UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACIÓN CÁLCULO CIENTÍFICO (6109) SEMESTRE II-2014

TALLER 6 - Mínimos cuadrados lineales.

MATLAB

- L = chol(A). Encuentra la factorización de Cholesky de la matriz A.
- [Q,R] = qr(A): Encuentra la factorización QR full de la matriz A.
- [Q,R] = qr(A,0): Encuentra la factorización QR reducida de la matriz A.
- cond(A,p): Determina el número de condición de la matriz A, en la norma subordinada p.

Parte Práctica

1. Considere el siguiente sistema de ecuaciones Ax = b, donde:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{bmatrix} \quad \mathbf{y} \quad b = \begin{bmatrix} 3 \\ \epsilon \\ \epsilon \\ \epsilon \end{bmatrix}$$

La solución exacta de este sistema es $x_* = (1,1,1)^t$ razón por la cual $r = b - Ax_* = 0$. Así mismo, observe que para $|\epsilon| \approx 0$ el rango de A es tres, mientras que para $\epsilon = 0$ el rango de esta matriz es uno. El objetivo de este ejercicio es, aproximar x_* mediante distintos métodos directos para resolver un sistema sobredeterminado y luego determinar la calidad de dichas aproximaciones.

Para los siguientes valores de $\epsilon = 10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}, 10^{-10}$:

- a) Calcule la condición de A^TA .
- b) Resuelva el sistema de ecuaciones normales usando la factorización de Cholesky de A^TA , y denote por x_c la aproximación obtenida. Calcule $r_c = b Ax_c$ y $e_c = x_* x_c$.
- c) Resuelva el sistema sobredeterminado usando la factorización QR de A, vía Householder (comando qr(A)) y denote por x_h la aproximación obtenida. Calcule $r_h = b Ax_h$ y $e_h = x_* x_h$.

- d) Resuelva el sistema sobredeterminado usando la factorización QR reducida de A, vía Gram Schmidt modificado (rutina $\mathtt{mdgrsch.m}$) y denote por x_g la aproximación obtenida. Calcule $r_g = b Ax_g$ y $e_g = x_* x_g$.
- e) Con los valores obtenidos en los ítems anteriores complete la siguiente tabla

		Residuales			Errores		
ϵ	$cond(A^TA)$	$ r_c _2$	$ r_h _2$	$ r_g _2$	$ e_c _2$	$ e_h _2$	$\ e_g\ _2$
10^{-6}							
10^{-7}							
10^{-8}							
10^{-9}							
10^{-10}							

- f) En función de los datos de la Tabla anterior qué método usaría para resolver el sistema dado. Justifique su respuesta.
- 2. Considere los siguientes puntos (x_i, y_i) en \mathbb{R}^2 : (0,4), (1,5), (2,8), (3,1).
 - Obtenga el polinomio $p_2(x)$ de grado menor o igual a dos que mejor aproxime, en el sentido de los mínimos cuadrados a los puntos dados.
 - Grafique a $p_2(x)$ y a los puntos (x_i, y_i) en el intervalo [-0.5, 3.5].
 - Calcule el error generado por $p_2(x)$, es decir calcule $\sum_{i=1}^4 [p_2(x_i) y_i]^2$.
 - Cambie el punto (3, 1) por el punto (3, 13) y repita los ítems anteriores. ¿Qué observa?
- 3. Sea la siguiente matriz A y un vector b

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{pmatrix} \quad b = \begin{pmatrix} 3 \\ 5 \\ 9 \end{pmatrix}$$

- Determine el rango de la matriz A y el rango de la matriz aumentada (A|b). Tiene solución el sistema?
- Construya los elementos del sistema de ecuaciones normales para la matriz A dada y el vector independiente b. Calcule el número de condición de A y A^tA . Qué relación observa entre estos valores?
- Según sus conocimientos de teoría: Qué factorización emplearía para resolver el sistema de ecuaciones normales.? Por qué?
- Considera que el sistema de ecuaciones normales es la forma más apropiada de resolver un sistema sobredeterminado. Por qué?