先有 pandas 库对这个文件进行处理,计算出每个国家死亡的总人数,再对其进行排序,找 出前 20 个国家,并 print 出。

Country	
CHINA	2075947.0
TURKEY	1188881.0
IRAN	1011453.0
ITALY	498418.0
SYRIA	439224.0
HAITI	323478.0
AZERBAIJAN	317219.0
JAPAN	279607.0
ARMENIA	191890.0
PAKISTAN	145083.0
IRAQ	136200.0
ECUADOR	135496.0
TURKMENISTAN	117412.0
PERU	102169.0
ISRAEL	90388.0
PORTUGAL	83572.0
GREECE	80378.0
CHILE	64277.0
INDIA	63507.0
TAIWAN	57153.0
Name: Deaths,	dtype: float64

1.2

和 1.1 差不多的思路,筛选出地震震级 Ms 大于 3.0 的地震,按年进行分类,并对地震进行计数,最终绘制出相关时间序列图。

13

先定义如题目所要求的函数,计算出地震的总数,并找出最大的地震,并且得到最大的地震的地点(用经纬度表示)和时间(年,月,日,时,分,秒)。定义函数之后,剩下的思路和 1.1 与 1.2 一致,但需要将得到的数据结构化,Dataframe,才可以采用降序的功能。

	Total	Earthquakes	Largest Earthquake Time
15		623	(1920.0, 12.0, 16.0, 12.0, 5.0, 54.7)
34		419	(869.0, 7.0, 13.0, nan, nan, nan)
71		412	(2004.0, 12.0, 26.0, 0.0, 58.0, 53.5)
8		386	(856.0, 12.0, 22.0, nan, nan, nan)
10		337	(1939.0, 12.0, 26.0, 23.0, 57.0, 23.8)
			com
120		1	(None, None, None, None, None, None)
126		1	(1914.0, 10.0, 23.0, 6.0, 18.0, 34.0)
128		1	(None, None, None, None, None, None)
135		1	(1963.0, 2.0, 21.0, 17.0, 14.0, 31.0)
0		0	(None, None, None, None, None, None)
	Larges	t Earthquake	Location
15		(36.601,	105.317)
34		(38.5	, 143.8)
71		(3.295,	95.982)
8		(36.	2, 54.3)
10		(39.907,	39.586)
120		(Non	e, None)
126		(6.0	, 132.5)
128		(Non	e, None)
135		(32.	6, 21.0)
0		(Non	e, None)
[158	rows	x 3 columns]	

读取 CSV 文件,将 TMP 列转换为数值的类型,根据指南中气温的缩放因子来看,应将 CSV 文件中的 TMP 数值除 10,在进行筛选,找到日期列,转为 datatime 的类型,计算月平均气温即可,再绘制出相关图。

3.1

先读取 CSV 文件到。检查必要的列是否存在。将风速列转换为数值类型,并去除 NaN 值。根据 SID 分组,并计算每个飓风的最大风速。再选出风速最大的前 10 个飓风,合并名称(NAME)列,因为一个飓风可能有多个名称。根据最大风速降序排序。输出前 10 个飓风的名称和最大风速。

10	tracs_uata	= pa.read_csv
	NAME	WMO_WIND
0	PATRICIA	185.0
10	PATRICIA	185.0
1	PATRICIA	185.0
18	PATRICIA	185.0
17	PATRICIA	185.0
358	MITCH	155.0
357	MITCH	155.0
356	MITCH	155.0
355	MITCH	155.0
458	RICK	155.0

[459 rows x 2 columns]

3.2

基本思想和 3.1 一致,根据风速进行降序排列,选出前 20 个,绘制条形图,展示 20 个飓风的风速和名称。

3.3

前面读取文件的步骤与 3.1 类似,用 value_counts()的计数方法计算每个流域的数据点的数量,绘制条形图,设置好 x 轴,y 轴以及标题即可。

读取文件的的步骤与 3.1 类似,将经纬度转为数值类型,在去除掉 NaN 值,利用 hexbin 函数画六边形分箱图,gridsize 用来控制六边形的大小,cmap 用来控制颜色的映射,设置好图表的标题,x 轴和 y 轴,显示图表即可。

3.5

读取文件,在文件中选出山竹的相关数据,其余操作与上面类似。

3.6

读取文件,将 season 转化为数值型,并去除 NaN 值,筛选出 1970 年以后以及 wp 和 ep 部分的数据,生成 dataframe 即可。

读取文件,找出文件中的 ISO_TIME,将其转换为 datatime 类型,并按照 year,month,day 进行划分,在计算每天的数量点的数量,设置图片 x 轴,y 轴,标题以及相关性质,最终出图即可。

3.8

思路与 3.7 类似,只是编程提取每年每天的数据点数量,其余的导入文件以及绘图步骤并没有明显变化。

接着 3.8 的内容计算平均值和异常值即可。

	DayOfYear	Anomaly
0	50	1.500000
1	51	0.000000
2	52	0.833333
3	53	1.400000
4	54	2.600000
10812	277	-8.980769
10813	278	-11.693878
10814	282	-17.301887
10815	283	-12.769231
10816	285	-15.269231

[10817 rows x 2 columns]

3.10

导入文件,转换数据类型后,计算异常值的均值。设置年份为索引,并使用'YE'频率进行年度重采样(其实这个地方我没懂),再绘制每年的平均异常值图表。图表设置与之前相似

4.1

选择了一个 ccl4 相关文件。导入了。并清除掉了 9999 值

	time	DD	MM	YYYY	hh	mm	mole	fraction	repeability	flag
12	1993.60693	10	8	1993	13	2	100.980	0.899		В
13	1993.60718	10	8	1993	14	22	101.540	0.892		В
14	1993.60730	10	8	1993	15	42	101.183	0.859		В
15	1993.60742	10	8	1993	17	2	100.250	0.824		В
16	1993.60754	10	8	1993	18	22	101.779	0.826		В
329109	2023.49548	30	6	2023	20	51	72.939	0.176		В
329110	2023.49561	30	6	2023	21	31	72.983	0.176		В
329111	2023.49573	30	6	2023	22	11	72.847	0.175		В
329112	2023.49573	30	6	2023	22	51	72.703	0.170		В
329113	2023.49585	30	6	2023	23	31	72.748	0.171		В

[295528 rows x 9 columns]

4.2

和 3 中的操作一致,读取文件,确认列的存在,画图就好,但是我不知道为啥说 time 不存在,明明存在诶。。

4.3

计算 clean data 中 mole 的平均数,中位数,标准差,最大值,最小值。

87.36715431363528 88.311 8.657385566976934 72.237 105.348