Отчёт по работе 5.1.2

Исследование эффекта Комптона

Карташов Констанин Б04-005

I Анотация

Цель работы: Исследовать энергетический спектр γ -квантов, рассеянных на графите. Определение энергии рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит рассеяние.

Оборудование:

- Сцинтилляционный спектрометр
- ▶ Источник направленного ү-излучения
- ⊳ Графитовая мишень

II Теоретическая часть

і Необходимые формулы

Эффектом Комптона называется рассеяние фотона заряженной частицей, приводящее к уменьшению его энергии, и соответствующим увеличением длины его волны. В нашем случае γ -квант испускаемый цезием 137 рассеивается об электроны в графитовом цилиндре. Данный эффект не объясняется классической электродинамикой, для его объяснения необходимо считать взаимодействие фотона и электрона упругим соударением.

Из расчёта абсолютно упругого соударения фотона и электрона, используя закон сохранения импульса и энергии получим формулу для изменения длины волны рассеянного γ -кванта:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_K (1 - \cos \theta), \tag{1}$$

где $\Lambda_K = \frac{h}{mc} = 2.42 \cdot 10^{-10}$ см – комптоновская длина волны электрона. Подставив в формулу (1) энергию γ -кванта $\varepsilon = \hbar \omega$ получим другую форму за-

Подставив в формулу (1) энергию γ -кванта $\varepsilon = \hbar \omega$ получим другую форму записи:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta. \tag{2}$$

Рис. 1: Схема экспериментальной установки

іі Экспериментальная установка

Экспериментальная установка (рис. 1) состоит из:

- 1. Источника излучения $^{137}\mathrm{Cs},$ помещённого в свинцовый контейнер с коллиматором.
- 2. Графитовой мишени в форме цилиндра.
- 3. Фотоэлектронного умножителя.
- 4. Кристалла NaI(Ti), выполняющего роль сцинтиллятора.
- 5. Свинцового коллиматора.
- 6. Лимб для расчёта угла рассеяния.

ФЭУ и сцинтиллятор образуют сцинтилляционный счётчик, который подключается к усилителю-анализатору, который фиксирует попадание γ -кванта в счётчик, и передаёт значение его энергии на компьютер в 1024 дискретных уровнях (каналах), номер которых N прямо пропорционален значению энергии. На экране компьютера выводиться гистограмма всех зафиксированных попаданий в каждом из каналов.

III Экспериментальная часть

і Проведение измерений

При помощи экспериментальной установки измерим зависимость номера фотопика N от положения сцинтилляционного счётчика θ . В качестве номера фотопика возьмём номер наибольшого столбца в гистограмме, соответствующего к пику созданным рассеянными фотонами. Полученные данные приведены в таблице 1.

θ°	0	10	20	30	40	50	60	70	80	90	100	110	120	130
N	897	893	845	689	683	560	488	421	383	345	313	280	261	246

Таблица 1: Значение угла в градусах и соответствующий фотопик.

Рис. 2: График измеренных значений и наилучшей прямой

іі Обработка данных

Учитывая то, что номер канала фотопика прямо пропорционален энергии кванта зафиксированного счётчиком, заменим в формуле (2) энергию ε номером канала максимума фотопика N, и добавив неизвестный коэффициент пропорциональности A, получим формулу:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta).$$
 (3)

Для более удобной обработки измеренных данных (табл. 1), построим график зависимости $1-\cos\theta$ от $1/N(\theta)$, и проведём через полученные точки наилучшею прямую (по МНК) (рис. 2).

По наилучшей прямой определим наилучшие значения для N при $\theta=0^\circ$ и $\theta=90^\circ$, получим:

$$\begin{split} \theta &= 0^{\circ} \ \Rightarrow \ x = 0 \ \Rightarrow y(0) = (1.12 \pm 0.02) \cdot 10^{-3}, \\ N(0) &= \frac{1}{y(0)} = 893, \ \Delta N(0) = N(0) \cdot \frac{\Delta y(0)}{y(0)} = 16, \ N_{\text{наил}}(0) = 890 \pm 20; \\ \theta &= 90^{\circ} \ \Rightarrow \ x = 1 \ \Rightarrow y(1) = (2.92 \pm 0.04) \cdot 10^{-3}, \\ N(90) &= \frac{1}{y(1)} = 342, \ \Delta N(90) = N(90) \cdot \frac{\Delta y(1)}{y(1)} = 5, \ N_{\text{наил}}(90) = 342 \pm 5. \end{split}$$

ііі Проверка результатов

Воспользуемся формулой (2), подставив значение $\theta = 90^{\circ}$:

$$mc^2\left(\frac{1}{E(90)} - \frac{1}{E(0)}\right) = 1,$$

или

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_{\gamma} \frac{N(90)}{N(0) - N(90)},$$

где E_{γ} – энергия электронов, рассеянных вперёд, или просто энергии γ -лучей.

Теперь найдём энергию покоя частицы $E_{\Pi}=mc^2$, рассчитанной по формуле:

$$E_{\Pi} = E_{\gamma} \frac{N_{\text{наил}}(90)}{N_{\text{наил}}(0) - N_{\text{наил}}(90)} = 662 \text{ кэB} \cdot \frac{342}{890 - 342} = 413 \text{ кэB},$$

$$\Delta E_{\Pi} = E_{\Pi} \cdot \sqrt{2 \left(\frac{\Delta N(90)}{N(90)}\right)^2 + \left(\frac{\Delta N(0)}{N(0)}\right)^2} = 13 \text{ кэB}.$$

Получили $mc^2=410\pm20$ кэB, что значительно ниже действительного значения $mc^2=511$ кэB.

IV Выводы

- 1. Пронаблюдали эффект Комптона при помощи сцинтилляционного счётчика, заметив изменение энергии рассеянных γ -квантов при изменении угла рассеяния.
- 2. Подтвердили состоятельность формулы (1) и её вывода, получив прямую зависимость на графике (рис. 2).
- 3. Посчитали энергию покоя электронов, рассеивающих γ -кванты, получив значение $mc^2=410\pm20$ кэВ, что на 20% отличается от действительного значения $mc^2=511$ кэВ. Это различие можно объяснить неточностью при определении номера канала N, соответствующего фотопику.