Esame di Ricerca Operativa del 22/02/18

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min 9 \ y_1 + 9 \ y_2 + y_3 + 2 \ y_4 + 4 \ y_5 + 5 \ y_6 \\ 3 \ y_1 + 3 \ y_2 - y_3 - 2 \ y_4 - y_5 - 2 \ y_6 = -4 \\ -y_1 + y_2 - y_3 + y_4 + 2 \ y_5 + y_6 = 3 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
		(81/110)	(81/110)
$\{1, 2\}$	x =		
{1, 3}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{2,6}					
2° iterazione						

Esercizio 3. Un'azienda produce olio extravergine (E) e olio di oliva (O) i cui prezzi di vendita al chilo sono rispettivamente di 5.30 euro e di 3.95 euro. La produzione di olio richiede due tipi di olive (O1 e O2) che l'azienda acquista rispettivamente al costo di 2.40 euro/kg e 2.20 euro/kg. La manodopera è disponibile in al più 600 ore-uomo con un costo di 15 euro/ora. La tabella seguente indica i kg di olive e le ore di manodopera necessarie per la produzione di un litro di ciascun tipo di olio.

	O1	O2	manodopera
Е	0.8	0.5	0.08
О	0.7	0.4	0.04

Sapendo che il budget disponibile per l'acquisto delle olive e della manodopera è pari a 110000 euro, si determini a produzione di olio E e di olio O che massimizzi il profitto dell'azienda.

la produzione di olio E e di olio O che massimizzi il profitto dell'azienda.
variabili decisionali e modello:
COMANDI DI MATLAR

c=	intcon=
A=	b=
Aeq=	beq=
lb=	ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) $(2,4)$ $(3,4)$				
(3,6) (5,6)	(2,6)	x =		
(1,3) $(2,3)$ $(2,4)$				
(4,6) (5,6)	(3,4)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,3) (3,4) (3,5) (3,6)	
Archi di U	(2,3)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		ite	r 2	ite	r 3	iter 4		iter 5		iter 6		iter 7	
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 6 \ x_1 + 14 \ x_2 \\ 17 \ x_1 + 9 \ x_2 \le 56 \\ 6 \ x_1 + 11 \ x_2 \le 50 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	29	34	77	57
2		28	104	71
3			23	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:	$v_I(P) =$
b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo	do 4.

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{34} , x_{24} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_2^2 + 4x_1$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 - 36 \le 0, x_1 - x_2 + 5 \le 0}.$$

Soluzioni del sistema LKT			Mass	simo	Mini	imo	Sella
x	λ	μ	globale	locale	globale	locale	
	$\left(\frac{3}{2}, -22\right)$						
	$\left(\frac{1}{2},2\right)$						
	$\left(\frac{1}{3},0\right)$						
	(0, -4))						

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 + 4 \ x_2^2 + x_1 - 7 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-3,-2) , (-2,1) , (3,-3) e (3,4). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	-	Passo	Nuovo punto
				possibile		
$\begin{pmatrix} 2 & 2 \end{pmatrix}$						
$\left(3, -\frac{3}{3} \right)$						
` '						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\left\{\begin{array}{l} \min \ 9 \ y_1 + 9 \ y_2 + y_3 + 2 \ y_4 + 4 \ y_5 + 5 \ y_6 \\ 3 \ y_1 + 3 \ y_2 - y_3 - 2 \ y_4 - y_5 - 2 \ y_6 = -4 \\ -y_1 + y_2 - y_3 + y_4 + 2 \ y_5 + y_6 = 3 \\ y \ge 0 \end{array}\right.$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (3, 0)	SI	NO
{1, 3}	$y = \left(-\frac{7}{4}, \ 0, \ -\frac{5}{4}, \ 0, \ 0, \ 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{2, 6}	$\left(\frac{4}{5}, \frac{33}{5}\right)$	$\left(0, \frac{2}{5}, 0, 0, 0, \frac{13}{5}\right)$	4	$\frac{13}{5}$	6
2° iterazione	{2, 4}	$\left(\frac{7}{5}, \frac{24}{5}\right)$	$\left(0, \ \frac{2}{5}, \ 0, \ \frac{13}{5}, \ 0, \ 0\right)$	5	$\frac{2}{3}, \frac{13}{7}$	2

Esercizio 3.

$$\begin{cases} \max(5.3x_E + 3.95x_O) - (1.2x_E + 0.6x_O) - (1.92x_E + 1.68x_O) - (1.10x_E + 0.88x_O) \\ 0.08x_E + 0.04x_O \le 600 \\ (1.2x_E + 0.6x_O) + (1.92x_E + 1.68x_O) + (1.10x_E + 0.88x_O) \le 110000 \end{cases}$$

Il primo addendo dell'ultimo vincolo é il costo della manodopera.

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (2,4) (3,4)				
(3,6) (5,6)	(2,6)	x = (7, 0, 0, 6, 5, -2, 0, 5, 0, -2)	NO	SI
(1,3) $(2,3)$ $(2,4)$				
(4,6)(5,6)	(3,4)	$\pi = (0, 0, 3, 8, 4, 12)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,3) (3,4) (3,5) (3,6)	(1,3) (2,3) (3,4) (3,5) (3,6)
Archi di U	(2,3)	
x	(0, 7, 4, 0, 0, 4, 2, 8, 0, 0)	(0, 7, 4, 0, 0, 4, 2, 8, 0, 0)
π	(0, 6, 3, 11, 6, 8)	(0, 0, 3, 11, 6, 8)
Arco entrante	(2,3)	(2,4)
ϑ^+,ϑ^-	5,0	6, 4
Arco uscente	(1,2)	(2,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		4	:	3		(5	Ē	Ď	7	7
nodo 2	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 3	17	1	17	1	12	4	12	4	12	4	12	4	12	4
nodo 4	14	1	6	2	6	2	6	2	6	2	6	2	6	2
nodo 5	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	27	3	27	3	27	3	27	3
nodo 6	$+\infty$	-1	$+\infty$	-1	23	4	23	4	23	4	23	4	23	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	41	6	36	5	36	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3,	4	3,	6	5,	6	5,	7	7	7	Q	Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 5 - 7	11	(0, 11, 0, 0, 11, 0, 0, 0, 11, 0, 0)	11
1 - 4 - 6 - 7	5	(0, 11, 5, 0, 11, 0, 5, 0, 11, 0, 5)	16
1 - 2 - 4 - 6 - 7	2	(2, 11, 5, 2, 11, 0, 7, 0, 11, 0, 7)	18

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5\}$ $N_t = \{6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 6 x_1 + 14 x_2 \\ 17 x_1 + 9 x_2 \le 56 \\ 6 x_1 + 11 x_2 \le 50 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{50}{11}\right)$$
 $v_S(P) = 63$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,4)$$
 $v_I(P) = 56$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	29	34	77	57
2		28	104	71
3			23	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,2)(2,3)(3,4)(3,5)(4,5)$$
 $v_I(P)=126$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo:
$$4 - 5 - 3 - 2 - 1$$
 $v_S(P) = 180$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{34} , x_{24} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_2^2 + 4x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 - 36 \le 0, \quad x_1 - x_2 + 5 \le 0\}.$$

Soluzioni del si	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(6, 11)	$\left(\frac{3}{2}, -22\right)$		NO	NO	NO	NO	SI
(-6, -1)	$\left(\frac{1}{2},2\right)$		NO	NO	NO	SI	NO
(-6, 0)	$\left(\frac{1}{3},0\right)$		NO	NO	NO	NO	SI
(-3, 2)	(0, -4)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 + 4 \ x_2^2 + x_1 - 7 \ x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (-3,-2), (-2,1), (3,-3) e (3,4). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione Max spostamento		Passo	Nuovo punto
				possibile		
$\left(3, -\frac{2}{3}\right)$	(1,0)	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(0, \frac{37}{3}\right)$	$\frac{14}{37}$	$\frac{1}{8}$	$\left(3,\frac{7}{8}\right)$