Sistemas de inteligencia artificial TP1: Métodos de búsqueda

Integrantes:

- → Lucas Catolino
- → Matias Ricarte

Problema

Rompecabezas de números

(8 números en una grilla de 3x3)

✓ ✓ TestsInforme 132.7s O test01BPA() 32ms ✓ test03BPPV() 2.0ms ✓ test04HLM() 20ms
 ✓ test05HLE() 3.0ms (v) test06HGM() 14ms ★ test07HGE() 55ms test08ASM() 2.0ms ✓ test09ASE() 2.0ms est10HLI() 15ms est11HGI() 9.0ms ✓ test12ASI() 1.0ms TestsRotaciones

La metodología de desarrollo implementada fue TDD:

- 1. Creación de test con cierta funcionalidad inexistente
- 2. El test falla, se implementa la funcionalidad
- 3. El test pasa

```
rdenado = new Tablero("123456780");
2 = new Tablero("123456708");
andom = new Tablero("013425786");
andom2 = new Tablero("023451768");
```

Los tableros fueron considerados strings Dependiendo de la posición del cero se habilitan las "rotaciones" disponibles

```
Tablero
T
```

```
public boolean isSolvable() {
   // Si esta mal armada la matriz no es resoluble
   if (!this.wellConfigured()) {
   int inv = 0;
   String estadoAux = this.estado.replace("0", "");
   // Por cada elemento, veo si los que vienen despu∲s son menores, aumentanto el
   for (int i = 0; i < estadoAux.length(); i++) {</pre>
       int pre = (int) estadoAux.charAt(i) - ASCII;
       for (int j = i; j < estadoAux.length(); j++) {</pre>
            int post = (int) estadoAux.charAt(j) - ASCII;
            if (pre > post) {
                inv++;
   return (inv % 2 == 0) ? true : false;
```

Un tablero es válido si:

- 1. Tiene 9 valores (del 0 al 8 sin repetir)
- 2. El tablero tiene una cantidad par de "inversiones"
 - Una inversión es cuántos elementos menores tiene a la derecha cada elemento
 - La paridad se mantiene ya que cada rotación aumenta o disminuye en 2 la inversión
 - El estado final 123456780 tiene inversión 0

Cálculo de heurísticas

Heurística 1: Manhattan

Definimos la distancia manhattan como:

$$h_{\mathsf{m}}(\mathsf{s}) = \sum_{\substack{\mathsf{p} \in \mathsf{Piezas} \text{ fuera de lugar} \\ 2}}^{\mathsf{m}(\mathsf{p})}$$

siendo m(p) = (
$$|p_{x \text{ ideal}} - p_{x \text{ actual}}| + |p_{y \text{ ideal}} - p_{y \text{ actual}}|$$
)

Ejemplo:

Pieza 0:
$$(|2 - 0| + |2 - 0|) = 4$$

Pieza 1:
$$(|0 - 1| + |0 - 0|) = 1$$

Pieza 2:
$$(|1 - 1| + |0 - 1|) = 1$$

Pieza 5:
$$(|1 - 2| + |1 - 1|) = 1$$

Pieza 6:
$$(|2 - 2| + |1 - 2|) = 1$$

$$h_{\rm m}(s) = 4$$

Heurística 2: Euclides

(0,0)	(0,1)	(0,2)
(1,0)	(1,1)	(1, 2)
(2,0)	(2,1)	(2,2)

De forma análoga a Manhattan, definimos la distancia de Euclides como la suma de las hipotenusas de los catetos formados por la distancia de Manhattan dividido por 2.

Ejemplo:

Pieza 0:
$$\sqrt{(|2-0|^2+|2-0|^2)}=2$$

Pieza 1:
$$\sqrt{(|0-1|^2+|0-0|^2)}=1$$

Pieza 2:
$$\sqrt{(|1-1|^2+|0-1|^2)}=1$$

Pieza 5:
$$\sqrt{(|1-2|^2+|1-1|^2)}=1$$

Pieza 6:
$$\sqrt{(|2-2|^2+|1-2|^2)}=1$$

$$h_{e}(s) = 3$$

Heurística 3: No admisible

(0,0)	(0,1)	(0,2)
(1,0)	(1,1)	(1, 2)
(2,0)	(2,1)	(2,2)

Definimos la heurística no admisible como la cantidad de números fuera de lugar para el estado actual.

Interesante: un estado de menor heurística significa un estado más ordenado. Para este estado la heurística resulta 3, pero en 2 movimientos se resuelve

1	2	3
4	5	6
0	7	8

$$h_{na}(s) = 3$$

Resultados y conclusiones

Tiempo promedio de ejecución (ms)

Descripción	Tiempo
ВРА	72±11
ВРР	199607±54390
HLM	16.5±7.3
HLE	9.8±3.1
HGM	63.3±22.1
HGE	181.7±68.7
ASM	6.8±3.6
ASE	4.3±2.1
HLI	5.5±3.7
HGI	55.0±34.7
ASI	41.3±7.3
BPPV L1	40.7±14.8
BPPV L5	33.5±7.0
BPPV L15	136.7±30.5
BPPV L20	162.0±37.0

Nodos frontera

Descripción	Cantidad
ВРР	70533
ВРА	679
BPPV	7
HLM	0
HLE	0
HGM	123
HGE	505
HGI	312
ASM	56
ASE	66
ASI	42

800

Descripción	Cantidad
ВРР	92103
ВРА	11
BPPV	11
HLM	11
HLE	199
HGM	33
HGE	47
HGI	45
ASM	11
ASE	11
ASI	11

Descripción	Cantidad
BPP	133323
ВРА	957
BPPV	630
HLM	12
HLE	200
нсм	181
HGE	698
HGI	467
ASM	86
ASE	94
ASI	58

¿Preguntas?

Muchas gracias

Lucas Catolino Matias Ricarte