			е
		I	
Name Vorname	1		
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur			
2000 20	\sum		
Mathematik für Physiker 3			
(Analysis 2)			
Prof. Dr. M. Wolf	I	rstkorrek	tur
6. August 2013, 15:00 – 16:30 Uhr			
	$\left \prod_{\mathbf{Z}_{\mathbf{Y}}}\right $	 weitkorre	ktur
Hörsaal: Platz:			
Hinweise:			
Überprüfen Sie die Vollständigkeit der Angabe: ${f 6}$ Aufgaben			
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ein selbsterstelltes Din A4 Blatt			
Erreichbare Gesamtpunktzahl: 66 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berück-			

Vorzeitig abgegeben um $\ldots\ldots$

 $Be sondere\ Bemerkungen:$

	1
1. Metrische Räume Sei M ein metrischer Raum. Eine Funktion $f: M \to \mathbb{R}$, heißt lokal beschränkt, we $x \in M$ eine ϵ -Umgebung von x gibt, auf der f beschränkt ist.	[10 Punkte] enn es zu jedem
(a) Sei M kompakt. Zeigen Sie: Ist $f:M\to\mathbb{R}$ lokal beschränkt, dann ist f beschränkt HINWEIS: Zeigen Sie, dass f nicht lokal beschränkt ist, wenn f unbeschränkt is	
(b) Geben Sie ein Beispiel für eine lokal beschränkte Funktion an, die nicht beschrä	inkt ist.

^	D.00			
2.	Differe	enzier	bar	keit

[10 Punkte]

Sei $f:\mathbb{R}^2\to\mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} \frac{e^{xy}-1}{y} & \text{für } y \neq 0, \\ x & \text{für } y = 0. \end{cases}$$

(a) Wie lauten die partiellen Ableitungen auf der x-Achse?

 $\partial_x f(x,0) =$

$$\partial_y f(x,0) =$$

(b) Zeigen Sie, dass $\partial_x f: \mathbb{R}^2 \to \mathbb{R}$ eine stetige Funktion ist.

Sie dürfen im folgenden (ohne Beweis) benutzen, dass auch $\partial_y f: \mathbb{R}^2 \to \mathbb{R}$ eine stetige Funktion ist.

(c) Ist f differenzierbar?

 \square Ja

 \square Nein

(d) Wie lautet die Richtungsableitung in Richtung $v = (v_1, v_2) \in \mathbb{R}^2$ im Punkt (1, 0)?

 $\partial_v f(1,0) =$

3. Taylorentwicklung [10 Punkte] Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei dreimal stetig differenzierbar und der Punkt $(x^*, y^*) = (1, 1)$ sei ei stationärer Punkt von f mit $f(x^*, y^*) = 2$. Weiter sei
$\partial_x^2 f(x^*, y^*) = 0, \ \partial_x \partial_y f(x^*, y^*) = 1, \ \partial_y^2 f(x^*, y^*) = 3.$
(a) Der Punkt (x^*, y^*) ist ein
\Box lokales Minimum \Box lokales Maximum \Box Sattelpunkt
von f .
(b) Wie lautet explizit die Taylorentwicklung von f im Entwicklungspunkt (x^*, y^*) bis zur zweite Ordnung?
$f(x,y) = +R_2((x,y),(x^*,y^*))$
(c) Sei nun $g(u, v) = f(1 + uv, 1 + u - v)$. Wie lautet die Hessematrix von g im Ursprung?
$H_g(0,0) =$

4. Implizite Funktionen

[12 Punkte]

Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x + y - 3 + e^{y-x}$. Die Gleichung f(x,y) = 0 soll nach y aufgelöst werden.

- (a) Zeigen Sie, dass für jedes $x \in \mathbb{R}$ die Funktion $y \mapsto f(x,y)$ genau eine Nullstelle besitzt, die mit $\tilde{y}(x)$ bezeichnet werden soll. HINWEIS: Monotonie.
- (b) Zeigen Sie, dass $\tilde{y}: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar ist. HINWEIS: Satz über implizite Funktionen.
- (c) Bestimmen Sie dasjenige x_0 , für das $\tilde{y}'(x_0) = 0$ gilt.

5. Extrema mit Nebenbedingungen

[14 Punkte]

Bestimmen Sie die globalen Extrema der Funktion $f(x,y)=(x-3)^2+(y-4)^2$ auf der Menge $K=\{(x,y)\in\mathbb{R}^2|x^2+y^2\leq 25\}$ wie folgt:

(a) Wie lauten der Gradient und die Hessematrix von f?

 $\operatorname{grad} f(x,y) =$ $H_f(x,y) =$

(b) Besitzt f einen stationären Punkt im Inneren von K?

 \square Ja □ Nein

- (c) Bestimmen Sie mit Hilfe der Methode der Lagrange-Multiplikatoren die Kandidaten für Extremwerte von f auf dem Rand ∂K .
- (d) In welchen Punkten liegen die globalen Maxima und Minima von $f|_K$?

6. Variationsrechnung

[10 Punkte]

Gegeben ist das Funktional $F(x) = \int_0^2 (x(t)^2 + \dot{x}(t)^2) dt$ für $x \in C^2([0,2])$ mit den Randbedingungen x(0) = 1, x(2) = 1.

(a) Wie lautet die Lagrange-Funktion zu diesem Problem?

L(t, x, v) =

(b) Geben Sie ein erstes Integral E(t, x, v) für die Euler-Lagrange-Gleichung des Funktionals F an.

E(t, x, v) =

(c) Wie lautet explizit die Euler-Lagrange-Gleichung für F?

 $c_1, c_2 \in \mathbb{R}$, den stationären Punkt $x^*(t)$ von F.

(d) Finden Sie mit Hilfe der allgemeinen Lösung der Euler-Lagrange-Gleichung, $x(t) = c_1 e^t + c_2 e^{-t}$,

 $x^*(t) =$