In Research on Computer Aided Dental Implant

Shen Gao July 2020

Contents

- Current work progress.
- Previous works on tooth detection, classification, segmentation and identification on dental images.
 - Dental pathology detection in 3D cone-beam CT.
 - Automatic Detection and Classification of Dental Restorations in Panoramic Radiographs.
 - ToothNet: Automatic Tooth Instance Segmentation and Identification from Cone Beam CT Images.
- Ideas.

任务

- 已知病人的有至少一处的牙齿缺失, 拍摄CBCT图像。
- 已知一个种植牙牙根和连接体的数据库。
- 输入CBCT图像, 求出最适合种植的位置, 以及最合适的牙根和连接体的型号。

方法:第一步

- 提取种植区域ROI。
- 理想情况下, 求术前术后图像的差即可得到种植的位置。
- 实际上两次拍照有位置和姿势的差别,所以需要先进行配准,根据配准结果选择 提取ROI的方法(求差法,阈值法等)。
- 为了优化配准, 裁剪图片, 只取用牙齿部分, 并调整对比度。

数据

• 现有数据:病人进行植牙手术前后的CT图像。目前经数据清洗后共36对数据。

第一次尝试

- 效果不理想。
 - 。 找不到正确的种植牙 Mask。
 - 。配准结果不理想。

分析原因并改进

- · 筛选种植牙Mask(无监督分类)。
- 重新裁剪并进行下采样, 舍弃细节信息, 去除可能影响配准结果的部分 (种植牙和其他治疗痕迹等)。
- , 只对牙齿和骨骼的轮廓进行配准。
- 将配准生成的Displacement field 应 用到种植牙的Mask上, 即可将Mask 映射到术前CT上

Adel Zakirov

Diagnocat St. Petersburg, Russia

az@diagnocat.com

Matvey Ezhov

Diagnocat Moscow, Russia

matvey@diagnocat.com

Maxim Gusarev

Diagnocat Odessa, Ukraine

m.gusarev@diagnocat.com

Vladimir Alexandrovsky

Diagnocat Moscow, Russia

va@diagnocat.com

Evgeny Shumilov

Diagnocat Moscow, Russia

e.shumilov@diagnocat.com

Task

- Find locations of each present tooth inside a 3D image volume.
- Detect several common tooth conditions in each tooth.
 - Fillings, artificial crowns, implants, filled canals, missing teeth.

Dataset

- Localization dataset.
 - Annotated 517 studies.
- Pathology dataset.
 - 39888 examples from 1284 studies.

Methods

- Data preprocess.
- Localization.
- Extracting the tooth volumetric image together with the surrounding context.
- Predict condition.

Sparse annotated location to segmentation mask

- 32+1 masks, one for each tooth and one for background.
- Energy = distance to center of the bbox for each tooth, or a trainable value for background.
- Energy_intensities = intensities + k * energies.
- Use argmax to obtain the label.

CNNs

- 6 levels V-Net for localization. Soft negative multi-class Jaccard similarity loss.
- DenseNet for classification. Weighted BCE loss.

Result

- 96.3% accuracy in tooth localization.
- 0.94 AUROC for 6 common tooth conditions.

Ground truth

AUTOMATIC DETECTION AND CLASSIFICATION OF DENTAL RESTORATIONS IN PANORAMIC RADIOGRAPHS

Talia Yeshua*	Jerusalem College of Technology, Jerusalem, Israel	tyeshua@gmail.com
Ya'akov Mandelbaum	Jerusalem College of Technology, Jerusalem, Israel	yaaqovm@gmail.com
Ragda Abdalla-Aslan	Hebrew University Hadassah School of Dental Medicine, Jerusalem & Rambam Health Care Campus, Haifa, Israel	ragdaa@gmail.com
Chen Nadler	Hebrew Universilty Hadassah School of Dental Medicine, Jerusalem, Israel	nadler@hadassah.org.il
Laureen Cohen	Jerusalem College of Technology, Jerusalem, Israel	laureenhoba@hotmail.fr
Levana Zemour	Jerusalem College of Technology, Jerusalem, Israel	levanazemour@hotmail.fr
Daniel Kabla	Jerusalem College of Technology, Jerusalem, Israel	eldanik1996@gmail.com
Ori Gleisner	Jerusalem College of Technology, Jerusalem, Israel	gleisner@g.jct.ac.il
Isaac Leichter	Jerusalem College of Technology, Jerusalem, Israel	leichter@jct.ac.il

Automatic Detection and Classification of Dental Restorations in Panoramic Radiographs

Task

 Develop a prototype of an information-generating computer tool designed to automatically map the dental restorations in a panoramic radiograph.

Automatic Detection and Classification of Dental Restorations in Panoramic Radiographs

Table 1. Division of dental restorations into categories

Group number	Type of Restoration	Acronyms
1	Crown (only)	CRW
2	Root Canal Treatment with Core	RCT-CO
3	Root Canal Treatment with Core & Crown	RCT-CO-CRW
4	Dental Implant (only)	DI
5	Dental Implant with Abutment	DI-A
6	Dental Implant with Crown	DI-CRW
7	Amalgam Filling	AF
8	Composite Filling	CF
9	Connected Restorations	MULTI

Automatic Detection and Classification of Dental Restorations in Panoramic Radiographs

Methods

- Crop ROI.
- Adaptive threshold segmentation.
- Remove regions adjacent to image borders.
- Classification.

Results

95% detection rate, 92% classification accuracy.

ToothNet: Automatic Tooth Instance Segmentation and Identification from Cone Beam CT Images

Zhiming Cui Changjian Li Wenping Wang

The University of Hong Kong

{zmcui, cjli, wenping}@cs.hku.hk

ToothNet: Automatic Tooth Instance Segmentation and Identification from Cone Beam CT Images

Task

Tooth instance segmentation and identification.

Dataset

- 20 CT scans, 12 for training, 8 for testing.
- Crop 150 patches of size 128 * 128 *
 128 around alveolar bone ridge to obtain 1800 patches.
- Annotated with a tooth-level bbox, mask and label.

Figure 1. An example of tooth segmentation and tooth identification. The first column shows a CBCT scan in the axis view, the second column shows its segmentation results, and the last column shows the 3D segmentation results with different colors for different teeth respectively.

ToothNet: Automatic Tooth Instance Segmentation and Identification from Cone Beam CT Images

Methods

- Deep supervised edge map extraction stage.
- Concat edgemap with CBCT, input to RPN.
- Use a similarity matrix instead of NMS to remove duplicate proposals.

ToothNet: Automatic Tooth Instance Segmentation and Identification from Cone Beam CT Images

- Similarity Matrix
- Relation Conponent
- Result
 - Dice similarity coefficient 91.98%
 - Detection accuracy 97.75%
 - Identification accuracy 92.79%

Ideas

- Weak or semi supervised teeth segmentation.
 - Atlas based methods may work.
- Supernumerary tooth detection.