Exercice 1

On considère deux ensembles d'entiers $A = \{a_1, ..., a_n\}$ et $B = \{b_1, ..., b_m\}$ tels que $a_1 < ... < a_n$ et $b_1 < ... < b_n$. On rappelle que la différence symétrique de A et B, notée $A\Delta B$, est le sous ensemble des éléments de A ou de B qui ne sont pas communs à A et B. On a donc $A\Delta B = (A^{\cup \cup} B) \setminus (A^{\cap \cap} B)$. L'objet de l'exercice est de proposer un algorithme pour le calcul de $A\Delta B$.

1. Quelle est la valeur de $A\Delta B$ si $A=^{\emptyset}$? Même question si $B=^{\emptyset}$. (1 pts)

On suppose ici que $A \neq \emptyset \neq \emptyset$ et $B \neq \emptyset \neq \emptyset$ et l'on note $A' = \{a_2, ..., a_n\}$ et $B' = \{b_2, ..., b_m\}$.

2. Démontrer que : (1 pts)

 $A\Delta B =$

$$\{\left(\overset{\cdot}{A}\Delta B\right) \quad si \quad a_1 = b_1 \left\{a_1\right\} \cup \left(\overset{\cdot}{A}\Delta B\right) \quad si \quad a_1 < b_1 \left\{b_1\right\} \cup \left(\overset{\cdot}{A}\Delta B\right) \quad si \quad a_1 > b_1 \quad si \quad a_2 > b_2 \quad si \quad a_3 > b_3 \quad si \quad a_4 > b_4 \quad si \quad a_4 > b_4 \quad si \quad a_5 > b_4 \quad si \quad a_5 > b_5 \quad si \quad$$

- 3. Proposer un algorithme itératif pour le calcul de AΔB. Calculer sa complexité (3 pts).
- 4. En vous basant sur la propriété démontrée à la question 2, proposer un algorithme récursif pour le calcul de AΔB. Calculer sa complexité (3 pts)

Solution:

1. Si $A = \emptyset$ alors $A\Delta B = B$ et si $B = \emptyset$ alors $A\Delta B = A$;

Si $a_1 = b_1$ alors $a_1 \in A \cap B \Rightarrow A \Delta B = A' \Delta B'$

Si $a_1 < b_1$ et puisque les deux ensemble A et B sont triés dans l'ordre croissant, alors $a_1 < Bj \ \forall j \in [1 \dots m] \Rightarrow a_1 \notin B \Rightarrow a_1 \in A\Delta B$ et il reste à déterminer les autres éléments de $A\Delta B$ à partir de A' et B Si $a_1 > b_1 \Rightarrow a_1$ et on retombe sur le cas qu'on vient tout juste de démontrer

 \Rightarrow $b_1 \in A\Delta B$, et de même que pour le point précédent, les autres éléments de $A\Delta B$ seront calculé à partir de A et B'.

(c.q.f.d)

3. Algorithme itératif pour le calcul de $A\Delta B$.

Début

/* A et B sont deux tableaux d'entiers en entrée et C contient la différence symétrique de A et B */ i:=1; j:=1; k:=1;

Tant que (i < n ou j < m) faire si A[i] < B[j] alors C[k] := A[i] ; $k := k+1 \; ; \; i := i+1 \; ;$ Sinon si A[i] > B[j] alors C[k] := B[j] ; $k := k+1 \; ; \; j := j+1 \; ;$ fsi ; $Sinon \; i := i+1 \; ; \; j := j+1 \; ;$ fsi ;

Fait;

Fin.

Pire cas: les éléments de l'ensemble A sont tous inférieurs (respectivement supérieurs) aux éléments de l'ensemble B.

Nombre d'itération dans ce cas = $n + m < 2* max(n, m) \Rightarrow la complexité = O(max(n, m))$.

4. Algorithme récursive

```
\begin{array}{c} \mbox{Diff\_symetrique(i,j,k:entier)}\;;\\ \mbox{D\'ebut}\\ \mbox{Si}\;(i \le n\;ou\;j \le m)\;alors\;Si\;A[i] < B[j]\;alors\;C[k] := A[i]\;;\\ \mbox{Diff\_symetrique(i+1,j,k+1)}\;;\\ \mbox{Sinon}\;Si\;A[i] > B[j]\;alors\;C[k] := B[j]\;;\\ \mbox{Diff\_symetrique(i,j+1,k+1)}\;;\\ \mbox{Sinon}\;Diff\_symetrique(i+1,j+1,k)\;;\\ \mbox{Fsi}\;;\\ \mbox{Fsi}\;;\\ \mbox{Fsi}\;;\\ \mbox{Fin}\;;\\ \end{array}
```

 $\text{La complexit\'e est la même que pour le cas it\'eratif O(max(n, m))}. \\ \begin{cases} (A \triangle B) & \text{si } a_1 = b_1 \\ \{a_1\} \cup (A' \triangle B) & \text{si } a_1 < b_1 \\ \{b_1\} \cup (A \triangle B') & \text{si } a_1 > b_1 \end{cases}$

Exercice 2 <12 points>

Considérons le problème de partition d'un ensemble d'entier suivant :

Instance : Un ensemble de n entier $S = \{s_1, s_2, ..., s_n\}$ et un entier positif k.

Question : Peut-on partitionner l'ensemble d'entiers S en k sous-ensembles distincts de même somme ?

On s'intéresse à la variante du problème ou k = 2. La question à laquelle doit répondre le problème devient :

Question : Peut-on partitionner l'ensemble d'entiers S en (2) sous-ensembles distincts S_1 et S_2 tel que :

$$\sum_{i=1}^{m} S_{i1} = \sum_{j=1}^{p} S_{j2}$$

Sachant que : m + p = n, et S_{i1} : représente les éléments de l'ensemble S_1 et S_{j2} représente les éléments de l'ensemble S_2 .

Nous considérons par ailleurs le concept de solution au sens large pour le problème. Une solution est dite positive (valide) si elle répond par l'affirmation à la question du problème. Elle est dite négative dans le cas contraire.

Soit l'ensemble d'entier suivant : $S = \{1, 2, 5, 10, 9, 15, 21, 19, -4, 7, 12, 6, 3\}$

- 1) A quoi correspond une solution potentielle au problème du 2-Partition ? Donner un exemple de solution positive et un autre de solution négative. (2 pts)
- 2) Proposer une structure de données pour représenter une solution. (2 pts)
- 3) On s'intéresse à construire des solutions potentielles. Ecrire un algorithme permettant d'engendrer une solution quelconque au problème. Calculer la complexité de l'algorithme proposé. (3 pts)
- 4) Ecrire un algorithme permettant de vérifier que la solution engendrée est positive ou négative. Calculer sa complexité. (3 pts)
- 5) Que peut-on conclure sur le problème de partition ? (2 pts).

Solution:

1) Une solution potentielle au problème du 2-Partition est un partitionnement ou division de l'ensemble d'entier de départ noté S en deux sous ensemble distinct S1 et S2 tel que la somme des éléments de S1 et égale à la somme des éléments de S2.

Solution positive : S1 = (21, -4, 5, 7, 9, 15) = S2 = (19, 1, 2, 6, 3, 10, 12) = 53Solution négative : $S1 = (21, 5, 7, 9, 15) = 57 \neq S2 = (19, 1, 2, 6, 3, 10, 12, -4) = 49$

- 2) Une structure de données pour représenter une solution au problème, Deux possibilités :
- Deux vecteurs d'entiers S1 et S2 de dimension respectivement m et p
- Un vecteur binaire noté Sol de dimension N Sol[i] = $\{1 \text{ si } S[i] \in S1 \text{ } 0 \text{ si } S[i] \in S2$
- 3) Algorithme de résolution

Principe de l'algorithme:

Tout d'abord, construire deux sous ensemble distinct à partir d'un ensemble d'entiers sous la contrainte que la somme des éléments de S1 est égale à la somme des éléments de S2, signifie que :

$$\sum S = \sum S1 + \sum S2 \Rightarrow \sum S1 = \sum S2 = \frac{1}{2} * \sum S$$

L'algorithme commence par calculer la somme des éléments de l'ensemble S pour en déduire la suite la somme des éléments de chaque partition.

Ensuite, diviser l'ensemble S en deux sous ensemble de même taille. Avec ce premier partitionnement on va avoir un des deux sous-ensembles avec une somme < S/2 et le second est > S/2.

A partir de ce point, l'algorithme devra essayer toute les combinaisons possible entre S1 et S2 afin d'équilibrer la somme des deux sous ensemble.

Complexité de l'algorithme : nombre de solution possible = nombre de combinaison possible.

Construire un ensemble de P élément à partir de N est une combinaison de P parmi n noté : $C_n^p = \frac{N!}{P!(n-p)!}$

Mais dans notre cas la taille des ensembles S1 et S2 n'est pas fixé au préalable et vari de 1 à n-1 Donc le nombre de combinaison et de solutions possible est égale à :

$$\sum_{p=1}^{n-1} C_n^P = \sum_{p=1}^{n-1} \frac{N!}{P!(n-p)!} = 2^n$$

Ce qui implique que la complexité de l'algorithme de résolution est de l'ordre de O(2ⁿ).

4) Algorithme de validation

Principe de l'algorithme : l'algorithme de validation vérifie si une solution X donnée en entrer (en fonction des structures de données utilisées) répond au critère du problème de partition à savoir :

- Les éléments des deux sous-ensembles S1 et S2 appartiennent à l'ensemble de départ S.
- Chaque élément de S est soit dans l'ensemble S1 ou dans l'ensemble S2 et ne peut être dans les deux à la fois.
- Si on considère que m et p représente la taille respective des sous ensemble S1 et S2 alors la taille de l'ensemble S qui est noté n doit être égale à m+p.
- La somme des éléments de S1 et égale à la somme des éléments de S2.
- Un critère supplémentaire peut être aussi de vérifier si la somme globale des éléments de S peut être divisée en deux (paire).

Si toutes ces conditions sont vérifiées alors la solution est dite valide sinon elle est dite non valide.

La complexité de cet algorithme est :

Pour la vérification de l'appartenance des éléments à S et que S1 et S2 sont distinct : n²

Pour le calcul de la somme de S1 et S2 c'est m+p = n

Donc cet algorithme est de complexité O(n²).

5) L'algorithme de résolution est de complexité exponentielle O(2ⁿ), cet algorithme ne peut être mis en place de fait qu'il n'est pas pratique et produit un temps d'exécution irréalisable pour des instances de N très grand, i.e, pour des ensembles d'entiers très grand.

L'algorithme de validation quant à lui est de complexité $O(n^2)$, quadratique ou polynomiale. Cet ordre de complexité est réalisable.

L'ordre de complexité de l'algorithme de validation est polynomial, ce qui implique que le problème du 2-Partition est NP

Si nous voulons généraliser pour le problème de partition en K sous ensemble, nous pouvons déduire qu'il est de classe NP lui aussi.