Themen: Zusammenhangsmaße für intervall-skalierte (metrische) Variablen – Kovarianz & Pearson's *r*

Prof. Dr. Elmar Schlüter

Justus-Liebig-Universität Giessen

Fachbereich Sozial- und Kulturwissenschaften

Institut für Soziologie

Wintersemester 2014/2015

Inhalt

- Grafische Veranschaulichung bivariater Zusammenhänge Scatterplot
- Kreuzproduktsumme
- Kovarianz
- Pearson's r

Zusammenhangshypothesen

- Beispiele:
- Je intelligenter eine Person ist, desto kreativer ist sie auch.
- Je mehr Alkohol man trinkt, desto schlechter f\u00e4hrt man Auto.
- Je mehr Vertrauen man in andere Menschen hat, desto zufriedener lebt man.
- ...

Hypothese: "Je intelligenter eine Person ist, desto kreativer ist sie auch."

Hypothese: "Je mehr Alkohol man trinkt, desto schlechter fährt man Auto."

Hypothese: "Wer Vertrauen in andere Menschen hat, lebt glücklicher und zufriedener."

Hypothese: "Wer Vertrauen in andere Menschen hat, lebt glücklicher und zufriedener."

nicht so ganz perfekter, aber positiver Zusammenhang zwischen Vertrauen und Lebenszufriedenheit

- Für eine quantitative Analyse von Merkmalszusammenhängen sind folgende Fragen von Bedeutung:
- Wie lässt sich die Form des Zusammenhangs zwischen X und Y beschreiben?
- Welche Richtung hat der Zusammenhang zwischen X und Y, d.h. ist er negativ oder positiv?
- Wie stark ist der Zusammenhang zwischen X und Y?
- Lässt sich der in der Stichprobe ermittelte Zusammenhang auf die Population übertragen? (Inferenzstatistik)

- ightharpoonup Quantifizierung durch Zusammenhangsmaße ightharpoonup Korrelationskoeffizienten
- Positive Korrelation:
 - Hohe Werte in der einen Variablen gehen mit hohen Werten in der anderen Variablen einher
 - Niedrige Werte in der einen Variable gehen mit niedrigen Werten in der anderen Variablen einher
- Negative Korrelation:
 - Hohe (niedrige) Werte in der einen Variablen gehen mit niedrigen (hohen) Werten in der anderen Variablen einher
- Ggfs. auch kein Zusammenhang

- Wann ist ein Messwert "hoch"? Wann ist ein Messwert "niedrig"?
- Vergleich anhand des Mittelwertes der jeweiligen Variablen
- Hohe Messwerte entsprechen Werten über dem Durchschnitt
- Niedrige Messwerte entsprechen Werten unter dem Durchschnitt
- Stärke des Zusammenhangs zwischen zwei metrischen Variablen ergibt sich durch die Abweichung der Messwerte vom jeweiligen Mittelwert

- Vorgehensweise:
- Bestimme f
 ür jedes Messwertepaar die Abweichung vom Mittelwert
- Berechne die gemeinsame Abweichung beider Messwerte von Ihren Mittelwerten durch Multiplikation
- Berechne die Summe der Abweichungsprodukte

Berechne das durchschnittliche Abweichungsprodukt mittels Division durch die Anzahl der Fälle (n)

- Vorgehensweise:
- Bestimme für jedes Messwertepaar die Abweichung vom Mittelwert

$$x_i - \bar{x}$$
 $y_i - \bar{y}$

$$y_i - \bar{y}$$

Berechne die gemeinsame Abweichung beider Messwerte von Ihren Mittelwerten durch Multiplikation

$$(x_i - \bar{x}) (y_i - \bar{y})$$

Berechne die Summe der Abweichungsprodukte (SAP)

$$\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$$

- Vorgehensweise:
- Berechne das durchschnittliche Abweichungsprodukt die Kovarianz mittels Division durch die Anzahl der Fälle (n):

cov (x,y) =
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{n}$$

- Kovarianz beschreibt die gemeinsame Streuung zweier Merkmale
- Zur Erinnerung: Varianz

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

Die Kovarianz ist definiert als:

cov (x,y) =
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{n}$$

- Die Kovarianz ist dann hoch positiv, wenn hohe positive Abweichungen auch mit hohen positiven Abweichungen einhergehen und hohe negative Abweichungen auch mit hohen negativen Abweichungen einhergehen.
- Die Kovarianz ist dann hoch negativ, wenn hohe positive Abweichungen mit hohen negativen Abweichungen einhergehen und umgekehrt.
- Die Kovarianz ist dann Null, wenn die Richtung der Abweichungen vom Mittelwert in X nicht systematisch mit einer bestimmten Richtung der Abweichungen vom Mittelwert in Y einhergeht.

Die Kovarianz ist definiert als:

cov (x,y) =
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{n}$$

- Die Kovarianz ist ein unstandardisiertes Maß
- Dies bedeutet, ihre Größe ist abhängig von den gewählten Maßeinheiten
- Unschön, erschwert den Vergleich zwischen unterschiedlichen Kovarianzen
- Lösung: Standardisierung anhand der Division durch das Produkt der Standardabweichungen beider Merkmale → Pearson's r

Formal:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

 Pearson's r entspricht der anhand des Produkts der Standardabweichungen standardisierten Kovarianz

Vereinfacht:

$$r = \frac{Cov_{xy}}{S_x S_y}$$

- Pearson's r
- Wertebereich von -1 bis +1
 - Negatives Vorzeichen = negativer Zusammenhang
 - Positives Vorzeichen = positiver Zusammenhang
- Vorzeichen indiziert die Richtung, Betrag die Stärke des Zusammenhanges
- Für Pearson's r hat Cohen (1988) folgenden Taxonomievorschlag gemacht:
 - $|r| \approx 0.10 \Rightarrow$ "schwacher" Zusammenhang
 - $|r| \approx 0.30 \Rightarrow$ "mittlerer" Zusammenhang
 - $|r| \approx 0.50 \Rightarrow$ "starker" Zusammenhang
- Aber: Die Beurteilung der Höhe einer Korrelation hängt immer von der zugrunde liegenden Fragestellung ab!

X	Υ
1	5
2	7
2	7
3	9
4	11
6	15
6	15
8	19
4	11
5,25	21
6 6 8 4	15 15 19 11

Wann ist der Zusammenhang zweier Variablen X und Y positiv?

Der Zusammenhang zweier Variablen X und Y ist dann positiv, wenn x-Werte, die oberhalb ihres Mittelwerts \overline{X} liegen, mit y-Werten einhergehen, die ebenfalls oberhalb ihres Mittelwerts \overline{y} liegen (und umgekehrt).

Wann ist der Zusammenhang zweier Variablen X und Y negativ?

Der Zusammenhang zweier Variablen X und Y ist dann negativ, wenn x-Werte, die oberhalb ihres Mittelwerts \overline{X} liegen, mit y-Werten einhergehen, die unterhalb ihres Mittelwerts \overline{y} liegen (und umgekehrt).

Flächeninhalt des Rechtecks entspricht dem Produkt der Abweichungen des Messwertepaares

M =

 $S^2 =$

X	Υ	
1	5	
2	7	
2	7	
3	9	
4	11	
6	15	
6	15	
8	19	
4	11	
5,25	21	

Schritt 1: Wir berechnen für jeden Wert x_i sowie für jeden Wert y_i die Differenz vom jeweiligen Mittelwert.

$(x_i - \bar{x})(y_i - \bar{y}) =$				
-3	-6	18		
-2	-4	8		
-2	-4	8		
-1	-2	2		
0	0	0		
2	4	8		
2	4	8		
4	8	32		

Schritt 2: Wir berechnen für jedes Wertepaar xy_i das *Kreuzprodukt*, d.h. das Produkt der Mittelwertsabweichung.

Schritt 3: Wir berechnen die *Kreuzproduktsumme*, d.h. die Summe aller Kreuzprodukte von i = 1 bis n.

$(x_i - \bar{x})(y_i - \bar{y})$				
-3	-6	18		
-2	-4	8		
-2	-4	8		
-1	-2	2		
0	0	0		
2	4	8		
2	4	8		
4	8	32		
Summe:		84		

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Schritt 4: Wir berechnen das mittlere Kreuzprodukt oder die *Kovarianz* (Cov), indem wir durch *n* teilen.

$(x_i - \bar{x})(y_i - \bar{y})$			
-3	-6	18	
-2	-4	8	
-2	-4	8	
-1	-2	2	
0	0	0	
2	4	8	
2	4	8	
4	8	32	
Summe:		84	
Kovarianz:		10,5	

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Schritt 5: Wir relativieren die empirische Kovarianz an der maximalen Kovarianz und erhalten Pearson's *r*.

$(x_i - \bar{x})(y_i - \bar{y}) =$						
-3	-6	18				
-2	-4	8				
-2	-4	8				
-1	-2	2				
0	0	0				
2	4	8				
2	4	8				
4	8	32				
Sum	84					
Kova	10,5					
Korre	lation:	1				

$$r = \frac{Cov_{xy}}{s_x s_y}$$

$$r = \frac{Cov_{xy}}{s_x s_y}$$

- 1. Zeichnen Sie ein Punktediagramm für die nachfolgend dargestellten Werte
- 2. Berechnen Sie Pearson's r.
- 3. Interpretieren Sie Ihr Ergebnis.

	x_i	y_i	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
Α	0	2					
В	10	6					
С	4	2					
D	8	4					
Е	8	6					

$$r = \frac{Cov_{xy}}{s_x s_y}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

	x_i	\boldsymbol{y}_i	$(x_i-\overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
Α	0	2	-6	-2			
В	10	6	4	2			
С	4	2	-2	-2			
D	8	4	2	0			
Е	8	6	2	2			
	6	4					

$$r = \frac{Cov_{xy}}{s_x s_y}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

	x_i	y_i	$(x_i-\overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
Α	0	2	-6	-2	12	36	4
В	10	6	4	2	8	16	4
С	4	2	-2	-2	4	4	4
D	8	4	2	0	0	4	0
Е	8	6	2	2	4	4	4
	6	4			28	64	16

$$r = \frac{Cov_{xy}}{s_x s_y}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

	x_i	y_i	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
Α	0	2	-6	-2	12	36	4
В	10	6	4	2	8	16	4
С	4	2	-2	-2	4	4	4
D	8	4	2	0	0	4	0
E	8	6	2	2	4	4	4
	6	4			28	64	16

$$r = \frac{Cov_{xy}}{s_x s_y}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$r = \frac{28}{\sqrt{64(16)}}$$

	x_i	y_i	$(x_i-\overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
Α	0	2	-6	-2	12	36	4
В	10	6	4	2	8	16	4
С	4	2	-2	-2	4	4	4
D	8	4	2	0	0	4	0
Е	8	6	2	2	4	4	4
	6	4			28	64	16

$$r = \frac{Cov_{xy}}{s_x s_y}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$r = \frac{28}{\sqrt{64(16)}} = \frac{28}{32} = 0.875$$

Zusammenhangsmaße für metrische Variablen: Zugabe

 Korrelationskoeffizienten sind sensitiv gegenüber Ausreißern und Extremwerten; insbesondere bei kleinen Stichproben

 Korrelationskoeffizienten sind sensitiv gegenüber Ausreißern und Extremwerten; insbesondere bei kleinen Stichproben

- Korrelationskoeffizienten k\u00f6nnen stark variieren, je nachdem, welcher "Ausschnitt" auf der Dimension m\u00f6glicher
 Werteauspr\u00e4gungen betrachtet wird!
- Das Problem stellt sich insbesondere häufig bei nichtrepräsentativen (z.B. selektiven) Stichproben

- Korrelationskoeffizienten k\u00f6nnen stark variieren, je nachdem, welcher "Ausschnitt" auf der Dimension m\u00f6glicher
 Werteauspr\u00e4gungen betrachtet wird!
- Das Problem stellt sich insbesondere häufig bei nichtrepräsentativen (z.B. selektiven) Stichproben

Wenn die Form des Zusammenhangs nicht-linear ist, kann die Produkt-Moment-Korrelation nicht interpretiert werden!

Wenn die Form des Zusammenhangs nicht-linear ist, kann die Produkt-Moment-Korrelation nicht interpretiert werden!

