VIII) Si H y K son los subconjuntos del problema VII, entonces $H \cap K$ es un subespacio de \mathbb{R}^3 .

IX) El conjunto de polinomios de grado 2 es un subespacio de \mathbb{P}_3 .

Respuestas a la autoevaluación

I) F

II) V

III) V

IV) V

V) F

VI) V

VII) F

VIII) V

IX) F

PROBLEMAS 5.2

De los problemas 1 al 29 determine si el subconjunto dado H del espacio vectorial V es un subespacio de V.

1. $V = \mathbb{R}^2$: $H = \{(x, y): x = 3, y \in \mathbb{R}\}$

2. $V = \mathbb{R}^2$; $H = \{(x, y); y \le 0\}$

3. $V = \mathbb{R}^2$; $H = \{(x, y); x = y\}$

4. $V = \mathbb{R}^2$; $H = \{(x, y); y = 2x\}$

5. $V = \mathbb{R}^3$; H = el plano yz

6. $V = \mathbb{R}^2$; $H = \{(x, y); 4x^2 + 9y^2 \le 36\}$

7. $V = \mathbb{R}^2$, $H = \{(x, y) : x^2 + y^3 < 1\}$

8. $V = \mathbb{M}_{nn}$; $H = \{D \in \mathbb{M}_{nn}; D \text{ es diagonal}\}$

9. $V = M_{mn}$; $H = \{T \in M_{mn}; T \text{ es triangular superior}\}$

10. $V = M_{mi}$: $H = \{T : T \text{ es triangular inferior}\}$

11. $V = \mathbb{M}_{nn}$; $H = \{S \in \mathbb{M}_{nn}; S \text{ es simétrica}\}$

12. $V = \mathbb{M}_{mi}$; $H = \{A \in \mathbb{M}_{mn}; a_{ii} = 0\}$

13. $V = M_{22}$; $H = \left\{ A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, a \in \mathbb{R} \right\}$

14. $V = \mathbb{R}$: $H = \mathbb{Q}$

15. $V = \mathbb{M}_{22}$; $H = \left\{ A \in \mathbb{M}_{nn}, A = \begin{pmatrix} 0 & a \\ -a & b \end{pmatrix}, a \in \mathbb{R}, b \in \mathbb{R} \right\}$

16. $V = \mathbb{M}_{22}$; $H = \left\{ A \in \mathbb{M}_{nn}, A = \begin{pmatrix} 0 & 0 \\ -a & a - 1 \end{pmatrix}, a \in \mathbb{R} \right\}$

17. $V = \mathbb{M}_{22}$; $H = \left\{ A \in \mathbb{M}_{nn}, A = \begin{pmatrix} a & -a \\ 0 & -a \end{pmatrix}, a \in \mathbb{R} \right\}$

18. $V = \mathbb{M}_{2\dot{z}}$, $H = \left\{ A \in \mathbb{M}_{nn}$, $A = \begin{pmatrix} 0 & -a \\ b & 0 \end{pmatrix}$, $a \in \mathbb{R}$, $b \in \mathbb{R} \right\}$

19. $V = \mathbb{P}_{4}$; $H = \{ p \in \mathbb{P}_{4} : \text{grado } p = 4 \}$

20. $V = \mathbb{P}_n$; $H = \{ p \in \mathbb{P}_n : p(0) = 0 \text{ y } p'(0) = 0 \}$

21. $V = \mathbb{P}_4[-1, 1]; H = \{ p \in \mathbb{P}_4[-1, 1]; p(-1) = 0, p(1) = 0 \}$