TFE4188 - Lecture 1

ESD and I/O

Housekeeping

Groups sets on blackboard, make sure you sign up this week. The username you get does not have to correspond to your AIC group name.

Change of review plan. Moved spec, design, layout and tapeout review to better match exercises

According to the updated plan, we'll have the specification review in two weeks. To complete that, you should fill in a confluence page with the plan for the design. Follow Specification Checklist

Exam will likely be oral

Will start f2f lectures from next week (24'th of January) in F6 gamle fysikk

Week	Book	Monday	Project plan	Exercise
2	CJM 1-6	Course intro, what I expect you to know, project, analog design fundamentals	, Specification	
3	Slides	ESD and IC Input/Output	Specification	x
4	CJM 7,8	Reference and bias	Specification	
5	CJM 12	Analog Front-end	M1. Specification review	x
6	CJM 11-14	Switched capacitor circuits	Design	
7	JSSC, CJM 18	State-of-the-art ADCs	Design	х
8	Slides	Low power radio recievers	Design	
9	Slides	Communication standards from circuit perspective	M2. Design review	Х
10	CJM 7.4, CFAS,+DC/DC	Voltage regulation	Layout	
11	CJM 19, CFAS	Clock generation	M3. Layout review	х
12	Paper	Energy sources	Layout/LPE simulation	
13	Slides	Chip infrastructure	Layout/LPE simulation	х
14		Tapeout review	M4. Tapeout review	
15		Easter		
16		Easter		
17		Exam repetition		

Goal for today

Understand the **real-world** constraints on our IC

Understand why you must always handle ESD on an IC

Plan: Make SUN PCB as a shield on top of a nRF52xxx Design Kit

Name	Min/Typ/Max	Comment
VDD	2.4 / 3.0 / 3.6	Supplied from nRF52DK. Second midlayer on SUN PCB
VDD_1V5	1.35 / 1.5 / 1.65	Internal LDO on SUN (Optional)
VSS	0	First midlayer on SUN PCB

Purpose

- Provide power to the IC
- Provide path for ESD currents

CK16KI

Digital output from LFXO on nRF52 (32768/2) via GPIOTE. Digital input on SUN

CK8M¹

Digital output from HFCLK on nRF52 via PPI to GPIOTE. Digital input on SUN

¹ After some thought. I don't think I can get 16MHz clock out of nRF52. The GPIO on nRF52 runs at 16 MHz, so 8 MHz is probably the highest we can go.

ARST_N

Active low reset.

Output from nRF52 GPIO so we can do software reset, but also include a reset button on the PCB, just in case.

Ensures that all flip-flops are in a known state before we start to configure SUN

Control

Name	Note	SUN
SLOAD	Serial load	Input
SCK	Shift clock	Input
SI	Shift in	Input
SO	Shift out	Output

Long shift register. Bit bang SI and SCK from nRF52. When all bits are shifted in, then set SLOAD high to load the control word.

TXD and TXD_CK

Name	Note	SUN
TXD	12-bit Digital output	Output
TXD_CK	Sample TXD on rising edge of TXD_CK	Output

If nRF52 is not fast enough to capture TXD at full speed, or has enough RAM to store values, then use Saleae logic analyzer.

Pin types on SUN

Туре	Name	Level	ESD
Supply connected to IO ring	P_VH_EV	VDD	Connected to VDD rail. Core clamp to VSS rail
Supply to core	P_VC_EV	VDD	Pin clamp to VDD and VSS
VSS	P_VL_EV	VDD	Connected to VSS rail
Digital input	P_DI_EV	VDD	Pin clamp to VDD and VSS. Secondary protection
Digital output	P_DO_EV	VDD	Pin clamp to VDD and VSS.

The real world constrains our IC

Know how the real system looks before you make your design.

What limits voltage, temperature, input/output in testing?

Electrostatic Discharge

If you make an IC, you must consider Electrostatic Discharge (ESD) Protection circuits

Standards for testing at JEDEC

When do ESD events occur?

Before or during mounting on PCB

Human body model (HBM)

Charged device model (CDM)

After mounting on PCB

Human body model (HBM)

System level ESD

Human body model (HBM)

Models a person touching a device with a finger

Long duration (around 100 ns)

Acts like a current source into a pin

Can usually be handled in the I/O ring

4 kV HBM ESD ⇒ 2.67 A peak current

What could we do for VSS \Rightarrow VDD?

Z-mm-mm-I

What could we do for VDD \Rightarrow VSS?

What could we do for PIN \Rightarrow VSS?

What could we do for VSS \Rightarrow PIN?

If you don't do the layout right³

Fig. 5. Layout top view of the self-protecting fully silicided I/O buffer in a CMOS IC product.

Fig. 6. SEM image of the fully silicided I/O buffer without ballasting after 2-kV PS-mode ESD stress. ESD failure is found on only one finger of the driver NMOS. Current filamentation is also observed on the surface of the driver NMOS without ballasting.

³New Ballasting Layout Schemes to Improve ESD Robustness of I/O Buffers in Fully Silicided CMOS Process

You must always handle ESD on an IC

- Do everything yourself
- Use libraries from foundry (gf013_esd)
- Get help www.sofics.com

Thanks!