

Matrixisolated bismuth. I. The AX band system of Bi2 in solid argon

Fakhruddin Ahmed and Eugene R. Nixon

Citation: The Journal of Chemical Physics 74, 2156 (1981); doi: 10.1063/1.441374

View online: http://dx.doi.org/10.1063/1.441374

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/74/4?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

The absorption and excitation spectroscopy of matrix-isolated atomic manganese: Sites of isolation in the solid rare gases

J. Chem. Phys. 122, 054503 (2005); 10.1063/1.1834568

Photoselection study of the Br2 AX emission system in an argon matrix

J. Chem. Phys. 83, 6538 (1985); 10.1063/1.449554

Matrixisolated bismuth. II. New fluorescence band systems and resonance Raman spectra of Bi2 and Bi4 in solid argon

J. Chem. Phys. 75, 110 (1981); 10.1063/1.441809

The AX system of Ni2 in argon matrices

J. Chem. Phys. 71, 3547 (1979); 10.1063/1.438750

The intensity distribution in the Na2 and Li2 A–X bands

J. Chem. Phys. 66, 3550 (1977); 10.1063/1.434388

Matrix-isolated bismuth. I. The $A \rightarrow X$ band system of Bi₂ in solid argon

Fakhruddin Ahmed and Eugene R. Nixon

Department of Chemistry, and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (Received 14 August 1980; accepted 6 November 1980)

The $A \rightarrow X$ fluorescence system of the Bi₂ molecule in solid argon has been explored by means of tunable dye laser radiation. About 135 bands involving A state levels from v' = 0 to v' = 6 and X state levels up to v'' = 26 are observed. Analysis yields ω_e values of 133.4 and 174.3 cm⁻¹ for the A and X states, respectively, and a band system origin at 17719 cm⁻¹. The Raman spectrum of the fundamental vibration and two overtones of Bi₂ appear along with the fluorescence.

I. INTRODUCTION

In a recent paper on the absorption and fluorescence of bismuth in solid argon and krypton matrices, ¹ we reported among other features the A-X absorption system previously observed for the gaseous Bi_2 molecule. ² In the argon matrix case our derived values of ω_e and $\omega_e x_e$ for the A state were very close to those given for the

vapor. Our estimate of 17859 cm⁻¹ for the ν_{00} of the A-X system was just slightly higher than the 17719 cm⁻¹ gas value.³ The only emission we reported at that time, aside from some obviously due to the atomic species, was a reasonably intense system with $\nu_{00}=12395$, $\omega_e^{\prime\prime}=151$, and $\omega_e x_e^{\prime\prime}=0.1$ cm⁻¹. That fluorescence, along with the corresponding absorption system ($\nu_{00}=12395$ and $\omega_e^{\prime}=123$ cm⁻¹) were attributed to Bi₂ even

FIG. 1. The $A \rightarrow X$ fluorescence system of Bi₂ in solid (uannealed) argon matrix at 10 K. The largely unrelaxed emission shown for the V' = 0, 1, 2, 3, 4, and 5 levels of the A state was obtained by irradiation with the dye laser lines indicated by L. From top to bottom of the figure, dye laser frequencies (cm⁻¹) and power (mW) were 17725 (200), 17854 (200), 18024 (130); 18149 (130); 18279 (140); and 18399 (120). Band positions for the transitions from each V' level are marked above each spectrum and labeled with the V'' number. Curves are added to outline the intensity profiles. The lower frequency portion of the V' = 5 spectrum is also shown on an expanded intensity scale. Features not identified in the figure are discussed in the text.

TABLE I. Deslandres table for A-X system of Bi₂.

v" v'	0		1		2		3 .		4		5		6
0					17 811	130	17 941	120	18 070	122	18 202	••••	
.2					172 17 639		. 172 17769	129	170 17 900	132	170 18 032		
					172	130	172	131	170	132	171		
3	17 200 171	134	17 334 170	133	17 467 171	130	17 597 171	133	17 730 170	131	17 861 172		
4	17 029		17 164		17 296		17426		17560		17689		
	171	135	172	132		130		134		129			
5	16 8 5 8		16 992		170 17 126		170 17 256		171 17389		172 17517		
•		134		134		130		133		128			
	169		168		169		168		172		169		
6	16 689	135	16 824	133	16 957	131	17 088	129	17217	131	17 348		
	168		169		169		170		170		169		
7	16 521	134	16 655	133	16 788	130	16 918	129	17 047	132	17 179		
	168	101	168	100	169	130	169	123	168	132	170		
8	16 353		16 487		16 619		16 749		16 879		17 009		
	168	134	169	132	167	130	167	130	166	130	168		
9	16 185		16 318		16 452		16 582		16 713		16 841		
		133		134		130		131		128			
0	167 16 018		167		167		166		168		166		
·		133	16 151	134	16 285	131	16 416	129	16 545	130	16 675		
	168		166				166		166		168		
1	15 850	135	15 985				16 250	129	16 379	128	16 507	134	1664
	168		165				165	120	164	120	164	104	10
2	15 692	100	15 820				16 085		16 215		16 343		16 4'
	166	128	163				165	130	165	128	165	130	10
3	15 526		15 657		15 790		15 920		16 050		16 178		16 3
	165	131	164	133	165	130	164	130	166	128		132	
1	15 361		15 493		165 15 625		164 15 756		165 15 885		163		10
_		132		132		131		129		130	16 015	130	16 14
	162		163		162		162		162		162		16
15	15 199	131	15 330	133	15 463	131	15 594	129	15 723	130	15 853	131	15 98
			164		162	101	162	120	162	130	163	131	16
3			15 166	105	15 301		15 432		15 561		15 690		15 8
			158	135	161	131	160	129	162	129	161	129	16
7			15 008		15 140		15 272		15 399		15 529		1568
			157	132	158	132	159	127	150	130	150	129	
;			14 851		14 981		15 111		159		158		15 54
				130		130		129	15 240	131	15 371	129	15 50
					159		159		158		158		15
•					14 822	130	14 952	130	15 082	131	15 213	128	15 34
							158	- - -	160	101	159	10	
)							14 794		14 922		15 504		
							156	128	157	132	159		

TABLE I (Continued)

v · ·	0	1	2	3		4		5		6
21				14 738		14 765		14 895		15 023
				156	127	157	130	157	128	156
22			14 482		14 608		14 738		14 867	
					126	157	130	157	129	155
23	3					14 451		14 581		14 712
							130		131	
						155		156		155
24						14 296	190	14 425	100	14 557
						155	129	156	132	157
25						14 141		14 269		14 400
							128	154	131	154
26								14 115		14 246
								11110	131	11210

though the $\omega_e^{\prime\prime}$ of 151 cm⁻¹ was drastically smaller than the 172.7 cm⁻¹ value given for the ground state X of the gaseous molecule. Interpretation of the bismuth spectrum was made more puzzling by the conclusion of Gerber et~al. ³⁻⁴ on the basis of their gas spectra that the electronic ground state of Bi₂ was not the previously accepted X state but rather their X' state lying about 1500 cm⁻¹ below X and having an ω_e of 154 cm⁻¹.

Most recently Bondybey and English⁵ have reinvestigated bismuth in neon and argon matrices. They report that their argon absorption spectra agree with ours but they demonstrate that the two lower frequency absorption systems with origins at 15250 and 12396 cm⁻¹ and respective vibrational spacings of 131 and 123 cm⁻¹ are due to the same species responsible for the 12395 cm⁻¹ emission system and further that this species is not Bi₂. They provide evidence for proposing the tetrahedral Bi₄ molecule as the most likely candidate.

While Bondybey and English report that they observed no emission resulting from excitation of the A+X absorption bands of Bi₂, our experimental conditions did permit us to record about 135 bands of the weak A+X fluorescence system. These observations establish 174 cm⁻¹ as the value of ω_e for the ground state of the molecule in an argon matrix.

II. EXPERIMENTAL METHODS AND RESULTS

As in our previous work, the matrices were formed by condensing onto a polished copper finger (at 10 K) argon gas and the effluent from a Knudsen-type cell containing bismuth metal (Baker Analyzed Reagent, 99.98% assay) heated to about 600 °C. The rates of deposition of the argon and the bismuth vapor over the 1 h deposition period resulted in a very pale pink matrix whose concentration we estimate was about 1500:1 in g atom ratio.

The fluorescence spectra reported here were excited

by means of a dye laser containing rhodamine (Exciton 560) pumped by about 3.5 watts of the green line (19436 cm⁻¹) of an argon ion laser. The dye laser was tuned into the phonon sideband regions lying just to the high frequency sides of the zero phonon lines (ZPL) of successively higher frequency vibronic bands in our A + X absorption system. The results are shown in Fig. 1.

III. DISCUSSION

We point out first that we did not anneal our matrices to avoid the loss in emission intensity that attends that process. As a consequence we observe, particularly in the v'=0 fluorescence and to a lesser extent with each of the other v' level excitations (Fig. 1), emission features centered about 15375 cm⁻¹, which we are convinced corresponds to the $^3D_{5/2}^0+^4S_{3/2}^0$ transition occurring at 15438 cm⁻¹ in the gaseous bismuth atom. The emission bands arising from the v'=0 level of the A state of Bi₂ (top panel of Fig. 1) are not as sharp as the others; the set of weaker peaks to the high frequency side of the labeled ones are probably due to Bi₂ molecules in a second matrix site. A similar second side effect in unannealed matrices was observed with the 12395 cm⁻¹ emission system. 1

Excitation of the matrix with 17854 cm⁻¹ radiation results in roughly equally intense emission from the v'=1 and v'=0 levels. When Bi_2 is pumped into the V'=2 state, the fluorescence bands originating in that level are dominant but emission from V'=1 and V'=0 is significant. With v'=3 excitation, successively weaker emission bands originating from V'=2, 1, and 0 also appear. Only weak v'=3 transitions accompany the v'=4 bands when 18279 cm⁻¹ pump radiation is used and similarly weak V'=4 transitions are observed along with the more intense V'=5 bands when the matrix is irradiated with the 18399 cm⁻¹ laser line. The conclusion is that especially for levels above v'=1, most of

TABLE II. Molecular constants for Bi2.

		Gas ^a		Ar matrix				
State	ν_{00}	ω_{e}	$\omega_{e} x_{e}$	ν_{00}	ω_e	$\omega_e x_e$		
x	0	172.98 (173.03) ^b	0,385 (0,384)	0	174.34	0, 393		
A	17719.1	132,49	0.302	17719	133.4	0.4		

Reference 3.

^bReference 7.

the emission intensity comes from the vibrationally unrelaxed molecule.

We turn our attention now to those few features in the spectra which are clearly not ZPL's or accompanying phonon sidebands of the A-X system of Bi₂. In the v' = 5 spectrum there is a sharp weak band at 18227 cm⁻¹, 172 cm⁻¹ to the red of the exciting line. Correspondingly, a weak peak appears at 18105 cm⁻¹ in the V'=4 spectrum, shifted by 174 cm⁻¹ from the laser frequency. These clearly are the Raman fundamentals of Bi₂. In the v'=3 emission, the Raman fundamental and first overtone appear with shifts of 172 and 344 cm⁻¹ at 17977 and 17805 cm⁻¹. The 18024 cm⁻¹ laser line which pumps the V'=2 level of the A state also produces Raman bands at 17854, 17685, and 17517 cm⁻¹ with shifts of 170, 339, and 507 cm⁻¹.

On the low frequency end of the v'=2 fluorescence is a series of weak sharp peaks at 15067, 14911, 14754, 14600, and 14446 cm⁻¹, even spaced at about 155 cm⁻¹. In the V'=0 and V'=1 emission spectra three peaks with spacing of about 123 cm⁻¹ appear at 17481, 17358, and 17235 cm⁻¹. Further discussion of these two sets of weak bands will be given elsewhere.

The frequencies of the observed ZPL's of the $A \rightarrow X$ system of Bi₂ are collected in Table I. A least squares fit of the data gives the vibrational constants for the A and X states shown in Table II. These constants reproduce almost all of the frequencies to within ± 1 cm⁻¹. Table II compares the matrix constants with those given for the gaseous molecule and it is clear that the matrix perturbation of the molecule is a very slight effect.

The intensity contours of the fluorescence spectra in Fig. 1 show that the most intense V'=0 transition is to V''=9. For V'=1, the intensity maxima occur at V''=5 and V''=11. Similarly the transitions from V'=2 to V''=4, 9, and 16 give emission maxima; the four maxima for V'=3 fall at V''=3, 7, 11, and 17, etc.

We have not attempted any Franck-Condon factor calculations but we have examined our results in light of the potential energy functions tabulated by Gerber and Broida for the A and X states. Their RKR curves, derived from spectroscopic constants for gaseous Bi_2 , have equilibrium bond lengths of about 2.66 and 2.86 Å for the X and A states. Constructing their curves and overlaying them with harmonic oscillator wave functions shows that the maxima in each v' vibrational wave function occur at internuclear distances which fall slightly inside the outer turning points of the X state curve at just the predicted v'' levels. Thus our fluorescence intensities are qualitatively consistent with the gas molecule data.

ACKNOWLEDGMENT

This research was supported by NSF-MRL Program under Grant DMR-7923647.

- ¹R. A. Teichman III and E. R. Nixon, J. Chem. Phys. **67**, 2470 (1977).
- ²G. M. Almy and F. M. Sparks, Phys. Rev. 44, 365 (1933);
 G. Nakamura and T. Shidei, Jpn. J. Phys. 10, 11 (1934); N. Aslund, R. F. Barrow, W. G. Richards, and D. N. Travis, Ark. Fys. 30, 171 (1965).
- ³G. Gerber, K. Sakurai, and H. P. Broida, J. Chem. Phys. **64**, 3410 (1976).
- ⁴G. Gerber and H. P. Broida, J. Chem. Phys. **64**, 3423 (1976).
 ⁵V. E. Bondybey and J. H. English, J. Chem. Phys. **73**, 42 (1980).
- ⁶Atomic Energy Levels, Natl. Bur. Stand. Circ. 467, Vol. III (1958).
- ⁷J. M. Blondeau, G. Gandara, P. Carette and J. Messelyn, Chem. Phys. Lett. **71**, 246 (1980).