Colas de Prioridad y heaps

Colas de prioridad

- Numerosas aplicaciones
 - Sistemas operativos, algoritmos de scheduling, gestión de colas en cualquier ambiente, etc.
- La prioridad en general la expresamos con un entero, pero puede ser cualquier otro tipo α con un orden <_α asociado.
- Correspondencia entre máxima prioridad y un valor máximo o mínimo del valor del tipo α

TAD Colas de prioridad

```
TAD ColaPrioridad<T> {
   obs s: seq<T>
   proc ColaPrioridadVacía(): ColaPrioridad<T> {
     asegura res.s = []
   proc vacía(in c: ColaPrioridad<T>): bool {
     asegura res = true <==> c.s = []
   proc apilar(inout c: ColaPrioridad<T>, e: T) {
     asegura c.s = old(c).s + [e]
  }
  proc desapilarMax(inout c: ColaPrioridad<T>): T {
    requiere c.s != []
    asegura esMax(old(c).s, res)
    asegura (\exists i: int) \emptyset \leftarrow i \leftarrow [old(c).s] \& old(c).s[i] = res \& \&
      c.s = subsec(old(c).s, 0, i) + subsec(old(c).s, i+1, |old(c).s|)
   pred esMax(s: seq\langle T \rangle, res: T) { res \in s && (\foralle: T) e \in s ==> e \langle= res}
```

Representación de Colas de Prioridad

- La implementación más eficiente es a través de <u>heaps</u>
- Heap significa, literalmente, "montón"

Representación de Colas de Prioridad

- La implementación más eficiente es a través de <u>heaps</u>
- Heap significa, también, "parva", o sea "montón de paja"

Representación de Colas de Prioridad

- Cola de prioridad(α ,< α) se representa con heap
- Invariante de representación (condición de heap)
 - 1. Árbol binario perfectamente balanceado
 - La clave (prioridad) de cada nodo es mayor o igual que la de sus hijos, si los tiene
 - 3. Todo subárbol es un heap
 - 4. (no obligatorio): es "izquierdista", o sea, el último nivel está lleno desde la izquierda.
- (Ojo: ¡no es un ABB, ni una estructura totalmente ordenada!)
- Función de abstracción:
 - Ejercicio (fácil)

¿Son heaps?

max- y min-heap

- La estructura que estamos usando se llama max-heap
- Variante: min-heap
 - Cambiar "mayor" por "menor"

Operaciones sobre un (max-)heap

- Básicamente, las mismas que tenemos definidas en el TAD Cola de Prioridad:
 - Vacía: crea un heap vacío
 - Próximo: devuelve el elemento de máxima prioridad, sin modificar el heap.
 - Encolar: agrega un nuevo elemento, hay que restablecer el invariante
 - Desencolar: elimina el elemento de máxima prioridad, hay que restablecer el invariante

Implementación de heaps

- Todas las representaciones usadas para árboles binarios son admisibles
 - representación con punteros, eventualmente con punteros hijo-padre
 - representación con arrays
 - particularmente eficiente

- Cada nodo v es almacenado en la posición p(v)
 - \Box si v es la raíz, entonces p(v)=0
 - □ si v es el hijo izquierdo de u entonces p(v)=2p(u)+1

□ se v es el hijo derecho de u entonces p(v)=2p(u)+2

89	0
67	1
68	2
66	3
65	4
66	5
67	6
1	7
43	8
21	9
5	10
4	11
C 4	

- Cada nodo v es almacenado en la posición p(v)
 - \Box si v es la raíz, entonces p(v)=0
 - □ si v es el hijo izquierdo de u entonces p(v)=2p(u)+1

□ se v es el hijo derecho de u entonces p(v)=2p(u)+2

66

65

66

6

9

10

11

- Cada nodo v es almacenado en la posición p(v)
 - \Box si v es la raíz, entonces p(v)=0
 - □ si v es el hijo izquierdo de u entonces p(v)=2p(u)+1

□ se v es el hijo derecho de u entonces p(v)=2p(u)+2

Heaps sobre arrays

Ventajas

- Muy eficientes en términos de espacio (¡ver desventajas!)
- Facilidad de navegación
 - padre $i \rightarrow$ hijos j_{izq} y j_{der}

■ hijo $i \rightarrow \text{padre } j$

$$j = \lfloor (i-1)/2 \rfloor$$

Desventaja

 Implementación estática (puede ser necesario duplicar el arreglo (o achicarlo) a medida que se agregan/eliminan elementos

Algoritmos

Próximo:

- El elemento de prioridad máxima está en la posición 0 del arreglo
- Operación de costo constante O(1)

Algoritmo Encolar

- Encolar(elemento)
 - Insertar elemento al final del heap
 - Subir (elemento)
- Subir(elemento)
 - while (elemento no es raíz) y_L
 (prioridad(elemento) > prioridad(padre(elemento)))
 - Intercambiar elemento con padre

Algoritmo Encolar (ejemplo)

Algoritmo Desencolar

- Desencolar
 - Reemplazar el primer elemento con la última hoja y eliminar la última hoja
 - Bajar(raíz)
- Bajar(p)
 - while (p no es hoja) y_L (prioridad(p) < prioridad(algún hijo de p))
 - Intercambiar p con el hijo de mayor prioridad

Algoritmo Desencolar (ejemplo)

Costos

 Tanto para encolar como para desencolar, proporcionales a la altura del heap, que es.....

 $O(\lg n)$

Array2Heap

- Dado un array arr, lo trasforma en un array que representa un heap a través de una permutación de sus elementos
- Algoritmo simple
 para i desde 1 hasta tam(arr)
 encolar(arr[i]);

Array2Heap

- Dado un array arr, lo trasforma en un array que representa un heap a través de una permutación de sus elementos
- Algoritmo simple
 para i desde 1 hasta tam(arr)
 encolar(arr[i]);
- Costo (utilizando la <u>aproximación de Stirling</u> del factorial):

$$\sum_{i=1}^{n} |gi| = |gn| = \frac{|nn|}{|n2|} \approx \frac{1}{|n2|} (n|nn-n) = \Theta(n|gn)$$

Array2Heap

- Dado un array arr, 10⁴
 representa un hea 10³
 de sus elementos 10²
- Algoritmo simple

 para i desde

 10¹

 encolar(ε 10⁻¹
 10¹
- Costo (utilizando la <u>aproximación de Stirling</u> del factorial):

$$\sum_{i=1}^{n} |gi| = |gn| = \frac{|nn|}{|n2|} \approx \frac{1}{|n2|} (n|nn-n) = \Theta(n|gn)$$

Array2Heap/2

- Podemos hacer algo mejor.
- ¿Dónde están la mayoría de los nodos?
- La idea es aplicar la operación bajar a árboles binarios tales que los hijos de la raíz son raíces de heaps.
- Progresivamente se "heapifican" ("heapify") los subárboles con raíz en el penúltimo nivel, luego los del antepenúltimo, etc.
 - Estrategia bottom-up
- Algoritmo de Floyd

algoritmo de Floyd

			3									
66	5	4	67	23	64	45	21	89	68	67	39	33

algoritmo de Floyd/2

algoritmo de Floyd/3

0												
89	68	64	67	67	39	45	21	5	23	66	4	33

Análisis del Algoritmo de Floyd

- Caso peor: cada llamada a bajar hace el máximo número de intercambios
- Suponemos un heap con n = 2^k 1 nodos (árbol binario completo de altura k)
 - □ En el último nivel hay (n +1)/2 hojas
 - □ En el penúltimo nivel hay (n +1)/4 nodos
 - □ En el antepenúltimo nivel hay (n +1)/8
 - Y así sucesivamente....

$$n_h = n_i + 1$$

Análisis del algoritmo de Floyd/2

- Una llamada de bajar sobre un nodo de nivel i, provoca como máximo k – i intercambios (op. dominante)
 - 1 intercambio si i es penúltimo nivel, 2 si i es el antepenúltimo, ..., k-1 intercambios si i=1
- # max de intercambios = (# nodos en el penúltimo nivel)·1 + (# nodos en el antepenúltimo nivel)·2 + ... + (# nodos en el nivel 2)·(k-2) + (# nodos en el nivel 1)·(k-1), con k = lg(n+1)

Análisis del algoritmo de Floyd/2

max de intercambios =
 ((n + 1) / 4) · 1 + ((n + 1) / 8) · 2 + ... +

 $2 \cdot (\lg(n+1) - 2) + 1 \cdot (\lg(n+1) - 1)$

max de intercambios =

$$\sum_{i=2}^{\log(n+1)} \frac{n+1}{2^{i}} (i-1) = (n+1) \sum_{i=2}^{\log(n+1)} \frac{i-1}{2^{i}}$$

$$= (n+1) \left(\sum_{i=2}^{\log(n+1)} \frac{i}{2^{i}} - \sum_{i=2}^{\log(n+1)} \frac{1}{2^{i}} \right)$$

Análisis del algoritmo de Floyd/3

considerando que

$$\sum_{i=2}^{\infty} \frac{i}{2^i} = \frac{3}{2} \qquad \sum_{i=2}^{\log(n+1)} \frac{1}{2^i} > 0$$

$$\sum_{i=2}^{\log(n+1)} \frac{1}{2^i} > 0$$

Deducimos que

$$(n+1)\sum_{i=2}^{\log(n+1)}\frac{i-1}{2^i}<(n+1)(\frac{3}{2}-\sum_{i=2}^{\log(n+1)}\frac{1}{2^i})<\frac{3}{2}(n+1)$$

 \Rightarrow # max de intercambios = O(n)

Aplicaciones del algoritmo de Floyd

- Implementación de operaciones no standard
 - Eliminación de una clave cualquiera
 - Pueden ser requeridas en algún contexto
 - Ejemplo: kill de un proceso dado su PID
 - O(n) para encontrar la clave, O(1) para eliminarla, O(n) para reconstruir el invariante de representación con el algoritmo de Floyd
- Ordenamento de un array
 - Ya lo veremos.....

HeapSort

- Valor de las estructura de datos: Selection Sort usa n búsquedas de mínimo. ¿Cómo se hacía eso eficientemente?
- Podemos meter los elementos del arreglo uno a uno en un heap, y luego ir sacándolos.
- Pero: ¿se puede hacer algo todavía mejor?
- ¿Se acuerdan de la operación Array2Heap y del algoritmo de Floyd? Complejidad: O(n)
- Algoritmo de ordenamiento de un array basado en un heap
- Algoritmo
 - □ heap ← array2heap (A)
 - para i desde n-1 hasta 0 hacer
 - max ← próximo (heap)
 - desencolar
 - A[i] ←max
- Costo: O(n) + O(n log n)
- Notar que no requiere memoria adicional

Resumen

- Vimos colas de prioridades
- Implementación eficiente de las mismas -Heaps
- Implementación en árboles y arrays
- Maneras de crear eficientemente un heap -Floyd
- HeapSort