1

B.4 Results for AW4

In this section, we describe the results for RQ1, RQ2 and RQ4 (i.e., Sections B.4.1–Section B.4.3 respectively) for use case AW4.

B.4.1 Experiment Results for RQ1

This section describes the results for RQ1.

B.4.1.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, AUM))

TD	A 1: (1 A	A 1: (1 D	P	ET	P'	TR	Al	UM	О	FV	H	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.4.1.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, PUS))

ТВ	A 1 A	A la a si than D	P	ET	P'	TR	P	US	О	FV	I	IV	I	GD
1 D	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.4.1.3 Problem 3: This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	A	NU	О	FV	I	IV	IC	GD
10	AiguittiliiA	Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.05	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

			P	ET	P'	ΤR	A	NU	О	FV	I	ΙV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
TTD020	SPEA2	SimpleRS	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
TB020	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 100	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.4.1.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, PUU))

ТВ	A 1 A	A languista na D	P	ET	P'	TR	P	UU	О	FV	H	IV	IC	GD
1 D	AlgorithmA	AlgorithmB	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	UU	О	FV	I	IV	I	GD
10	AigoriumiA	Aigontillib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.4.1.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, AUM, PUS))

тр	A 1: (1 A	A 1: (1 D	P	ET	P'	TR	A	UM	P	US	О	FV	H	IV	IC	GD
TB	AlgorithmA	Algorithmb	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 00/0	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Algorithm A	AlgorithmB	P	ET	P'	ΓR	A	UM	P	US	О	FV	H	IV	IC	GD
1 1 1	AigontiiliA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.4.1.6 Problem 6: This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, AUM, ANU))

тр	A 1 A	A la a si the see D	P	ET	P'	TR	A	UM	A	NU	О	FV	I	IV	I	GD
TB	AlgorithmA	Aigorithmb	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	> 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	> 0.5	> 0.05		< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	> 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5			< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TR	AlgorithmA	AlgorithmR	P	ET	P'	TR	Al	JM	A]	NU	О	FV	Н	IV	IC	GD
10	AigontiiliA		AIZ	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	1 1								< 0.01						
1 1 1 1 0 0	SPEA2	1 1								< 0.01						
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.4.1.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, AUM, PUU))

TD	A.1 '(1 A	A1 '(1 B	P	ET	P	TR	A	UM	P	UU	О	FV	I	IV	IC	GD
TB	AlgorithmA	AigorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	p	A12	р
	NSGA2	SimpleRS	< 0.1	-	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TP010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.4.1.8 Problem 8: This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, PUS, ANU))

TD	A 1 A	A loosith as D	P	ET	P	TR	P	US	A	NU	О	FV	I	IV	I	GD
TB	AlgorithmA	Aigorithmb	A12	p	A12	р	A12	р	A12	p	A12	p	A12	р	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	>0.05	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	> 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.4.1.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	orithmA AlgorithmB	mB PET PTR		TR	P	US	Pl	UU	0	FV	I	IV	IC	GD	
10	Aiguittilia	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	A 1 A	A la a mith ma D	P	ET	P	TR	P	US	P	UU	О	FV	I	IV	I	GD
1 D	AlgorithmA	Aigoriumb	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 D 100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.4.1.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmR	P	ET	P	TR	A	NU	Pl	UU	О	FV	Н	IV	IC	GD
1 1 1	AigontilliA	Aigoriumb	A12	p	A12	p	A12	р	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	> 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TR040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040 -	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Algorithm A	AlgorithmR	P	ET	P'	TR	A	NU	P	UU	О	FV	ŀ	IV	I	GD
1 1 1 1	AlgorithmA	Aigoriumb	A12	p	A12	p	A12	p	A12	р	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 1 1 1	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TP100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	SPEA2	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.4.1.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 11. Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Multi-Objective Algorithms and RS for HV and IGD (AW4)

Problem	ТВ	Adjusted_p	Reject
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.1 f(PET,PTR,AUM)	TB050	< 0.01	Y
F100.1 J(FL1,F1K,Adivi)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.2 f(PET,PTR,PUS)	TB050	< 0.01	Y
F100.2 J(FL1,F1K,FU3)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.05	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB040	< 0.01	Y
1100.5 J(FL1,F1K,ANU)	TB050	< 0.01	Y
	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y

Problem	ТВ	Adjusted_p	Reject
D1. 2 ((DET DTD ANUI)	TB090	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D. 1.4 ((DET DED DITT)	TB050	< 0.01	Y
Prob.4 f(PET,PTR,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D. J. F. ((DET DTD. ALIM DUC)	TB050	< 0.01	Y
Prob.5 f(PET,PTR,AUM,PUS)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Durk (((DET DTD ALIM ANIL))	TB050	< 0.01	Y
Prob.6 f(PET,PTR,AUM,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.05	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Drob 7 f(DET DTR ALIM DILLI)	TB050	< 0.01	Y
Prob.7 f(PET,PTR,AUM,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.8 f(PET,PTR,PUS,ANU)	TB050	< 0.01	Y
1700.0 /(1 11/1 11/1 43/11/4)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB030	< 0.01	Y
110000 1/1 21/1 11(1 (40)1 (40)	TB040	< 0.01	Y
	TB050	< 0.01	Y
	TB060	< 0.01	Y

Problem	TB	Adjusted_p	Reject
	TB070	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB080	< 0.01	Y
F100.9 J(FL1,F1K,F43,F44)	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020 <0.01		
	TB030 <0.01 TB040 <0.01	< 0.01	Y
		< 0.01	Y
Prob.10 f(PET,PTR,ANU,PUU)	TB050	< 0.01	Y
1700.10 j(1 L1,1 1 K,211 a,1 aa)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y

^{*} Note that **Adjusted_p** refers to all adjusted p-value results. If **Adjusted_p** < 0.05 (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If **Adjusted_p** > 0.05, it means there is at least one adjusted p-value that is greater than 0.05.
* **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.4.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

B.4.2.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 12. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM))

TB	Metric	ChiSq	DF	p
	ET	21459.6	3	< 0.01
	CTR	3321.17	3	< 0.01
TB010	UM	1042.53	3	< 0.01
1 DO10	OFV	1282.79	3	< 0.01
	HV	265.5	3	< 0.01
	IGD	330.44	3	< 0.01
	ET	23091.38	3	< 0.01
	CTR	1471.66	3	< 0.01
TB020	UM	2156.92	3	< 0.01
1 0020	OFV	5848.32	3	< 0.01
	HV	315.74	3	< 0.01
	IGD	342.37	3	< 0.01
	ET	22610.13	3	< 0.01
	CTR	542.9	3	< 0.01
TB030	UM	2518.97	3	< 0.01
1 0000	OFV	15379.71	3	< 0.01
	HV	331.75	3	< 0.01
	IGD	334	3	< 0.01
	ET	21367.46	3	< 0.01
	CTR	33.2	3	< 0.01
TB040	UM	1826.83	3	< 0.01
1 0040	OFV	17563.8	3	< 0.01
	HV	327.84	3	< 0.01
	IGD	328.65	3	< 0.01
	ET	20493.12	3	< 0.01
	CTR	84.83	3	< 0.01
TB050	UM	1064.05	3	< 0.01
1 0000	OFV	17284.71	3	< 0.01
	HV	332.15	3	< 0.01
	IGD	331.82	3	< 0.01
	ET	19856.86	3	< 0.01
TB060	CTR	144.84	3	< 0.01
1 0000	UM	843.88	3	< 0.01
	OFV	16852.25	3	< 0.01

TB	Metric	ChiSq	DF	р
TB060	HV	335.03	3	< 0.01
1 DUOU	IGD	334.97	3	< 0.01
	ET	16597.57	3	< 0.01
	CTR	150.53	3	< 0.01
TB070	UM	594.01	3	< 0.01
1 DU/ U	OFV	13935.74	3	< 0.01
	HV	327.9	3	< 0.01
	IGD	327.63	3	< 0.01
	ET	14987.09	3	< 0.01
	CTR	92.49	3	< 0.01
TB080	UM	316.08	3	< 0.01
1 DUOU	OFV	12763.72	3	< 0.01
	HV	330.27	3	< 0.01
	IGD	330.03	3	< 0.01
	ET	13635.8	3	< 0.01
	CTR	165.77	3	< 0.01
TB090	UM	279.45	3	< 0.01
1 DU9U	OFV	11424.73	3	< 0.01
	HV	326.74	3	< 0.01
	IGD	326.93	3	< 0.01
	ET	13635.86	3	< 0.01
	CTR	102.37	3	< 0.01
TB100	UM	252.92	3	< 0.01
1 D100	OFV	11322.56	3	< 0.01
	HV	332.31	3	< 0.01
	IGD	332.48	3	< 0.01

TABLE 13. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM))

ТВ	Alcorithm A	AlgorithmB	I	ET	С	TR	ι	J M	О	FV	F	ΙV	I	GD
1 1 1	AlgorithmA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05

			I	ET	С	TR	U	M	O	FV	F	IV	IC	13 G D
TB	AlgorithmA	AlgorithmB	A12	р										
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROFO	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05
TDOCO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 14. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, AUM))

ТВ	Metric		Rai	nk			Confic	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	3	1	40%	20%	30%	10%
TB010	UM	3	4	1	2	30%	40%	10%	20%
10010	OFV	3	4	1	2	30%	40%	10%	20%
	HV	2	1	2	1	33%	17%	33%	17%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	3	1	40%	20%	30%	10%
TB020	UM	3	4	2	1	30%	40%	20%	10%
1 0020	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	2	1	38%	25%	25%	12%
TB030	UM	3	3	2	1	33%	33%	22%	11%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

TD	Matri	etric Rank NSGA2 MoCell		nk		Confidence						
ТВ		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
TB030	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	2	1	38%	25%	25%	12%			
TB040	UM	3	4	2	1	30%	40%	20%	10%			
10040	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TB050	UM	3	4	2	1	30%	40%	20%	10%			
10000	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	2	12%	25%	38%	25%			
TB060	UM	3	4	2	1	30%	40%	20%	10%			
10000	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	1	2	1	20%	20%	40%	20%			
TB070	UM	3	4	1	2	30%	40%	10%	20%			
10070	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	2	12%	25%	38%	25%			
TB080	UM	4	3	1	2	40%	30%	10%	20%			
10000	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	4	2	3	1	40%	20%	30%	10%			
	IGD	4	2	3	1	40%	20%	30%	10%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	1	14%	29%	43%	14%			
TB090	UM	4	3	1	2	40%	30%	10%	20%			
10070	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	1	14%	29%	43%	14%			
TB100	UM	3	2	1	2	38%	25%	12%	25%			
12100	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	4	2	3	1	40%	20%	30%	10%			

B.4.2.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 15. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS))

TB	Metric	ChiSq	DF	p
	ET	1445.26	3	< 0.01
	CTR	120.98	3	< 0.01
TB010	USP	33.96	3	< 0.01
10010	OFV	504.5	3	< 0.01
	HV	332.94	3	< 0.01
	IGD	330.77	3	< 0.01
	ET	1364.21	3	< 0.01
TB020	CTR	46.13	3	< 0.01
	USP	11.81	3	< 0.01

TB	Metric	ChiSq	DF	p
	OFV	1073.77	3	< 0.01
TB020	HV	338.42	3	< 0.01
	IGD	338.31	3	< 0.01
	ET	1054.42	3	< 0.01
	CTR	58.17	3	< 0.01
TB030	USP	102.62	3	< 0.01
1 0000	OFV	1000.65	3	< 0.01
	HV	343.2	3	< 0.01
	IGD	343.21	3	< 0.01
	ET	896.29	3	< 0.01
	CTR	23.31	3	< 0.01
TB040	USP	13.01	3	< 0.01
1 0040	OFV	869.3	3	< 0.01
	HV	348.89	3	< 0.01
	IGD	348.94	3	< 0.01
	ET	863.36	3	< 0.01
	CTR	24.86	3	< 0.01
TB050	USP	55.93	3	< 0.01
1 0000	OFV	812.07	3	< 0.01
	HV	340.11	3	< 0.01
	IGD	NaN	3	NaN
	ET	713.21	3	< 0.01
	CTR	13.14	3	< 0.01
TB060	USP	38.43	3	< 0.01
1 0000	OFV	691.49	3	< 0.01
	HV	338.56	3	< 0.01
	IGD	338.64	3	< 0.01
	ET	664.65	3	< 0.01
	CTR	23.26	3	< 0.01
TB070	USP	49.55	3	< 0.01
10070	OFV	617.39	3	< 0.01
	HV	333.87	3	< 0.01
	IGD	NaN	3	NaN
	ET	483.95	3	< 0.01
	CTR	39.9	3	< 0.01
TB080	USP	47.61	3	< 0.01
12000	OFV	409.14	3	< 0.01
	HV	332.37	3	<0.01
	IGD	NaN	3	NaN
	ET	532.98	3	<0.01
	CTR	67.62	3	<0.01
TB090	USP	52.46	3	<0.01
	OFV	406.9	3	<0.01
	HV	308.66	3	<0.01
	IGD	NaN 400 52	3	NaN
	ET	490.52	3	<0.01
	CTR	36.14	3	<0.01
TB100	USP	52.6	3	<0.01
	OFV	435.87	3	<0.01
	HV	307.31	3	<0.01
	IGD	NaN	3	NaN

TABLE 16. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS))

TB Algo	AlgorithmA	A AlgorithmB		ET		CTR		USP		OFV		HV		GD	
	Aigonuma		A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	
TB	8010	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TED	A1 '-1 A	41 'd D]	ET	С	TR	U	SP	О	FV	I	ΙV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р										
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TROFO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
TPOCO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TP070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TDOOO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5		< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	=0.5	>0.05
TDOOC	NSGA2	CellDE	< 0.1	< 0.01	< 0.5		< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SPEA2	>0.9	< 0.01	< 0.5		< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5		< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
ED400	NSGA2	SPEA2	< 0.5	< 0.01	<0.5	>0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.5	>0.05	=0.5	>0.05
TB100	NSGA2	CellDE	<0.1	< 0.01	<0.5		<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	MoCell	SPEA2	>0.5	< 0.01	<0.5	< 0.05	>0.5	< 0.05	>0.5	< 0.01	<0.1	< 0.01	=0.5	>0.05
	1	I	1	1	1	I .	1	1	I	I	I .	1		

ТВ	AlgorithmA	AlgorithmB	ET		CTR		USP		OFV		HV		IGD	
1.0	AigonumiA	Aigontiilib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB100	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10100	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

TABLE 17. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, PUS))

TED	35		Ra	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	4	1	3	20%	40%	10%	30%			
TB010	USP	1	1	1	2	20%	20%	20%	40%			
10010	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	3	1	2	14%	43%	14%	29%			
TD020	USP	1	1	1	2	20%	20%	20%	40%			
TB020	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
	USP	2	2	1	2	29%	29%	14%	29%			
TB030	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
	USP	1	1	1	2	20%	20%	20%	40%			
TB040	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	2	17%	17%	33%	33%			
	USP	1	1	2	2	17%	17%	33%	33%			
TB050	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	1	1	1	2	20%	20%	20%	40%			
	USP	1	1	1	2	20%	20%	20%	40%			
TB060	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET CTR	3	2	4	2	30% 20%	20%	40% 20%	10% 40%			
	USP	2	2		3	25%	25%	12%	38%			
TB070	OFV			1								
		2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30% 25%	20% 25%	40% 25%	10% 25%			
	IGD	1	1	1	1							
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	2	1	2	2	29%	14%	29%	29%			
TB080	USP	1	1	2	2	17%	17%	33%	33%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
TDOOO	IGD	1	1	1	1	25%	25%	25%	25%			
TB090	ET	3	2	4	1	30%	20%	40%	10%			

ТВ	Metric		Rai	nk		Confidence						
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	CTR	1	1	3	2	14%	14%	43%	29%			
	USP	1	1	3	2	14%	14%	43%	29%			
TB090	OFV	1	2	2	3	12%	25%	25%	38%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	1	2	3	14%	14%	29%	43%			
TB100	USP	2	2	1	3	25%	25%	12%	38%			
10100	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	1	1	1	1	25%	25%	25%	25%			

 $\hbox{B.4.2.3} \quad \hbox{Problem 3: This section describes the results for prioritization problem } f(PET, PTR, ANU).$

TABLE 18. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	204.11	3	< 0.01
	CTR	1188.53	3	< 0.01
TD010	NU	833.92	3	< 0.01
TB010	OFV	1013.21	3	< 0.01
	HV	285.3	3	< 0.01
	IGD	225.61	3	< 0.01
	ET	336.05	3	< 0.01
	CTR	1799.97	3	< 0.01
TB020	NU	1174.96	3	< 0.01
1 0020	OFV	1670.63	3	< 0.01
	HV	268.22	3	< 0.01
	IGD	243.43	3	< 0.01
	ET	302.04	3	< 0.01
	CTR	2043.32	3	< 0.01
TB030	NU	1069.55	3	< 0.01
1 0000	OFV	1851.21	3	< 0.01
	HV	255.72	3	< 0.01
	IGD	247.72	3	< 0.01
	ET	267.97	3	< 0.01
	CTR	2049.31	3	< 0.01
TB040	NU	899.28	3	< 0.01
1 DU40	OFV	1796.31	3	< 0.01
	HV	253.56	3	< 0.01
	IGD	249.35	3	< 0.01
	ET	158.87	3	< 0.01
	CTR	1024.51	3	< 0.01
TB050	NU	583.1	3	< 0.01
10000	OFV	888.55	3	< 0.01
	HV	242.72	3	< 0.01
	IGD	237.74	3	< 0.01
	ET	188.48	3	< 0.01
	CTR	825.39	3	< 0.01
TB060	NU	455.27	3	< 0.01
1 0000	OFV	674.87	3	< 0.01
	HV	240.26	3	< 0.01
	IGD	250.57	3	< 0.01
	ET	166.72	3	< 0.01
	CTR	437.2	3	< 0.01
TB070	NU	410.47	3	< 0.01
	OFV	395.84	3	< 0.01
	HV	234.5	3	< 0.01

TB	Metric	ChiSq	DF	p
TB070	IGD	227.72	3	< 0.01
	ET	210.41	3	< 0.01
	CTR	390.76	3	< 0.01
TB080	NU	333.02	3	< 0.01
1 0000	OFV	353.05	3	< 0.01
	HV	228.94	3	< 0.01
	IGD	253.24	3	< 0.01
	ET	173.19	3	< 0.01
	CTR	382.86	3	< 0.01
TB090	NU	202.87	3	< 0.01
1 0090	OFV	324	3	< 0.01
	HV	237.56	3	< 0.01
	IGD	242.46	3	< 0.01
	ET	241.26	3	< 0.01
	CTR	389.45	3	< 0.01
TB100	NU	241.75	3	< 0.01
1 0100	OFV	377.35	3	< 0.01
	HV	229.84	3	< 0.01
	IGD	224.44	3	< 0.01

TABLE 19. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, ANU))

ТВ	Alaarithm A	AlgorithmB	I	ET	С	TR	N	NU	О	FV	I	łV	IC	GD
1 D	AlgorithmA	Aigoriumib	A12	р										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05
1 DU10	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
10020	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05
10030	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05
10040	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05
10000	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB060	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05

TD	A 1: (1 A	A 1: (1 D	I	ET	С	TR	N	NU	О	FV	F	ΙV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р										
	MoCell	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	CellDE	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	>0.05
10070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05
10000	MoCell	SPEA2	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05
10070	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05
10100	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01
	SPEA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	<0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

TABLE 20. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, ANU))

тр	Matria		Rai	ık		Confidence						
TB010 — TB020 — TB030 —	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	2	1	3	1	29%	14%	43%	14%			
TP010	NU	2	4	1	3	20%	40%	10%	30%			
1 1 1 1 1 1 1 1	OFV	2	1	3	1	29%	14%	43%	14%			
	HV	2	3	1	2	25%	38%	12%	25%			
	IGD	2	2	1	2	29%	29%	14%	29%			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	2	1	3	1	29%	14%	43%	14%			
TROZO	NU	2	3	1	3	22%	33%	11%	33%			
1 0020	OFV	2	1	3	1	29%	14%	43%	14%			
	HV	2	3	1	2	25%	38%	12%	25%			
	IGD	3	3	1	2	33%	33%	11%	22%			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TB030	NU	2	3	1	3	22%	33%	11%	33%			
1 0000	OFV	1	3	4	2	10%	30%	40%	20%			
	HV	2	3	1	2	25%	38%	12%	25%			
	IGD	2	3	1	2	25%	38%	12%	25%			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	2	3	4	1	20%	30%	40%	10%			
TB040	NU	2	3	1	3	22%	33%	11%	33%			
1 0040	OFV	1	3	4	2	10%	30%	40%	20%			
	HV	2	3	1	2	25%	38%	12%	25%			
	IGD	2	3	1	2	25%	38%	12%	25%			

тр	Matria		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	4	2	1	3	40%	20%	10%	30%			
	CTR	1	3	4	2	10%	30%	40%	20%			
TB050	NU	3	2	1	4	30%	20%	10%	40%			
1 0000	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	2	4	1	3	20%	40%	10%	30%			
	IGD	3	4	1	2	30%	40%	10%	20%			
	ET	4	1	2	3	40%	10%	20%	30%			
	CTR	1	3	3	2	11%	33%	33%	22%			
TB060	NU	2	2	1	3	25%	25%	12%	38%			
1 0000	OFV	1	2	2	1	17%	33%	33%	17%			
	HV	2	4	1	3	20%	40%	10%	30%			
	IGD	2	3	1	2	25%	38%	12%	25%			
	ET	4	1	2	3	40%	10%	20%	30%			
	CTR	1	3	4	2	10%	30%	40%	20%			
TB070	NU	2	2	1	3	25%	25%	12%	38%			
1 0070	OFV	1	2	3	1	14%	29%	43%	14%			
	HV	2	3	1	2	25%	38%	12%	25%			
	IGD	2	3	1	2	25%	38%	12%	25%			
	ET	4	1	2	3	40%	10%	20%	30%			
	CTR	2	4	3	1	20%	40%	30%	10%			
TB080	NU	2	2	1	3	25%	25%	12%	38%			
1 0000	OFV	1	3	2	1	14%	43%	29%	14%			
	HV	2	3	1	2	25%	38%	12%	25%			
	IGD	2	3	1	2	25%	38%	12%	25%			
	ET	3	1	2	2	38%	12%	25%	25%			
	CTR	2	4	3	1	20%	40%	30%	10%			
TB090	NU	2	2	1	3	25%	25%	12%	38%			
10070	OFV	2	4	3	1	20%	40%	30%	10%			
	HV	2	4	1	3	20%	40%	10%	30%			
	IGD	2	3	1	2	25%	38%	12%	25%			
	ET	3	1	4	2	30%	10%	40%	20%			
	CTR	2	4	3	1	20%	40%	30%	10%			
TB100	NU	2	2	1	3	25%	25%	12%	38%			
10100	OFV	2	4	3	1	20%	40%	30%	10%			
	HV	2	3	1	3	22%	33%	11%	33%			
	IGD	3	3	1	2	33%	33%	11%	22%			

B.4.2.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 21. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, PUU))

TB	Metric	ChiSq	DF	p
	ET	1433.76	3	< 0.01
	CTR	106.33	3	< 0.01
TB010	NUU	110.28	3	< 0.01
10010	OFV	444.63	3	< 0.01
	HV	331.6	3	< 0.01
	IGD	328.64	3	< 0.01
	ET	1188.28	3	< 0.01
	CTR	11.36	3	< 0.01
TB020	NUU	13.44	3	< 0.01
1 0020	OFV	887.82	3	< 0.01
	HV	343	3	< 0.01
	IGD	342.78	3	< 0.01
	ET	999.88	3	< 0.01
TB030	CTR	16.48	3	< 0.01
1 0000	NUU	19.33	3	< 0.01
	OFV	912.63	3	< 0.01

TB	Metric	ChiSq	DF	p
TB030	HV	348.27	3	< 0.01
1 DUSU	IGD	348.21	3	< 0.01
	ET	959.93	3	< 0.01
	CTR	22.54	3	< 0.01
TD040	NUU	18.24	3	< 0.01
TB040	OFV	866.58	3	< 0.01
	HV	341.69	3	< 0.01
	IGD	341.72	3	< 0.01
	ET	764.97	3	< 0.01
	CTR	135.38	3	< 0.01
TDOEO	NUU	132.07	3	< 0.01
TB050	OFV	765.85	3	< 0.01
	HV	339.55	3	< 0.01
	IGD	339.55	3	< 0.01
	ET	748.29	3	< 0.01
	CTR	11.81	3	< 0.01
TB060	NUU	16.2	3	< 0.01
1 0000	OFV	641.79	3	< 0.01
	HV	344.6	3	< 0.01
	IGD	344.61	3	< 0.01
	ET	578.51	3	< 0.01
	CTR	22.01	3	< 0.01
TB070	NUU	22.83	3	< 0.01
1 DU/ U	OFV	446.33	3	< 0.01
	HV	334.7	3	< 0.01
	IGD	NaN	3	NaN
	ET	579.8	3	< 0.01
	CTR	74.1	3	< 0.01
TB080	NUU	77.03	3	< 0.01
1 0000	OFV	535.77	3	< 0.01
	HV	321.38	3	< 0.01
	IGD	NaN	3	NaN
	ET	467.85	3	< 0.01
	CTR	136.37	3	< 0.01
TB090	NUU	125.96	3	< 0.01
1 של 100	OFV	410.92	3	< 0.01
	HV	311.86	3	< 0.01
	IGD	311.74	3	< 0.01
	ET	509.62	3	< 0.01
	CTR	20.34	3	< 0.01
TB100	NUU	21.71	3	< 0.01
10100	OFV	402.42	3	< 0.01
	HV	306.06	3	< 0.01
	IGD	306.03	3	< 0.01

TABLE 22. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	F	ET	C	TR	N	UU	0	FV	Н	IV	IC	GD
10	AigoriumiA	Aigontillio	A12	p										
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01

	A.1 1.1 A	41 14 D]	ET	С	TR	N	UU	О	FV	HV		/ IG	
TB	AlgorithmA	AlgorithmB	A12	р										
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROSO	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
-	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
-	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TROSO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
-	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
-	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TD040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
-	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
-	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TROFO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
-	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TDOGO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
-	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
-	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
-	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.05	=0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
-	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	=0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
-	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
-	NSGA2	SPEA2	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05
TROOO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
-	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 23. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, PUU))

TD	Matri		Ra	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	2	25%	38%	12%	25%			
TB010	NUU	2	4	1	3	20%	40%	10%	30%			
10010	OFV	2	3	1	3	22%	33%	11%	33%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	2	1	2	17%	33%	17%	33%			
TB020	NUU	1	2	1	2	17%	33%	17%	33%			
10020	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB030	NUU	2	2	1	3	25%	25%	12%	38%			
12000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	2	29%	29%	14%	29%			
TB040	NUU	2	2	1	2	29%	29%	14%	29%			
12010	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	2	29%	29%	14%	29%			
TB050	NUU	2	2	1	2	29%	29%	14%	29%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	2	17%	17%	33%	33%			
TB060	NUU	1	1	2	2	17%	17%	33%	33%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	2	17%	17%	33%	33%			
TB070	NUU	2	1	3	3	22%	11%	33%	33%			
	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB080	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	2	1	3	2	25%	12%	38%	25%			
TB090	NUU	2	1	3	2	25%	12%	38%	25%			
	OFV	1	2	3	4	10%	20%	30%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	3	1	33%	22%	33%	11%			

ТВ	Metric		Rai	ık		Confidence						
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	1	1	2	2	17%	17%	33%	33%			
TB100	NUU	1	1	2	2	17%	17%	33%	33%			
10100	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	3	1	33%	22%	33%	11%			

 $B.4.2.5 \quad \hbox{Problem 5: This section describes the results for prioritization problem } f(PET, PTR, AUM, PUS).$

TABLE 24. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	24061.85	3	< 0.01
	CTR	3683.93	3	< 0.01
	UM	1359.77	3	< 0.01
TB010	USP	2356.21	3	< 0.01
	OFV	788.37	3	< 0.01
	HV	248.37	3	< 0.01
	IGD	324.32	3	< 0.01
	ET	24727.6	3	< 0.01
	CTR	1510.23	3	< 0.01
	UM	2919.66	3	< 0.01
TB020	USP	1119.03	3	< 0.01
	OFV	1463.86	3	< 0.01
	HV	309.47	3	< 0.01
	IGD	323.14	3	< 0.01
	ET	23308.01	3	< 0.01
	CTR	574.44	3	<0.01
	UM	3356.81	3	<0.01
TB030	USP	595.02	3	<0.01
12000	OFV	8874.37	3	<0.01
	HV	321.94	3	<0.01
	IGD	324.93	3	<0.01
	ET	24154.68	3	<0.01
	CTR	76.41	3	<0.01
	UM	2245.28	3	<0.01
TB040	USP	66.33	3	<0.01
10010	OFV	14145.17	3	<0.01
	HV	329.92	3	<0.01
	IGD	329.95	3	<0.01
	ET	22278.22	3	<0.01
	CTR	30.91	3	<0.01
	UM	1319.26	3	<0.01
TB050	USP	72.65	3	<0.01
10000	OFV	15241.74	3	<0.01
	HV	330.38	3	<0.01
	IGD	330.53	3	<0.01
	ET	20228.59	3	<0.01
	CTR	140.51	3	<0.01
	UM	1161.3	3	<0.01
TB060	USP	107.17	3	<0.01
10000	OFV	14729.13	3	<0.01
	HV	332.02	3	<0.01
	IGD	332.04	3	<0.01
	ET	16595.95	3	<0.01
	CTR	99.97	3	<0.01
TB070	UM	611.9	3	<0.01
	USP	144.84	3	<0.01
	USP	144.84	3	<0.01

TB	Metric	ChiSq	DF	p
	OFV	12390.4	3	< 0.01
TB070	HV	330.7	3	< 0.01
	IGD	330.72	3	< 0.01
	ET	15293.41	3	< 0.01
	CTR	92.6	3	< 0.01
	UM	472.79	3	< 0.01
TB080	USP	125.52	3	< 0.01
	OFV	11805.62	3	< 0.01
	HV	322.65	3	< 0.01
	IGD	322.76	3	< 0.01
	ET	14627.98	3	< 0.01
	CTR	83.71	3	< 0.01
	UM	274.71	3	< 0.01
TB090	USP	157.71	3	< 0.01
	OFV	11109.26	3	< 0.01
	HV	329.45	3	< 0.01
	IGD	329.36	3	< 0.01
	ET	13290.63	3	< 0.01
	CTR	72.72	3	< 0.01
	UM	396.11	3	< 0.01
TB100	USP	86.19	3	< 0.01
	OFV	10093.09	3	< 0.01
	HV	331.05	3	< 0.01
	IGD	330.82	3	< 0.01

TABLE 25. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUS))

ТВ	Algorithm A	AlgorithmB	I	ET	С	TR	UM USP			OFV		HV		IGD		
1 D	AigoriumiA	Aigoriumb	A12	р	A12	р	A12	р	A12	p	A12	p	A12	p	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05
1 0000	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

			-	700	CTR UM			USP OFV			HV		IGD			
TB	AlgorithmA	AlgorithmB		ET			_									
	MaCall	CallDE	A12	p <0.01	A12	p < 0.01	A12	p <0.01	A12	p	A12	p	A12	p	A12	p <0.01
TB050	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	>0.05		< 0.01		<0.01	<0.1	< 0.01		<0.01	<0.1	<0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	< 0.05	<0.5	< 0.01	<0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5		>0.5	
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	1		>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05		< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	-
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5		< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.05
TDOOO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
ED466	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1B100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 26. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk			Confid	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	% 20% 40% % 20% 40% % 40% 10% % 20% 30% % 30% 20% % 14% 29% % 20% 40% % 20% 40% % 20% 30% % 25% 25% % 30% 10% % 22% 33% % 20% 40% % 20% 40% % 20% 40% % 29% 14% % 33% 22% % 30% 20%	10%	
	UM	3	4	1	2	30%	40%	10%	20%
TB010	USP	4	2	3	1	40%	20%	30%	10%
	OFV	4	3	2	1	40%	30%	20%	10%
	HV	3	1	2	1	43%	14%	29%	14%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	3	1	40%	20%	30%	10%
	UM	3	4	2	1	30%	40%	20%	10%
TB020	USP	3	2	2	1	38%	25%	25%	12%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	1	1	43%	29%	14%	14%
TB030	UM	3	3	2	1	33%	33%	22%	11%
	USP	4	3	2	1	40% 30%		20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%

TD	3.5.4.3	Rank					Confid	onfidence			
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
TB030	HV	3	2	4	1	30%	20%	40%	10%		
1 0000	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	1	1	2	43%	14%	14%	29%		
	UM	3	4	2	1	30%	40%	20%	10%		
TB040	USP	3	2	2	1	38%	25%	25%	12%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	2	2	17%	17%	33%	33%		
	UM	3	3	2	1	33%	33%	22%	11%		
TB050	USP	1	1	2	1	20%	20%	40%	20%		
	OFV	1	2	1	3	14%	29%	14%	43%		
	HV	3	2	3	1	33%	22%	33%	11%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	3	3	11%	22%	33%	33%		
	UM	3	4	2	1	30%	40%	20%	10%		
TB060	USP	1	2	3	2	12%	25%	38%	25%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	4	3	10%	20%	40%	30%		
	UM	2	2	1	1	33%	33%	17%	17%		
TB070	USP	1	2	3	2	12%	25%	38%	25%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	4	3	10%	20%	40%	30%		
	UM	3	4	1	2	30%	40%	10%	20%		
TB080	USP	1	2	3	2	12%	25%	38%	25%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	IGD	4	2	3	1	40%	20%	30%	10%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	3	2	12%	25%	38%	25%		
	UM	3	3	1	2	33%	33%	11%	22%		
TB090	USP	2	2	3	1	25%	25%	38%	12%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	4	2	3	1	40%	20%	30%	10%		
	IGD	4	2	3	1	40%	20%	30%	10%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	4	3	10%	20%	40%	30%		
ED400	UM	4	3	1	2	40%	30%	10%	20%		
TB100	USP	1	2	3	1	14%	29%	43%	14%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	4	2	3	1	40%	20%	30%	10%		
	IGD	4	2	3	1	40%	20%	30%	10%		

 ${\it B.4.2.6} \quad {\it Problem 6: This section describes the results for prioritization problem } f(PET, PTR, AUM, ANU). \\$

TABLE 27. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, ANU))

ТВ	Metric	ChiSq	DF	p
TB010	ET	140.78	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	CTR	927.08	3	< 0.01
	UM	723.76	3	< 0.01
TB010	NU	1707.95	3	< 0.01
12010	OFV	1017.26	3	< 0.01
	HV	247.63	3	< 0.01
	IGD	321.77	3	< 0.01
	ET	149.57	3	< 0.01
	CTR	1592.48	3	< 0.01
	UM	521.85	3	< 0.01
TB020	NU	1191.48	3	< 0.01
	OFV	1522.62	3	< 0.01
	HV	340.74	3	< 0.01
	IGD	297.94	3	< 0.01
	ET	199.56	3	< 0.01
	CTR	1870.13	3	< 0.01
	UM	221.38	3	< 0.01
TB030	NU	1063.01	3	< 0.01
	OFV	1530.8	3	< 0.01
	HV	309.62	3	< 0.01
	IGD	287.72	3	< 0.01
	ET	177.26	3	< 0.01
	CTR	2057.44	3	< 0.01
	UM	98.58	3	< 0.01
TB040	NU	878.74	3	< 0.01
	OFV	1413.36	3	< 0.01
	HV	296.37	3	< 0.01
	IGD	295.79	3	< 0.01
	ET	184.14	3	< 0.01
	CTR	1716.46	3	< 0.01
	UM	386.12	3	< 0.01
TB050	NU	755.71	3	< 0.01
	OFV	991.02	3	< 0.01
	HV	294.13	3	< 0.01
	IGD	294.27	3	< 0.01
	ET	297.13	3	< 0.01
	CTR	1593.09	3	< 0.01
	UM	742.18	3	< 0.01
TB060	NU	758.55	3	< 0.01
	OFV	756.11	3	< 0.01
	HV	290.88	3	< 0.01
	IGD	292.44	3	< 0.01
	ET	273.91	3	< 0.01
	CTR	1315.55	3	< 0.01
	UM	1382.46	3	< 0.01
TB070	NU	846.26	3	< 0.01
	OFV	500.58	3	< 0.01
	HV	294.91	3	< 0.01
	IGD	291.68	3	< 0.01
	ET	427.28	3	< 0.01
	CTR	901.95	3	< 0.01
	UM	1977.67	3	< 0.01
TB080	NU	799.36	3	< 0.01
	OFV	215.7	3	<0.01
	HV	301.23	3	<0.01
	IGD	299.44	3	<0.01
	ET	519.43	3	<0.01
TB090	CTR	829.48	3	<0.01
1000				
	UM	2696.7	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	NU	914.96	3	< 0.01
TB090	OFV	174.8	3	< 0.01
1 0090	HV	295.51	3	< 0.01
	IGD	315.76	3	< 0.01
	ET	530.94	3	< 0.01
	CTR	751.55	3	< 0.01
	UM	2926.99	3	< 0.01
TB100	NU	1048.34	3	< 0.01
	OFV	170.16	3	< 0.01
	HV	287.33	3	< 0.01
	IGD	327.93	3	< 0.01

TABLE 28. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, ANU))

TD	A.1 *:1 A	A1 '41 D	F	ET	С	TR	U	JM	N	IU	О	FV	I	IV	I	GD
IB	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	р								
	NSGA2	MoCell	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010 TB020 TB030 TB040 TB050	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1,8010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	>0.05			>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
ED 020	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
i i	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05		< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	>0.05	>0.5			< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	< 0.5		< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05		< 0.05	< 0.5	< 0.01
TB030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01			< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01		< 0.01	< 0.5			< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.05	< 0.5	< 0.01	>0.5			< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
ED 0.40	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01
TB040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	>0.05		< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	>0.05
i t	NSGA2	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROFO	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
1 6050	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROCO	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.05
	NSGA2	SPEA2										< 0.01				
TDOTO	NSGA2	CellDE										< 0.05				
100/0	MoCell	SPEA2										< 0.01				
TB040 -	MoCell	CellDE										< 0.01				
	SPEA2	CellDE										< 0.01				

			т	T		TR	т	M		JU	0	FV	T	IV	1/	רב
TB	AlgorithmA	AlgorithmB		3.1		IK		IVI		NU		ГV		1 V		GD
	G	<i>G</i>	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
10090	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 29. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, ANU))

TD	Matria		Rai	nk			Confic	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	2	3	1	4	20%	30%	10%	40%
	CTR	2	1	3	4 20% 30% 2 25% 12% 4 20% 10% 3 20% 40% 2 30% 40% 2 40% 30% 3 14% 14% 2 14% 14% 3 22% 33% 2 14% 14% 2 30% 40% 2 30% 40% 2 30% 40% 3 14% 14% 1 20% 20% 3 22% 11% 4 20% 30% 4 20% 30% 4 20% 20% 2 30% 40% 2 30% 40% 2 30% 40% 2 30% 40% 2 30% 40% 2 30% 40% 2 30% 40% 2 12% 25% 3	38%	25%		
	UM	2	1	3	4	20%	10%	30%	40%
TB010	NU	2	4	1				10%	30%
	OFV	2	1	4	3		10%	40%	30%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2			10%	20%
	ET	1	1	2	3			29%	43%
	CTR	1	1	3	2		14%	43%	29%
	UM	2	1	3	3			33%	33%
TB020	NU	2	3	1				11%	33%
	OFV	1	1	3	2			43%	29%
	HV	3	4	1				10%	20%
	IGD	3	4	1	2			10%	20%
	ET	1	1	2	3	14%		29%	43%
	CTR	3 4 1 2 30% 40 1 1 2 3 14% 14 1 1 2 1 20% 20 2 1 3 3 22% 11 2 3 1 4 20% 30		40%	20%				
	UM		1	3				33%	33%
TB030	NU		3					10%	40%
	OFV	1	1	2				40%	20%
	HV	3	4	1				10%	20%
	IGD	3	4	1	2			10%	20%
	ET	2	1	3				30%	40%
	CTR	1	2	3				38%	25%
	UM	2	2	1				12%	38%
TB040	NU	3	2	1				10%	40%
	OFV	1	2	3				38%	25%
	HV	2	3	1				12%	25%
	IGD	3	3	1				11%	22%
	ET	1	1	1				20%	40%
	CTR	1	2	3				43%	14%
TB050	UM	2	2	1				12%	38%
	NU	2	3	1				10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%

TD	M-1		Rai	ık			Confid	lence	
ТВ	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB050	HV	2	3	1	2	25%	38%	12%	25%
1 0000	IGD	3	3	1	2	33%	33%	11%	22%
	ET	2	1	2	3	25%	12%	25%	38%
	CTR	1	2	3	1	14%	29%	43%	14%
	UM	2	2	1	3	25%	25%	12%	38%
TB060	NU	2	2	1	3	25%	25%	12%	38%
	OFV	1	2	3	1	14%	29%	43%	14%
	HV	2	4	1	3	20%	40%	10%	30%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	2	3	25%	12%	25%	38%
	CTR	1	2	3	1	14%	29%	43%	14%
	UM	2	3	1	3	22%	33%	11%	33%
TB070	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	4	1	3	20%	40%	10%	30%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	1	3	4	2	10%	30%	40%	20%
	UM	2	3	1	3	22%	33%	11%	33%
TB080	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	3	1	22%	33%	33%	11%
	HV	2	4	1	3	20%	40%	10%	30%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	1	3	4	2	10%	30%	40%	20%
	UM	2	3	1	3	22%	33%	11%	33%
TB090	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	3	22%	33%	11%	33%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	1	2	3	1	14%	29%	43%	14%
	UM	2	3	1	3	22%	33%	11%	33%
TB100	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	3	22%	33%	11%	33%
	IGD	3	4	1	2	30%	40%	10%	20%

B.4.2.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU). TABLE 30. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	22485.56	3	< 0.01
	CTR	3815.34	3	< 0.01
	UM	910.58	3	< 0.01
TB010	NUU	3918.16	3	< 0.01
	OFV	2092.26	3	< 0.01
	HV	221.18	3	< 0.01
	IGD	320.45	3	< 0.01
	ET	23970.7	3	< 0.01
	CTR	2161.53	3	< 0.01
	UM	2221.92	3	< 0.01
TB020	NUU	2062.17	3	< 0.01
	OFV	668.83	3	< 0.01
	HV	306.46	3	< 0.01
	IGD	333.44	3	< 0.01
TB030	ET	23846.26	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	CTR	859.8	3	< 0.01
	UM	1971.27	3	< 0.01
TD020	NUU	865.86	3	< 0.01
TB030	OFV	6821.69	3	< 0.01
	HV	327.41	3	< 0.01
	IGD	329.17	3	< 0.01
	ET	21668.6	3	< 0.01
	CTR	118.75	3	< 0.01
	UM	2043.41	3	< 0.01
TB040	NUU	109.21	3	< 0.01
	OFV	9761.21	3	< 0.01
	HV	330.21	3	< 0.01
	IGD	330.07	3	< 0.01
	ET	22728.98	3	< 0.01
	CTR	6.91	3	>0.05
	UM	1195.76	3	<0.01
TB050	NUU	10.73	3	< 0.05
	OFV	12744.75	3	<0.01
	HV	330.29	3	<0.01
	IGD	329.77	3	<0.01
	ET	19515.39	3	<0.01
	CTR	75.52	3	<0.01
	UM	560.19	3	<0.01
TB060	NUU	76.08	3	<0.01
10000	OFV	12255.87	3	<0.01
	HV	330.8	3	<0.01
	IGD	330.85	3	<0.01
	ET	16679.45	3	<0.01
	CTR	97.64	3	<0.01
	UM	534.69	3	<0.01
TB070	NUU	99.73	3	<0.01
10070	OFV	11046.36	3	<0.01
	HV	328.98	3	<0.01
	IGD	328.78	3	<0.01
	ET	15628.45	3	<0.01
	CTR	143.57	3	<0.01
	UM	367.72	3	<0.01
TB080	NUU	152.42	3	<0.01
10000	OFV	10889.64	3	<0.01
	HV	330.64	3	<0.01
	IGD	330.85	3	<0.01
	ET	14444.64	3	<0.01
	CTR	160.34	3	<0.01
	UM	373.13	3	<0.01
TB090	NUU	170.38	3	<0.01
1 00 70	OFV	10169.6	3	<0.01
	HV	336.08	3	<0.01
	IGD	336.2	3	<0.01
	ET	14486.98	3	<0.01
	CTR	87.95	3	<0.01
	UM	182.75	3	<0.01
TB100	NUU	90.92	3	<0.01
1 D 1 O O	OFV	10302.11	3	<0.01
	HV	335.92	3	<0.01
	IGD	335.92	3	<0.01
	IGD	333.62	3	\U.U1

TABLE 31. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUU))

TD	A.1 '(1 A	A1 '(1 D	I	ET	С	TR	ι	JM	N	UU	О	FV	I	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	p	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TD010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	1	>0.05	1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	1	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
IDOOO	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05		< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
12000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01			1	< 0.01			< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell					1					< 0.01				
	NSGA2	SPEA2	< 0.5					< 0.01								>0.05
TB070	NSGA2	CellDE	<0.1	1									1	< 0.01		
	MoCell	SPEA2		I	1	< 0.01	1							< 0.01		
	MoCell	CellDE	<0.1	I	1		1						>0.9	< 0.01		<0.01
	SPEA2	CellDE	<0.1					>0.05				< 0.01	>0.9	< 0.01		< 0.01
	NSGA2	MoCell	<0.1	< 0.01	1			>0.05			< 0.5	< 0.01	>0.9	< 0.01		<0.01
	NSGA2	SPEA2	< 0.5								< 0.5	< 0.01		>0.05		>0.05
TB080	NSGA2	CellDE	<0.1			>0.05				>0.05		< 0.01		< 0.01		<0.01
	MoCell	SPEA2	>0.9	I	1	< 0.01	1		<0.5				<0.1	< 0.01		
	MoCell	CellDE	<0.1			>0.05				>0.05		< 0.01	>0.9			<0.01
	SPEA2	CellDE	<0.1	< 0.01								< 0.01		< 0.01		<0.01
	NSGA2	MoCell	<0.1	< 0.01			1							< 0.01	<0.1	<0.01
	NSGA2	SPEA2	<0.5											< 0.01		
TB090	NSGA2	CellDE	<0.1	1	1	>0.05	1			>0.05				< 0.01		<0.01
	MoCell	SPEA2	>0.9			< 0.01								< 0.01		
	MoCell	CellDE	<0.1			< 0.01	1									<0.01
	SPEA2	CellDE	<0.1	< 0.01	<i>></i> 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01

ТВ	AlgorithmA	AlgorithmB	ET		CTR		UM		NUU		OFV		HV		IGD	
			A12	p												
TB100	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.05
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 32. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUU))

ТВ	Metric		Ra	nk		Confidence				
1 B		NSGA2 MoCell SPEA2			CellDE	NSGA2	MoCell	SPEA2	CellDE	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	4	2	3	1	40%	20%	30%	10%	
	UM	2	3	1	1	29%	43%	14%	14%	
TB010	NUU	4	2	3	1	40%	20%	30%	10%	
	OFV	4	3	2	1	40%	30%	20%	10%	
	HV	3	1	2	1	43%	14%	29%	14%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	4	2	3	1	40%	20%	30%	10%	
TD000	UM	3	4	2	1	30%	40%	20%	10%	
TB020	NUU	4	2	3	1	40%	20%	30%	10%	
	OFV	3	2	1	2	38%	25%	12%	25%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD ET	3 3	2 2	4	1 1	30% 30%	20% 20%	40% 40%	10% 10%	
	CTR	3	2	2	1	38%	25%	25%	10%	
	UM	3	3	2	1	33%	33%	22%	11%	
TB030	NUU	4	3	2	1	40%	30%	20%	10%	
1 0030	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	1	1	1	40%	20%	20%	20%	
	UM	3	4	2	1	30%	40%	20%	10%	
TB040	NUU	2	1	1	1	40%	20%	20%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	3	1	33%	22%	33%	11%	
	IGD	3	2	3	1	33%	22%	33%	11%	
	ET	4	2	3	1	40%	20%	30%	10%	
	CTR	1	1	2	2	17%	17%	33%	33%	
	UM	3	3	2	1	33%	33%	22%	11%	
TB050	NUU	1	1	2	2	17%	17%	33%	33%	
	OFV	1	3	2	4	10%	30%	20%	40%	
	HV	3	2	3	1	33%	22%	33%	11%	
	IGD	3	2	3	1	33%	22%	33%	11%	
	ET	4	2	3	1	40%	20%	30%	10%	
TB060	CTR	1	2	3	2	12%	25%	38%	25%	
	UM	3	3	2	1	33%	33%	22%	11%	
	NUU	1	2	3	2	12%	25%	38%	25%	
	OFV	1	3	2	4	10%	30%	20%	40%	
	HV	3	2	3	1	33%	22%	33%	11%	
	IGD	3	2	3	1	33%	22%	33%	11%	
TD 0 T 0	ET	4	2	3	1	40%	20%	30%	10%	
TB070	CTR	1	3	4	2	10%	30%	40%	20%	
	UM	2	2	1	1	33%	33%	17%	17%	

ТВ	Metric		Rai	nk		Confidence				
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
TB070	NUU	1	3	4	2	10%	30%	40%	20%	
	OFV	1	3	2	4	10%	30%	20%	40%	
1 00/0	HV	3	2	3	1	33%	22%	33%	11%	
	IGD	3	2	3	1	33%	22%	33%	11%	
	ET	4	2	3	1	40%	20%	30%	10%	
	CTR	1	2	3	2	12%	25%	38%	25%	
	UM	3	3	1	2	33%	33%	11%	22%	
TB080	NUU	1	2	3	2	12%	25%	38%	25%	
	OFV	1	3	2	4	10%	30%	20%	40%	
	HV	3	2	3	1	33%	22%	33%	11%	
	IGD	3	2	3	1	33%	22%	33%	11%	
	ET	4	2	3	1	40%	20%	30%	10%	
	CTR	1	2	3	1	14%	29%	43%	14%	
	UM	4	3	1	2	40%	30%	10%	20%	
TB090	NUU	1	2	3	1	14%	29%	43%	14%	
	OFV	1	3	2	4	10%	30%	20%	40%	
	HV	4	2	3	1	40%	20%	30%	10%	
	IGD	4	2	3	1	40%	20%	30%	10%	
	ET	4	2	3	1	40%	20%	30%	10%	
	CTR	1	2	3	2	12%	25%	38%	25%	
	UM	3	2	1	2	38%	25%	12%	25%	
TB100	NUU	1	2	3	2	12%	25%	38%	25%	
	OFV	1	3	2	4	10%	30%	20%	40%	
	HV	4	2	3	1	40%	20%	30%	10%	
	IGD	4	2	3	1	40%	20%	30%	10%	

 ${\hbox{B.4.2.8}} \quad \hbox{Problem 8: This section describes the results for prioritization problem } f(PET, PTR, PUS, ANU). \\$

TABLE 33. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, ANU))

TB	Metric	ChiSq	DF	p
	ET	57.34	3	< 0.01
	CTR	1189.86	3	< 0.01
	USP	7526.82	3	< 0.01
TB010	NU	645.18	3	< 0.01
	OFV	1398.1	3	< 0.01
	HV	275.51	3	< 0.01
	IGD	298.22	3	< 0.01
	ET	89.73	3	< 0.01
	CTR	1798.14	3	< 0.01
	USP	7247.27	3	< 0.01
TB020	NU	839.27	3	< 0.01
	OFV	1704.37	3	< 0.01
	HV	264.44	3	< 0.01
	IGD	282.02	3	< 0.01
	ET	128.89	3	< 0.01
	CTR	1880.63	3	< 0.01
	USP	6358.26	3	< 0.01
TB030	NU	818.65	3	< 0.01
	OFV	1692.67	3	< 0.01
	HV	265.92	3	< 0.01
	IGD	299.75	3	< 0.01
	ET	139.91	3	< 0.01
	CTR	1792.64	3	< 0.01
TB040	USP	5402.17	3	< 0.01
1 DU4U	NU	765.27	3	< 0.01
	OFV	1578.36	3	< 0.01
	HV	252.74	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB040	IGD	304.38	3	< 0.01
	ET	160.09	3	< 0.01
	CTR	1197.55	3	< 0.01
	USP	4510.15	3	< 0.01
TB050	NU	679.1	3	< 0.01
	OFV	1082.91	3	< 0.01
	HV	236.49	3	< 0.01
	IGD	295.82	3	< 0.01
	ET	145.6	3	< 0.01
	CTR	793.89	3	< 0.01
	USP	4590.26	3	< 0.01
TB060	NU	557.69	3	< 0.01
	OFV	706.82	3	< 0.01
	HV	243.34	3	< 0.01
	IGD	284.71	3	< 0.01
	ET	124.93	3	< 0.01
	CTR	435.79	3	< 0.01
	USP	4630.41	3	< 0.01
TB070	NU	402.34	3	< 0.01
	OFV	419.31	3	< 0.01
	HV	232.82	3	< 0.01
	IGD	270.96	3	< 0.01
	ET	102.03	3	< 0.01
	CTR	348.23	3	< 0.01
	USP	5258.89	3	< 0.01
TB080	NU	239.12	3	< 0.01
	OFV	312.05	3	< 0.01
	HV	238.94	3	< 0.01
	IGD	255.56	3	< 0.01
	ET	97.12	3	< 0.01
	CTR	247.31	3	< 0.01
	USP	4765.28	3	< 0.01
TB090	NU	199.82	3	< 0.01
	OFV	310.4	3	< 0.01
	HV	244.41	3	< 0.01
	IGD	249.22	3	< 0.01
	ET	102.26	3	< 0.01
	CTR	319.43	3	< 0.01
	USP	4843.92	3	< 0.01
TB100	NU	215.11	3	< 0.01
	OFV	361.36	3	< 0.01
	HV	236.92	3	< 0.01
	IGD	246.68	3	< 0.01

TABLE 34. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, ANU))

ТВ	Algorithm A	AlgorithmB	I	ET	С	TR	U	SP	N	١U	О	FV	I	IV	IC	GD
10	AigontilliA	Aiguittiiii	A12	p												
	NSGA2	MoCell	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01

TED	A.1 1.1 A	41 141 D	I	ET	С	TR	U	SP	N	JU	О	FV	I	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TDOOO	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05		< 0.01
TB030	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
TB040	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	1	< 0.01		< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	I		< 0.01	>0.5	>0.05		< 0.01	1	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	I		< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5		< 0.5	< 0.01	>0.5			< 0.01		< 0.01	>0.5	
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	I	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
ED050	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	I		< 0.01	< 0.5	< 0.01	>0.5	< 0.05	1	< 0.05	< 0.5	< 0.01
TB050	MoCell	SPEA2	< 0.5	< 0.01	< 0.5		>0.5	< 0.01		< 0.01	< 0.5		>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	>0.05	>0.5		>0.5	< 0.01		< 0.05	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5		>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5		< 0.5	< 0.01		< 0.05	< 0.5	< 0.01		< 0.01		< 0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5		< 0.5	< 0.01		< 0.01	< 0.5	< 0.01		< 0.01		< 0.01
TTD 0.40	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05		>0.05		< 0.01
TB060	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.5	>0.05		< 0.01	<0.1	< 0.01
	MoCell	CellDE	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05		>0.05	< 0.5	< 0.01
TB070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	I	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	>0.05	>0.5		>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5		>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TDOOO	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.05	< 0.5	>0.05	< 0.5	< 0.01
TB080	MoCell	SPEA2		>0.05	< 0.5	< 0.01			<u> </u>			< 0.01				< 0.01
	MoCell	CellDE										< 0.01				
	SPEA2	CellDE										< 0.01				< 0.01
	NSGA2	MoCell	< 0.5			< 0.01						< 0.01				>0.05
	NSGA2	SPEA2	>0.5									< 0.01			1	< 0.01
TDOOO	NSGA2	CellDE	< 0.5		l	< 0.01	1		1			< 0.01			1	
TB090	MoCell	SPEA2	>0.5			< 0.01				< 0.01						
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5					< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	1	>0.05	l	I	1					>0.05				
	NSGA2	MoCell		< 0.01	l	I	1					< 0.01				
	NSGA2	SPEA2	>0.5			< 0.01						< 0.01				< 0.01
ED400	NSGA2	CellDE		< 0.01								< 0.01			1	< 0.01
TB100	MoCell	SPEA2										< 0.01				< 0.01
	MoCell	CellDE										< 0.01				>0.05
	SPEA2	CellDE			l	I	1		1			>0.05			1	< 0.01
	~ 	CUIDE	\ \	, 5.05	, 5.5	1 .0.00	1 5.5	\0.01		\0.01	, 5.5	, 5.05	\ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1, 0.,	\0.01

TABLE 35. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, ANU))

			Rai	nk			Confid	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	3	2	1	33%	33%	22%	11%
	CTR	2	2	3	1	25%	25%	38%	12%
	USP	2	4	3	1	20%	40%	30%	10%
TB010	NU	2	3	1	2	25%	38%	12%	25%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	3	1	2	33%	33%	11%	22%
	ET	3	2	1	2	38%	25%	12%	25%
	CTR	2	2	3	1	25%	25%	38%	12%
	USP	2	4	3	1	20%	40%	30%	10%
TB020	NU	2	3	1	3	22%	33%	11%	33%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	3	2	1	2	38%	25%	12%	25%
	CTR	1	3	4	2	10%	30%	40%	20%
	USP	2	4	3	1	20%	40%	30%	10%
TB030	NU	2	3	1	3	22%	33%	11%	33%
	OFV	1	2	3	1	14%	29%	43%	14%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	3	2	1	2	38%	25%	12%	25%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	2	4	3	1	20%	40%	30%	10%
TB040	NU	2	3	1	3	22%	33%	11%	33%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	3	2	1	2	38%	25%	12%	25%
	CTR	1	3	4	2	10%	30%	40%	20%
	USP	2	4	3	1	20%	40%	30%	10%
TB050	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	4	1	3	20%	40%	10%	30%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	3	2	1	2	38%	25%	12%	25%
	CTR	1	3	4	2	10%	30%	40%	20%
	USP	2	4	3	1	20%	40%	30%	10%
TB060	NU	3	2	1	4	30%	20%	10%	40%
	OFV	2	3	3	1	22%	33%	33%	11%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	4	1	2	3	40%	10%	20%	30%
	CTR	1	3	4	2	10%	30%	40%	20%
	USP	2	4	3	1	20%	40%	30%	10%
TB070	NU	2	2	1	3	25%	25%	12%	38%
	OFV	1	2	3	1	14%	29%	43%	14%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	1	1	40%	20%	20%	20%
PP	CTR	2	3	4	1	20%	30%	40%	10%
TB080	USP	2	4	3	1	20%	40%	30%	10%
	NU	2	3	1	3	22%	33%	11%	33%
	OFV	2	4	3	1	20%	40%	30%	10%

ТВ	Metric		Rai	nk			Confid	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB080	HV	2	3	1	2	25%	38%	12%	25%
1 0000	IGD	3	4	1	2	30%	40%	10%	20%
	ET	3	1	4	2	30%	10%	40%	20%
	CTR	2	4	3	1	20%	40%	30%	10%
	USP	2	4	3	1	20%	40%	30%	10%
TB090	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	4	3	1	20%	40%	30%	10%
	HV	2	4	1	3	20%	40%	10%	30%
	IGD	3	3	1	2	33%	33%	11%	22%
	ET	3	1	4	2	30%	10%	40%	20%
	CTR	2	4	3	1	20%	40%	30%	10%
	USP	2	4	3	1	20%	40%	30%	10%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	4	3	1	20%	40%	30%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	2	1	2	38%	25%	12%	25%

B.4.2.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU). TABLE 36. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, PUU))

TB	Metric	ChiSq	DF	p
	ET	1677	3	< 0.01
	CTR	148.58	3	< 0.01
	USP	47.08	3	< 0.01
TB010	NUU	150.22	3	< 0.01
	OFV	403.66	3	< 0.01
	HV	336.39	3	< 0.01
	IGD	333.31	3	< 0.01
	ET	1252.81	3	< 0.01
	CTR	20.6	3	< 0.01
	USP	6.69	3	>0.05
TB020	NUU	26.5	3	< 0.01
	OFV	656.8	3	< 0.01
	HV	338.73	3	< 0.01
	IGD	338.72	3	< 0.01
	ET	999.3	3	< 0.01
	CTR	8.36	3	< 0.05
	USP	1.26	3	>0.05
TB030	NUU	6.31	3	>0.05
	OFV	769.22	3	< 0.01
	HV	345.14	3	< 0.01
	IGD	345.21	3	< 0.01
	ET	969.88	3	< 0.01
	CTR	8.87	3	< 0.05
	USP	26.91	3	< 0.01
TB040	NUU	16.98	3	< 0.01
	OFV	833.85	3	< 0.01
	HV	348.02	3	< 0.01
	IGD	348.03	3	< 0.01
	ET	844.34	3	< 0.01
	CTR	50.97	3	< 0.01
	USP	60.93	3	< 0.01
TB050	NUU	55.16	3	< 0.01
	OFV	800.23	3	< 0.01
	HV	341.71	3	< 0.01
	IGD	NaN	3	NaN
TB060	ET	780.42	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	5.91	3	>0.05
	USP	15.85	3	< 0.01
TB060	NUU	6.61	3	>0.05
1 DUOU	OFV	702.89	3	< 0.01
	HV	342.48	3	< 0.01
	IGD	NaN	3	NaN
	ET	536.75	3	< 0.01
	CTR	24.92	3	< 0.01
	USP	31.13	3	< 0.01
TB070	NUU	27.56	3	< 0.01
	OFV	451.67	3	< 0.01
	HV	333.79	3	< 0.01
	IGD	NaN	3	NaN
	ET	574.74	3	< 0.01
	CTR	27.83	3	< 0.01
	USP	16.49	3	< 0.01
TB080	NUU	26.28	3	< 0.01
	OFV	475.52	3	< 0.01
	HV	321.16	3	< 0.01
	IGD	NaN	3	NaN
	ET	561.18	3	< 0.01
	CTR	22.71	3	< 0.01
	USP	21.96	3	< 0.01
TB090	NUU	24.64	3	< 0.01
	OFV	420.03	3	< 0.01
	HV	315.7	3	< 0.01
	IGD	315.87	3	< 0.01
	ET	524.25	3	< 0.01
	CTR	17.43	3	< 0.01
	USP	39.04	3	< 0.01
TB100	NUU	19.95	3	< 0.01
	OFV	435.07	3	< 0.01
	HV	303.23	3	< 0.01
	IGD	NaN	3	NaN

TABLE 37. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	AlgorithmB	I	ET	С	TR	U	SP	N	UU	О	FV	H	IV	IC	GD
10	AiguittiiiiA	Aiguittiiii	A12	p												
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

			F	ET	C	TR	U	SP	N	UU	O	FV	F	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р												
	NSGA2	MoCell	<0.1	<0.01	< 0.5	> 0.05	< 0.5	> 0.05	< 0.5	> 0.05	< 0.1	<0.01	>0.9	<0.01	<0.1	<0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
ED OF O	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TDOCO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	=0.5	>0.05
TD070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5			< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.5	>0.05	>0.5	< 0.05	>0.5	>0.05	< 0.5	
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5		>0.5	< 0.01	< 0.1	< 0.01	>0.9	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5		< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	=0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10100	MoCell	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.5		>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

TABLE 38. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, PUU))

ТВ	Metric		Rai	nk			Confid	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	2	25%	38%	12%	25%
	USP	1	1	1	2	20%	20%	20%	40%
TB010	NUU	2	3	1	2	25%	38%	12%	25%
	OFV	2	3	1	3	22%	33%	11%	33%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
TB020	ET	3	2	4	1	30%	20%	40%	10%
1 0020	CTR	1	2	1	2	17%	33%	17%	33%

			Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	USP	1	1	1	1	25%	25%	25%	25%
	NUU	1	2	1	2	17%	33%	17%	33%
TB020	OFV	2	3	1	4	20%	30%	10%	40%
1 2020	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	2	17%	33%	17%	33%
	USP	1	1	1	1	25%	25%	25%	25%
TB030	NUU	1	1	1	2	20%	20%	20%	40%
1 0030	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4		30%	20%	40%	10%
		3			1				
	IGD		2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	2	17%	33%	17%	33%
	USP	2	2	1	3	25%	25%	12%	38%
TB040	NUU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	USP	2	2	1	3	25%	25%	12%	38%
TB050	NUU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
	USP	2	2	1	2	29%	29%	14%	29%
TB060	NUU	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	4	2	3	1	40%	20%	30%	10%
	CTR	2	1	2	3	25%	12%	25%	38%
	USP	1	1	2	2	17%	17%	33%	33%
TB070	NUU	2	1	2	3	25%	12%	25%	38%
	OFV	1	3	2	4	10%	30%	20%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	1	25%	25%	25%	25%
	USP	2	1	2	2	29%	14%	29%	29%
TB080	NUU	1	1	1	2	20%	20%	20%	40%
12000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	3	25%	12%	25%	38%
	USP	1	1	2	2	17%	17%	33%	33%
TB090	NUU	2		2	3	25%	17%	25%	38%
1 DU9U	OFV	2	3		4	25%	30%	10%	38% 40%
	HV	3		3		33%			11%
			2		1		22%	33%	
	IGD	3	2	3	1	33%	22%	33%	11%
TD100	ET	4	2	3	1	40%	20%	30%	10%
TB100	CTR	1	1	1	2	20%	20%	20%	40%
	USP	2	2	1	3	25%	25%	12%	38%

ТВ	Metric		Rar	ık			Confic	lence	
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	NUU	1	1	1	2	20%	20%	20%	40%
TB100	OFV	1	2	1	3	14%	29%	14%	43%
1 1 1 1 1 1 1	HV	3	2	3	1	33%	22%	33%	11%
	IGD	1	1	1	1	25%	25%	25%	25%

 $B.4.2.10 \quad \hbox{Problem 10: This section describes the results for prioritization problem } f(PET, PTR, ANU, PUU).$ $\hbox{TABLE 39. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, ANU, PUU)) }$

ТВ	Metric	ChiSq	DF	p
	ET	195.56	3	< 0.01
	CTR	304.29	3	< 0.01
	NU	1092.08	3	< 0.01
TB010	NUU	249.42	3	< 0.01
	OFV	235.29	3	< 0.01
	HV	276.31	3	< 0.01
	IGD	230.33	3	< 0.01
	ET	287.01	3	< 0.01
	CTR	595.17	3	< 0.01
	NU	1401.62	3	< 0.01
TB020	NUU	559.72	3	< 0.01
	OFV	544.88	3	< 0.01
	HV	270.41	3	< 0.01
	IGD	231.55	3	< 0.01
	ET	161.61	3	< 0.01
	CTR	695.44	3	< 0.01
	NU	1103.12	3	<0.01
TB030	NUU	725.41	3	<0.01
	OFV	667.96	3	<0.01
	HV	275.74	3	<0.01
	IGD	259.49	3	<0.01
	ET	121.33	3	<0.01
	CTR	1020.43	3	<0.01
	NU	581.37	3	<0.01
TB040	NUU	1138.44	3	<0.01
	OFV	976.55	3	<0.01
	HV	269.35	3	<0.01
	IGD	282	3	<0.01
	ET	178.63	3	<0.01
	CTR	1149.79	3	<0.01
	NU	591.09	3	<0.01
TB050	NUU	1373.35	3	< 0.01
	OFV	1162.7	3	< 0.01
	HV	265.13	3	<0.01
	IGD	296.38	3	< 0.01
	ET	390.1	3	< 0.01
	CTR	718.43	3	<0.01
	NU	423.76	3	<0.01
TB060	NUU	916.08	3	<0.01
	OFV	767.24	3	<0.01
	HV	255.8	3	<0.01
	IGD	299.12	3	<0.01
	ET	334.7	3	<0.01
	CTR	463.14	3	<0.01
ED6=6	NU	394.02	3	<0.01
TB070	NUU	593.61	3	<0.01
	OFV	507.26	3	<0.01
	HV	275.65	3	<0.01
		1	-	

TB	Metric	ChiSq	DF	p
TB070	IGD	284.21	3	< 0.01
	ET	565.04	3	< 0.01
	CTR	317.36	3	< 0.01
	NU	215.86	3	< 0.01
TB080	NUU	431.25	3	< 0.01
	OFV	417.84	3	< 0.01
	HV	270.99	3	< 0.01
	IGD	280.43	3	< 0.01
	ET	771.09	3	< 0.01
	CTR	412.29	3	< 0.01
	NU	326.45	3	< 0.01
TB090	NUU	518.78	3	< 0.01
	OFV	563.68	3	< 0.01
	HV	254.47	3	< 0.01
	IGD	295.43	3	< 0.01
	ET	1067.24	3	< 0.01
	CTR	607.59	3	< 0.01
	NU	352.68	3	< 0.01
TB100	NUU	736.72	3	< 0.01
	OFV	819.65	3	< 0.01
	HV	264.5	3	< 0.01
	IGD	293.83	3	< 0.01

TABLE 40. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, ANU, PUU))

ТВ	A 1 41 A	A la anith na D	I	ET	С	TR	N	IU	N	UU	О	FV	I	IV	I	GD
1 D	AigoriumA	AlgorithmB	A12	p												
	NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05		>0.05	< 0.5	< 0.01	< 0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05
10020	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	>0.05		< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
10000	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
10000	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

			1	ET	С	TR	N	IU	N	UU	Ο	FV	I-	IV	10	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	p	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5		< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TDOCO	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB060	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
10070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
1 0090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01				< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01			< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100 -	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
1 D100	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 41. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, ANU, PUU))

ТВ	Metric		Rai	ık			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	1	2	38%	25%	12%	25%
	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	4	1	3	20%	40%	10%	30%
TB010	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	2	4	1	3	20%	40%	10%	30%
	IGD	2	2	1	3	25%	25%	12%	38%
	ET	3	2	1	2	38%	25%	12%	25%
	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	3	1	3	22%	33%	11%	33%
TB020	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	2	4	1	3	20%	40%	10%	30%
	IGD	3	3	1	2	33%	33%	11%	22%
	ET	4	2	1	3	40%	20%	10%	30%
	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	3	1	4	20%	30%	10%	40%
TB030	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	2	3	1	3	22%	33%	11%	33%
	IGD	3	4	1	2	30%	40%	10%	20%

TD	34.1		Ra	nk			Confid	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	4	1	2	3	40%	10%	20%	30%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	2	2	1	3	25%	25%	12%	38%
TB040	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	3	22%	33%	11%	33%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	1	2	33%	17%	17%	33%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	2	2	1	3	25%	25%	12%	38%
TB050	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	3	22%	33%	11%	33%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	4	1	3	2	40%	10%	30%	20%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	3	2	1	4	30%	20%	10%	40%
TB060	NUU	2	3	3	1	22%	33%	33%	11%
12000	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	4	20%	30%	10%	40%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	4	1	3	2	40%	10%	30%	20%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	3	2	1	4	30%	20%	10%	40%
TB070	NUU	2	3	4	1	20%	30%	40%	10%
1 D07 U	OFV	2	3			20%	30%	40%	10%
	HV	2	3	4	1	20%	30%	10%	40%
		2	3	1	4	25%	38%	10%	25%
	IGD			1	2				
	ET	2	1	2	2	29%	14%	29%	29%
	CTR	2	4	3	1	20%	40%	30%	10%
TDOOO	NU	3	1	2	4	30%	10%	20%	40%
TB080	NUU	2	4	3	1	20%	40%	30%	10%
	OFV	2	4	3	1	20%	40%	30%	10%
	HV	2	3	1	4	20%	30%	10%	40%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	2	25%	12%	38%	25%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	3	1	2	4	30%	10%	20%	40%
TB090	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	3	4	1	2	30%	40%	10%	20%
	HV	2	3	1	4	20%	30%	10%	40%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	2	25%	12%	38%	25%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	1	3	4	20%	10%	30%	40%
TB100	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	3	4	1	2	30%	40%	10%	20%
	HV	2	3	1	4	20%	30%	10%	40%
	IGD	3	4	1	2	30%	40%	10%	20%

B.4.2.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 42. Results of the Holm–Bonferroni method among Multi-Objective Algorithms for HV and IGD (AW4)

Problem	ТВ	Kruskal-Wal	lis Test	Mann-Whitne	y U Test
	1 D	adjusted_p	reject	adjusted_p	reject
Prob.1 f(PET,PTR,AUM)	TB010	< 0.01	Y	< 0.01	Y
1700.1 ((1 L1,1 1 K,21 CHVI)	TB020	< 0.01	Y	< 0.01	Y

Problem	ТВ	Kruskal-Wa	ıllis Test	Mann-Whitne	y U Test
Tioblem		adjusted_p	reject	adjusted_p	reject
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
	TB050	< 0.01	Y	< 0.01	Y
Prob.1 f(PET,PTR,AUM)	TB060	< 0.01	Y	< 0.01	Y
- · · · · - j (-	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.05	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.05	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.2 f(PET,PTR,PUS)	TB050	N/A	N/A	< 0.01	Y
1,00.2)(1,21),1110,1 0.0)	TB060	< 0.01	Y	< 0.01	Y
	TB070	N/A	N/A	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	N/A	N/A	< 0.01	Y
	TB100	N/A	N/A	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Duck 2 f(DET DTD ANIII)	TB050	< 0.01	Y	< 0.05	Y
Prob.3 f(PET,PTR,ANU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.05	Y
	TB090	< 0.01	Y	< 0.05	Y
	TB100	< 0.01	Y	< 0.05	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
D 1 4 ((DET DED DIVI)	TB050	< 0.01	Y	< 0.01	Y
<i>Prob.4 f(PET,PTR,PUU)</i>	TB060	< 0.01	Y	< 0.01	Y
	TB070	N/A	N/A	< 0.05	Y
	TB080	N/A	N/A	<0.01	Y
	TB090	< 0.01	Y	<0.01	Y
	TB100	< 0.01	Y	<0.01	Y
	TB010	< 0.01	Y	<0.01	Y
	TB020	<0.01	Y	<0.01	Y
	TB030	<0.01	Y	<0.01	Y
	TB040	<0.01	Y	<0.05	Y
	TB050	<0.01	Y	<0.03	Y
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	TB060	<0.01	Y	<0.01	Y
	TB070	<0.01	Y	<0.01	<u>Y</u>
	TB080	<0.01	Y	<0.01	Y
	TB090	<0.01	Y	<0.05	Y
	TB100	<0.01	Y	<0.05	Y
			Y	1	
	TB010	<0.01		<0.01	Y
	TB020	<0.01	Y	<0.01	Y
	TB030	<0.01	Y	<0.05	Y
D. J. C. ((DETERMENT ALTER AND ALTER)	TB040	<0.01	Y	<0.01	Y
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	TB050	<0.01	Y	<0.01	Y
	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.05	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.05	Y

Problem	ТВ	Kruskal-Wa		Mann-Whitne	ey U Test
		adjusted_p	reject	adjusted_p	reject
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	TB100	< 0.01	Y	< 0.01	Y
·	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.05	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.7 f(PET,PTR,AUM,PUU)	TB050	< 0.01	Y	< 0.01	Y
Prov.7 J(PET,PTK,AUM,PUU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	>0.05	N
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.05	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.8 f(PET,PTR,PUS,ANU)	TB050	< 0.01	Y	< 0.05	Y
Prov.8 J(PE1,P1K,PUS,ANU)	TB060	< 0.01	Y	< 0.05	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.05	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB050	N/A	N/A	< 0.01	Y
F100.9 J(FE1,F1K,FU3,FUU)	TB060	N/A	N/A	< 0.01	Y
	TB070	N/A	N/A	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	N/A	N/A	< 0.01	Y
	TB010	< 0.01	Y	< 0.05	Y
	TB020	< 0.01	Y	< 0.05	Y
	TB030	< 0.01	Y	< 0.05	Y
Prob.10 f(PET,PTR,ANU,PUU)	TB040	< 0.01	Y	< 0.01	Y
	TB050	< 0.01	Y	< 0.01	Y
	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y

Note that $\mathbf{Adjusted}_{\mathbf{p}}$ refers to all adjusted p-value results. If $\mathbf{Adjusted}_{\mathbf{p}} < 0.05$ (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If $\mathbf{Adjusted_p} > 0.05$, it means there is at least one adjusted p-value that is greater than 0.05. * **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.4.3 Experiment Results for RQ4

This section describes the results for Experiment Results for RQ4.

TABLE 43 Results for the Kruskal-Wallis Test among Test Case Prioritization Problems (AW4)

Metric	ChiSq	DF	p
ANOU	37620.18	13	< 0.01

TABLE 44. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (AW4)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
Prob.1 f(PET,PTR,AUM)	<i>Prob.2 f(PET,PTR,PUS)</i>	NSGA2	NSGA2	>0.9	< 0.01
<i>Prob.1 f(PET,PTR,AUM)</i>	<i>Prob.2 f(PET,PTR,PUS)</i>	NSGA2	SPEA2	>0.9	< 0.01
<i>Prob.1 f(PET,PTR,AUM)</i>	Prob.3 f(PET,PTR,ANU)	NSGA2	MoCell	< 0.1	< 0.01
<i>Prob.1 f(PET,PTR,AUM)</i>	Prob.4 f(PET,PTR,PUU)	NSGA2	NSGA2	>0.9	< 0.01
<i>Prob.1 f(PET,PTR,AUM)</i>	Prob.4 f(PET,PTR,PUU)	NSGA2	SPEA2	>0.9	< 0.01
<i>Prob.1 f(PET,PTR,AUM)</i>	<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	NSGA2	NSGA2	>0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	NSGA2	MoCell	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	NSGA2	NSGA2	>0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	NSGA2	SPEA2	< 0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.8 f(PET,PTR,PUS,ANU)	NSGA2	MoCell	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.9 f(PET,PTR,PUS,PUU)	NSGA2	NSGA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.9 f(PET,PTR,PUS,PUU)	NSGA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.10 f(PET,PTR,ANU,PUU)	NSGA2	MoCell	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.3 f(PET,PTR,ANU)	NSGA2	MoCell	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.3 f(PET,PTR,ANU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.4 f(PET,PTR,PUU)	NSGA2	NSGA2	< 0.5	< 0.05
Prob.2 f(PET,PTR,PUS)	Prob.4 f(PET,PTR,PUU)	NSGA2	SPEA2	<0.5	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.4 f(PET,PTR,PUU)	SPEA2	NSGA2	<0.5	>0.05
Prob.2 f(PET,PTR,PUS)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	<0.5	< 0.05
Prob.2 f(PET,PTR,PUS)	Prob.5 f(PET,PTR,AUM,PUS)	NSGA2	NSGA2	<0.1	< 0.03
Prob.2 f(PET,PTR,PUS)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	NSGA2	<0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.6 f(PET,PTR,AUM,ANU)	NSGA2	MoCell	<0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.6 f(PET,PTR,AUM,ANU)	SPEA2	MoCell	<0.1	<0.01
Prob.2 f(PET,PTR,PUS)	Prob.7 f(PET,PTR,AUM,PUU)	NSGA2	NSGA2	<0.1	<0.01
Prob.2 f(PET,PTR,PUS)	Prob.7 f(PET,PTR,AUM,PUU)	NSGA2	SPEA2	<0.1	<0.01
Prob.2 f(PET,PTR,PUS)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	NSGA2	<0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	<0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.8 f(PET,PTR,PUS,ANU)	NSGA2	MoCell	<0.1	< 0.01
	, ,				
Prob.2 f(PET,PTR,PUS)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	MoCell	<0.1	<0.01
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	NSGA2	NSGA2	>0.5	>0.05
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	NSGA2	SPEA2	>0.5	<0.05
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	>0.5	<0.01
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.5	<0.01
Prob.2 f(PET,PTR,PUS)	Prob.10 f(PET,PTR,ANU,PUU)	NSGA2	MoCell	<0.1	<0.01
Prob.2 f(PET,PTR,PUS)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	<0.1	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.4 f(PET,PTR,PUU)	MoCell	NSGA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.4 f(PET,PTR,PUU)	MoCell	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.5 f(PET,PTR,AUM,PUS)	MoCell	NSGA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.6 f(PET,PTR,AUM,ANU)	MoCell	MoCell	< 0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.7 f(PET,PTR,AUM,PUU)	MoCell	NSGA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	MoCell	SPEA2	>0.9	< 0.01
<i>Prob.3 f(PET,PTR,ANU)</i>	<i>Prob.8 f(PET,PTR,PUS,ANU)</i>	MoCell	MoCell	>0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	MoCell	NSGA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	MoCell	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	MoCell	MoCell	< 0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	NSGA2	NSGA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	SPEA2	NSGA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.6 f(PET,PTR,AUM,ANU)	NSGA2	MoCell	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.6 f(PET,PTR,AUM,ANU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	NSGA2	NSGA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	NSGA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	NSGA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.8 f(PET,PTR,PUS,ANU)	NSGA2	MoCell	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	MoCell	<0.1	< 0.01
,	, ,			10.12	

					51
ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
Prob.4 f(PET,PTR,PUU)	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	NSGA2	NSGA2	>0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	NSGA2	SPEA2	>0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	SPEA2	NSGA2	>0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	SPEA2	SPEA2	>0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	NSGA2	MoCell	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	NSGA2	MoCell	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	NSGA2	NSGA2	>0.5	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	NSGA2	SPEA2	< 0.5	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.8 f(PET,PTR,PUS,ANU)</i>	NSGA2	MoCell	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	NSGA2	NSGA2	>0.9	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	Prob.9 f(PET,PTR,PUS,PUU)	NSGA2	SPEA2	>0.9	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	Prob.10 f(PET,PTR,ANU,PUU)	NSGA2	MoCell	< 0.1	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	MoCell	NSGA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	MoCell	SPEA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.8 f(PET,PTR,PUS,ANU)	MoCell	MoCell	>0.5	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	MoCell	NSGA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	MoCell	SPEA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.10 f(PET,PTR,ANU,PUU)	MoCell	MoCell	>0.5	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.8 f(PET,PTR,PUS,ANU)	NSGA2	MoCell	< 0.1	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	MoCell	< 0.1	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	NSGA2	NSGA2	>0.9	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	NSGA2	SPEA2	>0.9	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	>0.9	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.10 f(PET,PTR,ANU,PUU)	NSGA2	MoCell	< 0.1	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	MoCell	NSGA2	>0.9	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	MoCell	SPEA2	>0.9	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	MoCell	MoCell	< 0.5	< 0.01
Prob.9 f(PET,PTR,PUS,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	NSGA2	MoCell	< 0.1	< 0.01
Prob.9 f(PET,PTR,PUS,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01

TABLE 45
Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Test Case Prioritization Problems (AW4)

Metric	Adjusted_p	Reject
ANOU	< 0.05	Y

^{*} Note that **Adjusted_p** refers to all adjusted p-value results. If **Adjusted_p** < 0.05, it means that all adjusted p-values are less than 0.05. **Reject** is **Y**, meaning rejecting the null hypothesis.