西安交通大学实验实验报告

成绩

(双面打印, 左边装订)

课程: 热流体课	程实验1 交报告日	期:			
实验名称: 流	体物性实验				
专业班号:	姓名:	学号:			
同组者:		教师审批签字:			
一、饱和蒸气质	玉测定及临界现象观	测实验			
1.实验目的(预习. 1分)					

2. 实验原理(预习, 5分)

(阐述: 什么是饱和蒸气压? 什么是临界状态? 本实验中饱和蒸气压的测量原理是什么?)

线

装

订

0

3. 实验装置和步骤(预习, 4分)

(1) 实验中流体工质的温度是如何控制和测量的? (2分)

(2) 在本实验中,能观测到哪些实验现象(注意:本实验仅进行 SPOC 课程中的部分实验内容,请仔细阅读实验指导书,不要写本实验未做部分的实验现象)? (2分)

4. 实验数据记录及处理(14分)

- (1)记录不同温度下的饱和蒸气压实验值 p_{exp} ,根据所提供的饱和蒸气压参考值 p_{ref} ,计算实验值和参考值的相对偏差,填入下表中。
- (2)分别拟合出 Antoine 和 Riedel 形式的 R125 的蒸气压方程,其中温度的单位为 K, 压力的单位为 kPa。可选择使用的软件有 Excel、Origin、Matlab、1stOpt、Mathematica 等 (**推荐 1stOpt 软件,须附上软件计算过程和结果的截图**)。比较实验值 p_{exp} 与根据拟合方程计算得到的计算值 $p_{\text{fit-Anotine}}$ 和 $p_{\text{fit-Riedel}}$ 的相对偏差,填入表 1 中。

表 1 饱和蒸气压实验数据表

温度 /℃	10.00	20.00	30.00	40.00	50.00	60.00	65.00
实验值 $p_{\rm exp}$ / kPa							
参考值 p_{ref} / kPa	908.8	1205.2	1568.5	2008.5	2536.8	3170.3	3537.0
$100 \frac{p_{\rm exp} - p_{\rm ref}}{p_{\rm ref}} \ / \ \%$							
$100 \frac{p_{fit-Antoine} - p_{\exp}}{p_{\exp}} / \%$							
$100 \frac{p_{\scriptscriptstyle fit-Riedel} - p_{\scriptscriptstyle \rm exp}}{p_{\rm exp}} / \%$							

○
装
5. 饱和蒸气压测定及临界现象观测实验思考题(15分)
(1) 请详细描述所观测到的临界现象,并说明实验后对临界状态和临界参数的认识。

(2) 分析本实验中饱和蒸气压测量产生误差的原因,以及如何能够提高测量准确度。

(3) 说说你对测量温度分别为 30.00 ℃和 50.00 ℃时的实验现象的认识。

二、乙烷 p-v-t 关系测定实验

1.实验目的(预习,1分)

2. 实验原理(预习, 5分)

(要求: 阐述乙烷 p-v-T 测量基本原理、实验中会出现的实验现象)

图1 乙烷标准曲线图

3. 实验装置和步骤(预习, 8分)

(1) *p-v-t* 测量时, *p* 应该用绝对压力还是表压力表示? 本实验中用什么测量压力的? 测量值是表压力还是绝对压力?

(2) **简单说明**比容实验值的计算过程?

(3) 加压时为什么要足够缓慢?否则会出现什么问题?

(4) 在做临界等温曲线时,能够明显观测到气相或液相乙烷吗?如果要明显观测到液相乙烷,可以采用什么样的方法?

线

装

订

(

4. 实验原始数据及处理(26分)

(1) 实验数据记录表 (5分)

表 2 乙烷 p-v-t 关系测定实验数据记录表

承压玻璃管内径顶端刻度 $h_0 =$ mm

序	t = °C			t=32.17℃(临界温度)			t = °C					
序号	p MPa	h mm	$\frac{v}{m^3/kg}$	现象	p MPa	h mm	v m ³ /kg	现象	p MPa	h mm	v m ³ /kg	现象
1	3.00				3.00							
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												

(2) 以 32.17 ℃、3.00 MPa 的状态点为例,计算乙烷的比容 (4 分)

(3) 绘制等温线,分析与标准曲线的差异及其原因(10分)

订

装

线

(4) 将实验测定的临界比容 v_c 与理论计算值填入表 3,分析其差异并说明原因。(7 分) 表 3 乙烷临界比容值 v_c (\mathbf{m}^3/\mathbf{kg})

标准值	实验值	$v_c = \frac{R_g T_c}{p_c}$	$v_c = \frac{3R_g T_c}{8p_c}$
0.00485			

5	フ.烷 n-v-t	关系测定实验思考题	(15分)
ℐ.	\square by $p = v = v$		

- (1) 本实验怎样能够提高比容测量的准确度?请说出三种以上方法(5分)
- (2) *p-v-t* 测量为什么要基于等温线进行测量,请说明理由? (5分)
- (3) 在实验得到的低于临界温度的曲线中,饱和液体和饱和蒸气所对应的压力是否相等? 说明可能造成该区别的原因。(5分)

三、过程考核(6分)

请对实验过程进行简要回顾,写出通过本实验你所学到的知识点、实验的难点和你的兴趣点。