CMPE 352 Signal Processing & Algorithms Spring 2019

Sedat Ölçer March 18, 2019

The Fourier Series – Summary Chart

For general periodic signals

Fourier Series (exponential form)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

 a_k : Fourier series coefficients

 $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ (or spectral coefficients) $\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$: fundamental frequency

 T_0 : fundamental period

$$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

• For real periodic signals, assuming $a_k = A_k e^{j\theta_k}$

Fourier Series (trigonometric form)

$$x(t) = a_0 + 2\sum_{k=1}^{\infty} A_k \cos(k\omega_0 t + \theta_k)$$

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$$

$$\alpha_k = \frac{1}{T_0} \int_{T_0} x(t) \cos k\omega_0 t \, dt$$

$$\beta_k = \frac{1}{T_0} \int_{T_0} x(t) \sin k\omega_0 t \, dt$$

$$A_k = \sqrt{\alpha_k^2 + \beta_k^2}$$

$$\theta_k = \operatorname{atan} \frac{-\beta_k}{\alpha_k}$$

Review Questions (1)

In the exponential Fourier Series, what does a₀ represent?

$$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt \qquad \Rightarrow a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$$

Hence a_0 is the <u>mean value</u> of x(t). It is also called the <u>DC component</u> of the signal x(t).

- What is the advantage of the exponential Fourier Series compared with the trigonometric Fourier Series?
 - It is more compact mathematically
 - The exponential Fourier Series can also be used for complex periodic signals (the trigonometric Fourier Series can be used for real periodic signals only)
 - Note: a_k can in general be a complex number whereas A_k (in the trigonometric Fourier Series) is a real number

Review Questions (2)

• Why are negative frequencies $(k = \dots, -3, -2, -1)$ used in the exponential Fourier Series?

$$x(t) = \sum_{k=-\infty}^{\infty} a_k \ e^{jk\omega_0 t}$$

We have seen that to be able to represent a cosine (or sine) function in the complex plane, we need both negative and positive frequencies, because

$$\cos \omega_0 t = \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}$$

The Fourier Series – Graphical Plot

Fourier Series (exponential form)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

 a_k is in general a complex number and corresponds to frequency $k\omega_0$

How is the plot of $|a_k|$ versus frequency $k\omega_0$ called?

→ Amplitude Spectrum (or: Magnitude Spectrum)

How is the plot of the phase $\angle a_k$ versus frequency $k\omega_0$ called?

→ Phase Spectrum

What is the special characteristic of the spectrum of a periodic signal? It is a <u>line spectrum</u>.

Note: the frequency axis is discrete!

Note on the Computation of the Fourier Series Coefficients

If the signal is a <u>sum of sines and cosines</u>, there is no need to compute the Fourier Series coefficients by using the integral expression

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

because the a_k 's can then directly be obtained by replacing the sine and cosine terms with complex exponentials (Euler).

For example $x(t) = 1 + \sin(\omega_0 t) + 3\cos(2\omega_0 t + \frac{\pi}{3})$

can be equivalently written as

$$x(t) = 1 + \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} + 3\frac{e^{j(2\omega_0 t + \pi/3)} + e^{-j(2\omega_0 t + \pi/3)}}{2}$$

and hence we have directly the solution:

$$a_0 = 1$$
 $a_1 = \frac{1}{2i}$ $a_{-1} = -\frac{1}{2i}$ $a_2 = \frac{3}{2}e^{j\pi/3}$ $a_{-2} = \frac{3}{2}e^{-j\pi/3}$

The Fourier Series Computation – Example

Another example (the signal x(t) is a sum of sines and cosines):

Find the Fourier Series coefficients for the signal $x(t) = 1 + \sin \omega_0 t + 2\cos \omega_0 t + \cos(2\omega_0 t + \frac{n}{4})$.

$$x(t) = 1 + \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} + 2\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} + \frac{e^{j(2\omega_0 t + \pi/4)} - e^{-j(2\omega_0 t + \pi/4)}}{2}$$

$$= 1 + \left(1 + \frac{1}{2j}\right)e^{j\omega_0 t} + \left(1 - \frac{1}{2j}\right)e^{-j\omega_0 t} + \left(\frac{1}{2}e^{j\pi/4}\right)e^{j2\omega_0 t} + \left(\frac{1}{2}e^{-j\pi/4}\right)e^{-j2\omega_0 t}$$

$$= a_0 \quad a_1 \quad a_{-1} \quad a_2 \quad a_{-2}$$

$$a_1 = 1 + \frac{1}{2i} = 1 - \frac{1}{2}j = \sqrt{5/4}e^{-j \arctan \frac{1}{2}} = 1.12e^{-j26.6^{\circ}}$$
 $a_{-1} = a_1^* = 1.12e^{+j26.6^{\circ}}$

$$a_{-1} = a_1^* = 1.12e^{+j26.6^o}$$

The Fourier Series Computation – Example

Rectangular Wave

For
$$k = 0$$
: $a_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt = \frac{1}{T} \int_{-T_1}^{T_1} dt = 2T_1/T$

For
$$k \neq 0$$
: $a_k = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk\omega_0 t} dt = -\frac{1}{jk\omega_0 T} e^{-jk\omega_0 t} \Big|_{-T_1}^{T_1} = \frac{1}{jk\omega_0 T} \left(e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1} \right)$

$$= \frac{2}{k\omega_0 T} \left(\frac{e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1}}{2j} \right) \quad \Rightarrow \quad a_k = 2 \frac{\sin k\omega_0 T_1}{k\omega_0 T}$$

$$\Rightarrow a_k = 2 \frac{\sin k\omega_0 T_1}{k\omega_0 T}$$

Note that for $T_1 = \frac{T}{A}$ (square wave):

The Fourier Series Computation – Example

For
$$T_1 = \frac{T}{4}$$
 (square wave): $a_k = \frac{1}{2} \frac{\sin(\frac{\pi}{2}k)}{\frac{\pi}{2}k}$

The Fourier Series – Example

Square Wave

$$a_0 = 1/2$$

$$a_k = \frac{1}{2} \frac{\sin(\frac{\pi}{2}k)}{\frac{\pi}{2}k}$$
 \Rightarrow For $k > 0$, even, $a_k = 0$

$$a_0 = 1/2$$

$$a_k = \frac{1}{2} \frac{\sin(\frac{\pi}{2}k)}{\frac{\pi}{2}k} \quad \Rightarrow \text{ For } k > 0 \text{, even, } a_k = 0$$

$$\text{For } k \text{ odd, } a_1 = a_{-1} = \frac{1}{\pi}$$

$$a_3 = a_{-3} = -\frac{1}{3\pi}$$

$$a_5 = a_{-5} = \frac{1}{5\pi}$$

$$\dots$$
Each one of these terms for $k = \pm 1, \pm 3, \pm 5, \text{ etc.}$ corresponds to a sinusoidal wave. Let us look at the contribution of each term ...

The Fourier Series – Example (cntd)

The Fourier Series – Example (cntd)

The Fourier Series – Example (cntd)

Fourier Decomposition in Nature (1)

The inner ear is a device that naturally performs Fourier Series decomposition

Fourier Decomposition in Nature (2)

- Is there another device/object that naturally performs spectral decomposition in nature?
 - The prism

White light is split into individual frequencies by a prism

White light consists of all visible frequencies (red, orange, yellow, green, blue, indigo and violet) mixed together and the prism breaks them apart (does a Fourier decomposition) so we can see the separate frequencies

15

Fourier Decomposition in Nature (3)

The Electromagnetic (EM) Spectrum

Wavelength in vacuum: $\lambda = c/f$

Applications of the Fourier Series (1)

Embedded sytems

Applications of the Fourier Series (2)

Data Compression

Applications of the Fourier Series (3)

Data Communications (e.g., 3G, 4G, 4.5 G, 5G, ADSL,...)

From Periodic to Aperiodic Signals

From Periodic to Aperiodic Signals (2)

Let $\tilde{x}(t)$ be the periodic repetition of x(t) with period T:

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-jk\omega_0 t} dt \stackrel{\text{def. } 1}{=} \frac{1}{T} X(jk\omega_0)$$

$$\Rightarrow X(jk\omega) = \int_{-\infty}^{\infty} x(t) e^{-jk\omega t} dt$$

$$\Rightarrow \tilde{\chi}(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T} X(jk\omega_0) e^{jk\omega_0 t} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(jk\omega_0) e^{jk\omega_0 t} \frac{2\pi}{T} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(jk\omega_0) e^{jk\omega_0 t} \omega_0$$

$$\tilde{\chi}(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(jk\omega_0) e^{jk\omega_0 t} \omega_0$$

$$\frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(jk\omega_0) e^{jk\omega_0 t} \omega_0$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

22 **CMPE 352**

The Fourier Transform

- Let x(t) be a nonperiodic continuous-time function
- The Fourier transform of x(t) is

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

• The inverse Fourier transform of $X(j\omega)$ is

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$$

- x(t) and $X(j\omega)$ form a Fourier-transform pair
- $X(j\omega)$ is called the **spectrum** of x(t)
- For given ω , $X(j\omega)$ is in general a complex number
 - $|X(j\omega)|$ is called the *magnitude spectrum*
 - $arg(X(j\omega))$ is called the **phase spectrum**

CMPE 352 23

The Fourier Transform – Examples

Example 1

Determine and plot the Fourier transform of the signal $x(t) = e^{-at}u(t)$, a > 0

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt = \int_{0}^{\infty} e^{-at}e^{-j\omega t} dt = \int_{0}^{\infty} e^{-(a+j\omega)t} dt$$
$$= -\frac{1}{a+j\omega}e^{-(a+j\omega)t}\Big|_{0}^{\infty} = -\frac{1}{a+j\omega}(0-1) = \frac{1}{a+j\omega}$$

What are $|X(j\omega)|$ and $\angle X(j\omega)$?

$$|X(j\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}}$$

$$\angle X(j\omega) = -\arctan\frac{\omega}{a}$$

$$\angle X(j\omega) = -\arctan\frac{\omega}{a}$$

24 **CMPE 352**

The Fourier Transform – Examples

Example 2

Determine and plot the Fourier transform of the signal $x(t) = e^{-a|t|}$, a > 0

$$X(j\omega) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-j\omega t} dt = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$
$$= \int_{-\infty}^{0} e^{(a-j\omega)t} dt + \int_{0}^{\infty} e^{-(a+j\omega)t} dt = \frac{1}{a-j\omega} + \frac{1}{a+j\omega} = \frac{2a}{a^2 + \omega^2}$$

What are $|X(j\omega)|$ and $\angle X(j\omega)$?

$$|X(j\omega)| = \frac{2a}{a^2 + \omega^2}$$

$$\angle X(j\omega) = 0$$

$$\angle X(j\omega) = 0$$

25 **CMPE 352**

The Fourier Transform – Examples

Example 3

Determine and plot the Fourier transform of the signal $x(t) = \delta(t)$.

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} = \int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt = \int_{-\infty}^{\infty} \delta(t) dt = 1$$

What are $|X(j\omega)|$ and $\angle X(j\omega)$?

$$|X(j\omega)| = 1$$

$$\angle X(j\omega) = 0$$

Makes sense?

CMPE 352 26