TFG Codigo

Diego Brito

Librerias

```
library(MASS)
library(tidyverse)
library(readr)
library(psych)
library(ggplot2)
library(dplyr)
library(corrplot)
library(RColorBrewer)
library(gridExtra)
library(pROC)
library(pROC)
library(care)
# library(MXM)
# library(doParallel)
```

Base de datos

```
setwd("C:\\Users\\diego\\OneDrive\\Escritorio\\UCM\\Cuarto\\Segundo Cuatri")
datos <- read.csv(file = "application_data.csv")</pre>
```

Depuracion de datos

primero vemos cuantas observaciones faltantes hay por columna

data.frame(sort(colSums(is.na(datos))))

	sort.colSums.is.na.datos
SK_ID_CURR	0
TARGET	0
NAME_CONTRACT_TYPE	0
CODE_GENDER	0
FLAG_OWN_CAR	0
FLAG_OWN_REALTY	0
CNT_CHILDREN	0
AMT_INCOME_TOTAL	0
AMT_CREDIT	0
NAME_TYPE_SUITE	0
NAME_INCOME_TYPE	0
NAME_EDUCATION_TYPE	0
NAME_FAMILY_STATUS	0
NAME_HOUSING_TYPE	0
REGION_POPULATION_RELATIVE	0
DAYS_BIRTH	0
DAYS_EMPLOYED	0
DAYS_REGISTRATION	0
DAYS_ID_PUBLISH	0
FLAG_MOBIL	0
FLAG_EMP_PHONE	0
FLAG_WORK_PHONE	0
FLAG_CONT_MOBILE	0
FLAG_PHONE	0
FLAG_EMAIL	0
OCCUPATION_TYPE	0
REGION_RATING_CLIENT	0
REGION_RATING_CLIENT_W_CITY	0
WEEKDAY_APPR_PROCESS_START	0
HOUR_APPR_PROCESS_START	0
REG_REGION_NOT_LIVE_REGION	0
REG_REGION_NOT_WORK_REGION	0
LIVE_REGION_NOT_WORK_REGION	0
REG_CITY_NOT_LIVE_CITY	0
REG_CITY_NOT_WORK_CITY	0
LIVE_CITY_NOT_WORK_CITY	0
ORGANIZATION_TYPE	0
FONDKAPREMONT_MODE	0
HOUSETYPE_MODE	0

WALLSMATERIAL_MODE	0
EMERGENCYSTATE_MODE	0
FLAG_DOCUMENT_2	0
FLAG_DOCUMENT_3	0
FLAG_DOCUMENT_4	0
FLAG_DOCUMENT_5	0
FLAG_DOCUMENT_6	0
FLAG_DOCUMENT_7	0
FLAG_DOCUMENT_8	0
FLAG_DOCUMENT_9	0
FLAG_DOCUMENT_10	0
FLAG_DOCUMENT_11	0
FLAG_DOCUMENT_12	0
FLAG_DOCUMENT_13	0
FLAG_DOCUMENT_14	0
FLAG_DOCUMENT_15	0
FLAG_DOCUMENT_16	0
FLAG_DOCUMENT_17	0
FLAG_DOCUMENT_18	0
FLAG_DOCUMENT_19	0
FLAG_DOCUMENT_20	0
FLAG_DOCUMENT_21	0
DAYS_LAST_PHONE_CHANGE	1
CNT_FAM_MEMBERS	2
AMT_ANNUITY	12
AMT_GOODS_PRICE	278
EXT_SOURCE_2	660
OBS_30_CNT_SOCIAL_CIRCLE	1021
DEF_30_CNT_SOCIAL_CIRCLE	1021
OBS_60_CNT_SOCIAL_CIRCLE	1021
DEF_60_CNT_SOCIAL_CIRCLE	1021
AMT_REQ_CREDIT_BUREAU_HOUR	41519
AMT_REQ_CREDIT_BUREAU_DAY	41519
AMT_REQ_CREDIT_BUREAU_WEEK	41519
AMT_REQ_CREDIT_BUREAU_MON	41519
AMT_REQ_CREDIT_BUREAU_QRT	41519
AMT_REQ_CREDIT_BUREAU_YEAR	41519
EXT_SOURCE_3	60965
TOTALAREA_MODE	148431
YEARS_BEGINEXPLUATATION_AVG	150007
YEARS_BEGINEXPLUATATION_MODE	150007
YEARS_BEGINEXPLUATATION_MEDI	150007
FLOORSMAX_AVG	153020

FLOORSMAX_MODE	153020
FLOORSMAX_MEDI	153020
LIVINGAREA_AVG	154350
LIVINGAREA_MODE	154350
LIVINGAREA_MEDI	154350
ENTRANCES_AVG	154828
ENTRANCES_MODE	154828
ENTRANCES_MEDI	154828
APARTMENTS_AVG	156061
APARTMENTS_MODE	156061
APARTMENTS_MEDI	156061
ELEVATORS_AVG	163891
ELEVATORS_MODE	163891
ELEVATORS_MEDI	163891
NONLIVINGAREA_AVG	169682
NONLIVINGAREA_MODE	169682
NONLIVINGAREA_MEDI	169682
EXT_SOURCE_1	173378
BASEMENTAREA_AVG	179943
BASEMENTAREA_MODE	179943
BASEMENTAREA_MEDI	179943
LANDAREA_AVG	182590
LANDAREA_MODE	182590
LANDAREA_MEDI	182590
OWN_CAR_AGE	202929
YEARS_BUILD_AVG	204488
YEARS_BUILD_MODE	204488
YEARS_BUILD_MEDI	204488
FLOORSMIN_AVG	208642
FLOORSMIN_MODE	208642
FLOORSMIN_MEDI	208642
LIVINGAPARTMENTS_AVG	210199
LIVINGAPARTMENTS_MODE	210199
LIVINGAPARTMENTS_MEDI	210199
NONLIVINGAPARTMENTS_AVG	213514
NONLIVINGAPARTMENTS_MODE	213514
NONLIVINGAPARTMENTS_MEDI	213514
COMMONAREA_AVG	214865
COMMONAREA_MODE	214865
COMMONAREA_MEDI	214865

ahora tenemos que ver que hacemos con esas observaciones, hay 2 opciones, eliminar aquellas observaciones o sistituir los valores aplicando reglas sustitutivas

```
# Calcular el porcentaje de valores nulos por columna
null_datos_df <- datos |>
    summarise(across(everything(), ~ sum(is.na(.)) * 100 / n())) |> # control + shift + m
    pivot_longer(cols = everything(), names_to = "Column_Name", values_to = "Null_Values_Percent
# Crear el gráfico de puntos
ggplot(null_datos_df, aes(x = reorder(Column_Name, -Null_Values_Percentage), y = Null_Values_
geom_point(color = "blue") +
    geom_hline(yintercept = 40, linetype = "dashed", color = "red") + # Línea de referencia al
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 7)) +
    labs(title = "Percentage of Missing Values in Application Data",
        x = "Columns",
        y = "Null Values Percentage")
```


Variables con mas de un 40 % de datos faltantes

```
# que columnas tienen mas del 40 % de sus datos missing o NA
# Filtrar columnas con 40% o más de valores nulos
# ponemos como limite un 40 % de datos faltantes, porque sistituir mas de un 40 - 50 % de da
# con la mediana o media no es buena idea teniendo tanto % de datos faltantes
nullcol_40_application <- null_datos_df |>
```

```
filter(Null_Values_Percentage >= 40)

# Mostrar el resultado
print(nullcol_40_application)
```

```
# A tibble: 45 x 2
  Column_Name
                                Null_Values_Percentage
   <chr>>
                                                  <dbl>
1 OWN_CAR_AGE
                                                   66.0
2 EXT_SOURCE_1
                                                   56.4
3 APARTMENTS_AVG
                                                   50.7
4 BASEMENTAREA_AVG
                                                   58.5
5 YEARS_BEGINEXPLUATATION_AVG
                                                   48.8
6 YEARS_BUILD_AVG
                                                   66.5
7 COMMONAREA_AVG
                                                   69.9
8 ELEVATORS AVG
                                                   53.3
9 ENTRANCES_AVG
                                                   50.3
10 FLOORSMAX_AVG
                                                   49.8
# i 35 more rows
```

Datos faltantes

cuantos datos faltantes tenemos por columna

```
sort.colSums.is.na.datos...
SK_ID_CURR 0
TARGET 0
```

NAME_CONTRACT_TYPE	0
CODE_GENDER	0
FLAG_OWN_CAR	0
FLAG_OWN_REALTY	0
CNT_CHILDREN	0
AMT_INCOME_TOTAL	0
AMT_CREDIT	0
NAME_TYPE_SUITE	0
NAME_INCOME_TYPE	0
NAME_EDUCATION_TYPE	0
NAME_FAMILY_STATUS	0
NAME_HOUSING_TYPE	0
REGION_POPULATION_RELATIVE	0
DAYS_BIRTH	0
DAYS_EMPLOYED	0
DAYS_REGISTRATION	0
DAYS_ID_PUBLISH	0
FLAG_MOBIL	0
FLAG_EMP_PHONE	0
FLAG_WORK_PHONE	0
FLAG_CONT_MOBILE	0
FLAG_PHONE	0
FLAG_EMAIL	0
OCCUPATION_TYPE	0
REGION_RATING_CLIENT	0
REGION_RATING_CLIENT_W_CITY	0
WEEKDAY_APPR_PROCESS_START	0
HOUR_APPR_PROCESS_START	0
REG_REGION_NOT_LIVE_REGION	0
REG_REGION_NOT_WORK_REGION	0
LIVE_REGION_NOT_WORK_REGION	0
REG_CITY_NOT_LIVE_CITY	0
REG_CITY_NOT_WORK_CITY	0
LIVE_CITY_NOT_WORK_CITY	0
ORGANIZATION_TYPE	0
FONDKAPREMONT_MODE	0
HOUSETYPE_MODE	0
WALLSMATERIAL_MODE	0
EMERGENCYSTATE_MODE	0
FLAG_DOCUMENT_2	0
FLAG_DOCUMENT_3	0
FLAG_DOCUMENT_4	0
FLAG_DOCUMENT_5	0

FLAG_DOCUMENT_6	0
FLAG_DOCUMENT_7	0
FLAG_DOCUMENT_8	0
FLAG_DOCUMENT_9	0
FLAG_DOCUMENT_10	0
FLAG_DOCUMENT_11	0
FLAG_DOCUMENT_12	0
FLAG_DOCUMENT_13	0
FLAG_DOCUMENT_14	0
FLAG_DOCUMENT_15	0
FLAG_DOCUMENT_16	0
FLAG_DOCUMENT_17	0
FLAG_DOCUMENT_18	0
FLAG_DOCUMENT_19	0
FLAG_DOCUMENT_20	0
FLAG_DOCUMENT_21	0
DAYS_LAST_PHONE_CHANGE	1
CNT_FAM_MEMBERS	2
AMT_ANNUITY	12
AMT_GOODS_PRICE	278
EXT_SOURCE_2	660
OBS_30_CNT_SOCIAL_CIRCLE	1021
DEF_30_CNT_SOCIAL_CIRCLE	1021
OBS_60_CNT_SOCIAL_CIRCLE	1021
DEF_60_CNT_SOCIAL_CIRCLE	1021
AMT_REQ_CREDIT_BUREAU_HOUR	41519
AMT_REQ_CREDIT_BUREAU_DAY	41519
AMT_REQ_CREDIT_BUREAU_WEEK	41519
AMT_REQ_CREDIT_BUREAU_MON	41519
AMT_REQ_CREDIT_BUREAU_QRT	41519
AMT_REQ_CREDIT_BUREAU_YEAR	41519
EXT_SOURCE_3	60965
TOTALAREA_MODE	148431
YEARS_BEGINEXPLUATATION_AVG	150007
YEARS_BEGINEXPLUATATION_MODE	150007
YEARS_BEGINEXPLUATATION_MEDI	150007
FLOORSMAX_AVG	153020
FLOORSMAX_MODE	153020
FLOORSMAX_MEDI	153020
LIVINGAREA_AVG	154350
LIVINGAREA_MODE	154350
LIVINGAREA_MEDI	154350
ENTRANCES_AVG	154828
_	

```
ENTRANCES_MEDI
                                                    154828
APARTMENTS_AVG
                                                    156061
APARTMENTS_MODE
                                                    156061
APARTMENTS MEDI
                                                    156061
ELEVATORS_AVG
                                                    163891
ELEVATORS MODE
                                                    163891
ELEVATORS_MEDI
                                                    163891
NONLIVINGAREA_AVG
                                                    169682
NONLIVINGAREA_MODE
                                                    169682
NONLIVINGAREA_MEDI
                                                    169682
EXT_SOURCE_1
                                                    173378
BASEMENTAREA_AVG
                                                    179943
BASEMENTAREA_MODE
                                                    179943
BASEMENTAREA_MEDI
                                                    179943
LANDAREA AVG
                                                    182590
LANDAREA_MODE
                                                    182590
LANDAREA_MEDI
                                                    182590
OWN_CAR_AGE
                                                    202929
YEARS BUILD AVG
                                                    204488
YEARS_BUILD_MODE
                                                    204488
YEARS BUILD MEDI
                                                    204488
FLOORSMIN_AVG
                                                    208642
FLOORSMIN_MODE
                                                    208642
FLOORSMIN_MEDI
                                                    208642
LIVINGAPARTMENTS_AVG
                                                    210199
LIVINGAPARTMENTS_MODE
                                                    210199
LIVINGAPARTMENTS_MEDI
                                                    210199
NONLIVINGAPARTMENTS_AVG
                                                    213514
NONLIVINGAPARTMENTS_MODE
                                                    213514
                                                    213514
NONLIVINGAPARTMENTS_MEDI
COMMONAREA_AVG
                                                    214865
COMMONAREA_MODE
                                                    214865
COMMONAREA_MEDI
                                                    214865
```

154828

ENTRANCES_MODE

```
# Convertir las columnas a factor (categóricas)
datos[categorical_columns] <- lapply(datos[categorical_columns], as.factor)</pre>
```

Factorizamos las variables contacto y otras que sean necesarias

```
datos <- datos %>%
  mutate(across(all_of(contact_col), as.factor)) %>%
  mutate(across(all_of(col_Doc), as.factor))
```

variables categoricas

con pocos datos faltantes (moda)

```
# Función para imputar valores faltantes con la moda
imputar_moda <- function(x) {
  if (is.factor(x) | is.character(x)) { # Verifica si es categórica
      moda <- names(sort(table(x), decreasing = TRUE))[1] # Encuentra la moda
      x[is.na(x)] <- moda # Reemplaza los NA con la moda
  }
  return(x)
}</pre>
```

```
#categorical_columns <- c(categorical_columns, "AMT_INCOME_RANGE")
# Aplicar la función a todas las columnas categóricas
datos[categorical_columns] <- lapply(datos[categorical_columns], imputar_moda)</pre>
```

variables numericas

para sustituir aquellas variables que son numericas y tienen una observacion faltante, haremos uso de la media.

```
distribucion_variables_numericas <- function(datos) {
  numeric_columns <- datos |> select_if(is.numeric) |> names()  # Selecciona las variables note
  for (col in numeric_columns) {
    cat("\n-----\n")
    cat("Distribución de la variable:", col, "\n")
    cat("----\n")

    print(summary(datos[[col]]))  # Resumen estadístico
    hist(datos[[col]], main = paste("Histograma de", col), col = "skyblue", border = "white"

    # Test de Kolmogorov-Smirnov para normalidad
    ks_test <- ks.test(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), sd(datos[[col]])
    cat("\nTest de Kolmogorov-Smirnov para la normalidad:\n")</pre>
```

```
if (ks_test$p.value < 0.05) {
    cat(" La variable", col, "NO sigue una distribución normal (p <", ks_test$p.value, ")\
    } else {
    cat(" La variable", col, "SIGUE una distribución normal (p =", ks_test$p.value, ")\n")
    }
}

# Llamada a la función
distribucion_variables_numericas(datos)</pre>
```

Distribución de la variable: SK_ID_CURR

Min. 1st Qu. Median Mean 3rd Qu. Max. 100002 189146 278202 278181 367143 456255

Histograma de SK_ID_CURR

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.057265, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable SK_ID_CURR NO sigue una distribución normal (p < 0)

Distribución de la variable: TARGET

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.08073 0.00000 1.00000

Warning in ks.test.default(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), : ties should not be present for the one-sample Kolmogorov-Smirnov test

Histograma de TARGET

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.53579, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable TARGET NO sigue una distribución normal (p < 0)

Distribución de la variable: CNT_CHILDREN

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.4171 1.0000 19.0000

Warning in ks.test.default(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), : ties should not be present for the one-sample Kolmogorov-Smirnov test

Histograma de CNT_CHILDREN

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.41858, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable CNT_CHILDREN NO sigue una distribución normal (p < 0)

Distribución de la variable: AMT_INCOME_TOTAL

Min. 1st Qu. Median Mean 3rd Qu. Max. 25650 112500 147150 168798 202500 117000000

Warning in ks.test.default(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), : ties should not be present for the one-sample Kolmogorov-Smirnov test

Histograma de AMT_INCOME_TOTAL

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.30171, p-value < 2.2e-16

alternative hypothesis: two-sided

La variable AMT_INCOME_TOTAL NO sigue una distribución normal (p < 0)

Distribución de la variable: AMT_CREDIT

Min. 1st Qu. Median Mean 3rd Qu. Max. 45000 270000 513531 599026 808650 4050000

Warning in ks.test.default(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), : ties should not be present for the one-sample Kolmogorov-Smirnov test

Histograma de AMT_CREDIT

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.11015, p-value < 2.2e-16 alternative hypothesis: two-sided La variable AMT_CREDIT NO sigue una distribución normal (p < 0)

Distribución de la variable: AMT_ANNUITY

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 1616 16524 24903 27109 34596 258026 12

Warning in ks.test.default(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), : ties should not be present for the one-sample Kolmogorov-Smirnov test

Histograma de AMT_ANNUITY

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.0789, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable AMT_ANNUITY NO sigue una distribución normal (p < 0)

Distribución de la variable: AMT_GOODS_PRICE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 40500 238500 450000 538396 679500 4050000 278

Warning in ks.test.default(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), : ties should not be present for the one-sample Kolmogorov-Smirnov test

Histograma de AMT_GOODS_PRICE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.14269, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable AMT_GOODS_PRICE NO sigue una distribución normal (p < 0)

Distribución de la variable: REGION_POPULATION_RELATIVE

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00029 0.01001 0.01885 0.02087 0.02866 0.07251

Warning in ks.test.default(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), : ties should not be present for the one-sample Kolmogorov-Smirnov test

Histograma de REGION_POPULATION_RELATIVE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.11345, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable REGION_POPULATION_RELATIVE NO sigue una distribución normal (p < 0)

Distribución de la variable: DAYS_BIRTH

Min. 1st Qu. Median Mean 3rd Qu. Max. -25229 -19682 -15750 -16037 -12413 -7489

Warning in ks.test.default(datos[[col]], "pnorm", mean(datos[[col]], na.rm = TRUE), : ties should not be present for the one-sample Kolmogorov-Smirnov test

Histograma de DAYS_BIRTH

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.048582, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable DAYS_BIRTH NO sigue una distribución normal (p < 0)

Distribución de la variable: DAYS_EMPLOYED

Min. 1st Qu. Median Mean 3rd Qu. Max. -17912 -2760 -1213 63815 -289 365243

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.49419, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable DAYS_EMPLOYED NO sigue una distribución normal (p < 0)

Distribución de la variable: DAYS_REGISTRATION

Min. 1st Qu. Median Mean 3rd Qu. Max. -24672 -7480 -4504 -4986 -2010 0

Histograma de DAYS_REGISTRATION

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.078483, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable DAYS_REGISTRATION NO sigue una distribución normal (p < 0)

Distribución de la variable: DAYS_ID_PUBLISH

Min. 1st Qu. Median Mean 3rd Qu. Max. -7197 -4299 -3254 -2994 -1720 0

Histograma de DAYS_ID_PUBLISH

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.12221, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable DAYS_ID_PUBLISH NO sigue una distribución normal (p < 0)

Distribución de la variable: OWN_CAR_AGE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 5.00 9.00 12.06 15.00 91.00 202929

Histograma de OWN_CAR_AGE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.16271, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable OWN_CAR_AGE NO sigue una distribución normal (p < 0)

Distribución de la variable: CNT_FAM_MEMBERS

- -

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 1.000 2.000 2.000 2.153 3.000 20.000 2

Histograma de CNT_FAM_MEMBERS

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.30217, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable CNT_FAM_MEMBERS NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ HOUR_APPR_PROCESS_START}$

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 10.00 12.00 12.06 14.00 23.00

Histograma de HOUR_APPR_PROCESS_START

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.08234, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable HOUR_APPR_PROCESS_START NO sigue una distribución normal (p < 0)

Distribución de la variable: REG_REGION_NOT_LIVE_REGION

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.01514 0.00000 1.00000

Histograma de REG_REGION_NOT_LIVE_REGION

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.5342, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable REG_REGION_NOT_LIVE_REGION NO sigue una distribución normal (p < 0)

Distribución de la variable: EXT_SOURCE_1

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.01 0.33 0.51 0.50 0.68 0.96 173378

Histograma de EXT_SOURCE_1

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.044677, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable EXT_SOURCE_1 NO sigue una distribución normal (p < 5.58411e-233)

Distribución de la variable: EXT_SOURCE_2

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.0000 0.3925 0.5660 0.5144 0.6636 0.8550 660

Histograma de EXT_SOURCE_2

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.10691, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable EXT_SOURCE_2 NO sigue una distribución normal (p < 0)

Distribución de la variable: EXT_SOURCE_3

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.37 0.54 0.51 0.67 0.90 60965

Histograma de EXT_SOURCE_3

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.061755, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable EXT_SOURCE_3 NO sigue una distribución normal (p < 0)

Distribución de la variable: APARTMENTS_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.06 0.09 0.12 0.15 1.00 156061

Histograma de APARTMENTS_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.1668, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable APARTMENTS_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: BASEMENTAREA_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.04 0.08 0.09 0.11 1.00 179943

Histograma de BASEMENTAREA_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.14167, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable BASEMENTAREA_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: YEARS_BEGINEXPLUATATION_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.98 0.98 0.98 0.99 1.00 150007

Histograma de YEARS_BEGINEXPLUATATION_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.39064, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable YEARS_BEGINEXPLUATATION_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: YEARS_BUILD_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.69 0.76 0.75 0.82 1.00 204488

Histograma de YEARS_BUILD_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.051642, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable YEARS_BUILD_AVG NO sigue una distribución normal (p < 4.560853e-239)

Distribución de la variable: COMMONAREA_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.01 0.02 0.04 0.05 1.00 214865

Histograma de COMMONAREA_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.27866, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable COMMONAREA_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: ELEVATORS_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.08 0.12 1.00 163891

Histograma de ELEVATORS_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.3181, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable ELEVATORS_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: ENTRANCES_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.07 0.14 0.15 0.21 1.00 154828

Histograma de ENTRANCES_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.19338, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable ENTRANCES_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: FLOORSMAX_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.17 0.17 0.23 0.33 1.00 153020

Histograma de FLOORSMAX_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.27317, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable $FLOORSMAX_AVG$ NO sigue una distribución normal (p < 0)

Distribución de la variable: FLOORSMIN_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.08 0.21 0.23 0.38 1.00 208642

Histograma de FLOORSMIN_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.22705, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable FLOORSMIN_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: LANDAREA_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.02 0.05 0.07 0.09 1.00 182590

Histograma de LANDAREA_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.20694, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LANDAREA_AVG NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ LIVINGAPARTMENTS_AVG}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.05 0.08 0.10 0.12 1.00 210199

Histograma de LIVINGAPARTMENTS_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.17467, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LIVINGAPARTMENTS_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: LIVINGAREA_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.05 0.07 0.11 0.13 1.00 154350

Histograma de LIVINGAREA_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.18232, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LIVINGAREA_AVG NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ NONLIVINGAPARTMENTS_AVG}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.01 0.00 1.00 213514

Histograma de NONLIVINGAPARTMENTS_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.42679, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable NONLIVINGAPARTMENTS_AVG NO sigue una distribución normal (p < 0)

Distribución de la variable: NONLIVINGAREA_AVG

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.03 0.03 1.00 169682

Histograma de NONLIVINGAREA_AVG

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.34168, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable $NONLIVINGAREA_AVG$ NO sigue una distribución normal (p < 0)

Distribución de la variable: APARTMENTS_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.05 0.08 0.11 0.14 1.00 156061

Histograma de APARTMENTS_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.17123, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable APARTMENTS_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: BASEMENTAREA_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.04 0.07 0.09 0.11 1.00 179943

Histograma de BASEMENTAREA_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.14955, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable BASEMENTAREA_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: YEARS_BEGINEXPLUATATION_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.98 0.98 0.98 0.99 1.00 150007

Histograma de YEARS_BEGINEXPLUATATION_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.39761, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable YEARS_BEGINEXPLUATATION_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: YEARS_BUILD_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.70 0.76 0.76 0.82 1.00 204488

Histograma de YEARS_BUILD_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.054756, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable YEARS_BUILD_MODE NO sigue una distribución normal (p < 1.021391e-268)

Distribución de la variable: COMMONAREA_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.01 0.02 0.04 0.05 1.00 214865

Histograma de COMMONAREA_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.28379, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable COMMONAREA_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: ELEVATORS_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.07 0.12 1.00 163891

Histograma de ELEVATORS_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.33652, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable ELEVATORS_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: ENTRANCES_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.07 0.14 0.15 0.21 1.00 154828

Histograma de ENTRANCES_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.204, p-value < 2.2e-16

alternative hypothesis: two-sided

La variable ENTRANCES_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: FLOORSMAX_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.17 0.17 0.22 0.33 1.00 153020

Histograma de FLOORSMAX_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.28906, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable FLOORSMAX_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: FLOORSMIN_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.08 0.21 0.23 0.38 1.00 208642

Histograma de FLOORSMIN_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.23649, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable $FLOORSMIN_MODE$ NO sigue una distribución normal (p < 0)

Distribución de la variable: LANDAREA_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.02 0.05 0.06 0.08 1.00 182590

Histograma de LANDAREA_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.21343, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LANDAREA_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: LIVINGAPARTMENTS_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.05 0.08 0.11 0.13 1.00 210199

Histograma de LIVINGAPARTMENTS_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.17894, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LIVINGAPARTMENTS_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: LIVINGAREA_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.04 0.07 0.11 0.13 1.00 154350

Histograma de LIVINGAREA_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.19075, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LIVINGAREA_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: NONLIVINGAPARTMENTS_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.01 0.00 1.00 213514

Histograma de NONLIVINGAPARTMENTS_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.43073, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable NONLIVINGAPARTMENTS_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: NONLIVINGAREA_MODE

Min 1g+ Ou Modian Moan 3rd Ou May N

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.03 0.02 1.00 169682

Histograma de NONLIVINGAREA_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.35025, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable NONLIVINGAREA_MODE NO sigue una distribución normal (p < 0)

Distribución de la variable: APARTMENTS_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.06 0.09 0.12 0.15 1.00 156061

Histograma de APARTMENTS_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.16968, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable APARTMENTS_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: BASEMENTAREA_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.00 0.04 0.08 0.09 0.11 1.00 179943

Histograma de BASEMENTAREA_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.14225, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable BASEMENTAREA_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: YEARS_BEGINEXPLUATATION_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.98 0.98 0.98 0.99 1.00 150007

Histograma de YEARS_BEGINEXPLUATATION_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.39156, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable YEARS_BEGINEXPLUATATION_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: YEARS_BUILD_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.69 0.76 0.76 0.83 1.00 204488

Histograma de YEARS_BUILD_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.051814, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable YEARS_BUILD_MEDI NO sigue una distribución normal (p < 1.165368e-240)

Distribución de la variable: COMMONAREA_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.01 0.02 0.04 0.05 1.00 214865

Histograma de COMMONAREA_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.27905, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable COMMONAREA_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: ELEVATORS_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.08 0.12 1.00 163891

Histograma de ELEVATORS_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.32521, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable ELEVATORS_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: ENTRANCES_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.07 0.14 0.15 0.21 1.00 154828

Histograma de ENTRANCES_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.19915, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable ENTRANCES_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: FLOORSMAX_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.17 0.17 0.23 0.33 1.00 153020

Histograma de FLOORSMAX_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.28113, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable FLOORSMAX_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: FLOORSMIN_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.08 0.21 0.23 0.38 1.00 208642

Histograma de FLOORSMIN_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.23289, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable $FLOORSMIN_MEDI$ NO sigue una distribución normal (p < 0)

Distribución de la variable: LANDAREA_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.02 0.05 0.07 0.09 1.00 182590

Histograma de LANDAREA_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.20683, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LANDAREA_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: LIVINGAPARTMENTS_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.05 0.08 0.10 0.12 1.00 210199

Histograma de LIVINGAPARTMENTS_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.17714, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LIVINGAPARTMENTS_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: LIVINGAREA_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.05 0.07 0.11 0.13 1.00 154350

Histograma de LIVINGAREA_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.18396, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable LIVINGAREA_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: NONLIVINGAPARTMENTS_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.01 0.00 1.00 213514

Histograma de NONLIVINGAPARTMENTS_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.42761, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable NONLIVINGAPARTMENTS_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: NONLIVINGAREA_MEDI

Min. 1st Qu. Median Mean 3rd Qu. Max.

NA's 0.00 0.00 0.00 0.03 0.03 1.00 169682

Histograma de NONLIVINGAREA_MEDI

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.34369, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable NONLIVINGAREA_MEDI NO sigue una distribución normal (p < 0)

Distribución de la variable: TOTALAREA_MODE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.04 0.07 0.10 0.13 1.00 148431

Histograma de TOTALAREA_MODE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.18429, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable TOTALAREA_MODE NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ OBS_30_CNT_SOCIAL_CIRCLE}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.000 0.000 0.000 1.422 2.000 348.000 1021

Histograma de OBS_30_CNT_SOCIAL_CIRCLE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.27681, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable OBS_30_CNT_SOCIAL_CIRCLE NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ DEF_30_CNT_SOCIAL_CIRCLE}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.0000 0.0000 0.0000 0.1434 0.0000 34.0000 1021

Histograma de DEF_30_CNT_SOCIAL_CIRCLE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.51118, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable DEF_30_CNT_SOCIAL_CIRCLE NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ OBS_60_CNT_SOCIAL_CIRCLE}$

Min 1g+ On Modian Man 2nd On Man M

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.000 0.000 0.000 1.405 2.000 344.000 1021

Histograma de OBS_60_CNT_SOCIAL_CIRCLE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.27743, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable OBS_60_CNT_SOCIAL_CIRCLE NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ DEF_60_CNT_SOCIAL_CIRCLE}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.0 0.0 0.0 0.1 0.0 24.0 1021

Histograma de DEF_60_CNT_SOCIAL_CIRCLE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.52471, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable DEF_60_CNT_SOCIAL_CIRCLE NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ DAYS_LAST_PHONE_CHANGE}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's -4292.0 -1570.0 -757.0 -962.9 -274.0 0.0 1

Histograma de DAYS_LAST_PHONE_CHANGE

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.1221, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable DAYS_LAST_PHONE_CHANGE NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ AMT_REQ_CREDIT_BUREAU_HOUR}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.01 0.00 4.00 41519

Histograma de AMT_REQ_CREDIT_BUREAU_HOUR

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.52432, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable AMT_REQ_CREDIT_BUREAU_HOUR NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ AMT_REQ_CREDIT_BUREAU_DAY}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.01 0.00 9.00 41519

Histograma de AMT_REQ_CREDIT_BUREAU_DAY

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.5196, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable AMT_REQ_CREDIT_BUREAU_DAY NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ AMT_REQ_CREDIT_BUREAU_WEEK}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.03 0.00 8.00 41519

Histograma de AMT_REQ_CREDIT_BUREAU_WEEK

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.53457, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable AMT_REQ_CREDIT_BUREAU_WEEK NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ AMT_REQ_CREDIT_BUREAU_MON}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.27 0.00 27.00 41519

Histograma de AMT_REQ_CREDIT_BUREAU_MON

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.45031, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable AMT_REQ_CREDIT_BUREAU_MON NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ AMT_REQ_CREDIT_BUREAU_QRT}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 0.27 0.00 261.00 41519

Histograma de AMT_REQ_CREDIT_BUREAU_QRT

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

data: datos[[col]]

D = 0.4408, p-value < 2.2e-16 alternative hypothesis: two-sided

La variable AMT_REQ_CREDIT_BUREAU_QRT NO sigue una distribución normal (p < 0)

 ${\tt Distribuci\'on\ de\ la\ variable:\ AMT_REQ_CREDIT_BUREAU_YEAR}$

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.0 0.0 1.0 1.9 3.0 25.0 41519

Histograma de AMT_REQ_CREDIT_BUREAU_YEAR

Test de Kolmogorov-Smirnov para la normalidad:

Asymptotic one-sample Kolmogorov-Smirnov test

```
data: datos[[col]]
D = 0.19321, p-value < 2.2e-16
alternative hypothesis: two-sided</pre>
```

La variable AMT_REQ_CREDIT_BUREAU_YEAR NO sigue una distribución normal (p < 0)

```
# Función para imputar valores faltantes con la media
imputar_mediana <- function(x) {
   if (is.numeric(x)) {  # Verifica si es numérica
      x[is.na(x)] <- median(x, na.rm = TRUE)  # Calcula y reemplaza con la media
   }
   return(x)
}</pre>
```

```
numeric_columns <- datos |> select_if(is.numeric) |> names()

# Aplicar la función a todas las columnas numéricas
datos[numeric_columns] <- lapply(datos[numeric_columns], imputar_mediana)</pre>
```

data.frame(sort(colSums(is.na(datos))))

	sort.colSums.is.na.datos
SK_ID_CURR	0
TARGET	0
NAME_CONTRACT_TYPE	0
CODE_GENDER	0
FLAG_OWN_CAR	0
FLAG_OWN_REALTY	0
CNT_CHILDREN	0
AMT_INCOME_TOTAL	0
AMT_CREDIT	0
AMT_ANNUITY	0
AMT_GOODS_PRICE	0
NAME_TYPE_SUITE	0
NAME_INCOME_TYPE	0
NAME_EDUCATION_TYPE	0
NAME_FAMILY_STATUS	0
NAME_HOUSING_TYPE	0
REGION_POPULATION_RELATIVE	0
DAYS_BIRTH	0
DAYS_EMPLOYED	0
DAYS_REGISTRATION	0
DAYS_ID_PUBLISH	0
OWN_CAR_AGE	0
FLAG_MOBIL	0
FLAG_EMP_PHONE	0
FLAG_WORK_PHONE	0
FLAG_CONT_MOBILE	0
FLAG_PHONE	0
FLAG_EMAIL	0
OCCUPATION_TYPE	0
CNT_FAM_MEMBERS	0
REGION_RATING_CLIENT	0
REGION_RATING_CLIENT_W_CITY	0
WEEKDAY_APPR_PROCESS_START	0
HOUR_APPR_PROCESS_START	0
REG_REGION_NOT_LIVE_REGION	0
REG_REGION_NOT_WORK_REGION	0
LIVE_REGION_NOT_WORK_REGION	0

REG_CITY_NOT_LIVE_CITY	0
	0
LIVE_CITY_NOT_WORK_CITY	0
ORGANIZATION_TYPE	0
EXT_SOURCE_1	0
EXT_SOURCE_2	0
EXT_SOURCE_3	0
APARTMENTS_AVG	0
BASEMENTAREA_AVG	0
YEARS_BEGINEXPLUATATION_AVG	0
YEARS_BUILD_AVG	0
COMMONAREA_AVG	0
ELEVATORS_AVG	0
ENTRANCES_AVG	0
FLOORSMAX_AVG	0
FLOORSMIN_AVG	0
LANDAREA_AVG	0
LIVINGAPARTMENTS_AVG	0
LIVINGAREA_AVG	0
NONLIVINGAPARTMENTS_AVG	0
NONLIVINGAREA_AVG	0
APARTMENTS_MODE	0
BASEMENTAREA_MODE	0
YEARS_BEGINEXPLUATATION_MODE	0
YEARS_BUILD_MODE	0
COMMONAREA_MODE	0
ELEVATORS_MODE	0
ENTRANCES_MODE	0
FLOORSMAX_MODE	0
FLOORSMIN_MODE	0
LANDAREA_MODE	0
LIVINGAPARTMENTS_MODE	0
LIVINGAREA_MODE	0
NONLIVINGAPARTMENTS_MODE	0
NONLIVINGAREA_MODE	0
APARTMENTS_MEDI	0
BASEMENTAREA_MEDI	0
YEARS_BEGINEXPLUATATION_MEDI	0
YEARS_BUILD_MEDI	0
COMMONAREA_MEDI	0
ELEVATORS_MEDI	0
ENTRANCES_MEDI	0
FLOORSMAX_MEDI	0

FLOORSMIN MEDI	0
LANDAREA_MEDI	0
LIVINGAPARTMENTS MEDI	0
LIVINGAREA MEDI	0
NONLIVINGAPARTMENTS MEDI	0
NONLIVINGAREA_MEDI	0
FONDKAPREMONT_MODE	0
HOUSETYPE_MODE	0
TOTALAREA_MODE	0
WALLSMATERIAL_MODE	0
EMERGENCYSTATE_MODE	0
OBS_30_CNT_SOCIAL_CIRCLE	0
DEF_30_CNT_SOCIAL_CIRCLE	0
OBS_60_CNT_SOCIAL_CIRCLE	0
DEF_60_CNT_SOCIAL_CIRCLE	0
DAYS_LAST_PHONE_CHANGE	0
FLAG_DOCUMENT_2	0
FLAG_DOCUMENT_3	0
FLAG_DOCUMENT_4	0
FLAG_DOCUMENT_5	0
FLAG_DOCUMENT_6	0
FLAG_DOCUMENT_7	0
FLAG_DOCUMENT_8	0
FLAG_DOCUMENT_9	0
FLAG_DOCUMENT_10	0
FLAG_DOCUMENT_11	0
FLAG_DOCUMENT_12	0
FLAG_DOCUMENT_13	0
FLAG_DOCUMENT_14	0
FLAG_DOCUMENT_15	0
FLAG_DOCUMENT_16	0
FLAG_DOCUMENT_17	0
FLAG_DOCUMENT_18	0
FLAG_DOCUMENT_19	0
FLAG_DOCUMENT_20	0
FLAG_DOCUMENT_21	0
AMT_REQ_CREDIT_BUREAU_HOUR	0
AMT_REQ_CREDIT_BUREAU_DAY	0
AMT_REQ_CREDIT_BUREAU_WEEK	0
AMT_REQ_CREDIT_BUREAU_MON	0
AMT_REQ_CREDIT_BUREAU_QRT	0
AMT_REQ_CREDIT_BUREAU_YEAR	0

Estandarizar valores

Primero pasamos las columnas con dias negativos a positivos

```
# Lista de columnas con días negativos
date_col <- c("DAYS_BIRTH", "DAYS_EMPLOYED", "DAYS_REGISTRATION", "DAYS_ID_PUBLISH")
# Convertir valores negativos a positivos en todas las columnas de la lista
datos[date_col] <- abs(datos[date_col])</pre>
```

Ahora vamos a organizar a las personas segun su nivel de ingresos (Dicotomizamos)

```
0-100K 100K-200K 200K-300K 300K-400K 400K-500K 500K-600K 20.729695163 50.734999788 21.210691261 4.776115517 1.744668526 0.356353672 600K-700K 700K-800K 800K-900K 900K-1M 1M Above 0.282804878 0.052720817 0.096980269 0.009112240 0.005857869
```

Relaizamos lo mismo para la cantida de credito, la edad y las horas trabajadas para facilitar las comparaciones en el futuro

```
# Dividir AMT_CREDIT por 100,000
datos$AMT_CREDIT <- datos$AMT_CREDIT / 100000
# Definir los límites de los bins</pre>
```

```
bins \leftarrow c(0,1,2,3,4,5,6,7,8,9,10,100)
# Definir las etiquetas para los rangos de crédito
slots <- c('0-100K','100K-200K', '200K-300K','300K-400K','400K-500K',
           '500K-600K', '600K-700K', '700K-800K', '800K-900K', '900K-1M', '1M Above')
# Crear la nueva variable categórica
datos$AMT_CREDIT_RANGE <- cut(datos$AMT_CREDIT, breaks = bins, labels = slots, include.lowes
# Calcular la frecuencia relativa (%) de cada categoría en AMT_CREDIT_RANGE
prop.table(table(datos$AMT_CREDIT_RANGE)) * 100
   0-100K 100K-200K 200K-300K 300K-400K 400K-500K 500K-600K 600K-700K 700K-800K
 1.952450 9.801275 17.824728 8.564897 10.418489 11.131960 7.820533 6.241403
800K-900K 900K-1M 1M Above
 7.086576 2.902986 16.254703
# Crear la variable AGE a partir de DAYS_BIRTH
datos$AGE <- floor(abs(datos$DAYS_BIRTH) / 365)</pre>
# Definir los límites de los bins
bins \leftarrow c(0, 20, 30, 40, 50, 100)
# Definir las etiquetas para los grupos de edad
slots <- c('0-20', '20-30', '30-40', '40-50', '50 above')
# Crear la nueva variable categórica
datos$AGE_GROUP <- cut(datos$AGE, breaks = bins, labels = slots, include.lowest = TRUE)</pre>
# Calcular la frecuencia relativa (%) de cada categoría en AGE_GROUP
prop.table(table(datos$AGE_GROUP)) * 100
                    20-30
                                  30-40
                                              40-50
                                                         50 above
3.251916e-04\ 1.717174e+01\ 2.702895e+01\ 2.419458e+01\ 3.160440e+01
```

datos\$AGE <- floor(abs(datos\$DAYS_BIRTH) / 365)</pre>

```
# Crear la variable YEARS_EMPLOYED a partir de DAYS_EMPLOYED

datos$YEARS_EMPLOYED <- floor(abs(datos$DAYS_EMPLOYED) / 365)

# Definir los límites de los bins

bins <- c(0, 5, 10, 20, 30, 40, 50, 60, 150)

# Definir las etiquetas para los grupos de años de empleo

slots <- c('0-5', '5-10', '10-20', '20-30', '30-40', '40-50', '50-60', '60 above')

# Crear la nueva variable categórica

datos$EMPLOYMENT_YEAR <- cut(datos$YEARS_EMPLOYED, breaks = bins, labels = slots, include.lo

# Calcular la frecuencia relativa (%) de cada categoría en EMPLOYMENT_YEAR

prop.table(table(datos$EMPLOYMENT_YEAR)) * 100
```

```
0-5 5-10 10-20 20-30 30-40 40-50 60.49806256 22.20340529 12.95248218 3.33509164 0.94155162 0.06940671 50-60 60 above 0.00000000 0.00000000
```

Se lleva a cabo esto para poder facilitar la comparacion entre observaciones y la clasificacion de modelos. Viendo la diferencia entre los distintos grupos

L1 PENALTY PARA LA REGRESION USAR apuntaría brevemente en cada caso, que puedes hacer para seguir

Factorial de variables

Variables economicas

```
economic_vars <- datos[, c("AMT_INCOME_TOTAL", "AMT_CREDIT", "AMT_ANNUITY", "AMT_GOODS_PRICE
#"CNT_FAM_MEMBERS" "CNT_CHILDREN"

economic_vars_scaled <- scale(economic_vars)
factor_analysis <- factanal(economic_vars_scaled, factors = 2, rotation = "varimax")

print(factor_analysis, digits = 3, cutoff = 0.3, sort = TRUE)</pre>
```

Call:

factanal(x = economic_vars_scaled, factors = 2, rotation = "varimax")

Uniquenesses:

AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT_GOODS_PRICE
0.908 0.020 0.328 0.006

OWN_CAR_AGE DAYS_EMPLOYED

0.953

Loadings:

Factor1 Factor2

AMT_CREDIT 0.973

0.999

AMT_ANNUITY 0.717 0.398

AMT_GOODS_PRICE 0.980

AMT_INCOME_TOTAL OWN_CAR_AGE DAYS_EMPLOYED

Factor1 Factor2

SS loadings 2.436 0.351 Proportion Var 0.406 0.059 Cumulative Var 0.406 0.464

Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 671.06 on 4 degrees of freedom. The p-value is 6.43e-144

print(factor_analysis\$loadings)

Loadings:

Factor1 Factor2 SS loadings 2.436 0.351 Proportion Var 0.406 0.059

```
Cumulative Var 0.406 0.464
```

```
print("-----")
[1] "-----"
KMO(economic_vars_scaled) # Índice de adecuación muestral
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = economic_vars_scaled)
Overall MSA = 0.7
MSA for each item =
AMT_INCOME_TOTAL
               AMT_CREDIT
                          AMT_ANNUITY AMT_GOODS_PRICE
                              0.97
                                          0.63
        0.87
                   0.63
   OWN_CAR_AGE
             DAYS_EMPLOYED
        0.61
                   0.70
cortest.bartlett(economic_vars_scaled) # Prueba de esfericidad de Bartlett
R was not square, finding R from data
$chisq
[1] 1417942
$p.value
[1] 0
$df
[1] 15
print("-----")
[1] "-----"
loadings <- as.data.frame(factor_analysis$loadings[,1:2])</pre>
loadings$Variable <- rownames(loadings)</pre>
print("-----")
```

[1] "-----"

```
pca_result <- prcomp(economic_vars_scaled, scale = TRUE)
screeplot(pca_result, type = "lines", main = "Scree Plot")</pre>
```

Scree Plot


```
ggplot(loadings, aes(x = Factor1, y = Factor2, label = Variable)) +
  geom_point(color = "blue", size = 3) + # Agrega puntos
  geom_text(vjust = -0.5, hjust = 0.5, size = 3) + # Reduce tamaño de texto
  theme_minimal() +
  ggtitle("Carga Factorial de Variables Económicas") +
  xlab("Factor 1") +
  ylab("Factor 2") +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
    axis.title = element_text(size = 14),
    axis.text = element_text(size = 12)
  ) +
  xlim(c(min(loadings$Factor1) - 0.1, max(loadings$Factor1) + 0.1)) +
  ylim(c(min(loadings$Factor2) - 0.1, max(loadings$Factor2) + 0.1))
```

Carga Factorial de Variables Económicas

Valores atipicos

```
# Definir las variables para analizar outliers
app_outlier_col_1 <- c('AMT_ANNUITY', 'AMT_INCOME_TOTAL', 'AMT_CREDIT', 'AMT_GOODS_PRICE', 'I
app_outlier_col_2 <- c('CNT_CHILDREN', 'DAYS_BIRTH')</pre>
# Crear boxplots para app_outlier_col_1
plots1 <- lapply(app_outlier_col_1, function(var) {</pre>
  ggplot(datos, aes(y = .data[[var]])) +
    geom_boxplot(fill = "lightblue", color = "black") +
    labs(title = var, y = "") +
    theme_minimal()
})
# Crear boxplots para app_outlier_col_2
plots2 <- lapply(app_outlier_col_2, function(var) {</pre>
  ggplot(datos, aes(y = .data[[var]])) +
    geom_boxplot(fill = "lightblue", color = "black") +
    labs(title = var, y = "") +
    theme_minimal()
})
```

```
# Mostrar todos los gráficos en una sola figura
grid.arrange(grobs = c(plots1, plots2), ncol = 4)
```


DAYS_EMPLOYND_CHILDREN DAYS_BIRTH


```
# eliminamos la categoria unknown de NAME_FAMILY_STATUS al no tener ninguna observacion
datos <- datos |> filter(NAME_FAMILY_STATUS != "Unknown")
datos$NAME_FAMILY_STATUS <- droplevels(datos$NAME_FAMILY_STATUS)
#eliminamos la categoria de "60 above" y "50-60" para YEARS_EMPLOYED
datos <- datos[!datos$EMPLOYMENT_YEAR %in% c("50-60", "60 above"), ]
# eliminamos la categoria XNA que tiene 0 observaciones
datos <- datos[datos$CODE_GENDER != "XNA", ]
datos$CODE_GENDER <- droplevels(datos$CODE_GENDER)
# hemos tenido problemas con las personas que estan desempleadas, hay que asignarlas un valor
datos$EMPLOYMENT_YEAR <- ifelse(
   datos$NAME_INCOME_TYPE == "Unemployed", "0", as.character(datos$EMPLOYMENT_YEAR))
datos$EMPLOYMENT_YEAR <- as.factor(datos$EMPLOYMENT_YEAR)
# aquellas observaciones que ya no se han podido sustituir ya sea por valores atipicos o caudatos <- na.omit(datos)</pre>
```

Tablas de contingencia

```
tb_conting <- function(df, x, vec){</pre>
  for(i in seq_along(vec)){
    cat("\nTabla de Contingencia para:", vec[i], "\n")
    # Crear tabla de contingencia con nombres de filas y columnas
    tab <- table(df[[x]], df[[vec[i]]])</pre>
    dimnames(tab) <- list(TARGET = levels(factor(df[[x]])), Variable = levels(factor(df[[vec</pre>
   print(tab)
    cat("\nTest de Chi-Cuadrado:\n")
    chi_test <- chisq.test(tab)</pre>
   print(chi_test)
    cat("\n----\n")
  }
}
# Llamada a la función, suponiendo que df es tu base de datos
tb_conting(datos, "TARGET", contact_col) # Puedes probar con col_Doc o ext también
Tabla de Contingencia para: FLAG_MOBIL
     Variable
TARGET
           0
           1 230098
            0 21832
Test de Chi-Cuadrado:
Warning in chisq.test(tab): Chi-squared approximation may be incorrect
    Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 2.7239e-22, df = 1, p-value = 1
```

```
Tabla de Contingencia para: FLAG_EMP_PHONE
     Variable
TARGET
         0
         25 230074
         9 21823
Test de Chi-Cuadrado:
Warning in chisq.test(tab): Chi-squared approximation may be incorrect
   Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 11.463, df = 1, p-value = 0.0007101
Tabla de Contingencia para: FLAG_WORK_PHONE
     Variable
TARGET 0
    0 174752 55347
    1 15931 5901
Test de Chi-Cuadrado:
   Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 95.784, df = 1, p-value < 2.2e-16
_____
```

Tabla de Contingencia para: FLAG_CONT_MOBILE

Variable TARGET 0

```
0 490 229609
```

1 43 21789

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 0.17177, df = 1, p-value = 0.6785

Tabla de Contingencia para: FLAG_PHONE

Variable

TARGET 0 1

0 165455 64644

1 16534 5298

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 145.42, df = 1, p-value < 2.2e-16

Tabla de Contingencia para: FLAG_EMAIL

Variable

TARGET 0 1

0 215396 14703

1 20550 1282

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 8.9079, df = 1, p-value = 0.002839

```
tb_conting(datos, "TARGET", col_Doc) # Puedes probar con col_Doc o ext también
```

Tabla de Contingencia para: FLAG_DOCUMENT_2

Variable

TARGET 0 1

0 230090 9

1 21828 4

Test de Chi-Cuadrado:

Warning in chisq.test(tab): Chi-squared approximation may be incorrect

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 5.4751, df = 1, p-value = 0.01929

Tabla de Contingencia para: FLAG_DOCUMENT_3

Variable

TARGET 0 1

0 55752 174347

1 3938 17894

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 422.5, df = 1, p-value < 2.2e-16

Tabla de Contingencia para: FLAG_DOCUMENT_4

```
Variable
TARGET
       0
                1
    0 230079
                20
    1 21832
Test de Chi-Cuadrado:
Warning in chisq.test(tab): Chi-squared approximation may be incorrect
   Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 0.96074, df = 1, p-value = 0.327
-----
Tabla de Contingencia para: FLAG_DOCUMENT_5
     Variable
TARGET
          0
    0 226355
              3744
    1 21483 349
Test de Chi-Cuadrado:
   Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 0.084646, df = 1, p-value = 0.7711
______
Tabla de Contingencia para: FLAG_DOCUMENT_6
     Variable
TARGET 0
```

Test de Chi-Cuadrado:

0 228048 2051 1 21698 134

```
data: tab
X-squared = 17.548, df = 1, p-value = 2.802e-05
-----
Tabla de Contingencia para: FLAG_DOCUMENT_7
     Variable
TARGET 0
    0 230052
                47
    1 21829
Test de Chi-Cuadrado:
Warning in chisq.test(tab): Chi-squared approximation may be incorrect
   Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 0.17534, df = 1, p-value = 0.6754
Tabla de Contingencia para: FLAG_DOCUMENT_8
     Variable
TARGET
       0
    0 207499 22600
    1 20016 1816
Test de Chi-Cuadrado:
   Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 51.349, df = 1, p-value = 7.732e-13
```

Pearson's Chi-squared test with Yates' continuity correction

```
Variable
TARGET 0
    0 229016 1083
    1 21759 73
Test de Chi-Cuadrado:
   Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 7.8141, df = 1, p-value = 0.005184
-----
Tabla de Contingencia para: FLAG_DOCUMENT_10
     Variable
TARGET
       0
    0 230093
    1 21832 0
Test de Chi-Cuadrado:
Warning in chisq.test(tab): Chi-squared approximation may be incorrect
   Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 0.00083827, df = 1, p-value = 0.9769
_____
Tabla de Contingencia para: FLAG_DOCUMENT_11
     Variable
TARGET 0
    0 228973 1126
    1 21757 75
```

Tabla de Contingencia para: FLAG_DOCUMENT_9

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 8.6322, df = 1, p-value = 0.003303

Tabla de Contingencia para: FLAG_DOCUMENT_12

Variable

TARGET 0 1

0 230097 2 1 21832 0

Test de Chi-Cuadrado:

Warning in chisq.test(tab): Chi-squared approximation may be incorrect

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 5.4479e-22, df = 1, p-value = 1

Tabla de Contingencia para: FLAG_DOCUMENT_13

Variable

TARGET 0 1

0 229063 1036

1 21803 29

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 46.973, df = 1, p-value = 7.198e-12

```
Tabla de Contingencia para: FLAG_DOCUMENT_14
```

Variable

TARGET 0 1

0 229244 855

1 21802 30

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 30.57, df = 1, p-value = 3.221e-08

Tabla de Contingencia para: FLAG_DOCUMENT_15

Variable

TARGET 0 1 0 229748 351

1 21821 11

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 13.8, df = 1, p-value = 0.0002033

Tabla de Contingencia para: FLAG_DOCUMENT_16

Variable

TARGET 0 1 0 227248 2851

1 21682 150

Test de Chi-Cuadrado:

data: tab X-squared = 51.147, df = 1, p-value = 8.571e-13 -----Tabla de Contingencia para: FLAG_DOCUMENT_17 Variable TARGET 0 1 0 230020 79 1 21830 Test de Chi-Cuadrado: Pearson's Chi-squared test with Yates' continuity correction data: tab X-squared = 3.1869, df = 1, p-value = 0.07423 _____ Tabla de Contingencia para: FLAG_DOCUMENT_18 Variable TARGET 0 1 0 227768 2331 1 21690 142 Test de Chi-Cuadrado: Pearson's Chi-squared test with Yates' continuity correction data: tab X-squared = 26.604, df = 1, p-value = 2.497e-07 -----Tabla de Contingencia para: FLAG_DOCUMENT_19 Variable TARGET 0 1

Pearson's Chi-squared test with Yates' continuity correction

```
0 229932 167
1 21820 12
```

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 0.64075, df = 1, p-value = 0.4234

Tabla de Contingencia para: $FLAG_DOCUMENT_20$

Variable

TARGET 0 1 0 229957 142 1 21819 13

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 2.9034e-28, df = 1, p-value = 1

Tabla de Contingencia para: FLAG_DOCUMENT_21

Variable

TARGET 0 1 0 230010 89 1 21818 14

Test de Chi-Cuadrado:

Pearson's Chi-squared test with Yates' continuity correction

data: tab

X-squared = 2.5675, df = 1, p-value = 0.1091

Analisis de Datos

En un principio me interesa saber cuales son las variables mas importantes a la hora de predecir si alguien va a devovler el pago o no, por tanto realizamos un modelo con todas las variables y hacemos el ANOVA para ver cuales son las mas significativas

```
#anova(lm(TARGET~.,data=datos))
anova_results <- anova(lm(TARGET ~ ., data = datos))

# Ordenar por la suma de cuadrados (Sum Sq) en orden descendente
(anova_sorted <- anova_results[order(-anova_results$`Sum Sq`), ])</pre>
```

Analysis of Variance Table

Response: TARGET

Df	Sum Sq	Mean Sq	F value	Pr(>F)	
251666	18566.3	0.07			
1	324.4	324.44	4397.8180	< 2.2e-16	***
1	320.4	320.40	4343.0108	< 2.2e-16	***
1	61.4	61.44	832.7706	< 2.2e-16	***
1	57.1	57.05	773.3386	< 2.2e-16	***
1	51.8	51.78	701.8813	< 2.2e-16	***
1	49.1	49.13	665.9867	< 2.2e-16	***
1	47.0	47.01	637.2217	< 2.2e-16	***
1	42.2	42.17	571.6829	< 2.2e-16	***
2	41.8	20.90	283.3041	< 2.2e-16	***
4	39.6	9.89	134.0456	< 2.2e-16	***
1	29.3	29.31	397.2466	< 2.2e-16	***
7	28.2	4.03	54.6094	< 2.2e-16	***
10	26.1	2.61	35.3973	< 2.2e-16	***
1	26.0	25.97	352.0502	< 2.2e-16	***
4	23.3	5.81	78.8051	< 2.2e-16	***
1	21.6	21.62	293.1172	< 2.2e-16	***
56	20.9	0.37	5.0688	< 2.2e-16	***
1	18.4	18.44	250.0106	< 2.2e-16	***
18	17.3	0.96	12.9905	< 2.2e-16	***
1	14.8	14.80	200.6091	< 2.2e-16	***
5	11.8	2.36	32.0557	< 2.2e-16	***
1	10.0	9.99	135.4386	< 2.2e-16	***
	251666 1 1 1 1 1 1 1 2 4 1 7 10 1 4 1 56 1 18 1 5	251666 18566.3 1 324.4 1 320.4 1 61.4 1 57.1 1 51.8 1 49.1 1 47.0 1 42.2 2 41.8 4 39.6 1 29.3 7 28.2 10 26.1 1 26.0 4 23.3 1 21.6 56 20.9 1 18.4 18 17.3 1 14.8 5 11.8	251666 18566.3 0.07 1 324.4 324.44 1 320.4 320.40 1 61.4 61.44 1 57.1 57.05 1 51.8 51.78 1 49.1 49.13 1 47.0 47.01 1 42.2 42.17 2 41.8 20.90 4 39.6 9.89 1 29.3 29.31 7 28.2 4.03 10 26.1 2.61 1 26.0 25.97 4 23.3 5.81 1 21.6 21.62 56 20.9 0.37 1 18.4 18.44 18 17.3 0.96 1 14.8 14.80 5 11.8 2.36	251666 18566.3 0.07 1 324.4 324.44 4397.8180 1 320.4 320.40 4343.0108 1 61.4 61.44 832.7706 1 57.1 57.05 773.3386 1 51.8 51.78 701.8813 1 49.1 49.13 665.9867 1 47.0 47.01 637.2217 1 42.2 42.17 571.6829 2 41.8 20.90 283.3041 4 39.6 9.89 134.0456 1 29.3 29.31 397.2466 7 28.2 4.03 54.6094 10 26.1 2.61 35.3973 1 26.0 25.97 352.0502 4 23.3 5.81 78.8051 1 21.6 21.62 293.1172 56 20.9 0.37 5.0688 1 18.4 18.44 250.0106 18 17.3 0.96 12.9905 1 <t< td=""><td>251666 18566.3</td></t<>	251666 18566.3

DEF_30_CNT_SOCIAL_CIRCLE	1	9.9	9.88	133.9102 < 2.2e-16 ***
REG_CITY_NOT_LIVE_CITY	1	8.0	8.05	109.0890 < 2.2e-16 ***
DAYS_REGISTRATION	1	6.9	6.93	93.8974 < 2.2e-16 ***
REGION_RATING_CLIENT_W_CITY	2	6.7	3.36	45.5136 < 2.2e-16 ***
FLAG_DOCUMENT_3	1	5.3	5.32	72.1344 < 2.2e-16 ***
AGE_GROUP	4	4.8	1.20	16.3134 2.285e-13 ***
AMT_ANNUITY	1	4.7	4.71	63.8411 1.354e-15 ***
EMPLOYMENT_YEAR	5	4.2	0.85	11.4648 4.349e-11 ***
FLAG_PHONE	1	3.6	3.58	48.5626 3.207e-12 ***
OWN_CAR_AGE	1	2.9	2.91	39.3902 3.476e-10 ***
CNT_CHILDREN	1	2.7	2.70	36.5430 1.495e-09 ***
DAYS_LAST_PHONE_CHANGE	1	2.5	2.55	34.5516 4.156e-09 ***
NAME_TYPE_SUITE	7	2.5	0.35	4.7570 2.331e-05 ***
FLAG_DOCUMENT_18	1	2.2	2.19	29.7456 4.931e-08 ***
FLAG_DOCUMENT_16	1	2.0	2.03	27.5072 1.566e-07 ***
WEEKDAY_APPR_PROCESS_START	6	1.7	0.28	3.7868 0.0008958 ***
REG_CITY_NOT_WORK_CITY	1	1.6	1.59	21.5392 3.468e-06 ***
WALLSMATERIAL_MODE	7	1.5	0.22	2.9613 0.0041933 **
HOUR_APPR_PROCESS_START	1	1.2	1.21	16.4369 5.031e-05 ***
AMT_REQ_CREDIT_BUREAU_QRT	1	1.1	1.11	15.0008 0.0001075 ***
APARTMENTS_AVG	1	1.0	1.04	14.0331 0.0001797 ***
FLOORSMAX_AVG	1	1.0	0.97	13.1753 0.0002837 ***
FLAG_DOCUMENT_5	1	0.9	0.93	12.6546 0.0003747 ***
FLAG_DOCUMENT_2	1	0.9	0.92	12.5059 0.0004058 ***
FONDKAPREMONT_MODE	4	0.9	0.23	3.0499 0.0159292 *
AMT_INCOME_RANGE	10	0.9	0.09	1.1889 0.2925494
OBS_30_CNT_SOCIAL_CIRCLE	1	0.8	0.80	10.8412 0.0009928 ***
YEARS_EMPLOYED	1	0.6	0.57	7.7489 0.0053749 **
AMT_REQ_CREDIT_BUREAU_WEEK	1	0.5	0.52	6.9830 0.0082291 **
YEARS_BUILD_AVG	1	0.5	0.48	6.4516 0.0110859 *
FLAG_DOCUMENT_14	1	0.5	0.47	6.4222 0.0112710 *
FLAG_EMAIL	1	0.5	0.45	6.1266 0.0133167 *
EMERGENCYSTATE_MODE	2	0.4	0.22	3.0362 0.0480175 *
FLAG_DOCUMENT_13	1	0.4	0.43	5.8133 0.0159061 *
FLAG_DOCUMENT_8	1	0.4	0.43	5.7729 0.0162760 *
FLAG_CONT_MOBILE	1	0.4	0.42	5.6940 0.0170236 *
YEARS_BEGINEXPLUATATION_AVG	1	0.4	0.36	4.8943 0.0269458 *
NONLIVINGAREA_MODE	1	0.3	0.26	3.5766 0.0585992 .
FLAG_DOCUMENT_15	1	0.2	0.23	3.1349 0.0766321 .
AMT_REQ_CREDIT_BUREAU_MON	1	0.2	0.23	3.1288 0.0769197 .
HOUSETYPE_MODE	3	0.2	0.07	0.9618 0.4096356
COMMONAREA_AVG	1	0.2	0.19	2.5410 0.1109255
FLAG_DOCUMENT_6	1	0.2	0.18	2.4017 0.1212067

FLAG_OWN_REALTY	1	0.2	0.16	2.2253 0.1357670
FLAG_DOCUMENT_9	1	0.2	0.16	2.1759 0.1401869
AGE	1	0.1	0.13	1.8259 0.1766090
ELEVATORS_AVG	1	0.1	0.13	1.8056 0.1790337
DEF_60_CNT_SOCIAL_CIRCLE	1	0.1	0.13	1.7604 0.1845784
FLAG_DOCUMENT_17	1	0.1	0.13	1.7157 0.1902462
BASEMENTAREA_AVG	1	0.1	0.12	1.6208 0.2029832
LIVINGAPARTMENTS_MODE	1	0.1	0.11	1.4872 0.2226486
LIVE_REGION_NOT_WORK_REGION	1	0.1	0.10	1.4037 0.2361015
NONLIVINGAPARTMENTS_MODE	1	0.1	0.10	1.3907 0.2382909
COMMONAREA_MEDI	1	0.1	0.10	1.3692 0.2419439
ENTRANCES_AVG	1	0.1	0.10	1.3629 0.2430302
LIVINGAPARTMENTS_MEDI	1	0.1	0.10	1.3367 0.2476193
LIVE_CITY_NOT_WORK_CITY	1	0.1	0.09	1.2457 0.2643816
LANDAREA_MODE	1	0.1	0.09	1.2198 0.2694062
LANDAREA_MEDI	1	0.1	0.08	1.0380 0.3082776
YEARS_BEGINEXPLUATATION_MEDI	1	0.1	0.08	1.0232 0.3117562
LANDAREA_AVG	1	0.1	0.07	0.9787 0.3225119
OBS_60_CNT_SOCIAL_CIRCLE	1	0.1	0.07	0.9415 0.3318868
FLAG_DOCUMENT_11	1	0.1	0.06	0.8306 0.3620880
ENTRANCES_MODE	1	0.1	0.06	0.8116 0.3676632
BASEMENTAREA_MEDI	1	0.1	0.06	0.7902 0.3740473
FLAG_DOCUMENT_19	1	0.1	0.05	0.7154 0.3976610
FLAG_DOCUMENT_10	1	0.0	0.04	0.5863 0.4438568
LIVINGAREA_MEDI	1	0.0	0.04	0.5707 0.4499968
ELEVATORS_MODE	1	0.0	0.04	0.5581 0.4550200
SK_ID_CURR	1	0.0	0.04	0.5548 0.4563665
YEARS_BUILD_MEDI	1	0.0	0.03	0.4680 0.4939106
FLAG_DOCUMENT_4	1	0.0	0.03	0.4223 0.5158133
NONLIVINGAREA_AVG	1	0.0	0.02	0.3273 0.5672391
FLAG_DOCUMENT_20	1	0.0	0.02	0.3222 0.5702855
LIVINGAREA_AVG	1	0.0	0.02	0.3196 0.5718629
NONLIVINGAPARTMENTS_MEDI	1	0.0	0.02	0.2963 0.5861934
APARTMENTS_MODE	1	0.0	0.02	0.2934 0.5880228
FLOORSMAX_MODE	1	0.0	0.02	0.2931 0.5882637
FLAG_MOBIL	1	0.0	0.02	0.2601 0.6100336
ENTRANCES MEDI	1	0.0	0.01	0.2030 0.6522739
FLOORSMAX_MEDI	1	0.0	0.01	0.2024 0.6527951
FLAG_DOCUMENT_7	1	0.0	0.01	0.1791 0.6721436
YEARS_BUILD_MODE	1	0.0	0.01	0.1750 0.6757463
AMT_REQ_CREDIT_BUREAU_YEAR	1	0.0	0.01	0.1715 0.6787674
FLAG_DOCUMENT_21	1	0.0	0.01	0.1643 0.6851913
FLOORSMIN_AVG	1	0.0	0.01	0.1481 0.7003682
- · · · · · · · · · · · · · · · · · · ·	_			

```
0.0
                                            0.01
                                                    0.1242 0.7245029
LIVINGAREA_MODE
                                1
                                      0.0
                                            0.01
TOTALAREA_MODE
                                1
                                                    0.0983 0.7538283
FLAG_DOCUMENT_12
                                      0.0
                                            0.01
                                                    0.0856 0.7698666
                                1
FLAG_EMP_PHONE
                                      0.0
                                            0.01
                                                    0.0801 0.7770995
                                1
YEARS_BEGINEXPLUATATION_MODE
                                1
                                      0.0
                                            0.01
                                                    0.0787 0.7790962
ELEVATORS_MEDI
                                      0.0
                                            0.00
                                1
                                                    0.0570 0.8112549
NONLIVINGAREA_MEDI
                                1
                                      0.0
                                            0.00
                                                    0.0412 0.8391866
FLOORSMIN_MODE
                                1
                                      0.0
                                            0.00
                                                   0.0403 0.8408954
                                      0.0
                                            0.00
APARTMENTS_MEDI
                                1
                                                    0.0268 0.8698642
REG_REGION_NOT_LIVE_REGION
                                1
                                      0.0
                                            0.00
                                                    0.0207 0.8857061
LIVINGAPARTMENTS_AVG
                                      0.0
                                            0.00
                                1
                                                    0.0157 0.9003191
AMT_REQ_CREDIT_BUREAU_HOUR
                                1
                                      0.0
                                            0.00
                                                    0.0137 0.9066605
                                      0.0
FLOORSMIN_MEDI
                                            0.00
                                                    0.0099 0.9207980
                                1
                                      0.0
                                            0.00
COMMONAREA_MODE
                                1
                                                    0.0069 0.9340282
                                      0.0
BASEMENTAREA_MODE
                                1
                                            0.00
                                                    0.0039 0.9504972
AMT_REQ_CREDIT_BUREAU_DAY
                                      0.0
                                            0.00
                                                    0.0004 0.9844991
                                1
REG_REGION_NOT_WORK_REGION
                                1
                                      0.0
                                            0.00
                                                    0.0001 0.9924951
NONLIVINGAPARTMENTS_AVG
                                1
                                      0.0
                                            0.00
                                                    0.0001 0.9926282
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EXT_SOURCE_3 AMT_GOODS_PRICE FLAG_OWN_CAR EXT_SOURCE_1 CODE_GENDER DAYS_BIRTH NAME_EDUCATION_TYPE DAYS_EMPLOYED AMT_CREDIT NAME_INCOME_TYPE EXT_SOURCE_2 NAME_CONTRACT_TYPE OCCUPATION_TYPE NAME_FAMILY_STATUS AMT_CREDIT_RANGE

definimos una funcion que dado una variable nos de un histograma con los pagos devueltos y no devueltos segun la variable

```
# Definir la función
plot_loan_repayment <- function(df, variable) {
    # Verificar que la variable existe
    if (!(variable %in% colnames(df))) {
        stop("La variable especificada no existe en el dataframe.")
    }

# Crear dataframe de trabajo
    df_plot <- df[, c(variable, "TARGET")]

# Convertir TARGET a factor con etiquetas
    df_plot$TARGET <- factor(df_plot$TARGET, levels = c(0, 1), labels = c("Repayer", "Defaulted")</pre>
```

```
# Calcular proporciones por categoría
df_prop <- df_plot %>%
 group_by(.data[[variable]], TARGET) %>%
 summarise(n = n(), .groups = "drop") %>%
 group_by(.data[[variable]]) %>%
 mutate(pct = n / sum(n) * 100)
# Graficar con porcentajes
ggplot(df_prop, aes_string(x = variable, y = "pct", fill = "TARGET")) +
 geom_bar(stat = "identity", position = "dodge") +
 labs(
   title = paste("Distribución porcentual de", variable, "según estado de pago"),
   x = variable, y = "Porcentaje (%)"
 ) +
  scale_fill_manual(values = c("green", "red")) +
  scale_x_discrete(guide = guide_axis(angle = 45)) +
  theme_minimal()
```

Graficar variables categoricas

```
# Ejemplo de uso con la variable FLAG_OWN_CAR
plot_loan_repayment(datos, "FLAG_OWN_CAR")

Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
i Please use tidy evaluation idioms with `aes()`.
i See also `vignette("ggplot2-in-packages")` for more information.
```

Distribución porcentual de FLAG_OWN_CAR según estado de

plot_loan_repayment(datos, "CODE_GENDER")

Distribución porcentual de CODE_GENDER según estado de p

Distribución porcentual de NAME_CONTRACT_TYPE según es

plot_loan_repayment(datos, "NAME_EDUCATION_TYPE")

plot_loan_repayment(datos, "AMT_CREDIT_RANGE")

Distribución porcentual de NAME_FAMILY_STATUS según esta

TARGET
Repayer
Defaulter

NAME_FAMILY_STATUS

plot_loan_repayment(datos, "ORGANIZATION_TYPE")

plot_loan_repayment(datos, "NAME_HOUSING_TYPE")

plot_loan_repayment(datos, "EMPLOYMENT_YEAR")

Distribución porcentual de EMPLOYMENT_YEAR según estac

TARGET
Repayer
Defaulter

EMPLOYMENT_YEAR

plot_loan_repayment(datos, "FLAG_DOCUMENT_3")

Distribución porcentual de FLAG_DOCUMENT_3 según estado

Graficar variables continuas

```
graficar_variable <- function(data, variable) {
    # Calcular los porcentajes por clase
    porcentajes <- data %>%
        group_by(TARGET) %>%
        summarise(n = n()) %>%
        mutate(porc = pasteO(round(100 * n / sum(n), 1), "%"))

# Crear etiquetas personalizadas
levels_target <- sort(unique(data$TARGET))
etiquetas <- pasteO(
    ifelse(levels_target == 0, "Repayers", "Defaulters"),
        " (", porcentajes$porc, ")"
)

# Graficar con los porcentajes en la leyenda
ggplot(data, aes(x = .data[[variable]], color = as.factor(TARGET))) +</pre>
```

```
geom_density(size = 1) +
labs(x = variable, y = "Densidad", title = paste("Distribución de", variable, "según TAR
scale_color_manual(
    values = c("blue", "red"),
    labels = etiquetas,
    name = "TARGET"
    ) +
    theme_minimal()
}
```

```
# Ejemplo de uso con la variable "AMT_CREDIT"
graficar_variable(datos, "AMT_CREDIT")
```

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.


```
# Ejemplo de uso con la variable "AMT_CREDIT"
graficar_variable(datos, "DAYS_BIRTH")
```


graficar_variable(datos, "AMT_GOODS_PRICE")

graficar_variable(datos, "DAYS_EMPLOYED")

Distribución de DAYS_EMPLOYED según TARGET

6e-04

TARGET

Repayers (91.3%)

Defaulters (8.7%)

Defaulters (8.7%)

graficar_variable(datos, "DAYS_LAST_PHONE_CHANGE")

Distribución de AMT_INCOME_TOTAL según TARGET

0.75

TARGET

Repayers (91.3%)
Defaulters (8.7%)

0.00

3

AMT_INCOME_TOTAL

graficar_variable(datos, "AGE")

Guardar base de datos depurada para modelos

primero eliminamos las variables menos significativas, y nos quedamos con las mas significativas

variables_significativas <- c("EXT_SOURCE_3", "EXT_SOURCE_2", "DAYS_BIRTH", "AMT_GOODS_PRICE
datos<- datos[,variables_significativas]
eliminamos los NA faltantes, estos se deben a valores atipicos que dan problemas
#guardamos en una base de datos los datos, asi podemos seguir con el TFG sin saturar el PC
save(datos,file="DatosDepurados.RDa")</pre>