Normal-form Based Analysis of Climate Time Series

Jan Sieber

Department of Mathematics
University of
Portsmouth

in collaboration with **J.M.T. Thompson**, FRS, School of Engineering, Aberdeen

Outline

- Time series analysis
- Saddle-node induced tipping
- Estimate of normal form parameters from time series

Tipping in palaeoclimate time series

Model

$$\dot{x}(t) = f(t, x, p)$$
$$x(t_0) = x_0$$

Low-dim chaos & small noise

High-dim chaos or large noise

Assumption

▶ quasi-stationary

Questions

- ⊳ finite *t*
- qualitative change of attractor

Low-dim chaos & small noise

High-dim chaos or large noise

Assumption

▶ quasi-stationary

Questions

⊳ finite *t*

University of Fortsmout

Tipping — Mechanical caricature of positive feedback

squishy beam, clamped and loaded with gradually increasing mass m

Tipping — Mechanical caricature of positive feedback

saddle-node normal form with drift and noise

$$\frac{d}{dt}x = -V'(x) = \mu - x^2 +$$
noise

$$\mu \sim m_{\rm critical} - m$$

$$\frac{d}{dt}\mu = -\varepsilon$$

Tipping — Mechanical caricature of positive feedback

Estimate from time series

Approach to **Saddle-node** $\dot{x} = f(x, \mu) + \sigma \eta_t$

Estimate from time series

Approach to **Saddle-node** $\dot{x} = f(x, \mu) + \sigma \eta t$

Estimate from time series

Approach to **Saddle-node** $\dot{x} = f(x, \mu) + \sigma \eta_t$

Estimate of linear decay rate

AR(1) (Held&Kleinen'04) DFA (Livina&Lenton'07) **Variance**

Estimate of linear decay rate

Estimate of linear decay rate

first order noise
$$\dot{x} = -\kappa(\varepsilon t)x + \sigma \eta_t$$

AR(1) (Held&Kleinen'04) DFA (Livina&Lenton'07) **Variance**

AR(1)
$$x(t_{n+1}) = \alpha x(t_n) \Rightarrow \text{ fit } \alpha \Rightarrow \alpha = \exp(-\kappa \Delta_t)$$

$$Var = \frac{\sigma^2}{\kappa}$$

stationary distribution normal

When linear is not enough

first order noise
$$\dot{x} = -\kappa(\varepsilon t)x + \sigma \eta t$$

AR(1) (Held&Kleinen'04)
DFA (Livina&Lenton'07)
Variance

AR(1)
$$x(t_{n+1}) = \alpha x(t_n) \Rightarrow \text{ fit } \alpha \Rightarrow \alpha = \exp(-\kappa \Delta_t)$$

$$Var = \frac{\sigma^2}{\kappa}$$

$$\dot{x} = -\kappa(\varepsilon t)x + \mathbf{N} \, \mathbf{x^2} + \sigma \eta_t$$

AR(1) (Held&Kleinen'04) DFA (Livina&Lenton'07) **Variance**

AR(1)
$$x(t_{n+1}) = \alpha x(t_n) \Rightarrow \text{ fit } \alpha \Rightarrow \alpha = \exp(-\kappa \Delta_t)$$

$$Var = \frac{\sigma^2}{\kappa}$$

stationary distribution normal

$$\dot{x} = -\kappa(\varepsilon t)x + \mathbf{N} \, \mathbf{x}^2 + \sigma \eta_t$$

AR(1) (Held&Kleinen'04) DFA (Livina&Lenton'07) Variance

$$AR(1) x(t_{n+1}) = \alpha x(t_n)$$

generalisation poor

$$Var = \frac{\sigma^2}{\kappa}$$

$$\dot{\mathbf{x}} = -\kappa(\varepsilon t)\mathbf{x} + \mathbf{N}\,\mathbf{x}^2 + \sigma \eta_t$$

AR(1) (Held&Kleinen'04) DFA (Livina&Lenton'07) Variance

$$AR(1) x(t_{n+1}) = \alpha x(t_n)$$

generalisation poor

Guttal Livina,Kwasniok, Lenton'10

stationary distribution non-normal

Estimates for nonlinear parts

Fokker-Planck equation Density p of

$$\dot{x} = f(x, \mu) + \sigma \eta_t$$

satisfies

$$\partial_t p = \frac{\sigma^2}{2} \partial_{xx} p - \partial_x [f(x, \mu) p]$$

Stationary density p(x)

$$\frac{1}{2}\partial_X p(x) = \sigma^{-2} f(x, \mu) p(x) + c$$

Estimates for nonlinear parts

Fokker-Planck equation Density p of

$$\dot{x} = f(x, \mu) + \sigma \eta_t$$

satisfies

$$\partial_t p = \frac{\sigma^2}{2} \partial_{xx} p - \partial_x [f(x, \mu) p]$$

Stationary density p(x)

$$\frac{1}{2} \partial_{x} p(x) = \sigma^{-2} f(x, \mu) p(x) + c$$
empirical

Estimates for nonlinear parts

Fokker-Planck equation Density *p* of

$$\dot{x} = f(x, \mu) + \sigma \eta_t$$

satisfies

$$\partial_t p = \frac{\sigma^2}{2} \partial_{xx} p - \partial_x [f(x, \mu) p]$$

Stationary density p(x)

linear estimate
$$-\kappa \mathbf{x}$$

$$\frac{1}{2} \partial_{\mathbf{x}} p(\mathbf{x}) = \sigma^{-2} f(\mathbf{x}, \mu) p(\mathbf{x}) + \mathbf{c}$$
empirical

Paleo-climate records

End of last glaciation

End of Younger Dryas

Summary

- accuracy of estimateszero order > first order > second order
- but second order term necessary to estimate tipping time/probability
- estimate tipping time/probability based on saddle-node normal form

[JMTT,JS on arxiv]

