Non-Discrimination in AI: An Application to Fair Cardiovascular Disease Diagnosis

The Big Picture

fairness

Problem

Little work has been done to evaluate model fairness, resulting in inequitable detection and therefore worse health outcomes for those that face bias

Origins of Bias

Historical Injustice

Proxy Variables

Algorithm Choice

Unbalanced Samples

Feedback Loops

Cardiovascular Disease

Definition: a group of disorders of the heart and blood vessels; normally associated with atherosclerosis and an increased risk of blood clots

- Leading cause of global burden and mortality (Global Burden of Disease Study- 2019)
- Can most often be prevented through leading a healthy lifestyle
- Early diagnosis is critical in improving patient quality of life and allowing actionable measures to be taken sooner, ensuring the best outcomes possible

- Goals

Design a framework of model building, bias evaluation, bias mitigation, and comparison to effectively diagnose the presence of CVD at baseline fairly against sex, age, and race

Background research on problem domain to provide insightful interpretation and understanding of fairness results

Project Roadmap

The Dataset

- Tabular Dataset of 502k Records
- Highly Unbalanced: 9,2% Positive for CVD
- Types of Features:
 - Physical
 - Sociodemographic
 - Lifestyle
 - Environmental
 - Health Outcomes...

CVD Risk Factors & Outcomes

CVDs:

- 1. Cardiomyopathies
- 2. Ischemic Heart Disease
- Heart Failure
- 4. Peripheral Vascular Disease
- 5. Cardiac Arrest
- 6. Cerebral Infarction
- 7. Arrhythmia
- 8. Myocardial Infarction

^{** 61} available UKBB inputs fall within the widely accepted preeminent and traditional risk factors for CVDs

Protected Attribute Distributions

Protected Attribute Distributions

1 — Model Development

Preprocessing & Feature Transformation

Model Architectures

XGBoost

 Leader for learning on tabular data

MLP

- Feedforward NN
- Batch normalization to address input-sensitivity common with tabular data

TabNet

- DL framework for tabular data
- Offers local explainability via feature masking

Experiments

- train/validate/test split (80/10/10)
- Binary classification single target +/- for CVD in general

Model Performance

Model	Threshold	Accuracy	Bal Accuracy	Sensitivity
XGBoost	0.6	0.91	0.51	0.91
MLP	0.5	0.67	0.68	0.95
TabNet	0.5	0.69	0.69	0.96

2 Bias Evaluation

Determination of Privileged & Unprivileged Groups

Apply Tukey's HSD test to determine significant difference in prediction probability means

Sex

- Privileged: Male
- Unprivileged: Female

Age

- Privileged: >50 years old
- Unprivileged: <50 years old

Race

- Privileged: White
- Unprivileged: Non-white

Fairness Metrics

- Average Odds: $\frac{1}{2}[(FPR_{D=\text{group }1} FPR_{D=\text{group }2}) + (TPR_{D=\text{group }2} TPR_{D=\text{group }1}))]$
- Disparate Impact: $DI = P(\hat{Y} = 1|A = minority)/P(\hat{Y} = 1|A = majority)$
- Equal Opportunity: TPR = TP/P,
- Statistical Parity: $P(\hat{Y} = 1|D = \text{group } 1) P(\hat{Y} = 1|D = \text{group } 2)$
- Theil Index: $\frac{1}{n}\sum_{i=1}^{n}\frac{b_i}{\mu}ln\frac{b_i}{\mu}$, where $b_i=\hat{y_i}-y_i+1$

Table 5.1: Fairness Metric Thresolds

Metric	Optimal Value	Acceptable Range	Interpretation
DI	1	0.8 to 1.0	<1 favors privileged group >1 favors unprivileged group
SPD	0	-0.1 to 0.1	<0 favors privileged group >0 favors unprivileged group
AOD	0	-0.1 to 0.1	<0 favors privileged group >0 favors unprivileged group
EOD	0	-0.1 to 0.1	<0 favors privileged group >0 favors unprivileged group
Theil Index	0	2=	bias increases as score increases

Model	attribute	AOD	DI	SPD	EOD	Theil
XGBoost	sex	-0.27	0.22	-0.20	-0.38	0.09
	race	-0.10	0.58	-0.06	-0.15	0.09
	age	-0.17	0.22	-0.14	-0.22	0.09
MLP	sex	-0.27	0.35	-0.24	-0.32	0.09
	race	-0.08	0.61	-0.09	-0.10	0.09
	age	-0.29	0.08	-0.23	-0.39	0.09

Bias Mitigation

Possible Intervention Points

Pre-processing Interventions: XGBoost

Disparate Impact Remover

 removes the model's ability to distinguish between subgroups

Reweighing

 weights samples to ensure fairness before classification

Post-processing Interventions: MLP

Calibrated Equalized Odds

 constrained by FNR, FPR or a weighted combination

Reject Option Classification

- Positively discriminates in a confidence band around uncertainty
- Optimizes on AOD, SPD, or EO

4 Results

Fairness-Utility Tradeoff

XGBoost: DI Remover (Race, repair=1.0)

0.70

0.65

0.65

0.50

0.50

0.00

0.2

0.4

0.6

Classification Thresholds

Calibrated Equalized Odds

Disparate Impact Remover

Pre-processing Fairness Results

Fairness Intervention Results: XGBoost-- Race

Fairness Intervention Results: XGBoost-- Age

0.221

0.085

DI Remover

0.4

Reweighing

DI Remover

0.457

0.5

0.217

original

Bias

0.092

Reweighing

Post-processing Fairness Results

Fairness Intervention Results: MLP-- Race

Fairness Intervention Results: MLP-- Age

Effect on Utility: Pre-processing Interventions

Model	Intervention	Attribute	Balanced Accuracy	Sensitivity	Specificity
XGBoost	original	-	0.63	0.88	0.38
	DI Remover	sex	0.71	0.82	0.61
	DI Remover	race	0.70	0.77	0.62
	DI Remover	age	0.70	0.77	0.62
	Reweighing	=	0.82	0.82	0.60

Effect on Utility: Post-processing Interventions

Model	Intervention	Attribute	Balanced Accuracy	Sensitivity	Specificity
MLP	original		0.68	0.79	0.56
	Cal. odds	sex	0.65	0.83	0.45
	Cal. odds	race	0.66	0.83	0.49
	Cal. odds	age	0.59	0.91	0.27
	ROC - SPD	sex	0.68	0.67	0.69
	ROC - SPD	race	0.69	0.70	0.69
	ROC - SPD	age	0.69	0.67	0.67
	ROC - EO	sex	0.68	0.70	0.67
	ROC - EO	race	0.69	0.69	0.70
	ROC - EO	age	0.67	0.73	0.60

Pre-processing

- increase balanced accuracy (+7-19%)
- slight decrease in sensitivity (-6-11%)
- Only slightly improve fairness for sex and race, worsen fairness for age
 - o fully resolved ⇒ Race: DI, EOD

Post-processing

- all techniques meet or almost reach acceptable fairness (cal. odds slightly less effective)
- Calibrated equalized odds slightly decreases balanced accuracy (-2-9%) & increases sensitivity (+4-12%)
- ROC interventions maintain balanced accuracy (±1%) and decrease sensitivity (-6-12%)

- revisiting of the multi-label classification problem with a more robust dataset
- investigation of in-processing interventions and interventions in unison
- application of fairness framework to the TabNet model
- Address trustworthiness as a whole fairness, explainability, robustness

Thank You!

Risk Factor Category	Feature				
Physical Measures	Hypertension Hip Circumference Systolic Blood Pressure Body Fat Percentage Whole body fat-free mass Impedence of whole body	Waist Circumference Diastolic Blood Pressure Body Mass Index (BMI) Whole body fat mass Pulse Rate			
Sociodemographics	Sex Current Employment Age completed education	Qualifications Ethnic Background			
Lifestyle/Environment	Sleep duration Current tobacco smoking Cooked vegetable intake Fresh fruit intake Oily fish intake Processed meat intake Beef intake Pork intake Coffee type Variation in diet Daytime dozing/sleeping Major dietary changes Alcohol consumed	Insomnia Past tobacco smoking raw vegetable intake Dried fruit intake Non-oily fish intake Poultry intake lamb intake Cheese intake Alcohol status Spread type Water intake Non-butter spread Daily alcohol consumption			
Mental Health	Freq of Depressed Mood Seen a psychiatrist	Anxiety			
Blood Assays	Vascular Cholesterol Glucose LDL Triglyceride Testosterone	APOB CRP HDL LP-a IGF-1 HbA1c			

CVD Distribution

 Overall CVD prevalence in entire dataset (~500k records): 9.2%

- Bar chart shows each CVD prevalence against all other CVDs
 - Cardiac Arrest, Cardiomyopathies, Peripheral Vascular Disease, and Cerebral Infarction are all greatly under-represented

Top 15 Features Correlating with CVDs

- 1.00

- 0.75

- 0.50

0.25

- 0.00

- -0.25

- -0.50

Figure X. Data Preprocessing. Null value rates for each feature before implementation of MissForest imputation. All features with >=65% null values were discarded.

TabNet Architecture

TabNet Model Architecture

Global & Local Feature Importance

- **Top contributing features:** hypertension, age, whole body fat-free mass, employment status, sex, ethnic background
- 31/61 features are not contributing at all
- In general feature contribution is sparse over all inputs. Need to determine how well dataset captures problem-space

mask 1

20

IBM AIF360

Adversarial Robustness 360

4 (ART)

github.com/IBM/ adversarial-robustnesstoolbox

art-demo.mybluemix.net

AI Fairness 360

4 (AIF360)

github.com/IBM/AIF360

aif360.mybluemix.net

AI Explainability 360

4 (AIX360)

github.com/IBM/AIX360

aix360.mybluemix.net

Perspectives of Fairness

XGBoost: Fairness after Reweighing

Figure X. XGBoost fairness metrics & balanced accuracy vs classification decision thresholds before and after implementation of AIF360 Reweighting preprocessing

Figure 1: Calibration, trivial classifiers, and equal-cost constraints – plotted in the false-pos./false-neg. plane. \mathcal{H}_1^* , \mathcal{H}_2^* are the set of cal. classifiers for the two groups, and h^{μ_1} , h^{μ_2} are trivial classifiers.

Figure 2: Calibration-Preserving Parity through interpolation.

