WEEK 1: MONEY IN THE UTILITY FUNCTION

Paula Donaldson

ECON 210C, 2025

TODAY'S AGENDA

- 1. RBC model with money in the utility function ightarrow Sidrauski 1967
- 2. Study money neutrality in this model

RBC MODEL WITH MONEY IN THE UTILITY FUNCTION

- Introduce a motive for holding money to an otherwise standard RBC model
- Households derive utility from holding money
- · Services provided by money depend on their purchasing power
- so, households derive utility from the real balances they hold: $\frac{M_t}{P_t}$

HOUSEHOLDS' PROBLEM

$$\max_{\{C_{t}, N_{t}, M_{t}/P_{t}, A_{t+1}, K_{t+1}\}} \mathbb{E}_{0} \left[\sum_{t=0}^{\infty} \beta^{t} \mathcal{U}\left(C_{t}, N_{t}, \frac{M_{t}}{P_{t}}\right) \right]$$
s.t.
$$P_{t}C_{t} + A_{t+1} + P_{t}K_{t+1} + M_{t}$$

$$\leq W_{t}N_{t} + A_{t}(1 + i_{t-1}) + P_{t}K_{t}(1 + r_{t-1}) + M_{t-1}$$

- A_t : nominal bonds, K_t : real bonds, M_t : money holdings
- M_t are money holdings at the end of period t, carried over to period
 t + 1
- W_tN_t: wage income

HOUSEHOLDS' PROBLEM - OPTIMALITY CONDITIONS

First order conditions:

$$C_{t}: \quad \mathcal{U}_{C_{t}}(C_{t}, N_{t}, M_{t}/P_{t}) = \lambda_{t}P_{t}$$

$$N_{t}: \quad -\frac{\mathcal{U}_{n_{t}}(C_{t}, N_{t}, M_{t}/P_{t})}{\mathcal{U}_{C_{t}}(C_{t}, N_{t}, M_{t}/P_{t})} = \frac{W_{t}}{P_{t}}$$

$$A_{t}: \quad \lambda_{t} = \beta\lambda_{t+1}(1+i_{t})$$

$$K_{t}: \quad \lambda_{t} = \beta\lambda_{t+1}\frac{P_{t+1}}{P_{t}}(1+r_{t})$$

$$M_{t}/P_{t}: \quad \lambda_{t} = \beta\lambda_{t+1} + \mathcal{U}_{M_{t}/P_{t}}(C_{t}, N_{t}, M_{t}/P_{t}) \rightarrow NEW$$

Note: MU of C and N can depend on M_t/P_t

HOUSEHOLDS' PROBLEM - OPTIMALITY CONDITIONS

• The FOCs for A_t , K_t and M_t can be re-arranged to:

$$K_{t}: \quad 1 = \beta \mathbb{E}_{t} \left[\frac{\mathcal{U}_{c_{t+1}(.)}}{\mathcal{U}_{c_{t}(.)}} (1 + r_{t}) \right]$$

$$A_{t}: \quad 1 = \beta \mathbb{E}_{t} \left[\frac{\mathcal{U}_{c_{t+1}}(.)}{\mathcal{U}_{c_{t}}(.)} \frac{P_{t}}{P_{t+1}} (1 + i_{t}) \right]$$

$$M_{t}: \quad 1 = \beta \mathbb{E}_{t} \left[\frac{\mathcal{U}_{c_{t+1}}}{\mathcal{U}_{c_{t}}} \frac{P_{t}}{P_{t+1}} \right] + \frac{\mathcal{U}_{M_{t}/P_{t}}}{\mathcal{U}_{c_{t}}} \rightarrow NEW$$

- Trade-offs between assets:
 - Buy real bond and get a return of r_t or buy nominal bond and get a return of i_t minus inflation or hold money and get a return of zero(- π) plus utility benefit.
- From K_t and A_t we get the Fisher equation:

$$(1 + r_t) = \frac{1 + i_t}{\mathbb{E}_t[\pi_{t+1}]}$$

FIRM SIDE - SUPER SIMPLE

· Firms produce according to

$$Y_t = Z_t N_t^{1-\alpha}$$

- Z_t is aggregate technology that we assume exogenous
- Profit maximization taking prices and wages as given implies:

$$\frac{W_t}{P_t} = (1 - \alpha) Z_t N_t^{-\alpha}$$

which gives us a labor demand schedule for this economy

MARKET CLEARING CONDITIONS

All output is consumed

$$C_t = Y_t$$

Nominal and real bonds are in zero net-supply

$$A_t = 0$$
 $K_t = 0$

Money supply is set exogenously by monetary authority (eg. AR(1) process)

$$M_t = M_t^s$$

$$\ln M_t^s = \rho_m \ln M_{t-1}^s + \epsilon_t^M$$

EQUILIBRIUM

- We have 9 endogenoues variables: $Y_t, C_t, N_t, A_{t+1}, K_{t+1}, W_t, P_t, r_t, i_t$ plus
- the two exogenous processes for Z_t and M_t
- Equilibrium conditions:

$$Y_t = C_t \tag{1}$$

$$\frac{W_t}{P_t} = (1 - \alpha)Z_t N_t^{-\alpha} \tag{2}$$

$$Y_t = Z_t N_t^{1-\alpha} \tag{3}$$

$$-\frac{\mathcal{U}_{n_t}(C_t, N_t, M_t/P_t)}{\mathcal{U}_{c_t}(C_t, N_t, M_t/P_t)} = \frac{W_t}{P_t}$$
(4)

$$1 = \beta \mathbb{E}_t \left[\frac{\mathcal{U}_{c_{t+1}(.)}}{\mathcal{U}_{c_t}(.)} (1 + r_t) \right]$$
 (5)

$$1 = \beta \mathbb{E}_t \left[\frac{\mathcal{U}_{c_{t+1}}(.)}{\mathcal{U}_{c_t}(.)} \frac{P_t}{P_{t+1}} (1 + i_t) \right]$$
 (6)

$$1 = \beta \mathbb{E}_t \left[\frac{\mathcal{U}_{c_{t+1}}}{\mathcal{H}_c} \frac{P_t}{P_{t+1}} \right] + \frac{\mathcal{U}_{M_t/P_t}}{\mathcal{H}_c}$$
 (7)

$$A_{t+1} = 0 \tag{8}$$

$$A_{t+1} = 0$$
 (8)
 $K_{t+1} = 0$ (9)

MONEY NEUTRALITY - WHAT DETERMINES THE REAL SIDE?

• Let's look at the equations that determine the real side:

 $Y_t = C_t$

$$\frac{W_t}{P_t} = (1 - \alpha)Z_t N_t^{-\alpha} \tag{11}$$

$$Y_t = Z_t N_t^{1-\alpha} \tag{12}$$

$$- \frac{\mathcal{U}_{n_t}(C_t, N_t, M_t/P_t)}{\mathcal{U}_{C_t}(C_t, N_t, M_t/P_t)} = \frac{W_t}{P_t} \tag{13}$$

$$1 = \beta \mathbb{E}_t \left[\frac{\mathcal{U}_{C_{t+1}(.)}}{\mathcal{U}_{C_t}(.)} (1 + r_t) \right] \tag{14}$$

(10)

- for output, consumption, employment, real wages and the real rate
- Money Neutrality requires that neither \mathcal{U}_{c_t} nor \mathcal{U}_{n_t} depend on M_t/P_t
- Otherwise, nominal variables $(\frac{M_t}{P_t}(i_t))$ pop up in the equations that determine real variables

MONEY NEUTRALITY WITH MONEY IN THE UTILITY FUNCTION

1. Separable utility \rightarrow money neutrality

$$\mathcal{U}\left(C_t, N_t, \frac{M_t}{P_t}\right) = \ln C_t + \chi \ln \frac{M_t}{P_t} - \xi \frac{N_t^{1+\psi}}{1+\psi}$$

2. Non-separable utility \rightarrow no money neutrality

$$\mathcal{U}\left(C_t, N_t, \frac{M_t}{P_t}\right) = \frac{\left(X_t\right)^{1-\sigma} - 1}{1-\sigma} - \xi \frac{N_t^{1+\psi}}{1+\psi}$$

$$X_t = \left[(1 - \theta) C_t^{1 - \nu} + \theta \left(\frac{M_t}{P_+} \right)^{1 - \nu} \right]^{\frac{1}{1 - \nu}} \quad \nu \neq \sigma$$

- $1/\nu$ is the elasticity of substitution between C and real balances
- Are the services provided by money separable from other goods and services?

MUF GIVES US A MONEY DEMAND SCHEDULE

• Combine FOC for M_t/P_t and A_{t+1} :

$$\begin{split} 1 &= \beta \mathbb{E}_{t} [\frac{\mathcal{U}_{c_{t+1}}}{\mathcal{U}_{c_{t}}} \frac{P_{t}}{P_{t+1}} (1+i_{t})] \longrightarrow (1+i_{t})^{-1} = \beta \mathbb{E}_{t} [\frac{\mathcal{U}_{c_{t+1}}}{\mathcal{U}_{c_{t}}} \frac{P_{t}}{P_{t+1}}] \\ 1 &= \beta \mathbb{E}_{t} [\frac{\mathcal{U}_{c_{t+1}}}{\mathcal{U}_{c_{t}}} \frac{P_{t}}{P_{t+1}}] + \frac{\mathcal{U}_{m_{t}/P_{t}}}{\mathcal{U}_{c_{t}}} \end{split}$$

Combining and re-arranging gives us:

$$\frac{1}{i_t} + 1 = \frac{\mathcal{U}_{C_t}}{\mathcal{U}_{m_t/P_t}}$$

 Assume second functional form which nests both separable and non-separable cases

$$\mathcal{U}_{c_t} = (1 - \theta) X_t^{\nu - \sigma} C_t^{-\nu} \qquad \qquad \mathcal{U}_{m_t/P_t} = \theta X_t^{\nu - \sigma} \left(\frac{M_t}{P_t}\right)^{-\nu}$$

MIU GIVES US A MONEY DEMAND SCHEDULE

Plug in expressions for marginal utilities:

$$\frac{1}{i_t} + 1 = \frac{(1 - \theta)X_t^{\gamma - \sigma}C_t^{-\gamma}}{\theta X_t^{\gamma - \sigma} \left(\frac{M_t}{P_t}\right)^{-\gamma}}$$
$$\frac{1}{i_t} + 1 = \frac{(1 - \theta)C_t^{-\gamma}}{\theta \left(\frac{M_t}{P_t}\right)^{-\gamma}}$$

• Solving for $\frac{M_t}{P_t}$ gives us the money demand schedule:

$$\frac{M_t}{P_t} = \left(\frac{\theta}{1-\theta}\right)^{\frac{1}{\nu}} C_t \left(\frac{1}{i_t} + 1\right)^{\frac{1}{\nu}}$$

- The money demand schedule depends on i_t and C_t
- Money demand is increasing in consumption and decreasing in the nominal interest rate

BREAKING MONEY NEUTRALITY WITH MIU

- Inspect mechanisms through which money affects real side
- Do models with MIU yield empirically sound predictions? \rightarrow briefly

HOW DO HOUSEHOLDS RESPOND TO AN EXOGENOUS INCREASE IN M?

- 1. **Income Effect:** before any price changes, an increase in M increases consumption
- 2. **Substitution Effect:** increase in M \rightarrow price of money falls $(1/P_t) \rightarrow C_t$ becomes relatively more expensive than money \rightarrow decrease C
 - What determines the overall effect?
 - **Key parameter:** elasticity of substitution between M_t/P_t and C_t , $\frac{1}{\nu}$
 - Empirically plausible scenario has C go up after an expansionary monetary shock ($\uparrow M_t$)
 - Income effect has to dominate substitution effect ightarrow relatively low $1/\nu$

DO MODELS WITH MIU YIELD EMPIRICALLY SOUND PREDICTIONS?

- 1. Empirically plausible calibrations yield small real effects of monetary policy (Woodford 2003, Walsh 2010, Gali Ch.2)
- 2. Transmission mechanism of monetary shocks at odds with empirical evidence (see Gali Ch. 2)

why? matching the negative comovement between i_t and Y_t , M_t requires a counterfactual path for ΔM_{t+1}

RECAP

- MIU is the simplest way to incorporate money (alternative: CIA models)
- Woodford 2003 discusses ways to microfound MIU
- MIU allows us to derive a money demand function
- With non-separable utility, MIU can generate money non-neutrality.
 However:
 - loads real effects of MP on household preferences
 - it generates small real effects of monetary policy
 - transmission mechanism at odds with empirical evidence

REFERENCES

- Gali, J. (2015). Monetary policy, inflation, and the business cycle: an introduction to the new Keynesian framework and its applications. Princeton University Press.
 Chapter 2.
- Sidrausky, Miguel (1967). Inflation and Economic Growth. Journal of Political Economy 75.
- Woodford, Michael (2003). Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton University Press, NJ.
- Walsh, Carl (2010). Monetary Theory and Policy, 3r ed. MIT Press, Cambridge, MA.