ENSF 612 Lecture – PySpark Programming

Dr. Gias Uddin, Assistant Professor Electrical and Software Engineering University of Calgary

https://giasuddin.ca/

Spark programming

- Will use the Python interface to Spark pySpark
- PySpark code let us do the following:
 - "Here are some operations. Apply them to my data"
- RDDs are the key concept
 - RDD Resilient Distributed Dataset
 - RDD is a collection of data elements partitioned across the nodes of a cluster that can be operated in parallel

- Spark program is two programs
 - A driver program and a workers program
- Worker programs run on cluster nodes typically
- RDDs are distributed across workers

Initialization of Spark

```
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf

conf = SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)
```

- A Spark program first creates a SparkContext object
 - Tells Spark how and where to access a cluster
 - pySpark shell automatically creates sc variable
 - iPython programs must use a constructor to create **SparkContext**
- SparkContext object can be used to create RDDs

- RDDs are immutable once they are constructed
 - Can transform them to other RDDs
 - Ocan perform actions on them, e.g., read elements
 - However, can't change them
- RDDs allow parallel operations on collections
- Now do we construct RDDs?
 - From Python collections (lists)
 - By transforming other RDDs
 - From files stored in HDFS and other storage

- How is an RDD parallelized?
- RDD can be split into programmer specified # of partitions
- More partitions more parallelism

- Two types of operations transformations and actions
- Transformations are lazily evaluated for efficiency
 - Transformations execute only when action performed on RDD
- RDDs can be persisted (cached) in memory or disk

Create an RDD from a data source:

Apply transformations to an RDD: map filter

Apply actions to an RDD: collect count

- Will now look at transformations and actions in Spark
- Need to review Python lambda functions first
- Small anonymous functions not bound to a name

lambda a,b: a+b

Returns sum of two argument a and b

Restricted to single expressions

Frequently used Spark transformations

Transformation	Description
<pre>map(func)</pre>	return a new distributed dataset formed by passing each element of the source through a function func
filter(func)	return a new dataset formed by selecting those elements of the source on which <i>func</i> returns true
<pre>distinct([numTasks]))</pre>	return a new dataset that contains the distinct elements of the source dataset
flatMap(<i>func</i>)	similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item)

Example transformations

```
>>> rdd = sc.parallelize([1, 2, 3, 4])
                                              Function literals (green)
>>> rdd.map(lambda x: x * 2)
                                               are closures automatically
RDD: [1, 2, 3, 4] \rightarrow [2, 4, 6, 8]
                                               passed to workers
>>> rdd.filter(lambda x: x % 2 == 0)
RDD: [1, 2, 3, 4] \rightarrow [2, 4]
>>> rdd2 = sc.parallelize([1, 4, 2, 2, 3])
>>> rdd2.distinct()
RDD: [1, 4, 2, 2, 3] \rightarrow [1, 4, 2, 3]
>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.Map(lambda x: [x, x+5])
RDD: [1, 2, 3] \rightarrow [[1, 6], [2, 7], [3, 8]]
>>> rdd.flatMap(lambda x: [x, x+5])
RDD: [1, 2, 3] \rightarrow [1, 6, 2, 7, 3, 8]
```

- Spark action causes transformations to be applied
- Mechanism for getting results out of Spark
- Frequently used actions in Spark

Action	Description
reduce(func)	aggregate dataset's elements using function func. func takes two arguments and returns one, and is commutative and associative so that it can be computed correctly in parallel
take(n)	return an array with the first n elements
collect()	return all the elements as an array WARNING: make sure will fit in driver program
takeOrdered(n, key=func)	return n elements ordered in ascending order or as specified by the optional key function

Examples of actions

```
>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.reduce(lambda a, b: a * b)
Value: 6
>>> rdd.take(2)
Value: [1,2] # as list
>>> rdd.collect()
Value: [1,2,3] # as list
>>> rdd = sc.parallelize([5,3,1,2])
>>> rdd.takeOrdered(3, lambda s: -1 * s)
Value: [5,3,2] # as list
```

Lets put transformations and actions together

```
#Create RDD that has 4 partitions

#Each element of RDD is a line of the text file

lines = sc.textFile("...",4)

#isNotComment function only outputs a line if it is not a #comment

noComments = lines.filter(isNotComment)

print lines.count()
```

count() causes Spark to:

- read data
- sum within partitions
- combine sums in driver

Spark may be forced to read data multiple times

```
#Create RDD that has 4 partitions

#Each element of RDD is a line of the text file

lines = sc.textFile("...",4)

#isNotComment function only outputs a line if it is not a #comment

noComments = lines.filter(isNotComment)

print lines.count(), noComments.count()
```

Spark recomputes lines:

- read data (again)
- sum within partitions
- combine sums in driver

Spark can persist (cache) RDDs to be more efficient

```
#Create RDD that has 4 partitions

#Each element of RDD is a line of the text file

lines = sc.textFile("...",4)

#save lines in memory – don't recompute!

lines.cache()

#isNotComment function only outputs a line if it is not a #comment noComments = lines.filter(isNotComment)

print lines.count(), noComments.count()
```

- Lifecycle of a Spark program
- Create RDDs from external data or Python collections
- Lazily transform them into new RDDs
- Cache some RDDs for reuse
- Perform actions to trigger parallel computations and results

- Similar to MapReduce, Spark supports Key-Value pairs
- Spark allows pair RDDs to be created
- Each element is a tuple consisting of a key and value

```
>>> rdd = sc.parallelize([(1, 2), (3, 4)])
RDD: [(1, 2), (3, 4)]
```

Examples of Key-Value transformations

Key-Value Transformation	Description
reduceByKey(<i>func</i>)	return a new distributed dataset of (K,V) pairs where the values for each key are aggregated using the given reduce function <i>func</i> , which must be of type $(V,V) \rightarrow V$
sortByKey()	return a new dataset (K,V) pairs sorted by keys in ascending order
groupByKey()	return a new dataset of (K, Iterable <v>) pairs</v>

Examples of Key-Value transformations

```
>>> rdd = sc.parallelize([(1,2), (3,4), (3,6)])
>>> rdd.reduceByKey(lambda a, b: a + b)
RDD: [(1,2), (3,4), (3,6)] \rightarrow [(1,2), (3,10)]
>>> rdd2 = sc.parallelize([(1,'a'), (2,'c'), (1,'b')])
>>> rdd2.sortByKey()
RDD: [(1, 'a'), (2, 'c'), (1, 'b')] \rightarrow
               [(1,'a'), (1,'b'), (2,'c')]
>>> rdd2.groupByKey()
RDD: [(1, 'a'), (1, 'b'), (2, 'c')] \rightarrow
              [(1,['a','b']), (2,['c'])]
```

Be careful using groupByKey() — can cause a lot of data movement across the network!

- Spark supports working with structured data
- Supports join operations on pair RDDs
- X.join(Y)
 - Return RDD of all pairs of elements with matching keys in X and Y
 - ◆ Each pair is (k,(v1,v2)) tuple, where (k, V1) is in X and (k,V2) is in Y

```
>>> x = sc.parallelize([("a", 1), ("b", 4)])
>>> y = sc.parallelize([("a", 2), ("a", 3)])
>>> sorted(x.join(y).collect())
```

```
Value: [('a', (1, 2)), ('a', (1, 3))]
```

X.leftOuterJoin(Y)

- For each element (k,v) in X, resulting RDD will either contain
 - All pairs of (k,(v,w)) for w in Y
 - Or the pair (k,(v,None)) if no element in Y has key k

```
>>> x = sc.parallelize([("a", 1), ("b", 4)])
>>> y = sc.parallelize([("a", 2)])
>>> sorted(x.leftOuterJoin(y).collect())

Value: [('a', (1, 2)), ('b', (4, None))]
```

Y.rightOuterJoin(X)

- For each element (k,w) in X, resulting RDD will either contain
 - All pairs of (k,(v,w)) for v in Y
 - Or the pair (k,(None,w)) if no element in Y has key k

```
>>> x = sc.parallelize([("a", 1), ("b", 4)])
>>> y = sc.parallelize([("a", 2)])
>>> sorted(y.rightOuterJoin(x).collect())

Value: [('a', (2, 1)), ('b', (None, 4))]
```

Y.fullOuterJoin(X)

- For each element (k,v) in X, resulting RDD will either contain
 - ◆ All pairs (k,(v,w)) for w in Y, or (k,(v,None)) if no elements in Y have k
- For each element (k,w) in Y, resulting RDD will either contain
 - All pairs (k,(v,w)) for v in X, or (k,(None,w)) if no elements in X have k

```
>>> x = sc.parallelize([("a", 1), ("b", 4)])
>>> y = sc.parallelize([("a", 2), ("c", 8)])
>>> sorted(x.fullOuterJoin(y).collect())

Value: [('a', (1, 2)), ('b', (4, None)) , ('c', (None, 8))]
```

- Spark shared variables
- Spark automatically creates closures for:
 - Functions that run on RDDs at workers
 - Global variables used by those workers
- One closure per worker
 - Sent for every task
 - No communication between workers
 - Changes to global variables at workers not sent to drivers
- This model may be inefficient for many use cases

- Consider following 2 use cases
- Iterative or single jobs with large global variables
 - Sending large lookup table to workers
 - Sending large feature vectors in a ML algorithm to workers
- Counting events that occur during job execution
 - E.g., How many input lines were blank?
 - E.g., How many input records were corrupt?
- Problems
 - Closures are (re)sent with every job
 - Inefficient to send large data to each worker
 - ◆ Closures are one way driver → worker

- Broadcast and accumulator variables address this
- Broadcast variables
 - Efficiently send large, read-only values to all workers
 - Saved at workers for use in one or more Spark operations
- Accumulators
 - Aggregate values from workers back to the driver
 - Only driver can access the value of accumulator
 - For tasks, accumulators are write-only

- Broadcast variables
 - Ship to each worker only once instead of with each task
 - Efficiently give each worker a large dataset
 - Distributed using efficient broadcast algorithms

```
At the driver:
>>> broadcastVar = sc.broadcast([1, 2, 3])
At a worker (in code passed via a closure)
>>> broadcastVar.value4
[1, 2, 3]
```

Broadcast variables example

Country code lookup for HAM radio call signs"

From: http://shop.oreilly.com/product/0636920028512.do "

Broadcast variables example

- Accumulators
 - Variables that can only be "added" to by associative operation
 - Used to efficiently implement parallel counters and sum
 - Only driver can read accumulator value not tasks

```
>>> accum = sc.accumulator(0)
>>> rdd = sc.parallelize([1, 2, 3, 4])
>>> def f(x):
>>> global accum
>>> accum += x

>>> rdd.foreach(f)
>>> accum.value
Value: 10
```

- Accumulators
 - Tasks at workers can't access accumulator's values
 - Tasks see accumulators as write-only variables
 - Can be used in actions or transformations
 - Actions each update to accumulator applied only once
 - Transformations no such guarantees! (why?)

Summary of Spark programming model

Spark automatically pushes dosures to workers'

Acknowledgements

Portions of these slides were adapted from external material available under creative commons license CC-BY-NC-SA 4.0. This license grants the ability to share and adapt the material for non-commercial purposes.

Name of the creator: Dr. Anthony Joseph, University of Berkeley and team

License notice: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Copyright notice: CC-BY-NC-SA 4.0

Link to material: https://courses.edx.org/courses/BerkeleyX/CS100.1x/1T2015/info