Današnja tematika

- Kinematika rotacijskog gibanja
 - → Analogija s 1D-kinematikom translacijskog gibanja
- Kinetička energija rotacijskog sustava
 - → Moment inercije
- Teorem o paralelnim osima (Računanje momenta tromosti)

Kinematika Rotacijskog gibanja

- Do sada nismo istraživali problematiku rotacijskog gibanja.
 - Radili smo translacijsko gibanje gdje su se čvrsta tijela (objekti) gibala translacijski – klizala
 - → Vrlo često se, primjerice, kod translacijskih gibanja gdje se koriste koloture s užetom, masa kolotura zanemaruje (koloture rotiraju)
- Rotacijsko gibanje je važno i zbog toga ga moramo razumjeti (primjeri rotacijskih električnih strojeva s rotirajućim mehaničkim komponentama)!
- Većina jednadžbi koje smo koristili u translacijskom gibanju koristit će se u vrlo sličnom obliku u rotacijskom gibanju.

Translacijsko (linearno)-Rotacijsko- gibanje

Translacijsko gibanje			Rotacijsko (linearno) gibanje		
put	S	m	kut	φ	rad
brzina	V	m/s	kutna brzina	ω	rad/s
ubrzanje	а	m/s ²	kutno ubrzanje	α	rad/s ²
masa	m	kg	mom. inercije	J (1)	kg∘m²
sila	<i>F</i> = <i>m</i> ∘a	N	moment sile	$M = J \circ \alpha$	N∘m
količina gibanja	<i>m</i> ∘v	kg∘(m/s)	zamah	J ∘w	kg∘(m²/s)
rad	F∘s	J	rad	<i>Μ</i> ∘φ	J
kinetička energija	$\frac{\mathbf{m} \cdot \mathbf{v}^2}{2}$	J	kinetička energija	$\frac{\mathbf{J} \cdot \boldsymbol{\omega}^2}{2}$	J
snaga	F∘v	W	snaga	M ∘ω	W

Kinematika Rotacijskog gibanja

• Primjer pretvorbe translacijskog u rotacijsko gibanje

Kinematika Rotacijskog gibanja

- Kutna brzina
 osi je ISTA.
- Translacijska (linearna) brzina v će biti različita zbog $v = \omega r$.
- Primjer rotirajućeg diska

Rotacijske varijable.....

- Promatra se rotacija oko fiksne osi:
 - → Radi se o disku koji rotira oko osi koja prolazi kroz njegov centar:
- Na osnovi jednadžbe gibanja koje smo upoznali u translacijskom gibanju :

$$v = \frac{dx}{dt}$$

Analogno se može pisati i za rotacijsko gibanje

$$\omega = \frac{\mathsf{d}\theta}{\mathsf{d}t}$$

Rotacijske varijable...

- Neka se
 mijenja s vremenom
- Definira se kutna akceleracija:

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

Neka je α=konst.

Uvrštavanjem u gornju jednadžbu i integriranjem dobije se brzina ω i kut θ kao funkcije vremena:

$$\alpha = konst.$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

Rotacijske varijable – veza s translacijskim.

$$\alpha = konst.$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

 Polazeći od osnovnih rotacijskih jednadžbi jednostavno se mogu odrediti translacijske (linijske) varijable za svaku točku diska na udaljenosti R od centra rotacije:

$$\rightarrow x = \theta R$$

$$\rightarrow V = \omega R$$

$$\rightarrow a = \alpha R$$

Primjer:

- Zamašnjak se vrti kutnom brzinom ω_0 = 500 rad/s. U t = 0 počinje kočenje s konstantnom retardacijom 0.5 rad/s^2 . Za koje će se vrijeme zamašnjak zaustaviti?
- Postavimo da je $\alpha = -0.5 \text{ rad/s}^2$.
- Vrijedi $\omega = \omega_0 + \alpha t$ traži se kada je $\omega = 0$:

$$t = -\frac{\omega_0}{\alpha}$$

• Vrijedi
$$t = \frac{500 \ rad/s}{0.5 \ rad/s^2} = 1000 \ s = 167 \ min$$

Napomena: Koriste se relacije analogne translacijskom gibanju!!

Sažetak

Rotacijske varijable	Translacijske (lin.) varijable		
α = konst.	a = konst.		
$\omega = \omega_0 + \alpha t$	$v = v_0 + at$		
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	$x = x_0 + v_0 t + \frac{1}{2} a t^2$		

Za točke na udaljenosti R od osi rotacije vrijedi:

$$x = R\theta$$
 $v = \omega R$ $a = \alpha R$

Primjer: Kotač s užetom

• Kotač polumjera R = 0.4 m rotira slobodno oko osovine. Na njega je namotano uže. Počevši od t = 0, uže se počne izvlačiti konstantnim ubrzanjem $a = 4 \text{ m/s}^2$. Koliko okreta napravi kotač nakon 10 sekunda?

Rješenje: Kotač s užetom

- Uz $a = \alpha R$ slijedi α : $\alpha = a / R = 4 \frac{m}{s^2} / 0.4 m = 10 \frac{rad}{s^2}$
- Uz poznato kutno ubrzanje jednostavno se računa pređeni put (kut)

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 = 0 + O(10) + \frac{1}{2} (10)(10)^2 = 500 \text{ rad}$$

$$= 500 \ rad \ x \frac{1}{2\pi} \frac{rot}{rad}$$

Rotacija i kinetička energija

- Pretpostavimo jednostavan rotirajući sustav kao na slici.
- Pretpostavimo također da su mase spojene krutim vezama (štapovima) bez vlastite mase
- Kinetička energija rotirajućeg sustava bit će jednaka sumi kinetičkih energija svake pojedinačno

Rotacija i kinetička energija

Vrijedi:

$$W_k = \sum_i \frac{1}{2} m_i v_i^2$$
 pa uz $v_i = \omega r_i$ dobije se

$$W_k = \frac{1}{2} \sum_i m_i (\omega r_i)^2 = \frac{1}{2} \omega^2 \sum_i m_i r_i^2$$

Slijedi:

$$W_k = \frac{1}{2} \operatorname{I} \omega^2$$

$$I = \sum_{i} m_{i} r_{i}^{2}$$

NOVI POJAM: Moment inercije oko rotirajuće osi

I(J) ima jedinicu $kg m^2$.

Moment inercije (tromosti)

• Iz prethodne analize slijedi
$$W_k = \frac{1}{2} I \omega^2$$
 uz $I = \sum_i m_i r_i^2$

- Moment inercije I (J) ovisi o raspodijeljenosti (distribuciji) masa u rotirajućem sustavu. Što su raspodijeljene mase dalje od centra rotacije, moment tromosti je veći (s kvadratom udaljenosti !!!).
- Za definirani objekt koji rotira, moment tromosti će ovisiti od odabrane rotacijske osi.
- Može se uočiti velika sličnost mase kod translacijskog gibanja i momenta tromosti (inercije) od rotacijskog gibanja!

Izračun momenta tromosti (1)

 Do sada je pokazano da za N diskretnih elementarnih masa raspodijeljenih oko osi rotacije, moment inercije iznosi:

$$I = \sum_{i=1}^{N} m_i r_i^2$$
 gdje je r_i razmak elementarne mase m_i od centra rotacije.

Primjer: Izračunajte moment tromosti "točkastih" masa (*m*) razmještenih na vrhovima kvadrata stranice *L*, oko okomite osi kroz centar kvadrata

Izračun momenta tromosti (2)

Računanje razmaka masa od centra rotacije

$$r^2 = 2\left(\frac{L}{2}\right)^2 = \frac{L^2}{2}$$
 Korištenjem Pytagorinog teorema

slijedi
$$I = \sum_{i=1}^{N} m_i r_i^2 = m \frac{L^2}{2} + m \frac{L^2}{2} + m \frac{L^2}{2} + m \frac{L^2}{2} = 4m \frac{L^2}{2}$$

Izračun momenta tromosti (3)

 Na sličan način kao i u prošlom primjeru, ovdje je os rotacije promijenjena:

$$I = \sum_{i=1}^{N} m_i r_i^2 = m \frac{L^2}{4} + m \frac{L^2}{4} + m \frac{L^2}{4} + m \frac{L^2}{4} = 4m \frac{L^2}{4}$$

Izračun momenta tromosti (4)

Ovdje je os rotacije stranica kvadrata

$$I = \sum_{i=1}^{N} m_i r_i^2 = mL^2 + mL^2 + m0^2 + m0^2$$

Izračun momenta tromosti (zaključak)

 Pogledajmo kako za ISTI objekt moment tromosti ovisi o osi rotacije!!

Izračun momenta tromosti (SAMO ZA VAS !!!)

Za prikazani kruti oblik načinjen od istih kuglica (masa) kao u dosadašnjim zadacima, usporedite momente tromosti l_a, l_b, and l_c oko osi rotacija a, b, i c.

→ Koji od odgovora je točan?

(a)
$$I_a > I_b > I_c$$

(b)
$$I_a > I_c > I_b$$

(c)
$$I_{\rm b} > I_{\rm a} > I_{\rm c}$$

Izračun momenta tromosti (Rješenje)

Ovdje se krije RJEŠENJE!!!

Izračun momenta tromosti (SAMO ZA VAS !!!)

 Za diskretno raspodijeljene mase u rotirajućem sustavu (objektu) vrijedi:

 $I = \sum_{i=1}^{N} m_i r_i^2 \qquad .$

- Za tijelo s kontinuiranom raspodjelom mase po volumenu, mora se zbrojiti doprinos momenta tromosti mr² svake infinitezimalno male mase dm.
 - Moment tromosti se onda računa pomoću integrala:

$$I = \int r^2 dm$$

Izračun momenta tromosti (rezultati)

Cilindar

Primjer računanja momenta tromosti / za kruta tijela:

Tanki cilindar mase *M* i polumjera *R*, oko osi koja prolazi kroz njegov centar, okomito na ravninu cilindra.

Za ovaj slučaj je os rotacije promjer cilindra.

Kugla i disk

Primjer računanja momenta tromosti / za kruta tijela :

Kugla mase *M* polumjera *R*, oko osi rotacije Koja prolazi kroz središte kugle.

Disk ili puni cilindar mase *M* polumjera *R*, oko osi koja prolazi kroz centar baze cilindra

Momenti inercije

Teorem o paralelnim osima rotacije

- Pretpostavimo da je moment tromosti krutog tijela mase M oko osi rotacije koja prolazi kroz centar mase, I_{CM} , POZNAT.
- U tom se slučaju moment tromosti tog istog tijela oko osi rotacije koja je paralelna s osi kroz centar mase I_x i udaljena od njega za iznos D može izračunati pomoću formule:

$$I_{\mathsf{x}} = I_{\mathsf{CM}} + \mathsf{MD}^2$$

 Dakle, ako se zna I_{CM}, može se jednostavno izračunati moment tromosti oko paralelne osi.

Teorem o paralelnim osima rotacije (primjer)

 Prikazan je kruti štap mase M i dužine D. Izračunaj moment inercije tog štapa oko njegovog kraja.

$$I_{\scriptscriptstyle X} = I_{\scriptscriptstyle CM} + MD^2$$

Znamo moment inercije oko centra mase $I_{CM} = \frac{1}{12}ML^2$

Slijedi
$$I_X = \frac{1}{12} ML^2 + M \left(\frac{L}{2}\right)^2 = \frac{1}{3} ML^2$$

which agrees with the result on a previous slide.

KRAJ