

School of Electrical Engineering and Computer Science

CptS260: Introduction to Computer Architecture - Fall 2016

Final Exam, Duration: 120 Minutes, December 13, 2016

NAME:	ID:

Notes:

- You may bring a double-side letter-size cheat-sheet and a calculator to the test. No other resources are allowed! In particular, NO textbooks, lecture notes, internet access, smartphone usage, etc. are allowed!
- MIPS reference data sheet is provided.
- The test includes 5 implicit bonus points.
- Make sure to write your name and WSU ID down on all pages.
- Show your work for each question. Even if you don't know exact answer to a question, show your work to get partial credit.
- You are strongly encouraged to complete the course evaluation before the deadline of 12/16/2016. Your feedback is very much appreciated!

Problem	1	2	3	4	5	6	7	8
Total Points	10	10	10	15	10	20	15	15
Points Earned								

Total Points Earned:	

- 1. Concepts (10 points). For each sentence below, indicate if it is a True or False statement.
 - a. Non-negative numbers have the same unsigned and 2's-complement representation.
 - b. In MIPS assembly, instruction 'beq \$1, \$2,1' will advance the program counter (PC) by one (i.e., PC = PC + 1) if [\$1]=[\$2]. (note: [] indicates content of the register)

False, PCnew = PCold + 4

c. In MIPS assembly, instruction 'jr' will update register '\$ra' by copying content of the program counter (PC) into '\$ra'.

False, PC = Sra, PC is updated by Sra.

d. MIPS is a byte-addressable computer.

True

- e. Compared to an un-pipelined processor, a pipelined architecture usually has a shorter clock cycle.
- f. Control hazards in a pipelined architecture are due to data dependency of the instructions.

False, Control hazards are due to branch instruction

- g. DRAM (Dynamic Random Access Memory) is as fast as SRAM (Static Random Access Memory)

 False, DRAM is Slower than SRAM.
- h. A fully associative cache memory has a higher hit time (i.e., it is slower) compare to a direct mapped cache memory of the same size.

True, FA is Slower than direct mapped

- i. For primary (L1) cache in multilevel cache systems, focus is on minimizing hit time.
- j. Conflict misses are not affected by cache size because they arise from blocks from main memory mapping to the same position in the cache memory.

True, the number of blocks from main memory mapping remains the same

- 2. Computer Performance (10 points). Assume a processor has a D-Cache (Data Cache Memory) with 10% miss rate and an I-Cache (Instruction Cache Memory) with 15% miss rate. Also, assume that access to these L1 cache memories takes 1ns while access to the main memory takes 60ns.
 - a. (5 points) Assume that 30% of the instructions are load/store. Calculate the effective CPI assuming an ideal/base CPI of 2 and a clock cycle time of 1ns.
 - b. (5 points) If we add an L2 cache memory with 2% miss rate and 5ns access time, what would be the new effective/actual CPI?

a =
$$CPI = CPI_{ideal} + Stalls$$

 $T-cache + Stalls$ $D-cache$
 $CPI = 2 + 15 /. \times 60 \text{ ns} + 30 /. \times 10 /. \times 60 \text{ ns}$
 $CPI = 2 + 9 + 1.8 = 12.8$

b- Miss penalty of
$$(L_1 + L_2) = 5ns + 2\%$$
, $x = 6.2 \eta$.

 $CPT = 2 + 15\%$, $x = \frac{6.2 ns}{1 ns} + 30\%$, $x = 10\%$, $x = \frac{6.2 ns}{1 ns}$
 $CPT = 2 + 0.93 + 0.186 = 3.116$ cycles instructions

- 3. Number Representation (10 points). Assume the following 32-bit binary represents a floating point number using single precision IEEE 754 standard.
 - a. (3 points) Specify fraction field, exponent field, and sign bit of this number in binary.
 - b. (7 points) Find the equivalent decimal number. Show your work!

Exponent =
$$(10000111) = 135$$

b- Decimal =
$$(-1)$$
 Sign $x (1. Fraction) x 2 Exponent - 127$

$$(-1)^{1} \times (1.1011) \times 2$$

$$= -(1.1011) \times 2^{8} = -(110110000)$$

$$= -432$$

4. MIPS Assembly Programming (15 points). Trace the following assembly program. Assume that the registers' initial values and memory contents are as shown in the following tables. The program starts from location 10000d in the instruction memory. Show the final state of the processor including registers' content/data, and memory contents.

Address	Initial Value	Final Value
100d	0d	400
104d	1d	44d
108d	2d	480
112d	3d	52d
116d	4d	56d

200d	10d	40d
204d	11d	45 d
208d	12d	52d
212d	13d	61d
216d	14d	72 d

Register	Initial Value	Final Value
\$t0	0	1200
\$t1	0	220d
\$t2	0	5 d
\$t3	0	5d
\$s0	0	40
\$s1	0	56d
\$s2	0	721

$$tmp = 4y_1$$

 $yi = xi^2 + tmp \longrightarrow Function of$
 $xi = tmp$ code

- 5. Sequential Logic (10 points). The following figure shows a sequential circuit with two D Flip Flops with a common input clock. Assume that the flip flops are initialized at '0'. That is, $Q_1 = Q_2 = 0$ during Cycle 0. This means the output of this circuit is initially $Q_2Q_1 = 0$ '.
 - a. (5 points) Compute the value of each output signal (Q2 and Q1) for 8 cycles using the table below.
 - b. (5 points) Convert the 3-bit binary Q₂Q₁ to its equivalent decimal in the table. How many unique output states (i.e., Q₂Q₁) does this circuit produce?

 $Q_1 \times (2)^0 + Q_2 \times (2)$ Decimal (Q= Q₂Q₁) Clock Cycle Q_2 Q_1

6. **Simple MIPS Architecture (20 points)**. Consider the following 3 instructions are to be executed though the MIPS architecture shown below. Assume that \$t2 = 24d prior to execution of this short program.

li \$t1, 12d sub \$s0, \$t2, \$t1 bne \$0, \$s0, 1048d

a. Fill out the table below to show which of the hardware blocks are used (i.e., are active) during execution of each instruction. Each hardware block is shown by a box in the next figure.

	PC	Instruction Memory	Register File	Sing Extend	ALU	Data Memory	ADD1	ADD2	Jump
li	/		/		/	9	V	•	
sub	/				/		V		
bne							/		

b. Fill out the table below to show which of the control signals in the figure should be activated (set to 1) during execution of each instruction. You do not need to specify inactive or unknown (i.e. '0' and 'x' values) signals in this part.

	RegDst	Jump	Branch	MemRead	MemtoReg	MemWrite	RegWrite
li	0	0	0	0	0	0	1
sub	1	6	0	0	0	0	1
bne	X	O	1	0	×	Q	0

c. Assume the program starts from address 1032d (i.e., address 1032 decimal) in the instruction memory. Compute the value of PC after each instruction is executed.

	Program Counter (PC) Content	
li	1032d + 4d = 1036d	
sub	1:036d + 4d = 1040d	
bne	(1040d + 4d) + 4x 1048d	= 52360

 Pipelining (15 points). Consider the following instruction sequence executing on the 5-stage MIPS pipeline of form IF, ID, EX, MEM, WB.

lw	\$t2, 60(\$t1)	
lw	\$t1, 40(\$t2)	
slt	\$t1, \$t1, \$t2	
sw	\$t1, 20(\$t2)	

a. Assume that the pipeline does not use any forwarding. Complete the following pipeline execution diagram for the above instruction sequence, showing the flow of instructions through the pipeline during each clock cycle. Indicate any necessary stalls on the pipeline diagram. How many cycles does it take to complete execution of the instruction sequence? What is the overall CPI?

No forwarding, dependency needs 2 stalls

1

14 cycles,
$$CPI = \frac{Cycles \#}{instruction \#} = \frac{14}{4} = 3.5 \frac{Cycles}{instruction}$$

b. Now, assume that all possible forwarding paths have been added to the pipeline. Redraw the pipeline execution diagram below. In the diagram show forwarding by arrows. How many cycles does it take to finish the instruction sequence? What is the overall CPI?

Iw dependency and none for the rest Forwarding, 1 stall for Instruction / 1 2 3 4 5 7 6 8 9 10 11 12 13 14 Cycle lw \$t2, 60(\$t1) IF ID EX MEM WB lw \$t1, 40(\$t2) EX MEM WB IF ID slt \$t1, \$t1, \$t2 ð IF ID EX MEM WB IF sw \$t1, 20(\$t2) ID EX MEM WR

Fig cycles,
$$cpI = \frac{10}{4} = 2.5$$
 cycles instruction

8. Cache Memory (15 points). Consider a 2-way associative cache memory with a total capacity of 32 words. The block size is 2 words and the processor has an 8-bits address bus. Assume that the processor is only word-addressable meaning that the offset field of the address needs to distinguish between the two words within a block. The following table is intended to show the cache content (in columns labeled as 'Way-1' and 'Way-2') as well as the line/set address (in column labeled as 'Index').

71		Way-1		Way-2				
Index	Valid	Tag	Data	Valid	Tag	Data		
000		2010	MEM [32]					
000	1	0010	MEM (33)					
001								
010								
011								
100		0000	MEM [8]					
100	1	0.000	MEM [9]					
101								
110		0001	MEMELES]		0.4	MEM C12		
110	1	00 10	MEM [29] MEME 45	1	0000	MEM CIS		
111		0000	MEM [14]					
		0000	MEM (15)					

a. (5 points) Assume that the cache contains data for two memory references with addresses 8 and 44. Update the above table for these addresses. (*Hint:* when you reference a memory location, you will need to move a block that contains this memory address).

$$8 = (0000 1000)_{2}$$

$$tag index$$

$$44 = (0010 1100)_{2}$$

$$tag index$$

b. (10 points) Now assume that the CPU accesses the following memory references (i.e, numbers from left to right represent memory addresses)

Update the table from part (a) with valid bit, tag, and data fields in appropriate rows/places to show the cache content. Also, fill out the following table and mention if a reference to each location/address is a cache hit or cache miss. Assume an LRU (Least Recently Used) replacement policy for this cache.

Word Address	Binary Address	Tag	Index	Hit/Miss
8	00001000	0000	100	Hit
14	00001110	0000	111	Miss
33	00100001	0010	000	Miss
12	00001100	0000	110	Miss
33	00100001	0010	000	Hit
32	00100000	0010	000	Hit
13	00001101	0000	110	Hit
14	00001110	0000	113	Hit
29	00011101	0001	110	Miss
9	00001001	0000	100	Hit

MIPS	(1) MIPS	(2) MIPS			Hexa-	ASCII	D	Hexa-	ASCI
pcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
31:26)	(5:0)	(5:0)		mal	mal	acter	mal	mal	acter
(1)	s11	add.f	00 0000	0	0	NUL	64	40	(4)
		sub.f	00 0001	1	1	SOH	65	41	A
i	srl	mulf	00 0010	2	2	STX	66	42	В
al	sra	div.f	00 0011	3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs.f	00 0101	5	5	ENQ	69	45	E
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
batz	srav	neg.f	00 0111	7	7	BEL	71	47	G
addi	ir	negy	00 1000	8	8	BS	72	48	Н
addiu	jalr		00 1001	9	9	HT	73	49	1
siti	movz		00 1010	10	a	LF	74	4a	ĵ
sitiu	movn		00 1011	11	b	VT	75	4b	K
andi	syscall		00 1100	12	c	FF	76	4e	L
ori		round.w.f	00 1101	13	d	CR	77	4d	M
	break	trunc.w.f	00 1110	14		SO	78	4e	N
xori		ceil.w.f		15	e		79	4e 4f	O
lui	sync	floor.w.f	00 1111		f 10	SI	80	50	P
	mfhi		01 0000	16		DLE			
(2)	mthi	500 St. 100 Sec. 10	01 0001	17	11	DC1	81	51	Q
	mflo	movz./	01 0010	18	12	DC2	82	52	R
	mtlo	movn./	01 0011	19	13	DC3	83	53	S
			01 0100	20	14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
mu	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	la	SUB	90	5a	Z
div	divu		01 1011	27	16	ESC	91	56	1
			01 1100	28	1c	FS	92	5c	1
			01 1101	29	1d	GS	93	5d	ĭ
			01 1110	30	le	RS	94	5e	À
			01 1111	31	1f	US	95	5f	
1b	add	cvt.s.f	10 0000	32	20	Space	96	60	
1h	addu	cvt.d.f	10 0001	33	21	!	97	61	a
lwl	sub	2.4.4.1	10 0010	34	22		98	62	b
lw	subu		10 0011	35	23	#	99	63	c
1bu	and	cvt.w.f	10 0100	36	24	5	100	64	d
1hu	or		10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
	nor		10 0111	39	27	,	103	67	
gh	1102		10 1000	40	28	(104	68	g h
sh			10 1001	41	29)	105	69	i
swl.	sit		10 1010	42	2a		106	6a	i
SWI	situ		10 1010	43	2b	+	107	6b	k
SW.	SILU		10 1100	44	2c		108	6c	T
					2d				
			10 1101	45	2e	-	109	6d	m
SWE				46		;	110	6e	n
cache			10 1111	47	2f		111	6f	0
11	tge	c.f.f	11 0000	48	30	0	112	70	P
lwcl	tgeu	c.un.f	11 0001	49	31	1	113	71	4
lwc2	tlt	c.eq.	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0011	51	33	3	115	73	S
7239	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldcl		c.ult.f	11 0101	53	35	5	117	75	u
1dc2	tne	c.ole.f	11 0110	54	36	6	118	76	v
		c.ule.f	11 0111	55	37	7	119	77	w
sc		c.sff	11 1000	56	38	8	120	78	x
swcl		c.ngle.f	11 1001	57	39	9	121	79	У
swc2		c.seqf	11 1010	58	3a		122	7a	Z
		c.ngl.f	11 1011	59	36	:	123	76	1
		c.1t.f	11 1100	60	3c	<	124	7c	
sdcl		c.nge.f	11 1101	61	3d	-	125	7d	3
sdc2		c.le.f	11 1110	62	3e	>	126	7e	-
			11 1111	63	3f	.,	127	7f	DEL

(1) opcode(31:26) == 0 (2) opcode(31:26) = $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)= $16_{\text{ten}} (10_{\text{hex}})$ /= s (single); if $fmt(25:21) = 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and **Double Precision Formats:**

S Exponent

(4)

Stack

Grows

Lower

Memory Addresses

			Doub	le Word	i		
	Wo	rd		Word			
Halfword		Half	word	Halfword		Halfword	
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Вр	Breakpoint Exception
4	AdEL	Address Error Exception (load or instruction fetch)		RI	Reserved Instruction Exception
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10x for Disk, Communication; 2x for Memory)

	PRE-		PRE-		PRE-		PRE-
SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX
103, 210	Kilo-	1015, 250	Peta-	10-3	milli-	10-15	femto-
106, 220	Mega-	1018, 260	Exa-	10 ⁻⁶	micro-	10-18	atto-
109, 2 ³⁰	Giga-	1021, 270	Zetta-	10-9	nano-	10-21	zepto-
1012, 240	Tera-	1024, 280	Yotta-	10-12	pico-	10-24	yocto-

MIPS Reference Data

				_	
CORE INSTRUCTION		FOR-			OPCODE / FUNCT
NAME, MNEMO	NIC	MAT	OPERATION (in Verilog)		(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	1	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm, Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0/21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	chex
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0/08 _{hex}
Load Byte Unsigned	1bu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}
Load Linked	11	1	R[rt] = M[R[rs]+SignExtImm]	(2,7)	30 _{hex}
Load Upper Imm.	lui	1	$R[rt] = \{imm, 16'b0\}$		f_{bex}
Load Word	lw	1	R[rt] = M[R[rs]+SignExtImm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] R[rt])$		0 / 27 _{hex}
Or .	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	dhex
Set Less Than	slt	R	$R[rd] = (R[rs] \le R[rt]) ? 1 : 0$		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	1	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0/2bhex
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	ap	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	$38_{ m hex}$
Store Halfword	sh	1	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	1	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
	(2) Sig (3) Zei (4) Bra (5) Jun (6) Op	nExtInoExtIn	se overflow exception $mm = \{ 16\{inmediate[15]\}, inm.$ $mm = \{ 16\{1b'0\}, immediate \}$ $ddr = \{ 14\{inmediate[15]\}, inmediate = \{ PC+4[31:28], address, 2'b' c considered unsigned numbers (vectoses to some size of the size of the$	diate, 0 } s. 2's c	2'b0 }

BASIC INSTRUCTION FORMATS

R	opcode	rs		rt	rd	shamt	funct
	31 2	6 25	21 20	16	15 11	10 6	5 0
1	opcode	rs		rt		immediate	
	31 2	6 25	21 20	16	15		0
J	opcode				address		
		6 25					0

ARITHMETIC CO	RE IN	STRU	CTION SET	2	OPCODE / FMT /FT
		FOR-			/ FUNCT
NAME, MNEMO	NIC	MAT			(Hex)
Branch On FP True		FI	if(FPcond)PC=PC+4+BranchAdd	r (4)	
Branch On FP False		FI	if(!FPcond)PC=PC+4+BranchAd		
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	.,	0///1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	(6)	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]		11/10//0
FP Add Double	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$ ${F[ft],F[ft+1]}$		11/11//0
FP Compare Single	C.Y.S*	FR	$FPcond = (F[fs] \circ p F[ft])?1:0$		11/10//y
FP Compare Double	c,x,d*	FR	FPcond = $(\{F[fs], F[fs+1]\})$ op $\{F[ft], F[ft+1]\})$? 1:)	11/11//y
			==, <, or <=) (y is 32, 3c, or 3e)		
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]		11/10//3
FP Divide Double	div.d	FR	$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\}$ $\{F[ft],F[ft+1]\}$		11/11//3
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]		11/10//2
FP Multiply Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$ ${F[ft],F[ft+1]}$		11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]		11/10//1
FP Subtract Double	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$ ${F[ft],F[ft+1]}$		11/11//1
Load FP Single	1wc1	I	F[rt]=M[R[rs]+SignExtImm]	(2)	31//
Load FP Double	ldc1	I	F[rt]=M[R[rs]+SignExtImm]; F[rt+1]=M[R[rs]+SignExtImm+4	(2)	35//
Move From Hi	mfhi	R	R[rd] = Hi		0 ///10
Move From Lo	mflo	R	R[rd] = Lo		0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]		10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$		0///18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt]$	(6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >> shamt		0///3
Store FP Single	swc1	1	M[R[rs]+SignExtImm] = F[rt]	(2)	39//
Store FP Double	sdc1	I	$\begin{aligned} &M[R[rs]+SignExtImm] = F[rt]; \\ &M[R[rs]+SignExtImm+4] = F[rt+1]; \end{aligned}$	(2) 1]	3d//

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21 20	0 16	15 11	10 6.5	0
FI	opcode	fmt	ft	VII	immediate	
	31 26	25 21 20	0 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	if(R[rs]>=R[rt]) PC = Label
Load Immediate	1 i	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
Sv0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
St0-St7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
St8-St9	24-25	Temporaries	No
Sk0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
Ssp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
Sra	31	Return Address	Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.