8. STATISTICAL INFERENCE [IT2110]

By Department of Mathematics and Statistics Faculty of Humanities and Sciences, SLIIT

- In most researches, we collect data through a sample survey over a census.
- Statistical inference is used when sample survey is conducted over a census.
- *Inference:* A conclusion reached on the basis of evidence and reasoning.
 - Oxford University Press -
- Statistical Inference: Drawing conclusions about population parameters by using sample statistics.

Statistical Inference

Parameter Estimation Hypothesis Testing

Point Estimation

Interval Estimation

PARAMETER ESTIMATION

Parameter Estimation

- In distribution theory we assumed that distribution parameters are known.
- But practically they should be found or estimated.
- If estimated parameters are wrong, all calculated probabilities will be inaccurate.
- Estimation can be done in two methods.
 - Point estimation
 - > Interval estimation

Parameter Estimation

- Point estimation gives a single estimated value for the parameter.
- Interval estimation gives a range of values (interval) as the estimate.
- There are many point and interval estimation methods with their own criteria for use.
- Some interval estimates will be discussed later in this chapter.

HYPOTHESIS TESTING

Hypothesis Testing

• *Hypothesis:* A supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation.

-Oxford University Press-

 Hypothesis testing is all about checking whether assumptions (research hypothesis) are correct.

These assumption should be regarding population parameters.

Major Steps under Hypothesis Testing

- **1.** Define the hypothesis $(H_0 \& H_1)$
- 2. Test statistic and its distribution
- 3. Define the significance level (α)
- 4. Define the rejection region.
- 5. Conduct the test (Calculate test statistic value)
- 6. Conclusion

- There are various cases under hypothesis testing. The test statistic that you should use depends on the case.
- In this session, we will discuss the hypothesis testing for one population mean.

Defining Hypothesis

- The assumption should be clearly stated in order to test.
- Two statements, null hypothesis (H_0) and an alternative hypothesis $(H_1 \text{ or } H_a)$ are used for that.
- ullet H_0 and H_1 can be considered as opposites of each other.
- The statement with the equal (=) should always come to H_0 . Usually if a claim is made, it is selected for H_1 .

Defining Hypothesis

 H_1 : $\mu \neq a$

Two-tailed Hypothesis

Three possible Hypothesis

$$H_0$$
: $\mu = a$

$$H_1$$
: $\mu < a$

$$H_0$$
: $\mu = a$
 H_1 : $\mu > a$

$$H_1: \mu > a$$

One-tailed Hypothesis

Examples

- 1) In a coin tossing experiment, it should be found whether
 - a) it's fair coin or not.
 - b) it's biased in favor of heads.
 - c) it's biased in favor of tails.

2) A company that manufactures cars claims that the gas mileage for its new line of hybrid cars, on the average, is 60 miles per gallon (mpg) with a standard deviation of 4 mpg. It was also found out that the mpg was normally distributed. A random sample of 16 cars yielded a mean of 57 miles per gallon. Is the company's claim about the mean gas mileage per gallon of its cars, correct?

Test Statistic

- Recap: A function of observable r.v.s that does not depend on any unknown parameters is called a statistic.
- A test statistic is a quantity associated with the sample.
- The test statistic will depend on the *parameter of interest* as well as the *characteristics of the population*.
- We assume that the assumption (H_0) is correct and find a sampling distribution for the test statistic.

Test Statistic & Distribution

Test Statistic [For μ - When σ² known]

• **Recap:** Let $X_1, ..., X_n$ be a random sample of size n from a Normal population with mean μ and variance σ^2 . Then,

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Then,

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

• If the hypothesis is, H_0 : $\mu = \mu_0 \text{ vs. } H_1$: $\mu \neq \mu_0$, then under H_0 ,

$$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

Rejection Region [For µ]

For a two-tailed hypothesis

Reject H_0 if $Z_{cal} \ge a2$ OR if $Z_{cal} \le a1$

Critical Values

For a one-tailed hypothesis

 $H_0: \mu = a$

 $H_1: \mu < a$

Reject H_0 if $Z_{cal} < a1$

For a one-tailed hypothesis

 $H_0: \mu = a$

 $H_1: \mu > a$

Reject H_0 if $Z_{cal} > a1$

Example 02:

•
$$H_0$$
: $\mu = 60$
 H_1 : $\mu \neq 60$
Two-tailed hypothesis

• **Test Statistic**: Under H_{0} ,

$$Z=\frac{\overline{x}-60}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)$$

Consider 5% level of significance.

Rejection Region:

Reject H_0 if $Z_{cal} > Z_{0.025} OR$ if $Z_{cal} < -Z_{0.025}$

$$Z_{0.025}$$
 = 1.96

• Test:

$$\bar{x} = 57$$
, $\sigma = 4 \& n = 16$

$$Z_{Cal} = \frac{\bar{x} - 60}{\frac{\sigma}{\sqrt{n}}}$$

$$Z_{Cal} = \frac{57 - 60}{\frac{4}{\sqrt{16}}}$$

$$Z_{Cal} = -3$$

Conclusion:

Since $Z_{Cal} = -3 < -1.96 = Z_{0.025}$, we reject H_0 at 5% level of significance. Therefore, we can conclude that company's claim about the mean gas mileage per gallon of its cars is incorrect.

P value Approach

- This is an alternative way of get the decision in hypothesis testing.
- **P value:** The probability of obtaining a test statistic which is more extreme than observed test statistic value given when H_0 is true.

For any test,

If p value \leq significance level (α) \longrightarrow Reject H_0 If p value > significance level (α) \longrightarrow Do not Reject H_0

- P value is a measure of the strength of evidence in the data against
 H0
- This is the smallest value of α for which H0 can be rejected and actual risk of committing type I error.
- P value also know as **observed significαnce level**.

Errors in Hypothesis Testing

Statistical Decision	True State of the Null Hypothesis	
	H_0 is True	H_0 is False
Reject H_0	Type I Error	Correct
Do not Reject $\boldsymbol{H_0}$	Correct	Type II Error

Pr (Type I Error) = Pr (Reject $H_0|H_0$ true) = α Pr (Type II Error) = Pr (Do not Reject $H_0|H_0$ false) = θ

THANKS!

Any questions?