9. Discrete-time Fourier Transform: Let $G_{\text{DTFT}}(F)$ denote the Discrete-Time Fourier Transform of the signal g[n]. Then:

$$G_{\mathrm{DTFT}}(F) = \sum_{n=-\infty}^{\infty} g[n]e^{-j2\pi Fn}$$
 and $g[n] = \int_{0}^{1} G_{\mathrm{DTFT}}(F)e^{j2\pi Fn}dF$

Selected Discrete-Time Fourier Transform Properties

Property	Mathematical Description		
Sum of $g[n]$	$\sum_{n=-\infty}^{\infty} g[n] = G_{\text{DTFT}}(0)$		
Area under $G_{\text{DTFT}}(F)$	$g[0] = \int_{1} G_{\text{DTFT}}(F) dF$		
Linearity	$ag_1[n] + bg_2[n]$] 与	$aG_{1,\text{DTFT}}(F) + bG_{2,\text{DTFT}}(F)$
Time Shifting	$g[n-n_0]$	\leftrightarrows	$G_{\mathrm{DTFT}}(F) e^{-j2\pi F n_0}$
Frequency Shifting	$g[n]e^{j2\pi F_0 n}$	≒	$G_{\text{DTFT}}(F - F_0)$
Time Reversal	g[-n]	\$	$G_{ ext{DTFT}}(-F)$
Conjugate Functions	g * [n]	\leftrightarrows	$G^*_{ ext{DTFT}}(-F)$
Multiplication in time	g[n]h[n]	\leftrightarrows	$(G_{\text{DTFT}}(F)\operatorname{rect}(F)) * H_{\text{DTFT}}(F)$
		=	$= G_{\text{DTFT}}(F) * (H_{\text{DTFT}}(F)\text{rect}(F))$
Convolution in time note: at least one of the two sig			$G_{\text{DTFT}}(F)H_{\text{DTFT}}(F)$ st be an energy signal

Selected Discrete-Time Fourier Transform Pairs

$$\delta[n] \iff 1$$

$$\sum_{k=-\infty}^{\infty} N\delta[n-kN] = N\text{comb}_{N}[n] \iff N\text{comb}(FN) = \sum_{k=-\infty}^{\infty} \delta\left(F - \frac{k}{N}\right)$$

$$\exp(j2\pi an) \iff \delta(F-a) * \text{comb}(F)$$

10. Discrete Fourier Transform: Let $G_{\mathrm{DFT},N}[k]$ denote the N-point DFT of the signal g[n]. Then:

$$G_{\text{DFT},N}[k] = \sum_{n=0}^{N-1} g[n]e^{-j2\pi\frac{k}{N}n} \quad \text{and} \quad g[n] = \frac{1}{N} \sum_{k=0}^{N-1} G_{\text{DFT},N}[k]e^{j2\pi\frac{k}{N}n}$$

$$n = 0, ..., N-1$$

11. Discrete Fourier Series

If g[n] is periodic with period N, then g[n] can be expressed in terms of its DFS representation as follows:

$$g[n] = \sum_{k=0}^{N-1} c_k e^{j2\pi \frac{k}{N}n} \qquad \text{where} \qquad c_k = \frac{1}{N} \sum_{n=0}^{N-1} g[n] e^{-j2\pi \frac{k}{N}n}$$
 (1)