Let us consider a sample dataset, have one input (1; a) and one output (ya) and number of sample: 4. Develop a simple linea reggression model using MBGD

Sample (i)	n;	y:
,	0.2	3.4
2	0.4	3.8
3	0.6	4.2
4.	0.8	4.6

* Do manual calculations for two iterations with

& write the python code to build simple linear reggression model using MBGO Optimizer (considerall 4 samples)

Batch 1
$$\frac{x}{0.2}$$
 $\frac{y}{3.4}$ Batch 2 $\frac{x}{0.6}$ $\frac{y}{4.2}$ $\frac{y}{0.4}$ $\frac{3.8}{3.8}$ $\frac{y}{0.9}$ $\frac{y}{4.6}$

Step-1: [n,y], m=1, c=-1, n=0.1, epochs=2, b=2

Step-2:
$$n_b = \frac{n_e}{b_s} = 4h = 2$$

Step-3 ! , itr=1

Step 4: batch = 4

Step 5 :
$$\frac{dE}{dm} = -\frac{1}{b_{5}} \sum_{i=1}^{38} (4i - m\pi; -c)\pi;$$

$$= -\frac{1}{2} \left[(3i - 0.2 + 1) - 0.2 \right] + \left[2.8 - 0.4 + 1 \right] 0.2 \right] + \left[2.8 - 0.4 + 1 \right] 0.2 \right] + \left[2.8 - 0.4 + 1 \right] 0.2 \right] + \left[2.8 - 0.4 + 1 \right] 0.4$$

Step 6 : $\Delta m = -(0.1)(-1.34) = 0.434$

$$\Delta c = -(0.1)(-4.3) = 0.43$$

Step 7 : $m = m + \Delta m = 1 + 0.184 = 1.134$

$$c = c + \Delta c = -1 + 0.43 = -0.57$$

Step 8 : $Batch + c = 1$

$$141 = 2$$

Step 9 : $dE = -\frac{1}{2} \left[(4.2 - (1.184)(0.6) + 0.57) 0.6 \right] + (4.6 - (1.184)(0.9) + 0.57) 0.6$

$$+ (4.6 - (1.184)(0.9) + 0.57) 0.6$$

$$= -2.932$$

Fred Add

Step 5
$$\frac{dE}{dm} = \frac{1}{2} \left[(2.4 - (1.429)(0.2) + 0.1523)0.2 + (3.8 - (1.4272)(0.4) + 0.1523)0.4 + (3.8 - (1.4272)(0.2) + 0.1523) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.8 - (1.4272)(0.4) + (3.4 - (1.4272)(0.4) + (3.4 - (1.4272)(0.4) + (3.4 - (1.4272)(0.4) + (3.4 - (1.4272)(0.4) + (3.4 - (1.4272)(0.4) + (3.4 - (1.4272)(0.4) +$$

grep 5:
$$\frac{dE}{dm} = -\frac{1}{2} \left[(4.2 - (1.5274)(0.4) - 0.1947) \right]$$
 $+ (4.6 - (1.5274)(0.6) - 0.1947) 0.8 \right]$
 $= -2.21$
 $\Delta C = -0.1 \times -2.21$
 $= 0.215$
 $\Delta C = -0.1 \times -3.151$
 $= 0.315$
 $\Delta C = -0.1 \times -3.151$
 $= 0.494$

Step 8: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$

Step 8: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$

Step 9: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$

Step 10: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$

Step 10: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$

Step 10: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$

Step 10: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$

Step 11: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$

Step 12: $C + \Delta C = 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.494$
 $= 0.1949 + 0.215$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$
 $= 0.494$