Régressions SOM-Clusterwise et SOM-PLS-Clusterwise

Encadrants:

Ndeye Niang

Sylvie Thiria

Stagiaire:

Rémi Bernhard

CNRS/Locean

Mars-Juin 2018

Introduction Objectif

• Objectif:

Développement d'un nouvel algorithme de régression clusterwise qui hérite des propriétés des cartes topologiques de Kohonen

• Enjeux:

- Performances en généralisation
- 2 Robustesse
- Onvergence

Plan Démarche

I Rappels

Régression Clusterwise, Régression PLS, Cartes topologiques de Kohonen

II Algorithmes SOM-Clusterwise et

SOM-PLS-Clusterwise

Illustrations, comparaisons

III Données réelles

Comparaisons

IV Conclusion et perspectives

Notations

n : nombre d'individus

 \mathbf{p} : nombre de variables explicatives

X: matrice des variables explicatives $(n \times p)$

y: vecteur variable réponse $(n \times 1)$

G: nombre de groupes

Régression PLS(Partial Least Squares)

Objectif de la régression PLS : Pouvoir faire de la régression linéaire quand il y a un grand nombre de variables explicatives ou qu'elles sont très corrélées entre elles

Principe: On cherche une matrice T $(n \times q)$ avec:

- q < p
- Chaque colonne de T est une combinaison linéaire des colonnes de X
- Les colonnes de T sont orthogonales entre elles
- ullet On tient compte de la relation entre X et y

Cartes topologiques de Kohonen

Classification non-supervisée

G groupes : A fonction d'affec-

tation

 $G \text{ référents} : \Omega = (\omega_1, \omega_2, ..., \omega_G)$

Fonction de coût:

$$J(A, \Omega) = \sum_{i=1}^{n} \sum_{c=1}^{G} K_t(\delta(A(X_i), c)) ||X_i - \omega_c||_2$$

 X_i : individu i

 $\delta(A(X_i),c)$: distance sur la carte entre les neurones $A(X_i)$ et c

 K_t : fonction de voisinage gaussienne

Régression clusterwise (Motivation et principe)

Motivation : On pense que les individus sont classés en G groupes et que la relation entre y et X est différente selon le groupe

Objectif : Classer les individus en G groupes tout en ayant le meilleur modèle linéaire au sein de chacun des groupes.

Principe : Classification et régression réalisées en simultané

Régression clusterwise (Illustration)

FIGURE 1 – Régression linéaire $R^2 = 0.04$

FIGURE 2 – Régression clusterwise $R^2 = 0.94 - 0.96$

Régression clusterwise (Méthodes existantes)

Méthodes existantes:

• méthode géométrique (minimisation d'une fonction de coût)

 $D\'efaut: faible\ robustesse\ (p>n\ dans\ un\ groupe)$

• méthode probabiliste (maximisation de la vraisemblance) Défaut : choix d'une loi de probabilité pour y obligatoire

Rappels

Régression clusterwise (algorithme kreg)

Fonction de coût :

$$J(A,\beta) = \sum_{i=1}^{n} (y_i - X_i^T \beta^{A(X_i)})^2$$

avec:

 β^c le vecteur de coefficients pour le groupe c A une fonction qui affecte à chaque individu un numéro de groupe

Principe (batch):

Affectation à la droite de régression la plus proche Apprentissage d'un modèle linéaire au sein de chaque groupe

Inconvénients:

- Sensibilité aux groupes où n < p
- Pas de notion d'ordre

Motivation et principe

Motivations:

- Tirer parti des avantages des cartes topologiques de Kohonen
- Pouvoir traiter le cas où n < p dans un groupe
- ullet Ne pas avoir à choisir de loi de densité pour y

Principe:

Adapter la fonction de coût des cartes de Kohonen à un problème de régression linéaire

Présentation de l'algorithme

Kohonen

$$J(A, \Omega) = \sum_{i=1}^{n} \sum_{c=1}^{G} K_t(\delta(A(X_i), c)) \|X_i - \omega_c\|_2$$

SOM - Clusterwise

$$J(A,\beta) = \sum_{i=1}^{n} \sum_{c=1}^{G} K_t(\delta(A(X_i), c)) (y_i - X_i^T \beta^c)^2$$

avec:

 \bullet les référents qui sont notés $\beta=(\beta^1,\beta^2,...,\beta^G)$

Présentation de l'algorithme

Algorithme <u>batch</u>

A t fixée :

Phase d'affectation:

$$\forall i \in [1, n] \ A(Z_i) = \arg\min_{r \in [1, G]} \sum_{c=1}^{G} K_t(\delta(r, c)) (y_i - X_i^T \beta^c)^2$$

On tient compte des distances sur la carte

Phase de minimisation:

$$\forall c \in [1, G] \ \beta^c = \left(X^T M_c X\right)^{-1} X^T M_c y$$

Régression pondérée de Y par X par les valeurs de la fonction de voisinage

Algorithme kreg avec carte topologique

Déroulement de l'algorithme

On fait décroître la valeur de la température t au fur et à mesure de l'exécution (réduction du voisinage considéré)

Pour chaque valeur de t : atteinte d'un minimum local de la fonction de coût

A t fixée, on atteint un minimum local de la fonction de coût en un temps fini

Illustration

FIGURE 3 – 4-moyennes puis régression linéaire

FIGURE 4 – Algorithme SOM-Clusterwise

Illustration

FIGURE 5 – Illustration de la notion d'ordre

Robustesse

Motivation:

Si p et G sont élevés par rapport à n, la régression linéaire au sein d'un groupe peut devenir impossible à basse température.

Solution:

Définir un critère d'early-stopping, basé sur l'évolution de l'erreur sur l'ensemble d'apprentissage en fonction de la température

Robustesse

Erreur d'apprentissage : Trois phases bien distinctes

 $\it Early-stopping: arrêter$ l'algorithme avant le sur-apprentissage $_{18/29}$

Méthodologie des comparaisons

Données simulées :

- chaque variable explicative X^j : lois normales $(\mu_1, \mu_2, ..., \mu_G), \sigma = 1$
- $Y^c = \sum_{j=1}^p \alpha_c X^j + \epsilon \text{ avec } \epsilon \sim \mathcal{N}(0, 0.1), \ \alpha_c \in \llbracket -1, 1 \rrbracket$

SOM-Clusterwise et kreg:

Pour chaque cas envisagé, 5 simulations Pour chaque simulation, 5 exécutions des algorithmes On garde les résultats relatifs à la plus petite valeur de la fonction de coût

Comparaisons SOM-Clusterwise et kreg Résultats

Cas numéro	n	р	\mathbf{G}	Séparation	$ m G_{algo}$
1	540	2	4	moyennement séparés	9
2	540	2	4	bien séparés	9
3	180	2	4	bien séparés	16

Cas numéro	algorithme	rand	CH	err_{train}	err_{test}
	SOM-clus	0.88	137	0.08	4.25
1	kreg	0.5	47	30	7.13
1	SOM-clust-d	0.84	58	0.09	3.31
	SOM-clus	0.81	55	0.03	0.34
2	kreg	X	X	X	X
2	SOM-clust-d	0.8	22	0.05	0.28
	SOM-clus	X	X	X	X
3	kreg	X	X	X	X
3	SOM-clust-d	0.8	5.23	0.01	0.25

Comparaisons SOM-Clusterwise et kreg $_{\rm R\acute{e}sultats}$

- Critères d'early-stopping efficaces en termes de robustesse et de performances en prédiction
- Justification de la pertinence de la carte topologique dans un algorithme de régression clusterwise

Données Description

1960 observations (1960 relevés à Banizoumbou, Niger)

- Variables explicatives : 16 variables locales et 936 variables de grande échelle
 - Date (heure, jour, mois, année) (non utilisées dans cette étude)
 - Vitesse du vent (en $m.s^{-1}$)
 - Direction du vent (de 0 à 360 degrés)
 - Température (en °C)
 - Humidité (en pourcentage)

- Pression (en Bar)
- Quatre mesures de AOT(Epaisseur Optique en Aérosols) (sans unité)
- Trois mesures du coefficient d'Angström (sans unité)
- 936 variables de grande échelle (non utilisées dans cette étude)
- extstyle ext

Données

Méthodes linéaires simples

Ecart-type de $y: 288 \ \mu g.m^{-3}$

Régression linéaire	12 variables	7 variables
Coefficient de détermination \mathbb{R}^2	0.66	0.62
RMSE (10-cross validation) en $\mu g.m^{-3}$	440	343

Table 1 – Résultats pour la régression linéaire classique

Régression PLS avec 12 composantes :

• RMSE : $282 \ \mu g.m^{-3}$

 \bullet R squared: 0.66

Données Algorithme SOM-Clusterwise

RMSE(ensemble de test)		Algorithme		
		kreg	Spaeth	SOM-clus
<i>C</i> .	4	177.1	174.9	149.42
G_{algo}	6	183.39	172.81	168.44

Table 2 – Comparaison de l'algorithme SOM-Clusterwise aux algorithmes kreg et Spaeth

Spaeth: version stochastique de l'algorithme kreg

Données Interprétation

AOT : bonne séparation suivant les groupes

Données Interprétation

Groupe 1	AOT
Groupe 2	Pression
Groupe 3	AOT
Groupe 4	Angström, Direction du vent

Table 3 – $G_{algo} = 4$: Variables importantes dans chaque groupe

Groupe 1	Humidité
Groupe 2	Humidité, Pression, Direction du vent
Groupe 3	AOT
Groupe 4	Pression, Direction du vent
Groupe 5	
Groupe 6	Température

Table 4 – $G_{algo} = 6$: Variables importantes dans chaque groupe

Conclusion et perspectives

Bilan

- SOM-Clusterwise :
 - bonnes performances en généralisation
 - 2 robustesse assurée
 - 3 rapidité de convergence
- SOM-PLS-Clusterwise :
 - plus performant que *mbpls* dans certains cas $(G_{algo} > G)$

Perspectives:

- Algorithmes SOM-Clusterwise et PLS-SOM-Clusterwise
 - → parallélisation des tâches (Spark,...)
- 2 Critère pour le choix du nombre de groupes

Régressions SOM-Clusterwise et SOM-PLS-Clusterwise

Encadrants:

Ndeye Niang

Sylvie Thiria

Stagiaire:

Rémi Bernhard

CNRS/Locean

Mars-Juin 2018

Références:

Hervé Abdi. Partial least squares regression and projection on latent structure regression (pls regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1):97–106, 2010.

Stéphanie Bougeard, Hervé Abdi, Gilbert Saporta, and Ndèye Niang. Clusterwise analysis for multiblock component methods. Advances in Data Analysis and Classification, 2017.

Helmuth Späth. Algorithm 39 clusterwise linear regression. Computing, 22(4):367–373, 1979.