CSCI 378

HW11

In maximum likelihood estimation (MLE) of ordinary linear regression, we want to compute the point estimate \hat{w} of the weight vector that maximizes the likelihood of the responses $y^{(n)}$, given the evidence vectors $x^{(n)}$. In other words:

$$\hat{w} = \operatorname{argmax}_{w} \prod_{n=1}^{N} P(y^{(n)} \mid w, x^{(n)})$$

As we saw, this can be re-expressed as:

$$\hat{w} = \operatorname{argmax}_{w} \sum_{n=1}^{N} \log P_{\epsilon}(y^{(n)} - w^{T} x^{(n)})$$

where P_{ϵ} is the probability distribution for our stochastic term ϵ .

In ordinary linear regression, $P_{\epsilon} \sim \text{Normal}(0, \sigma^2)$.

We also mentioned robust regression, which is the same as ordinary linear regression, except that $P_{\epsilon} \sim \mathsf{Laplace}(0,b)$ for some positive scaling factor b.

Show that in this case:

$$\hat{w} = \operatorname{argmin}_{w} \sum_{n=1}^{N} |y^{(n)} - w^{T} x^{(n)}|$$

In other words, the loss function for robust regression is $L_{\text{robust}}(w) = \sum_{n=1}^{N} |y^{(n)} - w^T x^{(n)}|$.

Hint: the probability density function for Laplace(μ , b) is:

$$P(z) = \frac{1}{2b} \exp\left(-\frac{|z-\mu|}{b}\right)$$