ME-323 – Introdução aos Modelos Probabilísticos Prof. Sebastião de Amorim

Departamento de Estatística UNICAMP

Prova Suplementar 1

18/Jun/2007

Nome: Alexandro Samon Feng R.A.: 058668

Casa subitem vale um ponto →

19 /20 =

- Sejam X₁, X₂, ..., X_n observações independentes de uma variável aleatória X~U(-1, 1); e seja S_n = X₁ + X₂+...+X_n. Para n=2, a f.d.p. de S₂ é dada pela figura ao lado.
 - A a. Determine E(X), V(X) e φ_x(t), a função característica de X?
 - 0 b. Quais são os valores de a, b, c, d?
 - / c. Qual é a função característica de S₂?
 - / d. Qual a função característica de S_n?
 - I e. Seja $W_n = \sqrt{\frac{3}{n}} \cdot S_n$. Determine $E(W_n)$, $V(W_n)$ e $\phi_{W_n}(t)$.

- 1 f. Usando a forma expandida de $Sen(t) = \frac{Sen(t)}{t} = \left(1 \frac{t^2}{3!} + \frac{t^4}{5!} \cdots\right)$, mostre que W_n converge em distribuição para N(0, 1) quando $n \to \infty$.
- f g. Determine P{S75>10}
- h. Determine P(S <-10)
- 2. Numa linha de produção, cada item sendo produzido passa por uma seqüência em série de 12 estágios diferentes. Os tempos nos diversos estágios são variáveis aleatórias independentes, com esperança e variância bem conhecidas (tabela ao lado). Seja T_i o tempo que um item gasta no estágio i, e T o tempo total de produção do item.
 - 1 a. Qual a distribuição de probabilidades de T?
 - b. Os seis primeiros estágios constituem a primeira etapa; os restantes a segunda. Qual a probabilidade que um item sendo produzido gaste mais tempo na primeira etapa que na segunda?

Estágio	tempo médio (seg)	dp (seg)
1	12	1
2	12	2
3	11	1
4	13	1
5 .	10	2
6	12	2
7	11	1
8	12	2
9	13	2
10	12	2
11	12	2
- 12	10	2

- 1 c. A produção total de um turno de trabalho é 1000 unidades. Calcule a probabilidade que o menor tempo de produção naquele turno seja inferior a 2 minutos.
- d. Idem. Calcule P{T(1000)>160seg}