Modellierung mit FEM Kapitel 9: Ausgewählte Themen

Prof. Dr.-Ing. Thomas Grätsch
Department Maschinenbau und Produktion
Fakultät Technik und Informatik
Hochschule für Angewandte Wissenschaften Hamburg

thomas.graetsch@haw-hamburg.de

Themenübersicht

- 1. Modellierung von Flüssigkeiten
- 2. Modellierung von Dichtungen
- 3. Erstellen einer Berechnungspräsentation

Modellierung von Flüssigkeiten

Modellbeispiel: Eigenfrequenzanalyse eines flüssigkeitsgefüllten Rohrs

Mögliche Varianten:

- Berechnung mittels FSI (Fluid-Struktur-Interaktion), sehr aufwendig und nur in Ausnahmefällen
- Nicht praktikabel(!): Modellieren der Flüssigkeit als Struktur mit kleinem E-Modul
- • Beaufschlagung der Strukturdichte mit Flüssigkeitsdichte!

Modellierung von Flüssigkeiten

Berechnung der neuen Ersatzdichte ρ_{Neu} :

Gegeben:
$$\rho_{Struktur}$$
, ρ_{Fluid} , $V_{Struktur}$, V_{fluid}

Bedingung:
$$\rho_{Zusatz} \cdot V_{Struktur} = \rho_{Fluid} \cdot V_{fluid}$$

$$\Rightarrow \rho_{\text{Zusatz}} = \rho_{\text{Fluid}} \cdot V_{\text{fluid}} / V_{\text{struktur}}$$

$$\Rightarrow \rho_{\text{Neu}} = \rho_{\text{Struktur}} + \rho_{\text{Zusatz}}$$

Vorgehensweise liefert gute Ergebnisse bei z.B. Ölpumpen, Abgaskühlern, Ölwannen, Kraftstoffleitungen etc.

Im Fall $V_{fluid} >> V_{struktur}$ können jedoch Fehler aufgrund der vernachlässigten Massenträgheit des Fluids auftreten \Rightarrow Praxisbeispiele in der Vorlesung

Modellierung von Dichtungen

- Verwenden von speziellen Dichtungselementen ("Gasket") mit zugehöriger Kraft-Verschluss-Kurve
- Nur ein Gasket-Element über Höhe der Dichtung ausreichend
- Kraft-Verschluss-Kurve liefert in der Regel der Dichtungshersteller

⇒ Praxisbeispiele in der Vorlesung

- Vorbemerkungen
 - Was soll berechnet werden
 - Angabe zum Auftraggeber
 - Angabe zur Datenherkunft
 - Was sonst noch wichtig zu erwähnen ist
- Eye Catcher
 - Ein Bild vom Bauteil oder eine Gegenüberstellung der Varianten, die berechnet werden sollen

- Materialdaten
 - Auflistung aller Materialdaten, d.h. E-Modul, Querdehnzahl,
 zul. Spannungen, Dichte etc.
 - Quelle für Daten angeben
- Lastfälle / Nachweisführung
 - Welche Lastfälle gerechnet werden sollen (ggf. im Bild darstellen)
 - Welche Nachweise geführt werden sollen (statische Festigkeit, Dauerfestigkeit, Eigenfrequenzen, Verformungen etc.)

- Lagerung / Modellbeschreibung
 - Darstellung der Lagerung
 - Vorgehensweise bei der Modellierung beschreiben
- Beschreibung FE-Modell
 - Berechnungsmethode (linear elastisch, plastisch, usw.)
 - Elementtyp (Tetrader, welcher Ansatzgrad)
 - Programmversion
 - Anzahl Elemente, Knoten, Freiheitsgrade

- Visuelle Darstellung FE-Modell
 - FE-Netz zeigen, auch Ausschnitte
 - Ggf. Konvergenzstudien erwähnen
- Darstellung der Ergebnisse
 - Überschrift auf jeder Folie (Bauteil, Variante, Lastfall)
 - Lesbare Skala und wichtige Ergebnisse mit Pfeil einzeln angeben
 - Verschiedene Ansichten zeigen
 - Konkrete Aussagen auf Folie einfügen
 - Tabellen z.B. bei Eigenfrequenzen

- Nachweisführung
 - Sämtliche Nachweise führen
- Zusammenfassung der Ergebnisse
 - Alle Ergebnisse auf einen Blick tabellenartig zusammenfassen
 - Wichtig für Diskussion in der Runde
- Zusammenfassung
 - Dies ist die "Managerfolie"
 - Alle wichtigen Aussagen noch einmal verbal zusammenfassen
 - Ggf. Empfehlungen für weitere Berechnungen aussprechen

- Anhang
 - Ggf. weitere Variantenstudien zeigen
 - Ggf. Plausibilisierung zeigen (Vergleich FE-Ergebnisse mit analytischen Formeln)
 - Ggf. Konvergenzstudien zeigen

⇒ Vollständige Beispielpräsentation in der Vorlesung

