Strategic Decision Making in the 3D Printing Industry - A Robust Decision Making (RDM) analysis

Pedro Nascimento de Lima

25 de setembro de 2018

- 1 Why 3D Printing
- 2 XLRM
- 3 Case Generation
- 4 Scenario Discovery
- 5 Tradeoffs
- 6 Second Iteration
- 7 Final Thoughts

Why 3D Printing

Key Features of 3D printing

■ 3D printing may

Why 3D Printing o●ooo

Why 3D Printing?

Why 3D Printing

00000

3D Printing is an emergint technology, but decision makers face uncertainty.

Positive Evidence

- 3D printing Industry has seen two digits growth consistently in the last few years:
- 3D printing is already reshaping supply chains across industries (e.g.: prothesis, aerospace, etc.);

Negative Evidence

- Major players have been observing declining profitability (e.g.: Stratasys, 3D Systems);
- Estimates of 3D printing growth diverge:

Why 3D Printing

Shaping events in the 3D Printing Industry

Patent Dynamics

Patent Dynamics and Expiration

The FDM patent expiration in 2007

Strategies Played by Key Players

Leading 3D printing players (e.g. 3D Systems and Stratasys) historically have been adopting a closed-source strategy. However, the key event leading to 3D printing growth was patent expiration.

Dynamyc Hipothesis 1: Holding Patents m

Why 3D Printing

00000

en Bances

Slide with Bullets

Model

XLRM

ŏ

Case Generation

Case Generation

Design of Experiments

■ Full factorial design of these variables, resulting in 54 strategies:

Variable	Meaning	Levels
$\overline{S_1}$	Market & Pricing Strategy. Defines wether the player	Agressive (1); Conservative (2)
	pursue an agressive marketing strategy to gain market share	
	(by cutting prices and accepting	
	excess capacity), or pursue a conservative strategy,	
S_1^{max} or	Desired Market Share. For a	20%; 30%; 40%
S_1^{min}	Conservative Strategy, the	
	player adopts the S_1^{max} , and for	

Candidate Strategy NPV across scenarios

Global Demand across scenarios

Market Share of the 4 Players in a given scenario

Player — P1 — P2 — P3 — P4

Net Present Value across strategies and Scenarios

Regret across strategies and Scenarios

Ranking Strategies by Regret

Lever	Capac. Strategy	Desired Mkt Share	R&D Inv.	Open Source R&D
19	0.3	0.05	0.0	217247495
31	0.4	0.05	0.0	261350277
25	0.2	0.05	0.0	261414542
13	0.4	0.10	0.0	327653642
1	0.3	0.10	0.0	332802086
27	0.2	0.05	0.5	353242981
21	0.3	0.05	0.5	365209080
7	0.2	0.10	0.0	375355405
32	0.4	0.05	0.0	424089389
20	0.3	0.05	0.0	449632071

Scenario Discovery

Tradeoffs

Second Iteration

Final Thoughts

Slide with Plot

Slide with Plot