Math 101 Homework 7

Jeff Carney

February 6, 2017

1

Let S be a non-empty set of integers which is bounded above. So $\exists b \in \mathbb{R}$ s.t. b = lub(S). Let b = lub(S). $b - 1 < b \Rightarrow b - 1$ is not an upper bound for S. So $\exists x \in S$ s.t. x > b - 1. Let $x \in S$ where x > b - 1 and let $s \in S$. Since b = lub(S), $s \leq b$. Also x > b - 1 so x + 1 > b.

$$s \leq b < x+1$$

$$s < x+1$$

$$s - (x+1) < 0 \quad , s \in \mathbb{Z}, x+1 \in \mathbb{Z}$$

Two distinct integers differ by at least 1. Since s and x + 1 are distinct integers and s < x + 1:

$$s - (x+1) \le -1$$

$$s - x - 1 \le -1$$

$$s - x \le 0$$

$$s \le x$$

Therefore x is an upper bound for S and $x \in S$. $\Rightarrow x$ is the largest element of S.

2

The LUB Axium states that every non-empty set of reals which is bounded above has a lub. Let $A \subseteq \mathbb{R}$ where $A \neq \emptyset$ and A is bounded below. By the LUB Axiom, A has a lub. Let p = lub(A). Let $B = \{-a|a \in A\}$. B is bounded below and glb(B) = -p, as we proved in Homework 4. Thus, the LUB Axiom implies the GLB Axiom.

3

Let A be a non-empty set of reals that is bounded above. Assume that a and b are both least upper bounds for A. Now assume $a \neq b$. WLOG a < b. By definition of a lub, if b is a lub then any number smaller than b is not an upper bound. But a < b and a is an upper bound $\Rightarrow \Leftarrow$. Thus if a and b are lubs then a = b.

4

Let $a, b \in \mathbb{R}$ s.t. $a \neq b$. WLOG a < b. So $\sqrt{2} + a < \sqrt{2} + b$. Note that by the density of the rationals, there exists a rational number between $\sqrt{2} + a$ and $\sqrt{2} + b$. Let c be a rational number s.t. $\sqrt{2} + a < c < \sqrt{2} + b$. From this we know that $a < c - \sqrt{2} < b$. $c - \sqrt{2}$ is irrational, thus between any two distinct reals there is an irrational number.