Πείραμα 2 και ημερολόγιο συναντήσεων μετά τις 28 Φεβρουαρίου 2023

Κώστας Παπαδόπουλος

Πειραιάς, 2030

Contents

1	Επανεκίνηση μετά τα Χριστούγεννα	4
2	Δοκιμές για διαφορετικά βάρη στις παραμέτρους	4
3	Για τη 31η Γενάρη	5
4	ΓιΑ την 28η Φεβρουαρίου 4.1 Αλλαγή 1	10
5	Για τη 14η Μαρτίου 5.1 Πίναχας r^2 με βέλτιστα επιλεγμένα βάρη 5.2 Οπτιχοποίηση δεδομένων 5.2.1 Πληθυσμός 5.2.2 Πληθωρισμός 5.2.3 Total energy Supply 5.2.4 GDP per capita 5.2.5 Verified emissions 5.2.6 Agriculture 5.2.7 Industry 5.2.8 Manufacturing	16 18 20 20 21 24 26
6	Για την 21η Μαρτίου 6.1 Γιατί η Πολωνία και η Γαλλία αποτυγχάνουν να εξηγήσουν τις άλλες πριν το 2012; 6.2 Τα βέλτιστα βάρη για όλα τα σενάρια	
7	Για την 28η Μαρτίου 7.1 Τι όντως έκανα	

	7.0	7.2.2 Υπολογισμός	
		Power Intensity	
	1.4	7.4.1 Σε δεύτερο χρόνο	
		7.4.2 Άμεσα, για το τετρασέλιδο	
			-
8	Γ ια	·	32
	8.1	Συσταδοποίηση (έπρεπε)	
		8.1.1 Πλήθος συστάδων	
		8.1.2 Βέλτιστες συστάδες	
	8.2	8.1.3 Συστάδες, αν όλα τα δεδομένα ήταν κατά κεφαλήν και κανονικοποιημένα ύστερα	
	8.3	Υπάρχει κάποια εύκολη σχέση μεταξύ των δωρεάν αδειών και κάποιου feature;	
	8.4	Υστερα από αλλαγή στον τρόπο της κανονικοποίησης	
	8.5	To do list	
9	Για	την 2η Μαΐου	43
10	Για	τις 16 Μαΐου	14
	10.1	To do	44
	10.2	Δεν μοιάζει να μπορεί να προσομοιωθεί απλά το Energy Intensity	44
		Δ ιαφορετικά μέτρα απόδοσης / αποτελεσματικότητας	
	10.4	Για την επόμενη φορά	46
11	Για	τις 23 Μαΐου	46
	11.1	21-99 Cannot be used a proxy	46
	11.2	Χρήση του GDPpps	48
	11.3	Χωρίς Αυστρία, Λιθουανία και Φινλανδία	48
12	Για	τη 13η Μαΐου	50
		Το πρόβλημα με το πλασματικό energy Intensity	
	12.2	Clustering se sectors	51
	12.3	Τι ειπώθηκε στην κλίση	52
13	Παι	ύση Καλοκαιριού	53
	1100		,,
14		· · · · · · · · · · · · · · · · · · ·	53
		Polution Permits: Efficiency by Design	
		Παρουσίαση για το paper	
	14.3	1 Section	J
15	Σ υν	ράντηση στο ΜΟΠ $10/10/23$	53
		, , ,	53
	15.2	Προτεινόμενοι στόχοι	53
16	Συν	ράντηση στο ΜΟΠ $31/10/23$	54
_		Σημαντικά Ειπωθέντα	
		"	54

17	5/1/23 Συνάντηση μέσω Skype	5 4
	17.1 Δημιουργία Συνθετικών Δεδομένων	
	17.2 Ανάλυση Εταιρικών Συναρτήσεων	
	17.3 Στόχοι για την Επόμενη Συνάντηση	55
18	7/11/23 Συνάντηση στο ΜΟΠ	55
	18.1 Πριν την συνάντηση	55
	18.1.1 Ορισμοί	55
	18.1.2 Πιθανές συναρτήσεις παραγωγής	55
	18.1.3 Abatement cost	
	18.2 Τι είπαμε στην συνάντηση - Ορισμός προβλήματος	56
	18.2.1 Βήμα 1	57
	18.2.2 Βήμα 2	
	18.2.3 Βήμα 3 - Βελτιώσεις	
19	14/1/23 Συνάντηση στο ΜΟΠ	5 8
20	$28/11/23$ Δ ιαδικτυακή συνάντηση	5 8
21	$12/12/23$ Δ ιαδικτυακή συνάντηση	58
22	$19/12/23$ Δ ιαδικτυακή συνάντηση	58
23	$27/2/24$ Δ ιαδικτυακή συνάντηση	58
24	22/4/24 Επανεκκίνηση	5 9
25	19/7/24 Επανεκκίνηση	5 9
2 6	$26/7/24$ Συνάντηση με τον κ Φ ωτάκη από το γραφείο του Κοινοτάρχη Αστριτσίου	60
27	Μετά το Αστρίτσι και την Νάξο	60
2 8	2/9/24 Συνάντηση στο ΜΟΠ με την Τζέλα και κ. Φωτάκη 28.1 Ιδέες για abatement cost function	65
29	Τυχαία πράγματα που μου έρχεται πως καλό θα ήταν να γίνουν, αλλά δεν θέλω να	67

1 Επανεκίνηση μετά τα Χριστούγεννα

Έγινε μία καλύτερη επιλογή των πηγών για τα δεδομένα, το οποίο οδήγησε, χωρίς να μπορώ να το εξηγήσω σε κάτι πολύ περίεργες συμπεριφορές. Τα καινούρια δεδομένα ήταν τα:

- 1. population ίδιο
- 2. GDP per capita ίδιο
- 3. Total energy supply ίδιο
- 4. inflation ίδιο
- 5. verified emissions ίδιο
- 6. manufacturing σε δίσεκατομύρια δολλάρια, άλλαξε και πλέον δεν έχουμε δεδομένα μόνο για 2010 και 2020, αλλά έχουμε ξεχωριστά για κάθε χρονιά
- 7. industry σε δίεκατομύρια δολλάρια, ομοίως
- 8. Agricalture σε δίσεκατομύρια δολλάρια, ομοίως

Ένα πιθανό πρόβλημα το οποίο ίσως προχύπτει είναι το ότι $(6+7+8)\approx 1*2$. Όμως ρεαλιστικά: $1*2-(6+7+8)\approx$ services. Οπότε ελπίζω πως αυτό δεν είναι σοβαρό πρόβλημα.

Το δεύτερο που παρατηρώ είναι πως για κάποιο λόγο μετά τις βελτιώσεις στον κώδικα, πλέον αν βάλω τα δεδομένα απλώς να λογαριθμιστούν, τα αποτελέσματα είναι λογικά. Αν βάλω τα αποτελέσματα να κανονικοποιηθούν, πάλι είναι λογικά, αλλά προσεγγίζουν λιγότερο την ευθεία γραμμή. Αν όμως τα βάλω και τα δύο, τότε τα δεδομένα δείχνουν να μην έχουν κάποια γραμμική συσχέτιση, το οποίο δεν το καταλαβαίνω.

Επίσης, λόγω έλειψης δεδομένων για την παραγωγή της Βουλγαρίας, τα δεδομένα υπολογίστηκαν ως GDP - Agriculture - services - industry.

2 Δοκιμές για διαφορετικά βάρη στις παραμέτρους

Ξέρω πως δεν είπαμε να κάνω αυτό, αλλά όταν ξεκίνησα να το κάνω, δεν μπορούσα να σταματήσω τις δοκιμές. Αρχικά. Όλα όσα θα παρουσιαστούν παρακάτω είναι έχοντας ενεργοποιημένη μόνο την κανονικοποίηση και όχι την λογαρίθμηση, γιατί για αυτήν είχα απορία.

Για να κρίνω το πόσο σωστά είναι τα βάρη, διάλεξα να προσπαθώ να μεγιστοποιήσω το r squared της παλινδρόμησης. Εγιναν λοιπόν οι παρακάτω δοκιμές:

Population	GDP pe rCapita	Inflation	Agriculture GDP	Industry GDP	Manufacturing GDP	Total Energy Supply	Verified emissions	r^2
1	1	1	1	1	1	1	1	0.76
4	0	0	0	10	0	3	10	0.93
0	0	0	0	6.8	0	3.2	10	0.9496
100	0	0	50	626	0	400	1000	0.9483
0	0	0	60	570	0	360	981	0.953

Εδώ είναι πολύ εμφανής η τεράστια εξάρτηση από τα verified emissions, το οποίο είναι εντελώς αναμενόμενο. Στην επόμενη δοχιμή, τα verified emissions είγαν αυστηρά τιμή 0.

Population	GDP pe rCapita	Inflation	Agriculture GDP	Industry GDP	Manufacturing GDP	Total Energy Supply	Verified emissions	r^2
1	1	1	1	1	1	1	0	0.70
0	0	0	0	1000	50	500	0	0,913
0	0	0	500	10000	0	2700	0	0,92

Αντίστοιχα, εδώ φαίνεται μία πολύ μεγάλη εξάρτηση από την παράμετρο του ακαθάριστου προϊόντος η οποία αφορά στην βιομηχανία. Αν την αφαιρέσουμε και αυτήν από το παιχνίδι, προσπαθώντας να βρούμε ένα λίγο διαοφρετικό mix βλέπουμε πως:

Population	GDP pe rCapita	Inflation	Agriculture GDP	Industry GDP	Manufacturing GDP	Total Energy Supply	Verified emissions	r^2
1	1	1	1	0	1	1	0	0,63
0.5	0.5	0.5	0.5	0	1	10	0	0.84
0	0	0	0	0	50	1000	0	0.86
0	0	0	0	0	4300	99500	0	0.8645

Η τελευταία δοχιμή για να δούμε αν τα δεδομένα έστω και λίγο βγάζουν κάποιο νόημα είναι αυτήν την οποία βγάζουμε και το total energy supply το οποίο χυριαρχεί ξανά:

Population	GDP pe rCapita	Inflation	Agriculture GDP	Industry GDP	Manufacturing GDP	Total Energy Supply	Verified emissions	r^2
1	1	1	1	0	1	0	0	0.549
200	0	0	0	0	100	0	0	0.767
6640	30	10	350	0	3720	0	0	0.768

3 Για τη 31η Γενάρη

Δεν ξέρω αν έχει νόημα αυτό το pdf να γίνει λίγο σαν ημερολόγιο, αλλά ελπίζω να μην είναι μεγάλο πρόβλημα. Την τελευταία φορα είπαμε:

- 1. Η σύχγριση να γίνει μόνο με μία χώρα.
- 2. Είπε ο χ. Φωτάχης δύο ειχασίες. Πρώτη πως το allocation είναι το αποτέλεσμα ενός optimazation αλγόριθμου. Δεύτερη, πως είναι ένα πολυχριτηριαχό optimazation. Αν αυτά ισχύουν θα ήταν έξυπνο / προφανές να βρούμε, συγχρίνοντάς το με άλλα αντίστοιχα, ποιο πρόβλημα προσπαθεί να λύσει. Στη συνέχεια θα είναι αιτιολογημένο χαι πιο λογικό να προσθέσουμε πάνω σε αυτό οποιοδήποτε επιπλέον constraint θέλουμε.
- 3. "Policy options to impove the effectiveness of the EU emissions trading system: A multi-criteria analysis, stefan clo 2013" ;- Είναι αρχετά γενικό αλλά ίσως είναι χρήσιμο για να δούμε την στοχοθεσία της ΕΕ.
- 4. Για να κρίνουμε μία παλινδρόμηση, καλό είναι να ελέγχονται 3 κριτήρια: r^2 , MSE, MAE
- 5. Είναι λογικό ο πληθωρισμός για αυτά τα δεδομένα να παίζει ελάχιστο ρόλο.

Λοιπόν, το πρώτο βήμα είναι να βάλουμε μία χώρα με την οποία θα συγχρίνουμε όλες τις υπόλοιπες. Επομένως, πλέον δεν χοιτάμε αν για να γίνει η σύγχριση με την μεσαία χώρα πρέπει πρώτα να οριστεί η μεσαία χώρα. Αυτή

προκύπτει ως εξής: Δίνουμε σε κάθε χώρα πόντους ίσους με το άθροισμα των θέσεών της ως προς κάθε feature. Στη συνέχεια διαλέγουμε αυτή με τη μεσαία βαθμολογία. Κάναμε όμως και δοκιμές για άλελς χώρες για σιγουριά. Μία πρώτη εντύπωση είναι πως όσο πιο ακραία μικρή ή ακραία μεγάλη είναι η οικονομία της χώρας, τόσο πιο γραμμική είναι η σχέησ της απόστασης.

2017	r^2
Hungary	0.75
Germany	0.9147
Greece	0.6694
Malta	0.8331

 Σ τη συνέχεια, αν συγκρίνουμε όλες τις χώρες με την Ουγγαρία, τότε προχύπτει αυτό το διάγραμμα. Σ υγκεκριμένα, βλέπουμε:

• Στον x άξονα: Την απόσταση της εκάστοτε χώρας με την Ουγγαρία ως προς το feature set που έχουμε επιλέξει. (GDP per capita, inflation, Population, manufacturing, industry, verified emissions, agriculture, total energy supply)

 Στον υ άξονα: Την απόσταση της εκάστοτε χώρας με την Ουγγαρία ως προς το σύνολο των δωρεάν αδειών που έλαβαν μέσα στο 2017 εταιρείες με έδρα την Ουγγαρία.

• Τα δεδομένα κανονικοποιήθηκαν στο [0,1] πριν τον υπολογισμό των αποστάσεων, αλλά δε λογαριθμίστηκαν.

Hungary year: 2017 with r^2: 0.750646459162087

Figure 1: Hungary 2017

Το οποίο μπορούμε να το αντιπαραθέσουμε με τις 3 άλλες χώρες που είδαμε και πριν.

Παράλληλα μπορούμε να δούμε μέσα στις χρονιές επαναλαμβάνοντας το ίδιο πείραμα για όλες τις χώρες, τι θα προχύψει.

year	slope	mean r_squared	min_r_squared	max_r_squared
2008	0.34	0.65	0.00	0.79
2009	0.32	0.60	0.02	0.78
2010	0.33	0.58	0.04	0.79
2011	0.33	0.62	0.04	0.78
2012	0.34	0.64	0.07	0.82
2013	0.37	0.72	0.51	0.92
2014	0.36	0.71	0.46	0.93
2015	0.37	0.75	0.48	0.94
2016	0.35	0.70	0.50	0.91
2017	0.36	0.73	0.47	0.91
2018	0.37	0.74	0.43	0.92

Συμπεράσματα:

- Η χλίση αυτής της ευθείας δείχνει να παραμένει πολύ σταθερή
- Μέχρι το 2012 (δηλαδή και το τέλος της φάσης II) βλέπουμε πως υπάρχουν χώρες για τις οποίες δεν ισχύει το συμπέρασμα το οποίο είχαμε βγάλει, περί δικαιότητας του συστήματος.
- Μετά τη φάση ΙΙΙ αχόμα υπάρχουν χώρες για τις οποίες η μέθοδος αυτή δε δίνει σημαντικά καλές τιμές.

είναι τόσο μαχριά από όλους τους άλλους που οι υπόλοιποι καταλήγουν να είναι συγχριτικά κοντά. Αυτό το λέω σαν διαισθητική παρατήρηση, δεν ξέρω αν στηρίζεται μαθηματικά.

Το επόμενο βήμα είναι να δούμε το προηογούμενο με τα βέλτιστα βάρη.

4 ΓιΑ την 28η Φεβρουαρίου

Την τελευταία φορά προτείναμε να κάνουμε/δούμε/διαβάσουμε, χωρίς κάποια σειρά:

- 1. Να διαβάσω τον αλγόριθμο του benchmark, πώς προχύπτει αχριβώς.
- 2. Να εξετάσουμε αν τα αποτελέσματα σχετικά με το "ποιες χώρες εξηγούν καλύτερα τα δεδομένα είναι consistant μέσα στον χρόνο.
- 3. Υπάρχει κάποιο clustering μεταξύ των χωρών που εξηγούν καλά ή κακά τις άλλες χώρες; Έχουν κάποια κοινά χαρακτηριστικά όλες αυτές;
- 4. Γιατί είναι η Ολλανδία τόσο διαφορετική;
- 5. Να επαναληφθούν οι δοχιμές της προηγούμενη φοράς, αλλά για τις φάσεις 1,2 (πιθανώς θα προχύψει πρόβλημα με τα δεδομένα για αυτές τις περιόδους, αλλά θα το δούμε)
- 6. Κάνε δοχιμές χαι με μία fictional χώρα η οποία να έχει ως τιμές της μόνο τα medians όλων των χωρών.
- 7. Να γίνει καλύτερα η σύγκριση μεταξύ κάθε δύο παλινδρομήσεων, αξιολογώντας και το r^2 , αλλά και άλλες παραμέτρους, όπως το p-value και MSE/MAE.
- 8. Τι συμβαίνει στα πρώτα χρόνια με την Πολωνία και την Γαλλία;
- 9. Να χρησιμοποιηθεί ggplot για τα δραγράμματα και να έχουν πάντα grid.
- 10. Για διάβασμα: A multi-xriteria decision analysis model for carbon emission quota allocation in China's east coastal areas: Efficiency and Equity.

4.1 Αλλαγή 1

Το πρώτο βήμα που έγινε είναι το να ξαναγίνουν πολλά από τα πειράματα, μόνο που αυτή τη φορά, για να θεωρηθεί μία γραμμική παλινδρόμηση καλύτερη από μία άλλη, θα πρέπει να είναι αληθή τα παρακάτω κριτήρια:

- Εχει μεγαλύτερο r^2 .
- Έχει p-value μικρότερο του 0.05.
- Το Mean Square Error δεν είναι πολύ μεγαλύτερο από την προηγούμενη μέγιστη τιμή (1.5 φορά).

4.2 Μεσαία χώρα ανά τα έτη

Εδώ βλέπουμε την πιο μεσαία χώρα κάθε χρονιάς και το πόσο καλά αποδίδει στο να εξηγεί τις άλλες χώρες. Οι τιμές στο p-value βγήκαν όντως 0, η μεγαλύτερη είχε την τιμή 0.00002581...

Year	R^2	p-value	MSE	Country
2008	0.77	0.00	0.01	Denmark
2009	0.69	0.00	0.01	Denmark
2010	0.57	0.00	0.01	Greece
2011	0.65	0.00	0.02	Denmark
2012	0.75	0.00	0.01	Ireland
2013	0.71	0.00	0.01	Portugal
2014	0.58	0.00	0.02	Hungary
2015	0.77	0.00	0.01	Portugal
2016	0.70	0.00	0.01	Portugal
2017	0.75	0.00	0.01	Hungary
2018	0.74	0.00	0.01	Hungary

4.3 Όλες οι χώρες για όλα τα έτη

	0000	2000	2010	2011	2010	0010	2014	0015	0016	0017	2010	1	MOD
	2008	2009	2010		2012							max p-value	
Austria		0.62	0.66	0.68	0.71	0.74	0.73	0.82	0.72	0.68	0.74	0.00	0.02
Belgium	0.62	0.62	0.62	0.64	0.65	0.67	0.67	0.65	0.57	0.60	0.59	0.00	0.01
Bulgaria	0.75	0.67	0.73	0.67	0.78	0.84	0.85	0.86	0.69	0.81	0.85	0.00	0.01
Cyprus	0.79	0.71	0.69	0.71	0.78	0.67	0.58	0.73	0.72	0.75	0.78	0.00	0.02
Denmark	0.77	0.69	0.61	0.65	0.74	0.71	0.72	0.73	0.72	0.68	0.69	0.00	0.02
Estonia	0.79	0.74	0.67	0.69	0.66	0.64	0.68	0.78	0.68	0.82	0.81	0.00	0.02
Finland	0.71	0.64	0.66	0.73	0.68	0.73	0.77	0.80	0.72	0.69	0.76	0.00	0.01
France	0.08	0.08	0.20	0.19	0.25	0.78	0.79	0.78	0.78	0.73	0.76	0.19	0.01
Germany	0.76	0.75	0.79	0.76	0.80	0.92	0.93	0.94	0.91	0.91	0.92	0.00	0.01
Greece	0.62	0.57	0.57	0.60	0.57	0.51	0.46	0.69	0.65	0.67	0.71	0.00	0.02
Hungary	0.74	0.52	0.58	0.69	0.69	0.67	0.58	0.78	0.73	0.75	0.74	0.00	0.02
Ireland	0.70	0.76	0.47	0.70	0.75	0.73	0.69	0.77	0.73	0.63	0.64	0.00	0.02
Italy	0.63	0.61	0.65	0.64	0.60	0.86	0.82	0.75	0.74	0.72	0.78	0.00	0.01
Latvia	0.76	0.70	0.62	0.66	0.68	0.77	0.74	0.75	0.78	0.84	0.81	0.00	0.02
Lithuania	0.77	0.78	0.63	0.70	0.74	0.79	0.76	0.74	0.74	0.79	0.81	0.00	0.02
Luxembourg	0.79	0.67	0.59	0.77	0.73	0.68	0.65	0.75	0.60	0.74	0.70	0.00	0.02
Malta	0.76	0.65	0.62	0.68	0.78	0.75	0.72	0.82	0.71	0.83	0.82	0.00	0.02
Netherlands	0.51	0.53	0.53	0.44	0.54	0.60	0.60	0.51	0.50	0.47	0.43	0.00	0.01
Poland	0.00	0.02	0.04	0.04	0.07	0.60	0.60	0.48	0.54	0.69	0.69	0.92	0.02
Portugal	0.71	0.66	0.66	0.60	0.59	0.71	0.73	0.77	0.70	0.75	0.77	0.00	0.02
Romania	0.53	0.46	0.42	0.58	0.45	0.60	0.75	0.80	0.64	0.66	0.67	0.00	0.01
Slovenia	0.78	0.59	0.59	0.67	0.70	0.76	0.73	0.77	0.78	0.78	0.81	0.00	0.02
Spain	0.63	0.61	0.63	0.57	0.60	0.84	0.74	0.76	0.72	0.77	0.81	0.00	0.01
Sweden	0.70	0.56	0.61	0.59	0.67	0.74	0.75	0.81	0.75	0.77	0.77	0.00	0.02
United Kingdom				0.78		0.63	0.69	0.66	0.66	0.72	0.71	0.00	0.01

Το οποίο γραφικά φαίνεται και ως εξής:

R^2 values for each country and year

Figure 4: r^2

Το πιο λογικό λοιπόν βήμα είναι το να ελέγξουμε το γιατί αυτές οι δύο χώρες αλλάζουν τόσο πολύ το 2013. Οπότε ας δούμε τα δεδομένα που χρησιμοποιούμε για αυτές:

	2012	2013	2012	2013
GEO	Poland	Poland	France	France
Total_energy_supply	0.3083121	0.3038433	0.8215192	0.8080548
GDPpc	0.1163326	0.1141371	0.3630366	0.3550416
Population	0.4732704	0.4716958	0.8164021	0.8183792
Inflation	0.57990986	0.07563843	0.28530815	0.19301719
Verified_emissions	0.4212666	0.4212431	0.2421093	0.2422275
Agriculture	0.3402106	0.3644831	1.0000000	0.8928814
Industry	0.1558893	0.1482026	0.4982965	0.5053396
Manufacturing	0.1166064	0.1091561	0.3911272	0.3913494

Όπως είναι εμφανές, στα δεδομένα των χωρών δεν υπάρχει κάτι προφανές το οποίο να δικαιολογεί αυτήν την τόσο απότομη αλλαγή. Τα δεδομένα τα βλέπουμε κανονικοποιημένα. Επίσης, για το ποιες χώρες τα πηγαίνουν καλύτερα, μπορούμε ν αφτιάξουμε αυτήν την κατάταξη, η οποία είναι αρκετά αντιπροσωπευτική.

	Country	Average R^2
1	Germany	0.85
2	Bulgaria	0.77
3	Lithuania	0.75
4	Malta	0.74
5	Latvia	0.74
6	Estonia	0.72
7	Slovenia	0.72
8	Cyprus	0.72
9	United Kingdom	0.72
10	Finland	0.72
11	Italy	0.71
12	Austria	0.71
13	Sweden	0.70
14	Denmark	0.70
15	Spain	0.70
16	Luxembourg	0.70
17	Portugal	0.70
18	Ireland	0.69
19	Hungary	0.68
20	Belgium	0.63
21	Greece	0.60
22	Romania	0.60
23	Netherlands	0.52
24	France	0.49
25	Poland	0.34

5 Για τη 14η Μαρτίου

Είπαμε να διορθωθούν τα παρακάτω:

- Οι πίνακες με δεδομένα να έχουν 2 δεκαδικά ψηφία ή όσα είναι αναγκαία, όχι παραπάνω.
- Να προστίθενται γραμμές στις αναφορές ανά 5 στοιχεία, ώστε να είναι ευδιάχριτα τα νούμερα.
- Να φτιαχτεί ένα πινακάκι με descriptive statistics για τα δεδομένα τα οποία έχουμε, να περιλαμβάνει min, max, quantiles, median και boxplot.
- Να γίνει η παραπάνω παρουσίαση για τα αρχικά δεδομένα, αλλά και για τα κανονικοποιημένα δεδομένα.
- Πιθανώς να δούμε την διαφορά που θα είχε η χρήση κάποιου διαφορετικού τρόπου κανονικοποίησης. (Μέχρι τώρα η κανονικοποίηση γίνεται διαιρώντας με την μέγιστη τιμή. Ένας άλλος τρόπος θα ήταν ο $\frac{X-X_{min}}{X_{max}-X_{min}}$)

5.1 Πίνακας r^2 με βέλτιστα επιλεγμένα βάρη

Εδώ φαίνεται ο πίνακας της προηγούμενης εβδομάδας, με την διαφορά ότι κάθε χώρα μπορούσε να επιλέξει το "mix" δεδομένων που θα χρησιμοποιήσει ώστε να είναι βέλτιστο το r^2 . Εδώ βλέπουμε πως η Γαλλία έχει πολύ πιο μικρό πρόβλημα.

Ο αλγόριθμος ο οποίος χρησιμοποιήθηκε για να βγει αυτός ο πίνακας είναι πολύ κακός. Θεωρεί πως υπάρχει κάποια γραμμική συσχέτιση της ικανότητας μίας χώρας να περιγράψει τις άλλες και του βάρους κάθε διαφορετικού δεδομένου (για παράδειγμα, τα verfied emissions έχουν μία γνησίως αύξουσα σχέση με την ικανότητα της χώρας να περιγράψει τις άλλες.) Αυτό δεν ισχύει και ίσως είναι ενδιαφέρον το να δούμε πώς μοιάζει η συνάρτηση αυτή.

Πάντως ο αλγόριθμος αυτός κάνει τα παρακάτω:

- 1. Διαλέγει ένα από τα βάρη των διαφορετικών δεδομένων.
- 2. Δοχιμαστικά "ανεβάζει" και "κατεβάζει" το αντίστοιχο βάρος και βλέπει ποιο οδηγεί σε καλύτερη παλινδρόμηση.
- 3. Επαναλαμβάνει το προηγούμενο βήμα μέχρι να χτηπίσει κάποιο όριο ή να είναι χειρότερες και οι δύο επιλογές.
- 4. Προχωρά στο επόμενο βάρος το οποίο μπορεί να βελτιστοποιήσει.
- 5. Οι παράμετροι ήταν:

• Ελάχιστο βάρος: 0

• Μέγιστο βάρος: 1000

• Βήμα: 10

• Τιμή εκκίνησης: 50

• Υπάρχουν 8 βάρη, τυχαία διαλέγει το βάρος το οποίο θα προσπαθήσει να βελτιστοποιήσει 100 φορές

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	max p-value	max MSE
Austria	0.99	0.98	0.98	0.98	0.99	0.98	0.98	0.98	0.98	0.97	0.97	0.00	0.00
Belgium	0.98	0.98	0.98	0.99	0.98	0.91	0.90	0.91	0.89	0.88	0.89	0.00	0.00
Bulgaria	0.98	0.98	0.98	0.98	0.99	0.97	0.97	0.97	0.97	0.97	0.97	0.00	0.00
Cyprus	0.99	0.98	0.98	0.98	0.99	0.97	0.96	0.97	0.97	0.97	0.97	0.00	0.00
Denmark	0.99	0.98	0.97	0.98	0.99	0.97	0.97	0.97	0.97	0.97	0.96	0.00	0.00
Estonia	0.99	0.98	0.98	0.98	0.98	0.96	0.97	0.97	0.97	0.97	0.97	0.00	0.00
Finland	0.99	0.98	0.98	0.98	0.98	0.97	0.98	0.97	0.98	0.97	0.97	0.00	0.00
France	0.08	0.08	0.97	0.96	0.98	0.98	0.98	0.96	0.98	0.98	0.98	0.19	0.01
Germany	1.00	0.99	0.99	0.99	0.99	0.98	0.98	0.98	0.98	0.97	0.98	0.00	0.00
Greece	0.98	0.98	0.98	0.98	0.98	0.96	0.96	0.97	0.98	0.97	0.97	0.00	0.00
Hungary	0.99	0.97	0.97	0.98	0.98	0.97	0.96	0.97	0.97	0.97	0.97	0.00	0.00
Ireland	0.99	0.98	0.97	0.99	0.99	0.97	0.97	0.97	0.97	0.96	0.96	0.00	0.00
Italy	0.96	0.93	0.97	0.98	0.99	0.96	0.96	0.97	0.97	0.97	0.96	0.00	0.00
Latvia	0.98	0.98	0.97	0.98	0.98	0.97	0.97	0.97	0.98	0.98	0.97	0.00	0.00
Lithuania	0.99	0.98	0.97	0.98	0.99	0.98	0.98	0.98	0.98	0.98	0.97	0.00	0.00
Luxembourg	0.98	0.97	0.97	0.98	0.98	0.96	0.96	0.97	0.97	0.97	0.97	0.00	0.00
Malta	0.99	0.98	0.97	0.98	0.99	0.97	0.97	0.97	0.97	0.98	0.97	0.00	0.00
Netherlands	0.97	0.97	0.97	0.97	0.98	0.81	0.81	0.80	0.79	0.73	0.69	0.00	0.00
Poland	0.00	0.02	0.04	0.04	0.07	0.94	0.94	0.94	0.95	0.95	0.94	0.92	0.02
Portugal	0.99	0.98	0.98	0.98	0.98	0.97	0.98	0.97	0.98	0.97	0.97	0.00	0.00
Romania	0.95	0.95	0.93	0.96	0.96	0.98	0.98	0.98	0.97	0.97	0.97	0.00	0.00
Slovenia	0.99	0.97	0.97	0.98	0.98	0.97	0.97	0.97	0.97	0.97	0.97	0.00	0.00
Spain	0.98	0.97	0.98	0.97	0.98	0.95	0.94	0.95	0.95	0.95	0.95	0.00	0.00
Sweden	0.99	0.98	0.97	0.98	0.99	0.97	0.98	0.98	0.97	0.97	0.97	0.00	0.00
United Kingdom	0.99	0.99	0.99	0.99	0.99	0.92	0.94	0.97	0.98	0.98	0.98	0.00	0.00

 Σ ε αυτόν τον πίνακα τα μέσα βάρη ήταν:

 \bullet Population: 59.63

• GDP per capita: 19.85

 \bullet Inflation: 15.12

• Agriculture: 69.09

• Industry: 407.60

• Manufacturing: 12.69

 $\bullet\,$ Total energy supply: 170.25

• Verified emissions: 849.81

5.2 Οπτικοποίηση δεδομένων

5.2.1 Πληθυσμός

 $\bullet \ \, Source: \ \, https://data.worldbank.org/indicator/SP.POP.TOTL$

 \bullet Year: 2011 - 2021

• Unit: Persons

Για τον πληθυσμό δεν έχω τίποτα εντυπωσιαχό να πω. Τσως είναι χάπως εύχολο να δούμε όλα τα δεδομένα ταυτόχρονα και να παρατηρήσουμε τι αλλαγή επιφέρει η κανονιχοποίηση στα δεδομένα. Όπως φαίνεται στα figure 7 και 8. Τα σχήματα είναι ολόιδια. Η διαφορά είναι πως το ένα έχει διαιρεθεί με το 1000000 ενώ το άλλο έχει διαιρεθεί με το μέγιστο χάθε χρονιάς, οπότε είναι ελαφρώς διαφορετιχές οι σχέσεις μεταξύ των αριθμών χάθε χώρας.

Population	min	25-quantile	median	75-quantile	max	Std
Austria	8.32	8.38	8.48	8.69	8.84	0.19
Belgium	10.71	10.97	11.16	11.30	11.43	0.24
Bulgaria	7.03	7.15	7.27	7.37	7.49	0.15
Cyprus	1.08	1.12	1.14	1.17	1.19	0.03
Denmark	5.49	5.56	5.61	5.71	5.79	0.10
Estonia	1.31	1.32	1.32	1.33	1.34	0.01
Finland	5.31	5.38	5.44	5.49	5.52	0.07
France	64.37	65.19	66.00	66.64	67.10	0.93
Germany	80.27	80.81	81.78	82.23	82.91	0.91
Greece	10.73	10.80	10.97	11.09	11.12	0.15
Hungary	9.78	9.83	9.89	9.99	10.04	0.09
Ireland	4.49	4.57	4.62	4.73	4.87	0.12
Italy	58.83	59.33	60.23	60.58	60.79	0.73
Latvia	1.93	1.97	2.01	2.08	2.18	0.08
Lithuania	2.80	2.89	2.96	3.06	3.20	0.13
Luxembourg	0.49	0.51	0.54	0.58	0.61	0.04
Malta	0.41	0.42	0.43	0.45	0.48	0.03
Netherlands	16.45	16.65	16.80	16.99	17.23	0.25
Poland	37.97	37.98	38.04	38.06	38.15	0.06
Portugal	10.28	10.34	10.46	10.56	10.57	0.12
Romania	19.47	19.76	19.98	20.20	20.54	0.33
Slovenia	2.02	2.05	2.06	2.06	2.07	0.01
Spain	45.95	46.46	46.58	46.68	46.80	0.24
Sweden	9.22	9.41	9.60	9.86	10.18	0.31
United Kingdom	61.81	63.01	64.13	65.36	66.46	1.55

Table 1: Population in millions 2008-2018

Παράλληλα, μπορούμε να παρατηρήσουμε τα δεδομένα κάπως καλύτερα, όπου φαίνεται πως η κανονικοποίηση δεν επηρεάζει καθόλου την σχέση μεταξύ των τιμών:

Population Normalized vs Country

Country

(a)

Population vs Country

Country

(b)

5.2.2 Πληθωρισμός

 $\bullet \ \, Source: \ \, https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG$

• Year: 1960-2021

• Unit: %

Inflation	min	25-quantile	median	75-quantile	max	Std
	0.87					
Austria		1.71	1.85	2.01	2.30	0.45
Belgium	0.53	1.30	1.81	1.90	1.96	0.47
Bulgaria	0.07	1.23	3.32	4.52	8.10	2.45
Cyprus	-1.33	-0.66	1.00	1.65	4.73	1.74
Denmark	0.25	0.58	0.89	1.78	4.13	1.27
Estonia	-0.39	2.00	3.59	4.05	6.80	2.02
Finland	0.09	1.22	1.77	2.59	3.04	1.02
France	0.07	0.55	0.95	1.10	2.37	0.58
Germany	0.65	1.20	1.50	1.87	1.97	0.46
Greece	-2.05	-0.44	-0.18	0.62	4.34	1.85
Hungary	1.32	2.66	2.89	4.11	4.85	1.15
Ireland	-4.62	-0.28	0.71	1.22	7.70	3.10
Italy	0.44	0.92	1.13	1.58	2.40	0.54
Latvia	-9.67	0.49	1.92	3.77	11.65	5.17
Lithuania	-3.30	1.06	2.53	3.88	9.71	3.30
Luxembourg	-1.11	1.94	2.28	3.36	6.61	1.99
Malta	1.12	2.06	2.22	2.75	4.22	0.82
Netherlands	0.19	0.35	0.94	1.36	2.44	0.79
Poland	0.30	0.75	1.65	2.82	3.89	1.34
Portugal	-0.39	0.67	1.51	1.78	2.25	0.90
Romania	1.80	3.33	3.77	4.38	16.02	3.88
Slovenia	-1.03	0.68	1.04	1.86	4.47	1.49
Spain	-0.22	0.06	0.32	0.90	2.25	0.76
Sweden	0.93	1.04	1.74	2.25	3.24	0.75
United Kingdom	0.51	1.60	1.82	2.03	3.23	0.65

Table 2: Πληθωρισμός μεταξύ 2008-2018

Εδώ βέβαια ίσως έχει σημασία να δούμε λίγο τι συμβαίνει στα δεδομένα με την κανονικοποίηση. Ούτε εδώ αλλάζουν σημαντικά οι σχέσεις μεταξύ τους.

Inflation vs Country

Country

(a)

Normalized Inflation vs Country

Country

(b)

5.2.3 Total energy Supply

 $\bullet \ \ Source: \ https://ec.europa.eu/eurostat/databrowser/view/nrg_bal_s_1/default/table?lang=en$

 $\bullet~$ Year: 2011 - 2020

 \bullet Unit: Thousand tonnes of oil equivalent

	min	25-quantile	median	75-quantile	max	Std
Austria	32011.29	33031.17	33177.75	33562.30	34166.28	660.54
Belgium	52238.38	53015.79	55039.87	55272.03	59313.06	2255.37
Bulgaria	16923.38	17726.43	18234.79	18722.35	19823.90	813.92
Cyprus	1955.96	2121.56	2262.44	2440.09	2616.93	221.87
Denmark	16374.16	16838.22	17383.65	18304.45	19558.31	1128.72
Estonia	4399.62	5378.58	5648.48	5846.32	5978.41	496.84
Finland	32022.99	33165.71	33582.86	34469.06	36251.74	1195.84
France	248383.41	250072.60	256292.91	259845.13	266394.54	6206.33
Germany	305036.83	310746.75	313107.91	318940.66	335474.27	9403.81
Greece	22748.62	23240.71	23407.97	27231.17	30404.91	2854.85
Hungary	23652.51	24816.51	25609.63	26395.50	26900.70	1096.99
Ireland	12776.63	13293.33	13625.33	14225.86	15022.14	727.58
Italy	146769.88	152859.01	156093.49	168758.58	181736.20	10969.89
Latvia	4259.46	4307.46	4407.65	4465.42	4640.00	129.86
Lithuania	6946.51	7067.95	7290.53	7647.47	9553.50	819.46
Luxembourg	3682.05	3785.50	3948.40	4127.44	4212.94	195.48
Malta	594.33	687.68	780.25	834.21	881.48	97.20
Netherlands	71379.09	73882.75	75619.51	77123.41	82743.78	3132.34
Poland	93773.11	96236.75	97971.41	101131.11	108970.23	4555.35
Portugal	21439.29	22060.46	22651.14	23433.93	24716.20	1092.37
Romania	31378.66	31668.07	33454.78	34845.41	39485.27	2432.37
Slovenia	6473.51	6722.90	6875.85	7127.16	7982.69	419.35
Spain	114522.76	119335.11	125486.61	126434.02	138166.04	6411.76
Sweden	44092.81	48432.69	49103.98	49874.22	50118.89	1857.82
United Kingdom	174024.39	177000.66	186386.17	191789.70	208268.88	11384.30

Table 3: Total energy supply μεταξύ 2008-2018

5.2.4 GDP per capita

 $\bullet \ \, Source: \ \, https://data.worldbank.org/indicator/NY.GDP.PCAP.CD$

 $\bullet~$ Year: 1960 - 2021

• Unit: US\$

	min	25-quantile	median	75-quantile	max	Std
Austria	44.20	47.17	48.56	51.46	51.92	2.75
Belgium	41.01	44.19	44.76	47.48	48.30	2.43
Bulgaria	6.85	7.17	7.57	7.88	9.45	0.74
Cyprus	23.41	26.89	28.91	31.57	35.40	3.57
Denmark	53.25	57.83	58.51	61.67	64.32	3.39
Estonia	14.66	17.40	18.20	19.66	23.06	2.45
Finland	42.80	46.46	47.71	50.16	53.77	3.25
France	36.65	39.73	41.59	42.84	45.52	2.75
Germany	41.10	41.89	44.65	46.50	48.02	2.61
Greece	17.92	19.17	21.79	26.10	32.13	4.84
Hungary	12.72	13.09	13.72	14.46	16.43	1.21
Ireland	48.66	51.83	55.60	62.44	79.11	9.57
Italy	30.24	33.51	35.56	36.63	40.94	3.17
Latvia	11.42	13.56	14.33	15.72	17.87	1.87
Lithuania	11.82	14.32	14.94	16.14	19.19	2.11
Luxembourg	105.46	109.81	112.58	119.51	123.68	6.14
Malta	21.08	22.37	24.77	26.19	31.57	3.23
Netherlands	45.19	49.37	52.20	52.97	57.88	3.66
Poland	11.53	12.60	13.70	13.94	15.47	1.08
Portugal	19.25	21.03	22.10	23.18	24.95	1.68
Romania	8.21	8.76	9.55	10.24	12.40	1.23
Slovenia	20.89	23.07	23.53	24.96	27.60	1.92
Spain	25.74	28.25	29.50	31.11	35.51	2.74
Sweden	46.95	52.42	54.59	59.03	61.13	4.45
United Kingdom	38.95	41.18	42.69	44.56	47.79	2.92

Table 4: GDP per capita in thousands USD

5.2.5 Verified emissions

• Source: EU ETS Database

 \bullet Table: eutl_compliance

• Column: verified

Από όποια μονάδα και να ήταν, εδώ πάνε 1.000.000 φορές κάτω:

	min	25-quantile	median	75-quantile	max	Std
Austria	27.36	29.61	30.51	30.87	32.08	1.27
Belgium	45.03	45.17	45.99	46.29	55.46	3.16
Bulgaria	31.28	33.24	34.57	35.95	40.00	2.63
Cyprus	4.19	4.58	4.61	4.92	5.58	0.41
Denmark	15.50	17.05	19.46	23.71	26.55	4.05
Estonia	10.38	13.50	13.89	14.76	16.00	1.55
Finland	26.18	27.81	30.68	34.72	41.30	4.74
France	101.40	104.86	110.90	114.46	124.13	7.10
Germany	428.29	448.66	462.35	469.31	489.86	18.24
Greece	47.34	50.74	58.84	61.09	69.85	7.10
Hungary	20.08	21.23	22.40	22.61	27.24	1.91
Ireland	15.77	18.88	23.63	27.08	28.53	4.72
Italy	148.37	157.09	166.78	187.42	220.68	21.98
Latvia	2.43	2.59	2.74	2.96	3.24	0.26
Lithuania	5.61	5.92	6.23	6.65	7.56	0.59
Luxembourg	1.73	1.83	2.06	2.17	3.62	0.52
Malta	0.84	1.09	1.89	1.92	2.28	0.51
Netherlands	79.97	82.27	89.14	92.79	96.47	6.31
Poland	191.17	198.28	199.73	203.07	206.35	4.12
Portugal	24.17	25.64	26.99	28.75	31.42	2.23
Romania	40.53	42.21	43.07	48.72	63.82	6.83
Slovenia	6.18	6.60	7.45	8.03	8.86	0.91
Spain	121.48	128.26	132.69	140.52	163.46	11.31
Sweden	17.49	21.05	22.51	22.63	22.86	1.71
United Kingdom	141.76	172.90	220.88	236.57	265.06	42.22

Table 5: Verified emissions

Εδώ επειδή δεν φαίνεται τίποτα, θα βάλω \log απλά για να μπορούμε να διακρίνουμε κάτι, χωρίς κάποια κανονικοποίηση.

Verified_emissions vs Country

Country

(a)

Log Verified_emissions vs Country

Country

(b)

5.2.6 Agriculture

 \bullet Source: http://wdi.worldbank.org/table/4.2

• Year: 2020

 \bullet Unit: Argicultural in Billions USD.

	min	25-quantile	median	75-quantile	max	Std
Austria	4.32	4.79	5.14	5.46	6.05	0.55
Belgium	2.99	3.22	3.39	3.62	3.88	0.27
Bulgaria	2.04	2.20	2.39	2.56	3.20	0.33
Cyprus	0.37	0.44	0.49	0.52	0.59	0.07
Denmark	2.68	3.02	3.87	4.49	5.41	0.91
Estonia	0.49	0.63	0.65	0.80	0.85	0.13
Finland	5.29	5.82	6.03	6.41	6.59	0.43
France	35.54	39.60	42.43	44.42	47.28	3.91
Germany	22.99	25.78	29.91	32.78	35.20	4.54
Greece	6.79	7.71	8.33	8.85	9.99	0.90
Hungary	4.01	4.87	5.31	5.51	5.67	0.60
Ireland	1.32	2.28	2.61	3.06	3.96	0.71
Italy	36.20	38.32	40.70	43.21	45.94	3.17
Latvia	0.85	0.96	0.97	1.07	1.24	0.11
Lithuania	0.95	1.38	1.55	1.66	1.71	0.24
Luxembourg	0.13	0.14	0.15	0.17	0.20	0.02
Malta	0.09	0.10	0.11	0.11	0.13	0.01
Netherlands	13.20	13.89	15.07	15.49	15.71	0.92
Poland	11.25	13.13	14.22	15.96	16.76	1.91
Portugal	4.16	4.38	4.64	4.77	5.17	0.32
Romania	7.87	8.47	9.88	10.88	13.51	1.74
Slovenia	0.89	0.91	0.92	1.01	1.22	0.10
Spain	31.90	34.18	34.84	36.07	39.19	2.23
Sweden	6.27	7.53	8.11	8.47	9.59	0.87
United Kingdom	14.74	16.11	17.05	18.33	22.84	2.28

Table 6: Agriculture

5.2.7 Industry

• Source: http://wdi.worldbank.org/table/4.2

• Year: 2020

• Unit: Industry in Billions USD

Austria 96.16 102.24 106.03 111.06 116.48 6.50 Belgium 90.94 98.13 100.59 104.53 111.72 6.42 Bulgaria 12.04 13.16 13.62 14.01 14.87 0.87 Cyprus 2.03 2.45 2.95 3.63 4.98 0.90 Denmark 60.50 64.40 68.89 69.76 79.84 5.40 Estonia 4.61 5.63 5.97 6.42 7.36 0.81 Finland 54.66 61.38 63.49 65.70 84.47 7.78 France 431.14 459.74 479.72 506.08 551.30 36.97 Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland <							
Belgium 90.94 98.13 100.59 104.53 111.72 6.42 Bulgaria 12.04 13.16 13.62 14.01 14.87 0.87 Cyprus 2.03 2.45 2.95 3.63 4.98 0.90 Denmark 60.50 64.40 68.89 69.76 79.84 5.40 Estonia 4.61 5.63 5.97 6.42 7.36 0.81 Finland 54.66 61.38 63.49 65.70 84.47 7.78 France 431.14 459.74 479.72 506.08 551.30 36.97 Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy		min	25-quantile	median	75-quantile		Std
Bulgaria 12.04 13.16 13.62 14.01 14.87 0.87 Cyprus 2.03 2.45 2.95 3.63 4.98 0.90 Denmark 60.50 64.40 68.89 69.76 79.84 5.40 Estonia 4.61 5.63 5.97 6.42 7.36 0.81 Finland 54.66 61.38 63.49 65.70 84.47 7.78 France 431.14 459.74 479.72 506.08 551.30 36.97 Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia <t< td=""><td>Austria</td><td>96.16</td><td>102.24</td><td>106.03</td><td>111.06</td><td>116.48</td><td>6.50</td></t<>	Austria	96.16	102.24	106.03	111.06	116.48	6.50
Cyprus 2.03 2.45 2.95 3.63 4.98 0.90 Denmark 60.50 64.40 68.89 69.76 79.84 5.40 Estonia 4.61 5.63 5.97 6.42 7.36 0.81 Finland 54.66 61.38 63.49 65.70 84.47 7.78 France 431.14 459.74 479.72 506.08 551.30 36.97 Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.	Belgium	90.94	98.13	100.59	104.53	111.72	6.42
Denmark 60.50 64.40 68.89 69.76 79.84 5.40 Estonia 4.61 5.63 5.97 6.42 7.36 0.81 Finland 54.66 61.38 63.49 65.70 84.47 7.78 France 431.14 459.74 479.72 506.08 551.30 36.97 Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg	Bulgaria	12.04	13.16	13.62	14.01	14.87	0.87
Estonia 4.61 5.63 5.97 6.42 7.36 0.81 Finland 54.66 61.38 63.49 65.70 84.47 7.78 France 431.14 459.74 479.72 506.08 551.30 36.97 Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1	Cyprus	2.03	2.45	2.95	3.63	4.98	0.90
Finland 54.66 61.38 63.49 65.70 84.47 7.78 France 431.14 459.74 479.72 506.08 551.30 36.97 Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands <	Denmark	60.50	64.40	68.89	69.76	79.84	5.40
France 431.14 459.74 479.72 506.08 551.30 36.97 Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Portugal	Estonia	4.61	5.63	5.97	6.42	7.36	0.81
Germany 843.80 934.68 1000.01 1014.25 1085.27 69.42 Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal	Finland	54.66	61.38	63.49	65.70	84.47	7.78
Greece 27.44 28.64 35.83 42.48 55.73 9.66 Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania <td< td=""><td>France</td><td>431.14</td><td>459.74</td><td>479.72</td><td>506.08</td><td>551.30</td><td>36.97</td></td<>	France	431.14	459.74	479.72	506.08	551.30	36.97
Hungary 32.23 32.95 33.99 36.13 40.79 2.98 Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia <	Germany	843.80	934.68	1000.01	1014.25	1085.27	69.42
Ireland 51.79 57.18 62.99 110.85 141.75 32.57 Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain <td< td=""><td>Greece</td><td>27.44</td><td>28.64</td><td>35.83</td><td>42.48</td><td>55.73</td><td>9.66</td></td<>	Greece	27.44	28.64	35.83	42.48	55.73	9.66
Italy 383.06 431.67 449.66 474.26 568.48 50.60 Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden <	Hungary	32.23	32.95	33.99	36.13	40.79	2.98
Latvia 4.90 5.37 5.81 6.01 7.81 0.78 Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Ireland	51.79	57.18	62.99	110.85	141.75	32.57
Lithuania 9.38 11.12 12.22 13.05 13.97 1.52 Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Italy	383.06	431.67	449.66	474.26	568.48	50.60
Luxembourg 5.99 6.42 6.93 7.48 7.80 0.62 Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Latvia	4.90	5.37	5.81	6.01	7.81	0.78
Malta 1.36 1.48 1.54 1.59 1.84 0.14 Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Lithuania	9.38	11.12	12.22	13.05	13.97	1.52
Netherlands 138.29 155.19 166.89 173.29 204.75 19.28 Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Luxembourg	5.99	6.42	6.93	7.48	7.80	0.62
Poland 129.76 146.41 150.02 156.35 169.32 10.65 Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Malta	1.36	1.48	1.54	1.59	1.84	0.14
Portugal 38.81 41.82 43.54 47.46 53.70 4.42 Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Netherlands	138.29	155.19	166.89	173.29	204.75	19.28
Romania 54.81 61.02 63.42 67.76 78.81 7.80 Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Poland	129.76	146.41	150.02	156.35	169.32	10.65
Slovenia 12.08 12.77 13.77 13.95 16.62 1.31 Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Portugal	38.81	41.82	43.54	47.46	53.70	4.42
Spain 240.11 268.98 278.66 328.16 429.02 57.54 Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Romania	54.81	61.02	63.42	67.76	78.81	7.80
Sweden 97.80 114.87 122.21 126.94 135.67 10.52	Slovenia	12.08	12.77	13.77	13.95	16.62	1.31
	Spain	240.11	268.98	278.66	328.16	429.02	57.54
United Kingdom 448.57 473.78 494.10 522.75 583.44 40.55	Sweden	97.80	114.87	122.21	126.94	135.67	10.52
Cinical Timescom 110.01 110.10 022.10 000.11 10.00	United Kingdom	448.57	473.78	494.10	522.75	583.44	40.55

Table 7: Industry

5.2.8 Manufacturing

• Source: http://wdi.worldbank.org/table/4.2

• Year: 2020

• Unit: Manufacturing in Billions USD.

Εδώ φαίνεται εμφανώς πως έχω κάνει ένα τεράστιο λάθος. Λείπουν οι τιμές για το Manufacturing στην Βουλγαρία και νόμιζα πως το είχα βάλει να παίρνει έναν μέσο όρο και πως αυτό δεν θα άλλαζε σημαντικά τα αποτελέσματα. Όμως είναι εμφανές πως η Βουλγαρία όχι μόνο δεν έπαιρνε τις τιμές που ήθελα, αλλά και να συνέβαινε αυτό είναι πολύ πιθανό και πάλι να μην ήταν αρκετά λογικό το αποτέλεσμα. Η Βουλγαρία μάλλον θα πρέπει να αφαιρεθεί από τις δοκιμές, μαζί με χώρες όπως η Σλοβακία.

	min	25-quantile	median	75-quantile	max	Std
Austria	63.75	66.61	70.28	72.47	76.57	4.24
Belgium	58.69	62.46	64.21	66.70	72.39	4.02
Bulgaria	-470.74	-453.31	-432.37	-420.07	-399.33	22.79
Cyprus	0.85	0.95	1.12	1.33	1.52	0.23
Denmark	35.21	37.47	40.47	41.64	46.70	3.45
Estonia	2.41	3.20	3.35	3.56	4.13	0.47
Finland	34.44	38.11	39.73	42.29	59.40	6.76
France	254.30	268.11	278.31	292.38	325.40	20.87
Germany	603.23	697.07	743.97	755.59	796.43	56.32
Greece	15.64	16.78	18.19	22.95	30.27	4.63
Hungary	22.45	24.56	25.39	27.39	29.71	2.23
Ireland	43.26	47.00	49.10	100.06	126.39	31.76
Italy	264.39	290.81	301.69	308.97	372.63	28.24
Latvia	2.57	2.85	3.20	3.32	3.63	0.32
Lithuania	5.65	7.20	8.00	8.15	8.91	0.96
Luxembourg	2.53	2.88	3.14	3.41	3.93	0.42
Malta	0.83	0.96	1.00	1.06	1.23	0.11
Netherlands	82.70	89.39	91.54	95.12	109.07	7.43
Poland	71.81	82.05	85.70	88.28	98.64	7.14
Portugal	24.20	25.62	27.24	27.71	31.35	2.12
Romania	35.95	37.70	39.72	44.53	49.91	4.70
Slovenia	8.43	8.69	9.28	9.90	11.00	0.87
Spain	135.09	148.07	155.06	166.17	207.17	19.84
Sweden	60.02	69.65	72.99	77.49	83.80	6.77
United Kingdom	218.33	242.14	251.42	268.16	286.56	20.19

Table 8: Manufacturing

Figure 9

6 Για την 21η Μαρτίου

Είχαμε πει, να βάλουμε κάποια πρόταση για δουλειά, ώστε να αρχίσει να ετοιμάζεται το paper. Αυτά που έπρεπε να κάνω εγώ είναι:

- Να δούμε αν τα free ήταν το πρόβλημα για την πολωνία και την Γαλλία για το 2012 και το 2013.
- Να βρεθούν βάρη τα οποία να λειτουργούν για όλους καλά. Χωρίς να αλλάζουν κάθε φορά
- Διάβασμα για Nass Wellfare
- Να αναφερθούν ελλείψεις στα data

6.1 Γιατί η Πολωνία και η Γαλλία αποτυγχάνουν να εξηγήσουν τις άλλες πριν το 2012;

Τελικά η απάντηση ήταν απίστευτα απλή. Κάτι πάει λάθος με τις δωρεάν άδειες, ή απλά έπαιρναν υπέρβολικά πολλές στην προηγούμενη φάση. όλες οι χώρες έχασαν πολλές δωρεάν άδειες από το 2012 στο 2013. Αλλά ας δούμε τι ποσοστό έχασαν και όλα θα βγάλουν νόημα. Spoiler, δεν βγάζει. Όχι μόνο δεν είναι παό τις πιο "ακραίες", αλλά μάλιστα είναι και σχετικά στην μέση.:

Country	2012 free in Millions	2013 free in Millions	Percentage drop in $\%$
Malta	2.37	0.18	-92.52
Cyprus	6.70	1.15	-82.89
Estonia	14.30	3.11	-78.25
Greece	65.92	14.50	-78.01
Bulgaria	43.08	10.68	-75.22
United Kingdom	283.33	72.30	-74.48
Slovenia	8.31	2.32	-72.04
Poland	213.47	63.63	-70.20
Luxembourg	4.80	1.45	-69.79
Romania	75.61	24.06	-68.18
Portugal	35.04	12.37	-64.69
Ireland	28.76	10.54	-63.36
Germany	467.32	173.23	-62.93
Spain	163.59	67.11	-58.98
Italy	197.62	87.81	-55.56
Hungary	25.79	12.24	-52.54
Denmark	25.17	12.65	-49.72
Netherlands	99.37	50.24	-49.44
Latvia	5.30	2.77	-47.83
France	159.96	84.38	-47.25
Finland	40.28	23.05	-42.77
Belgium	61.61	37.56	-39.04
Austria	35.38	22.88	-35.33
Lithuania	8.43	6.55	-22.33
Sweden	25.72	30.21	17.47

Άρα καμία απάντηση ακόμα...

6.2 Τα βέλτιστα βάρη για όλα τα σενάρια

Το πρώτο βήμα είναι λογικά να δοκιμαστούν τα πρώτα τα βάτη που προέκυψαν ως μέσος όρος όλων των βέλτιστων βαρών. Σε δεύτερο βήμα, πιθανότατα έχει νόημα να δοκιμάσουμε να μεγιστοποιήσουμε το γινόμενο όλων.

 \bullet Population: 59.63

• GDP per capita: 19.85

• Inflation: 15.12

• Agriculture: 69.09

 \bullet Industry: 407.60

• Manufacturing: 12.69

 $\bullet\,$ Total energy supply: 170.25

• Verified emissions: 849.81

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	max p-value	
Austria	0.94	0.93	0.94	0.94	0.95	0.97	0.97	0.97	0.96	0.95	0.95	0.00	0.00
Belgium	0.91	0.90	0.93	0.93	0.93	0.86	0.83	0.82	0.80	0.78	0.78	0.00	0.00
Bulgaria	0.92	0.91	0.93	0.92	0.94	0.96	0.96	0.97	0.95	0.96	0.96	0.00	0.00
Cyprus	0.95	0.94	0.94	0.95	0.96	0.95	0.94	0.96	0.96	0.96	0.96	0.00	0.00
Denmark	0.95	0.94	0.93	0.94	0.96	0.96	0.96	0.96	0.96	0.95	0.95	0.00	0.00
Estonia	0.94	0.94	0.94	0.94	0.95	0.94	0.95	0.96	0.95	0.96	0.96	0.00	0.00
Finland	0.94	0.93	0.94	0.94	0.95	0.96	0.97	0.96	0.97	0.96	0.95	0.00	0.00
France	0.58	0.53	0.73	0.77	0.83	0.90	0.86	0.85	0.85	0.90	0.89	0.00	0.01
Germany	0.92	0.92	0.93	0.94	0.95	0.97	0.96	0.95	0.95	0.94	0.93	0.00	0.00
Greece	0.87	0.88	0.89	0.89	0.91	0.94	0.94	0.96	0.97	0.96	0.96	0.00	0.00
Hungary	0.94	0.92	0.93	0.94	0.95	0.96	0.95	0.97	0.96	0.96	0.96	0.00	0.00
Ireland	0.95	0.94	0.93	0.95	0.95	0.96	0.96	0.95	0.95	0.94	0.94	0.00	0.00
Italy	0.83	0.80	0.87	0.91	0.93	0.88	0.90	0.94	0.94	0.94	0.93	0.00	0.00
Latvia	0.94	0.94	0.94	0.94	0.95	0.96	0.96	0.96	0.96	0.97	0.96	0.00	0.00
Lithuania	0.94	0.94	0.94	0.94	0.95	0.97	0.97	0.97	0.97	0.97	0.96	0.00	0.00
Luxembourg	0.94	0.93	0.93	0.94	0.95	0.94	0.94	0.95	0.94	0.95	0.95	0.00	0.00
Malta	0.94	0.93	0.94	0.94	0.96	0.96	0.96	0.96	0.96	0.97	0.96	0.00	0.00
Netherlands	0.88	0.87	0.88	0.86	0.88	0.76	0.74	0.71	0.72	0.67	0.62	0.00	0.01
Poland	0.19	0.21	0.28	0.35	0.45	0.81	0.86	0.89	0.93	0.93	0.92	0.04	0.01
Portugal	0.94	0.93	0.94	0.94	0.95	0.96	0.97	0.97	0.96	0.96	0.96	0.00	0.00
Romania	0.84	0.82	0.83	0.86	0.87	0.96	0.98	0.98	0.96	0.95	0.96	0.00	0.00
Slovenia	0.95	0.93	0.93	0.94	0.95	0.96	0.96	0.96	0.96	0.96	0.96	0.00	0.00
Spain	0.93	0.92	0.89	0.88	0.90	0.80	0.87	0.90	0.88	0.92	0.90	0.00	0.00
Sweden	0.94	0.93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.93	0.93	0.00	0.00
United Kingdom	0.92	0.94	0.95	0.94	0.94	0.84	0.89	0.89	0.96	0.94	0.94	0.00	0.00

Εδώ πλέον γίνεται πολύ αμφισβητήσιμο το αν χρειάζεται να ψάξουμε για κάτι καλύτερο. Με εξαίρεση την Πολωνία και την Γαλλία, οι υπόλοιποι δείχνουν να τα πηγαίνουν πολύ καλά.

7 Για την 28η Μαρτίου

Είπαμε να γίνουν τα παρακάτω:

- Να δούμε αν η Πολωνία είναι τόσο ανώμαλη, εξαιτίας του κανόνα 10c.
- Να προστεθούν στα features ξεχωριστά η πράσινη ενέργεια και ξεχωριστά η υπόλοιπη ενέργεια.
- Να οριστεί και να προσομοιωθεί το παρακάτω πρόβλημα:
 - $-\max \sum u_i(x_i) * GDP_i$
 - $-\sum x_i \leq \text{Cap.}$
 - Όπου x_i είναι το allocation στην χώρα i.
 - Η u_i είναι ξεχωριστή για κάθε χώρα και δηλώνει την ικανοποίηση που λαμβάνει η αντίστοιχη χώρα με το αντίστοιχο allocation.
- Πιθανότατα η u_i θα μπορούσε να είναι το energy intensity.
- Μετά μπορούν να προστεθούν επιπλέον constrains
- Να προστεθεί το energy Intensity στα features της κάθε χώρας.

7.1 Τι όντως έκανα

- Δεν υλοποίησα κανένα κομμάτι του κώδικά.
- Το power intensity δεν είναι απλώς μία τιμή.

7.2 PPS (Purchasing Power Standards)

Το PPS είναι ένα εικκονικό νόμισμα. Το οποίο προσπαθεί να πετύχει να είναι αποπληθωρισμένο, ενώ ταυτόχρονα προσπαθεί να αφαιρέσει διαφορές λόγω άλλης αγοραστικής δύναμης.

7.2.1 Χρήση PPS

Το PPS χρησιμοποιείται προχειμένου να κάνουμε συγχρείσεις μεταξύ διαφορετικών χωρών. Το βρίσκουμε συνήθως στα dataset της eurostat ως MPPS (Million Purchasing Power Standarts).

7.2.2 Υπολογισμός

Ένα PPS ισοδυναμεί με ένα καλάθι στην εκάστοτε χώρα. Το καλάθι αυτό έχει ένα μείγμα από διάφορα προϊόντα και υπηρεσίες. Το κόστων αυτών συμπεριλαμβωάνεται σε έναν σταθμισμένο μέσο, εκ του οποίου προκύπτει μία τιμή, η οποία είναι το κόστος του καλαθιού. Στην συνέχεια, μπορούμε να χρησιμοποιήσουμε αυτήν την τιμή για να κανονικοποιήσουμε διαφορετικές "αξίες" μεταξύ διαφορετικών χωρών ώστε να μπορούμε να κάνουμε συγκρίσεις με βάση την αγοραστική δύναμη και όχι απλά ευρώ.

7.3 Power Intensity

Energy intensity can be considered as an approximation of the energy efficiency of a country's economy, and shows the amount of energy needed to produce a unit of GDP. There are various reasons for observed improvements in energy intensity: a general shift from industry towards a service-based economy in Europe, a shift within industry to less energy-intensive activities and production methods, the closure of inefficient units, and more energy-efficient appliances.

Το Power Intensoty υπολογίζεται ως

$$Power_Instenstity = \frac{Units_of_Energy}{Units_of_GDP}$$

Αυτό λοιπόν μπορούμε να το υπολογίσουμε με δύο διαφορετικούς τρόπους.

- Chain Linked Volumes. Χρησιμοποιείται για να κάνουμε συγκερίσεις για μία χώρα σε βάθος χρόνου. Εδώ
 είναι σημαντικό το να σημειωθεί πως είναι πιθανό να μην αρκεί μία τιμή για να κάνουμε την δουλειά μας. Οι
 τιμές προκύπτουν σε επίπεδο έτους. Όμως οι οικονομικές αλλαγές στις χώρες (όπως αλλαγές σε φορολογίες)
 δημιουργούν μεγάλες ανωμαλίες στα δεδομένα, επομένως είναι καλύτερο να χρησιμοποιούνται περισσότερα
 από 4 data points.
- Η άλλη επιλογή είναι το να χρησιμοποιήσουμε τα δεςδομένα σε PPS, αυτή η επιλογή μας επιτρέπει να βγάλουμε συμπεράσματα μεταξύ χωρών.

7.4 Για την επόμενη φορά

7.4.1 Σε δεύτερο χρόνο

• Ορίζουμε ένα πρόβλημα βελτιστοποίησης. Χρησιμοποιούμε το power instensity ως το εργαλείο το οποίο θα μας εξηγεί ποια χώρα είναι σε θέση να διαχειρσιτεί με πιο αποτελεσματικό τρόπου τους ρίπους. Μας ενδιαφέρει το power intensity όπως αυτό βρίσκεται στην eurostat στο NRG_IND_EI, από όπου θα αναζητήσουμε την έτοιμη τιμή PPS.

Στην συνέχεια θα υλοποιηθούν τα παρακάτω:

- Vanila version. Θα είναι λογικά ίδιο με αυτό που είχαμε κάνει στο παρελθόν, μόνο που εκεί αντί για το power intensity είχαμε τον λόγο $\frac{GDP}{verified}.$
- Διάφορα constrains και συνδυασμοί αυτών.
- Να πλησιάσουμε να βρούμε συνδυασμό από περιορισμούς οι οποίοι να προσεγγίζει τις τιμές που προκύπτουν από το EU ETS.
- Διάβασμα το "Cap and Trade and Emission Clustering: A spatial-temporal analysis of the EU ETSheme".

Ορίζουμε ένα πρόβλημα βελτιστοποίησης. Χρησιμοποιούμε το power instensity ως το εργαλείο το οποίο θα μας εξηγεί ποια χώρα είναι σε θέση να διαχειρσιτεί με πιο αποτελεσματικό τρόπου τους ρίπους. Μας ενδιαφέρει το power intensity όπως αυτό βρίσκεται στην eurostat στο NRG_IND_EI, από όπου θα αναζητήσουμε την έτοιμη τιμή PPS.

Στην συνέχεια θα υλοποιηθούν τα παρακάτω:

- Vanila version. Θα είναι λογικά ίδιο με αυτό που είχαμε κάνει στο παρελθόν, μόνο που εκεί αντί για το power intensity είχαμε τον λόγο $\frac{GDP}{verified}$.
- Διάφορα constrains και συνδυασμοί αυτών.
- Να πλησιάσουμε να βρούμε συνδυασμό από περιορισμούς οι οποίοι να προσεγγίζει τις τιμές που προκύπτουν από το EU ETS.

7.4.2 Άμεσα, για το τετρασέλιδο

Για κάθε χώρα έχουμε έναν συνδυασμό από features. Με βάση αυτά τα δεδομένα μπορούμε να τις ομαδοποιήσουμε σε 3 ή 4 κατηγορίες οι οποίες θα έχουν κοινά χαρακτηριστικά. Ύστερα, να απαντηθούν τα παρακάτω ερωτήματα:

- Να προστεθούν και άλλα features για τις χώρες αυτές, όπως είναι το power intensity, το ποσοστό της πράσινης ενέργειας που παράγουν.
- Οι χώρες οι οποίες είμαι μέσα στο ίδιο cluster μπορούν να εξηγήσουν καλά τις υπόλοιπες του cluster τους;
- Μήπως χώρες διαφορετικών χωρών μπορούν να εξηγήσουν καλύτερη η μία την άλλη; (Υπόθεση Κώστα, μπορεί να ελεγχθεί τρέχοντας το ίδιο πρόβλημα, αλλά αφιαρώντας όλες τις άλλες χώρες του ίδιου cluster)
- Αν πάρω την χώρα που δρα ως κέντρο σε κάθε cluster τι προκύπτει;
- Μήπως μέσα στο ίδιο cluster παρατηρείται κάποια απλή σχέση των free με κάποιον από τα features ή με κάποιο συνδυασμό αυτών;

8 Για τις 4 Απριλίου

Καλό μήνα!

8.1 Συσταδοποίηση (έπρεπε...)

8.1.1 Πλήθος συστάδων

Στην R υπάρχει ένα πολύ όμορφο εργαλείο το οποίο προτείνει τον αριθμό των βέλτιστων clusters με 30 διαφορετιχούς δείχτες (elbow, silouette χλπ). Με βάση τα δεδομένα μας, νομίζω πως οι 3 συστάδες είναι η βέλτιστη λύση.

- * Among all indices:
- * 6 proposed 2 as the best number of clusters
- * 9 proposed 3 as the best number of clusters
- * 1 proposed 4 as the best number of clusters
- * 1 proposed 5 as the best number of clusters
- * 5 proposed 9 as the best number of clusters
- * 2 proposed 10 as the best number of clusters

* According to the majority rule, the best number of clusters is 3 Συγκεκριμένα, για όλες τις διαφορετικές μεθόδους προκύπτουν τα παρακάτω:

^{*****} Conclusion *****

Clusters	KL	СН	Hartigan	CCC	Scott	Marriot	TrCovW	TraceW	Friedman	Rubin	Cindex	DB	Silhouette
2	4.16	30.55	10.06	5.49	140.15	0.00	0.91	5.56	221.35	4.54	0.35	0.76	0.56
3	6.73	25.81	2.74	5.51	191.04	0.00	0.30	3.87	252.61	6.53	0.27	0.90	0.41
4	0.13	19.34	13.76	4.39	219.59	0.00	0.25	3.44	276.56	7.34	0.26	1.27	0.31
5	4.75	26.15	3.77	6.65	303.07	0.00	0.12	2.08	590.66	12.16	0.33	0.83	0.35
6	3.09	24.33	1.65	6.22	370.12	0.00	0.09	1.75	1,054.45	14.45	0.30	0.70	0.40
7	0.16	21.14	7.77	5.22	383.36	0.00	0.08	1.61	1,044.11	15.70	0.30	0.79	0.34
8	1.56	25.54	6.22	6.54	459.86	0.00	0.03	1.12	$1,\!440.67$	22.48	0.24	0.82	0.32
9	3.17	29.46	2.31	7.46	587.08	0.00	0.02	0.82	$3,\!137.27$	30.71	0.20	0.70	0.42
10	5.57	28.34	0.68	6.99	613.29	0.00	0.02	0.72	3,743.78	35.14	0.19	0.71	0.38

Clusters	Duda	Pseudot2	Beale	Ratkowsky	Ball	Ptbiserial	Frey	McClain	Dunn	Hubert	SDindex	Dindex	SDbw
2	0.56	14.33	3.99	0.47	2.78	0.76	2.96	0.20	0.40	0.16	8.57	0.42	0.64
3	0.74	4.29	1.74	0.46	1.29	0.59	6.15	0.66	0.14	0.16	8.25	0.33	0.45
4	0.63	2.99	2.37	0.42	0.86	0.43	-0.07	1.53	0.14	0.16	10.58	0.31	0.54
5	2.03	-3.05	-2.30	0.41	0.42	0.46	0.36	1.46	0.21	0.18	8.82	0.25	0.21
6	1.03	-0.17	-0.13	0.38	0.29	0.46	14.61	1.58	0.21	0.19	9.19	0.22	0.15
7	0.35	14.73	7.30	0.36	0.23	0.41	0.10	2.04	0.14	0.19	9.54	0.21	0.15
8	3.69	-3.64	-2.57	0.34	0.14	0.41	0.35	2.04	0.21	0.20	9.06	0.18	0.13
9	5.57	-3.28	-0.00	0.32	0.09	0.39	1.45	2.27	0.32	0.21	11.70	0.15	0.08
10	5.93	-1.66	-2.93	0.31	0.07	0.36	-1.40	2.77	0.25	0.21	11.91	0.14	0.07

8.1.2 Βέλτιστες συστάδες

Χώρα	partition
France	1
Germany	1
Italy	1
Spain	1
United Kingdom	1
Bulgaria	2
Estonia	2
Hungary	2
Latvia	2
Lithuania	2
Romania	2
Austria	3
Belgium	3
Cyprus	3
Denmark	3
Finland	3
Greece	3
Ireland	3
Luxembourg	3
Malta	3
Netherlands	3
Poland	3
Portugal	3
Slovenia	3
Sweden	3
EUROZONE	

Figure 10: Συστάδες

Είναι λοιπόν σαν να εχουμε 3 βασικές κατηγορίες και σε αυτό ίσως φταίνε τα δεδομένα τα οποία έχω χρησιμοποιήσει. Μοιάζει σαν να είναι:

- Εκβιομηχανισμένες χώρες
- Μέρος του ανατολικού μπλοκ
- Υπόλοιποι

8.1.3 Συστάδες, αν όλα τα δεδομένα ήταν κατά κεφαλήν και κανονικοποιημένα ύστερα

Αυτό δεν είχαμε πει να γίνει, όμως ένοιωσα την ανάγκη να το δοκιμάσω.

Εδώ λοιπόν φαίνεται πως κάτι πήγε πολύ λάθος. Δεν ξέρω τι κοινό έχει η πρώτη συτστάδα. Μπορώ να δεκτώ πως η Βουλγαρία είναι μία κατηγορία από μόνης της, αλλά τα μπλε δεν ξέρω πώς σχετίζονται. Το περίεργο είναι πως δεν είναι ο πληθυσμός η ειδοποιός διαφορά, καθώς το Λουξεμβούργο, η Μάλτα και η Βουλγαρία είναι σε 3 διαφορετικές ομάδες. Σημείωση, αυτή τη φορά 15 από τα 23 κριτήρια πρότειναν τις 3 συστάδες.

GEO	partition
Austria	1
Denmark	1
Finland	1
Ireland	1
Luxembourg	1
Netherlands	1
Sweden	1
Belgium	2
Cyprus	2
Estonia	2
France	2
Germany	2
Greece	2
Hungary	2
Italy	2
Latvia	2
Lithuania	2
Malta	2
Poland	2
Portugal	2
Romania	2
Slovenia	2
Spain	2
United Kingdom	2
Bulgaria	3

Figure 11: Συστάδες αλλά όλα τα δεδομένα είναι κατά κεφαλήν.

8.2 Ικανότητα εξήγησης υπολοίπων μέσα στην ίδια συστάδα

Θα διατηρήσουμε τις συστάδες έτσι όπως διαμορφώθηκαν από την πρώτη διαδικασία:

Εκβιομηχανισμένες	Μισό ανατολικό μπλοκ	Λοιποί
Γαλλία	Βουλγαρία	Αυστρία
Γερμανία	Εσθονία	Βέλγιο
Ιταλία	Ουγγαρία	Κύπρος
Ισπανία	Λετωνία	Δανία
Ηνωμένο Βασίλειο	Λιθουανία	Φινλανδία
	Ρουμανία	Ελλάδα
		Ιρλανδία
		Λουξεμβούργο
		Μάλτα
		Ολλανδία
		Πολωνία
		Πορτογαλία
		Σλοβενία
		Σουιδία

Εδώ λοιπόν αφήνουμε τον αλγόριθμο μόνο του να ψάξει για τη μεσαία χώρα και στην συνέχεια να προσπαθήσει μέσω αυτής να εξηγήσει τις υπόλοιπες της ίδιας συστάδας. Έχουμε λοιπόν:

1. Εκβιομηχανισμένες, διάγραμμα 14

• Μεσαία χώρα: Ιταλία

• Ικανότητα εξήγησης των άλλων r^2 : 0.99966 Ουάου, μπορεί να περάσει ευθεία από 3 σημεία όταν τα δύο είναι δίπλα... Απίστευτο

2. Ανατολικό Μπλοκ, διάγραμμα 12

• Μεσαία χώρα: Λιθουανία

Ικανότητα εξήγησης των άλλων r^2 : 0.0117745

3. Λοιποί, διάγραμμα 13

• Μεσαία χώρα: Δανία

• Ικανότητα εξήγησης των άλλων r^2 : 0.5614167

8.3 Υπάρχει κάποια εύκολη σχέση μεταξύ των δωρεάν αδειών και κάποιου feature;

Εδώ ένας εύχολος τρόπος να προβλέψουμε την σχέση αυτή είναι να αναζητήσουμε τα καταλληλότερα βάρη ώστε να γίνεται βέλτιστη η γραμμική παλινδρόμηση. Οπότε τρέχοντάς το προχύπτει:

Τιμή	Εχβιομηχανισμένες	Ανατολικό Μπλοκ	Λοιποί		
r^2	0.9999999	0.976670	0.9463548		
Βάρη					
Population	9	0	0		
GDPpc	50	1	1		
Inflation	50	0	0		
Agriculture	59	100	5		
Industry	50	100	0		
Manufacturing	50	0	0		
Total Energy Supply	50	0	100		
Verified Emissions	50	1	1		
Πιθανή αναλογία free	Οτιδήποτε	Industry + Agriculture	Total energy supply		

Figure 12

Distances from Denmark, third cluster

Figure 13

Figure 14

8.4 Υστερα από αλλαγή στον τρόπο της κανονικοποίησης

Μέχρι τώρα η κανονικοποίηση γίνεται χρησιμοποιώντας την μέγιστη τιμή σε κάθε feature. Τα επόμενα όμως θα γίνουν διαιρώντας τα πάντα με την τιμή που εμφανίζεται στην Γερμανία. Οπότε προκύπτουν τα παρακάτω:

Σε περίπτωση που κάποιος ήθελε να δει τα νέα κανονικοποιημένα δεδομένα με βάση την Γερμανία, έχουμε: Όπως είναι εμφανές, η μόνη χώρα που άλλαξε κατά την αλλαγή αυτή είναι η Πολωνία. Αντίστοιχα λοιπόν προκύπτει:

GEO	Tot_en_sup	GDPpc	Ροπ.	Infl.	Verified_em.	Agr.	Industry	Manu.	partition
France	0.80	0.87	0.81	0.35	0.25	1.27	0.44	0.35	1
Germany	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
Italy	0.50	0.73	0.73	0.48	0.35	1.23	0.41	0.39	1
Poland	0.33	0.31	0.46	1.24	0.45	0.50	0.15	0.12	1
Spain	0.40	0.63	0.56	0.86	0.32	1.16	0.26	0.20	1
United Kingdom	0.56	0.92	0.80	1.21	0.33	0.51	0.47	0.32	1
Bulgaria	0.06	0.19	0.09	3.20	0.08	0.08	0.01	-0.57	2
Estonia	0.02	0.46	0.02	2.39	0.03	0.02	0.01	0.00	2
Hungary	0.08	0.33	0.12	2.68	0.05	0.17	0.04	0.04	2
Latvia	0.01	0.35	0.02	1.96	0.01	0.03	0.01	0.00	2
Lithuania	0.02	0.38	0.03	2.82	0.01	0.05	0.01	0.01	2
Romania	0.11	0.24	0.24	3.11	0.09	0.30	0.06	0.06	2
Austria	0.11	1.06	0.11	0.67	0.07	0.16	0.10	0.09	3
Belgium	0.18	0.99	0.14	1.22	0.10	0.11	0.10	0.08	3
Cyprus	0.01	0.60	0.01	0.69	0.01	0.01	0.00	0.00	3
Denmark	0.05	1.29	0.07	0.79	0.04	0.14	0.07	0.06	3
Finland	0.11	1.04	0.07	0.54	0.06	0.19	0.06	0.05	3
Greece	0.07	0.42	0.13	0.19	0.11	0.25	0.03	0.02	3
Ireland	0.04	1.56	0.06	0.62	0.06	0.13	0.12	0.14	3
Luxembourg	0.01	2.47	0.01	1.43	0.00	0.00	0.01	0.00	3
Malta	0.00	0.65	0.01	1.40	0.00	0.00	0.00	0.00	3
Netherlands	0.24	1.09	0.21	0.84	0.21	0.49	0.15	0.12	3
Portugal	0.07	0.48	0.12	1.01	0.07	0.15	0.04	0.04	3
Slovenia	0.02	0.53	0.02	0.97	0.01	0.03	0.01	0.01	3
Sweden	0.16	1.20	0.12	1.42	0.05	0.25	0.12	0.09	3

Τιμή	Εκβιομηχανισμένες	Ανατολικό Μπλοκ	Λοιποί
r^2	0.9388624	0.987699	0.891066
Βάρη			
Population	0	0	100
GDPpc	14	1	1
Inflation	50	50	50
Agriculture	0	79	1
Industry	1	1	0
Manufacturing	0	0	0
Total Energy Supply	100	0	100
Verified Emissions	100	1	1
Πιθανή αναλογία free	Tot energy + Verified	Agriculture	Pop + Tot energy

Εδώ είναι πολύ σημαντικό να γίνει αλλαγή ώστε ο αλγόριθμος να βάζει στο 0 κάτι που δεν αλλάζει σημαντικά το αποτέλεσμα.

8.5 To do list

• Αλλαγή αλγορίθμου υπολογισμού βαρών για να ελέγξουμε το 50 που εμφανίζεται στα βέλτιστα βάρη.

- Εκτέλεση αλλαγή ώστε να βλέπουμε απευθείας τα free ως συνάρτηση των features. Όχι αυτό με τις αποστάσεις.
- Βρες το σωστό τρόπο να γίνει κανονικοποίηση στα δεδομένα.
- Δοχιμαστικά να γίνει το ίδιο πράγμα, αλλά χρατώντας τυχαία χώρες από διαφορετικά clusters.

	GEO	modifier	sol
1	Austria	35.61	0.00
2	Belgium	29.62	0.00
3	Bulgaria	10.06	0.00
4	Cyprus	22.23	0.00
5	Denmark	47.83	0.00
6	Estonia	7.08	0.00
7	Finland	23.43	0.00
8	France	62.70	0.00
9	Germany	22.94	0.00
10	Greece	14.22	0.00
11	Hungary	29.68	0.00
12	Ireland	30.83	0.00
13	Italy	37.10	0.00
14	Latvia	53.59	0.00
15	Lithuania	35.18	0.00
16	Luxembourg	91.99	1.00
17	Malta	48.35	0.00
18	Netherlands	23.44	0.00
19	Poland	12.90	0.00
20	Portugal	25.24	0.00
21	Romania	29.71	0.00
22	Slovenia	26.63	0.00
23	Spain	30.28	0.00
24	Sweden	54.00	0.00
25	United Kingdom	50.14	0.00

Table 11: GDP per capita PPS $\,$

	GEO	modifier	last_year	actual	solution
1	Austria	35.6065	0.0273	0.0266	0.0300
2	Belgium	29.6232	0.0453	0.0437	0.0407
3	Bulgaria	10.0627	0.0179	0.0160	0.0161
4	Cyprus	22.2329	0.0032	0.0029	0.0028
5	Denmark	47.8350	0.0116	0.0107	0.0127
6	Estonia	7.0784	0.0066	0.0044	0.0059
7	Finland	23.4298	0.0247	0.0233	0.0223
8	France	62.7004	0.0971	0.0927	0.1068
9	Germany	22.9363	0.2071	0.1996	0.1864
10	Greece	14.2248	0.0198	0.0194	0.0178
11	Hungary	29.6837	0.0144	0.0141	0.0157
12	Ireland	30.8299	0.0139	0.0137	0.0153
13	Italy	37.0977	0.0954	0.0935	0.1049
14	Latvia	53.5870	0.0026	0.0024	0.0029
15	Lithuania	35.1782	0.0077	0.0073	0.0085
16	Luxembourg	91.9900	0.0018	0.0017	0.0020
17	Malta	48.3540	0.0002	0.0002	0.0003
18	Netherlands	23.4438	0.0610	0.0601	0.0549
19	Poland	12.9007	0.0964	0.0892	0.0867
20	Portugal	25.2398	0.0153	0.0150	0.0137
21	Romania	29.7109	0.0367	0.0285	0.0404
22	Slovenia	26.6280	0.0025	0.0024	0.0022
23	Spain	30.2807	0.0829	0.0810	0.0912
24	Sweden	53.9986	0.0329	0.0311	0.0362
25	United Kingdom	50.1382	0.0760	0.0733	0.0836

Table 12: GDP per capita PPS

Country	efficiency	last_year	low_free	up_free	pop	min	max	forecasted	change
Luxembourg	107.5132	0.0017	0.0014	0.0021	0.0012	0.0002	0.0036	0.0014	-20 %
France	65.1380	0.0984	0.0788	0.1181	0.1361	0.0272	0.4084	0.1181	20 %
Latvia	63.4842	0.0024	0.0019	0.0029	0.0040	0.0008	0.0119	0.0019	-20 %
Sweden	62.0909	0.0322	0.0258	0.0386	0.0205	0.0041	0.0614	0.0258	-20 %
United Kingdom	52.8965	0.0735	0.0588	0.0882	0.1344	0.0269	0.4031	0.0882	20 %
Ireland	52.0695	0.0071	0.0057	0.0086	0.0098	0.0020	0.0293	0.0057	-20 %
Denmark	49.7555	0.0115	0.0092	0.0138	0.0117	0.0023	0.0352	0.0092	-20 %
Italy	38.1931	0.0959	0.0767	0.1150	0.1231	0.0246	0.3694	0.1150	20 %
Austria	36.5967	0.0277	0.0222	0.0333	0.0179	0.0036	0.0537	0.0222	-20 %
Lithuania	35.5613	0.0080	0.0064	0.0097	0.0058	0.0012	0.0173	0.0064	-20 %
Hungary	32.7181	0.0140	0.0112	0.0168	0.0199	0.0040	0.0597	0.0112	-20 %
Spain	31.7875	0.0816	0.0653	0.0979	0.0948	0.0190	0.2843	0.0746	-8.549 %
Belgium	30.6643	0.0464	0.0371	0.0557	0.0231	0.0046	0.0694	0.0371	-20 %
Romania	30.3832	0.0379	0.0303	0.0454	0.0398	0.0080	0.1195	0.0303	-20 %
Slovenia	27.0485	0.0025	0.0020	0.0030	0.0042	0.0008	0.0126	0.0020	-20 %
Portugal	26.3706	0.0152	0.0122	0.0183	0.0210	0.0042	0.0629	0.0122	-20 %
Finland	24.4140	0.0251	0.0201	0.0301	0.0112	0.0022	0.0336	0.0201	-20 %
Netherlands	24.1686	0.0618	0.0494	0.0741	0.0348	0.0070	0.1045	0.0494	-20 %
Germany	23.4216	0.2088	0.1670	0.2506	0.1681	0.0336	0.5044	0.2506	20 %
Cyprus	22.7209	0.0033	0.0026	0.0039	0.0024	0.0005	0.0072	0.0026	-20 %
Greece	14.5357	0.0198	0.0158	0.0237	0.0219	0.0044	0.0656	0.0158	-20 %
Poland	12.9609	0.0998	0.0799	0.1198	0.0772	0.0154	0.2317	0.0799	-20 %
Bulgaria	10.1351	0.0184	0.0147	0.0220	0.0144	0.0029	0.0432	0.0147	-20 %
Estonia	7.0940	0.0068	0.0055	0.0082	0.0027	0.0005	0.0080	0.0055	-20 %

Table 13: GDP per capita PPS

R^2	First	Second	Third
Verified_emissions	0.822	0.825	0.786
Total_energy_supply	0.433	0.689	0.971
GDPpc	0.076	0.477	0.000
Population	0.281	0.794	0.801
Inflation	0.003	0.065	0.001
Agriculture	0.088	0.561	0.004
Industry	0.364	0.572	0.019
Manufacturing	0.601	0.417	0.004
Energy_Intensity	0.067	0.042	0.041
actual_agri	0.000	0.663	0.692
$\operatorname{actual_ind}$	0.539	0.630	0.683
actual_manu	0.650	0.594	0.491
tot_and_EI	0.427	0.570	0.914

9 Για την 2η Μαΐου

Έγιναν τα παρακάτω:

- 1. Γραφθηκε πιο αναλυτικά το: LP εδώ
- 2. Συγκέντρωση των στόχων από εδώ και πέρα

Επόμενοι αναπάντητα ερωτήματα, στόχοι και πλάνα:

- 1. Χρήση Nash Equillibrium για το Allocation, το οποίο όμως θα πρέπει κάπως να προσρμοστεί στο να παίρνει υπόψην του το μέγεθος της χώρας.
- 2. Τι συμβαίνει στην Γαλλία και στην Πολωνία, κυρίως στα δωρεάν τους. Μήπως αυτά τρώνε μεγάλη αλλαγή; Παίζει ρόλο η πυρηνική ενέργεια;
- 3. Διάβασμα: Κινεζικό σύστημα, paper. A multi-criteria decision analysis model for carbon emission quota allocation in China's east coastal areas: Efficiency and equity
- 4. Να σουλουπωθεί ο κώδικας. Είναι αίσχος.
- 5. Να χωριστεί το total energy supply σε πράσινο και σε ριπογόνο energy supply.
- 6. Να δούμε αν κάποιος συνδυασμός με constrains οδηγεί σε κάποιο allocation κοντινό στο πραγματικό. Προφανώς στις πρώτες φάσεις το απλό grandfathering μπορεί να προσομοιωθεί με στενά a1 kai a2, οπότε δεν μας νοιάζει αυτό.
- 7. Υπάρχουν κάποιας μορφής αντιπρόσωποι μέσα στα cluster?
- 8. Όλα τα παραπάνω μπορούν να γίνουν αναφορικά με το δίκτυο;
- 9. Έχει νόημα κάποιο Ιεραρχικό clustering σε αυτό;
- 10. Διάβασμα το "Cap-and-trade and emissions clustering: A spatial-temporal analysis of the European Union Emissions Trading Scheme
- 11. Διάβασμα για ERGM, Exponential family random graph models
- 12. Διάβασμα για διαφορετικούς τρόπους κανονικοποίησης.
- 13. Τι θα συμβεί εάν επαναλάβουμε τα πειράματα αυτά με δεδομένα μόνο population. total energy supply και Verified emissions με βάρη 1,1,0.5.
- 14. Να γίνει PCA (Principle Component Analysis) στα δεδομένα.
- 15. Προσθήκη νέων δεδομένων στην βάση.
- 16. Ποια είναι τα ειδοποιή χαρακτηριστικά των clusters?
- 17. Τι συμβαίνει με τους άλλους stakeholders? Το περιβάλλον, ο μέσος πολίτης κλπ είναι δίκαιο το σύστημα σε αυτούς;
- 18. Να κατανοήσουμε τι συμβαίνει με τα διαφορετικά clusters και τις διαφορές που βλέπουμε στην απόδοση του regression.
- 19. Γιατί κάποιες χώρες παίρνουν παραπάνω ή παρακάτω από την καμπύλη
- 20. Να χρησιμοποιήσουμε το μαθηματικό μοντέλο που βάζει στο παιχνίδι και την οντότητα του κράτους για να εξισορροπήσουμε τη διανομή και σε επίπεδο κρατών (το benchmarking το επιτυγχάνει αυτό μόνο μεταξύ εταιρειών στο ίδιο sector).

10 Για τις 16 Μαΐου

10.1 To do

Τα to do είναι:

- Δημιουργία ενός proxy για το energy Intensity το οποίο θα μπορούμε μετά να το εξειδικεύοσμε ανά sector, ούτως ώστε να μπορούμε να φτιάξουμε το LP.
- Reagration για 1 sector σε όλες τις χώρες. Τι βγάζει; Γιατί οι ίδιοι κλάδοι σε άλλες χώερς θα έχουν διαφορετικές τιμές;
- Regration για κάθε συνδυασμό χώρας και sector. Εδώ τι συμπεράσματα υπάρχουν;
- Όλα τα παλιά :Ρ

10.2 Δεν μοιάζει να μπορεί να προσομοιωθεί απλά το Energy Intensity

Εδώ έχει υπολογισθεί ως:

$$\frac{\frac{VerifiedEmissions}{100-PercentageGreen}}{GDP}$$

Όμως η τιμή της ΕU δείχνει να είναι κάτι αρκετά διαφορετικό.

Figure 15: Calculated Emission Intensity - Energy Intensity

```
Residuals:
```

Min Median 1Q 3Q Max -3.173e-06 -8.898e-07 -2.022e-07 5.596e-07 4.043e-06 Coefficients: Estimate Std. Error t value Pr(>|t|) -1.065e-06 1.258e-06 (Intercept) -0.847 0.4061 dat_Energy_Intensity 2.374e-08 9.301e-09 2.553 0.0181 * ---

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.713e-06 on 22 degrees of freedom Multiple R-squared: 0.2285, Adjusted R-squared: 0.1934 F-statistic: 6.516 on 1 and 22 DF, p-value: 0.01815

Το βασικό πρόβλημα είναι πως δεν κατάφερα να το κάνω να μοιάζει περισσότερο σε καμία εκδοχή. Ακόμα και αν βάλω στην μία πλευρά το energy supply

Figure 16: Calculated Energy Intensity - Energy Intensity

Residuals:

Min 1Q Median 3Q Max -1.315e-07 -3.408e-08 -1.516e-08 3.144e-08 1.561e-07

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.028e-08 4.200e-08 0.483 0.6339 dat\$Energy_Intensity 7.652e-10 3.106e-10 2.463 0.0221 *

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.722e-08 on 22 degrees of freedom Multiple R-squared: 0.2162, Adjusted R-squared: 0.1806 F-statistic: 6.068 on 1 and 22 DF, p-value: 0.02206

10.3 Δ ιαφορετικά μέτρα απόδοσης / αποτελεσματικότητας

- Energy Efficiency Αυτό μετριέται σε Μtoe και ειλικρινά δεν μπορώ να καταλάβω από την περιγραφή του πώς διαφέρει από κάποια μορφή του total energy consumed. Έχει να κάνει με τους στόχους της ΕΕ https://ec.europa.eu/eurostat/cache/metadata/en/nrg_ind_eff_esmsip2.htm
- Energy Productivity

$\frac{EconomicOutput}{RawEnergy}$

https://ec.europa.eu/eurostat/cache/metadata/en/nrg_ind_ep_esmsip2.htm

• Energy Intensity Τα γνωστά

10.4 Για την επόμενη φορά

- Να γίνει ο ίδιος δείκτης Energy Intensity, όμως αυτή τη φορά να μην έχει μέσα την ηλεκτροπαραγωγή, καθώς αυτή διπλομετράται. Άρα προκύπτουν δύο πειράματα:
 - 1. Όλα τα sectors εκτός από την αεροπορία και την ηλεκτροπαραγωγή συμμετέχουν.
 - 2. Μόνο η ηλεκτροπαραγωγή συμμετέχει.
- Clustering σε βάθος χρόνου ώστε να δούμε αν η αλλαγές στον χρόνο επηρεάζουν το υπόλοιπο.
- Clustering ανά sector
- Αφαίρεσε την Μάλτα, λολ
- Να ξεχινήσει το LP αχόμα χαι με σχατά δεδομένα για να δούμε τι βγάζει!

11 Για τις 23 Μαΐου

11.1 21-99 Cannot be used a proxy

Αρχικά κατεβάζοντας από το https://www.eea.europa.eu/data-and-maps/data/european-union-emissions-trading Country: Allcountries τους παραδοδέντες ρίπους, παρατηρούμε πως έχουν αυτήν την κατηγοριοποίηση:

- [1] "20 Combustion of fuels"
- [2] "42 Production of bulk chemicals"
- [3] "20-99 All stationary installations"
- [4] "43 Production of hydrogen and synthesis gas"
- [5] "25 Production or processing of ferrous metals"
- [6] "28 Production or processing of non-ferrous metals"
- [7] "21-99 All industrial installations (excl. combustion)"
- [8] "23 Metal ore roasting or sintering"
- [9] "36 Production of paper or cardboard"
- [10] "33 Manufacture of mineral wool"
- [11] "10 Aviation"
- [12] "26 Production of primary aluminium"
- [13] "27 Production of secondary aluminium"
- [14] "29 Production of cement clinker"
- [15] "41 Production of ammonia"
- [16] "21 Refining of mineral oil"

- [17] "34 Production or processing of gypsum or plasterboard"
- [18] "35 Production of pulp"
- [19] "38 Production of nitric acid"
- [20] "32 Manufacture of ceramics"
- [21] "24 Production of pig iron or steel"
- [22] "30 Production of lime, or calcination of dolomite/magnesite"
- [23] "31 Manufacture of glass"
- [24] "45 Capture of greenhouse gases under Directive 2009/31/EC"
- [25] "99 Other activity opted-in under Art. 24"
- [26] "22 Production of coke"
- [27] "44 Production of soda ash and sodium bicarbonate"
- [28] "37 Production of carbon black"
- [29] "39 Production of adipic acid"
- [30] "40 Production of glyoxal and glyoxylic acid"

όμως κανένα από αυτά δεν αναφέρεται στην ηλεκτροπαραγωγή συγκεκριμένα. Το πιο κοντινό ίσως είναι τα combustion fluels. Όμως κάνοντας δοκιμές για το συγκεκριμένο, καταλήξουμε πως αφαιρώντας αυτό δεν μπορούμε να καταλήξουμε σε κάποιο χρήσιμο proxy:

Συγκεκριμένα διαβάζουμε [1]:

"Most installations covered by the EU ETS will be found in the NACE categories C (Mining and quarrying), D (Manufacturing) and E (Electricity, gas and water supply). However, the activity \combustion of fuels" can occur in all types of NACE categories, not only industrial ones. Examples of such non-industrial installations are combustion units in greenhouses, hospitals, universities and office buildings, booster stations in natural gas transport networks etc"

Επομένως, δεν είναι καθόλου περίεργο. Αυτό το οποίο όντως χρειάζεται να μπει σε αυτήν την διαδικασία είναι το Nace code της εταιρείας. Συγκεκριμένα έγουμε [2]:

NACE codes are the standard European nomenclature of productive economic activities. They break down the universe of economic activities in such a way that a NACE code can be associated with a statistical unit carrying out the activity it designates. There is an economic activity when resources { such as capital goods { are combined to produce specific goods or services.

All activity is characterized by the input of resources, a production process and an output of products (goods or services).

11.2 Χρήση του GDPpps

Εδώ βλέπουμε την πρώτη σημαντική βελτίωση στο αποτέλεσμα:

συγκεκριμένα, η βελτίωση είναι της τάξης του:

Residual standard error: 3.18e-07 on 21 degrees of freedom Multiple R-squared: 0.3127, Adjusted R-squared: 0.2799 F-statistic: 9.553 on 1 and 21 DF, p-value: 0.005539

Residual standard error: 2.269e-07 on 21 degrees of freedom Multiple R-squared: 0.4208, Adjusted R-squared: 0.3932 F-statistic: 15.26 on 1 and 21 DF, p-value: 0.0008128

Οι πιο έντονοι outliers στο παραπάνω είναι οι 3 πάνω κουκίδες που ανήκουν στην Αυστρία, Λιθουανία και την Φινλαδία από αριστερά προς τα δεξιά.

11.3 Χωρίς Αυστρία, Λιθουανία και Φινλανδία

Εδώ τα πράγματα βελτιώνονται, αλλά δεν είναι τέλεια:

Residual standard error: 1.315e-07 on 18 degrees of freedom Multiple R-squared: 0.6578, Adjusted R-squared: 0.6388 F-statistic: 34.6 on 1 and 18 DF, p-value: 1.435e-05

12 Για τη 13η Μαΐου

12.1 Το πρόβλημα με το πλασματικό energy Intensity

Υπήρξε ένα σημαντικό κενό εδώ λόγω διαφόρων προσωπικών υποχρεώσεων.

Αρχικά. Σχετικά με την αποδόμηση των sector των ρύπων: Έγινε αυτή η αντιστοίχιση https://docs.google.com/spreadsheets/d/1mwmZSr8PBiFgsxemVE_FFEdaZS0d0eX3/edit?usp=sharing&ouid=105915891653467891041& rtpof=true&sd=truee Το οποίο δείχνει με αρκετή σαφήνεια πως οι δύο τρόποι κατηγοριοποίησης των επιχειρήσεων είναι πολύ διαφορετικές.

Οι πρώτες δύο στήλες αναφέρονται στα δεδομένα έτσι όπως εμφανίζονται στην βάση δεδομένων του ΕU ΕΤS, ενώ οι στήλες 3,4 δείχνουν πώς αυτές εμφανίζονται στα δεδομένα της Eurostat. Προφανώς όμως κάπου υπάρχουτν αυτά τα δεδομένα, ίσως κάπου στο ΕU ΕΤS, αλλά δεν ξέρω πού. Σε κάθε περίπτωση, η αντιστοίχιση θα μπορύσε να γίνει όπως φαίνεται στο παραπάνω excel. Να δύο παραδείγματα:

Ένα παράδειγμα στο οποίο στεκόμαστε τυχεροί:

Eu ETS Code	Meaning	Nace code	Meaning
2	Mineral oil refineries	C19.20	Manufacture of refined petroleum products
21	Refining of mineral oil	c19.10	Manufacture of Coke and Refined Petroleum Products
22	Production of coke	c19.10	Manufacture of Coke and Refined Petroleum Products
3	Coke ovens	c19.10	Manufacture of Coke and Refined Petroleum Products
		C19	Manufacture of coke and refined petroleum products

Εδώ είμαστε τυχεροί γιατί μπορούμε να δουλέψουμε για το sector c19, ενώνοντας τους κωδικούς του ΕU ETS 2, 21, 22, 3. Αυτό θα προσφέρει λιγότερη ακρίβεια, όμως τουλάχιστον δεν θα είναι εκ προσιμίου λάθος.

Προβληματική περίπτωση:

Eu ETS Code	Meaning	Nace code	Meaning
		C23	Manufacture of other non-metallic mineral products
29	Production of cement clinker	C23.5.1	Manufacture of cement
30	Production of lime, or calcination of dolomite/mag	C23.5.2	Manufacture of lime and plaste
31	Manufacture of glass	C23.1	Manufacture of glass and glass products
32	Manufacture of ceramics	C23.4	Manufacture of other porcelain and ceramic products
33	Manufacture of mineral wool	C23.9.9	Manufacture of other non-metallic mineral products n.e.c.
34	Production or processing of gypsum or plasterboard	C23.5.2	Manufacture of lime and plaster
		C23.2	Manufacture of refractory products
		C23.3	Manufacture of clay building materials
		C23.6	Manufacture of articles of concrete,
		023.0	cement and plaster
		C23.7	Cutting, shaping and finishing of stone
		C23.9.1	Production of abrasive products

Εδώ έχουμε ένα σενάριο στο οποίο όχι μόνο δεν ταιριάζουν όλα απόλυτα, αλλά αχόμα και να την αριστερή στήλη

σε ένα για να την ταυτίσουμε με την δεξιά, θα υπάρχουν κατηγορίες τις οποίες αφήσαμε απ' έξω.

12.2 Clustering se sectors

Querry για να πάρουμε τις Surrendered άδειες ανά sector για το 2016.

```
SELECT SUM(trnew.NbOfUnits), concat(mat.kwdikos , ' ', mat.onoma) as ActivityType FROM transactions_new AS trnew

JOIN eutl_accountholders AS ah ON trnew.TransferringAccountHolder = ah.holderName

JOIN eutl_accounts AS a ON ah.rawCode = a.rawCode

JOIN eutl_installations_orair AS io ON io.account = a.rawCode

JOIN mainactivitytype AS mat ON io.mainActivity = mat.kwdikos

WHERE trnew.TransactionType LIKE '%%-2' AND YEAR(trnew.TransactionDate) = 2016

GROUP BY mat.onoma

ORDER BY mat.kwdikos
```

Το οποίο επιστρέφει:

Surrendered	ActivityType
178093310	1 Combustion installations with a rated thermal in
287282477	10 Aircraft operator activities
4028607	2 Mineral oil refineries
697984775	20 Combustion of fuels
6795214	21 Refining of mineral oil
187557	22 Production of coke
179735	23 Metal ore roasting or sintering
98482418	24 Production of pig iron or steel
21458739	25 Production or processing of ferrous metals
806566	26 Production of primary aluminium
2287866	27 Production of secondary aluminium
16525496	28 Production or processing of non-ferrous metals
9283720	29 Production of cement clinker
29011461	30 Production of lime, or calcination of dolomite/
28483791	31 Manufacture of glass
113925371	32 Manufacture of ceramics
855132	33 Manufacture of mineral wool
2350152	34 Production or processing of gypsum or plasterbo
34482572	35 Production of pulp
120320357	36 Production of paper or cardboard
3530168	37 Production of carbon black
10773361	38 Production of nitric acid
3665	39 Production of adipic acid
205592	40 Production of glyoxal and glyoxylic acid
518707	41 Production of ammonia
51838556	42 Production of bulk chemicals
8355618	43 Production of hydrogen and synthesis gas
4930431	44 Production of soda ash and sodium bicarbonate
10617	46 Transport of greenhouse gases under Directive 2
1853546	5 Installations for the production oion) includ
12267703	6 Installations for the production orotary kiln
1787688	7 Installations for the manufacture of glass inclu
18284476	8 Installations for the manufactureks, tiles,
21850482	9 Industrial plants for the productious materia
42185334	99 Other activity opted-in pursuant to Article 24

12.3 Τι ειπώθηκε στην κλίση

Στην κλίση τέθηκαν οι παρακάτω στόχοι:

- Να γίνει το LP χρησιμοποιώντας τους 5 sectors έτσι όπως έγιναν λόγω των περιορισμών των δεδομένων. Άρα όπως είναι στο excel τα διαφορετικά χρώματα: https://docs.google.com/spreadsheets/d/1mwmZSr8PBiFgsxemVE_FFEdaZS0d0eX3/edit?usp=sharing&ouid=105915891653467891041&rtpof=true&sd=truee
- Να γίνει clustering στους διαφορετικούς sectors. Χρησιμοποίησε Querries σαν αυτό που ανέφερες λίγο παραπάνω για να αποκτήσεις δεδομένα για τους διαφορετικούς κλάδους της οικονομίας. Παραδείγματα: Verified, Free, no of companies, avg transactions per company, μέγεθος εταιρειών

- Να προσπαθήσεις να δεις γιατί κάποιες χώρες δεν αντιστοιχίζονται τέλεια στα διαγράμματα τα οποία υποβάλαμε στο paper. Μερικές πιθανές συσχετίσεις: ποσοστό service στο ακαθάριστο προϊόν, πυκνότητα σε εταιρείες με πολύ μεγάλο ή πολύ μικρό P(carbon leackage).
- Να ξαναγίνει η μελέτη που γίνεται στο paper μόνο για έναν από τους sectors της οικονομίας και να δούμε αν αυτό μιδενίζει τις διαφορές μεταξύ των χωρών.
- Διάβασμα το paper: Pollution Permits: Efficiency by Design https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453956

13 Παύση Καλοκαιριού

Ρεαλιστικά δεν έγιναν όσα πράγματα θα έπρεπε από μέρους μου. Προοέκυψαν πολλές δουλειές άσχετες με την σχολή πάνω στην εξεταστική, με αποτέλεσμα αυτή να πάει πολύ άσχημα. Τα βασικά αίτια ήταν το ότι αναλαμβάνω πράγματα που δεν πρέπει και πάντα έχω μπροστά μου ένα βουνά που η αναβλητικότητά μου δεν με αφήνει να νικήσω. Θα το αλλάξω.

14 Επανεκκίνηση Μετά την παύση του καλοκαιριού

14.1 Polution Permits: Efficiency by Design

Οι γνώσεις μου είναι υπερβολικά λίγες για να καταλάβω το περιεχόμενο αυτού του paper.

14.2 Παρουσίαση για το paper

14.3 1 sector

Ακριβώς ένα sector ίσως να γίνεται μόνο όσων αφορά στα δεδομένα της βάσης του ΕΤS, οπότε δεν θα χρησιμοποιήσουμε άλλα

15 Συνάντηση στο ΜΟΠ 10/10/23

Στη συνάντηση που πραγματοποιήθηκε στις 10 Οκτωβρίου 2023 στο ΜΟΠ, συζητήθηκαν σημαντικά ζητήματα σχετικά με την ερευνητική προσέγγιση και τους πιθανούς στόχους της διπλωματικής.

15.1 Προκύπτοντα ερωτήματα

Κατά τη διάρχεια της συζήτησης προέχυψαν τα εξής ερωτήματα:

1. Είναι δύσχολο να εφαρμόσουμε τεχνιχές clustering ανά εταιρεία λόγω της έλλειψης δεδομένων. Υπάρχει όμως η πιθανότητα για μεγάλες εταιρείες να έχουν δημοσιευμένα δεδομένα που μπορεί να χρησιμοποιηθούν;

15.2 Προτεινόμενοι στόχοι

Στη συνέχεια της συνάντησης, προτάθηκαν κάποιοι στόχοι για την ερευνητική διαδικασία:

1. Διαχωρισμός των προσεγγίσεων: Αρχικά, να καθοριστεί αν μπορούμε να παράγουμε απλώς συμπεράσματα ή αν μπορούμε να προτείνουμε συγκεκριμένες τεχνικές. Είναι σαφές ότι ο στόχος πρέπει να είναι η προσφορά συγκεκριμένων τεχνικών.

- 2. Επανάληψη των βημάτων του paper: Ακολουθώντας τις ίδιες διαδικασίες όπως στο paper, να εξετάσουμε αν η τεχνική Linear Programming (LP) μπορεί να λύσει τα διάφορα προβλήματα, ειδικά όταν ομαδοποιούμε τις εταιρείες.
- 3. Σύγκριση τεχνικών: Να δούμε αν η τεχνική "Allocating Emission Permits" παράγει αποτελέσματα που είναι κοντά στα αποτελέσματα του LP.
- 4. Ορισμός concept για τη διπλωματική: Είναι ζωτικής σημασίας να καθορίσουμε ένα σαφές concept για την διπλωματική, το οποίο θα κατευθύνει όλες τις ερευνητικές προσπάθειες.

16 Συνάντηση στο ΜΟΠ 31/10/23

Στη συνάντηση που πραγματοποιήθηκε στις 31 Οκτωβρίου 2023 στο $MO\Pi$, συζητήθηκαν οι εξής σημαντικές πτυχές:

16.1 Σημαντικά Ειπωθέντα

- Η Τζέλα ανέβασε στο drive ένα άρθρο που περιέχει τη διάσταση του χρόνου, με κλειδί λέξεις όπως uncertainty και αναφορά στην παράγραφο 3.
- Το abatement μπορεί να αναλυθεί σε δύο κατευθύνσεις: ρίποι και προϊόν.

16.2 Στόχοι

- 1. Δοχίμασε το τελευταίο paper για να δεις αν λειτουργεί εντός του LP και αν περιλαμβάνει κάποια μορφή fairness όπως έχει οριστεί.
- 2. Προσπάθησε να κατανοήσεις πλήρως το μοντέλο του paper και συγκρίνε το με το LP.
- 3. Ολοκληρώστε τον καθαρισμό του κώδικα.
- 4. Δημιουργήστε ένα συνθετικό dataset. Θα χρειαστείς κανόνες για την επόμενη συνάντηση για να κάνεις το dataset να λειτουργεί, όπως κριτήρια συνοχής για τα συνθετικά sectors, GDP κ.λπ. Επίσης, η ισορροπία Cournot θα βοηθήσει στον καθορισμό της τιμής του προϊόντος ανά sector.

17 5/1/23 Συνάντηση μέσω Skype

Η συζήτηση πραγματοποιήθηκε μέσω Skype στις 5 Νοεμβρίου 2023 και επικεντρώθηκε στη δημιουργία συνθετικών δεδομένων για τη διπλωματική.

17.1 Δημιουργία Συνθετικών Δεδομένων

Στόχος είναι η παραγωγή συνθετικών δεδομένων για τρεις χώρες και τρεις τομείς σε κάθε χώρα, με την εκπροσώπηση τεσσάρων εταιρειών ανά τομέα. Τα δεδομένα θα καλύπτουν τις παρακάτω πτυχές:

- 1. Energy Intensity
- 2. Ακαθάριστο Εγχώριο Προϊόν ανά τομέα
- 3. Εχπομπές ρύπων ανά τομέα

Επιπρόσθετα, η κλίμακα κάθε εταιρείας θα πρέπει να σχετίζεται με το μέγεθος της αντίστοιχης χώρας.

17.2 Ανάλυση Εταιρικών Συναρτήσεων

H συζήτηση αφορούσε επίσης τις εταιρικές συναρτήσεις και τους κανόνες που τις καθορίζουν. Σημαντικά σημεία περιλαμβάνουν:

- 1. Η ανάγκη μελέτης του τρίτου κεφαλαίου του ΑΟΘ. Από εμένα, γιατί είμαι άσχετος.
- 2. Η συνάρτηση "abatement" θεωρείται ως φθίνουσα, με μηδενική τιμή στις εκπομπές Business as Usual και άπειρη τιμή στις μηδενικές εκπομπές.
- 3. Το κόστος παραγωγής αποτελείται από το άθροισμα σταθερών και μεταβλητών κοστών, με χαρακτηριστική φθίνουσα απόδοση.
- 4. Το τελικό κόστος ανά προϊόν αποτελεί αυξανόμενη κυρτή συνάρτηση.

17.3 Στόχοι για την Επόμενη Συνάντηση

Ως επόμενο βήμα, προτείνεται η εκπόνηση πέντε λογικών συναρτήσεων που θα εφαρμόζονται στα προαναφερθέντα δεδομένα.

18 7/11/23 Συνάντηση στο ΜΟΠ

18.1 Πριν την συνάντηση

18.1.1 Ορισμοί

- Η παραγωγή q_i θα είναι η ελέυθερη μεταβλητή στο πρόγραμμά μας.
- Στο paper ορίζει το abatement ως non-decreasing και convex, σε αντίθεση με τον ορισμό του Σωτήρη, ο οποίος ορίζει πάλι κυρτή συνάρτηση αλλά φθήνουσα. Η διαφορά είναι πως η μία παίρνει για είσοδο την μείωση των ρίπων, ενώ η δεύτερη παίρνει για είσοδο τους τελικούς ρύπους.
- Η συνάρτηση απόδοσης των δωρεάν αδειών είναι κοίλη.
- x_i^* ορίζονται οι ρύποι ύστερα από τον συνυπολογισμό των δωρεάν αδειών για την εταιρεία i . q_i^* ομοίως είναι η παραγωγή μετά από τον υπολογισμό. Ορίζεται επίσης η διαφορά $q_i^* x_i^*$ ως το μέγεθος του abatement.

18.1.2 Πιθανές συναρτήσεις παραγωγής

Η συνάρτηση για το κόστος παραγωγής μπορεί να έχει τις παρακάτω μορφές:

- 1. Γραμμική : FC + Bx, οπου A τα σταθερά κόστη και B το οριακό κόστος ανά μονάδα.
- 2. Κυρτή αύξουσα : $FC + Ae^{\lambda x}$
- 3. Αλλγη κυρτή αύξουσα: $FC + Ax^{\lambda}$
- 4. Συνυπολογίζουσας τις οιχονομίες κλίμαχας (chat gpt): $TC(n) = FX + \frac{VC}{1+an} \times n$.
- 5. Πάλι από το GPT: TC(n) = FC + nVC + SC(n), οπου το SC είναι το Scaling cost.

18.1.3 Abatement cost

Το abatement cost μπορεί να αναχθεί από τον ορισμό του Σ ωτήρη στον ορισμό που καταλαβαίνει το κεφάλι μου απλά με την αλλαγή Sot(Actual, BAU) = C(BAU - Actual). Αν θέλουμε να παίρνει για είσοδο ποσοστό τότε η αντιστοιχία είναι:

$$Sot(Actual, BAU) = C(\frac{BAU - Actual}{BAU} \times 100\%)$$

Πιθανές συναρτήσεις για abatement είναι:

- 1. $q(x) = Ae^{\lambda x}$
- 2. $g(x) = ax^2 + bx + c$
- 3. GPT: $c(e^{bx} 1), ax^3...$
- 4. GPT: ln(x) το οποίο δεν βγάζει κανένα νόημα.

Συναρτήσεις που ταιριάζουν με τον ορισμό του Σωτήρη είναι:

- 1. $\frac{1}{x} \frac{1}{BAU}$
- 2. $\frac{1}{x^2}$

18.2 Τι είπαμε στην συνάντηση - Ορισμός προβλήματος

Αρχικά βρήκα τον κύβο μου! (τον 11 M pro, ο i3 ακόμα αγνοείται) (ναι, δεν είναι τόσο σημαντικό αυτό, αλλά και είναι λίγο)

- Ν εταιρείες.
- C χώρες.
- S τομείς της αγοράς.
- τ κόστος της άδειας.
- $E_s:q_i\to x_i$ ρυθμός ρύπων για τον τομέα ${f s}$
- $q_{i,y}$ παραγωγή της εταιρείας με id = i και έτος = y.
- q_i παραγωγή της εταιρείας με id = i, για ανάλυση μίας χρονιάς.
- $q_i^* = q_{i,y+1}$
- $\chi_{i,y}$ ρύποι της εταιρείας με id = i και έτος = y.
- χ_i ρύποι της εταιρείας με ${\rm id}={\rm i},$ για ανάλυση μίας χρονιάς.
- $\bullet \ \chi_i^* = \chi_{i,y+1}$
- $\Phi_i(y) = \delta$ ωρεάν άδειες για το έτος y στην εταιρεία i.
- C(i) = επιστρέφει την χώρα της εταιρείας <math>i.
- $S(i) = \epsilon \pi i \sigma \tau p \epsilon \phi \epsilon i$ τον τομέα της εταιρείας i.
- $K_{c,s,y} = \sum x_{i,y}, \forall x_{i,y} | y = y \land c = Ci \land S(i) = s$

- $Q_{c,s,y} = \sum q_{i,y}, \forall x_{i,y} | y = y \land c = Ci \land S(i) = s$
- $p_s(y)$ η αντίστροφη συνάρτηση ζήτησης για το προϊόν του τομέα s για το έτος y. Κοίλη και φθίνουσα. $p_s:Q\to\mathbb{R}$, όπου \mathbb{R} εδώ είναι η τιμή πώλησης.
- $f_i(y)$ η συνάρτηση abatement, χυρτή, αύξουσα με $f(0) = 0 \land f'(0) = 0 \land f_i(x) \forall x \ge 0$
- $pr_i(q_{i,y})$ κόστος παραγωγής για την εταιρεία. Όπως είπαμε είναι ξεχωριστή συνάρτηση για την κάθε εταιρεία, κυρτή και αύξουσα. Σε αντίθεση με το paper [3] όπου το οριακό κόστος είναι σταθερό.

Κέρδος επιχείρησης:

$$p_s(\sum q_j^* \forall j | S(j) = S(i)) - \tau(x_i^* - \Phi_i) - pr_i(q_i^*) - f_i(E_s(q_i) - x_i^*)$$

18.2.1 Βήμα 1

Στη συνέχεια θέσαμε με πολλή σαφήνεια τους στόχους. Επομένως προχύπτει ο παραχάτω ορισμός προβλήματος:

- Θα φτιάξουμε 1 εταιρεία για κάθε j από τους 3 τομείς για κάθε μία χώρα i από τις 3 στα συνθετικά δεδομένα.
- Καλό είναι στα δεδομένα αυτά να έχουμε έναν μπουσουλα στην αρχή, οπότε οι 3 χώρες θα μοιάζουν με την Ιταλία, τη Γερμανία και την Ολλανδία.
- Αντίστοιχα, οι τομείς θα μοιάζουν με τους τομείς: τσιμέντα, ηλεκτροπαραγωγή, παραγωγή χαρτιού.
- Για κάθε τομέα θα χρησιμοποιήσουμε μία συνάρτηση ρυθμού ρύπων, άρα 3 συναρτήσεις.
- Θα χρειαστούμε επίσης 1 συνάρτηση ζήτησης για κάθε τομέα, άρα 3 συναρτήσεις φθίνουσες.
- Οι συναρτήσεις abatement θα είναι ξεχωριστές για όλους, άρα 9.
- Ομοίως, και οι 9 συναρτήσεις production.
- Η τιμή της άδειας θα θεωρείται σταθερή.
- Το κόστος παραγωγής θα είναι γραμμική αύξουσα.
- Το abatement θα ορίζεται ως μπλα μπλα.

18.2.2 Βήμα 2

Αφού οριστούν αυτά θα πρέπει να βρεθεί ο Cournot ισορροπία. Στο σύστημα.

Μετά τα δεδομένα αυτά θα feedαριστούν στο LP, τον Linear Mechanism του άρθρου [3] και ιδανικά και στο benchmarking.

18.2.3 Βήμα 3 - Βελτιώσεις

Χωρίς κάποια συγκεκριμένη σειρά πρέπει να γίνουν τα παρακάτω:

- Η τιμή της άδειας να ορίζεται από το Cap and Trade σύστημα.
- Η συνάρτηση κόστους παραγωγής να γίνει κυρτή. Πιθανώς πολυώνυμο τρίτου βαθμού καθώς το marginal cost του παναγιώτη ήταν δευτέρου.
- Η συνάρτηση του abatement να γίνει απειρίζουσα χυρτή.
- Να μπουν παραπάνω εταιρείες ανά sector.
- Παραπάνω χώρες.
- Παρακάτω τομείς.

19 14/1/23 Συνάντηση στο ΜΟΠ

- 1. Είπαμε πως στην αρχή το κόστος παραγωγής θα είναι 0. h=0, άρα δεν χρειάζεται να γίνει κάτι διαφορετικό από αυτό που κάνουν στο paper [3].
- 2. Βασάνισες πολύ την Τζέλα, χρωστάς καφέ / ποτό.
- 3. Πρέπει να διαβάσω το [3] για να καταλάβω καλύτερα το μηχανισμό του regulator.

Μερικές απορίες που έχω και οι οποίες δεν λύνονται νομίζω κάπως:

- 1. Στην ερώτηση είχα σημειώσει ένα συγκεκριμένο παράδειγμα, αλλά αυτό το ερώτημα θα μπορούσε να γραφτεί και ως: Πώς διαχειριζόμαστε τις διαφορές στην πληροφορία μεταξύ των εταιρειών;
- 2. Πώς μπορούμε να βάλουμε στο σύστημα επιπλέον στοιχεία ρτεαλισμού, όπως την ανελαστικότητα της παραγωγής για κάποια προϊόντα ή το ότι αν μία επιχείριση σταματήσει φέτος την παραγωγή της, ίσως να μην είναι εφικτό να την επαναφέρει την επόμενη χρονιά, οπότε ίσως να πρέπει να το συνυπολογίσει αυτό.

20 28/11/23 Διαδικτυακή συνάντηση

Αχύρωσα την προηγούμενη Τρίτη. Διάβασα για το cournot competition. Αλλά και εκείνη την φορά πήγα από ντροπή. Δεν είχα κάτι καινούριο να πω ή δεν είχα κάνει κάτι παραπάνω. Μετά ακύρωσα και την επόμενη εβδομάδα, επειδή ήταν το Πρώτο Εθνικό πρωτάθλημα ταχυκυβισμού.

21 12/12/23 Διαδικτυακή συνάντηση

Ξεκίνησα να γράφω τον κώδικά για όσα είπαμε. Ήταν καλύτερος από όλα τα προηγούμενα, αλλά ακόμα ήταν χάλια. Απέτυχα να έρθω στην συνάντηση.

22 19/12/23 Διαδικτυακή συνάντηση

Εαναέπιασα τον κώδικα από την αρχή. Πλέον εμφανώς πλίγομαι σε μία κουταλιά νερό. Αλλά προσπαθώ και πάει καλά νομίζω.

23 27/2/24 Διαδικτυακή συνάντηση

Καταλήψεις, ιστορίες κλπ. Δεν είχα διαβάσει αρκετά παρόλο που αυτό το διάστημα αυτό υποτίθεται πως έκανα. Μία μικρή περίληψη των παλιών είναι:

- 1. Χρησιμοποιώντας 3 sectors και ομογενή προϊόντα και 3 χώρες και 3 εταιρείες ανά sector να λυθεί το πρόβλημα του cournot competition όπως αυτό ορίζεται από το [3].
- 2. Στην συνέχεια, να δούμε πόσο κοντά μπορεί να φτάσει το γραμμικό πρόγραμμα που ορίσαμε στο άρθρο [4].
- 3. Αφού δούμε τα αποτελέσματα σε αυτό, πρέπει να δούμε πού και γιατί αποτυγχάνει. Μπορεί να εξηγηθεί κάπως;
- 4. Ίδια δουλειά, αλλά με τον αλγόριθμο του benchmarking.
- 5. Διεύευνση για πολλά data.

6. Μεταφορά στα πραγματικά data.

Επιπλέον χρήσιμα πράγματα που ειπώθηκαν ήταν:

- 1. Πολύ ενδιαφέρον paper το [6], το οποίο αξίζει να το διαβάσω για να καταλάβω το social welfare.
- 2. Δ ες τον πίνακα 3 από την διπλωματική του Παναγιώτη.

Παράλληλα, στα νέα των παιδιών είναι: Ο Σωτήρης μεταχόμισε και μείωθηκαν οι υπερωρίες. Στην δουλειά είχε γίνει κάποιο λάθος στο πρότζεκτ της δουλειάς, γιατί λείπανε τιμές από τελικές εξετάσεις, για μία εξέταση που δεν καταγράφεται, αλλά επαναλαμβάνεται κάθε μισή ώρα. Επίσης, είχε πάει Φλοίσβο το Σάββατο και κρύωσε. Κάποια στιγμή επίσης πρέπει να χειρουργήθηκε η γιαγιά του στο Ωνάδιο για αλλαγή μητροειδούς. Η Τζέλα ακόμα τελειώνει το διδακτορικό, όμως έχει πέσει η αποδοτικότητά της, όχι η όρεξή της για όλο αυτό. Μετά έρχεται το μεταδιδακτορικό.

$24 \quad 22/4/24 \,\, { m E}$ πανεκκίνηση

Πλάνο για το επόμενο διάστημα:

- 1. Οργάνωσε όντως τον παλιό χώδιχά. Όχι εσύ, βάλε το τσατ να το χάνει. Αλλά να γίνει χαλά και γρήγορα.
- 2. Ξαναδιάβασε σωστά το [3].
- 3. Βάλε επιπλέον ένα μοντέλο το οποίο θα έχει όλες τις πληροφορίες πάνω του και θα μπορείς να του τρέξεις διαφοετικά πράγματα.
- 4. Χρησιμοποιώντας 3 sectors και ομογενή προϊόντα και 3 χώρες και 3 εταιρείες ανά sector να λυθεί το πρόβλημα του cournot competition όπως αυτό ορίζεται από το [3].
- 5. Στην συνέχεια, να δούμε πόσο κοντά μπορεί να φτάσει το γραμμικό πρόγραμμα που ορίσαμε στο άρθρο [4].
- 6. Αφού δούμε τα αποτελέσματα σε αυτό, πρέπει να δούμε πού και γιατί αποτυγχάνει. Μπορεί να εξηγηθεί κάπως;
- 7. Ίδια δουλειά, αλλά με τον αλγόριθμο του benchmarking.
- 8. Διεύευνση για πολλά data.
- 9. Μεταφορά στα πραγματικά data.

25 19/7/24 Επανεκκίνηση

Ξεκίνημα ξανά. Πάμε. Οι γενικοί στόχοι μένουν ίδιοι. Γενικά έγιναν τα παρακάτω:

- 1. Απέτυχα να χρησιμοποιήσω κάποιο από τα Pyomo ή XCvCV για να τρέξω ακόμα και ένα απλό προβλημα στη python.
- 2. Δοκιμάζω το Gurobi που μου είχε πει η Αθηνά.
- 3. Τελικά μια χαρά λειτουργεί το Gurobi. Επίσης, μία χαρά λειτουργεί η δημιουργία των dummy data.
- 4. Κάθε αντιχείμενο θα έχει την δική του συνάρτηση, άρα μπορούμε να μοντελοποιήσουμε κανονικά όσες τιμές θέλουμε. Δεν ξέρω γιατί 3 μέρες δουλειάς μπορούν να αντικατασταθούν από 40 λεπτά με chat Gpt...

Προφανώς έγιναν και άλλα πράγματα όσο ήμουν στην Σαντορίνη, αλλά δεν τα κατέγραψα. Τα πιο σημαντικά ήταν το να διαβάσω ξανά τα 2 σημαντικά paper. Το submission 2269 η αλήθεια είναι πως δεν το κατάλαβα, το καλύτερο δε είναι η κοστολόγηση της εκτύπωσης στην όμορφη Σαντορίνη, αλλά τι να κάνουμε...

26 26/7/24 Συνάντηση με τον κ Φωτάκη από το γραφείο του Κοινοτάρχη Αστριτσίου

Στην συνάντηση ειπώθηκαν αρκετά πράγματα. Στην αρχή ήταν και η Τζέλα εκεί και για τα νέα να πούμε πως ΠΑΡΟΥΣΙΑΖΩ ΤΕΛΗ Οκτωβρίου! Επίσης, η Τζέλα πήγε και παρουσίασε στις Βρυξέλλες το paper που είχαν γράψει με τον Παναγιώτη, καθώς πήρε βραβείο καλύτερου paper. Επίσης, ειπώθηκε η τρομερή ατάκα "Δεν μπορείς να μείνεις παραπάνω στην σχολή, κάνεις κακό στον εαυτό σου".

Στην συνέχεια αποχώρησε η Τζέλα και το θέμα της συζήτησης ήταν το μέλλον μου και προοπτικές σχετικές με την διδασκαλία. Σε αυτό προφανώς υπάρχουν δύο πολύ διακριτοί δρόμοι. Από εδώ και πέρα θα παραφράζω και θα γράψω σε πρώτο πρόσωπο σαν να μιλάει ο κ Φωτάκης, αλλά προφανώς δεν τα θυμάμαι αρκετά καλά.

Μην πας στο σχολείο. Θα το μετανιώσεις επειδή: 1) Είναι σε κακό επίπεδο η εκπαίδευση στην Ελλάδα 2) Είναι σε ακόμα χειρότερο επίπεδο η εκπαίδευση στην πληροφορική 3) Είναι πολύ εύκολο να βρεθείς να εξαρτάσαι από διευθυντές που θα σου κάνουν δύσκολη τη ζωή χωρίς κάποιο λόγο 4) Τα τυπικά σου προσόντα θα δημιουργούσαν μεγαλύτερες προσδοκίες 5) Δεν θα σου επιστρέψει όσα θα του δώσεις εσύ.

Η άλλη εκδοχή είναι να γίνεις ΕΔΙΠ. Όμως αυτό είναι μία πολύ μεγαλύτερη δέσμευση και δυσκολότερο. Αυτό που κερδίζεις είναι πως θα νιώθεις να πιάνει τόπο η δουλειά σου και να νιώθεις περήφανος. Αλλά για αυτό χρειάζεσαι διδακτορικό και εννοείται να συμμετέχεις στην έρευνα. Γιατί η έρευνα είναι η επικαιροποίηση της γνώσης σου.

Παράλληλα όσο μιλούσαμε τον πήρε τηλέφωνο ένας φίλος του, ο οποίος είχε αδικηθεί πολύ στην δουλειά του. Παντού θα παίζουν αυτά, αλλά ήταν πολύ άσχημο και η ζωή ενός ανθρώπου πήγε πίσω αρκετά χρόνια, απλά επειδή κάποιος άλλος είχε τις γνωριμίες μάλλον...

Γυρνώντας πίσω στα εκπαιδευτικά. Προφανώς είναι χαμηλότερος ο μισθός στην εκπαίδευση και αυτό πρέπει να είναι κάτι που το γνωρίζεις από πριν.

Το μεταπτυχιακό Εδέμ θα σου ταίριαζε. Ουσιαστικά ταιριάζει στην διπλωματική σου, σου προσφέρει παραπάνω γνώσεις πάνω στο αντικείμενο, είναι τίγκα στα buzz words και ανεβάζει την αγοραστική σου αξία. Ρεαλιστικά ξεκινώντας το ΕΔΕΜ θα συμβούν δύο πράγματα. 1) Θα αρχίσουν να σε προσεγγίζουν εταιρείες για να συνεργαστούν μαζί σου, οπότε θα μπορέσεις χωρίς κόπο να μάθεις την αγοραστική δύναμή σου. Παράλληλα, θα μπορούσες να κάνεις εκεί μία διπλωματική που να κοιτά με το ένα μάτι το διδακτορικό. Έτσι, πρακτικά εξερευνείς και τα δύο, επενδύοντας στο μέλλον, οπότε πρακτικά δεν χάνεις χρόνο και θα είσαι πιο σίγουρος, γιατί ο χρόνος αλλάζει τα δεδομένα.

Μέχρι να συμβεί αυτό παίζουν δύο πράγματα. Είτε στρατός είτε το μεταπτυχιαχό του ΕΚΠΑ στο οποίο δεν έχω πει στον κ Φωτάχη πως έχω δηλώσει συμμετοχή. Όσο συμβαίνουν αυτά μπορείς να πηγαίνεις στο ΜΟΠ για να δουλέψεις όλα όσα έμειναν μισά από την διπλωματιχή σου. Παράλληλα, αν πας στρατό, ίσως να μπορείς να έρθεις σε χάποια υπηρεσία πληροφοριχής αν έχεις το πτυχίο, οπότε πραχτιχά να είσαι στο σπίτι χοντά.

Στα της διπλωματικής τώρα: Η διπλωματική έχει περιορισμούς, δεν μπορεί να κρατά για πάντα. Πολλά πράγματα έχουν κοπεί γιατί θα έπαιρναν πολύ χρόνο, αλλά θα μπορούσαν να αποκτήσουν ερευνητική υπόσταση. Παράλληλα, κάποιο κομμάτι της διπλωματικής ταιριάζει με αυτά που κάνει η Τζέλα στο μεταδιδακτορικό της, οπότε η ήδη υπαρκτή συνεργασία σας είναι σημαντική.

Παράλληλα ένα ακόμα που ειπώθηκε είναι πως όσο είμαι στην Αθήνα είμαι σε μία φούσκα ασφάλειας. Μόλις βγεις έξω, σαν την Αθηνά, χάνεται το δίκτυ προστασίας.

Αυτά.

27 Μετά το Αστρίτσι και την Νάξο

Πλέον μπαίνουν στόχοι και γκρεμίζονται:

[x]Κάτι γαμήθηκε μετά το update της ΙΑΤΕΧ, οπότε πρέπει να διορθωθεί. Τελικά ήταν ένα από τα πακέτα που δεν χρησιμοποιώ πια και το οποίο μάσκαρε την γραμματοσειρά με αποτέλεσμα η νέα να μην υποστηρίζει ελληνικούς χαρακτήρες, το οποίο είναι ηλίθιο. Έφαγα άπειρη ώρα να νομίζω πως φταίει κάτι στην εγκατάσταση. Τέλος πάντων, λύθηκε. 26/8/24

[_]Dummy Δεδομένα. Θα τα φτιάξεις επιτέλους;

Firm	Sector	Country
Name	Name	Name
ID	ID	ID
sector id	product	
country id	production cost function	
abatement cost function		
emission to production ratio		
free_allocation function		

[_]Προδιαγραφές για τα δεδομένα.

- [x] Aς γίνει δοχιμή με 2 εταιρείες και να δούμε πώς θα τρέξει αυτό. Έτρεξε κομπλέ, αλλά μετά από πολλη προσπάθειας.
- [x]Ενεργοποίηση του Gurobi και στον άλλο υπολογιστή.
- [x] Robustness check για τα αποτελέσματα του gurobi. Από όσο φαίνεται, συγχλίνει αλλά πολλές εταιρείες μπορούν πολύ γρήγορα να κάνουν ακόμα και τον i9 να μοιάζει πολύ αργός. Πάντως κατέληξε όλες τις φορές στον ίδιο αποτέλεσμα με πολύ μεγάλη ακρίβεια ξεκινώντας κάθε φορά με εντελώς διαφορετικά δεδομένα. Αναλυτικά στο "01_two_companies_one_sector_and_robustness_100_companies.ipynb"
- [_]Όλα τα παραπάνω έγιναν με Best Responce Dynamics. Αλλά αφφού χρησιμοποιείται ένας συνδυασμός sympy και gurobi θα μπορούσε πιθανώς να γίνει και Gradient Descent για προσέγγιση του αποτελέσματος. Προς το παρόν, απλά παίζει κάθε εταιρεία ανεξάρτητα από τις άλλες και τελικά καταλήγουν όλες σε λογικά νούμερα. Θα μπορούσε όμως να είναι πιο γρήγορο αυτό:

Initial Allocation:
$$\vec{x} = \langle x_1^0, ..., x_n^0 \rangle$$

$$x^{\vec{k+1}} = x^{\vec{k}} + \alpha \nabla \langle x_1^k, ..., x_n^k \rangle$$

[x]Μάθε τα βασικά του sympy για μελλοντική χρήση.

- [_]Φτιάξε σωστά το γαμίδι το sympy_to_gurobi() γιατί βγαίνουν όλα λάθος. Ο κώδικας παρατήθεται στο Παράρτημα Α'
 - [x] Αρχικά, ας μην γυρίζει τέρατα.
 - [x] Υποστήριξη για εκθετικά. Στο gurobi αυτό λύνεται βάζοντας βοηθητική μεταβλητή και την ενσωματωμένη μεταβλητή. Αν ο εκθέτης δεν είναι απλή μεταβλητή, τότε πρέπει να μπει και άλλη βοηθητική μεταβλητή.
 - [x]sin, cos, tan (aux + builtIn)
 - [x] log (aux + builtIn)
 - [_]κλάσματα (πάλι με βοηθητική μεταβλητή και γινόμενο ίσο με την μονάδα) πρέπει δηλαδή να γίνει κάπως έτσι:

```
# Create a new model to maximize (x - 3)/(x + 3)
opt_mod = Model(name="Linear Programming Example")

# Create decision variables
x = opt_mod.addVar(name="x", vtype=GRB.CONTINUOUS, lb=0)
y = opt_mod.addVar(name="y", vtype=GRB.CONTINUOUS, lb=0)
z = opt_mod.addVar(name="z", vtype=GRB.CONTINUOUS, lb=0)
# Auxiliary variable
```

```
# Set the objective function

obj_fn = (x - 3) * y

opt_mod.setObjective(obj_fn, GRB.MAXIMIZE)

# Add constraints

opt_mod.addConstr(z == x + 3, "auxiliary_constraint")

opt_mod.addConstr(y * z == 1, "reformulated_constraint")
```

[x] Εκθέτες μεγαλύτεροι του 2 και πιο αναλυτικές βάσεις. (πάλι δεν έγινε ευθεία, ήθελε addGenConstr-Pow()). Αφού έγινε αυτό, γίνεται όλο και πιο ενδιαφέρουσα η χρήση των σειρών Taylor για να λυθεί το πρόβλημα. Ειλικρινά θα αφαιρέσουν πολύ πολυπλοκότητα από εμένα που κάθομαι και προσπαθώ να φτιάξω έναν compiler από το πουθενά :P

[_]Κλάσματα προς το παρόν τα κάνει πανηλίθια. Για παράδειγμα το $\max \frac{x+3}{x}$ έγινε ένα τρομακτικό:

$$\max_{x} \quad 3 \cdot aux_1 + \frac{2 \cdot x \cdot aux_0}{2}$$
 s.t.
$$x + aux_0 == 0$$
 General Const.
$$aux_1 = POW(aux_0, -1)$$

Το οποίο μάλιστα υπολογίστηκε εντελώς λάθος. Νομίζω αυτό από μόνο του είναι ένας καλός περιορισμός για να μην χρησιμοποιηθούν κλάσματα στην διαδικασία όσο αυτό είναι εφικτό.

[.]Είναι σημαντικό εδώ να τεθεί ο περιορισμός ότι μπορεί κάτι πολύ δύσκολο να πρέπει να λυθεί με προσέγγιση της πραγματικότητας με δεύτερου βαθμού σειρές Taylor γιατί όλα δείχνουν να αποτυγχάνουν στο gurobi, αλλά αυτό δεν μου αρέσει καθόλου, γιατί τότε δεν έχουν καμία εγγύηση πως δεν βρίσκομαι κολλημένος σε τοπικό μέγιστο αντί για τη σωστή λύση. Γενικά πλέον μπορεί να προσεγγιστεί κάτι εκθετικό και λογαριθμικό, αλλά όχι κάτι που να περιλαμβάνει κάτι παραπάνω από τρίτου βαθμού μονώνυμο. Επίσης, αν η αντικειμενική συνάρτηση πάρει τιμή πάνω από 1 εκατομμύριο, τότε πάει λάθος.

[x] Αποφασίζω λοιπόν πως όλα θα γίνουν με κλιμάκωση ώστε οι τιμές τους να μην είναι ούτε κοντά στο 1 εκατομμύριο.

[_]Δες τα παλιά που έχετε πει.

[_]Πρέπει να γίνει κάτι τέτοιο, οπότε πρέπει πολλά να γίνουν. Ένα πρώτο χαζό βήμα είναι να γραφτεί ξανά όλο σε μία πιο επαναχρησιμοποιούμενη μορφή. Παράδειγμα με κλάσεις.

Thesis Flowchart

Figure 17

[_]Προβλήματα και στόχοι για 29/8/24

- Βάζοντας κλάσεις και διαφορετικά sectors ξαφνικά δεν συγκλίνει το αποτέλεσμα αλλά μόλις φτάσει σχετικά κοντά αποτυγχάνει.
 - [x] Βάλε αχριβώς τις ίδιες συναρτήσεις με πριν και δες αν θα έχεις το ίδιο πρόβλημα. Εξακολουθεί να έχει το ίδιο πρόβλημα. Σε ένα πολύ μικρό δείγμα, ήρθαν απλώς κοντά και αυτό είναι απόδειξη πως το best responce μπορεί να καταλήγει σε μία απάντηση, όμως αυτή η απάντηση μπορεί να μην είναι μοναδική και εάν οι συναρετήσεις γίνουν περίεργες, τότε μπορεί να ταλαντώνεται. Εδώ

φαίνεται ένα παράδειγμα στο οποίο το αποτέλεσμα επηρεάζεται μόνο από την σειρά με την οποία έγιναν οι υπολογισμοί και τίποτα παραπάνω με δύο εταιρείες:

	Run 1		Run 2	Run 1		Run 2
		Firm 1			$\mathbf{Firm} 2$	
\hbar abatement function		x^2			x^2	
production cost		0			0	
permit cost		5			5	
free allocation		$0.02 \cdot production$			$0.06 \cdot production$	
product price		10 - 0.1x			10 - 0.1x	
output	17.00	\neq	16.33	16.99	\neq	18.33
emission	14.50	\neq	13.83	14.49	\neq	15.83
profit	35.15	\neq	32.93	35.14	\neq	39.85

Το πολύ ενδιαφέρον είναι πως οι δύο διαφορετικές εκτελέσεις του αλγορίθμου έχουν να κάνουν ειλικρινά με κάτι τυχαίο που δεν είμαι σε θέση να καταλάβω. Κάνουν ακριβώς το ίδιο πράγμα. Έχουν ακριβώς τα ίδια δεδομένα, αλλάζει μόνο το πού είναι αποθηκευμένα τα δεδομένα. Το οποίο δεν είναι λογικό, οπότε θέλει παραπάνω ψάξιμο.

Άρα αυτός ο τρόπος είναι εντελώς λάθος ή περιλαμβάνει κάποιο λάθος!

[31/8/24] Ναι... Μάλλον εγώ δεν μπορώ να καταλάβω τι συμβαίνει. Δεν έχω κάνει ενδιάμεσα καν commit. Δεν ξέρω αν το gurobi είχε κάποιο πρόβλημα και λύθηκε την επόμενη μέρα, έκανα τα ίδια πράγματα και λύθηκε όλο μόνο του. Έκανα και δοκιμές και έβγαιναν οι ίδιες τιμές, ακόμα και αν ο ορισμός του προγράμματος ήταν διαφορετικός.

- $[_] \Delta$ οχίμασε αντί να λύνεις το πρόβλημα για κάθε εταιρεία ξεχωριστά να το λύνεις για όλες ταυτόχρονα με διαφορετικές μεταβλητές.
- [-]Δοκίμασε να χωρίζεις την αντικειμενική συνάρτηση όπως κάνουν στο paper σε δύο βήματα που τα κάθε ένα μεγιστοποιεί κάτι άλλο.
- [_] Παίξε με άλλες συναρτήσεις. Αύριο πρέπει να μπορείς να δείξεις κάτι που να λειτουργεί στην Τζέλα.
- [_]Οπτικοποίησε τα δεδομένα.

[x]Στόχοι για 31/8/24

[1/9/24] Φτιάξε τα κλάσματα, είναι σημαντικό να παίζουν σωστά. Έγινε, μαζί με με πολύ σημαντική απλοποίηση όλου του κώδικα, καθώς ποτέ δεν χρειαζόταν τελικά να είναι έτσι σύνθετος. Ακόμα δεν είναι τέοιο, όμως πλέον απλοποιεί τα κλάσματα πριν τρέξει κάτι και πάει πολύ καλύτερα. Επίσης χειρίζεται τα κλάσματα όπως ακριβώς και τις δυνάμεις, οπότε κουλ!

[1/9/24] Έφυγαν και άλλοι περιορισμοί για το gurobi. Τώρα θα μπορούσε ακόμα και να προσπαθήσει να μεγιστοποιήσει την τιμή $x^{10} \cdot 2^x$

[2/9/24]Μετά βάλε τα πάντα στην ίδια συνάρτηση όπως λέγαμε για προχθές...

- []Οπτιχοποίηση. Κάτι πρέπει να έχεις να δείξεις στην Τζέλα.
- [x] Δεν λειτουργούν οι τριγωνομετρικές συναρτήσεις στο gurobi. Βγήκαν!

Αποτελέσματα μίας εκ των εκτελέσεων:

	Fi	rm	Ou	tput	Emissi	on	Profit				
	fir	m1	15.34	4695	14.1816	34	64.204	19257163978			
	fir	m2	17.48	3278	17.2598	93	71.866	55933252161			
	fir	m3	8.17	8956	6.3698	44	34.712	29628397522			
Output:	fir	m4	83.55	8830	0.0000	00	779.52	23753169582			
о аграг.	fir	m5	5.97	2714	0.0000	00	56.478	33185849649			
	fir	m6	2.01	1250	0.0000	00	19.325	54066645350			
	fir	firm7 19.850244		0244	17.3024	13	1180.4	19150579525			
	firm8 46.360585		0585	42.1000	38	2755.7	4709199459				
	fir	m9	89.29	7704	88.8977	04	5304.3	32834000568			
_	id	name	e se	ctor	country	pr	odfun	abat_fun	output	emission	profit
_	1	firm1	. 1		1	0		$0.1*\exp(2*x)$	15.34	14.181	64.20
	2	firm2	2 1		2	0		5*x**2	17.48	17.25	71.86
	3	firm3	3 1		3	0		$x^{**}1.5$	8.17	6.36	34.71
Firms:	4	firm4	2		1	0		x**1.1	83.55	0.00	779.52
	5	firm5	5 2		2	0		$x^{**}1.2$	5.97	0.00	56.47
	6	firm6	5 2		3	0		$x^{**}1.35$	2.01	0.00	19.32
	7	firm7	3		1	0		$x^{**}1.4$	19.85	17.30	1180.49
	8	firm8	3		2	0		$x^{**}1.3$	46.36	42.10	2755.74
_	9	firm9	3		3	0		$x + x^{**}1.2$	89.29	88.89	5304.38
	id	nan	ne	price	_demand	fun	ction	free_emission_	multiplier		
Sectors:	1	cem	ent	10 -	0.1*x				0.100000		
2000010.	2	stee	el	20 -	0.1*x				0.020000		
	3	pap	er	100 -	0.02*x*	^k 1.5			0.100000		

28 2/9/24 Συνάντηση στο ΜΟΠ με την Τζέλα και κ. Φωτάκη

Λοιπόν... Αρχικά δεν λειτουργεί ο κώδικας της μαλακίας. Θα το διορθώσω. Σημαντικά σημεία που ειπώθηκαν:

[]Είναι λογικό να μην συγκλίνει ένα τέτοιο παιχνίδι. Άμα θέλω να μάθω παραπάνω για αυτό πρέπει να ψάξω για "Ficticious Play - Best Responce στον μέσο όρο των αποτελεσμάτων. Μία σκέψη επιπλέον είναι το ότι θα μπορούσε να συνδυαστεί με κάτι σαν random forest ή τον αλγόριθμο Monte Carlo? Ή κάτι τέτοιο.

[]Στην διπλωματική του Παναγιώτη χρειάστηκε να υπολογίσει το marginal abatement cost MAC. Για να το κάνει αυτό προσέγγισε το MAC όπως περιγράφεται στο Chevellier 2011. Περισσότερα στην διπλωματική του Παναγιώτη 4.1.

[]Είναι πολύ ενδιαφέρον το να γίνουν παρόμοια πειράματα με αυτά που έλανε ο Παναγιώτης. Πρέπει να τεθεί ένα BAU κατώφλι ρίπων (θέτοντας την τιμή της άδειας στο 0 και βάζοντας να μην υπάρχουν ανταλλαγές.) και στην συνέχεια να γίνουν δοκιμές με διαφορετικά μεγέθη, διαφορετικές δωρεάν άδειες, διαφορετικά όρια, διαφορετικά μεγέθη, σε γραφήματα, όμορφα.

[]Όσο συγκλίνει το best responce, μην το πειράξεις, αλλά άμα δεν συγκλίνει, δες τις παραπάνω επιλογές.

Sanity check για το τι τρέχει μέχρι τώρα: Προφανές λάθος μέχρι εδώ είναι πως δεν γίνεται μία εταιρεία να μπορεί να κάνει 0 abatement. και αυτό κάπως πρέπει να μπει στην διαδικασία.

Figure 18: $y = (6.156 - 0.1 * x) * x - 0.1 * e^{(x - 16)} - 2.44 * (16 - x * 0.1)$

28.1 Ιδέες για abatement cost function

Είπαμε πως το abatement μπορεί να είναι μία συνάρτηση 3ου βαθμού. Το πρόβλημα είναι πως αυτή η συνάρτηση πρέπει να πληροί τα παρακάτω: $f(emission=0)=\infty$ και f(emission=output)=0 και να είναι και κοίλη σαν συνάρτηση. Για να τα έχει όλα αυτά, θα μπορούσε να είναι κάτι από τα παρακάτω:

$$\log\left(1 + \frac{(output - emission)^2}{emission}\right)$$

$$\frac{(output-emission)^2}{emission} + k \cdot \frac{1}{emission}$$

$$\frac{|output-emission|}{emission} + k \cdot \frac{1}{emission}$$

Figure 19

Αν ακολουθήσουμε τον δεύτερο ορισμό, τότε θα μπορούσε να μοιάζει περισσότερο με κάτι τέτοιο:

$$\begin{split} \frac{1}{emission} \cdot |output - emission| \\ -\log \left(\frac{emission}{output} \right) \\ \left(\frac{output}{emission} \right)^k - 1 \end{split}$$

Αυτό το οποίο δοχίμασα μέσα στον χώδιχα είναι:

$$()exp \lor poly) + \frac{1}{r}$$

29 Τυχαία πράγματα που μου έρχεται πως καλό θα ήταν να γίνουν, αλλά δεν θέλω να τα κάνω

[]Πρέπει να συνάρτηση που καλεί το gurobi να είναι σε θέση να τρέξει κάθε κομμάτι της αντικειμενικής εξίσωσης και να ελέγξει εσωτερικά αν χτυπήθηκε σε οποιοδήποτε σημείο το όριο του ενός εκατομμυρίου.

Π ηγές, από 23/5/23

- [1] Guidance on Interpretation of Annex I of the EU ETS Directive (excl. aviation activities), https://www.mase.gov.it/sites/default/files/archivio/allegati/emission_trading/guidance_on_interpretation_annex_I_final.pdf
- [2] NACE Codes: What Are They and Why Do They Always Matter? https://connects.world/nace-codes/#What_are_NACE_codes_used_for
- [3] Allocating Emission Permits Efficiently via Uniform Linear Mechanisms, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4536951
- [4] DIMOS, S., FOTAKIS, D., MATHIOUDAKI, A., & PAPADOPOULOS, K. Fair and Efficient Allocation of EU Emission Allowances. https://cms.gnest.org/sites/default/files/Proceedings/cest2023_00077/cest2023_00077.pdf

- [5] Why Nations Fail https://edisciplinas.usp.br/pluginfile.php/3954893/mod_resource/content/ O/Why-Nations-Fail-Daron-Acemoglu.pdf
- [6] Ένα άρθρο που δεν έχει βγει ακόμα, αλλά ήρθε στον φωτάκη για review. Δεν το έχω διαθέσιμο, αλλά θα γίνει και ήταν πολύ καλό.

Παράρτημα Α'

Ας αρχίσω να έχω και τέτοια για να φαίνεται πιο μεγάλη αυτή η αναφορά. Παραπομπή στον κώδικα της συνάρτησης sympy_to_gyrobi()

Listing 1: Python example

```
import sympy as sp
       from gurobipy import Model, LinExpr, QuadExpr, GRB
2
3
       # Define a function to convert SymPy expression to Gurobi expression
4
       def sympy_to_gurobi(sympy_expr, symbol_map, model, aux_var_count=[0]):
5
6
           Recursively convert a SymPy expression to a Gurobi expression,
           handling exponentials, powers, divisions, and other complex expressions with
               auxiliary variables and constraints.
           Parameters:
10
               sympy_expr (sp.Expr): SymPy expression to convert.
11
               symbol_map (dict): Mapping from SymPy symbols to Gurobi variables.
               model (gurobipy.Model): Gurobi model to add constraints for complex
                   expressions.
               aux_var_count (list): A list to keep track of the auxiliary variable
14
                   count.
           Returns:
16
               Gurobi expression (LinExpr, QuadExpr, or constant).
           try:
19
               # Create a temporary variable to hold the result
20
               temp_expr = sympy_expr.simplify()
21
               temp_expr = temp_expr.apart()
22
23
               # Only if both operations succeed, update sympy_expr
24
               sympy_expr = temp_expr
25
           except Exception as e:
26
               # Handle the exception and continue with the old value
27
               print(f"An error occurred: {e}")
           if isinstance(sympy_expr, sp.Symbol):
29
30
               return symbol_map[sympy_expr]
31
           elif isinstance(sympy_expr, sp.Add):
32
               return sum(sympy_to_gurobi(arg, symbol_map, model, aux_var_count) for arg
33
                    in sympy_expr.args)
           elif isinstance(sympy_expr, sp.Mul):
35
               result = 1
36
```

```
37
               for arg in sympy_expr.args:
                   result *= sympy_to_gurobi(arg, symbol_map, model, aux_var_count)
38
               return result
39
40
           elif isinstance(sympy_expr, sp.Pow):
41
               base, exp = sympy_expr.args
42
43
               # Always create an auxiliary variable for the base
               base_expr = sympy_to_gurobi(base, symbol_map, model, aux_var_count)
45
               aux_var_name = f"pow_base_aux_{aux_var_count[0]}"
46
               aux_var_count[0] += 1
47
               base_aux_var = model.addVar(name=aux_var_name, vtype=GRB.CONTINUOUS)
48
               model.addConstr(base_aux_var == base_expr)
49
50
               if exp == 2:
51
                   # Handle quadratic expression
52
                   return QuadExpr(base_aux_var * base_aux_var)
53
               else:
                   # Handle non-quadratic powers using general constraints
                   exp_value = float(exp)
                   aux_var_name = f"pow_aux_{aux_var_count[0]}"
                   aux_var_count[0] += 1
58
                   pow_aux_var = model.addVar(name=aux_var_name, vtype=GRB.CONTINUOUS)
                   model.addGenConstrPow(base_aux_var, pow_aux_var, exp_value)
60
                   return pow_aux_var
61
62
           elif isinstance(sympy_expr, sp.exp):
63
               arg_expr = sympy_to_gurobi(sympy_expr.args[0], symbol_map, model,
64
                   aux_var_count)
               aux_var_name = f"exp_aux_{aux_var_count[0]}"
               aux_var_count[0] += 1
66
               arg_aux_var = model.addVar(name=f"aux_{aux_var_name}_arg", lb=0, vtype=
67
                   GRB. CONTINUOUS)
               model.addConstr(arg_aux_var == arg_expr)
68
               exp_aux_var = model.addVar(name=aux_var_name, vtype=GRB.CONTINUOUS)
69
               model.addGenConstrExp(arg_aux_var, exp_aux_var)
70
               return exp_aux_var
71
72
           elif isinstance(sympy_expr, sp.log):
73
               arg_expr = sympy_to_gurobi(sympy_expr.args[0], symbol_map, model,
                   aux_var_count)
               aux_var_name = f"log_aux_{aux_var_count[0]}"
75
               aux_var_count[0] += 1
               arg_aux_var = model.addVar(name=f"aux_{aux_var_name}_arg", vtype=GRB.
                   CONTINUOUS)
               model.addConstr(arg_aux_var == arg_expr)
78
               log_aux_var = model.addVar(name=aux_var_name, vtype=GRB.CONTINUOUS)
               model.addGenConstrLog(arg_aux_var, log_aux_var)
80
               return log_aux_var
81
82
           elif isinstance(sympy_expr, sp.Number):
84
               return float(sympy_expr)
```

```
86
            else:
87
                raise ValueError(f"Unsupported SymPy expression: {sympy_expr}")
88
89
        # Example usage
90
        x, y = sp.symbols('x y')
91
        sympy_expr = (x+1)/(x**5)
92
        \#sympy\_expr = sympy\_expr.apart()
93
94
        print("Sympy expression:", sympy_expr)
95
96
        # Create a Gurobi model
97
        model = Model("example")
98
        x_gurobi = model.addVar(name="x", lb=0.01, vtype=GRB.CONTINUOUS)
99
        y_gurobi = model.addVar(name="y", 1b=0, ub=1, vtype=GRB.CONTINUOUS)
100
        # Map SymPy symbols to Gurobi variables
103
        symbol_map = {x: x_gurobi, y: y_gurobi}
104
        \# Convert SymPy expression to Gurobi expression and update model
        gurobi_expr = sympy_to_gurobi(sympy_expr, symbol_map, model)
106
107
        # Set the objective and optimize
108
        model.setObjective(gurobi_expr, GRB.MAXIMIZE)
        model.params.OutputFlag = 1 # Suppress output
        model.optimize()
        model.write("test_94.lp")
113
        #mip_gap = model.MIPGap
114
115
        \#print(f'MIP\ Gap:\ \{mip\_gap\}')
116
117
        # Output the optimized values
        if model.status == GRB.OPTIMAL:
118
            print(f"Optimal x: {x_gurobi.X}")
            print(f"Optimal y: {y_gurobi.X}")
120
            print(f"Optimal objective value: {model.objVal}")
        print("Sympy evaluated expression:", sympy_expr.subs({x: x_gurobi.X, y: y_gurobi.
            X}).evalf())
        \#print("Sympy\ evaluated\ expression:",\ sympy\_expr.subs(\{x:\ x\_gurobi.X\}).evalf())
```