# Class 13 DATA1220-55, Fall 2024

Sarah E. Grabinski

2024-09-27

#### Chapter 4 - Distributions

- ▶ We will *only* be covering Chapter 4.1 on the normal distribution in your textbook
- If you have an interest in math or statistics, you may want to read the rest of Chapter 4
  - ▶ 4.2 Geometric distribution
  - 4.3 Binomial distribution
  - ▶ 4.4 Negative binomial distribution
  - 4.5 Poisson distribution

### Chapter 4 Objectives

- Identify and describe the standard normal and normal distributions
- Standardize normal distributions and calculate Z-scores
- Calculate percentiles and exact probabilities
- Apply the 68-95-99.7 Rule
- Read a QQ-Plot (not in book)

#### The Normal Distribution

- Symmetric, unimodal, "bell-shaped"
- Not as common as people think in real data
- Strong assumption in small sample sizes (\$ 20)
- Powerful statistical tests available when outcome approximates normal distribution



#### **Notation**

- $\blacktriangleright \mu$  (Greek letter mu) represents the mean
- $ightharpoonup \sigma$  (Greek letter sigma) represents the standard deviation of the mean
- $N(\mu,\sigma)$  stands for a normal distribution with mean  $\mu$  and standard deviation  $\sigma$

### Histograms and Density Curves



Figure 1: Vocabulary scores for 947 seventh-graders. Both histograms and density curves can be helpful in identifying normal distributions.

## Example: OkCupid, Heights of Males

#### Male Height Distribution On OkCupid



### Example: OkCupid, Heights of Females

#### Female Height Distribution On OkCupid



# The shape of a normal distribution varies by location (mean) and scale (standard deviation)



Figure 4: Changing the mean shifts the "center" of the distribution. Changing the standard deviation alters the "width" of the distribution (i.e. variability).

### Standardizing Normal Distributions with Z-Scores

- A Z-score is the number of standard deviations a value falls above (when positive) or below (when negative) the mean of the data
- Z-scores standardize a normal distribution by...
  - Centering the data at 0 by subtracting the mean from each score
  - Scaling the units of the data to 1 by dividing the centered data by the standard deviation

# Calculating the Z-Score

$$Z = \frac{\text{observed} \text{value} - \text{mean}}{\text{standard} \text{deviation}}$$
$$= \frac{x - \mu}{\sigma}$$

## What does "centering" the data mean?

- The numerator of the Z-Score  $x-\mu$  calculates how many units an observed value is from the mean of the normal distribution
- ▶ When  $x_i \approx \mu$ ,  $x_{\text{centered}} \approx 0$
- $\blacktriangleright$  The units of random variable  $X_{\rm centered}$  are the same as the units for the original variable X

### Properties of Centered Normal Distributions

For a given random variable X with a normal distribution, you  $\it center$  the data by calculating  $x_i - \mu$  for each value of X such that...

- When  $x_i>\mu$ ,  $x_{\rm centered}>0$  and is interpreted " $x_{\rm centered}$  is  $x_i-\mu$  units greater than the mean  $\mu$ "
- $\blacktriangleright$  When  $x_i = \mu$ ,  $x_{\rm centered} = 0$
- When  $x_i < \mu$ ,  $x_{\rm centered} < 0$  and is interpreted " $x_{\rm centered}$  is  $\mu x_i$  units less than the mean  $\mu$ "

# What does "scaling" the data mean?

- Dividing the numerator of the Z-score  $x-\mu$  by the denominator  $\sigma$  converts the units of the centered data to standard deviations
- Converts " $x_{\rm centered}$  is  $x_i-\mu$  units greater/lesser than the mean  $\mu$ " to " $x_{\rm scaled}$  is  $x_i-\mu$  units greater/lesser than the mean
- ▶ When  $x_i \mu \approx \sigma$ ,  $x_{\rm centered} \approx 1$
- For scaled data, 1 unit = 1 standard deviation

#### Example: Test Scores

- SAT scores are normally distributed with  $\mu=1500$  and  $\sigma=300$  ( $N(\mu=1500,\sigma=300)$ )
- ACT scores are normally distributed with  $\mu=21$  and  $\sigma=5$  (N(21,5))



Figure 5: How do we compare normal distributions with different locations and scales? Is Pam more above average than Jim? Vice versa?

## Zooming in



Figure 6: If both Pam and Jim applied to John Carroll, who would be the better student to admit?

### Example: Calculating Pam's SAT Z-Score

If SAT scores have the distribution  $N(\mu=1500,\sigma=300)$  and Pam's SAT score is 1800, then Pam's Z-score is...

Z-Score = 
$$\frac{x - \mu}{\sigma}$$
= 
$$\frac{1800 - 1500}{300}$$
= 1

Pam's SAT Z-score is 1, so Pam's SAT score is **1** standard deviation greater than the mean.

## Example: Pam's SAT Z-Score in R

```
pam_mean <- 1500
pam_sd <- 300
pam_centered <- 1800 - pam_mean
print(pam centered)
[1] 300
pam_z <- pam_centered / pam_sd
print(pam_z)
[1] 1
```

# Example: Pam's SAT Z-Score in R

```
(1800 - 1500) / 300
[1] 1
```

## Example: Calculating Jim's ACT Z-Score

If ACT scores have the distribution  $N(\mu=21,\sigma=5)$  and Jim's ACT score is 24, then Jim's Z-score is...

Z-Score = 
$$\frac{x - \mu}{\sigma}$$
  
=  $\frac{24 - 21}{5}$   
= 0.6

Jim's ACT Z-score is 0.6, so Jim's ACT score is **0.6 standard deviations greater than the mean**.

# Putting it together...

- Pam's SAT Z-Score is 1
- ▶ Jim's ACT Z-Score is 0.6
- Pam's SAT score is more above average than Jim's ACT score



Figure 7: Pam's SAT score and Jim's ACT score on a standardized scale, with center = 0 and 1 unit = 1 standard deviation.

#### The Standard Normal Distribution

- The **standard normal distribution** is a normal distribution with  $\mu = 0$  (centered) and  $\sigma = 1$  (scaled)
- ▶ The standard normal distribution is written  $N(\mu = 0, \sigma = 1)$ )
- Units of the standard normal distribution are standard deviations (Z-scores) (i.e. 1 unit = 1 SD)
- Observations that are 2+ standard deviations from the mean are considered unusual

#### The 68-95-99.7 Rule

When data is (nearly) normally distributed...

- $ightharpoonup \sim$  68% of the observations are within 1 standard deviation of the mean  $(\mu \pm \sigma)$
- $ightharpoonup \sim 95\%$  of the observations are within 2 standard deviations of the mean  $(\mu \pm 2\sigma)$
- ▶ 99.7% of the observations are within 3 standard deviations of the mean  $(\mu \pm 3\sigma)$

#### The 68-95-99.7 Rule



Figure 8: The 68-95-99.7 Rule describes approximately what proportion of the observations should lie within 1, 2, and 3 standard deviations of the mean respectively, if the data is normally distributed

#### Example: Test Scores

- SAT scores have the distribution N(1500, 300)
- ~68% of scores will be 1200-1800
- 95% of scores will be 900-2100
- 99.7% of scores will be 600-2400



Figure 9: The 68-95-99.7 Rule describes approximately what proportion of the observations should lie within 1, 2, and 3 standard deviations of the mean respectively, if the data is normally distributed

#### Proportions, Probabilities, and Percentiles



Figure 10: A *percentile* is the proportion or percentage of observations that fall *below* a given threshold in a distribution.

### Proportions, Probabilities, and Percentiles

```
\begin{split} \text{Percentile}(X = x_i) &= \frac{\text{count}(\text{observations} \leq x_i)}{\text{count}(\text{total observations})} \\ &= \text{Proportion}(\text{observations} \leq x_i) \\ &= \text{Probability}(\text{any observation} \leq x_i) \end{split}
```

## Probability Density and Cumulative Density Functions



Figure 11: We can calculate the exact probability for a particular value or range of values in a normal distribution.



Figure 12: We can calculate the cumulative probability (the percentile) of a variable being less than a given value in a normal distribution

# Probability Density Function for Normal Distributions

You too can calculate probabilities for continuous numeric variables!

$$P(X = x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

### Calculating Percentiles with Z-Score Tables

|     |        | Second decimal place of Z |        |        |        |        |        |        |        |        |  |
|-----|--------|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Z   | 0.00   | 0.01                      | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |  |
| 0.0 | 0.5000 | 0.5040                    | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |  |
| 0.1 | 0.5398 | 0.5438                    | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |  |
| 0.2 | 0.5793 | 0.5832                    | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |  |
| 0.3 | 0.6179 | 0.6217                    | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |  |
| 0.4 | 0.6554 | 0.6591                    | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |  |
| 0.5 | 0.6915 | 0.6950                    | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |  |
| 0.6 | 0.7257 | 0.7291                    | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |  |
| 0.7 | 0.7580 | 0.7611                    | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |  |
| 8.0 | 0.7881 | 0.7910                    | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |  |
| 0.9 | 0.8159 | 0.8186                    | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |  |
| 1.0 | 0.8413 | 0.8438                    | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |  |
| 1.1 | 0.8643 | 0.8665                    | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |  |
| 1.2 | 0.8849 | 0.8869                    | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |  |

Figure 13: You can use a Z-Score Table to look up the percentile that corresponds to a particular Z-Score for a standard normal distribution.

### Calculating Probabilities with Z-Score Tables

| Second decimal place of Z |        |        |        |        |        |        |        |        |        |      |
|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| 0.09                      | 0.08   | 0.07   | 0.06   | 0.05   | 0.04   | 0.03   | 0.02   | 0.01   | 0.00   |      |
| 0.0014                    | 0.0014 | 0.0015 | 0.0015 | 0.0016 | 0.0016 | 0.0017 | 0.0018 | 0.0018 | 0.0019 | -2.9 |
| 0.0019                    | 0.0020 | 0.0021 | 0.0021 | 0.0022 | 0.0023 | 0.0023 | 0.0024 | 0.0025 | 0.0026 | -2.8 |
| 0.0026                    | 0.0027 | 0.0028 | 0.0029 | 0.0030 | 0.0031 | 0.0032 | 0.0033 | 0.0034 | 0.0035 | -2.7 |
| 0.0036                    | 0.0037 | 0.0038 | 0.0039 | 0.0040 | 0.0041 | 0.0043 | 0.0044 | 0.0045 | 0.0047 | -2.6 |
| 0.0048                    | 0.0049 | 0.0051 | 0.0052 | 0.0054 | 0.0055 | 0.0057 | 0.0059 | 0.0060 | 0.0062 | -2.5 |
| 0.0064                    | 0.0066 | 0.0068 | 0.0069 | 0.0071 | 0.0073 | 0.0075 | 0.0078 | 0.0080 | 0.0082 | -2.4 |
| 0.0084                    | 0.0087 | 0.0089 | 0.0091 | 0.0094 | 0.0096 | 0.0099 | 0.0102 | 0.0104 | 0.0107 | -2.3 |
| 0.0110                    | 0.0113 | 0.0116 | 0.0119 | 0.0122 | 0.0125 | 0.0129 | 0.0132 | 0.0136 | 0.0139 | -2.2 |
| 0.0143                    | 0.0146 | 0.0150 | 0.0154 | 0.0158 | 0.0162 | 0.0166 | 0.0170 | 0.0174 | 0.0179 | -2.1 |
| 0.0183                    | 0.0188 | 0.0192 | 0.0197 | 0.0202 | 0.0207 | 0.0212 | 0.0217 | 0.0222 | 0.0228 | -2.0 |
| 0.0233                    | 0.0239 | 0.0244 | 0.0250 | 0.0256 | 0.0262 | 0.0268 | 0.0274 | 0.0281 | 0.0287 | -1.9 |
| 0.0294                    | 0.0301 | 0.0307 | 0.0314 | 0.0322 | 0.0329 | 0.0336 | 0.0344 | 0.0351 | 0.0359 | -1.8 |
| 0.0367                    | 0.0375 | 0.0384 | 0.0392 | 0.0401 | 0.0409 | 0.0418 | 0.0427 | 0.0436 | 0.0446 | -1.7 |
| 0.0455                    | 0.0465 | 0.0475 | 0.0485 | 0.0495 | 0.0505 | 0.0516 | 0.0526 | 0.0537 | 0.0548 | -1.6 |
| 0.0559                    | 0.0571 | 0.0582 | 0.0594 | 0.0606 | 0.0618 | 0.0630 | 0.0643 | 0.0655 | 0.0668 | -1.5 |

Figure 14: You can use a Z-Score Table to look up the probability that an observed Z-Score is less than or equal to a given Z-Score (i.e. threshold) for a standard normal distribution.

# Calculating Percentiles in R

```
# Parameter 1 = value to look up
# Pam's SAT Z-Score --> Percentile
pnorm(1, mean = 0, sd = 1)
```

#### [1] 0.8413447

```
# Parameter 1 = value to look up
# Jim's ACT Z-Score --> Percentile
pnorm(0.6, mean = 0, sd = 1)
```

#### [1] 0.7257469

# What if we want to know the percent ABOVE a threshold?



Figure 15: The shaded area under this normal probability distribution is the proportion of observations which are *less than* a given threshold



Figure 16: The shaded area under this normal probability distribution is the proportion of observations which are **greater than** a given threshold

#### Probabilities above a threshold

- Area under a probability curve = 1 (i.e. *sample space*)
- lacksquare Probability above a threshold =1 percentile of threshold
- $\blacktriangleright \ P(X \le x_i) = 1 P(X \not \le x_i)$
- $\blacktriangleright \ P(X > x_i) = 1 P(X \le X_i)$

# Easy to find the probability of the complement in R

```
pnorm(1, mean = 0, sd = 1, lower.tail = F)

[1] 0.1586553

1 - pnorm(1, mean = 0, sd = 1)

[1] 0.1586553
```

#### Other: Discrete Numeric Variables



Figure 17: Sometimes the normal distribution is an acceptable approximation of a discrete numeric variable, but other distributions may be more appropriate.

#### Other: QQ-Plot



Figure 18: Quantile-Quantile (QQ) Plots can help easily identify when you can and cannot assume normality.