Université Lyon 1 Département Informatique

M12020/2021

Mif12 Algorithmique distribuée

TD1 - Correction	
Exercice 1 : Précision des horloges	
Solution. Objectif : Prendre conscience sur 2 cas concrets que plus la fréquence d'horloge est élevée par rapport à la dérive, plus l'horloge est précise.	
Q 1. Considérons une horloge basée sur un pendule oscillant à une fréquence de 1 Hz. Supposons que cette horloge dérive de 0,2 l (en prenant du retard). Au bout de combien de temps, cette horloge sera décalée (en retard) d'une seconde par rapport à une horloge dérivant pas ?	
Solution. La période de l'horloge H_{ref} qui ne dérive pas est $T_{ref} = 1$ s. La période de l'horloge H_{deriv} qui dérive est $T_{deriv} = \frac{1}{0.8} = 1,25$ s. Donc quand H_{deriv} indique 1s, il est $1,25$ s sur H_{ref} . Les deux horloges seront décalées d'une seconde quand H_{deriv} indiquera k secondes et H_{ref} indiquera $k+1$ secondes. Ceci se produit quand $k=4$, c'est-à-dire quand $k=4$ secondes seront écoulées sur H_{ref} .	1
Q 2. Même question que précédemment si l'horloge est une horloge à quartz dont la fréquence d'oscillation (de vibration) est 32768 Hz.	de
Solution. La période de l'horloge qui ne dérive pas est $T_{ref} = \frac{1}{32768}s$. La période de l'horloge qui dérive est $T_{deriv} = \frac{1}{32767,8}s$. Donc quand H_{deriv} indique T_{ref} s, il est T_{deriv} s sur H_{ref} . Les deux horloges seront décalées d'une seconde quand H_{deriv} indiquera k secondes et H_{ref} indiquera $k+1$ secondes. Ceci se produit quand $k.T_{deriv} = (k+1).T_{ref}$, c'est-à-dire quand $k = \frac{T_{ref}}{T_{deriv} - T_{ref}}$, c'est-à-dire $k = \frac{32767,8}{0,2} = 163839$ secondes. Il y a donc un décalage de 1 seconde au bout de 163840 secondes, soit environ 1,9 jours.	, l)
Q 3. Conclure sur la précision d'une horloge.	
Solution. Plus la fréquence d'horloge est élevée par rapport à la dérive, plus l'horloge est précise.	
Exercice 2 : GPS (très simplifié!)	
Solution. Objectif : Poser les équations qui sont utilisées dans le système GPS et comprendre que ça repose sur l'équation qui lie la distance et le temps de propagation. Le cas d'étude est simplifié à un plan.	
Supposons qu'un récepteur GPS se trouve sur la droite $y=-x+8$ km dans le plan. Il reçoit les signaux de 2 satellites appelés et B , tous les deux situés dans le plan. Le satellite A est localisé au point $p^A=(6 \text{ km}, 6 \text{ km})$ et le satellite B est localisé au po $p^B=(2 \text{ km}, 1 \text{ km})$. Supposons que les deux signaux GPS sont transmis par les deux satellites au même instant noté t . Le récepteur GPS reçoit signal de A 3,3 μ s avant le signal de B .	in

M1 1/6 2020/2021

Q 1. Formalisez le problème pour trouver la localisation du récepteur GPS.

Solution. Faire un schéma

Soit p la localisation du récepteur GPS dans le plan (sur la droite y). On a $t_{r_A}-t=\frac{||p-p^A||}{c}$, où t_{r_A} est le temps où le signal provenant de A a été reçu et c est la vitesse de la lumière. On a aussi $t_{r_B}-t=\frac{||p-p^B||}{c}$, où t_{r_B} est le temps où le signal provenant de B a été reçu. On sait que $t_{r_B}-t_{r_A}=3.3~\mu \mathrm{s}$. On a donc $||p-p^B||-||p-p^A||=c.3, 3.10^{-6}\approx 10.10^2~\mathrm{m}\approx 1~\mathrm{km}$. (Rappel $c=3.10^8~\mathrm{m/s}$). Il faut donc déterminer p qui est de la forme (x,-x+8) tel que $||p-p^B||-||p-p^A||=1$. \square

Q 2. Est-ce que le récepteur GPS est plutôt à la position (2 km, 6 km) ou à la position (4 km, 4 km)?

Solution. C'est la position (2 km, 6 km) qui vérifie $||p-p^B|| - ||p-p^A|| \simeq 1 \text{ km}$ (alors que pour la position (4 km, 4 km) on a $||p-p^B|| - ||p-p^A|| \simeq 0,78$). Le récepteur GPS se trouve donc à la position (2 km, 6 km).

$$Q^{2} \qquad p(2km, 6km)$$

$$p^{B} = (2km, 4km)$$

$$p^{A} = (6km, 6km)$$

$$= ||p - p^{B}|| = |(2 - 6)^{2} + (6 - 4)^{2}| = T$$

$$||p - p^{A}|| = |(2 - 6)^{2} + (6 - 6)^{2}| = 4$$

$$= ||p - p^{A}|| = |(2 - 6)^{2} + (6 - 6)^{2}| = 5 - 4 = 1 = 0$$

Pour calculer la distance euclidienne :

 ${f Q}$ 3. Quel est le temps (dans l'échelle de temps du système GPS) quand le récepteur GPS reçoit le signal de B? Comment le récepteur GPS se synchronise?

Solution. L'instant où le signal de B commence à être reçu est : $t + \frac{||p-p^B||}{c}$. Comme on connaît maintenant p, on a $t_{r_B} = t + 16, 7\mu$ s.

Si t est indiqué dans le message GPS envoyé par B, le récepteur peut alors se synchroniser sur l'horloge GPS puisqu'il est capable de déterminer son décalage en temps par rapport à B (grâce à la connaissance de sa position).

Exercice 3: NTP

Solution. Objectif: Savoir comment NTP calcule le décalage d'horloge d'une machine par rapport à un serveur et avec quelles hypothèses.

Considérons une machine, notée M, qui utilise le protocole NTP pour se synchroniser avec un serveur noté S. On considère les paramètres suivants :

- t_{aller} : temps écoulé entre le moment où M horodate la requête NTP avec t_1 et le moment où S horodate la même requête NTP avec t_2 ,
- t_{retour} : temps écoulé entre le moment où S horodate la réponse NTP avec t_3 et le moment où M horodate la même réponse NTP avec t_4 ,

— d: le décalage en temps de l'horloge de M par rapport à l'horloge de S.

Q 1. Quelle hypothèse fait le protocole NTP sur d?

Solution. Le décalage d entre M et S est constant durant tout l'échange NTP nécessaire à la détermination de d.

Q 2. Exprimer t_{aller} en fonction de t_1 , t_2 et d.

Solution.
$$t_{aller} = t_2 - (t_1 + d) = t_2 - t_1 - d.$$

Q 3. Exprimer t_{retour} en fonction de t_3 , t_4 et d.

Solution.
$$t_{retour} = (t_4 + d) - t_3 = t_4 - t_3 + d.$$

 \mathbf{Q} 4. Quelle est la 2e hypothèse faite par le protocole NTP pour déterminer d.

Solution. NTP suppose que
$$t_{aller} = t_{retour}$$
.

 \mathbf{Q} 5. Déterminer d.

Solution.
$$t_{retour} - t_{aller} = t_4 - t_3 - t_2 + t_1 + 2d = 0$$
. Donc $d = \frac{(t_2 + t_3) - (t_1 + t_4)}{2}$.

 ${f Q}$ 6. Quels sont les phénomènes qui font que t_{retour} n'est pas forcément égal à t_{aller} ?

Solution. - le temps de parcours des messages entre M et S peut être différent du temps de parcours des messages entre S et M car les chemins empruntés peuvent être différents et les temps d'attente dans les routeurs intermédiaires peuvent être différents ;

- les temps pour traverser la pile TCP/IP (temps entre l'horodatage du paquet et son envoi ou temps entre la réception et l'horodatage du paquet) ne sont pas déterministes.

Q 7. Quelle est la différence acceptable entre t_{aller} et t_{retour} si on se contente d'une précision à la dixième de seconde entre M et S?

Solution. Avec NTP, on a $d = \frac{(t_2+t_3)-(t_1+t_4)}{2}$.

En réalité, $d_{reel} = \frac{(t_2 + t_3) - (t_1 + t_4)}{2} + \frac{t_{retour} - t_{aller}}{2} = d + \frac{t_{retour} - t_{aller}}{2}$. Si une précision à la dixième de seconde suffit, alors il faut que $\frac{t_{retour} - t_{aller}}{2} < 0, 1$, soit $t_{retour} - t_{aller} < 0, 2s$.

Exercice 4: Ordre causal et horloges logiques

Solution. Objectif : Manipuler la notion de temps logique avec la notion de dépendance causale. Savoir déterminer des horloges scalaires et des horloges vectorielles. Faire quelques preuves sur ces notions.

Toutes les horloges logiques des trois processus du programme distribué, donné dans la figure 1, sont initialisées à zéro au début du programme. On suppose que la k^e action du processus i est noté a_i^k .

FIGURE 1 – Exécution d'un programme distribué

Q 1. Comparer les actions a_1^1 et a_3^3 . Même question pour a_1^3 et a_3^3 .

Solution. a_3^3 est en dépendance causale avec a_1^1 car a_3^3 est précédée de a_2^2 qui est précédée de a_2^3 qui est précédée de a_2^2 qui est précédée de a_1^2 qui est précédée de a_1^2 .

 a_3^3 et a_1^3 sont deux actions concurrentes. On ne peut pas trouver de chemin de dépendance causale reliant une action à l'autre.

Q 2. Indiquez les actions qui précèdent a_3^3 dans l'ordre causal. Même question pour a_2^4 .

Solution. Actions qui précèdent $a_3^3: a_3^1$ et $a_3^2; a_2^1, a_2^2$ et $a_2^3; a_1^1$ et a_1^2 Actions qui précèdent $a_2^4: a_2^1, a_2^2$ et $a_2^3; a_1^1$ et a_1^2

Q 3. Indiquez les horloges de Lamport pour chaque action, ainsi que les valeurs d'horloge indiquées dans chacun des messages transmis dans ce programme.

Q 4. Montrer que l'horloge de Lamport vérifie la cohérence d'horloges.

Solution. Propriété de cohérence d'horloges : si $a \to b$ alors C(a) < C(b).

Si a et b sont 2 actions se déroulant sur le même processus, et si $a \to b$, alors on a C(a) < C(b).

Si a correspond à l'envoi d'un message et si b correspond à la réception de ce message, alors on a C(a) < C(b).

Sur le chemin de dépendance causale de 2 actions quelconques a et b (mais en dépendance causale), on a toujours un des cas précédents entre deux actions consécutives dans le chemin. On montre donc que C(a) < C(b).

Q 5. Que peut-on dire des horloges de Lamport de deux actions concurrentes?

Solution. On ne peut rien dire. Par exemple a_3^3 et a_1^3 sont deux actions concurrentes et $C(a_1^3) < C(a_3^3)$. Mais on a aussi a_3^2 et a_2^4 qui sont deux actions concurrentes et $C(a_2^4) = C(a_3^2)$.

Q 6. Pour un action donnée, à quoi correspond son horloge de Lamport - 1?

Solution. Pour une action a, C(a) correspond au nombre d'actions précédant a dans le plus long chemin de dépendance causale menant à a.

Q 7. Indiquez les horloges vectorielles pour chaque action, ainsi que les valeurs d'horloge indiquées dans chacun des messages transmis dans ce programme.

Solution. Cf TD1-figures-exos-3-4.pdf:

Q 8. Montrer que : $a \to b \Leftrightarrow C(a) < C(b)$ (C(x) étant l'horloge vectorielle de l'action x).

Solution. Supposons que $a \to b$. Dans le chemin de dépendance causale entre a et b, on ne fait qu'augmenter l'horloge logique car pour chaque indice du vecteur, on prend le max et/ou on incrémente de 1. Donc on a C(a) < C(b).

Supposons que C(a) < C(b). Supposons que p_i est le processus sur lequel l'action a a été effectuée. Puisque C(a) < C(b) alors on a $C(a)[i] \le C(b)[i]$. L'incrémentation du i^e indice de C ne peut se faire que par le processus p_i de par l'algorithme de mise à jour de l'horloge vectorielle (et aucun autre processus ne peut incrémenter la valeur du i^e indice de C).

Si le processus sur lequel l'action b a été effectuée est p_i alors puisque $C(a)[i] \leq C(b)[i]$, b a été effectué après a (et donc $a \to b$). Si c'est un processus différent $(p_j \text{ avec } j \neq i)$, alors C(b)[i] a été appris par p_j de p_i et comme $C(a)[i] \leq C(b)[i]$, cela implique qu'il existe un chemin de dépendance causale entre a et b. Donc on a $a \to b$.

Q 9. Montrer que : $a||b \Leftrightarrow C(a)$ et C(b) ne peuvent pas être comparées (C(x)) étant l'horloge vectorielle de l'action x).

```
Solution. a||b\Leftrightarrow \neg(a\to b)\land \neg(b\to a). D'après la question précédente, \neg(a\to b)\Leftrightarrow (C(a)\geq C(b))\lor (C(a)||C(b)). De la même façon \neg(b\to a)\Leftrightarrow (C(b)\geq C(a)\lor (C(a)||C(b)). Puisqu'on ne peut pas avoir (C(a)\geq C(b))\land (C(b)\geq C(a)), alors forcément C(a)||C(b).
```