On appelle permutation d'ordre n toute façon de réarranger les nombres 1, ..., n ou de manière équivalente une liste $\sigma(1), \ldots, \sigma(n)$ qui contient chaque nombre entre 1 et n une seule fois. On note **id** la permutation identité, qui liste les nombres en ordre croissant : 1,..., n.

Lemme 1. (de réarrangement) Soient $a_1, ..., a_n$ et une suites de nombres réels en ordre croissant et $b_1, ..., b_n$ une suite de nombres en order décroissant. À toute permutation σ on associe la somme

$$S(\sigma) = a_1 b_{\sigma(1)} + \dots + a_n b_{\sigma(n)}.$$

Alors S(id) est la plus petite valeur de $\{S(\sigma) \mid \sigma \text{ permutation d'ordre } n\}$.

Proof. Prenons σ la permutation avec la plus petite somme $S(\sigma)$. Supposons par l'absurde qu'il existe i entre 1 et n tel que $\sigma(i) \neq i$ et on considère le plus petit tel i. On pose $j = \sigma(i)$ et on remarque que $\sigma(j) \neq j$ car sinon $\sigma(i)$ serait égal à $\sigma(j)$ et la liste qui définit σ contiendrait deux fois la même valeur. Comme i est le plus petit indice tel que $\sigma(i) \neq i$ on déduit que i < j. On définit ensuite la permutation τ qui coïncide avec σ partout sauf dans la i-ième et j-ième position :

$$\tau: \sigma(1), \ldots, \sigma(i-1), i, \sigma(i+1), \ldots, \sigma(j-1), j, \sigma(j+1), \ldots, \sigma(n).$$

On a alors

$$S(\sigma) - S(\tau) = a_i b_{\sigma}(i) - a_i b_{\tau}(i) + a_j b_{\sigma}(j) - a_j b_{\tau}(j)$$

= $a_i b_j - a_i b_i + a_j b_j - a_j b_i$
= $(a_j - a_i)(b_i - b_j).$

Comme la suite a_1, \ldots, a_n est croissante et i < j on a $a_j - a_i > 0$. De la même manière, puisque b_1, \ldots, b_n est décroissante et i < j on a $b_i - b_j > 0$. Donc le produit $(a_j - a_i)(b_i - b_j)$ est positif et $S(\sigma) > S(\tau)$. Cela contredit la supposition faite, donc il n'existe pas de permutation σ avec une somme $S(\sigma)$ inférieure à celle de l'identité $S(\mathbf{id}) = a_1b_1 + \cdots + a_nb_n$