Chapter 11: Computations in a functor context III. Monad transformers

Sergei Winitzki

Academy by the Bay

2019-01-05

Computations within a functor context: Combining monads

- Programs need to combine monadic effects
- "Effect" \equiv what else happens in $A \Rightarrow M^B$ besides computing B from A
- Examples of effects for some standard monads:
 - ▶ Option computation will have no result or a single result
 - ▶ List computation will have zero, one, or multiple results
 - ▶ Either computation may fail to obtain its result
 - ▶ Reader computation needs to read an external context value
 - ▶ Writer some value will be appended to a (monoidal) log
 - ▶ Future computation will be scheduled to run later
- How to combine several effects in the same functor block (for/yield)?

```
// This is not valid Scala! // This is not valid Scala! val result = for { i \leftarrow 1 to n (1 to n).flatMap { i \Rightarrow j \leftarrow Future \{ q(i) \} Future(q(i)).flatMap { j \Rightarrow k \leftarrow maybeError(j) maybeError(j).map { k \Rightarrow j \neq k yield f(k) f(k) // What should be the type of result?? }}
```

• Need to compute the type of functor that contains all given effects

How to combine monadic effects

There are several ways of combining two monads into a new monad

- ullet If M_1^A and M_2^A are monads then $M_1^A imes M_2^A$ is also a monad
 - lacksquare But $M_1^A imes M_2^A$ describes two separate values with two separate effects
- If M_1^A and M_2^A are monads then $M_1^A + M_2^A$ is usually not a monad
 - $\,\blacktriangleright\,$ If it worked, it would be a choice between two different values / effects
- ullet If M_1^A and M_2^A are monads then one of $M_1^{M_2^A}$ or $M_2^{M_1^A}$ is often a monad
- Examples and counterexamples:
 - ► Combine Future[A] and Option[A] as Future[Option[A]]
 - ▶ Combine $Z \Rightarrow A$ and List^A as $Z \Rightarrow List^A$
 - ▶ But Either[Z, Future[A]] and Option[Z ⇒ A] are not monads
 - ▶ Neither Future[State[A]] nor State[Future[A]] are monads
- The order of effects matters when composition works both ways:
 - ▶ Combine Either $(M_1^A = Z + A)$ and Writer $(M_2^A = W \times A)$
 - * as $Z + W \times A$ either compute result and write a message, or all fails
 - * as $(Z + A) \times W$ message is always written, but computation may fail
- Find a general way of defining a new monad for combined effects
- Derive properties required for the combined monad

Exercises

For a given