Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Методическое указание к лабораторной работе №1 (Занятие 1) Тема работы:

Система управления тороидальным магнитным полем установки ТОКАМАК

Введение

Токамаки являются импульсными установками, режим и порядок работы которых определяется сценарием разряда. Термин сценарий [1, стр. 73] часто используется в физике плазмы [2]. Под сценарием обычно понимают заданную последовательность (ряд) рабочих точек для конкретного токамака и плазмы, через которые установка должна пройти во время разряда. В определение рабочих точек обычно включают эволюцию тока плазмы и ее формы, кроме того, могут быть включены и другие параметры, такие как бета, внутренняя индуктивность плазмы и др., а также, траектории движения исполнительных и регулирующих органов — токов в обмотках, систем доп. нагрева, газонапуска, неиндукционного поддержания тока плазмы и др.

Разряд плазмы в токамаке может быть разделен на несколько разных фаз (см. рисунок 1) [3–5]:

- I «Зарядка». В обмотки ТF вводится ток, который создает тороидальное магнитное поле в вакуумной камере токамака нужной величины, тороидальное поле должно быть стабилизировано в течение длительности всего эксперимента. Обмотки СS и PF «заряжаются» токами до своих желаемых предпробойных значений.
- II Пробой. Формирование плазмы происходит за счет ионизации молекул водорода вихревым электрическим полем, индуцированным резким изменением токов в обмотках СS и (в меньшей степени) РF.
- III Подъем тока. В течение данной фазы ток плазмы поднимается от нуля до своего желаемого постоянного значения. Обычно ток плазмы растет со временем по линейному закону. Вместе с током своих желаемых значений достигают другие величины, описывающие плазму.
- IV Плато. В течение этой фазы, все величины, которые описывают плазму, должны быть стабилизированы около своих желаемых значений. Это наиболее важная и длительная фаза во всем разряде, к управлению плазмой в данной фазе ставят наиболее жесткие требования.

 $-V-\Gamma$ ашение. Ток плазмы и другие величины устремляют к нулю, происходит гашение плазмы и остановка токамака.

Рисунок 1 – Типовой сценарий разряда в токамаке

1 Теоретическая часть

Тороидальное магнитное поле в токамаке является основным удерживающим горячую плазму магнитным полем. Величина тороидального магнитного поля определяется электрическим током I_{TF} , протекающим в обмотках тороидального поля TF:

$$B_{\varphi}(r) \sim \frac{I_{\rm TF}}{r}$$

стабилизация тока в обмотках ТГ должна обеспечить стабильное тороидальное магнитное поле нужной величины в течение всего эксперимента.

Обмотки ТF питаются от регулируемого источника постоянного напряжения $U_{\rm И\Pi}$ (см. рисунок 2).

Рисунок 2 – Упрощенная схема электропитания обмоток TF

В качестве источника питания используется 6-пульсный тиристорный преобразователь, который питается от 3-фазной сети переменного тока. Если пренебречь падением напряжения в тиристорном преобразователе, то средневыпрямленное напряжение преобразователя $U_{\rm HII}$ зависит от действующего значения линейного (или фазного) переменного напряжения $U_{\rm rms}$, от которого запитывается тиристорный преобразователь, а также угла открытия тиристоров α :

$$U_{\text{\tiny MII}}(\alpha) \, {\scriptstyle \sim} \, U_{\text{\tiny rms}} f(\alpha) \, , \label{eq:ms}$$

здесь следует отметить, что зависимость $f(\alpha)$ не является линейной, что нужно учитывать при синтезе управления тиристорным источником питания (Лабораторная работа №2). В данной работе будем считать, что источник питания имеет линейную характеристику, точнее — линеаризованную некоторым образом, в виде:

$$U_{\text{MII}} \approx U_{\alpha} \sim U_{\text{rms}}$$
,

здесь U_{α} – входная координата для источника.

Обмотки тороидального поля TF будем рассматривать как активноиндуктивную нагрузку с суммарным сопротивлением R_{TF} и суммарной индуктивностью L_{TF} .

Закон изменения тока в активно-индуктивной нагрузке описывается дифференциальным уравнением:

$$L\frac{di(t)}{dt} + Ri(t) = u(t), \qquad (1)$$

При нулевом начальном условии: i(0) = 0, и u = Const, решением уравнения (1) будет:

$$i(t) = \frac{u}{R} \left(1 - \exp(-\frac{R}{L}t) \right).$$

Нетрудно заметить, что при малых временах (t << L/R) падением напряжения на активном сопротивлении можно пренебречь Ri << Ldi/dt, а закон изменения тока приблизительно описать дифференциальным уравнением:

$$L\frac{di(t)}{dt} \approx u, i(0) = 0, t \ll L/R.$$
(2)

В рамках данной лабораторной работы необходимо обеспечить максимально быстрый ввод тока в обмотки ТF до желаемого значения I_{ref} , после чего стабилизировать ток в течение эксперимента, как показано на рисунке 3.

Зная параметры источника питания обмоток TF, индуктивности $L_{\rm TF}$ и сопротивления $R_{\rm TF}$, нетрудно определить максимально возможную скорость роста тока и, затем, момент времени t_1 когда ток достигнет желаемого значе-

ния I_{ref} . Полученную диаграмму тока $I_{\text{TF,ref}}(t)$ будем использовать в качестве уставки для системы управления током.

Рисунок 3 – Сценарий изменения тока в обмотках TF

Диаграмму напряжения $U_{\text{ref}}^{\text{ff}}(t)$, которая при подстановке вместе с $I_{\text{TF,ref}}(t)$ в уравнение (1) обратит его в тождество, будем называть программной. За основу системы управления током в ТF выберем двухконтурную схему, показанную на рисунке 4, в которой регулируется как ток в нагрузке, так и напряжение источника питания. Уставку для контура регулирования напряжением будем складывать из двух составляющих:

$$U_{
m ref} = U_{
m ref}^{
m ff} + U_{
m ref}^{
m fb}$$
 ,

где $U_{\rm ref}^{\rm ff}(t)$ обеспечивает изменение тока в обмотках ТF вдоль заданной диаграммы тока $I_{\rm TF,ref}(t)$, а $U_{\rm ref}^{\rm fb}(t)$ формируется регулятором тока по сигналу рассогласования ε_I , что позволит скомпенсировать неточности модели (1) и возмущения действующие на объект.

Рисунок 4 — Структурная схема системы управления тороидальным полем токамака

На структурной схеме (рисунок 4) используются следующие обозначения:

- $-W_{\mathrm{TF}}^{\mathrm{y}}(s)$ передаточная функция объекта по управлению;
- $-W_{\mathrm{TF}}^{\mathrm{B}}(s)$ передаточная функция объекта по возмущению;
- $-W_{\rm MII}^{\rm y}(s)$ передаточная функция источника питания по управлению;
- $-W_{\text{ип}}^{\text{B}}(s)$ передаточная функция источника питания по возмущению;
- $-W_{\mathbf{p},U}(s)$ передаточная функция регулятора напряжения на выходе источника питания;
- $-W_{\mathrm{p},I}(s)$ передаточная функция регулятора тока в TF.

2 Варианты заданий

Вариант	R _{TF} , мОм	$L_{ ext{TF}}$, м Γ н	$f_{ m c}$, Гц	$ U_{ m M\Pi,max} $, B	I _{ref} , кА	η_R , %	η_U , %
1	1,5761	1,7119	50	700	20	15	+15
2	9,7059	7,0605	60	750	30	20	+10
3	9,5717	0,3183	50	800	20	15	-15
4	4,8538	2,7692	60	850	30	20	-10
5	8,0028	0,4617	50	900	20	15	+15
6	1,4189	1,9713	60	950	40	20	+10
7	4,2176	8,2346	50	1000	20	15	-15
8	9,1574	6,9483	60	1050	20	20	-10
9	7,9221	3,1710	50	1100	20	15	+15
10	9,5949	9,5022	60	1150	20	20	+10
11	6,5574	6,3445	50	1200	30	15	-15
12	4,3571	4,3874	60	1250	40	20	-10
13	8,4913	3,8156	50	1300	20	15	+15
14	9,3399	7,6552	60	1350	20	20	+10
15	6,7874	7,9520	50	1400	30	15	-15
16	7,5774	1,8687	60	1450	30	20	-10
17	7,4313	4,8976	50	1500	30	15	+15
18	3,9223	4,4559	60	1550	30	20	+10
19	6,5548	6,4631	50	1600	30	15	-15
20	9,5	10,11	60	1650	40	15	+10
21	10,5	12,153	50	1700	50	20	-15
22	11,4	11,4	60	1750	60	15	+10
23	11,1	15,6	50	1800	50	20	-15
24	10,5	20,8	60	1850	60	15	+10
25	7,5	15,1	50	1900	50	20	-18

26	13,0	12,9	60	1950	60	15	+10
27	15,1	18,12	50	2000	50	20	-15
28	11,4	17,23	60	2050	60	15	+10
29	15,0	16,4	50	2100	50	20	-15
30	17,0	16,9	60	2150	60	15	+10
31	19,56	21,1	50	2200	70	20	-15
32	11,3	9,4	60	1950	40	15	+10
33	9,45	11,89	50	1850	50	20	-15
34	8,4	12,89	60	2000	40	15	+10
35	11,5	13,45	50	2150	50	20	-15

3 Порядок работы

- 1 Согласуйте вариант задания с преподавателем и выпишите исходные данные, приведенные в таблице выше.
- 2 Исходя из условия, что ток в ТF необходимо ввести максимально быстро, а также, учитывая ограничения источника питания, синтезируйте программные диаграммы (траектории) тока $I_{\text{TF,ref}}(t)$ в ТF (см. рисунок 3) и напряжения $U_{\text{ref}}^{\text{ff}}(t)$. Представьте полученные функции тока и напряжения в виде:

$$I_{\text{TF,ref}} = \begin{cases} i_{01}(t), & t_0 \le t < t_1, \\ i_{12}(t), & t_1 \le t < t_2, \end{cases}$$

$$[u_{01}(t), & t_0 \le t < t_1, \end{cases}$$

$$U_{\text{ref}}^{\text{ff}} = \begin{cases} u_{01}(t), & t_0 \le t < t_1, \\ u_{12}(t), & t_1 \le t < t_2. \end{cases}$$

Постройте графики тока и напряжения и представьте их виде:

Указание. Используйте уравнение (1), для интервала времени $t_0 \le t < t_1$ воспользуйтесь приближением (2). Для построения графиков используйте инструменты MATLAB, рекомендуется использовать режим 'Edit Plot'. Все оси должны быть подписаны.

3 Постройте передаточную функцию источника питания по управлению $W_{\text{TF}}^{\text{y}}(s)$. Выше было сказано, что $U_{\text{ИП}}/\text{U}_{\alpha} \approx 1$, однако более точной аппроксимаций будет использование апериодического звена первого порядка с запаздыванием:

$$W_{\text{MII}}^{\text{y}}(s) = \frac{1}{T_{\text{MII}}s+1} \cdot e^{-\tau_{\text{MII}}s},$$

где $T_{\rm И\Pi}=1/(2\,f_{\rm c}\,p),\,f_{\rm c}$ — частота питающей сети, p — пульсность выпрямителя; $\tau_{\rm И\Pi}=T_{\rm u}/2,\,T_{\rm u}=1/(\,f_{\rm c}\,p)$ — время цикла управления, $T_{\rm u}$ также используется для измерения средних значений напряжения источника питания и тока в TF.

- 4 Исходя из малости постоянной времени $T_{\rm ИП}$, и требования отсутствия статической ошибки регулирования, выберете закон регулирования для контура управления напряжением источника питания. Рекомендуется выполнить расчет параметров настройки регулятора в программе Sar_Sintez методом оптимального модуля.
- 5 Соберите в Simulink замкнутую систему стабилизации напряжения ИП ТГ (см. рисунок 4). Подайте на вход модели тестовые ступенчатые воздействия, добейтесь отсутствия перерегулирования в переходных процессах замкнутого контура управления ИП.

Выполните настройку решателя (Solver). В меню Simulation выберите Model Configuration Parameters —> Solver. На панели Solver options выберите тип: Variable-step метод: ode23t (mod. stiff/Trapezoidal).

6 Передаточную функцию ИП по каналу возмущения выберете в виде:

$$W_{\text{MII}}^{\text{B}}(s) = \frac{k_{\text{MII}}^{\text{B}}}{T_{\text{MII}}s + 1}.$$

Определите величину коэффициента передачи $k_{\text{ИП}}^{\text{B}}$ из условия, что действующее значение переменного напряжения (линейного или фазного) скачком изменилась на η_U %.

7 Добавьте в модель контура управления ИП в Simulink канал по возмущению.

8 Постройте передаточную функцию объекта по каналу управления $W_{TF}^{y}(s)$. Используйте апериодическое звено первого порядка с запаздыванием:

$$W_{TF}^{y}(s) = \frac{k_{TF}}{T_{TF}s+1} \cdot e^{-\tau_{TF}s},$$

здесь $\tau_{\text{TF}} = T_{\text{u}}/2$ (см. выше).

- 9 Определите структуру и параметры передаточной функции объекта по каналу возмущения из условия, что сопротивление обмотки скачком увеличилось на η_R %.
- 10 В качестве закона регулирования тока в ТF использовать ПИД регулятор. При расчете параметров настройки регулятора тока, в виду малости $T_{U\Pi}$ ($T_{U\Pi} << T_{TF}$) принять, что передаточная функция замкнутой системы стабилизации напряжения ИП TF равна $\exp(-\tau_{U\Pi}s)$. Расчет параметров настройки регулятора тока рекомендуется выполнить в программе Sar_Sintez методом оптимального модуля.
- 11 Соберите в Simulink модель замкнутой системы управления током в ТF. Обеспечьте в модели возможность отключения контура стабилизации (используйте блок Manual Switch).
- 12 При настройке регуляторов в Simulink необходимо учесть ограничения управляющих воздействий по амплитуде (примите во внимание положение рабочего органа на интервале стабилизации тока в ТF).
- 13 Используя программные диаграммы тока и напряжения, полученные в п. 2, смоделируйте ввод тока в ТF и его стабилизацию. Моделирование проведите без возмущений. Отключите регулятор напряжения и проведите моделирование снова. Сравните результаты.
- 14 Повторите действия предыдущего пункта, последовательно подавая возмущения для контура управления напряжением и током (по отдельности!). Сравните результаты, сделайте выводы.
- 15 Оформите отчет по результатам работы.

4 Список литературы

- 1. Ariola M., Pironti A. Plasma shape control for the JET tokamak: an optimal output regulation approach // IEEE Control Syst. 2005. Vol. 25, № 5. P. 65–75.
- 2. Чен Ф.Ф. Введение в физику плазмы. Москва: Мир, 1987. 398 р.
- 3. Pillsbury, R.D. J., Hakkarainen S.P. Plasma start-up modelling for Alcator C-MOD // IEEE Thirteen. Symp. Fusion Eng. 1989 Proc. 1989. P. 642–645 vol.1.
- 4. Pillsbury, R.D. J., Schultz J.H. Modelling of plasma start-up in ITER // IEEE Trans. Magn. 1992. Vol. 28, № 2. P. 1462–1465.
- 5. Ariola M., Pironti A. Magnetic Control of Tokamak Plasmas. Springer, 2008. 170 p.