AAL

Introducº

Automates: au départ pour l'analyse de langues La découpage syntaxiq a traduce automatiq a traitem! de fxt

Analyse lexicale: 1º étape vers la compila de programme. => Découpe le programme en lexeme unité lexicale: mots-clets, id, ==, < ...

ex. langage: <. ¿, <>, >, , >, =

21 4 ab2c

recherche de motif: ababab

hiérarchie des modèles de calculs

- automates finis (nb fini d'état)
- grammaine hous contexte => S -> AB => 5 -> AB -> aAB -> ...
- " générale A-> aA
- maching de Turing
- B -> bb

Alphabet

C'est un ensemble fini de symboles. Un mot de l'alphabet E. C'esture sequence tinie a ordonnée (ou vide E) d'élémet de E.

- · Longueur n de w: n = |w|
- nb d'occurence d'une lettre & : I w I x
- posiº i d'une lettre : wi

langage: ensemble de mots sur l'alphabet E

ex: L = {ab} => 1 mots L= {u E E* | |u|a = 0 mod 2 L = { a b n | n E IN}

concatena : u.v; |uv| = |u|+ |v| E*: ensemble des mois formés sur E. monoide libre engendié par par -> . associative: (u.v). w = u.(v.w)

· élémé neutre & Zª

tacteur : V= w4. u. w2 , si w4 = = > u est prefixe (inv. w2) Sous-mot: u est un sous mot si en enlevant des lettres on a u

Opera sur les langage

Rappel: AuB O

Si LCE, le complém^t de l'noté I

Si Lal' sont deux languages sur Ξ , lun concativa² est L.L' = $\{u : v \mid u \in L \mid a \mid v \in L'\}$

ex. {a, aa} . { 6, bb} = { ab, abb, aab, aabb} {a, aa}. {a, aa} = {aa, aaa, aaaa} { a neln} . { a 2n+1 | neln} = { a 2n+1 | neln} Ø. 1= Ø + {E}. L= L L° = [.L.L L° = {E}

Lo {aa}"= {\(\ext{\ell} \) \(\text{\ell} \) \(Etoile de K

Def: l'est ratione, s'il s'obtient à partir de Ø, Ens pour un nb fini d'opera U, a *

ex: Z = fa,63. [fa3 u fb3. fa3 u fb3] " | u

On enlive les accolades a u=>+

Lest [...] le + petit eus. de langage contenant Ø a {2} pour tout x E E

dutomate fini déterministe

Un afd & est défini par: d(E,Q,q,,F,S)

- · Un alphabet &
- · L'ens. des états Q
- · Un état initial que Q
- · L'ens. dus états finaux FCQ
- · La fonce de transie 8 : Qx E -> Qu [0]

on peut notes 8:

$$\delta(0,a)=1$$
 $\delta(0,b)=0$ 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

Si une Gansi & n'est par définie : on dit q le calcul blog

· fonce de transi = étendue :

· 8 : (q, E) = q pour tout etat

Sam(q, w) = q': en partant de l'état q, on effectue le calcul du mot w sans bloques a on assive à l'état q'

On dit qu'un mot $w \in E^*$ est accepté par si $S^*(q_0, w) \in F \cdot d'ens. L(A)$ des mots accept = langage reconnu par l'automote cl

Un langage l'est recommaissable si 3 un automate d'éelq L=L(d)
L> tout langage fini est recommaissable

Un atol est complet, si V etat q a V lettre a EE S(q,a) # 18

dutomate fini non déterministe

Un afind A est défini par: d(E, Q, Q, F, S)

- · Un alphabet &
- · L'ens. des états Q
- · L'ens. des états initians Q c Q
- · L'ens. des états finaux FCQ
- · La fonce de transie 8 : QxE -> P(a)

ensemble des parties de Q

=> Pour un mot, on obtient une leste d'état possible

L) cun mot accept si S" (q, w) contient au-1 etat final.

Th. Valud d, 3 un ald d lig 2(d)=2(d)

Proprieté de clôture de Bec

· Rat: + petit ens. de langage contenant Ø, (28), pour x & E, or clos

LUL' ERat L. L' ERat L" ERat

· But : Rec = Rat

complemes, si l & Rec alors & & Rec Lo alors & L &

- 1. Compléter d' (états puits)
- 2. On inverse ET a ENT

intersec : Ln L' = ((Lu'L')

concatenaº: L,L'

Ctoile:

My orithme ok Glushkor (ER => AFND)

- · linearisé l'ER
- · transformer l'ERL en AFND
- · passer de l'AFND pour l'ER lineausée à un AFND pour l'ER initial

ex: e = (ab) x (a+bb) 2		Succ	3.	a	Ь
1. e'= (n4 n2)*(n3 + n4 n3)	0	1, 3, 4	0	1,3	4
	1	2	1	/	2
a 2 1 - b 2 2	2	1,3,4	2	1,3	ų
->(0) b (4) b a	3	1	3	/	/
4	4	5	4	/	5
	3	1	5	/	/
					l

Lemme de l'étoile

Limites des langages reconnausable

Si LE Rec alors JN EIN <=> Vu CL, lul > N, il existe un découpage u = 2003 tq { y # E | 1241 EN tq Vk EIN 243 e L

ex. L=fa"b" |n EIN}

si L ERec alors le lemme donne N. soit $u = a^N b^N \in L$, $|u| \ge N$

drden (d -> e1)

· L=A.L+B a pour solue: L=A*B uniq si E # A

Brzozowski - Hc Clusky (A -> a)

11 . 12 es t

· pour simplifier on ajoute un étalt i relié aux Ei pou E-transie de vir avec les Es

Marre d'equivalence

u~_Lv si ∀w, uw <=> vw : · si uw €L <=> vw €L · si uw ¢L <=> vw ¢L

un mb de danse d'eq infini => pas Rec

Residut + Myhill-Nerode (er -> AFD min)

· u~, v ssi u-1 = v-1 L

· si LEREC => AFD des residut est min, comp, uniq

On utilise l'aubre des resident pour trouver tous les états selon:

· e=x => x-1 L= &

$$e = e_1 \cdot e_2 = x^{-1}l = \begin{cases} (x^{-1}e_1) \cdot e_1 & x_1 \in e_1 \\ (x^{-1}e_1) \cdot e_2 + x^{-1}e_2 \end{cases}$$

Moore (minimusa:)

· On raffine une parti? C des États

· On part de C={Q\F,F}

* On sépare les groupes tout q c'est possible us on regarde de q^e groupe on arrive avec chaq lettre a regroupe ceux avec le m comporten^e

Brzozowski (Min)

det (mir (det (mir (d)))) avec d => AFD comp

Algo de Kant-Morris Pratt (résidu motif)

ũ: + long sultime de le q est prefire du motif m

=> C.E: [E], [m], ... [m,...m]

· Eb : le + long sultime de b q est pretime de m = E

· ča : _____ = a____ = a

~aa :_______ = a

· ab :_____ = ab ____ = ab