MA2102: LINEAR ALGEBRA

Lecture 8: Replacement Theorem
2nd September 2020

Let us recall the statement of the main result.

Replacement Theorem

Let V be a vector space that is spanned by a set S of size n. Let L be a linearly independent set of size m. Then

- (i) $m \le n$ and
- (ii) there exists $T \subseteq S$ of size n-m such that $T \cup L$ spans V.

We often use the phrase "L can be extended to a basis and S can be reduced to a basis".

Proof.

Let $L = \{u_1, \dots, u_m\}$ and $S = \{s_1, \dots, s_n\}$ be as given. Since $u_m \in V = \text{span}(S)$, we have

$$u_m = a_1 s_1 + \dots + a_n s_n$$

for some scalars a_i .

If all a_i 's are zero, then $u_m = 0$, which contradicts linear independence of L. Thus, some a_i must be non-zero; by rearranging indices, assume that $a_n \neq 0$. Therefore,

$$s_n = -\frac{1}{a_n} u_m - \frac{a_1}{a_n} s_1 - \dots - \frac{a_{n-1}}{a_n} s_{n-1}$$

and if $\mathcal{S}_1 = \{s_1, \dots, s_{n-1}, u_m\}$, then $s_n \in \text{span}(\mathcal{S}_1) = V$. Now $u_{m-1} \in V = \text{span}(\mathcal{S}_1)$ implies that

$$u_{m-1} = a_1 s_1 + \cdots + a_{m-1} s_{m-1} + b_m u_m^{-1}.$$

If all the a_j 's are zero, then $u_{m-1} = b_m u_m$ and $\{u_{m-1}, u_m\}$ is linearly dependent, a contradiction. Thus, by rearranging the indices for s_j 's, we may assume that $a_{m-1} \neq 0$.

¹Note that these scalars a_i 's are not the same as the earlier a_i 's.

Therefore,

$$s_{n-1} = -\frac{1}{a_{n-1}} u_{m-1} - \frac{b_m}{a_{n-1}} u_m - \frac{a_1}{a_{n-1}} s_1 - \dots - \frac{a_{n-2}}{a_{n-1}} s_{n-2}$$

and if $\mathscr{S}_2 = \{s_1, \dots, s_{n-2}, u_{m-1}, u_m\}$, then $s_{n-1} \in \operatorname{span}(\mathscr{S}_2) = V$. Iterate this process to obtain

$$\mathcal{S}_m = \{s_1, \dots, s_{n-m}, u_1, \dots, u_m\} = \{s_1, \dots, s_{n-m}\} \cup \{u_1, \dots, u_m\}$$

which spans V. This proves both (i) and (ii).

Remark The set T is not unique. This is evident from the choices in the proof as well as by the following example. Let $V = P_3(\mathbb{R})$ with $S = \{1-x, x-x^2, 2x, 3-4x\}$ and $L = \{1+x^2, x+x^2\}$. Then adjoining either 2x or $x-x^2$ or 3-4x to L would span V. (exercise)

Corollary C Let *V* be a finite dimensional vector space and *W* be a (vector) subspace. Then

(i) $\dim_E(W) < \dim_E(V)$

(ii) If $\dim_F(W) = \dim_F(V)$ then W = V.

Proof.

Let $n = \dim_F(V)$ be the dimension of V and let β be a basis. Any finite subset L of W of size more than n is linearly dependent because if L was linearly independent, then by (i) of Replacement Theorem, $|L| \le n = |\beta|$, a contradiction.

We now construct a basis of W as follows. If $W = \{0\}$, then \emptyset is a basis and $\dim_F(W) = 0$. Otherwise, choose a non-zero $u_1 \in W$. Iterate this process to choose $u_1, u_2, \ldots, u_k \in W$ such that $\{u_1, u_2, \ldots, u_k\}$ is linearly independent. By the initial observation, this process

has to terminate, i.e., there exists k_0 such that $\beta_0 = \{u_1, u_2, \dots, u_{k_0}\} \subset W$ is linearly independent and no extension of this in W is linearly independent.

Claim: β_0 is a basis of W. If $u \in W$ —span(β_0), then $\{u, u_1, u_2, \dots, u_{k_0}\}$ is linearly dependent, i.e.,

$$cu + c_1u_1 + \dots + c_{k_0}u_{k_0} = 0$$

and not all of $c, c_1, ..., c_{k_0}$ can be zero. Note that $c \neq 0$, whence $u \in \text{span}(\beta_0)$, i.e., $W = \text{span}(\beta_0)$.

Part (i) follows from applying Replacement Theorem to $S = \beta$ and $L = \beta_0$. For part (ii), if $|\beta| = |\beta_0|$, then β_0 is also a basis of V (cf. Corollary B (b)).

Recall the sum A + B of two subsets of a vector space V.

Definition [Sum] Let W_1 , W_2 be vector subspaces of a vector space V. The set $W_1 + W_2$ is called the sum of W_1 and W_2 .

The set $W_1 + W_2$ is called a direct sum if $W_1 \cap W_2 = \{0\}$. We denote a direct sum by $W_1 \oplus W_2$.

Show that $W_1 + W_2$ is a subspace.

Examples (1) If W_1 is the x-axis and W_2 is the y-axis in $V = \mathbb{R}^3$, then $W_1 + W_2$ is a direct sum and equals the xy-plane.

(2) If W_1 is the xy-plane and W_2 is the yz-plane in $V = \mathbb{R}^3$, then $W_1 + W_2$ is not a direct sum as $W_1 \cap W_2$ is the y-axis.

(3) If W_1 is the space of symmetric matrices and W_2 is the

set of skew-symmetric matrices in $V = M_n(\mathbb{R})$, then $W_1 + W_2$ is a direct sum as $W_1 \cap W_2 = \{0\}$ (exercise).

We shall see later that for a finite dimensional vector space V,

$$\dim_F(W_1 \oplus W_2) = \dim_F(W_1) + \dim_F(W_2).$$

Question What is the correct generalization of the dimension formula for $W_1 + W_2$?

Observation The subspace $W_1 + W_2$ is a direct sum if and only if every $v \in W_1 + W_2$ can be expressed uniquely as $v = w_1 + w_2$ for $w_i \in W_i$.

Proof.

Let $v \in W_1 \cap W_2$. Any element of $W_1 + W_2$ can be expressed as

$$w_1 + w_2 = (w_1 - v) + (w_2 + v)$$

and this is non-unique if and only if v = 0.