[6G] Stochastic Analysis of Twice differtiable

[6G] Stochastic Analysis of Twice differtiable

Stochastic Analysis

Definition of Stochastic Model

Model

Deduction of an exact form of the Taylor expansion with the twice differentiable form

Stochastic Analysis

Stochastic Analysis는 앞에서와 마찬가지의 증명 과정을 따른다. 그런데, Stochastic의 경우 는 보다 고차원의 미분 값에 대한 생각을 하지 않을 수가 없다.

The stochastic analysis for an optimization algorithm follows the same procedure of a conventional proof . However, in the stochastic analysis, we should consider the high dimensional differential of an objective function, due to the properties of a random process.

Definition of Stochastic Model

일단 다음과 같이 생각한다.

Consider the following stochastic model

Model

Consider the random process $X_t \in \mathbf{R}^n$ with a Wiener process $W_t \in \mathbf{R}^n$ with a constant variance $\Sigma \in \mathbf{R}^{n \times n}$ which is symmetric matrix, such that

$$X_t = x_t^Q + \Sigma W_t \tag{1}$$

where $x_t^Q \in \mathbf{R}^n$ is a deterministic value.

Let the other randome process $Y_t \in \mathbf{R}^n$ such that

$$Y_t = X_{t+1} = x_{t+1}^Q - (\lambda_t h_t)^Q + \Sigma W_{t+1}$$
 (2)

Let a random process $Z_t(s) \in \mathbf{R}^n$ for $s \in \mathbf{R}[0,1]$ such that

$$egin{aligned} Z_t(s) &= X_t + s(Y_t - X_t) \ &= x_t^Q + \Sigma W_t + s(-\lambda_t h_t) + s \Sigma (W_{t+1} - W_t) \end{aligned}$$

Let $\Delta W_t = W_{t+1} - W_t$, then

$$Z_t(s) = x_t^Q - s(\lambda_t h_t) + \Sigma (W_t + s\Delta W_t)$$
(3)

Considering the differntiate of $Z_t(s)$ to s, we obtain

$$rac{dZ_t(s)}{ds} = -\lambda_t h_t + \Sigma \Delta W_t$$

By the definition of the stochastic differential, we define the differential of $Z_t(s)$ such that

$$dZ_t(s) = -\lambda_t h_t ds + \Sigma \Delta W_t ds \tag{4}$$

Consider the final term, i.e. $\Delta W_t ds$. The integration of $dZ_t(s)$ to s is as follows:

$$\int_0^s dZ_t(s) = Z_t(s) - Z_t(0) = -s\lambda_s h_t \int_0^s ds + \Sigma \int_0^s \Delta W_t ds.$$
 (5)

Since the integration of $dZ_t(s)$ should be equal to (3), the integration of final term to ΔW_t is evaluated as follows.

$$\int_{0}^{s} \Delta W_{t} ds = s(W_{t+1} - W_{t}) = \int_{t}^{t+1} s dW_{\tau} \tag{6}$$

Thereby, when s=0, $\tau=t$, and s=1, $\tau=t+1$, we obtain the following differential equation in the sense of (3)

$$\Delta W_t ds = s dW_{ au}$$

In consequence, the stochastic differential equation of $Z_t(s)$ is same to the following:

$$dZ_t(s) = -\lambda_t h_t ds + s \cdot \Sigma dW_\tau \in \mathbf{R}^n \tag{7}$$

In (7), by the product rule of the stochastic differential, the dot product of the vector differential $dZ_t(s)$ is evaluated as

$$dZ_t(s)^2 = dZ_t(s)^T dZ_t(s) = s^2 dW_\tau \Sigma^T \Sigma dW_\tau = s^2 Tr(\Sigma \Sigma^T) d\tau \in \mathbf{R}$$
 (8)

In (8), while d au and ds contain the same domain, the scale of both are different. Since when s is increased from 0 to s, the au is increased from 0 to 1. If let $\overline{s}=\max s,\ \forall s\in\mathbf{R}[0,1]$ in the analysis, then

$$au = t + rac{s}{\overline{s}}, \; ext{ for} au = \left\{egin{array}{cc} t+1 & s = \overline{s} \ t & s = 0 \end{array}
ight.$$

Considering the scale of both parameters we can obtain the following relation.

$$d\tau = \frac{1}{\overline{s}}ds\tag{9}$$

Therefore, from (8), we obtain the dot product of the vector differential $dZ_t(s)$ is using (9) when $s = \bar{s}$,

$$dZ_t(s)^2 = \frac{s^2}{\bar{s}} Tr(\Sigma \Sigma^T) ds = s \cdot Tr(\Sigma \Sigma^T) ds$$
 (10)

Deduction of an exact form of the Taylor expansion with the twice differentiable form

The deterministic version of the exact Taylor expansion with the twice differentiable form for a objective function $f(x): \mathbf{R}^n \to \mathbf{R}$ is

$$f(y)-f(x)=\langle
abla f(x),y-x
angle +\int_0^1(1-s)\langle y-x,H(x+s(y-x))(y-x)
angle ds$$

where $H(x) \in \mathbf{R}^{n \times n}$ is a Hessian of f(x) .

For evaluation of the stochastic version, we let a function $g(s) = f(Z_t(s))$. The first order differentiation to s is

$$\frac{dg(s)}{ds} = \frac{1}{ds} (dg(s))$$

$$= \frac{1}{ds} \left(\frac{\partial f(Z_t(s))}{\partial Z_t(s)} dZ_t(s) + \frac{1}{2} \frac{\partial^2 f(Z_t(s))}{\partial Z_t^2(s)} dZ_t(S)^2 \right)$$

$$= \left(\frac{\partial f(Z_t(s))}{\partial Z_t(s)} \frac{dZ_t(s)}{ds} + \frac{1}{2} \frac{1}{ds} \frac{\partial^2 f(Z_t(s))}{\partial Z_t^2(s)} dZ_t(S)^2 \right)$$
(11)

Substituting (???) and (10) to the (11), we can obtain

$$\frac{dg(s)}{ds} = \nabla f(X_t)^T \frac{dZ_t(s)}{ds} + \frac{1}{2} \frac{1}{ds} s \cdot Tr \left(\Sigma \frac{\partial^2 f(Z_t(s))}{\partial Z_t^2(s)} \Sigma^T \right) ds$$

$$= \langle \nabla f(X_t), -(\lambda_t h_t)^Q + \Sigma \Delta W_t \rangle + \frac{1}{2} s \cdot Tr \left(\Sigma \frac{\partial^2 f(Z_t(s))}{\partial Z_t^2(s)} \Sigma^T \right). \tag{12}$$

For the second order diiferetiation of g(s), let $y(Z_t(s)) = rac{dg(s)}{ds}$. Then

$$\frac{d^2g(s)}{ds^2} = \frac{dy}{ds} = \left(\frac{\partial y(Z_t(s))}{\partial Z_t(s)} \cdot \frac{dZ_t(s)}{ds} + \frac{1}{2}s \cdot Tr\left(\Sigma \frac{\partial^2 y(Z_t(s))}{\partial Z_t(s)^2} \Sigma^T\right)\right) \tag{13}$$

For the first term of (13), we span it to the differtial of f(X) such that

$$\frac{\partial y(Z_{t}(s))}{\partial Z_{t}(s)} \cdot \frac{dZ_{t}(s)}{ds} = \frac{\partial}{\partial Z_{t}(s)} \left(\frac{\partial f(Z_{t}(s))}{\partial Z_{t}(s)} \cdot \frac{dZ_{t}(s)}{ds} \right) \cdot \frac{dZ_{t}(s)}{ds}
= \frac{\partial^{2} f(Z_{t}(s))}{\partial Z_{t}(s)^{2}} \cdot \left(\frac{dZ_{t}(s)}{ds} \right)^{2} + \frac{\partial f(Z_{t}(s))}{\partial Z_{t}(s)} \cdot \frac{\partial^{2} f(Z_{t}(s))}{\partial Z_{t}(s)\partial s} \cdot \frac{\partial Z_{t}(s)}{\partial s} \tag{14}$$

Subsequently, by the definition of vedtor valued differentiation, the first term of (14) is

$$rac{\partial^2 f(Z_t(s))}{\partial Z_t(s)^2} \cdot \left(rac{dZ_t(s)}{ds}
ight)^2 = \langle rac{dZ_t(s)}{ds}, rac{\partial^2 f(Z_t(s))}{\partial Z_t(s)^2} rac{dZ_t(s)}{ds}
angle.$$

In addition, for the analysis of the second term, we evaluate the following differentiation as follows.

$$rac{\partial^2 f(Z_t(s))}{\partial Z_t(s)\partial s} = rac{\partial}{\partial Z_t(s)}igg(rac{\partial f(Z_t(s))}{\partial s}igg) = rac{\partial}{\partial Z_t(s)}ig(-(\lambda_t h_t)^Q + \Sigma \Delta W_tig) = 0$$

For the verification, of the above equation, changing the order of differentiation, we obtain

$$\frac{\partial}{\partial s} \frac{\partial Z_t(s)}{\partial Z_t(s)} = 0.$$

Therefore, the first term of (14) is

$$\frac{\partial y(Z_t(s))}{\partial Z_t(s)} \cdot \frac{dZ_t(s)}{ds} = \langle \frac{dZ_t(s)}{ds}, \frac{\partial^2 f(Z_t(s))}{\partial Z_t(s)^2} \frac{dZ_t(s)}{ds} \rangle. \tag{15}$$

For the second term of (13), we differentiate twice $y(Z_t(s))$ with respect to $Z_t(s)$ as follows.

$$\frac{\partial^2 y(Z_t(s))}{\partial Z_t^2(s)} = \frac{\partial^2}{\partial Z_t^2(s)} \left(\frac{dg(s)}{ds} \right)
= \frac{\partial^2}{\partial Z_t^2(s)} \left(\frac{\partial f(Z_t(s))}{\partial Z_t(s)} \frac{dZ_t(s)}{\partial ds} + \frac{1}{2} Tr \left(\Sigma \frac{\partial^2 f(Z_t(s))}{\partial Z_t^2(s)} \Sigma^T \right) \right)$$
(16)

In (16), the first term of is evaluated as

$$\frac{\partial^{2}}{\partial Z_{t}^{2}(s)} \left(\frac{\partial f(Z_{t}(s))}{\partial Z_{t}(s)} \frac{dZ_{t}(s)}{ds} \right)
= \frac{\partial}{\partial Z_{t}(s)} \left(\frac{\partial^{2} f(Z_{t}(s))}{\partial Z_{t}^{2}(s)} \frac{dZ_{t}(s)}{ds} + \frac{\partial f(Z_{t}(s))}{\partial Z_{t}(s)} \frac{\partial^{2} Z_{t}(s)}{\partial Z_{t}(s)\partial s} \right)
= \frac{\partial^{3} f(Z_{t}(s))}{\partial Z_{t}^{3}(s)} \frac{dZ_{t}(s)}{ds} \in \mathbf{R}^{n \times n}, \quad \because \frac{\partial^{2} Z_{t}(s)}{\partial Z_{t}(s)\partial s} = 0$$
(17)

Additionally, the second term is

$$\frac{\partial^2}{\partial Z_t^2(s)} H(Z_t(s)) = \frac{\partial^4}{\partial Z_t^4(s)} f(Z_t(s)) \tag{18}$$

where $rac{\partial^4}{\partial Z_t^4(s)}f(Z_t(s))$ is a rank-4 tensor such that

$$\Sigma rac{\partial^4}{\partial Z_t^4(s)} f(Z_t(s)) \Sigma^T \in \mathbf{R}^{n imes n}$$

Finally, since the exact expansion of the twice differential form is evaluated such that

$$f(Y_t) - f(X_t) = g(1) - g(0) = \frac{dg}{ds}(0) + \int_0^1 (1-s) \frac{d^2g}{ds^2}(s) ds,$$
 (19)

from (11) to (18), we obtain the following exact expansion of the twice differentiable form.

$$f(Y_t) - f(X_t) = \langle \nabla f(Z_t(s)), \frac{dZ_t(s)}{ds} \rangle \Big|_{s=0} + \frac{1}{2} s \cdot Tr \left(\Sigma H(Z_t(s)) \Sigma^T \right) \Big|_{s=0}$$

$$+ \int_0^1 (1 - s) \left(\langle \frac{dZ_t(s)}{ds}, H(Z_t(s)) \frac{dZ_t(s)}{ds} \rangle \right)$$

$$+ \frac{1}{2} Tr \left(\Sigma, \left(\frac{\partial^3 f(Z_t(s))}{\partial Z_t^3(s)} \frac{dZ_t(s)}{ds} + \frac{1}{2} \Sigma \frac{\partial^4 f(Z_t(s))}{\partial Z_t^4(s)} \Sigma \right) \Sigma^T \right) ds$$

$$(20)$$