Aula 1

Axiomas de Incidência e Ordem IMD1003 Geometria Euclidiana

Lourena Rocha lourena@imd.ufrn.br

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte Natal-RN

Agenda

Introdução

Axiomas de Incidência

Axiomas de Ordem

Bibliografia

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência Axiomas de Ordem

Bibliografia

Introdução

Geometria Euclidiana Lourena Bocha

Introdução

Axiomas de Incidência Axiomas de Ordem Bibliografia

Pinceladas sobre Conjuntos

Pinceladas sobre Conjuntos

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência Axiomas de Ordem Bibliografia

Definição

Um **conjunto** é uma coleção bem definida de objetos, chamados seus **elementos** ou **membros**.

Geralmente definimos um determinado conjunto listando seus elementos entre chaves. Por exemplo, o conjunto contendo os números 1, 2, 3, 4, 5 e 6 é escrito como {1, 2, 3, 4, 5, 6}.

- Conjuntos s\(\tilde{a}\) representados por letras mai\(\tilde{u}\)sculas. Ex.:
 A, B, C
- Elementos são representados por letras minúsculas. Ex.:
 x, y, z

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência Axiomas de Ordem Bibliografia

Relação de Pertinência

- Se x é um elemento do conjunto A dizemos que x pertence a A e escrevemos: x ∈ A.
- Se x não é um elemento do conjunto A, dizemos que x não pertence a A e escrevemos: x ∉ A.

Assim, dado um elemento x e um conjunto A, verifica-se apenas uma das duas possibilidades:

$$x \in A$$
, $x \notin A$.

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência Axiomas de Ordem Bibliografia

Definição:

De uma maneira mais geral, definimos o **Conjunto Vazio**, como sendo o conjunto desprovido de elementos.

Notação: Usaremos o símbolo ∅ para designar o tal conjunto.

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência Axiomas de Ordem Bibliografia

Relação de Inclusão

Dados conjuntos $A \in B$, dizemos que $A \in \mathbf{subconjunto}$ de B se todos os elementos de A são também elementos de B e denotamos

$$A \subseteq B$$
 ou $B \supseteq A$.

Também podemos dizer que *A* está contido em *B*, ou que *B* contém *A*.

Em símbolos:

$$A \subset B \Leftrightarrow \forall x, x \in A \Rightarrow x \in B$$
.

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência
Axiomas de Ordem
Bibliografia

Usaremos $A \nsubseteq B$, para dizer que A não é um subconjunto de B, ou seja, que existe $a \in A$ tal que $a \notin B$.

Em símbolos:

$$A \nsubseteq B \Leftrightarrow \exists a \in A \text{ tal que } a \notin B.$$

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência Axiomas de Ordem Bibliografia

Igualdade de Conjuntos:

Dados dois conjuntos A e B (em um mesmo conjunto universo), dizemos que A **é igual a** B, e escrevemos A = B se possuem os mesmos elementos.

Em símbolos:

$$A = B \Leftrightarrow A \subseteq B \in B \subseteq A$$
.

As seguintes propriedades são conseqüências diretas da definição de igualdade de conjuntos.

- 1. A = A, qualquer que seja o conjunto A,
- 2. se A = B então B = A, e
- 3. se A = B e B = C, então A = C.

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência
Axiomas de Ordem
Bibliografia

Definição:

Dados dois conjuntos $A \in B$, sua **interseção** é o conjunto denotado por $A \cap B$ (lê-se: A interseção B), formado por todos os elementos que pertencem a $A \in B$, ou seja,

$$A \cap B = \{x ; x \in A \text{ e } x \in B\}$$

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência Axiomas de Ordem Bibliografia

Definição:

Se $A \cap B = \emptyset$, dizemos que os conjuntos A e B são **disjuntos**.

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência
Axiomas de Ordem
Bibliografia

Definição:

Dados dois conjuntos A e B, sua **união** é o conjunto denotado por $A \cup B$ (lê-se "A união B"), formado por todos os elementos que pertencem a A ou a B, ou a ambos, isto é,

$$A \cup B = \{x ; x \in A \text{ ou } x \in B\}.$$

Axiomas de Incidência

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência

Axiomas de Incidência

Geometria Euclidiana Lourena Bocha

Introdução

Axiomas de Incidência

Axiomas de Ordem Bibliografia

Axioma I₁

Qualquer que seja a reta, existem pontos que pertencem e pontos que não pertencem à reta.

Axioma I2

Dados dois pontos distintos, existe uma única reta que os contém.

Definição

Quando duas retas têm um ponto em comum, diz-se que elas se *intersectam* ou que elas se cortam naquele ponto.

Geometria Euclidiana

Introdução

Axiomas de Incidência

Definição

Quando duas retas têm um ponto em comum, diz-se que elas se *intersectam* ou que elas se cortam naquele ponto.

Proposição

Duas retas distintas ou não se intersectam ou se intersectam em um único ponto.

Geometria Euclidiana

Introdução

4) Axiomas de Incidência

Definição

Quando duas retas têm um ponto em comum, diz-se que elas se *intersectam* ou que elas se cortam naquele ponto.

Proposição

Duas retas distintas ou não se intersectam ou se intersectam em um único ponto.

Prova: Sejam m e n duas retas distintas. A intersecção destas duas retas não pode conter dois (ou mais) pontos, do contrário, pelo axioma l_2 elas coincidiriam. Logo, a intersecção de m e n é vazia ou contém apenas um ponto.

Geometria Euclidiana Lourena Bocha

Introdução

Axiomas de Incidência

▶ Utilizaremos letras maiúsculas A, B, C, \cdots para designar pontos, e letras minúsculas a, b, c, \cdots para designar retas.

▶ Dados três pontos *A*, *B*, *C* em uma reta, dizems que o ponto *C localiza-se entre A e B* ou, equivalentemente, os pontos *A* e *B estão separados pelo ponto C*, se eles estão colocados como na figura abaixo:

Geometria Euclidiana Lourena Bocha

Introdução

Axiomas de Ordem

Bibliografia

Axiomas de Ordem

Geometria Euclidiana

Lourena Rocha

Introdução

Axiomas de Incidência

Axiomas de Ordem Bibliografia

Axioma II₁

Axioma II₁

Dados três pontos distintos de uma reta, só um deles localiza-se entre os outros dois.

Definição

O conjunto constituído por dois pontos $A \in B$ e por todos os pontos que se encontram entre $A \in B$ é chamado **segmento** AB. Os pontos $A \in B$ são denominados **extremos** ou **extremidades** dos segmento.

Geometria Euclidiana Lourena Bocha

Introdução

Axiomas de Incidência

Axiomas de Ordem

,

Bibliografia

Semirreta

Definição

Se A e B são pontos distintos, o conjunto constituído pelos pontos do segmento AB e por todos os pontos C, tais que B encontra-se entre A e C, é chamado de **semirreta** de origem A contendo o ponto B, e é representado por S_{AB} . O ponto A é, então, denominado **origem** da semirreta S_{AB} .

A B

Note que dois pontos A e B determinam duas semirretas S_{AB} e S_{BA} as quais contêm o segmento AB.

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência

Axiomas de Ordem
Bibliografia

Resultado

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência

Axiomas de Ordem

Bibliografia

Proposição

Para as semirretas determinadas por dois pontos *A* e *B* tem-se:

- a) $S_{AB} \cup S_{BA}$ é a reta determinada por $A \in B$.
- b) $S_{AB} \cap S_{BA} = AB$.

Prova: No quadro.

Axioma II₂

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência

Axiomas de Ordem

Bibliografia

Axioma II₂

Dados dois pontos distintos $A \in B$, sempre existem: um ponto C entre $A \in B$ e um ponto D, tal que B está entre $A \in D$.

Consequências:

- Entre quaisquer dois pontos de uma reta, existe uma infinidade de pontos.
- ► Uma semirreta S_{AB} contém um infinidade de pontos além daqueles contidos no segmento AB.

Semiplano

Considere uma reta m e dois pontos A e B que não pertencem a esta reta. Diremos que A e B estão em um mesmo lado da reta m se o segmento AB não a intercepta.

Definição

Sejam m uma reta e A um ponto que não pertence a m. O conjunto constituído pelos pontos de m e por todos os pontos B tais que A e B estão em um mesmo lado da reta m, é chamado de **semiplano** determinado por m contendo A, e será representado por P_{mA} .

Geometria Euclidiana Lourena Bocha

Introdução

Axiomas de Incidência

Axiomas de Ordem

Bibliografia

Axioma II₃

Axioma II₃

Uma reta m determina exatamente dois semiplanos distintos cuja intersecção é a reta m.

Geometria Euclidiana Lourena Bocha

Introdução

Axiomas de Incidência

Axiomas de Ordem Bibliografia

Leitura e Atividades Sugeridas

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência

Axiomas de Ordem

Bibliografia

Livro do João Lucas, Capítulo 1. Fazer os exercícios e problemas do capítulo.

Bibliografia

Geometria Euclidiana Lourena Rocha

Introdução

Axiomas de Incidência Axiomas de Ordem

Bibliografia

- [1] BARBOSA, João Lucas Marques. Geometria Euclidiana Plana.11. ed. SBM, 2012.
- [2] Euclides
 Os Elementos.
 Unesp, 2009.