Análisis y Visualización de Datos

Diplomatura CDAAyA 2020

¿Que es todo esto y cómo se combinan?

Teoría, datos, experimentos, simulación...

Variable Aleatoria (repetición del experimento)

X= cantidad de caras en 3 tiradas de moneda.

Proporción de resultados tal que X=k:

```
result = numpy.unique(sampled_values, return_counts=True)
[(label, count/1000.0) for label, count in zip(*result)]
[(0, 0.132), (1, 0.379), (2, 0.383), (3, 0.106)]
```

Variable Aleatoria (repetición del experimento)

```
result = numpy.unique(sampled_values, return_counts=True)
[(label, count/1000.0) for label, count in zip(*result)]
[(0, 0.132), (1, 0.379), (2, 0.383), (3, 0.106)]
```

la Proporción de la muestra tal que X=k, estima la probabilidad P(X=k), p/ k=0,1,2,3

Variable Aleatoria (modelo matemático)

X = cantidad de caras en 3 tiradas de moneda. p(k)=P(X=k)?

$$Ω={ccc, ccs, csc, css, scc, scs, ssc, sss}, #Ω=8=2^3$$

$$p(0)=P(X=0)=1/8$$

$$p(1)=P(X=1)=3/8$$

$$p(2)=P(X=2)=3/8$$

$$p(3)=P(X=3)=1/8$$
Notar que la suma da 1, $\sum_{k} p(k)=1=\sum_{k} P(X=k)^{0.5}$

Variable binomial

Sea X la v. a. discreta modela: cantidad de "éxitos" en una

n-upla

 $P(X=k)= n!/(n-k)! \ k! \ p^k \ (1-p)^{(n-k)}$ k=0,1,...,n $p=probabilidad \ de \ "éxito".$

 $X \sim B(n,p)$

Función de Distribución Acumulada

La Función de Distribución Acumulada de la v.a. X, es la función F: R →[0,1] definida por

$$F(t)=P(X \le t) = P(\{\varpi \mid X(\varpi) \le t\})$$

X continua

Función de densidad

Propiedades de función de densidad

- 1) f(t)≥0 para todo t
- 2) $\int f(t) dt = 1$ para variables continuas y (entre $-\infty$ y $+\infty$)
- 2) $\sum f(t)=1$ para variables discretas (para todos los valores)

cualquier función que cumple con 1 y 2 es una función de densidad de alguna v. a.

Distribución Uniforme

X v.a. tiene **distribución uniforme** si su función **densidad** es

$$f(t)=1/(b-a)$$
 si $a \le t \le b$, 0 c.c.

Notación X~U(a,b), a<b parámetros

Distribución Normal o Gaussiana

X v.a. continua tiene distribución normal (Gaussiana) si su función de

densidad es la siguiente:

Con $\mu \in \mathbb{R}$ y $\sigma^2 \in (0, \infty)$

parámetros

Notación X~N(μ , σ ²)

Distribución Normal o Gaussiana

 $X \sim N(0, \sigma^2)$

si además $\sigma^2=1$

 $X\sim N(0,1)$, se dice

Normal Estándar

Distribución Exponencial (caso especial de Gamma)

X v.a. tiene distribución exponencial si su densidad es:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & si \quad x \ge 0 \\ 0 & si \quad x < 0 \end{cases}$$

Notación X~Exp(λ), λ>0 parámetro suele utilizarse para modelar tiempo de espera

Distribución Chi Cuadrado

Diremos la v.a. X tiene <u>distribució</u>n <u>Chi</u>- cuadrado con k grados de libertad. Notación $X \sim \chi_k^2$ si su función de densidad está dada por:

Medidas estadísticas de una v.a. o de una densidad

X v.a. numérica con densidad f

Media o Esperanza de X (Medida de posición):

$$\mu=E(X)=\int t\ f(t)\ dt\ ó\ \mu=E(X)=\sum t\ f(t)\ ,$$
promedio ponderado por la densidad ($\mu\in R$)

Varianza (Medidas de dispersión):

$$\sigma^2 = Var(X) = E((X-\mu)^2) = \int (t-\mu)^2 f(t) dt \circ \sigma^2 = E((X-\mu)^2) = \sum (t-\mu)^2 f(t) (\sigma^2 \in R^+)$$

En una va con densidad normal coinciden con los parámetros μ y σ^2 respectivamente

Mediana

Se ordena la muestra de menor a mayor: $x_{(1)}$,... $x_{(n)}$ y se calcula...

Mediana Muestral vs

Mediana de una v.a. X, o de su densidad es x_e tal que $P(X \le x_e) = P(X \ge x_e)$

Media

Media Muestral $\sum_{i=1}^{n} x_i / n$, (promedio) vs

Media o Esperanza de una v.a. X, $\mu=E(X)=\int t f(t) dt \circ \mu=E(X)=\sum t f(t)$

Moda

Resultado (o intervalo) con mayor frecuencia en la **muestra**. vs

Valor con **mayor probabilidad** o **densidad** x_o tal que $f(x_o) \ge f(x)$, p/ todo x

Comparación de Medidas

Moda:

Mediana:

Media:

Otras Medidas, del <u>modelo</u> (de una v.a.)

Dada una **función de densidad f** (de una v.a. X) se define:

Desvío: $\sigma = (\sigma^2)^{\frac{1}{2}} = (Var(X))^{\frac{1}{2}}$ -Kurtosis: $E((X-\mu)^4)/\sigma^4$ -Sesgo/Asimetría: $E(X-\mu)^3/\sigma^3$

Percentiles

El percentil es una medida de posición. El p-ésimo percentil o percentil $p \times 100\%$, es el x_p tal que $P(X \le x_p) = p$

Algunas propiedades de v.a. y su distribución

• Si X \sim N(μ , σ^2) y Z=(X- μ)/ σ , entonces Z \sim N(0,1)

• Si Z \sim N(0,1), entonces Z² $\sim \chi_1^2$ Chi cuadrado con 1 gl

Población y muestra

Cuando recogemos los datos muchas veces es imposible relevar la característica de interés de todo el grupo entero (población) o universo, se examina una pequeña parte del grupo, llamada muestra.

Se denotan los n datos de una muestra: $x_1,...x_n$ (observaciones/repeticiones de la v.a. X)

Medidas a partir de datos Medidas <u>muestrales</u>

Sean los n datos de una muestra: $x_1,...x_n$ (observaciones de la v.a.)

Media muestral (promedio): $x_M = \sum_{i=1}^n x_i / n = \overline{X}$

Varianza muestral : $\sum_{i=1}^{n} (x_i - x_M)^2 / n$

Asimetría muestral

$$CA_F = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^3}{N \cdot S_x^3}$$

Curtosis muestral

$$Curtosis = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^4}{N \cdot S_x^4} - 3$$

siendo \overline{x} la media y S_x la desviación típica

Tendencia

La tendencia habitual si se tiene una variable descrita en los términos de la Media±Desviación estándar es a hacer aquellas típicas inferencias que sólo son ciertas si la variable se ajusta bien a la distribución normal:

- Media±1DE supone el 68.5% aproximadamente de la población,
- Media±2DE supone el 95% aproximadamente de la población
- Media±3DE supone el 99.5% aproximadamente de la población

Bondad de ajuste

Resumen la discrepancia entre los valores observados y los valores esperados en el modelo de estudio.

Gráficos QQ (Quantil modelo vs Quantil muestral)

Dentro de los test más usados para normalidad:

Test de Kolmogorov-Smirnov (Test KS)

(En próxima semana veremos Test de Hipótesis)

Notebook

03_Distribuciones.ipynb