Probabilidad y Estadística (m) / Probabilidad (d) Variables Aleatorias Continuas

Departamento de Matemática / Instituto de Cálculo

11 de abril de 2024

Outline

Variables aleatorias continuas

Definición 1

La variable aleatoria X se dice continua si su función de distribución acumulada $F_X: \mathbb{R} \to [0,1]$ es continua. En otras palabras, X se dice continua si P(X=t)=0 para todo $t\in \mathbb{R}$.

Recordar que

- $F_X(t) = P(X \le t)$
- $P(X < t) = F_X(t^-)$
- $F_X(t) = F_X(t^-) + P(X = t)$
- \blacksquare F_X es continua a derecha

Por lo tanto, F_X es continua si y sólo si P(X=t)=0 para todo $t\in\mathbb{R}$

Definición 1

La variable aleatoria X se dice *continua* si su función de distribución acumulada $F_X: \mathbb{R} \to [0,1]$ es continua. En otras palabras, X se dice continua si P(X=t)=0 para todo $t\in \mathbb{R}$.

Recordar que

- $F_X(t) = P(X \le t)$
- $P(X < t) = F_X(t^-)$
- $F_X(t) = F_X(t^-) + P(X = t)$
- \blacksquare F_X es continua a derecha

Por lo tanto, F_X es continua si y sólo si P(X=t)=0 para todo $t\in \mathbb{R}$.

Definición 1

La variable aleatoria X se dice continua si su función de distribución acumulada $F_X: \mathbb{R} \to [0,1]$ es continua. En otras palabras, X se dice continua si P(X=t)=0 para todo $t\in \mathbb{R}$.

Recordar que

- $F_X(t) = P(X \leq t)$
- $P(X < t) = F_X(t^-)$
- $F_X(t) = F_X(t^-) + P(X = t)$
- F_X es continua a derecha

Por lo tanto, F_X es continua si y sólo si P(X=t)=0 para todo $t\in \mathbb{R}$.

Definición 1

La variable aleatoria X se dice *continua* si su función de distribución acumulada $F_X: \mathbb{R} \to [0,1]$ es continua. En otras palabras, X se dice continua si P(X=t)=0 para todo $t\in \mathbb{R}$.

Recordar que

- $F_X(t) = P(X \leq t)$
- $P(X < t) = F_X(t^-)$
- $F_X(t) = F_X(t^-) + P(X = t)$
- F_X es continua a derecha

Por lo tanto, F_X es continua si y sólo si P(X = t) = 0 para todo $t \in \mathbb{R}$.

Antes de definir variables absolutamente continuas, consideremos el siguiente ejemplo motivador. Estamos interesados en elegir al azar un punto en el intervalo (0,2]. A diferencia de los ejemplos considerados hasta ahora, el conjunto de posibles valores del experimento es no numerable.

Si denotamos por X la variable aleatoria que indica el punto elegido, es razonable asumir que la probabilidad de que $X \in (a,b]$ debería ser proporcional a la longitud del intervalo, para todo $[a,b) \subset (0,2]$. Es decir

$$P\left(X \in (a,b]\right) = C\left(b-a\right)$$
, para todo $0 < a \le b \le 2$.

¿Cuál es el valor de la constante C ? Siendo que $\mathit{P}(X \in (0,2]) = 1$, tenemos que

$$C(2-0)=1$$
, de donde deducimos que $C=1/2$.

Tenemos entonces que

$$P(X \in (a,b]) = 1/2(b-a)$$
, para todo $0 < a \le b \le 2$.

Antes de definir variables absolutamente continuas, consideremos el siguiente ejemplo motivador. Estamos interesados en elegir al azar un punto en el intervalo (0,2]. A diferencia de los ejemplos considerados hasta ahora, el conjunto de posibles valores del experimento es no numerable.

Si denotamos por X la variable aleatoria que indica el punto elegido, es razonable asumir que la probabilidad de que $X \in (a,b]$ debería ser proporcional a la longitud del intervalo, para todo $[a,b) \subset (0,2]$. Es decir:

$$P(X \in (a, b]) = C(b - a)$$
, para todo $0 < a \le b \le 2$.

¿Cuál es el valor de la constante C? Siendo que $P(X \in (0,2]) = 1$, tenemos que

$$C(2-0)=1$$
, de donde deducimos que $C=1/2$.

Tenemos entonces que

$$P(X \in (a, b]) = 1/2(b - a)$$
, para todo $0 < a \le b \le 2$

Antes de definir variables absolutamente continuas, consideremos el siguiente ejemplo motivador. Estamos interesados en elegir al azar un punto en el intervalo (0,2]. A diferencia de los ejemplos considerados hasta ahora, el conjunto de posibles valores del experimento es no numerable.

Si denotamos por X la variable aleatoria que indica el punto elegido, es razonable asumir que la probabilidad de que $X \in (a,b]$ debería ser proporcional a la longitud del intervalo, para todo $[a,b) \subset (0,2]$. Es decir:

$$P(X \in (a, b]) = C(b - a)$$
, para todo $0 < a \le b \le 2$.

¿Cuál es el valor de la constante C? Siendo que $P(X \in (0,2]) = 1$, tenemos que

$$C(2-0) = 1$$
, de donde deducimos que $C = 1/2$.

Tenemos entonces que

$$P(X \in (a, b]) = 1/2(b - a)$$
, para todo $0 < a \le b \le 2$.

Ejemplo (continuación)

¿Cómo calcular la función de distribución asociada a la variable aleatoria X? Recordemos que

$$F_X(x) = P(X \leq x).$$

Así, tenemos que si $x \le 0$, $F_X(x) = 0$. Si $x \in [0,2)$, $F_X(x) = 1/2x$ y finalmente, la función de distribución vale 1 a partir de x = 2:

$$F_X(x) = \begin{cases} 0 & \text{si } x \le 0, \\ \frac{x}{2} & \text{si } 0 < x \le 2, \\ 1 & \text{si } x > 2. \end{cases}$$

Obsérvese que si definimos la función $f_X(x)$ mediante la formula

$$f_X(x) = \begin{cases} 0 & \text{si } x \le 0 \\ \frac{1}{2} & \text{si } 0 < x \le 2 \\ 0 & \text{si } x > 2 \end{cases},$$

tenemos que

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(u) du$$
.

En tal caso, diremos que f_X es la función de densidad de la variable aleatoria X.

Propiedades de las Funciones de Densidad

Observación 1.1

Si X tiene función de densidad f_X , entonces $\int_{-\infty}^{+\infty} f_X(u) du = 1$.

Esto vale pues

$$1 = \lim_{b \to \infty} F_X(b) = \lim_{b \to \infty} \int_{-\infty}^b f_X(u) \, du = \int_{-\infty}^{+\infty} f_X(u) \, du$$

Definición 2

Toda función $f \ge 0$ tal que $\int_{-\infty}^{+\infty} f(u) du = 1$ se dice función de densidad.

Propiedades de las Funciones de Densidad

Observación 1.1

Si X tiene función de densidad f_X , entonces $\int_{-\infty}^{+\infty} f_X(u) du = 1$.

Esto vale pues

$$1 = \lim_{b \to \infty} F_X(b) = \lim_{b \to \infty} \int_{-\infty}^b f_X(u) \, du = \int_{-\infty}^{+\infty} f_X(u) \, du$$

Definición 2

Toda función $f \ge 0$ tal que $\int_{-\infty}^{+\infty} f(u) du = 1$ se dice función de densidad.

Propiedades de las Funciones de Densidad

Observación 1.1

Si X tiene función de densidad f_X , entonces $\int_{-\infty}^{+\infty} f_X(u) du = 1$.

Esto vale pues

$$1 = \lim_{b \to \infty} F_X(b) = \lim_{b \to \infty} \int_{-\infty}^b f_X(u) \, du = \int_{-\infty}^{+\infty} f_X(u) \, du$$

Definición 2

Toda función $f \ge 0$ tal que $\int_{-\infty}^{+\infty} f(u) du = 1$ se dice función de densidad.

Definición de Variables Absolutamente Continuas

Definición 3

Una variable aleatoria X se dice absolutamente continua si existe una función $f_X : \mathbb{R} \to \mathbb{R}_{\geq 0}$ tal que $F_X(x) = P(X \leq x) = \int_{-\infty}^x f_X(u) \, du$.

Recordemos que, conociendo la función de distribución de una variable aleatoria, podíamos calcular varias probabilidades. Por ejemplo, teníamos que

$$P(X \in (a, b]) = P(a < X \le b) = F_X(b) - F_X(a).$$

Como la distribución se obtiene de integrar la densidad, tenemos que

$$P(a < X \le b) = F_X(b) - F_X(a) =$$

$$\int_{-\infty}^b f_X(u) du - \int_{-\infty}^a f_X(u) du = \int_a^b f_X(u) du.$$

Como las probabilidades puntuales valen cero, la fórmula precedente vale para todo tipo de intervalo con extremos en a y b: [a, b], [a, b), (a, b], (a, b).

Lema 4

Si X es absolutamente continua, entonces X es continua.

Demostración.

Sea $x_0 \in \mathbb{R}$ qvq F_X es continua en x_0 .

- Si f_X es acotada en un entorno de x_0 , $|f_X(u)| \le c$ entonces

$$|F_X(x_0) - F_X(x)| \le c |x_0 - x| \to 0$$
 cuando $x \to x_0$.

- Si f_X no es acotada en un entorno de x_0 , entonces

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du$$
 se define como integral impropia,

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du = \lim_{x \to x_0} \int_{-\infty}^{x} f_X(u) du = \lim_{x \to x_0} F_X(x).$$

Luego, F_X es continua en x_0 .

Lema 4

Si X es absolutamente continua, entonces X es continua.

Demostración.

Sea $x_0 \in \mathbb{R}$ qvq F_X es continua en x_0 .

- Si f_X es acotada en un entorno de $x_0, |f_X(u)| \le c$ entonces

$$|F_X(x_0) - F_X(x)| \le c |x_0 - x| \to 0$$
 cuando $x \to x_0$.

- Si f_X no es acotada en un entorno de x_0 , entonces

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du$$
 se define como integral impropia,

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du = \lim_{x \to x_0} \int_{-\infty}^{x} f_X(u) du = \lim_{x \to x_0} F_X(x)$$

Luego. Fy es continua en x₀.

Lema 4

Si X es absolutamente continua, entonces X es continua.

Demostración.

Sea $x_0 \in \mathbb{R}$ qvq F_X es continua en x_0 .

- Si f_X es acotada en un entorno de $x_0, |f_X(u)| \leq c$ entonces

$$|F_X(x_0) - F_X(x)| \le c |x_0 - x| \to 0$$
 cuando $x \to x_0$.

- Si f_X no es acotada en un entorno de x_0 , entonces

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du$$
 se define como integral impropia,

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du = \lim_{x \to x_0} \int_{-\infty}^{x} f_X(u) du = \lim_{x \to x_0} F_X(x)$$

Luego, F_X es continua en x_0 .

Lema 4

Si X es absolutamente continua, entonces X es continua.

Demostración.

Sea $x_0 \in \mathbb{R}$ qvq F_X es continua en x_0 .

- Si f_X es acotada en un entorno de $x_0, |f_X(u)| \le c$ entonces

$$|F_X(x_0) - F_X(x)| \le c |x_0 - x| \to 0$$
 cuando $x \to x_0$.

- Si f_X no es acotada en un entorno de x_0 , entonces

 $F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du$ se define como integral impropia,

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du = \lim_{x \to x_0} \int_{-\infty}^{x} f_X(u) du = \lim_{x \to x_0} F_X(x)$$

Luego. F_X es continua en x_0 .

Lema 4

Si X es absolutamente continua, entonces X es continua.

Demostración.

Sea $x_0 \in \mathbb{R}$ qvq F_X es continua en x_0 .

- Si f_X es acotada en un entorno de $x_0, |f_X(u)| \le c$ entonces

$$|F_X(x_0) - F_X(x)| \le c |x_0 - x| \to 0$$
 cuando $x \to x_0$.

- Si f_X no es acotada en un entorno de x_0 , entonces

 $F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du$ se define como integral impropia,

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du = \lim_{x \to x_0} \int_{-\infty}^{x} f_X(u) du = \lim_{x \to x_0} F_X(x).$$

Luego. F_X es continua en x_0 .

Lema 4

Si X es absolutamente continua, entonces X es continua.

Demostración.

Sea $x_0 \in \mathbb{R}$ qvq F_X es continua en x_0 .

- Si f_X es acotada en un entorno de $x_0, |f_X(u)| \le c$ entonces

$$|F_X(x_0) - F_X(x)| \le c |x_0 - x| \to 0$$
 cuando $x \to x_0$.

- Si f_X no es acotada en un entorno de x_0 , entonces

 $F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du$ se define como integral impropia,

$$F_X(x_0) = \int_{-\infty}^{x_0} f_X(u) du = \lim_{x \to x_0} \int_{-\infty}^{x} f_X(u) du = \lim_{x \to x_0} F_X(x).$$

Luego, F_X es continua en x_0 .

Si f_X es una función de densidad continua en x_0 , entonces

$$\lim_{h \to 0} \frac{P(X \in [x_0 - h, x_0 + h])}{2h} = f_X(x_0).$$

$$M_h = \max \{ f_X(u) : u \in [x_0 - h, x_0 + h] \}$$
.
Por continuidad $\lim_{h \to 0} m_h = \lim_{h \to 0} M_h = f_X(x_0)$

$$2hm_h \le \int_{x_0-h}^{x_0+h} f_X(u) du \le 2hM_h \text{ es decir, } m_h \leqslant \frac{1}{2h} \int_{x_0-h}^{x_0+h} f_X(u) du \leqslant M_h$$

$$f_X(x_0) \le \lim_{h \to 0} \frac{P_X([x_0 - h; x_0 + h])}{2h} \le f_X(x_0)$$

Si f_X es una función de densidad continua en x_0 , entonces

$$\lim_{h \to 0} \frac{P(X \in [x_0 - h, x_0 + h])}{2h} = f_X(x_0).$$

Demostración.

Sea $m_h = \min \left\{ f_X(u) : u \in [x_0 - h, x_0 + h] \right\}$,

 $M_h = \max \{ f_X(u) : u \in [x_0 - h, x_0 + h] \}.$

Por continuidad lím $_{h\to 0}$ $m_h=$ lím $_{h\to 0}$ $M_h=f_X$ (x_0) .

$$2hm_h \le \int_{x_0-h}^{x_0+h} f_X(u) du \le 2hM_h \text{ es decir, } m_h \leqslant \frac{1}{2h} \int_{x_0-h}^{x_0+h} f_X(u) du \leqslant M_h$$

Pasando al límite $h \rightarrow 0$,

$$f_X(x_0) \le \lim_{h \to 0} \frac{P_X([x_0 - h; x_0 + h])}{2h} \le f_X(x_0)$$

e donde se deduce el teorema

Si f_X es una función de densidad continua en x_0 , entonces

$$\lim_{h \to 0} \frac{P(X \in [x_0 - h, x_0 + h])}{2h} = f_X(x_0).$$

Demostración.

Sea $m_h = \min \{ f_X(u) : u \in [x_0 - h, x_0 + h] \}$,

 $M_h = \max \{ f_X(u) : u \in [x_0 - h, x_0 + h] \}.$

Por continuidad $\lim_{h\to 0} m_h = \lim_{h\to 0} M_h = f_X(x_0)$.

$$2hm_h \le \int_{x_0-h}^{x_0+h} f_X(u) du \le 2hM_h \text{ es decir, } m_h \leqslant \frac{1}{2h} \int_{x_0-h}^{x_0+h} f_X(u) du \leqslant M_h$$

Pasando al límite $h \rightarrow 0$,

$$f_X(x_0) \leq \lim_{h \to \infty} \frac{P_X([x_0 - h; x_0 + h])}{2h} \leq f_X(x_0)$$

e donde se deduce el teorema

Si f_X es una función de densidad continua en x_0 , entonces

$$\lim_{h\to 0}\frac{P\Big(X\in [x_0-h,x_0+h]\Big)}{2h}=f_X(x_0).$$

Demostración.

Sea $m_h = \min \{ f_X(u) : u \in [x_0 - h, x_0 + h] \}$,

$$M_h = \max \{f_X(u) : u \in [x_0 - h, x_0 + h]\}.$$

Por continuidad $\lim_{h\to 0} m_h = \lim_{h\to 0} M_h = f_X(x_0)$.

$$2hm_h \leq \int_{x_0-h}^{x_0+h} f_X(u) du \leq 2hM_h \text{ es decir, } m_h \leqslant \frac{1}{2h} \int_{x_0-h}^{x_0+h} f_X(u) du \leqslant M_h$$

Pasando al límite $h \rightarrow 0$,

$$f_X(x_0) \le \lim_{h \to 0} \frac{P_X([x_0 - h; x_0 + h])}{2h} \le f_X(x_0)$$

e donde se deduce el teorema

Si f_X es una función de densidad continua en x_0 , entonces

$$\lim_{h\to 0}\frac{P(X\in [x_0-h,x_0+h])}{2h}=f_X(x_0).$$

Demostración.

Sea
$$m_h = \min \{ f_X(u) : u \in [x_0 - h, x_0 + h] \}$$
,

 $M_h = \max\{f_X(u) : u \in [x_0 - h, x_0 + h]\}.$

Por continuidad $\lim_{h\to 0} m_h = \lim_{h\to 0} M_h = f_X(x_0)$.

$$2hm_h \le \int_{x_0-h}^{x_0+h} f_X(u) du \le 2hM_h$$
 es decir, $m_h \leqslant \frac{1}{2h} \int_{x_0-h}^{x_0+h} f_X(u) du \leqslant M_h$

Pasando al límite $h \to 0$,

$$f_X(x_0) \le \lim_{h \to 0} \frac{P_X([x_0 - h; x_0 + h])}{2h} \le f_X(x_0),$$

de donde se deduce el teorema.

Teorema 6

Si f_X es continua en x_0 , entonces F_X es derivable en x_0 y además $F_X'(x_0) = f_X(x_0)$.

Demostración.

Vale por el Teorema Fundamental de Cálculo.

Teorema 6

Si f_X es continua en x_0 , entonces F_X es derivable en x_0 y además $F_X'(x_0) = f_X(x_0)$.

Demostración.

Vale por el Teorema Fundamental de Cálculo.

Relación entre densidad y distribución. Resumen

Recordemos que, conociendo la función de distribución de una variable aleatoria, podíamos calcular varias probabilidades. Por ejemplo,

$$P(X \in (a, b]) = P(a < X \le b) = F_X(b) - F_X(a)$$
.

Como la distribución se obtiene de integrar la densidad, tenemos que

$$P(X \in (a,b]) = \int_{-\infty}^b f_X(u) \ du - \int_{-\infty}^a f_X(u) \ du = \int_a^b f_X(u) du.$$

Como las probabilidades puntuales valen cero, la fórmula precedente vale para todo tipo de intervalo con extremos en a y b: [a, b], [a, b), (a, b], (a, b).

$$f_X(x) = F_X'(x) .$$

$$F_X(x) = \int_{-\infty}^x f_X(u) du .$$

Relación entre densidad y distribución. Resumen

Recordemos que, conociendo la función de distribución de una variable aleatoria, podíamos calcular varias probabilidades. Por ejemplo,

$$P(X \in (a, b]) = P(a < X \le b) = F_X(b) - F_X(a)$$
.

Como la distribución se obtiene de integrar la densidad, tenemos que

$$P(X \in (a,b]) = \int_{-\infty}^b f_X(u) \ du - \int_{-\infty}^a f_X(u) \ du = \int_a^b f_X(u) du.$$

Como las probabilidades puntuales valen cero, la fórmula precedente vale para todo tipo de intervalo con extremos en a y b: [a, b], [a, b), (a, b], (a, b).

Tenemos entonces que

si conocemos la distribución $F_X(x)$ obtenemos la densidad derivando:

$$f_X(x) = F_X'(x) .$$

$$F_X(x) = \int_{-\infty}^x f_X(u) du .$$

Relación entre densidad y distribución. Resumen

Recordemos que, conociendo la función de distribución de una variable aleatoria, podíamos calcular varias probabilidades. Por ejemplo,

$$P(X \in (a, b]) = P(a < X \le b) = F_X(b) - F_X(a)$$
.

Como la distribución se obtiene de integrar la densidad, tenemos que

$$P(X \in (a,b]) = \int_{-\infty}^b f_X(u) \ du - \int_{-\infty}^a f_X(u) \ du = \int_a^b f_X(u) du.$$

Como las probabilidades puntuales valen cero, la fórmula precedente vale para todo tipo de intervalo con extremos en a y b: [a, b], [a, b), (a, b], (a, b).

Tenemos entonces que

si conocemos la distribución $F_X(x)$ obtenemos la densidad derivando:

$$f_X(x) = F_X'(x) .$$

y si conocemos la densidad $f_X(x)$, calculamos la distribución integrando:

$$F_X(x) = \int_{-\infty}^x f_X(u) du .$$

Definición de cuantil y percentil

Definición 7

Sea X una variable absolutamente continua con función de densidad f_X y función de distribución F_X estrictamente creciente en la región donde $\{0 < F_X < 1\}$. Sea $0 < \alpha < 1$. El α -cuantil (ó cuantil α o $100 \cdot \alpha$ -percentil) de la distribución de X es el valor x_α tal que $F_X(x_\alpha) = \alpha$, es decir, x_α tal que

$$P(X \le x_{\alpha}) = \int_{-\infty}^{x_{\alpha}} f_X(u) du = \alpha.$$

Como lím $_{t\to -\infty}F_X(t)=0$, lím $_{t\to +\infty}F_X(t)=1$ y F_X es continua, el α -cuantil de X siempre existe. Como además pedimos que F_X sea estrictamente creciente, es único. Es decir,

$$x_{\alpha} = F_X^{-1}(\alpha).$$

Cuantiles

Figura: Cuantil α de una distribución: a la izquierda, graficado en la función de distribución, a la derecha graficado sobre la función de densidad.

Aclaración: En la literatura del área, a las variables aleatorias absolutamente continuas se las denomina, directamente, continuas. Esto, inicialmente, podría llevar a una confusión, pero para dejar las cosas claras, de acá en más, siempre que hablemos de variables aleatorias continuas nos estaremos refiriendo a variables aleatorias absolutamente continuas.

Sea

$$f_X(x) = \begin{cases} 0 & \text{si } x \le 0\\ \alpha x^2 & \text{si } 0 < x \le 2\\ 0 & \text{si } x > 2 \end{cases}$$

- (1) Hallar α para que f sea una función de densidad. Hallar la función de distribución asociada a la densidad f.
- (2) Hallar la probabilidad de que X sea menor a 0.5 .
- (3) Hallar el cuantil 0.27 de la distribución.

Consideremos el experimento: elegir al azar un punto en el intervalo [a, b]. Sea X el punto elegido

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{caso contrario} \end{cases}$$
 (1)

La función de distribución acumulada de X es

$$F_X(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}$$

Consideremos el experimento: elegir al azar un punto en el intervalo [a, b]. Sea X el punto elegido

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{caso contrario} \end{cases}$$
 (1)

La función de distribución acumulada de X es

$$F_X(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}$$

Consideremos el experimento: elegir al azar un punto en el intervalo [a, b]. Sea X el punto elegido

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{caso contrario} \end{cases}$$
 (1)

La función de distribución acumulada de X es

$$F_X(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}$$