

limma, Affymetrix, RMA, Independent filtering

- Journal club signup
- Some project ideas
- Affymetrix arrays + RMA → robust linear regression
- Some of the basics of mapping (mostly practical, theory comes next week)

Mark D. Robinson, Statistical Genomics, IMLS

Project ideas: Consulting/Research

- 1. Long-read RNA-seq: in-house dataset, compare a new protocol (longer fragments sequenced with MiSeq) of RNA-seq data to existing protocols using a qPCR independent truth dataset. Involves running various algorithms, comparing them to truth and to existing datasets.
- **2.** Male-female differential expression analysis (RNA-seq): non-model insect for which the *de novo* assembled transcriptome is currently being built. In principle, it would be a standard differential expression analysis.
- **3. Splicing changes in cancer** (RNA-seq): dataset from Unispital Zurich (~40 patients). Would augment standard differential expression analyses with recurrent splice changes. Apply 1 or 2 methods.
- **4. Myeloid cell classification**. Partial re-analysis of Becher et al. 2014 http://www.ncbi.nlm.nih.gov/pubmed/25306126 (e.g. Figure 5)

Project ideas: some papers used in past years

- http://www.ncbi.nlm.nih.gov/pubmed/23029029 -- take the raw reads, map to genome, count reads by gene, do a differential expression analysis between cell types
- 2. http://www.ncbi.nlm.nih.gov/pubmed/22988256 -- recreate some of the analyses (some real datasets, some simulations) that compared normalization methods
- 3. http://www.ncbi.nlm.nih.gov/pubmed/22965124 -- recreate some of the analyses that compared RNA-seq to microarrays
- 4. http://www.ncbi.nlm.nih.gov/pubmed/21824971 -- using some independent simulated RNA-seq, add a new method to an existing comparison

Affymetrix probe design

Early platforms (11 or 20 probes in a set), 25bp probes, 3' biased

Figure 1.1: Multiple probes interrogating the sequence for a particular gene make up probesets.

TGTACCTAGTACTGGCTAGTAAGCCGTCTATCGGTATC

Perfect Match CATGATGACCGATCATTCGGCAGAT

Mismatch CATGATGACCGAGCATTCATCGGCAGAT

Figure 1.2: Pefect Match and Mismatch Probes.

Latest Affymetrix design: "whole transcript" arrays

Still 25 base pair probes, multiple probes per transcript ("probesets") No more mismatch probes.

Reference Sequence

- HuExon: Human Exon 1.0 ST (~40 probes per gene, 4 probes per "exon", annotated and predicted transcripts)
- HuGene: Human Gene 1.0 ST (~25 probes per gene, annotated genes only)
- NEW in 2013: HTA (Human Transcriptome Array): updated content + junction probes

The nature of Affymetrix Probe Level Data

Institute of Molecular Life Sciences

- Data for one gene that is differentially expressed between heart (red is 100% heart) and brain (blue is 100% brain).
- 11 mixtures x 3 replicates = 33 samples (33 lines)
- Note the parallelism: probes have different affinities

"Summarization": Going from probesets to summarized expression level

$$AvDiff = \frac{1}{|A|} \sum_{j \in A} (PM_j - MM_j)$$

$$CT_{j} = \begin{cases} MM_{j}, & \text{if } MM_{j} < PM_{j} \\ \text{less than } PM_{j}, & \text{if } MM_{j} \ge PM_{j} \end{cases}$$

$$signal = TukeyBiweight\{log(PM_j - CT_j)\}$$

dChip (MBEI)

$$PM_{ij} - MM_{ij} = \theta_i \cdot \phi_j + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim N(0, \sigma^2)$$

 θ_i expression index

 ϕ_j probe-specific affinity

 $arepsilon_{ij}$ noise component

Robust multichip analysis (RMA)

Exploration, normalization, and summaries of high density oligonucleotide array probe level data

RAFAEL A. IRIZARRY*

Department of Biostatistics, Johns Hopkins University, Baltimore MD 21205, USA rafa@jhu.edu

BRIDGET HOBBS

Division of Genetics and Bioinformatics, WEHI, Melbourne, Australia

FRANCOIS COLLIN

Gene Logic Inc., Berkeley, CA, USA

YASMIN D. BEAZER-BARCLAY, KRISTEN J. ANTONELLIS, UWE SCHERF

Gene Logic Inc., Gaithersburg, MD, USA

TERENCE P. SPEED

Division of Genetics and Bioinformatics, WEHI, Melbourne, Australia. Department of Statistics, University of California at Berkeley

Biostatistics 2003

Encompasses 3 steps

- background correction
- normalization
- probe level model fit ("summarization")

b) Standard deviation vs. average expression

Linear model decomposes the probe-level data into PROBE effects and CHIP effects

Linear model:

$$y_{ik} = g_i + p_k + e_{ik}$$

Robust Multichip Analysis (RMA) uses this model. Irizarry et al. 2003, Biostatistics

Parameters are estimated robustly, meaning a small number of outliers have minimal effect

Tissue mixture dataset

Fitting the model – median polish

Probes $\begin{bmatrix} e_{11} & \dots & e_{1N_A} & a_1 \\ \vdots & & \vdots & \vdots \\ e_{I_n1} & \dots & e_{I_nN_A} & a_{I_n} \\ b_1 & \dots & b_{N_A} & m \end{bmatrix}$

```
pe <- rnorm(11)</pre>
ce <- rnorm(8)+8
z <- outer(pe,ce,"+") +
     rnorm(length(pe)*length(ce),sd=.5)
e <- z
m < -a < -b < -0
niter <- 3
for(i in 1:niter) {
  rm <- rowMedians(e)</pre>
                          # calc row medians
  e \leftarrow sweep(e,1,rm)
                          # subtract row medians
  a \leftarrow a + rm
                          # add row medians to a
  mb <- median(b)</pre>
  b <- b-mb
  m < - m + mb
  cm <- colMedians(e)</pre>
                          # calc col medians
  e \leftarrow sweep(e, 2, cm)
                          # subtract col medians
  b \leftarrow b + cm
                          # add col medians to b
  ma <- median(a)</pre>
  a <- a-ma
  m < - m + ma
# a - "probe effects"
# m+b - "chip effects"
```


library(MASS)

f <- lm(y~0+x) fr <- rlm(y~0+x)

Robust regression – motivating example

OLS = ordinary least squares

The OLS estimator is ... optimal in the class of linear unbiased estimators when the errors are homoscedastic and serially uncorrelated ... OLS provides minimum-variance meanunbiased estimation when the errors have finite variances.

Has good properties, when the data is "nice".

Replace:

$$\underset{\text{with:}}{\operatorname{arg\,min}_{\beta}} \sum_{i=1}^{n} (y_i - f_i(\beta))^2$$

$$\arg\min_{\beta} \sum_{i=1}^{n} w_i(\beta) (y_i - f_i(\beta))^2$$

Robust regression – mechanics of iteratively reweighted least squares

Residuals

Sketch of IRLS:

Calculate initial estimates of parameters

Repeat until very little change:

Calculate residuals

Using standardized residuals, weight observations Re-estimate parameters


```
# this construction only works for the
# 1-parameter no-intercept linear model
tukey <- function(r,k=1.345) {
  abs(r) < k + k/abs(r)*(abs(r)>k)
W < -1
niter <- 2
b \leftarrow sum(w*y*x)/sum(w*x^2)
for(i in 1:niter) {
  r <- y-b*x
                                                  mad = median
  w <- tukey( r/mad(r) )</pre>
                                                  absolute deviation
  b \leftarrow sum(w*y*x)/sum(w*x^2)
par(mfrow=c(2,1))
plot(r,type="h",ylim=c(-3,3))
barplot(w)
```

More details – weight functions (as function of standardized residuals)

More details – weight functions (of normalized residuals) Concept: influence / bounded influence

The estimated standard error for our estimators is thus given by

$$\operatorname{SE}\left(\hat{\beta}_{j}^{(n)}\right) = \frac{1}{\sqrt{I_{n}}} \sqrt{\frac{\sum_{i=1}^{I_{n}} \psi\left(\frac{\log_{2}\left(y_{ij}^{(n)}\right) - \hat{\beta}_{j}^{(n)}}{s}\right)^{2} / I_{n}}{\left(\sum_{i=1}^{I_{n}} \psi'\left(\frac{\log_{2}\left(y_{ij}^{(n)}\right) - \beta_{j}^{(n)}}{s}\right) / I_{n}\right)^{2}}.$$

Figure 4.2: The ψ functions for some common M-estimators.

Robust regression leads to various quality assessment metrics

Identifies poor performing probes

Robust regression leads to various quality assessment metrics

Identifies poor performing samples

Relate to limma objects

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \end{bmatrix}$$

$$E[y_1]=E[y_2]=\alpha_1$$

 $E[y_3]=E[y_4]=\alpha_2$
 $E[y_5]=E[y_6]=\alpha_3$

$$\beta = C\alpha = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} \alpha_2 - \alpha_1 \\ \alpha_3 - \alpha_2 \end{bmatrix}$$

$$\begin{bmatrix} 1,] & -0.07 & 2.03 & -0.16 \\ [2,] & -4.73 & -5.75 & 2.67 \\ [3,] & -16.04 & 8.85 & -13.74 \\ \\ > & \text{head(round(fit.c$coef,2))}$$

```
> design
  alpha1 alpha2 alpha3
                       1
> cont.matrix <- makeContrasts(beta1="alpha2-alpha1",</pre>
                  beta2="alpha3-alpha2".levels=desian)
> cont.matrix
         Contrasts
         beta1 beta2
Levels
  alpha1
             -1
  alpha2
  alpha3
fit <- lmFit(y,design)</pre>
fit.c <- contrasts.fit(fit, cont.matrix)</pre>
fit.c <- eBayes(fit.c)</pre>
> head(round(y,2),3)
       [,1] [,2] [,3] [,4]
                                   [,5]
                                           [,6]
[1,] -1.62 1.49 2.50 1.57 -0.71
                                           0.38
[2,] -4.50 -4.95 -3.66 -7.83 -1.59
\begin{bmatrix} 3 \\ 1 \end{bmatrix} -10.17 -21.90 14.03 3.66 -12.21 -15.26
> head(round(fit$coef,2),3)
     alpha1 alpha2 alpha3
> head(round(fit.c$coef,2),3)
      Contrasts
       beta1 beta2
  [1,] 2.10 -2.20
  [2,\bar{]} -1.02
              8.42
  Γ3,7 24.89 -22.59
```


MAPPING MILLIONS OF SHORT "READS" ONTO THE GENOME/TRANSCRIPTOME

Mark D. Robinson, Statistical Genomics, IMLS

In a nutshell: Mapping reads onto genomes/ transcriptomes

- •Computationally intense problem: DNA sequencing instruments produce millions-billions of short "reads" from genome (or cDNA population, etc.)
- •Genomes are large: Human 3.3B characters
- Need to allow for mismatches (e.g. genetic polymorphisms, sequencing errors)
- Repetitive regions (report multiple equally good alignments?)
- •BLAST was workhorse of sequence alignment for many years (slightly different application: best substring)
- •Additional challenges: RNA, paired-end reads, quality scores, bisulphite treatment, etc.

Mapping cDNA (from RNA) reads: needs a "splice-aware" aligner

Solution: if you know where they are, add the junction sequence to the genome

Paired-end reads

Paired-end reads: costs more, but gives additional information (exact length of fragment, can map reads where one of pair hits repetitive region)

FASTA versus FASTQ formats

>ERR030881.107 HWI-BRUNOP16X_0001:2:1:13663:1096

>ERR030881.311 HWI-BRUNOP16X_0001:2:1:18330:1130

TCCATACATAGGCCTCGGGGTGGGGGAGTCAGAAGCCCCCAGACCCTGTG

+

@ERR030881.311 HWI-BRUNOP16X_0001:2:1:18330:1130#0/1
TCCATACATAGGCCTCGGGGTGGGGGGGTCAGAAGCCCCCAGACCCTGTG

+

1 read

The world of mapping algorithms: focus here on RNA-seq data

Exercises: Mapping reads to genomes/ transcriptomes, counting features

- Spot check mapping with BLAT
- Familiarize with the STAR pipeline → later: kallisto
- Understand the common file types
- Mapping a small example (2M bases of chr19 as the "genome")

Mark D. Robinson, Statistical Genomics, IMLS

A small example

hs_ch19_subset.fa: Sequence from human chr19 from 2,000,000-4,000,000

→ imagine a genome that is only 2M bases long

galaxy_small.fastq: subset of reads from a real dataset

chr19_rescaled.gff: Table of annotation

→ Tell the aligner where the junctions should be

Pipeline + Filetypes

FASTA/FASTQ → SAM/BAM → "count" table

raw aligned matrix

reads reads

Annotation is stored in: GTF/GFF1/GFF2/GFF3

http://www.broadinstitute.org/igv/GFF

Getting help / info

STAR (RNA-seq):

https://code.google.com/p/rna-star/

IGV:

http://www.broadinstitute.org/software/igv/home

For DNA: bowtie2, bwa mem, ...

IGV

