RESOLUCIÓN DE SUDOKUS MEDIANTE LA TEORIA DE GRAFOS

Se presentan dos enfoques destacados que son el emparejamiento de grafos y la coloración de grafos, ofreciendo perspectivas matemáticamente rigurosas para abordar el Sudoku y sus variantes.

OBJETIVOS

- Representar los Sudokus como grafos
- Implementar uno o varios algoritmos de coloración para encontrar una solución óptima
- Diseñar e implementar el teorema de Berge.

Primer método Coloración

Segundo método Teorema de Berge

			7	4		6		
					9	3		8
9					2			
		2	9					
7	1						4	9
8	5			1				2
8	2			7				
			3		8		6	
	7	5						

[5 4]	7][1	69][691] 328] 457]				
71	6][2	8 3][176] 549] 832]				
[194	4][3	2 8][9 1 4] 7 6 5] 2 8 3]				
finished in 0.1251220999999							

CONCLUSIONES

Ventajas

- El algoritmo de coloración permite resolver Sudokus 4x4
- La implementación del código es más sencilla que el Teorema de Berge
- El algoritmo del Teorema de Berge resuelve Sudokus con un nivel de dificultad mayor Desventajas
- El algoritmo de coloración no es capaz de resolver 9x9 con menos de 30 entradas
- El algoritmo del teorema de Berge solo permite implementar la solución de Sudokus 4x4 o 9x9 no ambos al tiempo.

METODOLOGÍA COLORACIÓN DE GRAFOS:

La coloración de grafos es el proceso de asignar colores a los vértices de un grafo de manera que ningún par de vértices adyacentes tenga el mismo color.Para esto implementamos el Algoritmo DSatur modificado que define una funcion **chrom** que devuelve el número de colores utilizados para

EMPAREJAMIENTOS:

Representamos en un digrafo bipartito para cada fila del sudoku, en donde las casillas se van a interpretar como los nodos superiores y los posibles valores que puede tomar cualquier casilla representados como los nodos inferiores. En donde a partir de hallar un emparejamiento máximo y aplicando el teorema de Berge, se buscarán ciclos alternantes(componentes fuertemente conexos) para identificar valores no viables en el Sudoku, lo que nos ayuda a reducir los candidatos incorrectos de algunas casillas y acercarnos a la solución correcta del Sudoku.

BIBLIOGRAFÍA

[1].A. Duran, 'Solving Sudoku puzzles with Graph Theory', 17- July-2023

[2]. Solving Sudokus Like A Human, (5 de septiembre de 2019).

[3]. Teoría de grafos: cómo resolver sudokus, (4 de marzo de 2019).