Earth Materials - Problem Set

Prof. Ethan Baxter

February 8, 2016

Contents

1	1	1
2	2	2
3	3	2
4	4	2
5	5 Assigned $1/28/16$ Due $2/9/16$ 10pts (out of 100) deducted for each of	3 lay

Assigned 1/28/16 Due 2/9/16 10pts (out of 100) deducted for each day late

Please show ALL of your work. Write clearly and organize your work so that I can easily see what you did. I strongly encourage you to use a spreadsheet (like Excel) and print out your organized calculations. You may also emailme your homework as a clearly organized Excel file. Consult your book for information about the basic formulas for these minerals. Pages 198-200 are especially helpful for reminding you how to do these calculations.

1 1

Compute the structural formula (on the basis of 6 Oxygens) for the ANKERITE compositions shown below.

Oxide	Weight Percent
FeO	12.83
MgO	12.85
CaO	29.23
CO2	44.70
total	99.61

2 2

Compute the structural formula (on the basis of 12 Oxygens) for the GAR-NET composition shown below.

Oxide	Weight Percent
SiO2	37.08
Ti02	0.03
Al2O3	20.95
Cr2O3	0.02
FeO	30.21
MnO	3.64
MgO	2.04
CaO	5.55
Na2O	0.01
Total	99.51

3 3

Garnet may often be described by continuous solid-solution between four main end-members: a) Almandine - $\rm Fe_3Al_2Si_3O_{12}$ b) Pyrope - $\rm Mg_3Al_2Si_3O_{12}$ c) Spessartine - Mn3Al2Si3O12 d) Grossular - Ca3Al2Si3O12

Compute the percent end-member composition of the garnet in #2 above. Report it as: AlmXX,PyXX,SpXX,GrXX, where "XX" is the percent of that end-member.

4 4

Compute the structural formula (on the basisi of 11 Oxygens - this counts the two $(OH)^{1-}$ groups as one O^{2-}) for the BIOTITE composiiton below.

Oxide	Weight Percent
SiO2	35.55
TiO2	2.81
Al2O3	16.71
FeO	21.38
MnO	0.36
MgO	8.24
BaO	0.01
CaO	0.02
Na2O	0.05
K2O	9.64
F-	0.35
Total	95.15

Hints:

- use ALL Si and some of the Al to completely fill the tetrahedral site (to a total of 4 formula cations)
- remaining Al must go into the octahedral site along with all the Ti, Fe, Mn, Mg.
- All K, Na, Ba, Ca ust go into the interlayer "A" site.
- Flourine substitutes in the (OH) site. It doesn't have any oxygens related to it (it is not an oxide).

5 5

Why is the total on the biotite analysis so low?