Discrete Mathematics Recitation Class

Tianyu Qiu

University of Michigan - Shanghai Jiaotong University

Joint Institute

Summer Term 2020

Contents

Expansion of Numbers

Group

Relation

 $\mathbb{N} \to \mathbb{Z} \to \mathbb{Q}$

Ring & Field

Function & Sequence

 $\mathbb{Q} \to \mathbb{R}$

Division Algorithm

Division Algorithm

Linear Diophantine Equation (P183-P188)

Exercises

Groups

Group

Definitions(P115)

- 1. group (*G*,∘)
 - group set G
 - group Operation o
 - ightharpoonup associativity $(a \circ b \circ c = a \circ (b \circ c))$
 - unique identity element $(e_1 = e_1 \circ e_2 = e_2)$
 - unique inverse element $(y_2 = y_2 \circ e = y_2 \circ x \circ y_1 = e \circ y_1 = y_1)$
- 2. abelian: communitativity $(\forall x, y \in G, x \circ y = y \circ x)$

e.g.

- ▶ If (G, \circ) is a group, then $G \neq \emptyset$ (existence of identity) (P160).
- ▶ $X = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is linear with non-zero slope}\}$. Then (X, \circ) is a group that is not abelian.
- $X' = \{ f \in X \mid f \text{ is with no-zero intersection} \}$. Then (X, \circ) is not a group.
- $X'' = \{f \in X \mid f(0) = 0\}$. Then (X'', \circ) is an abelian group.

Group

Algebra in Groups

Lemma

Let (G, \circ) be a group. If $a, b, c \in G$ and $a \circ b = a \circ c$, then b = c.

Proof.

Let $a, b, c \in G$ and suppose that $a \circ b = a \circ c$. Now,

$$b = e \circ b = (a^{-1} \circ a) \circ b = a^{-1} \circ (a \circ b)$$

= $a^{-1} \circ (a \circ c) = (a^{-1} \circ a) \circ c = e \circ c = c$

Corollary

Let (G, \cdot) be a group and $a \in G$. If $a \circ a = a$, then a = e.

Relations

Definitions (P117)

- 1. relation: set of ordered pairs
- 2. a relation on set M
- domain
- 4. range

e.g.(DMA P575)

- $ightharpoonup R_1 = \{(a, b) | a \le b\}$
- $Arr R_2 = \{(a,b)|a>b\}$
- $ightharpoonup R_3 = \{(a,b)||a| = |b|\}$
- Arr $R_4 = \{(a, b) | a = b + 1\}$
- $ightharpoonup R_5 = \{(a, b) | a \mod 2 = b \mod 2\}$

Properties of Relations (P119)

Definitions We say a relation R on M is

- 1. reflexive: if $\forall a \in M, (a, a) \in R$.
- 2. symmetric: if $\forall a, b \in M, (a, b) \in R$, then $(b, a) \in R$.
- 3. antisymmetric: if $\forall a, b \in M, (a, b) \in Mand(b, a) \in R$, then a = b.
- 4. asymmetric: if $\forall a, b \in M, (a, b) \in R$, then $(b, a) \notin R$.
- 5. transitive: if $\forall a, b, c \in M, (a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

e.g.

- ▶ $R = \emptyset$ on \emptyset is reflexive, symmetric, antisymmetric, asymmetric and transitive. If $M \neq \emptyset$, then R is symmetric, antisymmetric, asymmetric and transitive.
- ► $R = \{(1,2),(3,4)\}$ is antisymmetric, asymmetric and transitive.

Equivalence Relations

Definition

Equivalence Relation on M(P119):

A reflexive, symmetric and transitive relation on M

e.g.(P120)

Define the *integer sum* I(n) as the sum of all integers that compose the number, e.g. l(125) = 1 + 2 + 5 = 8, l(78) = 7 + 8 = 15. Then the relation $R = \{(a, b) \in \mathbb{N}^2 : I(a) = I(b)\}$ is an equivalence relation on \mathbb{N} .

Equivalence Classes

Definitions(P121)

- 1. a partition of set A
- 2. equivalence class
- 3. representative

$$\mathcal{F}=\{[0],[1]\}$$
, where $2\mathbb{N}=[0],2\mathbb{N}+1=[1]$, is a partition of $\mathbb{N}.$

Theorem

Every partition ${\mathcal F}$ of M induces an equivalence relation \sim on a set M by

 $a \sim b :\Leftrightarrow a, b \in M$ are in the same equivalence class

Properties of Equivalence Classes (P123-P124)

Theorem

Every equivalence relation \sim on a set M induces a partition $\mathcal{F} = \{[a] : a \in M\} \text{ of } M \text{ by }$

$$a \in [b] :\Leftrightarrow a \sim b$$

We write $\mathcal{F} = M/\sim$.

Proof.

- 1. Prove that the union of all classes in \mathcal{F} is M.
- 2. Prove that all classes in \mathcal{F} is mutually disjoint (proof by contraposition).

\mathbb{N} to \mathbb{Z}

 $(\mathbb{N},+)$ and (\mathbb{N},\times) are not groups both because that they do not have inverse elements (P116).

Preparations before the expansion of numbers: (P125) Consider the set of ordered pairs

$$\mathbb{N}^2 = \{(n, m); n, m \in \mathbb{N}\}$$

 \mathbb{N} can be consider as a natural subset of \mathbb{N}^2 by replacing $n \in \mathbb{N}$ with $(n,0) \in \mathbb{N}^2$. Define the following equivalence relation on \mathbb{N}^2 :

$$(n,m)\sim(p,q)$$
 : \Leftrightarrow $n+q=m+p$

Construction of \mathbb{Z} (P126)

Group

- 1. Every pair of the form $(n,0) \in \mathbb{N}^2, n \in \mathbb{N}$ is in a different equivalence class of this partition. We denote these equivalence classes by $[+n] \ni (n,0)$.
- 2. Every pair of the form $(0, n) \in \mathbb{N}^2$, $n \in \mathbb{N}$ is in a different equivalence class of this partition. We denote these equivalence classes by $[-n] \ni (n, 0)$.
- 3. $\mathbb{Z} = \{ [+n] : n \in \mathbb{N} \} \cup \{ [-n] : n \in \mathbb{N} \setminus \{0\} \}$

Operations on \mathbb{Z}

Addition and Subtraction on \mathbb{Z} :(P127-P128) Addition on \mathbb{N}^2 is defined by (n, m) + (p, q) = (n + p, m + q) and

$$(n,m)+(0,0)=(n,m)$$
 $(n,m)+(p,q)=(p,q)+(n,m)$

which means that $(\mathbb{N}^2,+)$ is an abelian group, i.e. $(\mathbb{Z},+)$ is an abelian group. Subtraction(-) is then defined by

$$n-m=n+(-m)$$

Multiplication on \mathbb{Z} :(P130)

Based on $(m-n) \cdot (p-q) = m \cdot p + n \cdot q - m \cdot q - n \cdot p$, multiplication on \mathbb{N}^2 (i.e.) is defined by

$$(m, n) \cdot (p, q) := (m \cdot p + n \cdot q, m \cdot q + n \cdot p)$$

However, (\mathbb{Z},\cdot) is not a group still because that they do not have inverse elements.

We define the equivalence relation

$$(n,m) \sim (p,q) :\Leftrightarrow n \cdot q = m \cdot p$$

for $(n, m), (p, q) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$. Thus we denote the set of rational numbers by $\mathbb{Q} := \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ and \mathbb{Z} is considered as a subset of $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ by associating $n \leftrightarrow (n, 1)$. We identify a representative (n, m) with its class [(n, m)] and write

$$(n,m)=:\frac{n}{m}\in\mathbb{Q}$$

and the product and sum of two pairs of integers are defined by

$$(n,m)\cdot(p,q):=(n\cdot p,m\cdot q)$$

$$(n,m)+(p,q):=(n\cdot q+m\cdot p,m\cdot q)$$

\mathbb{Z} to \mathbb{Q} (P134)

- ▶ The neutral element of multiplication on $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ (i.e. on \mathbb{O}) is [(1,1)].
- \blacktriangleright Every element $[(n,m)] \in \mathbb{Q}$ except [(0,1)] has a multiplicative inverse

$$[(n,m)]^{-1} = [(m,n)]$$

- \triangleright ($\mathbb{Q},+$) is an abelian group.
- \triangleright (\mathbb{Q}, \cdot) is an abelian group.

Modulus of a rational numbers:

$$|a| := \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

Rings (P131-P132,P135)

Definitions

- 1. *ring*:
 - ▶ two binary operations + and ·.
 - existence of a multiplicative unit element
 - associativity
 - distributivity
- 2. communitativity
- 3. integral domain
- 4. *field*: $(F, +, \cdot)$ is a field if (F, +) and $(F \setminus \{0\}, \cdot)$ are abelian groups, $0 \neq 1$ and the law of distributivity holds.

 \mathbb{Q} is a field.

Group Relation $\mathbb{N} \to \mathbb{Z} \to \mathbb{Q}$ Ring & Field Function & Sequence $\mathbb{Q} \to \mathbb{R}$

Functions

Definitions

- 1. *function* (P138)
 - relation
 - uniqueness
- 2. injective functions (P139)
- 3. surjective functions (P139)
- 4. bijection: both injective and surjective (P139)
- 5. inverses & inverse functions (P140)

Sequence (P141-P142)

Definitions

Group

- 1. sequences of rational numbers
- 2. convergent sequences
- 3. Cauchy sequence

Since $|a_n - a_m| \le |a_n - a| + |a_m - a|$, every convergent sequence must be a Cauchy sequence, but not every Cauchy sequence of rational numbers converges.

Construction of \mathbb{R} (P144)

Group

Consider the set of all sequences in \mathbb{Q} that converge to a limit, denote this set by $\operatorname{Conv}(\mathbb{Q})$. Each sequence $(a_n) \in \operatorname{Conv}(\mathbb{Q})$ is associated uniquely to a number $a \in \mathbb{Q}$, namely its limit. Two sequences are said to be equivalent it they have the same limit, i.e.

$$(a_n) \sim (b_n) :\Leftrightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

which is an equivalence relation, and

$$\mathbb{Q} \simeq \mathsf{Conv}(\mathbb{Q})/\sim$$

Construction of \mathbb{R} (P145-P146)

Denote the Cauchy sequences of rational numbers as Cauchy(\mathbb{Q}) and two Cauchy sequences are equivalent if their difference converges to 0, i.e.

$$(a_n) \sim (b_n) :\Leftrightarrow \lim_{n \to \infty} (a_n - b_n) = 0$$

Thus

$$\mathbb{Q} \simeq \mathsf{Conv}(\mathbb{Q})/\sim \subset \mathsf{Cauchy}(\mathbb{Q})/\sim$$

and we can then define

$$\mathbb{R} := \mathsf{Cauchy}(\mathbb{Q})/\sim$$

which is the completion of \mathbb{Q} , and \mathbb{R} is also a field.

Division Algorithm (P149-P158)

Definitions

- quotient & remainder
- uniqueness (proof by contraposition)
- existence (proof by well-ordering principle)
- $ightharpoonup 0 \le r < |b|$
- divsor(factor) & multiple

Theorem

- 1. a|b and c|d implies ac|bd
- 2. a|b and b|c implies a|c
- 3. a|b with $b \neq 0$ implies $|a| \leq |b|$
- 4. a|b and a|c implies $a|(xb+yc)), \forall x, y \in \mathbb{Z}$

GCD, LCM & Bézout's Lemma

Definition

- greatest common divisor (two definitions (P159,P170))
- least common multiple (P180)

Theorem

(Bézout's Lemma) Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. Then there exists $x, y \in \mathbb{Z}$ such that gcd(a, b) = ax + by.

Proof.

P161-P163

Corollary

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. Then

$$T(a,b) = \{ n \in \mathbb{Z} : n = ax + by, x, y \in \mathbb{Z} \}$$

is the set of all integers multiples of gcd(a, b). (P163)

Relatively Prime Numbers (P164)

Definition

relatively prime: gcd(a, b) = 1

Theorem

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. Then a and b are relatively prime if and only if there exists $x, y \in \mathbb{Z}$ such that

$$ax + by = 1$$

Proof.

- 1. (⇒) Apply Bézout's Lemma
- 2. (\Leftarrow) Suppose that there exist x and y with ax + by = 1 and that d = gcd(a, b), then $d \mid (ax + by)$, i.e. $d \mid 1$, then d = 1.

Results from Bézout's Lemma

Corollary

(P165) If gcd(a, b) = d, then

$$gcd\left(\frac{a}{d},\frac{b}{d}\right)=1$$

Corollary

(P168) Let $a, b, c \in \mathbb{Z}$ with gcd(a, b) = 1. Then

$$a \mid c \text{ and } b \mid c \text{ implies } a \cdot b \mid c$$

Lemma

(Euclid's Lemma)(P169) Let $a, b, c \in \mathbb{Z}$ with gcd(a, b) = 1. Then

Euclidean Algorithm (P172-P179)

Lemma

Let
$$a, b, q, r \in \mathbb{Z}$$
 with $a = bq + r$, then $gcd(a, b) = gcd(b, r)$

Proof.

Let
$$d = \gcd(a, b)$$
 and $a = bq + r$, then $d \mid a - bq$, i.e. $d \mid r$.
Suppose that $c \mid b$ and $c \mid r$, then $c \mid bq + r$, i.e. $c \mid a$, which means that c is also a common divisor of a , b . Since $d = \gcd(a, b)$, then $c \leq d$ for any c that divides b and c . Thus $d = \gcd(b, r)$.

Lemma

Let
$$a, b \in \mathbb{Z}$$
 with $|a| + |b| \neq 0$ and $k \neq 0$. Then

$$gcd(ka, kb) = |k| \cdot gcd(a, b)$$

Linear Diophantine Equation

Definition

A Linear Diophantine Equation in two variables has the form

$$ax + by = c,$$
 $a, b, c \in \mathbb{Z}, |a| + |b| \neq 0$

with the solution pair $(x_0, y_0) \in \mathbb{Z}^2$ such that $ax_0 + by_0 = c$.

Theorem

The linear Diophantine Equation ax + by = c has solution(s) if and only if $d \mid c$, where $d = \gcd(a, b)$, furthermore, if (x_0, y_0) is a solution, then for any $t \in \mathbb{Z}$, we obtain all the solution pairs in the form of

$$x = x_0 + \frac{b}{d}t,$$
 $y = y_0 - \frac{a}{d}t$

Exercise

Find all solutions for the Linear Diophantine Equation:

$$12x + 34y = 56$$

Solution

Check whether solutions exist:

$$34 = 2 \times 12 + 10$$

 $12 = 1 \times 10 + 2$
 $10 = 5 \times 2$

thus gcd(12,34) = 2, 2|56. The equation has solutions.

Apply Euclidean Algorithm in reverse step:

$$2 = 12 - 1 \times 10 = 12 - 1 \times (34 - 2 \times 12) = 3 \times 12 - 34$$

We obtain $12 \times 3 - 34 = 2$.

▶ Multiplied by $\frac{c}{gcd(a,b)}$ to find the special solution (x_0,y_0) :

$$12 \times (3 \times 28) - 34 \times 28 = 2 \times 28 = 56$$

we obtain $(x_0, y_0) = (84, -28)$, thus all the solution pairs: