Linear Programming Quiz

5/5 points (100%)

Quiz, 5 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

What is the minimum number of linear inequalities needed to define the figure pictured below?

8

Correct Response

The figure is cut out by 8 flat surfaces. Thus 8 equations are needed.

1/1 points

2.

Given a solution to a linear program, one could try to show that it is optimal by finding a matching solution to the dual program. Which of the following theorems will make it easier to do so?

Separation of convex sets from outside po	oints by hyperplanes
· · · · · · · · · · · · · · · · · · ·	, , , ,

Linear Programming Quiz Slackness.

5/5 points (100%)

Quiz, 5 questions

Correct

Correct! Complementary slackness tells you that your dual solution only uses equations that are tight in solutions to the primal.

Polytopes achieve optimum values at vertices.

1/1 points

3.

Which of the following statements are true?

A system of linear equations has always 0, 1, or infinitely many solutions.

Correct

This statement is true. Unless there are no solutions, the solution set has some number of free variables. If there are no free variables, there is a unique solution. If there is at least one free variable, there are infinitely many solutions.

A system of n linear equations in n variables always has a unique solution.

Un-selected is correct

A system of linear equations has a solution unless they can be combined in some combination to give the equation 0=1.

Correct

This statement is true. There is a solution unless the corresponding row reduced matrix has a row corresponding to this equation, this will happen only if 0=1 can be obtained by combining the original equations.

points

Linear Programming Quiz

5/5 points (100%)

Quiz, 5 questions

Suppose that you are trying to solve the optimization problem:

Maximize $v\cdot x$ subject to $Ax\geq b$ for some $A\in\mathbb{R}^{m\times n}$ (i.e. trying to solve an optimization problem in n variables with m linear inequality constraints).

This problem can be reduced to running a solution finding algorithm on a different system of linear equations in k variables. What is the smallest value of k for which this can be done?

Preview

m+n

n+m

Correct Response

Correct! You need to look for matching solutions to the primal (n variables) and the dual (m variables). Thus, you need a solution to a larger system with n+m variables.

Your answer, n+m, is equivalent to the instructor's answer n+m.

1/1 points

5.

What is the largest possible value of x+y achievable by pairs x,y of real numbers satisfying the constraints:

- x <= 7
- y <= 10
- 2x+y <= 21
- -x + 2y <= 12
- 5x-y <= 30

15

Correct Response

Correct. The optimum is at x=6, y=9 as shown below.

