Data Warehouse Optimization - report

1. Preliminary assumptions

Size of the database (ChildCareMaster): 400,00 MB

Testing environment:

Programy:

Visual Studio Enterprise 2022 SQL Server Management Studio 2019 MSSQL Server 2022

Sprzęt:

Procesor: 12th Gen Intel(R) Core(TM) i7-12700H

RAM: 16 GB

2. Testy

MOLAP:

Agregacja

ProcessCube: 9157

Query	T1	T2	T3	T4	T5	T6	Т7	Т8	Т9	T10	Mean
Agregacja dat	66	75	64	65	72	69	65	74	76	62	68.8
Konkretny atrybut wymiaru	8	6	7	8	7	8	9	7	7	7	7.4
General	13	12	13	13	13	10	9	9	12	12	11.6

Bez agregacji

ProcessCube: 17387

Query	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	T10	Mean
Agregacja dat	67	66	76	67	75	69	67	68	81	64	70
Konkretny atrybut wymiaru	7	10	8	8	9	7	8	6	7	12	8.2
General	13	15	11	12	9	14	12	10	12	13	12.1

ROLAP

Agregacja

ProcessCube: 4462

Query	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	T10	Mean
Agregacja dat	135	124	145	138	109	128	122	131	136	119	128.7
Konkretny atrybut wymiaru	81	106	103	92	97	110	88	66	90	83	91.6
General	203	172	204	214	208	222	251	258	225	215	217.2

Bez agregacji

ProcessCube: 6269

Query	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	Mean
Agregacja dat	112	144	129	147	130	117	153	127	109	135	130.3
Konkretny atrybut wymiaru	118	93	63	103	129	70	124	99	107	119	102.5
General	240	203	192	196	164	200	176	194	194	210	196.9

HOLAP

Agregacja

ProcessCube: 15171

Query	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	T10	Mean
Agregacja dat	147	131	146	135	120	115	150	115	135	147	133.6
Konkretny atrybut wymiaru	71	115	65	95	100	97	105	103	110	92	95.3
General	202	196	212	199	203	115	162	113	131	193	172.2

Bez agregacji ProcessCube: 6750

Query	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	T10	Mean
Agregacja dat	167	151	115	143	117	147	121	151	146	166	142.4
Konkretny atrybut wymiaru	97	120	106	115	93	122	79	77	86	65	96
General	249	216	186	268	198	196	195	167	174	199	204.8

Summary:

	МС)LAP	RO	DLAP	HOLAP		
	Aggr.	No aggr,	Aggr.	No aggr.	Aggr.	No aggr.	
Querying speed (for 3 different queries	68.8	70	128.7	130.3	133.6	142.4	
	7.4	8.2	91.6	102.5	95.3	96	
	11.6	12.1	217.2	196.9	172.2	204.8	
Processing time	9157	17387	4462	6269	15171	6750	
Total Size	132.00 MB	132.02M B	119.59M B	119.55MB	119.60MB	119.61MB	

3. Wnioski:

Teoretyczne porównanie testowanych modeli

	MOLAP	HOLAP	ROLAP
Querying time	Short	Moderate (short with well designed aggregations)	Long
Processing time	Long	Moderate (if no aggregations are designed, it will be short)	Short
Total size	Big (size of the measure group is much smaller if no aggregations are designed for them)	Moderate	Small

W testowanej hurtowni wyniki z użyciem modelu MOLAP zgadzają się z teoretycznymi założeniami wymienionymi w tabeli wyżej. Czas wykonywania się zapytań był krótki, kosztem długiego czasu procesowania kostki oraz rozmiarem. Czas procesowania kostki był najdłuższy ze wszystkich testowanych modeli oraz całkowity rozmiar hurtowni również był największy w porównaniu do modelu HOLAP oraz ROLAP. Powodem tego jest wymóg przechowywania zduplikowanych danych w bazie analitycznej. Jeśli zależy nam na zmniejszonym całkowitym rozmiarze kostki to powinniśmy użyć modelu ROLAP, kosztem dłuższego czasu wykonywania zapytań, które uśredniając wykonywały się dwa razy wolniej niż w przypadku modelu MOLAP. Poza całkowitym rozmiarem kostki zaletą ROLAP jest czas procesowania się kostki, który jest najmniejszy w porównaniu do innych testowanych modeli. Model HOLAP bazując na teoretycznych założeniach powinien być złotym środkiem pomiędzy tymi dwoma modelami, jednak wyniki, które zostały uzyskane podczas testów negują to stwierdzenie. Czasy wykonywania się zapytań były zbliżone do wyników uzyskanych przy modelu ROLAP. Jest to możliwe, że przy lepiej zaprojektowanych agregacjach w modelu HOLAP wyniki te rzeczywiście charakteryzowałyby zmniejszonym czasem.

Na podstawie uzyskanych wyników można wywnioskować, że wybór modelu powinien być zależny od potrzeb, bądź ograniczeń hurtowni.