Further Studies on Heuristics

I. Search Efficiency of Heuristics

Recall: Heuristics for 8-puzzle

- $h_{mis}(s) = \# \text{misplaced titles} \in [0,8]$: Admissible.
- $h_{1stp}(s) = \#(1\text{-step move})$ to reach the goal configuration: Admissible.
- $\succ h_{1stp}(s) \ge h_{mis}(s) \Rightarrow h_{1stp}(s)$ is 'better' than $h_{mis}(s)$.

What does 'better' mean?

Dominance

- For admissible h_1 and h_2 , if $h_1(s) \ge h_2(s)$ for $\forall s$ $\Rightarrow h_1$ dominates h_2 and is more efficient for search.
- Theorem: For any admissible heuristics h_1 and h_2 , define $h(s) = \max\{h_1(s), h_2(s)\}$

h(s) is admissible and dominates both h_1 and h_2 .

• 'Better' heuristic = dominance = better search efficiency.

Even Better Dominance

• Question: Which one to choose from a collection of admissible heuristics h_1, \dots, h_m & none dominates any other?

• Answer: $h(s) = \max\{h_1(s), \dots, h_m(s)\}$ dominates all the others.

Quantify Search Efficiency

- Effective Branching Factor b^* : For a solution from A*, calculate b^* satisfying: $N = b^* + (b^*)^2 + \cdots + (b^*)^d$
 - N: #nodes of the solution,
 - d: depth of the solution tree.
 - E.g., A* finds a solution at depth 5 using 52 nodes $\Rightarrow b^* = 1.92$.
- Good heuristics have b^* close to $1 \Rightarrow$ large problems solved at reasonable computational cost.
- b^* quantifies search efficiency of heuristics.

Empirical: Factor b^*

- Aim: Compare h_1 and h_2 regarding the search efficiency.
- Setting: Generate 1200 random problems with $d = \{2, \dots, 24\}$ and solve them with IDS and A* with $h_1 \& h_2$.
- Note: IDS a baseline.

Empirical: Factor b^*

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	_	539	113	_	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Empirical: Factor b^*

	Search	h Cost (nodes g	generated)	Effective Branching Factor					
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$			
2	10	6	6	2.45	1.79	1.79			
6	• h_2 is 'better' than h_1 regarding search efficiency.								
8 10	• This goodness is reflected by b^* being closer to 1.								
12	• A* with h_2 performs much better than IDS.								
14 16	_	1301	211	_	1.45	1.25			
18	_	3056	363	_	1.46	1.26			
20	_	7276	676	_	1.47	1.27			
22	_	18094	1219	_	1.48	1.28			
24	_	39135	1641	_	1.48	1.26			

II. Generate Admissible Heuristics

We Know about Heuristics ...

- We know:
 - How to judge their admissibility.
 - How to compare their goodness regarding searching efficiency.

Question: How to produce such 'good' heuristics?

(1) Generate from Relaxed Problems

Where are h_{mis} & h_{1stp} from?

For 8-puzzle problem:

- Real Rule: A tile can only move to the adjacent empty square.
- Relaxed rules: h_{mis} and h_{1stp} are admissible
 - R1: A tile can move anywhere $\Rightarrow h_{mis}(s) = \#(\text{misplaced titles}).$
 - R2: A tile can move one step in **any direction** regardless of an occupied neighbour $\Rightarrow h_{1stp}(s) = \#(1\text{-step move})$ to reach goal.
- Optimal solutions to problems with R1, R2 are easier to find.

Relaxed Problem

- Relaxed problem: a problem with relaxed rules on the action.
- E.g. 8-puzzle problems with R1 and R2.

- Theorem: The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- No wonder h_{mis} and h_{1stp} are admissible.

(2) Generate from Sub-problems

Subproblem

- Subproblem
 - Task: get tiles 1, 2, 3 and 4 into their correct positions.
 - Relaxation: move them disregarding the others.
- Theory: cost*(subproblem)<cost*(original).
 - cost*(subproblem): the cost of the optimal solution of this subproblem.

Fig.1. A subproblem of 8-puzzle.

Subproblem and Admissible Heuristics

- Admissible $h_{sub}^*(s)$: estimate the cost from s to the subproblem goal.
 - E.g. $h_{sub}^{(1,2,3,4)}$ is the cost to solve the 1-2-3-4 subproblem.
- Theorem: $h_{sub}(s)$ dominates $h_{1stp}(s)$,
 - $h_{sub}(s) = max\{h_{sub}^{(1,2,3,4)}(s), h_{sub}^{(2,3,4,5)}(s), \dots\}.$

Disjoint Subproblems

- Question: Will the addition of heuristics from subproblem (1-2-3-4) and (5-6-7-8) give an admissible heuristic, considering the two subproblems are not overlapped?
- Answer: No, since they always share some moves.
- Question: What if not count those shared moves?
- Answer: $h_{sub}^{(1,2,3,4)}(s) + h_{sub}^{(5,6,7,8)}(s) \le c^*(s) \Rightarrow \text{admissible.}$
 - Disjoint pattern database

(3) Generate from Experiences

'Experience' Formulation

For 8-puzzle problem:

- Solve many 8-puzzles to obtain many examples.
- Each example consists of a state from the solution path and the actual cost of the solution from that point.
- These examples are our 'experience' for this problem.
- Question: How to learn h(s) from these experience?

Learn Heuristics from Experience

- Question: What are the good experience features?
- Answer: Relevant to predicting the states' cost to Goal, e.g.
 - $x_1(s)$: #(displaced tiles).
 - $x_2(s)$: #(pairs of adjacent tiles) that are not adjacent in Goal state.
- Question: How to learn h from those relevant experience features?
- Answer: (e.g.) Construct model as

$$h(s) = w_1 x_1(s) + w_2 x_2(s),$$

where w_1, w_2 are model parameters to learn from training data by a learning method such as neural networks and decision trees.