

#### Before next time

#### Assignment for next week

- Finish/Reread Chapter 2
- Read Chapter 3 on testing (skip ANOVA and Multi-Arm Bandits)
- Reconsider/finish the in-class assignments
- Look at examples in book
- You can already start working on the "final" assignment (will be on Canvas early next week)



Slide 2 of 30

@ 2025 Erasmus University Rotterdam, All rights reserved. No text and datamin

# Hypothesis testing

#### Statistical testing – General idea

Common statistical question: are two "things" different?

- Formulate hypotheses
  - Null hypothesis *H*<sub>0</sub>:
    - ightarrow nothing special happens (no difference)
  - Alternative hypothesis  $H_a$ :
    - $\rightarrow$  "something happened" (there is difference)

#### Hypothesis design

#### Hypotheses:

- need to be falsifiable
- are often stated as "nothing interesting happens"
- → See whether data provides evidence to reject (null) hypothesis (falsification)



© 2025 Examus University Rotterdam, All rights reserved. No text and datamining

#### Statistical testing - General idea

- Collect data
- 3 Calculate some statistic (known as the test statistic)
- **4** See whether obtained value is "extreme" if  $H_0$  would be true (so we assume that  $H_0$  is correct)
  - if extreme  $\rightarrow$  reject  $H_0$
  - if not extreme  $\rightarrow$  do not reject  $H_0$

#### Notes:

- Can **never** conclude with certainty whether  $H_0$  (or  $H_a$ ) is correct!
- Never say "we accept  $H_0$ " or " $H_0$  is true"
- Also keep economic/general significance in mind!

Lafus

Slide 4 of 39

#### What is extreme?

**Decision rule:** Reject  $H_0$  when result is *extreme*!

- $\rightarrow$  what is extreme?
  - Extreme = unlikely under  $H_0$  (remember:  $H_0$  codes some assumption(s))
- Need a "model" under H<sub>0</sub> to work out probabilities!
- How unlikely is "unlikely"?
  - ightarrow Choice to be made by researcher

#### Significance level $(\alpha)$ to define "unlikely"

- Usually set at 5%
- Reject if statistic is in  $\alpha\%$  tail of the distribution under  $H_0$
- If  $H_0$  correct: we still reject in  $\alpha\%$  of cases!

Ezafus

Slide 5 of 3

#### Potential errors in hypothesis testing

#### 

- $Pr[Type \ I \ error] = significance \ level = \alpha\%$
- Pr[Type II error]: not always the same, want to minimize this
- $\bullet \ \, \text{Power of test} = 1 \text{--} \text{Pr[Type II error], depends on} \\$ 
  - sample size
  - true "state of the world" (values of parameters)
  - properties of test

#### Strategies to perform tests

#### Central concept

- Calculate statistic
- Compare to distribution under  $H_0$  (to check "extreme/not extreme")

#### Strategy I: Critical values

- Choose significance level
- Obtain critical values
- Calculate statistic
- 4 Reject if statistic is beyond critical value

#### Strategy II: p-values

- Calculate statistic
- **②** Obtain probability of equal or more evidence against  $H_0$  (if  $H_0$  is true)  $\rightarrow$  =p-value
- **3** Reject if p-value < significance level

Ezafus

Slide 6 of 39

#### Strategies to perform tests

Strategy with p-values is preferred

- Report p-value
- Reader can choose own significance level and conclude
- Shows "size" of evidence

Ezafus,

Slide 8 of 39

Testing means: t-test

© 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin,

#### t-test on mean

Given

- $X_1, X_2, \dots, X_n$  independent and identically distributed  $N(\mu, \sigma^2)$
- $\mu$  and  $\sigma^2$  unknown

Hypothesis

$$H_0: \mu = \mu_0, H_a: \mu \neq \mu_0$$

 $(\mu_0 \text{ is some known value, often 0})$ 

From earlier we know (if  $H_0$  true)

$$rac{ar{X}-\mu_0}{\sqrt{rac{1}{n}s^2}}\sim t_{n-1}$$

Ezafus,

#### Testing procedure

Calculate t-statistic  $\frac{\bar{X}-\mu_0}{\sqrt{\frac{1}{n}s^2}}$ 

Strategy I: Critical values

- Compare t-statistic to percentiles of the t-distribution
- Reject if t-stat outside

$$[t^{\alpha/2}(n-1), t^{1-\alpha/2}(n-1)]$$

 $\rightarrow$  \* stats.t(n-1).ppf([0.025,0.975])

Strategy II: p-values

• Calculate probability of *more extreme* outcome under  $H_0$ 

$$\Pr[t(n-1) > |\mathsf{t\text{-stat}}|] + \Pr[t(n-1) < -|\mathsf{t\text{-stat}}|]$$
  
=  $2\Pr[t(n-1) < -|\mathsf{t\text{-stat}}|]$ 

• 2\*stats.t(n-1).cdf(-abs(tstat))

Erafus

2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

#### Python one-sample t-test (double sided): <a href="mailto:stats.ttest\_1samp">stats.ttest\_1samp</a>()</a>

```
# Example of one-sample t test
from scipy import stats
data = stats.norm(0.2, 1.0).rvs(size=500) # Generate some test data
res = stats.ttest_1samp(data, popmean = 0.25) # Run the test
display(res) # Show the test result
res.confidence_interval() # Bonus: get a confidence interval around mean
Example output (edited a bit)
TtestResult(statistic=np.float64(-3.11), pvalue=np.float64(0.0020),
df=np.int64(499))
ConfidenceInterval(low=np.float64(0.022), high=np.float64(0.198))
               Compare to lpha (here: 0.002 < 0.05 
ightarrow reject H_0: \mu = 0.25)
```

#### Power of t-test

Test statistic:

$$\frac{(\bar{X} - \mu_0)}{\sqrt{\frac{1}{n}s^2}}$$

If  $\mu \neq \mu_0$ 

- Want to reject  $H_0$
- Need test statistic to be extreme
- Want large power of test

Power is large if

- $\bar{X}$  large (so  $\mu$  very different from  $\mu_0$ )
- *n* large
- $s^2$  small (so small  $\sigma^2$ )

 $\rightarrow$  only sample size (n) can be controlled

ightarrow small differences are (of course) hard to detect

#### Sample size determination

Given standardized effect size  $=\frac{\mu-\mu_0}{\sigma}$ , where

- $\mu \mu_0$ : considered difference
- $\sigma^2$ : variance

#### Can determine:

• power given *n* and standardized effect size Example:

```
tp = sm.stats.TTestPower()
tp.power(stdeffect, nobs=.., alpha=..)
```

• needed *n* for obtaining desired power and given std. effect size Example: tp.solve\_power(effect\_size=.., power=.., alpha=..)

using 🕹 import statsmodels.api as sm



#### In-class assignment 3.1

- Generate 100 observations from N(0.05, 1)
- Calculate mean
- Perform t-test for  $H_0: \mu = 0$  using  $\P$  stats.ttest\_1samp()
- What do you conclude? (repeat the above 3 steps a couple of times)
- Calculate the necessary sample size to have power=0.5 for the above situation using
- ullet Advanced: Create a plot of power vs. sample size for different distances between true  $\mu$ and tested  $\mu$  (given  $\sigma^2 = 1$ ). You can use  $\theta$  tp.plot\_power(...)

#### 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin

#### Comparing samples

#### Common research question:

Is there a difference between two samples?





#### Comparing samples

- ullet Make sure that you are observing what "needs to be observed" ( $\pm$  random treatment)
- Visually compare the two samples
- Focus on summary statistics first (eg. ? .mean() and .var()) with\_airco = df[df.airco == 1] wo\_airco = df[df.airco == 0]

Comparing samples

print(f"Without: mean={wo\_airco.price.mean()}, var={wo\_airco.price.var()}") print(f"With: mean={with\_airco.price.mean()}, var={with\_airco.price.var()}")

#### Output:

Without: mean=59884.85254691689, var=455341800.98626363 With: mean=85880.58959537573, var=810167352.2317516

#### Perform statistical tests

#### Possible tests

- Is the variance the same?
- Is the mean the same?
  - Variant 1: independent observations Sub-variants:
    - ▶ if variances are equal
    - if variances are unequal
  - Variant 2: matched/dependent observations
- $\rightarrow$  First consider variance

Ezafus

Slide 17 of 39

#### Test on equal variance

#### Given:

- $X_1, \ldots, X_n$  independent and identically distributed  $N(\mu_1, \sigma_1^2)$
- $Y_1, \ldots, Y_m$  independent and identically distributed  $N(\mu_2, \sigma_2^2)$
- $X_i$  and  $Y_j$  independent
- $\rightarrow \mu_1, \mu_2$  and  $\sigma_1^2, \sigma_2^2$  are all unknown!

Hypothesis to test:

$$H_0: \sigma_1^2 = \sigma_2^2$$

against alternative

$$H_{a}:\sigma_{1}^{2}>\sigma_{2}^{2}$$
 (or  $\sigma_{1}^{2}
eq\sigma_{2}^{2}$ )

- Crafins

Slide 18 of 3

#### Fisher's F test – theory

#### We know:

- $\frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\sigma_1^2} \sim \chi^2(n-1)$
- $\frac{\sum_{i=1}^{m}(Y_i-\bar{Y})^2}{\sigma_2^2}\sim \chi^2(m-1)$
- and both terms statistically independent (Q: why?)

#### Hence:

$$\frac{\sum_{i}(X_{i}-\bar{X})^{2}/[\sigma_{1}^{2}(n-1)]}{\sum_{i}(Y_{i}-\bar{Y})^{2}/[\sigma_{2}^{2}(m-1)]}\sim F(n-1,m-1)$$

Under  $H_0$ :  $\sigma_1^2 = \sigma_2^2$  we therefore have

$$\frac{s_X^2}{s_Y^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2 / (n-1)}{\sum_{i=1}^m (Y_i - \bar{Y})^2 / (m-1)} \sim F(n-1, m-1)$$

Ezafus

#### Performing Fisher's F test

#### Steps within this procedure:

- Calculate ratio of (estimated) variances (hypothesised large/hyp. small)
- ullet If true variances are equal ightarrow ratio should be close to 1
- Ratio  $\sim F(n-1, m-1)$
- Check whether ratio is in 5% tail(s) of F-distribution
- ullet p-value: probability of finding a more extreme statistic if  $H_0$  is true

#### In Python:

pvalue = 1-stats.f(n1-1,n2-1).cdf(var1/var2)

Note: scipy has Barttlet's test and the Fligner-Killeen tests for equal variance: these are more robust to non-normality

#### t-test for equal means

#### Consider

- $X_1, \ldots, X_n$  independent and identically distributed  $N(\mu_1, \sigma_X^2)$
- $Y_1, \ldots, Y_m$  independent and identically distributed  $N(\mu_2, \sigma_Y^2)$
- $X_i$  and  $Y_i$  independent

#### **Hypothesis**

$$H_0: \mu_1 = \mu_2$$

against

$$H_a: \mu_1 \neq \mu_2$$



#### t-test for equal means

#### We know:

- $\bar{X} \sim N(\mu_1, \frac{1}{n}\sigma_X^2)$  and  $\bar{Y} \sim N(\mu_2, \frac{1}{m}\sigma_Y^2)$   $\bar{X}$  and  $\bar{Y}$  independent
- Therefore  $\bar{X} \bar{Y} \sim N(\mu_1 \mu_2, \frac{1}{n}\sigma_X^2 + \frac{1}{m}\sigma_Y^2)$
- $\rightarrow$  Need to estimate variance(s)!

#### **Equal variance**

- Estimate pooled variance  $\sigma^2$ :  $s^2$
- t-statistic

$$\frac{(\bar{X}-\bar{Y})}{\sqrt{(\frac{1}{n}+\frac{1}{m})s^2}}\sim t(n+m-2)$$

#### **Unequal variance**

- Separately estimate var(X) and var(Y)  $\rightarrow s_1^2$  and  $s_2^2$
- t-statistic

$$\frac{(\bar{X}-\bar{Y})}{\sqrt{\frac{1}{n}s_1^2+\frac{1}{m}s_2^2}}$$

• Distribution is not exactly t, by Czafus approximations exist

#### **Implementation**

scipy.stats.ttest\_ind(x, y, equal\_var=True) or scipy.stats.ttest\_ind(x, y, equal\_var=False)

#### More than 2 groups

What if more than 2 groups to compare?

- Translate the problem to a linear regression problem (see also next week)
- (Use ANOVA methods)



#### In-class assignment 3.2

Compare prices of houses with airco to houses without airco

- Test whether the variance of the prices is the same for both samples
- Test whether the mean of the prices is the same
  - Use t-test (which one?)
    - $\rightarrow$  Use the result from the variance test
- Do the same for log(price)
  - $\rightarrow$  Why could this be smart?

### Dependent samples

#### Test for means for dependent samples

The two samples can be dependent/related

- Two observations for same individual over time
- Two different variables for sample of firms
- Two different measurements of same concept
- → The observations are matched

#### Consider

- $X_1, \ldots, X_n$  independent and identically distributed  $N(\mu_1, \sigma_1^2)$
- $Y_1, \ldots, Y_n$  independent and identically distributed  $N(\mu_2, \sigma_2^2)$
- $X_i$  and  $Y_i$  (perhaps) dependent
- $\rightarrow$  Simply look at the differences  $X_i Y_i$  and apply t-test for mean=0!

#### In Python:

ttest\_rel(X, Y) (testing related samples)

# Deviations from assumptions

2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

#### Deviations from assumptions

What if data not normal?

#### As before

- If *n* large
  - → Central limit theorem:
    - t-stat approx. N(0,1)
    - No problem!
- If *n* not large **and** data not normal
  - $\rightarrow$  Do not use t-test!

#### Alternatives

- Bootstrap-based test (see book + later lecture)
   How does the obtained mean compare to the bootstrap distribution?
- Permutation tests (see book)
- Other non-parametric tests

- Cafus

CI:-1- 27 - 6 20

#### Non-parametric tests

Try to avoid making assumptions

- + No worries about possibly incorrect assumptions
- Less powerful when assumptions are correct

General idea: use properties that should be true under  $H_0$ 

**Example** Wilcoxon signed-rank test (to replace one-sample t-test)

- Sort |observation-hypothesized mean| and assign rank numbers  $(1,2,3,\ldots,n)$
- Look at the sum of ranks for observations above hyp. mean
- Does not assume a particular distribution
- Can also use it to test for differences across samples

scipy.stats.wilcoxon()

Cafus

#### Two-sample case: Wilcoxon Rank-Sum test (aka Mann-Witney U test)

#### Given

- ullet  $X_1,\ldots,X_n$  independent and identically distributed
- ullet  $Y_1,\ldots,Y_m$  independent and identically distributed
- $X_i$  and  $Y_j$  independent

#### Procedure

- Merge X and Y and sort
- **2** Number obs from 1 to n + m
- **3** Sum all ranks corresponding to X observations  $\to R(X)$
- **4** Sum all ranks corresponding to Y observations  $\rightarrow R(Y)$

If  $H_0$  (mean X equals mean Y) is true

- R(X) should be close to R(Y) (corrected for n vs m)
- Compare obtained results to known tables

- Erafus

Slide 29 of 3

#### Mann-Witney U test in Python

#### Non-parametric alternatives for paired taest

#### Procedure in Python:

- scipy.stats.mannwhitneyu(X,Y)
- Automatically calculates p-values
- Also corrects for ties

- Wilcoxon signed rank test
- scipy.stats.wilcoxon(x, y)
- Binomial test
  - scipy.stats.binomtest(failures, n)
  - $\rightarrow$  "Failures" = Count no. times  $X_i > Y_i$ : should have Bin(n,0.5) distribution

Ezafus,

Slide 30 of 39

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datami



CII 1 21 C 20

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

## Bivariate descriptives

#### Bivariate descriptive statistics

Up to now we have mainly discussed summary statistics on single variables

→ Does not show relations between variables

Simple bivariate measures

- Covariance
- Correlation
- $\rightarrow$  Indication of relation

#### Note

- Correlation  $\neq$  Causation
- Sometimes we find spurious correlation

Ezafus

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Slide 32 of

#### Covariance and correlation

Given

- Random variable X
- Random variable Y

The covariance is

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

 $\rightarrow$  Scale depends on scale of X and Y!

Correlation is defined as

$$Cor[X, Y] = \frac{Cov[X, Y]}{\sqrt{Var[X]Var[Y]}}$$

Notes

- Correlation is scale free
- -1 < correlation < 1
- If X and Y independent  $\implies Cor[X, Y] = 0$ (not the other way around!)



#### Estimation of correlation

The above definitions are population statistics

- Given data → Estimate the correlation (or covariance)
- scipy.stats.pearsonr(x,y)
- .. or covariance
  - np.cov(x,y): gives covariance matrix, look at [0][1] element
- Also here: there is estimation uncertainty!

Can test hypothesis on correlation=0

- scipy.stats.pearsonr(x,y) for two-sided alternative
- scipy.stats.pearsonr(x,y),alternative='less' or
  - scipy.stats.pearsonr(x,y),alternative='greater' for one-sided alternatives

#### Warning!

Be very careful when interpreting correlations

- Direction of effect not given
- Other variables may explain correlation (use partial correlations)

(we cover partial correlations in the context of the linear model)

Advice:

- Correct for time trends
- Think about logical relation between variables
- Think about other related variables

#### Some examples

#### **Divorce rate in Maine**

correlates with

#### Per capita consumption of margarine



Correlation: 0.992558

Source: http://www.tylervigen.com/spurious-correlations

(c) 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin

(c) 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin

#### Some examples

#### US spending on science, space, and technology

correlates with

#### Suicides by hanging, strangulation and suffocation



Correlation: 0.992082

Source: http://www.tylervigen.com/spurious-correlations

Ezafus

Slide 37 of 39

#### Before next time

Assignment for next week

- Reread Chapter 2 & 3 (if needed)
- Read Chapter 4 (main material for next week)
- Reconsider/finish the in-class assignments
- Examples in book
- Small new programming assignment
  - Visualize the correlation between some (continuous) variables in the houseprice data using a scatter plot
  - Calculate the correlation
  - Perform a hypothesis test on this correlation (clearly formulate the hypotheses and the conclusion)
- Work on final assignment

Eafus Slide 39 of 30

#### Other types of correlation

The correlation is a measure of linear dependence

→ Also called Pearson correlation

Other measures (to relax the linearity assumption)

- Spearman rank-order correlation
  - ightarrow Calculate correlation after rank-ordering
- Kendall's tau
  - → Alternative measure based on ranks

#### Python function

- scipy.stats.spearmanr(x, y)
- scipy.stats.kendalltau(x, y)

- Eafins

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Slide 38 of 3