Translational Symmetry

Input:

- Primitive unit cell {nAtoms; coordinates, basis info}
- Lattice vector (real-space) {a₁, a₂, a₃}
- Repetition vector {n₁, n₂, n₃}

Output:

- Atoms in super-cell {nSpaceSymAtoms; coordinates, basis info, weight}
- Lattice vector (reciprocal-space) {b₁, b₂, b₃}
- Super-cell vector (real-space) {L₁, L₂, L₃}
- Volume

They might be reduced by space-group symmetry (not to be considered)

Point-Group Symmetry

Point-Group Symmetry

Input:

Primitive unit cell {nAtoms; coordinates, basis info}

Output:

- Symmetry-unique atoms in unit-cell {nSymAtoms; coordinates, basis info}
- Transformation matrix {real(nAO, nSO_iRep, nRep)}
- Symmetry object (C₁, C₅, C_i, C₂, C_{2v}, C_{2h}, D₂, D_{2h}) {nRep, nSO_iRep(*)}

Usage: lattice summation & Fock matrix construction

$$G_{\mu\nu} = \frac{1}{2} \sum_{\lambda\sigma} \sum_{\mathbf{T}} \sum_{\mathbf{Q}} P_{\lambda\sigma}^{\mathbf{Q}} \sum_{\mathbf{S}} [(\varphi_{\mu}^{\mathbf{0}} \varphi_{\nu}^{\mathbf{T}} \mid \varphi_{\lambda}^{\mathbf{S}} \varphi_{\sigma}^{\mathbf{S}+\mathbf{Q}}) - \frac{1}{2} (\varphi_{\mu}^{\mathbf{0}} \varphi_{\lambda}^{\mathbf{S}} \mid \varphi_{\nu}^{\mathbf{T}} \varphi_{\sigma}^{\mathbf{S}+\mathbf{Q}})]$$

$$F_{\mu'\nu'}^{irep} = \sum_{\mu\nu} C_{\mu'\mu}^{irep,\dagger} F_{\mu\nu} \widetilde{C}_{\nu\nu'}^{irep}$$

Indices in unit cell runs

 μ : AOs in symmetry-unique atoms

 $v \lambda \sigma$: AOs in all atoms

 $\mu'v'$: SA-AOs in irep symmetry group

Overall Structure

Called from main routine

- Primitive unit cell {nAtoms; coordinates, basis info}
- Lattice vector (real-space) {a₁, a₂, a₃}
- Repetition vector {n₁, n₂, n₃}

Returns

- Atoms in super-cell {nAtoms x nUnitCells; coordinates, basis info, weight}
- Lattice vector (reciprocal-space) {b₁, b₂, b₃}
- Volume
- Super-cell vector (real-space) {L₁, L₂, L₃}