Patent Application No. Sho61-63312 [March 19, 1986]
Japanese Patent Application Publication No. Sho62-217936
[September 25, 1987]
Examined Patent Application Publication No. Hei05-43215
[July 13, 1993]
Patent No. 1834969 [April 11, 1994]
Request for examination day: [November 6, 1991]
Bulletin issued date: []

Title of the Invention: ELECTROCARDIOGRAM ANALYSIS DEVICE Abstract

[Problem to be Solved] To provide an electrocardiogram analysis device that can help identification of an abnormal area in the heart, by predicting the electric potentials and their changes over time in respective areas on the epicardial surface based on the electric potentials and their changes over time observed by plural electrodes disposed on the body surface.

[Solution] Electric potentials f_{T1} , f_{T2} ,, f_{Tn} measured by electrodes 1 disposed in respective areas on the body surface are analogue-to-digital converted by an input section 2, and the resulting n-ary numeric vector $f_{\mathtt{T}}$ is inputted into a matrix multiplication section 4. In a preprocessing section information on the body surface, the epicardial surface, and their relative positions, and the electrode positions on the body surface, etc. is inputted from a geometry input section 9 into a boundary element mesh generating section 10, prior to operation by a solution finding section 3. The boundary element mesh generating section 10 generates a boundary element mesh on a model of the body surface and correspondingly on that of the epicardial surface based on the electrode positions on the body surface, and inputs the boundary element mesh, along with data on three-dimensional coordinates of each element, etc., into a matrix element calculation section 11. Based on the data inputted from the geometry input section 9 and the boundary mesh generating section 10, an output section 7 outputs for display, or stores, electric potentials in respective areas on the epicardial surface at each time point.

Applicant: 13-NEC Corp.
Inventor: Ken HAYAMI

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭62-217936

@Int.Cl.⁴

識別記号

庁内整理番号

④公開 昭和62年(1987)9月25日

A 61 B 5/04

3 1 2

A-7916-4C

審査請求 未請求 発明の数 1 (全6頁)

②発明の名称

心電図解析装置

②特 願 昭61-63312

愛出 願 昭61(1986)3月19日

包発 明 者 速 水

謙 東京都港区芝5丁目33番1号 日本電気株式会社内

5出 願 人 日本電気株式会社

東京都港区芝5丁目33番1号

②代 理 人 弁理士 内 原 晋

明細書

. 1. 発明の名称 心電図解析装置

2. 特許請求の範囲

入部と、前記前進代入部の出力と前記しU分解部の出力をもとに後退代入を行なう後退代入部と、前記後退代入部及び前記形状入力部及び前記境界要素メッシュ生成部の出力をもとに、心外膜面各部での電位の予測値を含むデータを出力する出力部とから構成される心電図解析装置。

3. 発明の詳細な説明

〔産菜上の利用分野〕

本発明は、例えば心臓病の患者に対して、代表 面各部の電位を計測するだけで心外膜面各部の電 位を的確に推定し、患部及び病因を固定するため の心電図解析装置に関する。

〔従来の技術〕

従来は、ロジャー シー. バー (Roger C.Barr) らによる "アイ・イー・イー・イー トランザクション オン バイオメディカルエンジニアリング, ビー・エム・イー2 4巻, 1番、1977年1月号" ("IEEE Transactions on Biomedical Engineering, vol. BME-24, 1/61, January 1977")

に掲載された論文に示されている様に、心外膜面 と体表面間の電気現象を積分方程式で定式化し、 それを心外膜面及び体表面をおおう三角形網によ り離散化し、連立一次方程式を解く事により、心 外膜面の電位分布から体表面の電位分布を求めて いた。

[発明が解決しよりとする問題点]

前記従来技術では、心外膜面の電位分布より体表面の電位分布を求める事はできるが、臨床上重要な、測定された体表面電位から心外膜面の電位分布を求める定式化はされていない。

また、体表面及び心外膜面をおおう離散化のための網は三角形網に限定されているため、体表面等の複雑な形状をより正確にとらえる、境界要素法で用いられる曲面要素、2次要素が用いられていないので、計算の精度が落ちると考えられる。

〔発明の目的〕 →161×191×191×1

体表面に設けた複数の電極で観測される電位及 びその時間変化より、心外膜面各部での電位及び その時間変化を予測することにより、心蔵におけ

の出力をもとに、心外膜面各部での電位の予測値 を含むデータを出力する出力部とから構成される 心電図解析装置が得られる。

[発明の原理]

第2図の心外膜面Hと体表面Tに囲まれる体内 Bにおいて誘電率・は一定で、電荷は存在しない と仮定し、心外膜面Hと体表面Tの形状及び相対 位置はわかっているものとする。

上記の仮定より第3図を参照すると、体内での 電位 φ(x,y,z) は3次元ラブラス方程式

$$d\varphi \equiv \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0 \tag{1}$$

を充す。また、

$$\Delta \varphi^*(\mathbf{x}, \mathbf{y}) = -\delta(\mathbf{x}, \dot{\mathbf{y}}) \tag{2}$$

の基本解
$$\varphi^*(\mathbf{x}, \mathbf{y}) = \frac{1}{4\pi r}$$
 (3)

但し、r=|r|,r=x-y とする。

Greenの公式

$$\int_{B} (v \, du - u \, dv) \, dV = \int_{T+H} (v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n}) \, dS \quad (4).$$

る異常な部分を同定する事を支援することのできる心電図解析装置を提供することにある。

[問題点を解決するための手段]

体表面の形状、体表面上の電極の位置、心外膜 面の形状及び相対位置に関するデータを入力する 形状入力部と、前記形状入力部から入力されたデ ータをもとに体表面及び心外膜面の境界要素メッ シュを生成する境界要素メッシュ生成部と、前記 形状入力部及び前記境界要素メッシュ生成部の出 カデータをもとに境界要素法の行列要素計算部と、 行列要素計算部の出力をもとに行列のLU分解を 行なうしU分解部と、体表面上の電極で観測され た電位を入力する入力部と、前記行列要素計算部 の出力データと前記入力部の出力データをもとに 行列とペクトルの乗算を行なう行列乗算部と、前 記行列乗算部の出力と前記しU分解部の出力をも とに前進代入を行なり前進代入部と、前記前進代 入部の出力と前配LU分解部の出力をもとに後退 代入を行なり後退代入部と、前記後退代入部及び 前記形状入力部及び前記境界要素メッジュ生成部

$$\tau v = \varphi$$
, $u = \varphi^* \ \xi \ \xi \ (1)$, (2), (3) $\xi \ b$

$$\int_{B} -\varphi(\mathbf{x}) \, \delta(\mathbf{x}, \mathbf{y}) \, dV(\mathbf{x})
= \int_{T+H} \varphi(\mathbf{x}) \frac{\partial \varphi^{*}}{\partial \mathbf{n}} (\mathbf{x}, \mathbf{y}) - \varphi^{*}(\mathbf{x}, \mathbf{y}) \frac{\partial \varphi(\mathbf{x})}{\partial \mathbf{n}} \, dS(\mathbf{x}) \quad (5)$$

低し、単位法線ベクトルπは体表面Tでは体の外向き、心外膜面Hでは心臓の内側向きにとる。 (3)より

$$\frac{\partial \varphi^*}{\partial \mathbf{n}}(\dot{\mathbf{x}}, \mathbf{y}) = -\frac{(\mathbf{r}, \mathbf{n})}{4\pi \mathbf{r}^2} \tag{6}$$

従って**y**が体表面Tまたは心外膜面H上にあると きは(5)は

$$C(y) \varphi(y) = \frac{1}{4\pi} \int_{\substack{T+H \\ (x \neq y)}} \left\{ \frac{(x, n)}{r^3} \varphi(x) + \frac{1}{r} \frac{\partial \varphi(x)}{\partial n} \right\} dS(x)$$

となる。但し

$$C(y) = \frac{\omega(y)}{4\pi} \tag{8}$$

yが体表面T上にあるときは、(7)は

特開昭62-217936(3)

$$4 \pi C(y) \varphi_{T}(y) = \int_{T} \left(\frac{(r,n)}{r^{3}} \varphi_{T} (x_{T}) + \frac{1}{r} \frac{\partial \varphi_{T}}{\partial n} (x_{T}) \right) dS(x_{T}) + \int_{H} \left(\frac{(r,n)}{r^{3}} \varphi_{H} (x_{H}) + \frac{1}{r} \frac{\partial \varphi_{H}}{\partial n} (x_{H}) \right) dS(x_{H})$$

$$(9)$$

yが心外膜面Hにある場合は

$$4 \pi C(y) \varphi_{H}(y) = \int_{T} \left\{ \frac{(r, n)}{r^{3}} \varphi_{T} (x_{T}) + \frac{1}{r} \frac{\partial \varphi_{T}}{\partial n} (x_{T}) \right\} dS(x_{T}) + \int_{H} \left\{ \frac{(r, n)}{r^{3}} \varphi_{H} (x_{H}) + \frac{1}{r} \frac{\partial \varphi_{H}}{\partial n} (x_{H}) \right\} dS(x_{H})$$

$$(10)$$

となる。但し φ_{T} , φ_{H} 等はそれぞれ体表面T上, 心外膜面Hの電位のを示す。

次に(9), (10)を離散化するために、体表面上, 心外膜面Hに各々n個の要素からなるメッシュを はる。例えば、第4図の様を三角形要素を設け、 i 要素の代表点 (例えば) 重心を yi とし、要素 の面積を 4Siとし、要素の中では 9の値は 9;と

なる様な三角形一定要素を考えると、(9), (10)は 近似的に(11),(12)となる。

つまり、体表面T上のy‐ (i=1~n)に対して

$$4 \pi C_{T_i} \varphi_{T_i} = \sum_{\substack{j=1 \ (j \neq i)}}^{n} \left\{ \frac{(r_{ji}; n_j)}{r^2} \right\} \varphi_{T_j}$$

$$+\frac{1}{r_{ji}}\left(\frac{\partial \varphi}{\partial n}\right)_{Tj}\right) \Delta S_{Tj} + \sum_{j=1}^{n} \left(\frac{(r_{ji}, n_{j})}{r_{ji}} \varphi_{Hj}\right) + \frac{1}{r_{ji}}\left(\frac{\partial \varphi}{\partial n}\right)_{Hj} \Delta S_{Hj}$$
(11)

心外膜面H上の ym (i=1~n)に対して

$$4 \pi C_{Hi} \varphi_{Hi} = \sum_{j=1}^{n} \left(\frac{(r_{ji}, n_{j})}{r_{ji}^{3}} \varphi_{Tj} + \frac{1}{r_{ji}} \left(\frac{\partial \varphi}{\partial n} \right)_{T_{j}} \right) \Delta S_{Tj}$$

$$+ \sum_{\substack{j=1\\(j\neq i)}} \left\{ \frac{(\mathbf{r}_{ji}, \mathbf{n}_{j})}{\mathbf{r}_{ji}^{3}} \ \varphi_{Hj} + \frac{1}{\mathbf{r}_{ji}} \left(\frac{\partial \varphi}{\partial \mathbf{n}} \right)_{Hj} \right\} \Delta S_{Hj}$$
(12)

となる。但し $C_i = C(y_i)$, $r_{ji} = x_{j-y_j}$, $r_{ji} =$ $|\mathbf{r}_{jj}|$ とする。 ここで $\mathbf{q}_{j} \equiv (\frac{\partial \varphi}{\partial \mathbf{n}})_{j}$ とし、

$$z z z q_i \equiv \left(\frac{\partial \varphi}{\partial n}\right)_i \xi L$$

$$\begin{array}{l} a_{1j}^{TT} \equiv \frac{(r_{j1},n_{j})\, d\,S_{Tj}}{4\pi C_{T1}\, r_{j1}^{2}} \quad , \quad b_{1j}^{TT} \equiv \frac{d\,S_{Tj}}{4\pi C_{T1}\, r_{j1}} \\ (i=1\sim n\,,\,j=1\sim n\,,\,j\neq i\,) \\ a_{1j}^{TT} \equiv b_{1}^{TT} = 0 \\ a_{1j}^{TT} \equiv \frac{(r_{j1},n_{j})\, d\,S_{Hj}}{4\pi C_{T1}\, r_{j1}^{2}} \quad b_{1j}^{TS} \equiv \frac{d\,S_{Hj}}{4\pi C_{T1}\, r_{j1}} \\ (i=1\sim n\,,\,j=1\sim n\,) \\ a_{1j}^{HT} \equiv \frac{(r_{j1},n_{j})\, d\,S_{Tj}}{4\pi C_{H1}\, r_{j1}^{2}} \quad b_{1j}^{HT} \equiv \frac{d\,S_{Tj}}{4\pi C_{H1}\, r_{j1}} \\ (i=1\sim n\,,\,j=1\sim n\,) \\ a_{1j}^{HT} \equiv \frac{(r_{j1},n_{j})\, d\,S_{Tj}}{4\pi C_{H1}\, r_{j1}^{2}} \quad b_{1j}^{HT} \equiv \frac{d\,S_{Tj}}{4\pi C_{H1}\, r_{j1}} \\ (i=1\sim n\,,\,j=1\sim n\,) \\ a_{1j}^{HT} \equiv \frac{(r_{j1},n_{j})\, d\,S_{Hj}}{4\pi C_{H1}\, r_{j1}^{2}} \quad b_{1j}^{HT} \equiv \frac{d\,S_{Hj}}{4\pi C_{H1}\, r_{j1}} \\ (i=1\sim n\,,\,j=1\sim n\,,\,j\neq i\,) \\ (i=1\sim n\,,\,j=1\sim n\,,\,j$$

 $+\sum_{ij}^{n} \left(a_{ij}^{TH} \varphi_{Hj} + b_{ij}^{TH} q_{Hj}\right)$

$$\begin{aligned} & \text{($i=1\sim n$)} \end{aligned} \tag{16} \\ & \varphi_{Hi} = \sum_{j=1}^{n} \left(a_{ij}^{HT} \varphi_{Tj} + b_{ij}^{HT} q_{Tj} \right) \\ & + \sum_{j=1}^{n} \left(a_{ij}^{HH} \varphi_{Hj} + b_{ij}^{HH} q_{Hj} \right) \\ & \text{($i=1\sim n$)} \end{aligned} \tag{17}$$

$$\varphi_{T} = \begin{pmatrix} \varphi_{T1} \\ \vdots \\ \varphi_{He} \end{pmatrix}, \qquad q_{T} = \begin{pmatrix} q_{T1} \\ \vdots \\ q_{Hn} \end{pmatrix},$$

$$\varphi_{H} = \begin{pmatrix} \varphi_{H1} \\ \vdots \\ \varphi_{Hn} \end{pmatrix}, \qquad q_{H} = \begin{pmatrix} q_{H1} \\ \vdots \\ q_{Hn} \end{pmatrix},$$

$$A^{TT} = \begin{pmatrix} a_{IJ}^{TT} \\ \vdots \\ \varphi_{Hn} \end{pmatrix}, \qquad B^{TT} = \begin{pmatrix} b_{IJ}^{TT} \\ \vdots \\ q_{Hn} \end{pmatrix},$$

$$A^{TT} = \begin{pmatrix} a_{IJ}^{TH} \\ \vdots \\ \varphi_{Hn} \end{pmatrix}, \qquad B^{TH} = \begin{pmatrix} b_{IJ}^{TH} \\ \vdots \\ q_{Hn} \end{pmatrix}$$
(18)

$$\varphi_{\mathrm{T}} = \mathbf{A}^{\mathrm{TT}} \, \varphi_{\mathrm{T}} + \mathbf{B}^{\mathrm{TT}} \, \mathbf{q}_{\mathrm{T}} + \mathbf{A}^{\mathrm{TH}} \, \varphi_{\mathrm{H}} + \mathbf{B}^{\mathrm{TH}} \, \mathbf{q}_{\mathrm{H}}$$
(19)

とかくと (16), (17) は

$$\varphi_{H} = A^{HT} \varphi_{T} + B^{TT} q_{T} + A^{HH} \varphi_{H} + B^{HH} q_{H}$$
 (20)

と表わせ、(19),(20)をほどめると

$$\begin{bmatrix} A^{TH} & B^{TH} \\ I_n - A^{HH} & -B^{HH} \end{bmatrix} \begin{bmatrix} \varphi_H \\ q_H \end{bmatrix} = \begin{bmatrix} I_n - A^{TT} - B^{TT} \\ A^{HT} & B^{HT} \end{bmatrix} \begin{bmatrix} \varphi_T \\ q_T \end{bmatrix}$$
(21)

を得る。

(21)を心外膜面の ρ_H , q_H に関して解くと、

$$\begin{bmatrix} \varphi_{H} \\ q_{H} \end{bmatrix} = \begin{bmatrix} A^{TH} & B^{TH} \\ I_{n} - A^{HH} & -B^{HH} \end{bmatrix}^{-1} \begin{bmatrix} I_{n} - A^{TT} - B^{TT} \\ A^{HT} & B^{HT} \end{bmatrix}$$

$$\begin{bmatrix} \varphi \\ \tau \\ q \\ \tau \end{bmatrix}$$
 (22)

ことで体表面は絶様境界と考えられるから、

$$q_{T_i} = \left(\frac{\partial \varphi}{\partial n}\right)_{T_i} = 0 \quad (i = 1 \sim n)$$
 (23)

つまり $q_T = 0$ となるから (22)より

$$\begin{bmatrix} \varphi_{H} \\ q_{H} \end{bmatrix} = \begin{bmatrix} A^{TH} & B^{TH} \\ I_{n} - A^{10H} - B^{10H} \end{bmatrix} \quad \begin{bmatrix} I_{n} - A^{TT} \\ A^{HT} \end{bmatrix} \quad \varphi_{T}$$
(24)

$$\varphi_{\mathrm{T}} = \begin{pmatrix} \varphi_{\mathrm{T}1} \\ \vdots \\ \varphi_{\mathrm{T}n} \end{pmatrix}$$
に行列
$$\begin{bmatrix}
\mathrm{In} - \mathrm{A}^{\mathrm{TT}} \\ & \\ & \mathrm{A}^{\mathrm{HT}}
\end{bmatrix}$$
をかけ、

さらに前進代ス(L^{-1})、 後退代ス(U^{-1})を行なり ことによりその時刻での心外膜面H各部での電位 P_H 、 そして必要ならば、表面Hの法線方向の電 界ー Q_H が n^2 のオーダーの計算量で求まる。 〔実施例〕

第1図は本発明の一実施例を示すプロック図である。同図において、体表面各部の電極1で測定された電位 φ_{T1} , φ_{T2} , ……, φ_{Tn} が入力部2でアナログ/ディンタル変換を受け、n 元の数値ベクトル φ_{Tn} として行列乗算部4 に入力される。

行列乗算部 4 は入力 9_T に対して 2 n 元のベク トル

$$\psi = \begin{bmatrix} I n - A^{TT} \\ A^{ilT} \end{bmatrix} \varphi_{T}$$
 (27)

を前進代入部5に入力する。前進代入部5は少に 対して前進代入を行いし、少を後退代入部6に入 を得る。

ことでA^{TT},ATH,A^{HT},A^{HH},BTH,B^{HH}は (14), (15)からもわかる様に、体表面Tと心外膜面Hが 定まり、体表面上の電極の位置に再ずくT上のメ ッシュとH上のメッシュが定まれば決まる。

従って例えばクラウト法により、

$$\begin{bmatrix} A^{TH} & B^{TH} \\ I_{II} - A^{HH} - B^{HH} \end{bmatrix} = L U$$
 (25)

の機に下三角行列Lと上三角行列Uの様に分解し ておけば、

$$\begin{bmatrix} \varphi_{H} \\ q_{H} \end{bmatrix} = U^{-1}L^{-1} \begin{bmatrix} In - A^{TT} \\ A^{HT} \end{bmatrix} \varphi_{T}$$

より、各時刻で体表面電位

力する。後退代入部 6 は L^{-1} ψ に対して後退代入 $U^{-1}(L^{-1}\psi)$ を行ない、心外膜面各部の推定電位 φ_H と、必要ならば $q_H=\frac{\partial \varphi_H}{\partial n}$ を出力部 7 に入力する。

前処理部8では、求解部3が動作する時前に、 体表面、心外膜面及びそれらの相対位置、また体 表面の電極位置等の情報が形状入力部9より境界 要素メッシュ生成部10に入力される。境界要素 メッシュ生成部10では、体表面の電極位置をも とに、体表面及びそれに対応して心外膜面のモデ ル上に境界要素のメッシュを生成し、各要素の 3 に入力する。行列要素計算部11では、各境界要 案 j , i 間のベクトル F _{ji} 、各要素の外向き単位 法線ペクトルng 、係数Cg などをもとに各要素 内の数値積分を行ない、n×nの行列ATT,ATH A^{HT}, A^{HH}, BTH, B^{HH} 等を生成し(式(14)~(18) 参照)それらの内A^{TT},A^{HT} を行列乗算部4に入 力し(式 (24)参照) ATH , A^{10H} , BTH , B^{HH} をしひ 解部12に入力する。LU分解部12は例えばク

特開昭62-217936(5)

ラウト法により行列

$$\begin{bmatrix} A^{TH} & B^{TH} \\ In - A^{HH} & -B^{HH} \end{bmatrix}$$
 (28)

を L U 分解 し ((25)式参照) 、 下三角行列 L を 前 進代入部 5 に入力し、上三角行列 U を 後退代入部 6 に入力する。

出力部7は、形状入力部9及び境界メッシュ生成部10から入力されたデータをもとに、各時刻の心外膜面各部での配位を出力表示または記録する。

〔発明の効果〕

以上述べた通り、本発明は体表面各部の電位の 観測値だけを用いて、簡単な計算により、高速に 各時刻での心外膜面各部での電位を予測する事に より、心臓の欠陥部位を従来の方法より正確且つ 簡単に同定するのに役立つ。

4. 図面の簡単な説明

第1図は本発明の一実施例を示すプロック図で

ある。第2図,第3図,第4図は本発明の原理を 説明するための体表面と心外膜面のモデルを示す ための図である。

1 ·····体表面の電極、2 ·····入力部、3 ·····変換部、4 ·····行列乗算部、5 ······前進代入部、6 ······後退代入部、7 ······出力部、8 ·····前処理部、9 ·····形状入力部、10 ·····境界要素メッシュ生成部、11 ·····行列要素計算部、12 ······LU分解部。

代理人 弁理士 内 原

第 3 図

