

Stochastic Processes

Borel-Cantelli Lemma, Almost-Sure Convergence, Mean-Squared Convergence, Convergence in Probability, Convergence in Distribution, Examples

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

28 January 2025

Dedication

Figure: Dr. Prasanta Chandra Mahalanobis, FNA, FASc, FRS (1893-1972).

Borel-Cantelli Lemma

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Lemma (Borel-Cantelli Lemma)

1. Suppose $A_1,A_2,\ldots\in\mathscr{F}$ are such that $\sum_{i=1}^\infty\mathbb{P}(A_i)<+\infty$. Then,

$$\mathbb{P}\left(A_n \text{ i.o.}\right) = 0.$$

2. Suppose $A_1, A_2, \ldots \in \mathscr{F}$ are independent and satisfy $\sum_{i=1}^{\infty} \mathbb{P}(A_i) = +\infty$. Then,

$$\mathbb{P}\left(A_n \text{ i.o.}\right) = 1.$$

For the proof, see [Grimmett and Stirzaker, 2020, Ch. 7, Sec. 7.3].

Almost-Sure Convergence and A_n i.o.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ and X be defined w.r.t. \mathscr{F} .

Proposition

The following statements are equivalent.

- 1. $X_n \xrightarrow{\text{a.s.}} X$.
- 2. For every $\varepsilon > 0$,

$$\mathbb{P}(|X_n-X|\geq arepsilon \ ext{ i.o. })=0.$$

$$X_n \stackrel{\mathrm{a.s.}}{\longrightarrow} X \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{q \in \mathbb{O}_+} \bigcup_{N=1}^\infty \bigcap_{n=N}^\infty \{|X_n - X| < q\}\right) = 1$$

$$X_n \xrightarrow{\mathrm{a.s.}} X \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{q \in \mathbb{Q}_+} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_n - X| < q\}\right) = 1$$
 $\Longrightarrow \quad \mathbb{P}\left(\bigcup_{q \in \mathbb{Q}_+} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge q\}\right) = 0$

$$\begin{array}{ccc} X_n \stackrel{\mathrm{a.s.}}{\longrightarrow} X & \Longrightarrow & \mathbb{P}\left(\bigcap_{q \in \mathbb{Q}_+} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_n - X| < q\}\right) = 1 \\ \\ & \Longrightarrow & \mathbb{P}\left(\bigcup_{q \in \mathbb{Q}_+} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge q\}\right) = 0 \\ \\ & \Longrightarrow & \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge q\}\right) = 0 \quad \forall q \in \mathbb{Q}_+ \end{array}$$

$$X_{n} \xrightarrow{\text{a.s.}} X \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{q \in \mathbb{Q}_{+}} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_{n} - X| < q\}\right) = 1$$

$$\Longrightarrow \quad \mathbb{P}\left(\bigcup_{q \in \mathbb{Q}_{+}} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_{n} - X| \ge q\}\right) = 0$$

$$\Longrightarrow \quad \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_{n} - X| \ge q\}\right) = 0 \quad \forall q \in \mathbb{Q}_{+}$$

$$\Longrightarrow \quad \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_{n} - X| \ge \varepsilon\}\right) = 0 \quad \forall \varepsilon > 0$$

$$\begin{array}{lll} X_n \stackrel{\mathrm{a.s.}}{\longrightarrow} X & \Longrightarrow & \mathbb{P}\left(\bigcap_{q \in \mathbb{Q}_+} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_n - X| < q\}\right) = 1 \\ & \Longrightarrow & \mathbb{P}\left(\bigcup_{q \in \mathbb{Q}_+} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge q\}\right) = 0 \\ & \Longrightarrow & \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge q\}\right) = 0 \quad \forall q \in \mathbb{Q}_+ \\ & \Longrightarrow & \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge \varepsilon\}\right) = 0 \quad \forall \varepsilon > 0 \\ & \Longrightarrow & \mathbb{P}(|X_n - X| \ge \varepsilon \text{ i.o.}) = 0 \quad \forall \varepsilon > 0 \end{array}$$

$$\begin{array}{lll} X_n \stackrel{\mathrm{a.s.}}{\longrightarrow} X & \iff & \mathbb{P}\left(\bigcap_{q \in \mathbb{Q}_+} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_n - X| < q\}\right) = 1 \\ & \iff & \mathbb{P}\left(\bigcup_{q \in \mathbb{Q}_+} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge q\}\right) = 0 \\ & \iff & \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge q\}\right) = 0 \quad \forall q \in \mathbb{Q}_+ \\ & \iff & \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{|X_n - X| \ge \varepsilon\}\right) = 0 \quad \forall \varepsilon > 0 \\ & \iff & \mathbb{P}(|X_n - X| \ge \varepsilon \text{ i.o.}) = 0 \quad \forall \varepsilon > 0 \end{array}$$

A Generic Template

• For each $n \in \mathbb{N}$, let

$$\mathbb{P}(X_n = 1) = \frac{1}{n^2} = 1 - \mathbb{P}(X_n = 0).$$

Identify an almost-sure limit.

• For each $n \in \mathbb{N}$, let

$$\mathbb{P}(X_n = 1) = \frac{1}{n} = 1 - \mathbb{P}(X_n = 0).$$

Furthermore, suppose that X_1, X_2, \ldots are mutually independent. What can we say about the convergence of the above sequence?

Determining Bias of Coin

• Let $X_1, X_2, \dots \stackrel{\text{i.i.d.}}{\sim} \operatorname{Ber}(p)$ for a fixed $p \in (0, 1)$. For each $n \in \mathbb{N}$, let S_n be defined as

$$S_n = \sum_{i=1}^n X_i$$

Determining Bias of Coin

• Let $X_1, X_2, \cdots \overset{\text{i.i.d.}}{\sim} \operatorname{Ber}(p)$ for a fixed $p \in (0, 1)$. For each $n \in \mathbb{N}$, let S_n be defined as

$$S_n = \sum_{i=1}^n X_i = \#$$
 heads in the first n tosses.

Show that $\frac{S_n}{n} \xrightarrow{\text{a.s.}} p$ (the constant random variable which takes the value p).

Suppose that $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \text{Unif}).$

Moving Rectangles

Let
$$(\Omega, \mathscr{F}, \mathbb{P}) = ([0, 1], \mathscr{B}([0, 1]), \text{Unif}).$$

$$X_1 = \mathbf{1}_{[0,1]}$$

$$X_2 = \mathbf{1}_{[0,\frac{1}{2}]}, \quad X_3 = \mathbf{1}_{[\frac{1}{2},1]}$$

$$egin{aligned} \mathbf{X}_2 &= \mathbf{1}_{\left[0, rac{1}{2}
ight]}, & \mathbf{X}_3 &= \mathbf{1}_{\left[rac{1}{2}, 1
ight]} \ \mathbf{Y}_2 &= \mathbf{1} \end{aligned}$$

$$X_4 = \mathbf{1}_{\left[0, \frac{1}{4}\right]}, \quad X_5 = \mathbf{1}_{\left[\frac{1}{4}, \frac{1}{2}\right]}, \quad X_6 = \mathbf{1}_{\left[\frac{1}{2}, \frac{3}{4}\right]}, \quad X_7 = \mathbf{1}_{\left[\frac{3}{4}, 1\right]}, \quad \text{and so on.}$$

Suppose that $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \text{Unif}).$

Moving Rectangles

Let
$$(\Omega, \mathscr{F}, \mathbb{P}) = ([0, 1], \mathscr{B}([0, 1]), \text{Unif}).$$

$$X_1 = \mathbf{1}_{[0,1]}$$

$$X_2 = \mathbf{1}_{[0,\frac{1}{2}]}, \quad X_3 = \mathbf{1}_{[\frac{1}{2},1]}$$

$$egin{aligned} \mathbf{X}_2 &= \mathbf{1}_{\left[0, rac{1}{2}
ight]}, & \mathbf{X}_3 &= \mathbf{1}_{\left[rac{1}{2}, 1
ight]} \ \mathbf{Y}_2 &= \mathbf{1} \end{aligned}$$

$$X_4 = \mathbf{1}_{\left[0, \frac{1}{4}\right]}, \quad X_5 = \mathbf{1}_{\left[\frac{1}{4}, \frac{1}{2}\right]}, \quad X_6 = \mathbf{1}_{\left[\frac{1}{2}, \frac{3}{4}\right]}, \quad X_7 = \mathbf{1}_{\left[\frac{3}{4}, 1\right]}, \quad \text{and so on.}$$

Suppose that $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \text{Unif}).$

Moving Rectangles

Let
$$(\Omega, \mathscr{F}, \mathbb{P}) = ([0,1], \mathscr{B}([0,1]), \mathrm{Unif}).$$

$$X_1 = \mathbf{1}_{[0,1]}$$

$$X_2 = \mathbf{1}_{\left[0, \frac{1}{2}\right]}, \quad X_3 = \mathbf{1}_{\left[\frac{1}{2}, 1\right]}$$

$$X_4 = \mathbf{1}_{\left[0, \frac{1}{4}\right]}^{\left[\frac{1}{2}, \frac{1}{2}\right]}, \quad X_5 = \mathbf{1}_{\left[\frac{1}{4}, \frac{1}{2}\right]}^{\left[\frac{1}{2}, \frac{3}{4}\right]}, \quad X_7 = \mathbf{1}_{\left[\frac{3}{4}, 1\right]}, \quad \text{and so on.}$$

Note

Suppose that $(\Omega, \mathscr{F}, \mathbb{P}) = ([0, 1], \mathscr{B}([0, 1]), \mathrm{Unif}).$

Moving Rectangles

$$\begin{split} & \text{Let } (\Omega, \mathscr{F}, \mathbb{P}) = ([0,1], \mathscr{B}([0,1]), \text{Unif}). \\ & X_1 = \mathbf{1}_{[0,1]} \\ & X_2 = \mathbf{1}_{\left[0,\frac{1}{2}\right]}, \quad X_3 = \mathbf{1}_{\left[\frac{1}{2},1\right]} \\ & X_4 = \mathbf{1}_{\left[0,\frac{1}{4}\right]}, \quad X_5 = \mathbf{1}_{\left[\frac{1}{4},\frac{1}{2}\right]}, \quad X_6 = \mathbf{1}_{\left[\frac{1}{2},\frac{3}{4}\right]}, \quad X_7 = \mathbf{1}_{\left[\frac{3}{4},1\right]}, \quad \text{and so on.} \end{split}$$

Note

There is no pointwise limit or almost-sure limit for the above sequence.

Suppose that $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \text{Unif}).$

Moving Rectangles

$$\begin{split} & \text{Let } (\Omega, \mathscr{F}, \mathbb{P}) = ([0,1], \mathscr{B}([0,1]), \text{Unif}). \\ & X_1 = \mathbf{1}_{[0,1]} \\ & X_2 = \mathbf{1}_{\left[0,\frac{1}{2}\right]}, \quad X_3 = \mathbf{1}_{\left[\frac{1}{2},1\right]} \\ & X_4 = \mathbf{1}_{\left[0,\frac{1}{4}\right]}, \quad X_5 = \mathbf{1}_{\left[\frac{1}{4},\frac{1}{2}\right]}, \quad X_6 = \mathbf{1}_{\left[\frac{1}{2},\frac{3}{4}\right]}, \quad X_7 = \mathbf{1}_{\left[\frac{3}{4},1\right]}, \quad \text{and so on.} \end{split}$$

Note

- There is no pointwise limit or almost-sure limit for the above sequence.
- However, we observe that $\mathbb{P}(X_n = 0) \approx 1$ for large n. In what sense is the constant RV 0 a limit here?

Other Notions of Convergence

Convergence in Probability

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ and X be defined w.r.t. \mathscr{F} .

Definition (Convergence in Probability)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in probability (p.) if

$$\forall \varepsilon > 0, \qquad \lim_{n \to \infty} \mathbb{P}(\{|X_n - X| > \varepsilon\}) = 0.$$

Notation:

$$X_n \stackrel{\mathrm{p.}}{\longrightarrow} X.$$

Convergence in Probability

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ and X be defined w.r.t. \mathscr{F} .

Definition (Convergence in Probability)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in probability (p.) if

$$\forall \varepsilon > 0, \qquad \lim_{n \to \infty} \mathbb{P}(\{|X_n - X| > \varepsilon\}) = 0.$$

Notation:

$$X_n \xrightarrow{p} X$$
.

Note

The in-probability limit is only specified up to sets of zero probability. That is,

$$X_n \xrightarrow{p.} X, X_n \xrightarrow{p.} Y \implies \mathbb{P}(X = Y) = 1.$$

Mean-Squared Convergence

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ and X be defined w.r.t. \mathscr{F} .

Definition (Mean-Squared Convergence)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in mean-squared (m.s.) sense if

- $\mathbb{E}[X_n^2] < +\infty$ for all $n \in \mathbb{N}$.
- We have

$$\lim_{n\to\infty}\mathbb{E}[(X_n-X)^2]=0.$$

Notation:

$$X_n \xrightarrow{\text{m.s.}} X$$
.

Mean-Squared Convergence

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ and X be defined w.r.t. \mathscr{F} .

Definition (Mean-Squared Convergence)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in mean-squared (m.s.) sense if

- $\mathbb{E}[X_n^2] < +\infty$ for all $n \in \mathbb{N}$.
- We have

$$\lim_{n\to\infty}\mathbb{E}[(X_n-X)^2]=0.$$

Notation:

$$X_n \xrightarrow{\mathrm{m.s.}} X$$
.

$$X_n \xrightarrow{\text{m.s.}} X, X_n \xrightarrow{\text{m.s.}} Y \implies \mathbb{P}(X = Y) = 1.$$

A Picture to Have in Mind

(proof of the implications to come later)

Suppose that $(\Omega, \mathscr{F}, \mathbb{P}) = ([0, 1], \mathscr{B}([0, 1]), \mathrm{Unif}).$

Fix a sequence of real numbers $\{a_n\}_{n=1}^{\infty}$.

For each $n \in \mathbb{N}$, let

$$X_n(\omega) = \begin{cases} a_n, & \omega \in \left[0, \frac{1}{n}\right], \\ 0, & \text{otherwise.} \end{cases}$$

Identify the forms of convergence and corresponding limit RVs.

• If $a_n = n$, then

$$X_n \xrightarrow{\text{a.s.}} 0$$
, but $X_n \xrightarrow{\text{m.s.}} 0$.

• If $a_n = n$, then

$$X_n \xrightarrow{\text{a.s.}} 0$$
, but $X_n \xrightarrow{\text{m.s.}} 0$.

• Although $X_n \xrightarrow{\text{a.s.}} 0$, the value of $|X_n(\omega) - 0|$ can be arbitrarily large for some ω . This can lead to a large value for $\mathbb{E}[(X_n - X)^2]$ as $n \to \infty$.

• If $a_n = n$, then

$$X_n \xrightarrow{\text{a.s.}} 0$$
, but $X_n \xrightarrow{\text{m.s.}} 0$.

• Although $X_n \xrightarrow{\text{a.s.}} 0$, the value of $|X_n(\omega) - 0|$ can be arbitrarily large for some ω . This can lead to a large value for $\mathbb{E}[(X_n - X)^2]$ as $n \to \infty$.

• If $a_n = n$, then

$$X_n \xrightarrow{\text{a.s.}} 0$$
, but $X_n \xrightarrow{\text{m.s.}} 0$.

• Although $X_n \xrightarrow{\text{a.s.}} 0$, the value of $|X_n(\omega) - 0|$ can be arbitrarily large for some ω . This can lead to a large value for $\mathbb{E}[(X_n - X)^2]$ as $n \to \infty$.

Almost-Sure Convergence and Mean-Squared Convergence

In general,

$$X_n \xrightarrow{\text{a.s.}} 0 \implies X_n \xrightarrow{\text{m.s.}} 0, \qquad X_n \xrightarrow{\text{m.s.}} 0 \implies X_n \xrightarrow{\text{a.s.}} 0.$$

Suppose that $(\Omega, \mathscr{F}, \mathbb{P}) = ([0, 1], \mathscr{B}([0, 1]), \text{Unif}).$

Let $X_n = X_{n+3}$ for all $n \in \mathbb{N}$. Identify forms of convergence and their corresponding limits.

Remarks on Previous Example

- The sequence of RVs do not converge pointwise, almost-surely, in mean-squared sense, or in probability
- However, the PMFs (hence CDFs) of X_1, X_2, X_3 are identical, hence there is convergence of CDFs

Convergence in Distribution

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ and X be defined w.r.t. \mathscr{F} .

Definition (Convergence in Distribution)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in distribution (d.) if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \qquad \forall x\in C_{F_X},$$

where C_{F_X} denotes the points of continuity of F_X .

Notation:

$$X_n \stackrel{\mathrm{d.}}{\longrightarrow} X.$$

Convergence - The Full Picture

$$A_{\lim} = \left\{ \omega \in \Omega : \lim_{n o \infty} X_n(\omega) = X(\omega)
ight\}$$

References

Oxford university press.