

B.M.S. COLLEGEOF ENGINEERING,BANGALORE-19

(Autonomous Institute, Affiliated to VTU) Department Name: Computer Science and Engineering

Course Code: 20CS6PCMAL Course Title: MACHINE LEARNING

Semester: 6 Maximum Marks: 40 Date: 07-07-2022

Internals - II

Instructions: C hoice is provided in Part C

PART-A

Total 5 Marks (No choice)

Q.No	Question	Marks
1	Analyze the differences between Gibbs algorithm and Bayesian optimal classifier?	5M
	Write error functions of both	

PART-B

Total 5 Marks (No choice)

Q.No	Questions	Marks
2a	As you know, Covid -19 tests are common now a days, but osme results of test are	5M
	not true. Lets assume, a diagnostic test has 99% accurracy and 60% of all people	
	have Covid-19. If a patient tests positive what is the probability (MAP) that they	
	actually have the disease?	
2b	Consider a learned hypothesis, h, for some Boolean concept. When 'h' is tested on a	5M
	set of 100 examples, it classifies 83 correctly. What is the standard deviation and	
	95% confidence interval for the true error rate for Error _D (h)	
2c	Consider the following Bayesian network, where F = having the flu and C =	5M
	coughing:	
	$P(C \mid F) = 0.8$	
	$P(F) = 0.1$ F C $P(C F) = 0.8$ $P(C \neg F) = 0.3$	
	Write down the joint probability table specified by the Bayesian network.	

PART-C

Total 20 Marks (Choice is there)

Q.No	Questions N						Marks	
3a	Consider a problem of different conditions that are associated with accidents. The target variable accident is a binary categorical variable. Build naive bayes model to predict if an accident will happen given a new instance?						10M	
		SNo.	Weather condition	Road condition	Traffic condition	Engine problem	Accident	
		1	Rain	bad	high	no	yes	
		2	snow	average	normal	yes	yes	
		3	clear	bad	light	no	no	
		4	clear	good	light	yes	yes	
		5	snow	good	normal	no	no	
		6	rain	average	light	no	no	
		7	rain	good	normal	no	no	
		8	snow	bad	high	no	yes	
		9	clear	good	high	yes	no	
		10	clear	bad	high	yes	yes	
	<1	Weathe	nnce to classify r condition: rroblem: no>		dition: good,	Traffic cond	ition: normal,	

	OR	
3b	Prove that every consistent hypothesis is a MAP (maximum a posteriori hypothesis. Use a posterior probability of each hypothesis given observed training data D. Design a Concept Learning algorithm to output the MAP hypothesis, based on Bayes theorem	10M
4a	Considering below dataset and hypothesis, discuss how Minimum Description Length (MDL) principle applied in the machine learning to select best hypothesis which compresses the dataset with minimum MDL H1: [Play :Yes] If {outlook=overcast} If { humidity=normal, wind=weak} H2: [Play :Yes] If {outlook =overcast} If { humidity =normal, wind =weak} If { temperature =mild, humidity=normal}	10M
	OR	
4b	Estimate the difference between the true errors of two hypothesis h1 and h2. Use the general approach for deriving confidence interval for d. What is the probability distribution governing the random variables. Obtain the approximate variance of each distribution.	10M

Course Outcomes

CO1	Ability to apply the different learning algorithms.
CO2	Ability to analyze the learning techniques for given dataset.
CO3	Ability to design a model using machine learning to solve a problem.
CO4	Ability to conduct practical experiments to solve problems using appropriate machine learning techniques.