SIRURI SI SERII DE FUNCTII

Studiați convergența simplă și uniformă pentru șirurile de funcții (ex. 1 – 9):

1.
$$f_n:(0,1) \to \mathbb{R}$$
, $f_n(x) = \frac{1}{nx+1}$, pentru $n \ge 0$

2.
$$f_n:[0,1] \to \mathbb{R}$$
, $f_n(x) = nx(1-x)^n$, pentru $n \ge 0$

3.
$$f_n:[0,1] \to \mathbb{R}$$
, $f_n(x) = x^n - x^{2n}$, pentru $n \ge 0$

4.
$$f_n: \mathbb{R} \to \mathbb{R}$$
, $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$, pentru $n > 0$

5.
$$f_n: (-\infty, 0) \to \mathbb{R}$$
, $f_n(x) = \frac{e^{nx} - 1}{e^{nx} + 1}$, pentru $n \ge 0$

6.
$$f_n:[-1,1] \to \mathbb{R}$$
, $f_n(x) = \frac{x}{nx^2+1}$, pentru $n \ge 0$

7.
$$f_n: \mathbb{R} \to \mathbb{R}$$
, $f_n(x) = \operatorname{arctg} \frac{x}{1 + n(n+1)x^2}$, pentru $n > 0$

8.
$$f_n:[0,+\infty) \to \mathbb{R}$$
, $f_n(x) = x^n \cdot e^{-nx}$, pentru $n \ge 0$

9.
$$f_n:[0,1] \to \mathbb{R}$$
, $f_n(x) = \frac{nx}{1+n+x}$, pentru $n \ge 0$

- **10.** Fie $f_n: \mathbb{R} \to \mathbb{R}$, $f_n(x) = x + \frac{1}{n}$, cu n > 0. Să se studieze convergența simplă și uniformă pentru $f_n(x)$ și pentru $f_n^2(x)$.
- **11.** Se consideră seria de funcții $\sum_{n\geq 1} n^{-x}$, cu $x\in\mathbb{R}$. Studiați convergența simplă și uniformă și decideți dacă se poate deriva termen cu termen.
- **12.** Se consideră seria de funcții $\sum_{n\geq 1} \left(-1\right)^n \frac{e^{-nx}+\sqrt{n}}{n}$, cu $x\in\mathbb{R}$. Studiați convergența simplă și absolut convergența seriei.
- **13.** Se consideră seria de funcții $\sum_{n\geq 1} \frac{\sin(nx)}{n^3}$, cu $x\in\mathbb{R}$. Studiați convergența uniformă a seriei, proprietatea de transfer a continuității și decideți dacă se poate deriva termen cu termen.
- **14.** Se consideră seria de funcții $\sum_{n\geq 1}(1-x)x^n$, cu $x\in (0,1)$. Studiați convergența simplă și uniformă a seriei.
- **15.** Se consideră seria de funcții $\sum_{n\geq 1} \frac{1}{n^2+n+1} x^n$, cu $x\in [-1,1]$. Studiați convergența simplă și uniformă a seriei.

INDICAȚII ȘI RĂSPUNSURI

1. C.S:
$$\lim_{n \to \infty} f_n(x) = 0$$
, deci $f_n(x) \xrightarrow{s} 0$; C.U: Fie $g(x) = |f_n(x) - 0| = \frac{1}{nx + 1}$, cu

 $\sup_{x \in (0,1)} g\left(x\right) \geq g\left(0\right) = 1 \text{ (se deduce din studiul variației funcției } g\left(x\right) \text{ pe } \left(0,1\right), \text{ cu } g'\left(x\right) = -\frac{n}{\left(nx+1\right)^2}), \text{ și } \left(nx+1\right)^2 = -\frac{n}{\left(nx+1\right)^2}$

$$\lim_{n\to\infty} \left(\sup_{x\in(0,1)} \left| f_n(x) - 0 \right| \right) = 1 \neq 0 \text{ , deci } f_n(x) \xrightarrow{\psi} 0;$$

2. C.S: $\lim_{n\to\infty} f_n(x) = 0$ (se folosește criteriul raportului pentru șiruri), pentru $x \in (0,1]$ deci $f_n(x) \xrightarrow{s} 0$

pentru $x \in (0,1]$; C.U: Se studiază tot pe intervalul (0,1]; Fie $g(x) = |f_n(x) - 0| = nx(1-x^n)$, cu

 $\sup_{x \in (0,1]} g\left(x\right) \ge g\left(\frac{1}{n+1}\right) = \frac{n}{n+1} \left(1 - \frac{1}{n+1}\right)^n \text{ (se deduce din studiul variației funcției } g\left(x\right) \text{ pe } \left(0,1\right], \text{ cutable formula of the proposition of$

$$g'\left(x\right) = n\left(1-x\right)^{n-1}\left[1-x\left(n+1\right)\right])\text{, $$\vec{$}$ $\lim_{n\to\infty}\left(\sup_{x\in(0,1)}\left|f_n\left(x\right)-0\right|\right)$} = \lim_{n\to\infty}\frac{n}{n+1}\left(1-\frac{1}{n+1}\right)^n = \frac{1}{e}\neq0\text{ , decided}$$

 $f_{n}\left(x\right) \xrightarrow{\psi} 0$; Pentru x=0 avem $f_{n}\left(0\right)=0$ (funcția constantă).

3. C.S: $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} x^n (1-x^n) = 0$, pentru $x \in [0,1]$ deci $f_n(x) \xrightarrow{s} 0$;

C.U: Fie
$$g(x) = \left| f_n(x) - 0 \right| = x^n \left(1 - x^n \right)$$
, cu $\sup_{x \in [0,1]} g(x) \ge g\left(\frac{1}{\sqrt[n]{2}} \right) = \left(\frac{1}{\sqrt[n]{2}} \right)^n \left(1 - \left(\frac{1}{\sqrt[n]{2}} \right)^n \right)$ (se deduce din

studiul variației funcției g(x) pe [0,1], cu $g'(x) = nx^{n-1}(1-2x^n)$), și

$$\lim_{n\to\infty} \left(\sup_{x\in[0,1]} \left| f_n\left(x\right) - 0 \right| \right) = \lim_{n\to\infty} \left(\frac{1}{\sqrt[n]{2}} \right)^n \left(1 - \left(\frac{1}{\sqrt[n]{2}} \right)^n \right) = \frac{1}{4} \neq 0 \text{ , deci } f_n\left(x\right) \xrightarrow{} 0;$$

4. C.S: $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \sqrt{x^2} = |x|$, pentru $x \in \mathbb{R}$ deci $f_n(x) \xrightarrow{s} |x|$;

$$\text{C.U: } \sup_{x \in \mathbb{R}} \left| f_n \left(x \right) - \left| x \right| \right| = \sup_{x \in \mathbb{R}} \left| \sqrt{x^2 + \frac{1}{n^2}} - \sqrt{x^2} \right| = \sup_{x \in \mathbb{R}} \left| \frac{1}{n^2 \left(\sqrt{x^2 + \frac{1}{n^2}} + \sqrt{x^2} \right)} \right| \ge \frac{1}{n} \text{ (deoarece maximul funcției formulul funcției)}$$

este atins pentru x=0), și $\lim_{n\to\infty} \left(\sup_{x\in\mathbb{D}} \left| f_n(x) - |x| \right| \right) = \lim_{n\to\infty} \frac{1}{n} = 0$, deci $f_n(x) \xrightarrow{u} |x|$;

5. C.S:
$$\lim_{n \to \infty} f_n(x) = -1$$
, deci $f_n(x) \xrightarrow{s} -1$; C.U: Fie $g(x) = |f_n(x) + 1| = \frac{2e^{nx}}{e^{nx} + 1}$, cu

 $\sup_{x<0} g(x) \ge g(0) = 1 \text{ (se deduce din studiul variației funcției } g(x) \text{ pe } (-\infty,0), \text{ cu } g'(x) = \frac{2ne^{nx}}{\left(e^{nx}+1\right)^2}), \text{ și }$

$$\lim_{n\to\infty} \left(\sup_{x\in[0,1]} \left| f_n(x) + 1 \right| \right) = 1 \neq 0, \text{ deci } f_n(x) \longrightarrow -1;$$

6. C.S:
$$\lim_{n\to\infty} f_n\left(x\right) = 0$$
, pentru $x \in \left[-1,1\right]$ deci $f_n\left(x\right) \xrightarrow{s} 0$; C.U: Fie $g\left(x\right) = \left|f_n\left(x\right) - 0\right| = \frac{x}{1 + nx^2}$, cu

$$\sup_{x \in [-1,1]} g(x) \ge g\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{2\sqrt{n}} \text{ (se deduce din studiul variației }$$

$$\text{funcției } g\left(x\right) \text{ pe } \left[-1,1\right], \text{ cu } g'\left(x\right) = \frac{1-nx^2}{\left(1+nx^2\right)^2}), \\ \lim_{n \to \infty} \left(\sup_{x \in [-1,1]} \left|f_n\left(x\right) - 0\right|\right) = \lim_{n \to \infty} \frac{1}{2\sqrt{n}} = 0, \\ \text{ deci}$$

$$f_n(x) \xrightarrow{u} 0;$$

7. C.S: $\lim_{n\to\infty} f_n(x) = 0$, pentru $x \in \mathbb{R}$ deci $f_n(x) \xrightarrow{s} 0$;

C.U:
$$g(x) = |f_n(x) - 0| = \arctan \frac{x}{1 + n(n+1)x^2}$$
, $\operatorname{cu} \sup_{x \in \mathbb{R}} g(x) \ge g\left(\frac{1}{\sqrt{n(n+1)}}\right) = \operatorname{arctg} \frac{1}{2\sqrt{n(n+1)}}$ (se

deduce din studiul variației funcției g(x) pe \mathbb{R} , cu $g'(x) = \frac{1 - n(n+1)x^2}{x^2 + (1 + n(n+1)x^2)^2}$), și

$$\lim_{n\to\infty} \left(\sup_{x\in\mathbb{R}} \left| f_n(x) - 0 \right| \right) = \lim_{n\to\infty} \left(\operatorname{arctg} \frac{1}{2\sqrt{n(n+1)}} \right) = 0, \, \operatorname{deci} \, f_n(x) \xrightarrow{u} 0;$$

8. C.S: $\lim_{n\to\infty} f_n(x) = 0$, pentru $x \ge 0$ deci $f_n(x) \xrightarrow{s} 0$;

C.U: $g(x) = |f_n(x) - 0| = x^n \cdot e^{-nx}$, cu $\sup_{x \ge 0} g(x) \ge g(1) = \frac{1}{e^n}$ (se deduce din studiul variației funcției

$$g\left(x\right) \text{ pe } \left[0,+\infty\right)\text{, cu } g'\left(x\right) = n \cdot x^{n-1} \cdot e^{-nx}\left(1-x\right)\text{), } \\ \sin\left(\sup_{n \to \infty}\left|f_n\left(x\right) - 0\right|\right) = \lim_{n \to \infty}\frac{1}{e^n} = 0\text{ , decident}$$

$$f_n(x) \xrightarrow{u} 0;$$

9. C.S: $\lim_{n\to\infty} f_n(x) = x$, pentru $x \in [0,1]$ deci $f_n(x) \xrightarrow{s} x$;

C.U: Fie
$$g(x) = |f_n(x) - x| = \left| \frac{-x - x^2}{1 + n + x} \right| = \frac{x + x^2}{1 + n + x}$$
, cu $\sup_{x \in [0,1]} g(x) \ge g(1) = \frac{2}{2 + n}$ (se deduce din studiul

variației funcției g(x) pe [0,1], cu $g'(x) = \frac{x^2 + 2x(n+1) + n + 1}{(1+n+x)^2}$), și

$$\lim_{n\to\infty} \left(\sup_{x\in[0,1]} \left| f_n(x) - x \right| \right) = \lim_{n\to\infty} \frac{2}{2+n} = 0 \text{, deci } f_n(x) \xrightarrow{u} x;$$

10. Pentru $f_n(x)$: C.S: $\lim_{n\to\infty} f_n(x) = x$, pentru $x \in \mathbb{R}$ deci $f_n(x) \xrightarrow{s} x$;

C.U:
$$\sup_{x \in \mathbb{R}} \left| f_n(x) - x \right| = \sup_{x \in \mathbb{R}} \left| \frac{1}{n} \right| \xrightarrow{n \to \infty} 0$$
, deci $f_n(x) \xrightarrow{u} x$;

Pentru
$$f_n^2(x) = \left(x + \frac{1}{n}\right)^2$$
: C.S: $\lim_{n \to \infty} f_n(x) = x^2$, pentru $x \in \mathbb{R}$ deci $f_n^2(x) \xrightarrow{s} x^2$;

C.U: Fie $g(x) = \left| f_n^2(x) - x^2 \right| = \frac{2x}{n} + \frac{1}{n^2}$, cu $\sup_{x \in \mathbb{R}} g(x) \ge g(+\infty) = +\infty$ (se deduce din studiul variației

funcției g(x) pe \mathbb{R} , cu $g'(x) = \frac{2}{n}$, g(x) este strict crescătoare), deci $f_n^2(x) \xrightarrow{y} x^2$;

11. C.S: seria converge simplu pentru $x \in (1, +\infty)$ (seria armonică generalizată); C.U. Se folosește criteriul lui Weierstrass (pentru $x \in (1, +\infty)$), cu $u_n = \frac{1}{n^\alpha}$ și va rezulta că seria este uniform convergentă pe $\left[\alpha, +\infty\right)$ cu $\alpha > 1$. Pentru ca seria de funcții să se poată deriva termen cu termen, pentru $x \in (1, +\infty)$, se

verifică că $f_n(x) = n^{-x}$ este de clasă C^1 , am arătat că $\sum_{n \geq 0} f_n \overset{s}{\to} f$ și mai avem de arătat că $\sum_{n \geq 0} f_n' \overset{u}{\to} g$.

Seria derivatelor este $\sum_{n>0} f'_n = -\sum_{n>0} n^{-x} \ln n$ și folosim criteriul lui Weierstrass:

 $\left| n^{-x} \ln n \right| \le n^{-x} = \frac{1}{n^x} = u_n$, seria $\sum_{n > 0} \frac{1}{n^x}$ este convergentă pentru $x \in (1, +\infty)$, deci $\sum_{n > 0} f_n' \xrightarrow{u} g$.

12. C.S. Se aplică criteriul lui Leibniz (de la serii numerice) pentru $u_n = \frac{e^{-nx} + \sqrt{n}}{n}$ și rezultă $\sum_{n>0} f_n \xrightarrow{s} f$.

Absolut convergența: $\left|f_n\left(x\right)\right| = \frac{1}{e^{nx}} + \frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n}} = u_n$, seria $\sum_{n \geq 0} u_n$ este divergentă (seria armonică generalizată, cu $\alpha \leq 1$), deci $\not\exists x \in \mathbb{R}$ pentru care seria $\sum_{n \geq 0} f_n\left(x\right)$ să fie absolut convergentă.

13. Vom studia direct convergența uniformă (care va implica convergența simplă) - folosim criteriul lui Weierstrass: $\left|\frac{\sin nx}{n^3}\right| \le \frac{1}{n^3} = u_n$, seria $\sum_{n \ge 0} u_n$ este convergentă (seria armonică generalizată, cu $\alpha > 1$

), deci $\sum_{n\geq 0} f_n \overset{u}{ o} f$, ceea ce implică și $\sum_{n\geq 0} f_n \overset{s}{ o} f$. Pentru transferul de continuitate: $f_n\left(x\right)$ sunt

funcții continue și seria $\sum_{n\geq 0} f_n \stackrel{u}{\to} f$, deci f este continuă. Pentru ca seria de funcții să se poată deriva

termen cu termen, se verifică că $f_n(x) = \frac{\sin nx}{n^3}$ este de clasă C^1 , am arătat că $\sum_{n \ge 0} f_n \xrightarrow{s} f$ și mai avem

de arătat că $\sum_{n>0} f_n' \overset{u}{\to} g$. Seria derivatelor este $\sum_{n>0} f_n' = \sum_{n>0} \frac{\cos nx}{n^2}$ și folosim criteriul lui

Weierstrass: $\left| \frac{\cos nx}{n^2} \right| \le \frac{1}{n^2} = u_n$, seria $\sum_{n \ge 0} u_n$ este convergentă, deci $\sum_{n \ge 0} f_n' \xrightarrow{u} g$.

14. C.S: Se aplică criteriul raportului (de la serii numerice) pentru $u_n = (1-x)x^n$ și rezultă $\sum_{n\geq 0} f_n \stackrel{s}{\to} f$.

C.U: Criteriul lui Weierstrass: $\left|f_{n}\left(x\right)\right| = \left|\left(1-x\right)x^{n}\right| = \left(1-x\right)x^{n} \leq x^{n} = u_{n}$, seria $\sum_{n\geq 0}u_{n}$ este

convergentă (seria geometrică cu $x \in (0,1)$), deci $\sum_{n=0}^{\infty} f_n \xrightarrow{u} f$.

15. C.S: Se aplică criteriul comparației cu inegalități (de la serii numerice) pentru $x \in (-1,1)$:

 $u_n = \frac{1}{n^2 + n + 1} x^n \le x^n = v_n$, seria $\sum_{n \ge 0} v_n$ este convergentă (seria geometrică cu $x \in (-1,1)$); pentru

x=-1 avem seria numerică alternantă $\sum_{n\geq 0} \left(-1\right)^n \frac{1}{n^2+n+1}$ care este convergentă (se arată cu criteriul

lui Leibniz) iar pentru x=1 avem seria numerică $\sum_{n\geq 0}\frac{1}{n^2+n+1}$ care este convergentă (se arată cu

criteriul de comparație la limită). Rezultă că $\sum_{n>0} f_n \xrightarrow{s} f$ pentru $x \in [-1,1]$. C.U: Criteriul Weierstrass:

 $\left|f_n\left(x\right)\right| \leq x^n = u_n$, seria $\sum_{n\geq 0} u_n$ este convergentă (seria geometrică cu $x \in \left(-1,1\right)$), deci $\sum_{n\geq 0} f_n \overset{u}{\to} f$ pentru $x \in \left(-1,1\right)$.