

SIC 3601 - Théorie du signal

Notations, précisions pour la suite

Dans toute la suite, on notera x(t), y(t)... (en minuscules) un signal a priori complexe, dépendant d'un paramètre t variant continûment (souvent le temps), X(f) sa transformée de Fourier (en majuscules) (dont le paramètre sera souvent la fréquence f), x_n un signal dépendant d'un paramètre n variant discrètement (souvent un temps discrétisé), X_k sa transformée de Fourier discrète, x^* le conjugué de x, γ les inter/autocorrélations, Γ les densités spectrales...

La rigueur mathématique sera plus ou moins respectée : les hypothèses des théorèmes seront en gros vérifiées dans les exos mais il n'est pas nécessaire d'en faire mention dans les copies (et dans cette fiche non plus du coup).

Caractérisation des signaux

Définition (Signal - Théorie du signal). C'est une grandeur (physique ou non) qui contient une **information**, et qui dépend d'un certain nombre de paramètres. On dit qu'un signal est à n dimensions s'il dépend de n paramètres.

Son traitement, c'est l'ensemble des éléments mathématiques présentés dans ce cours afin d'extraire l'information intéressante du signal. Cela nécessite une transformation en général¹.

Un signal peut être à temps ou amplitude discret ou continue.

- **Analogique**: temps et amplitude continus
- Échantillonné: temps discret, amplitude continue
- Quantifié: temps continu, amplitude discrète
- Numérique (ou digital²) : temps et amplitude discrets.
 - On étudiera surtout des signaux échantillonnés

Signaux déterministes - aléatoires

Définition (Signal déterministe). Signal représenté par une fonction (au sens mathématique) connue \rightarrow Étude via l'analyse classique.

Définition (Signal aléatoire). Représenté par une variable aléatoire inconnue → Probabilités. Représenterons le plus gros des signaux que l'on va étudier, mais surtout à la fin du cours.

^{1.} Dont celle de Fourier, mais pas que (car l'intégration sur \mathbb{R} (caractérisation globale) et la difficulté de synthèse à cause d'irrégularités locales notamment, limitent cette transformation). Il existe d'autres représentations.

^{2.} Ce terme est parfois aussi utilisé pour désigner un signal échantillonné... Faire attention aux abus de langages.

Opérations et généralités sur les signaux déterministes

Transformation de Fourier (revoir la fiche d'analyse si besoin)

Définition (Transformation de Fourier). On définit les différentes transformés suivantes :

Transformée à temps continu : Transformée de Fourier usuelle (notée aussi TF).

$$TF[x(t)](f) = X(f) \stackrel{\Delta}{=} \int_{\mathbb{R}} x(t)e^{-2i\pi ft}dt, d'inverse \ x(t) = \int_{\mathbb{R}} X(f)e^{2i\pi ft}df.$$

Pour les signaux T-périodiques, on a la décomposition en Série de Fourier :

$$x(t) = \sum_{k \in \mathbb{Z}} X_k e^{2i\pi k \frac{t}{T}}, \text{ où } \forall k \in \mathbb{Z}, X_k \stackrel{\Delta}{=} \frac{1}{T} \int_0^T x(t) e^{-2i\pi k \frac{t}{T}} dt .$$

Transformées à temps discret : Notée aussi TFTD. En notant $\tilde{f} \stackrel{\Delta}{=} \frac{f}{f_e} = fT_e$

la fréquence normalisée, alors :
$$\boxed{TFTD[x(t)](\tilde{f}) = X(\tilde{f}) \stackrel{\Delta}{=} \sum_{n \in \mathbb{Z}} x_n e^{-2i\pi \tilde{f}n}}, fonction 1-périodique, d'inverse x_n = \int_{-\frac{1}{2}}^{\frac{1}{2}} X(\tilde{f}) e^{2i\pi f n} d\tilde{f}.}$$

Lorsque que l'on parlera de temps discret, la fréquence utilisée sera toujours normalisée³ et appartiendra toujours à]-1,1[, attention aux intervalles d'intégration.

Transformée en z : C'est la série formelle X[z] d'indéterminée z et de domaine de convergence: $D_x = \{z \in \mathbb{C}, 0 \le R_1 < |z| < R_2 \le \infty\}$ définie par la relation:

$$\boxed{\forall z \in D_x, Tz(x_n)[z] = X[z] \stackrel{\Delta}{=} \sum_{n \in \mathbb{Z}} x_n z^{-n}}, \ et \ d'inverse \ x_k = \sum_j Res \left[X[z] z^{k-1}, p_j \right]}$$

Remarque: Ainsi, $X(\tilde{f}) = X[e^{2i\pi \tilde{f}}]$.

Notez les crochets, mais ne soyez pas choqués si le prof n'en met pas dans les sujets...

Transformée discrète : Notée aussi TFD (À ne pas confondre avec la TFTD), définie par :

$$TFD(x_n)_k = X_k \stackrel{\Delta}{=} \sum_{n=0}^{N-1} x_n e^{-2i\pi \frac{k}{N}n}, d'inverse \ x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{2i\pi \frac{k}{N}n}.$$

On l'étudiera plus en détail à la rentrée.

^{3.} Même s'il n'y a pas de ~ sur le f. Attention aux notations, les profs sont flemmards.

Propriétés importantes:

En général, ce qui est valable pour la TF est aussi valable pour les autres transformées, avec les écritures analogues le cas échéant.

Linéarité : Les différentes transformées de Fourier sont linéaires.

Symétrie : Si $\forall t \in \mathbb{R}, x(t) \in \mathbb{R}$, alors $TF[x(t)^*](f) = X(-f)^*$.

$$\operatorname{Tz}(x_{-n})[z] = X[z^{-1}], \operatorname{Tz}(x_n^*)[z] = (X[z^*])^*.$$

Involution: TF[TF[x(t)](f) = X(-f)

Théorème du retard, modulation: On a les propriétés duales 4 suivantes:

Théorème du retard : $TF[x(t-t_0)](f) = e^{-2i\pi f t_0}X(f)$ et $Tz(x_{n-n_0})[z] = z^{-n_0}X[z]$

Modulation : TF $\left[e^{2i\pi f_0 t} x(t)\right](f) = X(f - f_0)$

Changement d'échelle : $\forall a \in \mathbb{R}, \, \mathrm{TF}[x(at)](f) = \frac{1}{|a|} X(f/a)$

Dérivation : $\operatorname{TF}\left[\frac{dx(t)}{dt}\right](f) = 2i\pi f X(f)$

Convolution: En notant $x(t) * y(t) \stackrel{\Delta}{=} \int_{\mathbb{R}} x(s)y(t-s)ds = y(t) * x(t)$, on a :

$$TF[x(t) * y(t)](f) = X(f)Y(f) \text{ et } TF[x(t)y(t)](f) = X(f) * Y(f)$$

En notant
$$x_n * y_n \stackrel{\Delta}{=} \sum_{k \in \mathbb{Z}} x_k y_{n-k} = y_n * x_n$$
, on a : $\operatorname{Tz}(x_n * y_n)[z] = X[z]Y[z]$

Théorème de Parseval: Pour passer des propriétés temporelles aux fréquentielles:

$$E_x=\int_{\mathbb{R}}|x(t)|^2dt=\int_{\mathbb{R}}|X(f)|^2df,$$
 où E_x définit l'énergie du signal $x.$

 $\mathbf{\grave{A}}$ $\mathbf{conna\^{i}tre}$: Deux transformées "usuelles" (ou au moins utiles) :

 $TF[\Pi_T(t)](f) = Tsinc(\pi f T)$, où $\Pi_T = \mathbb{1}_{\left[-\frac{T}{2}, \frac{T}{2}\right]}$ (à savoir montrer)

 $\mathrm{TF}[\delta(t)](f)=1$, où $\delta(t)$ est définie plus bas.

$$\mathrm{TF}[\mathrm{III}_T(t)](f) = \frac{1}{T}\mathrm{III}_{\frac{1}{T}}(f), \text{ où } \mathrm{III}(t) = \textstyle\sum_{k \in \mathbb{Z}} \delta(t-kT).$$

Définition - Proposition (Impulsion de Dirac δ). En gros, on va l'utiliser comme une fonction nulle partout sauf en 0, et vérifiant les propriétés suivantes :

$$\forall a \in \mathbb{R}, \ \int_{\mathbb{R}} \delta(s-a) ds = 1 : son impulsion vaut 1$$

 $\delta(s) * x(s) = x(s)$: c'est le neutre du produit de convolution

$$x(s)\delta(s-a) = x(a)\delta(s-a)$$

^{4.} Dans le sens d'une correspondance entre les domaines temporel et fréquentiel via la transformée de Fourier.

POUGNES PHOENIX TSP

Énergie et puissance : Intercorrélation, Autocorrélation

Énergie⁵: Pour x à temps continu : $E_x \stackrel{\Delta}{=} \int_{\mathbb{R}} |x(t)|^2 dt = \int_{\mathbb{R}} |X(f)|^2 df$ (par Parseval). Pour x à temps discret : $E_x \stackrel{\Delta}{=} \sum_{n \in \mathbb{Z}} |x_n|^2$

Puissance 6 moyenne : Pour x à temps continu : $P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$

Pour x à temps discret : $P_x \stackrel{\Delta}{=} \lim_{M \to \infty} \frac{1}{2M+1} \sum_{n=-M}^M |x_n|^2$

(Remarque : Énergie finie ⇒ Puissance nulle)

Intercorrélations: On a les définitions suivantes (si les quantités en question sont finies)

— En énergie :

Pour x à temps continu :

$$\forall \tau \in \mathbb{R}, \gamma_{xy}^e(\tau) = \int_{\mathbb{R}} x(t) y^*(t-\tau) dt = x(\tau) * y^*(-\tau) = \langle x(.), y(.-\tau) \rangle$$

Pour x, y à temps discret : $\gamma_{xy}^e(k) \stackrel{\Delta}{=} \sum_{n \in \mathbb{Z}} x_n y_{n-k}^*$

— En puissance :

Pour x,y à temps continu : $\forall \tau \in \mathbb{R}, \gamma_{xy}^p(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T x(t) y^*(t-\tau) dt$

Pour x,y à temps discret : $\gamma_{xy}^p(k) \stackrel{\Delta}{=} \lim_{M \to \infty} \frac{1}{2M+1} \sum_{n=-M}^M x_n y_{n-k}^*$

L'intercorrelation entre deux signaux mesure le ressemblance (colinéarité) entre eux

Autocorrélation : $\gamma_x \stackrel{\Delta}{=} \gamma_{xx}$

Densités spectrales : La densité spectrale d'énergie/puissance est la transformée de Fourier de l'auto-corrélation en énergie/puissance : $\text{TFTD}[\gamma_x(k)] = \Gamma_x(\tilde{f})$, d'où notamment : $\text{\'energie/puissance} = \int\limits_{[0,1]} \Gamma_x(\tilde{f}) d\tilde{f} = \gamma_x(0)$

4

Échantillonnage - voir TD associé

Échantillonner un signal à temps continu x(t) consiste en la génération d'un signal $x_e(t)$ formé des successions des valeurs prises par x(t) en des instants dits d'échantillonnage.

Cet échantillonnage se fait à la période $T_e = \frac{1}{f_e}$, et on va étudier $x_e(t)$ en supposant dans la suite que les échantillons sont centrés en les $(t_k = kT_e)_{k \in \mathbb{Z}}$.

Théorie

On modélise ce signal par
$$x_e(t) \stackrel{\Delta}{=} \sum_{k \in \mathbb{Z}} x(kT_e)\delta(t-kT_e) = \sum_{k \in \mathbb{Z}} x(t)\delta(t-kT_e) = x(t) \coprod_{T_e} (t),$$

D'où, par le théorème de Plancherel :
$$X_e(f) = X(f) * \frac{1}{T_e} \coprod_{\frac{1}{T_e}} (f) = \frac{1}{T_e} \sum_{n \in \mathbb{Z}} X(f) * \delta(f - \frac{k}{T_e})$$

On obtient après calcul :
$$X_e(f) = \frac{1}{T_e} \sum_{k \in \mathbb{Z}} X(f - kf_e)$$

En pratique

Échantillonneur suiveur

On modélise ce signal par
$$x_{es}(t) \stackrel{\Delta}{=} \sum_{k \in \mathbb{Z}} x(t) \Pi_{\theta}(t - kT_e)$$

On obtient après calcul :
$$X_{es}(f) = \frac{\theta}{T_e} \sum_{n \in \mathbb{Z}} \operatorname{sinc}(\pi k f_e \theta) X(f - k f_e)$$

Échantillonneur bloqueur

On modélise ce signal par
$$x_{eb}(t) \stackrel{\Delta}{=} \sum_{k \in \mathbb{Z}} \Pi_{\theta}(t - kT_e) x(kT_e - \frac{\theta}{2})$$

On obtient après calcul :
$$X_{eb}(f) = \frac{\theta}{T_e} \operatorname{sinc}(\pi f \theta) \left[X(f) e^{-2i\pi f \frac{\theta}{2}} * \sum_{n \in \mathbb{Z}} \delta(f - k f_e) \right]$$

5

La suite à la rentrée