Multi-sensor rail track detection in automatic train operations

Master's thesis in Data Science

Student: Attila Kovacs

1st Advisor: Lukas Rohatsch (UAS Technikum Wien)

2nd Advisor: Daniele Capriotti (M2C Expert Control GmbH)

06.06.2024

Motivation

Automatic train operations (ATO)

 ATO systems use advanced technologies to perceive and interpret the railway environment to facilitate autonomous operations with minimal human intervention

Automatic rail track detection

 Computer vision-based rail track detection is a crucial component for autonomous train navigation as it enables trains to understand and navigate complex rail networks

Motivation

Input: images generated by different sensors mounted on locomotive

Goal: identify and segment rail tracks

Dataset

- OSDaR23 dataset (Digitale Schiene / Deutsche Bahn) → Training and evaluation
 - 7.421 frames from 45 video sequences
 - 27.386 labels
 - Low/high resolution RGB camera and infrared camera
- RailSem19 dataset (Austrian Institute of Technology) → Training
 - 8.500 images
 - 58.483 labels
 - Only RGB images
- Video stream (M2C / DB Cargo) → Evaluation
 - 1:14h video
 - Different scenarios such as tunel, double/single track, side walls etc.

Solution approach

Non-AI-based segmentation with fast line detection (FLD)

- Detect edges in image
- Extract line segments
- Grouping of line segments based on orientation and proximity

Deep-learning based approach based on YOLOv8

- Train model with pre-labeled images
- Classify each pixel in an image according to its category (rail tracks vs. background)
- Convert pixels into polylines

Evaluation criterion

• Dice score – best suited for unbalanced datasets, e.g., when the background is dominant

Non-Al-based segmentation with fast line detection (FLD)

Filtering by removing "unusual" lines

Deep-learning based approach based on YOLOv8

There are differenet applications in AI-based computer vision

Is this a dog?

Image Classification

What is there in image and where?

Object Detection

Results – Visual inspection

Results – FLD vs. YOLOv8 on OSDaR23

Results – Video stream: incorportating domain knowledge

Conclusion

- First project to investigate different sensor types in rail track detection
- Devised traditional base-line approach (FLD) and AI-based approach (YOLO)
- YOLO outperforms FLD in almost all test images based on Dice-score
- YOLO seems to provide very good results on infrared images
- Best performace is achieved if AI-based track detection is enhanced by domain knowledge

Thanks!

Challenges

- Size of dataset becomes often a limiting factor (disk, RAM, CPU)
- Refactoring existing approaches for lane detection proved difficult
- Organization of experiments
- A lot of custom code
- Resource intensive training despite HPC
- Working with HPC (scheduling, data transfer, versioning)
- Model tuning can take up to one week

Deep-learning based approach based on YOLOv8

In each step of the training process, the model is provided with labeled images

The model is evaluated on images from the validation set

Results per sensor

Labelling approaches

Tested YOLOv8 models

(b) Models with separate labels.

Frames of a video sequence

