# **Cointegration Z-score**

# **Preprocessing**

# **Johansen Cointegration Test : (Ideal lag = 1)**

| Hypothesis | Eigenvalue | Trace<br>Statistic | Critical Value (Trace) | Max Eigenvalue<br>Statistic | Critical Value (Max Eigenvalue) | Decision<br>(Trace) | Decision (Max<br>Eigenvalue) |
|------------|------------|--------------------|------------------------|-----------------------------|---------------------------------|---------------------|------------------------------|
| H0         | 0.005376   | 7.714844           | 10.4741                | 7.040206                    | 12.3212                         | Fail to<br>Reject   | Fail to Reject               |
| H1         | 0.000516   | 0.674638           | 2.9762                 | 0.674638                    | 4.1296                          | Fail to<br>Reject   | Fail to Reject               |

<sup>\*\*</sup> IF Trace Statistic > Critical Value AND Max Eigenvalue > Critical Value then Reject Null of at most r cointegrating relationships.(r=0 in first test)

#### **ADF Test Results**

| Ticker | ADF Statistic | p-value  | Critical Value (1%) | Critical Value (5%) | Critical Value (10%) | Stationarity   |
|--------|---------------|----------|---------------------|---------------------|----------------------|----------------|
| spread | -2.800209     | 0.058244 | -3.435367           | -2.863756           | -2.56795             | Non-Stationary |

<sup>\*\*</sup> IF p-value < 0.05 and/or statistic < statistic @ confidence interval, then REJECT the Null that the time series posses a unit root (non-stationary).

#### **Phillips Perron Results**

| Ticke | PP Statistic | p-value  | Critical Value (1%%) | Critical Value (5%%) | Critical Value (10%%) | Stationarity   |
|-------|--------------|----------|----------------------|----------------------|-----------------------|----------------|
| sprea | -2.792619    | 0.059336 | -3.435367            | -2.863756            | -2.56795              | Non-Stationary |

<sup>\*\*</sup> IF p-value < 0.05, then REJECT the Null Hypothesis of a unit root (non-stationary time series).

#### **Cointegration Vector**

|                      | HE.n.0    | ZC.n.0    |
|----------------------|-----------|-----------|
| cointegration vector | 11.571898 | -8.052704 |
| standardized vector  | -1.437020 | 1.000000  |
| hedge ratios         | -3.000000 | 2.000000  |

### **Spread Statistics**

| Half-life | Hurst Exponent |
|-----------|----------------|
| 0.978197  | 59.097051      |





# **Performance Metrics**

# **Summary Stats**

|                           | Value      |
|---------------------------|------------|
| annual_standard_deviation | 3.8542     |
| sharpe_ratio              | 1.2592     |
| sortino_ratio             | 3.9753     |
| max_drawdown              | -0.6994    |
| ending_equity             | 17940.0000 |







# **Regression Analysis**

**OLS Regression Results** 

| Dep. Variable:   |             |     |                         | ty_  | value           |                             | R-squared: |          |            |    | 0.008    |
|------------------|-------------|-----|-------------------------|------|-----------------|-----------------------------|------------|----------|------------|----|----------|
| Model:           | OLS         | OLS |                         |      | Adj. R-squared: |                             |            | -0.000   |            |    |          |
| Metho            | d:          |     | Leas                    | st S | Square          | es                          | ı          | F-statis | tic:       |    | 0.9560   |
| Date:            |             |     | Sun                     | , 20 | 6 May           | 2024                        | ı          | Prob (F  | -statistic | ): | 0.330    |
| Time:            |             |     | 10:1                    | 2:4  | <b>1</b> 5      |                             | ı          | Log-Lik  | elihood:   |    | 0.092262 |
| No. Ob           | servatio    | ns: | 117                     |      |                 |                             | ,          | AIC:     |            |    | 3.815    |
| Df Res           | iduals:     |     | 115                     |      |                 |                             | ı          | BIC:     |            |    | 9.340    |
| Df Model:        |             |     | 1                       |      |                 |                             |            |          |            |    |          |
| Covari           | ance Typ    | e:  | nonrobust               |      |                 |                             |            |          |            |    |          |
|                  | coef        | sto | d err                   | t    |                 | P> t                        |            | [0.025   | 0.975]     |    |          |
| const            | 0.0235      | 0.0 | )23                     | 1.   | .025            | 0.308                       |            | -0.022   | 0.069      |    |          |
| close            | -3.1711     | 3.2 | 243                     | -0   | .978            | 0.330                       |            | -9.596   | 3.253      |    |          |
| Omnibus: 2       |             |     | 21.08                   | 34   | Durk            | oin-Wa                      | atson:     |          | 2.228      |    |          |
| Prob(Omnibus): 0 |             |     | Jarque-Bei              |      |                 | ra ( <b>JB</b> ): 32131.659 |            | 59       |            |    |          |
| Skew: 8          |             |     | 3.324 <b>Prob(JB)</b> : |      |                 | 0.00                        |            |          |            |    |          |
| Kurtos           | Kurtosis: 8 |     |                         | )    | Con             | d. No.                      |            |          | 144.       |    |          |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

# **Regression Validation Results**

| R-squared | p-value (const) | p-value (close) | R-squared above threshold | P-values significant | Model is valid |
|-----------|-----------------|-----------------|---------------------------|----------------------|----------------|
| 0.008244  | 0.307561        | 0.330259        | False                     | False                | False          |

<sup>\*\*</sup> R-squared should be above the threshold and p-values should be below the threshold for model validity.

# **Alpha Analysis Results**

| Alpha<br>(Intercept) | p-value  | Confidence Interval Lower<br>Bound(2.5%) | Confidence Interval Upper<br>Bound(97.5%) | Alpha is significant |
|----------------------|----------|------------------------------------------|-------------------------------------------|----------------------|
| 0.023463             | 0.307561 | -0.021883                                | 0.068808                                  | False                |

<sup>\*\*</sup> Note: For model validity, alpha should be significant (p-value < 0.05), and confidence intervals should not include zero.

### **Beta Analysis Results**

| Beta (Slope) | p-value  | Confidence Interval Lower Bound(2.5%) | Confidence Interval Upper Bound(97.5%) | Beta is significant |
|--------------|----------|---------------------------------------|----------------------------------------|---------------------|
| -3.171112    | 0.330259 | -9.595536                             | 3.253311                               | False               |

<sup>\*\*</sup> Note: For model validity, beta should be significant (p-value < 0.05), and confidence intervals should not include zero.

#### zscore volatility Results

| Annualized<br>Volatility | Annualized Mean<br>Return | Z-score for 1 SD (annualized) | Z-score for 2 SD (annualized) | Z-score for 3 SD (annualized) |  |
|--------------------------|---------------------------|-------------------------------|-------------------------------|-------------------------------|--|
| 1.630699                 | 0.897331                  | -0.449726                     | -1.449726                     | -2.449726                     |  |

<sup>\*\*</sup> Note: Z-scores provide a statistical measure of the volatility's deviation from its mean, with larger absolute values indicating more significant deviations.

### **Summary Stats**

|   | Metric                     | Value         |
|---|----------------------------|---------------|
| 0 | Market Contribution        | -0.003880     |
| 1 | Idiosyncratic Contribution | 0.023463      |
| 2 | Total Contribution         | 0.019583      |
| 3 | Market Volatility          | -0.022139     |
| 4 | Idiosyncratic Volatility   | 0.242820      |
| 5 | Total Volatility           | 0.243827      |
| 6 | Sharpe Ratio               | 0.525400      |
| 7 | Portfolio Dollar Beta      | -56889.755908 |
| 8 | Market Hedge NMV           | 56889.755908  |
| 9 | Beta                       | -3.171112     |