Discrete Mathematics

Chapter 9

Relations

v

Outline

- 9.1 Relations and their properties
- 9.3 Representing Relations
- 9.4 Closures of Relations (not included)
- 9.5 Equivalence Relations

9.1 Relations and their properties.

The most direct way to express a relationship between elements of two sets is to use ordered pairs.

For this reason, sets of ordered pairs are called **binary** relations.

Def 1

Let A and B be sets. A binary relation from A to B is a subset R of $A \times B = \{ (a, b) : a \in A, b \in B \}$.

Example 1.

A: the set of students in your school.

B: the set of courses.

 $R = \{ (a, b) : a \in A, b \in B, a \text{ is enrolled in course } b \}$

Def 1'. We use the notation aRb to denote that $(a, b) \in R$, and aRb to denote that $(a, b) \notin R$. Moreover, a is said to be related to b by R if aRb.

Example 3. Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$, then $\{(0,a),(0,b),(1,a),(2,b)\}$ is a relation R from A to B. This means, for instance, that 0Ra, but that 1Rb.

Note. Relations vs. Functions

A relation can be used to express a $\frac{1-\text{to-many}}{\text{relationship between the elements of the sets}}$ A and B.

Def 2. A <u>relation on the set A</u> is a subset of $A \times A$ (i.e., a relation from A to A).

Example 4.

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{ (a, b) | a \text{ divides } b \}$?

Sol:

$$\mathbf{R} = \{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4) \}$$

Example 5. Consider the following relations on **Z**.

$$R_1 = \{ (a, b) \mid a \le b \}$$

 $R_2 = \{ (a, b) \mid a > b \}$
 $R_3 = \{ (a, b) \mid a = b \text{ or } a = -b \}$
 $R_4 = \{ (a, b) \mid a = b \}$
 $R_5 = \{ (a, b) \mid a = b+1 \}$
 $R_6 = \{ (a, b) \mid a + b \le 3 \}$

Which of these relations contain each of the pairs (1,1), (1,2), (2,1), (1,-1), and (2,2)?

Sol:

	(1,1)	(1,2)	(2,1)	(1,-1)	(2,2)
R_1	•				•
R_2			•	•	
R_3	•			•	•
R_4	•				•
R_5			•		
R_6	•	•	•	•	

м

Example 6. How many relations are there on a set with *n* elements?

Sol:

A relation on a set A is a subset of $A \times A$.

 $\Rightarrow A \times A$ has n^2 elements.

 $\Rightarrow A \times A$ has 2^{n^2} subsets.

 \Rightarrow There are 2^{n^2} relations.

M

Properties of Relations

Def 3. A relation R on a set A is called reflexive if $(a,a) \in R$ for every $a \in A$.

Example 7. Consider the following relations on

```
\{1, 2, 3, 4\}: \mathbf{R_2} = \{ (1,1), (1,2), (2,1) \} \mathbf{R_3} = \{ (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) \} \mathbf{R_4} = \{ (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) \} which of them are reflexive?
```

Sol:

 R_3

Example 8. Which of the relations from Example 5 are reflexive?

$$R_1 = \{ (a, b) \mid a \le b \}$$
 $R_2 = \{ (a, b) \mid a > b \}$
 $R_3 = \{ (a, b) \mid a = b \text{ or } a = -b \}$
 $R_4 = \{ (a, b) \mid a = b \}$
 $R_5 = \{ (a, b) \mid a = b+1 \}$
 $R_6 = \{ (a, b) \mid a + b \le 3 \}$
Sol: R_1 , R_3 and R_4

Example 9. Is the "divides" relation on the set of positive integers reflexive?

Sol: Yes.

Def 4.

(1) A relation R on a set A is called symmetric if for $a, b \in A$,

$$(a,b)\in R \Rightarrow (b,a)\in R.$$

(2) A relation R on a set A is called antisymmetric if for $a, b \in A$,

$$(a,b) \in \mathbb{R}$$
 and $(b,a) \in \mathbb{R} \implies a = b$.

i.e.,
$$a\neq b$$
 and $(a,b)\in R \Rightarrow (b,a)\not\in R$ $a=b$, $(a,a)\in R$ or $(a,a)\notin R$

Example 10. Which of the relations from Example 7 are symmetric or antisymmetric?

$$R_2 = \{ (1,1), (1,2), (2,1) \}$$

 $R_3 = \{ (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) \}$
 $R_4 = \{ (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) \}$

Sol:

 R_2 , R_3 are symmetric R_4 are antisymmetric.

Example 11. Is the "divides" relation on the set of positive integers symmetric? Is it antisymmetric?

Sol: It is not symmetric since 1|2 but $2 \nmid 1$. It is antisymmetric since a|b and b|a implies a=b.

'n

antisymmetric symmetric

$$\forall (a,b) \in R, \ a \neq b$$

$$sym. \Rightarrow (b,a) \in R$$

$$antisym. \Rightarrow (b,a) \notin R$$

eg. Let $A = \{1,2,3\}$, give a relation R on A s.t. R is both symmetric and antisymmetric, but not reflexive.

Sol:

$$R = \{ (1,1),(2,2) \}$$

M

Def 5. A relation R on a set A is called transitive if for $a, b, c \in A$, $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$.

Example 15. Is the "divides" relation on the set of positive integers transitive?

Sol: Suppose a|b and b|c

- $\Rightarrow a|c$
- ⇒ transitive

м

Example 13. Which of the relations in Example 7 are transitive?

$$R_2 = \{ (1,1), (1,2), (2,1) \}$$

 $R_3 = \{ (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) \}$
 $R_4 = \{ (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) \}$

Sol:

 R_2 is not transitive since

$$(2,1) \in \mathbf{R_2} \text{ and } (1,2) \in \mathbf{R_2} \text{ but } (2,2) \notin \mathbf{R_2}.$$

 R_3 is not transitive since

$$(2,1) \in \mathbf{R_3} \text{ and } (1,4) \in \mathbf{R_3} \text{ but } (2,4) \notin \mathbf{R_3}.$$

 R_4 is transitive.

м

Example 16. How many reflexive relation are there on a set with *n* elements?

Sol: A relation R on a set A is a subset of $A \times A$.

- $\Rightarrow A \times A$ has n^2 elements
- \Rightarrow **R** contains $(a,a) \forall a \in A$ since **R** is reflexive
- \Rightarrow There are 2^{n^2-n} reflexive relations.

Exercise: 7, 43

Combining Relations

```
Example 17. Let A = \{1, 2, 3\} and B = \{1, 2, 3, 4\}.
     The relation R_1 = \{(1,1), (2,2), (3,3)\}
     and \mathbf{R}_2 = \{(1,1), (1,2), (1,3), (1,4)\} can be
     combined to obtain
   R_1 \cup R_2 = \{(1,1), (2,2), (3,3), (1,2), (1,3), (1,4)\}
   R_1 \cap R_2 = \{(1,1)\}
   R_1 - R_2 = \{(2,2), (3,3)\}
   R_2 - R_1 = \{(1,2), (1,3), (1,4)\}
   R_1 \oplus R_2 = \{(2,2), (3,3), (1,2), (1,3), (1,4)\}
       symmetric difference, (R_1 \cup R_2) - (R_1 \cap R_2)
```

×

Def 6. Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a,c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \cap R$.

Example 20. What is the composite of relations R and S, where R is the relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$ with $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ and S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$?

Sol. *S* $^{\circ}$ *R* is the relation from $\{1, 2, 3\}$ to $\{0, 1, 2\}$ with $S ^{\circ}$ *R* = $\{(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)\}.$

м

Def 7. Let **R** be a relation on the set **A**.

The powers \mathbb{R}^n , n = 1, 2, 3, ..., are defined recursively by $\mathbb{R}^1 = \mathbb{R}$ and $\mathbb{R}^{n+1} = \mathbb{R}^n \circ \mathbb{R}$.

Example 22. Let $\mathbf{R} = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$. Find the powers \mathbf{R}^n , $\mathbf{n} = 2, 3, 4, ...$.

Sol.
$$R^2 = R \circ R = \{(1, 1), (2, 1), (3, 1), (4, 2)\}.$$

 $R^3 = R^2 \circ R = \{(1, 1), (2, 1), (3, 1), (4, 1)\}.$
 $R^4 = R^3 \circ R = \{(1, 1), (2, 1), (3, 1), (4, 1)\} = R^3.$
Therefore $R^n = R^3$ for $n = 4, 5, ...$ Exercise: 54

Thm 1. The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

м

9.3 Representing Relations

Representing Relations using Matrices

Suppose that R is a relation from $A=\{a_1, a_2, ..., a_m\}$ to $B=\{b_1, b_2, ..., b_n\}$.

The relation R can be represented by the matrix $M_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1, & \text{if } (a_i, b_j) \in \mathbb{R} \\ 0, & \text{if } (a_i, b_j) \notin \mathbb{R} \end{cases}$$

Example 1. Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 2\}$ Let $R = \{(a, b) \mid a > b, a \in A, b \in B\}$. What is the matrix M_R representing R?

Sol:

$$R = \{(2, 1), (3, 1), (3, 2)\}$$

 $X = \{a_1, a_2, ..., a_n\}.$

A relation R on A is <u>reflexive</u> iff $(a_i, a_i) \in R, \forall i$.

i.e.,

$$a_{1}$$
 a_{1}
 a_{2} a_{n}
 a_{2}
 a_{2}
 a_{3}
 a_{4}
 a_{5}
 a_{6}
 a_{7}
 a_{8}
 a_{1}
 a_{2}
 a_{1}
 a_{2}
 a_{2}
 a_{3}
 a_{4}
 a_{5}
 a_{7}
 a_{8}
 a_{1}

對角線上全為1

X The relation R is symmetric iff $(a_i, a_j) \in R \Rightarrow (a_j, a_i) \in R$. This means $m_{ij} = m_{ji}$.

$$M_R = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & & & \\ 0 & & & \end{bmatrix} = (M_R)^t$$

м

X The relation R is <u>antisymmetric</u> iff $(a_i,a_i) \in R$ and $i \neq j \Rightarrow (a_j,a_i) \notin R$.

This means that if $m_{ij}=1$ with $i\neq j$, then $m_{ji}=0$. i.e.,

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Example 3. Suppose that the relation R on a set is represented by the matrix

$$M_R = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

Is *R* reflexive, symmetric, and/or antisymmetric?

Sol:

reflexive

symmetric

not antisymmetric

eg. Suppose that $S=\{0, 1, 2, 3\}$. Let R be a relation containing (a, b) if $a \le b$, where $a \in S$ and $b \in S$. Is R reflexive, symmetric, antisymmetric?

Sol:

$$M_R = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 2 & 0 & 0 & 1 & 1 \\ 3 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 \times R is reflexive and antisymmetric, not symmetric.

Exercise: 7

Example 4. Suppose the relations R_1 and R_2 on a set A are represented by the matrices

$$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

What are the matrices representing $R_1 \cup R_2$ and $R_1 \cap R_2$?

Sol:

$$M_{R_1 \cup R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad M_{R_1 \cap R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Example 5. Find the matrix representing the relation $S^{\circ}R$, where the matrices representing R and S are

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Sol:

$$M_{S^{\circ}R} = M_R \odot M_S = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

Example 6. Find the matrix representing the relation R^2 , where the matrix representing R is

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Sol:

$$M_{R^2} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Exercise: 14

M

Representing Relations using Digraphs

Def 1. A directed graph (digraph) consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).

Example 8. Show the digraph of the relation

 $R = \{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ on the set $\{1,2,3,4\}$.

Exercise: 26,27

Sol:

vertex: 1, 2, 3, 4 edge: (1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (4,1)

X The relation R is <u>reflexive</u> iff for every vertex,

X The relation R is symmetric iff for any vertices $x \neq y$, either or

 \divideontimes The relation R is <u>transitive</u> iff for $a, b, c \in A$,

 $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$.

This means:

Example 10. Determine whether the relations *R* and *S* are reflexive, symmetric, antisymmetric, and/or transitive

Sol:

not reflexive, symmetric not antisymmetric not transitive $(b \rightarrow a, a \rightarrow c, b \rightarrow c)$

Exercise: 31

м

9.4 Closures of Relations

Closures

The relation $R=\{(1,1), (1,2), (2,1), (3,2)\}$ on the set $A=\{1, 2, 3\}$ is not reflexive.

Q: How to construct a smallest reflexive relation R_r such that $R \subseteq R_r$?

Sol: Let $R_r = R \cup \{(2,2), (3,3)\}.$ i. e., $R_r = R \cup \Delta$, where $\Delta = \{(a, a) | a \in A\}.$

 R_r is a reflexive relation containing R that is as small as possible. It is called the reflexive closure of R.

Example 1. What is the reflexive closure of the relation $R = \{(a,b) \mid a < b\}$ on the set of integers ?

Sol:
$$R_r = R \cup \Delta = \{(a,b) \mid a < b\} \cup \{(a,a) \mid a \in \mathbb{Z}\}$$

= $\{(a,b) \mid a \le b, a,b \in \mathbb{Z}\}$

Example:

The relation $R=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$ on the set $A=\{1,2,3\}$ is not symmetric. Find a smallest symmetric relation R_s containing R.

Sol: Let
$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}$$

Let $R_s = R \cup R^{-1} = \{ (1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(1,3),(3,2) \}$

 R_s is called the <u>symmetric closure</u> of R.

100

Example 2. What is the symmetric closure of the relation $R = \{(a, b) \mid a > b\}$ on the set of positive integers ?

Sol:

$$R \cup \{ (b, a) \mid a > b \} = \{ (c, d) \mid c \neq d \}$$

Exercise: 1,9

Def:

1.(reflexive closure of R on A)

 R_r =the smallest reflexive relation containing R.

$$R_r = R \cup \{ (a, a) \mid a \in A, (a, a) \notin R \}$$

2.(symmetric closure of R on A)

 R_s =the smallest symmetric relation containing R.

$$R_s = R \cup \{ (b, a) \mid (a, b) \in R \text{ and } (b, a) \notin R \}$$

3.(transitive closure of R on A)

 R_t =the smallest transitive relation containing R.

$$R_t = R \cup \{(a, c) \mid (a, b) \in R \text{ and } (b, c) \in R, \text{ but } (a, c) \notin R\}$$
 (repeat)

Note. There is no antisymmetric closure,

Definition . Let A be a set and R a relation on A. The transitive closure of R is the relation R^t on A that satisfies the following three properties:

- 1. R^t is transitive.
- 2. $R \subseteq R^t$.
- 3. If S is any other transitive relation that contains R, then $R^t \subseteq S$.

Example Let $A = \{0, 1, 2, 3\}$ and consider the relation R on A as follows:

$$R = \{(0,1), (1,2), (2,3)\}.$$

Find the transitive closure of R.

Solution. Every pair in R is in R^t , so

$$\{(0,1),(1,2),(2,3)\}\subseteq R^t.$$

Thus the directed graph of R contains the arrows shown below.

Since there are arrows going from 0 to 1 and from 1 to 2, R^t must have an arrow going from 0 to 2. Hence $(0,2) \in R^t$. Also, since $(1,2) \in R^t$ and $(2,3) \in R^t$, then $(1,3) \in R^t$.

Adding these pairs does not produce a transitive relation, because the resulting relation contains (0, 2) and (2, 3) but does not contain (0, 3). This shows that constructing the transitive closure of a relation is more complicated than constructing either the reflexive or symmetric closure. The transitive closure of a relation can be found by adding new ordered pairs that must be present and then repeating this process until no new ordered pairs are needed.

Then $(0,2) \in \mathbb{R}^t$ and $(2,3) \in \mathbb{R}^t$, so since \mathbb{R}^t is transitive, $(0,3) \in \mathbb{R}^t$. Thus \mathbb{R}^t contains at least the following ordered pairs:

$$\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}.$$

But this relation is transitive; hence it equals R^t . Note that the directed graph of R^t is as shown below.

Paths in Directed Graphs

Def 1. A path from a to b in the digraph G is a sequence of edges $(x_0, x_1), (x_1, x_2), ..., (x_{n-1}, x_n)$ in G, where $n \in \mathbb{Z}^+$, and $x_0 = a$, $x_n = b$. This path is denoted by $x_0, x_1, x_2, ..., x_n$ and has length n.

Ex.

A path from 1 to 5 of length 4

Theorem 1 Let R be a relation on a set A. There is a path of length n, where $n \in \mathbb{Z}^+$, from a to b if and only if $(a, b) \in R^n$.

Transitive Closures

Def 2. Let R be a relation on a set A. The connectivity relation R^* consists of pairs (a, b) such that there is a path of length at least one from a to b in R.

i.e.,
$$R^* = \bigcup_{i=1}^{\infty} R^i$$

Theorem 2 The transitive closure of a relation R equals the connectivity relation R^* .

Lemma 1 Let R be a relation on a set A with /A/=n. then $R^* = \bigcup_{i=1}^n R^i$

97

Example. Let R be a relation on a set A, where

 $A = \{1,2,3,4,5\}, R = \{(1,2),(2,3),(3,4),(4,5)\}.$

What is the transitive closure R_t of R?

Sol:

Theorem 3 Let M_R be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^* is

$$M_{R^*} = M_R \vee M_R^{[2]} \vee \cdots \vee M_R^{[n]}.$$

Example 7. Find the zero-one matrix of the transitive closure of the relation R where $M_R = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{vmatrix}$

Sol:

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Exercise: 25

9.5 Equivalence Relations

Def 1. A relation *R* on a set *A* is called an equivalence relation if it is reflexive, symmetric, and transitive.

Example 1.

Let R be the relation on the set of integers such that aRb if and only if a=b or a=-b. Then R is an equivalence relation.

Example 2.

Let R be the relation on the set of real numbers such that aRb if and only if a-b is an integer. Then R is an equivalence relation.

100

Example 3. (Congruence Modulo *m*)

Let $m \in \mathbb{Z}$ and m > 1. Show that the relation

 $R=\{(a,b) \mid a\equiv b\pmod{m}\}$ is an equivalence relation on the set of integers.

(a is congruent to b modulo m,

Sol: Note that $a \equiv b \pmod{m}$ iff $m \mid (a-b)$.

- - ② If $a\equiv b \pmod{m}$, then a-b=km, $k\in \mathbb{Z}$ $\Rightarrow b-a=(-k)m \Rightarrow b\equiv a \pmod{m} \Rightarrow \text{symmetric}$
 - ③ If $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$ then a-b=km, b-c=lm $\Rightarrow a-c=(k+l)m \Rightarrow a \equiv c \pmod{m} \Rightarrow \text{transitive}$
- \therefore R is an equivalence relation.

Example 4.

Let l(x) denote the length of the string x.

Suppose that the relation

 $R=\{(a,b) \mid l(a)=l(b), a,b \text{ are strings of English letters }\}$ Is R an equivalence relation?

Sol:

① $(a,a) \in R \ \forall \text{string } a$

 \Rightarrow reflexive

 $\textcircled{2}(a,b) \in R \implies (b,a) \in R$

 \Rightarrow symmetric

Yes.

 $(a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R \Rightarrow \text{transitive}$

Example 7.

Let R be the relation on the set of real numbers such that xRy if and only if x and y differ by less than 1, that is |x-y| < 1. Show that R is not an equivalence relation.

Sol:

- ① $xRx \ \forall x \text{ since } x-x=0$ $\Rightarrow \text{reflexive}$
- ② $xRy \Rightarrow |x-y| < 1 \Rightarrow |y-x| < 1 \Rightarrow yRx$ \Rightarrow symmetric
- ③ xRy, $yRz \Rightarrow |x-y| < 1$, |y-z| < 1 $\Rightarrow |x-z| < 1$ $\Rightarrow \text{Not transitive}$

Exercise: 3, 23

Equivalence Classes

Def 3.

Let R be an equivalence relation on a set A.

The equivalence class of the element $a \in A$ is

$$[a]_R = \{ s \mid (a, s) \in R \}$$

For any $b \in [a]_R$, b is called a <u>representative</u> of this equivalence class.

Note:

If
$$(a, b) \in R$$
, then $[a]_R = [b]_R$.

M

Example 9.

What are the equivalence class of 0 and 1 for congruence modulo 4?

Sol:

```
Let R = \{ (a,b) \mid a \equiv b \pmod{4} \}

Then [0]_R = \{ s \mid (0,s) \in R \}

= \{ ..., -8, -4, 0, 4, 8, ... \}

[1]_R = \{ t \mid (1,t) \in R \} = \{ ..., -7, -3, 1, 5, 9, ... \}
```

Exercise: 25, 29

Equivalence Classes and Partitions

Def.

A <u>partition</u> of a set S is a collection of disjoint nonempty subsets A_i of S that have S as their union. In other words, we have $A_i \neq \emptyset$, $\forall i$, $A_i \cap A_i = \emptyset$, for any $i \neq j$, and $\cup A_i = S$.

Example 12.

Suppose that $S=\{1, 2, 3, 4, 5, 6\}$. The collection of sets $A_1=\{1, 2, 3\}, A_2=\{4, 5\}$, and $A_3=\{6\}$ form a partition of S.

м

Thm 2.

Let R be an equivalence relation on a set A.

Then the equivalence classes of R form a partition of A.

Example 13.

List the ordered pairs in the equivalence relation R produced by the partition A_1 ={1, 2, 3}, A_2 ={4, 5}, and A_3 ={6} of S={1, 2, 3, 4, 5, 6}.

Sol:

$$R = \{ (a, b) \mid a, b \in A_1 \} \cup \{ (a, b) \mid a, b \in A_2 \}$$

$$\cup \{ (a, b) \mid a, b \in A_3 \}$$

$$= \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2),$$

$$(3, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6) \}$$

Exercise: 47

M

Example 14.

The equivalence classes of the congruence modulo 4 relation form a partition of the integers.

Sol:

$$[0]_4 = \{ \dots, -8, -4, 0, 4, 8, \dots \}$$

$$[1]_4 = \{ \dots, -7, -3, 1, 5, 9, \dots \}$$

$$[2]_4 = \{ \dots, -6, -2, 2, 6, 10, \dots \}$$

$$[3]_4 = \{ \dots, -5, -1, 3, 7, 11, \dots \}$$