Работа 3. Яркостные преобразования

автор: Юркин П.О. дата: 05.03.2021

https://mysvn.ru/Maxim Kaverin/anime/yurkin p o/prj.labs/lab03

Задание

- 1. В качестве тестового использовать изображение data/cross_0256x0256.png
- 2. Сгенерировать нетривиальную новую функцию преобразования яркости (не стоит использовать линейную функцию, гамму, случайная).
- 3. Сгенерировать визуализацию функцию преобразования яркости в виде изображения размером 512х512, черные точки а белом фоне.
- 4. Преобразовать пиксели grayscale версии тестового изображения при помощи LUT для сгенерированной функции преобразования.
- 5. Преобразовать пиксели каждого канала тестового изображения при помощи LUT для сгенерированной функции преобразования.
- 6. Результы сохранить для вставки в отчет.

Результаты

Рис. 1. Исходное тестовое изображение

Рис. 2. Тестовое изображение greyscale

Рис. 3. Результат применения функции преобразования яркости для greyscale

Рис. 4. Результат применения функции преобразования яркости для каналов

Текст программы

```
#include <opencv2/opencv.hpp>
using namespace cv;
//### Задание
//1. В качестве тестового использовать изображение data / cross_0256x0256.png
float F(const float& x, const int& imageSize) {
    return sin((CV_PI * 1.3 * x / 3) / (imageSize - 1)) * (imageSize - 1);
}
Mat Plot(){
    Mat output(512, 512, CV_8U, 255);
    for (int i = 0; i < 512; ++i){
        output.at<uchar>(511 - F(i, 512), i) = 0;
    return output;
}
Mat MakeBright(const Mat& img) {
    Mat output;
    std::vector<uchar> lookUpTable(256);
    for (int i = 0; i < 256; ++i) {
        lookUpTable[i] = F(i, 256);
    LUT(img, lookUpTable, output);
```

```
return output;
}
int main() {
   Mat img = imread("data_cross_0256x0256.png");
   Mat brite_img = MakeBright(img);
   Mat gray_img;
   cvtColor(img, gray_img, COLOR_BGR2GRAY);
   Mat brite_gray_img = MakeBright(gray_img);
   Mat plot = Plot();
    imwrite("lab03_rgb.png", img);
    imwrite("lab03_gre.png", gray_img);
    imwrite("lab03_rgb_res.png", brite_img);
    imwrite("lab03_gre_res.png", brite_gray_img);
    imwrite("lab03_viz_func.png", plot);
   waitKey(0);
   return 0;
}
```