

Theory of Computation Week 3

Much of the material on this slides comes from the recommended textbook by Elaine Rich

Announcement

Release of Assignment 1

☐ Release 13/03/2020

□ Due: 29/03/2020

Detailed content

Weekly program

- ✓ Week 1 Background knowledge revision: logic, sets, proof techniques
- ✓ Week 2 Languages and strings. Hierarchies. Computation. Closure properties

Week 3 – Finite State Machines: non-determinism vs. determinism

- Week 4 Regular languages: expressions and grammars
- Week 5 Non regular languages: pumping lemma. Closure
- Week 6 Context-free languages: grammars and parse trees
- □ Week 7 Pushdown automata
- Week 8 Non context-free languages: pumping lemma and decidability. Closure
- Week 9 Decidable languages: Turing Machines
- Week 10 Church-Turing thesis and the unsolvability of the Halting Problem
- Week 11 Decidable, semi-decidable and undecidable languages (and proofs)
- Week 12 Revision of the hierarchy. Safety-critical systems
- Week 13 Extra revision (if needed)

Week 03 Videos

You already know

- Deterministic Finite State Machine (DFSM)
 - Informal Definition
 - □ Accept / Reject
 - □ Formal Definition
 - Dead state
- Non Deterministic Finite State Machine (NDFSM)
 - Difference between DFSM and NDFSM

Videos to watch before lecture

Additional videos to watch for this week

Week 03 Lecture Outline

Finite State Machines: non-determinism vs. determinism

- ☐ Finite State Machine (Deterministic) DFSM
- How to construct FSM for a language?
- Some Theorems on FSM
- Minimizing FSM
- Non-deterministic Finite State Machine (NDFSM)
- Difference between DFSM and NDFSM
- How to construct NDFSM for a language?
- Examples showing advantage of NDFSM
- Equivalence of DFSM and NDFSM

THE HIERARCHY

ON OFF Switch

Vending Machine as a FINITE STATE MACHINE

A vending machine controller to accept \$.25 for a drink:

S:soda; D:dime; N:nickel; Q:quarter;

FINITE STATE MACHINES Definition

A Finite State Machine M is a quintuple

$$M = (K, \Sigma, \delta, s, A)$$
, where:

- K is a finite set of states
- Σ is an alphabet
- δ is the transition function from ($K \times \Sigma$) to K
- $\mathbf{s} \in K$ is the initial state, and
- $A \subseteq K$ is the set of accepting states

$$\begin{aligned} & \textbf{K} \!\!=\!\! \{\textbf{q}_0, \textbf{q}_1\} \\ & \boldsymbol{\Sigma} \!\!=\!\! \{\textbf{0}, \textbf{1}\} \\ & \boldsymbol{\delta} \!\!=\!\! \{(\textbf{q}_0, \textbf{0}) \!\!=\!\! \textbf{q}_0, \, (\textbf{q}_0, \textbf{1}) \!\!=\!\! \textbf{q}_1, \\ & (\textbf{q}_1, \textbf{0}) \!\!=\!\! \textbf{q}_1, \, (\textbf{q}_1, \textbf{1}) \!\!=\!\! \textbf{q}_0\} \\ & \textbf{s} \!\!=\!\! \textbf{q}_0 \\ & \textbf{A} \!\!=\!\! \{\textbf{q}_1\} \end{aligned}$$

 Informally, M accepts a string w iff M winds up in some element of A when it has finished reading w.

■ The language accepted by **M**, denoted **L(M)**, is the set of all strings accepted by **M**.

Informally, a configuration of a DFSM M is an element of:

$$K \times \Sigma^*$$

- It captures the two things that can make a difference to M's future behavior:
 - its current state
 - the input that is still left to read.
- The *initial configuration* of a DFSM *M*, on input *w*, is:

$$(s_M, w)$$

FINITE STATE MACHINES Example: Yields relation

On input 235, the configurations are:

$$(q_0, 235)$$
 $|-_M (q_0, 35) |-_M (q_1, 5) |-_M (q_1, \epsilon)$
 C_0 $|-_M C_1 |-_M C_2 |-_M C_3$

Thus $(q_0, 235) \mid -M^* (q_1, \epsilon)$

A **computation** by M is a <u>finite sequence</u> of configurations $C_0, C_1, ..., C_n$ for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε) , for some state $q \in K_M$,
- $C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M \dots \mid -_M C_n$

- A DFSM *M* accepts a string *w* iff: $(s, w) \mid_{-M} * (q, \varepsilon)$, for some $q \in A_M$.
- A DFSM *M* rejects a string *w* iff: $(s, w) \mid -_{M}^{*} (q, ε)$, for some $q ∉ A_{M}$.
- The *language accepted by M*, denoted *L(M)*, is the set of all strings accepted by *M*.

REGULAR LANGUAGES

A language is *regular* iff it is accepted by some FSM.

■ Example: $L = \{w \in \{a, b\}^* : a \in \{a, b\}^* : a$

every a is immediately followed by a b}.

Example: L = {w ∈ {a, b}* :
 every a is immediately followed by a b}.

Example: L = {w ∈ {a, b}* :
 every a is immediately followed by a b}.

DFSM $M = (\{q_0, q_1, q_2\}, \{a,b\}, \delta, q_0, \{q_0\})$ where:

 $\delta = \{((q_0, a)q_1), ((q_0, b)q_0), ((q_1, a)q_2), ((q_1, b)q_0), ((q_2, a)q_2), ((q_2, b)q_2)\}$

- Theorem: Every DFSM M, on input s, halts in |s| steps.
- **Proof:** On input string s, M executes a computation $C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M \ldots \mid -_M C_n$, where C_0 is the initial configuration and C_n is either an accepting of rejecting configuration. So M will halt when it reaches C_n . Each step consumes a character of s, so n=|s|. Thus M will halt after |s| steps.

FINITE STATE MACHINES Example: Parity Checking

• $L = \{w \in \{0, 1\}^* : w \text{ has odd parity}\}$

A binary string has odd parity iff the number of 1's in it is odd

FINITE STATE MACHINES Example: Parity Checking

• $L = \{w \in \{0, 1\}^* : w \text{ has odd parity}\}.$

FINITE STATE MACHINES Dead states

- If we look at the language on slide 16, we can see that once a string enters state q₂, it can never exit it to become an accepted string.
- We call these type of states "dead states"
- To describe DFSMs sometimes we omit the dead states, as this makes them look 'neater'
- By convention if there is no transition specified for a (state, input-char) we assume there is a dead state

FINITE STATE MACHINES Dead states

• $L = \{w \in \{a, b\}^* : \text{every a region in } w \text{ is of even length}\}$

FINITE STATE MACHINES Example: No more than one b

■ $L = \{w \in \{a, b\}^* : w \text{ contains no more than one b}\}.$

FINITE STATE MACHINES Example: Consecutive characters

• $L = \{w \in \{a, b\}^* : no two consecutive characters are the same\}.$

FINITE STATE MACHINES Dead states

• $L = \{w \in \{a, b\}^* : \text{ every } b \text{ in } w \text{ is surrounded by } a's\}$

FINITE STATE MACHINES Another example

- A simple communication protocol
 - Σ={Open, Request, Reply, Close}

FSM REPRESENTATIONS SOFTWARE ENGINEERING

A high-level state chart model of a digital watch.

FSM REPRESENTATIONS SOFTWARE ENGINEERING

Hierarchical model

Controlling a Soccer-Playing Robot

Controlling a Soccer-Playing Robot

Appendix P

(page:1062-63)

March 9, 2020

A Finite State Model of a Game Character

PROGRAMMING FSMs Tricks

- Cluster strings that share a "future".
- Let $L = \{w \in \{a, b\}^* : w \text{ contains an even number of a's and an odd number of b's}\}$

PROGRAMMING FSMs Tricks

PROGRAMMING FSMs Tricks

L = {w ∈ {a - z}* : all five vowels, a, e, i, o, and u, occur in w in alphabetical order}.

- abstemious, facetious, sacrilegious ∈ L
- tenacious ∉ L

PROGRAMMING FSMs Tricks

L = {w ∈ {a - z}* : all five vowels, a, e, i, o, and u, occur in w in alphabetical order}.

PROGRAMMING FSMs Tricks

- Sometimes to design a FSM is better to begin designing its complement
- $L = \{w \in \{a, b\}^* : w \text{ does not contain the substring aab}\}.$

PROGRAMMING FSMs Tricks

• $L = \{w \in \{a, b\}^* : w \text{ does not contain the substring}$ aab}.

How much has to be changed?

PROGRAMMING FSMs Tricks

Let
$$\Sigma = \{a, b, c, d\}$$
.

Let $L_{Missing} = \{w : \text{there is a symbol } a_i \in \Sigma \text{ not appearing in } w\}.$

Try to make a DFSM for $L_{Missing}$

PROGRAMMING FSMs State Minimisation

Consider:

Is it a minimal machine?

PROGRAMMING FSMs State Minimisation

Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

a

PROGRAMMING FSMs State Minimisation

We can't easily find the **unreachable states** directly. But we can find the reachable ones and determine the unreachable ones from there.

An algorithm for finding the reachable states:

PROGRAMMING FSMs State Minimisation

Intuitively, two states are **equivalent** to each other (and thus one is redundant) if all strings in Σ^* have the same fate, regardless of which of the two states the machine is in. But how can we tell this?

The simple case:

Two states have identical sets of transitions out.

PROGRAMMING FSMs State Minimisation

The harder case:

The outcomes in states 2 and 3 are the same, even though the states aren't.

MinDFSM

MinDFSM(M: DFSM) =

- 1. *classes* := {*A*, *K*-*A*};
- 2. Repeat until no changes are made
 - 2.1. newclasses := \emptyset ;
 - 2.2. For each equivalence class *e* in *classes*, if *e* contains more than one state do

For each state *q* in *e* do

For each character c in Σ do

Determine which element of *classes q* goes to if *c* is read

If there are any two states *p* and *q* that need to be split, split them. Create as many new equivalence classes as are necessary. Insert those classes into *newclasses*.

If there are no states whose behavior differs, no splitting is necessary. Insert e into newclasses.

- 2.3. classes := newclasses;
- 3. Return $M^* = (classes, \Sigma, \delta, [s_M], \{[q: the elements of q are in A_M]\}),$ where δ_{M^*} is constructed as follows:

if
$$\delta_{\mathcal{M}}(q, c) = p$$
, then $\delta_{\mathcal{M}^*}([q], c) = [p]$

March 9, 2020

MinDFSM: Example

$$\Sigma = \{a, b\}$$

We will show the operation of minDFSM at each step:

Initially, classes = $\{[2, 4], [1, 3, 5, 6]\}$.

At step 1:

((1, b), [2, 4])

((1, a), [2, 4])

((3, a), [2, 4])((3, b), [2, 4]) ((5, a), [2, 4]) ((5, b), [2, 4])

((6, a), [1, 3, 5, 6]) ((6, b), [1, 3, 5, 6])

No splitting required here.

There are two different patterns, so we must split into two classes, [1, 3, 5] and [6]. Note that, although [6] has the same behavior as [2, 4] after reading a single character, it cannot be combined with [2, 4] because they do not share behavior after reading no characters.

 $Classes = \{[2, 4], [1, 3, 5], [6]\}.$

At step 2:

((4, b), [1, 3, 5])

((1, a), [2, 4]) ((1, b), [2, 4])

((3, a), [2, 4])((3, b), [2, 4]) ((5, a), [2, 4]) ((5, b), [2, 4]) No splitting required here.

These two must be split.

 $Classes = \{[2], [4], [1, 3, 5], [6]\}.$

At step 3:

((1, a), [2])((1, b), [4]) ((3, a), [2]) ((3, b), [4])

((5, a), [2])((5, b), [4]) No splitting required here.

MinDFSM: Example

PROGRAMMING FSMs State Minimisation

Theorem: Let L be a regular language and let M be a DFSM that accepts L. The number of states in M is greater than or equal to the number of equivalence classes of \approx_L .

Proof: Suppose that the number of states in M were less than the number of equivalence classes of \approx_I .

Then, by the pigeonhole principle, there must be at least one state q that contains strings from at least two equivalence classes of \approx_I .

But then M's future behavior on those strings will be identical, which is not consistent with the fact that they are in different equivalence classes of \approx_I .

PROGRAMMING FSMs State Minimisation

Theorem: Let L be a regular language over some alphabet Σ . Then there is a DFSM M that accepts L and that has precisely n states where n is the number of equivalence classes of \approx_L . Any other FSM that accepts L must either have more states than M or it must be equivalent to M except for state names.

Proof: in your textbook, but please, look at it!

FINITE STATE MACHINES Definition

A Finite State Machine M is a quintuple

$$M = (K, \Sigma, \delta, s, A)$$
, where:

- K is a finite set of states
- Σ is an alphabet
- δ is the transition function from (K × Σ) to K
- $s \in K$ is the initial state, and
- $A \subseteq K$ is the set of accepting states

NONDETERMINISTIC FSMs Definition

A Nondeterministic Finite State Machine M is a quintuple

 $M = (K, \Sigma, \Delta, s, A)$, where:

- K is a finite set of states
- Σ is an alphabet
- Δ is the transition relation. It is a finite subset of ($K \times (Σ ∪ {ε}) \times K$
- $s \in K$ is the initial state, and
- $A \subseteq K$ is the set of accepting states

NONDETERMINISTIC FSMs

 A Finite State Machine M accepts a string w iff there exists <u>some path</u> along which w drives M to some element of A.

■ The language accepted by M, denoted L(M), is the set of all strings accepted by M.

NONDETERMINISTIC FSMs Sources of Nondeterminism

NONDETERMINISTIC FSMs Analysing Nondeterminism

Two approaches:

Explore a search tree:

Follow all paths in parallel

DFSM VS NDFSM Key Differences

- NDFSM may enter a configuration in which input symbols left but no move available
 - NDFSM will simply halt without accepting
- NDFSM may enter a configuration from which two or more competing transitions are available
 - ε-transition
 - More than one transition for a single input character

NONDETERMINISTIC FSMs Example

• $L = \{w \in \{a, b\}^* : w \text{ is made up of an optional a} \}$ followed by aa followed by zero or more b's.

NONDETERMINISTIC FSMs Another example

• $L = \{w \in \{a, b\}^* : w = aba \text{ or } |w| \text{ is even}\}.$

NONDETERMINISTIC FSMs Back to $L_{Missing}$

• Let $\Sigma = \{a, b, c, d\}$. Let $L_{Missing} = \{w : \text{there is a symbol } a_i \in \Sigma \text{ not appearing in } w\}$

NONDETERMINISTIC FSMs Back to $L_{Missing}$

NONDETERMINISTIC FSMs Pattern Matching

$$L = \{ w \in \{ a, b, c \}^* : \exists x, y \in \{ a, b, c \}^* (w = x \text{ abcabb } y) \}.$$

A DFSM:

NONDETERMINISTIC FSMs Pattern Matching

 $L = \{w \in \{a, b, c\}^* : \exists x, y \in \{a, b, c\}^* (w = x \text{ abcabb } y)\}.$

An NDFSM:

NONDETERMINISTIC FSMs Pattern Matching

$$L = \{ w \in \{ a, b, c \}^* : \exists x, y \in \{ a, b \}^* ((w = x \text{ abbaa } y)) \lor (w = x \text{ baba } y) \}$$

NONDETERMINISTIC FSMs

 $b^* (b(a \cup c)c \cup b(a \cup b) (c \cup \epsilon))^* b$

NONDETERMINISTIC FSMs Dealing with ε transitions

$$eps(q) = \{ p \in K : (q, w) \mid -*_{M} (p, w) \}.$$

eps(q) is the closure of $\{q\}$ under the relation $\{(p, r) : \text{ there is a transition } (p, \varepsilon, r) \in \Delta\}.$

How shall we compute eps(q)?

NONDETERMINISTIC FSMs Dealing with ε transitions

```
eps(q: state) =
result = \{q\}.
While there exists some p \in result and some r \notin result and some transition (p, \epsilon, r) \in \Delta do:
Insert r into result.
```


Return result.

NONDETERMINISTIC FSMs Example of *eps*

$$eps(q_0) = eps(q_1) = eps(q_2) = eps(q_3) = eps(q_3) = eps(q_3)$$

March 9, 2020

NONDETERMINISTISM vs. DETERMINISM

Clearly: {Languages accepted by a DFSM} ⊆ {Languages accepted by a NDFSM}

More interestingly:

Theorem:

For each NDFSM, there is an equivalent DFSM.

NONDETERMINISTISM vs. DETERMINISM

Proof: By construction:

Given a NDFSM
$$M = (K, \Sigma, \Delta, s, A)$$
,
we construct $M' = (K', \Sigma, \delta', s', A')$, where

$$K' = \mathcal{G}(K)$$

 $s' = eps(s)$
 $A' = \{Q \subseteq K : Q \cap A \neq \emptyset\}$
 $\delta'(Q, a) = \bigcup \{eps(p) : p \in K \text{ and } (q, a, p) \in \Delta \text{ for some } q \in Q\}$

NONDETERMINISTISM vs. DETERMINISM Algorithm

- 1. Compute the eps(q)'s.
- 2. Set s' = eps(s).
- 3. Compute δ .
- 4. Compute K' = a subset of $\mathcal{G}(K)$.
- 5. Compute $A' = \{Q \in K' : Q \cap A \neq \emptyset\}$.

NONDETERMINISTISM vs. DETERMINISM Algorithm

```
ndfsmtodfsm(M: NDFSM) =
  1. For each state q in K_M do:
           1.1 Compute eps(q).
  2. s' = eps(s)
  3. Compute \delta':
           3.1 active-states = \{s'\}.
           3.2 \delta' = \emptyset
           3.3 While there exists some element Q of active-states for
               which \delta' has not yet been computed do:
                         For each character c in \Sigma_M do:
                                  new-state = \emptyset.
                                  For each state q in Q do:
                                       For each state p such that (q, c, p) \in \Delta do:
                                  new-state = new-state \cup eps(p).
                                  Add the transition (Q, c, new-state) to \delta'.
                                  If new-state ∉ active-states then insert it.
```

5.
$$A' = \{Q \in K : Q \cap A \neq \emptyset \}.$$

NONDETERMINISTISM vs. DETERMINISM Algorithm: example

1. Compute eps(q) for each state q in K_M :

$$eps(1) = \{1\}$$

 $eps(2) = \{2, 3\}$
 $eps(3) = \{3\}$
 $eps(4) = \{4\}$
 $eps(5) = \{5\}$
 $eps(6) = \{6\}$

2. Start state

$$s' = eps(s) = eps(1) = \{1\}.$$

NONDETERMINISTISM vs. DETERMINISM

Algorithm: example

3. Compute δ'

eps
$$(\{1\}, a) = \{2, 3, 4\}$$

eps $(\{1\}, b) = \{3\}$

eps (
$$\{2, 3, 4\}$$
, a) = $\{5\}$
eps ($\{2, 3, 4\}$, b) = $\{1\}$

Active states: {{1},{2,3,4},{3},{5}}. Consider {3}

eps
$$(\{3\}, a) = \{5\}$$

eps $(\{3\}, b) = \{1\}$

Active states: {{1},{2,3,4},{3},{5}}. Consider {5}

eps
$$(\{5\}, a) = \{2, 3\}$$

eps $(\{5\}, b) = \{3\}$

Active states: {{1},{2,3,4},{3},{5},{2,3}}. Consider {2,3}

eps (
$$\{2, 3\}$$
, a) = $\{5\}$
eps ($\{2, 3\}$, b) = $\{1\}$

4.
$$K' = \{\{1\}, \{2,3,4\}, \{3\}, \{5\}, \{2,3\}\}$$

5.
$$A' = \{\{2,3,4\},\{2,3\},\{3\}\}\}$$

NONDETERMINISTISM vs. DETERMINISM The 'real' meaning

Is *M* deterministic?

An FSM is *deterministic*, in the most general definition of determinism, if, for each input and state, there is at most one possible transition.

- DFSMs are always deterministic. Why?
- NDFSMs can be deterministic (even with ε-transitions and implicit dead states), but the formalism allows nondeterminism, in general.
- Determinism implies uniquely defined machine behavior.

SUMMARY

- A FSM M is a quintuple $M = (K, \Sigma, \delta, s, A)$
- Every DFSM M, on input s, halts in |s| steps.
- A language accepted by some DFSM is regular.
- Given any regular language L, there exists a minimal DFSM M that accepts L.
 - M is unique up to the naming of its states.
- Given any DFSM M, there exists an algorithm minDFSM that constructs a minimal DFSM that also accepts L(M).
- For each NDFSM, there is an equivalent DFSM.

References

- □ Automata, Computability and Complexity. Theory and Applications
 - By Elaine Rich
- ☐ Chapter 5:
 - Page: 54~79, 82~94.

