Example: Beetle Mortality

▶ Study the relation between the mortality of beetles after 5 hours exposure to gaseous disulphide (CS₂) and the concentrations.

$Log10(Dose), x_i$	$\#$ of beetles, m_i	# killed, y _i
1.6907	59	6
1.7242	60	13
1.7552	62	18
1.7842	56	28
1.8113	63	52
1.8369	59	53
1.8610	62	61
1.8839	60	60

Table: Grouped data.

Figure: Beetle mortality data. Proportion killed: y_i/m_i against dose on the \log_{10} scale: x_i .

Example: Median Lethal Dose

- Recall the beetle mortality example, where the primary goal is to study the relation between the mortality rate and the CS2 concentration.
- Suppose we are interested in finding the median lethal dose (LD50), i.e., the dose required to kill half the population.
- ▶ In the logistic regression framework, it is equivalent to predicting the dose x_0 that leads to a response rate $\pi_0 = 0.5$.

$$g(\pi) = \beta_0 + \beta_1 x$$

This type of problem is common in toxicology.

We are interested in x_0 s.t. $\beta_0 + \beta_1 x_0 = g(0.5)$ in LD50 study

- ▶ Logit: $x_0 = -\frac{\beta_0}{\beta_1}$
- Point Estimate: $\hat{x}_0 = x_0(\hat{\beta}_0, \hat{\beta}_1) = -\hat{\beta}_0/\hat{\beta}_1$
- Asymptotic variance of \hat{x}_0 :

$$\operatorname{var}(\hat{x}_{0}) = (\frac{\partial x_{0}}{\partial \beta_{0}})^{2} \operatorname{var}(\hat{\beta}_{0}) + (\frac{\partial x_{0}}{\partial \beta_{1}})^{2} \operatorname{var}(\hat{\beta}_{1})$$
$$+2(\frac{\partial x_{0}}{\partial \beta_{0}})(\frac{\partial x_{0}}{\partial \beta_{1}}) \operatorname{cov}(\hat{\beta}_{0}, \hat{\beta}_{1})$$

▶ Then the asymptotic CI of x_0 is

$$x_0 \in [x_L, x_R]$$

$$= \left[\hat{x}_0 - z_{\alpha/2} \sqrt{\mathsf{var}(\hat{x}_0)}, \hat{x}_0 + z_{\alpha/2} \sqrt{\mathsf{var}(\hat{x}_0)}\right]$$

• $(1-\alpha)100\%$ CI of LD50: $[10^{x_L}, 10^{x_R}]$