

M7-Uji Validitas dan Reliabilitas Kuesioner dan Praktikum

-Tim Dosen Metode Statistika-

Contoh Kuesioner

KUESIONER/ANGKET MOTIVASI BERPRESTASI

Petunjuk: Berikut disajikan pernyataan tentang Motivasi Berprestasi. Silahkan menyatakan persepsi Anda tentang Motivasi Berprestasi di tempat Anda bekerja dengan cara melingkari kolom skala.

Jika anda pilih:

- 1 = sangat tidak setuju (STS)
- 2 = tidak setuju (TS)
- 3 = setuju(S)
- 4 = sangat setuju (SS)

No	Pernyataan	STS	TS	S	SS
INO	remyalaan	1	2	3	4
1	Tujuan belajar mengajar tercapai apabila siswa tuntas dalam belajar				
2	Saya yakin dengan kemampuan diri sendiri dalam mencapai keberhasilan pengajaran				
3	Saya yakin dapat bersaing dengan rekan sejawat dengan wajar demi meningkatkan karir				
4	Saya merasa bangga menjadi seorang guru tanpa mempertimbangkan pendapatan karena hanya untuk pengabdian				
5	Saya bersungguh-sungguh dalam tugas mengajar				
6	Saya membuat penilaian hasil belajar siswa				
7	Menindaklanjuti saran dapat memperlancar pekerjaan berikutnya				
8	Saya siap menghadapi resiko dalam melaksanakan kegiatan belajar mengajar				
9	Saya dapat melaksanakan tugas lain yang diberikan atasan				
10	Saya yakin pada kemampuan saya sendiri untuk mengerjakan tugas-tugas lain yang dibebankan oleh atasan.				
11	Saya yakin persaingan sehat dan fair membuat bekerja menjadi lebih baik				
12	Saya merasa bangga jika telah bekerja keras untuk menyelesaikan pekerjaan				
13	Saya bersungguh-sungguh dalam melaksanakan tugastugas lain yang dibebankan oleh atasan				
14	Saya mengomunikasikan hasil belajar kepada siswa				
15	Kritik yang diberikan orang lain tidak banyak manfaatnya bagi penyelesaian tugas selanjutnya				

Apakah valid dan reliabel?

Uji Validitas

Uji Validitas adalah ketepatan atau kecermatan suatu instrument dalam pengukuran.

Validitas dibagi menjadi 2, yaitu

- Validitas faktor
- Validitas item

Validitas Faktor

- Diukur bila item yang disusun menggunakan lebih dari satu faktor
- Cara yang digunakan adalah mengkorelasikan antara skor faktor dengan skor total faktor

Validitas Item

- Ditunjukkan dengan adanya korelasi atau dukungan terhadap item total
- Cara yang digunakan adalah mengkorelasikan antara skor item dengan skor total item
- Bila digunakan lebih dari satu faktor, maka pengujian validitas item dengan cara mengkorelasikan antara skor item dengan skor faktor, kemudian dilanjutkan mengkorelasikan antara skor item dengan skor total faktor

Korelasi Pearson

Formula Korelasi Pearson

$$r = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}}$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$S_{xx} = \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Nilai r_{hitung} dibandingkan dengan r_{tabel} product moment pada taraf signifikansi α . Jika $r_{hitung} > r_{tabel}$ maka butir soal tersebut **valid**.

Uji Validitas dengan R

Struktur Data

No.							Butir	Pertan	yaan							•
Respond																Total
en	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	4	4	1	4	4	3	4	4	4	3	3	3	4	4	1	50
2	4	4	2	4	4	1	4	4	4	3	3	2	4	4	4	51
3	3	4	3	3	3	2	3	3	3	4	4	4	3	3	3	48
	-	-	-					-								
	-	-	-	-	-		-	-	-	-		-		-	-	-
				-				-								
32	3	4	4	3	3	3	3	3	4	3	3	3	3	3	4	49

Simpan ke dalam file dengan nama "M7-DataContoh1"

Setting Directory

#Set Directory setwd("D:/UNAIR/1. Perkuliahan/Metstat/Bahan Ajar/Modif/M7/Praktikum")

Uji Validitas dengan R

Import Data

#Import Data data.kuisioner1=read.table("M7-DataContoh1.txt",header=TRUE) data.kuisioner1

Select Data

#Select Data Col2 - Col17 data.uji1=data.kuisioner1[,2:17] data.uji1

Open Library

#Open Library library(Hmisc)

Uji Validitas dengan R

Menghitung Matriks Korelasi

#Menghitung Matriks Korelasi rcorr(as.matrix(data.uji1), type="pearson")

```
> #Stat Uji
> rcorr(as.matrix(data.uji1), type="pearson")
                                                 Q8
                                         0.34
                                               0.31 0.12
                                                           0.08 -0.13
                                         0.15
                                                     0.26
                                                           0.22 -0.43
                             0.06 -0.35
                                               0.25
                                                     0.17
                                                           0.28 -0.08
                                                           0.08 -0.13
                 0.19 -0.08
                                   1.00 -0.24 -0.21 -0.42 -0.13
                              0.34 -0.24
                                          0.10
                                                     1.00
Q10
                             0.08 -0.13 -0.24 -0.06
                                                     0.52
Q11
      -0.13 -0.43 -0.08 -0.30 -0.13 0.19
                                         0.14 -0.07 -0.25 -0.04
                                                                 1.00
012
Q13
                                                           0.08 -0.13
                                               0.31 0.12
Q14
           0.51 0.04 0.28
                             0.56 -0.11
                                         0.37
                                               0.50 0.14
                                                          0.02 -0.20 -0.19
                                         0.29
                             0.83 0.08 0.44 0.37
                                                     0.37 0.29 -0.05 0.05
```

n= 32

Bandingkan dengan nilai r tabel

Uji Validitas dengan SPSS

Struktur Data

Uji Validitas dengan SPSS

Langkah-Langkah

Uji Validitas dengan SPSS

Langkah-Langkah

Bandingkan dengan nilai r tabel

L		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Total
Q1	Pearson Correlation	1	.063	.150	.634	1.000**	.139	.344	.313	.120	.079	126	.115	1.000^^	.564	.123	.826
	Sig. (2-tailed)		.733	.413	.000	.000	.447	.054	.081	.512	.667	.492	.532	.000	.001	.501	.000
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q2	Pearson Correlation	.063	1	.024	058	.063	352	.146	.255	.263	.218	434	273	.063	.506	.073	.228
	Sig. (2-tailed)	.733		.894	.751	.733	.048	.427	.159	.145	.231	.013	.131	.733	.003	.690	.209
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q3	Pearson Correlation	.150	.024	1	.077	.150	.185	080	325	.167	.275	079	.158	.150	.036	102	.392
	Sig. (2-tailed)	.413	.894		.675	.413	.310	.663	.070	.361	.127	.666	.387	.413	.846	.579	.026
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q4	Pearson Correlation	.634**	058	.077	1	.634**	085	.266	.357	.145	153	296	094	.634**	.283	.172	.570**
	Sig. (2-tailed)	.000	.751	.675		.000	.644	.141	.045	.429	.402	.100	.608	.000	.117	.345	.001
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q5	Pearson Correlation	1.000**	.063	.150	.634**	1	.139	.344	.313	.120	.079	126	.115	1.000**	.564	.123	.826**
	Sig. (2-tailed)	.000	.733	.413	.000		.447	.054	.081	.512	.667	.492	.532	.000	.001	.501	.000
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q6	Pearson Correlation	.139	352	.185	085	.139	1	244	207	415	132	.193	.821	.139	114	289	.079
	Sig. (2-tailed)	.447	.048	.310	.644	.447		.178	.257	.018	.471	.289	.000	.447	.536	.108	.669
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q7	Pearson Correlation	.344	.146	080	.266	.344	244	1	.372	.100	245	.141	296	.344	.372	.292	.441
	Sig. (2-tailed)	.054	.427	.663	.141	.054	.178		.036	.586	.177	.442	.100	.054	.036	.105	.012
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q8	Pearson Correlation	.313	.255	325	.357	.313	207	.372*	1	.138	059	071	302	.313	498	.174	.371
	Sig. (2-tailed)	.081	.159	.070	.045	.081	.257	.036		.451	.747	.699	.093	.081	.004	.342	.037
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q9	Pearson Correlation	.120	.263	.167	.145	.120	415	.100	.138	1	.519**	247	487	.120	.138	.131	.371
	Sig. (2-tailed)	.512	.145	.361	.429	.512	.018	.586	.451		.002	.172	.005	.512	.451	.475	.037
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q10	Pearson Correlation	.079	.218	.275	153	.079	132	245	059	.519**	1	040	073	.079	.020	097	.286
	Sig. (2-tailed)	.667	.231	.127	.402	.667	.471	.177	.747	.002		.829	.693	.667	.914	.596	.112
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q11	Pearson Correlation	126	434	079	296	126	.193	.141	071	247	040	1	.318	126	197	023	055
	Sig. (2-tailed)	.492	.013	.666	.100	.492	.289	.442	.699	.172	.829		.076	.492	.279	.899	.767
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q12	Pearson Correlation	.115	273	.158	094	.115	.821**	296	302	487**	073	.318	1	.115	187	269	.052
	Sig. (2-tailed)	.532	.131	.387	.608	.532	.000	.100	.093	.005	.693	.076		.532	.306	.137	.776
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q13	Pearson Correlation	1.000**	.063	.150	.634**	1.000**	.139	.344	.313	.120	.079	126	.115	1	.564	.123	.826**
	Sig. (2-tailed)	.000	.733	.413	.000	.000	.447	.054	.081	.512	.667	.492	.532		.001	.501	.000
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q14	Pearson Correlation	.564**	.506**	.036	.283	.564**	114	.372*	.498**	.138	.020	197	187	.564**	1	.236	.623
	Sig. (2-tailed)	.001	.003	.846	.117	.001	.536	.036	.004	.451	.914	.279	.306	.001		.194	.000
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q15	Pearson Correlation	.123	.073	102	.172	.123	289	.292	.174	.131	097	023	269	.123	.236	1	.343
	Sig. (2-tailed)	.501	.690	.579	.345	.501	.108	.105	.342	.475	.596	.899	.137	.501	.194		.055
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Total	Pearson Correlation	.826**	.228	.392*	.570**	.826**	.079	.441*	.371	.371*	.286	055	.052	.826**	.623	.343	1
	Sig. (2-tailed)	.000	.209	.026	.001	.000	.669	.012	.037	.037	.112	.767	.776	.000	.000	.055	
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
**. C	Correlation is significant	at the 0.01 le	evel (2-tailed	1).													
	-																

Correlations

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Uji Validitas

Q	R hitung	R Tabel	Kesimpulan
1	0,826	0,349	Valid
2	0,228	0,349	Tidak Valid
3	0,392	0,349	Valid
4	0,57	0,349	Valid
5	0,826	0,349	Valid
6	0,079	0,349	Tidak Valid
7	0,441	0,349	Valid
8	0,371	0,349	Valid
9	0,371	0,349	Valid
10	0,286	0,349	Tidak Valid
11	0,055	0,349	Tidak Valid
12	0,052	0,349	Tidak Valid
13	0,826	0,349	Valid
14	0,623	0,349	Valid
15	0,343	0,349	Tidak Valid

^{*}r tabel = 0,349 (taraf signifikansi α =5% n=32)

Tabel Nilai-nilai r Product Moment

N	Taraf Sig	nifikansi	N	Taraf Signifikansi		
	5 %	1 %		5 %	1 %	
3	0,997	0,999	38	0,320	0,413	
4	0,950	0,990	39	0,316	0,408	
5	0,878	0,959	40	0,312	0,403	
6 7 8 9	0,811 0,754 0,707 0,666 0,632	0,917 0,874 0,834 0,798 0,765	41 42 43 44 45	0,308 0,304 0,301 0,297 0,294	0,398 0,393 0,389 0,384 0,380	
11	0,602	0,735	46	0,291	0,376	
12	0,576	0,708	47	0,288	0,372	
13	0,553	0,684	48	0,284	0,368	
14	0,532	0,661	49	0,281	0,364	
15	0,514	0,641	50	0,279	0,361	
16	0,497	0,623	55	0,266	0,345	
17	0,482	0,606	60	0,254	0,330	
18	0,468	0,590	65	0,244	0,317	
19	0,456	0,575	70	0,235	0,306	
20	0,444	0,561	75	0,227	0,296	
21	0,433	0,549	80	0,220	0,286	
22	0,423	0,537	85	0,213	0,278	
23	0,413	0,526	90	0,207	0,270	
24	0,404	0,515	95	0,202	0,263	
25	0,396	0,505	100	0,195	0,256	
26	0,388	0,496	125	0,176	0,230	
27	0,381	0,487	150	0,159	0,210	
28	0,374	0,478	175	0,148	0,194	
29	0,367	0,470	200	0,138	0,181	
30	0,361	0,463	300	0,113	0,148	
31	0,355	0,456	400	0,098	0,128	
32	0,349	0,449	500	0,088	0,115	
33	0,344	0,442	600	0,080	0,105	
34	0,339	0,436	700	0,074	0,097	
35	0,334	0,430	800	0,070	0,091	
36	0,329	0,424	900	0,065	0,086	
37	0,325	0,418	1000	0,062	0,081	

Uji Reliabilitas

Uji Reliabilitas digunakan untuk mengetahui konsistensi alat ukur, apakah alat ukur yang digunakan dapat diandalkan dan tetap konsisten jika pengukuran tersebut diulang.

Metode pengujian reliabilitas:

- Metode tes ulang
- Formula Flanagan
- Cronbach's Alpha
- Metode formula Kuder-Richardson (KR) 20
- KR 21
- Metode Anova Hoyt

Pengukuran reliabilitas:

- Reliabilitas Skala
- Reliabilitas Tes

Reliabilitas Skala

Untuk mengukur reliabilitas skala dapat digunakan metode **Cronbach's Alpha** sebagai berikut:

$$r_{CA} = \left(\frac{k}{k-1}\right) \left(1 - \frac{\sum \sigma_b^2}{\sigma_t^2}\right)$$

 r_{CA} : koefisien korelasi instrument (total tes)

k: banyaknya butir pertanyaan

 $\sum \sigma_b^2$: jumlah varian butir pertanyaan

 σ_t^2 : varian skor total

Perhitungan uji reliabilitas skala **diterima**, jika hasil perhitungan r hitung > r tabel dengan taraf signifikansi α

Untuk mengukur reliabilitas tes digunakan metode KR-20 sebagai berikut:

$$r_{KR-20} = \left(\frac{k}{k-1}\right) \left(1 - \frac{\sum p_i q_i}{\sigma_t^2}\right)$$

 r_{KR-20} : koefisien korelasi reliabilitas test

k: banyaknya butir pertanyaan

 p_i : proporsi subjek yang menjawab soal dengan benar, sehingga $p_i = \frac{banyaknya\ subjek\ yang\ memiliki\ skor\ 1}{N}$

 $q_i = 1 - p_i$, yaitu proporsi subjek yang menjawab salah

 σ_t^2 : varian skor total

Perhitungan uji reliabilitas tes **diterima**, jika hasil perhitungan r hitung > r tabel dengan taraf signifikansi α

Struktur Data

No.							Butir	Pertan	yaan							1
Respond																Total
en	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	4	4	1	4	4	3	4	4	4	3	3	3	4	4	1	50
2	4	4	2	4	4	1	4	4	4	3	3	2	4	4	4	51
3	3	4	3	3	3	2	3	3	3	4	4	4	3	3	3	48
						-	-		-	-	-					
.						•	•			•	•					
						•	•			•	•					
32	3	4	4	3	3	3	3	3	4	3	3	3	3	3	4	49

Setting Directory

#Set Directory setwd("D:/UNAIR/1. Perkuliahan/Metstat/Bahan Ajar/Modif/M7/Praktikum")

Import Data

Uji Reliabilitas dengan R

#Import Data data.kuisioner1=read.table("M7-DataContoh1.txt",header=TRUE) data.kuisioner1

Subset Data

#Subset Data
Q1=data.kuisioner1\$Q1
Q3=data.kuisioner1\$Q3
Q4=data.kuisioner1\$Q4
Q5=data.kuisioner1\$Q5
Q7=data.kuisioner1\$Q7
Q8=data.kuisioner1\$Q8
Q9=data.kuisioner1\$Q9
Q13=data.kuisioner1\$Q13
Q14=data.kuisioner1\$Q14
data.uji2=cbind.data.frame(Q1,Q3,Q4,Q5,Q7,Q8,Q9,Q13,Q14)
data.uji2

Open Library

#Open Library library(psych)

Statistik Uji

#Stat Uji alpha(data.uji1)

```
Reliability analysis
Call: alpha(x = data.uji2)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.74 0.82 0.78 0.33 4.5 0.071 3.4 0.39 0.31

lower alpha upper 95% confidence boundaries
0.6 0.74 0.88
```

```
r hitung = 0,74 > r tabel = 0,349 (taraf signifikansi \alpha=5% n=32)
```

Artinya pertanyaan dalam kuesioner sudah reliabel

```
Reliability if an item is dropped:
    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
         0.67
                                     0.28 3.1
                   0.76
                           0.74
                                                  0.090 0.067
                                                               0.27
Q3
         0.81
                   0.85
                           0.79
                                     0.41 5.7
                                                 0.051 0.071 0.34
                           0.74
         0.69
                   0.79
                                     0.32 3.7
                                                 0.088 0.096 0.31
Q5
         0.67
                   0.76
                           0.74
                                     0.28 3.1
                                                 0.090 0.067
                                                              0.27
Q7
         0.73
                   0.81
                           0.77
                                     0.35 4.3
                                                 0.075 0.102 0.30
Q8
         0.73
                   0.81
                           0.75
                                     0.35 4.4
                                                 0.074 0.092 0.27
         0.76
                   0.84
                           0.79
                                     0.39 5.1
Q9
                                                 0.068 0.095 0.34
Q13
         0.67
                   0.76
                           0.74
                                     0.28 3.1
                                                  0.090 0.067
                                                              0.27
014
         0.70
                   0.79
                           0.74
                                     0.32 3.7
                                                  0.081 0.099 0.29
```


Struktur Data

Langkah-Langkah

Langkah-Langkah

Output

Case Processing Summary

		N	%
Cases	Valid	32	100.0
	Excluded ^a	0	.0
	Total	32	100.0

 a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

N of Items
9

r hitung = 0,741 > r tabel = 0,349 (taraf signifikansi α =5% n=32) Artinya pertanyaan dalam kuesioner sudah reliabel

Tabel Nilai-nilai r Product Moment

N	Taraf Sig	nifikansi	N	Taraf Signifikansi			
	5 %	1 %		5 %	1 %		
3	0,997	0,999	38	0,320	0,413		
4	0,950	0,990	39	0,316	0,408		
5	0,878	0,959	40	0,312	0,403		
6 7 8 9	0,811 0,754 0,707 0,666 0,632	0,917 0,874 0,834 0,798 0,765	41 42 43 44 45	0,308 0,304 0,301 0,297 0,294	0,398 0,393 0,389 0,384 0,380		
11	0,602	0,735	46	0,291	0,376		
12	0,576	0,708	47	0,288	0,372		
13	0,553	0,684	48	0,284	0,368		
14	0,532	0,661	49	0,281	0,364		
15	0,514	0,641	50	0,279	0,361		
16	0,497	0,623	55	0,266	0,345		
17	0,482	0,606	60	0,254	0,330		
18	0,468	0,590	65	0,244	0,317		
19	0,456	0,575	70	0,235	0,306		
20	0,444	0,561	75	0,227	0,296		
21	0,433	0,549	80	0,220	0,286		
22	0,423	0,537	85	0,213	0,278		
23	0,413	0,526	90	0,207	0,270		
24	0,404	0,515	95	0,202	0,263		
25	0,396	0,505	100	0,195	0,256		
26	0,388	0,496	125	0,176	0,230		
27	0,381	0,487	150	0,159	0,210		
28	0,374	0,478	175	0,148	0,194		
29	0,367	0,470	200	0,138	0,181		
30	0,361	0,463	300	0,113	0,148		
31	0,355	0,456	400	0,098	0,128		
32	0,349	0,449	500	0,088	0,115		
33	0,344	0,442	600	0,080	0,105		
34	0,339	0,436	700	0,074	0,097		
35	0,334	0,430	800	0,070	0,091		
36	0,329	0,424	900	0,065	0,086		
37	0,325	0,418	1000	0,062	0,081		

