Medical Image Processing in Machine and Deep Learning

Presented by

Ms.M.Mohana

Research Scholar of Computer Science (AI)

What is Medical Image?

• Visual representations of the internal structures and functions of the human body or other living organisms, captured through various imaging modalities.

• To diagnose, monitor, or treat medical conditions.

Medical imaging, also known as radiology

- Non-invasive tests that allow doctors to diagnose injuries and diseases without being intrusive.
- Procedures help determine whether surgery would be an effective treatment option; locate tumors for treatment and removal; find blood clots or other blockages
- Greatly reducing the amount of guesswork done by doctors, allowing them to more effectively deal with patients' injuries and diseases.

A historical timeline of the key discoveries in medical imaging

Source: Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics. 2023; 13(17):2760. https://doi.org/10.3390/diagnostics13172760

Role of AI in Medical Image

SCHEDULING:

By analysing past data, Al helps optimise staff and scanner rosters, reducing patient wait times.

SCANNING:

Al ensures the right imaging procedure is selected, reducing radiation exposure by picking the optimal scan settings.

ACOUISITION:

Real-time scanner adjustments by Al improve image quality and cut down scan times.

INTERPRETATION:

Radiologists receive help from AI in interpreting images and spotting urgent cases.

REPORTING:

Standardised radiology reports are a breeze with Al's auto-fill features based on image interpretation.

FOLLOW-UP AND MONITORING:

Al schedules follow-up scans and tracks disease progress by comparing current and previous images, ensuring top-notch continuity of care.

ADVERSE EVENTS:

Al forecasts potential complications by comparing a patient's imaging data with historical data of similar cases.

TREATMENT RESPONSE:

Learning from past cases, Al predicts a patient's likely response to treatments, aiding in treatment efficacy evaluations.

RECOMMENDATION:

Al system correlates patient data to provide actionable insights for further diagnostics or treatments.

COMMUNICATION:

By integrating with hospital systems like EHRs, AI ensures the right blokes and sheilas get the imaging results in no time.

MRI scan of brain MRI sca

MRI scan of knee

Type of Medical Images

X-ray imaging

- Create images of bones and some soft tissues.
- Used for detecting fractures, joint dislocations, and certain lung conditions.

Computed Tomography (CT) Scan

- Combines X-rays and computer processing to generate detailed cross-sectional images (slices) of the body.
- visualizing internal structures like organs, blood vessels, and bones.

Magnetic Resonance Imaging (MRI)

- Utilizes strong magnetic fields and radio waves to create detailed images of soft tissues, organs, and joints.
- Often preferred for imaging the brain, spinal cord, joints, and muscles.

Type of Medical Images (Cont.)

Ultrasound Imaging

- High-frequency sound waves to create images of internal structures.
- Examining the abdomen, pelvis, and fetal development during pregnancy.

Nuclear Medicine Imaging

- Involves the administration of a radioactive substance (radiopharmaceutical) to visualize the distribution and function of organs and tissues.
- Techniques include Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET).

Mammography

• A specialized X-ray technique used for breast imaging to detect and diagnose breast diseases, including breast cancer.

Fluoroscopy Source: Google image

Type of Medical Images (Cont.)

Fluoroscopy

- Real-time X-ray imaging is used to observe the movement of internal structures, such as the gastrointestinal tract or blood vessels.
- Used for procedures such as angiography and gastrointestinal studies.

Endoscopy

• Involves the use of a flexible tube with a light and camera to visualize the interior of organs or body cavities.

Type of Medical Images (Cont.)

Histopathology Images

• Microscopic images of tissues obtained through staining techniques, such as Hematoxylin and Eosin (H&E), are used for pathological examination to diagnose diseases.

Dermatological Images:

• Images of skin conditions and lesions, often captured using dermoscopy or clinical photography.

Type of Medical Images (Cont.)

Hematoxylin & Eosin Histology Images

- Staining is a widely used technique in histology to colorize different cellular structures, making them visible under a microscope.
- Hematoxylin stains nuclei blue-purple, while Eosin stains cytoplasm and extracellular structures pink.
- Staining method provides a broad overview of tissue architecture and helps in the identification of various cellular components.
- Histology images stained with H&E are commonly used in pathology and medical research to study tissues, diagnose diseases, and understand the microscopic details of organs and structures.
- These images are often captured using a microscope and can be found in pathology reports, medical textbooks, and scientific publications.

Source: Google image

Want to be a master in this area?

Prerequisites	-	Type of Medical images
Basic Image Processing	-	Filtering, segmentation, feature extraction etc.,
Introduction to ML and DL	-	Supervised, unsupervised, Self-supervised
Specific ML / DL Models for Medical Imaging	-	CNN-image, U-Net-segment, RNN-sequence of image
Data Preparation and Augmentation	-	Cleaning and augmentation (New images – GAN)
Framework and Libraries	-	TensorFlow, PyTorch, Scikit-learn
Case Studies and Projects	-	Publicly available dataset, small projects
Stay Updated	-	Read recent ML/DL papers, Community Involvement
Course and Tutorials	-	Coursera, edX, or Udacity
Networking	-	Attend conferences, webinars, and meetups to network

Image Enhancement

Source: Google image

Original Image

Ground-Truth

Synet political public

Synet political for the control of the control of

Medical Image Processing

Image Enhancement

- Contrast Enhancement: Adjusting the pixel intensity to improve the visibility of structures within an image.
- **Histogram Equalization:** Enhancing the contrast by redistributing pixel intensities.

Image Segmentation

- Thresholding: Dividing an image into regions based on intensity thresholds.
- Region Growing: Grouping pixels based on similarity criteria.
- Watershed Segmentation: Separating overlapping objects using a topographical analogy.
- **DL-based Techniques:** U-Net, Mask-RCNN etc.,

Medical Image Processing

Image Registration – fitting one images onto another

- **Spatial Registration:** Aligning images from different modalities or time points in space.
- Intensity-Based Registration: Aligning images based on pixel intensities.

Filtering Techniques

- **Spatial Filtering:** Applying filters (e.g., Gaussian, median) to enhance or suppress certain features.
- Frequency Domain Filtering: Using Fourier transforms for image filtering.

Image Reconstruction

- Computed Tomography (CT) Reconstruction: Creating cross-sectional images from X-ray projections.
- Magnetic Resonance Imaging (MRI) Reconstruction: Assembling images from raw MRI data.

12

(a) Brain MR Image without noise

Wavelet

Medical Image Processing

Noise Reduction

- **Median Filtering:** Replacing each pixel with the median value in its neighborhood.
- Wavelet Denoising: Decomposing images into frequency components for noise reduction.

Feature Extraction

- Texture Analysis: Extracting information related to the spatial arrangement of pixels.
- Shape Analysis: Quantifying geometric properties of structures within an image.

Nomogram

Source: Google image

Medical Image Processing

Image Fusion

- Multimodal Fusion: Combining information from different imaging modalities.
- Temporal Fusion: Integrating information from images captured at different time points.

Machine Learning in Medical Imaging

- Segmentation with Convolutional Neural Networks (CNNs): Training deep learning models for accurate segmentation.
- Classification with Support Vector Machines (SVM) or Random Forests: Automated diagnosis based on image features.

3D Imaging Techniques

- **Volumetric Rendering:** Creating 3D representations of medical images.
- 3D Reconstruction from 2D Slices: Reconstructing a 3D model from a series of 2D images.

Why computer vision and machine learning?

Automation & Time Efficiency

Accuracy and Consistency

Quantitative Analysis Early Detection and Diagnosis

Personalized Medicine

Integration with Multi-model data

Research and Innovation

Challenges in Scale

Use of Computer Vision and Machine Learning in Bio-medical

Cheng, P.M.; Montagnon, E.; Yamashita, R.; Pan, I.; Cadrin-Chênevert, A.; Perdigón Romero, F.; Chartrand, G.; Kadoury, S.; Tang, A. Deep Learning: An Update for Radiologists. *Radiographics* **2021**, *41*, 1427–1445.

Machine Learning Process

Feature extraction

Deep Learning Process

Automatic visual classification algorithm

Basic Learning Foundations: Algorithms and Techniques

Learning Style	Common Algorithms Methods	Applied Ares of Medical Image
Supervised Learning	Linear or logistic regression, Decision trees and random forests, Support vector machines, Convolutional neural networks, Recurrent neural networks	Cancer diagnosis, Organ segmentation, Radiotherapy dose denoising, Radiotherapy dose prediction, Conversion between image modalities
Unsupervised Learning	Auto encoders, Dimensionality reduction (e.g., Principal component analysis), Clustering	Domain adaptation tasks, Classification of patient groups, Image reconstruction
Reinforcement Learning	Q-learning, Markov Decision Processes	Tumor segmentation, Image reconstruction, Treatment planning
Semi-supervised Learning	Generative Adversarial Networks	Tumor classification, Organ segmentation, Synthetic image generation
Self-Supervised Learning	Pretext task: distortion (e.g. rotation), color- or intensity-based, patch extraction	Image classification or segmentation
Transfer Learning	Inductive, Transductive, Unsupervised	Radiotherapy toxicity prediction, Adaptation to different clinical practices, Improving model generalization[
Ensemble Learning	Bagging - Bootstrap AGGregatING - (e.g. random forests), Boosting (e.g. AdaBoost, gradient boosting)	Radiotherapy dose prediction, Estimation of uncertainty, Stratification of patients

Barragán-Montero, Ana, et al. "Artificial intelligence and machine learning for medical imaging: A technology review." *Physica Medica* 83 (2021): 242-256.

Types of Learning in ML and Commonly Applied in Medical Image

Tasks we need to know in DL process in Medical Image analysis

Classification

• Classification is sometimes also known as Computer-Aided Diagnosis (CADx). From the clinician's perspective, classification ascertains if a disease state is present or not, i.e., is blood present on this MRI brain scan signifying a hemorrhagic stroke?

Localization

• Localization implies the identification of normal anatomy, For example, where is the kidney in this ultrasound image?

Detection

• Detection, sometimes known as Computer-Aided Detection (CADe), This is in contrast to detection, which implies an abnormal, pathological state, for example, where are all the lung tumors in this CT scan of the lung?

Segmentation

• Segmenting the outline of a lung tumor helps the clinician determine its distance from major anatomical structures, and helps to answer a question such as, should this patient be operated on, and if so, what should be the extent of resection?

Registration

- Image registration is employed in neurosurgery or spinal surgery, to localize a tumor or spinal bony landmark, in order to facilitate surgical tumor removal or spinal screw implant placement.
- A reference image is aligned to a second image, called a sense image and various similarity measures and reference points are calculated to align the images, which can be 2 or 3-dimensional.
- The reference image may be a pre-operative MRI brain scan and the sense image may be an intraoperative MRI brain scan done after a first-pass resection, to determine if there is remnant tumor and if further resection is required.

Summary of Existing Research works in Medical Image analysis

Task	Organ	Modality	Performance Metrics	Network	Dataset	Organ	Modality / Task
Detection	Brain, MRI, ABUS, AUC, True Positive Breast, OCT, X-ray, Rate, VOI, False	VAE, 3D-CNN, CNN, GAN, VGG-16, sCAE,	IDL, LIDC-IDRI,	Lung	CT (Classification / Detection		
	Eyes, Chest Abdomen	CMR, WGD, US	positive, Sensitivity, Area under ROC, F1- score, Shadow confidence	ADNI, BRATS, ACDC 2017, OASIS-3, ISLES 2018, Open Neuro,	Brain	MRI, PET, Multiple (Classification, Segmentation, Diagnosis)	
Segmentation	Brain, Breast, Eyes, Chest Abdomen	MRI, DCE- MRI, OCT, CT, Mammograms	Dice score, Sensitivity, Specificity, PPV, Runtime, TS, Intensity normalization, Accuracy, ASSD, SP	AE, AD, FCNN +CRF, FCN, cGAN, GANs, CNN	ABIDE DDSM, MIAS,CAMELYO N17, INbreast	Breast	Mammography, WSI (Segmentation, Classification/ Detection)
Registration	Brain, Breast,	MRI, OCT, MR-CT, CT-	Dice Score, Computation time,	CNN, DFCN, GANs, 3D-CNN, U-Net	MESSIDOR-2, DRIVE, STARE, CHASEDB1	Eyes	SLO, OCT (Classification, Segmentation)
Chest Deformation fie	Reliability, Runtime, Deformation field, DIR,	rmation field, DIR, ASD run time,	MURA	Musculos keletal	X-ray (Detection)		
	NRMSE		ISIC 2018	Skin	JPEG (Detection)		
Classification	lassification Brain, fMRI, MRI, ROIs, Classify ASD,	DNN, 3D CNN, AlexNET, VGG-19, AE, AD, GANs, MIL	HVSMR 2018	Heart	CMR (Segmentation)		
1	Accuracy, VOIs, Sensitivity, Specificity,		ChestX-ray 14	Chest	X-ray (Multiple)		
	Chest OCT, CT, MRI DR severity accura	DR severity accuracy		OAI	Knee	X-ray, MRI (Multiple)	
Altaf, F., Islam, S. M., A Access, 7, 99540-99572	khtar, N., & Janjua,	N. K. (2019). Going deep in m	nedical image analysis: concepts, methods	, challenges, and future directions. <i>IEEE</i>	TCIA	Multiple	Multiple

System Developers

Source: Google image

XAI: Explainable AI Techniques

- **Healthcare Providers**
- XAI aims to explain the information behind the black-box model of deep learning that reveals how the decisions are made.
- Providing insights into how the predictions are made to achieve trustworthiness, causality, transferability, confidence, fairness, accessibility, and interactivity.

Criteria used to classify XAI methods

Explanation Type	Techniques
Feature (Highlights the feature contribution for making decisions, original image with an overlay of saliency map)	 Backpropagation (BP), Guided-BP, Deconv Network, Layer-wise relevance propagation (LRP), Class activation map (CAM), Grad-CAM, Local Interpretable modelagnostic explanations (LIME), GraphLIME, Shapley additive explanations (SHAP), Attention
Example-based (Provide explanations by presenting similar instances or examples from the dataset that influenced the model's decision.)	 ProtoPNet, Triplet Network Explainable deep neural network (xDNN)
Textual (provide written descriptions of the factors influencing a model's decision)	 Testing with concepts activation vectors (TCAV), Image Captioning

Criteria used to classify XAI methods (cont.)

Interpretation Type

- Intrinsic Explanation Inherent to the model itself and built into its architecture or training process. (linear model, decision tree, etc.,)
- Post Hoc Explanation- Generated after the model has made predictions and is not inherently part of the model's architecture or training process (Deep learning techniques CAM, Grad-CAM, LIME, SHAP)

Model Specificity

- Model-Specific Explanation designed with the inner workings and assumptions of a particular model in mind. (Visualizing Feature Map or attention mechanism)
- Model-Agnostic Explanation aim to provide insights into the model's behavior without relying on specific model characteristics. (LIME and SHAP)

Explanation Scopes

- Local Explanation Providing insights into the decision-making process of a machine learning model at an individual prediction level (LIME and SHAP)
- Global Explanation To provide insights into the overall behavior and functioning of a machine learning model across the entire dataset (SHAP)

XAI-Methods Used in Medical Images

XAI	Organ	Modality	
CAM	Bone	X-ray	
	Lung	Ultrasound, X-ray, CT	
	Breast	X-ray	
Grad-CAM	Lung	CT, X-ray	
	Chest	Ultrasound	
	Colon	Colonoscopy	
Attention	Breast	X-ray	
	Bone	CT	
	Colon	Colonoscopy	
Saliency	Lung, Skin	CT, X-ray	
SHAP	Lung	HER, Radiomics, CT	
	Chest	HER	
LIME, SHAP	Chest	X-ray	
SHAP, LIME, Scoped Rules	Lung	HER	
Image Caption	Chest	CT	

CAM (Class Activation Map)

Highlights the most important regions of an image, and makes a specific prediction.

Grad-CAM (Gradient-weighted Class Activation Mapping)

• Provides more detailed and precise visualizations of which parts of an image are influencing the network's decision and output concerning its convolutional feature maps.

Saliency

- Highlights which parts of the input data are most crucial for a model's decision-making process.
- Saliency techniques may highlight important features across the entire input space, Grad-CAM specifically localizes the importance of features within the input image, offering more precise and detailed visualizations.

LIME and SHAP

• LIME focuses on providing local explanations by approximating the model's behavior around individual instances, while SHAP offers both local and global explanations by assigning feature contributions to model predictions using Shapley values.

Attention

• Pay more attention to important details when processing information

Challenges of AI Integration into Clinical Practice

Workflow Integration

• PACS and dictation software

Require

- Automation,
- Standardization
- Quality Control

Data Quality and Generalization

• Bias mitigation in data collection

Require

- Privacy
- Annotations

Disease Diversity

- Data-driven
- Domain-experts

Clinical Utility

- Check speed
- Accuracy
- Efficiency

Ethical Consideration

- Informed consent
- Data privacy
- Prevention of Misdiagnoses
- Confidentially
- Guidelines

XAI: Explainability

- 'Block box' problem
- Explain how it was predicted

Existing Challenges in Medical Image analysis using ML and DL

Future Direction in Medical Image Analysis

Wrapping deep features for medical image analysis

Dealing with small data size – use transfer learning Training partially Frozen deep networks

Future Direction

Miscellaneous
data
augmentation
techniques

Using GAN for synthetic data generation

Ensample deep models and Multi-task learning

Is it possible to achieve [this] with one expert in a particular field?

- Machine and Deep Learning methods, have reached important milestones in the last few years, demonstrating their potential to improve and automate the medical practice.
- A safe and full integration of these methods into the clinical workflow still requires a multidisciplinary effort (computer science, IT, medical experts, ...) to enable the next generation of strong AI methods, ensuring robust and interpretable AI-based solutions.

M. Mohana, Research Scholar in CS

Notable Articles for Further Insights and Learning that I have used in my studies

- Barragán-Montero, A., Javaid, U., Valdés, G., Nguyen, D., Desbordes, P., Macq, B., ... & Lee, J. A. (2021). Artificial intelligence and machine learning for medical imaging: A technology review. *Physica Medica*, 83, 242-256.
- Suganyadevi, S., Seethalakshmi, V., & Balasamy, K. (2022). A review on deep learning in medical image analysis. *International Journal of Multimedia Information Retrieval*, 11(1), 19-38.
- Puttagunta, M., & Ravi, S. (2021). Medical image analysis based on deep learning approach. *Multimedia tools and applications*, 80(16), 24365-24398.
- Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical image analysis using convolutional neural networks: a review. *Journal of medical systems*, 42, 1-13.
- Singha, A., Thakur, R. S., & Patel, T. (2021). Deep learning applications in medical image analysis. *Biomedical Data Mining for Information Retrieval: Methodologies, Techniques and Applications*, 293-350.
- Altaf, F., Islam, S. M., Akhtar, N., & Janjua, N. K. (2019). Going deep in medical image analysis: concepts, methods, challenges, and future directions. *IEEE Access*, 7, 99540-99572.
- Najjar, R. (2023). Redefining radiology: a review of artificial intelligence integration in medical imaging. *Diagnostics*, 13(17), 2760.
- Chaddad, A., Peng, J., Xu, J., & Bouridane, A. (2023). Survey of explainable AI techniques in healthcare. Sensors, 23(2), 634.

Thank You..!

Keep Learning and Upgrading Yourself until you reach where you want to be..!

