UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 17. Vectores y Planos

PROBLEMA 1. Determine el área del triángulo formado por la intersección del plano 3x - 2y - 11z = -7, y las rectas

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \text{ para } t \in \mathbb{R}, \text{ y}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ 0 \\ -3 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

[En práctica]

PROBLEMA 2. Calcule el volumen del paralelepípedo de base $[-1, \alpha, 3]$ y [-1, -1, 2] y cuyo lado es [2, -1, 4]. Qué valor debe tener α para que el volumen sea el triple del área de la base considerada.

PROBLEMA 3 Muestre que todo vector \overrightarrow{u} en el plano OXY se puede escribir: $\overrightarrow{u} = P_{\overrightarrow{j}} \overrightarrow{u} + P_{\overrightarrow{j}} \overrightarrow{u}$.

PROBLEMA 4. Sean \overrightarrow{u} y \overrightarrow{v} dos vectores en \mathbb{R}^3 . Muestre que:

- $(i) \ \|\overrightarrow{u} \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 2 \quad \cos(\theta) \quad \|\overrightarrow{u}\| \|\overrightarrow{v}\|, \text{ donde } \theta \text{ es el menor ángulo entre } \overrightarrow{u} \text{ y } \overrightarrow{v}.$
- $(ii) \ \|\overrightarrow{u} + \overrightarrow{v}\|^2 \|\overrightarrow{u} \overrightarrow{v}\|^2 = 4(\overrightarrow{u}, \overrightarrow{v})$

PROBLEMA 5. Encuentre la ecuación del plano:

- (i) que pasa por el punto (2,3,1) y está generado por los vectores [3,2,1] y [-1,-2,-3]. Determine si los puntos (-1,2,-3) y (2,2,-4) pertenecen a tal plano.
- (ii) que pasa por el punto (2,3,1) y es paralelo al plano que pasa por el origen y es generado por los vectores [2,0,-2] y [1,1,1]. [En práctica] (ii)

PROBLEMA 6. Encuentre la distancia del punto (3, 2, -1) al plano 2x - 2y - z = 5.

PROBLEMA 7.Encuentre el valor de α de modo que la distancia del punto (2, -3 - 4) al plano $x + 2y + 2\alpha z = 6$, sea igual a $(37)^{\frac{1}{2}}$.

PROBLEMA 8. Dados los punto $P_1(2,3,2)$ y $P_2(-1,1,4)$, encuentre todos los puntos P(x,y,z) tales que $\overrightarrow{P_1P_2} \perp \overrightarrow{P_1P}$. Describa tal conjunto. [En práctica]

PROBLEMA 9. Encuentre la ecuación del plano A_1 que es perpendicular a [1, -1, 3] y que pasa por el punto (2, 1, 0); además, considere el plano A_2 de ecuación: 3x-y+2z=-1. Encuentre $A_1 \cap A_2$.

Solución: $A_1 \cap A_2$ es la recta de ecuaciones paramétricas $x = -1 + \frac{1}{2}t$, $y = -2 + \frac{7}{2}t$, z = t, para $t \in \mathbb{R}$.

PROBLEMA 10. Encuentre dos planos A_1 y A_2 cuya intersección sea la recta dada por:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

Solución: $A_1: x + y = -1;$

 $A_2:3y+z=-4$. Notar que la solución no es única.

[En práctica]

PROBLEMA 11. Encuentre el valor de α de modo que los planos : $2x - \alpha y + z = 3$ y $3x + 2\alpha y - \alpha z = 5$, sean ortogonales. Para un valor de α encontrado, encuentre la distancia entre los planos.

Solución: $\alpha_1 = -2, \ \alpha_2 = \frac{3}{2}.$

[En práctica]

PROBLEMA 12. Considere los planos 2x - y + z = 3 y 3x + 2y - z = 5. Si es posible, encuentre un plano perpendicular a los dos planos dados.

PROBLEMA 13. Encuentre los valores de α , β y γ de modo que la intersección de los planos $3\beta x + 2\alpha y - \alpha z = 6$ y $2x - \alpha y + \gamma z = 3$, sea la recta que pasa por el punto $(0, \frac{9}{2}, 6)$, y tenga por vector director a $[\alpha^2 - 2\gamma\alpha, 1, 4\alpha + 3\alpha\beta]$.

Solución: $\alpha = 2, \beta = \frac{-1}{2}, \gamma = 2.$

PROBLEMA 14. Encuentre condiciones sobre los vectores \overrightarrow{u} y \overrightarrow{v} en \mathbb{R}^3 , de modo que las diagonales del paralelogramo formado por \overrightarrow{u} y \overrightarrow{v} , sean ortogonales.

Solución: $\|\overrightarrow{u}\| = \|\overrightarrow{v}\|$.

[En práctica]

PROBLEMA 15. Suponga que los planos $a_1x + b_1y + c_1z = d_1$ y $a_2x + b_2y + c_2z = d_2$ no son paralelos. Deduzca una fórmula para el ángulo pormado por la intersección de los planos.

30/08/2002 JMS/jms