Лабораторна робота №5

Тема: Успадкування в С++ та С#.

Мета роботи: Набуття навичок розробки програм мовами C++ та C# з використанням базового принципу об'єктно-орієнтованого програмування – (одиночного) успадкування.

Теоретичні відомості: матеріали лекції.

Завдання на лабораторну роботу

Варіант 1.		
1. Описати клас, ян	1. Описати клас, який містять вказані поля і методи.	
Клас "Векто	p y R ² "-TVector2D	
поля	 для зберігання координат вектора; 	
методи	 конструктор без параметрів, конструктор з параметрами, конструктор копіювання; введення/виведення елементів вектора; визначення довжини вектора; нормування вектора; порівняння з іншим вектором; перевантаження операторів + (додавання векторів), - (віднімання векторів), * (знаходження скалярного добутку). 	

- 2. Створити клас-нащадок TVector3D (вектор у R^3) на основі класу TVector2D. Додати третю координату вектора та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варіант 2.

1. Описати клас, який містять вказані поля і методи.

Клас "Пря	Клас "Прямокутник" – TRectangle		
поля	 для зберігання довжин сторін; 		
методи	• конструктор без параметрів, конструктор з параметрами, конструктор		
	копіювання;		
	■ введення/виведення даних;		
	■ визначення площі;		
	■ визначення периметру;		
	■ порівняння з іншим прямокутником;		
	■ перевантаження операторів + (додавання відповідних сторін), -		
	(віднімання довжин відповідних сторін), * (множення сторін на деяке число).		

- 2. Створити клас-нащадок TParallelepiped (прямокутний паралелепіпед) на основі класу TRectangle. Додати поле для збереження висоти паралелепіпеда, метод знаходження об'єму паралелепіпеда та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варіа	Варіант 3.		
1. Оп	исати клас, я	кий містять вказані поля і методи.	
	Клас "Квадр	ar" – TSquare	
	поля	 для зберігання довжини сторін; 	
	методи	• конструктор без параметрів, конструктор з параметрами, конструктор	
		копіювання;	
		■ введення/виведення даних;	
		• визначення площі;	
		• визначення периметру;	
		• порівняння з іншим квадратом;	
		 перевантаження операторів + (додавання довжин сторін), − (віднімання 	
		довжин сторін), * (множення сторін на деяке число).	

- 2. Створити клас-нащадок TCube (куб) на основі класу TSquare. Додати метод знаходження об'єму куба та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варі	Варіант 4.			
1. Oı	1. Описати клас, який містять вказані поля і методи.			
	Клас "Трикутник" – TTriangle			
	поля	 для зберігання довжин сторін; 		
	методи	• конструктор без параметрів, конструктор з параметрами,		
		конструктор копіювання;		
		■ введення/виведення даних;		
		■ визначення площі;		

визначення периметру;

- порівняння з іншим трикутником;
 перевантаження операторів + (додавання довжин сторін), − (віднімання довжин відповідних сторін), * (множення сторін на деяке
- 2. Створити клас-нащадок TTrianglePrizm (пряма призма, в основі якої трикутник) на основі класу TTriangle. Додати метод знаходження об'єму призми та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варіант 5.

1. Описати клас, який містять вказані поля і методи.

KJIAC PIBE	носторонній трикутник " – TRTriangle
поля	 для зберігання довжини сторін;
методи	• конструктор без параметрів, конструктор з параметрами,
	конструктор копіювання;
	■ введення/виведення даних;
	визначення площі;
	визначення периметру;
	• порівняння з іншим трикутником;
	■ перевантаження операторів + (додавання довжин сторін), -
	(віднімання довжин відповідних сторін), * (множення сторін на деяке
	число).

- 2. Створити клас-нащадок TPiramid (правильна трикутна піраміда) на основі класу TRTriangle. Додати метод знаходження об'єму піраміди та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варіант 6. 1. Описати клас, який містять вказані поля і методи. Клас "прямокутний трикутник " – TPTriangle поля поля конструктор без параметрів, конструктор з параметрами, конструктор копіювання; введення/виведення даних; визначення площі; визначення периметру; порівняння з іншим трикутником; перевантаження операторів + (додавання довжин катетів), —

2. Створити клас-нащадок TPPiramid (прямокутна трикутна піраміда, у якій бічне ребро перпендикулярне до катетів) на основі класу TPTriangle. Додати метод знаходження об'єму піраміди та перевизначити відповідні методи.

(віднімання довжин відповідних катетів), * (множення сторін на

3. Створити програму-клієнт для тестування.

деяке число).

Варі	Варіант 7.		
1. O	писати клас, я	який містять вказані поля і методи.	
	Клас "коло"	" – TCircle	
	поля	 для зберігання радіуса; 	
	методи	• конструктор без параметрів, конструктор з параметрами, конструктор	
		копіювання;	
		■ введення/виведення даних;	
		■ визначення площі круга (обмеженого колом);	
		• визначення довжини кола;	
		■ порівняння з іншим колом;	
		■ перевантаження операторів + (додавання радіусів), – (віднімання	
		радіусів), * (множення радіуса на число).	

- 2. Створити клас-нащадок TCylinder (циліндр) на основі класу TCircle. Додати метод знаходження об'єму циліндра та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Bapi	Варіант 8.		
1. Oi	писати клас,	який містять вказані поля і методи.	
	Клас "коло	" – TCircle	
	поля	 для зберігання радіуса; 	
	методи	• конструктор без параметрів, конструктор з параметрами, конструктор	
		копіювання;	
		■ введення/виведення даних;	
		• визначення площі круга (обмеженого колом), площі сектора;	
		• визначення довжини кола;	
		• порівняння з іншим колом;	
		■ перевантаження операторів + (додавання радіусів), – (віднімання	
		радіусів), * (множення радіуса на число).	

- 2. Створити клас-нащадок TCone (конус) на основі класу TCircle. Додати поле для збереження висоти конуса, метод знаходження об'єму конуса та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Bapi	Варіант 9.		
1. Oı	1. Описати клас, який містять вказані поля і методи.		
	Клас "коло"	- TCircle	
	поля	 для зберігання радіуса; 	
	методи	• конструктор без параметрів, конструктор з параметрами,	
		конструктор копіювання;	
		введення/виведення даних;	
		визначення площі круга (обмеженого колом), площі сектора;	
		визначення довжини кола;	
		• порівняння з іншим колом;	
		■ перевантаження операторів + (додавання радіусів), – (віднімання	
		радіусів), * (множення радіуса на число).	
		TO 1 (1) TO 1 TO	

- 2. Створити клас-нащадок TSphere (сфера) на основі класу TCircle. Додати метод знаходження площі поверхні сфери та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варіант 10.

1. Описати клас, який містять вказані поля і методи.

Клас "круг" – TCircle	
поля	для зберігання радіуса;для зберігання центра кола
методи	 конструктор без параметрів, конструктор з параметрами, конструктор копіювання; введення/виведення даних; визначення площі круга; перевірка належності точки кругу; перевантаження операторів + (додавання радіусів), - (віднімання радіусів), * (множення радіуса на число).

- 2. Створити клас-нащадок TBall (куля) на основі класу TCircle. Додати метод знаходження об'єму кулі та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варіант 11.

1 Описати клас який містять вказані поля і метоли

Клас "одновимірний масив" – TArray	
поля	 для зберігання елементів масиву;
	 для зберігання кількості елементів.
методи	• конструктор без параметрів, конструктор з параметрами, конструктор
	копіювання;
	■ введення/виведення даних;
	• знаходження найбільшого/найменшого елемента;
	• сортування масиву;
	• знаходження суми елементів;
	■ перевантаження операторів + (додавання елементів), – (віднімання
	елементів), * (множення масиву на число).

- 2. Створити клас-нащадок TOderedArray (упорядкований масив) на основі класу TArray. Додати методи додавання та вилучення елементів (перевизначивши оператори додавання та віднімання числа).
- 3. Створити програму-клієнт для тестування.

Варіант 12. 1. Описати клас, який містять вказані поля і методи. Клас "матриця " – TMatrix поля для зберігання елементів матриці; поля для зберігання розмірності матриці. методи конструктор без параметрів, конструктор з параметрами, конструктор копіювання; введення/виведення даних; введення/виведення даних; знаходження найбільшого/найменшого елемента; знаходження суми елементів.

- 2. Створити клас-нащадок TOpMatrix (матриця, для якої перевантажено оператори +,-,*) на основі класу TMatrix..
- 3. Створити програму-клієнт для тестування.

Варіант 13.

1. Описати клас, який містять вказані поля і методи.

Клас "квад	Клас "квадратна матриця" – TSMatrix	
поля	 для зберігання елементів матриці; 	
	 для зберігання розмірності матриці. 	
методи	• конструктор без параметрів, конструктор з параметрами, конструктор	
	копіювання;	
	■ введення/виведення даних;	
	■ знаходження найбільшого/найменшого елемента;	
	• знаходження суми елементів.	
	 перевантаження операторів + (додавання елементів), − (віднімання 	
	елементів).	

- 2. Створити клас-нащадок TDeterminant2 (визначник квадратної матриці порядку 2) на основі класу TSMatrix. Розробити метод для знаходження визначника.
- 3. Створити програму-клієнт для тестування.

Варіант 14.

1. Описати клас, який містять вказані поля і методи.

Клас "квад	Клас "квадратна матриця" – TSMatrix	
поля	 для зберігання елементів матриці; 	
	 для зберігання розмірності матриці. 	
методи	• конструктор без параметрів, конструктор з параметрами, конструктор	
	копіювання;	
	■ введення/виведення даних;	
	■ знаходження найбільшого/найменшого елемента;	
	■ знаходження суми елементів.	
	 ■ перевантаження операторів + (додавання матриць), – (віднімання 	
	матриць).	

- 2. Створити клас-нащадок TMSMatrix (клас доповнюється новими методами: транспонування, перевантаження оператора * (множення матриці на матрицю) та перевантаження оператора * (множення матриці на число)) на основі класу TSMatrix. Розробити метод для знаходження визначника.
- 3. Створити програму-клієнт для тестування.

Варіант 15. 1. Описати клас, який містять вказані поля і методи. Клас "звичайний дріб" – TFraction поля для зберігання чисельника і знаменника; методи конструктор без параметрів, конструктор з параметрами, конструктор копіювання; введення/виведення даних; скорочення дробів (якщо чисельник і знаменник містять спільні

2. Створити клас-нащадок TMixFraction (мішані дроби – ціла частина, чисельник і знаменник) на основі класу TFraction. Додати поле для збереження цілої частини та перевизначити відповідні методи.

перевантаження операторів +, -, *, /.

3. Створити програму-клієнт для тестування.

Варіант 16.

1. Описати клас, який містять вказані поля і методи.

Клас "комплексне число" – TComplex		
поля	 для зберігання дійсної і уявної частин; 	
методи	• конструктор без параметрів, конструктор з параметрами, конструктор	
	копіювання;	
	■ введення/виведення даних;	
	■ перевантаження операторів +, -, *, / .	

- 2. Створити клас-нащадок TMComplex (комплексне число на площині) на основі класу TComplex. Додати методи визначення квадранта, у який попадає комплексне число, метод визначення відстані до початку координат.
- 3. Створити програму-клієнт для тестування.

Варіант 17.

1. Описати клас, який містять вказані поля і методи

лисати клас, якии містять вказані поля і методи.			
Клас "пряма	ряма на площині" – TLine2D		
поля	 для зберігання коефіцієнтів канонічного рівняння прямої; 		
методи	• конструктор без параметрів, конструктор з параметрами, конструктор		
	копіювання;		
	■ введення/виведення даних;		
	• знаходження точки перетину з іншою прямою;		
	■ визначення належності точки прямій;		
	■ перевантаження операторів + (додавання коефіцієнтів прямих), –		
	(віднімання коефіцієнтів прямих).		

- 2. Створити клас-нащадок TLine3D (пряма у просторі) на основі класу TLine2D. Додати ще одне поле для збереження коефіцієнта при невідомій z та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варіант 18. Описати клас, який містять вказані поля і методи.		
	Клас "відрізок на площині" – TInterval2D	
	поля	■ для зберігання координат початку і кінця відрізка;
	методи	■ конструктор без параметрів, конструктор з параметрами,
		конструктор копіювання;
		■ введення/виведення даних;
		■ знаходження точки перетину з іншим відрізком;
		■ визначення довжини відрізка;
		визначення середини відрізка;
		■ перевантаження операторів + (утворюється відрізок початок
		якого ϵ початком першого, а кінець – кінцем другого), * (збільшення
		довжини відрізка у вказану кількість разів зберігаючи початок
		відрізка незмінним).

- 2. Створити клас-нащадок TInterval3D (відрізок у просторі) на основі класу TInterval2D. Додати поля для збереження третьої координати точок початку і кінця та перевизначити відповідні методи.
- 3. Створити програму-клієнт для тестування.

Варі	Варіант 19. Описати клас, який містять вказані поля і методи.		
	Клас "точка на площині" – TPoint2D		
	поля	 для зберігання довжин сторін; 	
	методи	• конструктор без параметрів, конструктор з параметрами,	
		конструктор копіювання;	
		■ введення/виведення даних;	
		■ визначення відстані до іншої точки;	
		■ визначення квадранту, до якого належить точка;	
		■ порівняння з іншою точкою;	
		 перевантаження операторів + (додавання відповідних координат), 	
		– (віднімання відповідних координат).	

- 2. На основі класу TPoint2D створити клас TCRectangle (прямокутник задається координатами вершин). Клас повинен містити чотири поля типу TPoint2D і методи для знаходження площі, периметру прямокутника та методу визначення того, чи лежить вказана точка всередині прямокутника.
- 3. Створити програму-клієнт для тестування.

Варі	Варіант 20. Описати клас, який містять вказані поля і методи.	
	Клас "точка на площині" – TPoint2D	
	поля	 для зберігання координат;
	методи	• конструктор без параметрів, конструктор з параметрами,
		конструктор копіювання;
		■ введення/виведення даних;
		■ визначення відстані до іншої точки;
		■ визначення квадранту, до якого належить точка;
		■ порівняння з іншою точкою;
		 перевантаження операторів + (додавання відповідних координат),
		– (віднімання відповідних координат).

- 2. На основі класу TPoint2D створити клас TCTriangle (трикутник задається координатами вершин). Клас повинен містити три поля типу TPoint2D і методи для знаходження площі, периметру трикутника та методу визначення того, чи лежить вказана точка всередині трикутника.
- 3. Створити програму-клієнт для тестування.

Bapia	аріант 21. Описати клас, який містять вказані поля і методи.		
	Клас "арифметична прогресія" – TArProgression		
	поля	 для зберігання першого члена арифметичної прогресії та різниці; 	
	методи	• конструктор без параметрів, конструктор з параметрами,	
		конструктор копіювання;	
		■ введення/виведення даних;	
		• знаходження n -го члена;	
		■ знаходження суми <i>n</i> перших членів прогресії;	
		■ перевантаження операторів + (додавання перших членів та	
		різниць), – (віднімання перших членів та різниць).	

- 2. На основі класу TArProgression створити клас-нащадок TArProgressionM. Цей клас повинен містити метод, який дозволяє визначити, чи утворює послідовність цілих чисел арифметичну прогресію та метод, який дозволяє встановити, чи є вказане число членом даної арифметичної прогресії.
- 3. Створити програму-клієнт для тестування.

Bapi	Варіант 22. Описати клас, який містять вказані поля і методи.		
-		Клас "геометрична прогресія" – TGeomProgression	
	поля	■ для зберігання першого члена геометричної прогресії та	
		знаменника;	
	методи	• конструктор без параметрів, конструктор з параметрами,	
		конструктор копіювання;	
		введення/виведення даних;	
		■ знаходження <i>n</i> -го члена;	
		■ знаходження суми <i>n</i> перших членів прогресії;	
		■ перевантаження операторів + (додавання перших членів та	
		знаменників), – (віднімання перших членів та знаменників).	

- 2. На основі класу TGeomProgression створити клас-нащадок TGeomProgressionM. Цей клас повинен містити метод, який дозволяє визначити, чи утворює послідовність додатних цілих чисел геометричну прогресію та метод, який дозволяє встановити, чи ε вказане число членом даної геометричної прогресії.
- 3. Створити програму-клієнт для тестування.

Контрольні запитання

- 1. У чому полягає суть успадкування?
- 2. Що таке клас-предок?
- 3. Що таке клас-нащадок?
- 4. Для чого використовують класи-предки?
- 5. Скільки класів-предків може мати клас?
- 6. Як описати клас-нащадок?
- 7. Що таке перевизначення методів?
- 8. Як перевизначити метод класу-предка?
- 9. Як здійснити доступ до перевизначених методів класу-предка?
- 10. Чи має об'єкт-нащадок доступ до перевизначених методів класу-предка?
- 11. Які члени класу-предка є доступними для класу-нащадка?
- 12. Чи має можливість клас-нащадок змінювати область видимості членів класу-предка?
- 13. Як описати члени класу-предка, щоб вони були доступними для класу-нащадка і недоступними у програмі-клієнті?
- 14. Як описати члени класу-предка, щоб вони не були доступними як для класу-нащадка, так і для програми-клієнта?
- 15. Чи може змінна типу класу-предка приймати значення об'єкта-нащадка?
- 16. До яких полів і методів об'єкта-нащадка може здійснити доступ об'єкт-предок?