1. Wann heißt eine Reihe konvergent, wann absolut konvergent?

Answer: The series $\sum_{n=0}^{\infty} a_n$ converges when the sequence of partial sums $s_n = \sum_{k=0}^n a_k$ converges. The series $\sum_{n=0}^{\infty} a_n$ converges absolutely, when the series $\sum_{n=0}^{\infty} |a_n|$ converges.

2. Für welche komplexen q existiert $\sum_{n=0}^{\infty} q^n$? Welchen Wert hat die Summe? **Answer:** It exists for |q| < 1, and $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$.

$$s_n = s_{n-1} + 1, s_{n-1} = s_n - q^n \Rightarrow s_n = q(s_n - q^n) + 1$$
thus $s_n = \frac{1-q^{n+1}}{1-q}$. s_n converges exactly when $|q| < q$.

3. Warum divergiert die harmonische Reihe?

Answer: For a similar argument that is used in the proof of the Verdichtungs-Kriterium: $\sum_{k=1}^{2^n} \frac{1}{k} > \sum_{k=0}^{n} 2^n \frac{1}{2^n} = n$ (note: indexes might be off-by-one, but this is the main idea).

4. Wann konvergiert eine Reihe positiver Summanden?

Answer: When sequence of partial sums is bounded.

5. Wie lauten Cauchy-, Majoranten-, Verdichtungs- und Leibniz-Kriterium für die Konvergenz unendlicher Reihen?

TODO: only from the top of my head, compare it against the lecture notes Answer:

- Cauchy-criterium: $\sum_{n=0}^{\infty} a_n$ converges exactly if $\forall \epsilon > 0 \colon \exists N \in \mathbb{N} \colon \forall m, n > N \colon \left| \sum_{k=0}^{n} a_k \sum_{k=m}^{m} a_k \right| = \left| \sum_{k=m+1}^{n} a_k \right| < \epsilon$
- Majorant: consider two nonnegative series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$. If $0 \ge a_n \le b_n$ for almost all $n \in \mathbb{N}$ and $\sum_{n=0}^{\infty} b_n$ converges, then so is $\sum_{n=0}^{\infty} a_n$.
- Verdichtungs: Consider $(a_n) \ge 0$ monoton decreasing terms. Then $\sum_{n=0}^{\infty} a_n$ converges exactly when $\sum_{n=0}^{\infty} 2^n a_{2^n}$
- Leibniz: Consider $(a_n) \ge 0$ monoton decreasing. Then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.

TODO: only from the top of my head, compare it against the lecture notes

6. Wie lauten Wurzel- und Quotientenkriterium für die Konvergenz unendlicher Reihen?

Answer:

- Root-test: if $\limsup_{n\to\infty} |a_n|^{\frac{1}{n}} < 1$ then $\sum_{n=0}^{\infty} a_n$ converges.
- Ratio-test: if $a_n = 0$ for at most finitely many $n \in \mathbb{N}$ and $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ then $\sum_{n=0}^{\infty} a_n$ converges.
- 7. Bei welchen der folgenden Reihen gibt das Quotientenkriterium Aufschluss über Konvergenz oder Divergenz?

$$\sum_{n=0}^{\infty} \frac{n!}{n^n}, \sum_{n=0}^{\infty} \frac{1}{n^2}, \sum_{n=0}^{\infty} \frac{1}{(3+(-1)^n)^n}$$

Answer:

- $\limsup_{n\to\infty} \left| \frac{(n+1)!}{(n+1)^{n+1}} / \frac{n!}{n^n} \right| = \limsup_{n\to\infty} \left| \frac{n}{n+1} \right|^n = 1/e < 1 \Rightarrow \text{converges}$
- $\limsup_{n\to\infty} \left| \frac{1/(n+1)^2}{1/n^2} \right| = 1 \Rightarrow \text{inconclusive}$
- $\limsup_{n \to \infty} \left| \frac{(3+(-1)^n)^n}{(3+(-1)^{n+1})^{n+1}} \right| = \limsup_{n \to \infty} \left| \frac{4^n}{2^{n+1}} \right| = 1 \Rightarrow \text{inconclusive}$
- 8. Wie lautet der kleine Umordnungssatz absolut konvergenter Reihen?

Answer: Consider any $\sum_{n=0}^{\infty} a_n$ absolut convergent series and $\tau \colon \mathbb{N} \to \mathbb{N}$ permutation. Then $\sum_{n=0}^{\infty} a_{\tau^{-1}(n)}$ is also absolutely convergent and $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_{\tau^{-1}(n)}$ TODO: only from the top of my head, compare it against the lecture notes

9. Wie lautet der große Umordnungssatz absolut konvergenter Reihen?

Answer:TODO

10. Welche der folgenden Reihen konvergieren, welche konvergieren absolut?

$$\sum_{n=0}^{\infty} \frac{1}{n}, \sum_{n=0}^{\infty} \frac{(-1)^n}{n}, \sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}, \sum_{n=0}^{\infty} \frac{x^n}{n!} \in \mathbb{C}$$

Answer:

- $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (Verdichtungs-Kriterium)
- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges (Leibniz), but not absolutely, see previous point
- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely, since $\sum_{n=0}^{\infty} \frac{1}{n^2}$ converges (Verdichtungs-Kriterium)

- if $x \neq 0$ then $\limsup_{n \to \infty} \left| \frac{x^{n+1}/(n+1)!}{x^n/(n)!} \right| = \limsup_{n \to \infty} \left| \frac{x}{n+1} \right| = 0 \Rightarrow \text{converges (from Quotientenkriterium)}$. If x = 0 then it's converges trivially
- 11. Für welche reellen/komplexen s konvergiert die Reihe $\sum_{n=0}^{\infty} n^{-s}$ der Riemannschen ζ -Funktion?

Answer: $\sum_{n=1}^{\infty} \frac{1}{n^q} \Leftrightarrow \sum_{n=0}^{\infty} \frac{2^n}{(2^n)^q} = \sum_{n=0}^{\infty} (2^n)^{1-q} = \sum_{n=0}^{\infty} (2^{1-q})^n$ which converges for $1 < q \in \mathbb{R}$ (from geometric series), and we don't know for $q \in \mathbb{C}$

12. Was ist eine Potenzreihe? Was ist ihr Konvergenzradius? Wie berechnet er sich?

Answer:

13. Wann ist das Produkt zweier Potenzreihen wieder eine Potenzreihe? Wie lautet sie? Wie hängen die Konvergenzradien der Potenzreihen und ihres Produktes zusammen?

Answer:

14. Wie lauten die Dastellungen von $\exp(x)$, $\sin(x)$, $\cos(x)$, $\sinh(x)$, $\cosh(x)$ als Potenzreihen?

Answer:

15. Wie hängen e^z , $\sin(z)$, $\cos(z)$, $\sinh(z)$, $\cosh(z)$ im Komplexen zusammen?

Answer: