Applied Data Science (Prof. Dr. Kauffeldt)

<u>Inhalt</u>

- 1 Deskriptive Methoden
- 2 Testmethoden
 - 2.1 Ablauf statistischer Test
 - 2.2 Testen von Lageparametern

1 Deskriptive Methoden

1.1 Statistiken

Analysen -> Exploration -> Deskriptivstatistik

Deskriptivstatistik

Deskriptivstatistik

	spend_food
N	128
Fehlend	5
Mittelwert	183
Median	150
Modalwert	200
Standardabweichung	129
Varianz	16642
IQR	150
Wertebereich	800
Minimum	0
Maximum	800

Kann auch nach einer Gruppenvariable (bspw. Geschlecht) aufgeteilt werden.

1.2 Graphiken

Nominale und Ordinale Daten: Häufigkeiten

Analysen -> Exploration -> Deskriptivstatistik -> Pareto-Diagramm

Numerische Daten und Ordinale Daten: Boxplot und Violinplot

Analysen -> Exploration -> Deskriptivstatistik -> Diagramme -> Boxplots

Numerische Daten: Histogramm und Dichte

Analysen -> Exploration -> Deskriptivstatistik -> Diagramme -> Histogramme

Bivariate numerische Daten: Streudiagramm

Analysen -> Exploration -> Deskriptivstatistik -> Streudiagramm

2 Testmethoden

2.1 Ablauf statistischer Test

- 1. Problemstellung und Hypothesen formulieren Nullhypothese H_0 ("Status Quo") und Alternativhypothese H_1 ("Forschungshypothese")
- 2. Passenden statistischen Test auswählen
- Voraussetzungen des Tests prüfen bspw. Varianzhomogenität, Normalverteilung

- 4. **Ggf. Voranalyse**
- 5. **Ggf. Data Engineering**

bspw. Codierung

6. Test durchführen und interpretieren

2.2 Testen von Lageparametern

Übersicht:

Messniveau	Test auf	Einstichprobentest	Zweistichprobentest	
			$Unabh\"{a}ngig$	$Abh\"{a}ngig$
Numerisch	Mittel- wert	t-Test	t-Test (Varianz- homogenität) Welch-Test	Gepaarter t-Test
Ordinal	Median	Vorzeichen-Test (Wilcoxon W) (*)	Mann-Whitney-U- Test (*)	Wilcoxon- Vorzeichen-Rang- Test (*)

(*) Nichtparametrische Tests

Beispiel: Zweistichproben t-Test (unabhängig)

Schritt 1: Problemstellung und Hypothesen formulieren

 $H_0: Durschnittsgr\"{o}$ ße $Mann \leq Durchschnittsgr\"{o}$ ßeFrau

 $H_1: Durschnittsgr\"{o} \pounds Mann > Durchschnittsgr\"{o} \pounds Frau$

Schritt 2: Passenden Test auswählen Unabhängiger Zweistichproben t-Test

Schritt 3: Voraussetzungen des Tests überprüfen

<u>Voraussetzungen t-Test</u>

- T1. Numerische abhängige Variable.
- **T2. Normalität.** Die Population(en) sind normalverteilt.
- T3. Unabhängigkeit. Die Messungen innerhalb und zwischen den Gruppen sind unabhängig.
- T4. Binäre Gruppenvariable. Es werden genau zwei Gruppen verglichen. [*]
- T5. Homoskedastizität. Varianzhomogenität: Varianz Gruppe 1 = Varianz Gruppe 2. [*]

[*] Nur für Zweistichprobentest

<u>T1.</u>

Körpergröße ist numerisch. 🗸

<u>T2.</u>

Überprüfung: Shapiro-Wilk-Test (H_0 : Normalverteilung, H_1 : Keine Normalverteilung) und QQ-Plot:

Erst nach Gruppe filtern, dann Analysen -> Exploration -> Deskriptivstatistik -> Shapiro-Wilk und Q-Q

Gruppe Männer:

Deskriptivstatistik				
	height			
N	44			
Fehlend	0			
Mittelwert	181			
Median	180			
Standardabweichung	7.08			
Minimum	169			
Maximum	197			
Shapiro-Wilk W	0.975			

0.464

Shapiro-Wilk p

→ Erfüllt 🗸

Gruppe Frauen:

	height
N	87
Fehlend	0
Mittelwert	166
Median	165
Standardabweichung	6.58
Minimum	154
Maximum	184
Shapiro-Wilk W	0.964
Shapiro-Wilk p	0.017

→ Nicht erfüllt **X**

T3.
Messungen sind unabhängig. ✓

T4.
Nur 2 Gruppen. ✓

 $\overline{ ext{T5.}}$ Überprüfung: Levenes Test (H_0 : Varianzen aller Gruppen sind gleich,

H_1 : Varianzen mindestens zweier Gruppen unterscheiden sich)

Analysen -> t-Test für unabhängige Stichproben -> Homogenitätstest

Levene's Test auf Varianzhomogenität

	F	df	df2	р
height	0.0233	1	129	0.879

Anmerkung. Ein niedriger p-Wert deutet auf eine Verletzung der Annahme gleicher Varianzen hin

Was tun, wenn die Voraussetzungen des Tests verletzt sind?

Abhängig von der Art der Verletzung:

- Bei gewissen Verletzungen (bspw. abhängige Variable nicht-numerisch) kann der Test nicht durchgeführt werden
 - Bspw. bei ordinaler Variable Mann-Whitney-U-Test verwenden.
- Bei anderen Verletzungen erhalten wir weniger robuste Resultate.
 - Bei Verletzungen der Verteilungsannahme (Normalität), verwenden eines nichtparametrischen Tests zur Überprüfung der Resultate

Schritt 4: Voranalyse

Analysen -> t-Test für unabhängige Stichproben -> Deskriptivstatistik und Deskriptive Diagramme

Schritt 5: Test durchführen und interpretieren

Analysen -> t-Test für unabhängige Stichproben

						Mittlere Differenz	Std fehler der Differenz	95% Konfidenzintervall			
		Statistik	±%	df	р			Untere	Obere		Effektstärke
height	Student's t	-11.7		129	< .001	-14.6	1.25	-Inf	-12.5	Cohens d	-2.17
	Bayes- Faktor ₁₀	1.12e+19	NaN								

Anmerkung. Η_a μ _{female} < μ _{male}

ightarrow p-Wert < 5% ightarrow H_0 kann abgelehnt werden ightarrow Statistisch signifikant ightarrow Beleg für H_1

Effektstärke:

$$Cohens~d = rac{Mittelwert_1 - Mittelwert_2}{gepoolte~Standardabweichung}$$

Cohen's d effect size	Interpretation	Differences in SD		
d = .019	Trivial effect	<1/5 from a SD		
d = .20	Small effect	1/5 from a SD		
d = .50	Medium effect	1/2 from a SD		
d=.80 or higher	Large effect	8/10 from a SD		

Bayes-Faktor:

$$BF_{10} = rac{P(ext{Beobachtete Daten} \mid ext{H1 wahr})}{P(ext{Beobachtete Daten} \mid ext{H0 wahr})}$$