What is claimed is:

1	1.	An induction instrument comprising:
2		a transmitter for transmitting an electromagnetic signal into a layered formation adjacent
3		a well bore;
4		a receiver for receiving a signal from the formation in response to the transmitted elec-
5		tromagnetic signal; and
6		a processor for analyzing the received signal for determining from the received signal po-
7		larity indicative of a direction for a boundary between layers in the well bore.
1	2.	The instrument of claim 1, further comprising:
2		a quadrupole transmitter comprising a first transmitter coil having a moment pointing in a
3		first direction substantially perpendicular to the borehole axis and a second transmitter

3. The instrument of claim 2, further comprising:

4

1

4

a receiver positioned between the first and second transmitter coils and having a moment substantially perpendicular to the borehole axis.

coil having a moment pointing in a direction opposite to the first direction.

1 4. The instrument of claim 3, wherein the first transmitter coil and second transmitter coil are separated by a distance of about 10 cm.

414-28764 21 7/1/2003

1	5.	The instrument of claim 2 further comprising:
2		a switch for reversing a direction for a current flowing in the first transmitter coil so that
3		the moment of the first transmitter coil and the moment of the second transmitter coil
4		point in the same direction for obtaining array type induction measurements resistitivy
5		data.
1	6.	The instrument of claim 1, further comprising:
2		electronics for exciting the transmitter at frequencies ranging from 100 kHz to 2 MHz.
1	7.	The instrument of claim 2, wherein the opposing transmitter coil moments cancel eddy
2		currents induced in the conductive drill.
1	8.	The instrument of claim 1, wherein the signal received from the formation further com-
2		prises:
3		an in-phase and quadrature component.
1	9.	The instrument of claim 1, further comprising:
2		A sign reversal between a signal received from an up boundary for a layer above the in-
3		strument and the signal received from a down boundary for layer below the instrument.
1	10.	The instrument of claim 2, further comprising:

2

an array of receivers for obtaining array type induction measurements resistitivy data.

1	11.	A method for determining the direction of layer in a layer formation comprising:
2		transmitting an electromagnetic signal into a layered formation adjacent a well bore;
3		receiving a signal from the formation in response to the transmitted electromagnetic sig-
4		nal; and
5		determining from the received signal polarity a direction for a boundary between layers in
6		the well bore.
1	12.	The method of claim 11, further comprising:
2		directing a current into a first transmitter of a quadrupole transmitter thereby generating a
3		moment pointing in a first moment direction; and
4		directing current into a second transmitter coil of a quadrupole transmitter thereby gener-
5		ating a moment pointing in a direction opposite to the first moment direction.
1	13.	The method of 12, further comprising:
2		positioning a receiver between the first and second transmitter coils for receiving a signal
3		from the formation.
1	14.	The method of claim 13, further comprising:
2		separating the first transmitter coil and second transmitter coil by a distance of about 10
3		cm.
		•

414-28764 C US 23 7/1/2003

The method of claim 12 further comprising:

1

15.

reversing a direction for a current flowing in the first transmitter coil so that the moment 2 of the first transmitter coil and the moment of the second transmitter coil point in the 3 4 same direction for obtaining array type induction resistivity measurement data. 1 16. The method of claim 11, further comprising: exciting the transmitter at frequencies ranging from 100 kHz to 2 MHz. 2 The method of claim 12, further comprising: 17. 1 generating opposing transmitter coil moments for canceling eddy currents induced 2 in the conductive drill. 3 18. The method of claim 11 further comprising: 1 obtaining array type induction measurements resistitivy data 2 19. The method of claim 11, further comprising: 1 2 processing an in-phase and quadrature component of the signal received from the formation. 3 20. The method of claim 11, further comprising: 1 detecting a sign reversal between a signal received from an up boundary for a layer above 2

3

4

ment.

the instrument and a signal received from a down boundary for a layer below the instru-

- A computer readable medium containing instruction that when executed by a computer

 perform a method for determining the direction of layer in a layer formation comprising:

 transmitting an electromagnetic signal into a layered formation adjacent a well bore;

 receiving a signal from the formation in response to the transmitted electromagnetic signal; and

 determining from the received signal polarity a direction for a boundary between layers in

 the well bore.
- 1 22. The medium of claim 21, further comprising:
- 2 directing a current into a first transmitter of a quadrupole transmitter thereby generating a
- moment pointing in a first moment direction substantially perpendicular to the bore hole
- 4 axis; and
- 5 directing current into a second transmitter coil of a quadrupole transmitter thereby gener-
- ating a moment pointing in a direction opposite to the first moment direction.
- 1 23. The medium of 22, further comprising:
- 2 positioning a receiver between the first and second transmitter coils for receiving a signal
- 3 from the formation.
- 1 24. The medium of claim 23, further comprising:
- separating the first transmitter coil and second transmitter coil by a distance of about 10
- 3 cm.

1	25.	The medium of claim 22 further comprising:
2		reversing a direction for a current flowing in the first transmitter coil so that the moment
3		of the first transmitter coil and the moment of the second transmitter coil point in the
4		same direction for obtaining array type induction measurements resistivity data.
1	26.	The medium of claim 21, further comprising:
2		exciting the transmitter at frequencies ranging from 100 kHz to 2 MHz.
1	27.	The medium of claim 22, further comprising:
2		generating opposing transmitter coil moments for canceling eddy currents induced in the
3		conductive drill.
		•
1	28.	The medium of claim 21 further comprising:
2		obtaining array type induction measurements resistitivy data.
1	29.	The medium of claim 21, wherein the signal received from the formation further com-
2		prises:
3		processing an in-phase and quadrature component of the signal received from the forma-
4		· tion.
1	30.	The medium of claim 21, further comprising:

- detecting a sign reversal between a signal received from an up boundary for a layer above
- the instrument and a signal received from a down boundary for a layer below the instru-
- 4 ment.

414-28764 27 7/1/2003