Policy Search

CMPT 729 G100

Jason Peng

Overview

- Policy Optimization
- Black Box Optimization
- Evolutionary Methods
- Finite-Difference Methods

Policy

$$\pi(\mathbf{a}|\mathbf{s})$$

$$\mathbf{s} \Rightarrow \boxed{\pi}$$

Supervised Learning

$$\{(\mathbf{o}_0, \mathbf{a}_0), (\mathbf{o}_1, \mathbf{a}_1), \ldots\}$$

Dataset

Behavioral Cloning

Supervised Learning

Policy

$$\pi(\mathbf{a}|\mathbf{s})$$

$$\mathbf{s} \Rightarrow \boxed{\pi} \Rightarrow \mathbf{a}$$

Policy

$$\theta^* = \arg\max_{\theta} J(\pi_{\theta})$$
 Just use gradient ascent! Objective is often NOT differentiable

$$\frac{\partial r_0}{\partial \theta}$$

$$rac{\partial r_0}{\partial heta} = rac{\partial r_0}{\partial \mathbf{a}_0} rac{\partial \mathbf{a}_0}{\partial heta}$$

Reward function may not be differentiable

$$\frac{\partial r_1}{\partial \theta} = \frac{\partial r_1}{\partial \mathbf{a}_1} \frac{\partial \mathbf{a}_1}{\partial \theta}$$

$$\frac{\partial r_1}{\partial \theta} = \frac{\partial r_1}{\partial \mathbf{a}_1} \frac{\partial \mathbf{a}_1}{\partial \theta}$$

Nondifferentiable Objective

$$\theta^* = \arg\max_{\theta} \ J(\pi_\theta)$$
 Just use gradient ascent! Objective is often NOT differentiable

Black Box Optimization

$$\theta^* = \arg\max_{\theta} J(\pi_{\theta})$$

black box

 $J(\pi_{\theta})$

Random Search

- Parameter space: $\theta \in \Theta$
- Each parameter is bounded: $heta_i \in [heta_i^{\min}, heta_i^{\max}]$
- Idea: just sample randomly

Random Search

- Parameter space: $\theta \in \Theta$
- Each parameter is bounded: $heta_i \in [heta_i^{\min}, heta_i^{\max}]$
- Idea: just sample randomly

Pick θ with highest expected return

Random Search for Hyper-Parameter Optimization [Bergstra and Bengio 2012]

Grid Search

- Parameter space: $\theta \in \Theta$
- Each parameter is bounded: $heta_i \in [heta_i^{\min}, heta_i^{\max}]$
- Idea: discretize space and evaluate

Random Search

- Extremely simple
- ✓ Trivially parallel
- \checkmark Can work well for small number of parameters (< 10)

- **X** Curse of dimensionality
- > Probably won't find an optimum

Smarter Search

Adapt search samples base on objective

Smarter Search

Adapt search samples base on objective

Random Search

• Random Search

Random Search

Random Search

Evolutionary Methods

Adapt search samples base on objective

ALGORITHM 4: CEM

1: $q^0 \leftarrow$ initialize search distribution

- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg\max_{q} \frac{1}{m} \sum_{i=1}^{m} \log q(\hat{\theta}_{i})$
- 7: end for
- 8: return best performing θ

ALGORITHM 4: CEM

1: $q^0 \leftarrow$ initialize search distribution

- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg\max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_j)$
- 7: end for
- 8: return best performing θ

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg\max_{q} \frac{1}{m} \sum_{i=1}^{m} \log q(\hat{\theta}_{i})$
- 7: end for
- 8: return best performing θ

ALGORITHM 4: CEM

1: $q^0 \leftarrow$ initialize search distribution

- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\theta_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg\max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_j)$
- 7: end for
- 8: return best performing θ

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg\max_{q} \frac{1}{m} \sum_{i=1}^{m} \log q(\hat{\theta}_j)$
- 7: end for
- 8: return best performing θ

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg\max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_j)$
- 7: end for
- 8: return best performing θ

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg\max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_j)$
- 7: end for
- 8: return best performing θ

ALGORITHM 4: CEM

1: $q^0 \leftarrow$ initialize search distribution

- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples:

$$q^{i+1} = \arg\max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_j)$$

- 7: end for
- 8: return best performing θ

$$q^i = \mathcal{N}\left(\mu^i, \Sigma^i\right)$$

$$\mu^i = \begin{pmatrix} \mu_1^i \\ \vdots \\ \mu_d^i \end{pmatrix}$$

$$\Sigma^i = \begin{bmatrix} \sigma^i_1 & & & \\ & \ddots & & \\ & & \sigma^i_d \end{bmatrix}$$

$$\arg\max_{q} \ \frac{1}{m} \sum_{j=1}^{m} \log \ q(\hat{\theta}_{j}) \qquad \text{where} \quad q = \mathcal{N} \left(\mu, \Sigma \right)$$

$$\nabla_q \frac{1}{m} \sum_{j=1}^m \log q(\hat{\theta}_j) = 0$$

$$\nabla_q \frac{1}{m} \sum_{j=1}^m -\frac{1}{2} \left(\hat{\theta}_j - \mu \right)^T \Sigma^{-1} \left(\hat{\theta}_j - \mu \right) - \frac{1}{2} \log \det \left(\Sigma \right) + C = 0$$

$$\nabla_{\mu} \frac{1}{m} \sum_{j=1}^{m} -\frac{1}{2} \left(\hat{\theta}_{j} - \mu \right)^{T} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) - \frac{1}{2} \log \det (\Sigma) + C = 0$$

$$= \frac{1}{m} \sum_{j=1}^{m} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) = 0$$

$$= \frac{1}{m} \sum_{j=1}^{m} \underline{\Sigma} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) = \underline{\Sigma} 0$$

$$\nabla_{\mu} \frac{1}{m} \sum_{j=1}^{m} -\frac{1}{2} \left(\hat{\theta}_{j} - \mu \right)^{T} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) - \frac{1}{2} \log \det \left(\Sigma \right) + C = 0$$

$$= \frac{1}{m} \sum_{j=1}^{m} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) = 0$$

$$= \frac{1}{m} \sum_{j=1}^{m} \Sigma \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) = \Sigma 0$$

$$= \frac{1}{m} \sum_{j=1}^{m} \left(\hat{\theta}_{j} - \mu \right) = 0$$

$$= \left(\frac{1}{m} \sum_{j=1}^{m} \left(\hat{\theta}_{j} \right) \right) - \mu = 0$$

$$\mu^{*} = \frac{1}{m} \sum_{j=1}^{m} \hat{\theta}_{j}$$

$$\nabla_{\Sigma} \frac{1}{m} \sum_{j=1}^{m} -\frac{1}{2} \left(\hat{\theta}_{j} - \mu \right)^{T} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) - \frac{1}{2} \log \det (\Sigma) + C = 0$$

$$= \sum_{i=1}^{d} \log \sigma_{i} \qquad \Sigma = \begin{bmatrix} \sigma_{i} \\ & \ddots \\ & & \sigma_{d} \end{bmatrix}$$

$$\nabla_{\sigma_i} \frac{1}{m} \sum_{i=1}^m -\frac{1}{2\sigma_i} \left(\hat{\theta}_{j,i} - \underline{\mu_i^*} \right)^2 - \frac{1}{2} \log \sigma_i = 0$$

$$\nabla_{\sigma_i} \frac{1}{m} \sum_{j=1}^{m} -\frac{1}{2\sigma_i} \left(\hat{\theta}_{j,i} - \mu_i^* \right)^2 - \frac{1}{2} \log \sigma_i = 0$$

$$= \frac{1}{2\sigma_i^2} \frac{1}{m} \sum_{j=1}^{m} \left(\hat{\theta}_{j,i} - \mu_i^* \right)^2 - \frac{1}{2\sigma_i} = 0$$

$$\frac{1}{2\sigma_i^2} \frac{1}{m} \sum_{j=1}^m \left(\hat{\theta}_{j,i} - \mu_i^* \right)^2 = \frac{1}{2\sigma_i}$$

$$\sigma_i^* = \frac{1}{m} \sum_{j=1}^m \left(\hat{\theta}_{j,i} - \mu_i^* \right)^2$$

ALGORITHM 4: CEM

1: $q^0 \leftarrow$ initialize search distribution

$$q^i = \mathcal{N}\left(\mu^i, \Sigma^i\right)$$

- 2: **for** iteration i = 0, ..., k 1 **do**
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$

6: Update search distribution with elite samples:

$$q^{i+1} = \operatorname{arg\ max}_q \frac{1}{m} \sum_{j=1}^m \log q(\hat{\theta}_j)$$

7: end for

8: return best performing
$$\theta$$

$$\mu^* = \frac{1}{m} \sum_{j=1}^m \hat{\theta}_j$$

$$\sigma_i^* = \frac{1}{m} \sum_{j=1}^m \left(\hat{\theta}_{j,i} - \mu_i^* \right)^2$$

Covariance Matrix Adaptation (CMA)

The CMA Evolution Strategy: A Comparing Review [Hansen 2006]

Evolution Strategy Applications

Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control [Ebert et al. 2015]

Evolution Strategy Applications

Flexible Muscle-Based Locomotion for Bipedal Creatures [Geijtenbeek et al. 2013]

Evolution Strategies

- ✓ Highly parallelizable
- ✓ Can work well for < 100 parameters

- Slow convergence
- X Difficult to scale to large numbers of parameters

Nondifferentiable Objective

- Start with initial guess $\, heta^0\,$
- Approximate partial derivatives using finite-differences

$$\frac{\partial J}{\partial \theta_j} \approx \frac{J(\pi_{\theta+\epsilon_j}) - J(\pi_{\theta-\epsilon_j})}{2\epsilon} \qquad \epsilon_j = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \text{jth component}$$
very small

- Start with initial guess $\, heta^0\,$
- Approximate partial derivatives using finite-differences

- Start with initial guess $\, heta^0\,$
- Approximate partial derivatives using finite-differences

- Start with initial guess $\, heta^0\,$
- Approximate partial derivatives using finite-differences

- Start with initial guess $\, heta^0\,$
- Approximate partial derivatives using finite-differences

$$\Delta_j = \frac{J(\pi_{\theta + \epsilon_j}) - J(\pi_{\theta - \epsilon_j})}{2\epsilon}$$

• Update: $\theta \leftarrow \theta + \alpha \triangle$

$$\triangle = \begin{pmatrix} \triangle_1 \\ \vdots \\ \triangle_n \end{pmatrix}$$

for every j

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion [Kohl and Stone 2004]

- Start with initial guess $\, heta^0\,$
- Approximate partial derivatives using finite-differences

$$\triangle_j = \frac{J(\pi_{\theta + \epsilon_j}) - J(\pi_{\theta - \epsilon_j})}{2\epsilon}$$

• Update: $\theta \leftarrow \theta + \alpha \triangle$

for every j

2n evaluations

Directional Derivative

Directional Derivative

Finite-Differences (Directional Derivative)

- Start with initial guess $heta^0$
- Sample direction vector δ
- Approximate directional derivative

$$\triangle = \frac{J(\pi_{\theta+\epsilon\delta}) - J(\pi_{\theta-\epsilon\delta})}{2\epsilon} \, \delta \quad \text{fewer evaluations} \quad \text{per iteration}$$

• Update: $\theta \leftarrow \theta + \alpha \triangle$

"directional derivative"

Augmented Random Search (ARS)

		Maximum average reward after # timesteps				
Task	# timesteps	ARS	PPO	A2C	CEM	TRPO
Swimmer-v1	10^{6}	361	≈110	≈ 30	≈ 0	≈ 120
Hopper-v1	10^{6}	3047	≈ 2300	≈ 900	≈ 500	≈ 2000
HalfCheetah-v1	10^{6}	2345	≈ 1900	≈ 1000	≈ -400	≈ 0
Walker2d-v1	10^{6}	894	≈ 3500	≈ 900	≈ 800	≈ 1000

Simple Random Search Provides a Competitive Approach to Reinforcement Learning [Mania et al. 2018]

ARS Applications

Policies Modulating Trajectory Generators [Iscen et al. 2018]

Summary

- Policy Optimization
- Black Box Optimization
- Evolutionary Methods
- Finite-Difference Methods