Analysis and Design of Algorithms

Chapter 7: Transform and Conquer

School of Software Engineering © Yanling Xu

Transform and Conquer

Three variations of Transform and Conquer tech.

This group of techniques solves a problem based on a transformation.

→ Two stage:

Transform and Conquer

Three variations of Transform and Conquer tech.

Differ by what we transform a given instance to:

→ instance simplification:

to a simpler/more convenient instance of the same problem

representation change:

to a different representation of the same instance

problem reduction:

to a different problem for which an algorithm is already available

Presorting - Instance simplification

why interested in sorting?

many questions about a list are easier to answer if the list is sorted.

- benefit from sorting?
- the benefits of a sorted list should more than compensate for the time spent on sorting
- ☆ generally comparison-based sorting alg. worst case, at least nlogn
- Selection Sort $\Theta(n^2)$
- Bubble Sort $\Theta(n^2)$
- Insertion Sort $C_{worst}(n) = \frac{(n-1)n}{2}$ $C_{best}(n) = n-1$ $C_{avg}(n) \approx \frac{n^2}{4}$
- Mergesort Θ (n log n)
- Quicksort $C_w(n) = \Theta(n^2)$ $C_b(n) = \Theta(n \log n)$ $C_{avg}(n) = O(n \log n)$

Presorting --- Instance simplification

- → searching
- computing the median (selection problem)
- → checking if all elements are distinct (element uniqueness).

Element Uniqueness with presorting

- → Element Uniqueness problem --a brute-force method
 - compare all pairs of the array's elements (see Chapt 2)
 - until either two equal elements found or no more pairs left

$$C_{worst}(n) = \frac{n(n-1)}{2} \in \Theta(n^2)$$

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```

Element Uniqueness with presorting

- → Element Uniqueness problem -Presorting-based method
 - Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
 - Stage 2: scan array to check pairs of adjacent elements
- Efficiency Analysis
 - sum of
 - time spent on sorting : at least nlogn comparisons —determine the overall efficiency
 - time spent on checking consecutive elements: no more than n-1 comparisons
 - use a good sorting alg.

$$C(n)=C_{sort}(n)+C_{scan}(n)=\Theta(nlog\ n)+\Theta(n)=\Theta(nlog\ n)$$

Computing a mode

Mode: a value that occurs most often in a given list of numbers

Eg. For {5, 1, 5, 7, 6, 5, 7} mode is 5

Brute-force method

- Idea:
- Scan the list, compute the frequency of all its distinct values
- find the value with the largest frequency

Computing a mode

- Brute-force method ('cont)
 - implementation:
 - Store the values already encountered, along with their frequencies, in an auxiliary list (the values in this auxiliary list are all distinct)
 - On each iteration, the ith element of the original list is compared with the values already encountered by traversing this an auxiliary list
 - If a matching value is found, its frequency is incremented;
 - otherwise, the current element is added to the auxiliary list with frequency of 1

Computing a mode

- Brute-force method ('cont)
 - Worst case analysis
 - when a list with no equal elements,
 - i th element is compared with i-1 elements of the auxiliary list number of comparisons in creating the frequency auxiliary list

$$C(n) = \sum_{i=1}^{n} (i-1) = \frac{(n-1)n}{2} \in \theta(n^2)$$

number of comparisons to find the largest frequency in the auxiliary list n-1

Computing a mode

- Computing a mode with presorting
 - idea:
 - sort the input firstly, then all equal values will be adjacent
 - find the longest run of the adjacent equal values in the sorted array
 - efficiency analysis

sum of

- time spent on sorting : at least nlogn comparisons —determine the overall efficiency
- time spent on checking longest run of the adjacent : linear
- use a good sorting alg

Searching problem

Search for a given K in A[0..n-1]

- Brute-force method
 - sequential search : (see Chapt2)

$$T_{avg}(n) = \frac{p(n+1)}{2} + n(1-p)$$
 $T_{worst}(n) = n$ $T_{best}(n) = 1$

→ Binary Search (see Chapt5)

$$C_{w}(n) = \lfloor \log_{2} n \rfloor + 1 = \lceil \log_{2} (n+1) \rceil = \Theta (\log n)$$

$$C_{b}(n) = 1$$

$$C_{avg}(n) = \frac{1}{n} \sum_{i=1}^{k} i 2^{i-1} \approx \log(n+1) - 1$$

Searching problem

Searching with presorting

sum of

- time spent on sorting : at least nlogn comparisons —determine the overall efficiency
- time spent on binary search,

$$C_w(n) = \lfloor \log_2 n \rfloor + 1 = \Theta(\log n); , C_{avg}(n) = \Theta(\log n);$$

$$C(n)=C_{sort}(n)+C_{search}(n)=\Theta(nlog\ n)+\Theta\ (log\ n)=\Theta(nlog\ n)$$

 if to search in the same list more than once, the time spent on sorting might be justified

Gaussian Elimination - Instance simplification

■ Gaussian Elimination 高斯消去法

→ Idea

Problem: Given: a system of n linear equations in n unknowns with an arbitrary coefficient matrix.

Idea:

stage1: **Elementary operations**: Transform to an **equivalent** system of n linear equations in n unknowns with an **upper triangular** coefficient matrix.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
 $a_{1,1}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ $a_{22}x_2 + \dots + a_{2n}x_n = b_2$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$
 $a_{nn}x_n = b_n$

Gaussian Elimination - Instance simplification

Gaussian Elimination

→ Idea('cont)

stage2: Solve the latter by **backward substitutions** starting with the last equation and moving up to the first one.

- find the value of x_n from the last equation immediately
- Substitute this value into the next to last equation to get x_{n-1}
- And so on, until we substitute the known values of the last n-1 variables into the first equation, to find the value of x_1

Gaussian Elimination

Applications of Gaussian Elimination

- → LU decomposition
- Computing a matrix inverse
- Computing a determinant

Heaps

Heap is suitable for implementing priority queues

maintaining a set S of elements, each with an associated value called a key/priority. It supports the following operations

- Finding an item with the highest priority
- Deleting an item with the highest priority
- Adding a new item to the multiset
- Notion of the Heap
 - A binary tree with keys assigned to its nodes, one key per node
 - Shape requirement: the binary tree is essentially complete, i.e. all its levels are full except possibly the last level, where only some rightmost leaves may missing
 - Parental dominance requirement: for max-heap:
 key at each node ≥ keys at its children

Heaps

- Heap's elements are ordered top down (a sequence of values along any path down from its root is decreasing or non-increasing if equal keys are allowed)
- but they are not ordered left to right

Heaps

- Properties of Heaps
 - There exits exactly one essentially complete binary tree with n nodes, its height is L log₂n.
 - Height of a node: the number of edges on the longest simple downward path from the node to a leaf.
 - Height of a tree: the height of its root.
 - level of a node: A node's level + its height = h, the tree's height.
 - The root of a heap always has the largest key (for a max-heap)
 - A node of a heap considered with all its descendants is also a heap (The subtree rooted at any node of a heap is also a heap)
 - Max-heap property and min-heap property
 - Max-heap: for every node other than root, A[PARENT(i)] >= A(i)
 - Min-heap: for every node other than root, A[PARENT(i)] <= A(i)

Heaps

- Properties of Heaps
 - it is more efficient to implement a heap as an array, by storing the heap's elements in top-down left-to-right order
 - Parental nodes are represented in the first $\lfloor n/2 \rfloor$ locations of the array
 - Leaf keys occupy the last \(\Gamma n/2\) locations
 - Relationships between indexes of parents and children.

Heaps Construction

How to construct a heap with the given list of keys?

- Bottom-up Heap construction
 - Build an essentially complete binary tree by inserting n keys in the given order.
 - Heapify the tree
 - Starting with the last (rightmost) parental node, heapify/fix the subtree rooted at it; if the parental dominance condition does not hold for the key at this node:
 - exchange its key K with the key of its larger child
 - Heapify/fix the subtree rooted at the K's new position
 - until the parental dominance requirement for K is satisfied
 - Proceed to do the same for the node's immediate predecessor.
 - Stops after this is done for the tree's root.

Heaps Construction

Bottom-up Heap construction (A Recursive version)

```
ALGORITHM HeapBottomUp(H[1..n])
//Constructs a heap from the elements
//of a given array by the bottom-up algorithm
//Input: An array H[1..n] of orderable items
//Output: A heap H[1..n]
for i \leftarrow \lfloor n/2 \rfloor downto 1 do
MaxHeapify(H, i)
```

Given a heap of n nodes, what's the index of the last parent? $\lfloor n/2 \rfloor$

```
ALGORITHM MaxHeapify(H, i)
l \leftarrow \text{LEFT}(i)
r \leftarrow \text{RIGHT}(i)
if l <= n and H[l] > H[i]
then largest \leftarrow l
else largest \leftarrow i
if r <= n and H[r] > H[largest]
then largest \neq i
then exchange H[i] \leftarrow H[largest]
MaxHeapify(H, largest)
```

Heaps Construction

- → Bottom-up Heap construction('cont)
 - Example 1: Construct a heap for the list 2, 9, 7, 6, 5, 8

• Example 2: 4 1 3 2 16 9 10 14 8 7 → 16 14 10 8 7 9 3 2 4 1

Heaps Construction

- → Worst-Case Efficiency for Bottom-up
 - assume $n = 2^k 1$, so the heap is full, the maximum number of nodes occurs on each level
 - Worst case: each key on level i will travel to the leaf level h
 - height of the tree $h = \lfloor \log_2 n \rfloor$
 - moving to the level down needs two comparisons
 - one to find the larger child
 - one to determine whether the exchange is required
 - number of key comparisons for a key on level i: 2(h-i)

$$C_{worst}(n) = \sum_{i=0}^{h-1} \sum_{\text{nodes at level i}} 2(h-i) = \sum_{i=0}^{h-1} 2(h-i)2^{i} = 2(n-\log_2(n+1))$$

Heaps Construction

- → Top-down Heap Construction
 - Successive insertions of new key into a previously constructed heap
 - Insertion of a new key K
 - Insert the new node with key K at the last position in heap, i.e. after the last leaf of the existing heap
 - sift K up to its appropriate position
 - Compare with its parent, and exchange them if it violates the parental dominance condition.
 - Continue comparing the element with its new parent,

until K is not greater than its last parent or it reaches the root

Heaps Construction

- → Efficiency for Top-down
 - height of a heap with n node: $h = \lfloor \log_2 n \rfloor$
 - Inserting one new element to a heap with n-1 nodes requires no more comparisons than the heap's height
 - time efficiency for Top-down insertion is O(log₂n)

Heaps Construction

- Root Deletion
 - swap the root with the last leaf K
 - Decrease the heap's size by 1
 - Heapify the smaller tree by sifting K down the tree, in exactly the same way in Bottom-up Heap construction
 - verify the parental dominance for K,
 - if it holds, we done.
 - if not, swap K with the larger of its children
 - and repeat this operation until parental dominance holds for K in its new position.

Heaps Construction

- → Efficiency for Root Deletion
 - It can't make key comparison more than twice the heap's height
 - Efficiency: $2h \in \Theta(logn)$

Ex: 986251

Heapsort

- Heapsort algorithm
 - Heap construction: Build heap for a given array (either bottom-up or top-down)
 - Maximum deletion: Apply the root-deletion operation n-1 times to the remaining heap until heap contains just one node.
 - → resulting: the array elements are eliminated in decreasing order

Heapsort

- Analysis of Heapsort
 - Bottom-up heap construction O(n)
 - Root deletion, Repeat n-1 times until heap contains just one node

$$C_2(n) \le 2 \lfloor \log_2(n-1) \rfloor + 2 \lfloor \log_2(n-2) \rfloor + \dots + 2 \lfloor \log_2 1 \rfloor \le 2 \sum_{i=1}^{n-1} \log_2 i$$

$$\leq 2\sum_{i=1}^{n-1}\log_2(n-1) = 2(n-1)\log_2(n-1) \leq 2n\log_2 n \in O(n\log n)$$

- Analysis shows that $C_1(n)+C_2(n)=\Theta(n\log n)$, in both the worst and average cases, the same class as mergesort
- But not require extra storage ---implemented with arrays
- Experiments show that heapsort runs more slowly than quicksort but competitive with mergesort

Horner's Rule For Polynomial Evaluation 霍纳法则

→ Problem

Polynomial Evaluation: Compute the value of a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 (1)
at a specific point x --- fast Fourier Transform, FFT

→ Two brute-force algorithms

```
p \leftarrow 0

for i \leftarrow n down to 0 do

power \leftarrow 1

for j \leftarrow 1 to i do

power \leftarrow power * x

p \leftarrow p + a_i * power

return p
```

```
p \leftarrow a_0; power \leftarrow 1
for i \leftarrow 1 to n do
power \leftarrow power * x
p \leftarrow p + a_i * power
return p
```

Horner's Rule For Polynomial Evaluation

- → Horner's Rule --Representation change
 - Obtained from (1), successively taking x as a common factor in the remaining polynomials of diminishing degrees

$$p(x) = (\dots (a_n x + a_{n-1}) x + \dots) x + a_0$$
 (2)

E.g.:
$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5 = x(2x^3 - x^2 + 3x + 1) - 5 =$$

= $x(x(2x^2 - x + 3) + 1) - 5 = x(x(x(2x - 1) + 3) + 1) - 5$
To evaluate $p(x)$ at $x=3$

coefficients	2	-1	3	1	-5
<i>x</i> =3	2	3*2+(-1) = 5	3*5+3=18	3*18+1=55	3*55+(-5)=160

Horner's Rule For Polynomial Evaluation

- → Horner's Rule --Representation change
 - Such calculation could be organized with a two-row table
 - first row: the polynomial's coefficients (including those equal to zero); listed from the highest a_n to lowest a_0
 - second row: first entry is a_n; the next entry is computed as the x's value times the last entry plus the current coefficient in the first row
 - The final entry is the value to sought

```
ALGORITHM Horner(P[0..n], x)

//Evaluates a polynomial at a given point by Horner's rule

//Input: An array P[0..n] of coefficients of a polynomial of degree n

// (stored from the lowest to the highest) and a number x

//Output: The value of the polynomial at x

p \leftarrow P[n]

for i \leftarrow n - 1 downto 0 do

p \leftarrow x * p + P[i]

return p
```

Horner's Rule For Polynomial Evaluation

- → Efficiency of Horner's Rule
 - Number of multiplications = $\sum_{i=0}^{n-1} 1 = n$
- → By-products
 - **synthetic division**: The intermediate numbers generated by Horner's Rule alg. In the process of evaluating p(x) at some point x_0 are the coefficients of the quotient of the division of p(x) by $x-x_0$,
 - The final result $p(x_0)$ equal to the remainder of the above division

Problem Reduction

Problem Reduction

• To solve a problem, reduce it to another problem that you know how to solve

two points:

- finding a problem to which the problem at hand should be reduced
- reduction-based algorithm to be more efficient than solving the original problem directly

Problem Reduction

Problem Reduction

E.g. in analytical geometry, for three arbitrary points in the plane, $p_1 = (x_1, y_1)$, $p_2 = (x_2, y_2)$, $p_3 = (x_3, y_3)$, the determinant is positive if and only if the point p_3 is to the left of the directed line through points p_1 p_2

$$\det \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = x_1 y_2 + x_2 y_3 + x_3 y_1 - x_3 y_2 - x_2 y_1 - x_1 y_3$$

i.e. we <u>reduce</u> a geometric problem about the relative locations of three points to a problem about the sign of a determinant.

the entire idea of analytical geometry is based on reducing geometric problems to algebra ones.

Computing the Least Common Multiple

- the Least Common Multiple of two positive integers m and n, **Icm (m, n)**:

 the smallest integer that is divisible by both m and n 最小公倍数
 - Middle-school method:
 - find the prime factorizations of m and n;
 - lcm(m,n) be computed as:

 (product of all the common prime factors of m and n) *
 (product of m's prime factors that are not in n) *
 (product of n's prime factors that are not in m)

$$24 = 2 \cdot 2 \cdot 2 \cdot 3$$

$$60 = 2 \cdot 2 \cdot 3 \cdot 5$$

$$lcm(24,60) = (2 \cdot 2 \cdot 3) \cdot 2 \cdot 5 = 120$$

$$gcd(24,60) = 2 \cdot 2 \cdot 3 = 12$$

Computing the Least Common Multiple

- Problem Reduction based method:
 - the product of lcm(m,n) and gcd(m,n) includes every factor of m and n exactly once, so

$$lcm(m.n) = \frac{m \cdot n}{\gcd(m,n)}$$

- the problem of lcm is reduced to the problem of gcd and product

Linear programming

- Linear programming:
 - a problem of optimizing a linear function of several variables subject to constraints in the form of linear equations and linear inequalities.

Maximize(or minimize)
$$c_1x_1 + ... c_nx_n$$

Subject to $a_{i1}x_1 + ... + a_{in}x_n \le (\text{or} \ge \text{or} =) b_i$, for $i=1...$ n $x_1 \ge 0, ..., x_n \ge 0$

Linear programming

- → Algorithms for Linear programming:
 - simplex method: worst-case efficiency is to be exponential
 - Ellipsoid algorithm: polynomial time.
 - Interior-point methods: polynomial time
 - Karmarkar's alg.: polynomial worst-case efficiency
 - Integer Linear programming: the variables of a Linear programming problem are required to be integers.
 - no known polynomial-time alg.
 - branch-and-bound method for solving Integer Linear programming

Linear programming

→ Investment Problem:

Scenario

- A university endowment needs to invest \$100million
- Three types of investment:
 - Stocks (expected interest: 10%)
 - Bonds (expected interest: 7%)
 - Cash (expected interest: 3%)

• Constraints

- The investment in stocks is no more than 1/3 of the money invested in bonds
- At least 25% of the total amount invested in stocks and bonds must be invested in cash

• Objective:

An investment that maximizes the return

Linear programming

- → Investment Problem: ('cont)
 - mathematical model

Maximize
$$0.10x + 0.07y + 0.03z$$
subject to
$$x + y + z = 100$$

$$x \le (1/3)y$$

$$z \ge 0.25(x + y)$$

$$x \ge 0, y \ge 0, z \ge 0$$

optimal decision making problem ---- → linear programming problem

Linear programming

→ Knapsack Problem (Continuous/Fraction Version):

• Scenario

- Given n items:
 - weights: W_1 W_2 ... W_n
 - values: v_1 v_2 ... v_n
 - a knapsack of capacity W

Constraints

◆ Any fraction of any item can be put into the knapsack, x_i

• Objective:

Find the most valuable subset of the items

Linear programming

- → Knapsack Problem (Continuous/Fraction Version): ('cont)
 - mathematical model

Maximize

$$\sum_{i=1}^{n} v_i x_i$$

subject to

$$\sum_{i=1}^{n} w_i x_i \le W$$

$$0 \le x_i \le 1$$
 for $i = 1,..., n$

Linear programming

Knapsack Problem (Discrete Version)

Scenario

- Given n items:
 - weights: w_1 w_2 ... w_n
 - values: v_1 v_2 ... v_n
 - a knapsack of capacity W

Constraints

- an item can either be put into the knapsack in its entirely or not be put into the knapsack.
- Objective:

Find the most valuable subset of the items

Linear programming

- → Knapsack Problem (Discrete Version) ('cont)
 - mathematical model

$$\sum_{i=1}^{n} v_i x_i$$

subject to

$$\sum_{i=1}^{n} w_i x_i \le W$$

$$x_i \in \{0,1\}$$
 for $i = 1,...,n$

Reduction to Graph

- many problems can be solved by reduction to one of the standard graph problems
- state-space graph: vertices of a graph represent possible states of the problem, edges indicate permitted transitions among such states
- one of the graph's vertices represents the initial state, another represents a goal state of the problem
- puzzles and games
- not always a straightforward task

problem ---- → a path from the initial-state vertex to a goal-state vertex

Reduction to Graph

River-crossing puzzle

- **Problem**: The wolf, goat and bag of cabbage puzzle.
- A peasant must transport a wolf, goat and bag of cabbage from one side of a river to another using a boat
- the boat can only hold one item in addition to the peasant,
- subject to the constraints that the wolf cannot be left alone with the goat, and the goat cannot be left alone with the cabbage.

- **Reduction to Graph**
 - → River-crossing puzzle
 - state-space graph

