

集合

1. 选择题

选择题

1.1【集合,定义】

设集合 $A = \{x \in \mathbb{Q} \mid x > 1\}$,则(

 $A, \emptyset \in A$

- B. $\sqrt{2} \notin A$
- C. $\sqrt{2} \in A$
- D. $\{\sqrt{2}\}\subset A$

1.2【集合,补集、计算】【福州三中高一半期考】

(福州三中高一半期考)已知全集 $U = \{-2, -1, 2, 3, 4\}$,集合 $A = \{-1, 2, 3\}$, $B = \{-2, 2\}$,则($\mathbb{C}_U A$) $\bigcup B = \dots$

A. $\{-2\}$

- B. $\{-2, 2, 4\}$
- C. $\{-2, -1, 2\}$
- D. $\{-2, 2, 3, 4\}$

1.3【集合,新定义】

对于集合 M, N, 定义 $M - N = \{x \mid x \in M, \exists x \notin N\}, M \oplus N = (M - N) \cup (N - M), 设 A = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), 设 A = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - N) \cup (N - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = \{x \mid x \ge -\frac{9}{4}\}, M \oplus N = (M - M), d = (M$ $B = \{x \mid x < 0\}, \ \ \mathbb{M} \ A \oplus B = \dots$ C. $(-\infty, -\frac{9}{4}) \cup [0, +\infty)$ D. $(-\infty, -\frac{9}{4}] \cup (0, +\infty)$

- A. $\left(-\frac{9}{4}, 0\right]$
- B. $\left[-\frac{9}{4}, 0\right)$

1.4 福州三中高一上数学期中卷(2017-2018).doc【集合,补集、子集、参数】

(17-18 三中高一上期中考 17) (本小题满分 10 分) 已知全集 $U = \mathbb{R}$, 集合 $A = \{x \mid (x-3)(x+2) \le 0\}$, $B = \{x \mid 2a \le x \le a + 2, a \in \mathbb{R}\}.$

- (I) 若 a = -2, 求集合 ($\bigcap_{U} A$) (\bigcup_{B}) ($\bigcup_{B} B$) 若 $B \subseteq A$, 求实数 a 的取值范围.
- 2. 填空题

填空题

1.5【集合,交集、计算】【福州三中高一半期考】

(福州三中高一半期考) 设集合 $M = \{x \in \mathbb{R} \mid x - 1 < 0\}, N = \{y \mid y = x^2, x \in \mathbb{R}\}, 则 M \cap N$

3. 解答题

解答题

1.6 福州三中高一上数学七中卷(2017-2018).doc【集合,参数】【17-18三中高一上期中考 17】 (17-18 三中高一上期中考 17) (本小题满分 12 分) 已知全集 $U = \mathbb{R}$, 集合 $A = \{x \mid (x-3)(x+2) \le 0\}$, $B = \{x \mid 2a \le x \le a + 2, a \in \mathbb{R}\}.$

- (I) 若 a = -2,求集合 ($\bigcap_{U}A$)(\bigcup_{B} ; (II) 若 $B \subseteq A$,求实数 a 的取值范围.
- 1.7【集合,交集、参数】

(本小题满分10分)

设集合 $A = \{x \mid 2 \le x \le 4\}$, $B = \{x \mid 0 < \ln x < 1\}$, $C = \{x \mid t+1 < x < 2t, t \in \mathbb{R}\}$.

- (I) 求 $A \cap B$
- (II) 求 $A \cap C = C$,求 t 的取值范围.
- 1.8【集合,补集、并集、参数】【格致中学高一半期考】

(格致中学高一半期考) 已知集合 $M = \{-2 \le x \le 5\}$, $N = \{x \mid a+1 \le x \le 2a+1\}$. (1) 若 a = 3, 求 $M \cap (\mathbb{C}_{\mathbb{R}}N)$; (2) 若 $M \cup N = M$,求实数 a 的取值范围.

- 二、函数
- 1. 课前检测

2.1 填写下表,写出各函数的定义域、值域、单调性以及奇偶性.

f(x)	定义域	值域	单调性	奇偶性
x				
x^2				
$\log_2 x$				
3^x				
$\frac{1}{x}$				
\sqrt{x}				
$\log_x 2$				

2. 选择题

选择题

2.2【函数,求值】【福州高级中学16-17高一期中考】

(福州高级中学 16-17 高一期中考) 已知函数 f(x+1) = 2x+5,则 $f(3) = \dots$ ()

A. 5

B. 7

C. 9

D. 11

FuZhou Qingda Education

2.3【函数,定义域】

A.
$$[0, +\infty)$$

B.
$$[1, +\infty)$$

C.
$$(-\infty, 0]$$

D.
$$(-\infty, 1]$$

2.4【函数, 定义域】

)

A.
$$(-4,0) \cup (0,4)$$

B.
$$(-4, -1) \cup (1, 4)$$
 C. $(-2, -1) \cup (1, 2)$ D. $(-4, -2) \cup (2, 4)$

C.
$$(-2, -1) \cup (1, 2)$$

D.
$$(-4, -2) \cup (2, 4)$$

2.5【函数,定义域】

函数 $f(x) = \frac{1}{\sqrt{(\log_2 x)^2 - 1}}$ 的定义域为.....()

$$\mathbf{A}.\left(0,\frac{1}{2}\right)$$

B.
$$(2, +\infty)$$

$$C.\left(0,\frac{1}{2}\right) \cup (2,+\infty)$$
 $D.\left(0,\frac{1}{2}\right] \cup [2,+\infty)$

$$D.\left(0,\frac{1}{2}\right] \cup \left[2,+\infty\right)$$

2.6【函数,定义域、抽象、复合】

已知函数 f(x) 的定义域为 (-1,0),则函数 f(2x+1) 的定义域为......

A.
$$(-1,1)$$

B.
$$\left(-1, -\frac{1}{2}\right)$$

C.
$$(-1, 0)$$

$$D.\left(\frac{1}{2},1\right)$$

2.7【函数,定义域、抽象、复合】

)

$$A.\left(-\frac{3}{2}, -\frac{1}{4}\right)$$

B.
$$\left(-1, \frac{3}{2}\right)$$

C.
$$(-3, 2)$$

D.
$$(-3, 3)$$

2.8【函数,三要素】

下列函数中,其定义域和值域分别与函数 $y = 10^{\lg x}$ 的定义域和值域相同的是()

A.
$$y = x$$

$$B. y = \lg x$$

C.
$$y = 2^x$$

D.
$$y = \frac{1}{\sqrt{x}}$$

2.9【函数,图像】

下列函数中与函数 $y = x(x \ge 0)$ 有相同图像的一个是

$$A. y = \frac{x^2}{x}$$

B.
$$y = \sqrt{x^2}$$

$$C. y = \sqrt[3]{x^3}$$

D.
$$y = (\sqrt{x})^2$$

2.10【函数,单调性】

下列函数在区间 $(0,+\infty)$ 上是增函数的是.....)

$$A. y = \ln(x+1)$$

B.
$$y = (x - 1)^2$$

C.
$$y = x^{-2}$$

D.
$$y = 3^{-x}$$

2.11【函数,单调性】

设 f(x), g(x) 都是单调函数,有如下四个命题:

①若 f(x) 单调递增,g(x) 单调递增,则 f(x) - g(x) 单调递增;

②若 f(x) 单调递增,g(x) 单调递减,则 f(x) - g(x) 单调递增;

③若 f(x) 单调递减,g(x) 单调递增,则 f(x) - g(x) 单调递减;

④若 f(x) 单调递减,g(x) 单调递减,则 f(x) - g(x) 单调递减;

其中,正确的命题是......

FuZhou Qingda Education

A. ①③	B. ①④	C. 23	D. @4
2.12【函数,单调性】			
函数 $y = -\sqrt{1-4x^2}$ 的	的单调递减区间是		(
$A.\left(-\infty,\frac{1}{2}\right]$	B. $\left[\frac{1}{2}, +\infty\right)$	C. $\left[-\frac{1}{2}, 0 \right]$	D. $\left[0, \frac{1}{2}\right]$
2.13【函数,单调性、	不等式】	[2]	[2]
设奇函数 $f(x)$ 在 $(0, +$	-∞)上增函数且 $f(1) = 0$,只	则不等式 $\frac{f(x)-f(-x)}{x} < 0$) 的解集为(
A. $(-1,0) \cup (1,+\infty)$	B. $(-\infty, -1) \cup (0, 1)$	C. $(-\infty, -1) \bigcup_{\alpha} (1, +\infty)$	D. $(-1,0) \cup (0,1)$
2.14【函数,奇偶性】			
设函数 $f(x), g(x)$ 的定	义域都为 \mathbf{R} ,且 $f(x)$ 是奇菌	函数, $g(x)$ 是偶函数,则门	下列结论正确的是(
A. $f(x)g(x)$ 是偶函数	B. $ f(x) g(x)$ 是奇函数	C. f(x) g(x) 是奇函数	D. $ f(x)g(x) $ 是奇函数
2.15【函数, 奇偶性】			
如果 $f(x)$ 是定义在 R	上的奇函数,那么下列函数	中一定是偶函数的是	(
A. x + f(x)	B. $xf(x)$	C. $x^2 + f(x)$	D. $x^2 f(x)$
2.16【函数,奇偶性、	求值】		
已知函数 $f(x) = \ln(\chi)$	$\sqrt{1+9x^2}-3x$) + 1, 则 $f(\lg 2x)$	$(2) + f\left(\lg\frac{1}{2}\right)$ 等于	(
A1	B. 0	C. 1	D. 2
2.17【函数, 奇偶性、	求值】		
奇函数 $f(x)$ 的定义域	为 R ,若 $f(x+2)$ 为偶函数	,且 $f(1) = 1$,则 $f(8) +$	$f(9) = \dots \dots \dots \dots ($
A2	B1	C. 0	D. 1
2.18【函数, 奇偶性, 求	注值】		
己知函数 $g(x) = f(x)$	-x 是偶函数,且 $f(3) = 4$,	则 $f(-3) = \dots$	(
A4	B2	C. 0	D. 4
2.19【函数,奇偶性、	单调性、参数】		
	人在 R 上的偶函数,且在区	- · · · · · · · · · · · · · · · · · · ·	·
$f(\log_{\frac{1}{2}}a) \le 2f(1)$,则	a 的取值范围是	-1 -	(
A. [1, 2]	a 的取值范围是	C. $\left \frac{1}{2}, 2 \right $	D. $(0, 2]$
	奇偶性】【福建师大附中 15-		
(福建师大附中 15-16)	高一期中考,6)下列函数中,	既是偶函数又在(0,+∞)阜	单调递增的函数是(
A. $y = x^3$	B. $y = x + 1$	C. $y = -x^2 + 1$	D. $y = 2^{- x }$
2.21【函数,单调性、	奇偶性、大小】【福州八中 1	15-16 高一期中考,2】	
(福州八中 15-16 高一	期中考,2)设偶函数 $f(x)$ 的	力定义域为 \mathbb{R} ,当 $x \in [0, +$	$-\infty$) 时, $f(x)$ 是增函数,则
$f(-2), f(\pi), f(-3) \not\in$	的大小关系是		(

FuZhou Qingda Education

A.
$$f(\pi) > f(-3) > f(-2)$$

B.
$$f(\pi) > f(-2) > f(-3)$$

C.
$$f(\pi) < f(-3) < f(-2)$$

D.
$$f(\pi) < f(-2) < f(-3)$$

2.22【函数,单调性、奇偶性】【福州高级中学 16-17 高一期中考,11】

(福州高级中学 16-17 高一期中考,11) 定义在 ℝ上的偶函数 f(x), 当 $x \in [1,2]$ 时, f(x) < 0 且 f(x) 增 函数,给出下列四个结论:

- (1) f(x) 在 [-2,-1] 上单调递增;
- (2) 当 $x \in [-2, -1]$ 时,有 f(x) < 0;
- (3) f(-x) 在 [-2,-1] 上单调递减; (4)|f(x)| 在 [-2,-1] 上单调递减. 其中正确的结论是...()
- A. (1)(3)
- B. (2)(4)

C.(2)(3)

D.(3)(4)

2.23【函数,分段】

2.24【函数,分段、参数】【福州高级中学 16-17 高一期中考】

(福高 2016—2017 学年第一学期期中考试)设函数
$$f(x) = \begin{cases} x^{\frac{1}{2}}, x > 0 \\ (\frac{1}{2})^x - 1, x \le 0 \end{cases}$$
 ,已知 $f(a) > 1$,则 a 的

取值范围是......

A. (-1,1)

- B. $(-\infty, -1) \cup (1, +\infty)$ C. $(-\infty, -2) \cup (0, +\infty)$ D. $(1, +\infty)$

2.25【函数, 二分法】

若函数 $f(x) = x^3 + x^2 - 2x - 2$ 的一个正数零点附近的函数用二分法计算,其参考数据如下:

f(1) = -2	f(1.5) = 0.625	f(1.25) = -0.984
f(1.375) = -0.260	f(1.4375) = 0.162	f(1.40625) = -0.054

那么方程 $x^3 + x^2 - 2x - 2 = 0$ 的一个近似根(精确度 0.1)是(

A. 1.2

B. 1.3

C. 1.4

2.26【函数, 值域】

已知函数 f(x) 的值域为 [-2,3],则函数 f(x-2) 的值域为()

A. [-4, 1]

- B. [0, 5]
- C. $[-4, 1] \cup [0, 5]$ D. [-2, 3]

2.27【函数,大小、指数对数幂】

三个数 0.8⁹, 9^{0.8}, log_{0.8} 9 的大小关系为()

- $\text{A.} \ \log_{0.8} 9 < 0.8^9 < 9^{0.8} \qquad \text{B.} \ 0.8^9 < 9^{0.8} < \log_{0.8} 9 \qquad \text{C.} \ \log_{0.8} 9 < 9^{0.8} < 0.8^9 \qquad \text{D.} \ 0.8^9 < \log_{0.8} 9 < 9^{0.8}$

2.28【函数,大小、指数对数幂】【2015 福州八中 4】

FuZhou Qingda Education

A. c < b < a

B.
$$c < a < b$$

C.
$$a < b < c$$

D.
$$b < a < c$$

2.29【函数,图像、指数对数】

函数 $f(x) = 1 + \log_2 x$ 与 $g(x) = 2^{-(x-1)}$ 在同一直角坐标系下的图像大致是()

2.30【二次函数,最值、参数】

已知函数 $f(x) = x^2 - 2x + 3$ 在区间 [0,t] 上的最大值为 3,最小值为 2,则实数 t 的取值范围是...()

A. [1, 2]

B.
$$(0, 1]$$

C.
$$[1, +\infty)$$

D.
$$(0, 2]$$

2.31【函数,零点、分段、指数、参数】【15-16 附中】

 $\begin{cases} e^x + a, x \le 0 \\ , 若函数 f(x) 在 <math>\mathbb{R}$ 上有两个不同零点,则 a 的取值范 (15-16 附中) 已知函数 f(x) =

雨是

A. $[-1, +\infty)$

B.
$$(-1, +\infty)$$

C.
$$(-1,0)$$

D.
$$[-1, 0)$$

2.32【函数,零点、二次、参数】【15-16 八中】

(15-16 八中) 若方程 $x^2 - 2mx + 4 = 0$ 的两根满足一根大于 1, 一根小于 1, 则 m 的取值范围是...()

A.
$$\left(-\infty, -\frac{5}{2}\right)$$

B.
$$(\frac{5}{2}, +\infty)$$

C.
$$(-\infty, -2) \cup (2, +\infty)$$
 D. $(-\frac{5}{2}, +\infty)$

$$D. \left(-\frac{5}{2}, +\infty\right)$$

2.33【指数函数,模型】

某公司为激励创新,计划逐年加大研发资金投入. 若该公司 2015 年全年投入研发资金 130 万元,在此 基础上,每年投入的研发资金比上一年增长12%.则该公司全年投入的研发资金开始超过200万元的 年份是 (参考数据: $\lg 1.12 \approx 0.05$, $\lg 1.3 \approx 0.11$, $\lg 2 \approx 0.30$)......(

A. 2018年

B. 2019年

C. 2020 年

D. 2021 年

2.34【指数函数,反函数】

函数 y = f(x) 是函数 $y = a^x(a > 0, a \neq 1)$ 的反函数,且 f(2) = 1,则 $f(8) = \dots$ ()

A. 3

C. -3

2.35【函数,单调性、参数】

FuZhou Qingda Education

若 $f(x) = -x^2 + 2ax$ 与 g	$g(x) = \frac{a}{x+1} \!$	上都是减函数,则 a 的取	值范围是()
A. $(-1,0) \cup (0,1)$	B. $(-1,0) \cup (0,1]$	C. $(0,1)$	D. (0,1]
2.36 【函数,新定义、最	值】		
用 $\max\{a,b,c\}$ 表示 a,b,c	c 三个数中的最大值,设 c	$f(X) = \max\{2^x, x + 2, 10 - 10\}$	x }, $(x \le 0)$,则 $f(x)$ 取得最
小值时 x 所在的区间为	• • • • • • • • • • • • • • • • • • • •		()
A. (1, 2)	B. (2, 3)	C. $(3,4)$	D. (4,5)
	学 P3.7 拓 3【函数,奇偶		
函数 $y = \frac{9-x^2}{ x+4 + x-3 }$	的图像关于		()
A. x 轴对称	B. y 轴对称	C. 原点对称	D. 直线 $x - y = 0$ 对称
2.38 30 次课学完高中数学	学 P3.7 例 6(4)【函数,奇·	偶性】【2009四川卷文理	12]
(2009 四川卷文理 12) 已	知函数 $f(x)$ 是定义在实数	效集 ℝ 上的不恒为零的偶ⅰ	函数,且对任意实数 x 都有
xf(x+1) = (1+x)f(x)	,则 $f(\frac{5}{2})$ 的值是		()
A. 0	B. $\frac{1}{2}$		D. $\frac{5}{2}$
2.39 30 次课学完高中数学	2 学 P3.7(2)【函数,单调性		2
			$(x) - g(x) = 1 - x^2 - x^3$, \mathbb{N}
g(x) 的解析式为			
A. $1 - x^2$	B. $2 - 2x^2$	C. $x^2 - 1$	D. $2x^2 - 2$
2.40 福州八中高一上数学	芝期中卷(2017-1018).do		
		c【函数,单调性、复合】	
		c【函数,单调性、复合】	
(17-18 福州八中高一期中A. $(-\infty, \frac{3}{2})$	学期中卷(2017-1018).do 中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】	c【函数,单调性、复合】	
(17-18 福州八中高一期中 A. $(-\infty, \frac{3}{2})$ 2.41【 函数,性质综合】	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】	c【函数,单调性、复合】 $f(0 < a < 1)$ 的单调递增区 $f(0 < a < 1)$ 。 $f($	间是 () D. $(-\frac{3}{2}, +\infty)$
(17-18 福州八中高一期中A. $(-\infty, \frac{3}{2})$ 2.41【 函数,性质综合】 (17-18 八中高一期中 19	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】) 已知 $f(x)$ 是奇函数并且	c【函数,单调性、复合】 $C(0 < a < 1)$ 的单调递增区 $C(-\infty, -\frac{3}{2})$ 是 \mathbb{R} 上的单调函数,若函	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$
(17-18 福州八中高一期中A. $(-\infty, \frac{3}{2})$ 2.41【 函数,性质综合】 (17-18 八中高一期中 19	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】) 已知 $f(x)$ 是奇函数并且	c【函数,单调性、复合】 $C(0 < a < 1)$ 的单调递增区 $C(-\infty, -\frac{3}{2})$ 是 \mathbb{R} 上的单调函数,若函	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$
$(17-18 福州八中高一期日 A. (-\infty, \frac{3}{2}) 2.41【函数,性质综合】 (17-18 八中高一期中 19 只有一个零点,则实数 A. \frac{1}{4} 2.42【函数,分段、解析$	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】)已知 $f(x)$ 是奇函数并且 λ 的值是	c 【函数,单调性、复合】 c (0 < a < 1) 的单调递增区 c . $(-\infty, -\frac{3}{2})$ 是 c 上的单调函数,若函 c c c c d	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$ () $D\frac{3}{8}$
$(17-18 福州八中高一期日 A. (-\infty, \frac{3}{2}) 2.41【函数,性质综合】 (17-18 八中高一期中 19 只有一个零点,则实数 A. \frac{1}{4} 2.42【函数,分段、解析$	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】)已知 $f(x)$ 是奇函数并且 λ 的值是	c 【函数,单调性、复合】 c (0 < a < 1) 的单调递增区 c . $(-\infty, -\frac{3}{2})$ 是 c 上的单调函数,若函 c c c c d	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$ () $D\frac{3}{8}$
$(17-18 福州八中高一期日 A. (-\infty, \frac{3}{2}) 2.41【函数,性质综合】 (17-18 八中高一期中 19 只有一个零点,则实数 A. \frac{1}{4} 2.42【函数,分段、解析$	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】)已知 $f(x)$ 是奇函数并且 λ 的值是	c 【函数,单调性、复合】 c (0 < a < 1) 的单调递增区 c . $(-\infty, -\frac{3}{2})$ 是 c 上的单调函数,若函 c c c c d	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$ () $D\frac{3}{8}$
$(17-18 福州八中高一期日 A. (-\infty, \frac{3}{2}) 2.41【函数,性质综合】 (17-18 八中高一期中 19 只有一个零点,则实数 A. \frac{1}{4} 2.42【函数,分段、解析$	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】)已知 $f(x)$ 是奇函数并且 λ 的值是	c 【函数,单调性、复合】 c (0 < a < 1) 的单调递增区 c . $(-\infty, -\frac{3}{2})$ 是 c 上的单调函数,若函 c c c c d	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$ () $D\frac{3}{8}$
$(17-18 福州八中高一期日 A. (-\infty, \frac{3}{2}) 2.41【函数,性质综合】 (17-18 八中高一期中 19 只有一个零点,则实数 A. \frac{1}{4} 2.42【函数,分段、解析$	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】)已知 $f(x)$ 是奇函数并且 λ 的值是	c 【函数,单调性、复合】 c (0 < a < 1) 的单调递增区 c . $(-\infty, -\frac{3}{2})$ 是 c 上的单调函数,若函 c c c c d	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$ () $D\frac{3}{8}$
(17-18 福州八中高一期中A. $(-\infty, \frac{3}{2})$ 2.41 【函数,性质综合】 (17-18 八中高一期中 19 只有一个零点,则实数: A. $\frac{1}{4}$ 2.42 【函数,分段、解析 (17-18 三中高一上期中等 f(b) = f(c),则 abc 的) A. $(3, 13)$	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】)已知 $f(x)$ 是奇函数并且 λ 的值是	c【函数,单调性、复合】 c ($0 < a < 1$)的单调递增区 c	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$
$(17-18 福州八中高一期日 A. (-\infty, \frac{3}{2}) 2.41【函数,性质综合】 (17-18 八中高一期中 19 只有一个零点,则实数 A. \frac{1}{4} 2.42【函数,分段、解析 (17-18 三中高一上期中 f(b) = f(c) ,则 abc 的 A. (3,13) 2.43【函数,性质综合】 (17-18 三十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二$	中 4) 函数 $f(x) = a^{-x^2+3x+2}$ B. $(\frac{3}{2}, +\infty)$ 【17-18 八中高一期中 19】)已知 $f(x)$ 是奇函数并且 λ 的值是	c 【函数,单调性、复合】 c (0 < a < 1) 的单调递增区 c . $(-\infty, -\frac{3}{2})$ 是 c 上的单调函数,若函 c c c c c d	间是() $D. (-\frac{3}{2}, +\infty)$ 数 $y = f(2x^2 + 1) + f(\lambda - x)$ () $D\frac{3}{8}$

FuZhou Qingda Education

qgca.co	FuZnou		Fuznou Qingda Education	1 Qingda Education	
A. 1 个	B. 2 个	C. 3 个	D. 4 个		
2.44 福州重点中学期中	考真题分类汇编2函数的	勺相关性质.pdf P5.7	【函数,大小】【福建师大网	付中 16-17	
高一期中考,7】					
			在 (-∞,2) 内为减函数,且		
为偶函数,则 $f(-1)$,	$f(4)$, $f\left(\frac{11}{2}\right)$ 的大小为			()	
A. $f(4) < f(-1) < f(\frac{1}{2})$	· /	B. $f(-1) < f(4)$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
C. $f\left(\frac{11}{2}\right) < f(4) < f(-1)$	1)	D. $f(-1) < f(\frac{11}{2})$	$\left(-\right) < f(4)$		
2.45 福州重点中学期中	考真题分类汇编2函数的	的相关性质.pdf P6.9	【函数,单调性、参数】【	福州高级	
中学 16-17 高一期中考	s,13 】				
(福州高级中学 16-17 高	高一期中考,13)已知函数	$f(x) = \sqrt{x^2 + ax + ax}$	<u>a</u> 在区间 [1,+∞] 上单调递	增,则实	
数 a 的取值范围是				(
A. $[-2, -\frac{1}{2}]$	B. $\left[-\frac{1}{2}, +\infty \right]$	C. $\left[-\frac{1}{2}, 2\right]$	D. $[-2, +\infty]$		
-	-	=	【函数,单调性、参数】【		
中学 16-17 高一期中考	F,10 】				
(福州格致中学 16-17]	高一期中考,10) 若 f(x) =	$= -x^2 + 2ax - g(x)$	$=\frac{a}{x+1}$ 在区间 [1,2] 上都	是减函数,	
A. $(-1,0) \cup (0,1)$	B. $(-1,0) \cup (0,1]$	C. $(0,1)$	D. (0, 1]		
3. 填空题					
填空题					
2.47【 函数,定义域】					
函数 $y = \sqrt{3x-1} + \lg ($	(1 - x) 的定义域是				
2.48【函数, 定义域】【	2016.11 福高高一期中考	1			
【2016.11 福高高一期中	口考】函数 $f(x) = \sqrt{\log_{\frac{1}{3}}}$	$\frac{1}{(x-2)} + \frac{1}{2}$ 的意	定义域为 .		
2.49 【函数,对数幂、第	· ·	2x-5			
		$x) = \log_a(x - m) + n$	n(其中 a > 0, a ≠ 1) 的图像	.恒过定点	
A 的坐标为					
2.50 【函数,指数对数、					
		$\log_7 56 = $	(结果用 a, b 表示) 若函	数 $f(x) =$	
	i数,则 <i>a</i> =			- ()	

2.51	【函数,	奇偶性、	求值
∠. ∪1		ᄞᆘᆀᄔ	~IV IH

若 f(x) 是定义在 **R** 上的奇函数,当 $x \le 0$ 时, $f(x) = 2x^2 - x$,则 f(1) =

2.52【函数,奇偶性】

设函数 f(x) 在 $(-\infty, +\infty)$ 内有定义,下列函数:

①
$$y = -|f(x)|$$
 ② $y = xf(x^2);$

③
$$y = -f(-x)$$
 ④ $y = f(x) - f(-x)$.

中必为奇函数的有______.(要求填写正确答案的序号)

2.53【函数, 奇偶性】

若 $f(x) = x \ln(x + \sqrt{a + x^2})$ 为偶函数,则 a =

2.54【函数,二次、指数、复合、最值、参数】【2015福州三中14】

【2015 福州三中 14】已知 a > 0 且 $a \neq 1$,函数 $f(x) = a^{-x^2-2x-3}$ 存在最小值,且最小值为 16,则

2.55【函数, 奇偶性、求值】【福建师大附中 16-17 高一期中考,15】

(福建师大附中 16-17 高一期中考,15) 定义在 \mathbb{R} 上的奇函数 f(x) 满足 f(x-2) = f(x+2), 且当 $x \in (-1,0)$, 时, $f(x) = 2^x + \frac{1}{5}$,则 $f(\log_2 20) =$ ______.

2.56【函数,奇偶性、求值】【福州格致中学 16-17 高一期中考、14】

(福州格致中学 16-17 高一期中考,14) 已知定义在 \mathbb{R} 上的奇函数 f(x), 当 x > 0 时 $f(x) = x^2 + x - 1$, 那么 x < 0 时, f(x) =______.

2.57【函数,奇偶性、不等式】

定义在 \mathbb{R} 的偶函数 f(x) 满足: 对任意的 $x_1, x_2 \in (\infty, 0](x_1 \neq x_2)$,有 $(x_2 - x_1)[f(x_2) - f(x_1)] < 0$,且 f(2) = 0, 则不等式 $\frac{3f(x) + f(-x)}{5x} < 0$ 的解集是_____

2.58【函数, 奇偶性、不等式】

已知 f(x) 是定义在 \mathbb{R} 的奇函数, 当 x > 0 时, $f(x) = x^2 - 4x$, 则不等式 f(x) > x 的解集用区间表示 为

2.59【函数,单调性、分段、参数】

已知函数 $f(x) = \begin{cases} a^x, x \ge 2, \\ (3-a)x + 2, x < 2 \end{cases}$ 为 \mathbb{R} 上的增函数,则实数 a 取值的范围是 ______

2.60【函数,零点、参数】【17-18 八中高一期中 20】

(17-18 八中高一期中 20) 若函数 $f(x) = |2^x - 1| - b$ 有两个零点,则实数 b 的取值范围是

2.61【函数,零点、参数】【17-18 三中高一上期中考 16】

(17-18 三中高一上期中考 16) 已知函数 $f(x) = (\log_4 27)^2 + 2a \log_2 x + 1$ 有大于 1 的零点,则实数 a 的 取值范围是 _____.

FuZhou Qingda Education

2.62 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P8.9【函数,单调性、递推】【福建师大附中 16-17 高一期中考,16】

(福建师大附中 16-17 高一期中考,16)函数 f(x) 是 (0,+∞) 上的单调增函数,当 $n \in \mathbb{N}^*$ 时, $f(n) \in \mathbb{N}^*$,且 f[f(n)] = 3n,则 f(1) 的值为 ______.

2.63 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P7.7【函数,单调性、反函数】【福建师大附中 16-17 高一期中考,14】

(福建师大附中 16-17 高一期中考,14) 已知函数 f(x) 的反函数是 $y = \frac{1}{3^x}$,则函数 $f(2x - x^2)$ 的减区间为 ______

2.64 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P8.12【函数,单调性、参数】【福州格致中学 16-17 高一期中考.15】

(福州格致中学 16-17 高一期中考,15)若函数 $f(x) = \begin{cases} (a-2)x, x \leq 2 \\ (\frac{1}{2})^x - 1, x < 2 \end{cases}$ 是 \mathbb{R} 上的单调递减函数,则实数 a 的取值范围是

4. 解答题

解答题

2.65【函数,指数对数、计算】

(本小题满分10分)计算:

- (I) 若 $x \log_{5} 2 = 1$ 求 $2^{x} + 2^{-x}$ 的值;
- (II) 求值 $0.125^{\frac{1}{3}} (-\frac{7}{8})^0 + [(-2)^3]^{-\frac{4}{3}} + \frac{3}{4} \lg 25 + \lg(2\sqrt{2}).$
- 2.66【函数,指数对数、计算】【2015福州八中14】

(2015 福州八中 14) (本小题满分 10 分) 计算:

$$(1) (2\frac{3}{5})^0 + 2^{-2} \cdot (2\frac{1}{4})^{-\frac{1}{2}} + (\frac{25}{36})^{0.5} + \sqrt{(-2)^2}$$

$$(2)\frac{1}{2}\lg\frac{32}{49} - \frac{4}{3}\lg\sqrt{8} + \lg\sqrt{245}$$

2.67【函数,指数对数、计算】【2016 福州三中 15】

(2016福州三中15)(本小题满分10分)根据已知条件,求下列各式的值.

- (1) 已知 $a = 2^{-1}$, $b = 3^{\sqrt{2}}$,求 $4a^{\frac{2}{3}}b^{-\frac{1}{3}} \div \left(-\frac{2}{3}a^{-\frac{1}{3}}b^{-\frac{1}{3}}\right)$ 的值;(2)已知 $f(x) = 3^x$,求 $f(\log_3 2) + f(2)$ 的值
- 2.68【函数,奇偶性、单调性证明】

(本小题满分15分)

已知函数 $f(x) = \frac{ax+b}{x^2+1}(a,b$ 是常数) 是定义在 (-1,1) 上的奇函数,且 $f(\frac{1}{2}) = \frac{2}{5}$.

- (I) 确定 f(x) 的解析式;
- (II) 当 $x \in (-1,1)$ 时,判断函数 f(x) 的单调性,并用定义法证明;

福州清大教育 FuZhou Qingda Education

(III) 解关于 x 的不等式 f(2x-1) + f(x) < 0.

2.69【函数,复合、单调性、恒成立、参数】

(本小题满分12分)

设二次函数 $f(x) = ax^2 + bx + c$ 的图像过点 (0,1) 和 (1,4),且对于任意的实数 x,不等式 $f(x) \ge 4x$ 恒 成立.

- (I) 求函数 f(x) 的表达式;
- (II) 设 g(x) = kx + 1,若 $F(x) = \log_{\frac{1}{2}}[g(x) f(x)]$ 在区间 [2,3] 上是增函数,求实数 k 的取值范围.

2.70【函数, 奇偶性、指数、最值】【2016 师大附中 18】

【2016 师大附中 18】(本小题满分 12 分) 已知函数 f(x) 为 \mathbb{R} 上的偶函数. $x \le 0$ 时 $f(x) = 4^{-x} - a \cdot 2^{-x} (a > 0)$ (I) 求函数 f(x) 在 $(0,+\infty)$ 上的解析式; (II) 求函数 f(x) 在 $(0,+\infty)$ 上的最小值.

2.71【函数,对数、最值、恒成立、参数】【2016 福州三中 17】

【2016 福州三中 17】(本小题满分 12 分)已知函数 $f(x) = \log_3 9x \cdot \log_3 x + 2$, $x \in [\frac{1}{0}, 3]$.

- (1) 求 f(x) 最小值和最大值;
- (2) 若不等式 f(x) 2m + 1 > 0 恒成立, 求实数 m 的取值范围.

2.72【函数,单调性、参数、存在性】

(本小题满分14分)

已知函数 $y = x + \frac{a}{r}$ 有如下性质: 如果常数 a > 0,那么该函数在 $(0, \sqrt{a}]$ 上是减函数,在 $[\sqrt{a}, +\infty)$ 上 是增函数.

- (I) 若函数 $y = x + \frac{2^b}{x}$ (x > 0) 的值域为 $[6, +\infty)$,求实数 b 的值; (II) 已知函数 $f(x) = \frac{4x^2 12x 3}{2x + 1}, x \in [0, 1]$,求函数 f(x) 的单调区间和值域;
- (III) 对于 (II) 中的函数 $\bar{f}(x)$ 和函数 g(x) = -x 2c,若对任意 $x_1 \in [0,1]$,总存在 $x_2 \in [0,1]$,使得 $g(x_2) = f(x_1)$ 成立,求实数 c 的值.

2.73 30 次课学完高中数学 P4.11 例 5【函数,单调性、参数】

已知函数 $f(x-2) = ax^2 - (a-3)x + a - 2(a$ 为负整数) 的图像经过点 (m-2,0), $m \in \mathbb{R}$, 设 g(x) = f[f(x)], F(x) = pg(x) + f(x). 问是否存在实数 p(p < 0) 使得 F(x) 在区间 $(-\infty, f(2))$ 上是减函数, 且区间 (f(2), 0)上是增函数?若有,求出相应的p,若无,说明理由.

2.74 30 次课学完高中数学 P4.8【幂函数,单调性、参数】

已知幂函数 $y = x^{m^2 - 2m - 3}$ $(m \in \mathbb{N}^*)$ 的图像关于 y 轴对称,且在 $(0, +\infty)$ 上是减函数,求满足 $(a + 1)^{-m} < \infty$

 $(3-2a)^{-m}$ 的 a 的范围

- **2.75** 30 次课学完高中数学 P6.11 例 7【对数函数,定义域、值域、参数】【好题】 已知函数 $f(x) = \lg(ax^2 + 2x + 1)$.
 - (1) 若 f(x) 的定义域为 \mathbb{R} , 求实数 a 的范围; (2) 若 f(x) 的值域为 \mathbb{R} , 求实数 a 的范围.
- **2.76** 福州三中高一上数学七中卷(2017-2018).doc【函数,三要素、单调性】【17-18 三中高一上期中 考 19】
- (17-18 三中高一上期中考 19) (本小题满分 12 分)
- 已知函数 $f(x) = \sqrt{ax+4} (a \in \mathbb{R}, a \neq 0)$.
- (I) 若 a = -1, 求函数 f(x) 的定义域和值域;
- (II) 若 f(x) 在区间 [-1,2] 上为单调函数,求实数 a 的最大值和最小值.
- **2.77**【函数,参数、恒成立】【17-18 八中高一期中 22】
- (17-18 八中高一期中 22) (本小题共 12 分) 已知函数 $f(x) = x^2 + 4ax + 2a + 6$.
- (I) 若函数 $y = \log_2 f(x)$ 的最小值为 2, 求 a 的值;
- (II) 若对任意 $x \in \mathbb{R}$, 都有 $f(x) \ge 0$ 成立,求函数 g(a) = 2 a|a + 3| 的值域.
- **2.78**【函数,单调性、二次、零点、证明】【16-17 三中】
- (16-17 三中) 设函数 $f(x) = ax^2 + bx + c$, $(a > 0, b, c \in \mathbb{R})$.
- (1) 若 f(1) = c, f(x) 在 $(k, +\infty)$ 单调递增,求实数 k 的取值范围;
- (2) 若 $f(1) = -\frac{a}{2}$, 求证: 函数 f(x) 在 (0,2) 内至少有一个零点.
- 2.79【函数,模型、解析式】【16-17三中】
- (16-17 三中) 某城市现有人口 300 万,而汽车保有量为 100 万辆,已知汽车保有量每年以 21% 递增,而人口每年以 10% 递增.
- (1) 写出该城市人口y (单位:万)关于从现在起经过的年数x的函数关系式;
- (2) 问该城市经过多少年人均将拥有一辆汽车?(精确到个位).
- 参考数据: $\lg 3 = 0.4771$, $\lg 11 = 1.041$, $\lg 21 = 1.322$
- **2.80** 福州重点中学期中考真题分类汇编 4 函数方程及函数模型的应用.pdf P6【函数,模型、分段、参数】【16-17 附中 21】

(16-17 附中 21) 为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同。若使用注射方式给药,则在注射后的 3 小时内,药物在白鼠血液内的浓度 y_1 与时间 t 满足关系式: $y_1 = 4 - at$ ($0 < a < \frac{4}{3}$),a 为常数),若使用口服方式给药,则药物在白鼠血液内的

浓度 y_2 与时间 t 满足关系式: $y_2 = \begin{cases} \sqrt{t}, 0 < t < 1, \\ 3 - \frac{2}{t}, 1 \le t \le 3. \end{cases}$ 现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.

- (I) 若 a=1, 求 3 小时内, 该小白鼠何时血液中药物的浓度最高, 并求出最大值;
- (II) 若使小白鼠在用药后 3 小时内血液中的药物浓度不低于 4, 求正数 a 的取值范围.
- 2.81【函数,解析式、单调性、参数、零点】【17-18 八中高一期中 23】
- (17-18 八中高一期中 23) (本小题共 15 分) 已知二次函数 f(x) 满足 f(x+1) f(x) = 2x $(x \in \mathbb{R})$,且 f(0) = 1.
- (I) 求 f(x) 的解析式;
- (II) 若函数 g(x) = f(x) 2tx 在区间 [-1,5] 上是单调函数,求实数 t 的取值范围;
- (III) 若关x的方程f(x) = x + m在区间(-1,2)上有唯一实数根,求实数m的取值范围. (注:相等的实数根算一个).
- **2.82** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P9【函数,解析式、零点、证明】【师大附中 2015-2016 高一上期中 22】

(福建省师大附中 2015-2016 高一上学期期中考试 22) 已知函数 $f(x) = -1 + \log_a x + 2(a > 0, 且 a \neq 1),$ $g(x) = (\frac{1}{2})^{x-1}.$

- (1) 函数 y = f(x) 的图象恒过定点 A,求 A 点坐标;
- (2) 若函数 F(x) = f(x) g(x) 的图像过点 $(2, \frac{1}{2})$, 证明: 方程 F(x) = 0 在 $x \in (1, 2)$ 上有唯一解.
- **2.83** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P10【函数,零点、不等式、参数】【师大附中 2015-2016 高一上期中 23】

(福建省师大附中 2015-2016 高一上学期期中考试 23) 已知函数 $f(x) = \log_a(x+1), g(x) = 2\log_a(2x+t)$ $t)(t \in \mathbb{R}), a > 0$,且 $a \neq 1$.

- (I) 若 1 是关于 x 的方程 f(x) g(x) = 0 的一个解,求 t 的值;
- (II) 当 0 < a < 1 且 t = -1 时,解不等式 $f(x) \le g(x)$;
- (III) 若函数 $F(x) = a^{f(x)} + tx^2 2t + 1$ 在区间 (-1, 2] 上有零点,求 t 的取值范围.
- 2.84 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P11【函数,奇偶性、大小、恒成立、参数】【福州八中 15—16 高一上期中 23】

(福州八中 2015—2016 高一上学期期中考试 23) 设 f(x) 是定义在 \mathbb{R} 上的奇函数,且对任意 $a,b\in\mathbb{R}$,当 $a+b\neq 0$ 时,都有 $\frac{f(a)+f(b)}{a+b}>0$

- (1) 若 a > b, 试比较 f(a) = f(b) 的大小关系;
- (2) 若 $f(9^x 2 \cdot 3^x) + f(2 \cdot 9^x k) > 0$ 对任意 $x \in [0, \infty)$ 恒成立,求实数 k 的取值范围.
- **2.85** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P12【函数,单调性、恒成立、参数】【福州八中 15—16 高一上期中 24】

(福州八中 2015—2016 高一上学期期中考试 24) 已知函数 $y = x + \frac{t}{x}$ 有如下性质: 如果常数 t > 0,那么该函数在 $(0, \sqrt{t}]$ 上是减函数,在 $[\sqrt{t}, +\infty)$ 上是增函数.

FuZhou Qingda Education

- (1) 已知 $f(x) = \frac{4x^2 12x 3}{2x + 1}$, $x \in [0, 1]$, 利用上述性质, 求函数 f(x) 的单调区间和值域;
- (2) 对于 (1) 中的函数 f(x) 和函数 g(x) = -x 2a,若对任意 $x_1 \in [0,1]$,总存在 $x_2 \in [0,1]$,使得 $g(x_2) = f(x_1)$ 成立,求实数 a 的值.
- **2.86** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P14【函数,单调性、零点、参数】【福州三中 16-17 高一上期中 23】

(福州市第三中学 2016-2017 高一上期中考试 23) 设函数 $f(x) = a^x + bx + c$ (a > 0, $b, c \in \mathbb{R}$).

- (1) 若 f(1) = c , f(x) 在 $(k, +\infty)$ 单调递增,求实数 k 的取值范围;
- (2) 若 $f(1) = -\frac{a}{2}$,求证:函数 f(x) 在 (0,2) 内至少有一个零点.
- **2.87** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P16【函数,解析式、恒成立、参数】【福 建师大附属中学 16-17 高一期中 22】

(福建师大附属中学 2016-2017 高一年级期中考试 22) 已知二次函数 $f(x) = ax^2 + bx + c$ 的图像过点 (-2,0),且不等式 $2x \le f(x) \le \frac{1}{2}x^2 + 2$ 对一切实数 x 都成立.

- (I) 求函数 f(x) 的解析式.
- (II) 对一切 $x \in [-1,1]$,不等式 $f(x+t) < f(\frac{x}{2})$ 恒成立,求实数 t 的取值范围.
- **2.88** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P16【函数, 奇偶性、解析式、不等式】【福州市高级中学 16-17 高一上 19】

(福州市高级中学 2016-2017 高一上期中 19) 已知 f(x) 是定义在 \mathbb{R} 上的奇函数,当 $x \ge 0$ 时, $f(x) = a^x - 2$,其中 a > 0 且 $a \ne 1$

- (I) 求 f(x) 的解析式;
- (II) 解关于x的不等式-1 < f(x) < 4,结果用集合或区间表示.
- **2.89** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P17【函数,解析式、零点、参数】【福州市高级中学 16-17 高一上 21】

(福州市高级中学 2016-2017 高一上期中 21) 记函数 $f(x) = a - \log_2 x (1 \le x \le 4)$,函数 $y = [f(x)]^2 - f(\frac{x}{2})$,记函数 f(x) 的最小值为 g(a).

- (I) 求 g(a) 的表达式;
- (II) 作出函数 y = |g(a)| 的图像,并根据图像回答:当 k 为何实数时,方程 |g(a)| k = 0 有两个解、有四个解、有无穷多个解?
- **2.90** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P19【函数,参数、三要素、单调性、恒成立】【福州市高级中学 16-17 高一上 22】

(福州市高级中学 2016-2017 高一上期中 22) 已知函数 $f(x) = x^2 - 2ax + 5(a > 1)$

- (I) 若 f(x) 的定义域和值域均是 [1,a], 求实数 a 的值;
- (II) 若 f(x) 在区间 $[4,+\infty)$ 上是增函数,且对任意的 $x \in [1,a+2]$,都有 $f(x) \le 0$,求实数 a 的取值范

围:

- (III) 若 $g(x) = 2^x + \log_2 x + 1$,且对任意的 $x \in [0,1]$,都存在 $f(x_0) = g(x)$ 成立,求实数 a 的取值范围.
- **2.91** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P21【函数,奇偶性、值域、恒成立】【福州格致中学 16-17 高一上期中 22】

(福州市格致中学 2016-2017 高一上期中考试数学学科试卷 22) 已知二次函数 $f(x) = ax^2 + bx + 3$ 是偶函数,且过点 (-1,4),g(x) = x + 4.

- (I) 求 f(x) 的解析式;
- (II) 求函数 $F(x) = f(2^x) + g(2^{x+1})$ 的值域;
- (III) 若 $f(x) \ge g(mx + m)$ 对 $x \in [2, 6]$ 恒成立,求实数 m 的取值范围.
- **2.92** 福州重点中学期中考真题分类汇编 2 函数的相关性质.pdf P23【函数,奇偶性、值域、恒成立】【福州屏东中学 16-17 高一上期中 22】

(福州市屏东中学 2016-2017 高一上期中 22) 已知函数 $f(x) = 2^x - 2^{-2}$,定义域为 \mathbb{R} ;函数 $g(x) = 2^{x+1} - 2^{2x}$,定义域为 [-1,1].

- (1) 判断函数 f(x) 的奇偶性,不用证明;
- (2) 求函数 g(x) 的最值;
- (3) 若不等式 $f(g(x)) \le f(-3am + m^2 + 1)$ 对 $x \in [-1, 1]$, $a \in [-2, 2]$ 上恒成立,求 m 的取值范围.

三、三角函数

1. 课前检测

课前检测

3.1 填写下表,写出下列三角函数的最小正周期、单调性、奇偶性以及对称轴.

f(x)	最小正周期	单调性	奇偶性	对称轴
$\sin x$				
cos x				
tan x				

3.2 画出 $f(x) = 2\sin\left(3x - \frac{\pi}{4}\right) + 2$ 的图像.

2. 选择题

55	选择题

近 烊型				
3.3【 三角函数,象】	限角】			
下列说法正确的是			()
A. 终边相同的角一	定相等	B. 钝角一定是第二	象限角	
C. 第一象限角一定	不是负角	D. 小于 90° 的角都	是锐角	
3.4 福建师大附中 2	015-2016 学年高一数学第	二学期期末检测.doc-2【复	象限角】	
(2016•师大附中 2)) 若点 $P(\sin\theta\cos\theta, 2\cos\theta)$	位于第三象限,那么角 θ	终边落在()
A. 第一象限	B. 第二象限	C. 第三象限	D. 第四象限	
3.5 福州三中 2016-2	2017 学年第二学期高一数	:学期末考试doc-1【引	瓜度制与角度制】	
(2017•福州三中1)) 关于角度制与弧度制的等	等式,正确的是	()
A. $\pi = 1$ rad	B. $\pi = 180$	C. $1^{\circ} = \frac{180}{\pi}$ rad	D. $1 \operatorname{rad} = \left(\frac{180}{\pi}\right)^{\circ}$	
		第二学期期末检测.doc-3		
(2016•福州三中3)	若3弧度的圆心角所对的	的弧长为6,则这个圆心角	所夹的扇形面积是()
A. $3 \mathrm{cm}^2$	$B.~6~cm^2$	C. 6π cm ²	D. 3π cm ²	
3.7 福州屏东中学 2	016-2017 学年高一下学期	期末考试数学试题.doc-11	【扇形面积】	
(2017•屏东中学11)若一个扇形的周长与面壳	积的数值相等,则该扇形所	在圆的半径不可能等于()
A. 5	B. 2	C. 3	D. 4	
3.8 《2018 天利 38 套	注 : 高考真题单元专题训练	练 (文)》专题 13 三角函数	的概念P41p5【2009 文	• 重
庆】【三角函数比力	7.小】			
(2009 文•重庆)(20	016•师大附中 8) 下列关键	系式中正确的是	()
A. $\sin 11^{\circ} < \cos 10^{\circ}$	< sin 168°	B. sin 168° sin 11° <	$\cos 10^{\circ}$	
C. $\sin 11^\circ < \sin 168^\circ$	$< \cos 10^{\circ}$	D. $\sin 168^{\circ} < \cos 10$	° < sin 11°	
3.9【 三角函数,大/	小】			
比较 sin 3, cos 3,	tan 0.8 的大小关系为	·		
3.10【同角三角函数				
若 $\cos \alpha + 2 \sin \alpha =$	$-\sqrt{5}$, \mathbb{M} tan $\alpha = \dots$		()
A. $\frac{1}{2}$	B. 2	C. $-\frac{1}{2}$	D. –2	
3.11 【同角三角函数	的关系】	_		
α 是第四象限角, t	$ an \alpha = -\frac{5}{12}, 则 \sin \alpha = $		()
A. $\frac{1}{5}$	B. $-\frac{1}{5}$	C. $\frac{5}{13}$	D. $-\frac{5}{13}$	
$^{\mathrm{G}}$	G	13	13	

			6	
3.12【 三角函数的图				_
设 $a=\sin\frac{5\pi}{7}$, $b=$	$=\cosrac{2\pi}{7}$, $a= anrac{2\pi}{7}$,则		()
(B. $a < c < b$		D. $b < a < c$	
3.13 福州屏东中学	2016-2017 学年高一下学	期期末考试数学试题.doc-	9【三角函数取值范围】	
(2017• 屏东中学 9) 函数 $y = \sqrt{2\cos x + 1}$ 的]定义域是	()
A. $\left[2k\pi - \frac{\pi}{3}, 2k\pi + \right]$	$\left[\frac{\pi}{3}\right], \ k \in \mathbb{Z}$	B. $\left[2k\pi - \frac{\pi}{6}, 2k\pi + \right]$	$\left[\frac{\pi}{6}\right], \ k \in \mathbb{Z}$	
C. $\left[2k\pi + \frac{\pi}{3}, 2k\pi + \right]$	$\left[\frac{2\pi}{3}\right], k \in \mathbb{Z}$	B. $\left[2k\pi - \frac{\pi}{6}, 2k\pi + D\right]$ D. $\left[2k\pi - \frac{2\pi}{3}, 2k\pi\right]$	$+\frac{2\pi}{2}$, $k \in \mathbb{Z}$	
L	0 1	L O	- 3」 旺).doc-6【三角函数变换、说	争
公式】				
(2016•师大附中实		$=\sin(\omega x + \phi)$ (其中 $ \phi $ <	$\frac{\pi}{2}$)图像相邻对称轴的距离为	$\frac{\pi}{2}$,
			f(x) 的图像(²
			单位 D. 向左平移 $\frac{\pi}{12}$ 个单位	_
0	± =	· ·	12 【三角函数与二次函数复合值	
同名三角函数关系				,,,
		$\cos^2 x + a = 0 \stackrel{\cdot}{\leftarrow} x \in [0, 2\pi)$	内恰有 4 解,则实数 a 的取值	ī范
围是	•••••		()
A. $\left(-1, \frac{5}{4}\right)$	B. $(1, \frac{5}{4})$	C. $\left[-1, \frac{5}{4}\right)$	D. $\left[1, \frac{5}{4}\right)$	
(4)	(1/	期末考试-3【任意角三角	L I	
	$0 < \alpha < \pi$,那么 $\cos \alpha - \sin \alpha$		()
A. $-\frac{1+\sqrt{3}}{2}$	B. $\frac{-1 + \sqrt{3}}{2}$	C. $\frac{1-\sqrt{3}}{2}$	D. $\frac{1+\sqrt{3}}{2}$	
<u> </u>	4		<u> </u>	
(2017•师大附中1)角θ的终边与单位圆交	于点 $P(\frac{1}{2}, y)$,则 $\sin \theta =$	()
		C. $\frac{\sqrt{3}}{2}$		
		2 期末考试数学······.doc-1	=	
			()
		C. $b < c < a$,
		试数学试题doc-14【		
		的定义域为	, , , , , , , , , , , , , , , , , , ,	
	•		三角函数取值范围,方程解】	
			\mathbb{R}_{p} ,则实数 m 取值范围是()
				,
A. $ -1, -\frac{1}{2} $	B. $(-1, -\frac{1}{2})$	$C.\left[\frac{\sqrt{2}}{2},1\right]$	D. $\left \frac{1}{2}, 1 \right $	

qirigaa.com	FuZhou Qingda Education
3.21 福州第三中中学 2015-2016 学年高一数学第二	学期期末检测.doc-7【三角函数复合函数单调性】
(2016•福州三中 7) 函数 $y = \sin(-2x + \frac{\pi}{4})$ 的单调:	增区间为()
	B. $\left[k\pi + \frac{3\pi}{8}, k\pi + \frac{7\pi}{8}\right], k \in \mathbb{Z}$
C. $\left[k\pi - \frac{3\pi}{8}, k\pi + \frac{\pi}{8}\right], k \in \mathbb{Z}$	D. $\left[k\pi + \frac{\pi}{8}, k\pi + \frac{5\pi}{8}\right], k \in \mathbb{Z}$
3.22 福州三中中学 2015-2016 学年高一数学第二学	期期末检测.docx-9【正弦曲线图像】
(2016•福州三中 9) 将函数 $y = \sin\left(x - \frac{\pi}{3}\right)$ 的图像_	上所有点的横坐标伸长到原来的2倍(纵坐标不变),
再将所得的图像向左平移 $\frac{\pi}{3}$ 个单位,得到的函数	图像对应的解析式是()
A. $y = \sin \frac{x}{2}$ B. $y = \sin(\frac{x}{2} - \frac{\pi}{2})$	(2 0)
3.23 福州一中 2015-2016 学年高一数学第二学期期	
(2016•福州一中 5) 函数 $y = \sin(2x + \frac{\pi}{3})$ 的图像向	右平移 $\frac{\pi}{6}$ 个单位,所得的图像对应的函数()
A. 为非奇非偶函数	B. 图像的对称中心为 $(2k\pi,0)(k \in \mathbb{Z})$
C. 为奇函数	D. 在 $\left[-\frac{\pi}{3}, \frac{\pi}{6}\right]$ 上单调递增
3.24 福州屏东中学 2016-2017 学年高一下学期期末	考试数学试题.doc-10【正弦曲线图像】
(2017•屏东中学 10) 函数 $f(x) = \sin(\omega x + \phi)$ (其中	$+ \phi < \frac{\pi}{2}$)的图像如图所示,为了得到 $y = \sin \omega x$ 的
图像,只需把 $y = f(x)$ 的图像上所有点 () 个	·长度单位.
	$\frac{\pi}{3} \frac{7\pi}{12}$
A. 向右平移 $\frac{\pi}{6}$ B. 向右平移 $\frac{\pi}{12}$ C. 向左平	E移 $\frac{\pi}{6}$ D. 向左平移 $\frac{\pi}{12}$ O -1 x
3.25《2018 天利 38 套: 高考真题单元专题训练 (理)	ISBN978-7-223-03393-0》专题 14 三角函数的图像与
性质 P53p8【2017• 天津】【正弦曲线解析式】	
(2017•天津) 设函数 $f(x) = 2\sin(\omega x + \varphi), x \in \mathbb{R}$,	其中 $\omega > 0$, $ \varphi < \pi$,若 $f\left(\frac{5\pi}{8}\right) = 2$, $f\left(\frac{11\pi}{8}\right) = 0$,且
$f(x)$ 的最小正周期大于 π ,则	$1 11\pi 1 7\pi$
A. $\omega = \frac{2}{3}$, $\varphi = \frac{\pi}{12}$ B. $\omega = \frac{2}{3}$, $\varphi = -\frac{11\pi}{12}$	
3.26《2018 天利 38 套: 高考真题单元专题训练 (文	()》专题 13 三角函数的概念P41p2【2015 文·福
建】【同角三角函数基本关系式】	
$(2015$ 文•福建) 若 $\sin \alpha = -\frac{5}{13}$,且 α 为第四象限	角,则 $\tan \alpha$ 的值等于 \dots
A. $\frac{12}{5}$ B. $-\frac{12}{5}$	C. $\frac{5}{12}$ D. $-\frac{5}{12}$
9	12)ISBN978-7-223-03393-0》专题 14 三角函数的图像与
性质 P53p4【2017•全国新课标】【正弦曲线性质】	
(2017•全国新课标) 设函数 $f(x) = \cos\left(x + \frac{\pi}{3}\right)$,则	
A. $f(x)$ 的一个周期为 -2π	B. $y = f(x)$ 的图像关于直线 $x = \frac{8\pi}{3}$ 对称

C.
$$f(x + \pi)$$
 的一个零点为 $x = \frac{\pi}{6}$

D.
$$f(x)$$
 在 $\left(\frac{\pi}{2}, \pi\right)$ 单调递减

3.28《2018 天利 38 套:高考真题单元专题训练 (理)ISBN978-7-223-03393-0》专题 14 三角函数的图像与 性质 P53p4 | LaTeX-master/sanjiaohanshu/sanjiaohanshu-gaokao.tex 4【2015• 全国新课标】【正弦曲线图 像】

(2015•全国新课标)函数 $f(x) = \cos(\omega x + \varphi)$ 的部分图象如图所示,则 f(x) 的单调递减区间为...(

$$B.\left(2k\pi - \frac{1}{4}, 2k\pi + \frac{3}{4}\right), k \in \mathbb{Z}$$

3.29《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03438-8》 专题 15 三角恒等变换 P57p4 【2008• 山东】

$$A. -\frac{2\sqrt{3}}{5}$$

B.
$$\frac{2\sqrt{3}}{5}$$

C.
$$-\frac{4}{5}$$

D.
$$\frac{4}{5}$$

3.30《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03438-8》专题 15 三角恒等变换 P57p5 【2014• 全国新课标】

A.
$$3\alpha - \beta = \frac{\pi}{2}$$

B.
$$3\alpha + \beta = \frac{\pi}{2}$$

$$C. 2\alpha - \beta = \frac{\pi}{2}$$

$$D. 2\alpha + \beta = \frac{\pi}{2}$$

3.31《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03438-8》专题 15 三角恒等变换 P57p7

【2013•浙江】

(2013 • 浙江) 已知
$$\alpha \in \mathbb{R}$$
, $\sin \alpha + 2\cos \alpha = \frac{\sqrt{10}}{2}$, 则 $\tan 2\alpha = \dots$ () A. $\frac{4}{3}$ B. $\frac{3}{4}$ C. $-\frac{3}{4}$ D. $-\frac{4}{3}$

A.
$$\frac{4}{3}$$

B.
$$\frac{3}{4}$$

C.
$$-\frac{3}{4}$$

D.
$$-\frac{4}{3}$$

3.32《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03438-8》专题 13 三角函数的概念、

... P49p7【2011•福建】

(2011 • 福建) 若 $\tan \alpha = 3$,则 $\frac{\sin 2\alpha}{\cos^2 \alpha}$ 的值等于.......(A. 2 B. 3

3.33《习题化知识清单》P72知识 2-2【三角函数,恒成立、参数】

A. $(-\infty, -1]$

3.34 福州三中中学 2015-2016 学年高一数学第二学期期末检测.docx-9【三角函数,解析式、图像变换】 (福州三中中学 2015-2016 学年高一数学第二学期期末检测 9) 将函数 $y = \sin(x - \frac{\pi}{3})$ 的图像上所有点的

3.41《习题化知识清单》P73 知识 1-1【三角函数,单调性、参数】

FuZhou Qingda Education

若函数 $f(x) = si$	$n \omega x(\omega > 0)$ 在区间 $\left[0, \frac{\pi}{3}\right]$	上单调递增,在区间 $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$	上单调递减,则ω可以为(
A. $\frac{2}{3}$	B. $\frac{3}{2}$	C. 2	D. 3	
3.42《习题化知识	! !清单》P73 知识 1-3【三	角函数,单调性】		
设函数 $f(x) = \mathbf{v}$	$\sqrt{2}\sin\left(\omega x + \varphi + \frac{\pi}{4}\right)\left(\omega > 0\right)$	$(0, \varphi < \frac{\pi}{2})$ 的最小正周期为	π ,且 $f(-x) = f(x)$,则()
A. $f(x)$ 在 $\left(0, \frac{\pi}{2}\right)$	上单调递减	B. $f(x)$ 在 $\left(\frac{\pi}{4}, \frac{3}{4}\right)$	1 /	
C. $f(x)$ 在 $\left(0, \frac{\pi}{2}\right)$		D. $f(x)$ 在 $\left(\frac{\pi}{4}, \frac{3}{4}\right)$	$\left(\frac{\pi}{4}\right)$ 上单调递增	
	₹清单》P76 单元检测 6 ▮		/3π \	
- 1	/ —	> 0) 取得最小值,则函数	$f(y) = f\left(\frac{3\pi}{4} - x\right) \not\equiv \dots $)
A. 奇函数且图像	\mathfrak{h} 关于点 $\left(\frac{\pi}{2},0\right)$ 对称	B. 偶函数且图值	象关于点 (π,0) 对称	
C. 奇函数且图像	$x = \frac{\pi}{2}$ 对称	D. 偶函数且图值	象关于点 $\left(\frac{\pi}{2},0\right)$ 对称	
3.44 《习题化知识	!清单》P72 知识 2-1【三	角函数,奇偶性】	(2 /	
函数 $y = \tan 2(x)$	$+\frac{\pi}{4}$)		()
A. 是奇函数	1,	B. 是偶函数		
C. 既是奇函数又	是偶函数	D. 是非奇非偶函	函数	
		角函数,恒成立、参数】		
不等式 $\tan x > a$,则 a的取值范围是	()
A. $(-\infty, -1]$	B. $(-\infty, -1)$	C. $(-\infty, 1]$	D. $(-\infty, 1]$	
	沿清单》P75 方法 2.3【三			
设函数 $f(x) = si$	$\ln\left(2x+\frac{\pi}{3}\right)$,则下列结论	正确的是	()
A. $f(x)$ 的图像学	た于直线 $x = \frac{\pi}{3}$ 对称			
B. f(x) 的图像关	\in 于点 $\left(-\frac{\pi}{4},0\right)$ 对称			
C. 把 $f(x)$ 的图像	象向左平移 $\frac{\pi}{12}$ 个单位长	度,得到一个偶函数的图像	*	
	E周期为 π,且在 $\left[0,\frac{\pi}{6}\right]$ -			
3.47 福建师大附	中 2016-2017 高一下期末	考试数学试题doc-9		
(2017•师大附中	7 9) 已知 $\sin\left(\frac{\pi}{6} - \alpha\right) = \frac{1}{3}$	则 $\cos\left(\frac{2\pi}{3}+2\alpha\right)=\ldots$	()
A. $-\frac{7}{9}$		C. $\frac{1}{3}$	D. $\frac{7}{9}$	
J	9	···.doc-6【二倍角、诱导公	$\boldsymbol{\vartheta}$	
(2017•福州三中	7 6) 已知 $\sin\left(\frac{3\pi}{2} + \theta\right) + 2$	$\cos(\pi + \theta) = \sin(-\theta)$,则 s	$\sin \theta \cos \theta + \cos^2 \theta = \dots $ ()
A. $-\frac{1}{5}$	B. $\frac{2}{5}$	C. $\frac{3}{5}$	D. 1	
0		5 :期期末考试数学······.doc-		
			= · // = · · · · · · · · · · · · · · · ·	

FuZhou Qingda Education

		1 42	nou Qinguu Education	
(2017•福州一中7) 🗄			$\alpha, \beta \in (0, \pi)$,则 $\alpha + \beta = \dots$)
A. $\frac{\pi}{3}$	B. $\frac{2\pi}{3}$	C. $\frac{4\pi}{3}$	D. $\frac{\pi}{3}$ 或 $\frac{4\pi}{3}$	
3.50 福州一中学 2016	5-2017 学年高一下学期期差	表考试数学⋯⋯.doc-5【』	二倍角、半角、奇偶性、周期性	ŧ]
(2017•福州一中 5) 🖟	函数 $f(x) = \frac{1}{2}(1 - \cos 2x) \mathrm{c}$	$\cos^2 x, \ x \in \mathbb{R} \not\equiv \dots$	()
A. 最小正周期为π的	均偶函数	B. 最小正周期为 $\frac{\pi}{9}$	的偶函数	
C. 最小正周期为 π 的	的奇函数	B. 最小正周期为 $\frac{\pi}{2}$ D. 最小正周期为 $\frac{\pi}{2}$	的奇函数	
3.51《习题化知识清单	色》P90 单元检测 9【三角·			
已知 $\tan \alpha$, $\tan \beta$ 是力	方程 $x^2 - 3x - 5 = 0$ 的两根	Q ,则 $\tan 2(\alpha + \beta)$ 的值为	J()
A. $-\frac{24}{25}$		C. $-\frac{4}{5}$		
20	· 语优教程 + 一试 (李名德主	0	U	
(附加题, 5分)已知	$\theta \in [0,\pi], \ f(x) = \sin(\cos \theta)$	θ) 的最大值为 a ,最小位	直为 b , $g(\theta) = \cos(\sin \theta)$ 的最	大
值为 c ,最小值为 d ,	则 a,b,c,d 从小到大的顺	京是	()
A. $b < d < a < c$	B. $d < b < c < a$	C. $b < d < c < a$	D. $d < b < a < c$	
3. 填空题				
填空题				
3.53【三角函数的概念	à]			
若角 α 的终边经过点	$(P(1,-2), 则 \tan 2\alpha$ 的值	为		
3.54【诱导公式】				
若 $\sin\left(\frac{\pi}{2} + \theta\right) = \frac{3}{5}$,	则 $\cos 2\theta =$			
3.55 福州第三中中学	2015-2016 学年高一数学第	第二学期期末检测.doc-1	4【三角函数性质综合判断】	
(2016•福州三中 14)	关于函数 $f(x) = 2\sin(2x)$	$+\frac{\pi}{3}(x \in \mathbb{R})$,有下列说》	去:	
① $\boxplus f(x_1) = f(x_2) =$	0 可得 x_1-x_2 必是 π 的整	数倍; ② $y = f(x)$ 的表达	式可改写为 $f(x) = 2\cos\left(2x - \frac{\pi}{6}\right)$	$\left(\frac{\tau}{3}\right);$
$\Im y = f(x)$ 的图像关	于点 $\left(-\frac{\pi}{6},0\right)$ 对称; ④ $y=$	f(x) 的图像关于直线 $x = x$	$=\frac{7\pi}{1}$ 对称.)/
其中说法正确的序号			12	
3.56 福州屏东中学 20)16-2017 学年高一下学期掉	期末考试数学试题.doc-2	0【正弦曲线图像】	
	已知角 α 的终边过点 $P(-$			
(1) $\stackrel{\tan \alpha}{=}$	$\frac{2}{(1\pi)}$ 的值; (2) 若	β 为第三象限角,且 \tan	$n\beta = \frac{3}{4}$,求 $\cos(2\alpha - \beta)$ 的值.	
	\ \(\delta\)			
	哥一下数学期末卷·····.doc			
(2017•福州三中 15))(2013•全国新课标) 设当	$x = \theta$ 时,函数 $f(x) =$	$=\sin x - 2\cos x$ 取得最大值,	则
222()				

3.58《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03438-8》专题 13 三角函数的概念、... P52p13【2012• 广东】

 $(2012 \cdot 广东)$ 已知函数 $f(x) = 2\cos\left(\omega x + \frac{\pi}{6}\right)$ (其中 $\omega > 0$, $x \in \mathbb{R}$) 的最小正周期为 10π .

- (I) 求 ω 的值
- (II) 设 $\alpha, \beta \in \left[0, \frac{\pi}{2}\right]$, $f\left(5\alpha + \frac{5\pi}{3}\right) = -\frac{6}{5}$, $f\left(5\beta \frac{5\pi}{6}\right) = \frac{16}{17}$, 求 $\cos(\alpha + \beta)$ 的值.
- **3.59**《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03393-0》专题 14 三角函数的图像与性质 P54p13【2016• 全国新课标】【三角函数变换、辅助角】

(2016 • 全国新课标) 函数 $y = \sin x - \sqrt{3}\cos x$ 的图像可由函数 $y = \sin x + \sqrt{3}\cos x$ 的图像至少向右平移.

3.60《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03438-8》专题 14 三角函数的图像与性质 P54p16【2013• 全国新课标】

(2013•全国新课标) 设当 $x = \theta$ 时,函数 $f(x) = \sin x - 2\cos x$ 取得最大值,则 $\cos \theta =$ _______

3.61《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03438-8》专题 14 三角函数的图像与性质 P55p19【2016• 天津】

(2016 • 天津) 已知函数 $f(x) = 4\tan x \sin\left(\frac{\pi}{2} - x\right)\cos\left(x - \frac{\pi}{3}\right) - \sqrt{3}$.

- (I) 求 f(x) 的定义域与最小正周期;
- (II) 讨论 f(x) 在区间 $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 上的单调性.
- 3.62《2018 天利 38 套: 高考真题单元专题训练 (文)》专题 13 三角函数的概念······P41p2【2016 文•全国新课标】【同角三角函数基本关系式、诱导公式】

(2016 文•全国新课标) 已知 θ 是第四象限角,且 $\sin\left(\theta + \frac{\pi}{4}\right) = \frac{3}{5}$,则 $\tan\left(\theta - \frac{\pi}{4}\right) = \underline{\qquad}$.

3.63《2018 天利 38 套:高考真题单元专题训练(理)ISBN978-7-223-03438-8》专题 15 三角恒等变换 P59p20【2014• 广东】

(2014•广东) 已知函数 $f(x) = A \sin\left(x + \frac{\pi}{4}\right)$, $x \in \mathbb{R}$, 且 $f\left(\frac{5\pi}{12}\right) = \frac{3}{2}$.

(I) 求 A 的值;

(II) $\ddot{\pi} f(\theta) + f(-\theta) = \frac{3}{2}, \quad \theta \in \left(0, \frac{\pi}{2}\right), \quad \ddot{\mathcal{R}} f\left(\frac{3\pi}{4} - \theta\right).$

- **3.64**《2018 天利 38 套: 全国卷高考常考基础题 (理)ISBN978-7-223-03393-0》练习 8 三角恒等变换 P22p15 已知 $\cos(x+2\theta)+2\sin\theta\sin(x+\theta)=\frac{1}{3}$,则 $\cos2x$ 的值为 ______.
- 3.65《2018 天利 38 套:高考真题单元专题训练(理)ISBN978-7-223-03438-8》专题 15 三角恒等变换 P58p11【2017• 江苏】

(2017•江苏) 若 $\tan\left(\alpha - \frac{\pi}{4}\right) = \frac{1}{6}$,则 $\tan\alpha =$ ______.

- **3.66**《2018 天利 38 套: 全国卷高考常考基础题 (理)ISBN978-7-223-03393-0》练习 8 三角恒等变换 P22p20 已知 $\sin 2\alpha 2 = 2\cos 2\alpha$,则 $\sin^2 \alpha + \sin 2\alpha = _____$.
- 3.67《2018天利38套:高考真题单元专题训练(理)ISBN978-7-223-03438-8》专题15三角恒等变换P58p16

12	016•	上海
	() (() -	1.144

 $(2016 \cdot 上海)$ 方程 $3 \sin x = 1 + \cos 2x$ 在区间 $[0, 2\pi]$ 上的解为 ______.

3.68《2018天利38套:高考真题单元专题训练(理)ISBN978-7-223-03438-8》专题15三角恒等变换P58p17【2016•江苏】

(2016 • 江苏) 在锐角三角形 ABC 中,若 sin A = 2 sin B sin C,则 tan A tan B tan C 的最小值是 ______

3.69《2018 天利 38 套:高考真题单元专题训练(理)ISBN978-7-223-03438-8》专题 15 三角恒等变换 P59p19【2010• 上海】

 $(2010 \cdot 上海)$ 已知 $0 < x < \frac{\pi}{2}$,化简:

 $\lg\left(\cos x \tan x + 1 - 2\sin^2\frac{x}{2}\right) + \lg\left[\sqrt{2}\cos\left(x - \frac{\pi}{4}\right)\right] - \lg(1 + \sin 2x).$

3.70 LaTeX-master/sanjiaohanshu/gaokaosection.tex 26【三角函数,单调性】

已知函数 $f(x) = \sin(2x + \varphi)$,若 $f\left(\frac{\pi}{12}\right) - f\left(-\frac{5\pi}{12}\right) = 2$,则函数 f(x) 的单调增区间为______.

3.71 LaTeX-master/sanjiaohanshu/gaokaosection.tex 31【三角函数,图像变换,性质】

把函数 $y = \sin 2x$ 的图象沿 x 轴向左平移 $\frac{\pi}{6}$ 个单位,纵坐标伸长到原来的 2 倍 (横坐标不变) 后得到函数 y = f(x) 的图象,对于函数 y = f(x) 有以下四个判断:

- ① 该函数的解析式为 $y = 2\sin\left(2x + \frac{\pi}{6}\right)$;
- ② 该函数图象关于点 $\left(\frac{\pi}{3},0\right)$ 对称;
- ③ 该函数在 $\left[0,\frac{\pi}{6}\right]$ 上是增函数;
- ④ 若函数 y = f(x) + a 在 $\left[0, \frac{\pi}{2}\right]$ 上的最小值为 $\sqrt{3}$, 则 $a = 2\sqrt{3}$.

其中,正确判断的序号是_____

3.72 福建师大附中 2015-2016 学年高一数学第二学期期末检测.doc-17【诱导公式】

 $(2016 \bullet 师 大 附 中 17)$ 已知 $\sin\left(\theta - \frac{\pi}{4}\right) = \frac{1}{3}$,则 $\cos\left(\frac{\pi}{4} + \theta\right)$ 的值等于 ______.

3.73《习题化知识清单》P70方法3.2【同角三角函数关系化简】

已知 $\sin \alpha \cos \alpha = -\frac{12}{25}$, $\alpha \in \left(-\frac{\pi}{4}, 0\right)$, 则 $\sin \alpha + \cos \alpha =$ ______.

3.74《习题化知识清单》P72例 1-1【三角函数,最值】

函数 $\frac{\sin x - 2}{2 + \sin x}$ 的最大值为 ______.

3.75《习题化知识清单》P72 例 1【三角函数,值域】

函数 $\frac{\sin x + 2}{\sin x + 1}$, $x \in \left[0, \frac{\pi}{2}\right]$ 的值域为_____.

3.76《习题化知识清单》P73 易混清单例【三角函数,单调性】

函数 $y = 2\sin\left(\frac{\pi}{3} - 2x\right)$ 的单调增区间为 ______.

3.77《习题化知识清单》P74 易混清单练【三角函数,单调性】

函数 $y = 2\sin\left(\frac{\pi}{3} - 2x\right)$ 的单调减区间为______.

3.78《习题化知识清单》P77 单元检测 12【三角函数,单调性、参数						
- 1 / 1 《 2 记录 / 4 集日息 / 百 电 》 P / / 电 正 标 / 则 1 / 【 一 1 电 K (3) 。 电 1 简 1 生 。 <i>参 3</i>)	2.70	// 寸 晒 // トロンロン主 畄 //	777 出二人测 12	▼一台 示米	央 7田 1件	会料
	3./8	《八秋化知识有里》	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		平1111111111111111111111111111111111111	<i>沙</i> なり

设 $\omega > 0$,若函数 $f(x) = 2\sin \omega x (\omega > 0)$ 在区间 $\left[-\frac{\pi}{3}, \frac{\pi}{4} \right]$ 上单调递增,则 ω 取值范围是_______.

3.79《习题化知识清单》P87方法1【三角函数式化简】

化简:
$$\sin\left(3x + \frac{\pi}{3}\right)\cos\left(x - \frac{\pi}{6}\right) + \cos\left(3x + \frac{\pi}{3}\right)\cos\left(x + \frac{\pi}{3}\right) = \underline{\qquad}$$

3.80《习题化知识清单》P87方法1【三角函数式化简】

函数
$$y = \sin\left(\frac{\pi}{2} + x\right)\cos\left(\frac{\pi}{6} - x\right)$$
 的最大值为______.

3.81《习题化知识清单》P89 方法 1-1【三角恒等变换,函数性质】

已知函数 $f(x) = \frac{(\sin x - \cos x) \sin 2x}{\sin x}$,则 f(x) 的单调递减区间为_____

3.82 高中数学习题解法辞典.pdf 例 2-1-8【三角函数,不等式】

已知 $|\cos \theta| \leq |\sin \theta|$,则 θ 的取值范围是 _______.

3.83 高中数学习题解法辞典.pdf 2-1-74【三角函数,同名关系式、方程】

已知 $1 + \sin^2 x = \cos x$,则 x =_____.

3.84 高中数学习题解法辞典.pdf 例 2-1-19【三角函数,方程】

已知
$$\sin\left(\frac{\pi}{2} + 2x\right) = -\frac{1}{2}$$
,则 $x = \underline{\qquad}$.

3.85 高中数学习题解法辞典.pdf 例 2-2-4【三角函数,定义域、对数】

函数
$$y = \sqrt{25 - x^2} + \lg \sin \left(x + \frac{\pi}{3}\right)$$
 的定义域为______.

3.86 函数 $y = Asin(\omega x + \phi)$ 的图象及简单应用 P11.9【三角函数,奇偶性】

若
$$f(x) = \cos\left(2x + \frac{\pi}{3} + \varphi\right)(|\varphi| < \frac{\pi}{2})$$
 是奇函数,则 $\varphi =$ ______.

3.87《高中数学奥林匹克竞赛解题方法大全(周沛耕主编)》.pdf P93 例 3【三角函数,恒等变换】

(附加题, 5分) $\sqrt{3} \tan 18^{\circ} + \tan 18^{\circ} \tan 12^{\circ} + \sqrt{3} \tan 12^{\circ} =$ _____.

4. 解答题

解筌縣

3.88【三角函数, 化简、表达式计算】

(本小题满分12分)

(1) 化简:
$$\frac{\cos\left(\alpha - \frac{\pi}{2}\right)}{\sin\left(\frac{5\pi}{2} + \alpha\right)} \cdot \sin\left(\alpha - 2\pi\right) \cdot \cos\left(\pi - \alpha\right);$$

(2) 己知 $\tan a = -2$,求 $\frac{\sin 2a - \cos^2 a}{2 + \cos 2a}$ 的值.

3.89【三角函数,数量积、恒等变换、不等式、图像变换】

(本小题满分12分)

设函数 $f(x) = a \cdot b$, 其中向量 $a = (\cos x, 1)$, $b = (\cos x, \sqrt{3} \sin x \cos x)$, $x \in \mathbb{R}$.

- (1) 求函数 f(x) 的解析式;
- (2) 求满足 f(x) ≤ 0 的 x 的集合;
- (3) 函数 $y = \sin x$ 的图像可由函数 y = f(x) 的图像经过怎样的变换得到?
- 3.90【三角函数,恒等变换、存在性、参数】

(本小题满分12分)

- 已知函数 $f(x) = 2\sin^2\left(\frac{\pi}{4} + x\right) + \sqrt{3}\cos 2x$.
- (1) 求函数 f(x) 的最小正周期和对称轴方程;
- (2) 若关于 x 的方程 f(x) m = 2 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上有两个不同的解,求实数 m 的取值范围.
- 3.91【三角函数,数量积、恒等变换、单调性、存在性、参数】

(本小题满分12分)

已知向量
$$\mathbf{a} = \left(\frac{1}{2}, \sin x\right)$$
, $\mathbf{b} = \left(-1, \cos\left(x - \frac{\pi}{6}\right)\right)$, $f(x) = \mathbf{a} \cdot \mathbf{b} + \frac{1}{4}$, $(x \in \mathbb{R})$.

- (1) 求函数 f(x) 的单调递减区间
- (2) 若函数 g(x) = f(x) m, $\left(\frac{\pi}{3} \le x \le \frac{13\pi}{12}\right)$ 有两个不同的零点 x_1, x_2 ,求实数 m 的取值范围及 x_1, x_2 的和.
- **3.92** 福建师大附中 2016-2017 高一下期末考试数学试题······.doc-20【三角函数性质,向量数量积计算】 (2017•师大附中 20) 已知向量 $a = (\cos x, \sin x)$, $b = (3, -\sqrt{3})$, 记 $f(x) = a \cdot b$.
- (I) 求 f(x) 的单调增区间;
- (II) 若 $x \in [0, \pi]$, 求 f(x) 的值域.
- 3.93《习题化知识清单》P77单元检测15【三角函数,解析式、单调性】

已知函数 $f(x) = \sin(\omega x + \varphi)(\omega > 0, 0 < \varphi < \pi)$ 的最的最小正周期为 π ,且函数 f(x) 的图像过点 $\left(\frac{\pi}{2}, -1\right)$.

- (1) 求 ω 和 φ 的值; (2) 设 $g(x) = f(x) + f\left(\frac{\pi}{4} x\right)$,求函数 g(x) 的单调递增区间.
- 3.94 函数 $y = Asin(\omega x + \phi)$ 的图象及简单应用 P11.14【三角函数,解析式、值域】

已知曲线 $y = A \sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| \le \frac{\pi}{2}$) 上最高点为 $(2, \sqrt{2})$,该最高点与相邻的最低点间的曲线与 x 轴交于点 (6,0).

- (1) 该函数的解析式;
- (2) 该函数在 $x \in [-6, 0]$ 上的值域.
- 3.95 福州格致中学 2015-2016 学年高一数学第二学期期末检测.docx-22 【三角函数,解析式、存在性、参数、大小】

(附加题:本小题满分15分)

(福州格致中学 2015-2016 学年高一数学第二学期期末检测 22) 已知函数 $f(x) = A \sin(\omega x + \varphi) + B(A > 0, \omega > 0)$ 的一系列对应值如下表:

FuZhou Qingda Education

х	$\frac{\pi}{6}$	$-\frac{\pi}{3}$	$-\frac{5\pi}{6}$	$-\frac{4\pi}{3}$	$-\frac{11\pi}{6}$	$-\frac{7\pi}{3}$	$-\frac{17\pi}{6}$
у	-1	1	3	1	-1	1	3

- (1) 根据表格提供的数据求函数 f(x) 的一个解析式;
- (2) 根据(1)的结果:
- (i) 当 $x \in \left[0, \frac{\pi}{3}\right]$ 时,方程 f(3x) = m 恰有两个不同的解,求实数 m 的取值范围;
- (ii) 若是 α, β 是锐角三角形的两个内角,试比较 $f(\sin \alpha)$ 与 $f(\cos \beta)$ 的大小.
- **3.96** 福建师大附中 2015-2016 学年高一数学第二学期期末检测.doc-20【诱导公式,化简】 (2016•师大附中 20) 已知 $\cos\alpha = -\frac{\sqrt{5}}{5}, \ \alpha \in \left(\pi, \frac{3\pi}{2}\right)$.
- (I) 求 $\sin \alpha$ 的值; (II) 求 $\frac{\sin(\pi + \alpha) + 2\sin(\frac{3\pi}{2} + \alpha)}{\cos(3\pi \alpha) + 1}$ 的值.
- **3.97** 福建师大附中 2015-2016 学年高一数学第二学期期末检测.doc-22【三角函数性质】 (2016•师大附中 22) 已知函数 $f(x) = 3\sin\left(\frac{x}{2} + \frac{\pi}{6}\right) + 3$, $x \in \mathbb{R}$.
- (I) 求函数 f(x) 的单调增区间;
- (II) 若 $x \in \left[\frac{\pi}{3}, \frac{4\pi}{3}\right]$, 求 f(x) 的最大值和最小值,并指出 f(x) 取得最值时相应 x 的值.
- 3.98 福州一中学 2016-2017 学年高一下学期期末考试数学 ·····.doc-10【正弦曲线图像】
- (2017•福州一中 16) 已知函数 $f(x) = A\sin(\omega x + \phi)$ (A > 0, $\omega > 0$, $|\phi| < \frac{\pi}{2}$) 的部分图像如图所示,

时,求 g(x) 的值域.

- **3.99** 福建师大附中 2015-2016 学年高一数学第二学期期末检测.doc-24【三角函数复合函数最值】 (2016•师大附中 24) 求函数 $f(x) = 3 2a \sin x \cos^2 x$ 的最小值.
- **3.100** 高中数学习题解法辞典.pdf 例 2-2-1【三角函数,解析式,图像变换】 已知函数 $f(x) = A \sin(\omega x + \varphi)(A, \omega, \varphi)$ 为常数, $\omega > 0$) 的图像上相邻两个最高点的坐标分别是 $\left(\frac{\pi}{12}, 2\right)$, $\left(\frac{13\pi}{12}, 2\right)$.
- (1) 求函数 f(x) 的一个表达式;
- (2) 画出函数 f(x) 在长度为一个周期的闭区间上的简图;
- (3) 说明经过怎样的变换,可以由 $y = \sin x$ 的图像得到 y = f(x) 的图像.
- **3.101** 高中数学习题解法辞典.pdf 例 2-2-9【三角函数,证明、周期函数、奇偶性、单调性】 已知函数 y = f(x) 的定义域为 \mathbb{R} ,若 f(x+2) = -f(x),且当 $-1 \le x \le 1$ 时,f(x) = x,求证:

- (1) 函数 v = f(x) 是最小正周期为 4 的周期函数;
- (2) 函数 y = f(x) 是奇函数;
- (3) 当 $x \in [4k-1,4k+1](k \in \mathbb{Z})$ 时,y = f(x) 是增函数; 当 $x \in [4k+1,4k+3](k \in \mathbb{Z})$ 时,y = f(x) 是减 函数.
- 3.102 高中数学习题解法辞典.pdf 2-2-44【三角函数,最值、周期应用】

已知函数 $f(x) = 2\sin\left(\omega x + \frac{\pi}{6}\right) + 1(\omega > 0)$,

- (1) 求 f(x) 的最大值 M,最小值 m 以及最小正周期 T;
- (2) 试求最小正整数 ω ,使得自变量 x 在任意两个整数间 (包括整数本身) 变化时,函数 f(x) 至少有一 个值是M,另一个值是m.
- 3.103 高中数学习题解法辞典.pdf 2-2-45【三角函数,周期函数、证明】

求证: $(1)f(x) = \sin x \cos x$ 的最小正周期为 π ;

- (2) 若函数 $y = f(x)(x \in \mathbb{R})$ 的最小正周期为 T,则 f(kx)(k > 0) 的最小正周期为 $\frac{T}{k}$.
- 3.104 福州第三中中学 2015-2016 学年高一数学第二学期期末检测.doc-15【诱导公式,和角】 (2016•福州三中 15) 已知 $\sin \alpha + \frac{\pi}{4} = -\frac{3}{5}$,且 $0 < \alpha < \frac{5\pi}{4}$,求 $\cos \alpha + \frac{\pi}{2}$ 的值.

3.105 福州三中 2017 高一下数学期末卷······.doc-17【三角函数化简、二倍角、诱导公式】
$$(2017 \cdot 福州三中 17) 已知 f(x) = 2 \tan x + \frac{1 - 2 \sin^2 \frac{x}{2}}{\sin \frac{x}{2} \cdot \cos \frac{x}{2}}.$$

- (I) 求 $f(\frac{\pi}{6})$ 的值;
- (II) 若 $f(\alpha) = 5$,求 $f(\alpha + \frac{\pi}{4})$ 的值.
- 3.106《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03393-0》专题 14 三角函数的图像 与性质 P54p18【2017• 山东】【正弦曲线解析式,三角恒等变换】

(2017•山东) 设函数
$$f(x) = \sin\left(\omega x - \frac{\pi}{6}\right) + \sin\left(\omega x - \frac{\pi}{2}\right)$$
, 其中 $0 < \omega < 3$. 已知 $f\left(\frac{\pi}{6}\right) = 0$.

- (I) 求 ω;
- (II) 将函数 y = f(x) 的图像上各点的横坐标伸长为原来的 2 倍 (纵坐标不变),再将得到的图像向左平 移 $\frac{\pi}{4}$ 个单位,得到函数 y = g(x) 的图像,求 g(x) 在 $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$ 上的最小值.
- 3.107【三角函数,模型、最值】【清大期末模拟卷 18QdB4-FinExam.tex】

(本小题满分12分)

如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道($Rt \triangle FHE$,H是直角顶点)米处理污水,管道越长,污水净化效果越好。设计要求管道的接口 H 是 AB 的中点,E、 F 分别落在线段 BC、AD 上. 已知 AB = 20 米, $AD = 10\sqrt{3}$ 米, 记 $\angle BHE = \theta$.

- (1) 试将污水净化管道的长度 l 表示为 θ 的函数,并写出定义域;
- (2) 若 $\sin \theta + \cos \theta = \sqrt{2}$, 求此时管道的长度 l;

(3) 当 θ 取何值时,污水净化效果好?并求出此时管道的长度.

四、平面向量

1. 判断题

判断题

4.1【平面向量,概念】

判断下列结论是否正确(请在括号中打"✓"或"🗡")

- (1) 向量与有向线段是一样的,因此可以用有向线段来表示向量.()
- (2)|a| 与 |b| 是否相等与 a, b 的方向无关. ()
- (3) 若 a // b, b // c, 则 a // c.()
- (4) 若向量 \overrightarrow{AB} 与向量 \overrightarrow{CD} 是共线向量,则 A,B,C,D 四点在一条直线上. ()
- (5) 若向量 \overrightarrow{AB} 与向量 \overrightarrow{CD} 平行,则直线 \overrightarrow{AB} 与 \overrightarrow{CD} 平行.()
- (6) 若向量 a 与任一向量 b 平行,则 a = 0. ()
- (7) 若两个向量共线,则其方向必定相同或相反.()

4.2【平面向量,概念】

有下列命题: ①两个相等向量,它们的起点相同,终点也相同; ②若 |a| = |b|,则 a = b; ③若 $|\overrightarrow{AB}| = |\overrightarrow{CD}|$,则四边形 ABCD 是平行四边形; ④若 m = n, n = k,则 m = k; ③位移、速率、重力加速度都是向量; ⑥共线的向量,若起点不同,则终点一定不同. 其中,错误的个数是......(

A. 2

B. 3

C. 4

D. 5

4.3 1 平面向量的基本概念.pdf P2-训练 1 【平面向量,概念】

判断下列结论是否正确(请在括号中打"✓"或"🗡")

- (1) 向量就是有向线段.()
- (2) 如果 $|\overrightarrow{AB}| > |\overrightarrow{CD}|$,那么 $\overrightarrow{AB} > \overrightarrow{CD}$. ()
- (3) 力、速度和质量都是向量.()
- (4) 若 a, b 都是单位向量,则 a = b. (

			6	
$\overline{(5)}$ 若 $a=b$,且 a	1 与 b 的起点相同,则终点	也相同.()		
(6) 零向量的大小グ	岁 0,没有方向.()			
4.4【平面向量,概	念】			
给出下列命题:①	两个具有公共终点的向量,	一定是共线向量;②两个向]量不能比较大小,但它们的	匀模
能比较大小; ③λα	$= 0(\lambda $ 为实数),则 λ 必为	零; ④λ, μ 为实数, 若 λ a	$= \mu b$,则 $a = b$ 共线. 其中	产正
确的命题的个数为	1		()
A. 1	B. 2	C. 3	D. 4	
4.5 1 平面向量的基	本概念.pdf P10-训练 1【平	面向量, 共线定理】		
判断下列结论是否	正确 (请在括号中打"✓"	或 " メ ")		
(1) 若向量 b 与向量	a 共线,则存在唯一的实数	数 λ ,使得 $\boldsymbol{b} = \lambda \boldsymbol{a}$.()		
(2) 若 $\boldsymbol{b} = \lambda \boldsymbol{a}$,则	a 与 b 共线.()			
(3) 若 $\lambda a = 0$,则	a=0.(
2. 选择题				
2. (C) + (C)				
选择题				
4.6【 平面向量,相	笙】			
		都是非零向量,下列四个	条件、使 $\frac{a}{a}=\frac{b}{b}$ 成立当日	∃ ∤⊽
当			条件,使 $\frac{a}{ a } = \frac{b}{ b }$ 成立当上)
		С. $a \parallel b \perp a = b $	`	,
4.7【向量的线性运		,, , , , , ,	,,	
	的边 BC 上,且 $\overrightarrow{CD} = 4\overrightarrow{DB}$:	$= r\overrightarrow{AB} + s\overrightarrow{AC}, \mathbb{M} \ 3r + s \stackrel{\text{if}}{=}$	值为()
A. $\frac{16}{5}$	B. $\frac{12}{5}$	C. $\frac{8}{5}$	D. $\frac{4}{5}$,
9	5 本概念.pdf P13-4【平面向]	9	5	
			于()
A. $\frac{1}{2}(\boldsymbol{a}-\boldsymbol{b})$	B. $-\frac{1}{2}(\boldsymbol{a}-\boldsymbol{b})$	$C. \frac{1}{2}(\boldsymbol{a} + \boldsymbol{b})$	$\mp \dots \dots$,
			$2^{\langle \cdot \cdot \cdot \cdot \rangle}$	
	共线, $oldsymbol{c} = koldsymbol{a} + oldsymbol{b}(k \in \mathbb{R})$, $oldsymbol{c}$		· 3么()
A. $k = 1$ 且 c 与 d		B. $k = 1$ 且 $\mathbf{c} 与 \mathbf{d}$ 反		,
C. k = -1且 c 与 c		D. $k = -1$ 且 $c \ni d$		
	5单》P81 知识 4-3【向量共		· • · •	
			一定共线的三点是()
<u> </u>	$\omega_1 \omega_2 \omega_3 \omega = 0$, , , , , , , , , , , , , , , , , , , ,	/~/ \~\n+1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,

A. A. B. D	B. A. B. C	C. B. C. D	D.A.C.D	
4.11《习题化知识	清单》P81 知识 4-4【向量约	线性运算、向量共线 】		
已知向量 $a=e_1$	$+2e_2$, $b=2e_1-e_2$,则 a	$+2b = 2a - b \dots + 2b$	()
A. 一定共线		B. 一定不共线		
C. 当且仅当 e_1 与	\mathbf{e}_2 共线时共线	D. 当且仅当 $e_1=0$	e ₂ 时共线	
4.12《习题化知识	清单》P82 知识 2-1【向量学	坐标运算 】		
设平面向量 $a=$	$(3,5), \ \boldsymbol{b} = (-2,1), \ \mathbb{M} \ \boldsymbol{a} - 1$	$2\boldsymbol{b} = \dots \dots \dots \dots \dots$	()
A. (7,3)	B. (7,7)	C. (1,7)	D. (1,3)	
4.13《习题化知识	清单》P82 知识 2-2【向量学	坐标运算,单位向量 】		
己知 $\boldsymbol{a} = (3,4)$,	则与 a 同向的单位向量的坐	坐标是	()
A. (3, 4)	B. $\left(-\frac{3}{5}, \frac{4}{5}\right)$	C. $\left(-\frac{3}{5}, -\frac{4}{5}\right)$	D. $(\frac{3}{5}, \frac{4}{5})$	
4.14《习题化知识	清单》P82 知识 3-1【向量共		5 5	
设向量 $a = (m, 1)$	(a,b), $b=(1,m)$,如果 a 与 b	共线且方向相反,那么 m	的值为()
A. 1	B1	C. ±1	D . 0	
4.15《习题化知识	清单》P82 知识 3-3【向量共	共线,三角函数的定义】		
若 $\mathbf{a} = \left(\frac{3}{2}, \sin \alpha\right)$,	$b = \left(\sin \alpha, \frac{1}{2}\right), \exists \ a \parallel b,$	则锐角 α 为	()
	B. 45°		D. 75°	
4.16《习题化知识	清单》P83 知识 1-1【数量和	只的定义、性质】		
在 △ABC 中, AB	$B = BC = 2$, $\angle B = \frac{\pi}{4}$, $AD \neq 0$	是边 BC 上的高,则 \overrightarrow{AD} .	\overrightarrow{AC} 的值为 \dots ()
A. 0	B. 2	C. 4	D. 8	
	清单》P83 知识 1-2【数量和			
已知 $\triangle ABC$ 中, A	B = AC = BC = 6,平面内	一点 M 满足 $\overrightarrow{BM} = \frac{2}{2}\overrightarrow{BC}$ -	$-\frac{1}{3}\overrightarrow{BA}$,则 $\overrightarrow{AC} \cdot \overrightarrow{MB}$ 等于()
A. -9	B18	C. 12	D. 18	
	清单》P83 知识 2-2【向量的			
己知 $ \boldsymbol{a} =2$, $ \boldsymbol{b} $	$=4$,且 $(\boldsymbol{a}+\boldsymbol{b})\perp \boldsymbol{a}$,则 \boldsymbol{a} B. $\frac{\pi}{3}$	与 b 的夹角为	()
A. $\frac{2\pi}{3}$	B. $\frac{\pi}{2}$	C. $\frac{4\pi}{3}$	D. $-\frac{2\pi}{3}$	
9	う 清单》P84 知识 4-2【数量和	9	5	
己知 $\boldsymbol{a} = (2, -3)$,	$\boldsymbol{b} = (1, -2), \ \ \boldsymbol{\perp} \ \boldsymbol{c} \perp \boldsymbol{a}, \ \boldsymbol{b}$	$\cdot \boldsymbol{c} = 1$,则 \boldsymbol{c} 的坐标为	()
A. $(3, -2)$	B. (3, 2)	C. $(-3, -2)$		
4.20《习题化知识	清单》P84 知识 4-3【数量和	只的坐标表示】		
在以 OA 为一边,	OB 为一条对角线的矩形中	$\overrightarrow{OA} = (-3, 1), \overrightarrow{OB} = ($	(-2,k),则实数 $k =$ ()
A. $4\sqrt{3}$	B. $3\sqrt{3}$	C. $\frac{\sqrt{3}}{2}$	D. 4	
		2		

			• •	
4.21 福州屏东中	学 2016-2017 学年高一下	学期期末考试数学试题.do	c-4【向量共线】	
(2017•屏东中学	A(-1,1), $B(1,3)$,	$C(x,5)$, $\coprod \overrightarrow{AB} = \lambda \overrightarrow{BC}$,	则实数 λ 等于 ()
A. 1	B. 2	C. 3	D. 4	
4.22 福建师大附	中 2016-2017 高一下期末	考试数学试题doc-3【	[向量投影,坐标表示]	
(2017•师大附中	3) 若 $a = (2,1)$, $b = (3)$	$(\mathbf{a},4)$,则向量 \mathbf{b} 在向量 \mathbf{a} 方	向上的投影为()
A. $2\sqrt{5}$	B. 2	C. $\sqrt{5}$	D. 10	
4.23【向量表示】	【2018届贵州遵义航天高	高级中学一模】		
(2018 届贵州遵)	义航天高级中学一模)如	图所示,向量 $\overrightarrow{OA} = a$, \overrightarrow{OB}	$\overrightarrow{C} = \boldsymbol{b}, \ \overrightarrow{OC} = \boldsymbol{c}, \ A, \ B, \ C \ \overleftarrow{a}$	一条直
线上,且 \overrightarrow{AC} =3	3 <i>BC</i> ,则		()
A. $c = \frac{3}{5}b - \frac{1}{5}a$	B. $c = \frac{3}{5}a - \frac{1}{5}b$ C. c	= -a + 2b D. $c = a + 2b$	A	
$2 \qquad 2$	$2 \qquad 2$			
			B	
			o	$\rightarrow C$
4.24【向量表示】		→ _,.		
	T在半面内一点, $BD = 3$	CD ,则 $2 \rightarrow$	$ \frac{1}{2}\overrightarrow{AC} \qquad \text{D. } \overrightarrow{AD} = -\frac{1}{2}\overrightarrow{AB} + \frac{3}{2} $) →
9	9	$-\frac{1}{3}AC \qquad \text{C. } AD = \frac{1}{3}AB - 1$	$\frac{-AC}{2}$ D. $AD = -\frac{-AB}{2} + \frac{1}{2}$	AC
4.25【向量夹角、				
			()
A. 30°	B. 45°	C. 60°	D. 120°	
4.26【向量共线】				
已知向量 $\boldsymbol{a} = (2$		u + 4 b 与 a - 2 b 共线,则 n 1	<i>n</i> 的值为()
A. $\frac{1}{2}$	B. 2	C. $-\frac{1}{2}$	D. –2	
		rting.tex 练习 P7-10【向量		
设 <i>D</i> 为 △ <i>ABC</i> 所	「在平面内一点, $\overrightarrow{BC} = 3$	<i>CD</i> ,则	$ \frac{1}{3}\overrightarrow{AC} \qquad \text{D. } \overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC} $)
$A. \overrightarrow{AD} = -\frac{1}{3} \overrightarrow{AB} - \frac{1}{3} \overrightarrow{AB} - $	$+\frac{4}{3}\overrightarrow{AC}$ B. $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB}$ -	$-\frac{4}{3}\overrightarrow{AC} \qquad \text{C. } \overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} +$	$\frac{1}{3}\overrightarrow{AC}$ D. $\overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}$	Ć
	运算】【2017广东深圳二			
(2017•广东深圳	二模)如图所示,正方形	ABCD中, M 是 BC 的中	点,若 $\overrightarrow{AC} = \lambda \overrightarrow{AM} + \mu \overrightarrow{BD}$,则	$\lambda + \mu$
等于	 5		()
A. $\frac{4}{3}$	B. $\frac{5}{3}$	C. $\frac{15}{8}$	D. 2	

	$A \stackrel{\smile}{\sim}$	B		
4.29 福州一中学 201	6-2017 学年高一下学期	期末考试数学·····.doc-3	【向量共线】	
(2017•福州一中3)	已知向量 a , b 不共线,	$\mathbb{E} c = \lambda a + b, \ d = a + b$	$(2\lambda-1)\boldsymbol{b}$,若 \boldsymbol{c} 与 \boldsymbol{d} 方向相反。	,则
实数λ的值为			()
A. 1	B. $-\frac{1}{2}$	C. 1 或 $-\frac{1}{2}$	D1 或 - $\frac{1}{2}$	
4.30 福州格致中学 2	015-2016 学年高一数学	第二学期期末检测.docx-8	【向量共线】	
			$\overrightarrow{CB} = 2e_1 + 3e_2$, $\overrightarrow{CD} = 2e_1 - 6e_2$	- $oldsymbol{e}_2$,
若 A, B, D 三点共	线,则 <i>k</i> =		D. 2)
A. $\frac{1}{2}$	B8	C. $-\frac{1}{8}$	D. 2	
4.31 福州三中 2017 7	高一下数学期末卷	doc-5【向量投影,基底表	示】	
(2017•福州三中 5)	设 e_1 , e_2 为单位向量,	且 $oldsymbol{e}_1$, $oldsymbol{e}_2$ 的夹角为 $\dfrac{\pi}{3}$,若	$\hat{\mathbf{r}} a = \mathbf{e}_1 - 3\mathbf{e}_2, \ \mathbf{b} = \mathbf{e}_1 + \mathbf{e}_2, \ \mathbf{b}$	则向
量 a 在 b 方向上的射	付影为		()
A. $-\sqrt{3}$	B. $\sqrt{3}$	C. $-\frac{\sqrt{10}}{5}$	D. $\frac{\sqrt{10}}{5}$	
4.32【平面向量,几位	可应用】	9	0	
			()
$A. \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CA}$	$B. \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$	$C. \overrightarrow{AC} + \overrightarrow{BA} = \overrightarrow{AD}$	$D. \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{DC}$	
4.33【向量坐标法在3	平面几何的应用, 三角函	数定义】		
半径为 $\sqrt{3}$ 的扇形 A	AOB 的圆心角为 120°,	点 C 在 \widehat{AB} 上,且 $\angle COB$	$=30^{\circ}, \ \ \overrightarrow{A}\overrightarrow{OC} = \lambda\overrightarrow{OA} + \mu\overrightarrow{OB},$	则
$\lambda + \mu$ 等于			()
A. $\sqrt{3}$	B. $\frac{\sqrt{3}}{3}$	C. $\frac{4\sqrt{3}}{3}$	D. $2\sqrt{3}$	
4.34【平面向量几何原	0	J		
直角坐标系 xOy 中,	$\overrightarrow{AB} = (2,1), \overrightarrow{AC} = (3,k)$	x), 若 △ <i>ABC</i> 是直角三角用	δ ,则 k 的可能值个数是()

A. 1

B. 2 C. 3 D. 4

4.35 福建师大附中 2016-2017 高一下期末考试数学试题 ······.doc-6【数量积,三角形形状】

(2017• 师大附中 6) 若点 O 是 $\triangle ABC$ 平面内一点,且满足 $(\overrightarrow{OB} - \overrightarrow{OC}) \cdot (\overrightarrow{OB} + \overrightarrow{OC} - 2\overrightarrow{OA}) = 0$,则 $\triangle ABC$ 形状为.....

A. 钝角三角形

B. 等腰三角形

C. 直角三角形

D. 锐角三角形

FuZhou Qingda Education

4.36 《习题化知识》	青单》P85 方法 3-4.1【向	量夹角垂直】		
向量 $a = (1, -2),$	$b = (2,1), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			(
A. $a \parallel b$	B. $a\perp b$	C.a 与 b 的夹角	自为 60° D. a 与 b 的夹角	角为 30°
4.37《习题化知识》	青单》P84 知识 5-23【数	量积应用,三角形五心】		
点 O 是 △ABC 所有	生平面上的一点, 且满足	$\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OA}$	\overrightarrow{OC} ,则点 $O \neq \triangle ABC$ 的	J(
A. 重心	B. 垂心	C. 内心	D. 外心	
4.38《习题化知识》	青单》P90 单元检测 8【[句量投影】		
在平面直角坐标	系中, $AB = CD$, $A(0,3)$), $B(-4,0)$, $C(a,-1)(a$	> 0),则向量 \overrightarrow{BC} 在 \overrightarrow{AB}	上的投影
为				(
A5	B3	C. 3	D. 5	
		数量积;三角恒等变换,		
已知向量 $a = (c$	$\cos\frac{3x}{2}, \sin\frac{3x}{2}$, $b = (\cos\frac{3x}{2})$	$\left(\frac{x}{2}, -\sin\frac{x}{2}\right), \exists x \in \left[0, \frac{\pi}{2}\right]$	$, \ \exists a+b = 2a \cdot b,$	则 $\sin 2x$ +
,	,	,		
A1	B. 0	C. 2	D2	
4.40《高中数学竞	赛培优教程 + 一试 (李名)	::e主编)》.pdf P122-5.2-3	【平面向量,表示】	
(附加题, 5分)已	知正方形 PQRS 对角线3	$\dot{\mathcal{C}}$ 点为 M ,坐标原点 O 不	在正方形内部, $\overrightarrow{OP} = (0$	$,3), \overrightarrow{OS} =$
·				(
A. $\left(-\frac{7}{2}, -\frac{1}{2}\right)$	B. $\left(\frac{7}{2}, \frac{1}{2}\right)$	C. $(7,4)$	$D.\left(\frac{7}{2},\frac{7}{2}\right)$	
3. 填空题				
·				

填空题

4.41【平面向量,线性运算】

- 1) $3(6\mathbf{a} + \mathbf{b}) 9(\mathbf{a} + \frac{1}{3}\mathbf{b}) = ____;$
- 2) 若 $2(y \frac{1}{3}a) \frac{1}{2}(c + b 3y) + b = 0$ 其中 a, b, c 为已知向量,则未知向量 $y = _____$.
- 3) 若 a = b + c, 化简 $3(a + 2b) 2(3b + c) 2(a + b) = _____$.

4.42【平面向量, 共线定理】

设向量 a, b 不共线, 向量 $\lambda a + b$ 与 a + 2b 共线,则实数 $\lambda =$ _____.

4.43【平面向量,表示】

如图,在 $\triangle ABC$ 中,D,E为边 AB的两个三等分点, $\overrightarrow{CA}=3a$, $\overrightarrow{CB}=2b$,求 \overrightarrow{CD} , \overrightarrow{CE} (用a,b表示).

4.44	【平面向量,	夹角】
------	--------	-----

正方形 ABCD 中,向量 \overrightarrow{AC} 与 \overrightarrow{BC} 的夹角为 ______,向量 \overrightarrow{AC} 与 \overrightarrow{CD} 的夹角为 ______.

4.45【平面向量,轨迹】

4.46【平面向量,加减】

如图, $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AD}$ 等于......()

 \overrightarrow{A} . \overrightarrow{AD}

- B. \overrightarrow{DC}
- $C. \overrightarrow{DB}$
- D. \overrightarrow{AB}

4.47《习题化知识清单》P82 知识 1-3【平面向量基本定理】

已知向量 a = (1,2), b = (-2,3), c = (4,1), 若用 a 和 b 表示 c, 则 $c = _____$.

4.48《习题化知识清单》P82知识2-3【向量坐标运算,中点坐标公式】

已知平面直角坐标系 xOy 内的三点分别是 A(2,-5), B(3,4), C(-1,-3), D 为线段 BC 的中点,则向量 \overrightarrow{DA} 的坐标为

4.49《习题化知识清单》P82 知识 3-4【向量共线坐标表示】

4.50《习题化知识清单》P82 知识 2-4【向量的投影】

已知点 A(-1,1), B(1,2), C(-2,-1), D(3,4), 则向量 \overrightarrow{CD} 在 \overrightarrow{AB} 方向上的投影为 ________.

4.51《习题化知识清单》P83 方法 2【向量共线条件应用】

平面内给定三个向量 a = (3,2), b = (-1,2), c = (4,1), 则

- (1) 若 (a + kc) // (2b a),则实数 $k = _____$;
- (2) 设 d = (x, y) 满足 (d c) // (a + b) 且 |d c| = 1,则 d =
- 4.52《习题化知识清单》P83 方法 2-2【向量共线条件应用】

若平面向量 a, b 满足 |a+b|=1, a+b 平行于 x 轴,b=(2,-1), 则 a=______.

4.53《习题化知识清单》P84方法1-1【向量夹角,参数】

FuZhou Qingda Education

已知 $ a =1$, $ b =2$, a 与 b 的夹角为 120 °, 则使 $a+kb$ 与 $ka+b$ 的夹角为锐角的实数 k 的取值范围
是
4.54《习题化知识清单》P84 方法 2【求向量模的基本方法】
已知向量 a , b 夹角为 45° ,且 $ a =1$, $ 2a-b =\sqrt{10}$,则 $ b =$
4.55《习题化知识清单》P84 方法 2-4【求向量模的基本方法】
已知向量 $\mathbf{a} = (x.y)$, $\mathbf{b} = (-1,2)$,且 $\mathbf{a} + \mathbf{b} = (1,3)$,则 $ \mathbf{a} - 2\mathbf{b} $ 等于
4.56《习题化知识清单》P84 知识 3-3【数量积的运算律】
已知不共线向量 a , b , $ a = 2$, $ b = 3$, $a \cdot (b - a) = 1$, 则 $ b - a =$.
4.57《习题化知识清单》P84 知识 5-3【数量积的应用,运算律】
已知 $ a = b = 1$, a , b 的夹角是直角, $c = 2a + 3b$, $d = ka - 4b$, $c \perp d$, 则 $k = $ 已知
$\triangle ABC$ 是正三角形,若 $\overrightarrow{AC} - \lambda \overrightarrow{AB}$ 与向量 \overrightarrow{AC} 的夹角大于 90°,则实数 λ 的取值范围是
4.58《习题化知识清单》P85 方法 4【数量积,数形结合】
在矩形 $ABCD$ 中, $AB = \sqrt{2}$, $BC = 2$,点 E 为 BC 的中点,点 F 在边 CD 上,若 $\overrightarrow{AB} \cdot \overrightarrow{AF} = \sqrt{2}$,则
$\overrightarrow{AE} \cdot \overrightarrow{BF}$ 的值是
4.59《习题化知识清单》P85 方法 4-5.2【数量积,数形结合】
已知正方形 $ABCD$ 的边长为 1, 点 E 是 AB 边上的动点,则 $\overrightarrow{DE} \cdot \overrightarrow{CB}$ 的值为; $\overrightarrow{DE} \cdot \overrightarrow{DC}$ 的
最大值为
4.60《高中数学竞赛培优教程 + 一试 (李名德主编)》.pdf P121-例 5.19【平面向量,不等式、数形结合】
已知 $x^2 + y^2 = 25$,函数 $z = \sqrt{8y - 6x + 50} + \sqrt{8y + 6x + 50}$ 的最大值为
4.61 福州三中 2017 高一下数学期末卷doc-16【向量投影,基底表示】
(2017•福州三中 16) 已知 a , b 是平面内两个相互垂直的单位向量,若向量 c 满足 $(a-c)\cdot(b-c)=0$,
则 c 的最大值是
4.62 福建师大附中 2016-2017 高一下期末考试数学试题·····.doc-15【向量夹角,线性运算模长】
(2017•师大附中 15) 已知单位向量 a , b 的夹角为 $\frac{\pi}{3}$,那么 $ a-2b =$
4.63【平面向量的模与夹角】
已知 $\triangle ABC$ 是正三角形,若 $\overrightarrow{AC} - \lambda \overrightarrow{AB}$ 与向量 \overrightarrow{AC} 的夹角大于 90°,则实数 λ 的取值范围是
4.64【向量几何应用】
在平面四边形 $ABCD$ 中,若 $AC = 3$, $BD = 2$,则 $(\overrightarrow{AB} + \overrightarrow{DC}) \cdot (\overrightarrow{AC} + \overrightarrow{BD}) =$

4.65 LaTeX-master/xiangliang/xiangliangsorting.tex P10-p48【向量表

示】

在 $\triangle ABC$ 中,点 M,N 满足 $\overrightarrow{AM} = 2\overrightarrow{MC}$, $\overrightarrow{BN} = \overrightarrow{NC}$. 若 $\overrightarrow{MN} = x\overrightarrow{AB} + y\overrightarrow{AC}$,则 x = y = y.

- **4.66** 福建师大附中 2016-2017 高一下期末考试数学试题…….doc-17【数量积,几何】 (2017•师大附中 17) 在 $\triangle ABC$ 中, $|\overrightarrow{AD}| = |\overrightarrow{BD}| = |\overrightarrow{CD}|$, $|\overrightarrow{AB}| = 3$,则 $\overrightarrow{AB} \cdot \overrightarrow{AD} =$.
- 4.67【向量坐标法在平面几何的应用,直线方程】

在 Rt $\triangle ABC$ 中,CA=CB=2,M,N 是斜边 AB 上的两个动点,且 $MN=\sqrt{2}$,则 $\overrightarrow{CM}\cdot\overrightarrow{CN}$ 的取值范围是

4.68 福州一中学 2016-2017 学年高一下学期期末考试数学…….doc-14【数量积,外心】 (2017 • 福州一中 14) $\triangle ABC$ 中,CA=4,CB=6,点 O 为 $\triangle ABC$ 的外心,则 $\overrightarrow{CO} \cdot \overrightarrow{AB} =$.

4. 解答题

解答题

4.69【平面向量,表示】

如图所示,在五边形 ABCDE 中,若四边形 ACDE 是平行四边形,且 $\overrightarrow{AB} = a$, $\overrightarrow{AC} = b$, $\overrightarrow{AE} = c$,试用向量 a,b,c 表示向量 \overrightarrow{BD} , \overrightarrow{BC} , \overrightarrow{BE} , \overrightarrow{CD} 及 \overrightarrow{CE} .

- **4.70** 1 平面向量的基本概念.pdf P13-10【平面向量,加减、计算】 化简:
 - ① $\overrightarrow{BC} + \overrightarrow{AB}$; ② $\overrightarrow{DB} + \overrightarrow{CD} + \overrightarrow{BC}$;
 - $(3)\overrightarrow{AB} \overrightarrow{FD} + \overrightarrow{CD} \overrightarrow{CB} + \overrightarrow{FA};$ $(4)(\overrightarrow{AC} + \overrightarrow{BO} + \overrightarrow{OA}) (\overrightarrow{DC} \overrightarrow{DO} \overrightarrow{OB});$
- 4.71 1 平面向量的基本概念.pdf P8 训练 5【平面向量,模型】

一架飞机从A 地按北偏东 35° 的方向飞行 800 km 到达B 地接到受伤人员,然后又从B 地按南偏东 55° 的方向飞行 600 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.

4.72 1 平面向量的基本概念.pdf P3 训练 3 【平面向量,模型】

一辆汽车从 A 点出发向西行驶了 100 km 到达 B 点,然后又改变方向向西偏北 50° 走了 200 km 到达 C 点,最后又改变方向,向东行驶了 100 km 到达 D 点.

- (1) 作出向量 \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} ;
- (2) 求 $|\overrightarrow{AD}|$.
- **4.73** 1 平面向量的基本概念.pdf P10 例 2 【平面向量,共线定理、三点共线、证明】 设 a, b 是不共线的两个非零向量.

(1) 若 $\overrightarrow{OA} = 2a - b$, $\overrightarrow{OB} = 3a + b$, $\overrightarrow{OC} = a - 3b$, 求证: A, B, C 三点共线;

- (2) 若 8a + kb 与 ka + b 共线,求实数 k 的值;
- (3) 若 $\overrightarrow{OM} = m\mathbf{a}$, $\overrightarrow{ON} = n\mathbf{b}$, $\overrightarrow{OP} = \alpha \mathbf{a} + \beta \mathbf{b}$, 其中 m, n, α , β 均为实数,且 m, $n \neq 0$,若 M, P, $N \equiv$ 点共线,求证: $\frac{\alpha}{m} + \frac{\beta}{n} = 1$
- 4.74【平面向量;几何、证明】

设点 G 为 $\triangle ABC$ 重心,D,E,F 分别为各边中点. 试用向量证明: $AG = \frac{2}{3}AD$.

4.75【平面向量;几何、证明】

设点 G 为 $\triangle ABC$ 重心, D, E, F 分别为各边中点.

(1) 试用向量证明: 三角形三条中线共点; (2) 求 $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$.

4.76【平面向量;三点共线、证明】

已知 $\overrightarrow{OA} = \lambda \overrightarrow{OB} + \mu \overrightarrow{OC}(\lambda, \mu \in \mathbb{R})$, 若 $\lambda + \mu = 1$, 求证: 点 A, B, C 三点共线.

4.77【平面向量;几何、证明】

【定比分点坐标公式】如图,设 P 为 $\triangle ABO$ 边 AB 上一点. 设 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$

(1) 求证:
$$\overrightarrow{OP} = \frac{\left|\overrightarrow{PB}\right|}{\left|\mathbf{b} - \mathbf{a}\right|} \mathbf{a} + \frac{\left|\overrightarrow{PA}\right|}{\left|\mathbf{b} - \mathbf{a}\right|} \mathbf{b};$$

(2) 设
$$\overrightarrow{AP} = \lambda \overrightarrow{PB}$$
, 求证: $\overrightarrow{OP} = \frac{a + \lambda b}{1 + \lambda}$

4.78【平面向量,夹角、模】

(本小题满分10分)求值:

已知
$$|\vec{a}| = \sqrt{2}, |\vec{b}| = 1$$

- (1) 若 \vec{a} , \vec{b} 的夹角 θ 为 45°, 求 $|\vec{a} \vec{b}|$;
- (2) 若 $(\overrightarrow{a} \overrightarrow{b}) \perp \overrightarrow{b}$,求 \overrightarrow{a} 与 \overrightarrow{b} 的夹角 θ .
- 4.79《习题化知识清单》P91 单元检测 16【三点共线,向量共线】

设两个非零向量a与b不共线

- (1) 若 $\overrightarrow{AB} = a + b$, $\overrightarrow{BC} = 2a + 8b$, $\overrightarrow{CD} = 3(a b)$, 求证: A, B, D 三点共线;
- (2) 试确定实数 k,使 ka + b 与 a + kb 共线.
- 4.80 福州屏东中学 2016-2017 学年高一下学期期末考试数学试题.doc-17【向量共线】
- $(2017 \bullet$ 屏东中学 17) 已知向量 $m = (\cos \alpha, 1 \sin \alpha), \ n = (-\cos \alpha, \sin \alpha)(\alpha \in \mathbb{R})$
- (I) 若 $m \perp n$, 求角 α 的值;
- (II) 若 $|m-n|=\sqrt{3}$,求 $\cos 2\alpha$ 的值.
- 4.81 福建师大附中 2016-2017 高一下期末考试数学试题…….doc-19【向量共线、夹角、模长】
- (2017• 师大附中 19) 已知 a, b 为两个不共线向量,|a| = 2, |b| = 1, c = 2a b, d = a + kb.
- (I) 若 $c \parallel d$, 求实数 k;
- (II) 若 k = -7,且 $c \perp d$,求 a = b 的夹角.
- **4.82** 福州一中学 2016-2017 学年高一下学期期末考试数学…….doc-15【数量积,垂直】

 $(2017 \bullet 福州一中 15)$ 已知 $\mathbf{a} = (\cos \alpha, k \sin \alpha)$, $\mathbf{b} = (\cos \beta, \sin \beta)(k > 0$, $0 < \alpha < \beta < \frac{\pi}{2}$), 且 $\mathbf{a} + \mathbf{b} = \mathbf{b}$ 相互垂直.

- (1) 求 k 的值;
- (2) 若 $\mathbf{a} \cdot \mathbf{b} = \frac{4}{5} \, \mathbb{E} \cos \beta = \frac{3}{5}$,求 $\sin \alpha$ 的值.
- 4.83【平面向量基本定理】

在 $\triangle OAB$ 的边 OA, OB 上分别取点 M, N, 使得 $\overrightarrow{OA} = 3\overrightarrow{OM}$, $\overrightarrow{OB} = 4\overrightarrow{ON}$, 设线段 AN 与 BM 交于点 P, 记 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, 用 a, b 表示向量 \overrightarrow{OP} .

4.84【平面向量基本定理】

在 $\triangle OAB$ 中, $\overrightarrow{OA} = 4\overrightarrow{OC}$, $\overrightarrow{OB} = 2\overrightarrow{OD}$,设线段 AD 与 BC 交于点 M,记 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$.

- (1) 用 a,b 表示向量 \overrightarrow{OP} .
- (2) 已知在线段 AC 上取一点 E,在线段 BD 上取一点 F,使 EF 过点 M,设 $\overrightarrow{OE} = p\overrightarrow{OA}$, $\overrightarrow{OF} = q\overrightarrow{OA}$,求证 $\frac{1}{7p} + \frac{3}{7q} = 1$
- 4.85【向量垂直】

平面向量 $\mathbf{a} = (\sqrt{3}, -1)$, $= \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$,若存在不同时为 0 的实数 k 和 t,使 $\mathbf{x} = \mathbf{a} + (t^2 - 3)\mathbf{b}$, $\mathbf{y} = -k\mathbf{a} + t\mathbf{b}$,

福州清大教育 FuZhou Qingda Education

且 $x \perp y$,试求函数关系式 k = f(t).

- 4.86 福州三中 2017 高一下数学期末卷…….doc-18【向量垂直,模长,共线】
- (2017•福州三中 18) 平面内的向量 a = (3,2), b = (-1,2), c = (4,1).
- (I) 若 $(a + kc) \perp (2b a)$, 求实数 k 的值;
- (II) 若向量 d 满足 d // c,且 $|d| = \sqrt{34}$,求向量 d 的坐标.
- **4.87**《高中数学竞赛培优教程 + 一试 (李名德主编)》.pdf P115-例 5.10【平面向量,数量积、垂直、平行】 已知向量 $a = (\cos \alpha, \sin \alpha)$, $b = (\cos \beta, \sin \beta)$,且 a,b 满足关系 $|ka + b| = \sqrt{3} |a kb|(k > 0)$.
- (1) 求将 a 与 b 的数量积用 k 表示的解析式 f(k);
- (2) a 能否和 b 垂直? a 能否和 b 平行? 若不能,则说明理由;若能,则求出对应的 k 值;
- (3) 求 a 与 b 夹角的最大值.
- **4.88**《高中数学竞赛培优教程 + 一试 (李名德主编)》.pdf P114-例 5.8【平面向量,垂直、模长】 已知 $a = (\cos \alpha, \sin \alpha)$, $b = (\cos \beta, \sin \beta)(0 < \alpha < \beta < \pi)$.
- (1) 求证: a + b = a b 相互垂直;
- (2) 若 ka + b 与 a kb 大小相等,求 $\beta \alpha$ (其中 k 为非零实数).
- **4.89**《高中数学竞赛培优教程 + 一试 (李名德主编)》.pdf P118-例 5.14【平面向量,最值、夹角】【2004年湖北高考题】
- (2004 年湖北高考题) 在 $Rt\triangle ABC$ 中,已知 BC = a,若长为 2a 的线段 PQ 以点 A 为中点,问 \overrightarrow{PQ} 与 \overrightarrow{BC} 的夹角 θ 取何值时 $\overrightarrow{BP} \cdot \overrightarrow{CO}$ 的值最大? 并求出这个最大值.
- 4.90【平面向量、表示】
- 已知点 P 是 $\triangle ABC$ 内一点,且满足条件 $\overrightarrow{AP} + \overrightarrow{AP} + \overrightarrow{AP} = 0$,设点 Q 为 CP 的延长线与 AB 的交点,令 $\overrightarrow{CP} = p$,试用向量 p 表示 \overrightarrow{CQ} .
- (2010•江苏) 在平面直角坐标系 xOy 中,已知点 A(-1,-2), B(2,3), C(-2,-1).
- (I) 求以线段 AB, AC 为邻边的平行四边形的两条对角线的长;
- (II) 设实数 t 满足 $(\overrightarrow{AB} t\overrightarrow{OC}) \cdot \overrightarrow{OC} = 0$, 求 t 的值.
- **4.92**《2018 天利 38 套: 高考真题单元专题训练 (理)ISBN978-7-223-03438-8》专题 18 平面向量的应用 P72p17【2014• 陕西】
- (2014 陕西) 在直角坐标系 xOy 中,已知点 A(1,1),B(2,3),C(3,2),点 P(x,y) 在 $\triangle ABC$ 三边围成的区域 (含边界) 上.
- (I) 若 $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$,求 $|\overrightarrow{OP}|$;
- (II) 设 $\overrightarrow{OP} = m\overrightarrow{AB} + n\overrightarrow{AC}(m, n \in \mathbb{R})$, 用 x, y 表示 m n, 并求 m n 的最大值.

五、立体几何

1. 选择题

选择题

2. 填空题

填空题

3. 解答题

解答題

六、参考答案

1.1 B	2.5 C
1.2 B	2.6 B
1.3 C	2.7 C
1.4 (I) $\{x \mid -4 \le x < -2\}$ (II) $[-1, 1] \cup [2, +\infty]$	2.8 D
1.5 [0, 1)	2.9 D
1.6 (I) $\{x \mid -4 \le x < -2\}$ (II) $[-1, 1] \cup [2, +\infty]$	2.10 A
1.7 A : (I): $B = \{x \mid 1 < x < e\}$, ∴ $A \cup B = \{x \mid 1 < x < e\}$	2.11 C
$2 \le x < e \}$	2.12 C
$(\mathrm{II}) : A \cup C = C, : C \subseteq A$	2.13 D
$C = \emptyset$ 时, $t+1 \ge 2t$, $t \le 1$	
t+1 < 2t	2.14 C
$C \neq \emptyset$ 时, $\begin{cases} t+1 \geq 2 & \therefore 1 < t \leq 2 \end{cases}$	2.15 B
$C \neq \emptyset$ 时, $\begin{cases} t+1 < 2t \\ t+1 \geq 2 \end{cases} \therefore 1 < t \leq 2 $ $\begin{cases} 2t \leq 4 \end{cases}$	2.16 D
综上, $t \in (-\infty, 2]$	2.17 D
1.8 (1) $[-2,4)$ (2) $(-\infty,2]$	2.18 B
2.2 C	2.19 C
2.3 A	2.23 B
2.4 B	2.24 B

2.25

2.47
$$\left[\frac{1}{3} + \infty\right)$$

2.48
$$(2, \frac{5}{2}) \cup (\frac{5}{2}, 3]$$

2.50
$$\frac{3+ab}{ab}$$

2.50
$$-\frac{3}{2}$$

2.57
$$(-\infty, -2) \cup (0, 2)$$

2.58
$$(-5,0) \cup (5,+\infty)$$

2.61
$$(-\infty, -1]$$

2.64
$$a \le \frac{13}{8}$$

2.65 M: (I)
$$\pm x \log_5 2 = 1$$
, $x = \frac{1}{\log_5 2} = \log_2 5$.

故
$$2^x + 2^{-x} = 5 + \frac{1}{5} = \frac{26}{5}$$

(II)

原式 =
$$(\frac{1}{8})^{\frac{1}{3}} - 1 + 2^4 + \frac{3}{2} \lg 5 + \frac{3}{2} \lg 2$$

= $\frac{1}{2} + 15 + \frac{3}{2} (\lg 5 + \lg 2)$
= 17

2.66 (1) 4 (2)
$$\frac{1}{2}$$

2.67 (1) 原式 =
$$-6a = -3$$
; (2) 11

2.68 解:(I)::
$$f(x)$$
 是奇函数,:: $b = 0$;:: $f(\frac{1}{2}) = \frac{2}{5}$,

$$\therefore a = 1$$

$$\therefore f(x) = \frac{x}{x^2 + 1}$$

 $(II)x \in (-1,1)$ 时,f(x) 单调递增.证明如下:

$$\forall x_1, x_2 \in (-1, 1), x_1 < x_2,$$

$$f(x_2) - f(x_1) = \frac{x_2}{x_2^2 + 1} - \frac{x_1}{x_1^2 + 1}$$
$$= \frac{(x_2 - x_1)(1 - x_1 x_2)}{(x_1^2 + 1)(x_2^2 + 1)}$$

$$x_1, x_2 \in (-1, 1)$$
, ∴ $x_1x_2 < 1$, $x_1x_2 < 1$, $x_1x_2 > 0$, $x_1x_2 > 0$

$$x_2 - x_1 > 0$$
, $x_1^2 + 1 > 0$, $x_2^2 + 1 > 0$

$$\therefore f(x_2) - f(x_1) < 0$$
, 故 $f(x)$ 在 $(-1,1)$ 上单调递增.

(III):
$$f(x)$$
 是奇函数, $f(2x-1) < -f(x) = f(-x)$,

又
$$f(x)$$
 在 $(-1,1)$ 单调递减, 故

$$\frac{1}{2x-1<-x}$$
, $\mathbb{H}^{-}x<\frac{1}{3}$;

综上, $x \in (0, \frac{1}{2})$

2.69 解: (I):: f(x) 过点 (0,1), :: c = 1; 又

 \therefore f(x) 过点 (1,4), \therefore a+b=3, \therefore b=3-a,

$$\therefore f(x) = ax^2 + (3-a)x + 1; \ \ensuremath{\nabla} f(x) \ge 4x \ \ensuremath{\square} \ \ensuremath{\square} \ \ensuremath{\square} \ \ensuremath{\square}$$

 $ax^{2} + (3-a)x + 1 \ge 4x \Leftrightarrow ax^{2} - (a+1)x + 1 \ge 0$ [\boxtimes 成立, $\therefore a > 0, \Delta = (a+1)^2 - 4a = (a-1)^2 \le 0$, $(a-1)^2 \ge 0$, $(a-1)^2 = 0$, a = 1.

$$\therefore f(x) = x^2 + 2x + 1;$$

(II)
$$\Leftrightarrow h(x) = g(x) - f(x) = (kx+1) - (x^2 + 2x + 1) = -x^2 - (2-k)x,$$

则依题意可知 h(x) 在区间 [2,3] 上是减函数, 又函数 h(x) 开口向下,对称轴 $x = \frac{k-2}{2}$,

$$\therefore \begin{cases} \frac{k-2}{2} \le 2\\ h(3) > 0 \end{cases}$$

 $\therefore 5 < k \le 6$

2.71 (1)
$$f_{\min}(x) = f(\frac{1}{3}) = 1$$
 $f_{\max}(x) = f(3) = 5$ (2) $f_{\min}(x) = f(3) = 5$ (2) $f_{\min}(x) = f(3) = 5$ (3) $f_{\min}(x) = f(3) = 5$ (4) $f_{\min}(x) = \frac{3}{2}$

2.72 解: (I) 依题意, 当 $x = \sqrt{2^b}$ 时, 函数 $y = x + \frac{2^b}{r}$ 取最小值 $2\sqrt{2^b} = 6$,∴ $b = \log_2 9$

(II) :
$$f(x) = \frac{4x^2 - 12x - 3}{2x + 1} = 2x + 1 + \frac{4}{2x + 1} - 8\Box x \in [0, 1],$$

∴ $2x + 1 \in [1, 3]$, $\exists 2x + 1 \in (0, 2] \cap [1, 3] = [1, 2]$ $\exists x \in [1, 3]$

f(x) 是减函数, $2x+1 \in [2,+\infty) \cap [1,3] = [2,3]$ 时

f(x) 是增函数;

 $\therefore f(x)$ 的单调增区间为 $[\frac{1}{2}, 1]$, 单调减区间为 $[0, \frac{1}{2}]$, 最小值为 $2\sqrt{4} - 8 = -4$, 又 f(0) = -3, $f(1) = -\frac{11}{3}$

∴ f(x) 值域为 [-4, -3]

(III) g(x) 在 [0,1] 上单调递减, : g(x) 值域为

$$[-1-2c,-2c];$$

依 题 意 可 得 [-4, -3] \subseteq [-1 - 2c, -2c], ::

$$\begin{cases}
-4 \ge -1 - 2c \\
-3 \le -2c
\end{cases}$$

$$\therefore c = \frac{3}{2}$$

2.73
$$a = -1; p = -\frac{1}{16}$$

2.74
$$(m=1)a \in (-\infty, -1) \cup (\frac{2}{3} < a < \frac{3}{2})$$

2.75 (1)
$$a \in (1, +\infty)$$
 (2) $a \in [0, 1]$

2.76 (I) 定义域 $(-\infty, 4]$, 值域 $[0, +\infty)$; (II) $a_{\min} =$

 $-2, a_{\text{max}} = 4.$

2.79 (2)12

2.80 (1)
$$\stackrel{\text{def}}{=} t = \frac{1}{2} \text{ ps}, \ y_{\text{max}} = \frac{17}{4}; (2)0 < a \le \frac{7}{9}$$

2.82 (1)(-1,-1);

2.83 (I)
$$t = \sqrt{2} - 2$$
; (II) $x \in (\frac{1}{2}, \frac{5}{4}]$; (III) $t \in (-\infty, 2] \cup [\frac{2 + \sqrt{2}}{4}, +\infty)$.

2.84 (1)
$$f(a) > f(b)$$
; (2) $k < 1$.

2.85 (1) 减区间为 $[0,\frac{1}{2}]$, 增区间为 $[\frac{1}{2},1]$; 值域

为
$$[-4, -3]$$
. (2) $a = \frac{3}{2}$

2.86 (1)
$$k \in [\frac{1}{2}, +\infty)$$

2.87 (I)
$$f(x) = \frac{x^2}{4} + x + 1$$
; (II) $t \in (-\frac{5}{2}, -\frac{1}{2})$

2.89 (I)
$$g(a) = \begin{cases} -\frac{5}{4}, a \le \frac{5}{2}, \\ a^2 - 5a + 5, a > \frac{5}{2} \end{cases}$$
 (II) $k = 0$

或 $k > \frac{5}{4}$: 一个解; $0 < k < \frac{5}{4}$: 两个解; $k = \frac{5}{4}$: 无数

2.90 (I)
$$a = 2$$
; (II) $a \ge 3$; (III) $a \ge \frac{5}{2}$

2.91 (I)
$$f(x) = ax^2 + 3$$
; (II) $(7, +\infty)$; (III) $m \le 1$

2.92 (1) 增函数; (2)
$$g_{\text{max}}(t) = g(1) = 1;$$

$$g_{\min}(t) = g(2) = 0$$
; (3) $m \in (-\infty, -6) \cup [6, +\infty) \cup \{0\}$

3.3 B

備州有人教育 FuZhou Qingda Education

~	4	-
4	/	-

3.9
$$\tan 0.8 > \sin 3 > \cos 3$$

3.19
$$\left[-\frac{\pi}{3} + 2k\pi, \frac{\pi}{3} + 2k\pi \right], k \in \mathbb{Z}$$

3.53
$$\frac{4}{3}$$

3.54
$$-\frac{7}{25}$$

3.56 (1)
$$-\frac{5}{6}$$
; (2) $\frac{4}{5}$.

3.57
$$-\frac{2\sqrt{5}}{5}$$

3.58 (I)
$$\omega = \frac{1}{5}$$
. (II) $\sin \alpha = \frac{3}{5}$, $\cos \beta = \frac{8}{17}$,

$$\cos \alpha = \frac{4}{5}$$
, $\sin \beta = \frac{15}{17}$, $\cos (\alpha + \beta) = -\frac{13}{85}$.

3.59
$$\frac{2\pi}{3}$$

3.60
$$-\frac{2\sqrt{5}}{5}$$

3.61 (I)
$$f(x) = 2\sin(2x - \frac{\pi}{3})$$
, 定义域: $\{x \mid x \neq 1\}$

$$\frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
; 最小正周期: $T = \pi$. (II) $f(x)$ 在区

$\overline{\left[-\frac{\pi}{12},\frac{\pi}{4}\right]}$ 上单调递增,	在区间 $\left[-\frac{\pi}{4}, -\frac{\pi}{12}\right]$ 上单
调递减.	

3.62
$$-\frac{4}{3}$$

3.63 (I)
$$A = \sqrt{3}$$
; (II) $f(\frac{3\pi}{4} - \theta) = \frac{\sqrt{30}}{4}$

3.64
$$-\frac{7}{9}$$

3.65
$$\frac{7}{5}$$

3.66 1 或
$$\frac{8}{5}$$

3.67
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$

3.70
$$\left[k\pi - \frac{5\pi}{12}, k\pi + \frac{\pi}{12}\right], k \in \mathbb{Z}$$

3.72
$$-\frac{1}{3}$$

3.73
$$\frac{1}{5}$$

3.74
$$-\frac{1}{3}$$

3.75
$$\left[\frac{3}{2}, 2\right]$$

3.76
$$\left[k\pi + \frac{5\pi}{12}, k\pi + \frac{11\pi}{12}\right], k \in \mathbb{Z}$$

3.77
$$\left[k\pi + \frac{\pi}{6}, k\pi + \frac{2\pi}{3}\right], k \in \mathbb{Z}$$

3.78
$$\left(0, \frac{3}{2}\right]$$

3.79
$$\cos 2x$$

3.80
$$\frac{2+\sqrt{3}}{4}$$

3.81
$$\left[k\pi + \frac{3\pi}{8}, k\pi + \frac{7\pi}{8}\right] (k \in \mathbb{Z})$$

3.82
$$\left[k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4}\right], k \in \mathbb{Z}$$

3.83
$$2k\pi(k \in \mathbb{Z})$$

3.84
$$k\pi \pm \frac{\pi}{3} (k \in \mathbb{Z})$$

3.85
$$\left[-5, -\frac{4\pi}{3}\right) \cup \left(-\frac{\pi}{3}, \frac{2\pi}{3}\right)$$

3.86
$$\frac{\pi}{6}$$

3.88 解: (1)原式 =
$$\frac{\sin \alpha}{\cos \alpha} \cdot \sin \alpha \cdot (-\cos \alpha) = -\sin^2 \alpha$$
;

(2):
$$\tan \alpha = -2$$
,: 原式 = $\frac{2 \sin \alpha \cdot \cos \alpha - \cos^2 \alpha}{2 \cos^2 \alpha + 1} = \frac{2 \sin \alpha \cdot \cos \alpha - \cos^2 \alpha}{2 \cos^2 \alpha + 1}$

$$\frac{2\sin\alpha \cdot \cos\alpha - \cos^2\alpha}{3\cos^2\alpha + \sin^2\alpha} = \frac{\frac{2\sin\alpha \cdot \cos\alpha - \cos^2\alpha}{\cos^2\alpha}}{\frac{3\cos^2\alpha + \sin^2\alpha}{\cos^2\alpha}} =$$

$$\frac{2\tan\alpha - 1}{3 + \tan^2\alpha} = \frac{2 \times (-2) - 1}{3 + (-2)^2} = -\frac{5}{7}.$$

3.89 M:
$$(1)f(x) = a \cdot b = \cos^2 x + \sqrt{3}\sin x \cos x = \frac{\cos 2x + 1}{2} + \frac{\sqrt{3}}{2}\sin 2x = \sin\left(2x + \frac{\pi}{6}\right) + \frac{1}{2}.$$

$$(2): f(x) \le 0, : \sin\left(2x + \frac{\pi}{6}\right) \le -\frac{1}{2}.$$
又: 不等式 $\sin x \le -\frac{1}{2}$ 的解集为 $\left[2k\pi - \frac{5\pi}{6}, 2k\pi - \frac{\pi}{6}\right], k \in \mathbb{Z}.$

$$\therefore 2k\pi - \frac{5\pi}{6} \le 2x + \frac{\pi}{6} \le 2k\pi - \frac{\pi}{6}.$$
解得: $k\pi - \frac{\pi}{2} \le x \le k\pi - \frac{\pi}{6}$ 即: 函数 $f(x) \le 0$ 的 x 的解集为 $\left\{x \mid k\pi - \frac{\pi}{2} \le x \le k\pi - \frac{\pi}{6}, k \in \mathbb{Z}\right\}.$

- (3) 函数 $y = \sin x$ 的图像可由函数 y = f(x) 的图像 经过以下步骤变换得到:
- ① 向下平移 $\frac{1}{2}$ 个单位,得到函数 $y = \sin\left(2x + \frac{\pi}{6}\right)$ 的图像:
- ② 向右平移 $\frac{\pi}{12}$ 个单位,得到函数 $y = \sin 2x$ 的图像:
- ③ 横坐标伸长 2 倍,得到函数 $y = \sin x$ 的图像.
- 3.90【分析】(1)利用三角函数的倍角公式以及辅助角公式将函数进行化简即可求最小正周期和对称轴方程;
- (2) 求出函数 f(x) 在 $x \in \left[0, \frac{\pi}{2}\right]$ 的取值情况,利用数形结合即可得到结论.

【解答】解:(1) 由
$$f(x) = 2\sin^2\left(\frac{\pi}{4} + x\right) + \sqrt{3}\cos 2x = 1$$

$$\frac{1 - \cos\left(\frac{\pi}{2} + 2x\right) + \sqrt{3}\cos 2x}{1 - \cos\left(\frac{\pi}{2} + 2x\right) + \sin\left(\frac{\pi}{3} + 2x\right)}$$

: ω = 2, : 函数 f(x) 的最小正周期为 π.

由
$$2x + \frac{\pi}{3} = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
 得: $x = \frac{\pi}{12} + \frac{1}{2}k\pi, k \in \mathbb{Z}$,

故函数 f(x) 的对称轴方程为: $x = \frac{\pi}{12} + \frac{1}{2}k\pi, k \in \mathbb{Z}$.

$$\left[\frac{\pi}{3}, \frac{4\pi}{3}\right]$$

由图象得 $f(0) = 1 + 2\sin\frac{\pi}{2} = 1 + \sqrt{3}$,

函数 f(x) 的最大值为 1+2=3,

$$\therefore$$
 要使方程 $f(x) - m = 2$ 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上有两个不同的解,则 $f(x) = m + 2$ 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上有两个不

同的解,

即函数 f(x) 和 y = m + 2 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上有两个不 同的交点,

 $\mathbb{II} 1 + \sqrt{3} \le m + 2 < 3$

即 $\sqrt{3} - 1 \le m < 1$.

3.91 解:
$$(1)f(x) = a \cdot b + \frac{1}{4} = -\frac{1}{2} + \sin x \cdot \cos\left(x - \frac{\pi}{6}\right) + \frac{1}{4} = \sin x \cdot \left(\cos x \cos\frac{\pi}{6} + \sin x \sin\frac{\pi}{6}\right) - \frac{1}{4} = \frac{\sqrt{3}}{2} \sin x \cos x + \frac{1}{2} \sin^2 x - \frac{1}{4} = \frac{\sqrt{3}}{4} \sin 2x - \frac{1}{4} \cos 2x = \frac{1}{2} \sin\left(2x - \frac{\pi}{6}\right).$$
由 $2x - \frac{\pi}{6} \in \left[\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi\right], k \in \mathbb{Z},$ 解得 $x \in \left[\frac{\pi}{3} + k\pi, \frac{5\pi}{6} + k\pi\right], k \in \mathbb{Z}.$

∴ 函数 $f(x)$ 的单调递减区间为 $\left[\frac{\pi}{3} + k\pi, \frac{5\pi}{6} + k\pi\right], k \in \mathbb{Z}.$

(2) : 函数 $g(x) = f(x) - m, \left(\frac{\pi}{3} \le x \le \frac{13\pi}{12}\right)$ 有两个

不同的零点 x_1, x_2 , : 函数 y = f(x) 的图像与函数 y = m 的图像在 $\left[\frac{\pi}{3}, \frac{13\pi}{12}\right]$ 上有两个交点.

3.92 (I) $\left[-\frac{5\pi}{6} + 2k\pi, \frac{11\pi}{6} + 2k\pi\right], k \in$ $(II)[-2\sqrt{3},3].$

3.93 (1)
$$\omega = 2 \cdot \varphi = \frac{\pi}{2}$$
. (2) $\left[k\pi - \frac{3\pi}{8}, k\pi + \frac{\pi}{8}\right] (k \in \mathbb{Z})$

3.94 (1)
$$y = \sqrt{2}\sin(\frac{\pi}{8}x + \frac{\pi}{4});$$
 (2) $[-\sqrt{2}, 0]$

3.95
$$(1)f(x) = 2\sin\left(x - \frac{\pi}{3}\right) + 1$$
; $(2)(i)[\sqrt{3} + 1]$

当 $x \in \left[0, \frac{\pi}{2}\right]$ 时, $2x + \frac{\pi}{3} \in [1, 3]$;(ii) 易得 f(x) 在 $\left[-\frac{\pi}{6}, \frac{5\pi}{6}\right]$ 上单调递增,故 f(x)

在 [0,1] 上单调递增;又 $0 < \frac{\pi}{2} - \beta < \alpha < \frac{\pi}{2}$,从而 $\sin \alpha > \sin(\frac{\pi}{2} - \beta) = \cos \beta, \ \ \text{FL} \ f(\sin \alpha) > f(\cos \beta)$

3.96 (I)
$$\sqrt{5} - 1$$
 (II) 原式 = $\frac{-\sin \alpha - 2\cos \alpha}{-\cos \alpha + 1}$ = $\sqrt{5}$

3.97 (I)
$$\left[-\frac{4\pi}{3} + 4k\pi, \frac{2\pi}{3} + 4k\pi \right]$$
, $k \in \mathbb{Z}$; (II) 当 $x = \frac{4\pi}{3}$ 时,取最小值 $f(x)_{\min} = \frac{9}{2}$; 当 $x = \frac{2\pi}{3}$ 时,取最大值 $f(x)_{\max} = 6$.

3.98 (I)
$$f(x) = \sqrt{2} \sin\left(2x + \frac{\pi}{3}\right)$$
, 单调递增区间为
$$\left[-\frac{5\pi}{12} + k\pi, \frac{\pi}{12} + k\pi\right], k \in \mathbb{Z}. (II) g(x) = \sqrt{2} \sin\left(4x - \frac{\pi}{3}\right),$$
 值域:
$$\left[-\frac{\sqrt{6}}{2}, \sqrt{2}\right]$$

3.99
$$y_{\min} = \begin{cases} 2a+3, & a \le -1, \\ a^2+2, & -1 < a < 1, \\ -2a+3, & a \ge +3. \end{cases}$$

3.100 (1)y =
$$2\sin\left(2x + \frac{\pi}{3}\right)(\varphi = k\pi - \frac{2\pi}{3} \, \mathbb{P} \, \Pi);(2)$$

略; (3) 将 $y = \sin x$ 图像上所有点向左平移 $\frac{\pi}{2}$ 个单 位得到 $y = \sin\left(x + \frac{\pi}{3}\right)$ 的图像;再把 $y = \sin\left(x + \frac{\pi}{3}\right)$

的图像上所有点的横坐标缩短到原来的 1/2(纵坐

标不变),得到 $y = \sin\left(2x + \frac{\pi}{3}\right)$ 的图像;最后把 $y = \sin\left(2x + \frac{\pi}{3}\right)$ 的图像上所有点的纵坐标伸长到 原来的 2 倍 (横坐标不变),即可得到函数 y = f(x) 的图像.

3.101 (1)(提示: 易证 4 为函数的一个周期; 再用反证法证明 4 是最小正周期: 设最小正周期 T,且 0 < T < 4,则 f(T) = f(0) = 0. 分类讨论 $0 < T \le 1$ 时, $1 < T \le 3$ 时, 3 < T < 4 时, 三种情况都将推出矛盾,于是得证) (2) 任取 $x \in \mathbb{R}$,x 可表示为 x = 2k + x',其中 $-1 \le x' \le 1$, $k \in \mathbb{Z}$. 于是由 f(x+2) = -f(x) 及 y = f(x) 的周期性可得:

$$f(x) = f(2k + x') = \begin{cases} -f(x') = -x' & (k$$
为奇数)
 $f(x') = x' & (k$ 为偶数)

注意到 $-1 \le x' \le 1$, $-1 \le -x' \le 1$, 又有

综上所述,无论 k 为奇数或偶数,对于 $x \in \mathbb{R}$,总有 f(-x) = -f(x),故 y = f(x) 是奇函数. (3)(提示: 利用 f(x) = f(4k + x') = f(x') = x',其中 $-1 \le x' \le 1$, $k \in \mathbb{Z}$.)

3.102 (1) $M = 3, m = -1, T = \frac{2\pi}{\omega}$; (2) $\frac{2\pi}{\omega} \le 1$, $\omega = 7$ (周期为无理数,由"无理数无法表示为两整数之比"这一事实可得任一区间 [k, k+1], $k \in \mathbb{Z}$ 内函数图像均不相同. 由此, 半周期必须不小于 1才能满足题意)

3.103 (1)(提示: 若 0 <
$$T$$
 < π , 令 x = 0,得 $T = \frac{\pi}{2}$,不符); (2)(提示: $f\left[k\left(x + \frac{T}{k}\right)\right] = f(kx + T) = f(kx)$)

3.104
$$-\frac{\sqrt{2}}{10}$$

3.105 (I)
$$\frac{8\sqrt{3}}{3}$$
; (II) $\pm \frac{20}{3}$.

3.106 (I)
$$f(x) = \sqrt{3}\sin\left(\omega x - \frac{\pi}{3}\right)$$
, $\omega = 2$. (II) $g(x) = \sqrt{3}\sin\left(x - \frac{\pi}{12}\right)$, 当 $x = -\frac{\pi}{4}$ 时, $g(x)$ 取得最小值 $-\frac{3}{2}$

- 3.107 解:
- 4.1 (2)(5) 正确
- **4.2** D
- 4.3 (5) 正确, 其余皆误.
- **4.4** A
- **4.6** D
- **4.7** C
- **4.8** C
- **4.9** D
- **4.10** A
- **4.11** C
- **4.12** A
- **4.13** D
- **4.14** B
- **4.15** B
- **4.16** B
- **4.17** B
- **4.18** A
- **4.19** C
- **4.20** D
- **4.21** 1
- **4.22** A
- **4.23** A
- **4.24** D

4.41 (1)9
$$a$$
; (2) $\frac{4}{21}a - \frac{1}{7}b + \frac{1}{7}c$; $-a$.

4.42
$$\frac{1}{2}$$

4.43
$$\overrightarrow{CD} = 2a + \frac{2}{3}b; \ \overrightarrow{CE} = a + \frac{4}{3}b$$

4.44
$$\frac{\pi}{4}(45^{\circ}) \Box \frac{3\pi}{4}(135^{\circ})$$

4.47
$$2a - b$$

4.49
$$\frac{17}{6}$$

4.50
$$3\sqrt{5}$$

4.51 (1)
$$k = -\frac{16}{13}$$
; (2) $d = \left(\frac{20 + \sqrt{5}}{5}, \frac{5 + 2\sqrt{5}}{5}\right)$

或
$$\left(\frac{20-\sqrt{5}}{5}, \frac{5-2\sqrt{5}}{5}\right)$$

4.53
$$\left(\frac{5-\sqrt{21}}{2},1\right) \cup \left(1,\frac{5+\sqrt{21}}{2}\right)$$

4.54
$$3\sqrt{2}$$

4.55
$$8\sqrt{2}$$

4.56
$$\sqrt{3}$$

4.57
$$(2, +\infty)$$

4.58
$$\sqrt{2}$$

4.60
$$z_{\text{max}} = 6\sqrt{10}$$
(当且仅当 $x = 0$, $y = 5$ 时取

得)

4.61
$$\sqrt{2}$$

4.62
$$\sqrt{3}$$

4.63
$$(2, +\infty)$$

4.65
$$x = \frac{1}{2}$$
; $y = -\frac{1}{6}$

4.66
$$\frac{9}{2}$$

4.67
$$\left[\frac{3}{2}, 2\right]$$

4.69
$$\overrightarrow{BD} = -a + c + b$$
; $\overrightarrow{BC} = b - a$; $\overrightarrow{BE} = a - a$;

$$\overrightarrow{CD} = c$$
; $\overrightarrow{CE} = c - b$.

4.70 ①
$$\overrightarrow{AC}$$
; ②0; ③0; ④0

4.73 (1):
$$\overrightarrow{AB} = a + 2b$$
, $\overrightarrow{CB} = 2a + 4b$; $\overrightarrow{CB} = 2a + 4b$

$$2\overrightarrow{AB}$$
; $(2)k = 2\sqrt{2}$;

4.78 AR: (1)
$$|\vec{a} - \vec{b}| = \sqrt{\vec{a}^2 - 2\vec{a} \cdot \vec{b} + \vec{b}^2} =$$

$$\sqrt{2-2\times\sqrt{2}\times1\times\frac{\sqrt{2}}{2}+1}=1.....(5\ \%)$$

$$(2)$$
: $(\vec{a} - \vec{b}) \perp \vec{b}$,

$$(2): (\vec{a} - \vec{b}) \perp \vec{b},$$

$$\therefore (\vec{a} - \vec{b}) \cdot \vec{b} = \vec{a} \cdot \vec{b} - \vec{b}^2 = \sqrt{2} \times 1 \times \cos \theta - 1 = 0,$$

$$\therefore \cos \theta = \frac{\sqrt{2}}{2} (0 \le \theta \le \pi), \ \ \therefore \theta = \frac{\pi}{4} \dots (10 \ \%)$$

4.80 (I)
$$\alpha = \frac{\pi}{2}$$
 (II) $\cos 2\alpha = \frac{\sqrt{2}}{2}$

4.81 (I)
$$k = -\frac{1}{2}$$
 (II) $\langle a, b \rangle = \frac{\pi}{3}$
4.82 (1) $k = 1$; (2) $\sin \alpha = \frac{7}{25}$

4.82 (1)
$$k = 1$$
; (2) $\sin \alpha = \frac{7}{25}$

4.83
$$\overrightarrow{OP} = \frac{3}{11}a + \frac{3}{11}b$$

4.84 (1)
$$\overrightarrow{OP} = \frac{1}{7}a + \frac{3}{7}b$$
 (2) 略

4.85
$$k = f(t) = \frac{1}{4}(t^3 - 3t)$$

4.86 (I)
$$k = -\frac{11}{18}$$
 (II) $d = (4\sqrt{2}, \sqrt{2})$ 或 $d = (-4\sqrt{2}, -\sqrt{2})$

4.87 (1)
$$f(k) = \frac{k^2 + 1}{4k}(k > 0)$$
; (2) a 与 b 不可能
垂直; 当 $k = 2 \pm \sqrt{3}$ 时, $a \parallel b$; (3)60°

4.88 (1) 略; (2)
$$\frac{\pi}{2}$$

4.89
$$\theta = 0$$
 时, $\overrightarrow{BP} \cdot \overrightarrow{CQ}$ 取最大值 0.

4.90
$$\overrightarrow{CQ} = 2p$$

4.91 (I) 两条对角线长分别为
$$4\sqrt{2}$$
, $2\sqrt{10}$; (II) $t = -\frac{11}{5}$

4.92 (I)
$$|\overrightarrow{OP}| = 2\sqrt{2}$$
; (II) $(x, y) = (m+2n, 2m+n)$, $m-n$ 最大值为 1.

第49页