

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS Curso de Pós-Graduação em Sensoriamento Remoto

SER-347 – Introdução à Programação para Sensoriamento Remoto Lista de Exercícios 06

Dr. Fabiano Morelli (fabiano.morelli@inpe.br)

Dr. Gilberto Ribeiro de Queiroz (gilberto.queiroz@inpe.br)

Dr. Thales Sehn Körting (thales.korting@inpe.br)

7 de maio de 2020

Introdução à Programação com a Linguagem Python – Lista 06

Exercícios

Atenção:

- 1. Os exercícios práticos devem ser desenvolvidos em Python. Escreva a documentação que achar pertinente dentro do próprio código fonte, que deverá utilizar a codificação de caracteres UTF-8.
- 2. A solução de cada exercício deverá ser entregue em um único arquivo de código fonte na linguagem Python. Use arquivos com a extensão .py com a seguinte nomenclatura: exercício-{numero}.py. Ex: exercício-01.py.
- 3. Envie por e-mail **um único** arquivo¹ no **formato zip**, chamado lista-06_nome-completo-aluno.zip, contendo todos os arquivos de código fonte dos exercícios.
- 4. O título (assunto) do e-mail deve seguir o seguinte padrão: [ser347-2020] [lista-06] nome-completo-aluno.
- 5. O endereço de entrega da lista é: ser347@dpi.inpe.br.
- 6. Prazo para entrega: 11/05/2020 22:00

 $^{^1{\}rm N\~{a}o}$ use acentos ou caracteres especiais nos nomes dos arquivos.

Exercício 01. Dadas as seguintes séries temporais

- $s_1 \rightarrow 168, 398, 451, 337, 186, 232, 262, 349, 189, 204, 220, 220, 207, 239, 259, 258, 242, 331, 251, 323, 106, 1055, 170$
- $s_2 \rightarrow 168, 400, 451, 300, 186, 200, 262, 349, 189, 204, 220, 220, 207, 239, 259, 258, 242, 331, 251, 180, 106, 1055, 200$

Utilize funções NumPy para:

- calcular a distância euclidiana entre as séries
- calcular a série temporal com os valores médios entre s_1 e s_2
- \bullet calcular a série temporal com os valores máximos de cada instante entre s_1 e s_2
- $\bullet\,$ calcular a série temporal com os valores mínimos de cada instante entre s_1 e s_2

Exercício 02. A Tabela 1, extraída do portal do IBGE, apresenta a distribuição da população por sexo, segundo os grupos de idade no Brasil, para o ano de 2010. Com base nesta tabela, construa um gráfico de barras vertical com os dados da distribuição da população feminina.

Exercício 03. Tomando como base a Tabela 1, construa um gráfico de barras horizontal com os dados da distribuição da população masculina.

Dica: Veja a documentação da função barh.

Exercício 04. Tomando como base a Tabela 1, construa um gráfico de barras horizontal que mostre a distribuição das populações masculina e feminina lado a lado, como no seguinte link.

Exercício 05 (extra). Procure um conjunto de dados de seu interesse, na internet, e utilize as funções da matplotlib para gerar um gráfico informativo, compilando estas informações.

Grupos de Idade	Masculino	Feminino
0 a 4 anos	7.016.987	6.779.171
5 a 9 anos	7.624.144	7.345.231
10 a 14 anos	8.725.413	8.441.348
15 a 19 anos	8.558.868	8.432.004
20 a 24 anos	8.630.229	8.614.963
25 a 29 anos	8.460.995	8.643.419
30 a 34 anos	7.717.658	8.026.854
35 a 39 anos	6.766.664	7.121.915
40 a 44 anos	6.320.568	6.688.796
45 a 49 anos	5.692.014	6.141.338
50 a 54 anos	4.834.995	5.305.407
55 a 59 anos	3.902.344	4.373.877
60 a 64 anos	3.041.035	3.468.085
65 a 69 anos	2.224.065	2.616.745
70 a 74 anos	1.667.372	2.074.264
75 a 79 anos	1.090.517	1.472.930
80 a 84 anos	668.623	998.349
85 a 89 anos	310.759	508.724
90 a 94 anos	114.964	211.594
95 a 99 anos	31.529	66.806
100 anos e mais	7.247	16.989

Tabela 1: População por sexo e grupo de idade. Fonte: IBGE.