ISF 110: AN INTRODUCTION TO DATA ANALYSIS AND VISUALIZATION

An overview of inferential statistics

Amm Quamruzzaman
ISF, UC Berkeley
March 8, 2022

Outline

- I. Introduction
- II. The theory of probability
- III. Probability and hypothesis testing
- IV. The z-distribution and hypothesis testing
- V. The *t*-distribution and hypothesis testing
- VI. The χ 2-distribution and hypothesis testing
- VII. ANOVA for hypothesis testing

I. Introduction

- Statistical inference is the process of using data analysis to infer properties of an underlying distribution of probability.
- We use a sample to make inferences about the population.
- Of course, from a sample, we cannot make exact inferences.
- There will be some uncertainty; this uncertainty can be described precisely using the theory of probability.
- Probabilities are proportions, and so can be multiplied by 100 and expressed as percentages: 0% = impossible to occur, 50% = as likely to occur as not, 100% = certain to occur.
- Alternatively, probability values vary from 0 (impossible) to 1 (certain). The values cannot be negative.

II. The theory of probability

- Based on coin tossing/dice rolling.
- The probability of an outcome is the observed frequency of that outcome divided by the total number of observed outcomes.
- In the example (right), the probability of women (n=95) having statures between 160 and 165 cm is 28/95 = 0.29.
- What is the probability of women having statures over 165 cm?
- (23+10+4+1)/95 = 0.40.

Women's stature in Anthropology 105 and the normal distribution

II. The theory of probability...

• The probability distribution is a curve describing an idealized frequency distribution of a variable from which it is possible to get the probability with which specific values of that variable will occur.

• Certain shapes of distribution are quite common; they are called the 15 normal distribution. For these shapes mathematicians have worked out the probability scores or *p* values.

Women's stature in Anthropology 105

and the normal distribution

III. Probability and hypothesis testing

- The *p* value is the probability that the samples are from the same population for an outcome (DV).
- Usually, the hypothesis we are testing (called null hypothesis) is that the samples (groups) differ on the outcome.
- The *p* value determines whether or not we reject the null hypothesis and accept the alternative hypothesis.

III. Probability and hypothesis testing...

- Conventional p values are: *** $p \le 0.001$; ** $p \le 0.01$; * $p \le 0.05$ and are referred to as the levels of significance.
- If the *p* value is large (> 0.05), accept the null hypothesis (i.e., the alternative hypothesis is not true).
- If the p value is small (≤ 0.05), reject the null hypothesis.
- There is always a possibility that we are making a mistake in rejecting the null hypothesis.
- This is called a Type I Error rejecting the null hypothesis when it is true. If this probability is ≤ 0.05, we are still 95% confident but not 100% safe from committing an error.
- A Type II Error accepting the null hypothesis when it is false.

III. Probability and hypothesis testing...

- Different hypothesis tests use different test statistics based on the shapes of the probability curve.
- There are, for example: z distribution, t distribution, chisquare (χ 2) distribution, and F-distribution.
- They are all defined by an equation that enables us to calculate test statistics. We use the test statistics to decide about a hypothesis.

IV. When to use which test?

• Depends on sample size, number of groups, types of variables, and the objectives of a test.

Test statistic	Associated test	Sample size	Information given	Distribution	Test question
z-score	z-test	Two populations or large samples (n > 30)	 Standard deviation of the population (this will be given as σ) Population mean or proportion 	Normal	Do these two populations differ?
t-statistic	t-test	Two small samples (n < 30)	 Standard deviation of the sample (this will be given as s) Sample mean 	Normal	Do these two samples differ?
f-statistic	ANOVA Regression	Three or more samples	 Group sizes Group means Group standard deviations	Normal	Do any of these three or more samples differ from each other?
chi- squared	chi-squared test	Two samples	 Number of observations for each categorical variable 	Any	Are these two categorical variables independent?

V. The z-distribution and hypothesis testing

- Are rich countries suffering more from Covid-19 than poor countries?
- A z-test is a statistical way of testing a hypothesis when
 - We know the population variance, or
 - We do not know the population variance, but our sample size is larger than 30.
- If we have a sample size of less than 30 and do not know the population variance, we use a *t*-test.

V. The z-distribution...

t Table

V. The z-distribution	cum. prob	t.50	t _{.75}	t .80	t .85	t.90	t .95	t .975	t .99	t .995	t .999	t.9995
VI IIIC Z GISCIINGCIOIIIII	one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
	two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
	df											
	1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
 One-sample z-test: 	2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
One-sample 2-test.	3	0.000	0.765 0.741	0.978 0.941	1.250 1.190	1.638 1.533	2.353 2.132	3.182 2.776	4.541 3.747	5.841 4.604	10.215 7.173	12.924 8.610
	5	0.000	0.741	0.941	1.156	1.476	2.015	2.770	3.365	4.032	5.893	6.869
	6	0.000	0.727	0.926	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
Sample mean Population mean	7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
	8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
$\overline{x} - \mu$	10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
z score = $\frac{\sigma}{\sqrt{n}}$	11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
Population Sample Size	15	0.000	0.691	0.866 0.865	1.074	1.341	1.753 1.746	2.131 2.120	2.602	2.947 2.921	3.733 3.686	4.073 4.015
standard deviation	16 17	0.000	0.689	0.863	1.069	1.333	1.740	2.120	2.567	2.898	3.646	3.965
deviation	18	0.000	0.688	0.862	1.067	1.330	1.734	2.110	2.552	2.878	3.610	3.922
-	19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
 Two-sample z-test: 	20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
	22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
Difference by	24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
Difference bw	25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
Sample mean population mean $\mu_1 - \mu_2$	26	0.000	0.684	0.856	1.058	1.315	1.706	2.056 2.052	2.479	2.779	3.435	3.707
	27 28	0.000	0.684 0.683	0.855 0.855	1.057 1.056	1.314 1.313	1.703 1.701	2.052	2.473 2.467	2.771 2.763	3.421 3.408	3.690 3.674
$\underline{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}$	29	0.000	0.683	0.854	1.055	1.313	1.699	2.046	2.462	2.756	3.396	3.659
$\sigma_1 = \sigma_2 = \sigma_2$	30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
z score = $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
Population Sample Size	80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
standard n_1, n_2	100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
deviation σ , σ	1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
1, 2	Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
		0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
https://www.analyticsvidhya.com/blog/2020/06/statistics-analytics-hypothesis-	<u>testing-z-te</u>	st-t-test/				Confid	dence Lo	evel				

VI. The *t*-distribution and hypothesis testing

- The *t*-distribution is like the normal distribution with its bell shape but has heavier tails (a greater chance for extreme values).
- William Sealy Gosset (1905) first published a *t*-distribution under the name Student. (Erich Lehman described *z*-test in 1986.)
- Student's *t*-test is used to determine if there is a significant difference between the means of two groups in terms of a continuous variable.
- It is useful when the sample size is small (n<30), and the population standard deviation is unknown.
- Example: After tutoring only boys in statistics, is there a difference in the test scores between boys and girls?

VI. The *t*-distribution...

Observation #	Boys' scores	Girls' scores
1	8	6
2	7	7
3	10	8
4	10	7
5	9	7
6	8	10
7	7	8
8	8	7
9	10	8
10	9	6

• Formula:
$$t = \frac{|\overline{x_1} - \overline{x_2}|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

	Boys' scores	Girls' scores
Mean	8	.6 7.4
Variance	1.3777777	7 1.37777777
Observations	1	0 10
Hypothesized Mean Difference		0
df	1	8
t Stat	2.28600228	36
P(T<=t) one-tail	0.01729671	6
t Critical one-tail	1.73406360)7
P(T<=t) two-tail	0.03459343	
t Critical two-tail	2.1009220)4

VII. The χ2 distribution and hypothesis testing

- Z-test and t-test cannot be used for categorical variables. For example, if you want to test the following hypothesis:
 - In a relationship, happiness depends on whether a person is faithful or unfaithful to the other.

 Say, to test this hypothesis you interviewed 506 men aged 18-50 years.

The DV is "relationship happiness"
 (whether a man was happy or unhappy)
 and the IV is "infidelity"
 (whether a man was faithful or unfaithful)

Say, we get a distribution of our sample of 506 men as follows:

Table 1 Contingency table showing how many men engaged in infidelity or not, based on how happy they were in their relationship. Data from Table 3 of Mark et al.⁹²

Infidelity

		Unfaithful	Faithful	Total
Happiness in	Unhappy (greater than the median)	56	101	157
relationship	Happy (median or less)	62	287	349
	Total	118	388	506

• Hypothesis tests can be performed on contingency tables using $\chi 2$ statistic.

• To calculate $\chi 2$ statistic, we need to calculate expected frequencies for each cell / each combination of categories:

$$\begin{split} & \text{model}_{\text{Unhappy,Unfaithful}} = \frac{\text{RT}_{\text{Unhappy}} \times \text{CT}_{\text{Unfaithful}}}{n} = \frac{157 \times 118}{506} = 36.61 \\ & \text{model}_{\text{Unhappy, Faithful}} = \frac{\text{RT}_{\text{Unhappy}} \times \text{CT}_{\text{Faithful}}}{n} = \frac{157 \times 388}{506} = 120.39 \\ & \text{model}_{\text{Happy,Unfaithful}} = \frac{\text{RT}_{\text{Happy}} \times \text{CT}_{\text{Unfaithful}}}{n} = \frac{349 \times 118}{506} = 81.39 \\ & \text{model}_{\text{Happy,Faithful}} = \frac{\text{RT}_{\text{Happy}} \times \text{CT}_{\text{Faithful}}}{n} = \frac{349 \times 388}{506} = 267.61 \end{split}$$

Next step: compare these values to those that we actually observed

 calculate the differences between observed (O) and expected (E)
 frequencies.

Infidelity

		Unfaithful	Faithful	Total
Happiness in	Unhappy (greater than the median)	36.61	120.39	157
relationship	Happy (median or less)	81.39	267.61	349
	Total	118	388	506

• Use this formula to calculate the χ 2 statistic:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$\chi^{2} = \frac{\left(56 - 36.61\right)^{2}}{36.61} + \frac{\left(101 - 120.39\right)^{2}}{120.39} + \frac{\left(62 - 81.39\right)^{2}}{81.39} + \frac{\left(287 - 267.61\right)^{2}}{267.61}$$

$$= \frac{19.39^{2}}{36.61} + \frac{-19.39^{2}}{120.39} + \frac{-19.39^{2}}{81.39} + \frac{19.39^{2}}{267.61}$$

$$= 10.27 + 3.12 + 4.62 + 1.40$$

$$= 19.41$$

- Now, find out the p-value associated with the $\chi 2$ statistic from the chi-square distribution table.
- The shape of chi-square distribution is affected by the degrees of freedom, which are calculated as (r-1)(c-1) in which r is the number of rows and c is the number of columns.
- In this case, df = (2-1)(2-1) = 1.
- Since the test statistic (19.41) is much bigger than either critical value, we conclude that the hypothesis is accepted (i.e., there is a statistically significant relationship b/ being faithful in a relationship and being happy).

VIII. ANOVA for hypothesis testing

- ANOVA is used to determine whether there are any statistically significant differences between the means of three or more unrelated groups. Ronald Fisher invented ANOVA in 1918.
- The Formula for ANOVA is:
 - F=MSE/MST, where:
 - F=ANOVA coefficient
 - MST=Mean sum of squares due to treatment
 - MSE=Mean sum of squares due to error
- The ANOVA test results are used in an F-test to generate additional information that aligns with regression models.