Deformable Model with Adaptive Mesh and Automated Topology Changes

Jacques-Olivier Lachaud
Benjamin Taton

Laboratoire Bordelais de Recherche en Informatique (LaBRI)

Outline

- 1. Motivations
- 2. Description of the deformable model
 - 2.1 Resolution adaptation by changing metrics
 - 2.2 Topology adaptation
 - 2.3 Dynamics
- 3. Defining metrics with respect to images
 - 3.1 Required properties
 - 3.2 Building metrics from images
- 4. Results
- 5. Conclusion and perspectives

Segmentation/Reconstruction of large 3D images.

- steady technical improvements of acquisition devices,
- increase of image resolution and hence of image size.

Segmentation/Reconstruction of large 3D images.

Deformable templates, superquadrics, Fourier snakes...

- reduced set of shape prameters me robust and efficient,
- lack of genericity: new problem mew model.

Segmentation/Reconstruction of large 3D images.

Deformable templates, superquadrics, not generic enough Fourier snakes...

Fully generic models (T-Snakes, Simplex meshes, Level-sets...)

- very wide range of shapes,
- number of shape parameters directly determined by image resolution heavy computational costs.

Segmentation/Reconstruction of large 3D images.

Deformable templates, superquadrics, Fourier snakes...

not generic enough

Fully generic models (T-Snakes, Simplex meshes, Level-sets...)

computationally expensive

Objective

- To build a deformable model
 - that can recover objects with any topology,
 - with costs more independent from the size of input data.

Explicit model

- Closed triangulated surface,
- Dynamics of a mass-spring system that undergoes
 - image forces,
 - regularizing internal forces,
 - any other additional force...

Explicit model

- Closed triangulated surface,
- Dynamics of a mass-spring system that undergoes
 - image forces,
 - regularizing internal forces,
 - any other additional force...

Regular sampling of the model mesh

Explicit model

- Closed triangulated surface,
- Dynamics of a mass-spring system that undergoes
 - image forces,
 - regularizing internal forces,
 - any other additional force...

Regular sampling of the model mesh

Transformed into adaptive sampling by changing metrics

Explicit model

- Closed triangulated surface,
- Dynamics of a mass-spring system that undergoes
 - image forces,
 - regularizing internal forces,
 - any other additional force...

Regular sampling of the model mesh

Transformed into adaptive sampling by changing metrics

Automated topology changes

Regular Sampling

Regular sampling using distance constraints

$$\delta \le d_E(u, v) \le \zeta \delta$$

Where

- u, v are neighbour vertices,
- \diamond d_E denotes the Euclidean distance,
- \diamond δ determines the global resolution of the model,
- \diamond ζ is the ratio between the lengths of the longest and smallest edge on the mesh.

Regular Sampling

Regular sampling using distance constraints

$$\delta \le d_E(u, v) \le \zeta \delta$$

Restoring constraints

Edge too short: contraction (+ special case...)

Edge too long: split

Euclidean distance replaced by a Riemannian distance

$$\delta \le d_R(u,v) \le \zeta \delta$$

Euclidean distance replaced by a Riemannian distance

$$\delta \leq d_R(u,v) \leq \zeta \delta$$

If d_R underestimates distances

edge lengths fall under the δ threshold

edges contract and vertex density decreases.

Euclidean distance replaced by a Riemannian distance

$$\delta \leq d_R(u,v) \leq \zeta \delta$$

If d_R underestimates distances

edge lengths fall under the δ threshold

edges contract and vertex density decreases.

If d_R overestimates distances

edge lengths exceed the $\zeta\delta$ threshold

edges split and vertex density increases.

Euclidean distance replaced by a Riemannian distance

$$\delta \leq d_R(u,v) \leq \zeta \delta$$

The new distance d_R should

- overestimate distances in interesting parts of the image to increase accuracy,
- underestimate distances elsewhere to decrease accuracy.

Euclidean length of an elementary displacement \vec{ds}

$$L_E(\vec{ds}) = \sqrt{\vec{ds} \times {}^t \vec{ds}}$$

Riemannian length of an elementary displacement \vec{ds}

$$L_R(\vec{ds}) = \sqrt{\vec{ds} \times G(x_1, \dots x_n) \times \vec{ds}}$$

Where G is a Riemannian metric, i.e.

- $\diamond G(x_1, \ldots x_n)$ is a dot product,
- \diamond *G* is continous.

Which means that $L_R(\vec{ds})$ depends on both

- \diamond the displacement \vec{ds} ,
- \diamond the origin $(x_1, \dots x_n)$ of the displacement.

Riemannian length of an elementary displacement \vec{ds}

$$L_R(\vec{ds}) = \sqrt{\vec{ds} \times G(x_1, \dots x_n) \times \vec{ds}}$$

Length of a path γ

$$L_R(\gamma) = \int_0^1 \sqrt{\dot{\dot{\gamma}}(t) \times G(\gamma(t)) \times \dot{\dot{\gamma}}(t)} dt$$

Length of a path \simeq Sum of the lengths of the elementary displacements it is composed of.

Riemannian length of an elementary displacement \vec{ds}

$$L_R(\vec{ds}) = \sqrt{\vec{ds} \times G(x_1, \dots x_n) \times \vec{ds}}$$

Length of a path γ

$$L_R(\gamma) = \int_0^1 \sqrt{\dot{\dot{\gamma}}(t) \times G(\gamma(t)) \times \dot{\dot{\gamma}}(t)} dt$$

Distance between two points u and v

$$d_R(u,v) = \inf \{ L_R(\gamma) | \gamma(0) = u, \gamma(1) = v \}$$

Euclidean unit ball

Local Riemannian unit ball

 $(\vec{v_1}, \mu_1)$, $(\vec{v_2}, \mu_2)$ local eigen decomposition of the metric.

Euclidean unit ball

Local Riemannian unit ball

Changing the Euclidean metric with a Riemannian metric G Locally expanding/contracting the space

Euclidean unit ball

Local Riemannian unit ball

Changing the Euclidean metric with a Riemannian metric G Locally expanding/contracting the space along \vec{v}_1 with the ratio $\frac{1}{\sqrt{U_1}}$,

Euclidean unit ball

Local Riemannian unit ball

Changing the Euclidean metric with a Riemannian metric G

Locally expanding/contracting the space

along $\vec{v_1}$ with the ratio $\frac{1}{\sqrt{\mu_1}}$, along $\vec{v_2}$ with the ratio $\frac{1}{\sqrt{\mu_2}}$,...

- detect self collisions of the model,
- perform appropriate local reconfigurations of the mesh.

- detect self collisions of the model,
- perform appropriate local reconfigurations of the mesh.

- detect self collisions of the model,
- perform appropriate local reconfigurations of the mesh.

- detect self collisions of the model,
- perform appropriate local reconfigurations of the mesh.

Detection of self collisions

Vertex \underline{u} crosses over the (a, b, c) face

Vertex \underline{u} enters one of the S_a , S_b or S_c spheres.

Detection of self collisions

 \diamond Collision if u and w are not neighbours and $d_E(u,w) \leq \lambda_E \zeta \delta$.

Detection of self collisions

 \diamond Collision if u and w are not neighbours and $d_E(u, w) \leq \lambda_E \zeta \delta$.

Local reconfigurations

Collision between two parts of the mesh

Special case of edge contraction

Detection of self collisions

 \diamond Collision if u and w are not neighbours and $d_E(u,w) \leq \lambda_E \zeta \delta$.

Local reconfigurations

Collision between two parts of the mesh

Special case of edge contraction

If the metric is changed

 $\diamond \lambda_E$ replaced with a new constant λ_R

Dynamics

Motion equations with a Euclidean Metric

$$\forall k \in \{1, \dots n\}, \quad m\ddot{x}_k = F_k$$

Dynamics

Motion equations with a Riemannian metric

$$\forall k \in \{1, \dots n\}, \quad m\ddot{x}_k = F_k - \sum_{i,j=1}^n \Gamma_{ij}^k \dot{x}_i \dot{x}_j$$

Addition of a corrective term that takes account of the metric

$$\diamond \ \Gamma_{ij}^k = \frac{1}{2} \sum_{l=1}^n g^{kl} \left(\frac{\partial g_{il}}{\partial x_j} + \frac{\partial g_{lj}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_l} \right)$$
 (Christoffel's symbols),

- $\diamond g_{ij}$ are the coefficients of the $G(x_1, \ldots x_n)$,
- $\diamond g^{kl}$ are the coefficients of $G^{-1}(x_1, \dots x_n)$,

Dynamics

Motion equations with a Riemannian metric

$$\forall k \in \{1, \dots n\}, \quad m\ddot{x}_k = F_k - \sum_{i,j=1}^n \Gamma_{ij}^k \dot{x}_i \dot{x}_j$$

Addition of a corrective term that takes account of the metric

$$\diamond \ \Gamma_{ij}^k = \frac{1}{2} \sum_{l=1}^n g^{kl} \left(\frac{\partial g_{il}}{\partial x_j} + \frac{\partial g_{lj}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_l} \right) \text{ (Christoffel's symbols),}$$

- $\diamond g_{ij}$ are the coefficients of the $G(x_1, \dots x_n)$,
- $\diamond g^{kl}$ are the coefficients of $G^{-1}(x_1, \dots x_n)$,

(corrective term neglected: second order in \dot{x} + no influence on the rest position)

Summary

Distance estimation

Regular sampling

Collision
detection
Local recon-

Motion equations

figurations

Euclidean Metric

$$\sqrt{\overrightarrow{uv} \times {}^t \overrightarrow{uv}}$$

 $\delta \le d_E(u, v) \le \zeta \delta$

uniform resolution

$$d_E(u,v) \le \lambda_E \zeta \delta$$

$$m\ddot{x} = F$$

Riemannian Metric

$$\inf_{\gamma} L_R(\gamma)$$

$$\delta \le d_R(u, v) \le \zeta \delta$$

adaptive resolution

$$d_R(u,v) \le \lambda_R \zeta \delta$$

unchanged

$$m\ddot{x}_k = F_k - \sum_{i,j=1}^n \Gamma_{ij}^k \dot{x}_i \dot{x}_j$$

Required Properties

Four kinds of situations

Choice of the metric

- Eigenvectors should correspond the normal and the principal directions of the contour,
- Eigenvalues should correspond to the strength and the principal curvatures of the contour.

Required Properties

Structure in the image	Expected resolution	Eigen structure of the metric		
No contour	low in all directions	$0 \simeq \mu_2 \simeq \mu_1 \simeq \mu_0$		
Flat contour	 low in the direction of the contour high in the orthogonal direction 	$0 \simeq \mu_2 \simeq \mu_1 \ll \mu_0$		
Tubular structure	 low in the direction of the structure high in both orthogonal directions 	$0 \simeq \mu_2 \ll \mu_1 \simeq \mu_0$		
Corner	high along all directions	$0 \ll \mu_2 \simeq \mu_1 \simeq \mu_0$		

Definition

The matrix $J_{\rho,\sigma}$ that represents the mapping:

$$\vec{v} \longrightarrow g_{\rho} * \left(\vec{\nabla} (g_{\sigma} * I) \cdot \vec{v} \right)^2$$

Which results in:

$$J_{
ho,\sigma} = g_{
ho} * \left(egin{array}{ccc} I_x^2 & I_x I_y & I_x I_z \\ I_x I_y & I_y^2 & I_y I_z \\ I_x I_z & I_y I_z & I_z^2 \end{array}
ight)$$

Definition

The matrix $J_{\rho,\sigma}$ that represents the mapping:

$$\vec{v} \longrightarrow$$

$$g_{\sigma} * I) \cdot \vec{v}$$

Interpretation

smoothes the input image,

Definition

The matrix $J_{\rho,\sigma}$ that represents the mapping:

$$\vec{v} \longrightarrow \vec{\nabla} (g_{\sigma} * I) \cdot \vec{v}$$

Interpretation

- smoothes the input image,
- characterizes direction and orientation of image gradient,

Definition

The matrix $J_{\rho,\sigma}$ that represents the mapping:

$$\vec{v} \longrightarrow \left(\vec{\nabla} (g_{\sigma} * I) \cdot \vec{v} \right)^2$$

Interpretation

- smoothes the input image,
- characterizes direction and orientation of image gradient,
- removes the orientation information,

Definition

The matrix $J_{\rho,\sigma}$ that represents the mapping:

$$\vec{v} \longrightarrow g_{\rho} * \left(\vec{\nabla} (g_{\sigma} * I) \cdot \vec{v} \right)^2$$

Interpretation

- smoothes the input image,
- characterizes direction and orientation of image gradient,
- removes the orientation information,
- integrates the direction information over a neighbourhood.

Properties of the eigenstructure of the structure tensor In the neighbourhood of a contour

- $\diamond \vec{v_1}$ orthogonal to image contours, ξ_1 contour strength,
- \diamond \vec{v}_2 , \vec{v}_3 principal directions of the contour, ξ_2 and ξ_3 qualitatively equivalent to principal curvatures.

no contour	0	\simeq	ξ_3	\simeq	ξ_2	\simeq	ξ_1
flat contour	0	2	ξ_3	~	ξ_2	«	ξ_1
sharp edge	0	2	ξ_3	«	ξ_2	2	ξ_1

Computer generated image

Object represented in the image

Slices extracted from the image

Eigen decomposition of the structure tensor

Object represented in the image

Isosurfaces of the second and third eigen values of the structure tensor of the image.

Segmentation/Reconstruction results

2163 vertices,

$$\delta = 2, \zeta = 2.5$$

3497 vertices,

$$\delta = 3, \zeta = 2.5,$$
 $1 \le \sqrt{\mu_2} \le \sqrt{\mu_1} \le \sqrt{\mu_0} \le 10$

8904 vertices

$$\delta = 1, \, \zeta = 2.5$$

One corner of the cube

Hole in the cube

Repartition of edge lengths

• fine model, • adaptive model, • coarse model

Computer generated image

Object represented in the image

Slices extracted from the image

Eigen decomposition of the structure tensor

Object represented in the image

Isosurfaces of the second and third eigen values of the structure tensor of the image.

Segmentation/Reconstruction results

2107 vertices

$$\delta = 2, \, \zeta = 2.5$$

4832 vertices

$$\delta = 3, \zeta = 2.5,$$
 $1 \le \sqrt{\mu_2} \le \sqrt{\mu_1} \le \sqrt{\mu_0} \le 10$

8542 vertices

$$\delta = 1, \, \zeta = 2.5$$

Repartition of edge lengths

• fine model, • adaptive model, • coarse model

Biomedical image (Head CT-scan)

Eigen decomposition of the structure tensor

An isosurface of the 2nd eigenvalue.

An isosurface of the 3rd eigenvalue.

Object in the image.

Segmentation/Reconstruction results

10.970 vertices

$$\delta = 0.012, \zeta = 2.5$$

23.142 vertices

$$\delta = 0.012, \zeta = 2.5$$
 $\delta = 0.024, \zeta = 2.5,$ $\delta = 0.005, \zeta = 2.5$

$$1 \le \sqrt{\mu_2} \le \sqrt{\mu_1} \le \sqrt{\mu_0} \le 15$$

46.590 vertices,

$$\delta = 0.005, \, \zeta = 2.5$$

Left ear

Orbit of the left eye viewed from behind left

Repartition of the edge length

• fine model, • adaptive model, • coarse model

Conclusion and Perspectives

Conclusion

- Deformable model that achieves both
 - adaptive topology,
 - adaptive resolution

Perspectives

- Initialization with adaptive resolution,
- Different ways of building metrics...