ImageRecognition aihemäärittely (tarkentuu)

Simo Korkolainen

30. toukokuuta 2016

Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla. Neuroverkon opetuksessa verkon painoja muutetaan liikuttamalla niitä virhefunktion gradientin vastaiseen suuntaan, kunnes virhefunktio on minimoitunut ja neuroverkko on oppinut tunnistamaan kuvat. Derivoinnin ketjusääntöön perustuva backpropagation-algoritmi mahdollistaa gradientin nopean laskemisen.

1 Neuroverkko

Olkoon L neuroverkon kerroksien lukumäärä. Olkoon l_k kerroksen k=1,...,L neuronien lukumäärä. Merkitään kerroksen k aktivaatiota vektorina $z_k \in \mathbb{R}^{l_k}$. Ensimmäisen kerroksen aktivaatio z_1 on neuroverkon syöte ja viimeisen kerroksen aktivaation z_L on neuroverkon antama tuloste.

Jokaisen kerroksen k>1 aktivaation voidaan ajatella laskettavan parametrisoidun funktion $f_k: \mathbb{R}^{l_{k-1}} \times A_k \to \mathbb{R}^{l_k}$ avulla. Tässä A_k on verkon kerroksien k-1 ja k yhteyksien painoina toimivien parametrien joukko. Kerroksen aktivaatio lasketaan kaavan

$$z_k = f(z_{k-1}, a_k) \tag{1}$$

avulla, missä $a_k \in A_k$.

2 Backpropagation-algoritmi

3 Aikavaativuus

Ohjelmassa käytetään vain eteenpäin kytkettyjä neuroverkkoja. Neuroverkko koostuu kerroksista, joissa on neuroneita. Neuroneiden aktivaatio z_k kerroksessa k lasketaan täsmälleen edellisen kerroksen aktivaatioiden perusteella eli $z_k = f(z_{k-1}, a_k)$ missä f on aktivaatiofunktio. Kuten aikasemmin, olkoon L neuroverkon kerroksien lukumäärä ja olkoon l_k kerroksen k = 1, ..., L neuronien lukumäärä. Jos jokainen kerroksen k neuroni on kytketty kaikkiin

edellisen kerroksen solmuihin ja neuronipariin liittyvän laskennan aikavaativuus on luokkaa O(1), yhden kerroksen k neuronin aktivaation laskemisen aikavaativuus on luokkaa $O(l_{k-1})$. Koska kerroksessa k on l_k neuronia, koko kerrokseen liittyvän laskennan aikavaativuus on $O(l_{k-1}l_k)$. Ensimmäisen kerroksen eli syötekerroksen aktivaatioden asettamisen aikavaativuus on $O(l_1)$.

Koko neuroverkon aktivaatioden laskennan aikavaativuus T_{act} on kerrosten aikavaativuuksien summa eli

$$T_{act} = O(l_1 + \sum_{k=2}^{L} l_{k-1} l_k)$$

Tarkastellaan tapausta, jossa kerrosten neuronien lukumäärä pienee eksponentiaalisesti eli $l_k=\alpha^{k-1}l_1$, missä $0<\alpha<1$. Tällöin

$$l_1 + \sum_{k=2}^{L} l_{k-1} l_k = l_1 + \sum_{k=2}^{L} \alpha^{k-2} l_1 \alpha^{k-1} l_0$$

$$= l_1 + l_1^2 \sum_{k=2}^{L} \alpha^{2k-3}$$

$$= l_1 + l_1^2 \alpha \sum_{k=0}^{L-2} (\alpha^2)^k$$

$$\leq l_1 + l_1^2 \alpha \sum_{k=0}^{\infty} (\alpha^2)^k$$

$$= l_1 + l_1^2 \frac{\alpha}{1 - \alpha^2}$$

Saamme, että $T_{act} = O(l_1^2)$, koska $\frac{\alpha}{1-\alpha^2}$ on positiivinen vakio.