

Nome: Leonardo Andrei Domenegato - 5970_______ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	61.96	61.37	61.51	61.43	61.51	61.55	61.58	61.93	61.41
A	Medição 2	61.8	61.4	61.55	61.45	61.54	61.58	61.18	61.69	60.77
	Medição 3	61.25	61.38	61.61	61.29	61.56	61.52	61.39	61.47	61.7
	Medição 1	61.03	61.87	61.6	61.49	60.83	61.5	61.58	61.57	61.54
В	Medição 2	61.02	61.23	61.49	61.1	61.63	61.53	61.3	61.67	61.32
	Medição 3	61.2	61.16	62.27	61.73	61.05	61.58	61.66	61.42	61.29
	Medição 1	60.83	61.91	61.32	61.62	62.04	61.59	61.52	61.63	61.14
$\mid C \mid$	Medição 2	62.03	61.12	61.41	61.55	61.61	61.41	61.77	61.36	61.62
	Medição 3	61.54	61.22	61.43	61.59	61.78	61.37	61.53	61.65	61.51

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)	5.18	6.02	6.14	7.41	8.21	8.43	9.9	10.61

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 21°C e 24°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

	N	1	2	3	4	5	6	7	8
	$V_a(V)$	11.78	11.37	9.22	10.53	9.95	8.68	9.54	8.38
Ì	$I_a (mA)$	117.735	113.094	92.347	105.299	99.662	86.831	96.259	83.124

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza				
20mA	$\pm (0.8\% + 3D)$				
200mA	$\pm (1.2\% + 4D)$				
20A	$\pm (2.0\% + 5D)$				

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.