Scalable Machine Learning with Apache Spark™

Introductions

- Instructor Introduction
- Student Introductions
 - Name
 - Spark and Databricks Experience
 - Professional Responsibilities
 - Fun Personal Interest/Fact
 - Expectations for the Course

Course Objectives

- Create data processing pipelines with Spark
- 2 Build and tune machine learning models with Spark ML
- Track, version, and deploy machine learning models with MLflow
- Perform distributed hyperparameter tuning with Hyperopt
- 5 Scale the inference of single-node models with Spark

Agenda

Day 1

- Spark Review*
- Delta Lake Review*
- 3. ML Overview*
- 4. Break
- 5. Data Cleansing
- 6. Data Exploration Lab
- 7. Break
- 8. Linear Regression, pt. 1

Day 2

- Linear Regression, pt. 1 Lab
- 2. Linear Regression, pt. 2
- 3. Break
- 4. Linear Regression, pt. 2
 Lab
- 5. MLflow Tracking
- 6. Break
- MLflow Model Registry
- 8. MLflow Lab

Day 3

- 1. Decision Trees
- 2. Break
- Random Forest and Hyperparameter Tuning
- 4. Break
- 5. Hyperparameter Tuning Lab
- 6. Hyperopt

Day 4

- 1. Hyperopt Lab
- 2. MLlib Deployment Options*
- XGBoost*
- 4. Break
- 5. Inference with Pandas UDFs
- 6. Training with Pandas UDFs
- 7. Pandas UDFs Lab
- 8. Koalas
- 9. Break
- 10. Capstone Project*

Survey

Apache Spark

Machine Learning

Programming Language

LET'S GET STARTED

Apache Spark™ Overview

Apache Spark Background

 Founded as a research project at UC Berkeley in 2009

 Open-source unified data analytics engine for big data

 Built-in APIs in SQL, Python, Scala, R, and Java

Spark Cluster

Spark's Structured Data APIs

RDD

(2011)

Distributed collection of JVM objects

Functional operators (map, filter, etc.)

DataFrame

(2013)

Distributed collection of row objects

Expression-based operations and UDFs

Logical plans and optimizer

Fast/efficient internal representations

Dataset

(2015)

Internally rows, externally JVM objects

Almost the "best of both worlds": type safe + fast

But still slower than DataFrames

Spark DataFrame Execution

Under the Catalyst Optimizer's Hood

When to Use Spark

Scaling Out

Data or model is too large to process on a single machine, commonly resulting in out-of-memory errors

Speeding Up

Data or model is processing slowly and could benefit from shorter processing times and faster results

Open-source Storage Layer

Delta Lake's Key Features

- ACID transactions
- Time travel (data versioning)
- Schema enforcement and evolution
- Audit history
- Parquet format
- Compatible with Apache Spark API

Machine Learning Overview

What is Machine Learning

- Learn patterns and relationships in your data without explicitly programming them
- Derive an approximation function to map features to an output or relate them to each other

Types of Machine Learning

Supervised Learning

- Labeled data (known function output)
- Regression (a continuous/ordinal-discrete output)
- Classification (a categorical output)

Unsupervised Learning

- Unlabeled data (no known function output)
- Clustering (categorize records based on features)
- Dimensionality reduction (reduce feature space)

Types of Machine Learning

Semi-supervised Learning

- Labeled and unlabeled data, mostly unlabeled
- Combines supervised learning and unsupervised learning
- Commonly trying to label the unlabeled data to be used in another round of training

Reinforcement Learning

- States, actions, and rewards
- Useful for exploring spaces and exploiting information to maximize expected cumulative rewards
- Frequently utilizes neural networks and deep learning

Machine Learning Workflow

Business Use Cases

What business use cases do you have?

Defining and Measuring Success

Prediction

Actual

	Positive	Negative
Positive	True Positive	False Negative
Negative	False Positive	True Negative

Baseline Models

- Simple, dummy model
- Examples include:
 - Most common case (not hot dog)
 - Target variable mean
- Point-of-reference

Algorithm Selection

How do we decide which machine learning algorithms to use?

- Data distribution
- Feature interactions
- Missing values
- Target variable type
- Deployment considerations
- Speed of training
- Need for accuracy
- Need for interpretability

Note: Be aware of any interpretability requirements due to data regulations like the <u>General Data Protection Regulation</u>.

How do we get this information?

- Exploratory data analysis
 - Data visualization
 - Data cleaning
 - Data summaries
 - Data relationships

DATA CLEANSING DEMO

Importance of Data Visualization

Mean
Variance
Correlation
Regression
line

	Dataset #0		Dataset #1		Dataset #2		Dataset #3	
	х	У	х	У	х	У	х	У
I	10	8.04	10	9.14	10	7.46	8	6.58
	8	6.95	8	8.14	8	6.77	8	5.76
	13	7.58	13	8.74	13	12.74	8	7.71
	9	8.81	9	8.77	9	7.11	8	8.84
	11	8.33	11	9.26	11	7.81	8	8.47
	14	9.96	14	8.1	14	8.84	8	7.04
	6	7.24	6	6.13	6	6.08	8	5.25
	4	4.26	4	3.1	4	5.39	19	12.5
	12	10.84	12	9.13	12	8.15	8	5.56
	7	4.82	7	7.26	7	6.42	8	7.91
	5	5.68	5	4.74	5	5.73	8	6.89
	9	7.5	9	7.5	9	7.5	9	7.5
┪	11	4.1	11	4.1	11	4.1	11	4.1
į.	0.86		0.86		0.86		0.86	
	y = 3 + 0.5x		y = 3 + 0.5x		y = 3 + 0.5x		y = 3 + 0.5x	

Importance of Data Visualization

How do we build and evaluate models?

DATA EXPLORATION LAB

Linear Regression

Linear Regression

Goal: Find the line of best fit.

$$\hat{y} = w_0 + w_1 x$$

$$y \approx \hat{y} + \epsilon$$

where...

x: feature

y: label

 w_0 : y-intercept w_1 : slope of the line of best fit

Minimizing the Residuals

- Blue point: True value
- Green-dotted line: Positive residual
- Orange-dotted line: Negative residual
- Red line: Line of best fit

The goal is to draw a line that minimizes the sum of the squared residuals.

Regression Evaluators

Measure the "closeness" between the **actual value** and the **predicted value**.

Evaluation Metrics

Loss: (*y* − *ŷ*)

Absolute loss: |y - ŷ|

• Squared loss: $(y - \hat{y})^2$

Evaluation Metric: Root mean-squared-error (RMSE)

$$Error = (y_i - \hat{y_i})$$

$$SE = (y_i - \hat{y_i})^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

$$MSE = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2}$$

Linear Regression Assumptions

- Linear relationship between each feature and y
- Observations are independent from one another
- Features are independent from one another
- The value of residuals is not dependent on the feature values

Linear Regression Assumptions

So, which datasets are suited for linear regression?

Train vs. Test RMSE

Which is more important? Why?

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2}$$

Evaluation Metric: R²

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

What is the range of R^2 ?

Do we want it to be higher or lower?

Machine Learning Libraries

Scikit-learn is a popular single-node machine learning library.

But what if our data or model get too big?

Machine Learning in Spark

Scale Out and Speed Up

Machine learning in Spark allows us to work with bigger data and train models faster by distributing the data and computations across multiple workers.

Spark Machine Learning Libraries

MLlib

Original ML API for Spark

Based on RDDs

Maintenance Mode

Spark ML

Newer ML API for Spark

Based on DataFrames

Supported API

LINEAR REGRESSION DEMO I

LINEAR REGRESSION LAB I

Non-numeric Features

Two primary types of non-numeric features

Categorical Features

A series of categories of a single feature

No intrinsic ordering

e.g. Dog, Cat, Fish

Ordinal Features

A series of categories of a single feature

Relative ordering, but not necessarily consistent spacing

e.g. Infant, Toddler, Adolescent, Teen, Young Adult, etc.

Non-numeric Features in Linear Regression

How do we handle non-numeric features for linear regression?

- X-axis is numeric, so features need to be numeric
- Convert our non-numeric features to numeric features?

Could we assign numeric values to each of the categories

- "Dog" = 1, "Cat" = 2, "Fish" = 3, etc.
- Does this make sense?

This implies 1 Cat is equal to 2 Dogs!

Non-numeric Features in Linear Regression

What about with ordinal variables?

- Since ordinal variables have an order just like numbers, could this work?
- "Infant" = 1, "Toddler" = 2, "Child" = 3, etc.
- Does this make sense?

Remember that the ordinal categories aren't necessarily evenly spaced, so it's still not perfect and not particularly scalable.

Non-numeric Features in Linear Regression

Instead, we commonly use a practice known as one-hot encoding (OHE).

Creates a binary "dummy" feature for each category

Animal		Dog	Cat	Fish
Dog	OHE	1	0	0
Cat		0	1	0
Fish		0	0	1

Doesn't force a uniformly-spaced, ordered numeric representation

One-hot Encoding at Scale

You might be thinking...

- Okay, I see what's happening here ... this works for a handful of animals.
- But what if we have an entire zoo of animals? That would result in really wide data!

Spark uses sparse vectors for this...

```
DenseVector(0, 0, 0, 7, 0, 2, 0, 0, 0, 0)
SparseVector(10, [3, 5], [7, 2])
```

Sparse vectors take the form:

(Number of elements, [indices of non-zero elements], [values of non-zero elements])

LINEAR REGRESSION DEMO II

LINEAR REGRESSION LAB II

MLflow Tracking

a databricks

MLflow

- Open-source platform for machine learning lifecycle
- Operationalizing machine learning
- Developed by Databricks
- Pre-installed on the Databricks Runtime for ML

Core Machine Learning Issues

- Keeping track of experiments or model development
- Reproducing code
- Comparing models
- Standardization of packaging and deploying models

MLflow addresses these issues.

MLflow Components

MLflow Tracking

Record and query experiments: code, data, config, and results

Read more

MLflow Projects

Package data science code in a format to reproduce runs on any platform

Read more

MLflow Models

Deploy machine learning models in diverse serving environments

Read more

Model Registry

Store, annotate, discover, and manage models in a central repository

Read more

APIs: CLI, Python, R, Java, REST

MLflow Tracking

- Logging API
- Specific to machine learning
- Library and environment agnostic

Runs

Executions of data science code

E.g. a model build, an optimization run

Experiments

Aggregations of runs

Typically correspond to a data science project

What Gets Tracked

- Parameters
 - Key-value pairs of parameters (e.g. hyperparameters)
- Metrics
 - Evaluation metrics (e.g. RMSE)
- Artifacts
 - Arbitrary output files (e.g. images, pickled models, data files)
- Source
 - The source code from the run

Examining Past Runs

- Querying Past Runs via the API
 - MLflowClient Object
 - List experiments
 - Search runs
 - Return run metrics
- MLflow UI
 - Built in to Databricks platform

MLFLOW TRACKING DEMO

MLflow Model Registry

MLflow Model Registry

- Collaborative, centralized model hub
- Facilitate experimentation, testing, and production
- Integrate with approval and governance workflows
- Monitor ML deployments and their performance

Databricks MLflow Blog Post

One Collaborative Hub for Model Management

Centralized Model Management and Discovery

- Overview of all registered models, their versions at Staging and Production
- Search by name, tags, etc.
- Model-based ACLs

Full lineage from deployed models to training code / data

Version Control and Visibility into Deployment Process

Versioning of ML artifacts

- Overview of active model versions and their deployment stage
- Comparison of versions and their logged metrics, parameters, etc.

adatabricks

Visibility and auditability of the deployment process

Audit log of stage transitions and requests per model

Review Processes and CI/CD Integration

Manual review process

- Stage-based Access Controls
- Request and approval workflow for stage transitions

Automation through CI/CD integration

- Webhooks for events like model creation, version creation, transition request, etc.
- Mechanisms to store results / metadata through Tags and Comments

MLFLOW MODEL REGISTRY DEMO

MLFLOW LAB

Decision Trees

Decision Making

Determining Splits

Commute is a better choice because it provides information about the classification.

Creating Decision Boundaries

Lines vs. Boundaries

Linear Regression

- Lines through data
- Assumed linear relationship

Decision Trees

- Boundaries instead of lines
- Learn complex relationships

Linear Regression or Decision Tree?

Tree Depth

Note: shallow trees tend to underfit, and deep trees tend to overfit

Underfitting vs. Overfitting

Additional Resource

R2D3 has an excellent visualization of how decision trees work.

DECISION TREE DEMO

Random Forests

Decision Trees

Pros

- Interpretable
- Simple
- Classification
- Regression
- Nonlinear relationships

Cons

- Poor accuracy
- High variance

Bias vs. Variance

Bias-Variance Tradeoff

 $Error = Variance + Bias^2 + noise$

- Reduce Bias
 - Build more complex models
- Reduce Variance
 - Use a lot of data
 - Build simple models
- What about the noise?

HOW SOFTWARE DEVELOPMENT WORKS

Building Five Hundred Decision Trees

- Using more data reduces variance for one model
- Averaging more predictions reduces prediction variance
- But that would require more decision trees
- And we only have one training set ... or do we?

Bootstrap Sampling

A method for simulating N new datasets:

- 1. Take sample with replacement from original training set
- 2. Repeat N times

Bootstrap Visualization

Why are some points in the bootstrapped samples not selected?

Training Set Coverage

Assume we are bootstrapping N draws from a training set with N observations ...

- Probability of an element getting picked in each draw $\frac{1}{N}$
- Probability of an element *not* getting picked in each draw: $1-rac{1}{N}$
- Probability of an element *not* getting drawn in the entire sample: $(1-\frac{1}{N})^N$

As $N \to \infty$, the probability for each element of not getting picked in a sample approaches **0.368**.

Bootstrap Aggregating

- Train a tree on each of sample, and average the predictions
- This is bootstrap aggregating, commonly referred to as bagging

Random Forest Algorithm

At each split, a **subset of features** is considered to ensure each tree is different.

Random Forest Aggregation

- Majority-voting for classification
- Mean for regression

RANDOM FOREST DEMO

What is a Hyperparameter?

- Examples for Random Forest:
 - Tree depth
 - Number of trees
 - Number of features to consider

A parameter whose value is used to control the training process.

Selecting Hyperparameter Values

- Build a model for each hyperparameter value
- Evaluate each model to identify the optimal hyperparameter value
- What dataset should we use to train and evaluate?

Training Validation Test

What if there isn't enough data to split into three separate sets?

K-Fold Cross Validation

Pass 1: **Training Training Validation** Average Validation Errors to Identify Pass 2: **Training Validation Training Optimal** Hyperparameter Values Pass 3: **Validation Training Training** Final Pass: **Training with Optimal Hyperparameters Test**

Optimizing Hyperparameter Values

Grid Search

Train and validate every unique combination of hyperparameters

Tree Depth	Number of Trees
5	2
8	4

Question: With 3-fold cross validation, how many models will this build?

HYPERPARAMETER TUNING DEMO

HYPERPARAMETER TUNING LAB

Hyperparameter Tuning with HyperOpt

Problems with Grid Search

- Exhaustive enumeration is expensive
- Manually determined search space
- Past information on good hyperparameters isn't used
- So what do you do if...
 - You have a training budget
 - You have a non-parametric search space
 - You want to pick your hyperparameters based on past results

Hyperopt

- Open-source Python library
- Optimization over awkward search spaces
- Serial
- Parallel
- Spark integration
- Three core algorithms for optimization:
 - Random Search
 - Tree of Parzen Estimators (TPE)
 - Adaptive TPE

Optimizing Hyperparameter Values

Random Search

- Generally outperforms grid search
- Can struggle on some datasets (e.g. convex spaces)

Optimizing Hyperparameter Values

Tree of Parzen Estimators

- Meta-learner, Bayesian process
- Non-parametric densities
- Returns candidate hyperparameters based on best expected improvement
- Provide a range and distribution for continuous and discrete values
- Adaptive TPE better tunes the search space
 - Freezes hyperparameters
 - Tunes number of random trials before TPE

HYPEROPT DEMO

HYPEROPT LAB

MLlib Deployment Options

Data Science vs. Data Engineering

- Data Science != Data Engineering
- Data Science
 - Scientific
 - Art
 - Business problems
 - Model mathematically
 - Optimize performance
- Data Engineering
 - Reliability
 - Scalability
 - Maintainability
 - SLAs

Model Operations (ModelOps)

- DevOps
 - Software development and IT operations
 - Manages deployments
 - CI/CD of features, patches, updates, and rollbacks
 - Agile vs. waterfall
- ModelOps
 - Data modeling and deployment operations
 - Java environments
 - Containers
 - Model performance monitoring

The Four ML Deployment Options

- Batch
 - 80-90 percent of deployments
 - Leverages databases and object storage
 - Fast retrieval of stored predictions
- Continuous/Streaming
 - 10-15 percent of deployments
 - Moderately fast scoring on new data
- Real-time
 - 5-10 percent of deployments
 - Usually using REST (Azure ML, SageMaker, containers)
- On-device

Deployment Options for MLlib

ML DEPLOYMENT DEMO

Gradient Boosted Decision Trees

Decision Tree Ensembles

- Combine many decision trees
- Random Forest
 - Bagging
 - Independent trees
 - Results aggregated to a final prediction
- There are other methods of ensembling decision trees

Boosting

- Sequential (one tree at a time)
- Each tree learns from the last
- Sequence of trees is the final model

Gradient Boosted Decision Trees

- Common boosted trees algorithm
- Fits each tree to the residuals of the previous tree
- On the first iteration, residuals are the actual label values

Model 1 Model 2 **Final Prediction** Residual **Prediction** Residual Prediction Prediction 3 40 35 5 5 38 40 -7 -7 60 67 -3 60 63 -4 30 28 2 3 31 30 33 32 0 32 33

Boosting vs. Bagging

GBDT

RF

- Starts with high bias, low variance
- Works right

- Starts with high variance, low bias
- Works left

Gradient Boosted Decision Trees Implementations

- Spark ML
 - Built into Spark
 - Utilizes Spark's existing decision tree implementation
- XGBoost
 - Designed and built specifically for gradient boosted trees
 - Regularized to prevent overfitting
 - Highly parallel
 - Works nicely with Spark in Scala

XGBOOST DEMO

Appendix

Electives

The following electives are also available:

- Machine Learning Algorithms and Applications
 - K-Means
 - Logistic Regression Lab
 - Time Series Forecasting
 - Isolation Forests for Outlier and Fraud Detection
 - Collaborative Filtering for Recommendation Systems Lab
- Tools
 - Joblib
- Other
 - Databricks Best Practices

Logistic Regression

Types of Supervised Learning

Regression

Predicting a continuous output

Classification

Predicting a categorical/discrete output

Types of Classification

Binary Classification

Two label classes

Multiclass Classification

Three or more label classes

Model output is commonly the **probability** of a record belonging to **each of the classes**.

Binary Classification

Binary Classification

Two label classes

Outputs:

- Probability that the record is Red given a set of features
- Probability that the record is
 Blue given a set of features
- Reminders:
 - Probabilities are bounded between 0 and 1
 - And linear regression returns any real number

Bounding Binary Classification Probabilities

How can we keep model outputs between 0 and 1?

- Logistic Function:
 - Large positive inputs → 1
 - Large negative inputs → 0

Converting Probabilities to Classes

- In binary classification, the class probabilities are directly complementary
- So let's set our Red class equal to 1, and our Blue class equal to 0
- The model output is P[y = 1 | x] where x represents the features

But we need **class** predictions, not **probability** predictions

- Set a threshold on the probability predictions
 - $P[y=1|x] < 0.5 \rightarrow y=0$
 - **P**[$y = 1 \mid x$] $\ge 0.5 \rightarrow y = 1$

Evaluating Binary Classification Models

- How can the model be wrong?
 - Type I Error: False Positive
 - Type II Error: False Negative
- Representing these errors with a confusion matrix.

Prediction

_	Positive	Negative
Positive	True Positive	False Negative
Negative	False Positive	True Negative

Actual

Binary Classification Metrics

Accuracy

$$\frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{FP} + \mathsf{TN} + \mathsf{FN}}$$

Recall

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

Precision

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

F1

K-Means

Clustering

- Unsupervised learning
- Unlabeled data (no known function output)
- Categorize records based on features

K-Means Clustering

- Most common clustering algorithm
- Number of clusters, K, is manually chosen
- Each cluster has a centroid
- Objective of minimizing the total distance between all of the points and their assigned centroid

K-Means Algorithm

- **Step 1:** Randomly create centroids for *k* clusters
- Repeat until convergence/stopping criteria:
 - Step 2: Assign each data point to the cluster with the closest centroid
 - Step 3: Move the cluster centroids to the average location of their assigned data points

Visualizing K-Means

Choosing the Number of Clusters

- K is a hyperparameter
- Methods of identifying the optimal K
 - Prior knowledge
 - Visualizing data
 - Elbow method for within-cluster distance

Note: Error will always decrease as *K* increases, unless a penalty is imposed.

Issues with K-Means

Local optima vs. global optima

Straight-line distance

Other Clustering Techniques

Collaborative Filtering

Recommendation Systems

Naive Approaches to Recommendation

- Hand-curated
- Aggregates

Question: What are problems with these approaches?

Content-based Recommendation

- Idea: Recommend items to a customer that are similar to other items the customer liked
- Creates a profile for each user or product
 - User: demographic info, ratings, etc.
 - Item: genre, flavor, brand, actor list, etc.

Content-based Recommendation

- Advantages
 - No need for data from other users
 - New item recommendations
- Disadvantages
 - Cold-start problem
 - Determining appropriate features
 - Implicit information

Collaborative Filtering

- Idea: Make recommendations for one customer (filtering) by collecting and analyzing the interests of many users (collaboration)
- Advantages over content-based recommendation
 - Relies only on past user behavior (no profile creation)
 - Domain independent
 - Generally more accurate
- Disadvantages
 - Extremely susceptible to cold-start problem (user and item)

Types of Collaborative Filtering

- Neighborhood Methods: Compute relationships between items or users
 - Computationally expensive
 - Not empirically as good
- Latent Factor Models: Explain the ratings by characterizing items and users by small number of inferred factors
 - Matrix factorization
 - Characterizes both items and users by vectors of factors from item-rating pattern
 - Explicit feedback: sparse matrix
 - Scalable

Latent Factor Approach

Ratings Matrix

Matrix Factorization

Alternating Least Squares

- Step 1: Randomly initialize user and movie factors
- Step 2: Repeat the following
 - 1. Fix the movie factors, and optimize user factors
 - 2. Fix the user factors, and optimize movie factors

$$\min_{q*,p*} \sum_{(u,i)\in R} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

Why not SVD?

- The matrix is too sparse
- Imputation can be inaccurate
- Imputation can be expensive

Distributed ALS Implementation

- Naive approach
 - Broadcast R, U, and V
 - Problems?
 - R is large, and it's duplicating copies for each worker
- Better approach
 - Distribute R and broadcast U and V
 - Problems?
 - U and V might be large, too, and we're still duplicating copies
- Best approach
 - Join ALS

Join ALS

Blocked Join ALS

- Spark implements a smarter version of Join ALS
- Limits data shuffling
- ALS is a distributed model (i.e. stored across executors)

