PYL-102: PRINCIPLES OF ELECT. MATERIALS

Practice Problems

- 1. The effective mass of the hole is five times the effective mass of an electron. Calculate the Fermi level position of a semiconductor with a bandgap of 0.7eV at room temperature.
- 2. E vs. K relation for an electron in the conduction band of a hypothetical n-type tetravalent semiconductor is given by

i.
$$E = ak^2 + \text{constant}$$

Cyclotron resonance for electron occurs at $\omega_c = 1.8 \times 10^{11} \text{rads}^{-1}$ in a magnetic field of B=0.1 Weber/m^2. Find the value of a.

3. Relation between bandgap and temperature for Si is given by

$$E_g = 1.17 \mathrm{eV} - 4.73 imes 10^{-4} rac{T^2}{T+636}$$

Find a concentration of electrons in the conduction band of intrinsic (undoped) Si at T = 77 K if at 300 K ni = 1.05×10^{10} cm⁻³

- 4. The approximate value of p-n junction current under forward bias is given by $I = I_0 \exp(eV/k_BT)$. Show that the incremental resistance R_e (= $\Delta V/\Delta I$) is inversely proportional to current?
- 5. Using general equation for p, show that (dp/dE) is maximum in the valence band at $E_v E = (k_B T)/2$.
- 6. The mobilities of electrons and holes in intrinsic Ge are 0.39 and 0.19 m²/V-s respectively. Determine the intrinsic carrier concentration and conductivity of Ge at 300 K if the band gap of Ge is 0.67 eV and the effective masses of electrons and holes are 0.55m₀ and 0.37m₀ respectively, m₀ being the electronic rest mass. How many dopants must be added per cubic metre of Ge to increase its conductivity by a factor of 10⁴?
- 7. Show that the product of electron and hole concentrations in a semiconductor is constant at a given temperature. How is the energy gap determined from the measurement of electrical conductivity of a semiconductor?
- 8. The conductivity of a semiconductor changes when the concentration of electrons is varied by changing the position of impurity level. Show that it passes through a minimum when the concentration of electrons becomes $n_i \sqrt{\mu_p/\mu_n}$ where n_i is the intrinsic carrier concentration, μ_n and μ_p represent the mobilities of electrons and holes respectively. Determine the minimum value of conductivity.

- 9. Calculate the temperatures at which *p-n* junctions made with Si, Ge and GaN will lose their rectifying characteristics.
 - Assume that, in all cases the acceptor and the donor concentration: $N_a = N_d = 10^{14} \text{ cm}^{-3}$, E_g are independent of the temperature and are 1.12, 0.66 and 3.44 eV for Si, Ge and GaN, respectively.
 - Intrinsic carrier concentrations at room temperature are $ni_{Ge} = 2 \times 10^{13}$, $ni_{Si} = 10^{10}$, and $ni_{GaN} = 10^{-9}$ cm⁻³. The effective mass of the electron and holes for the three materials are: $(m_n^* = 1.18m_0, m_p^* = 0.59m_0)$ for Si, $(m_n^* = 0.57m_0, m_p^* = 0.37m_0)$ for Ge and $(m_n^* = 0.22m_0, m_p^* = 0.61m_0)$ for GaN, where m_0 is the rest mass.
- 10. In a certain semiconductor, consider the following energy band diagram. Sample is maintained at 300 K with E_i E_F = E_g /4 at $x = \pm L$ and E_F - $E_i = E_g$ /4 at x = 0. The notations carry the usual meaning. $E_g = 1.42$ eV, n_i = 10^{10} cm⁻³, hole mobility: 400 cm²/V s

Red vertical lines are for eye guidance.

Besides, the electrostatic potential (V) inside the semiconductor as a function of x is given by: (potential smoothly changes at $\pm L$)

- (i) Sketch the electric field inside the semiconductor as a function of x. Hint: Ex=-(dV/dx) and there is no discontinuity at $\pm L$.
- (ii) Calculate the resistivity of the (x>L) portion of the semiconductor.
- (iii) Identify whether the semiconductor is under equilibrium, or there is an external electric field applied. justify.
- (iv) Determine the electron and hole current density (J_n and J_p respectively) at $x = \pm L/2$.

11. Find the built-in potential for a p-n Si junction at room temperature if the bulk resistivity of Si is 5.5 Ω cm. Electron mobility in Si at RT is 1100 cm²/Vs; $\mu_n/\mu_p = 3.1$; $n_i = 1.4 \times 10^{10}$ cm⁻³. Consider, at room temperature all donors and acceptors are ionized.

Calculate the total depletion-layer width for applied bias voltages V = -5~V,~0, and +0.1~V. Consider $\epsilon_{Si} = 11.9.$