Package 'metaboPipe'

June 5, 2024

Title Create a pipeline for metabolomics data analysis

Version 0.1

Description

The package provides pipeline building methods for metabolomics data analysis. It includes functions for data pre-processing like filtering of missing values and outliers, normalization, missing value imputation and batch correction. The pipeline is implemented using the 'targets' package.

```
License CC BY NC SA 4.0
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Suggests knitr,
      rmarkdown
VignetteBuilder knitr
Imports caret,
      impute,
      imputeLCMD,
      missForest,
      pcaMethods,
      structToolbox,
      SummarizedExperiment,
      VIM,
      tidyverse,
      MetaboAnalystR (>= 4.0.0),
      tinytex,
      HotellingEllipse,
      ggforce,
      tools,
      cowplot,
      targets,
      tarchetypes,
      crew,
      pmp,
      fst,
      shiny,
      sva,
      data.table,
      pcpr2,
      struct
```

2 R topics documented:

Remotes xia-lab/MetaboAnalystR Depends R (>= 3.6) LazyData true

URL https://github.com/eperezme/metaboPipe

 $\pmb{BugReports} \text{ https://github.com/eperezme/metaboPipe/issues}$

R topics documented:

batch_correct
batch_plot
ba_plot
combat_correction
create_experiment
create_pipeline
data.extract
data.modify
distribution_boxplot
export_data
extract_names
factorize_cols
filter_blanks
filter_MV
filter_outliers
filter_step
impute
impute_bpca
impute_kNN 14
impute_mean
impute_median
impute_ppca
impute_QRILC
impute_RF
impute_SVD
impute_warper
load_data
MetaboAnalyst_load_data
metaboNorm
missing_values_plot
MTBLS79
normalize
normalize_csn
normalize_metab
normalize_pqn
normalize vln
pcpr2
pipePliers
plot_boxplots
plot_density_single_with_legend
plot_heatmap
plot hotelling obs

batch_correct 3

	plot_hotelling_pca	29
	plot_outliers	29
	plot_pca	30
	qcrsc_correction	30
	sample.data.extract	31
	sample.data.modify	31
	save_metabo	32
	save_plot	32
	sort_by_sample_id	33
	ST000284	33
	toMetaboAnalyst	34
	variable.data.extract	34
	variable.data.modify	35
	warper_batch_correction	35
	warper_createExperiment	36
	warper_factor_sample_col	37
	zero_to_na	37
Index		38

batch_correct

Batch correction

Description

Batch correction

Usage

```
batch_correct(
  output_name,
  input_name,
  method,
  order_col,
  batch_col,
  qc_col,
  qc_label
)
```

Arguments

```
output_name The name of the output target.
input_name The name of the input data.

method The batch correction method to use: ComBat, QCRSC.
order_col The order column.

batch_col The batch column.

qc_col The QC column.

qc_label The QC label.
```

4 batch_plot

Value

A target to perform batch correction.

See Also

```
warper_batch_correction()
```

Examples

```
batch_correct(BatchCorrected_experiment, input_experiment, method = "QCRSC" order_col = "Order", batch_col = '
```

batch_plot

Generate a batch plot

Description

This function generates a batch plot showing the relationship between a feature and run order, stratified by batches and quality control (QC) samples.

Usage

```
batch_plot(
  dataset_experiment,
  order_col,
  batch_col,
  qc_col,
  qc_label,
  colour_by_col,
  feature_to_plot,
  ylab = "Peak area",
  title = "Feature vs run_order"
)
```

Arguments

```
dataset_experiment
```

The dataset for which the batch plot will be generated.

order_col The column representing run order.
batch_col The column representing batches.
qc_col The column representing QC samples.

qc_label The label for QC samples.

colour_by_col The column used for coloring in the plot.

feature_to_plot

The feature to be plotted.

ylab The label for the y-axis. title The title of the plot.

Value

A ggplot object displaying the batch plot.

ba_plot 5

Examples

batch_plot(dataset_experiment = my_dataset, order_col = "order", batch_col = "batch", qc_col = "qc", qc_label =

ba_plot

Generate a before-after plot

Description

This function generates a before-after plot comparing distributions before and after a certain process or treatment.

Usage

```
ba_plot(DE_before, DE_after, factor_name = "sample_type")
```

Arguments

DE_before The dataset before the process or treatment.

DE_after The dataset after the process or treatment.

factor_name The name of the factor variable for stratification.

Value

A ggplot object displaying the before-after plot.

Examples

```
ba_plot(DE_before = before_data, DE_after = after_data, factor_name = "sample_type")
```

combat_correction

Correct Batch Effects in Metabolomics Data Using ComBat

Description

This function applies the ComBat method to correct for batch effects in a metabolomics dataset.

Usage

```
combat_correction(dataset_exp, batch_col)
```

Arguments

dataset_exp A list containing two elements:

data A data frame or matrix of metabolite intensities with samples as rows and metabolites as columns.

sample_meta A data frame containing sample metadata, with rows corresponding to samples and a column for batch information.

batch_col A string specifying the column name in sample_meta that contains the batch

information.

6 create_experiment

Value

A matrix of corrected metabolite intensities with batch effects removed.

Examples

```
# Example usage:
DE <- metaboPipe::MTBLS79
corrected_data <- combat_correction(DE, "Batch")</pre>
```

create_experiment

Create DatasetExperiment object

Description

Create DatasetExperiment object

Usage

```
create_experiment(
  output_name,
  data,
  experiment_name = "Name",
  experiment_description = "Description"
)
```

Arguments

```
output_name The name of the output target.

data The target name of the data with the data as data frames.

experiment_name
The name of the experiment (default is "Name").

experiment_description
The description of the experiment (default is "Description").
```

Value

A target to create a DatasetExperiment object.

See Also

```
warper_createExperiment()
```

Examples

create_experiment(experiment, data, experiment_name = "Metabolomic Assay for nutrition", experiment_descripti

create_pipeline 7

create_pipeline

Create Pipeline Function

Description

This function generates the code for a targets pipeline in an _targets.R file and saves it to the working directory.

Usage

```
create_pipeline()
```

Value

Nothing is returned. The function creates an _targets.R file in the specified directory.

Examples

```
create_pipeline()
```

data.extract

Function to extract data matrix from a DatasetExperiment object

Description

This function extracts the data matrix from a SummarizedExperiment object.

Usage

```
data.extract(dataset_exp)
```

Arguments

 $dataset_exp$

A DatasetExperiment object.

Value

Data matrix.

```
data.extract(dataset_exp)
```

8 distribution_boxplot

data.modify

Function to modify data matrix of a DatasetExperiment object

Description

This function replaces the data matrix in a SummarizedExperiment object with new data.

Usage

```
data.modify(dataset_exp, data)
```

Arguments

dataset_exp A DatasetExperiment object.

data New data matrix.

Value

A DatasetExperiment object with modified data matrix.

Examples

```
data.modify(dataset_exp, data)
```

distribution_boxplot Gener

Generate a distribution boxplot

Description

This function generates a distribution boxplot for a specified factor in the dataset.

Usage

```
distribution_boxplot(dataset_experiment, factor_name, per_class = FALSE)
```

Arguments

dataset_experiment

The dataset for which the boxplot will be generated.

factor_name The name of the factor variable.

factor.

Value

A ggplot object displaying the distribution boxplot.

```
distribution_boxplot(dataset_experiment = my_dataset, factor_name = "factor", per_class = TRUE)
```

export_data 9

export_data

Export Data

Description

Exports a dataset to a specified directory with a given name.

Usage

```
export_data(dataset_exp, out_dir, out_name)
export_data(dataset_exp, out_dir, out_name)
```

Arguments

dataset_exp A DatasetExperiment object

out_dir The output directory

out_name The output name of the files

output_name The name of the exported dataset.

input_name The name of the input dataset to be exported.

Value

A list containing the target for exporting the dataset.

Nothing

Examples

```
export_data("exported_dataset.csv", my_dataset, "output_directory/")
export_data(dataset_exp, out_dir, out_name)
```

extract_names

Function to extract names

Description

Function to extract names

Usage

```
extract_names(data)
```

Arguments

data

Value

The variableMetadata dataset for the DatasetExperiment object

10 filter_blanks

Examples

```
extract_names(data)
```

factorize_cols

Factorize columns in sample metadata

Description

Factorize columns in sample metadata

Usage

```
factorize_cols(output_name, input_name, cols)
```

Arguments

```
output_name The name of the output target.
input_name The name of the input data.
cols The columns to factorize.
```

Value

A target to factorize columns in sample metadata.

See Also

```
warper_factor_sample_col()
```

Examples

```
factorize_cols(factorized_experiment, input_name = experiment, cols = c("Col1", "Col2"))
```

 $filter_blanks$

Filter Blanks

Description

 $Filter\ blanks\ from\ the\ {\tt DatasetExperiment}.$

Usage

```
filter_blanks(
  dataset_experiment,
  fold_change = 20,
  blank_label = "blank",
  qc_label = "QC",
  factor_name = "sample_type",
  fraction_in_blank = 0
)
```

filter_MV

Arguments

dataset_experiment

The DatasetExperiment object.

fold_change The fold change threshold for blank filtering.

blank_label The label for blanks.

qc_label The label for quality control samples.

factor_name The factor column name.

fraction_in_blank

The fraction of values in blank (default is 0).

Value

A DatasetExperiment object with blanks filtered out.

Examples

```
DE <- metaboPipe::ST000284 filtered_data <- filter_blanks(DE, fold_change = 20, blank_label = "blank", qc_label = "QC", factor_name = "sam
```

filter_MV Filter Missing values

111001_111

Description

Filter the missing values in a DatasetExperiment.

Usage

```
filter_MV(dataset_exp, threshold = 0.2)
```

Arguments

dataset_exp The DatasetExperiment object to filter missing values from. threshold The threshold for filtering missing values (default is 0.2).

Value

A DatasetExperiment object with missing values filtered out.

```
DE <- metaboPipe::ST000284
filtered_data <- filter_MV(DE, threshold = 0.2)</pre>
```

12 filter_step

filter_outliers

Filter Outliers

Description

Filter outliers from the DatasetExperiment using a Hotelling's T2 distribution ellipse.

Usage

```
filter_outliers(dataset_experiment, nPCs = 5, conf.limit = c("0.95", "0.99"))
```

Arguments

```
dataset_experiment
The DatasetExperiment object.

nPCs The number of principal components for PCA.

conf.limit The confidence limit for outlier detection. Either "0.95" or "0.99".
```

Value

A DatasetExperiment object with outliers filtered out.

Examples

```
DE <- metaboPipe::ST000284
filtered_data <- filter_outliers(DE, nPCs = 5, conf.limit = "0.95")
```

filter_step

Filter data by missing value threshold

Description

Filter data by missing value threshold

Usage

```
filter_step(
  output_name,
  input_name,
  threshold,
  filter_outliers = TRUE,
  conf.limit = "0.95",
  out_dir
)
```

impute 13

Arguments

output_name The name of the output target.
input_name The name of the input data.
threshold The threshold for missing values.

filter_outliers

Logical indicating whether to filter outliers (default is TRUE).

conf.limit Confidence limit for outlier detection (default is "0.95").

out_dir The directory to save plots (optional).

Value

A list of targets to filter data by missing value threshold.

See Also

```
filter_MV(), filter_outliers(), zero_to_na(), missing_values_plot(), plot_outliers()
```

Examples

```
filter\_step(filtered\_experiment, input\_experiment, threshold = 0.2, filter\_outliers = TRUE, conf.limit = "0.95" and the state of the
```

impute Impute missing values

Description

Impute missing values

Usage

```
impute(output_name, input_name, method, k = 5)
```

Arguments

output_name The name of the output target. input_name The name of the input data.

method The imputation method to use. Options are: "mean", "median", "RF", "QRILC",

"kNN", "SVD", "bpca", "ppca".

k The parameter for some imputation methods (default: 5).

Value

A target to impute missing values.

See Also

```
impute_warper()
```

```
impute(imputed_experiment, input_experiment, method = "knn", k = 3)
```

14 impute_kNN

impute_bpca

Impute BPCA

Description

Impute missing values in a dataset experiment using BPCA.

Usage

```
impute\_bpca(dataset\_experiment, nPCs = k, ...)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

nPCs

The number of principal components for BPCA.

Value

The dataset experiment object with missing values imputed using BPCA.

Examples

```
DE <- ST000284
imputed <- impute_bpca(DE, nPCs = 5)
summary(imputed)</pre>
```

impute_kNN

Impute kNN

Description

Impute missing values in a dataset experiment using kNN.

Usage

```
impute_kNN(dataset_experiment, k = k)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

k

The number of neighbors for kNN imputation.

Value

The dataset experiment object with missing values imputed using kNN.

```
DE <- ST000284
imputed <- impute_kNN(DE, k = 5)
summary(imputed)</pre>
```

impute_mean 15

impute_mean

Impute Mean

Description

Impute missing values in a dataset experiment using the mean.

Usage

```
impute_mean(dataset_experiment)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

Value

The dataset experiment object with missing values imputed using the mean.

Examples

```
DE <- ST000284
imputed <- impute_mean(DE)
summary(imputed)</pre>
```

impute_median

Impute Median

Description

Impute missing values in a dataset experiment using the median.

Usage

```
impute_median(dataset_experiment)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

Value

The dataset experiment object with missing values imputed using the median.

```
DE <- ST000284
imputed <- impute_median(DE)
summary(imputed)</pre>
```

impute_QRILC

impute_ppca

Impute PPCA

Description

Impute missing values in a dataset experiment using PPCA.

Usage

```
impute\_ppca(dataset\_experiment, nPCs = k, ...)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

nPCs

The number of principal components for PPCA.

Value

The dataset experiment object with missing values imputed using PPCA.

Examples

```
DE <- ST000284
imputed <- impute_ppca(DE, nPCs = 5)
summary(imputed)</pre>
```

impute_QRILC

Impute QRILC

Description

Impute missing values in a dataset experiment using QRILC.

Usage

```
impute_QRILC(dataset_experiment)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

Value

The dataset experiment object with missing values imputed using QRILC.

```
DE <- ST000284
imputed <- impute_QRILC(DE)
summary(imputed)</pre>
```

impute_RF

impute_RF

Impute Random Forest

Description

Impute missing values in a dataset experiment using random forest.

Usage

```
impute_RF(dataset_experiment)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

Value

The dataset experiment object with missing values imputed using random forest.

Examples

```
DE <- ST000284
imputed <- impute_RF(DE)
summary(imputed)</pre>
```

impute_SVD

Impute SVD

Description

Impute missing values in a dataset experiment using SVD.

Usage

```
impute_SVD(dataset_experiment, nPCs = k, center = TRUE, ...)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

 nPCs

The number of principal components for SVD.

Value

The dataset experiment object with missing values imputed using SVD.

```
DE <- ST000284
imputed <- impute_SVD(DE, nPCs = 5)
summary(imputed)</pre>
```

18 load_data

impute_warper

Impute Missing Values

Description

Impute missing values in a dataset experiment using various methods.

Usage

```
impute\_warper(dataset\_experiment, method, k = 5)
```

Arguments

```
dataset_experiment
The dataset experiment object.

method The imputation method to use. Options are: "mean", "median", "RF", "QRILC", "kNN", "SVD", "bpca", "ppca".

k The parameter for some imputation methods (default: 5).
```

Value

The dataset experiment object with missing values imputed.

Examples

```
DE <- ST000284
imputed <- impute_warper(DE, method = "mean")
summary(imputed)</pre>
```

load_data

Load data from files into data frames

Description

Load data from files into data frames

Usage

```
load_data(
  output_name,
  dataMatrixFile,
  sampleMetadataFile,
  variableMetadataFile = NULL,
  dataSep = ",",
  sampleSep = ",",
  variableSep = ","
)
```

Arguments

```
The name of the output target.
output_name
```

dataMatrixFile Path to the data matrix file.

sampleMetadataFile

Path to the sample metadata file.

variableMetadataFile

Path to the variable metadata file (optional).

dataSep The separator used in the dataMatrixfile (default is ",").

The separator used in the sampleMetadataFile (default is ","). sampleSep variableSep

The separator used in the variableMetadataFile (default is ",").

Value

A list of targets to load and read data matrix and sample metadata.

Examples

```
load_data(data_loaded, "Data/data.csv", "Data/metadata.csv", "Data/variable_metadata.csv", separator = ",")
```

```
MetaboAnalyst_load_data
```

Function to load the previously saved MetaboAnalystData.csv data into MetaboAnalyst from the TempData directory

Description

Function to load the previously saved MetaboAnalystData.csv data into MetaboAnalyst from the TempData directory

Usage

```
MetaboAnalyst_load_data()
```

Value

MetaboAnalyst data object (mSet).

```
MetaboAnalyst_load_data()
```

20 metaboNorm

metaboNorm

Function to normalize MetaboAnalyst data

Description

This function performs row-wise normalization, transformation, and scaling of the metabolomic data.

Usage

```
metaboNorm(
   mSet,
   rowNorm = "NULL",
   transNorm = "NULL",
   scaleNorm = "NULL",
   ref = NULL,
   ratio = FALSE,
   ratioNum = 20,
   out_dir
)
```

Arguments

mSet The MetaboAnalyst data object.

rowNorm The row normalization method.

transNorm The transformation normalization method.

scaleNorm The scaling normalization method.

ref Input the name of the reference sample or the reference feature, use " " around the name.

ratio This option is only for biomarker analysis.

ratioNum Relevant only for biomarker analysis.

The output directory for the plots.

Value

out_dir

The normalized MetaboAnalyst data object.

```
metaboNorm(mSet, rowNorm = "NULL", transNorm = "NULL", scaleNorm = "NULL", ref = NULL, ratio = FALSE, ratioNum =
```

missing_values_plot 21

missing_values_plot Ge

Generate a missing values plot

Description

This function generates a missing values plot using the VIM package's aggr function and saves the plot to a specified directory with a given filename.

Usage

```
missing_values_plot(dataset_experiment, out_dir, out_name)
```

Arguments

dataset_experiment

The dataset for which the missing values plot will be generated.

out_dir The directory where the plot will be saved.

out_name The filename for the saved plot.

Examples

```
missing_values_plot(dataset_experiment = my_dataset, out_dir = "output", out_name = "missing_plot.png")
```

MTBLS79

MTBLS79 Dataset

Description

This dataset is used as an example in the package.

Usage

MTBLS79

Format

A DatasetExperiment object

Source

https://www.ebi.ac.uk/metabolights/MTBLS79

22 normalize

normalize

Normalize data

Description

Normalize data

Usage

```
normalize(
  output_name,
  input_name,
  factor_col,
  sample_id_col,
  rowNorm = "NULL",
  transNorm = "NULL",
  scaleNorm = "NULL",
  ref = NULL,
  out_dir
)
```

Arguments

```
output_name
                  The name of the output target.
input_name
                  The name of the input data.
                  The factor column.
factor_col
sample_id_col
                  The sample ID column.
                  The row normalization method (optional). One of: "QuantileNorm", "CompNorm",
rowNorm
                  "SumNorm", "MedianNorm", "SpecNorm", or NULL.
transNorm
                  The transformation normalization method (optional). One of: "LogNorm", "CrNorm",
                  or NULL.
scaleNorm
                  The scaling normalization method (optional). One of: "MeanCenter", "AutoNorm",
                  "ParetoNorm", "RangeNorm", or NULL.
                  The reference group for normalization (optional).
ref
                  The directory to save plots (optional).
out_dir
```

Value

A list of targets to normalize data.

See Also

```
normalize_metab()
```

```
normalize (normalized\_data, input\_data, factor\_col = "Group", sample\_id\_col = "Sample", rowNorm = "CompNorm", told to the content of the co
```

normalize_csn 23

normalize_csn

Perform Constant Sum Normalization (CSN)

Description

Perform Constant Sum Normalization (CSN)

Usage

```
normalize_csn(dataset_experiment, scaling_factor = 1)
```

Arguments

```
\begin{tabular}{ll} $A$ DatasetExperiment object \\ scaling\_factor & Scaling factor for normalization \\ \end{tabular}
```

Value

Normalized A DatasetExperiment object

Examples

```
normalize_csn(dataset_experiment, scaling_factor = 1)
```

normalize_metab

Normalize A DatasetExperiment object using MetaboAnalystR

Description

Normalize A DatasetExperiment object using MetaboAnalystR

Usage

```
normalize_metab(
  dataset_experiment,
  factor_col,
  sample_id_col,
  rowNorm = "NULL",
  transNorm = "NULL",
  scaleNorm = "NULL",
  ref = NULL,
  ratio = FALSE,
  ratioNum = 20,
  out_dir
)
```

24 normalize_pqn

Arguments

dataset_experiment

A DatasetExperiment object

factor_col Column containing factor information for normalization

sample_id_col Column containing sample IDs

rowNorm Type of row normalization. Options are: "QuantileNorm", "CompNorm", "SumNorm",

"MedianNorm", "SpecNorm", or "NULL"

transNorm Type of transformation normalization. Options are: "LogNorm", "CrNorm", or

"NULL".

scaleNorm Type of scaling normalization Options are: "MeanCenter", "AutoNorm", "ParetoNorm",

"RangeNorm", or "NULL".

ref Reference feature for "CompNorm" normalization

ratio Boolean indicating whether to apply ratio normalization

ratioNum Number of samples for ratio normalization

out_dir Output directory for saving files

Value

Normalized A DatasetExperiment object

Examples

 $normalize_metab(dataset_experiment, factor_col, sample_id_col, rowNorm = NULL, transNorm = NULL, scaleNorm = NULL, sca$

normalize_pqn Perform Probabilistic Quotient normalization (PQN)

Description

Perform Probabilistic Quotient normalization (PQN)

Usage

```
normalize_pqn(dataset_experiment, qc_label, factor_name, ...)
```

Arguments

dataset_experiment

A DatasetExperiment object

qc_label Label for quality control samples

factor_name Name of the factor to use for normalization

Value

Normalized A DatasetExperiment object

```
normalize_pqn(dataset_experiment, qc_label, factor_name)
```

normalize_vln 25

normalize_vln

Perform Vector Length Normalization (VLN)

Description

Perform Vector Length Normalization (VLN)

Usage

```
normalize_vln(dataset_experiment)
```

Arguments

```
\begin{tabular}{ll} $\operatorname{ADatasetExperiment}$ object \end{tabular}
```

Value

Normalized A DatasetExperiment object

Examples

```
normalize_vln(dataset_experiment)
```

pcpr2

Run PCPR2 analysis on metabolomic data

Description

This function performs PCPR2 analysis on metabolomic data to assess the variability explained by covariates.

Usage

```
pcpr2(
  dataset_experiment,
  variables = colnames(dataset_experiment$sample_meta),
  log_transform = TRUE,
  pct_threshold = 0.8,
  out_dir = NULL,
  out_name = "pcpr2"
)
```

26 pipePliers

Arguments

dataset_experiment

The metabolomic dataset as a SummarizedExperiment object.

variables The variables (covariates) to include in the analysis. Default is all variables in

the sample metadata.

log_transform Logical indicating whether to perform log transformation and autoscaling on the

data. Default is TRUE.

pct_threshold The threshold for percentage of variability explained by covariates. Default is

0.8.

out_dir The output directory to save the plot. If NULL, the plot will not be saved.

Default is NULL.

out_name The name of the output plot file. Default is "pcpr2".

Value

The pcpr2 output object.

Examples

```
# Load the metabolomic dataset
data("metabolomic_dataset")

# Run PCPR2 analysis
pcpr2_result <- pcpr2(dataset_experiment = metabolomic_dataset)

# Plot the result
pcpr2_result</pre>
```

pipePliers

Run Shiny App

Description

This function launches the Shiny app included with the package.

Usage

```
pipePliers()
```

```
pipePliers()
```

plot_boxplots 27

Plot boxplots for multiple columns

Description

This function generates vertical boxplots for multiple columns of a dataset.

Usage

```
plot_boxplots(data, title = "Boxplot of Columns")
```

Arguments

data The dataset containing the columns to be plotted.

title The title of the plot.

Value

A ggplot object displaying the boxplots.

Examples

```
plot_boxplots(data = my_data, title = "Boxplot of Columns")
```

```
plot_density_single_with_legend
```

Plot density plots for one variable with a legend

Description

This function generates density plots for one variable, comparing the original and imputed data, with a legend indicating the data source.

Usage

```
plot_density_single_with_legend(original_var, imputed_var)
```

Arguments

```
original_var The original variable data.
imputed_var The imputed variable data.
```

Value

A ggplot object displaying the density plots.

```
plot_density_single_with_legend(original_var = data$original_var, imputed_var = data$imputed_var)
```

28 plot_hotelling_obs

plot_heatmap

Plot a heatmap of the data

Description

This function generates a heatmap of the provided dataset.

Usage

```
plot_heatmap(dataset_experiment, na_colour = "#FF00E4")
```

Arguments

dataset_experiment

The dataset for which the heatmap will be generated.

na_colour

The color to represent missing values in the heatmap.

Value

A ggplot object displaying the heatmap.

Examples

```
plot_heatmap(dataset_experiment = my_dataset, na_colour = "#FF00E4")
```

plot_hotelling_obs

Generate a PCA Hotelling's T-squared observations plot

Description

This function generates a PCA Hotelling's T-squared observations plot showing the T-squared values for each observation.

Usage

```
plot_hotelling_obs(dataset_experiment, nPCs = 5, nPCs_to_plot = 2)
```

Arguments

 ${\tt dataset_experiment}$

The dataset for which the plot will be generated.

nPCs The number of principal components to include in the analysis. nPCs_to_plot The number of principal components to plot the ellipses for.

Value

A ggplot object displaying the PCA Hotelling's T-squared observations plot.

```
plot_hotelling_obs(dataset_experiment = my_dataset, nPCs = 5, nPCs_to_plot = 2)
```

plot_hotelling_pca 29

plot_hotelling_pca

Generate a PCA Hotelling's T-squared plot

Description

This function generates a PCA Hotelling's T-squared plot showing the principal component scores and confidence ellipses.

Usage

```
plot_hotelling_pca(dataset_experiment, nPCs = 5)
```

Arguments

dataset_experiment

The dataset for which the plot will be generated.

nPCs

The number of principal components to include in the analysis.

Value

A ggplot object displaying the PCA Hotelling's T-squared plot.

Examples

```
plot_hotelling_pca(dataset_experiment = my_dataset, nPCs = 5)
```

plot_outliers

Generate an outliers plot

Description

This function generates a plot showing outliers detected using Hotelling's T-squared statistic in PCA.

Usage

```
plot_outliers(dataset_experiment, nPCs = 5, out_dir, out_name)
```

Arguments

dataset_experiment

The dataset for which the outliers plot will be generated.

nPCs The number of principal components to include in the analysis.

out_dir The directory where the plot will be saved.

out_name The filename for the saved plot.

```
plot_outliers(dataset_experiment = my_dataset, nPCs = 5, out_dir = "output", out_name = "outliers_plot.png")
```

30 qcrsc_correction

CA plot	Generate a PCA plot	plot_pca
---------	---------------------	----------

Description

This function generates a PCA plot showing the principal component scores colored by a specified factor.

Usage

```
plot_pca(dataset_experiment, factor_name = "sample_type", nPCs = 5)
```

Arguments

dataset_experiment

The dataset for which the PCA plot will be generated.

factor_name The name of the factor variable used for coloring.

nPCs The number of principal components to include in the analysis.

Value

A ggplot object displaying the PCA plot.

Examples

```
plot_pca(dataset_experiment = my_dataset, factor_name = "sample_type", nPCs = 5)
```

qcrsc_correction	Signal drift and batch correction function	

Description

This function performs signal drift and batch correction on a given DatasetExperiment object using the QC-RSC method.

Usage

```
qcrsc_correction(dataset_exp, order_col, batch_col, qc_col, qc_label)
```

Arguments

dataset_exp	A DatasetExperiment object with samples and variables.
order_col	Column indicating the order of samples.
batch_col	Column indicating batch information.
qc_col	Column indicating quality control information.
oc label	Label for quality control.

sample.data.extract 31

Value

Corrected DatasetExperiment object.

Examples

```
#' DE <- metaboPipe::MTBLS79
qcrsc_correction(MTBLS79, "run_order", "Batch", "Type", "QC")</pre>
```

sample.data.extract

Function to extract sample metadata from a DatasetExperiment object

Description

This function extracts the sample metadata from a SummarizedExperiment object.

Usage

```
sample.data.extract(dataset_exp)
```

Arguments

dataset_exp

A DatasetExperiment object.

Value

Sample metadata dataframe.

Examples

```
sample.data.extract(dataset_exp)
```

sample.data.modify

Function to modify sample metadata of a DatasetExperiment object

Description

This function replaces the sample metadata in a SummarizedExperiment object with new metadata.

Usage

```
sample.data.modify(dataset_exp, sample_meta)
```

Arguments

dataset_exp A DatasetExperiment object.
sample_meta New sample metadata dataframe.

Value

A DatasetExperiment object with modified sample metadata.

32 save_plot

Examples

```
sample.data.modify(dataset_exp, sample_meta)
```

save_metabo

Function to export MetaboAnalyst data

Description

Function to export MetaboAnalyst data

Usage

```
save_metabo(mSet)
```

Arguments

mSet

The MetaboAnalyst data object

Value

Nothing

Examples

```
save_metabo(mSet)
```

save_plot

Function to save plots

Description

Function to save plots

Usage

```
save_plot(plt, output_dir, output_name, extension = "png")
```

Arguments

plt The plot object output_dir The output directory

output_name The output name for the plot file

extension The filetype extension for the plot file. Default is 'png'.

Value

Nothing

```
save_plot(plt, output_dir, output_name)
```

sort_by_sample_id 33

sort_by_sample_id

Sort by sample_id

Description

Sort by sample_id

Usage

```
sort_by_sample_id(df)
```

Arguments

df

A dataframe with a sample_id column.

Value

A data frame sorted by sample_id.

Examples

```
sort_by_sample_id(data)
```

ST000284

ST000284 Dataset

Description

This dataset is used as an example in the package.

Usage

ST000284

Format

 $A \; {\tt DatasetExperiment} \; object \\$

Source

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php? Mode=Study & Study ID=ST000284 & Study Type=Node=Study & Study ID=ST000284 & Study ID=ST000

34 variable.data.extract

toMetaboAnalyst

Function to create a dataSet for MetaboAnalyst

Description

Function to create a dataSet for MetaboAnalyst

Usage

```
toMetaboAnalyst(
  dataset_exp,
  class_col = "sample_type",
  sample_id = "sample_id"
)
```

Arguments

```
dataset_exp A DatasetExperiment object.
class_col Column to be used as class.
sample_id Column to be used as sample ID.
```

Value

Nothing.

Examples

```
toMetaboAnalyst(dataset_exp, class_col = "sample_type", sample_id = "sample_id")
```

variable.data.extract Function to extract variable metadata from a DatasetExperiment object

Description

This function extracts the variable metadata from a SummarizedExperiment object.

Usage

```
variable.data.extract(dataset_exp)
```

Arguments

```
dataset_exp A DatasetExperiment object.
```

Value

Variable metadata dataframe.

```
variable.data.extract(dataset_exp)
```

variable.data.modify 35

 $variable. data. modify \ \ \textit{Function to modify variable metadata of a Dataset Experiment object}$

Description

This function replaces the variable metadata in a SummarizedExperiment object with new metadata.

Usage

```
variable.data.modify(dataset_exp, variable_meta)
```

Arguments

```
dataset_exp A DatasetExperiment object.
variable_meta New variable metadata.
```

Value

A DatasetExperiment object with modified variable metadata.

Examples

```
variable.data.modify(dataset_exp, variable_meta)
```

```
warper_batch_correction
```

Signal drift and batch correction function

Description

This function performs signal drift and batch correction on a given DatasetExperiment object using the specified method.

Usage

```
warper_batch_correction(
  dataset_exp,
  method,
  order_col,
  batch_col,
  qc_col,
  qc_label
)
```

Arguments

dataset_exp A DatasetExperiment object with samples and variables.

method The batch correction method to use: ComBat, QCRSC.

order_col Column indicating the order of samples.
batch_col Column indicating batch information.

qc_col Column indicating quality control information.

qc_label Label for quality control.

Value

Corrected DatasetExperiment object.

Examples

```
DE <- metaboPipe::MTBLS79
warper_batch_correction(MTBLS79, "QCRSC", "run_order", "Batch", "Type", "QC")</pre>
```

warper_createExperiment

Process the dataset to create the DatasetExperiment object

Description

Process the dataset to create the DatasetExperiment object

Usage

```
warper_createExperiment(
  dataMatrix,
  sampleMetadata,
  variableMetadata,
  experiment_name = "Name",
  experiment_description = "Description"
)
```

Arguments

```
dataMatrix A matrix with samples as rows and features as columns.

sampleMetadata A data frame with the sample metadata.

variableMetadata

A data frame with the variable metadata.

experiment_name

The name for the experiment.

experiment_description

The description for the experiment.
```

Value

A DatasetExperiment object.

Examples

 $warper_create Experiment(data Matrix, sample Metadata, variable Metadata, experiment_name = "Name", experiment_data Matrix, sample Metadata, variable Metadata, experiment_name = "Name", experiment_data Matrix, sample Metadata, variable Metadata, experiment_name = "Name", experiment_data Matrix, sample Metadata, variable Metadata, experiment_name = "Name", experiment_data Matrix, sample Metadata, variable Metadata, experiment_name = "Name", experiment_data Matrix, sample Metadata, experiment_data Matrix, sample Metadata, experiment_data Matrix, experiment_data Matrix, sample Metadata, experiment_data Matrix, experiment_da$

```
warper_factor_sample_col
```

Function to convert sample columns to factors

Description

This function converts specified columns in the sample metadata to factors.

Usage

```
warper_factor_sample_col(dataset_exp, col)
```

Arguments

 ${\tt dataset_exp} \qquad A\ DatasetExperiment\ object\ with\ sample\ metadata.$

col Column(s) to be converted to factors.

Value

A DatasetExperiment object with specified columns converted to factors.

Examples

```
warper_factor_sample_col(dataset_exp, col)
```

zero_to_na

Make 0 and <0 as NA

Description

Replace 0 values with NA in a DatasetExperiment.

Usage

```
zero_to_na(dataset_exp)
```

Arguments

dataset_exp The DatasetExperiment object.

Value

A DatasetExperiment object with values <= 0 replaced by NA.

```
DE <- metaboPipe::ST000284
modified_dataset <- zero_to_na(DE)</pre>
```

Index

* datasets MTBLS79, 21	normalize_csn, 23 normalize_metab, 23
ST000284, 33	normalize_metab(), 22 normalize_pqn, 24
ba_plot, 5	normalize_vln, 25
<pre>batch_correct, 3 batch_plot, 4</pre>	pcpr2, 25
batch_piot, 4	pipePliers, 26
combat_correction, 5	plot_boxplots, 27
create_experiment, 6	plot_density_single_with_legend, 27
create_pipeline,7	plot_heatmap, 28
data.extract, 7	plot_hotelling_obs, 28 plot_hotelling_pca, 29
data.modify, 8	plot_notelling_ped, 29
distribution_boxplot,8	plot_pca, 30
export_data, 9 extract_names, 9	qcrsc_correction, 30
	sample.data.extract, 31
factorize_cols, 10	sample.data.modify, 31
filter_blanks, 10	save_metabo, 32
filter_MV, 11 filter_outliers, 12	save_plot, 32
filter_step, 12	sort_by_sample_id, 33 ST000284, 33
<pre>impute, 13 impute_bpca, 14</pre>	toMetaboAnalyst, 34
impute_kNN, 14	variable.data.extract, 34
impute_mean, 15	variable.data.modify, 35
<pre>impute_median, 15</pre>	
impute_ppca, 16	warper_batch_correction, 35
impute_QRILC, 16	<pre>warper_batch_correction(), 4 warper_createExperiment, 36</pre>
impute_RF, 17	warper_createExperiment(), 6
impute_SVD, 17	warper_factor_sample_col, 37
<pre>impute_warper, 18 impute_warper(), 13</pre>	warper_factor_sample_col(), 10
load_data, 18	zero_to_na, 37
MetaboAnalyst_load_data, 19 metaboNorm, 20 missing_values_plot, 21 MTBLS79, 21	
normalize, 22	