(1) Let E>0. Since g is continuous at 0, there exists S>0 |9(x)| = |9(x)-9(0)| < € for all x ∈ IR with 1x-01<8

$$|f(x)| = |f(x)| + |f(0)| \le |g(x)| + |g(0)| = |g(x)| < \varepsilon$$

$$\forall x \in \mathbb{R} \text{ with } |x-0| < \delta.$$

 $\lim_{\chi \to 1^{-}} f(\chi) = \lim_{\chi \to 1^{-}} (4\chi + 2) = 6 + 5 = f(1).$ so f(x) is not coontinuous.

② Let
$$g(x) = f(x) - x + x \in [0,1]$$
. So $g(x)$ is continuous on continuous on $[0,1]$, since $f(x)$ is continuous on $[0,1]$.

$$g(0) = f(0)$$
, $g(1) = f(1)-1$

of f(0) = 0 or f(1) = 1, then we set the result by taking (=0 or c=1. respectively. Other wise $g(0) > 0 & f(1) = f(1) - 1 < 0 : 0 \le f(x) \le 1$

Hence by intermediate value theorem There exists $C \in (0,1)$ such that g(c) = 0, i.e. f(c) = c.

A Let g(x) = f(x+1) - f(x) on [0,1]. Since f is continuous so $g:[0,1] \to \mathbb{R}$ is continuous

$$f(0) = f(1) - f(0)$$

 $f(1) = f(2) - f(1) = f(0) - f(1)$

So g(0) & g(1) here opposite signs and hence by intermediate value theorem $\exists c \in (0,1)$ \ni g(c) = 0 = f(c+1) = f(c), take $\pi = c+1$ & $\pi = c$.

Both states
$$f(x) = 1 - x^{3}$$
, $f(x)$ is diff for all $x \neq 0$

$$f'(x) = -\frac{2}{3}x^{-\frac{1}{3}} \neq 0 \quad \forall x \neq 0.$$

Hence f does not have local maximum or local minimum at any $\chi(\pm 0) \in \mathbb{R}$. Again $f(\chi) \leq 1 = f(0)$ minimum at any $\chi(\pm 0) \in \mathbb{R}$ waximum at 0.

Page-3

There exists a segun $\{xn\} \in \mathbb{Q}$ s.t. $xn \rightarrow \sqrt{2}$ Since f is continuous at $\sqrt{2}$ we have $\lim_{n \to \infty} f(xn) = f\left(\lim_{n \to \infty} xn\right) = \left(\sqrt{2}\right)^2 + 5 = 7.$

Fig. $f(x) = e^{x} \omega_{5} x + 1$. Take $f(x) = e^{-x} g(x)$ i.e. $f(x) = \omega_{5} x + e^{-x}$

Xet a, b be two real not of g(x) then g(a) = g(b) = 0 f(a) = f(b) = 0.

so apply Rolle's Theorem on f(x).

8 Let $g(x) = x^3$, which is differentiable on [0,1]. So by cauchy's mean value theorem $\exists \xi \in (0,1)$ $g'(\xi)[f(1) - f(0)] = f'(\xi)[g(1) - g(0)]$ or $3\xi^2[f(1) - f(0)] = f'(\xi)$

Page-4 (9) Consider the fun of defined on

$$f(x) = \frac{a_0}{n+1} x^{n+1} + \frac{a_1}{n} x^n + \dots + \frac{a_{n-1}}{2} x^2 + a_n x, \quad x \in [0,1]$$

(1) fis untinuous on [0,1] (ii) fis differentiable in (0,1)

(111) f(0) = 0 & f(1) = 0 by the given condition so f(0) = f(1).

Hence of some x $\in (0,1)$ s.t. f'(x) = 0.

i.e. aox n + ay x n-1 + ... + an = 0.

(10) Let $f(x) = e^{\alpha x} p(x)$. Let α , β be two reads of $\beta(x) = 0$ i.e. $\beta(x) = \beta(\beta) = 0$.

Then f(a) is continuous and derivable in any interval say [a, b].

Further F(0) =0 & F(0)=0.

By Rolle's therrem I a c between a, & such Ital $f'(c) = 0 \Rightarrow \alpha \times \phi(c) + \phi'(c) = 0$

 \Rightarrow 00 There exist a soot of $\beta'(x) + \lambda \beta(x) = 0$ between a pair of roots of $\beta(x) = 0$.

Page -5

(f) Sime $f''(x) \ge 0 \Rightarrow f'(x)$ is increasing [a,b].

Alt $a \le x_1 < x_2 \le b$. In [x1, $\frac{x_1 + x_2}{2}$] apply MVT we get $f(\frac{x_1 + x_2}{2}) - f(x_1) = \frac{x_2 - x_1}{2} f'(c)$ $x_1 < c < \frac{x_1 + x_2}{2}$ Again in $\left[\frac{x_1 + x_2}{2}, x_2\right]$ apply MVT we get

 $f(x_2) - f\left(\frac{x_1 + x_2}{2}\right) = \frac{x_2 - x_1}{2} f'(d), \frac{x_1 + x_2}{2} < d < x_2$ f'(x) is in creasing so f'(d) > f'(c)

 $\Rightarrow f(x_2) - f(\frac{x_1 + x_2}{2}) > f(\frac{x_1 + x_2}{2}) - f(x_1)$

 $\Rightarrow \int_{2} \left[f(x) + f(x) \right] \geq f\left(\frac{x_{1} + x_{2}}{2} \right)$