Lecture 12 BT 206 10/02/23

Microbial Metabolism

- Metabolism is the sum of the chemical reactions in an organism.
- Catabolism is the energy-releasing processes.
- Anabolism is the energy-using processes.

Metabolism Relationships

Microbial Metabolism

 Catabolism provides the building blocks and energy for anabolism.

Metabolism Pathways

Energy

- Activation energy is needed to disrupt electronic configurations
- Reaction rate is the frequency of collisions with enough energy to bring about a reaction.
- Reaction rate can be increased by enzymes or by increasing temperature or pressure

Metabolism: Enzymes

- A metabolic pathway is a sequence of enzymatically catalyzed chemical reactions in a cell.
- Metabolic pathways are determined by enzymes.
- Enzymes are encoded by genes.

- Biological catalysts
 - Specific for a chemical reaction; not used up in that reaction
- Apoenzyme: protein
- Cofactor: Nonprotein component metal Fe
 - Coenzyme: Organic cofactor vitamin
- Holoenzyme: Apoenzyme + cofactor

Important Coenzymes

- NAD*
- NADP+
- FAD
- Coenzyme A
- CoQ

 The turnover number is generally 1-10,000 molecules per second!

Enzyme Classification

Samp	le enzy	yme name
------	---------	----------

Kinase

Transferase

Protease

dehydrogenase

Isomerase

Ligase

Amylase

Lipase

Sample enzyme function

transfer a phosphate group

Transfer functional groups

hydrolysis of proteins

Removal of hydrogen

Rearrangement of atoms

Joining of molecules, uses ATP

breaks down amylose (starch)

hydrolysis of lipids

Temperature

 At high temperatures, enzymes undergo denaturation and lose their catalytic properties; at low temperatures, the reaction rate decreases.

pH

- optimum pH is the pH at which enzymatic activity is maximal
- Substrate concentration
 - Enzymatic activity increases as substrate concentration increases until the enzymes are saturated.
- Inhibitors
 - compete with the normal substrate for the active site of the enzyme & decrease the enzyme's ability to combine with the normal substrate.

Enzymes can be denatured by temperature and pH

Temperature

pH

Substrate concentration

(c) Substrate concentration

Factors Influencing and Control of Enzyme Activity

Competitive inhibition : e.g PABA and folic acid

- PABA essential nutrient used by bacteria to synthesize folic acid
- When antibiotic sulfanilamide is administered, enzymes responsible to synthesizing folic acid from PABA binds sulfanilamide. Therefore, no folic acid is synthesized by bacteria and it cannot grow.
- Sulfanilamide doesn't harm humans as human doesn't use PABA for synthesizing folic acid.

Noncompetitive inhibition: eg

Lecture 13 BT 206 13/02/23

Feedback inhibition

Ribozymes

- RNA that cuts and splices RNA
- Less diverse than proteins

Reactions of energy transfer

Oxidation-Reduction and Phosphorylation-Dephosphorylation reactions
Oxidation-Reduction involves removal and addition of electrons to
molecules

- Oxidation is the removal of electrons.
- Reduction is the gain of electrons.
- Redox reaction is an oxidation reaction paired with a reduction reaction.

Oxidation-Reduction

 In biological systems, the electrons are often associated with hydrogen atoms. Biological oxidations are often dehydrogenations.

Phosphorylation and Dephosphorylation

Transferring a phosphate group.

- Adding is Phosphorylation storing energy
- Removing is Dephosphorylation releasing energy
 - ATP is generated by the phosphorylation of ADP.

The Generation of ATP

Three main ways:

- Photophosphorylation using light energy to phosphorylate ADP to ATP
- 2. <u>Substrate level phosphorylation</u> a transfer of a phosphate group from one molecule to another
 - 1,3-diphosphoglyceric acid + ADP → ATP + 3phosphoglyceric acid
- Oxidative phosphorylation energy released from the transfer of electrons (oxidation) of one compound to another (reduction) can used to generate ATP by chemiosmosis.

Photophosphorylation

 Light causes chlorophyll to give up electrons. Energy released from the transfer of electrons (oxidation) of chlorophyll through a system of carrier molecules is used to generate ATP.

TABLE 5.6	Photos	synthesis Compared in Selected Eukaryotes and Prokaryotes					
Characteristic		Eukaryotes	Prokaryotes				
		Algae, Plants	Cyanobacteria	Green Bacteria	Purple Bacteria		
Substance the	at reduces	H atoms of H ₂ O	H atoms of H ₂ O	Sulfur, sulfur compounds, H ₂ gas	Sulfur, sulfur compounds, H ₂ gas		
Oxygen prod	uction	Oxygenic	Oxygenic (and anoxygenic)	Anoxygenic	Anoxygenic		
Type of chloro	ophyll	Chlorophyll a	Chlorophyll a	Bacteriochlorophyll a	Bacteriochlorophy a or b		
Site of photos	ynthesis	Chloroplasts with thylakoids	Thylakoids	Chlorosomes	Intracytoplasmic membrane		
Environment		Aerobic	Aerobic (and anaerobic)	Anaerobic	Anaerobic		

The Generation of ATP

 Substrate-level phosphorylation is the transfer of a high-energy PO₄⁻ to ADP.

$$C-C-C \sim P + ADP \longrightarrow C-C-C + ATP$$

Metabolic Pathways

Decarboxylation - CO₂ removal with electrons reduction

Carbohydrate Catabolism

- The breakdown of carbohydrates to release energy
 - Glycolysis
 - Fermentation
 - Krebs cycle
 - Electron transport chain

Glycolysis

Glycolysis has three main stages:

- 1. Preparatory
- 2. splitting and
- 3. energy harvest or conserving.

 The oxidation of glucose to pyruvic acid, produces ATP and NADH.

Preparatory and Splitting Stages

1. Preparatory: 2
ATPs are used to prepare or activate glucose to form fructose 1,6 diphosphosphate

2. **Splitting**: Glucose is split to form two glyceraldehyde-3-phosphate molecules

Energy-Conserving Stage

2 glyceraldehyde-3phosphate molecules are oxidized into 2 Pyruvic acid molecules

Energy harvest

- 4 ATP produced*
- 2 NADH produced
 - * remember that preparatory stage required 2 ATP molecules to start

Glycolysis

Overall Net equation: Reactants and products

Glucose + 2 ADP + 2 Pi + 2 NAD⁺ →

2 pyruvic acid + 2 ATP + 2 NADH + 2H⁺

Alternatives to Glycolysis

- Pentose phosphate pathway:
 - Uses pentoses and NADPH
 - Operates with glycolysis
- Entner-Doudoroff pathway:
 - Produces NADPH and ATP
 - Does not involve glycolysis
 - Pseudomonas, Rhizobium, Agrobacterium

Glycolysis: PPP

- Breakdown 5-6 C
- Cytoplasm
- Anaerobic
- End products
 - 1 ATP
 - 2 NADPH
 - \cdot CO₂
 - 4,5,6,7 C
 - AA
 - Nucleotides
 - Glycolytic pathways
 - Photosynthesis

Oxidative Stage of Pentose Phosphate Pathway

Glycolysis: Entner-Duodoroff [E-D]

- Glycolytic
- Cytoplasm
- Anaerobic
- Different enzymes
 - Pseudomonas
 - Enterococcus
- End products
 - 2-1 = 1 net ATP
 - NADPH
 - NADH
 - 2 Pyruvic acids
 - H₂0

Anaerobic Pathways Compared

Pathway	EM	PPP	ED
Location	Cytoplasm	Cytoplasm	Cytoplasm
Substrate	Glucose	G6P	Glucose
Steps	2 parts 6C → 3C	Different sugars (4-7C)	Glyceraldehyde
Products	2 Pyruvate 2 ATP 2 NADH 2 H ⁺	Pyruvate & Fructose 6 CO2 12 NADPH 12 H ⁺	2 Pyruvate 1 ATP 1 NADPH 1 NADH 2 H ⁺

Glycolytic Pathways used by various Bacteria

Bacterium	E-M	PPP	E-D
Acetobacter aceti	-	+	-
Bacillus subtilis	major	minor	-
E. coli	+	-	-
Lactobacillus acidophilus	+	-	-
Pseudomonas aeruginosa	-	-	+
Vibrio cholera	minor	-	major

Cellular Respiration

- Oxidation of molecules liberates electrons for an electron transport chain
- ATP generated by oxidative phosphorylation

Intermediate Step

- Pyruvic acid (from glycolysis) is oxidized and decarboxylated
- CO₂ is released
- NAD⁺ is reduced to NADH

Krebs Cycle

- Oxidation of acetyl CoA produces NADH and FADH₂
- Summarize the reactants and products for the intermediate step and Kreb's cycle - keep energy harvest number straight!

Krebs Cycle

The Electron Transport Chain

- A series of carrier molecules that are, in turn, oxidized and reduced as electrons are passed down the chain.
- Energy released can be used to produce ATP by chemiosmosis.

Lecture 14 BT 206 14/02/23

Electron Transport Chain (ETC) Function

The ETC is a series of membrane bound electron carriers that transports electrons from high to low energy state, ending with oxygen accepting electrons to water.

Eukaryotic ETC

Prokaryotic ETC

ETC Steps

- Electrons from NADH or FADH₂ to flavoproteins (FMN)
- H⁺ pumped into periplasm
- Electrons transported
 - To Iron-Sulfur proteins from NADH
 - To CoQ from FADH₂
- Cytochromes transfer electrons
- Final Electron Acceptor
 - O₂ if Aerobic
 - Other inorganic molecule if Anaerobic

ETC: Cytochromes

ELECTRON TRANSPORT CHAIN

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Overview of Respiration and Fermentation

1 Glycolysis produces
ATP and reduces NAD+ to
NADH while oxidizing
glucose to pyruvic acid. In
respiration, the pyruvic acid
is converted to the first
reactant in the Krebs cycle.

2 The Krebs cycle produces ATP and reduces NAD+ (and another electron carrier called FADH₂) while giving off CO₂. The NADH and FADH₂ from both processes carry electrons to the electron transport chain.

3 In the electron transport chain, the energy of the electrons is used to produce a great deal of ATP.

The Chemiosmotic Mechanism of ATP Generation

 In eukaryotes, electron carriers are located in the inner mitochondrial membrane; in prokaryotes, electron carriers are in the plasma membrane.

 Protons being pumped across the membrane generate a proton motive force as electrons move through a series of acceptors or carriers.

Chemiosmotic Generation of ATP

An overview of Chemiosmosis

Chemiosmosis

Types of Respiration

 Aerobic respiration: The final electron acceptor in the electron transport chain is molecular oxygen (O₂).

 Anaerobic respiration: The final electron acceptor in the electron transport chain is not O₂. Yields less energy than aerobic respiration because only part of the Krebs cycles operations under anaerobic

conditions.

Anaerobic respiration

Electron acceptor	Products
NO ₃ ⁻	NO_2^- , $N_2 + H_2O$
SO ₄ -	$H_2S + H_2O$
CO ₃ ² -	CH ₄ + H ₂ O

Pathway	Eukaryote	Prokaryote
Glycolysis	Cytoplasm	Cytoplasm
Intermediate step	Cytoplasm	Cytoplasm
Krebs cycle	Mitochondrial matrix	Cytoplasm
ETC	Mitochondrial inner membrane	Plasma membrane

Energy produced from complete oxidation of 1 glucose using aerobic respiration

Pathway	ATP produced	NADH produced	FADH ₂ produced
Glycolysis	2	2	0
Intermediate step	0	2	
Krebs cycle	2	6	2
Total	4	10	2

ATP produced from complete oxidation of 1 glucose using aerobic respiration

Pathway	By substrate- level phosphorylation	By oxidative phosphorylation	
ratiiway		From NADH	From FADH
Glycolysis	2	6	0
Intermediate step	0	6	0
Krebs cycle	2	18	4
Total	4	30	4

36 ATPs are produced in eukaryotes.

Fermentation

Any spoilage of food by microorganisms (general use)

 Any process that produces alcoholic beverages or acidic dairy products (general use)

 Any large-scale microbial process occurring with or without air (common definition used in industry)

Fermentation

- Scientific definition:
 - Releases energy from oxidation of organic molecules
 - Does not require oxygen
 - Does not use the Krebs cycle or ETC
 - Uses an organic molecule as the final electron acceptor

Glucose fermentation is one test used to differentiate between Escherichia coli and Pseudomonas aeruginosa. Pseudomonas does NOT ferment glucose & E. coli does.

An Overview of Fermentation

Fermentation

End-Products of Fermentation

Fermentation

Two most important fermentation process are:

Alcohol fermentation: Produces ethanol + CO₂

- Lactic acid fermentation: Produces lactic acid
 - Homolactic fermentation: Produces lactic acid only
 - Heterolactic fermentation: Produces lactic acid and other compounds

Types of Fermentation

Fermentation Summary

- Anaerobic
- Cytoplasm
- Partial Oxidation
- Small amounts of ATP generated via substrate level phosphorylation
- Organic intermediaries as final electron acceptors
- End products
 - Acid: Lactic Acid, Acetic Acid, Butyric Acid, Acetone
 - Alcohol: Ethanol, Isopropyl
 - Gas : CO₂, H₂
 - Contaminants

Till now we have discussed about carbohydrate catabolism...

Now we move to other macromolecules catabolism...