Implementation of a Power Efficient High Performance FPU for SCOORE

Presenter: Rigo Dicochea

Authors: W. Ashmawi, J. Burr, A. Sharma, J. Renau

MASC Research Lab University of California, Santa Cruz

http://masc.soe.ucsc.edu/

SCOORE

- SPARC V8 ISA
- Out-Of-Order Execution
- 4-Issue Superscalar
- 12-Stage Pipeline

- 1.4 GHz 90nm ASIC
 - Frequency/Power Optimization
- 155 MHz FPGA
 - Area Minimization

SCOORE

- SPARC V8 ISA
- Out-Of-Order Execution
- 4-Issue Superscalar
- 12-Stage Pipeline

- 1.4 GHz 90nm ASIC
 - Frequency/Power Optimization
- 155 MHz FPGA
 - Area Minimization

Outline

- Floating Point Unit Architecture
 - Pipeline Flow
- ASIC/FPGA Synthesis Results
- Power Optimization Methodology
 - Switching Activity
 - Clock Gating
- Conclusion

- IEEE-754 Compliant
 - SPARC V8 ISA Implementation
 - Single & Double Precision Floating Point
 - Fixed Point Arithmetic (Multiplication/Division)
- Worst Case FP Number of Cycles/Operation
 - Addition/Subtraction/Comparison= 6 Cycles
 - Multiplication = 6 Cycles
 - Division = 64 Cycles
- Short Term Goals
 - LEON3 SPARC V8 Compatibility
 - Square Root Implementation

Micro Architecture

Simultaneous Synthesis Goals

- Dual FPGA & ASIC Synthesis
 - FPGA Prototype Implementation
 - ASIC is Ultimate Objective
- Major Optimization Goals
 - FPGA
 - Minimize LUT Utilization
 - ASIC
 - Achieve 1.4 GHz
 - Optimize Power

FPGA Synthesis Results

- ~6500 LUTs at 156 MHz (Xilinx Virtex-5)
- ~4000 ALMs at 143 MHz (Altera STRATIX II)

Comparison on Virtex-II

- Virtex-II
 - 130 nm Technology
- ~8900 LUTS at 97 MHz (SCOORE FPU)
- ~8500 LUTS at 65 MHz (LEON FPU)

ASIC

• Results For 90nm Technology:

	Front-End	Back-End
	DC_Shell	SoC Encounter
Frequenc	1.3 GHz	1.4 GHz
У		
Area	$0.36 \mathrm{mm}^2$	$0.25 \mathrm{mm}^2$
Power	67mW	

Physical View of FPU

ASIC Power Analysis

- FPU Natural Target for Power Savings
 - Frequent In-Activity
- Clock Gating
- Switching Activity
 - Total Number of Transitions Occurring at Every Gate Per a Given Benchmark

Clock-Gating Results

• ~30% Improvement in Power Consumption

Conclusion

- Open Source BSD License
- Complete Front to Back End Implementation
- Competitive ASIC Frequency
- Reasonable LUT Utilization
- Reasonable Power Optimization
- Comparable Alternative to Leon's FPU

Acknowledgments

- Additional SCOORE Contributors:
 - Carlos Cabrera, Madan Das, Rigo Dicochea, Anupam Garg, David Munday, Melissa Nunez, Alamelu Sankaranarayanan, Keertika Singh, Francisco 'Javi' Mesa-Martinez (Post Doc)
- Prof. Mathew Guthaus
 - Contributed to the Back-End Implementation and Power Optimization Methodology as Part of His CMPE 223 Course

Thank You!

Rigo Dicochea

Website: http://masc.soe.ucsc.edu

Email: rigo@soe.ucsc.edu

