Instituto Superior Técnico - 1º Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

1^a Ficha de exercícios para as aulas práticas: 25 - 29 Setembro de 2006

$$\mathbb{N} = \{1, 2, ...\}.$$

- 1. Verifique que, apesar de serem verdadeiras para os primeiros naturais, as seguintes afirmações são falsas.
 - (a) $n^2 2n = n 2$ para qualquer $n \in \mathbb{N}$.
 - **(b)** $n^3 6n^2 + 11n 6 = 0$ para qualquer $n \in \mathbb{N}$.
- 2. Mostre que, apesar de verificarem a propriedade hereditária, as seguintes afirmações são falsas.
 - (a) 5n + 3 é múltiplo de 5 para qualquer $n \in \mathbb{N}$.
 - **(b)** sen $(2n\pi) = 1$ para qualquer $n \in \mathbb{N}$.
 - (c) $n^2 + 3n + 1$ é par para qualquer $n \in \mathbb{N}$.
- 3. Verifique que se tem:
 - (a) $n^2 + 3n + 1$ é impar para qualquer $n \in \mathbb{N}$.
 - **(b)** $1+2+\cdots+n=\frac{n(n+1)}{2}$ para qualquer $n \in \mathbb{N}$.
 - (c) $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ para qualquer $n \in \mathbb{N}$.
 - (d) $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$ para qualquer $n \in \mathbb{N}$.
 - (e) $1+3+\cdots+(2n-1)=n^2$ para qualquer $n \in \mathbb{N}$.
 - (f) $1^2 + 3^2 + \dots + (2n-1)^2 = \frac{4n^3 n}{3}$ para qualquer $n \in \mathbb{N}$.
 - (g) $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ para qualquer $n \in \mathbb{N}$.
 - **(h)** $1.3 + 2.4 + \cdots + n(n+2) = \frac{n(n+1)(2n+7)}{6}$ para qualquer $n \in \mathbb{N}$.
 - (i) $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} = 1 \frac{1}{(n+1)!}$ para qualquer $n \in \mathbb{N}$.
 - (j) $5^n 4n 1$ é divisível por 16 para qualquer $n \in \mathbb{N}$.
 - (k) $2^{2n} + 2$ é múltiplo de 3 para qualquer $n \in \mathbb{N}$.
 - (1) $n^3 + (n+1)^3 + (n+2)^3$ é divisível por 9 para qualquer $n \in \mathbb{N}$.
 - (m) $5^{2n} 1$ é divisível por 8 para qualquer $n \in \mathbb{N}$.
 - (n) $n < 2^n$ para qualquer $n \in \mathbb{N}$.
 - (o) $2^n < n!$ para qualquer $n \in \mathbb{N}$ tal que $n \ge 4$.
 - (p) $1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 \frac{1}{n}$ para qualquer $n \in \mathbb{N}$.

(q)
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$
 para qualquer $n \in \mathbb{N}$ tal que $n \ge 2$.

(r)
$$1^3 + 2^3 + \dots + (n-1)^3 < \frac{n^4}{4} < 1^3 + 2^3 + \dots + n^3$$
 para qualquer $n \in \mathbb{N}$.

- (s) $(n!)^2 > 2^n n^2$ para qualquer $n \in \mathbb{N}$ tal que $n \ge 4$.
- (t) $n! \ge 2^{n-1}$ para qualquer $n \in \mathbb{N}$.
- (u) $n^2 > 3(n+1)$ para qualquer $n \in \mathbb{N}$ tal que $n \ge 4$.
- (v) $\frac{3^{n-1}}{n!} < \frac{19}{n^2}$ para qualquer $n \in \mathbb{N}$ tal que $n \ge 4$.
- (w) $|\sin nx| \le n |\sin x|$ para quaisquer $n \in \mathbb{N}$ e $x \in \mathbb{R}$.
- (x) $(1+a)^n \ge 1 + na$ (designaldade de Bernoulli) para qualquer $n \in \mathbb{N}$ e qualquer $a \in \mathbb{R}$ tal que $a \ge -1$.
- (y) $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ para qualquer $n \in \mathbb{N} \cup \{0\}$ e quaisquer $a, b \in \mathbb{R}$. A igualdade anterior é conhecida por fórmula do desenvolvimento do binómio de Newton, onde $\binom{n}{k}$ designa as combinações de n elementos k a k, tendo-se $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Uma propriedade importante é a seguinte: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ para quaisquer $n, k \in \mathbb{N}$, com $1 \le k \le n$, a qual é conhecida pela lei do triângulo de Pascal. Verifique ainda que se tem como consequência da fórmula anterior: $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ e $\sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0$ para qualquer $n \in \mathbb{N} \cup \{0\}$.
- (z) $a^n b^n = (a b) \sum_{k=1}^n a^{n-k} b^{k-1}$ para qualquer $n \in \mathbb{N}$ e quaisquer $a, b \in \mathbb{R}$.
- 4. Para cada $n \in \mathbb{N}$, seja $S_n = a_1 + a_2 + \cdots + a_n$.
 - (a) Mostre que, se para algum $r \in \mathbb{R}$ tivermos $a_{k+1} a_k = r$ com $1 \le k \le n-1$, então $S_n = n \frac{a_1 + a_n}{2}$ para qualquer $n \in \mathbb{N}$. (Fórmula da soma dos n primeiros termos de uma progressão aritmética.)
 - (b) Mostre que, se para algum $r \in \mathbb{R} \setminus \{1\}$ tivermos $\frac{a_{k+1}}{a_k} = r$ com $1 \le k \le n-1$, então $S_n = a_1 \frac{1-r^n}{1-r}$ para qualquer $n \in \mathbb{N}$. (Fórmula da soma dos n primeiros termos de uma progressão geométrica.)