Computación Cuántica

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

21 de octubre de 2025

Agenda

- Bits
- QBits
- Recapitulando
- Para la discusión

 La representación binaria constituye la base de la computación digital clásica.

- La representación binaria constituye la base de la computación digital clásica.
- Cada número natural $n \in \mathbb{N}$ puede representarse como una secuencia de bits: $n = \sum_{i=0}^k b_i 2^i$, con $b_i \in \{0,1\}$.

- La representación binaria constituye la base de la computación digital clásica.
- Cada número natural $n \in \mathbb{N}$ puede representarse como una secuencia de bits: $n = \sum_{i=0}^k b_i 2^i$, con $b_i \in \{0,1\}$.
- convertir 13₁₀ a binario:

$$13 \div 2 = 6 \text{ resto } 1$$

$$6 \div 2 = 3 \text{ resto } 0$$

$$3 \div 2 = 1$$
 resto 1

$$1 \div 2 = 0$$
 resto 1

Resultado:
$$13_{10} = 1101_2 \equiv 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

- La representación binaria constituye la base de la computación digital clásica.
- Cada número natural $n \in \mathbb{N}$ puede representarse como una secuencia de bits: $n = \sum_{i=0}^k b_i 2^i$, con $b_i \in \{0,1\}$.
- convertir 13₁₀ a binario:

$$13 \div 2 = 6 \text{ resto } 1$$

 $6 \div 2 = 3 \text{ resto } 0$
 $3 \div 2 = 1 \text{ resto } 1$
 $1 \div 2 = 0 \text{ resto } 1$

Resultado: $13_{10} = 1101_2 \equiv 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$

• Suma (en 8bits) con acarreo: $00001011_2 + 0000110_2 = 00010001_2$

QBits

 La computación cuántica se basa en almacenar información en estados cuánticos y, manipular estos estados para realizar operaciones numéricas.

QBits

- La computación cuántica se basa en almacenar información en estados cuánticos y, manipular estos estados para realizar operaciones numéricas.
- Los estados base de QBits corresponden a vectores binarios $|0\rangle$, $|1\rangle$, y combinaciones $|j\rangle$ donde $j\in\{0,1\}^n$.

Recapitulando

En presentación consideramos

Para la discusión

En presentación consideramos

