0 CPA-Security

Describe the game for CPA-Security.

$$Priv_{A,\Pi}^{CPA}(n)$$

- 1. Generate a key as $k \stackrel{\$}{\leftarrow} \{0,1\}^n$
- 2. Training Phase
 - (a) $Enc(k,m_i)$
 - (b) return c_i
- 3. Challenge Phase
 - (a) $Enc(k,m_0)$ and $Enc(k,m_1)$
 - (b) **return** c_0, c_1

In the Game for CPA Security, First a random key is generated as k.

Training Phase: The adversary A sends messages (m_i) to the Oracle, (Drawn above), which encrypts these messages and sends back the ciphertext (c_i) to the adversary. The adversary now has a mapping for the messages to their cipher texts.

Challenge Phase: The adversary A now sends a pair of messages m_0, m_1 to the Oracle. The Oracle generates a bit $b \stackrel{\$}{\leftarrow} \{0,1\}$ and chooses randomly one of the received messages to encrypt as $c*\leftarrow \operatorname{Enc}(k,m_b)$. This c* is then returned to the A as a challenge. A guesses a bit b' where $b' \in \{0,1\} \implies \{m_0,m_1\}$ that the A thinks is actually encrypted as c*.

The adversary A wins if b' = b

An encryption scheme Π is said to be CPA secure if the following holds true.

$$\Pr[A \text{ wins } Priv_{A,\Pi}^{CPA}(n)] = \frac{1}{2} + \varepsilon(n)$$

where $\varepsilon(n)$ is a negligible function.

1 PRP

Suppose F is a PRP where $K = M = \{0, 1\}^{\lambda}$ and $C = (\{0, 1\}^{\lambda})^2$). For each

- 1. Describe what the corresponding Dec procedure looks like.
- 2. Give a proof of CPA-security of the encryption scheme, or show an attack.

Theorem: If F is a secure PRP then the given scheme $\Pi(Gen, Enc, Dec)$ is a secure encryption scheme

Proof by contradiction: We will prove the following statement. If Π is not a secure encryption scheme then, F is not a secure PRP.

Step 1: Real Scheme If Π is not a secure encryption scheme, it means that $\exists PPT$ algorithm A^{CPA} which wins the CPA game with probability $\frac{1}{2} + \varepsilon(n)$ where $\varepsilon(n)$ is a non-negligible function. For $Priv_{A,\Pi}^{CPA}$ we have the following steps

- 1. Pick $k \stackrel{\$}{\leftarrow} \{0,1\}^n$
- 2. Training Phase
 - (a) Adversary A^{CPA} would send messages m_i
 - (b) Pick a $r_i \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$
 - (c) Compute $x_i := F(k, r_i)$
 - (d) Compute $y_i := r_i \oplus m_i$
 - (e) Return (x_i, y_i) to A^{CPA}

3. Challenge Phase

- (a) Adversary A^{CPA} sends two messages m_0, m_1 for encryption
- (b) A bit $b \stackrel{\$}{\leftarrow} \{0,1\}$ is picked by the challenger
- (c) Pick $r* \xleftarrow{\$} \{0,1\}^{\lambda}$
- (d) Compute x* := F(k, r*)
- (e) Compute $y* := r* \oplus m_b$
- (f) Return (x*, y*) to A^{CPA}

In this step, the Probability that A^{CPA} wins is given as follows

$$Pr[A\ wins\ Priv_{A,\Pi}^{CPA}] = \frac{1}{2} + \varepsilon(n)$$
 where $\varepsilon(n)$ is non-negligible.

Step 2: Ideal Scheme For $Priv_{A,\Pi'}^{CPA}$ we have the following steps

1. Training Phase

- (a) Adversary A^{CPA} would send messages m_i
- (b) Pick a $r_i \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$
- (c) Compute $x_i := TF(\cdot)$
- (d) Compute $y_i := r_i \oplus m_i$
- (e) Return (x_i, y_i) to A^{CPA}

2. Challenge Phase

- (a) Adversary A^{CPA} sends two messages m_0, m_1 for encryption
- (b) A bit $b \stackrel{\$}{\leftarrow} \{0,1\}$ is picked by the challenger
- (c) Pick $r* \xleftarrow{\$} \{0,1\}^{\lambda}$
- (d) Compute $x* := TF(\cdot)$
- (e) Compute $y* := r* \oplus m_b$
- (f) Return (x*, y*) to A^{CPA}

In this step, the Probability that A^{CPA} wins is negligible since, the cipher text looks completely random since we're using a truly random function.

$$Pr[A \ wins \ Priv_{A,\Pi'}^{CPA}] = \frac{1}{2} + p(n) \text{ where } p(n) \text{ is negligible } \Longrightarrow \frac{q}{2^{\lambda}}$$

where $\frac{q}{2\lambda}$ is the collision probability in picking r over q queries.

Figure 1: Reduction

Step 3: Reduction We now define a distinguisher D that would activate/simulate A^{CPA} tp break the PRP.

1. Training Phase

- (a) A^{CPA} sends messages m_i to the distinguisher D assuming it's playing the CPA game.
- (b) Distingusher D would pick a random bit $r_i \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$
- (c) Distinguisher D would query the Oracle with r_i and would get back some x_i
- (d) D computes $y_i := x_i \oplus m_i$ and returns this (x_i, y_i) to A^{CPA}

2. Challenge Phase

- (a) A^{CPA} sends messages m_0, m_1 to the distinguisher D assuming it's playing the CPA game.
- (b) Distingusher D would pick a random bit $r* \xleftarrow{\$} \{0,1\}^{\lambda}$
- (c) Distinguisher D would pick a random bit $b \stackrel{\$}{\leftarrow} \{0,1\}$
- (d) Distinguisher D would query the Oracle with r* and would get back some x*
- (e) D computes $y* := x* \oplus m_b$ and returns this (x*, y*) to A^{CPA}
- (f) D outputs 1 when A^{CPA} wins the game

Step 4: Analysis of Success probability of reduction of A

- 1. $\mathcal{O} = F_k(\cdot) \implies \text{Pseudo Random Permutation}$
 - (a) The view of A^{CPA} is exactly the same as the view of A^{CPA} if it were playing the $Priv_{A,\Pi}^{CPA}(n)$ game
 - (b) Since we know that D outputs 1, when A^{CPA} wins the game we have

$$Pr[D^{F_k(\cdot)} = 1] = Pr[A \ wins \ Priv_{\Pi}^{CPA}] = \frac{1}{2} + \varepsilon(n)$$
 (1)

- 2. $\mathcal{O} = TF(\cdot) \implies \text{Truly Random Function}$
 - (a) The view of A^{CPA} is exactly the same as the view of A^{CPA} if it were playing the $Priv_{A'\Pi'}^{CPA}(n)$ game
 - (b) Since we know that D outputs 1, when A^{CPA} wins the game we have

$$Pr[D^{F_k(\cdot)} = 1] = Pr[A \ wins \ Priv_{\Pi'}^{CPA}] = \frac{1}{2} + p(n)$$
 (2)

We have the difference between (1) and (2) as follows,

$$\frac{1}{2} + \varepsilon(n) - \left(\frac{1}{2} + p(n)\right) = \varepsilon(n) - p(n) = \varepsilon'(n)$$

Where $\varepsilon'(n)$ is non-negligible. So that means that distinguisher is able to distingush between the PRP and the Truly Random Function which is contradiction. Hence the given $\Pi(Gen, Enc, Dec)$ is a secure encryption scheme.

Homework 2

Unity ID: Jnshah2

Suppose F is a PRP where $K = M = \{0,1\}^{\lambda}$ and $C = (\{0,1\}^{\lambda})^2$). For each

- 1. Describe what the corresponding Dec procedure looks like.
- 2. Give a proof of CPA-security of the encryption scheme, or show an attack.

Theorem: If F is a secure PRP then the given scheme $\Pi(Gen, Enc, Dec)$ is a secure encryption scheme

Proof by contradiction: We will prove the following statement. If Π is not a secure encryption scheme then, F is not a secure PRP.

Step 1: Real Scheme If Π is not a secure encryption scheme, it means that $\exists PPT$ algorithm A^{CPA} which wins the CPA game with probability $\frac{1}{2} + \varepsilon(n)$ where $\varepsilon(n)$ is a non-negligible function. For $Priv_{A,\Pi}^{CPA}$ we have the following steps

- 1. Pick $k \stackrel{\$}{\leftarrow} \{0,1\}^n$
- 2. Training Phase
 - (a) Adversary A^{CPA} would send messages m_i
 - (b) Pick a $r_i \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$
 - (c) Compute $x_i := F(k, m_i \oplus r_i) \oplus r_i$
 - (d) Return (x_i, r_i) to A^{CPA}

CSC 591/495 Cryptography

October 4, 2019

3. Challenge Phase

- (a) Adversary A^{CPA} sends two messages m_0, m_1 for encryption
- (b) A bit $b \xleftarrow{\$} \{0,1\}$ is picked by the challenger
- (c) Pick $r* \xleftarrow{\$} \{0,1\}^{\lambda}$
- (d) Compute $x* := F(k, m_b \oplus r*) \oplus r*$
- (e) Return (x*, r*) to A^{CPA}

In this step, the Probability that A^{CPA} wins is given as follows

$$Pr[A\ wins\ Priv_{A,\Pi}^{CPA}] = \frac{1}{2} + \varepsilon(n)$$
 where $\varepsilon(n)$ is non-negligible.

Step 2: Ideal Scheme For $Priv_{A,\Pi'}^{CPA}$ we have the following steps

1. Training Phase

- (a) Adversary A^{CPA} would send messages m_i
- (b) Pick a $r_i \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$
- (c) Compute $x_i := TF(\cdot)$
- (d) Return (x_i, r_i) to A^{CPA}

2. Challenge Phase

- (a) Adversary A^{CPA} sends two messages m_0, m_1 for encryption
- (b) A bit $b \stackrel{\$}{\leftarrow} \{0,1\}$ is picked by the challenger
- (c) Pick $r* \xleftarrow{\$} \{0,1\}^{\lambda}$
- (d) Compute $x* := TF(\cdot)$
- (e) Return (x*, r*) to A^{CPA}

In this step, the Probability that A^{CPA} wins is negligible since, the cipher text looks completely random since we're using a truly random function.

$$Pr[A \ wins \ Priv_{A,\Pi'}^{CPA}] = \frac{1}{2} + p(n) \ \text{where} \ p(n) \ \text{is negligible.} \implies \frac{q}{2^{\lambda}}$$

where $\frac{q}{2^{\lambda}}$ is the collision probability in picking r over q queries.

Figure 2: Reduction

Step 3: Reduction We now define a distinguisher D that would activate/simulate A^{CPA}

1. Training Phase

- (a) A^{CPA} sends messages m_i to the distinguisher D assuming it's playing the CPA game.
- (b) Distingusher D would pick a random bit $r_i \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$
- (c) Distinguisher D would query the Oracle with r_i , m_i and would get back some y_i
- (d) D computes $x_i := y_i \oplus r_i$ and returns this (x_i, r_i) to A^{CPA}

2. Challenge Phase

- (a) A^{CPA} sends messages m_0, m_1 to the distinguisher D assuming it's playing the CPA game.
- (b) Distingusher D would pick a random bit $r* \xleftarrow{\$} \{0,1\}^{\lambda}$
- (c) Distinguisher D would pick a random bit $b \stackrel{\$}{\leftarrow} \{0, 1\}$
- (d) Distinguisher D would query the Oracle with $r*, m_b$ and would get back some y*
- (e) D computes $x_* := y * \oplus r *$ and returns this (x*, r*) to A^{CPA}
- (f) D outputs 1 when A^{CPA} wins the game

Step 4: Analysis of Success probability of reduction of A

- 1. $\mathcal{O} = F_k(\cdot) \implies \text{Pseudo Random Permutation}$
 - (a) The view of A^{CPA} is exactly the same as the view of A^{CPA} if it were playing the $Priv_{A\Pi}^{CPA}(n)$ game
 - (b) Since we know that D outputs 1, when A^{CPA} wins the game we have

$$Pr[D^{F_k(\cdot)} = 1] = Pr[A \ wins \ Priv_{\Pi}^{CPA}] = \frac{1}{2} + \varepsilon(n)$$
 (3)

- 2. $\mathcal{O} = TF(\cdot) \implies \text{Truly Random Function}$
 - (a) The view of A^{CPA} is exactly the same as the view of A^{CPA} if it were playing the $Priv_{A'\Pi'}^{CPA}(n)$ game
 - (b) Since we know that D outputs 1, when A^{CPA} wins the game we have

$$Pr[D^{F_k(\cdot)} = 1] = Pr[A \ wins \ Priv_{\Pi'}^{CPA}] = \frac{1}{2} + p(n)$$
 (4)

We have the difference between (1) and (2) as follows,

$$\frac{1}{2} + \varepsilon(n) - \left(\frac{1}{2} + p(n)\right) = \varepsilon(n) - p(n) = \varepsilon'(n)$$

Where $\varepsilon'(n)$ is non-negligible. So that means that distinguisher is able to distingush between the PRP and the Truly Random Function which is contradiction. Hence the given $\Pi(Gen, Enc, Dec)$ is a secure encryption scheme.

Suppose F is a PRP where $K = M = \{0, 1\}^{\lambda}$ and $C = (\{0, 1\}^{\lambda})^2$). For each

- 1. Describe what the corresponding Dec procedure looks like.
- 2. Give a proof of CPA-security of the encryption scheme, or show an attack.

The given encryption scheme $\Pi(Gen, Enc, Dec)$ is not CPA secure. We show the attack as follows.

Attack: Since the encryption scheme $\Pi(Gen, Enc, Dec)$ is not CPA secure, it means that \exists algorithm that would work as follows.

Training Phase:

- 1. A^{CPA} would play the CPA game by sending query message $m_i = 0^n$ to the challenger.
- 2. Gets back x_i , y_i to A^{CPA}

Challenge Phase:

- 1. A^{CPA} will query a pair of messages $m_0 = 0^n, m_1 = 1^n$ to the challenger
- 2. Gets back x*, y* to A^{CPA}

Decision:

1. A^{CPA} would output bit 1 if $y* \oplus x* = m_0$ else it would output 0

October 4, 2019

Analysis of A's success:

- 1. Case b=1
 - (a) $m_0 = 0^n$

(b)
$$y*, x* = Enc_k(0^n) \implies y* := x* \oplus m_0 \implies y* := x* \oplus 0^n$$

- (c) $0^n := y * \oplus x * \implies m_0 := y * \oplus x *$
- (d) A^{CPA} will output 1 with probability 1
- 2. Case b = 0
 - (a) $m_1 = 1^n$
 - (b) $y*, x* = Enc_k(1^n) \implies y* := x* \oplus m_1 \implies y* := x* \oplus 1^n$
 - (c) $1^n := y * \oplus x * \implies m_1 := y * \oplus x *$
 - (d) A^{CPA} will output 0 with probability 1

Conclusion: We see that the distinguisher wins with probability 1 when the bit chosen is 1 or 0, therefore the given encryption scheme is not CPA secure.

2 Block Ciphers

Consider the following block cipher modes for encryption, applied to a PRP F, where

$$F: \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}.$$

For each

- 1. Describe what the corresponding Dec procedure looks like.
- 2. Show an attack (using CPA-security). Describe the distinguisher and compute its advantage.

$$egin{aligned} &\operatorname{Enc}(k,m_1||\dots||m_\ell) \ & \overline{r_0 \leftarrow_{\$}\{0,1\}^{\lambda}} \ & c_0 \coloneqq r_0 \ & \mathbf{for} \ i = 1 \ to \ \ell \ \mathbf{do} \ & | \ r_i \coloneqq c_i \oplus r_{i-1} \ & | \ m_i \coloneqq F^{-1}(k,r_i) \ & \mathbf{end} \ & \mathbf{return} \ c_0||\dots||c_\ell \end{aligned}$$

Attack: The given algorithm is *not CPA secure*, this means that \exists distinguisher D that would work as follows:

Training Phase:

- 1. Query Oracle \mathcal{O} with messages $m_i := m_1 || \dots || m_\ell = 0^n$
- 2. Gets back $c^m := c_0^m || \dots || c_\ell^m$

Challenge Phase:

- 1. Query Oracle \mathcal{O} with a pair of messages $m_0 = 0^n, m_1 = 1^n$
- 2. Gets back $c^b := c_0^b || \dots || c_\ell^b$

Decision:

1. Output bit 1 if $c_i^b \oplus c_{i-1}^b = c_i^m \oplus c_{i-1}^m$ else it would output 0

Analysis of D's success:

- 1. Case b = 1
 - (a) $m_0 = 0^n$
 - (b) $c^b := c_0^b || \dots || c_\ell^b$
 - (c) $c_i^b \oplus c_{i-1}^b = F_k(m_i) = c_i^m \oplus c_{i-1}^m$
 - (d) D will output 1 with probability 1
- 2. Case b = 0
 - (a) $m_1 = 1^n$
 - (b) $c^b := c_0^b || \dots || c_\ell^b$
 - (c) $c_i^b \oplus c_{i-1}^b = F_k(m_i) = c_i^m \oplus c_{i-1}^m$
 - (d) D will output 0 with probability 1

Conclusion: We see that the distinguisher wins with probability 1 when the bit chosen is 1 or 0, therefore the given encryption scheme is not CPA secure.

Consider the following block cipher modes for encryption, applied to a PRP F, where

$$F: \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}.$$

For each

- 1. Describe what the corresponding Dec procedure looks like.
- 2. Show an attack (using CPA-security). Describe the distinguisher and compute its advantage.

Attack: The given algorithm is *not CPA secure*, this means that \exists distinguisher D that would work as follows:

Training Phase:

- 1. Query Oracle \mathcal{O} with messages $m_i := m_1 || \dots || m_\ell = 0^n$
- 2. Gets back $c^m := c_0^m || \dots || c_\ell^m$

Challenge Phase:

- 1. Query Oracle \mathcal{O} with a pair of messages $m_0 = 0^n, m_1 = 1^n$
- 2. Gets back $c^b := c_0^b || \dots || c_\ell^b$

Decision:

1. Output bit 1 if $c_i^b \oplus c_{i-1}^b = c_i^m \oplus c_{i-1}^m$ else it would output 0

Analysis of D's success:

- 1. Case b = 1
 - (a) $m_0 = 0^n$
 - (b) $c^b := c_0^b || \dots || c_\ell^b$
 - (c) $c_i^b \oplus c_{i-1}^b = F_k(m_i) = c_i^m \oplus c_{i-1}^m$
 - (d) D will output 1 with probability 1
- 2. Case b = 0
 - (a) $m_1 = 1^n$
 - (b) $c^b := c_0^b || \dots || c_\ell^b$
 - (c) $c_i^b \oplus c_{i-1}^b = F_k(m_i) = c_i^m \oplus c_{i-1}^m$
 - (d) D will output 0 with probability 1

Conclusion: We see that the distinguisher wins with probability 1 when the bit chosen is 1 or 0, therefore the given encryption scheme is not CPA secure.

3 CPA Security

Suppose Σ is an encryption scheme and \mathcal{A} is a program which can recover the key from a chosen plaintext attack. In other words the game for \mathcal{A} looks like:

For polynomially many i.

- 1. \mathcal{A} queries the challenger on m_i .
- 2. challenger returns $c_i := \Sigma.\mathsf{Enc}(k, m_i)$.

Finally, \mathcal{A} outputs k.

Prove that Σ does not have CPA security.

We assume that the Encryption scheme works like this

Attack: The given algorithm is *not CPA secure*, this means that \exists distinguisher D that would work as follows:

Training Phase:

- 1. Query Oracle \mathcal{O} with messages m_i
- 2. Gets back c_i , x_i
- 3. Get the key k

Challenge Phase:

- 1. Query Oracle \mathcal{O} with a pair of messages $m_0 = 0^n, m_1 = 1^n$
- 2. Gets back c_b , x_b

Decision:

1. Output bit 1 if $F_k^{-1}(x_b) \oplus c_b = m_0$ else it would output 0

Analysis of D's success:

- 1. Case b = 1
 - (a) $m_0 = 0^n$
 - (b) $c_b := r \oplus m_b = F_k^{-1}(x_b) \oplus m$
 - (c) D will output 1 with probability 1
- 2. Case b = 0
 - (a) $m_0 = 1^n$
 - (b) $c_b := r \oplus m_b = F_k^{-1}(x_b) \oplus m$
 - (c) D will output 0 with probability 1

Conclusion: We see that the distinguisher wins with probability 1 when the bit chosen is 1 or 0, therefore the given encryption scheme is not CPA secure.

