ULTRA-LOW POWER 2.4GHZ WI-FI + BLUETOOTH SMART SOC

OTA User Guide

http://www.opulinks.com/

Copyright © 2017-2018, Opulinks. All Rights Reserved.

OPL1000-OTA-user-guide | Version 0.2

REVISION HISTORY

Date	Version	Contents Updated
2018-07-12	0.1	Initial Release
2018-07-17	0.2	 Add section 4, update section 2

LIST OF FIGURES

TABLE OF CONTENTS

1.	介绍		3	
	1.1.		3	
	1.2.		3	
	1.3.	参考文献	3	
2.	概述		4	
3.	BLE OTA 消息流程图			
	3.1.	OTA 成功执行的消息流程图	5	
	3.2.	OTA 执行异常的消息流程图	7	
4.	OPL	.1000 烧录 OTA FIRMWARE	8	
5.	手机 ΔPP 操作流程			

LIST OF FIGURES

LIST OF FIGURES

Figure 1:OTA Message Chart	6
Figure 2: Fail Message Chart 流程图	7
Figure 3:下载 OTA 固件	9
Figure 4: APP 连接到 opl1000	10
Figure 5:获取固件属性	10
Figure 6:Load OTA 固件	11
Figure 7: OTA 文件传输	12
Figure 8: 传输完成	12
Figure 9: 读取升级固件的版本信息	13

1. 介绍

1.1. 文档应用范围

OTA(空间下载技术)可以帮助产品无线升级软件。 OPL1000 支持通过蓝牙和 WIFI 传输更新固件。本文介绍了通过 BLE 进行无线升级固件的流程和方法。通过 WIFI 进行无线升级将在后续版本给予说明。

1.2. 缩略语

Abbr.	Explanation	
ОТА	Over-the-Air Technology 空间下载技术	
BLE	Bluetooth Low Energy 低功耗蓝牙	

1.3. 参考文献

[1] DEVKIT 快速使用指南 OPL1000-DEVKIT-getting-start-guide.pdf

2. 概述

空中编程(Over-the-Air Technology·缩写 OTA)是一种为装置分发新软件、配置·乃至更新加密密钥的方法。OTA的一项重要特征是·一个中心位置可以向所有用户传送更新·其不能拒绝、破坏或改变该更新·并且该更新为立即应用到频道上的每个人。

OTA 机制的实现需要目标装置硬件和运行的软件协同支持,即通过无线网络从提供方接收和安装新的软件。 新的软件从云端或者移动设备(手机,Pad 等)转移到目标装置、安装和使用。这通常需要关闭并重新开启目标装置才能使新的程序生效。

OPL1000 同时支持 WIFI 和 BLE OTA 功能。当通过 WIFI 无线升级时·OPL1000 设备透过 WIFI AP 连接 云端,服务器主动将新版本软件推送到设备上,用户选择合适的时间升级。用户也可以选择在收到升级消息后,连接到云端,然后下载、更新软件。通过 BLE 升级时,用户需要先将新版本软件下载到移动设备上(例如手机,平板电脑等),然后通过蓝牙连接,将新版软件传送到 OPL1000 设备上升级。

3. BLE OTA 消息流程图

本章介绍 OPL1000 通过 BLE 完成软件无线升级的消息流程。

3.1. OTA 成功执行的消息流程图

透过 BLE 执行成功 OTA 功能的 消息流程如 Figure 1 所示。它包含 4 个步骤。

- 1. OTA_version_Req · 这个消息由手机 APP 发出·告知 OPL1000 检查 固件版本号 (version)。目前单只是做检查 · 检查完成后没有作任何的动作。 用户可以自行决定后续的操作 · 例如如果手机 APP 上保存的固件比 OPL1000 的版本还要新 · OPL1000 就会做一个更新的动作 · 相反就不做任何动作。
- 2. OTA_Upgrade_Req· 当手机 APP 通知 OPL1000 更新的请求时· OPL1000 会准备一块 image buffer 空间。
- 3. OTA_RAW_DATA 最开始先传送 64 字节(Bytes)的 OTA header 给 OPL1000。OTA header 中包含更新固件的版本,尺寸,校验和等信息。随后固件被分割为若干帧 OTA_RAW_DATA 传送给OPL1000,每个帧的大小是 256 字节(Bytes)。最后一个 OTA_RAW_DATA 小于 256 Bytes 时,会不管数据块大小,一并的传送出去给 OPL1000。
- 4. 当全部传送完毕时, 会传送一个 OTA_END_RSP 通知手机 APP, 告知己经传送完毕。

Figure 1:OTA Message Chart

3.2. OTA 执行异常的消息流程图

当 OTA_RAW_DATA 传送到一半发生传送失败时 · OPL1000 会发送 OTA_END_REQ 的响应 · 后面会带有错误码 · 让用户知道目前的错误讯息 · 如 Figure 2 所示 ·

Figure 2: Fail Message Chart 流程图

4. OPL1000 烧录 OTA FIRMWARE

如第二章所述,要支持 OTA 功能,OPL1000 的软件需要支持无线升级功能。为此 OPL1000 先要烧录 OTA loader (OTA 装载程序) 然后再下载一个支持 OTA 功能的固件。此后用户就可以通过 BLE 不断升级应用程序。

在本演示工程中, OTA Loader 和 OTA image 文件可以从 Demo\OTA 目录下获取。烧录 OTA 固件需要以下几个步骤:

- 1. 确认 Devkit 板正确连接到 PC·在 Download Tool 串口选项中选择 Devkit 的 APS 串口。 使用 APS 串口下载固件的操作方法可参考文献[1]
- 2. 配置好串口·进入 Download Tool 的 Download 页面·选中 Enable OTA 选项·显示出 OTA Loader 操作界面。
- 3. 在 "OTA loader" 选项点击 Load 按钮载入 Demo\OTA 目录下的 opl1000_ota_loader.bin。点击 OTA loader 同一行右侧的 Download 按钮,并复位 Devkit 板,开始进入烧录过程,当进度条到达 100%,表明烧录完成。
- 4. 在 "OTA image" 选项点击 Load 按钮载入 OTA 功能的 OPL1000_OTA .bin·然后点击 OTA image 同一行右侧的 downlaod 按钮并复位 Devkit 板,等待进度条到达 100%,完成 OTA 固件的下载程序。

Figure 3:下载 OTA 固件

5. 手机 APP 操作流程

按照第四章使用 Download Tool 完成 OTA Image 文件下载后,就可以使用 APP 进行 OTA 升级操作。

(1) 打开 OPL1000 OTA APP, 应用程序会自动寻找 OPL1000 设备,随后开始对 OPL1000 进行自动连接。 这个过程不需要人工参与,只需要保证 Devkit 正确运行 OTA 程序即可。在 Figure 4 中 MAC 地址为 11:22:33:44:55:66 的是 OPL1000 设备。

Figure 4: APP 连接到 opl1000

(2) 手机 APP 发送 OTA_VERSION_REQ 告知 OPL1000。OPL1000 会回传一个 OTA_VERSION_RSP · 里面的内容包含 projectId (项目标识)·chipId (芯片版本)·fwId (固件版本标识)等信息。在 Figure 5 中 OPL1000 设备当前固件版号 fwid = 2。

Figure 5:获取固件属性


```
-> [TO_DISCOVER_SERVICE]
*** The gatt service on OPL1000 is discovered.
 -> [TO_READ_CHARACTERISTIC]
                      0x01, 0x1801
    Service:
    Characteristic: 0x03, 0x2A05, 0x20
    Service: 0x05, 0x1800
    Characteristic: 0x07, 0x2A00, 0x0A
    Characteristic: 0x09, 0x2A01, 0x02
    Characteristic: 0x0B, 0x2A04, 0x02
    Service:
                      0x0C, 0xAAAA
    Characteristic: 0x0E, 0xBBB0, 0x0C
    Characteristic: 0x10, 0xBBB1, 0x10
*** The Tx/Rx service is ready.
 -> [TO_READ_FIRMWARE_VERSION]
[OTA_VERSION_REQ]
*** Tx 00 01 00 00
*** Rx 00 11 07 00 00 E8 03 00 00 02 00
-> [TO_PROCESS_RX_PACKET]
[OTA_VERSION_RSP]
status: 0
projectld: 1000
chipId: 131072
fwld: 2
```

(3) 正确连接到 OPL1000 后·APP 界面上的按钮 OTA 会变为使能状态,用户可以开始点击 OTA 的按扭,在手机的存储文件夹中选择 OTA 固件,开始进行无线升级操作。在本演示中 fwld=2 对应于 opl1000_ota2.bin 文件,是 OPL1000 正在执行的固件。因此用户可以选择 opl1000_ota1.bin 文件 作为升级文件,其 fwid=1。

Figure 6:Load OTA 固件

(4) 用户选择好要升级的固件文件后,手机 APP 便开始传送 OTA_UPGRADE_REQ 给 OPL1000,告知即将进行固件更新。OPL1000 回传 OTA_UPGRADE_RSP 后,手机 APP 的将固件分割为若干帧通过蓝牙发送给 OPL1000。在手机界面上持续打印#符号表示数据在传送中。

Figure 7: OTA 文件传输

(5) 手机 APP 传送完固件发送 OTA_END_REQ 给 OPL1000 · 告知目前数据己经传送完毕。 OPL 1000 会回传 OTA_END_RSP 告知手机 APP 己收到通知。

Figure 8: 传输完成

(6) BLE 无线升级完成后,用户可以检查固件版本号确认是否更新成功。方法为重启 OPL1000 和手机 APP。手机 APP 会自动连接 OPL1000 设备,并对 OPL1000 发送 OTA_VERSION_REQ,OPL1000 会回应 OTA_VERSION_RSP。如同第(1)步操作在手机 APP 上可以看到固件版号。在 Figure 9 中版本号码 fwid 显示为 1,表明目标固件已经通过 BLE OTA 升级到 Devkit 中并正常运行。

Figure 9: 读取升级固件的版本信息

CONTACT

sales@Opulinks.com

