九州大学大学院数理学府 平成28年度修士課程入学試験 専門科目問題

- 注意 ・ 問題 [1][2][3][4][5][6][7][8][9][10][11] の中から 2 題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず2題分 提出すること.
 - 以下 $\mathbb{N} = \{1, 2, 3, ...\}$ は自然数の全体、 \mathbb{Z} は整数の全体、 \mathbb{Q} は有理数の全体、 \mathbb{R} は実数の全体、 \mathbb{C} は複素数の全体を表す.

[1] n を 1 以上の整数とする. G を 2 元 σ , τ で生成され, 関係式

$$\sigma^n = \tau^2 = 1, \qquad \tau \sigma \tau = \sigma^{-1}$$

で定義される群とする. また, H を σ で生成される G の部分群とする. このとき以下の間に答えよ.

- (1) G は位数 2n の有限群であることを証明せよ.
- (2) \mathbb{C}^{\times} を \mathbb{C} の乗法群とする. 群準同型 $\chi: H \to \mathbb{C}^{\times}$ に対し

$$V = \{\phi: G \to \mathbb{C} \mid \text{任意の } g \in G, h \in H \text{ に対し } \phi(hg) = \chi(h)\phi(g)\}$$

とおき、これを自然に \mathbb{C} -ベクトル空間とみなす. V の次元を求め、その基底を一組求めよ.

(3) $g \in G$ と $\phi \in V$ に対し $g\phi \in V$ を

$$(g\phi)(x) = \phi(xg) \qquad (x \in G)$$

により定義すると、写像

$$\rho_q: \phi \mapsto g\phi$$

は V の \mathbb{C} -線型自己同型であることを証明せよ.

(4) g がそれぞれ σ , τ , $\sigma\tau$ である場合に、線型写像 $\rho_g:V\to V$ を (2) で求めた V の基底に関し行列表示せよ.

- [2] $\mathbb{Q}[x,y]$ を x,y を不定元とする有理数係数の多項式環とし、 $\mathbb{Q}[t,1/t]$ を不定元 t およびその逆元 1/t で有理数体上生成された環とする.このとき以下の問に答えよ.
 - (1) $\mathbb{Q}[x,y]$ から $\mathbb{Q}[t,1/t]$ への環準同型 φ を $\varphi(x)=t$, $\varphi(y)=1/t$ によって定めるとき, φ は $\mathbb{Q}[x,y]/(xy-1)$ から $\mathbb{Q}[t,1/t]$ への環同型を導くことを示せ.
 - (2) $\mathbb{Q}[x,y]/(xy-1)$ の環自己同型群を求めよ.
 - (3) $\mathbb{Q}[x,y]/(xy-1)$ と $\mathbb{Q}[x,y]/(x^2y^2-1)$ は環同型になるか判定せよ.
 - (4) $\mathbb{Q}[x,y]/(xy-1)$ と $\mathbb{Q}[x,y]/(x^2y^3-1)$ は環同型になるか判定せよ.

- [3] $\alpha = \sqrt{2 + \sqrt{2}}$ とし、 $K = \mathbb{Q}(\alpha)$ とする. このとき以下の問に答えよ.
 - (1) $\mathbb{Q}(\sqrt{2}) \subset K$ であることを示せ.
 - (2) α の $\mathbb Q$ 上の最小多項式を求めよ.
 - (3) K は \mathbb{Q} 上のガロア拡大であることを示せ.