

physique

Classe: 4 MATHS ET SC EXP

Série: 2 (REVISION T1)

Nom du Prof: M HAFFAR SAMI

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

On dispose de quatre dipôles D_1 , D_2 , D_3 , et D_4 . (Chaque dipôle peut être soit un condensateur, initialement déchargé, de capacité $\bf C$ ou un résistor de résistance $\bf R_i$)

Afin de déterminer la nature de chaque dipôle on réalise les expériences suivantes

A/Première expérience

Avec les dipôles D_1 et D_2 on réalise le circuit de la figure 2 ou V_1 et V_2 sont deux voltmètres et le générateur de courant est d'intensité constante I=5mA.

A la date de fermeture de l'interrupteur K , prise comme origine des temps, le voltmètre V_1 indique une tension nulle alors que V_2 indique une valeur U_2 =12,5V qui reste constante au cours du temps.

b- Déterminer la résistance R₂ de D₂

2° A la date **t= 5s** les deux voltmètres indique la même valeur

a- Montrer que la capacité du condensateur est de valeur C=2mF.

b- Déterminer à cette date l'énergie électrostatique du condensateur.

B/ Deuxième expérience

A l'aide du condensateur, initialement déchargé des dipôles D_3 et D_4 et d'un générateur de tension de fem E on réalise le montage de la **figure 3** A la date t=0 on ferme K

1° En régime permanent le voltmètre indique une tension nulle. Justifier que les deux dipôles D_3 et D_4 sont des dipôles résistors. Soient R_3 et R_4 les résistances correspondantes.

2° a-Préciser les grandeurs électriques visualisées sur les voies **X** et **Y** de l'oscilloscope. **La voie Y est inversée**.

b- Attribuer, en le justifiant, à chaque tension la courbe correspondante parmi les courbes C₁ et C₂ de la **figure 4** (Page annexe)

3° a- Montrer:
$$\frac{du_3}{dt} = -\frac{1}{\tau} u_3$$

b- L'équation de la tangente T_2 à la courbe C_2 à la date t=0 est donner par :

u(t)= -28,125t + 4,5 (t en s). Déterminer la valeur de τ . Préciser alors l'échelle correspondant à l'axe des temps.

d- Montrer graphiquement, en justifiant la méthode utilisée, que **E=6V**

4° a- Exprimer la valeur de u₃(0) en fonction de R₃, R₄ et E

b-Déterminer les valeurs de R₃ et R₄.

5° La tension aux bornes du condensateur est donner par : $u_c(t) = E(1 - e^{-t/\tau})$

On désire charger le condensateur à 99% à la date t_1 indiquée sur la **figure 4** (page annexe). Pour cela on fait varier la résistance R_3 .

a- Préciser sans calcul s'il faux augmenter ou diminuer la valeur de R₃.

b- Déterminer la valeur de R₃ correspondante.

Figure 3

Un générateur idéal (G) de tension constante Uo;

Un condensateur (c) de capacité C et d'armatures A et B;

Une bobine (B) d'inductance L = 0,1H et de résistance r;

Unrésistor de résistance Ro réglable.

Deux interrupteurs K₁ et K₂.

1°On ferme K₁ en gardant K₂ ouvert:

- **a-** Quel phénomène est observé au niveau du condensateur ?
- **b-** Donner les expressions, en fonction de C et U_0 de la charge Q_0 et de l'énergie maximale E_0 stockée dans le condensateur en régime permanent.
- 2° On ouvre K_1 et à t_0 = 0s , et on ferme K_2 . Un système d'acquisition informatisé enregistre les variations, au cours du temps, de la tension u_{AB} et donne la courbe de la figure 2 .
- **a-** Quelle est la nature des oscillations observées ? De quel régime d'évolution s'agit il ?
- **b** En admettant que la pseudo période est pratiquement égale à la période propre , déduire la valeur de la capacité **C** du condensateur.
- **c** Etablir l'équation différentielle vérifiée par la tension **u**_{AB} aux bornes du condensateur.

Figure1

Sensibilité verticale: **5V/division**Sensibilité horizontale: π .**10**-4**s/division**

- 3°Sachant qu'à l'instant de date t_1 , la tension aux bornes de la bobine vaut $u_B = 12,8 \text{ V}$,
 - a- Déterminer à cet instant t1 et en exploitant la courbe de la figure 2 :
 - La valeur algébrique i1 de l'intensité du courant qui circule dans le circuit.
 - La valeur de l'énergie magnétique **E**_L emmagasinée par la bobine.
 - b- Déduire la valeur de la résistance Ro.
 - c- Montrer que l'énergie de l'oscillateur n'est pas conservée. Sous quelle forme est elle dissipée ?
 - d- Calculer l'énergie dissipée entre les dates t₀ =0 et t₁.
- **4°** On donne à R_0 trois valeurs différentes R_{01} , R_{02} et R_{03} . On obtient à chaque valeur de R_0 , on obtient les graphes (a), (b) ou (c) donnant la variation de u_{AB} en fonction du temps. (figure 3)
 - a- Donner dans chaque cas le nom du régime d'évolution du circuit.
 - b- Comparer les valeurs des résistances Ro1, Ro2 et Ro3.

