Forecasting NBA Scores

Final project presentation

David Goldman

Background

The NBA betting markets are known to be *highly efficient* in producing accurate betting lines (forecasts), yet there is surprisingly very little public information as how these forecasts are actually created

This project aims to gain a better understanding of the mechanics involved in forecasting NBA scores

Current Research Question

Can NBA betting lines be *reasonably accurately* recreated through the <u>simple</u> Data Science technique of Linear Regression?

Future Research Questions

Can NBA betting lines then be matched further through more <u>advanced</u> Data Science techniques (i.e. machine learning, referee analytics, advanced statistical modeling techniques, etc.)

Can NBA betting lines then actually be *beaten* (surpassed in accuracy) through betting into the cases where the advanced model *differs* from the betting line (and thus earn a positive ROI over the long-term)?

The Hypothesis

NBA basketball scores can roughly forecasted using *simple* Data Science techniques

Given that NBA betting lines are *highly efficient*, a <u>successful</u> first attempt should be just to *roughly replicate* the market betting lines (within a reasonable margin)

The Data

Basketball-reference.com – Best for the overall variety of data

Bigdataball.com – Best for exportable box scores

NBA.com – Best for team-level advanced analytics

Pinnacle.com – Industry-leading sportsbook for current betting lines

Rotoword.com – Best for current player news

Additional Reference

Within the widely respected book, "Basketball on Paper" the author identifies the "four factors of basketball success" and their associated weights of importance:

Shooting (40%) – eFG%

Turnovers (25%) – TOV%

Rebounds (20%) – ORB%

Free Throws (15%) – FT / FGA

... which served as the starting point for this analysis

One more metric, "Pace" was also included in the model

Linear regression yielded consistent results in both train and test

Train results

```
R^2 = 0.8928
```

Coefficients

```
Intercept = -66.31

eFG_pct = 144.07 (p-value = 0.000)

TOV_pct = -130.92 (p-value = 0.000)

ORB_pct = 48.65 (p-value = 0.000)

FT_divby_FGA = 31.99 (p-value = 0.000)

PACE = 0.99 (p-value = 0.000)
```

Now that we have the betas, we need to also forecast x-values to obtain the y-value (PTS)

Each team will have *offensive* and *defensive* stats for each independent variable

We'll treat each team as essentially two different teams – one team for Home games stats and another team for Away stats

For each dependent variable an average between Team A offensive stats vs Team B defensive stats (split on Home / Away) is a reasonable approximation (although not ideal) for each X

...Let's clarify with an example!

2/23 LA Clippers (away) vs Golden State Warriors (home)

```
PTS = -66.31
+ 144.07 * eFG_pct
+ -130.92 * TOV_pct
+ 48.65 * ORB_pct
+ 31.99 * FT_divby_FGA
+ 0.99 * PACE
```

GSW (home) eFG_pct: 59.5% and LAC (away) opponent's eFG_pct: 51.5%

Taking the average yields an expected eFG_pct of 55.4% for GSW

This same methodology can be applied to TOV_pct, ORB_pct, FT_divby_FGA and

Final considerations

This model is reasonable for "plain vanilla" games (i.e. games without significant injuries or other unique circumstances). A layer of adjustment(s) would be required for games with more intricacies.

The forecasting of X needs some improvement. With better historical data (pre-game team snapshot data) a model such as k-NN could improve on this.

Measuring the ongoing accuracy of the model: Logging results each day could give a feel for how well (a) the model compares against (b) the betting lines and (c) the actual scores