

Technical Note – TN mipi1

fpga@chili-chips.com

Subject CRUVI for the 4-lane CSI2 Camera

Objective Compatibility with RPi5 cameras on one side, and Trenz TEB0707-02 Carrier Card with TE0711-01 FPGA SOM on the other

Background info

The camera connectors found on most of the previous models of Raspberry Pi were FFC (or even FPC) 15pin@1mm (15mm total, PN=SFW15R-2STE1LF) for up to 2-lane CSI imagers. Also known as "**Standard**" MIPI connector, this end-to-end-system was designed for the **OPPOSITE CONTACT CABLE**, such as illustrated below.

1) "Standard" 15pin@1mm CSI connectivity. Note cable reversal.

Correct use:

Incorrect use:

Starting with RPi5, this has changed to 22pin@0.5mm (11mm total, PN=54548-2271) for up to 4-lane HD cameras. Also known as "Mini" connector, this end-to-end system was designed for the **SAME CONTACT CABLE**. Part of the reason for making this change was to reduce the chance of misconnects shown in the second illustration of "Standard" system.

2) Hybrid system, with 22pin@0.5mm "Mini" on one end, and 15pin@1mm "Standard" on the other

Contacts are now on the same side of cable. The cable in this case also adapts the width and pin pitch. Despite featuring more pins, which are now denser, the new "Mini" connection is on the narrower side of the adapter cable.

3) Complete "Mini" system. Contacts are on the same side of the cable, exactly like on the Hybrid system (*)

However, the current CRUVI connector design is assuming the use of "Opposite Contacts" "Mini" cable. While such cables exist and can be purchased separate from the camera, they are not a norm. Indeed, the cable that comes with 4-lane IMX283 camera does not have "Opposite Contacts".

• The use of incorrect cable results in a direct short of the 3.3V camera supply.

Another, though less critical issue with the current CRUVI connector, is the signal mapping towards Trenz Carrier Card, which connects camera I2C pins to the on-board CPLD. This means that, for the SOM FPGA to get to camera I2C, the user needs to alter the CPLD program. While doable, this incurs unnecessary work and complications.

^(*) Not to be mistaken, this discussion is for the **serial MIPI** CSI type of interfaces. There are also non-MIPI camera interfaces. One of the most popular is **DVP24**, which is a 24-pin parallel interface, with 0.5mm pin pitch. DVP stands for *Digital Video Port*. The DVP is not subject to *Mobile Industry Processor Interface* (MIPI) licensing limitations. Being parallel, the DVP is much simpler to work with, but cannot match the MIPI data throughput. DVP is therefore not suitable for imagers with high resolution and high frame rates.

Connector Pinout towards 4-lane Camera

The rule to apply is very simple: The camera side of CRUVI connector must be pinned exactly like the RPi5 MIPI connector.

The RPi5 pin assignment for MIPI connector is shown in *Table1* below. The corresponding connector on the camera side is also illustrated.

Figure 1 - Connector on Camera

Table 1 – Connector on RPi5 Board (=CRUVI)

Description

Pixel Clock Output Form Sensor Negative

Pixel Clock Output Form Sensor Positive

Power Ground

Power Ground

Power Ground

Power Ground

Power Ground

Power Ground

Power Enable

Power Ground

LED Enable/XCLK

3.3V Power Supply

Pixel Data Lane0 Negative

Pixel Data Lane0 Positive

Pixel Data Lane1 Negative

Pixel Data Lane2 Negative

Pixel Data Lane2 Positive

Pixel Data Lane3 Negative

Pixel Data Lane3 Positive

SCCB serial interface clock input

SCCB serial interface data I/O

Pixel Data Lane1Positive

Note the pinout inversion from Camera to RPi5 Board. This comes from the combination of:

- (1) 180-degree rotated connectors and
- (2) "Same Contact" cable.

This connector rotation on the "Standard" system is compensated by the "Opposite Contact" cable. The "Mini" system however, by using "Same Contact" cable, counts on the RPi5 board for this compensation.

Connector Pinout towards Trenz Carrier board (CRUVI connector)

Requirements:

- 1) No connection is to be fed through CPLD. All camera lines must have direct wiring to SOM FPGA
- 2) High-speed Clock pair should connect directly to LVDS FPGA Clock Capable (CC) pin
- 3) High-speed Data links should connect to LVDS FPGA pins in the same banks as the Clock / CC pin
 - If possible, place Data in the close proximity of Clock, ideally with Clock right in the middle
- 4) If possible, find the pinout that adheres to these rules for all 3 CRUVI locations on the Carrier Card

Current J1 CRUVI Pinout:

Connectivity Analysis:

CR00041					
From Camera 22-pin/0.5mm FFC pi n signal		J1 CRUVI connector pin			
20	SCL_3V3	39			
21	SDA_3V3	41			
17	POWER_EN_3V3	45			
18	LED_EN_3V3 (not used)	47			
9	CAM_CLK_P	40			
8	CAM_CLK_N	38			
3	CAM_D0_P	21			
2	CAM_D0_N	23			
6	CAM_D1_P	16			
5	CAM_D1_N	14			
12	CAM_D2_P	22			
11	CAM_D2_N	20			
15	CAM_D3_P	32			
14	CAM_D3_N	34			

TEB0707				
J10 CRUVI connector		JB2 connect- or		
pin	signal	pin		
39	CA_B4_P	37		
41	CA_B4_N	35		
45	CA_B5_P	31		
47	CA_B5_N	33		
40	CA_A4_N	55		
38	CA_A4_P	57		
21	CA_B1_P	76		
23	CA_B1_N	78		
16	CA_A0_N	65		
14	CA_A0_P	67		
22	CA_A1_N	61		
20	CA_A1_P	63		
32	CA_A3_P	45		
34	CA_A3_N	47		

TEB0711		
pi	JM2 connector	FPGA Bank 35
n	signal	pin
38	B35_L23_N	K1
36	B35_L23_P	K2
32	B35_L5_P	E6
34	B35_L5_N	E5
56	B35_L12_P	E3 (MRCC)
58	B35_L12_N	D3 (MRCC)
75	B35_L7_P	C4
77	B35_L7_N	B4
66	B35_L18_P	F1
68	B35_L18_N	E1
62	B35_L17_P	H1
64	B35_L17_N	G1
46	B35_L13_P	F4
48	B35_L13_N	F3

VADJ or 3.3V

Notes:

 Camera I2C is kept separately from I2C for CRUVIoptional ID EEPROM

2) Pay attention to voltage levels between FPGA (VADJ) and Camera I2C and POWER_EN, which are 3.3V

These 2 connectors are hermaphroditic. ODD pin numbers on the SOM are connected to EVEN pin numbers on the Carrier, and vice versa

Conclusion:

The proposed pinout supports two CSI CRUVIs in the system:

- 1) Yimin 4-lane in the TEB0707 J10 position (FPGA Bank 35)
- 2) VHDPlus 2-lane in the TEB0707 J12 position (FPGA Bank 15)
- 3) We recommend eliminating optional CRUVI ID EEPROM

