

R and R Studio must be installed in your machine

Download R from CRAN at this link: https://cran.r-project.org/

Download RStudio from the RStudio Website at this link: https://rstudio.com/products/rstudio/download/

Dependencies

- RShiny
- ShinyDashboard
- RHandsonTable

Installing Dependencies

To install these dependencies, enter these codes in the console of RStudio:

- install.packages("shiny")
- install.packages("shinydashboard")
- install.packages("rhandsontable")

then press ENTER

RUNNING THE PROGRAM

Open app.r in RStudio and run the script. Make sure that the working directory is where the R files are.

RUN

MSC 150 B-3L

QUADRATIC SPLINE INTERPOLATION

Outputs all the equations for each interval and an estimated value given a set of data

STEP 1:

After running the app, there are 3 main tabs in the collapsible left sidebar. Click the **Quadratic Spline Interpolation** tab

MSC 150 B-3L

STEP 2:
For reference, you should be redirected to the full page of the Quadratic Spline Interpolation tab

STEP 3:
Input number of rows that the data has then press ENTER

STEP 4: Input data values

NOTE: Entering characters and symbols in the input table may cause an error

STEP 5:

Input value to be estimated then press ENTER

STEP 7:

Functions per interval will be displayed

Polynomial Regression Functions

Interval	Functions
3 <= x <= 4.5	0 * x^2 + -1 * x + 5.5
4.5 <= x <= 7	0.64 * x^2 + -6.76 * x + 18.46
7 <= x <= 9	-1.6 * x^2 + 24.6 * x + -91.3

0.660000000000004

Estimated Value

STEP 6:

Estimated value will be displayed

SIMPLEX METHOD

Provides a solution for optimizing shipment costs related to the DIVOC Shipping Analysis problem. Also suitable for finding solutions for generic maximization and minimization problems.

CMSC 150 B-3L

DIVOC SHIPPING ANALYSIS

Minimizes the total shipping cost of Dedmond Integrated Valley Operations Company (DIVOC) from each manufacturing plant to each warehouse.

CMSC 150

- Quadratic Spline Interpolation
- **1?** Simplex Method

About

STEP 1:

After running the app, there are 3 main tabs in the collapsible left sidebar. Click the Simplex Method tab

MSC 150 B-3L

STEP 2:
For reference, you should be redirected to the full page of the Simplex Method tab

STEP 3:

There are 2 tabs in the box located on the upper left portion of the page. Click the DIVOC Shipping Analysis Tab

STEP 4:

Input data values. Initial values can be changed by clicking the cell, typing a value or number, then press ENTER

NOTE: Entering characters and symbols in the input table may cause an error

STEP 5:

View outputs

- Minimum cost
- Number of items shipped per warehouse
- Basic Solution
- Final Tableau

Minimum Cost

3200

Minimum Cost

Number of Items Shipped per Warehouse

Number of Items Shipped per Warehouse

	SAC	SL	ALB	CHI	NYC
DEN	0.00	0.00	80.00	0.00	220.00
РНО	0.00	0.00	100.00	160.00	0.00
DAL	180.00	80.00	20.00	0.00	0.00

Basic Solution

• Press the "+" button to expand and see the basic solution output

• Scroll horizontally to see other data values

<u>Final Tableau</u>

• Press the "+" button to expand and see the final tableau output

Final Tableau

Scroll horizontally to see other data values

3 C 15 O B - 3 L

GENERIC SOLVER

Optimization approach that maximizes profit or minimizes cost given constraints (limited resources) and an objective function.

STEP 1:

After running the app, there are 3 main tabs in the collapsible left sidebar. Click the Simplex Method tab

CMSC 150

- Quadratic Spline Interpolation
- **1?** Simplex Method

About

STEP 2:
For reference, you should be redirected to the full page of the Simplex Method tab

STEP 3:

There are 2 tabs in the box located on the upper left portion of the page. Click the Generic Solver Tab

STEP 4:

Choose whether to perform maximization or minimization

STEP 5:

Input number of rows

STEP 6:

Input number of decision variables

STEP 7:

Input initial tableau. Initial values can be changed by clicking the cell, typing a value or number, then press ENTER. The columns for the slack variables already have I's representing them in their respective rows.

For minimization problems, the initial tableau should already be transposed.

NOTE: Entering characters and symbols in the input table may cause an error

DIVOC Shipping Analysis

Generic Solver

Input initial tableau:

Note: For minimization problems, the matrix from the equations should already be transposed.

	x1	x2	S1	S2	S3	S4	Z	RHS
1	7.00	11.00	1.00	0.00	0.00	0.00	0.00	77.00
2	10.00	8.00	0.00	1.00	0.00	0.00	0.00	80.00
3	1.00	0.00	0.00	0.00	1.00	0.00	0.00	9.00
4	0.00	1.00	0.00	0.00	0.00	1.00	0.00	6.00
5	-150.00	-175.00	0.00	0.00	0.00	0.00	1.00	0.00

STEP 8:

View outputs

- Minimum/Maximum Value
- Basic Solution
- Final Tableau

Minimum/Maximum Value

1413.88888888889

Maximum Value

• Press the "+" button to expand and see the basic solution output

asic Solution

• Scroll horizontally to see other data values

Final Tableau

• Press the "+" button to expand and see the final tableau output

Final Tableau -

• Scroll horizontally to see other data values

Final Ta	bleau						
x1	x2	S1	S 2	\$3	\$4	Z	RHS
1.00	0.00	-0.15	0.20	0.00	0.00	0.00	4.89
0.00	0.00	-0.19	0.13	0.00	1.00	0.00	2.11
0.00	0.00	0.15	-0.20	1.00	0.00	0.00	4.11
0.00	1.00	0.19	-0.13	0.00	0.00	0.00	3.89
0.00	0.00	10.19	7.87	0.00	0.00	1.00	1413.89
4							