Capitolo 1

S_{time} e S_{space}

1.1 S_{time}

Per la dimostrazione di S_{time} risulta tutto analogo alla dimostrazione del libro di Ramsay e Silverman.

Si ha come termine di penalizzazione da cui si ricava S_{time} :

$$\sum_{i=1}^{n} J_{T}(a_{i}) = \sum_{i=1}^{n} \int_{0}^{T} (\frac{\partial^{2} a_{i}}{\partial t^{2}})^{2} dt$$

ma ogni coefficiente a_i è tempo-variante secondo l'espansione

$$a_i(t) = \sum_{j=1}^{m} c_{ij} \psi_j(t)$$

la cui derivata seconda sarà

$$\frac{\partial^2 a_i}{\partial t^2} = \sum_{i=1}^m c_{ij} \psi_j''(t) = \underline{c_i}^t \underline{\psi}_j''(t)$$

Dove $\underline{c_i}$ è un vettore m-dimensionale contenente i coefficienti c_{ij} corrispondenti al valore di i che si sta considerando.

Allora si ha che, fissata i:

$$\int_0^T \left(\frac{\partial^2 a_i}{\partial t^2}\right)^2 dt = \underline{c_i}^t S_{time} \underline{c_i}$$

con

$$S_{time,j1,j2} = \int_0^T \psi_{j1}''(t)\psi_{j2}''(t)dt$$

Infatti, se sviluppassi il quadrato della derivata seconda della funzione integranda otterrei i quadrati di ogni singolo termine e tutte le possibili combinazioni di doppi prodotti tra termini di indici differenti. Considerando a parte i corrispondenti coefficienti di \underline{c}_j , l'integrale è perfettamente ricomposto, termine per termine, dal prodotto matriciale $\underline{c}_i{}^t S_{time} \underline{c}_i$.

Quindi il problema successivo sarà sommare sui punti spaziali, e quindi rispetto ad i. Ma grazie al fatto che ho portato i coefficienti all'esterno della matrice S_{time} , è sufficiente usare il vettore \underline{c} totalmente, si ha che

$$\sum_{i=1}^{n} J_T(a_i) = \sum_{i=1}^{n} \int_0^T \left(\frac{\partial^2 a_i}{\partial t^2}\right)^2 dt = \underline{c}^t (S_{time} \otimes I_n) \underline{c}$$

Quindi $(S_{time} \otimes I_n)$ è una matrice sparsa, in quanto è formata da tante sottomatrici diagonali.

1.2 S_{space}

Più complesso è trovare una formulazione per S_{space} . Credo che il problema sia legato al fatto che le funzioni b_j che devo integrale sono già discrete. Devo infatti semplificare il seguente integrale, per un fissato j

$$\int_{\Omega} (\triangle b_j)^2 d\Omega$$

Che a differenza della relazione (17) dell'articolo *Spatial spline regression* model non è però inserita in una equazione a questo punto del problema. Tuttavia pongo $g_i = \Delta b_i$, e si ha:

$$\int_{\Omega} g_j(\triangle b_j) d\Omega$$

e sfrutto allora l'identità

$$\int_{\Omega} g_j v d\Omega - \int_{\Omega} (\triangle b_j) v d\Omega = 0$$

Per ogni $v(p) = \sum_{i=0}^{n} v_i \varphi_i(p)$, funzione discretizzata in elementi finiti. Se le basi sono corrispondenti ai punti con i dati, sulla frontiera di Ω tutte le funzioni di base sono nulle e quindi anche ogni funzione v lo è. Quindi se applico Green

$$\int_{\Omega} (\triangle b_j) v d\Omega = -\int_{\Omega} (\nabla b_j) (\nabla v) d\Omega + \int_{\partial \Omega} v (\partial_{\nu} b_j) d\sigma$$

il termine di integrale sul bordo di Ω è nullo.

$$\int_{\Omega} g_j v d\Omega = -\int_{\Omega} (\nabla b_j)(\nabla v) d\Omega$$

Essendo sia b_j che v funzioni già discretizzate, posso dire che il termine a destra coinvolge la matrice \mathbf{R}_1

$$\int_{\Omega} g_j v d\Omega = -\underline{v}^t \mathbf{R}_1 \underline{c_j}$$

Dove, analogamente a quanto fatto nella dimostrazione di S_{time} , $\underline{c_j}$ è il vettore con i coefficienti corrispondenti alla funzione b_j .

A questo punto il problema: devo poter ridurre anche il primo integrale ad uno sviluppo matriciale. Di conseguenza devo introdurre una discretizzazione anche per le funzioni g_j , che però rappresentano il laplaciano delle b_j . Se facessi ciò, allora avrei:

$$\underline{v}^t \mathbf{R}_0 g_j = -\underline{v}^t \mathbf{R}_1 c_j$$

Dalla quale ricaverei, visto che la relazione è valida $\forall v$

$$\underline{g_j} = -\mathbf{R}_0^- 1 \mathbf{R}_1 \underline{c_j}$$

E tornando poi all'integrale di partenza da semplificare, applico di nuovo Green:

$$\int_{\Omega} g_j(\triangle b_j) d\Omega = -\int_{\Omega} (\nabla b_j) (\nabla g_j) d\Omega + \int_{\partial \Omega} g_j(\partial_{\nu} b_j) d\sigma$$

Visto che nuovamente le funzioni g_j avranno valore nullo sul bordo, in quanto discretizzate, elimino l'integrale sulla frontiera e si ha:

$$-\int_{\Omega} (\nabla b_j)(\nabla g_j) d\Omega = -\underline{c_j}^t \mathbf{R}_1 \underline{g_j} = \underline{c_j}^t \mathbf{R}_1 \mathbf{R}_0^- \mathbf{1} \mathbf{R}_1 \underline{c_j}$$

E quindi la scomposizione cercata. Ma ci sono alcuni punti deboli:

- è corretto supporre una discretizzazione anche per g_j e quindi per il laplaciano delle funzioni b_j ? Mi sembra un pò forzato, poichè non posso dire con certezza che il laplaciano di una funzione ad elementi finiti ha un espansione nella stessa base di elementi finiti.
- se si sceglie un metodo diverso da quello che ho iniziato in questa dimostrazione, in ogni caso si cercherà di applicare la formula dell'integrazione per parti per semplificare il laplaciano delle b_j . Quindi si avrà sempre un integrale sul bordo del dominio contenente $\partial_{\nu}b_j$ che non posso porre automaticamente nullo poichè la funzione è già stata discretizzata con gli elementi. Potrei porlo vero più ad alto livello, se studiassi queste funzioni a livello infinito-dimensionale.

Quindi ho un problema legato a queste due ipotesi. Vorrei valutare se a questo punto è necessario eseguire questa dimostrazione più ad alto livello, cioè partendo dal caso infinito-dimensionale.