Spline-based approach to infer farm vehicle trajectories

Jerome Cao

19 May 2016

Overview

- Preliminary
 - Current Methods
 - Smoothing Spline
 - Cross Validation
- 2 "Tractor Spline"
 - A New Objective Function and Its Solution
 - Basis Funtions of Tractor Spline
 - Cross Validation of Tractor Spline
 - Adjusted Penalty Term
- Gaussian Process Regression and Tractor Spline
- Simulation and Application
- 5 Future Work and Acknowledgment
- 6 References

1.1 GPS points and Trajectory

GPS units record time series data of a moving object. These data are in the form of

$$T = \{ p_t = [x_t, y_t, v_t, \omega_t, b_t, \cdots] | t \in \mathbb{R} \}.$$
 (1)

X	longitude
у	latitude
V	velocity
ω	barrier
b	boom status

Trajectory is a connection by a time series successive position recorded by GPS devices.

Line-based Trajectory Sr

Χ

 \succ

1.2 Current Methods

- Curve-based method: $P(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ to obtain a spline that passes through any given sequence of points.
- Parametric cubic Bézier curves, if $0 \le t \le 1$, then $B(t) = (1-t)^3 P_0 + 3(1-t)^2 t P_1 + 3(1-t) t^2 P_2 + t^3 P_3$.
- B-spline: allows continuity of order two between the curve segments and goes through the points smoothly.
- Hermite interpolation: $p(t) = (2t^3 3t^2 + 1)p_0 + (t^3 2t^2 + t)m_0 + (-2t^3 + 3t^2)p_1 + (t^3 t^2)m_1$.

1.3 Smoothing Spline

Denote by $h_m(t): \mathbb{R}^p \to \mathbb{R}$ the mth transformation of T, m=1,...,M. We then model

$$f(t) = \sum_{m=1}^{M} \beta_m h_m(t).$$

a linear basis expansion in Y.

[T.Hastie, R.Tibshirani, J.Friedman, and J.Franklin (2001)]

Consider the following problem: among all functions f(t) with two continuous derivatives, find one that minimizes the penalized residual sum of squares

$$MSE(f,\lambda) = \frac{1}{n} \sum_{i=1}^{n} (f(t_i) - y_i)^2 + \lambda \int_0^1 (f''(t))^2 dx$$
 (2)

where $\lambda \geq 0$ is a fixed smoothing parameter, (t_i, y_i) , $i = 1, \dots, n$ are observed data and $0 < t_1 < \dots < t_n < 1$.

 $\lambda = 0$: f can be any function that interpolates the data.

 $\lambda = \infty$: the simple least squares line fit.

1.4 Cross Validation

The next step is finding best parameter λ . Considering data (t_i, y_i) , $i = 1, \dots, n$. The leave-one-out cross validation error is

$$CV = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}^{(-i)}(t_i))^2$$

where $\hat{f}^{(-i)}(t)$ is the smoothing spline without the datapoint (t_i, y_i) . So the best parameter λ is the one that could minimize CV-errors.

2.1 A New Objective Function

If we have some knots, such that $a < t_1 < \cdots < t_n < b$, and $z_i = (x_i, y_i)$, $w_i = (u_i, v_i)$, for $i = 1, 2, \cdots, n$, and a positive piecewise parameter $\lambda(t)$, which will control penalty functions, then the equation

$$J[f] = \frac{1}{n} \sum_{i=1}^{n} |f(t_i) - z_i|^2 + \frac{\gamma}{n} \sum_{i=1}^{n} |f'(t_i) - w_i|^2 + \sum_{i=1}^{n} \lambda_i \int_{t_i}^{t_{i+1}} |f''(t)|^2 dt$$
 (3)

is minimised by a tractor spline, which is linear outside the knots.

Tractor Spline

The solution to objective function (3) is called tractor spline, which on each interior interval (t_i, t_{i+1}) , $i = 2, \dots, n-2$, f(t) is a cubic polynomial, but on interval (t_1, t_2) and (t_{n-1}, t_n) can be a linear function; it fits together at each point t_i in such a way that f(t) itself and its first and second derivatives are continuous at each t_i , $i = 2, \dots, n-2$.

2.2 Basis Funtions of Tractor Spline

Hermite Spline basis functions on an arbitrary interval $[t_i, t_{i+1}]$

$$h_{00}^{(i)}(t) = \begin{cases} 2(\frac{t-t_i}{t_{i+1}-t_i})^3 - 3(\frac{t-t_i}{t_{i+1}-t_i})^2 + 1, & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$h_{10}^{(i)}(t) = \begin{cases} \frac{(t-t_i)^3}{(t_{i+1}-t_i)^2} - 2\frac{(t-t_i)^2}{t_{i+1}-t_i} + (t-t_i), & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$h_{01}^{(i)}(t) = \begin{cases} -2(\frac{t-t_i}{t_{i+1}-t_i})^3 + 3(\frac{t-t_i}{t_{i+1}-t_i})^2, & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$h_{11}^{(i)}(t) = \begin{cases} \frac{(t-t_i)^3}{(t_{i+1}-t_i)^2} - \frac{(t-t_i)^2}{t_{i+1}-t_i}, & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

We define functions $N_1=h_{00}^{(1)}$, $N_2=h_{10}^{(1)}$, $N_{2n-1}=h_{01}^{(n)}$, $N_{2n}=h_{11}^{(n)}$. For all $k=1,2,\ldots,n-2$ we define N_{2k+1} by

$$N_{2k+1}(t) = egin{cases} h_{01}^{(k)} + h_{00}^{(k+1)} & t
eq t_{k+1} \ 1 & t = t_{k+1}. \end{cases}$$

and $N_{2k+2} = h_{11}^{(k)} + h_{10}^{(k+1)}$.

We then have

$$N_i(t_j) = \begin{cases} 1 & \text{if } i = 2j - 1 \\ 0 & \text{otherwise.} \end{cases}$$

and

$$N_i'(t_j) = \begin{cases} 1 & \text{if } i = 2j \\ 0 & \text{otherwise.} \end{cases}$$

Theorem

The functions N_1, \ldots, N_{2n} provide a basis for the set of functions on $[t_1, t_n]$ which are continuous, have continuous first and second derivatives and which are cubic on each open interval (t_i, t_{i+1}) .

Basis functions on interior interval $[t_k, t_{k+2}]$. The first and second derivatives are continuous

Solution to The New Objective Function

The tractor spline f(t) is a linear combination of basis functions

$$f(t) = \sum_{j=1}^{2n} N_j(t)\theta_j$$

and the objective function reduces to

$$MSE(\theta, \lambda, \gamma) = (\mathbf{z} - \mathbf{B}\theta)^{T}(\mathbf{z} - \mathbf{B}\theta) + \gamma(\mathbf{w} - \mathbf{C}\theta)^{T}(\mathbf{w} - \mathbf{C}\theta) + n\theta^{T}\Omega_{\lambda}\theta,$$

where $\mathbf{z} = \{z(x_i, y_i)\}$ are the knots and $\mathbf{w} = \{(u_i, v_i)\}$ are the tangent at knots.

After solving the above equation, we have

$$\hat{\theta} = (\mathbf{B}^T \mathbf{B} + \gamma \mathbf{C}^T \mathbf{C} + n \mathbf{\Omega}_{\lambda})^{-1} (\mathbf{B}^T \mathbf{z} + \mathbf{C}^T \mathbf{w}). \tag{4}$$

Then tractor spline could be represented as

$$\hat{f}(t) = \sum_{j=1}^{2n} N_j(t)\hat{\theta}_j \tag{5}$$

2.3 Cross Validation of Tractor Spline

Because \hat{f} and \hat{f}' could be written in the form of

$$\hat{f} = B\hat{\theta} = Sz + \gamma Tw$$

 $\hat{f}' = C\hat{\theta} = Uz + \gamma Vw$

Then

$$CV = \frac{1}{n} \sum_{i} (\hat{f}^{(-i)}(t_i) - z_i)^2$$

$$= \frac{1}{n} \sum_{i} \left(\frac{\hat{f}(t_i) - z_i + \gamma \frac{T_{ii}}{1 - \gamma V_{ii}} (\hat{f}'(t_i) - w_i))}{1 - S_{ii} - \gamma \frac{T_{ii}}{1 - \gamma V_{ii}} U_{ii}} \right)^2$$

Application

Regarding to the boom status (0 and 1), we divided the penalty function into two parts: Ω_u and Ω_d . That brings two penalty parameters λ_u and λ_d .

Thus, we totally have three parameters λ_u , λ_d and γ .

Trajectory Reconstruction

2.4 Adjusted Penalty Term

The crazy curves are caused by tricky points, where there is a break and a long time gap. At these points the velocity $v \approx 0$. To adjust this issue, we bring an adjusted penalty term

$$\lambda(t) = \begin{cases} \frac{\Delta t_i^3}{\Delta d_i^2} \lambda_d, & \text{when } b = 1\\ \frac{\Delta t_i^3}{\Delta d_i^2} \lambda_u, & \text{when } b = 0 \end{cases}, t_i \le t < t_{i+1}.$$
 (6)

Penalty Function

The penalty parameter λ becomes a function $\lambda(t)$ that varying on different domains.

$$\lambda(t) = b \frac{\Delta t^3}{\Delta d^2} \lambda_d + (1-b) \frac{\Delta t^3}{\Delta d^2} \lambda_u, \text{ where } \begin{cases} b=1 & \text{if boom is working} \\ b=0 & \text{if boom is not working} \end{cases}. \tag{7}$$

A penalty matrix Ω_k on a boom-not-working interval $[t_k, t_{k+1}]$ wil be

$$\Omega_{k} = \lambda_{k} \begin{pmatrix}
\frac{12}{\Delta t_{k}^{3}} & \frac{6}{\Delta t_{k}^{2}} & \frac{-12}{\Delta t_{k}^{3}} & \frac{6}{\Delta t_{k}^{2}} \\
\frac{6}{\Delta t_{k}^{2}} & \frac{4}{\Delta t_{k}} & \frac{-6}{\Delta t_{k}^{2}} & \frac{2}{\Delta t_{k}} \\
\frac{-12}{\Delta t_{k}^{3}} & \frac{-6}{\Delta t_{k}^{2}} & \frac{12}{\Delta t_{k}^{3}} & \frac{-6}{\Delta t_{k}^{2}} \\
\frac{6}{\Delta t_{k}^{2}} & \frac{2}{\Delta t_{k}} & \frac{-6}{\Delta t_{k}^{2}} & \frac{4}{\Delta t_{k}}
\end{pmatrix}$$

$$= \frac{\lambda_{d}}{\Delta d_{k}^{2}} \begin{pmatrix}
12 & 6\Delta t_{k} & -12 & 6\Delta t_{k} \\
6\Delta t_{k} & 4\Delta t_{k}^{2} & -6\Delta t_{k} & 2\Delta t_{k}^{2} \\
-12 & -6\Delta t_{k} & 12 & -6\Delta t_{k} \\
6\Delta t_{k} & 2\Delta t_{k}^{2} & -6\Delta t_{k} & 4\Delta t_{k}^{2}
\end{pmatrix} .$$

$$(8)$$

Matrix (8) can be divided into three sub matrices,

$$\Omega_{1}^{(k)} = \frac{1}{\Delta d_{k}^{2}} \begin{pmatrix} 12 & -12 \\ -12 & 12 \end{pmatrix},
\Omega_{2}^{(k)} = \frac{\Delta t}{\Delta d_{k}^{2}} \begin{pmatrix} 6 & 6 \\ -6 & -6 \end{pmatrix} = \frac{1}{\Delta d\hat{v}_{k}} \begin{pmatrix} 6 & 6 \\ -6 & -6 \end{pmatrix},
\Omega_{3}^{(k)} = \frac{\Delta t_{k}^{2}}{\Delta d_{k}^{2}} \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} = \frac{1}{\hat{v}_{k}^{2}} \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}.$$
(9)

Matrix $\Omega_1^{(k)}$ shows a correlated relationship between position x_k and x_{k+1} . Matrix $\Omega_2^{(k)}$ shows a correlated relationship between position x_k , x_{k+1} and velocity v_k , v_{k+1} .

Matrix $\Omega_3^{(k)}$ shows a correlated relationship between velocity v_k and v_{k+1} .

3.1 Gaussian Process Regression

If the observed function f(t) has zero mean, and

$$f(t) \sim N(0, k(t, t'))$$

where k(t, t') is covariance matrix, then the prediction mean is

$$\bar{f}_* = K_* K^{-1} y \tag{10}$$

and uncertainty in this estimate is captured in its variance

$$var(f_*) = K_{**} - K_* K^{-1} K_*^T$$
 (11)

day	1	2	3	4	5	6	7	8	9	10
count	1	3	4	7	10	18	25	39	48	59

3.2 Hilbert Space and Reproducing Kernel for Tractor Spline

For any $f \in \mathbb{H}$, $f = \sum_{i=1}^{2n} \theta_i N_i(t)$. Equipped an inner product

$$(f,g) = (\sum_{i=1}^{2n} a_i N_i(t), \sum_{i=1}^{2n} b_i N_i(t)) = \sum_{i=1}^{2n} a_i b_i,$$
 (12)

and a kernel function

$$R(s,t) = \sum_{i=1}^{2n} N_i(s) N_i(t),$$
 (13)

the space \mathbb{H} is a Reproducing Kernel Hilbert Space

$$(f_t(s), R(s,t)) = (\sum_{i=1}^{2n} a_i N_i(s), \sum_{i=1}^{2n} N_i(s) N_i(t)) = \sum_{i=1}^{2n} a_i N_i(s) = f(s).$$

Given the sample points t_i , $i = 1, \dots, n$ and noting that the space

$$\mathbb{A} = \{f : f = \sum_{i=1}^{n} \alpha_i R(t_i, \cdot) = \sum_{i=1}^{n} \alpha_i \left(\sum_{j=1}^{2n} N_j(t_i) N_j(t) \right) \}$$
 (14)

is a linear subspace of \mathbb{H} ,

$$\mathbb{B} = \{ f : f = \sum_{i=1}^{n} \beta_i \dot{R}(t_i, \cdot) = \sum_{i=1}^{n} \beta_i \left(\sum_{j=1}^{2n} N'_j(t_i) N_j(t) \right) \}$$
 (15)

is another linear subspace of $\mathbb H$. Then $f\in\mathbb H$ can be written as

$$f(t) = \sum_{i=1}^{n} c_i R(t_i, t) + \sum_{i=1}^{n} d_i \dot{R}(t_i, t) + \rho(t)$$
 (16)

where c_i , d_i are coefficients, and $\rho(x) \in \mathbb{H} \ominus \mathbb{A} \ominus \mathbb{B}$.

The objective function can be written as

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{n} c_j R(t_j, t_i) - \sum_{j=1}^{n} d_j \dot{R}(t_j, t_i) - \rho(t_i))^2
+ \frac{\gamma}{n} \sum_{i=1}^{n} (V_i - \sum_{j=1}^{n} c_j R'(t_j, t_i) - \sum_{j=1}^{n} d_j \dot{R}'(t_j, t_i) - \rho'(t_i))^2
+ \int_{0}^{1} \lambda(t) (\sum_{i=1}^{n} c_j R''(t_j, t) + \sum_{i=1}^{n} d_j \dot{R}''(t_j, t) + \rho''(t))^2 dt$$
(17)

And reduces tow

$$(\mathbf{Y} - Q\mathbf{c} - P\mathbf{d})^{T}(\mathbf{Y} - Q\mathbf{c} - P\mathbf{d}) + \gamma(\mathbf{V} - \frac{\partial Q}{\partial t}\mathbf{c} - \frac{\partial P}{\partial t}\mathbf{d})^{T}(\mathbf{V} - \frac{\partial Q}{\partial t}\mathbf{c} - \frac{\partial P}{\partial t}\mathbf{d}) + n\Omega_{\lambda} + n\lambda(\rho, \rho).$$
(18)

The last term $\lambda(\rho, \rho)$ is minimized at $\rho = 0$.

3.3 Covariance Matrix and Posterior Mean

Observing $y_i \sim N(f(t_i), \sigma_n^2)$, $v_i \sim N(f'(t_i), \frac{\sigma_n^2}{\gamma})$ and a prior $f \sim N(0, \tau^2)$, the joint distribution of $\mathbf{Y}, \mathbf{V}, f(t)$ and f'(t) is normal with zero mean and covariance matrix

$$cov(\mathbf{Y}, \mathbf{V}, f, f') = \begin{bmatrix}
\tau^{2}R(t_{i}, t_{j}) + \sigma_{n}^{2}I & \tau^{2}R'(t_{i}, t_{j}) + \frac{\sigma_{n}^{2}}{\sqrt{\gamma}}I & \tau^{2}R(t_{i}, t) & \tau^{2}R'(t_{i}, t) \\
\tau^{2}\dot{R}(t_{i}, t_{j}) + \frac{\sigma_{n}^{2}}{\sqrt{\gamma}}I & \tau^{2}\dot{R}'(t_{i}, t_{j}) + \frac{\sigma_{n}^{2}}{\gamma}I & \tau^{2}\dot{R}(t_{i}, t) & \tau^{2}\dot{R}'(t_{i}, t) \\
\tau^{2}R^{\top}(t_{i}, t) & \tau^{2}\dot{R}^{\top}(t_{i}, t) & \tau^{2}R(t, t) & \tau^{2}R'(t, t) \\
\tau^{2}R'^{\top}(t_{i}, t) & \tau^{2}\dot{R}'^{\top}(t_{i}, t) & \tau^{2}\dot{R}(t, t) & \tau^{2}\dot{R}'(t, t)
\end{bmatrix} \\
= \begin{bmatrix}
\tau^{2}Q + \sigma_{n}^{2}I & \tau^{2}O + \frac{\sigma_{n}^{2}}{\sqrt{\gamma}}I & \tau^{2}\xi & \tau^{2}\xi' \\
\tau^{2}O + \frac{\sigma_{n}^{2}}{\sqrt{\gamma}}I & \tau^{2}P + \frac{\sigma_{n}^{2}}{\gamma}I & \tau^{2}\dot{\xi} & \tau^{2}\dot{\xi}' \\
\tau^{2}\xi^{\top} & \tau^{2}\dot{\xi}^{\top} & \tau^{2}\dot{R}(t, t) & \tau^{2}R'(t, t) \\
\tau^{2}\xi'^{\top} & \tau^{2}\dot{\xi}'^{\top} & \tau^{2}\dot{R}(t, t) & \tau^{2}\dot{R}'(t, t)
\end{bmatrix} \tag{19}$$

Then

$$E\begin{bmatrix} f \\ f' | \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \xi^{\top} & \dot{\xi}^{\top} \\ \xi'^{\top} & \dot{\xi}'^{\top} \end{bmatrix} \begin{bmatrix} Q + n\lambda I & O + \frac{n\lambda}{\sqrt{\gamma}}I \\ O + \frac{n\lambda}{\sqrt{\gamma}}I & P + \frac{n\lambda}{\gamma}I \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{Y} \\ \gamma \mathbf{V} \end{bmatrix}$$

$$\triangleq \begin{bmatrix} \xi^{\top} & \dot{\xi}^{\top} \\ \xi'^{\top} & \dot{\xi}'^{\top} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \mathbf{Y} \\ \gamma \mathbf{V} \end{bmatrix}$$

$$= \begin{bmatrix} \xi^{\top} (A\mathbf{Y} + B\gamma \mathbf{V}) + \dot{\xi}^{\top} (C\mathbf{Y} + D\gamma \mathbf{V}) \\ \xi'^{\top} (A\mathbf{Y} + B\gamma \mathbf{V}) + \dot{\xi}'^{\top} (C\mathbf{Y} + D\gamma \mathbf{V}) \end{bmatrix}$$
(20)

where $n\lambda = \sigma_n^2/\tau^2$.

The posterior mean $E(f|\mathbf{Y}, \mathbf{V})$ is a linear combination of basis functions $N_i(t)$, and both ξ and $\dot{\xi}$ contain $N_i(t)$, thus the posterior mean is of the form $\xi^{\top}\mathbf{c} + \dot{\xi}^{\top}\mathbf{d}$. Similarly, $E(f'|\mathbf{Y}, \mathbf{V})$ is of the form $\xi'^{\top}\mathbf{c} + \dot{\xi}'^{\top}\mathbf{d}$, with the same coefficients given by

$$\mathbf{c} = A\mathbf{Y} + B\gamma \mathbf{V} \tag{21}$$

$$\mathbf{d} = C\mathbf{Y} + D\gamma \mathbf{V} \tag{22}$$

Numeric Testing

When λ is chosen 0.001, smoothing spline and GPs return the same results.

4.1 Simulation

By setting initial $y_0 = 0$ and $a_0 = 0$, and $y_{i+1} = y_i + (v_i + v_{i+1}) \frac{t_{i+1} - t_i}{2}$ to calculate positions.

Original Functions with Noises

Generated Position Functions with Noises

Comparing with Other Methods

- wavelet(sure) in Library("WaveThresh") of R
- wavelet(Bayesian)
- P-spline (penalized B spline)
- ullet Tractor Spline without velocity term in MSE $(\gamma=0)$
- ullet Tractor Spline without adjusted penalty term $(\frac{\Delta t^0}{\Delta d^0})$
- Tractor Spline

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{\lambda, \gamma}(t_i))^2,$$
 (23)

MSE (10 ⁻⁴)	SNR	Tractor Spline	TS $\gamma = 0$	TS without APT	P-spline	Wavelet(sure)	Wavelet(Bayes)
Blocks	7	16.53	15.99	16.69	16.14	*15.39	16.68
Blocks	3	89.79	*87.64	89.94	88.27	98.35	90.24
Bumps	7	4.40	4.19	4.55	4.33	*4.18	4.59
Bumps	3	23.93	*23.19	24.10	23.55	26.23	23.74
HeaviSine	7	4.16	4.01	4.16	4.02	*3.79	4.19
HeaviSine	3	22.63	*22.19	22.65	22.02	23.53	22.07
Doppler	7	1.15	*1.07	1.10	1.15	*1.07	1.13
Doppler	3	6.27	*5.94	6.28	6.05	6.85	6.29

TMSE =
$$\frac{1}{n} \sum_{i=1}^{n} (f(t_i) - \hat{f}_{\lambda,\gamma}(t_i))^2$$
. (24)

TMSE (10^{-6})	SNR	Tractor Spline	TS $\gamma = 0$	TS without APT	P-spline	Wavelet(sure)	Wavelet(Bayes)
Blocks	7	*1.75	54.25	28.68	54.76	201.02	182.12
Blocks	3	*16.44	152.5	30.76	171.59	1138.08	712.36
Bumps	7	*1.64	23.44	21.10	24.21	71.71	69.26
Bumps	3	*8.51	77.78	37.12	77.52	330.77	238.79
HeaviSine	7	*1.53	7.80	1.56	9.54	55.37	44.88
HeaviSine	3	*8.21	33.56	8.49	34.26	240.72	110.49
Doppler	7	1.51	6.67	*1.08	8.26	14.87	12.01
Doppler	3	*8.10	22.14	8.25	19.95	81.48	50.33

4.2 Application

Black dots represent the value of $\log(\lambda(t))$. The bigger penalty values, the larger dots.

A video at :https://www.youtube.com/watch?v=lQOSt8HrYRU

5.1 Future Work

- Solving issues in the current tractor spline.
- Moving from batch inference to online inference
- Deducing high-level description of farm vehicle motion

5.2 Acknowledgment

- Ministry of Business, Innovation & Employment
 - Grant UOOX 1208
- TracMap
- Dr Matthew Parry
- Professor David Bryant

Ministry of Business, Innovation & Employment

6 References

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin (2001)

The Elements of Statistical Learning: data mining, inference and prediction.

P. J. Green. (1994)

Nonparametric regression and generalized linear models : a roughness penalty approach

Y.J. Kim and C. Gu (2004)

Smoothing spline gaussian regression: more scalable computation via efficient approximation

Journal of the Royal Statistical Society: Series B (Statistical Methodology) vol. 66, no. 2, pp. 337-356

Blight, B.J.N. and Ott, L. (1975)

A Bayesian Approach to Model Inadequacy for Polynomial Regression. $Biometrika\ 62(1):79-88.$

G.P.Nason. (2008)

Wavelet Methods in Statistics with R.

The End