

ReLu

Activation function으로서의 Sigmoid의 문제점

input \rightarrow network \rightarrow activation function \rightarrow output 의 순으로 순전파가 이루어지며 backpropagation을 통해 Loss의 gradient을 구해 weight을 업데이트한다.

Sigmoid의 문제는 gradient을 구할 때 발생하는데, sigmoid 함수의 특성 상 어느 지점에서는 gradient가 거의 0에 가깝다.

Backpropgation을 통해 gradient을 앞단으로 전파할 때 activation function을 곱하게 되는데, 아주 작은 activation function 값이 곱해지면서 앞단으로 갈수록 gradient가 소멸해버리는 문제가 발생한다. 이런 현상을 Vanishing Gradient라고 한다.

ReLU란?

f(x)=max(0,x)으로 gradient은 무조건 0 혹은 1이다. 매우 작은 gradient가 곱해지지 않기 때문에 vanishing gradient 문제가 발생하지 않는다는 장점이 있다. (음수 영역에서 0이 되기는 함)

Optimizer in PyTorch

MNIST

Lab 10 MNIST and softmax
import torch
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import random

```
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# for reproducibility
random_seed = 777

torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed) # if use any numpy computation
random.seed(random_seed)

# parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
```

- transform=transforms.ToTensor() 데이터타입을 Tensor 형태로 변경
- torch.utils.data.DataLoader : 학습에 필요한 데이터를 로딩해주는 인스턴스
 - drop_last : 배치 크기를 채우지 못한 마지막 불완전 배치를 사용하지 않음

```
linear = torch.nn.Linear(784, 10, bias=True).to(device)
```

MNIST 데이터는 28 * 28 = 784 사이즈이며, 숫자는 0부터 9까지이므로 output은 10으로 설정한다.

모델의 파라미터를 초기화한다.

```
# define cost/loss & optimizer
criterion = torch.nn.CrossEntropyLoss().to(device) # Softmax is internally computed.
optimizer = torch.optim.Adam(linear.parameters(), lr=learning_rate)
```

```
total_batch = len(data_loader)
for epoch in range(training_epochs):
    avg\_cost = 0
    for X, Y in data_loader:
        # reshape input image into [batch_size by 784]
        # label is not one-hot encoded
        X = X.view(-1, 28 * 28).to(device)
        Y = Y.to(device)
        optimizer.zero_grad()
        hypothesis = linear(X)
        cost = criterion(hypothesis, Y)
        cost.backward()
        optimizer.step()
        avg_cost += cost / total_batch
    print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print('Learning finished')
>>
Epoch: 0001 \text{ cost} = 4.848181248
Epoch: 0002 cost = 1.464641452
Epoch: 0003 cost = 0.977406502
Epoch: 0004 \text{ cost} = 0.790303528
Epoch: 0005 cost = 0.686833322
Epoch: 0006 cost = 0.618483305
Epoch: 0007 cost = 0.568978667
Epoch: 0008 cost = 0.531290889
Epoch: 0009 cost = 0.501056492
Epoch: 0010 \text{ cost} = 0.476258427
Epoch: 0011 cost = 0.455025405
Epoch: 0012 cost = 0.437031567
Epoch: 0013 cost = 0.421489984
Epoch: 0014 cost = 0.408599794
Epoch: 0015 cost = 0.396514893
Learning finished
```

▼ 🔔 클래스로 짜면 loss가 다르게 떨어지는 이유에 대해서는 고민

```
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# for reproducibility
random_seed = 777

torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(random_seed)

# parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
```

```
class SoftmaxMNIST(nn.Module): # 앞으로 모델은 다른 데다가 써놓고 임포트하자
    def __init__(self):
       super().__init__()
       self.linear = nn.Linear(784, 10)
   def forward(self, x):
       return self.linear(x)
model = SoftmaxMNIST()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
total_batch = len(data_loader)
for epoch in range(training_epochs):
   avg\_cost = 0
   for X, Y in data_loader:
       # reshape input image into [batch_size by 784]
       # label is not one-hot encoded
       X = X.view(-1, 28 * 28).to(device)
       Y = Y.to(device)
       hypothesis = model(X)
       cost = criterion(hypothesis, Y)
       optimizer.zero_grad()
       cost.backward()
       optimizer.step()
       avg_cost += cost / total_batch
    print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print('Learning finished')
Epoch: 0001 \text{ cost} = 0.612622023
Epoch: 0002 cost = 0.343994766
Epoch: 0003 cost = 0.307820767
Epoch: 0004 \text{ cost} = 0.291483581
Epoch: 0005 cost = 0.281717360
Epoch: 0006 \text{ cost} = 0.274238199
Epoch: 0007 cost = 0.269270748
Epoch: 0008 cost = 0.265026242
Epoch: 0009 \text{ cost} = 0.261815339
Epoch: 0010 \text{ cost} = 0.258980662
Epoch: 0011 cost = 0.256636649
Epoch: 0012 cost = 0.254542708
Epoch: 0013 cost = 0.252477646
Epoch: 0014 cost = 0.251285672
Epoch: 0015 \text{ cost} = 0.249446645
Learning finished
```

MNIST with ReLU

```
device = 'cuda' if torch.cuda.is_available() else 'cpu'
```

```
class DNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = torch.nn.Linear(784, 256, bias=True)
        self.linear2 = torch.nn.Linear(256, 256, bias=True)
        self.linear3 = torch.nn.Linear(256, 10, bias=True)
        self.relu = torch.nn.ReLU()
        self.model = torch.nn.Sequential(self.linear1, self.relu, self.linear2, self.relu, self.linear3).to(device)

def forward(self, x):
    return self.model(x)
```

여기서 torch.nn.Sequential 객체는 그 안에 포함된 객체를 순차적으로 실행해 주는 역할을 한다. 즉 self.linear1 → self.relu → self.linear2 → self.relu → self.linear3 순으로 통과하는 셈이다.

마지막에 self.linear3 은 softmax 을 통과해 cross-entropy loss를 구할 계획이므로 ReLU activation function을 통과하지 않도록 설계한다.

모델을 클래스 단위로 작성할 때에는 __init__ 단에서 클래스 단위에서 필요한 모든 정의를 다 해두는 것이 좋다. 예를 들어 self.model 같은 경우도 처음 한 번만 그 구조를 정의하면 되므로 __init__ 단에서 정의하고 forward 에서는 불러 와서 쓰기만 할 수 있도록 작성하는 것이 좋다. 이렇게 하면 불필요하게 함수를 호출할 때마다 모델을 새로 정의할 필요가 없으므로 computation cost을 줄일 수 있다는 이점이 있다.

```
model = DNN()
criterion = torch.nn.CrossEntropyLoss().to(device) # softmax7\text{internally compute}
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```

```
total_batch = len(data_loader)
for epoch in range(training_epochs):
   avg\_cost = 0
   for X, Y in data_loader:
        # reshape input image into [batch_size by 784]
       # label is not one-hot encoded
       X = X.view(-1, 28 * 28).to(device)
       Y = Y.to(device)
       hypothesis = model(X)
       cost = criterion(hypothesis, Y)
       optimizer.zero_grad()
       cost.backward()
       optimizer.step()
       avg_cost += cost / total_batch
    print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print('Learning finished')
```