COMPUTER ARITHMETIC

Floating Point Representation

Computer Science Department

National University of Computer and Emerging Sciences

Islamabad

REAL NUMBERS

- Numbers with fractions
- Could be done in pure binary
 - $1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed?
 - Very limited
- Moving?
 - How do you show where it is?

FLOATING POINT NOTATION

- Decimal
 - 12.4568_{ten} (decimal notation) means
 - 0.0*1 + 2 + 4/10 + 5/100 + 6/1000 + 8/10000
 - In scientific notation
 - **o**12.4568 =
 - $\circ 124568 * 10^{-4} = 1245680 * 10^{-5} =$
 - $\circ 12456.8 * 10^{-3} = 1245.68 * 10^{-2} =$
 - o124.568 * 10⁻¹ =12.4568 * 10⁰
 - o1.24568 * 10¹
 - •1.24568*10¹ is an example of *normalised* scientific notation.

FLOATING POINT IN BINARY

•Binary

- $0.010011_{\text{two}} =$ $(0/2) + (1/2^2) + (0/2^4) + (1/2^5) + (1/2^6)$ 0 + 1/4 + 0 + 1/32 + 1/64 =
 - $\circ (0.25 + 0.03125 + 0.015625)_{\text{ten}} =$
 - 0.296875_{ten}

In scientific notation

- $10011*2^{-6} = 1001.1*2^{-5} =$
- = 100.11*2⁻⁴
- = 1.0011*2⁻² normalised

NORMALIZATION

Every binary number, except the one corresponding the number zero, can be normalized by choosing the exponent so that the radix point falls to the right of the leftmost 1 bit.

$$37.25_{10} = 100101.01_2 = 1.0010101 \times 2^5$$

$$7.625_{10} = 111,101_2 = 1.11101 \times 2^2$$

$$0.3125_{10} = 0.0101_2 = 1.01 \times 2^{-2}$$

FLOATING-POINT REPRESENTATION

- Computers use a form of scientific notation for floating-point representation
- Numbers written in scientific notation have three components:

FLOATING POINT

Biased Exponent Significand or Mantissa

- +/- .significand x 2^{exponent}
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

FLOATING-POINT STANDARDS

- The IEEE has established a standard for floating-point numbers
- The IEEE-754 single precision floating point standard uses an 8-bit exponent (with a bias of 127) and a 23-bit significand. Bias is 2^{k-1}-1
- The IEEE-754 double precision standard uses an 11-bit exponent (with a bias of 1023) and a 52-bit significand.

FLOATING-POINT REPRESENTATION

- In both the IEEE single-precision and doubleprecision floating-point standard, the significand has an implied 1 to the LEFT of the radix point.
 - The format for a significand using the IEEE format is: 1.xxx...
 - For example, $4.5 = .1001 \times 2^3$ in IEEE format is $4.5 = 1.001 \times 2^2$.
 - The 1 is implied, which means it does not need to be listed in the significand (the significand would include only 001).

FLOATING-POINT REPRESENTATION

- Example: Express -3.75 as a floating point number using IEEE single precision.
- First, let's normalize according to IEEE rules:
 - $-3.75 = -11.11_2 = -1.111 \times 2^1$
 - The bias is 127, so we add 127 + 1 = 128 (this is our exponent)
 - The first 1 in the significand is implied, so we have:

• Since we have an implied 1 in the significand, this equates to $-(1).111_2 \times 2^{(128-127)} = -1.111_2 \times 2^1 = -11.11_2 = -3.75$.

Ex 1: Find the IEEE FP representation of 40.15625

Step 1.

Compute the binary equivalent of the whole part and the fractional part. (i.e. convert 40 and .15625 to their binary equivalents)

40

Result: 101000

.15625

Result:

.00101

So: $40.15625_{10} = 101000.00101_2$

Step 2. Normalize the number by moving the decimal point to the right of the leftmost one.

 $101000.00101 = 1.0100000101 \times 2^{5}$

Step 3. Convert the exponent to a biased exponent

$$127 + 5 = 132$$

And convert biased exponent to 8-bit unsigned binary:

$$132_{10} = 10000100_2$$

Step 4. Store the results from steps 1-3:

Sign Exponent Mantissa (from step 3) (from step 2)

0 10000100 0100000101000000000000

FLOATING POINT EXAMPLES

FP RANGES

- For a 32 bit number
 - 8 bit exponent (-127 to 128)
 - 24 bit fraction $(-(1-2^{-24}))$ to $(1-2^{-24})$

EXPRESSIBLE NUMBERS

(a) Twos Complement Integers

(b) Floating-Point Numbers

IEEE 754 FORMATS

(b) Double format

IEEE 754

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

Table 9.4 Interpretation of IEEE 754 Floating-Point Numbers								
Table 9.4 Inter	pretation of	IEEE 754 Floating	-Point Number	rs				
	Single Precision (32 bits)				Double Precision (64 bits)			
	Sign	Biased exponent	Fraction	Value	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0	0	0	0	0
negative zero	1	0	0	-0	1	0	0	-0
plus infinity	0	255 (all 1s)	0	∞	0	2047 (all 1s)	0	∞
minus infinity	1	255 (all 1s)	0	-∞	1	2047 (all 1s)	0	-∞
quiet NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
signaling NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
positive normalized nonzero	0	0 < e < 255	f	2 ^{c-127} (1.f)	0	0 < e < 2047	f	2 ^{c-1023} (1.f)
negative normalized nonzero	1	0 < e < 255	f	$-2^{e-127}(1.f)$	1	0 < e < 2047	f	-2 ^{e-1023} (1.f)
positive denormalized	0	0	f ≠ 0	2 ^{e-126} (0.f)	0	0	f ≠ 0	2 ^{e-1022} (0.f)
negative denormalized	1	0	f ≠ 0	$-2^{e-126}(0.f)$	1	0	f ≠ 0	$-2^{e-1022}(0.f)$

FP ARITHMETIC +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP ARITHMETIC X/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

FLOATING POINT MULTIPLICATION

FLOATING POINT DIVISION

REQUIRED READING

- Stallings Chapter 10
- IEEE (Institute of Electrical and Electronics Engineers) Computer 754 on IEEE Web site