Assignment 10: Data Scraping

Sayra Martinez

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on data scraping.

Directions

- 1. Rename this file <FirstLast>_A10_DataScraping.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure your code is tidy; use line breaks to ensure your code fits in the knitted output.
- 5. Be sure to **answer the questions** in this assignment document.
- 6. When you have completed the assignment, **Knit** the text and code into a single PDF file.

Set up

- 1. Set up your session:
- Load the packages tidyverse, rvest, and any others you end up using.
- Check your working directory

```
#1 Loading packages and checking directory
knitr::opts_chunk$set(tidy.opts=list(width.cutoff=60), tidy=TRUE)
library(tidyverse); library(rvest); library(dataRetrieval); library(tidycensus)
library(ggplot2); library(scales); library("ggplot2"); library("lubridate"); library("dplyr")
getwd()
```

[1] "/home/guest/EDA_Spring2024"

- 2. We will be scraping data from the NC DEQs Local Water Supply Planning website, specifically the Durham's 2022 Municipal Local Water Supply Plan (LWSP):
- Navigate to https://www.ncwater.org/WUDC/app/LWSP/search.php
- Scroll down and select the LWSP link next to Durham Municipality.
- Note the web address: https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010&year=2022

Indicate this website as the as the URL to be scraped. (In other words, read the contents into an rvest webpage object.)

```
# 2
URL <- "https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010&year=2022"
water_website <- read_html(URL)</pre>
```

- 3. The data we want to collect are listed below:
- From the "1. System Information" section:
- Water system name
- PWSID
- Ownership
- From the "3. Water Supply Sources" section:
- Maximum Day Use (MGD) for each month

In the code chunk below scrape these values, assigning them to four separate variables.

HINT: The first value should be "Durham", the second "03-32-010", the third "Municipality", and the last should be a vector of 12 numeric values (represented as strings)".

```
# 3 From System information section
system_name <- water_website %>%
   html_nodes("div+ table tr:nth-child(1) td:nth-child(2)") %>%
   html_text(trim = T)
PWSID <- water_website %>%
   html_nodes("td tr:nth-child(1) td:nth-child(5)") %>%
   html_text(trim = T)
ownership <- water_website %>%
   html_nodes("div+ table tr:nth-child(2) td:nth-child(4)") %>%
   html text(trim = T)
# From water supply sources
MGD <- water_website %>%
   html_nodes("th~ td+ td") %>%
   html_text(trim = T) %>%
   as.numeric()
# Just to check the extracted data
print(list(System_Name = system_name, PWSID = PWSID, Ownership = ownership,
   MGD = MGD)
```

```
## $System_Name
## [1] "Durham"
##
## $PWSID
## [1] "03-32-010"
##
## $Ownership
## [1] "Municipality"
##
## $MGD
## [1] 36.10 43.42 52.49 30.50 42.59 34.88 39.91 43.32 32.53 34.66 41.80 37.53
```

4. Convert your scraped data into a dataframe. This dataframe should have a column for each of the 4 variables scraped and a row for the month corresponding to the withdrawal data. Also add a Date column that includes your month and year in data format. (Feel free to add a Year column too, if you wish.)

TIP: Use rep() to repeat a value when creating a dataframe.

NOTE: It's likely you won't be able to scrape the monthly widthrawal data in chronological order. You can overcome this by creating a month column manually assigning values in the order the data are scraped: "Jan", "May", "Sept", "Feb", etc... Or, you could scrape month values from the web page...

5. Create a line plot of the maximum daily withdrawals across the months for 2022

```
# 4 Preparing the information
System_name <- rep("Durham", 12)</pre>
PWSID \leftarrow rep("03-32-010", 12)
Ownership <- rep("Municipality", 12)
Month <- water_website %>%
    html_nodes(".fancy-table:nth-child(31) tr+ tr th") %>%
    html_text(trim = T)
Year \leftarrow rep("2022", 12)
Date <- as.Date(paste("2022", Month, "01", sep = "-"), format = "%Y-%b-%d")
# Creating my data frame
Water_Supply <- data.frame(System_Name = System_name, PWSID = PWSID,
    Ownership = Ownership, MGD = MGD, Date = Date, Month = Month)
# 5
Water_Durhamplot <- ggplot(Water_Supply, aes(x = Date, y = MGD)) +</pre>
    geom_line(group = 1) + labs(x = "Month in 2022", y = "Maximum Daily Withdrawals") +
    theme_linedraw() + ggtitle("Maximum Daily Withdrawals - Monthly Data for 2022") +
    scale_x_date(date_labels = "%b", date_breaks = "1 month")
Water_Durhamplot
```

Maximum Daily Withdrawals - Monthly Data for 2022

6. Note that the PWSID and the year appear in the web address for the page we scraped. Construct a function using your code above that can scrape data for any PWSID and year for which the NC DEQ has data. Be sure to modify the code to reflect the year and site (pwsid) scraped.

```
# 6.
scraping <- function(PWSID, Year) {</pre>
    the_URL <- paste0("https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=",
        PWSID, "&year=", Year)
    water_website <- read_html(the_URL)</pre>
    # scraping data from the given website
    system_name <- water_website %>%
        html_nodes("div+ table tr:nth-child(1) td:nth-child(2)") %>%
        html_text()
    PWSID <- water_website %>%
        html_nodes("td tr:nth-child(1) td:nth-child(5)") %>%
        html_text(trim = T)
    ownership <- water_website %>%
        html_nodes("div+ table tr:nth-child(2) td:nth-child(4)") %>%
        html_text(trim = T)
    # From water supply sources
    MGD <- water website %>%
        html_nodes("th~ td+ td") %>%
        html_text(trim = T) %>%
        as.numeric()
```

7. Use the function above to extract and plot max daily withdrawals for Durham (PWSID='03-32-010') for each month in 2015

```
# 7
Durham_2015 <- scraping("03-32-010", "2015")
Durham_2015
```

```
Ownership
                                          MGD Year
##
      System Name
                      PWSID
## 1
           Durham 03-32-010 Municipality 40.25 2015 2015-01-01
## 2
           Durham 03-32-010 Municipality 53.17 2015 2015-05-01
           Durham 03-32-010 Municipality 40.03 2015 2015-09-01
## 3
## 4
           Durham 03-32-010 Municipality 43.50 2015 2015-02-01
           Durham 03-32-010 Municipality 57.02 2015 2015-06-01
## 5
           Durham 03-32-010 Municipality 38.72 2015 2015-10-01
## 6
## 7
           Durham 03-32-010 Municipality 43.10 2015 2015-03-01
## 8
           Durham 03-32-010 Municipality 41.65 2015 2015-07-01
## 9
           Durham 03-32-010 Municipality 43.55 2015 2015-11-01
## 10
           Durham 03-32-010 Municipality 49.68 2015 2015-04-01
## 11
           Durham 03-32-010 Municipality 44.70 2015 2015-08-01
## 12
           Durham 03-32-010 Municipality 48.75 2015 2015-12-01
```

```
Durham_2015_plot <- ggplot(Durham_2015, aes(x = Date, y = MGD)) +
    geom_line() + geom_smooth(method = "loess", se = F, color = "red") +
    labs(title = paste(2015, "Maximum Water day usage data for Durham"),
        y = "Maximum Daily Withdrawals", x = "Date") + scale_x_date(date_labels = "%b",
    date_breaks = "1 month")
Durham_2015_plot</pre>
```

```
## 'geom_smooth()' using formula = 'y ~ x'
```

2015 Maximum Water day usage data for Durham

8. Use the function above to extract data for Asheville (PWSID = 01-11-010) in 2015. Combine this data with the Durham data collected above and create a plot that compares Asheville's to Durham's water withdrawals.

```
# 8
Asheville_2015 <- scraping("01-11-010", "2015")
Asheville_2015
```

```
##
      System_Name
                      PWSID
                               Ownership
                                           MGD Year
## 1
        Asheville 01-11-010 Municipality 20.81 2015 2015-01-01
## 2
        Asheville 01-11-010 Municipality 23.95 2015 2015-05-01
## 3
        Asheville 01-11-010 Municipality 22.97 2015 2015-09-01
        Asheville 01-11-010 Municipality 24.54 2015 2015-02-01
## 4
## 5
        Asheville 01-11-010 Municipality 23.53 2015 2015-06-01
## 6
        Asheville 01-11-010 Municipality 21.32 2015 2015-10-01
## 7
        Asheville 01-11-010 Municipality 21.42 2015 2015-03-01
## 8
        Asheville 01-11-010 Municipality 23.68 2015 2015-07-01
        Asheville 01-11-010 Municipality 20.45 2015 2015-11-01
## 9
## 10
        Asheville 01-11-010 Municipality 21.60 2015 2015-04-01
## 11
        Asheville 01-11-010 Municipality 24.11 2015 2015-08-01
        Asheville 01-11-010 Municipality 19.88 2015 2015-12-01
## 12
```

```
two_towns <- bind_rows(Durham_2015, Asheville_2015)

ggplot(two_towns, aes(x = Date, y = MGD, color = System_Name)) +</pre>
```

```
geom_line() + labs(x = "Month", y = "Maximum Daily Withdrawals",
color = "Town") + theme_light() + ggtitle("Maximum Daily Withdrawals in Asheville and Durham. 2015"
theme(plot.title = element_text(hjust = 0.1)) + scale_x_date(date_labels = "%b",
date_breaks = "1 month")
```

Maximum Daily Withdrawals in Asheville and Durham. 2015

9. Use the code & function you created above to plot Asheville's max daily withdrawal by months for the years 2010 thru 2021.Add a smoothed line to the plot (method = 'loess').

TIP: See Section 3.2 in the "10_Data_Scraping.Rmd" where we apply "map2()" to iteratively run a function over two inputs. Pipe the output of the map2() function to bindrows() to combine the dataframes into a single one.

```
# 9
Asheville_decade <- 2010:2021
Asheville_id <- rep("01-11-010", length(Asheville_decade))

Asheville_df <- map2(Asheville_id, Asheville_decade, scraping)
Asheville_df <- bind_rows(Asheville_df)

Asheville_plot <- ggplot(Asheville_df, aes(x = Date, y = MGD)) +
    geom_line() + geom_smooth(method = "loess", se = F, color = "blue") +
    labs(x = "Date", y = "Maximum Daily Withdrawals", color = "Town") +
    theme_light() + ggtitle("Maximum Daily Withdrawals in Asheville: Monthly data for 2010-2021")
Asheville_plot</pre>
```

Maximum Daily Withdrawals in Asheville: Monthly data for 2010-2021

Question: Just by looking at the plot (i.e. not running statistics), does Asheville have a trend in water usage over time? > Answer: Yes, the plot shows that from 2010 and around 2015, the water usage was slightly decreasing, but it recovers and started increasing from then. >