend text size
```

P_PHI_pct Experimental 4 Directional Variogram

Recall that each point represents the average squared difference value for each lag. The small numbers printed above each point is the number of pair-points that went into that lag calculation.

End of Demo#3a-2025-SM