Relações de Ordem Parcial Matemática Discreta

Prof. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

22 de fevereiro de 2021

Prévia

Requisitos

- Relações Binárias e suas Propriedades
- Técnicas de Demonstração de Teoremas
- Propriedades / Manipulação Algébrica

Esta apresentação...

- Discute as peculiaridades e vantagens de estabelecermos uma Relação de Ordem Parcial sobre um conjunto;
- Nos dá a base para trabalhar conceitos como Indução e Recursão na perspectiva dos computadores.

Prévia

Concluímos a aula anterior com a definição:

Definição

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Nesta aula, estudaremos algumas consequências que as relações de ordem parcial promovem sobre um conjunto e seus elementos.

Roteiro

Prévia

Relações de Ordem Parcial

Introdução: Ordenações e Propriedades Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas Elementos Maximais e Minimais Maior e Menor Elementos de um Poset

Discussão e Complementos

Exemplo de Algoritmo Justificado por Poset Definições Alternativas e Resultados

Considerações Finais

Definição

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Intuitivamente,

qualquer relação de **ordem** estabelece um critério para organizarmos objetos em termos de **antes** e **depois** (um critério de **precedência**).

Exemplos comuns:

- Ordem crescente / decrescente
- Ordem alfabética
- Por idade, altura, mês de nascimento, matrícula...

Definição

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Intuitivamente,

qualquer relação de **ordem** estabelece um critério para organizarmos objetos em termos de **antes** e **depois** (um critério de **precedência**).

Esta intuição é um pouco limitada...

 Exemplo: na relação ≤ sobre os inteiros, a perspectiva de "antes-depois" consegue falar apenas sobre números diferentes

Definição

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Intuitivamente,

qualquer relação de **ordem** estabelece um critério para organizarmos objetos em termos de **antes** e **depois** (um critério de **precedência**).

Mesmo assim, esta idéia pode ajudar a entender a definição

A intuição de antes e depois é necessariamente anti-simétrica:
 ordenando objetos A e B diferentes, é impossível colocarmos ao mesmo tempo A antes de B e B antes de A.

Definição

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Intuitivamente,

qualquer relação de **ordem** estabelece um critério para organizarmos objetos em termos de **antes** e **depois** (um critério de **precedência**).

Mesmo assim, esta idéia pode ajudar a entender a definição

A intuição de antes e depois é também transitiva:
 ordenando objetos A, B, C diferentes, se tivermos A antes de B e B antes de C, necessariamente teremos A antes de C.

Definição

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Intuitivamente,

qualquer relação de **ordem** estabelece um critério para organizarmos objetos em termos de **antes** e **depois** (um critério de **precedência**).

Por outro lado.

A intuição de antes e depois não é reflexiva:

quando consideremos cada objeto A individualmente, é impossível colocá-lo antes ou depois de si mesmo na ordem...

Invés disso, A precisa estar na mesma posição que A!

Definição

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Intuitivamente,

qualquer relação de **ordem** estabelece um critério para organizarmos objetos em termos de **antes** e **depois** (um critério de **precedência**).

Portanto, temos uma perspectiva ligeiramente melhor:

"antes ou na mesma posição" e "depois ou na mesma posição"

Roteiro

Prévia

Relações de Ordem Parcial

Introdução: Ordenações e Propriedades

Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas Elementos Maximais e Minimais Maior e Menor Elementos de um Poset

Discussão e Complementos

Exemplo de Algoritmo Justificado por Poset Definições Alternativas e Resultados

Considerações Finais

A relação ≤ no conjunto dos Inteiros é **reflexiva**, **anti-simétrica** e **transitiva**.

Além disso,

Para quaisquer dois inteiros n, m que escolhermos, podemos afirmar com certeza que $n \le m$ ou que $m \le n$.

Esta propriedade adicional é interessante, mas <u>NÃO É COMUM</u> a todas as relações que satisfazem às três propriedades.

Bruno

Clara

Ordens PARCIAIS?

Exemplo

Considere que desejamos ordenar as pessoas de um grupo por idade.

<u>Id</u> ade
21
20
18
19
20

Quem devemos listar primeiro...

- Entre Aline e Bruno?
- Entre Clara e Dario?
- Entre Bruno e Erica?

Exemplo

Considere que desejamos ordenar as pessoas de um grupo por idade.

Nome	<u>Id</u> ade
Aline	21
Bruno	20
Clara	18
Dario	19
Erica	20

- Como id(Bruno) < id(Aline), temos que "id(Bruno) ≤ id(Aline)"
- Como id(Clara) < id(Dario), temos que "id(Clara) ≤ id(Dario)"
- Mas como id(Bruno) = id(Erica), temos que "id(Bruno) ≤ id(Erica)" e também "id(Erica) ≤ id(Bruno)"

Exemplo

Considere que desejamos ordenar as pessoas de um grupo por idade.

Nome	<u>Id</u> ade
Aline	21
Bruno	20
Clara	18
Dario	19
Erica	20

Ordenando as idades destas pessoas, teremos

$$id(Clara) < id(Dario) < id(Bruno) = id(Erica) < id(Aline)$$

Mas quando ordenarmos as **pessoas**, precisamos levar em conta que, embora tenhamos id(Bruno) = id(Erica), **Bruno** e **Erica** são **pessoas diferentes!**

Para nossa conveniência, observemos $|\subseteq S \times S \text{ com } S = \{1, 2, 3, 4, 5\}$

OBSERVAÇÃO: Quando definida sobre \mathbb{N}^* ,

 $|\subseteq \mathbb{N}^* \times \mathbb{N}^*$ terá todos os pares $(x, y) \in \mathbb{N}^* \times \mathbb{N}^*$ tais que $x \mid y$.

Neste caso, | será

- reflexiva, pois para todo $x \in \mathbb{N}^*$, temos que $x \mid x$;
- anti-simétrica, pois para quaisquer $x, y \in \mathbb{N}^*$, teremos $x \mid y \in y \mid x$ se e somente se x = y;
- transitiva, pois para quaisquer $x, y, z \in \mathbb{N}^*$, se tivermos $x \mid y \in y \mid z$, teremos também que $x \mid z$.

Para nossa conveniência, observemos $|\subseteq S \times S \text{ com } S = \{1, 2, 3, 4, 5, 6\}$

Quando definida sobre S,

```
|\subseteq S \times S \text{ terá todos os pares } (x,y) \in S \times S \text{ tais que } x \mid y.
```

Neste caso, podemos listar todos os pares da relação. Teremos

```
|=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6)\}
```

Organizando-os pelo critério de divisibilidade, quem devemos listar primeiro...

- Entre 1 e 4? o 1, pois 1 | 4, mas 4 ∤ 1
- Entre 2 e 4? o 2, pois 2 | 4, mas 4 ∤ 2
- Entre 3 e 4? não há resposta, pois 3 ∤ 4 e 4 ∤ 3
- Entre 3 e 5? não há resposta, pois 3 ∤ 5 e 5 ∤ 3
- Entre 2 e 5? não há resposta, pois 2 ∤ 5 e 5 ∤ 2 ...

Neste situação, dizemos que 3 e 4 são incomparáveis.

O que aprendemos?

- Uma relação que seja reflexiva, anti-simétrica e transitiva induz alguma ordenação sobre elementos de um conjunto, mas ainda é possível que alguns destes elementos sejam incomparáveis no critério escolhido.
- Isso n\(\tilde{a}\) acontece quando comparamos inteiros usando ≤ ou ≥. Inv\(\tilde{e}\) são, todos os inteiros s\(\tilde{a}\) compar\(\tilde{e}\) nestas rela\(\tilde{c}\) es.

Estas relações são ditas <u>PARCIAIS</u> devido à possibilidade de existirem elementos incomparáveis.

Ordens PARCIAIS e Ordens TOTAIS

O que aprendemos?

- Uma relação que seja reflexiva, anti-simétrica e transitiva induz alguma ordenação sobre elementos de um conjunto, mas ainda é possível que alguns destes elementos sejam incomparáveis no critério escolhido.
- Isso n\(\tilde{a}\) acontece quando comparar inteiros usando ≤ ou ≥. Inv\(\tilde{s}\) disso, todos os inteiros s\(\tilde{a}\) compar\(\tilde{a}\) vies disso,

Estas relações são ditas <u>PARCIAIS</u> devido à possibilidade de existirem elementos incomparáveis.

Quando não existirem elementos incomparáveis, diremos que a Relação de Ordem Parcial é **TOTAL**. Neste caso, diremos ter uma Relação de Ordem Total.

Roteiro

Prévia

Relações de Ordem Parcia

Introdução: Ordenações e Propriedades Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas

Elementos Maximais e Minimais Maior e Menor Elementos de um Poset

Discussão e Complementos

Exemplo de Algoritmo Justificado por Poset Definições Alternativas e Resultados

Considerações Finais

Conjuntos Parcialmente Ordenados

Definição (Relação de Ordem Parcial)

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Definição (Conjunto Parcialmente Ordenado)

Um conjunto A com uma relação de ordem parcial $R \subseteq A \times A$ é chamado de **conjunto parcialmente ordenado** ou **poset** (do inglês partially ordered set).

Indicamos que A é um conjunto parcialmente ordenado por R através do par (A,R) e dizemos que os elementos de A são também elementos do poset.

Exemplo (1/3)

O par (\mathbb{Z}, \leq) é um poset, pois \leq é uma relação de ordem parcial em \mathbb{Z} .

Conjuntos Parcialmente Ordenados

Definição (Relação de Ordem Parcial)

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Definição (Conjunto Parcialmente Ordenado)

Um conjunto A com uma relação de ordem parcial $R \subseteq A \times A$ é chamado de **conjunto parcialmente ordenado** ou **poset** (do inglês partially ordered set).

Indicamos que A é um conjunto parcialmente ordenado por R através do par (A,R) e dizemos que os elementos de A são também elementos do poset.

Exemplo (2/3)

O par $(\mathbb{N}^*, |)$ é um poset, pois | é uma relação de ordem parcial em \mathbb{N}^* .

Conjuntos Parcialmente Ordenados

Definição (Relação de Ordem Parcial)

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Definição (Conjunto Parcialmente Ordenado)

Um conjunto A com uma relação de ordem parcial $R \subseteq A \times A$ é chamado de **conjunto parcialmente ordenado** ou **poset** (do inglês partially ordered set).

Indicamos que A é um conjunto parcialmente ordenado por R através do par (A,R) e dizemos que os elementos de A são também elementos do poset.

Exemplo (3/3)

O par $(\mathbb{Z}, |)$ <u>não é</u> um poset, pois | <u>não é</u> ordem parcial em \mathbb{Z} (não é reflexiva nem anti-simétrica).

Notação Comum

Usa-se o símbolo "≼" para representar relações de ordem parcial arbritárias.

Dado um poset (S, \leq) , podemos escrever:

- $a \leq b$, se $(a, b) \in \leq$
- $a \prec b$, se $a \neq b$ e $a \preccurlyeq b$

Como opção de leitura da notação, podemos ler:

- a ≺ b como "a precede b"

Obs. 1: Como \leq precisa ser anti-simétrica, teremos $a \leq b$ e $b \leq a$ se e somente se a = b.

Obs. 2: Repare nas similaridades entre \leq e \leq

Elementos Comparáveis/Incomparáveis

Definição (Elementos Comparáveis/Incomparáveis)

Dois elementos a e b de um poset (S, \preccurlyeq) são **comparáveis** se $a \preccurlyeq b$ ou $b \preccurlyeq a$. Quando $a \not\preccurlyeq b$ e $b \not\preccurlyeq a$, diremos que a e b são **incomparáveis**.

Exemplo

No poset $(\{1, 2, 3, 4, 5, 6\}, |)$, observamos que:

- 2 | 4, então 2 e 4 são comparáveis;
- 2 também é comparável a 1, 2 e 6, pois 1 | 2, 2 | 2 e 2 | 6;
- mas 2 e 3 são incomparáveis, pois 2 ∤ 3 e 3 ∤ 2;
- e 2 e 5 são incomparáveis, pois 2 ∤ 5 e 5 ∤ 2.

Relações de Ordem Totais

Definição (Elementos Comparáveis/Incomparáveis)

Dois elementos a e b de um poset (S, \preccurlyeq) são **comparáveis** se $a \preccurlyeq b$ ou $b \preccurlyeq a$. Quando $a \not\preccurlyeq b$ e $b \not\preccurlyeq a$, diremos que a e b são **incomparáveis**.

Definição (Ordem Total)

Se (S, \preccurlyeq) é um poset em que quaisquer dois elementos de S são comparáveis, S será chamado de conjunto totalmente ordenado $e \preccurlyeq$ será uma ordem total.

Um <u>conjunto totalmente ordenado</u> também pode ser chamado de **conjunto linearmente ordenado** ou **cadeia** e uma <u>ordem total</u> também pode ser chamada de **ordem linear**.

Roteiro

Prévia

Relações de Ordem Parcia

Introdução: Ordenações e Propriedades Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas

Elementos Maximais e Minimais

Maior e Menor Elementos de um Pose

Discussão e Complementos

Exemplo de Algoritmo Justificado por Pose Definições Alternativas e Resultados

Considerações Finais

Intuição

- Quando pensamos em ordenar objetos, nossa intuição mais comum nos levará a procurar quem seria o primeiro elemento a ser posto na ordem.
- Com ordens parciais, conceitos como primeiro e último precisam ser generalizados e podem muito bem não existir.

Exemplo (1/2)

Quem seriam o primeiro e o último elementos em...

• $(\{1,2,3,4,5,6\},\leq)$?

1 e 6, respectivamente

(N, ≤)?

1 será o primeiro, mas não há último

(ℤ, ≤)?

não há primeiro nem último

Intuição

- Quando pensamos em ordenar objetos, nossa intuição mais comum nos levará a procurar quem seria o primeiro elemento a ser posto na ordem.
- Com ordens parciais, conceitos como primeiro e último precisam ser generalizados e podem muito bem não existir.

Exemplo (2/2)

Quem seriam o primeiro e o último elementos em...

- ({1,2,3,4,5,6},|)? 1 seria "o primeiro", 4,5,6 seriam "últimos"
- ({2,3,4,5,6},|)? 2,3 seriam "primeiros", 4,5,6 seriam "últimos"
- ({2,3,4},|)? 2,3 seriam "primeiros", 3,4 seriam "últimos"

Formalmente, chamamos estes candidatos a iniciar e concluir listagens de ordem de elementos minimais e elementos maximais.

O objetivo real é identificar os extremos de cada poset.

Definição (Elementos Minimais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $b \preccurlyeq a$.

Exemplo (1/4)

No poset ($\{1,2,3,4\}$, |), o único elemento minimal é 1, pois 2 \nmid 1, 3 \nmid 1, 4 \nmid 1.

 $Em \mid = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\},$ observe como o único par onde 1 aparece na segunda posição é (1,1).

Definição (Elementos Minimais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $b \preccurlyeq a$.

Definição (Elementos Maximais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é maximal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $a \preccurlyeq b$.

Exemplo (1/4)

No poset $(\{1,2,3,4\},|)$, tanto 3 quanto 4 são maximais, pois $3 \nmid 1, 3 \nmid 2, 3 \nmid 4$ e também $4 \nmid 1, 4 \nmid 2, 4 \nmid 3$.

 $Em \mid = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$, observe como o único par onde 3 aparece na primeira posição é (3,3). Similarmente, o único par onde 4 aparece na primeira posição é (4,4).

Definição (Elementos Minimais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $b \preccurlyeq a$.

Definição (Elementos Maximais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é maximal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $a \preccurlyeq b$.

Exemplo (2/4)

No poset $(\mathbb{N}^*, |)$, o único elemento minimal é o 1, pois não existe nenhum elemento $n \neq 1$ em \mathbb{N}^* tal que $n \mid 1$.

Em contraste, $(\mathbb{N}^*, |)$ não tem elementos maximais, pois para todo $x \in \mathbb{N}^*$ existe algum $y \neq x$ em \mathbb{N}^* tal que x | y. Ou seja, todo inteiro positivo divide algum inteiro positivo diferente de si.

Definição (Elementos Minimais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $b \preccurlyeq a$.

Definição (Elementos Maximais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é maximal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $a \preccurlyeq b$.

Exemplo (3/4)

No poset (\mathbb{N}, \leq) , o único elemento minimal é o 0, pois não existe nenhum elemento $n \neq 0$ em \mathbb{N} tal que $n \leq 0$.

Em contraste, (\mathbb{N}, \leq) não tem elementos maximais, pois para todo número natural, existe ao menos um outro natural maior que ele.

Definição (Elementos Minimais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $b \preccurlyeq a$.

Definição (Elementos Maximais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é maximal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $a \preccurlyeq b$.

Exemplo (4/4)

No poset (\mathbb{N}, \geq) , o único elemento <u>maximal</u> é o 0, pois não existe nenhum elemento $n \neq 0$ em \mathbb{N} tal que $n \geq 0$.

Em contraste, (\mathbb{N}, \geq) <u>não tem elementos minimais</u>, pois para todo número natural, existe ao menos um outro natural maior que ele.

Roteiro

Prévia

Relações de Ordem Parcia

Introdução: Ordenações e Propriedades Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas Elementos Maximais e Minimais

Maior e Menor Elementos de um Poset

Discussão e Complementos

Exemplo de Algoritmo Justificado por Poset Definições Alternativas e Resultados

Considerações Finais

Maior e Menor Elementos de um Poset

Naturalmente, há um interesse especial em posets que apresentam um único elemento minimal ou maximal.

Definição (Elemento Mínimo de um Poset)

Um elemento a do poset (S, \preccurlyeq) é chamado de menor elemento ou elemento mínimo se e somente se $a \preccurlyeq b$ para todo $b \in S$.

Exemplo (1/3)

No poset (\mathbb{N}, \leq) , observamos que $0 \leq x$ para todo $x \in \mathbb{N}$. Portanto, 0 é o <u>elemento mínimo</u> de (\mathbb{N}, \leq) .

Exemplo (2/3)

No poset $(\mathbb{N}^*, |)$, observamos que 1 | x para todo $x \in \mathbb{N}^*$. Portanto, 1 é o elemento mínimo de $(\mathbb{N}^*, |)$.

Maior e Menor Elementos de um Poset

Naturalmente, há um interesse especial em posets que apresentam um único elemento minimal ou maximal.

Definição (Elemento Mínimo de um Poset)

Um elemento a do poset (S, \preccurlyeq) é chamado de menor elemento ou elemento mínimo se e somente se a \preccurlyeq b para todo $b \in S$.

Exemplo (3/3)

O poset ($\{2,3,4,5,6\}$, |) não tem elemento mínimo, pois não existe nenhum $n \in \{2,3,4,5,6\}$ tal que $n \mid x$ para todo $x \in \{2,3,4,5,6\}$.

Como contra-exemplos para cada candidato, note que $2 \nmid 3$, $3 \nmid 2$, $4 \nmid 2$, $5 \nmid 2$, $6 \nmid 2$.

Maior e Menor Elementos de um Poset

Naturalmente, há um interesse especial em posets que apresentam um único elemento minimal ou maximal.

Definição (Elemento Máximo de um Poset)

Um elemento a do poset (S, \preccurlyeq) é chamado de maior elemento ou elemento máximo se e somente se $b \preccurlyeq a$ para todo $b \in S$.

Exemplo (1/3)

O poset (\mathbb{N}, \leq) não tem elemento máximo, pois não existe nenhum $n \in \mathbb{N}$ tal que $x \leq n$ para todo $x \in \mathbb{N}$. Basta reparar que para todo $n \in \mathbb{N}$, n+1 > n e, portanto, $n \not\leq n+1$.

Exemplo (2/3)

No poset (\mathbb{N}, \geq) , observamos que $x \geq 0$ para todo $x \in \mathbb{N}$. Portanto, 0 é o elemento máximo de (\mathbb{N}, \geq) .

Maior e Menor Elementos de um Poset

Naturalmente, há um interesse especial em posets que apresentam um único elemento minimal ou maximal.

Definição (Elemento Máximo de um Poset)

Um elemento a do poset (S, \preccurlyeq) é chamado de maior elemento ou elemento máximo se e somente se $b \preccurlyeq a$ para todo $b \in S$.

Exemplo (3/3)

O poset ($\{2,3,4,5,6\}$, |) não tem elemento máximo, pois não existe nenhum $n \in \{2,3,4,5,6\}$ tal que $x \mid n$ para todo $x \in \{2,3,4,5,6\}$.

Como contra-exemplos para cada candidato, note que $3 \nmid 2$, $2 \nmid 3$, $2 \nmid 4$, $2 \nmid 5$, $2 \nmid 6$.

Prévia

Relações de Ordem Parcia

Introdução: Ordenações e Propriedades Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas Elementos Maximais e Minimais Maior e Menor Elementos de um Poset

Discussão e Complementos

Exemplo de Algoritmo Justificado por Poset Definições Alternativas e Resultados

Prévia

Relações de Ordem Parcia

Introdução: Ordenações e Propriedades Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas Elementos Maximais e Minimais Maior e Menor Elementos de um Poset

Discussão e Complementos

Exemplo de Algoritmo Justificado por Poset

Definições Alternativas e Resultados

Posets que tenham um elemento mínimo (ou um elemento máximo) são fundamentais para diversas aplicações e algoritmos.

Exemplo

Dado um conjunto S, calcular o seu conjunto das partes $\mathcal{P}(S)$.

- **1.** Inicialize o conjunto $\mathcal{P}(S)$ fazendo $\mathcal{P}(S) = \emptyset$;
- **2.** Inclua \emptyset em $\mathcal{P}(S)$;
- **3.** Para cada elemento S' de $\mathcal{P}(S)$ não visitado, faça:
- **4.** Para cada $x \in S$, se $S' \cup \{x\} \notin \mathcal{P}(S)$, inclua $S' \cup \{x\}$ em $\mathcal{P}(S)$
- 5. Marque S' como visitado

- **L1.** No começo, escrevemos $\mathcal{P}(S) = \{ \};$
- **L2.** Em seguida, atualizamos o resultado $\mathcal{P}(S) = \{\emptyset\}$

Posets que tenham um elemento mínimo (ou um elemento máximo) são fundamentais para diversas aplicações e algoritmos.

Exemplo

Dado um conjunto S, calcular o seu conjunto das partes $\mathcal{P}(S)$.

- **1.** Inicialize o conjunto $\mathcal{P}(S)$ fazendo $\mathcal{P}(S) = \emptyset$;
- **2.** Inclua \emptyset em $\mathcal{P}(S)$;
- **3.** Para cada elemento S' de $\mathcal{P}(S)$ não visitado, faça:
- **4.** Para cada $x \in S$, se $S' \cup \{x\} \notin \mathcal{P}(S)$, inclua $S' \cup \{x\}$ em $\mathcal{P}(S)$
- 5. Marque S' como visitado

- **L3.** Como \emptyset não foi visitado, iniciaremos o laço com $S' = \emptyset$.
- **L4.** Incluiremos $\emptyset \cup \{1\} = \{1\}$, $\emptyset \cup \{2\} = \{2\}$ e $\emptyset \cup \{3\} = \{3\}$ em $\mathcal{P}(\mathcal{S})$. Ao final desse passo, teremos $\mathcal{P}(\mathcal{S}) = \{\emptyset, \{1\}, \{2\}, \{3\}\}$.
- **L5.** Marcamos \emptyset como **visitado**. Teremos $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}\}$

Posets que tenham um elemento mínimo (ou um elemento máximo) são fundamentais para diversas aplicações e algoritmos.

Exemplo

Dado um conjunto S, calcular o seu conjunto das partes $\mathcal{P}(S)$.

- **1.** Inicialize o conjunto $\mathcal{P}(S)$ fazendo $\mathcal{P}(S) = \emptyset$;
- **2.** Inclua \emptyset em $\mathcal{P}(S)$;
- **3.** Para cada elemento S' de $\mathcal{P}(S)$ não visitado, faça:
- **4.** Para cada $x \in S$, se $S' \cup \{x\} \notin \mathcal{P}(S)$, inclua $S' \cup \{x\}$ em $\mathcal{P}(S)$
- 5. Marque S' como visitado

- **L3.** Como $\{1\}$ não foi visitado, iniciaremos o laço com $S' = \{1\}$.
- **L4.** Incluiremos $\{1\} \cup \{2\} = \{1,2\} \text{ e } \{1\} \cup \{3\} = \{1,3\} \text{ em } \mathcal{P}(\mathcal{S}).$ Obs.: Note que $\{1\} \cup \{1\} = \{1\}$, mas já tínhamos $\{1\} \in \mathcal{P}(\mathcal{S}).$

Posets que tenham um elemento mínimo (ou um elemento máximo) são fundamentais para diversas aplicações e algoritmos.

Exemplo

Dado um conjunto S, calcular o seu conjunto das partes $\mathcal{P}(S)$.

- **1.** Inicialize o conjunto $\mathcal{P}(S)$ fazendo $\mathcal{P}(S) = \emptyset$;
- **2.** Inclua \emptyset em $\mathcal{P}(S)$;
- **3.** Para cada elemento S' de $\mathcal{P}(S)$ não visitado, faça:
- **4.** Para cada $x \in S$, se $S' \cup \{x\} \notin \mathcal{P}(S)$, inclua $S' \cup \{x\}$ em $\mathcal{P}(S)$
- 5. Marque S' como visitado

- **L3.** Como $\{1\}$ não foi visitado, iniciaremos o laço com $S' = \{1\}$.
- **L4.** Incluiremos $\{1\} \cup \{2\} = \{1,2\} \ e \ \{1\} \cup \{3\} = \{1,3\} \ em \ \mathcal{P}(\mathcal{S})$. Após isto, teremos $\mathcal{P}(\mathcal{S}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}\}$.
- **L5.** *Marcamos* {1} *como visitado*: $P(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}\}$

Posets que tenham um elemento mínimo (ou um elemento máximo) são fundamentais para diversas aplicações e algoritmos.

Exemplo

Dado um conjunto S, calcular o seu conjunto das partes $\mathcal{P}(S)$.

- **1.** Inicialize o conjunto $\mathcal{P}(S)$ fazendo $\mathcal{P}(S) = \emptyset$;
- **2.** Inclua \emptyset em $\mathcal{P}(S)$;
- **3.** Para cada elemento S' de $\mathcal{P}(S)$ não visitado, faça:
- **4.** Para cada $x \in S$, se $S' \cup \{x\} \notin \mathcal{P}(S)$, inclua $S' \cup \{x\}$ em $\mathcal{P}(S)$
- 5. Marque S' como visitado

- **L3.** Como $\{2\}$ não foi visitado, iniciaremos o laço com $S' = \{2\}$.
- **L4.** Incluiremos $\{2\} \cup \{3\} = \{2,3\}$. Após isto, teremos $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$.
- **L5.** Teremos $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$

Posets que tenham um elemento mínimo (ou um elemento máximo) são fundamentais para diversas aplicações e algoritmos.

Exemplo

Dado um conjunto S, calcular o seu conjunto das partes $\mathcal{P}(S)$.

- **1.** Inicialize o conjunto $\mathcal{P}(S)$ fazendo $\mathcal{P}(S) = \emptyset$;
- **2.** Inclua \emptyset em $\mathcal{P}(S)$;
- **3.** Para cada elemento S' de $\mathcal{P}(S)$ não visitado, faça:
- **4.** Para cada $x \in S$, se $S' \cup \{x\} \notin \mathcal{P}(S)$, inclua $S' \cup \{x\}$ em $\mathcal{P}(S)$
- 5. Marque S' como visitado

- . _ _
- **L5.** Teremos $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- **L3.** Como não há elementos não-visitados em $\mathcal{P}(S)$, terminamos.

Posets que tenham um elemento mínimo (ou um elemento máximo) são fundamentais para diversas aplicações e algoritmos.

Exemplo

Dado um conjunto S, calcular o seu conjunto das partes $\mathcal{P}(S)$.

- **1.** Inicialize o conjunto $\mathcal{P}(S)$ fazendo $\mathcal{P}(S) = \emptyset$;
- **2.** Inclua \emptyset em $\mathcal{P}(S)$;
- **3.** Para cada elemento S' de $\mathcal{P}(S)$ não visitado, faça:
- **4.** Para cada $x \in S$, se $S' \cup \{x\} \notin \mathcal{P}(S)$, inclua $S' \cup \{x\}$ em $\mathcal{P}(S)$
- 5. Marque S' como visitado

Esse algoritmo funciona porque $(\mathcal{P}(\mathcal{S}),\subseteq)$ é um poset com \emptyset como elemento mínimo, qualquer que seja o conjunto S.

Prévia

Relações de Ordem Parcia

Introdução: Ordenações e Propriedades Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas Elementos Maximais e Minimais Maior e Menor Elementos de um Poset

Discussão e Complementos

Exemplo de Algoritmo Justificado por Pose

Definições Alternativas e Resultados

Definições Alternativas p/ Elementos Minimais

Definição (Elementos Minimais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $b \preccurlyeq a$.

Definição (Elementos Minimais de um Poset (Alternativa 1))

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se não existe nenhum elemento b em S tal que $b \prec a$.

Definição (Elementos Minimais de um Poset (Alternativa 2))

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se para todo elemento $b \neq a$ em S, $b \not\prec a$.

Definição (Elementos Minimais de um Poset (Alternativa 3))

Um elemento a do poset (S, \preccurlyeq) é minimal se e somente se para todo $b \in S$, se a e b são comparáveis, então $a \preccurlyeq b$.

Definições Alternativas p/ Elementos Maximais

Definição (Elementos Maximais de um Poset)

Um elemento a do poset (S, \preccurlyeq) é maximal se e somente se não existe nenhum elemento $b \neq a$ em S tal que $a \preccurlyeq b$.

Definição (Elementos Maximais de um Poset (Alternativa 1))

Um elemento a do poset (S, \preccurlyeq) é maximal se e somente se não existe nenhum elemento b em S tal que $a \prec b$.

Definição (Elementos Maximais de um Poset (Alternativa 2))

Um elemento a do poset (S, \preccurlyeq) é maximal se e somente se para todo elemento $b \neq a$ em S, $a \not\prec b$.

Definição (Elementos Maximais de um Poset (Alternativa 3))

Um elemento a do poset (S, \preccurlyeq) é maximal se e somente se para todo $b \in S$, se a e b são comparáveis, então $b \preccurlyeq a$.

Definições Alternativas e Resultados

Teorema (Unicidade do Elemento Mínimo)

O elemento mínimo de (S, \leq) , caso exista, é único.

Prova

- 1. Seja (S, ≼) um poset qualquer. (Instanciação)
- Por contradição, suponha que (S, ≼) tem ao menos dois elementos mínimos (distintos, portanto). Vamos chamá-los de a e b.
- **3.** Por definição, se a é um elemento mínimo de (S, \preccurlyeq) , então $a \preccurlyeq x$ para todo $x \in S$. Isso nos permite concluir, em particular, que $a \preccurlyeq b$.
- **4.** Similarmente, se b é um elemento mínimo de (S, \preccurlyeq) , então $b \preccurlyeq x$ para todo $x \in S$. Isso nos permite concluir, em particular, que $b \preccurlyeq a$.
- **5.** Juntando as conclusões acima, concluimos que $a \le b$ e $b \le a$.
- **6.** Isso significa que a = b, pois \leq é anti-simétrica.
- 7. Mas isso contradiz a hipótese de que a e b seriam distintos.
- **8.** Portanto, o elemento mínimo de (S, \leq) , se existir, deve ser único.

Teoremas sobre o Elemento Mínimo

Teorema (Unicidade do Elemento Mínimo)

O elemento mínimo de (S, \leq) , caso exista, é único.

Teorema (Minimalidade do Elemento Mínimo)

O elemento mínimo de (S, \leq) , caso exista, é minimal.

Teorema

Se o poset (S, \preccurlyeq) tiver <u>um e somente um</u> elemento minimal a, então a é também o elemento mínimo de (S, \preccurlyeq) .

Na prática, procuraremos por elementos minimais de posets. Quando houver um único elemento minimal, chamaremos-lhe de mínimo.

Teoremas sobre o Elemento Máximo

Teorema (Unicidade do Elemento Máximo)

O elemento máximo de (S, \leq) , caso exista, é único.

Teorema (Maximalidade do Elemento Máximo)

O elemento máximo de (S, \leq) , caso exista, é maximal.

Teorema

Se o poset (S, \preccurlyeq) tiver <u>um e somente um</u> elemento maximal a, então a é também o elemento máximo de (S, \preccurlyeq) .

Na prática, procuraremos por elementos maximais de posets. Quando houver um único elemento maximal, chamaremos-lhe de máximo.

Prévia

Relações de Ordem Parcia

Introdução: Ordenações e Propriedades Ordens PARCIAIS?

Definições e Propriedades de OPs

Formalização das Intuições Discutidas Elementos Maximais e Minimais Maior e Menor Elementos de um Poset

Discussão e Complementos

Exemplo de Algoritmo Justificado por Poset Definições Alternativas e Resultados

Considerações Finais

Nesta aula, nós discutimos:

- Intuições sobre como as propriedades de reflexividade, anti-simetria e transitividade, quando juntas, promovem uma ordenação (ao menos parcial) dos elementos de um conjunto
- Elementos comparáveis e elementos incomparáveis em um poset
- Ordens Totais e Conjuntos Totalmente Ordenados
- Casos de extremos: elementos minimais e maximais, mínimo e máximo

Há muitos conceitos derivados destes que não foram cobertos:

- Conjuntos Bem-Ordenados e Princípio da Boa-Ordenação (Indução)
- Ordem Lexicográfica
- Menor e Maior Limitantes Comuns
- Reticulados e Aritmética de Ponto-Fixo
- Ordenação Topológica e Diagramas de Hasse