



# **Tango Controls - Wprowadzenie**

Piotr Goryl - 3Controls sp. z o. o. (piotr.goryl@3-controls.com)

Tadeusz Szymocha, Łukasz Dudek, Wojciech Kitka - Solaris, Uniwersytet Jagielloński

AGH, 11-04-2017

# Plan



- Plan wykładów/zajęć
- Kim jesteśmy
- Synchrotron
- Wprowadzenie
  - Co to jest system sterowania
  - Co to jest Tango Controls
- Sprawy organizacyjne



# Plan wykładów

- Wprowadzenie
- Pierwsze kroki w Tango
- Interfejsy graficzne
- 2 x Serwery Urządzeń
- Sardana
- Zagadnienia zaawansowane



# Kim jesteśmy

### **Piotr Goryl - 3Controls:**

Start-up założony w grudniu 2015 bazujący na m.in. na doświadczeniu zdobytym w Solaris.

Wdrażamy systemy SCADA bazujące na Tango Controls oraz przygotowujemy wersję przemysłową TangoSCADA.

http://www.3-controls.com

### Tadeusz Szymocha, Łukasz Dudek, Wojciech Kitka – Solaris, UJ:

Narodowe Centrum Promieniowania Synchrotronowego działające na Uniwersytecie Jagiellońskim, dostarczające promieniowanie synchrotronowe oraz potrzebną aparaturę i infrastrukturę do badań naukowych w wielu dziedzinach nauki.

http://www.synchrotron.pl



### **Solaris**

Solaris został wybudowany we współpracy z ośrodkiem MAX IV (Lund, Szwecja).

Jest bliźniaczym synchrotronem tamtejszego urządzenia o energii 1.5GeV.

Pierwsze elektrony: 19 Grudzień, 2014

Pierwsze światło: Kwiecień, 2015

Aktualnie uruchamianie dwóch linii pomiarowych oraz budowa kolejnej







Wiązka elektronów

# **Synchrotron**

Wytwarzanie promieniowania synchrotronowego ładunek (elektrony) w polu magnetyczny,



Promieniowanie (światło)







# **Synchrotron**

















Control System = Controller + Controlled Object























### video processing









1.0e-11















**Timing** 



Acquire signals from variety of equipment



**Apply settings to the equipment** 



Realize sequences and synchronous data collection



**Visualize machine state and experiment results** 



Manage and store experiment data (results and settings)



**Export data for future processing** 



- Each experiment/beamline differs form other
  - Different algorithms/sequences
  - Different kind of data
  - Different size of data produced
- End stations with third party software
- Variety of equipment providers different protocols
- Detectors/experiments could provide large amount of data
  - To be stored
  - To be sent
  - To be processed







# **TANGO**









DeviceServer:
Device1
Device2

DeviceServer:
Device1
Device2

DeviceServer:
Device1
Device2





# **TANGO**

### **TANGO**

- Distributed Control System
- Integration
- API
  - Objective
  - Java, C++, Python
- Protocol based on: TCP/IP, CORBA, ZeroMQ



TCP/IP (CORBA, ZeroMQ)

# Provides common language for system's elements



### **PowerSupply**

Current Voltage

On() Off()

### **Device Server:**

Process that contains devices

# **TANGO**

### **Device:**

- Translates hardware to the TANGO protocol
- An object of a certain **class** 
  - Attributes
  - Operations
  - States
- Logical abstraction of hardware



### DeviceServer:

Device1
Device2

•••

### DeviceServer:

Device1 Device2

•••

### DeviceServer:

Device1
Device2

. . .





Class

Alias

Att. Alias

Device

Server

# **TANGO**

### **TANGO HOST**

- Machine running a **DataBaseds** device server
- The DataBaseds device:
  - Provides configuration info to other parts of the TANGO
  - Stores data in a database (MySql)



← ■ ALARM ← ☐ ARCHIVING ← □ dserver ← □ I-K00 ← ☐ I-K01 ← 📹 I-K02 ← □ I-K03 - □ I-S00 - ☐ I-S01A ← □ I-S01B ← □ I-S02A ← 

CTL Properties Polling Event Attribute config - Attribute properties Logging - ∰ I-S02A-CTL-STPMT2 ⊶ 🗂 DIA 🗂 I-S02B

DeviceServer:

Device1
Device2

•••

DeviceServer:

Device1
Device2

•••

DeviceServer:

Device1

Device2

•••





# **TANGO**

### **Client Applications**

Taurus, Jdd, Jdraw – GUI building

Binding to Matlab, IgorPro, C – Acc physics

Sardana, Python - Sequencing

### **System Management**

Jive -Configuration

Astor – monitoring, deploying

Pogo – code generation

# Archiving MySql hdd HDB TDB

### **TANGO HOST**

DataBaseds

MySql



### DeviceServer:

Device1
Device2

•••

### DeviceServer:

Device1 Device2

• • •

### DeviceServer:

Device1
Device2

• • •



# 3¢ntrols

# **TANGO**







# 3¢ntrols

# **TANGO**













**Data Flow** 

*DeviceServer:*Device1
Device2







# Pojęcia

### Tango Controls

- Rozproszony system sterowania
- Definiuje protokół komunikacyjny oparty o CORBA-ę oraz ZeroMQ
- Definiuje dostępne funkcjonalności i pojęcia
- Definiuje API
- Biblioteki realizujące API
- Narzędzia (programy)
- Połączenia (bindings) do innych systemów



# Device (urządzenie)

### I-S01/MAG/PS1

Current = 10 Voltage = 1.4

On() Off()

- Mapuje fizyczne lub logiczne urządzenia na:
  - Atrybuty reprezentujące sygnały
  - Komendy reprezentujące akcje jakie można wykonać na danym urządzeniu
  - Pipe-y (rury, fajki ;)) będące odmianą atrybutów
  - Stany
- Ma nazwę składającą się z trzech części
  - {domena}/{poddomena}/{urzqdzenie}
  - W Solaris te trzy części są wykorzystywane nstępująco: {system}/{podsystem}/{urządzenie} np.: I-K00/VAC/IPCU1
  - Nazwa jest case-insensitive, nie rozróżnialne są wielkie i małe litery
- Jest obiektem (instancją, implementacją interfejsu) jakiejś klasy
- Jest instancjonowany przez device server (serwer urządzeń)



### Device Class (klasa urządzenia)

### **PowerSupply**

Current Voltage

On() Off()

- Określa interfejs danego urządzenia, czyli definiuje
  - Jakie atrybuty, pipe-y posiada urządzenie danej klasy
  - Jakie komendy można wykonać na urządzeniu tej klasy
  - Jak wygląda maszyna stanów urządzenia tej klasy
- Ma jednoczłonową nazwę
- Klasy są implementowane przez serwery urządzeń. i Interfejs danej klasy zdefiniowany jest tylko wewnątrz danego serwera urządzeń
  - Różne device server-y mogą implementować tą samą klasę w inny sposób i z innym interfejsem
- Programista musi dbać aby wewnątrz danego systemu był on spójny



### Device Server (serwer urządzeń)

### **DanfysikDS**

- Jest programem, który implementuje jedną bądź wiele klas urządzeń (device class) i pozwala instancjonować urządzenia tych klas
- Uruchomiony device server-a to instancja
- Każda instancja device server-a ma unikalną nazwę wewnątrz systemu
  - {DeviceServerName}/{InsanceName}
  - Device server uruchamiany jest zazwyczaj komendą:

/path\_to/DeviceServerName InstanceName opcje np.:

TangoTest test

Tworzy instancję TangoTest/test

Dla każdej instancji powstaje też urządzenie klasy DServere
 dserver/{DeviceServerName}/{InstanceName} pozwalające zarządzać instancją



# Rozproszenie

- Poszczególne komponenty Tango Controls mogą być uruchomione na wielu komputerach (serwerach, stacjach roboczych, urządzeniach wbudowanych) w wielu lokalizacjach
  - Istotne są zagadnienia sieciowe
  - Informacja gdzie w sieci uruchomiony jest element systemu (device server) dostępna jest poprzez tzw. Tango Host
  - Jest to komputer na którym uruchomiony jest device server
     DataBasds
    - Inne device servery uruchamiając się przesyłają informację o swojej lokalizacji sieciowej (IP, port) do DataBasds
  - Biblioteki Tango wykorzystują zmienną środowiskową
     TANGO\_HOST jako informcję o tym gdzie znajduje się Databads



# Rozproszenie





# Rozproszenie





# **DataBaseds**

- W systemie Tango musi być uruchomiony co najmniej jeden device server
   DataBaseds
  - W komendzie uruchamiania tego device servera podaje się (oprócz nazwy instancji, domyślnie 2) także informację pod jakim adresem IP i portem będzie oczekiwał na połączenia:

#### DataBaseds 2 -ORBendPoint giop:tcp::10000

 Ten device server uruchamia się na maszynie określanej jako Tango Host. Zakładając, że jest to komputer o adresie IP 172.20.25.48 wszystkie inne komputery w systemi muszą mieć ustawioną odpowiednio zmienną środowiskową np. w pliku /etc/rc.local znajduje się linijka:

#### export TANGO\_HOST=172.20.25.48:10000

- Zazwyczaj DataBaseds konfiguruje się jako serwis startujący automatycznie przy uruchomieniu systemu (na jednym wybranym komputerze w całym systemie)
- DataBaseds zapisuje, odczytuje i modyfikuje konfiguracje systemu zapisywaną w bazie danych (zazwyczaj MySQL)
  - Do uruchomienia DataBaseds potrzeba zdefiniować też zmienne systemowe:
     MYSQL\_USER oraz MYSQL\_PASSWORD i zakłada, że serwer MySQL jest uruchomiony na tym samym komputerze co DataBaseds



# **Databaseds**





### Aplikacje klienckie

DisableTTL

✓ Bypass

243.00

Active



Wszelkie programy, któr korzystają z API Tango Controls i urządzeń

Na komputerach gdzie są uruchamiane musi być zdefiniowana zmienna

systemowa TANGO\_HOST



### Wdrożenie





# Wdrożenie – Tango Host



# 3¢ntrols

# **TANGO**









### **Device Servers**







# TΔNGA





Server 1

Komputer Wbudowany



### **Devices**





### **Devices (urządzenia)**

Tango-Host SiemensPLC/plc1 S7: montownia/plc/plc1 S7: montownia/plc/plc2 S1500: montownia/plc/plc3





### **Klient**





### **Klient**





# Narzędzia

- Jive konfiguracja systemu
- Astor zarządzanie systemem
- Jdraw szybkie tworzenie paneli synoptycznych
- Pogo tworzenie szkieletu device serverów
- TaurusDesigner tworzenie zaawansowanych GUI
- AtkPanel podgląd urządzenia
- TaurusGui dynamiczne tworzenie widoków
- TaurusPlot, TaurusTrend wykresy, przebiegi
- Mambo archiwizacja
- Bensikin receptury

# O nich już na kolejnych zajęciach ©



# **Podsumowanie**

- Konsorcjum Tango Controls oraz społeczność
  - 45 instytucji
  - 480 zarejestrowanych użytkowników
  - Wsparcie dla ponad 600 klas urządzeń
- Dokumentacja:

http://tango-controls.readthedocs.io/en/latest/

### Do czego może przydać się Tango Controls:

- Do Łączenia pojedynczych urządzeń we wspólny system
- Do dostarczania, zbierania i archiwizacji danych pomiarowych
- Do sterowania i monitorowania urządzeniami w ustandaryzowany sposób
- Do zarządzania systemami sterowania
- ...











www.tango-controls.org

https://github.com/tango-controls/

http://www.tango-controls.org/resources/dsc/

http://tango-controls.readthedocs.io/en/latest/