Linear Algebra

Department of Mathematics
Indian Institute of Technology Guwahati

January – May 2019

MA 102 (RA, RKS, MGPP, KVK)

Topics:

- Linear Transformation
- Kernel and Range
- Matrix of a Linear Transformation

• Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$.

• Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$.

• Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F: \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{\mathrm{d}p(x)}{\mathrm{d}x}$.

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{dp(x)}{dx}$.
- Define $F: C[0,1] \to C[0,1]$ by $(F(f))(x) := \int_0^x f(t) dt$.

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{dp(x)}{dx}$.
- Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $(F(f))(x) := \int_0^x f(t)dt$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}$ by (F(p))(x) := p(3).

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{dp(x)}{dx}$.
- Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $(F(f))(x) := \int_0^x f(t)dt$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}$ by (F(p))(x) := p(3).

What is common in all of these?

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F: \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{dp(x)}{dx}$.
- Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $(F(f))(x) := \int_0^x f(t)dt$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}$ by (F(p))(x) := p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces.

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{dp(x)}{dx}$.
- Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $(F(f))(x) := \int_0^x f(t)dt$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}$ by (F(p))(x) := p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else?

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F: \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{\mathrm{d}p(x)}{\mathrm{d}x}$.
- Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $(F(f))(x) := \int_0^x f(t)dt$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}$ by (F(p))(x) := p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else? For all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha, \beta \in \mathbb{F}$, we have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v})$$
 and $F(\alpha \mathbf{v}) = \alpha F(\mathbf{v})$.

Equivalently,

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F: \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{\mathrm{d}p(x)}{\mathrm{d}x}$.
- Define $F: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by $(F(f))(x) := \int_0^x f(t)dt$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}$ by (F(p))(x) := p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else? For all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha, \beta \in \mathbb{F}$, we have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v})$$
 and $F(\alpha \mathbf{v}) = \alpha F(\mathbf{v})$.

Equivalently, $F(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha F(\mathbf{u}) + \beta F(\mathbf{v})$ for $\mathbf{u}, \mathbf{v} \in \mathbb{V}$, $\alpha, \beta \in \mathbb{F}$.

- Suppose $A \in \mathcal{M}_{m \times n}$. Let $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) := A\mathbf{v}$.
- Define $F: \mathbb{R}[x] \to \mathbb{R}[x]$ by $(F(p))(x) := \frac{\mathrm{d}p(x)}{\mathrm{d}x}$.
- Define $F: C[0,1] \to C[0,1]$ by $(F(f))(x) := \int_0^x f(t) dt$.
- Define $F : \mathbb{R}[x] \to \mathbb{R}$ by (F(p))(x) := p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else? For all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha, \beta \in \mathbb{F}$, we have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v})$$
 and $F(\alpha \mathbf{v}) = \alpha F(\mathbf{v})$.

Equivalently, $F(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha F(\mathbf{u}) + \beta F(\mathbf{v})$ for $\mathbf{u}, \mathbf{v} \in \mathbb{V}$, $\alpha, \beta \in \mathbb{F}$. Such functions are called linear transformations (LT).

Definition: Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $T: \mathbb{V} \to \mathbb{W}$ is called a linear transformation (LT)

Definition: Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $T: \mathbb{V} \to \mathbb{W}$ is called a linear transformation (LT) if $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}).$$

Definition: Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $T: \mathbb{V} \to \mathbb{W}$ is called a linear transformation (LT) if $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}).$$

Equivalently,

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha, \beta \in \mathbb{F}.$$

Definition: Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $\mathcal{T}: \mathbb{V} \to \mathbb{W}$ is called

a linear transformation (LT) if $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}).$$

Equivalently,

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha, \beta \in \mathbb{F}.$$

Obvious LT's:

Definition: Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $T: \mathbb{V} \to \mathbb{W}$ is called a linear transformation (LT) if $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}).$$

Equivalently,

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha, \beta \in \mathbb{F}.$$

Obvious LT's:

• $\mathbf{0}: \mathbb{V} \to \mathbb{W}$, $\mathbf{0}(\mathbf{v}) = \mathbf{0}$, $\forall \mathbf{v} \in \mathbb{V}$ (zero transformation).

Definition: Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $T: \mathbb{V} \to \mathbb{W}$ is called a linear transformation (LT) if $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}).$$

Equivalently,

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha, \beta \in \mathbb{F}.$$

Obvious LT's:

- $\mathbf{0}: \mathbb{V} \to \mathbb{W}$, $\mathbf{0}(\mathbf{v}) = \mathbf{0}$, $\forall \mathbf{v} \in \mathbb{V}$ (zero transformation).
- $I: \mathbb{V} \to \mathbb{V}$, $I(\mathbf{v}) = \mathbf{v}$, $\forall \mathbf{v} \in \mathbb{V}$ (identity transformation).

Definition: Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $T: \mathbb{V} \to \mathbb{W}$ is called a linear transformation (LT) if $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}).$$

Equivalently,

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha, \beta \in \mathbb{F}.$$

Obvious LT's:

- $\mathbf{0}: \mathbb{V} \to \mathbb{W}$, $\mathbf{0}(\mathbf{v}) = \mathbf{0}$, $\forall \mathbf{v} \in \mathbb{V}$ (zero transformation).
- $I: \mathbb{V} \to \mathbb{V}$, $I(\mathbf{v}) = \mathbf{v}$, $\forall \mathbf{v} \in \mathbb{V}$ (identity transformation).

Example: Is $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by $T([x,y]^\top) = [2x, x+y]^\top$ an

LT?

Definition: Let \mathbb{V} , \mathbb{W} be VS's over \mathbb{F} . A map $T: \mathbb{V} \to \mathbb{W}$ is called a linear transformation (LT) if $\forall \mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}).$$

Equivalently,

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha, \beta \in \mathbb{F}.$$

Obvious LT's:

- $\mathbf{0}: \mathbb{V} \to \mathbb{W}$, $\mathbf{0}(\mathbf{v}) = \mathbf{0}$, $\forall \mathbf{v} \in \mathbb{V}$ (zero transformation).
- $I: \mathbb{V} \to \mathbb{V}$, $I(\mathbf{v}) = \mathbf{v}$, $\forall \mathbf{v} \in \mathbb{V}$ (identity transformation).

Example: Is $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T([x,y]^\top) = [2x,x+y]^\top$ an

LT? Yes. Note that
$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
.

1
$$T(0) = 0$$
;

1
$$T(0) = 0$$
; $[T(0) = T(0+0) = T(0) + T(0) \Rightarrow 0 = T(0)$.]

1
$$T(0) = 0$$
; $[T(0) = T(0+0) = T(0) + T(0) \Rightarrow 0 = T(0)$.]

2
$$T(-\mathbf{v}) = -T(\mathbf{v})$$
 for all $\mathbf{v} \in \mathbb{V}$;

1
$$T(0) = 0$$
; $[T(0) = T(0+0) = T(0) + T(0) \Rightarrow 0 = T(0)$.]

$$2 T(-\mathbf{v}) = -T(\mathbf{v}) for all \mathbf{v} \in \mathbb{V}; [T(-\mathbf{v}) + T\mathbf{v} = \mathbf{0}.]$$

1
$$T(0) = 0$$
; $[T(0) = T(0+0) = T(0) + T(0) \Rightarrow 0 = T(0)$.]

$$2 T(-\mathbf{v}) = -T(\mathbf{v}) for all \mathbf{v} \in \mathbb{V}; [T(-\mathbf{v}) + T\mathbf{v} = \mathbf{0}]$$

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{V}.$$

Fact: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

1
$$T(0) = 0$$
; $[T(0) = T(0+0) = T(0) + T(0) \Rightarrow 0 = T(0)$.]

$$2 T(-\mathbf{v}) = -T(\mathbf{v}) for all \mathbf{v} \in \mathbb{V}; [T(-\mathbf{v}) + T\mathbf{v} = \mathbf{0}]$$

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{V}.$$

Exercise: Is $T: \mathbb{R} \to \mathbb{R}$, where T(x) = x + 1 is an LT?

Fact: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

1
$$T(0) = 0$$
; $[T(0) = T(0+0) = T(0) + T(0) \Rightarrow 0 = T(0)$.]

$$2 T(-\mathbf{v}) = -T(\mathbf{v}) for all \mathbf{v} \in \mathbb{V}; [T(-\mathbf{v}) + T\mathbf{v} = \mathbf{0}]$$

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{V}.$$

Exercise: Is $T : \mathbb{R} \to \mathbb{R}$, where T(x) = x + 1 is an LT? No. $T(0) \neq 0$.

Fact: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

1
$$T(\mathbf{0}) = \mathbf{0}$$
; $[T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0}) \Rightarrow \mathbf{0} = T(\mathbf{0})$.]

2
$$T(-\mathbf{v}) = -T(\mathbf{v})$$
 for all $\mathbf{v} \in \mathbb{V}$; $[T(-\mathbf{v}) + T\mathbf{v} = \mathbf{0}]$

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{V}.$$

Exercise: Is $T : \mathbb{R} \to \mathbb{R}$, where T(x) = x + 1 is an LT? No. $T(0) \neq 0$.

Exercise: Can there be an LT $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T([0,1]^T) = [2,3]^T, \ T([1,0]^T) = [3,2]^T$ and $T([1,1]^T) = [3,3]^T$?

Fact: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

1
$$T(\mathbf{0}) = \mathbf{0}$$
; $[T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0}) \Rightarrow \mathbf{0} = T(\mathbf{0})$.]

$$7(-\mathbf{v}) = -T(\mathbf{v}) \text{ for all } \mathbf{v} \in \mathbb{V}; [T(-\mathbf{v}) + T\mathbf{v} = \mathbf{0}.]$$

Exercise: Is $T : \mathbb{R} \to \mathbb{R}$, where T(x) = x + 1 is an LT? No. $T(0) \neq 0$.

Exercise: Can there be an LT $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T([0,1]^T) = [2,3]^T, \ T([1,0]^T) = [3,2]^T$ and $T([1,1]^T) = [3,3]^T$?

No, since
$$[3,3]^{\top} = T([1,1]^{\top}) = T(\mathbf{e}_1) + T(\mathbf{e}_2) = [5,5]^{\top}$$

every linear yransformation has to satisfy following properties

Fact: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

1
$$T(0) = 0$$
; $[T(0) = T(0+0) = T(0) + T(0) \Rightarrow 0 = T(0)$.]

$$(T(-\mathbf{v}) = -T(\mathbf{v}) \text{ for all } \mathbf{v} \in \mathbb{V}; [T(-\mathbf{v}) + T\mathbf{v} = \mathbf{0}.]$$

$$(T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{V}.$$

Exercise: Is $T : \mathbb{R} \to \mathbb{R}$, where T(x) = x + 1 is an LT? No. $T(0) \neq 0$.

Exercise: Can there be an LT $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T([0,1]^T) = [2,3]^T$, $T([1,0]^T) = [3,2]^T$ and $T([1,1]^T) = [3,3]^T$?

No, since $[3,3]^{\top} = T([1,1]^{\top}) = T(\mathbf{e}_1) + T(\mathbf{e}_2) = [5,5]^{\top}$ is not possible.

Theorem: Let $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ be a basis of \mathbb{V} $(\dim(\mathbb{V})=n)$.

Theorem: Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of \mathbb{V} (dim(\mathbb{V}) = n). Let $\mathbf{u}_1, \dots, \mathbf{u}_n$ be arbitrarily vectors in \mathbb{W} .

Theorem: Let $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ be a basis of \mathbb{V} (dim(\mathbb{V}) = n). Let $\mathbf{u}_1,\ldots,\mathbf{u}_n$ be arbitrarily vectors in \mathbb{W} . Then there is a unique LT $T:\mathbb{V}\longrightarrow\mathbb{W}$ such that $T(\mathbf{v}_i)=\mathbf{u}_i$ for i=1:n.

Theorem: Let $\{\mathbf v_1,\ldots,\mathbf v_n\}$ be a basis of $\mathbb V$ (dim($\mathbb V$) = n). Let $\mathbf u_1,\ldots,\mathbf u_n$ be arbitrarily vectors in $\mathbb W$. Then there is a unique LT $T:\mathbb V\longrightarrow\mathbb W$ such that $T(\mathbf v_i)=\mathbf u_i$ for i=1:n. Proof: Let $\mathbf v\in\mathbb V$.

Theorem: Let $\{\mathbf v_1,\ldots,\mathbf v_n\}$ be a basis of $\mathbb V$ (dim($\mathbb V$) = n). Let $\mathbf u_1,\ldots,\mathbf u_n$ be arbitrarily vectors in $\mathbb W$. Then there is a unique LT $T:\mathbb V\longrightarrow\mathbb W$ such that $T(\mathbf v_i)=\mathbf u_i$ for i=1:n. Proof: Let $\mathbf v\in\mathbb V$. Then $\mathbf v$ can be written uniquely as $\mathbf v=\alpha_1\mathbf v_1+\cdots+\alpha_n\mathbf v_n$.

```
Theorem: Let \{\mathbf v_1,\dots,\mathbf v_n\} be a basis of \mathbb V (dim(\mathbb V) = n). Let \mathbf u_1,\dots,\mathbf u_n be arbitrarily vectors in \mathbb W. Then there is a unique LT T:\mathbb V\longrightarrow\mathbb W such that T(\mathbf v_i)=\mathbf u_i for i=1:n. Proof: Let \mathbf v\in\mathbb V. Then \mathbf v can be written uniquely as \mathbf v=\alpha_1\mathbf v_1+\dots+\alpha_n\mathbf v_n. Define T:\mathbb V\longrightarrow\mathbb W by T\mathbf v:=\alpha_1\mathbf u_1+\dots+\alpha_n\mathbf u_n\in\mathbb W.
```

```
Theorem: Let \{\mathbf v_1,\dots,\mathbf v_n\} be a basis of \mathbb V (dim(\mathbb V) = n). Let \mathbf u_1,\dots,\mathbf u_n be arbitrarily vectors in \mathbb W. Then there is a unique LT T:\mathbb V\longrightarrow\mathbb W such that T(\mathbf v_i)=\mathbf u_i for i=1:n. Proof: Let \mathbf v\in\mathbb V. Then \mathbf v can be written uniquely as \mathbf v=\alpha_1\mathbf v_1+\dots+\alpha_n\mathbf v_n. Define T:\mathbb V\longrightarrow\mathbb W by T\mathbf v:=\alpha_1\mathbf u_1+\dots+\alpha_n\mathbf u_n\in\mathbb W. Then T is the required LT.
```

Theorem: Let $\{\mathbf v_1,\dots,\mathbf v_n\}$ be a basis of $\mathbb V$ (dim($\mathbb V$) = n). Let $\mathbf u_1,\dots,\mathbf u_n$ be arbitrarily vectors in $\mathbb W$. Then there is a unique LT $T:\mathbb V\longrightarrow\mathbb W$ such that $T(\mathbf v_i)=\mathbf u_i$ for i=1:n. Proof: Let $\mathbf v\in\mathbb V$. Then $\mathbf v$ can be written uniquely as $\mathbf v=\alpha_1\mathbf v_1+\dots+\alpha_n\mathbf v_n$. Define $T:\mathbb V\longrightarrow\mathbb W$ by $T\mathbf v:=\alpha_1\mathbf u_1+\dots+\alpha_n\mathbf u_n\in\mathbb W$. Then T is the required LT.

REMARK: An LT is completely determined by its action on any basis of the domain.

Theorem: Let $\{\mathbf v_1,\ldots,\mathbf v_n\}$ be a basis of $\mathbb V$ (dim($\mathbb V$) = n). Let $\mathbf u_1,\ldots,\mathbf u_n$ be arbitrarily vectors in $\mathbb W$. Then there is a unique LT $T:\mathbb V\longrightarrow\mathbb W$ such that $T(\mathbf v_i)=\mathbf u_i$ for i=1:n. Proof: Let $\mathbf v\in\mathbb V$. Then $\mathbf v$ can be written uniquely as

 $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$. Define $T : \mathbb{V} \longrightarrow \mathbb{W}$ by

 $T\mathbf{v} := \alpha_1 \mathbf{u}_1 + \cdots + \alpha_n \mathbf{u}_n \in \mathbb{W}$. Then T is the required LT.

REMARK: An LT is completely determined by its action on any basis of the domain.

Example: Suppose $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$ is an LT.

Theorem: Let $\{\mathbf v_1,\dots,\mathbf v_n\}$ be a basis of $\mathbb V$ (dim($\mathbb V$) = n). Let $\mathbf u_1,\dots,\mathbf u_n$ be arbitrarily vectors in $\mathbb W$. Then there is a unique LT $T:\mathbb V\longrightarrow\mathbb W$ such that $T(\mathbf v_i)=\mathbf u_i$ for i=1:n. Proof: Let $\mathbf v\in\mathbb V$. Then $\mathbf v$ can be written uniquely as $\mathbf v=\alpha_1\mathbf v_1+\dots+\alpha_n\mathbf v_n$. Define $T:\mathbb V\longrightarrow\mathbb W$ by $T\mathbf v:=\alpha_1\mathbf u_1+\dots+\alpha_n\mathbf u_n\in\mathbb W$. Then T is the required LT.

REMARK: An LT is completely determined by its action on any basis of the domain.

Example: Suppose $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$ is an LT. Given that $T([1,0]^\top) = 2 - 3x + x^2$ and $T([0,1]^\top) = 1 - x^2$.

Theorem: Let $\{\mathbf v_1,\dots,\mathbf v_n\}$ be a basis of $\mathbb V$ (dim($\mathbb V$) = n). Let $\mathbf u_1,\dots,\mathbf u_n$ be arbitrarily vectors in $\mathbb W$. Then there is a unique LT $T:\mathbb V\longrightarrow\mathbb W$ such that $T(\mathbf v_i)=\mathbf u_i$ for i=1:n. Proof: Let $\mathbf v\in\mathbb V$. Then $\mathbf v$ can be written uniquely as $\mathbf v=\alpha_1\mathbf v_1+\dots+\alpha_n\mathbf v_n$. Define $T:\mathbb V\longrightarrow\mathbb W$ by $T\mathbf v:=\alpha_1\mathbf u_1+\dots+\alpha_n\mathbf u_n\in\mathbb W$. Then T is the required LT.

REMARK: An LT is completely determined by its action on any basis of the domain.

Example: Suppose $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$ is an LT. Given that $T([1,0]^\top) = 2 - 3x + x^2$ and $T([0,1]^\top) = 1 - x^2$. What is $T([2,3]^\top)$?

Theorem: Let $\{\mathbf v_1,\dots,\mathbf v_n\}$ be a basis of $\mathbb V$ (dim($\mathbb V$) = n). Let $\mathbf u_1,\dots,\mathbf u_n$ be arbitrarily vectors in $\mathbb W$. Then there is a unique LT $T:\mathbb V\longrightarrow\mathbb W$ such that $T(\mathbf v_i)=\mathbf u_i$ for i=1:n. Proof: Let $\mathbf v\in\mathbb V$. Then $\mathbf v$ can be written uniquely as $\mathbf v=\alpha_1\mathbf v_1+\dots+\alpha_n\mathbf v_n$. Define $T:\mathbb V\longrightarrow\mathbb W$ by $T\mathbf v:=\alpha_1\mathbf u_1+\dots+\alpha_n\mathbf u_n\in\mathbb W$. Then T is the required LT.

REMARK: An LT is completely determined by its action on any basis of the domain.

Example: Suppose $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$ is an LT. Given that $T([1,0]^\top) = 2 - 3x + x^2$ and $T([0,1]^\top) = 1 - x^2$. What is $T([2,3]^\top)$? $T([2,3]^\top) = T(2\mathbf{e}_1 + 3\mathbf{e}_2) =$

Theorem: Let $\{\mathbf v_1,\dots,\mathbf v_n\}$ be a basis of $\mathbb V$ (dim($\mathbb V$) = n). Let $\mathbf u_1,\dots,\mathbf u_n$ be arbitrarily vectors in $\mathbb W$. Then there is a unique LT $T:\mathbb V\longrightarrow\mathbb W$ such that $T(\mathbf v_i)=\mathbf u_i$ for i=1:n. Proof: Let $\mathbf v\in\mathbb V$. Then $\mathbf v$ can be written uniquely as $\mathbf v=\alpha_1\mathbf v_1+\dots+\alpha_n\mathbf v_n$. Define $T:\mathbb V\longrightarrow\mathbb W$ by $T\mathbf v:=\alpha_1\mathbf u_1+\dots+\alpha_n\mathbf u_n\in\mathbb W$. Then T is the required LT.

REMARK: An LT is completely determined by its action on any basis of the domain.

Example: Suppose $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$ is an LT. Given that $T([1,0]^\top) = 2 - 3x + x^2$ and $T([0,1]^\top) = 1 - x^2$. What is $T([2,3]^\top)$? $T([2,3]^\top) = T(2\mathbf{e}_1 + 3\mathbf{e}_2) = 2T(\mathbf{e}_1) + 3T(\mathbf{e}_2) = 2T(\mathbf{e}_1) + 3T(\mathbf{e}_2$

Theorem: Let $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ be a basis of \mathbb{V} (dim(\mathbb{V}) = n). Let $\mathbf{u}_1,\ldots,\mathbf{u}_n$ be arbitrarily vectors in \mathbb{W} . Then there is a unique LT $T:\mathbb{V}\longrightarrow\mathbb{W}$ such that $T(\mathbf{v}_i)=\mathbf{u}_i$ for i=1:n. Proof: Let $\mathbf{v}\in\mathbb{V}$. Then \mathbf{v} can be written uniquely as $\mathbf{v}=\alpha_1\mathbf{v}_1+\cdots+\alpha_n\mathbf{v}_n$. Define $T:\mathbb{V}\longrightarrow\mathbb{W}$ by

REMARK: An LT is completely determined by its action on any basis of the domain.

 $T\mathbf{v} := \alpha_1 \mathbf{u}_1 + \cdots + \alpha_n \mathbf{u}_n \in \mathbb{W}$. Then T is the required LT.

Example: Suppose $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$ is an LT. Given that $T([1,0]^\top) = 2 - 3x + x^2$ and $T([0,1]^\top) = 1 - x^2$. What is $T([2,3]^\top)$? $T([2,3]^\top) = T(2\mathbf{e}_1 + 3\mathbf{e}_2) = 2T(\mathbf{e}_1) + 3T(\mathbf{e}_2) = 2(2 - 3x + x^2) + 3(1 - x^2) = 7 - 6x - x^2$.

Theorem: Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of \mathbb{V} (dim(\mathbb{V}) = n). Let $\mathbf{u}_1, \dots, \mathbf{u}_n$ be arbitrarily vectors in \mathbb{W} . Then there is a unique LT $T: \mathbb{V} \longrightarrow \mathbb{W}$ such that $T(\mathbf{v}_i) = \mathbf{u}_i$ for i = 1: n.

Proof: Let $\mathbf{v} \in \mathbb{V}$. Then \mathbf{v} can be written uniquely as

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$
. Define $T : \mathbb{V} \longrightarrow \mathbb{W}$ by

$$T\mathbf{v} := \alpha_1 \mathbf{u}_1 + \cdots + \alpha_n \mathbf{u}_n \in \mathbb{W}$$
. Then T is the required LT.

REMARK: An LT is completely determined by its action on any basis of the domain.

Example: Suppose $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$ is an LT. Given that $T([1,0]^{\top}) = 2 - 3x + x^2$ and $T([0,1]^{\top}) = 1 - x^2$. What is $T([2,3]^{\top})$? $T([2,3]^{\top}) = T(2\mathbf{e}_1 + 3\mathbf{e}_2) = 2T(\mathbf{e}_1) + 3T(\mathbf{e}_2) =$ $2(2-3x+x^2)+3(1-x^2)=7-6x-x^2$. What is $T([a,b]^{\top})$?

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

• Kernel (or null space) of T: $ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};$

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{v \in V \mid T(v) = 0\};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$.

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$. Moreover,

If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans V, then $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$. Moreover,

If $B = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ spans V, then $T(B) = {T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)}$ spans range(T).

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$. Moreover,

If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans V, then $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ spans range(T).

Example: Consider $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) := A\mathbf{x}$, where $A \in \mathcal{M}_{m \times n}$. What is the range of T?

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$. Moreover,

If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans V, then $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ spans range(T).

Example: Consider $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) := A\mathbf{x}$, where $A \in \mathcal{M}_{m \times n}$. What is the range of T? It is $\{T(\mathbf{x}) \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}$

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{v \in V \mid T(v) = 0\};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$. Moreover,

If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans V, then $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ spans range(T).

Example: Consider $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) := A\mathbf{x}$, where $A \in \mathcal{M}_{m \times n}$. What is the range of T? It is $\{T(\mathbf{x}) \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}$ = $\{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$ =

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$. Moreover,

If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans V, then $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ spans range(T).

Example: Consider $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) := A\mathbf{x}$, where $A \in \mathcal{M}_{m \times n}$. What is the range of T? It is $\{T(\mathbf{x}) \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}$ $= \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} = \operatorname{col}(A) \subseteq \mathbb{R}^m$.

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{v \in V \mid T(v) = 0\};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \leq \mathbb{V}$ and $\operatorname{range}(T) \leq \mathbb{W}$. Moreover,

If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans V, then $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ spans range(T).

Example: Consider $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) := A\mathbf{x}$, where $A \in \mathcal{M}_{m \times n}$. What is the range of T? It is $\{T(\mathbf{x}) \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}$ = $\{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} = \operatorname{col}(A) \subseteq \mathbb{R}^m$. On the other hand, $\operatorname{null}(A) = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\} =$

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT.

- Kernel (or null space) of T: $ker(T) := \{v \in V \mid T(v) = 0\};$
- range of T: range(T) :={ $T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}$ }.

Fact: We have $\ker(T) \preccurlyeq \mathbb{V}$ and $\operatorname{range}(T) \preccurlyeq \mathbb{W}$. Moreover,

If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans V, then $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ spans range(T).

Example: Consider $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) := A\mathbf{x}$, where $A \in \mathcal{M}_{m \times n}$. What is the range of T? It is $\{T(\mathbf{x}) \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}$ = $\{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} = \operatorname{col}(A) \subseteq \mathbb{R}^m$. On the other hand, $\operatorname{null}(A) = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\} = \{\mathbf{x} \in \mathbb{R}^n \mid T(\mathbf{x}) = \mathbf{0}\} = \ker(T)$ is a subspace of \mathbb{R}^n .

```
Definition: Let T: \mathbb{V} \to \mathbb{W} be an LT.
    • Kernel (or null space) of T: \ker(T) := \{ \mathbf{v} \in \mathbb{V} \mid T(\mathbf{v}) = \mathbf{0} \};
    • range of T: range(T) :={T(\mathbf{v}) \in \mathbb{W} \mid \mathbf{v} \in \mathbb{V}}.
Fact: We have \ker(T) \leq \mathbb{V} and \operatorname{range}(T) \leq \mathbb{W}. Moreover,
If B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} spans V, then T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}
spans range(T).
Example: Consider T: \mathbb{R}^n \to \mathbb{R}^m given by T(\mathbf{x}) := A\mathbf{x}, where
A \in \mathcal{M}_{m \times n}. What is the range of T? It is \{T(\mathbf{x}) \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}
= \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} = \operatorname{col}(A) \subseteq \mathbb{R}^m. On the other hand,
\operatorname{null}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \} = \{ \mathbf{x} \in \mathbb{R}^n \mid T(\mathbf{x}) = \mathbf{0} \} = \ker(T) \text{ is }
a subspace of \mathbb{R}^n.
```

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. We define

• rank(T) := dimension of range(T),

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. We define

- rank(T) := dimension of range(T),
- $\operatorname{nullity}(T) := \operatorname{dimension of } \ker(T).$

Definition: Let $T : \mathbb{V} \to \mathbb{W}$ be an LT. We define

- rank(T) := dimension of range(T),
- $\operatorname{nullity}(T) := \operatorname{dimension of ker}(T).$

Example: Let $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ be defined by D(p(x)) = p'(x).

Find ker(D), range(D) and their dimensions.

Definition: Let $T : \mathbb{V} \to \mathbb{W}$ be an LT. We define

- rank(T) := dimension of range(T),
- nullity(T) := dimension of ker(T).

Example: Let $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ be defined by D(p(x)) = p'(x).

Find ker(D), range(D) and their dimensions. rank(D) = 3 and

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. We define

- rank(T) := dimension of range(T),
- nullity(T) := dimension of ker(T).

Example: Let $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ be defined by D(p(x)) = p'(x). Find $\ker(D)$, range(D) and their dimensions. $\operatorname{rank}(D) = 3$ and

 $\operatorname{nullity}(D) = 1.$

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. We define

- rank(T) := dimension of range(T),
- nullity(T) := dimension of ker(T).

Example: Let $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ be defined by D(p(x)) = p'(x). Find $\ker(D)$, range(D) and their dimensions. $\operatorname{rank}(D) = 3$ and $\operatorname{nullity}(D) = 1$.

The Rank-Nullity Theorem: Let $\mathbb V$ be finite dimensional and $T:\mathbb V\to\mathbb W$ be an LT. Then

$$rank(T) + nullity(T) = dim(V).$$

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. We define

- rank(T) := dimension of range(T),
- nullity(T) := dimension of ker(T).

Example: Let $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ be defined by $D(\rho(x)) = \rho'(x)$.

Find ker(D), range(D) and their dimensions. rank(D) = 3 and nullity(D) = 1.

The Rank-Nullity Theorem: Let $\mathbb V$ be finite dimensional and

$$T: \mathbb{V} \to \mathbb{W}$$
 be an LT. Then

$$rank(T) + nullity(T) = dim(V).$$

Proof: Take a basis $B = \{v_1, \dots, \mathbf{v}_k\}$ of $\ker(T)$.

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. We define

- rank(T) := dimension of range(T),
- nullity(T) := dimension of ker(T).

Example: Let $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ be defined by D(p(x)) = p'(x). Find $\ker(D)$, range(D) and their dimensions. $\operatorname{rank}(D) = 3$ and $\operatorname{nullity}(D) = 1$.

The Rank-Nullity Theorem: Let $\mathbb V$ be finite dimensional and $T:\mathbb V\to\mathbb W$ be an LT. Then

$$rank(T) + nullity(T) = dim(V).$$

Proof: Take a basis $B = \{v_1, \dots, \mathbf{v}_k\}$ of ker(T). Extend it to a basis $B \cup \{\mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ of \mathbb{V} .

Definition: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. We define

- rank(T) := dimension of range(T),
- nullity(T) := dimension of ker(T).

Example: Let $D : \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ be defined by D(p(x)) = p'(x). Find ker(D), range(D) and their dimensions. rank(D) = 3 and nullity(D) = 1.

The Rank-Nullity Theorem: Let $\overline{\mathbb{V}}$ be finite dimensional and $\overline{T}: \overline{\mathbb{V}} \to \overline{\mathbb{W}}$ be an LT. Then

$$rank(T) + nullity(T) = dim(V)$$
.

Proof: Take a basis $B = \{v_1, \dots, \mathbf{v}_k\}$ of $\ker(T)$. Extend it to a basis $B \cup \{\mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ of \mathbb{V} . Then $\{T(\mathbf{v}_{k+1}), \dots, T(\mathbf{v}_n)\}$ spans range(T). Moreover, $\{T(\mathbf{v}_{k+1}), \dots, T(\mathbf{v}_n)\}$ is LI.

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

• T is one-one iff $ker(T) = \{0\}$.

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $\dim(\mathbb{V}) = \dim(\mathbb{W}) = n$, then T is onto iff $\ker(T) = \{0\}$.

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $dim(\mathbb{V}) = dim(\mathbb{W}) = n$, then T is onto iff $ker(T) = \{\mathbf{0}\}$.

Define $\mathcal{L}(\mathbb{V}, \mathbb{W}) := \{ T : \mathbb{V} \longrightarrow \mathbb{W} \mid T \text{ is an LT} \}$ and set $\mathcal{L}(\mathbb{V}) := \mathcal{L}(\mathbb{V}, \mathbb{V}).$

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $dim(\mathbb{V}) = dim(\mathbb{W}) = n$, then T is onto iff $ker(T) = \{0\}$.

Define $\mathcal{L}(\mathbb{V}, \mathbb{W}) := \{ T : \mathbb{V} \longrightarrow \mathbb{W} \mid T \text{ is an LT} \}$ and set

$$\mathcal{L}(\mathbb{V}) := \mathcal{L}(\mathbb{V}, \mathbb{V}).$$

Definition: For $S, T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $\alpha \in \mathbb{F}$, define

$$T + S : \mathbb{V} \to \mathbb{W}, \ \alpha T : \mathbb{V} \to \mathbb{W}$$
 by

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $dim(\mathbb{V}) = dim(\mathbb{W}) = n$, then T is onto iff $ker(T) = \{\mathbf{0}\}$.

Define $\mathcal{L}(\mathbb{V}, \mathbb{W}) := \{ T : \mathbb{V} \longrightarrow \mathbb{W} \mid T \text{ is an LT} \}$ and set

$$\mathcal{L}(\mathbb{V}) := \mathcal{L}(\mathbb{V}, \mathbb{V}).$$

Definition: For $S, T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $\alpha \in \mathbb{F}$, define

$$\mathcal{T} + \mathcal{S} : \mathbb{V} \to \mathbb{W}, \ \alpha \mathcal{T} : \mathbb{V} \to \mathbb{W}$$
 by

$$(T+S)(\mathbf{v}) := T(\mathbf{v}) + S(\mathbf{v}),$$

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $dim(\mathbb{V}) = dim(\mathbb{W}) = n$, then T is onto iff $ker(T) = \{0\}$.

Define $\mathcal{L}(\mathbb{V}, \mathbb{W}) := \{ T : \mathbb{V} \longrightarrow \mathbb{W} \mid T \text{ is an LT} \}$ and set

$$\mathcal{L}(\mathbb{V}):=\mathcal{L}(\mathbb{V},\mathbb{V}).$$

Definition: For $S, T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $\alpha \in \mathbb{F}$, define

$$\mathcal{T} + \mathcal{S} : \mathbb{V} \to \mathbb{W}, \ \alpha \mathcal{T} : \mathbb{V} \to \mathbb{W}$$
 by

$$(T+S)(\mathbf{v}) := T(\mathbf{v}) + S(\mathbf{v}), \ (\alpha T)(\mathbf{v}) := \alpha(T(\mathbf{v})), \ \mathbf{v} \in \mathbb{V}.$$

Exercise: Show that $\mathcal{L}(\mathbb{V}, \mathbb{W})$ is a vector space.

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $dim(\mathbb{V}) = dim(\mathbb{W}) = n$, then T is onto iff $ker(T) = \{0\}$.

Define
$$\mathcal{L}(\mathbb{V}, \mathbb{W}) := \{T : \mathbb{V} \longrightarrow \mathbb{W} \mid T \text{ is an LT}\}$$
 and set

$$\mathcal{L}(\mathbb{V}) := \mathcal{L}(\mathbb{V}, \mathbb{V}).$$

Definition: For $S, T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $\alpha \in \mathbb{F}$, define

$$T + S : \mathbb{V} \to \mathbb{W}, \ \alpha T : \mathbb{V} \to \mathbb{W}$$
 by

$$(T+S)(\mathbf{v}) := T(\mathbf{v}) + S(\mathbf{v}), \ (\alpha T)(\mathbf{v}) := \alpha(T(\mathbf{v})), \ \mathbf{v} \in \mathbb{V}.$$

Exercise: Show that $\mathcal{L}(\mathbb{V}, \mathbb{W})$ is a vector space.

Composition:

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $dim(\mathbb{V}) = dim(\mathbb{W}) = n$, then T is onto iff $ker(T) = \{0\}$.

Define $\mathcal{L}(\mathbb{V}, \mathbb{W}) := \{T : \mathbb{V} \longrightarrow \mathbb{W} \mid T \text{ is an LT}\}$ and set

$$\mathcal{L}(\mathbb{V}):=\mathcal{L}(\mathbb{V},\mathbb{V}).$$

Definition: For $S, T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $\alpha \in \mathbb{F}$, define

$$T + S : \mathbb{V} \to \mathbb{W}, \ \alpha T : \mathbb{V} \to \mathbb{W}$$
 by

$$(T+S)(\mathbf{v}) := T(\mathbf{v}) + S(\mathbf{v}), \ (\alpha T)(\mathbf{v}) := \alpha(T(\mathbf{v})), \ \mathbf{v} \in \mathbb{V}.$$

Exercise: Show that $\mathcal{L}(\mathbb{V}, \mathbb{W})$ is a vector space.

Composition: Let $T : \mathbb{U} \to \mathbb{V}$ and $S : \mathbb{V} \to \mathbb{W}$ be LTs.

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $\dim(\mathbb{V}) = \dim(\mathbb{W}) = n$, then T is onto iff $\ker(T) = \{0\}$.

Define
$$\mathcal{L}(\mathbb{V}, \mathbb{W}) := \{T : \mathbb{V} \longrightarrow \mathbb{W} \mid T \text{ is an LT} \}$$
 and set

$$\mathcal{L}(\mathbb{V}):=\mathcal{L}(\mathbb{V},\mathbb{V}).$$

Definition: For $S, T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $\alpha \in \mathbb{F}$, define

$$T + S : \mathbb{V} \to \mathbb{W}, \ \alpha T : \mathbb{V} \to \mathbb{W}$$
 by

$$(T+S)(\mathbf{v}) := T(\mathbf{v}) + S(\mathbf{v}), \ (\alpha T)(\mathbf{v}) := \alpha(T(\mathbf{v})), \ \mathbf{v} \in \mathbb{V}.$$

Exercise: Show that $\mathcal{L}(\mathbb{V}, \mathbb{W})$ is a vector space.

Composition: Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be LTs. Then the

composition $S \circ T : \mathbb{U} \to \mathbb{W}$ is also an LT.

Corollary: Let $T: \mathbb{V} \to \mathbb{W}$ be an LT. Then

- T is one-one iff $ker(T) = \{0\}$.
- If $\dim(\mathbb{V}) = \dim(\mathbb{W}) = n$, then T is onto iff $\ker(T) = \{\mathbf{0}\}$.

Define $\mathcal{L}(\mathbb{V}, \mathbb{W}) := \{ T : \mathbb{V} \longrightarrow \mathbb{W} \mid T \text{ is an LT} \}$ and set

$$\mathcal{L}(\mathbb{V}) := \mathcal{L}(\mathbb{V}, \mathbb{V}).$$

Definition: For $S, T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $\alpha \in \mathbb{F}$, define

$$T + S : \mathbb{V} \to \mathbb{W}, \ \alpha T : \mathbb{V} \to \mathbb{W}$$
 by

$$(T+S)(\mathbf{v}) := T(\mathbf{v}) + S(\mathbf{v}), \ (\alpha T)(\mathbf{v}) := \alpha(T(\mathbf{v})), \ \mathbf{v} \in \mathbb{V}.$$

Exercise: Show that $\mathcal{L}(\mathbb{V}, \mathbb{W})$ is a vector space.

Composition: Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be LTs. Then the

composition $S \circ T : \mathbb{U} \to \mathbb{W}$ is also an LT.

Definition: Let \mathbb{V} be a VS and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis .

Definition: Let \mathbb{V} be a VS and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis . An ordered basis of \mathbb{V} is a basis with a specific order of its elements.

Definition: Let \mathbb{V} be a VS and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis . An ordered basis of \mathbb{V} is a basis with a specific order of its elements.

We write an ordered basis as $B := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$. Note that $C := [\mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_3, \dots, \mathbf{v}_n]$ is an ordered basis and $B \neq C$.

Definition: Let \mathbb{V} be a VS and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis . An ordered basis of \mathbb{V} is a basis with a specific order of its elements.

We write an ordered basis as $B := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$. Note that $C := [\mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_3, \dots, \mathbf{v}_n]$ is an ordered basis and $B \neq C$.

Example: Let $A := [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathcal{M}_n(\mathbb{F})$ be an invertible matrix. Then A is an ordered basis of \mathbb{F}^n . The identity matrix I_n is the standard ordered basis of \mathbb{F}^n .

Definition: Let \mathbb{V} be a VS and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis . An ordered basis of \mathbb{V} is a basis with a specific order of its elements.

We write an ordered basis as $B := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$. Note that $C := [\mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_3, \dots, \mathbf{v}_n]$ is an ordered basis and $B \neq C$.

Example: Let $A := [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathcal{M}_n(\mathbb{F})$ be an invertible matrix. Then A is an ordered basis of \mathbb{F}^n . The identity matrix I_n is the standard ordered basis of \mathbb{F}^n .

Definition: Let $B:=[\mathbf{v}_1,\ldots,\mathbf{v}_n]$ be an ordered basis of \mathbb{V} . For $\mathbf{x}:=[x_1,\ldots,x_n]^{\top}\in\mathbb{F}^n,$ we define

$$B\mathbf{x} := x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n.$$

Thus $B: \mathbb{F}^n \longrightarrow \mathbb{V}, \mathbf{x} \longmapsto B\mathbf{x}$, is an LT.

Theorem: Let $B := [\mathbf{v}_1, \dots, \mathbf{v}_n]$ be an ordered basis of \mathbb{V} . Then the LT $B : \mathbb{F}^n \longrightarrow \mathbb{V}, \mathbf{x} \longmapsto B\mathbf{x}$, is bijective.

Theorem: Let $B := [\mathbf{v}_1, \dots, \mathbf{v}_n]$ be an ordered basis of \mathbb{V} . Then the LT $B : \mathbb{F}^n \longrightarrow \mathbb{V}, \mathbf{x} \longmapsto B\mathbf{x}$, is bijective.

Proof: $B\mathbf{x} = \mathbf{0} \Rightarrow x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$. Hence B is injective. By rank-nullity theorem B is onto.

Theorem: Let $B:=[\mathbf{v}_1,\ldots,\mathbf{v}_n]$ be an ordered basis of \mathbb{V} . Then the LT $B:\mathbb{F}^n\longrightarrow \mathbb{V},\mathbf{x}\longmapsto B\mathbf{x}$, is bijective.

Proof: $B\mathbf{x} = \mathbf{0} \Rightarrow x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$. Hence B is injective. By rank-nullity theorem B is onto.

Definition: Let $\mathbf{v} \in \mathbb{V}$. Then there is a unique $\mathbf{x} := [x_1, \dots, x_n]^\top$ in \mathbb{F}^n such that $\mathbf{v} = B\mathbf{x} = x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n$. We say that \mathbf{x} is the coordinate of \mathbf{v} with respect to the ordered basis B and denote \mathbf{x} by $[\mathbf{v}]_B$. Thus $\mathbf{v} = B[\mathbf{v}]_B$ for all $\mathbf{v} \in \mathbb{V}$.

Theorem: Let $B:=[\mathbf{v}_1,\ldots,\mathbf{v}_n]$ be an ordered basis of \mathbb{V} . Then the LT $B:\mathbb{F}^n\longrightarrow\mathbb{V},\mathbf{x}\longmapsto B\mathbf{x}$, is bijective.

Proof: $B\mathbf{x} = \mathbf{0} \Rightarrow x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$. Hence B is injective. By rank-nullity theorem B is onto.

Definition: Let $\mathbf{v} \in \mathbb{V}$. Then there is a unique $\mathbf{x} := [x_1, \dots, x_n]^\top$ in \mathbb{F}^n such that $\mathbf{v} = B\mathbf{x} = x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n$. We say that \mathbf{x} is the coordinate of \mathbf{v} with respect to the ordered basis B and denote \mathbf{x} by $[\mathbf{v}]_B$. Thus $\mathbf{v} = B[\mathbf{v}]_B$ for all $\mathbf{v} \in \mathbb{V}$.

Remark: Note that the coordinate $[\mathbf{v}]_B$ depends B as well as on the order of the basis in B.

Example: Consider the standard ordered basis $B := [1, x, x^2]$ of $\mathbb{R}_2[x]$.

Theorem: Let $B:=[\mathbf{v}_1,\ldots,\mathbf{v}_n]$ be an ordered basis of \mathbb{V} . Then the LT $B:\mathbb{F}^n\longrightarrow \mathbb{V},\mathbf{x}\longmapsto B\mathbf{x}$, is bijective.

Proof: $B\mathbf{x} = \mathbf{0} \Rightarrow x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$. Hence B is injective. By rank-nullity theorem B is onto.

Definition: Let $\mathbf{v} \in \mathbb{V}$. Then there is a unique $\mathbf{x} := [x_1, \dots, x_n]^\top$ in \mathbb{F}^n such that $\mathbf{v} = B\mathbf{x} = x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n$. We say that \mathbf{x} is the coordinate of \mathbf{v} with respect to the ordered basis B and denote \mathbf{x} by $[\mathbf{v}]_B$. Thus $\mathbf{v} = B[\mathbf{v}]_B$ for all $\mathbf{v} \in \mathbb{V}$.

Remark: Note that the coordinate $[\mathbf{v}]_B$ depends B as well as on the order of the basis in B.

Example: Consider the standard ordered basis $B := [1, x, x^2]$ of $\mathbb{R}_2[x]$. Let $p(x) := a + bx + cx^2$. Then, $[p]_B = [a, b, c]^\top$.

Theorem: The coordinate map $S: \mathbb{V} \longrightarrow \mathbb{F}^n$ given by $S\mathbf{v} := [\mathbf{v}]_B$ is an LT. Thus, for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$, we have

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and $[\alpha \mathbf{u}]_B = \alpha [\mathbf{u}]_B$.

Further, S is bijective and is the inverse of B, that is, $SB = I_n$ and $BS = I_{\mathbb{V}}$.

Theorem: The coordinate map $S: \mathbb{V} \longrightarrow \mathbb{F}^n$ given by $S\mathbf{v} := [\mathbf{v}]_B$ is an LT. Thus, for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$, we have

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and $[\alpha \mathbf{u}]_B = \alpha [\mathbf{u}]_B$.

Further, S is bijective and is the inverse of B, that is, $SB = I_n$ and $BS = I_{\mathbb{V}}$.

Proof: Use
$$\mathbf{v} = B[\mathbf{v}]_B$$
.

Theorem: The coordinate map $S: \mathbb{V} \longrightarrow \mathbb{F}^n$ given by $S\mathbf{v} := [\mathbf{v}]_B$ is an LT. Thus, for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$, we have

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and $[\alpha \mathbf{u}]_B = \alpha [\mathbf{u}]_B$.

Further, S is bijective and is the inverse of B, that is, $SB = I_n$ and $BS = I_{\mathbb{V}}$.

Proof: Use $\mathbf{v} = B[\mathbf{v}]_B$.

Definition: A linear transformation $T: \mathbb{V} \to \mathbb{W}$ is called an isomorphism of \mathbb{V} onto \mathbb{W} , if it is one-one and onto.

Theorem: The coordinate map $S: \mathbb{V} \longrightarrow \mathbb{F}^n$ given by $S\mathbf{v} := [\mathbf{v}]_B$ is an LT. Thus, for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$, we have

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and $[\alpha \mathbf{u}]_B = \alpha [\mathbf{u}]_B$.

Further, S is bijective and is the inverse of B, that is, $SB = I_n$ and $BS = I_{\mathbb{V}}$.

Proof: Use $\mathbf{v} = B[\mathbf{v}]_B$.

Definition: A linear transformation $T:\mathbb{V}\to\mathbb{W}$ is called an isomorphism of \mathbb{V} onto \mathbb{W} , if it is one-one and onto. In that case, we say that \mathbb{V} is isomorphic to \mathbb{W}

Theorem: The coordinate map $S: \mathbb{V} \longrightarrow \mathbb{F}^n$ given by $S\mathbf{v} := [\mathbf{v}]_B$ is an LT. Thus, for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$, we have

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and $[\alpha \mathbf{u}]_B = \alpha [\mathbf{u}]_B$.

Further, S is bijective and is the inverse of B, that is, $SB = I_n$ and $BS = I_{\mathbb{V}}$.

Proof: Use $\mathbf{v} = B[\mathbf{v}]_B$.

Definition: A linear transformation $T: \mathbb{V} \to \mathbb{W}$ is called an isomorphism of \mathbb{V} onto \mathbb{W} , if it is one-one and onto. In that case, we say that \mathbb{V} is isomorphic to \mathbb{W} and we write $\mathbb{V} \cong \mathbb{W}$.

Example: The LT $S: \mathbb{V} \to \mathbb{F}^n, \mathbf{v} \longrightarrow [\mathbf{v}]_B$, is an isomorphism.

Theorem: The coordinate map $S: \mathbb{V} \longrightarrow \mathbb{F}^n$ given by $S\mathbf{v} := [\mathbf{v}]_B$ is an LT. Thus, for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$, we have

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and $[\alpha \mathbf{u}]_B = \alpha [\mathbf{u}]_B$.

Further, S is bijective and is the inverse of B, that is, $SB = I_n$ and $BS = I_{\mathbb{V}}$.

Proof: Use $\mathbf{v} = B[\mathbf{v}]_B$.

Definition: A linear transformation $T: \mathbb{V} \to \mathbb{W}$ is called an isomorphism of \mathbb{V} onto \mathbb{W} , if it is one-one and onto. In that case, we say that \mathbb{V} is isomorphic to \mathbb{W} and we write $\mathbb{V} \cong \mathbb{W}$.

Example: The LT $S: \mathbb{V} \to \mathbb{F}^n, \mathbf{v} \longrightarrow [\mathbf{v}]_B$, is an isomorphism.

Thus, any VS over \mathbb{F} of dimension n is isomorphic to \mathbb{F}^n .

Suppose $\dim(\mathbb{V}) = n$, $\dim(\mathbb{W}) = m$,

Suppose $\dim(\mathbb{V}) = n$, $\dim(\mathbb{W}) = m$, $B := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ an ordered basis of \mathbb{V} ,

Suppose $\dim(\mathbb{V}) = n$, $\dim(\mathbb{W}) = m$, $B := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ an ordered basis of \mathbb{V} , $C := [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m]$ an ordered basis of \mathbb{W}

Suppose $\dim(\mathbb{V}) = n$, $\dim(\mathbb{W}) = m$, $B := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ an ordered basis of \mathbb{V} , $C := [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m]$ an ordered basis of \mathbb{W} and $T : V \to W$ an LT.

Suppose $\dim(\mathbb{V}) = n$, $\dim(\mathbb{W}) = m$, $B := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ an ordered basis of \mathbb{V} , $C := [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m]$ an ordered basis of \mathbb{W} and $T : V \to W$ an LT. Then the $m \times n$ matrix A defined by

$$A := \left[[T(\mathbf{v}_1)]_C, [T(\mathbf{v}_2)]_C, \dots, [T(\mathbf{v}_n)]_C \right]$$

is called the matrix of T with respect to the ordered bases B and C. The matrix A is written as $[T]_{C \leftarrow B}$.

Suppose $\dim(\mathbb{V}) = n$, $\dim(\mathbb{W}) = m$, $B := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ an ordered basis of \mathbb{V} , $C := [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m]$ an ordered basis of \mathbb{W} and $T : V \to W$ an LT. Then the $m \times n$ matrix A defined by

$$A := \left[[T(\boldsymbol{v}_1)]_C, [T(\boldsymbol{v}_2)]_C, \dots, [T(\boldsymbol{v}_n)]_C \right]$$

is called the matrix of T with respect to the ordered bases B and C. The matrix A is written as $[T]_{C \leftarrow B}$.

Theorem: Let $\mathbf{v} \in \mathbb{V}$. Then $T\mathbf{v} = C[T\mathbf{v}]_C$ and $[T\mathbf{v}]_C = A[\mathbf{v}]_B$.

$$\left\{ \begin{array}{ccc} \mathbf{v} \in \mathbb{V} & \stackrel{\mathcal{T}}{\longrightarrow} & \mathcal{T}(\mathbf{v}) \in \mathbb{W} \\ \downarrow & & \uparrow \\ [\mathbf{v}]_B \in \mathbb{F}^n & \stackrel{\mathcal{A}}{\longrightarrow} & \mathcal{A}[\mathbf{v}]_B = [\mathcal{T}(\mathbf{v})]_C \in \mathbb{F}^m \end{array} \right\}$$

Remark: If $\mathbb{V} = \mathbb{W}$ and B = C, then $[T]_{C \leftarrow B}$ is written as $[T]_B$.

Remark: If $\mathbb{V} = \mathbb{W}$ and B = C, then $[T]_{C \leftarrow B}$ is written as $[T]_B$.

The previous result shows that T is completely determined by its matrix.

Remark: If $\mathbb{V} = \mathbb{W}$ and B = C, then $[T]_{C \leftarrow B}$ is written as $[T]_B$.

The previous result shows that T is completely determined by its matrix. Indeed, if $A := [T]_{C \leftarrow B}$ is known then T is determined as follows.

Remark: If $\mathbb{V} = \mathbb{W}$ and B = C, then $[T]_{C \leftarrow B}$ is written as $[T]_B$.

The previous result shows that T is completely determined by its matrix. Indeed, if $A := [T]_{C \leftarrow B}$ is known then T is determined as follows. If $\mathbf{v} := \sum_{i=1}^{n} a_i \mathbf{v}_i = B[\mathbf{v}]_B$ and

$$A \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

then

Remark: If $\mathbb{V} = \mathbb{W}$ and B = C, then $[T]_{C \leftarrow B}$ is written as $[T]_B$.

The previous result shows that T is completely determined by its matrix. Indeed, if $A := [T]_{C \leftarrow B}$ is known then T is determined as follows. If $\mathbf{v} := \sum_{i=1}^{n} a_i \mathbf{v}_i = B[\mathbf{v}]_B$ and

$$A \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

then
$$T(\mathbf{v}) = \sum_{i=1}^m b_i \mathbf{u}_i = C[T\mathbf{v}]_C$$
. Thus $T\mathbf{v} = C[T]_{C \leftarrow B}[\mathbf{v}]_B$.

Example

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T([x, y, z]^{\top}) = [x - 2y, x + y - 3z]^{\top}.$$

Example

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T([x, y, z]^{\top}) = [x - 2y, x + y - 3z]^{\top}.$$

Consider the bases $\mathcal{B}=[\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3]$ and $\mathcal{C}=[\mathbf{e}_1,\mathbf{e}_2]$ for \mathbb{R}^3 and \mathbb{R}^2 , respectively.

Example

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T([x, y, z]^{\top}) = [x - 2y, x + y - 3z]^{\top}.$$

Consider the bases $B=[{\bf e}_1,{\bf e}_2,{\bf e}_3]$ and $C=[{\bf e}_1,{\bf e}_2]$ for \mathbb{R}^3 and \mathbb{R}^2 , respectively. Then

$$A = [T]_{C \leftarrow B} = [T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3)] =$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T([x, y, z]^{\top}) = [x - 2y, x + y - 3z]^{\top}.$$

Consider the bases $B=[{\bf e}_1,{\bf e}_2,{\bf e}_3]$ and $C=[{\bf e}_1,{\bf e}_2]$ for \mathbb{R}^3 and \mathbb{R}^2 , respectively. Then

$$A = [T]_{C \leftarrow B} = \begin{bmatrix} T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 1 & -3 \end{bmatrix}.$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T([x, y, z]^{\top}) = [x - 2y, x + y - 3z]^{\top}.$$

Consider the bases $B=[{\bf e}_1,{\bf e}_2,{\bf e}_3]$ and $C=[{\bf e}_1,{\bf e}_2]$ for \mathbb{R}^3 and \mathbb{R}^2 , respectively. Then

$$A = [T]_{C \leftarrow B} = \begin{bmatrix} T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 1 & -3 \end{bmatrix}.$$

What is $T([1, 2, 3]^{\top})$?

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T([x, y, z]^{\top}) = [x - 2y, x + y - 3z]^{\top}.$$

Consider the bases $B=[{\bf e}_1,{\bf e}_2,{\bf e}_3]$ and $C=[{\bf e}_1,{\bf e}_2]$ for \mathbb{R}^3 and \mathbb{R}^2 , respectively. Then

$$A = [T]_{C \leftarrow B} = \begin{bmatrix} T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 1 & -3 \end{bmatrix}.$$

What is $T([1,2,3]^{\top})$? In general $T([x,y,z]^{\top}) = A[x,y,z]^{\top}$.

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x).

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x). Take the standard (ordered) basis $B = [1, x, x^2, x^3]$ of $\mathbb{R}_3[x]$.

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x). Take the standard (ordered) basis $B = [1, x, x^2, x^3]$ of $\mathbb{R}_3[x]$. Since D(1) = 0, D(x) = 1, $D(x^2) = 2x$, $D(x^3) = 3x^2$,

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x). Take the standard (ordered) basis $B = [1, x, x^2, x^3]$ of $\mathbb{R}_3[x]$. Since $D(1) = 0, \ D(x) = 1, \ D(x^2) = 2x, \ D(x^3) = 3x^2$, we get $[D]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x). Take the standard (ordered) basis $B = [1, x, x^2, x^3]$ of $\mathbb{R}_3[x]$. Since $D(1) = 0, \ D(x) = 1, \ D(x^2) = 2x, \ D(x^3) = 3x^2$, we get $[D]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Consider
$$p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$
.

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x). Take the standard (ordered) basis $B = [1, x, x^2, x^3]$ of $\mathbb{R}_3[x]$. Since D(1) = 0, D(x) = 1, $D(x^2) = 2x$, $D(x^3) = 3x^2$, we get

$$[D]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Consider $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$. Then $(Dp)(x) = a_1 + 2a_2x + 3a_3x^2$.

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x). Take the standard (ordered) basis $B = [1, x, x^2, x^3]$ of $\mathbb{R}_3[x]$. Since D(1) = 0, D(x) = 1, $D(x^2) = 2x$, $D(x^3) = 3x^2$, we get

$$[D]_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Consider
$$p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$
. Then $(Dp)(x) = a_1 + 2a_2x + 3a_3x^2$. Note that $[p]_B = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$ and

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x). Take the standard (ordered) basis $B = [1, x, x^2, x^3]$ of $\mathbb{R}_3[x]$. Since D(1) = 0, D(x) = 1, $D(x^2) = 2x$, $D(x^3) = 3x^2$, we get

$$[D]_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Consider
$$p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$
. Then $(Dp)(x) = a_1 + 2a_2x + 3a_3x^2$. Note that

Consider
$$p(x) = a_0 + a_1x + a_2x^2 + a_3x^2$$
. Then
$$(Dp)(x) = a_1 + 2a_2x + 3a_3x^2. \text{ Note that}$$

$$[p]_B = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} \text{ and } [D]_B[p]_B = \begin{bmatrix} a_1 \\ 2a_2 \\ 3a_3 \\ 0 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Consider $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ defined by (Dp)(x) = p'(x). Take the standard (ordered) basis $B = [1, x, x^2, x^3]$ of $\mathbb{R}_3[x]$. Since D(1) = 0, D(x) = 1, $D(x^2) = 2x$, $D(x^3) = 3x^2$, we get

$$[D]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Consider
$$p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$
. Then $(Dp)(x) = a_1 + 2a_2x + 3a_3x^2$. Note that

Consider
$$p(x) = a_0 + a_1x + a_2x + a_3x$$
. Then
$$(Dp)(x) = a_1 + 2a_2x + 3a_3x^2. \text{ Note that}$$

$$[p]_B = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} \text{ and } [D]_B[p]_B = \begin{bmatrix} a_1 \\ 2a_2 \\ 3a_3 \\ 0 \end{bmatrix} = [Dp]_B.$$

Theorem: Let \mathbb{U} , \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively.

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T : \mathbb{U} \to \mathbb{V}$ and $S : \mathbb{V} \to \mathbb{W}$ be linear transformations.

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T : \mathbb{U} \to \mathbb{V}$ and $S : \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$. Proof: We have

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)\mathbf{v}_1]_D, [(S \circ T)\mathbf{v}_2]_D, \dots, [(S \circ T)\mathbf{v}_n]_D \Big].$$

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

Proof: We have

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)\mathbf{v}_1]_D, [(S \circ T)\mathbf{v}_2]_D, \dots, [(S \circ T)\mathbf{v}_n]_D \Big].$$

$$[(S \circ T)\mathbf{v}_i]_D$$

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

Proof: We have

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)\mathbf{v}_1]_D, [(S \circ T)\mathbf{v}_2]_D, \dots, [(S \circ T)\mathbf{v}_n]_D \Big].$$

$$[(S \circ T)\mathbf{v}_i]_D = [(S(T\mathbf{v}_i)]_D = [S]_{D \leftarrow C}[T\mathbf{v}_i]_C$$

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

Proof: We have

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)\mathbf{v}_1]_D, [(S \circ T)\mathbf{v}_2]_D, \dots, [(S \circ T)\mathbf{v}_n]_D \Big].$$

$$[(S \circ T)\mathbf{v}_i]_D = [(S(T\mathbf{v}_i)]_D = [S]_{D \leftarrow C}[T\mathbf{v}_i]_C$$
$$= [S]_{D \leftarrow C}[T]_{C \leftarrow B}[\mathbf{v}_i]_B =$$

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

Proof: We have

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)\mathbf{v}_1]_D, [(S \circ T)\mathbf{v}_2]_D, \dots, [(S \circ T)\mathbf{v}_n]_D \Big].$$

$$[(S \circ T)\mathbf{v}_i]_D = [(S(T\mathbf{v}_i)]_D = [S]_{D \leftarrow C}[T\mathbf{v}_i]_C$$
$$= [S]_{D \leftarrow C}[T]_{C \leftarrow B}[\mathbf{v}_i]_B = [S]_{D \leftarrow C}[T]_{C \leftarrow B}\mathbf{e}_i,$$

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

Proof: We have

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)\mathbf{v}_1]_D, [(S \circ T)\mathbf{v}_2]_D, \dots, [(S \circ T)\mathbf{v}_n]_D \Big].$$

Now, the *i*-th column of $[S \circ T]_{D \leftarrow B}$ is

$$[(S \circ T)\mathbf{v}_i]_D = [(S(T\mathbf{v}_i)]_D = [S]_{D \leftarrow C}[T\mathbf{v}_i]_C$$
$$= [S]_{D \leftarrow C}[T]_{C \leftarrow B}[\mathbf{v}_i]_B = [S]_{D \leftarrow C}[T]_{C \leftarrow B}\mathbf{e}_i,$$

the *i*-th column of $[S]_{D\leftarrow C}[T]_{C\leftarrow B}$.

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

Proof: We have

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)\mathbf{v}_1]_D, [(S \circ T)\mathbf{v}_2]_D, \dots, [(S \circ T)\mathbf{v}_n]_D \Big].$$

Now, the *i*-th column of $[S \circ T]_{D \leftarrow B}$ is

$$[(S \circ T)\mathbf{v}_i]_D = [(S(T\mathbf{v}_i)]_D = [S]_{D \leftarrow C}[T\mathbf{v}_i]_C$$
$$= [S]_{D \leftarrow C}[T]_{C \leftarrow B}[\mathbf{v}_i]_B = [S]_{D \leftarrow C}[T]_{C \leftarrow B}\mathbf{e}_i,$$

the *i*-th column of $[S]_{D\leftarrow C}[T]_{C\leftarrow B}$.

Corollary: Let \mathbb{V} be a VS with an ordered basis B and $T,S\in\mathcal{L}(V)$.

Proof: We have

Theorem: Let \mathbb{U}, \mathbb{V} and \mathbb{W} be three vector spaces with ordered bases B, C and D, respectively. Let $T: \mathbb{U} \to \mathbb{V}$ and $S: \mathbb{V} \to \mathbb{W}$ be linear transformations. Then $[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}$.

$$[S \circ T]_{D \leftarrow B} = \Big[[(S \circ T)\mathbf{v}_1]_D, [(S \circ T)\mathbf{v}_2]_D, \dots, [(S \circ T)\mathbf{v}_n]_D \Big].$$

Now, the *i*-th column of $[S \circ T]_{D \leftarrow B}$ is

$$\begin{split} [(S \circ T)\mathbf{v}_i]_D &= [(S(T\mathbf{v}_i)]_D = [S]_{D \leftarrow C}[T\mathbf{v}_i]_C \\ &= [S]_{D \leftarrow C}[T]_{C \leftarrow B}[\mathbf{v}_i]_B = [S]_{D \leftarrow C}[T]_{C \leftarrow B}\mathbf{e}_i, \end{split}$$

the *i*-th column of $[S]_{D\leftarrow C}[T]_{C\leftarrow B}$.

Corollary: Let $\mathbb V$ be a VS with an ordered basis B and

$$T, S \in \mathcal{L}(V)$$
. Then $[S \circ T]_B = [S]_B[T]_B$.

Let $B := [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n]$ and $C := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ be ordered bases of \mathbb{V} .

Let $B:=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n]$ and $C:=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n]$ be ordered bases of \mathbb{V} . Let $\mathbf{v}\in\mathbb{V}$. Then $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n .

Let $B:=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n]$ and $C:=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n]$ be ordered bases of \mathbb{V} . Let $\mathbf{v}\in\mathbb{V}$. Then $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n . How are they related?

Let $B:=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n]$ and $C:=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n]$ be ordered bases of \mathbb{V} . Let $\mathbf{v}\in\mathbb{V}$. Then $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n . How are they related?

Define $P_{C \leftarrow B} := [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C] = [I_{\mathbb{V}}]_{C \leftarrow B}$.

Let $B:=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n]$ and $C:=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n]$ be ordered bases of \mathbb{V} . Let $\mathbf{v}\in\mathbb{V}$. Then $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n . How are they related?

Define $P_{C \leftarrow B} := [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C] = [I_{\mathbb{V}}]_{C \leftarrow B}$. The matrix $P_{C \leftarrow B}$ is called the change of basis matrix from B to C.

Let $B:=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n]$ and $C:=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n]$ be ordered bases of \mathbb{V} . Let $\mathbf{v}\in\mathbb{V}$. Then $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n . How are they related?

Define $P_{C \leftarrow B} := [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C] = [I_{\mathbb{V}}]_{C \leftarrow B}$. The matrix $P_{C \leftarrow B}$ is called the change of basis matrix from B to C. Then

Let $B:=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n]$ and $C:=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n]$ be ordered bases of \mathbb{V} . Let $\mathbf{v}\in\mathbb{V}$. Then $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n . How are they related?

Define $P_{C \leftarrow B} := [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C] = [I_{\mathbb{V}}]_{C \leftarrow B}$. The matrix $P_{C \leftarrow B}$ is called the change of basis matrix from B to C. Then

- 2 $P_{C \leftarrow B}$ is invertible and $(P_{C \leftarrow B})^{-1} = P_{B \leftarrow C} = [I_{\mathbb{V}}]_{B \leftarrow C}$.

Let $B:=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n]$ and $C:=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n]$ be ordered bases of \mathbb{V} . Let $\mathbf{v}\in\mathbb{V}$. Then $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n . How are they related?

Define $P_{C \leftarrow B} := [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C] = [I_{\mathbb{V}}]_{C \leftarrow B}$. The matrix $P_{C \leftarrow B}$ is called the change of basis matrix from B to C. Then

- $P_{C \leftarrow B} \text{ is invertible and } (P_{C \leftarrow B})^{-1} = P_{B \leftarrow C} = [I_{\mathbb{V}}]_{B \leftarrow C}.$

Exercise: Find the change of basis matrix $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$ for the bases $B = [1, x, x^2]$ and $C = [1 + x, x + x^2, 1 + x^2]$ of $\mathbb{R}_2[x]$.

Let $B:=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n]$ and $C:=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n]$ be ordered bases of \mathbb{V} . Let $\mathbf{v}\in\mathbb{V}$. Then $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$ are in \mathbb{R}^n . How are they related?

Define $P_{C \leftarrow B} := [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C] = [I_{\mathbb{V}}]_{C \leftarrow B}$. The matrix $P_{C \leftarrow B}$ is called the change of basis matrix from B to C. Then

- $P_{C \leftarrow B} \text{ is invertible and } (P_{C \leftarrow B})^{-1} = P_{B \leftarrow C} = [I_{\mathbb{V}}]_{B \leftarrow C}.$

Exercise: Find the change of basis matrix $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$ for the bases $B = [1, x, x^2]$ and $C = [1 + x, x + x^2, 1 + x^2]$ of $\mathbb{R}_2[x]$. Then find the coordinate vector of $p(x) = 1 + 2x - x^2$ w.r.t. respect to the basis C.

- Check whether the following LTs are one-one and onto.
 - $T: \mathbb{R} \to \mathbb{R}^2$ defined by $T(x) = [x, 0]^\top$, $x \in \mathbb{R}$.
 - $T : \mathbb{R}^2 \to \mathbb{R}$ defined by $T[x, y]^\top = x$, for $[x, y]^\top \in \mathbb{R}^2$.
 - $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T[x, y]^\top = [-x, -y]^\top$, for $[x, y]^\top \in \mathbb{R}^2$.

- Check whether the following LTs are one-one and onto.
 - $T: \mathbb{R} \to \mathbb{R}^2$ defined by $T(x) = [x, 0]^\top$, $x \in \mathbb{R}$.
 - $T : \mathbb{R}^2 \to \mathbb{R}$ defined by $T[x, y]^\top = x$, for $[x, y]^\top \in \mathbb{R}^2$.
 - $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T[x, y]^\top = [-x, -y]^\top$, for $[x, y]^\top \in \mathbb{R}^2$.
- Let T: V → W be an LT and v₁,..., v_k in V be such that T(v₁),..., T(v_k) are linearly independent. Are v₁,..., v_k linearly dependent? Justify?

- Check whether the following LTs are one-one and onto.
 - $T: \mathbb{R} \to \mathbb{R}^2$ defined by $T(x) = [x, 0]^\top$, $x \in \mathbb{R}$.
 - $T : \mathbb{R}^2 \to \mathbb{R}$ defined by $T[x, y]^\top = x$, for $[x, y]^\top \in \mathbb{R}^2$.
 - $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T[x, y]^\top = [-x, -y]^\top$, for $[x, y]^\top \in \mathbb{R}^2$.
- Let T: V → W be an LT and v₁,...,v_k in V be such that T(v₁),...,T(v_k) are linearly independent. Are v₁,...,v_k linearly dependent? Justify?
- Let $T : \mathbb{V} \to \mathbb{W}$ be linear and one-one. If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is an LI subset of \mathbb{V} then show that $T(S) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ is LI in \mathbb{W} .

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T[x,y]^\top = [x-y,-3x+4y]^\top$ and $S[x,y]^\top = [4x+y,3x+y]^\top$ for $[x,y]^\top \in \mathbb{R}^2$. Compute $T \circ S$ and $S \circ T$. What is your observation?
- Let $\mathbb V$ and $\mathbb W$ be vector spaces over $\mathbb F$.

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T[x,y]^\top = [x-y,-3x+4y]^\top$ and $S[x,y]^\top = [4x+y,3x+y]^\top$ for $[x,y]^\top \in \mathbb{R}^2$. Compute $T \circ S$ and $S \circ T$. What is your observation?
- Let $\mathbb V$ and $\mathbb W$ be vector spaces over $\mathbb F$.
 - If $T: \mathbb{V} \to \mathbb{W}$ is an one-one and onto (i.e., invertible). linear transformation, then show that $T^{-1}: \mathbb{W} \to \mathbb{V}$ is an LT.
 - Argue that if $\mathbb V$ is isomorphic to $\mathbb W$, then $\mathbb W$ is isomorphic to $\mathbb V.$

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T[x,y]^\top = [x-y,-3x+4y]^\top$ and $S[x,y]^\top = [4x+y,3x+y]^\top$ for $[x,y]^\top \in \mathbb{R}^2$. Compute $T \circ S$ and $S \circ T$. What is your observation?
- Let $\mathbb V$ and $\mathbb W$ be vector spaces over $\mathbb F$.
 - If $T: \mathbb{V} \to \mathbb{W}$ is an one-one and onto (i.e., invertible). linear transformation, then show that $T^{-1}: \mathbb{W} \to \mathbb{V}$ is an LT.
 - Argue that if $\mathbb V$ is isomorphic to $\mathbb W$, then $\mathbb W$ is isomorphic to $\mathbb V.$
- Let $\dim(\mathbb{V}) = \dim(\mathbb{W})$. Then show that a linear transformation $T : \mathbb{V} \to \mathbb{W}$ is one-one iff T is onto.

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T[x,y]^\top = [x-y,-3x+4y]^\top$ and $S[x,y]^\top = [4x+y,3x+y]^\top$ for $[x,y]^\top \in \mathbb{R}^2$. Compute $T \circ S$ and $S \circ T$. What is your observation?
- Let $\mathbb V$ and $\mathbb W$ be vector spaces over $\mathbb F$.
 - If $T: \mathbb{V} \to \mathbb{W}$ is an one-one and onto (i.e., invertible). linear transformation, then show that $T^{-1}: \mathbb{W} \to \mathbb{V}$ is an LT.
 - Argue that if $\mathbb V$ is isomorphic to $\mathbb W$, then $\mathbb W$ is isomorphic to $\mathbb V.$
- Let dim(V) = dim(W). Then show that a linear transformation T: V → W is one-one iff T is onto.
- Let $\dim(\mathbb{V}) = \dim(\mathbb{W})$. Then a one-one linear transformation $T: \mathbb{V} \to \mathbb{W}$ maps a basis for \mathbb{V} onto a basis for \mathbb{W} .

Let V and W be two finite dimensional vector spaces. Then V is isomorphic to W iff dim(V) = dim(W).

- Let V and W be two finite dimensional vector spaces. Then V is isomorphic to W iff dim(V) = dim(W).
- Show that
 - \mathbb{R}^3 and $\mathbb{R}_2[x]$ are isomorphic.
 - The vector spaces \mathbb{R}^n and $\mathbb{R}_n[x]$ are not isomorphic.

- Let V and W be two finite dimensional vector spaces. Then V is isomorphic to W iff dim(V) = dim(W).
- Show that
 - \mathbb{R}^3 and $\mathbb{R}_2[x]$ are isomorphic.
 - The vector spaces \mathbb{R}^n and $\mathbb{R}_n[x]$ are not isomorphic.
- Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for a vector space \mathbb{V} , and let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be vectors in \mathbb{V} . Then $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is linearly independent in \mathbb{V} if and only if $\{[\mathbf{u}_1]_B, [\mathbf{u}_2]_B, \dots, [\mathbf{u}_k]_B\}$ is linearly independent in \mathbb{R}^n .

- Let V and W be two finite dimensional vector spaces. Then V is isomorphic to W iff dim(V) = dim(W).
- Show that
 - \mathbb{R}^3 and $\mathbb{R}_2[x]$ are isomorphic.
 - The vector spaces \mathbb{R}^n and $\mathbb{R}_n[x]$ are not isomorphic.
- Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for a vector space \mathbb{V} , and let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be vectors in \mathbb{V} . Then $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is linearly independent in \mathbb{V} if and only if $\{[\mathbf{u}_1]_B, [\mathbf{u}_2]_B, \dots, [\mathbf{u}_k]_B\}$ is linearly independent in \mathbb{R}^n .
- Suppose $T, S : \mathbb{V} \to \mathbb{W}$ are LT's, and B and C are ordered bases of \mathbb{V} and \mathbb{W} , resp. Show that

$$[T+S]_{C \leftarrow B} = [T]_{C \leftarrow B} + [S]_{C \leftarrow B},$$
$$[\alpha T]_{C \leftarrow B} = \alpha [T]_{C \leftarrow B},$$

Let V, W be n dimensional with bases B and C, resp., and
 T: V → W an LT. Then T is invertible if and only if the matrix [T]_{C←B} is invertible. In that case,

$$([T]_{C \leftarrow B})^{-1} = [T^{-1}]_{B \leftarrow C}.$$

Let V, W be n dimensional with bases B and C, resp., and
 T: V → W an LT. Then T is invertible if and only if the
 matrix [T]_{C←B} is invertible. In that case,

$$([T]_{C \leftarrow B})^{-1} = [T^{-1}]_{B \leftarrow C}.$$

• Let $T : \mathbb{R}^2 \to \mathbb{R}_1[x]$ be defined by $T([a, b]^\top) = a + (a + b)x$ for $[a, b]^\top \in \mathbb{R}^2$. Find $[T]_{C \leftarrow B}$ w.r.t. standard bases, show that T is invertible, and thus find T^{-1} .
