Riconoscitori a stati finiti Esercizi

Prof. Enrico Denti a cura di Andrea Giovine

novembre, 2021

Quest'opera è distribuita con licenza Creative Commons "Attribuzione – Non commerciale – Condividi allo stesso modo 3.0 Italia".

Indice

0.1	Esercizio 1															3
0.2	Esercizio 2															5
0.3	Esercizio 3															6
0.4	Esercizio 4															10
0.5	Esercizio 5															11

0.1 Esercizio 1

$$L = ab^* + c$$

Osserviamo che L è l'unione di due linguaggi L_1 e L_2 : quindi anche la grammatica che lo genera avrà regole per L_1 e regole per L_2 :

$$L = L_1 \cup L_2$$

$$L_1 = ab^* \longrightarrow \begin{cases} S \to a \mid aB \\ B \to b \mid bB \end{cases}$$

$$L_2 = c \longrightarrow S \to c$$

da cui:

$$\begin{cases}
S \to a \mid c \mid aB \\
B \to b \mid bB
\end{cases} \tag{1}$$

L'automa corrispondente risulta:

Ciò è coerente con la regexp iniziale, da cui avrebbe potuto essere dedotto direttamente. Infatti nelle regexp iniziale:

- \bullet L è l'unione di due linguaggi
- nel secondo percorso, è già finita: c'è direttamente uno stato finale (non importa il nome)
- $\bullet\,$ nel primo occorre produrre $b^* \Longrightarrow autoanello$

Per concludere, rileggiamo tale automa bottom-up, al fine di ottenere la grammatica regolare *sinistra* equivalente:

- 1. rinominare gli stati, per evitare confusione
- 2. estrarre le regole per il mapping bottom-up

Poiché ci sono due stati finali, S_1 e S_2 , occorre trattarli separatamente:

- $S_1 \rightarrow S_1 b \mid a$
- $S_2 \rightarrow c$

Per comporli si scrive concettualmente $S \to S_1 \mid S_2,$ quindi per sostituzione:

$$S \to S_1 b \mid a \mid c \quad \begin{cases} S \to Ab \mid a \mid c \\ A \to Ab \mid a \end{cases}$$
$$S_1 \to S_1 b \mid a$$

0.2 Esercizio 2

$$L = a^*b + c$$

Simile a prima, ma leggermente più complesso da gestire per la presenza dell' * iniziale, che "nasconde" le possibili iniziali delle frasi.

Essendo la ripetizione a sinistra, è naturale esprimerla con una grammatica regolare sinistra

- $S \rightarrow Ab \mid b \mid c$
- $A \rightarrow Aa \mid a$

a cui corrisponde il seguente automa:

La seconda regola si potrebbe anche scrivere con ricorsione destra, ma in tal caso la grammatica sarebbe di *tipo 2*, per la contemporanea presenza di regole sinistre e destre. Benché possibile, ciò sarebbe inappropriato, dato che il linguaggio, provenendo da una regexp, è certamente di tipo 3.

Come utile esercizio possiamo rileggerlo top-down. A tal fine, come primo passo è opportuno procedere a un renaming:

La si confronti con quella, regolare sinistra, iniziale.

0.3 Esercizio 3

$$L = (ab^* + c)^*d$$

Regexp più complessa, con una sotto espressione (quella fra parentesi) che si può ripetere: si noti infatti l'* che segue il gruppo parentesizzato.

Approccio: per un momento, immaginiamo che al posto della sotto espressione ci sia un terminale q, ossia che la regexp abbia la forma $L = q^*d$. In tal caso, il mapping sull'automa sarebbe immediato:

In realtà però al posto di q c'è un'intera sotto-espressione, che di per sé sarebbe schematizzabile con l'automa:

Poiché la sotto-espressione $(ab^* + c)^*$ è solo una sottoparte di un'espressione più ampia, anche questo automa dovrà essere parte dell'automa più ampio schematizzato sopra: di fatto, *l'intero sotto-automa a lato equivale allo stato I* dell'automa iniziale.

Quindi, per avere l'automa completo dobbiamo idealmente (ma anche praticamente) "sostituire" ad I il sotto-automa: per farlo dobbiamo "richiudere" il sotto-automa in un loop, che equivalga all'autoanello presente su I.

Per simulare quell'autoanello occorre introdurre un artificio, la ϵ -mossa: una mossa "spontanea", che l'automa può compiere senza consumare input. Essa rappresenta il "goto" che riporta il loop all'inizio, catturando la semantica dell' *.

Concretamente, dato che il sotto-automa termina nei due stati B e C, che quindi corrispondono ad aver raggiunto la "chiusa parentesi" della sotto-espressione, poter "tornare spontaneamente all'inizio" (autoanello su I) significa tornare da B (o C) allo stato iniziale del sotto-automa: si inserisce a tal fine una ϵ -mossa da ciascuno di tali stati ad S.

Ovviamente, lo stato finale è ora solo quello dell'automa complessivo, che rappresenta la regexp data nella sua totalità.

Tuttavia, la ϵ -mossa, in quanto mossa spontanea a cui non corrisponde alcun input, è di norma indesiderabile: costituisce fondamentalmente un artificio per comporre i pezzi.

Per eliminare le ϵ -mosse garantendo invarianza di effetti occorre, per ogni epsilon-arco rimosso, inserire archi che producano lo stesso risultato.

Per capire come e dove può essere utile un'analogia, quella dell'aeroporto.

Modena (MO) non ha aeroporto: tuttavia, se ai modenesi viene offre un transfer bus gratuito verso l'aeroporto di Bologna (BLQ), essi potranno andare negli stessi luoghi dei bolognesi, *come se* avessero un loro aeroporto.

Il bus gratuito è l'analogo della ϵ -mossa: per toglier
lo senza causare danni ai modenesi, occorre che Modena abbia un aeroporto con gli stessi voli e destinazioni di Bologna.

Analogamente, per togliere un ϵ -arco occorre aggiungere, in compensazione, archi che portino negli stessi stati che si sarebbero potuti raggiungere con l' ϵ -arco soppresso.

Nell'automa di poco fa, gli ϵ -archi (in rosso) erano due:

- dallo stato B (analogia: Modena) verso S (analogia: BLQ)
- dallo stato C (analogia: un'altra Modena) verso S (analogia: BLQ)

Poiché da S si possono raggiungere:

- lo stato B, con ingresso a
- \bullet lo stato C, con ingresso c
- \bullet lo stato finale, con ingresso d

occorre che la soppressione dei due ϵ -archi (in rosso) sia accompagnata dal simultaneo inserimento di archi:

- dallo stato B, verso tutti quegli stati a cui si giungeva da S (B,C,F)
- dallo stato C, verso tutti quegli stati a cui si giungeva da S (B,C,F)

Il risultato è mostrato in figura:

- blu: archi inseriti in compensazione dell'epsilon-arco di B
- verde: archi inseriti in compensazione dell'epsilon-arco di C

L'automa così ottenuto può essere, se necessario, minimizzato.

0.4 Esercizio 4

$$L = (ab^* + c^*d)^*a$$

0.5 Esercizio 5

$$L = (a + bc)^*b$$

Seguendo la stessa metodologia degli esercizi precedenti, è immediato disegnare l'automa con le epsilon-mosse.

Per eliminarle, sono possibili due approcci:

- il metodo "classico", che agisce meccanicamente, dando luogo in prima battuta a un automa non minimo
- un metodo "veloce", che si basa sull'osservazione diretta di percorsi "evidenti" in questo caso specifico.

Metodo veloce

si osserva che A e C sono puri stati di transito per la sequenza "a ϵ " e "c ϵ ", dunque si possono facilmente eliminare "fondendo" i due archi in uno solo

automa risultante (minimo)

Metodo classico

automa non minimo

Tabella di minimizzazione:

S	NO	$\underline{\mathrm{SI}}$	
A	NO	SI	$\underline{\operatorname{SI}}$
B	SI	NO	NO
	В	A	C

Stati equivalenti: $S \equiv A, \, A \equiv C$

automa minimo