

Abschlusspräsentation

Entwicklung einer µC-Steuerung für Halogenbrenner mit LIB Management

Wintersemester 2020-21

Dennis Sitnic

26.02.2021

Gliederung

- 1. Einführung
- 2. Vorgehen und Ergebnis
 - 1. Breakoutboard (BMS)
 - 2. Steuerteil (μC)
 - 3. Machbarkeitstests
 - 4. Gesamtschaltung
- 3. Weiterführende Arbeiten

1 Einführung

1 Einführung

- rotes Licht dringt weniger tief ein
- Halogenlampen strahlen rotes Licht aus

1 Einführung

- Höhere Energiedichte bei geringerem Gewicht
- Müssen vor ungesunden Betriebszuständen geschützt werden
- Tiefentladung bei Lagerung von Tauchlampen

Nominalspannung: 3,6 V Ladeschlusspannung: 4,2 V Entladeschlusspannung: 2,5 V

Gliederung

- 1. Einführung
- 2. Vorgehen und Ergebnis
 - 1. Breakoutboard
 - 2. Steuerteil
 - 3. Machbarkeitstests
 - 4. Gesamtschaltung
- 3. Weiterführende Arbeiten

- BMS-Teil der Gesamtschaltung
- Misst "Echtzeitwerte"
- Jumwire Anschlüsse
- I2C Schnittstelle
- GPIO Pin
- Schwellwerte programmierbar
- Für 5 V als auch 3,3 V
- Sleep: 74 μA

ADDRESS (HEX)	DESCRIPTION	ADDRESS (HEX)	DESCRIPTION	
60h	Control Register	71h	AE Segment 3 Slope Register	
61h	Accumulation Bias Register (AB)	72h	AE Segment 2 Slope Register	
62h	Aging Capacity Register MSB (AC)	73h	AE Segment 1 Slope Register	
63h	Aging Capacity Register LSB (AC)	74h	SE Segment 4 Slope Register	
64h	Charge Voltage Register (VCHG)	75h	SE Segment 3 Slope Register	
65h	Minimum Charge Current Register (IMIN)	76h	SE Segment 2 Slope Register	
66h	Active-Empty Voltage Register (VAE)	77h	SE Segment 1 Slope Register	
67h	Active-Empty Current Register (IAE)	78h	Sense-Resistor Gain Register MSB (RSGAIN)	
68h	Active-Empty 40 Register	79h	Sense-Resistor Gain Register LSB (RSGAIN)	
89h	Sense Resistor Prime Register (RSNSP)	741	Sense-Resistor Temperature Coefficient	Sense-Resistor Temperature Coefficient Register
6Ah	Full 40 MSB Register	7Ah	(RSTC)	
6Bh	Full 40 LS8 Register	7Bh Current Offset Bias Register (COB)		
6Ch	Full Segment 4 Slope Register	7Ch	TBP34 Register	
8Dh	Full Segment 3 Slope Register	7Dh	TBP23 Register	
6Eh	Full Segment 2 Slope Register	7Eh	TBP12 Register	
8Fh	Full Segment 1 Slope Register	7Fh	Protector Threshold Register	
70h	AE Segment 4 Slope Register	80h	2-Wire Slave Address Register	

Auslesen der Echtzeitregister

```
#!/bin/bash
2 echo Spannung_1 Oc:
3 i2cget -y 1 0x59 0x0c w
4 echo Spannung_2 1c:
                                         Spannung_1 Oc:
5 i2cget -y 1 0x59 0x1c w
                                         0x604f
echo Strom Ox0e:
                                         Spannung_2 1c:
7 i2cget -y 1 0x59 0x0e w
                                         0x404f
s echo Temp OxOa:
                                         Strom Oe:
                                         0xe017
9 i2cget -y 1 0x59 0x0a w
                                         raac 02:
10 echo raac 0x02:
                                         0x0000
11 i2cget -y 1 0x59 0x02 w
12 echo rsac 0x04:
                                         rsac 04:
                                         0x0000
13 i2cget -y 1 0x59 0x04 w
14 echo rarc 0x06:
```

Output

```
Spannung_1 Oc:

0x604f
Spannung_2 1c:

70x404f
Strom Oe:
0xe017
araac 02:
10x0000
2rsac 04:
30x0000
4rarc 06:
50x00
6rsrc 07:
70x00
```

i2cset	-у	1	0x59	0x6d	0x12
i2cset	-у	1	0x59	0x6e	0x33
i2cset	-у	1	0x59	0x6f	0x3b
i2cset	-у	1	0x59	0x70	0x5
i2cset	-у	1	0x59	0x71	0 x a
i2cset	-у	1	0x59	0x72	0 x 1 1
i2cset	-у	1	0x59	0x73	0x27

I2C Toolset

16 echo rsrc 0x07:

15 i2cget -y 1 0x59 0x06

17 i2cget -y 1 0x59 0x07

PuTTy

Register	Inhalt	Ergebnis	Sollwert
Zelle 1	0x604f	3,76 V	3,1 V
Zelle 2	0x404f	2,51 V	3,1 V
Strom	0xe1ff	-0,48A	1,2 mA
Temp	0xe017	$32^{\circ}\mathrm{C}$	20°C
RAAC	0x0000	0 mAh	> 0 mAh
RSAC	0x0000	0 mAh	> 0 mAh
RARC	0x00	0 mAh	> 0 mAh
RSRC	0x00	0 mAh	> 0 mAh

Gliederung

- 1. Einführung
- 2. Vorgehen und Ergebnis
 - 1. Breakoutboard
 - 2. Steuerteil
 - 3. Machbarkeitstests
 - 4. Gesamtschaltung
- 3. Weiterführende Arbeiten

2.2 Entwicklung Steuerteil

2.2 Entwicklung Steuerteil

PWM Signal initialisieren

```
htim22.Instance = TIM22;
htim22.Init.Prescaler = 0;
htim22.Init.CounterMode = TIM_COUNTERMODE_UP;
htim22.Init.Period = 2100;
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
sConfigOC.Pulse = 1050;
```

Poti einlesen

```
float raw;
HAL_ADC_Start(&hadc);
HAL_ADC_PollForConversion(&hadc, HAL_MAX_DELAY);
raw = HAL_ADC_GetValue(&hadc);
raw = (raw/4095.0);
raw = raw*2000;
```

CCR verändern

```
TIM22 -> CCR1 = raw;
```


2.2 Entwicklung Steuerteil

Messwerte lesen

```
uint8_t storage01;
const uint8_t ds2777_adresse = 0x59;
const uint8_t register_adresse = 0x80;
HAL_I2C_Mem_Read(&hi2c1, (ds2777_adresse <<1) | 0x01, register_adresse, 1,
    &storage01, sizeof(storage01), HAL_MAX_DELAY);</pre>
```

Messwerte ausgeben

```
char msg[19];
sprintf(msg, "Slave Adresse: %X\r\n", storage01);
HAL_UART_Transmit(&huart2, msg, strlen(msg), HAL_MAX_DELAY);
```


Gliederung

- 1. Einführung
- 2. Vorgehen und Ergebnis
 - 1. Breakoutboard
 - 2. Steuerteil
 - 3. Machbarkeitstests
 - 4. Gesamtschaltung
- 3. Weiterführende Arbeiten

2.3 Machbarkeitsstudie

PWM Signal

Oszillogramm des PWM Signals mit einem Tastgrad von 25 % (links) und einem Tastgrad von 50 %

2.3 Machbarkeitsstudie

Overvoltage 4,2 V

Oszillogramm von \mathcal{U}_{GSDC} (gelb) und \mathcal{U}_{GSCC} (blau) bei Überspannung einer Zelle

Undervoltage 2,6 V

Oszillogramm von U_{GSDC} (gelb) und U_{GSCC} (blau) beim Unterschreiten (links) und Überschreiten der Entladeschlusspannung

Gliederung

- 1. Einführung
- 2. Vorgehen und Ergebnis
 - 1. Breakoutboard
 - 2. Steuerteil
 - 3. Machbarkeitstests
 - 4. Gesamtschaltung
- 3. Weiterführende Arbeiten

- BMS-Integriert (aus 2.1)
- USB, SWD programmierbar
- GPIOs, UART, I2C, USB, SWD
- Anschluss Ladeteil
- Testpunkte, Pins, Schalter
- 4 € für 5 PCBs
- Geringer Verbrauch

Schematischer Aufbau der Gesamtschaltung

	BZX584C5V6	CPDU3V3UP
I_R	1 μ Α	$0.05 \ \mu \ A$
U_R	5,6 V	3,5 V

V_{DS}	30 V
$R_{DS(on)}$	$1,5 m\Omega$
I_D	100 A
I_{DSS}	$1 \mu A$
Q_g	28 nC
$V_{GS(th)}$	0,8 V bis 2 V

Ausgangsstrom	250 mA
Ausgangsspannung	3,3 V
Eingangsspannung	-0.3 V bis 13,5 V
Ruhestrom	$35 \mu A$

Gliederung

- 1. Einführung
- 2. Vorgehen und Ergebnis
 - 1. Breakoutboard
 - 2. Steuerteil
 - 3. Machbarkeitstests
 - 4. Gesamtschaltung
- 3. Weiterführende Arbeiten

3 Weiterführende Arbeiten

- Bestücken und Inbetriebnahme
- Optimierung
 - SW anpassen
 - Überflüssige Elemente beseitigen

3 Weiterführende Arbeiten

- Bedienelement
 - Anzeige Messdaten
 - Steuerung Sleep, Active
 - Dimmen
 - Ladekontakt

3 Weiterführende Arbeiten

- https://github.com/one1blood1one/Bachelorarbeit Tauchlampensteuerung20-21
 - Eagle Schaltplan und Layout
 - Gerberdaten
 - BOM
 - Code: μC, DS2777
 - Bachelorarbeit PDF
 - ggf. Gebrauchsanweisung

Abschlusspräsentation Entwicklung einer Tauchlampensteuerung

Vielen Dank für Ihre Aufmerksamkeit!

Fragen?

Quellen

- [1] Unknown illustrator, Public domain, via Wikimedia Commons, gemeinfrei, weil urheberrechtliche Schutzfrist abgelaufen ist (15th Century)
- [2] Unknown illustrator, Public domain, via Wikimedia Commons, gemeinfrei, weil urheberrechtliche Schutzfrist abgelaufen ist (16th Century)
- [3] Matthew Hoelscher from Doral, FL, USA, CC BY-SA 2.0 https://creativecommons.org/licenses/by-sa/2.0, via Wikimedia Commons
- [4] Thomei08, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons
- [5] Shutterbug75, https://pixabay.com/de/vectors/batterie-explosion-warnung-gefahr-98707/
- [6] Lead holder, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons
- [7] Openicons, https://pixabay.com/de/vectors/batterie-explosion-warnung-gefahr-98707/
- Alle Interntseiten wurden zuletzt am 25.02.21 aufgerufen

