

Introduction to Data Mining (CS 422)

© Goharian & Grossman 2003, 2008

Course Outline

- Introduction
- Data Pre-processing
- Data Mining Algorithms
 - » Supervised
 - Naïve Bayes
 - Neural Network
 - Decision Tree
 - K-Nearest Neighbor,...
 - Rule based
 - Ensemble methods
 - » Unsupervised
 - Association mining
 - Clustering...
- Evaluation

© Goharian & Grossman 2003, 2008

Introduction

- Mining potential useful knowledge from a large amount of data.
- Other terminologies:
 - » Knowledge Discovery in Databases (KDD)- although DM is a step in KDD.
 - » Knowledge Extraction
 - » Data Analysis
 - » Information Harvesting
 - » and more....

© Goharian & Grossman 2003, 2008

зl

Data Mining vs. KDD

- Knowledge Discovery in Databases (KDD) is the process of finding useful information and patterns in the data.
- Data Mining is the use of algorithms to find the useful information in the KDD process.
- KDD process is:
 - » Data cleaning & integration (Data Pre-processing)
 - » Creating a common data repository for all sources, such as data warehouse.
 - » Data mining
 - » Visualization for the generated results

© Goharian & Grossman 2003, 2008

Data Mining vs. Database

- DB's user knows what is looking for.
- DM's user might/might not know what is looking for.
- DB's answer to query is 100% accurate, if data correct.
- DM's effort is to get the answer as accurate as possible.
- DB's data are retrieved as stored.
- DM's data need to be cleaned (some what) before producing results.
- DB's results are subset of data.
- DM's results are the analysis of the data.
- The meaningfulness of the results is not the concern of Database as it is the main issue in Data Mining.

© Goharian & Grossman 2003, 2008

5 |

Data Mining Applications

- Fraud Detection and Risk Analysis
 - » Credit card fraud detection
 - » Money laundry detection
 - » Risk of loan payment
 - » etc....
- Retail
 - » Sale and Promotion
 - » Coupon
 - » etc...
- Stock Market Analysis

© Goharian & Grossman 2003, 2008

Data Mining Applications

- Identifying Criminals & Profiling
- Flood Prediction
- Telecommunications
- Medical Diagnosis & Treatment
- Biomedical & DNA Data Analysis
 - » Which genes co-occur with other genes?
 - » What are the sequence of genetic activities in stages of a disease?
- Web Mining
 - » What are associations among different pages?
 - » What are web page characteristics?
 - » What is the distribution of information on web?

© Goharian & Grossman 2003, 2008

7 I

Privacy Issues

- DM applications derive demographics about customers via
 - Credit card use
 - Store card
 - Subscription
 - Book, video, etc rental
 - and via more sources...
- As the DM results are deemed to be a good estimate or prediction, one has to be sensitive to the results not to violate privacy.

© Goharian & Grossman 2003, 2008

DM Commercial Tools

- Problem: Not a common model/ architecture.
 - » Accessing different but not necessarily all type of data repositories.
 - » Supporting one or more of the DM algorithms.
 - » May/may not supporting all data types.
 - » Supporting different but not all functionalities.
 - » platform dependant.
 - » => Each application might work with one commercial tool and not with the other tool.

© Goharian & Grossman 2003, 2008

9

Some of the DM Commercial Tools

- Darwin (Oracle Corp.)
- MineSet (Silicon Graphics Inc. SGI)
- Intelligent Miner (IBM Corp)
- Enterprise Miner (SAS Institute Inc.)
- Clementine (SPSS Inc Integral Solutions)
- BrainMaker (California Scientific Software)
- CART (Salford Systems)
- MARS (Salford Systems)
- Scenario (Cognos Inc.)
- Web Analyst (Megaputer Intelligence Inc.)
- SurfAid Analysis (IBM corp)
- etc....

© Goharian & Grossman 2003, 2008

Different Data Sources

- Relational Database
- Data Warehouse
- Flat Files
- Web
- Object Oriented database
- Multi Media

© Goharian & Grossman 2003, 2008

11

Data Warehouse

- Many enterprises consolidate data from their different homogeneous and heterogeneous data repositories into one common data source called Data Warehouse (DW).
- Data Warehouse contains current and historical data to be used for planning and forecasting in Decision Support Systems (DSS).
- Traditional Databases are operational databases that are day-to-day data.
- Star-schema, Snow-Flakes, Galaxy are modeling schemes in DW.

 $\ensuremath{\mathbb{O}}$ Goharian & Grossman 2003, 2008

Data Warehouse (Cont'd)

- To improve the performance in DW different techniques such as Summarization and Denormalization are used.
- Usually but not always DW is accessed by On-Line Analytical Processing (OLAP).
- SQL gives a precise answer to a user query.
- OLAP gives a multi-dimensional view of data and is as extension of some aggregate functions in SQL.
- OLAP Operations are Slice, Dice, Roll-up, and Drilldown.

© Goharian & Grossman 2003, 2008

13

OLAP vs. Data Mining

- OLAP is a data summarization/ aggregation tool that facilitates the data analysis for the user by providing a multi-dimensional view of the data.
- Data Mining Tool provides an automated discovery of knowledge and gives more in-depth knowledge about data and hidden information.
- OLAM (OLAP Mining) is the integration of OLAP with Data Mining.

© Goharian & Grossman 2003, 2008

DM and Other Disciplines

- Statistical Concepts
 - » Bayes Theorem
 - » Regression
 - » etc...
- Machine Learning
 - » Neural Network
 - » Genetic Algorithm
 - » Clustering
 - » Association Rule

© Goharian & Grossman 2003, 2008

Scalability

- Statistical approach deal with small data sets.
 - » Believe that all data must be cleaned and reduced.
- Machine Learning deal with small data sets.
 - » Goal is to make machine learn.
 - » Applications such as Chess Playing rather than applications that deal market analysis.
- Real life data to be mined is huge, thus need scalable algorithms.

© Goharian & Grossman 2003, 2008

17

DM Algorithms

- Supervised (Classification)
 - » Bayesian
 - » Neural Network
 - » Decision Tree
 - » Others: Genetic Algorithms, Fuzzy Set, K-Nearest Neighbor
- Unsupervised
 - » Association Rules
 - » Clustering

© Goharian & Grossman 2003, 2008

Supervised vs. Unsupervised Institute Technology

- Supervised algorithms
 - » Learning by example:
 - Use training data which has correct answers (class label attribute)
 - Create a model by running the algorithm on the training data
 - Identify a class label for the incoming new data
- Unsupervised algorithms
 - » Do not use training data.
 - » Classes may not be known in advance.

DM Evaluation Metrics

- Not always straightforward.
- ROI (Return on Investment) used in business to measure benefit of using Data Mining.
- Lift Chart used to visualize and measure response modeling performance.
- Traditional Computer Science evaluation metrics are space requirement and time complexity to compare the algorithms.
- Measuring accuracy of DM results:
 - » Use of Cross-Validation in Supervised algorithms.
 - » Information Retrieval measures of Precision & recall.
 - » Various accuracy measures based on each algorithm.

© Goharian & Grossman 2003, 2008

21

Summary

- Data Mining algorithms are used to detect the information that we did not know.
- There are various data sources, types, formats and applications for Data Mining.
- Usually Data Mining is used on a Data Warehouse.
- There are many Data Mining algorithms.
- Scalability of Data Mining differentiates it from statistical and Machine Learning approach, as in Data Mining we deal with huge amount of data.

© Goharian & Grossman 2003, 2008