Acta Mathematica Sinica, English Series Apr., 2015, Vol. 31, No. 4, pp. 715–730 Published online: March 15, 2015

DOI: 10.1007/s10114-015-4356-8 Http://www.ActaMath.com

Acta Mathematica Sinica, English Series

© Springer-Verlag Berlin Heidelberg & The Editorial Office of AMS 2015

Isomorphisms of Finite Semi-Cayley Graphs

Majid AREZOOMAND Bijan TAERI

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran E-mail: arezoomand@math.iut.ac.ir b.taeri@cc.iut.ac.ir

Abstract Let G be a finite group. A Cayley graph over G is a simple graph whose automorphism group has a regular subgroup isomorphic to G. A Cayley graph is called a CI-graph (Cayley isomorphism) if its isomorphic images are induced by automorphisms of G. A well-known result of Babai states that a Cayley graph Γ of G is a CI-graph if and only if all regular subgroups of $\operatorname{Aut}(\Gamma)$ isomorphic to G are conjugate in $\operatorname{Aut}(\Gamma)$. A semi-Cayley graph (also called bi-Cayley graph by some authors) over G is a simple graph whose automorphism group has a semiregular subgroup isomorphic to G with two orbits (of equal size). In this paper, we introduce the concept of SCI-graph (semi-Cayley isomorphism) and prove a Babai type theorem for semi-Cayley graphs. We prove that every semi-Cayley graph of a finite group G is an SCI-graph if and only if G is cyclic of order 3. Also, we study the isomorphism problem of a special class of semi-Cayley graphs.

Keywords Semi-Cayley graph, Cayley graph, CI-graph, semiregular subgroup

MR(2010) Subject Classification 20B25, 05C25, 05C60

1 Introduction and Results

In this paper, a graph means a finite, undirected and simple graph unless specified otherwise. For a graph Γ , we use $V(\Gamma)$, $E(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ to denote its vertex set, edge set and the full automorphism group, respectively. Γ is called a vertex-transitive graph if $\operatorname{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$. For a group G and $g \in G$, the map $\tau_g : G \to G$ with the rule $x^{\tau_g} = g^{-1}xg$ is the inner automorphism of G induced by g. For the most part, our notation and terminology is standard and mainly taken from [4] (for permutation group theory) and [5] (for graph theory). We refer the reader to [4, 5] for the concepts not defined here.

Let S be a subset of a group G not containing the identity element of G. Recall that the Cayley graph $\Gamma = \operatorname{Cay}(G, S)$ of G with respect to S is the graph with vertex set G, where (x, y) is a directed edge if and only if $yx^{-1} \in S$. Also Γ is undirected if and only if $S = S^{-1}$. Each Cayley graph Γ of G admits R(G), the right regular representation of G, as a subgroup of $\operatorname{Aut}(\Gamma)$. By a well-known result of Sabidussi (see for example [11, Proposition 1.1]), a graph Γ is a Cayley graph of a group G if and only if $\operatorname{Aut}(\Gamma)$ contains a regular subgroup (on $V(\Gamma)$) which is isomorphic to G. Resmini and Jungnickel [14], in analogous to Sabidussi's result, introduced the concept of semi-Cayley graphs in 1992, later called bi-Cayley graphs in [10] by Kovács and his co-authors. In this paper, we follow [14] to use the term semi-Cayley. A graph Γ is said to be a semi-Cayley graph over a group G if $\operatorname{Aut}(\Gamma)$ has a semiregular subgroup isomorphic

to G with two orbits (of equal size). Resmini and Jungnickel [14] determined the structure representation of semi-Cayley graphs. Let Γ be a semi-Cayley graph over a group G. Then there exist subsets R, L and S of G such that $R = R^{-1}$, $L = L^{-1}$ and $R \cup L$ does not contain the identity element of G such that $\Gamma \cong SC(G; R, L, S)$, where SC(G; R, L, S) is an undirected graph with vertex set $G \times \{1, 2\}$ and its edge set consists of three sets:

$$\begin{split} & \{ \{(x,1),(y,1)\} \mid yx^{-1} \in R \} \quad \text{(right edges)}, \\ & \{ \{(x,2),(y,2)\} \mid yx^{-1} \in L \} \quad \text{(left edges)}, \\ & \{ \{(x,1),(y,2)\} \mid yx^{-1} \in S \} \quad \text{(spoke edges)}. \end{split}$$

Furthermore, $R_G := \{ \rho_g \mid g \in G \}$, where $\rho_g : G \times \{1,2\} \to G \times \{1,2\}$ and $(x,i)^{\rho_g} = (xg,i)$, i = 1, 2, is a semiregular subgroup of $\operatorname{Aut}(\operatorname{SC}(G; R, L, S))$ isomorphic to G with two orbits $G \times \{1\}$ and $G \times \{2\}$. Also R_G acts regularly on $G \times \{1\}$ and $G \times \{2\}$.

If |R| = |L| = s, s is a non-negative integer, then the semi-Cayley graph SC(G; R, L, S) is said to be an s-type semi-Cayley graph, and if G is abelian, then SC(G; R, L, S) is simply called an $abelian \ semi$ -Cayley graph. If $R = L = \emptyset$, then BCay(G, S) will be written for $SC(G; \emptyset, \emptyset, S)$, by the notation of [15]. Note that an s-type semi-Cayley $graph \ SC(G; R, L, S)$ is an (s + |S|)-regular graph and $graph \ semi$ -Cayley $graph \ semi$ -Cayley

Recall that a Cayley graph $\operatorname{Cay}(G,S)$ is called a CI-graph if for any subset T of G whenever $\operatorname{Cay}(G,S) \cong \operatorname{Cay}(G,T)$, there exists an automorphism $\alpha \in \operatorname{Aut}(G)$ such that $T = S^{\alpha}$. For a positive integer m, the group G is said to be an m-CI-group if all Cayley graphs $\operatorname{Cay}(G,S)$ of G where $|S| \leq m$, are CI-graphs.

Recently, some authors studied the isomorphisms of bi-Cayley graphs (0-type semi-Cayley graphs), see [6–9] and [15], and they did not consider the general case. In this paper, we consider the general semi-Cayley graphs and study their isomorphisms. Given an arbitrary semi-Cayley graph $\Gamma = SC(G; R, L, S)$, we define three natural isomorphisms arising from automorphisms of G, elements of G and swapping R and L with replacing S by S^{-1} . In fact, we can easily prove that (with the convention that for any automorphism σ of G and every two elements $x, y \in G$, $T = \emptyset$ if and only if $xT^{\sigma}y = \emptyset$):

Lemma 1.1 Let $\Gamma = SC(G; R, L, S)$. Then for each $\alpha \in Aut(G)$ and $q, h \in G$, we have

$$SC(G; R, L, S) \stackrel{\varphi_{\alpha}}{\cong} SC(G; R^{\alpha}, L^{\alpha}, S^{\alpha}),$$

$$SC(G; R, L, S) \stackrel{\varphi_{g,h}}{\cong} SC(G; g^{-1}Rg, h^{-1}Lh, h^{-1}Sg),$$

$$SC(G; R, L, S) \stackrel{\xi}{\cong} SC(G; L, R, S^{-1}),$$

where

$$\varphi_{\alpha}: (x,1) \mapsto (x^{\alpha},1), \quad (x,2) \mapsto (x^{\alpha},2),$$

$$\varphi_{g,h}: (x,1) \mapsto (g^{-1}x,1), \quad (x,2) \mapsto (h^{-1}x,2),$$

$$\xi: (x,1) \mapsto (x,2), \quad (x,2) \mapsto (x,1).$$

Furthermore, for each
$$a \in G$$
, $\varphi_{\alpha}^{-1}\rho_{a}\varphi_{\alpha} = \rho_{a^{\alpha}}$, $\xi^{-1}\rho_{a}\xi = \rho_{a}$ and $\varphi_{g,h}^{-1}\rho_{a}\varphi_{g,h} = \rho_{a}$.

We call the three isomorphisms given in Lemma 1.1 and their compositions semi-Cayley isomorphisms. It is easy to see that there exists a semi-Cayley isomorphism between SC(G; R, L, S) and $SC(G; R_1, L_1, S_1)$ if and only if there exist $\alpha \in Aut(G)$ and $g, h \in G$ such that one of the following holds:

$$R_1 = g^{-1}R^{\alpha}g, \quad L_1 = h^{-1}L^{\alpha}h, \quad S_1 = h^{-1}S^{\alpha}g,$$
 (1.1)

$$R_1 = g^{-1}L^{\alpha}g, \quad L_1 = h^{-1}R^{\alpha}h, \quad S_1 = h^{-1}(S^{-1})^{\alpha}g.$$
 (1.2)

Equivalently, by applying the inner automorphism τ_g to the above equalities, we can see that, there exists a semi-Cayley isomorphism between SC(G; R, L, S) and $SC(G; R_1, L_1, S_1)$ if and only if there exist $\sigma \in Aut(G)$ and $x \in G$ such that one of the following holds:

$$R_1 = R^{\sigma}, \quad L_1 = xL^{\sigma}x^{-1}, \quad S_1 = xS^{\sigma},$$
 (1.3)

$$R_1 = L^{\sigma}, \quad L_1 = xR^{\sigma}x^{-1}, \quad S_1 = x(S^{-1})^{\sigma}.$$
 (1.4)

Now similar to the concepts of CI-graph and CI-group, we define SCI-graph and SCI-group: **Definition 1.2** Let $\Gamma = SC(G; R, L, S)$ be a semi-Cayley graph over a group G.

- (i) Γ is called an SCI-graph (SCI stands for semi-Cayley isomorphism), if for any semi-Cayley graph $\Sigma = SC(G; R_1, L_1, S_1)$, whenever $SC(G, R, L, S) \cong SC(G, R_1, L_1, S_1)$, there exists a semi-Cayley isomorphism between Γ and Σ .
 - (ii) G is called an SCI-group, if all semi-Cayley graphs of G are SCI-graphs.

By the convention proceeding Lemma 1.1, the empty graph $SC(G; \emptyset, \emptyset, \emptyset) \cong 2|G|K_1$ is an SCI-graph. Also it is clear that its complement, the complete graph $SC(G; G \setminus \{1\}, G \setminus \{1\}, G) \cong K_{2|G|}$ is also an SCI-graph.

Babai [2, Lemma 3.1] proved that $\Gamma = \operatorname{Cay}(G, S)$ is a CI-graph if and only if every regular subgroup of $\operatorname{Aut}(\Gamma)$ isomorphic to R(G) is conjugate to R(G) in $\operatorname{Aut}(\Gamma)$. We prove a similar result for semi-Cayley graphs.

Theorem A Let Γ be a semi-Cayley graph over a group G. Then the following are equivalent:

- (1) Γ is an SCI-graph.
- (2) Given a permutation $\varphi \in \operatorname{Sym}(V(\Gamma))$ with $\varphi^{-1}R_G\varphi \leq \operatorname{Aut}(\Gamma)$, R_G and $\varphi^{-1}R_G\varphi$ are conjugate in $\operatorname{Aut}(\Gamma)$.
- (3) Every semiregular subgroup of $\operatorname{Aut}(\Gamma)$ with two orbits and isomorphic to R_G is conjugate to R_G in $\operatorname{Aut}(\Gamma)$.

In the following proposition, we establish a relation between SCI-groups and CI-groups.

Proposition 1.3 Every SCI-group is a CI-group.

Proof Let G be an SCI-group, $S=S^{-1}$ and $T=T^{-1}$ be two arbitrary subsets of $G\setminus\{1\}$ such that $\operatorname{Cay}(G,S)\cong\operatorname{Cay}(G,T)$. Then $\operatorname{SC}(G;S,S,\emptyset)\cong\operatorname{2Cay}(G,S)\cong\operatorname{2Cay}(G,T)\cong\operatorname{SC}(G;T,T,\emptyset)$. Since G is an SCI-group, there exist $\sigma\in\operatorname{Aut}(G)$ and $x\in G$ such that $T=S^{\sigma}=xS^{\sigma}x^{-1}$, which means that G is a CI-group.

Remark 1.4 In general, the converse of Proposition 1.3 is not true. For example, \mathbb{Z}_2 is a CI-group but it is not an SCI-group. To see this, consider the 4-cycle C_4 . Then $SC(\mathbb{Z}_2, R_1, L_1, S_1) \cong$

 $SC(\mathbb{Z}_2, R_2, L_2, S_2) \cong C_4$, where $\mathbb{Z}_2 = \langle a \rangle$, $R_1 = L_1 = \{a\}$, $S_1 = \{1\}$, $R_2 = L_2 = \emptyset$ and $S_2 = \mathbb{Z}_2$. Now it is clear that there is not any semi-Cayley isomorphism between these two graphs which means that \mathbb{Z}_2 is not an SCI-group.

Next we consider SCI-groups and obtain a characterization of \mathbb{Z}_3 :

Theorem B Let $G \neq 1$ be a finite group. Then G is an SCI-group if and only if $G \cong \mathbb{Z}_3$.

Then we intend to study the isomorphism problem of a special class of semi-Cayley graphs, namely bi-Cayley graphs. Let G be a group and S be a non-empty subset of G. A bi-Cayley graph $\operatorname{BCay}(G,S)$ is called a $\operatorname{BCI-graph}$ if for any bi-Cayley graph $\operatorname{BCay}(G,T)$, whenever $\operatorname{BCay}(G,S)\cong\operatorname{BCay}(G,T)$ we have $T=gS^\alpha$ for some $g\in G$ and $\alpha\in\operatorname{Aut}(G)$. A group G is called a (connected) $\operatorname{BCI-group}$, if all (connected) bi-Cayley graphs of G are $\operatorname{BCI-graphs}$. Also G is called an m-BCI-group, if all bi-Cayley graphs of G of valency at most m are $\operatorname{BCI-graphs}$ (see [7, Definition 1]). In [7], the authors defined the concept of $\operatorname{BCI-graph}$ for bi-Cayley graphs and proved a necessary and sufficient condition for a finite group being a 2-BCI-group. Recently some authors studied the isomorphisms of bi-Cayley graphs. For example in [7], it is proved that only finite simple non-abelian 3-BCI group is A_5 , the alternating group on five symbols. Also in [9] isomorphisms of connected bi-Cayley graphs of cyclic groups, with valency 4 are discussed. In [9, Corollary 2.7], a Babai type theorem for bi-Cayley graphs of finite cyclic groups is proved: a connected bi-Cayley graph $\Gamma = \operatorname{BCay}(\mathbb{Z}_n, S)$ is a $\operatorname{BCI-graph}$ if and only if every semiregular subgroup of A with the same orbits to that of R_G is conjugate to R_G in $\operatorname{Aut}(\Gamma)$, where \mathbb{Z}_n is the cyclic group of order n. We extend this result to arbitrary groups:

Theorem C Let $\Gamma = BCay(G, S)$. Then the following are equivalent.

- (1) Γ is a BCI-graph.
- (2) For each $\varphi \in \operatorname{Sym}(V(\Gamma))$ where $\{G \times \{1\}, G \times \{2\}\}\}$ is φ -invariant and $\varphi^{-1}R_G\varphi \leq \operatorname{Aut}(\Gamma)$, R_G and $\varphi^{-1}R_G\varphi$ are conjugate in $\operatorname{Aut}(\Gamma)$ and $S^{-1} = gS^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$.
- (3) Every semiregular subgroup of $\operatorname{Aut}(\Gamma)$ with the same orbits of R_G which is isomorphic to R_G is conjugate to R_G in $\operatorname{Aut}(\Gamma)$ and $S^{-1} = gS^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$.

Finally, in the last section, we construct some BCI and non-BCI groups. In particular, we show that \mathbb{Z}_p , p a prime, and \mathbb{Z}_9 are BCI-groups. Also we show that each Sylow p-subgroup, p > 3 a prime, of a BCI-group is elementary abelian.

2 Proof of Theorem A

A graph Γ is said to be an n-Cayley graph over a group G, if its automorphism group has a semiregular subgroup isomorphic to G with n orbits (of equal size). Equivalently, there exist n^2 subsets T_{ij} , $1 \leq i, j \leq n$, of G such that vertex set of Γ is $G \times \{1, \ldots, n\}$ and $((x,i),(y,j)) \in E(\Gamma)$ if and only if $yx^{-1} \in T_{ij}$. Furthermore, Γ is undirected if and only if $T_{ij} = T_{ji}^{-1}$ for all $i, j \in \{1, \ldots, n\}$. Γ has no loop if and only if $T_{ii} \subseteq G \setminus \{1\}$, for all $i \in \{1, \ldots, n\}$. Also $R_G = \{\rho_g \mid g \in G\}$, where $(x,i)^{\rho_g} = (xg,i)$ for all $x \in G$ and $i = 1, \ldots, n$ is a semiregular subgroup of $\operatorname{Aut}(\Gamma)$ isomorphic to G with n orbits $G \times \{i\}$, $i = 1, \ldots, n$ (for more details see [1]). Clearly, every semi-Cayley graph is an undirected 2-Cayley graph.

In the following lemma, we characterize the elements of the normalizer of R_G in $\mathrm{Sym}(V(\Gamma))$.

Lemma 2.1 Let Γ be an n-Cayley graph of a group G, $n \geq 2$. Then every element of $N_{\operatorname{Sym}(V(\Gamma))}(R_G)$ is of the form $\psi: V(\Gamma) \to V(\Gamma)$, where $(x,j)^{\psi} = (g_j x^{\sigma} g, j^{\theta})$ for some $g_1 = 1, g_2, \ldots, g_n \in G, g \in G, \sigma \in \operatorname{Aut}(G)$ and $\theta \in S_n$.

Proof Let $V = V(\Gamma)$ and $M = N_{\text{Sym}(V)}(R_G)$. First we find the elements of $M_{(1,1)}$, the stabilizer of (1,1) in M. We claim that every element of $M_{(1,1)}$ is of the form

$$\alpha: V \to V,$$

 $(x,j) \mapsto (g_j x^{\sigma}, j^{\pi})$

for some $g_1 = 1, g_2, \dots, g_n \in G$, $\sigma \in Aut(G)$ and $\pi \in S_n$ which fixes 1.

Let $\alpha \in M$ and $(1,1)^{\alpha} = (1,1)$. Since $\alpha^{-1}R_{G}\alpha = R_{G}$, for every $g \in G$, there exists a unique $g' \in G$ such that $\alpha^{-1}\rho_{g}\alpha = \rho_{g'}$. So there exists $\sigma \in \operatorname{Sym}(G)$ such that for every $g \in G$, $\alpha^{-1}\rho_{g}\alpha = \rho_{g^{\sigma}}$. Thus, for all $g \in G$, $(g,1)^{\alpha} = (1,1)^{\alpha^{-1}\rho_{g}\alpha} = (1,1)^{\rho_{g}\sigma} = (g^{\sigma},1)$, and $((g_{1}g_{2})^{\sigma},1) = (g_{1}g_{2},1)^{\alpha} = (1,1)^{\alpha^{-1}\rho_{g_{1}}\rho_{g_{2}}\alpha} = (1,1)^{\rho_{g_{1}}\sigma_{g_{2}}\sigma} = (g_{1}^{\sigma}g_{2}^{\sigma},1)$ for all $g_{1},g_{2}\in G$, and so $(g_{1}g_{2})^{\sigma} = g_{1}^{\sigma}g_{2}^{\sigma}$. Consequently, $\sigma \in \operatorname{Aut}(G)$. Now for any $1 \leq j \leq n$, there exist $g_{j} \in G$ and $1 \leq l_{j} \leq n$ such that $(1,j)^{\alpha} = (g_{j},l_{j})$. Clearly, $g_{1} = 1$ and $l_{1} = 1$. Therefore, there exists $\pi \in S_{n}$ which fixes 1 and $(1,j)^{\alpha} = (g_{j},j^{\pi})$. So for each $(x,j) \in V$, $(x,j)^{\alpha} = (1,j)^{\rho_{x}\alpha} = (1,j)^{\alpha\rho_{x}\sigma} = (g_{j}x^{\sigma},j^{\pi})$.

Conversely, let $\varphi: V \to V$ be a map and suppose that there exist $g_j \in G$, $j=1,\ldots,n$, with $g_1=1,\ \sigma \in \operatorname{Aut}(G)$ and $\pi \in S_n$ fixing 1 and $(x,j)^{\varphi}=(g_jx^{\sigma},j^{\pi})$ for all $(x,j)\in V$. We show that $\varphi\in M_{(1,1)}$. Clearly, $(1,1)^{\varphi}=(1,1)$. Let $x,y\in G,\ 1\leq i_1,i_2\leq n$ and $(x,i_1)^{\varphi}=(y,i_2)^{\varphi}$. Then $i_1^{\pi}=i_2^{\pi}$ and $g_{i_1}x^{\sigma}=g_{i_2}y^{\sigma}$. So $i_1=i_2$ and x=y. Thus, φ is injective. Let $(x,j)\in V$. Then $((g_{j\pi^{-1}}^{-1}x)^{\sigma^{-1}},j^{\pi^{-1}})^{\varphi}=(x,j)$. So φ is surjective and $\varphi\in\operatorname{Sym}(V)$. Finally, let $g\in G$ and $(x,j)\in V$. Then $(x,j)^{\varphi^{-1}\rho_g\varphi}=(xg^{\sigma},j)=(x,j)^{\rho_g\sigma}$. Thus for all $g\in G,\ \varphi^{-1}\rho_g\varphi=\rho_{g^{\sigma}}$. This means that $\varphi\in N_{\operatorname{Sym}(V)}(R_G)$ and thus $\varphi\in M_{(1,1)}$, as desired.

Now since $R_G \cong G$ is a semiregular subgroup of $\operatorname{Sym}(V)$, by [4, Exercise 4.2.7], $C_{\operatorname{Sym}(V)}(R_G)$, the centralizer of R_G in $\operatorname{Sym}(V)$, is a transitive subgroup of M. Therefore, M is also transitive. For a permutation $\tau \in S_n$, we define $\overline{\tau}: V \to V$ by $(x,j)^{\overline{\tau}} = (x,j^{\tau}), \ j=1,\ldots,n$. Clearly, $\overline{\tau} \in M$. Put $H = \{\overline{\tau} \mid \tau \in S_n\}$. Then $H \leq C_{\operatorname{Sym}(V)}(R_G)$. For $(x,i_1), (y,i_2) \in V$, if $i_1 \neq i_2$, then $(x,i_1)^{\rho_{x^{-1}y}}(\overline{i_1i_2}) = (y,i_2)$ and if $i_1 = i_2$, then $(x,i_1)^{\rho_{x^{-1}y}} = (y,i_2)$. Hence, $R_GH = HR_G$ is transitive on V. Now by [4, Exercise 1.4.1] we have $M = M_{(1,1)}R_GH$. This completes the proof.

Lemma 2.2 Let Γ be a semi-Cayley graph over G, $\Gamma \stackrel{\lambda}{\cong} \Sigma$ and $\lambda \in N_{\mathrm{Sym}(V(\Gamma))}(R_G)$. Then λ is a semi-Cayley isomorphism.

Proof Let $\Gamma = \mathrm{SC}(G; R, L, S)$ and $\Sigma = \mathrm{SC}(G; R_1, L_1, S_1)$. Since $\lambda \in N_{\mathrm{Sym}(V(\Gamma))}(R_G)$, by Lemma 2.1, there exist $\alpha \in \mathrm{Aut}(G)$, and $g, h \in G$ such that $(x, 1)^{\lambda} = (x^{\alpha}h, 1)$ and $(x, 2)^{\lambda} = (gx^{\alpha}h, 2)$ or $(x, 1)^{\lambda} = (x^{\alpha}h, 2)$ and $(x, 2)^{\lambda} = (gx^{\alpha}h, 1)$ for all $x \in G$. In the first case, $\Gamma \cong \Sigma$ implies that $R_1 = R^{\alpha}$, $L_1 = gL^{\alpha}g^{-1}$ and $S_1 = gS^{\alpha}$ and in the latter case, $R_1 = gL^{\alpha}g^{-1}$, $L_1 = R^{\alpha}$ and $S_1 = (S^{-1})^{\alpha}g^{-1}$. This completes the proof.

Corollary 2.3 Let Γ and Σ be two semi-Cayley graphs, $\Gamma \stackrel{\psi}{\cong} \Sigma$ and $\psi R_G \psi^{-1} = \beta^{-1} R_G \beta$ for some $\beta \in \operatorname{Aut}(\Gamma)$. Then $\beta \psi$ is a semi-Cayley isomorphism.

Proof Since $\Gamma \beta \psi \cong \Sigma$ and $\beta \psi \in N_{\text{Sym}(V(\Gamma))}(R_G)$, $\beta \psi$ is a bi-Cayley isomorphism by Lem -ma 2.2.

Lemma 2.4 Let Γ be a semi-Cayley graph over G and $\Gamma \stackrel{\lambda}{\cong} \Sigma$. Then Σ is also a semi-Cayley graph over G. In particular, if Γ is an s-type semi-Cayley graph over G and $\{G \times \{1\}, G \times \{2\}\}$ is λ -invariant, then Σ is also an s-type semi-Cayley graph over G.

Proof For the first part, consider the map $\psi : \operatorname{Aut}(\Gamma) \to \operatorname{Aut}(\Sigma)$, where $\sigma^{\psi} = \lambda^{-1}\sigma\lambda$ for all $\sigma \in \operatorname{Aut}(\Gamma)$. Then ψ is a group isomorphism and the image of the semiregular subgroup of $\operatorname{Aut}(\Gamma)$ isomorphic to G with two orbits is a semiregular subgroup of $\operatorname{Aut}(\Sigma)$ isomorphic to G with two orbits. This means that Σ is also a semi-Cayley graph over G.

Now let $\Gamma = \mathrm{SC}(G; R, L, S)$ be an s-type semi-Cayley graph and $\{(G \times \{1\})^{\lambda}, (G \times \{2\})^{\lambda}\} = \{G \times \{1\}, G \times \{2\}\}$. Since |R| = |L| = s and λ is a graph isomorphism, Σ is also an s-type semi-Cayley graph over G.

Now we are in the position that prove Theorem A.

Proof of Theorem A Let us start with the part $(1) \Rightarrow (2)$. Let Γ be an SCI-graph, $\varphi \in \operatorname{Sym}(V(\Gamma))$ with $\varphi^{-1}R_G\varphi \leq \operatorname{Aut}(\Gamma)$. Let Σ be a graph with $V(\Sigma) = V(\Gamma)$ and $E(\Sigma) = \{\{\alpha,\beta\} \mid \{\alpha^{\varphi},\beta^{\varphi}\}\in E(\Gamma)\}$. Then $\Sigma \stackrel{\varphi}{\cong} \Gamma$. So Σ is also a semi-Cayley graph over G, by Lemma 2.4. Since Γ is an SCI-graph, there exists a semi-Cayley isomorphism ψ between Γ and Σ . Now $\Gamma \stackrel{\psi}{\cong} \Sigma \stackrel{\varphi}{\cong} \Gamma$. So $\Gamma \stackrel{\psi\varphi}{\cong} \Gamma$ and $\theta = \psi\varphi \in \operatorname{Aut}(\Gamma)$. On the other hand, by Lemma 1.1, $\psi^{-1}R_G\psi = R_G$. This implies that $\theta^{-1}R_G\theta = \varphi^{-1}\psi^{-1}R_G\psi\varphi = \varphi^{-1}R_G\varphi$, which means that R_G and $\varphi^{-1}R_G\varphi$ are conjugate in $\operatorname{Aut}(\Gamma)$.

Now we prove the part $(2) \Rightarrow (1)$. Suppose that for each $\varphi \in \operatorname{Sym}(V(\Gamma))$, R_G and $\varphi^{-1}R_G\varphi \leq \operatorname{Aut}(\Gamma)$ are conjugate in $\operatorname{Aut}(\Gamma)$. Let $\Gamma \stackrel{\varphi}{\cong} \Sigma$, where Σ is a semi-Cayley graph over G. Since $V(\Gamma) = V(\Sigma) = G \times \{1,2\}$, $\varphi^{-1} \in \operatorname{Sym}(V(\Gamma))$ and $\varphi R_G \varphi^{-1} \leq \operatorname{Aut}(\Gamma)$. Hence, by our assumption there exists some $\beta \in \operatorname{Aut}(\Gamma)$ such that $\varphi R_G \varphi^{-1} = \beta^{-1} R_G \beta$. Now by Corollary 2.3, $\Gamma \stackrel{\beta \varphi}{\cong} \Sigma$ is a semi-Cayley isomorphism, which means that Γ is an SCI-graph.

We proved that (1) and (2) are equivalent. Now we prove the part (1) \Rightarrow (3). Let Γ be an SCI-graph and H be a semiregular subgroup of $\operatorname{Aut}(\Gamma)$ with two orbits β_1^H and β_2^H and $R_G \stackrel{\varphi}{\cong} H$. Let us denote ρ_g^{φ} with φ_g . Define $\lambda : V(\Gamma) \to V(\Gamma)$ such that $(g,i)^{\lambda} = \beta_i^{\varphi_g}$, i = 1, 2 and $g \in G$. Then λ is well defined and clearly onto. Also the semiregularity of H implies that λ is 1-1. Hence, $\lambda \in \operatorname{Sym}(V(\Gamma))$. On the other hand, $\rho_g \lambda = \lambda \varphi_g$ for all $g \in G$, which implies that $\lambda^{-1}R_G\lambda = H \leq \operatorname{Aut}(\Gamma)$. Since (1) implies (2), R_G and $\lambda^{-1}R_G\lambda$ are conjugate in $\operatorname{Aut}(\Gamma)$. Hence, H and H0 are conjugate in $\operatorname{Aut}(\Gamma)$.

Finally, we turn to the part $(3) \Rightarrow (1)$. Suppose that each semiregular subgroup of $\operatorname{Aut}(\Gamma)$ with two orbits and isomorphic to R_G is conjugate to R_G in $\operatorname{Aut}(\Gamma)$. Let $\Gamma \cong \Sigma$, where Σ is a semi-Cayley graph over G. Since $V(\Gamma) = V(\Sigma)$, $\varphi : \operatorname{Aut}(\Sigma) \to \operatorname{Aut}(\Gamma)$ with $a^{\varphi} = \lambda a \lambda^{-1}$, $a \in \operatorname{Aut}(\Sigma)$, is a group isomorphism. Furthermore, R_G is a subgroup of $\operatorname{Aut}(\Sigma)$ and so $R_G \cong R_G^{\varphi} = \lambda R_G \lambda^{-1} \leq \operatorname{Aut}(\Gamma)$. Since R_G acts on $V(\Gamma)$ semiregularly, $\lambda R_G \lambda^{-1}$ also is semiregular on $V(\Gamma)$. Since R_G has two orbits on $V(\Gamma)$ and for each $g \in G$, $|\operatorname{Fix}(\lambda \rho_g \lambda^{-1})| = |\operatorname{Fix}(\rho_g)|$, $\lambda R_G \lambda^{-1}$ has two orbits on $V(\Gamma)$, by the Cauchy–Frobenius lemma. Thus, by hypothesis, there

exists $\beta \in \operatorname{Aut}(\Gamma)$ such that $\beta^{-1}R_G\beta = \lambda R_G\lambda^{-1}$. Now Corollary 2.3 implies that there exists a semi-Cayley isomorphism between Γ and Σ , which means that Γ is a SCI-graph. This completes the proof.

Note that since the automorphism group of a graph and its complement are same, complement of any semi-Cayley graph is again a semi-Cayley graph. Furthermore, by Theorem A, a graph Γ is an SCI-graph if and only if its complement Γ^c is an SCI-graph.

3 Proof of Theorem B

In order to prove Theorem B, we need some lemmas.

Lemma 3.1 Let G be a finite abelian group. If one of the following holds, then G is not an SCI-group.

- (1) There exist two distinct non-involution same order elements a and b in G such that $a \neq b, b^{-1}$.
 - (2) There exist two distinct involutions $a, b \in G$.

Proof First we prove (1). Let $R = L = R_1 = \{a, a^{-1}\}$, $L_1 = \{b, b^{-1}\}$ and $S = S_1 = \emptyset$. Set $\Gamma := \operatorname{SC}(G; R, L, S)$ and $\Sigma = \operatorname{SC}(G; R_1, L_1, S_1)$. Then $\Gamma \cong 2\operatorname{Cay}(G, R) \cong 2|G: \langle R \rangle |\operatorname{Cay}(\langle R \rangle, R) \cong 2|G: \langle R \rangle |\operatorname{Cay}(\langle R \rangle, R) \cong 2|G: \langle R \rangle |\operatorname{Cay}(\langle L_1 \rangle, L_1)$. Since $\langle R \rangle \cong \langle L_1 \rangle \cong \mathbb{Z}_n$, $\Sigma \cong 2|G: \langle R \rangle |C_n$, which implies that $\Gamma \cong \Sigma$. Suppose, contrary to our claim, that G is an SCI-group. Then there exist $\sigma \in \operatorname{Aut}(G)$ and $x \in G$ such that $R_1 = R^{\sigma}$ and $L_1 = xL^{\sigma}x^{-1} = L^{\sigma}$, since G is abelian. Hence, $R_1 = L_1$, a contradiction.

Now let (2) hold. It is enough to consider semi-Cayley graphs $\Gamma = SC(G, \{a\}, \{a\}, \emptyset)$ and $SC(G, \{a\}, \{b\}, \emptyset)$ and follow the proof of (1).

In the following lemma, we prove that the property of being SCI-groups is inherited by characteristic subgroups and quotient groups by characteristic subgroups. Note that a similar result is proved by Babai and Frankl for CI-groups, see for example [11, Lemma 8.2]. We denote the lexicographic product of Γ_1 and Γ_2 by $\Gamma_1[\Gamma_2]$, see [5] for the definition.

Lemma 3.2 Let G be a finite SCI-group and H be a characteristic subgroup of G. Then H and G/H are SCI-groups.

Proof First we prove that H is an SCI-group. Let $SC(H; R_1, L_1, S_1) \cong SC(H; R_2, L_2, S_2)$ for some subsets R_i, L_i, S_i , i = 1, 2 of H. Since the complement of a semi-Cayley graph is again a semi-Cayley graph and it is an SCI-graph if and only if the original graph is an SCI-graph, we may assume that $SC(H; R_1, L_1, S_1)$ and $SC(H; R_2, L_2, S_2)$ are connected and therefore $S_1, S_2 \neq \emptyset$. It is easy to see that $SC(G; R_1, L_1, S_1) \cong |G: H|SC(H; R_1, L_1, S_1)$ and $SC(G; R_2, L_2, S_2) \cong |G: H|SC(H; R_2, L_2, S_2)$. This implies that $SC(G; R_1, L_1, S_1) \cong SC(G; R_2, L_2, S_2)$. Since G is an SCI-group, there exist $\sigma \in Aut(G)$ and $\sigma \in G$ such that one of the following holds:

- (a) $R_2 = R_1^{\sigma}$, $L_2 = xL_1^{\sigma}x^{-1}$, $S_2 = xS_1^{\sigma}$,
- (b) $R_2 = L_1^{\sigma}, \ L_2 = xR_1^{\sigma}x^{-1}, \ S_2 = x(S_1^{-1})^{\sigma}.$

Let α be the restriction of σ to H. Then $\alpha \in \text{Aut}(H)$. Since S_1, S_2 are non-empty subsets of H, $x \in H$. This means that H is an SCI-group.

Now we prove that G/H is an SCI-group. Let $\Gamma = \mathrm{SC}(G/H;R,L,S), \pi: G \to G/H$ be the natural projection homomorphism and $\Gamma^{\pi^{-1}}$ be the semi-Cayley graph $\mathrm{SC}(G;R^{\pi^{-1}},L^{\pi^{-1}},S^{\pi^{-1}}),$ where $X^{\pi^{-1}} = \{g \in G \mid g^{\pi} \in X\}$. We claim that $\Gamma^{\pi^{-1}} \cong \Gamma[mK_1]$, where m = |H|. Let R be a right transversal of H in G. Then for any $g \in G$, there exists a unique $r \in R$ such that Hg = Hr. Define

$$\varphi: G \times \{1, 2\} \to (G/H \times \{1, 2\}) \times H$$

 $(g, i) \mapsto ((g^{\pi}, i), gr^{-1}),$

where Hg = Hr, $(r \in R)$. If $(g_1, i_1)^{\varphi} = (g_2, i_2)^{\varphi}$, then $((g_1^{\pi}, i_1), g_1 r_1^{-1}) = ((g_2^{\pi}, i_2), g_2 r_2^{-1})$, where $Hg_1 = Hr_1$ and $Hg_2 = Hr_2$ for some $r_1, r_2 \in R$. So $i_1 = i_2, g_1^{\pi} = g_2^{\pi}$ and $g_1 r_1^{-1} = g_2 r_2^{-1}$, which implies that $r_1 = r_2$. Hence, $g_1 = g_2$ and $i_1 = i_2$, i.e., φ is 1-1. Now let $((Hx, i), h) \in (G/H \times \{0, 1\}) \times H$. Then there exists $r \in R$ such that Hx = Hr. So $(hr, i)^{\varphi} = ((Hhr, i), hrr^{-1}) = ((Hx, i), h)$. Hence, φ is onto.

It is easy to see that φ preservers the adjacency of right, left and spoke edges. Thus, φ is a graph isomorphism and the claim is proved.

Now let $\Gamma \cong \Sigma$, where $\Sigma = SC(G/H; R_1, L_1, S_1)$. Then

$$\Gamma^{\pi^{-1}} \cong \Gamma[mK_1] \cong \Sigma[mK_1] \cong \Sigma^{\pi^{-1}}.$$

Since G is an SCI-group, there exist $\sigma \in \operatorname{Aut}(G)$ and $x \in G$ such that one of the following holds:

$$\begin{split} R_1^{\pi^{-1}} &= (R^{\pi^{-1}})^{\sigma}, \quad L_1^{\pi^{-1}} &= x(L^{\pi^{-1}})^{\sigma}x^{-1}, \quad S_1^{\pi^{-1}} &= x(S^{\pi^{-1}})^{\sigma}, \\ R_1^{\pi^{-1}} &= (L^{\pi^{-1}})^{\sigma}, \quad L_1^{\pi^{-1}} &= x(R^{\pi^{-1}})^{\sigma}x^{-1}, \quad S_1^{\pi^{-1}} &= x((S^{-1})^{\pi^{-1}})^{\sigma}. \end{split}$$

Since H is a characteristic subgroup of G, $\psi: G/H \to G/H$ with the rule $(Hx)^{\psi} = Hx^{\sigma}$ is an automorphism of G/H. Since for every subset X of G/H, $((X^{\pi^{-1}})^{\sigma})^{\pi} = X^{\psi}$, and π is a group homomorphism, we conclude that one of the following holds:

$$R_1 = R^{\psi}, \quad L_1 = yL^{\psi}y^{-1}, \quad S_1 = yS^{\psi},$$

 $R_1 = L^{\psi}, \quad L_1 = yR^{\psi}y^{-1}, \quad S_1 = y(S^{-1})^{\psi},$

where $y = x^{\pi} \in G/H$. This shows that G/H is an SCI-graph.

Let us denote the incidence graph of the projective space PG(n,q) and the Hadamard design H(11) on 11 points with B(PG(n,q)) and B(H(11)) and their non-incidence graphs with C(PG(n,q)) and C(H(11)), respectively. The symmetry structure of semi-Cayley graphs over a group of prime order is fully given in [13]. For the convenience of the reader, we recall the results of this paper in the following theorem.

Theorem 3.3 ([13, Theorems 2.1 and 2.2]) Let Γ be a semi-Cayley graph over a group $G = \langle x \rangle$ of prime order p. Then one of the following occurs.

- (1) Γ or $\Gamma^c \cong \Gamma_1 + \Gamma_2$, where Γ_i are two non-isomorphic Cayley graphs of order p, $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut}(\Gamma_1) \times \operatorname{Aut}(\Gamma_2)$ and Γ is not transitive.
 - (2) Γ or $\Gamma^c = SC(G; G \setminus \{1\}, \emptyset, T)$ and $BCay(G, T) \cong pK_2$, in which case $Aut(\Gamma) \cong S_p$.
- (3) Γ or $\Gamma^c = SC(G; G \setminus \{1\}, \emptyset, T)$ and $BCay(G, T) \cong B(PG(n, q))$ where $p = \frac{q^n 1}{q 1}$, in which $Aut(\Gamma) = P\Sigma L(n, q)$.

- (4) Γ or $\Gamma^c = SC(G; G \setminus \{1\}, \emptyset, T)$ and $BCay(G, T) \cong B(H(11))$, in which case $Aut(\Gamma) \cong PSL(2, 11)$, $T = \{1, 3, 4, 5, 9\}$ and p = 11.
- (5) There exists $\sigma \in \operatorname{Aut}(\Gamma)$ such that $\operatorname{Aut}(\Gamma) = R_G \rtimes \langle \sigma \rangle \cong \mathbb{Z}_p \rtimes \mathbb{Z}_d$, where d divides p-1 (for more details about the map σ and the structure of Γ , see [13, Theorem 2.1(iii)]).
- (6) Γ or $\Gamma^c \cong 2pK_1$, pK_2 or 2X, where X is connected Cayley graph of order p and Γ is transitive.
 - (7) Γ or $\Gamma^c \cong P$, where P is the Petersen graph, $\operatorname{Aut}(\Gamma) \cong S_5$ and p = 5.
 - (8) Γ or $\Gamma^c \cong Y[2K_1]$, where Y is a Cayley graph and Γ is imprimitive with only 2-blocks.
 - (9) Γ or $\Gamma^c \cong B(PG(n,q))$ or C(PG(n,q)) where $p = \frac{q^n 1}{q 1}$, in which $Aut(\Gamma) = P\Gamma L(n,q)$.
 - (10) Γ or $\Gamma^c \cong B(H(11))$ or C(H(11)), in which $Aut(\Gamma) = PGL(2, 11)$ and p = 11.
- (11) There exist $\alpha, \sigma \in \operatorname{Aut}(\Gamma)$ such that $\operatorname{Aut}(\Gamma) = \langle \alpha \rangle \rtimes \langle \sigma \rangle \cong \mathbb{Z}_{2p} \rtimes \mathbb{Z}_d$, where d is a divisor of p-1 and $\rho_x = \alpha^{p-1}$ (for more details about the maps α and σ and the structure of Γ , see [13, Theorem 2.2(v)]).
- (12) There exists $\omega \in \operatorname{Aut}(\Gamma)$ such that $\operatorname{Aut}(\Gamma) = R_G \rtimes \langle \omega \rangle$, where $\langle \omega \rangle \cong \mathbb{Z}_{2d}$ for some d dividing p-1 (for more details about the map ω and the structure of Γ , see [13, Theorem 2.2(vi)]).

Now we are ready to prove Theorem B:

Proof of Theorem B First we prove that $G \cong \mathbb{Z}_3$ is an SCI-graph. Let $\Gamma = SC(G; R, L, S)$ be a semi-Cayley graph over G. Then Γ is one of the twelve type graphs given in Theorem 3.3. Since |G|=3 and the only Cayley graph of G is the complete graph K_3 , Γ cannot be of types (1), (4), (7) and (10). Now we examine other possibilities for Γ . In Cases (2), (3), (5) and (9), $|\operatorname{Aut}(\Gamma)| = 6$ and in Cases (11) and (12), $|\operatorname{Aut}(\Gamma)| = 12$. So in all of these cases, R_G is a Sylow 3-subgroup of $Aut(\Gamma)$. Now by the Sylow Theorem and Theorem A, Γ is an SCI-graph. In Case (8), Γ or $\Gamma^c \cong K_3[2K_1]$ and so $\operatorname{Aut}(\Gamma) \cong S_2 \wr S_3$ is of order 48. This shows that again R_G is a Sylow 3-subgroup of $Aut(\Gamma)$ and Γ is an SCI-graph. Now we consider the remaining Case (6). If Γ or $\Gamma^c \cong 6K_1$, then as mentioned after Definition 1.2, Γ is an SCI-graph. If Γ or $\Gamma^c \cong 3K_2$, then $\operatorname{Aut}(\Gamma) \cong S_2 \wr S_3$ and so again Γ is an SCI-graph. Finally, let Γ or $\Gamma^c \cong 2K_3$. Since Γ is an SCI-graph if and only if Γ^c is an SCI-graph, we may assume that $\Gamma \cong 2K_3$. If $R=L=\emptyset$, then |S|=2 and so $\Gamma\cong C_6$, a contradiction. Hence, $|R|=|L|=s\geq 1$ and s+|S|=2. Since $R=R^{-1}$ and $S=S^{-1}$, $R=S=\{x,x^{-1}\}$ and $S=\emptyset$. This shows that if $\Gamma \cong SC(G; R_1, L_1, S_1)$, then $R_1 = L_1 = R = L = \{x, x^{-1}\}$ and $S_1 = S = \emptyset$, which means that Γ is an SCI-graph. Hence, we have showed that every semi-Cayley graph over G is an SCI-graph which implies that G is an SCI-group.

Now let G be an SCI-group. We claim that $G \cong \mathbb{Z}_3$. First suppose that G is abelian. If there exists a prime divisor p of |G| greater than 3, then there exist two distinct non-involution elements a, b of order p in G such that $a \neq b, b^{-1}$, which contradicts Lemma 3.1. Hence, G is a $\{2,3\}$ -group. Let $1 \neq P$ be a Sylow 3-subgroup of G. Since P is a characteristic subgroup of G, Lemma 3.2 implies that P is an SCI-group. By Lemma 3.1, P has a unique subgroup of order p, and so it is cyclic, see [3, Lemma 4]. Now by Lemma 3.1 and Remark 1.4, $P \cong \mathbb{Z}_3$. If 2 divides the order of G then there exists a Sylow 2-subgroup of $1 \neq Q$ of G. Since, by Remark 1.4, \mathbb{Z}_2 is not an SCI-group, Lemma 4 of [3] implies that Q has at least two distinct subgroup of order 2,

contradicting Lemma 3.1. Hence, we have proved that every abelian SCI-group is isomorphic to \mathbb{Z}_3 .

Now we show that every finite SCI-group is abelian. Let G be a finite SCI-group. By Proposition 1.3, G is a CI-group and so is solvable, see [11, Theorem 8.6]. Let $G = G^{(0)} > G^{(1)} > \cdots > G^{(n)} = 1$, be the derived series of G. Since each $G^{(i)}$ is a characteristic subgroup of G and $G^{(i)}/G^{(i+1)}$ is abelian, Lemma 3.2 and the above discussion imply that G is a 3-group.

Now let H and K be two distinct subgroups of G of order 3. Let $R = H \setminus \{1\}$ and $L = K \setminus \{1\}$. Then $SC(G; R, R, \emptyset) \cong 2|G: H|Cay(H, R) \cong 2|G: H|K_3$ and similarly $SC(G; L, L, \emptyset) \cong 2|G: K|K_3$. Since |G: H| = |G: K| and G is an SCI-group, there exists $\sigma \in Aut(G)$ such that $L = R^{\sigma}$. This means that all subgroups of G of order 3, are conjugate in Aut(G). Now by a result of Wilkens, see [11, Theorem 9.1], G is a homocyclic group and therefore is abelian. This completes the proof.

4 Proof of Theorem C

Recently, some authors studied isomorphism problem of special classes of semi-Cayley graphs. The study of isomorphism problem for 0-type semi-Cayley graphs was started in [15]. Let G be a finite group and S be a non-empty subset G. Recall that a bi-Cayley graph $\operatorname{BCay}(G,S)$ is a bipartite 0-type semi-Cayley graph over G. Also $\operatorname{BCay}(G,S)$ is called a $\operatorname{BCI-graph}$ if for any bi-Cayley graph $\operatorname{BCay}(G,T)$, whenever $\operatorname{BCay}(G,S) \cong \operatorname{BCay}(G,T)$ we have $T=gS^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. A group G is called a (connected) $\operatorname{BCI-group}$, if all (connected) bi-Cayley graphs of G are $\operatorname{BCI-graphs}$. Also G is called an m-BCI-group, if all bi-Cayley graphs of G of valency at most m are $\operatorname{BCI-graphs}$ (see [7, Definition 1]).

We can restrict the isomorphism problem of semi-Cayley graphs to s-type semi-Cayley graphs:

Definition 4.1 Let $\Gamma = SC(G; R, L, S)$ be an s-type semi-Cayley graph over a group G.

- (i) Γ is called an s-type SCI-graph, if for any s-type semi-Cayley graph $\Sigma = SC(G; R_1, L_1, S_1)$, whenever $SC(G, R, L, S) \cong SC(G, R_1, L_1, S_1)$ there exists a bi-Cayley isomorphism between Γ and Σ , or equivalently at least one of the relations (1.1) or (1.2) holds for some $\sigma \in Aut(G)$ and $x \in G$.
 - (ii) G is called an s-type SCI-group, if all s-type bi-Cayley graphs of G are s-type SCI-graphs.

Remark 4.2 Let $\Gamma = \operatorname{BCay}(G, S)$. Then Γ is a 0-type semi-Cayley graph. By our definition, Γ is a 0-type SCI-graph, if for any 0-type semi-Cayley graph $\operatorname{BCay}(G, T)$, whenever $\operatorname{BCay}(G, S) \cong \operatorname{BCay}(G, T)$ there exist $\sigma \in \operatorname{Aut}(G)$ and $x \in G$ such that at least one of the relations $T = xS^{\sigma}$ or $T = x(S^{-1})^{\sigma}$ holds. If always the first case holds, then Γ is called a BCI-graph, as defined in [7].

Note that if there exist $g \in G$ and $\alpha \in \operatorname{Aut}(G)$ such that $S^{-1} = gS^{\alpha}$, then the first equality holds if and only if the latter holds. Furthermore, since $\operatorname{BCay}(G,S) \cong \operatorname{BCay}(G,S^{-1})$ by Lemma 1.1, Γ is a BCI-graph if and only if it is a 0-type SCI-graph and there exist $g \in G$ and $\alpha \in \operatorname{Aut}(G)$ such that $S^{-1} = gS^{\alpha}$. In particular, every abelian 0-type semi-Cayley graph is a BCI-graph if and only if it is a 0-type SCI-graph.

In order to drive Theorem C, we need some preliminary lemmas.

Lemma 4.3 Let Γ be an s-type SCI-graph. Then

- (1) given a permutation $\varphi \in \text{Sym}(V(\Gamma))$, where $\varphi^{-1}R_G\varphi \leq \text{Aut}(\Gamma)$ and $\{G \times \{1\}, G \times \{2\}\}\}$ is φ -invariant, R_G and $\varphi^{-1}R_G\varphi$ are conjugate in $\text{Aut}(\Gamma)$,
- (2) every semiregular subgroup of $\operatorname{Aut}(\Gamma)$ with two orbits $G \times \{1\}$ and $G \times \{2\}$ and isomorphic to R_G is conjugate to R_G in $\operatorname{Aut}(\Gamma)$.

Proof To prove (1), it is enough to follow the proof of (1) \Rightarrow (2) in Theorem A and note that the graph Σ is an s-type bi-Cayley graph by Lemma 2.4.

Similarly, to prove (2), it is enough to follow the proof of (1) \Rightarrow (3) in Theorem A and replace β_1^H and β_2^H with $G \times \{1\}$ and $G \times \{2\}$, respectively.

Lemma 4.4 Let Γ and Σ be isomorphic bi-Cayley graphs. Then there exists an isomorphism $\Gamma \stackrel{\psi}{\cong} \Sigma$ such that $R_G \cong \psi R_G \psi^{-1} \leq \operatorname{Aut}(\Gamma)$ and $\{G \times \{1\}, G \times \{2\}\}$ is ψ -invariant.

Proof Let $\Sigma = \operatorname{BCay}(G,S)$, $\Gamma = \operatorname{BCay}(G,T)$ and $\Gamma \stackrel{\varphi}{\cong} \Sigma$. Let $H = \langle TT^{-1} \rangle$, $K = \langle SS^{-1} \rangle$, m = |G:H| and n = |G:K|. Then m = n. Let $X = \{x_1 = 1, x_2, \ldots, x_m\}$ and $Y = \{y_1 = 1, y_2, \ldots, y_n\}$ be the right transversal to H and to K in G, respectively. Then it is easy to check that the connected components of Γ are Γ_i , $i = 1, \ldots, m$, where $V(\Gamma_i) = Hx_i \times \{1, 2\}$ and $E(\Gamma_i) = \{\{(h_1t_i, 1), (h_2t_i, 2)\} \mid h_2h_1^{-1} \in T\}$. Also the connected components of Σ are Σ_i , $i = 1, \ldots, n$, where $V(\Sigma_i) = Ky_i \times \{1, 2\}$ and $E(\Sigma_i) = \{\{(k_1t_i, 1), (k_2t_i, 2)\} \mid k_2k_1^{-1} \in S\}$. Furthermore, for each $i = 1, \ldots, n$, $\Gamma_i \cong \Gamma_1 \cong \operatorname{BCay}(H, Tt^{-1})$, for some $t \in T$ and $\Sigma_i \cong \Sigma_1 \cong \operatorname{BCay}(K, Ss^{-1})$ for some $s \in S$. So we may assume that the restriction of φ to Γ_1 is an isomorphism from Γ_1 to Σ_1 . Let us denote this restriction with φ_1 . Since Γ_1 and Σ_1 are connected and bipartite, $\{(H \times \{1\})^{\varphi_1}, (H \times \{2\})^{\varphi_1}\} = \{K \times \{1\}, K \times \{2\}\}$. Now for each $i = 2, \ldots, m$, we define $\varphi_i : V(\Gamma_i) \to V(\Sigma_i)$, where (hx_i, j) maps to $(ky_i, l), l, j \in \{1, 2\}$, where $(h, j)^{\varphi_1} = (k, l)$. Then φ_i is a graph isomorphism. Finally, take ψ to be the isomorphism whose restriction to each component Γ_i is φ_i . Then $\psi \in \operatorname{Sym}(V(\Gamma))$, and since $R_G \subseteq \operatorname{Aut}(\Sigma)$, we have $R_G \cong \psi R_G \psi^{-1} \le \operatorname{Aut}(\Gamma)$. Also

$$\{(G \times \{1\})^{\psi}, (G \times \{2\})^{\psi}\} = \{G \times \{1\}, G \times \{2\}\},\$$

which completes the proof.

Now we are ready to prove Theorem C.

Proof of Theorem C First recall that by Remark 4.2, Γ is a BCI-graph if and only if it is a 0-type SCI-graph and $S^{-1} = gS^{\alpha}$ for some $g \in G$ and $\alpha \in \text{Aut}(G)$. Now $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ are direct consequences of Lemma 4.3 and Remark 4.2.

Now let $\Gamma \cong \Sigma$, where $\Sigma = \operatorname{BCay}(G,T)$ is a bi-Cayley graph. By Lemma 4.4, there exists $\psi \in \operatorname{Sym}(V(\Gamma))$ such that $\Gamma \cong \Sigma$, $\psi R_G \psi^{-1} \leq \operatorname{Aut}(\Gamma)$ and $\{G \times \{1\}, G \times \{2\}\}$ is ψ -invariant. Hence, if (2) or (3) holds, then there exists $\beta \in \operatorname{Aut}(\Gamma)$ such that $\psi R_G \psi^{-1} = \beta^{-1} R_G \beta$. Hence by Corollary 2.3, there exists a semi-Cayley isomorphism between Γ and Σ , which means that Γ is a 0-type SCI-graph. Now by Remark 4.2, Γ is a BCI-graph. This proves (2) \Rightarrow (1) and (3) \Rightarrow (1), which completes the proof.

It is well known that every group of order 2p, p an odd prime, is a CI-group, see [2]. In the following example, as an application of Theorem C, we prove that every 0-type bi-Cayley

graph Γ over \mathbb{Z}_{2p} , p an odd prime, with $p^2 \nmid |\mathrm{Aut}(\Gamma)|$ is a BCI-graph. We leave the general case as an open question.

Example 4.5 Let Γ be a bi-Cayley graph of $G \cong \mathbb{Z}_{2p}$, p an odd prime, and $p^2 \nmid |\operatorname{Aut}(\Gamma)|$. Then Γ is a BCI-graph. To see this, let $\Gamma = \operatorname{BCay}(G,S)$ and $\varphi \in \operatorname{Sym}(V(\Gamma))$ such that $\varphi R_G \varphi^{-1} \leq \operatorname{Aut}(\Gamma)$ and $\{G \times \{1\}, G \times \{2\}\}\}$ is ψ -invariant. Put $A = \operatorname{Aut}(\Gamma)$ and $V = V(\Gamma)$. Since G is abelian there exists $\alpha \in \operatorname{Aut}(G)$ such that $S^\alpha = S^{-1}$, so by Theorem C, it is enough to show that R_G and $\varphi R_G \varphi^{-1}$ are conjugate in A. Let P be a Sylow p-subgroup of G and $R_P = \{\rho_h \mid h \in P\}$. Since $R_P < R_G \leq A$ and $p^2 \nmid |A|$, R_P is a Sylow p-subgroup of A. Also $\varphi R_P \varphi^{-1}$ is a Sylow p-subgroup of A. Hence, there exists $\beta \in A$ such that $\varphi R_P \varphi^{-1} = \beta^{-1} R_P \beta$. So $\beta \varphi \in N_{\operatorname{Sym}(V(\Gamma))}(R_P)$.

Since R_P is a semiregular subgroup of A with 4 orbits, Γ is a 4-Cayley graph of P. Let $G = \langle a, t \mid a^p = t^2 = 1, at = ta \rangle \cong \mathbb{Z}_{2p}$, and $P = \langle a \rangle$. Then $G = P \cup tP$. Also orbits of P are $\Omega_1 = \{(a^i, 1) \mid i = 0, \dots, p-1\}, \, \Omega_2 = \{(ta^i, 1) \mid i = 0, \dots, p-1\}, \, \Omega_3 = \{(a^i, 2) \mid i = 0, \dots, p-1\}$ and $\Omega_4 = \{(ta^i, 2) \mid i = 0, \dots, p-1\}$. If we identify $(a^i, 1), (ta^i, 1), (a^i, 2)$ and $(ta^i, 2)$ with $(a^i, 1), (a^i, 2), (a^i, 3)$ and $(a^i, 4)$, respectively, Lemma 2.1 implies that there exist $g_1 = 1, g_2, g_3, g_4 \in P$, $g_0 \in P$, $\sigma \in \operatorname{Aut}(P)$ and $\theta \in S_4$ such that $(x, j)^{\beta \varphi} = (g_j x^{\sigma} g_0, j^{\theta})$ for all $x \in P$ and j = 1, 2, 3, 4. Note that all automorphisms of P extend to automorphisms of G and so we can assume that $\sigma \in \operatorname{Aut}(G)$.

Define $\alpha: V(\Gamma) \to V(\Gamma)$, where $(x, j)^{\alpha} = (x^{\sigma}g_0, j^{\theta})$ for all $x \in P$ and j = 1, 2, 3, 4. Clearly, $\alpha \in \text{Sym}(V(\Gamma))$. Also for each $(x, j) \in V(\Gamma)$, we have

$$(x,j)^{\beta\varphi\alpha^{-1}\rho_a} = (g_j x^{\sigma} g_0, j^{\theta})^{\alpha^{-1}\rho_a}$$

$$= (g_j^{\sigma^{-1}} x, j)^{\rho_a}$$

$$= (g_j^{\sigma^{-1}} x a, j)$$

$$= (g_j x^{\sigma} a^{\sigma} g_0, j^{\theta})^{\alpha^{-1}}$$

$$= (xa, j)^{\beta\varphi\alpha^{-1}}$$

$$= (x, j)^{\rho_a\beta\varphi\alpha^{-1}},$$

which implies that $\gamma := \beta \varphi \alpha^{-1} \in C_{\operatorname{Sym}(V(\Gamma))}(R_P)$. Also

$$(x,j)^{\alpha \rho_a \alpha^{-1}} = (x^{\sigma} g_0, j^{\theta})^{\rho_a \alpha^{-1}}$$

$$= (x^{\sigma} g_0 a, j^{\theta})^{\alpha^{-1}}$$

$$= (x^{\sigma} a g_0, j^{\theta})^{\alpha^{-1}}$$

$$= (x a^{\sigma^{-1}}, j)$$

$$= (x, j)^{\rho_a \sigma^{-1}},$$

and

$$(x,j)^{\alpha\rho_t\alpha^{-1}} = (x^{\sigma}g_0, j^{\theta})^{\rho_t\alpha^{-1}}$$
$$= (x^{\sigma}g_0t, j^{\theta})^{\alpha^{-1}}$$
$$= (x^{\sigma}tg_0, j^{\theta})^{\alpha^{-1}}$$
$$= (xt^{\sigma^{-1}}, j)$$

$$=(x,j)^{\rho_{t^{\sigma}-1}}$$

imply that $\alpha \in N_{\mathrm{Sym}(V(\Gamma))}(R_G)$. So there exists $\gamma \in C_{\mathrm{Sym}(V(\Gamma))}(R_P)$ such that $\varphi = \beta^{-1}\gamma\alpha$. Also $(x,j)^{\gamma} = (x,j)^{\beta\varphi\alpha^{-1}} = (g_jx^{\sigma}g_0,j^{\theta})^{\alpha^{-1}} = (g_j^{\sigma^{-1}}x,j)$ for all $x \in P$ and j=1,2,3,4. So for all $x \in P$, and j=1,2,3,4, $(x,j)^{\gamma\rho_t\gamma^{-1}\rho_t} = (g_j^{\sigma^{-1}}xt,j)^{\gamma^{-1}\rho_t} = (xt,j)^{\rho_t} = (xt^2,j) = (x,j)$. Hence, $\gamma\rho_t = \rho_t\gamma$. Since $\gamma\rho_a = \rho_a\gamma$, this shows that $\gamma \in C_{\mathrm{Sym}(V(\Gamma))}(R_G)$. Hence,

$$\varphi R_G \varphi^{-1} = \beta^{-1} \gamma \alpha R_G \alpha^{-1} \gamma^{-1} \beta = \beta^{-1} \gamma R_G \gamma^{-1} \beta = \beta^{-1} R_G \beta,$$

which means that Γ is a BCI-graph.

In the rest of this section, we shall give some preliminary results which will be used in constructing non-BCI-graphs. Also we are going to find an infinite family of BCI-graphs. We prove that every group of prime order is a BCI-group. To prove this result, we have to prove some elementary results which most of them are a generalization of previous works.

Babai and Frankl proved that if Cay(G, S) is a CI-graph and $S \subseteq H \subseteq G$, then Cay(H, S) is also a CI-graph, see for example [11, Lemma 8.2]. In the following lemma, we prove a similar result for BCI-graphs.

Lemma 4.6 Let BCay(G, S) be a BCI-graph, $H \leq G$, $S \subseteq H$. If BCay(H, S) is connected, then BCay(H, S) is a BCI-graph.

Proof Let $T \subseteq H$ and $\operatorname{BCay}(H,S) \cong \operatorname{BCay}(H,T)$. Since $\operatorname{BCay}(H,S)$ is connected, by [7, p. 1259], $H = \langle SS^{-1} \rangle = \langle TT^{-1} \rangle$. So $\operatorname{BCay}(\langle SS^{-1} \rangle, S) \cong \operatorname{BCay}(\langle TT^{-1} \rangle, T)$ which implies that $\operatorname{BCay}(G,S) \cong \operatorname{BCay}(G,T)$, see [7, Lemma 2.8]. Since $\operatorname{BCay}(G,S)$ is a BCI-graph, there exist $\alpha \in \operatorname{Aut}(G)$ and $g \in G$ such that $T = gS^{\alpha}$. On the other hand,

$$H^{\alpha} = \langle SS^{-1}\rangle^{\alpha} = \langle S^{\alpha}(S^{\alpha})^{-1}\rangle = \langle g^{-1}TT^{-1}g\rangle = g^{-1}\langle TT^{-1}\rangle g = g^{-1}Hg = H^{\tau_g}.$$

So $H^{\alpha\tau_{g^{-1}}}=H$ and $\alpha\tau_{g^{-1}}\in \operatorname{Aut}(H)$. Also $Tg^{-1}=S^{\alpha\tau_{g^{-1}}}\subseteq H^{\alpha\tau_{g^{-1}}}=H$ and $T\subseteq H$ imply that $g\in H$. Since $T=S^{\alpha\tau_{g^{-1}}}g$ there exist $\beta\in\operatorname{Aut}(H)$ and $h\in H$ such that $T=hS^{\beta}$. This shows that $\operatorname{BCay}(H,S)$ is a BCI-graph.

Let G be a finite group. Let S and T be two subsets of G both of which contain the identity. If $Cay(G, S \setminus \{1\}) \cong Cay(G, T \setminus \{1\})$, then $BCay(G, S) \cong BCay(G, T)$, see [7, Lemma 2.9]. In the following lemma we extend this result.

Lemma 4.7 Let G and H be two groups, $S \subseteq G$, $T \subseteq H$, $1_G \in S$ and $1_H \in T$. If $Cay(G, S \setminus \{1_G\}) \cong Cay(H, T \setminus \{1_H\})$, then $BCay(G, S) \cong BCay(H, T)$.

Proof Let φ be an isomorphism from $\operatorname{Cay}(G, S \setminus \{1_G\})$ to $\operatorname{Cay}(H, T \setminus \{1_H\})$. By a similar argument to [7, Lemma 2.9], one can easily see that

$$\psi: G \times \{1,2\} \to H \times \{1,2\}$$

$$(g,i) \mapsto (g^{\varphi},i), \quad i = 1,2.$$

is a graph isomorphism from BCay(G, S) to BCay(H, T).

In [9, p. 218], it is shown that every bi-Cayley graph of a finite cyclic group is a Cayley graph and so is vertex-transitive. In the following lemma, we extend this result to abelian groups.

Lemma 4.8 Let G be a finite abelian group and $\Gamma = \operatorname{BCay}(G, S)$ be a bi-Cayley graph of G. Then $\Gamma \cong \operatorname{Cay}(\langle \psi \rangle R_G, \psi R_S)$, where $R_S = \{ \rho_s \mid s \in S \}$ and $\psi : V(\Gamma) \to V(\Gamma)$ is a function defined by $(x, 1)^{\psi} = (x^{-1}, 2)$ and $(x, 2)^{\psi} = (x^{-1}, 1)$.

Proof It is an easy task to see that $\langle \psi \rangle R_G$ is a transitive subgroup of $\operatorname{Aut}(\Gamma)$. Since $\langle \psi \rangle \cong \mathbb{Z}_2$ and $\psi \in \operatorname{Aut}(\Gamma) \setminus R_G$, $R_G \cap \langle \psi \rangle = 1$ and so $|R_G \langle \psi \rangle| = 2|G| = |V(\Gamma)|$. This shows that $R_G \langle \psi \rangle$ is a regular subgroup of $\operatorname{Aut}(\Gamma)$.

Note that $(\psi R_G)^{-1} = \psi R_G$ and so $\operatorname{Cay}(\langle \psi \rangle R_G, \psi R_S)$ is an undirected Cayley graph. Now $\theta : V(\Gamma) \to \langle \psi \rangle R_G$, with $(g,1)^{\theta} = \rho_g$ and $(g,2)^{\theta} = \psi \rho_g$, is a graph isomorphism from Γ to $\operatorname{Cay}(D, \psi R_S)$.

Let $D = \langle \psi \rangle R_G$ for bi-Cayley graphs of abelian groups G as defined in the proof of Lemma 4.8. Then the following corollary extends Corollary 2.2 of [9].

Corollary 4.9 Let G be an abelian group with an element x such that $x^2 \neq 1$, and Γ be a bi-Cayley graph of G. If any regular subgroup of $\operatorname{Aut}(\Gamma)$ isomorphic to D is conjugate to D in $\operatorname{Aut}(\Gamma)$, then Γ is a BCI-graph. Furthermore, if D is a CI-group, then G is a BCI-group. In particular \mathbb{Z}_p , p a prime, and \mathbb{Z}_9 are BCI-groups.

Proof Let $\Gamma = \operatorname{BCay}(G,S)$ and $\Gamma \cong \operatorname{BCay}(G,T)$. Then $\operatorname{BCay}(R_G,R_S) \cong \Gamma \cong \operatorname{BCay}(G,T) \cong \operatorname{BCay}(R_G,R_T)$, where $R_X = \{\rho_g | g \in X\}$. Also by Lemma 4.8, $\operatorname{Cay}(D,\psi R_S) \cong \Gamma \cong \operatorname{BCay}(G,T) \cong \operatorname{Cay}(D,\psi R_T)$. Now by Babai's theorem [2, Lemma 3.1], there exists $\varphi \in \operatorname{Aut}(D)$ such that $\psi R_T = (\psi R_S)^{\varphi}$. Let σ be the restriction of φ to R_G . Then $\sigma \in \operatorname{Aut}(R_G)$ and $\psi^{\varphi} \in D \setminus R_G$. So there exists $g \in G$ such that $\psi^{\varphi} = \psi \rho_g$, which implies that $R_T = \rho_g R_S^{\varphi} = \rho_g R_S^{\sigma}$. Therefore $\operatorname{BCay}(R_G,R_S)$ is a BCI-graph. Hence, Γ is a BCI-graph. The second part follows from the Babai theorem for Cayley graphs and the first part. It is easy to check that \mathbb{Z}_2 is a BCI-graph. Also D_{2p} , p odd prime, and D_{18} are CI-groups, [11, Theorem 8.9]. Since if G is a cyclic group of order n, then $D \cong D_{2n}$, and the result is clear by the second part.

It is easy to check that $\psi: G \times \{1,2\} \to G \times \{1,2\}$, which maps (x,1) to (x,2) and maps (x,2) to (x,1) is an isomorphism from $\mathrm{BCay}(G,S)$ to $\mathrm{BCay}(G,S^{-1})$. So every BCI-graph is vertex-transitive by [12, Lemma 2.1 (5)]. Now the natural question is that is any vertex-transitive bi-Cayley graph a BCI-graph?

By Corollary 4.9, \mathbb{Z}_9 is a BCI-group and also it is easy to see that \mathbb{Z}_4 is a BCI-group. Now we consider the problem for \mathbb{Z}_{p^2} , p > 3 a prime in the following lemma which shows that the above question has negative answer.

Proposition 4.10 Let p > 3 be a prime and $G = \langle a \rangle \cong \mathbb{Z}_{p^2}$. There exists a connected vertex-transitive bi-Cayley graph of G of valency p+2 which is not a BCI-graph. In particular, in a finite BCI-group G, for each prime p > 3 dividing order of G, each Sylow p-subgroup is elementary abelian.

Proof By Lemma 4.8, every bi-Cayley graph of G is vertex-transitive. Also by Lemma 4.6, the second part follows immediately from the first part. Put $S = a\langle a^p \rangle \cup \{a^p\}$, $T = a\langle a^p \rangle \cup \{a^{2p}\}$, $S' = S \cup \{1\}$ and $T' = T \cup \{1\}$. Then $\operatorname{Cay}(G,S) \cong \operatorname{Cay}(G,T)$, see [11, p. 311]. So by Lemma 4.7, $\operatorname{BCay}(G,S') \cong \operatorname{BCay}(G,T')$. Suppose that there exist $g \in G$ and $\alpha \in \operatorname{Aut}(G)$ such that $gS'^{\alpha} = T'$. Since $1 \in S'$, $g \in T'$, we distinguish three cases:

Case I g = 1. Then $S'^{\alpha} = T'$ and so $S^{\alpha} = T$, which is a contradiction, see [11, p. 311].

Case II $g = a^{2p}$. Then

$$S'^{\alpha} = a^{-2p}T' = \{a^{(-2+r)p+1} \mid 0 \le r \le p-1\} \cup \{1\} \cup \{a^{-2p}\}.$$

Since a^{α} has order p^2 , $a^{\alpha}=a^{(-2+k)p+1}$ for some $0 \leq k \leq p-1$. So $(a^p)^{\alpha}=(a^{\alpha})^p=a^{(-2+k)p^2+p}=a^p \in S'^{\alpha}$. Clearly $a^p \neq 1$. If $a^p=a^{(-2+r)p+1}$ for some $0 \leq r \leq p-1$, then $1=(a^p)^p=(a^{(-2+r)p+1})^p=a^p$, a contradiction. Also if $a^p=a^{-2p}$, then $a^{3p}=1$ and so $p^2\mid 3p$ which means that p=3, a contradiction.

Case III $g = a^{kp+1}$ for some $0 \le k \le p-1$. Then

$$S'^{\alpha} = g^{-1}T' = \{a^{(r-k)p} \mid 0 \le r \le p-1\} \cup \{a^{(2-k)p-1}\} \cup \{a^{-kp-1}\}.$$

Note that since $p \neq 2$, $a^{(2-k)p-1} \neq a^{-kp-1}$. Again since order of a^{α} is p^2 , $a^{\alpha} = a^{(2-k)p-1}$ or a^{-kp-1} . In both cases we have $(a^p)^{\alpha} = (a^{\alpha})^p = a^{-p}$. If $a^{\alpha} = a^{(2-k)p-1}$, then $(a^{p+1})^{\alpha} = (a^p.a)^{\alpha} = (a^p)^{\alpha}a^{\alpha} = a^{(1-k)p-1} \in S'^{\alpha}$. Hence, $a^{(1-k)p-1} = a^{(2-k)p-1}$ or a^{-kp-1} . In both cases we can see that $a^p = 1$, which is a contradiction. Finally, if $a^{\alpha} = a^{-kp-1}$, then $(a^{p+1})^{\alpha} = a^{(-1-k)p-1} \in S'^{\alpha}$. Hence, $a^{(-1-k)p-1} = a^{(2-k)p-1}$ or a^{-kp-1} . The first case implies that p = 3 and the second case implies that $a^p = 1$, a contradiction.

Hence, in all cases we obtain a contradiction. This completes the proof. \Box

In Proposition 1.3, we proved that every SCI-group is a CI-group. In most cases, we find that also every BCI-group is a CI-group and we conjecture that this is true in general for BCI-groups.

Conjecture Every BCI-group is a CI-group.

Note that in general the converse of the above statement is not true. For example, \mathbb{Z}_8 is a CI-group, see [11, Theorem 8.9], but is not a 4-BCI group by [9, Remark 1.2].

References

- [1] Arezoomand, M., Taeri, B.: On the characteristic polynomial of n-Cayley digraphs. *Electron. J. Combin.*, **20**(3), Paper57, 14pp (2013)
- [2] Babai, L.: Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad. Sci. Hungar., 29, 329–336 (1977)
- [3] Berkovich, Y.: Groups of Prime Power Order, Volume 1, Walter de Gruyter, Berlin, 2008
- [4] Dixon, J. D., Mortimer, B.: Permutation groups, Graduate Texts in Mathematics 163, Springer-Verlag, New York, 1996
- [5] Harary, F.: Graph Theory, Addison-Welsey, Reading, Massachusetts, 1969
- [6] Jin, W., Liu, W. J.: Two results on BCI-subset of finite groups. Ars Combin., 93, 169–173 (2009)
- [7] Jin, W., Liu, W. J.: A classification of nonabelian simple 3-BCI-groups. European J. Combin., 31, 1257– 1264 (2010)
- [8] Jin, W., Liu, W. J.: On Sylow subgroups of BCI-groups. Util. Math., 86, 313–320 (2011)
- [9] Koike, H., Kovács, I.: Isomorphic tetravalent cyclic Haar graphs. Ars Math. Contemp., 7(1), 215–235 (2014)
- [10] Kovács, I., Malnič, I., Marušič, D., et al.: One-Matching bi-Cayley graphs over abelian groups. European J. Combin., 30, 602–616 (2009)
- [11] Li, C. H.: On isomorphisms of finite Cayley graphs-a survay. Discrete Math., 256, 301–334 (2002)
- [12] Lu, Z. P., Wang, C. Q., Xu, M. Y.: Semisymmetric cubic graphs constructed from bi-Cayley graphs of A_n . Ars Combin., 80, 177–187 (2006)

- [13] Malnič, A., Marušič, D., Šparl, P., et al.: Symmetry structure of bicirculants. Discrete Math., 307, 409–414 (2007)
- [14] de Resmini, M. J., Jungnickel, D.: Strongly regular semi-Cayley graphs. J. Algebraic Combin., 1, 217–228 (1992)
- [15] Xu, S. J., Jin, W., Shi, Q., et al.: The BCI-property of the bi-Cayley graphs. J. Guangxi Norm. Univ.: Nat. Sci. Edition, 26, 33–36 (2008)