

Métodos de Estimación

- Métodos de Estimación: métodos que nos permiten aproximar o inferir el valor de una característica desconocida de interés de una población a partir de una muestra aleatoria de dicha población.
- Existen dos abordajes: la estimación puntual y la estimación por intervalos.

Métodos de estimación puntual y por intervalos

- Con los métodos de estimación puntual buscamos dar un único valor para la característica de interés que desconocemos.
- Con los métodos de estimación por intervalos buscamos dar un rango de valores donde esperamos que esté la característica desconocida con un cierto nivel de confianza.

¿Qué tenemos y qué queremos?

Información

• Muestra aleatoria: X_1, \ldots, X_n variables aleatorias i.i.d. con distribución $F: X_i \sim F$

Objetivo

 Característica de interés de F: la esperanza o media, la varianza, o los cuantiles. También podría ser la función de distribución acumulada o la función de densidad, entre otras.

Ejemplo: Cuantiles

- Población: F = F_X, donde X = cantidad de anticuerpos IgG e IgM en un individuo 20 días después de la segunda dosis de vacuna contra COVID.
- Características de interés: $F^{-1}(p)$ cuantiles de la distribución.
- Muestra aleatoria: X_1, \ldots, X_n donde X_i = cantidad de anticuerpos del i-ésimo paciente.
- Datos:

Métodos de Estimación Puntual

Estimador puntual: ¿Qué es un estimador puntual?

- Ingredientes: variables aleatorias independientes e idénticamente distribuidas X_1, \ldots, X_n con distribución F y $\theta = \theta(F)$ una característica desconocida de interés.
- **Objetivo**: Estimar θ (o una función $q(\theta)$).
- Un estimador puntual de θ es una función de X_1, \ldots, X_n . Por convención, un estimador de θ se denota $\widehat{\theta}$ o $\widehat{\theta}_n$. Se tiene entonces que para cierta g:

$$\widehat{\theta} = \widehat{\theta}_n = g(X_1, \dots, X_n)$$

Nota: Un estimador es una variable aleatoria.

Estimación puntual: ¿Qué es una estimación de θ ?

- Una estimación de θ es el valor observado de un estimador $\widehat{\theta}$ cuando éste es evaluado en los datos.
- ullet Es una realización de $\widehat{ heta}$: $\widehat{ heta}_{obs}$.

$$\widehat{\theta}_{obs} = \widehat{\theta}_{n,obs} = g(x_1, \dots, x_n)$$

donde x_1,\ldots,x_n es una realización de X_1,\ldots,X_n

Como ya habíamos visto...

- Muestra: $(X_i)_{i\geq 1}$ i.i.d. $X_i\sim F,\ F\in\mathcal{F}$ familia de distribuciones posibles para nuestro problema
- **Objetivo**: inferir *algo relacionado* con el mecanismo que genera los datos:
 - $\mathbb{P}_F(X_1 \leq 20)$
 - F
 - $\mathbb{E}_F(X_1)$
 - $\mathbb{V}_F(X_1)$
- ¿Cómo estimaríamos para cada uno de los objetivos planteados?

 \implies ¿ Qué sabemos de F?

Algunos ejemplos

- Bernoulli: surge naturalmente en caso de variables binarias.
- Poisson: suele usarse para modelar procesos de conteo
- Normal: Modelo de Posición: $X_i = \theta + \epsilon_i$ Uso y abuso: suele asumirse que los errores tienen distribución normal con $\mathbb{E}(\epsilon_i) = 0$.
- Gamma: El tiempo de hospitalización de un paciente suele modelarse con una distribución Gamma $\Gamma(\alpha,\lambda)$

Modelos Paramétricos

Casos Discretos

- Bernoulli: $X \sim \mathcal{B}(\theta)$ $p(x,\theta) = \theta^x (1-\theta)^{1-x}$, x = 0,1, $\theta \in \Theta = (0,1)$.
- Poisson: $X \sim \mathcal{P}(\theta)$ $p(x,\theta) = e^{-\theta} \; \theta^x/x!, \; x \in \mathbb{N} \cup \{0\} \; \theta \in R_{>0}$

$$\mathcal{F} = \{ p(\cdot, \theta) , \theta \in \Theta \}$$
.

Modelos Paramétricos

Casos Continuos

- Uniforme: $X \sim \mathcal{U}(0, \theta)$ $f(x, \theta) = \frac{1}{\theta} \mathcal{I}_{[0,\theta]}(x), \ \theta \in \Theta = \mathbb{R}_{>0}.$
- Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$ $f(x, \theta) = (2\pi\sigma^2)^{-1/2} e^{-(x-\mu)^2/2\sigma^2}, \ \theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_{>0}$
- Gamma: $X \sim \Gamma(\alpha, \lambda)$ $f(x, \alpha, \lambda) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} \mathcal{I}_{[0,\infty)}(x),$ $\theta = (\alpha, \lambda) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}.$

$$\mathcal{F} = \{ f(\cdot, \theta) , \theta \in \Theta \} .$$

Modelos No Paramétricos

Asumimos que \mathcal{F} pertenece a una familia de distribuciones que no pueden ser indexadas por una cantidad finita de parámetros.

- $\mathcal{F} = \{ \text{distribuciones continuas} \}$
- $\mathcal{F} = \{ \text{distribuciones con densidad simétrica alrededor de 0} \}$
- $\mathcal{F} = \{ \text{distribuciones con media y varianza finitas} \}$

Vamos a abordar el enfoque paramétrico

 \mathcal{F} es una familia paramétrica $\mathcal{F} = \{f(\cdot,\theta)\;, \theta \in \Theta\}$

- Una $F \sim \mathcal{F}$ es de la forma $F(\cdot, \theta)$, por lo tanto para identificarla solo necesitamos conocer θ .
- En este caso, θ está relacionada con características de interés de la distribución tales como esperanza o varianza:
 - Bernoulli: $X \sim \mathcal{B}(\theta)$, $\mathbb{E}_{\theta}(X) = \theta$, $\mathbb{V}_{\theta}(X) = \theta(1 \theta)$
 - Gamma: $X \sim \Gamma(\alpha, \lambda)$ $\theta = (\alpha, \lambda), \ \mathbb{E}_{\theta}(X) = \alpha/\lambda, \ \mathbb{V}_{\theta}(X) = \alpha/\lambda^2$

Métodos de estimación en modelos paramétricos

Veremos en principio dos métodos:

- Método de los Momentos
- Método de Máxima Verosimilitud

Método de los Momentos: ¿Qué son los momentos?

• Momentos Poblacionales: Sea $X \sim F$ una v.a. Llamamos momento (poblacional) de orden k o k-ésimo momento de X, si la esperanza existe, a

$$\mu_k = \mathbb{E}_F(X^k)$$

• Momentos Muestrales: Sea X_1, \ldots, X_n una muestra aleatoria. Llamamos momento muestral de orden k o k-ésimo momento muestral de X_1, \ldots, X_n a

$$\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

¿Qué relación guarda con \widehat{F}_n ? $\mathbb{E}_{\widehat{F}_n}(X) = ?$

Motivación para los Momentos

• k-ésimo momento $\mu_k = \mathbb{E}_F[X^k]$, $X \sim F$

$$\mu_1 = \mathbb{E}_F[X]$$

$$\mu_2 = \mathbb{E}_F[X^2]$$

Motivación para los Momentos

• k-ésimo momento $\mu_k = \mathbb{E}_F[X^k]$, $X \sim F$

$$\mu_1 = \mathbb{E}_F[X]$$

$$\mu_2 = \mathbb{E}_F[X^2]$$

• k-ésimo momento muestral $\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$, X_1, \ldots, X_n , i.i.d., $X_i \sim F$.

Por la LGN, sabemos que si las esperanzas existen

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mu_1 = \mathbb{E}_F[X]$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{P} \mu_2 = \mathbb{E}_F[X^2]$$
....
$$\frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{P} \mu_k = \mathbb{E}_F[X^k]$$

Ejemplos: Normal

Supongamos que X_1, X_2, \ldots, X_n i.i.d. $X_i \sim \mathcal{N}(\mu, \sigma_o^2)$, σ_o^2 conocida. En este caso $\theta = \mu$, que coincide con μ_1 .

- Utilizando la LGN, tenemos que $\bar{X}_n \stackrel{P}{\longrightarrow} \mu = \mu_1$, cuando $X_i \sim \mathcal{N}(\mu, \sigma_o^2)$ cualquiera sea $\mu \in \mathbb{R}$.
- nuestro parámetro de interés es $\theta=\mu_1$
- ullet estimamos a μ por $\widehat{\theta}=\bar{X}_n$

Ejemplos: Uniforme

Supongamos que X_1, X_2, \ldots, X_n i.i.d., $X_i \sim \mathcal{U}(0, \theta)$.

- ullet sabemos que $\mu_1=\mathbb{E}_{ heta}(X_i)=rac{ heta}{2}$
- $\theta = 2 \mu_1$, es decir $\theta = h_1(\mu_1)$
- el método de momentos propone

$$\widehat{\theta} = h_1(\widehat{\mu}_1)$$

ullet estimamos a heta por $\widehat{ heta}=h_1(ar{X}_n)$

$$\widehat{\theta} = 2\bar{X}_n$$

Método de los Momentos

Sea X_1, X_2, \ldots, X_n una m.a. de una distribución con función de distribución F_{θ} .

• Si $\mu_1 = E_{\theta}\left(X_i\right)$ es $\theta = h_1(\mu_1)$, el estimador de momentos de θ basado en el primer momento es el valor $\widehat{\theta}$ tal que

$$\widehat{ heta} = h_1(\widehat{\mu}_1)$$
 donde $\widehat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i$

• Si $\mu_k = E_{\theta}\left(X_i^k\right)$ es $\theta = h_k(\mu_k)$, el estimador de momentos de θ basado en el k-ésimo momento es el valor $\widehat{\theta}$ tal que

$$\widehat{\theta} = h_k(\widehat{\mu}_k)$$
 donde $\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

•

Ejemplos: Exponencial

• Tarea 1:

Supongamos que $X \sim \mathcal{E}(\theta)$. ¿Cómo estimamos a θ a partir de una muestra aleatoria $X_1 \dots X_n$ usando el método de los momentos?

¿Qué momentos usamos?

• Tarea 2 :

Explorar el caso X_1, X_2, \dots, X_n i.i.d., $X_i \sim \mathcal{U}(-\theta, \theta)$.

- ¿Sirve el primer momento? ¿Da información sobre θ ?
- ¿Qué obtenemos si usamos el segundo momento?

.

Estimadores de Momentos: ¿y cuándo tenemos varios parámetros?

Supongamos que tenemos dos parámetros θ_1,θ_2 y que pueden ser expresados en función de los dos primeros momentos, μ_1 y μ_2 , como

$$\theta_1 = h_1(\mu_1, \mu_2)$$

$$\theta_2 = h_2(\mu_1, \mu_2)$$

entonces los estimadores del método de los momentos (el primero y el segundo) son

$$\widehat{\theta}_1 = h_1(\widehat{\mu}_1, \widehat{\mu}_2)
 \widehat{\theta}_2 = h_2(\widehat{\mu}_1, \widehat{\mu}_2)$$

(plug-in)

Ejemplos: Estimación de μ y σ^2 en distribución normal

Supongamos que tenemos una m. a. $X_1, \ldots X_n \sim \mathcal{N}(\mu, \sigma^2)$.

Aquí
$$oldsymbol{ heta} = (heta_1, heta_2) = (\mu, \sigma^2)$$

Sabemos que

$$\mu_1 = \mathbb{E}_{\mu,\sigma^2}(X_i) = \mu$$

 $\mu_2 = \mathbb{E}_{\mu,\sigma^2}(X_i^2) = \mu^2 + \sigma^2$

Para hallar los estimadores de momentos de μ y σ^2 hallamos las funciones h_1 y h_2 :

$$\mu = \mu_1$$

$$\sigma^2 = \mu_2 - \mu_1^2$$

Ejemplos: Estimación de μ y σ^2 distribución normal

$$\begin{cases} \widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}_n \\ \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}_n^2 \end{cases}$$

Importante

Puede verificarse fácilmente que:

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2$$

• Tarea 3: si $X_1, \ldots X_n$, i.i.d., $X_i \sim \Gamma(\alpha, \lambda)$, ¿cómo resultan los estimadores de momentos de α y λ ?

Estimadores de Momentos

Sea X_1, X_2, \ldots, X_n una m.a. de una distribución que depende de m parámetros $\theta_1, \theta_2, \ldots, \theta_m$ y supongamos que están relacionados con los m primeros momentos poblacionales, de tal forma que

$$\theta_i = h_i(\mu_1, \mu_2, \dots, \mu_m) \quad i = 1, \dots, m.$$

Los estimadores de momentos de $\theta_1,\theta_2,\ldots,\theta_m$ son los valores $\widehat{\theta}_1,\widehat{\theta}_2,\ldots,\widehat{\theta}_m$ que se obtienen mediante el plug—in de los momentos muestrales correspondientes en el sistema de m ecuaciones

$$\widehat{\theta}_1 = h_1(\widehat{\mu}_1, \widehat{\mu}_2, \dots, \widehat{\mu}_m) \\
\dots \\
\widehat{\theta}_m = h_m(\widehat{\mu}_1, \widehat{\mu}_2, \dots, \widehat{\mu}_m)$$

Ejemplos: Extensión a otras familias

$$X_1,\ldots,X_n$$
 v.a. i.i.d. $X_i\sim F,\mathbb{E}_F(X_1)=\mu,\mathbb{V}_F(X_1)=\sigma^2$

• $\theta = (\mu, \sigma^2)$. Tenemos que

$$\mu_1 = \mu$$

$$\mu_2 = \sigma^2 + \mu^2$$

- Nos queda el mismo sistema que en el caso normal.
- Obtenemos como antes

$$\widehat{\mu} = \bar{X_n}$$
 $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X_n})^2$

Veamos una generalización del método de los momentos: Vayamos al pizarrón