Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра общей физики Лабораторная работа № 3.2.1

Сдвиг фаз в цепи переменного тока

Студент			Преподаватель
(имя)	(фамилия)	(имя)	(отчество)
	группа	-	(фамилия)

Цель работы: изучить влияние активного сопротивления, индуктивности и ёмкости на сдвиг фаз между током и напряжением в цепи переменного тока.

1. Экспериментальная установка

 $\nu =$

$$R_L =$$
 при $\nu =$ $L =$ $r =$ $C =$

RC-цепь

Ток, текущий через RC-цепочку, пропорционален напряжению на резисторе, и опережает напряжение на конденсаторе по фазе на $\pi/2$. В таком простом случае метод векторных диаграмм даёт простой результат для зависимости сдвига фаз от R:

$$\operatorname{tg}\varphi=\frac{1}{\Omega RC}.$$

RL-цепь

Рассмотрение этого случая аналогично предыдущему. Импеданс катушки равен $Z_2 = j\omega L$, поэтому ток отстаёт по фазе от напряжения, и расчётная формула приобретает вид

$$\operatorname{tg}\varphi = \frac{\omega L}{R_{\sum}}.$$

 ${\bf K}$ сопротивлению калибровочного резистора и резистора R добавится активное сопротивление катушки:

$$R_{\sum} = R + r + R_L,$$

где R_L – активное сопротивление катушки.

RCL-цепь

Комплексный импеданс RCL-цепочки $Z=R+j\omega L-\frac{j}{\omega C}.$

Сдвиг фаз между током и напряжением получим, взяв аргумент Z:

$$\operatorname{tg} \varphi = \frac{\omega L - 1/(\omega C)}{R} = Q \frac{(\omega/\omega_0)^2 - 1}{\omega/\omega_0} = Q \frac{(1+x)^2 - 1}{1+x} \simeq 2xQ,$$

где $x \equiv \Delta \omega/\omega_0 = \Delta \nu/\nu_0$. В последнем переходе пренебрегаем степенями x выше первой. Измерив ширину графика w = 2x на высоте $\varphi = \pi/4$ (tg $\varphi = 1$), можем непосредственно определить добротность контура:

$$Q = \frac{1}{w}$$
.

Фазовращатель

Разность фаз равна $\pi/2$, когда медиана $\overline{34}$ в то же время является и высотой, т. е. когда $\triangle 124$ — равнобедренный, откуда

$$U_R = U_C, (1)$$

$$R = \frac{1}{\omega C}. (2)$$

2. Работа и измерения

RC-цепь

$$X_1 = \frac{1}{2\pi\nu C} =$$

R	x	x_0	φ	$\operatorname{tg} arphi$	R_{Σ}	$1/(R_{\Sigma}\Omega C)$

Таблица 1: Полученные значения в RC-цепи

Место для графика

Рис. 1: График зависимости $\operatorname{tg} \varphi = f[1/\Omega CR_{\Sigma}]$

RL-цепь

$$X_2 = 2\pi\nu L =$$

R	x	x_0	φ	$\operatorname{tg} arphi$	R_{Σ}	$\Omega L/R_{\Sigma}$

Таблица 2: Полученные значения в RL-цепи

Место для графика

Рис. 2: График зависимости $\operatorname{tg} \varphi = f[\Omega L/R_{\Sigma}]$

RCL-цепь

Сопротивление	$ u$, к Γ ц	x_0	x	φ	ν/ν_0
R = 0 Om					
R = 100 Ом					

Таблица 3: Полученные значения при изучении зависимости фазы от $\frac{\nu}{\nu_0}$

$$C =$$

$$L =$$

$$\nu_0 =$$

Из графика R=0 Ом добротность $Q_0=$ Из графика R=100 Ом добротность $Q_{100}=$

Можно рассчитать добротность, выразив её через параметры цепочки: $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$.

$$Q_{\text{reop, 0}} =$$

$$Q_{\text{Teop, 100}} =$$

Место для графика

Рис. 3: График зависимости $\varphi=f[\nu/\nu_0]$ при R=0 Ом

Место для графика

Рис. 4: График зависимости $\varphi=f[\nu/\nu_0]$ при R=100 Ом

3. Вывод

В настоящей лабораторной работе была изучена зависимость сдвига фаз между током
и напряжением от сопротивления в цепи в RC- и RL-цепях. Была определена добротность
колебательного контура, снята зависимость сдвига фаз от частоты вблизи резонанса.