Dynamical aspects of categories

Yu-Wei Fan (Tsinghua U.)

Outline:

- ▶ Background and examples of $Stab(\Delta \text{ category})$ (relations with Teichmüller theory and Calabi–Yau geometry)
- Study Aut(D) via its action on Stab(D) (dynamical invariants, classifications)
- Quasi-convergent paths in Stab(D) and SOD
 (Daniel Halpern-Leistner: relating Stab, QH*, birational geometry)

Stab and Teichmüller

▶ D: triangulated category (e.g. D^b Coh(X))

Stab and Teichmüller

- \triangleright D: triangulated category (e.g. $D^b\mathrm{Coh}(X)$)
- $ightharpoonup \sigma = (Z, P) \in \operatorname{Stab}(D)$ consists of:
 - $ightharpoonup Z: \mathsf{Ob}(D) \to \mathbb{C}$, where $Z(B) = Z(A) + Z(C) \ \forall A \to B \to C \xrightarrow{+1}$
 - $\{P(\phi)\}_{\phi\in\mathbb{R}}$ semistable objects of phase ϕ

Stab and Teichmüller

- ▶ D: triangulated category (e.g. D^b Coh(X))
- $ightharpoonup \sigma = (Z, P) \in \operatorname{Stab}(D)$ consists of:
 - $ightharpoonup Z: Ob(D) \to \mathbb{C}$, where $Z(B) = Z(A) + Z(C) \ \forall A \to B \to C \xrightarrow{+1}$
 - $ightharpoonup \{P(\phi)\}_{\phi\in\mathbb{R}}$ semistable objects of phase ϕ

Analogy between Teichmüller theory and stability data:

Riemann surface S	Triangulated category D
curve C	object <i>E</i>
$C_1 \cap C_2$	$\operatorname{Hom}(\mathit{E}_{1},\mathit{E}_{2})$
metric g	stability σ
geodesic	semistable object
$C_1 \# \cdots \# C_n$	HN filtration $gr_i(E) = E_i$
length $\sum \ell_{g}(C_{i})$	mass $\sum Z_{\sigma}(E_i) $
$MCG(S) \curvearrowright Teich(S)$	$\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D)$
Dehn twist	spherical twist

Other things that admit categorical analogues: Topological entropy, pseudo-Anosov maps, systoles and systolic inequalities, $\mathrm{SL}(2,\mathbb{R})$ -action , counting of saddle connections, etc.

Stab and mirror symmetry

- $\sigma \in \operatorname{Stab}(D^b(X))$ is analogous to a Kähler/symplectic structure on X.
- It is conjectured that for a Calabi–Yau manifold X with Kähler class ω , there is a stability condition on $D^b(X)$ with central charge

$$Z_{\omega}(E) = -\int_X e^{-i\omega} \operatorname{ch}(E) \hat{\Gamma}_X + \cdots$$

Stab and mirror symmetry

- $\sigma \in \operatorname{Stab}(D^b(X))$ is analogous to a Kähler/symplectic structure on X.
- It is conjectured that for a Calabi–Yau manifold X with Kähler class ω , there is a stability condition on $D^b(X)$ with central charge

$$Z_{\omega}(E) = -\int_{X} e^{-i\omega} \operatorname{ch}(E) \hat{\Gamma}_{X} + \cdots$$

- $\sigma \in \operatorname{Stab}(\operatorname{Fuk}(\check{X}))$ is analogous to a complex structure on \check{X} .
- It is conjectured that for a Calabi–Yau manifold \check{X} with holomorphic volume form Ω , there is a stability condition on $\operatorname{Fuk}(\check{X})$ with central charge

$$Z_{\Omega}(L)=\int_{I}\Omega,$$

and semistable objects given by special Lagrangians.

Stab and mirror symmetry

- $\sigma \in \operatorname{Stab}(D^b(X))$ is analogous to a Kähler/symplectic structure on X.
- It is conjectured that for a Calabi–Yau manifold X with Kähler class ω , there is a stability condition on $D^b(X)$ with central charge

$$Z_{\omega}(E) = -\int_{X} e^{-i\omega} \operatorname{ch}(E) \hat{\Gamma}_{X} + \cdots$$

- $\sigma \in \operatorname{Stab}(\operatorname{Fuk}(\check{X}))$ is analogous to a complex structure on \check{X} .
- It is conjectured that for a Calabi–Yau manifold \check{X} with holomorphic volume form Ω , there is a stability condition on $\operatorname{Fuk}(\check{X})$ with central charge

$$Z_{\Omega}(L)=\int_{I}\Omega,$$

and semistable objects given by special Lagrangians.

▶ There are deep connections among $\operatorname{Stab}(D^b(X))$, quantum cohomology of X, birational geometry of X, which we'll discuss later.

Example: Let X be an elliptic curve. Then any $\sigma \in \operatorname{Stab}(D^b(X))$ is (up to a natural group action) equivalent to the slope stability:

- $ightharpoonup Z(E) = -\deg(E) + i \cdot \operatorname{rank}(E).$
- ightharpoonup E is σ -semistable if and only if it is slope semistable.

Example: Let X be an elliptic curve. Then any $\sigma \in \operatorname{Stab}(D^b(X))$ is (up to a natural group action) equivalent to the slope stability:

- $ightharpoonup Z(E) = -\deg(E) + i \cdot \operatorname{rank}(E).$
- ightharpoonup E is σ -semistable if and only if it is slope semistable.

Its mirror \check{X} is also an elliptic curve. Then $\check{\sigma} \in \operatorname{Stab}(\operatorname{Fuk}(\check{X}))$ is given by:

- $ightharpoonup Z(L) = \int_L \mathrm{d}z.$
- \blacktriangleright *L* is $\check{\sigma}$ -semistable if and only if it is a special Lagrangian (i.e. straight line).

Example: Let X be an elliptic curve. Then any $\sigma \in \operatorname{Stab}(D^b(X))$ is (up to a natural group action) equivalent to the slope stability:

- $ightharpoonup Z(E) = -\deg(E) + i \cdot \operatorname{rank}(E).$
- ightharpoonup E is σ -semistable if and only if it is slope semistable.

Its mirror \check{X} is also an elliptic curve. Then $\check{\sigma} \in \operatorname{Stab}(\operatorname{Fuk}(\check{X}))$ is given by:

- $ightharpoonup Z(L) = \int_L \mathrm{d}z.$
- \triangleright *L* is $\check{\sigma}$ -semistable if and only if it is a special Lagrangian (i.e. straight line).

Example: $\operatorname{Stab}(D^b(\mathbb{P}^1)) \cong \mathbb{C}^2$ has wall-crossings and consists of geometric and algebraic stability conditions. (We'll see a picture later.)

Example: Let X be an elliptic curve. Then any $\sigma \in \operatorname{Stab}(D^b(X))$ is (up to a natural group action) equivalent to the slope stability:

- $ightharpoonup Z(E) = -\deg(E) + i \cdot \operatorname{rank}(E).$
- ightharpoonup E is σ-semistable if and only if it is slope semistable.

Its mirror \check{X} is also an elliptic curve. Then $\check{\sigma} \in \operatorname{Stab}(\operatorname{Fuk}(\check{X}))$ is given by:

- $ightharpoonup Z(L) = \int_L \mathrm{d}z.$
- \triangleright *L* is $\check{\sigma}$ -semistable if and only if it is a special Lagrangian (i.e. straight line).

Example: $\operatorname{Stab}(D^b(\mathbb{P}^1)) \cong \mathbb{C}^2$ has wall-crossings and consists of geometric and algebraic stability conditions. (We'll see a picture later.)

Its mirror is FS $\left(W\colon \mathbb{C}^*\xrightarrow{z+1/z}\mathbb{C}\right)$. By Haiden–Katzarkov–Kontsevich, its stability space can be parametrized by 1-forms $\phi_{a,b}=\exp\left(z+a+\frac{b}{z}\right)\frac{\mathrm{d}z}{z}$:

- $ightharpoonup Z_{a,b} = \int_L \phi_{a,b}.$
- \blacktriangleright L is $\sigma_{a,b}$ -semistable if and only if it is a finite length sLag w.r.t. $\phi_{a,b}$.

Examples of Aut acting on Stab

There are natural actions $\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D)$ and $\operatorname{Aut}(D)/[1] \curvearrowright \operatorname{Stab}(D)/\mathbb{C}$.

Examples of Aut acting on Stab

There are natural actions $\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D)$ and $\operatorname{Aut}(D)/[1] \curvearrowright \operatorname{Stab}(D)/\mathbb{C}$.

Example: Let X be an elliptic curve. Then the action of $\operatorname{Aut}(D)/[1]$ on $\operatorname{Stab}(D)/\mathbb{C} \cong \mathbb{H}$ factors through $\operatorname{PSL}(2,\mathbb{Z}) \curvearrowright \mathbb{H}$. In this case, we have

$$\mathcal{M}_{\mathsf{K\ddot{a}h}}(X)\cong \mathbb{H}/\mathsf{PSL}(2,\mathbb{Z}).$$

Examples of Aut acting on Stab

There are natural actions $\operatorname{Aut}(D) \curvearrowright \operatorname{Stab}(D)$ and $\operatorname{Aut}(D)/[1] \curvearrowright \operatorname{Stab}(D)/\mathbb{C}$.

Example: Let X be an elliptic curve. Then the action of $\operatorname{Aut}(D)/[1]$ on $\operatorname{Stab}(D)/\mathbb{C} \cong \mathbb{H}$ factors through $\operatorname{PSL}(2,\mathbb{Z}) \curvearrowright \mathbb{H}$. In this case, we have

$$\mathcal{M}_{\mathsf{K\ddot{a}h}}(X) \cong \mathbb{H}/\mathsf{PSL}(2,\mathbb{Z}).$$

Example: The action of $\operatorname{Aut}(D^b(\mathbb{P}^1))/[1]$ on $\operatorname{Stab}(D^b(\mathbb{P}^1))/\mathbb{C} \cong \mathbb{C}$ factors through an \mathbb{Z} -action (given by $\mathcal{O}(1) \otimes -$):

Consider the orbit of $\Phi \in \operatorname{Aut}(D)$ acting on $\sigma \in \operatorname{Stab}(D)$

$$\{\ldots, \Phi^{-1}\sigma, \ \sigma, \ \Phi\sigma, \ldots\}$$
.

We can use their mass functions $m_{\sigma}(\bullet)$ and phase functions $\phi_{\sigma}^{\pm}(\bullet)$ to extract dynamical invariants of Φ .

- ▶ The growth rate of $m_{\Phi^n\sigma}(\bullet)$ gives the categorical generalization of topological entropy.
- ▶ The growth rate of $\phi_{\Phi^n\sigma}^{\pm}(\bullet)$ gives the categorical generalization of Poincaré translation number.

Consider the orbit of $\Phi \in \operatorname{Aut}(D)$ acting on $\sigma \in \operatorname{Stab}(D)$

$$\{\ldots, \Phi^{-1}\sigma, \ \sigma, \ \Phi\sigma, \ldots\}$$
.

We can use their mass functions $m_{\sigma}(\bullet)$ and phase functions $\phi_{\sigma}^{\pm}(\bullet)$ to extract dynamical invariants of Φ .

- ▶ The growth rate of $m_{\Phi^n\sigma}(\bullet)$ gives the categorical generalization of topological entropy.
- ▶ The growth rate of $\phi_{\Phi^n\sigma}^{\pm}(\bullet)$ gives the categorical generalization of Poincaré translation number.

Using the analogy between $MCG(S) \curvearrowright Teich(S)$ and $Aut(D) \curvearrowright Stab(D)$, we can also study:

- trichotomy like finite order/reducible/pseudo-Anosov;
- properties of finite order autoequivalences;
- various categorical generalizations of pseudo-Anosov maps.

Let (X, d) be a compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \left\{ d(f^k(x_i), f^k(x_j)) \right\} \ge \epsilon \ \forall x_i, x_j \right\}$$

Let (X, d) be a compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \left\{ d(f^k(x_i), f^k(x_j)) \right\} \ge \epsilon \ \forall x_i, x_j \right\}$$

$$h_{\text{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

Let (X, d) be a compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \left\{ d(f^k(x_i), f^k(x_j)) \right\} \ge \epsilon \ \forall x_i, x_j \right\}$$

The topological entropy of f is defined to be

$$h_{\mathrm{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

It's a topological invariant measuring the "complexity" of f.

Let (X, d) be a compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \left\{ d(f^k(x_i), f^k(x_j)) \right\} \ge \epsilon \ \forall x_i, x_j \right\}$$

$$h_{\mathrm{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

- ▶ It's a topological invariant measuring the "complexity" of f.
- $f^n = \mathrm{id}_X \implies h_{\mathrm{top}}(f) = 0.$

Let (X, d) be a compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \left\{ d(f^k(x_i), f^k(x_j)) \right\} \ge \epsilon \ \forall x_i, x_j \right\}$$

$$h_{\mathrm{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

- lt's a topological invariant measuring the "complexity" of f.
- $f^n = \mathrm{id}_X \implies h_{\mathrm{top}}(f) = 0.$
- Yomdin) If X is a compact differentiable manifold and f is smooth, then $h_{\text{top}}(f) \ge \log \rho(f^*_{H^*(X,\mathbb{C})})$.

Let (X, d) be a compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell : \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \left\{ d(f^k(x_i), f^k(x_j)) \right\} \ge \epsilon \ \forall x_i, x_j \right\}$$

$$h_{\mathrm{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

- lt's a topological invariant measuring the "complexity" of f.
- $f^n = \mathrm{id}_X \implies h_{\mathrm{top}}(f) = 0.$
- Yomdin) If X is a compact differentiable manifold and f is smooth, then $h_{\text{top}}(f) \ge \log \rho(f_{H^*(X,\mathbb{C})}^*)$.
- (Gromov) Moreover, if X is Kähler and f is holomorphic, then $h_{\text{top}}(f) = \log \rho(f^*_{H^*(X,\mathbb{C})})$.

Let (X, d) be a compact metric space and $f: X \to X$ continuous. Consider

$$N(n,\epsilon) := \max \left\{ \ell \colon \exists x_1, \dots, x_\ell \text{ s.t. } \max_{0 \le k \le n} \left\{ d(f^k(x_i), f^k(x_j)) \right\} \ge \epsilon \ \forall x_i, x_j \right\}$$

$$h_{\mathrm{top}}(f) := \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \log N(n, \epsilon) \right) \in [0, \infty].$$

- lt's a topological invariant measuring the "complexity" of f.
- $ightharpoonup f^n = \mathrm{id}_X \implies h_{\mathrm{top}}(f) = 0.$
- (Yomdin) If X is a compact differentiable manifold and f is smooth, then $h_{\text{top}}(f) \ge \log \rho(f_{H^*(X,\mathbb{C})}^*).$
- ▶ (Gromov) Moreover, if X is Kähler and f is holomorphic, then $h_{\text{top}}(f) = \log \rho(f_{H^*(X|\mathbb{C})}^*).$
- ▶ (Cantat) If a compact complex surface X admits $h_{top}(f) > 0$, then X is either a torus, a K3 surface, an Enriques surface, or a rational surface.

Let $\Phi \in Aut(D)$, $\sigma \in Stab(D)$, and $G \in D$ a split generator.

$$h_{\sigma}(\Phi) := \limsup_{n \to \infty} \frac{1}{n} \log m_{\sigma}(\Phi^n G).$$

Let $\Phi \in \operatorname{Aut}(D)$, $\sigma \in \operatorname{Stab}(D)$, and $G \in D$ a split generator.

$$h_{\sigma}(\Phi) := \limsup_{n \to \infty} \frac{1}{n} \log m_{\sigma}(\Phi^n G).$$

 $h_{\sigma}(\Phi)$: Not always computable; not known to be independent of $\pi_0(\operatorname{Stab}(D))$.

Let $\Phi \in Aut(D)$, $\sigma \in Stab(D)$, and $G \in D$ a split generator.

$$h_{\sigma}(\Phi) := \limsup_{n \to \infty} \frac{1}{n} \log m_{\sigma}(\Phi^n G).$$

 $h_{\sigma}(\Phi)$: Not always computable; not known to be independent of $\pi_0(\operatorname{Stab}(D))$.

$$h_{\mathrm{cat}}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^n G[k]) \right).$$

Let $\Phi \in Aut(D)$, $\sigma \in Stab(D)$, and $G \in D$ a split generator.

$$h_{\sigma}(\Phi) := \limsup_{n \to \infty} \frac{1}{n} \log m_{\sigma}(\Phi^n G).$$

 $h_{\sigma}(\Phi)$: Not always computable; not known to be independent of $\pi_0(\operatorname{Stab}(D))$.

$$h_{\mathrm{cat}}(\Phi) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^{n}G[k]) \right).$$

• (Ikeda) $h_{\text{cat}}(\Phi) \ge h_{\sigma}(\Phi) \ge \log \rho([\Phi])$ for all $\sigma \in \operatorname{Stab}(D)$.

Let $\Phi \in Aut(D)$, $\sigma \in Stab(D)$, and $G \in D$ a split generator.

$$h_{\sigma}(\Phi) := \limsup_{n \to \infty} \frac{1}{n} \log m_{\sigma}(\Phi^n G).$$

 $h_{\sigma}(\Phi)$: Not always computable; not known to be independent of $\pi_0(\operatorname{Stab}(D))$.

$$h_{\mathrm{cat}}(\Phi) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^n G[k]) \right).$$

- ▶ (Ikeda) $h_{\text{cat}}(\Phi) \ge h_{\sigma}(\Phi) \ge \log \rho([\Phi])$ for all $\sigma \in \text{Stab}(D)$.
- $lack (\mathsf{Kikuta-Takahashi}) \; \mathsf{For} \; f \in \mathrm{Aut}(X), \; h_{\mathrm{cat}}(\mathbb{L}f^*) = h_{\mathrm{top}}(f) = \log \rho([\mathbb{L}f^*]).$

Let $\Phi \in Aut(D)$, $\sigma \in Stab(D)$, and $G \in D$ a split generator.

$$h_{\sigma}(\Phi) := \limsup_{n \to \infty} \frac{1}{n} \log m_{\sigma}(\Phi^n G).$$

 $h_{\sigma}(\Phi)$: Not always computable; not known to be independent of $\pi_0(\operatorname{Stab}(D))$.

$$h_{\mathrm{cat}}(\Phi) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^n G[k]) \right).$$

- ▶ (Ikeda) $h_{cat}(\Phi) \ge h_{\sigma}(\Phi) \ge \log \rho([\Phi])$ for all $\sigma \in Stab(D)$.
- $lack (\mathsf{Kikuta-Takahashi}) \; \mathsf{For} \; f \in \mathrm{Aut}(X), \; h_{\mathrm{cat}}(\mathbb{L}f^*) = h_{\mathrm{top}}(f) = \log \rho([\mathbb{L}f^*]).$
- ▶ (F.) $\exists \Phi \in \operatorname{Aut}(D^b(X))$ with $h_{\operatorname{cat}}(\Phi) > \log \rho([\Phi])$ for some CY X.

Let $\Phi \in \operatorname{Aut}(D)$, $\sigma \in \operatorname{Stab}(D)$, and $G \in D$ a split generator.

$$h_{\sigma}(\Phi) := \limsup_{n \to \infty} \frac{1}{n} \log m_{\sigma}(\Phi^n G).$$

 $h_{\sigma}(\Phi)$: Not always computable; not known to be independent of $\pi_0(\operatorname{Stab}(D))$.

$$h_{\mathrm{cat}}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^n G[k]) \right).$$

- ▶ (Ikeda) $h_{\text{cat}}(\Phi) \ge h_{\sigma}(\Phi) \ge \log \rho([\Phi])$ for all $\sigma \in \text{Stab}(D)$.
- $lack (\mathsf{Kikuta-Takahashi}) \; \mathsf{For} \; f \in \mathrm{Aut}(X), \; h_{\mathrm{cat}}(\mathbb{L}f^*) = h_{\mathrm{top}}(f) = \log \rho([\mathbb{L}f^*]).$
- ▶ (F.) $\exists \Phi \in \operatorname{Aut}(D^b(X))$ with $h_{\operatorname{cat}}(\Phi) > \log \rho([\Phi])$ for some CY X.

Remark: Existence of manifold with corner structure of the compactification of Stab in D. H.-L.'s program \implies hom $(G, E) \le C \cdot m_{\sigma}(E)$ for all $E \implies$

- $h_{\mathrm{cat}}(\Phi) = h_{\sigma}(\Phi).$
- $ightharpoonup \mathcal{M}_{\sigma}^{ss}(v)$ admits a proper good moduli space.

For $h_{\rm cat}(\Phi)=0$, one can consider a more refined invariant, its polynomial entropy

$$h_{\mathrm{poly}}(\Phi) := \limsup_{n \to \infty} \frac{\log\left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^n G[k])\right)}{\log n}.$$

For $h_{\text{cat}}(\Phi) = 0$, one can consider a more refined invariant, its polynomial entropy

$$h_{\mathrm{poly}}(\Phi) := \limsup_{n \to \infty} \frac{\log\left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^n G[k])\right)}{\log n}.$$

F.-Fu-Ouchi:

Yomdin-type lower bound still holds.

For $h_{\rm cat}(\Phi)=0$, one can consider a more refined invariant, its polynomial entropy

$$h_{\mathrm{poly}}(\Phi) := \limsup_{n \to \infty} \frac{\log\left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^{n}G[k])\right)}{\log n}.$$

F.-Fu-Ouchi:

- Yomdin-type lower bound still holds.
- ▶ Let L be a line bundle on X. Then $h_{cat}(- \otimes L) = 0$, and

$$\nu(L) \leq h_{\text{poly}}(-\otimes L) \leq \dim(X)$$

where $\nu(L) = \max\{m \mid c_1(L)^m \not\equiv 0\}$ the numerical dimension of L.

For $h_{\rm cat}(\Phi)=0$, one can consider a more refined invariant, its polynomial entropy

$$h_{\mathrm{poly}}(\Phi) := \limsup_{n \to \infty} \frac{\log\left(\sum_{k} \dim \mathrm{Hom}(G, \Phi^{n}G[k])\right)}{\log n}.$$

F.-Fu-Ouchi:

- Yomdin-type lower bound still holds.
- ▶ Let L be a line bundle on X. Then $h_{cat}(- \otimes L) = 0$, and

$$\nu(L) \leq h_{\text{poly}}(-\otimes L) \leq \dim(X)$$

where $\nu(L) = \max\{m \mid c_1(L)^m \not\equiv 0\}$ the numerical dimension of L.

- Let X be an elliptic curve, and $\Phi \in \operatorname{Aut}(D^b(X))$. Then
 - $h_{cat}(Φ) = h_{poly}(Φ) = 0$ iff [Φ] ∈ SL(2, ℤ) is elliptic.
 - $h_{\text{cat}}(\Phi) = 0$ and $h_{\text{poly}}(\Phi) = 1$ iff $[\Phi] \in \text{SL}(2, \mathbb{Z})$ is parabolic.
 - $h_{\mathrm{cat}}(\Phi) > 0$ iff $[\Phi] \in \mathrm{SL}(2,\mathbb{Z})$ is hyperbolic.

Shifting numbers

(F.–Filip) The limits $\tau^{\pm}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \phi_{\sigma}^{\pm}(\Phi^n G)$ always exist, and are independent of the choices of G and σ .

Shifting numbers

(F.–Filip) The limits $\tau^{\pm}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \phi_{\sigma}^{\pm}(\Phi^n G)$ always exist, and are independent of the choices of G and σ .

Poincaré translation numbers $ ho$	Shifting numbers
$\mathbb{Z} \hookrightarrow \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R}) \twoheadrightarrow \operatorname{Homeo}^+(S^1)$	$\mathbb{Z} \hookrightarrow \operatorname{Aut}(\mathcal{D}) \twoheadrightarrow \operatorname{Aut}(\mathcal{D})/[1]$
$f\in \operatorname{Homeo}_{\mathbb{Z}}^+(\mathbb{R})$	$\Phi\in \operatorname{Aut}(\mathcal{D})$
$x_0 \in \mathbb{R}^-$	$\textit{G} \in \mathcal{D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0)-x_0$	$\phi^\pm_\sigma(\Phi^n G) - \phi^\pm_\sigma(G)$
translation number	upper/lower shifting numbers

(F.–Filip) The limits $\tau^{\pm}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \phi_{\sigma}^{\pm}(\Phi^n G)$ always exist, and are independent of the choices of G and σ .

Poincaré translation numbers $ ho$	Shifting numbers
$\mathbb{Z} \hookrightarrow \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R}) \twoheadrightarrow \operatorname{Homeo}^+(S^1)$	$\mathbb{Z} \hookrightarrow \operatorname{Aut}(\mathcal{D}) \twoheadrightarrow \operatorname{Aut}(\mathcal{D})/[1]$
$f\in \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R})$	$\Phi\in \operatorname{Aut}(\mathcal{D})$
$\mathit{x}_0 \in \mathbb{R}$	${\sf G}\in {\cal D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0) - x_0$	$\phi_{\sigma}^{\pm}(\Phi^{n}G)-\phi_{\sigma}^{\pm}(G)$
translation number	upper/lower shifting numbers

Note: $\tau^{\pm}(Serre_D)$ is the upper/lower Serre dimension of D.

(F.–Filip) The limits $\tau^{\pm}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \phi_{\sigma}^{\pm}(\Phi^n G)$ always exist, and are independent of the choices of G and σ .

Poincaré translation numbers $ ho$	Shifting numbers
$\mathbb{Z} \hookrightarrow \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R}) \twoheadrightarrow \operatorname{Homeo}^+(S^1)$	$\mathbb{Z} \hookrightarrow \operatorname{Aut}(\mathcal{D}) \twoheadrightarrow \operatorname{Aut}(\mathcal{D})/[1]$
$f\in \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R})$	$\Phi\in \operatorname{Aut}(\mathcal{D})$
$\mathit{x}_0 \in \mathbb{R}$	${\sf G}\in{\cal D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0) - x_0$	$\phi_{\sigma}^{\pm}(\Phi^{n}G)-\phi_{\sigma}^{\pm}(G)$
translation number	upper/lower shifting numbers

Note: $\tau^{\pm}(Serre_D)$ is the upper/lower Serre dimension of D.

lacktriangle When X is an elliptic curve, $au= au^\pm$ can be decomposed as

$$\operatorname{Aut}(D^b(X)) \to \operatorname{Homeo}_{\mathbb{Z}}^+(\mathbb{R}) \xrightarrow{\rho} \mathbb{R}.$$

(F.–Filip) The limits $\tau^{\pm}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \phi_{\sigma}^{\pm}(\Phi^n G)$ always exist, and are independent of the choices of G and σ .

Poincaré translation numbers $ ho$	Shifting numbers
$\mathbb{Z} \hookrightarrow \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R}) \twoheadrightarrow \operatorname{Homeo}^+(S^1)$	$\mathbb{Z} \hookrightarrow \operatorname{Aut}(\mathcal{D}) \twoheadrightarrow \operatorname{Aut}(\mathcal{D})/[1]$
$f\in \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R})$	$\Phi\in \operatorname{Aut}(\mathcal{D})$
$\mathit{x}_0 \in \mathbb{R}^-$	$G\in\mathcal{D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0) - x_0$	$\phi^\pm_\sigma(\Phi^nG) - \phi^\pm_\sigma(G)$
translation number	upper/lower shifting numbers

Note: $\tau^{\pm}(Serre_D)$ is the upper/lower Serre dimension of D.

• When X is an elliptic curve, $\tau=\tau^{\pm}$ can be decomposed as

$$\operatorname{Aut}(D^b(X)) \to \operatorname{Homeo}_{\mathbb{Z}}^+(\mathbb{R}) \xrightarrow{\rho} \mathbb{R}.$$

When X is an abelian surface, τ coincides with a standard quasimorphism on certain Lie group of Hermitian type.

(F.–Filip) The limits $\tau^{\pm}(\Phi) := \lim_{n \to \infty} \frac{1}{n} \phi_{\sigma}^{\pm}(\Phi^n G)$ always exist, and are independent of the choices of G and σ .

Poincaré translation numbers $ ho$	Shifting numbers
$\mathbb{Z} \hookrightarrow \mathrm{Homeo}^+_{\mathbb{Z}}(\mathbb{R}) \twoheadrightarrow \mathrm{Homeo}^+(S^1)$	$\mathbb{Z} \hookrightarrow \operatorname{Aut}(\mathcal{D}) \twoheadrightarrow \operatorname{Aut}(\mathcal{D})/[1]$
$f\in \operatorname{Homeo}_{\mathbb{Z}}^+(\mathbb{R})$	$\Phi \in \operatorname{Aut}(\mathcal{D})$
$\mathit{x}_0 \in \mathbb{R}$	${\sf G}\in{\cal D}$
amount of translation	phases $\phi^\pm_\sigma\colon \mathrm{Ob}(\mathcal{D}) o \mathbb{R}$
$f^{(n)}(x_0) - x_0$	$\phi^\pm_\sigma(\Phi^nG) - \phi^\pm_\sigma(G)$
translation number	upper/lower shifting numbers

Note: $\tau^{\pm}(Serre_D)$ is the upper/lower Serre dimension of D.

• When X is an elliptic curve, $\tau=\tau^{\pm}$ can be decomposed as

$$\operatorname{Aut}(D^b(X)) \to \operatorname{Homeo}^+_{\mathbb{Z}}(\mathbb{R}) \xrightarrow{\rho} \mathbb{R}.$$

- When X is an abelian surface, τ coincides with a standard quasimorphism on certain Lie group of Hermitian type.
- ▶ (F.) When X is an abelian variety $\tau = \tau^{\pm} : \operatorname{Aut}(D^b(X)) \to \mathbb{R}$ is a quasimorphism.

Nielsen asked: Let $G \subseteq MCG(S) = Diff(S)/\{isotopy\}$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(S)$?

- Nielsen asked: Let $G \subseteq MCG(S) = Diff(S)/\{isotopy\}$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(S)$?
- ▶ Kerckhoff: Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(S, g)$. Or equivalently, G fixes a point in Teich(S).

- Nielsen asked: Let $G \subseteq MCG(S) = Diff(S)/\{isotopy\}$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(S)$?
- ▶ Kerckhoff: Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(S, g)$. Or equivalently, G fixes a point in Teich(S).
- ► Farb–Looijenga also proved similar statements for K3 surfaces (under certain conditions), where *g* is replaced by complex structure or Ricci-flat metric.

- ▶ Nielsen asked: Let $G \subseteq MCG(S) = Diff(S)/\{isotopy\}$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(S)$?
- ▶ Kerckhoff: Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(S, g)$. Or equivalently, G fixes a point in Teich(S).
- ► Farb–Looijenga also proved similar statements for K3 surfaces (under certain conditions), where *g* is replaced by complex structure or Ricci-flat metric.

- ▶ Nielsen asked: Let $G \subseteq MCG(S) = Diff(S)/\{isotopy\}$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(S)$?
- ▶ Kerckhoff: Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(S, g)$. Or equivalently, G fixes a point in Teich(S).
- ► Farb–Looijenga also proved similar statements for K3 surfaces (under certain conditions), where *g* is replaced by complex structure or Ricci-flat metric.

Categorical realization problem: Let $G \subseteq \operatorname{Aut}(D)/[1]$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(D)/\mathbb{C}$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$?

When $D = D^b(X)$, stability conditions on D are roughly Kähler structures, so this is similar to (but not exactly) the mirror problem of Farb–Looijenga.

- ▶ Nielsen asked: Let $G \subseteq MCG(S) = Diff(S)/\{isotopy\}$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(S)$?
- ▶ Kerckhoff: Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(S, g)$. Or equivalently, G fixes a point in Teich(S).
- ► Farb–Looijenga also proved similar statements for K3 surfaces (under certain conditions), where *g* is replaced by complex structure or Ricci-flat metric.

- When $D = D^b(X)$, stability conditions on D are roughly Kähler structures, so this is similar to (but not exactly) the mirror problem of Farb–Looijenga.
- ▶ (F.–Lai) Yes, for $D = D^b(X)$ where X is a curve, an abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.

- ▶ Nielsen asked: Let $G \subseteq MCG(S) = Diff(S)/\{isotopy\}$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(S)$?
- ▶ Kerckhoff: Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(S, g)$. Or equivalently, G fixes a point in Teich(S).
- ► Farb–Looijenga also proved similar statements for K3 surfaces (under certain conditions), where *g* is replaced by complex structure or Ricci-flat metric.

- When $D = D^b(X)$, stability conditions on D are roughly Kähler structures, so this is similar to (but not exactly) the mirror problem of Farb–Looijenga.
- ▶ (F.–Lai) Yes, for $D = D^b(X)$ where X is a curve, an abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.
- Moreover, this is the main theorem that we use to fully classify finite subgroups of $\operatorname{Aut}(D)/[1]$ for K3 surfaces of $\rho=1$.

- Nielsen asked: Let $G \subseteq MCG(S) = Diff(S)/\{isotopy\}$ be a finite subgroup. Does there always exist a lifting $G \subseteq Diff(S)$?
- ▶ Kerckhoff: Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(S, g)$. Or equivalently, G fixes a point in Teich(S).
- ► Farb–Looijenga also proved similar statements for K3 surfaces (under certain conditions), where *g* is replaced by complex structure or Ricci-flat metric.

- When $D = D^b(X)$, stability conditions on D are roughly Kähler structures, so this is similar to (but not exactly) the mirror problem of Farb–Looijenga.
- ▶ (F.–Lai) Yes, for $D = D^b(X)$ where X is a curve, an abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.
- Moreover, this is the main theorem that we use to fully classify finite subgroups of $\operatorname{Aut}(D)/[1]$ for K3 surfaces of $\rho=1$.
- ▶ Corollary: $\operatorname{Aut}(D^b(X))/[1]$ contains an order 3 element if and only if X admits an associated cubic fourfold.

 \times : K3 surface, g=1, $H^2=2n$, $\frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)}\right)} < \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)\right)} > \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)} > \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)}\right)} > \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)} > \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)}\right)} > \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)}} > \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)} > \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)}\right)} > \frac{1}{\left(\frac{1}{10}\left(\frac{1}{10}\right)}} > \frac{1}{\left(\frac$ · Stab=(9>. gelon) ordig=2 or 3, finte order autoeq. · heat = hpoly = 0. . Spherical twist, . order autgeg. Cusps ← SQ,(1) for some · heat = 0, hpoly=1 . in firste order autoeg. · heat = 0, hooly = 2.

12 / 14

Every quasi-convergent paths in Stab (in the above example, satisfies $\phi_{\sigma_t}(\mathcal{O}) - \phi_{\sigma_t}(\mathcal{O}(-1)) \to +\infty$) give rise to a corresponding semiorthogonal decomposition (SOD), with stability on each component.

- Every quasi-convergent paths in Stab (in the above example, satisfies $\phi_{\sigma_t}(\mathcal{O}) \phi_{\sigma_t}(\mathcal{O}(-1)) \to +\infty$) give rise to a corresponding semiorthogonal decomposition (SOD), with stability on each component.
- Every SOD (s.t. each component admits stability) can be realized by quasi-convergent paths.

- Every quasi-convergent paths in Stab (in the above example, satisfies $\phi_{\sigma_t}(\mathcal{O}) \phi_{\sigma_t}(\mathcal{O}(-1)) \to +\infty$) give rise to a corresponding semiorthogonal decomposition (SOD), with stability on each component.
- Every SOD (s.t. each component admits stability) can be realized by quasi-convergent paths.
- Solution of the quantum differential equation gives a quasi-convergent path, therefore a canonical SOD of $D^b(X)$.

- Every quasi-convergent paths in Stab (in the above example, satisfies $\phi_{\sigma_t}(\mathcal{O}) \phi_{\sigma_t}(\mathcal{O}(-1)) \to +\infty$) give rise to a corresponding semiorthogonal decomposition (SOD), with stability on each component.
- Every SOD (s.t. each component admits stability) can be realized by quasi-convergent paths.
- Solution of the quantum differential equation gives a quasi-convergent path, therefore a canonical SOD of $D^b(X)$.
- ▶ For every $X' \to X$ birational morphism of smooth projective varieties, the canonical SOD of X' refines the canonical SOD of X.

- Every quasi-convergent paths in Stab (in the above example, satisfies $\phi_{\sigma_t}(\mathcal{O}) \phi_{\sigma_t}(\mathcal{O}(-1)) \to +\infty$) give rise to a corresponding semiorthogonal decomposition (SOD), with stability on each component.
- Every SOD (s.t. each component admits stability) can be realized by quasi-convergent paths.
- Solution of the quantum differential equation gives a quasi-convergent path, therefore a canonical SOD of $D^b(X)$.
- ▶ For every $X' \to X$ birational morphism of smooth projective varieties, the canonical SOD of X' refines the canonical SOD of X.
- Corollary: Existence of noncommutative minimal model, D-equivalence conjecture, (one side of) Dubrovin conjecture.

Thank you for your attention!