

CONTENTS

01_ Introduction to GoMol

02_ Model Architecture

03_ Program Simulation

04_ Conclusion

- Proteins are an integral part of all biological systems
- Create a tool to compare sequence and 3D structure of protein
- Develop the tool by mostly using Go programming language

Sequence Alignment

- To identify sequence of similarities and differences
- Similar length and significantly similar (evolutionary wise)
- Global Alignment
- Needleman Wunsch Algorithm (Dynamic Programming)
- BLOSUM62 (Substitution Matrix)

3D Alignment

「Kabsch Algorithm」

- Comparison of two similar proteins by RMSD
- Calculates optimal rotation matrix to minimize RMSD

「Applications of Kabsch」

- Drug Discovery/Molecular Dynamics Analysis of conformational states
- Evolutionary Biology structural comparison gives insight to conservation

3D Visualization

Input (PDB file)

Туре	#	El	AA	Cha	nin AA#	X	у	Z
ATOM	1	N	VAL	Α	1	10.720	19.523	6.163
ATOM	2	CA	VAL	Α	1	10.228	20.761	6.807
ATOM	3	С	VAL	Α	1	8.705	20.714	6.878
ATOM	4	0	VAL	Α	1	8.164	20.005	6.015
ATOM	5	СВ	VAL	Α	1	10.602	22.000	5.966
ATOM	6	CG1	VAL	Α	1	10.307	23.296	6.700
ATOM	7	CG2	VAL	Α	1	12.065	21.951	5.544

03_Program Simulation

Limitation & Future Directions

「Possible Improvements in Program 」

- Gap Costs
- Leverage sequence alignment results to broaden potential inputs for Kabsch
- Potentially include information about ligand binding sites from PDB

Limitation of our Program

- Slow Speed, pixel level
- Protein Multiple Sequence Alignment Not possible
- No Universal Parser
- · No Local alignment

References

- 1.Libretexts. (2021, March 6). 9.5: Blosum62 scoring matrix for amino acid substitutions. Biology LibreTexts.

 <a href="https://bio.libretexts.org/Bookshelves/Cell_and_Molecular_Biology/Book%3A_Investigations_in_Molecular_Cell_Biology_(O%27Conn_or)/09%3A_Protein_Conservation/9.05%3A_BLOSUM62_scoring_matrix_for_amino_acid_substitutions
- 1.Libretexts. (2021b, March 17). 3.3: Global alignment vs. local alignment vs. semi-global alignment. Biology LibreTexts.

 https://bio.libretexts.org/Bookshelves/Computational_Biology/Book%3A_Computational_Biology_
 Genomes_Networks_and_Evolution_(Kellis_et_al.)/03%3A_Rapid_Sequence_Alignment_and_Database_Search/3.03%3A_Global_alignment_vs. Local_alignment_vs. Semi-global_alignment_
- 1.NandiniUmbarkar. (2020, October 12). *Needleman-Wunsch algorithm*. Medium. https://medium.com/@nandiniumbarkar/needleman-wunsch-algorithm-7bba68b510db
- 1.Phong, B.. (1975, June 1). *Illumination for computer generated pictures*. Communications of the ACM. https://dl.acm.org/doi/10.1145/360825.360839
- 1.Compeau, P. (2022). Protein Structure Comparison. Biological Modeling. Retrieved December 3, 2023, from https://biologicalmodeling.org/coronavirus/accuracy
- 1.Kabsch algorithm. (2023). Wikipedia. Retrieved December 3, 2023, from https://en.wikipedia.org/wiki/Kabsch_algorithm

Vertrees, J. (2019, April 18). Kabsch. PyMOLWiki. Retrieved December 3, 2023, from https://pymolwiki.org/index.php/Kabsch

Thank you