Long-Run Productivity Risk (Croce, 2014)

Numerical Result Replication

Xiangyu DING (Student ID: 1901212474)

July 27, 2021

This project aim to replicate the result of Croce (2014) long-run productivity risk model. Croce (2014) builds the long-run risk framework proposed by Bansal & Yaron (2004) into general equilibrium model with production. The model manages solve the risk premium puzzle, the risk free rate puzzle, and the volatility puzzle in a RBC type of production economy. The numerical simulation result shows that the model is relatively successful in generating volatility in asset price and real variables including consumption, investment and output.

1 Model

1.1 Model Setup

Because there is no market imperfection, the economy can be summarized by a social planner problem according to the First Fundamental Theorem of Welfare Economics. The consumer maximize the following Epstein-Zin (1989) target function:

$$U_{t} = \left[(1 - \delta) \widetilde{C}_{t}^{1 - \frac{1}{\Psi}} + \delta \left(E_{t} \left[U_{t+1}^{1 - \gamma} \right] \right)^{\frac{1 - \frac{1}{1}}{1 - \gamma}} \right]^{\frac{1}{1 - \frac{1}{\Psi}}}$$

With respect to the following constraints:

Consumption Leisure aggregation:

$$\widetilde{C}_{t} = \left[oC_{t}^{1 - \frac{1}{\xi_{l}}} + (1 - o) (A_{t-1}l_{t})^{1 - \frac{1}{\xi_{l}}} \right]^{\frac{1}{1 - \frac{1}{\xi_{l}}}}$$

$$\Rightarrow \widetilde{C}_{t} = C_{t}^{o} (A_{t-1}l_{t})^{1-0} \quad \text{as } \xi_{l} = 0$$

Cobb-Douglas Production Function:

$$Y_t = K_t^{\alpha} \left[A_t N_t \right]^{1-\alpha}$$

Resources Allocation Constraint:

$$Y_t \ge C_t + I_t$$

Time Allocation Constraint:

$$1 \ge N_t + L_t$$

Dynamic of Capital:

$$K_{t+1} \le (1 - \delta_k) K_t + I_t - G_t K_t$$

Adjustment Cost:

$$G_t = \frac{I_t}{K_t} - \left[\frac{\alpha_1}{1 - \frac{1}{\xi}} \left(\frac{I_t}{K_t} \right)^{1 - \frac{1}{\xi}} + \alpha_0 \right]$$

The stochastic process of the technology is given by:

Productivity Process:

$$\log \frac{A_{t+1}}{A_t} \equiv \Delta a_{t+1} = \mu + \underbrace{x_t}_{LRR} + \sigma \underbrace{\epsilon_{a,t+1}}_{SRR}$$

Long-run Risk Process:

$$x_t = \rho x_{t-1} + \sigma_x \epsilon_{x,t}$$

Innovation Process:

$$\begin{bmatrix} \epsilon_{a,t+1} \\ \epsilon_{x,t+1} \end{bmatrix} \sim iidN \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho_{xa} \\ \rho_{xa} & 1 \end{bmatrix} \end{pmatrix}$$

1.2 Detrend Variables and Log Growth Rates

On the balance growth path, all the real variables $\{c_t, \tilde{c}_t, i_t, y_t, k_t\}$ growth at same rate, so that these variables are not stationary. We can define the following log detrended variables as follows:

$$\{c_t, \tilde{c}_t, i_t, y_t, k_t\} \equiv \left\{ \ln \frac{C_t}{A_{t-1}}, \ln \frac{\tilde{C}_t}{A_{t-1}}, \ln \frac{I_t}{A_{t-1}}, \ln \frac{Y_t}{A_{t-1}}, \ln \frac{K_t}{A_{t-1}} \right\}$$

Also, we can define the growth rate of variables as:

$$\{\Delta a_t, \Delta c_t, \Delta \tilde{c}_t, \Delta i_t, \Delta y_t, \} \equiv \left\{ \ln \frac{A_t}{A_{t-1}}, \ln \frac{C_t}{C_{t-1}}, \ln \frac{\tilde{C}_t}{\tilde{C}_{t-1}}, \ln \frac{I_t}{I_{t-1}}, \ln \frac{Y_t}{Y_{t-1}} \right\}$$

1.3 System of Detrended Equations

We can write the system of equations in the model in **detrended variables** and **log growth** rates. To conciliate with the original dynare code provided by the author, I write all the equations in linearity form. However, it is usually recommended to write down equation in original form to avoid errors in the equations:

1. Process of Productivity:

$$\Delta a_t = \mu + x_{t-1} + \sigma_a \epsilon_{a,t} \tag{1}$$

2. Process of Long Run Risk:

$$x_t = \rho x_{t-1} + \sigma_x \epsilon_{x,t} \tag{2}$$

We can define Log Utility-consumption Ratio $uc_t \equiv \ln \frac{U_t}{\tilde{C}_t}$, define Expected Utility-consumption Ratio: $Q_t \equiv \frac{E_t(U_{t+1}^{1-\gamma})}{\tilde{C}_t^{1-\gamma}}$, and define Log Expected Utility-consumption Ratio: $logQ_t \equiv \ln(Q_t)$. In reality, there is no need to define the above variables. I define the above variables to be accordance with the author:

3. Expected Utility-consumption Ratio

$$Q_t \equiv \left(\frac{E_t(U_{t+1})}{\tilde{C}_t}\right)^{1-\gamma} = \left(\frac{E_t(U_{t+1})}{E_t(\tilde{C}_{t+1})} \frac{E_t(\tilde{C}_{t+1})}{\tilde{C}_t}\right)^{1-\gamma}$$

$$\Rightarrow Q_t = \exp\left[\left(uc_{t+1} + \Delta \tilde{c}_{t+1}\right)(1-\gamma)\right] \tag{3}$$

4. Log Expected Utility-consumption Ratio:

$$\Rightarrow log Q_t = \ln Q_t \tag{4}$$

5. Utility Function:

$$U_{t} = \left[(1 - \delta) \widetilde{C}_{t}^{1 - \frac{1}{\Psi}} + \delta \left(E_{t} \left[U_{t+1}^{1 - \gamma} \right] \right)^{\theta} \right]^{\frac{1}{1 - \frac{1}{\Psi}}} \quad \text{where } \theta = \frac{1 - \frac{1}{\Psi}}{1 - \gamma}$$

$$\Rightarrow \left(1 - \frac{1}{\Psi} \right) \ln U_{t} = \ln \left[(1 - \delta) \widetilde{C}_{t}^{1 - \frac{1}{\Psi}} + \delta \left(E_{t} \left[U_{t+1}^{1 - \gamma} \right] \right)^{\theta} \right]$$

$$\Rightarrow \left(1 - \frac{1}{\Psi} \right) \underbrace{\ln \frac{U_{t}}{\widetilde{C}_{t}}}_{uc_{t}} = \ln \left[(1 - \delta) + \delta \underbrace{\left(\frac{E_{t} \left[U_{t+1}^{1 - \gamma} \right]}{\widetilde{C}_{t}^{1 - \gamma}} \right)^{\theta}}_{Q_{t}} \right]$$

$$\Rightarrow \exp \left[\left(1 - \frac{1}{\Psi} \right) uc_{t} \right] = (1 - \delta) + \delta Q_{t}^{\theta}$$

$$(5)$$

6. Consumption Leisure Aggregation

$$\tilde{C}_t = C_t^o (A_{t-1} L_t)^{1-o}$$

$$\Rightarrow \ln \tilde{C}_t = o \ln C_t^o + (1-o)(\ln A_{t-1} + L_t)$$

$$\Rightarrow \ln \frac{\tilde{C}_t}{A_{t-1}} = o \ln \frac{C_t^o}{A_{t-1}} + (1-o)(L_t)$$

$$\Rightarrow \tilde{c}_t = c_t + (1-o)l_t$$
(6)

7. Production Function

$$Y_t = K_t^{\alpha} \left[A_t N_t \right]^{1-\alpha}$$

$$\Rightarrow \ln \frac{Y_t}{A_{t-1}} = \alpha \ln \frac{K_t}{A_{t-1}} + (1 - \alpha) \left(\ln N_t + \ln \frac{A_t}{A_{t-1}} \right)$$

$$\Rightarrow \exp y a_t = \exp(\alpha \cdot k a_t) \cdot \exp(n_t + d a_t)$$
(7)

8. Resources Constraint

$$Y_t \ge C_t + I_t$$

$$\Rightarrow \frac{Y_t}{A_{t-1}} = \frac{C_t}{A_{t-1}} + \frac{I_t}{A_{t-1}}$$

$$\Rightarrow \exp(y_t) = \exp(c_t) + \exp i_t$$
(8)

9. Time Constraint

$$1 \ge N_t + L_t$$

$$\Rightarrow 1 = \exp(n_t) + \exp(l_t) \tag{9}$$

To better write down the capital dynamic function, we can follow the original paper and define Log Efficient Capital Investment as $\tilde{i}_t = \ln(\frac{I_t}{K_t} - G_t)$

10. Efficient Investment

$$\tilde{i}_t = \ln(\frac{I_t}{K_t} - G_t)$$

$$\Rightarrow \exp(\tilde{i}_t) = \frac{I_t/A_{t-1}}{K_t/A_{t-1}} - G_t$$

$$\Rightarrow \exp(\tilde{i}_t) = \exp(i_t - k_t) - G_t$$
(10)

11. Capital Dynamics

$$K_{t} \leq (1 - \delta_{k}) K_{t-1} + I_{t-1} - G_{t-1} K_{t-1}$$

$$\Rightarrow \frac{K_{t}}{A_{t-1}} \frac{A_{t-1}}{A_{t-2}} = (1 - \delta_{k}) \frac{K_{t-1}}{A_{t-2}} + \frac{I_{t-1}}{K_{t-1}} \frac{K_{t-1}}{A_{t-2}} - G_{t-1} \frac{K_{t-1}}{A_{t-2}}$$

$$\Rightarrow \frac{K_{t}}{A_{t-1}} \frac{A_{t-1}}{A_{t-2}} = \left(1 - \delta_{k} + \underbrace{\frac{I_{t-1}}{K_{t-1}} - G_{t-1}}_{\exp(\tilde{i}_{t-1})}\right) \frac{K_{t-1}}{A_{t-2}}$$

$$\Rightarrow \exp(k_{t} + a_{t-1}) = \left(1 - \delta_{k} + \exp(\tilde{i}_{t-1})\right) \exp(k_{t-1})$$
(11)

12. Adjustment Cost

$$G_t = \frac{I_t}{K_t} - \left[\frac{\alpha_1}{1 - \frac{1}{\xi}} \left(\frac{I_t}{K_t} \right)^{1 - \frac{1}{\xi}} + \alpha_0 \right]$$

$$\Rightarrow G_t = \frac{I_t/A_{t-1}}{K_t/A_{t-1}} - \left[\frac{\alpha_1}{1 - \frac{1}{\xi}} \left(\frac{I_t/A_{t-1}}{K_t/A_{t-1}} \right)^{1 - \frac{1}{\xi}} + \alpha_0 \right]$$

$$\Rightarrow G_t = \exp(i_t - k_t) - \left[\frac{\alpha_1}{1 - \frac{1}{\xi}} \exp\left((i_t - k_t)(1 - \frac{1}{\xi}) \right) + \alpha_0 \right]$$
(12)

13. Adjustment Cost Derivative

$$G'_t(\frac{I_t}{K_t}) = 1 - \alpha_1 \left(\frac{I_t}{K_t}\right)^{-\frac{1}{\xi}}$$

$$\Rightarrow G'(t) = 1 - \alpha_1 \exp\left[-\frac{1}{\xi}(i_t - k_t)\right]$$
(13)

14. Stochastic Discount Factor

$$M_{t+1} = \delta \left(\frac{C_{t+1}}{C_t}\right)^{-1/\xi_l} \left(\frac{\widetilde{C}_{t+1}}{\widetilde{C}_t}\right)^{\frac{1}{\xi_l} - \frac{1}{\Psi}} \left(\frac{U_{t+1}}{E_t \left[U_{t+1}^{1-\gamma}\right]^{\frac{1}{1-\gamma}}}\right)^{\frac{\overline{\Psi}}{-\gamma}}$$

$$\Rightarrow M_{t+1} = \delta \left(\frac{C_{t+1}}{C_t}\right)^{-1/\xi_l} \left(\frac{\widetilde{C}_{t+1}}{\widetilde{C}_t}\right)^{\frac{1}{\xi_l} - \frac{1}{\Psi}} \left(\frac{U_{t+1}}{\widetilde{C}_{t+1}} \frac{\widetilde{C}_{t+1}}{\widetilde{C}_t}\right)^{\frac{1}{\Psi} - \gamma}$$

$$\Rightarrow \exp(m_{t+1}) = \delta \exp\left(-\Delta c_{t+1} \frac{1}{\xi_l}\right) \exp\left(\Delta \widetilde{c}_{t+1} \left(\frac{1}{\xi_l} - \frac{1}{\Psi}\right)\right) \left(\frac{\exp(uc_{t+1} + \Delta \widetilde{c}_{t+1})}{Q_t^{1-\gamma}}\right)^{\frac{1}{\Psi} - \gamma}$$

$$\Rightarrow \exp(m_{t+1}) = \delta \exp\left(-\Delta c_{t+1} \frac{1}{\xi_l}\right) \exp\left(\Delta \widetilde{c}_{t+1} \left(\frac{1}{\xi_l} - \frac{1}{\Psi}\right)\right) \frac{\exp\left(\left(\frac{1}{\Psi} - \gamma\right)(uc_{t+1} + \Delta \widetilde{c}_{t+1})\right)}{Q_t^{1-\theta}}$$

$$(14)$$

15. Labor Market Equilibrium Condition

$$\frac{\partial \widetilde{C_t}}{\partial l_t} / \frac{\partial \widetilde{C_t}}{\partial C_t} = (1 - \alpha) \frac{Y_t}{n_t}$$

$$\Rightarrow (\frac{1}{o} - 1) \exp(c_t - n_t) = (1 - \alpha) \exp(y_t - n_t)$$
 (15)

16. Log Dividend

$$d_{t+1} \equiv \alpha \frac{y_{t+1}}{k_{t+1}} - \delta_k q_{t+1} - \frac{i_{t+1}}{k_{t+1}} + q_{t+1} G\left(\frac{i_{t+1}}{k_{t+1}}\right)$$

$$\Rightarrow \exp(d_t) = \alpha \exp(y_t - k_t) + (\exp(\tilde{i}_t) - \delta_k) \exp(q_t) - \exp(i_t - k_t); \tag{16}$$

17. Capital Equilibrium Condition

$$Q_t = \frac{1}{1 - G_t'} \tag{17}$$

18. Log Price to Dividend Ratio

$$PD_t = \frac{Q_t}{D_t}$$

$$pd_t = q_t - d_t (18)$$

19. Log Market Capital Return

$$R_t = \frac{Q_t + D_t}{Q_{t-1}}$$

$$\Rightarrow \exp(r_t) = \frac{\exp(q_t) + \exp(d_t)}{\exp(q_{t-1})}$$
(19)

20. Fundamental Theorem of Asset Pricing

$$1 = E_t(R_{t+1}M_{t+1})$$

$$\Rightarrow 1 = E_t[\exp(r_{t+1}) + \exp(m_{t+1})]$$
(20)

21. Risk Free Return

$$1 = E_t(M_{t+1})R_{f,t}$$

$$\Rightarrow \frac{1}{\exp(r_{f,t})} = E_t[\exp(m_{t+1})]$$
(21)

22. Risk Premium

$$rp_t = r_t - r_{f,t-1} \tag{22}$$

23. Leveraged Risk Premium

$$r_t^{LEV} = \phi_{lev} \left(r_t - r_{f,t-1} \right) + \epsilon_t^d \tag{23}$$

Finally, we include the definition of growth rates:

24. Definition of Log Output Growth

$$\Delta y_t \equiv \ln \frac{Y_t}{Y_{t-1}} = \ln \frac{Y_t}{A_{t-1}} - \ln \frac{Y_{t-1}}{A_{t-2}} + \ln \frac{Y_{t-1}}{A_{t-2}}$$

$$\Delta y_t = y_t - y_{t-1} + \Delta a_{t-1}$$
(24)

25. Definition of Detrended Log Tilde Consumption Growth

$$\Delta \tilde{c} a_t \equiv \ln \left(\frac{\tilde{C}_t}{A_{t-1}} / \frac{\tilde{C}_{t-1}}{A_{t-2}} \right)$$

$$\Delta \tilde{c} a_t = \tilde{c} a_t - \tilde{c} a_{t-1}$$
(25)

26. Definition of Log Tilde Consumption Growth

$$\Delta \tilde{c}_t \equiv \ln \frac{\tilde{C}_t}{\tilde{C}_{t-1}}$$

$$\Delta \tilde{c}_t = \Delta \tilde{c} a_t + \Delta a_{t-1}$$
(26)

27. Definition of Log Consumption Growth

$$\Delta c_t \equiv \ln \frac{C_t}{C_{t-1}} = \ln \frac{C_t}{A_{t-1}} - \ln \frac{C_{t-1}}{A_{t-2}} + \ln \frac{C_{t-1}}{A_{t-2}}$$

$$\Delta c_t = c_t - c_{t-1} + \Delta a_{t-1}$$
(27)

28. Definition of Log Investment Growth

$$\Delta i_t \equiv \ln \frac{I_t}{I_{t-1}} = \ln \frac{I_t}{A_{t-1}} - \ln \frac{I_{t-1}}{A_{t-2}} + \ln \frac{I_{t-1}}{A_{t-2}}$$

$$\Delta i_t = i_t - i_{t-1} + \Delta a_{t-1}$$
(28)

2 Equation System

The equation system consist of 28 endogenous variables as follow:

$$\{x, y, c, \tilde{c}, i, k, \Delta y, \Delta a, \Delta c, \Delta \tilde{c}, \Delta \tilde{c}a, \Delta i, uc, \tilde{i}, G, G', Q, logQ, n, l, d, q, pd, m, r, r_f, rp, r_{LEV}\}$$

These variables can be solved out using the above 28 equations.

There are 3 exogenous variables as follow:

$$\{\epsilon_a, \epsilon_x, \epsilon_d\}$$

3 Key Steady State Variables

We need to calculate key steady state variables to let dynare solve out the steady state, and calibrate the value a_1 and a_0 . These key variables are:

1. Steady State Labor:

Table 1: Endogenous Variables

Table 1: Endogenous Variables						
Variable	\mathbf{Code}	Description				
X	X	Long-run Productivity Risk				
у	ya	Log Detrended Output				
c	ca	Log Detrended Consumption				
	tca	Log Detrended Tilde Consumption				
i	ia	Log Detrended Investment				
k	ka	Log Detrended Capital				
Δy	dy	Log Output Growth				
Δa	da	Log Productivity Growth				
Δc	dc	Log Consumption Growth				
$\Delta ilde{c}$	dtc	Log Tilde Consumption Growth				
$\Delta ilde{ca}$	dtca	Log Detrended Tilde Consumption Growth				
Δi	di	Log Investment Growth				
uc	uc	Log Utility Consumption Ratio				
	newk	Log Efficient Capital Investment				
G	G	Adjustment Cost				
G'	GP	Adjustment Cost Derivative				
Q	Q	Expected Utility-Consumption Ratio				
$\log Q$	logQ	Log Expected Utility-Consumption Ratio				
n	n	Log Labor				
1	1	Log Leisure				
d	d	Log Dividend				
q	q	Log Tobin q				
pd	pd	Log Price to Dividend Ratio				
m	m	$\operatorname{Log}\operatorname{SDF}$				
r	r	Log Capital Return				
\mathbf{r}_f	rf	Log Risk Free Return				
$^{\mathrm{rp}}$	exr	Risk Premium				
$ _{LEV}$	rlev	Leverged Risk Premium				

Table 2: Exogenous Variables

Variable Code		Description	
ϵ_a	ea	Short-run Productivity Shock	
ϵ_x	ex	Long-run Productivity Shock	
ϵ_d ed		Leveraged Risk-premium Shock	

The steady state labor is a calibration target of the model. According to page 19 of the paper, the steady state labor is 0.18.

$$\bar{N} = 0.18 \tag{29}$$

2. Steady State Log Detrended Capital:

To calculate the steady state capital, we start from the consumption Euler Equation:

$$\frac{1}{C_t^{\frac{1}{\Psi}}} = \delta E_t \frac{1}{C_{t+1}^{\frac{1}{\Psi}}} \left(A_{t+1} \alpha K_{t+1}^{\alpha - 1} N_{t+1}^{1-\alpha} + 1 - \delta \right)$$

Given the fact that on steady state $c_t = \ln \frac{C_t}{A_{t-1}}$ is constant, and $\Delta a_t = \ln \frac{A_t}{A_{t-1}} = \mu$. The above equation can be rewrite to:

$$\bar{k} = \ln \left(\frac{\alpha}{\frac{1}{\delta} \exp(\frac{\mu}{\bar{\Psi}}) - 1 + \delta} \right)^{\frac{1}{1 - \alpha}} + \ln(\bar{N}) + \mu \tag{30}$$

3. Steady State Log Detrended Output:

The steady state log detrended output is calculated using the production function, given the above steady state labor and detrended capital:

$$\bar{y} = (1 - \alpha)(\mu + \log(\bar{N})) + \alpha \bar{k} \tag{31}$$

4. Steady State Log Detrended Investment:

The steady state log detrended investment is calculated using the capital dynamic equation. On steady state, the adjustment cost G = 0, and detrended capital $k_t = \ln \frac{K_t}{A_{t-1}}$ is constant:

$$\bar{i} = \ln[\exp(\bar{k})(\exp(\mu) + \delta_k - 1)]$$

5. Steady State Log Utility Tilde Consumption Ratio:

Combine the utility function and consumption Leisure aggregation, we can compute the following steady state log utility tilde consumption ratio

$$\bar{u}c = \ln\left[\frac{1-\delta}{1-\delta\exp\left((1-\frac{1}{\Psi})\mu\right)}\right]^{\frac{\Psi}{\Psi-1}}$$

Using the above steady state variables and parameters provided in Table 3 Panel A, we can calibrate the adjustment cost parameter α_1 and α_0 using equation (12) and equation (13). Other steady state variables are provided in the in the *initval* part of the dynare ++ program.

4 Replication Program

The replication program consists of the following files:

- Run_me.m: Main MATLAB program that gives the results;
- simulation_psi_2.mod: Dynare++ program that compute the model with Intertemporal Elasticity of Substitution (IES) equals to 2;
- simulation_psi_09.mod: Dynare++ program that compute the model with IES equals to 0.9;
- simulation_no_lrr.mod: Dynare++ program that compute the model with IES equals to 2, but no long run risk ($\sigma_x = 0$);
- moments_psi_2.m: MATLAB program that compute the moments of the model with IES equals to 2 (Table 3 Column 2). Results store at Moment_psi_2.xls;
- moments_psi_09.m: MATLAB program that compute the moments of the model with IES equals to 0.9 (Table 3 Column 3). Results store at Moment_psi_09.xls;
- moments_no_lrr.m: MATLAB program that compute the moments of the model with IES equals to 2 but no long run risk (Table 3 Column 4). Results store at Moment_no_lrr.xls;
- plotIRF.m: MATLAB program that plot the Impulse Response Function (Figure 2).

5 Replication Result

Table 3: Replication of Table 3

	Data	IES=2	IES=0.9	No LRR
$\sigma(\Delta y)(\%)$	3.56 (0.65)	5.64	5.69	2.79
$\sigma(\Delta c)/\sigma(\Delta y)$	$0.71\ (0.05)$	0.82	0.75	0.68
$\sigma(\Delta i)/\sigma(\Delta y)$	4.49(0.61)	2.73	3.87	2.35
$\mathrm{E}[\mathrm{I/Y}](\%)$	20.00 (0.97)	29.40	29.52	22.16
$\rho(\Delta c, \Delta i)$	$0.39 \ (0.28)$	0.31	0.03	0.82
$\rho(\Delta c, r_{ex}^{LEV})$	$0.25 \ (0.12)$	0.12	-0.29	0.43
$\mathrm{E}(\mathbf{r}_{ex}^{LEV})(\%)$	$4.71\ (2.25)$	3.91	-5.06	1.05
$\sigma(r_{ex}^{LEV})(\%)$	20.89(2.21)	7.81	8.75	7.23
$\sigma(q)$	$0.29 \ (0.05)$	0.06	0.07	0.01
$\mathrm{E}(\mathrm{r}_t^f)$	$0.65 \ (0.38)$	1.14	5.56	5.41
$\sigma(r_t^f)$	$1.86 \ (0.32)$	1.98	3.53	0.81
$ACF_1[r_{ex}^{LEV}]$	0.09(0.12)	-0.01	-0.02	0.00
$ACF_1[r_t^f]$	$0.64\ (0.06)$	0.73	0.90	-0.07
$ACF_1[q]$	$0.86 \ (0.08)$	0.97	0.94	0.87
$ACF_1[\Delta c]$	0.50 (0.15)	0.67	0.54	0.10

References

Bansal, R., & Yaron, A. (2004). Risks for the long run: A potential resolution of asset pricing puzzles. The journal of Finance, 59(4), 1481–1509.

Croce, M. M. (2014). Long-run productivity risk: A new hope for production-based asset pricing?

Journal of Monetary Economics, 66, 13–31.

Figure 1: Replication of Figure 2: The Role of IES (Ψ)