11612733 杜子豪

• 6.C——

• 3.

$$span(e_1,\ldots,e_m)=span(u_1,\ldots,u_m)$$
 thus e_1,\ldots,e_m is a spanning list with right length Hence it is a basis of U , $\dim U=m$ Since $e_1,\ldots,e_m,f_1,\ldots,f_n$ is orthonormal basis of V , $\dim V=m+n$ and $f_i\perp e_j$ Hence $span(f_1,\ldots,f_n)\subset U^\perp$ Since $V=U\oplus U^\perp$, we get $\dim U^\perp=\dim V-\dim U=n$ Thus f_1,\ldots,f_n is a linearly independent list with right length Hence f_1,\ldots,f_n is a orthonormal basis of U^\perp

• 6.

If
$$P_UP_W=0$$
, $\forall w\in W$, $P_UP_Ww=P_Uw=0$ hence $w\in U^\perp$ Since w is chosen arbitrary, $W\subset U^\perp$ which implies that $\forall w\in W,\ u\in U, \langle u,w\rangle=0$ If $\forall w\in W,\ u\in U, \langle u,w\rangle=0$ $W\in U^\perp,\ U\in W^\perp,\ \forall v\in V,\ P_Wv\in W,\ P_UP_Wv=0$ which implies that $P_UP_W=0$

• 7.

Since
$$null\ P\subset V,\ range\ P\subset V,\ \dim null\ P+\dim range\ P=\dim V,\ null\ P\perp range\ P,\ null\ P\oplus range\ P=V$$

$$\text{Define}\ U=range\ P,\ \forall v\in V, \exists w\in null\ P,\ u\in range\ P,\ \text{s.t.}\ v=w+u$$

$$\text{Since}\ null\ P\perp range\ P,\ P_Uv=u$$

$$\text{Since}\ u\in U=range\ P,\ \exists x\in V,\ \text{s.t.}\ Px=u$$

$$Pu=P(Px)=Px=u,\ \text{hence}\ Pv=P(w+u)=Pu=u=P_Uv$$

• 8.

Suppose
$$u\in range\ P,\ u\neq 0$$
, $\exists v_w\in V$, s.t. $u=Pv_w$ $u=Pv_w=P^2v_w=Pu$, hence $u\not\in null\ P$, since u is chosen arbitrary We get $null\ P\cap range\ P=\{0\}$ Since $\dim null\ P+\dim range\ P=\dim V,\ null\ P, range\ P\subset V,\ null\ P\oplus range\ P=V$ $\exists u\in range\ P, w\in null\ P \text{ s.t. } v=w+u$ $Pv=P(w+u)=Pu=u=P(u+aw) \text{ thus } \|u\|=\|P(u+aw)\|\leq \|u+aw\| \text{ for all } a\in F$ Hence $\|u+aw\|^2-\|u\|^2=|a|^2\|w\|+a\langle w,u\rangle+\overline{a}\langle u,w\rangle\geq 0$

Let
$$a=-\langle u,w\rangle/\|w\|$$
 , we get $-|\langle u,w\rangle|^2\|w\|\geq 0$ thus $\langle u,w\rangle=0$ Since u,v is chosen arbitrary, $null\ P\perp range\ P$ By Problem 7, we get $P=P_U$

• 10.

If
$$U$$
 and U^\perp are both invariant under T $\forall u \in U$, $Tu \in U$, hence $P_U(Tu) = Tu$, $TP_Uu = Tu$ $\forall w \in U^\perp$, $Tw \in U^\perp$, hence $P_U(Tw) = 0$, $TP_Uw = T0 = 0$ Since $\forall v \in V, \exists u_0 \in U, w_0 \in U^\perp$ s.t. $v = u_0 + w_0$ Hence $P_UTv = P_UT(u_0 + w_0) = TP_U(u_0 + w_0) = TP_Uv$ If $P_UT = TP_U$ $\forall u \in U, Tu = TP_Uu = P_UTu = u_0$ where $u_0 \in U, w_0 \in U^\perp, u_0 + w_0 = Tu$ Hence $Tu \in U$ $\forall w \in U^\perp, P_UTw = TP_Uw = T0 = 0$ which implies $Tw \in U^\perp$ Hence U and U^\perp is invariant under U

• 11.

Applying Gram-Schmidt Procedure to
$$(1,1,0,0),(1,1,1,2),$$
 We get $e_1=\frac{1}{\sqrt{2}}(1,1,0,0),e_2=\frac{1}{\sqrt{5}}(0,0,1,2)$ Thus e_1,e_2 is an orthonormal basis of U , thus it can be extend to an orthonormal basis of V as $e_1,e_2,e_3,e_4,$ denote $\lambda_i=\langle (1,2,3,4),e_i\rangle$ for $i=1,\ldots,4$ Thus $\|u-(1,2,3,4)\|=\|xe_1+ye_2-(\lambda_1e_1+\cdots+\lambda_4e_4)\|=|x-\lambda_1|+|y-\lambda_2|+|\lambda_3|+|\lambda_4|$ Hence $u=\lambda_1e_1+\lambda_2e_2=\frac{1}{10}(15,15,22,44)$

• 12.

Define
$$V=\{p\in\mathcal{P}_3(\mathbb{R}):p(0)=0,p'(0)=0\}$$
 and $\langle f,g\rangle=\int_0^1f(x)g(x)dx$, $q(x)=2+3x$ The basis of V is x^3,x^2 , and by Gram-Schmidt Procedure It ban be transformed into $e_1=\sqrt{5}x^2,e_2=\sqrt{7}(6x^3-5x^2)$ By the proof of Problem 11. $P(x)=\langle q,e_1\rangle e_1+\langle q,e_2\rangle e_2=24x^2-10.3x^3$

• 7.A——

• 1.

$$egin{aligned} \langle T(x_1,\ldots,x_n),(y_1,\ldots,y_n)
angle &= \langle (0,x_1,\ldots,x_{n-1}),(y_1,\ldots,y_n)
angle &= x_1y_2+\cdots+x_{n-1}y_n \ &= \langle (x_1,\ldots,x_n),(y_2,\ldots,y_n,0)
angle &= \langle (x_1,\ldots,x_n),T^*(y_1,\ldots,y_n)
angle \end{aligned}$$
 Hence $T^*(z_1,\ldots,z_n) = (z_2,\ldots,z_n,0)$

• 2.

$$\lambda$$
 is an eigenvalue of $T\Leftrightarrow \langle (T-\lambda I)v,w
angle=0\Leftrightarrow \langle v,(T-\lambda I)^*w
angle=0$ $\Leftrightarrow \langle v,(T^*-\overline{\lambda}I)w
angle=0$

Suppose $\overline{\lambda}$ is not an eigenvalue of T^* , $T^* - \overline{\lambda}I$ is suejective

Thus
$$\exists u \in V$$
 s.t. $(T^* - \overline{\lambda}I)u = v$

We get $\langle v,v\rangle=0$, However, v is eigenvector of $T,v\neq0$

Hence $\overline{\lambda}$ is an eigenvalue of T^*

• 4.

o a

T is injective iff $null\ T=\{0\}$ iff $(range\ T^*)^{\perp}=\{0\}$ iff $range\ T^*=V$ iff T^* is surjective

o b.

T is surjective iff $range\ T=W$ iff $(range\ T)^{\perp}=\{0\}$ iff $null\ T^*=\{0\}$ iff T^* is injective

• 6.

Let
$$p(x) = a_0 + a_1 x + a_2 x^2, q(x) = b_0 + b_1 x + b_2 x^2$$

o a.

$$\langle Tp,q \rangle = \int_0^1 a_1 x (b_0 + b_1 x + b_2 x^2) dx = a_1 (\frac{1}{2} b_0 + \frac{1}{3} b_1 + \frac{1}{4} b_2)$$

$$\langle p,Tq
angle = \int_0^1 b_1 x (a_0 + a_1 x + a_2 x^2) dx = b_1 (rac{1}{2} a_0 + rac{1}{3} a_1 + rac{1}{4} a_2)$$

Hence $\langle Tp,q \rangle \neq \langle p,Tq \rangle$ which implies that T is not self-adjoint

o b.

Since the basis $1, x, x^2$ is not an orthonormal basis

• 11.

If $P=P_U$ for some U as a subspace of V

$$orall v_1,v_2\in V$$
, $\exists u_1,u_2\in U,w_1,w_2\in U^\perp$ s.t. $v_1=u_1+w_1,v_2=u_2+w_2$

$$\langle Pv_1, v_2 \rangle = \langle u_1, u_2 + w_2 \rangle = \langle u_1, u_2 \rangle = \langle u_1, u_2 + w_2 \rangle = \langle v_1, Pv_2 \rangle$$

Hence P is self-adjoint

If P is self-adjoint

$$nullP = (range\ P^*)^{\perp} = (range\ P)^{\perp}$$

Hence By Problem 6.C 7, we get $P=P_{range\ P}$

• 13.

With respect to standard basis (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

Let
$$\mathcal{M}(T)=|1\ 0\ 0\ 0|$$
 The $\mathcal{M}(T^*)$ is the conjugate transpose of $\mathcal{M}(T)$ as $|1\ 0\ 0\ 0|$

$$|0\ 0\ 0\ 1|\ |0\ 0\ 1\ 0|$$

$$|0\ 1\ 0\ 0|\ |0\ 0\ 0\ 1|$$

$$|0\ 0\ 1\ 0|\ |0\ 1\ 0\ 0|$$

Hence $\mathcal{M}(TT^*)=I=\mathcal{M}(T^*T)$ however $T
eq T^*$

- 15.
 - o a.

$$T \text{ is self-adjoint iff } \langle T^*v,w\rangle = \langle v,Tw\rangle = \langle v,x\rangle \langle u,w\rangle = \langle \langle v,x\rangle u,w\rangle$$
 iff $T^*v = \langle v,x\rangle u$
$$\text{If } u = kx \text{ for some } k \in \mathbb{R}, Tv = \langle v,kx\rangle x = \langle v,x\rangle kx = T^*v$$

$$\text{If } T^*v = \langle v,x\rangle u, T^*v - Tv = 0 = \langle v,x\rangle u - \langle v,u\rangle x$$

$$\text{Let } v = u \text{ and } u \neq 0, \langle u,x\rangle u - \langle u,u\rangle x = 0$$

$$\text{Since } \langle u,u\rangle \neq 0, u,x \text{ are linearly dependent}$$

$$\text{Hence } T \text{ is self-adjoint iff } u,x \text{ are linearly dependent}$$

- o b.
- 18.

Let
$$V=\mathbb{R}^2$$
, and with respect to standard orthonormal basis $e_1=(1,0), e_2=(0,1)$ Define $Te_1=e_1+e_2, Te_2=e_1-e_2$ Thue $T^*e_1=e_1-e_2, T^*e_2=e_2-e_1$ $\|Te_1\|=\|T^*e_1\|, \|Te_2\|=\|T^*e_2\|$ however $\mathcal{M}(T)\neq\mathcal{M}(T^*)$

• 19.

Since T is normal $\forall v \in null\ T$, $\|T^*v\| = \|Tv\| = 0$ thus $v \in null\ T^*$ which is $null\ T \subseteq null\ T^*$ Similarly $null\ T^* \subseteq null\ T$ hence $null\ T = null\ T^*$ $\langle T^*(z_1,z_2,z_3),(1,1,1)\rangle = 0 = \langle (z_1,z_2,z_3),T(1,1,1)\rangle = \langle (z_1,z_2,z_3),(2,2,2)\rangle$

Thus
$$2z_1+2z_2+2z_3=0$$
 which is $z_1+z_2+z_3=0$