

Calcolo differenziale — Scheda di esercizi n. 1 2 Ottobre 2023 — Compito n. 00046

Istruzioni: le prime due caselle (V / F) permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes 0 \bigcirc).

Nome:				
Cognome:				
Matricola:				

1) Sia

 $E = \{ \text{multipli interi di } 3 \}.$

- **1A)** Il numero x = 13 non appartiene ad E.
- **1B)** Se x appartiene ad E, allora x+21 appartiene ad E.
- **1C)** Non esiste il minimo di E.
- **1D)** L'insieme $\mathbb{N} \setminus E$ non è limitato superiormente.
- **2)** Sia

$$E = \{x \in \mathbb{R} : |x - 7| \le 7\} \setminus \{0\}.$$

- **2A)** L'insieme E è un intervallo.
- **2B)** Il numero reale x = 8 appartiene ad E.
- **2C)** L'insieme E non è limitato superiormente.
- **2D)** L'insieme E non ha massimo.

3) Sia

$$E = \{x \in \mathbb{R} : x^2 - 20x + 84 \le 0\}.$$

- **3A)** L'insieme E non è vuoto.
- **3B)** L'insieme E non è un intervallo.
- **3C)** L'insieme $E \setminus \{10\}$ è un intervallo.
- **3D)** L'insieme E ha minimo.
- **4)** Sia

$$E = \{x \in \mathbb{Q} : |x| \le \sqrt{13}\}.$$

- **4A)** Il numero $x = \sqrt{13}$ appartiene ad E.
- **4B)** Il numero x = -1 appartiene ad E.
- **4C)** L'insieme E è limitato.
- **4D)** Esiste il massimo di E.

Ι)(0	ce	1	1	tε	•
_						-	

 \square Garroni [A, F] \square Orsina [G, Z]

Cognome	Nome	Matricola	Compito 00046
---------	------	-----------	---------------

$$E = \left\{ x \in \mathbb{R} : -10 \le x \le 10 \right\} \setminus \left\{ 0 \right\}.$$

- a) Dimostrare che l'insieme E non è un intervallo.
- b) Dimostrare che l'insieme E è limitato superiormente ed inferiormente, esibendo un maggiorante ed un minorante di E. c) Dimostrare che non esiste il minimo di $E \cap [0,8]$.
- \mathbf{d}) Dimostrare che non esiste il minimo dell'insieme

$$F=\{x^2,\ x\in E\}\,.$$

Cognome	Nome	Matricola	Compito 00046
---------	------	-----------	---------------

$$E = \{x \in \mathbb{R} : (x - 6)(x - 7)(x - 8) \le 0\}.$$

- a) Dimostrare che x = 0 appartiene ad E.
- b) Risolvendo la disequazione che definisce E, scrivere E come unione di intervalli. c) Dimostrare che $E \cap [0, +\infty)$ è un insieme limitato.
- d) Dimostrare che l'insieme $E\cap \mathbb{Q}$ ha massimo, e che l'insieme $E\cap \mathbb{N}$ ha minimo.

Soluzioni del compito 00046

1) Sia

$$E = \{ \text{multipli interi di } 3 \}.$$

1A) Il numero x = 13 non appartiene ad E.

Vero: Il numero x = 13 non appartiene ad E dato che non è un multiplo di 3; infatti, dividendo x per 3 si ottiene come resto 1 (e non 0).

1B) Se x appartiene ad E, allora x + 21 appartiene ad E.

Vero: Se x appartiene ad E, x è un multiplo intero di 3; esiste quindi un intero k tale che x = 3k. Dato che $21 = 7 \cdot 3$, si ha quindi

$$x + 21 = 3k + 7 \cdot 3 = (k+7) \cdot 3$$

e quindi x + 21 appartiene ad E perché è un multiplo intero di 3.

1C) Non esiste il minimo di E.

Falso: Dato che E è un sottoinsieme non vuoto di \mathbb{N} , E ammette minimo per il principio di buon ordinamento. Un altro modo per dimostrare che E ha minimo è osservare che

$$E = \{0, 3, 6, 9, 12, \ldots\},\$$

e quindi il minimo di E esiste ed è 0.

1D) L'insieme $\mathbb{N} \setminus E$ non è limitato superiormente.

Vero: Se $\mathbb{N} \setminus E$ fosse limitato superiormente, esisterebbe N in \mathbb{N} tale che se x appartiene a $\mathbb{N} \setminus E$, allora x < N. Pertanto, x = N appartiene ad E. Ma se N appartiene ad E, allora N + 1 non vi appartiene (perché dividendo N per S si ottiene come resto S, e quindi S in S in S in S appartiene and S in S

$$E = \{x \in \mathbb{R} : |x - 7| \le 7\} \setminus \{0\}.$$

Si ha

$$|x-7| \le 7 \iff -7 \le x - 7 \le 7 \iff 0 \le x \le 14$$
,

cosicché

(1)
$$E = [0, 14] \setminus \{0\} = (0, 14].$$

2A) L'insieme E è un intervallo.

Vero: Per la (1), si ha che E = (0, 14] è un intervallo.

2B) Il numero reale x = 8 appartiene ad E.

Vero: Dalla (1) segue che x = 8 appartiene ad E.

2C) L'insieme E non è limitato superiormente.

Falso: Per la (1), l'insieme E è limitato superiormente.

2D) L'insieme E non ha massimo.

Falso: Per la (1), l'insieme E ha M=14 come massimo.

$$E = \{x \in \mathbb{R} : x^2 - 20x + 84 \le 0\}.$$

Si ha

$$x^2 - 20x + 84 = 0$$
 \iff $x = 6, 14.$

Pertanto,

$$x^2 - 20x + 84 \le 0$$
 \iff $6 \le x \le 14$ \iff $x \in [6, 14]$.

Si ha quindi

(1)
$$E = [6, 14].$$

3A) L'insieme E non è vuoto.

Vero: Per la (1), l'insieme E non è vuoto.

3B) L'insieme E non è un intervallo.

Falso: Per la (1), l'insieme E è un intervallo.

3C) L'insieme $E \setminus \{10\}$ è un intervallo.

Falso: Per la (1) si ha

$$E \setminus \{10\} = [6, 10) \cup (10, 14],$$

che non è un intervallo.

3D) L'insieme E ha minimo.

Vero: Per la (1), l'insieme E ha m=6 come minimo.

$$E = \left\{ x \in \mathbb{Q} : |x| \le \sqrt{13} \right\}.$$

Sia ha

$$|x| \le \sqrt{13}$$
 \iff $-\sqrt{13} \le x \le \sqrt{13}$ \iff $x \in [-\sqrt{13}, \sqrt{13}],$

da cui segue che

(1)
$$E = [-\sqrt{13}, \sqrt{13}] \cap \mathbb{Q}.$$

4A) Il numero $x = \sqrt{13}$ appartiene ad E.

Falso: Dato che $x = \sqrt{13}$ non è un numero razionale, x non appartiene ad E.

4B) Il numero x = -1 appartiene ad E.

Vero: Dato che x = -1 è un numero razionale, e che si ha

$$-\sqrt{13} \le -1 \le \sqrt{13}$$
,

il numero x = 1 appartiene ad E.

4C) L'insieme E è limitato.

Vero: Dalla (1) segue che

$$E \subset [-\sqrt{13}, \sqrt{13}],$$

e quindi E è un insieme limitato dato che è contenuto in un insieme limitato.

4D) Esiste il massimo di E.

Falso: Il "candidato massimo" di E è $x=\sqrt{13}$, che però non appartiene ad E dato che non è un numero razionale. Ne segue che non esiste il massimo di E.

$$E = \{x \in \mathbb{R} : -10 \le x \le 10\} \setminus \{0\}.$$

- a) Dimostrare che l'insieme E non è un intervallo.
- b) Dimostrare che l'insieme E è limitato superiormente ed inferiormente, esibendo un maggiorante ed un minorante di E.
- c) Dimostrare che non esiste il minimo di $E \cap [0, 8]$.
- d) Dimostrare che non esiste il minimo dell'insieme

$$F = \{x^2, x \in E\}.$$

Soluzione:

a) Si ha

(1)
$$E = [-10, 10] \setminus \{0\} = [-10, 0) \cup (0, 10],$$

che non è un intervallo.

b) Dalla (1) segue che (ad esempio) x = 10 è un maggiorante di E, e che (ad esempio) x = -10 è un minorante di E. Si ha infatti che

$$\overline{M}(E) = \{x \in \mathbb{R} : x \ge 10\} = [10, +\infty), \qquad \underline{m}(E) = \{x \in \mathbb{R} : x \le -10\} = (-\infty, -10].$$

c) Si ha, per la (1),

$$E \cap [0, 8] = ([-10, 0) \cup (0, 10]) \cap [0, 8] = (0, 8],$$

che è un insieme che non ha minimo.

d) Se x appartiene ad E, allora

$$-10 \le x \le 10, \qquad x \ne 0.$$

Se x > 0, si ha

$$0 < x \le 10 \qquad \Longrightarrow \qquad 0 < x^2 \le 100 \,,$$

mentre se x < 0, si ha

$$-10 \le x < 0 \qquad \Longrightarrow \qquad 0 < x^2 \le 100.$$

Si ha quindi che se x appartiene ad E, allora

$$0 < x \le \max(100, 100) = 100$$
,

e quindi

$$F = \{ y \in \mathbb{R} : 0 < y \le 100 \} = (0, 100],$$

che è un insieme che non ha minimo.

$$E = \{x \in \mathbb{R} : (x - 6)(x - 7)(x - 8) \le 0\}.$$

- a) Dimostrare che x = 0 appartiene ad E.
- b) Risolvendo la disequazione che definisce E, scrivere E come unione di intervalli.
- c) Dimostrare che $E \cap [0, +\infty)$ è un insieme limitato.
- d) Dimostrare che l'insieme $E \cap \mathbb{Q}$ ha massimo, e che l'insieme $E \cap \mathbb{N}$ ha minimo.

Soluzione:

a) Se x=0, si ha

$$(x-6)(x-7)(x-8) = (0-6)(0-7)(0-8) = -336 \le 0$$

e quindi (per definizione) x = 0 appartiene ad E.

b) Consideriamo i segni dei tre fattori che determinano la disequazione che definisce E; si ha

$$x-6 \ge 0 \quad \iff \quad x \ge 6, \qquad x-7 \ge 0 \quad \iff \quad x \ge 7,$$

 \mathbf{e}

$$x - 8 \ge 0 \iff x \ge 8$$
.

Graficamente, quindi, si ha

6	7	8	
 +	+	+	
 _	+	+	
 _	_	+	
 +	_	+	

e quindi

$$E = (-\infty, 6] \cup [7, 8]$$
.

c) Dalla (1) si ha che

$$E \cap [0, +\infty) = [0, 6] \cup [7, 8],$$

che è un insieme limitato (superiormente da 8 e inferiormente da 0).

d) Dato che dalla (1) segue che il massimo di E è M=8, che è anche un numero razionale, allora il massimo di $E \cap \mathbb{Q}$ è M=8. Sempre dalla (1) segue che

$$E \cap \mathbb{N} = \{0, 1, \dots, 6, 7, 8\},\$$

che ha come minimo m=0.