

FACULDADE ANHANGUERA DE JUNDIAÍ

Rua do Retiro, 3.000 • Retiro • Jundiaí (SP) • 13209-002 • (11) 3109-0600

CIRCUITOS DIGITAIS Funções e expressões lógicas

Prof. Rogério Moreira

BLOCOS LÓGICOS BÁSICOS Função Lógica Expressão Tabela da Símbolo Usual Porta Verdade Função E: S = ABE assume 1 quando todas as variáveis AND forem 1 e 0 nos outros casos. OU Função OU: S = A + BA B assume 0 quando 0 todas as variáveis 0 OR forem 0 e 1 nos outros casos.

BLOCOS LÓGICOS BÁSICOS								
Porta	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão				
NÃO NOT INVERSOR	As	A S 0 1 1 1 0	Função NÃO: inverte a variável aplicada à sua entrada.	$S = \overline{A}$				
NE NAND	A	A B S 0 0 1 0 1 1 1 0 1 1 1 0	Função NE: inverso da função E.	$S = \overline{AB}$				
NOU	A	A B S 0 0 1 0 1 0 1 0 0 1 1 0	Função NOU: inverso da função OU.	$S = \overline{A + B}$				

Porta	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão
OU EXCLUSIVO EXCLUSIVE OR	A	A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função OU Exclusivo: assume 1 quando as variáveis assumirem valores diferentes entre si.	$S = \overline{A} \cdot B + A \cdot \overline{A}$ $S = A \oplus B$
NOU EXCLUSIVO EXCLUSIVE NOR COINCIDÊNCIA	A	A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função Coincidência: assume 1 quando houver coincidência entre os valores das variáveis.	$S = \overline{A} \cdot \overline{B} + A$ $S = A \odot B$

BLOCO LÓGICO	BLOCO EQUIVALENTE

AND - Logical AND

Description:

Performs the logical AND between the contents of register Rd and register Rr and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd • Rr.

Program Counter:

$PC \leftarrow PC + 1$

Status Register (SREG) and Boolean Formula:

1	Т	н	:8-	V	N	Z	C	
_	-	-	\Leftrightarrow	0	\Leftrightarrow	\Leftrightarrow	-	1

S: N ⊕ V, For signed tests.

V: 0

Cleared

N: B7

Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5 •R4 •R3• R2 •R1 •R0 Set if the result is \$00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

and c2.c3 : Bitwise and c2 and c3. result in c2 ldi c16.1 : Sec bitmask 0000 foll in c16 and c2.c16 : Isolate bit 9 in c2

Words: 1 (2 bytes)

ANDI - Logical AND with Immediate

Description:

Performs the logical AND between the contents of register Rd and a constant and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd • K

16-bit Opcode:

0111	RESE	0.000	RECEIV

Status Register (SREG) and Boolean Formula:

1	T	н	8	٧	N	Z	C	
-	-	-	\Leftrightarrow	0	\Leftrightarrow	\Leftrightarrow	-	1

S: N ⊕ V, For signed tests.

V: 0

Cleared

N: B7

Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5•R4 •R3• R2• R1• R0 Set if the result is \$00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

andi r17,50F ; Clear upper mibble of r17 andi r18,910 ; Isolate bit 4 in r18 andi r19.8AA ; Clear odd bits of r19

Words: 1 (2 bytes)

EOR - Exclusive OR

Description:

Performs the logical EOR between the contents of register Rd and register Rr and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd ⊕ Rr

	Syntax:	Operands:	Program Counter:
(0)	EOR Rd,Rr	$0 \le d \le 31, 0 \le r \le 31$	$PC \leftarrow PC + 1$

16-bit Opcode:

0010	01xd	dada	THEF

Status Register (SREG) and Boolean Formula:

I	Т	Н	8	٧	N	Z	C	
-	-	-	\leftrightarrow	0	\Leftrightarrow	\leftrightarrow	-	1

S: N ⊕ V, For signed tests.

V: 0 Cleared

N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5 •R4• R3• R2 •R1• R0 Set if the result is \$00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

eor r4,r4 ; Clear r4

eor ri,x22 ; Bitwise exclusive or between ri and x22

Words: 1 (2 bytes)

OR - Logical OR

Description:

Performs the logical OR between the contents of register Rd and register Rr and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd v Rr

Syntax: Operands: Program Counter: (i) OR Rd,Rr $0 \le d \le 31$, $0 \le r \le 31$ $PC \leftarrow PC + 1$

16-bit Opcode:

0414	10m8	ddddi	EXCES

Status Register (SREG) and Boolean Formula:

ı	T	Н	8	٧	N	Z	С	
-	-	-	\Leftrightarrow	0	⇔	\Leftrightarrow	-	1

S: N ⊕ V, For signed tests.

V: 0

Cleared

N: B3

Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0 Set if the result is \$00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

or r15,r16 ; Do bitwise or between registers
but r15,6 , Store bit 4 of r15 in T Flag
brts ok : Branch if T Flag set
...
nop , Stanch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0301

ORI - Logical OR with Immediate

Description:

Performs the logical OR between the contents of register Rd and a constant and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd v K

Syntax: Operands: Program Counter: i) ORI Rd,K $16 \le d \le 31$, $0 \le K \le 255$ $PC \leftarrow PC + 1$

16-bit Opcode:

0110	REEK	0.004	EXERT
	200000	10000000	

Status Register (SREG) and Boolean Formula:

ı	T	Н	8	٧	N	Z	C	
-	-	-	0	0	\Leftrightarrow	\Leftrightarrow	-	1

S: N ⊕ V, For signed tests.

V: 0

Cleared

N: B7

Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0 Set if the result is \$00: cleared otherwise.

R (Result) equals Rd after the operation.

Example:

ori r16,5F0 ; Set high nibble of r16 ori r17,1 ; Set bit 8 of r17

Words: 1 (2 bytes)

Exercício

Desenhe o sinal na saída S do circuito da Figura 2.58.

Figura 2.58

- 1. Expressões booleanas obtidas de circuitos lógicos
- 2. Circuitos lógicos obtidos de expressões booleanas
- 3. Tabelas verdade obtidas de expressões booleanas
- 4. Expressões booleanas obtidas de tabelas verdade

1. Expressões booleanas obtidas de circuitos lógicos

- 2. Circuitos lógicos obtidos de expressões booleanas
- 3. Tabelas verdade obtidas de expressões booleanas
- 4. Expressões booleanas obtidas de tabelas verdade

$$\therefore S = \left[\overline{A} \cdot B \cdot (\overline{B} \cdot C) \cdot (\overline{B} + D) \right]$$

1. Expressões booleanas obtidas de circuitos lógicos

2. Circuitos lógicos obtidos de expressões booleanas

- 3. Tabelas verdade obtidas de expressões booleanas
- 4. Expressões booleanas obtidas de tabelas verdade

$$S = (A + B).C.(B + D)$$

$$S = [(\overline{\overline{A} + B}) + (\overline{\overline{C} \cdot D})] \cdot \overline{\overline{D}}$$

- 1. Expressões booleanas obtidas de circuitos lógicos
- 2. Circuitos lógicos obtidos de expressões booleanas
- 3. Tabelas verdade obtidas de expressões booleanas
- 4. Expressões booleanas obtidas de tabelas verdade

 $S = A \cdot \overline{B} \cdot C + A \cdot \overline{D} + \overline{A} \cdot B \cdot D$.

A	В	С	D	1º membro A . B . C	2º membro A . D	3º membro A . B . D	Resultado final S
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	0
0	1	1	1	0	0	1	1
1	0	0	0	0	1	0	1
1	0	0	1	0	0	0	0
1	0	1	0	1	1	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	1	0	1
1	1	0	1	0	0	0	0
1	1	1	0	0	1	0	1
1	1	1	1	0	0	0	0

- 1. Expressões booleanas obtidas de circuitos lógicos
- 2. Circuitos lógicos obtidos de expressões booleanas
- 3. Tabelas verdade obtidas de expressões booleanas
- 4. Expressões booleanas obtidas de tabelas verdade

#	A	В	S
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	1

Caso 00: S=1 quando A=0 e B=0 ($\overline{A}=1$ e $\overline{B}=1$) $\Rightarrow \overline{A}$. \overline{B}

Caso 10: S = 1 quando A = 1 e B = 0 (A = 1 e \overline{B} = 1) \Rightarrow A . \overline{B}

Caso 11: S = 1 quando A = 1 e $B = 1 \Rightarrow A$. B

 $\therefore S = \overline{A} \cdot \overline{B} + A \cdot \overline{B} + A \cdot B$

#	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Para solucionar, extraímos os casos em que a expressão é verdadeira (S=1): 000 ou 010 ou 110 ou 111.

 $\therefore S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.B.\overline{C} + A.B.C$