

Polska Akademia Nauk Instytut Biocybernetyki i Inżynierii Biomedycznej

Praca doktorska

Proces gojenia ścięgna Achillesa oceniany przez fuzję danych z wykorzystaniem głębokich sieci neuronowych

Autor: mgr inż. Norbert Kapiński

Kierujący pracą: dr hab. inż. Antoni Grzanka

Promotor pomocniczy: dr Jakub Zieliński

Warszawa, wrzesień 2018

Streszczenie The abstract will go here.... W tym miejscu można umieścić abstrakt pracy. W przeciwnym wypadku należy usunąć/zakomentować ninijeszy fragment kodu.

Spis treści

1	Wst	tęp	1		
2	Cel	el i przebieg pracy Ionitorowanie procesu gojenia ścięgna Achillesa			
3	Mo				
	3.1	Ścięgno Achillesa	3		
		3.1.1 Anatomia	4		
		3.1.2 Biomechanika	4		
		3.1.3 Urazy i czynniki im sprzyjające	5		
		3.1.4 Leczenie, fazy gojenia i rehabilitacja	5		
	3.2	Zastosowanie rezonansu magnetycznego	5		
	3.3	Zastosowanie ultrasonografii	5		
	3.4	Zastosowanie badań biomechanicznych	5		
	3.5	Inne metody	5		
4	Kor	nwolucyjne sieci neuronowe	6		
	4.1	Zarys historyczny	6		
	4.2	Przykłady współczesnych topologii	6		
		4.2.1 AlexNet	6		
		4.2.2 GoogleNet	8		
		4.2.3 ResNet	8		

		4.2.4 Złożenia	8		
	4.3	Zastosowania w medycynie	8		
	4.4	Problem nadmiernego dopasowania	8		
	4.5	Problem redukcji wymiarowości	8		
5	Nov	va metoda oceny procesu gojenia ścięgna Achillesa	9		
	5.1	Metodyka	9		
	5.2	Rozróżnienie ścięgna zdrowego i po zerwaniu	9		
	5.3	Obliczanie krzywych gojenia	9		
		5.3.1 Topologia sieci	9		
		5.3.2 Redukcja wymiarowości	9		
		5.3.3 Miara wygojenia	9		
6	Wy	niki i walidacja	10		
	6.1	Ocena procesu gojenia z użyciem nowej metody	10		
	6.2	Porównanie z wynikami z rezonansu magnetycznego	10		
	6.3	Porównanie z wynikami ultrasonografii	10		
	6.4	Porównanie z wynikami badań biomechanicznych	10		
7	Pod	Isumowanie	11		
Bi	bliog	grafia	12		
\mathbf{A}	Ach	nillesDL: System komputerowego wspomagania oceny gojenia ścię-			
	gien i wiezadeł				

Spis rysunków

1.1	Podział przedstawiający różne rodzaje współczesnych głębokich sieci	
	neuronowych]
3.1	Lokalizacja mięśnia trójgłowego łydki wraz ze ścięgnem Achillesa	٠
4.1	Topologia architektury AlexNet	(

Spis tabel

Wstęp

Logistic regression — 1958

 ${\rm Hidden~Markov~Model-1960}$

Stochastic gradient descent — 1960

Support Vector Machine — 1963

k-nearest neighbors — 1967

Artificial Neural Networks — 1975

Expectation Maximization — 1977

Decision tree — 1986

Q-learning — 1989

Random forest — 1995

Rysunek 1.1: Podział przedstawiający różne rodzaje współczesnych głębokich sieci neuronowych.

Cel i przebieg pracy

Monitorowanie procesu gojenia ścięgna Achillesa

3.1 Ścięgno Achillesa

Ścięgno Achillesa, nazywane również ścięgnem piętowym, jest największym i najsilniejszym ścięgnem występującym w ciele ludzkim. Stanowi wspólne zakończenie mięśnia trójgłowego łydki, w którego skład wchodzą dwie głowy mięśnia brzuchatego i mięsień płaszczkowaty. Całość struktury zlokalizowana jest w tylnym, powierzchownym przedziale łydki, co zostało przedstawione na Rysunku 3.1. Z obu głów (brzuścców)

Rysunek 3.1: Lokalizacja mięśnia trójgłowego łydki wraz ze ścięgnem Achillesa.

mięśnia brzuchatego łydki wyrasta jedno szerokie, płaskie ścięgno, które jest początkiem części brzuchatej ścięgna Achillesa. Następnie ścięgno to łączy się z włóknami pochodzącymi od mięśnia płaszczkowatego, które układają się stycznie do wcześniej powstałej struktury. Wówczas kształt ulega stopniowemu zwężeniu i zaokrągleniu, aż do punktu o minimalnej szerokości (około 4 cm nad przyczepem dolnym [1]). W rejonie samego przyczepu dolnego znajdującego się na tylnej powierzchnia kości piętowej, ścięgno ponownie jest płaskie i szerokie.

W kolejnych podsekcjach szczegółowo omówiona została anatomia ścięgna Achillesa, jego biomechanika, potencjalne urazy wraz z czynnikami im sprzyjającymi oraz proces gojenia i możliwości jego wspomagania. Wszystkie te aspekty są istotne z uwagi na możliwości monitorowania procesów fizjologicznych występujących w ścięgnie.

3.1.1 Anatomia

Srednia długość ścięgna Achillesa to 15 cm (11 - 26 cm). Średnia szerokość w rejonie początku wynosi 6.8 cm (4,5 - 8, 6 cm). Następnie, stopniowo ścięgno ulega zwężeniu do punktu o minimalnej szerokości 1.8 cm (1,2 - 2,6 cm). W rejonie samego przyczepu struktura ponownie się rozszerza i jej szerokość wynosi średnio 3.4 cm (2,0 - 4,8 cm) [2-3]. Zewnętrzną część ścięgna Achillesa stanowi ościęgno utworzone z tkanki łącznej włóknistej. Achil -Histologia -Unaczynienie (krew, nerwy)

3.1.2 Biomechanika

Zadaniem ścięgien jest transfer siły mięśniowej do układu szkieletowego.

- 3.1.3 Urazy i czynniki im sprzyjające
- 3.1.4 Leczenie, fazy gojenia i rehabilitacja
- 3.2 Zastosowanie rezonansu magnetycznego
- 3.3 Zastosowanie ultrasonografii
- 3.4 Zastosowanie badań biomechanicznych
- 3.5 Inne metody

Konwolucyjne sieci neuronowe

Konwolucyjne sieci neuronowe (ang. Convolutional Neural Networks)

4.1 Zarys historyczny

4.2 Przykłady współczesnych topologii

4.2.1 AlexNet

Sieć AlexNet, której nazwa pochodzi od imienia głównego twórcy tej architektury Alexa Krizhevsky, zawiera blisko 60 milionów parametrów i 650 tysięcy neuronów. Architekturę zaprezentowano na Rys. 4.1

Rysunek 4.1: Topologia architektury AlexNet.

W skład topologii wchodzi pięć warstw konwolucyjnych i trzy typu fully-connected. Po pierwszej, drugiej i piątej warstwie konwolucyjnej występują operacje typu maxpool, stosowane do obszaru 2×2 .

Pierwsza warstwa konwolucyjna przyjmuje na wejściu dane o wymiarze $227 \times 227 \times 3$, na których wykonywana jest operacja spłotu z 96 filtrami z jądrem spłotu o wymiarach $11 \times 11 \times 3$ i krokiem 4. W rezultacie (uwzględniając również operacje max-pool) objętość wynikowa przekazywana do kolejnej warstwy ma wymiar $27 \times 27 \times 96$. W drugiej warstwie konwolucyjnej wykonywana jest operacja spłotu z 256 filtrami z jądrem o wymiarach $5 \times 5 \times 96$. Wymiar objętości wynikowej zostaje ponownie zredukowany poprzez operacje max-pool do $13 \times 13 \times 256$. Kolejne 3 warstwy konwolucyjne są połączone bezpośrednio ze sobą. Trzecia warstwa zawieraja 384 filtry o wymiarze $3 \times 3 \times 256$, w skład czwartej wchodzą 384 filtry o wymiarze $3 \times 3 \times 384$, a w piątej znajdują się 256 filtry ponownie o wymiarze $3 \times 3 \times 384$. Końcowe dwie warstwy typu FC zawierają po 4096 neuronów, a ostatnia zawiera tyle neuronów ile klas występuje w ostatecznym podziale - w oryginalnej pracy było to 1000 [AlexNet].

Przykładowa implementacja algorytmu przetwarzania sygnału wejściowego przez pierwszą warstwę sieci wygląda następująco:

- 1. Z danych wejściowych o wymiarze [227×227×3] wybierany jest co czwarty blok (zarówno wzdłuż wysokości jak i szerokości) o wymiarach [11×11×3]. Punkty krawędziowe, które stanowią margines potrzebny do wyliczenia splotu są zazwyczaj pomijane. W rezultacie otrzymywanych jest 217 punktów w każdym rzędzie i w kolumnie, w których mieści się [55×55] tj. 3025 bloków.
- 2. Zarówno $11\times11\times3=363$ wagi znajdujące się w 96 filtrach jak i wartości 363 punktów obrazowych znajdujących sie 3025 blokach są przedstawiane w postaci macierzy A o wymiarach $[96\times363]$ i B o wymiarach $[363\times3025]$.
- 3. liczony jest iloczyn skalarny w postaci A†B = C, gdzie nowa, wyjściowa macierz C ma wymiar [96×3025].
- 4. Resultat w postaci macierzy C ponownie przewymiarowywany jest na postać $[55{\times}55{\times}96].$

Praca nad architekturą wprowadziła kilka nowości w stosunku do poprzednich architektur takich jak LeNet usprawniając trening sieci. -ReLU -MultiGPU -LRN -dropout

- 4.2.2 GoogleNet
- **4.2.3** ResNet
- 4.2.4 Złożenia
- 4.3 Zastosowania w medycynie
- 4.4 Problem nadmiernego dopasowania
- 4.5 Problem redukcji wymiarowości

Nowa metoda oceny procesu gojenia ścięgna Achillesa

- 5.1 Metodyka
- 5.2 Rozróżnienie ścięgna zdrowego i po zerwaniu
- 5.3 Obliczanie krzywych gojenia
- 5.3.1 Topologia sieci
- 5.3.2 Redukcja wymiarowości
- 5.3.3 Miara wygojenia

Wyniki i walidacja

- 6.1 Ocena procesu gojenia z użyciem nowej metody
- 6.2 Porównanie z wynikami z rezonansu magnetycznego
- 6.3 Porównanie z wynikami ultrasonografii
- 6.4 Porównanie z wynikami badań biomechanicznych

Podsumowanie

Bibliografia

[1] Witold Pokorski and Graham G. Ross. Flat directions, string compactification and three generation models. 1998.

Dodatek A

AchillesDL: System komputerowego wspomagania oceny gojenia ścięgien i więzadeł