Panoramic Imaging and Cinematic VR

Gordon Wetzstein Stanford University

EE 267 Virtual Reality

Lecture 15

stanford.edu/class/ee267/

Overview

- overview
- panoramic imaging
- stereo / omnistereo panoramas
- camera rigs

Jaunt VR

Google

Facebook

Red

Samsung

Panorama

Panorama

Panorama

Panorama

Panorama

mono & head rotation

1 center of projection!

Panorama

mono & head rotation

1 center of projection!

Panorama

mono & head rotation

1 center of projection!

Panoramas

Slides from Marc Levoy's excellent CS 178 course

Stitching images together to make a mosaic

Panoramas

Slides from Marc Levoy's excellent CS 178 course What kind of transformation do we need? translation? rotation? perspective!

Stitching images together to make a mosaic

- * step 1: find corresponding features in a pair of image
- ◆ step 2: compute perspective from 2nd to 1st image
- ◆ step 3: warp 2nd image so it overlays 1st image
- step 4: blend images where they overlap one another
- * repeat for 3rd image and mosaic of first two, etc.

Stitching images together to make a mosaic

- * step 1: find corresponding features in a pair of image
- ◆ step 2: compute perspective from 2nd to 1st i
- ♦ step 3: warp 2nd image so it overlays 1st imag
- * step 4: blend images where they overlap one another
- * repeat for 3rd image and mosaic of first two, etc.

take CS 131, EE 368, EE 367!

Slides from Marc Levoy's excellent CS 178 course

Slides from Marc Levoy's excellent CS 178 course Using 4 shots instead of 3 Panoramas perspective projection

@Mare Leves

Cylindrical panoramas

◆ even works for 360° panorama

- ♦ project each image onto a cylinder
- * a cylindrical image can be stored as a rectangular image

.

Cylindrical panoramas

os 178/applets/projection.htm

• even works for 360° panorama

- project each image onto a cylinder
- * a cylindrical image can be stored as a rectangular image
- ♦ to view without distortion, reproject part of the cylinder onto a picture plane representing the display screen
 - if your FOV is narrow, this view won't be too distorted

Panoramas

Slides from Marc Levoy's excellent CS 178 course

Slides from Marc Levoy's excellent CS 178 course

Spherical panoramas

- projections are to a sphere instead of a cylinder
- ♦ can't store as rectangular image without extreme stretching

Panoramas

• see CS 178 and EE 368 course material for more detail

now common in every image processing software and cellphone

Panorama mono & head rotation

Stereo stereo & no head rotation

Stereo Panorama stereo & head rotation

Panorama mono & head rotation

Stereo stereo & no head rotation

Stereo Panorama stereo & head rotation

1 center of projection!

2 centers of projection!

Panorama
mono & head rotation

Stereo & no head rotation

Stereo & head rotation

1 center of projection!

2 centers of projection!

Panorama
mono & head rotation

Stereo & no head rotation

Stereo & head rotation

1 center of projection!

2 centers of projection!

Panorama mono & head rotation

Stereo stereo & no head rotation

Stereo & head rotation

1 center of projection!

2 centers of projection!

Panorama mono & head rotation

Stereo & no head rotation

Stereo & head rotation

1 center of projection!

2 centers of projection!

Panorama v Stereo Movie v Stereo Panorama

Panorama mono & head rotation

Stereo stereo & no head rotation

Stereo Panorama stereo & head rotation

2 centers of projection!

Head Rotation

Panorama v Stereo Movie v Stereo Panorama

Panorama mono & head rotation

Stereo stereo & no head rotation

Stereo Panorama stereo & head rotation

2 centers of projection!

Store image pair for each direction → Problem: Too much data!!!

Omni-directional Stereo (ODS) Approximation

Omni-directional Stereo (ODS) Approximation

Peleg et. al 2001 Ishiguro et. al. 1990

 $Image\ from\ Google\ Jump\\ https://developers.google.com/vr/jump/rendering-o\ ds-co\ ntent.pdf$

Comparison: Mono and Stereo Panoramas

Omnistereo Panoramas

Zero Disparity Distance

To control zero disparity distance: circularly shift left pano relative to right pano

Capture using Single Camera

CAMERA 1

Image from Google Jump https://developers.google.com/vr/jump/rendering-ods-content.pdf

Panorama v Stereo Movie v Stereo Panorama

Panorama

mono & head rotation

Stereo

stereo & no head rotation

Stereo Panorama

stereo & head rotation

Ricoh Theta

norizontal-only parallax

Omnistereo example Left panorama Sphere-to-plane distortions (EE 368) side by Hari Lakshman Right panorama Disparity

Multiperspective Projection

Omnidirectional Stereo

widely used by YouTube VR, Google Daydream, Facebook, ...

Existing VR Cameras

Recorded Videos ~ 17 Gb/sec

Facebook's Surround 360

RAW Data: 17 Gb/sec

Compute time: days to weeks on conventional computer,

minutes to hours on data center

4096 px line sensors

F/3.5 175 deg fisheye lenses

Additional Information

- M. Brown, D. Lowe "Automatic Panoramic Image Stitching using Invariant Features". IJCV 2007
- autostitch: http://matthewalunbrown.com/autostitch/autostitch.html
- S. Peleg, M. Ben-Ezra, Y. Pritch "Omnistereo: Panoramic Stereo Imaging" IEEE PAMI 2001