Unitary Bijections From Strictly Increasing Functions On The Real Line

BY STEPHEN CROWLEY August 11, 2025

Table of contents

1	Introduction
2	Bijective Transformations on Unbounded Domains
3	L^2 Norm Preservation
4	Conclusion
\mathbf{B}	ibliography

1 Introduction

This short note establishes the fundamental relationship between unitary bijections in L^2 spaces and measure-preserving transformations in ergodic theory. Under bijective C^1 changes of variables on unbounded domains, L^2 norm preservation is achieved by a weighted composition operator whose weight is the square root of the Jacobian g'. This unitary transformation is both necessary and sufficient.

2 Bijective Transformations on Unbounded Domains

Theorem 1. (Bijectivity of Strictly Increasing Functions on Unbounded Domains) Let $g: I \to \mathbb{R}$ be a strictly increasing function where $I \subseteq \mathbb{R}$ is an unbounded interval. Then g is bijective onto its range J = g(I), and J is also an unbounded interval.

Proof. Since g is strictly increasing, injectivity is immediate. For any $x_1, x_2 \in I$ with $x_1 < x_2$, one has $g(x_1) < g(x_2)$.

For surjectivity onto J = g(I), let $y \in J$. By definition, there exists $x \in I$ such that g(x) = y. The uniqueness of such x follows from injectivity.

To establish that J is unbounded, consider two cases:

- 1. If $I = (a, \infty)$ or $I = [a, \infty)$ for some $a \in \mathbb{R}$, then as $x \to \infty$, since g is strictly increasing, either $g(x) \to \infty$ or g(x) approaches some finite supremum. If the latter held, then by the intermediate value theorem and strict monotonicity, g would map (a, ∞) to some bounded interval, contradicting the strict increase property over an unbounded domain.
- 2. If $I = (-\infty, b)$ or $I = (-\infty, b]$, a similar argument shows J extends to $-\infty$.
- 3. If $I = \mathbb{R}$, then J must be unbounded in both directions.

Therefore, $g: I \to J$ is bijective with both I and J unbounded intervals.

Theorem 2. (Differentiable Bijections with Positive Derivative) Let $g: I \to J$ be a C^1 bijection between unbounded intervals $I, J \subseteq \mathbb{R}$ such that g'(y) > 0 for all $y \in I$ except possibly on a set of measure zero. Then g is a well-defined change of variables for Lebesgue integration.

Proof. The condition g'(y) > 0 almost everywhere ensures that g is locally invertible almost everywhere. Since g is already assumed bijective and C^1 , the standard change of variables formula applies:

$$\int_{I} f(x) \ dx = \int_{I} f(g(y))|g'(y)| \ dy = \int_{I} f(g(y)) \ g'(y) \ dy \tag{1}$$

where the last equality uses g'(y) > 0 almost everywhere. The points where g'(y) = 0 form a set of measure zero and do not affect the integral.

3 L^2 Norm Preservation

Definition 3. (Unitary Change of Variables Operator) Let $g: I \to J$ be a C^1 bijection between unbounded intervals with g'(y) > 0 almost everywhere. For $f \in L^2(J, dx)$, define the unitary change of variables operator T_g by:

$$(T_g f)(y) = f(g(y))\sqrt{g'(y)}$$
(2)

Theorem 4. (L^2 Norm Preservation for Unbounded Domains) Under the conditions of Definition 3, the operator $T_g: L^2(J, dx) \to L^2(I, dy)$ is an isometric isomorphism. Specifically:

$$||T_g f||_{L^2(I,dy)} = ||f||_{L^2(J,dx)}$$
(3)

Proof. For $f \in L^2(J, dx)$, compute directly:

$$||T_g f||_{L^2(I,dy)}^2 = \int_I |f(g(y))\sqrt{g'(y)}|^2 dy$$
(4)

$$= \int_{I} |f(g(y))|^{2} g'(y) dy$$
 (5)

By the change of variables formula from Theorem 2 with x = g(y):

$$\int_{I} |f(g(y))|^{2} g'(y) \ dy = \int_{J} |f(x)|^{2} \ dx = ||f||_{L^{2}(J, dx)}^{2}$$
 (6)

Since both I and J are unbounded, the change of variables is justified by approximating with bounded subintervals and applying the monotone convergence theorem.

Therefore:

$$||T_g f||_{L^2(I,dy)} = ||f||_{L^2(J,dx)}$$
(7)

The fact that $T_g f \in L^2(I, dy)$ follows immediately from equation (7) and the assumption $f \in L^2(J, dx)$.

Theorem 5. (Necessity of Square Root Unitary Transformation) Let $g: I \to J$ be as in Theorem 4. If $\phi: I \to \mathbb{R}^+$ is any measurable function such that $f(g(y)) \phi(y) \in L^2(I, dy)$ and

$$||f(g(\cdot))\phi(\cdot)||_{L^{2}(I,dy)} = ||f||_{L^{2}(J,dx)}$$
(8)

for all $f \in L^2(J, dx)$, then $\phi(y) = \sqrt{g'(y)}$ almost everywhere.

Proof. From the norm condition in equation (8):

$$\int_{I} |f(g(y))|^{2} \phi(y)^{2} dy = \int_{J} |f(x)|^{2} dx$$
(9)

Using the change of variables x = g(y) on the right side:

$$\int_{I} |f(g(y))|^{2} \phi(y)^{2} dy = \int_{I} |f(g(y))|^{2} g'(y) dy$$
(10)

This gives:

$$\int_{I} |f(g(y))|^{2} (\phi(y)^{2} - g'(y)) dy = 0$$
(11)

Since this holds for all $f \in L^2(J, dx)$ and the composition $f(g(\cdot))$ generates a dense subspace of $L^2(I, g'(y) dy)$, the fundamental lemma of calculus of variations implies:

$$\phi(y)^2 = g'(y)$$
almost everywhere (12)

Taking
$$\phi(y) > 0$$
, one obtains $\phi(y) = \sqrt{g'(y)}$ almost everywhere.

4 Conclusion

The results show that L^2 norm preservation under C^1 bijections is realized by the weighted composition operator $T_g f = f(g(y))\sqrt{g'(y)}$. The factor $\sqrt{g'}$ is both necessary and sufficient for isometry, linking the change-of-variables formula to unitary structure on L^2 .

Bibliography

[petersen1989ergodic] K. Petersen, *Ergodic Theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.

[halmos1956lectures] P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Company, 1956. [walters1982introduction] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer-Verlag, 1982.

[reed1980functional] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1980.