Ridge Regression

Ridge regression: Definition

- As mentioned in the previous lecture, ridge regression penalizes the size of the regression coefficients
- \bullet Specifically, the ridge regression estimate $\widehat{\pmb{\beta}}$ is defined as the value of $\pmb{\beta}$ that minimizes

$$\sum_i (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^p \beta_j^2$$

Ridge regression: Solution

Theorem: The solution to the ridge regression problem is given by

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Note the similarity to the ordinary least squares solution, but with the addition of a "ridge" down the diagonal

the addition of a "ridge" down the diagonal Corollary: As $\lambda \to 0$, $\widehat{\boldsymbol{\beta}}^{\mathrm{ridge}} \to \widehat{\boldsymbol{\beta}}^{\mathrm{OLS}}$ Corollary: As $\lambda \to \infty$, $\widehat{\boldsymbol{\beta}}^{\mathrm{ridge}} \to \mathbf{0}$

Ridge vs. OLS in the presence of collinearity

```
> x2 <- rnorm(20,mean=x1,sd=.01)
> y <- rnorm(20,mean=3+x1+x2)
> lm(y~x1+x2)$coef
(Intercept) x1 x2
```

2.582064 39.971344 -38.040040

> x1 <- rnorm(20)

Bias and variance

• Theorem: The variance of the ridge regression estimate is

$$Var(\widehat{\boldsymbol{\beta}}) = \sigma^2 \mathbf{W} \mathbf{X}^T \mathbf{X} \mathbf{W},$$

where
$$\mathbf{W} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1}$$

• Theorem: The bias of the ridge regression estimate is

$$\operatorname{Bias}(\widehat{\boldsymbol{\beta}}) = -\lambda \mathbf{W} \boldsymbol{\beta}$$

• It can be shown that the total variance $(\sum_j \mathrm{Var}(\hat{\beta}_j))$ is a monotone decreasing sequence with respect to λ , while the total squared bias $(\sum_j \mathrm{Bias}^2(\hat{\beta}_j))$ is a monotone increasing sequence with respect to λ

Existence theorem

Existence Theorem: There always exists a λ such that the MSE of $\widehat{eta}_{\lambda}^{\mathrm{ridge}}$ is less than the MSE of $\widehat{eta}^{\mathrm{OLS}}$

This is a rather surprising result with somewhat radical implications: even if the model we fit is exactly correct and follows the exact distribution we specify, we can *always* obtain a better estimator by shrinking towards zero

Degrees of freedom

- Information criteria are a common way of choosing among models while balancing the competing goals of fit and parsimony
- In order to apply AIC or BIC to the problem of choosing λ , we will need an estimate of the degrees of freedom
- Recall that in linear regression:
 - $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$, where \mathbf{H} was the projection ("hat") matrix
 - ullet $\operatorname{tr}(\mathbf{H})=p$, the degrees of freedom

Degrees of freedom (cont'd)

ullet Ridge regression is also a linear estimator $(\hat{\mathbf{y}} = \mathbf{H}\mathbf{y})$, with

$$\mathbf{H}_{\mathrm{ridge}} = \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T$$

- Analogously, one may define its degrees of freedom to be $\mathrm{tr}(H_{\mathrm{ridge}})$
- Furthermore, one can show that

$$df_{\text{ridge}} = \sum \frac{\lambda_i}{\lambda_i + \lambda}$$

where $\{\lambda_i\}$ are the eigenvalues of $\mathbf{X}^T\mathbf{X}$

If you don't know what eigenvalues are, don't worry about it. The main point is to note that df is a decreasing function of λ with df=p at $\lambda=0$ and df=0 at $\lambda=\infty$.

AIC and BIC

Now that we have a way to quantify the degrees of freedom in a ridge regression model, we can calculate AIC or BIC and use them to guide the choice of $\lambda\colon$

$$\begin{aligned} \text{AIC} &= n \log(\text{RSS}) + 2 df \\ \text{BIC} &= n \log(\text{RSS}) + df \log(n) \end{aligned}$$

In R, we can use lm.ridge in the MASS package:
fit <- lm.ridge(lpsa~.,prostate,lambda=seq(0,50,by=0.1))
fit\$GCV</pre>

Ridge vs. OLS

	Estimate		Std. Error		z-score	
	OLS	Ridge	OLS	Ridge	OLS	Ridge
Icavol	0.587	0.519	0.088	0.075	6.68	6.96
lweight	0.454	0.444	0.170	0.153	2.67	2.89
age	-0.020	-0.016	0.011	0.010	-1.76	-1.54
lbph	0.107	0.096	0.058	0.053	1.83	1.83
svi	0.766	0.698	0.244	0.209	3.14	3.33
lcp	-0.105	-0.044	0.091	0.072	-1.16	-0.61
gleason	0.045	0.060	0.157	0.128	0.29	0.47
pgg45	0.005	0.004	0.004	0.003	1.02	1.02