

Mathématiques

Classe: 4ème Mathématiques

Devoir de contrôle N°1

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1 (5) 45 min

4.5 pts

Taki Academy

ww.takiacademy.co

Soit $(\mathbf{U_n})$ la suite définie par: $\begin{cases} \mathbf{U_0} = \frac{1}{2} \\ \\ \mathbf{U_{n+1}} = \frac{\mathbf{U_n^2 + U_n + 1}}{\mathbf{U_n^2 + 2}} \ \forall n \in \mathbb{N} \end{cases}$

- (a) Montrer que pour tout $n \in \mathbb{N}$, $0 < \mathbf{U_n} < 1$. \langle 1 \rangle
 - **b** Montrer que $(\mathbf{U_n})$ est croissante.
 - En déduire que (\mathbf{U}_n) est convergente et déterminer sa limite.
- a Montrer que $\forall n \in \mathbb{N}, 1 U_{n+1} \leq \frac{1}{2} (1 U_n).$
 - **b** En déduire que $\forall n \in \mathbb{N}, 1 \mathbf{U}_n \leq \left(\frac{1}{2}\right)^n$.
 - \bigcirc Retrouver $\lim_{n\to+\infty} U_n$
- Soit (W_n) la suite définie sur \mathbb{N} par $W_n = \sum_{k=0}^{2n} (-1)^k (1 U_k)$.
 - $oxed{a}$ Montrer que $(W_{old n})$ est décroissante.
 - $ig(oldsymbol{\mathsf{b}} ig)$ Montrer que $(W_{oldsymbol{\mathsf{n}}})$ est convergente.

Exercice 2

4.5 pts

On considère dans \mathbb{C} l'équation $(\mathbf{E}): \mathbf{z}^2 - 2(1 + \mathbf{i}\cos\theta)\mathbf{z} + 2\mathbf{i}\cos\theta = 0$ avec $\theta \in \left[0; \frac{\pi}{2}\right]$.

- Résoudre dans € l'équation (E).
- Le plan complexe est muni d'un repère orthonormé direct $(\mathbf{O}; \overrightarrow{\mathfrak{u}}, \overrightarrow{\mathfrak{v}})$, on désigne par A, M_1 et M_2 les points d'affixes respectives 1, $z_1 = 1 + i e^{i\theta}$ et $z_2 = 1 + i e^{-i\theta}$.
 - Écrire z_1 et z_2 sous forme exponentielle.
 - **b** Déterminer et construire l'ensemble des points \mathbf{M}_1 lorsque $m{ heta}$ décrit l'intervalle $\left]0; rac{\pi}{2}
 ight[.$
 - On pose I le milieu du segment $[M_1M_2]$. Déterminer l'ensemble des points I lorsque θ décrit l'intervalle $]0; \frac{\pi}{2}[$.
- $factor{a}$ Écrire $rac{z_2-1}{z_1-1}$ sous forme exponentielle et en déduire que $f M_2$ est l'image de $f M_1$ par une rotation
 - Déterminer θ pour que AM_1M_2 soit un triangle isocèle.
- **a** Montrer que lorsque θ varie sur 0; $\frac{\pi}{2}$, la droite $(\mathbf{M}_1\mathbf{M}_2)$ à une direction fixe.
 - Prouver donc que $M_2 = S_{\Delta}(M_1)$ avec $\Delta : x = 1$.
 - Déterminer θ pour que OAM_1M_2 soit un losange.

Exercice 3

(5) 40 min

4 pts

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \begin{cases} -2 + \frac{\sin x}{x} & \text{si } x < 0 \\ 2x^3 - 3x^2 - 1 & \text{si } 0 \le x \le 2 \\ 2x - \sqrt{x^2 - x - 1} & \text{si } x > 2 \end{cases}$

- 2) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \left(f(x)-x\right)$. Interpréter graphiquement le résultat .
- 3) Montrer que f est continue en 0.
- 4) a) Dresser le tableau de variations de f sur [0,2].
 - b) Montrer que l'équation f(x) = 0 admet une unique solution $\alpha \in]0,2[$.
 - c) Vérifier que $1,6 < \alpha < 1,7$
- 5) On donne ci-dessous (\mathscr{C}) la courbe représentative de f dans un repère orthonormé.

Répondre aux questions suivantes, en utilisant le graphique :

- a) Donner le signe de f suivant les valeurs de x.
- b) Déterminer les limites éventuelles suivantes :

$$\lim_{x \to -\infty} f\left(\frac{2x}{2x-3}\right), \lim_{x \to 0^-} f\left(\frac{1}{\sin x}\right), \lim_{x \to 0^+} x f\left(\frac{1}{\sqrt{x}}\right), \lim_{x \to +\infty} f \circ f(x) - f(x)$$

c) Déterminer les images de chacun des intervalles suivants : [0,2] et $]0,+\infty[$.

6 pts

Le plan est rapporté à un repère orthonormé (O, i, j).

- La courbe (\mathscr{C}) représente une fonction f définie sur \mathbb{R} par $f(x) = \frac{2x}{1+x^2}$
- La droite y = 0 est une asymptote à la courbe (\mathscr{C}) an voisinage de $+\infty$ et $-\infty$
- La droite $\Delta: y = x$ coupe la courbe (\mathscr{C}) en trois points d'abscisses respectifs -1, 0 et 1.
- 1) En utilisant le graphique
 - a) Dresser le tableau de variation de f.
 - b) Déterminer la position relative de (\mathscr{C}) et Δ

- 2) Soit (U_n) la suite définie sur \mathbb{N} par $\begin{cases} U_0 = \frac{1}{4} \\ U_{n+1} = \frac{2U_n}{1 + U_n^2} \end{cases}$

 - a) Montrer que pour tout entier naturel n, $0 < U_n < 1$.
 - b) Montrer que (U_n) est croissante.

- c) En déduire que (U_n) est convergente et que $\lim_{n\to+\infty}U_n=1$.
- 3) Pour tout $n \in \mathbb{N}^*$, on pose $V_n = \frac{1}{2^n} \sum_{k=1}^n 2^k U_k$.
 - a) Montrer que $V_{n+1} V_n = \frac{1}{2^{n+1}} \left(2^{n+1} U_{n+1} \sum_{k=1}^n 2^k U_k \right)$
 - b) Montrer que $\sum_{k=1}^{n} 2^{k} U_{k} < 2^{n+1} U_{n+1}$
 - c) En déduire que $V_n < 2$ et que (V_n) est convergente.
- 4) a) Vérifier que pour tout $n \in \mathbb{N}^*$, $\frac{2^{n+1}}{U_{n+1}} \frac{2^n}{U_n} = 2^n U_n$.
 - b) En déduire la limite de (V_n) .

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000