Risoluzione del compito n. 2 (Gennaio 2021/1)

PROBLEMA 1

Determinate le soluzioni (z, w), con $z, w \in \mathbb{C}$, del sistema

Dalla prima equazione ricaviamo immediatamente che se z=0 anche w=0 e la coppia z=w=0 risolve anche la seconda equazione, dunque abbiamo trovato una soluzione del sistema. Ora cerchiamo quelle con $z\neq 0$. Sostituendo $w=|z|\bar{z}$ la seconda equazione diventa $2(1-\mathrm{i})z-(\mathrm{i}-1)|z|z=2z^2\sqrt{2}$ ossia

$$z[(1-i)(2+|z|) - 2z\sqrt{2}] = 0$$

e dividendo per z (che ormai è diverso da zero)

$$(1-i)(2+|z|) = 2z\sqrt{2} \quad \Rightarrow \quad \sqrt{2}(2+|z|) = 2|z|\sqrt{2} \quad \Rightarrow \quad |z| = 2$$

dove al centro abbiamo scritto l'uguaglianza fra i moduli, per cui $\,2z\sqrt{2}=4(1-\mathrm{i})\,$ e infine

$$z = (1 - i)\sqrt{2}$$
 \Rightarrow $w = 2(1 + i)\sqrt{2}$.

Le due soluzioni del sistema sono

$$z = w = 0$$
, $z = (1 - i)\sqrt{2}$, $w = 2(1 + i)\sqrt{2}$.

PROBLEMA 2

Considerate la funzione $f(x) = \frac{\sqrt{x^2 - 2}}{x + 2}$.

- a) Determinatene il dominio, il segno, i limiti agli estremi del dominio, gli eventuali asintoti
- b) Determinate gli intervalli di monotonia di f e gli eventuali punti di massimo o minimo locale.
- c) Disegnate, eventualmente dopo aver svolto il punto e), il grafico di f.
- d) Determinate al variare di $k \in \mathbb{R}$ quante sono le soluzioni dell'equazione f(x) = k .
- e) Determinate gli intervalli di concavità e convessità di f.

La funzione è definita se $x\neq -2$ e $x^2-2\geq 0$, ossia su $]-\infty, -2[\cup]-2, -\sqrt{2}]\cup[\sqrt{2}, +\infty[$. La funzione si annulla in $\pm\sqrt{2}$, è negativa per x<-2 e positiva negli altri punti del dominio. Abbiamo

$$\lim_{x \to (-2)^{-}} f(x) = -\infty , \qquad \lim_{x \to (-2)^{+}} f(x) = +\infty$$

(asintoto verticale x = -2) e

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{|x|\sqrt{1 - 2/x^2}}{x(1 + 2/x)} = \lim_{x \to \pm \infty} \frac{|x|}{x} = \pm 1$$

(asintoti orizzontali y = -1 a sinistra e y = 1 a destra).

La derivata di f è

$$f'(x) = 2\frac{x+1}{(x+2)^2\sqrt{x^2-2}}$$

e risulta negativa nei punti del dominio con x<-1 ossia in $]-\infty,-2[\cup]-2,-\sqrt{2}]$, e positiva nei punti del dominio con x>-1 ossia in $[\sqrt{2},+\infty[$. Allora f risulta

decrescente in
$$]-\infty, -2[$$

decrescente in $]-2, -\sqrt{2}]$
crescente in $[\sqrt{2}, +\infty[$.

Non vi sono punti interni di massimo o minimo locale, ma ve ne sono sul bordo ($x = \pm \sqrt{2}$ sono due punti di minimo locale). La derivata seconda (di cui non riportiamo il calcolo) è

$$f''(x) = -2\frac{x^2}{(x+2)^3(x^2-2)^{3/2}}(2x+3) ;$$

Osservando che la frazione cambia segno in -2 e tenendo presente che $-2 < -3/2 = -1.5 < -\sqrt{2} \simeq -1.4$ abbiamo che la funzione risulta

strettamente concava in $]-\infty, -2[$ strettamente convessa in]-2, -3/2]strettamente concava in $[-3/2, -\sqrt{2}]$ strettamente convessa in $[\sqrt{2}, +\infty[$.

Vi è un punto di flesso per x = -3/2, poco visibile in figura.

Dalla stretta monotonia di f e dai limiti agli estremi deduciamo che in $]-\infty, -2[$ la funzione assume una e una sola volta ciascun valore $k \in]-\infty, -1[$, che in $]-2, -\sqrt{2}]$ assume una e una sola volta ciascun valore $k \geq 0$ e che in $[\sqrt{2}, +\infty[$ assume una e una sola volta ciascun valore $k \in [0, 1[$, dunque l'equazione f(x) = k ha

una soluzione per k<-1 nessuna soluzione per $-1\leq k<0$ due soluzioni per $0\leq k<1$ una soluzione per $k\geq 1$.

PROBLEMA 3

In questo esercizio, i coefficienti dei monomi vanno semplificati ai minimi termini. Considerate le due funzioni $f(x) = \log_e(1-\sin x)$, $g(x) = \log_e(3-\cos x - e^x)$.

- a) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di f(x).
- b) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di g(x).
- c) Trovate l'ordine e la parte principale di infinitesimo, per $x \to 0$, della funzione h(x) = f(x) g(x).
- d) Calcolate al variare di $\, \alpha \in \mathbb{R} \,$ il limite $\, \lim_{x o 0^+} \frac{h(x) \alpha x^3}{x^4} \, .$

Da sen $x=x-x^3/6+o(x^4)$ e $\log(1-t)=-t-t^2/2-t^3/3-t^4/4+o(t^4)$, tenendo conto che $\left(x-x^3/6+o(x^4)\right)$ è un infinitesimo di ordine 1 quindi $o(\cdots)^4=o(x^4)$ segue

$$f(x) = \log\left[1 - \left(x - x^3/6 + o(x^4)\right)\right]$$

$$= -\left(x - x^3/6 + o(x^4)\right) - (\cdots)^2/2 - (\cdots)^3/3 - (\cdots)^4/4 + o(\cdots)^4$$

$$= -\left(x - x^3/6 + o(x^4)\right) - (x^2 - x^4/3)/2 - x^3/3 - x^4/4$$

$$= -x - \frac{x^2}{2} - \frac{x^3}{6} - \frac{x^4}{12} + o(x^4).$$

Invece da $\cos x = 1 - x^2/2 + x^4/24 + o(x^4)$ e $e^x = 1 + x + x^2/2 + x^3/6 + x^4/24 + o(x^4)$ segue che

$$3 - \cos x - e^x = 1 - (x + x^3/6 + x^4/12 + o(x^4))$$

(la parte fra parentesi è un infinitesimo di ordine 1) da cui

$$g(x) = \log\left[1 - \left(x + x^3/6 + x^4/12 + o(x^4)\right)\right]$$

$$= -\left(x + x^3/6 + x^4/12 + o(x^4)\right) - (\cdots)^2/2 - (\cdots)^3/3 - (\cdots)^4/4 + o(\cdots)^4$$

$$= -\left(x + x^3/6 + x^4/12 + o(x^4)\right) - (x^2 + x^4/3)/2 - x^3/3 - x^4/4$$

$$= -x - \frac{x^2}{2} - \frac{x^3}{2} - \frac{x^4}{2} + o(x^4).$$

Allora

$$h(x) = \frac{x^3}{3} + \frac{5x^4}{12} + o(x^4)$$

è un infinitesimo di ordione 3 con parte principale $\,x^3/3\,.$ Infine

$$\lim_{x \to 0^{+}} \frac{h(x) - \alpha x^{3}}{x^{4}} = \lim_{x \to 0^{+}} \frac{\left(\frac{1}{3} - \alpha\right) x^{3} + \frac{5x^{4}}{12} + o(x^{4})}{x^{4}}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{1}{3} - \alpha}{x} + \frac{5}{12} = \begin{cases} +\infty & \text{se } \alpha < 1/3\\ 5/12 & \text{se } \alpha = 1/3\\ -\infty & \text{se } \alpha > 1/3. \end{cases}$$

PROBLEMA 4

Considerate la funzione integrale $F(x) = \int_0^x \frac{{\mathrm e}^{t^2} - \cos t}{t} \, dt$.

- a) Calcolate $\lim_{x\to 0} \frac{F(x)}{x^2}$.
- b) Posto $a_n = F(1/n)$, determinate il carattere della serie $\sum a_n$.
- c) Posto $b_n=F(n^{eta})$, determinate per quali valori dell'esponente $eta\in\mathbb{R}$ risulta convergente la serie $\sum_n b_n$.

Posto per il momento $f(x)=(e^{x^2}-\cos x)/x$, di modo che $F(x)=\int_0^x f(t)\,dt$, osserviamo intanto che

$$f(x) = \frac{\left(1 + x^2 + o(x^2)\right) - \left(1 - x^2/2 + o(x^2)\right)}{x} = \frac{3}{2}x + o(x)$$

e in particolare $f(x) \to 0$ per $x \to 0$. Allora conviene estendere f ponendo

$$f(x) = \begin{cases} \frac{e^{x^2} - \cos x}{x} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

ed f risulta continua in zero. Allora $F(x) \to 0$ per $x \to 0$, per il teorema della media (o mille altri motivi) dunque il limite $F(x)/x^2$ si presenta nella forma 0/0 e possiamo applicare il Teorema di de l'Hôpital. Ricordando che per il Teorema fondamentale del calcolo F'(x) = f(x), abbiamo

$$\lim_{x \to 0} \frac{F(x)}{x^2} = \lim_{\stackrel{\uparrow}{x} \to 0} \frac{f(x)}{2x} = \lim_{x \to 0} \frac{3x/2 + o(x)}{2x} = \frac{3}{4}.$$

Da questo segue che F è un infinitesimo di ordine 2 con parte principale $3x^2/4$, ossia

$$F(x) = \frac{3x^2}{4} + o(x^2) \ .$$

In particolare

$$a_n = F(1/n) = \frac{3}{4n^2} + o(1/n^2)$$

(che è una quantità positiva almeno per n grande), quindi applichiamo il criterio del confronto asintotico fra a_n e $1/n^2$ ottenendo che $\sum_n a_n$ ha lo stesso carattere di $\sum_n 1/n^2$, che converge. Per b_n il discorso è più articolato: se $\beta>0$ abbiamo che $n^\beta\to +\infty$ e visto che la funzione integranda va all' infinito per $x\to +\infty$ anche $b_n\to +\infty$ e la serie diverge positivamente. Se $\beta=0$ il termine b_n è costante e non nullo (positivo) quindi la serie diverge positivamente. Invece per $\beta<0$, analogamente al caso di a_n , la serie $\sum_n b_n$ ha lo stesso carattere di $\sum_n n^{2\beta} = \sum_n 1/n^{-2\beta}$, che converge se e solo se $-2\beta>1$ ossia $\beta<-1/2$, mentre (essendo a termini positivi) diverge positivamente per gli altri valori di $\beta<0$. In conclusione la serie converge per $\beta<-1/2$ e diverge positivamente per $\beta\geq -1/2$. Il caso a_n corrispondeva a $\beta=-1$.