REGRESSION IN R

Jan-Philipp Kolb

27 Mai, 2019

Why a part on simple regression

- ▶ Some machine learning concepts are based on regression
- We would like to remind you how simple regression works in R.
- ▶ We also want to show the constraints
- ▶ In a next step we will learn, how to coop with these constraints

VARIABLES OF THE MTCARS DATASET

Help for the mtcars dataset:

?mtcars

- mpg Miles/(US) gallon
- cyl Number of cylinders
- disp Displacement (cu.in.)
- hp Gross horsepower
- drat Rear axle ratio
- wt Weight (1000 lbs)
- qsec 1/4 mile time
- ▶ vs Engine (0 = V-shaped, 1 = straight)
- ightharpoonup am Transmission (0 = automatic, 1 = manual)
- gear Number of forward gears
- carb Number of carburetors

DATASET MTCARS

mpg cyl dis	p hp	drat	wt	qsec	VS	am gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02
Valiant	18.1	6	225.0	105	2.76	3.460	20.22
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82

DISTRIBUTIONS OF TWO VARIABLES OF MTCARS

```
par(mfrow=c(1,2))
plot(density(mtcars$wt)); plot(density(mtcars$mpg))
```

density.default(x = mtcars\$ensity.default(x = mtcars\$i

N = 32 Bandwidth = 0.3455

N = 32 Bandwidth = 2.477

A SIMPLE REGRESSION MODEL

DEPENDENT VARIABLE - MILES PER GALLON (MPG)

INDEPENDENT VARIABLE - WEIGHT (WT)

```
m1 <- lm(mpg ~ wt,data=mtcars)
m1
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344</pre>
```

GET THE MODEL SUMMARY

```
summary(m1)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
      Min 1Q Median 3Q
##
                                    Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt.
     -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
##
## Residual standard error: 3.046 on 30 degrees of freedom
```

THE MODEL FORMULA

Model without intercept

```
m2 <- lm(mpg ~ - 1 + wt,data=mtcars)
summary(m2)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## wt 5.291624 0.5931801 8.920771 4.55314e-10
```

Adding further variables

```
m3 <- lm(mpg ~ wt + cyl,data=mtcars)
summary(m3)$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 39.686261 1.7149840 23.140893 3.043182e-20

## wt -3.190972 0.7569065 -4.215808 2.220200e-04
```

cyl -1.507795 0.4146883 -3.635972 1.064282e-03

THE COMMAND AS. FORMULA

```
?as.formula
class(fo <- mpg ~ wt + cyl)
## [1] "formula"
# The formula object can be used in the regression:
m3 <- lm(fo,data=mtcars)</pre>
```

FURTHER POSSIBILITIES TO SPECIFY THE FORMULA

INTERACTION EFFECT

```
# effect of cyl and interaction effect:
m3a<-lm(mpg~wt*cyl,data=mtcars)
# only interaction effect:
m3b<-lm(mpg~wt:cyl,data=mtcars)</pre>
```

TAKE THE LOGARITHM

```
m3d<-lm(mpg~log(wt),data=mtcars)</pre>
```

THE COMMAND MODEL.MATRIX

With model.matrixthe qualitative variables are automatically dummy encoded

?model.matrix

model.matrix(m3d)

##		(Intercept)	log(wt)
##	Mazda RX4	1	0.9631743
##	Mazda RX4 Wag	1	1.0560527
##	Datsun 710	1	0.8415672
##	Hornet 4 Drive	1	1.1678274
##	Hornet Sportabout	1	1.2354715
##	Valiant	1	1.2412686
##	Duster 360	1	1.2725656
##	Merc 240D	1	1.1600209
##	Merc 230	1	1.1474025
##	Merc 280	1	1.2354715
##	Merc 280C	1	1.2354715

Model Matrix (II)

- We can also create a model matrix directly from the formula and data arguments
- ► See Matrix::sparse.model.matrix for increased efficiency on large dimension data.

```
ff <- mpg ~ log(wt):cyl
m <- model.frame(ff, mtcars)</pre>
(mat <- model.matrix(ff, m))</pre>
##
                         (Intercept) log(wt):cyl
                                        5.779046
## Mazda RX4
## Mazda RX4 Wag
                                        6.336316
## Datsun 710
                                      3.366269
## Hornet 4 Drive
                                      7.006964
                                        9.883772
## Hornet Sportabout
## Valiant
                                      7.447612
## Duster 360
                                       10.180525
## Merc 240D
                                        4.640084
```

A MODEL WITH INTERACTION EFFECT

```
# disp - Displacement (cu.in.)
m3d<-lm(mpg~wt*disp,data=mtcars)
m3dsum <- summary(m3d)
m3dsum$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 44.08199770 3.123062627 14.114990 2.955567e-14
## wt -6.49567966 1.313382622 -4.945763 3.216705e-05
## disp -0.05635816 0.013238696 -4.257078 2.101721e-04
## wt:disp 0.01170542 0.003255102 3.596022 1.226988e-03
```

RESIDUAL PLOT - MODEL ASSUMPTIONS VIOLATED?

 We have model assumptions violated if points deviate with a pattern from the line

plot(m3,1)

RESIDUAL PLOT

plot(m3,2)

EXAMPLE: OBJECT ORIENTATION

- ▶ m3 is now a special regression object
- ▶ Various functions can be applied to this object

```
predict(m3) # Prediction
resid(m3) # Residuals
```

##	Mazda RX4	Mazda RX4 Wag	Datsun 710	Horn
##	22.27914	21.46545	26.25203	
##	Hornet Sportabout	Valiant		
##	16.64696	19.59873		
##	Mazda RX4	Mazda RX4 Wag	Datsun 710	Horn
##	-1.2791447	-0.4654468	-3.4520262	
##	Hornet Sportabout	Valiant		
##	2.0530424	-1.4987281		

Make model prediction

```
pre <- predict(m1)</pre>
head(mtcars$mpg)
## [1] 21.0 21.0 22.8 21.4 18.7 18.1
head(pre)
           Mazda RX4
##
                          Mazda RX4 Wag
                                                 Datsun 710
                                                                Horn
##
            23.28261
                                21.91977
                                                   24.88595
## Hornet Sportabout
                                Valiant
##
            18.90014
                                18.79325
```

REGRESSION DIAGNOSTIC WITH BASE-R

```
plot(mtcars$wt,mtcars$mpg)
abline(m1)
segments(mtcars$wt, mtcars$mpg, mtcars$wt, pre, col="red")
```


THE MEAN SQUARED ERROR

- ▶ The **MSE** measures the average of the squares of the errors
- The lower the better

```
(mse5 <- mean((mtcars$mpg - pre)^2)) # model 5
## [1] 8.697561
(mse3 <- mean((mtcars$mpg - predict(m3))^2))
## [1] 5.974124</pre>
```

THE VISREG-PACKAGE

install.packages("visreg")
library(visreg)

THE VISREG-PACKAGE

- ▶ The default-argument for type is conditional.
- ▶ Scatterplot of mpg and wt plus regression line and confidence bands

```
visreg(m1, "wt", type = "conditional")
```


REGRESSION WITH FACTORS

► The effects of factors can also be visualized with visreg:

EFFECTS OF FACTORS

```
par(mfrow=c(1,2))
visreg(m4, "cyl", type = "contrast")
visreg(m4, "cyl", type = "conditional")
```


THE PACKAGE VISREG - INTERACTIONS

```
m5 <- lm(mpg ~ cyl*wt, data = mtcars)

# summary(m5)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 39.571196 3.193940 12.3894599 2.058359e-12

## cyl6 -11.162351 9.355346 -1.1931522 2.435843e-01

## cyl8 -15.703167 4.839464 -3.2448150 3.223216e-03

## wt -5.647025 1.359498 -4.1537586 3.127578e-04

## cyl6:wt 2.866919 3.117330 0.9196716 3.661987e-01

## cyl8:wt 3.454587 1.627261 2.1229458 4.344037e-02
```

CONTROL OF THE GRAPHIC OUTPUT WITH LAYOUT.

visreg(m5, "wt", by = "cyl",layout=c(3,1))

THE PACKAGE VISREG - INTERACTIONS OVERLAY

m6 <- lm(mpg ~ hp + wt * cyl, data = mtcars)
visreg(m6, "wt", by="cyl", overlay=TRUE, partial=FALSE)</pre>

THE PACKAGE VISREG - VISREG2D

visreg2d(m6, "wt", "hp", plot.type = "image")

mpg

NICE TABLE OUTPUT WITH STARGAZER

library(stargazer)
stargazer(m3, type="html")

EXAMPLE HTML OUTPUT:

	Dependent variable:	
	mpg	
wt	-3.125***	
	(0.911)	
cyl	-1.510***	
	(0.422)	
am	0.176	
	(1.304)	
Constant	39.418***	
	(2.641)	
Observations	32	

EXERCISE: REGRESSION AMES HOUSING DATA

- Install the package AmesHousing and create a processed version of the Ames housing data with the variables Sale_Price, Gr_Liv_Area and TotRms_AbvGrd
- 2) Create a regression model with Sale_Price as dependent and Gr_Liv_Area and TotRms_AbvGrd as independent variables. Then create seperated models for the two independent variables. Compare the results. What do you think?

THE AMES IOWA HOUSING DATA

ames_data <- AmesHousing::make_ames()</pre>

Some Variables

- Gr_Liv_Area: Above grade (ground) living area square feet
- TotRms_AbvGrd: Total rooms above grade (does not include bathrooms
- ► MS_SubClass: Identifies the type of dwelling involved in the sale.
- ▶ MS_Zoning: Identifies the general zoning classification of the sale.
- ▶ Lot_Frontage: Linear feet of street connected to property
- ▶ Lot_Area: Lot size in square feet
- Street: Type of road access to property
- ► Alley: Type of alley access to property
- ► Lot_Shape: General shape of property
- Land_Contour: Flatness of the propert

MULTICOLLINEARITY

- As p increases we are more likely to capture multiple features that have some multicollinearity.
- When multicollinearity exists, we often see high variability in our coefficient terms.
- ► E.g. we have a correlation of 0.801 between Gr_Liv_Area and TotRms_AbvGrd
- Both variables are strongly correlated to the response variable (Sale_Price).

```
ames_data <- AmesHousing::make_ames()
cor(ames_data[,c("Sale_Price","Gr_Liv_Area","TotRms_AbvGrd")])
## Sale_Price Gr_Liv_Area TotRms_AbvGrd
## Sale_Price 1.0000000 0.7067799 0.4954744
## Gr_Liv_Area 0.7067799 1.0000000 0.8077721
## TotRms_AbvGrd 0.4954744 0.8077721 1.0000000</pre>
```

MULTICOLLINEARITY

```
lm(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd, data = ames_data)
##
## Call:
## lm(formula = Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd, data =
##
## Coefficients:
## (Intercept) Gr_Liv_Area TotRms_AbvGrd
## 42767.6 139.4 -11025.9
```

▶ When we fit a model with both these variables we get a positive coefficient for Gr_Liv_Area but a negative coefficient for TotRms_AbvGrd, suggesting one has a positive impact to Sale_Price and the other a negative impact.

SEPERATED MODELS

- ▶ If we refit the model with each variable independently, they both show a positive impact.
- ► The Gr_Liv_Area effect is now smaller and the TotRms_AbvGrd is positive with a much larger magnitude.

```
lm(Sale_Price ~ Gr_Liv_Area, data = ames_data)$coefficients
## (Intercept) Gr_Liv_Area
## 13289.634 111.694
lm(Sale_Price ~ TotRms_AbvGrd, data = ames_data)$coefficients
## (Intercept) TotRms_AbvGrd
## 18665.40 25163.83
```

- ▶ This is a common result when collinearity exists.
- ► Coefficients for correlated features become over-inflated and can fluctuate significantly.

Consequences

- One consequence of these large fluctuations in the coefficient terms is overfitting, which means we have high variance in the bias-variance tradeoff space.
- ▶ We can use tools such as **variance inflaction factors** (Myers, 1994) to identify and remove those strongly correlated variables, but it is not always clear which variable(s) to remove.
- Nor do we always wish to remove variables as this may be removing signal in our data.

The Problem - Overfitting

 Our model doesn't generalize well from our training data to unseen data.

What can be done against overvitting

- Cross Validation
- ► Train with more data
- Remove features
- ▶ Regularization e.g. ridge and lasso regression
- ► Ensembling e.g. bagging and boosting

CROSS VALIDATION

- ▶ Cross-validation is a powerful preventative measure against overfitting.
- ▶ Use your initial training data to generate multiple mini train-test splits. Use these splits to tune your model.

NECESSARY PACKAGES

```
library(tidyverse)
library(caret)
```

CROSS VALIDATION IN R

SPLIT DATA INTO TRAINING AND TESTING DATASET

```
training.samples <- ames_data$Sale_Price %%
createDataPartition(p = 0.8, list = FALSE)
train.data <- ames_data[training.samples, ]
test.data <- ames_data[-training.samples, ]</pre>
```

Build the model and make predictions

```
model <- lm(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd, data = tra
# Make predictions and compute the R2, RMSE and MAE
(predictions <- model %>% predict(test.data))
##
## 195877.67 188756.39 216145.92 142360.23 108837.15 173613.38 1
##
           8
                               10
                                         11
                                                   12
                                                              13
## 161122.05 153589.93 157258.43 206422.63 204642.31 168027.62 1
##
          15
                    16
                               17
                                         18
                                                   19
                                                              20
## 183278.48 218855.78 137977.90 113767.26 132939.93 173692.15 2
```

Model with cross validation

► Loocy: leave one out cross validation

```
train.control <- caret::trainControl(method = "LOOCV")
# Train the model
model <- train(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd,
               data = train.data, method = "lm",
               trControl = train.control)
model %>% predict(test.data)
##
## 195877.67 188756.39 216145.92 142360.23 108837.15 173613.38 1
##
           8
                               10
                                         11
                                                    12
                                                              13
   161122.05 153589.93 157258.43 206422.63 204642.31 168027.62 1
##
          15
                    16
                               17
                                         18
                                                    19
                                                              20
## 183278.48 218855.78 137977.90 113767.26 132939.93 173692.15 2
          22
                    23
                               24
                                         25
                                                    26
                                                              27
##
## 170492.68 171500.98 179639.08 194371.24 161669.85 145373.08 2
          29
                    30
                               31
                                         32
                                                    33
##
                                                              34
```

SUMMARIZE THE RESULTS

```
print(model)
## Linear Regression
##
## 2346 samples
##
     2 predictor
##
## No pre-processing
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 2345, 2345, 2345, 2345, 2345, 2345,
  Resampling results:
##
            Rsquared MAE
##
    RMSE
##
    55736.24 0.5053362 37847.84
##
## Tuning parameter 'intercept' was held constant at a value of
```

LINKS - LINEAR REGRESSION

- Regression r-bloggers
- ▶ The complete book of **Faraway** very intuitive
- ► Good introduction on Quick-R
- Multiple regression
- ▶ 15 Types of Regression you should know
- ggeffects Create Tidy Data Frames of Marginal Effects for 'ggplot' from Model Outputs
- ► Machine learning iteration

SHINY APP - DIAGNOSTICS FOR LINEAR REGRESSION

- ► Shiny App Simple Linear Regression
- ► Shiny App Multicollinearity in multiple regression

Diagnostics for simple linear regression

