- 学習データ(training data)
 - n 個の観測データ

$$\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$

$$x_{i} = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$$

- 統計的推定
 - -学習データから、個々の観測データ(X,Y)に対して $Y pprox \hat{f}(X)$

となるような f を推定

- パラメトリックな手法(parametric methods)
 - -fの関数形に対して何らかの仮定をおく例)線形モデル(linear model)

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- 係数 β_0 , β_1 , β_2 ,..., β_p を

$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

となるように定める(学習、フィッテイング)

- パラメトリックな手法(parametric methods)
 - 利点
 - *f* を推定する問題が、*p*+1個のパラメータの値を求めるという簡単な問題に帰着された

- 欠点

- 仮定したモデルが真の *f* を表現できないかもしれない
- 表現力の大きなモデルを仮定すればその問題は軽減できるが、学習データ中のノイズに過剰に適合する過学習 (overfitting)の問題が起こる

例)線形モデルによる推定(Income データセット)

income $\approx \beta_0 + \beta_1 \times \text{education} + \beta_2 \times \text{seniority}$

真のf(再掲)

% Income データセットは人工的に作ったデータなので真のfがわかっている

- ノンパラメトリックな手法(non-parametric methods)
 - -fの関数形に関して明示的な仮定を置かない
 - 利点
 - 複雑で多様な ƒを表現できる可能性がある
 - 欠点
 - ・高精度な推定のためには大量の観測データが必要

• 例) thin-plate spline による推定 (Income データセット)

- 例) thin-plate spline による推定
 - 曲面の滑らかさに関するペナルティを甘くした場合

- 予測精度と解釈性のトレードオフ
 - 表現力の低いモデル
 - 複雑な形のfをうまく近似できない
 - YとX₁, X₂, ..., X_p の関係がわかりやすい
 - 表現力の高いモデル
 - 複雑で多様なfに対応できる
 - ・解釈性が低い

• 予測精度と解釈性のトレードオフ

Flexibility

教師付き学習と教師なし学習

- 教師付き学習(supervised learning)
 - 各観測データ x_i , i = 1,...,n に対して応答 y_i がある
 - 目的
 - XからYを予測
 - XとYの関係を推論
 - 例)顧客の属性から購買額を予測
- 教師なし学習(unsupervised learning)
 - $-x_i$, i=1,...,n はあるが y_i は無い
 - 目的
 - 変数や観測データ間の関係を明らかにする
 - 例)顧客の属性から顧客をグループ分け(クラスタリング)

教師付き学習と教師なし学習

クラスタリングの例

- 色は真のグループを表す(実際にクラスタリングする際は未知)
- 実際のデータはもっと高次元なので大変

回帰と分類

- 変数
 - 量的変数(quantitative variable)
 - ・ 実数値をとる変数
 - 例)年齡、身長、収入、株価、etc
 - 質的変数(qualitative variable)
 - K個の異なるクラス(カテゴリ)のうちどれかの値をとる変数
 - 例)性別、購入した製品、Yes/No、病気の種類、etc
- ・ 教師付き学習の問題は大きく2つに分けられる
 - 回帰問題(regression problem)
 - 予測対象(出力)が量的変数
 - 分類問題(classification problem)
 - 予測対象が質的変数

- モデルの精度(回帰問題の場合)
 - 平均二乗誤差(mean squared error, MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

この式は学習データでの誤差(training MSE)だが、本当に最小化したいのは、未知のデータ(テストデータ)での誤差(test MSE)

$$Ave\left(\left(y_0 - \hat{f}(x_0)\right)^2\right)$$

黒: 真のf

オレンジ:線形回帰

青、緑:平滑化スプライン

学習データでのMSEが小さいほど テスト時のMSEが小さくなるとは限 らない

真の f がほぼ直線の場合

• 真のfの非線形性が強い場合

準備

```
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import math
>>> x = np.linspace(-math.pi, math.pi, 50)
>>> y = x
>>> X, Y = np.meshgrid(x, y)
>>> f = np.cos(Y) / (1 + np.square(X))
```

参考)ISL_python https://github.com/qx0731/ISL_python

・ヒートマップ

```
>>> fa = (f - f.T)/2
>>> plt.imshow(fa, extent=(x[0], x[-1], y[0], y[-1]))
>>> plt.show()
```

・ 3次元プロット

```
>>> from mpl_toolkits.mplot3d import axes3d
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> ax.plot_wireframe(X, Y, fa)
>>> plt.show()
```

- ・ 行列の要素

- 「行-1,列-1] **※**index**がゼロから始まるので**

```
>>> A = np.arange(1, 17, 1)
>>> A = A.reshape(4, 4)
>>> A = A.T
>>> A
array([[ 1, 5, 9, 13],
      [ 2, 6, 10, 14],
      [ 3, 7, 11, 15],
     [ 4, 8, 12, 16]])
>>> A[1, 2]
10
```

- 行列の一部
 - [抽出する行番号(の並び),抽出する列番号(の並び)]

- ・ 行列の一部
 - 特定の行

```
>>> A[1]
array([ 2, 6, 10, 14])
```

- 特定の列

```
>>> A[:, 1] array([5, 6, 7, 8])
```

※どちらも得られるの はベクトル

- ・ 行列の一部
 - 特定の行(列)を除きたい場合

```
>>> ind = np.ones(4, bool)
>>> ind
array([ True, True, True, True])
>>> ind[[0, 2]] = False
>>> ind
array([False, True, False, True])
>>> A[ind]
array([[ 2, 6, 10, 14],
    [ 4, 8, 12, 16]])
>>> A[:, ind]
```

- 外部データ(csv形式)の読み込み
 - ダウンロード
 - サンプルファイル Auto.csv
 - http://www-bcf.usc.edu/~gareth/ISL/Auto.csv
 - 上記ファイルをホームディレクトリに保存(Windowsの場合)
 - ホームディレクトリに移動

```
>>> import os >>> os.chdir(os.path.expanduser("~"))
```

- pandas.read_csv() 関数でデータフレームとして読み込み

```
>>> import pandas as pd
>>> Auto = pd.read_csv('Auto.csv', header=0, na_values='?')
>>> Auto
...
```

Auto.dat

mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
18	8	307	130	3504	12	70	1	chevrolet chevelle malibu
15	8	350	165	3693	11.5	70	1	buick skylark 320
18	8	318	150	3436	11	70	1	plymouth satellite
16	8	304	150	3433	12	70	1	amc rebel sst
17	8	302	140	3449	10.5	70	1	ford torino
	•	:	:		:	•		

- データの参照
 - iloc[]:整数で行、列を指定(integer-location)

```
>>> Auto.iloc[32]
                         25
mpg
cylinders
displacement
                         98
                                ← 欠損値
                        NaN
horsepower
                       2046
weight
acceleration
                         19
                         71
year
origin
                 ford pinto
name
Name: 32, dtype: object
```

- 欠損値を含むデータの削除
 - dropna()

```
>>> Auto = Auto.dropna()
>>> Auto.shape
(392, 9)
```

- データフレームの列名
 - list()

```
>>> list(Auto)
['mpg', 'cylinders', 'displacement', 'horsepower',
'weight', 'acceleration', 'year', 'origin', 'name']
```

・ データの参照

- データの参照
 - データフレーム名.列名

```
>>> plt.plot(Auto.cylinders, Auto.mpg, 'ro')
>>> plt.show()
```

- 行列と同じような方法

```
>>> plt.plot(Auto.iloc[:, 1], Auto.iloc[:, 0], 'ro')
```

• データの統計情報

- describe()

```
>>> Auto.describe()
...
>>> Auto.describe(include= 'all')
...
```

・ヒストグラム

- hist()

```
>>> Auto.hist(column = ['cylinders'])
>>> plt.show()
```

- The bias-variance trade-off
 - テストMSEの期待値は3つの項の和に分解できる
 - $\hat{f}(x_0)$ のバリアンス(分散)
 - $\hat{f}(x_0)$ のバイアスの二乗
 - ε の分散

$$E\left[\left(y_0-\hat{f}(x_0)\right)^2\right]=\operatorname{Var}\left(\hat{f}(x_0)\right)+\left[\operatorname{Bias}\left(\hat{f}(x_0)\right)\right]^2+\operatorname{Var}(\epsilon)$$
 $\operatorname{Var}\left(\hat{f}(x_0)\right)=E\left[\left(\hat{f}(x_0)-E\left(\hat{f}(x_0)\right)\right)^2\right]=E\left[\hat{f}(x_0)^2\right]-E\left[\hat{f}(x_0)\right]^2$
 $\operatorname{Bias}\left(\hat{f}(x_0)\right)=E\left[\hat{f}(x_0)-f(x_0)\right]$ 学習データが変化すること

による $\hat{f}(x_0)$ のゆらぎ

Bias-variance trade-off の導出

確率変数の期待値、分散など

・確率変数の和の期待値

$$E[X + Y] = E[X] + E[Y]$$

• 分散

$$Var[X] = E[(X - E[X])^{2}]$$

$$= E[X^{2} - 2E[X]X + E[X]^{2}]$$

$$= E[X^{2}] - 2E[X]E[X] + E[X]^{2}$$

$$= E[X^{2}] - E[X]^{2}$$

XとYが独立な場合

$$E[XY] = E[X]E[Y]$$

$$Var[X + Y] = E[(X + Y)^{2}] - E[X + Y]^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[X]E[Y] + E[Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] - E[X]^{2} + E[Y^{2}] - E[Y]^{2}$$

$$= Var[X] + Var[Y]$$

$$E[XY] = \sum_{i} \sum_{j} p(x_{i}, y_{j}) x_{i} y_{j}$$

$$= \sum_{i} \sum_{j} p(x_{i}) p(y_{j}) x_{i} y_{j}$$

$$= \sum_{i} p(x_{i}) x_{i} \sum_{j} p(y_{j}) y_{j}$$

$$= \sum_{i} p(x_{i}) x_{i} E[Y]$$

$$= E[Y] \sum_{i} p(x_{i}) x_{i}$$

$$= E[Y] E[X]$$

- バリアンス(variance)
 - 学習データの違いによってどれだけ \hat{f} が変化するか
- バイアス(bias)
 - $-\hat{f}$ が真のfとどれだけずれているか
- モデルの表現力(柔軟さ)との関係

	バイアス	バリアンス
表現力の高いモデル (例、平滑化スプライン)	小	大
表現力の低いモデル (例、線形回帰)	大	小

• モデルの表現力との関係

- ・ 分類問題の場合
 - 学習データでの誤り率(error rate)

$$\frac{1}{n}\sum_{i=1}^{n}I(y_{i}\neq\hat{y}_{i})$$
 $y_{i}\neq\hat{y}_{i}$ の場合は1、そうでなければ0をとる

- 未知のデータ(テストデータ)での誤り率 $Ave(I(y_0 \neq \hat{y}_0))$

- ベイズ分類器(Bayes classifier)
 - 条件付確率が最大になるクラスを選ぶ

$$\Pr(Y = j | X = x_0)$$

- (期待)誤り率が最小になる
- ベイズ最適決定(Bayes optimal decision)とも
- 実際には条件付確率はわからないので、あくまでも理論上の分類器

ベイズ決定境界(Bayes decision boundary)

- ベイズ誤り率 (Bayes error rate)
 - ベイズ分類器の誤り率

$$1 - E\left[\max_{j} \Pr(Y = j|X)\right]$$

- 回帰問題での「削減不可能な誤差」(irreducible error)に相当

K最近傍法

(K-nearest neighbors method)

・クラスの条件付確率を推定

$$\Pr(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = j)$$

 N_0 : 学習データ中で x_0 に最も近いK個の観測データ

- 確率の最も大きいクラスに分類

K最近傍法 (K-nearest neighbors method)

K=3の例

決定境界 (decision boundary)

K最近傍法

(K-nearest neighbors method)

KNN: K=10

- KNN決定境界
 - 図中の黒い線
 - テスト誤り率:0.1363
- ・ ベイズ決定境界
 - 図中の紫の点線
 - テスト誤り率:0.1304

K最近傍法

(K-nearest neighbors method)

KNN: K=1 KNN: K=100

テスト誤り率:0.1695

学習データでの誤り率はゼロ(!)

テスト誤り率:0.1925

K最近傍法 (K-nearest neighbors method)

・モデルの表現力と誤り率

→ モデルの表現力は高すぎても低すぎてもダメ