Lineární zobrazení, část 2

Odpřednesenou látku naleznete v kapitolách 2.3, 3.4 a 9.1 skript *Abstraktní a konkrétní lineární algebra*.

Minulá přednáška

• Matice $\mathbf{A}=(\mathbf{a}_1,\ldots,\mathbf{a}_s)$ (sloupcový zápis matice, každý sloupec \mathbf{a}_j je vektor z \mathbb{F}^r) je ztotožněna s lineárním zobrazením $\mathbf{A}:\mathbb{F}^s\to\mathbb{F}^r$, $\mathbf{e}_i\mapsto\mathbf{a}_i$.

Operace s maticemi odpovídají operacím s lineárními zobrazeními.

Dnešní přednáška

- Pojmy jádro, obraz, defekt a hodnost lineárního zobrazení.
 Tyto pojmy umožní jemnější klasifikaci lineárních zobrazení.
- 2 Pojem matice obecného lineárního zobrazení $\mathbf{f}: L_1 \to L_2$ vzhledem k obecným uspořádaným bázím. Prostory L_1 a L_2 musí mít konečnou dimensi.

Připomenutí (témata 4A a 3B)

- **1** At L_1 , L_2 jsou lineární prostory nad \mathbb{F} . Zobrazení $\mathbf{f}: L_1 \to L_2$, pro které platí $\mathbf{f}(\vec{x} + \vec{x}') = \mathbf{f}(\vec{x}) + \mathbf{f}(\vec{x}')$ a $\mathbf{f}(a \cdot \vec{x}) = a \cdot \mathbf{f}(\vec{x})$ pro vš. $a \times \mathbb{F}$ a vš. \vec{x} , $\vec{x}' \times L_1$, říkáme lineární zobrazení z L_1 do L_2 .
- ② Zápis $\mathbf{A}: \mathbb{F}^s \to \mathbb{F}^r$ znamená $^a \mathbf{A}: \mathbf{e}_j \mapsto j$ -tý sloupec \mathbf{A} . Tudíž platí $\mathbf{x} \mapsto \mathbf{A} \cdot \mathbf{x}$, pro všechna $\mathbf{x} \times \mathbb{F}^s$.
- Trojúhelník

je komutativní.

^aV terminologii dnešní přednášky: $\mathbf{A}: \mathbb{F}^s \to \mathbb{F}^r$ je maticí zobrazení $\mathbf{A}: \mathbf{e}_i \mapsto j$ -tý sloupec \mathbf{A} vzhledem ke kanonické bázi. Ale nepředbíhejme ^(a)

Definice (speciální vlastnosti lineárních zobrazení)

Lineárnímu zobrazení $\mathbf{f}: L_1 \to L_2$ říkáme:

- monomorfismus, je-li f injektivní (také: prosté) zobrazení.
- 2 epimorfismus, je-li f surjektivní (také: na) zobrazení.
- 3 isomorfismus, je-li f bijektivní (také: prosté a na) zobrazení.^a

Tvrzení

Složení monomorfismů/epimorfismů/isomorfismů je monomorfismus/epimorfismus/isomorfismus. Identita je isomorfismus.

Důkaz.

Přednáška.

05A-2023: Lineární zobrazení, část 2

^aEkvivalentně: k zobrazení ${\bf f}$ existuje inversní zobrazení ${\bf f}^{-1}$ a toto inversní zobrazení je opět lineární.

Definice (obraz a jádro)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení. Množině $\ker(\mathbf{f}) = \{\vec{x} \mid \mathbf{f}(\vec{x}) = \vec{o}\}$ říkáme jádro \mathbf{f} , množině $\operatorname{im}(\mathbf{f}) = \{\mathbf{f}(\vec{x}) \mid \vec{x} \text{ z } L_1\}$ říkáme obraz \mathbf{f} .

Slogany (tj. reklamní hesla, nikoli skutečnost)

Jádro f říká, jak moc je f monomorfismus. Obraz f říká, jak moc je f epimorfismus.

Tvrzení

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení. Pak $\ker(\mathbf{f})$ je podprostor L_1 , $\operatorname{im}(\mathbf{f})$ je podprostor L_2 .

Důkaz.

Přednáška.

Definice (defekt a hodnost lineárního zobrazení)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, ať prostor L_1 má konečnou dimensi. Číslu $\mathrm{def}(\mathbf{f}) = \dim(\ker(\mathbf{f}))$ říkáme defekt lineárního zobrazení \mathbf{f} a číslu $\mathrm{rank}(\mathbf{f}) = \dim(\mathrm{im}(\mathbf{f}))$ říkáme hodnost (také: rank) lineárního zobrazení \mathbf{f} .

^aObecněji: $\{\mathbf{f}(\vec{w}) \mid \vec{w} \in W\}$ je podprostor L_2 , pro jakýkoli podprostor W prostoru L_1 .

Tvrzení (Věta o dimensi jádra a obrazu)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, ať prostor L_1 má konečnou dimensi. Pak $\operatorname{def}(\mathbf{f}) + \operatorname{rank}(\mathbf{f}) = \dim(L_1)$.

Důkaz.

Bez důkazu (důkaz je například ve skriptech, Věta 3.3.6).

 $def(\mathbf{f}) = dim(ker(\mathbf{f}))$

 $rank(\mathbf{f}) = \dim(\operatorname{im}(\mathbf{f}))$

Tvrzení (charakterisace monomorfismů)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, ať prostor L_1 má konečnou dimensi. Pak je ekvivalentní:

- **1 f** je monomorfismus.
- **2** $def(\mathbf{f}) = 0$.
- f respektuje lineární nezávislost (tj. obraz lineárně nezávislé množiny je opět lineárně nezávislá množina).

Důkaz.

Přednáška.

Důsledek (monomorfismy a soustavy rovnic)

 $\mathbf{A}: \mathbb{F}^s \to \mathbb{F}^r$ je monomorfismus právě tehdy, když soustava

 $\mathbf{A} \cdot \mathbf{x} = \mathbf{o}$ má pouze triviální řešení.

Tvrzení (charakterisace isomorfismů)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, ať prostor L_1 má konečnou dimensi. Pak je ekvivalentní:

- **1** je isomorfismus.
- f je monomorfismus a epimorfismus současně.

- f respektuje lineární nezávislost (tj. obraz lineárně nezávislé množiny je opět lineárně nezávislá množina) a každá rovnice $\mathbf{f}(\vec{x}) = \vec{b}$ má alespoň jedno řešení.

Důkaz.

Přednáška.

Důsledek (isomorfismy a soustavy rovnic)

 $\mathbf{A}: \mathbb{F}^s \to \mathbb{F}^r$ je isomorfismus právě tehdy, když s=r a každá soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ má právě jedno řešení.

Definice (regulární a singulární matice)

Matice $\mathbf{A}: \mathbb{F}^n \to \mathbb{F}^n$ typu je regulární (také: invertibilní, také: isomorfismus), pokud existuje jednoznačně určená matice \mathbf{A}^{-1} taková, že platí rovnosti $\mathbf{A}^{-1}\cdot \mathbf{A}=\mathbf{E}_n=\mathbf{A}\cdot \mathbf{A}^{-1}$. Matici \mathbf{A}^{-1} říkáme inverse matice \mathbf{A} .

Matice $\mathbf{A}: \mathbb{F}^n \to \mathbb{F}^n$ je singulární, pokud není regulární.

Příklad (rotace o úhel α v \mathbb{R}^2 je isomorfismus)

$$\mathbf{R}_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

je regulární (invertibilní) matice.^a

^aInversním zobrazením rotace o úhel α je rotace o úhel $-\alpha$.

Důsledek (isomorfismy prostorů konečné dimense)

Ať $\dim(L_1) = \dim(L_2) = n$. Potom je, pro lineární zobrazení $\mathbf{f}: L_1 \to L_2$, ekvivalentní:

- **1 f** je monomorfismus.
- f je epimorfismus.
- **1 f** je isomorfismus.

Příklad (důležité a užitečné: Lagrangeova interpolace)

Ať a_1, \ldots, a_n jsou navzájem různá reálná čísla. Lineární zobrazení

$$\mathbf{ev}_{(a_1,...,a_n)}: \mathbb{R}^{\leq n-1}[x] \to \mathbb{R}^n, \quad p(x) \mapsto \begin{pmatrix} p(a_1) \\ p(a_2) \\ \vdots \\ p(a_n) \end{pmatrix}$$

je monomorfismus, tudíž isomorfismus.

11/21

Příklad (Lagrangeova interpolace, pokrač.)

$$\mathbf{ev}_{(a_1,...,a_n)}$$
 je isomorfismus: pro každou n -tici $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ v \mathbb{R}^n existuje

jediný polynom^a $p_{(b_1,\ldots,b_n)}(x)$ v prostoru $\mathbb{R}^{\leq n-1}[x]$ tak, že platí $p_{(b_1,\ldots,b_n)}(a_i)=b_i$ pro všechna $i=1,\ldots,n$.

^aŘíká se mu Lagrangeův interpolační polynom, viz skripta, Příklad 3.3.9.

Tvrzení (důležité)

Ať $B=(\vec{b}_1,\ldots,\vec{b}_n)$ je uspořádaná báze prostoru L. Potom výpočet souřadnic v bázi B

$$coord_B: L \to \mathbb{F}^n, \quad \vec{x} \mapsto coord_B(\vec{x})$$

je isomorfismus.

Důkaz.

Přednáška.

Poznámka (důležitá)

Protože isomorfní lineární prostory se z abstraktního hlediska nijak neliší, vidíme: až na isomorfismus neexistují jiné konečně dimensionální lineární prostory nad \mathbb{F} než prostory tvaru \mathbb{F}^n .

Definice (matice lineárního zobrazení)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, ať $B = (\vec{b}_1, \ldots, \vec{b}_s)$ a $C = (\vec{c}_1, \ldots, \vec{c}_r)$ jsou uspořádané báze prostorů L_1 a L_2 . Matice zobrazení \mathbf{f} (vzhledem k B a C) je taková matice $\mathbf{A}_{\mathbf{f}}$, pro kterou platí

neboli:

$$\begin{array}{ccc} \mathbf{coord}_{\mathcal{B}}(\vec{x}) \longmapsto \mathbf{A_f} \cdot \mathbf{coord}_{\mathcal{B}}(\vec{x}) = \mathbf{coord}_{\mathcal{C}}(\mathbf{f}(\vec{x})) \\ & & & & \\ & & & \\ \vec{x} \longmapsto \mathbf{f}(\vec{x}) \end{array}$$

pro každý vektor \vec{x} .

Tvrzení (výpočet matice lineárního zobrazení)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, ať $B = (\vec{b}_1, \dots, \vec{b}_s)$ a $C = (\vec{c}_1, \dots, \vec{c}_r)$ jsou uspořádané báze prostorů L_1 a L_2 . Potom matice A_f má r řádků a s sloupců. Navíc j-tý sloupec matice A_f je tvořen souřadnicemi **coord**_C($\mathbf{f}(\vec{b_i})$), zapsanými do sloupce.

Věta (matice složeného zobrazení)

Ať L_1 , L_2 , L_3 mají uspořádané báze $B = (\vec{b}_1, \dots, \vec{b}_s)$, $C = (\vec{c}_1, \dots, \vec{c}_p)$ a $D = (\vec{d}_1, \dots, \vec{d}_r)$. At $\mathbf{f} : L_1 \to L_2$ a $\mathbf{g} : L_2 \to L_3$ jsou lineární zobrazení s maticemi A_f (vzhledem k B a C) a A_g (vzhledem k C a D). Potom $\mathbf{g} \cdot \mathbf{f} : L_1 \to L_3$ má matici $\mathbf{A_g} \cdot \mathbf{A_f}$ (vzhledem k B a D).

Důkaz.

05A-2023: Lineární zobrazení, část 2

Věta (matice isomorfismu)

Ať L_1 , L_2 mají uspořádané báze $B=(\vec{b}_1,\ldots,\vec{b}_n)$, $C=(\vec{c}_1,\ldots,\vec{c}_n)$. Ať lineární zobrazení $\mathbf{f}:L_1\to L_2$ je isomorfismus s maticí zobrazení $\mathbf{A}_{\mathbf{f}}$ (vzhledem k B a C). Potom existuje jednoznačně určená matice $\mathbf{A}_{\mathbf{f}}^{-1}$ splňující rovnosti $\mathbf{A}_{\mathbf{f}}^{-1}\cdot\mathbf{A}_{\mathbf{f}}=\mathbf{E}_n=\mathbf{A}_{\mathbf{f}}\cdot\mathbf{A}_{\mathbf{f}}^{-1}$. Matice $\mathbf{A}_{\mathbf{f}}^{-1}$ je matice $\mathbf{A}_{\mathbf{f}}^{-1}$ inversního zobrazení \mathbf{f}^{-1} (vzhledem k C a B).

^aTj. regulární (invertibilní) matice jsou přesně matice isomorfismů.

Důkaz.

Proto $\mathbf{A}_{\mathbf{f}}^{-1} \cdot \mathbf{A}_{\mathbf{f}} = \mathbf{E}_{n}$. Druhá rovnost analogicky.

Příklad (výpočet matice pro derivování)

 $\mathbb{F}^{\leq 3}[x]$ je prostor polynomů stupně ≤ 3 nad tělesem \mathbb{F} . Báze $B=(x^3,x^2,x^1,1)$. Zobrazení

der:
$$\mathbb{F}^{\leq 3}[x] \to \mathbb{F}^{\leq 3}[x]$$
, $(a_3x^3 + a_2x^2 + a_1x + a_0) \mapsto (3a_3x^2 + 2a_2x + a_1)$

je lineární a má následující matici vzhledem k B:

$$\mathbf{A_{der}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Matice pro druhou derivaci: spočítáme součin $\mathbf{A}_{der} \cdot \mathbf{A}_{der}$, atd.

Příklad (matice zobrazení vzhledem k nekanonické bázi)

Lineární zobrazení $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ je dáno hodnotami

$$\mathbf{f}(\begin{pmatrix}1\\-1\end{pmatrix})=2\cdot\begin{pmatrix}1\\-1\end{pmatrix}\quad \text{a}\quad \mathbf{f}(\begin{pmatrix}1\\1\end{pmatrix})=\frac{1}{3}\cdot\begin{pmatrix}1\\1\end{pmatrix}$$

Zobrazení **f** tedy:

- "Prodlužuje" 2× měřítko v ose druhého a čtvrtého kvadrantu.
- "Zkracuje" 3× měřítko v ose prvního a třetího kvadrantu.

Vzhledem k nekanonické bázi $B = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$) má tedy **f** matici

$$\mathbf{A_f} = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$$

Jak spočítat matici $\mathbf{B_f}$ zobrazení \mathbf{f} vzhledem ke kanonické bázi K_2 ?

Příklad (pokrač.)

Myšlenka řešení: hledaná matice $\mathbf{B_f}$ musí splňovat rovnici $\mathbf{B_f} = \mathbf{S} \cdot \mathbf{A_f} \cdot \mathbf{T}$, kde

Jak najít matice $\bf S$ a $\bf T$? Jednoduše: jsou to matice identického zobrazení, navíc evidentně platí $\bf T = \bf S^{-1}$.

Příklad (pokrač.)

Platí (díky tomu, co jsme již dokázali)

$$\mathbf{S} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \qquad \quad \mathbf{T} = \begin{pmatrix} rac{1}{2} & -rac{1}{2} \\ rac{1}{2} & rac{1}{2} \end{pmatrix}$$

a tedy

$$\textbf{B}_{\textbf{f}} = \textbf{S} \cdot \textbf{A}_{\textbf{f}} \cdot \textbf{T} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{7}{6} & -\frac{5}{6} \\ -\frac{5}{6} & \frac{7}{6} \end{pmatrix}$$

Příští přednáška (téma 5B)

Konceptuální hledání (analogií) matic **T** a **S**: takzvané matice transformace souřadnic.

