NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Lau Tze Siong

Mathematical Analysis I (version S) **MA2108S**

AY 2006/2007 Sem 2

Question 1

We will proceed to prove the forward direction first.

Suppose k is an ordered field and k is archimedean,

for any $x, y \in k$,

Case 1)

suppose that they are of opposite signs, i.e. x < 0 < y, be letting r = 0, we are done.

If $x < y \le 0$ then $0 \le -y < -x$, by letting x' = -x and y' = -y, we are have, $0 \le x' < y'$.

Hence it suffices to prove the case where $0 \le x < y$.

Since $0 \le x < y$, we have y - x > 0,

By the archimedean property of k, there exists a $n \in \mathbb{N}$ such that n(y-x) > 1. Hence

$$y - x > \frac{1}{n} \tag{1}$$

Let $S = \{p \in \mathbb{N} | p.\left(\frac{1}{n}\right) > x\} \subseteq \mathbb{N}$. Since $\frac{1}{n}, x \in k$ and $\frac{1}{n}, x > 0$, by the archimedean property of k, there exist a $p \in \mathbb{N}$ such that $p.\frac{1}{n} > x$. Hence S is non-empty. By the well-ordering principle of \mathbb{N} , there exist a least element $m \in S$ of S. Hence $m-1 \notin S$, i.e. $(m-1)\frac{1}{n} \leq x$.

Claim: $x < \frac{m}{n} < y$

Proof:

Since $m \in S$, we have $\frac{m}{n} > x$. Since $m-1 \notin S$, we have $\frac{m-1}{n} \le x$. Hence $\frac{m}{n} \le x + \frac{1}{n} < x + (y-x) = y$ from (1).

Hence we have $x < \frac{m}{n} < y$.

Therefore if the ordering \leq on k is archimedean then \mathbb{Q} is dense in k.

Now we prove the other direction.

Suppose Q is dense in k. (We are suppose to find n such that n.a > b)

For any $a, b \in k_{>0}$,

Case 1)

Suppose that b < a, then by letting n = 1, we are done.

Case 2)

Suppose that $a \leq b$,

Since a > 0, we have $0 < a \le b < a + b$. Since \mathbb{Q} is dense in k, there exists $p, q \in \mathbb{Q}$ such that $0 . By the archimedean property of <math>\mathbb{Q}$, there exists $n \in \mathbb{N}$ such that np > q. Since na > np and b < q, we have b < q < np < na.

Hence for any $a, b \in k_{>0}$, there exists $n \in \mathbb{N}$ such that na > b.

Hence, if k is an ordered field such that \mathbb{Q} is dense in k, then the ordering \leq on k is archimedean.

Page: 1 of 7

Question 2

Consider the double sum,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 \geq 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (a_i^2 b_j^2 - 2a_i a_j b_i b_j + a_j^2 b_i^2) \geq 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i^2 b_j^2 + \sum_{i=1}^{n} \sum_{j=1}^{n} a_j^2 b_i^2 \geq 2 \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j b_i b_j$$

$$2 \sum_{i=1}^{n} a_i^2 \sum_{j=1}^{n} b_j^2 \geq 2 \sum_{i=1}^{n} a_i b_i \sum_{j=1}^{n} a_j b_j$$

$$\sum_{i=1}^{n} a_i^2 \sum_{j=1}^{n} b_j^2 \geq \left(\sum_{i=1}^{n} a_i b_i\right)^2$$

Question 3

Claim 1) $(x_n)_{n\geq 1}$ is a increasing sequence and is bounded above by 2.

Proof:

We will prove the above claim by induction.

For the base case, we have $x_1 = 1 < \sqrt{2} = x_2$ and $x_1 = 1 \le 2$.

Suppose that for some $k \in \mathbb{N}, x_k < x_{k+1}$ and $x_k \le 2 < 3$, then $\sqrt{1+x_k} < \sqrt{1+x_{k+1}}$ and $x_{k+1} = \sqrt{1+x_k} < \sqrt{1+3} = 2$. Hence we have $x_{k+1} < x_{k+2}$ and $x_{k+1} \le 2$.

By induction, we have $x_n < x_{n+1}$ and $x_n \le 2$ for all $n \in \mathbb{N}$.

Since $(x_n)_{n\geq 1}$ is a increasing sequence and is bounded above, by the Completeness Axiom, $\lim_{n\to\infty}x_n=x$ exists.

Hence $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \sqrt{1+x_n}$. Since $\sqrt{}: \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous function, we have $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_n = \lim_{n\to$

$$\sqrt{1 + \lim_{n \to \infty} x_n}$$
. Hence x is the solution of the equation $x = \sqrt{1 + x}$. Solving, we have $x = \lim_{n \to \infty} x_n = \frac{\sqrt{5} + 1}{2}$

Question 4

(a) We will show that $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for all $x \in \mathbb{R}$.

For any
$$x \in \mathbb{R}$$
, $\lim_{k \to \infty} \frac{\frac{x^{k+1}}{k+1!}}{\frac{x^k}{k!}} = \lim_{k \to \infty} x/k = 0$.

Hence, by the ratio test, the sum $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for all $x \in \mathbb{R}$

(b) It suffices to show that for any $M \in \mathbb{N}$, there exist a $N \in \mathbb{N}$ such that $\sum_{n=1}^{N} \frac{1}{n} > M$. For any given $M \in \mathbb{N}$,

Page: 2 of 7

Let $N = 2^{2M} - 1$.

Then we have,

$$\sum_{n=1}^{N} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots + \frac{1}{2^{2M-1}}$$

$$> \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{2^{2M-1}}$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}$$

$$= \frac{2M}{2} = M$$

Hence the sum $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge in \mathbb{R} .

Question 5

The statement is true.

Proof:

Consider the following $\mathbb{N} \times \mathbb{N}$ matrix,

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \dots & \dots \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & \dots & \dots \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & \dots & \dots \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{n} & \dots & \dots & \frac{1}{n} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Since

$$(\mathrm{i}) \forall j \in \mathbb{N}, \ \lim_{i \to \infty} c_{ij} = 0 \ ; \ (\mathrm{ii}) \lim_{i \to \infty} \sum_{j=0}^{\infty} c_{ij} = 1 \ ; \ (\mathrm{iii}) \sup_{i \in \mathbb{N}} \sum_{j=0}^{\infty} |c_{ij}| < \infty. \ \mathrm{Hence} \ C \ \mathrm{is} \ \mathrm{a} \ \mathrm{Toeplitz} \ \mathrm{matrix}.$$

By Toeplitz Theorem, $a_n = \sum_{i=0}^{\infty} c_{ij} x_j$ converges in \mathbb{R} and the sequence $(a_n)_{n \in \mathbb{N}}$ converges in \mathbb{R} with

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} x_n$$

Toeplitz Theorem

Suppose $\mathcal{C} = (c_{ij})$ is a $\mathbb{N} \times \mathbb{N}$ matrix with entries in \mathbb{R} such that:

(i) $\forall j \in \mathbb{N}$, $\lim_{n \to \infty} c_{ij} = 0$; (ii) $\lim_{i \to \infty} \sum_{j=0}^{\infty} c_{ij} = 1$; (iii) $\sup_{i \in \mathbb{N}} \sum_{i=1}^{\infty} |c_{ij}| < +\infty$; Let $(a_j)_{j \in \mathbb{N}}$ be a convergent sequence in \mathbb{R} then $b_i = \sum_{j=0}^{\infty} c_{ij} a_j$ converges in \mathbb{R} and the series $(b_i)_{i\in\mathbb{N}}$ converges in \mathbb{R} with $\lim_{i\to\infty} b_i = \lim_{j\to\infty} a_j$.

Let $A := \{|a_i| \mid i \in \mathbb{N}\}$. Since $\sup_{i \in \mathbb{N}} \sum_{i=1}^{\infty} |c_{ij}| < +\infty$, for all $i \in \mathbb{N}$, $\sum_{i=1}^{\infty} |c_{ij}|$ converges to a real

Page: 3 of 7

number. Hence $\sum_{i=1}^{\infty} c_{ij}$ is absolutely convergent. Since for all $i \in \mathbb{N}$,

$$\sum_{j=0}^{\infty} |c_{ij}a_j| = \sum_{j=0}^{\infty} |c_{ij}||a_j|$$

$$\leq \sum_{j=0}^{\infty} \sup(A)|c_{ij}|$$

$$= \sup(A) \sum_{j=0}^{\infty} |c_{ij}|$$

and $(a_n)_{n\in\mathbb{N}}$ is convergent, A is bounded. $\sup(A)\in\mathbb{R}$. Hence $\sum_{j=0}^{\infty}a_jc_{ij}$ is absolutely convergent. Hence $b_i=\sum_{j=0}^{\infty}a_jc_{ij}$ converges in \mathbb{R} for all $i\in\mathbb{N}$.

Now let $k = \sup_{i \in \mathbb{N}} \sum_{j=0}^{\infty} |c_{ij}|$ and $(x_j)_{j \in \mathbb{N}}$ to be a null sequence.

Given any $\epsilon \in \mathbb{R}_{>0}$,

there exists $(n_0 + 1) \in \mathbb{N} \in \mathbb{N}$ such that for all $j \in \mathbb{N}_{\geq n_0 + 1}$ one has $|x_j| < \frac{\epsilon}{2k}$. Hence

$$\left| \sum_{j=0}^{\infty} c_{ij} x_{j} \right| \leq \left| \sum_{j=0}^{n_{0}} c_{ij} x_{j} \right| + \left| \sum_{j=n_{0}+1}^{\infty} c_{ij} x_{j} \right|$$

$$\leq \left| \sum_{j=0}^{n_{0}} c_{ij} x_{j} \right| + \sum_{n_{0}+1}^{\infty} |c_{ij}| |x_{j}|$$

$$\leq \left| \sum_{j=0}^{n_{0}} c_{ij} x_{j} \right| + \frac{\epsilon}{2k} \sum_{n_{0}+1}^{\infty} |c_{ij}|$$

$$\leq \left| \sum_{j=0}^{n_{0}} c_{ij} x_{j} \right| + \frac{\epsilon}{2k} \sum_{0}^{\infty} |c_{ij}|$$

$$\leq \left| \sum_{j=0}^{n_{0}} c_{ij} x_{j} \right| + \frac{\epsilon}{2k} \sup_{i \in \mathbb{N}} \sum_{n_{0}+1}^{\infty} |c_{ij}|$$

$$\leq \left| \sum_{j=0}^{n_{0}} c_{ij} x_{j} \right| + \frac{\epsilon}{2k} \sup_{i \in \mathbb{N}} \sum_{n_{0}+1}^{\infty} |c_{ij}|$$

$$\leq \left| \sum_{j=0}^{n_{0}} c_{ij} x_{j} \right| + \frac{\epsilon}{2}$$

by (i), for each $0 \le j \le n_0$, we have $\lim_{i \to \infty} c_{ij} = 0$. Hence for each $0 \le j \le n_0$, there exist $m_j \in \mathbb{N}$ such that for all $i \in \mathbb{N}_{\ge m_j}$, one has $|c_{ij}| < \frac{\epsilon}{2(n_0+1)x}$ where $x = \sup\{|x_i| \mid i \in \{0, 1, 2, ..., n_0\}\}$. Hence we for all $j \in \{0, ..., n_0\}$ and for all $i \in \mathbb{N}_{\ge m}$ where $m = \max(m_0, m_1, ...m_j)$, one has $|c_{ij}| < \frac{\epsilon}{2(n_0+1)x}$ where $x = \sup\{|x_j| \mid j \in \{0, 1, 2, ..., n_0\}\}$. Hence,

$$\left| \sum_{j=0}^{\infty} c_{ij} x_j \right| < \left| \sum_{j=0}^{n_0} c_{ij} x_j \right| + \frac{\epsilon}{2}$$

$$\leq \sum_{j=0}^{n_0} |c_{ij}| |x_j| + \frac{\epsilon}{2}$$

$$\leq x \sum_{j=0}^{n_0} |c_{ij}| + \frac{\epsilon}{2}$$

$$< x \frac{(n_0 + 1)\epsilon}{2(n_0 + 1)x} + \frac{\epsilon}{2} = \epsilon$$

Hence, given any epsilon, we have found a $m \in \mathbb{N}$ such that for all $i \in \mathbb{N}_{\geq m}$, one has $\left| \sum_{j=0}^{\infty} c_{ij} x_j \right| < \epsilon$. Hence $\lim_{n\to\infty} \sum_{j=0}^{\infty} c_{ij} x_j = 0$. Since $(a_j)_{j\in\mathbb{N}}$ converges to a, $(a_j - a)_{j\in\mathbb{N}}$ is a null sequence. Hence

$$\lim_{i \to \infty} \sum_{j=0}^{\infty} c_{ij} (a_j - a) = 0$$

$$\lim_{i \to \infty} \sum_{j=0}^{\infty} c_{ij} a_j - a \lim_{i \to \infty} \sum_{j=0}^{\infty} c_{ij} = 0$$

$$\lim_{i \to \infty} \sum_{j=0}^{\infty} c_{ij} a_j - a = 0$$

$$\lim_{i \to \infty} \sum_{j=0}^{\infty} c_{ij} a_j = a$$

$$\lim_{i \to \infty} b_i = \lim_{j \to \infty} a_j$$

Question 6

The statement is false

Consider the sequence $(x_n)_{n\in\mathbb{N}_{\geq 1}}=(1,0,1,0,1,0,1,...)$, then $\lim_{n\to\infty}a_n=0$ but $(x_n)_{n\in\mathbb{N}_{\geq 1}}$ does not converge.

Question 7

We need to show that for any $\epsilon \in \mathbb{R}$, there exist a $M \in \mathbb{N}$ such that $\left| \sum_{n=1}^{M} x_{\sigma(n)} - \sum_{n=1}^{M} x_n \right| < \epsilon$.

For any given ϵ ,

Since $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, we know that there exist a $M_1 \in \mathbb{N}$ such that for any

 $m, n \in \mathbb{N}_{\geq M_1}$ with $m \leq n$ we have $\sum_{i=m}^{n} |x_n| < \frac{\epsilon}{2}$.

Hence we can choose M so that the set

NUS Math LaTeXify Proj Team

Page: 5 of 7

 $S = \{\sigma(n) | n \in \mathbb{N} \text{ and } n \leq M\} \supseteq \{1, 2, 3, ..., M_1\}$. This is possible since σ is a bijection. Let the set $P = S \setminus \{1, 2, 3, ..., M_1\}$ Hence

$$\left| \sum_{n=1}^{M} x_{\sigma(n)} - \sum_{n=1}^{M} x_n \right| = \left| \sum_{n \in P} x_n - \sum_{n=M_1+1}^{M} x_n \right|$$

$$\leq \left| \sum_{n \in P} x_n \right| + \left| \sum_{n=M_1+1}^{M} x_n \right|$$

$$\leq \sum_{n \in P} |x_n| + \sum_{n=M_1+1}^{M} |x_n|$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence
$$\sum_{n=1}^{\infty} x_{\sigma(n)}$$
 converges and $\sum_{n=1}^{\infty} x_{\sigma(n)} = \sum_{n=1}^{\infty} x_n$

Question 8

We will first show that f is continuous.

For any $a \in \mathbb{R}$ Given any $\epsilon \in \mathbb{R}$, choose $\delta = \frac{\epsilon}{c}$, Hence we have for any $x \in \mathbb{R}$ such that $|x - a| < \delta$, we have $|f(x) - f(a)| \le c|x - a| = c\left(\frac{\epsilon}{c}\right) = \epsilon$. Hence f is continuous.

Existence:

If f(0) = 0, then we are done.

Suppose f(0) = k > 0, for any $x \in \mathbb{R}_{>0}$ we have $k - cx \le f(x) \le k + cx$. Consider the function h(x) = f(x) - x.

$$h(0) = k > 0$$
 and $h(\frac{k}{1-c} + 1) = f(\frac{k}{1-c} + 1) - \frac{k}{1-c} - 1 \le k + c\left(\frac{k}{1-c} + 1\right) - \frac{k}{1-c} - 1 = c - 1 < 0$. By Intermediate Value Theorem, there exist a $b \in [0, \frac{k}{1-c} + 1]$ such that $h(b) = 0$ and $f(b) = b$.

Suppose f(0) = k < 0, for any $x \in mathdsR_{<0}$ we have $k - cx \le f(x) \le k + cx$. Consider the function h(x) = f(x) - x.

$$h(0) = k < 0$$
 and $h(\frac{k}{1-c} - 1) = f(\frac{k}{1-c} - 1) - \frac{k}{1-c} + 1 \le k + c\left(\frac{k}{1-c} - 1\right) - \frac{k}{1-c} + 1 = 1 - c > 0$. By Intermediate Value Theorem, there exist a $b \in [0, \frac{k}{1-c} + 1]$ such that $h(b) = 0$ and $f(b) = b$.

Uniqueness:

Suppose there exist $d_1, d_2 \in \mathbb{R}$ such that $f(d_1) = d_1$ and $f(d_2) = d_2$. Then we have $|f(d_1) - f(d_2)| = |d_1 - d_2| \le c|d_1 - d_2|$. Since 0 < c < 1, we must have $d_1 = d_2$.

Hence there exist a unique $p \in \mathbb{R}$ such that f(p) = p.

Question 9

By Heine-Borel Theorem , [a,b] is compact in \mathbb{R} . Since the continuous image of a compact set is compact we have f([a,b]) is compact. Hence f([a,b]) is closed and bounded by Heine-Borel Theorem. Since the $\sup\{f(x)\in\mathbb{R}|x\in[a,b]\}$ is a limit point and all limit points of f([a,b]) is in f([a,b]). Hence, there exists a $p\in[a,b]$ such that $f(p)=\sup\{f(x)\in\mathbb{R}|x\in[a,b]\}$.

Page: 6 of 7

Question 10

Since [a,b] is a connected subset of $\mathbb R$ and the continuous image of a connected set is connected. We have f([a,b]) as a connected subset of $\mathbb R$ and $[f(a),f(b)]\subseteq f([a,b])$, if not f([a,b]) is disconnected. Therefore for any $f(a)\leq t\leq f(b)$ there exist a $x\in [a,b]$ such that f(x)=t.

Page: 7 of 7