

AMENDMENT AND PRESENTATION OF CLAIMS

Please replace all prior claims in the present application with the following claims, in which claims 1-13 are currently amended.

1. (Currently Amended) A method Method for monitoring ~~the~~ stability of ~~the~~ a carrier frequency (ω_i) of identical transmitted signals ($s_i(t)$) of several transmitters ($S_1, \dots, S_i, \dots, S_n$) of a single-frequency network ~~by comprising:~~

~~receiving, by a receiver device (E) positioned within the transmission range of the single-frequency network, a signal ($e_i(t)$) associated with a transmitted signal ($s_i(t)$) of a transmitter (S_i) and a reference signal ($e_0(t)$) of a reference transmitter (S_0); and~~

~~evaluating ~~the~~ a phase position of ~~a~~ ~~the~~ received signal ($e_i(t)$) associated with ~~a~~ ~~the~~ transmitted signal ($s_i(t)$) of ~~a~~ ~~the~~ transmitter (S_i) with reference to ~~a~~ ~~the~~ received signal ($e_0(t)$) of ~~a~~ ~~the~~ reference transmitter (S_0), both of which are received by a receiver device (E) positioned within the transmission range of the single-frequency network.~~

2. (Currently Amended) A method Method according to claim 1, ~~characterised by further comprising:~~

~~a calculation (S70) of calculating a carrier-frequency displacement ($\Delta\omega_i$) of a carrier frequency (ω_i) of a transmitter (S_i) relative to a reference carrier frequency (ω_0) of the reference transmitter (S_0) from a phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) caused by the carrier-frequency displacement ($\Delta\omega_i$) of this transmitter between a phase displacement ($\Delta\Theta_i(t_{B2})$) at least at one second observation time (t_{B2}) and a phase displacement ($\Delta\Theta_i(t_{B1})$) at a first observation time (t_{B1}) of a received signal ($e_i(t)$) of this transmitter (S_i) associated with the transmitted signal~~

$(s_i(t))$ relative to a received signal $(e_0(t))$ of the reference transmitter (S_0) associated with the transmitted signal $(s_0(t))$.

3. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 2, ~~characterised in that the calculation (S70) of the carrier frequency displacement ($\Delta\omega_i$) of the carrier frequency (ω_i) of the transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) from the phase displacement difference ($\Delta\phi_i(t_{B2}-t_{B1})$) is preceded by the procedural stages listed below wherein said calculating includes:~~

- ~~—determination (S10) of determining a transmission function ($H_{SFN}(f)$) of the transmission channel from the transmitters ($S_1, \dots, S_i, \dots, S_n$) to the receiver device (E),~~
- ~~—calculation (S20) of calculating a characteristic of a complex, time-discrete, summated impulse response ($h_{SFN1}(t)$) at the first observation time (t_{B1}) and a characteristic of a complex, time-discrete, summated impulse response ($h_{SFN2}(t)$) at the second observation time (t_{B2}) of the transmission channel respectively from the transmission function ($H_{SFN}(f)$) of the transmission channel,~~
- ~~—masking (S30) of masking a characteristic of a complex impulse response ($h_{SFN1i}(t)$) at the first observation time (t_{B1}) and of a characteristic of a complex impulse response ($h_{SFN2i}(t)$) at the second observation time (t_{B2}) for every transmitter (S_i) of the single-frequency network respectively from the characteristic of the complex, summated impulse response ($h_{SFN1}(t)$) at the first observation time (t_{B1}) and from the characteristic of the complex, summated impulse response ($h_{SFN2}(t)$) at the second observation time (t_{B2}),~~

- ~~—determination (S40) of determining a phase characteristic ($\arg(h_{SFN1i}(t))$) of the complex impulse response ($h_{SFN1i}(t)$) at the first observation time (t_{B1}) and of a phase characteristic~~

($\arg(h_{SFN2i}(t))$) of the complex impulse response ($h_{SFN2i}(t)$) at the second observation time (t_{B2}) for every transmitter (S_i) of the single-frequency network, and

~~—calculation (S50) of calculating~~ the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) between a phase displacement ($\Delta\Theta_i(t_{B2})$) at the second observation time (t_{B2}) and a phase displacement ($\Delta\Theta_i(t_{B1})$) at the first observation time (t_{B1}) by subtraction of a phase characteristic ($\arg(h_{SFN1i}(t))$) of the complex impulse response ($\arg(h_{SFN1i}(t))$) at the first observation time (t_{B1}) from a phase characteristic ($\arg(h_{SFN2i}(t))$) of the complex impulse response ($h_{SFN2i}(t)$) at the second observation time (t_{B2}) of the respective transmitter (S_i).

4. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 3, ~~characterised by further comprising:~~

[[-]] increasing ~~(S60)~~ the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) by the factor $2*\pi$ in the case of a decrease in the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) to the value $-\pi$ or below and

[[-]] reducing ~~(S65)~~ the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) by the factor $-2*\pi$ in the case of an increase in the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) above the value π .

5. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 3 or 4, ~~characterised in that~~ further comprising:

determining, in the case of digital terrestrial TV, the transmission function of the transmission channel from the transmitters ($S_1, \dots, S_i, \dots, S_n$) to the receiver device (E) ~~is determined~~ from the DVB-T symbols of scattered pilot carriers of received signals ($e_i(t)$) of the transmitters ($S_1, \dots, S_i, \dots, S_n$) modulated according to the orthogonal-frequency-division-multiplexing (OFDM) method.

6. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 3, characterised in that wherein:

~~the calculation (S20) of a said calculating~~ the characteristic of a complex, time-discrete, summated impulse response $h_{SFN1/2}(t)$ at the discrete first observation time t_{B1} of the transmission channel is derived from the transmission function $H_{SFN}(f)$ of the transmission channel using the Fourier transform according to the formula:

$$h_{SFN1/2}(t) = \sum_{k=0}^{N_F-1} H_{SFN}(k) * e^{j2\pi kt/N_F}$$

wherein

$H_{SFN}(f)$ denotes the transmission function or respectively the frequency response of the transmission channel,

N_F denotes the number of sampling values for the discrete Fourier transform,

k denotes the discrete frequency values,

t denotes the sampling times of the time-discrete, summated impulse response of the transmission channel and

$1/2$ denotes the index for the observation time t_{B1} or respectively t_{B2} .

7. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 6, characterised in that wherein:

~~the calculation (S20) of a said calculating~~ the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) for each transmitter S_i of the single-frequency network is derived according to the formula:

$$\Delta\Delta\Theta_i(t_{B2}-t_{B1}) = \arg(h_{SFN2i}(t)) - \arg(h_{SFN1i}(t))$$

wherein

i denotes the index for the transmitter S_i

$\arg(h_{SFN2i}(t))$ denotes the phase characteristic of the complex impulse response $h_{SFN2i}(t)$ at the observation time t_{B2} of the transmitter S_i and

$\arg(h_{SFN1i}(t))$ denotes the phase characteristic of the complex impulse response $h_{SFN1i}(t)$ at the observation time t_{B1} of the transmitter S_i .

8. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 7, ~~characterised in that~~ wherein:

~~the calculation (S20) of a~~ said calculating the carrier-frequency displacement $\Delta\omega_i$ of the transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter of the single-frequency network is derived according to the formula:

$$\Delta\omega_i = \Delta\Delta\Theta_i(t_{B2}-t_{B1})/(t_{B2}-t_{B1})$$

wherein

i denotes the index for the transmitter S_i ,

$\Delta\Delta\Theta_i(t_{B2}-t_{B1})$ denotes the phase position difference $\Delta\Delta\Theta_i(t_{B2}-t_{B1})$ for the transmitter S_i of the single-frequency network and

t_{B1}, t_{B2} denote the observation times.

9. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 8, ~~characterised in that to allow an unambiguous identification of the permanent carrier frequency displacement $\Delta\omega_i$ of the transmitter S_i in the single frequency network relative to the carrier frequency ω_0 of the reference transmitter S_0 at several observation times t_B , the~~ further comprising performing the following ~~procedural stages are implemented steps~~ repeatedly:

—calculation (S20) of calculating the characteristic of the complex, time-discrete, summated impulse response $h_{SFNj}(t)$ and $(h_{SFN(j+1)}(t)$ at the observation times t_{Bj} and $t_{B(j+1)}$,

—masking (S30) of masking the characteristic of the complex impulse response $h_{SFNji}(t)$ and $h_{SFN(j+1)i}(t)$ at the observation times t_{Bj} and $t_{B(j+1)}$ for every transmitter S_i of the single-frequency network,

—determination (S40) of determining the phase characteristics $\arg(h_{SFNji}(t))$ and $\arg(h_{SFN(j+1)i}(t))$ of the complex impulse responses $h_{SFNji}(t)$ and $h_{SFN(j+1)i}(t)$ at the observation times t_{Bj} and $t_{B(j+1)}$,

—calculation (S50) of calculating the phase-displacement difference $(\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj}))$ between the phase displacement $\Delta\Theta_i(t_{B(j+1)})$ at the observation time $t_{B(j+1)}$ and the phase displacement $\Delta\Theta_i(t_{Bj})$ at the observation time t_{Bj} for every transmitter S_i of the single-frequency network,

[[[-]]] increasing (S60) the phase-displacement difference $\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$ by the factor $2*\pi$ in the case of a decrease in the phase-displacement difference $(\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj}))$ to the value $-\pi$ or below,

[[[-]]] reducing (S65) the phase-displacement difference $(\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj}))$ by the factor $-2*\pi$ in the case of an increase in the phase-displacement difference $\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$ above the value π and

—calculation (S70) of calculating the carrier-frequency displacement $\Delta\omega_{ij}$ of the transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter of the single-frequency network at several observation times t_{Bj} ; and that following this,

an averaging (S80) of all carrier-frequency displacements $\Delta\omega_{ij}$ of every transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter S_0 of the single-frequency network calculated respectively in procedural stage (S70), is implemented at the observation times t_{Bj} .

10. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 9, ~~characterised in that the wherein said~~ averaging (S80) of all carrier-frequency displacements $\Delta\omega_{ij}$ of every transmitter S_i relative to the carrier frequency ω_0 of a reference transmitter S_0 of the single-frequency network calculated in procedural stage (S70), is implemented using a recursive method.

11. (Currently Amended) A device Device for monitoring the stability of the carrier frequency (ω_i) of identical transmitted signals $s_i(t)$ of several transmitters ($S_1, \dots, S_i, \dots, S_n$) of a single-frequency network comprising:

[[-]] a receiver device (E),

[[-]] a unit (11) for determining a transmission function $H_{SFN}(f)$ of a transmission channel of several transmitters ($S_1, \dots, S_i, \dots, S_n$) of the single-frequency network to the receiver device (E) disposed within the transmission range of the single-frequency network,

[[-]] a unit (12) for implementing an inverse Fourier transform,

[[-]] a unit (13) for masking a impulse response ($h_{SFNi}(t)$) for every transmitter (S_i) from the summated impulse response ($h_{SFN}(t)$),

[[-]] a unit (14) for determining the phase characteristic ($\arg(h_{SFNi}(t))$) of the impulse response ($h_{SFNi}(t)$) for every transmitter (S_i),

[[-]] a unit (15) for calculating the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$) of the phase displacement ($\Delta\Theta_i$) of a transmitter (S_i) relative to a reference transmitter (S_0) at least at

two different times ((t_{Bj}, t_{Bj+1})) and the carrier-frequency displacement ($\Delta\omega_i$) of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0), and
 [[-]] a unit (2) for presenting the calculated carrier-frequency displacement ($\Delta\omega_i$) of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) of the single-frequency network.

12. (Currently Amended) A device Device for monitoring the stability of the carrier wave (ω_i) of identical transmitted signals $s_i(t)$ of several transmitters ($S_1, \dots, S_i, \dots, S_n$) of a single-frequency network comprising:

- [[-]] a receiver device (E),
- [[-]] a unit (16) for determining a transmission function ($H_{SFN}(f)$) from pilot carriers of the received signal ($e_i(t)$),
- [[-]] a unit (13) for masking a impulse response ($h_{SFNi}(t)$) for every transmitter (S_i) from the summated impulse response ($h_{SFN}(t)$),
- [[-]] a unit (14) for determining the phase characteristic ($\arg(h_{SFNi}(t))$) of the impulse response ($h_{SFNi}(t)$) for every transmitter (S_i),
- [[-]] a unit (15) for calculating the phase-displacement difference ($\Delta\Delta\Theta_i(t_{Bj+1}) - t_{Bj})$) of the phase displacement $\Delta\Theta_i$ of a transmitter (S_i) relative to a reference transmitter (S_0) at least at two different times ($t_{Bj} - t_{B(j+1)}$) and the carrier-frequency displacement ($\Delta\omega_i$) of every transmitter relative to the carrier frequency (ω_0) of the reference transmitter (S_0), and
- [[-]] a unit (2) for presenting the calculated carrier-frequency displacement ($\Delta\omega_i$) of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) of the single-frequency network.

13. (Currently Amended) A device Device for monitoring the stability of the carrier frequency according to claim 11 or 12, ~~characterised in that~~ wherein:

the unit (2) for presenting the calculated carrier-frequency displacement ($\Delta\omega_i$) of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) comprises a tabular and/or graphic display device.