Find if Path Exists in Graph (View)

There is a **bi-directional** graph with n vertices, where each vertex is labeled from 0 to n - 1 (**inclusive**). The edges in the graph are represented as a 2D integer array edges, where each edges[i] = $[u_i, v_i]$ denotes a bi-directional edge between vertex u_i and vertex v_i . Every vertex pair is connected by **at most one** edge, and no vertex has an edge to itself.

You want to determine if there is a **valid path** that exists from vertex source to vertex destination.

Given edges and the integers n, source, and destination, return true *if there is a valid path from* source *to* destination, *or* false *otherwise*.

Example 1:

Input: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2

Output: true

Explanation: There are two paths from vertex 0 to vertex 2:

 $\textbf{-}\ 0 \to 1 \to 2$

 $\textbf{-}\ 0 \to 2$

Example 2:

Input: n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5

Output: false

Explanation: There is no path from vertex 0 to vertex 5.

Constraints:

- 1 <= n <= 2 * 10⁵
 0 <= edges.length <= 2 * 10⁵
 edges[i].length == 2
 0 <= u_i, v_i <= n 1

- U_i != V_i
- 0 <= source, destination <= n 1
- There are no duplicate edges.
- There are no self edges.