Sistemas de representación estructurados

Redes Semánticas y Frames

Sistemas de representación estructurados

- 1.- Introducción
- 2.- Redes Semánticas
 - 2.1.- Herencia en Redes Semánticas
 - 2.2.- Excepciones en la Herencia
- 3.- Redes Semánticas Extendidas
 - Ejemplos Redes Semánticas
- 4.- Frames
 - 4.1.- Jerarquía o taxonomía de frames
 - 4.2.- Definición de frame.
 - 4.3.- Equivalencia frames / redes semánticas
 - 4.4.- Herencia simple
 - 4.5.- Extensión de la Definición de Frame
 - 4.6.- Herencia múltiple
 - Ejemplo Frames

Limitaciones de las Redes Semanticas

- En los ejemplos habréis visto que resulta poco natural que tanto los conceptos relevantes del dominio como los valores de las propiedades esos conceptos estén al mismo nivel en la red
 - No se resaltan los conceptos relevantes
 el nodo "100" tiene el mismo nivel de el nodo "arteria"
 - No resulta cómodo reconocer las propiedades de un concepto (habría que mirar todas las flechas que salen del concepto en una red bastante grande)
 - No se resalta la estructura jerárquica entre esos conceptos relevantes

Frames

- Frames (Minsky, 1975)
 - se basan en "considerar la resolución de problemas humana como el proceso de rellenar huecos de descripciones parcialmente realizadas" (O. Selz)
 - la idea subyacente en un sistema basado en frames es que el conocimiento concerniente a los conceptos de un dominio (individuos o clases de individuos), incluyendo las relaciones entre los mismos, es almacenada en una entidad compleja de representación llamada frame (un frame representa un objeto o un concepto relevante, e incluye las propiedades del mismo)
 - un conjunto de frames que representa el conocimiento de un dominio de interés es organizada jerárquicamente en lo que es llamado una taxonomía
 - El método de razonamiento automático es la herencia de las propiedades de los frames de rango superior en la taxonomía

Frames

- El conocimiento relevante de un concepto (objeto individual o clase de objetos) es representado mediante entidad compleja de representación llamada frame, constituida por un conjunto de propiedades (atributos)
- Las frame proporcionan un <u>formalismo para</u> <u>agrupar explícitamente todo el</u> <u>conocimiento concerniente a las</u> <u>propiedades de objetos individuales o</u> clases de objetos.
- Tipos de frames:
 - frames clase, son frames genéricas, que representan conocimiento de clases de objetos
 - frames instancia, representan conocimiento de objetos individuales.

TIPO: Clase		
NOMBRE: Vasos-Sanguineos		
PADE: Sistema-Cardiovascular		
Diámetro:		
Situación:		
Sangre: Rica-oxigeno o Pobre-oxigeno		
Pared:		

Traducción

TIPO: Clase		
NOMBRE: Vasos-Sanguineos		
PADRE: Sistema-Cardiovascular		
Diámetro:		
Situación:		
Sangre: Rica-oxigeno o		
Pobre-oxigeno		
Pared:		

Los vasos sanguíneos forman parte del Sistema Cardiovascular. Tienen como propiedades principales el diámetro, la situación, el tipo de sangre que contienen (puede ser rica o pobre en oxígeno) y el tipo de pared por la que están formados.

Propiedades incluidas en los frames

- Cada frame tienen tres propiedades fijas:
 - TIPO: Clase o Individuo
 - NOMBRE: etiqueta única que los identifica
 - PADRE: nombre del frame padre en la jerarquía
- Además tendrán otras propiedades (slots) cuyo valor caracteriza habitualmente a los distintos individuos
- En cada frame <u>las propiedades podrán tener un valor fijo propio</u> de la clase o individuo, o un conjunto de valores posibles.
- En el ejemplo anterior, el concepto vasos-sanguíneos tiene asociado las propiedades de diámetro, situación, sangre y pared, y la única restricción sobre los posibles valores de esas propiedades es que el valor de sangre puede ser Rica-oxigeno o Pobre-Oxigeno

Ejemplos

TIPO: Clase

NOMBRE: Arteria

PADRE: Vasos-Sanguineos

Sangre: Rica-oxigeno

Pared: Muscular

TIPO: Individuo

NOMBRE: Aorta

PADRE: Arteria

Diámetro: 0,4

Situación: Tronco

Fijaros que solo hace falta incluir en la descripción/definición de un frame las propiedades que no se puedan heredar, o los valores de propiedades que no se puedan heredar

Herencia

- Cada frame hereda las propiedades del frame padre
- Cada frame hereda los valores de una propiedad (o las restricciones de esos valores) del frame padre

Ejemplo de herencia

TIPO: Clase

NOMBRE: Vasos-Sanguineos

PADE: Sistema-Cardiovascular

Diámetro:

Situación:

Sangre: Rica-oxigeno o

Pobre-oxigeno

Pared:

TIPO: Clase

NOMBRE: Arteria

PADRE: Vasos-Sanguineos

Sangre: Rica-oxigeno

Pared: Muscular

Diámetro:

Situación:

Heredado

Ejemplo de herencia

TIPO: Clase **NOMBRE:** Arteria PADRE: Vasos-Sanguineos Sangre: Rica-oxigeno Pared: Muscular Diámetro: Situación:

TIPO: Individuo **NOMBRE:** Aorta PADRE: Arteria Diámetro: 0,4 Situación: Tronco Sangre: Rica-oxigeno Pared: Muscular Heredado

Equivalencia Redes semánticas - Frames

- Se puede representar una red semántica como un conjunto de frames
 - Crear un frame para cada concepto de la red de la que salga una relación (flecha) del tipo Instanciade o Subclase-de
 - En esos frame se ponen como propiedades
 propios del frame la relaciones que salgan de él y
 que no sean del tipo Instancia-de o Subclase-de

Equivalencia Frames-Redes Semánticas

- Se puede representar una jerarquía de frames como una red semántica
 - Para cada frame etiquetamos un concepto de la red etiquetado con el nombre del frame
 - Añadimos una relación (flecha) de tipo subclase-de o instancia-de desde ese concepto hasta el concepto correspondiente a su padre
 - Para cada valor de cada propiedad del frame añadimos un concepto etiquetado con ese valor
 - Para cada propiedades del frame añadimos una relación (flecha) desde el concepto al concepto correspondiente al valor

Equivalencias Frames / Redes Semánticas

clases, instancias y valores atributos = conceptos (nodos)
atributos = relaciones (arcos)

Herencia simple (Excepciones)

- Los atributos (slots) podremos marcarlos como heredables o no heredables (mismo ejemplo de la red semántica, si tenemos un atributo número para arterias, este atributo no tendría que ser heredable a las instancias)
- Los valores también podrán tener excepciones (si ya hay un valor en un individuo o una clase, no se heredará el valor de la clase padre, se quedará con el suyo)
- Las restricciones de valores o tipo de valores también podrán tener excepciones (Si ya hay una restricción o un valor en un individuo o una clase, no se heredará la restricción de la clase padre)

Excepciones de la herencia simple (ejemplo)

```
clase arteria es
subclase-de vasos-sanguíneos;
sangre = rica-oxigeno
end
```

```
instancia arteria-pulmonar-izquierda es
instancia-de arteria;
sangre = pobre-oxigeno;
end
```

Arteria-pulmonar-izquierda no hereda el valor de sangre de Arteria porque ya tiene un valor explicitado en su frame

Facetas

- Para facilitar la definición de excepciones y de restricciones se extienden los frames para que cada slot pueda tener facetas. Una faceta es una propiedad del slot. Posibles propiedades son:
 - Valores por defecto,
 - Tipo de valor que puede tomar,
 - Si se hereda o no,
 - Cuantos valores puede tomar ,

—

Extensión de la definición de frame

FRAME

- ◆ El formalismo de frames descrito no permite:
 - saber si el valor del atributo de una instancia ha sido heredado o ha sido especificado explícitamente.
 - calcular los valores de un atributo a partir de los valores de otros atributos.
- ♦ Muchos lenguajes de frames proporcionan constructores especiales del lenguaje llamados facetas, que permiten manejar las funcionalidades anteriores.

Extensión de la definición de frame

- ◆ Una faceta es considerada como una propiedad asociada a un atributo.
 - faceta valor, es la más común y referencia el valor real del atributo.
 - faceta valor por defecto, denota el valor inicial del atributo en caso de que no se especifique lo contrario.
 - faceta tipo valor, especifica el tipo de datos del valor del atributo.
 - faceta cardinalidad, especifica si se trata de un atributo uni o multi-valuado.
 - faceta máxima cardinalidad, solo es valida para atributos multi-valuados y especifica el máximo número de valores asociados al atributo.
 - facetas demonio, permiten la integración de conocimiento declarativo y procedural. Un demonio o valor activo es un procedimiento que es invocado en un momento determinado durante la manipulación del atributo donde ha sido especificado (si-necesario, si-añadido, si-eliminado).
 - faceta tipo atributo, especifica si se trata de un atributo heredable o no heredable.
 - faceta herencia, especifica el tipo de herencia del atributo.

Tipos herencia de valores

 Dependiendo de como es recorrida la taxonomía para determinar los valores del atributo considerado.

Ejemplo para hacer "en clase"

- a) Representar mediante un método basado en frames, detallando:
- Clases, subclases e instancias.
- Slots o atributos de las frames. Distinguir miembros y propios.
- Clase de valores de los atributos.
- Valores de los atributos, para aquellos que sean conocidos.

Categoría	Rango de presión media (mmHg)
Arterias grandes	90-100
Arterias pequeñas	80-90
Arteriolas	40-80
Venas	<10
Arteriolas	<10

Tarea para entregar

Representa mediante una estructura de Frames la siguiente información acerca de la organización de un Congreso:

- -En dicho Congreso se debe poder almacenar información acerca de las presentaciones que se van a realizar que serán bien artículos aceptados, conferencias invitadas o posters. De cada una de estas presentaciones se desea conocer su título, numero de referencia, autor/es, su lista de descriptores y si está confirmada su presentación en el Congreso.
- -Se desea también almacenar información de los diferentes autores con datos como nombre, apellidos, universidad o centro donde trabajan y numero de artículos presentados.
- -Por otro lado se debe mantener una lista de las personas inscritas, indicando su nombre, cantidad abonada, numero de tarjeta de crédito y si es estudiante o no. En el caso de ser estudiante se deberá guardar información acerca de la universidad donde está estudiando.
- -Se quiere disponer de una estructura que refleje las sesiones del Congreso por días. El Congreso dura 3 dias (Miércoles, Jueves y Viernes) y hay 3 sesiones diarias (MAÑANA1, MAÑANA2 y TARDE1) donde en cada sesión puede haber o bien 3 artículos o 1 conferencia invitada o un número indeterminado de posters (no puede haber mezclas de presentaciones diferentes)

Cada uno de los descriptores del Congreso debe asociarse a una descripción del mismo que explique el significado del descriptor.