Plan d'étude et représentation graphique de $y = f(x) = \frac{-x^2 - 4x - 1}{x^2 + 1}$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = \frac{-x^2 - 4x - 1}{x^2 + 1} \Rightarrow D_f = 0 = (-\infty, +\infty)$$

Etudier la fonction au bornes de D_f

A la borne gauche

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{-x^2 - 4x - 1}{x^2 + 1} = -1$$

Alors la droite d'équation Y = -1 est une asymptote horizontale pour la courbe de f .

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{-x^2 - 4x - 1}{x^2 + 1} = -1$$

Alors la droite d'équation Y = -1 est une asymptote horizontale pour la courbe de f .

Le sens de variation de f

$$y' = f'(x) = \frac{4(x^2 - 1)}{(x^2 + 1)^2}$$

$$4(x^{2}-1) = 0 \Rightarrow \begin{cases} x = -1 \Rightarrow y = 1 \Rightarrow \begin{vmatrix} -1 \\ 1 \end{cases} \\ x = 1 \Rightarrow y = -3 \Rightarrow \begin{vmatrix} 1 \\ -3 \end{vmatrix}$$

Convexité de f

$$y'' = f''(x) = \frac{-8x(x^2 - 3)}{(x^2 + 1)^3}$$

$$-8x(x^{2}-3) = 0 \Rightarrow \begin{cases} x = 0 \Rightarrow y = -1 \Rightarrow \begin{vmatrix} 0 \\ -1 \end{vmatrix} \\ x = -1.73 \Rightarrow y = 0.73 \Rightarrow \begin{vmatrix} -1.73 \\ 0.73 \end{vmatrix} \\ x = 1.73 \Rightarrow y = -2.73 \Rightarrow \begin{vmatrix} 1.73 \\ -2.73 \end{vmatrix}$$

$$m_{x=-1.73} = f'(-1.73) = 0.5$$

$$m_{x=0} = f'(0) = -4$$

$$m_{x=1.73} = f'(1.73) = 0.5$$

Le tableau de variation

x	-∞	- 1.73		- 1		0		1		1.73	+∞
\mathcal{Y}'	+	0.5	+	0	-	-4	-	0	+	0.5	+
<i>y</i> "	+	0	-		+	0	+		+	0	_
У	1 _	' 0.73 ノ Inf	\angle	1 Max	<u>\</u>	– 1 ′ Inf	<u>\</u>	- 3 Min		- 2.73 ′ Inf	1

La courbe

