TE - Mini Project: 2A Topic Approval Format

- 1. Name of students (group of 2):
 - Sharma Nilesh Vinay (TEB243)Yadav Supriya Surendra (TEB261)
- 2. Guide Name: *Prof.* Shivani Awasthi.
- 3. Title of project: InboxGenie.
- 4. Project type: In-house or Industry collaboration: Inhouse.
- 5. Domain /Area of interest:
 - a. Artificial Intelligence (AI)
 - b. Natural Language Processing (NLP)
 - c. Deep Learning for Text Classification
 - d. Semantic Email Understanding
 - e. Intent-based Information Filtering.
- 6. Abstract: InboxGenie is an AI-powered browser extension designed to combat email overload and boost productivity. It uses advanced NLP, ML, and Transformer-based deep learning to semantically classify emails by intent, even from the same sender. Key features include an Advanced Spam Filter, an Auto-Cleaner for automated email management, and a generative AI-powered Tone Changer for personalizing email drafts. Built with Python, JavaScript, Hugging Face Transformers, and MongoDB, InboxGenie incorporates adaptive and semi-supervised learning. It aims to provide a smarter, cleaner, and more efficient email experience through contextual understanding, personalization, and automation
- 7. Problem statement (In a Paragraph): In today's digital world, email users are overwhelmed with the volume and variety of messages they receive every day. Most email systems still rely on basic filters or keyword-based rules that can't truly understand the intent behind a message. This becomes a problem especially when emails from the same sender serve different purposes for example, a promotional offer and a payment receipt from the same e-commerce site. Important emails often get buried under less relevant ones.

Users also face two other major challenges: manually deleting or sorting emails that don't matter, and spending time crafting replies in the right tone whether formal, friendly, or neutral. These tasks take time, reduce productivity, and aren't personalized. InboxGenie aims to solve these issues using AI. It classifies emails by intent, automatically cleans the inbox based on custom user rules, and rewrites replies in the user's chosen tone. While powerful, this system also brings challenges like handling different types of data, ensuring accuracy, adapting over time, and protecting user privacy.

8. Hardware/Software used:

a. Frontend / Interface: Streamlit

b. <u>Model Development</u>: Hugging Face Transformers, PyTorch, or TensorFlow, Python

c. Natural Language Processing: spaCy, NLTK, Scikit-learn

d. <u>Database</u>: MongoDB or SQLite

e. Tools & Version Control: Git, GitHub

9. Research paper referred from good journals (at least 4 papers):

G 37	m: 1 1	** 0		- · · · ·
Sr.No.	Title and	Year of	Advantages	Limitations
	author	publication		
1	Active	2016	Discusses active	Data efficiency, initial
	Learning for		learning strategies to	model, and unlabeled
	Text		reduce labeled data	data quality are crucial
	Classification:		needs by selecting	for effectiveness, not
	A Survey		informative samples,	architecture or semantic
	by B. Settles		highly relevant for	understanding.
			resource-limited student	
			projects.	
2	A Survey of	2018	Comprehensive	It only tells if an email is
	Email		overview of traditional	spam or not. It can't
	Classification		email classification	understand different
	Techniques		(Naive Bayes, SVM)	reasons for emails from
	by S. A.		and feature engineering.	the same sender.
	Al-Haddad et			
	al.			
3	BERT:	2019	BERT is a	Fine-tuning needs a lot
	Pre-training		Transformer-based	of GPU power and
	of Deep		model that achieves	careful dataset prep for
	Bidirectional		state-of-the-art NLP	specific classification
	Transformers		results through	tasks
	for Language		pre-training for deep	
	Understandin			

	g by J. Devlin et al.		contextual understanding.	
4	Deep Learning for Text Classification: A Comprehensi ve Review by X. Minaee et al.	2021	Explores deep learning models (CNN, RNN, LSTM, Transformers) for text classification, highlighting their ability to capture complex patterns.	Obtaining large, labeled datasets is challenging for student projects.
5	Sentiment Analysis and Emotion Recognition: A Review Paper by S. B. K. et al.	2021	Analyzes sentiment and emotion, identifying author attitude (positive, negative, neutral) despite challenges like context, ambiguity, and slang.	Analyzes text for tone, but doesn't generate text with specific tones.

Guide	e signature of approval with	ı date:		
	(Prof. Shivani Awasthi)			
Signa	uture of Group Members:			
	(Nilesh Sharma)			
	(Supriya Yadav)			