MASx52: Assignment 5

1. Consider the SDE

$$dX_t = (t + X_t) dt + 2t dB_t.$$

(a) Write this SDE in integral form, and show that $f(t) = \mathbb{E}[X_t]$ satisfies the differential equation

$$f'(t) = t + f(t)$$

Show that this equation is satisfied by $f(t) = Ce^t - t - 1$.

(b) Let $Y_t = X_t^2$. Show that

$$dY_t = 2(2t^2 + tX_t + X_t^2) dt + 4tX_t dB_t$$

(c) Show that $v(t) = \mathbb{E}[X_t^2]$ satisfies the differential equation

$$v'(t) = 2(2t^2 + tf(t) + v(t)).$$

- 2. (a) Within the Black-Scholes model, use the risk neutral valuation formula find the prices at time t of the contingent claims
 - i. $\Phi(S_T) = 3S_T + 5$, where $0 \le t \le T$.
 - ii. $\Psi(S_T) = S_1 S_T + 1$, where $1 \le t \le T$.
 - (b) With the same contingents claims as in (a):
 - i. Describe a constant portfolio strategy that replicates $\Phi(S_T)$ during time [0,T].
 - ii. Is it possible to replicate $\Psi(S_T)$ using a constant portfolio?
 - (c) Suppose that our portfolio at time 0 consists of a single contract with contingent claim $\Phi(S_T) = 3S_T + 5$. Calculate the amount of stock that we would need to buy/sell in order to make our portfolio delta neutral at time 0.
- 3. [On Semester 1] Consider an urn, containing two colours of balls, black and red. At time n = 0, the urn contains one black ball and one red ball. Then, at each time n = 1, 2, ..., we do the following:
 - Draw a ball from the urn. Record the colour of this ball and place it back into the urn.
 - Add two new balls to the urn, of the same colour as the drawn ball.

Therefore, at time n, the urn contains 2 + 2n balls. Let B_n denote the number of red balls in the urn, and let

$$M_n = \frac{B_n}{2 + 2n}.$$

(a) Show that M_n is a martingale, with respect to the filtration $\mathcal{F}_n = \sigma(B_i : i \leq n)$.

1

- (b) Deduce that there exists a random variable M_{∞} such that $M_n \stackrel{a.s.}{\to} M_{\infty}$.
- (c) Show that $\mathbb{P}[M_n \leq \frac{1}{2}] = \mathbb{P}[M_n \geq \frac{1}{2}]$ for all n.