가상현실

(2024.05.14)

이종원

(jwlee@sejong.ac.kr)

가상현실 입력 장치 (VR Input Devices)

가상현실 입력 장치

- 어플리케이션에 정보를 전달
- 가상현실과 상호 작용을 지원하는 물리적 장치

입력과 출력 간의 매핑

2003 - 2024 © MR&I Lab. SEJONG Univ. Seoul, Korea

동기

- 마우스와 키보드는 데스크톱 UI 작업에 적합함
 - 텍스트, 선택, 드래그 앤 드롭, 스크롤 등
 - 2차원 윈도우를 위한 2차원 마우스
- 가상현실에서 3차원 입력에 가장 적합한 장치는 무엇인가?
 - 다수의 2D 입력 장치 사용?
 - 새로운 유형의 장치 사용?

입력 장치 특성 (1/2)

- 크기, 모양, 번거로움 정도
- 자유도: 통합 vs. 분리
- 직접 조작 vs. 간접 조작
- 상대적 입력 vs. 절대적 입력
 - Relative: 현재 입력과 마지막 입력 간의 차이 측정 (마우스)
 - Absolute: 기준점에 대한 상대적인 값을 측정 (태블릿)

입력 장치 특성 (2/2)

- 속도 제어 vs. 위치 제어
 - 조이스틱 vs. 마우스
- Isometric vs. isotonic
 - Isometric: 실제 움직임이 없는 압력 또는 힘 측정
 - (예: 컵을 들고 있는 상태에서 물을 컵에 더해도 움직임은 없으나 근육이 일을 함)
 - Isotonic: 중심점에서 굴절 측정
 - (예: 팔을 굽혔다 폈다 하는 동작에서 발생하는 근육의 움직임)

손 입력 장치

- 손 움직임을 가상현실 환경으로 전달하는 장치
- World-ground 입력 장치
 - 실 세계에 고정된 입력 장치 (예. 조이스 틱)
- 추적되지 않는 손에 들고 사용하는 컨 트롤러
 - 손에 들고 있지만 3차원 공간에서 추적되지 않음 (예: Xbox 컨트롤러)

- 추적되는 손에 들고 사용하는 컨트롤러
 - 6DOF 추적이 가능한 물리적인 장치 (예.
 Vive 컨트롤러)
- 손 착용 형 장치
 - 장갑, EMG 밴드, 반지 또는 손과 팔에 착용하는 장치
- 맨 손 입력
 - 자연스러운 손 입력을 인식하는 기술 활용

World Grounded Devices

- 실 세계에서 제약되거나 고정된 장치
- 가상현실에 적합하지 않음
 - 사용자 움직임을 제한함
- 가상현실 차량 메타포에 적합

• 위치 기반 엔터테인먼트에 사용됨 (예: Disney Aladdin ride)

Non-Tracked Handheld Controllers

- 손에 들고 사용하는 장치
 - 버튼, 조이스틱, 게임 컨트롤러 등
- 전통적인 비디오 게임 컨트롤러
 - Xbox 컨트롤러

Tracked Handheld Controllers

- 6 DOF 추적이 가능한 손에 들고 사용하는 컨트롤러
 - 버튼/조이스틱 입력 + 추적 기능
- 가상현실 어플리케이션에 적합한 입력 장치 중 하나임
 - 물리적 소품은 가상현실 존재감 강화
 - 자기수용감각과 수동적인 햅틱 터치 큐 제공
 - 실제 손 움직임에 직접적인 매핑

HTC Vive Controllers

Oculus Touch Controllers
2003 - 2024 © MR&I Lab. SEJONG Univ. Seoul. Korea

자기수용감각

https://youtu.be/PMm7G0il5oc 2017. 08. 16. (1:38)

Sixense STEM

- 무선 모션 추적 + 버튼 입력
 - 전자기 추적 (Electromagnetic tracking), 8 피트 범위, 5개의 추적 수신기
- http://sixense.com/platform/hardware (삭제됨)

Sixense Demo Video

https://youtu.be/SUqyPYN-pJ4

WMR Handheld Controllers

- Windows Mixed Reality 컨트롤로
 - 왼손, 오른손
- Computer vision 기술과 IMU 기반 추적 결합
 - 시야에 있거나 없는 경우에도 추적
- 버튼 입력, 진동 피드백

WMR Handheld Controllers

Cubic Mouse

- 플라스틱 박스
 - Polhemus Fastrack 장치 포함 (magnetic 6 DOF tracking)
 - 3개 translation rods, 6개 버튼
- 양손을 사용하는 상호작용 장치
 - 객체 회전, 확대/축소, 절단면 등 지원

Fröhlich, B., & Plate, J. (2000). The cubic mouse: a new device for three-dimensional input. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 526-531). ACM.

Hand Worn Devices

- 손과 팔에 착용하는 장치
 - 장갑, 근전도(EMG) 센서, 반지 등

• 장점

- 풍부한 제스처 상호작용이 가능한 자연스러운 입력이 될 수 있음
- 편안한 자세로 손을 유지할 수 있음 시야에 들어오지 않아도 됨
- 손과 손가락이 실제 물건과 완전한 상호작용이 가능

Myo Arm Band

https://youtu.be/ecDlv6R9hR0 2016. 10. 27.

Data Gloves

- 구부림 감지 장갑
 - passive 입력 장치
 - 손 자세와 제스처 감지
 - 구부림 센서로부터 지속적인 데이터 획득
 - 자연스러운 손 출력, 다수의 DOF 제공

• Pinch gloves

- 손끝에 전도성 물질 포함
- 손가락 끝이 터치하는지 확인함
- 불연속적인 입력에 사용됨
 - 객체 선택, 모드 전환 등

2003 - 2024 © MR&I Lab. SEJONG Univ. Seoul, Korea

CyberGlove

- 수화를 지원하기 위해 발명 됨
- 기술
 - 손가락 부위에 얇은 전기적 압력 게이지
 - 구부림 센서가 저항을 변화 시킴
 - 장갑에 18-22 센서, 120 Hz로 값을 읽음
 - 센서 해상도 0.5°
- 매우 고가임
 - >\$10,000
- http://www.cyberglovesystems.com

CyberGlove II

CyberGlove III

CyberGlove

https://www.youtube.com/watch?v=IUNx4FgQmas 2013. 08. 01.

StretchSense

- 착용식 모션 캡쳐 센서
 - 정전식 감응 센서
 - 스트레치, 압력, 구부림, 전단 측정
- 다양한 응용 프로그램
 - 의류, 장갑 등
- http://stretchsense.com/

StretchSense Glove Demo

2003 - 2024 © MR&I Lab. SEJONG Univ. Seoul, Korea

Optical vs. StretchSense

Bare Hands

- 컴퓨터 비전 기술을 사용하여 맨손 입력 추적
- 존재감이 높은 자연스러운 상호작용 생성
- 해결해야 할 과제가 존재함
 - 터치 느낌이 없음
 - 센서에서 직선으로 보여야 함
 - 센서 앞에 손을 들고 있어 발생하는 피로감

Leap Motion

- 소 추적을 위한 IR 기반 센서 (\$50 USD)
 - HMD + Leap Motion = Hand input in VR
- 기술
 - 3개 IR LEDS와 2개 광각 카메라
 - LED들은 정해진 패턴이 없는 IR 빛 생성
 - IR 반사를 카메라가 감지
 - 소프트웨어를 통한 손 추적

- 성능
 - 1m 거리에서 0.7mm 정확도, 200Hz
- https://www.leapmotion.com/

Leap Motion Video

https://www.youtube.com/watch?v=QD4qQBL0X80

Hand-Tracking 2.0 for the Meta Quest 2

- 2022년 4월 향상된 Hand Tracking 업데이트 발표
 - 안정된 Tracking
 - 향상된 제스처 인식
 - "Hand-over-hand" interaction
 - 손의 일부만 카메라에 보여도 제스처 인식

Hand-Tracking 2.0 for the Meta Quest 2

Non-Hand Input Devices

- 몸의 다른 부분을 통한 입력
- 머리 추적: 머리 움직임을 입력으로 사용
- 시선 추적: 가상현실에서 많이 다루어지지 않음
- 마이크: 오디오, 음성 입력
- 전신 추적: 모션 캡처, 몸의 움직임

Eye Tracking

- 기술
 - IR 빛을 비추고 반사되는 빛 검출
- 장점
 - 자연스러운 hands-free 입력 제공
 - 시선은 사용자의 관심 정보 제공
 - 다른 입력 기술과 결합 가능

FOVE VR Headset

- 시선 추적이 가상현실 HMD에 통합됨
- 시선 기반 사용자 상호작용, foveated rendering

https://youtu.be/dWTLSEfdEXU

Pupil Labs VIVE/Oculus Add-ons

- HTC Vive/Oculus Rift HMD에 시선 추적 장치 추가
 - 모노 또는 스테레오 시선 추적
 - 120Hz 시선 추적, 0.6o 시선 추적 정확도
 - 시선 추적을 위한 소프트웨어는 오픈 소프트웨어 라이선스 적용
- https://pupil-labs.com/pupil/

Vive Pro Eye Tracking

- 시성 데이터 출력 주파수 (쌍안): 120Hz
- 정확도: 0.5 ~ 1.1도 (FOV 20도 이내)
- 추적 가능한 시야각: 110도

Vive Pro Eye Tracking

Full Body Tracking

- 가상현실에 전신 입력 추가
 - 자신이 환경에 존재한다는 환상 생성
 - 존재감을 현저하게 향상시킴

- 기술
 - 모션 캡쳐 슈트, 카메라 기반 시 스템
 - 많은 수의 중요한 특징점 추적이 가능

Camera Based Motion Capture

- 다수의 카메라 사용
- 몸에는 반사되는 마커 부착
- 예: Opitrack (<u>www.optitrack.com</u>)
 - 120~360 fps, < 10ms 지연속도, < 1mm 정확도

Optitrack Video

https://www.youtube.com/watch?v=tBAvjU0Scul 2013. 1. 10

Optitrack Video

Wearable Motion Capture: PrioVR

- 착용형 모션 캡처 시스템
 - 8 17 관성 센서 + 무선 데이터 전송
 - 30 40m 범위, 7.5 ms 지연 시간, 0.09o 정밀도
 - 모든 범위의 동작 추적 가능, 가려짐 문제 없음
- www.priovr.com (변경됨)

Pedestrian Devices

- 가상현실에서 보행자 입력
 - 가상환경에서 걷기/달리기
- Virtuix Omni
 - 특수 신발
 - http://www.virtuix.com
- Cyberith Virtualizer
 - 양말 + 미끄러운 바닥
 - http://cyberith.com

Virtuix Omni

https://omni.virtuix.com/video/omnione_stepintothegame_trailer.mp4

Cyberith Virtualizer

https://www.youtube.com/watch?v=R8Imf3OFrms 2014. 07. 09

Cyberith Virtualizer

https://youtu.be/bHEXGGnuZtA 2020. 03. 07.

Virtusphere

- 완전 몰입형 구
 - 가상현실에서 걷기/달리기 지원
 - 트랙볼 내부로 사람이 들어감
- http://www.virtusphere.com

2003 - 2024 © MR&I Lab. SEJONG Univ. Seoul, Korea

Virtusphere Video

https://www.youtube.com/watch?v=5PSFCnrk0GI

Omnidirectional Treadmills

- Infinadeck
 - 2 축 트레드밀, 유연한 물질 사용
 - 사용자 추적을 통해 사용자를 중심에 둠
 - 가상현실에서 제한 없는 걷기 가능
- www.infinadeck.com

Infinadeck Video

https://www.youtube.com/watch?v=seML5CQBzP8 2016. 02. 11.

Infinadeck Video

https://youtu.be/TEu-dZkSdso 2021. 03. 09.

Compari Betweer

	Devices	Proprioception	Consistent	Usable in Lap or the Side	Haptics Capable	Unencumbered	Physical Buttons	Hands Free to Interact with Real Wor	General Purpose	
Hai	nd Input Device Class									
	World-Grounded Devices	/	1		1	1	1	1		
	Non-Tracked Hand-Held Controllers		1	1	1		1			
	Bare Hands	/				1		1	1	
	Tracked Hand-Held Controllers	1	1	1	1		1		1	
	Hand Worn	1	1	1	1		1	1	1	
No	n-Hand Input Device Class									
	Head Tracking	1	1					1	1	
	Eye Tracking							1		
	Microphone			1		1		1	1	
	Full-Body Tracking	1	1	1	1			1	1	
	Treadmills	1	1			1		1		

입력 장치 분류

- 선택에 도움을 줌
 - 어떤 장치를 사용할 것인가?
 - 특정한 작업에 어떤 장치를 사용할 것인가?

- 다양한 접근법
 - 상호작용 기술로부터 입력 장치 분리 (Foley 1974)
 - 기본 입력 작업을 장치와 매핑 (Foley 1984)
 - 기본 작업 선택, 위치 지정, 방향 지정
 - 장치 마우스, 조이스틱, 터치 패널 등
 - 감각 장치의 자유도와 성질 고려 (Buxton 1983)
 - 동작, 위치, 압력
 - 절대/상대적 값, 개별적 회전축 (Mackinlay 1990)
 - 자유도를 사용하는 대신에 이동, 회전 축 분리

Q/A