Money Growth and Inflation

Prof. Ed Cho

Outline: Unit III, Section MP3

- Classical Theory of Inflation
- II. Quantity Equation and the Velocity of Money
- III. Fisher Effect
- IV. Costs of Inflation

I. Classical Theory of Inflation

- LR Determinants of Prices (P) and Inflation (π)
- Recall: $\pi = \% \Delta P$

 Overview: If you double the M^S in the economy, what happens to the price level?

Price Level (P) and the Value of Money $\left(\frac{1}{P}\right)$

Different perspectives on the price level:

- View 1: P = Price of a basket of G&S (CPI)
- View 2: $\frac{1}{P}$ = Value of Money
 - $\frac{1}{P}$ = # of Units of G&S \$1 buys
 - If P = 1 =>
 - If P = 2 =>

M^S, M^D, & Monetary Equilibrium

- Assume that the Fed controls M^S
 - => M^S exogenously determined
- M^D(**P**, i, Y,...)
 - If P increases => People need more M1 to buy the same amount of G&S => M^D increases
 - LR: P adjusts until M^S=M^D
 - SR: i adjusts until M^S=M^D => future classes

LR Money Market: Effects of a Monetary Injection

Summary of Effects

"Too much money chasing too few goods"

- Point A to point B
 - Excess Money => [SR: C, I, increases]=> LR: Y is determined by real variables => LR: P increases
 - SR: Many effects studied in future lectures
- Quantity Theory of Money [Monetarists]
 - The money supply determines prices
 - "Inflation is always and everywhere a monetary phenomenon..." Milton Friedman (1970)

Classical Dichotomy and Money Neutrality

- Real variables = Variables measured in physical units
- Monetary Neutrality =
 Changes in the money supply do not affect real variables
- Nominal variables =
 Variables measured in monetary units

- Classify the following variables as nominal or real:
 - L, μ, hourly \$ wage, (Y/L), K, P_{car}
- Classical dichotomy = Theoretical separation of nominal and real variables

II. Quantity Equation and the Velocity of Money

 V = Velocity of Money = Average rate at which money changes hands (in a given time period).

$$V = \frac{nom \ GDP}{M} = \frac{P \times Y}{M}$$

- E.g.: Cookies: P_{box} = \$5/box, Y = 10 boxes,
 => Nom GDP = \$50
 - If M = \$5 => V = 10
 - If M = \$10 => V = 5

$$M \times V = P \times Y$$

Empirical Data

Year	Money Supply	Nominal GDP	Velocity
2008	M1 = \$1.46 T	\$13.9 T	V _{M1} ≈ 9
2014	M1 = \$2.80 T	\$17.4 T	V _{M1} ≈ 6
2008	M2 = \$7.85 T	\$13.9 T	V _{M2} ≈ 2
2014	M2 = \$11.4 T	\$17.4 T	V _{M2} ≈ 1.6

Quantity Equation: Growth Rate Form

- LR Assumptions
 - M doesn't affect Y
 - V is stable (Not true in the SR)
- Quantity Equation: Growth Rate Form

$$M \times V = P \times Y$$

$$\ln(M \times V) = \ln(P \times Y)$$

$$\ln M + \ln V = \ln P + \ln Y$$

$$\frac{d}{dt} \left[\ln M + \ln V = \ln P + \ln Y \right]$$

$$\% \Delta M + \% \Delta V = \% \Delta P + \% \Delta Y$$

Quantity Equation: Growth Rate Form

$$\%\Delta M + \%\Delta V = \%\Delta P + \%\Delta Y$$

 $\%\Delta P = \%\Delta M + \%\Delta V - \%\Delta Y$
 $\%\Delta P = \%\Delta M + 0 - \%\Delta Y$
 $\pi = \%\Delta M - \%\Delta Y$

- If $\%\Delta M \gg 0 \Rightarrow \pi \gg 0$
- Past half century in the US:

$$\%\Delta M = 8\%, \%\Delta Y = 3\% \Rightarrow \pi = 5\%$$

Nominal vs Real Interest Rates

Fisher Equation

$$i = r + \pi$$

nominal = real + inflation

- Inflation Effects (Ch 11, pp. 227-228):
 - E.g.: You purchase a bond with 12% yield
 - i = 12%, $\pi = 4\% => r = 8\%$
 - i = 12%, $\pi = 6\% => r = 6\%$
 - If π increases, then there is a redistribution of wealth from lenders to borrowers
- Fisher Effect:
 - Assume r is exogenous
 - one-for-one adjustment of i and π
- r determined in the long run by???

- 10-Year Treasury Constant Maturity Rate
- 10-Year Treasury Inflation-Indexed Security, Constant Maturity

IV. Cost of Inflation

- Inflation Tax
 - Seniorage = Revenue raised by government by printing money. E.g., Zimbabwe
- Shoeleather Costs
 - Germany after WWI
- Menu Costs
 - Firms change menu prices more
- [Relative Price Variability]
 - [MRS between goods x and y varies => Misallocated resources]
- Confusion and Inconvenience
- Inflation-Induced Tax Distortions

Current Event

"Hanging On to Dollars in Zimbabwe," 03-26-12

- Hyperinflation
 - Central bank prints \$ => Lends \$1.5 billion to government for president pet projects
 - Chikotsa withdraw 1 trillion Zimbabwe dollars = 1 loaf of bread
 - Distrust of currency and banks
 - Destroyed the value of her modest income
- 2009 Dollarization
 - Stable prices
 - Distrust of Banks => Hoard USD at home => Breakdown of financial system=> no deposits and no loans

Inflation-Induced Tax Distortions

Capital gains tax rate = 25%

	Low Inflation	High inflation
Real interest rate (r)	4%	4%
Inflation rate (π)	0%	8%
Nominal interest rate $(i = r + \pi)$	4%	12%
After-tax nominal interest rate		
After-tax real interest rate $(r_{at} = i_{at} - \pi)$		