Extinction risk from climate change: ecosystem

Mar. 25th, 2024

Load libraries and data

Test for effect of habitat

Here I tested if extinction predictions change based on habitat, including terrestrial, marine, freshwater, islands, and mountains. I predicted that extinction risks would increase on islands and mountains, and possibly freshwater also.

```
#create model matrix for coefficients
data.use$habs <- ifelse(data.use$Region == "Marine", "Marine", ifelse(data.use$</pre>
Fresh == "Y", "Fresh", "Terrestrial"))
betamat <- data.frame(</pre>
  Intercept = rep(1,N),
  Mtn = ifelse(Mtn == "Y",1,0),
  Island = ifelse(Island == "Y",1,0),
 Terrestrial = ifelse(data.use$habs == "Terrestrial",1,0),
 Marine = ifelse(data.use$habs == "Marine",1,0),
  Freshwater = ifelse(data.use$habs == "Fresh",1,0))
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
#
            chains = 3, warmup=7000, cores=3, iter=10000,
#
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max_treedepth = 15))#
load("2allhabs.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                    2.5%
                                                             97.5%
                 mean
                           se_mean
                                          sd
                                                                      n eff
## beta[1] -1.9250455 0.049327814 2.5323442 -6.8509049 3.0802876 2635.492 1.0
```

```
00263
## beta[2]  0.9286076  0.005515180  0.1832946   0.5711938  1.2977893  1104.537  1.0
02544
## beta[3]  0.4399901  0.006983944  0.2744104  -0.1024399  0.9813104  1543.831  1.0
00573
## beta[4]  -0.8283834  0.049446233  2.5344846  -5.8520490  4.1154775  2627.319  1.0
00210
## beta[5]  -0.8220796  0.049688843  2.5460994  -5.8161981  4.1158819  2625.627  1.0
00406
## beta[6]  -0.4117927  0.049507821  2.5345511  -5.4171638  4.5472902  2620.924  1.0
00126
## #checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
#
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7613.1
                      96.6
## p_loo
               1985.2 24.9
## looic
            -15226.3 193.2
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                              Count Pct.
## (-Inf, 0.7]
                  (good)
                              1412 43.6%
                                             117
##
      (0.7, 1]
                  (bad)
                              1584
                                    49.0%
                                             <NA>
                  (very bad) 239
      (1, Inf)
##
                                     7.4%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
#create data frame of looics from two models
load("2allhabs.rds")
table.data<-data.frame(</pre>
```

```
Model = c("Intercept-only model", "Model including habitat"),
LOOic = c(loo.int$estimates[3],loo.mod$estimates[3]),
SE = c(loo.int$estimates[6],loo.mod$estimates[6])
)
knitr::kable(table.data, caption = "Table 1: Comparisons of LOOic between baseline and all-habitat model", format = "markdown")
```

Table 1: Comparisons of LOOic between baseline and all-habitat model

```
ModelLO0icSEIntercept-only model-15213.77193.3243Model including habitat-15226.29193.2120
```

```
Looic.diff = loo.mod$estimates[3] - loo.int$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = -12.52453
```

Three habitats: Marine, terrestrial and freshwater

```
#Marine is also a part of region analysis, but want to explore it as a habita
t and keep region based on continent.
data.use$habs <- ifelse(data.use$Region == "Marine", "Marine", ifelse(data.use$</pre>
Fresh == "Y", "Fresh", "Terrestrial"))
betamat <- model.matrix(~data.use$habs)</pre>
#Need to do each separately, because habitats overlap, e.g., freshwater on is
#betamat <- model.matrix(~Mtn) #modeled as yes, no, some</pre>
#betamat <- model.matrix(~Island) #modeled as yes, no, some
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
 # mod=stan(file="MetaRisk2 RSTAN betamat.stan",data=stan.data,pars=params.to
.monitor,
             chains = 3, warmup=7000, cores=7, iter=10000,
            init = init.fn, control=list(adapt delta = 0.9, max treedepth = 1
5))
load("2habsL2.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
```

```
##
                          se_mean
                                         sd
                                                  2.5%
                                                             97.5%
                                                                      n eff
                 mean
## beta[1] -2.1466812 0.004442924 0.1406338 -2.4290611 -1.87723932 1001.940
## beta[2] -0.5921805 0.008801843 0.3401566 -1.2504375 0.06831581 1493.519
## beta[3] -0.3933419 0.004232193 0.1374896 -0.6640107 -0.12989104 1055.380
##
               Rhat
## beta[1] 1.003050
## beta[2] 1.002641
## beta[3] 1.004113
#
#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
#
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```

```
- y
- yrep
```

```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7603.5
                       96.7
## p_loo
               1994.4 25.0
## looic
            -15206.9 193.5
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                              Count Pct.
                                            Min. ESS
##
## (-Inf, 0.7]
                  (good)
                              1381 42.7%
                                             124
##
      (0.7, 1]
                  (bad)
                              1588
                                    49.1%
                                             <NA>
                  (very bad) 266
      (1, Inf)
##
                                     8.2%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
#create data frame of looics from two models
load("2habsL2.rds")
table.data<-data.frame(</pre>
```

```
Model = c("Intercept-only model", "Model including habitat"),
  LOOic = c(loo.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.int$estimates[6],loo.mod$estimates[6])
)
knitr::kable(table.data, caption = "Table 2: Comparisons of LOOic between bas
eline and model with three habitats", format = "markdown")
```

Table 2: Comparisons of LOOic between baseline and model with three habitats

Model	L00ic	SE
Intercept-only model	-15213.77	193.3243
Model including habitat	-15206.94	193.4666

```
Looic.diff = loo.mod\sestimates[3] - loo.int\sestimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = 6.824013
#create data frame of Looics from two models
data.use<-dataP; attach(data.use)</pre>
## The following object is masked by .GlobalEnv:
##
##
       percent2
## The following objects are masked from data.use (pos = 3):
##
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
##
       Endemic, Fresh, Island, Land. Use. Change, max.percent, min.percent,
##
##
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
       percent2, Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle,
##
##
       Scenario, Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics,
##
       version, WtSp, Year, Year.Pred
## The following objects are masked from data.use (pos = 4):
##
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
##
       Endemic, Fresh, Island, Land. Use. Change, max.percent, min.percent,
##
##
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
       Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle, Scenario,
##
       Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics, version,
##
       WtSp, Year, Year.Pred
##
## The following objects are masked from dataP:
##
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
##
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
```

```
##
       Endemic, Fresh, Island, Land. Use. Change, max.percent, min.percent,
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
##
       Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle, Scenario,
##
       Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics, version,
##
       WtSp, Year, Year.Pred
##
## The following object is masked from package:base:
##
##
       version
n.total <- nrow(data.use) #total N</pre>
#load("beta mtn.rds")
load("2mtn.rds")
mod.mtn <- mod</pre>
posterior <- as.data.frame(mod.mtn)</pre>
p.y <- sum(data.use$Mtn == "Y")/n.total #prop of yes</pre>
p.s <- sum(data.use$Mtn == "S")/n.total #prop of some
p.n <- sum(data.use$Mtn == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[3]"]])
beta.S = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.s * beta.S + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.s = (beta.S) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.S" = beta.S,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.s" = beta.vs.r.mean.s,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
hab.vals <- data.frame(beta.N.lo = pred.1[1,2],
  beta. N = pred.1[2,2],
  beta.N.hi = pred.1[3,2],
  beta.S.lo = pred.1[1,3],
  beta.S = pred.1[2,3],
  beta.S.hi = pred.1[3,3],
  beta.Y.lo = pred.1[1,4],
  beta.Y = pred.1[2,4],
  beta.Y.hi = pred.1[3,4],
  beta.N.mean.lo = pred.1[1,5],
```

```
beta.N.mean = pred.1[2,5],
  beta.N.mean.hi = pred.1[3,5],
  beta.S.mean.lo = pred.1[1,6],
  beta.S.mean = pred.1[2,6],
  beta.S.mean.hi = pred.1[3,6],
  beta.Y.mean.lo = pred.1[1,7],
  beta.Y.mean = pred.1[2,7],
  beta.Y.mean.hi = pred.1[3,7]
load("3islandAUS.rds")
mod.isl <- mod</pre>
params.to.monitor2=c("beta")#
sumx = summary(mod.isl,probs=c(.025,0.975), digits=4, pars=params.to.monitor2
)
sumx$summary
##
                                           sd
                                                      2.5%
                                                                97.5%
                                                                          n eff
                 mean
                           se mean
## beta[1] -2.4183376 0.003588374 0.09794597 -2.61207572 -2.2281731 745.0368
## beta[2] -0.5568152 0.005931125 0.15261105 -0.86132078 -0.2623271 662.0607
## beta[3] 0.4281474 0.007098608 0.16309201 0.09861945 0.7540473 527.8604
               Rhat
## beta[1] 1.002298
## beta[2] 1.001871
## beta[3] 1.003018
invlogit(c(-2.34,-2.34-.6,-2.34+.17))
## [1] 0.08786391 0.05021127 0.10247703
posterior <- as.data.frame(mod.isl)</pre>
p.y <- sum(Island == "Y")/n.total #prop of yes</pre>
p.s <- sum(Island == "S")/n.total #prop of some</pre>
p.n <- sum(Island == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[3]"]])
beta.S = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.s * beta.S + p.y * beta.Y
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.s = (beta.S) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.S" = beta.S,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.s" = beta.vs.r.mean.s,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
```

```
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
hab.vals[2,] \leftarrow cbind(beta.N.lo = pred.1[1,2],
  beta.N = pred.1[2,2],
  beta.N.hi = pred.1[3,2],
  beta.S.lo = pred.1[1,3],
  beta.S = pred.1[2,3],
  beta.S.hi = pred.1[3,3],
  beta.Y.lo = pred.1[1,4],
  beta.Y = pred.1[2,4],
  beta.Y.hi = pred.1[3,4],
  beta.N.mean.lo = pred.1[1,5],
  beta.N.mean = pred.1[2,5],
  beta.N.mean.hi = pred.1[3,5],
  beta.S.mean.lo = pred.1[1,6],
  beta.S.mean = pred.1[2,6],
  beta.S.mean.hi = pred.1[3,6],
  beta.Y.mean.lo = pred.1[1,7],
  beta.Y.mean = pred.1[2,7],
  beta.Y.mean.hi = pred.1[3,7]
******
load("2habsL2.rds")
mod.habs <- mod</pre>
posterior <- as.data.frame(mod.habs)</pre>
#marine
p.m <- sum(Region == "Marine")/n.total #prop of yes
p.f <- sum(Fresh == "Y")/n.total #prop of yes</pre>
p.t <- (1 - p.m - p.f) #prop of yes
beta.m = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.f = invlogit(posterior[["beta[1]"]])
beta.t = invlogit(posterior[["beta[1]"]] + posterior[["beta[3]"]])
\#r.mean.1 = p.m * beta.m + p.f * beta.f + p.t * beta.t
beta.vs.r.mean.m = (beta.m) - (r.mean.1)
beta.vs.r.mean.f = (beta.f) - (r.mean.1)
beta.vs.r.mean.t = (beta.t) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.m" = beta.m,
"beta.f" = beta.f,
"beta.t" = beta.t,
"beta.vs.r.mean.m" = beta.vs.r.mean.m,
```

```
"beta.vs.r.mean.f" = beta.vs.r.mean.f,
"beta.vs.r.mean.t" = beta.vs.r.mean.t
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
nas<-c(NA,NA,NA)</pre>
hab.vals[3:5,] <- cbind(</pre>
 beta.N.lo = nas,
 beta.N = nas,
 beta.N.hi = nas,
 beta.S.lo = nas,
 beta.S = nas,
 beta.S.hi = nas,
 beta.Y.lo = pred.1[1,2:4],
 beta.Y = pred.1[2,2:4],
 beta.Y.hi = pred.1[3,2:4],
 beta.N.mean.lo = nas,
 beta.N.mean = nas,
 beta.N.mean.hi = nas,
 beta.S.mean.lo = nas,
 beta.S.mean = nas,
 beta.S.mean.hi = nas,
 beta.Y.mean.lo = pred.1[1,5:7],
 beta.Y.mean = pred.1[2,5:7],
 beta.Y.mean.hi = pred.1[3,5:7]
hab.vals$habitat = c("Mountains","Islands","Marine","Freshwater","Terrestrial
")
#show values
hab.vals.r <- hab.vals</pre>
hab.vals.r[,1:18] <- round((hab.vals.r[,1:18]), digits = 4)
opts <- options(knitr.kable.NA = "")</pre>
knitr::kable(hab.vals.r, caption = "Table 1: Extinction risk by taxa, with 95
% credible intervals", format = "markdown", font = 4, longtable = T)
Table 3: Extinction risk by taxa, with 95% credible intervals
```

bet a.N. lo	be ta. N	bet a.N. hi	bet a.S. lo	be ta. S	bet a.S. hi	bet a.Y. lo	be ta. Y	bet a.Y. hi	beta. N.me an.lo	beta. N.me an	beta. N.me an.hi	beta.S .mean .lo	beta. S.me an	beta.S .mean .hi	beta. Y.mea n.lo	beta. Y.me an	beta. Y.mea n.hi	habi tat
0.0 63	0. 08	0.1 14	0.0 49	0. 05	0.0 70	0.1 10	0. 14	0.1 93	0.014	0.01 01	0.039 2	0.031	0.01	0.001	0.033	0.07 20	0.119 2	Mou ntai
5	59	1	6	95	6	4	79	4	9			3	64	7				ns
0.0	0.	0.0	0.0	0.	0.0	0.0	0.	0.1	-	0.00	0.024	-	-	-	0.017	0.04	0.075	Islan
68 4	08 19	97 2	38 6	04 86	60 5	95 7	12 03	50 0	0.011 6	59	5	0.041 7	0.02 73	0.011 8	5	41	0	ds
						0.0	0.	0.1							-	-	0.031	Mari
						34 3	06 07	06 8							0.044	0.01 52	9	ne

a.N. lo	be ta. N	bet a.N. hi	bet a.S. lo	be ta. S	bet a.S. hi	bet a.Y. lo	be ta. Y	bet a.Y. hi	beta. N.me an.lo	beta. N.me an	beta. N.me an.hi	beta.S .mean .lo	beta. S.me an	beta.S .mean .hi	beta. Y.mea n.lo	beta. Y.me an	beta. Y.mea n.hi	habi tat
						0.0 81 0	0. 10 47	0.1 32 7							0.003	0.02 87	0.058 5	Fres hwa ter
						0.0 63 2	0. 07 31	0.0 84 3							0.017 1	0.00 27	0.011 7	Terr estri al

Terrestrial habitats have lower predicted extinction risks and mountain habitats have higher predicted extinction risks than other habitats.

```
#load("Habitat analysis results.rds")
hab.vals$beta.Y.lo <- as.numeric(hab.vals$beta.Y.lo) # data is character and
needs to be numeric
hab.vals$beta.Y <- as.numeric(hab.vals$beta.Y)</pre>
hab.vals$beta.Y.hi <- as.numeric(hab.vals$beta.Y.hi)</pre>
hab.vals$beta.Y.mean.lo <- as.numeric(hab.vals$beta.Y.mean.lo)</pre>
hab.vals$beta.Y.mean <- as.numeric(hab.vals$beta.Y.mean)</pre>
hab.vals$beta.Y.mean.hi<- as.numeric(hab.vals$beta.Y.mean.hi)
hab.vals$habitat <- factor(hab.vals$habitat, levels = c("Terrestrial", "Fresh
water", "Marine", "Islands", "Mountains"))
#Figures
xinter <- pred.1[2,1]</pre>
Fig1a<-ggplot(data = hab.vals)+
  geom_vline(xintercept=xinter) +
  geom errorbar(aes(y = habitat, xmin = beta.Y.lo, xmax = beta.Y.hi), width =
0) +
  geom point(stat = "identity", aes(y = habitat, x = beta.Y), color = "#41678
8", size = 3, shape = 15) +
  xlab("Pre-industrial rise \n in temperature (C)") + <math>xlim(c(0,.2)) +
  theme classic()+
  #scale_y_discrete(labels = c("Mountains", "Islands", "Marine", "Freshwater", "T
errestrial")) +
  theme(axis.title.y = element blank(),axis.title=element text(size=14),axis.
text = element text(size=12))+
  guides(size=F)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none
" instead as
## of ggplot2 3.3.4.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Fig1a
```


Fig. 1. Predicted extinction risk based on habitat.

```
#Differences from zero
glob.mean.over <- rep("n",nrow(hab.vals))</pre>
glob.mean.over[hab.vals$beta.Y.mean > 0 & hab.vals$beta.Y.mean.lo > 0] = "y"
glob.mean.over[hab.vals$beta.Y.mean < 0 & hab.vals$beta.Y.mean.hi < 0] = "y"</pre>
hab.vals$glob.mean.over <- glob.mean.over
Fig1b <- ggplot(data = hab.vals)+
  geom vline(xintercept=0) +
  geom errorbar(aes(y = habitat, xmin = beta.Y.mean.lo, xmax = beta.Y.mean.hi
), width = 0) +
  geom point(stat = "identity", aes(y = habitat, x = beta.Y.mean, color = glo
b.mean.over), size = 3, shape = 15) +
  scale_color_manual(values=c('grey','#5B507A'))+
  xlab("Percent difference \n from global mean") + xlim(c(-.12,.12)) +
  theme classic()+
  theme(axis.title.y = element_blank(),axis.ticks.y = element_blank(),axis.li
ne.y = element blank(), axis.text.y = element blank(),
        axis.title=element_text(size=14),axis.text = element_text(size=12),le
gend.position = "none")+
  guides(size=F)
Fig1b
```


Fig. 2. Predicted extinction risk based on habitat.

ggarrange(Fig1a, NULL, Fig1b, ncol=3, widths = c(4,.4, 2))

Fig. 3. Predicted extinction risk based on habitat.

```
ggsave("Metarisk2 habs.png", width=4, height=3, unit="in", dpi="print")
threat.YN<-data.frame(</pre>
  threat = c("Mountains - N", "Mountains - Y", "Islands - N", "Islands - Y"),
  YN = rep(c("N","Y"),2),
  beta = c(hab.vals$beta.N[1],hab.vals$beta.Y[1],hab.vals$beta.N[2],hab.vals$
beta.Y[2]),
   beta.lo = c(hab.vals$beta.N.lo[1],hab.vals$beta.Y.lo[1],hab.vals$beta.N.lo
[2],hab.vals$beta.Y.lo[2]),
    beta.hi = c(hab.vals$beta.N.hi[1],hab.vals$beta.Y.hi[1],hab.vals$beta.N.h
i[2],hab.vals$beta.Y.hi[2])
#set colors
boolColors <- as.character(c("N"="#416788", "Y"="#8cb369"))</pre>
boolScale <- scale_colour_manual(name="YN", values=boolColors)</pre>
#Figures
Fig2<-ggplot(data = threat.YN)+
  geom vline(xintercept=grand.mean.pred[2]) +
  geom errorbar(aes(y = threat, xmin = beta.lo, xmax = beta.hi), width = 0) +
  geom_point(stat = "identity", aes(y = threat, x = beta, color = YN), size =
3, shape = 15) +
  xlab("Pre-industrial rise \n in temperature (C)") + <math>xlim(c(0.05,.20)) +
theme_classic() + boolScale +
```

```
theme(axis.title.y = element_blank(),axis.title=element_text(size=14),axis.
text = element_text(size=12))+
   guides(color = guide_legend(""))
Fig2
```


Fig. 4. Predicted extinction risk based on habitats.

```
ggsave("Metarisk2 hab YN.png",width=6,height=5,unit="in",dpi="print")
#catalog sample sizes
habs <- ifelse(data.use$Region == "Marine","Marine",ifelse(data.use$Fresh ==
"Y", "Fresh","Terrestrial"))
#
N.mtn.st<-length(unique(dataP$Study[dataP$Mtn == "Y"]))
N.mtn.mod<-length((dataP$Study[dataP$Mtn == "Y"]))
N.isl.st<-length(unique(dataP$Study[dataP$Island == "Y" | dataP$Region == "Au
straliaNewZealand"]))
N.isl.mod<-length((dataP$Study[dataP$Island == "Y" | dataP$Region == "Austral
iaNewZealand"]))
N.mar.st<-length(unique(dataP$Study[dataP$Region == "Marine"]))
N.mar.mod<-length((dataP$Study[dataP$Region == "Marine"]))
N.fresh.st<-length(unique(dataP$Study[dataP$Fresh == "Y"]))
N.fresh.mod<-length((dataP$Study[dataP$Fresh == "Y"]))</pre>
```

```
N.terr.st<-length(unique(dataP$Study[habs == "Terrestrial"]))
N.terr.mod<-length((dataP$Study[habs == "Terrestrial"]))

table.data<-data.frame(
   Factor = c("Mountain","Island","Marine","Freshwwater","Terrestrial"),
   Studies = c(N.mtn.st,N.isl.st,N.mar.st,N.fresh.st,N.terr.st),
   Models = c(N.mtn.mod,N.isl.mod,N.mar.mod,N.fresh.mod,N.terr.mod)
)
knitr::kable(table.data, caption = "Table 3: Number of studies and models for each factor", format = "markdown")</pre>
```

Table 3: Number of studies and models for each factor

Factor	Studies	Models
Mountain	89	628
Island	79	498
Marine	30	116
Freshwwater	72	292
Terrestrial	402	2827

Conclusion

Habitats vary in extinction risk, with lower risks for species in terrestrial habitats and higher risks for species in mountainous habitats.

Variation explained

```
#After Gelman 2019 R2 for Bayesian
load("3allhabsAUS.rds") #with Australia as island
posterior=as.data.frame(mod);
#create model matrix for coefficients
data.use$habs <- ifelse(data.use$Region == "Marine", "Marine", ifelse(data.use$</pre>
Fresh == "Y", "Fresh", "Terrestrial"))
betamat <- data.frame(</pre>
  Intercept = rep(1,N),
  Mtn = ifelse(data.use$Mtn == "Y",1,0),
  Island = ifelse(data.use$Island == "Y" | data.use$Region == "AustraliaNewZe
aland",1,0),
  Terrestrial = ifelse(data.use$habs == "Terrestrial",1,0),
  Marine = ifelse(data.use$habs == "Marine",1,0),
  Freshwater = ifelse(data.use$habs == "Fresh",1,0))
betamat <- as.matrix(betamat)</pre>
#Variables and matrices
S = 9000; #samples
K = ncol(betamat); #factors
p.mat <- as.matrix(posterior[,1:K])</pre>
```

```
v = dataPpercent2
y.mat = t(matrix(rep(y,S), nrow = N, ncol = S))
y.mean <- mean(y)</pre>
#Calculate y.pred for fixed effects only
y.pred <- matrix(rep(NA, N*S), nrow = S, ncol = N)</pre>
theta <- y.pred
for (i in 1:N) {
      theta[,i] = invlogit(p.mat %*% betamat[i,])#rows = samples, cols = i
      y.pred[,i] = (theta[,i] * data.use$Total.N[i])/(theta[,i] * data.use$To
tal.N[i] + (1-theta[,i]) * data.use$Total.N[i])
#Calcluate residual variance
res.f = y.mat - y.pred
RSS.f = rowSums((res.f)^2)
res.v.f = 1/(N-1) * RSS.f
#Calculate fit variance
pred.v.f = 1/(N-1) * rowSums((y.pred)^2)
#Calculate R2
R2.v.f = pred.v.f/(pred.v.f + res.v.f)
cat("fixed effects R2 = ", quantile(R2.v.f, probs = c(0.025, 0.5, 0.975), na.rm
= T))
## fixed effects R2 = 0.09545623 0.1286327 0.1715944
#Total model With random effects
y.pred.c <-(as.matrix(posterior[,(K+1):(N+K)])) #calculated in STAN, with all</pre>
RE and weightings
#Calculate residual variance
res.c = y.mat - y.pred.c
RSS.c = rowSums((res.c)^2)
res.v.c = 1/(N-1) * RSS.c
#Calculate fit variance
pred.v.c = 1/(N-1) * rowSums(y.pred.c^2)
#Calculate full model R2
R2.v.c = pred.v.c/(pred.v.c + res.v.c)
                                                           ")
print("
## [1] "
cat("Overall model R2 = ", quantile(R2.v.c, probs = c(0.025, 0.5, 0.975), na.rm
= T))
```