Algebraic Structures

Ikhan Choi

May 7, 2022

Contents

I	Groups	3
1	Subgroups	4
2	Group actions 2.1 Orbits and stabilizers	5 5 5 5
3	Symmetry groups 3.1 Cyclic groups	6 6 6
II	Rings	7
4	Ideals	8
5	Integral domains	9
6	Polynomial rings 6.1 Irreducible polynomials	10 10
III	Modules	11
7	Exact sequences	12
8	Hom functor and tensor products	13
9	Modules over a principal ideal domain	14
IV	Vector spaces	15
10	Multilinear forms	16
11	Normal forms 11.1 Finitely generated $\mathbb{F}[x]$ -modules	17 17 17

11.3 Spectral theorems	17
12 Tensor algebras	18

Part I

Groups

Subgroups

subgroups homomorphisms, image, kernel, inverse images normality, quotient, coset counting direct sum, direct product

Group actions

2.1 Orbits and stabilizers

Invariants on orbit space. The size and number of orbits.

- 2.1 (Transitive actions). stabilizer of an action is well defined
- **2.2** (Free actions). no fixed point, trivial stabilizer for any point, every orbit has 1-1 correspondence to group

2.2 Action by conjugation

2.3 Action by left multiplication

Symmetry groups

elements by order elements by conjugacy class subgroups by conjugacy class

- 3.1 Cyclic groups
- 3.2 Symmetric groups
- 3.3 Matrix groups

dihedral groups

Exercises

- **3.1.** Let G be a finite group. If G/Z(G) is cylic, then G is abelian.
- **3.2.** Let *G* be a finite group. If $x \mapsto x^3$ is a surjective endomorhpism, then *G* is abelian.

Part II

Rings

Ideals

Integral domains

Polynomial rings

6.1 Irreducible polynomials

relation to maximal ideals Irreducibles over several fields

Part III

Modules

Exact sequences

free modules inj, proj

Hom functor and tensor products

hom and duality tensor product algebras?

Modules over a principal ideal domain

invariant factors and elementary divisors

Part IV Vector spaces

Multilinear forms

Duality Adjoints Inner product

Normal forms

11.1 Finitely generated $\mathbb{F}[x]$ -modules

cyclic subspaces

11.2 Similarity

GL, SL, PSL?

11.3 Spectral theorems

Exercises

Tensor algebras

Exterior algebras Symmetric algebras