ST518, Analysis of Covariance

Jason A. Osborne

N.C. State University

November 7, 2019

- Introduction
- General Linear ANCOVA Model
- Exercise
- Partial test for treatment effect
- Adjusted means
 - SE of adj. mean
- 6 LSMEANS statement for adjusted means
- Assumptions
- 8 ANCOVA plot

Analysis of covariance, ANCOVA

Covariates are <u>Predictive</u> <u>responses</u>. Associations between covariates z and main response variable of interest y can be used to reduce unexplained variation σ^2 . An nutrition example

Nutrition scientist conducted expt. to evaluate effects of four vitamin supplements on weight gain of lab animals. Experiment conducted in a CRD with N=20 animals randomized to a=4 supplement groups, each with sample size $n\equiv 5$. Response variable of interest is weight gain, but calorie intake z measured concomitantly.

Diet	y(g)	Diet	У	Diet	У	Diet	У
1	48	2	65	3	79	4	59
1	67	2	49	3	52	4	50
1	78	2	37	3	63	4	59
1	69	2	75	3	65	4	42
1	53	2	63	3	67	4	34
1	$\overline{y}_{1.} = 63$	2	$\overline{y}_{2.} = 57.8$	3	$\overline{y}_{3.} = 65.2$	4	$\overline{y}_{4.} = 48.8$
1	$s_1 = 12.3$	2	$s_2 = 14.9$	3	$s_3 = 9.7$	4	$s_4 = 10.9$
	32 ~ 144		225		100		120

Q: Is there evidence of a vitamin supplement effect?

 $MS(v.et) = 1 \left(\frac{1}{2} \left(\frac{y_i}{y_i} - \frac{y_i}{y_i}\right)^2 = 5 \quad variance$ $= 5 \left(\frac{53.2}{3}\right)$

The GLM Procedure Vo evidence Class Levels diet. Dependent Variable: Ho: no offet Ha: Mis of interest Source Squares Mean Square F Value Pr > FDF Model 3 797.800000 265.933333 1.82 0.1836 Error 16 2334.400000 145,900000 Corrected Total 19 3132.200000

Ho: M= Mz= M3= MY

proc glm ;
 class diet;

run;

model y=diet;

But calorie intake z was measured concomitantly:

Diet	У	Z									
1	48	350	2	65	400	3	79	510	4	59	530
1	67	440	2	49	450	3	52	410	4	50	520
1	78	440	2	37	370	3	63	470	4	59	520
1	69	510	2	73	530	3	65	470	4	42	510
1	53	470	2	63	420	3	67	480	4	34	430

Q: How and why could these new data be incorporated into analysis?

A: ANCOVA can be used to reduce unexplained variation.

Model, given z_i ,

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_z z_i + E_i$$
 for $i = 1, ..., 20$

where x_{ii} is an indicator variable for subject i receiving vitamin supplement j:

$$x_{ij} = \begin{cases} 1 & \text{subject } i \text{ receives supplement } j \\ 0 & \text{else} \end{cases}$$
 and errors $\overbrace{E_i \overset{iid}{\sim} N(0, \sigma^2)}$.

Exercise: specify the parametric mean weight gain for the first subject in each treatment group, conditional on their caloric intakes.

Exercise

$$E(Y_1) = ? \beta_0 + \beta_1 \times_{11} + \beta_2 \times_{12} + \beta_3 \times_{13} + \beta_2 \cdot_{1} + \xi(\xi_1)$$

$$E(Y_6) = ? \beta_0 + \beta_2 \times_{12} + \beta_3 \times_{13} + \beta_2 \cdot_{1} + \xi(\xi_1)$$

$$E(Y_{11}) = ?$$

$$E(Y_{16}) = ?$$

Proceeding with MLR analysis of this general linear model:

```
The GLM Procedure
                         Class Level Information
                                   Levels
                                              Values
                                             1 2 3 4
                     diet.
Dependent Variable: y
                                     Sum of
 Source
                                    Squares
                                              Mean Square F Value Pr > F
 Model
                                1951.680373
                                               487.920093
                                                               6.20 0.0038
 Error
                                1180.519627
                                                78.701308
                                                          103(E) was 145 9
 Corrected Total
                                3132 200000
            R-Square
                         Coeff Var
                                        Root MSE
                                                        v Mean
            0.623102
                          15.11308
                                        8.871376
                                                       58.70000
 Source
                           DF
                                  Type I SS
                                              Mean Square F Value
                                                                     Pr > F
 diet
                            3
                                 797.800000
                                               265.933333
                                                               3.38
                                                                    0.0463
                                1153.880373
                                              1153.880373
                                                              14.66
                                                                    0.0016
 Source
                           DF
                                Type III SS
                                              Mean Square F Value
                                             512.357220 /
                                                                     0.0049
 diet
                            3
                                1537.071659
                                              1153.880373 14.66
                                                                    0.0016
                                1153 880373
To test for a diet effect: H_0: \beta_1 = \beta_2 = \beta_3 = 0, use the type \mathbb{H} F-ratio, on 3 and
```

15 numerator and denominator degrees of freedom. (Note that this is a comparison of nested models.) Reject Ho at any level . 0049 or above

Q: Conclusion?

FYI: model was fit with the following code:

```
means diet; unadjusted usem 3 - Refincted Nut shears diet/stderr; adjusted mean 3 - Refincted Nut \frac{1}{3} we jet the drop in \sqrt{MSE} (was \hat{\sigma} \approx 12\sigma in \hat{\sigma}
proc glm;
                                                                                                        balance the
doings whale
colorie wale
run;
NOTE: the drop in \sqrt{MSE} (was \hat{\sigma} \approx 12g is \hat{\sigma} \approx 9g)
```

Adjusted and unadjusted means

Recall the sample mean weight gains for the four diets (generated by the means diet; statement in proc glm):

The GLM Procedure								
Level	of	у		z-				
diet	N	Mean	Std Dev	Mean	Std Dev			
1	5	63.0000000	12.2678441	442.000000	58.9067059			
2	5	57.8000000	14.8727940	434.000000	61.0737259			
3	5	65.2000000	9.6540147	468.000000	36.3318042			
4	5	48.8000000	10.8949530	502.000000/	40.8656335			
					, , , , , , , , , , , , , , , , , , , ,			

These means y are computed without taking z into account, so they are called $\frac{y}{z}$ means.

Unadjusted means do not make any adjustment for the facts that

- caloric intake may vary by diet (presumably by chance, not because of diet)
- 2 weight gain depends on caloric intake

Adjusted means

Adjusted means are estimated mean weight gains at a common reference value (sample mean, \bar{z}) of the covariate, z.

Here, $\bar{z} = (442 + 434 + 468 + 502)/4 = 461.5$. The adjusted means are then just

$$\bar{y}_{1,a} = \hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_z (461.5)$$

$$\bar{y}_{2,a} = \hat{\beta}_0 + \hat{\beta}_2 + \hat{\beta}_z (461.5)$$

$$\bar{y}_{3,a} = \hat{\beta}_0 + \hat{\beta}_3 + \hat{\beta}_z(461.5)$$

$$\bar{y}_{4,a} = \hat{\beta}_0 + \hat{\beta}_z(461.5)$$

"means adjusted to the average calorie intake, $\overline{z} = 461.5$ "

SOLUTION option in MODEL statement of PROC GLM produces (nonuniquely estimable) parameter estimates that correspond to parameterization with diet 4 effect set to 0:

				Standard		
Parameter		Estimate		Error	t Value	Pr > t
		^				
Intercept		0-35.66310108	В	22.41252629	-1.59	0.1324
diet	1	رُجُ 24.29519136	В	6.19932022	3.92	0.0014
diet	2	20.44121688	В	6.35678835	3.22	0.0058
diet	3	$\frac{1}{8}$ = 22.12060844	В	5.80625371	3.81	0.0017
diet	4	0.0000000	В			
z		$\frac{2}{3}$ = 0.16825319		0.04394140	3.83	0.0016
NOTE: The	ν.	•		C		

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Substitution of $\hat{\beta}$ into the expressions for adjusted means yields

$$\frac{5L(2)}{\sqrt{05(\hat{p}_{2})}} = \frac{5L(2)}{2(x_{0}-\bar{x})^{2}}$$

$$= \frac{5L(2)}{2(x_{0}-\bar{x})^{2}}$$

Standard errors of $\bar{y}_{j,a}$ (5) a. What vector c is needed so that $c'\hat{\beta} = \bar{y}_{2,a}$?

asider
$$\overline{y_{2,a}}$$
. What vector c is needed so that $c'\hat{\beta} = \overline{y_{2,a}}$?

$$\overline{y_{2,a}} = (||_{j} \mathcal{O}_{i}||_{j} \mathcal{O}_{i} ||_{j} \mathcal{O}_{i}$$

What is the standard error of $c'\hat{\beta}$?

$$Var\left(c'\right) = c'Var\left(\right) c = c'\frac{\Lambda^{2}(x'x)^{-1}}{\sigma^{2}(x'x)^{-1}}c$$

To get SAS to produce the adjusted means and estimated standard errors, use an LSMEANS statement for the factor diet and a STDERR option:

<u> </u>										
The GLM Procedure Least Squares Means										
diet	y LSMEAN	Standard Error	Pr > t							
1	66.2809372	4.0588750	<.0001							
2	62.4269627	4.1473443	<.0001							
3	64.1063543	3.9776677	<.0001							
4	41.9857458	4.3482563	<.0001							

Concerns:

Aside from the usual residual-based checks for model adequacy, does treatment affect the covariate? To check this, one could carry out a one-way ANOVA treating z as a response variable and check for a diet effect on the mean of z:

The GLM Procedure									
Dependent Variable: z									
		Sum of							
Source	DF	Squares	Mean Square	F Value	Pr >				
Model (diet)	3	14095.00000	4698.33333	1.84	0.179				
Error	16	40760.00000	2547.50000						
Corrected Total	19	54855.00000							

A: No evidence that treatment affects covariate.

Q: Among the diets, which we've concluded are different, what are the differences? (Look at the means, have a guess.)

Q: If you are a lab animal and you want to gain weight, which diet(s) would you choose?

Q: Why are the standard errors for the adjusted means different?

Q: Which adjusted means require the most adjustment?

Vitamin supplement ANCOVA


```
vitsupp.dat <- read.table("vitsupp.txt",header=TRUE)</pre>
vitsupp.dat$z <- 10*vitsupp.dat$z
pdf(file="vitsupp1.pdf")
par(cex=1.2)
attach(vitsupp.dat)
plot(z,y,pch=Diet,main="Vitamin supplement ANCOVA",xlab="z: calories",
     vlab="v: grams", xlim=c(330,550), vlim=c(30,90))
legend(330,90,legend=c("Diet 1","Diet 2","Diet 3","Diet 4"),pch=1:4,
     ltv=1:4.lwd=2)
vitsupp.fit <- lm(y~as.factor(Diet)+z)</pre>
betahat <- coef(vitsupp.fit)</pre>
abline(betahat[1],betahat[5],lwd=2)
abline(sum(betahat[1:2]),betahat[5],lwd=2,lty=2)
abline (sum (betahat [c(1,3)]), betahat [5], 1wd=2, 1ty=3)
abline (sum (betahat [c(1,4)]), betahat [5], lwd=2, lty=4)
```

dev.off()