Python Computing for Data Science

Files for Today:

```
http://goo.gl/dykhxx = this PDF
```

http://goo.gl/XFiZYI = Jupyter Notebook

Files for the Course:

```
git clone <a href="https://github.com/profjsb/python-seminar.git">https://github.com/profjsb/python-seminar.git</a> (if you dont have git, please set it up later)
```

Signup (Piazza):

http://piazza.com/berkeley/fall2016/ay250class13410

Welcome to the Python Computing for Data Science Seminar

AY 250: Friday I-4pm (Campbell Hall 131)

Instructor: Josh Bloom

GSIs: Goutam Murlidhar, Hadrien Renold

Instructor+GSI email: ucbpythonclass+seminar@gmail.com

Motivation:

short version

get you using Python to do cutting-edge research

long version

- I) get you using Python to do cutting-edge research,
- 2) helping you realize that Python is a viable framework to do just about any 21st century problem well (and costs zero). "Super Glue"
- 3) fold you into the Python community so it benefits from having you part of it

How we plan to do this:

- "formal" lectures on specialized topics each week by leading experts & local practitioners (Friday)

- "breakout work sessions" interspersed within the

lectures

- homework assignments based on week's lecture

- final project

Prerequisites:

working knowledge (or more) of the core Python languageand/or -

Python BootCamp graduate

- installation of Python (3.5.X), scientific 3rd party packages (Anaconda distro), & git

- laptop for use in class and for homeworks
- tolerance for our terrible computer humor

http://www.pythonbootcamp.info/preparation/software

piazza for real-time/off-line interaction homework updates, solutions, ...

piazza.com/berkeley/fall2016/ay250class13410/home

github is the main data portal for us...

Scientific Research Computing with Python

Files for Today:

```
http://goo.gl/dykhxx = this PDF
```

http://goo.gl/XFiZYI = Jupyter Notebook

/DataFiles_and_Notebooks/00_AdvancedPythonConcepts = follow-along files

Course Schedule

Date	Content	Reading	Leader
Aug 26	Advanced Python Language Concepts (decorators, OrderedDict, Generators, Iterables, Context Managers)	- GIT - scipy §2.1	Josh
Sep 2	Pandas, Scipy, & Numpy	- scipy §§ 1.3, 1.5, 2.2 - numpy	Josh
Sep 9	Data vizualization (Matplotlib, Bokeh, Altair, Plotly, mayavi)	TBD	Josh
Sep 16	Interacting with the world (requests, email, IoT/pyserial)	TBD	Josh
Sep 23	Parallelism (asyncio, dask, IPython cluster)	TBD	Josh
Sep 30	Database interaction (sqlite, postgres, SQLAlchemy), Large datasets (xarray, HDF5)	TBD	Josh
Oct 7	Image processing (OpenCV, skimage)	TBD	Stéfan van der Walt
Oct 14	Machine Learning I (sklearn, NLP)	TBD	Josh
Oct 21	Machine Learning II (keras [tensorflow])	TBD	Josh
Oct 28	Bayesian programming & Symbolic math	TBD	Brett
Nov 4	Web frameworks & RESTful APIs, Flask	TBD	Josh
Nov 11	holiday		
Nov 18	Computational Frameworks (Docker, AWS, Azure, AWS- Lambda)	TBD	Josh
Nov 25	holiday		
Dec 2	Speeding it up (Numba, Cython, wrapping legacy code)	TBD	Josh

Concepts/Practices in this Course

- Jupyter & JupyterLab
- using git & github
- Docker
- Data science workflows
- reproducible research
- application building
- debugging
- testing

"Data science is an interdisciplinary field about processes and systems to extract knowledge or insights from data in various forms, either structured or unstructured, which is a continuation of some of the data analysis fields such as statistics, data mining, and predictive analytics..."

-wikipedia

Workflow for a typical week

Thursday:

email from week's instructor w/ special installation instructions, reading/tutorials

Friday:

Monday:

TBD Supervised help with homework [place TBD]

Friday Morning:

Homework project due

Course Grade

10% participation in lectures/breakouts

60% Homeworks
there will be 11 assignments & we will drop your lowest score

30% Final Project, due Dec 12 (no final exam)

Final Project

a) Build a substantial framework for doing something in your own research, based on at least two topics from different weeks. Something you will use for a long time...

e.g., image analysis package, hardware control software, a webservice that does some crunching under the hood, provide a parallelization of some algorithm or code you use, etc.

- or -

b) Contribute code/functionality to a major open-source Python project (Juypter, scipy, Cython, numpy, matplotlib, etc.)