Meadow Monticello Dr. Forouraghi CSC 362 21 October 2025

Homework 3

1. Modify AStarMaze to compare the behaviors of the Greedy Best-First and A* search algorithms. You need to modify the maze configuration so you can visually observe differences in the optimum paths generated by the two algorithms. Your report should include a side-by-side comparison of the two approaches similar to the graph shown below along with your explanation. You only need to draw the shortest paths and not the highlighted frontiers.


```
### Update the evaluation function for the cell n: f(n) = g(n) + h(n)
self.cells[new_pos[0]][new_pos[1]].f = new_g + self.cells[new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]][new_pos[0]
```

Also I changed the maze from the initial code to match the configuration in the problem description. See below:

```
maze = [
    [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
    [0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
]
```

- 2. Repeat the above experiment but this time:
 - Use the Euclidean Distance heuristic.
 - The agent is allowed to make diagonal moves (i.e., NE, NW, SE, SW) in addition to the usual N, S, E, and W moves.
 - The moves are made randomly and not in any specific order.

A*										Greed	у								
g=0 h=13										g=0 h=13									
g=inf h=0	g=1 h=11	g=inf h=0		g=inf h=0	g=0 h=11	g=inf h=0													
g=inf h=0	g=inf h=0	g=2 h=10	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0		g=inf h=0	g=inf h=0	g=0 h=10	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	
g=inf h=0	g=inf h=0	g=inf h=0	g=3 h=8	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0		g=inf h=0	g=inf h=0	g=inf h=0	g=0 h=8	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	
g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=4 h=7	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0		g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=0 h=7	g=0 h=6	g=inf h=0	g=inf h=0	g=inf h=0	
g=inf h=0	g=inf h=0	g=inf h=0	g=5 h=7	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0		g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=0 h=5	g=inf h=0	g=inf h=0	
g=inf h=0	g=inf h=0	g=6 h=8	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0		g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=inf h=0	g=0 h=4	g=inf h=0	g=inf h=0	
g=inf h=0	g=7 h=8	g=inf h=0		g=inf h=0	g=0 h=8	g=0 h=7	g=0 h=6	g=0 h=5	g=0 h=4	g=inf h=0	g=inf h=0	g=inf h=0							
g=8 h=9										g=0 h=9									
g=inf h=0	g=9 h=8	g=10 h=7	g=11 h=6	g=12 h=5	g=13 h=4	g=14 h=3	g=15 h=2	g=16 h=1	g=17 h=0	g=inf h=0	g=0 h=8	g=0 h=7	g=0 h=6	g=0 h=5	g=0 h=4	g=0 h=3	g=0 h=2	g=0 h=1	g=0 h=0

The A* algorithm took a predictable route. A* looks at both g and h. When h plateaued, the algorithm focused solely on g.

The greedy best first algorithm only looks at h. Because of this, the path is unorthodox and not efficient.

```
#### Agent goes E, W, N, S, NE, NW, SE, SW whenever possible

for dx, dy in [(0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]:

new_pos = (current_pos[0] + dx, current_pos[1] + dy)

if 0 <= new_pos[0] < self.rows and 0 <= new_pos[1] < self.cols and not self.cells[new_pos[0]][new_pos[1]].is_wall:

#### The cost of moving to a new position is 1 unit

new_g = current_cell.g
```

Both the A* and greedy best first search have more coordinates in problem 2 then problem 1 to account for the additional directions (diagonal moves).

This is the change made in the code for greedy best first algorithm. Note how there is no +1 after the current_cell.g.

I had to change the distance formula to match the euclidean distance formula. The change is shown above.

3. Part 1

a	β	Observed Behavior	Interpretation	Output												
1	1	A*	Optimal, shortest path	g=0 h=18												
				g=1 h=17	g=inf h=0											
				g=2 h=16	g=inf h=0											
				g=3 h=15	g=inf h=0											
				g=4 h=14	g=inf h=0											
				g=5 h=13	g=inf h=0											
				g=6 h=12	g=inf h=0											
				g=7 h=11	g=inf h=0											
				g=8 h=10												
				g=9 h=9	g=10 h=8	g=11 h=7	g=12 h=6	g=13 h=5	g=14 h=4	g=15 h=3	g=16 h=2	g=17 h=1	g=18 h=0			

.5	1	Leaning greedy	Focuses on proximity to goal	g=0 h=18									
				g=1 h=17	g=2 h=16	g=inf h=0							
				g=inf h=0	g=3 h=15	g=inf h=0							
				g=inf h=0	g=4 h=14	g=inf h=0							
				g=inf h=0	g=5 h=13	g=inf h=0							
				g=inf h=0	g=6 h=12	g=inf h=0							
				g=inf h=0	g=7 h=11	g=inf h=0							
				g=9 h=11	g=8 h=10	g=inf h=0							
				g=10 h=10									
				g=11 h=9	g=12 h=8	g=13 h=7	g=14 h=6	g=15 h=5	g=16 h=4	g=17 h=3	g=18 h=2	g=19 h=1	g=20 h=0

1	.5	More cautious	Slower solution, but safe and straightforward route	g=0 h=18									
				g=1 h=17	g=inf h=0								
				g=2 h=16	g=inf h=0								
				g=3 h=15	g=inf h=0								
				g=4 h=14	g=inf h=0								
				g=5 h=13	g=inf h=0								
				g=6 h=12	g=inf h=0								
				g=7 h=11	g=inf h=0								
				g=8 h=10									
				g=9 h=9	g=10 h=8	g=11 h=7	g=12 h=6	g=13 h=5	g=14 h=4	g=15 h=3	g=16 h=2	g=17 h=1	g=18 h=0

0	best	Greedy best first	Long total path and squares visited	g=0 h=18									
				g=0 h=17	g=0 h=16	g=0 h=15	g=0 h=14	g=0 h=13	g=0 h=12	g=0 h=11	g=0 h=10	g=0 h=9	
				g=inf h=0	g=0 h=8								
				g=inf h=0	g=0 h=7								
				g=inf h=0	g=0 h=6								
				g=inf h=0	g=0 h=5								
				g=inf h=0	g=0 h=4								
				g=0 h=11	g=0 h=10	g=0 h=9	g=0 h=8	g=0 h=7	g=0 h=6	g=0 h=5	g=0 h=4	g=0 h=3	
				g=0 h=10									
				g=0 h=9	g=0 h=8	g=0 h=7	g=0 h=6	g=0 h=5	g=0 h=4	g=0 h=3	g=0 h=2	g=0 h=1	g=0 h=0

I reverted back to Manhattan distance.

```
#### Agent goes E, W, N, and S, whenever possible
for dx, dy in [(0, 1), (0, -1), (1, 0), (-1, 0)]:
    new_pos = (current_pos[0] + dx, current_pos[1] + dy)

if 0 <= new_pos[0] < self.rows and 0 <= new_pos[1] < self.cols and not self.cells[new_pos[0]][new_pos[1]].is_wall:
    #### The cost of moving to a new position is 1 unit
    new_g = current_cell.g + 1</pre>
```

I am using the 4 cardinal directions again (no diagonals). I also reincluded +1 in the cost.

```
### Update the evaluation function for the cell n: f(n) = g(n) + h(n)
alpha = 0
beta = 1
# altered alpha and beta to test
self.cells[new_pos[0]][new_pos[1]].f = alpha*new_g + beta*self.cells[new_pos[0]][new_pos[1]].h
self.cells[new_pos[0]][new_pos[1]].parent = current_cell
#### Add the new cell to the priority queue
open_set.put((self.cells[new_pos[0]][new_pos[1]].f, new_pos))
```

The screenshots of the mazes above were obtained from changing the alpha and beta in this code accordingly.