

LAB REPORT

CSE314: Computer Network Lab

03

[Report Number]

Topic: RIP(v1,v2),OSPF,NAT(Static & Dynamic)

Submitted To

Taslima Akhter

Lecturer

Department of CSE, Daffodil International University Submitted

Ву

Student ID: 221-15-5279

Section: 61_J2

Student Name: MD SAMSUL AREFIN

Date of Submission: 1 December 2024

1. Objective

The objectives of this lab are:

- 1. To understand the configuration and working of RIP (Version 1 and Version 2).
- 2. To configure and analyze OSPF in a network.
- 3. To explore and implement Static and Dynamic NAT in a network environment.

2. Equipment and Software Required

- 1. Cisco Packet Tracer or GNS3.
- 2. Computers, routers, and switches (virtual or physical).
- 3. Ethernet cables for connections (if physical devices are used).

3. Theory

RIP (Routing Information Protocol)

RIP is a distance-vector routing protocol that uses hop count as a metric.

- ☐ **RIP Version 1 (RIPv1):**
 - Classful, does not support subnet masks.
 - Broadcasts routing updates every 30 seconds.
 - ☐ RIP Version 2 (RIPv2):
 - Classless, supports subnet masks and VLSM.
 Multicasts updates using 224.0.0.9.

OSPF (Open Shortest Path First)

OSPF is a link-state routing protocol that uses the Dijkstra algorithm to find the shortest path.

- Supports hierarchical design with areas.
- Uses cost as the routing metric.
- Faster convergence compared to RIP.

NAT (Network Address Translation)

NAT allows private IP addresses to communicate with public networks.

- Static NAT: Maps a specific private IP to a specific public IP.
- Dynamic NAT: Maps a pool of private IP addresses to a pool of public IPs dynamically.

4. RIP V1:

Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit
•	Successful	PC1	PC4	ICMP		0.000	N	3	(edit)
•	Successful	PC2	PC3	ICMP		0.000	Ν	4	(edit)
	Successful	PC2	PC4	ICMP		0.000	Ν	5	(edit)
	Successful	PC1	PC3	ICMP		0 000	N	6	(edit)

5. RIP V2:

6 . <u>OSPF</u>:

Fire	Last Status	Source	Destination	Туре	Color
•	Successful	PC1	PC2	ICMP	
	Successful	PC3	PC0	ICMP	
•	Successful	PC1	PC3	ICMP	

NAT(STATIC):

ROUTER CONFIGERATION:

MESSAGE SENDING:

Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num
•	Successful	PC0	Server0	ICMP		0.000	N	14
•	Successful	PC1	Server0	ICMP		0.000	N	15
	Successful	PC2	Server0	ICMP		0.000	N	16
	Successful	PC3	Server0	ICMP		0.000	N	17

8. NAT(Dynamic):

Fire	Last Status	Source	Destination	Type	Color	Time(sec)	Periodic	Num	Edit
•	Successful	PC1	Server0	ICMP		0.000	N	23	(edit)
	Successful	PC 0	Server0(1)	ICMP	- 0	0.000	N	24	(edit)
	Successful	PC 1	Server0(1)	ICMP		0.000	N	25	(edit)
	Successful	PC 3	Server0(1)	ICMP	100	0.000	N	26	(edit)

9. Observations

- 1. RIP successfully exchanged routing information.
- 2. OSPF formed adjacencies, and the shortest path was calculated.
- 3. NAT translated private IPs to public IPs correctly.

10. Conclusion

The lab demonstrated the implementation of RIP, OSPF, Static NAT, and Dynamic NAT in a simulated network. It reinforced concepts of routing protocols and address translation.