12/03/2025, 11:05 about:blank

Folha de Dicas: Avaliando e Validando Modelos de Aprendizado de Máquina

Métricas e métodos de avaliação de modelos

about:blank 1/12

Nome do Método	Descrição	Sintaxe do Código	
classification_report	Gera um relatório com precisão, recall, F1-score e suporte para cada classe em problemas de classificação. Útil para avaliação de modelos. Hiperparâmetros: target_names: Lista de rótulos a serem incluídos no relatório. Prós: Fornece uma avaliação abrangente de modelos de classificação. Limitações: Pode não fornecer informações suficientes para conjuntos de dados desbalanceados.	from sklearn.metrics import classification_report y_true: Rótulos verdadeiros y_pred: Rótulos previstos target_names: Lista de nomes das classes alvo report = classification_report(y_true, y_pred, target_names=["class1", "class2"])	
confusion_matrix	Calcula uma matriz de confusão para avaliar o desempenho da classificação,	y_true: Rótulos verdadeiros	
	mostrando contagens	y_pred: Rótulos previstos	
bout:blank			2/12

about:blank 2/12

	de verdadeiros positivos, falsos positivos, verdadeiros negativos e falsos negativos. Hiperparâmetros: labels: Lista de rótulos de classe a incluir. Vantagens: Essencial para entender os erros de classificação. Limitações: Não fornece insights sobre as probabilidades de previsão.	conf_matrix = confusion_matrix(y_true, y_pred)
mean_squared_error	Calcula o erro quadrático médio (MSE), uma métrica comum para modelos de regressão. Valores mais baixos indicam melhor desempenho. Hiperparâmetros: sample_weight: Pesos a serem aplicados a cada amostra. Prós: Métrica simples e amplamente utilizada. Limitações: Sensível a outliers, pois grandes erros são elevados ao quadrado.	<pre>from sklearn.metrics import mean_squared_error y_true: Valores verdadeiros y_pred: Valores previstos sample_weight: Opcional, array de pesos amostrais mse = mean_squared_error(y_true, y_pred)</pre>
root_mean_squared_error	Calcula o erro quadrático médio da raiz (RMSE), que é a raiz quadrada do MSE. O RMSE fornece resultados mais interpretáveis, pois está nas mesmas unidades que o alvo. Hiperparâmetros: sample_weight: Pesos a serem aplicados a cada amostra. Vantagens: Mais interpretável do que o MSE.	from sklearn.metrics import root_mean_squared_error y_true: Valores verdadeiros y_pred: Valores previstos sample_weight: Opcional, array de pesos das amostras rmse = root_mean_squared_error(y_true, y_pred)

about:blank 3/12

. 2. 00. 2020, 11100		
	Limitações: Assim como o MSE, pode ser sensível a grandes erros e outliers.	
mean_absolute_error	Medida da magnitude média dos erros nas previsões, sem considerar sua direção. Útil para entender o tamanho médio do erro. Hiperparâmetros: sample_weight: Pesos das amostras opcionais. Prós: Menos sensível a outliers em comparação com o MSE. Limitações: Não penaliza erros grandes tanto quanto o MSE ou RMSE.	from sklearn.metrics import mean_absolute_error y_true: Valores verdadeiros y_pred: Valores previstos mae = mean_absolute_error(y_true, y_pred)
r2_score	Calcula o coeficiente de determinação (R²), que representa a proporção da variância explicada pelo modelo. Um valor mais alto indica um melhor ajuste. Prós: Fornece uma indicação clara do desempenho do modelo. Limitações: Não representa sempre a qualidade do modelo, especialmente para modelos não lineares.	<pre>from sklearn.metrics import r2_score y_true: Valores verdadeiros y_pred: Valores previstos r2 = r2_score(y_true, y_pred)</pre>
silhouette_score	Mede a qualidade da agrupamento avaliando a coesão dentro dos grupos e a separação entre os grupos. Pontuações mais altas indicam um melhor agrupamento. Hiperparâmetros: métrica: Métrica de distância a ser utilizada.	<pre>from sklearn.metrics import silhouette_score X: Dados utilizados na agrupamento rótulos: Rótulos de cluster para cada amostra score = silhouette_score(X, labels, metric='euclidean')</pre>

about:blank 4/12

	Prós: Útil para validar o desempenho do agrupamento. Limitações: Sensível a outliers e à escolha da métrica de distância.		
silhouette_samples	Fornece pontuações de silhueta para cada amostra individual, indicando quão bem ela se encaixa em seu cluster designado. Hipertensões: métrica: Métrica de distância a ser utilizada. Prós: Oferece uma visão detalhada da qualidade de agrupamento de cada amostra. Limitações: As mesmas do silhouette_score; sensível a outliers e à métrica de distância.	from sklearn.metrics import silhouette_samples X: Dados usados na clusterização rótulos: Rótulos de cluster para cada amostra samples = silhouette_samples(X, labels, metric='euclidean')	
davies_bouldin_score	Medida da razão média de similaridade de cada cluster com o cluster mais semelhante. Valores mais baixos indicam uma melhor agrupamento. Prós: Fornece uma avaliação de agrupamento simples e eficaz. Limitações: Pode não funcionar bem com clusters altamente desbalanceados.	from sklearn.metrics import davies_bouldin_score X: Dados utilizados na agrupamento rótulos: Rótulos de cluster para cada amostra db_score = davies_bouldin_score(X, labels)	
Voronoi	Calcula o diagrama de Voronoi, que partitiona o espaço com base no vizinho mais próximo. Prós: Útil para análise espacial e clustering. Limitações: Limitado a casos de uso que envolvem a	<pre>pontos: Coordenadas para o diagrama de Voronoi vor = Voronoi(pontos)</pre>	

,		
	partição espacial de dados.	
voronoi_plot_2d	Plota o diagrama de Voronoi em 2D para visualizar os resultados de agrupamento. Hiperparâmetros: show_vertices: Se deve exibir os vértices. Prós: Ótimo para visualizar agrupamentos espaciais. Limitações: Limitado a espaços 2D e grandes conjuntos de dados podem causar problemas de desempenho.	from scipy.spatial import voronoi_plot_2d vor: Objeto do diagrama de Voronoi voronoi_plot_2d(vor, show_vertices=True)
matplotlib.patches.Patch	Cria formas personalizadas, como retângulos, círculos ou elipses, para adicionar a gráficos. Hiperparâmetros: cor: Preenche a cor da forma. Prós: Versátil para personalização visual. Limitações: Pode não suportar todas as formas ou personalizações complexas.	import matplotlib.patches as patches Crie um retângulo com largura, altura e posição especificadas rectangle = patches.Rectangle((0, 0), 1, 1, color='blue')
explained_variance_score	Meça a proporção da variância explicada pelas previsões do modelo. Uma pontuação mais alta indica melhor desempenho. Prós: Ajuda na avaliação do ajuste de modelos de regressão. Limitações: Não é adequado para tarefas de classificação.	from sklearn.metrics import explained_variance_score y_true: Valores verdadeiros y_pred: Valores previstos ev_score = explained_variance_score(y_true, y_pred)
Regressão Ridge	Executa regressão ridge (regularização	from sklearn.linear_model import Ridge

about:blank 6/12

12/03/2025, 11:05 about:blank

2/03/2025, 11:05		about.blank
	L2) para evitar overfitting penalizando coeficientes grandes. Hiperparâmetros: alpha: Força da regularização. Prós: Ajuda a reduzir o overfitting em modelos de regressão. Limitações: Pode não funcionar bem com dados esparsos.	alpha: Força de regularização (valores maiores indicam regularização mais for ridge = Ridge(alpha=1.0)
Regressão Lasso	Realiza regressão lasso (regularização L1), que incentiva a esparsidade ao penalizar o valor absoluto dos coeficientes. Hiperparâmetros: alpha: Força de regularização. Prós: Incentiva soluções esparsas, útil para seleção de características. Limitações: Pode ter dificuldades com multicolinearidade.	from sklearn.linear_model import Lasso alpha: Força da regularização (valores maiores indicam regularização mais f olasso = Lasso(alpha=0.1)
Pipeline	Encadeia múltiplas etapas de préprocessamento e modelagem em um único objeto, garantindo um fluxo de trabalho eficiente. Prós: Simplifica o código, garante reprodutibilidade. Limitações: Pode não funcionar bem com pipelines complexos que requerem configurações dinâmicas.	<pre>from sklearn.pipeline import Pipeline etapas: Lista de tuplas com nome e estimador/transformador pipeline = Pipeline(steps=[('scaler', StandardScaler()), ('model', Ridge(alpha=1.0))])</pre>
GridSearchCV	Executa uma busca exaustiva sobre uma grade de parâmetros especificada para encontrar a melhor configuração do modelo. Hiperparâmetros: param_grid:	from sklearn.model_selection import GridSearchCV estimador: Modelo a ser ajustado param_grid: Dicionário com parâmetros para pesquisar grid_search = GridSearchCV(estimator=Ridge(), param_grid={'alpha': [0.1, 1.0, 10.0]})

| param_grid: | param_grid: about:blank 7/12

Dicionário de grades de parâmetros. Vantagens: Garante parâmetros ótimos para o modelo. Limitações: Computacionalmente caro para grades grandes.

Estratégias de visualização para avaliação de k-means

Nome do Processo
Descrição Breve
Trecho de Código
Múltiplas execuções do k-means
Executa o agrupamento KMeans várias vezes com diferentes inicializações aleatórias para avaliar a variabilidade nas atribuições de cluster.
Vantagem: Ajuda a visualizar a consistência.
Limitação: Custoso computacionalmente para grandes conjuntos de dados.
Número de execuções para KMeans com diferentes estados aleatórios
n_runs = 4
<pre>inertia_values = []</pre>
plt.figure(figsize=(12, 12))
Executa K-Means várias vezes com diferentes estados aleatórios
for i in range(n_runs):
kmeans = KMeans(n_clusters=4, random_state=None) # Usa o padrão `n_init`
kmeans.fit(X)
inertia_values.append(kmeans.inertia_)
Plota o resultado do agrupamento
plt.subplot(2, 2, i + 1)
plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_, cmap='tab10', alpha=0.6, edgecolor='k')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c='red', s=200, marker='x', label='Centroides')
plt.title(f'Execução de Agrupamento K-Means {i + 1}')
plt.xlabel('Recurso 1')

```
plt.ylabel('Recurso 2')

plt.legend()

plt.tight_layout()

plt.show()

# Imprime os valores de inércia

for i, inertia in enumerate(inertia_values, start=1):

    print(f'Execução {i}: Inércia={inertia:.2f}')
```

Método do Cotovelo

Avalia o número ótimo de clusters plotando a inércia (soma dos quadrados dentro do cluster) para diferentes valores de ${\bf k}$.

Vantagem: Fácil de interpretar.

Limitação: Ponto de cotovelo subjetivo.

Faixa de valores de k para testar

 $k_values = range(2, 11)$

Armazena métricas de desempenho

inertia_values = []

for k in k_values:

kmeans = KMeans(n_clusters=k, random_state=42)

y_kmeans = kmeans.fit_predict(X)

Calcula e armazena métricas

inertia_values.append(kmeans.inertia_)

Plota os valores de inércia (Método do Cotovelo)

plt.figure(figsize=(18, 6))

plt.subplot(1, 3, 1)

plt.plot(k_values, inertia_values, marker='o')

```
about:blank
plt.title('Método do Cotovelo: Inércia vs. k')
plt.xlabel('Número de Clusters (k)')
plt.ylabel('Inércia')
Método da Silhueta
Determina o número ótimo de clusters avaliando as Pontuações de Silhueta para diferentes valores de k.
Vantagem: Considera tanto a coesão quanto a separação.
Limitação: Alta computação para grandes conjuntos de dados.
# Faixa de valores de k para testar
k_values = range(2, 11)
# Armazena métricas de desempenho
silhouette_scores = []
for k in k_values:
    kmeans = KMeans(n_clusters=k, random_state=42)
    y kmeans = kmeans.fit predict(X)
    silhouette_scores.append(silhouette_score(X, y_kmeans))
# Plota as Pontuações de Silhueta
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 2)
plt.plot(k_values, silhouette_scores, marker='o')
plt.title('Pontuação de Silhueta vs. k')
plt.xlabel('Número de Clusters (k)')
plt.ylabel('Pontuação de Silhueta')
Índice de Davies-Bouldin
```

Avalia o desempenho do agrupamento calculando o DBI para diferentes valores de ${\bf k}$. Vantagem: Quantifica a compacidade e separação. Limitação: Sensível a formas e densidade dos clusters. # Faixa de valores de k para testar k values = range(2, 11)# Armazena métricas de desempenho davies_bouldin_indices = [] for k in k_values: kmeans = KMeans(n_clusters=k, random_state=42) y_kmeans = kmeans.fit_predict(X) davies_bouldin_indices.append(davies_bouldin_score(X, y_kmeans)) # Plota o Índice de Davies-Bouldin plt.figure(figsize=(18, 6)) plt.subplot(1, 3, 3) plt.plot(k_values, davies_bouldin_indices, marker='o') plt.title('Índice de Davies-Bouldin vs. k') plt.xlabel('Número de Clusters (k)') plt.ylabel('Índice de Davies-Bouldin')

Autores

<u>Jeff Grossman</u> <u>Abhishek Gagneja</u>

about:blank 12/12