Tarea 5 Tecnologías Cuánticas

Juan Artigas, Antonia Dias, Lukas Wolff, Patricio Palacios, Manuel Tagle, Benjamin Tapia

1. Scripts de Bob y Alice

Se han desarrollado dos scripts, alice_choices.py y bob_choices.py, que generan las elecciones de bases para Alice y Bob, respectivamente. Estos scripts seleccionan específicamente los ángulos necesarios para el test CHSH: 0° y 45° para Alice, y $22,5^{\circ}$ y $-22,5^{\circ}$ para Bob. Para asegurar la reproducibilidad de los resultados, se utilizan semillas distintas: 1001 para Alice y 2002 para Bob.

Los archivos funcionan de la siguiente manera:

2. Script del Árbitro

El árbitro ejecuta el script referee_quantum.py, que implementa el test de Bell usando el criterio CHSH (Clauser-Horne-Shimony-Holt). El proceso se desarrolla de la siguiente manera:

2.1. Generación de Resultados Cuánticos

Para cada par de mediciones con ángulos θ_A (Alice) y θ_B (Bob), el script simula un estado entrelazado Bell $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ mediante la función sample_joint(), que:

- 1. Calcula la correlación teórica: $E = \cos(2(\theta_A \theta_B))$
- 2. Define las probabilidades cuánticas para los cuatro resultados posibles:

$$P(+1,+1) = P(-1,-1) = \frac{1+E}{4} \tag{1}$$

$$P(+1,-1) = P(-1,+1) = \frac{1-E}{4}$$
 (2)

3. Muestrea aleatoriamente un resultado según estas probabilidades

2.2. Cálculo de Correlaciones

El script calcula cuatro correlaciones específicas E(a,b) para las combinaciones de bases del test CHSH:

- E(a,b): bases $a=0^{\circ}$ y $b=22.5^{\circ}$
- E(a, b'): bases $a = 0^{\circ}$ y $b' = -22.5^{\circ}$
- E(a', b): bases $a' = 45^{\circ}$ y $b = 22.5^{\circ}$
- E(a', b'): bases $a' = 45^{\circ}$ y $b' = -22.5^{\circ}$

Para cada combinación de bases, la correlación se calcula como:

$$E(a,b) = \langle A_k \cdot B_k \rangle = \frac{1}{N} \sum_{k=1}^{N} A_k \cdot B_k$$

donde A_k y B_k son los resultados (± 1) de Alice y Bob para el par k, y N es el número de mediciones para esa combinación específica de bases.

2.3. Parámetro CHSH

El parámetro CHSH se calcula como:

$$S = E(a, b) + E(a, b') + E(a', b) - E(a', b')$$

Interpretación del parámetro CHSH:

- $|S| \le 2$: Compatible con teorías de variables ocultas locales (límite clásico)
- $\bullet~2<|S|\leq 2\sqrt{2}\approx 2,828$: Violación de desigualdades de Bell, evidencia de entrelazamiento cuántico
- $|S| > 2\sqrt{2}$: Imposible según la mecánica cuántica (límite de Tsirelson)

3. Resutados

3.1. Bases Iniciales

Sobre las bases iniciales de Alice y Bob, se obtiene una correlacion de 2.77 lo que indica que se cumple el limite inferior de 2 y el superior de 2.828, lo que indica que tales bases se encuentran entrelazadas.

A continuacion se realizara el analisis sobre un conjunto de bases, donde se estudiara como se ven afectadas las correlaciones y el parametro CHSH.

4. Notas

- Es importante notar que para todas las bases se mantuvieron las bases tanto para Alice y Bob, así como, el numero de mediciones (1000).
- Todo el código fuente y los scripts pueden ser encontrados en el siguiente link