Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

1/34

Inner products on real linear space

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- $\langle v, v \rangle \ge 0$ for all $v \in V$.
- $\langle v, v \rangle = 0$ if and only if v = 0.

Inner products on linear space

- ullet The definition of the above inner product is not useful for complex vector spaces V.
- Let $0 \neq u \in V$ and $i \in \mathbb{C}$.

$$\langle iu, iu \rangle = i^2 \langle u, u \rangle < 0.$$

Inner products on complex linear space

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- $\langle v, v \rangle \ge 0$ for all $v \in V$.
- $\langle v, v \rangle = 0$ if and only if v = 0.

Notes

Let V be an inner product, Then

 $\langle u, cw \rangle = \bar{c} \langle u, w \rangle$ for all $u, w \in V$ and $c \in \mathbb{R}$.

Symmetric Matrices

Let $A \in M_n(\mathbb{R})$, then there is a matrix $B \in M_n(\mathbb{R})$ such that $\langle Ax, y \rangle = \langle x, By \rangle$ for each $x, y \in \mathbb{R}^n$.

Definition

A symmetric matrix is a square matrix that is equal to its transpose.

Hermitian Matrices

Let $A \in M_n(\mathbb{C})$, then there is a matrix $B \in M_n(\mathbb{C})$ such that $\langle Ax, y \rangle = \langle x, By \rangle$ for each $x, y \in \mathbb{C}^n$.

Definition

A hermitian matrix is a square matrix, which is equal to its conjugate transpose matrix.

7/34

Self-adjoint Matrices

Definition

A matrix $A \in \mathbb{F}$ is self-adjoint if $A^* = A$.

Definition

A matrix $A \in \mathbb{R}$ is symmetric if $A^T = A$.

Definition

A matrix $A \in \mathbb{C}$ is Hermitian if $A^H = A$.

Unitary Matrices

Definition

A matrix $U \in \mathbb{F}$ is unitary if $U^*U = UU^* = I$.

• For each $x, y \in \mathbb{F}^n$,

$$\langle Ux, Uy \rangle = \langle x, U^*Uy \rangle.$$

 \bullet If U is unitary, then

$$\langle Ux, Uy \rangle = \langle x, y \rangle$$
.

That means U preserves inner product.

Inner product on finite-dimensional linear spaces

- Suppose that V is finite-dimensional linear space where $B = \{v_1, \ldots, v_n\}$ is an ordered basis for V.
- lacksquare The inner product is completely determined by the entries of matrix G where

$$G_{ij} = \langle v_j, v_i \rangle.$$

• Let $v, w \in V$. If $x = [v]_B$ and $y = [w]_B$, then

$$\langle v, w \rangle = y^* G x.$$

5 If $V = \mathbb{F}^n$. Then for each $x, y \in V$,

$$\langle x, y \rangle = y^* x,$$

if we consider standard basis for V.

The properties of G

- \bullet $G_{ii} > 0$, for each $1 \leq i \leq n$.
- \odot G self-adjoint.
- \odot G is invertible.

Is the above process reversible?

Let V in a lienar space on \mathbb{R} with dimension n with a basis B. Question. When a bilinear function $\langle , \rangle : V \times V \to \mathbb{F}$ such that

$$\langle v, w \rangle = y^* G x$$

and $x = [v]_B$ and $y = [w]_B$, is an inner product for $G \in M_n(\mathbb{F})$.

Is the above process reversible?

By the definition of an inner product, we should have

- \circ G is self-adjoint $(G^* = G)$.

Definition

A self-adjoint matrix $A \in M_n(\mathbb{F})$ is called

- **1 positive definite** if $x^T A x > 0$ for each $0 \neq x \in \mathbb{F}^n$.
- **2** positive semi-definite if $x^T A x \ge 0$ for each $x \in \mathbb{F}^n$.

Gradient vector and Hessian matrix for f

• Gradient of real-valued differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} & \cdots & \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

• Hessian matrix of a real-valued function $f: \mathbb{R}^n \to \mathbb{R}$ is

$$H(x) = \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f(x)}{\partial x_n \partial x_n} \end{bmatrix}$$

The second derivative test

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a real-valued differentiable function with continuous second partial derivatives. Then

- f has a local minimum at x_* if and only if $x^T \nabla^2 f(x_*) x > 0$ for each $0 \neq x \in \mathbb{R}$.
- ② f has a local maximum at x_* if and only if $x^T \nabla^2 f(x_*) x < 0$ for each $0 \neq x \in \mathbb{R}$.
- **3** Otherwise f has a saddle point at x_* .

Self-adjoint Matrices

Theorem

If A is a self-adjoint matrix, then an invertible matrix $P \in M_n(\mathbb{F})$ such that $P^*P = I$ and

$$P^*AP = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

Tests for Positive Definiteness

Theorem

Each of the following tests is a necessary and sufficient condition for the Hermitian matrix A to be positive definite:

- All eigenvalues of A are positive.
- **2** All upper left submatrices A_k have positive determinants.
- 3 All pivots (without row exchanges) are positive.

- The test brings together three of the most basic ideas in the book:
 - pivots,
 - 2 determinants,
 - 3 eigenvalues.

Thank You!