交通标志识别

G18 曹未 豆欣童 马嘉伟

小组分 I

- 实验代码部分: 三个人合作完成
- 实验报告: 豆欣童
- PPT: 马嘉伟
- 数据集查找和演讲: 曹未

选题背景

开发环境

数据处理

模型设计

模型训练

模型评测

总结

- TensorFlow 是现在最为流行的深度学习框架,它的主要作用是如何使用深度模型去构建一个系统。
- 我们的本次的选题是交通标志识别,目的是通过这个主题更加充分地了解tensorflow的领域知识。
- 目常生活中,交通标志随处可见,这个模型的目的在于减少主观因素的影响,充分发挥智能系统的优点,确保交通更加安全方便舒适。

选題背景

- 在构建模型过程中,需要用的工具是 python3.6版本
 Tensorflow是1.13.1版本,还用到了Numpy, ScikitImage,
 Matplotlib库等标准库。
- 导入我们所需要的库 import os import random import skimage.data import skimage.transform import matplotlib import matplotlib.pyplot as plt import numpy as np import tensorflow as tf

开发环境

1. 编译环境配置

2. 所需要的库

1. 数据集下载

 根据在网上查找的资料,我们选择用比利时的交通标志数据集。 网址为<u>http://btsd.ethz.ch/shareddata/</u>,根据需要,我们只 下载了两个数据集:

BelgiumTSC_Training (171.3MBytes)

BelgiumTSC_Testing (76.5MBytes)

两个目录下都包含了名字从00000到00061连续编号的子目录。
 这些名字代表了标签是从0到61编号,每个目录下的交通标志图片就是属于该标签的样本。

数据处理

1. 数据集下载

2. 数据集训练

2. 数据训练集

- plt 下导入了 matplotlib 软件包的 pyplot 模块
- 然后,创建一个带有4个随机数字的列表。这些会被用于从images数组中选择你在前一节检查过的交通标志。
- 对于列表长度中的每个元素,创建一个没有轴的子图,在这些子图中,你将展示与索引i中数字相符的 images 数组中的特定图像,然后调整子图使它们之间具有足够的宽度。

```
In [3]: import matplotlib.pyplot as plt
                                     Apython中强大的画图模块
       from load import*
                                     #导入和预处理代码写于Load.py中。温要用到其中加载和处理后的images20
       traffic signs = [300, 2250, 3650, 4000]
                                           #随机选取
       for i in range(len(traffic_signs)): #1 from 0 to 3
          plt. subplot (1, 4, i+1)
          plt.axis('off')
          plt.imshow(images28[traffic_signs[i]], cmap="gray")
          #你确实必须指定颜色图(即 cmap),并将其设置为 gray 以给出灰变图像的图表。
          # 这是因为 imshow() 默认使用一种类似热力图的颜色图。
          plt.subplots adjust(wspace=0.5)
                                         #調整各个图之间的问题
       # Show the plot
       plt.show()
```


但是有一个问题,这些图片大小不一样.....

- 为了解决不同图像大小的问题,要使用
 Scikit-Image 库实现这一目标;Scikit-Image 是
 一个用于图像处理算法的集合
- transform 模块提供了一个 resize() 函数;
 可将每张图像大小调整为 28×28 像素。对于每一张在 images 数组中找到的图像,都可以执行从 skimage 库借用的变换运算。然后,将结果存储在 images28 变量中
- 最后,不要忘记将 image28 变量转换回数组, 因为 rgb2gray()函数并不使用数组作为参数

```
1. # Import the 'transform' module from 'skimage'
```

from skimage import transform

3.

Rescale the images in the 'images' array

5 images28 = [transform.resize(image, (28, 28)) for image in images]

- 首先,使用 as_default() 设置一个默认背景, 该函数会返回一个背景管理器, 然后将运算加入到图中
- 使用 TensorFlow,构建一个模型
- 为其输入和标签定义占位符
- 构建神经网络, 首先使用 flatten() 函数展平输入, 会得到一个形状为 [None, 784] 的数组
- 展平输入后、构建一个全连接层、其可以生成大小为 [None, 62] 的 logits

模型设计

模型设计

```
In [1]: import tensorflow as tf
          from load imports
          x = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28])
          y = tf. placeholder(tf. int32, [None])
          # Flatten the input data
          images_flat = tf. contrib. layers. flatten(x)
          logits = tf. contrib. layers. fully_connected(images_flat, 62, tf. nn. relu)
          # Define a loss function
          loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y.
                                                                                 logits=logits))
          # Define an optimizer
          train op = tf. train. AdamOptimizer (learning rate=0.001), minimize (loss)
          # Convert logits to label indexes
          correct_pred = tf.argmax(logits, 1)
          # Define an accuracy metric
          accuracy = tf. reduce mean(tf. cast(correct pred, tf. float32))
          tf. set random seed (1234)
          sess = tf. Session()
          sess.run(tf.global_variables_initializer())
          for i in range (201):
             print ("EPOCH", i)
              _, accuracy val = sess.rum([train_op. accuracy], feed dict=(x: images28, y: labels))
              if i 10 -- 0:
                  print ("Loss: ". loss)
              print ('DONE WITH EPOCH')
```

- 构建出多层感知器后,就可以使用 sparse_softmax_cross_entropy_with_ logits()定义损失函数,因为其可以计 算logits
- 和标签之间的稀疏 softmax 交叉熵。同时需要定义一个ADAM训练优化器,将其学习率定义为 0.001
- 最后,在进入训练之前初始化要执行的运算

• 首先使用 Session() 初始化一个 session, 然后将在前一节定义的初始化运算 init 变量传递给 run(), 并通过该函数运行该 session。最后用这些初始化的 session 来启动 epoch 或训练循环。

```
In [4]: import matplotlib pyplot as plt
         from Iond imports
         # Get the unique labels
         unique_labels = det(labels)
         # Instinitee the Stewe
         plt.figure(figure*(15, 15))
         # Set a counter
         1+1
         for label in unique_labels:
            # You pick the first lange for each label
             image = images28[labels, index(label)]
             # Define 64 subplots
            plt. subplot (8, 8, 4)
             # Don't include uses
            plt.axis("off")
             # Add a ritle to each subplot
            glt.title("Lubel [0] ((1))".format(label, labels.count(label)))
             # Add I to the counter
            1 += 1
             # And you plot this first lange
            plt.imshow(image)
         # Show the play
         plt. show()
```

模型训练

虽然数据可视化的结果很直观很清晰,但有时候我们需要一个更加精确的方法来衡量我们模型的准确性。除此之外,我们还可以用BelgiumTS提供的验证数据Testing来对其他的图片进行测试。

```
In [9]: from skimage import transform
          from load import#
          # Load the test data
         test_images, test_labels = load_data(test_data_directory)
          # Transform the images to 28 by 28 pixels
         test images28 = [transform.resize(image, (28, 28)) for image in test images]
          # Convert to gravscale
          from skimage color import rgb2gray
         test_images28 = rgb2gray(np.array(test_images28))
          # Run predictions against the full test set.
         predicted = sess.run([correct_pred], feed_dict=(x: test_images28))[0]
          # Calculate correct matches
          match_count = sum([int(y == y_) for y, y_ in zip(test_labels, predicted)])
          # Calculate the accuracy
          accuracy = match count / len(test labels)
         # Print the accuracy
         print ("Accuracy: (:.3f)", format (accuracy))
         Accuracy: 0.669
```

模型评测

- 课程感想

通过一学期的深度学习,从最初的单神经卷积网络到后来多神经卷积网络,再到深度神经卷积网络以及后面的迁移学习,每一次的模型设计,模型训练,模型评估都是对自己能力的一种提升,同时在课程中也了解了一些实例,例如花卉识别,生成式对抗网络原理等,总体来说,这门课程感觉挺好的。

■参考文献

http://ai.51cto.com/art/201708/546849.htm

https://blog.csdn.net/sinat_34686158/article/details/77

总结

1. 课程感想

2. 参考文献

感朔观着