FMAN95 Computer Vision Assignment 3 Epipolar Geometry

Exercise 1 and 3

Exercise 2

Exercise 4

Exercise 5 and Exercise 6 (revised)

	E	Ver	43	e	5									T														0
			[t]	[t	J _X	= 1	U	V)T	VS.	VT	= V	STI	べい	15	٧	=	V	5 5	V	F							-
								100				al																
				5	B	t	e	1	Total		4	Ton		18 3	MILE	166												1
					89	Th	2 6	sige.	valu	es	a	re	th	2	590	Lein	d	2	ing	ular	V	ala	es.					I
																							-					1
	EX	ere	se	A	,																							
						=	1/5		1/52			00	0	0) =	1	115	0	7	1/5								
							0		0	1		0	-1	0			0		1	0	1							Control of the last
				de	th	17	1):		+	1 2	=1																	The same
				E		1/1/2		1/1	2	01	1	1	b	P	1	1	0	0 1		11	1/1/2	0	7	15	1			
				F		1/1/2		1/1.		1		7		0	1	0	1		-	1	J ₂ /J ₂ 0	0	/	15	T			1000
				X	=	0	1		Xz	-	(1	1																
						1	/				1	1/2	0	-/	1/5	1	0											
				X2	E	X,	=								1/2		0	1	0									
100				50		χ,	X	2	1	\$	a	plo	us	He	A	col	res	en	den	ve-	1							
		18			0	1			1	X		/ X	1															
		U	1	-	1	٨	-L	L	ol	X Y Z	7															0		
				1	diameter 1	= 0		=>		X =	-	0	1		X	m	4	he	0	ne	1	the	ps	he		1		
						=				•	-	1	1		1	F	V.	13	the		ومرا	arti	h?	H	X i		1	
	-						M					1000	239															-

$$F = \begin{bmatrix} -3.39e^{-8} & -3.72e^{-6} & 0.0058\\ 4.67e^{-6} & 2.89e^{-7} & -0.0267\\ -0.0072 & 0.0263 & 1 \end{bmatrix}$$

Figure 1: Plot of 20 randomly selected points with their epipolar lines. From the figure we can see that the epipolar lines and points are quite close.

Figure 2: The histogram of the distances between all the points and epipolar lines.

The mean epipolar distances with normalization d = 0.3612

The mean epipolar distances without normalization d = 0.4878

Figure 3: The image points and the projected 3D points in the same figure.

Figure 4: Plot of 3D points

It is not good enough because of distortion.

$$E = \begin{bmatrix} -8.89 & -1006 & 377 \\ 1252 & 78 & -2448 \\ -472.78 & 2550.2 & 1 \end{bmatrix}$$

Figure 5: Plot of 20 randomly selected points with their epipolar lines.

From the figure we can see that there are distances between the epipolar lines and points. The results are worse compared to in computer exercise 1.

Figure 6: The histogram of the distances between all the points and epipolar lines.

Figure 7: Plot of the image points and the projections of 3D points They match well and the error look small.

Figure 8: Plot of 3D points and camera centers and principal axes They look reasonable and nice.