Nível de Rede

Mestrado Integrado em Engenharia de Comunicações

> 3° ano 1°semestre 2012/2013

Sumário

- Interligação de Redes
 - Encapsulamento na pilha TCP/IP
- Datagramas IP versão 4 (IPv4)
 - Cabeçalhos IPv4
 - Fragmentação e reagrupamento
- Endereçamento (IPv4)
 - Classfull e classless
 - Subnetting e supernetting
- Atribuição dinâmica de endereços (DHCP)
- Resolução de endereços nível 2 (ARP)
- Mensagens de Controlo (ICMP)

- Nenhuma das tecnologias existentes de rede local (LAN) é adequada para satisfazer todos os requisitos de comunicações das aplicações.
- Nenhuma dessas tecnologias é totalmente escalável:
 - Os endereços não têm estrutura, resultando em:
 - dificuldade de distribuição e administração
 - complexidade no encaminhamento dos PDU, mas...
 - Não há mecanismos de encaminhamento nos protocolos
 - Os PDU têm comprimentos limitados;
 - Os métodos de acesso não suportam grandes distâncias

Introdução

Questão:

Será que para existir um serviço de rede único e global (universal) é necessário adoptar a mesma tecnologia de rede em todos os locais? Ou será possível oferecer serviços de conectividade universal mesmo adoptando diferentes tecnologias locais?

É possível a conectividade global entre redes com protocolos locais distintos introduzindo uma camada protocolar superior independente daqueles:

A <u>camada protocolar de rede</u>, também chamada de interligação de redes ou de *internetworking*.

Introdução

A Interligação de Redes baseia-se na utilização de funcionalidades específicas de rede (realizadas tanto em *hardware* como em *software*) que proporcionam um serviço global de interligação de redes locais (LAN) heterogéneas:

- Software: protocolos de rede (internetworking)
- Hardware: routers (encaminhadores)

A maior Rede de Redes que existe: Internet

Introdução

A pilha TCP/IP

- O protocolo do nível de rede mais utilizado é o protocolo de rede usado na Internet: o Internet Protocol (IP), da pilha protocolar TCP/IP
- A pilha TCP/IP apresenta como principais características:
 - Aberta
 - especificações publicadas e bem conhecidas
 - abertura completa ao desenvolvimento de código

Portável

- independência do sistema operativo e plataforma
- quaisquer sistemas podem comunicar

Estável e Robusta

- normas testadas ao longo de três décadas e fixas
- mas ainda em desenvolvimento e aperfeiçoamento

Suporte global

incluída em todos os sistemas de computação

A pilha TCP/IP

Encapsulamento TCP/IP

A hierarquia protocolar por camadas traduz-se no encapsulamento dos PDU:

- Na origem, o PDU da camada N+1 é inserido no campo de dados do PDU da camada N
- No destino, o PDU da camada N é recuperado do campo de dados do PDU da camada N-1

Estação origem

- É um protocolo de interligação de rede, cujo paradigma protocolar é o melhor esforço (best effort):
 - o protocolo esforça-se por entregar os datagramas ao destino mas não o garante (datagramas podem perder-se)
- Versões: IPv4 (em uso generalizado), IPv6 (em instalação)
- Principais funções:
 - fornece a unidade elementar de transferência de dados:
 - o PDU do IP é um datagrama IP
 - inclui mecanismos para o seu encaminhamento
 - fragmentação de datagramas: transita em qualquer LAN
 - incorpora um esquema de endereçamento universal

Formato dos datagramas

Ethernet Data Field

Formato dos datagramas

- Vers (4bit): versão do protocolo (valor 4 ou valor 6)
- HLEN (4bit): tamanho do cabeçalho em blocos de 32 bits; valor mínimo é 5;
- **TOS** (8bit): dá uma indicação em abstracto dos parâmetros de qualidade de serviço pretendidos (atraso baixo, débito elevado, etc)
- Total Length (16bit): tamanho total (cabeçalho+dados) em bytes; (máximo é 65535, mas normalmente não passa dos 1500 bytes)
- Identification (16bit): identificador único por datagrama e por cada conexão que ajuda a identificar todos os fragmentos que devem ser reagrupados
- **Flags** (3bit): Bit 0 = 0 (reservado); Bit 1 = DF (don't fragment); Bit 2 = MF (more fragments);
- **Fragment Offset** (13bit): define a que parte do datagrama pertence este fragmento e mede-se em blocos de 64 bits (8 bytes)

Formato dos datagramas

- **Time To Live** (8bit): máximo tempo de vida do datagrama que é decrementado a cada salto; quando o valor é zero o datagrama é destruído;
- Protocol (8bit): usado para identificar qual o protocolo da camada acima a quem devem ser entregues os dados transportados
- Header Checksum (16bit): soma de verificação em complemento para 1 do cabeçalho (recalculado em cada salto por causa do TTL)
- IP Options (opcional e de tamanho variável):
 - Security
 - Loose Source Rounting
 - Strict Source Routing
 - Record Route
 - Stream ID
 - Internet Timestamp

Fragmentação e reagrupamento

- As ligações de rede têm diferentes MTU (max.transfer unit) - tamanho máximo da trama da camada de ligação
 - Diferentes tipos de ligação implicam diferentes MTUs
- **Um datagrama IP "demasiado** grande" é dividido em vários fragmentos dentro da rede
 - Um datagrama transforma-se em vários datagramas
 - A junção é efectuada apenas no nó destino
 - Existem no cabeçalho IP um conjunto de campos para identificar e ordenar fragmentos.

Featuring the Internet, J. Kurose, Addison-Wesley, 2001

Fragmentação e reagrupamento

length	ID	fragflag	offset	
=4000	=χ	=0	=0	

Um grande datagrama transforma-se em vários pequenos datagramas

VERS	HLEN	TOS	Total Length				
Identification			Flags	Fragment Offset			
Time to Live Protocol Head				der Chec	r Checksum		
Source IP address							
Destination IP address							
IP Options (may be null) Padding				Padding			
IP Datagram Data (up to 65,535 bytes)							

Endereçamento

- Endereço IP: identificador de 32bits por interface do sistema terminal ou encaminhador
- Interface: ligação entre o sistema terminal ou o encaminhador e a ligação física
 - Os encaminhadores têm tipicamente múltiplas interfaces
 - Os sistemas terminais podem ter múltiplas interfaces
 - Os endereços IP associam-se a interfaces (não a sistemas terminais ou encaminhadores)

Interligações de rede com 3 redes IP

Fonte: Computer Networking: A Top-Down Approach Featuring the Internet, J. Kurose, Addison-Wesley, 2001

- Endereço IP:
 - Parte da Rede (bits mais significativos
 - Parte do Sistema Terminal (bits menos significativos)
- O que é uma Rede ? (perspectiva dos endereços IP)
 - interfaces de dispositivos com a mesma "Parte de Rede"
 - mutuamente e fisicamente atingíveis sem intervenção de um encaminhador

Endereçamento

Múltiplas subredes no mesmo interface

Endereçamento

Endereçamento por classes (ou Classful)

- esquema original, baseado na RFC 791
- usa os primeiros bits como identificadores de classe

Endereçamento sem classes (ou Classless)

- não considera os bits de classe utilizando uma máscara de 32 bits para determinar o endereço de rede
- permite encaminhamento mais eficiente por agregação de rotas, designado por CIDR (Classless Internet Domain Routing)
- tabelas de encaminhamento mais pequenas
 - as rotas são agregadas por grupos de endereços adjacentes
- usado pelas tabelas de encaminhamento de ISPs

Endereçamento (Classfull)

		ntificador a classe	Parte do Endereço de Rede		Parte do Endereço de Estação				
Cla	Classe A								
	0	7 bits de	endereço de rede		24 bits de endereço de estação				
Classe B									
	10	14 bits	14 bits de endereço de rede			16 bits de endereço de estação			
Classe C									
	110		21 bits de endereço de rede			8 bits endereço de estação			
Classe D									
	1110	Endereços Multicast no intervalo 224.0.0.0 - 239.255.255.255				55			
Classe E									
	1111	11110 Classe E – Reserva			ara utilização futura				

Endereçamento (Classfull)

Endereços IPv4 por classes

Classe	А	В	С	D
redes (1° byte)	126 (1-126)	16.384 (128-191)	2.097.152 (192-223)	
hosts/rede	16.277.214	65.354	254	
reservado	host a 0s ou 1s	host a 0s ou 1s	host a 0s ou 1s	(224-239)

Endereçamento (Classfull)

Máscara de endereço

- Máscara: padrão que conjugado com o endereço IP, devolve a parte do endereço de rede (ou sub-rede)
- No endereçamento por classes as máscaras são:
 - - notação decimal: 255.0.0.0 notação CIDR: /8
 - - notação decimal: 255.255.0.0 notação CIDR: /16
 - Classe C: 11111111111111111111111111100000000
 - notação decimal: 255.255.255.0 notação CIDR: /24
- No endereçamento sem classes as máscaras têm qualquer outro valor

Endereçamento (Classfull)

Restrições a Endereços IP

- Endereços reservados:
 - os primeiros 4 bits não podem ser 1
 - 127.x.x.x é o endereço reservado para loopback
 - bits de host a 0s ou 1s são reservados (rede ou broadcast)
- Endereços privados: atribuídos para internets privadas (sem conectividade global, não devem ser visíveis nem são encaminhados na internet exterior), RFC1918:
 - bloco 192.168.0.0 192.168.255.255 (prefixo 192.168 / 16)
 - bloco 172.16.0.0 172.31.255.255 (prefixo 172.16 / 12)
 - bloco 10.0.0.0 10.255.255.255 (prefixo 10 /8)

Endereçamento (Classless)

- Endereçamento por classes (classfull):
 - Uso ineficiente do espaço de endereçamento, exaustão de espaço
 - Ex: uma classe B aloca 65K hosts mesmo que existam apenas 2K hosts!
- Enderecamento sem classes (classless):
 - Parte de rede (do endereço) com comprimento arbitrário
 - Formato: a.b.c.d/x, em que x é o n° de bits correspondente à parte de rede

200.23.16.0/23

Endereçamento (Classless)

Endereçamento sem classes

- Considere-se o endereço IP 130.1.5.1
 - é o endereço da estação **5.1** da rede **130.1.0.0** (classe B)
- Considere-se o endereço IP 130.1.5.1/24
 - é o endereço da estação 1 da sub-rede 130.1.5.0

(máscara com multiplo de 8 bits)

Rede	Estação	Máscara de subrede	Rede	Subrede	Estação	
130.1	5.1	255.255.255.0	130.1	5	1	

interpretação original por classe

interpretação sem classe (CIDR)

Endereçamento (Classless)

- Considere-se o endereço IP 130.1.9.1/21
 - é o endereço da estação 257 da sub-rede 130.1.8.0

(máscara com 21 bits)

11111111.111111111.11111000.00000000

Máscara de Subnet 255.255.248.0

Endereçamento (Subnetting)

Sub-redes (Subnetting)

- permite melhor aproveitamento, organização e gestão do espaço de endereços
- introduz outro nível hierárquico para routing

Reescrita de endereços (NAT: Network Address Translation)

- Motivação para a rede local usar apenas um endereço Internet conhecido com acesso global:
 - Não é preciso gastar uma gama de endereços ao ISP: basta um!
 - Podem-se mudar os endereços da rede a qualquer momento sem ter de avisar o mundo inteiro desse facto
 - Pode-se mudar de ISP sem mudar de endereços na rede local
 - Os equipamentos da rede local não são directamente endereçáveis do exterior (protecção de segurança acrescida!)

Reescrita de endereços (NAT: Network Address Translation)

Todos os datagramas que *saiem* para a Internet são forçados a usar o mesmo endereço de origem: 138.76.29.7, e números de porta origem distintos

Todos os datagramas nesta rede contêm, como habitualmente endereços de origem e/ou de destino na gama disponível 10.0.0/24

Reescrita de endereços (NAT: Network Address Translation)

Implementação: router NAT

- <u>Datagramas que saiem:</u> **substituir** o par (*Endereço IP Origem, Nº Porta*) de todos os datagramas por (*Endereço IP NAT, Novo Nº de Porta*)
 . . . os sistemas no exterior vão naturalmente endereçar os datagramas de resposta para (*Endereço IP NAT, Novo Nº de Porta*)
- Guardar numa tabela NAT todas as trocas que foram feitas de pares
 (Endereço IP Origem, Nº Porta) para (Endereço IP NAT, Novo Nº de Porta)
- <u>Datagramas que chegam:</u> **substituir** (*Endereço IP, Porta*) pelo endereço interno (*Endereço IP Origem, Porta Origem*) armazenado na tabela NAT

Reescrita de endereços (NAT: Network Address Translation)

Reescrita de endereços (NAT: Network Address Translation)

- Porta é um campo da camada de transporte com 16-bit
 - 60,000 conexões simultâneas com um único endereço!
- NAT é muito controverso:
 - Viola independência entre camadas:
 - routers só devem poder mexer nos cabeçalhos de nível 3!
 - Viola o conceito fim-a-fim
 - Estado intermédio por conexão
 - As aplicações (P2P e outras) são obrigadas a ter o NAT em consideração...
 - Não é a forma certa de resolver a escassez de endereços (IPv6)
- Como endereçar servidores internos? (e-mail, web, etc)

Endereçamento (Alocação dinâmica)

Hosts (parte de host):

- hard-coded em ficheiro de sistema p/ admin
- DHCP: Dynamic Host Configuration Protocol: obter endereço dinamicamente: "plug-and-play"
 - host faz broadcast msg "DHCP discover"
 - servidor DHCP responde c/ msg "DHCP offer"
 - host pede endereço IP: msg "DHCP request"
 - servidor DHCP envia endereço: msg "DHCP ack"

Endereçamento (Alocação dinâmica)

Endereçamento (Alocação dinâmica)

- O servidor DHCP deve estar na mesma rede que o cliente. Se não estiver, é necessário um agente DHCP-Relay (tipicamente um router) que sirva de intermediário...
- Um cliente pode receber ofertas de mais do que um servidor DHCP, mas só pode escolher uma delas; a mensagem DHCP Request, enviada de novo para o endereço de difusão, serve para todos saberem qual foi a oferta escolhida e anularem as reservas que fizeram
- Uma curiosidade: O DHCP é a terceira geração de protocolos de configuração de sistemas; Pode ser visto como uma extensão ao BOOTP (protocolo de arranque para sistemas sem disco) que por sua vez deriva do protocolo RARP (Reverse Address Resolution Protocol)

Endereçamento (supernetting)

Network (parte de rede):

Alocado via espaço de endereçamento do ISP

Bloco do ISP	<u>11001000</u>	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organização 0	11001000	00010111	0001000	00000000	200.23.16.0/23
Organização 1	11001000	00010111	00010010	00000000	200.23.18.0/23
Organização 2	11001000	00010111	0001010	00000000	200.23.20.0/23
•••					••••
Organização 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Endereçamento hierárquico – agregação de rotas

Endereçamento Hierárquico permite anúncios eficientes de informação de encaminhamento:

Endereçamento hierárquico – rotas mais específicas

ISPs-R-Us tem uma rota mais específica para a Organização 1

Encaminhamento – da origem ao destino (I)

Datagrama IP:

misc source dest fields IP addr IP addr data

 O datagrama não é modificado, desde a origem até ao destino

Tabela encaminhamento de A

Dest. Net	next router	#hops
223.1.1		1
223.1.2	223.1.1.4	2
223.1.3	223.1.1.4	2

Encaminhamento – da origem ao destino (II)

•			
misc			
C 1 1	223 1 1 1	223.1.1.3	data
tields			

Partindo de A, datagrama IP endereçado a B:

- Buscar endereço de rede de B
- B está na mesma rede de A
- datagrama directamente para B
 - B e A estão ligados directamente

	Dest. Net.	next route	#hops
	223.1.1		1
	223.1.2	223.1.1.4	2
	223.1.3	223.1.1.4	2
	223.1.1.1		
	223.1.1.2	223. ²	
BI			3.1.2.2 E
001	223.1.3.1	223.	.1.3.2

Encaminhamento – da origem ao destino (III)

misc fields	223.1.1.1	223.1.2.2	data
1			

Partindo de A, destino E:

- Busca endereço de rede de E
- E está numa rede diferente
 - A, E sem ligação directa
- Tabela encaminhamento: próximo nó é 223.1.1.4
- envia datagrama para router 223.1.1.4
- datagrama chega a 223.1.1.4
-

Dest. Net.	next router	#hops
223.1.1		1
223.1.2	223.1.1.4	2
223.1.3	223.1.1.4	2

Encaminhamento – da origem ao destino (IV)

Chega ao nó 223.1.4, com destino 223.1.2.2

- Busca endereço de rede de E
- E está na mesma rede da interface 223.1.2.9
 - Encaminhador e nó E ligados directamente
- envia datagrama para 223.1.2.2 (via interface 223.1.2.9)

	Dest. network	next router	#hops	interface
	223.1.1	-	1	223.1.1.4
	223.1.2	-	1	223.1.2.9
	223.1.3	-	1	223.1.3.27
	223.1.1 223.1.1 B 223.1.1.3	.2 223.1.1.4	223.1.2	.1.2.1
acl y, 2	223.1.3 2001		22	3.1.3.2

ARP (*Protocolo de Resolução de Endereços*)

- ARP (Address Resolution Protocol) mapeia um endereço de rede no endereço MAC (48 bytes) que lhe corresponde.
- RFC 826: An Ethernet Address Resolution Protocol
- Operação:
 - local à LAN
 - não usa encapsulamento IP
 - o EtherType ARP é: 0x0806
 - ARP-PDUs: ARP Request e ARP Reply

ARP (*Protocolo de Resolução de Endereços*)

2 bytes		Tipo de hardware		
2		Tipo de protocolo		
1+1	Com	o do endereço hardware Comp do endereço protocolar		
2		Operação		
6		Endereço de Hardware da estação de origem (sender)		
4		Endereço Protocolar da estação de origem (sender)		
6		Endereço de Hardware da estação de destino (target)		
4	Endereço Protocolar da estação de destino (target)			
DA SA	TF	Data	CRC	

DA - Destination Address SA - Source Address TF - Type Field

ARP (*Protocolo de Resolução de Endereços*)

- ARP Request é enviado em broadcast
- ARP Reply é enviado em unicast à estação requerente, que mantém temporariamente a resolução na cache de ARP

ICMP (Internet Control Message Protocol)

- Protocolo usado por sistemas terminais e encaminhadores para trocarem informação do nível de rede
 - reportar erros: nó, rede, porta ou protocolo inatingíveis,
 - echo request/reply (utilizado pelo ping)
 - TTL expired (usado pelo traceroute)
- Camada de rede "sobre" o IP:
 - Mensagens ICMP encapsuladas em datagramas IP
- Mensagem ICMP: tipo, código, os primeiros 8 bytes do datagrama IP responsável pelo erro

Type	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

DA SA TF

ICMP (Internet Control Message Protocol)

ICMP (Internet Control Message Protocol)

Exercício Prático

Alguns comandos:

% ifconfig -a

% arp -a

% ping <host>

% netstat -n -r

Exercício exemplo:

Começar por ver a tabela de ARP e a tabela de routing...

Activar o Ethereal e pô-lo a capturar todos os pacotes...

Fazer ping para um sistema da mesma rede ainda não contactado...

Observar a troca de mensagens ARP e o resultado na tabela de ARP

