Міністерство освіти і науки України Національний авіаційний університет Факультет кібербезпеки, комп'ютерної та програмної інженерії Кафедра комп'ютеризованих систем управління

Лабораторна робота № 1.1 з дисципліни «Технології проектування комп'ютерних систем» на тему «Зображення графічних об'єктів в програмі AutoCAD» Варіант № 8

> Виконала: студентка ФККПІ групи СП-425 Ульчич І. Г. Перевірила: Голего Н. М.

3міст

1	Me	га роботи	3
2	Хід роботи		3
	2.1	Рисування зовнішньої і внутрішньої рамок формату А4	3
	2.2	Рисування відрізків прямих	4
	2.3	Побудова правильних многокутників за описаним навколо них ко-	
		лом	6
	2.4	Побудова еліпса за великою та малою осями	7
	2.5	Побудова спряження двох кіл	9
	2.6	Побудова спряження двох прямих, що перетинаються під кутом 30°	10
	2.7	Побудова фаски висотою 12 мм під кутом 30°	11
	2.8	Побудова діаграми залежності $y = f(x) \dots \dots \dots \dots$	13
3	3 Висновок		14

1. МЕТА РОБОТИ

Ознайомлення з пакетом проектування AutoCAD. Оволодіння основними прийомами зображення простих графічних об'єктів в програмі AutoCAD.

2. ХІД РОБОТИ

2.1. Рисування зовнішньої і внутрішньої рамок формату А4

Рисуємо зовнішню і внутрішню рамки формату А4. Для цього вводимо і виконуємо такі команди:

Command: rectangle

Specify first corner point or

□ [Chamfer/Elevation/Fillet/Thickness/Width]: 0,0

Specify other corner point or [Area/Dimensions/Rotation]: 210,297

Тепер зовнішня рамка нарисована (рис. 1а). Рисуємо внутрішню рамку. Для цього виконуємо такі команди:

Command: rectangle

Specify first corner point or

Specify other corner point or [Area/Dimensions/Rotation]: @185,287

Рис. 1: Результат рисування рамок: а — зовнішньої, б — внутрішньої

2.2. Рисування відрізків прямих

Для виконання завдання необхідно нарисувати такі відрізки прямих:

- 1. Горизонтальний відрізок прямої завдовжки 50 мм, виконаний суцільною лінією.
- 2. Горизонтальний відрізок прямої завдовжки 50 мм, виконаний штриховою лінією.
- 3. Горизонтальний відрізок прямої завдовжки 50 мм, виконаний штрихпунктирною лінією.
- 4. Відрізок похилої прямої завдовжки 50 мм під кутом 25°, виконаний тонкою суцільною лінією.

Щоб нарисувати ці відрізки, необхідно завантажити штрихову і штрихпунктирну лінії. Спочатку додамо штрихову лінію. Для цього заходимо в меню format Linetype... — відкриється вікно «Менеджер типів ліній» (англ. Linetype Manager, рис. 2a). У відкрившомуся Менеджері натискаємо кнопку «Load» — відкриється вікно «Завантажити або перезавантажити типи ліній» (англ. Load or Reload Linetypes, рис. 2б). У з'явившомуся вікні вибираємо тип лінії ACAD_ISO02W100 (ISO dash) і натискаємо кнопку «ОК» — ми додали штриховий тип лінії. Тепер повторюємо вищеописані дії для штрих-пунктирної лінії (ACAD_ISO08W100 (ISO long-dash short-dash)).

Рис. 2: Вікна завантаження типів ліній: а — Менеджер типів ліній, б — Завантажити або перезавантажити типи ліній

Рисуємо 3 горизонтальні відрізки за допомогою таких команд:

Command: line

Specify first point: 25,280

Specify next point or [Undo]: 75,280
Specify next point or [Undo]: *Cancel*

Command: line

Specify first point: 25,270

Specify next point or [Undo]: @50,0
Specify next point or [Undo]: *Cancel*

Command: line

Specify first point: 25,260

Specify next point or [Undo]: @50,0 Specify next point or [Undo]: *Cancel*

Нарисувавши ці відрізки, задаємо тип їх ліній. Для цього покроково обираємо кожен відрізок, натиснувши на нього курсором, та обираємо тип його лінії у відповідному меню.

Тепер рисуємо похилий відрізок. Для цього виконуємо таку команду:

Command: line

Specify first point: 25,230

Specify next point or [Undo]: @55<25
Specify next point or [Undo]: *Cancel*

Після того, як ми нарисували похилий відрізок, встановлюємо для нього штрихпунктирний тип лінії. В результаті ми побудували необхідні відрізки (рис. 3).

Рис. 3: Документ після рисування відрізків

2.3. Побудова правильних многокутників за описаним навколо них колом

Щоб побудувати правильні многокутники за описаним навколо них колом, спочатку ввімкнемо прив'язку до об'єктів (англ. *Object snapping*). Для цього наводимо курсор на кнопку «OSNAP», натискаємо на неї правою клавішею миші і вмикаємо прив'язку. Також вмикаємо прив'язку до кінцевої точки (англ. *endpoint*), центра (англ. *center*) і перетину (англ. *intersection*).

Тепер будуємо осьові лінії для многокутника. Для цього виконуємо такі команди:

```
Command: line
Specify first point: 25,230
Specify next point or [Undo]: @55<25
Specify next point or [Undo]: *Cancel*
Specify first point: 115,285
Specify next point or [Undo]: @70<-90
Specify next point or [Undo]: *Cancel*
```

Змінюємо тип осьових ліній на штрих-пунктирні і переходимо до побудови многокутників.

Щоб побудувати вписаний 6-кутник діаметром 60 мм, необхідно виконати такі команди:

Також, щоб вказати центр бажаного многокутника, замість команди Specify center of polygon or [Edge]: 115,250 можна навести курсор миші на точку перетину осьових ліній, і програма сама визначить бажану координату за допомогою прив'язки об'єктів, яку ми ввімкнули раніше.

Щоб побудувати 5-кутник діаметром 50 мм, також побудуємо осьові лінії для нього. Для цього використаємо такі команди:

```
Command: line
Specify first point: 140,240
Specify next point or [Undo]: @60<0
Specify next point or [Undo]: *Cancel*
Command: line
Specify first point: 170,270
```

```
Specify next point or [Undo]: @60<-90
Specify next point or [Undo]: *Cancel*</pre>
```

Побудувавши осьові лінії, будуємо бажаний многокутник за допомогою таких команд:

```
Command: polygon
Enter number of sides <6>: 5
Specify center of polygon or [Edge]: 170,240
Enter an option [Inscribed in circle/Circumscribed about circle] <I>:
    I
Specify radius of circle: 25
```

В результаті побудували бажані многокутники (рис. 4).

Рис. 4: Вигляд документа після побудови многокутників

2.4. Побудова еліпса за великою та малою осями

Щоб побудувати еліпс, спочатку побудуємо його осьові лінії. Для цього скопіюємо осьові лінії, які ми використовували для побудови многокутників, за допомогою таких команд:

Command: copy

Select objects: 1 found

Select objects: 1 found, 2 total

Select objects:

Specify base point or [Displacement] <Displacement>: 55,-70 Specify second point or <use first point as displacement>:

Тут виділення об'єктів виконується за допомогою курсора миші. Коли виділені всі потрібні об'єкти, необхідно натиснути .

Створивши необхідні осьові лінії, будуємо власне еліпс. Для цього використовуємо такі команди:

Command: ellipse

Specify axis endpoint of ellipse or [Arc/Center]: c

Specify center of ellipse: 170,180 Specify endpoint of axis: @25,0

Specify distance to other axis or [Rotation]: @15,0

В результаті побудували еліпс (рис. 5).

Рис. 5: Вигляд документа після побудови еліпса

2.5. Побудова спряження двох кіл

Command: line

Необхідно побудувати два кола з радіусами $R_1=15\,\mathrm{mm}$ і $R_2=20\,\mathrm{mm}$ так, щоб відстань між їх центрами O_1O_2 по горизонталі дорівнювала 5 мм, а по вертикалі — 45 мм. Також необхідно побудувати спряження цих кіл, радіус дуги, якою виконують спряження — $20\,\mathrm{mm}$.

Щоб виконати це завдання, спочатку побудуємо осьові лінії для першого кола за допомогою таких команд:

```
Specify first point: 100,175
Specify next point or [Undo]: @40<0
Specify next point or [Undo]: *Cancel*
Command: line
Specify first point: 95,170
Specify next point or [Undo]: @40<0
Specify next point or [Undo]: *Cancel*
Тепер копіюємо побудовані осьові лінії для другого кола за умовами завдання,
виконавши такі команди:
Command: copy
2 found
Specify base point or [Displacement] <Displacement>: 5,-45
Specify second point or <use first point as displacement>:
Скопіювавши осьові лінії для обох кіл, будуємо власне кола:
Command: circle
Specify center point for circle or [3P/2P/Ttr (tan tan radius)]:

→ 115,170

Specify radius of circle or [Diameter]: 15
Command: circle
Specify center point for circle or [3P/2P/Ttr (tan tan radius)]:
→ 120,125
Specify radius of circle or [Diameter] <15.0000>: 20
Будуємо спряження кіл:
Command: fillet
Current settings: Mode = TRIM, Radius = 0.0000
Select first object or [Undo/Polyline/Radius/Trim/Multiple]: T
Enter Trim mode option [Trim/No trim] <Trim>: T
Select first object or [Undo/Polyline/Radius/Trim/Multiple]: R
Specify fillet radius <0.0000>: 10
Select first object or [Undo/Polyline/Radius/Trim/Multiple]:
Select second object or shift-select to apply corner:
```

В результаті ми побудували два кола радіусами 15 мм і 20 мм відповідно, центри яких знаходяться на горизонтальній відстані у 5 мм і вертикальній відстані 45 мм, спряжені дугою радіусом 10 мм (рис. 6).

Рис. 6: Вигляд документа після побудови спряжених кіл

2.6. Побудова спряження двох прямих, що перетинаються під кутом 30°

Щоб побудувати спряження прямих, спочатку побудуємо власне прямі. Для цього виконаємо такі команди:

Command: line

Specify first point: 75,225

Specify next point or [Undo]: @45<210 Specify next point or [Undo]: *Cancel*

Command: line

Specify first point: 25,200

Specify next point or [Undo]: @60<0
Specify next point or [Undo]: *Cancel*</pre>

Після того, як прямі побудовані, будуємо їх спряження:

Command: fillet

Current settings: Mode = TRIM, Radius = 10.0000

Select first object or [Undo/Polyline/Radius/Trim/Multiple]: Select second object or shift-select to apply corner:

В результаті ми побудували спряження двух прямих: горизонтальної і нахиленої під кутом 30° (рис. 7).

Рис. 7: Вигляд документа після побудови спряжених прямих

2.7. Побудова фаски висотою 12 мм під кутом 30°

Щоб побудувати фаску, спочатку необхідно побудувати прямі, до яких ми її застосуємо. Для цього використаємо такі команди:

Command: line

Specify first point: 75,170

Specify next point or [Undo]: @-50<0
Specify next point or [Undo]: *Cancel*

Command: line

Specify first point: 25,170

Specify next point or [Undo]: @50<-90
Specify next point or [Undo]: *Cancel*</pre>

Побудувавши прямі, переходимо до побудови фаски. За умовами завдання фаска має довжину 12 мм і виконується під кутом 30° відносно першої вибраної прямої. Отже, виконуємо такі команди:

Command: chamfer (TRIM mode) Current chamfer Dist1 = 0.0000, Dist2 = 0.0000 Select first line or

- □ [Undo/Polyline/Distance/Angle/Trim/mEthod/Multiple]: A Specify chamfer length on the first line <0.0000>: 12 Specify chamfer angle from the first line <0>: 30 Select first line or
- □ [Undo/Polyline/Distance/Angle/Trim/mEthod/Multiple]:
 Command: chamfer
 (TRIM mode) Current chamfer Length = 12.0000, Angle = 30
 Select first line or
- □ [Undo/Polyline/Distance/Angle/Trim/mEthod/Multiple]: Select second line or shift-select to apply corner:

В результаті ми отримали дві прямі, з'єднані фаскою із заданими параметрами (рис. 8).

Рис. 8: Вигляд документа після побудови прямих, з'єднаних фаскою

2.8. Побудова діаграми залежності y = f(x)

Щоб побудувати діаграму залежності, необхідно задати точки цієї залежності, які визначені варіантом (табл. 1). Перед початком побудови, встановимо стиль зображення точок, визначений завданням. Для цього переходимо у меню Format Point Style... і вибираємо необхідний стиль (рис. 9).

Табл. 1: Точки, задані за варіантом

Номер точки	Координати
1	(50, 40)
2	(60, 45)
3	(70, 60)
4	(80, 68)
5	(90, 70)
6	(100, 76)
7	(110, 88)

Рис. 9: Вікно вибору стилю точок

Встановивши необхідний стиль зображення точок, переходимо до їх побудови. Для цього виконуємо такі команди:

Command: point

Current point modes: PDMODE=0 PDSIZE=0.0000

Specify a point: 50,40

Command: point

Current point modes: PDMODE=0 PDSIZE=0.0000

```
Specify a point: 60,45
```

Command: point

Current point modes: PDMODE=0 PDSIZE=0.0000

Specify a point: 70,60

Command: point

Current point modes: PDMODE=0 PDSIZE=0.0000

Specify a point: 80,68

Command: point

Current point modes: PDMODE=0 PDSIZE=0.0000

Specify a point: 90,70

Command: point

Current point modes: PDMODE=0 PDSIZE=0.0000

Specify a point: 100,76

Command: point

Current point modes: PDMODE=0 PDSIZE=0.0000

Specify a point: 110,88

Тепер у документі з'явились точки необхідної діаграми. Щоб побудувати власне діаграму, необхідно з'єднати ці точки. З'єднання виконується за допомогою сплайнів. Щоб з'єднати точки за допомогою сплайнів, виконаємо такі команди:

```
Command: spline

Specify first point or [Object]: 50,40

Specify next point: 60,45

Specify next point or [Close/Fit tolerance] <start tangent>: 70, 60

Specify next point or [Close/Fit tolerance] <start tangent>: 80, 68

Specify next point or [Close/Fit tolerance] <start tangent>: 90, 70

Specify next point or [Close/Fit tolerance] <start tangent>: 100, 76

Specify next point or [Close/Fit tolerance] <start tangent>: 110, 88

Specify next point or [Close/Fit tolerance] <start tangent>:

Specify start tangent:

Specify end tangent:
```

В результаті отримали діаграму залежності y = f(x) (рис. 10).

3. Висновок

Виконуючи дану лабораторну роботу, ми ознайомились з пакетом проектування Autocap і оволоділи основними прийомами зображення простих графічних об'єктів в ньому. Результатом виконання роботи став документ з побудованими фігурами.

Рис. 10: Документ після побудови діаграми залежності y=f(x)