<151> 1998-03-11

Sequence Listing

```
<110>
          Ashkenazi, Avi
          Baker Kevin P.
          Botstein, David
          Desnoyers, Luc
          Eaton, Dan
          Ferrara, Napoleon
          Filvaroff, Ellen
          Fong, Sherman
          Gao, Wei-Qiang
          Gerber, Hanspeter
          Gerritsen, Mary E.
          Goddard, Audrey
          Godowski, Paul J.
          Grimaldi, J. Christopher
          Gurney, Austin L.
          Hillan, Kenneth J
          Kljavin, Ivar J.
          Kuo, Sophia S.
          Napier, Mary A.
          Pan, James;
          Paoni, Nicholas F.
          Roy, Margaret Ann
          Shelton, David L.
          Stewart, Timothy A.
          Tumas, Daniel
          Williams, P. Mickey
          Wood, William I.
<120> Secreted and Transmembrane Polypeptides and Nucleic
      Acids Encoding the Same
<130> P2630P1C12
<150> 09/918585
<151> 2001-07-30
<150> 60/062250
<151> 1997-10-17
<150> 60/064249
<151> 1997-11-03
<150> 60/065311
<151> 1997-11-13
<150> 60/066364
<151> 1997-11-21
<150> 60/077450
<151> 1998-03-10
<150> 60/077632
<151> 1998-03-11
<150> 60/077641
```

- <150> 60/077649
- <151> 1998-03-11
- <150> 60/077791
- <151> 1998-03-12
- <150> 60/078004
- <151> 1998-03-13
- <150> 60/078886
- <151> 1998-03-20
- <150> 60/078936
- <151> 1998-03-20
- <150> 60/078910
- <151> 1998-03-20
- <150> 60/078939
- <151> 1998-03-20
- <150> 60/079294
- <151> 1998-03-25
- <150> 60/079656

ļ.

. A

.

- <151> 1998-03-26
- <150> 60/079664
- <151> 1998-03-27
- <150> 60/079689
- <151> 1998-03-27
- <150> 60/079663
- <151> 1998-03-27
- <150> 60/079728
- <151> 1998-03-27
- <150> 60/079786
- <151> 1998-03-27
- <150> 60/079920
- <151> 1998-03-30
- <150> 60/079923
- <151> 1998-03-30
- <150> 60/080105
- <151> 1998-03-31
- <150> 60/080107
- <151> 1998-03-31
- <150> 60/080165
- <151> 1998-03-31
- <150> 60/080194

- <151> 1998-03-31
- <150> 60/080327
- <151> 1998-04-01
- <150> 60/080328
- <151> 1998-04-01
- <150> 60/080333
- <151> 1998-04-01
- <150> 60/080334
- <151> 1998-04-01
- <150> 60/081070
- <151> 1998-04-08
- <150> 60/081049
- <151> 1998-04-08
- <150> 60/081071
- <151> 1998-04-08
- <150> 60/081195
- <151> 1998-04-08
- <150> 60/081203
- <151> 1998-04-09
- <150> 60/081229 <151> 1998-04-09
- <150> 60/081955 <151> 1998-04-15
- <150> 60/081817 <151> 1998-04-15
- <150> 60/081819
- <151> 1998-04-15
- <150> 60/081952
- <151> 1998-04-15
- <150> 60/081838
- <151> 1998-04-15
- <150> 60/082568
- <151> 1998-04-21
- <150> 60/082569
- <151> 1998-04-21
- <150> 60/082704
- <151> 1998-04-22
- <150> 60/082804
- <151> 1998-04-22

- <150> 60/082700
- <151> 1998-04-22
- <150> 60/082797
- <151> 1998-04-22
- <150> 60/082796
- <151> 1998-04-23
- <150> 60/083336
- <151> 1998-04-27
- <150> 60/083322
- <151> 1998-04-28
- <150> 60/083392
- <151> 1998-04-29
- <150> 60/083495
- <151> 1998-04-29
- <150> 60/083496
- <151> 1998-04-29
- <150> 60/083499
- <151> 1998-04-29
- <150> 60/083545
- <151> 1998-04-29
- <150> 60/083554
- <151> 1998-04-29
- <150> 60/083558
- <151> 1998-04-29
- <150> 60/083559
- <151> 1998-04-29
- <150> 60/083500
- <151> 1998-04-29
- <150> 60/083742
- <151> 1998-04-30
- <150> 60/084366
- <151> 1998-05-05
- <150> 60/084414
- <151> 1998-05-06
- <150> 60/084441
- <151> 1998-05-06
- <150> 60/084637
- <151> 1998-05-07
- <150> 60/084639

- <151> 1998-05-07
- <150> 60/084640
- <151> 1998-05-07
- <150> 60/084598
- <151> 1998-05-07
- <150> 60/084600
- <151> 1998-5-07
- <150> 60/084627
- <151> 1998-05-07
- <150> 60/084643
- <151> 1998-05-07
- <150> 60/085339
- <151> 1998-05-13
- <150> 60/085338
- <151> 1998-05-13
- <150> 60/085323
- <151> 1998-05-13
- <150> 60/085582
- <151> 1998-05-15
- <150> 60/085700
- <151> 1998-05-15
- <150> 60/085689
- <151> 1998-05-15
- <150> 60/085579
- <151> 1998-05-15
- <150> 60/085580
- <151> 1998-05-15
- <150> 60/085573
- <151> 1998-05-15
- <150> 60/085704
- <151> 1998-05-15
- <150> 60/085697
- <151> 1998-05-15
- <150> 60/086023
- <151> 1998-05-18
- <150> 60/086430
- <151> 1998-05-22
- <150> 60/086392
- <151> 1998-05-22

- <150> 60/086486
- <151> 1998-05-22
- <150> 60/086414 <151> 1998-05-22
- <150> 60/087208
- <151> 1998-05-28
- <150> 60/087106
- <151> 1998-05-28
- <150> 60/087098
- <151> 1998-05-28
- <150> 60/091010
- <151> 1998-06-26
- <150> 60/090863
- <151> 1998-06-26
- <150> 60/091359
- <151> 1998-07-01
- <150> 60/094651
- <151> 1998-07-30
- <150> 60/100038
- <151> 1998-09-11
- <150> 60/109304
- <151> 1998-11-20
- <150> 60/113296
- <151> 1998-12-22
- <150> 60/113621
- <151> 1998-12-23
- <150> 60/123957
- <151> 1999-03-12
- <150> 60/126773
- <151> 1999-03-29
- <150> 60/130232 <151> 1999-04-21
- <150> 60/131022 <151> 1999-04-26
- <150> 60/131445 <151> 1999-04-28
- <150> 60/134287
- <151> 1999-05-14
- <150> 60/139557

- <151> 1999-06-16
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/142680
- <151> 1999-07-07
- <150> 60/145698 <151> 1999-07-26
- 1101, 1000
- <150> 60/146222 <151> 1999-07-28
- (101) 1000 0. 20
- <150> 60/162506 <151> 1999-10-29
- \1012 1000 10 25
- <150> 09/040220
- <151> 1998- 03-17
- <150> 09/105413
- <151> 1998-06-26
- <150> 09/168978
- <151> 1998-10-07
- <150> 09/184216
- <151> 1998-11-02
- <150> 09/187368
- <151> 1998-11-06
- <150> 09/202054 <151> 1998-12-07
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/254465
- <151> 1999-03-05
- <150> 09/265686
- <151> 1999-03-10
- <150> 09/267213
- <151> 1999-03-12
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/311832
- <151> 1999-05-14
- <150> 09/380137
- <151> 1999-08-25
- <150> 09/380138
- <151> 1999-08-25

- <150> 09/380142
- <151> 1999-08-25
- <150> 09/709238
- <151> 2000-11-08
- <150> 09/723749
- <151> 2000-11-27
- <150> 09/747259
- <151> 2000-12-20
- <150> 09/816744
- <151> 2001-03-22
- <150> 09/816920
- <151> 2001-03-22
- <150> 09/854280
- <151> 2001-05-10
- <150> 09/854208
- <151> 2001-05-10
- <150> 09/872035 <151> 2001-06-01
- <150> 09/874503
- <151> 2001-06-05
- 11017 2001 00 00
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/886342
- <151> 2001- 06-19
- <150> PCT/US98/21141
- <151> 1998-10-07
- <150> PCT/US98/24855
- <151> 1998-11-20
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/05028
- <151> 1999-03-08
- <150> PCT/US99/05190
- <151> 1999-03-10
- <150> PCT/US99/10733
- <151> 1999-05-14
- <150> PCT/US99/12252
- <151> 1999-06-02
- <150> PCT/US99/28313

- <151> 1999-11-30
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US99/28565
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US99/31243
- <151> 1999-12-30
- <150> PCT/US99/31274
- <151> 1999-12-30
- <150> PCT/US00/00219
- <151> 2000-05-01
- <150> PCT/US00/00277
- <151> 2000-01-06
- <150> PCT/US00/00376
- <151> 2000-01-06
- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04341
- <151> 2000-02-18
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/07532
- <151> 2000-03-21
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/06319
- <151> 2000-03-10
- <150> PCT/US00/08439
- <151> 2000-03-30
- <150> PCT/US00/13705
- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02

- <150> PCT/US00/20710
- <151> 2000-07-28
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US00/34956
- <151> 2000-12-20
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/09552
- <151> 2001-03-22
- <150> PCT/US01/17092
- <151> 2001-05-25
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29
- <150> PCT/US01/21735
- <151> 2001-07-09
- <160> 624
- <210> 1
- <211> 1743
- <212> DNA
- <213> Homo sapiens
- <400> 1
- ccaggtccaa ctgcacctcg gttctatcga ttgaattccc cggggatcct 50 ctagagatcc ctcgacctcg acccacgcgt ccgccaagct ggccctgcac 100 ggctgcaagg gaggctcctg tggacaggcc aggcaggtgg gcctcaggag 150 gtgcctccag gcggccagtg ggcctgaggc cccagcaagg gctagggtcc 200 atctccagtc ccaggacaca gcagcggca ccatggccac gcctgggctc 250 cagcagcatc agcagcccc aggaccggg gaggcacagg tggccccac 300 cacccggagg agcagctcct gccctgtcc gggggatgac tgattctcct 350 ccgccaggcc acccagagga gaaggccacc ccgcctggag gcacaggcca 400

tgaggggctc tcaggaggtg ctgctgatgt ggcttctggt gttggcagtg 450

ggcggcacag agcacgccta ccggcccggc cgttagggtg tgtgctgtcc 500 cgggctcacg gggaccctgt ctccgagtcg ttcgtgcagc gtgtgtacca 550 gecetteete accaectgeg acgggeaceg ggeetgeage acctaecgaa 600 ccatttatag gaccgcctac cgccgcagcc ctgggctggc ccctgccagg 650 cctcgctacg cgtgctgccc cggctggaag aggaccagcg ggcttcctgg 700 ggcctgtgga gcagcaatat gccagccgcc atgccggaac ggagggagct 750 gtgtccagcc tggccgctgc cgctgccctg caggatggcg gggtgacact 800 tgccagtcag atgtggatga atgcagtgct aggaggggcg gctgtcccca 850 qcqctqcatc aacaccqccq qcaqttactq qtqccaqtqt tqqqaqqqqc 900 acagcctgtc tgcagacggt acactctgtg tgcccaaggg agggcccccc 950 agggtggccc ccaacccgac aggagtggac agtgcaatga aggaagaagt 1000 gcagaggctg cagtccaggg tggacctgct ggaggagaag ctgcagctgg 1050 tqctqqcccc actqcacagc ctqqcctcqc aggcactqqa gcatqqqctc 1100 ccggaccccg gcagcctcct ggtgcactcc ttccagcagc tcggccgcat 1150 cgactccctg agcgagcaga tttccttcct ggaggagcag ctggggtcct 1200 gctcctgcaa gaaagactcg tgactgccca gcgccccagg ctggactgag 1250 cccctcacgc cgccctgcag cccccatgcc cctgcccaac atgctggggg 1300 tccagaagcc acctcggggt gactgagcgg aaggccaggc agggccttcc 1350 teetttteet eeteeette eeteggagg gteeceagae eetggeatgg 1400 gatgggctgg gattttttt gtgaatccac ccctggctac ccccaccctg 1450 gttaccccaa cggcatccca aggccaggtg ggccctcagc tgagggaagg 1500 tacgagttcc cctgctggag cctgggaccc atggcacagg ccaggcagcc 1550 cggaggctgg gtggggcctc agtgggggct gctgcctgac ccccagcaca 1600 aaaaaaaaqq qcqqccqcqa ctctaqaqtc gacctgcaga agcttggccg 1700 ccatggccca acttgtttat tgcagcttat aatggttaca aat 1743

<210> 2

<211> 295

<212> PRT

<213> Homo sapiens

<400> 2

Met Thr Asp Ser Pro Pro Pro Gly His Pro Glu Glu Lys Ala Thr Pro Pro Gly Gly Thr Gly His Glu Gly Leu Ser Gly Gly Ala Ala Asp Val Ala Ser Gly Val Gly Ser Gly Arg His Arg Ala Arg Leu Pro Ala Arg Pro Leu Gly Cys Val Leu Ser Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro Gly Trp Lys Arg Thr Ser Gly Leu 110 Pro Gly Ala Cys Gly Ala Ala Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro Gly Arg Cys Arg Cys Pro Ala Gly 150 145 140 Trp Arg Gly Asp Thr Cys Gln Ser Asp Val Asp Glu Cys Ser Ala 155 Arg Arg Gly Gly Cys Pro Gln Arg Cys Ile Asn Thr Ala Gly Ser 170 175 Tyr Trp Cys Gln Cys Trp Glu Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu Glu Glu Lys Leu Gln Leu Val Leu 235 Ala Pro Leu His Ser Leu Ala Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu Val His Ser Phe Gln Gln Leu Gly 265 260 Arg Ile Asp Ser Leu Ser Glu Gln Ile Ser Phe Leu Glu Gln Leu Gly Ser Cys Ser Cys Lys Lys Asp Ser

```
<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 3
tggagcagca atatgccagc c 21
<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 4
 ttttccactc ctgtcgggtt gg 22
<210> 5
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 5
 ggtgacactt gccagtcaga tgtggatgaa tgcagtgcta ggaggg 46
<210> 6
<211> 2945
<212> DNA
<213> Homo sapiens
<400> 6
 cgctcgcccc gtcgcccctc gcctccccgc agagtcccct cgcggcagca 50
 gatgtgtgtg gggtcagccc acggcgggga ctatggtgaa attcccggcg 100
 ctcacgcact actggcccct gatccggttc ttggtgcccc tgggcatcac 150
 caacatagcc atcgacttcg gggagcaggc cttgaaccgg ggcattgctg 200
  ctgtcaagga ggatgcagtc gagatgctgg ccagctacgg gctggcgtac 250
  tccctcatga agttcttcac gggtcccatg agtgacttca aaaatgtggg 300
  cctggtgttt gtgaacagca agagagacag gaccaaagcc gtcctgtgta 350
 tggtggtggc aggggccatc gctgccgtct ttcacacact gatagcttat 400
  agtgatttag gatactacat tatcaataaa ctgcaccatg tggacgagtc 450
```

ı

2

ı, 🗇

13

1 50

: 2

ggtggggagc aagacgagaa gggccttcct gtacctcgcc gcctttcctt 500 tcatggacgc aatggcatgg acccatgctg gcattctctt aaaacacaaa 550 tacagtttcc tggtgggatg tgcctcaatc tcagatgtca tagctcaggt 600 tgtttttgta gccattttgc ttcacagtca cctggaatgc cgggagcccc 650 tgctcatccc gatcctctcc ttgtacatgg gcgcacttgt gcgctgcacc 700 accetgtgce tgggetacta caagaacatt cacgacatca teeetgacag 750 aagtggcccg gagctggggg gagatgcaac aataagaaag atgctgagct 800 tctggtggcc tttggctcta attctggcca cacagagaat cagtcggcct 850 attgtcaacc tctttgtttc ccgggacctt ggtggcagtt ctgcagccac 900 agaggcagtg gcgattttga cagccacata ccctgtgggt cacatgccat 950 acggctggtt gacggaaatc cgtgctgtgt atcctgcttt cgacaagaat 1000 aaccccagca acaaactggt gagcacgagc aacacagtca cggcagccca 1050 catcaagaag ttcaccttcg tctgcatggc tctgtcactc acgctctgtt 1100 tcqtqatgtt ttggacaccc aacgtgtctg agaaaatctt gatagacatc 1150 atcggagtgg actttgcctt tgcagaactc tgtgttgttc ctttgcggat 1200 cttctccttc ttcccagttc cagtcacagt gagggcgcat ctcaccgggt 1250 ggctgatgac actgaagaaa accttcgtcc ttgcccccag ctctgtgctg 1300 cggatcatcg tecteatege cageetegtg gteetaceet acetgggggt 1350 gcacggtgcg accetgggcg tgggctccct cetggcgggc tttgtgggag 1400 aatccaccat ggtcgccatc gctgcgtgct atgtctaccg gaagcagaaa 1450 aagaagatgg agaatgagtc ggccacggag ggggaagact ctgccatgac 1500 agacatgcct ccgacagagg aggtgacaga catcgtggaa atgagagagg 1550 agaatgaata aggcacggga cgccatgggc actgcaggga cggtcagtca 1600 ggatgacact toggcatcat etettecete teccategta ttttgtteee 1650 tttttttgt tttgttttgg taatgaaaga ggccttgatt taaaggtttc 1700 gtgtcaattc tctagcatac tgggtatgct cacactgacg gggggaccta 1750 gtgaatggtc tttactgttg ctatgtaaaa acaaacgaaa caactgactt 1800 catacccctg cctcacgaaa acccaaaaga cacagctgcc tcacggttga 1850 cgttgtgtcc tcctcccctg gacaatctcc tcttggaacc aaaggactgc 1900 agetgtgcca tegegeeteg gteaccetge acageaggee acagaetete 1950 ctgtccccct tcatcgctct taagaatcaa caggttaaaa ctcggcttcc 2000 tttgatttgc ttcccagtca catggccgta caaagagatg gagccccggt 2050 ggcctcttaa atttcccttc tgccacggag ttcgaaacca tctactccac 2100 acatgcagga ggcgggtggc acgctgcagc ccggagtccc cgttcacact 2150 gaggaacgga gacctgtgac cacagcaggc tgacagatgg acagaatctc 2200 ccgtagaaag gtttggtttg aaatgccccg ggggcagcaa actgacatgg 2250 ttgaatgata gcatttcact ctgcgttctc ctagatctga gcaagctgtc 2300 agttctcacc cccaccgtgt atatacatga gctaactttt ttaaattgtc 2350 acaaaagcgc atctccagat tccagaccct gccgcatgac ttttcctgaa 2400 ggcttgcttt tccctcgcct ttcctgaagg tcgcattaga gcgagtcaca 2450 tggagcatcc taactttgca ttttagtttt tacagtgaac tgaagcttta 2500 agtctcatcc agcattctaa tgccaggttg ctgtagggta acttttgaag 2550 tagatatatt acctggttct gctatcctta gtcataactc tgcggtacag 2600 gtaattgaga atgtactacg gtacttccct cccacaccat acgataaagc 2650 aagacatttt ataacgatac cagagtcact atgtggtcct ccctgaaata 2700 acgcattcga aatccatgca gtgcagtata tttttctaag ttttggaaag 2750 caggtttttt cctttaaaaa aattatagac acggttcact aaattgattt 2800 agtcagaatt cctagactga aagaacctaa acaaaaaaat attttaaaga 2850 tataaatata tgctgtatat gttatgtaat ttattttagg ctataataca 2900 tttcctattt tcgcattttc aataaaatgt ctctaataca aaaaa 2945

<210> 7

<211> 492

<212> PRT

<213> Homo sapiens

<400> 7

Met Val Lys Phe Pro Ala Leu Thr His Tyr Trp Pro Leu Ile Arg
1 5 10 15

Phe Leu Val Pro Leu Gly Ile Thr Asn Ile Ala Ile Asp Phe Gly 20 25 30

Glu Gln Ala Leu Asn Arg Gly Ile Ala Ala Val Lys Glu Asp Ala 35 40 45

Val Glu Met Leu Ala Ser Tyr Gly Leu Ala Tyr Ser Leu Met Lys

50 55 60

Phe Phe Thr Gly Pro Met Ser Asp Phe Lys Asn Val Gly Leu Val

Phe Val Asn Ser Lys Arg Asp Arg Thr Lys Ala Val Leu Cys Met

Val Val Ala Gly Ala Ile Ala Ala Val Phe His Thr Leu Ile Ala 95 100 105

Tyr Ser Asp Leu Gly Tyr Tyr Ile Ile Asn Lys Leu His His Val 110 115 120

Asp Glu Ser Val Gly Ser Lys Thr Arg Arg Ala Phe Leu Tyr Leu 125 130 135

Ala Ala Phe Pro Phe Met Asp Ala Met Ala Trp Thr His Ala Gly 140 145

Ile Leu Leu Lys His Lys Tyr Ser Phe Leu Val Gly Cys Ala Ser 155 160 165

Ile Ser Asp Val Ile Ala Gln Val Val Phe Val Ala Ile Leu Leu 170 175 180

His Ser His Leu Glu Cys Arg Glu Pro Leu Leu Ile Pro Ile Leu 185 190 195

Ser Leu Tyr Met Gly Ala Leu Val Arg Cys Thr Thr Leu Cys Leu 200 205 210

Gly Tyr Tyr Lys Asn Ile His Asp Ile Ile Pro Asp Arg Ser Gly 215 220 225

Pro Glu Leu Gly Gly Asp Ala Thr Ile Arg Lys Met Leu Ser Phe 230 235

Trp Trp Pro Leu Ala Leu Ile Leu Ala Thr Gln Arg Ile Ser Arg 245 250 255

Pro Ile Val Asn Leu Phe Val Ser Arg Asp Leu Gly Gly Ser Ser 260 265 270

Ala Ala Thr Glu Ala Val Ala Ile Leu Thr Ala Thr Tyr Pro Val 275 280 285

Gly His Met Pro Tyr Gly Trp Leu Thr Glu Ile Arg Ala Val Tyr 290 295 300

Pro Ala Phe Asp Lys Asn Asn Pro Ser Asn Lys Leu Val Ser Thr 305 310 315

Ser Asn Thr Val Thr Ala Ala His Ile Lys Lys Phe Thr Phe Val 320 325 330

```
Pro Asn Val Ser Glu Lys Ile Leu Ile Asp Ile Ile Gly Val Asp
Phe Ala Phe Ala Glu Leu Cys Val Val Pro Leu Arg Ile Phe Ser
                                     370
                365
Phe Phe Pro Val Pro Val Thr Val Arg Ala His Leu Thr Gly Trp
                                     385
Leu Met Thr Leu Lys Lys Thr Phe Val Leu Ala Pro Ser Ser Val
                395
Leu Arg Ile Ile Val Leu Ile Ala Ser Leu Val Val Leu Pro Tyr
                410
Leu Gly Val His Gly Ala Thr Leu Gly Val Gly Ser Leu Leu Ala
                                     430
                425
Gly Phe Val Gly Glu Ser Thr Met Val Ala Ile Ala Ala Cys Tyr
                                     445
                440
Val Tyr Arg Lys Gln Lys Lys Lys Met Glu Asn Glu Ser Ala Thr
                                     460
Glu Gly Glu Asp Ser Ala Met Thr Asp Met Pro Pro Thr Glu Glu
                470
                                     475
Val Thr Asp Ile Val Glu Met Arg Glu Glu Asn Glu
                                     490
```

<210> 8 <211> 535 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 33, 66, 96, 387

<223> unknown base

<400> 8
 cctgacagaa gtgccccgga gctgggggag atncaacatt aagaagatgc 50

tgagcttctg gtgccntttg gctctaattc tggccacaca gagaancagt 100
 cggcctattg tcaacctctt tgtttcccgg gaccttggtg gcagttctgc 150
 agccacagag gcagtggcga ttttgacagc cacataccct gtgggtcaca 200
 tgccatacgg ctggttgacg gaaatccgtg ctgtgtatcc tgctttcgac 250
 aagaataacc ccagcaacaa actggtgagc acgagcaaca cagtcacggc 300
 ggcccacatc aagaagttca ccttcgtctg catggctctg tcactcacgc 350
 tctgtttcgt gatgttttgg acacccaacg tgtctgngaa aatcttgata 400
 gacatcatcg gagtggactt tgcctttgca gaactctgtg ttgttccttt 450

```
ccgggtggct gatgacactg aagaaaacct tcgtc 535
<210> 9
<211> 434
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 32, 54, 80, 111, 117, 122, 139, 193, 205, 221, 226, 228, 273,
      293, 296, 305, 336, 358, 361
<223> unknown base
<400> 9
 tgacggaatc ccgggctggg tatcctggtt tngacaagat aaacccccag 50
 caanaaattg gggagcaggg caaaacagtn acgggcagcc cacatcaaga 100
 agttcacctt ngtttgnatg gntctgtcaa ctcacgctnt gtttcgtgat 150
 gttttggaca cccaaagtgt ttgagaaaat tttgatagac atnatcggag 200
 tggantttgc ctttgcagaa ntttgngntg ttcctttgcg gattttctcc 250
 tttttcccag ttccagtcac agngagggcg catctcaccg ggnggntgat 300
 gacantgaag aaaacctttg tccttgcccc cagctntttg gtgcggatca 350
 ttgtcctnat ngccagcctt gtggtcctac cctacctggg ggtgcacggt 400
 qcqaccctgg gcgtgggttc cctcctggcg ggca 434
<210> 10
<211> 154
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 33, 49, 68, 83, 90, 98, 119
<223> unknown base
<400> 10
 tattcccagt tccggtcacg gggagggcgc atntcaccgg gtggctgang 50
 acactgaaga aaaccttngt ccttgccccc agntttgtgn tgcggatnat 100
 cgtcctcatc gccagcctng tggtcctacc ctacctgggg gtgcacggtg 150
 agac 154
<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence
```

geggatette teettettee eagtteeagt cacagtgagg gegeatetea 500

```
<223> Synthetic oligonucleotide probe
   <400> 11
    ctgatccggt tcttggtgcc cctg 24
   <210> 12
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 12
    gctctgtcac tcacgctc 18
   <210> 13
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 13
tcatctctc cctctccc 18
ijĪ
   <210> 14
: ==
   <211> 18
   <212> DNA
   <213> Artificial Sequence
<220>
   <223> Synthetic oligonucleotide probe
: 45
   <400> 14
    ccttccgcca cggagttc 18
   <210> 15
   <211> 24
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    ggcaaagtcc actccgatga tgtc 24
    <210> 16
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
```

1 :

```
<400> 16
gcctgctgtg gtcacaggtc tccg 24
<210> 17
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 17
tcggggagca ggccttgaac cggggcattg ctgctgtcaa ggagg 45
<210> 18
<211> 1901
<212> DNA
<213> Homo sapiens
<400> 18
 gccccgcgcc cggcgccggg cgcccgaagc cgggagccac cgccatgggg 50
 gcctgcctgg gagcctgctc cctgctcagc tgcgcgtcct gcctctgcgg 100
 ctctgccccc tgcatcctgt gcagctgctg ccccgccagc cgcaactcca 150
 ccgtgagccg cctcatcttc acgttcttcc tcttcctggg ggtgctggtg 200
 tocatcatta tgctgagccc gggcgtggag agtcagctct acaagctgcc 250
 ctgggtgtgt gaggagggg ccgggatccc caccgtcctg cagggccaca 300
 tegactgtgg etecetgett ggetacegeg etgtetaceg catgtgette 350
 gccacggcgg ccttcttctt cttctttttc accctgctca tgctctgcgt 400
 gagcagcagc cgggaccccc gggctgccat ccagaatggg ttttggttct 450
 ttaagttoot gatootggtg ggootcaccg tgggtgoott ctacatooct 500
 gacggctcct tcaccaacat ctggttctac ttcggcgtcg tgggctcctt 550
 cctcttcatc ctcatccagc tggtgctgct catcgacttt gcgcactcct 600
 ggaaccagcg gtggctgggc aaggccgagg agtgcgattc ccgtgcctgg 650
 tacgcaggcc tcttcttctt cactctcctc ttctacttgc 'tgtcgatcgc 700
 ggccgtggcg ctgatgttca tgtactacac tgagcccagc ggctgccacg 750
 agggcaaggt cttcatcagc ctcaacctca ccttctgtgt ctgcgtgtcc 800
 ategetgetg teetgeecaa ggteeaggae geecageeca actegggtet 850
 gctgcaggcc tcggtcatca ccctctacac catgtttgtc acctggtcag 900
```

ccctatccag tatccctgaa cagaaatgca acccccattt gccaacccag 950

ctgggcaacg agacagttgt ggcaggcccc gagggctatg agacccagtg 1000 gtgggatgcc ccgagcattg tgggcctcat catcttcctc ctgtgcaccc 1050 tetteateag tetgegetee teagaceace ggeaggtgaa cageetgatg 1100 cagaccgagg agtgcccacc tatgctagac gccacacagc agcagcagca 1150 gcaggtggca gcctgtgagg gccgggcctt tgacaacgag caggacggcg 1200 teacetacag etacteette ttecaettet geetggtget ggeeteactg 1250 cacgtcatga tgacgctcac caactggtac aagcccggtg agacccggaa 1300 gatgatcagc acgtggaccg ccgtgtgggt gaagatctgt gccagctggg 1350 cagggetget cetetacetg tggaccetgg tagececaet ceteetgege 1400 aaccgcgact tcagctgagg cagcctcaca gcctgccatc tggtgcctcc 1450 tgccacctgg tgcctctcgg ctcggtgaca gccaacctgc cccctcccca 1500 caccaatcag ccaggetgag ccccacccc tgccccagct ccaggacctg 1550 cccctgagcc gggccttcta gtcgtagtgc cttcagggtc cgaggagcat 1600 caggetectg cagageecca tececeegee acaceeacae ggtggagetg 1650 cetetteett eccetectee etgttgeeca tacteageat eteggatgaa 1700 agggctccct tgtcctcagg ctccacggga gcggggctgc tggagagagc 1750 ggggaactcc caccacagtg gggcatccgg cactgaagcc ctggtgttcc 1800 tggtcacgtc ccccagggga ccctgccccc ttcctggact tcgtgcctta 1850 ctgagtctct aagacttttt ctaataaaca agccagtgcg tgtaaaaaaa 1900 a 1901

<210> 19

<211> 457

<212> PRT

<213> Homo sapiens

<400> 19

Met Gly Ala Cys Leu Gly Ala Cys Ser Leu Leu Ser Cys Ala Ser 1 5 10 15

Cys Leu Cys Gly Ser Ala Pro Cys Ile Leu Cys Ser Cys Cys Pro 20 25 30

Ala Ser Arg Asn Ser Thr Val Ser Arg Leu Ile Phe Thr Phe Phe
35 40 45

Leu Phe Leu Gly Val Leu Val Ser Ile Ile Met Leu Ser Pro Gly 50 55 60

Val Glu Ser Gln Leu Tyr Lys Leu Pro Trp Val Cys Glu Glu Gly Ala Gly Ile Pro Thr Val Leu Gln Gly His Ile Asp Cys Gly Ser Leu Leu Gly Tyr Arg Ala Val Tyr Arg Met Cys Phe Ala Thr Ala Ala Phe Phe Phe Phe Phe Thr Leu Leu Met Leu Cys Val Ser 115 110 Ser Ser Arg Asp Pro Arg Ala Ala Ile Gln Asn Gly Phe Trp Phe 130 Phe Lys Phe Leu Ile Leu Val Gly Leu Thr Val Gly Ala Phe Tyr 150 Ile Pro Asp Gly Ser Phe Thr Asn Ile Trp Phe Tyr Phe Gly Val Val Gly Ser Phe Leu Phe Ile Leu Ile Gln Leu Val Leu Leu Ile 180 Asp Phe Ala His Ser Trp Asn Gln Arg Trp Leu Gly Lys Ala Glu Glu Cys Asp Ser Arg Ala Trp Tyr Ala Gly Leu Phe Phe Thr 210 Leu Leu Phe Tyr Leu Leu Ser Ile Ala Ala Val Ala Leu Met Phe Met Tyr Tyr Thr Glu Pro Ser Gly Cys His Glu Gly Lys Val Phe 235 240 Ile Ser Leu Asn Leu Thr Phe Cys Val Cys Val Ser Ile Ala Ala Val Leu Pro Lys Val Gln Asp Ala Gln Pro Asn Ser Gly Leu Leu Gln Ala Ser Val Ile Thr Leu Tyr Thr Met Phe Val Thr Trp Ser 280 Ala Leu Ser Ser Ile Pro Glu Gln Lys Cys Asn Pro His Leu Pro 295 300 Thr Gln Leu Gly Asn Glu Thr Val Val Ala Gly Pro Glu Gly Tyr Glu Thr Gln Trp Trp Asp Ala Pro Ser Ile Val Gly Leu Ile Ile Phe Leu Cys Thr Leu Phe Ile Ser Leu Arg Ser Ser Asp His 335 Arg Gln Val Asn Ser Leu Met Gln Thr Glu Glu Cys Pro Pro Met

1.25

IF

.

ij

<210> 23 <211> 18

```
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 23
  cctgggcaaa aatgcaac 18
 <210> 24
 <211> 24
 <212> DNA
 <213> Artificial Sequence
<220>
 <223> Synthetic oligonucleotide probe
 <400> 24
  caggaatgta gaaggcaccc acgg 24
 <210> 25
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 25
  tggcacagat cttcacccac acgg 24
 <210> 26
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
  tgtccatcat tatgctgagc ccgggcgtgg agagtcagct ctacaagctg 50
 <210> 27
 <211> 1351
  <212> DNA
  <213> Homo sapiens
 <400> 27
  gagcgaggcc ggggactgaa ggtgtgggtg tcgagccctc tggcagaggg 50
  ttaacctggg tcaaatgcac ggattctcac ctcgtacagt tacgctctcc 100
  cgcggcacgt ccgcgaggac ttgaagtcct gagcgctcaa gtttgtccgt 150
  aggtcgagag aaggccatgg aggtgccgcc accggcaccg cggagctttc 200
  tctgtagagc attgtgccta tttccccgag tctttgctgc cgaagctgtg 250
```

ij

1 2

ļ.ā

actgccgatt cggaagtcct tgaggagcgt cagaagcggc ttccctacgt 300 cccagagccc tattacccgg aatctggatg ggaccgcctc cgggagctgt 350 ttggcaaaga tgaacagcag agaatttcaa aggaccttgc taatatctgt 400 aagacggcag ctacagcagg catcattggc tgggtgtatg ggggaatacc 450 agcttttatt catgctaaac aacaatacat tgagcagagc caggcagaaa 500 tttatcataa ccggtttgat gctgtgcaat ctgcacatcg tgctgccaca 550 cgaggettca ttegttatgg etggegetgg ggttggagaa etgeagtgtt 600 tgtgactata ttcaacacag tgaacactag tctgaatgta taccgaaata 650 aagatgcctt aagccatttt gtaattgcag gagctgtcac gggaagtctt 700 tttaggataa acgtaggcct gcgtggcctg gtggctggtg gcataattgg 750 agccttgctg ggcactcctg taggaggcct gctgatggca tttcagaagt 800 acgctggtga gactgttcag gaaagaaaac agaaggatcg aaaggcactc 850 catgagctaa aactggaaga gtggaaaggc agactacaag ttactgagca 900 cctccctgag aaaattgaaa gtagtttacg ggaagatgaa cctgagaatg 950 atgctaagaa aattgaagca ctgctaaacc ttcctagaaa cccttcagta 1000 atagataaac aagacaagga ctgaaagtgc tctgaacttg aaactcactg 1050 gagagetgaa gggagetgee atgteegatg aatgeeaaca gacaggeeac 1100 tctttggtca gcctgctgac aaatttaagt gctggtacct gtggtggcag 1150 tggcttgctc ttgtcttttt cttttctttt taactaagaa tggggctgtt 1200 ttaatctatc aatatatgca tacatggata tatccaccca cctagatttt 1300 aagcagtaaa taaaacattt cgcaaaagat taaagttgaa ttttacagtt 1350

t 1351

<210> 28 <211> 285

<212> PRT

<213> Homo sapiens

<400> 28

Met Glu Val Pro Pro Pro Ala Pro Arg Ser Phe Leu Cys Arg Ala 1 5 10 15

Leu Cys Leu Phe Pro Arg Val Phe Ala Ala Glu Ala Val Thr Ala 20 25 30

Asp Ser Glu Val Leu Glu Glu Arg Gln Lys Arg Leu Pro Tyr Val Pro Glu Pro Tyr Tyr Pro Glu Ser Gly Trp Asp Arg Leu Arg Glu Leu Phe Gly Lys Asp Glu Gln Gln Arg Ile Ser Lys Asp Leu Ala Asn Ile Cys Lys Thr Ala Ala Thr Ala Gly Ile Ile Gly Trp Val Tyr Gly Gly Ile Pro Ala Phe Ile His Ala Lys Gln Gln Tyr Ile Glu Gln Ser Gln Ala Glu Ile Tyr His Asn Arg Phe Asp Ala Val 115 110 Gln Ser Ala His Arg Ala Ala Thr Arg Gly Phe Ile Arg Tyr Gly 125 Trp Arg Trp Gly Trp Arg Thr Ala Val Phe Val Thr Ile Phe Asn 145 140 Thr Val Asn Thr Ser Leu Asn Val Tyr Arg Asn Lys Asp Ala Leu 160 Ser His Phe Val Ile Ala Gly Ala Val Thr Gly Ser Leu Phe Arg 180 175 170 Ile Asn Val Gly Leu Arg Gly Leu Val Ala Gly Gly Ile Ile Gly 199 Ala Leu Leu Gly Thr Pro Val Gly Gly Leu Leu Met Ala Phe Gln 200 205 Lys Tyr Ala Gly Glu Thr Val Gln Glu Arg Lys Gln Lys Asp Arg Lys Ala Leu His Glu Leu Lys Leu Glu Glu Trp Lys Gly Arg Leu 235 230 Gln Val Thr Glu His Leu Pro Glu Lys Ile Glu Ser Ser Leu Arg 250 Glu Asp Glu Pro Glu Asn Asp Ala Lys Lys Ile Glu Ala Leu Leu 265 260 Asn Leu Pro Arg Asn Pro Ser Val Ile Asp Lys Gln Asp Lys Asp 280 275

<210> 29

<211> 324

<212> DNA

<213> Homo sapiens

<400> 29

cggaagtccc ttgaggagcg tcagaagcgg cttccctacg tcccagagcc 50

ctattacccg gaatctggat gggaccgctc cgggagctgt ttggcaaaga 100 tgaacagcag agaatttcaa aggaccttgc taatatctgt aagacggcag 150 ctacagcagg catcattggc tgggtgtatg ggggaatacc agcttttatt 200 catgctaaac aacaatacat tgagcagagc caggcagaaa tttatcataa 250 ccqqtttqat gctgtgcaat ctgcacatcg tgctgccaca cgaggcttca 300 ttcqttcatg gctggcgccg aacc 324 <210> 30

<211> 377 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 262, 330, 371 <223> unknown base

<400> 30 tcaagtttgt ccgtaggtcg agagaaggcc atggaggtgc cgccaccggc 50 accgcggagc ttttttctgt agagcattgt gcctatttcc ccgagttttt 100 gctgccgaag ctgtgactgc cgattcggaa gtccttgagg agcgtcagaa 150 geggetteee taegteecag agecetatta eeeggaattt ggatgggaee 200 gcctccggga gctgtttggc aaagatgaac agcagagaat ttcaaaggac 250 cttgctgata tntgtaagac ggcagctaca gcaggcatca ttggctgggt 300 gtatggggga ataccagctt ttattcatgn taaacaacaa tacattgagc 350 agagccaggc agaaatttat nataacc 377

<210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 31 tcgtacagtt acgctctccc 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence

<223> Synthetic oligonucleotide probe

```
<400> 32
 cttgaggagc gtcagaagcg 20
<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 33
 ataacgaatg aagcctcgtg 20
<210> 34
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 34
 qctaatatct gtaagacggc agctacagca ggcatcattg 40
<210> 35
<211> 1819
<212> DNA
<213> Homo sapiens
<400> 35
 gagccgccgc cgcgcgcgcg ccgcgcactg cagccccagg ccccggcccc 50
 ccaccacgt ctgcgttgct gccccgcctg ggccaggccc caaaggcaag 100
 gacaaagcag ctgtcaggga acctccgccg gagtcgaatt tacgtgcagc 150
 tgccggcaac cacaggttcc aagatggttt gcgggggctt cgcgtgttcc 200
 aagaactgcc tgtgcgccct caacctgctt tacaccttgg ttagtctgct 250
 gctaattgga attgctgcgt ggggcattgg cttcgggctg atttccagtc 300
 tccgagtggt cggcgtggtc attgcagtgg gcatcttctt gttcctgatt 350
 gctttagtgg gtctgattgg agctgtaaaa catcatcagg tgttgctatt 400
 tttttatatg attattctgt tacttgtatt tattgttcag ttttctgtat 450
 cttgcgcttg tttagccctg aaccaggagc aacagggtca gcttctggag 500
 gttggttgga acaatacggc aagtgctcga aatgacatcc agagaaatct 550
 aaactgctgt gggttccgaa gtgttaaccc aaatgacacc tgtctggcta 600
 gctgtgttaa aagtgaccac tcgtgctcgc catgtgctcc aatcatagga 650
 gaatatgctg gagaggtttt gagatttgtt ggtggcattg gcctgttctt 700
```

cagttttaca gagatcctgg gtgtttggct gacctacaga tacaggaacc 750 agaaagaccc ccgcgcgaat cctagtgcat tcctttgatg agaaaacaag 800 gaagatttcc tttcgtatta tgatcttgtt cactttctgt aattttctgt 850 taagctccat ttgccagttt aaggaaggaa acactatctg gaaaagtacc 900 ttattgatag tggaattata tatttttact ctatgtttct ctacatgttt 950 ttttctttcc gttgctgaaa aatatttgaa acttgtggtc tctgaagctc 1000 ggtggcacct ggaatttact gtattcattg tcgggcactg tccactgtgg 1050 cctttcttag catttttacc tgcagaaaaa ctttgtatgg taccactgtg 1100 ttggttatat ggtgaatctg aacgtacatc tcactggtat aattatatgt 1150 agcactgtgc tgtgtagata gttcctactg gaaaaagagt ggaaatttat 1200 taaaatcaga aagtatgaga tootgttatg ttaagggaaa tocaaattoo 1250 caattttttt tggtcttttt aggaaagatt gttgtggtaa aaagtgttag 1300 tataaaaatg ataatttact tgtagtcttt tatgattaca ccaatgtatt 1350 ctagaaatag ttatgtctta ggaaattgtg gtttaatttt tgacttttac 1400 aggtaagtgc aaaggagaag tggtttcatg aaatgttcta atgtataata 1450 acatttacct tcagcctcca tcagaatgga acgagttttg agtaatcagg 1500 aagtatatct atatgatctt gatattgttt tataataatt tgaagtctaa 1550 aagactgcat ttttaaacaa gttagtatta atgcgttggc ccacgtagca 1600 aaaagatatt tgattatctt aaaaattgtt aaataccgtt ttcatgaaat 1650 ttctcagtat tgtaacagca acttgtcaaa cctaagcata tttgaatatg 1700 atctcccata atttgaaatt gaaatcgtat tgtgtggctc tgtatattct 1750 gttaaaaaat taaaggacag aaacctttct ttgtgtatgc atgtttgaat 1800 taaaagaaag taatggaag 1819

```
<210> 36
```

<211> 204 <212> PRT

<213> Homo sapiens

<400> 36

Met Val Cys Gly Gly Phe Ala Cys Ser Lys Asn Cys Leu Cys Ala 1 5 10 15

Leu Asn Leu Leu Tyr Thr Leu Val Ser Leu Leu Leu Ile Gly Ile 20 25 30

```
Ala Ala Trp Gly Ile Gly Phe Gly Leu Ile Ser Ser Leu Arg Val
Val Gly Val Val Ile Ala Val Gly Ile Phe Leu Phe Leu Ile Ala
Leu Val Gly Leu Ile Gly Ala Val Lys His His Gln Val Leu Leu
Phe Phe Tyr Met Ile Ile Leu Leu Leu Val Phe Ile Val Gln Phe
                                      85
Ser Val Ser Cys Ala Cys Leu Ala Leu Asn Gln Glu Gln Gly
Gln Leu Leu Glu Val Gly Trp Asn Asn Thr Ala Ser Ala Arg Asn
                                     115
                                                          120
                 110
Asp Ile Gln Arg Asn Leu Asn Cys Cys Gly Phe Arg Ser Val Asn
                 125
Pro Asn Asp Thr Cys Leu Ala Ser Cys Val Lys Ser Asp His Ser
                                                          150
                                     145
                 140
Cys Ser Pro Cys Ala Pro Ile Ile Gly Glu Tyr Ala Gly Glu Val
                                     160
                 155
Leu Arg Phe Val Gly Gly Ile Gly Leu Phe Phe Ser Phe Thr Glu
                                     175
                 170
 Ile Leu Gly Val Trp Leu Thr Tyr Arg Tyr Arg Asn Gln Lys Asp
                                                          195
                                     190
                 185
Pro Arq Ala Asn Pro Ser Ala Phe Leu
                 200
<210> 37
<211> 390
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
```

<222> 20, 35, 61, 83, 106, 130, 133, 187, 232, 260, 336

<223> unknown base

<400> 37

tgattggagc tgtaaaaaan tcttcaggtg ttgtnatttt tttatatgat 50 tattctqtaa nttgtattta ttqttcagtt ttntgtatct tgcgcttgtt 100 tagccntgaa ccaggagcaa cagggtcagn ttntggaggt tggttggaac 150 aatacggcaa gtgctcgaaa tgacatccag agaaatntaa actgctgtgg 200 gttccgaagt gttaacccaa atgacacctg tntggctagc tgtgttaaaa 250 gtgaccactn gtgctcgcca tgtgctccaa tcataggaga atatgctgga 300

```
gaggttttga gatttgttgg tggcattggc ctgttnttca gttttacaga 350
gatcctgggt gtttggctga cctacagata caggaaccag 390
<210> 38
<211> 566
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 27
<223> unknown base
<400> 38
 aatcccaaat tccccaattt ttttggnctt tttagggaaa gatgtgttgt 50
 ggtaaaaagt gttagtataa aaatgataat ttacttgtag tcttttatga 100
 ttacaccaat gtattctaga atagttatgt cttaggaaat tgtggtttaa 150
 tttttgactt ttacaggtaa gtgcaaagga gaagtggttt catgaaatgt 200
 tctaatgtat aataacattt accttcagcc tcccatcaga atggaacgag 250
 ttttgagtaa tccaggaagt atatctatat gatcttgata ttgttttata 300
 taatttgaag totaaaagac tgcattttta aacaagttag tattaatgcg 350
 ttggcccacg tagcaaaaag atatttgatt atcttaaaaa ttgttaaata 400
 ccgttttcat gaaagttctc agtattgtaa cagcaacttg tcaaacctaa 450
 gcatatttga atatgatctc ccataatttg aaattgaaat cgtattgtgt 500
 ggaggaaatg gcaatcttat gtgtgctgaa ggacacagta agagcaccaa 550
 gttgtgcccc acttgc 566
<210> 39
<211> 264
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 84-85, 206
<223> unknown base
<400> 39
 atgattattc tgttacttgt atttattgtt cagttttatg gtatcttgcg 50
 cttgtttagc ccctgaaacc aggagcaaca gggnncagct tcctggaggt 100
 tggttggcaa caatcacggc caagtgactc cgcaaatgac atcccagaga 150
 aatcctaaac tgctgtgggt tccgaagtgt taacccaaat gacacctgtc 200
```

```
tggctngctg tgttaaaagt gaccactcgt gctcgccatg tgctccaatc 250
ataggagaat atgc 264
<210> 40
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 40
acccacgtct gcgttgctgc c 21
<210> 41
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 41
 gagaatatgc tggagagg 18
<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 42
 aggaatgcac taggattcgc gcgg 24
<210> 43
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 ggccccaaag gcaaggacaa agcagctgtc agggaacctc cgccg 45
<210> 44
<211> 2061
<212> DNA
<213> Homo sapiens
<400> 44
 cagtcaccat gaagctgggc tgtgtcctca tggcctgggc cctctacctt 50
 tcccttggtg tgctctgggt ggcccagatg ctactggctg ccagttttga 100
```

į. "B.

.....

gacgctgcag tgtgagggac ctgtctgcac tgaggagagc agctgccaca 150 cggaggatga cttgactgat gcaagggaag ctggcttcca ggtcaaggcc 200 tacactttca gtgaaccctt ccacctgatt gtgtcctatg actggctgat 250 cctccaaggt ccagccaagc cagtttttga aggggacctg ctggttctgc 300 gctgccaggc ctggcaagac tggccactga ctcaggtgac cttctaccga 350 gatggctcag ctctgggtcc ccccgggcct aacagggaat tctccatcac 400 cgtggtacaa aaggcagaca gcgggcacta ccactgcagt ggcatcttcc 450 agagecetgg teetgggate ceagaaacag catetgttgt ggetateaca 500 gtccaagaac tgtttccagc gccaattctc agagctgtac cctcagctga 550 accccaagca ggaagcccca tgaccctgag ttgtcagaca aagttgcccc 600 tgcagaggtc agctgcccgc ctcctcttct ccttctacaa ggatggaagg 650 atagtgcaaa gcagggggct ctcctcagaa ttccagatcc ccacagcttc 700 agaagatcac tccgggtcat actggtgtga ggcagccact gaggacaacc 750 aagtttggaa acagagcccc cagctagaga tcagagtgca gggtgcttcc 800 agetetgetg caceteccae attgaateca getecteaga aateagetge 850 tccaggaact gctcctgagg aggcccctgg gcctctgcct ccgccgccaa 900 ccccatcttc tgaggatcca ggcttttctt ctcctctggg gatgccagat 950 cctcatctgt atcaccagat gggccttctt ctcaaacaca tgcaggatgt 1000 gagagteete eteggteace tgeteatgga gttgagggaa ttatetggee 1050 accagaagcc tgggaccaca aaggctactg ctgaatagaa gtaaacagtt 1100 catecatgat etcaettaac caececaata aatetgatte tttatttet 1150 cttcctgtcc tgcacatatg cataagtact tttacaagtt gtcccagtgt 1200 agaattagag tttagctata attgtgtatt ctctcttaac acaacagaat 1300 tctgctgtct agatcaggaa tttctatctg ttatatcgac cagaatgttg 1350 tgatttaaag agaactaatg gaagtggatt gaatacagca gtctcaactg 1400 ggggcaattt tgcccccag aggacattgg gcaatgtttg gagacatttt 1450 ggtcattata cttggggggt tgggggatgg tgggatgtgt gtctactggc 1500 atccagtaaa tagaagccag gggtgccgct aaacatccta taatgcacag 1550 ggcagtacce cacaacgaaa aataatetgg cccaaaatgt cagttgtact 1600 gagtttgaga aaccccagce taatgaaace ctaggtgttg ggctctggaa 1650 tgggactttg teeettetaa ttattatete tttecageet catteageta 1700 ttettactga cataccagte tttagetggt getatggtet gttetttagt 1750 tetagtttgt atcccetcaa aagccattat gttgaaatee taatecccaa 1800 ggtgatggea ttaagaagtg ggcetttggg aagtgattag atcaggagtg 1850 cagageeete atgattagga ttagtgeeet tatttaaaaa ggeeecagag 1900 agctaactea ecettecace atatgaggae gtggcaagaa gatgacatgt 1950 atgagaacca aaaaacaget gtegecaaac accgaetetg tegttgeett 2000 gatettgaac ttecageete cagaactatg agaaataaaa ttetggttgt 2050 ttgtageeta a 2061

<210> 45 <211> 359 <212> PRT

<213> Homo sapiens

<212> DNA

<213> Artificial Sequence

```
Gly Pro Gly Ile Pro Glu Thr Ala Ser Val Val Ala Ile Thr Val
                155
Gln Glu Leu Phe Pro Ala Pro Ile Leu Arg Ala Val Pro Ser Ala
                                                         180
                                     175
                170
Glu Pro Gln Ala Gly Ser Pro Met Thr Leu Ser Cys Gln Thr Lys
Leu Pro Leu Gln Arg Ser Ala Ala Arg Leu Leu Phe Ser Phe Tyr
Lys Asp Gly Arg Ile Val Gln Ser Arg Gly Leu Ser Ser Glu Phe
                 215
Gln Ile Pro Thr Ala Ser Glu Asp His Ser Gly Ser Tyr Trp Cys
                 230
Glu Ala Ala Thr Glu Asp Asn Gln Val Trp Lys Gln Ser Pro Gln
Leu Glu Ile Arg Val Gln Gly Ala Ser Ser Ser Ala Ala Pro Pro
                                     265
                 260
Thr Leu Asn Pro Ala Pro Gln Lys Ser Ala Ala Pro Gly Thr Ala
Pro Glu Glu Ala Pro Gly Pro Leu Pro Pro Pro Pro Thr Pro Ser
                                     295
Ser Glu Asp Pro Gly Phe Ser Ser Pro Leu Gly Met Pro Asp Pro
His Leu Tyr His Gln Met Gly Leu Leu Leu Lys His Met Gln Asp
                                     325
Val Arg Val Leu Leu Gly His Leu Leu Met Glu Leu Arg Glu Leu
                                     340
 Ser Gly His Gln Lys Pro Gly Thr Thr Lys Ala Thr Ala Glu
<210> 46
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 46
tgggctgtgt cctcatgg 18
<210> 47
<211> 18
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 47
tttccagcgc caattctc 18
<210> 48
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 48
agttcttgga ctgtgatagc cac 23
<210> 49
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
aaacttggtt gtcctcagtg gctg 24
<210> 50
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 50
 gtgagggacc tgtctgcact gaggagagca gctgccacac ggagg 45
<210> 51
<211> 2181
<212> DNA
<213> Homo sapiens
<400> 51
 cccacgcgtc cgcccacgcg tccgcccacg ggtccgccca cgcgtccggg 50
 ccaccagaag tttgagcctc tttggtagca ggaggctgga agaaaggaca 100
 gaagtagctc tggctgtgat ggggatctta ctgggcctgc tactcctggg 150
 qcacctaaca gtggacactt atggccgtcc catcctggaa gtgccagaga 200
 gtgtaacagg accttggaaa ggggatgtga atcttccctg cacctatgac 250
 cccctgcaag gctacaccca agtcttggtg aagtggctgg tacaacgtgg 300
```

: []

H

i săi

: 4

1. 2

: #E

ctcagaccct gtcaccatct ttctacgtga ctcttctgga gaccatatcc 350

agcaggcaaa gtaccagggc cgcctgcatg tgagccacaa ggttccagga 400 gatgtatccc tccaattgag caccctggag atggatgacc ggagccacta 450 cacgtgtgaa gtcacctggc agactcctga tggcaaccaa gtcgtgagag 500 ataagattac tgagctccgt gtccagaaac tctctgtctc caagcccaca 550 gtgacaactg gcagcggtta tggcttcacg gtgccccagg gaatgaggat 600 tagccttcaa tgccaggctc ggggttctcc tcccatcagt tatatttggt 650 ataagcaaca gactaataac caggaaccca tcaaagtagc aaccctaagt 700 accttactct tcaagcctgc ggtgatagcc gactcaggct cctatttctg 750 cactgccaag ggccaggttg gctctgagca gcacagcgac attgtgaagt 800 ttgtggtcaa agactcctca aagctactca agaccaagac tgaggcacct 850 acaaccatga catacccctt gaaagcaaca tctacagtga agcagtcctg 900 ggactggacc actgacatgg atggctacct tggagagacc agtgctgggc 950 caggaaagag cctgcctgtc tttgccatca tcctcatcat ctccttgtgc 1000 tgtatggtgg tttttaccat ggcctatatc atgctctgtc ggaagacatc 1050 ccaacaagag catgtctacg aagcagccag gtaagaaagt ctctcctctt 1100 ccatttttga ccccgtccct gccctcaatt ttgattactg gcaggaaatg 1150 tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccttc 1200 agggtcagga catagctgcc ttccctctct caggcacctt ctgaggttgt 1250 tttggccctc tgaacacaaa ggataattta gatccatctg ccttctgctt 1300 ccagaatccc tgggtggtag gatcctgata attaattggc aagaattgag 1350 gcagaagggt gggaaaccag gaccacagcc ccaagtccct tcttatgggt 1400 ggtgggctct tgggccatag ggcacatgcc agagaggcca acgactctgg 1450 agaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgatgagc 1500 caacttccca gaatctgggc aacaactact ctgatgagcc ctgcatagga 1550 caggagtace agateatege ceagateaat ggeaactacg ecegeetget 1600 ggacacagtt cctctggatt atgagtttct ggccactgag ggcaaaagtg 1650 tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700 tcagtccttg ccttctgcat ggccttcttc cctgctacct ctcttcctgg 1750 atagcccaaa gtgtccgcct accaacactg gagccgctgg gagtcactgg 1800 ctttgccctg gaatttgcca gatgcatctc aagtaagcca gctgctggat 1850
ttggctctgg gcccttctag tatctctgcc gggggcttct ggtactcctc 1900
tctaaatacc agagggaaga tgcccatagc actaggactt ggtcatcatg 1950
cctacagaca ctattcaact ttggcatctt gccaccagaa gacccgaggg 2000
aggctcagct ctgccagctc agaggaccag ctatatccag gatcatttct 2050
ctttcttcag ggccagacag cttttaattg aaattgttat ttcacaggcc 2100
agggttcagt tctgctcctc cactataagt ctaatgttct gactctctcc 2150
tggtgctcaa taaatatcta atcataacag c 2181

<210> 52 <211> 321

<212> PRT

<213> Homo sapiens

<400> 52

Met Gly Ile Leu Leu Gly Leu Leu Leu Gly His Leu Thr Val 1 5 10 15

Asp Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr $20 \\ 25 \\ 30$

Gly Pro Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro 35 40 45

Leu Gln Gly Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg $50 \,$ $55 \,$ 60

Gly Ser Asp Pro Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp
65 70 75

His Ile Gln Gln Ala Lys Tyr Gln Gly Arg Leu His Val Ser His
80 85 90

Lys Val Pro Gly Asp Val Ser Leu Gln Leu Ser Thr Leu Glu Met 95 100 105

Asp Asp Arg Ser His Tyr Thr Cys Glu Val Thr Trp Gln Thr Pro 110 115 120

Asp Gly Asn Gln Val Val Arg Asp Lys Ile Thr Glu Leu Arg Val 125 130 135

Gln Lys Leu Ser Val Ser Lys Pro Thr Val Thr Thr Gly Ser Gly
140 145 150

Tyr Gly Phe Thr Val Pro Gln Gly Met Arg Ile Ser Leu Gln Cys

Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile Trp Tyr Lys Gln 170 175 180

```
Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr Leu Ser Thr
Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser Tyr Phe
Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp Ile
                 215
Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser
Thr Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr
                                     265
Leu Gly Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe
                                     280
Ala Ile Ile Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr
                                     295
                 290
Met Ala Tyr Ile Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His
                                     310
                 305
Val Tyr Glu Ala Ala Arg
<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 53
tatccctcca attgagcacc ctgg 24
<210> 54
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gtcggaagac atcccaacaa g 21
<210> 55
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 55
 cttcacaatg tcgctgtgct gctc 24
<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 agccaaatcc agcagctggc ttac 24
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 57
 tggatgaccg gagccactac acgtgtgaag tcacctggca gactcctgat 50
<210> 58
<211> 2458
<212> DNA
<213> Homo sapiens
<400> 58
 gcgccgggag cccatctgcc cccaggggca cggggcgcgg ggccggctcc 50
 cgcccggcac atggctgcag ccacctcgcg cgcaccccga ggcgccgcgc 100
 ccagctcgcc cgaggtccgt cggaggcgcc cggccgcccc ggagccaagc 150
 agcaactgag cggggaagcg cccgcgtccg gggatcggga tgtccctcct 200
 cetteteete ttgetagttt cetaetatgt tggaacettg gggactcaca 250
 ctgagatcaa gagagtggca gaggaaaagg tcactttgcc ctgccaccat 300
 caactggggc ttccagaaaa agacactctg gatattgaat ggctgctcac 350
 cgataatgaa gggaaccaaa aagtggtgat cacttactcc agtcgtcatg 400
 tctacaataa cttgactgag gaacagaagg gccgagtggc ctttgcttcc 450
 aatttcctgg caggagatgc ctccttgcag attgaacctc tgaagcccag 500
 tgatgagggc cggtacacct gtaaggttaa gaattcaggg cgctacgtgt 550
 ggagccatgt catcttaaaa gtcttagtga gaccatccaa gcccaagtgt 600
 gagttggaag gagagctgac agaaggaagt gacctgactt tgcagtgtga 650
```

gtcatcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700 agaaagaggg agaggatgaa cgtctgcctc ccaaatctag gattgactac 750 aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800 actgtaccag tgcacagcag gcaacgaagc tgggaaggaa agctgtgtgg 850 tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaggagca 900 qtqacaqgca tagtggctgg agccctgctg attttcctct tggtgtggct 950 gctaatccga aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000 atgaaattcg agaagatgct gaagctccaa aagcccgtct tgtgaaaccc 1050 ageteetett ceteaggete teggagetea egetetggtt etteeteeac 1100 tcgctccaca gcaaatagtg cctcacgcag ccagcggaca ctgtcaactg 1150 acgcagcacc ccagccaggg ctggccaccc aggcatacag cctagtgggg 1200 ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250 caaagcagaa accacacca gcatgatccc cagccagagc agagccttcc 1300 aaacggtctg aattacaatg gacttgactc ccacgctttc ctaggagtca 1350 gggtctttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400 ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450 agatgagcat tttccttata caataccaaa caagcaaaag gatgtaagct 1500 gattcatctg taaaaaggca tcttattgtg cctttagacc agagtaaggg 1550 aaagcaggag tccaaatcta tttgttgacc aggacctgtg gtgagaaggt 1600 tggggaaagg tgaggtgaat atacctaaaa cttttaatgt gggatatttt 1650 gtatcagtgc tttgattcac aattttcaag aggaaatggg atgctgtttg 1700 taaattttct atgcatttct gcaaacttat tggattatta gttattcaga 1750 cagtcaagca gaacccacag cettattaca cetgtetaca ceatgtactg 1800 agctaaccac ttctaagaaa ctccaaaaaa ggaaacatgt gtcttctatt 1850 ctgacttaac ttcatttgtc ataaggtttg gatattaatt tcaaggggag 1900 ttgaaatagt gggagatgga gaagagtgaa tgagtttctc ccactctata 1950 ctaatctcac tatttgtatt gagcccaaaa taactatgaa aggagacaaa 2000 aatttgtgac aaaggattgt gaagagcttt ccatcttcat gatgttatga 2050 ggattgttga caaacattag aaatatataa tggagcaatt gtggatttcc 2100

cctcaaatca gatgcctcta aggactttcc tgctagatat ttctggaagg 2150 agaaaataca acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200 agaaaaaggg atctaggaat gctgaaagat tacccaacat accattatag 2250 tctcttcttt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300 tagaaaggga gattagatca gttttctctt aatatgtcaa ggaaggtagc 2350 cgggcatggt gccaggcacc tgtaggaaaa tccagcaggt ggaggttgca 2400 qtqaqccqaq attatqccat tqcactccag cctgggtgac agagcgggac 2450 tccgtctc 2458

<210> 59 <211> 373

<212> PRT

<213> Homo sapiens

<400> 59 Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln 50 55 Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu 80 Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val 110 115 120 Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro 125 Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr 150 140 Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr 155 Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro 175 180 170

```
Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly Arg Val Leu Leu
Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln Cys Thr Ala
                200
Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val Thr Val
Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr Gly
                230
Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu
                245
Ile Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Arg Pro
                 260
Asn Glu Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val
                 275
Lys Pro Ser Ser Ser Ser Gly Ser Arg Ser Ser Ser Gly
                                     295
                 290
Ser Ser Ser Thr Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln
                                     310
                 305
Arg Thr Leu Ser Thr Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr
                                     325
                 320
Gln Ala Tyr Ser Leu Val Gly Pro Glu Val Arg Gly Ser Glu Pro
                                     340
Lys Lys Val His His Ala Asn Leu Thr Lys Ala Glu Thr Thr Pro
                                     355
                 350
Ser Met Ile Pro Ser Gln Ser Arg Ala Phe Gln Thr Val
                                     370
                 365
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 ccagtgcaca gcaggcaacg aagc 24
<210> 61
<211> 24
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

```
<400> 61
actaggctgt atgcctgggt gggc 24
<210> 62
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 62
gtatgtacaa agcatcggca tggttgcagg agcagtgaca ggc 43
<210> 63
<211> 3534
<212> DNA
<213> Homo sapiens
<400> 63
 gtcgttcctt tgctctctcg cgcccagtcc tcctccctgg ttctcctcag 50
 ccgctgtcgg aggagagcac ccggagacgc gggctgcagt cgcggcggct 100
 teteceegee tgggeggeet egeegetggg eaggtgetga gegeeeetag 150
 agectecett geogectece tectetgece ggeogeagea gtgcacatgg 200
 ggtgttggag gtagatgggc tcccggcccg ggaggcggcg gtggatgcgg 250
 cgctgggcag aagcagccgc cgattccagc tgccccgcgc gccccgggcg 300
 cccctgcgag tccccggttc agccatgggg acctctccga gcagcagcac 350
 cgccctcgcc tcctgcagcc gcatcgcccg ccgagccaca gccacgatga 400
 tegegggete cetteteetg ettggattee ttagcaccac cacageteag 450
 ccagaacaga aggcctcgaa tctcattggc acataccgcc atgttgaccg 500
 tgccaccggc caggtgctaa cctgtgacaa gtgtccagca ggaacctatg 550
 tctctgagca ttgtaccaac acaagcctgc gcgtctgcag cagttgccct 600
 gtggggacct ttaccaggca tgagaatggc atagagaaat gccatgactg 650
 tagtcagcca tgcccatggc caatgattga gaaattacct tgtgctgcct 700
 tgactgaccg agaatgcact tgcccacctg gcatgttcca gtctaacgct 750
 acctgtgccc cccatacggt gtgtcctgtg ggttggggtg tgcggaagaa 800
 agggacagag actgaggatg tgcggtgtaa gcagtgtgct cggggtacct 850
 tctcagatgt gccttctagt gtgatgaaat gcaaagcata cacagactgt 900
```

ctgagtcaga acctggtggt gatcaagccg gggaccaagg agacagacaa 950

cgtctgtggc acactcccgt ccttctccag ctccacctca ccttcccctg 1000 gcacagccat ctttccacgc cctgagcaca tggaaaccca tgaagtccct 1050 tcctccactt atgttcccaa aggcatgaac tcaacagaat ccaactcttc 1100 tgcctctgtt agaccaaagg tactgagtag catccaggaa gggacagtcc 1150 ctgacaacac aagctcagca agggggaagg aagacgtgaa caagaccctc 1200 ccaaaccttc aggtagtcaa ccaccagcaa ggcccccacc acagacacat 1250 cctqaaqctq ctqccqtcca tqqaqqccac tgqqqqcgag aagtccagca 1300 cgcccatcaa gggccccaag aggggacatc ctagacagaa cctacacaag 1350 cattttgaca tcaatgagca tttgccctgg atgattgtgc ttttcctgct 1400 gctggtgctt gtggtgattg tggtgtgcag tatccggaaa agctcgagga 1450 ctctgaaaaa ggggccccgg caggatccca gtgccattgt ggaaaaggca 1500 gggctgaaga aatccatgac tccaacccag aaccgggaga aatggatcta 1550 ctactgcaat ggccatggta tcgatatcct gaagcttgta gcagcccaag 1600 tqqqaaqcca qtqqaaaqat atctatcagt ttctttgcaa tgccagtgag 1650 agggaggttg ctgctttctc caatgggtac acagccgacc acgagcgggc 1700 ctacgcagct ctgcagcact ggaccatccg gggccccgag gccagcctcg 1750 cccagctaat tagcgccctg cgccagcacc ggagaaacga tgttgtggag 1800 aagattcgtg ggctgatgga agacaccacc cagctggaaa ctgacaaact 1850 ageteteceg atgagececa geoegettag eeegageece atececagee 1900 ccaacgcgaa acttgagaat tccgctctcc tgacggtgga gccttcccca 1950 caggacaaga acaagggctt cttcgtggat gagtcggagc cccttctccg 2000 ctgtgactct acatccagcg gctcctccgc gctgagcagg aacggttcct 2050 ttattaccaa agaaaagaag gacacagtgt tgcggcaggt acgcctggac 2100 ccctgtgact tgcagcctat ctttgatgac atgctccact ttctaaatcc 2150 tqaqqaqctq cqqqtqattq aaqaqattcc ccaggctgag gacaaactag 2200 accqqctatt cqaaattatt qqaqtcaaqa gccaggaagc cagccagacc 2250 ctcctggact ctgtttatag ccatcttcct gacctgctgt agaacatagg 2300 gatactgcat tctggaaatt actcaattta gtggcagggt ggttttttaa 2350 ttttcttctg tttctgattt ttgttgtttg gggtgtgtgt gtgtgtttgt 2400

gtgtgtgtg gtgtgtgt gtgtgtgtg gtttaacaga gaatatggcc 2450 agtgcttgag ttctttctcc ttctctctt ctctttttt tttaaataac 2500 tcttctggga agttggttta taagcctttg ccaggtgtaa ctgttgtgaa 2550 atacccacca ctaaagtttt ttaagttcca tattttctcc attttgcctt 2600 cttatgtatt ttcaagatta ttctgtgcac tttaaattta cttaacttac 2650 cataaatgca gtgtgacttt tcccacacac tggattgtga ggctcttaac 2700 ttcttaaaag tataatggca tcttgtgaat cctataagca gtctttatgt 2750 ctcttaacat tcacacctac tttttaaaaa caaatattat tactattttt 2800 attattgttt gtcctttata aattttctta aagattaaga aaatttaaga 2850 ccccattgag ttactgtaat gcaattcaac tttgagttat cttttaaata 2900 tgtcttgtat agttcatatt catggctgaa acttgaccac actattgctg 2950 attqtatqqt tttcacctgg acaccgtgta gaatgcttga ttacttgtac 3000 tcaggatttg ctatttaagt ggcttgacaa ctgggccacc aaagaacttg 3100 aacttcacct tttaggattt gagctgttct ggaacacatt gctgcacttt 3150 ggaaagtcaa aatcaagtgc cagtggcgcc ctttccatag agaatttgcc 3200 cagctttgct ttaaaagatg tcttgttttt tatatacaca taatcaatag 3250 gtccaatctg ctctcaaggc cttggtcctg gtgggattcc ttcaccaatt 3300 actttaatta aaaatggctg caactgtaag aacccttgtc tgatatattt 3350 gcaactatgc tcccatttac aaatgtacct tctaatgctc agttgccagg 3400 ttccaatqca aaqqtqqcqt qqactccctt tgtgtgggtg gggtttgtgg 3450 gtagtggtga aggaccgata tcagaaaaat gccttcaagt gtactaattt 3500 attaataaac attaggtgtt tgttaaaaaa aaaa 3534

<210> 64

<211> 655

<212> PRT

<213> Homo sapiens

<400> 64

Met Gly Thr Ser Pro Ser Ser Ser Thr Ala Leu Ala Ser Cys Ser 1 5 10 15

Arg Ile Ala Arg Arg Ala Thr Ala Thr Met Ile Ala Gly Ser Leu 20 25 30

Leu Leu Leu Gly Phe Leu Ser Thr Thr Thr Ala Gln Pro Glu Gln Lys Ala Ser Asn Leu Ile Gly Thr Tyr Arg His Val Asp Arg Ala Thr Gly Gln Val Leu Thr Cys Asp Lys Cys Pro Ala Gly Thr Tyr Val Ser Glu His Cys Thr Asn Thr Ser Leu Arg Val Cys Ser Ser Cys Pro Val Gly Thr Phe Thr Arg His Glu Asn Gly Ile Glu Lys Cys His Asp Cys Ser Gln Pro Cys Pro Trp Pro Met Ile Glu Lys 115 110 Leu Pro Cys Ala Ala Leu Thr Asp Arg Glu Cys Thr Cys Pro Pro Gly Met Phe Gln Ser Asn Ala Thr Cys Ala Pro His Thr Val Cys 150 140 Pro Val Gly Trp Gly Val Arg Lys Lys Gly Thr Glu Thr Glu Asp Val Arg Cys Lys Gln Cys Ala Arg Gly Thr Phe Ser Asp Val Pro 170 Ser Ser Val Met Lys Cys Lys Ala Tyr Thr Asp Cys Leu Ser Gln Asn Leu Val Val Ile Lys Pro Gly Thr Lys Glu Thr Asp Asn Val 200 Cys Gly Thr Leu Pro Ser Phe Ser Ser Ser Thr Ser Pro Ser Pro Gly Thr Ala Ile Phe Pro Arg Pro Glu His Met Glu Thr His Glu 230 Val Pro Ser Ser Thr Tyr Val Pro Lys Gly Met Asn Ser Thr Glu Ser Asn Ser Ser Ala Ser Val Arg Pro Lys Val Leu Ser Ser Ile 260 Gln Glu Gly Thr Val Pro Asp Asn Thr Ser Ser Ala Arg Gly Lys Glu Asp Val Asn Lys Thr Leu Pro Asn Leu Gln Val Val Asn His 290 Gln Gln Gly Pro His His Arg His Ile Leu Lys Leu Leu Pro Ser Met Glu Ala Thr Gly Gly Glu Lys Ser Ser Thr Pro Ile Lys Gly

				320					325					330
Pro	Lys	Arg	Gly	His 335	Pro	Arg	Gln	Asn	Leu 340	His	Lys	His	Phe	Asp 345
Ile	Asn	Glu	His	Leu 350	Pro	Trp	Met	Ile	Val 355	Leu	Phe	Leu	Leu	Leu 360
Val	Leu	Val	Val	Ile 365	Val	Val	Cys	Ser	Ile 370	Arg	Lys	Ser	Ser	Arg 375
Thr	Leu	Lys	Lys	Gly 380	Pro	Arg	Gln	Asp	Pro 385	Ser	Ala	Ile	Val	Glu 390
Lys	Ala	Gly	Leu	Lys 395	Lys	Ser	Met	Thr	Pro 400	Thr	Gln	Asn	Arg	Glu 405
Lys	Trp	Ile	Tyr	Tyr 410	Cys	Asn	Gly	His	Gly 415	Ile	Asp	Ile	Leu	Lys 420
Leu	Val	Ala	Ala	Gln 425	Val	Gly	Ser	Gln	Trp 430	Lys	Asp	Ile	Tyr	Gln 435
Phe	Leu	Cys	Asn	Ala 440	Ser	Glu	Arg	Glu	Val 445	Ala	Ala	Phe	Ser	Asn 450
Gly	Tyr	Thr	Ala	Asp 455	His	Glu	Arg	Ala	Tyr 460	Ala	Ala	Leu	Gln	His 465
Trp	Thr	Ile	Arg	Gly 470	Pro	Glu	Ala	Ser	Leu 475	Ala	Gln	Leu	Ile	Ser 480
Ala	Leu	Arg	Gln	His 485	Arg	Arg	Asn	Asp	Val 490	Val	Glu	Lys	Ile	Arg 495
Gly	Leu	Met	Glu	Asp 500	Thr	Thr	Gln	Leu	Glu 505	Thr	Asp	Lys	Leu	Ala 510
Leu	Pro	Met	Ser	Pro 515	Ser	Pro	Leu	Ser	Pro 520	Ser	Pro	Ile	Pro	Ser 525
Pro	Asn	Ala	Lys	Leu 530	Glu	Asn	Ser	Ala	Leu 535	Leu	Thr	Val	Glu	Pro 540
Ser	Pro	Gln	Asp	Lys 545	Asn	Lys	Gly	Phe	Phe 550	Val	Asp	Glu	Ser	Glu 555
Pro	Leu	Leu	Arg	Cys 560	Asp	Ser	Thr	Ser	Ser 565		Ser	Ser	Ala	Leu 570
Ser	Arg	Asn	Gly	Ser 575	Phe	Ile	Thr	Lys	Glu 580		Lys	Asp	Thr	Val 585
				590					595					Phe 600
Asp	Asp	Met	Leu	His		Leu	Asn	Pro	Glu 610		Leu	Arg	Val	Ile 615

```
Glu Glu Ile Pro Gln Ala Glu Asp Lys Leu Asp Arg Leu Phe Glu
                 620
Ile Ile Gly Val Lys Ser Gln Glu Ala Ser Gln Thr Leu Leu Asp
                                                          645
                 635
Ser Val Tyr Ser His Leu Pro Asp Leu Leu
                 650
<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
gtagcagtgc acatggggtg ttgg 24
<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 66
accgcacate ctcagtetet gtcc 24
<210> 67
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
acgatgatcg cgggctccct tctcctgctt ggattcctta gcaccaccac 50
<210> 68
<211> 2412
<212> DNA
<213> Homo sapiens
<400> 68
 atgggaagec agtaacactg tggcctacta tetetteegt ggtgccatet 50
 acatttttgg gactcgggaa ttatgaggta gaggtggagg cggagccgga 100
 tgtcagaggt cctgaaatag tcaccatggg ggaaaatgat ccgcctgctg 150
 ttgaagcccc cttctcattc cgatcgcttt ttggccttga tgatttgaaa 200
 ataagtcctg ttgcaccaga tgcagatgct gttgctgcac agatcctgtc 250
```

IJ

.

F

1,211

i inti

actgctgcca ttgaagtttt ttccaatcat cgtcattggg atcattgcat 300 tgatattagc actggccatt ggtctgggca tccacttcga ctgctcaggg 350 aagtacagat gtcgctcatc ctttaagtgt atcgagctga tagctcgatg 400 tgacggagtc tcggattgca aagacgggga ggacgagtac cgctgtgtcc 450 gggtgggtgg tcagaatgcc gtgctccagg tgttcacagc tgcttcgtgg 500 aagaccatgt gctccgatga ctggaagggt cactacgcaa atgttgcctg 550 tgcccaactg ggtttcccaa gctatgtgag ttcagataac ctcagagtga 600 gctcgctgga ggggcagttc cgggaggagt ttgtgtccat cgatcacctc 650 ttgccagatg acaaggtgac tgcattacac cactcagtat atgtgaggga 700 gggatgtgcc tctggccacg tggttacctt gcagtgcaca gcctgtggtc 750 atagaagggg ctacagctca cgcatcgtgg gtggaaacat gtccttgctc 800 tcgcagtggc cctggcaggc cagccttcag ttccagggct accacctgtg 850 cgggggctct gtcatcacgc ccctgtggat catcactgct gcacactgtg 900 tttatgactt gtacctcccc aagtcatgga ccatccaggt gggtctagtt 950 tccctgttgg acaatccagc cccatcccac ttggtggaga agattgtcta 1000 ccacagcaag tacaagccaa agaggctggg caatgacatc gcccttatga 1050 agctggccgg gccactcacg ttcaatgaaa tgatccagcc tgtgtgcctg 1100 cccaactctg aagagaactt ccccgatgga aaagtgtgct ggacgtcagg 1150 atggggggcc acagaggatg gaggtgacgc ctcccctgtc ctgaaccacg 1200 cggccgtccc tttgatttcc aacaagatct gcaaccacag ggacgtgtac 1250 ggtggcatca teteceete catgetetge gegggetace tgaegggtgg 1300 cgtggacagc tgccaggggg acagcggggg gcccctggtg tgtcaagaga 1350 ggaggctgtg gaagttagtg ggagcgacca gctttggcat cggctgcgca 1400 gaggtgaaca agcctggggt gtacacccgt gtcacctcct tcctggactg 1450 gatccacgag cagatggaga gagacctaaa aacctgaaga ggaaggggac 1500 aagtagccac ctgagttcct gaggtgatga agacagcccg atcctcccct 1550 ggactcccgt gtaggaacct gcacacgagc agacaccctt ggagctctga 1600 gttccggcac cagtagcagg cccgaaagag gcaccettcc atctgattcc 1650 agcacaacct tcaagctgct ttttgttttt tgttttttg aggtggagtc 1700 tegetetgtt geceaggetg gagtgeagtg gegaaatece tgeteactge 1750
ageeteeget teeetggtte aagegattet ettgeeteag etteeecagt 1800
agetgggace acaggtgeee gecaceacae ecaactaatt tttgtattt 1850
tagtagagac agggtteac catgttggee aggetgetet caaacecetg 1900
accteaaatg atgtgeetge tteageetee eacagtgetg ggattacagg 1950
catgggeeae cacgcetage eteacgetee tttetgatet teactaagaa 2000
caaaagaage ageaacttge aagggeggee ttteecactg gteeatetgg 2050
tttteetee agggtettge aaaatteetg aegagataag eagttatgtg 2100
accteacgtg caaageeaee aacageeaet eagaaaagae geaceageee 2150
agaagtgeag aactgeagte actgeacgt tteateteta gggaceagaa 2200
ceaaaceeae eetttetaet teeaagaett attteacat gtggggaggt 2250
taatetagga atgaetegt taaggeetat tteeatgatt teettgtage 2300
atttggtget tgaegtatta ttgteetttg atteeaaata atatgttee 2350
tteeeteatt gtetggegtg tetgegtgga etggtgaegt gaateaaaat 2400
catecactga aa 2412

<210> 69

<211> 453

<212> PRT

<213> Homo sapiens

<400> 69

Met Gly Glu Asn Asp Pro Pro Ala Val Glu Ala Pro Phe Ser Phe
1 5 10 15

Arg Ser Leu Phe Gly Leu Asp Asp Leu Lys Ile Ser Pro Val Ala 20 25 30

Pro Asp Ala Asp Ala Val Ala Ala Gln Ile Leu Ser Leu Leu Pro 35 40 45

Leu Lys Phe Phe Pro Ile Ile Val Ile Gly Ile Ile Ala Leu Ile
50 55 60

Leu Ala Leu Ala Ile Gly Leu Gly Ile His Phe Asp Cys Ser Gly 65 70 75

Lys Tyr Arg Cys Arg Ser Ser Phe Lys Cys Ile Glu Leu Ile Ala 80 85 90

Arg Cys Asp Gly Val Ser Asp Cys Lys Asp Gly Glu Asp Glu Tyr 95 100 105

Arg Cys Val Arg Val Gly Gln Asn Ala Val Leu Gln Val Phe

					110					115					120
•	Thr	Ala	Ala	Ser	Trp 125	Lys	Thr	Met	Cys	Ser 130	Asp	Asp	Trp	Lys	Gly 135
	His	Tyr	Ala	Asn	Val 140	Ala	Cys	Ala	Gln	Leu 145	Gly	Phe	Pro	Ser	Tyr 150
	Val	Ser	Ser	Asp	Asn 155	Leu	Arg	Val	Ser	Ser 160	Leu	Glu	Gly	Gln	Phe 165
	Arg	Glu	Glu	Phe	Val 170	Ser	Ile	Asp	His	Leu 175	Leu	Pro	Asp	Asp	Lys 180
	Val	Thr	Ala	Leu	His 185	His	Ser	Val	Tyr	Val 190	Arg	Glu	Gly	Cys	Ala 195
	Ser	Gly	His	Val	Val 200	Thr	Leu	Gln	Cys	Thr 205	Ala	Cys	Gly	His	Arg 210
	Arg	Gly	Tyr	Ser	Ser 215	Arg	Ile	Val	Gly	Gly 220	Asn	Met	Ser	Leu	Leu 225
	Ser	Gln	Trp	Pro	Trp 230	Gln	Ala	Ser	Leu	Gln 235	Phe	Gln	Gly	Tyr	His 240
	Leu	Cys	Gly	Gly	Ser 245	Val	Ile	Thr	Pro	Leu 250	Trp	Ile	Ile	Thr	Ala 255
	Ala	His	Cys	Val	Туг 260	Asp	Leu	Tyr	Leu	Pro 265	Lys	Ser	Trp	Thr	Ile 270
	Gln	Val	Gly	Leu	Val 275		Leu	Leu	Asp	Asn 280	Pro	Ala	Pro	Ser	His 285
	Leu	Val	Glu	Lys	Ile 290		Tyr	His	Ser	Lys 295		Lys	Pro	Lys	Arg 300
	Leu	Gly	Asn	. Asp	11e 305		. Leu	. Met	Lys	Leu 310	Ala	Gly	Pro	Leu	Thr 315
	Phe	Asn	Glu	. Met	11e 320	Gln	Pro	Val	Cys	Leu 325	Pro	Asn	. Ser	Glu	Glu 330
	Asn	Phe	Pro	Asp	Gly 335		: Val	. Cys	Trp	Thr 340	Ser	: Gly	Trp	Gly	Ala 345
	Thr	Glu	. Asp	Gly	Gly 350		Ala	ser	Pro	Val 355		ı Asn	His	Ala	Ala 360
	Val	Pro	Let	ı Ile	Ser 365		ı Lys	: Ile	: Cys	370	His	arç	Asp	val	Tyr 375
	Gly	Gly	7 Il∈	e Ile	Ser 380		Ser	Met	. Leu	Cys 385	ala	ı Gly	туг	Leu	Thr 390
	Gly	Gly	v Val	L Asp	Ser 395		s Glr	n Gly	Asp	Ser 400		/ Gly	Pro	Leu	Val 405

```
Cys Gln Glu Arg Arg Leu Trp Lys Leu Val Gly Ala Thr Ser Phe
                 410
Gly Ile Gly Cys Ala Glu Val Asn Lys Pro Gly Val Tyr Thr Arg
                                                          435
                 425
Val Thr Ser Phe Leu Asp Trp Ile His Glu Gln Met Glu Arg Asp
                                                          450
                                      445
Leu Lys Thr
<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 70
tgacatcgcc cttatgaagc tggc 24
<210> 71
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 71
tacacgtccc tgtggttgca gatc 24
<210> 72
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 72
 cgttcaatgc agaaatgatc cagcctgtgt gcctgcccaa ctctgaagag 50
<210> 73
<211> 3305
<212> DNA
<213> Homo sapiens
<400> 73
 cccacqcqtc cqtcctaqtc cccqgqccaa ctcgqacaqt ttgctcattt 50
 attgcaacgg tcaaggctgg cttgtgccag aacggcgcgc gcgcgcgcac 100
```

ļ. cā:

i di

.

4

gcacgcacac acacgggggg aaactttttt aaaaatgaaa ggctagaaga 150

gctcagcggc ggcgcgggcg ctgcgcgagg gctccggagc tgactcgccg 200

aggcaggaaa teeeteeggt egegaegeee ggeeeegget eggegeeege 250 gtgggatggt gcagcgctcg ccgccgggcc cgagagctgc tgcactgaag 300 geoggegaeg atggeagege geoegetgee egtgteeece geoegegeec 350 tcctgctcgc cctggccggt gctctgctcg cgccctgcga ggcccgaggg 400 gtgagcttat ggaaccaagg aagagctgat gaagttgtca gtgcctctgt 450 tcggagtggg gacctctgga tcccagtgaa gagcttcgac tccaagaatc 500 atccagaagt gctgaatatt cgactacaac gggaaagcaa agaactgatc 550 ataaatctgg aaagaaatga aggtctcatt gccagcagtt tcacggaaac 600 ccactatctg caagacggta ctgatgtctc cctcgctcga aattacacgg 650 gtcactgtta ctaccatgga catgtacggg gatattctga ttcagcagtc 700 agtctcagca cgtgttctgg tctcagggga cttattgtgt ttgaaaatga 750 aagctatgtc ttagaaccaa tgaaaagtgc aaccaacaga tacaaactct 800 aacacaccaa acctcgctgc aaagaatgtg tttccaccac cctctcagac 900 atgggcaaga aggcataaaa gagagaccct caaggcaact aagtatgtgg 950 agctggtgat cgtggcagac aaccgagagt ttcagaggca aggaaaagat 1000 ctggaaaaag ttaagcagcg attaatagag attgctaatc acgttgacaa 1050 gttttacaga ccactgaaca ttcggatcgt gttggtaggc gtggaagtgt 1100 ggaatgacat ggacaaatgc tctgtaagtc aggacccatt caccagcctc 1150 catgaatttc tggactggag gaagatgaag cttctacctc gcaaatccca 1200 tgacaatgcg cagettgtca gtggggttta tttecaaggg accaecateg 1250 gcatggcccc aatcatgagc atgtgcacgg cagaccagtc tgggggaatt 1300 gtcatggacc attcagacaa tccccttggt gcagccgtga ccctggcaca 1350 tgagctgggc cacaatttcg ggatgaatca tgacacactg gacaggggct 1400 gtagctgtca aatggcggtt gagaaaggag gctgcatcat gaacgcttcc 1450 accgggtacc catttcccat ggtgttcagc agttgcagca ggaaggactt 1500 ggagaccagc ctggagaaag gaatgggggt gtgcctgttt aacctgccgg 1550 aagtcaggga gtctttcggg ggccagaagt gtgggaacag atttgtggaa 1600 gaaggagagg agtgtgactg tggggagcca gaggaatgta tgaatcgctg 1650

ctgcaatgcc accaectgta ecetgaagee ggaegetgtg tgegeacatg 1700 ggctgtgctg tgaagactgc cagctgaagc ctgcaggaac agcgtgcagg 1750 gactccagca actcctgtga cctcccagag ttctgcacag gggccagccc 1800 tcactgccca gccaatgtgt acctgcacga tgggcactca tgtcaggatg 1850 tggacggcta ctgctacaat ggcatctgcc agactcacga gcagcagtgt 1900 gtcacgctct ggggaccagg tgctaaacct gcccctggga tctgctttga 1950 gagagtcaat tctgcaggtg atccttatgg caactgtggc aaagtctcga 2000 agagtteett tgeeaaatge gagatgagag atgetaaatg tggaaaaate 2050 cagtgtcaag gaggtgccag ccggccagtc attggtacca atgccgtttc 2100 catagaaaca aacatccctc tgcagcaagg aggccggatt ctgtgccggg 2150 ggacccacgt gtacttgggc gatgacatgc cggacccagg gcttgtgctt 2200 gcaggcacaa agtgtgcaga tggaaaaatc tgcctgaatc gtcaatgtca 2250 aaatattagt gtctttgggg ttcacgagtg tgcaatgcag tgccacggca 2300 gaggggtgtg caacaacagg aagaactgcc actgcgaggc ccactgggca 2350 cctcccttct gtgacaagtt tggctttgga ggaagcacag acagcggccc 2400 catccggcaa gcagaagcaa ggcaggaagc tgcagagtcc aacagggagc 2450 geggecaggg ccaggagece gtgggatege aggageatge gtetaetgee 2500 tcactgacac tcatctgagc cctcccatga catggagacc gtgaccagtg 2550 ctgctgcaga ggaggtcacg cgtccccaag gcctcctgtg actggcagca 2600 ttgactctgt ggctttgcca tcgtttccat gacaacagac acaacacagt 2650 tctcggggct caggagggga agtccagcct accaggcacg tctgcagaaa 2700 cagtgcaagg aagggcagcg acttcctggt tgagcttctg ctaaaacatg 2750 gacatgcttc agtgctgctc ctgagagagt agcaggttac cactctggca 2800 ggccccagcc ctgcagcaag gaggaagagg actcaaaagt ctggcctttc 2850 actgagecte caeageagtg ggggagaage aagggttggg ceeagtgtee 2900 cctttcccca gtgacacctc agccttggca gccctgatga ctggtctctg 2950 gctgcaactt aatgctctga tatggctttt agcatttatt atatgaaaat 3000 agcagggttt tagtttttaa tttatcagag accetgccac ccattccatc 3050 tccatccaag caaactgaat ggcaatgaaa caaactggag aagaaggtag 3100

gagaaagggc ggtgaactct ggctctttgc tgtggacatg cgtgaccagc 3150 agtactcagg tttgagggtt tgcagaaagc cagggaaccc acagagtcac 3200 caacccttca tttaacaagt aagaatgtta aaaagtgaaa acaatgtaag 3250 agcctaactc catccccgt ggccattact gcataaaata gagtgcattt 3300 gaaat 3305

<210> 74

<211> 735

<212> PRT

<213> Homo sapiens

<400> 74

Met Ala Ala Arg Pro Leu Pro Val Ser Pro Ala Arg Ala Leu Leu 1 5 10 15

Leu Ala Leu Ala Gly Ala Leu Leu Ala Pro Cys Glu Ala Arg Gly 20 25 30

Val Ser Leu Trp Asn Gln Gly Arg Ala Asp Glu Val Val Ser Ala 35 40 45

Ser Val Arg Ser Gly Asp Leu Trp Ile Pro Val Lys Ser Phe Asp 50 55 60

Ser Lys Asn His Pro Glu Val Leu Asn Ile Arg Leu Gln Arg Glu 65 70 75

Ser Lys Glu Leu Ile Ile Asn Leu Glu Arg Asn Glu Gly Leu Ile 80 85 90

Ala Ser Ser Phe Thr Glu Thr His Tyr Leu Gln Asp Gly Thr Asp 95 100 105

Val Ser Leu Ala Arg Asn Tyr Thr Gly His Cys Tyr Tyr His Gly
110 115 120

His Val Arg Gly Tyr Ser Asp Ser Ala Val Ser Leu Ser Thr Cys 125 130 135

Ser Gly Leu Arg Gly Leu Ile Val Phe Glu Asn Glu Ser Tyr Val 140 145 150

Leu Glu Pro Met Lys Ser Ala Thr Asn Arg Tyr Lys Leu Phe Pro 155 160 165

Ala Lys Lys Leu Lys Ser Val Arg Gly Ser Cys Gly Ser His His
170 175 180

Asn Thr Pro Asn Leu Ala Ala Lys Asn Val Phe Pro Pro Pro Ser 185 190 195

Gln Thr Trp Ala Arg Arg His Lys Arg Glu Thr Leu Lys Ala Thr 200 205 210 Lys Tyr Val Glu Leu Val Ile Val Ala Asp Asn Arg Glu Phe Gln Arg Gln Gly Lys Asp Leu Glu Lys Val Lys Gln Arg Leu Ile Glu 230 Ile Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asn Ile Arg Ile Val Leu Val Gly Val Glu Val Trp Asn Asp Met Asp Lys Cys Ser Val Ser Gln Asp Pro Phe Thr Ser Leu His Glu Phe Leu Asp Trp Arg Lys Met Lys Leu Leu Pro Arg Lys Ser His Asp Asn Ala 290 Gln Leu Val Ser Gly Val Tyr Phe Gln Gly Thr Thr Ile Gly Met 305 Ala Pro Ile Met Ser Met Cys Thr Ala Asp Gln Ser Gly Gly Ile 330 325 320 Val Met Asp His Ser Asp Asn Pro Leu Gly Ala Ala Val Thr Leu 335 Ala His Glu Leu Gly His Asn Phe Gly Met Asn His Asp Thr Leu 360 350 355 Asp Arg Gly Cys Ser Cys Gln Met Ala Val Glu Lys Gly Cys Ile Met Asn Ala Ser Thr Gly Tyr Pro Phe Pro Met Val Phe Ser 380 385 390 Ser Cys Ser Arg Lys Asp Leu Glu Thr Ser Leu Glu Lys Gly Met 395 Gly Val Cys Leu Phe Asn Leu Pro Glu Val Arg Glu Ser Phe Gly 420 410 415 Gly Gln Lys Cys Gly Asn Arg Phe Val Glu Glu Glu Glu Glu Cys 430 425 Asp Cys Gly Glu Pro Glu Glu Cys Met Asn Arg Cys Cys Asn Ala 450 Thr Thr Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Gly Leu Cys Cys Glu Asp Cys Gln Leu Lys Pro Ala Gly Thr Ala Cys Arg 470 Asp Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Ala 490 485 Ser Pro His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Ser

505 510 500 Cys Gln Asp Val Asp Gly Tyr Cys Tyr Asn Gly Ile Cys Gln Thr His Glu Gln Gln Cys Val Thr Leu Trp Gly Pro Gly Ala Lys Pro 530 Ala Pro Gly Ile Cys Phe Glu Arg Val Asn Ser Ala Gly Asp Pro Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala Lys Cys 570 560 565 Glu Met Arg Asp Ala Lys Cys Gly Lys Ile Gln Cys Gln Gly Gly Ala Ser Arg Pro Val Ile Gly Thr Asn Ala Val Ser Ile Glu Thr 600 Asn Ile Pro Leu Gln Gln Gly Gly Arg Ile Leu Cys Arg Gly Thr His Val Tyr Leu Gly Asp Asp Met Pro Asp Pro Gly Leu Val Leu Ala Gly Thr Lys Cys Ala Asp Gly Lys Ile Cys Leu Asn Arg Gln Cys Gln Asn Ile Ser Val Phe Gly Val His Glu Cys Ala Met Gln Cys His Gly Arg Gly Val Cys Asn Asn Arg Lys Asn Cys His Cys Glu Ala His Trp Ala Pro Pro Phe Cys Asp Lys Phe Gly Phe Gly Gly Ser Thr Asp Ser Gly Pro Ile Arg Gln Ala Glu Ala Arg Gln 700 Glu Ala Ala Glu Ser Asn Arg Glu Arg Gly Gln Gly Gln Glu Pro 715 Val Gly Ser Gln Glu His Ala Ser Thr Ala Ser Leu Thr Leu Ile 730 735 725 <210> 75 <211> 483 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 30, 94, 143, 156, 163, 179, 193, 369, 371, 381, 390, 473

<223> unknown base

<400> 75

<213> Artificial Sequence

```
tcccaaggct tcttggatgg cagatgattn tggggttttg cattgtttcc 50
 ctgacaacga aaacaaaaca gttttggggg ttcaggaggg gaantccagc 100
 ctacccagga agtttgcaga aacagtgcaa ggaagggcag ganttcctgg 150
 ttgagntttt tgntaaaaca tggacatgnt tcagtgctgc tcntgagaga 200
 gtagcaggtt accaettttg gcaggececa geeetgcage aaggaggaag 250
 aggactcaaa agtttggcct ttcactgagc ctccacagca gtgggggaga 300
 agcaagggtt gggcccagtg tcccctttcc ccagtgacac ctcagccttg 350
 gcagccctga taactggtnt ntggctgcaa nttaatgctn tgatatggct 400
 tttagcattt attatatgaa aatagcaggg ttttagtttt taatttatca 450
 gagaccetge cacceattee atntecatee aag 483
<210> 76
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 76
gtctcagcac gtgttctggt ctcaggg 27
<210> 77
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 77
 catgagcatg tgcacggc 18
<210> 78
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 78
 tacctgcacg atgggcac 18
<210> 79
<211> 18
<212> DNA
```

```
<223> Synthetic oligonucleotide probe
<400> 79
cactgggcac ctcccttc 18
<210> 80
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 80
ctccaggctg gtctccaagt ccttcc 26
<210> 81
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 81
tccctgttgg actctgcagc ttcc 24
<210> 82
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 82
cttcgctggg aagagtttg 19
<210> 83
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gtgcaaccaa cagatacaaa ctcttcccag cgaagaagct gaaaagcgtc 50
<210> 84
<211> 1714
<212> DNA
<213> Homo sapiens
<400> 84
 catcctgcaa catggtgaaa ccacgcctgg ctaattttgt tgtatttttg 50
```

ı, 🗐

,<u>D</u>

- 4

å

gtagagatgg gatttcaccg tgttagccag gattgtctca atctgacctc 100 atgatctgcc cgcctcggcc tcccaaagtg ctgggattac aggcgagtgc 150 aaccacaccc ggccacaaac tttttaagaa gttaatgaaa ccataccttt 200 tacattttta atgacaggaa aatgctcaca ataattgtta acccaaaatt 250 ctggatacaa aagtacaatc tttactgtgt aaatacatgt atatgtacta 300 tatgaaaata taccaaatat caataatact tatctctggg taaaaacctc 350 ttctcatacc ctgtgctaac aacttttaac aaaaaatttg catcactttt 400 aagaatcaag aaaaatttct gaaggtcata tgggacagaa aaaaaaacca 450 agggaaaaat cacgccactt gggaaaaaaa gattcgaaat ctgccttttt 500 atagatttgt aattaataag gtccaggctt tctaagcaac ttaaatgttt 550 tgtttcgaaa caaagtactt gtctggatgt aggaggaaag ggagtgatgt 600 cactgccatt atgatgcccc ttgaatataa gaccctactt gctatctccc 650 ctgcaccage caggagecae ceatecteca geacactgag cageaagetg 700 gacacacggc acactgatcc aaatgggtaa ggggatggtg gcgatgctca 750 ttctgggtct gctacttctg gcgctgctcc tacccgtgca ggtttcttca 800 tttgttcctt taaccagtat gccggaagct actgcagccg aaaccacaaa 850 gccctccaac agtgccctac agcctacagc cggtctcctt gtggtcttgc 900 ttgcccttct acatctctac cattaagagg caggtcaaga aacagctaca 950 gttctccaac ccatacacta aaaccgaatc caaatggtgc ctagaagttc 1000 aatgtggcaa ggaaaaaaac caggtcttca tcaaatctac taatttcact 1050 ccttattaac agagaaacgc ttgagagtct caaactggac tggtttaaag 1100 agcatctgaa ggatttgact agatgataaa tgcctgtact cccagtactt 1150 tgggaggcct aggccggcgg atcacctgag gtcaggagtt tgagactaac 1200 ctggccaaaa tggtgaaacc ccatctgtac taaaaataca aatattgact 1250 gggcgtggtg gtgagtgcct gtgatcccag ctactcaggt ggctgaagca 1300 ggacaatcac ttgaactcag gaggcagagg ttgcagtgag ctgagatcgc 1350 gctactgcac tctagcctag cctgggcaac agagtgagac ttcgtctcaa 1400 aaaaaaaaa gccaagtgca gtggctcacg cctgtaatcc cggcactttg 1450 ggaggccgag gtgggcggat cacgaggtca ggagatcaag accatcctgg 1500

<212> DNA

<213> Artificial Sequence

```
ctaatacagt gaaaccctgt ctctactaaa aatacaaaaa attagccggg 1550
gatggtggca ggcacctgga gtcccagcta ctcgggaggc tgaggcagga 1600
gaatagcgtg aactcaggag gcggagcttg cagtgagccg agattgcgct 1650
aaaaaaaaaa aaaa 1714
<210> 85
<211> 67
<212> PRT
<213> Homo sapiens
<400> 85
Met Gly Lys Gly Met Val Ala Met Leu Ile Leu Gly Leu Leu
Leu Ala Leu Leu Pro Val Gln Val Ser Ser Phe Val Pro Leu
                 20
Thr Ser Met Pro Glu Ala Thr Ala Ala Glu Thr Thr Lys Pro Ser
Asn Ser Ala Leu Gln Pro Thr Ala Gly Leu Leu Val Val Leu Leu
                 50
Ala Leu Leu His Leu Tyr His
                 65
<210> 86
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 86
 acgggcacac tggatcccaa atg 23
<210> 87
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 87
 ggtagagatg tagaagggca agcaagacc 29
<210> 88
<211> 50
```

<220> <223> Synthetic oligonucleotide probe <400> 88 getecetace egtgeaggtt tetteatttg tteetttaac cagtatgeeg 50 <210> 89 <211> 2956 <212> DNA <213> Homo sapiens <400> 89 geogeggega gagegegeee ageceegeeg egatgeeege gegeeeagga 50 cgcctcctcc cgctgctggc ccggccggcg gccctgactg cgctgctgct 100 gctgctgctg ggccatggcg gcggcgggcg ctggggcgcc cgggcccagg 150 aggeggegge ggeggeggeg gaegggeeee eegeggeaga eggegaggae 200 ggacaggacc cgcacagcaa gcacctgtac acggccgaca tgttcacgca 250 cgggatccag agcgccgcgc acttcgtcat gttcttcgcg ccctggtgtg 300 gacactgcca gcggctgcag ccgacttgga atgacctggg agacaaatac 350 aacagcatgg aagatgccaa agtctatgtg gctaaagtgg actgcacggc 400 ccactccgac gtgtgctccg cccagggggt gcgaggatac cccaccttaa 450 agcttttcaa gccaggccaa gaagctgtga agtaccaggg tcctcgggac 500 ttccagacac tggaaaactg gatgctgcag acactgaacg aggagccagt 550 gacaccagag ccggaagtgg aaccgcccag tgcccccgag ctcaagcaag 600 ggctgtatga gctctcagca agcaactttg agctgcacgt tgcacaaggc 650 gaccacttta tcaagttctt cgctccgtgg tgtggtcact gcaaagccct 700 ggctccaacc tgggagcagc tggctctggg ccttgaacat tccgaaactg 750 tcaagattgg caaggttgat tgtacacagc actatgaact ctgctccgga 800 aaccaggttc gtggctatcc cactcttctc tggttccgag atgggaaaaa 850 ggtggatcag tacaagggaa agcgggattt ggagtcactg agggagtacg 900 tggagtcgca gctgcagcgc acagagactg gagcgacgga gaccgtcacg 950 ccctcagagg ccccggtgct ggcagctgag cccgaggctg acaagggcac 1000 tgtgttggca ctcactgaaa ataacttcga tgacaccatt gcagaaggaa 1050 taaccttcat caagttttat gctccatggt gtggtcattg taagactctg 1100

gctcctactt gggaggaact ctctaaaaag gaattccctg gtctggcggg 1150

ggtcaagatc gccgaagtag actgcactgc tgaacggaat atctgcagca 1200 agtattcggt acgaggctac cccacgttat tgcttttccg aggagggaag 1250 aaagtcagtg agcacagtgg aggcagagac cttgactcgt tacaccgctt 1300 tgtcctgagc caagcgaaag acgaacttta ggaacacagt tggaggtcac 1350 ctctcctgcc cagctcccgc accctgcgtt taggagttca gtcccacaga 1400 qqccactqqq ttcccaqtqq tggctgttca gaaagcagaa catactaagc 1450 gtgaggtatc ttctttgtgt gtgtgttttc caagccaaca cactctacag 1500 attetttatt aagttaagtt tetetaagta aatgtgtaac teatggteac 1550 tgtgtaaaca ttttcagtgg cgatatatcc cctttgacct tctcttgatg 1600 aaatttacat ggtttccttt gagactaaaa tagcgttgag ggaaatgaaa 1650 ttgctggact atttgtggct cctgagttga gtgattttgg tgaaagaaag 1700 cacatccaaa gcatagttta cctgcccacg agttctggaa aggtggcctt 1750 gtggcagtat tgacgttcct ctgatcttaa ggtcacagtt gactcaatac 1800 tgtgttggtc cgtagcatgg agcagattga aatgcaaaaa cccacacctc 1850 tggaagatac cttcacggcc gctgctggag cttctgttgc tgtgaatact 1900 tctctcagtg tgagaggtta gccgtgatga aagcagcgtt acttctgacc 1950 gtgcctgagt aagagaatgc tgatgccata actttatgtg tcgatacttg 2000 tcaaatcagt tactgttcag gggatccttc tgtttctcac ggggtgaaac 2050 atgtetttag tteeteatgt taacaegaag eeagageeea eatgaaetgt 2100 tggatgtctt ccttagaaag ggtaggcatg gaaaattcca cgaggctcat 2150 tctcaqtatc tcattaactc attgaaagat tccagttgta tttgtcacct 2200 qqqqtqacaa qaccaqacaq gctttcccag gcctgggtat ccagggaggc 2250 tetgcagece tgetgaaggg cectaactag agttetagag tttetgatte 2300 tgtttctcag tagtcctttt agaggcttgc tatacttggt ctgcttcaag 2350 gaggtcgacc ttctaatgta tgaagaatgg gatgcatttg atctcaagac 2400 caaagacaga tgtcagtggg ctgctctggc cctggtgtgc acggctgtgg 2450 caqctqttqa tqccaqtqtc ctctaactca tqctqtcctt gtgattaaac 2500 acctctatct cccttgggaa taagcacata caggcttaag ctctaagata 2550 gataggtgtt tgtcctttta ccatcgagct acttcccata ataaccactt 2600 tgcatccaac actettcacc cacetcccat acgcaagggg atgtggatac 2650 ttggcccaaa gtaactggtg gtaggaatct tagaaacaag accaettata 2700 ctgtctgtct gaggcagaag ataacagcag catetcgacc agcetctgcc 2750 ttaaaggaaa tetttattaa teacgtatgg tteacagata attettttt 2800 taaaaaaacc caacetccta gagaagcaca actgtcaaga gtettgtaca 2850 cacaacttca getttgcatc acgagtettg tattccaaga aaatcaaagt 2900 ggtacaattt gtttgttac actatgatac tttetaaata aactettttt 2950 ttttaa 2956

<210> 90

<211> 432

<212> PRT

<213> Homo sapiens

<400> 90

Met Pro Ala Arg Pro Gly Arg Leu Leu Pro Leu Leu Ala Arg Pro 1 5 10

Ala Ala Leu Thr Ala Leu Leu Leu Leu Leu Gly His Gly Gly 20 25 30

Gly Gly Arg Trp Gly Ala Arg Ala Gln Glu Ala Ala Ala Ala Ala 35 40 45

Ala Asp Gly Pro Pro Ala Ala Asp Gly Glu Asp Gly Gln Asp Pro 50 55 60

His Ser Lys His Leu Tyr Thr Ala Asp Met Phe Thr His Gly Ile 65 70 75

Gln Ser Ala Ala His Phe Val Met Phe Phe Ala Pro Trp Cys Gly $80 \ 85 \ 90$

His Cys Gln Arg Leu Gln Pro Thr Trp Asn Asp Leu Gly Asp Lys 95 100 105

Tyr Asn Ser Met Glu Asp Ala Lys Val Tyr Val Ala Lys Val Asp 110 115 120

Cys Thr Ala His Ser Asp Val Cys Ser Ala Gln Gly Val Arg Gly
125 130 135

Tyr Pro Thr Leu Lys Leu Phe Lys Pro Gly Gln Glu Ala Val Lys 140 145

Tyr Gln Gly Pro Arg Asp Phe Gln Thr Leu Glu Asn Trp Met Leu
155 160 165

Gln Thr Leu Asn Glu Glu Pro Val Thr Pro Glu Pro Glu Val Glu
170 175 180

```
Pro Pro Ser Ala Pro Glu Leu Lys Gln Gly Leu Tyr Glu Leu Ser
Ala Ser Asn Phe Glu Leu His Val Ala Gln Gly Asp His Phe Ile
                 200
Lys Phe Phe Ala Pro Trp Cys Gly His Cys Lys Ala Leu Ala Pro
Thr Trp Glu Gln Leu Ala Leu Gly Leu Glu His Ser Glu Thr Val
Lys Ile Gly Lys Val Asp Cys Thr Gln His Tyr Glu Leu Cys Ser
Gly Asn Gln Val Arg Gly Tyr Pro Thr Leu Leu Trp Phe Arg Asp
Gly Lys Lys Val Asp Gln Tyr Lys Gly Lys Arg Asp Leu Glu Ser
 Leu Arg Glu Tyr Val Glu Ser Gln Leu Gln Arg Thr Glu Thr Gly
                 290
                                                         300
Ala Thr Glu Thr Val Thr Pro Ser Glu Ala Pro Val Leu Ala Ala
                 305
 Glu Pro Glu Ala Asp Lys Gly Thr Val Leu Ala Leu Thr Glu Asn
                 320
 Asn Phe Asp Asp Thr Ile Ala Glu Gly Ile Thr Phe Ile Lys Phe
                 335
 Tyr Ala Pro Trp Cys Gly His Cys Lys Thr Leu Ala Pro Thr Trp
                 350
                                                         360
 Glu Glu Leu Ser Lys Lys Glu Phe Pro Gly Leu Ala Gly Val Lys
 Ile Ala Glu Val Asp Cys Thr Ala Glu Arg Asn Ile Cys Ser Lys
                 380
                                                         390
 Tyr Ser Val Arg Gly Tyr Pro Thr Leu Leu Phe Arg Gly Gly
Lys Lys Val Ser Glu His Ser Gly Gly Arg Asp Leu Asp Ser Leu
His Arg Phe Val Leu Ser Gln Ala Lys Asp Glu Leu
<210> 91
<211> 20
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 91
    atgttcttcg cgccctggtg 20
   <210> 92
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 92
    ccaagccaac acactctaca g 21
   <210> 93
   <211> 24
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 93
    aagtggtcgc cttgtgcaac gtgc 24
   <210> 94
   <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
. zź.;
    <223> Synthetic oligonucleotide probe
    ggtcaaaggg gatatatcgc cac 23
1
    <210> 95
    <211> 49
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 95
     gcatggaaga tgccaaagtc tatgtggcta aagtggactg cacggccca 49
    <210> 96
    <211> 1016
    <212> DNA
    <213> Homo sapiens
    <400> 96
     cttttctgag gaaccacagc aatgaatggc tttgcatcct tgcttcgaag 50
     aaaccaattt atcctcctgg tactatttct tttgcaaatt cagagtctgg 100
     gtctggatat tgatagccgt cctaccgctg aagtctgtgc cacacacac 150
```

Œ

. _ 1.11

i, Fi

. Æ

: 4

atttcaccaq gacccaaaqq agatgatggt gaaaaaggag atccaggaga 200 agagggaaag catggcaaag tgggacgcat ggggccgaaa ggaattaaag 250 gagaactggg tgatatggga gatcagggca atattggcaa gactgggccc 300 attgggaaga agggtgacaa aggggaaaaa ggtttgcttg gaatacctgg 350 aqaaaaaqgc aaaqcaggta ctgtctgtga ttgtggaaga taccggaaat 400 ttgttggaca actggatatt agtattgctc ggctcaagac atctatgaag 450 tttgtcaaga atgtgatagc agggattagg gaaactgaag agaaattcta 500 ctacatcgtg caggaagaga agaactacag ggaatcccta acccactgca 550 ggattcgggg tggaatgcta gccatgccca aggatgaagc tgccaacaca 600 ctcatcgctg actatgttgc caagagtggc ttctttcggg tgttcattgg 650 cgtgaatgac cttgaaaggg agggacagta catgtccaca gacaacactc 700 cactgcagaa ctatagcaac tggaatgagg gggaacccag cgacccctat 750 ggtcatgagg actgtgtgga gatgctgagc tctggcagat ggaatgacac 800 agagtgccat cttaccatgt actttgtctg tgagttcatc aagaagaaaa 850 agtaacttcc ctcatcctac gtatttgcta ttttcctgtg accgtcatta 900 cagttattgt tatccatcct ttttttcctg attgtactac atttgatctg 950 agtcaacata gctagaaaat gctaaactga ggtatggagc ctccatcatc 1000 aaaaaaaaa aaaaaa 1016

```
<210> 97
```

<400> 97

Met Asn Gly Phe Ala Ser Leu Leu Arg Arg Asn Gln Phe Ile Leu 1 5 10 15

Leu Val Leu Phe Leu Leu Gln Ile Gln Ser Leu Gly Leu Asp Ile 20 25 30

Asp Ser Arg Pro Thr Ala Glu Val Cys Ala Thr His Thr Ile Ser 35 40 45

Pro Gly Pro Lys Gly Asp Asp Gly Glu Lys Gly Asp Pro Gly Glu 50 55 60

Glu Gly Lys His Gly Lys Val Gly Arg Met Gly Pro Lys Gly Ile
65 70 75

Lys Gly Glu Leu Gly Asp Met Gly Asp Gln Gly Asn Ile Gly Lys

<211> 277

<212> PRT

<213> Homo sapiens

80 85 90

Thr Gly Pro Ile Gly Lys Lys Gly Asp Lys Gly Glu Lys Gly Leu 95 100 105

Leu Gly Ile Pro Gly Glu Lys Gly Lys Ala Gly Thr Val Cys Asp

Cys Gly Arg Tyr Arg Lys Phe Val Gly Gln Leu Asp Ile Ser Ile 125 130 135

Ala Arg Leu Lys Thr Ser Met Lys Phe Val Lys Asn Val Ile Ala 140 145 150

Gly Ile Arg Glu Thr Glu Glu Lys Phe Tyr Tyr Ile Val Gln Glu 155 160 165

Glu Lys Asn Tyr Arg Glu Ser Leu Thr His Cys Arg Ile Arg Gly
170 175 180

Gly Met Leu Ala Met Pro Lys Asp Glu Ala Ala Asn Thr Leu Ile 185 190 195

Ala Asp Tyr Val Ala Lys Ser Gly Phe Phe Arg Val Phe Ile Gly 200 205 210

Val Asn Asp Leu Glu Arg Glu Gly Gln Tyr Met Ser Thr Asp Asn 215 220 225

Thr Pro Leu Gln Asn Tyr Ser Asn Trp Asn Glu Gly Glu Pro Ser 230 235 240

Asp Pro Tyr Gly His Glu Asp Cys Val Glu Met Leu Ser Ser Gly 245 250 255

Arg Trp Asn Asp Thr Glu Cys His Leu Thr Met Tyr Phe Val Cys 260 265 270

Glu Phe Ile Lys Lys Lys Lys 275

<210> 98

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 98

cgctgactat gttgccaaga gtgg 24

<210> 99

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Synthetic oligonucleotide probe
<400> 99
gatgatggag gctccatacc tcag 24
<210> 100
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 100
gtgttcattg gcgtgaatga ccttgaaagg gagggacagt acatgttcac 50
<210> 101
<211> 2574
<212> DNA
<213> Homo sapiens
<400> 101
 gqttctatcg attcgaattc ggccacactg gccggatcct ctagagatcc 50
 ctcqacctcg acccacgcgt ccgctgctct ccgcccgtgt ggagtggtgg 100
 qqqcctqqqt qqgaatqqqc gtqtgccagc gcacqcgcgc tccctggaag 150
 gagaagtete agetagaacg ageggeeeta ggttttegga agggaggate 200
 agggatgttt gcgagcggct ggaaccagac ggtgccgata gaggaagcgg 250
 getceatgge tgeceteetg etgetgeece tgetgetgtt getacegetg 300
 ctgctgctga agctacacct ctggccgcag ttgcgctggc ttccggcgga 350
 cttqqccttt qcqqtqcqaq ctctqtqctq caaaagggct cttcqagctc 400
 gcqccctqqc cgcqgctqcc gccgacccgg aaggtcccga ggggggctgc 450
 agectggeet ggegeetege ggaactggee cageagegeg cegegeacae 500
 ctttctcatt cacggctcgc ggcgctttag ctactcagag gcggagcgcg 550
 agagtaacag ggctgcacgc gccttcctac gtgcgctagg ctgggactgg 600
 ggaccegacg geggegacag eggegagggg agegetggag aaggegageg 650
 ggcagcgccg ggagccggag atgcagcggc cggaagcggc gcggagtttg 700
 ccqqaqqqqa cqqtqccqcc aqaqqtqqaq qaqccqccqc ccctctgtca 750
 cctqqaqcaa ctqtqqcqct qctcctccc qctqqcccag aqtttctqtg 800
 getetggtte gggetggeea aggeeggeet gegeactgee tttgtgeeca 850
```

ccgccctgcg ccggggcccc ctgctgcact gcctccgcag ctgcggcgcg 900

cgcgcgctgg tgctggcgcc agagtttctg gagtccctgg agccggacct 950 gcccgccctg agagccatgg ggctccacct gtgggctgca ggcccaggaa 1000 cccaccctqc tqqaattaqc qatttqctqq ctqaaqtqtc cgctgaagtg 1050 gatgggccag tgccaggata cetetettee ecceagagea taacagacae 1100 gtgcctgtac atcttcacct ctggcaccac gggcctcccc aaggctgctc 1150 ggatcagtca tctgaagatc ctgcaatqcc agggcttcta tcagctgtgt 1200 qqtqtccacc aqqaaqatgt gatctacctc gccctcccac tctaccacat 1250 gtccggttcc ctgctgggca tcgtgggctg catgggcatt ggggccacag 1300 tggtgctgaa atccaagttc tcggctggtc agttctggga agattgccag 1350 caqcacaggg tgacggtgtt ccagtacatt ggggagctgt gccgatacct 1400 tgtcaaccag cccccgagca aggcagaacg tggccataag gtccggctgg 1450 caqtqqqcaq cqqqctqcqc ccaqatacct gggagcqttt tgtqcggcqc 1500 ttcqqqcccc tqcaqqtqct qgaqacatat ggactgacag agggcaacgt 1550 qqccaccatc aactacacaq qacaqcqqqq cqctqtqqqq cqtqcttcct 1600 qqctttacaa qcatatcttc cccttctcct tgattcgcta tgatgtcacc 1650 acaggagage caatteggga eececagggg caetgtatgg eeacatetee 1700 aggtgagcca gggctgctgg tggccccggt aagccagcag tccccattcc 1750 tgggctatgc tggcgggcca gagctggccc aggggaagtt gctaaaggat 1800 gtcttccggc ctggggatgt tttcttcaac actggggacc tgctggtctg 1850 cgatgaccaa ggttttctcc gcttccatga tcgtactgga gacaccttca 1900 ggtggaaggg ggagaatgtg gccacaaccg aggtggcaga ggtcttcgag 1950 gccctagatt ttcttcagga ggtgaacgtc tatggagtca ctgtgccagg 2000 gcatgaaggc agggctggaa tggcagccct agttctgcgt ccccccacg 2050 ctttggacct tatgcagctc tacacccacg tgtctgagaa cttgccacct 2100 tatgcccggc cccgattcct caggctccag gagtctttgg ccaccacaga 2150 gaccttcaaa cagcagaaag ttcggatggc aaatgagggc ttcgacccca 2200 qcaccetqte tqacccactq tacqttetqq accaqqetqt aggtqcetac 2250 ctgccctca caactgcccg gtacagcgcc ctcctggcag gaaaccttcg 2300 aatctgagaa cttccacacc tgaggcacct gagagaggaa ctctgtgggg 2350

tgggggccgt tgcaggtgta ctgggctgtc agggatcttt tctataccag 2400 aactgcggtc actatttgt aataaatgtg gctggagctg atccagctgt 2450 ctctgaccta aaaaaaaaa aaaaaaaaa aaaaaaaaa ggcggccgcg 2500 actctagagt cgacctgcag tagggataac agggtaataa gcttggccgc 2550 catggcccaa cttgtttatt gcag 2574

<210> 102

<211> 730

<212> PRT

<213> Homo sapiens

<400> 102

Met Gly Val Cys Gln Arg Thr Arg Ala Pro Trp Lys Glu Lys Ser 1 5 10 15

Gln Leu Glu Arg Ala Ala Leu Gly Phe Arg Lys Gly Gly Ser Gly 20 25 30

Met Phe Ala Ser Gly Trp Asn Gln Thr Val Pro Ile Glu Glu Ala 35 40 45

Gly Ser Met Ala Ala Leu Leu Leu Leu Pro Leu Leu Leu Leu 50 55 60

Pro Leu Leu Leu Lys Leu His Leu Trp Pro Gln Leu Arg Trp 65 70 75

Leu Pro Ala Asp Leu Ala Phe Ala Val Arg Ala Leu Cys Cys Lys 80 85 90

Arg Ala Leu Arg Ala Arg Ala Leu Ala Ala Ala Ala Ala Asp Pro 95 100 105

Glu Gly Pro Glu Gly Gly Cys Ser Leu Ala Trp Arg Leu Ala Glu 110 115 120

Leu Ala Gln Gln Arg Ala Ala His Thr Phe Leu Ile His Gly Ser 125 130 135

Arg Arg Phe Ser Tyr Ser Glu Ala Glu Arg Glu Ser Asn Arg Ala 140 145 150

Ala Arg Ala Phe Leu Arg Ala Leu Gly Trp Asp Trp Gly Pro Asp 155 160 165

Gly Gly Asp Ser Gly Glu Gly Ser Ala Gly Glu Gly Glu Arg Ala 170 175 180

Ala Pro Gly Ala Gly Asp Ala Ala Ala Gly Ser Gly Ala Glu Phe
185 190 195

Ala Gly Gly Asp Gly Ala Ala Arg Gly Gly Gly Ala Ala Arg 200 205 210

Leu Ser Pro Gly Ala Thr Val Ala Leu Leu Leu Pro Ala Gly Pro Glu Phe Leu Trp Leu Trp Phe Gly Leu Ala Lys Ala Gly Leu Arg 230 Thr Ala Phe Val Pro Thr Ala Leu Arg Arg Gly Pro Leu Leu His Cys Leu Arg Ser Cys Gly Ala Arg Ala Leu Val Leu Ala Pro Glu Phe Leu Glu Ser Leu Glu Pro Asp Leu Pro Ala Leu Arg Ala Met Gly Leu His Leu Trp Ala Ala Gly Pro Gly Thr His Pro Ala Gly 290 300 Ile Ser Asp Leu Leu Ala Glu Val Ser Ala Glu Val Asp Gly Pro 305 Val Pro Gly Tyr Leu Ser Ser Pro Gln Ser Ile Thr Asp Thr Cys 330 320 Leu Tyr Ile Phe Thr Ser Gly Thr Thr Gly Leu Pro Lys Ala Ala 335 Arg Ile Ser His Leu Lys Ile Leu Gln Cys Gln Gly Phe Tyr Gln 360 350 Leu Cys Gly Val His Gln Glu Asp Val Ile Tyr Leu Ala Leu Pro 365 Leu Tyr His Met Ser Gly Ser Leu Leu Gly Ile Val Gly Cys Met 380 Gly Ile Gly Ala Thr Val Val Leu Lys Ser Lys Phe Ser Ala Gly Gln Phe Trp Glu Asp Cys Gln Gln His Arg Val Thr Val Phe Gln 410 Tyr Ile Gly Glu Leu Cys Arg Tyr Leu Val Asn Gln Pro Pro Ser Lys Ala Glu Arg Gly His Lys Val Arg Leu Ala Val Gly Ser Gly Leu Arg Pro Asp Thr Trp Glu Arg Phe Val Arg Arg Phe Gly Pro Leu Gln Val Leu Glu Thr Tyr Gly Leu Thr Glu Gly Asn Val Ala Thr Ile Asn Tyr Thr Gly Gln Arg Gly Ala Val Gly Arg Ala Ser Trp Leu Tyr Lys His Ile Phe Pro Phe Ser Leu Ile Arg Tyr Asp

510 500 505 Val Thr Thr Gly Glu Pro Ile Arg Asp Pro Gln Gly His Cys Met 515 Ala Thr Ser Pro Gly Glu Pro Gly Leu Leu Val Ala Pro Val Ser 530 Gln Gln Ser Pro Phe Leu Gly Tyr Ala Gly Gly Pro Glu Leu Ala Gln Gly Lys Leu Leu Lys Asp Val Phe Arg Pro Gly Asp Val Phe 560 Phe Asn Thr Gly Asp Leu Leu Val Cys Asp Asp Gln Gly Phe Leu 575 Arg Phe His Asp Arg Thr Gly Asp Thr Phe Arg Trp Lys Gly Glu 590 Asn Val Ala Thr Thr Glu Val Ala Glu Val Phe Glu Ala Leu Asp 605 Phe Leu Gln Glu Val Asn Val Tyr Gly Val Thr Val Pro Gly His 630 620 Glu Gly Arg Ala Gly Met Ala Ala Leu Val Leu Arg Pro Pro His 635 Ala Leu Asp Leu Met Gln Leu Tyr Thr His Val Ser Glu Asn Leu 660 650 Pro Pro Tyr Ala Arg Pro Arg Phe Leu Arg Leu Gln Glu Ser Leu 665 Ala Thr Thr Glu Thr Phe Lys Gln Gln Lys Val Arg Met Ala Asn 690 685 680 Glu Gly Phe Asp Pro Ser Thr Leu Ser Asp Pro Leu Tyr Val Leu 695 Asp Gln Ala Val Gly Ala Tyr Leu Pro Leu Thr Thr Ala Arg Tyr 720 715 710 Ser Ala Leu Leu Ala Gly Asn Leu Arg Ile 725 <210> 103 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 103

gagagecatg gggetecace tg 22

```
<210> 104
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 104
 ggagaatgtg gccacaac 18
<210> 105
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 105
 gccctggcac agtgactcca tagacg 26
<210> 106
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 106
 atccacttca gcggacac 18
<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 107
 ccagtgccag gatacetete tteececcag ageataacag acacg 45
<210> 108
<211> 2579
<212> DNA
<213> Homo sapiens
<400> 108
 cctgtgttaa gctgaggttt cccctagatc tcgtatatcc ccaacacata 50
 cctccacgca cacacatccc caagaacctc gagctcacac caacagacac 100
 acgcgcgcat acacactcgc tctcgcttgt ccatctccct cccgggggag 150
 ccggcgcgcg ctcccacctt tgccgcacac tccggcgagc cgagcccgca 200
```

. C

, £

H

1,3

i sā

gcgctccagg attctgcggc tcggaactcg gattgcagct ctgaaccccc 250 atggtggttt tttaaacact tcttttcctt ctcttcctcg ttttgattgc 300 accetttcca tetggggget agaggageaa ggeageagee tteccageea 350 gcccttgttg gcttgccatc gtccatctgg cttataaaag tttgctgagc 400 gcagtccaga gggctgcgct gctcgtcccc tcggctggca gaagggggtg 450 acqctqqqca qcqqcqaqqa qcqcqccqct gcctctqqcq ggctttcqqc 500 ttgaggggca aggtgaagag cgcaccggcc gtggggttta ccgagctgga 550 tttgtatgtt gcaccatgcc ttcttggatc ggggctgtga ttcttcccct 600 cttggggctg ctgctctccc tccccgccgg ggcggatgtg aaggctcgga 650 gctgcggaga ggtccgccag gcgtacggtg ccaagggatt cagcctggcg 700 gacatcccct accaggagat cgcaggggaa cacttaagaa tctgtcctca 750 ggaatataca tgctgcacca cagaaatgga agacaagtta agccaacaaa 800 gcaaactcga atttgaaaac cttgtggaag agacaagcca ttttgtgcgc 850 accacttttg tgtccaggca taagaaattt gacgaatttt tccgagagct 900 cctggagaat gcagaaaagt cactaaatga tatgtttgta cggacctatg 950 gcatgctgta catgcagaat tcagaagtct tccaggacct cttcacagag 1000 ctgaaaaggt actacactgg gggtaatgtg aatctggagg aaatgctcaa 1050 tgacttttgg gctcggctcc tggaacggat gtttcagctg ataaaccctc 1100 agtatcactt cagtgaagac tacctggaat gtgtgagcaa atacactgac 1150 cagctcaagc catttggaga cgtgccccgg aaactgaaga ttcaggttac 1200 ccgcgccttc attgctgcca ggacctttgt ccaggggctg actgtgggca 1250 gagaagttgc aaaccgagtt tccaaggtca gcccaacccc agggtgtatc 1300 cgtgccctca tgaagatgct gtactgccca tactgtcggg ggcttcccac 1350 tgtgaggccc tgcaacaact actgtctcaa cgtcatgaag ggctgcttgg 1400 caaatcaggc tgacctcgac acagagtgga atctgtttat agatgcaatg 1450 ctcttggtgg cagagcgact ggaggggcca ttcaacattg agtcggtcat 1500 ggacccgata gatgtcaaga tttctgaagc cattatgaac atgcaagaaa 1550 acagcatgca ggtgtctgca aaggtctttc agggatgtgg tcagcccaaa 1600 cctgctccag ccctcagatc tgcccgctca gctcctgaaa attttaatac 1650 acgtttcagg ccctacaatc ctgaggaaag accaacaact gctgcaggca 1700 caagettgga ccggetggte acagacataa aagagaaatt gaagetetet 1750 aaaaaggtct ggtcagcatt accctacact atctgcaagg acgagagcgt 1800 gacagcgggc acgtccaacg aggaggaatg ctggaacggg cacagcaaag 1850 ccagatactt gcctgagatc atgaatgatg ggctcaccaa ccagatcaac 1900 aatcccgagg tggatgtgga catcactcgg cctgacactt tcatcagaca 1950 gcagattatg gctctccgtg tgatgaccaa caaactaaaa aacgcctaca 2000 atggcaatga tgtcaatttc caggacacaa gtgatgaatc cagtggctca 2050 gggagtggca gtgggtgcat ggatgacgtg tgtcccacgg agtttgagtt 2100 tqtcaccaca qagqcccccq cagtggatcc cgaccggaga gaggtggact 2150 cttctqcaqc ccaqcqtqqc cactccctqc tctcctgqtc tctcacctgc 2200 attgtcctgg cactgcagag actgtgcaga taatcttggg tttttggtca 2250 gatgaaactg cattttagct atctgaatgg ccaactcact tcttttctta 2300 cactettgga caatggacca tgccacaaaa acttaccgtt ttctatgaga 2350 agagagcagt aatgcaatct gcctcccttt ttgttttccc aaagagtacc 2400 gggtgccaga ctgaactgct tcctctttcc ttcagctatc tgtggggacc 2450 ttgtttattc tagagagaat tcttactcaa atttttcgta ccaggagatt 2500 ttcttacctt catttgcttt tatgctgcag aagtaaagga atctcacgtt 2550 gtgagggttt tttttttctc atttaaaat 2579

<210> 109

<211> 555

<212> PRT

<213> Homo sapiens

<400> 109

Met Pro Ser Trp Ile Gly Ala Val Ile Leu Pro Leu Leu Gly Leu 1 5 10 15

Leu Leu Ser Leu Pro Ala Gly Ala Asp Val Lys Ala Arg Ser Cys 20 25 30

Gly Glu Val Arg Gln Ala Tyr Gly Ala Lys Gly Phe Ser Leu Ala

Asp Ile Pro Tyr Gln Glu Ile Ala Gly Glu His Leu Arg Ile Cys 50 55 60

Pro Gln Glu Tyr Thr Cys Cys Thr Thr Glu Met Glu Asp Lys Leu 65 70 75

Ser Gln Gln Ser Lys Leu Glu Phe Glu Asn Leu Val Glu Glu Thr Ser His Phe Val Arg Thr Thr Phe Val Ser Arg His Lys Lys Phe Asp Glu Phe Phe Arg Glu Leu Leu Glu Asn Ala Glu Lys Ser Leu Asn Asp Met Phe Val Arg Thr Tyr Gly Met Leu Tyr Met Gln Asn Ser Glu Val Phe Gln Asp Leu Phe Thr Glu Leu Lys Arg Tyr Tyr Thr Gly Gly Asn Val Asn Leu Glu Glu Met Leu Asn Asp Phe Trp 155 160 165 Ala Arg Leu Leu Glu Arg Met Phe Gln Leu Ile Asn Pro Gln Tyr 170 His Phe Ser Glu Asp Tyr Leu Glu Cys Val Ser Lys Tyr Thr Asp 195 185 Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys Leu Lys Ile Gln Val Thr Arg Ala Phe Ile Ala Ala Arg Thr Phe Val Gln Gly Leu 220 225 215 Thr Val Gly Arg Glu Val Ala Asn Arg Val Ser Lys Val Ser Pro Thr Pro Gly Cys Ile Arg Ala Leu Met Lys Met Leu Tyr Cys Pro 255 245 250 Tyr Cys Arg Gly Leu Pro Thr Val Arg Pro Cys Asn Asn Tyr Cys Leu Asn Val Met Lys Gly Cys Leu Ala Asn Gln Ala Asp Leu Asp 285 275 Thr Glu Trp Asn Leu Phe Ile Asp Ala Met Leu Leu Val Ala Glu Arg Leu Glu Gly Pro Phe Asn Ile Glu Ser Val Met Asp Pro Ile 315 305 Asp Val Lys Ile Ser Glu Ala Ile Met Asn Met Gln Glu Asn Ser Met Gln Val Ser Ala Lys Val Phe Gln Gly Cys Gly Gln Pro Lys 335 Pro Ala Pro Ala Leu Arg Ser Ala Arg Ser Ala Pro Glu Asn Phe Asn Thr Arg Phe Arg Pro Tyr Asn Pro Glu Glu Arg Pro Thr Thr

375 365 370 Ala Ala Gly Thr Ser Leu Asp Arg Leu Val Thr Asp Ile Lys Glu Lys Leu Lys Leu Ser Lys Lys Val Trp Ser Ala Leu Pro Tyr Thr Ile Cys Lys Asp Glu Ser Val Thr Ala Gly Thr Ser Asn Glu Glu Glu Cys Trp Asn Gly His Ser Lys Ala Arg Tyr Leu Pro Glu Ile 425 Met Asn Asp Gly Leu Thr Asn Gln Ile Asn Asn Pro Glu Val Asp Val Asp Ile Thr Arg Pro Asp Thr Phe Ile Arg Gln Gln Ile Met 455 460 Ala Leu Arg Val Met Thr Asn Lys Leu Lys Asn Ala Tyr Asn Gly 475 470 Asn Asp Val Asn Phe Gln Asp Thr Ser Asp Glu Ser Ser Gly Ser 490 485 Gly Ser Gly Ser Gly Cys Met Asp Asp Val Cys Pro Thr Glu Phe Glu Phe Val Thr Thr Glu Ala Pro Ala Val Asp Pro Asp Arg Arg 520 515 Glu Val Asp Ser Ser Ala Ala Gln Arg Gly His Ser Leu Leu Ser Trp Ser Leu Thr Cys Ile Val Leu Ala Leu Gln Arg Leu Cys Arg 555 545 <210> 110 <211> 21 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 110 aagcgtgaca gcgggcacgt c 21 <210> 111 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 111

```
tgcacagtct ctgcagtgcc cagg 24
<210> 112
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 112
qaatqctqqa acqqqcacaq caaagccaga tacttgcctg 40
<210> 113
<211> 4649
<212> DNA
<213> Homo sapiens
<400> 113
 cggacgcgtg ggcggacgcg tgggcaaaag aactcggagt gccaaagcta 50
 aataagttag ctgagaaaac gcacgcagtt tgcagcgcct gcgccgggtg 100
 cgccaactac gcaaagacca agcgggctcc gcgcggaccg gccgcggggc 150
 tagggacccg gctttggcct tcaggctccc tagcagcggg gaaaaggaat 200
 tgctgcccgg agtttctgcg gaggtggagg gagatcagga aacggcttct 250
 tecteaette geegeetggt gagtgteggg gagattggea aacgeetagg 300
 aaaggactgg ggaaaatagc cctgggaaag tggagaaggt gatcaggagg 350
 tccacttcgc agttctttcc aggtgtgggg accgcaggac agacggccga 450
 tecegeegee etecgtacea geacteceag gagagteage etegeteece 500
 aacgtcgagg gcgctctggc cacgaaaagt tcctgtccac tgtgattctc 550
 aattccttgc ttggtttttt tctccagaga acttttgggt ggagatatta 600
 acttttttct ttttttttt ccttggtgga agctgctcta gggaggggg 650
 aggaggagga gaaagtgaaa tgtgctggag aagagcgagc cctccttgtt 700
 cttccggagt cccatccatt aagccatcac ttctggaaga ttaaagttgt 750
 cggacatggt gacagctgag aggagaggag gatttcttgc caggtggaga 800
 gtcttcaccg tctgttgggt gcatgtgtgc gcccgcagcg gcgcggggcg 850
 cgtggttctc cgcgtggagt ctcacctggg acctgagtga atggctccca 900
 ggggctgtgc ggggcatccg cctccgcctt ctccacaggc ctgtgtctgt 950
 cctqqaaaqa tqctaqcaat gggggcgctg gcaggattct ggatcctctg 1000
```

cctcctcact tatggttacc tgtcctgggg ccaggcctta gaagaggagg 1050 aagaagggc cttactagct caagctggag agaaactaga gcccagcaca 1100 acttccacct cccagcccca tctcattttc atcctagcgg atgatcaggg 1150 atttagagat gtgggttacc acggatctga gattaaaaca cctactcttg 1200 acaagetege tgccgaagga gttaaactgg agaactacta tgtccageet 1250 atttqcacac catccaqqaq tcaqtttatt actgqaaagt atcagataca 1300 caccggactt caacattcta tcataagacc tacccaaccc aactgtttac 1350 ctctggacaa tgccacccta cctcagaaac tgaaggaggt tggatattca 1400 acgcatatgg tcggaaaatg gcacttgggt tttaacagaa aagaatgcat 1450 qcccaccaga agaggatttg ataccttttt tggttccctt ttgggaagtg 1500 qqqattacta tacacactac aaatqtgaca gtcctgggat gtgtggctat 1550 qacttqtatq aaaacqacaa tqctqcctqq gactatqaca atggcatata 1600 ctccacacag atgtacactc agagagtaca gcaaatctta gcttcccata 1650 accccacaaa gcctatattt ttatatactg cctatcaagc tgttcattca 1700 ccactgcaag ctcctggcag gtatttcgaa cactaccgat ccattatcaa 1750 cataaacagg agaagatatg ctgccatgct ttcctgctta gatgaagcaa 1800 tcaacaacgt gacattggct ctaaagactt atggtttcta taacaacagc 1850 attatcattt actcttcaga taatggtggc cagcctacgg caggagggag 1900 taactggcct ctcagaggta gcaaaggaac atattgggaa ggagggatcc 1950 qqqctqtaqq ctttqtqcat aqcccacttc tgaaaaacaa gggaacagtg 2000 tgtaaggaac ttgtgcacat cactgactgg taccccactc tcatttcact 2050 ggctgaagga cagattgatg aggacattca actagatggc tatgatatct 2100 gggagaccat aagtgagggt cttcgctcac cccgagtaga tattttgcat 2150 aacattgacc cctatacacc aaggcaaaaa atggctcctg ggcagcaggc 2200 tatgggatct ggaacactgc aatccagtca gccatcagag tgcagcactg 2250 gaaattgctt acaggaaatc ctggctacag cgactgggtc ccccctcagt 2300 ctttcagcaa cctgggaccg aaccggtggc acaatgaacg gatcaccttg 2350 tcaactggca aaagtgtatg gcttttcaac atcacagccg acccatatga 2400 gagggtggac ctatctaaca ggtatccagg aatcgtgaag aagctcctac 2450 ggaggctctc acagttcaac aaaactgcag tgccggtcag gtatcccccc 2500 aaagacccca gaagtaaccc taggctcaat ggaggggtct ggggaccatg 2550 gtataaagag gaaaccaaga aaaagaagcc aagcaaaaat caggctgaga 2600 aaaagcaaaa gaaaagcaaa aaaaagaaga agaaacagca gaaagcagtc 2650 tcaggtaaac cagcaaattt ggctcgataa tatcgctggc ctaagcgtca 2700 ggcttgtttt catgctgtgc cactccagag acttctgcca cctggccgcc 2750 acactgaaaa ctgtcctgct cagtgccaag gtgctactct tgcaagccac 2800 acttagagag agtggagatg tttatttctc tcgctccttt agaaaacgtg 2850 gtgagtcctg agttccactg ctgtgcttca gtcaactgac caaacactgc 2900 tttgaattat aggaggagaa caataaccta ccatccgcaa gcatgctaat 2950 ttgatggaag ttacagggta gcatgattaa aactaccttt gataaattac 3000 agtcaaagat tgtgtcacct caaaggcctt gaagaatata ttttcttggt 3050 gaatttttgt atgtctgtca tatgacactt gggtttttta attaattcta 3100 ttttatatat ataaatatat gtttcttttc ctgtgaaaag ctgtttttct 3150 cacatgtgaa cagcttgcac ctcattttac catgcgtgag ggaatggcaa 3200 ataagaatgt ttgagcacac tgcccacaat gaatgtaact attttctaaa 3250 cactttacta gaagaacatt tcagtataaa aaacctaatt tatttttaca 3300 gaaaaatatt ttgttgtttt tataaaaagt tatgcaaatg acttttattt 3350 caagcactgt aatactataa attaatgtaa tactgtgtga attcagacta 3450 taaaaaacat cattcagaaa actttataat cgtcattgtt caatcaagat 3500 tttgaatgta ataagatgaa tatatteett acaaattaet tggaaattea 3550 atgtttgtgc agagttgaga caactttatt gtttctatca taaactattt 3600 atgtatctta attattaaaa tgatttactt tatggcacta gaaaatttac 3650 tgtggctttt ctgatctaac ttctagctaa aattgtatca ttggtcctaa 3700 aaaataaaaa totttactaa taggcaattg aaggaatggt ttgctaacaa 3750 ccacagtaat ataatatgat tttacagata gatgcttccc cttggctatg 3800 acatggagaa agattttccc ataataataa ctaatattta tattaggttg 3850 gtgcaaaact agttgcggtt tttcccatta aaagtaataa ccttactctt 3900

82

<210> 114

<211> 515

<212> PRT

<213> Homo sapiens

<400> 114

Met Ala Pro Arg Gly Cys Ala Gly His Pro Pro Pro Pro Ser Pro 1 5 10 15

Gln Ala Cys Val Cys Pro Gly Lys Met Leu Ala Met Gly Ala Leu
20 25 30

Ala Gly Phe Trp Ile Leu Cys Leu Leu Thr Tyr Gly Tyr Leu Ser

Trp Gly Gln Ala Leu Glu Glu Glu Glu Glu Gly Ala Leu Leu Ala
50 55 60

Gln Ala Gly Glu Lys Leu Glu Pro Ser Thr Thr Ser Thr Ser Gln 65 70 75

Pro His Leu Ile Phe Ile Leu Ala Asp Asp Gln Gly Phe Arg Asp 80 85 90

Val Gly Tyr His Gly Ser Glu Ile Lys Thr Pro Thr Leu Asp Lys 95 100 105

Leu Ala Ala Glu Gly Val Lys Leu Glu Asn Tyr Tyr Val Gln Pro

	110					115					120
Ile Cys Thr	Pro Ser 125	Arg	Ser	Gln	Phe	Ile ' 130	Thr	Gly	Lys	Tyr	Gln 135
Ile His Thr	Gly Leu 140	Gln	His	Ser	Ile	Ile 145	Arg	Pro	Thr	Gln	Pro 150
Asn Cys Leu	Pro Leu 155	Asp	Asn	Ala	Thr	Leu 160	Pro	Gln	Lys	Leu	Lys 165
Glu Val Gly	Tyr Ser 170	Thr	His	Met	Val	Gly 175	Lys	Trp	His	Leu	Gly 180
Phe Asn Arg	Lys Glu 185	Cys	Met	Pro	Thr	Arg 190	Arg	Gly	Phe	Asp	Thr 195
Phe Phe Gly	Ser Leu 200	Leu	Gly	Ser	Gly	Asp 205	Tyr	Tyr	Thr	His	Tyr 210
Lys Cys Asp	Ser Pro		Met	Cys	Gly	Tyr 220	Asp	Leu	Tyr	Glu	Asn 225
Asp Asn Ala	Ala Trp 230		Tyr	Asp	Asn	Gly 235	Ile	Tyr	Ser	Thr	Gln 240
Met Tyr Thr	Gln Arg 245		Gln	Gln	Ile	Leu 250	Ala	Ser	His	Asn	Pro 255
Thr Lys Pro	Ile Phe 260		Tyr	Thr	Ala	Tyr 265	Gln	Ala	Val	His	Ser 270
Pro Leu Gln	Ala Pro 275		Arg	Tyr	Phe	Glu 280	His	Tyr	Arg	Ser	Ile 285
Ile Asn Ile	Asn Arg 290		Arg	Tyr	Ala	Ala 295	Met	Leu	Ser	Cys	Leu 300
Asp Glu Ala	Ile Asr 305		Val	Thr	Leu	Ala 310	Leu	Lys	Thr	Tyr	Gly 315
Phe Tyr Asn	Asn Sen 320		Ile	Ile	Tyr	Ser 325	Ser	Asp	Asn	Gly	Gly 330
Gln Pro Thr	Ala Gly		Ser	Asn	Trp	Pro 340	Leu	Arg	Gly	Ser	Lys 345
Gly Thr Tyr	Trp Gli		Gly	Ile	Arg	Ala 355	Val	Gly	Phe	Val	His 360
Ser Pro Leu	ı Leu Ly: 36		Lys	Gly	Thr	Val 370	Cys	Lys	Glu	Leu	Val 375
His Ile Th	Asp Tr 38		Pro	Thr	Leu	385	Ser	Leu	. Ala	Glu	Gly 390
Gln Ile Asp	Glu As 39		Gln	Leu	. Asp	Gly 400	Tyr	Asp	ll∈	Trp	Glu 405

```
Thr Ile Ser Glu Gly Leu Arg Ser Pro Arg Val Asp Ile Leu His
                                     415
Asn Ile Asp Pro Tyr Thr Pro Arg Gln Lys Met Ala Pro Gly Gln
                                     430
Gln Ala Met Gly Ser Gly Thr Leu Gln Ser Ser Gln Pro Ser Glu
Cys Ser Thr Gly Asn Cys Leu Gln Glu Ile Leu Ala Thr Ala Thr
                                     460
Gly Ser Pro Leu Ser Leu Ser Ala Thr Trp Asp Arg Thr Gly Gly
                                     475
Thr Met Asn Gly Ser Pro Cys Gln Leu Ala Lys Val Tyr Gly Phe
                 485
Ser Thr Ser Gln Pro Thr His Met Arg Gly Trp Thr Tyr Leu Thr
                                     505
Gly Ile Gln Glu Ser
                 515
<210> 115
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 115
 cccaacccaa ctgtttacct ctgg 24
<210> 116
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 116
 ctctctgagt gtacatctgt gtgg 24
<210> 117
<211> 53
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<220>
<221> unsure
<222> 33
<223> unknown base
```

1, 11

l de

i di

1, 2

<400> 117 gccaccctac ctcagaaact gaaggaggtt ggntattcaa cgcatatggt 50 cgg 53 <210> 118 <211> 2260 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 2009, 2026, 2033, 2055, 2074, 2078, 2086 <223> unknown base <400> 118 cggacgcgtg ggtgcgagtg gagcggagga cccgagcggc tgaggagaga 50 ggaggcggcg gcttagctgc tacggggtcc ggccggcgcc ctcccgaggg 100 gggctcagga ggaggaagga ggacccgtgc gagaatgcct ctgccctgga 150 geettgeget ecceptgetg eteteetggg tggeaggtgg tttegggaac 200 gcggccagtg caaggcatca cgggttgtta gcatcggcac gtcagcctgg 250 ggtctgtcac tatggaacta aactggcctg ctgctacggc tggagaagaa 300 acagcaaggg agtctgtgaa gctacatgcg aacctggatg taagtttggt 350 gagtgcgtgg gaccaaacaa atgcagatgc tttccaggat acaccgggaa 400 aacctgcagt caagatgtga atgagtgtgg aatgaaaccc cggccatgcc 450 aacacagatg tgtgaataca cacggaagct acaagtgctt ttgcctcagt 500 ggccacatgc tcatgccaga tgctacgtgt gtgaactcta ggacatgtgc 550 catgataaac tgtcagtaca gctgtgaaga cacagaagaa gggccacagt 600 geetgtgtee atecteagga etecgeetgg eeceaaatgg aagagaetgt 650 ctagatattg atgaatgtgc ctctggtaaa gtcatctgtc cctacaatcg 700 aagatgtgtg aacacatttg gaagctacta ctgcaaatgt cacattggtt 750 tcgaactgca atatatcagt ggacgatatg actgtataga tataaatgaa 800 tgtactatgg atagccatac gtgcagccac catgccaatt gcttcaatac 850 ccaagggtcc ttcaagtgta aatgcaagca gggatataaa ggcaatggac 900 ttcggtgttc tgctatccct gaaaattctg tgaaggaagt cctcagagca 950 cctggtacca tcaaagacag aatcaagaag ttgcttgctc acaaaaacag 1000

catgaaaaag aaggcaaaaa ttaaaaatgt taccccagaa cccaccagga 1050

ctcctacccc taaggtgaac ttgcagccct tcaactatga agagatagtt 1100 tccagaggcg ggaactctca tggaggtaaa aaagggaatg aagagaaatg 1150 aaagaggggc ttgaggatga gaaaagagaa gagaaagccc tgaagaatga 1200 catagaggag cgaagcctgc gaggagatgt gtttttccct aaggtgaatg 1250 aagcaggtga attcggcctg attctggtcc aaaggaaagc gctaacttcc 1300 aaactggaac ataaagattt aaatatctcg gttgactgca gcttcaatca 1350 tgggatctgt gactggaaac aggatagaga agatgatttt gactggaatc 1400 ctgctgatcg agataatgct attggcttct atatggcagt tccggccttg 1450 gcaggtcaca agaaagacat tggccgattg aaacttctcc tacctgacct 1500 gcaaccccaa agcaacttct gtttgctctt tgattaccgg ctggccggag 1550 acaaagtcgg gaaacttcga gtgtttgtga aaaacagtaa caatgccctg 1600 gcatgggaga agaccacgag tgaggatgaa aagtggaaga cagggaaaat 1650 tcagttgtat caaggaactg atgctaccaa aagcatcatt tttgaagcag 1700 aacgtggcaa gggcaaaacc ggcgaaatcg cagtggatgg cgtcttgctt 1750 gtttcaggct tatgtccaga tagcctttta tctgtggatg actgaatgtt 1800 actatcttta tatttgactt tgtatgtcag ttccctggtt tttttgatat 1850 tgcatcatag gacctctggc attttagaat tactagctga aaaattgtaa 1900 tgtaccaaca gaaatattat tgtaagatgc ctttcttgta taagatatgc 1950 caatatttgc tttaaatatc atatcactgt atcttctcag tcatttctga 2000 atctttccnc attatattat aaaatntgga aangtcagtt tatctcccct 2050 cctcngtata tctgatttgt atangtangt tgatgngctt ctctctacaa 2100 catttctaga aaatagaaaa aaaagcacag agaaatgttt aactgtttga 2150 ctcttatgat acttcttgga aactatgaca tcaaagatag acttttgcct 2200 aagtggctta gctgggtctt tcatagccaa acttgtatat ttaattcttt 2250 gtaataataa 2260

```
<210> 119
```

<211> 338

<212> PRT

<213> Homo sapiens

<400> 119

Met Pro Leu Pro Trp Ser Leu Ala Leu Pro Leu Leu Ser Trp

1 5 10 15

Val Ala Gly Gly Phe Gly Asn Ala Ala Ser Ala Arg His His Gly Leu Leu Ala Ser Ala Arg Gln Pro Gly Val Cys His Tyr Gly Thr Lys Leu Ala Cys Cys Tyr Gly Trp Arg Arg Asn Ser Lys Gly Val Cys Glu Ala Thr Cys Glu Pro Gly Cys Lys Phe Gly Glu Cys Val Gly Pro Asn Lys Cys Arg Cys Phe Pro Gly Tyr Thr Gly Lys Thr Cys Ser Gln Asp Val Asn Glu Cys Gly Met Lys Pro Arg Pro Cys 105 100 Gln His Arg Cys Val Asn Thr His Gly Ser Tyr Lys Cys Phe Cys 115 Leu Ser Gly His Met Leu Met Pro Asp Ala Thr Cys Val Asn Ser 135 130 Arg Thr Cys Ala Met Ile Asn Cys Gln Tyr Ser Cys Glu Asp Thr Glu Glu Gly Pro Gln Cys Leu Cys Pro Ser Ser Gly Leu Arg Leu 160 165 Ala Pro Asn Gly Arg Asp Cys Leu Asp Ile Asp Glu Cys Ala Ser 175 Gly Lys Val Ile Cys Pro Tyr Asn Arg Arg Cys Val Asn Thr Phe 190 Gly Ser Tyr Tyr Cys Lys Cys His Ile Gly Phe Glu Leu Gln Tyr 205 Ile Ser Gly Arg Tyr Asp Cys Ile Asp Ile Asn Glu Cys Thr Met 220 Asp Ser His Thr Cys Ser His His Ala Asn Cys Phe Asn Thr Gln 230 235 Gly Ser Phe Lys Cys Lys Cys Lys Gln Gly Tyr Lys Gly Asn Gly Leu Arg Cys Ser Ala Ile Pro Glu Asn Ser Val Lys Glu Val Leu 265 Arg Ala Pro Gly Thr Ile Lys Asp Arg Ile Lys Lys Leu Leu Ala 280 His Lys Asn Ser Met Lys Lys Lys Ala Lys Ile Lys Asn Val Thr 295 Pro Glu Pro Thr Arg Thr Pro Thr Pro Lys Val Asn Leu Gln Pro

305 310 315 Phe Asn Tyr Glu Glu Ile Val Ser Arg Gly Gly Asn Ser His Gly 320 Gly Lys Lys Gly Asn Glu Glu Lys 335 <210> 120 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 120 cctcagtggc cacatgctca tg 22 <210> 121 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 121 ggctgcacgt atggctatcc atag 24 <210> 122 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 122 gataaactgt cagtacagct gtgaagacac agaagaaggg ccacagtgcc 50 <210> 123 <211> 1199 <212> DNA <213> Homo sapiens <400> 123 gggagctgct gctgtggctg ctggtgctgt gcgcgctgct cctgctcttg 50 gtgcagctgc tgcgcttcct gagggctgac ggcgacctga cgctactatg 100 ggccgagtgg cagggacgac gcccagaatg ggagctgact gatatggtgg 150 tgtgggtgac tggagcctcg agtggaattg gtgaggagct ggcttaccag 200 ttgtctaaac taggagtttc tcttgtgctg tcagccagaa gagtgcatga 250

ΙĐ

1.05

1: 1250

gctggaaagg gtgaaaagaa gatgcctaga gaatggcaat ttaaaagaaa 300

aagatatact tgttttgccc cttgacctga ccgacactgg ttcccatgaa 350 gcggctacca aagctgttct ccaggagttt ggtagaatcg acattctggt 400 caacaatggt ggaatgtccc agcgttctct gtgcatggat accagcttgg 450 atgtctacag aaagctaata gagcttaact acttagggac ggtgtccttg 500 acaaaatgtg ttctgcctca catgatcgag aggaagcaag gaaagattgt 550 tactgtgaat agcatcctgg gtatcatatc tgtacctctt tccattggat 600 actgtgctag caagcatgct ctccggggtt tttttaatgg ccttcgaaca 650 gaacttgcca catacccagg tataatagtt tctaacattt gcccaggacc 700 tgtgcaatca aatattgtgg agaattccct agctggagaa gtcacaaaga 750 ctataggcaa taatggagac cagtcccaca agatgacaac cagtcgttgt 800 gtgcggctga tgttaatcag catggccaat gatttgaaag aagtttggat 850 ctcagaacaa cctttcttgt tagtaacata tttgtggcaa tacatgccaa 900 cctgggcctg gtggataacc aacaagatgg ggaagaaaag gattgagaac 950 tttaagagtg gtgtggatgc agactettet tattttaaaa tetttaagae 1000 aaaacatgac tgaaaagagc acctgtactt ttcaagccac tggagggaga 1050 aatggaaaac atgaaaacag caatcttctt atgcttctga ataatcaaag 1100 actaatttgt gattttactt tttaatagat atgactttgc ttccaacatg 1150 gaatgaaata aaaaataaat aataaaagat tgccatgaat cttgcaaaa 1199

<210> 124

<211> 289

<212> PRT

<213> Homo sapiens

<400> 124

Met Val Val Trp Val Thr Gly Ala Ser Ser Gly Ile Gly Glu Glu 1 5 10 15

Leu Ala Tyr Gln Leu Ser Lys Leu Gly Val Ser Leu Val Leu Ser 20 25 30

Ala Arg Arg Val His Glu Leu Glu Arg Val Lys Arg Arg Cys Leu
35 40

Glu Asn Gly Asn Leu Lys Glu Lys Asp Ile Leu Val Leu Pro Leu 50 55 60

Asp Leu Thr Asp Thr Gly Ser His Glu Ala Ala Thr Lys Ala Val 65 70 75

Leu Gln Glu Phe Gly Arg Ile Asp Ile Leu Val Asn Asn Gly Gly

80 85 90

Met Ser Gln Arg Ser Leu Cys Met Asp Thr Ser Leu Asp Val Tyr 95 100 105

Arg Lys Leu Ile Glu Leu Asn Tyr Leu Gly Thr Val Ser Leu Thr

Lys Cys Val Leu Pro His Met Ile Glu Arg Lys Gln Gly Lys Ile 125 130 130

Val Thr Val Asn Ser Ile Leu Gly Ile Ile Ser Val Pro Leu Ser 140 145 150

Ile Gly Tyr Cys Ala Ser Lys His Ala Leu Arg Gly Phe Phe Asn 155 160 165

Gly Leu Arg Thr Glu Leu Ala Thr Tyr Pro Gly Ile Ile Val Ser 170 175 180

Asn Ile Cys Pro Gly Pro Val Gln Ser Asn Ile Val Glu Asn Ser 185 190 195

Leu Ala Gly Glu Val Thr Lys Thr Ile Gly Asn Asn Gly Asp Gln 200 205 210

Ser His Lys Met Thr Thr Ser Arg Cys Val Arg Leu Met Leu Ile 215 220 225

Ser Met Ala Asn Asp Leu Lys Glu Val Trp Ile Ser Glu Gln Pro $230 \hspace{1.5cm} 235 \hspace{1.5cm} 240 \hspace{1.5cm}$

Phe Leu Leu Val Thr Tyr Leu Trp Gln Tyr Met Pro Thr Trp Ala 245 250 255

Trp Trp Ile Thr Asn Lys Met Gly Lys Lys Arg Ile Glu Asn Phe $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Lys Ser Gly Val Asp Ala Asp Ser Ser Tyr Phe Lys Ile Phe Lys 275 280 280

Thr Lys His Asp

<210> 125

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 125

gcaatgaact gggagctgc 19

<210> 126

<211> 19

<212> DNA

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 126
 ctgtgaatag catcctggg 19
<210> 127
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 127
 cttttcaagc cactggaggg 20
<210> 128
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 128
ctgtagacat ccaagctggt atcc 24
<210> 129
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 129
 aagagtctgc atccacacca ctc 23
<210> 130
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 acctgacgct actatgggcc gagtggcagg gacgacgccc agaatg 46
<210> 131
<211> 2365
<212> DNA
<213> Homo sapiens
<400> 131
```

į, "Ži

gcgacgtggg caccgccatc agctgttcgc gcgtcttctc ctccaggtgg 50 ggcaggggtt tcgggctggt ggagcatgtg ctgggacagg acagcatcct 100 caatcaatcc aacagcatat teggttgeat ettetacaca etacagetat 150 tgttaggttg cctgcggaca cgctgggcct ctgtcctgat gctgctgagc 200 tccctggtgt ctctcgctgg ttctgtctac ctggcctgga tcctgttctt 250 egtgetetat gatttetgea ttgtttgtat caccacctat getatcaaeg 300 tgagcctgat gtggctcagt ttccggaagg tccaagaacc ccagggcaag 350 qctaaqaqqc actgaqccct caacccaaqc caggctgacc tcatctgctt 400 tgctttggtc ttcaagccgc tcagcgtgcc tgtggacagc gtggccccgg 450 ccccccaag cctcaggagg gcaacacagt ccctggcgag tggccctggc 500 aggecagtgt gaggaggeaa ggageceaea tetgeagegg etecetggtg 550 gcagacacct gggtcctcac tgctgcccac tgctttgaaa aggcagcagc 600 aacagaactg aatteetggt cagtggteet gggttetetg cagegtgagg 650 gactcagece tggggcegaa gaggtggggg tggetgeeet geagttgeee 700 agggectata accactacag ccagggetea gaeetggeee tgetgeaget 750 cgcccacccc acgacccaca cacccctctg cctgccccag cccgcccatc 800 getteceett tggageetee tgetgggeea etggetggga teaggaeace 850 agtgatgete etgggaceet aegeaatetg egeetgegte teateagteg 900 ccccacatgt aactgtatct acaaccagct gcaccagcga cacctgtcca 950 acceggeecg geetgggatg ctatgtgggg geeceeagee tggggtgeag 1000 ggcccctgtc agggagattc cgggggccct gtgctgtgcc tcgagcctga 1050 cggacactgg gttcaggctg gcatcatcag ctttgcatca agctgtgccc 1100 aggaggacge teetgtgetg etgaceaaca cagetgetea cagtteetgg 1150 ctgcaggctc gagttcaggg ggcagctttc ctggcccaga gcccagagac 1200 cccggagatg agtgatgagg acagctgtgt agcctgtgga tccttgagga 1250 cagcaggtcc ccaggcagga gcaccctccc catggccctg ggaggccagg 1300 ctgatgcacc agggacagct ggcctgtggc ggagccctgg tgtcagagga 1350 ggcggtgcta actgctgccc actgcttcat tgggcgccag gccccagagg 1400 aatggagcgt agggctgggg accagaccgg aggagtgggg cctgaagcag 1450

93

ctcatcctgc atggagccta cacccaccct gaggggggct acgacatggc 1500 cctcctgctg ctggcccagc ctgtgacact gggagccagc ctgcggcccc 1550 tctgcctgcc ctatcctgac caccacctgc ctgatgggga gcgtggctgg 1600 gttetgggae gggeeegeee aggageagge ateageteee teeagaeagt 1650 gcccgtgacc ctcctggggc ctagggcctg cagccggctg catgcagctc 1700 ctgggggtga tggcagccct attctgccgg ggatggtgtg taccagtgct 1750 qtqqqtqaqc tqcccaqctq tqaqqqcctq tctqqqqcac cactqqtqca 1800 tgaggtgagg ggcacatggt tcctggccgg gctgcacagc ttcggagatg 1850 cttgccaagg cccgccagg ccggcggtct tcaccgcgct ccctgcctat 1900 gaggactggg tcagcagttt ggactggcag gtctacttcg ccgaggaacc 1950 agagecegag getgageetg gaagetgeet ggecaacata agecaaceaa 2000 ccagctgctg acaggggacc tggccattct caggacaaga gaatgcaggc 2050 aggeaaatgg cattactgcc cctgtcctcc ccaccctgtc atgtgtgatt 2100 ccaqqcacca qqqcaqqccc aqaaqcccaq caqctqtqqq aaqqaacctq 2150 cctggggcca caggtgccca ctccccaccc tgcaggacag gggtgtctgt 2200 ggacactccc acacccaact ctgctaccaa gcaggcgtct cagctttcct 2250 cctcctttac tctttcagat acaatcacgc cagccacgtt gttttgaaaa 2300 tttctttttt tggggggcag cagttttcct ttttttaaac ttaaataaat 2350 tgttacaaaa taaaa 2365

<210> 132

<211> 571

<212> PRT

<213> Homo sapiens

<400> 132

Met Leu Leu Ser Ser Leu Val Ser Leu Ala Gly Ser Val Tyr Leu 1 5 10 15

Ala Trp Ile Leu Phe Phe Val Leu Tyr Asp Phe Cys Ile Val Cys 20 25 30

Ile Thr Thr Tyr Ala Ile Asn Val Ser Leu Met Trp Leu Ser Phe 35 40 45

Arg Lys Val Gln Glu Pro Gln Gly Lys Ala Lys Arg His Gly Asn 50 55

Thr Val Pro Gly Glu Trp Pro Trp Gln Ala Ser Val Arg Arg Gln 65 70 75

Gly Ala His Ile Cys Ser Gly Ser Leu Val Ala Asp Thr Trp Val Leu Thr Ala Ala His Cys Phe Glu Lys Ala Ala Ala Thr Glu Leu Asn Ser Trp Ser Val Val Leu Gly Ser Leu Gln Arg Glu Gly Leu Ser Pro Gly Ala Glu Glu Val Gly Val Ala Ala Leu Gln Leu Pro 130 Arg Ala Tyr Asn His Tyr Ser Gln Gly Ser Asp Leu Ala Leu Leu Gln Leu Ala His Pro Thr Thr His Thr Pro Leu Cys Leu Pro Gln 155 Pro Ala His Arg Phe Pro Phe Gly Ala Ser Cys Trp Ala Thr Gly 170 Trp Asp Gln Asp Thr Ser Asp Ala Pro Gly Thr Leu Arg Asn Leu 185 Arg Leu Arg Leu Ile Ser Arg Pro Thr Cys Asn Cys Ile Tyr Asn Gln Leu His Gln Arg His Leu Ser Asn Pro Ala Arg Pro Gly Met Leu Cys Gly Gly Pro Gln Pro Gly Val Gln Gly Pro Cys Gln Gly Asp Ser Gly Gly Pro Val Leu Cys Leu Glu Pro Asp Gly His Trp Val Gln Ala Gly Ile Ile Ser Phe Ala Ser Ser Cys Ala Gln Glu Asp Ala Pro Val Leu Leu Thr Asn Thr Ala Ala His Ser Ser Trp 285 Leu Gln Ala Arg Val Gln Gly Ala Ala Phe Leu Ala Gln Ser Pro Glu Thr Pro Glu Met Ser Asp Glu Asp Ser Cys Val Ala Cys Gly Ser Leu Arg Thr Ala Gly Pro Gln Ala Gly Ala Pro Ser Pro Trp Pro Trp Glu Ala Arg Leu Met His Gln Gly Gln Leu Ala Cys Gly 345 Gly Ala Leu Val Ser Glu Glu Ala Val Leu Thr Ala Ala His Cys Phe Ile Gly Arg Gln Ala Pro Glu Glu Trp Ser Val Gly Leu Gly

<210> 134 <211> 24 <212> DNA

				365					370					375
Thr	Arg	Pro	Glu	Glu 380	Trp	Gly	Leu	Lys	Gln 385	Leu	Ile	Leu	His	Gly 390
Ala	Tyr	Thr	His	Pro 395	Glu	Gly	Gly	Tyr	Asp 400	Met	Ala	Leu	Leu	Leu 405
Leu	Ala	Gln	Pro	Val 410	Thr	Leu	Gly	Ala	Ser 415	Leu	Arg	Pro	Leu	Cys 420
Leu	Pro	Tyr	Pro	Asp 425	His	His	Leu	Pro	Asp 430	Gly	Glu	Arg	Gly	Trp 435
Val	Leu	Gly	Arg	Ala 440	Arg	Pro	Gly	Ala	Gly 445	Ile	Ser	Ser	Leu	Gln 450
Thr	Val	Pro	Val	Thr 455	Leu	Leu	Gly	Pro	Arg 460	Ala	Cys	Ser	Arg	Leu 465
His	Ala	Ala	Pro	Gly 470	Gly	Asp	Gly	Ser	Pro 475	Ile	Leu	Pro	Gly	Met 480
Val	Cys	Thr	Ser	Ala 485	Val	Gly	Glu	Leu	Pro 490	Ser	Суѕ	Glu	Gly	Leu 495
Ser	Gly	Ala	Pro	Leu 500	Val	His	Glu	Val	Arg 505	Gly	Thr	Trp	Phe	Leu 510
Ala	Gly	Leu	His	Ser 515	Phe	Gly	Asp	Ala	Cys 520	Gln	Gly	Pro	Ala	Arg 525
Pro	Ala	Val	Phe	Thr 530	Ala	Leu	Pro	Ala	Tyr 535	Glu	Asp	Trp	Val	Ser 540
Ser	Leu	Asp	Trp	Gln 545	Val	Tyr	Phe	Ala	Glu 550	Glu	Pro	Glu	Pro	Glu 555
Ala	Glu	Pro	Gly	Ser 560	Cys	Leu	Ala	Asn	11e 565	Ser	Gln	Pro	Thr	Ser 570
Cys														
<210> 133 <211> 24 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic oligonucleotide probe														
	<400> 133 cctgtgctgt gcctcgagcc tgac 24													

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 134
gtgggcagca gttagcaccg cctc 24
<210> 135
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 135
ggctggcatc atcagctttg catcaagctg tgcccaggag gacgc 45
<210> 136
<211> 1998
<212> DNA
<213> Homo sapiens
<400> 136
 cgggccgccc ccggccccca ttcgggccgg gcctcgctgc ggcggcgact 50
 gagecagget gggecgete cetgagtece agagteggeg eggegggea 100
 ggggcagcct tccaccacgg ggagcccagc tgtcagccgc ctcacaggaa 150
 gatgctgcgt cggcggggca gccctggcat gggtgtgcat gtgggtgcag 200
 ccctgggage actgtggttc tgcctcacag gagccctgga ggtccaggtc 250
 cctgaagace cagtggtggc actggtgggc accgatgcca ccctgtgctg 300
 ctccttctcc cctgagcctg gcttcagcct ggcacagctc aacctcatct 350
 ggcagctgac agataccaaa cagctggtgc acagctttgc tgagggccag 400
 gaccagggca gcgcctatgc caaccgcacg gccctcttcc cggacctgct 450
 ggcacagggc aacgcatccc tgaggctgca gcgcgtgcgt gtggcggacg 500
 agggcagctt cacctgcttc gtgagcatcc gggatttcgg cagcgctgcc 550
 gtcagcctgc aggtggccgc tccctactcg aagcccagca tgaccctgga 600
 gcccaacaag gacetgegge caggggacac ggtgaccatc acgtgctcca 650
 gctaccaggg ctaccctgag gctgaggtgt tctggcagga tgggcagggt 700
 qtqcccctqa ctqqcaacqt qaccacqtcq caqatqqcca acqaqcaqqq 750
 cttgtttgat gtgcacagcg tcctgcgggt ggtgctgggt gcgaatggca 800
 cctacagetg cctggtgcgc aaccccgtgc tgcagcagga tgcgcacrgc 850
```

tctgtcacca tcacagggca gcctatgaca ttccccccag aggccctgtg 900 ggtgaccgtg gggctgtctg tctgtctcat tgcactgctg gtggccctgg 950 ctttcgtgtg ctggagaaag atcaaacaga gctgtgagga ggagaatgca 1000 ggagctgagg accaggatgg ggagggagaa ggctccaaga cagccctgca 1050 gcctctgaaa cactctgaca gcaaagaaga tgatggacaa gaaatagcct 1100 gaccatgagg accagggage tgctacccct ccctacaget cctaccctct 1150 ggctgcaatg gggctgcact gtgagccctg cccccaacag atgcatcctg 1200 ctctgacagg tgggctcctt ctccaaagga tgcgatacac agaccactgt 1250 gcagccttat ttctccaatg gacatgattc ccaagtcatc ctgctgcctt 1300 ttttcttata gacacaatga acagaccacc cacaacctta gttctctaag 1350 tcatcctgcc tgctgcctta tttcacagta catacatttc ttagggacac 1400 agtacactga ccacatcacc accetettet tecagtgetg egtggaceat 1450 ctggctgcct tttttctcca aaagatgcaa tattcagact gactgacccc 1500 ctgccttatt tcaccaaaga cacgatgcat agtcaccccg gccttgtttc 1550 tccaatggcc gtgatacact agtgatcatg ttcagccctg cttccacctg 1600 catagaatet tttettetea gacagggaca gtgeggeete aacateteet 1650 ggagtctaga agctgtttcc tttcccctcc ttcctccctg ccccaagtga 1700 agacagggca gggccaggaa tgctttgggg acaccgaggg gactgccccc 1750 caccccacc atggtgctat tctggggctg gggcagtctt ttcctggctt 1800 gcctctggcc agctcctggc ctctggtaga gtgagacttc agacgttctg 1850 atgccttccg gatgtcatct ctccctgccc caggaatgga agatgtgagg 1900 acttctaatt taaatgtggg actcggaggg attttgtaaa ctgggggtat 1950 attttgggga aaataaatgt ctttgtaaaa aaaaaaaaa aaaaaaaa 1998

```
<210> 137
```

<211> 316

<212> PRT

<213> Homo sapiens

<220>

<221> unsure

<222> 233

<223> unknown amino acid

<400> 137

Met Leu Arg Arg Gly Ser Pro Gly Met Gly Val His Val Gly

7				5					TO					15
Ala	Ala	Leu	Gly	Ala 20	Leu	Trp	Phe	Cys	Leu 25	Thr	Gly	Ala	Leu	Glu 30
Val	Gln	Val	Pro	Glu 35	Asp	Pro	Val	Val	Ala 40	Leu	Val	Gly	Thr	Asp 45
Ala	Thr	Leu	Cys	Cys 50	Ser	Phe	Ser	Pro	Glu 55	Pro	Gly	Phe	Ser	Leu 60
Ala	Gln	Leu	Asn	Leu 65	Ile	Trp	Gln	Leu	Thr 70	Asp	Thr	Lys	Gln	Leu 75
Val	His	Ser	Phe	Ala 80	Glu	Gly	Gln	Asp	Gln 85	Gly	Ser	Ala	Tyr	Ala 90
Asn	Arg	Thr	Ala	Leu 95	Phe	Pro	Asp	Leu	Leu 100	Ala	Gln	Gly	Asn	Ala 105
Ser	Leu	Arg	Leu	Gln 110	Arg	Val	Arg	Val	Ala 115	Asp	Glu	Gly	Ser	Phe 120
Thr	Cys	Phe	Val	Ser 125	Ile	Arg	Asp	Phe	Gly 130	Ser	Ala	Ala	Val	Ser 135
Leu	Gln	Val	Ala	Ala 140	Pro	Tyr	Ser	Lys	Pro 145	Ser	Met	Thr	Leu	Glu 150
Pro	Asn	Lys	Asp	Leu 155	Arg	Pro	Gly	Asp	Thr 160	Val	Thr	Ile	Thr	Cys 165
Ser	Ser	Tyr	Gln	Gly 170	Tyr	Pro	Glu	Ala	Glu 175	Val	Phe	Trp	Gln	Asp 180
Gly	Gln	Gly	Val	Pro 185	Leu	Thr	Gly	Asn	Val 190	Thr	Thr	Ser	Gln	Met 195
Ala	Asn	Glu	Gln	Gly 200	Leu	Phe	Asp	Val	His 205	Ser	Val	Leu	Arg	Val 210
Val	Leu	Gly	Ala	Asn 215	Gly	Thr	Tyr	Ser	Cys 220	Leu	Val	Arg	Asn	Pro 225
Val	Leu	Gln	Gln	Asp 230	Ala	His	Xaa	Ser	Val 235	Thr	Ile	Thr	Gly	Gln 240
Pro	Met	Thr	Phe	Pro 245	Pro	Glu	Ala	Leu	Trp 250	Val	Thr	Val	Gly	Leu 255
Ser	Val	Суз	Leu	Ile 260	Ala	Leu	Leu	Val	Ala 265	Leu	Ala	Phe	Val	Cys 270
Trp	Arg	Lys	Ile	Lys 275	Gln	Ser	Cys	Glu	Glu 280	Glu	Asn	Ala	Gly	Ala 285
Glu	Asp	Gln	Asp	Gly 290	Glu	Gly	Glu	Gly	Ser 295	Lys	Thr	Ala	Leu	Gln 300

```
Pro Leu Lys His Ser Asp Ser Lys Glu Asp Asp Gly Gln Glu Ile
                       305
      Ala
     <210> 138
     <211> 24
     <212> DNA
     <213> Artificial Sequence
     <223> Synthetic oligonucleotide probe
     <400> 138
      ctggcacagc tcaacctcat ctgg 24
     <210> 139
     <211> 20
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Synthetic oligonucleotide probe
     <400> 139
      gctgtctgtc tgtctcattg 20
1,27
     <210> 140
- -
     <211> 20
     <212> DNA
<213> Artificial Sequence
. 4
<220>
     <223> Synthetic oligonucleotide probe
Н
į ž
     <400> 140
ggacacagta tactgaccac 20
už:
<210> 141
     <211> 24
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Synthetic oligonucleotide probe
     <400> 141
      tgcgaaccag gcagctgtaa gtgc 24
     <210> 142
     <211> 24
     <212> DNA
     <213> Artificial Sequence
     <220>
```

<223> Synthetic oligonucleotide probe

```
<400> 142
 tggaagaaga gggtggtgat gtgg 24
<210> 143
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 143
 cagctgacag acaccaaaca gctggtgcac agtttcaccg aaggc 45
<210> 144
<211> 2336
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1620, 1673
<223> unknown base
<400> 144
ttcgtgaccc ttgagaaaag agttggtggt aaatgtgcca cgtcttctaa 50
gaagggggag tcctgaactt gtctgaagcc cttgtccgta agccttgaac 100
tacgttctta aatctatgaa gtcgagggac ctttcgctgc ttttgtaggg 150
acttetttee ttgetteage aacatgagge ttttettgtg gaacgeggte 200
ttgactctgt tcgtcacttc tttgattggg gctttgatcc ctgaaccaga 250
agtgaaaatt gaagttetee agaageeatt catetgeeat egeaagaeea 300
aaggagggga tttgatgttg gtccactatg aaggctactt agaaaaggac 350
ggctccttat ttcactccac tcacaaacat aacaatggtc agcccatttg 400
gtttaccctg ggcatcctgg aggctctcaa aggttgggac cagggcttga 450
aaggaatgtg tgtaggagag aagagaaagc tcatcattcc tcctgctctg 500
ggctatggaa aagaaggaaa aggtaaaatt cccccagaaa gtacactgat 550
atttaatatt gatctcctgg agattcgaaa tggaccaaga tcccatgaat 600
cattccaaga aatggatctt aatgatgact ggaaactctc taaagatgag 650
gttaaagcat atttaaagaa ggagtttgaa aaacatggtg cggtggtgaa 700
tgaaagtcat catgatgctt tggtggagga tatttttgat aaagaagatg 750
aagacaaaga tgggtttata tctgccagag aatttacata taaacacgat 800
gagttataga gatacatcta cccttttaat atagcactca tctttcaaga 850
```

gagggcagtc atctttaaag aacattttat ttttatacaa tgttctttct 900 tgctttgttt tttattttta tatattttt ctgactccta tttaaagaac 950 cccttaggtt tctaagtacc catttcttc tgataagtta ttgggaagaa 1000 aaagctaatt ggtctttgaa tagaagactt ctggacaatt tttcactttc 1050 acagatatga agctttgttt tactttctca cttataaatt taaaatgttg 1100 caactgggaa tataccacga catgagacca ggttatagca caaattagca 1150 ccctatattt ctgcttccct ctattttctc caagttagag gtcaacattt 1200 gaaaagcctt ttgcaatagc ccaaggcttg ctattttcat gttataatga 1250 aatagtttat gtgtaactgg ctctgagtct ctgcttgagg accagaggaa 1300 aatggttgtt ggacctgact tgttaatggc tactgcttta ctaaggagat 1350 gtgcaatgct gaagttagaa acaaggttaa tagccaggca tggtggctca 1400 tgcctgtaat cccagcactt tgggaggctg aggcgggcgg atcacctgag 1450 gttgggagtt cgagaccagc ctgaccaaca cggagaaacc ctatctctac 1500 taaaaataca aagtagcccg gcgtggtgat gcgtgcctgt aatcccagct 1550 acccaggaag gctgaggcgg cagaatcact tgaacccgag gccgaggttg 1600 cggtaagccg agatcacctn cagcctggac actctgtctc gaaaaaagaa 1650 aagaacacgg ttaataccat atnaatatgt atgcattgag acatgctacc 1700 taggacttaa gctgatgaag cttggctcct agtgattggt ggcctattat 1750 gataaatagg acaaatcatt tatgtgtgag tttctttgta ataaaatgta 1800 tcaatatgtt atagatgagg tagaaagtta tatttatatt caatatttac 1850 ttcttaaggc tagcggaata tccttcctgg ttctttaatg ggtagtctat 1900 agtatattat actacaataa cattgtatca taagataaag tagtaaacca 1950 gtctacattt tcccatttct gtctcatcaa aaactgaagt tagctgggtg 2000 tggtggctca tgcctgtaat cccagcactt tgggggccaa ggagggtgga 2050 tcacttgaga tcaggagttc aagaccagcc tggccaacat ggtgaaacct 2100 tgtctctact aaaaatacaa aaattagcca ggcgtggtgg tgcacacctg 2150 tagtcccagc tactcgggag gctgagacag gagatttgct tgaacccggg 2200 aggcggaggt tgcagtgagc caagattgtg ccactgcact ccagcctggg 2250 tgacagagca agactccatc tcaaaaaaaa aaaaaagaag cagacctaca 2300

gcagctacta ttgaataaat acctatcctg gatttt 2336

```
<210> 145
<211> 211
<212> PRT
```

<213> Homo sapiens

<400> 145

Met Arg Leu Phe Leu Trp Asn Ala Val Leu Thr Leu Phe Val Thr 1 5 10 15

Ser Leu Ile Gly Ala Leu Ile Pro Glu Pro Glu Val Lys Ile Glu 20 25 30

Val Leu Gln Lys Pro Phe Ile Cys His Arg Lys Thr Lys Gly Gly 35 40 45

Asp Leu Met Leu Val His Tyr Glu Gly Tyr Leu Glu Lys Asp Gly 50 55 60

Ser Leu Phe His Ser Thr His Lys His Asn Asn Gly Gln Pro Ile 65 70 75

Trp Phe Thr Leu Gly Ile Leu Glu Ala Leu Lys Gly Trp Asp Gln 80 85 90

Gly Leu Lys Gly Met Cys Val Gly Glu Lys Arg Lys Leu Ile Ile 95 100 105

Pro Pro Ala Leu Gly Tyr Gly Lys Glu Gly Lys Gly Lys Ile Pro 110 115 120

Pro Glu Ser Thr Leu Ile Phe Asn Ile Asp Leu Leu Glu Ile Arg 125 130 135

Asn Gly Pro Arg Ser His Glu Ser Phe Gln Glu Met Asp Leu Asn 140 145 150

Asp Asp Trp Lys Leu Ser Lys Asp Glu Val Lys Ala Tyr Leu Lys 155 160 165

Lys Glu Phe Glu Lys His Gly Ala Val Val Asn Glu Ser His His 170 175 180

Asp Ala Leu Val Glu Asp Ile Phe Asp Lys Glu Asp Glu Asp Lys
185
190

Asp Gly Phe Ile Ser Ala Arg Glu Phe Thr Tyr Lys His Asp Glu 200 205 210

Leu

<210> 146

<211> 26

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 146
 ctttccttgc ttcagcaaca tgaggc 26
<210> 147
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 147
 gcccagagca ggaggaatga tgagc 25
<210> 148
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 148
gtggaacgcg gtcttgactc tgttcgtcac ttctttgatt ggggctttg 49
<210> 149
<211> 2196
<212> DNA
<213> Homo sapiens
aataaagctt ccttaatgtt gtatatgtct ttgaagtaca tccqtqcatt 50
tttttttagc atccaaccat tcctcccttg tagttctcgc cccctcaaat 100
caccetetee egtageeeae eegactaaca teteagtete tgaaaatgea 150
cagagatgcc tggctacctc gccctgcctt cagcctcacg gggctcagtc 200
tctttttctc tttggtgcca ccaggacgga gcatggaggt cacagtacct 250
gccaccctca acgtcctcaa tggctctgac gcccgcctgc cctgcacctt 300
caactcctgc tacacagtga accacaaaca gttctccctg aactggactt 350
accaggagtg caacaactgc tctgaggaga tgttcctcca gttccgcatg 400
aagatcatta acctgaagct ggagcggttt caagaccgcg tggagttctc 450
agggaacccc agcaagtacg atgtgtcggt gatgctgaga aacgtgcagc 500
cggaggatga ggggatttac aactgctaca tcatgaaccc ccctgaccgc 550
caccgtggcc atggcaagat ccatctgcag gtcctcatgg aagagccccc 600
```

tgagcgggac tccacggtgg ccgtgattgt gggtgcctcc gtcgggggct 650 tcctggctgt ggtcatcttg gtgctgatgg tggtcaagtg tgtgaggaga 700 aaaaaagagc agaagctgag cacagatgac ctgaagaccg aggaggaggg 750 caagacggac ggtgaaggca acccggatga tggcgccaag tagtgggtgg 800 coggecotge ageotecogt gtocogtote etcocotete egeoctgtae 850 agtgaccctg cctgctcgct cttggtgtgc ttcccgtgac ctaggacccc 900 agggcccacc tggggcctcc tgaacccccg acttcgtatc tcccaccctg 950 caccaagagt gacccactct cttccatccg agaaacctgc catgctctgg 1000 gacgtgtggg ccctggggag aggagagaaa gggctcccac ctgccagtcc 1050 ctggggggag gcaggaggca catgtgaggg tccccagaga gaagggagtg 1100 ggtgggcagg ggtagaggag gggccgctgt cacctgccca gtgcttgcct 1150 ggcagtggct tcagagagga cctggtgggg agggagggct ttcctgtgct 1200 gacagegete ceteaggagg geettggeet ggeaeggetg tgeteeteee 1250 ctgctcccag cccagagcag ccatcaggct ggaggtgacg atgagttcct 1300 gaaacttgga ggggcatgtt aaagggatga ctgtgcattc cagggcactg 1350 acggaaagcc agggctgcag gcaaagctgg acatgtgccc tggcccagga 1400 ggccatgttg ggccctcgtt tccattgcta gtggcctcct tggggctcct 1450 gttggctcct aatcccttag gactgtggat gaggccagac tggaagagca 1500 gctccaggta gggggccatg tttcccagcg gggacccacc aacagaggcc 1550 agtttcaaag tcagctgagg ggctgagggg tggggctcca tggtgaatgc 1600 aggttgctgc aggctctgcc ttctccatgg ggtaaccacc ctcgcctggg 1650 caggggcagc caaggctggg aaatgaggag gccatgcaca gggtggggca 1700 gctttctttg gggcttcagt gagaactctc ccagttgccc ttggtggggt 1750 ttccacctgg cttttggcta cagagaggga agggaaagcc tgaggccggc 1800 ataaggggag gccttggaac ctgagctgcc aatgccagcc ctgtcccatc 1850 tgcggccacg ctactcgctc ctctcccaac aactcccttc gtggggacaa 1900 aagtgacaat tgtaggccag gcacagtggc tcacgcctgt aatcccagca 1950 ctttgggagg ccaaggcggg tggattacct ccatctgttt agtagaaatg 2000 ggcaaaaccc catctctact aaaaatacaa gaattagctg ggcgtggtgg 2050

cgtgtgcctg taatcccagc tatttgggag gctgaggcag gagaatcgct 2100 tgagcccggg aagcagaggt tgcagtgaac tgagatagtg atagtgccac 2150 tgcaattcag cctgggtgac atagagagac tccatctcaa aaaaaa 2196

<210> 150

<211> 215

<212> PRT

<213> Homo sapiens

<400> 150

Met His Arg Asp Ala Trp Leu Pro Arg Pro Ala Phe Ser Leu Thr

Gly Leu Ser Leu Phe Phe Ser Leu Val Pro Pro Gly Arg Ser Met 20 25 30

Glu Val Thr Val Pro Ala Thr Leu Asn Val Leu Asn Gly Ser Asp 35 40 45

Ala Arg Leu Pro Cys Thr Phe Asn Ser Cys Tyr Thr Val Asn His 50 55 60

Lys Gln Phe Ser Leu Asn Trp Thr Tyr Gln Glu Cys Asn Asn Cys
65 70 75

Ser Glu Glu Met Phe Leu Gln Phe Arg Met Lys Ile Ile Asn Leu 80 85 90

Lys Leu Glu Arg Phe Gln Asp Arg Val Glu Phe Ser Gly Asn Pro 95 100 105

Ser Lys Tyr Asp Val Ser Val Met Leu Arg Asn Val Gln Pro Glu 110 115 120

Asp Glu Gly Ile Tyr Asn Cys Tyr Ile Met Asn Pro Pro Asp Arg 125 130 135

His Arg Gly His Gly Lys Ile His Leu Gln Val Leu Met Glu Glu 140 145 150

Pro Pro Glu Arg Asp Ser Thr Val Ala Val Ile Val Gly Ala Ser 155 160 165

Val Gly Gly Phe Leu Ala Val Val Ile Leu Val Leu Met Val Val 170 175 180

Lys Cys Val Arg Arg Lys Lys Glu Gln Lys Leu Ser Thr Asp Asp 185 190 195

Leu Lys Thr Glu Glu Glu Gly Lys Thr Asp Gly Glu Gly Asn Pro $200 \hspace{1cm} 205 \hspace{1cm} 210 \hspace{1cm}$

Asp Asp Gly Ala Lys

215

<210> 151

ctacatcatg aaccccc 368

```
<211> 524
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 103, 233
<223> unknown base
<400> 151
 gttgtatatg tcctgaagta catccgtgca ttttttttag catccaacca 50
 tectecettg tagttetege ecceteaaat cacettetee ettageceae 100
 ccnactaaca tctcagtctc tgaaaatgca cagagatgcc tggctacctc 150
 gccctgcctt cagcctcacg gggctcagtc tctttttctc tttggtgcca 200
 ccaggacgga gcatggaggt ccacagtacc tgnccaccct caacgtcctc 250
 aatggctctg acgcccgcct gccctgccct tcaactcctg ctacacagtg 300
 aaccacaaac agttctccct gaactggact taccaggagt gcaacaactg 350
 ctctgaggag atgttcctcc agttccgcat gaagatcatt aacctgaagc 400
 tggagcggtt tcaagaccgc gtggagttct cagggaaccc cagcaagtac 450
 gatgtgtcgg tgatgctgag aaacgtgcag ccggaggatg aggggattta 500
 caactgctac atcatgaacc cccc 524
<210> 152
<211> 368
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 56, 123
<223> unknown base
<400> 152
 tcacggggct catctcttt tctctttggt gcccaccagg acggagcatg 50
 gaggtncaca tacctgccac cctcaacgtc ctcaatggct ttgacgcccg 100
 cctgccctgc accttcaact ccngctacac agtgaaccac aaacagttct 150
 ccctgaactg gatttaccag gagtgcaaca actggctctg aggagatgtt 200
 cctccagttc ccgcatggaa gatcatttaa cctgaaagct ggaagcggtt 250
ttcaagaacc gcgtggaagt ttctcaggga accccagcaa gtacgatgtg 300
tcggtgatgc tgagaaacgt gcagccggag gatgagggga tttacaactg 350
```

```
<210> 153
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 153
 acggagcatg gaggtccaca gtac 24
<210> 154
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 154
gcacgtttct cagcatcacc gac 23
<210> 155
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 155
cgcctgccct gcaccttcaa ctcctgctac acagtgaacc acaaacagtt 50
<210> 156
<211> 2680
<212> DNA
<213> Homo sapiens
<400> 156
tgcggcgacc gtcgtacacc atgggcctcc acctccgccc ctaccgtgtg 50
gggctgctcc cggatggcct cctgttcctc ttgctgctgc taatgctqct 100
cgcggaccca gcgctcccgg ccggacgtca cccccagtg gtgctggtcc 150
ctggtgattt gggtaaccaa ctggaagcca agctggacaa gccgacagtg 200
gtgcactacc tctgctccaa gaagaccgaa agctacttca caatctggct 250
gaacctggaa ctgctgctgc ctgtcatcat tgactgctgg attgacaata 300
tcaggctggt ttacaacaaa acatccaggg ccacccagtt tcctgatggt 350
gtggatgtac gtgtccctgg ctttgggaag accttctcac tggagttcct 400
ggaccccagc aaaagcagcg tgggttccta tttccacacc atggtggaga 450
gccttgtggg ctggggctac acacggggtg aggatgtccg aggggctccc 500
```

tatgactggc gccgagcccc aaatgaaaac gggccctact tcctggccct 550 ccgcgagatg atcgaggaga tgtaccagct gtatgggggc cccgtggtgc 600 tggttgccca cagtatgggc aacatgtaca cgctctactt tctgcagcgg 650 cagccgcagg cctggaagga caagtatatc cgggccttcg tgtcactggg 700 tgcgccctgg gggggcgtgg ccaagaccct gcgcgtcctg gcttcaggag 750 acaacaaccg gatcccagtc atcgggcccc tgaagatccg ggagcagcag 800 cggtcagctg tctccaccag ctggctgctg ccctacaact acacatggtc 850 acctgagaag gtgttcgtgc agacacccac aatcaactac acactgcggg 900 actaccgcaa gttcttccag gacatcggct ttgaagatgg ctggctcatg 950 cggcaggaca cagaagggct ggtggaagcc acgatgccac ctggcgtgca 1000 gctgcactgc ctctatggta ctggcgtccc cacaccagac tccttctact 1050 atgagagett ceetgacegt gacectaaaa tetgetttgg tgaeggegat 1100 ggtactgtga acttgaagag tgccctgcag tgccaggcct ggcagagccg 1150 ccaggagcac caagtgttgc tgcaggagct gccaggcagc gagcacatcg 1200 agatgctggc caacgccacc accetggcct atctgaaacg tgtgctcctt 1250 gggccctgac tcctgtgcca caggactcct gtggctcggc cgtggacctg 1300 ctgttggcct ctggggctgt catggcccac gcgttttgca aagtttgtga 1350 ctcaccattc aaggccccga gtcttggact gtgaagcatc tgccatgggg 1400 aagtgctgtt tgttatcctt tctctgtggc agtgaagaag gaagaaatga 1450 gagtctagac tcaagggaca ctggatggca agaatgctgc tgatggtgga 1500 actgctgtga ccttaggact ggctccacag ggtggactgg ctgggccctg 1550 gtcccagtcc ctgcctgggg ccatgtgtcc ccctattcct gtgggctttt 1600 catacttgcc tactgggccc tggccccgca gccttcctat gagggatgtt 1650 actgggctgt ggtcctgtac ccagaggtcc cagggatcgg ctcctggccc 1700 ctcgggtgac ccttcccaca caccagccac agataggcct gccactggtc 1750 atgggtaget agagetgetg getteeetgt ggettagetg gtggeeagee 1800 tgactggctt cctgggcgag cctagtagct cctgcaggca ggggcagttt 1850 gttgcgttct tcgtggttcc caggccctgg gacatctcac tccactccta 1900 cctcccttac caccaggage attcaagete tggattggge ageagatgtg 1950

cccccagtcc egcagetgt gttecagggg ecctgattte eteggatgtg 2000 ctattggece caggactgaa getgeetee teeacectgg gactgtggtt 2050 ccaaggatga gageaggggt tggagecatg geetetetggg aacetatgga 2100 gaaagggaat ecaaggaage ageeaagget getegeaget teeetgaget 2150 geacetettg etaaceceae cateacactg ecaecetgee etagggete 2200 actagtacea agtgggteag eacagggetg aggatggge teetateeae 2250 ectggecage acceagetta gtgetggae tageecagaa acttgaatgg 2300 gaecetgaga gageeagggg teeeetgagg ecceectagg ggetteetgt 2350 etgeeceagg gtgeteeatg gateteeetg tggeageagg eatggaggt 2400 eagggetgee tteatggeag taggetetaa gtgggtgaet ggeeaeaggg 2450 eggagaaaagg gtacageete taggtgggt teeeaaagae geetteagge 2500 tggaetgage tgeeteeea eagggttet gtgeagetgg attteettg 2550 ttgeatacat geetgeate tgteteeet tgteetgag tggeeeaea 2600 tggggetetg ageagetg atetggate tggeaataaa agaaaaaaa aaaaaaaaa 2680

<210> 157

<211> 412

<212> PRT

<213> Artificial

<400> 157

Met Gly Leu His Leu Arg Pro Tyr Arg Val Gly Leu Leu Pro Asp 1 5 10 15

Gly Leu Leu Phe Leu Leu Leu Leu Met Leu Leu Ala Asp Pro 20 25 30

Ala Leu Pro Ala Gly Arg His Pro Pro Val Val Leu Val Pro Gly 35 40 45

Asp Leu Gly Asn Gln Leu Glu Ala Lys Leu Asp Lys Pro Thr Val
50 55 60

Val His Tyr Leu Cys Ser Lys Lys Thr Glu Ser Tyr Phe Thr Ile 65 70 75

Trp Leu Asn Leu Glu Leu Leu Leu Pro Val Ile Ile Asp Cys Trp 80 85 90

Ile Asp Asn Ile Arg Leu Val Tyr Asn Lys Thr Ser Arg Ala Thr
95 100 105

Gln Phe Pro Asp Gly Val Asp Val Arg Val Pro Gly Phe Gly Lys

				110					115					120
Thr	Phe	Ser	Leu	Glu 125	Phe	Leu	Asp	Pro	Ser 130	Lys	Ser	Ser	Val	Gl _y 135
Ser	Tyr	Phe	His	Thr 140	Met	Val	Glu	Ser	Leu 145	Val	Gly	Trp	Gly	Tyr 150
Thr	Arg	Gly	Glu	Asp 155	Val	Arg	Gly	Ala	Pro 160	Tyr	Asp	Trp	Arg	Arg 165
Ala	Pro	Asn	Glu	Asn 170	Gly	Pro	Tyr	Phe	Leu 175	Ala	Leu	Arg	Glu	Met 180
Ile	Glu	Glu	Met	Tyr 185	Gln	Leu	Tyr	Gly	Gly 190	Pro	Val	Val	Leu	Val 195
Ala	His	Ser	Met	Gly 200	Asn	Met	Tyr	Thr	Leu 205	Tyr	Phe	Leu	Gln	Arg 210
Gln	Pro	Gln	Ala	Trp 215	Lys	Asp	Lys	Tyr	Ile 220	Arg	Ala	Phe	Val	Ser 225
Leu	Gly	Ala	Pro	Trp 230	Gly	Gly	Val	Ala	Lys 235	Thr	Leu	Arg	Val	Leu 240
Ala	Ser	Gly	Asp	Asn 245	Asn	Arg	Ile	Pro	Val 250	Ile	Gly	Pro	Leu	Lys 255
Ile	Arg	Glu	Gln	Gln 260	Arg	Ser	Ala	Val	Ser 265	Thr	Ser	Trp	Leu	Leu 270
Pro	Tyr	Asn	Tyr	Thr 275	Trp	Ser	Pro	Glu	Lys 280	Val	Phe	Val	Gln	Thr 285
Pro	Thr	Ile	Asn	Tyr 290	Thr	Leu	Arg	Asp	Tyr 295	Arg	Lys	Phe	Phe	Gln 300
	Ile			305					310	-		-		315
	Leu			320					325					330
	Tyr			335					340				_	345
	Phe			350					355					360
	Thr			365					370					375
	Arg			380					385					390
Glu	His	Ile	Glu	Met 395	Leu	Ala	Asn	Ala	Thr 400	Thr	Leu	Ala	Tyr	Leu 405

```
Lys Arg Val Leu Leu Gly Pro
<210> 158
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 158
 ctggggctac acacggggtg agg 23
<210> 159
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 159
ggtgccgctg cagaaagtag agcg 24
<210> 160
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
gccccaaatg aaaacgggcc ctacttcctg gccctccgcg agatg 45
<210> 161
<211> 1512
<212> DNA
<213> Homo sapiens
<400> 161
cggacgcgtg ggcggacgcg tggggcggcg gcagcggcgg cgacggcgac 50
atggagagcg gggcctacgg cgcggccaag gcgggcggct ccttcgacct 100
gcggcgcttc ctgacgcagc cgcaggtggt ggcgcgcgc gtgtgcttgg 150
tcttcgcctt gatcgtgttc tcctgcatct atggtgaggg ctacagcaat 200
gcccacgagt ctaagcagat gtactgcgtg ttcaaccgca acgaggatgc 250
ctgccgctat ggcagtgcca tcggggtgct ggccttcctg gcctcggcct 300
```

Ü

. .

.

tcttcttggt ggtcgacgcg tatttccccc agatcagcaa cgccactgac 350

cgcaagtacc tggtcattgg tgacctgctc ttctcagctc tctggacctt 400

cctgtggttt gttggtttct gcttcctcac caaccagtgg gcagtcacca 450 acccgaagga cgtgctggtg ggggccgact ctgtgagggc agccatcacc 500 ttcagcttct tttccatctt ctcctggggt gtgctggcct ccctggccta 550 ccagcgctac aaggctggcg tggacgactt catccagaat tacgttgacc 600 ccactccgga ccccaacact gcctacgcct cctacccagg tgcatctgtg 650 gacaactacc aacagccacc cttcacccag aacgcggaga ccaccgaggg 700 ctaccagecg ecceetgtgt actgagtgge ggttagegtg ggaaggggga 750 cagagaggc cctccctct gccctggact ttcccatcag cctcctggaa 800 ctgccagccc ctctcttca cctgttccat cctgtgcagc tgacacacag 850 ctaaggagcc tcatagcctg gcgggggctg gcagagccac accccaagtg 900 cctgtgccca gagggcttca gtcagccgct cactcctcca gggcactttt 950 aggaaagggt ttttagctag tgtttttcct cgcttttaat gacctcagcc 1000 ccgcctgcag tggctagaag ccagcaggtq cccatqtqct actgacaagt 1050 gcctcagctt cccccggcc cgggtcaggc cgtgggagcc gctattatct 1100 gcgttctctg ccaaagactc gtgggggcca tcacacctgc cctqtqcaqc 1150 ggagccggac caggetettg tgtcctcact caggtttgct teceetgtgc 1200 ccactgctgt atgatetggg ggccaccacc ctgtgccggt ggcctctggg 1250 ctgcctcccg tggtgtgagg gcggggctgg tgctcatggc acttcctcct 1300 tgctcccacc cctggcagca gggaagggct ttgcctgaca acacccagct 1350 ttatgtaaat attctgcagt tgttacttag gaagcctggg gagggcaggg 1400 gtgccccatg gctcccagac tctgtctgtg ccgagtgtat tataaaatcg 1450 tgggggagat gcccggcctg ggatgctgtt tggagacgga ataaatgttt 1500 tctcattcaa ag 1512

```
<210> 162
```

<211> 224

<212> PRT

<213> Homo sapiens

<400> 162

Met Glu Ser Gly Ala Tyr Gly Ala Ala Lys Ala Gly Gly Ser Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asp Leu Arg Arg Phe Leu Thr Gln Pro Gln Val Val Ala Arg Ala 20 25 30

```
Val Cys Leu Val Phe Ala Leu Ile Val Phe Ser Cys Ile Tyr Gly
 Glu Gly Tyr Ser Asn Ala His Glu Ser Lys Gln Met Tyr Cys Val
 Phe Asn Arg Asn Glu Asp Ala Cys Arg Tyr Gly Ser Ala Ile Gly
 Val Leu Ala Phe Leu Ala Ser Ala Phe Phe Leu Val Val Asp Ala
 Tyr Phe Pro Gln Ile Ser Asn Ala Thr Asp Arg Lys Tyr Leu Val
 Ile Gly Asp Leu Leu Phe Ser Ala Leu Trp Thr Phe Leu Trp Phe
                                      115
 Val Gly Phe Cys Phe Leu Thr Asn Gln Trp Ala Val Thr Asn Pro
 Lys Asp Val Leu Val Gly Ala Asp Ser Val Arg Ala Ala Ile Thr
                                     145
 Phe Ser Phe Phe Ser Ile Phe Ser Trp Gly Val Leu Ala Ser Leu
 Ala Tyr Gln Arg Tyr Lys Ala Gly Val Asp Asp Phe Ile Gln Asn
                 170
                                     175
 Tyr Val Asp Pro Thr Pro Asp Pro Asn Thr Ala Tyr Ala Ser Tyr
 Pro Gly Ala Ser Val Asp Asn Tyr Gln Gln Pro Pro Phe Thr Gln
                                     205
                                                          210
Asn Ala Glu Thr Thr Glu Gly Tyr Gln Pro Pro Pro Val Tyr
<210> 163
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 163
tggtcttcgc cttgatcgtg ttct 24
<210> 164
<211> 20
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

```
<400> 164
 gtgtactgag cggcggttag 20
<210> 165
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 165
ctgaaggtga tggctgccct cac 23
<210> 166
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 166
ccaggaggct catgggaaag tcc 23
<210> 167
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 167
ccacgagtct aagcagatgt actgcgtgtt caaccgcaac gaggatgcct 50
<210> 168
<211> 3143
<212> DNA
<213> Homo sapiens
<400> 168
gagccaccta ccctgctccg aggccaggcc tgcagggcct catcggccag 50
agggtgatca gtgagcagaa ggatgcccgt ggccgaggcc ccccaggtgg 100
ctggcgggca gggggacgga ggtgatggcg aggaagcgga gccagagggg 150
atgttcaagg cctgtgagga ctccaagaga aaagcccggg gctacctccg 200
cctggtgccc ctgtttgtgc tgctggccct gctcgtgctg gcttcggcgg 250
gggtgctact ctggtatttc ctagggtaca aggcggaggt gatggtcagc 300
caggtgtact caggcagtct gcgtgtactc aatcgccact tctcccagga 350
tettaceege egggaateta gtgeetteeg eagtgaaace geeaaageee 400
```

agaagatgct caaggagctc atcaccagca cccgcctggg aacttactac 450 aactccagct ccgtctattc ctttggggag ggacccctca cctgcttctt 500 ctggttcatt ctccaaatcc ccgagcaccg ccggctgatg ctgagccccg 550 aggtggtgca ggcactgctg gtggaggagc tgctgtccac agtcaacagc 600 toggotgoog toccotacag ggoogagtac gaagtggaco cogagggoot 650 agtgatcctg gaagccagtg tgaaagacat agctgcattg aattccacgc 700 tgggttgtta ccgctacagc tacgtgggcc agggccaggt cctccggctg 750 aaggggcctg accacctggc ctccagctgc ctgtggcacc tgcagggccc 800 caaggacctc atgctcaaac tccggctgga gtggacgctg gcagagtgcc 850 gggaccgact ggccatgtat gacgtggccg ggcccctgga gaagaggctc 900 atcacctcgg tgtacggctg cagccgccag gagcccgtgg tggaggttct 950 ggcgtcgggg gccatcatgg cggtcgtctg gaagaagggc ctgcacagct 1000 actacgacce cttcgtgctc tccgtgcage cggtggtctt ccaggcctgt 1050 gaagtgaacc tgacgctgga caacaggctc qactcccagg gcgtcctcag 1100 caccccgtac ttccccagct actactcgcc ccaaacccac tgctcctggc 1150 acctcacggt gccctctctg gactacggct tggccctctg gtttgatgcc 1200 tatgcactga ggaggcagaa gtatgatttg ccgtgcaccc agggccagtg 1250 gacgatccag aacaggaggc tgtgtggctt gcgcatcctg cagccctacg 1300 ccgagaggat ccccgtggtg gccacggccg ggatcaccat caacttcacc 1350 teccagatet eceteacegg geeeggtgtg egggtgeact atggettgta 1400 caaccagteg gacccetgee etggagagtt cetetgttet gtgaatggae 1450 tctgtgtccc tgcctgtgat ggggtcaagg actgccccaa cggcctggat 1500 gagagaaact gcgtttgcag agccacattc cagtgcaaag aggacagcac 1550 atgcatctca ctgcccaagg tctgtgatgg gcagcctgat tgtctcaacg 1600 gcagcgatga agagcagtgc caggaagggg tgccatgtgg gacattcacc 1650 ttccagtgtg aggaccggag ctgcgtgaag aagcccaacc cgcagtgtga 1700 tgggcggccc gactgcaggg acggctcgga tgaggagcac tgtgactgtg 1750 gcctccaggg cccctccagc cgcattgttg gtggagctgt gtcctccgag 1800 ggtgagtggc catggcaggc cagcctccag gttcggggtc gacacatctg 1850

tgggggggcc ctcatcgctg accgctgggt gataacagct gcccactgct 1900 tccaggagga cagcatggcc tccacggtgc tgtggaccgt gttcctgggc 1950 aaggtgtggc agaactcgcg ctggcctgga gaggtqtcct tcaaqqtqaq 2000 ccgcctgctc ctgcacccgt accacgaaga ggacagccat gactacgacg 2050 tggcgctgct gcagctcgac cacccggtgg tgcgctcggc cqccqtqcqc 2100 cccgtctgcc tgcccgcgcg ctcccacttc ttcgagcccg gcctgcactg 2150 ctggattacg ggctggggcg ccttgcgcga qqqcqccc atcaqcaacq 2200 ctctgcagaa agtggatgtg cagttgatcc cacaggacct gtgcagcgag 2250 gcctatcgct accaggtgac gccacgcatg ctgtgtgccg gctaccgcaa 2300 gggcaagaag gatgcctgtc agggtgactc aggtggtccg ctggtgtgca 2350 aggcactcag tggccgctgg ttcctggcgg ggctggtcag ctggggcctg 2400 ggctgtggcc ggcctaacta cttcggcgtc tacacccgca tcacaggtgt 2450 gatcagctgg atccagcaag tggtgacctg aggaactgcc cccctgcaaa 2500 gcagggccca cctcctggac tcagagagcc cagggcaact gccaagcagg 2550 gggacaagta ttctggcggg gggtggggga gagagcaggc cctgtggtgg 2600 caggaggtgg catcttgtct cgtccctgat gtctgctcca gtgatggcag 2650 gaggatggag aagtgccagc agctgggggt caagacgtcc cctgaggacc 2700 caggeceaca eccagecett etgeeteeca attetetete etcegteece 2750 ttcctccact gctgcctaat gcaaqgcaqt qqctcaqcaq caaqaatqct 2800 ggttctacat cccgaggagt gtctgaggtg cgccccactc tgtacagagg 2850 ctgtttgggc agccttgcct ccagagagca gattccagct tcggaagccc 2900 ctggtctaac ttgggatctg ggaatggaag gtgctcccat cggaqgggac 2950 cctcagagcc ctggagactg ccaggtgggc ctgctqccac tgtaaqccaa 3000 aaggtgggga agtcctgact ccagggtcct tqccccaccc ctqcctqcca 3050 cctgggccct cacagcccag accctcactg ggaggtgagc tcagctgccc 3100 tttggaataa agctgcctga tcaaaaaaaa aaaaaaaaa aaa 3143

<210> 169

<211> 802

<212> PRT

<213> Homo sapiens

<400> 169

Met Pro Val Ala Glu Ala Pro Gln Val Ala Gly Gln Gly Asp Gly Gly Asp Gly Glu Glu Ala Glu Pro Glu Gly Met Phe Lys Ala Cys Glu Asp Ser Lys Arg Lys Ala Arg Gly Tyr Leu Arg Leu Val Pro Leu Phe Val Leu Leu Ala Leu Leu Val Leu Ala Ser Ala Gly Val Leu Leu Trp Tyr Phe Leu Gly Tyr Lys Ala Glu Val Met Val Ser Gln Val Tyr Ser Gly Ser Leu Arg Val Leu Asn Arg His Phe Ser Gln Asp Leu Thr Arg Arg Glu Ser Ser Ala Phe Arg Ser Glu 100 Thr Ala Lys Ala Gln Lys Met Leu Lys Glu Leu Ile Thr Ser Thr Arg Leu Gly Thr Tyr Tyr Asn Ser Ser Ser Val Tyr Ser Phe Gly 130 Glu Gly Pro Leu Thr Cys Phe Phe Trp Phe Ile Leu Gln Ile Pro Glu His Arq Arq Leu Met Leu Ser Pro Glu Val Val Gln Ala Leu Leu Val Glu Glu Leu Leu Ser Thr Val Asn Ser Ser Ala Ala Val Pro Tyr Arg Ala Glu Tyr Glu Val Asp Pro Glu Gly Leu Val Ile Leu Glu Ala Ser Val Lys Asp Ile Ala Ala Leu Asn Ser Thr Leu Gly Cys Tyr Arg Tyr Ser Tyr Val Gly Gln Gly Gln Val Leu Arg 215 Leu Lys Gly Pro Asp His Leu Ala Ser Ser Cys Leu Trp His Leu 230 235 Gln Gly Pro Lys Asp Leu Met Leu Lys Leu Arg Leu Glu Trp Thr 245 250 Leu Ala Glu Cys Arg Asp Arg Leu Ala Met Tyr Asp Val Ala Gly 270 Pro Leu Glu Lys Arg Leu Ile Thr Ser Val Tyr Gly Cys Ser Arg 280 Gln Glu Pro Val Val Glu Val Leu Ala Ser Gly Ala Ile Met Ala

				290					295					300
Val	Val	Trp	Lys	Lys 305	Gly	Leu	His	Ser	Tyr 310	Tyr	Asp	Pro	Phe	Val 315
Leu	Ser	Val	Gln	Pro 320	Val	Val	Phe	Gln	Ala 325	Cys	Glu	Val	Asn	Leu 330
Thr	Leu	Asp	Asn	Arg 335	Leu	Asp	Ser	Gln	Gly 340	Val	Leu	Ser	Thr	Pro 345
Tyr	Phe	Pro	Ser	Tyr 350	Tyr	Ser	Pro	Gln	Thr 355	His	Cys	Ser	Trp	His 360
Leu	Thr	Val	Pro	Ser 365	Leu	Asp	Tyr	Gly	Leu 370	Ala	Leu	Trp	Phe	Asp 375
Ala	Tyr	Ala	Leu	Arg 380	Arg	Gln	Lys	Tyr	Asp 385	Leu	Pro	Суз	Thr	Gln 390
Gly	Gln	Trp	Thr	Ile 395	Gln	Asn	Arg	Arg	Leu 400	Cys	Gly	Leu	Arg	Ile 405
Leu	Gln	Pro	Tyr	Ala 410	Glu	Arg	Ile	Pro	Val 415	Val	Ala	Thr	Ala	Gly 420
Ile	Thr	Ile	Asn	Phe 425	Thr	Ser	Gln	Ile	Ser 430	Leu	Thr	Gly	Pro	Gly 435
Val	Arg	Val	His	Tyr 440	Gly	Leu	Tyr	Asn	Gln 445	Ser	Asp	Pro	Cys	Pro 450
Gly	Glu	Phe	Leu	Cys 455	Ser	Val	Asn	Gly	Leu 460	Cys	Val	Pro	Ala	Cys 465
Asp	Gly	Val	Lys	Asp 470	Cys	Pro	Asn	Gly	Leu 475	Asp	Glu	Arg	Asn	Cys 480
Val	Cys	Arg	Ala	Thr 485	Phe	Gln	Cys	Lys	Glu 490	Asp	Ser	Thr	Cys	Ile 495
Ser	Leu	Pro	Lys	Val 500	Суз	Asp	Gly	Gln	Pro 505	Asp	Cys	Leu	Asn	Gly 510
Ser	Asp	Glu	Glu	Gln 515	Cys	Gln	Glu	Gly	Val 520	Pro	Cys	Gly	Thr	Phe 525
Thr	Phe	Gln	Cys	Glu 530	Asp	Arg	Ser	Cys	Val 535	Lys	Lys	Pro	Asn	Pro 540
Gln	Cys	Asp	Gly	Arg 545	Pro	Asp	Cys	Arg	Asp 550	Gly	Ser	Asp	Glu	Glu 555
His	Cys	Asp	Cys	Gly 560	Leu	Gln	Gly	Pro	Ser 565	Ser	Arg	Ile	Val	Gly 570
Gly	Ala	Val	Ser	Ser 575	Glu	Gly	Glu	Trp	Pro 580	Trp	Gln	Ala	Ser	Leu 585

```
Gln Val Arg Gly Arg His Ile Cys Gly Gly Ala Leu Ile Ala Asp
Arg Trp Val Ile Thr Ala Ala His Cys Phe Gln Glu Asp Ser Met
                605
                                     610
Ala Ser Thr Val Leu Trp Thr Val Phe Leu Gly Lys Val Trp Gln
                620
Asn Ser Arg Trp Pro Gly Glu Val Ser Phe Lys Val Ser Arg Leu
Leu Leu His Pro Tyr His Glu Glu Asp Ser His Asp Tyr Asp Val
                                     655
Ala Leu Leu Gln Leu Asp His Pro Val Val Arg Ser Ala Ala Val
                                     670
Arg Pro Val Cys Leu Pro Ala Arg Ser His Phe Phe Glu Pro Gly
                                     685
Leu His Cys Trp Ile Thr Gly Trp Gly Ala Leu Arg Glu Gly Gly
                695
                                     700
Pro Ile Ser Asn Ala Leu Gln Lys Val Asp Val Gln Leu Ile Pro
Gln Asp Leu Cys Ser Glu Ala Tyr Arg Tyr Gln Val Thr Pro Arg
                725
                                     730
Met Leu Cys Ala Gly Tyr Arg Lys Gly Lys Lys Asp Ala Cys Gln
Gly Asp Ser Gly Gly Pro Leu Val Cys Lys Ala Leu Ser Gly Arg
                755
                                     760
                                                         765
Trp Phe Leu Ala Gly Leu Val Ser Trp Gly Leu Gly Cys Gly Arg
Pro Asn Tyr Phe Gly Val Tyr Thr Arg Ile Thr Gly Val Ile Ser
                                                         795
```

Trp Ile Gln Gln Val Val Thr 800

<210> 170

<211> 1327

<212> DNA

<213> Homo sapiens

<400> 170

gcacccaggg ccagtggacg atccagaaca ggaggctgtg tggcttgcgc 50 atcctgcagc cctacgccga gaggatcccc gtggtggcca cggccgggat 100 caccatcaac ttcacctccc agatctccct caccgggccc ggtgtgcggg 150 tgcactatgg cttgtacaac cagtcggacc cctgccctgg agagttcctc 200

tgttctgtga atggactctg tgtccctgcc tgtgatgggg tcaaggactg 250 ccccaacggc ctggatgaga gaaactgcgt ttgcagagcc acattccagt 300 gcaaagagga cagcacatgc atctcactgc ccaaggtctg tgatgggcag 350 · cctqattqtc tcaacqqcaq cqatqaaqaq caqtqccaqq aaqqqqtqcc 400 atgtgggaca ttcaccttcc agtgtgagga ccggagctgc gtgaagaagc 450 ccaacccgca gtgtgatggg cggcccgact gcagggacgg ctcggatgag 500 gagcactgtg actgtggcct ccagggcccc tccagccgca ttgttggtgg 550 agctgtgtcc tccgagggtg agtggccatg gcaggccagc ctccaggttc 600 ggggtcgaca catctgtggg ggggccctca tcgctgaccg ctgggtgata 650 acagetgeec actgetteca ggaggacage atggeeteca eggtgetgtg 700 gaccgtgttc ctgggcaagg tgtggcagaa ctcgcgctgg cctggagagg 750 tgtccttcaa ggtgagccgc ctgctcctgc acccgtacca cgaagaggac 800 agccatgact acgacgtggc gctgctgcag ctcgaccacc cggtggtgcg 850 cteggeegee gtgegeeeg tetgeetgee egegegetee eacttetteg 900 agcccggcct gcactgctgg attacgggct ggggcgcctt gcgcgagggc 950 ggccccatca gcaacgctct gcagaaagtg gatgtgcagt tgatcccaca 1000 ggacctgtgc agcgaggcct atcgctacca ggtgacgcca cgcatgctgt 1050 gtgccggcta ccgcaagggc aagaaggatg cctgtcaggg tgactcaggt 1100 ggtecgetgg tgtgcaagge acteagtgge egetggttee tggcgggget 1150 ggtcagctgg ggcctgggct gtggccggcc taactacttc ggcgtctaca 1200 cccgcatcac aggtgtgatc agctggatcc agcaagtggt gacctgagga 1250 actgccccc tgcaaagcag ggcccacctc ctggactcag agagcccagg 1300 gcaactgcca agcagggga caagtat 1327

```
<210> 171
```

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 171

taacagctgc ccactgcttc cagg 24

<210> 172

```
10
.4
:,0
ĿĒ
1.71
<u>_</u>
1
i Ž
i. .4.
```

```
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 172
 taatccagca gtgcaggccg qg 22
<210> 173
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 173
 atggcctcca cggtgctgtg gaccgtgttc ctgggcaagg tgtggcagaa 50
<210> 174
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 174
tgcctatgca ctgaggaggc agaag 25
<210> 175
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 175
 aggcagggac acagagtcca ttcac 25
<210> 176
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 agtatgattt gccgtgcacc cagggccagt ggacgatcca gaacaggagg 50
<210> 177
<211> 1510
<212> DNA
<213> Homo sapiens
```

<400> 177

ggacgagggc agatctcgtt ctggggcaag ccgttgacac tcgctccctg 50 ccaccgcccg ggctccgtgc cgccaagttt tcattttcca ccttctctgc 100 ctccagtccc ccagcccctg gccgagagaa gggtcttacc ggccgggatt 150 gctggaaaca ccaagaggtg gtttttgttt tttaaaactt ctgtttcttg 200 ggagggggtg tggcggggca ggatgagcaa ctccgttcct ctgctctgtt 250 tctggagcct ctgctattgc tttgctgcgg ggagccccgt accttttggt 300 ccagagggac ggctggaaga taagctccac aaacccaaag ctacacagac 350 tgaggtcaaa ccatctgtga ggtttaacct ccgcacctcc aaggacccag 400 agcatgaagg atgctacctc tccgtcggcc acagccagcc cttagaagac 450 tgcagtttca acatgacagc taaaaccttt ttcatcattc acggatggac 500 gatgageggt atctttgaaa actggctgca caaactegtg teagecetge 550 acacaagaga gaaagacgcc aatgtagttg tggttgactg gctccccctg 600 gcccaccagc tttacacgga tgcggtcaat aataccaggg tggtgggaca 650 cagcattgcc aggatgctcg actggctgca ggagaaggac gattttctc 700 tegggaatgt ceaettgate ggetacagee teggagegea egtggeeggg 750 tatgcaggca acttcgtgaa aggaacggtg ggccgaatca caggtttgga 800 tcctgccggg cccatgtttg aaggggccga catccacaag aggctctctc 850 cggacgatgc agattttgtg gatgtcctcc acacctacac gcgttccttc 900 ggcttgagca ttggtattca gatgcctgtg ggccacattg acatctaccc 950 caatgggggt gacttccagc caggctgtgg actcaacgat gtcttgggat 1000 caattgcata tggaacaatc acagaggtgg taaaatgtga gcatgagcga 1050 gccgtccacc tctttgttga ctctctggtg aatcaggaca agccgagttt 1100 tgccttccag tgcactgact ccaatcgctt caaaaagggg atctgtctga 1150 gctgccgcaa gaaccgttgt aatagcattg gctacaatgc caagaaaatg 1200 aggaacaaga ggaacagcaa aatgtaccta aaaacccggg caggcatgcc 1250 tttcagaggt aaccttcagt ccctggagtg tccctgagga aggcccttaa 1300 tacctccttc ttaataccat gctgcagagc agggcacatc ctagcccagg 1350 agaagtggcc agcacaatcc aatcaaatcg ttgcaaatca gattacactg 1400 tgcatgtcct aggaaaggga atctttacaa aataaacagt gtggacccct 1450

<210> 178

<211> 354

<212> PRT

<213> Homo sapiens

<400> 178

Met Ser Asn Ser Val Pro Leu Leu Cys Phe Trp Ser Leu Cys Tyr 1 5 10 15

Cys Phe Ala Ala Gly Ser Pro Val Pro Phe Gly Pro Glu Gly Arg
20 25 30

Leu Glu Asp Lys Leu His Lys Pro Lys Ala Thr Gln Thr Glu Val
35 40 45

Lys Pro Ser Val Arg Phe Asn Leu Arg Thr Ser Lys Asp Pro Glu 50 55 60

His Glu Gly Cys Tyr Leu Ser Val Gly His Ser Gln Pro Leu Glu
65 70 75

Asp Cys Ser Phe Asn Met Thr Ala Lys Thr Phe Phe Ile Ile His $80 \\ 85 \\ 90$

Gly Trp Thr Met Ser Gly Ile Phe Glu Asn Trp Leu His Lys Leu
95 100 105

Val Ser Ala Leu His Thr Arg Glu Lys Asp Ala Asn Val Val 110 115 120

Val Asp Trp Leu Pro Leu Ala His Gln Leu Tyr Thr Asp Ala Val 125 130 135

Asn Asn Thr Arg Val Val Gly His Ser Ile Ala Arg Met Leu Asp 140 145 150

Trp Leu Gln Glu Lys Asp Asp Phe Ser Leu Gly Asn Val His Leu 155 160 165

Ile Gly Tyr Ser Leu Gly Ala His Val Ala Gly Tyr Ala Gly Asn 170 175 180

Phe Val Lys Gly Thr Val Gly Arg Ile Thr Gly Leu Asp Pro Ala 185 190 195

Gly Pro Met Phe Glu Gly Ala Asp Ile His Lys Arg Leu Ser Pro 200 205 210

Asp Asp Ala Asp Phe Val Asp Val Leu His Thr Tyr Thr Arg Ser 215 220 225

Phe Gly Leu Ser Ile Gly Ile Gln Met Pro Val Gly His Ile Asp 230 235 240

```
Ile Tyr Pro Asn Gly Gly Asp Phe Gln Pro Gly Cys Gly Leu Asn
                 245
 Asp Val Leu Gly Ser Ile Ala Tyr Gly Thr Ile Thr Glu Val Val
                                      265
 Lys Cys Glu His Glu Arg Ala Val His Leu Phe Val Asp Ser Leu
 Val Asn Gln Asp Lys Pro Ser Phe Ala Phe Gln Cys Thr Asp Ser
                                                          300
 Asn Arg Phe Lys Lys Gly Ile Cys Leu Ser Cys Arg Lys Asn Arg
 Cys Asn Ser Ile Gly Tyr Asn Ala Lys Lys Met Arg Asn Lys Arg
 Asn Ser Lys Met Tyr Leu Lys Thr Arg Ala Gly Met Pro Phe Arg
                                                          345
 Gly Asn Leu Gln Ser Leu Glu Cys Pro
<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 179
gtgagcatga gcgagccgtc cac 23
<210> 180
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 180
gctattacaa cggttcttgc ggcagc 26
<210> 181
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 181
ttgactctct ggtgaatcag gacaagccga gttttgcctt ccag 44
<210> 182
```

. A

...

. 4

13

1.2

<211> 3240 <212> DNA <213> Homo sapiens

<400> 182 cggacgcgtg ggcggacgcg tgggcctggg caagggccgg ggcgccgggc 50 acgcgctgga ggagtggagc agcacccggc cggccctggg ggctgacagt 150 cggcaaagtt tggcccgaag aggaagtggt ctcaaacccc ggcaggtggc 200 gaccaggcca gaccaggggc gctcgctgcc tgcgggcggg ctgtaggcga 250 gggcgcgccc cagtgccgag acccggggct tcaggagccg gccccgqqaq 300 agaagagtgc ggcggcggac ggagaaaaca actccaaagt tggcgaaagg 350 caccgcccct actcccgggc tgccgccgcc tccccgcccc cagccctggc 400 atccagagta cgggtcgagc ccgggccatg gagcccccct ggggaggcgg 450 caccagggag cctgggcgcc cggggctccg ccgcgacccc atcgggtaga 500 ccacagaagc teegggaccc tteeggcacc tetggacagc ccaggatgct 550 gttggccacc ctcctcctcc tcctccttgg aggcgctctg gcccatccag 600 accggattat ttttccaaat catgcttgtg aggacccccc agcagtgctc 650 ttagaagtgc agggcacctt acagaggccc ctggtccggg acagccgcac 700 ctcccctgcc aactgcacct ggctcatcct gggcagcaag gaacagactg 750 tcaccatcag gttccagaag ctacacctgg cctgtggctc agagcgctta 800 accetacget ecceteteca gecactgate tecetgtgtg aggeacetee 850 cagecetetg cagetgeegg ggggeaacgt caccateact tacagetatg 900 ctggggccag agcacccatg ggccagggct tcctgctctc ctacagccaa 950 gattggctga tgtgcctgca ggaagagttt cagtgcctga accaccgctg 1000 tgtatctgct gtccagcgct gtgatggggt tgatgcctgt ggcqatqgct 1050 ctgatgaagc aggttgcagc tcagacccct tccctggcct gaccccaaga 1100 cccgtcccct ccctgccttg caatgtcacc ttggaggact tctatggggt 1150 cttctcctct cctggatata cacacctagc ctcagtctcc cacccccagt 1200 cctgccattg gctgctggac ccccatgatg gccggcggct ggccgtgcgc 1250 ttcacagccc tggacttggg ctttggagat gcagtgcatg tgtatgacgg 1300 ccctgggccc cctgagagct cccgactact gcgtagtctc acccacttca 1350

gcaatggcaa ggctgtcact gtggagacac tgtctggcca ggctgttgtg 1400 tectaceaca cagttgettg gageaatggt egtggettea atgecaceta 1450 ccatgtgcgg ggctattgct tgccttggga cagaccctgt ggcttaggct 1500 ctggcctggg agctggcgaa ggcctaggtg agcgctgcta cagtgaggca 1550 cagcgctgtg acggctcatg ggactgtgct gacggcacag atgaggagga 1600 ctgcccaggc tgcccacctg gacacttccc ctgtggggct gctggcacct 1650 ctggtgccac agcctgctac ctgcctgctg accgctgcaa ctaccagact 1700 ttctgtgctg atggagcaga tgagagacgc tgtcggcatt gccagcctgg 1750 caatttccga tgccgggacg agaagtgcgt gtatgagacg tgggtgtgcg 1800 atgggcagcc agactgtgcg gacggcagtg atgagtggga ctgctcctat 1850 gttctgcccc gcaaggtcat tacagctgca gtcattggca gcctagtgtg 1900 cggcctgctc ctggtcatcg ccctgggctg cacctgcaag ctctatgcca 1950 ttcgcaccca ggagtacagc atctttgccc ccctctcccg gatggaggct 2000 gagattgtgc agcagcaggc acccccttcc tacgggcagc tcattgccca 2050 gggtgccatc ccacctgtag aagactttcc tacagagaat cctaatgata 2100 actcagtgct gggcaacctg cgttctctgc tacagatctt acgccaggat 2150 atgactccag gaggtggccc aggtgcccgc cgtcgtcagc ggggccgctt 2200 gatgcgacgc ctggtacgcc gtctccgccg ctggggcttg ctccctcgaa 2250 ccaacacccc ggctcgggcc tctgaggcca gatcccaggt cacaccttct 2300 gctgctcccc ttgaggccct agatggtggc acaggtccag cccgtgaggg 2350 cggggcagtg ggtgggcaag atggggagca ggcaccccca ctgcccatca 2400 aggeteeect cecatetget ageaegtete cageeeccae tactgteeet 2450 gaagccccag ggccactgcc ctcactgccc ctagagccat cactattgtc 2500 tggagtggtg caggccctgc gaggccgcct gttgcccagc ctggggcccc 2550 caggaccaac ccggagcccc cctggacccc acacagcagt cctggccctg 2600 gaagatgagg acgatgtgct actggtgcca ctggctgagc cgggggtgtg 2650 ggtagctgag gcagaggatg agccactgct tacctgaggg gacctggggg 2700 ctctactgag gcctctcccc tgggggctct actcatagtg gcacaacctt 2750 ttagaggtgg gtcagcctcc cctccaccac ttccttccct gtccctggat 2800

ttcagggact tggtgggcct cccgttgacc ctatgtagct gctataaagt 2850
taagtgtccc tcaggcaggg agagggctca cagagtctcc tctgtacgtg 2900
gccatggcca gacaccccag tcccttcacc accacctgct ccccacgcca 2950
ccaccatttg ggtggctgtt tttaaaaagt aaagttctta gaggatcata 3000
ggtctggaca ctccatcctt gccaaacctc tacccaaaag tggccttaag 3050
caccggaatg ccaattaact agagaccctc cagcccccaa ggggaggatt 3100
tgggcagaac ctgaggtttt gccatccaca atccctccta cagggcctgg 3150
ctcacaaaaa gagtgcaaca aatgcttcta ttccatagct acggcattgc 3200
tcagtaagtt gaggtcaaaa ataaaggaat catacatctc 3240

<210> 183

<211> 713

<212> PRT

<213> Homo sapiens

<400> 183

Met Leu Leu Ala Thr Leu Leu Leu Leu Leu Gly Gly Ala Leu 1 5 10

Ala His Pro Asp Arg Ile Ile Phe Pro Asn His Ala Cys Glu Asp 20 25 30

Pro Pro Ala Val Leu Leu Glu Val Gln Gly Thr Leu Gln Arg Pro 35 40 45

Leu Val Arg Asp Ser Arg Thr Ser Pro Ala Asn Cys Thr Trp Leu
50 55 60

Ile Leu Gly Ser Lys Glu Gln Thr Val Thr Ile Arg Phe Gln Lys
65 70 75

Leu His Leu Ala Cys Gly Ser Glu Arg Leu Thr Leu Arg Ser Pro 80 85 90

Leu Gln Pro Leu Ile Ser Leu Cys Glu Ala Pro Pro Ser Pro Leu 95 100 105

Gln Leu Pro Gly Gly Asn Val Thr Ile Thr Tyr Ser Tyr Ala Gly 110 115 120

Ala Arg Ala Pro Met Gly Gln Gly Phe Leu Leu Ser Tyr Ser Gln 125 130 135

Asp Trp Leu Met Cys Leu Gln Glu Glu Phe Gln Cys Leu Asn His 140 145 150

Arg Cys Val Ser Ala Val Gln Arg Cys Asp Gly Val Asp Ala Cys 155 160 165

Gly Asp Gly Ser Asp Glu Ala Gly Cys Ser Ser Asp Pro Phe Pro

				170					175					180
Gly	Leu	Thr	Pro	Arg 185	Pro	Val	Pro	Ser	Leu 190	Pro	Cys	Asn	Val	Thr 195
Leu	Glu	Asp	Phe	Tyr 200	Gly	Val	Phe	Ser	Ser 205	Pro	Gly	Tyr	Thr	His 210
Leu	Ala	Ser	Val	Ser 215	His	Pro	Gln	Ser	Cys 220	His	Trp	Leu	Leu	Asp 225
Pro	His	Asp	Gly	Arg 230	Arg	Leu	Ala	Val	Arg 235	Phe	Thr	Ala	Leu	Asp 240
Leu	Gly	Phe	Gly	Asp 245	Ala	Val	His	Val	Tyr 250	Asp	Gly	Pro	Gly	Pro 255
Pro	Glu	Ser	Ser	Arg 260	Leu	Leu	Arg	Ser	Leu 265	Thr	His	Phe	Ser	Asn 270
Gly	Lys	Ala	Val	Thr 275	Val	Glu	Thr	Leu	Ser 280	Gly	Gln	Ala	Val	Val 285
Ser	Tyr	His	Thr	Val 290	Ala	Trp	Ser	Asn	Gly 295	Arg	Gly	Phe	Asn	Ala 300
Thr	Tyr	His	Val	Arg 305	Gly	Tyr	Cys	Leu	Pro 310	Trp	Asp	Arg	Pro	Cys 315
Gly	Leu	Glу	Ser	Gly 320	Leu	Gly	Ala	Gly	Glu 325	Gly	Leu	Gly	Glu	Arg 330
Cys	Tyr	Ser	Glu	Ala 335	Gln	Arg	Cys	Asp	Gly 340	Ser	Trp	Asp	Cys	Ala 345
Asp	Gly	Thr	Asp	Glu 350	Glu	Asp	Суѕ	Pro	Gly 355	Суз	Pro	Pro	Gly	His 360
Phe	Pro	Cys	Gly	Ala 365	Ala	Gly	Thr	Ser	Gly 370	Ala	Thr	Ala	Cys	Tyr 375
Leu	Pro	Ala	Asp	Arg 380	Суз	Asn	Tyr	Gln	Thr 385	Phe	Cys	Ala	Asp	Gly 390
Ala	Asp	Glu	Arg	Arg 395	Cys	Arg	His	Cys	Gln 400	Pro	Gly	Asn	Phe	Arg 405
Cys	Arg	Asp	Glu	Lys 410	Cys	Val	Tyr	Glu	Thr 415	Trp	Val	Суз	Asp	Gly 420
Gln	Pro	Asp	Cys	Ala 425	Asp	Gly	Ser	Asp	Glu 430	Trp	Asp	Cys	Ser	Tyr 435
Val	Leu	Pro	Arg	Lys 440	Val	Ile	Thr	Ala	Ala 445	Val	Ile	Gly	Ser	Leu 450
Val	Cys	Gly	Leu	Leu 455	Leu	Val	Ile	Ala	Leu 460	Gly	Cys	Thr	Cys	Lys 465

Leu Tyr Ala Ile Arg Thr Gln Glu Tyr Ser Ile Phe Ala Pro Leu Ser Arg Met Glu Ala Glu Ile Val Gln Gln Ala Pro Pro Ser Tyr Gly Gln Leu Ile Ala Gln Gly Ala Ile Pro Pro Val Glu Asp Phe Pro Thr Glu Asn Pro Asn Asp Asn Ser Val Leu Gly Asn Leu Arg Ser Leu Leu Gln Ile Leu Arg Gln Asp Met Thr Pro Gly Gly Gly Pro Gly Ala Arg Arg Arg Gln Arg Gly Arg Leu Met Arg Arg 550 Leu Val Arg Arg Leu Arg Arg Trp Gly Leu Leu Pro Arg Thr Asn 560 565 Thr Pro Ala Arg Ala Ser Glu Ala Arg Ser Gln Val Thr Pro Ser 580 Ala Ala Pro Leu Glu Ala Leu Asp Gly Gly Thr Gly Pro Ala Arg 595 Glu Gly Gly Ala Val Gly Gly Gln Asp Gly Glu Gln Ala Pro Pro 610 Leu Pro Ile Lys Ala Pro Leu Pro Ser Ala Ser Thr Ser Pro Ala 625 Pro Thr Thr Val Pro Glu Ala Pro Gly Pro Leu Pro Ser Leu Pro 640 Leu Glu Pro Ser Leu Leu Ser Gly Val Val Gln Ala Leu Arg Gly 655 Arg Leu Leu Pro Ser Leu Gly Pro Pro Gly Pro Thr Arg Ser Pro 665 670 Pro Gly Pro His Thr Ala Val Leu Ala Leu Glu Asp Glu Asp Asp 680 Val Leu Leu Val Pro Leu Ala Glu Pro Gly Val Trp Val Ala Glu 700 Ala Glu Asp Glu Pro Leu Leu Thr 710 <210> 184 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 184
     ggctgtcact gtggagacac 20
    <210> 185
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 185
     gcaaggtcat tacagctg 18
    <210> 186
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 186
     agaacatagg agcagtccca ctc 23
    <210> 187
    <211> 23
    <212> DNA
    <213> Artificial Sequence
Ē
ij
   <220>
ļ. .......
   <223> Synthetic oligonucleotide probe
    <400> 187
    tgcctgctgc tgcacaatct cag 23
   <210> 188
    <211> 45
127
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 188
     ggctattgct tgccttggga cagaccctgt ggcttaggct ctggc 45
    <210> 189
    <211> 663
    <212> DNA
    <213> Homo sapiens
   <400> 189
     cgagctgggc gagaagtagg ggagggcggt gctccgccgc ggtggcggtt 50
    gctatcgctt cgcagaacct actcaggcag ccagctgaga agagttgagg 100
    gaaagtgctg ctgctgggtc tgcagacgcg atggataacg tgcagccgaa 150
```

l, Fi

- ====

(r =====

aataaaacat cgccccttct gcttcagtgt gaaaggccac gtgaagatgc 200
tgcggctggc actaactgtg acatctatga cctttttat catcgcacaa 250
gcccctgaac catatattgt tatcactgga tttgaagtca ccgttatctt 300
attttcata cttttatatg tactcagact tgatcgatta atgaagtggt 350
tattttggcc tttgcttgat attatcaact cactggtaac aacagtattc 400
atgctcatcg tatctgtgtt ggcactgata ccagaaacca caacattgac 450
agttggtgga ggggtgtttg cacttgtgac agcagtatgc tgtcttgccg 500
acggggccct tatttaccgg aagcttctgt tcaatcccag cggtccttac 550
cagaaaaagc ctgtgcatga aaaaaaagaa gttttgtaat tttatattac 600
tttttagttt gatactaagt attaaacata tttctgtatt cttccaaaaa 650
aaaaaaaaaa aaa 663

<210> 190 <211> 152 <212> PRT <213> Homo sapiens

<400> 190

Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe 1 5 10 15

Ser Val Lys Gly His Val Lys Met Leu Arg Leu Ala Leu Thr Val 20 25 30

Thr Ser Met Thr Phe Phe Ile Ile Ala Gln Ala Pro Glu Pro Tyr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Val Ile Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile 50 55 60

Leu Leu Tyr Val Leu Arg Leu Asp Arg Leu Met Lys Trp Leu Phe
65 70 75

Trp Pro Leu Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe
80 85 90

Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu Thr Thr Thr 95 100 105

Leu Thr Val Gly Gly Val Phe Ala Leu Val Thr Ala Val Cys 110 115 120

Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn 125 130 135

Pro Ser Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu 140 145 150 Val Leu

```
<210> 191
<211> 495
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 78, 212, 234, 487
<223> unknown base
<400> 191
 gggcgagaag taggggaggg cgtgttccgc cgcggtggcg gttgctatcg 50
 ttttgcagaa cctactcagg cagccagntg agaagagttg agggaaagtg 100
 ctgctgctgg gtctgcagac gcgatggata acgtgcagcc gaaaataaaa 150
 categoccet tetgetteag tgtgaaagge caegtgaaga tgctgegget 200
 ggcactaact gngacatcta tgaccttttt tatnatcgca caagcccctg 250
 aaccatatat tgttatcact ggatttgaag tcaccgttat cttatttttc 300
 atacttttat atgtactcag acttgatcga ttaatgaagt ggttattttg 350
 gcctttgctt gatattatca actcactggt aacaacagta ttcatgctca 400
 tcgtatctgt gttggcactg ataccagaaa ccacaacatt gacagttggt 450
 ggaggggtgt ttgcacttgt gacagcagta tgctgtnttg ccgac 495
<210> 192
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 192
cgttttgcag aacctactca ggcag 25
<210> 193
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 193
cctccaccaa ctgtcaatgt tgtgg 25
<210> 194
<211> 40
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 194
aaagtgctgc tgctgggtct gcagacgcga tggataacgt 40
<210> 195
<211> 1879
<212> DNA
<213> Homo sapien
<400> 195
ggaccggcta ggctgggcgc gccccccggg ccccgccgtg ggcatgggcg 100
cactggcccg ggcgctgctg ctgcctctgc tggcccagtg gctcctgcgc 150
gccgccccgg agctggcccc cgcgcccttc acgctgcccc tccgggtggc 200
cgcggccacg aaccgcgtag ttgcgcccac cccgggaccc gggacccctq 250
ccgagcgcca cgccgacggc ttggcgctcg ccctggagcc tgccctggcg 300
teceeeggg gegeegeeaa ettettggee atggtagaea acetgeaggg 350
ggactctggc cgcggctact acctggagat gctgatcggg acccccccgc 400
agaagctaca gattctcgtt gacactggaa gcagtaactt tgccgtggca 450
ggaaccccgc actcctacat agacacgtac tttgacacag agaggtctag 500
cacataccgc tccaagggct ttgacgtcac agtgaagtac acacaaggaa 550
gctggacggg cttcgttggg gaagacctcg tcaccatccc caaaggcttc 600
aatacttctt ttcttgtcaa cattgccact atttttgaat cagagaattt 650
ctttttgcct gggattaaat ggaatggaat acttggccta gcttatgcca 700
cacttgccaa gccatcaagt tctctggaga ccttcttcga ctccctggtg 750
acacaagcaa acatccccaa cgttttctcc atgcagatgt gtggagccgg 800
cttgcccgtt gctggatctg ggaccaacgg aggtagtctt gtcttgggtg 850
gaattgaacc aagtttgtat aaaggagaca tctggtatac ccctattaag 900
gaagagtggt actaccagat agaaattctg aaattggaaa ttggaggcca 950
aagccttaat ctggactgca gagagtataa cgcagacaag gccatcgtgg 1000
acagtggcac cacgctgctg cgcctgcccc agaaggtgtt tgatgcggtg 1050
```

gtggaagetg tggcccgcgc atctctgatt ccagaattct ctgatqqttt 1100

ctggactggg tcccagctgg cgtgctggac gaattcggaa acaccttggt 1150 cttacttccc taaaatctcc atctacctga gagacgagaa ctccagcagg 1200 tcattccgta tcacaatcct gcctcagctt tacattcagc ccatgatggg 1250 ggccggcctg aattatgaat gttaccgatt cggcatttcc ccatccacaa 1300 atgcgctggt gatcggtgcc acggtgatgg agggcttcta cqtcatcttc 1350 gacagagccc agaagaggt gggcttcgca gcgagcccct gtgcagaaat 1400 tgcaggtgct gcagtgtctg aaatttccgg gcctttctca acagaggatg 1450 tagccagcaa ctgtgtcccc gctcagtctt tgagcgagcc cattttgtgg 1500 attgtgtcct atgcgctcat gagcgtctgt ggagccatcc tccttgtctt 1550 aatcgtcctg ctgctgctgc cgttccggtg tcagcgtcgc ccccgtgacc 1600 ctgaggtcgt caatgatgag tcctctctgg tcagacatcg ctggaaatga 1650 atagccaggc ctgacctcaa gcaaccatga actcagctat taagaaaatc 1700 acatttccag ggcagcagcc gggatcgatg qtqqcqcttt ctcctqtqcc 1750 caccegtett caatetetgt tetgeteeca gatgeettet agatteactg 1800 tcttttgatt cttgattttc aagctttcaa atcctcccta cttccaagaa 1850 aaataattaa aaaaaaaact tcattctaa 1879

<210> 196

<211> 518

<212> PRT

<213> Homo sapien

<400> 196

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln
1 5 10 15

Trp Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr 20 25 30

Leu Pro Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro 35 40 45

Thr Pro Gly Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu 50 55 60

Ala Leu Ala Leu Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala 65 70 75

Asn Phe Leu Ala Met Val Asp Asn Leu Gln Gly Asp Ser Gly Arg 80 85 90

Gly Tyr Tyr Leu Glu Met Leu Ile Gly Thr Pro Pro Gln Lys Leu
95 100 105

Gln Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp Val Thr Val Lys Tyr Thr Gin Gly Ser Trp Thr Gly Phe Val Gly Glu Asp Leu Val Thr Ile 155 160 165 Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn Ile Ala Thr Ile 170 175 Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys Trp Asn Gly 190 Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe Trp Thr Gly Ser Gln Leu Ala Cys Trp 335 Thr Asn Ser Glu Thr Pro Trp Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met Met Gly Ala Gly Leu Asn 380 Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro Ser Thr Asn Ala Leu

<223> Synthetic oligonucleotide probe

ggatgtagcc agcaactgtg 20

13

ηŢ ij

ıj

i ai

. .

Ħ

<400> 199

405

495

```
<210> 200
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 200
     gccttggctc gttctcttc 19
    <210> 201
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 201
     ggtcctgtgc ctggatgg 18
    <210> 202
    <211> 22
    <212> DNA
<213> Artificial Sequence
113
    <223> Synthetic oligonucleotide probe
i di
1.00
    <400> 202
. ....
     gacaagacta cctccgttgg tc 22
1,71
    <210> 203
    <211> 24
1. 1.5.
    <212> DNA
    <213> Artificial Sequence
133
<223> Synthetic oligonucleotide probe
- -
    <400> 203
    tgatgcacag ttcagcacct gttg 24
    <210> 204
    <211> 47
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 204
     cgctccaagg gctttgacgt cacagtgaag tacacacaag gaagctg 47
    <210> 205
    <211> 1939
    <212> DNA
```

: ::

<213> Homo sapiens

<400> 205 cgcctccgcc ttcggaggct gacgcgccg ggcgccgttc caggcctgtg 50 cagggcggat cggcagccgc ctggcggcga tccagggcgg tgcggggcct 100 gggcgggagc cgggaggcgc ggccggcatg gaggcgctqc tgctgggcgc 150 ggggttgctg ctgggcgctt acgtgcttgt ctactacaac ctggtgaagg 200 ccccgccgtg cggcggcatg ggcaacctgc ggggccgcac ggccgtggtc 250 acgggcgcca acagcggcat cggaaagatg acggcgctgg agctggcgcg 300 ccggggagcg cgcgtggtgc tggcctgccg cagccaggag cgcggggagg 350 cggctgcctt cgacctccgc caggagagtg ggaacaatga ggtcatcttc 400 atggccttgg acttggccag tctggcctcg gtgcgggcct ttgccactgc 450 ctttctgagc tctgagccac ggttggacat cctcatccac aatgccggta 500 tcagttcctg tggccggacc cgtgaggcgt ttaacctgct gcttcgggtg 550 aaccatatcg gtccctttct gctgacacat ctgctgctgc cttgcctgaa 600 ggcatgtgcc cctagccgcg tggtggtggt agcctcagct gcccactgtc 650 ggggacgtct tgacttcaaa cgcctggacc gcccagtggt gggctggcgg 700 caggagetge gggeatatge tgacactaag etggetaatg tactgtttge 750 ccgggagctc gccaaccagc ttgaggccac tggcgtcacc tgctatgcag 800 cccacccagg gcctgtgaac tcggagctgt tcctgcgcca tgttcctgga 850 tggctgcgcc cacttttgcg cccattggct tggctggtgc tccgggcacc 900 aagagggggt gcccagacac ccctgtattg tgctctacaa gagggcatcg 950 agcccctcag tgggagatat tttgccaact gccatgtgga agaggtgcct 1000 ccagctgccc gagacgaccg ggcagcccat cggctatggg aggccagcaa 1050 gaggctggca gggcttgggc ctggggagga tgctgaaccc gatgaagacc 1100 cccagtctga ggactcagag gccccatctt ctctaagcac ccccaccct 1150 gaggagecea cagtttetea acettaeece ageeeteaga geteaceaga 1200 tttgtctaag atgacgcacc gaattcaggc taaagttgag cctgagatcc 1250 agctctccta accctcaggc caggatgctt gccatggcac ttcatggtcc 1300 ttgaaaacct cggatgtgtg tgaggccatg ccctggacac tgacgggttt 1350 gtgatettga ecteegtggt tactttetgg ggeeceaage tgtgeectgg 1400

acatetett teetggttga aggaataatg ggtgattatt tetteetgag 1450
agtgacagta accecagatg gagagatagg ggtatgetag acactgtget 1500
teteggaaat ttggatgtag tatttteagg ecceaceett attgattetg 1550
ateagetetg gageagagge agggagtttg eaatgtgatg eaetgeeaae 1600
attgagaatt agtgaaetga teeetttgea acegtetage taggtagtta 1650
aattaceece atgttaatga ageeggaatta ggeteeegag etaagggaet 1700
egeetagggt eteacagtga gtaggaggag ggeetgggat etgaaeeeaa 1750
gggtetgagg eeagggeega etgeegtaag atgggtgetg agaagtgagt 1800
eagggeaggg eagetggtat egaggtgeee eatgggagta aggggaeegee 1850
tteegggegg atgeaggget ggggteatet gtatetgaag eeeeteggaa 1900
taaageegt tgaeegeea aaaaaaaaa aaaaaaaa 1939

<210> 206

<211> 377

<212> PRT

<213> Homo sapiens

<400> 206

Met Glu Ala Leu Leu Gly Ala Gly Leu Leu Gly Ala Tyr

1 10 15

Val Leu Val Tyr Tyr Asn Leu Val Lys Ala Pro Pro Cys Gly Gly
20 25 30

Met Gly Asn Leu Arg Gly Arg Thr Ala Val Val Thr Gly Ala Asn 35 40 45

Ser Gly Ile Gly Lys Met Thr Ala Leu Glu Leu Ala Arg Arg Gly
50 55 60

Ala Arg Val Val Leu Ala Cys Arg Ser Gln Glu Arg Gly Glu Ala 65 70 75

Ala Ala Phe Asp Leu Arg Gln Glu Ser Gly Asn Asn Glu Val Ile 80 85 90

Phe Met Ala Leu Asp Leu Ala Ser Leu Ala Ser Val Arg Ala Phe 95 100 105

Ala Thr Ala Phe Leu Ser Ser Glu Pro Arg Leu Asp Ile Leu Ile 110 115 120

His Asn Ala Gly Ile Ser Ser Cys Gly Arg Thr Arg Glu Ala Phe 125 130 135

Asn Leu Leu Arg Val Asn His Ile Gly Pro Phe Leu Leu Thr 140 145 150

```
His Leu Leu Pro Cys Leu Lys Ala Cys Ala Pro Ser Arg Val
Val Val Val Ala Ser Ala Ala His Cys Arg Gly Arg Leu Asp Phe
Lys Arg Leu Asp Arg Pro Val Val Gly Trp Arg Gln Glu Leu Arg
Ala Tyr Ala Asp Thr Lys Leu Ala Asn Val Leu Phe Ala Arg Glu
                200
                                    205
Leu Ala Asn Gln Leu Glu Ala Thr Gly Val Thr Cys Tyr Ala Ala
                                    220
His Pro Gly Pro Val Asn Ser Glu Leu Phe Leu Arg His Val Pro
                230
                                    235
Gly Trp Leu Arg Pro Leu Leu Arg Pro Leu Ala Trp Leu Val Leu
Arg Ala Pro Arg Gly Gly Ala Gln Thr Pro Leu Tyr Cys Ala Leu
Gln Glu Gly Ile Glu Pro Leu Ser Gly Arg Tyr Phe Ala Asn Cys
His Val Glu Glu Val Pro Pro Ala Ala Arg Asp Asp Arg Ala Ala
His Arg Leu Trp Glu Ala Ser Lys Arg Leu Ala Gly Leu Gly Pro
Gly Glu Asp Ala Glu Pro Asp Glu Asp Pro Gln Ser Glu Asp Ser
Glu Ala Pro Ser Ser Leu Ser Thr Pro His Pro Glu Glu Pro Thr
                335
Val Ser Gln Pro Tyr Pro Ser Pro Gln Ser Ser Pro Asp Leu Ser
                350
Lys Met Thr His Arg Ile Gln Ala Lys Val Glu Pro Glu Ile Gln
                365
                                    370
                                                        375
```

Leu Ser

<210> 207

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 207

cttcatggcc ttggacttgg ccag 24

```
<210> 208
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 208
acgccagtgg cctcaagctg gttg 24
<210> 209
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 209
 ctttctgagc tctgagccac ggttggacat cctcatccac aatgc 45
<210> 210
<211> 3716
<212> DNA
<213> Homo sapiens
<400> 210
 ggaggagaca gcctcctggg gggcaggggt tccctgcctc tgctgctcct 50
 gctcatcatg ggaggcatgg ctcaggactc cccgccccag atcctagtcc 100
 accccagga ccagctgttc cagggccctg gccctgccag gatgagctgc 150
 caageeteag gecageeace teccaecate egetggttge tgaatgggea 200
 qcccctqaqc atqqtqcccc caqacccaca ccacctcctg cctgatggga 250
 cccttctqct qctacaqccc cctqcccqqq qacatqccca cgatqgccag 300
 qccctqtcca cagacctggg tqtctacaca tgtgaggcca gcaaccggct 350
 tggcacggca gtcagcagag gcgctcggct gtctgtggct gtcctccggg 400
 aggatttcca gatccagcct cgggacatgg tggctgtggt gggtgagcag 450
 tttactctgg aatgtgggcc gccctggggc cacccagagc ccacagtctc 500
 atggtggaaa gatgggaaac ccctggccct ccagcccgga aggcacacag 550
 tgtccggggg gtccctgctg atggcaagag cagagaagag tgacgaaggg 600
 acctacatgt gtgtggccac caacagcgca ggacataggg agagccgcgc 650
 agcccqqqtt tccatccagg agccccagga ctacacggag cctgtggagc 700
 ttctggctgt gcgaattcag ctggaaaatg tgacactgct gaacccggat 750
```

cctgcagagg gccccaagcc tagaccggcg gtgtggctca gctggaaggt 800 cagtggccct gctgcgcctg cccaatctta cacggccttg ttcaggaccc 850 agactgcccc gggaggccag ggagctccgt gggcagagga gctgctggcc 900 ggctggcaga gcgcagagct tggaggcctc cactggggcc aagactacga 950 gttcaaagtg agaccatcct ctggccgggc tcgaggccct gacagcaacg 1000 tgctgctcct gaggctgccg gaaaaagtgc ccagtgcccc acctcaggaa 1050 gtgactctaa agcctggcaa tggcactgtc tttgtgagct gggtcccacc 1100 acctgctgaa aaccacaatg gcatcatccg tggctaccag gtctggagcc 1150 tgggcaacac atcactgcca ccagccaact ggactgtagt tggtgagcag 1200 acccagctgg aaatcgccac ccatatgcca ggctcctact gcgtgcaagt 1250 ggctgcagtc actggtgctg gagctgggga gcccagtaga cctgtctgcc 1300 teettttaga geaggeeatg gagegageea eecaagaace eagtgageat 1350 ggtccctgga ccctggagca gctgagggct accttgaagc ggcctgaggt 1400 cattgccacc tgcggtgttg cactctggct gctgcttctg ggcaccgccg 1450 tgtgtatcca ccgccggcgc cgagctaggg tgcacctggg cccaggtctg 1500 tacagatata ccagtgagga tgccatccta aaacacagga tggatcacag 1550 tgactcccag tggttggcag acacttggcg ttccacctct ggctctcggg 1600 acctgagcag cagcagcagc ctcagcagtc ggctgggggc ggatgcccgg 1650 gacceactag actgtcgtcg ctccttgctc tcctgggact cccgaagccc 1700 eggegtgeec etgetteeag acaccageae tttttatgge teecteateg 1750 ctgagctgcc ctccagtacc ccagccaggc caagtcccca ggtcccagct 1800 gtcaggcgcc tcccacccca gctggcccag ctctccagcc cctgttccag 1850 ctcagacagc ctctgcagcc gcaggggact ctcttctccc cgcttgtctc 1900 tggcccctgc agaggcttgg aaggccaaaa agaagcagga gctgcagcat 1950 gccaacagtt ccccactgct ccggggcagc cactccttgg agctccgggc 2000 ctgtgagtta ggaaatagag gttccaagaa cctttcccaa agcccaggag 2050 ctgtgcccca agctctggtt gcctggcggg ccctgggacc gaaactcctc 2100 agctcctcaa atgagctggt tactcgtcat ctccctccag cacccctctt 2150 tecteatgaa acteeccaa eteagagtea acagacecag eeteeggtgg 2200

caccacagge tecetectee atectgetge cagcageece catececate 2250 cttagecect geagtecece tagececeag geetetteee tetetggeee 2300 cageceaget tecagtegee tgtecagete etcactgtea tecetggggg 2350 aggatcaaga cagcgtgctg acccctgagg aggtagccct gtgcttggaa 2400 ctcagtgagg gtgaggagac tcccaggaac agcgtctctc ccatgccaag 2450 ggeteettea ecceecacea ectatgggta cateagegte ecaacageet 2500 cagagttcac ggacatgggc aggactggag gaggggtggg gcccaagggg 2550 ggagtettge tgtgeecace teggeeetge etcaceecca eccecagega 2600 qqqctcctta qccaatqqtt qqqqctcaqc ctctqaqqac aatqccqcca 2650 gcgccagagc cagcettgte agetectecg atggeteett cetegetgat 2700 qctcactttq cccqqqccct qqcaqtqqct qtqqataqct ttqgtttcqg 2750 tctagagccc agggaggcag actgcgtctt catagatgcc tcatcacctc 2800 cctcccacg ggatgagatc ttcctgaccc ccaacctctc cctgcccctg 2850 tgggagtgga ggccagactg gttggaagac atggaggtca gccacaccca 2900 gcggctggga agggggatgc ctccctggcc ccctgactct cagatctctt 2950 cccagagaag tcagctccac tgtcgtatgc ccaaggctgg tgcttctcct 3000 qtaqattact cctqaaccgt qtccctgaga cttcccagac gggaatcaga 3050 accacttete etgtecacce acaaqaeetg ggetgtggtg tgtgggtett 3100 qqcctqtqtt tctctqcaqc tqqqqtccac cttcccaagc ctccagagag 3150 ttctccctcc acgattgtga aaacaaatga aaacaaaatt agagcaaagc 3200 tgacctggag ccctcaggga gcaaaacatc atctccacct gactcctagc 3250 cactgettte teetetgtge catecactee caccaccagg ttgttttgge 3300 ctgaggagca geeetgeetg etgetettee eccaccattt ggateaeagg 3350 aagtggagga gccagaggtg cctttgtgga ggacagcagt ggctgctggg 3400 agagggctgt ggaggaagga gcttctcgga gccccctctc agccttacct 3450 gggcccctcc tctagagaag agctcaactc tctcccaacc tcaccatgga 3500 aaqaaaataa ttatgaatgc cactgaggca ctgaggccct acctcatgcc 3550 aaacaaaggg ttcaaggctg ggtctagcga ggatgctgaa ggaagggagg 3600 tatgagaccg taggtcaaaa gcaccatcct cgtactgttg tcactatgag 3650

cttaagaaat ttgataccat aaaatggtaa aaaaaaaaa aaaaaaaaa 3700 aaaaaaaaaa aaaaaa 3716

- <210> 211
- <211> 985
- <212> PRT
- <213> Homo sapiens
- <400> 211
- Met Gly Gly Met Ala Gln Asp Ser Pro Pro Gln Ile Leu Val His 1 5 10 15
- Pro Gln Asp Gln Leu Phe Gln Gly Pro Gly Pro Ala Arg Met Ser 20 25 30
- Cys Gln Ala Ser Gly Gln Pro Pro Pro Thr Ile Arg Trp Leu Leu
 35 40 45
- Asn Gly Gln Pro Leu Ser Met Val Pro Pro Asp Pro His His Leu 50 55 60
- Leu Pro Asp Gly Thr Leu Leu Leu Gln Pro Pro Ala Arg Gly 65 70 75
- His Ala His Asp Gly Gln Ala Leu Ser Thr Asp Leu Gly Val Tyr 80 85 90
- Thr Cys Glu Ala Ser Asn Arg Leu Gly Thr Ala Val Ser Arg Gly 95 100 105
- Ala Arg Leu Ser Val Ala Val Leu Arg Glu Asp Phe Gln Ile Gln 110 115 120
- Pro Arg Asp Met Val Ala Val Val Gly Glu Gln Phe Thr Leu Glu
 125 130 130
- Cys Gly Pro Pro Trp Gly His Pro Glu Pro Thr Val Ser Trp Trp 140 145 150
- Lys Asp Gly Lys Pro Leu Ala Leu Gln Pro Gly Arg His Thr Val 155 160 165
- Ser Gly Gly Ser Leu Leu Met Ala Arg Ala Glu Lys Ser Asp Glu 170 175 180
- Gly Thr Tyr Met Cys Val Ala Thr Asn Ser Ala Gly His Arg Glu 185 190 195
- Ser Arg Ala Ala Arg Val Ser Ile Gln Glu Pro Gln Asp Tyr Thr 200 205 210
- Glu Pro Val Glu Leu Leu Ala Val Arg Ile Gln Leu Glu Asn Val 215 220 225
- Thr Leu Leu Asn Pro Asp Pro Ala Glu Gly Pro Lys Pro Arg Pro 230 235 240

Ala Val Trp Leu Ser Trp Lys Val Ser Gly Pro Ala Ala Pro Ala Gln Ser Tyr Thr Ala Leu Phe Arg Thr Gln Thr Ala Pro Gly Gly 260 Gln Gly Ala Pro Trp Ala Glu Glu Leu Leu Ala Gly Trp Gln Ser Ala Glu Leu Gly Gly Leu His Trp Gly Gln Asp Tyr Glu Phe Lys Val Arg Pro Ser Ser Gly Arg Ala Arg Gly Pro Asp Ser Asn Val Leu Leu Leu Arg Leu Pro Glu Lys Val Pro Ser Ala Pro Pro Gln 320 325 Glu Val Thr Leu Lys Pro Gly Asn Gly Thr Val Phe Val Ser Trp 340 Val Pro Pro Pro Ala Glu Asn His Asn Gly Ile Ile Arg Gly Tyr 350 355 360 Gln Val Trp Ser Leu Gly Asn Thr Ser Leu Pro Pro Ala Asn Trp 370 Thr Val Val Gly Glu Gln Thr Gln Leu Glu Ile Ala Thr His Met 380 385 390 Pro Gly Ser Tyr Cys Val Gln Val Ala Ala Val Thr Gly Ala Gly 400 Ala Gly Glu Pro Ser Arg Pro Val Cys Leu Leu Glu Gln Ala 410 415 Met Glu Arg Ala Thr Gln Glu Pro Ser Glu His Gly Pro Trp Thr 425 430 Leu Glu Gln Leu Arg Ala Thr Leu Lys Arg Pro Glu Val Ile Ala 440 445 450 Thr Cys Gly Val Ala Leu Trp Leu Leu Leu Gly Thr Ala Val Cys Ile His Arg Arg Arg Arg Ala Arg Val His Leu Gly Pro Gly 470 475 480 Leu Tyr Arg Tyr Thr Ser Glu Asp Ala Ile Leu Lys His Arg Met Asp His Ser Asp Ser Gln Trp Leu Ala Asp Thr Trp Arg Ser Thr 500 505 510 Ser Gly Ser Arg Asp Leu Ser Ser Ser Ser Ser Leu Ser Ser Arg 515 520 525 Leu Gly Ala Asp Ala Arg Asp Pro Leu Asp Cys Arg Arg Ser Leu

				530					535					540
Leu	Ser	Trp	Asp	Ser 545	Arg	Ser	Pro	Gly	Val 550	Pro	Leu	Leu	Pro	Asp 555
Thr	Ser	Thr	Phe	Tyr 560	Gly	Ser	Leu	Ile	Ala 565	Glu	Leu	Pro	Ser	Ser 570
Thr	Pro	Ala	Arg	Pro 575	Ser	Pro	Gln	Val	Pro 580	Ala	Val	Arg	Arg	Leu 585
Pro	Pro	Gln	Leu	Ala 590	Gln	Leu	Ser	Ser	Pro 595	Cys	Ser	Ser	Ser	Asp 600
Ser	Leu	Cys	Ser	Arg 605	Arg	Gly	Leu	Ser	Ser 610	Pro	Arg	Leu	Ser	Leu 615
Ala	Pro	Ala	Glu	Ala 620	Trp	Lys	Ala	Lys	Lys 625	Lys	Gln	Glu	Leu	Gln 630
His	Ala	Asn	Ser	Ser 635	Pro	Leu	Leu	Arg	Gly 640	Ser	His	Ser	Leu	Glu 645
Leu	Arg	Ala	Суз	Glu 650	Leu	Gly	Asn	Arg	Gly 655	Ser	Lys	Asn	Leu	Ser 660
Gln	Ser	Pro	Gly	Ala 665	Val	Pro	Gln	Ala	Leu 670	Val	Ala	Trp	Arg	Ala 675
Leu	Gly	Pro	Lys	Leu 680	Leu	Ser	Ser	Ser	Asn 685	Glu	Leu	Val	Thr	Arg 690
His	Leu	Pro	Pro	Ala 695	Pro	Leu	Phe	Pro	His 700	Glu	Thr	Pro	Pro	Thr 705
Gln	Ser	Gln	Gln	Thr 710	Gln	Pro	Pro	Val	Ala 715	Pro	Gln	Ala	Pro	Ser 720
Ser	Ile	Leu	Leu	Pro 725	Ala	Ala	Pro	Ile	Pro 730	Ile	Leu	Ser	Pro	Cys 735
Ser	Pro	Pro	Ser	Pro 740	Gln	Ala	Ser	Ser	Leu 745	Ser	Gly	Pro	Ser	Pro 750
Ala	Ser	Ser	Arg	Leu 755	Ser	Ser	Ser	Ser	Leu 760	Ser	Ser	Leu	Gly	Glu 765
Asp	Gln	Asp	Ser	Val 770	Leu	Thr	Pro	Glu	Glu 775	Val	Ala	Leu	Cys	Leu 780
Glu	Leu	Ser	Glu	Gly 785	Glu	Glu	Thr	Pro	Arg 790	Asn	Ser	Val	Ser	Pro 795
Met	Pro	Arg	Ala	Pro 800	Ser	Pro	Pro	Thr	Thr 805	Tyr	Gly	Tyr	Ile	Ser 810
Val	Pro	Thr	Ala	Ser 815	Glu	Phe	Thr	Asp	Met 820	Gly	Arg	Thr	Gly	Gly 825

```
Gly Val Gly Pro Lys Gly Gly Val Leu Leu Cys Pro Pro Arg Pro
 Cys Leu Thr Pro Thr Pro Ser Glu Gly Ser Leu Ala Asn Gly Trp
                  845
 Gly Ser Ala Ser Glu Asp Asn Ala Ala Ser Ala Arg Ala Ser Leu
 Val Ser Ser Ser Asp Gly Ser Phe Leu Ala Asp Ala His Phe Ala
                  875
 Arg Ala Leu Ala Val Ala Val Asp Ser Phe Gly Phe Gly Leu Glu
                  890
 Pro Arg Glu Ala Asp Cys Val Phe Ile Asp Ala Ser Ser Pro Pro
                  905
                                      910
                                                           915
 Ser Pro Arg Asp Glu Ile Phe Leu Thr Pro Asn Leu Ser Leu Pro
                  920
                                      925
                                                           930
 Leu Trp Glu Trp Arg Pro Asp Trp Leu Glu Asp Met Glu Val Ser
                  935
                                      940
 His Thr Gln Arg Leu Gly Arg Gly Met Pro Pro Trp Pro Pro Asp
 Ser Gln Ile Ser Ser Gln Arg Ser Gln Leu His Cys Arg Met Pro
                  965
                                                           975
 Lys Ala Gly Ala Ser Pro Val Asp Tyr Ser
                  980
<210> 212
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 212
 gaagggacct acatgtgtgt ggcc 24
<210> 213
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 213
actgacette cagetqagee acac 24
<210> 214
<211> 50
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 214
aggactacac ggagcctgtg gagcttctgg ctgtgcgaat tcagctggaa 50
<210> 215
<211> 2749
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1869, 1887
<223> unknown base
<400> 215
ctcccacggt gtccagcgcc cagaatgcgg cttctggtcc tgctatgggg 50
ttgcctgctg ctcccaggtt atgaagccct ggagggccca gaggaaatca 100
gcgggttcga aggggacact gtgtccctgc agtgcaccta cagggaagag 150
ctgagggacc accggaagta ctggtgcagg aagggtggga tcctcttctc 200
tcgctgctct ggcaccatct atgcagaaga agaaggccag gagacaatga 250
agggcagggt gtccatccgt gacagccgcc aggagctctc gctcattgtg 300
accetgtgga accteacect geaagaeget ggggagtaet ggtgtggggt 350
cgaaaaacgg ggccccgatg agtctttact gatctctctg ttcgtctttc 400
caggaccetg etgteeteec teccettete ceacetteea geetetgget 450
acaacacgcc tgcagcccaa ggcaaaagct cagcaaaccc agcccccagg 500
attgacttct cctgggctct acccggcagc caccacagcc aagcagggga 550
agacaggggc tgaggcccct ccattgccag ggacttccca gtacgggcac 600
gaaaggactt ctcagtacac aggaacctct cctcacccag cgacctctcc 650
tectgeaggg ageteeegee ecceeatgea getggaetee aceteageag 700
aggacaccag tocagetete ageagtggea getetaagee cagggtgtee 750
atcccgatgg tccgcatact ggccccagtc ctggtgctgc tgagccttct 800
gtcagccgca ggcctgatcg ccttctgcag ccacctgctc ctgtggagaa 850
aggaagctca acaggccacg gagacacaga ggaacgagaa gttctggctc 900
tcacgcttga ctgcggagga aaaggaagcc ccttcccagg cccctgaggg 950
ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctgggct 1000
```

cagtgaagca gtatggctgg ctggatcagc accgattccc gaaagctttc 1100 cacctcagcc tcagagtcca gctgcccgga ctccagggct ctccccaccc 1150 tccccaggct ctcctcttgc atgttccagc ctgacctaga agcgtttgtc 1200 agccctggag cccagagcgg tggccttgct cttccggctg gagactggga 1250 catccctgat aggttcacat ccctgggcag agtaccaggc tgctgaccct 1300 cagcagggcc agacaaggct cagtggatct ggtctgagtt tcaatctgcc 1350 aggaactect gggeeteatg eccagtgteg gaeeetgeet teeteecact 1400 ccagacccca ccttgtcttc cctccctggc gtcctcagac ttagtcccac 1450 ggtctcctgc atcagctggt gatgaagagg agcatgctgg ggtgagactg 1500 ggattctggc ttctctttga accacctgca tccagccctt caggaaqcct 1550 gtgaaaaacg tgattcctgg ccccaccaag acccaccaaa accatctctg 1600 ggcttggtgc aggactctga attctaacaa tgcccagtga ctgtcgcact 1650 tgagtttgag ggccagtggg cctgatgaac gctcacaccc cttcagctta 1700 gagtctgcat ttgggctgtg acgtctccac ctgccccaat agatctgctc 1750 tgtctgcgac accagatcca cgtggggact cccctgaggc ctgctaagtc 1800 caggccttgg tcaggtcagg tgcacattgc aggataagcc caggaccggc 1850 acagaagtgg ttgcctttnc catttgccct ccctggncca tqccttcttg 1900 cctttggaaa aaatgatgaa gaaaaccttg gctccttcct tgtctggaaa 1950 gggttacttg cctatgggtt ctggtggcta gagagaaaag tagaaaacca 2000 gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050 ctgaaggtga ctccgagtcc agcccctqg agaaggggtc gggggtggtg 2100 gtaaagtagc acaactacta tttttttttt ttttccatta ttattgtttt 2150 ttaagacaga atctcgtgct gctgcccagg ctggagtgca gtggcacgat 2200 ctgcaaactc cgcctcctgg gttcaagtga ttcttctgcc tcagcctccc 2250 gagtagctgg gattacaggc acgcaccacc acacctggct aatttttgta 2300 cttttagtag agatggggtt tcaccatgtt ggccaggctg gtcttgaact 2350 cctgacctca aatgagcctc ctgcttcagt ctcccaaatt gccgggatta 2400 caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtqaaatta 2450

- <210> 216
- <211> 332
- <212> PRT
- <213> Homo sapiens
- <400> 216
- Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Pro Gly
 1 5 10 15
- Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly 20 25 30
- Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp 35 40 45
- His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg
 50 55 60
- Cys Ser Gly Thr Ile Tyr Ala Glu Glu Glu Gly Gln Glu Thr Met 65 70 75
- Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu 80 85 90
- Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr 95 100 105
- Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Leu Ile 110 115 120
- Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser 125 130 135
- Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala 140 145 150
- Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu
 155 160 165
- Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu 170 175 180
- Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr
 185 190 190
- Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro

200 205 210 Ala Gly Ser Ser Arg Pro Pro Met Gln Leu Asp Ser Thr Ser Ala 215 Glu Asp Thr Ser Pro Ala Leu Ser Ser Gly Ser Ser Lys Pro Arg 230 Val Ser Ile Pro Met Val Arg Ile Leu Ala Pro Val Leu Val Leu Leu Ser Leu Leu Ser Ala Ala Gly Leu Ile Ala Phe Cys Ser His Leu Leu Trp Arg Lys Glu Ala Gln Gln Ala Thr Glu Thr Gln Arg Asn Glu Lys Phe Trp Leu Ser Arg Leu Thr Ala Glu Glu Lys 290 300 Glu Ala Pro Ser Gln Ala Pro Glu Gly Asp Val Ile Ser Met Pro 305 Pro Leu His Thr Ser Glu Glu Glu Leu Gly Phe Ser Lys Phe Val 325 320 330 Ser Ala <210> 217 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 217 ccctgcagtg cacctacagg gaag 24 <210> 218 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 218 ctgtcttccc ctgcttggct gtgg 24 <210> 219 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

```
<400> 219
 ggtgcaggaa gggtgggatc ctcttctctc gctgctctgg ccacatc 47
<210> 220
<211> 950
<212> DNA
<213> Homo sapiens
<400> 220
 ttgtgactaa aagctggcct agcaggccag ggagtgcagc tqcaggcgtg 50
 ggggtggcag gagccgcaga gccagagcag acagccgaga aacaggtgga 100
 cagtgtgaaa gaaccagtgg tctcgctctg ttgcccaggc tagagtgtac 150
 tggcgtgatc atagctcact gcagcctcag actcctggac ttgagaaatc 200
 ctcctgcctt agcctcctgc atatctggga ctccaggggt gcactcaagc 250
 cctgtttctt ctccttctgt gagtggacca cggaggctgg tgagctgcct 300
 gtcatcccaa agctcagctc tgagccagag tggtggtggc tccacctctg 350
 ccgccqqcat agaagccaqq agcaqqqctc tcaqaaqqcq qtqqtqccca 400
 gctgggatca tgttgttggc cctggtctgt ctgctcagct gcctgctacc 450
 ctccagtgag gccaagctct acggtcgttg tgaactggcc agagtgctac 500
 atgacttcgg gctggacgga taccggggat acagcctggc tgactgggtc 550
 tgccttgctt atttcacaag cggtttcaac gcagctgctt tggactacga 600
 ggctgatggg agcaccaaca acgggatett ccagateaac agccggaggt 650
 ggtgcagcaa cctcaccccg aacgtcccca acgtgtgccg gatgtactgc 700
 tcagatttgt tgaatcctaa tctcaaggat accgttatct gtgccatgaa 750
 gataacccaa gagcctcagg gtctgggtta ctgggaggcc tggaggcatc 800
 actgccaggg aaaagacctc actgaatggg tggatggctg tgacttctag 850
 gatggacgga accatgcaca gcaggctggg aaatgtggtt tggttcctga 900
 cctaggcttg ggaagacaag ccagcgaata aaggatggtt gaacgtgaaa 950
<210> 221
<211> 146
<212> PRT
<213> Homo sapiens
<400> 221
Met Leu Leu Ala Leu Val Cys Leu Leu Ser Cys Leu Leu Pro Ser
  1
                                      10
 Ser Glu Ala Lys Leu Tyr Gly Arg Cys Glu Leu Ala Arg Val Leu
```

2.5

20

```
His Asp Phe Gly Leu Asp Gly Tyr Arg Gly Tyr Ser Leu Ala Asp
Trp Val Cys Leu Ala Tyr Phe Thr Ser Gly Phe Asn Ala Ala Ala
Leu Asp Tyr Glu Ala Asp Gly Ser Thr Asn Asn Gly Ile Phe Gln
Ile Asn Ser Arg Arg Trp Cys Ser Asn Leu Thr Pro Asn Val Pro
Asn Val Cys Arg Met Tyr Cys Ser Asp Leu Leu Asn Pro Asn Leu
Lys Asp Thr Val Ile Cys Ala Met Lys Ile Thr Gln Glu Pro Gln
                 110
Gly Leu Gly Tyr Trp Glu Ala Trp Arg His His Cys Gln Gly Lys
                                      130
                                                          135
Asp Leu Thr Glu Trp Val Asp Gly Cys Asp Phe
                                      145
                 140
<210> 222
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 222
gggatcatgt tgttggccct ggtc 24
<210> 223
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 223
 gcaaggcaga cccagtcagc cag 23
<210> 224
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 224
 ctgcctgcta ccctccaagt gaggccaagc tctacggtcg ttgtg 45
<210> 225
```

ij

13

....

:: | .1.

<211> 2049 <212> DNA

<213> Homo sapiens

<400> 225 agccgctgcc ccgggccggg cgcccgcggc ggcaccatga gtccccgctc 50 gtgcctgcgt tcgctgcgcc tcctcgtctt cgccgtcttc tcagccqccq 100 cgagcaactg gctgtacctg gccaagctgt cgtcggtggg gagcatctca 150 gaggaggaga cgtgcgagaa actcaagggc ctgatccaga ggcaggtgca 200 gatgtgcaag cggaacctgg aagtcatgga ctcggtgcgc cgcggtgccc 250 agctggccat tgaggagtgc cagtaccagt tccggaaccg gcgctggaac 300 tgctccacac tcgactcctt gcccgtcttc ggcaaggtgg tgacgcaagg 350 gactegggag geggeetteg tgtaegeeat etetteggea ggtgtggeet 400 ttgcagtgac gcgggcgtgc agcagtgggg agctggagaa gtgcggctgt 450 gacaggacag tgcatggggt cagcccacag ggcttccagt ggtcaggatg 500 ctctgacaac atcgcctacg gtgtggcctt ctcacagtcg tttgtggatg 550 tgcgggagag aagcaagggg gcctcgtcca gcagagccct catgaacctc 600 cacaacaatg aggccggcag gaaggccatc ctgacacaca tgcgggtgga 650 atgcaagtgc cacggggtgt caggctcctg tgaggtaaag acgtgctggc 700 gagccgtgcc gcccttccgc caggtgggtc acgcactgaa ggagaagttt 750 gatggtgcca ctgaggtgga gccacgccgc gtgggctcct ccagggcact 800 ggtaccacgc aacgcacagt tcaagccgca cacagatgag gacctggtgt 850 acttggagcc tagccccgac ttctgtgagc aggacatgcg cagcggcgtg 900 ctgggcacga ggggccgcac atgcaacaag acgtccaagg ccatcgacgg 950 ctgtgagctg ctgtgctgtg gccgcggctt ccacacggcg caggtggagc 1000 tggctgaacg ctgcagctgc aaattccact ggtgctgctt cgtcaagtgc 1050 eggeagtgee ageggetegt ggagttgeae aegtgeegat gaeegeetge 1100 ctagccctgc gccggcaacc acctagtggc ccagggaagg ccgataattt 1150 aaacagtctc ccaccaccta ccccaagaga tactggttgt attttttgtt 1200 ctggtttggt ttttgggtcc tcatgttatt tattgccgaa accaggcagg 1250 caaccccaag ggcaccaacc agggcctccc caaagcctgg gcctttgtgg 1300 ctgccactga ccaaagggac cttgctcgtg ccgctggctg cccgcatgtg 1350

getgecacty accaetcagt tystatety georgetitt etactigeag 1400 accetagging gagtaacaag gagtattace accaetagge tactgacegt 1450 gteategging aagagging etattgeag gigaaaatagi tacegaettig 1500 atggaagtea eaccetetigi aaaaaagaac tettaaetet eeageacaca 1550 tacaetigging eteetigging ete

<210> 226

<211> 351

<212> PRT

<213> Homo sapiens

<400> 226

Met Ser Pro Arg Ser Cys Leu Arg Ser Leu Arg Leu Leu Val Phe 1 5 10 15

Ala Val Phe Ser Ala Ala Ala Ser Asn Trp Leu Tyr Leu Ala Lys 20 25 30

Leu Ser Ser Val Gly Ser Ile Ser Glu Glu Glu Thr Cys Glu Lys 35 40 45

Leu Lys Gly Leu Ile Gln Arg Gln Val Gln Met Cys Lys Arg Asn 50 55 60

Leu Glu Val Met Asp Ser Val Arg Arg Gly Ala Gln Leu Ala Ile 65 70 75

Glu Glu Cys Gln Tyr Gln Phe Arg Asn Arg Arg Trp Asn Cys Ser 80 85 90

Thr Leu Asp Ser Leu Pro Val Phe Gly Lys Val Val Thr Gln Gly
95 100

Thr Arg Glu Ala Ala Phe Val Tyr Ala Ile Ser Ser Ala Gly Val 110 115 120

```
Ala Phe Ala Val Thr Arg Ala Cys Ser Ser Gly Glu Leu Glu Lys
Cys Gly Cys Asp Arg Thr Val His Gly Val Ser Pro Gln Gly Phe
                                                         150
Gln Trp Ser Gly Cys Ser Asp Asn Ile Ala Tyr Gly Val Ala Phe
Ser Gln Ser Phe Val Asp Val Arg Glu Arg Ser Lys Gly Ala Ser
                                                         180
Ser Ser Arg Ala Leu Met Asn Leu His Asn Asn Glu Ala Gly Arg
Lys Ala Ile Leu Thr His Met Arg Val Glu Cys Lys Cys His Gly
                200
                                                         210
Val Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Arg Ala Val Pro
                215
Pro Phe Arg Gln Val Gly His Ala Leu Lys Glu Lys Phe Asp Gly
                230
                                                         240
Ala Thr Glu Val Glu Pro Arg Arg Val Gly Ser Ser Arg Ala Leu
                245
Val Pro Arg Asn Ala Gln Phe Lys Pro His Thr Asp Glu Asp Leu
                                     265
                                                         270
                260
Val Tyr Leu Glu Pro Ser Pro Asp Phe Cys Glu Gln Asp Met Arg
Ser Gly Val Leu Gly Thr Arg Gly Arg Thr Cys Asn Lys Thr Ser
                290
Lys Ala Ile Asp Gly Cys Glu Leu Leu Cys Cys Gly Arg Gly Phe
His Thr Ala Gln Val Glu Leu Ala Glu Arg Cys Ser Cys Lys Phe
                320
His Trp Cys Cys Phe Val Lys Cys Arg Gln Cys Gln Arg Leu Val
Glu Leu His Thr Cys Arg
```

<210> 227

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

350

<400> 227

gctgcagctg caaattccac tgg 23

```
<210> 228
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 228
tggtgggaga ctgtttaaat tatcggcc 28
<210> 229
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 229
 tgcttcgtca agtgccggca gtgccagcgg ctcgtggagt t 41
<210> 230
<211> 1355
<212> DNA
<213> Homo sapiens
<400> 230
 cggacgcgtg ggcggacgcg tgggcggacg cgtgggcgga cgcgtgggct 50
 gggtgcctgc atcgccatgg acaccaccag gtacagcaag tggggcggca 100
 gctccgagga ggtccccgga gggccctggg gacgctgggt gcactggagc 150
 aggagacccc tcttcttggc cctggctgtc ctggtcacca cagtcctttg 200
 ggctgtgatt ctgagtatcc tattgtccaa ggcctccacg gagcgcgcgg 250
 cqctqcttqa cqqccacqac ctqctqagga caaacgcctc gaagcagacg 300
 gcggcgctgg gtgccctgaa ggaggaggtc ggagactgcc acagctgctg 350
 ctcggggacg caggcgcagc tgcagaccac gcgcgcggag cttggggagg 400
 cgcaggcgaa gctgatggag caggagagcg ccctgcggga actgcgtgag 450
 cgcgtgaccc agggcttggc tgaagccggc aggggccgtg aggacgtccg 500
 cactgagetg ttccgggegc tggaggccgt gaggctccag aacaactcct 550
 gcgagccgtg ccccacgtcg tggctgtcct tcgagggctc ctgctacttt 600
 ttctctgtgc caaagacgac gtgggcggcg gcgcaggatc actgcgcaga 650
 tgccagcgcg cacctggtga tcgttggggg cctggatgag cagggcttcc 700
 tcactcggaa cacgcgtggc cgtggttact ggctgggcct gagggctgtg 750
```

cagectatetag geaaggttea gggetaceag tgggtggaeg gagtetetet 800
cagetteage caetggaace agggagagee caatgaeget tgggggegeg 850
agaactgtgt catgatgetg caeaegggge tgtggaacga egeacegtgt 900
gacagegaga aggaeggetg gatetgtgag aaaaggeaca aetgetgaee 950
cegeceagtg eeetggagee gegeeeattg eageatgteg tateetgggg 1000
getgeteace teeetggete etggagetga ttgeeaaaga gtttttet 1050
teeteateea eegetgetga gteteagaaa eacttggeee aacatageee 1100
tgteeageee agtgeetggg etetgggaee teeatgeega eeteateeta 1150
acteeactea egeagaeeea acetaaeete eactagetee aaaateeetg 1200
eteetgegte eeegtgatat geeteeaett eteeeetaa eeaaggttag 1250
gtgaetgagg aetggagetg tttggttte tegeattte eaceaaaetg 1300
gaagetgtt ttgeageetg aggaageate aataaatat tgagaaatga 1350
aaaaa 1355

<210> 231

<211> 293

<212> PRT

<213> Homo sapiens

<400> 231

Met Asp Thr Thr Arg Tyr Ser Lys Trp Gly Gly Ser Ser Glu Glu 1 5 10

Val Pro Gly Gly Pro Trp Gly Arg Trp Val His Trp Ser Arg Arg 20 25 30

Pro Leu Phe Leu Ala Leu Ala Val Leu Val Thr Thr Val Leu Trp
35 40 45

Ala Val Ile Leu Ser Ile Leu Leu Ser Lys Ala Ser Thr Glu Arg
50 55 60

Ala Ala Leu Leu Asp Gly His Asp Leu Leu Arg Thr Asn Ala Ser 65 70 75

Lys Gln Thr Ala Ala Leu Gly Ala Leu Lys Glu Glu Val Gly Asp 80 85 90

Cys His Ser Cys Cys Ser Gly Thr Gln Ala Gln Leu Gln Thr Thr 95

Arg Ala Glu Leu Gly Glu Ala Gln Ala Lys Leu Met Glu Gln Glu 110 115 120

Ser Ala Leu Arg Glu Leu Arg Glu Arg Val Thr Gln Gly Leu Ala 125 130 135

```
Glu Ala Gly Arg Gly Arg Glu Asp Val Arg Thr Glu Leu Phe Arg
Ala Leu Glu Ala Val Arg Leu Gln Asn Asn Ser Cys Glu Pro Cys
                 155
Pro Thr Ser Trp Leu Ser Phe Glu Gly Ser Cys Tyr Phe Phe Ser
                 170
Val Pro Lys Thr Thr Trp Ala Ala Ala Gln Asp His Cys Ala Asp
                 185
Ala Ser Ala His Leu Val Ile Val Gly Gly Leu Asp Glu Gln Gly
Phe Leu Thr Arg Asn Thr Arg Gly Arg Gly Tyr Trp Leu Gly Leu
                                     220
Arg Ala Val Arg His Leu Gly Lys Val Gln Gly Tyr Gln Trp Val
                                     235
Asp Gly Val Ser Leu Ser Phe Ser His Trp Asn Gln Gly Glu Pro
                                     250
Asn Asp Ala Trp Gly Arg Glu Asn Cys Val Met Met Leu His Thr
Gly Leu Trp Asn Asp Ala Pro Cys Asp Ser Glu Lys Asp Gly Trp
                                                          285
                                     280
 Ile Cys Glu Lys Arg His Asn Cys
                 290
<210> 232
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 232
 gcgagaactg tgtcatgatg ctgc 24
<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 233
gtttctgaga ctcagcagcg gtgg 24
<210> 234
<211> 50
<212> DNA
```

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 234 caccgtgtga cagcgagaag gacggctgga tctgtgagaa aaggcacaac 50 <210> 235 <211> 1847 <212> DNA <213> Homo sapiens <400> 235 gccaggggaa gagggtgatc cgacccgggg aaggtcgctg ggcagggcga 50 gttgggaaag cggcagcccc cgccgccccc gcagcccctt ctcctcttt 100 ctcccacgtc ctatctgcct ctcgctggag gccaggccgt gcagcatcga 150 agacaggagg aactggagcc tcattggccg gcccggggcg ccggcctcgg 200 gcttaaatag gagctccggg ctctggctgg gacccgaccg ctgccggccg 250 cgctcccgct gctcctgccg ggtgatggaa aaccccagcc cggccgccgc 300 cctgggcaag gccctctgcg ctctcctcct ggccactctc ggcgccgccg 350 gccagcctct tgggggagag tccatctgtt ccgccagagc cccggccaaa 400 tacagcatca ccttcacggg caagtggagc cagacggcct tccccaagca 450 gtaccccctg ttccgccccc ctgcgcagtg gtcttcgctg ctgggggccg 500 cgcatagetc cgactacage atgtggagga agaaccagta cgtcagtaac 550 gggctgcgcg actttgcgga gcgcggcgag gcctgggcgc tgatgaagga 600 gatcgaggcg gcgggggagg cgctgcagag cgtgcacgag gtgttttcgg 650 cgcccgccgt ccccagcggc accgggcaga cgtcggcgga gctggaggtg 700 cagcgcaggc actcgctggt ctcgtttgtg gtgcgcatcg tgcccagccc 750 cqactqqttc qtqqqcqtqq acaqcctqqa cctqtqcqac gqgqaccqtt 800 ggcgggaaca ggcggcgctg gacctgtacc cctacgacgc cgggacggac 850 ageggettea cetteteete ecceaactte gecaceatee egcaggacae 900 ggtgaccgag ataacgtcct cctctcccag ccacccggcc aactccttct 950 actaccogcg gctgaaggcc ctgcctccca tcgccagggt gacactgctg 1000 cggctgcgac agagccccag ggccttcatc cctcccgccc cagtcctgcc 1050

cagcagggac aatgagattg tagacagcgc ctcagttcca gaaacgccgc 1100

<210> 236

<211> 331

<212> PRT

<213> Homo sapiens

<400> 236

Met Glu Asn Pro Ser Pro Ala Ala Ala Leu Gly Lys Ala Leu Cys
1 5 10 15

Ala Leu Leu Leu Ala Thr Leu Gly Ala Ala Gly Gln Pro Leu Gly
20 25 30

Gly Glu Ser Ile Cys Ser Ala Arg Ala Pro Ala Lys Tyr Ser Ile 35 40 45

Thr Phe Thr Gly Lys Trp Ser Gln Thr Ala Phe Pro Lys Gln Tyr 50 55 60

Pro Leu Phe Arg Pro Pro Ala Gin Trp Ser Ser Leu Leu Gly Ala 65 70 75

Ala His Ser Ser Asp Tyr Ser Met Trp Arg Lys Asn Gln Tyr Val 80 85 90

Ser Asn Gly Leu Arg Asp Phe Ala Glu Arg Gly Glu Ala Trp Ala 95 100 105

Leu Met Lys Glu Ile Glu Ala Ala Gly Glu Ala Leu Gln Ser Val

120 110 115 His Glu Val Phe Ser Ala Pro Ala Val Pro Ser Gly Thr Gly Gln 125 Thr Ser Ala Glu Leu Glu Val Gln Arg Arg His Ser Leu Val Ser 140 Phe Val Val Arg Ile Val Pro Ser Pro Asp Trp Phe Val Gly Val Asp Ser Leu Asp Leu Cys Asp Gly Asp Arg Trp Arg Glu Gln Ala 170 Ala Leu Asp Leu Tyr Pro Tyr Asp Ala Gly Thr Asp Ser Gly Phe 185 Thr Phe Ser Ser Pro Asn Phe Ala Thr Ile Pro Gln Asp Thr Val 205 200 Thr Glu Ile Thr Ser Ser Ser Pro Ser His Pro Ala Asn Ser Phe 215 Tyr Tyr Pro Arg Leu Lys Ala Leu Pro Pro Ile Ala Arg Val Thr 235 230 Leu Leu Arg Leu Arg Gln Ser Pro Arg Ala Phe Ile Pro Pro Ala Pro Val Leu Pro Ser Arg Asp Asn Glu Ile Val Asp Ser Ala Ser 265 260 Val Pro Glu Thr Pro Leu Asp Cys Glu Val Ser Leu Trp Ser Ser Trp Gly Leu Cys Gly Gly His Cys Gly Arg Leu Gly Thr Lys Ser Arg Thr Arg Tyr Val Arg Val Gln Pro Ala Asn Asn Gly Ser Pro Cys Pro Glu Leu Glu Glu Glu Ala Glu Cys Val Pro Asp Asn Cys 325 330 Val <210> 237 <211> 22

<212> DNA

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

<400> 237

cagcactgcc aggggaagag gg 22

```
<210> 238
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 238
    caggactcgc tacgtccg 18
    <210> 239
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 239
     cagococtto toctcottto toco 24
    <210> 240
    <211> 25
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
: : :
    <400> 240
ļ. <u>.</u>......
    gcagttatca gggacgcact cagcc 25
...
    <210> 241
    <211> 18
<212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 241
     ccagcgagag gcagatag 18
    <210> 242
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 242
     cggtcaccgt gtcctgcggg atg 23
    <210> 243
    <211> 42
    <212> DNA
```

12

H

1 5

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 243 cagoccotto toctoottto toccaogtoo tatotgooto to 42 <210> 244 <211> 1894 <212> DNA <213> Homo sapiens <400> 244 ggcggcgtcc gtgaggggct cctttgggca ggggtagtgt ttggtgtccc 50 tgtcttgcgt gatattgaca aactgaagct ttcctgcacc actggactta 100 aggaagagtg tactcgtagg cggacagctt tagtggccgg ccggccgctc 150 tcatcccccg taaggagcag agtcctttgt actgaccaag atgagcaaca 200 tctacatcca ggagcctccc acgaatggga aggttttatt gaaaactaca 250 gctggagata ttgacataga gttgtggtcc aaagaagctc ctaaagcttg 300 cagaaatttt atccaacttt gtttggaagc ttattatgac aataccattt 350 ttcatagagt tgtgcctggt ttcatagtcc aaggcggaga tcctactggc 400 acagggagtg gtggagagtc tatctatgga gcgccattca aagatgaatt 450 tcattcacgg ttgcgtttta atcggagagg actggttgcc atggcaaatg 500 ctggttctca tgataatggc agccagtttt tcttcacact gggtcgagca 550 gatgaactta acaataagca taccatcttt ggaaaggtta caggggatac 600 agtatataac atgttgcgac tgtcagaagt agacattgat gatgacgaaa 650 gaccacataa tccacacaaa ataaaaagct gtgaggtttt gtttaatcct 700 tttgatgaca tcattccaag ggaaattaaa aggctgaaaa aagagaaacc 750 agaggaggaa gtaaagaaat tgaaacccaa aggcacaaaa aattttagtt 800 tactttcatt tggagaggaa gctgaggaag aagaggagga agtaaatcga 850 gttagtcaga gcatgaaggg caaaagcaaa agtagtcatg acttgcttaa 900 ggatgatcca catctcagtt ctgttccagt tgtagaaagt gaaaaaggtg 950 atgcaccaga tttagttgat gatggagaag atgaaagtgc agagcatgat 1000 gaatatattg atggtgatga aaagaacctg atgagagaaa gaattgccaa 1050

aaaattaaaa aaggacacaa gtgcgaatgt taaatcagct ggagaaggag 1100

aagtggagaa gaaatcagtc agccgcagtg aagagctcag aaaagaagca 1150 agacaattaa aacgggaact cttagcagca aaacaaaaaa aagtagaaaa 1200 tgcagcaaaa caagcagaaa aaagaagtga agaggaagaa gcccctccag 1250 atggtgctgt tgccgaatac agaagagaaa agcaaaagta tgaagctttg 1300 aggaagcaac agtcaaagaa gggaacttcc cgggaagatc agacccttgc 1350 actgctgaac cagtttaaat ctaaactcac tcaagcaatt gctgaaacac 1400 ctgaaaatga cattcctgaa acagaagtag aagatgatga aggatggatg 1450 tcacatgtac ttcagtttga ggataaaagc agaaaagtga aagatgcaag 1500 catgcaagac tcagatacat ttgaaatcta tgatcctcgg aatccagtga 1550 ataaaagaag gagggaagaa agcaaaaagc tgatgagaga gaaaaaagaa 1600 agaagataaa atgagaataa tgataaccag aacttgctgg aaatgtgcct 1650 acaatggcct tgtaacagcc attgttccca acagcatcac ttaggggtgt 1700 gaaaagaagt atttttgaac ctgttgtctg gttttgaaaa acaattatct 1750 tgttttgcaa attgtggaat gatgtaagca aatgcttttg gttactggta 1800 catgtgtttt ttcctagctg accttttata ttgctaaatc tgaaataaaa 1850

<210> 245

<211> 472

<212> PRT

<213> Homo sapiens

<400> 245

Met Ser Asn Ile Tyr Ile Gln Glu Pro Pro Thr Asn Gly Lys Val 1 5 10 15

Leu Leu Lys Thr Thr Ala Gly Asp Ile Asp Ile Glu Leu Trp Ser $20 \\ 25 \\ 30$

Lys Glu Ala Pro Lys Ala Cys Arg Asn Phe Ile Gln Leu Cys Leu 35 40 45

Glu Ala Tyr Tyr Asp Asn Thr Ile Phe His Arg Val Val Pro Gly
50 55 60

Phe Ile Val Gln Gly Gly Asp Pro Thr Gly Thr Gly Ser Gly Gly 65 70 75

Glu Ser Ile Tyr Gly Ala Pro Phe Lys Asp Glu Phe His Ser Arg 80 85 90

Leu Arg Phe Asn Arg Arg Gly Leu Val Ala Met Ala Asn Ala Gly 95 100 105

Ser His Asp Asn Gly Ser Gln Phe Phe Phe Thr Leu Gly Arg Ala Asp Glu Leu Asn Asn Lys His Thr Ile Phe Gly Lys Val Thr Gly 135 Asp Thr Val Tyr Asn Met Leu Arg Leu Ser Glu Val Asp Ile Asp Asp Asp Glu Arg Pro His Asn Pro His Lys Ile Lys Ser Cys Glu 155 165 Val Leu Phe Asn Pro Phe Asp Asp Ile Ile Pro Arg Glu Ile Lys Arg Leu Lys Lys Glu Lys Pro Glu Glu Glu Val Lys Lys Leu Lys 190 195 Pro Lys Gly Thr Lys Asn Phe Ser Leu Leu Ser Phe Gly Glu Glu 205 Ala Glu Glu Glu Glu Glu Val Asn Arg Val Ser Gln Ser Met 220 215 Lys Gly Lys Ser Lys Ser Ser His Asp Leu Leu Lys Asp Asp Pro His Leu Ser Ser Val Pro Val Val Glu Ser Glu Lys Gly Asp Ala 255 Pro Asp Leu Val Asp Asp Gly Glu Asp Glu Ser Ala Glu His Asp Glu Tyr Ile Asp Gly Asp Glu Lys Asn Leu Met Arg Glu Arg Ile Ala Lys Lys Leu Lys Lys Asp Thr Ser Ala Asn Val Lys Ser Ala 295 Gly Glu Gly Glu Val Glu Lys Lys Ser Val Ser Arg Ser Glu Glu Leu Arg Lys Glu Ala Arg Gln Leu Lys Arg Glu Leu Leu Ala Ala Lys Gln Lys Lys Val Glu Asn Ala Ala Lys Gln Ala Glu Lys Arg Ser Glu Glu Glu Ala Pro Pro Asp Gly Ala Val Ala Glu Tyr Arg Arg Glu Lys Gln Lys Tyr Glu Ala Leu Arg Lys Gln Gln Ser Lys Lys Gly Thr Ser Arg Glu Asp Gln Thr Leu Ala Leu Leu Asn Gln Phe Lys Ser Lys Leu Thr Gln Ala Ile Ala Glu Thr Pro Glu

Ser His Val Leu Gln Phe Glu Asp Lys Ser Arg Lys Val Lys Asp 425 430 435

Ala Ser Met Gln Asp Ser Asp Thr Phe Glu Ile Tyr Asp Pro Arg 440 445 450

Asn Pro Val Asn Lys Arg Arg Arg Glu Glu Ser Lys Lys Leu Met 455 460 465

Arg Glu Lys Lys Glu Arg Arg 470

<210> 246

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

Q

: 🛍

....

1.2

1 170

<223> Synthetic oligonucleotide probe

<400> 246

tgcggagatc ctactggcac aggg 24

<210> 247

<211> 18

<212> DNA <213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 247

cgagttagtc agagcatg 18

<210> 248

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 248

cagatggtgc tgttgccg 18

<210> 249

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 249
caactggaac aggaactgag atgtggatc 29
<210> 250
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 250
 ctggttcagc agtgcaaggg tctg 24
<210> 251
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 251
 cctctccgat taaaacgc 18
<210> 252
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 252
 gagaggactg gttgccatgg caaatgctgg ttctcatgat aatgg 45
<210> 253
<211> 2456
<212> DNA
<213> Homo sapiens
<400> 253
 cgccgccgtt ggggctggaa gttcccgcca ggtccgtgcc gggcgagaga 50
 gatgctgccc ggcccgcctc ggctttgagg cgagagaagt gtcccagacc 100
 cattlegect tgetgaegge gtegageeet ggeeagaeat gteeaeaggg 150
 ttctccttcg ggtccgggac tctgggctcc accaccgtgg ccgccggcgg 200
 gaccagcaca ggcggcgttt tctccttcgg aacgggaacg tctagcaacc 250
  cttctgtggg gctcaatttt ggaaatcttg gaagtacttc aactccagca 300
  actacatctg ctccttcaag tggttttgga accgggctct ttggatctaa 350
  acctgccact gggttcactc taggaggaac aaatacaggt gccttgcaca 400
```

1, 🖺

: 3

1

l d

ifi

ccaagaggcc tcaagtggtc accaaatatg gaaccctgca aggaaaacag 450 atgcatgtgg ggaagacacc catccaagtc tttttaggag tccccttctc 500 cagacetect ctaggtatee teaggtttge acctecagaa ecceeggage 550 cctggaaagg aatcagagat gctaccacct acccgcctgg atggagtctc 600 getetgtege caggetggag tgeagtggea egatetegge teaetgeaac 650 ctecgectee egggtteaag egagteteet geeteageet etgagtgtet 700 ggggctacag gtgcctgcag gagtcctggg gccagctggc ctcgatgtac 750 gtcagcacgc gggaacggta caagtggctg cgcttcagcg aggactgtct 800 gtacctgaac gtgtacgcgc cggcgcgcgc gcccggggat ccccagctgc 850 cagtgatggt ctggttcccg ggaggcgcct tcatcgtggg cgctgcttct 900 tcgtacgagg gctctgactt ggccgcccgc gagaaagtgg tgctggtgtt 950 tetgeageae aggeteggea tetteggett eetgageaeg gaegaeagee 1000 acgcgcgcgg gaactggggg ctgctggacc agatggcggc tctgcgctgg 1050 gtgcaggaga acatcgcagc cttcggggga gacccaggaa atgtgaccct 1100 gttcggccag tcggcggggg ccatgagcat ctcaggactg atgatgtcac 1150 ccctagcctc gggtctcttc catcgggcca tttcccagag tggcaccgcg 1200 ttattcagac ttttcatcac tagtaaccca ctgaaagtgg ccaagaaggt 1250 tgcccacctg gctggatgca accacaacag cacacagatc ctggtaaact 1300 gcctgagggc actatcaggg accaaggtga tgcgtgtgtc caacaagatg 1350 agattectee aactgaactt ecagagagae eeggaagaga ttatetggte 1400 catgageeet gtggtggatg gtgtggtgat eccagatgae eetttggtge 1450 tectgaceca ggggaaggtt teatetgtge cetacettet aggtgteaac 1500 aacctggaat tcaattggct cttgccttat aatatcacca aggagcaggt 1550 accacttgtg gtggaggagt acctggacaa tgtcaatgag catgactgga 1600 agatgctacg aaaccgtatg atggacatag ttcaagatgc cactttcgtg 1650 tatgccacac tgcagactgc tcactaccac cgagaaaccc caatgatggg 1700 aatctgccct gctggccacg ctacaacaag gatgaaaagt acctgcagct 1750 ggattttacc acaagagtgg gcatgaagct caaggagaag aagatggctt 1800 tttggatgag tctgtaccag tctcaaagac ctgagaagca gaggcaattc 1850

<210> 254 <211> 545 <212> PRT

<213> Homo sapiens

<400> 254 Met Ser Thr Gly Phe Ser Phe Gly Ser Gly Thr Leu Gly Ser Thr

Thr Val Ala Ala Gly Gly Thr Ser Thr Gly Gly Val Phe Ser Phe 30 Gly Thr Gly Thr Gly Thr Gly Thr Gly Thr Ser Asn Pro Ser Val Gly Leu Asn Phe Gly 45 Asn Leu Gly Ser Thr Sor Thr Fro Ala Thr Thr Ser Ala Pro 60 Ser Gly Phe Thr Leu Gly Gly Thr Asn Thr Gly Gly Thr Leu Gln Val Val Thr Lys Tyr Gly Thr Leu Gln Gly Gly Lys Gln Met

His Val Gly Lys Thr Pro Ile Gln Val Phe Leu Gly Val Pro Phe

Ser Arg Pro Pro Leu Gly Ile Leu Arg Phe Ala Pro Pro Glu Pro

125

135

115

Pro Glu	Pro	Trp	Lys 140	Gly	Ile	Arg	Asp	Ala 145	Thr	Thr	Tyr	Pro	Pro 150
Gly Tr	Ser	Leu	Ala 155	Leu	Ser	Pro	Gly	Trp 160	Ser	Ala	Val	Ala	Arg 165
Ser Arg	g Leu	Thr	Ala 170	Thr	Ser	Ala	Ser	Arg 175	Val	Gln	Ala	Ser	Leu 180
Leu Pro	Gln	Pro	Leu 185	Ser	Val	Trp	Gly	Tyr 190	Arg	Cys	Leu	Gln	Glu 195
Ser Tr	Gly	Gln	Leu 200	Ala	Ser	Met	Tyr	Val 205	Ser	Thr	Arg	Glu	Arg 210
Tyr Ly	s Trp	Leu	Arg 215	Phe	Ser	Glu	Asp	Cys 220	Leu	Tyr	Leu	Asn	Val 225
Tyr Al	a Pro	Ala	Arg 230	Ala	Pro	Gly	Asp	Pro 235	Gln	Leu	Pro	Val	Met 240
Val Tr	p Phe	Pro	Gly 245	Gly	Ala	Phe	Ile	Val 250	Gly	Ala	Ala	Ser	Ser 255
Tyr Gl	u Gly	Ser	Asp 260	Leu	Ala	Ala	Arg	Glu 265	Lys	Val	Val	Leu	Val 270
Phe Le	u Gln	His	Arg 275	Leu	Gly	Ile	Phe	Gly 280	Phe	Leu	Ser	Thr	Asp 285
Asp Se	r His	: Ala	Arg 290	Gly	Asn	Trp	Gly	Leu 295	Leu	Asp	Gln	Met	Ala 300
Ala Le	u Arç	J Trp	Val 305		Glu	Asn	Ile	Ala 310	Ala	Phe	Gly	Gly	Asp 315
Pro Gl	y Asr	n Val	Thr 320		Phe	Gly	Gln	Ser 325	Ala	Gly	Ala	Met	Ser 330
Ile Se	r Gly	/ Leu	Met 335		Ser	Pro	Leu	Ala 340	Ser	Gly	Leu	Phe	His 345
Arg Al	a Ile	e Ser	Gln 350		Gly	Thr	Ala	Leu 355	Phe	Arg	Leu	Phe	360
Thr Se	r Ası	n Pro) Leu 365		Val	Ala	Lys	370	Val	. Ala	His	: Leu	Ala 375
Gly C	s Ası	n His	s Asn 380		Thr	Glr	ı Ile	385	Val	. Asn	Суз	s Leu	390
Ala Le	eu Se	r Gly	7 Thr 395		: Val	. Met	Arg	y Val 400		Asn	Lys	Met	Arg 405
Phe Le	eu Gl	n Lei	ı Asn 410		e Glr	a Arg	J Asr	Pro 415	Glu	ı Glu	ı Ile	e Ile	2 Trp
Ser Me	et Se	r Pro	o Val	. Val	Asp	Gly	y Val	L Val	Ile	e Pro	Asp	Asp	Pro

The state

H

4

I

1.251

13

<210> 258 <211> 2764 <212> DNA <213> Homo sapiens

<400> 258 gagaacaggc ctgtctcagg caggccctgc gcctcctatg cggagatgct 50 actgccactg ctgctgtcct cgctgctggg cgggtcccag gctatggatg 100 ggagattctg gatacgagtg caggagtcag tgatggtgcc ggagggcctg 150 tgcatctctg tgccctgctc tttctcctac ccccgacaag actggacagg 200 gtctacccca gcttatggct actggttcaa agcagtgact gagacaacca 250 agggtgctcc tgtggccaca aaccaccaga gtcgagaggt ggaaatgagc 300 accoggggcc gattccagct cactggggat cccgccaagg ggaactgctc 350 cttggtgatc agagacgcgc agatgcagga tgagtcacag tacttctttc 400 gggtggagag aggaagctat gtgacatata atttcatgaa cgatgggttc 450 tttctaaaag taacagtgct cagcttcacg cccagacccc aggaccacaa 500 caccgacctc acctgccatg tggacttctc cagaaagggt gtgagcgcac 550 agaggaccgt ccgactccgt gtggcctatg cccccagaga ccttgttatc 600 agcatttcac gtgacaacac gccagccctg gagccccagc cccagggaaa 650 tgtcccatac ctggaagccc aaaaaggcca gttcctgcgg ctcctctgtg 700 ctgctgacag ccagcccct gccacactga gctgggtcct gcagaacaga 750 gtectetect egteceatee etggggeeet agaceeetgg ggetggaget 800 gcccggggtg aaggctgggg attcagggcg ctacacctgc cgagcggaga 850 acaggettgg eteccageag egageeetgg acetetetgt geagtateet 900 ccagagaacc tgagagtgat ggtttcccaa gcaaacagga cagtcctgga 950 aaaccttggg aacggcacgt ctctcccagt actggagggc caaagcctgt 1000 gcctggtctg tgtcacacac agcagccccc cagccaggct gagctggacc 1050 cagaggggac aggttctgag ccctcccag ccctcagacc ccggggtcct 1100 ggagctgcct cgggttcaag tggagcacga aggagagttc acctgccacg 1150 cteggeacce actgggetee cageacgtet eteteageet eteegtgeae 1200 tataagaagg gactcatctc aacggcattc tccaacggag cgtttctggg 1250 aatcggcatc acggetette tttteetetg eetggeeetg atcateatga 1300 agattctacc gaagagacgg actcagacag aaaccccgag gcccaggttc 1350 teceggeaca geacgatect ggattacate aatgtggtee egacggetgg 1400 cccctggct cagaagcgga atcagaaagc cacaccaaac agtcctcgga 1450 cccctcctcc accaggtgct ccctccccag aatcaaagaa gaaccagaaa 1500 aagcagtatc agttgcccag tttcccagaa cccaaatcat ccactcaagc 1550 cccagaatcc caggagagcc aagaggagct ccattatgcc acgctcaact 1600 teccaggegt cagacecagg ectgaggeec ggatgeecaa gggeacecag 1650 gcggattatg cagaagtcaa gttccaatga gggtctctta ggctttagga 1700 ctgggacttc ggctagggag gaaggtagag taagaggttg aagataacag 1750 agtgcaaagt ttccttctct ccctctctct ctctctttct ctctctctct 1800 ctctttctct ctcttttaaa aaaacatctg gccagggcac agtggctcac 1850 gcctgtaatc ccagcacttt gggaggttga ggtgggcaga tcgcctgagg 1900 tegggagtte gagaceagee tggccaactt ggtgaaacee cgtetetact 1950 aaaaatacaa aaattagctg ggcatggtgg caggcgcctg taatcctacc 2000 tacttgggaa gctgaggcag gagaatcact tgaacctggg agacggaggt 2050 tgcagtgagc caagatcaca ccattgcacg ccagcctggg caacaaagcg 2100 agactccatc tcaaaaaaaa aatcctccaa atgggttggg tgtctgtaat 2150 cccagcactt tgggaggcta aggtgggtgg attgcttgag cccaggagtt 2200 cgagaccagc ctgggcaaca tggtgaaacc ccatctctac aaaaaataca 2250 aaacatagct gggcttggtg gtgtgtgcct gtagtcccag ctgtcagaca 2300 tttaaaccag agcaactcca tctggaatag gagctgaata aaatgaggct 2350 gagacctact gggctgcatt ctcagacagt ggaggcattc taagtcacag 2400 gatgagacag gaggtccgta caagatacag gtcataaaga ctttgctgat 2450 aaaacagatt gcagtaaaga agccaaccaa atcccaccaa aaccaagttg 2500 gccacgagag tgacctctgg tcgtcctcac tgctacactc ctgacagcac 2550 catgacagtt tacaaatgcc atggcaacat caggaagtta cccgatatgt 2600 cccaaaaggg ggaggaatga ataatccacc ccttgtttag caaataagca 2650 agaaataacc ataaaagtgg gcaaccagca gctctaggcg ctgctcttgt 2700 ctatggagta gccattcttt tgttccttta ctttcttaat aaacttgctt 2750

tcaccttaaa	aaaa	2764
------------	------	------

<210> 259

<211> 544

<212> PRT

<213> Homo sapiens

<400> 259

Met Leu Leu Pro Leu Leu Ser Ser Leu Leu Gly Gly Ser Gln
1 5 10 15

Ala Met Asp Gly Arg Phe Trp Ile Arg Val Gln Glu Ser Val Met 20 25 30

Val Pro Glu Gly Leu Cys Ile Ser Val Pro Cys Ser Phe Ser Tyr 35 40 45

Pro Arg Gln Asp Trp Thr Gly Ser Thr Pro Ala Tyr Gly Tyr Trp 50 55 60

Phe Lys Ala Val Thr Glu Thr Thr Lys Gly Ala Pro Val Ala Thr 65 70 75

Asn His Gln Ser Arg Glu Val Glu Met Ser Thr Arg Gly Arg Phe 80 85 90

Gln Leu Thr Gly Asp Pro Ala Lys Gly Asn Cys Ser Leu Val Ile 95 100 105

Arg Asp Ala Gln Met Gln Asp Glu Ser Gln Tyr Phe Phe Arg Val 110 115 120

Glu Arg Gly Ser Tyr Val Thr Tyr Asn Phe Met Asn Asp Gly Phe

Phe Leu Lys Val Thr Val Leu Ser Phe Thr Pro Arg Pro Gln Asp 140 145 150

His Asn Thr Asp Leu Thr Cys His Val Asp Phe Ser Arg Lys Gly 155 160

Val Ser Ala Gln Arg Thr Val Arg Leu Arg Val Ala Tyr Ala Pro 170 175 180

Arg Asp Leu Val Ile Ser Ile Ser Arg Asp Asn Thr Pro Ala Leu 185 190 195

Glu Pro Gln Pro Gln Gly Asn Val Pro Tyr Leu Glu Ala Gln Lys 200 205 210

Gly Gln Phe Leu Arg Leu Leu Cys Ala Ala Asp Ser Gln Pro Pro 215 220 225

Ala Thr Leu Ser Trp Val Leu Gln Asn Arg Val Leu Ser Ser Ser 230 235

His Pro Trp Gly Pro Arg Pro Leu Gly Leu Glu Leu Pro Gly Val 245 255

Lys .	Ala	Gly	Asp	Ser 260	Gly	Arg	Tyr	Thr	Cys 265	Arg	Ala	Glu	Asn	Arg 270
Leu	Gly	Ser	Gln	Gln 275	Arg	Ala	Leu	Asp	Leu 280	Ser	Val	Gln	Tyr	Pro 285
Pro	Glu	Asn	Leu	Arg 290	Val	Met	Val	Ser	Gln 295	Ala	Asn	Arg	Thr	Val 300
Leu	Glu	Asn	Leu	Gly 305	Asn	Gly	Thr	Ser	Leu 310	Pro	Val	Leu	Glu	Gly 315
Gln	Ser	Leu	Суз	Leu 320	Val	Cys	Val	Thr	His 325	Ser	Ser	Pro	Pro	Ala 330
Arg	Leu	Ser	Trp	Thr 335	Gln	Arg	Gly	Gln	Val 340	Leu	Ser	Pro	Ser	Gln 345
Pro	Ser	Asp	Pro	Gly 350	Val	Leu	Glu	Leu	Pro 355	Arg	Val	Gln	Val	Glu 360
His	Glu	Gly	Glu	Phe 365	Thr	Cys	His	Ala	Arg 370	His	Pro	Leu	Gly	Ser 375
Gln	His	Val	Ser	Leu 380	Ser	Leu	Ser	Val	His 385	Tyr	Lys	Lys	Gly	Leu 390
Ile	Ser	Thr	Ala	Phe 395	Ser	Asn	Gly	Ala	Phe 400	Leu	Gly	Ile	Gly	Ile 405
Thr	Ala	Leu	Leu	Phe 410	Leu	Суз	Leu	Ala	Leu 415	Ile	Ile	Met	Lys	Ile 420
Leu	Pro	Lys	Arg	Arg 425		Gln	Thr	Glu	Thr 430	Pro	Arg	Pro	Arg	Phe 435
Ser	Arg	His	s Ser	Thr 440		. Leu	ı Asp	туг	1le 445	Asn	Val	Val	Pro	Thr 450
Ala	Gly	Pro) Leu	Ala 455		Lys	arç	, Asn	Gln 460	Lys	Ala	Thr	Pro	465
Ser	Pro	Arg	Thr	Pro 470		Pro) Pro	Gl>	7 Ala 475	Pro	Ser	Pro	Glu	Ser 480
Lys	Lys	a Asr	n Glr	Lys 485		s Glr	тул	Glr	1 Leu 490	Pro	Ser	Phe	Pro	495
Pro	Lys	s Sei	s Ser	500		n Ala	a Pro	Glu	ser 505	Glr	Glu	. Ser	Glr	Glu 510
Glu	Let	ı His	з Туг	515		r Lei	ı Ası	n Phe	9 Pro 520	Gly	y Val	Arç	r Pro	525
Pro	Glu	a Ala	a Arç	Met 530		D Lys	s Gl	y Th:	c Glr 535	a Ala	a Asp	туг	Ala	Glu 540
Val	Lys	s Phe	e Glr	ì										

```
<210> 260
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 260
 caaagcctgc gcctggtctg tg 22
<210> 261
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 261
 ttctggagcc cagagggtgc tgag 24
<210> 262
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 262
 ggagctgcca cccattcaaa tggagcacga aggagagttc acctg 45
<210> 263
<211> 2857
<212> DNA
<213> Homo sapiens
<400> 263
 tgaagagtaa tagttggaat caaaagagtc aacgcaatga actgttattt 50
 actgctgcgt tttatgttgg gaattcctct cctatggcct tgtcttggag 100
 caacagaaaa ctctcaaaca aagaaagtca agcagccagt gcgatctcat 150
 ttgagagtga agcgtggctg ggtgtggaac caattttttg taccagagga 200
  aatgaatacg actagtcatc acatcggcca gctaagatct gatttagaca 250
  atggaaacaa ttctttccag tacaagcttt tgggagctgg agctggaagt 300
  acttttatca ttgatgaaag aacaggtgac atatatgcca tacagaagct 350
  tgatagagag gagcgatccc tctacatctt aagagcccag gtaatagaca 400
  tcgctactgg aagggctgtg gaacctgagt ctgagtttgt catcaaagtt 450
```

ιŪ

1.0

ii Lak

Æ

toggatatca atgacaatga accaaaatto ctagatgaac cttatgaggc 500 cattgtacca gagatgtctc cagaaggaac attagttatc caggtgacag 550 caagtgatgc tgacgatccc tcaagtggta ataatgctcg tctcctctac 600 agettacttc aaggecagec atatttttct gttgaaccaa caacaggagt 650 cataagaata tottotaaaa tggatagaga actgcaagat gagtattggg 700 taatcattca agccaaggac atgattggtc agccaggagc gttgtctgga 750 acaacaagtg tattaattaa actttcagat gttaatgaca ataagcctat 800 atttaaaqaa aqtttatacc qcttqactqt ctctqaatct qcacccactq 850 ggacttctat aggaacaatc atggcatatg ataatgacat aggagagaat 900 gcagaaatgg attacagcat tgaagaggat gattcgcaaa catttgacat 950 tattactaat catgaaactc aagaaggaat agttatatta aaaaagaaag 1000 tqqattttga gcaccagaac cactacggta ttagagcaaa agttaaaaac 1050 catcatgttc ctgagcagct catgaagtac cacactgagg cttccaccac 1100 tttcattaag atccaggtgg aagatgttga tgagcctcct cttttcctcc 1150 ttccatatta tgtatttqaa gtttttgaag aaaccccaca gggatcattt 1200 gtaggcgtgg tgtctgccac agacccagac aataggaaat ctcctatcag 1250 gtattctatt actaggagca aagtgttcaa tatcaatgat aatggtacaa 1300 tcactacaag taactcactg gatcgtgaaa tcagtgcttg gtacaaccta 1350 agtattacag ccacagaaaa atacaatata gaacagatct cttcgatccc 1400 actgtatgtg caagttetta acateaatga teatgeteet gagttetete 1450 aatactatga gacttatgtt tgtgaaaatg caggctctgg tcaggtaatt 1500 cagactatca gtgcagtgga tagagatgaa tccatagaag agcaccattt 1550 ttactttaat ctatctgtag aagacactaa caattcaagt tttacaatca 1600 tagataatca agataacaca getgteattt tgactaatag aactggtttt 1650 aaccttcaag aagaacctgt cttctacatc tccatcttaa ttgccgacaa 1700 tggaatcccg tcacttacaa gtacaaacac ccttaccatc catgtctgtg 1750 actqtqqtqa caqtqqqaqc acacaqacct qccagtacca qqaqcttgtg 1800 ctttccatgg gattcaagac agaagttatc attgctattc tcatttgcat 1850 tatgatcata tttgggttta tttttttgac tttgggttta aaacaacgga 1900 gaaaacagat tctatttcct gagaaaagtg aagatttcag agagaatata 1950 ttccaatatq atgatgaagg gggtggagaa gaagatacag aggcctttga 2000 tatagcagag ctgaggagta gtaccataat gcgggaacgc aagactcgga 2050 aaaccacaag cgctgagatc aggagcctat acaggcagtc tttgcaagtt 2100 ggccccgaca gtgccatatt caggaaattc attctggaaa agctcgaaga 2150 agctaatact gatecgtgtg eccetecttt tgatteette cagacetacg 2200 cttttgaggg aacagggtca ttagctggat ccctgagctc cttagaatca 2250 gcagtctctg atcaggatga aagctatgat taccttaatg agttgggacc 2300 tcgctttaaa agattagcat gcatgtttgg ttctgcagtg cagtcaaata 2350 attagggctt tttaccatca aaatttttaa aagtgctaat gtgtattcga 2400 acccaatggt agtcttaaag agttttgtgc cctggctcta tggcggggaa 2450 agccctagtc tatggagttt tctgatttcc ctggagtaaa tactccatgg 2500 ttattttaag ctacctacat gctgtcattg aacagagatg tggggagaaa 2550 tgtaaacaat cagctcacag gcatcaatac aaccagattt gaagtaaaat 2600 aatgtaggaa gatattaaaa gtagatgaga ggacacaaga tgtagtcgat 2650 ccttatgcga ttatatcatt atttacttag gaaagagtaa aaataccaaa 2700 cgagaaaatt taaaggagca aaaatttgca agtcaaatag aaatgtacaa 2750 atcgagataa catttacatt tctatcatat tgacatgaaa attgaaaatg 2800 tatagtcaga gaaattttca tgaattattc catgaagtat tgtttccttt 2850 atttaaa 2857

<210> 264

<211> 772

<212> PRT

<213> Homo sapiens

<400> 264

Met Asn Cys Tyr Leu Leu Leu Arg Phe Met Leu Gly Ile Pro Leu
1 5 10 15

Leu Trp Pro Cys Leu Gly Ala Thr Glu Asn Ser Gln Thr Lys Lys
20 25 30

Val Lys Gln Pro Val Arg Ser His Leu Arg Val Lys Arg Gly Trp
35 40 45

Val Trp Asn Gln Phe Phe Val Pro Glu Glu Met Asn Thr Thr Ser

His His Ile Gly Gln Leu Arg Ser Asp Leu Asp Asn Gly Asn Asn Ser Phe Gln Tyr Lys Leu Leu Gly Ala Gly Ala Gly Ser Thr Phe Ile Ile Asp Glu Arg Thr Gly Asp Ile Tyr Ala Ile Gln Lys Leu Asp Arg Glu Glu Arg Ser Leu Tyr Ile Leu Arg Ala Gln Val Ile 110 Asp Ile Ala Thr Gly Arg Ala Val Glu Pro Glu Ser Glu Phe Val Ile Lys Val Ser Asp Ile Asn Asp Asn Glu Pro Lys Phe Leu Asp 150 140 Glu Pro Tyr Glu Ala Ile Val Pro Glu Met Ser Pro Glu Gly Thr Leu Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Ser Ser 175 180 170 Gly Asn Asn Ala Arg Leu Leu Tyr Ser Leu Leu Gln Gly Gln Pro Tyr Phe Ser Val Glu Pro Thr Thr Gly Val Ile Arg Ile Ser Ser Lys Met Asp Arg Glu Leu Gln Asp Glu Tyr Trp Val Ile Ile Gln Ala Lys Asp Met Ile Gly Gln Pro Gly Ala Leu Ser Gly Thr Thr Ser Val Leu Ile Lys Leu Ser Asp Val Asn Asp Asn Lys Pro Ile Phe Lys Glu Ser Leu Tyr Arg Leu Thr Val Ser Glu Ser Ala Pro Thr Gly Thr Ser Ile Gly Thr Ile Met Ala Tyr Asp Asn Asp Ile Gly Glu Asn Ala Glu Met Asp Tyr Ser Ile Glu Glu Asp Asp Ser Gln Thr Phe Asp Ile Ile Thr Asn His Glu Thr Gln Glu Gly Ile Val Ile Leu Lys Lys Lys Val Asp Phe Glu His Gln Asn His Tyr 330 Gly Ile Arg Ala Lys Val Lys Asn His His Val Pro Glu Gln Leu 340 Met Lys Tyr His Thr Glu Ala Ser Thr Thr Phe Ile Lys Ile Gln

				350					355					360
Val (Glu	Asp	Val	Asp 365	Glu	Pro	Pro	Leu	Phe 370	Leu	Leu	Pro	Tyr	Tyr 375
Val I	Phe	Glu	Val	Phe 380	Glu	Glu	Thr	Pro	Gln 385	Gly	Ser	Phe	Val	Gly 390
Val V	Val	Ser	Ala	Thr 395	Asp	Pro	Asp	Asn	Arg 400	Lys	Ser	Pro	Ile	Arg 405
Tyr :	Ser	Ile	Thr	Arg 410	Ser	Lys	Val	Phe	Asn 415	Ile	Asn	Asp	Asn	Gly 420
Thr	Ile	Thr	Thr	Ser 425	Asn	Ser	Leu	Asp	Arg 430	Glu	Ile	Ser	Ala	Trp 435
Tyr .	Asn	Leu	Ser	Ile 440	Thr	Ala	Thr	Glu	Lys 445	Tyr	Asn	Ile	Glu	Gln 450
Ile	Ser	Ser	Ile	Pro 455	Leu	Tyr	Val	Gln	Val 460	Leu	Asn	Ile	Asn	Asp 465
His	Ala	Pro	Glu	Phe 470	Ser	Gln	Tyr	Tyr	Glu 475	Thr	Tyr	Val	Суз	Glu 480
Asn	Ala	Gly	Ser	Gly 485	Gln	Val	Ile	Gln	Thr 490	Ile	Ser	Ala	Val	Asp 495
Arg	Asp	Glu	Ser	Ile 500	Glu	Glu	His	His	Phe 505	Tyr	Phe	Asn	Leu	Ser 510
Val	Glu	Asp	Thr	Asn 515	Asn	Ser	Ser	Phe	Thr 520	Ile	Ile	Asp	Asn	Gln 525
Asp	Asn	Thr	Ala	Val 530	Ile	Leu	Thr	Asn	Arg 535	Thr	Gly	Phe	Asn	Leu 540
Gln	Glu	Glu	Pro	Val 545	Phe	Туг	Ile	Ser	11e 550	Leu	Ile	Ala	. Asp	Asn 555
Gly	Il€	e Pro	Ser	Leu 560	Thr	Ser	Thr	Asn	Thr 565	Leu	Thr	: Ile	His	Val 570
Cys	Asp	суз	Gly	Asp 575		Gly	Ser	Thr	Glr 580	Thr	Cys	Glr.	туг	Gln 585
Glu	Let	ı Val	. Lev	ser 590	Met	Gly	Phe	e Lys	595	Glu S	ı Val	Ile	e Ile	Ala 600
Ile	Leı	ı Ile	e Cys	s Ile 605		Ile	e Il∈	e Phe	Gly 610	y Phe	e Ile	e Phe	e Lev	Thr 615
Leu	Gly	/ Lei	ı Lys	s Gln 620		Arg	J Lys	s Glr	11e 625	e Leu	ı Phe	e Pro	o Gli	Lys 630
Ser	Glı	ı Asp	o Phe	e Arg 635	Glu	. Asn	ı Ile	e Phe	e Glr 640	т Туз Э	a Asp	Asp	o Glu	a Gly 645

<220>

```
Gly Glu Glu Asp Thr Glu Ala Phe Asp Ile Ala Glu Leu Arg
 Ser Ser Thr Ile Met Arg Glu Arg Lys Thr Arg Lys Thr Thr Ser
                 665
                                      670
                                                          675
 Ala Glu Ile Arg Ser Leu Tyr Arg Gln Ser Leu Gln Val Gly Pro
 Asp Ser Ala Ile Phe Arg Lys Phe Ile Leu Glu Lys Leu Glu Glu
                                     700
                 695
                                                          705
 Ala Asn Thr Asp Pro Cys Ala Pro Pro Phe Asp Ser Leu Gln Thr
                                     715
 Tyr Ala Phe Glu Gly Thr Gly Ser Leu Ala Gly Ser Leu Ser Ser
                                     730
                                                          735
                 725
 Leu Glu Ser Ala Val Ser Asp Gln Asp Glu Ser Tyr Asp Tyr Leu
                                     745
 Asn Glu Leu Gly Pro Arg Phe Lys Arg Leu Ala Cys Met Phe Gly
                                     760
                 755
                                                          765
 Ser Ala Val Gln Ser Asn Asn
                 770
<210> 265
<211> 349
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 24, 60, 141, 226, 228, 249, 252
<223> unknown base
<400> 265
 atttcaaggc cagccatatt tttntgttga accaacaaca ggagtcataa 50
 gaatattttn taaaatggat agagaactgc aagatgagta ttgggtaatc 100
 attcaagcca aggacatgat tggtcagcca ggagcgttgt ntggaacaac 150
 aagtgtatta attaaacttt cagatgttaa tgacaataag cctatattta 200
 aagaaagttt ataccgcttg actgtntntg aatctgcacc cactgggant 250
 tntataggaa caatcatggc atatgataat gacataggag agaatgcaga 300
 aatggattac agcattgaag aggatgattc gcaaacattt gacattatt 349
<210> 266
<211> 25
<212> DNA
<213> Artificial Sequence
```

```
<223> Synthetic oligonucleotide probe
<400> 266
 cttgactgtc tctgaatctg caccc 25
<210> 267
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 267
 aagtggtgga agcctccagt gtgg 24
<210> 268
<211> 52
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 268
 ccactacggt attagagcaa aagttaaaaa ccatcatggt tcctggagca 50
 gc 52
<210> 269
<211> 2747
<212> DNA
<213> Homo sapiens
<400> 269
 gcaacctcag cttctagtat ccagactcca gcgccgcccc gggcgcggac 50
 cccaacccg acccagaget tetecagegg eggegeageg ageagggete 100
 cccgccttaa cttcctccgc ggggcccagc caccttcggg agtccgggtt 150
  geceacetge aaacteteeg cettetgeac etgecacece tgagecageg 200
  cgggcccccg agcgagtcat ggccaacgcg gggctgcagc tgttgggctt 250
  cattetegee tteetgggat ggateggege categteage actgeeetge 300
  cccagtggag gatttactcc tatgccggcg acaacatcgt gaccgcccag 350
  gccatgtacg aggggctgtg gatgtcctgc gtgtcgcaga gcaccgggca 400
  gatccagtgc aaagtctttg actccttgct gaatctgagc agcacattgc 450
  aagcaacccg tgccttgatg gtggttggca tcctcctggg agtgatagca 500
  atctttgtgg ccaccgttgg catgaagtgt atgaagtgct tggaagacga 550
  tgaggtgcag aagatgagga tggctgtcat tgggggtgcg atatttcttc 600
```

ttgcaggtct ggctatttta gttgccacag catggtatgg caatagaatc 650 gttcaagaat tctatgaccc tatgacccca gtcaatgcca ggtacgaatt 700 tggtcaggct ctcttcactg gctgggctgc tgcttctctc tgccttctgg 750 gaggtgccct actttgctgt tcctgtcccc gaaaaacaac ctcttaccca 800 acaccaagge cetatecaaa acetgeacet teeageggga aagactaegt 850 gtgacacaga ggcaaaagga gaaaatcatg ttgaaacaaa ccgaaaatgg 900 acattgagat actatcatta acattaggac cttagaattt tgggtattgt 950 aatctgaagt atggtattac aaaacaaaca aacaaacaaa aaacccatgt 1000 gttaaaatac tcagtgctaa acatggctta atcttattt atcttcttc 1050 ctcaatatag gagggaagat ttttccattt gtattactgc ttcccattga 1100 gtaatcatac tcaaatgggg gaaggggtgc tccttaaata tatatagata 1150 tgtatatata catgtttttc tattaaaaat agacagtaaa atactattct 1200 cattatqttq atactagcat acttaaaata tctctaaaat aggtaaatgt 1250 atttaattcc atattgatga agatgtttat tggtatattt tctttttcgt 1300 ccttatatac atatgtaaca gtcaaatatc atttactctt cttcattagc 1350 tttgggtgcc tttgccacaa gacctagcct aatttaccaa ggatgaattc 1400 tttcaattct tcatgcgtgc ccttttcata tacttatttt attttttacc 1450 ataatcttat agcacttgca tcgttattaa gcccttattt gttttgtgtt 1500 tcattggtct ctatctcctg aatctaacac atttcatagc ctacatttta 1550 gtttctaaag ccaagaagaa tttattacaa atcagaactt tggaggcaaa 1600 tctttctgca tgaccaaagt gataaattcc tgttgacctt cccacacaat 1650 ccctqtactc tqacccatag cactcttqtt tqctttqaaa atatttqtcc 1700 aattgagtag ctgcatgctg ttcccccagg tgttgtaaca caactttatt 1750 gattgaattt ttaagctact tattcatagt tttatatccc cctaaactac 1800 ctttttgttc cccattcctt aattgtattg ttttcccaag tgtaattatc 1850 atgcgtttta tatcttccta ataaggtgtg gtctgtttgt ctgaacaaag 1900 tgctagactt tctqqaqtqa taatctqqtq acaaatattc tctctqtaqc 1950 tgtaagcaag tcacttaatc tttctacctc ttttttctat ctgccaaatt 2000 gagataatga tacttaacca gttagaagag gtagtgtgaa tattaattag 2050

tttatattac tcttattctt tgaacatgaa ctatgcctat gtagtgtctt 2100
tatttgctca gctggctgag acactgaaga agtcactgaa caaaaacctac 2150
acacgtacct tcatgtgatt cactgccttc ctctctac cagtctattt 2200
ccactgaaca aaacctacac acataccttc atgtggttca gtgccttcct 2250
ctctctacca gtctatttcc actgaacaa acctacgcac ataccttcat 2300
gtggctcagt gccttcctct ctctaccagt ctatttccat tctttcagct 2350
gtgtctgaca tgtttgtgct ctgttccatt ttaacaactg ctcttacttt 2400
tccagtctgt acagaatgct atttcacttg agcaagatga tgtaatggaa 2450
agggtgttgg cactggtgtc tggagacctg gatttgagtc ttggtgctat 2500
caatcaccgt ctgtgtttga gcaaggcatt tggctgctgt aagcttattg 2550
cttcatctgt aagcggtggt ttgtaattcc tgatctccc acctcacagt 2600
gatgttgtgg ggatccagtg agatagaata catgtaagtg tggttttgta 2650
atttaaaaag tgctatacta agggaaagaa ttgaggaatt aactgcatac 2700
gttttggtgt tgcttttcaa atgtttgaaa ataaaaaaaa tgttaag 2747

<210> 270 <211> 211

<212> PRT

<213> Homo sapiens

<400> 270

Met Ala Asn Ala Gly Leu Gln Leu Leu Gly Phe Ile Leu Ala Phe
1 5 10 15

Leu Gly Trp Ile Gly Ala Ile Val Ser Thr Ala Leu Pro Gln Trp 20 25 30

Arg Ile Tyr Ser Tyr Ala Gly Asp Asn Ile Val Thr Ala Gln Ala 35 40 45

Met Tyr Glu Gly Leu Trp Met Ser Cys Val Ser Gln Ser Thr Gly
50 55 60

Gln Ile Gln Cys Lys Val Phe Asp Ser Leu Leu Asn Leu Ser Ser
65 70 75

Thr Leu Gln Ala Thr Arg Ala Leu Met Val Val Gly Ile Leu Leu 80 85 90

Gly Val Ile Ala Ile Phe Val Ala Thr Val Gly Met Lys Cys Met 95 100 105

Lys Cys Leu Glu Asp Asp Glu Val Gln Lys Met Arg Met Ala Val 110 115

```
Ile Gly Gly Ala Ile Phe Leu Leu Ala Gly Leu Ala Ile Leu Val 135

Ala Thr Ala Trp Tyr Gly Asn Arg Ile Val Gln Glu Phe Tyr Asp 150

Pro Met Thr Pro Val Asn Ala Arg Tyr Glu Phe Gly Gln Ala Leu 165

Phe Thr Gly Trp Ala Ala Ala Ser Leu Cys Leu Leu Gly Gly Ala 180

Leu Leu Cys Cys Ser Cys Pro Arg Lys Thr 190

Pro Arg Pro Tyr Pro Lys Pro Ala Pro Ser Ser Gly Lys Asp Tyr 210
```

Val

<210> 271 <211> 564 <212> DNA <213> Homo sapiens

<220>
<221> unsure
<222> 21, 69, 163, 434, 436, 444
<223> unknown base

<400> 271
ttetggccaa accegggget neagetgttg ggetteatet egeetteetg 50
ggatggateg gegeeatent eacactgeee tteeceagtg gaggatttta 100
etecetatge tggegacaac ategtgaceg eceageceat gtaegagggg 150
etgtggatgt eengegtgte geagageace gggeagatee agtgeaaagt 200
etttgactee ttgetgaate tgageageac attgeaagea accegtgeet 250
tgatggtggt tggeateete etgggagtga tageaatett tgtggeeace 300
gttggeatga agtgtatgaa gtgettggaa gaegatgagg tgeagaagat 350
gaggatgget gteattgggg gegegatatt tettettgea ggtetggeta 400
ttttagttge eacageatgg tatggeaata gaanenttea acanttetat 450
gaecetatga eceeagteaa tgeeaggtae gaatttggte aggeteett 500
eactggetgg getgetgett eteetetgeet tetgggaggt geectaettt 550
getgtteetg teee 564

<210> 272 <211> 498

```
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 30, 49, 102, 141, 147, 171, 324-325, 339-341
<223> unknown base
<400> 272
 accettgace caacgeggee eccegacegn tteatggeea aacgegggne 50
 tccagctgtt gggcttcatt ctccccttcc tgggatggac cggcgcccat 100
 cntcagcact gccctgcccc agtggaggat ttactcctat nccggcnaca 150
 acategtgac egeceaggee ntgtaegagg ggetgtggat gteetgegtg 200
 tcgcagagca ccgggcagat ccagtgcaaa gtctttgact cccttgctga 250
 atctgagcag cacattgcaa gcaacccgtg ccttgatggt ggttggcatc 300
 ctcctgggag tgatagcaat cttnntggcc accgttgtnn ntgaagtgta 350
 tgaagtgctt ggaagacgat gaggtgcaga agatgaggat ggctgtcatt 400
 gggggcgcga tatttcttct tgcaggtctg gctattttag ttgccacagc 450
 atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccga 498
<210> 273
<211> 552
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 25, 57, 67, 94-95, 116, 152, 165, 212, 233, 392-394
<223> unknown base
<400> 273
 gggcccgacc attatccaac cgggntcact gttggctcat ctccctcctg 50
 gatgaancgc gccatchtca gactccctgc cccatggaga tttnncctat 100
 gctggcgaca acatentgac ccccagccat gtacgagggg ctttgaacgt 150
 engegtgteg caganeaceg ggeagateea gtgeaaagte tttgaeteet 200
 tgctgaatct gngcagcaca ttgcagcaac ccntgccctg atggtggttg 250
 gcatcctcct gggagtgata gcaatctttg tggccaccgt tggcatgaag 300
 tgtatgaagt gcttggaaga cgatgaggtg cagaagatga ggatggctgt 350
 cattgggggc gcgatatttc ttcttgcagg tctggctatt tnnngttgcc 400
```

acagcatggt atggcaatag aatcgttcaa gaattctatg accctatgac 450

```
cccagtcaat gccaggtacg aatttggtca ggctctcttc actggctggg 500
 ctgctgcttc tctctgcctt ctgggaggtg ccctactttg ctgttcctgc 550
ga 552
<210> 274
<211> 526
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 25, 50, 60, 123, 127, 370, 395, 397-398, 402-403, 405-407
<223> unknown base
<400> 274
 attetecect cetggatgga tegenecace gteacattge ettececcan 50
 tggaggattn actcctatgc tggcgacaac atcgtgaccc cccaggccat 100
 ttaccgaggg gctttggatg tcntgcntgt cgcagagcac cgggcagatc 150
 ccagtgcaaa gtctttgact ccttgctgaa tctgagcagc acattgcaag 200
 caacccqtqc cttqatqqqq ttqqcatcct cctqqqaqtq ataqcaacct 250
 ttgtggccac cgttggcatg aagtgtatga agtgcttgga agacgatgag 300
 gtgccagaag atgaggatgg ctgtcattgg gggcgcgata tttcttgttg 350
 caggtctggc tattttagtn gccacagcat ggtatggcaa tagantnntt 400
 cnngnnntct atgaccctat gaccccagtc aatgccaggt acgaatttgg 450
 tcaggctctc ttcactggct gggctgctgc ttctctctgc cttctgggag 500
gtgccctact ttgctgttcc tgtccc 526
<210> 275
<211> 398
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 22, 61, 91, 144, 238-239, 262, 265-266, 271, 274
<223> unknown base
<400> 275
 agagcaccgg cagatcccag tncaaagtct ttgacccttg ctgaatctga 50
gcagcacatt ncaagcaacc ccttgccttg aaggtggttg ncatccccc 100
 tgggagtgaa tagcaatctt tgtggccacc gttggcatga agtntatgaa 150
gtgcttggaa gacgatgagg tgcagaagat gaggatggct gtcattgggg 200
```

```
qcqcqatatt tcttcttqca qqtctqqcta ttttaqtnnc cacagcatgg 250
 tatggcaata qnatnnttcg nggnttctat gaccctatga ccccagtcaa 300
 tgccaggtac gaatttggtc aggctctctt cactggctgg gctgctgctt 350
ctctctgcct tctgggaggt gccctacttt gctgttcctg tccccgaa 398
<210> 276
<211> 495
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 39, 58, 130, 234, 314, 364, 427, 450, 461, 476
<223> unknown base
<400> 276
 agcaatgccc tgccccagt ggaggattaa ttcctatgnt ggggacaaca 50
 ttgtgacngc ccaggccatg tacggggggc tgtggatgtc ctgcgtgtcg 100
 cagagcaccg ggcagatcca gtgcaaagtn tttgactcct tgctgaattt 150
 gagcagcaca ttgcaagcaa cccgtgcctt gatggtggtt ggcatcttcc 200
 tgggagtgat agcaatcttt gtggccaccg tggnaatgaa gtgtatgaag 250
 tgcttggaag acgatgaggt gcagaagatg aggatggctg tcattggggg 300
 cgcgatattt cttnttgcag gtctggctat tttagttgcc acagcatggt 350
 atggcaatag aatngttcaa gaattttatg accctatgac cccagtcaat 400
 gccaggtacg aatttggtca ggctttnttc actggctggg ctgctgcttn 450
 tttctgcctt ntgggaggtg ccctantttg ctgttcctgc gaacc 495
<210> 277
<211> 200
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 34, 87, 138, 147, 163, 165-166, 172
<223> unknown base
<400> 277
tcataggggg gcgcgatatt ttttcttgca ggtntggtta ttttagttgc 50
 cacagcatgg tatggcaata gaatcgttca agaattntat gaccctatga 100
 ccccaqtcaa tqccaqqtac qaatttqqtc aqqctctntt cactqqntqq 150
```

gctgctgctt ctntnngcct tntgggaggt gccctacttt gctgttcctg 200

```
<210> 278
<211> 542
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 26, 43, 55, 77, 198, 361-362, 391-392, 396
<223> unknown base
<400> 278
ttcctqqqat qqatccqccc ccatcntcac atqccctqcc ccntqqaqat 50
 ttacncctat gctggcgaac aacatcntga ccgcccaggc catgtacgag 100
 qqqctqtqqa atqtcctqcq tqtcccaqaq caccgggcag atccaqtqca 150
 aagtetttga eteettgetg aatetgagea geacattgea ageaacentg 200
 ccttgatgqt ggttggcatc ctcctgggag tgatagcaat ctttgtggcc 250
 accettegca teaaagteta teaagteett geaagaceat gagetecaga 300
 agatgaggat ggctgtcatt gggggcgcga tatttcttct tgcaggtctg 350
 getattttag nngccacage atggtatgge aatcagacce nntcanaaac 400
 tctatgaccc tatgacccca gtcaatgcca ggtacgaatt tggtcaggct 450
 ctcttcactg gctgggctgc tgcttctctc tgccttctgg gaggtgccct 500
 actttqctqt tcctqtcccc gaaaaacaac ctcttaccca cg 542
<210> 279
<211> 548
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 90, 115, 147, 228, 387
<223> unknown base
<400> 279
 cggggctgca gctgttgggc ttcatctcgc ttcctgggat ggaatcqqcg 50
 ccatcgtcag cactgccctg ccccatggag gatttactcn tatgctggcg 100
 acaacatcgt gaccneccag gccatgtacg aggggctgtg gatgtengeg 150
 tgtcgcagag caccgggcag atccagtgca aagtctttga ctccttgctg 200
 aatctgagca gcacattgca agcaaccntg ccttgatggt ggttggcatc 250
 ctcctgggag tgatagcaat ctttgtggcc accgttggca tgaagtgtat 300
```

gaagtgcttg gaagacgatg aggtgcagaa gatgaggatg gctgtcattg 350

```
ggggcgcgat atttcttctt gcaggtctgg ctatttntag ttgccacagc 400
 atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccccag 450
 tcaatgccag gtacgaattt ggtcaggctc tcttcactgg ctgggctgct 500
 gcttctctct gccttctggg aggtgcccta ctttgctgtt cctgcgaa 548
<210> 280
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 280
 cgagcgagtc atggccaacg c 21
<210> 281
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 281
gtgtcacacg tagtctttcc cgctgg 26
<210> 282
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 282
 ctgcagctgt tgggcttcat tctcgccttc ctgggatgga tcg 43
<210> 283
<211> 2285
<212> DNA
<213> Homo sapiens
<400> 283
 gegtgeegte agetegeegg geaeegegge etegeeeteg eeeteegeec 50
 ctgcgcctgc accgcgtaga ccgaccccc cctccagcgc gcccacccgg 100
 tagaggaccc ccgcccgtgc cccgaccggt ccccgccttt ttgtaaaact 150
 taaagcgggc gcagcattaa cgcttcccgc cccggtgacc tctcaggggt 200
 ctccccgcca aaggtgctcc gccgctaagg aacatggcga aggtggagca 250
 ggtcctgagc ctcgagccgc agcacgagct caaattccga ggtcccttca 300
```

ccqatgttgt caccaccaac ctaaagcttg gcaacccgac agaccgaaat 350 gtgtgtttta aggtgaagac tacagcacca cgtaggtact gtgtgaggcc 400 caacagegga atcategatg caggggeete aattaatgta tetgtgatgt 450 tacageettt egattatgat eecaatgaga aaagtaaaca caagtttatg 500 gttcagtcta tgtttgctcc aactgacact tcagatatgg aagcagtatg 550 gaaggaggca aaaccggaag accttatgga ttcaaaactt agatgtgtgt 600 ttgaattgcc agcagagaat gataaaccac atgatgtaga aataaataaa 650 attatatcca caactgcatc aaagacagaa acaccaatag tgtctaagtc 700 tctgagttct tctttggatg acaccgaagt taagaaggtt atggaagaat 750 gtaagaggct gcaaggtgaa gttcagaggc tacgggagga gaacaagcag 800 ttcaaggaag aagatggact gcggatgagg aagacagtgc agagcaacag 850 ccccatttca gcattagccc caactgggaa ggaagaaggc cttagcaccc 900 ggctcttggc tctggtggtt ttgttcttta tcgttggtgt aattattggg 950 aagattgcct tgtagaggta gcatgcacag gatggtaaat tggattggtg 1000 gatccaccat atcatgggat ttaaatttat cataaccatg tgtaaaaaga 1050 aattaatgta tgatgacatc tcacaggtct tgcctttaaa ttacccctcc 1100 ctgcacacac atacacagat acacacaca aaatataatg taacgatctt 1150 ttagaaagtt aaaaatgtat agtaactgat tgagggggaa aaagaatgat 1200 ctttattaat gacaagggaa accatgagta atgccacaat ggcatattgt 1250 aaatgtcatt ttaaacattg gtaggcettg gtacatgatg ctggattace 1300 tctcttaaaa tqacaccctt cctcqcctqt tqqtqctqqc ccttqqqqaq 1350 ctggagccca gcatgctggg gagtgcggtc agctccacac agtagtcccc 1400 acqtqqccca ctcccqqccc aggctqcttt ccqtqtcttc agttctqtcc 1450 aagccatcag ctccttggga ctgatgaaca gagtcagaag cccaaaggaa 1500 ttgcactgtg gcagcatcag acgtactcgt cataagtgag aggcgtgtgt 1550 tgactgattg acccagcgct ttggaaataa atggcagtgc tttgttcact 1600 taaagggacc aagctaaatt tgtattggtt catgtagtga agtcaaactg 1650 ttattcagag atgtttaatg catatttaac ttatttaatg tatttcatct 1700 catgttttct tattgtcaca agagtacagt taatgctgcg tgctgctgaa 1750

ctctgttggg tgaactggta ttgctgctgg agggctgtgg gctcctctgt 1800 ctctggagag tctggtcatg tggaggtggg gtttattggg atgctggaga 1850 agagctgcca ggaagtgttt tttctgggtc agtaaataac aactgtcata 1900 gggagggaaa ttctcagtag tgacagtcaa ctctaggtta cctttttaa 1950 tgaagagtag tcagtcttct agattgttct tataccacct ctcaaccatt 2000 actcacactt ccagcgccca ggtccaagtc tgagcctgac ctccccttgg 2050 ggacctagcc tggagtcagg acaaatggat cgggctgcag agggttagaa 2100 gcgagggcac cagcagttgt gggtgggag caagggaaga gagaaactct 2150 tcagcgaatc cttctagtac tagttgagag tttgactgtg aattaatttt 2200 atgccataaa agaccaaccc agttctgttt gactatgtag catcttgaaa 2250 agaaaaatta taataaagcc ccaaaattaa gaaaa 2285

<210> 284

<211> 243

<212> PRT

<213> Homo sapiens

<400> 284

Met Ala Lys Val Glu Gln Val Leu Ser Leu Glu Pro Gln His Glu 1 5 10 15

Leu Lys Phe Arg Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu 20 25 30

Lys Leu Gly Asn Pro Thr Asp Arg Asn Val Cys Phe Lys Val Lys 35 40 45

Thr Thr Ala Pro Arg Arg Tyr Cys Val Arg Pro Asn Ser Gly Ile 50 55 60

Ile Asp Ala Gly Ala Ser Ile Asn Val Ser Val Met Leu Gln Pro 65 70 75

Phe Asp Tyr Asp Pro Asn Glu Lys Ser Lys His Lys Phe Met Val 80 85 90

Gln Ser Met Phe Ala Pro Thr Asp Thr Ser Asp Met Glu Ala Val 95 100 105

Trp Lys Glu Ala Lys Pro Glu Asp Leu Met Asp Ser Lys Leu Arg 110 115 120

Cys Val Phe Glu Leu Pro Ala Glu Asn Asp Lys Pro His Asp Val 125 130 135

Glu Ile Asn Lys Ile Ile Ser Thr Thr Ala Ser Lys Thr Glu Thr 140 145 150

```
ProIleValSerLys<br/>155SerLeuSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerSerThrGlu<br/>180GluArgLeuArgGlu<br/>185Glu<br/>185Asn<br/>200Lys<br/>201Gln<br/>201Phe<br/>201Lys<br/>201Glu<br/>201Phe<br/>201SerAsn<br/>205SerProIleSerAla<br/>210LeuAlaProThrGly<br/>230LysGly<br/>230Gly<br/>231YalIleIleGly<br/>235YalIleIleGly<br/>240
```

Ile Ala Leu

<210> 285 <211> 418

<212> DNA <213> Homo sapiens <220> <221> unsure <222> 40, 53, 68, 119, 134, 177-178, 255 <223> unknown base

<400> 285
gtcagtcttc tagattgtcc ttatcccacc tttcaaccan tactcacatt 50

tcnagcgccc aggtccangt ctgagcctga cttccccttg gggacctagc 100
ctggagtcag gacaatggnt cgggctgcag aggnttagaa gcgagggcac 150
cagcagtttt gggtggggag caagggnnga gagaaactct tcagcgaatc 200
cttctagtac tagttgagag tttgactgtg aattaatttt atgccataaa 250
agacnaaccc agttctgttt gactatgtag catcttgaaa agaaaaatta 300
taataaagcc ccaaaattaa gaattctttt gtcattttgt cacatttgct 350
ctatgggggg aattattatt ttatcatttt tattattttg ccattggaag 400
gttaacttta aaatgagc 418

<210> 286 <211> 543 <212> DNA <213> Homo sapiens <220> <221> unsure

<222> 73, 97

```
<223> unknown base
<400> 286
 tattgtaaag gccattttaa accattggta ggccttggta catgatgctg 50
 gattacctcc ttaaatgaca conttoctcg cotgttggtg ctggconttg 100
 gggagctgga gccccagcat gctggggagt gcggtcagct ccacacagta 150
 gtccccacgt ggcccactcc cggcccaggc tgctttccgt gtcttcagtt 200
 ctgtccaagc catcagctcc ttgggactga tgaacagagt cagaagccca 250
 aaggaattgc cactgtggca gcatcagacg tactcgtcat aagtgagagg 300
 cgtgtgttga ctgattgacc cagcgctttg gaaataaatg gcagtgcttt 350
 gttcacttaa agggaccaag ctaaattgta ttggttcatg tagtgaagtc 400
 aaactgttat tcagagatgt ttaatgcata tttaacttat ttaatgtatt 450
 tcatctcatg ttttcttatt gtcacaagag tacagttaat gctgcgtgct 500
 gctgaactct gttgggtgaa ctggtattgc tgctggaggg ctg 543
<210> 287
<211> 270
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 38, 64, 72, 164, 198, 200, 220, 222, 229, 242
<223> unknown base
<400> 287
 ccctggtggt tttgttcttt aattcgttgg tgtaattntt gggaagattg 50
 cttgtagagg tagnatgcac cnggctggta aattggattg gtggatccac 100
 catatccatg ggatttaaat ttatcataac catgtgtaaa aagaaattaa 150
 tgtatgatga catntcacag gtattgcctt taaattaccc atccctgnan 200
 acacatacac agatacacan anacaaatnt aatgtaacga tnttttagaa 250
 agttaaaaat gtatagtaac 270
 <210> 288
 <211> 428
 <212> DNA
 <213> Homo sapiens
 <220>
```

<221> unsure <222> 35, 116, 129, 197, 278, 294, 297, 349, 351 <223> unknown base

```
<400> 288
 ggtggcccat tcccggccca ggctgctttc cggtnttcag ttctgtccaa 50
 gccatcagct ccttgggact gatgaacaga gtcagaagcc caaaggaatt 100
 gcactgtggc agcatnagac gtacttgtna taagtgagag gcgtgtgttg 150
 actgattgac ccagcgcttt ggaaataaat ggcagtgctt tgttcantta 200
 aagggaccaa gctaaatttg tattggttca tgtagtgaag tcaaactgtt 250
 attcagagat gtttaatgca tatttaantt atttaatgta tttnatntca 300
 tgttttctta ttgtcacaag agtacagtta atgctgcgtg ctgctgaant 350
 ntgttgggtg aactggtatt gctgctggag ggctgtgggc tcctctgtct 400
 ttggagagtc tggtcatgtg gaggtggg 428
<210> 289
<211> 320
<212> DNA
<213> Homo sapiens
<400> 289
 tgctttccgt gtcttcagtt ctgtccaagc catcagctcc ttgggacttg 50
 atgaacagag tcagaagccc aaaggaattg cactgtggca gcatcagacg 100
 tactcgtcat aagtgagagg cgtgtgttga ctgattgacc cagcgctttg 150
 gaaataaatg gcagtgcttt gttcacttaa agggaccaag ctaaatttgt 200
 attggttcat gtagtgaagt caaactgtta ttcagagatg tttaatgcat 250
 atttaactta tttaatgtat ttcatctcat gttttcttat tgtcacaaga 300
 gtacagttaa tgctgcgtgc 320
<210> 290
<211> 609
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 57, 60, 186, 235, 244, 304, 339, 355, 359, 361, 387, 432, 441,
      447, 481, 513, 532, 584, 598
<223> unknown base
<400> 290
 aaacctttaa aagttgaggg gaaaagaatg atcctttatt aatgacaagg 50
 gaaaccntgn gtaatgccac aatggcatat tgtaaatgtc attttaaaca 100
 ttggtaggcc ttggtacatg atgctggatt acctctctta aaatgacacc 150
 cttcctcgcc tgttggtgct ggcccttggg gagctngagc ccagcatgct 200
```

ggggagtgcg gtctgctcca cacagtagtc cccangtggc ccantcccgg 250 cccaggctgc tttccgtgtc ttcagttctg tccaagccat cagctccttg 300 ggantgatga acagagtcag aagcccaaag gaattgcant gtggcagcat 350 cagangtant ngtcataagt gagaggcgtg tgttgantga ttgacccagc 400 gctttggaaa taaatggcag tgctttgttc anttaaaggg nccaagntaa 450 atttgtattg gttcatgtag tgaagtcaaa ntgttattca gagatgttta 500 atgcatattt aanttatta atgtattca tntcatgttt tcttattgtc 550 acaagggtac agttaatgct gcgtgctgct gaantctgtt gggtgaantg 600 gtattgctg 609

<210> 291

<211> 493

<212> DNA

<213> Homo sapiens

<400> 291

ggcccttggg gagctggagc ccagcatgct ggggagtgcg gtcagctcca 50 cacagtagtc cccacgtggc ccactcccgg cccaggctgc tttccgtgtc 100 ttcagttctg tccaagccat cagctccttg ggactgatga acagagtcag 150 aagcccaaag gaattgcact gtggcagcat cagacgtact cgtcataagt 200 gagaggcgtg tgttgactga ttgacccagc gctttggaaa taaatggcag 250 tgcttgttc acttaaaggg accaagctaa atttgtattg gttcatgtag 300 tgaagtcaaa ctgttattca gagatgttta atgcatattt aacttatta 350 atgtattca tctcatgttt tcttattgtc acaagagtac agttaatgct 400 gcgtgctgct gaactctgtt gggtgaactg gtattgctgc tggagggctg 450 tggggctcctc tgtctcgga gagtctggtc atgtggaggt ggg 493

<210> 292

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 292

gcaccaccgt aggtacttgt gtgaggc 27

<210> 293

<211> 23

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 293
aaccaccaga gccaagagcc ggg 23
<210> 294
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 294
cagcggaatc atcgatgcag gggcctcaat taatgtatct gtgatgttac 50
<210> 295
<211> 2530
<212> DNA
<213> Homo sapiens
<400> 295
 gcgagctccg ggtgctgtgg cccggccttg gcggggcggc ctccggctca 50
 ggctggctga gaggctccca gctgcagcgt ccccgcccgc ctcctcggga 100
 gctctgatct cagctgacag tgccctcggg gaccaaacaa gcctggcagg 150
 gtctcacttt gttgcccagg ctggagttca gtgccatgat catggtttac 200
 tgcagccttq acctcctqqq ttcaaqcqat cctqctqaqt aqctqqqact 250
 acaggacaaa attagaagat caaaatggaa aatatgctgc tttggttgat 300
 atttttcacc cctgggtgga ccctcattga tggatctgaa atggaatggg 350
 attttatgtg gcacttgaga aaggtacccc ggattgtcag tgaaaggact 400
 ttccatctca ccagccccgc atttgaggca gatgctaaga tgatggtaaa 450
 tacagtgtgt ggcatcgaat gccagaaaga actcccaact cccagccttt 500
 ctgaattgga ggattatctt tcctatgaga ctgtctttga gaatggcacc 550
 cgaaccttaa ccagggtgaa agttcaagat ttggttcttg agccgactca 600
 aaatatcacc acaaagggag tatctgttag gagaaagaga caggtgtatg 650
 gcaccgacag caggttcagc atcttggaca aaaggttctt aaccaatttc 700
 cctttcagca cagctgtgaa gctttccacg ggctgtagtg gcattctcat 750
 ttcccctcag catgttctaa ctgctgccca ctgtgttcat gatggaaagg 800
 actatgtcaa agggagtaaa aagctaaggg tagggttgtt gaagatgagg 850
```

aataaaagtg gaggcaagaa acgtcgaggt tctaagagga gcaggagaga 900 agctagtggt ggtgaccaaa gagagggtac cagagagcat ctgcaggaga 950 gagcgaaggg tgggagaaga agaaaaaaat ctggccgggg tcagaggatt 1000 qccqaaqqqa qqccttcctt tcaqtqqacc cqqqtcaaqa atacccacat 1050 tccgaagggc tgggcacgag gaggcatggg ggacgctacc ttggactatg 1100 actatgctct tctggagctg aagcgtgctc acaaaaagaa atacatggaa 1150 cttqqaatca qcccaacqat caaqaaaatq cctqqtqqaa tqatccactt 1200 ctcaggattt gataacgata gggctgatca gttggtctat cggttttgca 1250 gtgtgtccga cgaatccaat gatctccttt accaatactg cgatgctgag 1300 tegggeteca eeggtteggg ggtetatetg egtetgaaag ateeagacaa 1350 aaagaattgg aagcgcaaaa tcattgcggt ctactcaggg caccagtggg 1400 tggatgtcca cggggttcag aaggactaca acgttgctgt tcgcatcact 1450 cccctaaaat acgcccagat ttgcctctgg attcacggga acgatgccaa 1500 ttgtgcttac ggctaacaga gacctgaaac agggcggtgt atcatctaaa 1550 tcacagagaa aaccagctct gcttaccgta gtgagatcac ttcataggtt 1600 atgcctggac ttgaactctg tcaatagcat ttcaacattt ttcaaaatca 1650 qqaqattttc qtccatttaa aaaatqtata qqtqcaqata ttqaaactag 1700 gtgggcactt caatgccaag tatatactct tctttacatg gtgatgagtt 1750 tcatttgtag aaaaattttg ttgccttctt aaaaattaga cacactttaa 1800 accttcaaac aggtattata aataacatgt gactccttaa tggacttatt 1850 ctcagggtcc tactctaaga agaatctaat aggatgctgg ttgtgtatta 1900 aatgtgaaat tgcatagata aaggtagatg gtaaagcaat tagtatcaga 1950 atagagacag aaagttacaa cacagtttgt actactctga gatggatcca 2000 ttcagctcat qccctcaatg tttatattgt qttatctgtt gggtctggga 2050 catttagttt agtttttttg aagaattaca aatcagaaga aaaagcaagc 2100 attataaaca aaactaataa ctgttttact gctttaagaa ataacaatta 2150 caatgtgtat tatttaaaaa tgggagaaat agtttgttct atgaaataaa 2200 cctagtttag aaatagggaa gctgagacat tttaagatct caagttttta 2250 tttaactaat actcaaaata tggacttttc atgtatgcat agggaagaca 2300 cttcacaaat tatgaatgat catgtgttga aagccacatt attttatgct 2350 atacattcta tgtatgaggt gctacatttt taggacaaag aattctgtaa 2400 tctttttcaa gaaagagtct ttttctcctt gacaaaatcc agcttttgta 2450 tgaggactat agggtgaatt ctctgattag taattttaga tatgtccttt 2500 cctaaaaatg aataaaattt atgaatatga 2530

<210> 296

<211> 413

<212> PRT

<213> Homo sapiens

<400> 296

Met Glu Asn Met Leu Leu Trp Leu Ile Phe Phe Thr Pro Gly Trp 1 5 10 15

Thr Leu Ile Asp Gly Ser Glu Met Glu Trp Asp Phe Met Trp His
20 25 30

Leu Arg Lys Val Pro Arg Ile Val Ser Glu Arg Thr Phe His Leu 35 40 45

Thr Ser Pro Ala Phe Glu Ala Asp Ala Lys Met Met Val Asn Thr 50 55 60

Val Cys Gly Ile Glu Cys Gln Lys Glu Leu Pro Thr Pro Ser Leu
65 70 75

Ser Glu Leu Glu Asp Tyr Leu Ser Tyr Glu Thr Val Phe Glu Asn 80 85 90

Gly Thr Arg Thr Leu Thr Arg Val Lys Val Gln Asp Leu Val Leu 95 100 105

Glu Pro Thr Gln Asn Ile Thr Thr Lys Gly Val Ser Val Arg Arg 110 115 120

Lys Arg Gln Val Tyr Gly Thr Asp Ser Arg Phe Ser Ile Leu Asp 125 130 135

Lys Arg Phe Leu Thr Asn Phe Pro Phe Ser Thr Ala Val Lys Leu 140 145 150

Ser Thr Gly Cys Ser Gly Ile Leu Ile Ser Pro Gln His Val Leu 155 160 165

Thr Ala Ala His Cys Val His Asp Gly Lys Asp Tyr Val Lys Gly 170 175 180

Ser Lys Lys Leu Arg Val Gly Leu Leu Lys Met Arg Asn Lys Ser 185 190 195

Gly Gly Lys Lys Arg Arg Gly Ser Lys Arg Ser Arg Arg Glu Ala 200 205 210

<210> 298 <211> 24 <212> DNA

<213> Artificial Sequence

```
Ser Gly Gly Asp Gln Arg Glu Gly Thr Arg Glu His Leu Gln Glu
                215
Arg Ala Lys Gly Gly Arg Arg Lys Lys Ser Gly Arg Gly Gln
Arg Ile Ala Glu Gly Arg Pro Ser Phe Gln Trp Thr Arg Val Lys
Asn Thr His Ile Pro Lys Gly Trp Ala Arg Gly Gly Met Gly Asp
                260
Ala Thr Leu Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Arg Ala
His Lys Lys Lys Tyr Met Glu Leu Gly Ile Ser Pro Thr Ile Lys
                290
Lys Met Pro Gly Gly Met Ile His Phe Ser Gly Phe Asp Asn Asp
Arg Ala Asp Gln Leu Val Tyr Arg Phe Cys Ser Val Ser Asp Glu
                                     325
Ser Asn Asp Leu Leu Tyr Gln Tyr Cys Asp Ala Glu Ser Gly Ser
Thr Gly Ser Gly Val Tyr Leu Arg Leu Lys Asp Pro Asp Lys Lys
Asn Trp Lys Arg Lys Ile Ile Ala Val Tyr Ser Gly His Gln Trp
Val Asp Val His Gly Val Gln Lys Asp Tyr Asn Val Ala Val Arg
                                     385
                 380
Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Leu Trp Ile His Gly
                                     400
                 395
Asn Asp Ala Asn Cys Ala Tyr Gly
                 410
<210> 297
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 297
 gcatctgcag gagagagcga aggg 24
```

202

```
<220>
<223> Synthetic oligonucleotide probe
<400> 298
catcgttccc gtgaatccag aggc 24
<210> 299
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 299
gaagggaggc cttcctttca gtggacccgg gtcaagaata cccac 45
<210> 300
<211> 1869
<212> DNA
<213> Homo sapiens
<400> 300
 aatgtgagag gggctgatgg aagctgatag gcaggactgg agtgttagca 50
 ccagtactgg atgtgacagc aggcagagga gcacttagca gcttattcag 100
 tgtccgattc tgattccggc aaggatccaa gcatggaatg ctgccgtcgg 150
 gcaactcctg gcacactgct cctctttctg gctttcctgc tcctgagttc 200
 caggaccgca cgctccgagg aggaccggga cggcctatgg gatgcctggg 250
 gcccatggag tgaatgctca cgcacctgcg ggggaggggc ctcctactct 300
ctgaggcgct gcctgagcag caagagctgt gaaggaagaa atatccgata 350
 cagaacatgc agtaatgtgg actgcccacc agaagcaggt gatttccgag 400
 ctcagcaatg ctcagctcat aatgatgtca agcaccatgg ccagttttat 450
 gaatggette etgtqtetaa tgaccetgae aacceatgtt cacteaagtg 500
 ccaagccaaa ggaacaaccc tggttgttga actagcacct aaggtcttag 550
 atggtacgcg ttgctataca gaatctttgg atatgtgcat cagtggttta 600
 tgccaaattg ttggctgcga tcaccagctg ggaagcaccg tcaaggaaga 650
 taactgtggg gtctgcaacg gagatgggtc cacctgccgg ctggtccgag 700
 ggcagtataa atcccagctc tccgcaacca aatcggatga tactgtggtt 750
 gcacttccct atggaagtag acatattcgc cttgtcttaa aaggtcctga 800
 tcacttatat ctggaaacca aaaccctcca ggggactaaa ggtgaaaaca 850
gtctcagctc cacaggaact ttccttgtgg acaattctag tgtggacttc 900
```

cagaaatttc cagacaaaga gatactgaga atggctggac cactcacagc 950 agatttcatt gtcaagattc gtaactcggg ctccgctgac agtacagtcc 1000 agttcatctt ctatcaaccc atcatccacc gatggaggga gacggatttc 1050 tttccttgct cagcaacctg tggaggaggt tatcagctga catcggctga 1100 gtgctacgat ctgaggagca accgtgtggt tgctgaccaa tactgtcact 1150 attacccaga gaacatcaaa cccaaaccca agcttcagga gtgcaacttg 1200 gatccttgtc cagccagtga cggatacaag cagatcatgc cttatgacct 1250 ctaccatccc cttcctcggt gggaggccac cccatggacc gcgtgctcct 1300 cctcgtgtgg ggggggcatc cagagccggg cagtttcctg tgtggaggag 1350 gacatccagg ggcatgtcac ttcagtggaa gagtggaaat gcatgtacac 1400 ccctaagatg cccatcgcgc agccctgcaa catttttgac tgccctaaat 1450 ggctggcaca ggagtggtct ccgtgcacag tgacatgtgg ccagggcctc 1500 agataccgtg tggtcctctg catcgaccat cgaggaatgc acacaggagg 1550 ctgtagccca aaaacaaagc cccacataaa agaggaatgc atcgtaccca 1600 ctccctgcta taaacccaaa gagaaacttc cagtcgaggc caagttgcca 1650 tggttcaaac aagctcaaga gctagaagaa ggagctgctg tgtcagagga 1700 gccctcgtaa gttgtaaaag cacagactgt tctatatttg aaactgtttt 1750 gtttaaagaa agcagtgtct cactggttgt agctttcatg ggttctgaac 1800 taagtgtaat catctcacca aagctttttg gctctcaaat taaagattga 1850 ttagtttcaa aaaaaaaaa 1869

```
<210> 301
<211> 525
<212> PRT
```

<213> Homo sapiens

 Leu Ser Ser Lys Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala Gln Gln Cys Ser Ala His Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser Asn Asp Pro Asp Asn Pro Cys Ser Leu Lys Cys Gln Ala Lys Gly Thr Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser Gly Leu Cys Gln Ile Val Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly Val Cys Asn Gly 170 Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr Lys Ser Gln 185 Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Leu Pro Tyr 200 Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser 230 Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala 280 Asp Ser Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg 295 Trp Arg Glu Thr Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn Arg Val Val Ala Asp Gln Tyr Cys His Tyr Tyr Pro Glu Asn Ile Lys Pro Lys Pro Lys Leu Gln Glu Cys Asn Leu Asp Pro Cys Pro

360 350 355 Ala Ser Asp Gly Tyr Lys Gln Ile Met Pro Tyr Asp Leu Tyr His Pro Leu Pro Arg Trp Glu Ala Thr Pro Trp Thr Ala Cys Ser Ser 390 380 Ser Cys Gly Gly Ile Gln Ser Arg Ala Val Ser Cys Val Glu Glu Asp Ile Gln Gly His Val Thr Ser Val Glu Glu Trp Lys Cys 420 410 Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys Asn Ile Phe 425 Asp Cys Pro Lys Trp Leu Ala Gln Glu Trp Ser Pro Cys Thr Val 450 445 440 Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile Asp His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro 475 470 His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro 490 Lys Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln 500 Ala Gln Glu Leu Glu Glu Gly Ala Ala Val Ser Glu Glu Pro Ser 520 515 <210> 302 <211> 1533 <212> DNA <213> Homo sapiens

<213> Homo sapier

<400> 302
cggacgcgtg ggcggcgct gcggaactcc cgtggagggg ccggtgggcc 50

ctcgggcctg acagatggca gtggccactg cggcggcagt actggccgct 100
ctgggcgggg cgctgtggct ggcggcccgc cggttcgtgg ggcccagggt 150
ccagcggctg cgcagaggcg gggaccccgg cctcatgcac gggaagactg 200
tgctgatcac cggggcgaac agcggcctgg gccgccac ggccgccag 250
ctactgcgcc tgggagcgcg ggtgatcatg ggctgccgg accgcgcgg 300
cgccgaggag gcggcggtc agctccgcc ggagctccgc caggccgcg 350
agtgcggccc agagcctggc gtcagcggg tgggcgagct catagtccgg 400
gagctggacc tcgcctcgct gcgctcggtg cgcgccttct gccaggaaat 450

gctccaggaa gagcctaggc tggatgtctt gatcaataac gcagggatct 500 tccagtgccc ttacatgaag actgaagatg ggtttgagat gcagttcgga 550 gtgaaccatc tggggcactt tctactcacc aatcttctcc ttggactcct 600 caaaagttca gctcccagca ggattgtggt agtttcttcc aaactttata 650 aatacqqaga catcaatttt gatgacttga acagtgaaca aagctataat 700 aaaagctttt gttatagccg gagcaaactg gctaacattc tttttaccag 750 ggaactagec egeegettag aaggeacaaa tgteacegte aatgtgttge 800 atcctggtat tgtacggaca aatctgggga ggcacataca cattccactg 850 ttggtcaaac cactcttcaa tttggtgtca tgggcttttt tcaaaactcc 900 aqtaqaaqqt gcccagactt ccatttattt ggcctcttca cctgaggtag 950 aaggagtgtc aggaagatac tttggggatt gtaaagagga agaactgttg 1000 cccaaagcta tggatgaatc tgttgcaaga aaactctggg atatcagtga 1050 agtgatggtt ggcctgctaa aataggaaca aggagtaaaa gagctgttta 1100 taaaactgca tatcagttat atctgtgatc aggaatggtg tggattgaga 1150 acttgttact tgaagaaaaa gaattttgat attggaatag cctgctaaga 1200 ggtacatgtg ggtattttgg agttactgaa aaattatttt tgggataaga 1250 gaatttcagc aaagatgttt taaatatata tagtaagtat aatgaataat 1300 aagtacaatg aaaaatacaa ttatattgta aaattataac tgggcaagca 1350 tggatgacat attaatattt gtcagaatta agtgactcaa agtgctatcg 1400 agaggttttt caagtatctt tgagtttcat ggccaaagtg ttaactagtt 1450 ttactacaat gtttggtgtt tgtgtggaaa ttatctgcct ggtgtgtgca 1500

<210> 303

<211> 336

<212> PRT

<213> Homo sapiens

<400> 303

Met Ala Val Ala Thr Ala Ala Ala Val Leu Ala Ala Leu Gly Gly 1 5 10 15

cacaagtett acttggaata aatttactgg tac 1533

Ala Leu Trp Leu Ala Ala Arg Arg Phe Val Gly Pro Arg Val Gln 20 25 30

Arg Leu Arg Arg Gly Gly Asp Pro Gly Leu Met His Gly Lys Thr 35 40 45

Met Val Gly Leu Leu Lys

Val Leu Ile Thr Gly Ala Asn Ser Gly Leu Gly Arg Ala Thr Ala Ala Glu Leu Leu Arg Leu Gly Ala Arg Val Ile Met Gly Cys Arg Asp Arg Ala Arg Ala Glu Glu Ala Ala Gly Gln Leu Arg Arg Glu Leu Arg Gln Ala Ala Glu Cys Gly Pro Glu Pro Gly Val Ser Gly Val Gly Glu Leu Ile Val Arg Glu Leu Asp Leu Ala Ser Leu Arg 115 Ser Val Arg Ala Phe Cys Gln Glu Met Leu Gln Glu Glu Pro Arg Leu Asp Val Leu Ile Asn Asn Ala Gly Ile Phe Gln Cys Pro Tyr Met Lys Thr Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His Leu Gly His Phe Leu Leu Thr Asn Leu Leu Leu Gly Leu Leu Lys Ser Ser Ala Pro Ser Arg Ile Val Val Val Ser Ser Lys Leu Tyr Lys Tyr Gly Asp Ile Asn Phe Asp Asp Leu Asn Ser Glu Gln Ser Tyr Asn Lys Ser Phe Cys Tyr Ser Arg Ser Lys Leu Ala Asn Ile 220 Leu Phe Thr Arg Glu Leu Ala Arg Arg Leu Glu Gly Thr Asn Val Thr Val Asn Val Leu His Pro Gly Ile Val Arg Thr Asn Leu Gly Arg His Ile His Ile Pro Leu Leu Val Lys Pro Leu Phe Asn Leu Val Ser Trp Ala Phe Phe Lys Thr Pro Val Glu Gly Ala Gln Thr Ser Ile Tyr Leu Ala Ser Ser Pro Glu Val Glu Gly Val Ser Gly Arg Tyr Phe Gly Asp Cys Lys Glu Glu Glu Leu Leu Pro Lys Ala Met Asp Glu Ser Val Ala Arg Lys Leu Trp Asp Ile Ser Glu Val 325 320

```
<210> 304
<211> 521
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 20, 34, 62, 87, 221, 229
<223> unknown base
<400> 304
 ggggattgta aagaggaagn actgtgccca aagntatgga tgaatctgtt 50
 gcaagaaaat tntgggatat cagtgaagtg atggttngcc tgctaaaata 100
 ggaacaagga gtaaaagagc tgtttataaa actgcatatc agttatatct 150
 gtgatcagga atggtgtgga ttgagaactt gttacttgaa gaaaaagaat 200
 tttgatattq gaataqcctg ntaagaggna catgtgggta ttttggagtt 250
 actgaaaaat tatttttggg ataagagaat ttcagcaaag atgttttaaa 300
 tatatatagt aagtataatg aataataagt acaatgaaaa atacaattat 350
attgtaaaat tataactggg caagcatgga tgacatatta atatttgtca 400
 gaattaagtg actcaaagtg ctatcgagag gtttttcaag tatctttgag 450
 tttcatggcc aaagtgttaa ctagttttac tacaatgttt ggtgtttgtg 500
 tggaaattat ctgcctggct t 521
<210> 305
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 305
 ccaggaaatg ctccaggaag agcc 24
<210> 306
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 306
 gcccatgaca ccaaattgaa gagtgg 26
<210> 307
```

<211> 45 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 307 aacgcaggga tcttccagtg cccttacatg aagactgaag atggg 45 <210> 308 <211> 1523 <212> DNA <213> Homo sapiens <400> 308 gagaggacga ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 50 cggagcccag ccctttccta acccaaccca acctagccca gtcccagccg 100 ccagegeetg teeetgteac ggaeceeage gttaccatge ateetgeegt 150 cttcctatcc ttacccgacc tcagatgctc ccttctgctc ctggtaactt 200 gggtttttac tcctgtaaca actgaaataa caagtcttgc tacagagaat 250 atagatgaaa ttttaaacaa tgctgatgtt gctttagtaa atttttatgc 300 tgactggtgt cgtttcagtc agatgttgca tccaattttt gaggaagctt 350 ccgatgtcat taaggaagaa tttccaaatg aaaatcaagt agtgtttgcc 400 agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 450 caaataccca accctcaaat tgtttcgtaa tgggatgatg atgaagagag 500 aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggcaa 550 caaaaaagtg accccattca agaaattcgg gacttagcag aaatcaccac 600 tcttgatcgc agcaaaagaa atatcattgg atattttgag caaaaggact 650 cggacaacta tagagttttt gaacgagtag cgaatatttt gcatgatgac 700 tgtgcctttc tttctgcatt tggggatgtt tcaaaaccgg aaagatatag 750 tggcgacaac ataatctaca aaccaccagg gcattctgct ccggatatgg 800 tgtacttggg agctatgaca aattttgatg tgacttacaa ttggattcaa 850 gataaatgtg ttcctcttgt ccgagaaata acatttgaaa atggagagga 900 attgacagaa gaaggactgc cttttctcat actctttcac atgaaagaag 950 atacagaaag tttagaaata ttccagaatg aagtagctcg gcaattaata 1000

agtgaaaaag gtacaataaa ctttttacat gccgattgtg acaaatttag 1050

<210> 309 <211> 406 <212> PRT <213> Homo sapiens

<400> 309 Met His Pro Ala Val Phe Leu Ser Leu Pro Asp Leu Arg Cvs Ser Leu Leu Leu Val Thr Trp Val Phe Thr Pro Val Thr Thr Glu 20 25 Ile Thr Ser Leu Ala Thr Glu Asn Ile Asp Glu Ile Leu Asn Asn Ala Asp Val Ala Leu Val Asn Phe Tyr Ala Asp Trp Cys Arq Phe 50 55 Ser Gln Met Leu His Pro Ile Phe Glu Glu Ala Ser Asp Val Ile Lys Glu Glu Phe Pro Asn Glu Asn Gln Val Val Phe Ala Arg Val 85 90 Asp Cys Asp Gln His Ser Asp Ile Ala Gln Arg Tyr Arg Ile Ser Lys Tyr Pro Thr Leu Lys Leu Phe Arg Asn Gly Met Met Lys 110 115 120 Arg Glu Tyr Arg Gly Gln Arg Ser Val Lys Ala Leu Ala Asp Tyr 130 Ile Arg Gln Gln Lys Ser Asp Pro Ile Gln Glu Ile Arg Asp Leu

Ala Glu Ile Thr Thr Leu Asp Arg Ser Lys Arg Asn Ile Ile Gly

155

145

160

150

165

Tyr	Phe	Glu	Gln	Lys 170	Asp	Ser	Asp	Asn	Tyr 175	Arg	Val	Phe	Glu	Arg 180
Val	Ala	Asn	Ile	Leu 185	His	Asp	Asp	Cys	Ala 190	Phe	Leu	Ser	Ala	Phe 195
Gly	Asp	Val	Ser	Lys 200	Pro	Glu	Arg	Tyr	Ser 205	Gly	Asp	Asn	Ile	Ile 210
Tyr	Lys	Pro	Pro	Gly 215	His	Ser	Ala	Pro	Asp 220	Met	Val	Tyr	Leu	Gly 225
Ala	Met	Thr	Asn	Phe 230	Asp	Val	Thr	Tyr	Asn 235	Trp	Ile	Gln	Asp	Lys 240
Cys	Val	Pro	Leu	Val 245	Arg	Glu	Ile	Thr	Phe 250	Glu	Asn	Gly	Glu	Glu 255
Leu	Thr	Glu	Glu	Gly 260	Leu	Pro	Phe	Leu	Ile 265	Leu	Phe	His	Met	Lys 270
Glu	Asp	Thr	Glu	Ser 275	Leu	Glu	Ile	Phe	Gln 280	Asn	Glu	Val	Ala	Arg 285
Gln	Leu	Ile	Ser	Glu 290	Lys	Gly	Thr	Ile	Asn 295	Phe	Leu	His	Ala	Asp 300
Cys	Asp	Lys	Phe	Arg 305	His	Pro	Leu	Leu	His 310	Ile	Gln	Lys	Thr	Pro 315
Ala	Asp	Cys	Pro	Val 320	Ile	Ala	Ile	Asp	Ser 325	Phe	Arg	His	Met	Tyr 330
Val	Phe	Gly	Asp	Phe 335	Lys	Asp	Val	Leu	Ile 340	Pro	Gly	Lys	Leu	Lys 345
Gln	Phe	Val	Phe	Asp 350	Leu	His	Ser	Gly	Lys 355	Leu	His	Arg	Glu	Phe 360
His	His	Gly	Pro	Asp 365	Pro	Thr	Asp	Thr	Ala 370	Pro	Gly	Glu	Gln	Ala 375
Gln	Asp	Val	Ala	Ser 380	Ser	Pro	Pro	Glu	Ser 385	Ser	Phe	Gln	Lys	Leu 390
Ala	Pro	Ser	Glu	Tyr 395	Arg	Tyr	Thr	Leu	Leu 400	Arg	Asp	Arg	Asp	Glu 405

Leu

<210> 310 <211> 182 <212> DNA <213> Homo sapiens

<220> <221> unsure

```
<222> 36, 48
<223> unknown base
<400> 310
 attaaggaag aatttccaaa tgaaaatcaa gtagtntttg ccagagtnga 50
 ttgtgatcag cactctgaca tagcccagag atacaggata agcaaatacc 100
 caaccctcaa attgtttcgt aatgggatga tgatgaagag agaatacagg 150
 ggtcagcgat cagtgaaagc attggcagat ta 182
<210> 311
<211> 598
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 38, 59, 140, 169, 174, 183, 282-283, 294-295, 319, 396
<223> unknown base
<400> 311
 agaggeetet etggaagttg teeegggtgt tegeegengg ageeegggte 50
 gagaggaena ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 100
 eggageceag ceettteeta acceaaceca acetagecen gteceageeg 150
 ccagegeetg tecetgtene gganeceage gtnaceatge atectgeegt 200
 cttcctatcc ttacccgacc tcagatgctc ccttctgctc ctggtaactt 250
 gggtttttac tcctgtaaca actgaaataa cnngtcttga tacnnagaat 300
 atagatgaaa ttttaaacna tgctgatgtg gctttagtca atttttatgc 350
 tgactggtgt cgtttcagtc agatgtggca tccaattttt gaggangctt 400
 ccgatgtcat taaggaagaa tttccaaatg aaaatcaagt agtgtttgcc 450
 agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 500
 caaataccca accctcaaat tgtttcgtaa tgggatgatg atgaagagag 550
 aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggc 598
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 312
 tgagaggcct ctctggaagt tg 22
```

```
<210> 313
   <211> 19
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 313
    gtcagcgatc agtgaaagc 19
   <210> 314
   <211> 20
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 314
    ccagaatgaa gtagctcggc 20
   <210> 315
   <211> 20
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
: :
   <400> 315
    ccgactcaaa atgcattgtc 20
   <210> 316
i da
   <211> 19
   <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 316
     catttggcag gaattgtcc 19
    <210> 317
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 317
     ggtgctatag gccaaggg 18
    <210> 318
    <211> 24
    <212> DNA
```

: : :

... H

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 318
ctgtatctct gggctatgtc agag 24
<210> 319
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 319
 ctacatataa tggcacatgt cagcc 25
<210> 320
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 320
cgtcttccta tccttacccg acctcagatg ctcccttctg ctcctg 46
<210> 321
<211> 1333
<212> DNA
<213> Homo sapiens
<400> 321
 gcccacgcgt ccgatggcgt tcacgttcgc ggccttctgc tacatgctgg 50
 cgctgctgct cactgccgcg ctcatcttct tcgccatttg gcacattata 100
 gcatttgatg agctgaagac tgattacaag aatcctatag accagtgtaa 150
 taccctgaat ccccttgtac tcccagagta cctcatccac gctttcttct 200
 gtgtcatgtt tctttgtgca gcagagtggc ttacactggg tctcaatatg 250
 cccctcttgg catatcatat ttggaggtat atgagtagac cagtgatgag 300
 tggcccagga ctctatgacc ctacaaccat catgaatgca gatattctag 350
 catattgtca gaaggaagga tggtgcaaat tagcttttta tcttctagca 400
 tttttttact acctatatgg catgatctat gttttggtga gctcttagaa 450
 caacacacag aagaattggt ccagttaagt gcatgcaaaa agccaccaaa 500
 tgaagggatt ctatccagca agatcctgtc caagagtagc ctgtggaatc 550
```

tgatcagtta ctttaaaaaa tgactcctta ttttttaaat gtttccacat 600 ttttgcttgt ggaaagactg ttttcatatg ttatactcag ataaagattt 650 taaatggtat tacgtataaa ttaatataaa atgattacct ctggtgttga 700 caggtttgaa cttgcacttc ttaaggaaca gccataatcc tctgaatgat 750 gcattaatta ctgactgtcc tagtacattg gaagcttttg tttataggaa 800 cttgtagggc tcattttggt ttcattgaaa cagtatctaa ttataaatta 850 gctgtagata tcaggtgctt ctgatgaagt gaaaatgtat atctgactag 900 tgggaaactt catgggtttc ctcatctgtc atgtcgatga ttatatatgg 950 atacatttac aaaaataaaa agcgggaatt ttcccttcgc ttgaatatta 1000 tccctgtata ttgcatgaat gagagatttc ccatatttcc atcagagtaa 1050 taaatatact tgctttaatt cttaagcata agtaaacatg atataaaaat 1100 atatgctgaa ttacttgtga agaatgcatt taaaagctatt ttaaatgtgt 1150 ttttatttgt aagacattac ttattaagaa attggttatt atgcttactg 1200 ttctaatctg gtggtaaagg tattcttaag aatttgcagg tactacagat 1250 tttcaaaact gaatgagaga aaattgtata accatcctgc tgttccttta 1300 gtgcaataca ataaaactct gaaattaaga ctc 1333

<210> 322

<211> 144

<212> PRT

<213> Homo sapiens

<400> 322

Met Ala Phe Thr Phe Ala Ala Phe Cys Tyr Met Leu Ala Leu Leu
1 5 10 15

Leu Thr Ala Ala Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala 20 30

Phe Asp Glu Leu Lys Thr Asp Tyr Lys Asn Pro Ile Asp Gln Cys 35 40 45

Asn Thr Leu Asn Pro Leu Val Leu Pro Glu Tyr Leu Ile His Ala 50 55 60

Phe Phe Cys Val Met Phe Leu Cys Ala Ala Glu Trp Leu Thr Leu 65 70 75

Gly Leu Asn Met Pro Leu Leu Ala Tyr His Ile Trp Arg Tyr Met 80 85 90

Ser Arg Pro Val Met Ser Gly Pro Gly Leu Tyr Asp Pro Thr Thr 95 100 105

```
Ile Met Asn Ala Asp Ile Leu Ala Tyr Cys Gln Lys Glu Gly Trp
                 110
Cys Lys Leu Ala Phe Tyr Leu Leu Ala Phe Phe Tyr Tyr Leu Tyr
                                     130
                 125
Gly Met Ile Tyr Val Leu Val Ser Ser
                 140
<210> 323
<211> 477
<212> DNA
<213> Homo sapiens
<400> 323
 attatagcat ttgatgagct gaagactgat tacaagatcc tatagaccag 50
 tgtaataccc tgaatcccct tgtactccca gagtacctca tccacgcttt 100
 cttctgtgtc atgtttcttt gtgcagcaga gtggcttaca ctgggtctca 150
 atatgcccct cttggcatat catatttgga ggtatatgag tagaccagtg 200
 atgagtggcc caggactcta tgaccctaca accatcatga atgcagatat 250
 tctagcatat tgtcagaagg aaggatggtg caaattagct ttttatcttc 300
 tagcattttt ttactaccta tatggcatga tctatgtttt ggtgagctct 350
 tagaacaaca cacagaagaa ttggtccagt taagtgcatg caaaaagcca 400
 ccaaatgaag ggattctatc cagcaagatc ctgtccaaga gtagcctgtg 450
 gaatctgatc agttacttta aaaaatg 477
<210> 324
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
<210> 325
<211> 41
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 325
 caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
<210> 326
```

```
ij
1 1000
4
-4
i fi
1 22
.....
```

```
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 326
 gtgcagcaga gtggcttaca 20
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 327
 actggaccaa ttcttctgtg 20
<210> 328
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 328
 gatattctag catattgtca gaaggaagga tggtgcaaat tagct 45
<210> 329
<211> 1174
<212> DNA
<213> Homo sapiens
 <400> 329
 cggacgcgtg ggggaaaccc ttccgagaaa acagcaacaa gctgagctgc 50
 tgtgacagag gggaacaaga tggcggcgcc gaaggggagc ctctgggtga 100
  ggacccaact ggggctcccg ccgctgctgc tgctgaccat ggccttggcc 150
  ggaggttcgg ggaccgcttc ggctgaagca tttgactcgg tcttgggtga 200
  tacggcgtct tgccaccggg cctgtcagtt gacctacccc ttgcacacct 250
  accctaagga agaggagttg tacgcatgtc agagaggttg caggctgttt 300
  tcaatttgtc agtttgtgga tgatggaatt gacttaaatc gaactaaatt 350
  ggaatgtgaa tctgcatgta cagaagcata ttcccaatct gatgagcaat 400
  atgcttgcca tcttggttgc cagaatcagc tgccattcgc tgaactgaga 450
  caagaacaac ttatgtccct gatgccaaaa atgcacctac tctttcctct 500
```

aactetggtg aggteattet ggagtgacat gatggaetee geacagaget 550 teataacete teatggaet tettatette aageegatga eggaaaaata 600 ggtatatatee agtetaagee agaaateeag taegeaceae atttggagea 650 ggaggeetaca aatttgagag aateateet aageaaaatg teetatetge 700 aaatgagaaa teeacaageg eacaggaatt teettgaaga tggagaaagt 750 gatggettet taagatgeet etetettaae teetgggtgga tettaactae 800 aacteettge eteteggtga taggattget teggagaaget gagtatetat 900 ggtgaettgg agttatgaa tgaacaaaag etaaacagat ateeaggteg agttattga tgaacaaaag etaaacagat ateeaggteg 950 teetettgg getgttagat etaaaacega agateatgaa gaageagge 1000 etetacetae aaaagtgaat ettgeteat etgaaatta ageatette 1050 tettaaaaag etteattgg atataggeet taagaaace eteaaaaag 1150 eaaataaag taeteeaate tgtg 1174

<210> 330 <211> 323

<212> PRT

<213> Homo sapiens

<400> 330

Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr Gln Leu Gly
1 5 10 15

Leu Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly Gly Ser 20 25 30

Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp Thr 35 40 45

Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr 50 55 60

Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg
65 70 75

Leu Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn 80 85 90

Arg Thr Lys Leu Glu Cys Glu Ser Ala Cys Thr Glu Ala Tyr Ser

Gln Ser Asp Glu Gln Tyr Ala Cys His Leu Gly Cys Gln Asn Gln 110 115 120

```
Leu Pro Phe Ala Glu Leu Arg Gln Glu Gln Leu Met Ser Leu Met
                                                         135
                125
Pro Lys Met His Leu Leu Phe Pro Leu Thr Leu Val Arg Ser Phe
                                                         150
                                    145
                140
Trp Ser Asp Met Met Asp Ser Ala Gln Ser Phe Ile Thr Ser Ser
                                    160
Trp Thr Phe Tyr Leu Gln Ala Asp Asp Gly Lys Ile Val Ile Phe
                170
                                     175
Gln Ser Lys Pro Glu Ile Gln Tyr Ala Pro His Leu Glu Gln Glu
                185
Pro Thr Asn Leu Arg Glu Ser Ser Leu Ser Lys Met Ser Tyr Leu
                                                         210
                200
Gln Met Arg Asn Ser Gln Ala His Arg Asn Phe Leu Glu Asp Gly
                215
Glu Ser Asp Gly Phe Leu Arg Cys Leu Ser Leu Asn Ser Gly Trp
                                                         240
                                     235
                 230
Ile Leu Thr Thr Leu Val Leu Ser Val Met Val Leu Leu Trp
Ile Cys Cys Ala Thr Val Ala Thr Ala Val Glu Gln Tyr Val Pro
                                                         270
                                     265
                 260
Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn Glu
                                     280
                 275
Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Arg
                 290
Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys
                                                         315
                                     310
                 305
Val Asn Leu Ala His Ser Glu Ile
                 320
```

<210> 331

<211> 350

<212> DNA

<213> Homo sapiens

<400> 331

ttgggtgata cggcgtcttg ccaccgggcc tgtcagttga cctaccctt 50 gcacacctac cctaaggaag aggagttgta cgcatgtcag agaggttgca 100 ggctgttttc aatttgtcag tttgtggatg atggaattga cttaaatcga 150 actaaattgg aatgtgaatc tgcatgtaca gaagcatatt cccaatctga 200 tgagcaatat gcttgccatc ttggttgcca gaatcagctg ccattcgctg 250

```
tttcctctaa ctctggtgag gtcattctgg agtgacatga tggactccgc 350
<210> 332
<211> 562
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 47
<223> unknown base
<400> 332
 cacactggcc ggatctttta gagtcctttg accttgacca agggtcngga 50
 aaacagcaac aagctgagct gctgtgacag agggaacaag atggcggcgc 100
 cgaagggagc ctttgggtga ggacccaact ggggctcccg ccgctgctgc 150
 tgctgaccat ggccttggcc ggaggttcgg ggaccgcttc ggctgaagca 200
 tttgactcgg tcttgggtga tacggcgtct tgccaccggg cctgtcagtt 250
 gacctacccc ttgcacacct accctaagga agaggagttg tacgcatgtc 300
 agagaggttg caggctgttt tcaatttgtc agtttgtgga tgatggaatt 350
 gacttaaatc gaactaaatt ggaatgtgaa tctgcatgta cagaagcata 400
 ttcccaatct gatgagcaat atgcttgcca tcttggttgc cagaatcagc 450
 tgccattcgc tgaactgaga caagaacaac ttatgtccct gatgccaaaa 500
 atgcacctac tctttcctct aactctggtg aggtcattct ggagtgacat 550
 gatggactcc gc 562
<210> 333
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<<223> Synthetic oligonucleotide probe
<400> 333
 acaagctgag ctgctgtgac ag 22
<210> 334
<211> 22
 <212> DNA
<213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
```

aactgagaca agaacaactt atgtccctga tgccaaaaat gcacctactc 300

```
<400> 334
tgattctggc aaccaagatg gc 22
<210> 335
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 335
 atggccttgg ccggaggttc ggggaccgct tcggctgaag 40
<210> 336
<211> 1885
<212> DNA
<213> Homo sapiens
<400> 336
 gcgaggtggc gatcgctgag aggcaggagg gccgaggcgg gcctgggagg 50
 cggcccggag gtggggcgc gctggggccg gcccgcacgg gcttcatctg 100
 agggcgcacg gcccgcgacc gagcgtgcgg actggcctcc caagcgtggg 150
 gcgacaagct gccggagctg caatgggccg cggctgggga ttcttgtttg 200
 gcctcctggg cgccgtgtgg ctgctcagct cgggccacgg agaggagcag 250
 cccccggaga cagcggcaca gaggtgcttc tgccaggtta gtggttactt 300
 ggatgattgt acctgtgatg ttgaaaccat tgatagattt aataactaca 350
 ggcttttccc aagactacaa aaacttcttg aaagtgacta ctttaggtat 400
 tacaaggtaa acctgaagag gccgtgtcct ttctggaatg acatcagcca 450
 gtgtggaaga agggactgtg ctgtcaaacc atgtcaatct gatgaagttc 500
 ctgatggaat taaatctgcg agctacaagt attctgaaga agccaataat 550
 ctcattgaag aatgtgaaca agctgaacga cttggagcag tggatgaatc 600
 tctgagtgag gaaacacaga aggctgttct tcagtggacc aagcatgatg 650
 attetteaga taaettetgt gaagetgatg acatteagte eeetgaaget 700
 gaatatgtag atttgcttct taatcctgag cgctacactg gttacaaggg 750
 accagatgct tggaaaatat ggaatgtcat ctacgaagaa aactgtttta 800
 agccacagac aattaaaaga cctttaaatc ctttggcttc tggtcaaggg 850
 acaagtgaag agaacacttt ttacagttgg ctagaaggtc tctgtgtaga 900
```

aaaaagagca ttctacagac ttatatctgg cctacatgca agcattaatg 950

tggggacaca acattacaga atttcaacag cgatttgatg gaattttgac 1050 tgaaggagaa ggtccaagaa ggcttaagaa cttgtatttt ctctacttaa 1100 tagaactaag ggctttatcc aaagtgttac cattcttcga gcgcccagat 1150 tttcaactct ttactggaaa taaaattcag gatgaggaaa acaaaatgtt 1200 acttctggaa atacttcatg aaatcaagtc atttcctttg cattttgatg 1250 agaattcatt ttttgctggg gataaaaaag aagcacacaa actaaaggag 1300 gactttcgac tgcattttag aaatatttca agaattatgg attgtgttgg 1350 ttgttttaaa tgtcgtctgt ggggaaagct tcagactcag ggtttgggca 1400 ctgctctgaa gatcttattt tctgagaaat tgatagcaaa tatgccagaa 1450 agtggaccta gttatgaatt ccatctaacc agacaagaaa tagtatcatt 1500 attcaacgca tttggaagaa tttctacaag tgtgaaagaa ttagaaaact 1550 tcaggaactt gttacagaat attcattaaa gaaaacaagc tgatatgtgc 1600 ctgtttctgg acaatggagg cgaaagagtg gaatttcatt caaaggcata 1650 atagcaatga cagtettaag ecaaacattt tatataaagt tgettttgta 1700 aaggagaatt atattgtttt aagtaaacac atttttaaaa attgtgttaa 1750 gtctatgtat aatactactg tgagtaaaag taatacttta ataatgtggt 1800 acaaatttta aagtttaata ttgaataaaa ggaggattat caaattaaaa 1850 aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 1885

<210> 337

<211> 468

<212> PRT

<213> Homo sapiens

<400> 337

Met Gly Arg Gly Trp Gly Phe Leu Phe Gly Leu Leu Gly Ala Val 1 5 10 15

Trp Leu Leu Ser Ser Gly His Gly Glu Glu Gln Pro Pro Glu Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ala Ala Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp 45

Cys Thr Cys Asp Val Glu Thr Ile Asp Arg Phe Asn Asn Tyr Arg 50 55 60

Leu Phe Pro Arg Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg

Tyr	Tyr	Lys	Val	Asn 80	Leu	Lys	Arg	Pro	Cys 85	Pro	Phe	Trp	Asn	Asp 90
Ile	Ser	Gln	Cys	Gly 95	Arg	Arg	Asp	Cys	Ala 100	Val	Lys	Pro	Cys	Gln 105
Ser	Asp	Glu	Val	Pro 110	Asp	Gly	Ile	Lys	Ser 115	Ala	Ser	Tyr	Lys	Tyr 120
Ser	Glu	Glu	Ala	Asn 125	Asn	Leu	Ile	Glu	Glu 130	Cys	Glu	Gln	Ala	Glu 135
Arg	Leu	Gly	Ala	Val 140	Asp	Glu	Ser	Leu	Ser 145	Glu	Glu	Thr	Gln	Lys 150
Ala	Val	Leu	Gln	Trp 155	Thr	Lys	His	Asp	Asp 160	Ser	Ser	Asp	Asn	Phe 165
Cys	Glu	Ala	Asp	Asp 170	Ile	Gln	Ser	Pro	Glu 175	Ala	Glu	Tyr	Val	Asp 180
Leu	Leu	Leu	Asn	Pro 185	Glu	Arg	Tyr	Thr	Gly 190	Tyr	Lys	Gly	Pro	Asp 195
Ala	Trp	Lys	Ile	Trp 200	Asn	Val	Ile	Tyr	Glu 205	Glu	Asn	Cys	Phe	Lys 210
Pro	Gln	Thr	Ile	Lys 215	Arg	Pro	Leu	Asn	Pro 220	Leu	Ala	Ser	Gly	Gln 225
Gly	Thr	Ser	Glu	Glu 230	Asn	Thr	Phe	Tyr	Ser 235	Trp	Leu	Glu	Gly	Leu 240
Cys	Val	Glu	Lys	Arg 245	Ala	Phe	Tyr	Arg	Leu 250	Ile	Ser	Gly	Leu	His 255
Ala	Ser	Ile	Asn	Val 260	His	Leu	Ser	Ala	Arg 265	Tyr	Leu	Leu	Gln	Glu 270
Thr	Trp	Leu	Glu	Lys 275	Lys	Trp	Gly	His	Asn 280	Ile	Thr	Glu	Phe	Gln 285
Gln	Arg	Phe	Asp	Gly 290	Ile	Leu	Thr	Glu	Gly 295		Gly	Pro	Arg	Arg 300
Leu	Lys	Asn	Leu	Tyr 305	Phe	Leu	Tyr	Leu	Ile 310	Glu	Leu	Arg	Ala	Leu 315
Ser	Lys	: Val	. Leu	Pro 320		Phe	Glu	Arg	Pro 325	Asp	Phe	Gln	Leu	Phe 330
Thr	Gly	Asn	Lys	Ile 335		Asp	Glu	Glu	Asn 340		Met	Leu	l Leu	Leu 345
Glu	. Il∈	e Lev	His	Glu 350		Lys	Ser	Phe	Pro 355	Leu	His	Phe	a Asp	Glu 360
Asn	Ser	Phe	Phe	. Ala	Gly	Asp	Lys	Lys	Glu	Ala	His	Lys	Leu	Lys

2

Glu Asp Phe Arg Leu His Phe Arg Asn Ile Ser Arg Ile Met Asp 380 Cys Val Gly Cys Phe Lys Cys Arg Leu Trp 400 Gly Lys Leu Gln Thr 405 Gln Gly Leu Gly Thr Ala Leu Lys Ile Leu Phe Ser Glu Lys Leu 420 Ile Ala Asn Met Pro Glu Ser Gly Pro Ser Tyr Glu Phe His Leu 435 Thr Arg Gln Glu Ile Val Ser Leu Phe Asn Ala Phe Gly Arg Ile 450 Ser Thr Ser Val Lys Glu Leu Glu Asn Phe Arg Asn Leu Leu Gln

455 460 465

Asn Ile His

<210> 338 <211> 507 <212> DNA <213> Homo sapiens

<220>
<221> unsure
<222> 101, 263, 376, 397, 426
<223> unknown base

done 338 getggaaata tggatgteat etacgagaaa etgtttaag eeacagacaa 50 ttaaaagace tttaaateet ttggettetg gteaagggae aagtgaagag 100 nacaettttt acagttgget agaaggtete tgtgtagaaa aaagageatt 150 etacagaett atatetggee tacatgeaag eattaatgtg eatttgagtg 200 eaagatatet tttacaagag acetggttag aaaagaaatg gggacacaae 250 attacagaat ttnaacageg atttgatgga atttgaetg aaggagaagg 300 tecaagaagg ettaagaaet tgtatttet etacttaata gaactaaggg 350 etttateeaa agtgttaeea ttettngage geecagattt teaaetnttt 400 aetggaaata aaatteagga tgaggnaaae aaaatgttae ttttggaaat 450 aetteatgaa ateaagteat tteetttgea ttttgatgag aatteatttt 500 tttgetg 507

<210> 339 <211> 20

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 339
aagctgccgg agctgcaatg 20
<210> 340
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 340
 ttgcttctta atcctgagcg c 21
<210> 341
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 341
aaaggaggac tttcgactgc 20
<210> 342
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 342
agagattcat ccactgctcc aagtcg 26
<210> 343
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 343
 tgtccagaaa caggcacata tcagc 25
<210> 344
<211> 50
<212> DNA
<213> Artificial Sequence
```

Parties - Montey - Monte

Ľij.

i så

1,57

: ::22:

 <220> <223> Synthetic oligonucleotide probe <400> 344 agacagegge acagaggtge ttetgecagg ttagtggtta ettggatgat 50 <210> 345 <211> 1486 <212> DNA <213> Homo sapiens <400> 345 cggacgcgtg ggcggacgcg tgggcggacg cgtgggttgg gagggggcag 50 gatgggaggg aaagtgaaga aaacagaaaa ggagagggac agaggccaga 100 ggacttctca tactggacag aaaccgatca ggcatggaac tccccttcgt 150 cactcacctg ttcttgcccc tggtgttcct gacaggtctc tgctccccct 200 ttaacctgga tgaacatcac ccacgcctat tcccagggcc accagaagct 250 gaatttggat acagtgtctt acaacatgtt gggggtggac agcgatggat 300 gctggtggc gcccctggg atgggccttc aggcgaccgg aggggggacg 350 tttatcgctg ccctgtaggg ggggcccaca atgccccatg tgccaagggc 400 cacttaggtg actaccaact gggaaattca tctcatcctg ctgtgaatat 450 gcacctgggg atgtctctgt tagagacaga tggtgatggg ggattcatgg 500 tgagctaagg agagggtggt ggcagtgtct ctgaaggtcc ataaaagaaa 550 aaaqaqaagt qtqqtaaqqq aaaatggtct gtgtggaggg gtcaaggagt 600 taaaaaccct agaaagcaaa aggtaggtaa tgtcagggag tagtcttcat 650 geeteettea aetgggagea tgttetgagg gtgeeeteee aageetggga 700 gtaactattt cccccatccc caggcctgtg cccctctctg gtctcgtgct 750 tgtggcagct ctgtcttcag ttctgggata tgtgcccgtg tggatgcttc 800 attccagcct cagggaagcc tggcacccac tgcccaacgt gagccagagg 850 aaggotgagt acttggttoo cagaaggaga tactgggtgg gaaaaagatg 900 gggcaaagcg gtatgatgcc tggcaaaggg cctgcatggc tatcctcatt 950 gctacctaat gtgcttgcaa aagctccatg tttcctaaca gattcagact 1000 cctggccagg tgtggtggcc cacacctgta attctagcac tttgggaggc 1050

caaggtgggc agatcacttg aggtcaggag ttcaagacca gcctggccaa 1100

catggtgaaa ctccatctct actaaaaaaa aaaaaataca aaaattagct 1150

gggtgcgcta gtgcatgcct gtaatctcat ctactcggga ggctaagaca 1200 ggagactctc acttcaaccc aggaggtgga ggttgcggtg agccaagatt 1250 gtgcctctgc actctagcgt gggtgacaga gtaagcgaga ctccatctca 1300 aaaataataa taataataat tcagactcct tatcaggagt ccatgatctg 1350 gcctggcaca gtaactcatg cctgtaatcc caacattttg ggaggccaac 1400 gcaggaggat tgcttgaggt ctggaggttt gagaccagcc tgggcaacat 1450 agaaagaccc catctctaaa taaatgtttt aaaaat 1486

<210> 346

<211> 124

<212> PRT

<213> Homo sapiens

<400> 346

Met Glu Leu Pro Phe Val Thr His Leu Phe Leu Pro Leu Val Phe 1 5 10 15

Leu Thr Gly Leu Cys Ser Pro Phe Asn Leu Asp Glu His His Pro $20 \\ 25 \\ 30$

Arg Leu Phe Pro Gly Pro Pro Glu Ala Glu Phe Gly Tyr Ser Val 35 40 45

Leu Gln His Val Gly Gly Gln Arg Trp Met Leu Val Gly Ala 50 55 60

Pro Trp Asp Gly Pro Ser Gly Asp Arg Gly Asp Val Tyr Arg 65 70 75

Cys Pro Val Gly Gly Ala His Asn Ala Pro Cys Ala Lys Gly His 80 85 90

Leu Gly Asp Tyr Gln Leu Gly Asn Ser Ser His Pro Ala Val Asn 95 100 105

Met His Leu Gly Met Ser Leu Leu Glu Thr Asp Gly Asp Gly Gly 110 115 120

Phe Met Val Ser

<210> 347

<211> 509

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 22

<223> unknown base

<400> 347

<211> 2056 <212> DNA

```
cacagttccc caccatcact cntcccattc cttccaactt tatttttagc 50
ttgccattgg gaggggcag gatgggaggg aaagtgaaga aaacagaaaa 100
ggagagggac agaggccaga ggacttctca tactggacag aaaccgatca 150
ggcatggaac teceettegt caeteacetg ttettgeece tggtgtteet 200
gacaggtctc tgctccccct ttaacctgga tgaacatcac ccacgcctat 250
tcccagggcc accagaagct gaatttggat acagtgtctt acaacatgtt 300
gggggtggac agcgatggat gctggtgggc gccccctggg atgggccttc 350
aggcgaccgg agggggacg tttatcgctg ccctgtaggg ggggcccaca 400
atgccccatq tgccaagggc cacttaggtg actaccaact gggaaattca 450
 tctcatcctq ctgtgaatat gcacctgggg atgtctctgt tagagacaga 500
tggtgatgg 509
<210> 348
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 348
agggacagag gccagaggac ttc 23
<210> 349
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 349
caggtgcata ttcacagcag gatg 24
<210> 350
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 350
 ggaactcccc ttcgtcactc acctgttctt gcccctggtg ttcct 45
<210> 351
```

<213> Homo sapiens

<400> 351 aaagttacat tttctctgga actctcctag gccactccct gctgatgcaa 50 catctgggtt tgggcagaaa ggagggtgct tcggagcccg ccctttctga 100 gcttcctggg ccggctctag aacaattcag gcttcgctgc gactcagacc 150 tcagctccaa catatgcatt ctgaagaaag atggctgaga tggacagaat 200 gctttatttt ggaaagaaac aatgttctag gtcaaactga gtctaccaaa 250 tgcagacttt cacaatggtt ctagaagaaa tctggacaag tcttttcatg 300 tggtttttct acgcattgat tccatgtttg ctcacagatg aagtggccat 350 totgootgoo cotcagaaco tototgtact otcaaccaac atgaagcato 400 tcttgatgtg gagcccagtg atcgcgcctg gagaaacagt gtactattct 450 gtcgaatacc agggggagta cgagagcctg tacacgagcc acatctggat 500 ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550 atgacatcac ggccactgtg ccatacaacc ttcgtgtcag ggccacattg 600 ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650 ctcaaccatc cttacccgac ctgggatgga gatcaccaaa gatggcttcc 700 acctggttat tgagctggag gacctggggc cccagtttga gttccttgtg 750 gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtgag 800 gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850 actgtgtgaa ggcccagaca ttcgtgaagg ccattgggag gtacagcgcc 900 ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccctggt 950 actggccctg tttgcctttg ttggcttcat gctgatcctt gtggtcgtgc 1000 cactgttcgt ctggaaaatg ggccggctgc tccagtactc ctgttgcccc 1050 gtggtggtcc tcccagacac cttgaaaata accaattcac cccagaagtt 1100 aatcagctgc agaagggagg aggtggatgc ctgtgccacg gctgtgatgt 1150 ctcctgagga actcctcagg gcctggatct cataggtttg cggaagggcc 1200 caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250 aagttgtgtt tetgttttee geeaeggaea agggatgaga gaagtaggaa 1300 gagectgttg tetacaagte tagaageaac cateagagge agggtggttt 1350 gtctaacaga acactgactg aggcttaggg gatgtgacct ctagactggg 1400

ggctgccact tgctggctga gcaaccctgg gaaaagtgac ttcatccctt 1450 cggtcctaag ttttctcatc tgtaatgggg gaattaccta cacacctgct 1500 aaacacacac acacagagtc tctctctata tatacacacg tacacataaa 1550 tacacccagc acttgcaagg ctagagggaa actggtgaca ctctacagtc 1600 tgactgattc agtgttctg gagagcagga cataaatgta tgatgagaat 1650 gatcaaggac tctacacact gggtggcttg gagagccac tttcccagaa 1700 taatccttga gagaaaagga atcatgggag caatggtgtt gagttcactt 1750 caagcccaat gccggtgcag aggggaatgg cttagcgagc tctacagtag 1800 gtgacctgga ggaaggtcac agccacactg aaaatgggat gtgcatgaac 1850 acggaggatc catgaactac tgtaaagtgt tgacagtgtg tgcacactgc 1900 agacagcagg tgaaatgtat gtgtgcaatg cgacgagaat gcagaagtca 1950 gtaacatgtg catgtttgtt gtgctccttt tttctgttgg taaagtacag 2000 aattcagcaa ataaaaaggg ccaccctggc caaaagcggt aaaaaaaa 2050 aaaaaaa 2056

<210> 352

<211> 311

<212> PRT

<213> Homo sapiens

<400> 352

Met Gln Thr Phe Thr Met Val Leu Glu Glu Ile Trp Thr Ser Leu
1 5 10 15

Phe Met Trp Phe Phe Tyr Ala Leu Ile Pro Cys Leu Leu Thr Asp 20 25 30

Glu Val Ala Ile Leu Pro Ala Pro Gln Asn Leu Ser Val Leu Ser 35 40 45

Thr Asn Met Lys His Leu Leu Met Trp Ser Pro Val Ile Ala Pro 50 55 60

Gly Glu Thr Val Tyr Tyr Ser Val Glu Tyr Gln Gly Glu Tyr Glu 65 70 75

Ser Leu Tyr Thr Ser His Ile Trp Ile Pro Ser Ser Trp Cys Ser 80 85 90

Leu Thr Glu Gly Pro Glu Cys Asp Val Thr Asp Asp Ile Thr Ala 95 100 105

Thr Val Pro Tyr Asn Leu Arg Val Arg Ala Thr Leu Gly Ser Gln 110 115 120

```
Thr Ser Ala Trp Ser Ile Leu Lys His Pro Phe Asn Arg Asn Ser
                 125
Thr Ile Leu Thr Arg Pro Gly Met Glu Ile Thr Lys Asp Gly Phe
                 140
His Leu Val Ile Glu Leu Glu Asp Leu Gly Pro Gln Phe Glu Phe
                 155
Leu Val Ala Tyr Trp Arg Arg Glu Pro Gly Ala Glu Glu His Val
                                                         180
Lys Met Val Arg Ser Gly Gly Ile Pro Val His Leu Glu Thr Met
                 185
Glu Pro Gly Ala Ala Tyr Cys Val Lys Ala Gln Thr Phe Val Lys
                                                          210
                 200
Ala Ile Gly Arg Tyr Ser Ala Phe Ser Gln Thr Glu Cys Val Glu
                                     220
                 215
Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe
                                     235
                 230
Val Gly Phe Met Leu Ile Leu Val Val Pro Leu Phe Val Trp
Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val Val
                                                          270
                                     265
                 260
Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile
                                     280
 Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met
                                     295
                 290
 Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser
                 305
<210> 353
<211> 864
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 654, 711, 748, 827
```

<400> 353

<223> unknown base

tcctgctgat gcacatctgg gtttggcaaa aggaggttgc ttcgagccgc 50 cctttctagc ttcctggccg gctctagaac aattcaggct tcgctgcgac 100 tagacctcag ctccaacata tgcattctga agaaagatgg ctgagatgac 150 agaatgcttt attttggaaa gaaacaatgt tctaggtcaa actgagtcta 200

```
ccaaatgcag actttcacaa tggttctaga agaaatctgg acaagtcttt 250
tcatgtggtt tttctacgca ttgattccat gtttgctcac agatgaagtg 300
gccattctgc ctgcccctca gaacctctct gtactctcaa ccaacatgaa 350
gcatctcttg atgtggagcc cagtgatcgc gcctggagaa acagtgtact 400
attctgtcga ataccagggg gagtacgaga gcctgtacac gagccacatc 450
tggatcccca gcagctggtg ctcactcact gaaggtcctg agtgtgatgt 500
cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550
cattgggctc acagacctca gcctggagca tcctgaagca tccctttaat 600
agaaactcaa ccatccttac ccgacctggg atggagatca ccaaagatgg 650
cttncacctg gttattgagc tggaggacct ggggccccag tttgagttcc 700
ttgtggccta ntggaggagg ggcgaacccc ttgcggcgca aggggttngc 750
gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggcccaata 800
tgacccacat actcaatatg gacgaantgc tattgtccac ctgtttgagt 850
ggcgctgggt tgat 864
<210> 354
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 354
aggetteget gegactagae etc 23
<210> 355
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 355
ccaggtcggg taaggatggt tgag 24
<210> 356
<211> 50
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

<400> 356 tttctacgca ttgattccat gtttgctcac agatgaagtg gccattctgc 50 <210> 357 <211> 1670 <212> DNA <213> Homo sapiens <400> 357 cccacgcgtc cgcccacgcg tccgagggac aagagagaag agagactgaa 50 acagggagaa gaggcaggag aggaggaggt ggggagagca cgaagctgga 100 ggccgacact gagggaggc gggaggaggt gaagaaggag agaggggaga 150 agaggcagga gctggaaagg agagagggag gaggaggagg agatgcggga 200 tggagacctg gagttaggtg gcttgggaga gcttaatgaa aagagaacgg 250 agaggaggtg tgggttagga accaagaggt agccctgtgg gcagcagaag 300 gctgagagga gtaggaagat caggagctag agggagactg gagggttccg 350 aagagtgggt ttgaagggcg gatctcagtc cctggctgct ttggcatttg 450 gggaactggg actccctgtg gggaggagag gaaagctgga agtcctggag 500 ggacagggtc ccagaaggag gggacagagg agctgagaga ggggggcagg 550 gcgttgggca ggggtccctc ggaggcctcc tggggatggg ggctgcagct 600 cgtctgagcg cccctcgagc gctggtactc tgggctgcac tgggggcagc 650 ageteacate ggaceageae etgaceeega ggactggtgg agetacaagg 700 ataatctcca gggaaacttc gtgccagggc ctcctttctg gggcctggtg 750 aatgcagcgt ggagtctgtg tgctgtgggg aagcggcaga gccccgtgga 800 tgtggagctg aagagggttc tttatgaccc ctttctgccc ccattaaggc 850 tcagcactgg aggagagaag ctccggggaa ccttgtacaa caccggccga 900 catgtctcct tcctgcctgc accccgacct gtggtcaatg tgtctggagg 950 teceeteett taeageeace gaeteagtga aetgeggetg etgtttggag 1000 ctcgcgacgg agccggctcg gaacatcaga tcaaccacca gggcttctct 1050 gctgaggtgc agctcattca cttcaaccag gaactctacg ggaatttcag 1100 cgctgcctcc cgcggcccca atggcctggc cattctcagc ctctttgtca 1150 acgttgccag tacctctaac ccattcctca gtcgcctcct taaccgcgac 1200

accatcactc gcatctccta caagaatgat gcctactttc ttcaagacct 1250

gagectggag etectgttee etgaateett eggetteate acetateagg 1300 geteteteag caeceegeee tgeteegaga etgteacetg gateeteatt 1350 gaeegggeee teaatateae etecetteag atgeaeteee tgagaeteet 1400 gagecagaat eeteeatete agatetteea gageeteage ggtaacagee 1450 ggeeeetgea geeettggee eacagggeae tgaggggeaa eagggaeeee 1500 eggeaeeeeg agaggegetg eegaggeeee aactaeegee tgeatgtgga 1550 tggtgteeee eatggteget gagaeteeee ttegaggatt geaeeegeee 1600 gteetaagee teeeeacaag gegaggggag ttaeeeetaa aacaaageta 1650 ttaaagggae agaataetta 1670

<210> 358

<211> 328

<212> PRT

<213> Homo sapiens

<400> 358

Met Gly Ala Ala Ala Arg Leu Ser Ala Pro Arg Ala Leu Val Leu 1 5 10 15

Trp Ala Ala Leu Gly Ala Ala Ala His Ile Gly Pro Ala Pro Asp 20 25 30

Pro Glu Asp Trp Trp Ser Tyr Lys Asp Asn Leu Gln Gly Asn Phe 35 40 45

Val Pro Gly Pro Pro Phe Trp Gly Leu Val Asn Ala Ala Trp Ser 50 55 60

Leu Cys Ala Val Gly Lys Arg Gln Ser Pro Val Asp Val Glu Leu 65 70 75

Lys Arg Val Leu Tyr Asp Pro Phe Leu Pro Pro Leu Arg Leu Ser 80 85 90

Thr Gly Gly Glu Lys Leu Arg Gly Thr Leu Tyr Asn Thr Gly Arg 95 100 105

His Val Ser Phe Leu Pro Ala Pro Arg Pro Val Val Asn Val Ser

Gly Gly Pro Leu Leu Tyr Ser His Arg Leu Ser Glu Leu Arg Leu 125 130 135

Leu Phe Gly Ala Arg Asp Gly Ala Gly Ser Glu His Gln Ile Asn 140 145

His Gln Gly Phe Ser Ala Glu Val Gln Leu Ile His Phe Asn Gln
155 160 165

Glu Leu Tyr Gly Asn Phe Ser Ala Ala Ser Arg Gly Pro Asn Gly

170 175 180 Leu Ala Ile Leu Ser Leu Phe Val Asn Val Ala Ser Thr Ser Asn 185 Pro Phe Leu Ser Arg Leu Leu Asn Arg Asp Thr Ile Thr Arg Ile 200 205 Ser Tyr Lys Asn Asp Ala Tyr Phe Leu Gln Asp Leu Ser Leu Glu Leu Leu Phe Pro Glu Ser Phe Gly Phe Ile Thr Tyr Gln Gly Ser Leu Ser Thr Pro Pro Cys Ser Glu Thr Val Thr Trp Ile Leu Ile Asp Arg Ala Leu Asn Ile Thr Ser Leu Gln Met His Ser Leu Arg 260 265 270 Leu Leu Ser Gln Asn Pro Pro Ser Gln Ile Phe Gln Ser Leu Ser 280 Gly Asn Ser Arg Pro Leu Gln Pro Leu Ala His Arg Ala Leu Arg 290 295 300 Gly Asn Arg Asp Pro Arg His Pro Glu Arg Arg Cys Arg Gly Pro 310 315 Asn Tyr Arg Leu His Val Asp Gly Val Pro His Gly Arg 325 <210> 359 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 359 tctgctgagg tgcagctcat tcac 24 <210> 360 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 360 gaggctctgg aagatctgag atgg 24 <210> 361 <211> 50 <212> DNA <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 361
qcctctttqt caacgttqcc agtacctcta acccattcct cagtcgcctc 50
<210> 362
<211> 3038
<212> DNA
<213> Homo sapiens
<400> 362
 ggcgcctggt tctgcgcgta ctggctgtac ggagcaggag caagaggtcg 50
 ccgccagect ccgccgccga gcctcgttcg tgtccccgcc cctcgctcct 100
 gcagctactg ctcagaaacg ctggggcgcc caccctggca gactaacgaa 150
 gcagctccct tcccacccca actgcaggtc taattttgga cgctttgcct 200
 gccatttctt ccaggttgag ggagccgcag aggcggaggc tcgcgtattc 250
 ctgcagtcag cacccacgtc gcccccggac gctcggtgct caggcccttc 300
 qcqaqcqqqq ctctccqtct qcqqtccctt qtqaaqqctc tgqgcggctg 350
 cagaggccgg ccgtccggtt tggctcacct ctcccaggaa acttcacact 400
 qqaqaqccaa aaggagtgga agagcctgtc ttggagattt tcctggggaa 450
 atcctgaggt cattcattat gaagtgtacc gcgcgggagt ggctcagagt 500
 aaccacagtg ctgttcatgg ctagagcaat tccagccatg gtggttccca 550
 atgccacttt attggagaaa cttttggaaa aatacatgga tgaggatggt 600
 gagtggtgga tagccaaaca acgagggaaa agggccatca cagacaatga 650
 catgcagagt attttggacc ttcataataa attacgaagt caggtgtatc 700
 caacagcctc taatatggag tatatgacat gggatgtaga gctggaaaga 750
 tctgcagaat cctgggctga aagttgcttg tgggaacatg gacctgcaag 800
 cttgcttcca tcaattggac agaatttggg agcacactgg ggaagatata 850
 ggcccccgac gtttcatgta caatcgtggt atgatgaagt gaaagacttt 900
 agctacccat atgaacatga atgcaaccca tattgtccat tcaggtgttc 950
 tggccctgta tgtacacatt atacacaggt cgtgtgggca actagtaaca 1000
 gaatcggttg tgccattaat ttgtgtcata acatgaacat ctgggggcag 1050
 atatggccca aagctgtcta cctggtgtgc aattactccc caaagggaaa 1100
 ctggtggggc catgcccctt acaaacatgg gcggccctgt tctgcttgcc 1150
```

cacctagttt tggaggggc tgtagagaaa atctgtgcta caaagaaggg 1200 tcagacaggt attatccccc tcgagaagag gaaacaaatg aaatagaacg 1250 acaqcaqtca caaqtccatq acacccatqt ccggacaaga tcagatgata 1300 qtaqcaqaaa tqaaqtcata agcgcacagc aaatgtccca aattgtttct 1350 tqtqaaqtaa qattaaqaga tcagtgcaaa ggaacaacct gcaataggta 1400 cgaatgtcct gctggctgtt tggatagtaa agctaaagtt attggcagtg 1450 tacattatga aatgcaatcc agcatctgta gagctgcaat tcattatggt 1500 ataatagaca atgatggtgg ctgggtagat atcactagac aaggaagaaa 1550 gcattatttc atcaagtcca atagaaatgg tattcaaaca attggcaaat 1600 atcagtctgc taattccttc acagtctcta aagtaacagt tcaggctgtg 1650 acttgtgaaa caactgtgga acagctctgt ccatttcata agcctgcttc 1700 acattqccca agagtatact gtcctcgtaa ctgtatgcaa gcaaatccac 1750 attatgctcg tgtaattgga actcgagttt attctgatct gtccagtatc 1800 tgcagagcag cagtacatgc tggagtggtt cgaaatcacg gtggttatgt 1850 tgatgtaatg cctgtggaca aaagaaagac ctacattgct tcttttcaga 1900 atggaatctt ctcagaaagt ttacagaatc ctccaggagg aaaggcattc 1950 agagtgtttg ctgttgtgtg aaactgaata cttggaagag gaccataaag 2000 actattccaa atgcaatatt tctgaatttt gtataaaact gtaacattac 2050 tgtacagagt acatcaacta ttttcagccc aaaaaggtgc caaatgcata 2100 taaatcttga taaacaaagt ctataaaata aaacatggga cattagcttt 2150 gggaaaagta atgaaaatat aatggtttta gaaatcctgt gttaaatatt 2200 gctatatttt cttagcagtt atttctacag ttaattacat agtcatgatt 2250 gttctacqtt tcatatatta tatgqtqctt tgtatatgcc actaataaaa 2300 tqaatctaaa cattqaatqt qaatqqccct caqaaaatca tctagtgcat 2350 ttaaaaataa tcgactctaa aactgaaaga aaccttatca cattttcccc 2400 agttcaatgc tatgccatta ccaactccaa ataatctcaa ataattttcc 2450 acttaataac tqtaaaqttt ttttctqtta atttagqcat ataqaatatt 2500 aaattctgat attgcacttc ttattttata taaaataatc ctttaatatc 2550 caaatqaatc tqttaaaatq tttqattcct tgggaatggc cttaaaaata 2600 aatgtaataa agtcagagtg gtggtatgaa aacattccta gtgatcatgt 2650 agtaaatgta gggttaagca tggacagcca gagctttcta tgtactgtta 2700 aaattgaggt cacatattt cttttgtatc ctggcaaata ctcctgcagg 2750 ccaggaagta taatagcaaa aagttgaaca aagatgaact aatgtattac 2800 attaccattg ccactgattt tttttaaatg gtaaatgacc ttgtatataa 2850 atattgccat atcatggtac ctataatggt gatatatttg tttctatgaa 2900 aaatgtattg tgctttgata ctaaaaatct gtaaaatgtt agttttggta 2950 atttttttc tgctggtgga tttacatatt aaatttttc tgctggtgga 3000 taaacattaa aattaatcat gttcaaaaa aaaaaaaa 3038

<210> 363 <211> 500 <212> PRT

<213> Homo sapiens

				170					175					180
Cys	Ala	Ile	Asn	Leu 185	Cys	His	Asn	Met	Asn 190	Ile	Trp	Gly	Gln	Ile 195
Trp	Pro	Lys	Ala	Val 200	Tyr	Leu	Val	Cys	Asn 205	Tyr	Ser	Pro	Lys	Gly 210
Asn	Trp	Trp	Gly	His 215	Ala	Pro	Tyr	Lys	His 220	Gly	Arg	Pro	Cys	Ser 225
Ala	Cys	Pro	Pro	Ser 230	Phe	Gly	Gly	Gly	Cys 235	Arg	Glu	Asn	Leu	Cys 240
Tyr	Lys	Glu	Gly	Ser 245	Asp	Arg	Tyr	Tyr	Pro 250	Pro	Arg	Glu	Glu	Glu 255
Thr	Asn	Glu	Ile	Glu 260	Arg	Gln	Gln	Ser	Gln 265	Val	His	Asp	Thr	His 270
Val	Arg	Thr	Arg	Ser 275	Asp	Asp	Ser	Ser	Arg 280	Asn	Glu	Val	Ile	Ser 285
Ala	Gln	Gln	Met	Ser 290	Gln	Ile	Val	Ser	Cys 295	Glu	Val	Arg	Leu	Arg 300
Asp	Gln	Cys	Lys	Gly 305	Thr	Thr	Cys	Asn	Arg 310	Tyr	Glu	Суз	Pro	Ala 315
Gly	Суз	Leu	Asp	Ser 320	Lys	Ala	Lys	Val	Ile 325	Gly	Ser	Val	His	Tyr 330
Glu	Met	Gln	Ser	Ser 335	Ile	Cys	Arg	Ala	Ala 340	Ile	His	Tyr	Gly	Ile 345
Ile	Asp	Asn	Asp	Gly 350	Gly	Trp	Val	Asp	Ile 355	Thr	Arg	Gln	Gly	Arg 360
Lys	His	Tyr	Phe	Ile 365	Lys	Ser	Asn	Arg	Asn 370	Gly	Ile	Gln	Thr	Ile 375
Gly	Lys	Tyr	Gln	Ser 380	Ala	Asn	Ser	Phe	Thr 385	Val	Ser	Lys	Val	Thr 390
Val	Gln	Ala	Val	Thr 395	Cys	Glu	Thr	Thr	Val 400	Glu	Gln	Leu	Cys	Pro 405
Phe	His	Lys	Pro	Ala 410	Ser	His	Cys	Pro	Arg 415	Val	Tyr	Суз	Pro	Arg 420
Asn	Суѕ	Met	Gln	Ala 425	Asn	Pro	His	Tyr	Ala 430	Arg	Val	Ile	Gly	Thr 435
Arg	Val	Tyr	Ser	Asp 440	Leu	Ser	Ser	Ile	Cys 445	Arg	Ala	Ala	Val	His 450
Ala	Gly	Val	Val	Arg 455	Asn	His	Gly	Gly	Tyr 460	Val	Asp	Val	Met	Pro 465

```
Val Asp Lys Arg Lys Thr Tyr Ile Ala Ser Phe Gln Asn Gly Ile
                 470
 Phe Ser Glu Ser Leu Gln Asn Pro Pro Gly Gly Lys Ala Phe Arg
                                      490
Val Phe Ala Val Val
<210> 364
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 364
 ggacagaatt tgggagcaca ctgg 24
<210> 365
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 365
ccaagagtat actgtcctcg 20
<210> 366
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 366
agcacagatt ttctctacag ccccc 25
<210> 367
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 367
 aaccactcca gcatgtactg ctgc 24
<210> 368
<211> 50
<212> DNA
```

<213> Artificial Sequence

į. L

å

```
<220>
<223> Synthetic oligonucleotide probe
<400> 368
ccattcaggt gttctggccc tgtatgtaca cattatacac aggtcgtgtg 50
<210> 369
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 369
ccaccgaegg cgcagcegga gccagcagag ccggaaggeg cgcccegggc 100
 agagaaagcc gagcagagct gggtggcgtc tccgggccgc cgctccgacg 150
 ggccagcgcc ctccccatgt ccctgctccc acgccgcgcc cctccggtca 200
 gcatgaggct cctggcggcc gcgctgctcc tgctgctgct ggcgctgtac 250
 accqcqcqtq tqqacqgqtc caaatgcaag tgctcccgga agggacccaa 300
 gatccqctac agcqacqtqa agaagctgga aatgaagcca aagtacccgc 350
 actgcgagga gaagatggtt atcatcacca ccaagagcgt gtccaggtac 400
 cgaggtcagg agcactgcct gcaccccaag ctgcagagca ccaagcgctt 450
 catcaagtgg tacaacgcct ggaacgagaa gcgcagggtc tacgaagaat 500
 agggtgaaaa acctcagaag ggaaaactcc aaaccagttg ggagacttgt 550
 aaaaaaaaa aaagcctttc tttctcacag gcataagaca caaattatat 650
 attgttatga agcacttttt accaacggtc agtttttaca ttttatagct 700
 qcqtqcqaaa qgcttccaga tgggagaccc atctctcttg tgctccagac 750
 ttcatcacag gctgcttttt atcaaaaagg ggaaaactca tgcctttcct 800
 ttttaaaaaa tgcttttttg tatttgtcca tacgtcacta tacatctgag 850
 ctttataagc gcccgggagg aacaatgagc ttggtggaca catttcattg 900
 cagtgttgct ccattcctag cttgggaagc ttccgcttag aggtcctggc 950
 qcctcqqcac aqctqccacq ggctctcctg ggcttatggc cggtcacagc 1000
```

ctcagtgtga ctccacagtg gcccctgtag ccgggcaagc aggagcaggt 1050

ctctctgcat ctgttctctg aggaactcaa gtttggttgc cagaaaaatg 1100

tgcttcattc ccccctggtt aatttttaca caccctagga aacatttcca 1150

agatectgtg atggegagae aaatgateet taaagaaggt gtggggtett 1200 teecaacetg aggatteetg aaaggtteae aggtteaata tttaatgett 1250 cagaageatg tgaggtteee aacaetgtea geaaaaaeet taggagaaaa 1300 ettaaaaata tatgaataea tgegeaatae acagetaeag acaeacatte 1350 tgttgacaag ggaaaacett caaageatgt ttetteeet eaceacaaca 1400 gaacatgeag taetaaagea atatatttgt gatteeeat gtaattette 1450 aatgttaaae agtgeagtee tetttegaaa getaagatga eeatgegeee 1500 ttteetetgt acatataeee ttaagaaege eeeeteea eactgeeeee 1550 cagtatatge egeattgtae tgetgtgta tatgetatgt acatgteaga 1600 aaceattage attgeatgea ggttteatat tetttetaag atggaaagta 1650 ataaaatata tttgaaatgt aaaaaaaaa aaaaa 1685

<210> 370

<211> 111

<212> PRT

<213> Homo sapiens

<400> 370

Met Ser Leu Leu Pro Arg Arg Ala Pro Pro Val Ser Met Arg Leu
1 5 10 15

Leu Ala Ala Leu Leu Leu Leu Leu Leu Ala Leu Tyr Thr Ala 20 25 30

Arg Val Asp Gly Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys 35 40 45

Ile Arg Tyr Ser Asp Val Lys Lys Leu Glu Met Lys Pro Lys Tyr 50 55 60

Pro His Cys Glu Glu Lys Met Val Ile Ile Thr Thr Lys Ser Val 65 70 75

Ser Arg Tyr Arg Gly Gln Glu His Cys Leu His Pro Lys Leu Gln 80 85 90

Ser Thr Lys Arg Phe Ile Lys Trp Tyr Asn Ala Trp Asn Glu Lys 95 100 105

Arg Arg Val Tyr Glu Glu 110

<210> 371

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Synthetic oligonucleotide probe
<400> 371
cagcgccctc cccatgtccc tg 22
<210> 372
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 372
tcccaactgg tttggagttt tccc 24
<210> 373
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 373
 ctccggtcag catgaggctc ctggcggccg ctgctcctgc tgctg 45
<210> 374
<211> 3113
<212> DNA
<213> Homo sapiens
<400> 374
 gccccaggga ctgctatggc ttcctttgtt gttcaccccg gtctgcgtca 50
 tgttaaactc caatgtcctc ctgtggttaa ctgctcttgc catcaagttc 100
 acceteatty acageeaage acagtateea gttgteaaca caaattatgg 150
 caaaatccqq qqcctaaqaa caccqttacc caatqagatc ttqqqtccag 200
 tggagcagta cttaggggtc ccctatgcct cacccccac tggagagagg 250
 cggtttcagc ccccagaacc cccgtcctcc tggactggca tccgaaatac 300
 tactcagttt gctgctgtgt gcccccagca cctggatgag agatccttac 350
 tgcatgacat gctgcccatc tggtttaccg ccaatttgga tactttgatg 400
 acctatgttc aagatcaaaa tgaagactgc ctttacttaa acatctacgt 450
 gcccacqqaa qatqqaqcca acacaaaqaa aaacgcagat gatataacga 500
 gtaatgaccg tggtgaagac gaagatattc atgatcagaa cagtaagaag 550
 cccgtcatgg tctatatcca tgggggatct tacatggagg gcaccggcaa 600
 catgattgac ggcagcattt tggcaagcta cggaaacgtc atcgtgatca 650
```

ccattaacta ccgtctggga atactagggt ttttaagtac cggtgaccag 700 gcagcaaaag gcaactatgg gctcctggat cagattcaag cactgcggtg 750 gattgaggag aatgtgggag cctttggcgg ggaccccaag agagtgacca 800 tetttggete gggggetggg geeteetgtg teageetgtt gaecetgtee 850 cactactcag aaggtetett ccagaaggee atcattcaga geggeacege 900 cctgtccagc tgggcagtga actaccagcc ggccaagtac actcggatat 950 tggcagacaa ggtcggctgc aacatgctgg acaccacgga catggtagaa 1000 tgcctgcgga acaagaacta caaggagctc atccagcaga ccatcacccc 1050 ggccacctac cacatageet tegggeeggt gategaegge gaegteatee 1100 cagacgaccc ccagatcctg atggagcaag gcgagttcct caactacgac 1150 atcatgctgg gcgtcaacca aggggaaggc ctgaagttcg tggacggcat 1200 cgtggataac gaggacggtg tgacgcccaa cgactttgac ttctccgtgt 1250 ccaacttcgt ggacaacctt tacggctacc ctgaagggaa agacactttg 1300 cgggagacta tcaagttcat gtacacagac tgggccgata aggaaaaccc 1350 ggagacgcgg cggaaaaccc tggtggctct ctttactgac caccagtggg 1400 tggccccgc cgtggccgcc gacctgcacg cgcagtacgg ctcccccacc 1450 tacttctatg ccttctatca tcactgccaa agcgaaatga agcccagctg 1500 ggcagattcg gcccatggtg atgaggtccc ctatgtcttc ggcatcccca 1550 tgatcggtcc caccgagctc ttcagttgta acttttccaa gaacgacgtc 1600 atgctcagcg ccgtggtcat gacctactgg acgaacttcg ccaaaactgg 1650 tgatccaaat caaccagttc ctcaggatac caagttcatt cacacaaaac 1700 ccaaccgctt tgaagaagtg gcctggtcca agtataatcc caaagaccag 1750 ctctatctgc atattggctt gaaacccaga gtgagagatc actaccgggc 1800 aacgaaagtg gctttctggt tggaactcgt tcctcatttg cacaacttga 1850 acgagatatt ccagtatgtt tcaacaacca caaaggttcc tccaccagac 1900 atgacatcat ttccctatgg cacccggcga tctcccgcca agatatggcc 1950 aaccaccaaa cgcccagcaa tcactcctgc caacaatccc aaacactcta 2000 aggaccetca caaaacaggg cetgaggaca caactgteet cattgaaace 2050 aaacgagatt attccaccga attaagtgtc accattgccg tcggggcgtc 2100 qctcctcttc ctcaacatct taqcttttqc qqcqctqtac tacaaaaaagg 2150 acaaqaqqqq ccatqaqact cacaqqqqcc ccaqtcccca qagaaacacc 2200 acaaatqata tcgctcacat ccagaacgaa gagatcatgt ctctgcagat 2250 gaagcagctg gaacacgatc acgagtgtga gtcgctgcag gcacacgaca 2300 cactgagget cacetgeecg ecagactaea eceteaeget gegeeggteg 2350 ccagatgaca tcccacttat gacgccaaac accatcacca tgattccaaa 2400 cacactgacg gggatgcagc ctttgcacac ttttaacacc ttcagtggag 2450 gacaaaacag tacaaattta ccccacggac attccaccac tagagtatag 2500 ctttgcccta tttcccttcc tatccctctg ccctacccgc tcagcaacat 2550 agaagagga aggaaagaga gaaggaaaga gagagagaaa gaaagtctcc 2600 agaccaggaa tgtttttgtc ccactgactt aagacaaaaa tgcaaaaagg 2650 cagtcatccc atcccggcag accettatcg ttggtgtttt ccagtattac 2700 aagatcaact tctgaccctg tgaaatgtga gaagtacaca tttctgttaa 2750 aataactgct ttaagatctc taccactcca atcaatgttt agtgtgatag 2800 gacatcacca tttcaaggcc ccgggtgttt ccaacgtcat ggaagcagct 2850 gacacttctg aaactcagcc aaggacactt gatatttttt aattacaatg 2900 gaaqtttaaa catttctttc tgtgccacac aatggatggc tctccttaag 2950 tqaaqaaaqa qtcaatqaqa ttttqcccaq cacatqqagc tqtaatccag 3000 agagaaggaa acgtagaaat ttattattaa aagaatggac tgtgcagcga 3050 aatctgtacg gttctgtgca aagaggtgtt ttgccagcct gaactatatt 3100 taagagactt tgt 3113

<210> 375

<211> 816

<212> PRT

<213> Homo sapiens

<400> 375

Met Leu Asn Ser Asn Val Leu Leu Trp Leu Thr Ala Leu Ala Ile 1 5 10 15

Lys Phe Thr Leu Ile Asp Ser Gln Ala Gln Tyr Pro Val Val Asn $20 \hspace{1cm} 25 \hspace{1cm} 30$

Thr Asn Tyr Gly Lys Ile Arg Gly Leu Arg Thr Pro Leu Pro Asn 35 40 45

Glu Ile Leu Gly Pro Val Glu Gln Tyr Leu Gly Val Pro Tyr Ala

60 55 50 Ser Pro Pro Thr Gly Glu Arg Arg Phe Gln Pro Pro Glu Pro Pro Ser Ser Trp Thr Gly Ile Arg Asn Thr Thr Gln Phe Ala Ala Val Cys Pro Gln His Leu Asp Glu Arg Ser Leu Leu His Asp Met Leu Pro Ile Trp Phe Thr Ala Asn Leu Asp Thr Leu Met Thr Tyr Val 110 Gln Asp Gln Asn Glu Asp Cys Leu Tyr Leu Asn Ile Tyr Val Pro 125 Thr Glu Asp Gly Ala Asn Thr Lys Lys Asn Ala Asp Asp Ile Thr 140 Ser Asn Asp Arg Gly Glu Asp Glu Asp Ile His Asp Gln Asn Ser Lys Lys Pro Val Met Val Tyr Ile His Gly Gly Ser Tyr Met Glu 180 Gly Thr Gly Asn Met Ile Asp Gly Ser Ile Leu Ala Ser Tyr Gly Asn Val Ile Val Ile Thr Ile Asn Tyr Arg Leu Gly Ile Leu Gly 200 Phe Leu Ser Thr Gly Asp Gln Ala Ala Lys Gly Asn Tyr Gly Leu Leu Asp Gln Ile Gln Ala Leu Arg Trp Ile Glu Glu Asn Val Gly 240 230 Ala Phe Gly Gly Asp Pro Lys Arg Val Thr Ile Phe Gly Ser Gly 250 Ala Gly Ala Ser Cys Val Ser Leu Leu Thr Leu Ser His Tyr Ser Glu Gly Leu Phe Gln Lys Ala Ile Ile Gln Ser Gly Thr Ala Leu Ser Ser Trp Ala Val Asn Tyr Gln Pro Ala Lys Tyr Thr Arg Ile Leu Ala Asp Lys Val Gly Cys Asn Met Leu Asp Thr Thr Asp Met Val Glu Cys Leu Arg Asn Lys Asn Tyr Lys Glu Leu Ile Gln Gln Thr Ile Thr Pro Ala Thr Tyr His Ile Ala Phe Gly Pro Val Ile

340

335

Asp Gly Asp Val Ile Pro Asp Asp Pro Gln Ile Leu Met Glu Gln 350 Gly Glu Phe Leu Asn Tyr Asp Ile Met Leu Gly Val Asn Gln Gly Glu Gly Leu Lys Phe Val Asp Gly Ile Val Asp Asn Glu Asp Gly Val Thr Pro Asn Asp Phe Asp Phe Ser Val Ser Asn Phe Val Asp 395 Asn Leu Tyr Gly Tyr Pro Glu Gly Lys Asp Thr Leu Arg Glu Thr Ile Lys Phe Met Tyr Thr Asp Trp Ala Asp Lys Glu Asn Pro Glu Thr Arg Arg Lys Thr Leu Val Ala Leu Phe Thr Asp His Gln Trp Val Ala Pro Ala Val Ala Ala Asp Leu His Ala Gln Tyr Gly Ser Pro Thr Tyr Phe Tyr Ala Phe Tyr His His Cys Gln Ser Glu Met Lys Pro Ser Trp Ala Asp Ser Ala His Gly Asp Glu Val Pro Tyr Val Phe Gly Ile Pro Met Ile Gly Pro Thr Glu Leu Phe Ser Cys Asn Phe Ser Lys Asn Asp Val Met Leu Ser Ala Val Val Met Thr Tyr Trp Thr Asn Phe Ala Lys Thr Gly Asp Pro Asn Gln Pro Val 530 Pro Gln Asp Thr Lys Phe Ile His Thr Lys Pro Asn Arg Phe Glu 545 555 Glu Val Ala Trp Ser Lys Tyr Asn Pro Lys Asp Gln Leu Tyr Leu His Ile Gly Leu Lys Pro Arg Val Arg Asp His Tyr Arg Ala Thr 575 Lys Val Ala Phe Trp Leu Glu Leu Val Pro His Leu His Asn Leu Asn Glu Ile Phe Gln Tyr Val Ser Thr Thr Thr Lys Val Pro Pro 605 615 Pro Asp Met Thr Ser Phe Pro Tyr Gly Thr Arg Arg Ser Pro Ala Lys Ile Trp Pro Thr Thr Lys Arg Pro Ala Ile Thr Pro Ala Asn

640 645 635 Asn Pro Lys His Ser Lys Asp Pro His Lys Thr Gly Pro Glu Asp Thr Thr Val Leu Ile Glu Thr Lys Arg Asp Tyr Ser Thr Glu Leu 665 Ser Val Thr Ile Ala Val Gly Ala Ser Leu Leu Phe Leu Asn Ile Leu Ala Phe Ala Ala Leu Tyr Tyr Lys Lys Asp Lys Arg Arg His 705 695 Glu Thr His Arg Arg Pro Ser Pro Gln Arg Asn Thr Thr Asn Asp 710 715 Ile Ala His Ile Gln Asn Glu Glu Ile Met Ser Leu Gln Met Lys 725 735 Gln Leu Glu His Asp His Glu Cys Glu Ser Leu Gln Ala His Asp Thr Leu Arg Leu Thr Cys Pro Pro Asp Tyr Thr Leu Thr Leu Arg Arg Ser Pro Asp Asp Ile Pro Leu Met Thr Pro Asn Thr Ile Thr Met Ile Pro Asn Thr Leu Thr Gly Met Gln Pro Leu His Thr Phe Asn Thr Phe Ser Gly Gly Gln Asn Ser Thr Asn Leu Pro His Gly 805 810 His Ser Thr Thr Arg Val 815 <210> 376 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 376 ggcaagctac ggaaacgtca tcgtg 25 <210> 377 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 377

```
aaccccgag ccaaaagatg gtcac 25
<210> 378
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 378
gtaccggtga ccaggcagca aaaggcaact atgggctcct ggatcag 47
<210> 379
<211> 2461
<212> DNA
<213> Homo sapiens
<400> 379
 gggaaagatg gcggcgactc tgggacccct tgggtcgtgg cagcagtggc 50
 ggcgatgttt gtcggctcgg gatgggtcca ggatgttact ccttcttctt 100
 ttgttggggt ctgggcaggg gccacagcaa gtcggggcgg gtcaaacgtt 150
 cqaqtacttq aaacqqqaqc actcqctqtc gaaqccctac cagggtgtgg 200
 gcacaggcag ttcctcactg tggaatctga tgggcaatgc catggtgatg 250
 acccagtata tccgccttac cccagatatg caaagtaaac agggtgcctt 300
 gtggaaccgg gtgccatgtt tcctgagaga ctgggagttg caggtgcact 350
 tcaaaatcca tggacaagga aagaagaatc tgcatgggga tggcttggca 400
 atctggtaca caaaggatcg gatgcagcca gggcctgtgt ttggaaacat 450
 ggacaaattt gtggggctgg gagtatttgt agacacctac cccaatgagg 500
 agaagcagca agagcgggta ttcccctaca tctcagccat ggtgaacaac 550
 ggctccctca gctatgatca tgagcgggat gggcggccta cagagctggg 600
 aggctgcaca gccattgtcc gcaatcttca ttacgacacc ttcctggtga 650
 ttcgctacgt caagaggcat ttgacgataa tgatggatat tgatggcaag 700
 catgagtgga gggactgcat tgaagtgccc ggagtccgcc tgccccgcgg 750
 ctactacttc ggcacctcct ccatcactgg ggatctctca gataatcatg 800
 atgtcatttc cttgaagttg tttgaactga cagtggagag aaccccagaa 850
 gaggaaaagc tccatcgaga tgtgttcttg ccctcagtgg acaatatgaa 900
 gctgcctgag atgacagctc cactgccgcc cctgagtggc ctggccctct 950
 tcctcatcgt ctttttctcc ctggtgtttt ctgtatttgc catagtcatt 1000
```

ggtatcatac tctacaacaa atggcaggaa cagagccgaa agcgcttcta 1050 ctgagccctc ctgctgccac cacttttgtg actgtcaccc atgaggtatg 1100 gaaggagcag qcactggcct gagcatgcag cctggagagt gttcttgtct 1150 ctagcagctg gttggggact atattctgtc actggagttt tgaatgcagg 1200 gaccccgcat tcccatggtt gtgcatgggg acatctaact ctggtctggg 1250 aagccaccca ccccagggca atgctgctgt gatgtgcctt tccctgcagt 1300 ccttccatgt gggagcagag gtgtgaagag aatttacgtg gttgtgatgc 1350 caaaatcaca gaacagaatt tcatagccca ggctgccgtg ttgtttgact 1400 cagaaggccc ttctacttca gttttgaatc cacaaagaat taaaaactgg 1450 taacaccaca qqctttctqa ccatccattc qttqqqtttt qcatttqacc 1500 caaccetetg cetacetgag gagetttett tggaaaccag gatggaaact 1550 tetteeetge ettacettee ttteaeteea tteattgtee tetetgtgtg 1600 caacctgage tgggaaagge atttggatge etetetgttg gggeetgggg 1650 ctgcagaaca cacctgcgtt tcactggcct tcattaggtg gccctaggga 1700 gatggctttc tgctttggat cactgttccc tagcatgggt cttgggtcta 1750 ttggcatgtc catggccttc ccaatcaagt ctcttcaggc cctcagtgaa 1800 gtttggctaa aggttggtgt aaaaatcaag agaagcctgg aagacatcat 1850 ggatgccatg gattagctgt gcaactgacc agctccaggt ttgatcaaac 1900 caaaagcaac atttqtcatq tqqtctgacc atgtqgaqat gtttctqgac 1950 ttgctagagc ctgcttagct gcatgttttg tagttacgat ttttggaatc 2000 ccactttgag tgctgaaagt gtaaggaagc tttcttctta caccttgggc 2050 ttggatattg cccagagaag aaatttggct ttttttttct taatggacaa 2100 gagacagttq ctgttctcat gttccaagtc tgagagcaac agaccctcat 2150 catctgtgcc tggaagagtt cactgtcatt gagcagcaca gcctgagtgc 2200 tggcctctgt caaccettat tccactgcct tatttgacaa ggggttacat 2250 gctgctcacc ttactgccct gggattaaat cagttacagg ccagagtctc 2300 cttggagggc ctggaactct gagtcctcct atgaacctct gtagcctaaa 2350 tgaaattett aaaateaceg atggaaceaa aaaaaaaaaa aaaaagggeg 2400 gccgcgactc tagagtcgac ctgcagtagg gataacaggg taataagctt 2450

ggccgccatg g 2461

<210> 380

<211> 348

<212> PRT

<213> Homo sapiens

<400> 380

Met Ala Ala Thr Leu Gly Pro Leu Gly Ser Trp Gln Gln Trp Arg
1 5 10 15

Arg Cys Leu Ser Ala Arg Asp Gly Ser Arg Met Leu Leu Leu Leu 20 25 30

Leu Leu Gly Ser Gly Gln Gly Pro Gln Gln Val Gly Ala Gly 35 40 45

Gln Thr Phe Glu Tyr Leu Lys Arg Glu His Ser Leu Ser Lys Pro
50 55 60

Tyr Gln Gly Val Gly Thr Gly Ser Ser Ser Leu Trp Asn Leu Met
65 70 75

Gly Asn Ala Met Val Met Thr Gln Tyr Ile Arg Leu Thr Pro Asp 80 85 90

Met Gln Ser Lys Gln Gly Ala Leu Trp Asn Arg Val Pro Cys Phe 95 100 105

Leu Arg Asp Trp Glu Leu Gln Val His Phe Lys Ile His Gly Gln 110 115 120

Gly Lys Lys Asn Leu His Gly Asp Gly Leu Ala Ile Trp Tyr Thr 125 130 135

Lys Asp Arg Met Gln Pro Gly Pro Val Phe Gly Asn Met Asp Lys 140 145 150

Phe Val Gly Leu Gly Val Phe Val Asp Thr Tyr Pro Asn Glu Glu 155 160 165

Lys Gln Gln Glu Arg Val Phe Pro Tyr Ile Ser Ala Met Val Asn 170 175 180

Asn Gly Ser Leu Ser Tyr Asp His Glu Arg Asp Gly Arg Pro Thr 185 190 195

Glu Leu Gly Gly Cys Thr Ala Ile Val Arg Asn Leu His Tyr Asp 200 205 210

Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu Thr Ile Met 215 220 225

Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile Glu Val 230 235 240

Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser Ser 245 250 255

```
Ile Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys
                  260
 Leu Phe Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Glu Lys Leu
 His Arg Asp Val Phe Leu Pro Ser Val Asp Asn Met Lys Leu Pro
 Glu Met Thr Ala Pro Leu Pro Pro Leu Ser Gly Leu Ala Leu Phe
                  305
 Leu Ile Val Phe Phe Ser Leu Val Phe Ser Val Phe Ala Ile Val
                 320
                                      325
 Ile Gly Ile Ile Leu Tyr Asn Lys Trp Gln Glu Gln Ser Arg Lys
                                                          345
 Arg Phe Tyr
<210> 381
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 381
ccttgggtcg tggcagcagt gg 22
<210> 382
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
cactctccag gctgcatgct cagg 24
<210> 383
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
gtcaaacgtt cgagtacttg aaacgggagc actcgctgtc gaaqc 45
<210> 384
<211> 3150
<212> DNA
<213> Homo sapiens
```

<400> 384

ccgagccggg cgcgcagcga cggagctggg gccggcctgg gaccatgggc 50 gtgagtgcaa tctacggatc agtctctgat ggtgggtcgt taacctcagt 100 ggggactcca agatttccat gaagaaaatc agttgtcttc attcaagaat 150 tggggtctgg ctcagaattc ctgcagctgg tgaaaatctg ttttctagaa 200 gaggtttaat taatgcctgc agtctgacat gttcccgatt tgaggtgaaa 250 ccatgaagag aaaatagaat acttaataat gcttttccgc aaccgcttct 300 tgctgctgct ggccctggct gcgctgctgg cctttgtgag cctcagcctg 350 cagttettee acetgateee ggtgtegaet eetaagaatg gaatgagtag 400 caagagtcga aagagaatca tgcccgaccc tgtgacggag ccccctgtga 450 cagaccccgt ttatgaagct cttttgtact gcaacatccc cagtgtggcc 500 gagcgcagca tggaaggtca tgccccgcat cattttaagc tggtctcagt 550 gcatgtgttc attcgccacg gagacaggta cccactgtat gtcattccca 600 aaacaaagcg accagaaatt gactgcactc tggtggctaa caggaaaccg 650 tatcacccaa aactggaagc tttcattagt cacatgtcaa aaggatccgg 700 agcetettte gaaageeett tgaacteett geetetttae eeaaateace 750 cattgtgtga gatgggagag ctcacacaga caggagttgt gcagcatttg 800 cagaacggtc agctgctgag ggatatctat ctaaagaaac acaaactcct 850 gcccaatgat tggtctgcag accagctcta tttagagacc actgggaaaa 900 gccggaccct acaaagtggg ctggccttgc tttatggctt tctcccagat 950 tttgactgga agaagattta tttcaggcac cagccaagtg cgctgttctg 1000 ctctggaagc tgctattgcc cggtaagaaa ccagtatctg gaaaaggagc 1050 agogtogtoa gtacctocta cgtttgaaaa acagccaget ggagaagacc 1100 tacggggaga tggccaagat cgtggatgtc cccaccaagc agcttagagc 1150 tgccaacccc atagactcca tgctctgcca cttctgccac aatgtcagct 1200 ttccctgtac cagaaatggc tgtgttgaca tggagcactt caaggtaatt 1250 aagacccatc agatcgagga tgaaagggaa agacgggaga agaaattgta 1300 cttcgggtat tctctcctgg gtgcccaccc catcctgaac caaaccatcg 1350 gccggatgca gcgtgccacc gagggcagga aagaagagct ctttgccctc 1400 tactotgoto atgatgtoac totgtoacoa gttotoagtg cottgggoot 1450

ttcagaagcc aggttcccaa ggtttgcagc caggttgatc tttgagcttt 1500 ggcaagacag agaaaagccc agtgaacatt ccgtccggat tctttacaat 1550 ggcgtcgatg tcacattcca cacctctttc tgccaagacc accacaagcg 1600 ttctcccaag cccatgtgcc cgcttgaaaa cttggtccgc tttgtgaaaa 1650 gggacatgtt tgtagccctg ggtggcagtg gtacaaatta ttatgatgca 1700 tgtcacaggg aaggattcta aaaggtatgc agtacagcag tatagaatcc 1750 atgccaatac agagcatagg gaaaggtcca cttctagttt tgtctgttac 1800 taagggtaga agattattgc tttttaaagg ctaaatattg tttgtgggaa 1850 ccacagatgg ttggggttga acagtaagca cattgctgca atgtggtacg 1900 tgaattgctt ggtacaaaat ggccagttca cagaggaata gaaggtactt 1950 tatcatagcc agacttcgct tagaatgcca gaataatata gttcaagacc 2000 tgaagttgcc aatccaagtt tgcactcttc tggcctgccc catgttacta 2050 tgtgatggaa ccagcacacc tcaaccaaaa tttttttaat cttagacatt 2100 tttaccttqt ccttqttaaq aatttcttqa aqtqatttat ctaaaataaa 2150 ggttggcaaa ctttttctgt aaagggccag attgtaaata tttcagactg 2200 tgtggaccaa aaggccacat acagtctctg tcataactac tcaactctgt 2250 ttctgaagca ggaaagccac cacagacagt acataaagga atatgtgtag 2300 ctgggttccc aggccagaca aaacagatgg tgaccagact tggcccctgg 2350 gctgtagttt gctgacccct catctaaaaa ataggctata ctacaattgc 2400 acttccagca ctttgagaac gagttgaata ccaagaatta ttcaatggtt 2450 cctccagtaa cttctgctag aaacacagaa tttggtctgt atctgacact 2500 agaacaaaac ttgagggtaa ataaacattg aattagaatg aatcatagaa 2550 aactgattag aagaatactt gatgtttatg atgattgtgg tacaagatag 2600 ttttaagtat gttctaaata tttgtctgct gtagtctatt tgctgtatat 2650 gctgaaattt ttgtatgcca tttagtattt ttatagttta ggaaaatatt 2700 ttctaagacc agttttagat gactcttatt cctgtagtaa tattcaattt 2750 gctgtacctg cttggtggtt agaaggaggc tagaagatga attcaggcac 2800 tttcttccaa taaaactaat tatggctcat tccctttgac aagctgtaga 2850 actggattca tttttaaacc attttcatca gtttcaaatg gtaaattctg 2900

attgatttt aaatgcgttt ttggaagaac tttgctatta ggtagtttac 2950 agatctttat aaggtgtttt atatattaga agcaattata attacatctg 3000 tgatttctga actaatggtg ctaattcaga gaaatggaaa gtgaaagtga 3050 gattctctgt tgtcatcggc attccaactt tttctctttg tttttgtcca 3100 gtgttgcatt tgaatatgtc tgtttctata aataaatttt ttaagaataa 3150

- <210> 385
- <211> 480
- <212> PRT
- <213> Homo sapiens
- <400> 385
- Met Leu Phe Arg Asn Arg Phe Leu Leu Leu Leu Ala Leu Ala Ala 1 5 10 15
- Leu Leu Ala Phe Val Ser Leu Ser Leu Gln Phe Phe His Leu Ile
 20 25 30
- Pro Val Ser Thr Pro Lys Asn Gly Met Ser Ser Lys Ser Arg Lys 35 40 45
- Arg Ile Met Pro Asp Pro Val Thr Glu Pro Pro Val Thr Asp Pro 50 55 60
- Val Tyr Glu Ala Leu Leu Tyr Cys Asn Ile Pro Ser Val Ala Glu 65 70 75
- Arg Ser Met Glu Gly His Ala Pro His His Phe Lys Leu Val Ser 80 85 90
- Val His Val Phe Ile Arg His Gly Asp Arg Tyr Pro Leu Tyr Val 95 100
- Ile Pro Lys Thr Lys Arg Pro Glu Ile Asp Cys Thr Leu Val Ala 110 115 120
- Asn Arg Lys Pro Tyr His Pro Lys Leu Glu Ala Phe Ile Ser His 125 130 135
- Met Ser Lys Gly Ser Gly Ala Ser Phe Glu Ser Pro Leu Asn Ser 140 145 150
- Leu Pro Leu Tyr Pro Asn His Pro Leu Cys Glu Met Gly Glu Leu
 155 160 165
- Thr Gln Thr Gly Val Val Gln His Leu Gln Asn Gly Gln Leu Leu 170 175 180
- Arg Asp Ile Tyr Leu Lys Lys His Lys Leu Leu Pro Asn Asp Trp
 185 190 190
- Ser Ala Asp Gln Leu Tyr Leu Glu Thr Thr Gly Lys Ser Arg Thr $200 \hspace{1.5cm} 205 \hspace{1.5cm} 210$

Leu Gln Ser Gly Leu Ala Leu Leu Tyr Gly Phe Leu Pro Asp Phe Asp Trp Lys Lys Ile Tyr Phe Arg His Gln Pro Ser Ala Leu Phe Cys Ser Gly Ser Cys Tyr Cys Pro Val Arg Asn Gln Tyr Leu Glu Lys Glu Gln Arg Arg Gln Tyr Leu Leu Arg Leu Lys Asn Ser Gln Leu Glu Lys Thr Tyr Gly Glu Met Ala Lys Ile Val Asp Val Pro Thr Lys Gln Leu Arg Ala Ala Asn Pro Ile Asp Ser Met Leu Cys 290 His Phe Cys His Asn Val Ser Phe Pro Cys Thr Arg Asn Gly Cys Val Asp Met Glu His Phe Lys Val Ile Lys Thr His Gln Ile Glu 320 Asp Glu Arg Glu Arg Glu Lys Lys Leu Tyr Phe Gly Tyr Ser 335 Leu Leu Gly Ala His Pro Ile Leu Asn Gln Thr Ile Gly Arg Met 350 Gln Arg Ala Thr Glu Gly Arg Lys Glu Glu Leu Phe Ala Leu Tyr 365 Ser Ala His Asp Val Thr Leu Ser Pro Val Leu Ser Ala Leu Gly 380 Leu Ser Glu Ala Arg Phe Pro Arg Phe Ala Ala Arg Leu Ile Phe 395 Glu Leu Trp Gln Asp Arg Glu Lys Pro Ser Glu His Ser Val Arg 410 Ile Leu Tyr Asn Gly Val Asp Val Thr Phe His Thr Ser Phe Cys Gln Asp His His Lys Arg Ser Pro Lys Pro Met Cys Pro Leu Glu 440 Asn Leu Val Arg Phe Val Lys Arg Asp Met Phe Val Ala Leu Gly Gly Ser Gly Thr Asn Tyr Tyr Asp Ala Cys His Arg Glu Gly Phe 475

<210> 386

<211> 24

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 386
ccaagcagct tagagctcca gacc 24
<210> 387
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
ttccctatgc tctgtattgg catgg 25
<210> 388
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 388
gccacttctg ccacaatgtc agctttccct gtaccagaaa tggctgtgtt 50
<210> 389
<211> 3313
<212> DNA
<213> Homo sapiens
 aaaaaagctc actaaagttt ctattagagc gaatacggta gatttccatc 50
 cccttttgaa gaacagtact gtggagctat ttaagagata aaaacgaaat 100
 atcettetg ggagtteaag attgtgeagt aattggttag gactetgage 150
 gccgctgttc accaatcggg gagagaaaag cggagatcct gctcgccttg 200
 cacgcgcctg aagcacaaag cagatagcta ggaatgaacc atccctggga 250
 gtatgtggaa acaacggagg agctctgact tcccaactgt cccattctat 300
 gggcgaagga actgctcctg acttcagtgg ttaagggcag aattgaaaat 350
 aattctggag gaagataaga atgattcctg cgcgactgca ccgggactac 400
 aaagggcttg tcctgctggg aatcctcctg gggactctgt gggagaccgg 450
 atgcacccag atacgctatt cagttccgga agagctggag aaaggctcta 500
 gggtgggcga catctccagg gacctggggc tggagccccg ggagctcgcg 550
 gagogoggag toogcatoat coccagaggt aggacgcago ttttogcoot 600
```

gaatccgcgc agcggcagct tggtcacggc gggcaggata gaccgggagg 650 agctctgtat gggggccatc aagtgtcaat taaatctaga cattctgatg 700 gaggataaag tgaaaatata tggagtagaa gtagaagtaa gggacattaa 750 cgacaatgcg ccttactttc gtgaaagtga attagaaata aaaattagtg 800 aaaatgcagc cactgagatg cggttccctc taccccacgc ctgggatccg 850 gatatcggga agaactctct gcagagctac gagctcagcc cgaacactca 900 cttctccctc atcgtgcaaa atggagccga cggtagtaag taccccgaat 950 tggtgctgaa acgcgccctg gaccgcgaag aaaaggctgc tcaccacctg 1000 gtccttacgg cctccgacgg gggcgacccg gtgcgcacag gcaccgcgcg 1050 catccgcgtg atggttctgg atgcgaacga caacgcacca gcgtttgctc 1100 agcccgagta ccgcgcgagc gttccggaga atctggcctt gggcacgcag 1150 ctgcttgtag tcaacgctac cgaccctgac gaaggagtca atgcggaagt 1200 gaggtattcc ttccggtatg tggacgacaa ggcggcccaa gttttcaaac 1250 tagattgtaa ttcagggaca atatcaacaa taggggagtt ggaccacgag 1300 gagtcaggat tctaccagat ggaagtgcaa gcaatggata atgcaggata 1350 ttctgcgcga gccaaagtcc tgatcactgt tctggacgtg aacgacaatg 1400 ccccagaagt ggtcctcacc tctctcgcca gctcggttcc cgaaaactct 1450 cccagaggga cattaattgc ccttttaaat gtaaatgacc aagattctga 1500 ggaaaacgga caggtgatct gtttcatcca aggaaatctg ccctttaaat 1550 tagaaaaatc ttacggaaat tactatagtt tagtcacaga catagtcttg 1600 gatagggaac aggttcctag ctacaacatc acagtgaccg ccactgaccg 1650 gggaaccccg ccctatcca cggaaactca tatctcgctg aacgtggcag 1700 acaccaacga caacccgccg gtcttccctc aggcctccta ttccgcttat 1750 atcccagaga acaatcccag aggagtttcc ctcgtctctg tgaccgccca 1800 cgaccccgac tgtgaagaga acgcccagat cacttattcc ctggctgaga 1850 acaccateca aggggcaage ctategteet aegtgteeat caacteegae 1900 actggggtac tgtatgcgct gagctccttc gactacgagc agttccgaga 1950 cttgcaagtg aaagtgatgg cgcgggacaa cgggcacccg ccctcagca 2000 gcaacgtgtc gttgagcctg ttcgtgctgg accagaacga caatgcgccc 2050

gagatectgt accoegect ceccaeggae ggttecaetg gegtggaget 2100 ggeteceege teegeagage eeggetacet ggtgaccaag gtggtggegg 2150 tggacagaga ctccggccag aacgcctggc tgtcctaccg tctgctcaag 2200 qccaqcqaqc cqqqactctt ctcqqtqqqt ctqcacacgg gcgaggtgcg 2250 cacggegega gecetgetgg acagagaege geteaageag ageetegtag 2300 tggccgtcca ggaccacggc cagccccctc tctccgccac tgtcacgctc 2350 accgtggccg tggccgacag catcccccaa gtcctggcgg acctcggcag 2400 cctcgagtct ccagctaact ctgaaacctc agacctcact ctgtacctgg 2450 tggtagcggt ggccgcggtc tcctgcgtct tcctggcctt cgtcatcttg 2500 ctgctggcgc tcaggctgcg gcgctggcac aagtcacgcc tgctgcaggc 2550 ttcaggaggc ggcttgacag gagcgccggc gtcgcacttt gtgggcgtgg 2600 acqqqqtqca qqctttcctq cagacctatt cccacgaggt ttccctcacc 2650 acqqactcqc qqaaqaqtca cctqatcttc ccccagccca actatgcaga 2700 catgctcgtc agccaggaga gctttgaaaa aagcgagccc cttttgctgt 2750 caggtgattc ggtattttct aaagacagtc atgggttaat tgaggtgagt 2800 ttatatcaaa tottotttot ttttttttt aattgototg totoccaago 2850 tgqaqtqcaq cqqtacqatc atagctcact gcggcctcaa actcctaggc 2900 tcaaqcaatt atcccacctt tqcctccqqt qtaacaqqqa ctacaqqtqc 2950 aagccaccta ctgtctgcct atctatctat ctatctatct atctatctat 3000 ctatctatct atctatctat tactttcttg tacagacggg agtctcacgc 3050 ctgtaatccc agtactttgg gaggccgagg cgggtggatc acctgaggtt 3100 gggagtttga gaccagcctg accaacatgg agaaaccccg tctatactaa 3150 aaaaatacaa aattagccgg gcgtggtggt gcatgtctgt aatcccagct 3200 acttqqqaqq ctqaqtcaqq aqaattgctt taacctggga ggtggaggtt 3250 gcaatgaqct gagattgtgc cattgcactc cagcctgggc aacaagagtg 3300

aaactctatc tca 3313

<210> 390

<211> 916

<212> PRT

<213> Homo sapiens

<400> 390

Met Ile Pro Ala Arg Leu His Arg Asp Tyr Lys Gly Leu Val Leu Leu Gly Ile Leu Leu Gly Thr Leu Trp Glu Thr Gly Cys Thr Gln Ile Arg Tyr Ser Val Pro Glu Glu Leu Glu Lys Gly Ser Arg Val Gly Asp Ile Ser Arg Asp Leu Gly Leu Glu Pro Arg Glu Leu Ala Glu Arg Gly Val Arg Ile Ile Pro Arg Gly Arg Thr Gln Leu Phe Ala Leu Asn Pro Arg Ser Gly Ser Leu Val Thr Ala Gly Arg Ile Asp Arg Glu Glu Leu Cys Met Gly Ala Ile Lys Cys Gln Leu Asn Leu Asp Ile Leu Met Glu Asp Lys Val Lys Ile Tyr Gly Val Glu 110 Val Glu Val Arg Asp Ile Asn Asp Asn Ala Pro Tyr Phe Arg Glu 125 Ser Glu Leu Glu Ile Lys Ile Ser Glu Asn Ala Ala Thr Glu Met 145 140 Arg Phe Pro Leu Pro His Ala Trp Asp Pro Asp Ile Gly Lys Asn 160 Ser Leu Gln Ser Tyr Glu Leu Ser Pro Asn Thr His Phe Ser Leu 170 Ile Val Gln Asn Gly Ala Asp Gly Ser Lys Tyr Pro Glu Leu Val Leu Lys Arg Ala Leu Asp Arg Glu Glu Lys Ala Ala His His Leu Val Leu Thr Ala Ser Asp Gly Gly Asp Pro Val Arg Thr Gly Thr Ala Arg Ile Arg Val Met Val Leu Asp Ala Asn Asp Asn Ala Pro 230 Ala Phe Ala Gln Pro Glu Tyr Arg Ala Ser Val Pro Glu Asn Leu Ala Leu Gly Thr Gln Leu Leu Val Val Asn Ala Thr Asp Pro Asp Glu Gly Val Asn Ala Glu Val Arg Tyr Ser Phe Arg Tyr Val Asp Asp Lys Ala Ala Gln Val Phe Lys Leu Asp Cys Asn Ser Gly Thr

				290					295					300
Ile	Ser	Thr	Ile	Gly 305	Glu	Leu	Asp	His	Glu 310	Glu	Ser	Gly	Phe	Tyr 315
Gln	Met	Glu	Val	Gln 320	Ala	Met	Asp	Asn	Ala 325	Gly	Tyr	Ser	Ala	Arg 330
Ala	Lys	Val	Leu	Ile 335	Thr	Val	Leu	Asp	Val 340	Asn	Asp	Asn	Ala	Pro 345
Glu	Val	Val	Leu	Thr 350	Ser	Leu	Ala	Ser	Ser 355	Val	Pro	Glu	Asn	Ser 360
Pro	Arg	Gly	Thr	Leu 365	Ile	Ala	Leu	Leu	Asn 370	Val	Asn	Asp	Gln	Asp 375
Ser	Glu	Glu	Asn	Gly 380	Gln	Val	Ile	Cys	Phe 385	Ile	Gln	Gly	Asn	Leu 390
Pro	Phe	Lys	Leu	Glu 395	Lys	Ser	Tyr	Gly	Asn 400	Tyr	Tyr	Ser	Leu	Val 405
Thr	Asp	Ile	Val	Leu 410	Asp	Arg	Glu	Gln	Val 415	Pro	Ser	Tyr	Asn	Ile 420
Thr	Val	Thr	Ala	Thr 425	Asp	Arg	Gly	Thr	Pro 430	Pro	Leu	Ser	Thr	Glu 435
Thr	His	Ile	Ser	Leu 440	Asn	Val	Ala	Asp	Thr 445	Asn	Asp	Asn	Pro	Pro 450
Val	Phe	Pro	Gln	Ala 455	Ser	Tyr	Ser	Ala	Tyr 460	Ile	Pro	Glu	Asn	Asn 465
Pro	Arg	Gly	Val	Ser 470	Leu	Val	Ser	Val	Thr 475	Ala	His	Asp	Pro	Asp 480
Суз	Glu	Glu	Asn	Ala 485	Gln	Ile	Thr	Tyr	Ser 490	Leu	Ala	Glu	Asn	Thr 495
Ile	Gln	Gly	Ala	Ser 500	Leu	Ser	Ser	Tyr	Val 505	Ser	Ile	Asn	Ser	Asp 510
Thr	Gly	Val	Leu	Tyr 515	Ala	Leu	Ser	Ser	Phe 520	Asp	Tyr	Glu	Gln	Phe 525
Arg	Asp	Leu	Gln	Val 530	Lys	Val	Met	Ala	Arg 535	Asp	Asn	Gly	His	Pro 540
Pro	Leu	Ser	Ser	Asn 545	Val	Ser	Leu	Ser	Leu 550	Phe	Val	Leu	Asp	Gln 555
Asn	Asp	Asn	Ala	Pro 560	Glu	Ile	Leu	Tyr	Pro 565	Ala	Leu	Pro	Thr	Asp 570
Gly	Ser	Thr	Gly	Val 575	Glu	Leu	Ala	Pro	Arg 580	Ser	Ala	Glu	Pro	Gly 585

Tyr Leu Val Thr Lys Val Val Ala Val Asp Arg Asp Ser Gly Gln Asn Ala Trp Leu Ser Tyr Arg Leu Leu Lys Ala Ser Glu Pro Gly 615 Leu Phe Ser Val Gly Leu His Thr Gly Glu Val Arg Thr Ala Arg Ala Leu Leu Asp Arg Asp Ala Leu Lys Gln Ser Leu Val Val Ala Val Gln Asp His Gly Gln Pro Pro Leu Ser Ala Thr Val Thr Leu Thr Val Ala Val Ala Asp Ser Ile Pro Gln Val Leu Ala Asp Leu Gly Ser Leu Glu Ser Pro Ala Asn Ser Glu Thr Ser Asp Leu Thr Leu Tyr Leu Val Val Ala Val Ala Val Ser Cys Val Phe Leu 695 Ala Phe Val Ile Leu Leu Leu Ala Leu Arg Leu Arg Trp His 710 Lys Ser Arg Leu Leu Gln Ala Ser Gly Gly Leu Thr Gly Ala Pro Ala Ser His Phe Val Gly Val Asp Gly Val Gln Ala Phe Leu Gln Thr Tyr Ser His Glu Val Ser Leu Thr Thr Asp Ser Arg Lys 755 Ser His Leu Ile Phe Pro Gln Pro Asn Tyr Ala Asp Met Leu Val Ser Gln Glu Ser Phe Glu Lys Ser Glu Pro Leu Leu Ser Gly Asp Ser Val Phe Ser Lys Asp Ser His Gly Leu Ile Glu Val Ser Leu Tyr Gln Ile Phe Phe Leu Phe Phe Phe Asn Cys Ser Val Ser Gln Ala Gly Val Gln Arg Tyr Asp His Ser Ser Leu Arg Pro Gln Thr Pro Arg Leu Lys Gln Leu Ser His Leu Cys Leu Arg Cys Asn Arg Asp Tyr Arg Cys Lys Pro Pro Thr Val Cys Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Leu Leu

875

ļā "D

.

IJ

33

1 2

1 200

880

885

ggggcctcct ccactgggtc cgaatcagta ggtgaccccg cccctggatt 150

ctggaagacc tcaccatggg acgcccccga cctcgtgcgg ccaagacgtg 200

gatgttcctg ctcttgctgg ggggagcctg ggcaggacac tccagggcac 250 aggaggacaa ggtgctgggg ggtcatgagt gccaacccca ttcgcagcct 300 tggcaggcgg ccttgttcca gggccagcaa ctactctgtg gcggtgtcct 350 tgtaggtggc aactgggtcc ttacagctgc ccactgtaaa aaaccgaaat 400 acacagtacg cctgggagac cacagcctac agaataaaga tggcccagag 450 caaqaaatac ctgtggttca gtccatccca cacccctgct acaacagcag 500 cgatgtggag gaccacaacc atgatctgat gcttcttcaa ctgcgtgacc 550 aggcatccct ggggtccaaa gtgaagccca tcagcctggc agatcattgc 600 acccaqcctq qccaqaaqtq caccgtctca ggctggggca ctgtcaccag 650 tccccgagag aattttcctg acactctcaa ctgtgcagaa gtaaaaatct 700 ttccccaqaa qaaqtqtqaq qatqcttacc cqgggcagat cacagatggc 750 atggtctgtg caggcagcag caaaggggct gacacgtgcc agggcgattc 800 tggaggcccc ctggtgtgtg atggtgcact ccagggcatc acatcctggg 850 gctcagaccc ctgtgggagg tccgacaaac ctggcgtcta taccaacatc 900 tgccgctacc tggactggat caagaagatc ataggcagca agggctgatt 950 ctaggataag cactagatct cccttaataa actcacaact ctctggttc 999

<400> 395

Met Gly Arg Pro Arg Pro Arg Ala Ala Lys Thr Trp Met Phe Leu

1 5 10 15

Leu Leu Gly Gly Ala Trp Ala Gly His Ser Arg Ala Gln Glu $20 \\ 25 \\ 30$

Asp Lys Val Leu Gly Gly His Glu Cys Gln Pro His Ser Gln Pro 35 40 45

Trp Gln Ala Ala Leu Phe Gln Gly Gln Gln Leu Cys Gly Gly 50 55 60

Val Leu Val Gly Gly Asn Trp Val Leu Thr Ala Ala His Cys Lys
65 70 75

Lys Pro Lys Tyr Thr Val Arg Leu Gly Asp His Ser Leu Gln Asn 80 85 90

Lys Asp Gly Pro Glu Gln Glu Ile Pro Val Val Gln Ser Ile Pro 95 100 105

<210> 395

<211> 260

<212> PRT

<213> Homo sapiens

```
His Pro Cys Tyr Asn Ser Ser Asp Val Glu Asp His Asn His Asp
                                                         120
                 110
Leu Met Leu Gln Leu Arg Asp Gln Ala Ser Leu Gly Ser Lys
                 125
Val Lys Pro Ile Ser Leu Ala Asp His Cys Thr Gln Pro Gly Gln
Lys Cys Thr Val Ser Gly Trp Gly Thr Val Thr Ser Pro Arg Glu
Asn Phe Pro Asp Thr Leu Asn Cys Ala Glu Val Lys Ile Phe Pro
                 170
Gln Lys Lys Cys Glu Asp Ala Tyr Pro Gly Gln Ile Thr Asp Gly
                                                         195
Met Val Cys Ala Gly Ser Ser Lys Gly Ala Asp Thr Cys Gln Gly
Asp Ser Gly Gly Pro Leu Val Cys Asp Gly Ala Leu Gln Gly Ile
Thr Ser Trp Gly Ser Asp Pro Cys Gly Arg Ser Asp Lys Pro Gly
Val Tyr Thr Asn Ile Cys Arg Tyr Leu Asp Trp Ile Lys Lys Ile
Ile Gly Ser Lys Gly
<210> 396
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 396
cagcctacag aataaagatg gccc 24
<210> 397
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
ggtgcaatga tctgccaggc tgat 24
<210> 398
<211> 48
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
agaaatacct gtggttcagt ccatcccaaa cccctgctac aacagcag 48
<210> 399
<211> 2236
<212> DNA
<213> Homo sapiens
<400> 399
 ggcgccggtg caccgggcgg gctgagcgcc tcctgcggcc cggcctgcgc 50
 gccccggccc gccgccccc ccacgcccca accccggccc gcgcccccta 100
 gcccccgccc gggcccgcgc ccgcgcccgc gcccaggtga gcgctccgcc 150
 cgccgcgagg ccccgcccc gcccgcccc ggccggcggg 200
 ggaaccgggc ggattcctcg cgcgtcaaac cacctgatcc cataaaacat 250
 teatectece ggeggeeege getgegageg eeeegeeagt eegegeegee 300
 geogeocteg ceetgtgege eetgegege etgegeacee geggeeegag 350
 cccagccaga gccgggcgga gcggagcgcg ccgagcctcg tcccgcggcc 400
 gggccggggc cgggccgtag cggcggcgcc tggatgcgga cccggccgcg 450
 gggagacggg cgcccgcccc gaaacgactt tcagtccccg acgcgccccg 500
 cccaacccct acgatgaaga gggcgtccgc tggagggagc cggctgctgg 550
 catgggtgct gtggctgcag gcctggcagg tggcagcccc atgcccaggt 600
 gcctgcgtat gctacaatga gcccaaggtg acgacaagct gcccccagca 650
 gggcctgcag gctgtgcccg tgggcatccc tgctgccagc cagcgcatct 700
 tectgeacgg caacegeate tegeatgtge cagetgecag etteegtgee 750
 tgccgcaacc tcaccatcct gtggctgcac tcgaatgtgc tggcccgaat 800
 tgatgcggct gccttcactg gcctggccct cctggagcag ctggacctca 850
 gcgataatgc acageteegg tetgtggace etgecacatt ceaeggeetg 900
 ggccgcctac acacgctgca cctggaccgc tgcggcctgc aggagctggg 950
 cccggggctg ttccgcggcc tggctgccct gcagtacctc tacctgcagg 1000
 acaacgcgct gcaggcactg cctgatgaca ccttccgcga cctgggcaac 1050
```

ctcacacac tettectgca eggcaacege atetecageg tgeeegageg 1100

cgccttccgt gggctgcaca gcctcgaccg tctcctactg caccagaacc 1150 gcgtggccca tgtgcacccg catgccttcc gtgaccttgg ccgcctcatg 1200 acactetate tgtttgccaa caatetatea gegetgeeca etgaggeeet 1250 ggccccctg cgtgcctgc agtacctgag gctcaacgac aacccctggg 1300 tgtgtgactg ccgggcacgc ccactctggg cctggctgca gaagttccgc 1350 agetectect ceqaaqtqcc etqcaqcete ceqcaacqcc tggetggccg 1400 tqacetcaaa egectagetg ceaatgacet geagggetge getgtggeea 1450 ccggccctta ccatcccatc tggaccggca gggccaccga tgaggagccg 1500 ctggggcttc ccaagtgctg ccagccagat gccgctgaca aggcctcagt 1550 actggagcct ggaagaccag cttcggcagg caatgcgctg aagggacgcg 1600 tgccgcccgg tgacagcccg ccgggcaacg gctctggccc acggcacatc 1650 aatgactcac cetttgggac tetgeetgge tetgetgage eecegeteae 1700 tgcagtgcgg cccgagggct ccgagccacc agggttcccc acctcgggcc 1750 ctcgccggag gccaggctgt tcacgcaaga accgcacccg cagccactgc 1800 cqtctgqqcc aqgcagqcag cgggggtggc gggactggtg actcagaagg 1850 ctcaggtgcc ctacccagcc tcacctgcag cctcaccccc ctgggcctgg 1900 cgctggtgct gtggacagtg cttgggccct gctgaccccc agcggacaca 1950 agagegtget cageagecag gtgtgtgtae atacggggte tetetecaeg 2000 ccgccaagcc agccgggcgg ccgacccgtg gggcaggcca ggccaggtcc 2050 tecetgatgg acgeetgeeg eccqceacce ceatetecae eccateatgt 2100 ttacagggtt cggcggcagc gtttgttcca gaacgccgcc tcccacccag 2150 atcgcggtat atagagatat gcattttatt ttacttgtgt aaaaatatcg 2200 gacgacgtgg aataaagagc tcttttctta aaaaaa 2236

```
<210> 400
```

<211> 473

<212> PRT

<213> Homo sapiens

<400> 400

Met Lys Arg Ala Ser Ala Gly Gly Ser Arg Leu Leu Ala Trp Val

Leu Trp Leu Gln Ala Trp Gln Val Ala Ala Pro Cys Pro Gly Ala 20 25 30

Cys Val Cys Tyr Asn Glu Pro Lys Val Thr Thr Ser Cys Pro Gln Gln Gly Leu Gln Ala Val Pro Val Gly Ile Pro Ala Ala Ser Gln Arg Ile Phe Leu His Gly Asn Arg Ile Ser His Val Pro Ala Ala Ser Phe Arg Ala Cys Arg Asn Leu Thr Ile Leu Trp Leu His Ser Asn Val Leu Ala Arg Ile Asp Ala Ala Ala Phe Thr Gly Leu Ala Leu Leu Glu Gln Leu Asp Leu Ser Asp Asn Ala Gln Leu Arg Ser Val Asp Pro Ala Thr Phe His Gly Leu Gly Arg Leu His Thr Leu His Leu Asp Arg Cys Gly Leu Gln Glu Leu Gly Pro Gly Leu Phe 140 Arg Gly Leu Ala Ala Leu Gln Tyr Leu Tyr Leu Gln Asp Asn Ala Leu Gln Ala Leu Pro Asp Asp Thr Phe Arg Asp Leu Gly Asn Leu 170 Thr His Leu Phe Leu His Gly Asn Arg Ile Ser Ser Val Pro Glu Arg Ala Phe Arg Gly Leu His Ser Leu Asp Arg Leu Leu His Gln Asn Arq Val Ala His Val His Pro His Ala Phe Arg Asp Leu Gly Arg Leu Met Thr Leu Tyr Leu Phe Ala Asn Asn Leu Ser Ala Leu Pro Thr Glu Ala Leu Ala Pro Leu Arg Ala Leu Gln Tyr Leu Arg Leu Asn Asp Asn Pro Trp Val Cys Asp Cys Arg Ala Arg Pro Leu Trp Ala Trp Leu Gln Lys Phe Arg Gly Ser Ser Ser Glu Val Pro Cys Ser Leu Pro Gln Arg Leu Ala Gly Arg Asp Leu Lys Arg Leu Ala Ala Asn Asp Leu Gln Gly Cys Ala Val Ala Thr Gly Pro Tyr His Pro Ile Trp Thr Gly Arg Ala Thr Asp Glu Glu Pro Leu

<213> Artificial Sequence

325 330 320 Gly Leu Pro Lys Cys Cys Gln Pro Asp Ala Ala Asp Lys Ala Ser 335 Val Leu Glu Pro Gly Arg Pro Ala Ser Ala Gly Asn Ala Leu Lys 360 Gly Arg Val Pro Pro Gly Asp Ser Pro Pro Gly Asn Gly Ser Gly Pro Arg His Ile Asn Asp Ser Pro Phe Gly Thr Leu Pro Gly Ser 380 Ala Glu Pro Pro Leu Thr Ala Val Arg Pro Glu Gly Ser Glu Pro 395 Pro Gly Phe Pro Thr Ser Gly Pro Arg Arg Pro Gly Cys Ser Arg Lys Asn Arg Thr Arg Ser His Cys Arg Leu Gly Gln Ala Gly Ser Gly Gly Gly Thr Gly Asp Ser Glu Gly Ser Gly Ala Leu Pro Ser Leu Thr Cys Ser Leu Thr Pro Leu Gly Leu Ala Leu Val 460 Leu Trp Thr Val Leu Gly Pro Cys 470 <210> 401 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 401 tggctgccct gcagtacctc tacc 24 <210> 402 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 402 ccctgcaggt cattggcagc tagg 24 <210> 403 <211> 45 <212> DNA

```
<220>
<223> Synthetic oligonucleotide probe
<400> 403
aggeactgcc tgatgacacc ttccgcgacc tgggcaacct cacac 45
<210> 404
<211> 2738
<212> DNA
<213> Homo sapiens
<400> 404
 ggaagtccac ggggagcttg gatgccaaag ggaggacggc tgggtcctct 50
 ggagaggact actcactggc atatttctga ggtatctgta gaataaccac 100
 agcctcagat actggggact ttacagtccc acagaaccgt cctcccagga 150
 agetqaatee ageaagaaca atggaggeea gegggaaget catttgeaga 200
 caaaggcaag teettttte ettteteett ttgggettat etetggeggg 250
 cqcqqcqqaa cctaqaaqct attctqtggt ggaggaaact gagggcagct 300
 cctttgtcac caatttagca aaggacctgg gtctggagca gagggaattc 350
 tccaggcggg gggttagggt tgtttccaga gggaacaaac tacatttgca 400
 gctcaatcag gagaccgcgg atttgttgct aaatgagaaa ttggaccgtg 450
 aggatetgtg eggteacaca gagecetgtg tgetaegttt ecaagtgttg 500
 ctagagagtc ccttcgagtt ttttcaagct gagctgcaag taatagacat 550
 aaacqaccac tctccaqtat ttctqqacaa acaaatqttq qtqaaaqtat 600
 cagagagcag tcctcctggg actacgtttc ctctgaagaa tgccgaagac 650
 ttagatgtag gccaaaacaa tattgagaac tatataatca gccccaactc 700
 ctattttcgg gtcctcaccc gcaaacgcag tgatggcagg aaatacccag 750
 agctggtgct ggacaaagcg ctggaccgag aggaagaagc tgagctcagg 800
 ttaacactca cagcactgga tggtggctct ccgcccagat ctggcactgc 850
 tcaggtctac atcgaagtcc tggatgtcaa cgataatgcc cctgaatttg 900
 agcagccttt ctatagagtg cagatctctg aggacagtcc ggtaggcttc 950
 ctggttgtga aggtctctgc cacggatgta gacacaggag tcaacggaga 1000
 gatttcctat tcacttttcc aagcttcaga agagattggc aaaaccttta 1050
 agatcaatcc cttgacagga gaaattgaac taaaaaaaca actcgatttc 1100
```

gaaaaacttc agtcctatga agtcaatatt gaggcaagag atgctggaac 1150

cttttctgga aaatgcaccg ttctgattca agtgatagat gtgaacgacc 1200 atgccccaga agttaccatg tetgcattta ccageccaat acetgagaac 1250 gcgcctgaaa ctgtggttgc acttttcagt gtttcagatc ttgattcagg 1300 agaaaatggg aaaattagtt gctccattca ggaggatcta cccttcctcc 1350 tgaaatccgc ggaaaacttt tacaccctac taacggagag accactagac 1400 agagaaagca gagcggaata caacatcact atcactgtca ctgacttggg 1450 gacccctatg ctgataacac agctcaatat gaccgtgctg atcgccgatg 1500 tcaatgacaa cgctcccgcc ttcacccaaa cctcctacac cctgttcgtc 1550 cgcgagaaca acagccccgc cctgcacatc cgcagcgtca gcgctacaga 1600 cagagactca ggcaccaacg cccaggtcac ctactcgctg ctgccgcccc 1650 aggaccegea cetgeeecte acatecetgg tetecateaa egeggacaae 1700 ggccacctgt tcgccctcag gtctctggac tacgaggccc tgcaggggtt 1750 ccagttccgc gtgggcgctt cagaccacgg ctccccggcg ctgagcagcg 1800 aggcgctggt gcgcgtggtg gtgctggacg ccaacgacaa ctcgcccttc 1850 gtgctgtacc cgctgcagaa cggctccgcg ccctgcaccg agctggtgcc 1900 ccgggcggcc gagccgggct acctggtgac caaggtggtg gcggtggacg 1950 gcgactcggg ccagaacgcc tggctgtcgt accagctgct caaggccacg 2000 gageteggte tgtteggegt gtgggegeae aatggegagg tgegeaeege 2050 caggetgetg agegagegeg acgeggeeaa geacaggetg gtggtgetgg 2100 tcaaggacaa tggcgagcct ccgcgctcgg ccaccgccac gctgcacgtg 2150 ctcctggtgg acggcttctc ccagccctac ctgcctctcc cggaggcggc 2200 cccgacccag gcccaggccg acttgctcac cgtctacctg gtggtggcgt 2250 tggcctcggt gtcttcgctc ttcctctttt cggtgctcct gttcgtggcg 2300 gtgcggctgt gtaggaggag cagggcggcc tcggtgggtc gctgcttggt 2350 gcccgagggc ccccttccag ggcatcttgt ggacatgagc ggcaccagga 2400 ccctatccca gagctaccag tatgaggtgt gtctggcagg aggctcaggg 2450 accaatgagt tcaagttcct gaagccgatt atccccaact tccctcccca 2500 gtgccctggg aaagaaatac aaggaaattc taccttcccc aataactttg 2550 ggttcaatat tcagtgacca tagttgactt ttacattcca taggtatttt 2600 attttgtggc atttccatgc caatgtttat ttcccccaat ttgtgtgtat 2650 gtaatattgt acggatttac tcttgatttt tctcatgttc tttctccctt 2700 tgttttaaag tgaacattta cctttattcc tggttctt 2738

- <210> 405
- <211> 798
- <212> PRT
- <213> Homo sapiens
- <400> 405
- Met Glu Ala Ser Gly Lys Leu Ile Cys Arg Gln Arg Gln Val Leu
 1 5 10 15
- Phe Ser Phe Leu Leu Gly Leu Ser Leu Ala Gly Ala Ala Glu 20 25 30
- Pro Arg Ser Tyr Ser Val Val Glu Glu Thr Glu Gly Ser Ser Phe
 35 40 45
- Val Thr Asn Leu Ala Lys Asp Leu Gly Leu Glu Gln Arg Glu Phe 50 55 60
- Ser Arg Arg Gly Val Arg Val Val Ser Arg Gly Asn Lys Leu His
 65 70 75
- Leu Gln Leu Asn Gln Glu Thr Ala Asp Leu Leu Leu Asn Glu Lys 80 85 90
- Leu Asp Arg Glu Asp Leu Cys Gly His Thr Glu Pro Cys Val Leu 95 100 105
- Arg Phe Gln Val Leu Leu Glu Ser Pro Phe Glu Phe Phe Gln Ala 110 115 120
- Glu Leu Gln Val Ile Asp Ile Asn Asp His Ser Pro Val Phe Leu 125 130 135
- Asp Lys Gln Met Leu Val Lys Val Ser Glu Ser Ser Pro Pro Gly 140 145 150
- Thr Thr Phe Pro Leu Lys Asn Ala Glu Asp Leu Asp Val Gly Gln 155 160 165
- Asn Asn Ile Glu Asn Tyr Ile Ile Ser Pro Asn Ser Tyr Phe Arg 170 175 180
- Val Leu Thr Arg Lys Arg Ser Asp Gly Arg Lys Tyr Pro Glu Leu 185 190 195
- Val Leu Asp Lys Ala Leu Asp Arg Glu Glu Glu Ala Glu Leu Arg 200 205 210
- Leu Thr Leu Thr Ala Leu Asp Gly Gly Ser Pro Pro Arg Ser Gly 215 220 225
- Thr Ala Gln Val Tyr Ile Glu Val Leu Asp Val Asn Asp Asn Ala

				230					235					240
Pro	Glu	Phe	Glu	Gln 245	Pro	Phe	Tyr	Arg	Val 250	Gln	Ile	Ser	Glu	Asp 255
Ser	Pro	Val	Gly	Phe 260	Leu	Val	Val	Lys	Val 265	Ser	Ala	Thr	Asp	Val 270
Asp	Thr	Gly	Val	Asn 275	Gly	Glu	Ile	Ser	Tyr 280	Ser	Leu	Phe	Gln	Ala 285
Ser	Glu	Glu	Ile	Gly 290	Lys	Thr	Phe	Lys	Ile 295	Asn	Pro	Leu	Thr	Gly 300
Glu	Ile	Glu	Leu	Lys 305	Lys	Gln	Leu	Asp	Phe 310	Glu	Lys	Leu	Gln	Ser 315
Tyr	Glu	Val	Asn	Ile 320	Glu	Ala	Arg	Asp	Ala 325	Gly	Thr	Phe	Ser	Gly 330
Lys	Cys	Thr	Val	Leu 335	Ile	Gln	Val	Ile	Asp 340	Val	Asn	Asp	His	Ala 345
Pro	Glu	Val	Thr	Met 350	Ser	Ala	Phe	Thr	Ser 355	Pro	Ile	Pro	Glu	Asn 360
Ala	Pro	Glu	Thr	Val 365	Val	Ala	Leu	Phe	Ser 370	Val	Ser	Asp	Leu	Asp 375
Ser	Gly	Glu	Asn	Gly 380	Lys	Ile	Ser	Cys	Ser 385	Ile	Gln	Glu	Asp	Leu 390
Pro	Phe	Leu	Leu	Lys 395	Ser	Ala	Glu	Asn	Phe 400	Tyr	Thr	Leu	Leu	Thr 405
Glu	Arg	Pro	Leu	Asp 410	Arg	Glu	Ser	Arg	Ala 415		Tyr	Asn	Ile	Thr 420
Ile	Thr	Val	Thr	Asp 425	Leu	Gly	Thr	Pro	Met 430	Leu	Ile	Thr	Gln	Leu 435
Asn	Met	Thr	Val	Leu 440	Ile	Ala	Asp	Val	Asn 445		Asn	Ala	Pro	Ala 450
Phe	Thr	Gln	Thr	Ser 455		Thr	Leu	Phe	Val 460	Arg	Glu	Asn	Asn	Ser 465
Pro	Ala	Leu	His	Ile 470	Arg	Ser	Val	Ser	Ala 475		Asp	Arg	Asp	Ser 480
Gly	Thr	Asn	Ala	Gln 485		Thr	Tyr	Ser	Leu 490		Pro	Pro	Gln	495
Pro	His	Leu	Pro	Leu 500		Ser	Leu	. Val	Ser 505	Ile	Asn	Ala	Asp	Asn 510
Gly	His	Leu	Phe	Ala 515		Arg	Ser	Leu	Asp 520	Tyr	Glu	Ala	Leu	Glr 525

Gly Phe Gln Phe Arg Val Gly Ala Ser Asp His Gly Ser Pro Ala Leu Ser Ser Glu Ala Leu Val Arg Val Val Leu Asp Ala Asn 550 Asp Asn Ser Pro Phe Val Leu Tyr Pro Leu Gln Asn Gly Ser Ala Pro Cys Thr Glu Leu Val Pro Arg Ala Ala Glu Pro Gly Tyr Leu 575 Val Thr Lys Val Val Ala Val Asp Gly Asp Ser Gly Gln Asn Ala 590 Trp Leu Ser Tyr Gln Leu Leu Lys Ala Thr Glu Leu Gly Leu Phe 605 Gly Val Trp Ala His Asn Gly Glu Val Arg Thr Ala Arg Leu Leu Ser Glu Arg Asp Ala Ala Lys His Arg Leu Val Val Leu Val Lys Asp Asn Gly Glu Pro Pro Arg Ser Ala Thr Ala Thr Leu His Val Leu Leu Val Asp Gly Phe Ser Gln Pro Tyr Leu Pro Leu Pro Glu 665 Ala Ala Pro Thr Gln Ala Gln Ala Asp Leu Leu Thr Val Tyr Leu Val Val Ala Leu Ala Ser Val Ser Ser Leu Phe Leu Phe Ser Val Leu Leu Phe Val Ala Val Arg Leu Cys Arg Arg Ser Arg Ala Ala 715 Ser Val Gly Arg Cys Leu Val Pro Glu Gly Pro Leu Pro Gly His Leu Val Asp Met Ser Gly Thr Arg Thr Leu Ser Gln Ser Tyr Gln Tyr Glu Val Cys Leu Ala Gly Gly Ser Gly Thr Asn Glu Phe Lys Phe Leu Lys Pro Ile Ile Pro Asn Phe Pro Pro Gln Cys Pro Gly 775 Lys Glu Ile Gln Gly Asn Ser Thr Phe Pro Asn Asn Phe Gly Phe 790

Asn Ile Gln

<210> 406

```
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 406
ctgagaacgc gcctgaaact gtg 23
<210> 407
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 407
 agcgttgtca ttgacatcgg cg 22
<210> 408
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 408
 ttagttgctc cattcaggag gatctaccct tcctcctgaa atccgcggaa 50
<210> 409
<211> 1379
<212> DNA
<213> Homo sapiens
<400> 409
 acccacgcgt ccgcccacgc gtccgcccac gcgtccgcc acgcgtccgc 50
 gcgtagccgt gcgccgattg cctctcggcc tgggcaatgg tcccggctgc 100
 cggtcgacga ccgccccgcg tcatgcggct cctcggctgg tggcaagtat 150
 tgctgtgggt gctgggactt cccgtccgcg gcgtggaggt tgcagaggaa 200
 agtggtcgct tatggtcaga ggagcagcct gctcaccctc tccaggtggg 250
 ggctgtgtac ctgggtgagg aggagctcct gcatgacccg atgggccagg 300
 acagggcagc agaagaggcc aatgcggtgc tggggctgga cacccaaggc 350
 gatcacatgg tgatgctgtc tgtgattcct ggggaagctg aggacaaagt 400
 gagttcagag cctagcggcg tcacctgtgg tgctggagga gcggaggact 450
 caaggtgcaa cgtccgagag agccttttct ctctggatgg cgctggagca 500
```

cactteectg acagagaaga ggagtattac acagagecag aagtggegga 550 atctgacgca gccccgacag aggactccaa taacactgaa agtctgaaat 600 ccccaaaggt gaactgtgag gagagaaaca ttacaggatt agaaaatttc 650 actctgaaaa ttttaaatat gtcacaggac cttatggatt ttctgaaccc 700 aaacggtagt gactgtactc tagtcctgtt ttacaccccg tggtgccgct 750 tttctgccag tttggccct cactttaact ctctgccccg ggcatttcca 800 caggtttggc accgtagctg ttcctaatat tttattattt caaggagcta 900 aaccaatggc cagatttaat catacagatc gaacactgga aacactgaaa 950 atcttcattt ttaatcagac aggtatagaa gccaagaaga atgtggtggt 1000 aactcaagcc gaccaaatag gccctcttcc cagcactttg ataaaaagtg 1050 tggactggtt gcttgtattt tccttattct ttttaattag ttttattatg 1100 tatgctacca ttcgaactga gagtattcgg tggctaattc caggacaaqa 1150 gcaggaacat gtggagtagt gatggtctga aagaagttgg aaagaggaac 1200 ttcaatcctt cgtttcagaa attagtgcta cagtttcata cattttctcc 1250 agtgacgtgt tgacttgaaa cttcaggcag attaaaagaa tcatttgttg 1300 aacaactgaa tgtataaaaa aattataaac tggtgtttta actagtattg 1350 caataagcaa atgcaaaaat attcaatag 1379

<210> 410

<211> 360

<212> PRT

<213> Homo sapiens

<400> 410

Met Val Pro Ala Ala Gly Arg Arg Pro Pro Arg Val Met Arg Leu
1 5 10 15

Leu Gly Trp Trp Gln Val Leu Trp Val Leu Gly Leu Pro Val 20 25 30

Arg Gly Val Glu Val Ala Glu Glu Ser Gly Arg Leu Trp Ser Glu
35 40 45

Glu Gln Pro Ala His Pro Leu Gln Val Gly Ala Val Tyr Leu Gly
50 55 60

Glu Glu Glu Leu Leu His Asp Pro Met Gly Gln Asp Arg Ala Ala 65 70 75

Glu Glu Ala Asn Ala Val Leu Gly Leu Asp Thr Gln Gly Asp His

85 80 Met Val Met Leu Ser Val Ile Pro Gly Glu Ala Glu Asp Lys Val Ser Ser Glu Pro Ser Gly Val Thr Cys Gly Ala Gly Gly Ala Glu 110 Asp Ser Arg Cys Asn Val Arg Glu Ser Leu Phe Ser Leu Asp Gly 125 Ala Gly Ala His Phe Pro Asp Arg Glu Glu Glu Tyr Tyr Thr Glu Pro Glu Val Ala Glu Ser Asp Ala Ala Pro Thr Glu Asp Ser Asn Asn Thr Glu Ser Leu Lys Ser Pro Lys Val Asn Cys Glu Glu Arg Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys 200 Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser 215 Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu 230 His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys 290 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 360 350 355

<210> 411 <211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
cacagagcca gaagtggcgg aatc 24
<210> 412
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 412
 ccacatgttc ctgctcttgt cctgg 25
<210> 413
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 413
cggtagtgac tgtactctag tcctgtttta caccccgtgg tgccg 45
<210> 414
<211> 1196
<212> DNA
<213> Homo sapiens
<400> 414
 cocggetecg etecetetge eccetegggg tegegegece acgatgetge 50
 agggeeetgg etegetgetg etgetettee tegeetegea etgetgeetg 100
 ggctcggcgc gcgggctctt cctctttggc cagcccgact tctcctacaa 150
 gcgcagcaat tgcaagccca tcccggtcaa cctgcagctg tgccacggca 200
 tegaatacea gaacatgegg etgeecaace tgetgggeea egagaecatg 250
 aaggaggtgc tggagcaggc cggcgcttgg atcccgctgg tcatgaagca 300
 gtgccacccg gacaccaaga agttcctgtg ctcgctcttc gcccccgtct 350
 gcctcgatga cctagacgag accatccagc catgccactc gctctgcgtg 400
 caggtgaagg accgctgcgc cccggtcatg tccgccttcg gcttcccctg 450
 gcccgacatg cttgagtgcg accgtttccc ccaggacaac gacctttgca 500
 tececetege tageagegae eaceteetge cagecacega ggaageteea 550
```

aaggtatgtg aagcetgcaa aaataaaaat gatgatgaca acgacataat 600 ggaaacgett tgtaaaaatg attttgcact gaaaataaaa gtgaaggaga 650 taacctacat caaccgagat accaaaatca teetggagae caagagcaag 700 accatttaca agetgaacgg tgtgteegaa agggacetga agaaateggt 750 getgtggete aaagacaget tgeagtgeae etgtgaggag atgaacgaca 800 teaacgegee etatetggte atgggacaga aacagggtgg ggagetggtg 850 ateacetegg tgaageggtg geagaagggg cagagaggt teaagegeat 900 eteeegaage tgeteeage tgeagtgeta gteeeggeat eetgatgget 950 eegacaggee tgeteeagag cacggetgae eattetget eeggaatete 1000 ageteeegtt eeceaagea acteetaget geteeagtet cageetggge 1050 agetteeeee tgeetttge aegtttgeat eeceageat teetgagtta 1100 taaggeeaca ggagtggata getgtttea eetaaaggaa aageecacee 1150 gaatettgta gaaatattea aactaataaa ateatgaata ttttaa 1196

<210> 415

<211> 295

<212> PRT

<213> Homo sapiens

<400> 415

Met Leu Gln Gly Pro Gly Ser Leu Leu Leu Leu Phe Leu Ala Ser
1 5 10 15

His Cys Cys Leu Gly Ser Ala Arg Gly Leu Phe Leu Phe Gly Gln 20 25 30

Pro Asp Phe Ser Tyr Lys Arg Ser Asn Cys Lys Pro Ile Pro Val 35 40 45

Asn Leu Gln Leu Cys His Gly Ile Glu Tyr Gln Asn Met Arg Leu 50 55 60

Pro Asn Leu Gly His Glu Thr Met Lys Glu Val Leu Glu Gln 65 70 75

Ala Gly Ala Trp Ile Pro Leu Val Met Lys Gln Cys His Pro Asp 80 85 90

Thr Lys Lys Phe Leu Cys Ser Leu Phe Ala Pro Val Cys Leu Asp 95 100 105

Asp Leu Asp Glu Thr Ile Gln Pro Cys His Ser Leu Cys Val Gln 110 115 120

Val Lys Asp Arg Cys Ala Pro Val Met Ser Ala Phe Gly Phe Pro 125 130 135

```
Trp Pro Asp Met Leu Glu Cys Asp Arg Phe Pro Gln Asp Asn Asp
 Leu Cys Ile Pro Leu Ala Ser Ser Asp His Leu Leu Pro Ala Thr
                                                          165
 Glu Glu Ala Pro Lys Val Cys Glu Ala Cys Lys Asn Lys Asn Asp
 Asp Asp Asn Asp Ile Met Glu Thr Leu Cys Lys Asn Asp Phe Ala
 Leu Lys Ile Lys Val Lys Glu Ile Thr Tyr Ile Asn Arg Asp Thr
 Lys Ile Ile Leu Glu Thr Lys Ser Lys Thr Ile Tyr Lys Leu Asn
                 215
 Gly Val Ser Glu Arg Asp Leu Lys Lys Ser Val Leu Trp Leu Lys
 Asp Ser Leu Gln Cys Thr Cys Glu Glu Met Asn Asp Ile Asn Ala
 Pro Tyr Leu Val Met Gly Gln Lys Gln Gly Glu Leu Val Ile
 Thr Ser Val Lys Arg Trp Gln Lys Gly Gln Arg Glu Phe Lys Arg
 Ile Ser Arg Ser Ile Arg Lys Leu Gln Cys
                 290
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 416
cctggctcgc tgctgctgct c 21
<210> 417
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
cctcacaggt gcactgcaag ctgtc 25
<210> 418
<211> 47
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
ctcttcctct ttggccagcc cgacttctcc tacaagcgca gaattgc 47
<210> 419
<211> 1830
<212> DNA
<213> Homo sapiens
<400> 419
 gtggaggccg ccgacgatgg cggggccgac ggaggccgag acggggttgg 50
 ccgagccccg ggccctgtgc gcgcagcggg gccaccgcac ctacgcgcgc 100
 cgctgggtgt tcctgctcgc gatcagcctg ctcaactgct ccaacgccac 150
 gctgtggctc agctttgcac ctgtggctga cgtcattgct gaggacttgg 200
 tcctgtccat ggagcagatc aactggctgt cactggtcta cctcgtggta 250
tccaccccat ttggcgtggc ggccatctgg atcctggact ccgtcgggct 300
 ccgtgcggcg accatcctgg gtgcgtggct gaactttgcc gggagtgtgc 350
 tacgcatggt gccctgcatg gttgttggga cccaaaaccc atttgccttc 400
ctcatgggtg gccagagcct ctgtgccctt gcccagagcc tggtcatctt 450
ctctccagcc aagctggctg ccttqtqqtt cccaqaqcac caqcqaqcca 500
cggccaacat gctcgccacc atgtcgaacc ctctgggcgt ccttgtggcc 550
aatgtgctgt cccctgtgct ggtcaagaag ggtgaggaca ttccgttaat 600
gctcggtgtc tataccatcc ctgctggcgt cgtctgcctg ctgtccacca 650
tetgeetgtg ggagagtgtg cececcacee egecetetge eggggetgee 700
agctccacct cagagaagtt cctggatggg ctcaagctgc agctcatgtg 750
gaacaaggcc tatgtcatcc tggctgtgtg cttgggggga atgatcggga 800
tctctgccag cttctcagcc ctcctggagc agatcctctg tgcaagcggc 850
cactccagtg ggttttccgg cctctgtggc gctctcttca tcacgtttgg 900
gatectgggg geactggete teggeeceta tgtggaeegg accaageaet 950
tcactgaggc caccaagatt ggcctgtgcc tgttctctct ggcctgcgtg 1000
ccctttgccc tggtgtccca gctgcaggga cagacccttg ccctggctgc 1050
```

cacctgctcg ctgctcgggc tgtttggctt ctcggtgggc cccgtggcca 1100

tggagttgge ggtegagtgt teetteeceg tgggggaggg ggetgeeaea 1150 ggcatgatet ttgtgetggg geaggeegag ggaataetea teatgetgge 1200 aatgaeggea etgaetgtge gaeggeegag geegteettg teeaeetgee 1250 ageagggggg ggateeaett gaetggaeag tgteetetget getgatggee 1300 ggeetgtgea eettetteag etgeateetg geggtettet teeaeaeeee 1350 ataeeggeeg etgeaggeeg agtetggga geeeeeetee aeeeggaaegg 1400 eegtggggeg egeagaetea gggeegggt tggaeegagg gggageagga 1450 aggggeetggg teetgggga eeeaeegggg eeaeegggg eeaeegggg eeaeegggg eeaeegggg eeaeegggg eeaeeegggg eeaeeeggg gegaggee eeaggggee eeaggggee eeaggggee eeggaggee eageaggee eageaggee eageaggee eageaggee 1550 geeaeeggg geagaeteg gegaaggee eageaggee eageaggee eageaggee 1600 teeeggeegg teteaetee eetteee eegtgggtg ateaeggae 1700 tgagegeett gtagteeagg ttgeeegea eategatgga ggegaaetgg 1750 aaeatetggt eeaeetggg geggggega aagggeteet tgegggetee 1800 gggagegaat taeaageeg eaeetgaaaa 1830

<210> 420

<211> 560

<212> PRT

<213> Homo sapiens

<400> 420

Met Ala Gly Pro Thr Glu Ala Glu Thr Gly Leu Ala Glu Pro Arg
1 5 10 15

Ala Leu Cys Ala Gln Arg Gly His Arg Thr Tyr Ala Arg Arg Trp
20 25 30

Val Phe Leu Leu Ala Ile Ser Leu Leu Asn Cys Ser Asn Ala Thr 35 · 40 45

Leu Trp Leu Ser Phe Ala Pro Val Ala Asp Val Ile Ala Glu Asp 50 55 60

Leu Val Leu Ser Met Glu Gln Ile Asn Trp Leu Ser Leu Val Tyr
65 70 75

Leu Val Val Ser Thr Pro Phe Gly Val Ala Ala Ile Trp Ile Leu 80 85 90

Asp Ser Val Gly Leu Arg Ala Ala Thr Ile Leu Gly Ala Trp Leu 95 100 105

Asn Phe Ala Gly Ser Val Leu Arg Met Val Pro Cys Met Val Val

				110					115					120
Gly	Thr	Gln	Asn	Pro 125	Phe	Ala	Phe	Leu	Met 130		Gly	Gln	Ser	Leu 135
Суз	Ala	Leu	Ala	Gln 140		Leu	Val	Ile	Phe 145		Pro	Ala	Lys	Leu 150
Ala	Ala	Leu	Trp	Phe 155	Pro	Glu	His	Gln	Arg 160		Thr	Ala	Asn	Met 165
Leu	Ala	Thr	Met	Ser 170	Asn	Pro	Leu	Gly	Val 175	Leu	Val	Ala	Asn	Val 180
Leu	Ser	Pro	Val	Leu 185	Val	Lys	Lys	Gly	Glu 190	Asp	Ile	Pro	Leu	Met 195
Leu	Gly	Val	Tyr	Thr 200	Ile	Pro	Ala	Gly	Val 205	Val	Cys	Leu	Leu	Ser 210
Thr	Ile	Cys	Leu	Trp 215	Glu	Ser	Val	Pro	Pro 220	Thr	Pro	Pro	Ser	Ala 225
Gly	Ala	Ala	Ser	Ser 230	Thr	Ser	Glu	Lys	Phe 235	Leu	Asp	Gly	Leu	Lys 240
		Leu		245					250					255
		Gly		260					265					270
		Ile		275					280					285
		Gly		290					295					300
		Gly		305					310					315
		Ile		320					325					330
		Val		335					340					345
		Ser		350					355					360
		Glu		365					370					375
		Thr		380					385					390
ьeu	TTE	Met	Leu	Ala 395	Met	Thr	Ala	Leu	Thr 400	Val	Arg	Arg	Ser	Glu 405

```
Pro Ser Leu Ser Thr Cys Gln Gln Gly Glu Asp Pro Leu Asp Trp
 Thr Val Ser Leu Leu Met Ala Gly Leu Cys Thr Phe Phe Ser
                 425
                                     430
 Cys Ile Leu Ala Val Phe Phe His Thr Pro Tyr Arg Arg Leu Gln
 Ala Glu Ser Gly Glu Pro Pro Ser Thr Arg Asn Ala Val Gly Gly
 Ala Asp Ser Gly Pro Gly Val Asp Arg Gly Gly Ala Gly Arg Ala
 Gly Val Leu Gly Pro Ser Thr Ala Thr Pro Glu Cys Thr Ala Arg
 Gly Ala Ser Leu Glu Asp Pro Arg Gly Pro Gly Ser Pro His Pro
 Ala Cys His Arg Ala Thr Pro Arg Ala Gln Gly Pro Ala Ala Thr
 Asp Ala Pro Ser Arg Pro Gly Arg Leu Ala Gly Arg Val Gln Ala
 Ser Arg Phe Ile Asp Pro Ala Gly Ser His Ser Ser Phe Ser Ser
                                                          555
 Pro Trp Val Ile Thr
<210> 421
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 421
agetteteag ceeteetgga geag 24
<210> 422
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 422
cgggtcaata aacctggacg cttgg 25
<210> 423
<211> 43
<212> DNA
```

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 423 tatgtggacc ggaccaagca cttcactgag gccaccaaga ttg 43 <210> 424 <211> 4313 <212> DNA <213> Homo sapiens <400> 424 gtcccacatc ctgctcaact gggtcaggtc cctcttagac cagctcttgt 50 ccatcatttg ctgaagtgga ccaactagtt ccccagtagg gggtctcccc 100 tggcaattct tgatcggcgt ttggacatct cagatcgctt ccaatgaaga 150 tggccttgcc ttggggtcct gcttgtttca taatcatcta actatgggac 200 aaggttgtgc cggcagctct gggggaagga gcacggggct gatcaagcca 250 tccaggaaac actggaggac ttgtccagcc ttgaaagaac tctagtggtt 300 tctgaatcta gcccacttgg cggtaagcat gatgcaactt ctgcaacttc 350 tgctggggct tttggggcca ggtggctact tatttctttt aggggattgt 400 caggaggtga ccactctcac ggtgaaatac caagtgtcag aggaagtgcc 450 atctggtaca gtgatcggga agctgtccca ggaactgggc cgggaggaga 500 ggcggaggca agctggggcc gccttccagg tgttgcagct gcctcaggcg 550 ctccccattc aggtggactc tgaggaaggc ttgctcagca caggcaggcg 600 gctggatcga gagcagctgt gccgacagtg ggatccctgc ctggtttcct 650 ttgatgtgct tgccacaggg gatttggctc tgatccatgt ggagatccaa 700 gtgctggaca tcaatgacca ccagccacgg tttcccaaag gcgagcagga 750 gctggaaatc tctgagagcg cctctctgcg aacccggatc cccctggaca 800 gagetettga eccagacaca ggeeetaaca ecctgeacac etacactetg 850 tctcccagtg agcactttgc cttggatgtc attgtgggcc ctgatgagac 900 caaacatgca gaactcatag tggtgaagga gctggacagg gaaatccatt 950 cattttttga tctggtgtta actgcctatg acaatgggaa ccccccaag 1000 tcaggtacca gcttggtcaa ggtcaacgtc ttggactcca atgacaatag 1050

ccctgcgttt gctgagagtt cactggcact ggaaatccaa gaagatgctg 1100

cacctggtac gcttctcata aaactgaccg ccacagaccc tgaccaaggc 1150 cccaatgggg aggtggagtt cttcctcagt aagcacatgc ctccagaggt 1200 gctggacacc ttcagtattg atgccaagac aggccaggtc attctgcgtc 1250 gacctctaga ctatgaaaag aaccctgcct acgaggtgga tgttcaggca 1300 agggacctgg gtcccaatcc tatcccagcc cattgcaaag ttctcatcaa 1350 ggttctggat gtcaatgaca acatcccaag catccacgtc acatgggcct 1400 cccagccatc actggtgtca gaagctcttc ccaaggacag ttttattgct 1450 cttgtcatgg cagatgactt ggattcagga cacaatggtt tggtccactg 1500 ctggctgagc caagagctgg gccacttcag gctgaaaaga actaatggca 1550 acacatacat gttgctaacc aatgccacac tggacagaga gcagtggccc 1600 aaatataccc tcactctgtt agcccaagac caaggactcc agcccttatc 1650 agccaagaaa cagctcagca ttcagatcag tgacatcaac gacaatgcac 1700 ctgtgtttga gaaaagcagg tatgaagtct ccacgcggga aaacaactta 1750 ccctctcttc acctcattac catcaaggct catgatgcag acttgggcat 1800 taatggaaaa gtctcatacc gcatccagga ctccccagtt gctcacttag 1850 tagctattga ctccaacaca ggagaggtca ctgctcagag gtcactgaac 1900 tatgaagaga tggccggctt tgagttccag gtgatcgcag aggacagcgg 1950 gcaacccatg cttgcatcca gtgtctctgt gtgggtcagc ctcttggatg 2000 ccaatgataa tgccccagag gtggtccagc ctgtgctcag cgatggaaaa 2050 gccagcctct ccgtgcttgt gaatgcctcc acaggccacc tgctggtgcc 2100 catcgagact cccaatggct tgggcccagc gggcactgac acacctccac 2150 tggccactca cageteeegg ceatteettt tgacaaceat tgtggcaaga 2200 gatgcagact cgggggcaaa tggagagccc ctctacagca tccgcaatgg 2250 aaatgaagcc cacctcttca tcctcaaccc tcatacgggg cagctgttcg 2300 tcaatgtcac caatgccagc agectcattg ggagtgagtg ggagctggag 2350 atagtagtag aggaccaggg aagcccccc ttacagaccc gagccctgtt 2400 gagggtcatg tttgtcacca qtgtggacca cctgagggac tcaqcccqca 2450 agcctggggc cttgagcatg tcgatgctga cggtgatctg cctggctgta 2500 ctgttgggca tcttcgggtt gatcctggct ttgttcatgt ccatctgccg 2550

gacagaaaag aaggacaaca gggcctacaa ctgtcgggag gccgagtcca 2600 cctaccgcca gcagcccaag aggccccaga aacacattca gaaqqcagac 2650 atccacctcg tgcctgtgct caggggtcag gcaggtgagc cttgtgaagt 2700 cgggcagtcc cacaaagatg tggacaagga ggcgatgatg gaagcaggct 2750 gggacccctg cctgcaggcc cccttccacc tcaccccgac cctgtacagg 2800 acgctgcgta atcaaggcaa ccagggagca ccggcggaga gccgagaggt 2850 gctgcaagac acggtcaacc tccttttcaa ccatcccagg cagaggaatg 2900 cctcccggga gaacctgaac cttcccgagc cccagcctgc cacaggccag 2950 ccacgttcca ggcctctgaa ggttgcaggc agccccacag ggaggctggc 3000 tggagaccag ggcagtgagg aagccccaca gaggccacca gcctcctctg 3050 caaccctgag acggcagcga catctcaatg gcaaagtgtc ccctgagaaa 3100 gaatcagggc cccgtcagat cctgcggagc ctggtccggc tgtctgtqqc 3150 tgccttcgcc gagcggaacc ccgtggagga gctcactgtg gattctcctc 3200 ctgttcagca aatctcccag ctgctgtcct tgctgcatca gggccaattc 3250 cagcccaaac caaaccaccg aggaaataag tacttggcca agccaggagg 3300 cagcaggagt gcaatcccag acacagatgg cccaaqtgca agggctqqaq 3350 gccagacaga cccagaacag gaggaagggc ctttggatcc tgaaqaggac 3400 ctctctgtga agcaactgct agaagaagag ctgtcaagtc tgctggaccc 3450 cagcacaggt ctggccctgg accggctgag cgcccctgac ccggcctgga 3500 tggcgagact ctctttgccc ctcaccacca actaccgtga caatgtgatc 3550 tecceggatg etgeageeae ggaggageeg aggaeettee agaegttegg 3600 caaggcagag gcaccagagc tgagcccaac aggcacgagg ctggccagca 3650 cetttgtete ggagatgage teactgetgg agatgetget ggaacagege 3700 tecageatge eegtggagge egecteegag gegetgegge ggeteteggt 3750 ctgcgggagg accctcagtt tagacttggc caccagtgca gcctcaggca 3800 tgaaagtgca aggggaccca ggtggaaaga cggggactga gggcaagagc 3850 agaggcagca gcagcagcag caggtgcctg tgaacatacc tcagacgcct 3900 ctggatccaa gaaccagggg cctgaggatc tgtggacaag agctggtttc 3950 taaaatcttg taactcacta gctagcggcg gcctgagaac tttagggtga 4000

ctgatgctac ccccacagag gaggcaagag ccccaggact aacagctgac 4050 tgaccaaagc agccccttgt aagcagctct gagtcttttg gaggacaggg 4100 acggtttgtg gctgagataa gtgtttcctg gcaaaacata tgtggagcac 4150 aaagggtcag tcctctggca gaacagatgc cacggagtat cacaggcagg 4200 aaagggtggc cttcttgggt agcaggagtc agggggctgt accctggggg 4250 tgccaggaaa tgctctctga cctatcaata aaggaaaagc agtaaaaaaa 4300 aaaaaaaaaa aaa 4313

<210> 425

<211> 1184

<212> PRT

<213> Homo sapiens

<400> 425

Met Met Gln Leu Leu Gln Leu Leu Gly Leu Leu Gly Pro Gly 1 5 10 15

Gly Tyr Leu Phe Leu Leu Gly Asp Cys Gln Glu Val Thr Thr Leu 20 25 30

Thr Val Lys Tyr Gln Val Ser Glu Glu Val Pro Ser Gly Thr Val 35 40 45

Ile Gly Lys Leu Ser Gln Glu Leu Gly Arg Glu Glu Arg Arg 50 55 60

Gln Ala Gly Ala Ala Phe Gln Val Leu Gln Leu Pro Gln Ala Leu
65 70 75

Pro Ile Gln Val Asp Ser Glu Glu Gly Leu Leu Ser Thr Gly Arg 80 85 90

Arg Leu Asp Arg Glu Gln Leu Cys Arg Gln Trp Asp Pro Cys Leu 95 100 105

Val Ser Phe Asp Val Leu Ala Thr Gly Asp Leu Ala Leu Ile His
110 115 120

Val Glu Ile Gln Val Leu Asp Ile Asn Asp His Gln Pro Arg Phe 125 130 135

Pro Lys Gly Glu Glu Leu Glu Ile Ser Glu Ser Ala Ser Leu 140 145 150

Arg Thr Arg Ile Pro Leu Asp Arg Ala Leu Asp Pro Asp Thr Gly 155 160 165

Pro Asn Thr Leu His Thr Tyr Thr Leu Ser Pro Ser Glu His Phe 170 175 180

Ala Leu Asp Val Ile Val Gly Pro Asp Glu Thr Lys His Ala Glu 185 190 195

Leu	Ile	Val	Val	Lys 200		Leu	Asp	Arg	Glu 205	Ile	His	Ser	Phe	Phe 210
Asp	Leu	Val	Leu	Thr 215	Ala	Tyr	Asp	Asn	Gly 220	Asn	Pro	Pro	Lys	Ser 225
Gly	Thr	Ser	Leu	Val 230	Lys	Val	Asn	Val	Leu 235	Asp	Ser	Asn	Asp	Asn 240
Ser	Pro	Ala	Phe	Ala 245	Glu	Ser	Ser	Leu	Ala 250	Leu	Glu	Ile	Gln	Glu 255
Asp	Ala	Ala	Pro	Gly 260	Thr	Leu	Leu	Ile	Lys 265	Leu	Thr	Ala	Thr	Asp 270
Pro	Asp	Gln	Gly	Pro 275	Asn	Gly	Glu	Val	Glu 280	Phe	Phe	Leu	Ser	Lys 285
His	Met	Pro	Pro	Glu 290	Val	Leu	Asp	Thr	Phe 295	Ser	Ile	Asp	Ala	Lys 300
Thr	Gly	Gln	Val	Ile 305	Leu	Arg	Arg	Pro	Leu 310	Asp	Tyr	Glu	Lys	Asn 315
Pro	Ala	Tyr	Glu	Val 320	Asp	Val	Gln	Ala	Arg 325	Asp	Leu	Gly	Pro	Asn 330
Pro	Ile	Pro	Ala	His 335	Cys	Lys	Val	Leu	Ile 340	Lys	Val	Leu	Asp	Val 345
Asn	Asp	Asn	Ile	Pro 350	Ser	Ile	His	Val	Thr 355	Trp	Ala	Ser	Gln	Pro 360
Ser	Leu	Val	Ser	Glu 365	Ala	Leu	Pro	Lys	Asp 370	Ser	Phe	Ile	Ala	Leu 375
Val	Met	Ala	Asp	Asp 380	Leu	Asp	Ser	Gly	His 385	Asn	Gly	Leu	Val	His 390
			Ser	395					400				_	Thr 405
Asn	Gly	Asn	Thr	Tyr 410	Met	Leu	Leu	Thr	Asn 415	Ala	Thr	Leu	Asp	Arg 420
			Pro	425					430				_	Gln 435
Gly	Leu	Gln	Pro	Leu 440	Ser	Ala	Lys	Lys	Gln 445	Leu	Ser	Ile	Gln	Ile 450
			Asn	455					460					Tyr 465
			Thr	470					475					Ile 480
Thr	Ile	Lys	Ala	His	Asp	Ala	Asp	Leu	Gly	Ile	Asn	Gly	Lys	Val

				485					490					495
Ser	Tyr	Arg	Ile	Gln 500	Asp	Ser	Pro	Val	Ala 505	His	Leu	Val	Ala	Ile 510
Asp	Ser	Asn	Thr	Gly 515	Glu	Val	Thr	Ala	Gln 520	Arg	Ser	Leu	Asn	Tyr 525
Glu	Glu	Met	Ala	Gly 530	Phe	Glu	Phe	Gln	Val 535	Ile	Ala	Glu	Asp	Ser 540
Gly	Gln	Pro	Met	Leu 545	Ala	Ser	Ser	Val	Ser 550	Val	Trp	Val	Ser	Leu 555
Leu	Asp	Ala	Asn	Asp 560	Asn	Ala	Pro	Glu	Val 565	Val	Gln	Pro	Val	Leu 570
Ser	Asp	Gly	Lys	Ala 575	Ser	Leu	Ser	Val	Leu 580	Val	Asn	Ala	Ser	Thr 585
Gly	His	Leu	Leu	Val 590	Pro	Ile	Glu	Thr	Pro 595	Asn	Gly	Leu	Gly	Pro 600
Ala	Gly	Thr	Asp	Thr 605	Pro	Pro	Leu	Ala	Thr 610	His	Ser	Ser	Arg	Pro 615
Phe	Leu	Leu	Thr	Thr 620	Ile	Val	Ala	Arg	Asp 625	Ala	Asp	Ser	Gly	Ala 630
Asn	Gly	Glu	Pro	Leu 635	Tyr	Ser	Ile	Arg	Asn 640	Gly	Asn	Glu	Ala	His 645
Leu	Phe	Ile	Leu	Asn 650	Pro	His	Thr	Gly	Gln 655	Leu	Phe	Val	Asn	Val 660
Thr	Asn	Ala	Ser	Ser 665	Leu	Ile	Gly	Ser	Glu 670	Trp	Glu	Leu	Glu	Ile 675
Val	Val	Glu	Asp	Gln 680	Gly	Ser	Pro	Pro	Leu 685	Gln	Thr	Arg	Ala	Leu 690
Leu	Arg	Val	Met	Phe 695	Val	Thr	Ser	Val	Asp 700	His	Leu	Arg	Asp	Ser 705
Ala	Arg	Lys	Pro	Gly 710	Ala	Leu	Ser	Met	Ser 715	Met	Leu	Thr	Val	Ile 720
Cys	Leu	Ala	Val	Leu 725	Leu	Gly	Ile	Phe	Gly 730	Leu	Ile	Leu	Ala	Leu 735
Phe	Met	Ser	Ile	Cys 740	Arg	Thr	Glu	Lys	Lys 745	Asp	Asn	Arg	Ala	Tyr 750
Asn	Cys	Arg	Glu	Ala 755	Glu	Ser	Thr	Tyr	Arg 760	Gln	Gln	Pro	Lys	Arg 765
Pro	Gln	Lys	His	Ile 770	Gln	Lys	Ala	Asp	Ile 775	His	Leu	Val	Pro	Val

Leu Arg Gly Gln Ala Gly Glu Pro Cys Glu Val Gly Gln Ser His Lys Asp Val Asp Lys Glu Ala Met Met Glu Ala Gly Trp Asp Pro 800 805 Cys Leu Gln Ala Pro Phe His Leu Thr Pro Thr Leu Tyr Arg Thr Leu Arg Asn Gln Gly Asn Gln Gly Ala Pro Ala Glu Ser Arg Glu 830 Val Leu Gln Asp Thr Val Asn Leu Leu Phe Asn His Pro Arg Gln 845 850 Arg Asn Ala Ser Arg Glu Asn Leu Asn Leu Pro Glu Pro Gln Pro Ala Thr Gly Gln Pro Arg Ser Arg Pro Leu Lys Val Ala Gly Ser Pro Thr Gly Arg Leu Ala Gly Asp Gln Gly Ser Glu Glu Ala Pro Gln Arg Pro Pro Ala Ser Ser Ala Thr Leu Arg Arg Gln Arg His Leu Asn Gly Lys Val Ser Pro Glu Lys Glu Ser Gly Pro Arg Gln 920 930 Ile Leu Arg Ser Leu Val Arg Leu Ser Val Ala Ala Phe Ala Glu Arg Asn Pro Val Glu Glu Leu Thr Val Asp Ser Pro Pro Val Gln 950 Gln Ile Ser Gln Leu Leu Ser Leu Leu His Gln Gly Gln Phe Gln Pro Lys Pro Asn His Arg Gly Asn Lys Tyr Leu Ala Lys Pro Gly 980 990 Gly Ser Arg Ser Ala Ile Pro Asp Thr Asp Gly Pro Ser Ala Arg Ala Gly Gly Gln Thr Asp Pro Glu Glu Glu Gly Pro Leu Asp Pro Glu Glu Asp Leu Ser Val Lys Gln Leu Leu Glu Glu Leu 1030 Ser Ser Leu Leu Asp Pro Ser Thr Gly Leu Ala Leu Asp Arg Leu 1040 Ser Ala Pro Asp Pro Ala Trp Met Ala Arg Leu Ser Leu Pro Leu Thr Thr Asn Tyr Arg Asp Asn Val Ile Ser Pro Asp Ala Ala Ala

Thr Glu Glu Pro Arg Thr Phe Gln Thr Phe Gly Lys Ala Glu Ala 1085 1090 1095

Pro Glu Leu Ser Pro Thr Gly Thr Arg Leu Ala Ser Thr Phe Val 1100 1105 1110

Ser Glu Met Ser Ser Leu Leu Glu Met Leu Leu Glu Gln Arg Ser 1115 1120 1125

Ser Met Pro Val Glu Ala Ala Ser Glu Ala Leu Arg Arg Leu Ser 1130 1135 1140

Val Cys Gly Arg Thr Leu Ser Leu Asp Leu Ala Thr Ser Ala Ala 1145 1150 1155

Ser Gly Met Lys Val Gln Gly Asp Pro Gly Gly Lys Thr Gly Thr 1160 1165 1170

Glu Gly Lys Ser Arg Gly Ser Ser Ser Ser Ser Arg Cys Leu 1175 1180

<210> 426

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

1 15

I.T

- -- Ša

<223> Synthetic oligonucleotide probe

<400> 426

gtaagcacat gcctccagag gtgc 24

<210> 427

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 427

gtgacgtgga tgcttgggat gttg 24

<210> 428

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 428

tggacacctt cagtattgat gccaagacag gccaggtcat tctgcgtcga 50

<210> 429

<211> 2037

<212> DNA <213> Homo sapiens

<400> 429 cggacgcgtg ggcggacgcg tgggggagag ccgcagtccc ggctgcagca 50 cctgggagaa ggcagaccgt gtgagggggc ctgtggcccc agcgtgctgt 100 ggcctcgggg agtgggaagt ggaggcagga gccttcctta cacttcgcca 150 tgagtttcct catcgactcc agcatcatga ttacctccca gatactattt 200 tttggatttg ggtggctttt cttcatgcgc caattgttta aagactatga 250 gatacgtcag tatgttgtac aggtgatctt ctccgtgacg tttgcatttt 300 cttgcaccat gtttgagctc atcatctttg aaatcttagg agtattgaat 350 agcagetece gttattttea etggaaaatg aacetgtgtg taattetget 400 qatcctqqtt ttcatqqtqc ctttttacat tqqctatttt attqtqaqca 450 atatccgact actgcataaa caacgactgc ttttttcctg tctcttatgg 500 ctgaccttta tgtatttctt ctggaaacta ggagatccct ttcccattct 550 cagoccaaaa catgggatot tatocataga acagotcato agoogggttg 600 gtgtgattgg agtgactctc atggctcttc tttctggatt tggtgctgtc 650 aactgcccat acacttacat gtcttacttc ctcaggaatg tgactgacac 700 ggatattcta gccctggaac ggcgactgct gcaaaccatg gatatgatca 750 taagcaaaaa gaaaaggatg gcaatggcac ggagaacaat gttccagaag 800 ggggaagtgc ataacaaacc atcaggtttc tggggaatga taaaaagtgt 850 taccacttca gcatcaggaa gtgaaaatct tactcttatt caacaggaag 900 tggatgcttt ggaagaatta agcaggcagc tttttctgga aacagctgat 950 ctatatgcta ccaaggagag aatagaatac tccaaaacct tcaaggggaa 1000 atattttaat tttcttggtt actttttctc tatttactgt gtttggaaaa 1050 ttttcatggc taccatcaat attgtttttg atcgagttgg gaaaacggat 1100 cctgtcacaa gaggcattga gatcactgtg aattatctgg gaatccaatt 1150 tgatgtgaag ttttggtccc aacacatttc cttcattctt gttggaataa 1200 tcatcqtcac atccatcaga qqattqctqa tcactcttac caaqttcttt 1250 tatgccatct ctagcagtaa gtcctccaat gtcattgtcc tgctattagc 1300 acagataatg ggcatgtact ttgtctcctc tgtgctgctg atccgaatga 1350 gtatgccttt agaataccgc accataatca ctgaagtcct tggagaactg 1400 cagttcaact tctatcaccg ttggtttgat gtgatcttcc tggtcagcgc 1450 tctctctagc atactcttcc tctatttggc tcacaaacag gcaccagaga 1500 agcaaatggc accttgaact taagcctact acagactgtt agaggccagt 1550 ggtttcaaaa tttagatata agagggggga aaaatggaac cagggcctga 1600 cattttataa acaaacaaaa tgctatggta gcattttca ccttcatagc 1650 atactccttc cccgtcaggt gatactatga ccatgagtag catcagccag 1700 aacatgagag ggagaactaa ctcaagacaa tactcagcag agagcatccc 1750 gtgtggatat gaggctggt tagaggcgga gaggagccaa gaaactaaag 1800 gtgaaaaata cactggaact ctggggcaag acatgtctat ggtagctgag 1850 ccaaacacgt aggattccc tttaaggtt cacatggaaa aggttatagc 1900 tttgccttga gattgactca ttaaaatcag agacctgca agaagcttgg 2000 ccgccatggc ccaacttgtt tattgcagct tataatg 2037

<210> 430

<211> 455

<212> PRT

<213> Homo sapiens

<400> 430

Met Ser Phe Leu Ile Asp Ser Ser Ile Met Ile Thr Ser Gln Ile 1 5 10 15

Leu Phe Phe Gly Phe Gly Trp Leu Phe Phe Met Arg Gln Leu Phe 20 25 30

Lys Asp Tyr Glu Ile Arg Gln Tyr Val Val Gln Val Ile Phe Ser 35 40 45

Val Thr Phe Ala Phe Ser Cys Thr Met Phe Glu Leu Ile Ile Phe 50 55 60

Glu Ile Leu Gly Val Leu Asn Ser Ser Ser Arg Tyr Phe His Trp
65 70 75

Lys Met Asn Leu Cys Val Ile Leu Leu Ile Leu Val Phe Met Val 80 85 90

Pro Phe Tyr Ile Gly Tyr Phe Ile Val Ser Asn Ile Arg Leu Leu 95 100 105

His Lys Gln Arg Leu Leu Phe Ser Cys Leu Leu Trp Leu Thr Phe
110 115 120

Met Tyr Phe Phe Trp Lys Leu Gly Asp Pro Phe Pro Ile Leu Ser Pro Lys His Gly Ile Leu Ser Ile Glu Gln Leu Ile Ser Arg Val Gly Val Ile Gly Val Thr Leu Met Ala Leu Leu Ser Gly Phe Gly Ala Val Asn Cys Pro Tyr Thr Tyr Met Ser Tyr Phe Leu Arg Asn Val Thr Asp Thr Asp Ile Leu Ala Leu Glu Arg Arg Leu Leu Gln Thr Met Asp Met Ile Ile Ser Lys Lys Lys Arg Met Ala Met Ala Arg Arg Thr Met Phe Gln Lys Gly Glu Val His Asn Lys Pro Ser Gly Phe Trp Gly Met Ile Lys Ser Val Thr Thr Ser Ala Ser Gly Ser Glu Asn Leu Thr Leu Ile Gln Gln Glu Val Asp Ala Leu Glu Glu Leu Ser Arg Gln Leu Phe Leu Glu Thr Ala Asp Leu Tyr Ala 260 Thr Lys Glu Arg Ile Glu Tyr Ser Lys Thr Phe Lys Gly Lys Tyr Phe Asn Phe Leu Gly Tyr Phe Phe Ser Ile Tyr Cys Val Trp Lys Ile Phe Met Ala Thr Ile Asn Ile Val Phe Asp Arg Val Gly Lys Thr Asp Pro Val Thr Arg Gly Ile Glu Ile Thr Val Asn Tyr Leu Gly Ile Gln Phe Asp Val Lys Phe Trp Ser Gln His Ile Ser Phe Ile Leu Val Gly Ile Ile Ile Val Thr Ser Ile Arg Gly Leu Leu Ile Thr Leu Thr Lys Phe Phe Tyr Ala Ile Ser Ser Ser Lys Ser Ser Asn Val Ile Val Leu Leu Ala Gln Ile Met Gly Met Tyr 380 385 390 Phe Val Ser Ser Val Leu Leu Ile Arg Met Ser Met Pro Leu Glu Tyr Arg Thr Ile Ile Thr Glu Val Leu Gly Glu Leu Gln Phe Asn

410 415 420 Phe Tyr His Arg Trp Phe Asp Val Ile Phe Leu Val Ser Ala Leu 425 Ser Ser Ile Leu Phe Leu Tyr Leu Ala His Lys Gln Ala Pro Glu 450 Lys Gln Met Ala Pro 455 <210> 431 <211> 407 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 78, 81, 113, 157, 224, 297 <223> unknown base <400> 431 catgggaagt ggagccggag ccttccttac actcgccatg agtttcctca 50 tcgactccag catcatgatt acctcccnga nactattttt tggatttggg 100 tggcttttct tcngcgccaa tgtttaaaga ctatgagata cgtcagtatg 150 ttgtacnggt gatcttctcc gtgacgtttg ccatttcttg caccatgttt 200 gagctcatca tctttgaaat cttnggagta ttgaatagca gctcccgtta 250 ttttcactgg aaaatgaacc tgtgtgtaat tctgctgatc ctggttntca 300 tggtgccttt ttacattggc tattttattg tgagcaatat ccgactactg 350 cataaacaac gactgctttt ttcctgtctc ttatggctga cctttatgta 400 tttccag 407 <210> 432 <211> 457 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 31, 66, 81-82, 84, 122, 184, 187, 232, 241, 400, 424, 427, 434 <223> unknown base <400> 432 gtgttgccct tggggaggg aaggggagcc nggccctttc ctaaaatttg 50 gccaagggtt tctttnttga attccgggtt nngnatacct tcccaqaaaa 100 tattttttgg atttggggta qntttttttc atgcgccaat tgtttaaaqa 150

ctatgagata cgtcagtatg ttgtacaggt gatnttntcc gtgacgtttg 200

```
ttgaatagca gctcccgtta ttttcactgg aaaatgaacc tgtgtgtaat 300
     tetgetgate etggttttea tggtgeettt ttacattgge tattttattg 350
     tgagcaatat ccgactactg cataaacaac gactgctttt ttcctgtctn 400
     ttatggctga cctttatgta tttnttntgg aaantaggag atccctttcc 450
    cattctc 457
    <210> 433
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 433
    aagtggagcc ggagccttcc 20
    <210> 434
1 2
   <211> 22
   <212> DNA
<213> Artificial Sequence
Ę
: ===
    <223> Synthetic oligonucleotide probe
ij
i mile
   <400> 434
tcgttgttta tgcagtagtc gg 22
    <210> 435
. ....
    <211> 41
<212> DNA
: ::Es
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 435
    attgtttaaa gactatgaga tacgtcagta tgttgtacag g 41
    <210> 436
    <211> 3951
    <212> DNA
    <213> Homo sapiens
    <400> 436
     ctcgcgcagg gatcgtccca tggccggggc tcggagccgc gacccttggg 50
     gggcctccgg gatttgctac ctttttggct ccctgctcgt cgaactgctc 100
```

ijĪ

(fi

cattttcttg caccatgttt gagctcatca tntttgaaat nttaggagta 250

ttctcacggg ctgtcgcctt caatctggac gtgatgggtg ccttgcgcaa 150

ggagggcqag ccaggcagcc tcttcggctt ctctgtggcc ctgcaccggc 200

agttgcagcc ccgaccccag agctggctgc tggtgggtgc tccccaggcc 250 ctggctcttc ctgggcagca ggcgaatcgc actggaggcc tcttcgcttg 300 cccgttgagc ctggaggaga ctgactgcta cagagtggac atcgaccagg 350 gagctgatat gcaaaaggaa agcaaggaga accagtggtt gggagtcagt 400 gttcggagcc aggggcctgg gggcaagatt gttacctgtg cacaccgata 450 tgaggcaagg cagcgagtgg accagatcct ggagacgcgg gatatgattg 500 gtcgctgctt tgtgctcagc caggacctgg ccatccggga tgagttggat 550 ggtggggaat ggaagttctg tgagggacgc ccccaaggcc atgaacaatt 600 tgggttctgc cagcagggca cagctgccgc cttctcccct gatagccact 650 acctcctctt tggggcccca ggaacctata attggaaggg cacggccagg 700 gtggagctct gtgcacaggg ctcagcggac ctggcacacc tggacgacgg 750 tccctacgag gcgggggag agaaggagca ggacccccgc ctcatcccgg 800 tccctgccaa cagctacttt ggcttctcta ttgactcggg gaaaggtctg 850 gtgcgtgcag aagagctgag ctttgtggct ggagcccccc gcgccaacca 900 caagggtgct gtggtcatcc tgcgcaagga cagcgccagt cgcctggtgc 950 ccgaggttat gctgtctggg gagcgcctga cctccggctt tggctactca 1000 ctggctgtgg ctgacctcaa cagtgatggc tggccagacc tgatagtggg 1050 tgccccctac ttctttgagc gccaagaaga gctggggggt gctgtgtatg 1100 tgtacttgaa ccaggggggt cactgggctg ggatctcccc tctccggctc 1150 tgeggetece etgaetecat gttegggate ageetggetg teetggggga 1200 cctcaaccaa gatggctttc cagatattgc agtgggtgcc ccctttgatg 1250 gtgatgggaa agtcttcatc taccatggga gcagcctggg ggttgtcgcc 1300 aaaccttcac aggtgctgga gggcgaggct gtgggcatca agagcttcgg 1350 ctactccctg tcaggcagct tggatatgga tgggaaccaa taccctgacc 1400 tgctggtggg ctccctggct gacaccgcag tgctcttcag ggccagaccc 1450 atcctccatg tctcccatga ggtctctatt gctccacgaa gcatcgacct 1500 ggagcagccc aactgtgctg gcggccactc ggtctgtgtg gacctaaggg 1550 tetgttteag etacattgea gteeceagea getatageee tactgtggee 1600 ctggactatg tgttagatgc ggacacagac cggaggctcc ggggccaggt 1650 tccccgtgtg acgttcctga gccgtaacct ggaagaaccc aagcaccagg 1700 cctcgggcac cgtgtggctg aagcaccagc atgaccgagt ctgtggagac 1750 qccatqttcc agctccagga aaatgtcaaa gacaagcttc gggccattgt 1800 agtgaccttg tectacagte tecagaceee teggeteegg egacaggete 1850 ctggccaggg gctgcctcca gtggccccca tcctcaatgc ccaccagccc 1900 agcacccagc gggcagagat ccacttcctg aagcaaggct gtggtgaaga 1950 caagatctgc cagagcaatc tgcagctggt ccacgcccgc ttctgtaccc 2000 gggtcagcga cacggaattc caacctctgc ccatggatgt ggatggaaca 2050 acagecetgt ttgeactgag tgggeageea gteattggee tggagetgat 2100 ggtcaccaac ctgccatcgg acccagccca gccccaggct gatggggatg 2150 atgcccatga agcccagctc ctggtcatgc ttcctgactc actgcactac 2200 tcaggggtcc gggccctgga ccctgcggag aagccactct gcctgtccaa 2250 tgagaatgcc tcccatgttg agtgtgagct ggggaacccc atgaagagag 2300 gtgcccaggt caccttctac ctcatcctta gcacctccgg gatcagcatt 2350 gagaccacgg aactggaggt agagctgctg ttggccacga tcagtgagca 2400 ggagctgcat ccagtctctg cacgagcccg tgtcttcatt gagctgccac 2450 tgtccattgc aggaatggcc attccccagc aactcttctt ctctggtgtg 2500 gtgaggggg agagagccat gcagtctgag cgggatgtgg gcagcaaggt 2550 caagtatgag gtcacggttt ccaaccaagg ccagtcgctc agaaccctgg 2600 gctctgcctt cctcaacatc atgtggcctc atgagattgc caatgggaag 2650 tggttgctgt acccaatgca ggttgagctg gagggcgggc aggggcctgg 2700 gcagaaaggg ctttgctctc ccaggcccaa catcctccac ctggatgtgg 2750 acagtaggga taggagggg cgggagctgg agccacctga gcagcaggag 2800 cctqqtqaqc qqcaqqaqcc caqcatqtcc tggtggccag tgtcctctgc 2850 tgagaagaag aaaaacatca ccctggactg cgcccggggc acggccaact 2900 gtgtggtgtt cagctgccca ctctacagct ttgaccgcgc ggctgtgctg 2950 catgtctggg gccgtctctg gaacagcacc tttctggagg agtactcagc 3000 tgtgaagtcc ctggaagtga ttgtccgggc caacatcaca gtgaagtcct 3050 ccataaagaa cttgatgctc cgagatgcct ccacagtgat cccagtgatg 3100

gtatacttgg accccatggc tgtggtggca gaaggagtgc cctggtgggt 3150 catcctcctg gctgtactgg ctgggctgct ggtgctagca ctgctggtgc 3200 tgctcctgtg qaaqatggga ttcttcaaac gggcgaagca ccccgaggcc 3250 accgtgcccc agtaccatgc ggtgaagatt cctcgggaag accgacagca 3300 gttcaaggag gagaagacgg gcaccatcct gaggaacaac tggggcagcc 3350 cccggcggga gggcccggat gcacacccca tcctggctgc tgacgggcat 3400 cccgaqctqq qccccgatqq gcatccaggg ccaggcaccg cctaggttcc 3450 catgtcccag cctggcctgt ggctgccctc catcccttcc ccagagatgg 3500 ctccttggga tgaagagggt agagtgggct gctggtgtcg catcaagatt 3550 tggcaggatc ggcttcctca ggggcacaga cctctcccac ccacaagaac 3600 tecteceace caactteece ttagagtget gtgagatgag agtgggtaaa 3650 tcagggacag ggccatgggg tagggtgaga agggcagggg tgtcctgatg 3700 caaaggtggg gagaagggat cctaatccct tcctctccca ttcaccctgt 3750 gtaacaggac cccaaggacc tgcctccccg gaagtgcctt aacctagagg 3800 qtcqqqqaqq aggttgtgtc actgactcag gctgctcctt ctctagtttc 3850 ccctctcatc tgaccttagt ttgctgccat cagtctagtg gtttcgtggt 3900 ttcgtctatt tattaaaaaa tatttgagaa caaaaaaaaa aaaaaaaaa 3950 a 3951

<210> 437

<211> 1141

<212> PRT

<213> Homo sapiens

<400> 437

Met Ala Gly Ala Arg Ser Arg Asp Pro Trp Gly Ala Ser Gly Ile 1 5 10 15

Cys Tyr Leu Phe Gly Ser Leu Leu Val Glu Leu Leu Phe Ser Arg 20 25 30

Ala Val Ala Phe Asn Leu Asp Val Met Gly Ala Leu Arg Lys Glu 35 40 45

Gly Glu Pro Gly Ser Leu Phe Gly Phe Ser Val Ala Leu His Arg 50 55 60

Gln Leu Gln Pro Arg Pro Gln Ser Trp Leu Leu Val Gly Ala Pro 65 70 75

Gln Ala Leu Ala Leu Pro Gly Gln Gln Ala Asn Arg Thr Gly Gly

80 85 90

Leu	Phe	Ala	Cys	Pro 95	Leu	Ser	Leu	Glu	Glu 100	Thr	Asp	Cys	Tyr	Arg 105
Val	Asp	Ile	Asp	Gln 110	Gly	Ala	Asp	Met	Gln 115	Lys	Glu	Ser	Lys	Glu 120
Asn	Gln	Trp	Leu	Gly 125	Val	Ser	Val	Arg	Ser 130	Gln	Gly	Pro	Gly	Gly 135
Lys	Ile	Val	Thr	Cys 140	Ala	His	Arg	Tyr	Glu 145	Ala	Arg	Gln	Arg	Val 150
Asp	Gln	Ile	Leu	Glu 155	Thr	Arg	Asp	Met	Ile 160	Gly	Arg	Cys	Phe	Val 165
Leu	Ser	Gln	Asp	Leu 170	Ala	Ile	Arg	Asp	Glu 175	Leu	Asp	Gly	Gly	Glu 180
Trp	Lys	Phe	Cys	Glu 185	Gly	Arg	Pro	Gln	Gly 190	His	Glu	Gln	Phe	Gly 195
Phe	Cys	Gln	Gln	Gly 200	Thr	Ala	Ala	Ala	Phe 205	Ser	Pro	Asp	Ser	His 210
Tyr	Leu	Leu	Phe	Gly 215	Ala	Pro	Gly	Thr	Tyr 220	Asn	Trp	Lys	Gly	Thr 225
Ala	Arg	Val	Glu	Leu 230	Cys	Ala	Gln	Gly	Ser 235	Ala	Asp	Leu	Ala	His 240
Leu	Asp	Asp	Gly	Pro 245	Tyr	Glu	Ala	Gly	Gly 250	Glu	Lys	Glu	Gln	Asp 255
Pro	Arg	Leu	Ile	Pro 260	Val	Pro	Ala	Asn	Ser 265	Tyr	Phe	Gly	Phe	Ser 270
Ile	Asp	Ser	Gly	Lys 275	Gly	Leu	Val	Arg	Ala 280	Glu	Glu	Leu	Ser	Phe 285
Val	Ala	Gly	Ala	Pro 290	Arg	Ala	Asn	His	Lys 295	Gly	Ala	Val	Val	Ile 300
Leu	Arg	Lys	Asp	Ser 305	Ala	Ser	Arg	Leu	Val 310	Pro	Glu	Val	Met	Leu 315
Ser	Gly	Glu	Arg	Leu 320	Thr	Ser	Gly	Phe	Gly 325	Tyr	Ser	Leu	Ala	Val 330
Ala	Asp	Leu	Asn	Ser 335	Asp	Gly	Trp	Pro	Asp 340	Leu	Ile	Val	Gly	Ala 345
Pro	Tyr	Phe	Phe	Glu 350	Arg	Gln	Glu	Glu	Leu 355	Gly	Gly	Ala	Val	Tyr 360
Val	Tyr	Leu	Asn	Gln 365	Gly	Gly	His	Trp	Ala 370	Gly	Ile	Ser	Pro	Leu 375

Arg Leu Cys Gly Ser Pro Asp Ser Met Phe Gly Ile Ser Leu Ala Val Leu Gly Asp Leu Asn Gln Asp Gly Phe Pro Asp Ile Ala Val 405 395 Gly Ala Pro Phe Asp Gly Asp Gly Lys Val Phe Ile Tyr His Gly 410 Ser Ser Leu Gly Val Val Ala Lys Pro Ser Gln Val Leu Glu Gly 435 Glu Ala Val Gly Ile Lys Ser Phe Gly Tyr Ser Leu Ser Gly Ser Leu Asp Met Asp Gly Asn Gln Tyr Pro Asp Leu Leu Val Gly Ser Leu Ala Asp Thr Ala Val Leu Phe Arg Ala Arg Pro Ile Leu His Val Ser His Glu Val Ser Ile Ala Pro Arg Ser Ile Asp Leu Glu 485 Gln Pro Asn Cys Ala Gly Gly His Ser Val Cys Val Asp Leu Arg Val Cys Phe Ser Tyr Ile Ala Val Pro Ser Ser Tyr Ser Pro Thr 515 Val Ala Leu Asp Tyr Val Leu Asp Ala Asp Thr Asp Arg Arg Leu Arg Gly Gln Val Pro Arg Val Thr Phe Leu Ser Arg Asn Leu Glu 545 Glu Pro Lys His Gln Ala Ser Gly Thr Val Trp Leu Lys His Gln 560 His Asp Arg Val Cys Gly Asp Ala Met Phe Gln Leu Gln Glu Asn 580 575 Val Lys Asp Lys Leu Arg Ala Ile Val Val Thr Leu Ser Tyr Ser Leu Gln Thr Pro Arg Leu Arg Arg Gln Ala Pro Gly Gln Gly Leu Pro Pro Val Ala Pro Ile Leu Asn Ala His Gln Pro Ser Thr Gln Arg Ala Glu Ile His Phe Leu Lys Gln Gly Cys Gly Glu Asp Lys Ile Cys Gln Ser Asn Leu Gln Leu Val His Ala Arg Phe Cys Thr Arg Val Ser Asp Thr Glu Phe Gln Pro Leu Pro Met Asp Val Asp

	665				670					675
Gly Thr Thr	Ala Leu 680	Phe Al	la Leu	Ser	Gly 685	Gln	Pro	Val	Ile	Gly 690
Leu Glu Leu	Met Val 695	Thr As	sn Leu	Pro	Ser 700	Asp	Pro	Ala	Gln	Pro 705
Gln Ala Asp	Gly Asp 710	Asp A	la His	Glu	Ala 715	Gln	Leu	Leu	Val	Met 720
Leu Pro Asp	Ser Leu 725	His Ty	yr Ser	Gly	Val 730	Arg	Ala	Leu	Asp	Pro 735
Ala Glu Lys	Pro Leu 740	Cys Le	eu Ser	Asn	Glu 745	Asn	Ala	Ser	His	Val 750
Glu Cys Glu	Leu Gly 755	Asn P	ro Met	Lys	Arg 760	Gly	Ala	Gln	Val	Thr 765
Phe Tyr Leu	Ile Leu 770	Ser T	hr Ser	Gly	Ile 775	Ser	Ile	Glu	Thr	Thr 780
Glu Leu Glu	Val Glu 785	Leu L	eu Leu	Ala	Thr 790	Ile	Ser	Glu	Gln	Glu 795
Leu His Pro	Val Ser 800	Ala A	rg Ala	Arg	Val 805	Phe	Ile	Glu	Leu	Pro 810
Leu Ser Ile	Ala Gly 815	Met A	la Ile	Pro	Gln 820	Gln	Leu	Phe	Phe	Ser 825
Gly Val Val	Arg Gly 830	Glu A	rg Ala	Met	Gln 835	Ser	Glu	Arg	Asp	Val 840
Gly Ser Lys	Val Lys 845	Tyr G	lu Val	Thr	Val 850	Ser	Asn	Gln	Gly	Gln 855
Ser Leu Arg	Thr Leu 860	Gly S	er Ala	Phe	Leu 865	Asn	Ile	Met	Trp	Pro 870
His Glu Ile	Ala Asn 875	Gly L	ys Trp	Leu	Leu 880	Tyr	Pro	Met	Gln	Val 885
Glu Leu Glu	Gly Gly 890	Gln G	ly Pro	Gly	Gln 895	Lys	Gly	Leu	Cys	Ser 900
Pro Arg Pro	Asn Ile 905	Leu H	is Leu	Asp	Val 910	Asp	Ser	Arg	Asp	Arg 915
Arg Arg Arg	Glu Leu 920	Glu F	ro Pro	Glu	Gln 925	Gln	Glu	Pro	Gly	Glu 930
Arg Gln Glu	Pro Ser 935	Met S	er Trp	Trp	Pro 940	Val	Ser	Ser	Ala	Glu 945
Lys Lys Lys	Asn Ile 950		eu Asp	Cys	Ala 955	Arg	Gly	Thr	Ala	Asn 960

<220>

<223> Synthetic oligonucleotide probe

```
Cys Val Val Phe Ser Cys Pro Leu Tyr Ser Phe Asp Arg Ala Ala
 Val Leu His Val Trp Gly Arg Leu Trp Asn Ser Thr Phe Leu Glu
                 980
                                     985
 Glu Tyr Ser Ala Val Lys Ser Leu Glu Val Ile Val Arg Ala Asn
                 995
                                    1000
 Ile Thr Val Lys Ser Ser Ile Lys Asn Leu Met Leu Arg Asp Ala
                1010
                                    1015
 Ser Thr Val Ile Pro Val Met Val Tyr Leu Asp Pro Met Ala Val
                                    1030
 Val Ala Glu Gly Val Pro Trp Trp Val Ile Leu Leu Ala Val Leu
                1040
                                    1045
 Ala Gly Leu Leu Val Leu Ala Leu Leu Val Leu Leu Trp Lys
                1055
                                    1060
 Met Gly Phe Phe Lys Arq Ala Lys His Pro Glu Ala Thr Val Pro
                1070
                                    1075
 Gln Tyr His Ala Val Lys Ile Pro Arg Glu Asp Arg Gln Gln Phe
                1085
                                    1090
 Lys Glu Glu Lys Thr Gly Thr Ile Leu Arg Asn Asn Trp Gly Ser
                1100
 Pro Arg Arg Glu Gly Pro Asp Ala His Pro Ile Leu Ala Ala Asp
 Gly His Pro Glu Leu Gly Pro Asp Gly His Pro Gly Pro Gly Thr
                1130
                                    1135
 Ala
<210> 438
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 438
 ggctgacacc gcagtgctct tcag 24
<210> 439
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<400> 439
gctgctgggg actgcaatgt agct 24
<210> 440
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 440
catectecat gteteceatg aggtetetat tgetecacga ageate 46
<210> 441
<211> 1964
<212> DNA
<213> Homo sapiens
<400> 441
 cgcgccgggc gcagggagct gagtggacgg ctcgagacgg cggcgcgtgc 50
 agcagctcca gaaagcagcg agttggcaga gcagggctgc atttccagca 100
 ggagctgcga gcacagtgct ggctcacaac aagatgctca aggtgtcagc 150
 cgtactgtgt gtgtgtgcag ccgcttggtg cagtcagtct ctcgcagctg 200
 ccgcggcggt ggctgcagcc ggggggcggt cggacggcgg taattttctg 250
 gatgataaac aatggctcac cacaatctct cagtatgaca aggaagtcgg 300
 acagtggaac aaattccgag acgaagtaga ggatgattat ttccgcactt 350
 ggagtccagg aaaacccttc gatcaggctt tagatccagc taaggatcca 400
 tgcttaaaga tgaaatgtag tcgccataaa gtatgcattg ctcaagattc 450
 tcagactgca gtctgcatta gtcaccggag gcttacacac aggatgaaag 500
 aagcaggagt agaccatagg cagtggaggg gtcccatatt atccacctgc 550
 aagcaqtqcc caqtqqtcta tcccaqccct gtttqtggtt cagatggtca 600
 tacctactct tttcagtgca aactagaata tcaggcatgt gtcttaggaa 650
 aacagatctc agtcaaatgt gaaggacatt gcccatgtcc ttcagataag 700
 cccaccagta caagcagaaa tgttaagaga gcatgcagtg acctggagtt 750
 cagggaagtg gcaaacagat tgcgggactg gttcaaggcc cttcatgaaa 800
 gtggaagtca aaacaagaag acaaaaacat tgctgaggcc tgagagaagc 850
 agattcgata ccagcatctt qccaatttgc aaggactcac ttggctggat 900
```

gtttaacaga cttgatacaa actatgacct gctattggac cagtcagagc 950

tcagaagcat ttaccttgat aagaatgaac agtgtaccaa ggcattcttc 1000 aattettgtg acacatacaa ggacagttta atatetaata atqagtggtg 1050 ctactgcttc cagagacagc aagacccacc ttgccagact gagctcagca 1100 atattcagaa gcggcaaggg gtaaagaagc tcctaggaca gtatatcccc 1150 ctgtgtgatg aagatggtta ctacaagcca acacaatgtc atggcagtgt 1200 tggacagtgc tggtgttg acagatatgg aaatgaagtc atgggatcca 1250 gaataaatgg tgttgcagat tgtqctatag attttgagat ctccggagat 1300 tttgctagtg gcgattttca tgaatggact gatgatgagg atgatgaaga 1350 cgatattatg aatgatgaag atgaaattga agatgatgat gaagatgaag 1400 gggatgatga tgatggtggt gatgaccatg atgtatacat ttgattgatg 1450 acagttgaaa tcaataaatt ctacatttct aatatttaca aaaatgatag 1500 cctatttaaa attatcttct tccccaataa caaaatgatt ctaaacctca 1550 catatatttt gtataattat ttgaaaaatt gcagctaaag ttatagaact 1600 ttatgtttaa ataagaatca tttgctttga gtttttatat tccttacaca 1650 aaaagaaaat acatatgcag tctagtcaga caaaataaag ttttqaaqtg 1700 ctactataat aaatttttca cgagaacaaa ctttgtaaat cttccataag 1750 caaaatgaca gctagtgctt gggatcgtac atgttaattt tttgaaagat 1800 aattctaagt gaaatttaaa ataaataaat ttttaatgac ctgggtctta 1850 aggatttagg aaaaatatgc atgctttaat tgcatttcca aagtagcatc 1900 ttgctagacc tagatgagtc aggataacag agagatacca catgactcca 1950 aaaaaaaaa aaaa 1964

<210> 442

<211> 436

<212> PRT

<213> Homo sapiens

<400> 442

Met Leu Lys Val Ser Ala Val Leu Cys Val Cys Ala Ala Ala Trp
1 5 10 15

Cys Ser Gln Ser Leu Ala Ala Ala Ala Ala Val Ala Ala Gly 20 25 30

Gly Arg Ser Asp Gly Gly Asn Phe Leu Asp Asp Lys Gln Trp Leu 35 40 45

Thr Thr Ile Ser Gln Tyr Asp Lys Glu Val Gly Gln Trp Asn Lys

				50					55					60
Phe	Arg	Asp	Glu	Val 65	Glu	Asp	Asp	Tyr	Phe 70	Arg	Thr	Trp	Ser	Pro 75
Gly	Lys	Pro	Phe	Asp 80	Gln	Ala	Leu	Asp	Pro 85	Ala	Lys	Asp	Pro	Cys 90
Leu	Lys	Met	Lys	Cys 95	Ser	Arg	His	Lys	Val 100	Cys	Ile	Ala	Gln	Asp 105
Ser	Gln	Thr	Ala	Val 110	Cys	Ile	Ser	His	Arg 115	Arg	Leu	Thr	His	Arg 120
Met	Lys	Glu	Ala	Gly 125	Val	Asp	His	Arg	Gln 130	Trp	Arg	Gly	Pro	Ile 135
Leu	Ser	Thr	Cys	Lys 140	Gln	Cys	Pro	Val	Val 145	Tyr	Pro	Ser	Pro	Val 150
Cys	Gly	Ser	Asp	Gly 155	His	Thr	Tyr	Ser	Phe 160	Gln	Cys	Lys	Leu	Glu 165
Tyr	Gln	Ala	Cys	Val 170	Leu	Gly	Lys	Gln	Ile 175	Ser	Val	Lys	Cys	Glu 180
Gly	His	Cys	Pro	Cys 185	Pro	Ser	Asp	Lys	Pro 190	Thr	Ser	Thr	Ser	Arg 195
Asn	Val	Lys	Arg	Ala 200	Cys	Ser	Asp	Leu	Glu 205	Phe	Arg	Glu	Val	Ala 210
Asn	Arg	Leu	Arg	Asp 215	Trp	Phe	Lys	Ala	Leu 220	His	Glu	Ser	Gly	Ser 225
Gln	Asn	Lys	Lys	Thr 230	Lys	Thr	Leu	Leu	Arg 235	Pro	Glu	Arg	Ser	Arg 240
Phe	Asp	Thr	Ser	Ile 245	Leu	Pro	Ile	Cys	Lys 250	Asp	Ser	Leu	Gly	Trp 255
Met	Phe	Asn	Arg	Leu 260	Asp	Thr	Asn	Tyr	Asp 265	Leu	Leu	Leu	Asp	Gln 270
Ser	Glu	Leu	Arg	Ser 275	Ile	Tyr	Leu	Asp	Lys 280	Asn	Glu	Gln	Cys	Thr 285
Lys	Ala	Phe	Phe	Asn 290	Ser	Cys	Asp	Thr	Tyr 295	Lys	Asp	Ser	Leu	Ile 300
Ser	Asn	Asn	Glu	Trp 305	Cys	Tyr	Cys	Phe	Gln 310	Arg	Gln	Gln	Asp	Pro 315
Pro	Cys	Gln	Thr	Glu 320	Leu	Ser	Asn	Ile	Gln 325	Lys	Arg	Gln	Gly	Val 330
Lys	Lys	Leu	Leu	Gly 335	Gln	Tyr	Ile	Pro	Leu 340	Cys	Asp	Glu	Asp	Gly 345

```
Cys Val Asp Arg Tyr Gly Asn Glu Val Met Gly Ser Arg Ile Asn
                                          370
     Gly Val Ala Asp Cys Ala Ile Asp Phe Glu Ile Ser Gly Asp Phe
                     380
                                          385
     Ala Ser Gly Asp Phe His Glu Trp Thr Asp Asp Glu Asp Asp Glu
                     395
     Asp Asp Ile Met Asn Asp Glu Asp Glu Ile Glu Asp Asp Asp Glu
     Asp Glu Gly Asp Asp Asp Gly Gly Asp Asp His Asp Val Tyr
     Ile
    <210> 443
    <211> 25
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
r miles
    <400> 443
cagcaatatt cagaagcggc aaggg 25
1...
    <210> 444
<211> 28
    <212> DNA
i dia
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
1 2 1
<400> 444
    catcatggtc atcaccacca tcatcatc 28
    <210> 445
    <211> 48
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 445
     ggttactaca agccaacaca atgtcatggc agtgttggac agtgctgg 48
    <210> 446
```

<211> 3617 <212> DNA

<213> Homo sapiens

Tyr Tyr Lys Pro Thr Gln Cys His Gly Ser Val Gly Gln Cys Trp

405

435

<400> 446 cagactccag atttccctgt caaccacgag gagtccagag aggaaacgcg 50 gagcggagac aacagtacct gacgcctctt tcagcccggg atcgccccag 100 cagggatggg cgacaagatc tggctgccct tccccgtgct ccttctggcc 150 getetgeete eggtgetget geetggggeg geeggettea eacetteeet 200 cgatagcgac ttcaccttta cccttcccgc cggccagaag gagtgcttct 250 accageceat geceetgaag geetegetgg agategagta ecaagtttta 300 gatggagcag gattagatat tgatttccat cttgcctctc cagaaggcaa 350 aaccttagtt tttgaacaaa gaaaatcaga tggagttcac actgtagaga 400 ctgaagttgg tgattacatg ttctgctttg acaatacatt cagcaccatt 450 tctgagaagg tgattttctt tgaattaatc ctggataata tgggagaaca 500 ggcacaagaa caagaagatt ggaagaaata tattactggc acagatatat 550 tggatatgaa actggaagac atcctggaat ccatcaacag catcaagtcc 600 agactaagca aaagtgggca catacaaatt ctgcttagag catttgaagc 650 tcgtgatcga aacatacaag aaagcaactt tgatagagtc aatttctggt 700 ctatggttaa tttagtggtc atggtggtgg tgtcagccat tcaagtttat 750 atgctgaaga gtctgtttga agataagagg aaaagtagaa cttaaaactc 800 caaactagag tacgtaacat tgaaaaatga ggcataaaaa tgcaataaac 850 tgttacagtc aagaccatta atggtcttct ccaaaatatt ttgagatata 900 aaagtaggaa acaggtataa ttttaatgtg aaaattaagt cttcactttc 950 tgtgcaagta atcctgctga tccagttgta cttaagtgtg taacaggaat 1000 attttgcaga atataggttt aactgaatga agccatatta ataactgcat 1050 tttcctaact ttgaaaaatt ttgcaaatgt cttaggtgat ttaaataaat 1100 gagtattggg cctaattgca acaccagtct gtttttaaca ggttctatta 1150 cccagaactt ttttgtaaat gcggcagtta caaattaact gtggaagttt 1200 tcagttttaa gttataaatc acctgagaat tacctaatga tggattgaat 1250 aaatctttag actacaaaag cccaactttt ctctatttac atatgcatct 1300 ctcctataat gtaaatagaa taatagcttt gaaatacaat taggtttttg 1350 agatttttat aaccaaatac atttcagtgt aacatattag cagaaagcat 1400 tagtetttgt actttgetta catteccaaa agetgaeatt tteaegatte 1450 ttaaaaacac aaagttacac ttactaaaat taggacatgt tttctctttg 1500 aaatgaagaa tatagtttaa aagctteete eteeataggg acacatttte 1550 tctaaccctt aactaaagtg taggatttta aaattaaatg tgaggtaaaa 1600 taagtttatt tttaatagta tctgtcaagt taatatctgt caacagttaa 1650 taatcatgtt atgttaattt taacatgatt gctgacttgg ataattcatt 1700 attaccagca gttatgaagg aaatattgct aaaatgatct gggcctacca 1750 taaataaata totootttto tgagototaa gaattatoag aaaacaggaa 1800 agaatttaga aaaacttgag aaaacctaat ccaaaataaa attcacttaa 1850 gtagaactat aaataaatat ctagaatctg actggctcat catgacatcc 1900 tactcataac ataaatcaaa ggagatgatt aatttccagt tagctggaag 1950 aaactttggc tgtaggtttt tattttctac aagaattctg gtttgaatta 2000 tttttgtaag caggtacatt ttataaaatg taagccctac tgtaaggttt 2050 agcactgggt gtacatattt attaaaaatt tttattataa caacttttat 2100 taaaatggcc tttctgaaca ctttatttat tgatgttgaa gtaaggatta 2150 gaaacataga ctcccaagtt ttaaacacct aaatgtgaat aacccatata 2200 tacaacaaag tttctgccat ctagcttttt gaagtctatg ggggtcttac 2250 tcaagtacta gtaatttaac ttcatcatga atgaactata atttttaagt 2300 tatgcccatt tataacgttg tttatgacta cattgtgagt tagaaacaaa 2350 cttaaaattt ggggtataga acccctcaac aggttagtaa tgctggaatt 2400 cttgatgagc aataatgata accagagagt gatttcattt acactcatag 2450 tagtataaaa agagatacat ttccctctta ggcccctggg agaagagcag 2500 cttagatttc cctactggca aggtttttaa aaatgaggta aatgccgtat 2550 atgatcaatt accttaattg gccaagaaaa tgcttcaggt gtctaggggt 2600 atcctctgca acacttgcag aacaaaggtc aataagatcc ttgcctatga 2650 atacccctcc cttttgcgct gttaaatttg caatgagaag caaatttaca 2700 gtaccataac taataaagca gggtacagat ataaactact gcatcttttc 2750 tataaaactg tgattaagaa ttctacctct cctgtatggc tgttactgta 2800 ctgtactctc tgactcctta cctaacaatg aatttgttac ataatcttct 2850 acatgtatga tttgtgccac tgatcttaaa cctatgattc agtaacttct 2900 taccatataa aaacgataat tgctttattt ggaaaagaat ttaggaatac 2950
taaggacaat tattttata gacaaagtaa aaagacagat atttaagagg 3000
cataaccaaa aaagcaaaac ttgtaaacag agtaaaaatc tttaatattt 3050
ctaaagacat actgtttatc tgcttcatat gctttttta atttcactat 3100
tccatttcta aattaaagtt atgctaaatt gagtaagctg tttatcactt 3150
aacagctcat tttgtcttt tcaatataca aattttaaaa atactacaat 3200
atttaactaa ggcccaaccg atttccataa tgtagcagtt accgtgttca 3250
cctcacacta aggcctagag tttgctctga tatgcatttg gatgattaat 3300
gttatgctgt tcttcatgt gaatgtcaag acatggaggg tgtttgtaat 3350
tttatggtaa aattaatcct tcttacacat aatggtgtct taaaattgac 3400
aaaaaatgag cacttacaat tgtatgtctc ctcaaatgaa gattctttat 3450
gtgaaattt aaaagcact gattccgcat gtaaggattt ttcatctgaa 3500
gtacaataat gcacaatcag tgttgctcaa actgctttat acttataaac 3550
agccatctta aataagcaac gtattgtgag tactgatatg tatataataa 3600
aaattatcaa aggaaaa 3617

<210> 447

<211> 229

<212> PRT

<213> Homo sapiens

<400> 447

Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Ala 1 5 10 15

Ala Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro 20 25 30

Ser Leu Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys 35 40 45

Glu Cys Phe Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile
50 55 60

Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His
65 70 75

Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe Glu Gln Arg Lys
80 85 90

Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly Asp Tyr Met $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys Val Ile

(i)

1,74

÷

1

```
<210> 451
<211> 859
<212> DNA
<213> Homo sapiens
```

<400> 451

ccatccctga gatcttttta taaaaaaccc agtctttgct gaccagacaa 50 agcataccag atctcaccag agagtcgcag acactatgct gcctcccatg 100 qccctqccca qtqtqtcctq qatqctqctt tcctqcctca ttctcctqtq 150 tcaggttcaa ggtgaagaaa cccagaagga actgccctct ccacggatca 200 gctgtcccaa aggctccaag gcctatggct cccctgcta tgccttgttt 250 ttgtcaccaa aatcctggat ggatgcagat ctggcttgcc agaagcggcc 300 ctctggaaaa ctggtgtctg tgctcagtgg ggctgaggga tccttcgtgt 350 cctccctggt gaggagcatt agtaacagct actcatacat ctggattggg 400 ctccatqacc ccacacaqqq ctctgagcct gatggagatg gatgggagtg 450 gagtagcact gatgtgatga attactttgc atgggagaaa aatccctcca 500 ccatcttaaa ccctggccac tgtgggagcc tgtcaagaag cacaggattt 550 ctgaagtgga aagattataa ctgtgatgca aagttaccct atgtctgcaa 600 gttcaaggac tagggcaggt gggaagtcag cagcctcagc ttggcgtgca 650 gctcatcatg gacatgagac cagtgtgaag actcaccctg gaagagaata 700 ttctccccaa actgccctac ctgactacct tgtcatgatc ctccttcttt 750 ttcctttttc ttcaccttca tttcaggctt ttctctgtct tccatgtctt 800 aaaaaaaa 859

<210> 452

<211> 175

<212> PRT

<213> Homo sapiens

<400> 452

Met Leu Pro Pro Met Ala Leu Pro Ser Val Ser Trp Met Leu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Cys Leu Ile Leu Cys Gln Val Gln Gly Glu Glu Thr Gln 20 25 30

Lys Glu Leu Pro Ser Pro Arg Ile Ser Cys Pro Lys Gly Ser Lys 35 40 45

Ala Tyr Gly Ser Pro Cys Tyr Ala Leu Phe Leu Ser Pro Lys Ser

ij

. .

Trp Met Asp Ala Asp Leu Ala Cys Gln Lys Arg Pro Ser Gly Lys
65 70 75

Leu Val Ser Val Leu Ser Gly Ala Glu Gly Ser Phe Val Ser Ser 80 85 90

Leu Val Arg Ser Ile Ser Asn Ser Tyr Ser Tyr Ile Trp Ile Gly
95 100 105

Leu His Asp Pro Thr Gln Gly Ser Glu Pro Asp Gly Asp Gly Trp
110 115 120

Glu Trp Ser Ser Thr Asp Val Met Asn Tyr Phe Ala Trp Glu Lys 125 130 135

Asn Pro Ser Thr Ile Leu Asn Pro Gly His Cys Gly Ser Leu Ser 140 145

Arg Ser Thr Gly Phe Leu Lys Trp Lys Asp Tyr Asn Cys Asp Ala 155 160 165

Lys Leu Pro Tyr Val Cys Lys Phe Lys Asp 170 175

<210> 453

<211> 550

<212> DNA

<213> Homo sapiens

<400> 453

ccagtctgtc gccacctcac ttggtgtctg ctgtccccgc caggcaagcc 50

tggggtgaga gcacagagga gtgggccggg accatgcggg ggacgcggct 100

ggcgctcctg gcgctggtgc tggctgcctg cggagagctg gcgccggccc 150

tgcgctgcta cgtctgtccg gagcccacag gagtgtcgga ctgtgtcacc 200

atcgccacct gcaccaccaa cgaaaccatg tgcaagacca cactctactc 250

ccgggagata gtgtacccct tccaggggga ctccacggtg accaagtcct 300

gtgccagcaa gtgtaagccc tcggatgtgg atggcatcgg ccagaccctg 350

cccgtgtcct gctgcaatac tgagctgtgc aatgtagacg gggcgcccgc 400

tctgaacagc ctccactgcg gggccctcac gctcctccca ctcttgagcc 450

tecgaetgta gagteeeege ceaececeat ggeeetatge ggeeeageee 500

cgaatgcctt gaagaagtgc cccctgcacc aggaaaaaaa aaaaaaaaa 550

<210> 454

<211> 125

<212> PRT

<213> Homo sapiens

<400> 454
Met Arg Gly
1Thr Arg Ser
5Leu Ala Leu Leu Ala Leu Val Leu Ala Ala
10Leu Ala Leu Ala Leu Ala Leu Ala Leu Ala Leu Ala Leu Ala Ala
20Cys Gly
Pro Thr Gly
Asn Glu
TyrVal Ser Asp Cys Val Thr Ile Ala Thr Cys Thr Thr
40Ala Thr Cys Thr Thr
40Asn Glu
Tyr
Ser
65Lys Thr Thr Leu Tyr Ser Arg Glu
55Ile Val
60Tyr
Lys Cys Lys Pro
80Asp Ser Thr Val Thr Lys Ser Cys Ala Ser
70Ser Cys Ala Ser
70Lys Cys Lys Pro
80Asp Val Asp Gly Ile Gly Gln Thr Leu Pro
85Ala Leu Asn Ser Leu His Cys Gly Ala Leu Thr Leu Leu Pro
110

Leu Ser Leu Arg Leu

<210> 455 <211> 1518 <212> DNA <213> Homo sapiens

<400> 455
ctgcagtcag
gactctggga
ccgcaggggg
ctcccggacc
ctgcagtcag
gcacggtttc
gtggggaccc
aggcttgcaa
aggctctgca
aggcttctct
tctttctctt
tctttctctc
tctttgagtc
ttctgagatg
aggcggcagcgg
agctacccgg
gtctttgtcg
cgatggtagc
ggcggcacc
ctctgctggg
agtgagcgcc
acctgagcggc
acctagagcgc
acctagagcgc
acctagagcgc
gcgcgccacc
ctctgctggg
agtgagcgcc
acctagagcgc
gcgcgccacc
gcgcgccacc
gcgcgccacc
gcgcgccacc
gcgcgccacc
gcgcggcgc
gcgcgccacc
gcgcggggg
gcgcggggg
gcgcggggg
gcaccagggg
gaatcctgta
cccggggggg
gcgcagggg
350
aataagtacc
agaactgatg
agaactgatg
gcacattgat
agtactgcc
ccggggatt
ccgggaggg
gcgcagaggg
450
atgcgtcacg
ctatgtgct
cccgggaat
tactgcaaaa
atggaatatg
550
tgtgtcttct
gatcaaaatc
atttccgagg
agaaattgg
gaaaccatca
600

ctgaaagctt tggtaatgat catagcacct tggatgggta ttccagaaga 650 accaccttgt cttcaaaaat gtatcacacc aaaggacaag aaggttctgt 700 ttgtctccgg tcatcagact gtgcctcagg attgtgttgt gctagacact 750 tctggtccaa gatctgtaaa cctgtcctga aagaaggtca agtgtgtacc 800 aagcatagga gaaaaggctc tcatggacta gaaatattcc agcgttgtta 850 ctgtggagaa ggtctgtctt gccggataca gaaagatcac catcaagcca 900 gtaattette taggetteae acttgteaga gaeactaaae eagetateea 950 aatgcagtga actcctttta tataatagat gctatgaaaa ccttttatga 1000 ccttcatcaa ctcaatccta aggatataca agttctgtgg tttcagttaa 1050 gcattccaat aacaccttcc aaaaacctgg agtgtaagag ctttgtttct 1100 ttatggaact cccctgtgat tgcagtaaat tactgtattg taaattctca 1150 gtgtggcact tacctgtaaa tgcaatgaaa cttttaatta tttttctaaa 1200 ggtgctgcac tgcctatttt tcctcttgtt atgtaaattt ttgtacacat 1250 tgattgttat cttgactgac aaatattcta tattgaactg aagtaaatca 1300 tttcagctta tagttcttaa aagcataacc ctttacccca tttaattcta 1350 gagtctagaa cgcaaggatc tcttggaatg acaaatgata ggtacctaaa 1400 atgtaacatg aaaatactag cttattttct gaaatgtact atcttaatgc 1450 ttaaattata tttcccttta ggctgtgata gtttttgaaa taaaatttaa 1500 catttaaaaa aaaaaaaa 1518

<210> 456

<211> 266

<212> PRT

<213> Homo sapiens

<400> 456

Met Met Ala Leu Gly Ala Ala Gly Ala Thr Arg Val Phe Val Ala 1 5 10 15

Met Val Ala Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser 20 25 30

Ala Thr Leu Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu 35 40 45

Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val
50 55 60

Ser Ala Ala Pro Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln
65 70 75

```
Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu
                 80
Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp
                                     100
Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Lys Arg
                                     115
                110
Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn
                                                         135
                125
Gly Ile Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile
                140
Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu
                                                         165
                155
Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His
                                     175
                170
Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys
                                                         195
Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys
                 200
Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg
                                                         225
                 215
Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly
                 230
Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser
                                                          255
                 245
Asn Ser Ser Arg Leu His Thr Cys Gln Arg His
                 260
<210> 457
<211> 638
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 30, 123, 133, 139, 180, 214, 259, 282, 308, 452, 467, 471, 473,
     509, 556
<223> unknown base
<400> 457
tgtgtttccc tgcagtcaga atttgggacn gcaggggttc ccggacctga 50
ttttgcagcg gaacgggaag gttttgtggg acccaggttg aaatgacggt 100
 cattttttt tctttctcct tcnggagtcc ttntgagang atggttttgg 150
```

gcgcagcggg agctaacccg gttttttgtn gcgatggtag cggcggtttt 200

cggcggccac cttntgctgg gagtgagcgc caccttgaat cggttttcaa 250 ttccaacgnt atcaagaacc tgccccacc gntgggcggc gctgcggggc 300 acccaggntt tgcagtcagc gccggcggg gaatcctgta cccgggcggg 350 aataagtacc agaccattga caattaccag ccgtacccgt gcgcagagga 400 cgaggagtgc gcactgatg agtactgcgc tagtcccacc cgcggagggg 450 angcgggcgt gcaaatntgt ntngcctgca ggaagcgccg aaaacgctgc 500 atgcgtcang ctatgtgctg ccccgggaat tactgcaaaa atggaatatg 550 tgtgtnttct gatcaaaatc atttccgagg agaaattgag gaaaccatca 600 ctgaaagctt tggtaatgat catagcacct tggatggg 638

<210> 458

<211> 4040

<212> DNA

<213> Homo sapiens

<400> 458 gaggaaccta ccggtaccgg ccgcgcgctg gtagtcgccg gtgtggctgc 50 acctcaccaa tcccgtgcgc cgcggctggg ccgtcggaga gtgcgtgtgc 100 ttctctcctg cacgcggtgc ttgggctcgg ccaggcgggg tccgccgcca 150 gggtttgagg atgggggagt agctacagga agcgaccccg cgatggcaag 200 gtatattttt gtggaatgaa aaggaagtat tagaaatgag ctgaagacca 250 ttcacagatt aatatttttg gggacagatt tgtgatgctt gattcaccct 300 tgaagtaatg tagacagaag ttctcaaatt tgcatattac atcaactgga 350 accagcagtg aatcttaatg ttcacttaaa tcagaacttg cataagaaag 400 agaatgggag tctggttaaa taaagatgac tatatcagag acttgaaaag 450 gatcattctc tgttttctga tagtgtatat ggccatttta gtgggcacag 500 atcaggattt ttacagttta cttggagtgt ccaaaactgc aagcagtaga 550 gaaataagac aagctttcaa gaaattggca ttgaagttac atcctgataa 600 aaacccgaat aacccaaatg cacatggcga ttttttaaaa ataaatagag 650 catatgaagt actcaaagat gaagatctac ggaaaaagta tgacaaatat 700 ggagaaaagg gacttgagga taatcaaggt ggccagtatg aaagctggaa 750 ctattatcgt tatgattttg gtatttatga tgatgatcct gaaatcataa 800 cattggaaag aagagaattt gatgctgctg ttaattctgg agaactgtgg 850 tttgtaaatt tttactcccc aggctgttca cactgccatg atttagctcc 900 cacatggaga gactttgcta aagaagtgga tgggttactt cgaattggag 950 ctgttaactg tggtgatgat agaatgcttt gccgaatgaa aggagtcaac 1000 agctatccca gtctcttcat ttttcggtct ggaatggccc cagtgaaata 1050 tcatggagac agatcaaagg agagtttagt gagttttgca atgcagcatg 1100 ttagaagtac agtgacagaa ctttggacag gaaattttgt caactccata 1150 caaactgctt ttgctgctgg tattggctgg ctgatcactt tttgttcaaa 1200 aggaggagat tgtttgactt cacagacacg actcaggctt agtggcatgt 1250 tgtttctcaa ctcattggat gctaaagaaa tatatttgga agtaatacat 1300 aatcttccag attttgaact actttcggca aacacactag aggatcgttt 1350 ggctcatcat cggtggctgt tattttttca ttttggaaaa aatgaaaatt 1400 caaatgatcc tgagctgaaa aaactaaaaa ctctacttaa aaatgatcat 1450 attcaagttg gcaggtttga ctgttcctct gcaccagaca tctgtagtaa 1500 tctgtatgtt tttcagccgt ctctagcagt atttaaagga caaggaacca 1550 aagaatatga aattcatcat ggaaagaaga ttctatatga tatacttgcc 1600 tttgccaaag aaagtgtgaa ttctcatgtt accacgcttg gacctcaaaa 1650 ttttcctgcc aatgacaaag aaccatggct tgttgatttc tttgccccct 1700 ggtgtccacc atgtcgagct ttactaccag agttacgaag agcatcaaat 1750 cttctttatg gtcagcttaa gtttggtaca ctagattgta cagttcatga 1800 gggactctgt aacatgtata acattcaggc ttatccaaca acagtggtat 1850 tcaaccagtc caacattcat gagtatgaag gacatcactc tgctgaacaa 1900 atcttggagt tcatagagga tcttatgaat ccttcagtgg tctcccttac 1950 acccaccacc ttcaacgaac tagttacaca aagaaaacac aacgaagtct 2000 ggatggttga tttctattct ccgtggtgtc atccttgcca agtcttaatg 2050 ccagaatgga aaagaatggc ccggacatta actggactga tcaacgtggg 2100 cagtatagat tgccaacagt atcattcttt ttgtgcccag gaaaacgttc 2150 aaagataccc tgagataaga ttttttcccc caaaatcaaa taaagcttat 2200 cagtatcaca gttacaatgg ttggaatagg gatgcttatt ccctgagaat 2250 ctggggtcta ggatttttac ctcaagtatc cacagatcta acacctcaga 2300 ctttcagtga aaaagttcta caagggaaaa atcattgggt gattgatttc 2350 tatgctcctt ggtgtggacc ttgccagaat tttgctccag aatttgagct 2400 cttggctagg atgattaaag gaaaagtgaa agctggaaaa gtagactgtc 2450 aggettatge teagacatge cagaaagetg ggateaggge etatecaaet 2500 gttaagtttt atttctacga aagagcaaag agaaattttc aagaagagca 2550 gataaatacc agagatgcaa aagcaatcgc tgccttaata agtgaaaaat 2600 tggaaactct ccgaaatcaa ggcaagagga ataaggatga actttgataa 2650 tgttgaagat gaagaaaaag tttaaaagaa attctgacag atgacatcag 2700 aagacaccta tttagaatgt tacatttatg atgggaatga atgaacatta 2750 tcttagactt gcagttgtac tgccagaatt atctacagca ctggtgtaaa 2800 agaagggtct gcaaactttt tctgtaaagg gccggtttat aaatatttta 2850 gactttgcag gctataatat atggttcaca catgagaaca agaatagagt 2900 catcatgtat tctttgttat ttgcttttaa caacctttaa aaaatattaa 2950 aacgattctt agctcagagc catacaaaag taggctggat tcagtccatg 3000 gaccatagat tgctgtcccc ctcgacggac ttataatgtt tcaggtggct 3050 ggcttgaaca tgagtctgct gtgctatcta cataaatgtc taagttgtat 3100 aaagtccact ttcccttcac gttttttggc tgacctgaaa agaggtaact 3150 tagtttttgg tcacttgttc tcctaaaaat gctatcccta accatatatt 3200 tatatttcgt tttaaaaaca cccatgatgt ggcacagtaa acaaaccctg 3250 ttatgctgta ttattatgag gagattcttc attgttttct ttccttctca 3300 aaggttgaaa aaatgctttt aatttttcac agccgagaaa cagtgcagca 3350 gtatatgtgc acacagtaag tacacaaatt tgagcaacag taagtgcaca 3400 aattctgtag tttgctgtat catccaggaa aacctgaggg aaaaaaatta 3450 tagcaattaa ctgggcattg tagagtatcc taaatatgtt atcaagtatt 3500 tagagttcta tattttaaag atatatgtgt tcatgtattt tctgaaattg 3550 ctttcataga aattttccca ctgatagttg atttttgagg catctaatat 3600 ttacatattt gccttctgaa ctttgttttg acctgtatcc tttatttaca 3650 ttgggttttt ctttcatagt tttggttttt cactcctgtc cagtctattt 3700 attattcaaa taggaaaaat tactttacag gttgttttac tgtagcttat 3750 aatgatactg tagttattcc agttactagt ttactgtcag agggctgcct 3800 ttttcagata aatattgaca taataactga agttatttt ataagaaaat 3850 caagtatata aatctaggaa agggatcttc tagtttctgt gttgtttaga 3900 ctcaaagaat cacaaatttg tcagtaacat gtagttgttt agttataatt 3950 cagagtgtac agaatggtaa aaattccaat cagtcaaaag aggtcaatga 4000 attaaaaggc ttgcaacttt ttcaaaaaaa aaaaaaaaa 4040

<210> 459

<211> 747

<212> PRT

<213> Homo sapiens

<400> 459

Met Gly Val Trp Leu Asn Lys Asp Asp Tyr Ile Arg Asp Leu Lys 1 5 10 15

Arg Ile Ile Leu Cys Phe Leu Ile Val Tyr Met Ala Ile Leu Val 20 25 30

Gly Thr Asp Gln Asp Phe Tyr Ser Leu Leu Gly Val Ser Lys Thr 35 40 45

Ala Ser Ser Arg Glu Ile Arg Gln Ala Phe Lys Lys Leu Ala Leu
50 55 60

Lys Leu His Pro Asp Lys Asn Pro Asn Asn Pro Asn Ala His Gly 65 70 75

Asp Phe Leu Lys Ile Asn Arg Ala Tyr Glu Val Leu Lys Asp Glu 80 85 90

Asp Leu Arg Lys Lys Tyr Asp Lys Tyr Gly Glu Lys Gly Leu Glu 95 100 105

Asp Asn Gln Gly Gly Gln Tyr Glu Ser Trp Asn Tyr Tyr Arg Tyr 110 115 120

Asp Phe Gly Ile Tyr Asp Asp Pro Glu Ile Ile Thr Leu Glu 125 130 135

Arg Arg Glu Phe Asp Ala Ala Val Asn Ser Gly Glu Leu Trp Phe 140 145

Val Asn Phe Tyr Ser Pro Gly Cys Ser His Cys His Asp Leu Ala 155 160 165

Pro Thr Trp Arg Asp Phe Ala Lys Glu Val Asp Gly Leu Leu Arg 170 175 180

Ile Gly Ala Val Asn Cys Gly Asp Asp Arg Met Leu Cys Arg Met 185 190 195

Lys Gly Val Asn Ser Tyr Pro Ser Leu Phe Ile Phe Arg Ser Gly

				200					205					210
Met	Ala	Pro	Val	Lys 215	Tyr	His	Gly	Asp	Arg 220	Ser	Lys	Glu	Ser	Leu 225
Val	Ser	Phe	Ala	Met 230	Gln	His	Val	Arg	Ser 235	Thr	Val	Thr	Glu	Leu 240
Trp	Thr	Gly	Asn	Phe 245	Val	Asn	Ser	Ile	Gln 250	Thr	Ala	Phe	Ala	Ala 255
Gly	Ile	Gly	Trp	Leu 260	Ile	Thr	Phe	Cys	Ser 265	Lys	Gly	Gly	Asp	Cys 270
Leu	Thr	Ser	Gln	Thr 275	Arg	Leu	Arg	Leu	Ser 280	Gly	Met	Leu	Phe	Leu 285
Asn	Ser	Leu	Asp	Ala 290	Lys	Glu	Ile	Tyr	Leu 295	Glu	Val	Ile	His	Asn 300
Leu	Pro	Asp	Phe	Glu 305	Leu	Leu	Ser	Ala	Asn 310	Thr	Leu	Glu	Asp	Arg 315
Leu	Ala	His	His	Arg 320	Trp	Leu	Leu	Phe	Phe 325	His	Phe	Gly	Lys	Asn 330
Glu	Asn	Ser	Asn	Asp 335	Pro	Glu	Leu	Lys	Lys 340	Leu	Lys	Thr	Leu	Leu 345
Lys	Asn	Asp	His	Ile 350	Gln	Val	Gly	Arg	Phe 355	Asp	Cys	Ser	Ser	Ala 360
Pro	Asp	Ile	Cys	Ser 365	Asn	Leu	Tyr	Val	Phe 370		Pro	Ser	Leu	Ala 375
Val	Phe	Lys	Gly	Gln 380	Gly	Thr	Lys	Glu	Tyr 385	Glu	Ile	His	His	Gly 390
Lys	Lys	Ile	Leu	Tyr 395	Asp	Ile	Leu	Ala	Phe 400		Lys	Glu	Ser	Val 405
Asn	Ser	His	Val	Thr 410	Thr	Leu	Gly	Pro	Gln 415	Asn	Phe	Pro	Ala	Asn 420
Asp	Lys	Glu	Pro	Trp 425		Val	Asp	Phe	Phe 430	Ala	Pro	Trp	Cys	Pro 435
Pro	Cys	Arg	Ala	Leu 440		Pro	Glu	Leu	Arg 445		Ala	Ser	Asn	Leu 450
Leu	Tyr	Gly	Gln	Leu 455		Phe	Gly	Thr	Leu 460		Cys	Thr	∵ Val	His 465
Glu	Gly	Leu	Cys	470		Tyr	: Asn	Ile	Gln 475		туг	Pro	Thr	Thr 480
Val	Val	. Phe	Asn	Gln 485		Asn	Ile	His	Glu 490		Glu	ı Gly	His	His 495

```
Ser Ala Glu Gln Ile Leu Glu Phe Ile Glu Asp Leu Met Asn Pro
                                    505
Ser Val Val Ser Leu Thr Pro Thr Thr Phe Asn Glu Leu Val Thr
                                                         525
                515
Gln Arg Lys His Asn Glu Val Trp Met Val Asp Phe Tyr Ser Pro
                530
Trp Cys His Pro Cys Gln Val Leu Met Pro Glu Trp Lys Arg Met
                545
Ala Arg Thr Leu Thr Gly Leu Ile Asn Val Gly Ser Ile Asp Cys
Gln Gln Tyr His Ser Phe Cys Ala Gln Glu Asn Val Gln Arg Tyr
                                                         585
                575
Pro Glu Ile Arg Phe Phe Pro Pro Lys Ser Asn Lys Ala Tyr Gln
Tyr His Ser Tyr Asn Gly Trp Asn Arg Asp Ala Tyr Ser Leu Arg
                 605
Ile Trp Gly Leu Gly Phe Leu Pro Gln Val Ser Thr Asp Leu Thr
                 620
Pro Gln Thr Phe Ser Glu Lys Val Leu Gln Gly Lys Asn His Trp
                 635
Val Ile Asp Phe Tyr Ala Pro Trp Cys Gly Pro Cys Gln Asn Phe
Ala Pro Glu Phe Glu Leu Leu Ala Arg Met Ile Lys Gly Lys Val
                 665
Lys Ala Gly Lys Val Asp Cys Gln Ala Tyr Ala Gln Thr Cys Gln
Lys Ala Gly Ile Arg Ala Tyr Pro Thr Val Lys Phe Tyr Phe Tyr
Glu Arg Ala Lys Arg Asn Phe Gln Glu Glu Gln Ile Asn Thr Arg
Asp Ala Lys Ala Ile Ala Ala Leu Ile Ser Glu Lys Leu Glu Thr
Leu Arg Asn Gln Gly Lys Arg Asn Lys Asp Glu Leu
<210> 460
<211> 24
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 460
actececagg etgtteacac tgcc 24
<210> 461
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 461
 gatcagccag ccaataccag cagc 24
<210> 462
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 462
 gtggtgatga tagaatgctt tgccgaatga aaggagtcaa cagctatccc 50
<210> 463
<211> 1818
<212> DNA
<213> Homo sapiens
<400> 463
 agacagtacc tecteectag gactacacaa ggactgaacc agaaggaaga 50
 ggacagagca aagccatgaa catcatccta gaaatccttc tgcttctgat 100
 caccatcatc tactcctact tggagtcgtt ggtgaagttt ttcattcctc 150
 agaggagaaa atctgtggct ggggagattg ttctcattac tggagctggg 200
 catggaatag gcaggcagac tacttatgaa tttgcaaaac gacagagcat 250
 attggttctg tgggatatta ataagcgcgg tgtggaggaa actgcagctg 300
 agtgccgaaa actaggcgtc actgcgcatg cgtatgtggt agactgcagc 350
 aacagagaag agatctatcg ctctctaaat caggtgaaga aagaagtggg 400
 tgatgtaaca atcgtggtga ataatgctgg gacagtatat ccagccgatc 450
 ttctcagcac caaggatgaa gagattacca agacatttga ggtcaacatc 500
 ctaggacatt tttggatcac aaaagcactt cttccatcga tgatggagag 550
 aaatcatggc cacatcgtca cagtggcttc agtgtgcggc cacgaaggga 600
 ttccttacct catcccatat tgttccagca aatttgccgc tgttggcttt 650
 cacagaggtc tgacatcaga acttcaggcc ttgggaaaaa ctggtatcaa 700
```

aacetcatgt etetgeecag tttttgtgaa taetgggtte accaaaaate 750 caagcacaag attatggcct gtattggaga cagatgaagt cgtaagaagt 800 ctgatagatg gaatacttac caataagaaa atgatttttg ttccatcgta 850 tatcaatatc tttctgagac tacagaagtt tcttcctgaa cgcgcctcag 900 cgattttaaa tcgtatgcag aatattcaat ttgaagcagt ggttggccac 950 aaaatcaaaa tgaaatgaat aaataagctc cagccagaga tgtatgcatg 1000 ataatgatat gaatagtttc gaatcaatgc tgcaaagctt tatttcacat 1050 tttttcagtc ctgataatat taaaaacatt ggtttggcac tagcagcagt 1100 caaacgaaca agattaatta cctgtcttcc tgtttctcaa gaatatttac 1150 gtagtttttc ataggtctgt ttttcctttc atgcctctta aaaacttctg 1200 tgcttacata aacatactta aaaggttttc tttaagatat tttatttttc 1250 catttaaagg tggacaaaag ctacctccct aaaagtaaat acaaagagaa 1300 cttatttaca cagggaaggt ttaagactgt tcaagtagca ttccaatctg 1350 tagccatgcc acagaatatc aacaagaaca cagaatgagt gcacagctaa 1400 gagatcaagt ttcagcaggc agctttatct caacctggac atattttaag 1450 attcagcatt tgaaagattt ccctagcctc ttcctttttc attagcccaa 1500 aacggtgcaa ctctattctg gactttatta cttgattctg tcttctgtat 1550 aactctgaag tccaccaaaa gtggaccctc tatatttcct ccctttttat 1600 agtcttataa gatacattat gaaaggtgac cgactctatt ttaaatctca 1650 gaattttaag ttctagcccc atgataacct ttttctttgt aatttatgct 1700 ttcatatatc cttggtccca gagatgttta gacaatttta ggctcaaaaa 1750 ttaaagctaa cacaggaaaa ggaactgtac tggctattac ataagaaaca 1800 atggacccaa gagaagaa 1818

<210> 464

<211> 300

<212> PRT

<213> Homo sapiens

<400> 464

Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Leu Ile Thr Ile Ile 1 5 10 15

Tyr Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg 20 25 30

```
Arg Lys Ser Val Ala Gly Glu Ile Val Leu Ile Thr Gly Ala Gly
His Gly Ile Gly Arg Gln Thr Thr Tyr Glu Phe Ala Lys Arg Gln
Ser Ile Leu Val Leu Trp Asp Ile Asn Lys Arg Gly Val Glu Glu
Thr Ala Ala Glu Cys Arg Lys Leu Gly Val Thr Ala His Ala Tyr
Val Val Asp Cys Ser Asn Arg Glu Glu Ile Tyr Arg Ser Leu Asn
Gln Val Lys Lys Glu Val Gly Asp Val Thr Ile Val Val Asn Asn
Ala Gly Thr Val Tyr Pro Ala Asp Leu Leu Ser Thr Lys Asp Glu
Glu Ile Thr Lys Thr Phe Glu Val Asn Ile Leu Gly His Phe Trp
                140
Ile Thr Lys Ala Leu Leu Pro Ser Met Met Glu Arg Asn His Gly
His Ile Val Thr Val Ala Ser Val Cys Gly His Glu Gly Ile Pro
                170
Tyr Leu Ile Pro Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe
His Arg Gly Leu Thr Ser Glu Leu Gln Ala Leu Gly Lys Thr Gly
                200
Ile Lys Thr Ser Cys Leu Cys Pro Val Phe Val Asn Thr Gly Phe
Thr Lys Asn Pro Ser Thr Arg Leu Trp Pro Val Leu Glu Thr Asp
Glu Val Val Arg Ser Leu Ile Asp Gly Ile Leu Thr Asn Lys Lys
Met Ile Phe Val Pro Ser Tyr Ile Asn Ile Phe Leu Arg Leu Gln
Lys Phe Leu Pro Glu Arg Ala Ser Ala Ile Leu Asn Arg Met Gln
Asn Ile Gln Phe Glu Ala Val Val Gly His Lys Ile Lys Met Lys
```

<210> 465

<211> 1547

<212> DNA

<213> Homo sapiens

<400> 465 cggcggcggc tgcgggcgcg aggtgagggg cgcgaggtga ggggcgcgag 50 gttcccagca ggatgccccg gctctgcagg aagctgaagt gagaggcccg 100 gagagggccc agcccgcccg gggcaggatg accaaggccc ggctgttccg 150 gctgtggctg gtgctggggt cggtgttcat gatcctgctg atcatcgtgt 200 actgggacag cgcaggcgcc gcgcacttct acttgcacac gtccttctct 250 aggccgcaca cggggccgcc gctgcccacg cccgggccgg acagggacag 300 ggagctcacg gccgactccg atgtcgacga gtttctggac aagtttctca 350 gtgctggcgt gaagcagagc gaccttccca gaaaggagac ggagcagccg 400 cctgcgccgg ggagcatgga ggagagcgtg agaggctacg actggtcccc 450 gcgcgacgcc cggcgcagcc cagaccaggg ccggcagcag gcggagcgga 500 ggagegtget geggggette tgegeeaact eeageetgge etteeceace 550 aaggagcgcg cattcgacga catccccaac tcggagctga gccacctgat 600 cgtggacgac cggcacgggg ccatctactg ctacgtgccc aaggtggcct 650 gcaccaactg gaagcgcgtg atgatcgtgc tgagcggaag cctgctgcac 700 cgcggtgcgc cctaccgcga cccgctgcgc atcccgcgcg agcacgtgca 750 caacgccagc gcgcacctga ccttcaacaa gttctggcgc cgctacggga 800 agctctcccg ccacctcatg aaggtcaagc tcaagaagta caccaagttc 850 ctcttcgtgc gcgacccctt cgtgcgcctg atctccgcct tccgcagcaa 900 gttcgagctg gagaacgagg agttctaccg caagttcgcc gtgcccatgc 950 tgcggctgta cgccaaccac accagcctgc ccgcctcggc gcgcgaggcc 1000 ttccgcgctg gcctcaaggt gtccttcgcc aacttcatcc agtacctgct 1050 ggacccgcac acggagaage tggcgccctt caacgagcac tggcggcagg 1100 tgtaccgcct ctgccacccg tgccagatcg actacgactt cgtggggaag 1150 ctggagactc tggacgagga cgccgcgcag ctgctgcagc tactccaggt 1200 ggaccggcag ctccgcttcc ccccgagcta ccggaacagg accgccagca 1250 gctgggagga ggactggttc gccaagatcc ccctggcctg gaggcagcag 1300 ctgtataaac tctacgaggc cgactttgtt ctcttcggct accccaagcc 1350 cgaaaacctc ctccgagact gaaagctttc gcgttgcttt ttctcgcgtg 1400 cctggaacct gacgcacgcg cactccagtt tttttatgac ctacgatttt 1450 gcaatctggg cttcttgttc actccactgc ctctatccat tgagtactgt 1500 atcgatattg ttttttaaga ttaatatatt tcaggtattt aatacga 1547

<210> 466

<211> 414

<212> PRT

<213> Homo sapiens

<400> 466

Met Thr Lys Ala Arg Leu Phe Arg Leu Trp Leu Val Leu Gly Ser 1 5 10 15

Val Phe Met Ile Leu Leu Ile Ile Val Tyr Trp Asp Ser Ala Gly 20 25 30

Ala Ala His Phe Tyr Leu His Thr Ser Phe Ser Arg Pro His Thr 35 40 45

Gly Pro Pro Leu Pro Thr Pro Gly Pro Asp Arg Asp Arg Glu Leu 50 55 60

Thr Ala Asp Ser Asp Val Asp Glu Phe Leu Asp Lys Phe Leu Ser 65 70 75

Pro Pro Ala Pro Gly Ser Met Glu Glu Ser Val Arg Gly Tyr Asp $95 \hspace{1cm} 100 \hspace{1cm} 105 \hspace{1cm}$

Trp Ser Pro Arg Asp Ala Arg Arg Ser Pro Asp Gln Gly Arg Gln
110 115 120

Gln Ala Glu Arg Arg Ser Val Leu Arg Gly Phe Cys Ala Asn Ser 125 130 135

Ser Leu Ala Phe Pro Thr Lys Glu Arg Ala Phe Asp Asp Ile Pro 140 145 150

Asn Ser Glu Leu Ser His Leu Ile Val Asp Asp Arg His Gly Ala 155 160 165

Ile Tyr Cys Tyr Val Pro Lys Val Ala Cys Thr Asn Trp Lys Arg 170 175 180

Val Met Ile Val Leu Ser Gly Ser Leu Leu His Arg Gly Ala Pro 185 190 195

Tyr Arg Asp Pro Leu Arg Ile Pro Arg Glu His Val His Asn Ala 200 205 210

Ser Ala His Leu Thr Phe Asn Lys Phe Trp Arg Arg Tyr Gly Lys 215 220 225

Leu Ser Arg His Leu Met Lys Val Lys Leu Lys Lys Tyr Thr Lys 230 235 240

```
Phe Leu Phe Val Arg Asp Pro Phe Val Arg Leu Ile Ser Ala Phe
                245
Arg Ser Lys Phe Glu Leu Glu Asn Glu Glu Phe Tyr Arg Lys Phe
                260
                                     265
Ala Val Pro Met Leu Arg Leu Tyr Ala Asn His Thr Ser Leu Pro
Ala Ser Ala Arg Glu Ala Phe Arg Ala Gly Leu Lys Val Ser Phe
                290
                                                         300
Ala Asn Phe Ile Gln Tyr Leu Leu Asp Pro His Thr Glu Lys Leu
                305
Ala Pro Phe Asn Glu His Trp Arg Gln Val Tyr Arg Leu Cys His
                                                         330
                320
Pro Cys Gln Ile Asp Tyr Asp Phe Val Gly Lys Leu Glu Thr Leu
Asp Glu Asp Ala Ala Gln Leu Leu Gln Leu Leu Gln Val Asp Arg
                350
Gln Leu Arg Phe Pro Pro Ser Tyr Arg Asn Arg Thr Ala Ser Ser
Trp Glu Glu Asp Trp Phe Ala Lys Ile Pro Leu Ala Trp Arg Gln
                380
Gln Leu Tyr Lys Leu Tyr Glu Ala Asp Phe Val Leu Phe Gly Tyr
                395
                                     400
                                                         405
```

Pro Lys Pro Glu Asn Leu Leu Arg Asp 410

<210> 467

<211> 1071

<212> DNA

<213> Homo sapiens

<400> 467

tegggecaga atteggeacg aggeggeacg agggegacgg ceteaeggg 50 ctttggaggt gaaagaggee cagagtagag agaagagag acegaegtae 100 aegggatgge taegggaacg egetatgeeg ggaaaggtggt ggtegtgace 150 gggggeggge geggeategg agetgggate gtggegeet tegtgaacag 200 eggggecega gtggttatet gegacaagga tgagtetggg ggeegggeee 250 tggageagga geteettga getgtetta teetetgtga tgtgaeteag 300 gaagatgatg tgaagaecet ggttettgag aceateegee gatttggeeg 350 eetggattgt gttgteaaca aegetggeea eeaceeeee eeacagagge 400

ctgaggagac ctctgcccag ggattccgcc agctgctgga gctgaaccta 450 ctggggacgt acaccttgac caagctcgcc ctcccctacc tgcggaagag 500 tcaagggaat gtcatcaaca tctccagcct ggtgggggca atcggccagg 550 cccaggcagt tccctatgtg gccaccaagg gggcagtaac agccatgacc 600 aaagctttgg ccctggatga aagtccatat ggtgtccgag tcaactgtat 650 ctcccagga aacatctgga ccccgctgtg ggaggagctg gcagccttaa 700 tgccagaccc tagggccaca atccggagg gcatgctggc ccagccactg 750 ggccgcatgg gccagcccgc tgaggtcgg gctgcggcag tgttcctggc 800 ctccgaagcc aacttctgca cgggcattga actgctcgt acggggggtg 850 cagagctggg gtacgggtg aaggccagtc ggagcaccc cgtggacgcc 900 cccgatatcc cttcctgatt tctctcattt ctacttggg cccccttcct 950 aggactctcc caccccaaac tccaacctgt atcagatgca gcccccaagc 1000 ccttagactc taagcccagt tagcaaggtg ccgggtcacc ctgcaggttc 1050 ccataaaaac gatttgcagc c 1071

<210> 468 <211> 270 <212> PRT

<213> Homo sapiens

<400> 468

Met Ala Thr Gly Thr Arg Tyr Ala Gly Lys Val Val Val Thr 1 5 10 15

Gly Gly Gly Arg Gly Ile Gly Ala Gly Ile Val Arg Ala Phe Val 20 25 30

Asn Ser Gly Ala Arg Val Val Ile Cys Asp Lys Asp Glu Ser Gly
35 40 45

Gly Arg Ala Leu Glu Glu Leu Pro Gly Ala Val Phe Ile Leu
50 55 60

Cys Asp Val Thr Gln Glu Asp Asp Val Lys Thr Leu Val Ser Glu 65 70 75

Thr Ile Arg Arg Phe Gly Arg Leu Asp Cys Val Val Asn Asn Ala 80 85 90

Gly His His Pro Pro Pro Gln Arg Pro Glu Glu Thr Ser Ala Gln
95 100 105

Gly Phe Arg Gln Leu Leu Glu Leu Asn Leu Leu Gly Thr Tyr Thr \$110\$ \$115\$ \$120

Leu Thr Lys Leu Ala Leu Pro Tyr Leu Arg Lys Ser Gln Gly Asn Val Ile Asn Ile Ser Ser Leu Val Gly Ala Ile Gly Gln Ala Gln Ala Val Pro Tyr Val Ala Thr Lys Gly Ala Val Thr Ala Met Thr 165 155 Lys Ala Leu Ala Leu Asp Glu Ser Pro Tyr Gly Val Arg Val Asn 170 Cys Ile Ser Pro Gly Asn Ile Trp Thr Pro Leu Trp Glu Glu Leu 185 Ala Ala Leu Met Pro Asp Pro Arg Ala Thr Ile Arg Glu Gly Met 200 Leu Ala Gln Pro Leu Gly Arg Met Gly Gln Pro Ala Glu Val Gly Ala Ala Ala Val Phe Leu Ala Ser Glu Ala Asn Phe Cys Thr Gly 230 Ile Glu Leu Leu Val Thr Gly Gly Ala Glu Leu Gly Tyr Gly Cys Lys Ala Ser Arg Ser Thr Pro Val Asp Ala Pro Asp Ile Pro Ser

<210> 469

<211> 687

<212> DNA

<213> Homo sapiens

<400> 469

aggegggcag cagetgcagg etgacettge agettggegg aatggaetgg 50 cetecacaace tgetgttet tettaceatt tecatettee tggggetggg 100 ceageceagg agececaaaa geaagaggaa ggggcaaggg eggeetggge 150 ceetggeee tggeeeteae eaggtgeeae tggaeetggt gteaeggatg 200 aaacegtatg ecegeatgga ggagtatgag aggaacateg aggagatggt 250 ggeeeagetg aggaacaget eagagetgge eeagagaaag tgtgaggtea 300 acttgeaget gtggatgtee aacaagagga geetgtetee etggggetae 350 ageateaace aegaeeeag eegtateeee gtggaeetge eggaggeaeg 400 gtgeetgtt etgggetgt tgaaeeeett eaecatgeag gaggaeegea 450 geatggtag egtgeeggt tteageeagg tteetgtge eegeegeete 500 tgeeegeae eggeeegae agggeettge eggeagegg eagteatga 550

270

gaccatcgct gtgggctgca cctgcatctt ctgaatcacc tggcccagaa 600 gccaggccag cagcccgaga ccatcctcct tgcacctttg tgccaagaaa 650 ggcctatgaa aagtaaacac tgacttttga aagcaag 687

<210> 470

<211> 180

<212> PRT

<213> Homo sapiens

<400> 470

Met Asp Trp Pro His Asn Leu Leu Phe Leu Leu Thr Ile Ser Ile 1 5 10 15

Phe Leu Gly Leu Gly Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys 20 25 30

Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val 35 40 45

Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu 50 55 60

Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn 65 70 75

Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu 80 85 90

Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile 95 100 105

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg 110 115 120

Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp 125 130 135

Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg 140 145 150

Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln 155 160 165

Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 170 175 180

<210> 471

<211> 2368

<212> DNA

<213> Homo sapiens

<400> 471

gegeegecag gegtaggegg ggtggeeett gegteteeeg etteettgaa 50 aaacceggeg ggegagegag getgegggee ggeegetgee etteeecaca 100

ctcccgccg agaagcctcg ctcggcgccc aacatggcgg gtgggcgctg 150 cggcccgcag ctaacggcgc tcctggccgc ctggatcgcg gctgtggcgg 200 cgacggcagg ccccgaggag gccgcgctgc cgccggagca gagccgggtc 250 cagcccatga ccgcctccaa ctggacgctg gtgatggagg gcgagtggat 300 gctgaaattt tacgccccat ggtgtccatc ctgccagcag actgattcag 350 aatgggaggc ttttgcaaag aatggtgaaa tacttcagat cagtgtgggg 400 aaggtagatg tcattcaaga accaggtttg agtggccgct tctttgtcac 450 cactetecea geattttte atgeaaagga tgggatatte egeegttate 500 gtggcccagg aatcttcgaa gacctgcaga attatatctt agagaagaaa 550 tggcaatcag tcgagcctct gactggctgg aaatccccag cttctctaac 600 gatgtctgga atggctggtc tttttagcat ctctggcaag atatggcatc 650 ttcacaacta tttcacagtg actcttggaa ttcctgcttg gtgttcttat 700 gtgtttttcg tcatagccac cttggttttt ggccttttta tgggtctggt 750 cttggtggta atatcagaat gtttctatgt gccacttcca aggcatttat 800 ctgagcgttc tgagcagaat cggagatcag aggaggctca tagagctgaa 850 cagttgcagg atgcggagga ggaaaaagat gattcaaatg aagaagaaaa 900 caaagacagc cttgtagatg atgaagaaga gaaagaagat cttggcgatg 950 aggatgaagc agaggaagaa gaggaggagg acaacttggc tgctggtgtg 1000 gatgaggaga gaagtgaggc caatgatcag gggcccccag gagaggacgg 1050 tgtgacccgg gaggaagtag agcctgagga ggctgaagaa ggcatctctg 1100 agcaaccetg cecagetgae acagaggtgg tggaagaete ettgaggeag 1150 cgtaaaagtc agcatgctga caagggactg tagatttaat gatgcgtttt 1200 caagaataca caccaaaaca atatgtcagc ttccctttgg cctgcagttt 1250 gtaccaaatc cttaattttt cctgaatgag caagcttctc ttaaaagatg 1300 ctctctagtc atttggtctc atggcagtaa gcctcatgta tactaaggag 1350 agtcttccag gtgtgacaat caggatatag aaaaacaaac gtagtgttgg 1400 gatctgtttg gagactggga tgggaacaag ttcatttact taggggtcag 1450 agagtetega ecagaggagg ceatteceag tectaateag caeetteeag 1500 agacaagget geaggeeetg tgaaatgaaa geeaageagg ageettgget 1550

cctgagcatc cccaaagtgt aacgtagaag ccttgcatcc ttttcttgtg 1600 taaagtattt atttttgtca aattgcagga aacatcaggc accacagtgc 1650 atqaaaaatc tttcacaqct aqaaattgaa agggccttgg gtatagagag 1700 cagctcagaa gtcatcccag ccctctgaat ctcctgtgct atgttttatt 1750 tcttaccttt aatttttcca gcatttccac catgggcatt caggctctcc 1800 acactettea etattatete ttggteagag gaeteeaata acageeaggt 1850 ttacatgaac tgtgtttgtt cattctgacc taaggggttt agataatcag 1900 taaccataac ccctgaagct gtgactgcca aacatctcaa atgaaatgtt 1950 qtqqccatca qaqactcaaa aqqaaqtaaq gattttacaa gacagattaa 2000 aaaaaaattg ttttgtccaa aatatagttg ttgttgattt ttttttaagt 2050 tttctaagca atattttca agccagaagt cctctaagtc ttgccagtac 2100 gggttccctg ggtcttgaac tactttaata ataactaaaa aaccacttct 2200 gattttcctt cagtgatgtg cttttggtga aagaattaat gaactccagt 2250 acctgaaagt gaaagatttg attttgtttc catcttctgt aatcttccaa 2300 agaattatat ctttgtaaat ctctcaatac tcaatctact gtaagtaccc 2350 agggaggcta atttcttt 2368

<210> 472

<211> 349

<212> PRT

<213> Homo sapiens

<400> 472

Met Ala Gly Gly Arg Cys Gly Pro Gln Leu Thr Ala Leu Leu Ala 1 5 10 15

Ala Trp Ile Ala Ala Val Ala Ala Thr Ala Gly Pro Glu Glu Ala 20 25 30

Ala Leu Pro Pro Glu Gln Ser Arg Val Gln Pro Met Thr Ala Ser 35 40 45

Asn Trp Thr Leu Val Met Glu Gly Glu Trp Met Leu Lys Phe Tyr 50 55 60

Ala Pro Trp Cys Pro Ser Cys Gln Gln Thr Asp Ser Glu Trp Glu 65 70 75

Ala Phe Ala Lys Asn Gly Glu Ile Leu Gln Ile Ser Val Gly Lys 80 85 90

```
Val Asp Val Ile Gln Glu Pro Gly Leu Ser Gly Arg Phe Phe Val
Thr Thr Leu Pro Ala Phe Phe His Ala Lys Asp Gly Ile Phe Arg
                110
Arg Tyr Arg Gly Pro Gly Ile Phe Glu Asp Leu Gln Asn Tyr Ile
Leu Glu Lys Lys Trp Gln Ser Val Glu Pro Leu Thr Gly Trp Lys
Ser Pro Ala Ser Leu Thr Met Ser Gly Met Ala Gly Leu Phe Ser
Ile Ser Gly Lys Ile Trp His Leu His Asn Tyr Phe Thr Val Thr
Leu Gly Ile Pro Ala Trp Cys Ser Tyr Val Phe Phe Val Ile Ala
Thr Leu Val Phe Gly Leu Phe Met Gly Leu Val Leu Val Val Ile
Ser Glu Cys Phe Tyr Val Pro Leu Pro Arg His Leu Ser Glu Arg
Ser Glu Gln Asn Arg Arg Ser Glu Glu Ala His Arg Ala Glu Gln
                230
Leu Gln Asp Ala Glu Glu Lys Asp Asp Ser Asn Glu Glu Glu
Asn Lys Asp Ser Leu Val Asp Asp Glu Glu Glu Lys Glu Asp Leu
Gly Asp Glu Asp Glu Ala Glu Glu Glu Glu Glu Glu Asp Asn Leu
Ala Ala Gly Val Asp Glu Glu Arg Ser Glu Ala Asn Asp Gln Gly
Pro Pro Gly Glu Asp Gly Val Thr Arg Glu Glu Val Glu Pro Glu
Glu Ala Glu Gly Ile Ser Glu Gln Pro Cys Pro Ala Asp Thr
Glu Val Val Glu Asp Ser Leu Arg Gln Arg Lys Ser Gln His Ala
```

Asp Lys Gly Leu

<210> 473

<211> 24

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 473
 gtccagccca tgaccgcctc caac 24
<210> 474
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 474
 ctctcctćat ccacaccagc agcc 24
<210> 475
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 475
 gtggatgctg aaattttacg ccccatggtg tccatcctgc cagc 44
<210> 476
<211> 2478
<212> DNA
<213> Homo sapiens
<400> 476
 atctggttga actacttaag cttaatttgt taaactccgg taagtaccta 50
 qcccacatga tttgactcag agattctctt ttgtccacag acagtcatct 100
 caggggcaga aagaaaagag ctcccaaatg ctatatctat tcaggggctc 150
 tcaaqaacaa tggaatatca tcctgattta gaaaatttgg atgaagatgg 200
 atatactcaa ttacacttcg actctcaaag caataccagg atagctgttg 250
 tttcagagaa aggatcgtgt gctgcatctc ctccttggcg cctcattgct 300
 gtaattttgg gaatcctatg cttggtaata ctggtgatag ctgtggtcct 350
 gggtaccatg ggggttcttt ccagcccttg tcctcctaat tggattatat 400
 atgagaagag ctgttatcta ttcagcatgt cactaaattc ctgggatgga 450
 agtaaaagac aatgctggca actgggctct aatctcctaa agatagacag 500
 ctcaaatgaa ttgggattta tagtaaaaca agtgtcttcc caacctgata 550
 attcattttq qataqqcctt tctcqqcccc agactgaggt accatggctc 600
```

tgggaggatg gatcaacatt ctcttctaac ttatttcaga tcagaaccac 650 agctacccaa gaaaacccat ctccaaattg tgtatggatt cacgtgtcag 700 tcatttatga ccaactgtgt agtgtgccct catatagtat ttgtgagaag 750 aagttttcaa tgtaagagga agggtggaga aggagagaga aatatgtgag 800 gtagtaagga ggacagaaaa cagaacagaa aagagtaaca gctgaggtca 850 agataaatgc agaaaatgtt tagagagctt ggccaactgt aatcttaacc 900 aagaaattga agggagaggc tgtgatttct gtatttgtcg acctacaggt 950 aggctagtat tatttttcta gttagtagat ccctagacat ggaatcaggg 1000 cagccaaget tgagttttta tttttattt atttatttt ttgagatagg 1050 qtctcacttt qttacccaqq ctqqaqtqca qtqqcacaat ctcqactcac 1100 tgcagctatc tctcgcctca gcccctcaag tagctgggac tacaggtgca 1150 tgccaccatg ccaggctaat ttttggtgtt ttttgtagag actgggtttt 1200 qccatqttqa ccaaqctqqt ctctaactcc tgggcttaag tgatctgccc 1250 gccttggcct cccaaagtgc tgggattaca gatgtgagcc accacacctg 1300 gccccaagct tgaattttca ttctgccatt gacttggcat ttaccttggg 1350 taaqccataa qogaatotta atttotggot otatoagagt tgtttoatgo 1400 tcaacaatgc cattgaagtg cacggtgtgt tgccacgatt tgaccctcaa 1450 cttctagcag tatatcagtt atgaactgag ggtgaaatat atttctgaat 1500 agctaaatga agaaatggga aaaaatcttc accacagtca gagcaatttt 1550 attattttca tcagtatgat cataattatg attatcatct tagtaaaaag 1600 caggaactcc tacttttct ttatcaatta aatagctcag agagtacatc 1650 tgccatatct ctaatagaat ctttttttt tttttttt tttttttt tttgagacag 1700 agtttcgctc ttgttgccca ggctggagtg caacggcacg atctcggctc 1750 accgcaacct ccgcccctg ggttcaagca attctcctgc ctcagcctcc 1800 caagtagctg ggattacagt caggcaccac cacacccggc taattttgta 1850 ttttttagt agagacaggg tttctccatg tcggtcaggg tagtcccgaa 1900 ctcctgacct caagtgatct gcctgcctcg gcctcccaag tgctgggatt 1950 acaggcgtga gccactgcac ccagcctaga atcttgtata atatgtaatt 2000 gtagggaaac tgctctcata ggaaagtttt ctgcttttta aatacaaaaa 2050 tacataaaaa tacataaaat ctgatgatga atataaaaaa gtaaccaacc 2100 tcattggaac aagtattaac attttggaat atgttttatt agttttgtga 2150 tgtactgttt tacaattttt accatttttt tcagtaatta ctgtaaaatg 2200 gtattattgg aatgaaacta tatttcctca tgtgctgatt tgtcttattt 2250 ttttcatact ttcccactgg tgctattttt atttccaatg gatatttctg 2300 tattactagg gaggcattta cagtcctcta atgttgatta atatgtgaaa 2350 agaaattgta ccaattttac taaattatgc agtttaaaat ggatgatttt 2400 aaaaaaaaa aaaaaaaaa 2478

<210> 477 <211> 201 <212> PRT <213> Homo sapiens

<400> 477 Met Glu Tyr His Pro Asp Leu Glu Asn Leu Asp Glu Asp Gly Tyr Thr Gln Leu His Phe Asp Ser Gln Ser Asn Thr Arg Ile Ala Val Val Ser Glu Lys Gly Ser Cys Ala Ala Ser Pro Pro Trp Arg Leu Ile Ala Val Ile Leu Gly Ile Leu Cys Leu Val Ile Leu Val Ile Ala Val Val Leu Gly Thr Met Gly Val Leu Ser Ser Pro Cys Pro Pro Asn Trp Ile Ile Tyr Glu Lys Ser Cys Tyr Leu Phe Ser Met 85 Ser Leu Asn Ser Trp Asp Gly Ser Lys Arg Gln Cys Trp Gln Leu Gly Ser Asn Leu Leu Lys Ile Asp Ser Ser Asn Glu Leu Gly Phe Ile Val Lys Gln Val Ser Ser Gln Pro Asp Asn Ser Phe Trp Ile 130 Gly Leu Ser Arg Pro Gln Thr Glu Val Pro Trp Leu Trp Glu Asp 145 Gly Ser Thr Phe Ser Ser Asn Leu Phe Gln Ile Arg Thr Thr Ala Thr Gln Glu Asn Pro Ser Pro Asn Cys Val Trp Ile His Val Ser

```
180
                 170
                                     175
Val Ile Tyr Asp Gln Leu Cys Ser Val Pro Ser Tyr Ser Ile Cys
                                      190
                 185
Glu Lys Lys Phe Ser Met
                 200
<210> 478
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 478
 gtccacagac agtcatctca ggagcag 27
<210> 479
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 479
acaagtgtct tcccaacctg 20
<210> 480
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 480
atcctcccag agccatggta cctc 24
<210> 481
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 ccaaggatag ctgttgtttc agagaaagga tcgtgtgctg catctcctcc 50
 t 51
<210> 482
<211> 3819
<212> DNA
<213> Homo sapiens
```

, 🖺

ij

e edito

ij

į. Į. plati

: ::

<400> 482 ggaaggggag gagcaggcca cacaggcaca ggccggtgag ggacctgccc 50 agacctggag ggtctcgctc tgtcacacag gctggagtgc agtggtgtga 100 tcttggctca tcgtaacctc cacctcccgg gttcaagtga ttctcatgcc 150 tcagcctccc gagtagctgg gattacaggt ggtgacttcc aagagtgact 200 ccgtcggagg aaaatgactc cccagtcgct gctgcagacg acactgttcc 250 tgctgagtct gctcttcctg gtccaaggtg cccacggcag gggccacagg 300 gaagactttc gcttctgcag ccagcggaac cagacacaca ggagcagcct 350 ccactacaaa cccacaccag acctgcgcat ctccatcgag aactccgaag 400 aggeeeteae agteeatgee cettteeetg cageeeacee tgetteeega 450 teetteeetg acceeagggg cetetaceae ttetgeetet actggaaceg 500 acatgctggg agattacatc ttctctatgg caagcgtgac ttcttgctga 550 gtgacaaagc ctctagcctc ctctgcttcc agcaccagga ggagagcctg 600 gctcagggcc ccccgctgtt agccacttct gtcacctcct ggtggagccc 650 tcagaacatc agcctgccca gtgccgccag cttcaccttc tccttccaca 700 gtcctcccca cacggccgct cacaatgcct cggtggacat gtgcgagctc 750 aaaagggacc tecagetget cagecagtte etgaageate eecagaagge 800 ctcaaggagg ccctcggctg cccccgccag ccagcagttg cagagcctgg 850 agtcgaaact gacctctgtg agattcatgg gggacatggt gtccttcgag 900 gaggaccgga tcaacgccac ggtgtggaag ctccagccca cagccggcct 950 ccaggacctg cacatccact cccggcagga ggaggagcag agcgagatca 1000 tggagtactc ggtgctgctg cctcgaacac tcttccagag gacgaaaggc 1050 cggagcgggg aggctgagaa gagactcctc ctggtggact tcagcagcca 1100 agccctgttc caggacaaga attccagcca agtcctgggt gagaaggtct 1150 tggggattgt ggtacagaac accaaagtag ccaacctcac ggagcccgtg 1200 gtgctcactt tccagcacca gctacagccg aagaatgtga ctctgcaatg 1250 tgtgttctgg gttgaagacc ccacattgag cagcccgggg cattggagca 1300 gtgctgggtg tgagaccgtc aggagagaaa cccaaacatc ctgcttctgc 1350 aaccacttga cctactttgc agtgctgatg gtctcctcgg tggaggtgga 1400 cgccgtgcac aagcactacc tgagcctcct ctcctacgtg ggctgtgtcg 1450

tctctgccct ggcctgcctt gtcaccattg ccgcctacct ctgctccagg 1500 gtgcccctgc cgtgcaggag gaaacctcgg gactacacca tcaaggtgca 1550 catgaacctg ctgctggccg tcttcctgct ggacacgagc ttcctgctca 1600 gcgagccggt ggccctgaca ggctctgagg ctggctgccg agccagtgcc 1650 atetteetge aetteteet geteacetge ettteetgga tgggeetega 1700 ggggtacaac ctctaccgac tcgtggtgga ggtctttggc acctatgtcc 1750 ctggctacct actcaagctg agcgccatgg gctggggctt ccccatcttt 1800 ctggtgacgc tggtggccct ggtggatgtg gacaactatg gccccatcat 1850 cttggctgtg cataggactc cagagggcgt catctaccct tccatgtgct 1900 ggatccggga ctccctggtc agctacatca ccaacctggg cctcttcagc 1950 ctggtgtttc tgttcaacat ggccatgcta gccaccatgg tggtgcagat 2000 cctgcggctg cgccccaca cccaaaagtg gtcacatgtg ctgacactgc 2050 tgggcctcag cctggtcctt ggcctgccct gggccttgat cttcttctcc 2100 tttgcttctg gcaccttcca gcttgtcgtc ctctaccttt tcagcatcat 2150 cacctccttc caaggettcc tcatcttcat ctggtactgg tccatgcggc 2200 tgcaggcccg gggtggcccc tcccctctga agagcaactc agacagcgcc 2250 aggetececa teageteggg cageaceteg tecageegea tetaggeete 2300 cageceacet geceatgtga tgaageagag atgeggeete gtegeacaet 2350 gcctgtggcc cccgagccag gcccagccc aggccagtca gccgcagact 2400 ttggaaagcc caacgaccat ggagagatgg gccgttgcca tggtggacgg 2450 actocogggc tgggcttttg aattggcctt ggggactact cggctctcac 2500 tcagctccca cgggactcag aagtgcgccg ccatgctgcc tagggtactg 2550 tececacate tgteecaace eagetggagg cetggtetet cettacaace 2600 cctqqqcca qcctcattq ctqqqqqca qqccttggat cttgagggtc 2650 tggcacatcc ttaatcctgt gcccctgcct gggacagaaa tgtggctcca 2700 gttgctctgt ctctcgtggt caccctgagg gcactctgca tcctctgtca 2750 ttttaacctc aggtggcacc cagggcgaat ggggcccagg gcagaccttc 2800 agggccagag ccctggcgga ggagaggccc tttgccagga gcacagcagc 2850 agetegecta cetetgagee caggeeceet ceetecetea geececeagt 2900

ceteceteca tettecetgg ggtteteete eteteceagg geeteettge 2950 teettegtte acagetgggg gteecegatt ceaatgetgt tttttgggga 3000 gtggtttcca ggagctgcct ggtgtctgct gtaaatgttt gtctactgca 3050 caagectegg cetgeecetg agecaggete ggtacegatg egtgggetgg 3100 gctaggtccc tctgtccatc tgggcctttg tatgagctgc attgcccttg 3150 ctcaccctga ccaagcacac gcctcagagg ggccctcagc ctctcctgaa 3200 gccctcttgt ggcaagaact gtggaccatg ccagtcccgt ctggtttcca 3250 tcccaccact ccaaggactg agactgacct cctctggtga cactggccta 3300 gageetgaca etetectaag aggttetete caageeecca aatageteca 3350 ggcgccctcg gccgcccatc atggttaatt ctgtccaaca aacacacacg 3400 ggtagattgc tggcctgttg taggtggtag ggacacagat gaccgacctg 3450 gtcactcctc ctgccaacat tcagtctggt atgtgaggcg tgcgtgaagc 3500 aaqaactcct qqaqctacaq qqacaqqqaq ccatcattcc tqcctqqqaa 3550 tcctggaaga cttcctgcag gagtcagcgt tcaatcttga ccttgaagat 3600 gggaaggatg ttcttttac gtaccaattc ttttgtcttt tgatattaaa 3650 aagaagtaca tgttcattgt agagaatttg gaaactgtag aagagaatca 3700 aaaaaaaaa aaaaaaaaa 3819

<210> 483

<211> 693

<212> PRT

<213> Homo sapiens

<400> 483

Met Thr Pro Gln Ser Leu Leu Gln Thr Thr Leu Phe Leu Leu Ser 1 5 10 15

Leu Leu Phe Leu Val Gln Gly Ala His Gly Arg Gly His Arg Glu 20 25 30

Asp Phe Arg Phe Cys Ser Gln Arg Asn Gln Thr His Arg Ser Ser 35 40 45

Leu His Tyr Lys Pro Thr Pro Asp Leu Arg Ile Ser Ile Glu Asn
50 55 60

Ser Glu Glu Ala Leu Thr Val His Ala Pro Phe Pro Ala Ala His $65 \hspace{1.5cm} 70 \hspace{1.5cm} 75$

Pro Ala Ser Arg Ser Phe Pro Asp Pro Arg Gly Leu Tyr His Phe Cys Leu Tyr Trp Asn Arg His Ala Gly Arg Leu His Leu Leu Tyr 105 Gly Lys Arg Asp Phe Leu Leu Ser Asp Lys Ala Ser Ser Leu Leu 110 Cys Phe Gln His Gln Glu Glu Ser Leu Ala Gln Gly Pro Pro Leu 125 Leu Ala Thr Ser Val Thr Ser Trp Trp Ser Pro Gln Asn Ile Ser 140 Leu Pro Ser Ala Ala Ser Phe Thr Phe Ser Phe His Ser Pro Pro 155 His Thr Ala Ala His Asn Ala Ser Val Asp Met Cys Glu Leu Lys Arg Asp Leu Gln Leu Leu Ser Gln Phe Leu Lys His Pro Gln Lys Ala Ser Arg Arg Pro Ser Ala Ala Pro Ala Ser Gln Gln Leu Gln Ser Leu Glu Ser Lys Leu Thr Ser Val Arg Phe Met Gly Asp Met 215 Val Ser Phe Glu Glu Asp Arg Ile Asn Ala Thr Val Trp Lys Leu Gln Pro Thr Ala Gly Leu Gln Asp Leu His Ile His Ser Arg Gln Glu Glu Glu Gln Ser Glu Ile Met Glu Tyr Ser Val Leu Leu Pro Arg Thr Leu Phe Gln Arg Thr Lys Gly Arg Ser Gly Glu Ala Glu Lys Arg Leu Leu Val Asp Phe Ser Ser Gln Ala Leu Phe Gln Asp Lys Asn Ser Ser Gln Val Leu Gly Glu Lys Val Leu Gly Ile Val Val Gln Asn Thr Lys Val Ala Asn Leu Thr Glu Pro Val Val 325 Leu Thr Phe Gln His Gln Leu Gln Pro Lys Asn Val Thr Leu Gln 340 Cys Val Phe Trp Val Glu Asp Pro Thr Leu Ser Ser Pro Gly His Trp Ser Ser Ala Gly Cys Glu Thr Val Arg Arg Glu Thr Gln Thr

				365					370					375
Ser	Cys	Phe	Cys	Asn 380	His	Leu	Thr	Tyr	Phe 385	Ala	Val	Leu	Met	Val 390
Ser	Ser	Val	Glu	Val 395	Asp	Ala	Val	His	Lys 400	His	Tyr	Leu	Ser	Leu 405
Leu	Ser	Tyr	Val	Gly 410	Cys	Val	Val	Ser	Ala 415	Leu	Ala	Cys	Leu	Val 420
Thr	Ile	Ala	Ala	Tyr 425	Leu	Cys	Ser	Arg	Val 430	Pro	Leu	Pro	Cys	Arg 435
Arg	Lys	Pro	Arg	Asp 440	Tyr	Thr	Ile	Lys	Val 445	His	Met	Asn	Leu	Leu 450
Leu	Ala	Val	Phe	Leu 455	Leu	Asp	Thr	Ser	Phe 460	Leu	Leu	Ser	Glu	Pro 465
Val	Ala	Leu	Thr	Gly 470	Ser	Glu	Ala	Gly	Cys 475	Arg	Ala	Ser	Ala	Ile 480
Phe	Leu	His	Phe	Ser 485	Leu	Leu	Thr	Cys	Leu 490	Ser	Trp	Met	Gly	Leu 495
Glu	Gly	Tyr	Asn	Leu 500	Tyr	Arg	Leu	Val	Val 505	Glu	Val	Phe	Gly	Thr 510
Tyr	Val	Pro	Gly	Tyr 515	Leu	Leu	Lys	Leu	Ser 520	Ala	Met	Gly	Trp	Gly 525
Phe	Pro	Ile	Phe	Leu 530	Val	Thr	Leu	Val	Ala 535	Leu	Val	Asp	Val	Asp 540
Asn	Tyr	Gly	Pro	Ile 545	Ile	Leu	Ala	Val	His 550	Arg	Thr	Pro	Glu	Gly 555
Val	Ile	Tyr	Pro	Ser 560	Met	Cys	Trp	Ile	Arg 565	Asp	Ser	Leu	Val	Ser 570
Tyr	Ile	Thr	Asn	Leu 575	Gly	Leu	Phe	Ser	Leu 580	Val	Phe	Leu	Phe	Asn 585
Met	Ala	Met	Leu	Ala 590	Thr	Met	Val	Val	Gln 595	Ile	Leu	Arg	Leu	Arg 600
Pro	His	Thr	Gln	Lys 605	Trp	Ser	His	Val	Leu 610	Thr	Leu	Leu	Gly	Leu 615
Ser	Leu	Val	Leu	Gly 620	Leu	Pro	Trp	Ala	Leu 625	Ile	Phe	Phe	Ser	Phe 630
Ala	Ser	Gly	Thr	Phe 635	Gln	Leu	Val	Val	Leu 640	Tyr	Leu	Phe	Ser	Ile 645
Ile	Thr	Ser	Phe	Gln 650	Gly	Phe	Leu	Ile	Phe 655		Trp	Tyr	Trp	Ser 660

```
Met Arg Leu Gln Ala Arg Gly Gly Pro Ser Pro Leu Lys Ser Asn
 Ser Asp Ser Ala Arg Leu Pro Ile Ser Ser Gly Ser Thr Ser Ser
                                     685
                 680
Ser Arg Ile
<210> 484
<211> 516
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 68, 70, 84, 147
<223> unknown base
<400> 484
 tgcctggcct gccttgtcaa caatgccgct tactctgctt ccaggttgcc 50
 ctgccttgca gaggaaancn tcgggactac accntcaagt gcacatgaac 100
 ctgctgctgg ccgtcttcct gctggacacg agcttcctgc tcagcgnagc 150
 cqqtqqccct gacaggctct gaaggctggc tgccgagcca gtgccatctt 200
 cctgcacttc tcctgctcac ctgcctttcc tggatgggcc tcgaggggta 250
 caacctctac cgactcgtgg tggaggtctt tggcacctat gtccctggct 300
 acctactcaa gctgagcgcc atgggctggg gcttccccat ctttctggtg 350
 acgctggtgg ccctggtgga tgtggacaac tatggcccca tcatcttggc 400
 tgtgcatagg actccagagg gcgtcatcta cccttccatg tgctggatcc 450
 gggactccct ggtcagctac atcaccaacc tgggcctctt cagcctggtg 500
 tttctgttca acatgg 516
<210> 485
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 485
 ggcattggag cagtgctggg tg 22
<210> 486
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 486
tqqaqqccta gatgcggctg gacg 24
<210> 487
<211> 2849
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2715
<223> unknown base
<400> 487
 cqqacqcqtq qqcqqacqcq tqqqcqqacq cqtqqqcqqa cqcqtqqqct 50
ggttcaggtc caggttttgc tttgatcctt ttcaaaaact ggagacacag 100
 aagagggctc taggaaaaag ttttggatgg gattatgtgg aaactaccct 150
gcgattetet gctgccagag caggetegge gcttccacce cagtgcagee 200
 ttcccctqqc ggtggtgaaa gagactcggg agtcgctgct tccaaagtgc 250
 ccqccqtqaq tqaqctctca ccccagtcag ccaaatgagc ctcttcgggc 300
 ttctcctqct gacatctqcc ctggccggcc agagacaggg gactcaggcg 350
 qaatccaacc tqaqtaqtaa attccaqttt tccaqcaaca aggaacagaa 400
 cggagtacaa gatcctcagc atgagagaat tattactgtg tctactaatg 450
 qaaqtattca caqcccaaqq tttcctcata cttatccaag aaatacggtc 500
 ttggtatgga gattagtagc agtagaggaa aatgtatgga tacaacttac 550
 gtttgatgaa agatttgggc ttgaagaccc agaagatgac atatgcaagt 600
 atgattttgt agaagttgag gaacccagtg atggaactat attagggcgc 650
 tggtgtggtt ctggtactgt accaggaaaa cagatttcta aaggaaatca 700
 aattaggata agatttgtat ctgatgaata ttttccttct gaaccagggt 750
 totgcatoca otacaacatt gtoatgccac aattoacaga agotgtgagt 800
 ccttcagtgc tacccccttc agctttgcca ctggacctgc ttaataatgc 850
 tataactgcc tttagtacct tggaagacct tattcgatat cttgaaccag 900
 agagatggca gttggactta gaagatctat ataggccaac ttggcaactt 950
 cttggcaagg cttttgtttt tggaagaaaa tccagagtgg tggatctgaa 1000
 ccttctaaca gaggaggtaa gattatacag ctgcacacct cgtaacttct 1050
```

cagtqtccat aagggaagaa ctaaagagaa ccgataccat tttctggcca 1100 qqttqtctcc tqqttaaacg ctgtggtggg aactgtgcct gttgtctcca 1150 caattqcaat qaatqtcaat qtgtcccaag caaagttact aaaaaatacc 1200 acgaggteet teagttgaga ecaaagaceg gtgteagggg attgeacaaa 1250 tcactcaccg acgtggccct ggagcaccat gaggagtgtg actgtgtgtg 1300 cagagggage acaggaggat ageegcatea ecaecageag etettgeeca 1350 gagetgtgea gtgeagtgge tgattetatt agagaaegta tgegttatet 1400 ccatccttaa tctcagttgt ttgcttcaag gacctttcat cttcaggatt 1450 tacaqtqcat tctqaaagag gagacatcaa acagaattag gagttgtgca 1500 acaqctcttt tqaqaqqaqq cctaaaqgac aggagaaaag gtcttcaatc 1550 gtggaaagaa aattaaatgt tgtattaaat agatcaccag ctagtttcag 1600 agttaccatg tacgtattcc actagctggg ttctgtattt cagttctttc 1650 gatacggctt agggtaatgt cagtacagga aaaaaactgt gcaagtgagc 1700 acctgattcc gttgccttgc ttaactctaa agctccatgt cctgggccta 1750 aaatcgtata aaatctggat tttttttttt ttttttgctc atattcacat 1800 atgtaaacca gaacattcta tgtactacaa acctggtttt taaaaaggaa 1850 ctatgttgct atgaattaaa cttgtgtcat gctgatagga cagactggat 1900 ttttcatatt tcttattaaa atttctgcca tttagaagaa gagaactaca 1950 ttcatggttt ggaagagata aacctgaaaa gaagagtggc cttatcttca 2000 ctttatcgat aagtcagttt atttgtttca ttgtgtacat ttttatattc 2050 teettttgae attataactg ttggetttte taatettgtt aaatatatet 2100 atttttacca aaggtattta atattctttt ttatgacaac ttagatcaac 2150 tatttttagc ttggtaaatt tttctaaaca caattgttat agccagagga 2200 acaaaqatqa tataaaatat tgttgctctg acaaaaatac atgtatttca 2250 ttctcgtatg gtgctagagt tagattaatc tgcattttaa aaaactgaat 2300 tggaatagaa ttggtaagtt gcaaagactt tttgaaaata attaaattat 2350 catatcttcc attcctgtta ttggagatga aaataaaaag caacttatga 2400 aagtagacat tcagatccag ccattactaa cctattcctt ttttggggaa 2450 atctgagcct agctcagaaa aacataaagc accttgaaaa agacttggca 2500 gcttcctgat aaagcgtgct gtgctgtgca gtaggaacac atcctattta 2550 ttgtgatgtt gtggtttat tatcttaaac tctgttccat acacttgtat 2600 aaatacatgg atattttat gtacagaagt atgtctctta accagttcac 2650 ttattgtact ctggcaattt aaaagaaaat cagtaaaata ttttgcttgt 2700 aaaatgctta atatngtgcc taggttatgt ggtgactatt tgaatcaaaa 2750 atgtattgaa tcatcaaata aaagaatgtg gctattttgg ggagaaaatt 2800 aaaaaaaaaa aaaaaaaaa aggtttaggg ataacagggt aatgcggcc 2849

<210> 488

<211> 345

<212> PRT

<213> Homo sapiens

<400> 488

Met Ser Leu Phe Gly Leu Leu Leu Leu Thr Ser Ala Leu Ala Gly
1 5 10 15

Gln Arg Gln Gly Thr Gln Ala Glu Ser Asn Leu Ser Ser Lys Phe 20 25 30

Gln Phe Ser Ser Asn Lys Glu Gln Asn Gly Val Gln Asp Pro Gln 35 40 45

His Glu Arg Ile Ile Thr Val Ser Thr Asn Gly Ser Ile His Ser 50 55 60

Pro Arg Phe Pro His Thr Tyr Pro Arg Asn Thr Val Leu Val Trp 657075

Arg Leu Val Ala Val Glu Glu Asn Val Trp Ile Gln Leu Thr Phe 80 85 90

Asp Glu Arg Phe Gly Leu Glu Asp Pro Glu Asp Asp Ile Cys Lys 95 100 105

Tyr Asp Phe Val Glu Val Glu Glu Pro Ser Asp Gly Thr Ile Leu 110 115 120

Gly Arg Trp Cys Gly Ser Gly Thr Val Pro Gly Lys Gln Ile Ser 125 130 135

Lys Gly Asn Gln Ile Arg Ile Arg Phe Val Ser Asp Glu Tyr Phe $140 \,$ 145 $\,$ 150

Pro Ser Glu Pro Gly Phe Cys Ile His Tyr Asn Ile Val Met Pro 155 160 165

Gln Phe Thr Glu Ala Val Ser Pro Ser Val Leu Pro Pro Ser Ala 170 175 180

Leu Pro Leu Asp Leu Leu Asn Asn Ala Ile Thr Ala Phe Ser Thr 185 190 195

```
Leu Glu Asp Leu Ile Arg Tyr Leu Glu Pro Glu Arg Trp Gln Leu
                 200
Asp Leu Glu Asp Leu Tyr Arg Pro Thr Trp Gln Leu Leu Gly Lys
Ala Phe Val Phe Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu
                 230
Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe
                 245
Ser Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe
Trp Pro Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala
                 275
Cys Cys Leu His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys
Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr
                 305
Gly Val Arg Gly Leu His Lys Ser Leu Thr Asp Val Ala Leu Glu
His His Glu Glu Cys Asp Cys Val Cys Arg Gly Ser Thr Gly Gly
                 335
                                                          345
<210> 489
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 489
acttctcagt gtccataagg g 21
<210> 490
<211> 40
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 490
 gaactaaaga gaaccgatac cattttctgg ccaggttgtc 40
<210> 491
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
```

```
<400> 491
    caccacagcg tttaaccagg 20
   <210> 492
   <211> 20
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
    <400> 492
    acaacaggca cagttcccac 20
    <210> 493
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
   <400> 493
ggcggaatcc aacctgagta g 21
: 🗒
    <210> 494
ij
    <211> 20
    <212> DNA
    <213> Artificial Sequence
: ===:
i, Fiji
    <220>
    <223> Synthetic oligonucleotide probe
- Tables
    <400> 494
    gcggctatcc tcctgtgctc 20
....
<210> 495
    <211> 3283
    <212> DNA
    <213> Homo sapiens
    <400> 495
     gacctctaca ttccattttg gaagaagact aaaaatggtg tttccaatgt 100
     ggacactgaa gagacaaatt cttatccttt ttaacataat cctaatttcc 150
```

<223> Synthetic oligonucleotide probe

aaactccttg gggctagatg gtttcctaaa actctgccct gtgatgtcac 200

tctggatgtt ccaaagaacc atgtgatcgt ggactgcaca gacaagcatt 250

tqacaqaaat tcctggaggt attcccacga acaccacgaa cctcaccctc 300

accattaacc acataccaga catctcccca gcgtcctttc acagactgga 350

ccatctggta gagatcgatt tcagatgcaa ctgtgtacct attccactgg 400 ggtcaaaaaa caacatgtgc atcaagaggc tgcagattaa acccagaagc 450 tttagtggac tcacttattt aaaatccctt tacctggatg gaaaccagct 500 actagagata ccgcagggcc tcccgcctag cttacagctt ctcagccttg 550 aggccaacaa catcttttcc atcagaaaag agaatctaac agaactggcc 600 aacatagaaa tactctacct gggccaaaac tgttattatc gaaatccttg 650 ttatgtttca tattcaatag agaaagatgc cttcctaaac ttgacaaagt 700 taaaagtgct ctccctgaaa gataacaatg tcacagccgt ccctactgtt 750 ttgccatcta ctttaacaga actatatctc tacaacaaca tgattgcaaa 800 aatccaagaa gatgatttta ataacctcaa ccaattacaa attcttgacc 850 taagtggaaa ttgccctcgt tgttataatg ccccatttcc ttgtgcgccg 900 tgtaaaaata attctcccct acagatccct gtaaatgctt ttgatgcgct 950 gacagaatta aaagttttac gtctacacag taactctctt cagcatgtgc 1000 ccccaagatg gtttaagaac atcaacaaac tccaggaact ggatctgtcc 1050 caaaacttct tggccaaaga aattggggat gctaaatttc tgcattttct 1100 ccccagcctc atccaattgg atctgtcttt caattttgaa cttcaggtct 1150 atcqtqcatc tatqaatcta tcacaagcat tttcttcact gaaaagcctg 1200 aaaattctgc ggatcagagg atatgtcttt aaagagttga aaagctttaa 1250 cctctcgcca ttacataatc ttcaaaatct tgaagttctt gatcttggca 1300 ctaactttat aaaaattgct aacctcagca tgtttaaaca atttaaaaga 1350 ctgaaagtca tagatctttc agtgaataaa atatcacctt caggagattc 1400 aagtgaagtt ggcttctgct caaatgccag aacttctgta gaaagttatg 1450 aaccccaggt cctggaacaa ttacattatt tcagatatga taagtatgca 1500 aggagttgca gattcaaaaa caaagaggct tctttcatgt ctgttaatga 1550 aagctgctac aagtatgggc agaccttgga tctaagtaaa aatagtatat 1600 tttttgtcaa gtcctctgat tttcagcatc tttctttcct caaatgcctg 1650 aatctgtcag gaaatctcat tagccaaact cttaatggca gtgaattcca 1700 acctttagca gagctgagat atttggactt ctccaacaac cggcttgatt 1750 tactccattc aacagcattt gaagagcttc acaaactgga agttctggat 1800

ataaqcaqta ataqccatta ttttcaatca gaaggaatta ctcatatgct 1850 aaactttacc aagaacctaa aggttctgca gaaactgatg atgaacgaca 1900 atgacatoto ttootocaco agoaggacoa tggagagtga gtotottaga 1950 actctggaat tcagaggaaa tcacttagat gttttatgga gagaaggtga 2000 taacagatac ttacaattat tcaagaatct gctaaaatta gaggaattag 2050 acatctctaa aaattcccta agtttcttgc cttctggagt ttttgatggt 2100 atgcctccaa atctaaagaa tctctctttg gccaaaaatg ggctcaaatc 2150 tttcagttgg aagaaactcc agtgtctaaa gaacctggaa actttggacc 2200 tcagccacaa ccaactgacc actgtccctg agagattatc caactgttcc 2250 qaaqtatttt ctacaaqatq ccttccaqtt qcgatatctq qatctcaqct 2350 caaataaaat ccaqatgatc caaaagacca gcttcccaga aaatgtcctc 2400 aacaatctqa agatqttqct tttqcatcat aatcggtttc tgtgcacctg 2450 tgatgctgtg tggtttgtct ggtgggttaa ccatacggag gtgactattc 2500 cttacctggc cacagatgtg acttgtgtgg ggccaggagc acacaagggc 2550 caaagtgtga tetecetgga tetgtacace tgtgagttag atetgaetaa 2600 cctgattctg ttctcacttt ccatatctgt atctctcttt ctcatggtga 2650 tgatgacage aagteacete tatttetggg atgtgtggta tatttaceat 2700 ttctqtaaqq ccaaqataaa qqqqtatcaq cqtctaatat caccagactg 2750 ttgctatgat gcttttattg tgtatgacac taaagaccca gctgtgaccg 2800 agtgggtttt ggctgagctg gtggccaaac tggaagaccc aagagagaaa 2850 cattttaatt tatgtctcga ggaaagggac tggttaccag ggcagccagt 2900 tctqqaaaac ctttcccaga qcatacagct tagcaaaaag acagtgtttg 2950 tgatgacaga caagtatgca aagactgaaa attttaagat agcattttac 3000 ttgtcccatc agaggetcat ggatgaaaaa gttgatgtga ttatcttgat 3050 atttettgag aageeettte agaagteeaa gtteeteeag eteeggaaaa 3100 ggctctgtgg gagttctgtc cttgagtggc caacaaaccc gcaagctcac 3150 ccatacttct ggcagtgtct aaagaacgcc ctggccacag acaatcatgt 3200 qqcctataqt caqqtqttca aqqaaacggt ctagcccttc tttgcaaaac 3250

acaactgcct agtttaccaa ggagaggcct ggc 3283

<210> 496

<211> 1049

<212> PRT

<213> Homo sapiens

<400> 496

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu 1 5 10 15

Phe Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe 20 25 30

Pro Lys Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn 35

His Val Ile Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro
50 55 60

Gly Gly Ile Pro Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn 65 70 75

His Ile Pro Asp Ile Ser Pro Ala Ser Phe His Arg Leu Asp His 80 85 90

Leu Val Glu Ile Asp Phe Arg Cys Asn Cys Val Pro Ile Pro Leu 95 100 105

Gly Ser Lys Asn Asn Met Cys Ile Lys Arg Leu Gln Ile Lys Pro 110 115 120

Arg Ser Phe Ser Gly Leu Thr Tyr Leu Lys Ser Leu Tyr Leu Asp 125 130 135

Gly Asn Gln Leu Leu Glu Ile Pro Gln Gly Leu Pro Pro Ser Leu 140 145 150

Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile Phe Ser Ile Arg Lys 155 160 165

Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile Leu Tyr Leu Gly 170 175 180

Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser Tyr Ser Ile 185 190 195

Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val Leu Ser 200 205 210

Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro Ser 215 220 225

Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile
230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp 245 250 255

Leu Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala 285 280 Phe Asp Ala Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn 290 Ser Leu Gln His Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys 305 Leu Gln Glu Leu Asp Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu Leu Gln Val Tyr Arg Ala Ser Met 350 Asn Leu Ser Gln Ala Phe Ser Ser Leu Lys Ser Leu Lys Ile Leu 365 Arg Ile Arg Gly Tyr Val Phe Lys Glu Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu Val Leu Asp Leu Gly 400 395 Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser 505 Ser Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp

				545					550					555
Leu I	Leu	His	Ser	Thr 560	Ala	Phe	Glu	Glu	Leu 565	His	Lys	Leu	Glu	Val 570
Leu A	Asp	Ile	Ser	Ser 575	Asn	Ser	His	Tyr	Phe 580	Gln	Ser	Glu	Gly	Ile 585
Thr H	His	Met	Leu	Asn 590	Phe	Thr	Lys	Asn	Leu 595	Lys	Val	Leu	Gln	Lys 600
Leu M	Met	Met	Asn	Asp 605	Asn	Asp	Ile	Ser	Ser 610	Ser	Thr	Ser	Arg	Thr 615
Met (Glu	Ser	Glu	Ser 620	Leu	Arg	Thr	Leu	Glu 625	Phe	Arg	Gly	Asn	His 630
Leu 2	Asp	Val	Leu	Trp 635	Arg	Glu	Gly	Asp	Asn 640	Arg	Tyr	Leu	Gln	Leu 645
Phe I	Lys	Asn	Leu	Leu 650	Lys	Leu	Glu	Glu	Leu 655	Asp	Ile	Ser	Lys	Asn 660
Ser :	Leu	Ser	Phe	Leu 665	Pro	Ser	Gly	Val	Phe 670	Asp	Gly	Met	Pro	Pro 675
Asn :	Leu	Lys	Asn	Leu 680	Ser	Leu	Ala	Lys	Asn 685	Gly	Leu	Lys	Ser	Phe 690
Ser '	Trp	Lys	Lys	Leu 695	Gln	Cys	Leu	Lys	Asn 700	Leu	Glu	Thr	Leu	Asp 705
Leu	Ser	His	Asn	Gln 710	Leu	Thr	Thr	Val	Pro 715	Glu	Arg	Leu	Ser	Asn 720
Cys	Ser	Arg	Ser	Leu 725	Lys	Asn	Leu	Ile	Leu 730	Lys	Asn	Asn	Gln	Ile 735
Arg	Ser	Leu	Thr	Lys 740	Tyr	Phe	Leu	Gln	Asp 745	Ala	Phe	Gln	Leu	Arg 750
Tyr	Leu	Asp	Leu	Ser 755	Ser	Asn	Lys	Ile	Gln 760	Met	Ile	Gln	Lys	Thr 765
Ser	Phe	Pro	Glu	Asn 770	Val	Leu	Asn	Asn	Leu 775	Lys	Met	Leu	Leu	Leu 780
His	His	Asn	Arg	Phe 785	Leu	Cys	Thr	Cys	Asp 790	Ala	Val	Trp	Phe	Val 795
Trp	Trp	Val	Asn	His 800	Thr	Glu	Val	Thr	Ile 805	Pro	Tyr	Leu	Ala	Thr 810
Asp	Val	Thr	Cys	Val 815	Gly	Pro	Gly	Ala	His 820		Gly	Gln	. Ser	Val 825
Ile	Ser	Leu	Asp	Leu 830	Tyr	Thr	Cys	Glu	Leu 835		Leu	Thr	Asn	Leu 840

```
Ile Leu Phe Ser Leu Ser Ile Ser Val Ser Leu Phe Leu Met Val
                                                         855
                845
Met Met Thr Ala Ser His Leu Tyr Phe Trp Asp Val Trp Tyr Ile
                                                         870
                860
Tyr His Phe Cys Lys Ala Lys Ile Lys Gly Tyr Gln Arg Leu Ile
Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys
Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu Val Ala Lys
Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu
Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser Gln
                935
Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys
                                                         960
                950
Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His
                965
Gln Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe
                                     985
                980
Leu Glu Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys
Arg Leu Cys Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln
                                                        1020
               1010
Ala His Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr
Asp Asn His Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val
```

<210> 497

<211> 4199

<212> DNA

<213> Homo sapiens

<400> 497

gggtaccatt ctgcgctgct gcaagttacg gaatgaaaaa ttagaacaac 50
agaaacatgg aaaacatgtt ccttcagtcg tcaatgctga cctgcatttt 100
cctgctaata tctggttcct gtgagttatg cgccgaagaa aattttcta 150
gaagctatcc ttgtgatgag aaaaagcaaa atgactcagt tattgcagag 200
tgcagcaatc gtcgactaca ggaagttccc caaacggtgg gcaaatatgt 250

gacagaacta gacctgtctg ataatttcat cacacacata acgaatgaat 300 catttcaagg gctgcaaaat ctcactaaaa taaatctaaa ccacaacccc 350 aatgtacagc accagaacgg aaatcccggt atacaatcaa atggcttgaa 400 tatcacagac ggggcattcc tcaacctaaa aaacctaagg gagttactgc 450 ttgaagacaa ccagttaccc caaataccct ctggtttgcc agagtctttg 500 acagaactta qtctaattca aaacaatata tacaacataa ctaaagaggg 550 catttcaaga cttataaact tgaaaaatct ctatttggcc tggaactgct 600 attttaacaa agtttgcgag aaaactaaca tagaagatgg agtatttgaa 650 acgctgacaa atttggagtt gctatcacta tctttcaatt ctctttcaca 700 cgtgccaccc aaactgccaa gctccctacg caaacttttt ctgagcaaca 750 cccagatcaa atacattagt gaagaagatt tcaagggatt gataaattta 800 acattactag atttaagcgg gaactgtccg aggtgcttca atgccccatt 850 tocatgogtg cottgtgatg gtggtgcttc aattaatata gatogttttg 900 cttttcaaaa cttgacccaa cttcgatacc taaacctctc tagcacttcc 950 ctcaggaaga ttaatgctgc ctggtttaaa aatatgcctc atctgaaggt 1000 gctggatctt gaattcaact atttagtggg agaaatagtc tctggggcat 1050 ttttaacgat gctgccccgc ttagaaatac ttgacttgtc ttttaactat 1100 ataaagggga gttatccaca gcatattaat atttccagaa acttctctaa 1150 acttttgtct ctacgggcat tgcatttaag aggttatgtg ttccaggaac 1200 tcagagaaga tgatttccag cccctgatgc agcttccaaa cttatcgact 1250 atcaacttgg gtattaattt tattaagcaa atcgatttca aacttttcca 1300 aaatttctcc aatctggaaa ttatttactt gtcagaaaac agaatatcac 1350 cgttggtaaa agatacccgg cagagttatg caaatagttc ctctttcaa 1400 cgtcatatcc ggaaacgacg ctcaacagat tttgagtttg acccacattc 1450 gaacttttat catttcaccc gtcctttaat aaagccacaa tgtgctgctt 1500 atggaaaagc cttagattta agcctcaaca gtattttctt cattgggcca 1550 aaccaatttg aaaatcttcc tgacattgcc tgtttaaatc tgtctgcaaa 1600 tagcaatgct caagtgttaa gtggaactga attttcagcc attcctcatg 1650 tcaaatattt ggatttgaca aacaatagac tagactttga taatgctagt 1700 gctcttactg aattgtccga cttggaagtt ctagatctca gctataattc 1750 acactatttc agaatagcag gcgtaacaca tcatctagaa tttattcaaa 1800 atttcacaaa tctaaaagtt ttaaacttga gccacaacaa catttatact 1850 ttaacagata agtataacct ggaaagcaag tccctggtag aattagtttt 1900 cagtggcaat cqccttgaca ttttgtggaa tgatgatgac aacaggtata 1950 tctccatttt caaaggtctc aagaatctga cacgtctgga tttatccctt 2000 aataggctga agcacatccc aaatgaagca ttccttaatt tgccagcgag 2050 tctcactgaa ctacatataa atgataatat gttaaagttt tttaactgga 2100 cattactcca qcaqtttcct cgtctcgagt tgcttgactt acgtggaaac 2150 aaactactct ttttaactga tagcctatct gactttacat cttcccttcg 2200 gacactgctg ctgagtcata acaggatttc ccacctaccc tctggctttc 2250 tttctgaagt cagtagtctg aagcacctcg atttaagttc caatctgcta 2300 aaaacaatca acaaatccgc acttgaaact aagaccacca ccaaattatc 2350 tatqttqqaa ctacacqqaa acccctttga atgcacctgt gacattggag 2400 atttccgaag atggatggat gaacatctga atgtcaaaat tcccagactg 2450 gtagatgtca tttgtgccag tcctggggat caaagaggga agagtattgt 2500 gagtetggag etaacaaett gtgttteaga tgteaetgea gtgatattat 2550 ttttcttcac gttctttatc accaccatgg ttatgttggc tgccctggct 2600 caccatttqt tttactqqqa tqtttqqttt atatataatq tqtqtttagc 2650 taaqqtaaaa qqctacaqqt ctctttccac atcccaaact ttctatgatg 2700 cttacatttc ttatgacacc aaagatgcct ctgttactga ctgggtgata 2750 aatgagctgc gctaccacct tgaagagagc cgagacaaaa acgttctcct 2800 ttgtctagag gagaggatt gggacccggg attggccatc atcgacaacc 2850 tcatqcaqaq catcaaccaa aqcaaqaaaa caqtatttgt tttaaccaaa 2900 aaatatgcaa aaagctggaa ctttaaaaca gctttttact tggctttgca 2950 qaqqctaatq qatqaqaaca tqqatqtqat tatatttatc ctgctggagc 3000 cagtgttaca gcattctcag tatttgaggc tacggcagcg gatctgtaag 3050 agetecatee tecagtggee tgacaaceeg aaggeagaag gettgttttg 3100 gcaaactctg agaaatgtgg tettgactga aaatgattca cggtataaca 3150

atatgtatgt cgattccatt aagcaatact aactgacgtt aagtcatgat 3200 ttcgcgccat aataaagatg caaaggaatg acatttctgt attagttatc 3250 tattgctatg taacaaatta tcccaaaact tagtggttta aaacaacaca 3300 tttgctggcc cacagttttt gagggtcagg agtccaggcc cagcataact 3350 gggtcctctg ctcagggtgt ctcagaggct gcaatgtagg tgttcaccag 3400 agacataggc atcactgggg tcacactcat gtggttgttt tctggattca 3450 attcctcctg ggctattggc caaaggctat actcatgtaa gccatgcgag 3500 cctctcccac aaggcagctt gcttcatcag agctagcaaa aaagagaggt 3550 tgctagcaag atgaagtcac aatcttttgt aatcgaatca aaaaagtgat 3600 atctcatcac tttggccata ttctatttgt tagaagtaaa ccacaggtcc 3650 caccagetee atgggagtga ecaceteagt ecagggaaaa cagetgaaga 3700 ccaagatggt gagetetgat tgetteagtt ggteateaac tatttteeet 3750 tgactgctgt cctgggatgg cctgctatct tgatgataga ttgtgaatat 3800 caggaggcag ggatcactgt ggaccatctt agcagttgac ctaacacatc 3850 ttcttttcaa tatctaagaa cttttgccac tgtgactaat ggtcctaata 3900 ttaagctgtt gtttatattt atcatatatc tatggctaca tggttatatt 3950 atgctgtggt tgcgttcggt tttatttaca gttgctttta caaatatttg 4000 ctgtaacatt tgacttctaa ggtttagatg ccatttaaga actgagatgg 4050 atagctttta aagcatcttt tacttcttac cattttttaa aagtatgcag 4100 ctaaattcga agcttttggt ctatattgtt aattgccatt gctgtaaatc 4150 ttaaaatgaa tgaataaaaa tgtttcattt tacaaaaaaa aaaaaaaa 4199

Ile Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr

<210> 498

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 498

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe 1 5 10 15

Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu As
n Phe $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val 35 40 45

				50					55					60
Val	Gly	Lys	Tyr	Val 65	Thr	Glu	Leu	Asp	Leu 70	Ser	Asp	Asn	Phe	Ile 75
Thr	His	Ile	Thr	Asn 80	Glu	Ser	Phe	Gln	Gly 85	Leu	Gln	Asn	Leu	Thr 90
Lys	Ile	Asn	Leu	Asn 95	His	Asn	Pro	Asn	Val 100	Gln	His	Gln	Asn	Gly 105
Asn	Pro	Gly	Ile	Gln 110	Ser	Asn	Gly	Leu	Asn 115	Ile	Thr	Asp	Gly	Ala 120
Phe	Leu	Asn	Leu	Lys 125	Asn	Leu	Arg	Glu	Leu 130	Leu	Leu	Glu	Asp	Asn 135
Gln	Leu	Pro	Gln	Ile 140	Pro	Ser	Gly	Leu	Pro 145	Glu	Ser	Leu	Thr	Glu 150
Leu	Ser	Leu	Ile	Gln 155	Asn	Asn	Ile	Tyr	Asn 160	Ile	Thr	Lys	Glu	Gly 165
Ile	Ser	Arg	Leu	Ile 170	Asn	Leu	Lys	Asn	Leu 175	Tyr	Leu	Ala	Trp	Asn 180
Cys	Tyr	Phe	Asn	Lys 185	Val	Cys	Glu	Lys	Thr 190	Asn	Ile	Glu	Asp	Gly 195
Val	Phe	Glu	Thr	Leu 200	Thr	Asn	Leu	Glu	Leu 205	Leu	Ser	Leu	Ser	Phe 210
Asn	Ser	Leu	Ser	His 215	Val	Pro	Pro	Lys	Leu 220	Pro	Ser	Ser	Leu	Arg 225
Lys	Leu	Phe	Leu	Ser 230	Asn	Thr	Gln	Ile	Lys 235	Tyr	Ile	Ser	Glu	Glu 240
Asp	Phe	Lys	Gly	Leu 245	Ile	Asn	Leu	Thr	Leu 250	Leu	Asp	Leu	Ser	Gly 255
Asn	Суз	Pro	Arg	Cys 260	Phe	Asn	Ala	Pro	Phe 265	Pro	Cys	Val	Pro	Cys 270
Asp	Gly	Gly	Ala	Ser 275	Ile	Asn	Ile	Asp	Arg 280	Phe	Ala	Phe	Gln	Asn 285
Leu	Thr	Gln	Leu	Arg 290	Tyr	Leu	Asn	Leu	Ser 295	Ser	Thr	Ser	Leu	Arg 300
Lys	Ile	Asn	Ala	Ala 305	Trp	Phe	Lys	Asn	Met 310	Pro	His	Leu	Lys	Val 315
Leu	Asp	Leu	Glu	Phe 320	Asn	Tyr	Leu	Val	Gly 325	Glu	Ile	Val	Ser	Gl _y 330
Ala	Phe	Leu	Thr	Met	Leu	Pro	Arg	Leu	Glu	Ile	Leu	Asp	Leu	Ser

Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser Leu Arg Ala Leu His Leu Arg 365 Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn Leu Gly Ile Asn Phe 395 405 Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu 410 Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys 430 425 Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser 465 455 460 Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala 475 Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe 490 Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu 505 Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu 520 525 Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn 535 Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp 555 550 545 Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile 565 560 Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr 595 590 Asp Lys Tyr Asn Leu Glu Ser Lys Ser Leu Val Glu Leu Val Phe 610 Ser Gly Asn Arg Leu Asp Ile Leu Trp Asn Asp Asp Asn Arg 625 620 Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp

				635					640					645
Leu	Ser	Leu	Asn	Arg 650	Leu	Lys	His	Ile	Pro 655	Asn	Glu	Ala	Phe	Leu 660
Asn	Leu	Pro	Ala	Ser 665	Leu	Thr	Glu	Leu	His 670	Ile	Asn	Asp	Asn	Met 675
Leu	Lys	Phe	Phe	Asn 680	Trp	Thr	Leu	Leu	Gln 685	Gln	Phe	Pro	Arg	Leu 690
Glu	Leu	Leu	Asp	Leu 695	Arg	Gly	Asn	Lys	Leu 700	Leu	Phe	Leu	Thr	Asp 705
Ser	Leu	Ser	Asp	Phe 710	Thr	Ser	Ser	Leu	Arg 715	Thr	Leu	Leu	Leu	Ser 720
His	Asn	Arg	Ile	Ser 725	His	Leu	Pro	Ser	Gly 730	Phe	Leu	Ser	Glu	Val 735
Ser	Ser	Leu	Lys	His 740	Leu	Asp	Leu	Ser	Ser 745	Asn	Leu	Leu	Lys	Thr 750
Ile	Asn	Lys	Ser	Ala 755	Leu	Glu	Thr	Lys	Thr 760	Thr	Thr	Lys	Leu	Ser 765
Met	Leu	Glu	Leu	His 770	Gly	Asn	Pro	Phe	Glu 775	Cys	Thr	Cys	Asp	Ile 780
Gly	Asp	Phe	Arg	Arg 785	Trp	Met	Asp	Glu	His 790	Leu	Asn	Val	Lys	Ile 795
Pro	Arg	Leu	Val	Asp 800	Val	Ile	Cys	Ala	Ser 805	Pro	Gly	qzA	Gln	Arg 810
Gly	Lys	Ser	Ile	Val 815	Ser	Leu	Glu	Leu	Thr 820	Thr	Cys	Val	Ser	Asp 825
Val	Thr	Ala	Val	Ile 830	Leu	Phe	Phe	Phe	Thr 835	Phe	Phe	Ile	Thr	Thr 840
Met	Val	Met	Leu	Ala 845	Ala	Leu	Ala	His	His 850	Leu	Phe	Tyr	Trp	Asp 855
Val	Trp	Phe	Ile	Туг 860	Asn	Val	Cys	Leu	Ala 865	Lys	Val	Lys	Gly	Tyr 870
Arg	Ser	Leu	Ser	Thr 875	Ser	Gln	Thr	Phe	Tyr 880		Ala	Tyr	Ile	Ser 885
Tyr	Asp	Thr	Lys	Asp 890	Ala	Ser	Val	Thr	Asp 895		Val	Ile	Asn	Glu 900
Leu	Arg	Tyr	His	Leu 905		Glu	Ser	Arg	Asp 910		Asn	Val	Leu	Leu 915
Cys	Leu	Glu	Glu	Arg 920		Trp	Asp	Pro	Gly 925		Ala	Ile	Ile	Asp 930

```
Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val
Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
                 950
Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile
Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu
                                     985
                 980
Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro
                                    1000
Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn
                1010
Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val
                                                         1035
                1025
Asp Ser Ile Lys Gln Tyr
                1040
<210> 499
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 499
taaaqaccca gctgtgaccg 20
<210> 500
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 500
 atccatgagc ctctgatggg 20
<210> 501
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 501
 atttatgtct cgaggaaagg gactggttac cagggcagcc agttc 45
<210> 502
```

ig

13

i

i

Œ

```
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 502
 gccgagacaa aaacgttctc c 21
<210> 503
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 503
 catccatgtt ctcatccatt agcc 24
<210> 504
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 tcgacaacct catgcagagc atcaaccaaa gcaagaaaac agtatt 46
<210> 505
<211> 1738
<212> DNA
<213> Homo sapiens
<400> 505
 ccaggtccaa ctgcacctcg gttctatcga ttgaattccc cggggatcct 50
 ctagagatec etegaceteg acceaegegt eegecaaget ggeeetgeae 100
 ggctgcaagg gaggctcctg tggacaggcc aggcaggtgg gcctcaggag 150
 gtgcctccag gcggccagtg ggcctgaggc cccagcaagg gctagggtcc 200
 atetecagte ecaggacaea geageggeea ecatggeeae geetgggete 250
 cagcagcatc agcagccccc aggaccgggg aggcacaggt ggcccccacc 300
 accoggagga gcagetectg eccetgteeg ggggatgaet gatteteete 350
 cgccaggcca cccagaggag aaggccaccc cgcctggagg cacaggccat 400
 gaggggctct caggaggtgc tgctgatgtg gcttctggtg ttggcagtgg 450
 gcggcacaga gcacgcctac cggcccggcc gtagggtgtg tgctgtccgg 500
```

```
gctcacgggg accetgtctc cgagtcgttc gtgcagcgtg tgtaccagcc 550
cttcctcacc acctgcgacg ggcaccgggc ctgcagcacc taccgaacca 600
tctataggac cgcctaccgc cgcagccctg ggctggcccc tgccaggcct 650
cgctacgcgt gctgccccgg ctggaagagg accagcgggc ttcctggggc 700
ctgtggagca gcaatatgcc agccgccatg ccggaacgga gggagctgtg 750
tocagoctgg cogctgcogc tgccctgcag gatggcgggg tgacacttgc 800
cagtcagatg tggatgaatg cagtgctagg aggggcggct gtccccagcg 850
ctgcatcaac accgccggca gttactggtg ccagtgttgg gaggggcaca 900
gcctgtctgc agacggtaca ctctgtgtgc ccaagggagg gccccccagg 950
gtggccccca acccgacagg agtggacagt gcaatgaagg aagaagtgca 1000
gaggctgcag tccagggtgg acctgctgga ggagaagctg cagctggtgc 1050
tggccccact gcacagcctg gcctcgcagg cactggagca tgggctcccg 1100
qaccccqqca qcctcctqqt qcactccttc cagcagctcg gccgcatcga 1150
ctccctqaqc qaqcaqattt ccttcctqqa qqaqcaqctg gggtcctgct 1200
cctgcaagaa agactcgtga ctgcccagcg ccccaggctg gactgagccc 1250
ctcacgccgc cctgcagccc ccatgcccct gcccaacatg ctgggggtcc 1300
agaagccacc toggggtgac tgagoggaag gocaggcagg goottootoo 1350
tetteeteet eccetteete gggaggetee ceagaceetg geatgggatg 1400
ggctgggatc ttctctgtga atccaccct ggctaccccc accctggcta 1450
ccccaacggc atcccaaggc caggtgggcc ctcagctgag ggaaggtacg 1500
agetecetge tggageetgg gaeecatgge acaggeeagg cageeeggag 1550
gctgggtggg gcctcagtgg gggctgctgc ctgaccccca gcacaataaa 1600
aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1700
gcccaacttg tttattgcag cttataatgg ttacaaat 1738
```

<210> 506

<211> 273

<212> PRT

<213> Homo sapiens

<400> 506

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu

1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala 95 Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro 110 Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln 135 125 130 Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu 165 155 160 Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala 185 190 Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu 200 Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala 225 215 Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu 230 Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu 255 245 Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys 265 270

Lys Asp Ser

<210> 507

<211> 1700

<212> DNA

<213> Homo sapiens

260

<400> 507 gccaggcagg tgggcctcag gaggtgcctc caggcggcca gtgggcctga 50 ggccccagca agggctaggg tccatctcca gtcccaggac acagcagcgg 100 ccaccatggc cacgcctggg ctccagcagc atcagagcag cccctgtggt 150 tggcagcaaa gttcagcttg gctgggcccg ctgtgagggg cttcgcgcta 200 cgccctgcgg tgtcccgagg gctgaggtct cctcatcttc tccctagcag 250 tggatgagca acccaacggg ggcccgggga ggggaactgg ccccgaggga 300 gaggaacccc aaagccacat ctgtagccag gatgagcagt gtgaatccag 350 gcagccccca ggaccgggga ggcacaggtg gcccccacca cccggaggag 400 cageteetge ecetgteegg gggatgaetg atteteetee geeaggeeae 450 ccagaggaga aggccacccc gcctggaggc acaggccatg aggggctctc 500 aggaggtgct gctgatgtgg cttctggtgt tggcagtggg cggcacagag 550 cacgcctacc ggcccggccg tagggtgtgt gctgtccggg ctcacgggga 600 ccctgtctcc gagtcgttcg tgcagcgtgt gtaccagccc ttcctcacca 650 cctgcgacgg gcaccgggcc tgcagcacct accgaaccat ctataggacc 700 gectacegee geagecetgg getggeeeet gecaggeete getacgegtg 750 ctgccccggc tggaagagga ccagcgggct tcctggggcc tgtggagcag 800 caatatgcca gccgccatgc cggaacggag ggagctgtgt ccagcctggc 850 cgctgccgct gccctgcagg atggcggggt gacacttgcc agtcagatgt 900 ggatgaatgc agtgctagga ggggcggctg tccccagcgc tgcatcaaca 950 ccgccggcag ttactggtgc cagtgttggg aggggcacag cctgtctgca 1000 gacggtacac tctgtgtgcc caagggaggg ccccccaggg tggcccccaa 1050 cccgacagga gtggacagtg caatgaagga agaagtgcag aggctgcagt 1100 ccagggtgga cctgctggag gagaagctgc agctggtgct ggccccactg 1150 cacageetgg cetegeagge actggageat gggeteeegg acceeggeag 1200 cetectggtg cacteettee ageagetegg eegeategae teeetgageg 1250 agcagatttc cttcctggag gagcagctgg ggtcctgctc ctgcaagaaa 1300 gactcgtgac tgcccagcgc tccaggctgg actgagcccc tcacgccgcc 1350 ctgcagcccc catgcccctg cccaacatgc tgggggtcca gaagccacct 1400 cggggtgact gagcggaagg ccaggcaggg ccttcctcct cttcctcctc 1450 cccttcctcg ggaggctccc cagaccctgg catgggatgg gctgggatct 1500 tctctgtgaa tccaccctg gctacccca ccctggctac cccaacggca 1550 tcccaaggcc aggtggaccc tcagctgagg gaaggtacga gctccctgct 1600 ggagcctggg acccatggca caggccaggc agcccggagg ctgggtgggg 1650 cctcagtggg ggctgctgcc tgacccccag cacaataaaa atgaaacgtg 1700

<210> 508

<211> 273

<212> PRT

<213> Homo sapiens

<400> 508

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu
1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val 20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val 35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro 80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala 95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro 110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln 125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln 140 145 150

Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu 155 160 165

Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly
170 175 180

Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala 185 190 195

Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu 200 205 210

Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala 225

Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu 240

Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu 255

Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys 270

Lys Asp Ser

<210> 509

<211> 1538

<212> DNA

<213> Homo sapiens

<400> 509

cccacgcgtc cgaagctggc cctgcacggc tgcaagggag gctcctgtgg 50 acaggccagg caggtgggcc tcaggaggtg cctccaggcg gccagtgggc 100 ctgaggcccc agcaagggct agggtccatc tccagtccca ggacacagca 150 gcggccacca tggccacgcc tgggctccag cagcatcagc agcccccagg 200 accggggagg cacaggtggc ccccaccacc cggaggagca gctcctgccc 250 ctgtccgggg gatgactgat tctcctccgc caggccaccc agaggagaag 300 gccaccccgc ctggaggcac aggccatgag gggctctcag gaggtgctgc 350 tgatgtggct tctggtgttg gcagtgggcg gcacagagca cgcctaccgg 400 cccggccgta gggtgtgtgc tgtccgggct cacggggacc ctgtctccga 450 gtcgttcgtg cagcgtgtgt accagccctt cctcaccacc tgcgacgggc 500 accgggcctg cagcacctac cgaaccatct ataggaccgc ctaccgccgc 550 agccctgggc tggcccctgc caggcctcgc tacgcgtgct gccccggctg 600 gaagaggacc agcgggcttc ctggggcctg tggagcagca atatgccagc 650 cgccatgccg gaacggaggg agctgtgtcc agcctggccg ctgccgctgc 700 cctgcaggat ggcggggtga cacttgccag tcagatgtgg atgaatgcag 750 tgctaggagg ggcggctgtc cccagcgctg cgtcaacacc gccggcagtt 800 actggtgcca gtgttgggag gggcacagcc tgtctgcaga cggtacactc 850 tqtqtqccca aqqqaqqqcc ccccaqqqtq qcccccaacc cgacaggagt 900 ggacagtgca atgaaggaag aagtgcagag gctgcagtcc agggtggacc 950

tgctggagga gaagetgeag etggtgetgg ecceaetgea eageetggee 1000
tegeaggeae tggageatgg geteeeggae eeeggagee teetggtgea 1050
eteetteeag eageteggee geategaete eetgagegag eagattteet 1100
teetggagga geagetgggg teetgeteet geaagaaaga etegtgaetg 1150
eeeagegeee eaggetggae tgageeete aegeegeeet geageeeeea 1200
tgeeeetgee eaacatgetg ggggteeaga ageeaeeteg gggtgaetga 1250
geggaaggee aggeagggee teeteetet teeteetee ggggtgaetga 1250
aggeteeea gaeeetggaa tgggatggge tgggatette tetgtgaate 1350
eaceeetgge taeeeeeaee etggetaeee eaaeggeate eeaaggeeag 1400
gtgggeeete agetgagga aggtaegage teeetgetgg ageetgggae 1450
eeatggeaea ggeeaggeag eeeggagget gggtggggee teagtgggg 1500
etgetgeetg aeeeeeagea eaataaaaat gaaaegtg 1538

<210> 510 <211> 273

<212> PRT

<213> Homo sapiens

<400> 510

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu 1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val 20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val
35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg 65 70 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro 80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala 95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro $110 \,\,$ $115 \,\,$ 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln 125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln

				140					145					150
Arg C	ys	Val	Asn	Thr 155	Ala	Gly	Ser	Tyr	Trp 160	Cys	Gln	Cys	Trp	Glu 165
Gly H	lis	Ser	Leu	Ser 170	Ala	Asp	Gly	Thr	Leu 175	Cys	Val	Pro	Lys	Gly 180
Gly P	ro	Pro	Arg	Val 185	Ala	Pro	Asn	Pro	Thr 190	Gly	Val	Asp	Ser	Ala 195
Met L	ıys	Glu	Glu	Val 200	Gln	Arg	Leu	Gln	Ser 205	Arg	Val	Asp	Leu	Leu 210
Glu G	lu	Lys	Leu	Gln 215	Leu	Val	Leu	Ala	Pro 220	Leu	His	Ser	Leu	Ala 225
Ser G	Sln	Ala	Leu	Glu 230	His	Gly	Leu	Pro	Asp 235	Pro	Gly	Ser	Leu	Leu 240
Val H	lis	Ser	Phe	Gln 245	Gln	Leu	Gly	Arg	Ile 250	Asp	Ser	Leu	Ser	Glu 255
Gln I	le	Ser	Phe	Leu 260	Glu	Glu	Gln	Leu	Gly 265	Ser	Cys	Ser	Cys	Lys 270
Lys A	/sp	Ser												
<210> 511 <211> 21 <212> DNA <213> Artificial Sequence														
<220> <223>														
<400> 511 tggagcagca atatgccagc c 21														
<210> 512 <211> 22 <212> DNA <213> Artificial Sequence														
<220> <223>	Syn	nthet	tic (olig	onuc.	leot:	ide p	orobe	е					
<400> ttttc			ctgt	cggg.	tt g	g 22								
<210> <211> <212> <213>	46 DNA	Ą	cial	Seq	uenc	e								
<220> <223>	Syn	nthet	tic (olia	onuc:	leot:	ide 1	orobe	Э					

```
<400> 513
ggtgacactt gccagtcaga tgtggatgaa tgcagtgcta ggaggg 46
<210> 514
<211> 2690
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2039-2065
<223> unknown base
<400> 514
 ggttgccaca gctggtttag ggccccgacc actggggccc cttgtcagga 50
 ggagacagcc tcccggcccg gggaggacaa gtcgctgcca cctttggctg 100
 ccgacgtgat tccctgggac ggtccgtttc ctgccgtcag ctgccggccg 150
 agttgggtct ccgtgtttca ggccggctcc cccttcctgg tctcccttct 200
 cccgctgggc cggtttatcg ggaggagatt gtcttccagg gctagcaatt 250
 ggacttttga tgatgtttga cccagcggca ggaatagcag gcaacgtgat 300
 ttcaaaqctq qqctcaqcct ctqtttcttc tctcqtqtaa tcgcaaaacc 350
 cattttqqaq caqqaattcc aatcatqtct gtgatggtgg tgagaaagaa 400
 ggtgacacgg aaatgggaga aactcccagg caggaacacc ttttgctgtg 450
 atggccgcgt catgatggcc cggcaaaagg gcattttcta cctgaccctt 500
 ttcctcatcc tqqqqacatq tacactcttc ttcqcctttq agtqccqcta 550
 cctggctgtt cagctgtctc ctgccatccc tgtatttgct gccatgctct 600
 teetttete catggetaca etgttgagga eeagetteag tgaceetgga 650
 gtgattcctc gggcgctacc agatgaagca gctttcatag aaatggagat 700
 agaagctacc aatggtgcgg tgccccaggg ccagcgacca ccgcctcgta 750
 tcaagaattt ccagataaac aaccagattg tgaaactgaa atactgttac 800
 acatgcaaga tcttccggcc tccccgggcc tcccattgca gcatctgtga 850
 caactgtgtg gagcgcttcg accatcactg cccctgggtg gggaattgtg 900
 ttggaaagag gaactaccgc tacttctacc tcttcatcct ttctctctcc 950
 ctcctcacaa tctatgtctt cgccttcaac atcgtctatg tggccctcaa 1000
```

atctttgaaa attggcttct tggagacatt gaaagaaact cctggaactg 1050

ttctagaagt cctcatttgc ttctttacac tctggtccgt cgtgggactg 1100

actggatttc atactttcct cgtggctctc aaccagacaa ccaatgaaga 1150 catcaaagga tcatggacag ggaagaatcg cgtccagaat ccctacagcc 1200 atggcaatat tgtgaagaac tgctgtgaag tgctgtgtgg ccccttgccc 1250 cccaqtqtqc tqqatcqaaq qqqtattttq ccactgqagg aaagtggaag 1300 tcgacctccc agtactcaag agaccagtag cagcctcttg ccacagagcc 1350 caqcccccac aqaacacctg aactcaaatg agatgccgga ggacagcagc 1400 actecegaag agatgecace tecagageec ceagageeac cacaggagge 1450 agctgaagct gagaagtagc ctatctatgg aagagacttt tgtttgtgtt 1500 taattagggc tatgagagat ttcaggtgag aagttaaacc tgagacagag 1550 agcaagtaag ctgtcccttt taactgtttt tctttggtct ttagtcaccc 1600 agttgcacac tggcattttc ttgctgcaag cttttttaaa tttctgaact 1650 caaggcagtg gcagaagatg tcagtcacct ctgataactg gaaaaatggg 1700 tetettqqqc cetqqcactq qttetecatq qcetcaqcca cagqqteccc 1750 ttggacccc tctcttccct ccagatccca gccctcctgc ttggggtcac 1800 tggtctcatt ctggggctaa aagtttttga gactggctca aatcctccca 1850 agetgetgea egtgetgagt ceagaggeag teacagagae etetggeeag 1900 gggatcctaa ctgggttctt ggggtcttca ggactgaaga ggagggagag 1950 tqqqqtcaqa aqattctcct qqccaccaag tgccagcatt gcccacaaat 2000 ccttttagga atgggacagg taccttccac ttgttgtann nnnnnnnnn 2050 nnnnnnnnn nnnnttgtt tttccttttg actcctgctc ccattaggag 2100 caggaatggc agtaataaaa gtctgcactt tggtcatttc ttttcctcag 2150 aggaageceg agtgeteact taaacactat ecceteagae teeetgtgtg 2200 aggectgeag aggecetgaa tgeacaaatg ggaaaccaag geacagagag 2250 gctctcctct cctctcctct cccccgatgt accctcaaaa aaaaaaaaat 2300 gctaaccagt tcttccatta agcctcggct gagtgaggga aagcccagca 2350 ctgctgccct ctcgggtaac tcaccctaag gcctcggccc acctctggct 2400 atggtaacca cactgggggc ttcctccaag ccccgctctt ccagcacttc 2450 caccggcaga gtcccagagc cacttcaccc tgggggtggg ctgtggcccc 2500 cagtcagctc tgctcaggac ctgctctatt tcagggaaga agatttatgt 2550 attatatgtg gctatatttc ctagagcacc tgtgttttcc tctttctaag 2600 ccagggtcct gtctggatga cttatgcggt gggggagtgt aaaccggaac 2650 ttttcatcta tttgaaggcg attaaactgt gtctaatgca 2690

<210> 515

<211> 364

<212> PRT

<213> Homo sapiens

<400> 515

Met Ser Val Met Val Val Arg Lys Lys Val Thr Arg Lys Trp Glu 1 5 10 15

Lys Leu Pro Gly Arg Asn Thr Phe Cys Cys Asp Gly Arg Val Met 20 25 30

Met Ala Arg Gln Lys Gly Ile Phe Tyr Leu Thr Leu Phe Leu Ile 35 40 45

Leu Gly Thr Cys Thr Leu Phe Phe Ala Phe Glu Cys Arg Tyr Leu 50 55 60

Ala Val Gln Leu Ser Pro Ala Ile Pro Val Phe Ala Ala Met Leu 65 70 75

Phe Leu Phe Ser Met Ala Thr Leu Leu Arg Thr Ser Phe Ser Asp 80 85 90

Pro Gly Val Ile Pro Arg Ala Leu Pro Asp Glu Ala Ala Phe Ile 95 100 105

Glu Met Glu Ile Glu Ala Thr Asn Gly Ala Val Pro Gln Gly Gln
110 115 120

Arg Pro Pro Pro Arg Ile Lys Asn Phe Gln Ile Asn Asn Gln Ile 125 130 135

Val Lys Leu Lys Tyr Cys Tyr Thr Cys Lys Ile Phe Arg Pro Pro 140 145 150

Arg Ala Ser His Cys Ser Ile Cys Asp Asn Cys Val Glu Arg Phe 155 160 165

Asp His His Cys Pro Trp Val Gly Asn Cys Val Gly Lys Arg Asn 170 175 180

Tyr Arg Tyr Phe Tyr Leu Phe Ile Leu Ser Leu Ser Leu Leu Thr 185 190 195

Ile Tyr Val Phe Ala Phe Asn Ile Val Tyr Val Ala Leu Lys Ser 200 205 210

Leu Lys Ile Gly Phe Leu Glu Thr Leu Lys Glu Thr Pro Gly Thr 215 220 225

Val Leu Glu Val Leu Ile Cys Phe Phe Thr Leu Trp Ser Val Val

Gly Leu Thr Gly Phe His Thr Phe Leu Val Ala Leu Asn Gln Thr 245 250 255

Thr Asn Glu Asp Ile Lys Gly Ser Trp Thr Gly Lys Asn Arg Val 260 265 270

Gln Asn Pro Tyr Ser His Gly Asn Ile Val Lys Asn Cys Cys Glu 275 280 285

Val Leu Cys Gly Pro Leu Pro Pro Ser Val Leu Asp Arg Arg Gly 290 295 300

Ile Leu Pro Leu Glu Glu Ser Gly Ser Arg Pro Pro Ser Thr Gln 305 310 315

Glu Thr Ser Ser Ser Leu Leu Pro Gln Ser Pro Ala Pro Thr Glu 320 325 330

His Leu Asn Ser Asn Glu Met Pro Glu Asp Ser Ser Thr Pro Glu 335 340 345

Glu Met Pro Pro Glu Pro Pro Glu Pro Pro Gln Glu Ala Ala 350 355 360

Glu Ala Glu Lys

<210> 516

<211> 255

<212> DNA

<213> Homo sapiens

<220>

iğ ka

ļ.

1.6

.

 <221> unsure

<222> 36, 38, 88, 118, 135, 193, 213, 222

<223> unknown base

<400> 516

aaaaccctgt atttttaca atgcaaatag acaatnance tggaggtett 50 tgaattaggt attataggga tggtggggtt gattttntt cetggagget 100 tttggetttg gactetenet tteteceaca gagenetteg accateactg 150 eccetgggtg gggaattgtg ttggaaagag gaactacege tanttetace 200 tetteateet ttntetetee enceteacaa tetatgtett egeetteaac 250 ategt 255

<210> 517

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Synthetic oligonucleotide probe
<400> 517
 caacgtgatt tcaaagctgg gctc 24
<210> 518
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 518
 gcctcgtatc aagaatttcc 20
<210> 519
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 519
agtggaagtc gacctccc 18
<210> 520
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 520
ctcacctgaa atctctcata gccc 24
<210> 521
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 521
 cgcaaaaccc attttgggag caggaattcc aatcatgtct gtgatggtgg 50
<210> 522
<211> 1679
<212> DNA
<213> Homo sapiens
<400> 522
 gttgtgtcct tcagcaaaac agtggattta aatctccttg cacaagcttg 50
 agagcaacac aatctatcag gaaagaaaga aagaaaaaaa ccgaacctga 100
```

ı, D

: <u>4</u>

i di L

i

Transport

caaaaaagaa gaaaaagaag aagaaaaaaa atcatgaaaa ccatccagcc 150 aaaaatgcac aattctatct cttgggcaat cttcacgggg ctggctgctc 200 tgtgtctctt ccaaggagtg cccgtgcgca gcggagatgc caccttcccc 250 aaagctatgg acaacgtgac ggtccggcag ggggagagcg ccaccctcag 300 gtgcactatt gacaaccggg tcacccgggt ggcctggcta aaccgcagca 350 ccatcctcta tgctgggaat gacaagtggt gcctggatcc tcgcgtggtc 400 cttctgagca acacccaaac gcagtacagc atcgagatcc agaacgtgga 450 tgtgtatgac gagggccctt acacctgctc ggtgcagaca gacaaccacc 500 caaaqacctc taqqqtccac ctcattqtqc aaqtatctcc caaaattqta 550 gagatttctt cagatatctc cattaatgaa gggaacaata ttagcctcac 600 ctgcatagca actggtagac cagagcctac ggttacttgg agacacatct 650 ctcccaaagc ggttggcttt gtgagtgaag acgaatactt ggaaattcag 700 ggcatcaccc gggagcagtc aggggactac gagtgcagtg cctccaatga 750 cgtggccgcg cccgtggtac ggagagtaaa ggtcaccgtg aactatccac 800 catacatttc agaagccaag ggtacaggtg tccccgtggg acaaaagggg 850 acactgcagt gtgaagcctc agcagtcccc tcagcagaat tccagtggta 900 caaggatgac aaaagactga ttgaaggaaa gaaaggggtg aaagtggaaa 950 acagacettt ceteteaaaa eteatettet teaatgtete tgaacatgae 1000 tatgggaact acacttgcgt ggcctccaac aagctgggcc acaccaatgc 1050 cagcatcatq ctatttggtc caggcgccgt cagcgaggtg agcaacggca 1100 cqtcqaqqaq qqcaqqctqc qtctqqctqc tqcctcttct gqtcttgcac 1150 ctgettetea aattttgatg tgagtgeeae tteeceaece gggaaagget 1200 geegecaeca ceaceaceaa cacaacagea atggeaacae egacageaae 1250 caatcagata tatacaaatg aaattagaag aaacacagcc tcatgggaca 1300 gaaatttgag ggaggggaac aaagaatact ttgggggggaa aagagtttta 1350 aaaaagaaat tgaaaattgc cttgcagata tttaggtaca atggagtttt 1400 cttttcccaa acgggaagaa cacagcacac ccggcttgga cccactgcaa 1450 gctgcatcgt gcaacctctt tggtgccagt gtgggcaagg gctcagcctc 1500 tetgeccaea gagtgeccee aegtggaaca ttetggaget ggecatecea 1550 aattcaatca gtccatagag acgaacagaa tgagaccttc cggcccaagc 1600 gtggcgctgc gggcactttg gtagactgtg ccaccacggc gtgtgttgtg 1650 aaacgtgaaa taaaaagagc aaaaaaaaa 1679

<210> 523

<211> 344

<212> PRT

<213> Homo sapiens

<400> 523

Met Lys Thr Ile Gln Pro Lys Met His Asn Ser Ile Ser Trp Ala 1 5 10 15

Ile Phe Thr Gly Leu Ala Ala Leu Cys Leu Phe Gln Gly Val Pro $20 \hspace{1cm} 25 \hspace{1cm} 30$

Val Arg Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val 35 40 45

Thr Val Arg Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp 50 55 60

Asn Arg Val Thr Arg Val Ala Trp Leu Asn Arg Ser Thr Ile Leu 65 70 75

Tyr Ala Gly Asn Asp Lys Trp Cys Leu Asp Pro Arg Val Val Leu 80 85 90

Leu Ser Asn Thr Gln Thr Gln Tyr Ser Ile Glu Ile Gln Asn Val 95 100 105

Asp Val Tyr Asp Glu Gly Pro Tyr Thr Cys Ser Val Gln Thr Asp 110 115 120

Asn His Pro Lys Thr Ser Arg Val His Leu Ile Val Gln Val Ser 125 130 135

Pro Lys Ile Val Glu Ile Ser Ser Asp Ile Ser Ile Asn Glu Gly
140 145 150

Asn Asn Ile Ser Leu Thr Cys Ile Ala Thr Gly Arg Pro Glu Pro $155 \hspace{1cm} 160 \hspace{1cm} 165$

Thr Val Thr Trp Arg His Ile Ser Pro Lys Ala Val Gly Phe Val 170 175 180

Ser Glu Asp Glu Tyr Leu Glu Ile Gln Gly Ile Thr Arg Glu Gln 185 190 195

Ser Gly Asp Tyr Glu Cys Ser Ala Ser Asn Asp Val Ala Ala Pro 200 205 210

Val Val Arg Arg Val Lys Val Thr Val Asn Tyr Pro Pro Tyr Ile 215 220 225

Ser Glu Ala Lys Gly Thr Gly Val Pro Val Gly Gln Lys Gly Thr

230 235 240 Leu Gln Cys Glu Ala Ser Ala Val Pro Ser Ala Glu Phe Gln Trp 255 245 Tyr Lys Asp Asp Lys Arg Leu Ile Glu Gly Lys Lys Gly Val Lys 265 260 Val Glu Asn Arg Pro Phe Leu Ser Lys Leu Ile Phe Phe Asn Val 275 Ser Glu His Asp Tyr Gly Asn Tyr Thr Cys Val Ala Ser Asn Lys 300 290 Leu Gly His Thr Asn Ala Ser Ile Met Leu Phe Gly Pro Gly Ala 305 Val Ser Glu Val Ser Asn Gly Thr Ser Arg Arg Ala Gly Cys Val 330 320 Trp Leu Leu Pro Leu Leu Val Leu His Leu Leu Leu Lys Phe 335 <210> 524 <211> 503 <212> DNA <213> Homo sapiens <400> 524 gaaaaaaaat catgaaaacc atccagccaa aaatgcacaa ttctatctct 50 tgggcaatct tcacggggct ggctgctctg tgtctcttcc aaggagtgcc 100

tgggcaatct tcacgggct ggctgctctg tgtctctcc aaggagtgcc 100 cgtgcgcagc ggagatgcca ccttccccaa agctatggac aacgtgacgg 150 tccggcaggg ggagagcgcc accctcaggt gcactattga caaccgggtc 200 acccgggtgg cctggctaaa ccgcagcacc atcctctatg ctgggaatga 250 caagtggtgc ctggatcctc gcgtggtcct tctgagcaac acccaaacgc 300 agtacagcat cgagatccag aacgtggatg tgtatgacga gggcccttac 350 acctgctcgg tgcagacaga caaccaccca aagacctcta gggtccacct 400 cattgtgcaa gtatctcca aaattgtaga gatttcttca gatatctcca 450 ttaatgaagg gaacaatatt agcctcacct gcatagcaac tggtagacca 500 gag 503

<210> 525

<211> 2602

<212> DNA

<213> Homo sapiens

<400> 525

atggctggtg acggcggggc cgggcagggg accggggccg cggcccggga 50

gcgggccagc tgccgggagc cctgaatcac cgcctggccc gactccacca 100 tgaacgtcgc gctgcaggag ctgggagctg gcagcaacgt gggattccag 150 aaggggacaa gacagctgtt aggctcacgc acgcagctgg agctggtctt 200 agcaggtgcc tctctactgc tggctgcact gcttctgggc tgccttgtgg 250 ccctaggggt ccagtaccac agagacccat cccacagcac ctgccttaca 300 gaggeetgea ttegagtgge tggaaaaate etggagteee tggaeegagg 350 ggtgagcccc tgtgaggact tttaccagtt ctcctgtggg ggctggattc 400 ggaggaaccc cctgcccgat gggcgttctc gctggaacac cttcaacagc 450 ctctgggacc aaaaccaggc catactgaag cacctgcttg aaaacaccac 500 cttcaactcc agcagtgaag ctgagcagaa gacacagcgc ttctacctat 550 cttgcctaca ggtggagcgc attgaggagc tgggagccca gccactgaga 600 gacctcattg agaagattgg tggttggaac attacggggc cctgggacca 650 ggacaacttt atggaggtgt tgaaggcagt agcagggacc tacagggcca 700 ccccattctt caccgtctac atcagtgccg actctaagag ttccaacagc 750 aatgttatcc aggtggacca gtctgggctc tttctgccct ctcgggatta 800 ctacttaaac agaactgcca atgagaaagt gctcactgcc tatctggatt 850 acatggagga actggggatg ctgctgggtg ggcggcccac ctccacgagg 900 gagcagatgc agcaggtgct ggagttggag atacagctgg ccaacatcac 950 agtgccccag gaccagcggc gcgacgagga gaagatctac cacaagatga 1000 gcatttcgga gctgcaggct ctggcgccct ccatggactg gcttgagttc 1050 ctgtctttct tgctgtcacc attggagttg agtgactctg agcctgtggt 1100 ggtgtatggg atggattatt tgcagcaggt gtcagagctc atcaaccgca 1150 cggaaccaag catcctgaac aattacctga tctggaacct ggtgcaaaag 1200 acaacctcaa gcctggaccg acgctttgag tctgcacaag agaagctgct 1250 ggagaccete tatggcacta agaagteetg tgtgeegagg tggeagacet 1300 gcatctccaa cacggatgac gcccttggct ttgctttggg gtcactcttc 1350 gtgaaggcca cgtttgaccg gcaaagcaaa gaaattgcag aggggatgat 1400 cagcgaaatc cggaccgcat ttgaggaggc cctgggacag ctggtttgga 1450 tggatgagaa gacccgccag gcagccaagg agaaagcaga tgccatctat 1500 gatatgattg gtttcccaga ctttatcctg gagcccaaag agctggatga 1550 tgtttatgac gggtacgaaa tttctgaaga ttctttcttc caaaacatgt 1600 tgaatttgta caacttctct gccaaggtta tggctgacca gctccgcaag 1650 cctcccagcc gagaccagtg gagcatgacc ccccagacag tgaatgccta 1700 ctaccttcca actaagaatg agatcgtctt ccccgctggc atcctgcagg 1750 ccccttcta tgcccgcaac caccccaagg ccctgaactt cggtggcatc 1800 ggtgtggtca tgggccatga gttgacgcat gcctttgatg accaagggcg 1850 cgagtatgac aaagaaggga acctgcggcc ctggtggcag aatgagtccc 1900 tggcagcctt ccggaaccac acggcctgca tggaggaaca gtacaatcaa 1950 taccaggtca atggggagag gctcaacggc cgccagacgc tgggggagaa 2000 cattactgac aacggggggc tgaaggctgc ctacaatgct tacaaagcat 2050 ggctgagaaa gcatggggag gagcagcaac tgccagccgt ggggctcacc 2100 aaccaccage tettettegt gggatttgee caggtgtggt geteggteeg 2150 cacaccagag ageteteacg aggggetggt gaccgaecce cacagecetg 2200 cccgcttccg cgtgctgggc actctctcca actcccgtga cttcctgcgg 2250 cacttegget geeetgtegg etececeatg aacceaggge agetgtgtga 2300 ggtgtggtag acctggatca ggggagaaat ggccagctgt caccagacct 2350 ggggcagctc tcctgacaaa gctgtttgct cttgggttgg gaggaagcaa 2400 atgcaagctg ggctgggtct agtccctccc ccccacaggt gacatgagta 2450 cagaccctcc tcaatcacca cattgtgcct ctgctttggg ggtgcccctg 2500 cctccagcag agcccccacc attcactgtg acatctttcc gtgtcaccct 2550 gcctggaaga ggtctgggtg gggaggccag ttcccatagg aaggagtctg 2600

cc 2602 <210> 526

<211> 736

<212> PRT

<213> Homo sapiens

<400> 526

Met Asn Val Ala Leu Gln Glu Leu Gly Ala Gly Ser Asn Val Gly
1 5 10 15

Phe Gln Lys Gly Thr Arg Gln Leu Leu Gly Ser Arg Thr Gln Leu 20 25 30

Glu Leu Val Leu Ala Gly Ala Ser Leu Leu Leu Ala Ala Leu Leu Leu Gly Cys Leu Val Ala Leu Gly Val Gln Tyr His Arg Asp Pro 50 Ser His Ser Thr Cys Leu Thr Glu Ala Cys Ile Arg Val Ala Gly Lys Ile Leu Glu Ser Leu Asp Arg Gly Val Ser Pro Cys Glu Asp Phe Tyr Gln Phe Ser Cys Gly Gly Trp Ile Arg Arg Asn Pro Leu 100 Pro Asp Gly Arg Ser Arg Trp Asn Thr Phe Asn Ser Leu Trp Asp Gln Asn Gln Ala Ile Leu Lys His Leu Leu Glu Asn Thr Thr Phe 125 130 Asn Ser Ser Ser Glu Ala Glu Gln Lys Thr Gln Arg Phe Tyr Leu Ser Cys Leu Gln Val Glu Arg Ile Glu Glu Leu Gly Ala Gln Pro Leu Arg Asp Leu Ile Glu Lys Ile Gly Gly Trp Asn Ile Thr Gly 170 Pro Trp Asp Gln Asp Asn Phe Met Glu Val Leu Lys Ala Val Ala Gly Thr Tyr Arg Ala Thr Pro Phe Phe Thr Val Tyr Ile Ser Ala 200 Asp Ser Lys Ser Ser Asn Ser Asn Val Ile Gln Val Asp Gln Ser 215 Gly Leu Phe Leu Pro Ser Arg Asp Tyr Tyr Leu Asn Arg Thr Ala 230 Asn Glu Lys Val Leu Thr Ala Tyr Leu Asp Tyr Met Glu Glu Leu Gly Met Leu Gly Gly Arg Pro Thr Ser Thr Arg Glu Gln Met Gln Gln Val Leu Glu Leu Glu Ile Gln Leu Ala Asn Ile Thr Val 275 Pro Gln Asp Gln Arg Asp Glu Glu Lys Ile Tyr His Lys Met Ser Ile Ser Glu Leu Gln Ala Leu Ala Pro Ser Met Asp Trp Leu 310 Glu Phe Leu Ser Phe Leu Leu Ser Pro Leu Glu Leu Ser Asp Ser

				320					325					330
Glu	Pro	Val	Val	Val 335	Tyr	Gly	Met	Asp	Tyr 340	Leu	Gln	Gln	Val	Ser 345
Glu	Leu	Ile	Asn	Arg 350	Thr	Glu	Pro	Ser	Ile 355	Leu	Asn	Asn	Tyr	Leu 360
Ile	Trp	Asn	Leu	Val 365	Gln	Lys	Thr	Thr	Ser 370	Ser	Leu	Asp	Arg	Arg 375
Phe	Glu	Ser	Ala	Gln 380	Glu	Lys	Leu	Leu	Glu 385	Thr	Leu	Tyr	Gly	Thr 390
Lys	Lys	Ser	Суѕ	Val 395	Pro	Arg	Trp	Gln	Thr 400	Суз	Ile	Ser	Asn	Thr 405
Asp	Asp	Ala	Leu	Gly 410	Phe	Ala	Leu	Gly	Ser 415	Leu	Phe	Val	Lys	Ala 420
Thr	Phe	Asp	Arg	Gln 425	Ser	Lys	Glu	Ile	Ala 430	Glu	Gly	Met	Ile	Ser 435
Glu	Ile	Arg	Thr	Ala 440	Phe	Glu	Glu	Ala	Leu 445	Gly	Gln	Leu	Val	Trp 450
Met	Asp	Glu	Lys	Thr 455	Arg	Gln	Ala	Ala	Lys 460	Glu	Lys	Ala	Asp	Ala 465
Ile	Tyr	Asp	Met	Ile 470	Gly	Phe	Pro	Asp	Phe 475	Ile	Leu	Glu	Pro	Lys 480
Glu	Leu	Asp	Asp	Val 485	Tyr	Asp	Gly	Tyr	Glu 490	Ile	Ser	Glu	Asp	Ser 495
Phe	Phe	Gln	Asn	Met 500	Leu	Asn	Leu	Tyr	Asn 505	Phe	Ser	Ala	Lys	Val 510
Met	Ala	Asp	Gln	Leu 515	Arg	Lys	Pro	Pro	Ser 520	Arg	Asp	Gln	Trp	Ser 525
Met	Thr	Pro	Gln	Thr 530	Val	Asn	Ala	Tyr	Tyr 535		Pro	Thr	Lys	Asn 540
Glu	Ile	Val	Phe	Pro 545	Ala	Gly	Ile	Leu	Gln 550		Pro	Phe	Tyr	Ala 555
Arg	Asn	His	Pro	Lys 560		Leu	Asn	Phe	Gly 565		Ile	Gly	Val	Val 570
Met	Gly	His	Glu	Leu 575		His	Ala	Phe	Asp 580		Gln	Gly	Arg	Glu 585
Tyr	Asp	Lys	Glu	Gly 590		Leu	Arg	Pro	Trp 595	Trp	Gln	Asn	Glu	Ser 600
Leu	Ala	Ala	Phe	Arg 605		His	Thr	Ala	Cys 610		Glu	Glu	Gln	Tyr 615

```
Asn Gln Tyr Gln Val Asn Gly Glu Arg Leu Asn Gly Arg Gln Thr
Leu Gly Glu Asn Ile Thr Asp Asn Gly Gly Leu Lys Ala Ala Tyr
                635
Asn Ala Tyr Lys Ala Trp Leu Arg Lys His Gly Glu Glu Gln Gln
                650
Leu Pro Ala Val Gly Leu Thr Asn His Gln Leu Phe Phe Val Gly
                                                         675
Phe Ala Gln Val Trp Cys Ser Val Arg Thr Pro Glu Ser Ser His
                680
Glu Gly Leu Val Thr Asp Pro His Ser Pro Ala Arg Phe Arg Val
                                                         705
                695
Leu Gly Thr Leu Ser Asn Ser Arg Asp Phe Leu Arg His Phe Gly
                710
Cys Pro Val Gly Ser Pro Met Asn Pro Gly Gln Leu Cys Glu Val
                725
Trp
```

<210> 527

<211> 4308

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1478, 3978, 4057-4058, 4070

<223> unknown base

<400> 527

geceggeet cegeeteeg eacteegee teeteete egeegetee 50
egegeetee teeteete eteecaget gteetegteg egteatgeeg 100
ageeteegg eeeggeegge eeegetgetg eteeteegge tgetgetget 150
eggeteegg eeggeegge gegeeggee agageeeee gtgetgeea 200
teegttetga gaaggageeg etgeeegtte ggggagegge aggtaggtgg 250
gegeeegggg gaggegggg eggggagteg ggeteggge gagteagege 300
eageeeggag ggggegggg gegeaggtgg eteeggge egggeggee 350
ggagggtggg egggggeaga agggegggg geeteggge egggegee 250
ggagggtggg egggggeaga agggegggg eeggggegge egggegee 250
eggagggtegg egggggeaga agggegggg eggggegge egggegee 250
eageeegte eggggeggea agggegggg geeteggge egggegee 250
eaageeegte eeggaggegga eaeggeggg egggaaggte tatgeettgg 500

acgagacgtg gcacccggac ctaggggagc cattcggggt gatgcgctgc 550 gtgctgtgcg cctgcgaggc gcagtggggt cgccgtacca ggggccctgg 600 cagggtcagc tgcaagaaca tcaaaccaga gtgcccaacc ccggcctgtg 650 ggcagccgcg ccagctgccg ggacactgct gccagacctg cccccaggac 700 ttcgtggcgc tgctgacagg gccgaggtcg caggcggtgg cacgagcccg 750 agtotogotg otgogotota gootoogott ototatotoo tacaggoggo 800 tggaccgccc taccaggatc cgcttctcag actccaatgg cagtgtcctg 850 tttgagcacc ctgcagcccc cacccaagat ggcctggtct gtggggtgtg 900 gcgggcagtg cctcggttgt ctctgcggct ccttagggca gaacagctgc 950 atgtggcact tgtgacactc actcaccctt caggggaggt ctgggggcct 1000 ctcatccggc accgggccct gtccccagag accttcagtg ccatcctgac 1050 tctagaaggc ccccaccagc agggcgtagg gggcatcacc ctgctcactc 1100 tcagtgacac agaggactcc ttgcattttt tgctgctctt ccgaggcctt 1150 gcaggactaa cccaggttcc cttgaggctc cagattctac accaggggca 1200 gctactgcga gaacttcagg ccaatgtctc agcccaggaa ccaggctttg 1250 ctgaggtgct gcccaacctg acagtccagg agatggactg gctggtgctg 1300 ggggagctgc agatggccct ggagtgggca ggcaggccag ggctgcgcat 1350 cagtggacac attgctgcca ggaagagctg cgacgtcctg caaagtgtcc 1400 tttgtggggc taatgccctg atcccagtcc aaacgggtgc tgccggctca 1450 gccagcctca ctctgctagg aaatggcncc ctgatcctcc aggtgcaatt 1500 ggtagggaca accagtgagg tggtggccat gacactggaa accaagcctc 1550 ageggaggga teageceact gteetgtgee acatggetgg cetatectee 1600 cctgccccca ggccgtgggt atctgccctg ggctggggtg cccgaggggc 1650 tcatatgctg ctgcagaatg agctcttcct gaacgtgggc accaaggact 1700 teccagaegg agagettegg gggeaaegtg getgeeetge eetaetgtgg 1750 ggcatagcgc ccgccctgcc cgtgccccta gcaggagccc tggtgctacc 1800 ccctgtgaag agccaagcag cagggcacgc ctggctttcc ttggataccc 1850 actgtcacct gcactatgaa gtgctgctgg ctgggcttgg tggctcagaa 1900 caaggcactg tcactgccca cctccttggg cctcctggaa cgccagggcc 1950 teggeggetg etgaagggat tetatggete agaggeecag ggtgtggtga 2000 aggacctgga gccggaactg ctgcggcacc tggcaaaagg catggcttcc 2050 ctgatgatca ccaccaaggt agccccagag gggagctccg agggcagcct 2100 ctcctcccag gtgcacatag ccaaccaatg tgaggttggc ggactgcgcc 2150 tggaggcggc cggggccgag ggggtgcggg cgctgggggc tccggataca 2200 geetetgetg egeegeetgt ggtgeetggt eteeeggeee tagegeeege 2250 caaacctggt ggtcctgggc ggccccgaga ccccaacaca tgcttcttcg 2300 aggggcagca gcgccccac ggggctcgct gggcgcccaa ctacgacccg 2350 ctctgctcac tctgcacctg ccagagacga acggtgatct gtgacccggt 2400 ggtgtgccca ccgcccagct gcccacaccc ggtgcaggct cccgaccagt 2450 gctgccctgt ttgccctggc tgctattttg atggtgaccg gagctggcgg 2500 gcagcgggta cgcggtggca ccccgttgtg cccccctttg gcttaattaa 2550 gtgtgctgtc tgcacctgca agcagggggg cactggagag gtgcactgtg 2600 agaaggtgca gtgtccccgg ctggcctgtg cccagcctgt gcgtgtcaac 2650 cccaccgact gctgcaaaca gtgtccaggt gaggcccacc cccagctggg 2700 ggaccccatg caggetgatg ggccccgggg ctgccgtttt gctgggcagt 2750 ggttcccaga gagtcagagc tggcacccct cagtgccccc gtttggagag 2800 atgagetgta teacetgeag atgtggggta agtggggage agaggettgt 2850 gtgaggtggg tactgggagc ctggtctgga gtagggagac cttcccaggg 2900 aggtccctga agaagctgaa ggtcactgtg tcccagtgcc tctgggggac 2950 actcagtgtc tgctctgtct tgtaccaggc aggggtgcct cactgtgagc 3000 gggatgactg ttcactgcca ctgtcctgtg gctcggggaa ggagagtcga 3050 tgctgttccc gctgcacggc ccaccggcgg cgtaagtgag ggagtccagg 3100 gtcagcagct gtgagtggag ggctcacctg cctgtgggac tcctgatcag 3150 ggaagggagc actcactgtg tgcaggaaca gtgcagcctg cctcacaagt 3200 gccattccaa tccaccctca cagcaacctg gtggaattgt tatttatgac 3250 cttttcttta caaatgagat ttctgaagct cagagaaatt aagcaacgag 3300 atgaaggtca cccagctgtg tgcactgacc tgtttagaaa atactggcct 3350 ttctgggacc aaggcaggga tgctttgccc tgccctctat gcctctctgt 3400 geetetecae tecetetece etectecaae attecetece ttetgtetec 3450 agcagececa gagaceagaa etgateeaga getggagaaa gaageegaag 3500 gctcttaggg agcagccaga gggccaagtg accaagagga tggggcctga 3550 gctggggaag gggtggcatc gaggaccttc ttgcattctc ctgtgggaag 3600 cccagtgcct ttgctcctct gtcctgcctc tactcccacc cccactacct 3650 ctgggaacca cagctccaca agggggagag gcagctgggc cagaccgagg 3700 tcacagecae tecaagteet geeetgeeae eeteggeete tgteetggaa 3750 gccccacccc tttcttcctg tacataatgt cactggcttg ttgggatttt 3800 taatttatet teacteagea eeaagggeee eggacaetee acteetgetg 3850 cccctgagct gagcagagtc attattggag agttttgtat ttattaaaac 3900 atttcttttt cagtctttgg gcatgaggtt ggctctttgt ggccaggaac 3950 ctgagtgggg cctggtggag aaggggcnga gagtaggagg tgagagagag 4000 gagetetgae acttggggag etgaaagaga eetggagagg eagaggatag 4050 cgtggcnntt ggctggcatn cctgggttcc gcagaggggc tggggatggt 4100 tcttgagatg gtctagagac tcaagaattt agggaagtag aagcaggatt 4150 ttgactcaag tttagtttcc cacatcgctg gcctgtttgc tgacttcatg 4200 tttgaagttg ctccagagag agaatcaaag gtgtcaccag ccctctctc 4250 ceteetteec tteeetteec ttettteec teeceteecc teeceteecc 4300 tcccctcc 4308

<210> 528

<211> 1285

<212> DNA

<213> Homo sapiens

<400> 528

ggccgagcgg gggtgctgcg cggcggccgt gatggctggt gacggcggg 50
ccgggcaggg gaccggggc gcggcccggg agcgggccag ctgccgggag 100
ccctgaatca ccgcctggcc cgactccacc atgaacgtcg cgctgcagga 150
gctgggagct ggcagcaacg tgggattcca gaaggggaca agacagctgt 200
taggctcacg cacgcagctg gagctggtct tagcaggtgc ctctctactg 250
ctggctgcac tgcttctggg ctgccttgtg gccctagggg tccagtacca 300
cagagaccca tcccacagca cctgccttac agaggcctgc attcgagtgg 350

ctggaaaaat cctggagtcc ctggaccgag gggtgagccc ctgtgaggac 400 ttttaccagt tctcctgtgg gggctggatt cggaggaacc ccctgcccga 450 tgggcgttct cgctggaaca ccttcaacag cctctgggac caaaaccagg 500 ccatactgaa gcacctgctt gaaaacacca ccttcaactc cagcagtgaa 550 gctgagcaga agacacagcg cttctaccta tcttgcctac aggtggagcg 600 cattgaggag ctgggagccc agccactgag agacctcatt gagaagattg 650 gtggttggaa cattacgggg ccctgggacc aggacaactt tatggaggtg 700 ttgaaggcag tagcagggac ctacagggcc accccattct tcaccgtcta 750 catcagtgcc gactctaaga gttccaacag caatgttatc caggtggacc 800 agtotgggot otttotgood totogggatt actacttaaa cagaactgoo 850 aatgagaaag taaggaacat cttccgaacc cccatcccta cccctggctg 900 agctgggctg atccctgttg acttttccct ttgccaaggg tcagagcagg 950 gaaggtgagc ctatcctgtc acctagtgaa caaactgccc ctcctttctt 1000 ttcctcttat tcttctagta ggtttcatag acacctactg tgtgccaggt 1100 ccagtggggg aattcggaga tataagtttc cgagccattg ccacaggaag 1150 cgttcagtgt cgatgggttc atggacctag ataggctgat aacaaagctc 1200 acaagagggt cctgaggatt caggagagac ttatggagcc agcaaagtct 1250 tcctgaagag attgcatttg agccaggtcc tgtag 1285

<210> 529

<211> 1380

<212> DNA

<213> Homo sapiens

<400> 529

atgectacta cettecaact aagaatgaga tegtetteee egetggeate 50 ctgeaggeee cettetatge eegeaaceae eecaaggeee tgaacttegg 100 tggeateggt gtggteatgg gecatgagtt gaegeatgee tttgatgaee 150 aagggeegga gtatgacaaa gaagggaace tgeggeeetg gtggeagaat 200 gagteeetgg eageetteeg gaaceaeaeg geetgeatgg aggaacagta 250 caateaatae eaggteaatg gggagagget caaeggeege eagaegetgg 300 gggagaacat tgetgacaac ggggggetga aggetgeeta eaatgettae 350

```
aaaqcatqqc tqaqaaaqca tqqqqaqqaq caqcaactqc caqccqtqqq 400
gctcaccaac caccagctct tcttcgtggg atttgcccag gtgtggtgct 450
cggtccgcac accagagagc tctcacgagg ggctggtgac cgacccccac 500
agecetgece getteegegt getgggeact etetecaact ecegtgaett 550
cctgcggcac ttcggctgcc ctgtcggctc ccccatgaac ccagggcagc 600
tgtgtgaggt gtggtagacc tggatcaggg gagaaatggc cagctgtcac 650
cagacctggg gcagctctcc tgacaaagct gtttgctctt gggttgggag 700
gaagcaaatg caagctgggc tgggtctagt ccctccccc cacaggtgac 750
atgagtacag accetectea ateaceaeat tgtgcetetg ctttgggggt 800
gcccctqcct ccaqcaqaqc ccccaccatt cactqtqaca tctttccqtq 850
tcaccctgcc tggaagaggt ctgggtgggg aggccagttc ccataggaag 900
gagtetgeet ettetgteec caggeteact cageetggeg gecatgggge 950
ctgccgtgcc tgcccactg tgacccacag gcctgggtgg tgtacctcct 1000
ggacttetee ecaggeteae teagtgegea ettaggggtg gacteagete 1050
tgtctggctc accctcacgg gctaccccca cctcaccctg tgctccttgt 1100
gccactgctc ccagtgctgc tgctgacctt cactgacagc tcctagtgga 1150
agcccaaggg cctctgaaag cctcctgctg cccactgttt ccctgggctg 1200
agaggggaag tgcatatgtg tagcgggtac tggttcctgt gtcttagggc 1250
acaagcetta gcaaatgatt gatteteeet ggacaaagca ggaaagcaga 1300
tagagcaggg aaaaggaaga acagagttta tttttacaga aaagagggtg 1350
ggagggtgtg gtcttggccc ttataggacc 1380
```

```
<210> 530
```

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 530

gaagcagtgc agccagcagt agagaggcac ctgctaaga 39

<210> 531

<211> 24

<212> DNA

<213> Artificial Sequence

```
<223> Synthetic oligonucleotide probe
<400> 531
acgcagctgg agctggtctt agca 24
<210> 532
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 532
ggtactggac ccctagggcc acaa 24
<210> 533
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 533
cctcccagcc gagaccagtg g 21
<210> 534
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 534
 ggtcctataa gggccaagac c 21
<210> 535
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 535
 <210> 536
<211> 16
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

ıI II

1:151

1200

- ----

100

```
<400> 536
 cggacgcgtg ggtcga 16
 <210> 537
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 537
 cggccgtgat ggctggtgac g 21
 <210> 538
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 538
  ggcagactcc ttcctatggg 20
 <210> 539
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 539
 ggcacttcat ggtccttgaa a 21
 <210> 540
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 540
cggatgtgtg tgaggccatg cc 22
 <210> 541
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 541
  gaaagtaacc acggaggtca agat 24
```

Œ

: 📜

: ::

I.I

- -

```
<210> 542
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 542
    cctcctccga gactgaaagc t 21
    <210> 543
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 543
     tegegttget ttttetegeg tg 22
    <210> 544
    <211> 17
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 544
     gcgtgcgtca ggttcca 17
    <210> 545
    <211> 19
    <212> DNA
    <213> Artificial Sequence
<220>
    <223> Synthetic oligonucleotide probe
    <400> 545
     cgttcgtgca gcgtgtgta 19
    <210> 546
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 546
     cttcctcacc acctgcgacg gg 22
    <210> 547
    <211> 23
    <212> DNA
```

: :::

ı năn

: 25:

. .

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 547
 ggtaggcggt cctatagatg gtt 23
<210> 548
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 548
 agatgtggat gaatgcagtg cta 23
<210> 549
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 549
atcaacaccg ccggcagtta ctgg 24
<210> 550
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 550
acagagtgta ccgtctgcag aca 23
<210> 551
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 551
 agcctcctgg tgcactcct 19
<210> 552
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
```

i dia

H

1 200

```
<223> Synthetic oligonucleotide probe
<400> 552
cgactccctg agcgagcaga tttcc 25
<210> 553
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 553
 gctgggcagt cacgagtctt 20
<210> 554
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 554
aatcctccat ctcagatctt ccag 24
<210> 555
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 555
cctcagcggt aacagccggc c 21
<210> 556
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 556
 tgggccaagg gctgc 15
<210> 557
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 557
```

1 2 2

. A

2 cons

```
tggtggataa ccaacaagat gg 22
<210> 558
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 558
gagtctgcat ccacaccact cttaaagttc tcaa 34
<210> 559
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 559
caggtgctct tttcagtcat gttt 24
<210> 560
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 560
tggccattct caggacaaga g 21
<210> 561
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide probe
 cagtaatgcc atttgcctgc ctgcat 26
<210> 562
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 562
 tgcctggaat cacatgaca 19
<210> 563
```

4.

Photos of the control of the control

1.24

.

: 32:

```
<211> 20
<212> DNA
<213> Artificial Sequence
<223> synthetic oligonucleotide probe
<400> 563
tgtggcacag acccaatcct 20
<210> 564
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 564
 gaccetgaag geeteeggee t 21
<210> 565
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 565
 gagagagga aggcagctat gtc 23
<210> 566
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 566
 cagcccctct ctttcacctg t 21
<210> 567
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 567
 ccatcctgtg cagctgacac acagc 25
<210> 568
<211> 20
<212> DNA
<213> Artificial Sequence
```

: :===

```
<223> Synthetic oligonucleotide probe
<400> 568
gccaggctat gaggctcctt 20
<210> 569
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 569
 ttcaagttcc tgaagccgat tat 23
<210> 570
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 570
ccaacttccc tccccagtgc cct 23
<210> 571
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 571
 ttggggaagg tagaatttcc ttgtat 26
<210> 572
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 572
 cccttctgcc tcccaattct 20
<210> 573
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

4.73

i sila

1, [3]

: 5

```
<400> 573
tctcctccgt ccccttcctc cact 24
<210> 574
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 574
 tgagccactg ccttgcatta 20
<210> 575
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 575
tctgcagacg cgatggataa 20
<210> 576
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 576
ccgaaaataa aacatcgccc cttctg 26
<210> 577
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 577
 cacgtggcct ttcacactga 20
<210> 578
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 578
 acttgtgaca gcagtatgct gtctt 25
```

ı, Ç

:[]

1 200

. .2.

i. 🕹

```
<210> 579
   <211> 26
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 579
    aagcttctgt tcaatcccag cggtcc 26
   <210> 580
   <211> 22
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 580
     atgcacaggc tttttctggt aa 22
    <210> 581
    <211> 22
   <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 581
: 15
    gcaggaaacc ttcgaatctg ag 22
    <210> 582
    <211> 29
....
    <212> DNA
    <213> Artificial Sequence
139
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 582
     acacctgagg cacctgagag aggaactct 29
    <210> 583
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 583
     gacageccag tacacetgca a 21
    <210> 584
    <211> 21
    <212> DNA
```

i di

H

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 584
 gacggctgga tctgtgagaa a 21
<210> 585
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 585
 cacaactgct gaccccgccc a 21
<210> 586
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 586
ccaggatacg acatgctgca 20
<210> 587
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 587
 aaactccaac ctgtatcaga tgca 24
<210> 588
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 588
 cccccaagcc cttagactct aagcc 25
<210> 589
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
```

. .

1,51

: 2

```
<223> Synthetic oligonucleotide probe
<400> 589
gacccggcac cttgctaac 19
<210> 590
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 590
 ggacggtcag tcaggatgac a 21
<210> 591
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 591
ttcggcatca tctcttccct ctccc 25
<210> 592
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 592
 acaaaaaaa gggaacaaaa tacga 25
<210> 593
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 593
 ctttgaatag aagacttctg gacaattt 28
<210> 594
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 594
```

ij

ii Įraža

```
ttgcaactgg gaatatacca cgacatgaga 30
   <210> 595
   <211> 26
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 595
    tagggtgcta atttgtgcta taacct 26
   <210> 596
   <211> 20
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 596
    ggctctgagt ctctgcttga 20
   <210> 597
   <211> 25
<213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 597
    tccaacaacc attttcctct ggtcc 25
   <210> 598
   <211> 23
    <212> DNA
    <213> Artificial Sequence
   <220>
    <223> Synthetic oligonucleotide probe
    <400> 598
    aagcagtagc cattaacaag tca 23
    <210> 599
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 599
     caagcgtcca ggtttattga 20
    <210> 600
```

1,[3]

.

- 2

ı mắn

: 1521

```
<211> 20
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 600
    gactacaagg cgctcagcta 20
   <210> 601
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 601
    ccggctgggt ctcactcctc c 21
   <210> 602
   <211> 19
    <212> DNA
   <213> Artificial Sequence
<220>
   <223> Synthetic oligonucleotide probe
. 🚎:
    <400> 602
    cgttcgtgca gcgtgtgta 19
l,F
   <210> 603
    <211> 22
    <212> DNA
    <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
    <400> 603
    cttcctcacc acctgcgacg gg 22
    <210> 604
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
     ggtaggcggt cctatagatg gtt 23
    <210> 605
    <211> 23
    <212> DNA
    <213> Artificial Sequence
```

.....

```
<220>
<223> Synthetic oligonucleotide probe
<400> 605
 agatgtggat gaatgcagtg cta 23
<210> 606
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 606
 atcaacaccg ccggcagtta ctgg 24
<210> 607
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 607
acagagtgta ccgtctgcag aca 23
<210> 608
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 608
 agcctcctgg tgcactcct 19
<210> 609
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 cgactccctg agcgagcaga tttcc 25
<210> 610
<211> 20
<212> DNA
<213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
```

ľŪ

: 2

: 5

<400> 610
gctgggcagt cacgagtctt 20
<210> 611
<211> 2840
<212> DNA
<213> Homo Sapien
<400> 611
cccacgcgtc cgagccgccc ga
aagcaaccga gaggaggga gg
aacaacaccc aacaactggg gt

cccacgcgtc cgagccgccc gagaattaga cacactccgg acgcggccaa 50 aagcaaccga gaggaggga ggcaaaaaca ccgaaaaaca aaaagagaga 100 aacaacaccc aacaactggg gtggggggaa gaaagaaaga aaagaaaccc 150 ctgtggcgcg ccgcctggtt cccgggaaga ctcgccagca ccagggggtg 250 ggggagtgcg agctgaaagc tgctggagag tgagcagccc tagcagggat 300 ggacatgatg ctgttggtgc agggtgcttg ttgctcgaac cagtggctgg 350 cggcggtgct cctcagcctg tgctgcctgc taccctcctg cctcccggct 400 ggacagagtg tggacttccc ctgggcggcc gtggacaaca tgatggtcag 450 aaaaggggac acggcggtgc ttaggtgtta tttggaagat ggagcttcaa 500 agggtgcctg gctgaaccgg tcaagtatta tttttgcggg aggtgataag 550 tggtcagtgg atcctcgagt ttcaatttca acattgaata aaagggacta 600 cagcctccag atacagaatg tagatgtgac agatgatggc ccatacacgt 650 gttctgttca gactcaacat acacccagaa caatgcaggt gcatctaact 700 gtgcaagttc ctcctaagat atatgacatc tcaaatgata tgaccgtcaa 750 tgaaggaacc aacgtcactc ttacttgttt ggccactggg aaaccagagc 800 cttccatttc ttggcgacac atctccccat cagcaaaacc atttgaaaat 850 ggacaatatt tggacattta tggaattaca agggaccagg ctggggaata 900 tgaatgcagt gcggaaaatg ctgtgtcatt cccagatgtg aggaaagtaa 950 aagttgttgt caactttgct cctactattc aggaaattaa atctggcacc 1000 gtgacccccg gacgcagtgg cctgataaga tgtgaaggtg caggtgtgcc 1050 gcctccagcc tttgaatggt acaaaggaga gaagaagctc ttcaatggcc 1100 aacaaggaat tattattcaa aattttagca caagatccat tctcactgtt 1150 accaacqtqa cacaqqaqca cttcqqcaat tatacctgtg tggctgccaa 1200 caagctaggc acaaccaatg cgagcctgcc tcttaaccct ccaagtacag 1250 cccagtatgg aattaccggg agcgctgatg ttcttttctc ctgctggtac 1300 cttgtgttga cactgtcctc tttcaccagc atattctacc tgaagaatgc 1350 cattctacaa taaattcaaa gacccataaa aggcttttaa ggattctctg 1400 aaagtgctga tggctggatc caatctggta cagtttgtta aaagcagcgt 1450 gggatataat cagcagtgct tacatgggga tgatcgcctt ctgtagaatt 1500 gctcattatg taaatacttt aattctactc ttttttgatt agctacatta 1550 ccttgtgaag cagtacacat tgtccttttt ttaagacgtg aaagctctga 1600 aattactttt agaggatatt aattgtgatt tcatgtttgt aatctacaac 1650 ttttcaaaag cattcagtca tggtctgcta ggttgcaggc tgtagtttac 1700 aaaaacgaat attgcagtga atatgtgatt ctttaaggct gcaatacaag 1750 cattcagttc cctgtttcaa taagagtcaa tccacattta caaagatgca 1800 cttcaaaata taacacatat ctagattttt ctgcttgcat gatattcagg 1900 tttcaggaat gagccttgta atataactgg ctgtgcagct ctgcttctct 1950 ttcctgtaag ttcagcatgg gtgtgccttc atacaataat attttctct 2000 ttgtctccaa ctaatataaa atgttttgct aaatcttaca atttgaaagt 2050 aaaaataaac cagagtgatc aagttaaacc atacactatc tctaagtaac 2100 gaaggagcta ttggactgta aaaatctctt cctgcactga caatggggtt 2150 tgagaatttt gccccacact aactcagttc ttgtgatgag agacaattta 2200 ataacagtat agtaaatata ccatatgatt tctttagttg tagctaaatg 2250 ttagatccac cgtgggaaat cattcccttt aaaatgacag cacagtccac 2300 tcaaaggatt gcctagcaat acagcatctt ttcctttcac tagtccaagc 2350 caaaaatttt aagatgattt gtcagaaagg gcacaaagtc ctatcaccta 2400 atattacaag agttggtaag cgctcatcat taattttatt ttgtggcagg 2450 tattatgaca gtcgacctgg agggtatgga tatggatatg gacgttccag 2500 agactataat ggcagaaacc agggtggtta tgaccgctac tcaggaggaa 2550 attacagaga caattatgac aactgaaatg agacatgcac ataatataga 2600 tacacaagga ataatttctg atccaggatc gtccttccaa atggctgtat 2650 ttataaaggt ttttggagct gcactgaagc atcttatttt atagtatatc 2700 aaccttttgt ttttaaattg acctgccaag gtagctgaag accttttaga 2750 cagttccatc tttttttta aattttttct gcctatttaa agacaaatta 2800 tgggacgttt gtcaaaaaaa aaaaaaaaaa aaaaaaaaa 2840

<210> 612

<211> 352

<212> PRT

<213> Homo Sapien

<400> 612

Met Met Leu Leu Val Gln Gly Ala Cys Cys Ser Asn Gln Trp Leu
1 5 10 15

Ala Ala Val Leu Leu Ser Leu Cys Cys Leu Leu Pro Ser Cys Leu 20 25 30

Pro Ala Gly Gln Ser Val Asp Phe Pro Trp Ala Ala Val Asp Asn 35 40 45

Met Met Val Arg Lys Gly Asp Thr Ala Val Leu Arg Cys Tyr Leu 50 55 60

Glu Asp Gly Ala Ser Lys Gly Ala Trp Leu Asn Arg Ser Ser Ile 65 70 75

Ile Phe Ala Gly Gly Asp Lys Trp Ser Val Asp Pro Arg Val Ser 80 85 90

Ile Ser Thr Leu Asn Lys Arg Asp Tyr Ser Leu Gln Ile Gln Asn 95 100 105

Val Asp Val Thr Asp Asp Gly Pro Tyr Thr Cys Ser Val Gln Thr 110 115 120

Gln His Thr Pro Arg Thr Met Gln Val His Leu Thr Val Gln Val 125 130 135

Pro Pro Lys Ile Tyr Asp Ile Ser Asn Asp Met Thr Val Asn Glu 140 145 150

Gly Thr Asn Val Thr Leu Thr Cys Leu Ala Thr Gly Lys Pro Glu 155 160 165

Pro Ser Ile Ser Trp Arg His Ile Ser Pro Ser Ala Lys Pro Phe 170 175 180

Glu Asn Gly Gln Tyr Leu Asp Ile Tyr Gly Ile Thr Arg Asp Gln 185 190 195

Ala Gly Glu Tyr Glu Cys Ser Ala Glu Asn Ala Val Ser Phe Pro 200 205 210

Asp Val Arg Lys Val Lys Val Val Val Asn Phe Ala Pro Thr Ile 215 220 225

Gln Glu Ile Lys Ser Gly Thr Val Thr Pro Gly Arg Ser Gly Leu

				230					235					240
Ile	Arg	Cys	Glu	Gly 245	Ala	Gly	Val	Pro	Pro 250	Pro	Ala	Phe	Glu	Trp 255
Tyr	Lys	Gly	Glu	Lys 260	Lys	Leu	Phe	Asn	Gly 265	Gln	Gln	Gly	Ile	Ile 270
Ile	Gln	Asn	Phe	Ser 275	Thr	Arg	Ser	Ile	Leu 280	Thr	Val	Thr	Asn	Val 285
Thr	Gln	Glu	His	Phe 290	Gly	Asn	Tyr	Thr	Cys 295	Val	Ala	Ala	Asn	Lys 300
Leu	Gly	Thr	Thr	Asn 305	Ala	Ser	Leu	Pro	Leu 310	Asn	Pro	Pro	Ser	Thr 315
Ala	Gln	Tyr	Gly	Ile 320	Thr	Gly	Ser	Ala	Asp 325	Val	Leu	Phe	Ser	Cys 330
Trp	Tyr	Leu	Val	Leu 335	Thr	Leu	Ser	Ser	Phe 340	Thr	Ser	Ile	Phe	Tyr 345
Leu	Lys	Asn	Ala	Ile 350	Leu	Gln								

<210> 613 <211> 1797 <212> DNA <213> Homo Sapien

<400> 613
agtggttcga tgggaaggat ctttctccaa gtggttcctc ttgaggggag 50

catttctgct ggctccagga ctttggccat ctataaagct tggcaatgag 100
aaataagaaa attctcaagg aggacgagct cttgagtgag acccaacaag 150
ctgcttttca ccaaattgca atggagcctt tcgaaatcaa tgttccaaag 200
cccaagagga gaaatggggt gaacttctcc ctagctgtgg tggtcatcta 250
cctgatcctg ctcaccgctg gcgctgggct gctggtgtc caagttctga 300
atctgcaggc gcggctccgg gtcctggaga tgtatttcct caatgacact 350
ctggcggctg aggacagccc gtccttctcc ttgctgcagt cagcacaccc 400
tggagaacac ctggctcagg gtgcatcgag gctgcaagtc ctgcaggccc 450
aactcacctg ggtccgcgtc agccatgagc acttgctga gcgggtagac 500
aacttcactc caagacccagg gatgttcaga atcaaaggtg aacaaggcgc 550
cccaggtctt caaggtcaca agggggccat gggcatgcct ggtgcccctg 600
gcccgccggg accacctgct gagaagggag ccaagggggc tatgggacga 650

```
gatggagcaa caggcccctc gggaccccaa ggcccaccgg gagtcaaggg 700
agaggcgggc ctccaaggac cccagggtgc tccagggaag caaggagcca 750
ctggcacccc aggaccccaa ggagagaagg gcagcaaagg cgatgggggt 800
ctcattggcc caaaagggga aactggaact aagggagaga aaggagacct 850
gggtctccca ggaagcaaag gggacagggg catgaaagga gatqcaqqqq 900
tcatggggcc tcctggagcc caggggagta aaggtgactt cgggaggcca 950
ggcccaccag gtttggctgg ttttcctgga gctaaaggag atcaaggaca 1000
acctggactg cagggtgttc cgggccctcc tggtgcagtg ggacacccag 1050
gtgccaaggg tgagcctggc agtgctggct cccctgggcg agcaggactt 1100
ccagggagcc ccgggagtcc aggagccaca ggcctgaaag gaagcaaagg 1150
ggacacagga cttcaaggac agcaaggaag aaaaggagaa tcaggagttc 1200
caggccctgc aggtgtgaag ggagaacagg ggagcccagg gctqqcaqqt 1250
cccaagggag cccctggaca agctggccag aagggagacc agggagtgaa 1300
aggatcttct ggggagcaag gagtaaaggg agaaaaaggt gaaagaggtg 1350
aaaactcagt gtccgtcagg attgtcggca gtagtaaccg aggccgggct 1400
gaagtttact acagtggtac ctgggggaca atttgcgatg acgagtggca 1450
aaattotgat gocattgtot totgoogoat gotgggttao tocaaaqqaa 1500
gggccctgta caaagtggga gctggcactg ggcagatctg gctggataat 1550
gttcagtgtc ggggcacgga gagtaccctg tggagctgca ccaaqaataq 1600
ctggggccat catgactgca gccacgagga ggacqcagqc gtggagtgca 1650
gegtetgace eggaaaceet tteaettete tgeteeegag gtgteetegg 1700
gctcatatgt gggaaggcag aggatctctg aggagttccc tggggacaac 1750
tgagcagcct ctggagaggg gccattaata aagctcaaca tcattga 1797
```

<210> 614

<211> 520

<212> PRT

<213> Homo Sapien

<400> 614

Met Arg Asn Lys Lys Ile Leu Lys Glu Asp Glu Leu Leu Ser Glu
1 5 10 15

Thr Gln Gln Ala Ala Phe His Gln Ile Ala Met Glu Pro Phe Glu
20 25 30

Ile Asn Val Pro Lys Pro Lys Arg Arg Asn Gly Val Asn Phe Ser Leu Ala Val Val Ile Tyr Leu Ile Leu Leu Thr Ala Gly Ala Gly Leu Leu Val Val Gln Val Leu Asn Leu Gln Ala Arg Leu Arg Val Leu Glu Met Tyr Phe Leu Asn Asp Thr Leu Ala Ala Glu Asp 80 Ser Pro Ser Phe Ser Leu Leu Gln Ser Ala His Pro Gly Glu His 100 Leu Ala Gln Gly Ala Ser Arg Leu Gln Val Leu Gln Ala Gln Leu 120 110 Thr Trp Val Arg Val Ser His Glu His Leu Leu Gln Arg Val Asp Asn Phe Thr Gln Asn Pro Gly Met Phe Arg Ile Lys Gly Glu Gln Gly Ala Pro Gly Leu Gln Gly His Lys Gly Ala Met Gly Met Pro Gly Ala Pro Gly Pro Pro Gly Pro Pro Ala Glu Lys Gly Ala Lys Gly Ala Met Gly Arg Asp Gly Ala Thr Gly Pro Ser Gly Pro Gln Gly Pro Pro Gly Val Lys Gly Glu Ala Gly Leu Gln Gly Pro Gln 210 Gly Ala Pro Gly Lys Gln Gly Ala Thr Gly Thr Pro Gly Pro Gln Gly Glu Lys Gly Ser Lys Gly Asp Gly Gly Leu Ile Gly Pro Lys Gly Glu Thr Gly Thr Lys Gly Glu Lys Gly Asp Leu Gly Leu Pro Gly Ser Lys Gly Asp Arg Gly Met Lys Gly Asp Ala Gly Val Met 270 Gly Pro Pro Gly Ala Gln Gly Ser Lys Gly Asp Phe Gly Arg Pro 280 Gly Pro Pro Gly Leu Ala Gly Phe Pro Gly Ala Lys Gly Asp Gln 300 Gly Gln Pro Gly Leu Gln Gly Val Pro Gly Pro Pro Gly Ala Val 310 Gly His Pro Gly Ala Lys Gly Glu Pro Gly Ser Ala Gly Ser Pro

325 330 320 Gly Arg Ala Gly Leu Pro Gly Ser Pro Gly Ser Pro Gly Ala Thr Gly Leu Lys Gly Ser Lys Gly Asp Thr Gly Leu Gln Gly Gln Gln 360 350 Gly Arg Lys Gly Glu Ser Gly Val Pro Gly Pro Ala Gly Val Lys 365 Gly Glu Gln Gly Ser Pro Gly Leu Ala Gly Pro Lys Gly Ala Pro 390 380 Gly Gln Ala Gly Gln Lys Gly Asp Gln Gly Val Lys Gly Ser Ser Gly Glu Gln Gly Val Lys Gly Glu Lys Gly Glu Arg Gly Glu Asn 420 415 Ser Val Ser Val Arg Ile Val Gly Ser Ser Asn Arg Gly Arg Ala Glu Val Tyr Tyr Ser Gly Thr Trp Gly Thr Ile Cys Asp Asp Glu 450 Trp Gln Asn Ser Asp Ala Ile Val Phe Cys Arg Met Leu Gly Tyr Ser Lys Gly Arg Ala Leu Tyr Lys Val Gly Ala Gly Thr Gly Gln 480 Ile Trp Leu Asp Asn Val Gln Cys Arg Gly Thr Glu Ser Thr Leu 490 Trp Ser Cys Thr Lys Asn Ser Trp Gly His His Asp Cys Ser His 510 505 Glu Glu Asp Ala Gly Val Glu Cys Ser Val 520 515 <210> 615 <211> 647 <212> DNA

<213> Homo Sapien

<400> 615
 cccacgcgtc cgaaggcaga caaaggttca tttgtaaaga agctccttcc 50

agcacctcct ctcttctcct tttgcccaaa ctcacccagt gagtgtgagc 100
atttaagaag catcctctgc caagaccaaa aggaaagaag aaaaagggcc 150
aaaagccaaa atgaaactga tggtacttgt tttcaccatt gggctaactt 200
tgctgctagg agttcaagcc atgcctgcaa atcgcctctc ttgctacaga 250
aagatactaa aagatcacaa ctgtcacaac cttccggaag gagtagctga 300

cctgacacag attgatgtca atgtccagga tcatttctgg gatgggaagg 350 gatgtgagat gatctgttac tgcaacttca gcgaattgct ctgctgccca 400 aaagacgttt tctttggacc aaagatctct ttcgtgattc cttgcaacaa 450 tcaatgagaa tcttcatgta ttctggagaa caccattcct gatttcccac 500 aaactgcact acatcagtat aactgcattt ctagtttcta tatagtgcaa 550 tagagcatag attctataaa ttcttacttg tctaagacaa gtaaatctgt 600 gttaaacaag tagtaataaa agttaattca atctaaaaaa aaaaaaa 647

<210> 616

<211> 98

<212> PRT

<213> Homo Sapien

<400> 616

Met Lys Leu Met Val Leu Val Phe Thr Ile Gly Leu Thr Leu Leu
1 5 10 15

Leu Gly Val Gln Ala Met Pro Ala Asn Arg Leu Ser Cys Tyr Arg $20 \hspace{1cm} 25 \hspace{1cm} 30$

Lys Ile Leu Lys Asp His Asn Cys His Asn Leu Pro Glu Gly Val 35 40 45

Ala Asp Leu Thr Gln Ile Asp Val Asn Val Gln Asp His Phe Trp 50 55 60

Asp Gly Lys Gly Cys Glu Met Ile Cys Tyr Cys Asn Phe Ser Glu 65 70 75

Leu Leu Cys Cys Pro Lys Asp Val Phe Phe Gly Pro Lys Ile Ser 80 85 90

Phe Val Ile Pro Cys Asn Asn Gln

<210> 617

<211> 2558

<212> DNA

<213> Homo Sapien

<400> 617

cecaegegte egeggaegeg tgggetggae eccaeggtetg gagegaatte 50 cageetgeag ggetgataag egaggeatta gtgagattga gagagaettt 100 acceegeegt ggtggttgga gggegegeag tagageagea geaeaggege 150 gggteeeggg aggeeggete tgetegegee gagatgtgga ateteettea 200 egaaacegae teggetgtgg ecaeeggege eegeeeggee tggetgtgeg 250 etggggeget ggtgetgeg ggtggettet tteteetegg etteetette 300

gggtggttta taaaatcctc caatgaagct actaacatta ctccaaagca 350 taatatgaaa gcatttttgg atgaattgaa agctgagaac atcaagaagt 400 tcttacataa ttttacacag ataccacatt tagcaggaac agaacaaaac 450 tttcagcttg caaagcaaat tcaatcccag tggaaagaat ttggcctgga 500 ttctgttgag ctagctcatt atgatgtcct gttgtcctac ccaaataaga 550 ctcatcccaa ctacatctca ataattaatg aagatggaaa tgagattttc 600 aacacatcat tatttgaacc acctcctcca ggatatgaaa atgtttcgga 650 tattgtacca cctttcagtg ctttctctcc tcaaggaatg ccagagggcg 700 atctagtgta tgttaactat gcacgaactg aagacttctt taaattggaa 750 cgggacatga aaatcaattg ctctgggaaa attgtaattg ccagatatgg 800 gaaagttttc agaggaaata aggttaaaaa tgcccagctg gcaggggcca 850 aaggagtcat tctctactcc gaccctgctg actactttgc tcctggggtg 900 aagteetate cagaeggttg gaatetteet ggaggtggtg tecagegtgg 950 aaatatccta aatctgaatg gtgcaggaga ccctctcaca ccaggttacc 1000 cagcaaatga atatgcttat aggcgtggaa ttgcagaggc tgttggtctt 1050 ccaagtattc ctgttcatcc aattggatac tatgatgcac agaagctcct 1100 agaaaaaatg ggtggctcag caccaccaga tagcagctgg agaggaagtc 1150 tcaaagtgcc ctacaatgtt ggacctggct ttactggaaa cttttctaca 1200 caaaaagtca agatgcacat ccactctacc aatgaagtga cgagaattta 1250 caatgtgata ggtactctca gaggagcagt ggaaccagac agatatgtca 1300 ttctgggagg tcaccgggac tcatgggtgt ttggtggtat tgaccctcag 1350 agtggagcag ctgttgttca tgaaattgtg aggagctttg gaacactgaa 1400 aaaggaaggg tggagaccta gaagaacaat tttgtttgca agctgggatg 1450 cagaagaatt tggtcttctt ggttctactg agtgggcaga ggagaattca 1500 agactccttc aagagcgtgg cgtggcttat attaatgctg actcatctat 1550 agaaggaaac tacactctga gagttgattg tacaccgctg atgtacagct 1600 tggtacacaa cctaacaaaa gagctgaaaa gccctgatga aggctttgaa 1650 ggcaaatctc tttatgaaag ttggactaaa aaaagtcctt ccccagagtt 1700 cagtggcatg cccaggataa gcaaattggg atctggaaat gattttgagg 1750 tgttcttcca acgacttgga attgcttcag gcagagcacg gtatactaaa 1800 aattgggaaa caaacaaatt cagcggctat ccactgtatc acagtgtcta 1850 tgaaacatat gagttggtgg aaaagtttta tgatccaatg tttaaatatc 1900 acctcactgt ggcccaggtt cgaggaggga tggtgtttga gctagccaat 1950 tccatagtgc tcccttttga ttgtcgagat tatgctgtag ttttaagaaa 2000 gtatgctgac aaaatctaca gtatttctat gaaacatcca caggaaatga 2050 agacatacag tgtatcattt gattcacttt tttctgcagt aaagaatttt 2100 acagaaattg cttccaagtt cagtgagaga ctccaggact ttgacaaaag 2150 caacccaata gtattaagaa tgatgaatga tcaactcatg tttctggaaa 2200 gagcatttat tgatccatta gggttaccag acaggccttt ttataggcat 2250 gtcatctatg ctccaagcag ccacaacaag tatgcagggg agtcattccc 2300 aggaatttat gatgctctgt ttgatattga aagcaaagtg gacccttcca 2350 aggcctgggg agaagtgaag agacagattt atgttgcagc cttcacagtg 2400 caggcagctg cagagacttt gagtgaagta gcctaagagg attttttaga 2450 gaatccgtat tgaatttgtg tggtatgtca ctcagaaaga atcgtaatgg 2500 gtatattgat aaattttaaa attggtatat ttgaaataaa gttgaatatt 2550 atatataa 2558

<210> 618

<211> 750

<212> PRT

<213> Homo Sapien

<400> 618

Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala 1 5 10 15

Arg Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly 20 25 30

Gly Phe Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser 35 40 45

Ser Asn Glu Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala 50 55 60

Phe Leu Asp Glu Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu His
65 70 75

Asn Phe Thr Gln Ile Pro His Leu Ala Gly Thr Glu Gln Asn Phe 80 85 90

Gln Leu Ala Lys Gln Ile Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His Tyr Asp Val Leu Leu Ser Tyr Pro 110 Asn Lys Thr His Pro Asn Tyr Ile Ser Ile Ile Asn Glu Asp Gly 125 Asn Glu Ile Phe Asn Thr Ser Leu Phe Glu Pro Pro Pro Gly 150 145 140 Tyr Glu Asn Val Ser Asp Ile Val Pro Pro Phe Ser Ala Phe Ser 160 Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr Val Asn Tyr Ala 180 175 Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met Lys Ile Asn Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val Phe Arg 210 205 Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys 240 Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Gly Val Gln Arg Gly Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro 270 Gly Tyr Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu 280 Ala Val Gly Leu Pro Ser Ile Pro Val His Pro Ile Gly Tyr Tyr 300 295 Asp Ala Gln Lys Leu Leu Glu Lys Met Gly Gly Ser Ala Pro Pro Asp Ser Ser Trp Arg Gly Ser Leu Lys Val Pro Tyr Asn Val Gly 325 Pro Gly Phe Thr Gly Asn Phe Ser Thr Gln Lys Val Lys Met His 335 Ile His Ser Thr Asn Glu Val Thr Arg Ile Tyr Asn Val Ile Gly 350 355 Thr Leu Arg Gly Ala Val Glu Pro Asp Arg Tyr Val Ile Leu Gly 370 Gly His Arg Asp Ser Trp Val Phe Gly Gly Ile Asp Pro Gln Ser

				380					385					390
Gly 2	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400	Ser	Phe	Gly	Thr	Leu 405
Lys :	Lys	Glu	Gly	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile	Leu	Phe	Ala	Ser 420
Trp	Asp	Ala	Glu	Glu 425	Phe	Gly	Leu	Leu	Gly 430	Ser	Thr	Glu	Trp	Ala 435
Glu	Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala	Tyr	Ile 450
Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val	Asp 465
Cys	Thr	Pro	Leu	Met 470	Tyr	Ser	Leu	Val	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495
Ser	Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510
Arg	Ile	Ser	Lys	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525
Gln	Arg	Leu	Gly	Ile 530	Ala	Ser	Gly	Arg	Ala 535	Arg	Tyr	Thr	Lys	Asn 540
Trp	Glu	Thr	Asn	Lys 545	Phe	Ser	Gly	Tyr	Pro 550	Leu	Tyr	His	Ser	Val 555
Tyr	Glu	Thr	Tyr	Glu 560	Leu	Val	Glu	Lys	Phe 565	Tyr	Asp	Pro	Met	Phe 570
Lys	Tyr	His	Leu	Thr 575	Val	Ala	Gln	. Val	Arg 580	Gly	Gly	Met	Val	Phe 585
Glu	Leu	Ala	Asn	Ser 590		Val	Leu	Pro	Phe 595	Asp	Cys	Arg	Asp	Tyr 600
Ala	Val	. Val	Leu	Arg 605		Tyr	Ala	Asp	610	Ile	Tyr	Ser	lle	Ser 615
Met	Lys	His	Pro	620		. Met	Lys	Thr	Tyr 625	Ser	Val	Ser	: Phe	630
Ser	Leu	ı Phe	Ser	Ala 635		Lys	a Asr	n Ph∈	Thr 640	Glu	Ile	Ala	. Ser	Lys 645
Phe	Ser	Glu	Arg	650		a Asp) Phe	e Asp	655	s Ser	Asn	Pro) Ile	Val 660
Leu	Arg	g Met	: Met	Asr. 665		Glr	ı Leı	ı Met	Phe 670	e Leu	ı Glu	ı Arg	ŋ Alā	Phe 675

```
Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg His Val
                 680
Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser Phe
                 695
Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
                 710
Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala
                                     730
                 725
Ala Phe Thr Val Gln Ala Ala Glu Thr Leu Ser Glu Val Ala
                                     745
<210> 619
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 619
agatgtgaag gtgcaggtgt gccg 24
<210> 620
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 620
gaacatcagc gctcccggta attcc 25
<210> 621
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 621
 ccagcetttg aatggtacaa aggagagaag aagetettea atggee 46
<210> 622
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 622
 ccaaactcac ccagtgagtg tgagc 25
```

ı,Ö

: 33

: 1551

, .E.

```
<210> 623
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 623
tgggaaatca ggaatggtgt tctcc 25
<210> 624
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide probe
<400> 624
cttgttttca ccattgggct aactttgctg ctaggagttc aagccatgcc 50
```