- 1. (20 pts)For each of the following statements, indicate whether TRUE or FALSE and justify your answer.
 - a) Running merge sort on an array of size n which is already correctly sorted takes O(n) time.
 - b) Building a heap from an array of n items requires $\Omega(nlogn)$ time
 - c) In a heap of depth d, there must be at least 2^d elements. (Assume the depth of the first element (or root) is zero).
 - d) The following array is a max heap: [10, 3, 5, 1, 4, 2].
- 2. (10 pts) Solve the following recurrence equations by master theorem.
 - a) T(n) = 3T(n/2) + n
 - b) $T(n) = 3T(n/2) + 3^n$
- 3. (10 pts) What happens when the array is already sorted (what is the running time for quick sort in the following cases)?
 - a) last element in the array as a pivot.
 - b) median-of-three as a pivot.
- 4. (20 pts) Consider the following four sorting algorithms:

insertion sort, Merge sort, Quick Sort, Heap sort

- a) Which of above sorting algorithms are stable?
- b) Which of above sorting algorithms run in worst-case time O(nlogn)?
- c) Which of above sorting algorithms run in time O(n) in the best case?
- d) Which of above sorting algorithms are the Divide & Conquer strategy?
- 5. (10 pts) The following array is not a heap.

	2.2.	15	16	14	11	13	7	10	18	2.	9	8	4
- 1		10	10	- 1		10	'	10	10	_	_	_	•

After calling MAX-HEAPIFY to correct that violation, the resulting array will be a heap. Show it in array form:

6. (10 pts) Given the following array as input, illustrate how the Merge sort algorithm performs.

3	8	4	10	1	5	6	9

- 7. (20 pts) a) Write MAX-HEAPIFY procedure in pseudocode.
 - b) Write BUILD-MAX-HEAP procedure in pseudocode