یادگیری برخط

جلسه پانزدهم: بندیت زمینهای

مرور بندیت دشمنانه

درس یادگیری برخط _ ترم پاییز ۱۴۰۰-۱۴۰۱

بندیت دشمنانه

For rounds $t = 1, 2, \ldots, n$:

Learner selects distribution $P_t \in \mathcal{P}_{k-1}$ and samples A_t from P_t .

مسئله بندیت دشمنانه

$$R_n(\pi,x) = \max_{i \in [k]} \sum_{t=1}^n x_{ti} - \mathbb{E}\left[\sum_{t=1}^n x_{tA_t}
ight]$$
انتخاب ما

$$R_n^*(\pi) = \sup_{x \in [0,1]^{n \times k}} R_n(\pi, x).$$

الگوريتم EXP3

1: **Input:** n, k, η

2: Set $\hat{S}_{0i} = 0$ for all i

3: **for** t = 1, ..., n **do**

4: Calculate the sampling distribution P_t :

$$P_{ti} = \frac{\exp\left(\eta \hat{S}_{t-1,i}\right)}{\sum_{j=1}^{k} \exp\left(\eta \hat{S}_{t-1,j}\right)}$$

5: Sample $A_t \sim P_t$ and observe reward X_t

6: Calculate \hat{S}_{ti} :

$$\hat{S}_{ti} = \hat{S}_{t-1,i} + 1 - \frac{\mathbb{I}\{A_t = i\} (1 - X_t)}{P_{ti}}$$

7: end for

$$\hat{S}_{ti} = \sum_{s=1}^{t} \hat{X}_{si}$$
 $P_{ti} = \frac{\exp\left(\eta \hat{S}_{t-1,i}\right)}{\sum_{j=1}^{k} \exp\left(\eta \hat{S}_{t-1,j}\right)}$ $W_{t} = \sum_{j=1}^{k} \exp\left(\eta \hat{S}_{tj}\right)$

$$\exp(\eta \hat{S}_{ni}) \le \sum_{j=1}^{k} \exp(\eta \hat{S}_{nj}) = W_n = W_0 \frac{W_1}{W_0} \dots \frac{W_n}{W_{n-1}} = k \prod_{t=1}^{n} \frac{W_t}{W_{t-1}}.$$

$$\frac{W_t}{W_{t-1}} = \sum_{i=1}^k \frac{\exp(\eta \hat{S}_{t-1,j})}{W_{t-1}} \exp(\eta \hat{X}_{tj}) = \sum_{i=1}^k P_{tj} \exp(\eta \hat{X}_{tj}).$$

$$\leq 1 + \eta \sum_{j=1}^k P_{tj} \hat{X}_{tj} + \eta^2 \sum_{j=1}^k P_{tj} \hat{X}_{tj}^2$$

$$\leq \exp\left(\eta \sum_{j=1}^k P_{tj} \hat{X}_{tj} + \eta^2 \sum_{j=1}^k P_{tj} \hat{X}_{tj}^2\right)$$

$$\exp\left(\eta \hat{S}_{ni}\right) \le k \exp\left(\eta \hat{S}_n + \eta^2 \sum_{t=1}^n \sum_{j=1}^k P_{tj} \hat{X}_{tj}^2\right)$$

تحليل الگوريتم EXP3

سود دسته ما

$$\hat{S}_{ni} - \hat{S}_n \le \frac{\log(k)}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \sum_{j=1}^k P_{tj} (\hat{X}_{tj} - 1)^2$$

تحليل الگوريتم EXP3

سود دسته ما

$$\hat{S}_{ni} - \hat{S}_n \le \frac{\log(k)}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \sum_{j=1}^k P_{tj} (\hat{X}_{tj} - 1)^2$$

$$R_n(\pi, x) \le 2\sqrt{nk\log(k)}$$
.

$$\mathbb{E}\left[\sum_{j=1}^{k} P_{tj} \hat{X}_{tj}^{2}\right] = \mathbb{E}\left[\sum_{j=1}^{k} P_{tj} \left(1 - \frac{\mathbb{I}\left\{A_{t} = j\right\} y_{tj}}{P_{tj}}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j=1}^{k} P_{tj} \left(1 - 2\frac{\mathbb{I}\left\{A_{t} = j\right\} y_{tj}}{P_{tj}} + \frac{\mathbb{I}\left\{A_{t} = j\right\} y_{tj}^{2}}{P_{tj}^{2}}\right)\right]$$

$$= \mathbb{E}\left[1 - 2Y_{t} + \mathbb{E}_{t-1}\left[\sum_{j=1}^{k} \frac{\mathbb{I}\left\{A_{t} = j\right\} y_{tj}^{2}}{P_{tj}}\right]\right]$$

$$= \mathbb{E}\left[1 - 2Y_{t} + \sum_{j=1}^{k} y_{tj}^{2}\right]$$

$$= \mathbb{E}\left[(1 - Y_{t})^{2} + \sum_{j \neq A_{t}} y_{tj}^{2}\right]$$

$$\leq k.$$

بندیت زمینهای تعریف بندیت زمینهای دشمنانه

بندیت زمینهای: انگیزش

- اطلاعات زمينه
- مثال: پیشنهاد فیلم

تعریف بندیت دشمنانه

For rounds $t = 1, 2, \ldots, n$:

Learner selects distribution $P_t \in \mathcal{P}_{k-1}$ and samples A_t from P_t .

تعریف بندیت دشمنانه

Adversary secretly chooses rewards $(x_t)_{t=1}^n$ with $x_t \in [0,1]^k$

Adversary secretly chooses contexts $(c_t)_{t=1}^n$ with $c_t \in \mathcal{C}$

For rounds $t = 1, 2, \ldots, n$:

Learner selects distribution $P_t \in \mathcal{P}_{k-1}$ and samples A_t from P_t .

تعریف بندیت دشمنانه

Adversary secretly chooses rewards $(x_t)_{t=1}^n$ with $x_t \in [0,1]^k$

Adversary secretly chooses contexts $(c_t)_{t=1}^n$ with $c_t \in \mathcal{C}$

For rounds $t = 1, 2, \ldots, n$:

Learner observes context $c_t \in \mathcal{C}$ where \mathcal{C} is an arbitrary fixed set of contexts.

Learner selects distribution $P_t \in \mathcal{P}_{k-1}$ and samples A_t from P_t .

تعریف بندیت زمینهای

Adversary secretly chooses rewards $(x_t)_{t=1}^n$ with $x_t \in [0,1]^k$

Adversary secretly chooses contexts $(c_t)_{t=1}^n$ with $c_t \in \mathcal{C}$

For rounds $t = 1, 2, \ldots, n$:

Learner observes context $c_t \in \mathcal{C}$ where \mathcal{C} is an arbitrary fixed set of contexts.

Learner selects distribution $P_t \in \mathcal{P}_{k-1}$ and samples A_t from P_t .

چگونه از زمینه استفاده کنیم؟

• بدون زمینه:

$$R_n(\pi, x) \le 2\sqrt{nk\log(k)}$$
.

چگونه از زمینه استفاده کنیم؟

● بدون زمینه:

$$R_n(\pi, x) \le 2\sqrt{nk\log(k)}$$
.

زمینهای چه فایدهای دارد؟

روش ۱ استفاده از زمینه: برخورد مستقل با هر زمینه

$$= \mathbb{E}\left[\sum_{c \in \mathcal{C}} \max_{i \in [k]} \sum_{t \in [n]: c_t = c} (x_{ti} - X_t)\right]$$

$$R_n(\pi, x, c) := \sum_{c \in \mathscr{C}} \max_{i \in [k]} \sum_{t: c_t = c} x_{ti} - \mathbb{E} \left[\sum_{t=1}^n X_t \right]$$

$$R_n^*(\pi) = \sup_{x \in [0,1]^{n \times k}, c \in \mathbb{C}} R_n(\pi, x, c)$$

روش ۱: یک EXP3 برای هر زمینه

هر زمینه، | n/|C

روش ۱: یک EXP3 برای هر زمینه

$$R_{nc} \le 2\sqrt{k\sum_{t=1}^{n} \mathbb{I}\left\{c_{t} = c\right\} \log(k)},$$

هر زمینه، | n/|C

روش ۱: یک EXP3 برای هر زمینه

$$R_{nc} \le 2\sqrt{k\sum_{t=1}^{n} \mathbb{I}\left\{c_{t} = c\right\} \log(k)},$$

$$R_n = \sum_{c \in \mathcal{C}} R_{nc} \le 2 \sum_{c \in \mathcal{C}} \sqrt{k \log(k) \sum_{t=1}^n \mathbb{I} \{c_t = c\}}.$$

هر زمینه، | n/|C

روش، ۱: یک EXP3 برای هر زمینه

$$R_{nc} \le 2\sqrt{k\sum_{t=1}^{n} \mathbb{I}\left\{c_{t} = c\right\} \log(k)},$$

$$R_n = \sum_{c \in \mathcal{C}} R_{nc} \le 2 \sum_{c \in \mathcal{C}} \sqrt{k \log(k) \sum_{t=1}^n \mathbb{I} \{c_t = c\}}.$$

$$R_n \leq 2\sqrt{nk|\mathcal{C}|\log(k)}$$
. $< n/|\mathcal{C}|$ بار $n/|\mathcal{C}|$

روش، ۱: یک EXP3 برای هر زمینه

$$R_{nc} \le 2\sqrt{k\sum_{t=1}^{n} \mathbb{I}\left\{c_{t} = c\right\} \log(k)},$$

$$R_n = \sum_{c \in \mathcal{C}} R_{nc} \le 2 \sum_{c \in \mathcal{C}} \sqrt{k \log(k) \sum_{t=1}^n \mathbb{I} \{c_t = c\}}.$$

چرا این مدلسازی خوب است؟

$$\mathbb{E}\left[\sum_{t=1}^{n} X_t\right] \ge \max_{i \in [k]} \sum_{t=1}^{n} x_{ti} - 2\sqrt{kn \log(k)}.$$

$$\mathbb{E}\left[\sum_{t=1}^{n} X_{t}\right] \geq \sum_{c \in \mathcal{C}} \max_{i \in [k]} \sum_{t \in [n]: c_{t} = c} x_{ti} - 2\sqrt{kn|\mathcal{C}|\log(k)}.$$

یادگیری برخط

جلسه شانزدهم: بندیت زمینهای

بندیت زمینهای توابع محدودتر

كمى واقعى تر!

$$R_n = \mathbb{E}\left[\sum_{c \in \mathcal{C}} \max_{i \in [k]} \sum_{t \in [n]: c_t = c} (x_{ti} - X_t)\right]$$

كمى واقعى تر!

$$R_n = \mathbb{E}\left[\sum_{c \in \mathcal{C}} \max_{i \in [k]} \sum_{t \in [n]: c_t = c} (x_{ti} - X_t)\right]$$

$$\max_{\phi:\mathscr{C}\to[k]} \sum_{c\in\mathscr{C}} \sum_{t:c_t=c} x_{t,\phi(c_t)} - X_t$$

كمى واقعى تر!

$$R_n = \mathbb{E}\left[\sum_{c \in \mathcal{C}} \max_{i \in [k]} \sum_{t \in [n]: c_t = c} (x_{ti} - X_t)\right]$$

$$\max_{\phi:\mathscr{C}\to[k]} \sum_{c\in\mathscr{C}} \sum_{t:c_t=c} x_{t,\phi(c_t)} - X_t$$

$$R_n = \mathbb{E}\left[\max_{\phi \in \Phi} \sum_{t=1}^n (x_{t\phi(c_t)} - X_t)\right]$$

Φ نمونههایی از

$$\frac{1}{|\mathcal{C}|^2} \sum_{c,d \in \mathcal{C}} (1 - s(c,d)) \mathbb{I} \left\{ \phi(c) \neq \phi(d) \right\}$$

Φ نمونههایی از

● ٥) همه توابع

$$\frac{1}{|\mathcal{C}|^2} \sum_{c,d \in \mathcal{C}} (1 - s(c,d)) \mathbb{I} \left\{ \phi(c) \neq \phi(d) \right\}$$

نمونههایی از Ф

- ٥) همه توابع
- ۱) به ازای یک افراز از C، توابعی که به هر زیرمجموعه از افراز یک عدد ثابت نسبت میدهند.

$$\frac{1}{|\mathcal{C}|^2} \sum_{c,d \in \mathcal{C}} (1 - s(c,d)) \mathbb{I} \left\{ \phi(c) \neq \phi(d) \right\}$$

Φ نمونههایی از

- ٥) همه توابع
- ۱) به ازای یک افراز از C، توابعی که به هر زیرمجموعه از افراز یک عدد ثابت نسبت میدهند.
 - ۲) توابع با تغییرات کوچک

$$\frac{1}{|\mathcal{C}|^2} \sum_{c,d \in \mathcal{C}} (1 - s(c,d)) \mathbb{I} \left\{ \phi(c) \neq \phi(d) \right\}$$

Φ نمونههایی از

- ٥) همه توابع
- ۱) به ازای یک افراز از C، توابعی که به هر زیرمجموعه از افراز یک عدد ثابت نسبت میدهند.
 - ۲) توابع با تغییرات کوچک

$$\frac{1}{|\mathcal{C}|^2} \sum_{c,d \in \mathcal{C}} (1 - s(c,d)) \mathbb{I} \left\{ \phi(c) \neq \phi(d) \right\}$$

● ۳) توابع نامزد (مثلا: یادگیری غیربرخط)

$$\phi_1,\ldots,\phi_M:\mathcal{C}\to [k]$$

نمونههایی از Φ

- ٥) همه توابع
- ۱) به ازای یک افراز از C، توابعی که به هر زیرمجموعه از افراز یک عدد ثابت نسبت مىدھند.
 - ۲) توابع با تغییرات کوچک

$$\frac{1}{|\mathcal{C}|^2} \sum_{c,d \in \mathcal{C}} (1 - s(c,d)) \mathbb{I} \left\{ \phi(c) \neq \phi(d) \right\}$$

● ۳) توابع نامزد (مثلا: یادگیری غیربرخط)

$$\phi_1,\ldots,\phi_M:\mathcal{C} o [k]$$

بندیت زمینهای راهنمایی متخصصین

$$\phi_1,\ldots,\phi_M:\mathcal{C}\to\mathbb{P}_k$$

$$R_n = \mathbb{E} \left[\max_{\phi \in \Phi} \sum_{t} \left(\sum_{i=1}^k \phi(c_t)_i \cdot x_{t,i} - X_t \right) \right]$$

$$R_n = \mathbb{E}\left[\max_{\phi \in \Phi} \sum_{t=1}^n (x_{t\phi(c_t)} - X_t)\right]$$

$$\phi_1,\ldots,\phi_M:\mathcal{C}\to\mathbb{P}_k$$

$$R_n = \mathbb{E}\left[\max_{\phi \in \Phi} \sum_{t} \left(\sum_{i=1}^k \phi(c_t)_i \cdot x_{t,i} - X_t\right)\right]$$

$$\phi_1,\ldots,\phi_M:\mathcal{C}\to [k].$$

$$R_n = \mathbb{E}\left[\max_{\phi \in \Phi} \sum_{t=1}^n (x_{t\phi(c_t)} - X_t)\right]$$

$$\phi_1,\ldots,\phi_M:\mathcal{C}\to\mathbb{P}_k$$

$$R_n = \mathbb{E} \left[\max_{\phi \in \Phi} \sum_{t} \left(\sum_{i=1}^k \phi(c_t)_i \cdot x_{t,i} - X_t \right) \right]$$

صورت مسئله «بندیت با راهنمایی متخصصین»

Adversary secretly chooses rewards $x \in [0, 1]^{n \times k}$

Experts secretly choose predictions $E^{(1)}, \ldots, E^{(n)}$

For rounds $t = 1, 2, \ldots, n$:

Learner observes predictions of all experts, $E^{(t)} \in [0, 1]^{M \times k}$.

Learner selects a distribution $P_t \in \mathcal{P}_{k-1}$.

Action A_t is sampled from P_t and the reward is $X_t = x_{tA_t}$.

$$R_n = \mathbb{E}\left[\max_{m \in [M]} \sum_{t=1}^n E_m^{(t)} x_t - \sum_{t=1}^n X_t\right]$$
 هدف

ایده

$$A_t \sim P_t = Q_t E^{(t)}$$
اه متخصصها $E^{(t)}$ اه هسته

ایده

ایده

$$\hat{X}_{ti} = 1 - \frac{\mathbb{I}\{A_t = i\}}{P_{ti} + \gamma} (1 - X_t)$$

$$\tilde{X}_t = E^{(t)} \hat{X}_t$$

$$\tilde{X}_t = E^{(t)} \hat{X}_t$$
 $\hat{X}_{ti} = 1 - \frac{\mathbb{I}\{A_t = i\}}{P_{ti} + \gamma} (1 - X_t)$

$$A_t \sim P_t = Q_t E^{(t)}$$

$$\exp\left(\eta \widetilde{X}_{t,m}\right)$$

$$\tilde{X}_t = E^{(t)} \hat{X}_t$$

$$ilde{X}_t = E^{(t)} \hat{X}_t \quad \hat{X}_{ti} = 1 - rac{\mathbb{I}\{A_t = i\}}{P_{ti} + \gamma} (1 - X_t)$$

طبق تحليل الگوريتم EXP3 داريم:

با احتمال $Q_t E^{(t)}$ انتخاب دستهها

Lemma 18.2. For any $m^* \in [M]$, it holds that

$$\sum_{t=1}^{n} \tilde{X}_{tm^*} - \sum_{t=1}^{n} \sum_{m=1}^{M} Q_{tm} \tilde{X}_{tm} \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2.$$

طبق تحليل الگوريتم EXP3 داريم:

با احتمال $Q_t E^{(t)}$ انتخاب دستهها

Lemma 18.2. For any $m^* \in [M]$, it holds that

$$\sum_{t=1}^{n} \tilde{X}_{tm^*} - \sum_{t=1}^{n} \sum_{m=1}^{M} Q_{tm} \tilde{X}_{tm} \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2.$$

$$R_n \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \sum_{m=1}^M \mathbb{E}\left[Q_{tm}(1 - \tilde{X}_{tm})^2\right].$$

اما
$$Q_t$$
 متخصصها $E^{(t)}$ مستهها $y_{ti}=1-x_{ti}$ $\exp\left(\eta \widetilde{X}_{t,m}
ight)$ $ilde{X}_t=E^{(t)}\hat{X}_t$ $\hat{X}_{ti}=1-rac{\mathbb{I}\{A_t=i\}}{P_{ti}+\gamma}(1-X_t)$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_t = i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right]$$

ر دستهها
$$Q_t$$
 متخصصها $E^{(t)}$ ما $y_{ti}=1-x_{ti}$

$$\exp\left(\eta \widetilde{X}_{t,m}\right) \mid \widetilde{X}_t = E^{(t)} I$$

$$ilde{X}_t = E^{(t)} \hat{X}_t \quad \hat{X}_{ti} = 1 - \frac{\mathbb{I}\{A_t = i\}}{P_{ti} + \gamma} (1 - X_t)$$

$$\hat{Y}_{ti} \stackrel{\cdot}{=} 1 - \hat{X}_{ti}$$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_t = i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right]$$

اما
$$Q_t$$
 متخصصها $E^{(t)}$ متخصصها $y_{ti}=1-x_{ti}$

$$\exp\left(\eta \widetilde{X}_{t,m}\right)$$

$$\tilde{X}_t = E^{(t)} \hat{X}_t$$

$$\exp\left(\eta \widetilde{X}_{t,m}\right)$$
 $\tilde{X}_t = E^{(t)} \hat{X}_t$ $\hat{X}_{ti} = 1 - \frac{\mathbb{I}\{A_t = i\}}{P_{ti} + \gamma} (1 - X_t)$

$$E^{(t)}(1 - \widehat{X}_{t}) \quad \tilde{Y}_{tm} = 1 - \tilde{X}_{tm}$$

$$= 1 - E^{(t)}\widehat{X}_{t}$$

$$= 1 - \widetilde{X}_{t} \quad \tilde{Y}_{t} = E^{(t)}\widehat{Y}_{t}$$

$$E^{(t)}(1-\widehat{X}_t) \mid \widetilde{Y}_{tm} \doteq 1-\widetilde{X}_{tm}$$

$$\tilde{Y}_t = E^{(t)} \hat{Y}_t$$

$$\hat{Y}_{ti} = 1 - \hat{X}_{ti}$$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_t = i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right]$$

رما
$$Q_t$$
 متخصصها $E^{(t)}$ ما $y_{ti}=1-x_{ti}$

$$\exp\left(\eta \widetilde{X}_{t,m}\right)$$

$$\tilde{X}_t = E^{(t)} \hat{X}_t$$

$$\exp\left(\eta \widetilde{X}_{t,m}\right)$$
 $\tilde{X}_t = E^{(t)} \hat{X}_t$ $\hat{X}_{ti} = 1 - \frac{\mathbb{I}\{A_t = i\}}{P_{ti} + \gamma} (1 - X_t)$

$$E^{(t)}(1 - \widehat{X}_{t}) \quad \tilde{Y}_{tm} \doteq 1 - \tilde{X}_{tm}$$

$$= 1 - E^{(t)}\widehat{X}_{t}$$

$$= 1 - \widetilde{X}_{t} \quad \tilde{Y}_{t} = E^{(t)}\widehat{Y}_{t}$$

$$E^{(t)}(1-\widehat{X}_t) \mid \widetilde{Y}_{tm} \doteq 1-\widetilde{X}_{tm}$$

$$\tilde{Y}_t = E^{(t)} \hat{Y}_t$$

$$\hat{Y}_{ti} = 1 - \hat{X}_{ti}$$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_t = i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}\left|\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right|$$

اما
$$Q_t$$
 متخصصها $E^{(t)}$ متخصصها $y_{ti}=1-x_{ti}$ رکہ جب میں اور $\hat{\mathbf{x}}$ میں

$$\exp\left(\eta\widetilde{X}_{t,m}
ight) \hspace{0.2cm} ilde{X}_t = E^{(t)}\hat{X}_t$$

$$\exp\left(\eta \widetilde{X}_{t,m}
ight)$$
 $ilde{X}_t = E^{(t)} \hat{X}_t$ $ilde{X}_{ti} = 1 - rac{\mathbb{I}\left\{A_t = i\right\}}{P_{ti} + \gamma} (1 - X_t)$

$$E^{(t)}(1-\widehat{X}_t) \qquad \tilde{Y}_{tm} = 1-\tilde{X}_{tm} \qquad \hat{Y}_{ti}$$

$$= 1-E^{(t)}\widehat{X}_t$$

$$= 1-\widetilde{X}_t \qquad \tilde{Y}_{t} = E^{(t)}\hat{Y}_t$$

$$\hat{Y}_{ti} \stackrel{\cdot}{=} 1 - \hat{X}_{ti}$$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_t = i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}_{t}[\tilde{Y}_{tm}^{2}] = \mathbb{E}_{t}\left[\left(\frac{E_{mA_{t}}^{(t)}y_{tA_{t}}}{P_{tA_{t}}}\right)^{2}\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{M}Q_{tm}(1-\tilde{X}_{tm})^{2}\right]$$

ر ما
$$Q_t$$
 متخصصها $E^{(t)}$ متخصصها $y_{ti}=1-x_{ti}$

$$\exp\left(\eta \widetilde{X}_{t,m}\right)$$
 $ilde{X}_t = E^{(t)}$

$$\exp\left(\eta \widetilde{X}_{t,m}
ight)$$
 $ilde{X}_t = E^{(t)} \hat{X}_t$ $ilde{X}_{ti} = 1 - rac{\mathbb{I}\left\{A_t = i\right\}}{P_{ti} + \gamma} (1 - X_t)$

$$E^{(t)}(1-\widehat{X}_{t}) \qquad \tilde{Y}_{tm} = 1-\tilde{X}_{tm} \qquad \hat{Y}_{ti} = 1-\hat{X}_{ti}$$

$$= 1-E^{(t)}\widehat{X}_{t}$$

$$= 1-\widetilde{X}_{t}$$

$$= 1-\widetilde{X}_{t}$$

$$\hat{Y}_{tm} = 1-\widetilde{X}_{tm} \qquad \hat{Y}_{ti} = 1-\hat{X}_{ti}$$

$$\hat{Y}_{ti} = \frac{\mathbb{I}[A_{t}=i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}_{t}[\tilde{Y}_{tm}^{2}] = \mathbb{E}_{t}\left[\left(\frac{E_{mA_{t}}^{(t)}y_{tA_{t}}}{P_{tA_{t}}}\right)^{2}\right] = \sum_{i=1}^{k} \frac{\left(E_{mi}^{(t)}y_{ti}\right)^{2}}{P_{ti}}$$

$$\mathbb{E}\left[\sum_{i=1}^{M} Q_{tm}(1-\tilde{X}_{tm})^{2}\right]$$

اما
$$Q_t$$
 متخصصها $E^{(t)}$ متخصصها $y_{ti}=1-x_{ti}$

$$\exp\left(\eta \widetilde{X}_{t,m}\right) \qquad \widetilde{X}_t = 1$$

$$\exp\left(\eta \widetilde{X}_{t,m}
ight)$$
 $\tilde{X}_t = E^{(t)}\hat{X}_t$ $\hat{X}_{ti} = 1 - \frac{\mathbb{I}\left\{A_t = i\right\}}{P_{ti} + \gamma}(1 - X_t)$

$$E^{(t)}(1 - \widehat{X}_{t}) \quad \tilde{Y}_{tm} = 1 - \tilde{X}_{tm}$$

$$= 1 - E^{(t)}\widehat{X}_{t}$$

$$= 1 - \widetilde{X}_{t} \quad \tilde{Y}_{t} = E^{(t)}\widehat{Y}_{t}$$

$$\hat{Y}_{ti} \stackrel{\cdot}{=} 1 - \hat{X}_{ti}$$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_t = i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}_{t}[\tilde{Y}_{tm}^{2}] = \mathbb{E}_{t} \left[\left(\frac{E_{mA_{t}}^{(t)} y_{tA_{t}}}{P_{tA_{t}}} \right)^{2} \right] = \sum_{i=1}^{k} \frac{\left(E_{mi}^{(t)} y_{ti} \right)^{2}}{P_{ti}} \leq \sum_{i=1}^{k} \frac{E_{mi}^{(t)}}{P_{ti}}.$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right]$$

اما
$$Q_t$$
 متخصصها $E^{(t)}$ ما $y_{ti}=1-x_{ti}$

$$\exp\left(\eta \widetilde{X}_{t,m}\right) \quad \tilde{X}_t = E^{(t)}$$

$$\exp\left(\eta \widetilde{X}_{t,m}
ight)$$
 $ilde{X}_t = E^{(t)} \hat{X}_t$ $ilde{X}_{ti} = 1 - rac{\mathbb{I}\left\{A_t = i\right\}}{P_{ti} + \gamma} (1 - X_t)$

$$E^{(t)}(1 - \widehat{X}_{t}) \qquad \tilde{Y}_{tm} = 1 - \tilde{X}_{tm}$$

$$= 1 - E^{(t)}\widehat{X}_{t}$$

$$= 1 - \widetilde{X}_{t}$$

$$= 1 - \widetilde{X}_{t}$$

$$Y_{tm} = 1 - \widetilde{X}_{tm}$$

$$\tilde{Y}_{tm} = 1 - \widetilde{X}_{tm}$$

$$\hat{Y}_{ti} \stackrel{\cdot}{=} 1 - \hat{X}_{ti}$$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_t = i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}_{t}[\tilde{Y}_{tm}^{2}] = \mathbb{E}_{t} \left[\left(\frac{E_{mA_{t}}^{(t)} y_{tA_{t}}}{P_{tA_{t}}} \right)^{2} \right] = \sum_{i=1}^{k} \frac{\left(E_{mi}^{(t)} y_{ti} \right)^{2}}{P_{ti}} \leq \sum_{i=1}^{k} \frac{E_{mi}^{(t)}}{P_{ti}}.$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^{2}\right] \leq \mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} \sum_{i=1}^{k} \frac{E_{mi}^{(t)}}{P_{ti}}\right]$$

رما
$$Q_t$$
 متخصصها $E^{(t)}$ ما $y_{ti}=1-x_{ti}$

$$\exp\left(\eta \widetilde{X}_{t,m}\right) \mid \widetilde{X}_t = E^{(t)}$$

$$\exp\left(\eta \widetilde{X}_{t,m}
ight)$$
 $ilde{X}_t = E^{(t)} \hat{X}_t$ $ilde{X}_{ti} = 1 - rac{\mathbb{I}\left\{A_t = i\right\}}{P_{ti} + \gamma} (1 - X_t)$

$$E^{(t)}(1 - \widehat{X}_{t}) \qquad \tilde{Y}_{tm} = 1 - \tilde{X}_{tm}$$

$$= 1 - E^{(t)}\widehat{X}_{t}$$

$$= 1 - \widetilde{X}_{t} \qquad \tilde{Y}_{t} = E^{(t)}\widehat{Y}_{t}$$

$$\hat{Y}_{ti} = 1 - \hat{X}_{ti}$$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_t = i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}_{t}[\tilde{Y}_{tm}^{2}] = \mathbb{E}_{t}\left[\left(\frac{E_{mA_{t}}^{(t)}y_{tA_{t}}}{P_{tA_{t}}}\right)^{2}\right] = \sum_{i=1}^{k} \frac{\left(E_{mi}^{(t)}y_{ti}\right)^{2}}{P_{ti}} \leq \sum_{i=1}^{k} \frac{E_{mi}^{(t)}}{P_{ti}}.$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right] \leq \mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} \sum_{i=1}^{k} \frac{E_{mi}^{(t)}}{P_{ti}}\right] = \mathbb{E}\left[\sum_{i=1}^{k} \frac{\sum_{m=1}^{M} Q_{tm} E_{mi}^{(t)}}{P_{ti}}\right]$$

اما
$$Q_t$$
 ما متخصصها $y_{ti}=1-x_{ti}$

$$\exp\left(\eta \widetilde{X}_{t,m}
ight) \left| \begin{array}{c} ilde{X}_t = E^{(t)} \hat{X}_t \end{array} \right| \hat{X}_{ti} = 1 - rac{\mathbb{I}\left\{A_t = i\right\}}{P_{ti} + \gamma} (1 - X_t)$$

$$E^{(t)}(1-\widehat{X}_{t}) \qquad \tilde{Y}_{tm} = 1-\tilde{X}_{tm} \qquad \hat{Y}_{ti} = 1-\hat{X}_{ti}$$

$$= 1-E^{(t)}\widehat{X}_{t}$$

$$= 1-\widetilde{X}_{t}$$

$$= 1-\widetilde{X}_{t}$$

$$\tilde{Y}_{t} = E^{(t)}\widehat{Y}_{t}$$

$$\hat{Y}_{it} = \frac{\mathbb{I}[A_{t}=i]y_{ti}}{P_{ti}}$$

$$\mathbb{E}_{t}[\tilde{Y}_{tm}^{2}] = \mathbb{E}_{t} \left[\left(\frac{E_{mA_{t}}^{(t)} y_{tA_{t}}}{P_{tA_{t}}} \right)^{2} \right] = \sum_{i=1}^{k} \frac{\left(E_{mi}^{(t)} y_{ti} \right)^{2}}{P_{ti}} \leq \sum_{i=1}^{k} \frac{E_{mi}^{(t)}}{P_{ti}}.$$

$$\mathbb{E}\left[\sum_{m=1}^{M}Q_{tm}(1-\tilde{X}_{tm})^{2}\right] \leq \mathbb{E}\left[\sum_{m=1}^{M}Q_{tm}\sum_{i=1}^{k}\frac{E_{mi}^{(t)}}{P_{ti}}\right] = \mathbb{E}\left[\sum_{i=1}^{k}\frac{\sum_{m=1}^{M}Q_{tm}E_{mi}^{(t)}}{P_{ti}}\right] = k.$$

$$R_n \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \sum_{m=1}^M \mathbb{E}\left[Q_{tm}(1 - \tilde{X}_{tm})^2\right].$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right] \leq k$$

$$R_n \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \sum_{m=1}^M \mathbb{E}\left[Q_{tm}(1 - \tilde{X}_{tm})^2\right].$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right] \leq k$$

$$\leq \frac{\log(M)}{\eta} + \frac{\eta nk}{2}$$

$$R_n \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \sum_{m=1}^M \mathbb{E}\left[Q_{tm}(1 - \tilde{X}_{tm})^2\right].$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right] \leq k$$

$$\leq \frac{\log(M)}{\eta} + \frac{\eta nk}{2} = \sqrt{2nk\log(M)}.$$

$$R_n \le \frac{\log(M)}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \sum_{m=1}^M \mathbb{E}\left[Q_{tm}(1 - \tilde{X}_{tm})^2\right].$$

$$\mathbb{E}\left[\sum_{m=1}^{M} Q_{tm} (1 - \tilde{X}_{tm})^2\right] \leq k$$

$$\leq \frac{\log(M)}{n} + \frac{\eta nk}{2} = \sqrt{2nk\log(M)}.$$

THEOREM 18.1. Let $\gamma = 0$ and $\eta = \sqrt{2 \log(M)/(nk)}$, and denote by R_n the expected regret of Exp4 defined in Algorithm 11 after n rounds. Then,

$$R_n \le \sqrt{2nk\log(M)}. (18.7)$$

 $R_n \leq \sqrt{2nk\log(M)}$.

$$R_n \leq \sqrt{2nk\log(M)}$$
.

[k] \bullet \bullet

$$R_n \leq \sqrt{2nk\log(M)}$$
.

$$[k]$$
 به $[k]$ به Φ مثال: Φ = همه توابع از $M=k^{\mathcal{C}}$

$$R_n \leq \sqrt{2nk\log(M)}$$
.

$$[k]$$
 به C به توابع از C به $M = k^{\mathcal{C}}$ $M = k^{\mathcal{C}}$ $R_n \leq \sqrt{2nk|\mathcal{C}|\log(k)},$

$$R_n \leq \sqrt{2nk\log(M)}$$
.

$$[k]$$
 به C به توابع از D به $ullet$ $oxedsymbol{\Phi}$ $M=k^{\mathcal{C}}$ $R_n \leq \sqrt{2nk|\mathcal{C}|\log(k)},$

 \bullet مثال: Φ = تعدادی تابع

$$R_n \leq \sqrt{2nk\log(M)}$$
.

$$[k]$$
 up C is the second of Φ in Φ in

$$R_n \le \sqrt{2nk|\mathcal{C}|\log(k)},$$

 \bullet مثال: Φ = تعدادی تابع

$$R_n \le \sqrt{2nk\log(|\Phi|)}.$$

$$E_t^* = \sum_{s=1}^t \sum_{i=1}^k \max_{m \in [M]} E_{mi}^{(s)}$$

Theorem 18.3. Assume the same conditions as in Theorem 18.1, except let $\eta_t = \sqrt{\log(M)/E_t^*}$. Then there exists a universal constant C > 0 such that

$$R_n \le C\sqrt{E_n^* \log(M)}. (18.14)$$

$$E_t^* = \sum_{s=1}^t \sum_{i=1}^k \max_{m \in [M]} E_{mi}^{(s)}$$

THEOREM 18.1. Let $\gamma = 0$ and $\eta = \sqrt{2 \log(M)/(nk)}$, and denote by R_n the expected regret of Exp4 defined in Algorithm 11 after n rounds. Then,

$$R_n \le \sqrt{2nk\log(M)}. (18.7)$$

THEOREM 18.3. Assume the same conditions as in Theorem 18.1, except let $\eta_t = \sqrt{\log(M)/E_t^*}$. Then there exists a universal constant C > 0 such that

$$R_n \le C\sqrt{E_n^* \log(M)}. (18.14)$$

