Lab Assignment #2 Points: 5

Main TAs: PSVN Bhavani Shankar, Saurabh Kumar, Parshant Arora, Dhiraj Sah

Course: *CS* 335 – Instructor: *Preethi Jyothi* Due date: *August 14, 2023*

General Instructions

- Download lab2.tgz from Moodle for CS 335, and extract the file to get lab2. The data files are also up on Kaggle's "Data" tab.
- The folder q1_q3/ has template code for both questions Q1 and Q3. You should solve Q1 first, and Q3 can be implemented after.
- The folder q2/ has template code for Q2.
- The folder splits/ contains all the CSV files required for this task. Make sure you update the path files in the template code to load the CSV files properly.
- For your final submission, create [rollnumber].tgz with the following internal directory structure:

Compress your submission directory using the command: tar -cvzf [rollnumber].tgz rollnumber and upload [rollnumber].tgz to Moodle. This lab submission is due on or before 11.59 pm on Aug 14, 2023.

• You will get 3 points if your closed form solution exactly matches your solution using gradient descent. You will get an additional 2 points for Q3 with a basis function that improves over the solution in Q1. Your roll number **HAS TO** appear on the Kaggle leaderboard to get full points for this lab assignment. You can get up to 3 extra credit points if you top the Kaggle private leaderboard. More details appear at the end.

(Unregularized) Linear Regression

This lab will familiarize you with training and evaluating linear regression predictors. For this task, your linear regression model should predict the release year of a song from a set of **90 timbre-based audio features** extracted from the song. The release year ranges between 1922 and 2011. Training and development sets are in train_data.csv and dev_data.csv, respectively. test_data.csv and test_labels.csv contain the test features and test labels, respectively. You need to generate predictions for the unseen test instances in hidden_test_data.csv and upload on Kaggle.

Q1: Closed Form Solution

For a training set $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, $\mathbf{x}_i \in \mathbb{R}^{(d+1)}$ represented by a feature matrix \mathbf{X} and a label vector \mathbf{y} , the least squares solution \mathbf{w}^* can be computed by:

$$\mathbf{w}^* = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

where

$$\mathbf{X} = \begin{bmatrix} \leftarrow & \mathbf{x}_1^\top & \longrightarrow \\ \leftarrow & \mathbf{x}_2^\top & \longrightarrow \\ & \vdots & \\ \leftarrow & \mathbf{x}_n^\top & \longrightarrow \end{bmatrix}_{n \times (d+1)}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}_{n \times 1}, \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}_{(d+1) \times 1}$$

- 1. Datasets are loaded using the load_data function.
- 2. Features and target values are extracted using the prepare_data function.

Implement the closed-form solution for linear regression within train_model in q1_q3/template.py. Use the learned weights to predict the target values in the predict function. Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) are calculated using the calculate_errors function. Code to tune your model using the development set (dev_data.csv) and the test set (test_data.csv), and code to print the corresponding MSE and RMSE values are provided in the template code.

Q2: Gradient Descent

Find the least squares solution using *Batch Gradient Descent*. batch_size indicates the number of data points in a batch. If batch_size is None, this function implements **Gradient Descent** and computes the gradient over all training examples. The code for loading datasets, computing batches, evaluating on the test_set, and saving the predictions on hidden_test_data are already implemented in q2.py (and accompanied with descriptions).

Complete the following functions:

- 1. fit(): There are two loops inside this function. You have to complete the inner for loop and use compute_gradient() to calculate the gradient of the loss w.r.t. the weights. Next, you must calculate the "validation loss" using compute_rmse_loss() and store these losses across training epochs in error_list.
- compute_gradient(): This function should return the gradient of the loss w.r.t weights of the model. (Normalize the values before returning, or it may cause gradients to explode.)
- 3. compute_rmse_loss(): This function should return the *Root Mean Square Error* loss $(\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\mathbf{w}^{\top}\mathbf{x}_i)^2})$ between the target labels and predicted labels.
- 4. predict(): This function should return the predicted values of the model on the given set of feature values passed as an argument to it.
- 5. plot_loss(): This function is used to plot the losses stored in error_list of the model.
- 6. You have to make a folder named figures in the present working directory to save the plots generated by plot_loss(). Names should be in the format loss_<batch_size>.png.

Note:

- 1. Make sure that you get roughly the same test RMSE loss using the weights learned by the closed form solution in Q1 and gradient descent in Q2. This will be part of the autograder check. 3/5 points is for passing this check.
- 2. Stick to the given template code. **DO NOT** change the names of the functions given as it will cause the autograder to fail.
- 3. You can tweak the values of batch size when training the model.

Q3: Basis Functions

We will use basis functions to try and improve the model's fit from Q1. For a datapoint x_i , we can transform it using a Radial Basis Function (RBF) as follows:

$$\Phi(\mathbf{x}_i) = \exp\left\{-\frac{(\mathbf{x}_i - \boldsymbol{\mu}_i)^2}{2\sigma^2}\right\}$$

where exp is an elementwise operation and the dimensionality of $\Phi(\mathbf{x}_i)$ is the same as \mathbf{x}_i . The RBF transformation can be concatenated to the original features, so that the transformed input features $\hat{\mathbf{x}}_i = [\mathbf{x}_i \quad \Phi(\mathbf{x}_i)]$.

Complete the following:

- 1. There are two sections in q1_q3/template.py that you have to uncomment. One transforms the features as explained above, and the other saves a csv file with predictions on hidden_test_set that you can submit on **Kaggle**.
- 2. Compute $mu(\mu)$ as the mean of training features and set $s(\sigma)$ to 1.
- 3. transform_features(X,mu,s): This function takes the design matrix X and parameters mu (i.e μ) and s (i.e σ) and returns the concatenated features X_tf.

NOTE

- 1. You can tune the value of σ to improve the quality of your fit.
- 2. The test RMSE of your regression model with basis functions should be less than the test RMSE using the closed form solution in Q1. The autograder will check for this and you will get the remaining **2/5 points** for passing this check.

Extra Credit: Climb the Leaderboard on Kaggle

The objective for this last part is to build the best possible linear regression model using any enhancements you like. Submit your target predictions for the instances in hidden_test_data.csv to Kaggle so that your roll number appears on both the "Public Leaderboard" (and eventually the "Private Leaderboard" after the assignment concludes). Top-scoring performers on the "Private Leaderboard" (with a suitable threshold determined after the deadline passes) will be awarded up to 3 extra credit points. The exact breakdown of the three points for this question will be announced later this week.