bitcoin

CS1699: Blockchain Technology and Cryptocurrency

21. Atomic Swaps, Sidechains, and SPV Proofs

Bill Laboon

The Problem

- * Assume you want to convert some of your coin X to coin Y. How do you do it?
- * Most-common way: centralized exchange (e.g. shapeshift.io)
- Less common way: "decentralized" exchange (e.g. https://localmonero.co/?language=en)
- * Even truly "decentralized" exchanges often have a single point of failure (See EtherDelta lawsuit: https://www.forbes.com/sites/michaeldelcastillo/ 2018/11/09/new-sec-cyber-chief-puts-cryptocurrency-exchanges-on-notice/#796a89552fb8)
- * How can we ensure our system continues to operate with high availability using only the blockchains themselves and not a third-party or escrow service?

Atomic Cross-Chain Swaps

- * We have seen that we can combine multiple transactions into a single "atomic" transaction in CoinJoin
- * Can we do the same thing on multiple blockchains simultaneously, so that I can have a transaction that gives you X amount of Coin X while you give me Y amount of Coin Y, and vice versa?
- * Yes, although it is complex and a bit slow!

Alice and Bob Swapping Litecoin for Bitcoin

- * Alice generates a refundable deposit of a litecoin
- * Bob generates a refundable deposit of b bitcoin
- * Alice claims b bitcoin by time T_1 ($T_1 < T_2$)
- * Bob claims *a* litecoin by time T_2 ($T_2 > T_1$)

Alice Generates Refundable Deposit of Litecoin

- 1. Alice generates a random string x and computes h = H(x)
- 2. Alice generates **DepositA** transaction (which to unlock requires EITHER (knowing *x* and signed by Bob) OR (signed by Alice and Bob)) on Litecoin network, but does not publish it
- 3. Alice generates time-locked **RefundA** (which cannot be claimed until after some time T_2) transaction and gets Bob's signature on it
- 4. Alice now publishes **DepositA** but holds back **RefundA**

Bob Generates Refundable Deposit of Bitcoin

- 1. Bob generates **DepositB** (which to unlock requires EITHER (knowing *x* and signed by Alice) OR (signed by Alice and Bob)) but does not publish it
- 2. Bob generates time-locked **RefundB** (which cannot be claimed until after some time *T*₁) and gets Alice's signature on it
- 3. Bob now publishes **DepositB** but holds back **RefundB**

Decision Point

- Alice decides to complete the swap
 - * Alice claims bitcoin by time T_1 , thus revealing x
 - * Bob now knows x and can claim litecoin by time T_2
- * Alice changes her mind
 - * Bob claims his refund (pre-signed by Alice)
 - Alice claims her refund (pre-signed by Bob)

"Good" Atomic Swap Timeline

Can Be Rolled Back at Any Point

- * Before A: No transaction broadcast no danger
- * Between A & B: Alice can use refund transaction after T2
- * Between B & C: Bob can get refund after T1 but before T2. Alice can get refund after T2.
- * After C: Transaction is completed (Alice must spend coin before T1, or Bob can claim refund and keep coins; Bob must spend coin before T2, or Alice can claim refund)

"Bad Alice" Atomic Swap Timeline

Bob

DOES NOT
Publish
DepositB

Bob CANNOT claim
Litecoin since x
was never revealed

"Bad Bob" Atomic Swap Timeline

Bob

Publish DepositB Bob CANNOT claim
Litecoin since x
was never revealed

Benefits of Atomic Swaps

- * No middleman
- * No counterparty risk
- Entirely decentralized from a trading perspective
- Can be rolled back at any point

Problems with Atomic Swaps

- * Slow (MUCH slower than a centralized exchange)
- Need to find a trading partner might lead to being centralization at this level
- * Time-bounded; if you don't claim your coins at the proper time, you will lose them!
- * Vulnerable to DOS (by Alice/Bob backing out after coins committed)
- * Very slim chance that block production times line up in such a way that $T_2 < T_1$ or other weirdness (as block production time is probabilistic *essentially* random following a power distribution)

Sidechains

- * "Altcoins on Bitcoin" Provide additional functionality while providing a bilateral peg to Bitcoin
- * Escrow Bitcoin, but allow users to transfer back and forth between sidechain and main chain
- * To truly do this, would need to extend Bitcoin but can essentially have all the features by a simple hack

"The SPV Trick"

- * Use SPV (Simplified Payment Verification) to look for evidence that transactions they care about are in longest branch that has received x verifications
- * Scripts could just verify that a particular transaction occurred in the sidechain using SPV

SPV Proofs

- * Need Bitcoin to verify legitimacy of sidechain coins
- User provides:
 - Proof of inclusion in sidechain transactions
 - * Sidechain block headers showing certain number of confirmations
- * Can be contested; must wait a provisional period after submitting proof
- * Not foolproof from a sidechain perspective; but DOES ensure that Bitcoin itself is not harmed by any sidechain

SPV Proofs via PoW Samples

- * What if we have very "fast" (i.e., short time between blocks) sidechains? Even a SPV Bitcoin node may not be able to keep up.
- * We can use skiplists to "sample" PoW and estimate total work generated in a sublinear manner
- * Skiplist points only to blocks where *h* < (*target*/*m*)
 - * Should be evenly distributed since hash for each block should be in a uniform distribution (0, target)

Skiplist with h < target/4

- B₁ Block where h < (target/4)
- B_2 Block where $h \ge (target/4)$ and h < target

Notable Bitcoin Sidechains

- * Mastercoin, later rebranded Omni Used for asset and token management https://www.omnilayer.org/
- * Drivechain Platform for generating your own sidechains http://www.drivechain.info/
- * Liquid Network- Bilateral peg to Bitcoin (with native asset L-BTC) with faster settlement times https://blockstream.com/liquid/