

Введение в нейробиологию и математические модели нейронов

Николай Ильич Базенков, к.т.н.

Институт проблем управления им. В.А. Трапезникова РАН

О чем этот курс

Нейроморфные вычисления — имитация принципов работы мозга для решения вычислительных задач.

- 1. <u>Аппаратные модели</u> самообучающиеся (on-chip learning) микросхемы, имитирующие сеть спайкующих нейронов (SNN).
- 2. <u>Программные модели</u> имитируют работу нервной системы на обычном компьютере.

Intel "Loihi" chip

"Cheetah" quadruped robot

https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html

Rutishauser, S. et.al. (2008). Passive compliant quadruped robot using central pattern generators for locomotion control. In 2008 2nd IEEE RAS & EMBS Int. Conf. Biomedical Robotics and Biomechatronics

Для кого этот курс

1. Все, кому интересно, как работает мозг☺

2. Исследователи-нейробиологи

3. Исследователи в ИИ, робототехнике и ML

План курса

- 1. Основы нейробиологии. Простые модели нейронов и синапсов
- 2. Биологически точные модели
- 3. Управление моторными ритмами. Нейроуправление в робототехнике
- 4. Управление движениями человека
- 5. Обучение и память
- 6. Принятие решений и обучение с подкреплением
- 7. Мозговые интерфейсы. Протезирование мозга. Приложения моделей

Система оценивания

```
Финал = 50% Проект + 40% Д3 + 10% Аудиторная работа
```

Контакты

n.bazenkov@yandex.ru

https://github.com/bazenkov/neuro-raai

Нервная система

Центральная нервная система:

- 1. <u>Головной мозг</u> (brain) сенсорные образы, эмоции, высокоуровневые команды
- 2. <u>Спинной мозг</u> (spinal cord) моторные команды

Периферическая нервная система:

Нервы и нервные узлы (ганглии), непосредственно соединенные с мышцами, внутренними органами, кожей

Нейроны

Нейрон на рисунках Рамона-и-Кахаля (1852 — 1934)

Нейроны состоят из:

- **1. Тела** (сомы)
- **2. Дендритов**, которые принимают сигналы от других нейронов
- **3. Аксона**, по которому сигнал распространяется к другим клеткам

Разнообразие нейронов

Пример. Устройство сетчатки

Мембранный потенциал

Мембрана — липидная оболочка, которая изолирует внутренности клетки от внешней среды.

Мембрана проницаема для некоторых ионов: K+, Na+, Cl-

Мембранный потенциал — электрический потенциал внутри мембраны по отношению к внешней среде.

Потенциал покоя — мембранный потенциал нейрона при отсутствии внешних воздействий.
Отрицателен, от -70 до -40 мВ

Сигналы в нервной системе

Нейроны способны принимать и передавать электрические и химические сигналы.

Виды электрических сигналов

<u>Градуальный потенциал</u> — плавный и локальный, «непрерывный». Распространяется на 1-2 мм

Сигналы в нервной системе

Потенциал действия (спайк) — «дискретный» нервный импульс, возникающий по принципу «все или ничего». ПД распространяется по аксону со скоростью около 120 м/с.

Синапсы

<u>Синапс</u> – соединение, с помощью которого один нейрон передает сигнал другому

Нейротрансмиттеры – химические вещества, которые высвобождаются в синапсе и, воздействуя на рецепторы мембраны, создают в ней локальный постсинаптический потенциал

Возбуждение и торможение

В зависимости от реакции рецепторов на высвобожденный нейротрансмиттер, постсинаптический потенциал может вырасти (деполяризация) или уменьшиться (гиперполяризация).

Это называют возбуждающими или тормозящими воздействиями.

Нейромодуляция

Помимо возбуждения и торможения, нейротрансмиттеры могут оказывать более сложные воздействия, которые меняют свойства синапсов или нейронов:

1. Синаптическая пластичность

Изменение синаптической проводимости, появление новых или отмирание старых синапсов.

Память и обучение обусловлены этим механизмом

2. <u>Нейронная пластичность</u>

Изменение мембранных или внутренних свойств нейронов: повышение или понижение возбудимости, появление новых рецепторов, изменение типа активности и др.

Кодирование в нервной системе

<u>Частота спайков</u> — основной способ кодирования информации в нервной системе.

Частота может соответствовать интенсивности воздействия, степени близости стимула к некоторому эталону и др.

Частотное кодирование и адаптация

- А. Неадаптирующийся нейрон. Частота спайков пропорциональна интенсивности стимула.
- В. Медленно адаптирующийся нейрон. Частота пропорциональна интенсивности, но падает со временем.
- С. Быстро адаптирующийся нейрон. Реагирует на сильные изменения стимула

Анатомическое кодирование

- Тип информации может кодироваться аксоном, по которому она пришла: сигнал от зрительного нерва будет интерпретироваться как зрительный, даже если он возник в результате давления на глаз.
- В моторной системе: конкретные нейроны «кодируют» движения конкретных мышц только потому что они связаны синаптически.
- Сложные признаки кодируются группами нейронов, где каждый реагирует на конкретный маленький компонент стимула.

Популяционное кодирование

Нейрон реагирует на близкие по характеристикам стимулы. Таким образом обеспечивается надежность

Временное кодирование

Признак кодируется паттерном спайков. Например, так кодируется направление звука в коре кошек

Middlebrooks, John C., et al. "A panoramic code for sound location by cortical neurons." *Science* (1994): 842-844.

Интеграция информации

Каждый нейрон сетчатки получает сигналы от ~100 фоторецепторов, реагируя на определенные паттерны освещенности

Интеграция информации в кортексе

Неокортекс обрабатывает сенсорную информацию, создавая сложные комбинированные образы из простых признаков.

Математические модели нейронов

<u>Феноменологические модели</u> – воспроизводят поведение, а не внутренние механизмы

<u>Биофизические модели</u> – стараются точно воспроизвести механизмы работы нейрона

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. on Neur. Networks

Простые модели нейронов

- 1. Постсинаптический потенциал
- 2. Уравнение пассивной мембраны
- 3. Модель integrate and fire
- 4. Реакция на внешние воздействия
- 5. Сравнение с живым нейроном
- 6. Модификации:
 - 1. I&F с адаптацией
 - 2. Нелинейная І& Г
- 7. Настройка параметров
- 8. Приложения

Простые модели нейронов

Будут рассматриваться только модели электрических свойств мембраны.

Модели описывают поведение нейрона как реакцию на входной ток.

Не затрагиваются механизмы синаптической передачи, внутриклеточные реакции, действие разных нейротрансмиттеров и т.д.

Постсинаптический потенциал

Два нейрона соединены синапсом.

Когда <u>пресинаптический</u> нейрон генерирует спайк, на мембране <u>постсинаптического</u> нейрона возникает добавочный <u>постсинаптический потенциал</u> (PSP –postsynaptic potential)

В простейшем случае нейрон суммирует синаптические сигналы

Электрическая схема пассивной мембраны

Мембрана = «дырявая изоляция»

Составляющие схемы:

С – емкость мембраны

R – сопротивление утечки

u_{rest} – потенциал покоя

I(t) – входной ток

u(t) – мембранный потенциал

Gerstner et.al. (2014) Neuronal Dynamics http://neuronaldynamics.epfl.ch/online/Ch1.html

Уравнение пассивной мембраны

Параллельное соединение резистора и конденсатора:

$$I\left(t\right) = I_R + I_C$$

Ток утечки (резистор):

$$I_R = \frac{u_R}{R} = \frac{u(t) - u_{rest}}{R}$$

Ток зарядки (конденсатор)

$$I_C(t) = \frac{dq}{dt} = \frac{d[Cu(t)]}{dt} = C\frac{du(t)}{dt}$$

Получаем:

$$I\left(t
ight) = rac{u\left(t
ight) - u_{\mathrm{rest}}}{R} + C\,rac{\mathrm{d}u}{\mathrm{d}t}$$

Динамика мембранного потенциала

$$au_{m}\,rac{\mathrm{d}u}{\mathrm{d}t}=-\left[u\left(t
ight)-u_{\mathrm{rest}}
ight]+R\,I\left(t
ight)$$

Постоянный ток $I(t) = I_0$ при $0 < t < t_0$:

$$u\left(t
ight) = u_{ ext{rest}} + R\,I_0\,\left[1 - \exp\!\left(-rac{t}{ au_m}
ight)
ight]$$

Нулевой ток I(t) = 0, начальный потенциал $u(t_0) = u_{rest} + \Delta u$, $t > t_0$

$$u\left(t
ight)-u_{\mathrm{rest}}=\Delta u\,\exp\!\left(-rac{t-t_{0}}{ au_{m}}
ight)$$

Генерация спайка

1. Когда мембранный потенциал достигает порога θ, нейрон генерирует спайк:

$$t^{(f)}: \quad u\left(t^{(f)}
ight) = artheta$$

2. Затем мембранный потенциал мгновенно опускается до u_r

$$au_{m}\,rac{\mathrm{d}u}{\mathrm{d}t}=-\left[u\left(t
ight)-u_{\mathrm{rest}}
ight]+R\,I\left(t
ight)$$
 (1)

$$au_m = R \, C$$

Уравнение (1) + условие (2) задают модель leaky integrate-and-fire

Реакция на постоянный и переменный сигнал

Сравнение с биологическими нейронами

Методика исследования модели

- 1. В нейрон вводится электрод. Подается ток I(t), записывается мембранный потенциал u(t)
- 2. По записанным показаниям подбираются параметры модели
- 3. Полученная модель используется для предсказания активности на новом входном сигнале

Виды активности нейронов

Модель leaky integrate-and-fire задает поведение нейрона **без памяти**.

- (A) Fast spiking описывается моделью
- (B) Stuttering (заикающийся) neuron
- (C) Regular spiking нейрон медленно адаптируется к входному току, увеличивая интервалы между спайками
- (D) Post-inhibitory rebound spike спайк после снятия тормозящего тока

Модификация модели: адаптация порога

Добавим изменение порога. Порог увеличивается на θ после каждого спайка.

 $\mathsf{t}^{(\mathsf{f})} = \mathsf{t}^{(\mathsf{1})}, \mathsf{t}^{(\mathsf{2})}, \mathsf{t}^{(\mathsf{3})}$ — моменты активации нейрона

$$au_{ ext{adapt}}rac{\mathrm{d}}{\mathrm{d}t}artheta\left(t
ight) = -\left[artheta\left(t
ight) - artheta_{0}
ight] + heta\sum_{f}\delta\left(t - t^{(f)}
ight)$$

Модель с переменным порогом неплохо предсказывает активность реального нейрона:

Возможности модели I&F

Воспроизводит следующие характеристики нейронов:

- 1. Базовый механизм суммирование входных воздействий, генерация спайков при превышении порога
- 2. Зависимость частоты спайков от интенсивности воздействия

Не воспроизводит:

- 1. Механизм возникновения и распространения спайка
- 2. Разнообразие видов активности

Простая модель синапса

Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. *Neural computation*, *11*(7), 1621-1671.

Сети простых I&F нейронов

Мембранный потенциал
$$au\dot{V}_i(t) = -V_i(t) + RI_i(t)$$

нейронов

$$RI_i(t) = \tau \sum_j J_{ij} \sum_k \delta(t - t_j^k - \delta)$$

R – сопротивление мембраны

т – постоянная времени

 ${\sf J}_{\sf ii}$ — амплитуда постсинаптического потенциала.

 J_{ij} = J_{ext} >0 для возбуждающих синапсов

 J_{ii} =J<0 Для тормозящих синапсов

 $\delta(t)$ — дельта-функция

δ – задержка возбуждения/торможения

 $t_{j}^{\;k}$ – время возникновения спайка k на нейроне j

Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. *Neural computation*, 11(7), 1621-1671.

Синхронизация

Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. *Neural computation*, 11(7), 1621-1671.

Приложения модели I&F

Моделирование сетей, где не важны внутренние детали нейронов, но важна структура связей и вычислительная простота

Delahunt, C. B., Riffell, J. A., & Kutz, J. N. (2018). Biological Mechanisms for Learning: A Computational Model of Olfactory Learning in the Manduca sexta Moth, with Applications to Neural Nets. *arXiv preprint arXiv:1802.02678*

Заключение

- 1. Нейроны взаимодействуют, генерируя электрические и химические сигналы
- 2. Потенциал действия (спайк) возникает на мембране и распространяется по аксону
- 3. Сигналы от нейрона к нейрону передаются в синапсах
- 4. Модель integrate and fire воспроизводит генерацию регулярных спайков при внешнем воздействии и восстановление потенциала покоя при отсутствии воздействия
- 5. Внутренние механизмы работы и сложные паттерны активности моделируются нелинейными модификациями I&F или биофизическими моделями
- 6. Сети из I&F нейронов используются для задач, где важны вычислительная простота и структура связей

Нейроморфное управление локомоцией

На основе принципов работы нервной системы создать сеть, управляющую движениями робота.

- управление походкой на ровной поверхности
- восприятие учет препятствий и изменений рельефа
- адаптация перестройка сети при отказе сенсоров или актуаторов

Объекты управления:

- 1) Модель робота BipedalWalker в OpenAl Gym
- 2) Модели в среде MuJoCo
- 3) Мышечно-скелетная модель человека в OSIM-RL (advanced)

Источники:

- Russell, A., Orchard, G., & Etienne-Cummings, R. (2007, May).
 Configuring of spiking central pattern generator networks for bipedal walking using genetic algorithms.
- Knüsel, J. et.al. (2020). Reproducing five motor behaviors in a salamander robot with virtual muscles and a distributed CPG controller regulated by drive signals and proprioceptive feedback. Frontiers in neurorobotics, 14.
- 3. Google Scholar по ключевым словам "walk CPG", "locomotion control", ...

Нейроморфный ПИД регулятор

Создать систему управления БПЛА (или другим объектом по вашему выбору) на основе нейроморфных вычислений.

Объект управления:

Симулятор БПЛА https://github.com/wil3/gymfc/

Источники:

Stagsted, R., Vitale, A., Binz, J., Bonde Larsen, L., & Sandamirskaya, Y. (2020, July). Towards neuromorphic control: A spiking neural network based PID controller for UAV. RSS.

Распознавание образов

Реализовать классификатор изображений (или других объектов) на основе сети спайкующих нейронов.

- 1. Выбрать датасет
- 2. Реализовать сеть I&F нейронов с синаптической пластичностью
- 3. Обучить сеть с учителем задача классификации
- 4. Обучить без учителя задача кластеризации

- 1. Stewart, K., Orchard, G., Shrestha, S. B., & Neftci, E. (2020, August). On-chip few-shot learning with surrogate gradient descent on a neuromorphic processor.
- 2. MNIST Handwritten Digits http://yann.lecun.com/exdb/mnist/
- 3. Датасет на выбор

Исследование нестандартной топологии сети

В сети спайкующих нейронов исследовать возникновение синхронных колебаний. Создать сеть с нетривиальной топологией: scale-free, small-world или что-то другое.

Исследовать, какое влияние на синхронизацию оказывает расположение нейрона в сети.

Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrateand-fire neurons with low firing rates. *Neural computation*, 11(7), 1621-1671.

Ассоциативная память в сети осцилляторов

Образы могут кодироваться не только отдельными нейронами, но установившимися устойчивыми колебательными режимами.

Реализовать такое кодирование в сети спайкующих нейронов

Izhikevich, E. M. (1999). Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory. *IEEE Transactions on Neural Networks*, *10*(3), 508-526.