# Computer Organization and Design

Chapter 3 Part 2
Arithmetic for Computers

(Ch. 3 - Sections 3.3 - 3.4)

Integer Multiplication & Division

#### Integer Multiplication

- Multiplication is more complicated than addition and adds a level of complexity to the design of the ALU
- Multiplication also takes longer increasing the processing time and requires more space in the ALU
- Performance of multiplication (and division) operations is important
- We need to derive a fast method for multiplication, one that also minimizes the need for space in the ALU

#### **Example Binary Multiplication**

(Two 4-bit unsigned numbers)



#### Observations About Integer Multiplication

- m bits x n bits = maximum m + n bit product
- In RISC-V, multiplying two 64-bit numbers yields a 128 bit product
  - Only 64-bit products are valid
  - Multiplication must consider overflow
- Multiplication takes more space in hardware
- More time is required to obtain the product
- As in any computer activity, an algorithm defines the step by step process for the operation

## Multiplication Algorithm (First Version)





Multiplicand shifts left and multiplier shifts right each iteration.

Add operation occurs only when least significant multiplier bit = 1.

#### Algorithm Example

Using 4-bit unsigned #s; 2 x 3 = 6; Multiplicand = 0010; Multiplier = 0011

|     |                       |            | -          |           |           |
|-----|-----------------------|------------|------------|-----------|-----------|
| lte | rStep                 | Multiplier | Multiplica | nd Produ  | ct        |
| 0   | Initial Values        | 0011       | 0000 0010  | 0000 00   | 000       |
| 1   | 1a. 1 □ prod = prod   | + mcand 00 | 011 0000   | 0010 00   | 00 0010   |
|     | 2. shift left multipl | icand 00   | 0000       | 0100 00   | 00 0010   |
|     | 3. shift right multi  | plier 00   | 0000       | 0100 00   | 00 0010   |
| 2   | 1a. 1 □ prod = prod   | + mcand 00 | 001 0000   | 0100 00   | 00 0110   |
|     | 2. shift left multipl | icand 00   | 0000       | 1000 00   | 00 0110   |
|     | 3. shift right multi  | plier 00   | 0000       | 1000 00   | 00 0110   |
| 3   | 1a. 0 □ no-op         | 0000       | 0000 1000  | 0000 0    | 110       |
|     | 2. shift left multipl | icand 00   | 000 0001   | 0000 00   | 00 0110   |
|     | 3. shift right multi  | plier 00   | 000 0001   | 0000 00   | 00 0110   |
| 4   | 1a. 0 □ no-op         | 0000       | 0001 0000  | 0000 0    | 110       |
|     | 2. shift left multipl | icand 00   | 000        | 0010 0000 | 0000 0110 |
|     | 3. shift right multi  |            | 000 0010   | 0000 00   | 00 0110   |
|     |                       |            |            |           |           |



#### Multiplication Algorithm

#### Problems:

- 3 steps executed 64 times taking 192 cycles if each step takes one clock cycle
- Wasted cycles if product is calculated in less than 64 iterations

#### Refinements include

- Combining multiplier into unused space in the product which eliminates a separate multiplier register and the step in the algorithm for shifting the multiplier value
- The multiplier begins in the right half of the product and the LSB is shifted out on each iteration of the algorithm

## Multiplication Algorithm and Hardware Design (Refined Version)





- Multiplier is placed in the right half of the product.
- Multiplicand is added to the left half of the product.
- Product is shifted right each iteration.

#### Example of Refined Algorithm

Using 4-bit unsigned #s; 2 x 3 = 6; Multiplicand = 0010; Multiplier = 0011

| lter | Step                                                              | Multiplicand     | Product/Mult             |                 |
|------|-------------------------------------------------------------------|------------------|--------------------------|-----------------|
| 0    | Initial Values                                                    | 0010             | 0000 0011                |                 |
| 1    | 1a. 1 □ prod = pro<br>2. shift right pro                          |                  | 0010 0010 0<br>0001 0001 | 011             |
| 2    | <ul><li>1a. 1 □ prod = prod</li><li>2. shift right prod</li></ul> |                  |                          |                 |
| 3    | 1a. 0 □ no-op<br>2. shift right pro                               | 0010<br>duct 001 | 0001 1000<br>0000 1100   |                 |
| 4    | 1a. 0 □ no-op<br>2. shift right pro                               | 0010<br>duct 001 | 0000 1100<br>0000 0110   | Final<br>Answer |

#### Signed Multiplication

- The previous algorithm works for signed integers
  - Assume working with values of infinite digits but representing them with only 64 bits
    - All values sign extended to 64 bits in registers
  - Shifting steps would need to extend the sign of the product for signed number
  - Shift right arithmetic (sra) instruction will do this
    - Previous most significant bit value (sign bit) is shifted in which extends the sign bit
  - Upon completion of the algorithm, the lower 64 bits will have the correct product

## Signed Multiplication Examples (Using 8-bit byte values)



Only the lower 8 bits are valid.



Only the lower 8 bits are valid.

#### Faster Multiplication

- Use multiple adders in a pipelined configuration
- Costlier but better performance
- Additions performed in parallel by designing a tree structure
  - Rather than waiting for 64 additions in a sequential fashion, time is reduced to 6 add times: log<sub>2</sub> (64)



#### Two's Complement 4-Bit Array Multiplier



FA = full adder; HA = half adder;  $a_n b_n$  = logical AND of bits This design is easily extended to 8-, 32-, & 64-bits.

#### RISC-V Multiplication

- To produce a properly signed or unsigned product, RISC-V has four multiply instructions
  - mul (multiply) produces 64 bit product
  - mulh (multiply high) produces the upper 64 bits of the 128 bit product if both operands are signed
  - mulhu (multiply high unsigned) produces the upper 64 bits of the 128 bit product if both operands are unsigned
  - mulhsu (multiply high signed-unsigned) produces the upper 64 bits of the 128 bit product if one operand is signed and the other is unsigned
- All instructions require 3 operands: destination register & two source registers

#### RISC-V Multiplication Overflow

- The multiply high instructions can be used to check for overflow in software
  - There is no overflow for 64-bit unsigned multiplication if mulhu's result is zero
  - There is no overflow for 64-bit signed multiplication if mulhu's result are copies of the sign bit of mul's result

#### Integer Division

Paper and pencil method (binary division)



Dividend = Quotient \* Divisor + Remainder

#### Restoring Division

- Since the processor must determine if the divisor is smaller than the dividend, a subtract operation is required (dividend – divisor)
  - If the result is positive or zero, then a quotient bit of 1 is generated
  - If not, a quotient bit of zero is generated and the subtract operation is reversed to restore the value of the dividend
  - After shifting the divisor, the operation is iterated again
- The basic algorithm is called restoring division because the dividend is restored to its value prior to the subtract operation

## Division Algorithm (First Version)





Divisor placed in left half of divisor.

Dividend placed in remainder.

Divisor shifts right and quotient shifts left on each iteration.

#### Algorithm Example (13 ÷ 5 = 2 $\overline{R}$ 3)

| Iteration | Step                                                              | Quotient                                  | Divisor                             | Remainder                           |
|-----------|-------------------------------------------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------|
| 0 Initia  | llize values                                                      | 0000                                      | 0101 0000                           | 0000 1101                           |
| 2b. F     | em = Rem – Div<br>R < 0; +Div; sll (<br>nift Div right            |                                           |                                     |                                     |
| 2b. F     | em = Rem – Div<br>R < 0; +Div; sll (<br>nift Div right            |                                           |                                     | 0 0000 1101                         |
| 2b. F     | em = Rem – Div<br>R < 0; +Div; sll (<br>nift Div right            |                                           |                                     | 0 0000 1101                         |
| 2a. F     | em = Rem – Div<br>R >= 0; sll Q; Q <sub>c</sub><br>nift Div right |                                           | 0000 1010<br>0000 1010<br>0000 0101 | 0000 0011<br>0000 0011<br>0000 0011 |
| 2b. F     | em = Rem- Div<br>R < 0; +Div; sll (<br>nift Div right             | 0001<br>Q; Q <sub>0</sub> =0 0010<br>0010 |                                     | 1 0000 0011                         |

#### Refined Division Algorithm & Hardware





Similar to multiplication, the quotient and remainder values are combined into the remainder register to simplify the algorithm reducing the number of steps and save space by not having a separate dividend register.

### Refined Division Example

 $114 \div 4 = 3 R2$ 

| Iteration Step                    | Divisor | Remainder/Quotient |
|-----------------------------------|---------|--------------------|
| 0Initialize values                | 0100    | 0000 1110          |
| Shift Rem left 1 bit              | 0100    | 0001 1100          |
| 12. Rem = Rem – Div               | 0100    | 1101 1100          |
| 3b. R < 0; +Div; sll R; $R_0 = 0$ | 0 010   | 0 0011 1000        |
| 22. Rem = Rem – Div               | 0100    | 1111 1000          |
| 3b. R < 0; +Div; sll R; $R_0 = 0$ | 0 010   | 0 0111 0000        |
| 3. 2. Rem = Rem – Div             | 010     | 0 0011 0000        |
| 3a. R >= 0; sll R; $R_0 = 1$      | 010     | 0 0110 0001        |
| 4. 2. Rem = Rem – Div             | 010     | 0 0010 0001        |
| 3a. R >= 0; sll R; $R_0 = 1$      | 010     | 0 0100 0011        |
| Shift left half of Rem right 1    | bit 010 | 0 0010 0011        |

2 3

#### Signed Division

- Remember the signs of the divisor and dividend and negate the quotient if the signs disagree
- Dividend and remainder must have the same signs no matter what the signs of the divisor and quotient
- Division formula must prove true for all values
   (Dividend = Quotient x Divisor + Remainder)

$$+7 \div +2 = +3 R + 1$$
  $-7 \div +2 = -3 R - 1$   
 $+7 \div -2 = -3 R + 1$   $-7 \div -2 = +3 R - 1$ 

#### Faster Division Algorithm

- Many processors today use the SRT division
  - Named for its creators (Sweeney, Robertson, and Tocher)
- Uses a lookup table based on the dividend and the divisor to predict several quotient bits generated per step
  - Predictive requiring subsequent steps to correct wrong predictions
  - Accuracy depends on proper values in the lookup table
  - This lookup table is contained in special storage within the hardware of the ALU.
- Used on various Intel CPUs

#### Contemporary Division Implementations

- Newton-Raphson iteration provides a high-speed method for performing division.
  - The algorithm begins with an initial approximation to the reciprocal of the divisor
  - This value is iteratively refined until a specified accuracy is achieved.
  - Used in some Digital Signal Processors
- Goldschmidt division uses an iterative process of repeatedly multiplying both the dividend and divisor by a common factor F<sub>i</sub>, chosen such that the divisor converges to 1.
  - This causes the dividend to converge to the sought quotient Q
  - Used in AMD processors

#### **RISC-V Division**

- RISC-V provides four division instructions
  - div (divide) signed division
  - divu (divide unsigned) unsigned division
  - rem (remainder) signed remainder
  - remu (remainder unsigned) unsigned remainder
- Overflow is ignored by divide instructions
  - Must check in software if quotient is too large
- Potential errors
  - Divide by zero must check prior to hardware divide
  - Some division algorithms include this as the first step
  - Assembly language programmer must include in code check for zero divisor before every division instruction

#### Divide by Zero

- RISC-V doesn't raise an exception on divide by zero.
- The result of dividing by zero is all 1s in destination register
  - For unsigned numbers, this is the largest integer
  - For signed numbers, this is -1.
- The check for divide by zero must be done in software prior to any divide instruction
  - Added by compiler or included as an instruction by assembly language programmer

```
beq t0, zero, divzero # t0 = denominator div t2, t1, t0 # divide
```

Label divzero will be code to generate exception