Tutorial Solution

1. The associated symmetric matrix is $A = \begin{pmatrix} 5 & 0 & -5 \\ 0 & 1 & -2 \\ -5 & -2 & 10 \end{pmatrix}$. Apply row and column operation to obtain the normal form of A and check that $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is the normal

form. Thus the normal form of the given quadratic form is $x^2 + y^2 + z^2$. Thus, the quadratic form is positive definite.

2. The associated symmetric matrix is $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 2 \\ 0 & 2 & 3 \end{pmatrix}$. Apply row and column operation to obtain the normal form of A and check that $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ is the normal

form. Thus the normal form of the given quadratic form is $x^2 + y^2 - z^2$. Thus, the quadratic form is indefinite.

3. The real quadratic form corresponding to the matrix B^tB is $X^t(B^tB)X$, where X is an $n \times 1$ real matrix. Now,

$$X^{t}(B^{t}B)X = (BX)^{t}(BX) = Y^{t}Y$$
, where $Y = BX$.

Let

$$X = (x_1 \ x_2 \ \dots x_n)^t$$
 and $Y = (y_1 \ y_2 \ \dots y_n)^t$, then $Y^t Y = y_1^2 + \dots + y_n^2$.

The quadratic form Y^tY assumes real values greater than or equal to zero. So the quadratic form $X^t(B^tB)X$ is either positive definite or positive semi-definite and therefore the matrix B^tB is either positive definite or positive semi-definite. Since Y is a real $n \times 1$ matrix, $Y^{t}Y = 0$ occurs only when Y = O, i.e., when BX = O.

If B be non-singular, BX = 0 occurs only when X = O. If B be singular, BX = 0 holds for X = O and also for some $X \neq O$. Therefore the quadratic form is positive definite if B be non-singular and positive semi-definite if B be singular. Hence the matrix B^tB is positive definite or positive semi-definite according as B is non-singular or singular.

4. Let λ be an eigenvalue of A. Then $\det(A - \lambda I_n) = 0$. Therefore, there exist non-null solutions of the homogeneous system $(A - \lambda I_n)X = O$. Let X_1 be one such solution. Then

$$(A - \lambda I_n)X_1 = O$$
, that is $AX_1 = \lambda X_1$.

Taking transpose of the conjugate of the above, we get

$$(\bar{X}_1)^t(\bar{A})^t = \bar{\lambda}(\bar{X}_1)^t \implies (\bar{X}_1)^t A = \bar{\lambda}(\bar{X}_1)^t$$
, since $A^t = A = \bar{A}^t$.

Multiplying by X_1 from the right, we have

$$(\bar{X}_1)^t \lambda X_1 = \bar{\lambda}(\bar{X}_1)^t X_1 \implies (\lambda - \bar{\lambda})(\bar{X}_1)^t X_1 = 0.$$

But $(\bar{X}_1)^t X_1 \neq 0$, since X_1 is non-null. It follows that $\lambda = \bar{\lambda}$ and therefore λ is purely real.

7. Let
$$A = \begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -4 & -4 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$. Then the equation takes the form $X^t A X + B X + 12 I_1 = O$.

The eigenvalues of A are 4, -2. The eigenvectors corresponding to the eigenvalues 4 and -2 are

$$c\begin{pmatrix}1\\-1\end{pmatrix}, c \neq 0; d\begin{pmatrix}1\\1\end{pmatrix}, d \neq 0$$
 respectively.

The orthonormal set of eigenvectors is

$$\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \right\}.$$

Let $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Then P is an orthogonal matrix. P^tAP is a diagonal matrix

whose eigenvalues are same as those of A. So $P^tAP = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix}$. Also $BP = \begin{pmatrix} 0 & -4\sqrt{2} \end{pmatrix}$.

By the orthogonal transformation X = PX' where $X' = \begin{pmatrix} x' \\ y' \end{pmatrix}$, the equation transforms to

$$4(x')^2 - 2(y')^2 - 4\sqrt{2}y' + 12 = 0 \implies 4(x')^2 - 2(y' + \sqrt{2})^2 = -16.$$

Let us apply the translation $x''=x',\ y''=y'+\sqrt{2}.$ The equation transforms to $4(x'')^2-2(y'')=-16.$

The canonical form is $2x^2 - y^2 = -8$. The equation represents a hyperbola.