4.2.1 Simulating thermodynamic processes

- This module will be a mini-lecture describing
 - importance sampling
 - umbrella sampling
 - thermodynamic processes
 - replica exchange
- At the end of this module, you should be able to answer the following questions:
 - What is a thermodynamic process?
 - What are the benefits of umbrella sampling?
 - What are the benefits of performing replica exchange?
 - How do you know if there are enough states along a thermodynamic process?

Importance sampling

Sampling from one distribution and estimating quantities in another

$$\langle A \rangle_T = \int A(x) p_T(x) dx = \int A(x) \left(\frac{p_T(x)}{p_S(x)} \right) p_S(x) dx = \langle wA \rangle_S$$

- $p_T(x)$ is the probability density in the target distribution
- $p_S(x)$ is the probability density in the sampled distribution

•
$$w = \left(\frac{p_T}{p_S}\right)$$
 is the ratio of weights in the two distributions

Why do importance sampling?

- Use one simulation to estimate quantities in multiple thermodynamic states,
 e.g. different temperatures
- Less computational expense to sample from one distribution, e.g. sample with molecular mechanics and calculate quantities in QM/MM distribution
- Sample from distribution with smaller configuration space, e.g. harmonic restraint towards a crystal structure

Caveat: Importance sampling

- The target and sampled distribution should be similar
 - If the *support* differs, important configurations may be missed
 - If the probability density significantly differs
 - the reweighing term can be noisy
 - thermodynamic expectations will require more samples to converge

Idealized importance sampling

Covers the entire relevant configuration space along an order parameter

Harmonic umbrella sampling

- Sampling that covers the entire relevant configuration space along an order parameter
- Typically involves
 - a harmonic restraint towards a specific value of the order parameter, $U_b(x) = \frac{1}{2}k(z[x] z_o)^2$
 - k is the spring constant
 - z[x] is the value of the order parameter for configuration x
 - multiple simulations with different spring centers
 - the observed probability distributions should overlap

Used with permission from Fiona Naughton: http://fiona-naughton.github.io/blog/2016/05/25/
What-is-this-MD-thing-anyway

A cat analogy of umbrella sampling

Which toy does the cat like best?

To quantify this, we can look at the fraction of time they spend near a specific toy.

But we can be watching the cat for a long time...

Umbrella sampling with a cat

If we put a restraint on the cat, we can determine what they prefer in a smaller area. Overall, we don't need to watch as long.

Used with permission from Fiona Naughton: http://fiona-naughton.github.io/blog/2016/05/25/What-is-this-MD-thing-anyway

Thermodynamic processes

- A thermodynamic process involves a change in one or more variables that specify a thermodynamic state
- In general and physical chemistry, you learn about specifying a state with
 - temperature
 - pressure/volume
 - number of particles/chemical potential
- Processes include
 - isothermal expansion a change in volume but not temperature
 - adiabatic expansion a change in volume without heat transfer in and out of a system
- In molecular simulations, additional variables can define the potential energy
 - harmonic spring constant and center (umbrella sampling)
 - alchemical parameter for
 - transforming one substituent into another
 - decoupling a molecule from solvent

Replica exchange

- Simulations of multiple thermodynamic states with different parameters
 - originally, variation in temperature
 - often used for alchemical coupling
- Configurations from thermodynamic states are periodically swapped
 - Equivalently, thermodynamic parameters are swapped
 - Swapping satisfies detailed balance; both states sample from respective Boltzmann distributions

Swapping

Why perform replica exchange?

- Improve mixing of MCMC chains; higher-entropy states help sample configurations in lower-entropy states
 - At high temperature, energetic barriers are crossed more quickly than at low temperature
 - Decoupled ligands move freely compared to bound ligands. See http://mypages.iit.edu/~dminh/images/pubs/dock_1hnn.gif.
- Minimal added computational expense

Selecting thermodynamic states

- Thermodynamic state selection has been thought to be a tricky optimization problem
- In Nguyen and Minh (2016)
 - processes were simulated 100x each for each number of states, K
 - the standard deviation of the free energy was evaluated as a function of the total simulation time

- If there are not enough states, the convergence curve levels off
- If there are enough states, the standard deviation of free energy estimates depends on the aggregate simulation time and is insensitive to the number of states.

Review

- What is a thermodynamic process?
- What are the benefits of umbrella sampling?
- What are the benefits of performing replica exchange?
- How do you know if there are enough states along a thermodynamic process?

References

 Nguyen, T. H.; Minh, D. D. L. Intermediate Thermodynamic States Contribute Equally to Free Energy Convergence: A Demonstration with Replica Exchange. Journal of Chemical Theory and Computation 2016, 12 (5), 2154–2161. https://doi.org/10.1021/acs.jctc.6b00060.