Assignment 6

Network Analysis

Finn Joel Bjervig*, August Forsman†, and Erik Turesson ‡

1MA256 - Modeling Complex Systems, Department of Mathematics, Uppsala university, Sweden

August 31, 2022

^{*}Electronic address: jobj8920@student.uu.se †Electronic address: aufo8456@student.uu.se

 $^{^{\}ddagger}\mathrm{Electronic}$ address: ertu2293@student.uu.se

1 Coupled Harmonic Oscillators in a network structure

The governing equation for determining the synchronizability of linearly dynamical nodes is

$$\frac{dx_i}{dt} = R(x_i) + \alpha \sum_{i \in N_i} (H(x_j) - H(x_i))$$
 (1)

The system at hand constitutes a complex valued system

$$\frac{dx_i}{dt} = \mathbf{i}\omega x_i + \alpha \sum_{i \in N_j} \left(x_j^{\gamma} - x_i^{\gamma} \right)$$
 (2)

 x_i are the nodes state and N_i the neighbouring nodes. R is the local reaction term that determines the inherent behaviour of the system. $H = x^{\gamma}$ is called the output function that applies to all nodes.

The above equation can be simplified by utilizing the Laplacian matrix

$$\frac{dx_i}{dt} = R(x_i) - \alpha L \begin{pmatrix} H(x_1) \\ H(x_2) \\ \vdots \\ H(x_n) \end{pmatrix}$$
 (3)

This system can be synchronized if and only if the trajectory x_i is stable $\forall i$. Thus we apply linear stability analysis on around this stable state $x_s(t)$

$$x_i(t) = x_s(t) + \Delta x_i(t) \tag{4}$$

Plugging into equation 3 we yield the final result of the linearization

$$\frac{d\Delta x}{dt} = \left(R'(x_s)\mathbf{I} - \alpha H'(x_s)\mathbf{L}\right)\Delta x = \mathbf{\Lambda}\Delta x \tag{5}$$

I is the identity matrix. Since x_s changes over time, the eigenvalues of the coefficient matrix must be negative in order for the system to be stable. It is known that the matrix $a\mathbf{X}+b\mathbf{I}$ has eigenvalues $a\lambda_i+b$, where λ_i are the eigenvalues of \mathbf{X} . So the eigenvalues of the coefficient matrix $\mathbf{\Lambda}$ are thus $-\alpha\lambda_iH'(x_s(t))+R'(x_s(t))$, where λ_i are the eigenvalues of the Laplacian, and is different for different graph networks. We shall have a look at the karate club network. The eigenvalues of interest are the two smallest ones λ_1 , λ_2 and the largest one λ_{34}

$$(\lambda_1 = -3.5597 \cdot 10^{-15} \quad \lambda_2 = 0.4685 \quad \dots \quad \lambda_{34} = 18.1366)$$
 (6)

The smallest eigenvalue λ_1 is equal to R' and cant be changed. So we look for the next smallest one and the largest one, to sandwich all other eigenvalues since $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ and analyze the stability with the two following criteria

$$\alpha \lambda_2 H'(x_s(t)) > R'(x_s(t)) \tag{7}$$

$$\alpha \lambda_n H'(x_s(t)) > R'(x_s(t)) \tag{8}$$

Since H' can take on negative values also, we need to look at both criteria.

$$\alpha \lambda H'(x_s(t)) > R'(x_s(t)) \tag{9}$$

In this case, $R = i\omega x_s(t)$, meaning $R'(x_s(t)) = i\omega$, resulting in

$$\alpha \lambda H'(x_s(t)) > i\omega \tag{10}$$

However - to make this valid for complex state values of x_s - we look at the real parts of the equality

$$\operatorname{Re}(\alpha \lambda H'(x_s(t))) > \operatorname{Re}(i\omega) = 0$$
 (11)

Since $\alpha, \lambda_2, \lambda_n > 0$, the equality depends only on $\text{Re}(H'(x_s))$. Thus, we look at where $\text{Re}(H'(x_s)) > 0 \ \forall x_s$. Since x_s is a complex number, we write

$$Re(H'(x_s)) = Re(\gamma x^{\gamma - 1}) = \gamma Re(r^{\gamma - 1} e^{i\theta(\gamma - 1)})$$
(12)

Using Euler's formula, $e^{ix} = \cos x + i \sin x$, we can get the real part of the expression above as

$$\gamma r^{\gamma - 1} \cos(\theta(\gamma - 1)) = \gamma r^{\gamma - 1} \cos(\theta \gamma - \theta)$$

We see that the entire criteria can be summarized as the condition for when

$$\cos\left(\theta\gamma - \theta\right) > 0, \quad \forall \theta \tag{13}$$

To solve this for $0<\theta<2\pi$, we note that the above expression is true when $-\frac{\pi}{2}<\theta(\gamma-1)<\frac{\pi}{2}$. At $\theta=2\pi$ we have $-\frac{\pi}{2}<2\pi(\gamma-1)<\frac{\pi}{2}\Rightarrow -\frac{1}{4}<\gamma-1<\frac{\pi}{2}$ and $\theta=2\pi$ we have $\theta=2\pi$ of $\theta=2\pi$

Figure 1: The stability regions for some selected values of γ depending on the value of θ . Red denotes the stable region where the green curve is above 0 and blue the unstable region where the curve is below.

2 Numerical Experiments

The verification of the calculations made in Section 1 is linked to as animations in Appendix A with varying $\gamma = \{0, 0.5, 0.75, 1\}$ and fixed values of $\omega = 0.8$ and $\alpha = 0.8$. As expected, no synchronisation occurs for $\gamma = 0$, since this will just lead to $\dot{x} = i\omega x$.

In the animations it can be seen that the system seems to be stable even for some γ outside of the stability criteria derived above. A possible reason for this may be that any unstable regions are a sufficiently small part of the period that any disturbance created is not great enough to cause the entire system to scatter.

Appendix

A Links to animations

- 1. $\gamma = 0$
- 2. $\gamma = 0.5$
- 3. $\gamma = 0.75$
- 4. $\gamma = 1$
- 5. $\gamma = 3$ (unstable)

B Python Code

Code files are attached with submission.