Parallel Quine-McCluskey Algorithm

Andrew Wang & Emily Allendorf

Motivation: Boolean Expression Reduction

- Fundamental process in the design and optimization of digital circuits.
- Minimizes the number of gates required, reducing complexity, power consumption, and overall cost.
- Critical for hardware description compilation and FPGA Synthesis where physical resource constraints make optimization vital.

Karnaugh Maps Visualization

Quine-McClusky Algorithm in CUDA

Quine-McCluskey Algorithm

- List all min-terms
- Group all min-terms by the number of ones
- Compare every term with the terms in its adjacent group
 - replace "one-off" entries with "_" and record the min-terms involved
- Repeat pairing process to get the prime implicants
- Select the minimal covering set to get the essential implicants

Essential Implicants

Prime	Minterm							
implicant	0	2	5	6	7	8	9	13
$p_1 = 0 \ 0 \ x \ 0$	✓	✓						
$p_2 = 0 \times 1 0$		\checkmark		\checkmark				
$p_3 = 0 \ 1 \ 1 \ x$				\checkmark	\checkmark			
$p_4 = x \ 0 \ 0 \ x$	✓					\checkmark	\checkmark	
$p_5 = x \times 0 1$			\checkmark				\checkmark	\checkmark
$p_6 = 1 \times 0 \times$						\checkmark	\checkmark	✓
$p_7 = x \ 1 \ x \ 1$			\checkmark		\checkmark			✓