According to the diagram and table below:

Operation	AND	OR	ADD	SUB
ALUCtr	00	01	10	11

List the values for 'RegDst', 'ExtOp', 'ALUCtr', 'MemWr', 'MemtoReg' and 'RegWr' for the 'add' instruction.

According to the diagram and table shown in the first question. List the values for 'RegDst', 'ExtOp', 'ALUCtr', 'MemWr', 'MemtoReg' and 'RegWr' for the 'ori' instruction.

```
RegDst = 0, ExtOp = 0, ALUCtr = 01, MemWr = 0, MemtoReg = 1, RegWr = 1
```

According to the diagram and table shown in the first question. List the values for 'RegDst', 'ExtOp', 'ALUCtr', 'MemWr', 'MemtoReg' and 'RegWr' for the 'W' instruction.

```
RegDst = 0, ExtOp = 1, ALUCtr = 10, MemWr = 0, MemtoReg = 0, RegWr = 1
```

According to the diagram and table shown in the first question. List the values for 'RegDst', 'ExtOp', 'ALUCtr', 'MemWr', 'MemtoReg' and 'RegWr' for the 'sw' instruction.

```
RegDst = X, ExtOp = 1, ALUCtr = 10, MemWr = 1, MemtoReg = X, RegWr = 0
```

Assignment 5 (Single-cycle CPU, Pipelining & Data Hazards)

According to the diagram and table shown in the first question. List the values for 'RegDst', 'ExtOp', 'ALUCtr', 'MemWr', 'MemtoReg' and 'RegWr' for the 'sub' instruction.

```
RegDst = 1, ExtOp = X, ALUCtr = 11, MemWr = 0, MemtoReg = 1, RegWr = 1
```

According to the diagram and table shown in the first question. List the values for 'RegDst', 'ExtOp', 'ALUCtr', 'MemWr', 'MemtoReg' and 'RegWr' for the 'and' instruction.

```
RegDst = 1, ExtOp = X, ALUCtr = 00, MemWr = 0, MemtoReg = 1, RegWr = 1
```

Assume the times for CPU stages are as follows:

Instruction fetch	Register Read / Instruction Decode	ALU	Memory Access	Register Write	
166 ps	82ps	248ps	201 ps	111 ps	

- a) Without pipelining, what's the maximum speed (Hertz) we can clock this CPU (according to the numbers above)?
- b) With pipelining, what's the maximum speed (Hertz) we can clock this CPU (according to the numbers above)?

```
Without Pipelining = 1.24 GHz, With Pipelining = 4.03 GHz
```

Reorder the following sets of instructions to account for the branch delay slot. Only use a 'nop' if you must

```
addi $t0, $t1, 5
ori $t2, $t3, -20
beq $t0, $s0, label
lw $t4, 0($t0)
```

```
addi $10, $11, 5
beq $10, $50, label
ori $12, $13, -20
lw $14, 0($10)
```

Assignment 5 (Single-cycle CPU, Pipelining & Data Hazards)

Reorder the following sets of instructions to account for the branch delay slot. Only use a 'nop' if you must

```
addi $10, $11, 5
ori $12, $13, -20
beq $10, $12, label
lw $14, 0($10)
```

```
addi $10, $11, 5
ori $12, $13, -20
beq $10, $12, label
add $zero, $zero, $zero
lw $14, 0($10)
```

Using the circuit shown in the first question, and according to the following delays for the circuit elements:

Element	Register CLK-to-Q	Register SETUP	MUX	ALU	(Instruction or Data) Memory Read	Memory Write	Register -file Read
Delays (PS)	30	20	25	200	250	200	150

- a) What instruction (store, add, load, sub, ...) exercises the critical path?
- b) What is the duration (in pico seconds) for the critical path?

Critical path instruction = load word. Critical path duration = 950 ps