ECE 6276 DSP Hardware System Design Fall 2017

Lab 5

William Sutton

October 5, 2017

Slice LUTs

+	 	 	<u> </u>	
Site Type	Used	Fixed	Available	Util%
+		-		
CLB LUTs	1160	0	663360	0.17
LUT as Logic	1160	0	663360	0.17
LUT as Memory	0	0	293760	0.00
CLB Registers	110	0	1326720	< 0.01
Register as Flip Flop	110	0	1326720	< 0.01
Register as Latch	0	0	1326720	0.00
CARRY8	146	0	82920	0.18
F7 Muxes	0	0	331680	0.00
F8 Muxes	0	0	165840	0.00
F9 Muxes	0	0	82920	0.00
+		ļ	 	

Ю

Site Type	Used	Fixed	Available	Util%
Bonded IOB	160	0	832	19.23
HPIOB	104	0	676	15.38
INPUT	83			
OUTPUT	21	ĺ		
BIDIR	0	ĺ		
HRIO	56	0	156	35.90
INPUT	56			
OUTPUT	0			
BIDIR	0			
HPIOBDIFFINBUF	0	0	480	0.00
HPIOBDIFFOUTBUF	0	0	480	0.00
HRIODIFFINBUF	0	0	96	0.00
HRIODIFFOUTBUF	0	0	96	0.00
BITSLICE_CONTROL	0	0	192	0.00
BITSLICE_RX_TX	0	0	1248	0.00
BITSLICE_TX	0	0	192	0.00
RIU_OR	0	0	96	0.00

Primitives

	 	
Ref Name	Used	Functional Category
LUT4	469	CLB
LUT6	448	CLB
LUT2	388	CLB
LUT3	193	CLB
CARRY8	146	CLB
INBUF	139	I/O
IBUFCTRL	139	Others
LUT5	124	CLB
FDCE	78	Register
FDRE	24	Register
OBUF	21	I/O
FDPE	8	Register
LUT1	2	CLB
BUFGCE	1	Clock

Mac not-optimized power

1	
Total On-Chip Power (W)	1.350
Dynamic (W)	0.020
Device Static (W)	1.330
Effective TJA (C/W)	0.8
Max Ambient (C)	98.9
Junction Temperature (C)	26.1
Confidence Level	Low
Setting File	
Simulation Activity File	
Design Nets Matched	NA
	I

Worst Negative Slack (WNS)

Answer: 43.007ns

Design 7	Γiming Sum	mary ——		
WNS(ns) WPWS(ns)	THS(ns) THS Failing End	Endpoints TNS Total Endpo dpoints THS Total Endpoints Endpoints TPWS Total Endpoin	
43.00)7	0.000	0	
106	0.066	0.000	0	
106	24.725	0.000	0	
111				

Answer to question:

We are doing a bitshift at the end so that our output has the same level of precision as our inputs. When a multiplier is built and fractional portions are involved, extra precision can crop up (that may or may not be desired). As a result, we truncate the result to only have the same number of digits.

I.e. 2.5*2.5 = 6.25, but to match the same output, we truncate at 6.2, which corresponds to our binary bitshifting, except in base 10.