Nordic probabilistic Al school Variational Inference and Optimization

Helge Langseth, Andrés Masegosa, and Thomas Dyhre Nielsen

June 18, 2024

ProbAl - 2024

Stochastic Gradient Ascent

A small side-step: Gradient Ascent

Why do we talk about this?

We want a way to optimize ELBO using gradient methods. If we can do Bayesian inference as optimization it will play well with, e.g., deep learning frameworks.

Gradient ascent algorithm for maximizing a function $f(\lambda)$:

- **1** Initialize $\lambda^{(0)}$ randomly.
- ② For t = 1, ...:

$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho \cdot \nabla_{\boldsymbol{\lambda}} f\left(\boldsymbol{\lambda}^{(t-1)}\right)$$

- $\pmb{\lambda}^{(t)}$ converges to a (local) optimum of $f(\cdot)$ if:
 - f is "sufficiently nice";
 - The learning-rate ρ is "sufficiently small".

... and Stochastic Gradient Ascent

"Standard" gradient ascent is not enough for ELBO optimization

We won't be able to calculate $\nabla_{\lambda} \mathcal{L}(q(\theta \mid \lambda))$ exactly for (at least) two reasons:

- We may have to resolve to mini-batching (gradient from "random subset")
- We may not be able to calculate the gradient exactly even for a mini-batch

"Standard" gradient ascent is not enough for ELBO optimization

We won't be able to calculate $\nabla_{\lambda} \mathcal{L}\left(q(\theta \mid \lambda)\right)$ exactly for (at least) two reasons:

- We may have to resolve to mini-batching (gradient from "random subset")
- We may not be able to calculate the gradient exactly even for a mini-batch

Stochastic gradient ascent algorithm for maximizing a function $f(\lambda)$:

If we have access to $\mathbf{g}(\lambda)$ – an **unbiased estimate** of the gradient – it still works!

- Initialize $\lambda^{(0)}$ randomly.
- ② For t = 1,...:

$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho_t \cdot \mathbf{g} \left(\boldsymbol{\lambda}^{(t-1)} \right)$$

 λ_t converges to a (local) optimum of $f(\cdot)$ if:

- f is "sufficiently nice";
- $\mathbf{g}(\lambda)$ is a random variable with $\mathbb{E}[\mathbf{g}(\lambda)] = \nabla_{\lambda} f(\lambda)$ and $\operatorname{Var}[\mathbf{g}(\lambda)] < \infty$.
- The learning-rates $\{\rho_t\}$ is a Robbins-Monro sequence:
 - $\sum_{t} \rho_t^2 < \infty$ $\sum_{t} \rho_t = \infty$

Black Box Variational Inference

Main idea: Cast inference as an optimization problem

Optimize the ELBO by stochastic gradient ascent over the parameters λ . If that works, Bayesian inference can be **seamlessly integrated** with building-blocks from other gradient-based machine learning approaches (like deep learning).

Algorithm: Maximize $\mathcal{L}\left(q\right) = \mathbb{E}_q\left[\log \frac{p(\theta, \mathcal{D})}{q(\theta|\lambda)}\right]$ by gradient ascent

- Initialization:
 - $t \leftarrow 0$;
 - $\hat{\lambda}_0 \leftarrow$ random initialization;
 - $\{\rho_t\} \leftarrow$ a Robbins-Monro sequence.
- Repeat until negligible improvement in terms of $\mathcal{L}(q)$:
 - $t \leftarrow t + 1$;
 - $\hat{\boldsymbol{\lambda}}_t \leftarrow \hat{\boldsymbol{\lambda}}_{t-1} + \rho_t |\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q)|_{\hat{\boldsymbol{\lambda}}_{t-1}};$

Important issue:

Can we calculate $\nabla_{\lambda} \mathcal{L}(q)$ efficiently without adding new restrictive assumptions?

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) = \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right].$$

Tricky: How can we move the gradient inside the expectation?

• We would typically approximate an expectation by a sample average:

$$\mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}}\left[f(\boldsymbol{\theta}, \boldsymbol{\lambda})\right] \approx \frac{1}{M} \sum_{j=1}^{M} f(\boldsymbol{\theta}_{j}, \boldsymbol{\lambda}), \text{ with } \{\boldsymbol{\theta}_{1}, \dots \boldsymbol{\theta}_{M}\} \text{ sampled from } q_{\boldsymbol{\lambda}}(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}).$$

• This doesn't work when taking a gradient related to the sampling distribution.

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(q\right) = \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right].$$

Solution: Use these properties to simplify the equation:

Now it follows that

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) = \mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

This is the so-called **score-function gradient**.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \left| \nabla_{\lambda} \log q(\theta \mid \lambda) \right| \right].$$

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot | \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

• $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.

ProbAl - 2024 Black Box Variational Inference

• We still only need access to the joint distribution $p(\theta, \mathcal{D})$ – not $p(\theta \mid \mathcal{D})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \middle| \nabla_{\lambda} \log q(\theta \mid \lambda) \right].$$

- $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.
- ullet We must calculate $abla_{oldsymbol{\lambda}_i} \log q\left(heta_i \,|\, oldsymbol{\lambda}_i
 ight)$, which is also known as the "score function".

• We still only need access to the joint distribution $p(\theta, \mathcal{D})$ – not $p(\theta \mid \mathcal{D})$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

- $q(\theta \mid \lambda)$ factorizes under MF , s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.
- ullet We must calculate $abla_{oldsymbol{\lambda}_i} \log q\left(heta_i \,|\, oldsymbol{\lambda}_i
 ight)$, which is also known as the "score function".
- The expectation will be approximated using a sample $\{\theta_1, \dots, \theta_M\}$ generated from $q(\theta \mid \lambda)$. Hence we require that we can **sample from** each $q(\theta_i \mid \lambda_i)$.

ProbAl - 2024 Black Box Variational Inference

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\lambda} \mathcal{L}(q) = \boxed{\mathbb{E}_{\theta \sim q}} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \left| \nabla_{\lambda} \log q(\theta \mid \lambda) \right| \right].$$

- $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.
- ullet We must calculate $abla_{\lambda_i} \log q\left(heta_i \, | \, oldsymbol{\lambda}_i
 ight)$, which is also known as the "score function".
- The expectation will be approximated using a sample $\{\theta_1,\ldots,\theta_M\}$ generated from $q(\theta\,|\,\lambda)$. Hence we require that we can **sample from** each $q(\theta_i\,|\,\lambda_i)$.

Calculating the gradient - in summary

We have observed the data \mathcal{D} , and our current estimate for λ is $\hat{\lambda}$. Then

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q)|_{\boldsymbol{\lambda} = \hat{\boldsymbol{\lambda}}} \approx \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \hat{\boldsymbol{\lambda}})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_{j} \mid \hat{\boldsymbol{\lambda}}),$$

where $\{\theta_1, \dots \theta_M\}$ are samples from $q(\cdot | \hat{\lambda})$. Typically M is fairly small.

ProbAl - 2024 Black Box Variational Inference

$$\frac{\nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda}); \ \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda}); \ \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(\boldsymbol{\theta}_j, \mathcal{D})}{q(\boldsymbol{\theta}_j \,|\, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_j \,|\, \boldsymbol{\lambda})$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Different samples, each with M=5.

$$\nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda}); \quad \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda}); \quad \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(\boldsymbol{\theta}_j, \mathcal{D})}{q(\boldsymbol{\theta}_j \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_j \mid \boldsymbol{\lambda})$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Different values of M (M = 3, 5, 10, and 25)

$$\nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda}); \quad \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda}); \quad \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(\boldsymbol{\theta}_j, \mathcal{D})}{q(\boldsymbol{\theta}_i \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_j \mid \boldsymbol{\lambda})$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Code-task: Score-function gradient for linear regression

Code Task: Score-function gradient for linear regression

- $\bullet \ \boldsymbol{\theta} = \{w_0, w_1\}, \ \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta} \cdot \mathbf{I}_{2 \times 2})$
- $Y_i | \{\boldsymbol{\theta}, x_i, \sigma_y\} \sim \mathcal{N}(w_0 + w_1 \cdot x_i, \sigma_y^2)$
- We choose $q_j(\theta_j \,|\, \pmb{\lambda}_j) = \mathcal{N}(\theta_j \,|\, \mu_j, \sigma_j^2)$, so $\pmb{\lambda}_j = \{\mu_j, \sigma_j\}$

In this task you will implement the score-function gradient:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})} \,\cdot\, \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}) \right].$$

- Look at Exercise 1 in the notebook

 Day2-AfterLunch/students_BBVI.ipynb.
- We need $\nabla_{\pmb{\lambda}} \log q(\theta \,|\, \pmb{\lambda}) = \left[\frac{\partial}{\partial \mu} \, \log \mathcal{N}(\theta | \mu, \sigma^2), \frac{\partial}{\partial \sigma} \, \log \mathcal{N}(\theta | \mu, \sigma^2) \right]^{\mathsf{T}}$: You must find $\frac{\partial}{\partial \mu_j} \, \log \mathcal{N}\left(\theta_j | \mu_j, \sigma_j^2\right)$, but are given $\frac{\partial}{\partial \sigma_j} \, \log \mathcal{N}\left(\theta_j | \mu_j, \sigma_j^2\right)$.
- Implement your results in the function score_function_gradient.

Goal: Find a more robust estimator for the gradient

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(q\right) = \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \, | \, \boldsymbol{\lambda})} \right].$$

Goal: Find a more robust estimator for the gradient

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right].$$

Assumption: $q(\theta|\lambda)$ can be *reparametrized* as follows:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda),$

where $\phi(\epsilon)$ is some distribution that **does not** depend on λ and $f(\epsilon, \lambda)$ is a **deterministic** transformation.

Goal: Find a more robust estimator for the gradient

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right].$$

Assumption: $q(\theta|\lambda)$ can be *reparametrized* as follows:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda),$

where $\phi(\epsilon)$ is some distribution that **does not** depend on λ and $f(\epsilon, \lambda)$ is a **deterministic** transformation.

Example: The univariate Gaussian distribution

Assume $q(\theta|\lambda)=\mathcal{N}(\theta\,|\,\mu,\sigma^2)$, with $\lambda=\{\mu,\sigma\}$. $q(\theta|\lambda)$ can be reparametrized by

$$\epsilon \sim \phi(\epsilon) = \mathcal{N}(0,1)$$

 $\theta = f(\epsilon, \lambda) = \mu + \sigma \epsilon.$

Assumption: $q(\theta|\lambda)$ can be *reparametrized* as follows:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda).$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q(\cdot \mid \boldsymbol{\lambda})} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right]$$

Assumption: $q(\theta|\lambda)$ can be *reparametrized* as follows:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda).$

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\boldsymbol{\theta} \sim q(\cdot \mid \boldsymbol{\lambda})} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right]$$
$$= \nabla_{\lambda} \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi(\cdot)} \left[\log \frac{p(\boldsymbol{f}(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(\boldsymbol{f}(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \mid \boldsymbol{\lambda})} \right]$$

Assumption: $q(\theta|\lambda)$ can be *reparametrized* as follows:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda).$

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \, \mathcal{L} \left(q \right) &= & \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta}} \sim q(\cdot \, | \, \boldsymbol{\lambda}) \, \left[\log \frac{p(\, \boldsymbol{\theta} \, , \mathcal{D})}{q(\, \boldsymbol{\theta} \, | \, \boldsymbol{\lambda})} \right] \\ &= & \left[\nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\epsilon}} \, \sim \phi(\cdot) \, \left[\log \frac{p(\, f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \, , \mathcal{D})}{q(\, f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \, | \, \boldsymbol{\lambda})} \right] \\ &= & \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\left[\nabla_{\boldsymbol{\lambda}} \, \log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \, | \, \boldsymbol{\lambda})} \right] \end{split}$$

Assumption: $q(\theta|\lambda)$ can be *reparametrized* as follows:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda).$

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta}} \sim q(\cdot \, | \, \boldsymbol{\lambda}) \, \left[\log \frac{p(\, \boldsymbol{\theta} \, , \mathcal{D})}{q(\, \boldsymbol{\theta} \, | \, \boldsymbol{\lambda})} \right] \\ &= \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\epsilon}} \sim \phi(\cdot) \, \left[\log \frac{p(\, f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \, , \mathcal{D})}{q(\, f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \, | \, \boldsymbol{\lambda})} \right] \\ &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\nabla_{\boldsymbol{\lambda}} \, \log \frac{p(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}), \mathcal{D})}{q(f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \, | \, \boldsymbol{\lambda})} \right] \\ &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \phi} \left[\nabla_{\boldsymbol{\theta}} \, \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \, | \, \boldsymbol{\lambda})} \Big|_{\boldsymbol{\theta} = f(\boldsymbol{\epsilon}, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \, f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \end{split}$$

Assumption: $q(\theta|\lambda)$ can be *reparametrized* as follows:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda).$

Monte-Carlo Estimation:

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) \right]$$

Monte-Carlo Estimation:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} (q) = \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right]$$

$$\approx \frac{1}{M} \sum_{j=1}^{M} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j}, \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \right] : \boldsymbol{\epsilon}_{j} \sim \phi(\boldsymbol{\epsilon}), \quad \boldsymbol{\theta}_{j} \leftarrow f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda})$$

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\pmb{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\pmb{\epsilon} \sim \phi} \left[\nabla_{\pmb{\theta}} \log \frac{p(\pmb{\theta}, \mathcal{D})}{q(\pmb{\theta} \mid \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}, \pmb{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \left[\nabla_{\pmb{\theta}} \log \frac{p(|\pmb{\theta}_j|, \mathcal{D})}{q(|\pmb{\theta}_j|, \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(|\pmb{\epsilon}_j|, \pmb{\lambda}) \right] : \pmb{\epsilon}_j \sim \phi(\pmb{\epsilon}), \quad \pmb{\theta}_j \leftarrow f(\pmb{\epsilon}_j, \pmb{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\pmb{\theta}} \log p(\pmb{\theta}_j, \mathcal{D})}_{\text{Model's gradient}} - \underbrace{\nabla_{\pmb{\theta}} \log q(\pmb{\theta}_j \mid \pmb{\lambda})}_{\text{Approximation's gradient}} \right) \cdot \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}_j, \pmb{\lambda}) \end{split}$$

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\pmb{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\pmb{\epsilon} \sim \phi} \left[\nabla_{\pmb{\theta}} \log \frac{p(\pmb{\theta}, \mathcal{D})}{q(\pmb{\theta} \mid \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}, \pmb{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \left[\nabla_{\pmb{\theta}} \log \frac{p(|\pmb{\theta}_j|, \mathcal{D})}{q(|\pmb{\theta}_j|, \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(|\pmb{\epsilon}_j|, \pmb{\lambda}) \right] : \pmb{\epsilon}_j \sim \phi(\pmb{\epsilon}), \quad \pmb{\theta}_j \leftarrow f(\pmb{\epsilon}_j, \pmb{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\pmb{\theta}} \log p(\pmb{\theta}_j, \mathcal{D})}_{\text{Model's gradient}} - \underbrace{\nabla_{\pmb{\theta}} \log q(\pmb{\theta}_j \mid \pmb{\lambda})}_{\text{Approximation's gradient}} \right) \cdot \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}_j, \pmb{\lambda}) \end{split}$$

This gradient estimator...

- Uses the *model's* gradients (not so for the score-function gradient).
- Requires $q(\theta|\lambda)$ to be *reparametrizable* and *differentiable* this time wrt. θ .
- Requires $\log p(\theta, \mathcal{D})$ to be differentiable wrt. θ .

Reparameterized gradient

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Notice the direction of each sample's gradient:

- Score-function gradient: Towards the mode of q
- Reparameterization-gradient: (Approximately) towards high density region of the exact posterior $p(\theta|D)$.

Comparison

Score function gradients:

- Gradients point towards the mode of $q(\theta|\lambda)$, while $p(\mathcal{D},\theta)$ only affects the *weights*. We need a "large" number of samples, typically in the order of tens to a hundred.
- Requires $\ln q(\theta|\lambda)$ to be differentiable wrt. λ .
- Requires $\ln p(\mathcal{D}, \boldsymbol{\theta})$ to be *computable*.

Reparametrization gradients:

- Gradients utilize the model definition via the term $\nabla_{\theta} \ln p(\mathcal{D}, \theta)$. Fairly robust, so we only need a *few samples*, typically only a single one!
- Requires $q(\theta|\lambda)$ to be reparametrizable.
- Requires $\ln q(\theta|\lambda)$ to be differentiable wrt. θ .
- Requires $\ln p(\mathcal{D}, \theta)$ to be differentiable wrt. θ .

Conclusion

The "Score function" approach is more general, but "Reparametrization" will usually provide better results quicker when applicable.

Code Task: Reparameterization-gradient for linear regression

•
$$\theta = \{w_0, w_1\}, \theta \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta} \cdot \mathbf{I}_{2 \times 2})$$

•
$$Y_i \mid \{\boldsymbol{\theta}, x_i, \sigma_y\} \sim \mathcal{N}(w_0 + w_1 \cdot x_i, \sigma_y^2)$$

In this task you will play with the reparameterization gradient:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(q\right) = \underset{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}}{\mathbb{E}} \left[\left(\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}, \mathcal{D}) - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right]$$

- We provide $\nabla_{\theta} \log p(\theta, \mathcal{D})$, $\nabla_{\theta} \log q(\theta \mid \lambda)$ and $\nabla_{\lambda} f(\epsilon, \lambda)$ for this model.
- Go to Exercise 2 in

 Day2-AfterLunch/students_BBVI.ipynb.
- ullet Experiment with the number of Monte-Carlo samples M per iteration, the learning-rate, and the number of iterations. Compare with the output of the Score Function Gradient.

Probabilistic programming: Variational inference in Pyro

Pyro

Pyro's main features (www.pyro.ai):

- Initially developed by UBER (the car riding company).
- Community of contributors and a dedicated team at Broad Institute (US).
- Rely on Pytorch (Deep Learning Framework).
- Enable GPU accelaration and distributed learning.

Pyro

Pyro (pyro.ai) is a Python library for probabilistic modeling, inference, and criticism, integrated with PyTorch.

- **Modeling:** Directed graphical models
 - Neural networks (via nn.Module)
 - ...
- Inference: Variational inference including BBVI, SVI
 - Monte Carlo including Importance sampling and Hamiltonian Monte Carlo
 - ...
- Criticism:

 Point-based evaluations
 - Posterior predictive checks
 - ...

... and there are also many other possibilities

Tensorflow is integrating probabilistic thinking into its core, InferPy is a local alternative, etc.

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor}=18)$$

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor}=18)$$

Variational Solution

$$\min_{\mathbf{q}} \mathrm{KL}\left(\mathbf{q}(\mathsf{temp}) || p(\mathsf{temp}|\mathsf{sensor} = 18)\right)$$

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor} = 18)$$

Variational Solution

$$\min_{q} \operatorname{KL}\left({q(\mathsf{temp})} || p(\mathsf{temp}|\mathsf{sensor} = 18) \right)$$

Pyro Guides:

• Define the *q* **distributions** in variational settings.

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor} = 18)$$

Variational Solution

```
\min_{q} \mathrm{KL}\left(\frac{q(\mathsf{temp})}{||p(\mathsf{temp}|\mathsf{sensor}=18))}\right)
```

Pyro Guides:

- Define the *q* **distributions** in variational settings.
- Build proposal distributions in importance sampling, MCMC.
- ...

Pyro Guides:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Pyro Guides:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Guide requirements

- the guide has the same input signature as the model
- ② all unobserved sample statements that appear in the model appear in the guide.

Example

```
#The observations
close = {'sensor': torch.tensor(18.0)}

def model(obs):
    temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs['sensor'])
```

```
#The guide
def guide(obs):
    a = pyro.param("mean", torch.tensor(0.0))
    b = pyro.param("scale", torch.tensor(1.), constraint=constraints.positive)
    temp = pyro.sample('temp', dist.Normal(a, b))
```

Code-task: VB for a simple Gaussian model

Exercise: Pyro implementation for a simple Gaussian model

Day2-AfterLunch/student_simple_gaussian_model_pyro.ipynb

- $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$
- $\bullet \ \mu \sim \mathcal{N}(0,\tau)$
- $\gamma \sim \text{Gamma}(\alpha, \beta)$
- Implement a pyro **guide** for the graphical model above.
- Specify suitable **variational approximation** in the form of a Pyro guide.

$$q(\mu, \gamma) = \dots$$

• Check the differences with the following notebook (no Pyro implementation).

Day2-BeforeLunch/student_simple_model.ipynb