Fair Quality of Service in Adversarial Decentralized Marketplace Mechanisms

Asset / Service Discovery

Transactions & Match-making

Asset / Service Delivery

Transactions & Match-making

Transactions & Match-making

High-level context – Search/Discovery phase

Contexte du Livrable 1 : FairFetched COoL-TEE

Contexte du Livrable 1 : COoL-TEE

Contexte du Livrable 1 : COoL-TEE 100% Malicious 90% consumers Client-side Optimization of Latencies + TEEs 80% Search ←I→ Market indexing alicious 70% mechanism mechanism Proposed 60% solution Provider 1 Share of dNBS-assets by 50% Provider 3_{<RQ>} broadcast selection(2 40% module 6 broadcast Untrusted host random-k4 1 TEE <NEW:A> In SRSP:[A]> 30%COoL-TEE-k4 timing-<RQ:[F]> Power-of-Two attacked Market 20% COoL-TEE-k2 Requesting random-k1 behaviour Provider j 10% COoL-TEE-k1 fault-free Consumer i (0% Provider N_p

Fraction of malicious providers p_M

Avancement livrable 1 – Article COoL-TEE

- Mise en contexte et Motivation
- Frontière d'étude et Modèle de menace
- Related work et Building blocks
- Critères d'évaluation
- Conception de la solution
- 05/23 Evaluation de la solution
 - Analyse et discussion –
- 01/24 Soumission →
- 04/24→ Révisions
 - Re-soumission fin mai

Critères d'évaluation

Evaluation de la solution

Analyse et discussion

Transactions & Match-making

Transactions & Match-making

Current work: Service-Level-Indicator measurement with TEEs for Decentralized Computing Marketplaces

 High-level witness-based monitoring lacks granularity & trustworthiness [Abhishek+21, Gonçalves+20, Zhou+18]

- Low-level fine-grained trustworthy measurement TEE building blocks
 - → e.g., elapsed wall-time [Fernandez+23, Hamidy+23], CPU time [Dong+23, Alder+19], storage-time [Zhang+22]
 - → only partial information wrt. SLIs (e.g., availability)

→ Reinforce outside observations with TEEs, and augment them with the insider point-of-view of Computing Provider TEEs

Avancement livrable 2 – Article ServiLI–TEE

- Mise en contexte et Motivation
- Related work et Building blocks
- → Frontière d'étude et Modèle de menace
- → Critères d'évaluation
 - Conception de la solution
 - Evaluation de la solution
 - Analyse et discussion
 - Soumission

Future co-supervised work – J.Acker (15/05-10/08)

COoL-TEE extension

- Include provider index updates in threat model
- Naive PubSub introduces correlation between clear-text assets and notifications
 - → Reopens censorship/targeted timing attacks
 - → Privacy-preserving PubSub applied to timing-sensitive Dec.Marketplaces

Analyze / Evaluate
 SotA-Privacy-Preserving PubSub
 applicability to timing-sensitive Dec.MP.
 e.g., [Keizer+23, Salehi+20, Onica+16]

Future co-supervised work – H.Mont (03/06-23/09)

Decentralized Computing Marketplace Incentivization

- Multiple stakeholders, but only computing providers are incentivized / can be penalized for bad behaviour
 - e.g., requesting bound-to-fail tasks, providing bad-quality data
- → Characterize attacks by other stakeholders
- → Extend incentivization to prevent attacks
 - e.g., using game-theoretic, reputation-based mechanisms [Fedak+18, Sarmenta01, Hasan+22]
- → iExec's Computing Marketplace as a use-case system

Positionnement des travaux

Calendrier de soumission

#	Publication title	Status	Date
1	COoL-TEE – Resilient Decentralized Search against Information Front-running Attacks	To be resubmitted	May 2024
2	A comparative study between blockchain-based and traditional resource marketplaces in Smart Computing ecosystem	Repurposed	N/A
3	ServiLI-TEE – Service-Level-Indicator measurement with Trusted Execution Environments	Current work	Summer 2024
4	Internship artefacts valorization – COoL-TEE extension + Computing Marketplace Incentivization	Future work	Fall 2024
5	PhD thesis memoir: Fair Quality-of-Service in Adversarial Decentralized Marketplace Systems	Future work	End of Spring 2025

Table 1: Timeline of (expected) scientific contributions

Organisation et encadrement

Réunions d'équipe RedChain-Lab hebdomadaires

Réunions de travail

Présence 50% LIRIS – 50% iExec

Intégration Laboratoire + Entreprise

- Reading groups mensuels
 - + séminaires (e.g., d'équipe à Miribel, wrap-up projet PRIMATE)
 - + autres événements (e.g., présentation à iExec de J.Passerat-Palmbach sur le front-running)

Soutenances de thèse

Événements de mise en place de la stratégie iExec

Interlocuteurs et Contacts externes

Interlocuteurs:

- Étienne Rivière (UC Louvain)
- Équipe iExec

Contacts:

- Rüdiger Kapitza (FAU Erlangen-Nürnberg)
- Gaël Thomas (Inria Saclay)
- J. Passerat-Palmbach (Flashbots+IC.London)
- Startups Web3 via iExec

Événements de recherche & Présentations

Type	Date	Event	Reach	
	03/22	GDR RSD & ASF Winter School	National	
	05/22	Irixys workshop in Passau	Consortium	
	02/23	Journée des thèses du LIRIS	Laboratory	
Presentation	03/23	2nd RedChainLab workshop	Collab.	
	05/23	Irixys workshop in Lyon	Consortium	
	07/23	comPAS 2023 in Annecy	Francophonie	
	09/23	PRIMATE seminar in Lyon	FR-DE lab.partn.	
	01/24	Cybersecurity PEPR Winter School	National	
Poster	01/23	GDR-RSD: Journées non thématiques	National	
Presence	01/22	Journée des thèses du LIRIS	Laboratory	
1 reserice	04/22	EuroSys'23 (incl. doctoral workshop)	International	

Conditions matérielles

Locaux:

- Bureau doctorant LIRIS-DRIM
- Bureaux open-space iExec

Matériel:

- Laptop pro. Dell
- UC (SGX-enabled)
- Accès cloud Azure

Formation

Formation scientifique: 65h/30h

Formation à l'Insertion Professionnelle : 32h/30h

Figure 1: Accomplished training (new in **bold**)

Activités complémentaires

Enseignement:

Contrat d'ACE à l'IUT Lyon 1 (2022-2024)

Répartition des heures: 146h effectuées + 16h affectées + 30h prévues /192h

Institution	Students	Course	21-22	22-23	23-24	24-25
INSA Lyon	ASINSA	Math Summer School	28h			28h
INSA Lyon	5IF	Blockchain & Secure Multi-Party Computation	4h		2h	2h
	BUT1	Introduction aux Systèmes d'Exploitation		24h	44h	
IUT Lyon 1		Modélisation Orientée Objet		20h	20h	25
	LP ESSIR	Introduction à la Cryptographie		20h		

Table 3: Taught courses until June 2024, and planned courses in 2024-25's first semester

Bibliographie

ServiLI-TEE:

- G. Fernandez, A. Brito, and C. Fetzer, "Triad: Trusted Timestamps in Untrusted Environments," in 2023 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Dec. 2023, pp. 169–176. doi: 10.1109/CloudCom59040.2023.00037
- C. Dong et al., "T-Counter: Trustworthy and Efficient CPU Resource Measurement Using SGX in the Cloud," *IEEE Transactions on Dependable and Secure Computing*, vol. 20, no. 1, pp. 867–885. Jan. 2023. doi: 10.1109/TDSC.2022.3145814.
- G. M. Hamidy, P. Philippaerts, and W. Joosen, "T3E: A Practical Solution to Trusted Time in Secure Enclaves," in *Network and System Security*, S. Li, M. Manulis, and A. Miyaji, Eds., in Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023, pp. 305–326. doi: 10.1007/978-3-031-39828-5 17.
- F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, "S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel SGX," in *Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop*, in CCSW'19. New York, NY, USA: Association for Computing Machinery, Nov. 2019, pp. 185–199. doi: 10.1145/3338466.3358916.
 Y. Zhang, W. You, S. Jia, L. Liu, Z. Li, and W. Qian, "EnclavePoSt: A Practical Proof of Storage-Time in Cloud via Intel SGX," *Security and Communication Networks*, vol. 2022, p. e7868502, May 2022, doi: 10.1155/2022/7868502.

P.M Abhishek, Akash Chobari, and D. G. Narayan. 2021. SLA Violation Detection in Multi-Cloud Environment Using Hyperledger Fabric Blockchain. In 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER) (2021-11). 107–112. https://doi.org/10.1109/DISCOVER52564.2021.9663620
João Paulo de Brito Gonçalves, Roberta Lima Gomes, Rodolfo da Silva Villaca, Esteban Municio, and Johann Marquez-Barja. 2020. A Service Level Agreement Verification System Using Blockchains. In 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS) (2020-10). 541–544. https://doi.org/10.1109/ICSESS49938.2020.9237735
Huan Zhou, Cees de Laat, and Zhiming Zhao. 2018. Trustworthy Cloud Service Level Agreement Enforcement with Blockchain Based Smart Contract. In 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018-12). 255–260. https://doi.org/10.1109/CloudCom2018.2018.00057

J.Acker internship:

N. V. Keizer, O. Ascigil, M. Król, and G. Pavlou, "Ditto: Towards Decentralised Similarity Search for Web3 Services," in 2023 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), Athens, Greece: IEEE, Jul. 2023, pp. 66–75. doi: 10.1109/dapps57946.2023.00018.

M. Li et al., "Bringing Decentralized Search to Decentralized Services," presented at the 15th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 21), 2021, pp. 331–347. Accessed: Feb. 18, 2022. [Online]. Available: https://www.usenix.org/conference/osdi21/presentation/li

P. Agostinho, D. Dias, and L. Veiga, "SmartPubSub: Content-based Pub-Sub on IPFS," in 2022 IEEE 47th Conference on Local Computer Networks (LCN), Sep. 2022, pp. 327–330. doi: 10.1109/LCN53696.2022.9843795.

P. Salehi, K. Zhang, and H.-A. Jacobsen, "On Delivery Guarantees in Distributed Content-Based Publish/Subscribe Systems," in *Proceedings of the 21st International Middleware Conference*, in Middleware '20. New York, NY, USA: Association for Computing Machinery, Dec. 2020, pp. 61–73. doi: 10.1145/3423211.3426400.

H.Mont internship:

Gilles Fedak, Wassim Bendella, and Eduardo Alves. iExec: Blockchain-Based Decentralized Cloud Computing. Technical report, http://iex.ec/wp-content/uploads/pdf/iExec-WPv3, 2018. Luis FG Sarmenta. Sabotage-tolerance mechanisms for volunteer computing systems. In *Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid*, pages 337–346. IEEE, 2001.

Gilles Fedak, Cécile Germain, Vincent Neri, and Franck Cappello. Xtremweb: A generic global computing system. In *Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid*, pages 582–587. IEEE, 2001.

Omar Hasan, Lionel Brunie, and Elisa Bertino. Privacy-preserving reputation systems based on blockchain and other cryptographic building blocks: A survey. ACM Computing Surveys (CSUR) 55.2 (2022): 1-37.

Fair Quality of Service in Adversarial Decentralized Marketplace Mechanisms

