DM n°2 Mesure & Intégration

Hugo SALOU
Dept. Informatique

9 avril 2025

Exercice 1.

1. Pour la linéarité de ℓ_N , on utilise la linéarité de la somme, et la linéarité des fonctions c_n : si $f, g \in \mathscr{C}_{2\pi}$ et $\alpha \in \mathbb{R}$ alors

$$c_n(f + \alpha g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(t) + \alpha g(t)) e^{-int} dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt + \frac{\alpha}{2\pi} \int_{-\pi}^{\pi} g(t) e^{-int} dt$$
$$= c_n(f) + \alpha c_n(g).$$

Pour monter que ℓ_N est continue, on montre que c'est une somme fini de fonctions continues car 1-lipschitzienne. En effet,

$$|c_n(f)| \le \frac{1}{2\pi} \Big| \int_{-\pi}^{\pi} f(t) e^{-int} dt \Big|$$

$$\le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)| dt$$

$$\le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f|_{\infty} dt$$

$$\le ||f||_{\infty},$$

et il en découle que ℓ_N est 2N-lipschitzienne, donc continue. De plus, on a que, pour toute fonction $f \in \mathscr{C}_{2\pi}$ telle que $||f||_{\infty} \leq 1$,

$$\ell_N(f) = \sum_{n \in [-N,N]} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_N(-t) dt,$$

Hugo Salou – *L3 ENS LYON* d'où, par inégalité triangulaire,

$$|\ell_N(f)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)| |D_N(-t)| dt \le ||f||_{\infty} \cdot \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(t)| dt}_{||D_N||_1}.$$

Ainsi, comme $||f||_{\infty} \leq 1$, on en déduit $|\ell_N(f)| \leq ||D_N||_1$ quel que soit $f \in \mathscr{C}_{2\pi}$ avec $||f||_{\infty} \leq 1$. On a donc un majorant de la fonction $|\ell_N|$. D'où $||\ell_N|| \leq ||D_N||_1$ par sup.

2. Considérons, comme indiqué dans l'indication, les fonctions f_{ε} où $f_{\varepsilon}(t) = D_N(t)/(|D_N(t)| + \varepsilon)$ pour $\varepsilon > 0$. D'une part, on sait que f_{ε} est 2π -périodique. De plus, la continuité vient de la continuité de D_N (plus facile à voir sur l'expression avec la somme), et car $|D_N(t)| + \varepsilon \ge \varepsilon > 0$ si $\varepsilon > 0$. En utilisant l'égalité sur $\ell_N(f)$ précédente, on calcule

$$\ell_N(f_{\varepsilon}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\mathrm{D}_N^2(t)}{|\mathrm{D}_N(t)| + \varepsilon} \, \mathrm{d}t = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{|\mathrm{D}_N(t)|^2}{|\mathrm{D}_N(t)| + \varepsilon} \, \mathrm{d}t.$$

Or, $g_{\varepsilon} = |\mathcal{D}_N|^2/(|\mathcal{D}_N| + \varepsilon)$ converge presque partout vers $|\mathcal{D}_N|$ lorsque l'on a $\varepsilon \to 0$. De plus, g_{ε} est dominée par $|\mathcal{D}_N|$ intégrable. Par le théorème de convergence dominée,

$$|\ell_N(f_{\varepsilon})| = \ell_N(f_{\varepsilon}) \xrightarrow[\varepsilon \to 0]{} \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(t)| dt = ||D_N||_1.$$

On vérifie aisément que

- $\triangleright f_{\varepsilon}$ est 2π -périodique et continue (simple à remarquer à partir de la forme de somme d'exponentielles);
- $||f_{\varepsilon}||_{\infty} = \sup_{t \in]-\pi,\pi[} |D_N(t)|/(|D_N(t)| + \varepsilon) \le 1.$

On en conclut que

$$\|\ell_N\| = \|\mathbf{D}_N\|_1.$$

Hugo Salou – *L3 ens lyon* 3. On a

$$\|D_N\|_1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(t)| dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{|\sin[(2N+1)t/2]|}{|\sin t/2|} dt$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{|\sin(2N+1)u|}{|\sin u|} du$$

$$\geq \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{|\sin(2N+1)u|}{|u|} du$$

$$= \frac{1}{\pi} \int_{-N\pi - \frac{\pi}{2}}^{N\pi + \frac{\pi}{2}} \frac{|\sin v|}{|v|} dv$$

$$\xrightarrow[N \to \infty]{} \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{|\sin v|}{|v|} dv = +\infty.$$

Par minoration, on en déduit que $\|\ell_N\| \to +\infty$ lorsque $N \to \infty$.

4. On applique le théorème de Banach-Steinhaus où les espaces vectoriels sont $E = (\mathcal{C}_{2\pi}, \|\cdot\|_{\infty})$ et $F = (\mathbb{R}, |\cdot|)$. Pour démontrer que l'espace vecotoriel $\mathcal{C}_{2\pi}$ est complet, on utilise la complétude de $L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_L)$. Considérons une suite de Cauchy $(g_n)_{n \in \mathbb{N}}$ de fonctions dans $\mathcal{C}_{2\pi}$. La suite $(g_n)_{n \in \mathbb{N}}$ est une suite de Cauchy de $L^1(\mathbb{R})$, espace complet, qui converge donc vers $g \in L^1(\mathbb{R})$. Or, car la convergence est pour la norme infini, la convergence des g_n est uniforme vers g. On sait ainsi que g est continue (car les g_i le sont), par unicité de la limite,

$$g(x+2\pi) \longleftrightarrow_{n \to \infty} g_n(x+2\pi) = g_n(x) \xrightarrow[n \to \infty]{} g(x).$$

On en conclut que g est dans $\mathscr{C}_{2\pi}$. L'espace E est donc complet. On peut donc appliquer le théorème de Banach-Steinhaus avec les applications linéaires continues $(\ell_i)_{i\in\mathbb{N}}$ (c.f. question 1) de E dans F. Deux cas sont donc possibles.

 \triangleright Ou bien la famille $(\|\ell_i\|)_{i\in\mathbb{N}}$ est bornée, **absurde** par la question 3.

Hugo Salou – L3 ens lyon

Mesure & Intégration

ightharpoonup Ou bien il existe une intersection A dénombrable d'ouverts denses dans $\mathscr{C}_{2\pi}$ telle que $\sup_{N\in\mathbb{N}}|\ell_N(f)|=+\infty$ pour toute fonction $f\in A,\ i.e.$ que la série de Fourier de f diverge en 0.

Exercice 2.

1. Pour montrer que ϕ_g est bien définit, il suffit de montrer que si g et g' sont égales μ -presque partout, alors quel que soit f, les fonctions $f \cdot g$ et $f \cdot g'$ sont égales μ -presque partout. Ainsi, on a l'égalité $\int_{\Omega} f(x) g(x) \mu(\mathrm{d}x) = \int_{\Omega} f(x) g'(x) \mu(\mathrm{d}x)$, d'où $\phi_g = \phi_{g'}$.

De plus, par l'inégalité de Hölder, on a que

$$\Big| \int_{\Omega} f g \, \mathrm{d}\mu \Big| \le \int_{\Omega} |fg| \, \mathrm{d}\mu \le \|f\|_{\mathrm{L}^p} \times \|g\|_{\mathrm{L}^q},$$

qui est fini car les deux termes sont finis : on a bien $\phi_g(f) \in \mathbb{R}$. On en conclut que ϕ est bien définie.

La linéarité de ϕ_g vient simplement de la linéarité du produit de fonctions et de la linéarité de l'intégrale :

$$\phi_{\alpha g + \beta h}(f) = \int_{\Omega} (\alpha g(x) + \beta h(x)) f(x) dx$$
$$= \alpha \int_{\Omega} g(x) f(x) dx + \beta \int_{\Omega} h(x) f(x) dx$$
$$= \alpha \phi_g(f) + \beta \phi_h(f).$$

Pour la continuité, il suffit de remarquer que ϕ est 1-lipschitzienne. En effet, on veut montrer que (par linéarité)

$$\|\phi_g\|_{(\mathbf{L}^p)^*} := \sup_{\|f\|_{\mathbf{L}^p} = 1} |\phi_g(f)| \le \|g\|_{\mathbf{L}^q}.$$

Soit $f \in \mathcal{L}^p$ telle que $||f||_{\mathcal{L}^p} = 1$. Alors, par l'inégalité de Hölder, on a que

$$|\phi_g(f)| = \left| \int_{\Omega} f g \, \mathrm{d}\mu \right| \le \int_{\Omega} |f g| \, \mathrm{d}\mu \le ||g||_{L^q} \times ||f||_{L^p},$$

$$- 6/8 -$$

Hugo Salou – L3 ens lyon Mesure & Intégration et ce, quel que soit f de norme L^p valant 1. Ainsi $\|\phi(g)\|_{(L^p)^*} \leq \|g\|_{L^q}$ et on en déduit que ϕ est 1-lipschitzienne donc continue.

2. Dans la question 1, on a montré $(\star): \|\phi_g\|_{(L^p)^*} \leq \|g\|_{L^q}$. Il ne reste qu'à montrer l'autre inégalité. Considérons la fonction étagée $u_g = \mathbbm{1}_{\{g(x)>0\}} - \mathbbm{1}_{\{g(x)<0\}}$. Elle est bien définie car, si on a g = g' μ -presque partout, alors $u_g = u_{g'}$ μ -presque partout. On vérifie que $g = u_g|g|$: la fonction u_g donne le signe de g. Et, elle est mesurable car l'application g/|g| l'est comme quotient de deux fonctions mesurables. On pose $h_{p,g} = u_g/\sqrt[p]{\mu(\Omega)}$ où $\mu(\Omega) \geq 0$ est fini par hypothèse. La fonction h_g est donc mesurable. Ainsi, on a

$$\int_{\Omega} |h_{p,g}|^p d\mu = \frac{1}{\mu(\Omega)} \int_{\Omega} |u_g|^p d\mu = \frac{1}{\mu(\Omega)} \int_{\Omega} d\mu = 1.$$

D'où, $||h_{p,g}||_{L^p} = 1$. Or,

$$\Big| \int_{\Omega} h_{p,g} g \, \mathrm{d}\mu \Big| = \Big| \int_{\Omega} |g| \, \mathrm{d}\mu \Big| = \int_{\Omega} |g| \, \mathrm{d}\mu \le \|g\|_{\mathrm{L}^q},$$

car $q \ge 2$. On en conclut que $\|\phi_g\|_{(L^p)^*} \ge \|g\|_{L^q}$, où l'on a égalité avec l'inégalité (\star) précédente.

- 3. Comme $\gamma \in (L^p)^*$, on sait que $\gamma : L^p \to \mathbb{R}$ est une application linéaire continue.
 - a) On applique le théorème de représentation de Riesz à l'application linéaire continue $\gamma_{|L^2}: L^2 \to \mathbb{R}$. En effet, on a l'inclusion de $L^2 \subseteq L^p$ car $1 \le p < 2$ et Ω est de mesure finie (vu en TD). Et, on sait que L^2 est un espace de Hilbert. Ceci justifie l'utilisation du théorème de représentation de Riesz, et on obtient donc qu'il existe $g \in L^2$ tel que pour tout $f \in L^2$,

$$\gamma_{|\mathcal{L}^2}(f) = \langle f, g \rangle_{\mathcal{L}^2} = \int_{\Omega} f g \, \mathrm{d}\mu.$$

b) Montrons que $||g||_{L^p}$ est finie. Considérons la suite $(g_n)_{n\in\mathbb{N}}$ où l'on pose $g_n := u|g|^{q-1}\mathbb{1}_{\{|g|\leq n\}}$. La suite $(|g_n|)$ est croissante et converge vers $|g|^{q-1}$. Ainsi, par le théorème de

Hugo Salou – L3 ENS LYON Beppo-Levi, on a que

$$\gamma(g_n) = \int_{\Omega} g \, g_n \, d\mu \xrightarrow[n \to \infty]{} \int_{\Omega} |g|^q \, d\mu.$$

Et $|\gamma(g_n)| \leq ||\gamma||_{(\mathbf{L}^p)^*} ||g_n||_{\mathbf{L}^p}$ est finie car

- $| \gamma | |_{(\mathbf{L}^p)^*} < +\infty \text{ car } \gamma \text{ est continue};$
- $||g_n||_{\mathbf{L}^p}^p = \int_{\{|g| \le n\}} |g|^{(q-1)p} \, \mathrm{d}\mu = \int_{\{|g| \le n\}} |g|^p \, \mathrm{d}\mu \le ||g||_{\mathbf{L}^p},$ qui est finie par l'inclusion $\mathbf{L}^2 \subseteq \mathbf{L}^p$.

On sait donc que $||g||_{L^q}$ est finie car majorée. On en conclut que $g \in L^q$.

4. Pour une forme linéaire continue $\gamma \in (L^p)^*$, on a trouvé $g \in L^q$ tel que $(\phi_g)_{|L^2} = \gamma_{|L^2}$. Soit $f \in L^p$ quelconque. Par densité de L^2 dans L^p , il existe une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions dans L^2 convergent vers f. Ainsi,

$$\phi_g(f) \stackrel{\longleftarrow}{\longleftarrow} \phi_g(f_n) = \gamma(f_n) \xrightarrow[n \to \infty]{} \gamma(f),$$

par continuité de ϕ_g (question 1) et de γ (car $\gamma \in (L^p)^*$). Ainsi, on a bien $\phi_g(f) = \gamma(f)$ quel que soit $f \in L^p$. On en conclut que l'on a $\phi_g = \gamma$ et donc que ϕ est surjective.

5. Il ne reste qu'à démontrer que ϕ est injective. Soit $g \in \ker \phi$. Ainsi, pour tout $f \in L^p$, on a $\phi_g(f) = 0$. D'où, $\|\phi_g\|_{(L^p)^*} = 0$, et donc (question 2) $\|g\|_{L^q} = 0$. Or, par séparation de la norme, on a que g = 0 (nulle μ -presque partout implique nulle dans le quotient). On en déduit que $\ker \phi$ est réduit au singleton trivial; l'application ϕ est donc injective.

On en conclut que $\phi: L^q \to (L^p)^*$ est un isomorphisme continu, et on a donc $L^q \cong (L^p)^*$.

Fin du DM.