Статус эксперимента СФЕРА на 2008 год

Д.В.Чернов^{1*}, А.М.Анохина¹, Р.А.Антонов^{1†}, Е.А.Бонвеч^{1†}, Н.М.Буднев², В.И.Галкин^{1†}, Т.А.Джатдоев¹, М.И.Панасюк¹, Т.И.Сысоева^{3†}, Б.М.Сабиров⁴, Мир.Фингер⁵, Мих.Фингер⁵, С.Б.Шаулов^{3†}, М.Шонски⁶

- ¹ НИИ Ядерной Физики имени Д.В. Скобельцына, Москва, 119991, Россия, chr@dec1.sinp.msu.ru
- 2 НИИ Прикладной Физики, Иркутск, 664003, Россия
- ³ Физический Институт им. П.Н. Лебедева РАН, Москва, 117924, Россия
- ⁴ Объединенный Институт Ядерных Исследований, Дубна, 141980, Россия
- ⁵ Карлов Университет, Прага, Чехия
- ⁶ Корпорация СОМРАS, Турнов, Чехия

Аннотация

Важным этапом в развитии эксперимента СФЕРА стало проведение в марте 2008 года экспедиции на озеро Байкал. Во время экспедиции впервые установка СФЕРА–2 была поднята на привязном аэростате БАПА на высоту 700м над покрытой льдом и снегом поверхностью озера. Проведена серия тестовых измерений. В статье приведены предварительные результаты обработки данных.

Введение

Метод регистрации отраженного от снежной поверхности черенковского света широких атмосферных ливней (ШАЛ), генерируемых космическими лучами сверхвысоких энергий, был впервые предложен А.Е. Чудаковым. Одной из первых опубликованных работ [1] была статья по его докладу на Всесоюзном симпозиуме по космическим лучам в Якутске в 1972 г. В работе предлагалось установить на борту самолета два фотоумножителя (ФЭУ) и два электронно-оптических преобразователя (ЭОП) с одинаковыми углами зрения $\pm 45^{\circ}$. Все четыре прибора должны были обозревать заснеженную поверхность Земли с высоты порядка 10 км. Одновременное срабатывание амплитудных дискриминаторов двух ФЭУ полагалось триггерным условием срабатывания затворов фотоаппаратов, установленных на ЭОП-ах. Последующая обработка изображений на снимках должна была дать информацию о энергии и угле прихода первичной частицы.

Первая попытка осуществить экспериментальные измерения с использованием этой методики была предпринята Д.Наваррой [2] в конце 70-х — начале 80-х годов в Италии. Измерения проводились с помощью четырех параболических зеркал 0.6 м² с одним ФЭУ в фокусе каждого зеркала, а также с семью ФЭУ, соединенными параллельно. Эксперимент проводился в горах на высоте 3500 м над уровнем моря. Детекторы с углом зрения 3° располагались на расстоянии 1000 м от ледника и осматривали область с радиусом 27,5 м. Исследовались различные конфигурации установки, в результате был получен интегральный спектр, в котором интенсивность событий соответствовала ожидаемой. Дальнейшего развития эта работа не получила.

В тоже время в ряде работ [3][4][5] было предложено использовать оптическую систему Шмидта, состоящую из сферического зеркала и корректирующей диафрагмы. В фокусе зеркала устанавливаются ФЭУ. Преимущество такой системы состоит в том, что при хорошей светосиле угол зрения установки расширяется до 1 ср, а при достаточно большом количестве ФЭУ в фокусе зеркала появляется возможность анализа изображений световых пятен без использования ЭОП-ов. Кроме того, в этих работах было предложено использовать аэростат для поднятия установки над заснеженной поверхностью.

В начале 90-х годов в горах Тянь–Шаня были проведены первые измерения энергетического спектра первичных космических лучей (ПКЛ) с использованием прототипа предложенной выше установки СФЕРА–1. В установке было применено сферическое зеркало \emptyset 1.2 м, радиусом кривизны 0.75 m, окном диафрагмы \emptyset 0.8 м и мозаикой из 19-ти Φ ЭУ–110, расположенной в фокусе зеркала. Со склона горы установка обозревала заснеженную поверхность застывшего Большого Алма–Атинского озера. Невозможность использования аэростата на тот момент и, как следствие, геометрически невыгодное расположение установки привело к сильному размытию пороговой области спектра и искажению изображения пятна черенковского света. Однако, две точки спектра с наибольшими энергиями в районе 10^{17} эВ согласовались с результатами других установок [6].

К концу 90-х годов электроника установки СФЕРА-1 была модернизирована – добавлено измерение длительностей импульсов ФЭУ, а потребление энергии уменьшено, что позволило питать

^{*}Автор поддерживается РФФИ, грант 06-02-16198

[†]Соавтор поддерживается РФФИ, грант 06-02-16198

Рис. 1: Схема эксперимента и траектория полета привязного аэростата по данным GPS.

аппаратуру от аккумуляторов. Было произведено несколько испытательных подъемов установки с помощью аэростата A3-55 на полигоне Лягоши около г. Вольска. В феврале 2000 г. в течение 10-ти часового полета привязного аэростата на высоте 900 м было зарегистрировано около 400 событий, построен спектр $\Pi K \Pi$ в области $10^{16}-10^{17}$ эВ. Обработка экспериментальных данных позволила впервые получить изображения вспышек черенковского света от ШАЛ на снежном "экране" [7].

В течение нескольких последующих лет подготавливалось проведение запусков аэростата в Антарктиде в условиях полярной ночи. Предполагалось, что время экспозиции установки составит несколько сотен часов. Однако, в 2004-ом году при запуске аэростата трос, удерживающий установку, порвался и установка СФЕРА–1 была потеряна.

В результате обработки экспериментальных данных установки СФЕРА–1 и проведенного моделирования стало понятно, что для повышения точности определения энергии и направления прихода ШАЛ, а также возможности детального анализа функции пространственного распределения (ФПР) черенковского света ШАЛ необходимо существенно модернизировать установку. С этой целью с 2001 года велась разработка новой установки СФЕРА–2.

1 Установка СФЕРА-2

Аэростатная установка СФЕРА–2 [8] состоит из семисегментного сферического зеркала \emptyset 1.5 м и радиусом кривизны 0.94 м, в фокусе которого установлена мозаика из 109-ти ФЭУ–84–3. Для лучшего пространственного разрешения перед зеркалом установлена диафрагма \emptyset 0.93 м. Полный угол зрения оптической системы установки составляет 52° .

Электроника установки регистрирует профиль световых импульсов в каждом канале в течении 12.8 мкс дискретностью 25 нс. В каждом канале установлены два быстрых аналого—цифровых преобразователя с коэффициентами усиления предусилителей -1 и -10 соответственно для получения динамического диапазона 10^4 .

На каждом ФЭУ установлены миниатюрные (62x25x25 мм) источники высокого напряжения с 11-ю выходами для подключения к динодной системе ФЭУ. Каждый источник состоит из платы умножителя и платы управления с блоком индуктивной накачки для генерации импульсов высокого напряжения. Управление осуществляется через двухпроводной интерфейс I^2C , позволяющий устанавливать высокое напряжение в диапазоне от 800 В до 1400 В и получать информацию о значениях тока анода с точностью 0.1 мкА, высокого напряжения с точностью 1 В, напряжения питания и температуры ФЭУ. Для управления всеми 109 источниками была разработана плата коммутатора, которая позволяет соединить бортовой компьютер через LPT порт с любым источником. Потребление источника составляет около 80–90 мВт при токе анода 100 мкА и 35–50 мВт при минимальном токе анода. Уровеннь пульсаций, наведенных источником на анод ФЭУ, не превышает

Рис. 2: Служебная информация о работе аппаратуры. (а – высота установки над поверхность оз. Байкал, б – анодный ток на одном из ФЭУ в мозаике, в – частота срабатывания триггера)

 $0.1~\mathrm{mB}$ при нагрузке на аноде $50~\mathrm{Om}$ благодаря применению экранирующего корпуса и специально разработанной конструкции фильтров на выводах.

Триггерная система установки имеет 112 входов для приема запросов на выработку сигнала подтвеждения триггера от дискриминаторов каналов. Триггерная плата способна отбирать события, при которых в течении 1 мкс срабатывают дискриминаторы находящихся рядом ФЭУ. Логическая модель мозаики ФЭУ записывается в микросхему программируемой логики на плате триггера.

Прибор поднимается в темное время суток на привязном аэростате на высоту 1–3 км и работает подобно фотокамере, регистрируя изображения световых пятен, образуемых на покрытой снегом поверхности Земли при прохождении частиц ШАЛ через атмосферу. Каждый ФЭУ осматривает область на заснеженной поверхности диаметром около 50 м для высоты 1 км и около 160 м для 3 км.

2 Результаты измерений

Первый тестовый подъем установки СФЕРА-2 был произведен со льда оз. Байкал в ночь на 13 марта 2008 г. Место старта аэростата располагалось в районе 107-км Кругобайкальской железной дороги на базе Байкальского нейтринного стационара ИЯИ РАН на расстоянии 800 м от береговой линии (см. рис. 1).

Целью экспедиции на оз. Байкал была отработка запусков аэростата в реальных климатических условиях и взаимодействия с воздушными службами Иркутской области, проверка работоспособности установки СФЕРА-2 и наземной аппаратуры обеспечения.

Установка была поднята с помощью специально разработанного и изготовленного фирмой "АВ-ГУРЪ" привязного аэростата БАПА (Байкальский привязной аэростат) на высоту около 710 м над уровнем озера Байкал. Установка находилась на этой высоте около трех часов. Это ограничение было обусловлено временем захода луны и восхода солнца. Начать подъемы ранее 12 марта не удалось по организационным причинам. Дальнейшее проведение измерений было нецелесообразно в связи с малым временем безлунного периода.

Тестирование установки СФЕРА-2 выполнялось в конфигурации с минимальным числом ФЭУ – 20 шт. Было выставлено наиболее либеральное условие регистрации событий с однократными совпадениями (М1), т.е. срабатывание любого дискриминатора анодного сигнала ФЭУ запускало запись временной развертки (осциллограммы) всех 20-ти каналов. Это было необходимо для получения как можно большего количества экспериментальных данных в условиях ограниченного времени экспозиции. Время работы установки в режиме регистрации ШАЛ на М1 составило 1 час. Тестирование аппаратуры выполнялось в режиме реального времени с использованием беспроводной Wi-Fi

связи.

На рис. 2 приведена часть служебной информации о работе аппаратуры, регистрируемой с интервалом 1 мин. Рис. 2а иллюстрирует работу встроенного в аппаратуру датчика GPS, регистрирующего координаты установки в пространстве во время полета, а также мировое время с точностью 1 мкс. На этом рисунке приведены данные GPS о высоте установки над уровнем оз. Байкал. По результатам контрольных измерений на уровне ледовой поверхности реальная точность определения координат системой GPS оказалась близкой к 5 м. Результаты полетных измерений показали, что работа установки СФЕРА–2 может быть синхронизирована с работой других детекторов, расположенных на земле, на ледовой поверхности или на какой-либо глубине озера Байкал. Рис. 26 показывает как изменялся ток одного из ФЭУ в период измерений. Постепенное уменьшение тока связано с уменьшением свечения ночного неба после захода луны. На рис. 2в приведен темп срабатываний установки в режиме триггера М1. Большая часть регистрируемых событий обусловлена флуктуациями светового фона ночного неба.

Заключение

Результаты проведения первого тестового полета установки СФЕРА-2 показали работоспособность всех элементов аппаратуры и системы подъема привязного аэростата. В процессе проведения работ были выявлены необходимые доработки и усовершенствования установки для последующх измерений.

В период февраля 2009 г. планируется проведение полномасштабных измерений с установкой из 109 каналов регистрации. В настоящее время ведется анализ зарегистрированных событий.

Авторы выражают глубокую благодарность Г.В. Домогацкому за помощь в проведении экспедиционных работ.

Эксперимент выполнен при поддержке РФФИ (грант 06–02–16198–а) и программы Президиума РАН "Физика нейтрино".

Список литературы

- [1] Возможный метод регистрации ШАЛ по черенковскому излучению, отраженному от снежной поверхности Земли. Экспериментальные методы исследования космических лучей сверхвысоких энергий. (А.Е.Чудаков) Материалы Всесоюзного симпозиума. (А.Е.Чудаков) Якутск, 1972. С.769.
- [2] Detection of EAS Cerenkov light reflected from mountain snow. (C.Castagnoli, G.Navarra, C.Morello) 17th International Cosmic Ray Conference. Paris, 1981, V.6, P.103
- [3] Installation for Measuring of Primary Energy Spectrum of Cosmic Rays in the Energy Range above $10^{15}-10^{16} {\rm eV}$. (Antonov R.A., Ivanenko I.P., Rubtsov V.I.) Proc. 14 ICRC, Munchen , 1975, 9, 3360-3364.
- [4] Математическое моделирование экспериментальной установки для изучения первичного спектра космических лучей в области энергий $10^{15}-10^{20}$ эВ. (Антонов Р.А., Иваненко И.П., Кузьмин В.А) Известия Академии Наук СССР, сер. физ., 1986, 50, v11, с. 2217–2220.
- [5] Аэростатная установка для измерения энергетического спектра первичного космического излучения в области энергий от 10¹⁵ эВ до неск. ед. 10²⁰ эВ. (Антонов Р.А., Иваненко И.П., Кузьмин В.А., Федоров А.Н.) В сб. Исследования на высотных аэростатах, Краткие сообщения по физике, М., ФИАН, 1989, 78-81.
- [6] Измерение энергетического спектра первичного космического излучения в области энергий $> 10^{16}$ эВ методом регистрации отраженного от снежной поверхности черенковского света ШАЛ. (Федоров А.Н.) Дисс. канд. физ.—мат. наук. Москва. НИИЯФ МГУ. 1996.
- [7] Balloon-borne measurements of the CR energy spectrum in the energy range 10–100 PeV. (Antonov R.A., Chernov D.V., Korosteleva E.E., Sysojeva T.I., Tkaczyk W.) Proc. 27 ICRC, 2001, V.1, P.59.
- [8] Optical and data acquisition system for the SPHERE-2 detector. (D.V.Chernov, R.A.Antonov, E.A.Bonvech, A.V.Shirokov) Proc. 30 ICRC, 2007.