10/533799

SEQUENCE LISTING JC17 Rec'd PCT/PTO 04 MAY 2005

<110>	Arena Pharmaceuticals, Inc. Semple, Graeme Skinner, Philip Cherrier, Martin Webb, Peter Tamura, Susan	÷									
<120>	<120> BENZOTRIAZOLES AND METHODS OF PROPHYLAXIS OR TREATMENT OF METABOLIC-RELATED DISORDERS THEREOF										
<130>	> 32.US2.PCT										
<150> <151>	60/423,819 2002-11-05										
<150> <151>											
<160>	<160> 4										
<170>	PatentIn version 3.2										
<210> <211> <212> <213>	1 1164 DNA Homo sapien										
<400> atgaat	1 cggc accatctgca ggatcacttt ctggaaatag acaagaagaa ctgctgtgtg	60									
ttccga	gatg acttcattgc caaggtgttg ccgccggtgt tggggctgga gtttatcttt	120									
gggctt	ctgg gcaatggcct tgccctgtgg attttctgtt tccacctcaa gtcctggaaa	180									
tccago	cgga ttttcctgtt caacctggca gtagctgact ttctactgat catctgcctg	240									
ccgttc	gtga tggactacta tgtgcggcgt tcagactgga actttgggga catcccttgc	300									
cggctg	gtgc tcttcatgtt tgccatgaac cgccagggca gcatcatctt cctcacggtg	360									
gtggcg	gtag acaggtattt ccgggtggtc catccccacc acgccctgaa caagatctcc	420									
aattgg	pacag cagccatcat ctcttgcctt ctgtggggca tcactgttgg cctaacagtc	480									
caccto	ctga agaagaagtt gctgatccag aatggccctg caaatgtgtg catcagcttc	540									
agcato	tgcc ataccttccg gtggcacgaa gctatgttcc tcctggagtt cctcctgccc	600									
ctgggc	atca tcctgttctg ctcagccaga attatctgga gcctgcggca gagacaaatg	660									
gaccgg	catg ccaagatcaa gagagccatc accttcatca tggtggtggc catcgtcttt	720									
gtcato	tgct tccttcccag cgtggttgtg cggatccgca tcttctggct cctgcacact	780									
tcgggc	acgc agaattgtga agtgtaccgc tcggtggacc tggcgttctt tatcactctc	840									
agctto	cacct acatgaacag catgctggac cccgtggtgt actacttctc cagcccatcc	900									
tttccc	caact tcttctccac tttgatcaac cgctgcctcc agaggaagat gacaggtgag	960									
ccagat	aata accgcagcac gagcgtcgag ctcacagggg accccaacaa aaccagaggc Page 1	1020									

10/533799

32. US2. ST25. txt JC17 Rec'd PCT/PTO 04 MAY 2005

gctccagagg cgttaatggc caactccggt gagccatgga gcccctctta tctgggccca 1080 acctcaaata accattccaa gaagggacat tgtcaccaag aaccagcatc tctggagaaa 1140 cagttgggct gttgcatcga gtaa 1164

<210> 2 <211> 387 <212> PRT

<213> Homo sapien

<400> 2

Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys 1 5 10 15

Asn Cys Cys Val Phe Arg Asp Asp Phe Ile Ala Lys Val Leu Pro Pro 20 25 30

Val Leu Gly Leu Glu Phe Ile Phe Gly Leu Leu Gly Asn Gly Leu Ala 45

Leu Trp Ile Phe Cys Phe His Leu Lys Ser Trp Lys Ser Ser Arg Ile 50 60

Phe Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Ile Ile Cys Leu 65 70 75 . 80

Pro Phe Val Met Asp Tyr Tyr Val Arg Arg Ser Asp Trp Asn Phe Gly 85 90 95

Asp Ile Pro Cys Arg Leu Val Leu Phe Met Phe Ala Met Asn Arg Gln
100 105 110

Gly Ser Ile Ile Phe Leu Thr Val Val Ala Val Asp Arg Tyr Phe Arg 115 120 125

Val Val His Pro His His Ala Leu Asn Lys Ile Ser Asn Trp Thr Ala 130 135 140

Ala Ile Ile Ser Cys Leu Leu Trp Gly Ile Thr Val Gly Leu Thr Val 145 150 155 160

His Leu Leu Lys Lys Lys Leu Leu Ile Gln Asn Gly Pro Ala Asn Val

Cys Ile Ser Phe Ser Ile Cys His Thr Phe Arg Trp His Glu Ala Met 180 185 190

Phe	Leu	Leu 195	Glu	Phe	Leu	Leu	Pro 200		2.US Gly				Phe	Cys	Ser		
Ala	Arg 210	Ile	Ile	Тгр	Ser	Leu 215	Arg	Gln	Arg	Gln	Met 220	Asp	Arg	ніѕ	Ala		
Lys 225	Ile	Lys	Arg	Ala	11e 230	Thr	Phe	Ile	Met	Val 235	∨al	Ala	Ile	val	Phe 240		
val	Ile	Cys	Phe	Leu 245	Pro	Ser	val	val	va1 250	Arg	Ile	Arg	Ile	Phe 255	Тгр		
Leu	Leu	His	Thr 260	Ser	Gly	Thr	Gln	Asn 265	Cys	Glu	val	туг	Arg 270	Ser	Val		
Asp	Leu	Ala 275	Phe	Phe	Ile	Thr	Leu 280	Ser	Phe	Thr	Tyr	Met 285	Asn	Ser	Met		
Leu	Asp 290	Pro	val	٧a٦	туг	Tyr 295	Phe	Ser	Ser	Pro	Ser 300	Phe	Pro	Asn	Phe	•	
Phe 305	Ser	Thr	Leu	Ile	Asn 310	Arg	Cys	Leu	Gln	Arg 315	Lys	Met	Thr	Gly	Glu 320		
Pro	Asp	Asn	Asn	Arg 325	Ser	Thr	Ser	val	Glu 330	Leu	Thr	Gly	Asp	Pro 335	Asn		
Lys	Thr	Arg	Gly 340	Ala	Pro	Glu	Ala	Leu 345	Met	Ala	Asn	Ser	Gly 350	Glu	Pro		
Trp	ser	Pro 355	Ser	туг	Leu	Gly	Pro 360	Thr	Ser	Asn	Asn	Ніs 365	Ser	Lys	Lys		
Gly	нis 370	Cys	His	Gln	Glu	Pro 375	Ala	Ser	Leu	Glu	Lys 380	Gln	Leu	Gly	Cys		
Cys 385	Ile	Glu															
<210> 3 <211> 1092 <212> DNA <213> Homo sapien																	
<400> 3 atgaatcggc accatctgca ggatcacttt ctggaaatag acaagaagaa ctgctgtgtg 60										0							
ttc	cgaga	atg a	actt	catt	gt ca	aagg	tgtt	g cc	gccg	gtgt	tgg	ggct	gga (gttt	atcttc	120	0
gggcttctgg gcaatggcct tgccctgtgg attttctgtt tccacctcaa gtcctggaaa 180 Page 3										0							

•

32.US2.ST25.txt

tccagccgga	ttttcctgtt	caacctggca	gtggctgact	ttctactgat	catctgcctg	240
cccttcctga	tggacaacta	tgtgaggcgt	tgggactgga	agtttgggga	catcccttgc	300
cggctgatgc	tcttcatgtt	ggctatgaac	cgccagggca	gcatcatctt	cctcacggtg	360
gtggcggtag	acaggtattt	ccgggtggtc	catccccacc	acgccctgaa	caagatctcc	420
aatcggacag	cagccatcat	ctcttgcctt	ctgtggggca	tcactattgg	cctgacagtc	480
cacctcctga	agaagaagat	gccgatccag	aatggcggtg	caaatttgtg	cagcagcttc	540
agcatctgcc	ataccttcca	gtggcacgaa	gccatgttcc	tcctggagtt	cttcctgccc	600
ctgggcatca	tcctgttctg	ctcagccaga	attatctgga	gcctgcggca	gagacaaatg	660
gaccggcatg	ccaagatcaa	gagagccatc	accttcatca	tggtggtggc	catcgtcttt	720
gtcatctgct	tccttcccag	cgtggttgtg	cggatccgca	tcttctggct	cctgcacact	780
tcgggcacgc	agaattgtga	agtgtaccgc	tcggtggacc	tggcgttctt	tatcactctc	840
agcttcacct	acatgaacag	catgctggac	cccgtggtgt	actacttctc	cagcccatcc	900
tttcccaact	tcttctccac	tttgatcaac	cgctgcctcc	agaggaagat	gacaggtgag	960
ccagataata	accgcagcac	gagcgtcgag	ctcacagggg	accccaacaa	aaccagaggc	1020
gctccagagg	cgttaatggc	caactccggt	gagccatgga	gcccctctta	tctgggccca	1080
acctctcctt	aa					1092

<210> 363 <212> PRT

<213> Homo sapien

<400> 4

Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys 1 10 15

Asn Cys Cys Val Phe Arg Asp Asp Phe Ile Val Lys Val Leu Pro Pro 20 25 30

Val Leu Gly Leu Glu Phe Ile Phe Gly Leu Leu Gly Asn Gly Leu Ala 35 40 45

Leu Trp Ile Phe Cys Phe His Leu Lys Ser Trp Lys Ser Ser Arg Ile 50 60

Phe Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Ile Ile Cys Leu 65 70 75 80

Pro Phe Leu Met Asp Asn Tyr Val Arg Arg Trp Asp Trp Lys Phe Gly 85 90 95 Page 4

32.US2.ST25.txt

Asp Ile Pro Cys Arg Leu Met Leu Phe Met Leu Ala Met Asn Arg Gln
100 105 110 Gly Ser Ile Ile Phe Leu Thr Val Val Ala Val Asp Arg Tyr Phe Arg 115 120 125 Val Val His Pro His His Ala Leu Asn Lys Ile Ser Asn Arg Thr Ala 130 135 140 Ala Ile Ile Ser Cys Leu Leu Trp Gly Ile Thr Ile Gly Leu Thr Val 145 150 155 160 His Leu Leu Lys Lys Lys Met Pro Ile Gln Asn Gly Gly Ala Asn Leu 165 170 175 Cys Ser Ser Phe Ser Ile Cys His Thr Phe Gln Trp His Glu Ala Met 180 185 190 Phe Leu Leu Glu Phe Phe Leu Pro Leu Gly Ile Ile Leu Phe Cys Ser Ala Arg Ile Ile Trp Ser Leu Arg Gln Arg Gln Met Asp Arg His Ala 210 215 220 Lys Ile Lys Arg Ala Ile Thr Phe Ile Met Val Val Ala Ile Val Phe 225 230 235 240 Val Ile Cys Phe Leu Pro Ser Val Val Val Arg Ile Arg Ile Phe Trp 245 250 255 Leu Leu His Thr Ser Gly Thr Gln Asn Cys Glu Val Tyr Arg Ser Val 260 265 270 Asp Leu Ala Phe Phe Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met 275 280 285 Leu Asp Pro Val Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Asn Phe 290 295 300 Phe Ser Thr Leu Ile Asn Arg Cys Leu Gln Arg Lys Met Thr Gly Glu 305 310 315 Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro Asn 325 330 335 Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu Pro Page 5

32.US2.ST25.txt 345

350

340

Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Pro 355