Н. А. Булгаков

ОСНОВНЫЕ ЗАКОНЫ И ФОРМУЛЫ ПО МАТЕМАТИКЕ И ФИЗИКЕ

ШКОЛЬНАЯ МАТЕМАТИКА ВЫСШАЯ МАТЕМАТИКА ФИЗИКА

СПРАВОЧНИК

• ИЗДАТЕЛЬСТВО ТГТУ •

Министерство образования Российской Федерации Тамбовский государственный технический университет

Н. А. Булгаков

ОСНОВНЫЕ

ЗАКОНЫ И ФОРМУЛЫ ПО МАТЕМАТИКЕ И ФИЗИКЕ

ШКОЛЬНАЯ МАТЕМАТИКА ВЫСШАЯ МАТЕМАТИКА ФИЗИКА

СПРАВОЧНИК

Тамбов • Издательство ТГТУ • 2002

УДК 531(075) ББК ВЗя73 Б90

Рецензенты:

Доктор технических наук, профессор кафедры "Приемные и передающие радиоустройства" ТВАИИ, заслуженный работник высшей школы РФ Д. Д. Дмитриев

Кандидат технических наук, профессор кафедры "Физика" ТВАИИ В. С. Макаров

Булгаков Н. А.

Б90 Основные законы и формулы по математике и физике: Справочник. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2002. 72 с.

Представлены в сжатой форме основные законы и формулы по всему курсу физики, а также по школьной и высшей математике, знание которых необходимо для решения задач и осмысления физической сущности явлений.

Основное назначение — помочь быстро найти или восстановить в памяти необходимые законы и формулы. Используется современная терминология и обозначения.

Привлекателен в качестве справочного материала при подготовке к семинарским занятиям и экзаменам. Помимо студентов вузов может быть полезен инженерно-техническим работникам и учащимся колледжей и школ.

УДК 531(075) ББК В3я73

© Тамбовский государственный

технический университет (ТГТУ), 2002

© Н. А. Булгаков, 2002

Справочное издание

БУЛГАКОВ Николай Александрович

ОСНОВНЫЕ ЗАКОНЫ И ФОРМУЛЫ ПО МАТЕМАТИКЕ И ФИЗИКЕ

ШКОЛЬНАЯ МАТЕМАТИКА ВЫСШАЯ МАТЕМАТИКА ФИЗИКА

Редактор З. Г. Чернова

Инженер по компьютерному макетированию М. Н. Рыжкова

ЛР № 020851 от 27.09.99 $\Pi_{\text{лр}}$ № 020079 от 28.04.97

Подписано в печать 02.03.2002. Гарнитура Times ET. Формат $60 \times 84 / 16$. Бумага офсетная. Печать офсетная. Объем: 4,2 усл. печ. л.; 4,5 уч.-изд. л. Тираж 500 экз. С. $151^{\rm M}$

Издательско-полиграфический центр Тамбовского государственного технического университета 392000, Тамбов, Советская, 106, к. 14

ШКОЛЬНАЯ МАТЕМАТИКА

• Числовые неравенства:

Если a > b, то b < a.

Если a > b и b > c, то a > c.

Если a > b, то a + c > b + c.

Если a > b и c > 0, то ac > bc.

Если a > b и c < 0, то ac < bc.

Если a > b и c > d, то a + c > b + d.

Если a > 0, b > 0, c > 0, d > 0, причем a > b и c > d, то ac > bd.

Если a > b > 0 и n — натуральное число, то $a^n > b^n$.

• Разложение на множители:

$$a^{2} - b^{2} = (a - b)(a + b);$$

$$a^{2} \pm 2ab + b^{2} = (a \pm b)^{2};$$

$$a^{3} \pm b^{3} = (a \pm b)(a^{2} \mp ab + b^{2});$$

$$a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3} = (a \pm b)^{3};$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$

где x_1 и x_2 — корни уравнения $ax^2 + bx + c = 0$.

• Квадратное уравнение $ax^2 + bx + c = 0$:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 — формула корней квадратного уравнения.

Теорема Виета: $x_1 + x_2 = -\frac{b}{a}$, $x_1 x_2 = \frac{c}{a}$.

• Арифметическая прогрессия:

 $a_1, a_2, ..., a_n, ...$ — члены арифметической прогрессии;

d — разность арифметической прогрессии;

 $a_{n+1} = a_n + d$ — определение арифметической прогрессии;

$$a_n = a_1 + d(n-1)$$
 — формула n -го члена;

$$a_n = \frac{a_{n-1} + a_{n+1}}{2}$$
 — характеристическое свойство;

$$S_n = \frac{a_1 + a_n}{2} n = \frac{2a_1 + d(n-1)}{2} n$$
 — формула суммы n первых членов.

• Геометрическая прогрессия:

 $a_1, a_2, ..., a_n, ...$ — члены геометрической прогрессии;

q — знаменатель геометрической прогрессии;

 $b_{n+1} = b \, q$, $b \neq 0$, $q \neq 0$ — определение геометрической прогрессии;

 $b_n = b_1 q^{n-1}$ — формула *n*-го члена;

 $b_n^2 = b_{n-1}b_{n+1}$ — характеристическое свойство;

 $S_n = \frac{b_n q - b_1}{a - 1} = \frac{b_1 (q^n - 1)}{a - 1}$ — формула суммы n первых членов;

 $S = \frac{b_1}{1-q}$ — формула суммы бесконечной геометрической прогрессии при |q| < 1.

ТРИГОНОМЕТРИЯ

• Свойства тригонометрических функций:

$$\sin(-x) = -\sin x; \qquad \sin(x + 2\pi k) = \sin x;$$

$$\cos(-x) = \cos x; \qquad \cos(x + 2\pi k) = \cos x;$$

$$\tan(x + 2\pi k) = \sin x;$$

$$\tan(x + 2\pi k) = \cos x;$$

$$\cot(x + \pi k) = \cot x;$$

$$\cot(x + \pi k) = \cot x;$$

где k — любое целое число.

• Таблица значений тригонометрических функций некоторых углов

		Аргумент α					
Функция	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
tg α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0	
ctg α		$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0		0

Примечание. Связь между градусной и радианной мерами измерении угла:

$$1^{\circ} = \frac{\pi}{180}$$
 рад.

• Формулы, связывающие тригонометрические функции одного и того же аргумента:

$$\begin{split} \sin^2\alpha + \cos^2\alpha &= 1; \quad tg\,\alpha = \frac{\sin\alpha}{\cos\alpha}; \quad ctg\,\alpha = \frac{\cos\alpha}{\sin\alpha}; \\ 1 + tg^2\,\alpha &= \frac{1}{\cos^2\alpha}; \quad 1 + ctg^2\,\alpha = \frac{1}{\sin^2\alpha} \;. \end{split}$$

Формулы двойного угла:

$$\begin{split} \sin 2\alpha &= 2\sin\alpha\cos\alpha = \frac{2tg\,\alpha}{1+tg^2\alpha};\\ \cos 2\alpha &= \cos^2\alpha - \sin^2\alpha = 1 - 2\sin^2\alpha = \frac{1-tg^2\,\alpha}{1+tg^2\,\alpha};\\ tg\,2\alpha &= \frac{2\,tg\,\alpha}{1-tg^2\alpha};\quad ctg\,2\alpha = \frac{ctg^2\,\alpha - 1}{2\,ctg\,\alpha}. \end{split}$$

• Формулы тройного угла:

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$
; $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$.

• Формулы понижения степени:

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
; $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$.

• Формулы сложения и вычитания аргументов:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
;

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$
;

$$tg\left(\alpha\pm\beta\right) = \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} \ .$$

• Формулы сложения и вычитания тригонометрических функций:

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
;

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$
;

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$
;

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$
;

$$tg \alpha \mp tg \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta}$$
.

• Формулы преобразования произведения тригонометрических функций в сумму и разность:

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta));$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta));$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta)).$$

• Знаки тригонометрических функций по четвертям

Функция	Четверть			
	I	II	III	IV
sin	+	+	_	_
cos	+	_	_	+

tg	+	_	+	_
ctg	+	_	+	_

• Формулы приведения

		Аргумент <i>t</i>					
Функция	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$	$2\pi - \alpha$
sin t	cos α	cos α	sin α	– sin α	– cos α	– cos α	- sin α
cos t	sin α	- sin α	– cos α	– cos α	- sin α	sin α	cos α
tg t	ctg α	– ctg α	-tg α	tg α	ctg α	– ctg α	-tg α
ctg t	tg α	-tg α	– ctg α	ctg α	tg α	– tg α	– ctg α

• Решение простейших тригонометрических уравнений:

$$\sin x=a$$
, $\left|a\right|\leq 1$, $x=\left(-1\right)^n \arcsin a+\pi n$; $\cos x=a$, $\left|a\right|\leq 1$, $x=\pm \arccos a+2\pi n$; $\tan x=a$, $x=\arctan a+\pi n$; $\cot x=a$, $x=\arctan a+\pi n$; $\cot x=a$, $x=\arctan a+\pi n$.

• Обратные тригонометрические функции:

$$-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}, \quad 0 \le \arccos x \le \pi;$$

$$-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}, \quad 0 < \arctan x < \pi;$$

$$\arcsin(-x) = -\arcsin x; \quad \arccos(-x) = \pi - \arccos x;$$

$$\arctan(-x) = -\arctan x; \quad \arctan(-x) = \pi - \arccos x.$$

МЕТРИЧЕСКИЕ СООТНОШЕНИЯ В ТРЕУГОЛЬНИКАХ

Обозначения: a, b, c — длины сторон $\triangle ABC$, h — высота, $p = \frac{a+b+c}{2}$ — полупериметр, S — площадь, R и r — радиусы описанной и вписанной окружностей.

• Теорема синусов. В любом треугольнике

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}.$$

• Теорема косинусов. В любом треугольнике

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
.

• Формулы площади любого треугольника:

$$S = \frac{ah_a}{2} = \frac{bh_b}{2} = \frac{ch_c}{2}, \quad S = \frac{1}{2}ab\sin\gamma, \quad S = pr, \quad S = \frac{abc}{4R},$$

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
 — формула Герона.

ВЫСШАЯ МАТЕМАТИКА

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

- \Box $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ расстояние между точками $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$.
- \Box $x = \frac{x_1 + \lambda x_2}{1 + \lambda}$, $y = \frac{y_1 + \lambda y_2}{1 + \lambda}$ координаты точки, делящей отрезок с концами $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$ в отношении $\lambda = |M_1 M| : |M M_2|$.
- \Box Ax + By + C = 0 общее уравнение прямой (A, B, C любые вещественные числа, $A^2 + B^2 \neq 0$)
- y = kx + b уравнение прямой с угловым коэффициентом k (b величина отрезка, отсекаемого прямой по оси Oy).
- \Box $y-y_1=k(x-x_1)$ уравнение прямой с угловым коэффициентом k, проходящей через точку $M_1(x_1;y_1)$
- \square $\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$ уравнение прямой, проходящей через точки $M_1(x_1\,;\,y_1)$ и $M_2(x_2\,;\,y_2)$.
- $\frac{x}{a} + \frac{y}{b} = 1$ уравнение прямой в отрезках (a, b величины отрезков, отсекаемых прямой на осях Ox и Oy).
- $\Box d = \frac{\left| Ax_0 + Bx_0 + C \right|}{\sqrt{A^2 + B^2}}$ расстояние от точки $M_0\left(x_0; y_0\right)$ до прямой Ax + By + C = 0
- \Box $\lg \varphi = \frac{k_2 k_1}{1 + k_1 k_2}$ формула вычисления одного из углов между прямыми $y = k_1 x + b_1$ и $y = k_2 x + b_2$.

 $y^2 = 2px$, $y^2 = -2px$ — каноническое уравнение параболы с осью симметрии Ox (p > 0 — параметр). АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ \square $X = x_2 - x_1$, $Y = y_2 - y_1$, $Z = z_2 - z_1$ — выражение координат вектора \overline{AB} через координаты точек $A(x_1; y_1; z_1)$ и $B(x_2; y_2; z_2)$. \Box $|\bar{a}| = \sqrt{X^2 + Y^2 + Z^2}$ — выражение длины вектора $\bar{a} = \{X; Y; Z\}$ через его координаты. \Box $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)}$ — расстояние между точками $M_1(x_1; y_1; z_1)$ и $M_2(x_2; y_2; z_2)$. \Box $\bar{a} \cdot \bar{b} = |\bar{a}| \cdot |\bar{b}| \cdot \cos \phi$ — определение скалярного произведения векторов \bar{a} и \bar{b} (ϕ — угол между векторами). \square $\overline{a} \cdot \overline{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2$ — выражение скалярного произведения векторов $\overline{a} = \{X_1 \; ; \; Y_1 \; ; \; Z_1\}$ и $\overline{b} = \{X_2 \; ; \; Y_2 \; ; \; Z_2\}$ через их координаты. $\square \quad \cos \varphi = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \cdot \sqrt{X_2^2 + Y_2^2 + Z_2^2}} \quad \text{— выражение угла между векторами.}$ \Box Ax + By + Cz + D = 0 — общее уравнение плоскости (A, B, C — любые вещественные числа, $A^2 + B^2 + C^2 \neq 0$). $\Box \quad d = \frac{\left| Ax_0 + By_0 + Cz_0 + D \right|}{A^2 + B^2 + C^2} \quad \textbf{— расстояние от точки} \quad M_0\left(x_0\,;\,y_0\,;\,z_0\right) \, \text{до плоскости} \quad Ax + By + Cz + D = 0 \; .$ $\square \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ — каноническое уравнение прямой с направляющим вектором $\bar{a} = \{l \; ; \; m \; ; \; n \}$, проходящей через точку $M_0(x_0; y_0; z_0)$. \Box $x = x_0 + lt$, $y = y_0 + mt$, $z = z_0 + nt$ — параметрические уравнения прямой. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ — каноническое уравнение эллипсоида (a, b, c — полуоси). $\frac{x^2}{2p} + \frac{y^2}{2q} = z$ — каноническое уравнение эллиптического параболоида (p > 0, q > 0 — параметры). $\frac{x^2}{2n} - \frac{y^2}{2a} = z$ — каноническое уравнение гиперболического параболоида. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 0$ — каноническое уравнение конуса второго порядка

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

$\lim_{x \to \infty} \frac{\sin x}{1 - 1} = 1$	— первый замечательный	й предел.
	1	1 ' '

$$\Box$$
 $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ — определение производной функции $y = f(x)$ в точке x_0 .

$$\Box$$
 dy = $f'(x_0)$ dx — дифференциал функции $f(x)$ в точке x_0

□ Производные простейших элементарных функций:

• Правила дифференцирования суммы, разности, произведения и частного

1)
$$(u \pm v)' = u' \pm v'$$
; 2) $(uv)' = u'v + uv'$; 3) $(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$, $v \neq 0$.

• Производная постоянной функции

$$y = f(x) = C \implies y' = 0$$

$$(Cu)' = Cu'$$

♦ Производная степенной функции

$$(x^n)' = nx^{n-1};$$
 $(\sqrt{x})' = (x^{\frac{1}{2}})' = \frac{1}{2\sqrt{x}};$ $(\frac{1}{x})' = (x^{-1})' = -\frac{1}{x^2}.$

• Производная показательной функции

$$(a^x)' = a^x \ln a;$$
 $(e^x)' = e^x$

• Производная логарифмической функции

$$(\log_a x)' = \frac{1}{x \ln a}; \qquad (\ln x)' = \frac{1}{x}.$$

□ Производные тригонометрических функций:

$$(\sin x)' = \cos x ; \qquad (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} ;$$

$$(\cos x)' = -\sin x ; \qquad (\arccos x)' = -\frac{1}{\sqrt{1 - x^2}} ;$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x} = \sec^2 x ; \qquad (\operatorname{arctg} x)' = \frac{1}{1 + x^2} ;$$

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x} = -\operatorname{cosec}^2 x ; \qquad (\operatorname{arcctg} x)' = -\frac{1}{1 + x^2} .$$

$$\Box$$
 $y'(t_0) = f'(x_0) \cdot \varphi'(t_0)$ — правило дифференцирования сложной функции $y = f[\varphi(t)]$ в точке t_0 ; здесь $x_0 = \varphi(t_0)$.

$$\Box$$
 $\varphi'(y_0) = \frac{1}{f'(x_0)}$ — правило дифференцирования обратной функции $x = \varphi(y)$ в точке $y_0 = f(x_0)$.

$$\square \quad (uv)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{1\cdot 2}u^{(n-2)}v'' + \dots + uv^{(n)} \quad — \text{формула Лейбница}.$$

$$\Box$$
 $\frac{f(b)-f(a)}{b-a}=f'(c)$ — формула Лагранжа; $c\in(a,b)$.

$$\square$$
 $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$ — формула Коши; $c\in(a,b)$.

$$\Box \quad f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \\ \\ \quad + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} \quad - \text{формула Тейлора; } \ \xi \in (a,\,x) \,.$$

□ При a = 0 получаем формулу Маклорена

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^{(n)} + \frac{f^{(n+1)}(0)}{(n+1)!}x^{(n+1)}.$$

□ Неопределенный и определенный интегралы

♦ Табличные интегралы:

гралы:
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \ (\alpha \neq -1); \qquad \int \frac{dx}{x} = \ln|x| + C;$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \ (0 < a \neq 1); \qquad \int e^{x} dx = e^{x} + C;$$

$$\int \sin x dx = -\cos x + C; \qquad \int \cos x dx = \sin x + C;$$

$$\int \frac{dx}{\sin^{2} x} = -\cot x + C; \qquad \int \frac{dx}{\cos^{2} x} = \tan x + C;$$

$$\int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \arcsin \frac{x}{a} + C; \qquad \int \frac{dx}{\sqrt{1 - x^{2}}} = \arcsin x + C;$$

$$\int \frac{dx}{1 + x^{2}} = \arctan x + C; \qquad \int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \arctan \frac{x}{a} + C;$$

$$\int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \ (a \neq 0); \qquad \int \frac{dx}{x^{2} - 1} = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C;$$

$$\int \frac{dx}{\sqrt{x^{2} + a^{2}}} = \frac{1}{a} \arctan \frac{x}{a} + C \ (a \neq 0); \qquad \int \frac{dx}{x^{2} + 1} = \arctan x + C;$$

$$\int \frac{dx}{\sqrt{x^{2} + 1}} = \ln |x + \sqrt{x^{2} + 1}| + C;$$

$$\int \frac{dx}{\sqrt{x^{2} + 1}} = \ln |x + \sqrt{x^{2} + 1}| + C.$$

 $lack \int f(x) \mathrm{d}x \big|_{x=\varphi(t)} = \int f[\varphi(t)] \varphi'(t) \mathrm{d}t$ — формула замены переменной в неопределенном интеграле.

- $\int_{a}^{b} f(x) dx = \int f[\varphi(t)] \varphi'(t) dt$ формула замены переменной в определенном интеграле; $\varphi(\alpha) = a$, $\varphi(\beta) = b$.
- ϕ $\int u(x)v'(x)dx = u(x)v(x) \int v(x)u'(x)dx$ формула интегрирования по частям в неопределенном интеграле.
 - $\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} \int_{a}^{b} v \, du$ формула интегрирования по частям в определенном интеграле.
- \Box $\int_{a}^{b} f(x) dx = f(c)(b-a)$ формула среднего значения; $c \in [a, b]$
- $\Box \int_a^b f(x) dx = F(b) F(a) = F(x)|_a^b$ формула Ньютона-Лейбница.
- $s = \int_a^b f(x) dx$ площадь криволинейной трапеции $0 \le y \le f(x), a \le x$
- $S = \int_{\alpha}^{\beta} \psi(t) \varphi'(t) dt$ площадь криволинейной трапеции, верхняя граница которой задана параметрически: $x = \varphi(t), \ y = \psi(t), \ \alpha \le t \le \beta$.
- $\Box s = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2(\phi) d\phi$ площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах: $\rho = \rho(\phi), \ \alpha \le \phi \le \beta$.
- \Box $L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$ длина дуги кривой, заданной уравнением y = f(x), $a \le x \le b$
- $\Box \quad L = \int_{\alpha}^{\beta} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} \, dt \quad \text{— длина дуги кривой, заданной параметрически: } x = \varphi(t), \ y = \psi(t), \ \alpha \le t \le \beta.$
- $U = \pi \int_{a}^{b} f^{2}(x) dx$ объем тела вращения вокруг оси Ox криволинейной трапеции $0 \le y \le f(x)$, $a \le x \le b$.
- \Box $P = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^2} dx$ площадь поверхности вращения вокруг оси Ox криволинейной трапеции $0 \le y \le f(x), a \le x \le b$.

ФИЗИКА

І. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

1.1. ЭЛЕМЕНТЫ КИНЕМАТИКИ

□ Средняя и мгновенная скорости материальной точки

$$\langle \mathbf{v} \rangle = \frac{\Delta \mathbf{r}}{\Delta t}, \quad \langle v \rangle = \frac{\Delta s}{\Delta t};$$

$$\mathbf{v} = \frac{\Delta \mathbf{r}}{\Delta t}, \quad v = \frac{\Delta s}{\Delta t},$$

где $\Delta \mathbf{r}$ — элементарное перемещение точки за промежуток времени Δt ; \mathbf{r} — радиус-вектор точки; Δs — путь, пройденный точкой за промежуток времени Δt .

□ Среднее и мгновенное ускорения материальной точки

$$\langle \mathbf{a} \rangle = \frac{\Delta \mathbf{v}}{\Delta t}, \quad \mathbf{a} = \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}.$$

□ Полное ускорение при криволинейном движении

$$\mathbf{a} = \mathbf{a}_{\tau} + \mathbf{a}_{n}, \quad a = \sqrt{a_{\tau}^{2} + a_{n}^{2}},$$

где $a_{\tau} = \frac{\mathrm{d}v}{\mathrm{d}t}$ — тангенциальная составляющая ускорения; $a_n = \frac{v^2}{r}$ — нормальная составляющая ускорения (r — радиус кривизны траектории в данной точке).

□ Путь и скорость для равнопеременного движения

$$s = v_0 t \pm \frac{at^2}{2};$$

$$v=v_0\pm at,$$

где v_0 — начальная скорость.

□ Угловая скорость

$$\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$
.

□ Угловое ускорение

$$\varepsilon = \frac{\mathrm{d}\omega}{\mathrm{d}t}$$
.

□ Угловая скорость для равномерного вращательного движения

$$\omega = \frac{\varphi}{t} = \frac{2\pi}{T} = 2\pi n,$$

где T — период вращения; n — частота вращения (n = N/t, где N — число оборотов, совершаемых телом за время t).

□ Угол поворота и угловая скорость для равнопеременного вращательного движения

$$\varphi = \omega_0 t \pm \frac{\varepsilon t^2}{2} ;$$

$$\omega = \omega_0 t \pm \varepsilon t,$$

где ω_0 — начальная угловая скорость.

□ Связь между линейными и угловыми величинами
$s=R\varphi$; $v=R\omega$; $a_{\tau}=R\varepsilon$; $a_{n}=\omega^{2}R$,
где <i>R</i> — расстояние от оси вращения.
1.2. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА
□ Импульс (количество движения) материальной точки
$\mathbf{p}=m\mathbf{v}$.
□ Второй закон Ньютона (основное уравнение динамики материальной точки) $\mathbf{F} = m\mathbf{a} = m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} .$
□ Это же уравнение в проекциях на касательную и нормаль к траектории точки
$F_{\tau} = ma_{\tau} = m\frac{\mathrm{d}v}{\mathrm{d}t}; F_n = ma_n = \frac{mv^2}{R} = m\omega^2 R.$
□ Сила трения скольжения
$F_{тp} = f N \; ,$ где f — коэффициент трения скольжения; N — сила нормального давления.
\Box Сила трения качения $F_{Tp} = f_{K} N / r \; , \label{eq:Fp}$
где f — коэффициент трения качения; r — радиус качающегося тела. \Box Закон сохранения импульса для замкнутой системы
$\mathbf{p} = \sum_{i=1}^{n} m_i \mathbf{v}_i = \text{const} ,$
где n — число материальных точек (или тел), входящих в систему.
\square Координаты центра масс системы материальных точек: $x_C = \frac{\sum m_i x_i}{\sum m_i}; y_C = \frac{\sum m_i y_i}{\sum m_i}; z_C = \frac{\sum m_i z_i}{\sum m_i}.$
где m_i — масса i -й материальной точки; x_C , y_C , z_C — ее координаты.
\square Уравнение движения тела переменной массы (уравнение Мещерского) $m\mathbf{a} = \mathbf{F} + \mathbf{F}_{\mathrm{p}}$,
где реактивная сила $\mathbf{F}_{p} = -\mathbf{u} \frac{\mathrm{d}m}{\mathrm{d}t}$ (\mathbf{u} — скорость истечения газов из ракеты).
□ Формула Циолковского для определения скорости ракеты
$\mathbf{v} = \mathbf{u} \ln \frac{m_0}{m}$,
r де m_0 — начальная масса ракеты.
1.3. РАБОТА И ЭНЕРГИЯ □ Работа, совершаемая постоянной силой

где $\mathit{F_s}$ — проекция силы на направление перемещения; α — угол между направлениями силы и перемещения.
\square Работа, совершаемая переменной силой, на пути s
$A = \int_{S} F_{s} ds = \int_{S} F \cos \alpha ds.$
\square Средняя мощность за промежуток времени Δt
$ig\langle N ig angle = \Delta A / \Delta t $.
□ Мгновенная мощность
$N = rac{\mathrm{d}A}{\mathrm{d}t}$, или $N = \mathbf{F}\mathbf{v} = F_s v = Fv \cos lpha$.
$\Pi = mgh$,
где g — ускорение свободного падения.
\square Сила упругости $F = -kx \; ,$
где x — деформация; k — коэффициент упругости.
□ Потенциальная энергия упругодеформированного тела
$\Pi = kx^2/2.$
\square Закон сохранения механической энергии (для консервативной системы) $T + \Pi = \textbf{\textit{E}} = \text{const} \; .$
□ Коэффициент восстановления
$\varepsilon = v_n' / v_n ,$ где v_n' и v_n — соответственно нормальные составляющие относительной скорости тел после и до удара.
\square Скорости двух тел массами m_1 и m_2 после абсолютно упругого центрального удара: $v_1' = \frac{(m_1-m_2)v_1+2m_2v_2}{m_1+m_2};$
$v_2' = \frac{\left(m_2 - m_1\right)v_2 + 2m_1v_1}{m_1 + m_2}$,
где v_1 и v_2 — скорости тел до удара.
\Box Скорость движения тел после абсолютно неупругого центрального удара $\upsilon = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} \; .$

1.4. МЕХАНИКА ТВЕРДОГО ТЕЛА

П	N	1 омент	инершии	мате	риальной	точки
ш	Τ.Δ.	TOMETH	пперции	Muic	primibileri	10 IKH

$$J=mr^2$$
,

где m — масса точки; r — расстояние до оси вращения.

□ Момент инерции системы (тела)

$$J=\sum_{i=1}^n m_i r_i^2 ,$$

где r_i — расстояние материальной точки массой m_i до оси вращения.

В случае непрерывного распределения масс $J = \int r^2 dm$.

 \square Моменты инерции тел правильной геометрической формы (тела считаются однородными; m — масса тела):

Тело	Положение оси вращения	Момент инерции
Полый тонкостенный	Ось симметрии	mR^2
ци-линдр радиусом R Сплошной цилиндр или диск радиусом R	Ось симметрии	$\frac{1}{2}mR^2$
Прямой тонкий	Ось перпендикулярна	$\frac{1}{12}ml^2$
стержень длиной l	стержню и проходит через	12
	его середину	
Прямой тонкий	Ось перпендикулярна	$\frac{1}{3}ml^2$
стержень длиной l	стержню и проходит через	3
Шар радиусом <i>R</i>	его конец Ось проходит через центр шара	$\frac{2}{5}mR^2$

□ Теорема Штейнера

$$J=J_C+ma^2\,,$$

где J_C — момент инерции относительно оси, проходящей через центр масс; J — момент инерции относительно параллельной оси, отстоящей от первой на расстоянии a; m — масса тела.

 \Box Кинетическая энергия тела, вращающегося вокруг неподвижной оси z,

$$T_{\rm BD} = J_z \omega^2 / 2$$
,

где J_z — момент инерции тела относительно оси z; ω — его угловая скорость.

□ Кинетическая энергия тела, катящегося по плоскости без скольжения,

$$T = \frac{1}{2} m v_C^2 + \frac{1}{2} J_C \omega^2 ,$$

где m — масса тела; v_{C} — скорость центра масс тела; J_{C} — момент инерции тела относительно оси, проходящей через его центр масс; ω — угловая скорость тела.

□ Момент силы относительно неподвижной точки

$$\mathbf{M} = [\mathbf{r}\mathbf{F}],$$

где ${f r}$ — радиус-вектор, проведенный из этой точки в точку приложения силы ${f F}$.
□ Модуль момента силы
M = Fl,
где lj — плечо силы (кратчайшее расстояние между линией действия силы и осью вращения).
□ Работа при вращении тела
$\mathrm{d}A=M_z\mathrm{d}\phi\;,$ где $\mathrm{d}\phi$ — угол поворота тела; M_z — момент силы относительно оси z .
□ Момент импульса (момент количества движения) твердого тела относительно оси вращения
$L_z = \sum m_i v_i r_i = J_z,$
где r_i — расстояние от оси z до отдельной частицы тела; $m_i v_i$ — импульс этой частицы; I_z — момент инерции тела относительно оси z ; ω — его угловая скорость.
\square Уравнение (закон) динамики вращательного движения твердого тела относительно неподвижной оси $\mathbf{M} = \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}; M_z = J_z \frac{\mathrm{d}\omega}{\mathrm{d}t} = J_z \varepsilon \; ,$
где ε — угловое ускорение; J_z — момент инерции тела относительно оси z .
\square Закон сохранения момента импульса (момента количества движения) для замкнутой системы $\mathbf{L} = \mathbf{const.}$
□ Напряжение при упругой деформации
$\sigma = F/S,$ где F — растягивающая (сжимающая) сила; S — площадь поперечного сечения. \Box Относительное продольное растяжение (сжатие)
$\varepsilon = \Delta l/l$,
где Δll — изменение длины тела при растяжении (сжатии); l — длина тела до деформации.
□ Относительное поперечное растяжение (сжатие)
$\varepsilon' = \Delta d/d$,
где Δd — изменение диаметра стержня при растяжении (сжатии); d — диаметр стержня.
\Box Связь между относительным поперечным сжатием (растяжением) ϵ' и относительным продольным растяжением (сжатием) ϵ
$_{arepsilon^{\prime}}=_{\muarepsilon,}$
□ Закон Гука для продольного растяжения (сжатия)
$\sigma = E \varepsilon$,

где E — модуль Юнга.
□ Потенциальная энергия упругорастянутого (сжатого) стержня
$\Pi = \int_{0}^{\Delta l} F dx = \frac{1}{2} \frac{ES}{l} (\Delta l)^{2} = \frac{E\varepsilon^{2}}{2} V,$
где V — объем тела.
1.5. ТЯГОТЕНИЕ. ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ \Box Третий закон Кеплера $T^2 = R^3$
$\frac{T_1^2}{T_2^2} = \frac{R_1^3}{R_2^3} \ ,$
где T_1 и T_2 — периоды обращения планет вокруг Солнца; R_1 и R_2 — большие полуоси их орбит.
\square Закон всемирного тяготения $F = G \frac{m_1 m_2}{r^2} ,$
где F — сила всемирного тяготения (гравитационная сила) двух материальных точек массами m_1 и m_2 r — расстояние между точками; G — гравитационная постоянная.
\square Сила тяжести $P=mg$,
где m — масса тела; g — ускорение свободного падения. \square Напряженность поля тяготения
$\mathbf{g} = \mathbf{F}/m$, где \mathbf{F} — сила тяготения, действующая на материальную точку массой m , помещенную в данную точку поля.
\Box Потенциальная энергия гравитационного взаимодействия двух материальных точек массами m_1 и m_2 находящихся на расстоянии r друг от друга, $\Pi = -Gm_1m_2/r \ .$
\square Потенциал поля тяготения
$\psi = \Pi I / III$,
где Π — потенциальная энергия материальной точки массой m , помещенной в данную точку поля.
□ Связь между потенциалом поля тяготения и его напряженностью
где \mathbf{i} , \mathbf{j} , \mathbf{k} — единичные векторы координатных осей.
□ Первая и вторая космические скорости
$v_1 = \sqrt{gR_0} \;, v_2 = \sqrt{2gR_0} \;,$ где R_0 — радиус Земли.
□ Основной закон динамики для неинерциальных систем отсчета
$m\mathbf{a'}=m\mathbf{a}+\mathbf{F}$

□ Силы инерции
$\mathbf{F}_{NH.} = \mathbf{F}_{N} + \mathbf{F}_{L} + \mathbf{F}_{K}$,
где $\mathbf{F}_{\text{и}}$, — силы инерции, проявляющиеся при поступательном движении системы отсчета с ускорением a_0 : $F_{\text{и}} = -\text{ma}_0$; $F_{,,\text{ц}}$ — центробежные силы инерции (силы инерции, действующие во вращающейся системе отсчета на тела, удаленные от оси вращения на конечное расстояние R): $F_{\text{ц}}$,,= $-m_{\omega}^2 R$; $F_{\text{к}}$ — кориолисова сила инерции (силы инерции, действующие на тело, движущееся со скоростью v' во вращающейся системе отсчета:
$\mathbf{F}_{\kappa} = 2m[\mathbf{v}'\omega]$
1.6. ЭЛЕМЕНТЫ МЕХАНИКИ ЖИДКОСТЕЙ \Box Гидростатическое давление столба жидкости на глубине h $p = \rho g h$,
где p — плотность жидкости.
□ Закон Архимеда
$F_{A} = \rho g V$,
где F_{A} — выталкивающая сила; V — объем вытесненной жидкости.
□ Уравнение неразрывности
Sv = const,
где S — площадь поперечного сечения трубки тока; v — скорость жидкости.
□ Уравнение Бернулли для стационарного течения идеальной несжимаемой жидкости
$\frac{\rho v^2}{2} + \rho g h + p = \text{const},$
где p — статическое давление жидкости для определенного сечения трубки тока; v — скорость жидкости для этого же сечения; $\rho v^2/2$ — динамическое давление жидкости для этого же сечения; h — высота, на которой расположено сечение; $\rho g h$ — гидростатическое давление. Для трубки тока, расположенной горизонтально, ρv^2
$\frac{\rho v^2}{2} + p = \text{const}.$
□ Формула Торричелли, позволяющая определить скорость истечения жидкости из малого отверстия в открытом широком сосуде,
$v = \sqrt{2gh}$,
где h — глубина, на которой находится отверстие относительно уровня жидкости в сосуде.
□ Сила внутреннего трения между слоями текущей жидкости
$F = \eta \left \frac{\Delta v}{\Delta x} \right S,$
где η — динамическая вязкость жидкости; $\Delta v/\Delta x$ — градиент скорости; S — площадь соприкасающихся слоев.

где a и a' — соответственно ускорение тела в инерциальной и неинерциальной системах отсчета, $\mathbf{F}_{\text{ин.}}$

—силы инерции.

□ Число Рейнольдса, определяющее характер движения жидкости,
$\mathrm{Re} = \rho < v > d / \eta ,$ где ρ — плотность жидкости; $< v >$ — средняя по сечению трубы скорость жидкости; d — характерный линейный размер, например диаметр трубы. \square Формула Стокса, позволяющая определить силу сопротивления, действующую на медленно движущийся в вязкой среде шарик,
$F=6\pi\eta rv$,
где r — радиус шарика; v — его скорость.
\square Формула Пуазейля, позволяющая определить объем жидкости. протекающий за время t через капиллярную трубку длиной l ,
$V = \pi R^4 \Delta pt / (8\eta I),$
где R — радиус трубки; Δp — разность давлений на концах трубки.
\Box Лобовое сопротивление $R_x = C_x \frac{\rho v^2}{2} S , \label{eq:Rx}$
где C_x — безразмерный коэффициент сопротивления; ρ — плотность среды; v — скорость движения тела; S — площадь наибольшего поперечного сечения тела.
□ Подъемная сила
$R_y = C_y \frac{\rho v^2}{2} S,$
где C_y — безразмерный коэффициент подъемной силы
1.7. ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ (ЧАСТНОЙ) ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
\square Преобразования Лоренца $x' = \frac{x-vt}{\sqrt{1-v^2/c^2}}, y' = y, z' = z, t' = \frac{t-vx/c^2}{\sqrt{1-v^2/c^2}},$
где предполагается, что система отсчета K' движется со скоростью v в положительном направлении оси x системы отсчета K , причем оси x' и x совпадают, а оси y' и y , z' и z — параллельны; c — скорость распространения света в вакууме.
\Box Релятивистское замедление хода часов $\tau' = \frac{\tau}{\sqrt{1-v^2\left/c^2}} ,$

где τ — промежуток времени между двумя событиями, отсчитанный движущимися вместе с телом часами; τ' — промежуток времени между теми же событиями, отсчитанный покоящимися часами.

□ Релятивистское (лоренцево) сокращение длины

$$l = l_0 \sqrt{1 - v^2 / c^2}$$
,

где l_0 — длина стержня, измеренная в системе отсчета, относительно которой стержень покоится (собственная длина); l — длина стержня, измеренная в системе отсчета, относительно которой он движется со скоростью v.

□ Связь между энергией и импульсом релятивистской частицы

$$E^2 = m_0^2 c^4 + p^2 c^2, \quad pc = \sqrt{T(T + 2m_0 c^2)}.$$

□ Энергия связи системы

$$E_{\rm CB.} = \sum_{i=1}^n m_{0i}c^2 - M_0c^2 \ ,$$

где m_{0i} — масса покоя i-й частицы в свободном состоянии; M_0 — масса покоя системы, состоящей из n частиц.

II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И

ТЕРМОДИНАМИКИ

2.1. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНЫХ ГАЗОВ

□ Закон Бойля-Мариотта

$$pV$$
 = const при T = const, m = const,

где p — давление; V — объем; T — термодинамическая температура; m — масса газа. □ Закон Гей-Люссака $V = V_0(1 + \alpha t)$, или $V_1 / V_2 = T_1 / T_2$ при p = const, m = const; $p = p_0(1 + \alpha t)$, или $p_1 / p_2 = T_1 / T_2$ при V = const, m = const, где t — температура по шкале Цельсия; V_0 и p_0 — соответственно объем и давление при 0 °C; коэффициент $\alpha = \frac{1}{273} \, \mathrm{K}^{-1}$; индексы 1 и 2 относятся к произвольным состояниям. □ Закон Дальтона для давления смеси *п* идеальных газов $p=\sum_{i=1}^n p_i ,$ где p_i — парциальное давление i-го компонента смеси. □ Уравнение состояния идеального газа (уравнение Клапейрона-Менде-леева) $pV_{\rm m}=RT$ (для одного моля газа), pV = (m/M)RT (для произвольной массы газа), где $V_{\rm m}$ — молярный объем; R — молярная газовая постоянная; M — молярная масса газа; m — масса газа; m/M = v — количество вещества. \Box Зависимость давления газа от концентрации n молекул и температуры p = nkT, где k — постоянная Больцмана ($k = R / N_A$, N_A — постоянная Авогадро). □ Основное уравнение молекулярно-кинетической теории идеальных газов $p = \frac{1}{3} n m_0 \langle v_{\text{KB.}} \rangle^2,$ или $pV = \frac{2}{3} N \left(\frac{m_0 \langle v_{\text{KB.}} \rangle^2}{2} \right) = \frac{2}{3} E,$ или

$$pV = \frac{1}{3} N m_0 \left\langle v_{\text{\tiny KB.}} \right\rangle^2 = \frac{1}{3} \, m \! \left\langle v_{\text{\tiny KB.}} \right\rangle^2 \, ,$$

где $\langle v_{\text{кв.}} \rangle$ — средняя квадратичная скорость молекул; E — суммарная кинетическая энергия поступательного движения всех молекул газа; n — концентрация молекул, m_0 — масса одной молекулы; $m=Nm_0$ — масса газа; N — число молекул в объеме газа V.

- □ Скорость молекул:
 - наиболее вероятная

$$v_{\scriptscriptstyle \rm B.} = \sqrt{2RT\,/\,M} = \sqrt{2kT\,/\,m_0}$$
 ;

◆ средняя квадратичная

$$\langle v_{\text{\tiny KB.}} \rangle = \sqrt{3RT/M} = \sqrt{3kT/m_0}$$
;

♦ C	редняя	арифметическая
------------	--------	----------------

$$v = \sqrt{8RT/(\pi M)} = \sqrt{8kT/(\pi m_0)},$$

где m_0 — масса одной молекулы.

□ Средняя кинетическая энергия поступательного движения молекулы идеального газа

$$\langle \varepsilon_0 \rangle = \frac{3}{2} kT$$
.

□ Закон Максвелла для распределения молекул идеального газа по скоростям

$$f(v) = \frac{dN(v)}{Ndv} = 4\pi \left(\frac{m_0}{2\pi kT}\right)^{3/2} v^2 e^{-m_0 v^2/(2kT)},$$

где функция f(v) распределения молекул по скоростям определяет относительное число молекул dN(v)/N из общего числа N молекул, скорости которых лежат в интервале от v до v + dv.

□ Закон Максвелла для распределения молекул идеального газа по энергиям теплового движения

$$f(\varepsilon) = \frac{dN(\varepsilon)}{Nd\varepsilon} = \frac{2}{\sqrt{\pi}} (kT)^{-3/2} \varepsilon^{1/2} e^{-\varepsilon/(kT)},$$

где функция $f(\varepsilon)$ распределения молекул по энергиям теплового движения определяет относительное число молекул $dN(\varepsilon)/N$ из общего числа N молекул, которые имеют кинетические энергии $\varepsilon = m_0 v^2/2$, заключенные в интервале от ε до ε + $d\varepsilon$.

□ Барометрическая формула

$$p_h = p_0 e^{-Mg(h-h_0)/(RT)},$$

где p_h и p_0 — давление газа на высоте h и h_0 .

□ Распределение Больцмана во внешнем потенциальном поле

$$n = n_0 e^{-Mgh/(RT)} = n_0 e^{-m_0 gh/(kT)}$$
, ИЛИ $n = n_0 e^{-\Pi/(kT)}$,

где n и n_0 — концентрация молекул на высоте h и h=0; $\Pi=m_0gh$ — потенциальная энергия молекулы в поле тяготения.

□ Среднее число соударений, испытываемых молекулой газа за 1 с,

$$\langle z \rangle = \sqrt{2}\pi d^2 n \langle v \rangle,$$

где d — эффективный диаметр молекулы; n — концентрация молекул; $\langle v \rangle$ — средняя арифметическая скорость молекул.

□ Средняя длина свободного пробега молекул газа

$$\langle l \rangle = \frac{\langle v \rangle}{\langle z \rangle} = \frac{1}{\sqrt{2}\pi d^2 n} .$$

□ Закон теплопроводности Фурье

$$Q = -\lambda \frac{\mathrm{d}T}{\mathrm{d}x} St,$$

где Q — теплота, прошедшая посредством теплопроводности через площадь S за время t; dT/dx — градиент температуры; λ — теплопроводность:

$$\lambda = \frac{1}{3} c_V \rho \langle v \rangle \langle l \rangle,$$

где c_V — удельная теплоемкость газа при постоянном объеме; ρ — плотность газа; $\langle v \rangle$ — средняя арифметическая скорость теплового движения его молекул; $\langle t \rangle$ — средняя длина свободного пробега молекул.

□ Закон диффузии Фика

$$M = -D\frac{\mathrm{d}\rho}{\mathrm{d}x}\,\mathrm{S}\,t\;,$$

где M — масса вещества, переносимая посредством диффузии через площадь S за время t; $d\rho/dx$ — градиент плотности, D — диффузия:

$$D = \frac{1}{3} \langle v \rangle \langle l \rangle.$$

□ Закон Ньютона для внутреннего трения (вязкости)

$$F = -\eta \frac{\mathrm{d}v}{\mathrm{d}x} S$$

где F — сила внутреннего трения между движущимися слоями площадью S; dv/dx — градиент скорости; η — динамическая вязкость:

$$\eta = \frac{1}{3} \rho \langle v \rangle \langle l \rangle .$$

2.2. ОСНОВЫ ТЕРМОДИНАМИКИ

□ Средняя кинетическая энергия поступательного движения, приходящаяся на одну степень свободы молекулы,

$$\langle \varepsilon_1 \rangle = \frac{1}{2} kT$$
.

□ Средняя энергия молекулы

$$\langle \varepsilon \rangle = \frac{i}{2} kT$$
,

где i — сумма поступательных, вращательных и удвоенного числа колебательных степеней свободы $(i = n_{\text{пост.}} + n_{\text{враш.}} + 2n_{\text{колеб.}})$.

□ Внутренняя энергия идеального газа

$$U = v \frac{i}{2} RT = \frac{m}{M} \frac{i}{2} RT ,$$

где v — количество вещества, m — масса газа; M — молярная масса газа; R — молярная газовая постоянная.

□ Первое начало термодинамики

$$Q = \Delta U + A$$
,

где Q — количество теплоты, сообщенное системе или отданное ею; ΔU — изменение ее внутренней энергии; A — работа системы против внешних сил.

□ Первое начало термодинамики для малого изменения системы

$$\delta Q = dU + \delta A.$$

\square Связь между молярной c_{m} ,, и удельной c теплоемкостями газа
$C_{\rm m}=cM$,
где M — молярная масса газа.
 □ Молярные теплоемкости газа при постоянном объеме и постоянном давлении
$C_V = rac{i}{2} R , C_{ ho} = rac{i+2}{2} R .$
□ Уравнение Майера
$C_n = C_V + R$.
p v
□ Изменение внутренней энергии идеального газа
$\mathrm{d}U = rac{m}{M} C_V \mathrm{d}T$.
□ Работа, совершаемая газом при изменении его объема,
dA = pdV.
□ Полная работа при изменении объема газа
·
$A = \int\limits_{V}^{V_2} p \mathrm{d}V$,
где V_1 и V_2 — соответственно начальный и конечный объемы газа.
1 \mathcal{L}_1 if \mathcal{L}_2 = coordered believe in a randing in Kone-inglin coordinate.
□ Работа газа:
• при изобарном процессе
$A = p(V_2 - V_1)$, или $A = \frac{m}{M}R(T_2 - T_1)$;
◆ при изотермическом процессе
три изотермическом процессе
$m_1, m_2, V_2, \dots, m_{n-1}, p_1$
$A=rac{m}{M}RT\lnrac{V_2}{V_1}$, ИЛИ $A=rac{m}{M}RT\lnrac{p_1}{p_2}$.
□ Уравнение адиабатического процесса (уравнение Пуассона)
— 3 равнение адиасати неского процесса (уравнение ттуассона)
$pV^{\gamma} = \text{const}, TV^{\gamma-1} = \text{const}, T^{\gamma}p^{1-\gamma} = \text{const},$
$p v^{-1} = \text{const}, r v^{-1} = \text{const}, r p^{-1} = \text{const},$
где $\gamma = C_p / C_V = (i+2)/i$ — показатель адиабаты.
□ Работа в случае адиабатического процесса
$A = \frac{m}{M}C_V(T_1 - T_2),$
m
ИЛИ
$A = \frac{RT_1}{\gamma - 1} \frac{m}{M} \left 1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right = \frac{p_1 V_1}{\gamma - 1} \left 1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right $
$\gamma-1$ M $\left[\begin{array}{cc} \left(V_{2}\right) \end{array} \right] \gamma-1$ $\left[\begin{array}{cc} \left(V_{2}\right) \end{array} \right]$
где T_1 , T_2 и V_1 , V_2 — соответственно начальные и конечные температура и объем газа.
□ Термический коэффициент полезного действия для кругового процесса (цикла)
$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$
$\frac{1}{Q_1} - \frac{1}{Q_1} - \frac{1}{Q_1}$
THE O POSITION TARROTT HORMANIA CHETAMON: O POSITION TARROTT OTRABILO CHETAMON.

где Q_1 — количество теплоты, полученное системой; Q_2 — количество теплоты, отданное системой; A — работа, совершаемая за цикл.

□ Термический коэффициент полезного действия цикла Карно
$\eta = \frac{T_1 - T_2}{T_1} \;,$
где T_1 — температура нагревателя; T_2 — температура холодильника.
\square Изменение энтропии при равновесном переходе из состояния 1 в состояние 2 $\Delta S_{i\to 2} = S_2 - S_1 = \int\limits_1^2 \frac{\mathrm{d} Q}{T} = \int\limits_1^2 \frac{\mathrm{d} U + \mathrm{d} A}{T} \ .$
2.3. РЕАЛЬНЫЕ ГАЗЫ, ЖИДКОСТИ И ТВЕРДЫЕ ТЕЛА □ Уравнение состояния реальных газов (уравнение Ван-дер-Ваальса) для моля газа
$ \left(p + \frac{a}{V_{\rm m}^2}\right)\!\!\left(V_{\rm m} - b\right) = RT \;,$ где $V_{\rm m}$, — молярный объем; a и b — постоянные Ван-дер-Ваальса, различные для разных газов.
\square Уравнение Ван-дер-Ваальса для произвольной массы газа $ \left(p + \frac{v^2 a}{V^2}\right) \!\! \left(\frac{V}{v} - b\right) = RT \;,\; $ или $\left(p + \frac{v^2 a}{V^2}\right) \!\! \left(V - vb\right) = RT \;,$
где $v = m/M$ — количество вещества.
\Box Внутреннее давление, обусловленное силами взаимодействия молекул, $p' = a / V_{\rm m}^2 .$
\Box Связь критических параметров — объема, давления и температуры — с постоянными a и b Ван-дер-Ваальса $V_{\rm \tiny K.}=3b, p_{\rm \tiny K.}=a/\!\left(27b^2\right)\!, T_{\rm \tiny K.}=8a/\!\left(27Rb\right).$
\Box Внутренняя энергия реального газа $U = \nu (C_V T - a / V_{\rm m}),$
$C = V(C_V - a) V_{\rm m}$), где $C_V - M$ молярная теплоемкость газа при постоянном объеме.
□ Энтальпия системы
$U_1 + p_1 V_1 = U_2 + p_2 V_2$,
где индексы 1 и 2 соответствуют начальному и конечному состояниям системы.

□ Поверхностное натяжение

$$\sigma = F/l$$
, ИЛИ $\sigma = \Delta E/\Delta S$,

где F — сила поверхностного натяжения, действующая на контур l, ограничивающий поверхность жидкости; ΔE — поверхностная энергия, связанная с площадью ΔS поверхности пленки.

$$\Delta p = \sigma (1/R_1 + 1/R_2),$$

где R_1 и R_2 — радиусы кривизны двух взаимно перпендикулярных нормальных сечений поверхности жидкости; радиус кривизны положителен, если центр кривизны находится внутри жидкости (выпуклый мениск), и отрицателен, если центр кривизны находится вне жидкости (вогнутый мениск). В случае сферической поверхности

$$\Delta p = 2\sigma / R$$
.

\Box Высота подъема жидкости в капиллярной трубке $h = \frac{2\sigma\cos\theta}{\rho gr},$
где θ — краевой угол; r — радиус капилляра; p — плотность жидкости; g — ускорение свободного падения.
□ Закон Дюлонга и Пти
$C_V = 3R$,
где C_V — молярная (атомная) теплоемкость химически простых твердых тел.
□ Уравнение Клапейрона-Клаузиуса, позволяющее определить изменение температуры фазового перехода в зависимости от изменения давления при равновесно протекающем процессе,
$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{L}{T\left(V_2 - V_1\right)},$
где L — теплота фазового перехода; $(V_2 - V_1)$ — изменение объема вещества при переходе его из первой фазы во вторую; T — температура перехода (процесс изотермический).
ΗΙ ΣΠΕΥΤΡΙΝΙΕ ΤΡΟ Η ΜΑΓΙΙΕΤΗΣΜ

III. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

3.1. ЭЛЕКТРОСТАТИКА

□ Закон Кулона

$$F = \frac{1}{4\pi\varepsilon_0} \frac{\mid Q_1 \mid \mid Q_2 \mid}{r^2} ,$$

где F — сила взаимодействия двух точечных зарядов Q_1 и Q_2 в вакууме; r — расстояние между зарядами; ϵ_0 — электрическая постоянная, равная $8,85 \cdot 10^{-12} \Phi / M$.

□ Напряженность и потенциал электростатического поля

$$\mathbf{E} = \mathbf{F} / Q_0; \quad \phi = \Pi / Q_0 \quad$$
или $\phi = A_{\infty} / Q_0,$

где ${\bf F}$ — сила, действующая на точечный положительный заряд ${\it Q}_0$, помещенный в данную точку поля; Π — потенциальная энергия заряда Q_0 ; A_{∞} — работа перемещения заряда из данной точки поля за его пределы.

 \Box Напряженность и потенциал электростатического поля точечного заряда на расстоянии от заряда

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}; \quad \varphi = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r},$$

□ Поток вектора напряженности через площадку

$$d\Phi_E = EdS = E_n dS$$

где dS = dSn — вектор, модуль которого равен dS, а направление совпадает с нормалью **n** к площадке; E_n — составляющая вектора Е по направлению нормали к площадке.

□ Поток вектора напряженности через произвольную поверхность *S*

$$\Phi_E = \int_{S} \mathbf{E} d\mathbf{S} = \int_{S} E_n dS.$$

□ Принцип суперпозиции (на	аложения) электростатиче	ских полей
----------------------------	--------------------------	------------

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{E}_{i}; \quad \varphi = \sum_{i=1}^{n} \varphi_{i},$$

где \mathbf{E}_i , φ_i — соответственно напряженность и потенциал поля, создаваемого зарядом.

□ Связь между напряженностью и потенциалом электростатического поля

$$\mathbf{E} = -\mathrm{grad} \phi$$
 или $\mathbf{E} = - \left(\frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k} \right),$

где і, і, к — единичные векторы координатных осей.

□ В случае поля, обладающего центральной или осевой симметрией,

$$E = -\frac{\mathrm{d}\phi}{\mathrm{d}r}.$$

□ Электрический момент диполя (дипольный момент)

$$\mathbf{p} = |Q|\mathbf{l}$$

где **I** — плечо диполя.

□ Линейная, поверхностная и объемная плотности зарядов

$$\tau = \frac{dQ}{dl}; \quad \sigma = \frac{dQ}{dS}; \quad \rho = \frac{dQ}{dV},$$

т.е. соответственно заряд, приходящийся на единицу длины, поверхности и объема.

□ Теорема Гаусса для электростатического поля в вакууме

$$\Phi_E = \oint_{S} \mathbf{E} d\mathbf{S} = \oint_{S} E_n dS = \frac{1}{\varepsilon_0} \sum_{i=1}^{n} Q_i = \frac{1}{\varepsilon_0} \int_{V} \rho dV,$$

где ε_0 — электрическая постоянная; $\sum_{i=1}^n Q_i$ — алгебраическая сумма зарядов, заключенных внутри замкнутой поверхности S; n — число зарядов; ρ — объемная плотность зарядов.

 \Box Напряженность поля, создаваемого равномерно заряженной бесконечной плоскостью $E = \sigma/(2\varepsilon_0)$

□ Напряженность поля, создаваемого двумя бесконечными параллельными разноименно заряженными плоскостями

$$E = \sigma/\epsilon_0$$

 \square Напряженность поля, создаваемого равномерно заряженной сферической поверхностью радиусом R с общим зарядом Q на расстоянии r от центра сферы

$$E = 0$$
 при $r < R$ (внутри сферы);

$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$
 при $r \ge R$ (вне сферы.

 \square Напряженность поля, создаваемого объемно заряженным шаром радиусом R с общим зарядом Q на расстоянии r от центра шара

$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^3}$$
 при $r \le R$ (внутри шара);

$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$
 при $r \ge R$ (вне шара).

 \square Напряженность поля, создаваемого равномерно заряженным бесконечным цилиндром радиусом R на расстоянии r от оси цилиндра,

$E=rac{1}{4\pi arepsilon_0}rac{ au}{r}$ при $r\geq R$ (вне цилиндра).
\square Циркуляция вектора напряженности электростатического поля вдоль замкнутого контура $\oint_{L} \mathbf{E} d\mathbf{l} = \int_{L} E_{i} dl = 0,$
где E_i — проекция вектора E на направление элементарного перемещения dI . Интегрировани производится по любому замкнутому пути L .
\square Работа, совершаемая силами электростатического поля при перемещении заряда Q_0 из точки 1 точку 2
$A_{12}=Q_0ig(\phi_1-\phi_2ig)$, ИЛИ $A_{12}=Q_0\int\limits_1^2{f E}d{f l}=Q_0\int\limits_1^2E_l{f d}l$,
где E_l — проекция вектора E на направление элементарного перемещения dl. \square Поляризованность
$\mathbf{P} = \sum_i \mathbf{p}_i / V$,
где V — объем диэлектрика; \mathbf{p}_i — дипольный момент i -й молекулы.
\square Связь между поляризованностью диэлектрика и напряженностью электростатического поля $\mathbf{P} = \chi \epsilon_0 \mathbf{E}$.
где χ — диэлектрическая восприимчивость вещества.
\square Связь диэлектрической проницаемости ε с диэлектрической восприимчивостью χ : $\varepsilon = 1 + \chi$.
\Box Связь между напряженностью E поля в диэлектрике и напряженностью E_0 внешнего поля $E=E_0-P/\varepsilon_0$, или $E=E_0/\varepsilon$.
\square Связь между векторами электрического смещения и напряженностью электростатического поля $\mathbf{D} = \epsilon_0 \epsilon \mathbf{E}.$
□ Связь между D, E и P
$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}.$ \square Теорема Гаусса для электростатического поля в диэлектрике
$\Phi_D = \oint_S \mathbf{D} d\mathbf{S} = \oint_S D_n dS = \sum_{l=1}^n Q_l,$
где $\sum_{i=1}^{n}Q_{i}$ — алгебраическая сумма заключенных внутри замкнутой поверхности S свободных
электрических зарядов; D_n — составляющая вектора D по направлению нормали к площадке — вектор модуль которого равен d S , а направление совпадает с нормалью n к площадке. Интегрирование ведется по всей поверхности. П Напряженность электростатического поля у поверхности проводника $E = \sigma/(\varepsilon_0 \varepsilon),$
где
\Box Электроемкость уединенного проводника $C = Q/\phi,$
где Q — заряд, сообщенный проводнику; φ — потенциал проводника.
\Box Емкость плоского конденсатора $C = \varepsilon_0 \varepsilon S / d ,$

где S — площадь каждой пластины конденсатора; d — расстояние между пластинами.

E = 0 при r < R (внутри цилиндра);

\Box Емкость цилиндрического конденсатора $C = \frac{2\pi \epsilon_0 \epsilon l}{\ln(r_2/r_1)},$
где l — длина обкладок конденсатора; r_1 , r_2 — радиусы полых коаксиальных цилиндров.
□ Емкость сферического конденсатора
$C=4\pi\varepsilon_0\varepsilon\frac{r_1r_2}{r_2-r_1},$
где r_1 и r_2 — радиусы концентрических сфер.
\Box Емкость системы конденсаторов при последовательном и параллельном соединении
$\frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_i} \text{M} C = \sum_{i=1}^{n} C_i ,$
где C_i — емкость i -го конденсатора; n — число конденсаторов.
□ Энергия уединенного заряженного проводника
$W = \frac{C\varphi^2}{2} = \frac{Q\varphi}{2} = \frac{Q^2}{2C}.$
□ Энергия взаимодействия системы точечных зарядов
$W=rac{1}{2}\sum_{i=1}^n Q_i oldsymbol{lpha}_i \ ,$
где φ_i — потенциал, создаваемый в той точке, где находится заряд Q_i всеми зарядами, кроме i -го.
□ Энергия заряженного конденсатора
$W = \frac{C(\Delta \varphi)^2}{2} = \frac{Q\Delta \varphi}{2} = \frac{Q^2}{2C}$
где Q — заряд конденсатора; C — его емкость; $\Delta \varphi$ — разность потенциалов между обкладками.
□ Сила притяжения между двумя разноименно заряженными обкладками конденсатора
$ F = \frac{Q^2}{2\varepsilon_0 \varepsilon S} = \frac{\sigma^2 S}{2\varepsilon_0 \varepsilon} = \frac{\varepsilon_0 \varepsilon E^2 S}{2}.$
П Эморгия одомпростотимоского доля плоского компомоторо
\square Энергия электростатического поля плоского конденсатора
$W = \frac{\varepsilon_0 \varepsilon E^2}{2} S d = \frac{\varepsilon_0 \varepsilon S U^2}{2} = \frac{\varepsilon_0 \varepsilon E^2}{2} V,$
где S — площадь одной пластины; U — разность потенциалов между пластинами; V = Sd — объем конденсатора.
□ Объемная плотность энергии
$w = \frac{\varepsilon_0 \varepsilon E^2}{2} = \frac{ED}{2},$
2 2 2 2 2 2 2 2
3.2. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК
□ Сила и плотность электрического тока
$I = \frac{\mathrm{d}Q}{\mathrm{d}t}; j = \frac{I}{S},$
где S — площадь поперечного сечения проводника.
\square Плотность тока в проводнике $\mathbf{j} = ne\langle \mathbf{v} \rangle,$
$\mathbf{J} = ne(\mathbf{v}),$ где $\langle \mathbf{v} \rangle$ — скорость упорядоченного движения зарядов в проводнике; n — концентрация зарядов.
тде (1) вморость упорядо тепного дыямения зарядов в проводияме, попцентрация зарядов.
□ Электродвижущая сила, действующая в цепи,

Е	$= A/Q_0$	или	E = 0	$\mathbf{E}_{cr} dl$

где Q_0 — единичный положительный заряд; A — работа сторонних сил; \mathbf{E}_{cr} — напряженность пол сторонних сил.
□ Сопротивление R однородного линейного проводника, проводимость G проводника и удельна: электрическая проводимость γ вещества проводника $R = \rho l/S$; $G = 1/R$; $\gamma = 1/\rho$,
где ρ — удельное электрическое сопротивление; S — площадь поперечного сечения проводника; l — его длина.
□ Сопротивление проводников при последовательном и параллельном соединении
$R = \sum_{i=1}^{n} R_i$ и $\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i}$,
где R_i — сопротивление i -го проводника; n — число проводников.
□ Зависимость удельного сопротивления ρ от температуры
$\rho = \rho_0 (1 + \alpha t),$
где а — температурный коэффициент сопротивления.
□ Закон Ома:◆ для однородного участка цепи
I = U/R;
♦ для неоднородного участка цепи $I = (\phi_1 - \phi_2 + E_{12})/R;$
7 - (ψ₁ - ψ₂ + L₁₂)/ Ҡ,♦ для замкнутой цепи
I = E/R,
где U — напряжение на участке цепи; R — сопротивление цепи (участка цепи); $(\varphi_1 - \varphi_2)$ — разност
потенциалов на концах участка цепи; E_{12} — э.д.с. источников тока, входящих в участок; E — э.д.с. все
источников тока цепи.
□ Закон Ома в дифференциальной форме
$\mathbf{j}=\gamma\mathbf{E},$
где E — напряженность электростатического поля.
\square Работа тока за время t
$A = IUt = I^2Rt = \frac{U^2}{P}t.$
\square Мощность тока
$P = IU = I^2R = \frac{U^2}{R}$.
акон Джоуля-Ленца газан при на
$Q = I^2 R t = I U t,$
где Q — количество теплоты, выделяющееся в участке цепи за время t .
\square Закон Джоуля-Ленца в дифференциальной форме
где w — удельная тепловая мощность тока.
□ Правило Кирхгофа
$\sum_k I_k = 0$; $\sum_i I_i R_i = \sum_k E_k$.

3.3. ЭЛЕКТРИЧЕСКИЕ ТОКИ В МЕТАЛЛАХ, В ВАКУУМЕ И ГАЗАХ

□ Контактная разность потенциалов на границе двух металлов 1 и 2
$ \phi_1 - \phi_2 = -\frac{A_1 - A_2}{e} + \frac{kT}{e} \ln \frac{n_1}{n_2}, $
где A_1 , A_2 — работы выходов свободных электронов из металлов; k — постоянная Больцмана
n_1, n_2 — концентрации свободных электронов в металлах.
□ Термоэлектродвижущая сила
$E = \frac{k}{e} \left(T_1 - T_2 \right) \ln \frac{n_1}{n_2},$
где $(T_1 - T_2)$ — разность температур спаев.
□ Формула Ричардсона-Дешмана
$j_{\text{\tiny HAC}} = CT^2 e^{-A/(kT)},$
где $j_{\text{нас}}$ — плотность тока насыщения термоэлектронной эмиссии; C — постоянная, теоретическ
одинаковая для всех металлов; A — работа выхода электрона из металла. 3.4. МАГНИТНОЕ ПОЛЕ
\square Механический момент, действующий на контур с током, помещенный в однородное магнитное поле, $\mathbf{M} = [\mathbf{p}_{\mathrm{m}}\mathbf{B}],$
где В — магнитная индукция; $p_{\rm m}$ — магнитный момент контура с током:
$\mathbf{p}_{\mathrm{m}} = I \mathbf{S} \mathbf{n}$,
где s — площадь контура c током; n — единичный вектор нормали к поверхности контура.
□ Связь магнитной индукции в и напряженности н магнитного поля
$\mathbf{B}=\mu_0\mu\mathbf{H},$
где μ_0 — магнитная постоянная; μ — магнитная проницаемость среды.
□ Закон Био-Савара-Лапласа
$\mathrm{d}\mathbf{B} = \frac{\mu_0 \mu}{4\pi} \frac{I[\mathrm{d}\mathbf{l}, \mathbf{r}]}{r^2},$
где d ${f B}$ — магнитная индукция поля, создаваемая элементом длины dl проводника с током I ; ${f r}$ —
радиус-вектор, проведенный от dl к точке, в которой определяется магнитная индукция.
□ Модуль вектора d B
$dB = \frac{\mu_0 \mu}{4\pi} \frac{Idl \sin \alpha}{r^2},$
где α — угол между векторами dl и \mathbf{r} .
Принцип суперпозиции (наложения) магнитных полей
$\mathbf{B} = \sum_{i} \mathbf{B}_{i}$,
где В — магнитная индукция результирующего поля; \mathbf{B}_i — магнитные индукции складываемых полей.
□ Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током
$B = \frac{\mu_0 \mu}{4\pi} \frac{2I}{R},$
где R — расстояние от оси проводника.
□ Магнитная индукция в центре кругового проводника с током
$B = \mu_0 \mu \frac{I}{2R}$

где R — радиус кривизны проводника.

\square Закон Ампера $d\mathbf{F} = I[d\mathbf{I} , \mathbf{B}],$
где d \mathbf{F} — сила, действующая на элемент длины d \mathbf{I} проводника с током I , помещенный в магнитное поле с индукцией \mathbf{B} .
□ Модуль силы Ампера
$\mathrm{d}F = IBl\sin\alpha,$ где α — угол между векторами $\mathrm{d}\mathbf{l}$ и $\mathrm{\mathbf{B}}.$
\square Сила взаимодействия двух прямых бесконечных прямолинейных параллельных проводников с токами I_1 и I_2
$\mathrm{d}F = \frac{\mu_0 \mu}{4\pi} \frac{2I_1 I_2}{R} \mathrm{d}l ,$
где R — расстояние между проводниками; dl — отрезок проводника.
$\mathbf{B} = \frac{\mu_0 \mu}{4\pi} \frac{Q[\mathbf{v} \mathbf{r}]}{r^3},$
где r — радиус-вектор, проведенный от заряда к точке наблюдения.
□ Модуль магнитной индукции
$B = \frac{\mu_0 \mu}{4\pi} \frac{Qv}{r^2} \sin \alpha,$
где α — угол между векторами v и r . \Box Сила Лоренца
$\mathbf{F} = Q[\mathbf{v}\mathbf{B}],$ где \mathbf{F} — сила, действующая на заряд Q , движущийся в магнитном поле со скоростью \mathbf{v} .
□ Формула Лоренца
${f F} = Q{f E} + Q[{f v},{f B}],$ где ${f F}$ — результирующая сила, действующая на движущийся заряд Q , если на него действует электрическое поле напряженностью ${f E}$ и магнитное поле индукцией ${f B}$.
\Box Холловская поперечная разность потенциалов $\Delta \phi = R \frac{IB}{d},$
$\Delta \phi = R \frac{1}{d}$, где B — магнитная индукция; I — сила тока; d — толщина пластинки; $R = 1/(en)$ — постоянная Холла (n
— концентрация электронов).
\square Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора ${\bf B}$)
$ \oint_{I} \mathbf{B} d\mathbf{l} = \oint_{I} B_{i} dl = \mu_{0} \sum_{k=1}^{n} I_{k} , $
где μ_0 — магнитная постоянная; dl — вектор элементарной длины контура, направленной вдоль обхода контура; $B_i = B\cos\alpha$ — составляющая вектора B в направлении касательной контура L произвольной
формы (с учетом выбранного направления обхода); угол между векторами ${\bf B}$ и ${\bf dl}$; $\sum_{k=1}^{n}I_{k}$ —
алгебраическая сумма токов, охватываемых контуром.
\square Магнитная индукция поля внутри соленоида (в вакууме), имеющего N витков, $B = \mu_0 N I / I$,
где <i>l</i> — длина соленоида.
□ Магнитная индукция поля внутри тороида (в вакууме)

$B = \mu_0 NI / 2\pi r$		
-------------------------	--	--

\square Поток вектора магнитной индукции (магнитный поток) через площадку dS $d\Phi_B = \mathbf{B}d\mathbf{S} = B_n dS$,
где $d\mathbf{S} = d\mathbf{S}_n$ — вектор, модуль которого равен $d\mathbf{S}$, а направление совпадает с нормалью n к площадке; B_n — проекция вектора \mathbf{B} на направление нормали к площадке.
$\hfill\square$ Поток вектора магнитной индукции через произвольную поверхность S
$\Phi_B = \int_{S} \mathbf{B} d\mathbf{S} = \int_{S} B_n dS.$
\Box Потокосцепление (полный магнитный поток, сцепленный со всеми витками соленоида) $\Phi = \mu_0 \mu \frac{N^2 I}{l} S,$
где и — магнитная проницаемость среды.
□ Работа по перемещению проводника с током в магнитном поле
$\mathrm{d}A=I\mathrm{d}\Phi$,
где dф — магнитный поток, пересеченный движущимся проводником.
□ Работа по перемещению замкнутого контура с током в магнитном поле
$dA = Id\Phi',$
где dф' — изменение магнитного потока, сцепленного с контуром. 3.5. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
□ Закон Фарадея
$E_i = -rac{\mathrm{d}\Phi}{\mathrm{d}t},$
где E_i — э.д.с. индукции.
\square Э.д.с. индукции, возникающая в рамке площадью S при вращении рамки с угловой скоростью в однородном магнитном поле с индукцией B ,
$E_i = BS\omega\sin\omega t$,
где ωt — мгновенное значение угла между вектором B и вектором нормали n к плоскости рамки.
\square Магнитный поток, создаваемый током I в контуре с индуктивностью L , $\Phi = LI$.
\square Э.д.с. самоиндукции $E_s = -L \frac{\mathrm{d}I}{\mathrm{d}t},$
где L — индуктивность контура. \square Индуктивность соленоида (тороида)
$L=\mu_0\mu\frac{N^2S}{l},$
где N — число витков соленоида; t — его длина.
□ Токи при размыкании и при замыкании цепи
$I = I_0 e^{-t/\tau}; \ I = I_0 (1 - e^{-t/\tau}),$
где $\tau = L/R$ — время релаксации (L — индуктивность; R — сопротивление).

\Box Э.д.с. взаимной индукции (э.д.с., индуцируемая изменением силы тока в соседнем контуре) $E = -L_{12} \frac{\mathrm{d}I}{\mathrm{d}t},$
где L_{12} — взаимная индуктивность контуров.
\square Взаимная индуктивность двух катушек (с числом витков N_1 и N_2 , намотанных на общий тороидальный сердечник,
$L_{12} = L_{21} = \mu_0 \mu \frac{N_1 N_2}{l} S,$
где μ_0 — магнитная проницаемость сердечника; I — длина сердечника по средней линии; S — площадь сердечника.
$\hfill \square$ Коэффициент трансформации $ \frac{N_2}{N_1} = \frac{E_2}{E_1} = \frac{I_1}{I_2}, $
где N , E , I — соответственно число витков, э.д.с. и сила тока в обмотках трансформатора. \square Энергия магнитного поля, создаваемого током в замкнутом контуре, по которому течет ток I , $W = L I^2/2$.
\Box Объемная плотность энергии однородного магнитного поля длинного соленоида
3.6. МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА \square Связь орбитального магнитного \mathbf{p}_{m} и орбитального механического \mathbf{L}_{e} моментов электрона
$\mathbf{p}_{\mathrm{m}} = -g\mathbf{L}_{e} = -\frac{e}{2m}\mathbf{L}_{e},$
где $g = e/(2m)$ — гиромагнитное отношение орбитальных моментов.
\square Намагниченность $\mathbf{J} = \mathbf{P}_{\mathrm{m}} \ / \ V = \sum \mathbf{p}_{\mathrm{a}} \ / \ V \ ,$
$\mathbf{F} = \mathbf{P}_{\mathrm{m}} / \mathbf{v} = \sum \mathbf{p}_{\mathrm{a}} / \mathbf{v}$, где $\mathbf{P}_{\mathrm{m}} = \sum \mathbf{p}_{\mathrm{a}}$ — магнитный момент магнетика, равный векторной сумме магнитных моментов отдельных
молекул.
□ Связь между намагниченностью и напряженностью магнитного поля
$J = \chi H$,
где χ — магнитная восприимчивость вещества.
\square Связь между векторами B , H , J $\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{J}),$
где μ_0 — магнитная постоянная.
$\hfill \Box$ Связь между магнитной проницаемостью и магнитной восприимчивостью вещества $\hfill \mu = 1 + \chi.$
\square Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора B) $\oint\limits_L \mathbf{B} \mathrm{d} \mathbf{l} = \oint\limits_L B_l \mathrm{d} l = \mu_0 \big(I + I' \big),$

$$s = A\cos(\omega_0 t + \varphi)$$
,

где s — смещение колеблющейся величины от положения равновесия; A — амплитуда колебаний; ω $_0 = 2\pi/T = 2\pi v$ — круговая (циклическая) частота; v = 1/T — частота; T — период колебаний; φ_0 начальная фаза.

□ Скорость и ускорение точки, совершающей гармонические колебания,

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -A\omega_0 \sin\left(\omega_0 t + \varphi\right) = A\omega_0 \cos\left(\omega_0 t + \varphi + \frac{\pi}{2}\right);$$

$$\frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = -A\omega_0 \cos\left(\omega_0 t + \varphi\right) = -\omega_0^2 s \ .$$

□ Кинетическая энергия колеблющейся точки массой <i>m</i>
$T = \frac{mv^2}{2} = \frac{mA^2\omega_0^2}{2}\sin^2(\omega_0t + \varphi).$
□ Потенциальная энергия
$\Pi = \frac{mA^2\omega_0^2}{2}\cos^2(\omega_0 t + \varphi)$
Полная энергия
$E = \frac{mA^2\omega_0^2}{2} \ .$
\Box Дифференциальное уравнение гармонических колебаний материальной точки массой m $m\ddot{x}=-kx,$ или $\ddot{x}+\omega_0^2x=0,$
где k — коэффициент упругости $\left(k=\omega_0^2 m\right)$.
□ Период колебаний пружинного маятника
$T=2\pi\sqrt{m/k}\;,$
где m — масса пружинного маятника; k — жесткость пружины.
□ Период колебаний физического маятника
$T = 2\pi \sqrt{J/(mgl)} = 2\pi \sqrt{L/g} ,$
где J — момент инерции маятника относительно оси колебаний; l — расстояние между точкой подвеса и центром масс маятника; $L=J/(ml)$ — приведенная длина физического маятника; g — ускорение свободного падения.
□ Период колебаний математического маятника
$T=2\pi\sqrt{l/g}$,
где l — длина маятника.
\Box Формула Томсона, устанавливающая связь между периодом T собственных колебаний в контуре без активного сопротивления и индуктивностью L и емкостью контура $C,$ $T = 2\pi \sqrt{LC} \; .$
□ Дифференциальное уравнение свободных гармонических колебаний заряда в контуре и его решение:
$\ddot{Q} + \frac{1}{LC}Q = 0; Q = Q_{\rm m}\cos(\omega_0 t + \varphi),$
где $Q_{\rm m}$ — амплитуда колебаний заряда; $\omega_0 = 1/\sqrt{LC}$ — собственная частота контура.
\square Амплитуда A результирующего колебания, получающегося при сложении двух гармонических колебаний одинакового направления и одинаковой частоты, $A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1),$

где A_1 и A_2 —амплитуды складываемых колебаний; φ_1 и φ_2 — их начальные фазы.
□ Начальная фаза результирующего колебания
$tg\phi = \frac{A_1 \sin \phi_1 + A_2 \sin \phi_2}{A_1 \cos \phi_1 + A_2 \cos \phi_2}.$
\square Период биений $T=2\pi/\Delta\omega.$
\Box Уравнение траектории движения точки, участвующей в двух взаимно перпендикулярных колебаниях одинаковой частоты, $\frac{x^2}{A^2} + \frac{2xy}{AB}\cos\phi + \frac{y^2}{B^2} = \sin^2\phi \ .$ где A и B — амплитуды складываемых колебаний; ϕ — разность фаз обоих колебаний.
□ Дифференциальное уравнение свободных затухающих колебаний линейной системы и его решение:
$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + 2\delta \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0^2 s = 0; s = A_0 \mathrm{e}^{-\delta t} \cos(\omega t + \varphi),$
где s — колеблющаяся величина, описывающая физический процесс; δ — коэффициент затухания $\delta = r/(2m)$ в случае механических колебаний и $\delta = R/(2L)$ в случае электромагнитных колебаний); ω_0 — циклическая частота свободных незатухающих колебаний той же колебательной системы; $\omega = \sqrt{\omega_0^2 - \delta^2}$ — частота затухающих колебаний; $A_0 e^{-\delta t}$ — амплитуда затухающих колебаний.
\square Декремент затухания $ \frac{A(t)}{A(t+T)} = \mathrm{e}^{\delta T} ,$
где $A(t)$ и $A(t+T)$ — амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период.
□ Логарифмический декремент затухания
$\Theta = \ln \frac{A(t)}{A(t+T)} = \delta T = \frac{T}{\tau} = \frac{1}{N},$
где $\tau = 1/\delta$ — время релаксации; N — число колебаний, совершаемых за время уменьшения амплитуды в е раз.
□ Добротность колебательной системы

$$Q = \frac{\pi}{\Theta} = \frac{\omega_0}{2\delta} \; .$$

$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + 2\delta \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0^2 s = x_0 \cos \omega t; \quad s = A \cos (\omega t - \varphi),$$

где s — колеблющаяся величина, описывающая физический процесс ($x_0 = F_0 \ / \ m$ в случае механических колебаний, $x_0 = U_{\rm m} \ / \ L$ в случае электромагнитных колебаний);

$$A = \frac{x_0}{\sqrt{(\omega_0^2 - \omega^2) + 4\delta^2 \omega^2}}; \quad \varphi = \arctan \frac{2\delta\omega}{\omega_0^2 - \omega^2}.$$

□ Резонансная частота и резонансная амплитуда

$$\omega_{\text{pes.}} = \sqrt{\omega_0^2 - 2\delta^2} \; ; \quad A_{\text{pes.}} = \frac{x_0}{2\delta\sqrt{\omega_0^2 - \delta^2}} \; .$$

 \square Полное сопротивление Z цепи переменного тока, содержащей последовательно включенные резистор сопротивлением R, катушку индуктивностью L и конденсатор емкостью C, на концы которой подается переменное напряжение $U = U_{\rm m} \cos \omega t$,

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \sqrt{R^2 + \left(R_L - R_C\right)^2} ,$$

где $R_L = \omega L$ — реактивное индуктивное сопротивление; $R_C = 1/(\omega C)$ — реактивное емкостное сопротивление.

□ Сдвиг фаз между напряжением и силой тока

$$tg\,\varphi=\frac{\omega L-1/(\omega C)}{R}.$$

□ Действующие (эффективные) значения тока и напряжения

$$I = I_{\rm m} / \sqrt{2}$$
; $U = U_{\rm m} / \sqrt{2}$,

□ Средняя мощность, выделяемая в цепи переменного тока,

$$\langle P \rangle = \frac{1}{2} I_{\rm m} U_{\rm m} \cos \varphi$$
,

где

$$\cos \varphi = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}.$$

4.2. УПРУГИЕ ВОЛНЫ

 \square Связь длины волны λ , периода T колебаний и частоты ν :

$$\lambda = vT$$
; $v = \lambda v$,

где v — скорость распространения колебаний в среде (фазовая скорость).

 \Box Уравнение плоской волны, распространяющейся вдоль положительного направления оси x,

$$\xi(x, t) = A\cos(\omega t - kx + \varphi_0),$$

где $\xi(x, t)$ — смещение точек среды с координатой x в момент времени t; A — амплитуда волны; ω — циклическая (круговая) частота; $k = 2\pi/\lambda = 2\pi/(vT) = \omega/v$ — волновое число (λ — длина волны; v — фазовая скорость; T — период колебаний); φ_0 — начальная фаза колебаний.

□ Связь между разностью фаз до и разностью хода д

$$\Delta \varphi = 2\pi \frac{\Delta}{2}$$
.

□ Условия максимума и минимума амплитуды при интерференции волн
$\Delta_{\max} = \pm 2m \frac{\lambda}{2}; \Delta_{\min} = \pm (2m+1) \frac{\lambda}{2},$
где $m = 0, 1, 2, \dots$
\square Фазовая v и групповая u скорости, а также связь между ними
$v = \frac{\omega}{k}; u = \frac{\mathrm{d}\omega}{\mathrm{d}k}; u = v - \lambda \frac{\mathrm{d}v}{\mathrm{d}\lambda}.$
□ Уравнение стоячей волны
$\xi(x, t) = 2A\cos\frac{2\pi}{\lambda}x\cos\omega t = 2A\cos kx\cos\omega t$
□ Координаты пучностей и узлов
$x_{\Pi} = \pm m \frac{\lambda}{2}; x_{\Pi} = \pm \left(m + \frac{1}{2}\right) \frac{\lambda}{2}, m = 0, 1, 2, \dots$
□ Уровень интенсивности звука (Б)
$L = \lg(I/I_0),$
где I — интенсивность звука; I_0 — интенсивность звука на пороге слышимости (I_0 = 1 пВт/м 2).
□ Скорость распространения звуковых вали в газах
$v = \sqrt{\gamma RT / M}$,
где R — малярная газовая постоянная; M — молярная масса; $\gamma = C_p/C_V$ — отношение молярных теплоемкостей газа при постоянных давлении и объеме; T — термодинамическая температура. \Box Эффект Доплера в акустике
$\mathbf{v} = rac{\left(v \pm v_{np.} ight)\mathbf{v}_0}{v \mp v_{MCT.}}$,
где v — частота звука, воспринимаемая движущимся приемником; v_0 — частота звука, посылаемая источником; $v_{\sf np.}$ — скорость движения приемника; $v_{\sf ист.}$ — скорость движения источника; v — скорость
распространения звука. Верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак — в случае их взаимного удаления.
4.3. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ □ Фазовая скорость распространения электромагнитных волн в среде
$v=rac{1}{\sqrt{arepsilon_0\mu_0}}rac{1}{\sqrt{arepsilon\mu}}=rac{c}{\sqrt{arepsilon\mu}}\;,$
где $c=1/\sqrt{\epsilon_0\mu_0}$ — скорость распространения света в вакууме; ϵ_0 и μ_0 — соответственно электрическая и
магнитная постоянные; ϵ и μ —соответственно электрическая и магнитная проницаемости среды.
\Box Связь между мгновенными значениями напряженностей электрического (E) и магнитного (H) полей электромагнитной волны

$$\sqrt{\varepsilon_0 \varepsilon} E = \sqrt{\mu_0 \mu} H$$
,

где E и H —	соответственно	мгновенные	значения	напряженнос	стей элект	рического і	и магнитного	полей
волны.								

□ Уравнения плоской электромагнитной волны

$$\mathbf{E} = \mathbf{E}_0 \cos(\omega t - kx + \varphi); \quad \mathbf{H} = \mathbf{H}_0 \cos(\omega t - kx + \varphi),$$

где \mathbf{E}_0 и \mathbf{H}_0 — соответственно амплитуды напряженностей электрического и магнитного полей волны; ω — круговая частота; $k = \omega/\upsilon$ — волновое число; φ — начальные фазы колебаний в точках с координатой x = 0.

□ Объемная плотность энергии электромагнитного поля

$$\omega = \frac{\varepsilon_0 \varepsilon E^2}{2} + \frac{\mu_0 \mu H^2}{2}.$$

$$\mathbf{S} = [\mathbf{EH}].$$

V. ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ

5.1. ЭЛЕМЕНТЫ ГЕОМЕТРИЧЕСКОЙ И ЭЛЕКТРОННОЙ ОПТИКИ

□ Законы отражения и преломления света

$$i_1' = i_1$$
; $\sin i_1 / \sin i_2 = n_{21}$,

где i_1 — угол падения; i_1' — угол отражения; i_2 — угол преломления; $n_{21} = n_2 / n_1$ — относительный показатель преломления второй среды относительно первой; n_1 и n_2 — абсолютные показатели преломления первой и второй среды.

□ Предельный угол полного отражения при распространении света из среды оптически более плотной в среду оптически менее плотную

$$\sin i_{\text{np.}} = n_2 / n_1 = n_{21}$$
.

□ Преломление на сферической поверхности (для параксиальных лучей)

$$\frac{n_2}{b} - \frac{n_1}{a} = \frac{n_2 - n_1}{R}$$
,

где R — радиус сферической поверхности; n_1 и n_2 — показатели преломления сред по разные стороны сферической поверхности; a — расстояние от точки, лежащей на оптической оси сферической поверхности, до преломляющей поверхности; b — расстояние от поверхности до изображения. В формуле R > 0 — для выпуклой поверхности, R < 0 — для вогнутой.

□ Формула сферического зеркала

$$\frac{1}{f} = \frac{2}{R} = \frac{1}{a} + \frac{1}{b} ,$$

где a и b — соответственно расстояния от полюса зеркала до предмета и изображения; f — фокусное расстояние зеркала; R — радиус кривизны зеркала.

□ Оптическая сила тонкой линзы

$$\Phi = \frac{1}{f} = (N-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{1}{a} + \frac{1}{b},$$

где f — фокусное расстояние линзы: $N = n/n_1$ — относительный показатель преломления (n и n_1 —
соответственно абсолютные показатели преломления линзы и окружающей среды); R_1 и R_2 — радиусы
кривизны поверхностей ($R > 0$ для выпуклой поверхности; $R < 0$ для вогнутой); a и b — соответственно
расстояния от оптического центра линзы до предмета и изображения.

□ Сила излучения

$$I_e = \Phi_e / \omega$$
,

где Φ_e — поток излучения источника; ω — телесный угол, в пределах которого это излучение распространяется.

□ Полный световой поток, испускаемый изотропным точечным источником,

$$\Phi_0 = 4\pi I,$$

где I — сила света источника.

□ Светимость поверхности

$$R = \Phi/S$$
,

где Φ — световой поток, испускаемый поверхностью; S — площадь этой поверхности.

 \square Яркость B, светящейся поверхности в некотором направлении φ

$$B_{\varphi} = I/(S\cos\varphi),$$

где I — сила света; S — площадь поверхности; φ — угол между нормалью к элементу поверхности и направлением наблюдения.

 \square Освещенность E поверхности

$$E = \Phi / S$$
,

где Φ — световой поток, падающий на поверхность; S — площадь этой поверхности.

 \square Связь светимости R и яркости B при условии, что яркость не зависит от направления, $R = \pi B$.

5.2. ИНТЕРФЕРЕНЦИЯ СВЕТА

□ Скорость света в среде

$$v = c / n$$
,

где c — скорость света в вакууме; n — абсолютный показатель преломления среды.

□ Разность фаз двух когерентных волн

$$\delta = \frac{2\pi}{\lambda_0} (L_2 - L_1) = \frac{2\pi}{\lambda_0} \Delta ,$$

где L = sn — оптическая длина пути (s — геометрическая длина пути световом волны в среде; n — показатель преломления этой среды); $\Delta = L_2 - L_1$ — оптическая разность хода двух световых волн; λ_0 — длина волны в вакууме.

□ Условие интерференционных максимумов
$\Delta = \pm m\lambda_0 \;, \;\; m = 0\;, 1\;, 2\;, \; \dots \;.$
\Box Условие интерференционных минимумов $\Delta = \pm \big(2m+1\big)\frac{\lambda_0}{2}, m=0,1,2,\dots.$
\Box Ширина интерференционной полосы $\Delta x = \frac{l}{d} \lambda_0 ,$
где d — расстояние между двумя когерентными источниками, находящимися на расстоянии l от экрана, параллельного обоим источникам, при условии $l >> d$.
\square Условия максимумов и минимумов при интерференции света, отраженного от верхней и нижней поверхностей тонкой плоскопараллельной пленки, находящейся в воздухе ($n_0 = 1$),
$2dn\cos r \pm \frac{\lambda_0}{2} = 2d\sqrt{n^2 - \sin^2 i} \pm \frac{\lambda_0}{2} = m\lambda_0, m = 0, 1, 2,;$
$2dn\cos r \pm \frac{\lambda_0}{2} = 2d\sqrt{n^2 - \sin^2 i} \pm \frac{\lambda_0}{2} = (2m+1)\frac{\lambda_0}{2}, m = 0, 1, 2, \dots,$
где d — толщина пленки; n — ее показатель преломления; i — угол падения; r — угол преломления. В общем случае член $\pm \lambda_0/2$ обусловлен потерей полуволны при отражении света от границы раздела: если $n > n_0$, то необходимо употреблять знак плюс, если $n < n_0$ — знак минус.
\Box Радиусы светлых колец Ньютона в отраженном свете (или темных в проходящем свете) $r_m = \sqrt{(m-1/2)\lambda_0 R}$, $m=1,2,3,$,
где m — номер кольца; R — радиус кривизны линзы. $r_m^* = \sqrt{m \lambda_0 R} , m=1,2,\dots.$
\Box В случае "просветления оптики" интерферирующие лучи в отраженном свете гасят друг друга при условии
$n=\sqrt{n_{\rm c}}$,
где $n_{\rm c}$ — показатель преломления стекла; n — показатель преломления пленки. 5.3. ДИФРАКЦИЯ СВЕТА
\Box Радиус внешней границы m -й зоны Френеля для сферической волны $r_m = \sqrt{\frac{ab}{a+b}} m \lambda \ ,$
где m — номер зоны Френеля; λ — длина волны, a и b — соответственно расстояния диафрагмы с круглым отверстием от точечного источника и от экрана, на котором дифракционная картина наблюдается.
□ Условия дифракционных максимумов и минимумов от одной щели, на которую свет падает нормально:
$a \sin \varphi = \pm (2m+1)\frac{\lambda}{2}, a \sin \varphi = \pm 2m\frac{\lambda}{2}, m=1, 2, 3,,$
где a — ширина щели; ϕ — угол дифракции; m — порядок спектра; λ — длина волны. \square Условия главных максимумов и дополнительных минимумов дифракционной решетки, на которую свет падает нормально:
$d \sin \varphi = \pm 2m \frac{\lambda}{2}, m = 0, 1, 2,;$

□ Эффект Доплера для электромагнитных волн в вакууме
$v = v_0 \frac{\sqrt{1 - v^2 / c^2}}{1 + (v / c) \cos \theta},$
где v_0 и v — соответственно частоты электромагнитного излучения, испускаемого источником и воспринимаемого приемником; v — скорость источника электромагнитного излучения относительно приемника; c — скорость света в вакууме; ϑ —угол между вектором скорости \mathbf{V} и направлением наблюдения, измеряемый в системе отсчета, связанной с наблюдателем. \square Поперечный эффект Доплера для электромагнитных волн в вакууме ($\vartheta = \pi/2$) $v = v_0 \sqrt{1 - v^2/c^2}$.
□ Эффект Вавилова-Черенкова
$\cos \vartheta = c / (nv),$
где 9 — угол между направлением распространения излучения и вектором скорости частицы; n — показатель преломления среды.
5.5. ПОЛЯРИЗАЦИЯ СВЕТА $P = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}},$
где I_{\max} , и I_{\min} — соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором.
□ Закон Малюса
$I = I_0 \cos^2 \alpha \; ,$ где I — интенсивность плоскополяризованного света, прошедшего через анализатор; I_0 — интенсивность плоскополяризованного света, падающего на анализатор; α — угол между главными плоскостями поляризатора и анализатора.
□ Закон Брюстера
$tgi_{B}=n_{21},$ где i_{B} — угол падения, при котором отраженный от диэлектрика луч является плоскополяризованным; n_{21} — относительный показатель преломления.
\square Оптическая разность хода между обыкновенным и необыкновенным лучами на пути l в ячейке Керра
$\Delta = l(n_{\rm o} - n_{\rm e}) = klE^2 ,$
где $n_{\rm o}$, $n_{\rm e}$ — показатели преломления соответственно обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси; E — напряженность электрического поля; k — постоянная.
□ Оптическая разность хода для пластинки в четверть волны
$\Delta = (n_o - n_e)d = \pm (m + 1/4)\lambda_0, m = 0, 1, 2,,$

где знак плюс соответствует отрицательным кристаллам, минус — положительным; λ_0 — длина волны в вакууме.

□ Угол поворота плоскости поляризации:
♦ для оптически активных кристаллов и чистых жидкостей
$\varphi = \alpha d;$
• для оптически активных растворов
$\varphi = [\alpha]Cd$,
где d — длина пути, пройденного светом в оптически активном веществе; $\alpha_0[\alpha]$ — удельное вращение; C — массовая концентрация оптически активного вещества в растворе.
5.6. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ
\square Закон Стефана-Больцмана $R_e = {}_{\mathfrak{G}}T^4,$
где R_e — энергетическая светимость (излучательность) черного тела; σ — постоянная Стефана-Больцмана; T — термодинамическая температура.
\Box Связь энергетической светимости R_e и спектральной плотности энергетической светимости $r_{v,T}$ ($r_{\lambda,T}$) черного тела
$R_e = \int\limits_0^\infty r_{v,T} \mathrm{d}v = \int\limits_0^\infty r_{\lambda,T} \mathrm{d}\lambda$.
□ Энергетическая светимость серого тела
$R_T^c = A_T \ \sigma T^4 \ ,$
где A_T — поглощательная способность серого тела.
\square Закон смещения Вина $\lambda_{\max,,} = b/T,$
где λ_{\max} ,,,, — длина волны, соответствующая максимальному значению спектральной плотности энергетической светимости черного тела; b — постоянная Вина.
□ Зависимость максимальной спектральной плотности энергетической светимости черного тела от температуры
$(r_{\lambda,T})=CT^{\delta},$
где $C = 1,30 \cdot 10^{-5} \text{ Br/(м}^3 \cdot \text{K}^5).$
□ Формула Рэлея-Джинса для спектральной плотности энергетической светимости черного тела
$r_{v,T} = \frac{2\pi v^2}{c^2} kT,$
где k — постоянная Планка.
\square Энергия кванта $ \varepsilon_0 = h v = h c / \lambda \ . $
\square Формула Планка
$r_{v,T} = \frac{2\pi v^2}{c^2} \frac{hv}{e^{hv/(kT)} - 1},$

$$r_{\lambda,T} = \frac{2\pi c^2 h}{\lambda^5} \frac{h \nu}{\mathrm{e}^{hc/(kT\lambda)} - 1} .$$

 \square Связь радиационной $T_{\rm p}$ и истинной T температур

$$T_{\rm p} = \sqrt[4]{A_{\rm r}} T ,$$

где $A_{\rm T}$ — поглощательная способность серого тела.

□ Уравнение Эйнштейна для внешнего фотоэффекта

$$\varepsilon = h \nu = A + T_{\text{max}}$$

где $\varepsilon = h_V$ — энергия фотона, падающего на поверхность металла; A — работа выхода электрона из металла; $T_{\rm max} = m v_{\rm max}^2 / 2$, — максимальная кинетическая энергия фотоэлектрона.

□ "Красная граница" фотоэффекта для данного металла

$$v_0 = A/h$$
; $\lambda_0 = hc/A$,

где λ_0 — максимальная длина волны излучения (ν_0 — соответственно минимальная частота), при которой фотоэффект еще возможен.

□ Масса и импульс фотона

$$m_{\gamma} = \frac{\varepsilon}{c^2} = \frac{hv}{c^2}; \quad p_{\gamma} = \frac{hv}{c},$$

где h_V — энергия фотона.

$$p = \frac{E_e}{c} (1 + \rho) = w (1 + \rho),$$

где $E_e = Nh_V$ — облученность поверхности (энергия всех фотонов, падающих на единицу поверхности в единицу времени); ρ — коэффициент отражения; w — объемная плотность энергии излучения.

□ Изменение длины волны рентгеновского излучения при комптоновском рассеянии

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta) = \frac{2h}{m_0 c} \sin^2 \frac{\theta}{2} = 2\lambda_C \sin^2 \frac{\theta}{2},$$

где λ и λ' — длины волн падающего и рассеянного излучения; m_0 — масса электрона; ϑ — угол рассеяния; $\lambda_C = h/(m_0c)$ — комптоновская длина волны.

VI. ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ

6.1. ТЕОРИЯ АТОМОВ ВОДОРОДА ПО БОРУ

□ Обобщенная формула Бальмера, описывающая серии в спектре водорода,

$$v = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right),\,$$

где v — частота спектральных линий в спектре атома водорода; R — постоянная Ридберга; m определяет серию (m = 1, 2, 3, ...); n определяет отдельные линии соответствующей серии (n = m +1, m + 2, ...): m = 1 (серия Лаймана), m = 2 (серия Бальмера), m = 3 (серия Пашена), m = 4 (серия Брэкета), m = 5 (серия Пфунда), m = 6 (серия Хэмфри).

□ Первый постулат Бора (постулат стационарных состояний)

$$m_{e}vr_{n}=n\hbar, n=1, 2, 3, ...,$$

где m_e — масса электрона; v — скорость электрона по n-й орбите радиусом r_n .

□ Второй постулат Бора (правило частот)

$$h\nu=E_n-E_m\,,$$

где E_n и E_m — соответственно энергии стационарных состояний атома до и после излучения (поглощения).

□ Энергия электрона на *n*-й стационарной орбите

$$E_n = -\frac{1}{n^2} \frac{Z^2 m_e e^4}{8h^2 \epsilon_0^2}, \quad n = 1, 2, 3, ...,$$

где Z — порядковый номер элемента в системе Менделеева; ε_0 — электрическая постоянная.

6.2. ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ

 \square Связь дебройлевской волны частицы с импульсом p

$$\lambda = h / p = h / (mv)$$

где m — масса частицы; v — ее скорость.

 \square Фазовая скорость свободно движущейся со скоростью v частицы массой m

$$v_{\text{daa.}} = \omega / k = E / p = c^2 / v$$

где $E=\hbar\omega$ — энергия частицы (ω — круговая частота); $p=\hbar k$ — импульс ($k=2\pi$ / λ — волновое число).

□ Групповая скорость свободно движущейся частицы

$$u = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{\mathrm{d}E}{\mathrm{d}p} .$$

- □ Соотношения неопределенностей:
 - ♦ для координаты и импульса частицы

$$\Delta x \Delta p_x \geq h$$
,

$$\Delta y \Delta p_y \ge h$$
,

$$\Delta z \Delta p_z \geq h$$
,

где Δx , Δy , Δz — неопределенности координат; Δp_x , Δp_y , Δp_z — неопределенности соответствующих проекций импульса частицы на оси координат;

♦ для энергии и времени

$$\Delta E \Delta t \geq h$$
,

где ΔE — неопределенность энергии данного квантового состояния; Δt — время пребывания системы в данном состоянии.

 \square Вероятность нахождения частицы в объеме dV

$$dW = \Psi \Psi dV = |\Psi|^2 dV,$$

где $\Psi = \Psi(x, y, z, t)$ — волновая функция, описывающая состояние частицы; Ψ^* — функция, комплексно сопряженная с Ψ ; $|\Psi|^2 = \Psi\Psi^*$ — квадрат модуля волновой функции;

♦ для стационарных состояний

$$dW = \psi \psi dV = |\psi|^2 dV$$
,

где $\psi = \psi(x, y, z)$ — координатная (амплитудная) часть волновой функции.

□ Условие нормировки вероятностей

$$\int_{-\infty}^{\infty} |\Psi|^2 dV = 1,$$

где интегрирование производится по всему бесконечному пространству, т.е. по координатам x, y, z от $-\infty$ до $+\infty$.

\square Вероятность обнаружения частицы в интервале от x_1 до x_2
$W = \int_{x_1}^{x_2} \psi(x) ^2 dx.$
x_1
\Box Среднее значение физической величины L , характеризующей частицу, находящуюся в состоянии, описываемом волновой функцией Ψ ,
$\left\langle L\right angle =\int\limits_{-\infty}^{+\infty}L\mid\Psi\mid^{2}\mathrm{d}V$.
где $\Psi = \Psi(x, y, z, t)$ — волновая функция, описывающая состояние частицы; $\hbar = h/(2\pi)$; m — масса
частицы; Δ — оператор Лапласа $\left(\Delta\Psi = \frac{\partial^2\Psi}{\partial x^2} + \frac{\partial^2\Psi}{\partial y^2} + \frac{\partial^2\Psi}{\partial z^2}\right)$; $i = \sqrt{-1}$ — мнимая единица; $U = U\left(x,y,z,t\right)$ —
потенциальная энергия частицы в силовом поле, в котором она движется.
□ Уравнение Шредингера для стационарных состояний
$\Delta \psi + \frac{2m}{\hbar^2} (E - U) \psi = 0,$
где $\psi = \psi(x, y, z)$ — координатная часть волновой функции $(\Psi(x, y, z, t) = \psi(x, y, z)e^{-i(E/\hbar)t}); U = U(x, y, z)$ — потенциальная энергия частицы; E — полная энергия частицы.
□ Волновая функция, описывающая одномерное движение свободной частицы,
$\Psi(x,t) = Ae^{-\frac{i}{\hbar}(Et - \rho_x x)},$
где A — амплитуда волн де Бройля; $p_x = k\hbar$ — импульс частицы; $E = \hbar \omega$ — энергия частицы.
□ Собственные значения энергии E_n частицы, находящейся на n -м энергетическом уровне в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками", $E_n = n^2 \frac{\pi^2 \hbar^2}{2ml^2}, n = 1, 2, 3,,$
$2ml^2$, $n=1, 2, 3,,$ где l — ширина ямы.
1де t — ширина ямы.
□ Собственная волновая функция, соответствующая вышеприведенному собственному значению энергии,
$\psi_n(x) = \sqrt{\frac{2}{l}} \sin \frac{n\pi}{l} x, n = 1, 2, 3, \dots$
$\hfill \square$ Коэффициент прозрачности D прямоугольного потенциального барьера конечной ширины $l,$
$D = D_0 \exp \left[-\frac{2}{\hbar} \sqrt{2m(U-E)l} \right],$
где D_0 — множитель, который можно приравнять единице; U — высота потенциального барьера; E — энергия частицы.
□ Уравнение Шредингера для линейного гармонического осциллятора в квантовой механике
$rac{\partial^2 \psi}{\partial x^2} + rac{2m}{\hbar^2} \Biggl(E - rac{m \omega_0^2 x^2}{2} \Biggr) \psi = 0 \; ,$

где $m\omega_0^2 x^2/2 = U$ — потенциальная энергия осциллятора; ω_0 — собственная частота колебаний осциллятора; m — масса частицы.

□ Собственные значения энергии гармонического осциллятора

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_0, \quad n = 1, 2, 3, \dots$$

□ Энергия нулевых колебаний гармонического осциллятора

$$E_0 = \frac{1}{2} \hbar \omega_0 .$$

6.3. ЭЛЕМЕНТЫ СОВРЕМЕННОЙ ФИЗИКИ АТОМОВ И МОЛЕКУЛ

 \Box Потенциальная энергия U(r) взаимодействия электрона с ядром в водородоподобном атоме

$$U(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r},$$

где r — расстояние между электроном и ядром; Z — порядковый номер элемента; ε_0 — электрическая постоянная.

 \square Собственное значение энергии E_n электрона в водородоподобном атоме

$$E_n = -\frac{1}{n^2} \frac{Z^2 m e^4}{8h^2 \varepsilon_0^2}, \quad n = 1, 2, 3, \dots.$$

□ Энергия ионизации атома водорода

$$E_i = -E_1 = \frac{me^4}{8h^2\epsilon_0^2} \,.$$

□ Момент импульса (механический орбитальный момент) электрона

$$L_l = \hbar \sqrt{l(l+1)}$$
,

где l — орбитальное квантовое число, принимающее при заданном n следующие значения: l = 0, 1, ..., n-1 (всего n значений).

 \Box Проекция момента импульса на направление z внешнего магнитного поля

$$L_{lz} = \hbar m_l$$
,

где m_l — магнитное квантовое число, принимающее при заданном l следующие значения: $m_l = 0, \pm 1, ..., \pm l$ (всего (2l+1) значений).

□ Правила отбора для орбитального и магнитного квантовых чисел

$$\Delta l = \pm 1$$
 и $\Delta m_l = 0$, ± 1 .

□ Нормированная волновая функция, отвечающая *ls*-состоянию (основному состоянию) электрона в атоме водорода,

$$\psi_{100}(r) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$$
,

где $a = 4\pi\epsilon_0 \hbar^2/(me^2)$ — величина, совпадающая с первым боровским радиусом.

 \square Вероятность обнаружить электрон в атоме водорода, находящемся в ls-состоянии, в интервале от r до $r+\mathrm{d}r$

$$dW = |\psi_{100}|^2 dV = |\psi_{100}|^2 4\pi r^2 dr.$$

□ Спин (собственный механический момент импульса) электрона
$L_{s}=\hbar\sqrt{s\left(s+1\right) }\ ,$
где s — спиновое квантовое число ($s = 1/2$).
\square Проекция спина на направление z внешнего магнитного поля
$L_{sz}=\hbar m_{s}$,
где m_s —магнитное спиновое квантовое число ($m_s = \pm 1/2$).
□ Принцип Паули
$Z\left(n,\ l,\ m_{l}\ , m_{s} ight)=0$ или $1,$
где $Z(n, l, m_l, m_s)$ — число электронов, находящихся в квантовом состоянии, описываемом набором четырех квантовых чисел: n — главного, l — орбитального, m_l — магнитного, m_s — магнитного спинового.
\square Максимальное число электронов $Z(n)$, находящихся в состояниях, определяемых данным главным квантовым числом n ,
$Z(n) = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$.
□ Коротковолновая граница сплошного рентгеновского спектра
$\lambda_{\min} = ch/(eU)$,
где e — заряд электрона; U — разность потенциалов, приложенная к рентгеновской трубке. \Box Закон Мозли, определяющий частоты спектральных линий характеристического рентгеновского излучения,
$v = R\left(Z - \sigma\right)^2 \left(\frac{1}{m^2} - \frac{1}{n^2}\right),$
где R — постоянная Ридберга, Z — порядковый номер элемента в периодической системе; σ — постоянная экранирования; m определяет рентгеновскую серию (m = 1, 2, 3,); n определяет отдельным линии соответствующей серии (n = m + 1, m + 2,).
\square Закон Мозли для линии K_{α} ($\sigma=1$) $ v=R\big(Z-1\big)^2\Big(\frac{1}{1^2}-\frac{1}{2^2}\Big). $
6.4. ЭЛЕМЕНТЫ КВАНТОВОЙ СТАТИСТИКИ □ Распределение Бозе-Эйнштейна и Ферми-Дирака

 $\left\langle N_i \right
angle = rac{1}{e^{(E_i - \mu)/(kT)} - 1}$ и $\left\langle N_i \right
angle = rac{1}{e^{(E_i - \mu)/(kT)} + 1}$,

где $\langle N_i \rangle$ — со	отве	гственно средние	е числа бозо	ноі	в и фермионов	в квантовом сост	гоянии с энергией E_i ; k
		-	-				еский потенциал. При
$e^{(E_i-\mu)/(kT)} >> 1$	оба	распределения	переходят	В	классическое	распределение	Максвелла-Больцмана
$\langle N_i \rangle = A e^{-E_i / (kT)}$, где	$A=e^{\mu/(kT)}.$					

□ Распределение Ферми-Дирака по энергиям для свободных электронов в металле

$$\langle N(E)\rangle = \frac{1}{e^{(E-E_{\rm F})/(kT)}+1}$$
,

где $E_{\rm F}$ — энергия Ферми.

♦ При T = 0 К

$$\left\langle N\!\left(E\right)\!\right\rangle = \begin{cases} 1 & \text{при } E < F_{\mathrm{F}}\,, \\ \\ 0 & \text{при } E > F_{\mathrm{F}}\,. \end{cases}$$

 \square Характеристическая температура Дебая (при $T << T_{\rm D}$)

$$T_{\rm D} = \hbar \omega_{\rm D} / k$$
,

□ Электрическая проводимость металла, согласно квантовой теории электропроводности металлов,

$$\gamma = \frac{ne^2 \langle l_{\rm F} \rangle}{m \langle u_{\rm F} \rangle} ,$$

где n — концентрация электронов проводимости в металле; $\langle l_{\rm F} \rangle$ — средняя длина свободного пробега электрона, имеющего энергию Ферми; $\langle u_{\rm F} \rangle$ — средняя скорость теплового движения такого электрона.

6.5. ЭЛЕМЕНТЫ ФИЗИКИ ТВЕРДОГО ТЕЛА

$$n_e = C_1 e^{-(E_2 - E_F)/(kT)} \text{ M } n_p = C_2 e^{-(E_1 - E_F)/(kT)},$$

где E_2 — энергия, соответствующая дну зоны проводимости; E_1 — энергия, соответствующая верхней границе валентной зоны; E_F — энергия Ферми; T — термодинамическая температура; C_1 и C_2 — постоянные, зависящие от температуры и эффективных масс электронов проводимости и дырок (при равенстве последних $C_1 = C_2$).

□ Уровень Ферми в собственном полупроводнике

$$E_{\rm F} = \Delta E / 2$$
.

где ΔE — ширина запрещенной зоны.

□ Удельная проводимость собственных полупроводников

$$\gamma = \gamma_0 e^{-\Delta E/(2kT)}$$

где у 0 — постоянная, характерная для данного полупроводника.

VII. ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА

7.1. ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА

\square Радиус ядра $R = R_0 A^{1/3} ,$
где $R_0 = 1.4 \cdot 10^{-15}$ м; A — массовое число (число нуклонов в ядре).
□ Энергия связи нуклонов в ядре
$E_{\text{CB}} = [Zm_p + (A-Z)m_n - m_g]c^2 = [Zm_H + (A-Z)m_n - m]c^2$
где m_p , m_n , m_g — соответственно массы протона, нейтрона и ядра; Z — зарядовое число ядра (число протонов в ядре); A — массовое число; $m_H = m_p + m_e$, масса атома водорода $\binom{1}{1}H$; m — масса атома.
□ Дефект массы ядра
$\Delta m = [Zm_p + (A-Z)m_n] - m_{\pi} = [Zm_H + (A-Z)m_n] - m$.
\Box Удельная энергия связи (энергия связи, отнесенная к одному нук- лону) $\delta E_{\sf cB} = E_{\sf CB} \ / \ A \ .$
\Box Число ядер, распавшихся в среднем за промежуток времени от t до $t+\mathrm{d}t,$ $\mathrm{d}N=-\lambda N\mathrm{d}t\;,$
где N — число нераспавшихся ядер к моменту времени t ; λ — постоянная радиоактивного распада.
□ Закон радиоактивного распада
$N=N_0e^{-\lambda t}$,
где N — число нераспавшихся ядер в момент времени t ; N_0 — начальное число нераспавшихся ядер (в момент времени $t=0$); λ — постоянная радиоактивного распада.
\square Число ядер, распавшихся за время t ,
$\Delta N = N_0 - N = N_0 \left(1 - e^{-\lambda t} \right)$
\Box Связь периода полураспада $T_{1/2}$ и постоянной радиоактивного рас- пада λ $T_{1/2} = (\ln 2)/\lambda$.
\Box Связь среднего времени жизни τ радиоактивного ядра и постоянной λ радиоактивного распада $\tau = 1/\lambda$.
\square Активность нуклида $A = \left \frac{\mathrm{d}N}{\mathrm{d}t} \right = \lambda N \; .$
□ Правила смещения:

для α-распада

$$_{Z}^{A}X\rightarrow_{Z-2}^{A-4}Y+_{2}^{4}He$$
;

◆ для β⁻-распада

$$_{Z}^{A}X\rightarrow_{Z+1}^{A}Y+_{-1}^{0}e$$
;

♦ для β^+ -распада

$${}_{Z}^{A}X \rightarrow {}_{Z-1}^{A}Y + {}_{+1}^{0}e$$
.

□ Символическая запись ядерной реакции

$$_{Z}^{A}X + a \rightarrow_{Z'}^{A'}Y + b$$
, или $_{Z}^{A}X(a, b)_{Z'}^{A'}Y$,

где $_{Z}^{A}$ X и $_{Z'}^{A'}$ Y — исходное и конечное ядра соответственно с зарядовыми числами Z и Z' и массовыми числами A и A', a и b — соответственно бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

□ Энергия ядерной реакции

$$Q = c^{2} \left[(m_{1} + m_{2}) - (m_{3} + m_{4}) \right],$$

где m_1 и m_2 — массы покоя ядра-мишени и бомбардирующей частицы; (m_3+m_4) — суммы масс покоя ядер продуктов реакции. Если Q > 0 — экзотермическая реакция, Q < 0 — эндотермическая реакция.

□ Энергия ядерной реакции представляется также в виде

$$Q = (T_1 + T_2) - (T_3 + T_4),$$

где T_1 , T_2 , T_3 , T_4 — соответственно кинетические энергии ядра-мишени, бомбардирующей частицы, испускаемой частицы и ядра продукта реакции.

□ Скорость нарастания цепной реакции

$$\frac{dN}{dt} = \frac{N(k-1)}{T}$$
, откуда $N = N_0 e^{(k-1)t/T}$,

где N_0 — число нейтронов в начальный момент времени; N — число нейтронов в момент времени t; T — среднее время жизни одного поколения; k — коэффициент размножения нейтронов.

Приложения

Основные физические постоянные (округленные значения)

Физическая постоянная	Обозначен ие	Значение
Нормальное ускорение свободного падения	g	9,81 м/c ²
Гравитационная	G	$6,67\cdot10^{-11}\mathrm{m}^3/(\mathrm{kg}\cdot\mathrm{c}^2)$
постоянная		
Постоянная Авогадро	$N_{\rm A}$	$6,02\cdot10^{23}\ { m моль}^{-1}$
Постоянная Фарадея	F	$96,48 \cdot 10^3 \text{ Кл/моль}$
Молярная газовая	R	8,31 Дж/(моль

	i	
постоянная		
Молярный объем	V_{m}	$22,4\cdot10^{-3} \text{ м}^3/\text{моль}$
идеального газа при	, III	
нормальных условиях		
Постоянная Больцмана	k	1,38·10 ⁻²³ Дж/К
Скорость света в вакууме	С	3,00·10 ⁸ м/c
Постоянная Стефана-	σ	$5,67\cdot10^{-8} \text{ BT/(M}^2\cdot\text{K}^4)$
Больцмана		3,0710 B1/(M 1C)
Постоянная закона	b	2,90·10 ⁻³ м·К
смещения Вина	U	
Постоянная Планка	h	6,63·10 ⁻³⁴ Дж·с
Постоянная Планка	$\hbar = h/2\pi$	1,05·10 ⁻³⁴ Дж·с
Постоянная Ридберга	R	6,63·10 ⁻³⁴ Дж·с 1,05·10 ⁻³⁴ Дж·с 1,10·10 ⁷ м ⁻¹
Радиус Бора	а	$0,529 \cdot 10^{-10} \text{ M}$
Масса покоя электрона	m_e	9,11·10 ⁻³¹ кг
Масса покоя протона	m_p	1,6726·10 ⁻²⁷ кг
Масса покоя нейтрона	\mathbf{m}_n	1,6750·10 ⁻²⁷ кг
Масса покоя α-частицы	m_{α}	6,6425·10 ⁻²⁷ кг
Атомная единица массы	а.е.м.	1,660·10 ⁻²⁷ кг
Отношение массы	m_p/m_e	1836,15
протона к массе	111p/111e	1030,13
электрона		
Элементарный заряд	е	1,60·10 ⁻¹⁹ Кл
Отношение заряда	e/m_e	1,76·10 ¹¹ Кл/кг
электрона к его массе	C/ IIIe	1,7010 100710
Комптоновская длина	Λ	2,43·10 ⁻¹² м
волны электрона		2, 13 10 M
Энергия ионизации	E_i	2,18-10 ⁻¹⁸ Дж (13,6 эВ)
атома водорода	21	
Магнетон Бора	μВ	$0.927 \cdot 10^{-23} \text{ A} \cdot \text{m}^2$ $8.85 \cdot 10^{-12} \Phi/\text{m}$
Электрическая	60	$8,85\cdot10^{-12} \Phi/M$
постоянная		
Магнитная постоянная	μ0	12,566·10 ⁻⁷ Гн/м

Единицы и размерности физических величин в СИ

Величина		Едині	ица	Выражени е через основные и
наименование размерно сть		наиме- нование		дополнител ь-ные единицы
Oct	иницы			
Длина	\boldsymbol{L}	метр	M	
Macca	M	килограм	КГ	
		M		
Время	T	секунда	c	

Сила электрического тока I ампер кельвин K Термодинамическая температура θ кельвин K Количество вещества N моль моль Сила света J кандела кд Плоский угол — радиан рад рад Телесный угол — радиан рад рад Телесный угол — радиан рад рад Телесный угол — радиан рад рад Частота Телесный угол — герадиа ср Частота Телесный угол — герадиа ср Частота — радиан рад — Изстота — Синан — — Радиан — Настота — — Радиан — — — — — — — — — —	1				1
Термодинамическая температура Θ кельвин K Количество вещества N моль моль Сила света J кандела кд Дополнительные единины — радиан рад Плоский угол — стерадиа н ср Частота T^{-1} герц Гц c^{-1} Сила, вес LMT^{-2} ньютон H м кг · c · c · c · c · 2 Давление, механическое напряжение L^2MT^{-2} джоуль Дж $M^2 \cdot \kappa r \cdot c^{-2}$ Мощность, поток энектрическов теплоты L^2MT^{-3} ватт BT $M^2 \cdot \kappa r \cdot c^{-3}$ моектрическов занктрический заряд) TI кулон $Kл$ $c \cdot A$ Электрическое напряжение, зактрический потенциал, разность электрический потенциал, разность электрический потенциал, разность электрическая емкость $L^2MT^{-3}I^{-1}$ вольт вольт электрическая емкость $L^2MT^{-3}I^{-1}$ ом $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-1}$ $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-1}$ Электрическое сопротивление $L^2MT^{-3}I^{-1}$ ом $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-2}$ $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-2}$ Магнитный поток $L^2MT^{-2}I^{-1}$ вебер<	-	I	ампер	A	
температура Кельвин К Количество вещества N моль моль Дополнительные сдиницы Плоский угол — радиан рад Производные единицы Па терц Гц с - 1 Сила, вес Lampa enug Сила, вес Давони в производиметь вай вати вати вати вати вати вати вати вати					
Количество вещества N моль кандела кад Дополнительные единицы Плоский угол — радиан рад Плоский угол — стерадиа рад Производные единицы Частота T^{-1} герц герц герц Гц c^{-1} Сила, вес LMT^{-2} ньютон Н $M \cdot \kappa r \cdot c^{-2}$ Давление, механическое напряжение $L^{-1}MT^{-2}$ паскаль Па $M^{-1} \cdot \kappa r \cdot c^{-2}$ Энергия, работа, количество теплоты L^2MT^{-3} ватт Вт $M^2 \cdot \kappa r \cdot c^{-3}$ Мощность, поток энергии L^2MT^{-3} ватт Вт $M^2 \cdot \kappa r \cdot c^{-3}$ Электрическое напряжение, электрической потенциал, разность электрический потенциал, разность электрический потенциал, разность электрическая емкость $L^2MT^{-3}I^{-1}$ фарад $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-1}$ Электрическая емкость $L^2MT^{-3}I^{-2}$ ом ом магитическая емкость $L^2MT^{-3}I^{-2}$ ом ом магитическая $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-2}$ Электрическая $L^2MT^{-3}I^{-2}I^{-2}$ ом ом магитиный поток $L^2MT^{-3}I^{-2}I^{-2}$ ом ом магитиный поток $L^2MT^{-2}I^{-2}I^{-2}I^{-2}$ вебер $L^2MT^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2}I^{-2$	-	Θ	кельвин	K	
Сила света J кандела кд Дополнительные единицы Плоский угол — радиан стерадиа н н рад Производные единицы Частота T^{-1} герц $\Gamma_{\rm II}$ C^{-1} Сила, вес LMT^{-2} ныотон H м кг с C^{-2} Давление, механическое напряжение $L^{-1}MT^{-2}$ джоуль Дж M^{-1} кг с C^{-2} Мощность, поток энергии $L^{2}MT^{-3}$ ватт L^{-1} <					
Дополнительные единицы Плоский угол — радиан рад сер ни прадиан рад сер ни праводные единицы Производные единицы Частота T^{-1} герц герц герц герц герц герц герц герц			МОЛЬ	МОЛЬ	
Плоский угол — радиан стерадиа н польный угол радиан стерадиа н польный угол радиан стерадиа н польный него и польный и поток и поток улектрический потенциал, разность улектрическая емкость изотопа (активность изотопа активность изотопа (активность иле дам (д. 14 м.)) дажно и поток и перадо и поток и поток унарадо и поток и дета и поток и потенциал (потенциалов, унарадо и поток и дета и поток и поток и дета и поток и поток и дета и поток и п	Сила света	J	кандела	кд	
Производные единицы Частота T^{-1} герц Γ ц c^{-1} Сила, вес LMT^{-2} ньютон H $M \cdot \kappa \Gamma \cdot c^{-2}$ Давление, механическое напряжение $L^{-1}MT^{-2}$ паскаль Πa $M^{-1} \cdot \kappa \Gamma \cdot c^{-2}$ Энергия, работа, количество теплоты L^2MT^{-3} ватт BT $M^2 \cdot \kappa \Gamma \cdot c^{-2}$ Мощность, поток энергии L^2MT^{-3} ватт BT $M^2 \cdot \kappa \Gamma \cdot c^{-3}$ Количество электрическое напряжение, электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила $L^2MT^{-3}I^{-1}$ вольт B $M^2 \cdot \kappa \Gamma \cdot c^{-3} \cdot A^{-1}$ Электрическая емкость $L^{-2}M^{-1}T^4I$ фарад Φ Φ $K^2 \cdot \kappa \Gamma^{-1} \cdot c^{-3} \cdot A^{-1}$ Электрическая емкость $L^{-2}M^{-1}T^{-1}I$ ом Φ Φ Φ Φ Φ $K^2 \cdot \kappa \Gamma^{-1} \cdot c^{-3} \cdot A^{-2}$ Электрическая емкость $L^{-2}M^{-1}T^{-1}I$ Φ	Допол	нительны	е единиц	ы	
Производные единицы Частота T^{-1} герц Γ ц c^{-1} Сила, вес LMT^{-2} ньютон H $M \cdot \text{кг} \cdot \text{c}^{-2}$ Давление, механическое напряжение $L^{-1}MT^{-2}$ паскаль Πa $M^{-1} \cdot \text{кг} \cdot \text{c}^{-2}$ Энергия, работа, количество теплоты $L^{2}MT^{-3}$ ватт BT $M^{2} \cdot \text{кг} \cdot \text{c}^{-3}$ Мощность, поток энергии $L^{2}MT^{-3}$ ватт BT $M^{2} \cdot \text{кг} \cdot \text{c}^{-3}$ Количество электрический заряд) TI кулон K_{7} K_{8} Электрическое напряжение, электрический потенциал, разность электрический потенциалов, электрическая емкость $L^{2}M^{-1}I^{-1}$ вольт B $M^{2} \cdot \text{кг} \cdot \text{c}^{-3} \cdot A^{-1}$ Электрическая емкость $L^{2}M^{-1}I^{-$	Плоский угол		радиан	рад	
Производные единицы Частота T^{-1} repц $\Gamma \mu$ C^{-1} Сила, вес LMT^{-2} ньютон H м·кг·с $^{-2}$ Давление, механическое напряжение $L^{-1}MT^{-2}$ паскаль Πa м $^{-1}$ кг·с $^{-2}$ Энергия, работа, количество теплоты L^2MT^{-3} ватт ватт ватт ватт ватт ватт ватт ват	Телесный угол	_	стерадиа	ср	
Частота T^{-1} герц $\Gamma \mathfrak{t}$ \mathfrak{c}^{-1} Сила, вес LMT^{-2} ньютон \mathfrak{H} $\mathfrak{M} \cdot \kappa \Gamma \cdot \mathfrak{c}^{-2}$ Давление, механическое напряжение $L^{-1}MT^{-2}$ паскаль Πa $\mathfrak{m}^{-1} \cdot \kappa \Gamma \cdot \mathfrak{c}^{-2}$ Энергия, работа, количество теплоты $L^{2}MT^{-3}$ ватт $\mathfrak{B}T$ $\mathfrak{M}^{2} \cdot \kappa \Gamma \cdot \mathfrak{c}^{-3}$ Мощность, поток энергии III кулон K_{J} K_{J} K_{J} Количество энектрический заряд) III кулон K_{J} K_{J} K_{J} Электрическое напряжение, энектрическое напряжение, энектрический потенциал, разность энектрических потенциалов, энектрическая емкость I_{J} <td></td> <td></td> <td>H</td> <td></td> <td></td>			H		
Частота T^{-1} герц $\Gamma \mathfrak{t}$ \mathfrak{c}^{-1} Сила, вес LMT^{-2} ньютон \mathfrak{H} $\mathfrak{M} \cdot \kappa \Gamma \cdot \mathfrak{c}^{-2}$ Давление, механическое напряжение $L^{-1}MT^{-2}$ паскаль Πa $\mathfrak{m}^{-1} \cdot \kappa \Gamma \cdot \mathfrak{c}^{-2}$ Энергия, работа, количество теплоты $L^{2}MT^{-3}$ ватт $\mathfrak{B}T$ $\mathfrak{M}^{2} \cdot \kappa \Gamma \cdot \mathfrak{c}^{-3}$ Мощность, поток энергии III кулон K_{J} K_{J} K_{J} Количество энектрический заряд) III кулон K_{J} K_{J} K_{J} Электрическое напряжение, энектрическое напряжение, энектрический потенциал, разность энектрических потенциалов, энектрическая емкость I_{J} <td>Про</td> <td>изводные</td> <td>единицы</td> <td></td> <td></td>	Про	изводные	единицы		
Давление, механическое напряжение Энергия, работа, количество теплоты Мощность, поток энергии Количество электрическое напряжение, электрический заряд) Электрический потенциал, разность электрическая емкость $L^2MT^{-3}I^{-1}$ вольт вольт рический потенциалов, электрическая емкость $L^2MT^{-3}I^{-1}I$	_	T^{-1}	1	Гц	c^{-1}
Давление, механическое напряжение Энергия, работа, количество теплоты Мощность, поток энергии Количество электрическое напряжение, электрическое напряжение, электрический потенциал, разность электрическая емкость $L^2MT^{-3}I^{-1}$ вольт в $M^2 \cdot \text{Kr} \cdot \text{c}^{-3}I^{-1}$ вольт в $M^2 \cdot \text{Kr} \cdot \text{c}^{-3}I^{-1}I^{-1}$ вольт в $M^2 \cdot \text{Kr} \cdot \text{c}^{-3}I^{-1}$	Сила, вес	LMT^{-2}	ньютон	Н	$\mathbf{M} \cdot \mathbf{K} \mathbf{\Gamma} \cdot \mathbf{c}^{-2}$
механическое напряжение Энергия, работа, количество теплоты Мощность, поток энергии Количество электрическая (электрический заряд) Электрический потенциал, разность электрическая емкость $L^2MT^{-3}I^{-1}$	Давление,	$I^{-1}MT^{-2}$	TO 0140 TI	По	
Энергия, работа, количество теплоты L^2MT^{-2} джоульДж $M^2 \cdot \kappa r \cdot c^{-2}$ Мощность, поток энергии L^2MT^{-3} ваттВт $M^2 \cdot \kappa r \cdot c^{-3}$ Количество электричества (электрический заряд) TI кулонКл $c \cdot A$ Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила $L^2MT^{-3}I^{-1}$ вольт B $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-1}$ Электрическая емкость $L^2MT^{-3}I^{-1}$ ом OM $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-1}$ Электрическое сопротивление $L^2MT^{-3}I^{-2}$ ом OM $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-2}$ Электрическая проводимость $L^2MT^{-3}I^{-2}I^{-1}$ сименс CM $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-2}$ Магнитный поток $L^2MT^{-2}I^{-1}I^{-$	механическое	L MI	паскаль	11a	м • кг • с
Энергия, работа, количество теплоты L^2MT^{-2} джоульДж $M^2 \cdot \kappa r \cdot c^{-2}$ Мощность, поток энергии L^2MT^{-3} ваттВт $M^2 \cdot \kappa r \cdot c^{-3}$ Количество электричества (электрический заряд) TI кулонКл $c \cdot A$ Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила $L^2MT^{-3}I^{-1}$ вольт B $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-1}$ Электрическая емкость $L^2MT^{-3}I^{-1}$ ом OM $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-1}$ Электрическое сопротивление $L^2MT^{-3}I^{-2}$ ом OM $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-2}$ Электрическая проводимость $L^2MT^{-3}I^{-2}I^{-1}$ сименс CM $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-2}$ Магнитный поток $L^2MT^{-2}I^{-1}I^{-$	напряжение				
количество теплоты $L^{2}MT^{-3}$ ватт BT $M^{2} \cdot K\Gamma \cdot C^{-3}$ мергии K количество электрическая (электрический потенциал, разность электрическая емкость $L^{2}MT^{-3}I^{-1}$ вольт A^{-1} вольт A^{-1}	*	1211T-2		П	2 –2
янергии	количество теплоты		джоуль	дж	м • кг • с
энергии TI кулон $K\pi$ $c \cdot A$ Электричества (электрическое TI кулон $K\pi$ $c \cdot A$ Электрическое $L^2MT^{-3}I^{-1}$ вольт B $M^2 \cdot \kappa r \cdot c^{-3} \cdot A^{-1}$ электрический потенциал, разность D D D D электрических потенциалов, D	Мощность, поток	L^2MT^{-3}	ватт	Вт	$M^2 \cdot K\Gamma \cdot c^{-3}$
электрический заряд) Электрическое напряжение,	· ·				
электрический заряд) Электрическое напряжение,	-	TI		IC-	_
(электрическое напряжение, электрический потенциал, разность электрических потенциалов, электрическая емкость $L^2MT^{-3}I^{-1}$ фарад $L^2MT^{-3}I^{-1}$ фарад $L^2MT^{-3}I^{-1}$ фарад $L^2MT^{-3}I^{-1}$ фарад $L^2MT^{-3}I^{-2}$ ом $L^2MT^{-2}I^{-1}$ вебер $L^2MT^{-2}I^{-1}$ вебер $L^2MT^{-2}I^{-1}$ вебер $L^2MT^{-2}I^{-1}$ вебер $L^2MT^{-2}I^{-1}$ тесла	электричества	11	кулон	KJI	c · A
Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электрическая емкость $L^{-2}M^{-1}T^{-4}I$ фарад Φ м $^{-2} \cdot \text{кг}^{-1} \cdot \text{c}^{-3} \cdot \text{д}^{-1}$ Электрическая емкость $L^{-2}M^{-1}T^{-4}I$ фарад Φ м $^{-2} \cdot \text{кг}^{-1} \cdot \text{c}^{-4} \cdot \text{д}^{-2}$ Электрическое сопротивление Φ домость Φ имагнитный поток Φ домость Φ	•				
напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила Электрическая емкость $L^{-2}M^{-1}T^{4}I$ фарад Φ $M^{-2} \cdot \text{Kr}^{-1} \cdot \text{c}^{4} \cdot \text{A}^{2}$ Электрическая емкость $L^{-2}M^{-1}T^{4}I$ фарад Φ					
электрический потенциал, разность электрических потенциалов, электродвижущая сила Электрическая емкость $L^{-2}M^{-1}T^{4}I$ фарад Электрическая емкость $L^{-2}M^{-1}T^{4}I$ фарад Электрическое Сопротивление Ом $L^{2}MT^{-3}I^{-2}$ ом Ом $M^{2} \cdot \kappa \Gamma \cdot c^{-3} \cdot \kappa^{-2}$ Опроводимость $L^{2}MT^{-2}I^{-1}$ вебер Ом $L^{2}MT^{-2}I^{-1}$ вебер Ом $L^{2}K\Gamma \cdot c^{-2} \cdot \kappa^{-1} \cdot c^{3}$ $L^{2}MT^{-2}I^{-1}$ тесла Ом $L^{2}K\Gamma \cdot c^{-2} \cdot \kappa^{-1}$ Ом $L^{2}MT^{-2}I^{-1}$ тесла Ом $L^{2}K\Gamma \cdot c^{-2} \cdot \kappa^{-1}$ Ом $L^{2}K\Gamma \cdot c^{-2} \cdot \kappa^{-1}$ Ом $L^{2}MT^{-2}I^{-1}$ тесла Ом $L^{2}K\Gamma \cdot c^{-2} \cdot \kappa^{-1}$ Ом $L^{2}MT^{-2}I^{-1}$ Ом $L^{2}K\Gamma \cdot c^{-2} \cdot \kappa^{-1}$ $L^{2}M\Gamma \cdot \kappa^{-1} \cdot c^{-1}$ Ом $L^{2}K\Gamma \cdot c^{-2} \cdot \kappa^{-1}$ $L^{2}M\Gamma \cdot \kappa^{-1} \cdot c^{-1}$ $L^{2}M\Gamma \cdot \kappa^{-1} \cdot \kappa^{-1} \cdot c^{-1}$ $L^{2}M\Gamma \cdot \kappa^{-1} \cdot \kappa^{-1} \cdot \kappa^{-1}$ $L^{2}M\Gamma \cdot \kappa^{-1} \cdot \kappa^{-1$	*	$I^{2}MT^{-3}I^{-1}$	ропіт	R	$M^2 \cdot KF \cdot c^{-3}$
потенциал, разность электрических потенциалов, электродвижущая сила Электрическая емкость $L^{-2}M^{-1}T^{4}I$ фарад Электрическое Сопротивление Ом $L^{2}MT^{-3}I^{-2}$ ом Ом A^{-2} Электрическая Проводимость Магнитный поток $L^{2}MT^{-2}I^{-1}$ вебер Магнитная индукция $L^{2}MT^{-2}I^{-1}$ тесла Индуктивность, взаимная индуктивность Световой поток $L^{2}MT^{-2}I^{-2}$ генри $L^{2}MT^{-2}I^{-2}$ генри Проводимость $L^{2}MT^{-2}I^{-2}$ генри $L^{2}MT^{-2}I^{-2}I^{-2}$ генри $L^{2}MT^{-2}I^{-2}I^{-2}I^{-2}$ генри $L^{2}MT^{-2}I^{$	=	L WII I	DOME	Ъ	$\begin{bmatrix} \mathbf{M} & \mathbf{K} & \mathbf{K} & \mathbf{C} & \mathbf{C} \\ \mathbf{A}^{-1} & \mathbf{C} & \mathbf{C} \end{bmatrix}$
электрических потенциалов, электродвижущая сила Электрическая емкость $L^{-2}M^{-1}T^4I$ фарад Φ м $^{-2} \cdot \text{кг}^{-1} \cdot \text{c}^4$ \cdot A 2 Электрическое $L^2MT^{-3}I^{-2}$ ом Oм $M^2 \cdot \text{кг} \cdot \text{c}^{-3} \cdot \text{conpotubnehue}$ Электрическая $L^{-2}M^{-1}T^3I$ сименс Cм $M^{-2} \cdot \text{кг}^{-1} \cdot \text{c}^3$ \cdot A 2 Магнитный поток $L^2MT^{-2}I^{-1}$ вебер Вб $M^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{A}^{-1}$ Магнитная индукция $MT^{-2}I^{-1}$ тесла $T\pi$ кг $\cdot \text{c}^{-2} \cdot \text{A}^{-1}$ Индуктивность, взаимная индуктивность $L^2MT^{-2}I^{-2}$ генри TH $M^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{A}^{-2}$ Освещенность $L^{-2}J$ люкс π Активность изотопа (активность нуклида в радиоактивном	_				A
потенциалов, электродвижущая сила $\begin{array}{cccccccccccccccccccccccccccccccccccc$. •				
Электрическая емкость $L^{-2}M^{-1}T^4I$ фарадФ $M^{-2} \cdot K\Gamma^{-1} \cdot c^4$ $\cdot A^2$ Электрическое сопротивление $L^2MT^{-3}I^{-2}$ Электрическая проводимостьом $L^{-2}M^{-1}T^3I$ $\cdot A^2$ Ом $\cdot A^2$ $M^{-2} \cdot K\Gamma \cdot c^{-3} \cdot C^3$ $\cdot A^2$ Магнитный поток $L^2MT^{-2}I^{-1}$ Индуктивность, взаимная индуктивностьвебер $L^2MT^{-2}I^{-1}$ $L^2MT^{-2}I^{-2}$ генриТл $L^2MT^{-2}I^{-2}$ генриГн $M^2 \cdot K\Gamma \cdot C^{-2} \cdot A^{-1}$ $M^2 \cdot K\Gamma \cdot C^{-2} \cdot A^{-2}$ Световой поток J Люмен $L^{-2}J$ Люкслюкс лклк $M^{-2} \cdot KJ \cdot CP$ Освещенность Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел L беккерел L Бк L^{-1}	_				
Электрическое сопротивление $L^2MT^{-3}I^{-2}$ ом Ом $M^2 \cdot \text{кг} \cdot \text{c}^{-3} \cdot \text{A}^{-2}$ Электрическая $L^{-2}M^{-1}T^3I$ сименс $M^{-2} \cdot \text{кг}^{-1} \cdot \text{c}^{-3} \cdot \text{K}^{-2}$ Проводимость $M^{-2}I^{-1$					
Электрическое сопротивление $L^2MT^{-3}I^{-2}$ ом Ом $M^2 \cdot \text{кг} \cdot \text{c}^{-3} \cdot \text{A}^{-2}$ Электрическая $L^{-2}M^{-1}T^3I$ сименс $M^{-2} \cdot \text{кг}^{-1} \cdot \text{c}^{-3} \cdot \text{K}^{-2}$ Проводимость $M^{-2}I^{-1$	Электрическая емкость	$L^{-2}M^{-1}T^4I$	фарад	Ф	$M^{-2} \cdot K\Gamma^{-1} \cdot c^4$
сопротивление A^{-2} Электрическая проводимость $L^{-2}M^{-1}T^{3}I$ сименс 2CM $\times A^{2}$ $M^{-2} \cdot \kappa \Gamma^{-1} \cdot c^{3}$ $\times A^{2}$ Магнитный поток $L^{2}MT^{-2}I^{-1}$ Вебервебер Вб $M^{2} \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-1}$ Магнитная индукция $MT^{-2}I^{-1}$ Индуктивность, взаимная индуктивность $L^{2}MT^{-2}I^{-2}$ генригенри Гн $M^{2} \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-1}$ Световой поток J Люменлюмен J Люкслм $M^{-2} \cdot \kappa J \cdot cp$ Освещенность $L^{-2}J$ Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел K Бк K^{-1}	-	2	1 1		$\cdot A^2$
сопротивление A^{-2} Электрическая проводимость $L^{-2}M^{-1}T^{3}I$ сименс 2CM $\times A^{2}$ $M^{-2} \cdot \kappa \Gamma^{-1} \cdot c^{3}$ $\times A^{2}$ Магнитный поток $L^{2}MT^{-2}I^{-1}$ Вебервебер Вб $M^{2} \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-1}$ Магнитная индукция $MT^{-2}I^{-1}$ Индуктивность, взаимная индуктивность $L^{2}MT^{-2}I^{-2}$ генригенри Гн $M^{2} \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-1}$ Световой поток J Люменлюмен J Люкслм $M^{-2} \cdot \kappa J \cdot cp$ Освещенность $L^{-2}J$ Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел K Бк K^{-1}	Электрическое	$L^2MT^{-3}I^{-2}$	OM	Ом	$M^2 \cdot K\Gamma \cdot C^{-3} \cdot$
Электрическая проводимость $L^{-2}M^{-1}T^{3}I$ сименс 2сименс сименс 2См м $^{-2} \cdot \kappa \Gamma^{-1} \cdot c^{3}$ · A^{2} Магнитный поток $L^{2}MT^{-2}I^{-1}$ Вебервебер Вб м $^{2} \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-1}$ Магнитная индукция $MT^{-2}I^{-1}$ Теслатесла генриТл м $^{2} \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-1}$ Индуктивность, взаимная индуктивность $L^{2}MT^{-2}I^{-2}$ генригенри генриГн м $^{2} \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-2}$ Световой поток J люменлюменлм м $^{-2} \cdot \kappa \Gamma \cdot c^{-2}$ м $^{-2} \cdot \kappa \Gamma \cdot c^{-$	*				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	$L^{-2}M^{-1}T^3I$	сименс	См	$M^{-2} \cdot K\Gamma^{-1} \cdot C^3$
Магнитная индукция $MT^{-2}I^{-1}$ тесла $Tл$ кг · с $^{-2}$ · A^{-1} Индуктивность, взаимная индуктивность $L^2MT^{-2}I^{-2}$ генри Γ н M^2 · кг · с $^{-2}$ · A^{-2} Световой поток J люмен лм кд · ср Освещенность $L^{-2}J$ люкс лк M^{-2} · кд · ср Активность изотопа (активность нуклида в радиоактивном	-	2	01111101110	01.1	
Магнитная индукция $MT^{-2}I^{-1}$ тесла $Tл$ кг · с $^{-2}$ · A^{-1} Индуктивность, взаимная индуктивность $L^2MT^{-2}I^{-2}$ генри Γ н M^2 · кг · с $^{-2}$ · A^{-2} Световой поток J люмен лм кд · ср Освещенность $L^{-2}J$ люкс лк M^{-2} · кд · ср Активность изотопа (активность нуклида в радиоактивном		$I^{2}MT^{-2}I^{-1}$	вебер	Вб	$\mathbf{M}^2 \cdot \mathbf{K} \mathbf{F} \cdot \mathbf{C}^{-2}$
Индуктивность, взаимная индуктивность $L^2MT^{-2}I^{-2}$ генри генри Гн $M^2 \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-2}$ Световой поток J люмен лм кд · ср Освещенность $L^{-2}J$ люкс лк $M^{-2} \cdot \kappa \chi \cdot cp$ Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел ь Бк c^{-1}	Widi Hillibin Hotok		всоср	Ъ	Λ^{-1}
Индуктивность, взаимная индуктивность $L^2MT^{-2}I^{-2}$ генри генри Гн $M^2 \cdot \kappa \Gamma \cdot c^{-2} \cdot A^{-2}$ Световой поток J люмен лм кд · ср Освещенность $L^{-2}J$ люкс лк $M^{-2} \cdot \kappa \chi \cdot cp$ Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел ь Бк c^{-1}	Магнитная инпункция	$MT^{-2}I^{-1}$	теспо	Τπ	ΓΛ (ΔΕ - C -2 Λ -1)
взаимная индуктивность L MT T генри T M \cdot $KF \cdot C$ \cdot A^{-2} Световой поток J люмен лм $KJ \cdot cp$ Освещенность $L^{-2}J$ люкс лк $M^{-2} \cdot KJ \cdot cp$ Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел K			1 CCJIa	1 11	
индуктивность J люмен лм кд · ср Освещенность $L^{-2}J$ люкс лк $\mathbf{m}^{-2} \cdot \mathbf{k} \mathbf{g} \cdot \mathbf{c} \mathbf{p}$ Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел ь Бк \mathbf{c}^{-1}		$L^2MT^{-2}I^{-2}$	генри	Гн	
Световой поток J люмен лм кд · ср Освещенность $L^{-2}J$ люкс лк $\mathbf{m}^{-2} \cdot \mathbf{k} \mathbf{g} \cdot \mathbf{c} \mathbf{p}$ Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел ь Бк \mathbf{c}^{-1}					A^{-2}
Освещенность $L^{-2}J$ люкс лк $\mathbf{m}^{-2} \cdot \mathbf{k} \mathbf{J} \cdot \mathbf{c} \mathbf{p}$ Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел ь Бк \mathbf{c}^{-1}		I	помон	TIN #	TATE CO
Активность изотопа (активность нуклида в радиоактивном T^{-1} беккерел Бк c^{-1}					
(активность нуклида в радиоактивном T^{-1} беккерел Бк c^{-1}		L J	люкс	ЛК	м • кд • ср
радиоактивном Ь		T^{-1}	беккерен	Γ_{ν}	c ⁻¹
радноактивном	,		*	אמ	
источнике)	=		D		
	[источнике]	1			

Поглощенная доза	$L^{-2}T^{-2}$	грей	Гр	$\text{m}^2 \cdot \text{c}^{-2}$
излучения				

Множители и приставки для образования десятичных кратных и дольных единиц

Множи	Прис-	Обозначение приставки		Множи -	Прис-	Обозна прист	
тель	тавка	между- народн ое	русско	тель	тавка	между- народн ое	русско
10^{-18}	атто	a	a	10 ¹	дека	da	да
10^{-15}	фемт	f	ф	10^2	гекто	h	Γ
	o						
10^{-12}	пико	p	П	10^3	кило	k	К
10^{-9}	нано	n	Н	10^{6}	мега	M	M
10^{-6}	микр	μ	МК	10 ⁹	гига	G	Γ
10 ⁻³	о милл и	m	M	10 ¹²	тера	Т	Т
10^{-2}	санти	c	c	10^{15}	пета	P	П
10^{-1}	деци	d	Д	10^{18}	экса	Е	Э

Греческий алфавит

Обозначения букв	Название букв	Обозначения букв	Название букв
Α, α	альфа	Ν, ν	НЮ
Β, β	бета	Ξ, ξ	кси
Γ, γ	гамма	О, о	омикрон
Δ, δ	дельта	Π, π	ПИ
Ε, ε	эпсилон	Ρ, ρ	po
Z, ζ	дзета	Σ, σ	сигма
Η, η	эта	Τ, τ	тау
Θ, θ, θ	тета	Υ, υ	ипсилон
Ι, ι	йота	Φ, φ	фи
Κ, κ	каппа	Χ, χ	ХИ
Λ, λ	ламбда	Ψ, ψ	пси
Μ, μ	МЮ	Ω, ω	омега

СОДЕРЖАНИЕ

ШКОЛЬНАЯ МАТЕМАТИКА	5
ВЫСШАЯ МАТЕМАТИКА	
ФИЗИКА	
І. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ	16
1.1. Элементы кинематики	16
1.2. Динамика материальной точки и поступательного движен	ния твердого тела
1.3. Работа и энергия	
1.4. Механика твердого тела	
1.5. Тяготение. Элементы теории поля	
1.6. Элементы механики жидкостей	24
1.7. Элементы специальной (частной) теории относительност	и 25
II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИН27	ІАМИКИ
2.1. Молекулярно-кинетическая теория идеальных газов	27
2.2. Основы термодинамики	30
2.3. Реальные газы, жидкости и твердые тела	32
III. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ	34
3.1. Электростатика	34
3.2. Постоянный электрический ток	38
3.3. Электрические токи в металлах, в вакууме и газах	40
3.4. Магнитное поле	41
3.5. Электромагнитная индукция	44
3.6. Магнитные свойства вещества	45
3.7. Основы теории Максвелла для электромагнитного поля	46
IV. КОЛЕБАНИЯ И ВОЛНЫ	47
4.1. Механические и электромагнитные колебания	47
4.2. Упругие волны	50
4.3. Электромагнитные волны	
V. ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ	53
5.1. Элементы геометрической и электронной оптики	53
5.2. Интерференция света	
 5.3. Дифракция света 	
5.4. Взаимодействие электромагнитных волн с веществом	57
5.5. Попаризация света	58

5.6. Квантовая природа излучения	59
VI. ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ,61	МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ
6.1. Теория атомов водорода по Бору	61
6.2. Элементы квантовой механики	61
6.3. Элементы современной физики атомов и молекул	64
6.4. Элементы квантовой статистики	66
6.5. Элементы физики твердого тела	67
VII. ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА	68
7.1. Элементы физики атомного ядра	68
ПРИЛОЖЕНИЯ	70