# Pension returns analysis

#### 15:48 29 April 2024

Fit log returns to F-S skew standardized Student-t distribution.

- m is the location parameter.
- s is the scale parameter.

nu is the estimated shape parameter (degrees of freedom).

xi is the estimated skewness parameter.

## Log returns data 2011-2023.

For 2011, medium risk data is used in the high risk data set, as no high risk fund data is available prior to 2012.

 ${\tt vmrl}$  is a long version of Velliv medium risk data, from 2007 to 2023. For 2007 to 2011 (both included) no high risk data is available.

#### Gross returns 2011-2023



#### **Summary of gross returns**

```
## 1st Qu.:1.044 1st Qu.:1.039 1st Qu.:1.042 1st Qu.:1.068
## Median :1.097 Median :1.099 Median :1.084 Median :1.128
## Mean :1.070 Mean :1.085 Mean :1.065 Mean :1.095
## 3rd Qu.:1.136 3rd Qu.:1.160 3rd Qu.:1.107 3rd Qu.:1.182
## Max. :1.168 Max. :1.214 Max. :1.141 Max. :1.208
                  mhr
##
     mmr
                               vm_ph_r
                                             vh_pm_r
## Min. :0.988 Min. :0.977
                              Min. :0.9791 Min. :0.9666
## 1st Qu.:1.013 1st Qu.:1.013 1st Qu.:1.0213 1st Qu.:1.0115
## Median :1.085 Median :1.113 Median :1.1024 Median :1.0938
## 3rd Qu.:1.101 3rd Qu.:1.128 3rd Qu.:1.1211
## Max. :1.133 Max. :1.207 Max. :1.1778
                                             3rd Qu.:1.1065
                                            Max. :1.1630
##
       vmrl
## Min. :0.801
## 1st Qu.:1.013
## Median :1.085
## Mean :1.061
## 3rd Qu.:1.128
## Max. :1.193
           vmr vhr pmr phr mmr mhr vm_ph_r vh_pm_r
## Min. : 0.868 0.849 0.904 0.878 0.988 0.977 0.9791 0.9666
## 1st Qu.: 1.044 1.039 1.042 1.068 1.013 1.013 1.0213 1.0115
## Median : 1.097 1.099 1.084 1.128 1.085 1.113 1.1024 1.0938
## Mean : 1.070 1.085 1.065 1.095 1.066 1.087 1.0807 1.0736
## 3rd Qu.: 1.136 1.160 1.107 1.182 1.101 1.128 1.1211 1.1065
## Max. : 1.168 1.214 1.141 1.208 1.133 1.207 1.1778 1.1630
```

#### **Ranking**

|       |         | 1st   |         | Median  |         | Mean  |         | 3rd   |         |         |         |
|-------|---------|-------|---------|---------|---------|-------|---------|-------|---------|---------|---------|
| Min.: | ranking | Qu.:  | ranking | :       | ranking | :     | ranking | Qu.:  | ranking | Max.:   | ranking |
| 0.988 | mmr     | 1.068 | phr     | 1.128   | phr     | 1.095 | phr     | 1.182 | phr     | 1.214   | vhr     |
| 0.979 | vm_ph_r | 1.044 | vmr     | 1.113   | mhr     | 1.087 | mhr     | 1.160 | vhr     | 1.208   | phr     |
| 0.977 | mhr     | 1.042 | pmr     | 1.102   | vm_ph_r | 1.085 | vhr     | 1.136 | vmr     | 1.207   | mhr     |
| 0.967 | vh_pm_r | 1.039 | vhr     | 1.099   | vhr     | 1.081 | vm_ph_r | 1.128 | mhr     | 1.178   | vm_ph_r |
| 0.904 | pmr     | 1.021 | vm_ph_  | r 1.097 | vmr     | 1.074 | vh_pm_r | 1.121 | vm_ph_i | r 1.168 | vmr     |
| 0.878 | phr     | 1.013 | mmr     | 1.094   | vh_pm_ı | 1.070 | vmr     | 1.107 | pmr     | 1.163   | vh_pm_r |
| 0.868 | vmr     | 1.013 | mhr     | 1.085   | mmr     | 1.066 | mmr     | 1.106 | vh_pm_i | r 1.141 | pmr     |
| 0.849 | vhr     | 1.012 | vh_pm_  | r 1.084 | pmr     | 1.065 | pmr     | 1.101 | mmr     | 1.133   | mmr     |

#### **Covariance and correlations**

Covariances

```
## vmr 0.0072 0.0087 -0.0011 -0.0008
## vhr 0.0087 0.0106 -0.0008 -0.0002
## pmr -0.0011 -0.0008 0.0043 0.0066
## phr -0.0008 -0.0002 0.0066 0.0111
```

Correlations

```
## vmr vhr pmr phr
## vmr 1.0000 0.9926 -0.1971 -0.0949
## vhr 0.9926 1.0000 -0.1186 -0.0159
## pmr -0.1971 -0.1186 1.0000 0.9569
## phr -0.0949 -0.0159 0.9569 1.0000
```

vhr and phr are clearly the least correlated.

#### Velliv medium risk, 2011 - 2023

```
## AIC: -27.8497
## BIC: -25.58991
## m: 0.0480931
## s: 0.1198426
## nu (df): 3.303595
## xi: 0.03361192
## R^2: 0.993
## An R^2 of 0.993 suggests that the fit is extremely good.
## What is the risk of losing max 10 \%? =< 0 percent
## What is the risk of losing max 25 \ensuremath{\mbox{\%}?} =< 0 percent
## What is the risk of losing max 50 %? =< 0 percent
## What is the risk of losing max 90 \%? =< 0 percent
## What is the risk of losing max 99 \mbox{\%?} =< 0 percent
## What is the chance of gaining min 10 \%? >= 63.16667 percent
## What is the chance of gaining min 25 \%? >= 49.33333 percent
## What is the chance of gaining min 50 \%? >= 40.16667 percent
## What is the chance of gaining min 90 %? >= 32.66667 percent
## What is the chance of gaining min 99 %? >= 31.5 percent
```

# **QQ Plot**

# QQ-plot, skewed t



The qq plot looks great. Log returns for Velliv medium risk seems to be consistent with a skewed t-distribution.

#### Data vs fit

Let's plot the fit and the observed returns together.





## **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

#### Estimated skew t distribution CDF



# Estimated skew t distribution quantiles



We see that for a few observations out of a 1000, the losses are disastrous, while the upside is very dampened.

## Estimated skew t distribution PDF



## **Monte Carlo**

#### MC simulation with down-and-out



Sorted portfolio index values for last period of all runs



## Convergence

#### Max vs sum

Max vs sum plots for the first four moments:



#### МС

Monte Carlo convergence w/ 95% c.i.



#### IS

Parameters

## [1] 1.2209089 0.3309714

Objective function plots



# Importance Sampling convergence w/ 95% c.i. 20 steps, 10000 paths



#### Velliv medium risk, 2007 - 2023

#### Fit to skew t distribution

```
## AIC: -34.35752
## BIC: -31.02467
## m: 0.05171176
## s: 0.1149408
## nu (df): 2.706099
## xi: 0.5049945
## R^2: 0.978
##
## An R^2 of 0.978 suggests that the fit is very good.
##
## What is the risk of losing max 10 \%? =< 0 percent
## What is the risk of losing max 25 \%? =< 0 percent
## What is the risk of losing max 50 \%? =< 0 percent
## What is the risk of losing max 90 \%? =< 0 percent
## What is the risk of losing max 99 \mbox{\%?} =< 0 percent
## What is the chance of gaining min 10 \%? >= 58.66667 percent
## What is the chance of gaining min 25 \%? >= 47.5 percent
## What is the chance of gaining min 50 \%? >= 40.16667 percent
## What is the chance of gaining min 90 \%? >= 34 percent
## What is the chance of gaining min 99 %? >= 33 percent
```

# **QQ Plot**

# QQ-plot, skewed t my=0.0517, sigma =0.1149, df=2.706, xi =0.505, R^2=0.978 0.1 log returns 0.0 -0.1 -0.2 data trendline 45 degree line -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

The qq plot looks good. Log returns for Velliv high risk seems to be consistent with a skewed t-distribution.

skewed t-quantiles

#### Data vs fit

Let's plot the fit and the observed returns together.





#### **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

#### Estimated skew t distribution CDF



## Estimated skew t distribution quantiles



We see that for a few observations out of a 1000, the losses are disastrous, while the upside is very dampened. But because the disastrous loss in 2008 was followed by a large profit the following year, we see some increased upside for the top percentiles. Beware: A 1.2 return following a 0.8 return doesn't take us back where we were before the loss. Path dependency! So if returns more or less average out, but high returns have a tendency to follow high losses, that's bad!

## Estimated skew t distribution PDF



#### **Monte Carlo**

#### MC simulation with down-and-out



## Sorted portfolio index values for last period of all runs

(100 is par, 200 is double, 50 is half)



## Convergence

## Max vs sum

 $\mbox{\sc Max}$  vs sum plots for the first four moments:



#### МС

# Monte Carlo convergence w/ 95% c.i.



## IS

#### Parameters

## ## [1] 1.2367098 0.3352537

# Objective function plots





# Importance Sampling convergence w/ 95% c.i.



## **Velliv high risk, 2011 - 2023**

#### Fit to skew t distribution

```
## AIC: -21.42488
## BIC: -19.16508
## m: 0.06471454
## s: 0.1499924
## nu (df): 3.144355
## xi: 0.002367034
## R^2: 0.991
##
## An R^2 of 0.991 suggests that the fit is extremely good.
##
## What is the risk of losing max 10 \%? =< 0 percent
## What is the risk of losing max 25 \%? =< 0 percent
## What is the risk of losing max 50 \%? =< 0 percent
## What is the risk of losing max 90 %? =< 0 percent
## What is the risk of losing max 99 %? =< 0 percent
##
## What is the chance of gaining min 10 \%? >= 64.66667 percent
## What is the chance of gaining min 25 \%? >= 47.83333 percent
## What is the chance of gaining min 50 \%? >= 36.83333 percent
## What is the chance of gaining min 90 \%? >= 28 percent
## What is the chance of gaining min 99 \%? >= 26.5 percent
```

#### **QQ Plot**

#### QQ-plot, skewed t



 $The \ qq \ plot \ looks \ great. \ Returns \ for \ Velliv \ medium \ risk \ seems \ to \ be \ consistent \ with \ a \ skewed \ t-distribution.$ 

## Data vs fit

Let's plot the fit and the observed returns together.



#### **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

## Estimated skew t distribution CDF



# Estimated skew t distribution quantiles



We see that for a few observations out of a 1000, the losses are disastrous, while the upside is very dampened.

## Estimated skew t distribution PDF



#### **Monte Carlo**

#### MC simulation with down-and-out



## Sorted portfolio index values for last period of all runs

(100 is par, 200 is double, 50 is half)



## Convergence

#### Max vs sum

 $\mbox{\sc Max}$  vs sum plots for the first four moments:



#### МС

# Monte Carlo convergence w/ 95% c.i.

## IS

#### Parameters

# ## [1] 1.595924 0.432716

# Objective function plots





# Importance Sampling convergence w/ 95% c.i. 20 steps, 10000 paths



#### **PFA medium risk, 2011 - 2023**

#### Fit to skew t distribution

```
## AIC: -33.22998
## BIC: -30.97018
## m: 0.05789224
## s: 0.1234592
## nu (df): 2.265273
## xi: 0.477324
## R^2: 0.991
##
## An R^2 of 0.991 suggests that the fit is extremely good.
##
## What is the risk of losing max 10 \%? =< 0 percent
## What is the risk of losing max 25 \%? =< 0 percent
## What is the risk of losing max 50 \%? =< 0 percent
## What is the risk of losing max 90 %? =< 0 percent
## What is the risk of losing max 99 %? =< 0 percent
##
## What is the chance of gaining min 10 \%? >= 52.83333 percent
## What is the chance of gaining min 25 \%? >= 44 percent
## What is the chance of gaining min 50 \%? >= 38.83333 percent
## What is the chance of gaining min 90 %? >= 34.66667 percent
## What is the chance of gaining min 99 \%? >= 34 percent
```

#### **QQ Plot**

#### QQ-plot, skewed t



 $The \ qq \ plot \ looks \ great. \ Log \ returns for \ PFA \ medium \ risk \ seems \ to \ be \ consistent \ with \ a \ skewed \ t-distribution.$ 

```
## [1] -0.091256521 -0.003731241 0.027312079 0.045808232 0.059068633
## [6] 0.069575113 0.078454727 0.086316936 0.093536451 0.100370932
## [11] 0.107018607 0.114081432 0.127604387
```

#### Data vs fit

Let's plot the fit and the observed returns together.

#### Data vs fit



#### **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

## Estimated skew t distribution CDF



# Estimated skew t distribution quantiles



We see that for a few observations out of a 1000, the losses are disastrous. While there is some uptick at the top percentiles, the curve basically flattens out.

## Estimated skew t distribution PDF



#### **Monte Carlo**



## Sorted portfolio index values for last period of all runs

(100 is par, 200 is double, 50 is half)



## Convergence

## Max vs sum

 $\mbox{\sc Max}$  vs sum plots for the first four moments:



МС

# Monte Carlo convergence w/ 95% c.i. 20 steps, 10000 paths



## IS

#### Parameters

## ## [1] 1.2963050 0.3073762

# Objective function plots





Importance Sampling convergence w/ 95% c.i. 20 steps, 10000 paths



## PFA high risk, 2011 - 2023

#### Fit to skew t distribution

```
## AIC: -23.72565
## BIC: -21.46585
## m: 0.08386034
## s: 0.1210107
## nu (df): 3.184569
## xi: 0.01790306
## R^2: 0.964
##
## An R^2 of 0.964 suggests that the fit is very good.
##
## What is the risk of losing max 10 \ensuremath{\mbox{\%?}} =< 0 percent
## What is the risk of losing max 25 \%? =< 0 percent
## What is the risk of losing max 50 \%? =< 0 percent
## What is the risk of losing max 90 %? =< 0 percent
## What is the risk of losing max 99 %? =< 0 percent
##
## What is the chance of gaining min 10 \%? >= 56.83333 percent
## What is the chance of gaining min 25 \%? >= 43.16667 percent
## What is the chance of gaining min 50 %? >= 34.16667 percent
## What is the chance of gaining min 90 %? >= 26.83333 percent
## What is the chance of gaining min 99 \%? >= 25.66667 percent
```

#### **QQ Plot**

#### QQ-plot, skewed t



 $The \ qq \ plot \ looks \ ok. \ Returns \ for \ PFA \ high \ risk \ seems \ to \ be \ consistent \ with \ a \ skewed \ t-distribution.$ 

# Data vs fit

Let's plot the fit and the observed returns together.

# Data vs fit



### **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

# Estimated skew t distribution CDF



# Estimated skew t distribution quantiles



We see that for a few observations out of a 1000, the losses are disastrous, while the upside is very dampened.

# Estimated skew t distribution PDF



### **Monte Carlo**

### MC simulation with down-and-out



# Sorted portfolio index values for last period of all runs

(100 is par, 200 is double, 50 is half)



# Convergence

# Max vs sum

 $\mbox{\it Max}\mbox{\it vs}\mbox{\it sum}\mbox{\it plots}$  for the first four moments:



### МС

# Monte Carlo convergence w/ 95% c.i.

# IS

### Parameters

# **##** [1] 1.8378581 0.4367791

# Objective function plots





Importance Sampling convergence w/ 95% c.i. 20 steps, 10000 paths



### Mix medium risk, 2011 - 2023

#### Fit to skew t distribution

```
## AIC: -36.9603
## BIC: -34.7005
## m: 0.05902873
## s: 0.08757749
## nu (df): 2.772621
## xi: 0.02904471
## R^2: 0.89
##
## An R^2 of 0.89 suggests that the fit is not completely random.
##
## What is the risk of losing max 10 \%? =< 0 percent
## What is the risk of losing max 25 \%? =< 0 percent
## What is the risk of losing max 50 \%? =< 0 percent
## What is the risk of losing max 90 %? =< 0 percent
## What is the risk of losing max 99 %? =< 0 percent
##
## What is the chance of gaining min 10 \%? >= 53.16667 percent
## What is the chance of gaining min 25 \%? >= 44.16667 percent
## What is the chance of gaining min 50 \%? >= 38.66667 percent
## What is the chance of gaining min 90 %? >= 34.16667 percent
## What is the chance of gaining min 99 \%? >= 33.5 percent
```

### **QQ Plot**

#### QQ-plot, skewed t



The fit suggests big losses for the lowest percentiles, which are not present in the data. So the fit is actually a very cautious estimate.

### Data vs fit

Let's plot the fit and the observed returns together.

### Data vs fit



Interestingly, the fit predicts a much bigger "biggest loss" than the actual data. This is the main reason that  $R^2$  is 0.90 and not higher.

### **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

# Estimated skew t distribution CDF



# Estimated skew t distribution quantiles



We see that for a few observations out of a 1000, the losses are disastrous, while the upside is very dampened.

# Estimated skew t distribution PDF



### **Monte Carlo**

Version a: Simulation from estimated distribution of returns of mix.

### MC simulation with down-and-out



#### Sorted portfolio index values for last period of all runs (100 is par, 200 is double, 50 is half)

Portfolio index value in kr Sample ID

Version b: Mix of simulations from estimated distribution of returns from individual funds.

### MC simulation with down-and-out



# Sorted portfolio index values for last period of all runs

(100 is par, 200 is double, 50 is half)



# Convergence

# Max vs sum

 $\mbox{\sc Max}$  vs sum plots for the first four moments:



### МС

# Monte Carlo convergence w/ 95% c.i.



# IS

### Parameters

# ## [1] 1.1990016 0.2668179

# Objective function plots





Importance Sampling convergence w/ 95% c.i. 20 steps, 10000 paths



### Mix high risk, 2011 - 2023

#### Fit to skew t distribution

```
## AIC: -24.26084
## BIC: -22.00104
## m: 0.0822419
## s: 0.07129843
## nu (df): 89.86289
## xi: 0.7697502
## R^2: 0.961
##
## An R^2 of 0.961 suggests that the fit is very good.
##
## What is the risk of losing max 10 \%? =< 0 percent
## What is the risk of losing max 25 \%? =< 0 percent
## What is the risk of losing max 50 \%? =< 0 percent
## What is the risk of losing max 90 %? =< 0 percent
## What is the risk of losing max 99 %? =< 0 percent
##
## What is the chance of gaining min 10 \%? >= 52.5 percent
## What is the chance of gaining min 25 \%? >= 45 percent
## What is the chance of gaining min 50 \%? >= 38.33333 percent
## What is the chance of gaining min 90 %? >= 31.16667 percent
## What is the chance of gaining min 99 \%? >= 29.83333 percent
```

### **QQ Plot**

#### QQ-plot, skewed t



The qq plot looks good Returns for mixed medium risk portfolios seems to be consistent with a skewed t-distribution.

# Data vs fit

Let's plot the fit and the observed returns together.



### **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

# Estimated skew t distribution CDF



# Estimated skew t distribution quantiles



We see that the high risk mix provides a much better upside and smaller downside.

# Estimated skew t distribution PDF



### **Monte Carlo**

Version a: Simulation from estimated distribution of returns of mix.

# MC simulation with down-and-out



Sorted portfolio index values for last period of all runs (100 is par, 200 is double, 50 is half)



Version b: Mix of simulations from estimated distribution of returns from individual funds.

### MC simulation with down-and-out



# Sorted portfolio index values for last period of all runs

(100 is par, 200 is double, 50 is half)



### Many simulations 1e6 paths:

```
# Down-and-out simulation:
# Probability of down-and-out: 0 percent
#
# Mean portfolio index value after 20 years: 478.339 kr.
# SD of portfolio index value after 20 years: 163.093 kr.
# Min total portfolio index value after 20 years: 2.233 kr.
# Max total portfolio index value after 20 years: 1561.965 kr.
# # Share of paths finishing below 100: 0.1181 percent
```

### Convergence

#### Max vs sum

Max vs sum plots for the first four moments:



### МС

# Monte Carlo convergence w/ 95% c.i.

20 steps, 10000 paths



# IS

### Parameters

# **##** [1] 1.6731455 0.3497998

# Objective function plots





Importance Sampling convergence w/ 95% c.i. 20 steps, 10000 paths



# Mix vmr+phr, 2011 - 2023

Log-returns for mix of Velliv medium risk (vm) and PFA high risk (ph):

### Fit to skew t distribution

```
## AIC: -29.6509
## BIC: -27.3911
## m: 0.0668553
## s: 0.09147987
## nu (df): 4.659549
## xi: 0.04824493
## R^2: 0.927
##
## An R^2 of 0.927 suggests that the fit is good.
##
## What is the risk of losing max 10 \%? =< 0 percent
## What is the risk of losing max 25 %? =< 0 percent
## What is the risk of losing max 50 \%? =< 0 percent
## What is the risk of losing max 90 %? =< 0 percent
## What is the risk of losing max 99 %? =< 0 percent
##
## What is the chance of gaining min 10 \mbox{\%?} >= 57.66667 percent
## What is the chance of gaining min 25 %? >= 46.33333 percent
## What is the chance of gaining min 50 \%? >= 38 percent
## What is the chance of gaining min 90 \%? >= 31 percent
## What is the chance of gaining min 99 \%? >= 29.83333 percent
```

### **QQ Plot**

### QQ-plot, skewed t



#### Data vs fit

Let's plot the fit and the observed returns together.





# **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

# Estimated skew t distribution CDF



# Estimated skew t distribution quantiles



# Estimated skew t distribution PDF



### **Monte Carlo**

Mix of simulations from estimated distribution of returns from individual funds.

### MC simulation with down-and-out



# Sorted portfolio index values for last period of all runs



# Convergence

### Max vs sum

Max vs sum plots for the first four moments:



МС

Monte Carlo convergence w/ 95% c.i.

20 steps, 10000 paths



### IS

Parameters

## [1] 1.526841 0.326815

Objective function plots



# Importance Sampling convergence w/ 95% c.i. 20 steps, 10000 paths



### Mix vhr+pmr, 2011 - 2023

Log-returns for mix of Velliv high risk (vh) and PFA medium risk (pm):

#### Fit to skew t distribution

```
## AIC: -31.1004
## BIC: -28.84061
## m: 0.06249566
## s: 0.0898826
## nu (df): 3.89221
## xi: 0.01893003
## R^2: 0.933
##
## An R^2 of 0.933 suggests that the fit is good.
##
## What is the risk of losing max 10 \%? =< 0 percent
## What is the risk of losing max 25 \%? =< 0 percent
## What is the risk of losing max 50 \%? =< 0 percent
## What is the risk of losing max 90 \%? =< 0 percent
## What is the risk of losing max 99 \%? =< 0 percent
## What is the chance of gaining min 10 \%? >= 57 percent
## What is the chance of gaining min 25 \%? >= 46 percent
## What is the chance of gaining min 50 \%? >= 38.5 percent
## What is the chance of gaining min 90 \%? >= 32.16667 percent
## What is the chance of gaining min 99 \%? >= 31.16667 percent
```

# **QQ Plot**

# QQ-plot, skewed t



### Data vs fit

Let's plot the fit and the observed returns together.



### **Estimated distribution**

Now lets look at the CDF of the estimated distribution for each 0.1% increment between 0.5% and 99.5% for the estimated distribution:

# Estimated skew t distribution CDF



# Estimated skew t distribution quantiles



# Estimated skew t distribution PDF



# Monte Carlo

Mix of simulations from estimated distribution of returns from individual funds.

## MC simulation with down-and-out



Sorted portfolio index values for last period of all runs



# Convergence

#### Max vs sum

Max vs sum plots for the first four moments:



МС

Monte Carlo convergence w/ 95% c.i.

20 steps, 10000 paths



## IS

Parameters

## [1] 1.3976614 0.3233002

Objective function plots



Importance Sampling convergence w/ 95% c.i. 20 steps, 10000 paths



# Compare pension plans

## **Risk of max loss**

Risk of max loss of x percent for a single period (year). x values are row names.

|    | Vel_m  | Vel_ml | Vel_h  | PFA_m  | PFA_h  | mix_m  | mix_h  | vm_ph  | vh_pm  |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0  | 21.167 | 17.833 | 19.667 | 11.833 | 14.000 | 12.333 | 12.667 | 16.667 | 16.000 |
| 5  | 12.167 | 9.333  | 12.500 | 5.667  | 8.333  | 5.833  | 3.833  | 8.667  | 8.167  |
| 10 | 7.000  | 5.000  | 8.000  | 3.000  | 5.000  | 2.833  | 0.500  | 4.333  | 4.167  |
| 25 | 1.333  | 0.833  | 2.167  | 0.500  | 1.000  | 0.333  | 0.000  | 0.333  | 0.333  |
| 50 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 90 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 99 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |

# Worst ranking for loss percentiles

| 0      | ranking | 5      | ranking | 10    | ranking | 25    | ranking | 50 | ranking | 90 | ranking | 99 | ranking |
|--------|---------|--------|---------|-------|---------|-------|---------|----|---------|----|---------|----|---------|
| 21.167 | Vel_m   | 12.500 | Vel_h   | 8.000 | Vel_h   | 2.167 | Vel_h   | 0  | Vel_m   | 0  | Vel_m   | 0  | Vel_m   |
| 19.667 | Vel_h   | 12.167 | Vel_m   | 7.000 | Vel_m   | 1.333 | Vel_m   | 0  | Vel_ml  | 0  | Vel_ml  | 0  | Vel_ml  |
| 17.833 | Vel_ml  | 9.333  | Vel_ml  | 5.000 | Vel_ml  | 1.000 | PFA_h   | 0  | Vel_h   | 0  | Vel_h   | 0  | Vel_h   |
| 16.667 | vm_ph   | 8.667  | vm_ph   | 5.000 | PFA_h   | 0.833 | Vel_ml  | 0  | PFA_m   | 0  | PFA_m   | 0  | PFA_m   |
| 16.000 | vh_pm   | 8.333  | PFA_h   | 4.333 | vm_ph   | 0.500 | PFA_m   | 0  | PFA_h   | 0  | PFA_h   | 0  | PFA_h   |
| 14.000 | PFA_h   | 8.167  | vh_pm   | 4.167 | vh_pm   | 0.333 | mix_m   | 0  | mix_m   | 0  | mix_m   | 0  | mix_m   |
| 12.667 | mix_h   | 5.833  | mix_m   | 3.000 | PFA_m   | 0.333 | vm_ph   | 0  | mix_h   | 0  | mix_h   | 0  | mix_h   |

| 0      | ranking | 5     | ranking | 10    | ranking | 25    | ranking | 50 | ranking | 90 | ranking | 99 | ranking |
|--------|---------|-------|---------|-------|---------|-------|---------|----|---------|----|---------|----|---------|
| 12.333 | mix_m   | 5.667 | PFA_m   | 2.833 | mix_m   | 0.333 | vh_pm   | 0  | vm_ph   | 0  | vm_ph   | 0  | vm_ph   |
| 11.833 | PFA_m   | 3.833 | mix_h   | 0.500 | mix_h   | 0.000 | mix_h   | 0  | vh_pm   | 0  | vh_pm   | 0  | vh_pm   |

# **Chance of min gains**

Chance of min gains of x percent for a single period (year). x values are row names.

|     | Velliv_m | Velliv_m_l | Velliv_h | PFA_m  | PFA_h  | mix_m  | mix_h  | vm_ph  | vh_pm  |
|-----|----------|------------|----------|--------|--------|--------|--------|--------|--------|
| 0   | 78.833   | 82.167     | 80.333   | 88.167 | 86.000 | 87.667 | 87.333 | 83.333 | 84.000 |
| 5   | 63.833   | 65.000     | 69.333   | 71.667 | 76.000 | 71.667 | 70.167 | 69.333 | 69.000 |
| 10  | 40.833   | 36.000     | 53.333   | 32.500 | 59.667 | 35.500 | 46.000 | 47.167 | 43.833 |
| 25  | 0.000    | 0.000      | 0.000    | 0.000  | 0.000  | 0.000  | 0.833  | 0.000  | 0.000  |
| 50  | 0.000    | 0.000      | 0.000    | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| 100 | 0.000    | 0.000      | 0.000    | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |

## Best ranking for gains percentiles

| 0      | ranking    | 5      | ranking    | 10     | ranking    | 25    | ranking    | 50 | ranking    | 100 | ranking    |
|--------|------------|--------|------------|--------|------------|-------|------------|----|------------|-----|------------|
| 88.167 | PFA_m      | 76.000 | PFA_h      | 59.667 | PFA_h      | 0.833 | mix_h      | 0  | Velliv_m   | 0   | Velliv_m   |
| 87.667 | mix_m      | 71.667 | PFA_m      | 53.333 | Velliv_h   | 0.000 | Velliv_m   | 0  | Velliv_m_l | 0   | Velliv_m_l |
| 87.333 | mix_h      | 71.667 | mix_m      | 47.167 | vm_ph      | 0.000 | Velliv_m_l | 0  | Velliv_h   | 0   | Velliv_h   |
| 86.000 | PFA_h      | 70.167 | mix_h      | 46.000 | mix_h      | 0.000 | Velliv_h   | 0  | PFA_m      | 0   | PFA_m      |
| 84.000 | vh_pm      | 69.333 | Velliv_h   | 43.833 | vh_pm      | 0.000 | PFA_m      | 0  | PFA_h      | 0   | PFA_h      |
| 83.333 | vm_ph      | 69.333 | vm_ph      | 40.833 | Velliv_m   | 0.000 | PFA_h      | 0  | mix_m      | 0   | mix_m      |
| 82.167 | Velliv_m_l | 69.000 | vh_pm      | 36.000 | Velliv_m_l | 0.000 | mix_m      | 0  | mix_h      | 0   | mix_h      |
| 80.333 | Velliv_h   | 65.000 | Velliv_m_l | 35.500 | mix_m      | 0.000 | vm_ph      | 0  | vm_ph      | 0   | vm_ph      |
| 78.833 | Velliv_m   | 63.833 | Velliv_m   | 32.500 | PFA_m      | 0.000 | vh_pm      | 0  | vh_pm      | 0   | vh_pm      |

## MC risk percentiles

Risk of loss from first to last period.

a is simulation from estimated distribution of returns of mix.

ь is mix of simulations from estimated distribution of returns from individual funds.

1 for "long", going back to 2007.

|    | Vel_m | Vel_ml | Vel_h | PFA_m | PFA_h | mix_ma | mix_ha | mix_mb | mix_hb | vm_ph | vh_pm |
|----|-------|--------|-------|-------|-------|--------|--------|--------|--------|-------|-------|
| 0  | 5.33  | 2.89   | 4.17  | 1.95  | 0.82  | 1.11   | 0      | 0.32   | 0.13   | 0.18  | 0.28  |
| 5  | 4.71  | 2.48   | 3.75  | 1.82  | 0.71  | 0.99   | 0      | 0.26   | 0.11   | 0.12  | 0.19  |
| 10 | 4.14  | 2.16   | 3.34  | 1.67  | 0.67  | 0.86   | 0      | 0.24   | 0.07   | 0.11  | 0.18  |
| 25 | 2.61  | 1.48   | 2.37  | 1.17  | 0.48  | 0.55   | 0      | 0.07   | 0.04   | 0.04  | 0.09  |
| 50 | 0.91  | 0.62   | 1.08  | 0.56  | 0.24  | 0.21   | 0      | 0.01   | 0.02   | 0.00  | 0.02  |
| 90 | 0.08  | 0.06   | 0.08  | 0.15  | 0.02  | 0.04   | 0      | 0.00   | 0.00   | 0.00  | 0.00  |
| 99 | 0.00  | 0.02   | 0.02  | 0.06  | 0.01  | 0.00   | 0      | 0.00   | 0.00   | 0.00  | 0.00  |

\_m is medium.

\_h is high.

1e6 simulation paths of mhr\_b:

|          | 0     | 5     | 10    | 25    | 50    | 90 | 99 |
|----------|-------|-------|-------|-------|-------|----|----|
| prob_pct | 0.118 | 0.095 | 0.076 | 0.036 | 0.008 | 0  | 0  |

## Worst ranking for MC loss percentiles

| 0    | ranking | 5    | ranking | 10   | ranking | 25   | ranking | 50   | ranking | 90   | ranking | 99   | ranking |
|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|
| 5.33 | Vel_m   | 4.71 | Vel_m   | 4.14 | Vel_m   | 2.61 | Vel_m   | 1.08 | Vel_h   | 0.15 | PFA_m   | 0.06 | PFA_m   |
| 4.17 | Vel_h   | 3.75 | Vel_h   | 3.34 | Vel_h   | 2.37 | Vel_h   | 0.91 | Vel_m   | 0.08 | Vel_m   | 0.02 | Vel_ml  |
| 2.89 | Vel_ml  | 2.48 | Vel_ml  | 2.16 | Vel_ml  | 1.48 | Vel_ml  | 0.62 | Vel_ml  | 0.08 | Vel_h   | 0.02 | Vel_h   |
| 1.95 | PFA_m   | 1.82 | PFA_m   | 1.67 | PFA_m   | 1.17 | PFA_m   | 0.56 | PFA_m   | 0.06 | Vel_ml  | 0.01 | PFA_h   |
| 1.11 | mix_ma  | 0.99 | mix_ma  | 0.86 | mix_ma  | 0.55 | mix_ma  | 0.24 | PFA_h   | 0.04 | mix_ma  | 0.00 | Vel_m   |
| 0.82 | PFA_h   | 0.71 | PFA_h   | 0.67 | PFA_h   | 0.48 | PFA_h   | 0.21 | mix_ma  | 0.02 | PFA_h   | 0.00 | mix_ma  |
| 0.32 | mix_mb  | 0.26 | mix_mb  | 0.24 | mix_mb  | 0.09 | vh_pm   | 0.02 | mix_hb  | 0.00 | mix_ha  | 0.00 | mix_ha  |
| 0.28 | vh_pm   | 0.19 | vh_pm   | 0.18 | vh_pm   | 0.07 | mix_mb  | 0.02 | vh_pm   | 0.00 | mix_mb  | 0.00 | mix_mb  |
| 0.18 | vm_ph   | 0.12 | vm_ph   | 0.11 | vm_ph   | 0.04 | mix_hb  | 0.01 | mix_mb  | 0.00 | mix_hb  | 0.00 | mix_hb  |
| 0.13 | mix_hb  | 0.11 | mix_hb  | 0.07 | mix_hb  | 0.04 | vm_ph   | 0.00 | mix_ha  | 0.00 | vm_ph   | 0.00 | vm_ph   |
| 0.00 | mix_ha  | 0.00 | mix_ha  | 0.00 | mix_ha  | 0.00 | mix_ha  | 0.00 | vm_ph   | 0.00 | vh_pm   | 0.00 | vh_pm   |

# MC gains percentiles

Chance of gains from first to last period.

\_b is mix of simulations from estimated distribution of returns from individual funds.

|      | Vel_m | Vel_ml | Vel_h | PFA_m | PFA_h | mix_ma | mix_ha | mix_mb | mix_hb | vm_ph | vh_pm |
|------|-------|--------|-------|-------|-------|--------|--------|--------|--------|-------|-------|
| 0    | 94.67 | 97.11  | 95.83 | 98.05 | 99.18 | 98.89  | 100.00 | 99.68  | 99.87  | 99.82 | 99.72 |
| 5    | 93.99 | 96.69  | 95.40 | 97.89 | 99.08 | 98.70  | 100.00 | 99.64  | 99.85  | 99.78 | 99.68 |
| 10   | 93.30 | 96.24  | 94.95 | 97.66 | 98.92 | 98.47  | 100.00 | 99.55  | 99.81  | 99.72 | 99.62 |
| 25   | 90.57 | 94.47  | 93.46 | 96.83 | 98.59 | 97.79  | 100.00 | 99.08  | 99.66  | 99.56 | 99.30 |
| 50   | 85.82 | 90.51  | 90.59 | 94.79 | 97.66 | 96.11  | 99.99  | 97.70  | 99.30  | 99.00 | 98.36 |
| 100  | 71.75 | 78.71  | 83.25 | 88.35 | 94.78 | 90.17  | 99.68  | 89.91  | 97.33  | 96.13 | 93.80 |
| 200  | 39.43 | 44.18  | 65.33 | 59.73 | 85.79 | 59.98  | 93.09  | 48.93  | 86.46  | 79.55 | 67.91 |
| 300  | 15.96 | 17.44  | 45.13 | 22.39 | 71.81 | 22.13  | 71.60  | 11.68  | 66.16  | 51.65 | 34.81 |
| 400  | 5.03  | 4.93   | 29.01 | 4.32  | 54.54 | 3.91   | 44.58  | 1.33   | 42.05  | 24.74 | 13.33 |
| 500  | 1.14  | 1.07   | 17.58 | 0.54  | 38.04 | 0.16   | 23.53  | 0.11   | 22.26  | 9.12  | 4.01  |
| 1000 | 0.00  | 0.02   | 0.70  | 0.02  | 2.30  | 0.00   | 0.29   | 0.01   | 0.10   | 0.00  | 0.01  |

1e6 simulation paths of mhr\_b:

|      | 0      | 5      | 10     | 25     | 50     | 100    | 200    | 300    | 400    | 500    | 1000  |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| prob | 99.882 | 99.854 | 99.824 | 99.686 | 99.301 | 97.513 | 86.912 | 65.992 | 41.486 | 21.693 | 0.086 |

#### Best ranking for MC gains percentiles

\_a is simulation from estimated distribution of returns of mix.

| 0      | ranking | 5      | ranking | 10     | ranking | 25     | ranking | 50    | ranking | 100   | ranking |
|--------|---------|--------|---------|--------|---------|--------|---------|-------|---------|-------|---------|
| 100.00 | mix_ha  | 100.00 | mix_ha  | 100.00 | mix_ha  | 100.00 | mix_ha  | 99.99 | mix_ha  | 99.68 | mix_ha  |
| 99.87  | mix_hb  | 99.85  | mix_hb  | 99.81  | mix_hb  | 99.66  | mix_hb  | 99.30 | mix_hb  | 97.33 | mix_hb  |
| 99.82  | vm_ph   | 99.78  | vm_ph   | 99.72  | vm_ph   | 99.56  | vm_ph   | 99.00 | vm_ph   | 96.13 | vm_ph   |
| 99.72  | vh_pm   | 99.68  | vh_pm   | 99.62  | vh_pm   | 99.30  | vh_pm   | 98.36 | vh_pm   | 94.78 | PFA_h   |
| 99.68  | mix_mb  | 99.64  | mix_mb  | 99.55  | mix_mb  | 99.08  | mix_mb  | 97.70 | mix_mb  | 93.80 | vh_pm   |
| 99.18  | PFA_h   | 99.08  | PFA_h   | 98.92  | PFA_h   | 98.59  | PFA_h   | 97.66 | PFA_h   | 90.17 | mix_ma  |
| 98.89  | mix_ma  | 98.70  | mix_ma  | 98.47  | mix_ma  | 97.79  | mix_ma  | 96.11 | mix_ma  | 89.91 | mix_mb  |
| 98.05  | PFA_m   | 97.89  | PFA_m   | 97.66  | PFA_m   | 96.83  | PFA_m   | 94.79 | PFA_m   | 88.35 | PFA_m   |
| 97.11  | Vel_ml  | 96.69  | Vel_ml  | 96.24  | Vel_ml  | 94.47  | Vel_ml  | 90.59 | Vel_h   | 83.25 | Vel_h   |
| 95.83  | Vel_h   | 95.40  | Vel_h   | 94.95  | Vel_h   | 93.46  | Vel_h   | 90.51 | Vel_ml  | 78.71 | Vel_ml  |
| 94.67  | Vel_m   | 93.99  | Vel_m   | 93.30  | Vel_m   | 90.57  | Vel_m   | 85.82 | Vel_m   | 71.75 | Vel_m   |

| 200   | ranking | 300   | ranking | 400   | ranking | 500   | ranking | 1000 | ranking |
|-------|---------|-------|---------|-------|---------|-------|---------|------|---------|
| 93.09 | mix_ha  | 71.81 | PFA_h   | 54.54 | PFA_h   | 38.04 | PFA_h   | 2.30 | PFA_h   |
| 86.46 | mix_hb  | 71.60 | mix_ha  | 44.58 | mix_ha  | 23.53 | mix_ha  | 0.70 | Vel_h   |
| 85.79 | PFA_h   | 66.16 | mix_hb  | 42.05 | mix_hb  | 22.26 | mix_hb  | 0.29 | mix_ha  |
| 79.55 | vm_ph   | 51.65 | vm_ph   | 29.01 | Vel_h   | 17.58 | Vel_h   | 0.10 | mix_hb  |
| 67.91 | vh_pm   | 45.13 | Vel_h   | 24.74 | vm_ph   | 9.12  | vm_ph   | 0.02 | Vel_ml  |
| 65.33 | Vel_h   | 34.81 | vh_pm   | 13.33 | vh_pm   | 4.01  | vh_pm   | 0.02 | PFA_m   |
| 59.98 | mix_ma  | 22.39 | PFA_m   | 5.03  | Vel_m   | 1.14  | Vel_m   | 0.01 | mix_mb  |
| 59.73 | PFA_m   | 22.13 | mix_ma  | 4.93  | Vel_ml  | 1.07  | Vel_ml  | 0.01 | vh_pm   |
| 48.93 | mix_mb  | 17.44 | Vel_ml  | 4.32  | PFA_m   | 0.54  | PFA_m   | 0.00 | Vel_m   |
| 44.18 | Vel_ml  | 15.96 | Vel_m   | 3.91  | mix_ma  | 0.16  | mix_ma  | 0.00 | mix_ma  |
| 39.43 | Vel_m   | 11.68 | mix_mb  | 1.33  | mix_mb  | 0.11  | mix_mb  | 0.00 | vm_ph   |

# **Summary statistics**

#### Fit summary

Summary for fit of log returns to an F-S skew standardized Student-t distribution.

- m is the location parameter.
- s is the scale parameter.
- $\mathtt{n}\mathtt{u}$  is the estimated degrees of freedom, or shape parameter.
- xi is the estimated skewness parameter.

|     | Vel_m | Vel_ml | Vel_h | PFA_m | PFA_h | mix_m | mix_h  | vm_ph | vh_pm |
|-----|-------|--------|-------|-------|-------|-------|--------|-------|-------|
| m   | 0.048 | 0.052  | 0.065 | 0.058 | 0.084 | 0.059 | 0.082  | 0.067 | 0.062 |
| S   | 0.120 | 0.115  | 0.150 | 0.123 | 0.121 | 0.088 | 0.071  | 0.091 | 0.090 |
| nu  | 3.304 | 2.706  | 3.144 | 2.265 | 3.185 | 2.773 | 89.863 | 4.660 | 3.892 |
| xi  | 0.034 | 0.505  | 0.002 | 0.477 | 0.018 | 0.029 | 0.770  | 0.048 | 0.019 |
| R^2 | 0.993 | 0.978  | 0.991 | 0.991 | 0.964 | 0.890 | 0.961  | 0.927 | 0.933 |

# Fit statistics ranking

| m     | ranking | S     | ranking | R^2   | ranking |
|-------|---------|-------|---------|-------|---------|
| 0.084 | PFA_h   | 0.071 | mix_h   | 0.993 | Vel_m   |
| 0.082 | mix_h   | 0.088 | mix_m   | 0.991 | Vel_h   |
| 0.067 | vm_ph   | 0.090 | vh_pm   | 0.991 | PFA_m   |

| m     | ranking | S     | ranking | R^2   | ranking |
|-------|---------|-------|---------|-------|---------|
| 0.065 | Vel_h   | 0.091 | vm_ph   | 0.978 | Vel_ml  |
| 0.062 | vh_pm   | 0.115 | Vel_ml  | 0.964 | PFA_h   |
| 0.059 | mix_m   | 0.120 | Vel_m   | 0.961 | mix_h   |
| 0.058 | PFA_m   | 0.121 | PFA_h   | 0.933 | vh_pm   |
| 0.052 | Vel_ml  | 0.123 | PFA_m   | 0.927 | vm_ph   |
| 0.048 | Vel_m   | 0.150 | Vel_h   | 0.890 | mix_m   |

#### **Monte Carlo simulations summary**

Monte Carlo simulations of portfolio index values (currency values).

Statistics are given for the final state of all paths.

Probability of down-and\_out is calculated as the share of paths that reach 0 at some point. All subsequent values for a path are set to 0, if the path reaches at any point.

0 is defined as any value below a threshold.

dai\_pct (for down-and-in) is the probability of losing money. This is calculated as the share of paths finishing below index 100.

## Number of paths: 10000

|         | Vel_m   | Vel_ml  | Vel_h   | PFA_m      | PFA_h   | mix_ma | mix_mb  | mix_ha  | mix_hb  | vm_ph   | vh_pm   |
|---------|---------|---------|---------|------------|---------|--------|---------|---------|---------|---------|---------|
| mc_m    | 293.36  | 310.72  | 436.49  | 559.20     | 604.48  | 345.46 | 320.16  | 545.49  | 520.51  | 447.96  | 390.33  |
| mc_s    | 132.88  | 127.38  | 238.77  | 21464.17   | 272.58  | 107.65 | 90.70   | 177.24  | 184.77  | 149.96  | 137.05  |
| mc_min  | 1.15    | 0.11    | 0.01    | 0.01       | 0.72    | 2.26   | 31.57   | 142.72  | 39.60   | 50.95   | 43.65   |
| mc_max  | 1062.48 | 1524.06 | 1662.79 | 2146730.28 | 2041.09 | 768.50 | 1996.78 | 1730.75 | 1454.07 | 1151.68 | 3747.97 |
| dao_pct | 0.00    | 0.00    | 0.02    | 0.01       | 0.00    | 0.00   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
| dai_pct | 4.89    | 2.64    | 3.99    | 1.91       | 0.73    | 1.04   | 0.30    | 0.00    | 0.10    | 0.16    | 0.24    |

#### Ranking

| mc_m   | ranking | mc_s     | ranking | mc_mir | n ranking | mc_max     | ranking | dao_pct | ranking | dai_pct | ranking |
|--------|---------|----------|---------|--------|-----------|------------|---------|---------|---------|---------|---------|
| 604.48 | PFA_h   | 90.70    | mix_mb  | 142.72 | mix_ha    | 2146730.28 | PFA_m   | 0.00    | Vel_m   | 0.00    | mix_ha  |
| 559.20 | PFA_m   | 107.65   | mix_ma  | 50.95  | vm_ph     | 3747.97    | vh_pm   | 0.00    | Vel_ml  | 0.10    | mix_hb  |
| 545.49 | mix_ha  | 127.38   | Vel_ml  | 43.65  | vh_pm     | 2041.09    | PFA_h   | 0.00    | PFA_h   | 0.16    | vm_ph   |
| 520.51 | mix_hb  | 132.88   | Vel_m   | 39.60  | mix_hb    | 1996.78    | mix_mb  | 0.00    | mix_ma  | 0.24    | vh_pm   |
| 447.96 | vm_ph   | 137.05   | vh_pm   | 31.57  | mix_mb    | 1730.75    | mix_ha  | 0.00    | mix_mb  | 0.30    | mix_mb  |
| 436.49 | Vel_h   | 149.96   | vm_ph   | 2.26   | mix_ma    | 1662.79    | Vel_h   | 0.00    | mix_ha  | 0.73    | PFA_h   |
| 390.33 | vh_pm   | 177.24   | mix_ha  | 1.15   | Vel_m     | 1524.06    | Vel_ml  | 0.00    | mix_hb  | 1.04    | mix_ma  |
| 345.46 | mix_ma  | 184.77   | mix_hb  | 0.72   | PFA_h     | 1454.07    | mix_hb  | 0.00    | vm_ph   | 1.91    | PFA_m   |
| 320.16 | mix_mb  | 238.77   | Vel_h   | 0.11   | Vel_ml    | 1151.68    | vm_ph   | 0.00    | vh_pm   | 2.64    | Vel_ml  |
| 310.72 | Vel_ml  | 272.58   | PFA_h   | 0.01   | Vel_h     | 1062.48    | Vel_m   | 0.01    | PFA_m   | 3.99    | Vel_h   |
| 293.36 | Vel_m   | 21464.17 | PFA_m   | 0.01   | PFA_m     | 768.50     | mix_ma  | 0.02    | Vel_h   | 4.89    | Vel_m   |

# **Compare Gaussian and skewed t-distribution fits**

### **Gaussian fits**

|   | vmr   | vhr   | pmr   | phr   | mmr   | mhr   | vm_ph_r | vh_pm_r |
|---|-------|-------|-------|-------|-------|-------|---------|---------|
| m | 0.064 | 0.077 | 0.061 | 0.085 | 0.062 | 0.081 | 0.076   | 0.069   |
| S | 0.081 | 0.099 | 0.063 | 0.101 | 0.048 | 0.070 | 0.062   | 0.060   |



# **Gaussian QQ plots**



### Gaussian vs skewed t

Probability in percent that the smallest and largest (respectively) observed return for each fund was generated by a normal distribution:

|               | vmr    | vhr    | pmr    | phr    | mmr    | mhr   | vm_ph_r | vh_pm_r |
|---------------|--------|--------|--------|--------|--------|-------|---------|---------|
| P_norm(X_min) | 0.571  | 0.758  | 0.511  | 1.676  | 5.971  | 6.842 | 5.945   | 4.228   |
| P_norm(X_max) | 13.230 | 11.876 | 12.922 | 15.359 | 9.628  | 6.429 | 7.796   | 8.592   |
| P_t(X_min)    | 5.377  | 5.457  | 3.489  | 4.315  | 10.570 | 8.015 | 13.008  | 10.520  |
| P_t(X_max)    | 0.118  | 0.001  | 2.825  | 0.188  | 0.488  | 5.141 | 0.229   | 0.175   |

Average number of years between min or max events (respectively):

|                                          | vmr               | vhr                  | pmr              | phr               | mmr              | mhr              | vm_ph_r          | vh_pm_r          |
|------------------------------------------|-------------------|----------------------|------------------|-------------------|------------------|------------------|------------------|------------------|
| norm: avg yrs btw                        | 175.248           | 131.911              | 195.568          | 59.669            | 16.748           | 14.616           | 16.820           | 23.650           |
| norm: avg yrs btw<br>max                 | 7.559             | 8.420                | 7.739            | 6.511             | 10.386           | 15.556           | 12.827           | 11.639           |
| t: avg yrs btw min<br>t: avg yrs btw max | 18.596<br>848.548 | 18.324<br>178349.076 | 28.663<br>35.400 | 23.173<br>531.552 | 9.461<br>205.104 | 12.476<br>19.450 | 7.688<br>437.280 | 9.506<br>572.483 |

#### **Comments**

(Ignoring mhr\_a...)

mhr has some nice properties:

- It has a relatively high nu value of 90, which means it is tending more towards exponential tails than polynomial tails. All other funds have nu values close to 3, except phr which is even worse at close to 2. (Note that for a Gaussian, nu is infinite.)
- It has the lowest losing percentage of all simulations, which is better than 1/6 that of  ${\tt phr.}$
- It has a DAO percentage of 0, which is the same as mmr, and less than phr.
- Only phr has a higher mc\_m.
- It has a smaller mc\_s than the individual components, vhr and phr.
- It has the highest xi of all fits, suggesting less left skewness. Density plots for vmr, phr and mmr have an extremely sharp drop, as if an upward limiter has been applied, which corresponds to extremely low xi values. The density plot for mhr is by far the most symmetrical of all the fits. As seen in the section "Compare Gaussian and skewed t-distribution fits", the other skewed t-distribution fits don't capture the max observed returns at all.
- Only mmr has as higher mc\_min. However, that of mmr is 18 times higher with 62, so mmr is a clear winner here.
- Naturally, it has a mc\_max smaller than the individual components, vhr and phr, but ca. 1.5 times higher then mmr.
- All the first 4 moments converge nicely. For all other fits, the 4th moment doesn't seem to converge.

Taleb, Statistical Consequences Of Fat Tails, p. 97:

"the variance of a finite variance random variable with tail exponent < 4 will be infinite".

#### And p. 363

"The hedging errors for an option portfolio (under a daily revision regime) over 3000 days, un- der a constant volatility Student T with tail exponent  $\alpha=3$ . Technically the errors should not converge in finite time as their distribution has infinite variance."

- Importance Sampling seems to converge to a lower level than Monte Carlo does. Is that because IS catches more observations in the lower tail? Supporting this thesis is that MC for mhr with 1e4 paths gives a mean of 520, while 1e6 paths gives a mean of 478 (see under "Many simulations").
- Note: QQ lines by design pass through 1st and 3rd quantiles. They are not trendlines in the sense of linear regression.

# **Appendix**

#### Average of returns vs returns of average

Math

$$\text{Avg. of returns} := \frac{\left(\frac{x_t}{x_{t-1}} + \frac{y_t}{y_{t-1}}\right)}{2}$$
 
$$\text{Returns of avg.} := \left(\frac{x_t + y_t}{2}\right) \bigg/ \left(\frac{x_{t-1} + y_{t-1}}{2}\right) \equiv \frac{x_t + y_t}{x_{t-1} + y_{t-1}}$$

For which  $x_1$  and  $y_1$  are Avg. of returns = Returns of avg.?

$$\frac{\left(\frac{x_t}{x_{t-1}} + \frac{y_t}{y_{t-1}}\right)}{2} = \frac{x_t + y_t}{x_{t-1} + y_{t-1}}$$

$$\frac{x_t}{x_{t-1}} + \frac{y_t}{y_{t-1}} = 2\frac{x_t + y_t}{x_{t-1} + y_{t-1}}$$

$$(x_{t-1} + y_{t-1})x_ty_{t-1} + (x_{t-1} + y_{t-1})x_{t-1}y_t = 2(x_{t-1}y_{t-1}x_t + x_{t-1}y_{t-1}y_t)$$

$$(x_{t-1}x_1y_{t-1} + y_{t-1}x_ty_{t-1}) + (x_{t-1}x_{t-1}y_t + x_{t-1}y_{t-1}y_t) = 2(x_{t-1}y_{t-1}x_t + x_{t-1}y_{t-1}y_t)$$

This is not generally true, but true if for instance  $x_{t-1} = y_{t-1}$ .

#### Example

Definition: R = 1+r

## Let x\_0 be 100.

## Let y\_0 be 200.

 $\mbox{\tt \#\#}$  So the initial value of the pf is 300 .

## Let R\_x be 0.5.

## Let R\_y be 1.5.

Then,

##  $x_1$  is  $R_x * x_0 = 50$ .

##  $y_1$  is  $R_y * y_0 = 300$ .

Average of returns:

##  $0.5 * (R_x + R_y) = 1$ 

So here the value of the pf at t=1 should be unchanged from t=0:

## 
$$(x_0 + y_0) * 0.5 * (R_x + R_y) = 300$$

But this is clearly not the case:

## 
$$0.5 * (x_1 + y_1) = 0.5 * (R_x * x_0 + R_y * y_0) = 175$$

Therefore we should take returns of average, not average of returns!

Let's take the average of log returns instead:

```
## 0.5 * (log(R_x) + log(R_y)) = -0.143841
```

We now get:

## 
$$(x_0 + y_0) * exp(0.5 * (log(Rx) + log(Ry))) = 259.8076$$

So taking the average of log returns doesn't work either.

#### Simulation of mix vs mix of simulations

Test if a simulation of a mix (average) of two returns series has the same distribution as a mix of two simulated returns series.

```
## m(data_x): 0.001886388
## s(data_x): 0.3785598
## m(data_y): 10.49528
## s(data_y): 3.994056
##
## m(data_x + data_y): 5.248582
## s(data_x + data_y): 2.039439
```

m and s of final state of all paths.

- \_a is mix of simulated returns.
- \_b is simulated mixed returns.

| m_a     | m_b     | s_a   | s_b   |
|---------|---------|-------|-------|
| 104.297 | 105.042 | 9.035 | 8.970 |
| 104.960 | 104.778 | 8.983 | 9.224 |
| 104.997 | 104.708 | 8.824 | 9.085 |
| 104.800 | 104.649 | 9.337 | 9.366 |
| 104.839 | 105.561 | 8.834 | 9.015 |
| 105.171 | 104.774 | 9.074 | 9.230 |
| 105.178 | 104.915 | 8.905 | 9.020 |
| 105.002 | 104.513 | 9.156 | 9.356 |
| 105.310 | 104.526 | 8.911 | 8.846 |
| 105.117 | 104.837 | 8.381 | 9.094 |

```
##
                                                          s_b
                         m_b
         m_a
                                          s a
##
           :104.3
                           :104.5
                                            :8.381
                                                            :8.846
                                                     1st Qu.:9.016
##
   1st Qu.:104.9
                    1st Qu.:104.7
                                    1st Qu.:8.852
   Median :105.0
                    Median :104.8
                                    Median :8.947
                                                     Median :9.090
                                                           :9.121
           :105.0
                    Mean
                           :104.8
                                    Mean
                                           :8.944
                                                     Mean
##
    3rd Qu.:105.2
                    3rd Qu.:104.9
                                    3rd Qu.:9.064
                                                     3rd Qu.:9.228
                                                            :9.366
           :105.3
                    Max.
                           :105.6
                                    Max.
                                           :9.337
                                                     Max.
```

\_a and \_b are very close to equal.

We attribute the differences to differences in estimating the distributions in version a and b.

The final state is independent of the order of the preceding steps:



So does the order of the steps in the two processes matter, when mixing simulated returns?





The order of steps in the individual paths do not matter, because the mix of simulated paths is a sum of a sum, so the order of terms doesn't affect the sum. If there is variation it is because the sets preceding steps are not the same. For instance, the steps between step 1 and 60 in the plot above are not the same for the two lines.

```
Recall,  \mbox{Var}(aX+bY) = a^2 \mbox{Var}(X) + b^2 \mbox{Var}(Y) + 2ab \mbox{Cov}(a,b)   \mbox{var}(0.5 * \mbox{vhr} + 0.5 * \mbox{phr})   \mbox{\#\# [1] } 0.005355618   \mbox{0.5^2 * var}(\mbox{vhr}) + 0.5^2 * \mbox{var}(\mbox{phr}) + 2 * 0.5 * 0.5 * \mbox{cov}(\mbox{vhr}, \mbox{phr})   \mbox{\#\# [1] } 0.005355618
```

Our distribution estimate is based on 13 observations. Is that enough for a robust estimate? What if we suddenly hit a year like 2008? How would that affect our estimate? Let's try to include the Velliv data from 2007-2010. We do this by sampling 13 observations from vmrl.

```
##
           :0.05926
                      Min.
##
   Min.
                             :0.04394
##
    1st Qu.:0.06719
                      1st Qu.:0.05978
                      Median :0.06679
   Median :0.06962
   Mean
          :0.07039
                      Mean
                            :0.06693
   3rd Qu.:0.07361
                      3rd Qu.:0.07466
           :0.08310
                             :0.09379
   {\tt Max.}
                      Max.
```

#### The meaning of xi

The fit for mhr has the highest xi value of all. This suggests right-skew:

## Skew t-distribution density



# Max vs sum plot

If the Law Of Large Numbers holds true,

$$\frac{\max(X_1^p,...,X^p)}{\sum_{i=1}^n X_i^p} \to 0$$

for  $n \to \infty$ .

If not,  $\boldsymbol{X}$  doesn't have a  $\boldsymbol{p}$ 'th moment.

See Taleb: The Statistical Consequences Of Fat Tails, p. 192