07/12 - 11/12 KLARA, YORAN, OSCAR

NANO — WEEK 14

OBJECTIVE

- VSParticle's image analysis software
- Create a model
 that predicts the
 thresholding
 method

DATASET

Contains:

- Used threshold algorithm
- Used algorithm feature scores
- User score

EXPERIMENT

 Combinations of models, features, classes and balancing methods

FURTHER ANALYSATION: FEATURE RANKING

Rank of	f the fe					
as	102	with	regard	of	the	index
acfis	203					
acs	203					
acis	204					
abf	300					
cis	300					
abs	301					
cs	302					
abcf	303					
bis	303					
ab	303					
afs	304					
bcis	304					
abcis	304					
abcfis	304					
dtvpe:	int64					

POLYNOMIAL REGRESSION

- Suggested by problem owner
- Regression ranks the user scores(10 is better than 4)
- Concern: not every user score has a record for every model

Test set comparison 10 classes (all scores)	User score	Predicted score
3rd order polynomial Separation + border Id		
5f491885298cf94b214e8f40	3	3.793746
5f4caa47298cf94b214e9991	6	9.772274
5f491c1d298cf94b214e90a4	1	7.237261
5f4cb652298cf94b214ea0a8	6	6.492961
5f4cb886298cf94b214ea3ca	8	7.328611
5f4629d78d62faf2c4d4e268	1	4.813566
5f4caa60298cf94b214e99a8	10	3.044400
5f4911a5298cf94b214e8967	9	7.715319
5f48ee847495efe38e28c50b	7	7.001315
5f491278298cf94b214e8b6e	4	4.915910
5f48ed957495efe38e28c363	7	7.229174
5f4cab36298cf94b214e9b52	8	7.267113

POLYNOMIAL REGRESSION EXPERIMENT

27 scores.sort_values('MSE').head(10)

	Classes	Degree	Score	MSE
1	2	2	0.183043	0.156440
2	2	3	0.259648	0.189542
0	2	1	0.141940	0.206587
3	2	4	0.339336	0.269363
6	3	2	0.234659	0.622251
5	3	1	0.211632	0.778980
7	3	3	0.319830	0.891870
11	4	2	0.204496	1.017420
10	4	1	0.148003	1.324572
12	4	3	0.281452	1.460549

27 scores.sort_values('MSE').tail(10)

	Classes	Degree	Score	MSE
43	10	4	0.409350	38.134382
9	3	5	0.531570	40.993031
4	2	5	0.537367	55.860393
29	7	5	0.508534	1062.274404
34	8	5	0.517268	1532.818430
19	5	5	0.493753	1583.725677
24	6	5	0.516284	1641.328563
14	4	5	0.449357	3382.292869
44	10	5	0.559569	4097.579949
39	9	5	0.525095	4488.330143

COMING WEEK

- Have definitive best model
- Optimise model for each threshold method

THANK YOU!

ANY QUESTIONS OR FEEDBACK?