Started on	Tuesday, 18 April 2023, 12:28 PM
State	Finished
Completed on	Tuesday, 18 April 2023, 12:28 PM
Time taken	7 secs
Feedback	https://www.lnmiit.ac.in/

Question 1

Not answered

Marked out of 10.00

- a) Which type of game is a "wireless channel access game" and why?
- b) Determine the Throughput, Utility, and Bayesian Nash equilibria for the same.
- c) Interpret the opportunistic spectrum access i from the game theory point of view.

Question 2
Not answered
Marked out of 10.00

- A) i) Formulate a game model for Dynamic Bandwidth Allocation with Dynamic Service Selection in Heterogeneous Wireless Networks. Mention the players, Strategy, state, instantaneous payoff: of the game.
- ii), What will be the optimal control formulation?
- In the second price auction, truthful bidding, i.e., $b_i = v_i$ for all i, is a Nash equilibrium.

Question 3

Not answered

Marked out of 10.00

Consider a single cell CDMA Network. The SINR of the system is given by

$$\gamma_i(\mathbf{p}) = \frac{p_i h_i}{n_0 + \sum_{j \neq i} p_j h_j}$$

Determine the following

- a) The Game G
- b) Action SET A
- c) Potential Function Z(p)
- d) Constarint of the optimization
- e) The variables

Question **4**Not answered

Marked out of 10.00

Consider a parallel link network with I links. Assume that d units of flow is to be routed through this network. We assume that this flow is the aggregate flow of many *infinitesimal* users.

Let $l_i(x_i)$ denote the latency function of link i, which represents the delay or congestion costs as a function of the total flow x_i on link i.

Assume that the links are owned by independent providers. Provider i sets a price p_i per unit of flow on link i.

The effective cost of using link i is $p_i + l_i(x_i)$.

Users have a reservation utility equal to R, i.e., if $p_i + l_i(x_i) > R$, then no traffic will be routed on link i.

Consider an example with two links and latency functions

 $l_1(x_1)=0$ and $l_2(x_2)=\frac{3x_2}{2}$. For simplicity, we assume that R=1 and d=1.

Given the prices (p_1, p_2) , we assume that the flow is allocated according to Wardrop equilibrium, i.e., the flows are routed along minimum effective cost paths and the effective cost cannot exceed the reservation utility.

- a) Using the characterization above determine the flow allocation $x_1(p_1, p_2)$ and $x_2(p_1, p_2)$
- b) Determine the payoff for the providers
- c) Find the pure strategy Nash equilibria of this game by characterizing the best response correspondences, $B_i(p_{-i})$ for each player.

		_
_		Е
()ı	loction.	-

Not answered

Marked out of 10.00

A)Prove that

A pure strategy s_i is a never-best response if for all beliefs σ_{-i} there exists $\sigma_i \in \Sigma_i$ such that

$$u_i(\sigma_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i}).$$

B) Consider the Battle of Sexes Game. Suppose (σ_1, σ_2) is a mixed strategy profile. This means that σ_1 is a probability distribution on $S_1 = \{A, B\}$, and σ_2 is a probability distribution on $S_2 = \{A, B\}$. Compute the payoff functions u_1 and u_2 .

	2		
1	A	В	
Α	2,1	0,0	
В	0,0	1,2	

[5+5=10]