In [2]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
matplotlib inline

df = pd.read_csv('../glass.csv')
df
```

Out[2]:

	RI	Na	Mg	Al	Si	K	Ca	Ва	Fe	Туре
0	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.00	0.0	1
1	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.00	0.0	1
2	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.00	0.0	1
3	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.00	0.0	1
4	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.00	0.0	1
209	1.51623	14.14	0.00	2.88	72.61	80.0	9.18	1.06	0.0	7
210	1.51685	14.92	0.00	1.99	73.06	0.00	8.40	1.59	0.0	7
211	1.52065	14.36	0.00	2.02	73.42	0.00	8.44	1.64	0.0	7
212	1.51651	14.38	0.00	1.94	73.61	0.00	8.48	1.57	0.0	7
213	1.51711	14.23	0.00	2.08	73.36	0.00	8.62	1.67	0.0	7

214 rows × 10 columns

memory usage: 16.8 KB

In [3]:

```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 214 entries, 0 to 213
Data columns (total 10 columns):
    Column Non-Null Count Dtype
 #
            _____
    RΙ
             214 non-null
                             float64
 0
 1
    Na
             214 non-null
                             float64
            214 non-null
                             float64
 2
    Mg
 3
    Αl
             214 non-null
                             float64
 4
    Si
             214 non-null
                             float64
 5
    Κ
             214 non-null
                             float64
 6
    Ca
             214 non-null
                             float64
 7
             214 non-null
                             float64
    Ba
 8
    Fe
             214 non-null
                             float64
             214 non-null
                             int64
    Type
dtypes: float64(9), int64(1)
```

Выявить наличие ошибочных данных

Следует отметить, что переменные, Y, X2 — X4 непрерывные, X1, X5, X8 — категориальные переменные.

Задача работы состоит в построении уравнения множественной регрессии для предложенных данных в виде:

$$Y = f(X_1, X_2, X_3, \dots, X_{54})$$

Исследуя распределение значиний каждого столбца, выяснили что некотороые данные не подчиняются нормальному закону распределения, поэтому мы исключаем их из выборки. Далее строим попарную корреляционную матрицу для дальнейшего исследования выбросов данных.

In [5]:

- 1 sns.set()
- 2 sns.pairplot(df)

Out[5]:

<seaborn.axisgrid.PairGrid at 0x248644660d0>

In [4]:

```
correlation = df.corr()
fig = plt.figure()
axes = fig.add_axes([0,0,2,2])
sns.heatmap(correlation, annot=True, cmap='rainbow')
```

Out[4]:

<Axes:>

In [5]:

1 np.linalg.matrix_rank(correlation)

Out[5]:

10

In [6]:

1 np.linalg.det(correlation)

Out[6]:

3.8799781156537654e-05

In [7]:

1 df.describe()

Out[7]:

	RI	Na	Mg	Al	Si	K	Са	
count	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000	21
mean	1.518365	13.407850	2.684533	1.444907	72.650935	0.497056	8.956963	
std	0.003037	0.816604	1.442408	0.499270	0.774546	0.652192	1.423153	
min	1.511150	10.730000	0.000000	0.290000	69.810000	0.000000	5.430000	
25%	1.516522	12.907500	2.115000	1.190000	72.280000	0.122500	8.240000	
50%	1.517680	13.300000	3.480000	1.360000	72.790000	0.555000	8.600000	
75%	1.519157	13.825000	3.600000	1.630000	73.087500	0.610000	9.172500	
max	1.533930	17.380000	4.490000	3.500000	75.410000	6.210000	16.190000	
4								•

In [12]:

1 df1 = df.drop(['K', 'Ca'], axis=1) # убираем кальций и калий из-за низкой корреляции с

In [9]:

```
1 correlation = df1.corr()
```

- 2 fig = plt.figure()
- 3 axes = fig.add_axes([0,0,2,2])
- 4 sns.heatmap(correlation, annot=True, cmap='rainbow')

Out[9]:

<Axes:>

In [10]:

1 np.linalg.matrix_rank(correlation)

Out[10]:

8

In [11]:

1 np.linalg.det(correlation) # Определитель матрицы

Out[11]:

0.021981742569662385

In [150]:

```
from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn import metrics
 5
   X = df1.iloc[:,0:7].values
 6 \mid Y = df1.iloc[:,7].values
7
8 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3)
9
   my_model = LinearRegression()
   my_model.fit(X_train, Y_train)
10
11
   y_pred = my_model.predict(X_test)
12
13
   print(my_model.intercept_,my_model.coef_)
14
   print('MAE:', metrics.mean_absolute_error(Y_test,y_pred))
15
16
17
   print('MSE:', metrics.mean squared error(Y test, y pred))
18
19 print('R_2:', metrics.r2_score(Y_test,y_pred))
```

-104.04316142470918 [46.05478416 0.7190313 -0.69980983 1.11117333 0.3797 2987 0.38974951 -1.50565461]
MAE: 0.693579131093704

MAE: 0.693579131093704 MSE: 0.9172791490228481 R_2: 0.7777042328426331

In [151]:

```
median = df1.RI.median()
 2
   print(median)
   IQR = df1.RI.quantile(0.75, interpolation='midpoint') - df1.RI.quantile(0.25, interpolation='midpoint')
   perc25 = df1.RI.quantile(0.25, interpolation='midpoint')
   perc75 = df1.RI.quantile(0.75, interpolation='midpoint')
 5
   print('25-й перцентиль:{},'.format(perc25),
 7
          '75-й перцентиль: {},'.format(perc75),
          "IQR: {}, ".format(IQR), "Гарницы выбросов: [{f}, {l}].".format(f=perc25 - 1.5*IQF
 8
9
                                                                            l=perc75+1.5*IQR))
10
   df1.RI.loc[df1.RI.between(perc25-1.5*IQR,
11
                                                    perc75+1.5*IQR)].hist(bins=30,
12
13
                                                                            range=(1.51, 1.53),
14
                                                                            label='IQR')
15
   plt.legend()
16
   df1 = df1.loc[df1.RI.between(perc25-1.5*IQR,
17
                                     perc75+1.5*IQR)]
18 df1.RI.describe()
```

1.51768

25-й перцентиль:1.5165250000000001, 75-й перцентиль: 1.519155, IQR: 0.002629 9999999991, Гарницы выбросов: [1.512580000000003, 1.5231].

Out[151]:

count 197,000000 1.517899 mean 0.001956 std 1.512990 min 25% 1.516510 50% 1.517610 75% 1.518720 1.523000 max Name: RI, dtype: float64

In [152]:

```
median = df1.Na.median()
 2
   print(median)
   IQR = df1.Na.quantile(0.75, interpolation='midpoint') - df1.Na.quantile(0.25, interpolation='midpoint')
   perc25 = df1.Na.quantile(0.25, interpolation='midpoint')
   perc75 = df1.Na.quantile(0.75, interpolation='midpoint')
 5
   print('25-й перцентиль:{},'.format(perc25),
 7
          '75-й перцентиль: {},'.format(perc75),
          "IQR: {}, ".format(IQR), "Гарницы выбросов: [{f}, {l}].".format(f=perc25 - 1.5*IQF
 8
9
                                                                           l=perc75+1.5*IQR))
10
   df1.Na.loc[df1.Na.between(perc25-1.5*IQR,
11
12
                                                    perc75+1.5*IQR)].hist(bins=8,
13
                                                                           range=(10,18),
14
                                                                           label='IQR')
15
   plt.legend()
16
   df1 = df1.loc[df1.Na.between(perc25-1.5*IQR,
17
                                     perc75+1.5*IQR)]
18 df1.Na.describe()
```

13.29

25-й перцентиль:12.93, 75-й перцентиль: 13.87, IQR: 0.9399999999999, Гарницы выбросов: [11.52, 15.27999999999].

Out[152]:

196.000000 count 13.434235 mean 0.680943 std 11.560000 min 25% 12.930000 13.295000 50% 75% 13.872500 15.150000 max Name: Na, dtype: float64

In [153]:

```
median = df1.Al.median()
 1
 2
   print(median)
   IQR = df1.Al.quantile(0.75, interpolation='midpoint') - df1.Al.quantile(0.25, interpolation='midpoint')
 3
   perc25 = df1.Al.quantile(0.25, interpolation='midpoint')
   perc75 = df1.Al.quantile(0.75, interpolation='midpoint')
   print('25-й перцентиль:{},'.format(perc25),
 7
          '75-й перцентиль: {},'.format(perc75),
          "IQR: {}, ".format(IQR), "Гарницы выбросов: [{f}, {l}].".format(f=perc25 - 1.5*IQF
 8
9
                                                                            l=perc75+1.5*IQR))
10
11
   df1.Al.loc[df1.Al.between(perc25=1.5*IQR,
12
                                                    perc75+1.5*IQR)].hist(bins=10,
13
                                                                            range=(0,4),
14
                                                                            label='IQR')
15
   plt.legend()
   df1 = df1.loc[df1.Al.between(perc25-1.5*IQR,
16
17
                                     perc75+1.5*IQR)]
   df1.Al.describe()
18
```

1.39

25-й перцентиль:1.205, 75-й перцентиль: 1.6349999999999, IQR: 0.4299999999997, Гарницы выбросов: [0.56000000000000, 2.27999999999999].

Out[153]:

178,000000 count 1.409157 mean 0.330090 std 0.580000 min 25% 1.210000 50% 1.360000 75% 1.570000 2.270000 max Name: Al, dtype: float64

In [154]:

```
median = df1.Si.median()
 2
   print(median)
   IQR = df1.Si.quantile(0.75, interpolation='midpoint') - df1.Si.quantile(0.25, interpolation)
   perc25 = df1.Si.quantile(0.25, interpolation='midpoint')
   perc75 = df1.Si.quantile(0.75, interpolation='midpoint')
 5
   print('25-й перцентиль:{},'.format(perc25),
 7
          '75-й перцентиль: {},'.format(perc75),
          "IQR: {}, ".format(IQR), "Гарницы выбросов: [{f}, {l}].".format(f=perc25 - 1.5*IQF
 8
9
                                                                          l=perc75+1.5*IQR))
10
   df1.Si.loc[df1.Si.between(perc25-1.5*IQR,
11
                                                   perc75+1.5*IQR)].hist(bins=20,
12
13
                                                                          range=(70,75),
14
                                                                          label='IQR')
15
   plt.legend()
16
   df1 = df1.loc[df1.Si.between(perc25-1.5*IQR,
17
                                     perc75+1.5*IQR)]
  df1.Si.describe()
18
```

72.800000000000001

25-й перцентиль: 72.38, 75-й перцентиль: 73.065, IQR: 0.6850000000000023, Гарницы выбросов: [71.3524999999999, 74.0925].

Out[154]:

count 173.000000 72.726936 mean 0.494292 std 71.360000 min 25% 72.390000 50% 72.810000 75% 73.060000 73.880000 Name: Si, dtype: float64

In [211]:

```
X = df1.iloc[:,0:7].values
 Y = df1.iloc[:,7].values
 3
 4
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3)
    my_model = LinearRegression()
 5
    my_model.fit(X_train, Y_train)
 7
 8 y pred = my model.predict(X test)
 9
    print(my_model.intercept_,my_model.coef_)
10
    print('MAE:', metrics.mean_absolute_error(Y_test,y_pred))
11
12
13
    print('MSE:', metrics.mean_squared_error(Y_test, y_pred))
14
15 print('R 2:', metrics.r2 score(Y test,y pred))
40.67515557667607 [-32.17829693
                                 0.55098963 -0.79213623
                                                            1.18748507
                                                                         0.0
5347756
   0.51871707 -0.42674981]
MAE: 0.6404812405910594
MSE: 0.7539256828349578
```

Анализируя выборку делаем вывод, что набор данных хорошо поддается анализу с помощью Линейной Регрессии

- 1. Коэффициент детерминации больше 0,8 --> можно доверять данной модели.
- 2. Если посмотреть на корреляционную матрицу можно сделать вывод, что тип стекла с достаточной точностью определяется исходя из содержанрия Mg.

In []:

R 2: 0.8126272935307237

1