# ANN Lab 1

Forward Learning and Backward Propagation,
Perceptron Learning and Delta Rule,
One-Layer, Two-Layer and Multi-Layer Learning for
classification and regression,
Encoder Problem

Ravi Bir|ravib@kth.se Bharat Sharma|bsharma@kth.se Qiao Ren|qiaor@kth.se February 5, 2020

## Single-layer perceptron

- Delta Batch converged fastest, then delta sequential, then perceptron
- Learning rate of 0.001 gave the fastest convergence for all 3



Figur 1: Learning curve Figur 2: Learning curve Figur 3: Learning curve Perceptron

Delta Rule Batch

Delta Rule Sequential

#### Non Linearly Separable Data

• Obvious that linear boundary not sufficient- need 2 layer perceptron



Figur 4: Nothing Removed



Figur 8: Remove subsets of class A

## Classification with a two-layer perceptron

- More nodes means faster convergence, but chance of overfitting
- Learning rate 0.009





Figur 9: Learning curves, 4 nodes

Figur 10: Learning curves, 25 nodes

#### Encoder and Function approximation

- Encoder used for dimensionality reduction and reducing the number of hidden nodes cause the encoder to take more epochs to converge.
- For learning rate 0.009, converges in 20-30 epochs.
- Each input used for activation of hidden layer.
- Function approximation -





| Amount of Training data(%) | Error(MSE) |
|----------------------------|------------|
| 80                         | 0.004      |
| 60                         | 0.006      |
| 40                         | 0.008      |
| 20                         | 0.01       |

Tabell 3: Performance of 22 node model.  $\eta$  - 0.009

# Two layer Model

• large regularization strength reduces lots of weights to small values (close to zero)







#### Two layer Model

- regularization term penalize the weights, reduce the complexity
- we chose regularization strength= 0.0001 (this is a simple model)



# Three layer Model

- larger noise raises up the MSE on validation data
- the optimal amount of neurons on 2nd layer varies when the noise is different







# Comparison on Two-Layer and Three-Layer Model

- each model has been run for 10 times. We recorded the average.
- MSE: 3-2-1 is lower computational time: 3-1 < 3-2-1
- could not generalize the conclusion, because only run 10 times

|                          | MSE                    | Test Wist                                                | Computational Time (second)                                |
|--------------------------|------------------------|----------------------------------------------------------|------------------------------------------------------------|
| lr=0.001,<br>regu=0.0001 | 0.0305                 | 0.0417                                                   | 6.5209                                                     |
| ′                        | 0.0291                 | 0.0393                                                   | 6.8346                                                     |
| 1<br>1<br>1              | r=0.001,<br>egu=0.0001 | MSE<br>r=0.001, 0.0305<br>regu=0.0001<br>r=0.001, 0.0291 | mSE<br>r=0.001, 0.0305 0.0417<br>regu=0.0001 0.0291 0.0393 |