Machine Learning Notes

(c) yungcxn

1 Introduction

ML: Tries to automate the process of inductive inference.

1. Deduction: Learning from rules

2. Induction: Learning from examples

2 Supervised learning

• input X, output Y

• training data: $(x^{(i)}, y^{(i)})_{i=1..n} \subset X \times Y$

• Goal: learn $f: X \to Y$ for model class F on examples

2.1 Least squares regression

 \tilde{X}, \tilde{w} are extended with bias:

$$\min_{\tilde{w}} \frac{1}{2} \left\| \tilde{X}\tilde{w} - y \right\|^2 \Rightarrow \min_{w} \frac{1}{2} \left\| Xw - y \right\|^2$$

Solve with gradient and set to zero:

$$\nabla L = X^T (Xw - y) = 0 \Rightarrow (X^T X)w = X^T y \Rightarrow w = (X^T X)^{-1} X^T y$$

2.2 Gradient descent

Alternative to least squares regression. Algorithm:

1. Compute gradient $\nabla L(w) = X^T(Xw - y)$

2. Negative gradient shows to steepest descent

3.
$$w^{(t+1)} = w^{(t)} - \gamma^{(t)} \cdot \nabla L(w^{(t)})$$

2.3 Derivative examples

•
$$L(w) = w_1^2 + w_2^2$$

$$\Rightarrow \nabla L(w) = \begin{pmatrix} 2w_1 \\ 2w_2 \end{pmatrix}$$

$$\bullet \ L(w) = \|w\|_2^2 = w^T w$$

$$\Rightarrow \nabla L(w) = 2w$$

•
$$L(w) = w^T A w$$

 $\Rightarrow \nabla L(w) = A w + A^T w$

•
$$L(w) = ||Xw - y||^2 = w^T X^T X w - y^T X w - w^T X^T y + y^T y$$

 $\Rightarrow \nabla L(w) = 2X^T (Xw - y)$