

FIG.2

FIG. 3

RD COMMON 64ksps 26		NEL 1024ksps 11	PILOT TPC SYMBOL LOGICAL CHANNEL SYMBOLS SYMBOLS	ATED PHYSICAL 88.11	PILOT TPC SYMBOL LOGICAL CHANNEL SYMBOLS SYMBOLS	TED PHYSICAL 151	PILOT	(j) DEDICATED PHYSICAL 128ksps 4411	PILOT TPC SYMBOL LOGICAL CHANNEL SYMBOLS SYMBOLS	ATED PHYSICAL 54 FT. 35	PILOT TPC SYMBOL LOGICAL CHANNEL SYMBOLS SYMBOLS	NTED PHYSICAL 32ksps 22ksps 15	
(f) FORWARD COMMON CONTROL, PHYSICAL	CHANNEL	(g) dedicated physichannel		(h) DEDICATED PHYSI CHANNEI.		(i)DEDICATED PHYSIC CHANNET.		(j) DEDICATED PHYSIC CHANNEL		(k) DEDICATED PHYSI		(I) DEDICATED PHYSICAL CHANNEL	FIC 4R

FIG.5

FIG.6

FIG.7A

FIG.7B

FIG.8

вссн2		·
ССН2		
BCCH2 BCCH1 BCCH1 BCCH2		
вссн1	·	FIC 0
вссн2		FI
вссн2		
BCCH1 BCCH1 BCCH2		
вссн1	RADIO	

FIG.10

FIG.12

FIG.13A

1		#64	SNC	32	
		#63 #64 DIVISIONS		ACCH UNIT #32	
				Б	
		#62	32 DIVISIONS	ACCH UNIT #31	
		#61	DIVI	ACC	
(ES)				•	
FRA				•	
임					
Z 2		8#	SNO	#4	
SUPER FRAME (64 RADIO FRAMES		#7	32 DIVISIONS	ACCH UNIT #4	
FR			######################################		
UPER CPER		9#	STONS	ACCH UNIT #3	
S		#2	32 DIVISIONS	ACC	
		#4	IONS	H #2	
		۳ # +	#3	32 DIVISIONS	ACCH UNIT #2
	劉↓	#2	CONS	##	
	RADIO FRAME	#1	32 DIVIS	ACCH UNIT#	

FIG.13B

MAPPING INTO 128ksps DEDICATED PHYSICAL CHANNEL

_		(
	#64	16 DIVI- SIONS	UNIT #64 ACCH
	#63	16 DIVI- SIONS	UNIT #63 ACCH
	#62	16 DIVI- SIONS	UNIT #62 ACCH
	#61	16 DIVI- SIONS	UNIT #61 ACCH
4 4 4 0 4		6 6 6 7 1 1 1 1	•
0 0 0 0 0 0		6 6 6 8 2 8 8 5 1 5	•
·	& #=	16 DIVI- SIONS	UNIT #8 ACCH
	#1	16 DIVI- SIONS	UNIT #7
:	9#	16 DIVI- SIONS	UNIT #6 ACCH
	#2	16 DIVI- SIONS	UNIT #5 ACCH
•	#4	16 DIVI- SIONS	UNIT #4 ACCH
	#3	16 DIVI- SIONS	UNIT #3
¥ ↓	#2	16 DIVI- SIONS	UNIT #2 ACCH
RADIO FRAME	#1	16 DIVI- SIONS	UNIT #1
\$↑			

SUPER FRAME (64 RADIO FRAMES)

FIG.13C

MAPPING INTO 256ksps DEDICATED PHYSICAL CHANNEL

FIG.14

FIG.15A

ENCODING RATE = 1/3 CONSTRAINT LENGTH = 9

FIG.15B

17	BCCH2 SFN = 16	
16	BCC	
15	BCCH2 FN = 14	
14	BCCH2 SFN = 14	
12 13	BCCH2 SFN = 12	
12	BC	
10 11	BCCH1 SFN = 10	
10	SFN	
മ	BCCH2 SFN = 8	
œ	BC	
_	BCCH2 SFN = 6	
9	BC	
Ŋ	BCCH2 SFN = 4	ment remarkation for all pure.
4	BC	A.E.
က	BCCH2 SFN = 2	UNIT
7	BC(ВССН
П	BCCH1 SFN = 0	4.057
0	SEN	RADIO
SFN VALUE = 0	ERCH CHANNEL	
	ρį	

F1G.18

FIG.19

FIG.20

FIG.22

FIG.23

FIG.24

FIG.26

TIME SLOT (0.625ms)		SPREADING CODE 1	SPREADING CODE 2	SPREADING CODE 3	SPREADING CODE 4
TPC		SPREAD- ING CODE 1	SPREAD- ING CODE 1	SPREAD- ING. CODE 1	1 / 1
PILOT	TRANASMISSION TIMING	DEDICATED PHYSICAL CHANNEL 1	DEDICATED PHYSICAL CHANNEL 2	DEDICATED PHYSICAL CHANNEL 3	DEDICATED PHYSICAL CHANNEL 4
· .				SPREADING	

FIG.27

FIG.28B

-PERFORMANCE MONITORING(CRC-6) -TRANSMISSION OF FERF AND LOC

-PERFORMANCE REPORTING

PULSE AMPLITUDE

COORDINATES OF INTERSECTION POINTS

Δ	•	(. 0,	2 31	땁		(0,	1 7)
A	•	(. 01	4.57	r	٠	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 • /)
В	:	(2.4,	2.3)	G	:	(0.4,	1.7)
C	:	(2.4,	1.0)	H	:	(1.6,	0.9)
D	:	(3.2,	0.3)	I	:	(1.6,	0.3)
ĸ	•	(4 0	0 3)			•	·

FIG.30

	!	MCC
	CHANNEL NUMBER VCI=A: CONTROL SIGNAL VC BETWEEN BTS AND MCC	MCC
	VCI=64 : TIMING CELL VC	
	VCI=B : PAGING VC	
	VCI=C ₁ ,C ₂ ··: CONTROL SIGNAL VC BETWEEN MS AND MCC	
	CID=0~255 : FOR USERS	
BTS		BSC-SW
	CHANNEL NUMBER VCI=E ₁ ,E ₂ ··: CONTROL SIGNAL VC BETWEEN MS AND MCC	
	CHANNEL NUMBER VCI=G ₁ ,G ₂ · · : CONTROL SIGNAL VC BETWEEN MS AND MCC	
	CHANNEL NUMBER VCI=I ₁ , I ₂ · · : CONTROL SIGNAL VC BETWEEN MS AND MCC	

FIG.31

BIT	8 0	
OCT 1	00H	
OCT 2	00н	
OCT 3	00н	CELL
OCT 4	01H	
OCT 5	52н	
OCT 6	бан	
OCT 1	6АН	

FIG.32

• START FIELD (1 OCTET) OSF:OFFSET FIELD

FIG.35

FIG.36

FIG.37

				4	13/1	34				i
FIG.38A	FIG.38B			•						
		ATM HEADER					·			
	IdA	VCI	PTI CLP	HEC	MESSAGE ID	NUMBER OF TIMES OF CORRECTIONS (1 OCTET)	CORRECTION RANGE (1 OCTET)	TRANSMISSION DELAY (2 OCTET)	SF TIME INFORMATION (RECEPTION) (MASTER SIDE) (2 OCTETS)	SF TIME INFORMATION (TRANSMISSION) (MASTER SIDE) (2 OCTETS)

FIG.38A

	SF TIME INFORMATION (TRANSMISSION) (SLAVE SIDE) (2 OCTETS)		LC COUNTER INFORMATION (RECEPTION) (MASTER SIDE) (3 OCTETS)	LC COUNTER INFORMATION (TRANSMISSION) (MASTER SIDE) (3 OCTETS)	LC COUNTER INFORMATION (RECEPTION) (SLAVE SIDE) (3 OCTETS)	LC COUNTER INFORMATION (TRANSMISSION) (SLAVE SIDE) (3 OCTETS)	LC COUNTER SHIFT VALUE (3 OCTETS)	UNUSED (6A (h))	000000	CRC-10	
--	--	--	--	---	---	--	-----------------------------------	-----------------	--------	--------	--

FIG.38B

FIG. 39

 \mathfrak{s}

47/134

REVERSE CHANNEL

P(MS) • • REVERSE TRANSMISSION POWER

Pmax(MS) . . MAXIMUM REVERSE TRANSMISSION POWER

P(BS) • • • FORWARD TRANSMISSION POWER
Pmax(BS) • • • MAXIMUM FORWARD TRANSMISSION POWER Pmin(BS) • • • MINIMUM FORWARD TRANSMISSION POWER

FIG.41A

FIG.41B

.

RECEIVE TPC BITS FROM MULTIPLE BASE
STATIONS INDEPENDENTLY
MEASURE RELIABILITY OF TPC BITS OF
EACH BASE STATION
DECIDE REVERSE TRANSMISSION POWER
FROM TPC BITS OF EACH BASE STATION, AND CONTROL IT

START MONITORING OF FORWARD

TRANSMISSION MODE

• DECIDE WHETHER RATIO OF AVERAGE
RECEIVED POWER OF PILOT AND TPC
SYMBOLS TO AVERAGE RECEIVED
POWER OF LOGICAL CHANNEL SYMBOLS
IS EQUAL TO OR GREATER THAN P_{DTX}
dB, OR WHETHER CRC IS CORRECT

DETECT NORMAL FORWARD TRANSNISSION

START USING OF FORWARD RECEIVED INFORMATION

TRANSFER, TO CONTROLLER OR TERMINAL INTERFACE, RECEIVED INFORMATION SATISFYING PREDETERMINED CONDITIONS SUCH AS CRC IS OK.

START NORMAL REVERSE TRANSMISSION

- STOP TARNSMISSION OF IDLE
- STOP TARNSMISSION OF LOGICAL CHANNEL SYMBOLS WHEN NO TRANSMISSION INFORMATION IS PATTERN PRESENT
- INFORMATION WHEN IT IS PRESENT TRANSMIT TRANSMISSION

START NORMAL FORWARD TRANSMISSION

• STOP TRANSMISSION OF IDLE
PATTERN
• STOP TRANSMISSION OF LOGICAL
CHANNEL SYMBOLS WHEN NO
TRANSMISSION INFORMATION IS
PRESENT
• TRANSMIT TRANSMISSION
INFORMATION WHEN IT IS PRESENT

START MONITORING OF REVERSE
TRANSMISSION MODE
DECIDE WHETHER RATIO OF AVERAGE
AND TPC SYMBOLS TO AVERAGE
RECEIVED POWER OF LOGICAL
CHANNEL SYMBOLS IS EQUAL TO OR
GREATER THAN PDIX dB, OR WHETHER
CRC IS CORRECT

DETECT NORMAL REVERSE TRANSMISSION

START USING OF REVERSE RECEIVED INFORMATION

AS SUCH • TRANSFER, TO CONTROLLER OR TERMINAL INTERFACE, RECEIVED INFORMATION SATISFYING PREDETERMINED CONDITIONS

FIG.47

REVERSE DEDICATED PHYSICAL CHANNEL (UPCH)

)

FORWARD DEDICATED PHYSICAL CHANNEL (UPCH)

REVERSE COMMON CONTROL PHYSICAL CHANNEL (RACH)

 \widehat{A}

FORWARD COMMON CONTROL PHYSICAL CHANNEL (FACH)

BSC

FROM COMMON CONTROL PHYSICAL CHANNEL TO DEDICATED PHYSICAL CHANNEL

FIG. 54

...)

FIG.56

FIG.57

66/134

ATM CELL TRANSMISSION SEQUENCE TABLE TRANSMISSION ORDER (ABOUT 256 AT MAXIMUM)

PRIORITY

E	F	A	E	F	В	E	F	С	E	•	•	•
F	A	В	F	A	C	F	A	D	F	•	•	•
A	В	С	A	В	D	A	В	E	A	•	•	•
В	C	ם	В	С	E	В	С	F	В	•	•	•
C	D	E	C	D	F	C	D	A	C	. •	•	•
ם	E	F	D	E	A	D	E	В	D	•	•	•

FIG.58A

SHORT CELL TRANSMISSION SEQUENCE TABLE (QUALITY CLASS (6))

TRANSMISSION ORDER (ABOUT 128 AT MAXIMUM)

PRIORITY

	E1	E1	E1	E 2	E1	E1	E1	E3	•	•	•
1	E2	E 2	E2	E 3	E 2	E2	E2	E4	•	•	•
١	E 3	E 3	E3	E4	E 3	E 3	E3	E1	•	•	•
	E4	E4	E4	E1	E4	E4	E4	E2	•	•	•

FIG.58B

SHORT CELL TRANSMISSION SEQUENCE TABLE (QUALITY CLASS (7))

TRANSMISSION ORDER (ABOUT 128 AT MAXIMUM)

PRIORITY

F1	F1	F2	F1	F1	F3	F1	F1	٠	•	•
F2	F2	F3	F2	F2	F4	F2	F2	٠	•	•
F3	F3	F4	F3	F3	F1	F3	F3	•	•	•
F4	F4	F1	F4	F4	F2	F4	F4	•	•	•

FIG.58C

- CARRY OUT CELL EXTRACTION PROCESSING IN ACCORDANCE WITH TRANSMISSION SEQUENCE DETERMINED FOR EACH OUTPUT TIMING.
- IF NO CELL IS PRESENT IN HIGHER PRIORITY QUALITY CLASS, A CELL IN THE NEXT PRIORITY IS EXTRACTED.

CHECK BITS ARE OBTAINED BY INVERTING BITS OF REMAINDER GENERATED PAD: PADDING BITS (ALL "0s")
Len: NUMBER OF BYTES OF EFFECTIVE DATA LENGTH OF USER FRAME
CRC-32: CRC CHECKING BITS OVER 32 BITS
CRC-32: GENERATOR POLYNOMIAL
G(X) = X³²+X²⁶+X²³+X²⁴+X¹⁶+X¹⁴

BY THE GENERATOR POLYNOMIAL

FIG.59

FIG.60

FIG.62

72/134 BI : BCCH IDENTIFICATION INFORMATION 0 : BCCH1, 1 : BCCH2 FIG.64A FIG.64B DESIGNATED BY MACRO ONLY
AT INITIAL SETTING, AND
CONTINUOUSLY TRANSMITTED AUTOMATICALLY
BY HARDWARE AFTER THE SETTING 16BITS 8BITS CRC TA PAD THENGTH CRC 8BITS 16BITS 130CT 104BITS 320BIT * 2BITS REVERSE DIRECTION INTERFERING AMOUNT **FIG.64A** 130CT CPS SDU 16BITS SFIN TRANSNISSION POWER 130CT 1BIT 1BIT DIVIDE INTO INTERNAL ENCODING UNITS CONVOLUTIONAL ENCODING R = 1/2 K = 9 ر اا ADD W BITS AND TAIL BITS LAYER 3 INFORMATION CPS PDU BTS HARDWARE BTS AP

 $\widehat{(\cdot,\cdot)}$

FIG.64B

FIG.67B

FIG.68B

FIG.71A

<u>`:</u>)

FIG.71B

FIG.72B

FIG.74B

FIG.75

 $\overline{\cdot}$

FIG.76A

FIG.76A

FIG.76B

FIG.76

FIG.77C

FIG.78C

,)

FIG.81B

FIG.83B

FIG.84B

FIG.85

FIG.87

FIG.87A FIG.87B

FIG.87A

		•		•		•			-	•
		SEN = 2		FN = 2		FN = 2				FN = 0
	ION DELAY			FN = 1	1280chip = 0.3125msec	FN = 1	81920		e.	FN = 0
		SFN = 1	r (chips)	FN = 0			40960		7 X 2chip	H
		SFN = 0	- Trame + Tsior (chips)			FN = 0		TRANSMISSION DELAY	Trame + Tslot + 1280 + TRANSMISSION DELAY X 2chip	FN = 0
	TRANSMISSION DELAY	SFN		6-1	- -±.	1			280 + TRANS	216-1
		SFN = 216-1	1	FN = 216-1		FN = 216+1	—40960X(2 ¹⁶ -1)		Tslor + 1	FN = 216-1
		SF				FN = 216-1	********************************	ਸੂੰ ਜੂੰ ੈ	TFRAME +	FN = 216-1
**************************************	RECEIVED RADIO	RECEIVED RADIO FRAMES OF MS ON PERCH CHANNEL RECEIVED RADIO FRAMES OF MS ON FORWARD DEDICATED PHYSICAL CHANNEL				REVERSE DEDICATED PHYSICAL CHANNEL TRANSMISSION TIMING OF MS PHASE			RECEIVED RADIO FRAMES OF BUS ON	REVERSE DEDICATED FOR PHYSICAL CHANNEL

FIG.87B

FIG.88A FIG.88B

FIG.88A

	1:	22/1 3	:		•		•		•	
	SFN = 2		SFN = 2		SFN = 2		FN = 2		FN = 2	MS FRAME TIME DIFFERENCE MEASURED VALUE = TDHO
	S		SFN = 1				FN = 1		FN = 1	MEASURE
	= 1				SFN = 1					FFERENCE
	SFN =	hips)		भ			FN = 0	θ +	FN ≒ 0	IO EMIT
		= Tsect (SFN = 0	SION DELA	SFN = 0	>	F	<u>12</u> 80chip + β	F	MS FRAME
	SFN = 0	SECTOR	SFN	TRANSMISSION DELAY	SFN	·	<u>.</u>	-	16-1	
↑		OFFSET FOR EACH SECTOR = TSECT (chips)	-		1-		$FN = 2^{16}-1$		FN = 216-1	
10msec	SFN = 216-1		SFN = 2^{16} -1		$SFN = 2^{16}-1$	·	216-2	·	= 216-2	- ∓7 (
↓	L				T		E		E	
	PEC DESTINATION	ANSMITTED RA	CHANNEL OF DHO	i Be	roc	RECEIVED RADIO	DHO ORIGINATING	PHYSICAL CHANNEL TO THE	FRAMES OF MS ON	REVERSE DEDICATED PHYSICAL CHANNEL

FIG.88B

FIG.89

FIG.90A FIG.90B

FIG.90A

FIG.90B

FIG.91

FIC. 92

130/134

32 KSPS DEDICATED PHYSICAL CHANNEL (DTX CONTROL)

FIG.94

