Clusters

Sumit Mishra

Department of Computer Science & Engineering Indian Institute of Information Technology Guwahati

Place: IIT Patna Date: 4 April 2019

Outline

- Clusters
 - Number of Clustering Results
 - How to Obtain
 - Integer Partition and Clustering Results
- Multi-Objective Based Clustering in Entity Matching
 - Motivation & Problem Statement
 - Basics
 - Work Flow

Outline

- Clusters
 - Number of Clustering Results
 - How to Obtain
 - Integer Partition and Clustering Results
- 2 Multi-Objective Based Clustering in Entity Matching
 - Motivation & Problem Statement
 - Basics
 - Work Flow

Number of Clustering Results Obtained from 2 Records

Given 2 points/records, number of possible clustering results?

Number of Clustering Results Obtained from 2 Records

Given 2 points/records, number of possible clustering results?

For 2 records

- $\{\{r_1, r_2\}\}$
- $\{\{r_1\}, \{r_2\}\}$

Number of Clustering Results Obtained from 3 Records

Given 3 points/records, number of possible clustering results?

Number of Clustering Results Obtained from 3 Records

Given 3 points/records, number of possible clustering results?

For 3 records

- $\{\{r_1\},\{r_2,r_3\}\}$
- $\{\{r_3\},\{r_1,r_2\}\}$

Number of Clustering Results Obtained from 4 Records

Given 4 points/records, number of possible clustering results?

Number of Clustering Results Obtained from 4 Records

Given 4 points/records, number of possible clustering results?

For 4 records

- $\{\{r_1, r_3\}, \{r_2, r_4\}\}$

- $\{\{r_4\},\{r_1,r_2,r_3\}\}$
- $\{\{r_1\}, \{r_2\}, \{r_3, r_4\}\}$

- $\{\{r_2\}, \{r_3\}, \{r_1, r_4\}\}$
- $\{\{r_2\}, \{r_4\}, \{r_1, r_3\}\}$
- $\{\{r_3\},\{r_4\},\{r_1,r_2\}\}$
- $\{\{r_1\}, \{r_2\}, \{r_3\}, \{r_4\}\}$

Number of Clustering Results Obtained from *n* Records

Given n points/records, number of possible clustering results?

Number of Clustering Results Obtained from *n* Records

Given *n* points/records, number of possible clustering results?

Using Bell number [1]

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k, \qquad B_0 = B_1 = 1$$
 (1)

Number of Clustering Results Obtained from *n* Records

Given *n* points/records, number of possible clustering results?

Using Bell number [1]

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k, \qquad B_0 = B_1 = 1$$
 (1)

Using Stirling numbers of the second kind [8]

$$B_n = \sum_{k=0}^n \left\{ {n \atop k} \right\} \tag{2}$$

Here, the Stirling number $\binom{n}{k}$ is the number of ways to partition a set of cardinality n into exactly k nonempty subsets.

Bell Triangle

1									
1	2								
2	3	5							
5	7	10	15						
15	20	27	37	52					
52	67	87	114	151	203				
203	255	322	409	523	674	877			
877	1080	1335	1657	2066	2589	3263	4140		
4140	5017	6097	7432	9089	11155	13744	17007	21147	
21147	25287	30304	36401	43833	52922	64077	77821	94828	115975

Figure 1: Bell triangle for 10 records.

Outline

- Clusters
 - Number of Clustering Results
 - How to Obtain
 - Integer Partition and Clustering Results
- - Motivation & Problem Statement
 - Basics
 - Work Flow

Arrangements of *n* Records in Clustering Results

Given n points/records, how the records are arranged in the clustering result?

Arrangements of n Records in Clustering Results

Given n points/records, how the records are arranged in the clustering result? Bell Polynomial [1, 2]

$$B_n(x_1,\ldots,x_n) = \sum_{k=1}^n B_{n,k}(x_1,x_2,\ldots,x_{n-k+1})$$
 (3)

 $B_{n,k}(x_1,x_2,\ldots,x_{n-k+1})$ is the partial Bell polynomial and is given by Equation (4).

$$B_{n,k}(x_1, x_2, \dots, x_{n-k+1}) = \sum \frac{n!}{j_1! j_2! \cdots j_{n-k+1}!} \left(\frac{x_1}{1!}\right)^{j_1} \left(\frac{x_2}{2!}\right)^{j_2} \cdots \left(\frac{x_{n-k}}{(n-k)!}\right)^{j_{n-k}} \left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}}$$
(4)

where the sum is taken over all sequences $j_1, j_2, j_3, ..., j_{n-k+1}$ of non-negative integers such that $j_1 + j_2 + \cdots = k$ and $j_1 + 2j_2 + 3j_3 + \cdots = n$.

Arrangements of 3 Records in Clustering Results

3rd complete Bell polynomial is given by Equation (5).

$$B_{3}(x_{1}, x_{2}, x_{3}) = \sum_{k=1}^{3} B_{3,k}(x_{1}, x_{2}, \dots, x_{3-k+1})$$

$$= B_{3,1}(x_{1}, x_{2}, x_{3}) + B_{3,2}(x_{1}, x_{2}) + B_{3,3}(x_{1})$$

$$= (x_{3}) + (3x_{1}x_{2}) + (x_{1}^{3})$$
(5)

In simple terms Equation (5) can be written as Equation (6).

$$B_3(x) = x + 3x^2 + x^3 \tag{6}$$

Arrangements of 3 Records in Clustering Results ...

- One way to group 3 records in single cluster,
- Three ways to group 3 records in 2 clusters,
- One way to group 3 records in 3 clusters.

Arrangements of 4 Records in Clustering Results

4th complete Bell polynomial is given by Equation (7).

$$B_{4}(x_{1}, x_{2}, x_{3}, x_{4}) = \sum_{k=1}^{4} B_{4,k}(x_{1}, x_{2}, \dots, x_{4-k+1})$$

$$= B_{4,1}(x_{1}, x_{2}, x_{3}, x_{4}) + B_{4,2}(x_{1}, x_{2}, x_{3}) + B_{4,3}(x_{1}, x_{2}) + B_{4,4}(x_{1})$$

$$= (x_{4}) + (3x_{2}^{2} + 4x_{1}x_{3}) + (6x_{1}^{2}x_{2}) + (x_{1}^{4})$$
(7)

In simple terms Equation (7) can be written as Equation (8).

$$B_4(x) = x + 7x^2 + 6x^3 + x^4 \tag{8}$$

Arrangements of 4 Records in Clustering Results

- One way to group 4 records in single cluster,
 - $\{\{r_1, r_2, r_3, r_4\}\}$
- Seven (3+4) ways to group 4 records in 2 clusters,
 - $\{\{r_1, r_2\}, \{r_3, r_4\}\}$
 - $\{\{r_1, r_3\}, \{r_2, r_4\}\}$
 - $\{\{r_1, r_4\}, \{r_2, r_3\}\}$
 - $\{\{r_1\}, \{r_2, r_3, r_4\}\}$
 - $\{\{r_2\}, \{r_1, r_3, r_4\}\}$
 - $\{\{r_3\}, \{r_1, r_2, r_4\}\}$

 - \bigcirc {{ r_4 }, { r_1 , r_2 , r_3 }}
- Six ways to group 4 records in 3 clusters,
 - \bigcirc {{ r_1 }, { r_2 }, { r_3 , r_4 }}
 - $\{\{r_1\}, \{r_3\}, \{r_2, r_4\}\}$
 - $\{\{r_1\}, \{r_4\}, \{r_2, r_3\}\}$
 - $\{\{r_2\}, \{r_3\}, \{r_1, r_4\}\}$
 - $\{\{r_2\}, \{r_4\}, \{r_1, r_3\}\}$
 - $\{\{r_3\}, \{r_4\}, \{r_1, r_2\}\}$
- One way to group 4 records in 4 clusters.
 - \bullet {{ r_1 }, { r_2 }, { r_3 }, { r_4 }}

Outline

- Clusters
 - Number of Clustering Results
 - How to Obtain
 - Integer Partition and Clustering Results
- Multi-Objective Based Clustering in Entity Matching
 - Motivation & Problem Statement
 - Basics
 - Work Flow

Integer Partition

A partition of a positive integer n is defined to be a sequence of positive integers whose sum is n [3].

Integer partition for n = 3

- **9** 3
- 2 1+2
- **3** 1 + 1 + 1

Integer partition for n = 4

- **1** 4
- 2+2
- **3** 1 + 3
- 0 1+1+2
- $\mathbf{0}$ 1+1+1+1

Integer Partition ...

An asymptotic expression for number of partitions of an integer n is given by Equation (9) [5, 7].

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi\sqrt{\frac{2n}{3}}\right) \text{ as } n \to \infty.$$
 (9)

Integer Partition and Clustering Results for 3 Records

Serial No.	Number of Cluster	Possible Partition	Partial Bell Polynomial	No. of Clustering Results Corresponding to a Partition
1	1	{3}	<i>x</i> ₃	1
2	2	{1,2}	$3x_1x_2$	3
3	3	$\{1, 1, 1\}$	x_1^3	1
	Total numb	5		

Table 1: Possible partition of 3 records along with the number of clustering results corresponding to each partition.

Integer Partition and Clustering Results for 4 Records

Serial No.	Number of Cluster	Possible Partition	Partial Bell Polynomial	No. of Clustering Results Corresponding to a Partition
1	1	{4}	<i>X</i> ₄	1
2	2	{2,2}	$3x_2^2 + 4x_1x_2$	3
3	2	{1,3}	$3x_2 + 4x_1x_2$	4
4	3	{1,1,2}	$6x_1^2x_2$	6
5	4	$\{1, 1, 1, 1\}$	x_1^4	1
	Total num	15		

Table 2 : Possible partition of 4 records along with the number of clustering results corresponding to each partition.

Outline

- Clusters
 - Number of Clustering Results
 - How to Obtain
 - Integer Partition and Clustering Results
- Multi-Objective Based Clustering in Entity Matching
 - Motivation & Problem Statement
 - Basics
 - Work Flow

Motivation

Observation

• There are two different authors with the same name.

Problem Statement

Motivation

- DBLP contains more than 1300 papers published by authors having the name "Wei Wang".
- How many authors having the same name?
- What is the categorization of the papers?

DEFINITION: Entity Matching [6]

Given a name 'pName' and a set of records $\mathbb{R} = \{r_1, r_2, \ldots, r_n\}$ corresponding to name 'pName', the Entity Matching is to divide the records in \mathbb{R} into different clusters such that the following holds.

- All the records in a cluster belong to an entity.
- All the records by an entity should be in a single cluster.

Outline

- Clusters
 - Number of Clustering Results
 - How to Obtain
 - Integer Partition and Clustering Results
- Multi-Objective Based Clustering in Entity Matching
 - Motivation & Problem Statement
 - Basics
 - Work Flow

Evolutionary Algorithm based Approach

Motivation

- Modeled entity matching problem as an optimization problem.
- Used evolutionary algorithm as an optimization framework.
- Single as well as multiple objectives are considered.

Algorithm 1 Genetic Algorithm

- 1: Initialize population P
- 2: Evaluate the fitness of all individuals
- 3: Select fitter individuals for reproduction
- 4: Apply recombination among individuals
- 5: Mutate individuals
- 6: Evaluate the fitness of the modified individuals
- 7: Generate a new population

Chromosome Initialization

Record Encoding

Chromosome Representation

- Represents the representative of the cluster, *i.e.*, one of the elements from the cluster.
- The K length of Chromosome means that there are K clusters.
- The elements in the Chromosome are distinct.

Cluster representative

Population Initialization and Assignment of Records

Population Initialization

- The number of clusters is unknown.
- Size of *chromosome* varies between 2 and n-1.
- To initialize population, each chromosome in the population is initialized.

Assignment of Records

- $\mathbb{R} = \{r_1, r_2, \dots, r_{10}\}$
- Chromosome = $\{r_2, r_5, r_8, r_{10}\}$
- $\mathbb{UR} = \{r_1, r_3, r_4, r_6, r_7, r_9\}$
- Distance Measure

Figure 2 : Assignment of records.

Crossover and Mutation

Crossover Operation on Chromosomes

Figure 3: Before crossover

Figure 4: After crossover

Mutation Operation on Chromosome

Three mutation operations are considered.

- i. Insert
- ii. Delete
- iii. Update

Figure 5: Mutation operation

Outline

- Clusters
 - Number of Clustering Results
 - How to Obtain
 - Integer Partition and Clustering Results
- Multi-Objective Based Clustering in Entity Matching
 - Motivation & Problem Statement
 - Basics
 - Work Flow

Multi-Objective Optimization based Entity Matching

Figure 6: Flow of MOO-EMT

NSGA-II

Figure 7: NSGA-II Procedure [4]

イロト (部) (達) (達)

NSGA-II ...

Algorithm 2 NSGA-II

```
Input: \mathbb{P}_t: Population for t^{th} generation
```

Output: \mathbb{P}_{t+1} : Population for $t+1^{th}$ generation

- 1: $\mathbb{Q}_t \leftarrow$ Generate offspring population after crossover and mutation operations
- 2: $\mathbb{R}_t \leftarrow \mathbb{P}_t \cup \mathbb{Q}_t$ // Combine parent and offspring populations
- 3: $\mathcal{F} \leftarrow \text{Non-Dominated-Sort}(\mathbb{R}_t)$ // $\mathcal{F} = \{F_1, F_2, \dots, F_K\}$, set of non-dominated fronts in the decreasing order of their dominance nature
- 4: $\mathbb{P}_{t+1} \leftarrow \Phi$ // Initialize population for the next generation
- 5: $k \leftarrow 1$
- 6: while $|\mathbb{P}_{t+1}| + |F_k| \le N$ do
- 7: $\mathbb{P}_{t+1} \leftarrow P_{t+1} \cup F_k$ // Include k^{th} non-dominated front in \mathbb{P}_{t+1}
- 8: $k \leftarrow k+1$ // Check the next front for inclusion in \mathbb{P}_{t+1}
 - // Number of solutions to be included in population \mathbb{P}_{t+1}
 - 9: $T = N (|F_1| + |F_2| + \ldots + |F_{k-1}|)$
- 10: CROWDING-DISTANCE-ASSIGNMENT(F_k) // Calculate crowding distance in F_k
- 11: Sort the solutions in F_k based on crowding distance
- 12: $P_{t+1} \leftarrow \mathbb{P}_{t+1} \cup F_k[1:T]$ // Choose the first T solutions from F_k

NSGA-II ...

8:

g.

Algorithm 3 Crowding-Distance-Assignment(1)

```
Input: I : Non-dominated front
Output: I: Crowded distance assignment to each solution in I
 1: I ← |I|
                                    // Number of solutions in non-dominated front I
 2: for i \leftarrow 1 to l do
 3: I[i]_{distance} \leftarrow 0
                                                      // Initialize the crowding distance
 4: for each objective m do
       I \leftarrow \text{SORT}(I, m) // Sort the solutions in I in descending order using m^{th}
    objective
       I[1]_{\text{distance}} \leftarrow \infty
                                                   // Set the value for boundary points
 6.
                                                   // Set the value for boundary points
 7.
       I[I]_{\text{distance}} \leftarrow \infty
       for i \leftarrow 2 to l-1 do
```


 $I[i]_{\text{distance}} \leftarrow I[i]_{\text{distance}} + (I[i+1].m - I[i-1].m) / (f_m^{\text{max}} - f_m^{\text{min}})$

Conclusions

- Discussed the number of clusters and how it can be obtained.
- Also discussed entity matching problem and how it can be solved using multi-objective clustering.

References I

- HW Becker and John Riordan.
 The arithmetic of bell and stirling numbers.
 American journal of Mathematics, pages 385–394, 1948.
- [2] Eric Temple Bell.Partition polynomials.Annals of Mathematics, pages 38–46, 1927.
- [3] David M Burton. Elementary number theory. Tata McGraw-Hill Education, 2006.
- [4] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, April 2002.
- [5] Godfrey H Hardy and Srinivasa Ramanujan.
 Asymptotic formulaæ in combinatory analysis.
 Proceedings of the London Mathematical Society, 2(1):75–115, 1918.
- [6] Shaohua Li, Gao Cong, and Chunyan Miao. Author name disambiguation using a new categorical distribution similarity. In Machine learning and knowledge discovery in databases, pages 569–584. Springer, 2012.

References II

- [7] Hans Rademacher.On the expansion of the partition function in a series.Annals of Mathematics, pages 416–422, 1943.
- [8] Basil Cameron Rennie and Annette Jane Dobson.
 On Stirling Numbers of the Second Kind.
 Journal of Combinatorial Theory, 7(2):116–121, 1969.

Thank you!

