

Sistem Penerapan Fuzzy Multi Attribute Decision Making (MADM) Dalam Mendukung Keputusan Untuk Menentukan Lulusan Terbaik Pada Sekolah Tinggi Teknik Poliprofesi Medan

Susmanto¹, Zulfan², Munawir³

Program Studi Teknik Informatika, Fakultas Teknik, Universitas Serambi Mekkah Jln. T.Imum Lueng Bata Batoh, Kota Banda Aceh, Provinsi Aceh, Indonesia *Email: ¹susmanto@serambimekkah.ac.id

Abstrak. Proses dalam menetapkan calon Kelulusan terbaik pada Sekolah Tinggi Teknik Poliprofesi Medan bukanlah hal yang mudah terlebih dengan mempertimbangkan beberapa alternatif dan kriteria pada suatu situasi yang bersifat samar (Fuzzy), maka dibutuhkan sebuah sistem pendukung keputusan. Salah satu metode yang dapat digunakan untuk Sistem Pendukung Keputusan adalah dengan menggunakan Fuzzy Multi Attribute Decision Making (MADM). Metode ini dipilih karena mampu menyeleksi alternatif terbaik dari sejumlah alternatif, dalam hal ini alternatif yang dimaksudkan yaitu untuk menentukan calon lulus terbaik dengan latar belakang yang beraneka ragam antara lain berdasarkan nilai indeks prestasi (IPK), Lama Studi semester berjalan, Lama penyelesaian Tugas Akhir (TA) dan nilai Tugas Akhir (TA) dimana masing-masing memiliki kriteria yang bobotnya berbeda, hal ini tentunya akan mempersulit pengambilan keputusan untuk menentukan lulusan terbaik yang efektif sehingga penilaian kelulusan terbaik tersebut tepat sasaran, serta proses untuk melakukan seleksi perangkingan dapat dengan mudah dan cepat disertai dengan data yang akurat ada di sekolah tinggi tersebut.

Kata kunci: Sekolah Tinggi, bobot, kriteria, Fuzzy Multi Attribute Decision Making (MADM), lulusan Terbaik dan ranking.

Abstract. The process of determining the best Graduation candidate in the Medan Poliprofesi Engineering College is not an easy task, considering some alternatives and criteria in a fuzzy situation (Fuzzy), a decision support system is required. One method that can be used for Decision Support System is by using Fuzzy Multi Attribute Decision Making (MADM). This method is chosen because it is able to select the best alternative from a number of alternatives, in this case the intended alternative is to determine the best graduates with diverse backgrounds, among others based on the value of achievement index (GPA), Duration of Study of the current semester, TA) and final assignment (TA) scores, each of which has different weight criteria, it will make it difficult to make the decision to determine the best effective graduates so that the best graduation assessment is right on target, and the process for selecting ranking can be easy and quickly accompanied by accurate data exist in the high school.

Keywords: High School, weight, criteria, Fuzzy Multi Attribute Decision Making (MADM), Best graduates and ranking.

1. PENDAHULUAN

Perguruan tinggi merupakan kelanjutan pendidikan menengah yang diselenggarakan untuk mempersiapkan peserta didik untuk menjadi anggota masyarakat yang memiliki kemampuan akademis dan profesional yang dapat menerapkan, mengembangkan dan menciptakan ilmu pengetahuan, teknologi dan pendidikan tinggi adalah pendidikan pada jenjang yang lebih tinggi dari pada pendidikan menengah di jalur pendidikan sekolah Tujuan Mempersiapkan peserta didik menjadi masyarakat yang memiliki kemampuan akademik dan profesional yang dapat menerapkan, mengembangkan dan menciptakan ilmu pengetahuan, teknologi dan kesenian. Mengembangkan dan menyebar luaskan ilmu teknologi pengetahuan, dan kesenian mengoptimalkan penggunaannya untuk meningkatkan dan memperkaya kebudayaan nasional.

Untuk mendapatkan nilai yang memuaskan dari sebuah perguruan tinggi pada Sekolah Tinggi Teknik Poliprofesi Medan. para lulusan sering di beri hadiah salah satunya adalah lulusan terbaik baik perprogram studi ataupun perangkatan kelulusan. Dasar pemberian penghargaan sebagai lulusan terbaik adalah Indeks Prestasi Kumulatif IPK).

Akan tetapi dalam proses memilih lulusan terbaik sering dihadapkan pada sebuah dimana terjadi ada yang mempunyai Indeks Prestasi Kumulatif (IPK) yang sama, dalam hal ini pihak lembaga sulit dalam menentukan siapa yang terbaik karenan hanya menggunakan satu variabel. Padahal selain Indeks Prestasi Kumulatif (IPK) yang mengukur tingkat keberhasilan lulusan dalam meyerap ilmu dan pengetahuan yang diberikan, masih ada beberapa variabel dari lulusan yang dapat digunakan sebagai dasar menentukan kriteria lulusan terbaik.

Untuk melakukan pengukuran terhadap variabelvariabel tersebut ternyata memerlukan metode untuk memprosesnya, untuk menghasilkan sebuah nilai yang dapat dijadikan patokan dalam pengambilan keputusan, dalam hal ini untuk menentukan lulusan terbaik. Dalam penelitian ini akan menggunakan metode fuzzy Multi Attribute Decision Making (MADM).

2. TINJAUAN PUSTAKA

Pada dasarnya penggunaan metode logika fuzzy digunakan untuk mencari alternatif terbaik berdasarkan kriteria-keriteria yang telah ditentukan. Berikut adalah beberapa teori yang bersumber pada penelitian sebelumnya dengan judul "Sistem Pendukung Keputusan Untuk Menentukan Mahasiswa Lulusan Terbaik Di Perguruan Tinggi (Studi Kasus Stmik Atma Luhur Pangkalpinang)". Penelitian ini menggunakan Analitical Hierarchy Process (AHP) sebagai metode pengambilan keputusan dan ada 3 kriteria. Hasil dari penelitian ini dapat digunakan untuk memudahkan pengambilan keputusan dalam menentukan lulusan terbaik disetiap angkatan dengan kriteria-kriteria yang ada[1].

Penelitian dengan judul "Sistem Informasi Penilaian Supplier Komputer Menggunakan Metode Fuzzy Multiple Attribute Decision Making Dengan Simple Additive Weighting. Penelitian ini menggunakan 9 kriteria sebagai parameter penilaian, dan menggunakan metode FMADM dan SAW dengan mencari penjumlahan berbobot dari rating kinerja pada setiap alternatif pada semua atribut[2].

Penelitian dengan judul "Evaluasi Kinerja Dosen Menggunakan Metode Fuzzy Multi Attribute Decision Making Dengan Pengembangan (Studi Kasus: Universitas Muhammadiyah Ponorogo)". Terdapat 32 kriteria yang digunkan sebagai acuan, dan metode yang digunakan adalah Fuzzy MultiAttribute Decision Making dengan pengembangan. Hasil dari penelitian ini berupa perangkingan sesuai dengan bobot yang telah ditentukan [3].

Dalam Penelitian dengan judul "Sistem Pendukung Keputusan Rekomendasi Penerima Beasiswa Menggunakan Fuzzy Multi Attribute Decision Making (FMADM) dan Simple Additive Weighting (SAW)". Terdapat 6 kriteria yang dijadikan acuan. Metode FMADM digunakan untuk mencari alternatif dari sejumlah alternatif dengan kriteria-kriteria yang telah ditentukan. Sedangkan Metode SAW digunakan untuk merangking dari alternatif yang ada[3].

Penelitian dengan judul "Penentuan Penerima Beasiswa Dengan Menggunakan Fuzzy Multiple Attribute Decission Making". Terdapat 4 kriteria yang dijadikan acuan Metode SAW dipilih karena mampu menyeleksi alternatif terbaik dari sejumlah alternatif yang ada. Penelitian dilakukan dengan 4 mencari nilai bobot untuk setiap atribut. Kemudian dilakukan proses perangkingan yang menentukan alternatif optimal [4].

3. METODE PENELITIAN

3.1 Pengertian Mahasiswa

Mahasiswa adalah setiap orang yang secara resmi terdaftar untuk mengikuti pelajarandi perguruan tinggi dengan batas usia sekitar 18-30tahun. Mahasiswa merupakan suatu kelompok dalam masyarakat yang memperoleh statusnya karena ikatan dengan perguruan tinggi. Mahasiswa juga merupakan calon intelektual atau cendekiawan muda dalam suatu lapisan masyarakat yang seringkalisyarat denganberbagai predikat[5].

3.2 Sistem Pendukung Keputusan

Sistem pendukung keputusan adalah sistem informasi interaktif yang menyediakan informasi, permodelan dan manipulasi data yang digunakan membantu mengambil keputusan pada situasi semiterstruktur dan tak seorangpun mengetahui secara pasti bagaimana keputusan seharusnya dibuat[6].

Sistem pendukung keputusan adalah pendekatan berbasis komputer atau metodologi untuk mendukung pengambilan keputusan. Bagian paling penting dari sistem pendukung keputusan khas adalah *datawarehouse* yang merupakan subjek yang berorientasi, terpadu, waktuvarian, *non*-normalisasi, koleksi*non-volatile* data yang memungkinan menganalisis sejumlah besar data dari berbagai sumber dengan hasil yang cepat[1].

3.3 Logika Fuzzy

Logika*fuzzy* merupakan salah satu komponen pembentuk *SoftComputing*. Dasar logika *fuzzy* adalah teori himpunan *fuzzy*. Pada teori himpunan *fuzzy*, peranan derajat keanggotaan sebagai penentu keberadaan elemen dalam suatu himpunan sangatlah penting. Nilai keanggotaan atau derajat keanggotaan atau *membershipfunction* menjadi ciri utama dari penalaran dengan logika*fuzzy* tersebut [2].

Logika*fuzzy* adalah metodologi sistem kontrol pemecah masalah yang cocok untuk diimplementasikan pada sistem (Mulyanto, 2011). *Fuzzyfikasi* adalah proses untuk mengubah input sistem yang mempunyai nilai tegas menjadi variabel tertentu menggunakan fungsi keanggotaaan yang disimpan dalam basis pengetahuan *fuzzy*[7].

3.4 Fuzzy Multiple Attribute DecisionMaking(FMADM)

Fuzzy Multiple Attribute DecisionMaking (FMADM) adalah suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu. Inti dari FMADM adalah menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan

proses perankingan yang akan menyeleksi alternatif yang sudah diberikan. Pada dasarnya, ada 3 pendekatan untuk mencari nilai bobot atribut, yaitu pendekatan subyektif, pendekatan obyektif dan pendekatan integrasi antara subyektif dan obyektif.

Masing-masing pendekatan memiliki kelebihan dan kelemahan. Pada pendekatan subyektif, nilai bobot ditentukan berdasarkan subyektifitas dari para pengambil keputusan, sehingga beberapa faktor dalam proses perangkingan alternatif bisa ditentukan secara bebas. Sedangkan pada pendekatan obyektif, nilai bobot dihitung secara matematis sehingga mengabaikan subyektifitas dari pengambil keputusan [2].

Sistem *fuzzy* merupakan Bilangan numerik yang terstruktur dan dinamis. Sistem ini mempunyai kemampuan untuk mengembangkan sistem intelijen dalam lingkungan yang tak pasti.

Logika *fuzzy* merupakan suatu cara untuk memetakan suatu ruang input ke dalam suatu ruang output. Logika *fuzzy* sangat fleksibel, memiliki toleransi terhadap datadata yang tidak tepat. Logika *fuzzy* memiliki derajat keanggotaan dalam rentang 0 (nol) hingga 1 (satu), berbeda dengan logika digital yang hanya memiliki dua nilai yaitu 1(satu) atau 0(nol).

Gambar 1. Problem Logika Fuzzy

3.5 Analisa Kebutuhan

Penelitan ini merupakan penelitian eksperimen, dan dalam pelaksanaanya membutuhkan beberapa instrumen, yaitu: data yang diambil dari beberapa tabel kemudian dibentuk satu buah tabel sehingga memenuhi atribut.Dalam metode penelitian ini ada bobot dan atribut yang dibutuhkan untuk menentukan siapa yang akan

terseleksi sebagai lulusan terbaik. Adapun atributnya adalah:

C1 = Indeks Prestasi Kumulatif (IPK)

C2 = Lama studi

C3 = Lama penyelesaian Tugas Akhir (TA)

C4 = Nilai Tugas Akhir (TA)

Tabel 1. Analisa Metode Penelitian

NPM	NAMA	JENJANG	PRODI	IPK	LAMA STUDI	LAM A TUGAS AKHIR (TA)	NILAI TA
				(C1)	(C2)	(C3)	(C4)
1104123	Abdul Hadi	S1	TI	3.45	2	10	В
1104124	Ahmad Wahyuni	S1	TI	3.17	5	5	В
1104126	Ald II Safi tra	S1	TI	2.76	5	11	В
1104127	Ain ol Mardiah	S1	TI	2.93	5	3	В
1104128	Ainun Mardhiah	S1	TI	2.64	5	3	В
1104131	Asfla	S1	TI	2.91	5	12	Α
1104133	Asmawati	S1	TI	2.83	6	11	В
1104134	Asnidar	S1	TI	2.64	5	10	В
1104129	Amina ton	S1	TI	2.91	5	10	В
1104130	Arif Hidayatullah	S1	TI	2.83	5	9	В
1104135	Cut Wulan	S1	TI	2.99	5	8	В

Gambar 2. Bilangan Fuzzy Untuk Atribut IPK

Bilangan Fuzzy Untuk Atribut IPK Sangat Lama (SL) = 0

Lama (L) = 0.25

Sedang (S) = 0.5

Cepat (C) = 0.75

Sangat Cepat (SC) = 1

Gambar 3. Bilangan Fuzzy Untuk Atribut Lama Studi

Gambar 4. Bilangan *Fuzzy* Untuk Atribut Lama Penyelesaian Tugas Akhir (TA)

Sehingga Dapat dibentuk matriks keputusan X sebagai berikut

	_[Cumlaude	Sangat cepat	Lama	Sangat baik
	Cumlaude	Sedang	Sangat cepat	Sangat baik
X =	Cumlaude	Cepat	Cepat	Sangat baik
•	Cumlaude	Sedang	Cepat	Sangat baik
	Cumlaude	Sangat Cepat	Sangat cepat	Baik

3.6 Perancangan Penelitian

Gambar 5. Struktur Hirarki Permasalahan

3.7 Perancangan sistem

Gambar 6. Use Case Diagram Untuk Menentukan Lulusan Terbaik

3.8 User Interface Design

Untuk perancangan halaman depan merupakan hal penting yang perlu dipertimbangkan. Sebagai gambaran desain halaman depan adalah seperti tampak pada gambar berikut. Layout halaman depan dibagi menjadi 4 bagian yaitu *Header, MenuBar, Content* dan *Footer*, dimana perubahan isi website yang paling dominan adalah di bagian Content.

Gambar 7. DesainHalaman utama

3.9 Input Design

Input design adalah sebuah desain menu yang dibuat untuk memudahkan user dalam memasukan data sehingga akan lebih cepat dan mudah

Gambar 5. DesainForm Import Data

Gambar 8. Desain Form Import Data

3.10 Output design

Output design ini merupakan tampilan hasil pengolahan data yang dilakukan sistem agar user lebih mudah untuk membacanya dan menganisa hasilnya.

Tabel2. Output Pengolahan Data

DAFTAR MAHASISWA LULUSAN TERBAIK SEKOLAH TINGGI TEKNIK POLIPROFESI TAHUN AKADEMIK GENAP DAN GANJIL

NO	NPM	NAMA MAHASISWA	JENJANG	PRODI	ATTRIBUT
9	XXXXXXXX	XXXXXXXXX	XX	XX	
9	XXXXXXXX	XXXXXXXXX	XX	XX	
9	XXXXXXXX	XXXXXXXXX	XX	XX	
99	XXXXXXXX	XXXXXXXXX	XX	XX	
99	XXXXXXXX	XXXXXXXXX	XX	XX	

4. HASIL DAN PEMBAHASAN

4.1. Cara Pengoperasian Aplikasi

Jalankan aplikasi web browser (Mozila Firefox), ketikan alamat http://localhost/nilai/index.php

Gambar 9. TampilanHalaman Home

Sebelum masuk ke aplikasi sebelumnya harus login terlebih dahulu, berikut form login:

Gambar 10. Tampilan Halaman Login

Selanjutnya tinggal klik button lulusan tebaik untuk memilih jenjang

Gambar 11. HalamanPencarianLulusan

5. PENUTUP

Dalam menu lulusan terbaik terdapat tiga pilihan yaitu jenjang studi S1 (Strata satu) untuk mengetahui lulusan terbaik khusus strata satu, D3 (Diploma Tiga) untuk mengetahui lulusan terbaik Diploma Tiga atau All (semua) untuk mengetahui lulusan terbaik semua program studi.

4.2Output Lulusan Terbaik

Tabel 3.Lulusan Terbaik Sekolah Tinggi Teknik Poliprofesi Tahun Akademik Ganjil Dan Genap

					J 1					
NO	NPM	NAMA	JENJANG	PRODI	IPK	LSTUDI(TH)	LTA(BLN)	NTA	JU	
1	1104146	Fitriani Blang Awe	51	TI	3.51000	4	12	В	1.6	
2	1004082	Erliza	D3	MI	3,51000	4	12	В	1.6	
3	1104150	Hendriani	S1	TI	3.29000	4	12	А	1.5	
4	1104139	Episara	51	TI	3.38000	5	2	A	1.5	
5	1104161	Mismarni	51	TI	3.04000	5	6	A	1.5	
6	1004095	Husaini	D3	MI	3.29000	4	12	A	1.5	
7	1004077	Eka Jaliani	D3	MI	3.38000	5	2	A	1.5	
8	1004114	Muhajir	D3	MI	3.04000	5	6	A	1.4	
9	1004117	Muhammad Taisir	D3	MI	3.04000	5	6	A	1.4	
10	1104188	Muzakir Walat	S1	TI	3.01000	4	1	В	1.4	
11	1004105	Latifurrahmi	D3	MI	3.04000	5	6	A	1.4	
12	1104136	Dewi Asyuni	51	TI	3.38000	4	6	В	1,4	
13	1104179	Nurazizah	51	TI	3,28000	6	11	A	1.4	
14	1104166	Muhammad Khaidir	51	TI	3.20000	4	9	В	1.45	
15	1104147	Halimatussakdiah	S1	TI	3,38000	4	9	В	1.4	

Untuk menganalisa data hasil penelitian berikut langkah-langkah dan data hasil penelitian yang diterapkan pada program aplikasi dengan menggunakan metode Fuzzy Multi Attribut Decision Making (FMADM).

Tabel 4. Hasil Konversi

NO	NPM	NAMA	JENJANG	PRODI	IPK	LSTUDI	LTA	NTA
1	11041xx	Abdul Hadi	S1	TI	0.75	0.75	0.25	0.75
2	11041xx	Ahmad Wahyuni	S1	TI	0.75	0.75	0.75	0.75
3	11041xx	Aidil Safitra	S1	TI	0.5	0.75	0.25	0.75
4	11041xx	Ainol Mardiah	S1	TI	0.5	0.75	1	0.75
5	11041xx	Ainun Mardhiah	S1	TI	0.5	0.75	1	0.75
6	11041xx	Asfia	S1	TI	0.5	0.75	0.25	1
7	11041xx	Asmawati	S1	TI	0.5	0.5	0.25	0.75
8	11041xx	Asnidari	S1	TI	0.75	0.75	0.25	0.75
9	11041xx	Aminaton	S1	TI	0.5	0.75	0.25	0.75
10	11041xx	Arif Hidayatullah	S1	TI	0.75	0.75	0.5	0.75

Tabel 5. Hasil Ternormalisasi

NO	NPM	NAMA	JENJANG	PRODI	IPK	LSTUDI	LTA	NTA
1	11041xx	Abdul Hadi	S1	TI	0.75	0.375	0.0625	0.5625
2	11041xx	Ahmad Wahyuni	S1	TI	0.75	0.375	0.1875	0.5625
3	11041xx	Aidil Safitra	S1	TI	0.5	0.375	0.0625	0.5625
4	11041xx	Ainol Mardiah	S1	TI	0.5	0.375	0.25	0.5625
5	11041xx	Ainun Mardhiah	S1	TI	0.5	0.375	0.25	0.5625
6	11041xx	Asfia	S1	TI	0.5	0.375	0.0625	0.75
7	11041xx	Asmawati	S1	TI	0.5	0.25	0.0625	0.5625
8	11041xx	Asnidari	S1	TI	0.75	0.375	0.0625	0.5625
9	11041xx	Aminaton	S1	TI	0.5	0.375	0.0625	0.5625
10	11041xx	Arif Hidayatullah	S1	TI	0.75	0.375	0.125	0.5625

Hasil ternormalisasi yang merupakan hasil perkalian data hasil kompersi akan dikalikan lagi dengan vektor bobot (W), sehingga hasilnya akan terlihat pada tabel di bawah ini :

Tabel 6. Hasil pengujian dengan white box

NO	PENGUJIAN	TEST CASE BENAR	TEST CASE SALAH
1	if(!ctype_alnum(\$username)	Username = admin	Username = kosong
	OR !ctype_alnum(\$pass))	(sama dengan yang ada	(tidak sama dengan
	{ echo " <center>Maaf</center>	di database) Password	yang ada di database)
	Username dan Password anda	= 123 (samadengan	Pas sword = kososng
	salah <a< td=""><td>yang ada di database)</td><td>(tidak sama dengan</td></a<>	yang ada di database)	(tidak sama dengan
	href=index.php>Kembali		yang ada di database)
	";		
	}else{		
	\$_SESSION[namauser]=\$_POS		
	T[namauser];		
	?> <script< td=""><td></td><td></td></script<>		
	languag e="javas cript">		
	window.open("index.php","_se		
	lf"); }</td <td></td> <td></td>		
_			m: 4 4 54
2	include "excel_reader2.php";	A da file	Tidak ada file
		excel_reader2.php	excel_reader2.php
		s ebagai librari untuk	sebagai librari untuk
_		membaca file excel	membaca file excel
3	Sdata = new	Buat satu buah object	Tidaka ada objeck baru
	Spreadsheet_Excel_Reader(\$_F		
	ILES['us erfile']['tmp_name']);	dari	
		Spreadsheet_Excel_Rea	
		der	

×

Tabel 7. Hasil Pengujian Black Box

NO	PENGUJIAN	HARAPAN	PENGAMATAN
1	User name dan Password	Apa bila username dan password benar masuk ke halaman utama dan Apa bila salah username dan password salah muncul pesan	Ketika dimasukan user name dan password kalau benar masuk halaman kalau salah muncul pesan bahwa user nama atau password salah.
2	Jumlah data yang terinput	Muncul jumlah data yang sudah terinput	muncul jumlah data yang terinput setelah proses selesai
3	Kesesuaian data	Data yang tersimpan sesuai dengan inputan	Data yang tersimpan ke dalam database sesuai dengan inputan
4	Kesesuaian data dan type data	Data yang tersimpan sesuai dengan type data yang sudah ditentukan	Data yang tersimpan ke database sesuai dengan type data yang sudah ditentukan
5	Hasil perhitungan	Hasil perhitungan sesuai dengan data masukan dan rumus yang digunakan	Hasil perhitungan sesuai dengan data yang ditampilkan masukan dan rumus yang digunakan
6	Menampilkan hasil sesuai jenjang studi strata satu (S1)	dilaporan terlihat hasil jumlah data berdasarkan jenjang strata satu (S1)	Dilaporan terlihat hasil berdasarkan jenjang strata satu (S1) sebanyak 51
7	Menampilkan hasil seluruh data	Menampilkan semua data baik strata satu (S1) atau diploma tiga (D3)	Dilaporan terlihat semua ditampilkan sebanyak 94

V.PENUTUP

Kesimpulan Dalam menerapkan sistem Fuzzy Multi Attribute Decision Making (MADM) langkah pertama yang dilakukan adalah mengkonversi nilai-nilai atribut atau kriteria-kriteria kelulusan yaitu Indeks Prestasi Kumulatif (IPK), Lama studi, Lama penyelesaian Tugas Akhir (TA), Nilai Tugas Akhir (TA) ke dalam bilangan crisp selanjutnya buat matriks keputusan yang isi barisnya merupakan atribut sedangkan kolomya adalah daftar nialai mahasiswa, setelah terbentuk matriks keputusan selanjutnya dikalikan dengan vector bobot, hasil perkaliannya dijumlahkan perbaris sehingga akan menghasilkan nilai penjumlahan , tahap berikutnya mengurutkan hasil penjumlahan yang diurutkan dari yang terbesar sampai yang terkecil. Langkah demi langkah tersebut diaplikasikan dalam bentuk sintak program yang menghasilkan sebuah program aplikasi penentuan lulusan terbaik.

Untuk menentukan lulusan terbaik sebelum dibangun keputusan sebuah aplikasi para pengambil mengumpulkan data mahasiswa yang lulus sesuai angkatan kelulusan, baik perprogram studi ataupun keseluruhan berupa hardcopy ataupun softcopy. Pada proses pengumpulan data tersebut memerlukan waktu yang cukup lama karena orang yang dimintai data belum tentu ada ditempat serta data yang dibutuhkan belum tentu sudah siap. Dengan dibangunnya sebuah aplikasi penentuan lulusan terbaik sistem pengambil keputusan tinggal membuka aplikasi maka data yang dibutuhkan langsung tersaji dimanapun, kapanpun karena data sudah tersedia dalam aplikasi sehingga keputusan dapat diambil dengan cepat, tepat dengan data yang akurat. Dengan diterapkan metode Fuzzy Multi Attribute Decision Making (MADM) dengan beberapa kriteria dalam membangun sebuah aplikasi pengambilan keputusan untuk menetukan lulusan terbaik menjadi lebih cepat, tepat akurat dan realistis dalam menentukan lulusan terbaik pada sekolah tinggi teknik poliprofesi di medan.

REFERENSI

- [1] S. Fleeger, Software Engineering: Theory and Practice. Prentice Hall, 1997.
- [2] S. Kusumadewi, S. Hartati, A. Harjoko, and R. Wardoyo, *Fuzzy Multi-Attribute Decision Making (Fuzzy MADM)*. Yogyakarta: Graha Ilmu, 2006.
- [3] K. Ade, "Sistem Pendukung Keputusan Seleksi Penerimaan Siswa Baru pada SMA Theresiana Weleri Kendal Menggunakan Metode SAW," Universitas Dian Nuswantoro Semarang, 2014.
- [4] I. Maulida, "Sistem Pendukung Keputusan Penerimaan Siswa Baru dengan Menggunakan Metode Profile Matching (Studi Kasus: MTs. Alwasliyah Tanjung Morawa)," *J. Pelita Inform. Budi Darma STMIK Budidarma Medan*, vol. 4, no. 2, 2014.
- [5] D. Andayati, "Sistem Pendukung Keputusan Pra-Seleksi Penerimaan Siswa Baru (PSB) On-line Yogyakarta," *J. Teknol. AKPRIND*, 2010.
- [6] S. Kadarsah and R. M. Ali, Sistem Pendukung Keputusan Suatu Wacana Struktural Idealisasi Dan Implementasi Konsep Pengambilan Keputusan. Bandung: PT. Remaja Rosdakarya, 1998.
- [7] R. . Saaty, "The Analytic Hierarchy Process -What It Is and How It Used," *J. Math. Model.*, vol. 9, no. 3–5, pp. 161–176, 1987.

