Paket 1

Erlang Wiratama Surya

1. Jika n habis dibagi 20 jelas dua digit terakhir dari kelipatan n selalu keduanya genap, maka semua kelipatan dari n tidak tawas. Sekarang akan ditunjukkan kalau ada kelipatan n yang tawas jika n tidak habis dibagi 20.

Jika 4 tidak habis membagi n, maka ada empat kemungkinan, $n = 2.5^t.m$ atau $n = 5^t.m$ atau $n = 2^t.m$ atau n = m dengan (m, 10) = 1, dan t positive integer.

Akan dibuktikan untuk m = 1 ada kelipatan dari n yang tawas.

Kasus 1: $n = 5^t$

Akan diselesaikan dengan induksi di t, akan ditunjukkan kalau ada bilangan t digit yang tawas dan habis dibagi 5^t . Jelas untuk t = 1 ada (5).

Misalkan untuk t=k+1 ada . Berarti ada $a_0,a_1,...,a_k \in \{0,1,2,...,9\}$ sehingga $5^{k+1}|\sum_{i=0}^k a_i.10^i$

(ini mengobservasi k+1 digit, karena tawas berarti alternating paritasnya). Maka $\sum\limits_{i=0}^k a_i.10^i \equiv$

$$n.5^{k+1} (mod5^{k+2}),$$
dengan 0 \leq n \leq 4. Perhatikan kalau $\sum\limits_{i=0}^k a_i.10^i + (5-n).10^{k+1}$ dan

 $\sum_{i=0}^{k} a_i \cdot 10^i + (10-n) \cdot 10^{k+1}$ keduanya habis dibagi 5^{k+2} , dan representasi digitnya dalam basis 10 itu k+1 digit, lalu karena digit paling kiri bisa 5-n atau 10-n (yang paritasnya beda), bisa dipilih sehingga paritasnya alternating, hence tawas. Induksi selesai.

Kasus 2: $n = 2.5^t$

Akan diselesaikan dengan induksi di t, akan ditunjukkan kalau ada bilangan t digit yang tawas dan habis dibagi 2.5^t untuk $t \ge 2$. Jelas untuk t = 2 ada (50). Untuk t = 1 jelas 10 memenuhi. Perhatikan kalau hanya perlu di observe apakah bilangan itu habis dibagi 5^t dan genap (yangan hanya concerned sama digit terakhir)

Misalkan untuk t=k+1 ada . Berarti ada $a_0,a_1,...,a_k \in \{0,1,2,...,9\}$ sehingga $5^{k+1}|\sum_{i=0}^k a_i.10^i$ (ini mengobservasi k+1 digit, karena tawas berarti alternating paritasnya, dan karena habis dibagi 2 berarti digit paling kanan genap). Maka $\sum_{i=0}^k a_i.10^i \equiv n.5^{k+1} \pmod{5^{k+2}}$, dengan

$$0 \le n \le 4$$
. Perhatikan kalau $\sum_{i=0}^k a_i \cdot 10^i + (5-n) \cdot 10^{k+1}$ dan $\sum_{i=0}^k a_i \cdot 10^i + (10-n) \cdot 10^{k+1}$

keduanya habis dibagi 5^{k+2} , dan representasi digitnya dalam basis 10 itu k+1 digit, lalu karena digit paling kiri bisa 5-n atau 10-n (yang paritasnya beda), bisa dipilih sehingga paritasnya alternating, hence tawas. Induksi selesai.

Kasus 3: $n = 2^t$

Akan dibuktikan dengan induksi di t kalau ada kelipatan n yang tawas dan hanya t digit. Jelas ini benar untuk t=1,2,3,4 (2, 32, 632, 1632)

Misalkan ini benar untuk $t \leq 2k, k \geq 2$.

Perhatikan kalau untuk t=2k+1, kita ingin $a_0,a_1,...,a_{2k}\in\{0,1,2,...,9\}$ sehingga $2^{2k+1}|\sum\limits_{i=0}^{2k}a_i.10^i$. Menurut induksi ada $a_0,a_1,...,a_{2k-1}\in\{0,1,2,...,9\}$ sehingga $2^{2k-1}|\sum\limits_{i=0}^{2k-1}a_i.10^i$, dengan paritas a_i alternating (bilangannya tawas). Perhatikan kalau haruslah a_0 genap, maka agar bilangannya tawas kita ingin a_i paritasnya sama dengan paritas i. Maka mudah dilihat kalau $2^{2k-1}|a_{2k-1}.10^{2k-1}+a_{2k-2}.10^{2k-2}$, maka ada $a_0,a_1,...,a_{2k-3}\in\{0,1,2,...,9\}$ sehingga $2^{2k-1}|\sum\limits_{i=0}^{2k-3}a_i.10^i$, dengan paritas a_i alternating (bilangannya tawas). Ambil 2k-3

bilangan ini untuk kasus yang sedang kita kerjakan, lalu jelas yang ingin dicari ekuivalen dengan $4|a_{2k}.2.5^{2k}+a_{2k-1}.5^{2k-1}+\frac{a_{2k-2}}{2}.5^{2k-2}+h$ untuk suatu $h\in\mathbb{N}$. Jelas $\frac{a_{2k-2}}{2}$ bisa kongruen berapapun modulo 4, maka ada solusi.

Untuk t=2k+2, perhatikan kalau yang ingin dicari adalah $2^{2k+2} |\sum_{i=0}^{2k+1} a_i.10^i$. Karena

 a_2k+1 odd, kita ingin $2^{2k+2} \nmid \sum_{i=0}^{2k} a_i.10^i$. Namun $a_{2k}.10^{2k}$ bisa diatur menjadi habis dibagi 2^{2k+2} atau tidak (pilihnya $a_{2k}=2$ kalau gamau habis dibagi, otherwise $a_{2k}=4$). Jadi bisa dipilih sehingga $2^{2k+2} \mid \sum_{i=0}^{2k+1} a_i.10^i$ dengan a_{2k+1} odd.

Kasus 4: n = 1

Jelas lah ya

Perhatikan kalau untuk kasus 1, kasus 2, kasus 3 konstruksi yang digitnya ada ganjil buah bisa ditambahin digit selanjutnya (yang penting genap) dan tetap kelipatan n. Untuk kasus 4 jelas lah ya

Jadi untuk setiap n diatas bisa dikonstruksi bilangan genap digit yang kelipatan n dan tawas. Misalkan kelipatannya adalah K dan banyaknya digit adalah H. Perhatikan kalau

$$\sum\limits_{i=0}^{j}K.10^{i.H}$$
juga tawas dan kelipatan $n.$ Lalu $\sum\limits_{i=0}^{j}K.10^{i.H}=K\frac{10^{(j+1)H}-1}{10^{H}-1},$ Perhatikan kalau ada dipilih j sehingga order m dari 10 habis membagi $j+1,$ maka

Perhatikan kalau ada dipilih j sehingga order m dari 10 habis membagi j+1, maka $m|10^{(j+1)H}-1$, lalu karena untuk setiap p prima yang membagi m menurut lifting the exponent $V_p(10^{(j+1)H.l}-1=V_p(10^{(j+1)H}-1)+V_p(l))$, maka bisa dipilih j sehingga $V_p(10^{(j+1)H}-1)$ arbitrarily large. Dengan cara yang sama bisa dibuat sehingga $V_p(10^{(j+1)H}-1)$ arbitrarily large untuk semua p prima yang membagi m secara simultaneous. Maka jelas untuk setiap m relatif prima dengan 10 ada j sehingga $m|\frac{10^{(j+1)H}-1}{10^H-1}$.

Jelas semua bilangan berbentuk $\frac{10^{(j+1)H}-1}{10^{H}-1}$ tawas dan untuk setiap m relatif prima 10 bisa dipilih j sehingga $m|\frac{10^{(j+1)H}-1}{10^{H}-1}$, maka jika t ada kelipatannya yang tawas untuk m relatif prima dengan 10.

Jadi untuk setiap n yang tidak habis dibagi 20, ada kelipatan n yang tawas. Maka semua kelipatan n tidak tawas jika dan hanya jika n habis dibagi 20.

2. Pertama, perhatikan kalau homothety berpusat E yang membawa lingkaran C_0 ke lingkatan C_2 membawa titik X ke titik P dan titik D ke titik S, maka $XD \parallel PS$. Dengan cara yang sama $XE \parallel RQ$. Perhatikan kalau X berada di AB yang merupakan radical axis dari linkaran C_1 dan C_2 , maka power titik X terhadap lingkaran C_1 sama dengan power titik X terhadap lingkaran C_2 , berarti $XD.XQ = XE.XP \Rightarrow DEQP$ siklis. Perhatikan kalau $XE \parallel RQ$ berarti $\triangleleft RQD = \triangleleft EXD$, lalu, karena DEPQ siklis jelas $\triangleleft DEP = \triangleleft DQP$. Berarti $\triangleleft RQP = \triangleleft RQD + \triangleleft DQP = \triangleleft EXD + \triangleleft DEX = -\triangleleft XDE = \triangleleft EDX = \triangleleft RSP$ (karena $XD \parallel PS$). $\triangleleft RQP = \triangleleft RAP$, maka PQRS siklis.

3. Misalkan $G = \{a_i | 0 \le i \le n\}$ dan $H = \{a_i + a_j | 0 \le i \le j \le n\}$, ingin dicari nilai minimum dari |H|.

Akan dibuktikan bahwa nilai minimum dari |H| adalah 3n.

Lemma 1:

Untuk setiap $0 \le t \le 2n-1$, setidaknya satu dari t atau t+2n-1 merupakan anggota dari H.

Bukti:

Misalkan t bukan anggota dari H, akan ditunjukkan kalau maksimal $\lfloor \frac{t+1}{2} \rfloor$ dari bilangan di interval (0,t) yang merupakan anggota dari G.

Perhatikan kalau diantara k dan t-k hanya maksimal 1 yang merupakan anggota G (untuk $0 \le k \le t$), karena jika keduanya anggota G maka t adalah anggota H. Perhatikan kalau ada t+1 bilangan yang ada di (0,t).

Jika t genap, misalkan sama dengan 2m, maka bisa dipasangin k dengan 2m - k untuk semua $0 \le k < m$, lalu jelas m bukan anggota G, karena $m \in G \Rightarrow 2m = t \in H$, ada m pasangan dan dari setiap pasangan cuma maksimal satu yang merupakan anggota G, maka banyaknya bilangan di interval (0,t) di G maksimal m, yakni $\lfloor \frac{t+1}{2} \rfloor$.

Jika t ganjil, misalkan sama dengan 2m+1, maka bisa dipasangin k dengan 2m+1-k untuk semua $0 \le k \le m$, ada m+1 pasangan, dan diantara pasangan maksimal 1 yang anggota G, maka banyak bilangan di interval (0,t) yang ada di G maksimal m+1, yakni $\lfloor \frac{t+1}{2} \rfloor$.

Terbukti maksimal $\lfloor \frac{t+1}{2} \rfloor$ dari bilangan di interval (0,t) yang merupakan anggota dari G.

Misalkan t + 2n - 1 bukan anggota H, akan dibuktikan banyaknya bilangan di interval (t, 2n - 1) yang ada di G maksimal $\lfloor \frac{2n - t}{2} \rfloor$.

Perhatikan kalau diantara k dan 2n-1+t-k hanya maksimal 1 yang merupakan anggota G (untuk $t \le k \le 2n-1$), karena jika keduanya anggota G maka t+2n-1 adalah anggota H. Perhatikan kalau ada 2n-t bilangan yang ada di (t,2n-1).

Jika t genap, misalkan sama dengan 2m, perhatikan kalau bisa dipasangin 2m+k dengan 2n-1-k, untuk setiap $0 \le k \le n-m-1$, dari setiap pasangan maksimal 1 yang anggota G, ada n-m pasangan, maka banyak anggota interval (t,2n-1) di G adalah n-m sama dengan $\lfloor \frac{2n-t}{2} \rfloor$.

jika t ganjil, misalkan sama dengan 2m+1, maka bisa dipasangin 2m+1+k dengan 2n-1-k untuk setiap $0 \le k < n-m-1$, dan jelas m+n bukan anggota dari G, karena $m+n \in G \Rightarrow 2(m+n) = 2n-1+t \in H$. Ada n-m-1 pasangan, dan dari pasangan maksimal datu yang merupakan anggota dari G, maka banyak anggota G yang berada di interval (t, 2n-1) maksimal n-m-1, sama dengan $\lfloor \frac{2n-t}{2} \rfloor$.

interval (t,2n-1) maksimal n-m-1, sama dengan $\lfloor \frac{2n-t}{2} \rfloor$. Terbukti maksimal $\lfloor \frac{2n-t}{2} \rfloor$ bilangan di interval (t,2n-1) merupakan anggota dari G. Berarti, jika t dan t+2n-1 bukan anggota dari H, maksimal $\lfloor \frac{t+1}{2} \rfloor$ dari bilangan di interval (0,t) yang merupakan anggota dari G dan maksimal $\lfloor \frac{2n-t}{2} \rfloor$ bilangan di interval (t,2n-1) merupakan anggota dari G.

Maka, $2n+1 < |G| \le \lfloor \frac{t+1}{2} \rfloor + \lfloor \frac{2n-t}{2} \rfloor \le \lfloor \frac{2n+1}{2} \rfloor < n+1$, kontradiksi. Maka setidaknya satu dari t atau t+2n-1 merupakan anggota dari H, lemma terbukti. Perhatikan kalau 0, 2n-1, 4n-2 merupakan anggota H, 3 anggota H ya (kelompok 1) Lalu, a_i dan $a_i + 2n - 1$ merupakan anggota H juga, ini 2n - 2 anggota H ya (kelompok 2) Lalu, untuk setiap i di interval (0, 2n-1) yang bukan merupakan anggota dari G, menurut lemma 1 setidaknya satu dari i atau i + 2n - 1 merupakan anggota H, ini minimal n - 1anggota H ya. (kelompok 3)

obvious kelompok 1,2,3 saling ga potong, dan di dalam kelompok beda semua angkanya Berarti |H| minimal 3 + 2n - 2 + n - 1 = 3n. Terbukti $3n \le |H|$.

Perhatikan kalau dipilih $a_i = i$ untuk setiap $i \neq n$ dan $i \neq 0$, maka elemen H adalah semua bilangan di (0, 3n - 2) dan 4n - 2, maka |H| = 3n

Maka kardinalitas minimum dari himpunan tersebut adalah 3n.