12 interactions

haemophilus_haemoglobinophilus

- 2.3 Mbp genome
- Genital membrane of dogs

lactobacillus_iners

- I.2 Mbp genome
- Human vaginal flora

7 interactions

Linkeractions

veillonella_parvula

- 2,2 Mbp genome
- Oral flora

LACTOBACILLUS INERS ANALYSIS

Compounds received by *lactobacillus iners*:

- Amino acids
 - L-alanine
 - L-isoleucine
 - L-leucine
 - L-lysine
 - L-serine
 - L-threonine
 - L-tryptophan
 - L-tyrosine
 - L-valine
 - L-glutamate
- Xanthosine
- Succinate

Possible explanation:

- Amino acids
 - Lacks genes for synthesize AAs
 - Required for normal growth: glutamate
 - Not required: alanine, asparagine, glutamine, glycine
- Xanthosine
 - Present in minimal medium
- Succinate
 - Not present in minimal medium
 - Incomplete citric acid cycle, only fumarate reductase

Class	Pathway	Growth on medium lacking each amino acid					
		L.p.	L.c.	L.c. (S1)	L.h.	L.a.	
I	Alanine (1) ^b	+	+	+	+	±	
	Asparagine (1)	+	+	+	+	+	
	Glutamine (1)	+	+	+	+	+	
	Glycine (1)	+	+	+	+	±	
П	Isoleucine (5)	-(+)	-(+)	-(+)	-(+)	-(+)	
	Leucine (4)	-(+)	-(+)	-(+)	-(+)	-(+)	
	Lysine (7)	+	+	-(+)	-(+)	±	
	Serine (3)	+	±	-(+)	±	-(+)	
	Tyrosine (2)	±	-(+)	-(+)	-(+)	-(+	
III	Aspartate (1)	+	-(+)	-(+)	-(+)	_	
	Cysteine (5)	+	-(+)	±	+	-	
	Proline (3)	+	+	+	-(+)	-	
	Phenylalanine (2)	-(+)	-(+)	±	-(+)	-	
IV	Arginine (8)	±	_	-	-(+)	-	
	Histidine (10)	+	+	+	-	_	
	Methionine (4)	-(+)	+	-(+)	_	-	
	Threonine (2)	+	+	_	-	_	
	Tryptophan (5)	-(+)	-	-	-(+)	-	
	Valine (4)	-	-	-	-(+)	_	
V	Glutamate (1)	-	-	_		-	

- ATP synthase not present
- Pyruvate kinase and phosphoglycerate kinase reactions produce ATP
- No evidence found...

VEILLONELLA – HAEMOPHILUS INTERACTIONS ANALYSIS

- Veillonella -> haemophilus
 - L-asparagine
 - L-leucine
- Haemophilus -> veillonella
 - L-serine
 - Haemophilus has extra serine...
 - 2-oxoglutarate
 - In the minimal medium
 - Has 2-oxoglutarate dehydrogenase
 - Is probably important

[> o]	R_AKGt2r	7.18618
[0 <]	R_AKGMAL	2.81382
[R_ASPTA	0.82612
[0 <]	R_ALATA_L	0.22368
[0 <]	R_LEUTA	0.142243
[0 <]	R_VALTA	0.133602
[0 <]	R_SDPTA	0.111501
[0 <]	R_ACOTA	0.0933886
[0 <]	R_PHETA1	0.0584926
[0 <]	R_TYRTA	0.0436075
[> 0]	R_HSTPTr	0.029911
[> 0]	R_OHPBAT	7.04064e-05
[0>]	R_AKGDH	-9.66725
[< 0]	R_GLUDy	-1.99534
[0>]	R_2S6HCCi	-3.15724e-05

- Petrova, M. I., Reid, G., Vaneechoutte, M. & Lebeer, S. Lactobacillus iners: Friend or Foe? *Trends in Microbiology* 25,182–191 (2017).
- Macklaim, J. M., Gloor, G. B., Anukam, K. C., Cribby, S. & Reid, G. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proceedings of the National Academy of Sciences 108,4688–4695 (2010).
- Macklaim, J. M., Gloor, G. B., Anukam, K. C., Cribby, S. & Reid, G. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proceedings of the National Academy of Sciences 108, 4688–4695 (2010).
- Morishita, T, et al. "Multiple Nutritional Requirements of Lactobacilli: Genetic Lesions Affecting Amino Acid Biosynthetic Pathways." Journal of Bacteriology, U.S. National Library of Medicine, Oct. 1981.
- KEGG PATHWAY: Citrate cycle (TCA cycle) Veillonella parvula Available at: https://www.kegg.jp/kegg-bin/show_pathway?vpr00020. (Accessed: 20st June 2019)