Algorithms and Datastructures Runtime analysis Minsort / Heapsort, Induction

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithms and Datastructures, October 2017

Structure

Runtime Example Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort

Introduction to Induction

Logarithms

How long does the program run?

- In the last lecture we had a schematic
- **Observation:** It is going to be "disproportionaly" slower the more numbers are being sorted
- How can we say more precisely what is happening?

How can we analyze the runtime?

- Ideally we have a formula which provides the runtime of the program for an specific input
- Problem: The runtime is also depending on many other influences, especially:
 - Which kind of computer is the code executed on
 - What is running in the background
 - Which compiler is used to compile the code
- **Abstraction 1:** Analyze the number of basic operations, rather than analyzing the runtime

Incomplete list of basic operations:

- \blacksquare Arithmetic operation, for example: a + b
- Assignment of variables, for example: x = y
- Function call, for example: minsort(lst)

Basic Operations

Intuitive:

lines of code

Better:

lines of machine code

Best:

process cycles

Important:

The actual runtime has to be roughly proportional to the number of operations.

How many operations does Minsort need?

■ **Abstraction 2:** We calculate the upper (lower) bound, rather than counting the operations exactly

Reason: Runtime is approximated by number of basic operations, but we can still infer:

- Upper bound
- Lower bound

■ Basic Assmuption:

- \blacksquare *n* is size of the input data (i.e. array)
- \blacksquare T(n) number of operations for input n

- **Observation:** The number of operations depends only on the size *n* of the array and not on the content!
- Claim: There are constants C_1 and C_2 such that:

$$C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$$

This is called "quadratic runtime" (due to n^2)

Runtime Example

Runtime analysis - Minsort

We declare:

- \blacksquare Runtime of operations: T(n)
- Number of Elements: n
- Constants: C_1 (lower bound), C_2 (upper bound)

$$C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$$

■ Number of operations in round i: T_i

Figure: *Minsort* at the iteration i = 4. We have to check n - 3 elements

Runtime analysis - Minsort

Figure: Minsort at iteration i = 4

Compares at each iteration:

$$T_1 \leq C_2' \cdot (n-0)$$
 $T_2 \leq C_2' \cdot (n-1)$
 $T_3 \leq C_2' \cdot (n-2)$
 $T_4 \leq C_2' \cdot (n-3)$
 \vdots
 $T_{n-1} \leq C_2' \cdot 2$
 $T_n < C_2' \cdot 1$

$$T(n) = C'_2 \cdot (T_1 + \cdots + T_n) \leq \sum_{i=1}^n (C'_2 \cdot i)$$

Alternative: Analyse the Code:

```
def minsort(elements):
    for i in range(0, len(elements)-1):
         minimum = i
             if elements[j] < elements[minimum]:
    minimum = j

n-i-1
times
ninimum != i:</pre>
n-i-1
times
         for j in range(i+1, len(elements)):
            minimum != i:
             elements[i], elements[minimum] = \
                  elements[minimum]. elements[i]
```

return elements

$$T(n) \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} C_2' = \sum_{i=0}^{n-2} (n-i-1) \cdot C_2' = \sum_{i=1}^{n-1} (n-i) \cdot C_2' \leq \sum_{i=1}^{n} i \cdot C_2'$$

Remark: C_2' is cost of comparison \Rightarrow assumed constant

$$T(n) \leq \sum_{i=1}^{n} C'_{2} \cdot i$$

$$= C'_{2} \cdot \sum_{i=1}^{n} i$$

$$\downarrow \qquad \text{Small Gauss sum}$$

$$= C'_{2} \cdot \frac{n(n+1)}{2}$$

$$\leq C'_{2} \cdot \frac{n(n+n)}{2}, \ 1 \leq n$$

$$= C'_{2} \cdot \frac{2 \cdot n^{2}}{2} = C'_{2} \cdot n^{2}$$

Like for the upper boundary there exists a C_1 . Summation analysis is the same, only final approximation differs

$$T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n-i) = C'_1 \sum_{i=1}^{n-1} i$$

$$\geq C'_1 \cdot \frac{(n-1) \cdot n}{2} \quad \text{How do we get to } n^2?$$

$$\downarrow \qquad n-1 \geq \frac{n}{2} \text{ for } n \geq 2$$

$$\geq C'_1 \cdot \frac{n \cdot n}{2 \cdot 2} = \frac{C'_1}{4} \cdot n^2$$

Runtime analysis - Minsort

Runtime Analysis:

■ Upper bound: $T(n) \le C'_2 \cdot n^2$

Lower bound: $\frac{C_1'}{4} \cdot n^2 \le T(n)$

Summarized:

$$\frac{C_1'}{4} \cdot n^2 \le T(n) \le C_2' \cdot n^2$$

Quadratic runtime proven:

$$C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$$

- The runtime is growing quadratic with the number of elements *n* in the list
- Let constants C_1 and C_2 for which $C_1 \cdot n^2 \le T(n) \le C_2 \cdot n^2$
- $2 \times$ elements $\Rightarrow 4 \times$ runtime
 - $C = 1 \text{ ns} (1 \text{ simple instruction} \approx 1 \text{ ns})$
 - $n = 10^6$ (1 million numbers = 4MB with 4B/number)

$$C \cdot n^2 = 10^{-9} \,\mathrm{s} \cdot 10^{12} = 10^3 \,\mathrm{s} = 16.7 \,\mathrm{min}$$

- \blacksquare $n = 10^9$ (1 billion numbers = 4GB)
 - $C \cdot n^2 = 10^{-9} \text{ s} \cdot 10^{18} = 10^9 \text{ s} = 31.7 \text{ years}$
- Quadratic runtime = "big" problems unsolvable

Intuitive to extract minimum:

- **Minsort:** To determine the minimum value we have to iterate through all the unsorted elements.
- Heapsort: The root node is always the smallest (minheap). We only need to repair a part of the full tree after delete operation.

Formal:

- Let T(n) be the runtime for the Heapsort algorithm with n elements
- On the next pages we will proof $T(n) \le C \cdot n \log_2 n$

Depth of a binary tree:

- **Depth** *d*: longest path through the tree
- Complete binary tree has $n = 2^d 1$ nodes
- Example: d = 4⇒ $n = 2^4 - 1 = 15$

Figure: Binary tree with 15 nodes

Basics:

- You want to show assumption A(n) is valid $\forall n \in \mathbb{N}$
- We show induction in two steps:
 - Induction basis: we show that our assumption is valid at one point (for example: n = 1, A(1)).
 - Induction step: we show that the assumption is valid for all n (normally one step forward: n = n + 1, A(1), ..., A(n)).
- If both has been proven, then A(n) holds for all natural numbers n by **induction**

A **complete** binary tree of depth d has $n(d) = 2^d - 1$ nodes

■ **Induction basis:** Assumption holds for d = 1

Root

$$n(1) = 2^1 - 1 = 1$$

 \Rightarrow correct \checkmark

Figure: Tree of depth 1 has 1 node

Induction - Example 1

Number of nodes n(d) in a binary tree with depth d:

- Induction assumption: $n(d) = 2^d 1$
- Induction basis: $n(1) = 2^d 1 = 2^1 1 = 1$ ✓
- **Induction step:** to show for d := d + 1

Figure: Binary tree with subtrees

$$n(d+1) = 2 \cdot n(d) + 1$$

$$= 2 \cdot \left(2^{d} - 1\right) + 1$$

$$= 2^{d+1} - 2 + 1$$

$$= 2^{d+1} - 1 \checkmark$$

 \Rightarrow By induction: $n(d) = 2^d - 1 \ \forall n \in \mathbb{N} \ \Box$

Heapsort has the following steps:

- **Initially:** heapify list of *n* elements
- **Then:** until all *n* elements are sorted
 - Remove root as minimal element
 - Move last leaf to root position
 - Repair heap by sifting

Runtime of heapify depends on depth d:

Runtime of heapify with depth of d:

- No costs at depth d with 2^{d-1} (or less) nodes
- The cost for sifting with depth 1 is at most 1*C* per node
- In general: Sifting costs are linear with path length and number of nodes

Runtime - Heapsort Heapify

Heapify total runtime:

Generally: Depth $d \rightarrow 2^{d-1}$ nodes

Depth	Nodes	Path length	Costs per node	Upper bound
d	2 ^{d-1}	0	$\leq C \cdot 0$	≤ <i>C</i> · 1
<i>d</i> − 1	2 ^{d-2}	1	≤ <i>C</i> ⋅ 1	Standard $\leq C \cdot 2$
d-2	2^{d-3}	2	$\leq C \cdot 2$	Equation $\leq C \cdot 3$
<i>d</i> – 3	2 ^{d-4}	3	≤ <i>C</i> ⋅ 3	$\leq C \cdot 4$

$$T(d) \leq \sum_{i=1}^{d} \left(C \cdot (i-1) \cdot 2^{d-i} \right) \leq \sum_{i=1}^{d} \left(C \cdot i \cdot 2^{d-i} \right)$$

Heapify total runtime:

$$T(d) \le C \cdot \sum_{i=1}^{d} (i \cdot 2^{d-i}) \le C \cdot 2^{d+1}$$
See next slides

Hence: Resulting costs for heapify:

$$T(d) \leq C \cdot 2^{d+1}$$

However: We want costs in relation to n

Heapify total runtime:

$$T(d) \leq C \cdot 2^{d+1}$$

- A binary tree of depth d has $2^{d-1} \le n$ nodes
- $2^{d-1} 1$ nodes in full tree till layer d-1
- At least 1 node in layer d
- Equation multiplied by 2^2 ⇒ $2^{d-1} \cdot 2^2 < 2^2 \cdot n$
- Cost for heapify: $\Rightarrow T(n) < C \cdot 4 \cdot n$

Figure: Partial binary tree

$$\underbrace{\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right)}_{A(d) \leq B(d)} \leq 2^{d+1}$$

■ We denote the left side with A, the right side with B

$$A(d) \leq B(d)$$

$$\sum_{i=1}^{d} (i \cdot 2^{d-i}) \leq 2^{d+1}$$

$$\sum_{i=1}^{1} (i \cdot 2^{1-i}) \le 2^{1+1}$$

$$2^{0} \le 2^{2} \checkmark$$

■ **Idea:** Write down right hand formula and try to get A(d) and B(d) out of it

$$A(d) \leq B(d) \qquad \Rightarrow \qquad A(d+1) \leq B(d+1)$$

$$\sum_{i=1}^{d+1} \left(i \cdot 2^{d+1-i} \right) \leq 2^{d+1+1}$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot 2^{d+1}$$

$$\vdots$$

Induction - Example 2

Induction step: (d := d + 1):

:

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \le 2 \cdot 2^{d+1}$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot B(d)$$

$$2 \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) + 2 \cdot (d+1) \cdot 2^{d-(d+1)} \le 2 \cdot B(d)$$

$$2 \cdot A(d) + (d+1) \le 2 \cdot B(d)$$

■ Problem: Does not work but claim still holds

Working proof:

Show a little bit stronger claim

$$\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \le 2^{d+1} - d - 2 \le 2^{d+1}$$

■ Advantage: Results in a stronger induction assumption

$$\Rightarrow$$
 exercise

Runtime of the other operations:

- Constant costs for taking out $n \times maximum$
- Maximum of d steps repairing the heap n times
- Depth of heap at the start is $d \le 1 + \log_2 n$

$$2^{d-1} \le n \Rightarrow d-1 \le \log_2 n \Rightarrow d \le 1 + \log_2 n$$

- Recall: The depth and number of elements is decreasing
 - Hence: $T(n) \le n \cdot (1 + \log_2 n) \cdot C$
 - We can reduce this to:

$$T(n) \le 2 \cdot n \log_2 n \cdot C$$
 (holds for $n > 2$)

Runtime costs:

- Heapify: $T(n) \leq 4 \cdot n \cdot C$
- Remove: $T(n) \le 2 \cdot n \log_2 n \cdot C$
- Total runtime: $T(n) \le 6 \cdot n \log_2 n \cdot C$
- Constraints:
 - Upper bound: $C_2 \cdot n \log_2 n \ge T(n)$ (for $n \ge 2$)
 - Lower bound: $C_1 \cdot n \log_2 n \le T(n)$ (for $n \ge 2$)
 - lacksquare \Rightarrow C_1 and C_2 are constant

Logarithm to different bases:

$$\log_a n = \frac{\log_b n}{\log_b a} = \log_b n \cdot \frac{1}{\log_b a}$$

The only difference is a constant coefficient $\frac{1}{\log_b a}$

Examples:

$$\log_2 4 = \log_{10} 4 \cdot \frac{1}{\log_2 10} = 0.602 \dots \cdot 3.322 \dots = 2 \checkmark$$

■
$$\log_{10} 1000 = \log_e 1000 \cdot \frac{1}{\log_e 10} = \ln 1000 \cdot \frac{1}{\ln 10} = 3$$
 ✓

Runtime of $n \log_2 n$:

■ Assume we have constants C_1 and C_2 with

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 for $n \ge 2$

- \blacksquare 2× elements \Rightarrow only slightly larger than 2× runtime
 - \blacksquare *C* = 1 ns (1 simple instruction \approx 1 ns)
 - \blacksquare $n = 2^{20}$ (1 million numbers = 4 MB with 4 B/number)

$$C \cdot n \cdot log_2 n = 10^{-9} \text{ s} \cdot 2^{20} \cdot 20 = 21.0 \text{ ms}$$

- $n = 2^{30}$ (1 billion numbers = 4GB)
 - $C \cdot n \cdot log_2 n = 10^{-9} \text{ s} \cdot 2^{30} \cdot 30 = 32 \text{ s}$
- Runtime n log₂n is nearly as good as linear!

■ General for this Lecture

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson.

 Introduction to Algorithms.
 - MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Mathematical Induction

[Wik] Mathematical induction

https://en.wikipedia.org/wiki/Mathematical_induction