# Introduction to Bayesian inference

2018.06.04

杜岳華

#### Outline

- Bayes' theorom
- Bayesian inference
- Maximum likelihood estimation
- Maximum a posteriori
- Markov chain Monte Carlo

# Bayesian statistics



Thomas Bayes (1701–1761)

# **Conditional Probability**

$$P(y \mid x) = \frac{P(x,y)}{P(x)}$$

$$P$$
(好心情  $\mid$  晴天 $)=rac{P(晴天,ar{y}\circ^{\dag})}{P(晴天)}$ 



# Description of cause-effect

$$P(y \mid x)$$
  $x \rightarrow y$   $太 \rightarrow \mathbb{R}$   $ex.$  晴天  $\rightarrow$  好心情

#### Bayes' theorom

$$egin{aligned} P(y \mid x) &= rac{P(x,y)}{P(x)} \ P(x,y) &= P(x)P(y \mid x) \ &= P(y)P(x \mid y) \end{aligned}$$

#### Bayes' theorom

$$P(y \mid x) = \frac{P(y)P(x|y)}{P(x)}$$

檢驗方法

| 疾病\檢驗 | 陽性 (+) | 陰性 (-) | Total |
|-------|--------|--------|-------|
| 有病(T) | 89     | 11     | 100   |
| 沒病(F) | 9      | 152    | 161   |
| Total | 98     | 163    | 261   |

疾病 → 檢驗

| 疾病\檢驗 | 陽性 (+) | 陰性 (-) | Total |
|-------|--------|--------|-------|
| 有病(T) | 0.340  | 0.043  | 0.383 |
| 沒病(F) | 0.035  | 0.582  | 0.617 |
| Total | 0.375  | 0.625  | 1.0   |

P(疾病,檢驗)

對病人來說,檢驗結果為陽性,有多少機率是有 病?

$$P($$
疾病  $= T \mid$ 檢驗  $= +)$   $= ?$   $P(T \mid +) = rac{P(T)P(+\mid T)}{P(+)}$   $P(T \mid +) = rac{P(T)P(+\mid T)}{P(T)P(+\mid T)+P(F)P(+\mid F)}$ 

| 疾病\檢驗 | 陽性 (+) | 陰性 (-) | Total |
|-------|--------|--------|-------|
| 有病(T) | P(T,+) |        | P(T)  |
| 沒病(F) |        |        | P(F)  |
| Total | P(+)   | P(-)   | 1.0   |



$$P(T \mid +) = rac{P(T)P(+ \mid T)}{P(T)P(+ \mid T) + P(F)P(+ \mid F)}$$
 $P(T \mid +) = rac{0.383 \times P(+ \mid T)}{0.383 \times P(+ \mid T) + 0.617 \times P(+ \mid F)}$ 
 $P(T \mid +) = rac{0.340}{0.340 + 0.035}$ 
 $P(T \mid +) = 0.907$ 

對病人來說,檢驗結果為陰性,有多少機率是沒 病?

$$P(疾病 = F \mid 檢驗 = -)=?$$

$$P(F \mid -) = rac{P(F)P(-\mid F)}{P(T)P(-\mid T) + P(F)P(-\mid F)}$$
 $P(F \mid -) = rac{0.617 imes P(-\mid F)}{0.383 imes P(-\mid T) + 0.617 imes P(-\mid F)}$ 
 $P(F \mid -) = rac{0.582}{0.043 + 0.582}$ 
 $P(F \mid -) = 0.931$ 

#### **Bayesian Inference**

$$egin{array}{c|c} x 
ightarrow y \ P(y \mid x) = rac{P(y)P(x \mid y)}{P(x)} \end{array}$$

## Bayesian Inference

$$P(Model \mid Data) = rac{P(Model)P(Data \mid Model)}{P(Data)}$$

$$Posterior = rac{Prior imes Likelihood}{Evidence}$$

#### **Prior distribution**

先驗機率

在看過資料或證據**之前**的假設或信念 獨立於資料或證據的 P(Model)P(Model = 1), P(Model = 2)...

#### Posterior distribution

後驗機率

在看過資料或證據**之後**的假設或信念 依賴資料或證據的  $P(Model \mid Data)$ 

#### Evidence

證據

考慮所蒐集到的證據多寡 Normalizing factor P(Data)

### Likelihood (function)

可能性

根據這些 model,有多少的可能性可以符合這些 data  $P(Data \mid Model)$ 

#### Maximum likelihood estimation

$$P(Data \mid Model)$$

$$\mathcal{L}(\theta) = P(X \mid \theta)$$

找出一個 model,讓符合這些 data 的可能性最大

#### Maximum likelihood estimation

找出一個 model,讓符合這些 data 的可能性最大 $arg\,max_{ heta}\,\mathcal{L}( heta)$ 

#### Maximum likelihood estimation

實務上,為了計算方便

 $arg max_{ heta} \, \log \mathcal{L}( heta)$ 

### Maximum a posteriori

$$P(Model \mid Data) = rac{P(Model)P(Data \mid Model)}{P(Data)}$$

$$Posterior = rac{Prior imes Likelihood}{Evidence}$$

最大化後驗機率的 model

## Maximum a posteriori

跟 MLE 的差別?

Prior distribution! 希望加入人類知識進行運算

# Markov chain Monte Carlo method

- 一種 sampling method,是一類方法的總稱
  - Metropolis-Hastings method
  - Gibbs sampling
  - Slicing method
  - Hamiltonian Monte Carlo (HMC)
  - No-U-Turn Sampler (NUT, 2011)

# Markov chain Monte Carlo method

我沒有要講

# Q&A

