

# Predict COVID-19 Hospitalization Based on Patient Basic Info

William Mai December 15th 2021





## Introduction

- Predict whether a confirmed Covid-19 patient will be hospitalized
- Provide timely and dedicated care to prevent hospitalization
- The result can also be used to predict the demand for hospital beds related to Covid



#### **Data**

37.5M rows of patient-level data for all Covid-19 cases reported in the US gathered by CDC

- Case month (recent 3 months is picked)
- State, county
- Age group
- Sex
- Race
- Known exposure
- Symptom status
- Hospitalized





## **Training Workflow**

**1** Feature Engineering

- Grouping categories
- One Hot Encoder for categorical features



**Establish Baseline** 

• Train on Logistic Regression model

3 Try Different Models

- Tree Classifier
- Random Forest
- Gradient Boosted Trees (XGBoost)
- Naive Bayes

Class Imbalance

- Resampling (over, **under**, SMOTE)
- Class Weight
- **5** Hyperparameter Tuning
- # of estimators
- Max depth
- Min samples split
- Min samples leaf





## **Feature Engineering**



#### **Exposure**

- Yes
- Missing
- Unknown
- NaN



#### Race

- White
- Black
- Asian
- Other
- American Indian/Alaska Native
  - And more...



#### Location

Group states/territories into four regions based on the official FIPS code





## **Result - Preliminary Training**

|           | Logistic | Tree   | Random<br>Forest | XGBoost |
|-----------|----------|--------|------------------|---------|
| Precision | 0.6101   | 0.6472 | 0.6362           | 0.6526  |
| Recall    | 0.1161   | 0.1306 | 0.1328           | 0.1216  |
| F1        | 0.1950   | 0.2174 | 0.2197           | 0.2050  |





## **Result - Confusion Matrix**



Predicted hospitalization



## **Result - Class Imbalance Solution**

|           | Oversampling | Undersampling | SMOTE  | Class Weight<br>(1:5) |
|-----------|--------------|---------------|--------|-----------------------|
| Precision | 0.3193       | 0.3135        | 0.3151 | 0.3197                |
| Recall    | 0.6681       | 0.6785        | 0.6754 | 0.6685                |
| F1        | 0.4321       | 0.4288        | 0.4297 | 0.4325                |

Best from 1:1 to 1:10





## **Recall = 0.6783**

## Final Model

- Random Forest
- Undersampling (% of 0)
  - n\_estimators = 100
- min\_samples\_split = 5
- min\_samples\_leaf = 4
  - And more...



## Feature Importances

"Age group" appears to be the most important feature, followed by "Known Exposure."







## **Result - Precision vs Recall**



## Conclusion

#### **Predictability**

The model can identify 68% of people who will likely get hospitalized later

#### **Adaptability**

The model can be adjusted for an ideal true positive rate based on the current capacity of the healthcare system



## Thanks!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** 







# Appendix







## **Confusion Matrix - Final Model**



No Yes Predicted hospitalization



## **Result - ROC Curve**

