【図2】

【図3】

【図4】

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-012600

(43) Date of publication of application: 16.01.1996

(51)Int.Cl.

CO7C 15/27 CO7C 43/20 CO7C 43/257 CO7C211/44 C07C211/54 C07C211/61 C07C217/78 C07C217/94 C07C321/30 CO7D271/10 CO7D333/08

CO9K 11/06

(21)Application number: 07-125753

26.04.1995

(71)Applicant: TDK CORP

(72)Inventor: INOUE TETSUJI

NAKATANI KENJI

(22)Date of filing:

Priority number: 06110569

Priority date: 26.04.1994

Priority country: JP

(54) PHENYLANTHRACENE DERIVATIVE AND ORGANIC EL ELEMENT

(57)Abstract:

(30)Priority

PURPOSE: To provide the subject new phenylanthracene derivative having a specified structure, exhibiting a low crystallinity, capable of forming a thin film having a stable amorphous state and useful for, e.g. a light-emitting layer of an organic EL device capable of stably emitting high-brightness blue light. CONSTITUTION: This is a new phenylanthracene derivative having a structure of the formula, A1LA2 (A1 and A2 are each monophenylanthryl or diphenylanthryl; L

is a single bond or a divalent bonding group), represented by formula I (R1 and R2 are each an alkyl, a cyclo-alkyl, an aryl, an alkenyl, an alkoxy, an aryloxy, amino or a heterocyclic group; r1 and r2 are each 0 or 1 to 5; L1 is single bond, an arylene, etc.) or formula II (R3 and R4 are each same as R1; r3 and r4 are each 0 or 1 to 5; L2 is same as L1) and useful for, e.g. a light-emitting layer for emitting blue light in an organic EL device. This compound is synthesized by coupling 2-chloro-9,10diphenylanthracene, etc., in the presence of bis(1,5cyclooctadiene)nickel, 2,2'-bipyridyl, etc.

I

П

LEGAL STATUS

[Date of request for examination]

23.04.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3816969

[Date of registration]

16.06.2006

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-12600

(43)公開日 平成8年(1996)1月16日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ		技術表示箇所
C 0 7 C 15/27	7				DC//05/24 (E//)
43/20) D	7419-4H			
43/25	57 Z	7419-4H			
	D	7419-4H			
211/44	1				
		審查請求	未請求 請求項	夏の数8 FD (全42)	〔) 最終頁に続く
(21)出願番号	特願平7-125753		(71)出願人		
(22)出顧日	平成7年(1995)4月	126日	/70\ V\ pti ±z.	ティーディーケイ株式会 東京都中央区日本橋1丁	· ·—
(31)優先権主張番号	持願平 6-110569		((2) 宪明省	井上 鉄司 東京都中央区日本橋一丁	1日13番1号 ティ
(32)優先日	平6 (1994) 4 月26日	1		ーディーケイ株式会社内	ī
(33)優先権主張国	日本(JP)		(72)発明者	中谷 賢司	
				東京都中央区日本橋一丁	1日13番1号 ティ
				ーディーケイ株式会社内	
			(74)代理人	弁理士 石井 陽一	

(54) 【発明の名称】 フェニルアントラセン誘導体および有機EL素子

(57)【要約】

【構成】 下記式(I)で表わされるフェニルアントラ セン誘導体を、有機EL素子の有機化合物層、特に好ま しくは青色発光用の発光層に用いる。

式(I) A₁ -L-A₂

[A₁、A₂;モノフェニルアントリルまたはジフェニ ルアントリル。L;単結合またはアリーレン基等の二価 の連結基。]

【効果】 本発明の化合物は、結晶性が低く、安定なア モルファス状態の薄膜の形成を可能とする。従って、本 発明の化合物を、特に、発光層に用いた場合、高輝度な 青色発光が安定して得られ、信頼性に優れた有機EL素 子が実現する。

*

1

【特許請求の範囲】

【請求項1】 下記式(1)で表されるフェニルアント ラセン誘導体。

式(1)

$A_1 - L - A_2$

〔式(I)において、A₁ およびA₂ は、各々モノフェ ニルアントリル基またはジフェニルアントリル基を表 し、これらは同一でも異なるものであってもよい。Lは 単結合または二価の連結基を表す。〕

【請求項2】 下記化1または化2で表される請求項1 10 のフェニルアントラセン誘導体。

【化1】

〔化1において、R₁ およびR₂ は、各々アルキル基、 シクロアルキル基、アリール基、アルケニル基、アルコ 20 キシ基、アリーロキシ基、アミノ基または複素環基を表 し、これらは同一でも異なるものであってもよい。r1 およびr2は、各々、0または1~5の整数を表す。r 1 および r 2が、各々、2以上の整数であるとき、R₁ 同士およびR、同士は各々同一でも異なるものであって もよく、R、同士またはR、同士は結合して環を形成し てもよい。L、は単結合またはアリーレン基を表し、ア リーレン基はアルキレン基、-O-、-S-または-N R-(ここで、Rはアルキル基またはアリール基を表 す。)が介在するものであってもよい。化2において、 R、およびR、は、各々アルキル基、シクロアルキル 基、アリール基、アルケニル基、アルコキシ基、アリー ロキシ基、アミノ基または複素環基を表し、これらは同 一でも異なるものであってもよい。r3およびr4は、 各q、0または $1\sim5$ の整数を表す。r3およびr4 が、各々、2以上の整数であるとき、R,同士およびR 、同士は各々同一でも異なるものであってもよく、R, 同士またはR、同士は結合して環を形成してもよい。L 、は単結合またはアリーレン基を表し、アリーレン基は アルキレン基、-〇-、-S-または-NR-(ここ で、Rはアルキル基またはアリール基を表す。) が介在 するものであってもよい。〕

【請求項3】 請求項1または2のフェニルアントラセ ン誘導体を含有する少なくとも1層の有機化合物層を有 する有機EL素子。

【請求項4】 前記フェニルアントラセン誘導体を含有 する有機化合物層が発光層である請求項3の有機EL素 子。

【請求項5】 さらに、少なくとも1層の正孔注入層 と、少なくとも1層の正孔輸送層と、少なくとも1層の 50 ① 有機化合物の物理的変化

 $(R_1)_{c1}$

2

電子注入輸送層とを有する請求項4の有機EL素子。

【請求項6】 さらに、少なくとも1層の正孔注入層 と、少なくとも1層の正孔輸送層と、少なくとも1層の 電子輸送層と、少なくとも1層の電子注入層とを有する 請求項4の有機EL素子。

【請求項7】 前記フェニルアントラセン誘導体を含有 する有機化合物層が電子注入輸送層であり、さらに発光 層を有する請求項3の有機EL素子。

【請求項8】 少なくとも1層の発光層を有し、この発 光層が電子注入輸送性化合物と正孔注入輸送性化合物と の混合層であって、この混合層が前記フェニルアントラ 30 セン誘導体を含有する請求項3の有機EL素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、有機EL(電界発光) 素子に関し、詳しくは、有機化合物からなる積層構造薄 膜に電界を印加して光を放出する素子に関する。

[0002]

【従来の技術】有機EL素子は、蛍光性有機化合物を含 む薄膜を、陰極と陽極とで挟んだ構成を有し、前記薄膜 に電子および正孔を注入して再結合させることにより励 40 起子 (エキシトン)を生成させ、このエキシトンが失活 する際の光の放出(蛍光・燐光)を利用して発光する素 子である。

【0003】有機EL素子の特徴は、10 V 程度の低電 圧で100~1000cd/m 程度の高輝度の面発光が 可能であり、また蛍光物質の種類を選択することにより 青色から赤色までの発光が可能なことである。

【0004】一方、有機EL素子の問題点は、発光寿命 が短く、保存耐久性、信頼性が低いことであり、この原 因としては、

(結晶ドメインの成長などにより界面の不均一化が生 じ、素子の電荷注入能の劣化・短絡・絶縁破壊の原因と なる。特に分子量500以下の低分子化合物を用いると 結晶粒の出現・成長が起こり、膜性が著しく低下する。 また、IT〇等の界面が荒れていても、顕著な結晶粒の 出現・成長が起こり、発光効率の低下や、電流のリーク を起とし、発光しなくなる。また、部分的非発光部であ るダークスポットの原因にもなる。)

【0005】② 陰極の酸化・剥離

(電子の注入を容易にするために仕事関数の小さな金属 10 としてNa・Mg・Alなどを用いてきたが、これらの 金属は大気中の水分や酸素と反応したり、有機層と陰極 の剥離が起こり、電荷注入ができなくなる。特に高分子 化合物などを用い、スピンコートなどで成膜した場合、 成膜時の残留溶媒や分解物が電極の酸化反応を促進し、 電極の剥離が起こり部分的な非発光部を生じさせる。) 【0006】3 発光効率が低く、発熱量が多いこと (有機化合物中に電流を流すので、高い電界強度下に有 機化合物を置かねばならず、発熱からは逃れられない。 その熱のため、有機化合物の溶融・結晶化・熱分解など 20 により素子の劣化・破壊が起こる。)

【0007】④有機化合物層の光化学的変化・電気化学 的変化

などが挙げられる。

【0008】特に、青色発光素子に関しては、信頼性が 高く安定な素子を提供する青色発光材料は少ない。一般 に、青色発光材料は結晶性が高い。例えば、ジフェニル アントラセンは髙い蛍光量子収率を持つにも関わらず、 結晶性が高く、この化合物を発光材料に用いて、素子を 作製しても高輝度・高効率で信頼性の高い素子を提供で 30 きなかった (C.Adachi, et al., Appli. Phys. Lett, .56, 799(1990)).

[0009]

【発明が解決しようとする課題】本発明の目的は、特に 物理的変化や光化学的変化、電気化学的変化の少ない光

・電子機能材料として新規なフェニルアントラセン誘導*

【0013】 (化3において、R, およびR, は、各々 アルキル基、シクロアルキル基、アリール基、アルケニ ル基、アルコキシ基、アリーロキシ基、アミノ基または 複素環基を表し、これらは同一でも異なるものであって もよい。 r 1 および r 2 は、各々、0 または 1 ~ 5 の整 数を表す。rlおよびr2が、各々、2以上の整数であ るとき、R、同士およびR、同士は各々同一でも異なる ものであってもよく、R,同士またはR,同士は結合し 50 これらは同一でも異なるものであってもよい。r 3 およ

* 体を提供し、このフェニルアントラセン誘導体を用い、 信頼性および発光効率の高い種々の発光色を持った、特 に青色の発光色を持った有機EL素子を実現することで ある。特に、分子量の大きな化合物を蒸着法で形成した 有機薄膜を用い、素子の駆動時の駆動電圧上昇や輝度の 低下、電流のリーク、部分的な非発光部の出現・成長を 抑えた高信頼性の高輝度発光素子を実現することであ る。

4

[0010]

【課題を解決するための手段】とのような目的は、下記 (1)~(8)の本発明により達成される。

(1) 下記式(I) で表されるフェニルアントラセン誘 導体。

式(1)

$A_1 - L - A_2$

〔式(I)において、A₁ およびA₂ は、各々モノフェ ニルアントリル基またはジフェニルアントリル基を表 し、これらは同一でも異なるものであってもよい。Lは 単結合または二価の連結基を表す。〕

(2) 下記化3または化4で表される上記(1)のフェ ニルアントラセン誘導体。

[0011]

[化3]

 $(R_1)_{r1}$

[0012]

【化4】

て環を形成してもよい。L、は単結合またはアリーレン 基を表し、アリーレン基はアルキレン基、-〇-、-S -または-NR-(ここで、Rはアルキル基またはアリ ール基を表す。)が介在するものであってもよい。化4 において、R, およびR, は、各々アルキル基、シクロ アルキル基、アリール基、アルケニル基、アルコキシ 基、アリーロキシ基、アミノ基または複素環基を表し、

びr4は、各々、0または1~5の整数を表す。r3お よびr4が、各々、2以上の整数であるとき、R。同士 およびR.同士は各々同一でも異なるものであってもよ く、R、同士またはR、同士は結合して環を形成しても よい。L、は単結合またはアリーレン基を表し、アリー レン基はアルキレン基、-〇-、-S-または-NR-(ここで、Rはアルキル基またはアリール基を表す。) が介在するものであってもよい。〕

- (3) 上記(1) または(2) のフェニルアントラセン 誘導体を含有する少なくとも1層の有機化合物層を有す 10 基については後述する。また、このような置換基の置換 る有機EL素子。
- (4) 前記フェニルアントラセン誘導体を含有する有機 化合物層が発光層である上記(3)の有機 E L 素子。
- (5) さらに、少なくとも1層の正孔注入層と、少なく とも1層の正孔輸送層と、少なくとも1層の電子注入輸 送層とを有する上記(4)の有機EL素子。
- (6) さらに、少なくとも1層の正孔注入層と、少なく とも1層の正孔輸送層と、少なくとも1層の電子輸送層 と、少なくとも1層の電子注入層とを有する上記(4) の有機EL素子。
- (7) 前記フェニルアントラセン誘導体を含有する有機 化合物層が電子注入輸送層であり、さらに発光層を有す る上記(3)の有機EL素子。
- (8) 少なくとも1層の発光層を有し、この発光層が電 子注入輸送性化合物と正孔注入輸送性化合物との混合層 であって、との混合層が前記フェニルアントラセン誘導 体を含有する上記(3)の有機EL素子。

[0014]

【作用】本発明の有機EL素子は上記式(Ⅰ)、好まし ため、10000cdm⁻² 程度、あるいはそれ以上の高輝 度が安定して得られる。また、耐熱性・耐久性が高く、 素子電流密度も1000mAcm⁻¹程度でも安定した駆動が 可能である。

【0015】上記化合物の蒸着膜は安定なアモルファス 状態なので、薄膜の膜物性が良好となりムラがなく均一 な発光が可能である。また、大気下で一年以上安定であ り結晶化を起こさない。

【0016】また、クロロホルム溶液でスピンコートし ても安定なアモルファス状態の薄膜を形成することが可 40 い。具体的には、フェニル基、(o-, m-, p-)ト 能である。

【0017】また、本発明の有機EL素子は、低駆動電 圧で効率よく発光する。

【0018】なお、本発明の有機EL素子の発光極大波 長は、400~700nm程度である。

[0019]

【具体的構成】以下、本発明の具体的構成について詳細 に説明する。

【0020】本発明のフェニルアントラセン誘導体は式 (I)で示されるものである。式(I)について説明す 50 ビフェニルビニル基等が挙げられる。

6

ると、A₁ およびA₂ は、各々モノフェニルアントリル 基またはジフェニルアントリル基を表し、これらは同一 でも異なるものであってもよい。

【0021】A、、A、で表されるモノフェニルアント リル基またはジフェニルアントリル基は、無置換でも置 換基を有するものであってもよく、置換基を有する場合 の置換基としては、アルキル基、アリール基、アルコキ シ基、アリーロキシ基、アミノ基等が挙げられ、これら の置換基はさらに置換されていてもよい。これらの置換 位置は特に限定されないが、アントラセン環ではなく、 アントラセン環に結合したフェニル基であることが好ま

【0022】また、アントラセン環におけるフェニル基 の結合位置はアントラセン環の9位、10位であること が好ましい。

【0023】式(1)において、Lは単結合または二価 の基を表すが、して表される二価の基としてはアルキレ ン基等が介在してもよいアリーレン基が好ましい。この 20 ようなアリーレン基については後述する。

【0024】式(Ⅰ)で示されるフェニルアントラセン 誘導体のなかでも、化3、化4で示されるものが好まし い。化3について説明すると、化3において、R. およ びR、は、各々アルキル基、シクロアルキル基、アリー ル基、アルコキシ基、アリーロキシ基、アミノ基または 複素環基を表す。

【0025】R1、R2で表されるアルキル基として は、直鎖状でも分岐を有するものであってもよく、炭素 数1~10、さらには1~4の置換もしくは無置換のア くは上記化3、化4に示される化合物を発光層に用いる。30 ルキル基が好ましい。特に、炭素数1~4の無置換のア ルキル基が好ましく、具体的にはメチル基、エチル基、 (n-, i-) プロビル基、(n-, i-, s-, t -) ブチル基等が挙げられる。

> 【0026】R1、R2で表されるシクロアルキル基と しては、シクロヘキシル基、シクロベンチル基等が挙げ られる。

> 【0027】R1、R2で表されるアリール基として は、炭素数6~20のものが好ましく、さらにはフェニ ル基、トリル基等の置換基を有するものであってもよ リル基、ピレニル基、ナフチル基、アントリル基、ビフ ェニル基、フェニルアントリル基、トリルアントリル基 等が挙げられる。

> 【0028】R、、R、で表されるアルケニル基として は、総炭素数6~50のものが好ましく、無置換のもの であってもよいが置換基を有するものであってもよく、 置換基を有する方が好ましい。このときの置換基として は、フェニル基等のアリール基が好ましい。具体的に は、トリフェニルビニル基、トリトリルビニル基、トリ

【0029】 R_1 、 R_2 で表されるアルコキシ基としては、アルキル基部分の炭素数が $1\sim6$ のものが好ましく、具体的にはメトキシ基、エトキシ基等が挙げられる。アルコキシ基は、さらに置換されていてもよい。【0030】 R_1 、 R_2 で表されるアリーロキシ基としては、フェノキシ基等が挙げられる。

【0031】R、、R、で表されるアミノ基は、無置換でも置換基を有するものであってもよいが、置換基を有することが好ましく、この場合の置換基としてはアルキル基(メチル基、エチル基等)、アリール基(フェニル 10基等)などが挙げられる。具体的にはジエチルアミノ基、ジフェニルアミノ基、ジ (m-トリル)アミノ基等が挙げられる。

【0032】R1、R2で表される複素環基としては、 ビビリジル基、ビリミジル基、キノリル基、ビリジル 基、チエニル基、フリル基、オキサジアゾイル基等が挙 げられる。これらは、メチル基、フェニル基等の置換基 を有していてもよい。

【0033】化3において、rlおよびr2は、各々、 0または1~5の整数を表し、特に、0または1である 20 ことが好ましい。rlおよびr2が、各々、1~5の整 数、特に1または2であるとき、RiおよびRiは、各々、アルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、アミノ基であることが好ましい。

[0034]化3において、 R_1 と R_2 とは同一でも異なるものであってもよく、 R_1 と R_2 とが各々複数存在するとき、 R_1 同士、 R_2 同士は各々同一でも異なるものであってもよく、 R_1 同士あるいは R_2 同士は結合してベンゼン環等の環を形成してもよく、環を形成する場 30 合も好ましい。

【0035】化3において、L,は単結合またはアリーレン基を表す。L,で表されるアリーレン基としては、無置換であることが好ましく、具体的にはフェニレン基、ビフェニレン基、アントリレン基等の通常のアリーレン基の他、2個ないしそれ以上のアリーレン基が直接連結したものが挙げられる。L,としては、単結合、pーフェニレン基、4,4′ービフェニレン基等が好ましい。

【0036】また、L、で表されるアリーレン基は、2個ないしそれ以上のアリーレン基がアルキレン基、-〇-、-S-または-NR-が介在して連結するものであってもよい。ここで、Rはアルキル基またはアリール基を表す。アルキル基としてはメチル基、エチル基等が挙げられ、アリール基としてはフェニル基等が挙げられ、アリール基が好ましく、上記のフェニル基のほか、A、A、であってもよく、さらにはフェニル基にA、またはA、が置換したものであってもよい。【0037】また、アルキレン基としてはメチレン基、エチレン基等がこの好きしい。このようなアリーレン基

の具体例を以下に示す。

[0038]

【化5】

【0040】化4において、R, とR, とは同一でも異なるものであってもよく、R, とR, が各々複数存在するとき、R, 同士、R, 同士は、各々同一でも異なるものであってもよく、R, 同士あるいはR, 同士は結合してベンゼン環等の環を形成してもよく、環を形成する場合も好ましい。

18では一般式を示し、化7、化9、化11、化13、化15、化17、化19、化20で、各 α 対応する具体例を $R_{11}\sim R_{15}$ 、 $R_{21}\sim R_{25}$ あるいは $R_{31}\sim R_{35}$ 、 $R_{41}\sim R_{45}$ の組合せで示している。

[0043] 【化7]

[0042] [化6] [

$$R_{15}$$
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{13}
 R_{23}
 R_{24}
 R_{24}
 R_{25}
 R_{21}
 R_{25}
 R_{21}
 R_{25}
 R_{21}
 R_{20}
 R_{21}
 R_{22}
 R_{22}
 R_{23}
 R_{24}
 R_{25}
 R_{25}
 R_{21}
 R_{25}

								-	12	
化合物 No.	n Rii	R _{1 2}	R ₁₃	R14	R ₁₅	R ₂₁	R22	R ₂₃	R ₂₄	R ₂₅
I-1	Н	Н	Н	Н	Н	Н	H	Н	Н	Н
I-2	СНз	Н	H	Н	H	CH ₃	H	H	H	H
I-3	t-C₄H _e	Н	Н	H	Н	t-C₄H₃	H	H	H	H
I-4	OCH ₃	Н	Н	Н	Н	OCH ₃	Н	Н	Н	Н
I-5	0Ph	H	Н	Н	Н	OPh .	H	Н	H	Н
I-6	N (C2H5) 2	Ħ	Н	H	Н	N (C ₂ H ₆) 2	Н	H	H	Н
I-7	N (Ph) 2	H	H	H	H	N (Ph) 2	Н	H	Ħ	Н
I-8	Ph	H	H	H	Н	Ph	Н	H	H	H
I-9	{С}- сн₃	H	H	Н	H	—⟨>- Сн₃	H	H	H	Н
I-10	H	CH₃	H	H	H	Н	СНз	H	H	H
I-11	н	СНз	H	CH ₃	H	H	CH ₃	H	CH3	H
I-12	H	H	CH ₃	H	H	Н	H	СН₃	H	H
I-13	H	CH3	H	H	CH₃	H	CH3	H	H	CH3
I-14	CH ₃	СНз	CH ₃	CH3	СНз	CH ₃	CH ₃	CH ₃	СНз	CH ₃
I - 15	t-C₄H ₉	H	H	H	H	Н	H	H	H	H
I-16	$-\bigcirc-\bigcirc$	H	H	H	H	$-\bigcirc-\bigcirc$	Н	H	H	Н
I-17	Н	Ph	H	H	H	H	Ph	H	H	H
I-18	Н	H	Ph	H	Н	H	Н	Ph	Н	H
I-19	C=C Ph	Н	Н	Н	н	Ph C=C Ph	Н	Н	Н	Н
I-20	n-C4Ho	Н	Н	H	Н	n-C-H9	Н	Н	Н	H

[0044] [化8]

II

$$R_{15}$$
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{13}
 R_{14}
 R_{13}
 R_{23}
 R_{24}
 R_{25}
 R_{24}
 R_{25}
 R_{25}
 R_{21}
 R_{25}

*

				,	*					
化合物 No.	Rij	R ₁₂	R13	R14	R ₁₅	R ₂₁	R22	R ₂ 3	R24	R ₂₅
П-1	н	Ħ	Н	Н	Н	H	H	Ħ	H	Н
II -2	CH ₃	H	H	H	H	CH ₃	Н	H	H	H
. II -3	t-C4He	H	H	H	H	t-C ₄ H ₉	H	H	H	Н
II -4	OCH ₃	H	H	H	H	OCH ₃	Н	H	H	H
II -5	0Ph	H	H	H	Н	OPh	H	H	H	H
II -6	N (C ₂ H ₅) ₂	H	H	Н	Н	N (C2H6) 2	H	H	H	Н
<u>II</u> -7	N (Ph) 2	H	Н	H	Н	N(Ph) 2	H	H	H	H
11 -8	Ph	Н	H	Н	H	Ph	Н	H	H	Н
П-9	{С} СН₃	Н	Н	Н	Н	—€ Сн₃	H	H	H	Н
II -10	Н	СНа	Н	Н	Н	H	CH ₃	H	Н	H
П-11	Н	H	CH _a	H	H	H	H	CH a	Н	H
П-12	Н	Н	CH a	СНз	H	H	Н	СНз	CH₃	H
П-13	H	Н	CH.	H	CH ₂	Н	H	CH a	Н	CH₃
Ⅱ -14	СНа	CH _a	CH _a	CHa	CH ₃	CH3	CH₃	CH a	CHa	СНа
II -15	t-C₄H ₉	Н	H	Н	H	Н	Н	H	Н	Н
II -16	-0-0	н	H	H	H -	- OO	H	Н	Н	Н
II -17	H	Ph	H	H	H	H	Ph	H	Н	H
II -18	H	H	Ph	H	H	Н	Н	Ph	H	H

15 [0046]

【化11】 [0047]

	17								_	
化合物 No.	Rii	R ₁₂	R ₁₃	R₁₄	R ₁₅	R ₂₁	R ₂₂	R23	R ₂₄	Rzs
III - 1	Н	Н	Н	н	Н	Н	H	Н	Ħ	H
111 -2	CH3	H	H	H	Н	CH ₃	H	H	H	H
III - 3	t-C₄H9	H	H	H	H	t-C4H9	H	H	H	H
III-4	OCH ₃	H	H	H	H	OCH ₃	H	H	H	H
III - 5	0Ph	H	H	H	H	OPh	H	H	H	H
III-6	N (C2H5) 2	H	H	H	H	$N(C_2H_5)_2$	Н	H	H	Н
III - 7	N (Ph) 2	H	H	H	H	N (Ph) 2	H	Н	H	H
III-8	Ph	H	H	H	H	Ph	H	H	H	H
III -9	—⟨> CH3	Н	H	H	H		H	Н	Н	Н
III-10	Н	CHa	H	H	H	H	CHa	H	H	H
III-11	H	Н	CH3	H	Н	H	Н	CH ₃	Н	H
III-12	Н	H	СНз	СН₃	H	H	Н	CH ₃	CH ₃	H
III-13	Н	H	CH₃	H	CHa	H	H	CH3	H	ÇH₃
III-14	CH ₃	CH ₂	CH ₃	СНª	CH₃	CH₃	CH ₃	CH₃	СНа	CH₃
III-15	Н	Ph	Н	H	Н	H	Ph	H	Н	Н
Ш-16	Н	Н	Ph	H	H	H	H	Ph	H	Н
III-17	-0-0	H	H	H	Н	- OO	Н	Н	H	Н
III-18	t-C ₄ H ₉	H	H	Ħ	H	H	Н	H	H	Н
III-19	$\overline{}$	H	н	H	Н	$\overline{}$	H	H	Н	H
III -20	_(°) Ph	H	Н	H	H	N·N Ph	Н	H	H	Н
III-21	√s CH₃	H	H	H	H	√s CH3	Н	H	Н	H
III -22		H	H	H	H		Н	H	Н	н

[0048] 【化12】

特開平8-12600

$$[0.049]$$

$$[11]$$

$$R_{15}$$

$$R_{16}$$

$$R_{17}$$

$$R_{18}$$

$$R_{18}$$

$$R_{21}$$

$$R_{22}$$

$$R_{25}$$

$$R_{25}$$

$$R_{26}$$

71

化合物	R ₁₁	R ₁₂	R ₁₃	R14	R _{1.5}	R ₂₁	R ₂₂	R ₂₃	R ₂₄	R _{2 5}
No.				****	2,19	1121	1/22	1123	1124	N2 5
[V-1	Н	Н	H	H	Н	Н	H	Н	Н	Н
IV-2	CH ₃	Н	H	H	H	СНз	H	H	Н	H
IV-3	t-C4H9	Н	H	H	H	t-C ₄ H ₉	H	H	H	H
IV-4	OCH ₃	H	Н	Н	H	OCH ₃	Н	Н	H	H
IV-5	OPh	H	H	Н	H	0Ph	Н	Н	H	H
IV-6	N (C2H5) 2	H	Н	H	H	N (C ₂ H ₅) ₂	H	Н	H	Н
IV-7	N (Ph) 2	H	H	H	H	N (Ph) 2	H	Н	H	H
8-VI	Ph	H	H	H	H	Ph	Н	Н	H	H
IV-9	—€> СН3	H	Н	Н	Н	-√_> СН₃	H	Н	Н	Н
IV-10	Н	CH₃	H	Н	H	H	CH₃	Н	н	Н
IV-11	Н	H	CH ₃	H	H	Н	H	CH ₃	H	H
IV-12	Н	H	CH ₃	CH ₃	H	H	Н	CH3	CH3	H
IV-13	Н	H	CH ₃	H	CHa	H	H	CH ₃	Н	CH ₃
IV-14	СН₃	CHa	CH₃	СНз	CH3	CH _s	CHa	CH2	СНа	CH ₃
IV-15	H	Ph	Н	H	H	Н	Ph	H	H	Н
IV-16	Н	H	Ph	Н	H	H	H	Ph	Н	Н
IV-17 -	- O-O	H	Н	н	н -	- OO	H	Н	Н	Н
IV-18	t-C ₄ H ₉	H	н	Н	Н	H	Н	Н	Н	Н
IV-19	→	H	Н	H	H	$\overline{}$	H	H	н	н
IV-20	-√°, ≯Ph	Н	H	H	H	√°, N PH	Н	н	Н	H

[0050]

* * [化14]

٧

$$R_{31}$$
 R_{32} R_{33} R_{43} R_{45} R

[0051]

【化15】

化合物 No.	Raı	Rag	Raa	R _{3.4}	R35	R ₄₁	R ₄₂	R43	R44	R45
V-1	Н	Н	Н	Н	Н	H	H	H	H	Н
V-2	CH ₃	H	H	H	H	CH ₃	H	H	H	H
V - 3	t-C₄H₃	H	Н	H	Н	t-C₄H _s	H	H	H	H
V-4	OCH _s	H	H	H	H	OCH ₃	Н	H	H	H
V -5	0Ph	H	H	H	H	OPh	H	H	H	H
V-6	N (C2H5) 2	H	Н	H	H	N (C2H5) 2	H	H	H	H
V-7	N (Ph) 2	Н	Н	H	H	N (Ph) 2	H	H	H	Н
V-8	Ph	H	Н	H	H	Ph	H	H	Н	Н
V-9	— СН₃	H	Н	H	H	—{} СH₃	Н	Н	Н	Н
V-10	H	CH3	H	H	H	Н	CH a	H	Н	Н
V-11	H	H	CH ₂	H	Н	H	H	CH2	H	Н
V-12	H	Н	CH ₃	CH3	H	H	H	CH₃	CH3	Н
V-13	H	Н	CH ₃	H	CH ₃	H	H	CH3	H	CH 2
V-14	СНз	CH ₃	СН₃	CH ₃	СН₃	СНз	CH ₃	CH ₃	CH3	СНа
V-15	H	Ph	Н	Н	Н	H	Ph	H	Н	H
V-16	Н	Н	Ph	Н	Н	Н	H	Ph	H	H
V-17	$-\bigcirc$	Н	H	Н	Н	- O - O	H	H	Н	H
V-18	t-C₄H ₉	H	H	H	Н	t-C₄H9	H	H	H	H
V-19		Н	Н	H	Н		H	H	H	H
V -20		Н	Н	Н	Н		Н	H	H	H
V -21		Н	H	Н	Н	-\	H	H	H	H
V -22	-KON Ph	Н	H	H	Н	TON Ph	H	H	Н	H
V-23	N·N O Ph	H	H	H	H	$\sqrt[4]{s}$ CH ₃	H	Н	Н	H

[0052] [{£16]