Giochi di Gale-Stewart su A

Sia $A \neq \emptyset$ un insieme e $X \subseteq A^{\omega}$ un **payoff set**. Consideriamo il gioco di Gale-Stewart G(A,X)

Giochi di Gale-Stewart su A

Sia $A \neq \emptyset$ un insieme e $X \subseteq A^{\omega}$ un **payoff set**. Consideriamo il gioco di Gale-Stewart G(A,X)

dove

- ▶ I vince se $(a_n)_{n<\omega} \in X$;
- ▶ II vince se $(a_n)_{n<\omega} \notin X$.

Giochi di Gale-Stewart su T

Sia $T\subseteq A^{<\omega}$ e $X\subseteq [T]$ un payoff set; allora possiamo considerare il gioco G(T,X)

con la restrizione aggiunta che $(a_0,\dots,a_n)\in T$ per ogni $n<\omega$ e le medesime condizioni di vittoria.

Giochi di Gale-Stewart su T

Sia $T\subseteq A^{<\omega}$ e $X\subseteq [T]$ un payoff set; allora possiamo considerare il gioco G(T,X)

con la restrizione aggiunta che $(a_0,\dots,a_n)\in T$ per ogni $n<\omega$ e le medesime condizioni di vittoria.

Remark

Se $T=A^{<\omega}$ otteniamo i giochi di Gale-Stewart su A.

Fissiamo un gioco G(X,T).

Definizione

Una **strategia** per I è un albero $\sigma \subseteq T$ tale che

- 1. σ è potato e non vuoto;
- 2. se $(a_0,\dots,a_{2j})\in\sigma$ allora ogni $(a_0,\dots,a_{2j},a_{2j+1})\in T$ è in σ ;
- 3. se $(a_0,\dots,a_{2j-1})\in\sigma$ allora esiste un unico $a_{2j}\in A$ tale che $(a_0,\dots,a_{2j-1},a_{2j})\in\sigma$.

Se
$$A=\{0,1,2\}$$
 e $T=A^{<\omega}$ allora

è una strategia per I.

Definizione

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Definizione

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Similmente definiamo strategie per II.

Definizione

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Similmente definiamo strategie per II.

Remark

Siccome G(X,T) non può finire in un pareggio non è possibile che sia I che II abbiano una strategia vincente.

Determinatezza

Definizione

Un gioco G(X,T), o solamente l'insieme $X\subseteq T$, si dice **determinato** se uno dei due giocatori ha una strategia vincente.

Determinatezza

Definizione

Un gioco G(X,T), o solamente l'insieme $X\subseteq T$, si dice **determinato** se uno dei due giocatori ha una strategia vincente.

Domande

- I chiusi e gli aperti sono determinati?
- ► I Boreliani sono determinati?
- ► Gli analitici sono determinati?

Determinatezza dei giochi chiusi

Teorema (Gale-Stewart)

Dato $T\subseteq A^{<\omega}$ potato e non-vuoto se $X\subseteq [T]$ è aperto (o chiuso) in [T] allora G(X,T) è determinato.

Posizioni non perdenti

Definizione

Data una posizione $p=(a_0,\dots,a_{2n+1})\in T$ diciamo che p è **non perdente** per I se II non ha una strategia vincente a partire da p. Formalmente p è non perdente per I se II non ha una strategia vincente per il gioco $G(T_p,X_p)$ dove

$$T_p = \{s \in A^{<\omega} : p^\smallfrown s \in T\} \quad \mathbf{e} \quad X_p = \{x \in A^\omega : p^\smallfrown x \in X\}.$$

Posizioni non perdenti

Definizione

Data una posizione $p=(a_0,\dots,a_{2n+1})\in T$ diciamo che p è **non perdente** per I se II non ha una strategia vincente a partire da p. Formalmente p è non perdente per I se II non ha una strategia vincente per il gioco $G(T_p,X_p)$ dove

$$T_p = \{s \in A^{<\omega} : p^\smallfrown s \in T\} \quad \mathrm{e} \quad X_p = \{x \in A^\omega : p^\smallfrown x \in X\}.$$

Remark

Se una posizione $p=(a_0,\dots,a_{2n+1})\in T$ è non perdente per I allora esiste un a_{2n+2} che I può giocare (i.e. $(a_{2n+2})\in T_p$) tale che per ogni a_{2n+3} con cui II può rispondere (i.e. $(a_{2n+2},a_{2n+3})\in T_p$) la posizione $p^{\smallfrown}(a_{2n+2},a_{2n+3})\in T$ sia ancora non perdente per I.

Lavoriamo con X chiuso ed assumiamo che II non abbia strategia vincente (se la ha allora abbiamo il teorema).

Lavoriamo con X chiuso ed assumiamo che II non abbia strategia vincente (se la ha allora abbiamo il teorema).

Per costruire una strategia vincente per I osserviamo che se II non ha una strategia vincente allora \emptyset è una posizione non perdente per I. Allora I può, come prima mossa, giocare un a_0 tale che per ogni a_1 per cui $(a_0,a_1)\in T$ quest'ultima posizione è ancora non perdente per I.

Lavoriamo con X chiuso ed assumiamo che II non abbia strategia vincente (se la ha allora abbiamo il teorema).

Per costruire una strategia vincente per I osserviamo che se II non ha una strategia vincente allora \emptyset è una posizione non perdente per I. Allora I può, come prima mossa, giocare un a_0 tale che per ogni a_1 per cui $(a_0,a_1)\in T$ quest'ultima posizione è ancora non perdente per I.

Adesso per ogni a_1 con cui II può rispondere, per scelta di a_0 , esiste un a_2 che I può giocare e tale che per ogni a_3 tale che $(a_0,a_1,a_2,a_3)\in T$ questa sia una posizione non perdente per I.

In questo modo costruiamo una strategia $\sigma\subseteq T$ per I con la proprietà che, se $(a_0,\dots,a_{2n+1})\in\sigma$ allora questa è una posizione non perdente per I.

In questo modo costruiamo una strategia $\sigma\subseteq T$ per I con la proprietà che, se $(a_0,\dots,a_{2n+1})\in\sigma$ allora questa è una posizione non perdente per I.

Sia $(a_n)_n$ una partita dove I ha seguito σ i.e. $(a_n)_n \in [\sigma]$. Se $(a_n)_n \notin X$, cioè $(a_n)_n \in [T] - X$, siccome [T] è chiuso abbiamo che esiste un $k < \omega$ tale che

$$N_{(a_0,\dots,a_{2k+1})}\cap [T]\subseteq [T]-X.$$

Ma, se esiste un tale k, abbiamo che (a_0,\ldots,a_{2k+1}) è una posizione perdente per I siccome II vince giocando mosse arbitrarie.

Questo è assurdo perché $(a_0,\dots,a_{2k+1})\in\sigma$ e dunque deve essere non perdente per I. Dobbiamo dunque avere $(a_n)_n\in X$ e quindi $[\sigma]\subseteq X;$ I ha una strategia vincente.

Questo è assurdo perché $(a_0,\dots,a_{2k+1})\in\sigma$ e dunque deve essere non perdente per I. Dobbiamo dunque avere $(a_n)_n\in X$ e quindi $[\sigma]\subseteq X;$ I ha una strategia vincente.

Se X è aperto possiamo ripetere lo stesso argomento invertendo i ruoli di I e II.

