

MICROCREDENTIAL: ASSOCIATE DATA SCIENTIST

01 November – 10 Desember 2021

Pertemuan ke-9

Data Preparation 3: Mengkonstruksi Data

Profil Pengajar: Nama Lengkap dan Gelar Akademik

Poto Pengajar

Contak Pengajar:

Ponsel:

XXXXXX

Email:

XXXXXXX

Jabatan Akademik:

Latar Belakang Pendidikan:

- S1:
- S2:
- S3:

Riwayat/Pengalaman Pekerjaan:

- Dosen
- Xxxx
- Xxxx
- Xxxx
- XXXX

Course Definition

- Pelatihan ini adalah bagian ketiga dari Data Preparation.
- Data Preparation yang dibahas adalah transformasi data yaitu:
 - Representasi Fitur
 - Rekayasa Fitur
 - Pelabelan Data
- Ada beberapa teknik transformasi data yang digunakan sesuai kebutuhan dan ketersediaan/jenis data baik numerik maupun kategorik

Learning Objective

Dalam pelatihan ini diharapkan:

- A. Peserta mampu menganalisis teknik transformasi data
- B. Peserta mampu melakukan transformasi data
- C. Peserta mampu membuat dokumentasi konstruksi data
- D. Peserta mampu melakukan pelabelan data
- E. Peserta mampu membuat dokumentasi pelabelan data

Referensi: SKKNI Data Science

KODE UNIT : J.62DMI00.009.1

JUDUL UNIT : Mengkonstruksi Data

DESKRIPSI UNIT: Unit kompetensi ini berhubungan dengan pengetahuan, keterampilan, dan sikap kerja yang

dibutuhkan dalam mengkonstruksi data untuk proyek

data science

ELEMEN KOMPETENSI	KRITERIA UNJUK KERJA	
Menganalisis teknik transformasi data	1.1 Analisis data untuk menentuka representasi fitur data awal.	
	 Analisis representasi fitur data awa untuk menentukan teknik rekayasa fitu yang diperlukan untuk pembanguna model data science. 	
 Melakukan transformasi data 	Transformasi dilakukan untu mendapatkan fitur data awal.	
	 Rekayasa fitur data dilakukan untu mendapatkan fitur baru yang diperluka untuk pembangunan model data science. 	
Membuat dokumentasi konstruksi data	Teknis transformasi data dijabarka dalam bentuk tertulis.	
	Hasil transformasi data dan rekomendas hasil transformasi dituangkan dalar bentuk tertulis.	

1. Konteks variabel

- 1.1 Representasi fitur data awal dapat berupa kolom data atau fitur tipe data yang dapat digunakan untuk algoritme machine learning sesuai dengan tipe data.
- 1.2 Rekayasa fitur data dapat berupa normalisasi, pemilihan fitur tipe data baru, menambahkan kolom data baru.
- 1.3 Kolom data baru adalah kolom data yang merupakan turunan nilai dari satu atau lebih data yang ada.
- 1.4 Fitur tipe data adalah fitur dari data yang akan digunakan dalam algoritme machine learning untuk data tidak terstruktur. Tipe data tidak terstruktur seperti free text, suara, gambar, dan video. Contoh fitur adalah seperti TF-IDF, frekuensi suara, warna, lokasi piksel, dan lainnya.
- .5 Normalisasi adalah cara yang diterapkan pada data berstruktur yang memiliki nilai berjenjang. Teknik normalisasi diantaranya, binning, minimum-maximum, scaling.

Referensi: SKKNI Data Science

KODE UNIT : J.62DMI00.010.1

JUDUL UNIT : Menentukan Label Data

DESKRIPSI UNIT: Unit kompetensi ini berhubungan dengan

pengetahuan, keterampilan, dan sikap kerja yang dibutuhkan untuk menentukan label data untuk

pembangunan model data science

ELEMEN KOMPETENSI	KRITERIA UNJUK KERJA	
Melakukan pelabelan data	1.1 Analisis hasil pelabelan data sejenis yang sudah ada diuraikan kesesuaiannya dengan Standard Operating Procedure (SOP) pelabelan. 1.2 Pelabelan data dilakukan sesuai dengan SOP pelabelan.	
Membuat laporan hasil pelabelan data	2.1. Statistik hasil pelabelan diuraikan pada laporan. 2.2. Evaluasi proses pelabelan diuraikan pada laporan.	

BATASAN VARIABEL

- 1. Konteks variabel
 - 1.1 Pelabelan data adalah proses memberikan label pada data yang akan digunakan pada pemodelan machine learning.
 - 1.2 Standard Operating Procedure (SOP) pelabelan adalah panduan langkah-langkah dan aturan dalam melakukan proses pelabelan data sesuai dengan domain data.

Transformasi Data

Data Transformation

- Representasi Fitur atau Pembelajaran Fitur:
 - Teknik-Teknik yang memungkinkan sistem bekerja otomatis menemukan representasi yang diperlukan (untuk deteksi fitur atau klasifikasi dari dataset),
 - menggantikan rekayasa fitur manual, dan
 - memungkinkan mesin mempelajari fitur dan menggunakannya untuk melakukan tugas tertentu.
- Rekayasa Fitur:
 - Proses mengubah data mentah menjadi fitur yang:
 - Mewakili masalah mendasar ke model prediktif,
 - menghasilkan akurasi model yang lebih baik pada data yang tidak terlihat.

Rekayasa Fitur

Outlier

Imputasi

- Pengertian: Mengganti nilai/data yang hilang (missing value; NaN; blank) dengan nilai pengganti.
- Jenis missing value:
 - Missing Completely At Random (MCAR).
 - 2. Missing At Random (MAR).
 - 3. Missing Not At Random (MNAR).

sum. gbr:

https://www.ucl.ac.uk/population-health-sciences/sites/population-health-sciences/files/quartagno_1.pdf https://rianneschouten.github.io/missing_data_science/assets/blogpost/blogpost.html

Missing Completely At Random (MCAR)

- Definisi: Probabilitas sebuah instance yang hilang tidak bergantung pada nilai yang diketahui atau nilai yang hilang itu sendiri.
- Contoh: Tabel data dicetak tanpa nilai yang hilang dan seseorang secara tidak sengaja menjatuhkan beberapa tinta di atasnya sehingga beberapa sel tidak dapat dibaca lagi. Di sini, kita dapat mengasumsikan bahwa nilai yang hilang mengikuti distribusi yang sama dengan nilai yang diketahui.

Missing At Random (MAR)

- Definisi: Probabilitas sebuah instance yang hilang mungkin bergantung pada nilai yang diketahui tetapi tidak pada nilai yang hilang itu sendiri.
- Contoh Sensor: Dalam kasus sensor suhu, fakta bahwa suatu nilai hilang tidak bergantung pada suhu, tetapi mungkin bergantung pada beberapa faktor lain, misalnya pada daya baterai termometer.
- Contoh survei: Apakah seseorang menjawab pertanyaan atau tidak mis. tentang usia- dalam survei tidak tergantung pada jawaban itu
 sendiri, tetapi mungkin tergantung pada jawaban untuk pertanyaan
 lain, yaitu jenis kelamin perempuan.

Missing Not At Random (MNAR)

- Definisi: probabilitas sebuah instance hilang dapat bergantung pada nilai variabel itu sendiri.
- Contoh sensor: Dalam kasus sensor suhu, sensor tidak berfungsi dengan baik saat suhu lebih dingin dari 5°C.
- Contoh survei: Apakah seseorang menjawab pertanyaan atau tidak mis. jumlah hari sakit dalam survei memang tergantung pada
 jawabannya sendiri seperti yang bisa terjadi pada beberapa orang
 yang kelebihan berat badan.

Tahapan dan Teknik Imputasi

- Jika tipe data Variabel Numerik
 - o Imputasi mean atau median.
 - o Imputasi nilai suka-suka (arbitrary).
 - Imputasi nilai/data ujung (end of tail).
- Jika tipe data Variabel Kategorik
 - Imputasi kategori yang sering muncul.
 - Tambah kategori yang hilang.

Imputasi Mean atau Median

• Pro:

- Mudah dan cepat.
- Bekerja efektif untuk dataset numerik berukuran kecil.
- Cocok untuk variabel numerik.
- Cocok untuk data missing completely at random (MCAR).
- Dapat digunakan dalam produksi (mis. dalam model deployment).

Kontra:

- Tidak memperhitungkan korelasi antar fitur, berfungsi pada tingkat kolom.
- Kurang akurat.
- o Tidak memperhitungkan probabilitas/ketidakpastian.
- Tidak cocok utk >5% missing data.
- Mendistorsi variansi dan distribusi variabel asal/orijinal serta covariant variabel sisa data.

sumber gbr:

https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-data-imputation-with-examples-6022d9ca0779 https://heartbeat.fritz.ai/hands-on-with-feature-engineering-techniques-imputing-missing-values-6c22b49d4060

Hands On

Hands On (Lanjutan)

Imputasi Nilai Suka-suka

- Pro:
 - Asumsi data tidak missing at random.
 - Mudah dan cepat diterapkan untuk melengkapi dataset.
- Kontra:
 - Mendistorsi variansi dan distribusi variabel asal/orijinal serta covariant variabel sisa data.
 - Membentuk outlier (jika nilai arbitrer berada di akhir distribusi).
 - Semakin besar NA maka semakin besar distorsi.
 - Hindari memilih nilai arbitrer yg mendekati nilai mean atau median.

Age	
29	
43	
NA	_
25	
34	
NA	
50	

Age
29
43
99
25
34
99
50

Hands On

Imputasi End of Tail

- Pro:
 - Mirip dengan imputasi suka-suka.
 - Cocok untuk variabel numerik.
- Ketentuan khusus:
 - Dalam memilih nilai arbitrer:
 - Jika variabel berdistribusi normal, maka nilai arbiter = mean + 3 * std deviasi.
 - Jika variabelnya skew, maka gunakan aturan IQR proximity (IQR = 75th Quantile 25th Quantile; Upper limit = 75th Quantile + IQR ×3; Lower limit = 25th Quantile IQR ×3).
 - Hanya digunakan pada data latih (training set).

untuk data distribusi normal

Hands On

Skewness (kecenderungan/kemiringan/kemencengan)

Miring ke kanan (positif skew)

Data yang miring ke kanan memiliki ekor panjang yang memanjang ke kanan.

Cara alternatif untuk membicarakan kumpulan data yang miring ke kanan adalah dengan mengatakan bahwa itu secara positif.

Jika rata-rata (mean) > median> modus, maka pada kurva distribusi frekuensi, nilai mean akan terletak di sebelah kanan, sedangkan median terletak di tengahnya dan modus di sebelah kiri

Skewness (kecenderungan/kemiringan/kemencengan)

Miring ke kiri (negatif skew)

Data yang miring ke kiri memiliki ekor panjang yang memanjang ke kiri. Cara alternatif untuk membicarakan kumpulan data yang miring ke kiri adalah dengan mengatakan bahwa itu miring secara negatif.

Jika rata-rata (mean) < median < modus, maka pada kurva distribusi frekuensi, nilai mean akan terletak di sebelah kiri, sedangkan median terletak di tengahnya dan modus di sebelah kanan

Imputasi Frequent Category/Modus

Pro:

- Cocok untuk data dengan missing at random.
- Mudah dan cepat diterapkan.
- Cocok utk data yang memiliki skew
- Dapat digunakan dalam produksi (mis. dalam model deployment).

Kontra:

- Mendistorsi relasi label dengan frekuensi tertinggi vs variabel lain.
- Menghasilkan over-representation jika banyak data yang missing.

Hands On

```
Import pandas, SimpleImputer dari
import pandas as pd
import numpy as np
                                                             sklearn.impute, numpy
from sklearn.impute import SimpleImputer
                                                                                                                  Masukan
make = {'make' : ['Ford', 'Ford', 'Fiat', 'BMW', 'Ford', 'Kia', np.nan, 'Fiat', 'Ford', np.nan, 'Kia']}
                                                                                                                  Data
data = pd.DataFrame(make)
                               Ubah menjadi data frame
data
    make
 0 Ford
 1 Ford
    Fiat
 3 BMW
                                            Output
   Ford
     Kia
    NaN
     Fiat
   Ford
    NaN
 10
     Kia
```

Hands On (Lanjutan)

```
imp = SimpleImputer(strategy='most_frequent')
                                                          Mengatasi missing value
                                                          dengan frequent category /
imp.fit_transform(data)
                                                          modus
array([['Ford'],
      ['Ford'],
      ['Fiat'],
       ['BMW'],
      ['Ford'],
       ['Kia'],
                                                             Output
      ['Ford'],
       ['Fiat'],
       ['Ford'],
       ['Ford'],
      ['Kia']], dtype=object)
```


Imputasi Random Sample

• Pro:

- Cocok untuk data missing at random.
- Ganti missing value dengan nilai lain dalam distribusi yang sama dari variabel asli.
- Mudah dan cepat.
- Mempertahankan varians dari variabel.

Kontra:

- Randomness.
- Membutuhkan memori besar untuk deployment karena perlu untuk menyimpan data latih yg asli untuk ekstraksi nilai.

Gender	Age
Male	29
Male	NA
NA	43
Female	25
Male	34
NA	50
Female	NA

Gender	Age
Male	29
Male	34
Female	43
Female	25
Male	34
Male	50
Female	25

Hands On

```
from feature engine.imputation import RandomSampleImputer
                                                                  import RandomSampleImputer,
import pandas as pd
                                                                  pandas, numpy
import numpy as np
data = {'Gender' : ['Male', 'Male', np.nan, 'Female', 'Male', np.nan, 'Female'],
      'Age' : [29, np.nan, 43, 25, 34, 50, np.nan]}
                                                                                    masukkan data dan
df = pd.DataFrame(data)
                                                                                   ubah menjadi
df
                                                                                    dataframe
   Gender Age
    Male 29.0
    Male NaN
     NaN 43.0
                           Output
   Female 25.0
    Male 34.0
     NaN 50.0
   Female NaN
```

Hands On (Lanjutan)

```
imputer = RandomSampleImputer(random_state = 29)
                                                        Buat imputernya
imputer.fit(df)
                                                        Cocokan imputer ke set
test_t = imputer.transform(df)
                                                        Mengubah data
test_t
   Gender Age
     Male 29.0
     Male
         34.0
     Male 43.0
                                                    Output
         25.0
     Male 34.0
         50.0
   Female 50.0
```


Imputasi Nilai Nol/Konstanta

- Pro:
 - Cocok untuk variabel kategorik.
- Kontra:
 - Tidak memperhitungkan korelasi antar fitur.
 - Memunculkan bias dalam data.

Hands On

Imputasi dengan K-NN

- Pro:
 - Lebih akurat vs mean/median/most frequent.
- Kontra:
 - Biaya komputasi mahal (karena KNN bekerja dengan menyimpan seluruh dataset pelatihan dalam memori).
 - Sensitif terhadap outlier dalam data (tidak seperti SVM).

https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-dataimputation-with-examples-6022d9ca0779

Imputasi Regresi: Deterministik

Deterministik

- Mengganti missing value dengan prediksi yang tepat dari model regresi.
- Tidak mempertimbangkan variasi acak di sekitar kemiringan (slope regresi).
- Nilai imputasi seringkali terlalu tepat (precise) dan overestimasi dari korelasi X-Y.

sumbergbr: https://statisticsglobe.com/regression-imputation-stochastic-vs-deterministic/

Hands On

Hands On (Lanjutan)

Menggunakan Regresi untuk memperhitungkan data yang hilang

Hands On (Lanjutan)

```
Deterministic Regression
deter_data = pd.DataFrame(columns = ["Det" + name for name in missing_columns])
                                                                                                              Imputation
for feature in missing_columns:
    deter_data["Det" + feature] = df[feature + "_imp"]
    parameters = list(set(df.columns) - set(missing_columns) - {feature + ' imp'})
    model = linear model.LinearRegression()
                                                                            Buat model Regresi Linier untuk memperkirakan
    model.fit(X = df[parameters], y = df[feature + ' imp'])
                                                                            data yang hilang
                                                                                                                            amati bahwa kita menyimpan
                                                                                                                             indeks data yang hilang dari
    deter data.loc[df[feature].isnull(), "Det" + feature] = model.predict(df[parameters])[df[feature].isnull()]
                                                                                                                            kerangka data asli
mno.matrix(deter data, figsize = (20,5))
                                                       membuat matriks
<AxesSubplot:>
                                                                                                             Output
```


pd.concat([df[["Insulin", "SkinThickness"]], deter_data[["DetInsulin", "DetSkinThickness"]]], axis = 1).describe().7

Insulin 394	0 155.548223	118.775855					
			14.0	76.250000	125.000000	190.000000	846.0
SkinThickness 541.	0 29.153420	10.476982	7.0	22.000000	29.000000	36.000000	99.0
Detinsulin 768.	0 154.559890	89.394698	14.0	105.029991	140.217157	182.000000	846.0
DetSkinThickness 768.	0 29.097247	9.189058	7.0	23.000000	29.000000	34.461758	99.0

Imputasi Regresi: Stokastik

- Stokastik
 - Mengatasi masalah dalam imputasi regresi deterministik.
 - Menambahkan fitur "random error" sehingga reproduksi korelasi X-Y lebih tepat.

Hands On


```
missing_columns = ["Glucose", "BloodPressure", "SkinThickness", "Insulin", "MM1"]

def random_imputation(df, feature):
    number_missing = df[feature].isnull().sum()
    observed_values = df.loc[df[feature].notnull(), feature]
    df.loc[df[feature].isnull(), feature = '_imp'] = np.random.choice(observed_values, number_missing, replace = True)
    return df

for feature in missing_columns:
    df[feature = '_imp'] = df[feature]
    df = random_imputation(df, feature)
```

Menggunakan Regresi untuk memperhitungkan data yang hilang


```
random data = pd.DataFrame(columns = ["Ran" + name for name in missing columns])
for feature in missing columns:
                                                                                                         Stochastic Regression
     random data["Ran" + feature] = df[feature + ' imp']
                                                                                                         Imputation
    parameters = list(set(df.columns) - set(missing columns) - {feature + ' imp'})
    model = linear model.LinearRegression()
    model.fit(X = df[parameters], y = df[feature + ' imp'])
                                                                                                         amati bahwa kita menyimpan
predict = model.predict(df[parameters])
                                                                                                         indeks data yang hilang dari
std_error = (predict[df[feature].notnull()] - df.loc[df[feature].notnull(), feature + '_imp']).std()
                                                                                                         kerangka data asli
random predict = np.random.normal(size = df[feature].shape[0],
                                                                                                             Kesalahan Standar dari perkiraan regresi
                            loc = predict,
                            scale = std error)
                                                                                                             sama dengan std() dari kesalahan setiap
random data.loc[(df[feature].isnull()) & (random predict > 0), "Ran" + feature] = random predict[(df[feature].isnull()) &
                                                                                                             perkiraan
                                                           (random predict > 0)]
```


membuat chart

Output

Output

Hands On (Lanjutan)

pd.concat([df[["Insulin", "SkinThickness"]], random_data[["RanInsulin", "RanSkinThickness"]]], axis = 1).describe().T

	count	mean	std	min	25%	50%	75%	max
Insulin	394.0	155.548223	118.775855	14.000000	76.250000	125.000000	190.000000	846.0
SkinThickness	541.0	29.153420	10.476982	7.000000	22.000000	29.000000	36.000000	99.0
RanInsulin	768.0	159.817877	107.962192	1.350895	82.852612	137.134053	212.448998	846.0
RanSkinThickness	768.0	29.056917	10.211228	2.984951	22.000000	29.000000	36.000000	99.0

Kesimpulan Teknik Imputasi

- Dua kategori imputasi:
 - Berdasarkan layer/tahapan: single imputation dan multiple imputation
- Tidak ada cara sempurna untuk mengkompensasi missing value (nilai yang hilang) dalam kumpulan data.
- Setiap strategi memiliki kinerja lebih baik untuk kumpulan data tertentu dan tipe data yang hilang tetapi dapat berkinerja jauh lebih buruk pada jenis kumpulan data lainnya.

Mengatasi (Handling) Outlier (HO)

Definisi Outlier:

- Titik data yang sangat berbeda dari data lainnya.
- Pengamatan yang menyimpang dari pola keseluruhan pada sampel.

Penyebab:

 Error percobaan, salah input, error instrumen, kesengajaan (untuk pengujian), error pemrosesan data, error sampling, kewajaran karena keanehan dalam data (bukan error).

sumberabr:

https://heartbeat.fritz.ai/hands-on-with-feature-engineering-techniques-dealing-with-outliers-fccgf5zcb63b https://www.analyticsvidhya.com/blog/2022/03/zooming-out-a-look-at-outlier-and-how-to-deal-with-them-indata-science/

Mengatasi (Handling) Outlier (HO)

- Jenis/kategori:
 - Univariate vs multivariate
 - Parametrik vs non-parametrik
- Deteksi dan Cari Outlier dengan:
 - Visualisasi
 - Distribusi normal

Teknik Mengatasi Outlier:

- Trimming
- Winsorizing
- Imputing
- Discretization
- Censoring
- Z-score
- Linear Regression Model

Deteksi Outlier

- Visualiasi dgn Boxplot dan Scatterplot
 - Sebagian besar titik data terletak di tengah, tetapi ada satu titik yang jauh dari pengamatan lainnya; ini bisa menjadi outlier.
- Distribusi Normal
 - Dalam distribusi normal, sekitar 99,7% data berada dalam tiga standar deviasi dari mean.
 - Jika ada pengamatan yang lebih dari tiga kali standar deviasi, kemungkinan itu adalah outlier.
- Z-score
- Inter Quantile Range (IQR)

sumber gbr:

https://heartbeat.fritz.ai/hands-on-with-featureengineering-techniques-dealing-with-outliersfccgf57cb63b

https://www.analyticsvidhya.com/blog/2021/05/detect ing-and-treating-outliers-treating-the-odd-one-out/

Teknik HO: Trimming (Pangkas) vs Winsorizing

- Nama lain: Truncation (Potong)
- Definisi: Menghapus outlier dari dataset
- Perlu memutuskan metrik untuk menentukan outlier.

Definisi:

Mengganti outlier dari dataset dengan nilai persentil setiap ujung/batas atas dan bawah.

Trimming vs Winsorizing

 Contoh kasus: laporan jumlah pasien yang ditangani tiap dokter/bulan (di bawah 100 pasien), dengan 4% dilaporkan lebih dari 100 pasien.

range [5,100].

Outlier tidak dibuang, namun dimasukan ke dalam range terdekat. Sehingga nilai mean mengecil. Median dan N tidak berubah.

Membuang data yang berada di luar range. Nilai N berubah, mean mengecil, median masih dinilai yg sama.

Hands On

```
import numpy as np
from scipy.stats.mstats import winsorize
                                                                              import numpy dan scipy
from scipy.stats.mstats import trima
a = np.array([10, 4, 9, 8, 5, 3, 7, 2, 1, 6])
                                                                               Masukkan array berisi 1 - 10
wins = winsorize(a, limits=[0.1, 0.2])
                                                                                Winsorize akan mengganti 10% nilai
wins
                                                                               terendah dan 20% nilai tinggi
masked_array(data=[8, 4, 8, 8, 5, 3, 7, 2, 2, 6],
            mask=False.
                                                          Output
      fill value=999999)
                                                                                Trims akan memotong nilai
trims = trima(a, limits=(2,8))
print(trims)
                                                                                dengan batas tertentu
[-- 4 -- 8 5 3 7 2 -- 6]
                                   Output
```

Discretization

- Definisi:
 - Proses mengubah fungsi, model dan variabel kontinu menjadi diskret (data kontinu di *Ukur* (measured) vs data kontinu di *Hitung* (counted)).
- Nama lain: Binning.
- Dasar Pertimbangan:
 - Data kontinu memiliki derajat kebebasan (DoF) yang tak hingga.
 - Data kontinu lebih mudah dipahami dan disimpan dalam bentuk kategori/grup
 - misal berat badan < 65 kg (ringan);
 65 80 kg (mid); > 80 kg (berat).

Discretization Process

Discretization

• Jenis:

- Supervised
 - Decision Tree.
- Unsupervised
 - Equal-width discretization.
 - Equal-frequency discretization.
 - K-means discretization.
- Lainnya
 - Custom discretization.

Taksonomi Discretization

Binning

Pro:

- Dapat diterapkan pada data kategorik dan numerik.
- Model lebih robust dan mencegah overfitting.

Kontra:

- Meningkatnya biaya kinerja perhitungan.
- Mengorbankan informasi.
- Untuk kolom data numerik, dapat menyebabkan redudansi untuk beberapa algoritma.
- Untuk kolom data kategorik, label dengan frekuensi rendah berdampak negatif pada robustness model statistik.
- Untuk ukuran data dengan 100 ribu baris, disarankan menggabungkan label/kolom dengan record yang < 100 menjadi kategori baru, misal "Lain-lain".

Ilustrasi binning untuk data

Hands On


```
df = pd.read_csv('bins.csv')
df['Harga Binned 3'] = pd.qcut(df['Harga'], 3)
df
            Harga
                         Harga Binned 3
        Item
      Item_1
                     (1499.999, 9333.333]
      Item_2
               3300
                     (1499.999, 9333.333]
      Item 3
             11000
                      (9333.333, 41600.0]
            87500
                       (41600.0, 91000.0]
      Item_4
             45000
                       (41600.0, 91000.0]
      Item_5
      Item 6
             28600
                      (9333.333, 41600.0]
                                                     Output
             39900
                      (9333.333, 41600.0]
      Item_8
            91000
                       (41600.0, 91000.0]
      Item 9 64700
                       (41600.0, 91000.0]
    Item_10
                     (1499.999, 9333.333]
     Item 11
             19000
                      (9333.333, 41600.0]
    Item_12
               2700
                     (1499.999, 9333.333]
```

binning dengan qcut()

Scaling (Penskalaan)

Dasar:

- Sering diabaikan oleh pemula di Data Science.
- Data numerik (biasanya) tidak memiliki range.
 range "Usia" vs range "Gaji" tidak sama
 (karakteristik berbeda). Usia memiliki rentang
 dari 1 sampai 150 (dalam tahun), sedangkan Gaji
 memiliki rentang dari 10 ribu sampai 100 ribu
 (dalam dolar). Untuk itu membandingkan perlu
 scaling.
- Beberapa algoritma Machine Learning (regresi linear dan logistik dan Neural Network; SVM, KNN, K-means; LDA; PCA) yang menggunakan teknik optimasi Euclidian Distance 2 poin (titik).

Euclidean Distance between P₁ and P₂ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- Dengan menggunakan rumus Euclidean Distance diatas, maka jelas bahwa hasil perhitungan pada kolom *Usia* dan *Gaji* akan memiliki jarak (distance) yang sangat jauh. Disinilah proses Feature Scaling dibutuhkan.
- Feature Scaling adalah suatu cara untuk membuat numerical data pada dataset memiliki rentang nilai (scale) yang sama. Tidak ada lagi satu variabel data yang mendominasi variabel data lainnya.

Hands On

```
import pandas as pd
                                                      import library
from sklearn.preprocessing import Normalizer
data = pd.read csv("scalling.csv")
                                                      membaca data
max_abs = Normalizer(norm = '12')
                                                      buat objek skalar dengan normalizer
max abs.fit(data)
                                                      sesuaikan scaler dengan data
train scaled = max abs.transform(data)
                                                      mengubah data
train scaled
array([[6.11110997e-04, 9.99999813e-01],
       [5.62499911e-04, 9.99999842e-01],
       [5.55555470e-04, 9.99999846e-01],
       [6.22950699e-04, 9.99999806e-01],
      [7.99999744e-04, 9.99999680e-01],
       [6.03448166e-04, 9.99999818e-01],
                                                     Output
       [5.19230699e-04, 9.99999865e-01],
       [6.07594825e-04, 9.99999815e-01],
       [6.02409529e-04, 9.99999819e-01],
       [5.52238722e-04, 9.99999848e-01]])
```

Scaling: Jenis

Standardisation	Normalisation
$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$	$x_{ m norm} = rac{x - \min(x)}{\max(x) - \min(x)}$

Scaling: Normalisasi

- Nama Lain: Min-Max Scaling.
- Definisi: Teknik penskalaan di mana nilainilai digeser dan diubah skalanya sehingga nilainya berkisar antara 0 dan 1 (rentang [0,1]).

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Di sini, Xmax dan Xmin masing-masing adalah nilai maksimum dan minimum dari fitur.

- Ketika nilai X adalah nilai minimum dalam kolom, pembilangnya adalah 0, dan karenanya X' adalah 0.
- Sebaliknya, ketika nilai X adalah nilai maksimum dalam kolom, pembilangnya sama dengan penyebutnya sehingga nilai X' adalah 1.
- Jika nilai X berada di antara nilai minimum dan maksimum, maka nilai X' berada di antara 0 dan 1.

Hands On

Scaling: Standardisasi

- Tujuan: Berfokus pada mengubah data mentah menjadi informasi yang dapat digunakan sebelum dianalisis.
- Definisi: Teknik yang menskalakan data sehingga memiliki mean = 0 dan standar deviasi =1
- Kontra:
 - Menambah langkah dalam data preparation
 - Waktu bertambah

Hands On


```
buat objek scaler
scaler = StandardScaler()
scaler.fit(data)
                        sesuaikan scaler dengan data
                                             mengubah data
train scaled = scaler.transform(data)
                                             kereta dan uji
train scaled
array([[ 0.8273403 , 0.81886943],
        [-1.37028238, -1.22830415],
        [-0.98246661, -0.71651075],
         0.05170877, -0.11941846],
         0.31025261, -1.05770635],
        [-0.336107 , -0.37531516],
                                              Output
        [-1.37028238, -0.88710855],
         1.34442799, 1.41596173],
        1.60297184, 1.75715732],
        -0.07756315, 0.39237494]])
```


Contoh Kasus Scaling

Purchased	Salary	Age	Country	
No	72000	44	France	1
Yes	48000	27	Spain	2
No	54000	30	Germany	3
No	61000	36	Spain	4
Yes		40	Germany	5
Yes	88000	35	France	6
No	52000		Spain	7
Yes	79000	48	France	8
No	83000	50	Germany	9
Yes	67000	37	France	10

The range of Age: 27 - 50

The range of Salary:48,000 - 83,000

dataset['Ape'].mini] 27.0 dataset['Salary'].min() 48000.0 dataset['Age'].sax() 50.0 dataset['Salary'].max() 83000.0

Euclidean Distance between
$$P_1$$
 and $P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Let x be the no. of Salary and y be the no. of Age

Example: x1&y1 are in row 2, x2&y2 are in row 9

(x2-x1)^2= (83000-48000)^2

=1225000000

(y2-y1)*2=(50-27)*2

=529

Contoh Kasus Scaling

- Ketika kita menghitung persamaan jarak (distance) Euclidean, jumlah (x2-x1)² jauh lebih besar daripada jumlah (y2-y1)² yang berarti jarak Euclidean akan didominasi oleh Gaji jika kita tidak menerapkan penskalaan. Perbedaan Usia berkontribusi lebih sedikit terhadap perbedaan keseluruhan.
- Oleh karena itu, kita harus menggunakan penskalaan untuk membawa semua nilai ke besaran yang sama dan dengan demikian, menyelesaikan masalah ini.

Standardisation

	Age	Salary
0	0.758874	7.494733e-01
1	-1.711504	-1.438178e+00
2	-1.275555	-8.912655e-01
3	-0.113024	-2.532004e-01
4	0.177609	6.632192e-16
5	-0.548973	-5.266569e-01
6	0.000000	-1.073570e+00
7	1.340140	1.387538e+00
8	1.630773	1.752147e+00
9	-0.258340	2.937125e-01

	Calam	
	Age	Salary
0	0.739130	0.685714
1	0.000000	0.000000
2	0.130435	0.171429
3	0.478261	0.371429
4	0.565217	0.450794
5	0.347826	0.285714
6	0.512077	0.114286
7	0.913043	0.885714
8	1.000000	1.000000
9	0.434783	0.542857

Contoh Kasus Scaling

Normal distribution and Standard Deviation of Salary.

Normal distribution and Standard Deviation of Age.

https://www.kdnuggets.com/2020/04/data-transformation-standardization-normalization.html

Dokumentasi Fitur

Perlunya Dokumentasi Data/Fitur

Dokumentasi data

dapat menjembatani kesenjangan antara transaksi (pembuatan data) dan analisis (konsumsi data). Dokumentasi data yang baik memungkinkan pengguna, ataupun rekan tim untuk memahami siapa/apa/kapan/di mana/bagaimana/mengapa data tersebut dibentuk ataupun dikonsumsi.

Parameter/Daftar Isi Dokumentasi Data Transformation

Laporan dokumentasi data transformation, setidaknya memiliki parameter berikut:

- Fitur awal dan rekayasa fitur yang digunakan
- Teknik transformasi data yang diterapkan
 - O Apakah algoritma pemodelan mengharapkan jenis data tertentu, seperti numerik? Jika demikian, lakukan transformasi yang diperlukan
 - Apakah data perlu dinormalisasi sebelum pemodelan?
 - O Bisakah atribut yang hilang dibangun menggunakan agregasi, rata-rata, atau induksi?
- Hasil transformasi
- Rekomendasi transformasi

Pelabelan Data

Referensi: SKKNI Data Science

KODE UNIT : J.62DMI00.010.1

JUDUL UNIT : Menentukan Label Data

DESKRIPSI UNIT: Unit kompetensi ini berhubungan dengan

pengetahuan, keterampilan, dan sikap kerja yang

dibutuhkan untuk menentukan label data untuk

pembangunan model data science

ELEMEN KOMPETENSI	KRITERIA UNJUK KERJA			
Melakukan pelabelan data	1.1 Analisis hasil pelabelan data sejenis yang sudah ada diuraikan kesesuaiannya dengan Standard Operating Procedure (SOP) pelabelan.			
	 Pelabelan data dilakukan sesuai dengan SOP pelabelan. 			
Membuat laporan hasil pelabelan data	2.1. Statistik hasil pelabelan diuraikan pada laporan.			
55 1.1	 Evaluasi proses pelabelan diuraikan pada laporan. 			

BATASAN VARIABEL

- 1. Konteks variabel
 - 1.1 Pelabelan data adalah proses memberikan label pada data yang akan digunakan pada pemodelan machine learning.
 - 1.2 Standard Operating Procedure (SOP) pelabelan adalah panduan langkah-langkah dan aturan dalam melakukan proses pelabelan data sesuai dengan domain data.

Pelabelan Data - Intro

- Kuantitas & kualitas data pelatihan yang secara langsung menentukan keberhasilan suatu algoritma AI sehingga tidak mengherankan jika ratarata 80% waktu yang dihabiskan untuk proyek AI membahas data pelatihan yang mencakup proses pelabelan data.
- Keakuratan model Al Anda berkorelasi langsung dengan kualitas data yang digunakan untuk melatihnya.
- Hal ini menjadi satu alasan mengapa proses pelabelan data merupakan bagian integral dari alur kerja persiapan data dalam membangun model AI yang andal.

Pelabelan Data - Intro

Pelabelan data dalam konteks pembelajaran mesin adalah proses mendeteksi serta menandai sampel data.

Tahapan proses ini menjadi sangat penting dalam hal pembangunan model dengan pendekatan pembelajaran mesin berbasiskan supervised-learning.
 Pelabelan Data mengacu pada proses menambahkan tag atau label pada data masukan yang berbentuk gambar, video, teks dan audio.
 Tag ini membentuk representasi dari kelas objek apa yang dimiliki data dan membantu model pembelajaran mesin untuk mengidentifikasi kelas objek tertentu saat ditemui dalam data tanpa tag.
 Secara umum, pelabelan data danat merujuk pada tugas yang mencakup penandaan data, anotasi, klasifikasi moderasi transkripsi, atau pemrosesan.

Hands-on: OneHotEncoding (Mempersiapkan data)

```
## Import library
                                                                                                  Import library yang
import random
                                                                                                     dibutuhkan
import pandas as pd
import numpy as np
# Membaca data mentah (raw data)
                                                                                                    memuat data
data = pd.read_csv('crx.data', header=None)
# Membentuk list Fitur Al..A17
                                                                                                   membentuk list
varnames = ['A'+str(s) for s in range(1,17)]
# Men-set masing-masing kolom dari data yang ada
# Hal ini dilakukan karena data mentah yang dipakai tidak memiliki judul fitur
                                                                                                  set masing-masing
data.columns = varnames
                                                                                                       kolom
# Mengganti data dengan nilai ? dengan nilai Nan
data = data.replace('?', np.nan)
                                                                                                 mengganti "?" menjadi
                                                                                                        nan
```


Hands-on: OneHotEncoding (Mempersiapkan data)

```
import random
                                                                      Import library yang
import pandas as pd
                                                                        dibutuhkan
import numpy as np
                                                                       memuat data
data = pd.read_csv('crx.data', header=None)
varnames = ['A'+str(s) for s in range(1,17)]
                                                                       membentuk list
                                                                      set masing-masing
data.columns = varnames
                                                                         kolom
                                                                     mengganti "?" menjadi
data = data.replace('?', np.nan)
                                                                          nan
```

Hands-on: OneHotEncoding (Mempersiapkan data)

```
data['A2'] = data['A2'].astype('float')
                                                                                           merubah tipe data dari kolom A2 dan A14
data['A14'] = data['A14'].astype('float')
                                                                                                     menjadi tipe float
data['A16'] = data['A16'].map({'+':1, '-':0})
                                                                                              melakukan proses maping data text
                                                                                                meniadi meniadi bentuk binary
cat_cols = [c for c in data.columns if data[c].dtypes=='0']
                                                                                           membuat list dengan fitur data dengan jenis
num_cols = [c for c in data.columns if data[c].dtypes!='0']
                                                                                                 kategori dan jenis numerik
                                                                                            melakukan inputasi terhadap data yang
data[num_cols] = data[num_cols].fillna(0)
                                                                                          kosong dengan nilai 0 untuk list data bernilai
                                                                                             numerik Missing untuk data kolom fitur
data[cat_cols] = data[cat_cols].fillna('Missing')
                                                                                                     berjenis kategori
data.to_csv('creditApprovalUCI.csv', index=False)
                                                                                           menyimpan data yang telah di transformasi
                                                                                                    dalam bentuk csv
```


Hands-on: OneHotEncoding (Penggunaan Teknik)

```
import pandas as pd
from sklearn.model_selection import train_test_split
                                                                                                      import library
from sklearn.preprocessing import OneHotEncoder
data = pd.read_csv('creditApprovalUCI.csv')
                                                                                           Membaca data yang telah di transformasi
                                                                                                      sebelumnva
data.head()
            0.000
                                                           202.0
                                                           280.0
                                                           100.0
            5.625
                                                         s 120.0
```


118 0 1 0

Hands-on: OneHotEncoding (Penggunaan Teknik)

Hands-on: OneHotEncoding (Penggunaan Teknik)

Pelabelan Data - Intro

Pelabelan data adalah bagian utama dari alur kerja pra pemrosesan data untuk machine learning. Data berlabel ini kemudian digunakan untuk melatih model pembelajaran mesin untuk menemukan "makna" dalam data baru yang serupa dan relevan.

Pelabelan data menyusun data untuk membuatnya bermakna.

Sepanjang proses ini, data scientist berusaha keras untuk memperoleh kualitas dan kuantitas yang baik.

Label yang lebih akurat ditambah dengan jumlah data berlabel yang lebih besar menciptakan model pembelajaran mendalam yang lebih berguna,

karena model pembelajaran mesin yang dihasilkan mendasarkan keputusan mereka pada semua data berlabel.

Pelabelan Data - Data Training

Data pelatihan mengacu pada data yang telah dikumpulkan untuk diumpankan ke model pembelajaran mesin untuk membantu model mempelajari data lebih lanjut.

- Data pelatihan dapat berupa berbagai bentuk, termasuk gambar, suara, teks, atau fitur tergantung pada model pembelajaran mesin yang digunakan dan tugas ataupun business goal yang ingin dicapai.
- Data pelatihan bisa diberi anotasi maupun tidak diberi anotasi.
- Ketika data pelatihan dianotasi, label tersebut disebut sebagai dasar kebenaran atau Ground Truth - istilah digunakan untuk informasi yang telah diketahui sebelumnya bernilai benar.

Pelabelan Data - Mengapa Proses Pelabelan Diperlukan?

- Anda memiliki banyak data yang tidak berlabel.
- Sebagian besar data tidak dalam bentuk berlabel, hal merupakan tantangan bagi sebagian besar tim proyek Data Science.
- Sepenuhnya 80% dari waktu proyek berbasis Al dihabiskan untuk mengumpulkan, mengatur, dan memberi label data,
- menurut firma analis Cognilytica, dan ini adalah waktu yang tidak dapat dihabiskan oleh tim karena mereka berlomba untuk mendapatkan data yang dapat digunakan, yaitu data yang terstruktur dan diberi label dengan benar untuk melatih dan menerapkan model.

Pelabelan Data - Unlabelled vs Labelled

- Dataset pelatihan bergantung pada jenis permasalahan ataupun tujuan model pembelajaran mesin yang ingin kita bentuk.
- Algoritma Machine/Deep Learning dapat secara luas diklasifikasikan berdasarkan jenis data yang mereka butuhkan dalam tiga tipe, yaitu:
 - Supervised Learning
 - Unsupervised Learning
 - Semi-supervised Learning

Pelabelan Data - Supervised Learning

- Pembelajaran terawasi, jenis yang paling umum, adalah jenis algoritma pembelajaran mesin yang memerlukan data dan label yang sesuai untuk dilatih.
- Pendekatan ini biasanya digunakan untuk menyelesaikan permasalahan klasifikasi dan segmentasi.
- Prosedur pelatihan tipikal terdiri dari memasukkan data yang telah beranotasi ke mesin untuk membantu model belajar, dan kemudian melakukan pengujian model yang terbentuk pada data yang tak beranotasi.
- Untuk menemukan keakuratan metode tersebut, data beranotasi (ground truth) dengan label tersembunyi biasanya digunakan dalam tahap pengujian algoritma.
- Dengan demikian, data beranotasi merupakan kebutuhan mutlak untuk melatih model pembelajaran mesin secara terawasi.

Pelabelan Data - Unsupervised Learning

- Dalam pembelajaran tanpa pengawasan, data input merupakan data tanpa anotasi dan model berlatih tanpa pengetahuan tentang label yang mungkin dimiliki data input.
- Algoritma unsupervised termasuk autoencoder yang memiliki output yang sama dengan inputnya.
- Metode pembelajaran tanpa pengawasan juga mencakup algoritma pengelompokan yang mengelompokkan data ke dalam cluster 'n', di mana 'n' adalah hyperparameter.

Pelabelan Data - Supervised vs Unsupervised

Pelabelan Data - Semi-supervised Learning

- Dalam pembelajaran semi-diawasi, kombinasi data beranotasi dan tidak beranotasi digunakan untuk melatih model.
- Meskipun hal ini mengurangi biaya anotasi data dengan menggunakan kedua jenis data tersebut, pada umumnya pendekatan ini menggunakan banyak asumsi pada data pelatihan yang digunakan untuk membangun model.
- Kasus penggunaan pembelajaran semi-diawasi salah satunya klasifikasi urutan Protein dan analisis konten Internet.

Pelabelan Data - Semi-supervised Learning

Dataset awal:

Eclipse

Non- eclipse

Dataset yang telah diperkaya:

Pelabelan Data - Semi-supervised Learning

Setelah menjalankan algoritma supervised learning pada studi kasus ini, hasil model kedua **pasti** mengungguli model pertama yang dibangun hanya berisi dua gambar sebagai data pelatihan.

Tetapi pendekatan ini hanya berlaku untuk tujuan kecil karena anotasi/pelabelan manual ke kumpulan data besar bisa sangatlah sulit dan mahal.

untuk memecahkan jenis masalah ini, terdapat jenis pembelajaran yang berbeda yang dikenal sebagai **semi-supervised learning**, yang menggunakan baik data berlabel (pembelajaran terbimbing) dan data tidak berlabel (pembelajaran tanpa pengawasan).

Pelabelan Data - Peran data tanpa label

Pada pembangunan model dengan data berlabel, Anda hanya memiliki dua titik data yang termasuk dalam dua kategori berbeda, dan garis yang ditarik adalah batas keputusan dari setiap model yang diawasi.

Pelabelan Data - Peran data tanpa label

Selanjutnya, katakanlah kita menambahkan beberapa data yang tidak berlabel ke data ini seperti yang ditunjukkan pada gambar samping.

Gambar ini (di kanan), garis pembatas antara wilayah hijau dan putih menjadi lebih presisi. Perbedaan garis pembatas tersebut menunjukkan bahwa dengan memberikan menambahkan data yang tidak berlabel, garis batas keputusan model menjadi lebih akurat.

More accurate decision boundary in the presence of unlabeled instances Unlabeled Instances

Pelabelan Data - Peran data tanpa label

Contoh kasus

Keuntungan menggunakan data tidak berlabel adalah:

- Data berlabel mahal dan sulit didapat sedangkan data tidak berlabel berlimpah dan murah.
- Meningkatkan ketahanan model dengan batas keputusan yang lebih tepat.

Pseudo Labelling

- Manusia tidak hanya belajar dari informasi tetapi mampu memahami suatu berdasarkan kesamaan karakteristik yang dimiliki
- Bisakah kita membangun sistem yang membutuhkan pengawasan minimal yang dapat mempelajari sebagian besar tugas sendiri?
- Terdapat berbagai teknik penerapan semi-Supervised Learning, salah satu tekniknya adalah Teknik Pelabelan Pseudo atau pseudo-labelling.

Ref:

[4] Q. Xie, M.-T. Luong, E. Hovy, and Q.V. Le, "Self-training with noisy student improves ImageNet classification," arXiv:1911.04252, 2020.

[5] I.Z. Yalniz, H. Jégou, K. Chen, M. Paluri, and D. Mahajan, "Billion-scale semi-supervised learning for image classification," arXiv:1905.00546, 2019.

[6] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E.D. Cubuk, A. Kurakin, H. Zhang, and C. Raffel, "FixMatch: Simplifying semi-supervised learning with consistency and confidence," arXiv:2001.07685, 2020.

Human in The Loop (HITL)

Istilah Human-In-The-Loop paling sering mengacu pada pengawasan konstan dan validasi hasil model AI oleh manusia.

Ada dua cara utama di mana manusia menjadi bagian dari loop Machine Learning:

- Memberi label pada data pelatihan: Seorang anotator (experts) diwajibkan untuk memberi label pada data pelatihan yang diumpankan ke model pembelajaran mesin (diawasi/semi-diawasi).
- Melatih model: Data scientist melatih model dengan terus-menerus mengawasi detail model seperti fungsi kerugian (loss function) dan hasil prediksi.
- Terkadang kinerja model dan prediksi divalidasi oleh manusia dan hasil validasi diumpankan kembali ke model.

Pendekatan Pelabelan Data

- Pendekatan pelabelan bergantung pada pernyataan masalah, kerangka waktu proyek, dan jumlah orang yang terkait dengan pekerjaan.
- Pelabelan internal dan crowdsourcing sangat umum, terminologi ini juga dapat mencakup bentuk-bentuk baru pelabelan baru dan anotasi yang memanfaatkan AI dan pembelajaran aktif (active learning) untuk melakukan tugas pelabelan/anotasi tersebut.
- Pendekatan yang paling umum untuk anotasi data tercantum di bawah ini
 - In-house data labelling
 - Crowdsourcing
 - Outsourcing
 - Machine-based annotation

In-house Labelling

- Memiliki kualitas tertinggi dan umumnya dilakukan oleh data scientist dan insinyur data yang dipekerjakan di organisasi.
- Pelabelan berkualitas tinggi sangat penting untuk industri seperti asuransi atau perawatan kesehatan, dan seringkali memerlukan konsultasi dengan para ahli di bidang terkait untuk pelabelan data yang tepat.
- Seperti yang diharapkan untuk pelabelan internal, dengan peningkatan kualitas anotasi, waktu yang dibutuhkan untuk membuat anotasi cukup tinggi, sehingga seluruh proses pelabelan dan pembersihan data menjadi sangat lambat.

Crowdsourcing

- Crowdsourcing mengacu pada proses
 memperoleh data beranotasi dengan bantuan
 sejumlah besar pekerja lepas yang terdaftar di
 platform crowdsourcing.
- Kumpulan data yang dianotasi sebagian besar terdiri dari data sepele seperti gambar hewan, tumbuhan, dan lingkungan alam dan tidak memerlukan keahlian tambahan.
- Oleh karena itu, tugas membuat anotasi pada kumpulan data sederhana sering kali dilakukan secara crowdsource ke platform yang memiliki puluhan ribu annotator data terdaftar.

Outsourcing Labelling

- Outsourcing adalah jalan tengah antara crowdsourcing dan pelabelan data internal di mana tugas anotasi data dialihdayakan ke organisasi atau individu.
- Salah satu keuntungan outsourcing adalah kita dapat menilai topik tertentu sebelum pekerjaan diserahkan.
- Pendekatan membangun kumpulan data anotasi ini sangat cocok untuk proyek yang tidak memiliki banyak dana, namun membutuhkan kualitas anotasi data yang signifikan.

Machine-based Annotation

- Salah satu bentuk anotasi yang paling baru adalah anotasi berbasis mesin.
- Anotasi berbasis mesin mengacu pada penggunaan alat anotasi dan otomatisasi yang secara drastis dapat meningkatkan kecepatan anotasi data tanpa mengorbankan kualitas hasil pelabelan.
- Perkembangan otomatisasi baru-baru ini dalam alat anotasi mesin tradisional—menggunakan algoritma pembelajaran mesin yang tidak diawasi dan semi-diawasi—membantu secara signifikan mengurangi beban kerja pada pemberi label manusia.

Algoritma tanpa pengawasan (*unsupervised learning*) seperti pengelompokan dan algoritma *semi-supervised* yang baru banyak dikembangkan untuk melakukan proses pelabelan data Al—seperti pembelajaran aktif (active learning) adalah salah satu pendekatan yang dapat mengurangi waktu anotasi hingga batas tertentu.

Kelebihan dan Kekurangan Masing-masing Metode

Approach	Description	Pros	Cons
Internal labeling	Assignment of tasks to an in-house data science team	Predictable results High accuracy of labeled data The ability to track progress	> It takes much time
Outsourcing	Recruitment of temporary employees on freelance platforms, posting vacancies on social media and job search sites	✓ The ability to evaluate applicants' skills	The need to organize workflow
Crowdsourcing	Cooperation with freelancers from crowdsourcing platforms	Cost savings Fast results	 Quality of work can suffer
Specialized outsourcing companies	Hiring an external team for a specific project	✓ Assured quality	 Higher price compared to crowdsourcing
Synthetic labeling	Generating data with the same attributes of real data	Fewer constraints for using sensitive and regulated data Training data without mismatches and gaps Cost- and time-effectiveness	High computational power required
Data programming	Using scripts that programmatically label data to avoid manual work	Automation Fast results	- Lower quality dataset
	wark:		(A)

Pelabelan data: Pengolahan Citra

Pelabelan data: Pengolahan Citra

Permasalahan pengolahan citra memerlukan data visual beranotasi dalam bentuk gambar. Anotasi data dalam pengolahan citra bergantung pada tugas visual yang kita inginkan untuk dilakukan oleh model.

Jenis anotasi data umum pada kasus pengolahan citra antara lain:

- Image Classification klasifikasi gambar
 - Anotasi data untuk klasifikasi gambar memerlukan penambahan tag ke gambar yang sedang dikerjakan.
 - o Jumlah tag unik di seluruh database adalah jumlah kelas yang dapat diklasifikasi oleh model.
 - Masalah klasifikasi dapat dibagi lagi menjadi:
 - Klasifikasi kelas biner (yang hanya terdiri dari dua tag)
 - Klasifikasi multiclass (yang berisi beberapa tag)
 - Selain itu, klasifikasi multi-label juga dapat dilihat, terutama dalam hal deteksi penyakit, dan mengacu pada setiap gambar yang memiliki lebih dari satu tag.
- Image Segmentation segmentasi gambar
 - O Dalam Segmentasi Gambar, tugas algoritma pengolahan citra (*Computer Vision*) adalah memisahkan objek dalam gambar dari latar belakangnya dan objek lain dalam gambar yang sama.
 - o Ini umumnya berarti peta piksel dengan ukuran yang sama dengan gambar yang berisi 1 di mana objek ada dan 0 di mana anotasi belum dibuat.
 - Untuk beberapa objek yang akan disegmentasi dalam gambar yang sama, peta piksel untuk setiap objek digabungkan berdasarkan saluran dan digunakan sebagai kebenaran dasar untuk model.

Pelabelan data: Pengolahan Citra

Object Detection - Deteksi obyek

- O Deteksi Objek mengacu pada deteksi objek dan lokasinya melalui pengolahan citra.
- Anotasi data dalam deteksi objek sangat berbeda dari yang ada di Klasifikasi Gambar, dengan setiap objek dianotasi menggunakan kotak pembatas (bounding box).
- Kotak pembatas adalah segmen persegi panjang terkecil yang berisi objek dalam gambar.
- Anotasi kotak pembatas biasanya disertai dengan tag di mana setiap kotak pembatas diberi label pada gambar.
- Umumnya, koordinat kotak pembatas ini dan tag yang sesuai untuknya disimpan dalam file JSON terpisah dalam format kamus dengan nomor gambar/ID gambar menjadi kunci kamus.

• Pose Estimation - Estimasi pose

- Estimasi pose mengacu pada penggunaan alat Computer Vision untuk memperkirakan pose seseorang dalam sebuah gambar.
- Estimasi pose berjalan dengan mendeteksi titik-titik kunci dalam tubuh dan menghubungkan titik-titik kunci ini untuk mendapatkan pose.
- O Ground Truth (GT) yang sesuai untuk model estimasi pose, menjadi poin kunci dari sebuah gambar.
- O Ground Truth (GT) dapat berupa data koordinat sederhana yang diberi label dengan bantuan tag, di mana setiap koordinat memberikan lokasi titik kunci tertentu, yang diidentifikasi oleh tag, pada gambar masing-masing.


```
## import library
from skimage.color import rgb2gray
import numpy as np
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
from scipy import ndimage
from PIL import Image
from sklearn.cluster import KMeans
from skimage.filters import sobel
import skimage.segmentation
import skimage
import warnings
warnings.filterwarnings("ignore")
```

Import library yang dibutuhkan

100

150

200

250

300

Hands-on: Segmentasi

```
image=Image.open('mountain.jpeg')
image=image.resize((320,225))
image=np.array(image)
plt.imshow(image)

<matplotlib.image.AxesImage at 0x7fb53b1abf10>

output

output
```



```
# Making the gray scale of the image
gray = rgb2gray(image)
plt.imshow(gray, cmap='gray')

mengubah gambar
menjadi grayscale
```

<matplotlib.image.AxesImage at 0x7fb518107190>

output


```
# What If we use the mean of the pixels in the whole image as threshold and kinda use it for segmentation

arr=gray.flatten()

for i in range(len(arr)):
    if arr[i]=a
        arr[i]=1
    else:
        arr[i]=0
    gray_segmented=arr.reshape(gray.shape[0],gray.shape[1])

plt.imshow(gray_segmented,cmap='gray')

cmatplotlib.image.AxesImage at 0x7fb53b1475e0>

Output

Output
```



```
# What if we tune the above function more??
arr=gray.flatten()
for i in range(len(arr)):
    if arr[i]>=arr.mean():
        arr[i]=4
    elif arr[i]>=0.75:
        arr[i]=3
    elif arr[i]>0.5:
        arr[i]=2
    elif arr[i]>0.25:
        arr[i]=1
    else:
        arr[i]=0
gray_segmented_2=arr.reshape(gray.shape[0],gray.shape[1])
```

Segmentasi obyek menjadi 5 bagian yang berbeda berdasarkan nilai threshold yang ditentukan


```
# There are 5 segments in the below image :)
plt.figure(figsize=(18,8))
plt.imshow(gray_segmented_2,cmap='pink')
plt.axis("off")
plt.show()
```


Menampilkan gambar setelah melakukan segmentas objek menjadii 5 bagian

output


```
imm=image[:,:,8]
elevation_map = sobel(imm)

fig, ax = plt.subplots(figsize=(18,8))
ax.imshow(elevation_map, cmap='gray', interpolation='nearest')
ax.axis('off')
ax.set_title('elevation_map')
plt.show()
```


Menampilkan gambar tanpa mencoba melakukan interpolasi antar piksel

→ output

Hands-on : Segmentasi

```
markers = np.zeros_like(imm)
markers[imm < 117] = 1
markers[imm > 232] = 2
fig, ax = plt.subplots(figsize=(8,4))
ax.imshow(markers, cmap='Spectral', interpolation='nearest')
ax.axis('off')
ax.set_title('markers')
Text(0.5, 1.0, 'markers')
```


Melakukan pelabelan terhadap pixel berdasarkan nilai histogram

menampilkan gambar

output

Hands-on: Segmentasi

```
segmentation = skimage.segmentation.watershed(elevation_map, markers)

fig, ax = plt.subplots(figsize=(10,5))
ax.imshow(segmentation, cmap='pink', interpolation='nearest')
ax.axis('off')
ax.set_title('segmentation')

Text(0.5, 1.0, 'segmentation')

segmentation

output
```


Pelabelan data: Natural Language Processing (NLP)

Pelabelan data: Natural Language Processing (NLP)

Pemrosesan bahasa alami (atau disingkat NLP) mengacu pada analisis bahasa manusia dan bentuknya selama interaksi baik dengan manusia lain maupun dengan mesin. Menjadi bagian dari linguistik komputasi awalnya, NLP telah berkembang lebih lanjut dengan bantuan Artificial Intelligence dan Deep Learning.

Berikut adalah beberapa pendekatan pelabelan data untuk pelabelan data NLP:

- Entity annotation and linking
 - Anotasi entitas mengacu pada anotasi entitas atau fitur tertentu dalam korpus data yang tidak berlabel.
 - Kata 'Entitas' dapat mengambil bentuk yang berbeda tergantung pada tugas yang dihadapi.
 - Untuk anotasi kata benda yang tepat, kami telah menamai anotasi entitas yang mengacu pada identifikasi dan penandaan nama dalam teks.
 - Untuk analisis frasa, kami mengacu pada proses sebagai penandaan frasa kunci di mana kata kunci atau frasa kunci dari teks dianotasi.
 - Untuk analisis dan anotasi elemen fungsional dari teks apapun seperti kata kerja, kata benda, preposisi, kami menggunakan penandaan Parts of Speech, disingkat sebagai penandaan POS.
 - o Penandaan POS digunakan dalam penguraian, terjemahan mesin, dan pembuatan data linguistik.
 - Anotasi entitas diikuti dengan penautan entitas, di mana entitas beranotasi ditautkan ke repositori data di sekitarnya untuk menetapkan identitas unik ke masing-masing entitas ini. Hal ini sangat penting ketika teks berisi data yang dapat ambigu dan perlu disambiguasi.
 - o Tautan entitas sering digunakan untuk anotasi semantik, di mana informasi semantik entitas ditambahkan sebagai anotasi.

Pelabelan data: Natural Language Processing (NLP)

Text Classification

- Mirip dengan klasifikasi gambar di mana kami menetapkan label ke data gambar, dalam klasifikasi teks, menetapkan satu atau beberapa label ke blok teks.
- Sementara dalam anotasi dan penautan entitas, kita memisahkan entitas di dalam setiap baris teks, dalam klasifikasi teks, teks dianggap sebagai keseluruhan dan satu set tag ditetapkan ke dalamnya
- Jenis klasifikasi teks meliputi klasifikasi berdasarkan sentimen (untuk analisis sentimen) dan klasifikasi berdasarkan topik yang ingin disampaikan teks (untuk kategorisasi topik).

Phonetic Annotation

- Anotasi fonetik mengacu pada pelabelan koma dan titik koma yang ada dalam teks dan sangat diperlukan dalam chatbot yang menghasilkan informasi tekstual berdasarkan input yang diberikan kepada mereka.
- O Koma dan berhenti di tempat yang tidak diinginkan dapat mengubah struktur kalimat, menambah pentingnya langkah ini.

Pelabelan Data: Best Practise

- Dengan pembelajaran yang diawasi menjadi bentuk pembelajaran mesin yang paling umum saat ini, pelabelan data ditemukan di hampir setiap tempat kerja yang membahas tentang Al.
- Berikut adalah beberapa praktik terbaik untuk pelabelan data untuk AI guna memastikan model Anda tidak rusak karena data yang buruk:

Proper dataset collection and cleaning

Data harus beragam tetapi spesifik untuk pernyataan masalah. Data yang beragam memungkinkan kami untuk menyimpulkan model ML dalam beberapa skenario dunia nyata sambil mempertahankan spesifisitas sehingga mengurangi kemungkinan kesalahan. Demikian pula, pemeriksaan bias yang tepat mencegah model dari overfitting ke skenario tertentu.

Proper Annotation Approach

Data yang akan dianotasi harus diberi label melalui pelabelan internal, outsourcing, atau melalui cara crowdsourcing. Pilihan yang tepat dari pendekatan pelabelan data yang dilakukan membantu menjaga anggaran tetap terkendali tanpa mengurangi akurasi anotasi.

QA

Quality Assurance mencegah label palsu dan data yang tidak diberi label dengan benar diumpankan ke algoritme ML. Anotasi yang tidak tepat dapat menjadi noise dan merusak model ML yang dapat dibangun.

Pelabelan Data: Best Practise

Hampir semua algoritma AI bekerja dengan asumsi bahwa *ground truth* yang diberikan adalah akurat.

Ketidakakuratan
anotasi data oleh
manusia sering
mengakibatkan model
ini tidak dapat
melakukan yang
terbaik, sehingga
menurunkan akurasi
prediksi secara
keseluruhan.

Tahapan pelabelan dan anotasi data merupakan salah satu tantangan terbesar yang dihadapi AI saat ini, yang menghambat integrasi AI skala besar di industri.

Dokumentasi Pelabelan Data

Kualitas dan Akurasi Data

- Akurasi dalam pelabelan data mengukur seberapa dekat pelabelan dengan ground truth, atau seberapa baik fitur berlabel dalam data set konsisten dengan kondisi dunia nyata. Misal dalam computer vision, dalam meletakkan kotak pembatas di sekitar objek di satu jalanan) atau model pemrosesan bahasa alami (NLP) seperti mengklasifikasikan teks untuk sentimen sosial.
- Kualitas dalam pelabelan data adalah tentang akurasi dataset secara keseluruhan. Apakah pekerjaan semua pemberi label terlihat sama? Apakah pelabelan secara konsisten akurat di seluruh data set? Misalkan kita memiliki 29, 89, atau 999 pelabel data yang bekerja secara bersamaan.

Menganalisis Akurasi Pelabelan Data

- Business Goals suatu Al yang berbeda memerlukan ukuran kualitas data yang berbeda.
- Keseimbangan dan variasi titik data di dalam dataset merupakan indikator seberapa baik algoritma dapat memprediksi suatu titik atau pola selanjutnya.
 - Misal tugas suatu AI adalah membedakan antara kendaraan yang bergerak dan tidak bergerak. Jika dataset memuat 90% gambar mobil bergerak tetapi hanya 10% yang diparkir, maka dapat dianggap tidak seimbang.
 - Untuk mengatasi masalah ini dapat digunakan teknik seperti oversampling, downsampling atau weight balancing.

Menganalisis Akurasi Pelabelan Data

- Kualitas data set untuk pelatihan model sering ditentukan oleh seberapa tepat label dan kategori ditempatkan pada setiap titik data.
- Namun, bukan hanya tentang keakuratan pelabelan data tetapi juga tentang seberapa konsisten keakuratannya.
 - Akurasi dan konsistensi data diukur selama proses penjaminan mutu, langkah-langkah terpisah yang dapat dilakukan secara manual atau otomatis.
 - Pendekatan yang berbeda dapat digabungkan untuk cross check dan memastikan kesempurnaan data set.

Apa yang mempengaruhi kualitas data dalam pelabelan?

Knowledge and context

 Pengetahuan dasar satu domain dan pemahaman kontekstual sangat penting seperti pemberi label untuk membuat set data terstruktur berkualitas tinggi.

Agility

 Pelabelan data berkembang saat dilakukan pengujian dan validasi model, sehingga harus disiapkan data set baru dan memperkaya data set yang ada untuk meningkatkan hasil algoritma Machine Learning.

Relationship

 Kita memerlukan pemberi label data yang dapat merespons dengan cepat dan mengikuti alur kerja tim, berdasarkan apa yang telah dipelajari dalam fase pengujian dan validasi model.

Communication

 Pendekatan umpan balik (feedback) adalah cara terbaik untuk membangun komunikasi dan kolaborasi yang andal antara tim dan pemberi label data.

Metode QA untuk Mengukur Kualitas Data

Consensus Algorithm

- Merupakan proses untuk mencapai reliabilitas data melalui kesepakatan pada satu titik data di antara beberapa individu pemberi label data atau suatu organisasi.
- Konsensus dapat dilakukan dengan menetapkan sejumlah reviewer per titik data (umumnya untuk data open source) atau sepenuhnya otomatis.

Benchmarking and Gold Standard

- Benchmarking adalah pendekatan yang lebih kompleks dan andal untuk QA, karena menggunakan standar tertentu.
- Menggunakan otomatisasi, pemberi label mendapatkan benchmark secara acak untuk memastikan bahwa label dan anotasi mematuhi referensi yang telah ditentukan
- Ahli diperlukan hanya untuk membuat referensi dan meninjau kualitas secara keseluruhan dan potensi penyimpangan.

Metode QA untuk Mengukur Kualitas Data

Sample review

- Pilih sampel acak dari hasil pelabelan yang telah diselesaikan.
- Pekerja yang lebih berpengalaman, seperti pemimpin tim atau manajer proyek,
 dapat meninjau sampel untuk mengukur akurasinya.

Cronbach's Alpha Test

- O Digunakan sebagai ukuran korelasi rata-rata atau konsistensi item dalam dataset, yang tergantung pada karakteristik penelitian (misal homogenitas).
- Dapat membantu dengan cepat melihat keandalan label secara keseluruhan.

Cronbach's Alpha Test

- Dikenal sebagai ukuran konsistensi internal yang digunakan dalam konteks instrumen pengukuran multi-item dan memiliki aplikasi yang luas.
- Cronbach's Alpha digunakan untuk mengestimasi item data dalam dataset termasuk label.

$$\alpha = \frac{k}{k-1} \left(1 - \frac{\sum s_i^2}{s_X^2} \right)$$

- Dimana α adalah koefisien reliabilitas, k adalah jumlah item set, ad S_i^2 n nilai variance setiap item i dimana i = 1, 2, ..., k, and adalah s_x^2 i variance dari semua item. Semakin tinggi nilai koefisien α , maka setiap item memiliki nilai covariance dan dapat dihitung (memiliki kesamaan konsep).
- Kategori reliabilitas tinggi dengan nilai $\alpha > 0.05$.

Cronbach's Alpha Test

• Besarnya koefisien reliabilitas berhubungan langsung dengan skor standar deviasi yang diperoleh dari sampel data apa pun karena koefisien reliabilitas adalah koefisien korelasi.

Series Number	N of Respondents	N of Items	Range	Variance	Standard Deviation	α	Mean
1	200	25	27.00	27.05	5.20	0.10	69.54
2	200	25	30.00	24.36	4.93	0.01	74.29
3	200	25	35.00	42.18	6.49	0.47	80.13
4	200	25	40.00	61.79	7.86	0.67	81.10
5	200	25	45.00	65.50	8.09	0.67	80.42
6	200	25	51.00	68.48	8.27	0.68	79.83
7	200	25	60.00	79.55	8.91	0.74	80.83
8	200	25	72.00	76.62	8.75	0.72	80.93
9	200	25	89.00	103.97	10.19	0.80	80.57
10	200	25	100.00	108.52	10.41	0.81	80.63

Dapat dilihat bahwa semakin tinggi nilai Range dan Variance membuat nilai reliabilitas juga naik.

Keamanan Pelabelan Data

- What are the security risks of outsourcing data labeling?
 - Mengakses data dari jaringan yang tidak aman atau menggunakan perangkat tanpa perlindungan malware
 - Mengunduh atau simpan sebagian data (mis., screen capture, flash drive)
 - Memberi label data saat berada di tempat umum
 - Tidak memiliki pelatihan, konteks, atau akuntabilitas terkait dengan aturan keamanan untuk pekerjaan labeling
 - Bekerja di lingkungan fisik atau digital yang tidak disertifikasi untuk mematuhi peraturan data (mis., HIPAA, SOC 2).
- Tiga area yang perlu menjadi perhatian untuk menjaga keamanan dokumen
 - Orang dan Tenaga Kerja: Ini dapat mencakup pemeriksaan latar belakang untuk pekerja dan mungkin mengharuskan pemberi label untuk menandatangani perjanjian kerahasiaan (NDA) atau dokumen serupa yang menguraikan persyaratan keamanan data.
 - **Teknologi dan Jaringan:** Pekerja mungkin diminta untuk menyerahkan perangkat yang mereka bawa ke tempat kerja, seperti ponsel atau tablet.
 - Fasilitas dan Ruang Kerja: Pekerja dapat duduk di tempat yang menghalangi orang lain untuk melihat pekerjaan mereka.

Summary

- Transformasi Data adalah bagian dari Data Preparation
- Membutuhkan pengetahuan dasar dan detail serta waktu yang mayoritas untuk menjamin data yang akan dianalisis sebersih mungkin
- Transformasi data dapat menggunakan beberapa teknik rekayasa fitur (feature engineering)
- Normalisasi, Standardisasi adalah bagian proses atau tahapan yang diperlukan untuk mentransformasi data
- Selain data terstruktur, transformasi data juga krusial dilakukan untuk data yang semi terstruktur dan tidak terstruktur (unstructured) seperti teks, image, audio dan video
- Dokumentasi juga dilakukan untuk proses transformasi data, seleksi fitur maupun pelabelan data
- Pelabelan bergantung pada pernyataan masalah, kerangka waktu proyek, dan jumlah orang yang terkait dengan pekerjaan

Referensi

- https://www.ucl.ac.uk/population-health-sciences/sites/population-health-sciences/files/quartagno_1.pdf
- https://rianneschouten.github.io/missing_data_science/assets/blogpost/blogpost.html
- https://towardsdatascience.com/tf-term-frequency-idf-inverse-document-frequency-from-scratch-in-python-6c2b61b78558
- https://dataaspirant.com/nlp-text-preprocessing-techniques-implementation-python
- https://www.oreilly.com/library/view/blueprints-for-text/9781492074076/assets/btap_0401.png
- https://monkeylearn.com/unstructured-data
- https://medium.com/machine-learning-id/melakukan-feature-scaling-pada-dataset-229531bb08de
- https://protobi.com/post/extreme-values-winsorize-trim-or-retain
- https://heartbeat.fritz.ai/hands-on-with-feature-engineering-techniques-dealing-with-outliers-fcc9f57cb63b
- https://www.analyticsvidhya.com/blog/2021/05/detecting-and-treating-outliers-treating-the-odd-one-out/

Tools / Lab Online

- Jupyter Notebook
- Google Collabs

Quiz / Tugas

Quiz dapat diakses melalui https://spadadikti.id/

Terima kasih

