Set-homogeneous digraphs

Robert Gray (joint work with C. E. Praeger and D. Macpherson)

ROGICS

Relations, Orders and Graphs: Interaction with Computer Science

May 2008 - Mahdia, Tunisia

Homogeneity and set-homogeneity

Definition

A relational structure M is homogeneous if every isomorphism between finite substructures of M can be extended to an automorphism of M.

► This notion goes back to the fundamental work of Fraïssé (1953)

Definition

A relational structure M is set-homogeneous if whenever two finite substructures U and V are isomorphic, there is an automorphism $g \in \operatorname{Aut}(M)$ such that Ug = V.

 Originally considered in unpublished observations of Fraïssé and Pouzet.

General question

How much stronger is homogeneity than set-homogeneity?

Set-homogeneous finite graphs

Ronse (1978)

...proved that for finite graphs homogeneity and set-homogeneity are equivalent.

- ► He did this by classifying the finite set-homogeneus graphs and then observing that they are all, in fact, homogeneous.
- ► This generalised an earlier result of Gardiner, classifying the finite homogeneous graphs.

Enomoto (1981)

...gave a very short direct proof of the fact that for finite graphs set-homogeneous implies homogeneous.

- ▶ this avoids the need to classify the set-homogeneous graphs
- the set-homogeneous classification can then be read off from Gardiner's result

Some graph theoretic terminology and notation

Definition

$$\Gamma = (V\Gamma, \sim)$$
 - a graph

So \sim is a symmetric irreflexive binary relation on $V\Gamma$

Let v be a vertex of Γ . Then the neighbourhood $\Gamma(v)$ of v is the set of all vertices adjacent to v. So

$$\Gamma(v) = \{ w \in V\Gamma : w \sim v \}$$

▶ For $X \subseteq V\Gamma$ we define

$$\Gamma(X) = \{ w \in V\Gamma : w \sim x \ \forall x \in X \}$$

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

Claim: The isomorphism $f: X \to Y$ is either an automorphism, or extends to an isomorphism $f': X' \to Y'$ where $X' \supsetneq X$ and $Y' \supsetneq Y$.

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

Proof of claim.

▶ Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

- ▶ Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.
- ▶ Choose $d \in \Gamma \setminus Y$ with $|\Gamma(d) \cap Y|$ as large as possible.

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

- ▶ Choose $a \in \Gamma \setminus X$ with $|\Gamma(a) \cap X|$ as large as possible.
- ▶ Choose $d \in \Gamma \setminus Y$ with $|\Gamma(d) \cap Y|$ as large as possible.
- ▶ Suppose $|\Gamma(a) \cap X| \ge |\Gamma(d) \cap Y|$ (the other possibility is dealt with dually using the isomorphism f^{-1})

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

Proof of claim.

▶ Let $A = \Gamma(a) \cap X$ and define B = f(A).

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

- ▶ Let $A = \Gamma(a) \cap X$ and define B = f(A).
- ▶ $A \cong B \& \Gamma$ is set-homogeneous $\Rightarrow |\Gamma(A)| = |\Gamma(B)|$.

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

- Let $A = \Gamma(a) \cap X$ and define B = f(A).
- ▶ $A \cong B \& \Gamma$ is set-homogeneous $\Rightarrow |\Gamma(A)| = |\Gamma(B)|$.
- $ightharpoonup \Gamma(B) \cap Y = f(\Gamma(A) \cap X) \text{ so } |\Gamma(B) \cap Y| = |\Gamma(A) \cap X|.$

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

- Let $A = \Gamma(a) \cap X$ and define B = f(A).
- ▶ $A \cong B \& \Gamma$ is set-homogeneous $\Rightarrow |\Gamma(A)| = |\Gamma(B)|$.
- $ightharpoonup \Gamma(B) \cap Y = f(\Gamma(A) \cap X) \text{ so } |\Gamma(B) \cap Y| = |\Gamma(A) \cap X|.$
- $ightharpoonup : |\Gamma(B) \setminus Y| = |\Gamma(A) \setminus X| \ge 1$

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

Proof of claim.

Let $b \in \Gamma(B) \setminus Y$ and extend f to $f' : X \cup \{a\} \to Y \cup \{b\}$ by defining f'(a) = b.

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

- Let $b \in \Gamma(B) \setminus Y$ and extend f to $f' : X \cup \{a\} \to Y \cup \{b\}$ by defining f'(a) = b.
- ▶ $\Gamma(b) \cap Y = B$ by maximality in original definition of a,

 Γ - finite set-homogeneous graph X,Y - induced subgraphs $f:X\to Y$ an isomorphism

- Let $b \in \Gamma(B) \setminus Y$ and extend f to $f' : X \cup \{a\} \to Y \cup \{b\}$ by defining f'(a) = b.
- ▶ $\Gamma(b) \cap Y = B$ by maximality in original definition of a,
- ightharpoonup f' is an isomorphism.

Set-homogeneous digraphs

Question: What about other kinds of relational structure?

Definition (Digraphs)

A digraph D consists of a set VD of vertices together with an irreflexive antisymmetric binary relation \rightarrow on VD.

Enomoto's argument can be adapted for tournaments:

Definition

A tournament is a digraph where for any pair of vertices u, v either $u \to v$ or $v \to u$.

Corollary

Let T be a finite tournament. Then T is homogeneous if and only if T is set-homogeneous.

A non-homogeneous example

Example

Let D_n denote the digraph with vertex set $\{0, \ldots, n-1\}$ and just with arcs $i \to i+1 \pmod{n}$.

The digraph D_5 is set-homogeneous but is not homogeneous.

- ▶ $(a,c) \mapsto (a,d)$ gives an isomorphism between induced subdigraphs that does not extend to an automorphism
- ▶ However, there is an automorphism sending $\{a, c\}$ to $\{a, d\}$.

Finite set-homogeneous digraphs

Question

How much bigger is the class of set-homogeneous digraphs than the class of homogeneous digraphs?

Finite set-homogeneous digraphs

Question

How much bigger is the class of set-homogeneous digraphs than the class of homogeneous digraphs?

Theorem (RG, Macpherson, Praeger (2007))

Let D be a finite set-homogeneous digraph. Then either D is homogeneous or it is isomorphic to D_5 .

Proof.

- Carry out the classification of finite set-homogeneous digraphs.
- ▶ Proof is inductive using the fact that the subgraph induced by the out-neighbours of a vertex gives a (smaller) set-homogeneous digraph.
- ▶ By inspection note that D_5 is the only non-homogeneous example.

Symmetric-digraphs (s-digraphs)

A common generalisation of graphs and digraphs

Definition (s-digraph)

- An s-digraph is the same as a digraph except that we allow pairs of vertices to have arcs in both directions.
- \triangleright So for any pair of vertices u, v exactly one of the following holds:

```
u \to v, v \to u, u \leftrightarrow v, u \parallel v (meaning unrelated).
```

- Formally we can think of an s-digraph as a structure M with two binary relations → and ~ where
 - ightharpoonup \sim is irreflexive and symmetric (and corresponds to \leftrightarrow above)
 - → is irreflexive and antisymmetric
 - ightharpoonup and ightharpoonup are disjoint
- ► A graph is an s-digraph (where there are no →-related vertices)
- ▶ A digraph is an s-digraph (where there are no \sim -related vertices)

Classifying the finite homogeneous s-digraphs

► Lachlan (1982) classified the finite homogeneous s-digraphs

To state his result we need the notions of

- complement
- compositional product

Taking complements

Definition

If M is an s-digraph, then \overline{M} , the complement, is the s-digraph with the same vertex set, such that $u \sim v$ in \overline{M} if and only if they are unrelated in M, and $u \to v$ in \overline{M} if and only if $v \to u$ in M.

Example.

M

 \overline{M}

Compositional product

Definition (Composition)

If U and V are s-digraphs, the compositional product U[V] denotes the s-digraph which is

"|U| copies of V"

 $Vertex set = U \times V$

 \rightarrow relations are of form $(u, v_1) \rightarrow (u, v_2)$ where $v_1 \rightarrow v_2$ in V, or of form $(u_1, v_1) \rightarrow (u_2, v_2)$ where $u_1 \rightarrow u_2$ in U,

Similarly for \sim .

Some finite homogeneous s-digraphs

Sporadic examples

- $\mathcal L$ finite homogeneous graphs, $\mathcal A$ finite homogeneous digraphs,
- $\ensuremath{\mathcal{S}}$ finite homogeneous s-digraphs

 $C_5 \in \mathcal{L}$

 $K_3 \times K_3 \in \mathcal{L}$

Some finite homogeneous s-digraphs

Sporadic examples

- \mathcal{L} finite homogeneous graphs, \mathcal{A} finite homogeneous digraphs,
- $\ensuremath{\mathcal{S}}$ finite homogeneous s-digraphs

 $H_0 \in \mathcal{A}$

 $H_1 \in \mathcal{S}$

Some finite homogeneous s-digraphs

Sporadic examples

 $H_2 \in \mathcal{S}$

To complete the picture...

In H_2 each vertex v has a unique mate v' to which it is joined by an undirected edge.

Now if $v \to w$ then $w \to v'$ where v' is the mate of v.

Similarly, if $w \rightarrow v$ then $v' \rightarrow w$.

Lachlan's classification

- ${\cal L}$ finite homogeneous graphs, ${\cal A}$ finite homogeneous digraphs,
- ${\cal S}$ finite homogeneous s-digraphs

Theorem (Lachlan (1982))

Let M be a finite s-digraph. Then

Gardiner

(i) $M \in \mathcal{L} \Leftrightarrow M \text{ or } \overline{M} \text{ is one of: } C_5, K_3 \times K_3, K_m[\overline{K}_n] \text{ (for } 1 \leq m, n \in \mathbb{N});$

Lachlan

- (ii) $M \in \mathcal{A} \Leftrightarrow M$ is one of: D_3 , D_4 , H_0 , \bar{K}_n , $\bar{K}_n[D_3]$, or $D_3[\bar{K}_n]$, for some $n \in \mathbb{N}$ with $1 \leq n$;
- (iii) $M \in \mathcal{S} \Leftrightarrow M$ or \overline{M} is isomorphic to an s-digraph of one of the following forms. $K_n[A], A[K_n], L, D_3[L], L[D_3], H_1, H_2$, where $n \in \mathbb{N}$ with $1 \le n, A \in \mathcal{A}$ and $L \in \mathcal{L}$.

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$)

- (i) $K_n[D_5]$ or $D_5[K_n]$
- (ii) J_n

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$)

- (i) $K_n[D_5]$ or $D_5[K_n]$
- (ii) J_n

Set-homogeneous s-digraphs

Theorem (RG, Macpherson, Praeger (2007))

The finite s-digraphs that are set-homogeneous but not homogeneous are:

Infinite families (with $n \in \mathbb{N}$)

- (i) $K_n[D_5]$ or $D_5[K_n]$
- (ii) J_n

Sporadics

Countably infinite graphs

Homogeneous

► Lachlan and Woodrow (1980) - classified the countably infinite homogeneous (undirected) graphs

Set-homogeneous

- ▶ Droste, Giraudet, Macpherson, Sauer (1994) showed that for countably infinite graphs set-homogeneous \neq homogeneous and proved that (up to complementation) there is a unique countable set-homogeneous but not 3-homogeneous graph, called R(3).
- ▶ The problem of classifying the countable set-homogeneous graphs is still open.

Countably infinite digraphs

Homogeneous

► Cherlin (1998) - classified the countably infinite homogeneous digraphs

Set-homogeneous

- ▶ RG, Macpherson, Praeger (2007) classified the countably infinite digraphs that are set-homogeneous but not 2-homogeneous:
 - ightharpoonup a family R_n built using n-coloured versions of the rationals
 - a sporadic example called T(4) built using a circular construction (originally due to Cameron and Macpherson) similar to that used by Droste, Giraudet, Macpherson, Sauer (1994) to construct R(3)

Open problem. Is there a countably infinite tournament that is set-homogeneous but not homogeneous?

Relating to this question, we know:

Proposition (RG, Macpherson, Praeger (2007))

Let *T* be a set-homogeneous tournament. Then *T* is 4-homogeneous.