ISYE 727 Homework 8

Mingchen Ma

November 7, 2019

1 5.4.19

a)

We first show that for each d such for which the infimum in (5.50) is finite, a solution x exists. Now we suppose that such a solution doesn't exist, then we have $\langle c^*, x \rangle = +\infty$, which gives a contradiction. So there exists a feasible solution x to the system.

Furthermore, if the infimum is finite we can suppose that it is C. Then we pick a sequence $\{x_n\}_{n=1}^{\infty}$ such that $< c^*, x_n >$ approach C, then suppose that $\{x_n\} \to x^*$ since the feasible reigon is closed, we know that x^* is in the feasible region. And $< c^*, x^* >= C$.

b`

According to a) we know that there exists an $x_0 \ge 0$ such that $Dx_0 \ge d_0$, $Fx_0 = f$ and $\langle c^*, x_0 \rangle$ achieve the infimum. That is to say $\langle c^*, x_0 \rangle = c_0$.

According to Hoffman's theorem, there exists a constant $\gamma > 0$ and there exists an $x' \ge 0$ such that $Dx' \ge d$, Fx' = f and $||x' - x_0|| \le \gamma ||(d - Dx_0)_+||$. Here, don't need to talk about F, because $Fx_0 - f = 0$.

Notice that $d - Dx_0 \le d - d_0$. So we have $||x' - x_0|| \le \gamma ||(d - Dx_0)_+|| \le \gamma ||(d - d_0)_+||$.

Thus, assume that x^* is the point satisfying the new demand d, then we have

$$< c^*, x^* > \le < c^*, x' > = < c^*, x_0 > + < c^*, x' - x_0 > \le c_0 + ||c^*|| ||x' - x_0|| \le c_0 + \gamma ||c^*|| ||(d - d_0)_+||$$

We choose $\alpha = \gamma ||c^*||$ and finish the proof.