

Nuvectra Corporation

Bluetooth Pocket Programmer

FCC 95I:2018 MedRadio

Report # NUVE0019.1

NVLAP LAB CODE: 200881-0

CERTIFICATE OF TEST

Last Date of Test: November 7, 2018

Nuvectra Corporation

Model: Bluetooth Pocket Programmer

Radio Equipment Testing

Standards

Specification	Method
FCC 95I:2018	ANSI C63.26:2015

Results

rtoounto				
Method Clause	Test Description	Applied	Results	Comments
ANSI C63.26 5.2.3.3	Conducted Output Power	Yes	Pass	
ANSI C63.26 5.2.3.3, 5.2.7	Radiated Power (EIRP)	Yes	Pass	
ANSI C63.26 5.4.3	Emission Bandwidth	Yes	Pass	
ANSI C63.26 5.5.4	Spurious Radiated Emissions	Yes	Pass	
ANSI C63.26 5.6	Frequency Stability	Yes	Pass	
ANSI C63.26 5.7	Spurious Conducted Emissions	Yes	Pass	
FCC 95.2579(a)(1)	Emission Mask	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
	ВЅМІ					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Nuvectra Corporation
Address:	10675 Naples St. NE
City, State, Zip: Blaine, MN 55449	
Test Requested By:	Peter Valentyik
Model:	Bluetooth Pocket Programmer
First Date of Test:	November 5, 2018
Last Date of Test:	November 7, 2018
Receipt Date of Samples:	November 5, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Communicates with Clinician Programmer using Bluetooth and MICS with IPG.

Client Provided Information:

The Bluetooth Pocket Programmer Model 4110 test samples used in testing contain a new PCBA and have reused the mechanical enclosure, buttons, display, battery and labeling from the Pocket Programmer Model 4100. As a result, the label found on the test units contain the label with Model 4100.

Testing Objective:

Seeking FCC authorization for the MedRadio transmitter to FCC Part 95I.

CONFIGURATIONS

Configuration NUVE0019-1

Software/Firmware Running during test			
Description	Version		
EMCTESTINGV2	2		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Programmer	Nuvectra Corporation	4110	101018

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Power Supply	SL Power Electronics	ME10A0599B02	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	1.45 m	No	Power Supply	Programmer

Configuration NUVE0019-5

Software/Firmware Running during test		
Description	Version	
EMCTESTINGV2	2	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Programmer	Nuvectra Corporation	4110	101016

Peripherals in test setup boundary										
Description	Manufacturer	Model/Part Number	Serial Number							
Power Supply	SL Power Electronics	ME10A0599B02	None							

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	1.45 m	No	Power Supply	Programmer

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2018-11-05	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2018-11-05	Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2018-11-07	Emission Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2018-11-07	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2018-11-07	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2018-11-07	Conducted Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2018-11-07 Emission Mask		Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. NUVE0019.1 10/36

CONDUCTED OUTPUT POWER

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E4422B	TGQ	15-Mar-18	15-Mar-21
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per FCC Part 2.1046, RSS-GEN, the output power shall be measured at the RF terminal. The peak output power was measured with the EUT configured in the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.

FCC Part 95 and RSS-243 have no conducted output power limit. It is a requirement to characterize this information and that data is contained within this datasheet.

CONDUCTED OUTPUT POWER

	TbiTx 2018.09.13 XMit 2017.12.13
EUT: Bluetooth Pocket Programmer	Work Order: NUVE0019
Serial Number: 101016	Date: 7-Nov-18
Customer: Nuvectra Corporation	Temperature: 21.5 °C
Attendees: Peter Valentyik	Humidity: 28.1% RH
Project: None	Barometric Pres.: 1024 mbar
Tested by: Kyle McMullan Power: 110VAC/6	0Hz Job Site: MN08
TEST SPECIFICATIONS Test Meth	od
FCC 95I:2018 ANSI C63.	.26:2015
COMMENTS	
None	
DEVIATIONS FROM TEST STANDARD	
None	
Configuration # 5 Knyla Millia	
Configuration # 5 Signature	
Oignature	
	Value Limit Result
Mid Channel, 403.35 MHz	1.168 mW N/A N/A

Report No. NUVE0019.1 12/36

CONDUCTED OUTPUT POWER

13/36

Mid Channel, 403.35 MHz Limit Result 1.168 mW N/A N/A

RADIATED POWER (EIRP)

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting MICS - mid channel (403.35 MHz), CW

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

NUVE0019 - 1

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Element	Biconilog Cable	MNX	24-Feb-2018	12 mo
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-2017	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	26-Mar-2018	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

Per 95.2567(a)(2), the maximum radiated field strength for a MICS transmitter is 25uW EIRP. The Field Strength of the Fundamental data was converted to EIRP with the formula based upon the Friis transmission equation with 6 dB removed due to reflections from the ground plane: EIRP = $((E/2)*d)^2/30$ where E is V/m and d = distance = 3m, and EIRP = W (Reference 95.2569(a)).

The Field Strength of the Fundamental was measured in the far-field at an FCC Listed Semi-anechoic Chamber. Spectrum analyzer and linearly polarized antennas were used to measure the radiated field strength of the fundamental.

The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The turntable azimuth was varied to maximize the level of radiated emissions. The height of the measurement antenna was also varied from 1 to 4 meters. The amplitude and frequency of the emissions were noted.

The EUT was configured to transmit in a fixture that simulates the human torso. The dimensions of the test fixture and the characteristics of the tissue substitute material met the requirements 95.2569(c) and FCC KDB 617965. The height of the transmitter was 1.5-meter above the reference ground plane.

RADIATED POWER (EIRP)

				EmiR5 2018.09.26 PSA-ESCI 2018.07.27									
Work Order:	NUVE0019	Date:	5-Nov-2018	A									
Project:	None	Temperature:	22.3 °C	Tusting saids									
Job Site:	MN09	Humidity:	31.4% RH	9/100									
Serial Number:	101018	Barometric Pres.:	1010 mbar	Tested by: Dustin Sparks									
EUT:	Bluetooth Pocket Prog	grammer		•									
Configuration:	1												
Customer:	Nuvectra Corporation	uvectra Corporation											
Attendees:	Peter Valentyik	eter Valentyik											
EUT Power:	110VAC/60Hz	10VAC/60Hz											
Operating Mode:	Transmitting MICS - n	nid channel (403.35 MH	Iz), CW										
Deviations:	None												
Comments:	,	ax power). 6 dB subtrac	ted from EIRP values	to account for ground plane reflections.									
Test Specifications			Test Meth	od									
FCC 95I:2018	•		ANSI C63.	26:2015									

■ PK

QP

Run#	6	Test	t Dista	nce	(m)	3	Ant	tenn	а Не	eigh	t(s)		1 to	4(m)	1	F	Resul	ts	Pa	ss
																				_
-5																				
-15																				_
-25									1											
-35																				-
-45																				_
-55																				_
-65																				
-75																				-

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
403.340	2.0	186.0	Horz	PK	2.80E-05	-21.5	-16.0	-5.5	Mid ch, EUT on side
403.340	1.2	254.0	Vert	PK	2.50E-05	-22.0	-16.0	-6.0	Mid ch, EUT on side
403.345	1.0	75.0	Horz	PK	1.73E-05	-23.6	-16.0	-7.6	Mid ch, EUT horizontal
403.350	1.2	257.0	Vert	PK	1.57E-05	-24.0	-16.0	-8.0	Mid ch, EUT vertical
403.345	1.0	340.0	Horz	PK	6.27E-06	-28.0	-16.0	-12.0	Mid ch, EUT vertical
403.345	1.0	108.0	Vert	PK	5.99E-06	-28.2	-16.0	-12.2	Mid ch, EUT horizontal

MHz

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E4422B	TGQ	15-Mar-18	15-Mar-21
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per 47 CFR 95.2573(a), the emission bandwidth was determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum level of the modulated carrier. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT.

					TbtTx 2018.09.13	XMit 2017.12.13
EUT:	Bluetooth Pocket Program	nmer		Work Order:	NUVE0019	
Serial Number:	101016			Date:	7-Nov-18	
Customer:	Nuvectra Corporation			Temperature:	21.5 °C	
Attendees:	Peter Valentyik			Humidity:	28.1% RH	
Project:	None			Barometric Pres.:	1024 mbar	
Tested by:	Kyle McMullan		Power: 110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATI	IONS		Test Method			
FCC 95I:2018			ANSI C63.26:2015			
COMMENTS			•			
None						
DEVIATIONS FROM	M TEST STANDARD					
None						
Configuration #	5	7	ryla mathella			
		Signature				
	•	- J			Limit	
				Value	(≤)	Result
Low Channel, 402.1	5 MHz			229.3 kHz	300 kHz	Pass
Mid Channel, 403.35				247.79 kHz	300 kHz	Pass
High Channel, 404.8				264.998 kHz	300 kHz	Pass
	· · · · · · · · · · · · · · · · · · ·			20 11000 11112		. 200

Report No. NUVE0019.1 17/36

Low Channel, 402.15 MHz

Limit

Value (5) Result

229.3 kHz 300 kHz Pass

Report No. NUVE0019.1 18/36

High Channel, 404.85 MHz

Limit

Value (≤) Result

264.998 kHz 300 kHz Pass

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting MICS - mid channel (403.35 MHz)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

NUVE0019 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 5000 MHz
--

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - Low Pass	Micro-Tronics	LPM50004	HGG	26-Sep-2018	12 mo
Cable	Element	Double Ridge Guide Horn Cables	MNV	24-Feb-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	24-Feb-2018	12 mo
Antenna - Double Ridge	ETS-Lindgren	3115	AJQ	14-Nov-2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	24-Feb-2018	12 mo
Cable	Element	Biconilog Cable	MNX	24-Feb-2018	12 mo
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-2017	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	26-Mar-2018	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
 0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
 Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.26). A preamp was used for this test in order to provide sufficient measurement sensitivity.

Per CFR 47 95.2579(a), field strength measurements were performed and compared to the specified limits.

SPURIOUS RADIATED EMISSIONS

										EmiR5 2018.09.26		PSA-ESCI 2018.07.21	7
V	Nork Order:	NUV	'E0019		Date:	5-Nov		10	Y 01			2	
	Project:		one	Ter	nperature:		3 °C	2	usta	mx	David	2	
	Job Site:		N09		Humidity:	31.49				-/			
Ser	ial Number:		1018		etric Pres.:	1010	mbar		Tested by:	Dustin Spar	rks		_
			Pocket Prog	rammer									=
Col	nfiguration:		O										-
			Corporation										-
	Attendees: EUT Power:												=
		Transmitti	ing MICS - m	اممممام امنا	(402.25 MI	1=\							=
Opera	ating Mode:	Transmilli	ing Mics - m	ila channei	(403.35 IVII	72)							
		None											=
	Deviations:	i i i i i											
		None											=
	Comments:	:											
													_
Test Spe	cifications						Test Meth	od					1
FCC 95I:							ANSI C63.						=
Run	# 7	Test Di	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass	<u>-</u>
													-
80													
00													
											-		
70	+												
60													
											_		
_ 50													
ےّ ع													
₹													
w//ngp													
0													
30													
00													
									•				
20	+												
10													
10													
0	+											Щ	
	10			100				1000				10000	
						MHz				■ PK	◆ AV	QP	
											* A*		
						External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
806.795	33.0	11.9	1.0	86.0	3.0	0.0	Horz	QP	0.0	44.9	46.0	-1.1	Comments Mid ch, EUT horizontal
806.795	32.5	11.9	1.0	330.0	3.0	0.0	Horz	QP	0.0	44.4	46.0	-1.6	Mid ch, EUT vertical
806.795	27.2	11.9	1.2	99.0	3.0	0.0	Vert	QP	0.0	39.1	46.0	-6.9	Mid ch, EUT on side
806.795	23.6	11.9	1.2	243.0	3.0	0.0	Vert	QP OP	0.0	35.5	46.0 46.0	-10.5 -11.3	Mid ch, EUT vertical
806.795 806.795	22.8 18.4	11.9 11.9	1.0 1.0	115.0 210.0	3.0 3.0	0.0 0.0	Vert Horz	QP QP	0.0 0.0	34.7 30.3	46.0 46.0	-11.3 -15.7	Mid ch, EUT horizontal Mid ch, EUT on side
1615.208		-6.8	1.0	81.0	3.0	0.0	Vert	AV	0.0	23.9	54.0	-30.1	Mid ch, EUT on side
1615.417	30.5	-6.8	1.0	214.0	3.0	0.0	Horz	AV	0.0	23.7	54.0	-30.3	Mid ch, EUT horizontal
1210.133		-8.5	1.0	194.0	3.0	0.0	Horz	AV	0.0	22.7	54.0	-31.3	Mid ch, EUT horizontal
1210.350 1615.550		-8.5 -6.8	1.0 1.0	324.0 81.0	3.0 3.0	0.0 0.0	Vert Vert	AV PK	0.0 0.0	22.6 34.7	54.0 74.0	-31.4 -39.3	Mid ch, EUT on side Mid ch, EUT on side
1010.000	71.0		1.0	01.0		0.0	v 011	1 11	0.0				
1212.242	42.7	-8.4	1.0	194.0	3.0	0.0	Horz	PK	0.0	34.3	74.0	-39.7	Mid ch, EUT horizontal
	41.1	-8.4 -6.8 -8.5	1.0 1.0 1.0	194.0 214.0 324.0	3.0 3.0 3.0	0.0 0.0 0.0	Horz Horz Vert		0.0 0.0 0.0	34.3 34.3 34.2	74.0 74.0 74.0	-39.7 -39.7 -39.8	Mid ch, EUT horizontal Mid ch, EUT horizontal Mid ch, EUT on side

Report No. NUVE0019.1 21/36

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-32-3.5-SCT/AC	TBF	NCR	NCR
Meter - Multimeter	Fluke	117	MLS	23-Jan-17	23-Jan-20
Thermometer	Omega Engineering, Inc.	HH311	DUB	10-Nov-17	10-Nov-20
Generator - Signal	Agilent	E4422B	TGQ	15-Mar-18	15-Mar-21
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spectrum analyzer is configured with a precision frequency reference that exceeds the stability requirement of the transmitter. The EUT was placed inside a temperature / humidity chamber.

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of the nominal voltage

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded throughout the specified temperature range (0°C to +55°C).

EUT: Bluetooth Pocket Programmer
Serial Number: 101016
Customer: Nuvectra Corporation
Attendees: Peter Valentyik
Project: None
Tested by: Kyle McMullan
TEST SPECIFICATIONS Work Order: NUVE0019
Date: 7-Nov-18
Temperature: 21.5 °C Humidity: 27.8% RH Barometric Pres.: 1024 mbar Power: 110VAC/60Hz Test Method Job Site: MN08 FCC 95I:2018 COMMENTS DEVIATIONS FROM TEST STANDARD mathella Kryli Configuration # 5 Signature Measured Value (MHz) Assigned Value (MHz) Results (ppm) (ppm) Mid Channel, 403.35 MHz Normal Temperature
Extreme Temperature +0°C
Extreme Temperature +10°C
Extreme Temperature +20°C 4.1 1.9 5.8 0.3 6.7 13.6 Pass Pass Pass Pass 403.3483497 403.35 100 403.35 403.35 100 403.3507827 403.3476663 403.3500997 403.35 100 Extreme Temperature +30°C Extreme Temperature +40°C Pass Pass 403.3472837 403.35 100 403.3445167 403.35 100 Extreme Temperature +50°C Extreme Temperature +55°C 403.3418327 403.3399673 403.35 403.35 20.3 24.9 100 100 Pass Pass Extreme Voltage +15% Extreme Voltage -15% 403.3500997 403.3500997 0.3 Pass Pass 403.35

Report No. NUVE0019.1 23/36

 Mid Channel, 403.35 MHz, Normal Temperature

 Measured
 Assigned
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 Results

 403.3483497
 403.35
 4.1
 100
 Pass

Mid Channel, 403.35 MHz, Extreme Temperature +0°C									
		Measured	Assigned	Error	Limit				
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
		403.3507827	403.35	1.9	100	Pass			

Report No. NUVE0019.1 24/36

 Mid Channel, 403.35 MHz, Extreme Temperature +10°C

 Measured
 Assigned
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 403.3476663
 403.35
 5.8
 100
 Pass

	Mid Channel, 403.35 MHz, Extreme Temperature +20°C									
			Measured	Assigned	Error	Limit				
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
i			403.3500997	403.35	0.3	100	Pass			

Report No. NUVE0019.1 25/36

 Mid Channel, 403.35 MHz, Extreme Temperature +30°C

 Measured
 Assigned
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 403.3472837
 403.35
 6.7
 100
 Pass

Mid Channel, 403.35 MHz, Extreme Temperature +40°C									
		Measured	Assigned	Error	Limit				
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
		403.3445167	403.35	13.6	100	Pass			

Report No. NUVE0019.1 26/36

 Mid Channel, 403.35 MHz, Extreme Temperature +50°C

 Measured
 Assigned
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 403.3418327
 403.35
 20.3
 100
 Pass

Mid Channel, 403.35 MHz, Extreme Temperature +55°C										
		Measured	Assigned	Error	Limit					
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		403.3399673	403.35	24.9	100	Pass				

Report No. NUVE0019.1 27/36

Mid Channel, 403.35 MHz, Extreme Voltage +15%

| Measured Assigned Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 403.3500997 403.35 0.3 100 Pass

	Mid Channel, 403.35 MHz, Extreme Voltage -15%									
			Measured	Assigned	Error	Limit				
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
1	<u> </u>		403.3500997	403.35	0.3	100	Pass			

Report No. NUVE0019.1 28/36

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E4422B	TGQ	15-Mar-18	15-Mar-21
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per FCC Part 2.1051, the spurious emissions shall be measured at the RF terminal. The peak spurious emissions were measured with the EUT configured to the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.

FCC Part 95 have no conducted spurious emissions limit. It is a requirement to characterize this information and that data is contained within this datasheet.

EUT: Bluetooth Pocket Programmer
Serial Number: 101016
Customer: Nuvectra Corporation
Attendess: Peter Valentyik
Project: None
Tested by: Kyle McMullan
TEST SPECIFICATIONS Work Order: NUVE0019
Date: 7-Nov-18
Temperature: 21.3 °C
Humidity: 27.6% RH
Barometric Press: 1024 mbar Power: 110VAC/60Hz Test Method Job Site: MN08 FCC 95I:2018 COMMENTS DEVIATIONS FROM TEST STANDARD Kryli mathella Configuration # 5 Signature Peak Value (dBm) 0.68 Limit Result N/A N/A N/A N/A N/A N/A N/A N/A N/A 9 kHz - 150 kHz 150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 5 GHz -51.53 -52.68 -65.13 -49.33 N/A

Report No. NUVE0019.1 30/36

Report No. NUVE0019.1 31/36

150 kHz - 30 MHz

Peak

Value (dBm) Limit Result

-52.68 N/A N/A

Report No. NUVE0019.1 32/36

1 GHz - 5 GHz

Peak

Value (dBm) Limit Result

-49.33 N/A N/A

EMISSION MASK

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E4422B	TGQ	15-Mar-18	15-Mar-21
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	15-Mar-18	15-Mar-19
Attenuator	S.M. Electronics	SA26B-20	RFW	13-Feb-18	13-Feb-19
Block - DC	Fairview Microwave	SD3379	AMI	7-Sep-18	7-Sep-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	19-Dec-17	19-Dec-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per 47 CFR 95.2579(a)(1) the emission mask was measured. Emissions more than 150 kHz away from the center frequency must be attenuated below the transmitter output power by at least 20 dB. This was evaluated by the Occupied Bandwidth measurement according to 47 CFR 95.2573(a). In addition, emissions 250 kHz or less above and below the MICS band (402-405 MHz) must be attenuated below the maximum permitted output power by at least 20 dB.

A spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT. However, various plots were made using different frequency spans and resolution bandwidths in an attempt to not only satisfy the measurement criteria, but to also show that all emissions outside of the occupied band are greatly attenuated.

EMISSION MASK

35/36

				IDI IX 2018.09.13	AMIL 2017.12.13
EUT: Bluetooth Poo	ket Programmer		Work Order:	NUVE0019	
Serial Number: 101016			Date:	7-Nov-18	
Customer: Nuvectra Corp	ooration		Temperature:	21.5 °C	
Attendees: Peter Valentyi	k		Humidity:	28.1% RH	
Project: None			Barometric Pres.:	1024 mbar	
Tested by: Kyle McMullar	1	Power: 110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATIONS		Test Method			
FCC 95I:2018		ANSI C63.26:2015			
COMMENTS					
None					
DEVIATIONS FROM TEST STAND	ARD				
None					
Configuration # 5	Signature	Vryla Mathella			
	•		Value (dBc)	Limit ≤ (dBc)	Result
Low Channel, 402.15 MHz			-24.18	-20	Pass
High Channel, 404.85 MHz			-22.84	-20	Pass

EMISSION MASK

 Low Channel, 402.15 MHz

 Value
 Limit

 (dBc)
 ≤ (dBc)
 Result

 -24.18
 -20
 Pass

Report No. NUVE0019.1 36/36