

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

EE531 (Laboratório de Eletrônica Básica I)

Profs. Cândido e Gustavo (Roteiro elaborado pelo Prof. Fabiano Fruett)

Data da realização do experimento: _	 Turma:

Experimento I – Familiarização com os instrumentos de bancada e Redes com Constante de Tempo Simples

1 Objetivo:

Neste experimento você se familiarizará com os diversos instrumentos utilizados no curso. Cada bancada possui uma fonte de alimentação dual, um gerador de funções e um osciloscópio digital.

2 Recomendações importantes:

- 2.1 As montagens deste curso serão realizadas em protoboards. Cada grupo terá direito a um protoboard durante todo o semestre, realizando um total de sete experimentos.
- 2.2 Antes do início de cada aula, um representante do grupo deve se dirigir ao almoxarifado para retirar o protoboard, componentes e alicates.
- 2.3 Ao final do experimento, cada grupo deve organizar a bancada e desligar o disjuntor.
- 2.4 Cada grupo realizará um relatório, que deve ser entregue antes do início da aula seguinte.
- 2.5 Na elaboração do relatório, não se aconselha cortar e colar figuras, tabelas, equações ou mesmo qualquer texto deste roteiro.
- 2.6 Apesar do experimento ser realizado em grupo, as notas serão individuais e levarão em conta a participação do aluno.

3 Componentes:

- 1 protoboard
- 2 resistores de $100 \text{ k}\Omega$
- 2 capacitores de 100 pF

4 Parte Experimental:

4.1 Conecte a saída do gerador de funções ao canal 1 do osciloscópio. Ajuste o gerador para produzir um sinal de tensão com as seguintes características:

Forma de onda: Triangular

Amplitude: 10Vpp

Offset: 0V

Frequência: 10kHz

OBS: Monitore este sinal com o osciloscópio. Atente para o fator de atenuação da ponta de prova.

- 4.1.1 Meça, utilizando o recurso *cursor*, a amplitude de pico-a-pico, período, tempo de subida $(t_{\rm r})$ e tempo de descida $(t_{\rm f})$. Observe a diferença entre configurar o canal para medida c.a. e medida c.c.. Varie a tensão de offset durante a sua observação. Retorne offset para 0 V antes de partir para o próximo item.
- 4.1.2 Agora com o recurso *measure*, meça o valor médio, valor RMS, amplitude de picoa-pico, período, tempo de subida (t_r) e de descida (t_f) deste sinal.
- 4.1.3 Compare os valores obtidos através do recurso *cursor* com os obtidos com o recurso *measure*.
- 4.2 Considere a Figura 1. O circuito à esquerda da fonte de sinal é um filtro Passa-Altas com Constante de Tempo Simples (CTS). O circuito à direita da fonte é um filtro Passa-Baixas também CTS. Calcule a frequência de corte para cada filtro.

Figura 1: Filtros CTS

- 4.3 Monte o circuito mostrado na Figura 1.
- 4.3.1 Substitua a onda triangular por uma senoidal com as seguintes características Amplitude: 10 Vpp, *offset*: 0 V e frequência: 16 kHz.
- 4.3.2 Aplique este sinal ao nó 1 do circuito. Nestas condições, efetue as medidas preenchendo a Tabela 1.

4.3.3 Altere a frequência do sinal V_{in} e descreva qualitativamente o que ocorre com a amplitude e a fase dos sinais dos nós 2 e 3 em relação ao sinal do nó 1.

Tabela 1: Medidas do filtro CTS						
nó	1	2	3			
amplitude (pico a pico)						
valor médio						
valor RMS						
valor máximo						
valor mínimo						

4.4 Aplique um sinal senoidal com as seguintes características Amplitude: 10 Vpp, offset: 0 V, e varie a frequência conforme tabela abaixo. Para cada frequência, efetue as seguintes medidas:

OBS: Certifique-se que os dois canais estão com acoplamento c.a..

nó	Freqüência	100 Hz	1 kHz	10 kHz	16 kHz	100 kHz	1 MHz
1	Amplitude (pico a pico)						
2	Amplitude (pico a pico)						
	Ganho em dB						
	Fase relativa ao nó [1]						
3	Amplitude (pico a pico)						
	Ganho em dB						
	Fase relativa ao nó [1]						

Em uma folha de papel mono-log construa o diagrama de Bode para o módulo e fase dos dois filtros. Compare os valores obtidos com a teoria.

4.5 Desconecte o cabo BNC do canal-1. Com o mesmo sinal senoidal, na frequência de 10 kHz e utilizando duas pontas de prova, efetue a medida da tensão diferencial entre os nós [2] e [3]. Imprima o resultado. Justifique o resultado encontrado.