Escenarios de cambio climático

Gerardo Martín

 Cuando se cuenta con factores es necesario investigar todas las combinaciones posibles

Experimentos de simulación

- Explorar sensibilidad a cambios de parámetros
- Comportamiento con diferentes valores parámetros
- Comprender espacio de parámetros inciertos

Ө	Valor	
β	~ N(0.05, 0.001)	
У	0.1	
μ	0.05	

Parámetros libres

eta pprox 0	0.0504 0.0520 0.0513 0.0513 0.0501 0.0508 0.0498 0.0512 0.0507 0.0491
-------------	--

Parámetros fjos

Ө	Valor		
β	~ N(0.05, 0.001)		
У	0.1		
μ	0.05		

- Escenarios simulados utilizan todas las combinaciones posibles de valores
- Algunos parámetros representan procesos inciertos, en cambio climático ...

Historia de los posibles futuros planteados

Escenarios a partir de 1988

- Cambios temporales de contribución antropogénica al cambio cimático.
- Mecanismos de contribución antropogénica
 - Cambios en absorción energética de atmósfera

Fases de desarrollo

- Coupled Model Intercomparison Project (CMIP)
 - Laboratorios diferentes proponen modelos de circulación global
 - Comparan resultados
 - IPCC los libera
 - Versiones CMIP 1-6

Comparación de CMIP

Reflejan refinamiento en mecanismos e incremento en capacidad de cómputo

Aumento gradual de la resolución. Disminución del error por discretización

Derivaciones de CMIP

CMIP → GCM
Global Circulation Model
CORDEX → RCM

Modelos regionales permiten mayor detalle topográfico y de mecanismos de la región

Regional Circulation Model

Dominio de RCM CORDEX-CA

Dominio de GCMs

Escenarios, implementaciones y modelos

emisiones de gases de efecto invernadero a partir de CMIP3

Escenarios basados en niveles de

IPCC Representative Concentration Pathways

Número 8.5, 6.0, 4.5 y 2.6 son W/m²

Energía solar absorbida por atmósfera

- Por lo tanto:
 - 8.5 → Escenario más severo
 - 2.6 → Escenario más sustentable
- Cambios a uso de RCPs
 - SSPs

A partir de CMIP6, shared socioeconomic pathways (SSPs)

Describen RCPs en términos sociales

Equivalencia directa

SSP2: Middle of the road

SSP1: Sustainability (Taking the Green Road)

SSP3: Regional rivalry (A Rocky Road)

SSP4: Inequality (A Road Divided)

SSP5: Fossil-Fueled Development (Taking the Highway)

Narrativas humanas para el futuro

Cambio global

- SSPs consideran cambio climático como eje del cambio global
 - Crecimiento poblacional
 - Cambio de condiciones socioeconómicas
 - Cambio de cobertura y uso de suelo (urbanización)

Los SSPs decriben

- Trayectorias de crecimiento poblacional
- Efecto en demanda de recursos naturales
- Decisiones gubernamentales e intergubernamentales
- Actitudes generales hacia naturaleza

Uso de los escenarios de CC en ecología

Consideraciones

- Datos generados por GCMs
 - ~100-250km
- Datos usados habitualmente en ecología ~ 1km (depende de la problemática abordada)

WorldClim

Maps, graphs, tables, and data of the global climate

Download

Repositorios públicos se han dado a la tarea de escalar estadísticamente los GCMs

Método delta de escalado (Mosier et al. 2014)

- GCMs y RCMs carecen de detalle topográfico
- Productos como WorldClim/Chelsa lo contienen
- Método Δ combina detalle topográfico con cambios de G/RCMs

Un breve paréntesis

Características adicionales de experimentos CMIP

Período comprendido por simulaciones

- Período de referencia
 - Composición atmosférica observada
 - Énfasis en reproducción de climas observados

Futuro

- Composición atmosférica de acuerdo con escenarios
- Énfasis en representación de posibilidades y sus causas

Futuro, escenarios de emisiones

$$\begin{split} \Delta_{ene,1970} = Modelo_{ene,1970} - Datos_{ene,1970-2005} \\ \Delta_{feb} = ... \\ \Delta_{mar} = ... \\ \Delta_{abr} = ... \\ \Delta_{may} = ... \end{split}$$

$$\Delta_{ene} = \frac{\Delta_{ene,1970} + \Delta_{ene,1971} + \dots + \Delta_{ene,2005}}{35}$$

Consideraciones para precipitación y otras variables positivas

$$\Delta = \frac{Modelo}{Datos}$$

$$\log(\Delta) = \log(Modelo) - \log(Datos)$$

$$\log(\frac{P}{1-P}) = \log(\frac{Modelo}{1-Modelo}) - \log(\frac{Datos}{1-Datos})$$

Brevísimo tutorial de escalado estadístico...