STAT 620 Homework 5

Hannah Butler

2/28/2022

1. (Exercise 5.7) Prove Theorem 5.2.2: $(\mathbb{X}, \mathcal{M}, \mu)$ is σ -finite if and only if there is a countable disjoint collection of sets $\{A_i\}_{i=1}^{\infty}$ with finite measure such that $\mathbb{X} = \bigcup_{i=1}^{\infty} A_i$.

 $(\mathbb{X}, \mathscr{M}, \mu)$ is σ -finite \Longrightarrow there is a countable disjoint collection of sets $\{A_i\}_{i=1}^{\infty}$ with finite measure such that $\mathbb{X} = \bigcup_{i=1}^{\infty} A_i$.

If $(\mathbb{X}, \mathcal{M}, \mu)$ is σ -finite, then \mathcal{M} contains an increasing sequence of sets $B_1 \subset B_2 \subset \ldots$ such that $\mathbb{X} = \bigcup_{i=1}^{\infty} B_i$ and $\mu(B_i) < \infty$. If we have an increasing sequence of sets, we can construct a disjoint sequence of sets $\{A_i\}_{i=1}^{\infty}$ such that $\mathbb{X} = \bigcup_{i=1}^{\infty} A_i$. We do this by defining $A_1 = A_1$, $A_i = A_i \setminus A_{i-1}$ for $i = 2, 3, \ldots$ Additionally, since each A_i is the subset of a set of finite measure, $\mu(A_i) < \infty$ as well.

there is a countable disjoint collection of sets $\{A_i\}_{i=1}^{\infty}$ with finite measure such that $\mathbb{X}=\bigcup_{i=1}^{\infty}A_i \Longrightarrow (\mathbb{X},\mathscr{M},\mu)$ is σ -finite.

By defining $B_i = \bigcup_{j=1}^i A_i$, we can construct an increasing sequence of sets $\{B_i\}_{i=1}^{\infty}$ such that $\mathbb{X} = \bigcup_{i=1}^{\infty} A_i$. Additionally, since $\mu(A_i) < \infty$, and B_i is a finite union of A_i , $\mu(B_i) < \infty$ as well. So $(\mathbb{X}, \mathcal{M}, \mu)$ is σ -finite.

2. (Exercise 5.9) Prove that an algebra $\mathscr A$ is a σ -algebra if and only if $\mathscr A$ is closed under countable unions of increasing sequences of sets, i.e., if $\{E_i\}_{i=1}^{\infty} \subset \mathscr A$ and $E_1 \subset E_2 \subset E_3 \ldots$, then $\bigcup_{i=1}^{\infty} E_i \in \mathscr A$.

An algebra \mathscr{A} is a σ -algebra $\Longrightarrow \mathscr{A}$ is closed under countable unions of increasing sequences of sets

This follows by definition.

 \mathscr{A} is closed under countable unions of increasing sequences of sets $\implies \mathscr{A}$ is a σ -algebra.

Theorem 5.1.4 states: An algebra of sets \mathscr{M} on \mathbb{X} is a σ -algebra if and only if $\{A_i\}_{i=1}^{\infty} \subset \mathscr{M}$ is a disjoint collection implies $\bigcup_{i=1}^{\infty} A_i \in \mathscr{M}$.

Let $E_1 \subset E_2 \subset E_3 \ldots$ be an increasing sequence of sets in $\mathscr A$ such that $\bigcup_{i=1}^{\infty} E_i \in \mathscr M$. Then we can construct a sequence of disjoint sets $\{A_i\}_{i=1}^{\infty}$ with $A_1 = E_1$ and $A_i = E_i \setminus E_{i-1}$ for $i = 2, 3, \ldots$ By Theorem 5.1.2, $A_i \in \mathscr A$ and $\bigcup_{i=1}^{\infty} A_i \in \mathscr M$. So I think that by Theorem 5.1.4, $\mathscr M$ is a σ -algebra.

Consider two sets A_1 and A_2 in \mathscr{R} . Then $A_1 \cup A_2 \in \mathscr{R}$, $A_1 \setminus A_2 \in \mathscr{R}$, $A_2 \setminus A_1 \in \mathscr{R}$, and $(A_1 \setminus A_2) \cup (A_2 \setminus A_1) \in \mathscr{R}$. So $A_1 \cap A_2 = (A_1 \cup A_2) \setminus ((A_1 \setminus A_2) \cup (A_2 \setminus A_1)) \in \mathscr{R}$. This can be generalized to countable intersections, so \mathscr{R} is closed under countable intersections.

b. If \mathscr{R} is a σ -ring, then \mathscr{R} is a σ -algebra if and only if $\mathbb{X} \in \mathscr{R}$.

^{3. (}Exercise 5.10) Let \mathbb{X} be a nonempty set. A family of sets $\mathscr{R} \subset \mathscr{P}_{\mathbb{X}}$ is called a σ -ring if it is closed under countable unions and differences, i.e., if $\{E_i\}_{i=1}^{\infty} \subset \mathscr{R}$ then $\bigcup_{i=1}^{\infty} E_i \in \mathscr{R}$ and if $E, F \in \mathscr{R}$ then $E \setminus F \in \mathscr{R}$. Prove the following

a. σ -rings are closed under countable intersections.

 \mathscr{R} is a σ -algebra $\implies \mathbb{X} \in \mathscr{R}$

This is by definition.

 $\mathbb{X} \in \mathscr{R} \implies \mathscr{R}$ is a $\sigma\text{-algebra}$

We already have that \mathscr{R} is closed under countable unions. If $\mathbb{X} \in \mathscr{R}$, then for any set $A \in mathscrR$, $A^c = \mathbb{X} \backslash A$ is also in \mathscr{R} . By definition 5.1.2, this satisfies the requirements for a σ -algebra.