Semantic similarity and machine learning with ontologies

Robert Hoehndorf and Maxat Kulmanov

Embedding ontologies: approaches

- syntactic: treat axioms as "sentences" using language models
- graph-based: treat ontologies as graphs (like in semantic similarity)
- model-theoretic: encode model-theoretic semantics in optimization

Ontologies: axioms, not graphs!

Overview	Browse DLQuery Download			
Annotation	Value			
label	B cell apoptotic process			
definition	Any apoptotic process in a B cell, a lymphocyte of B lineage with the phenotype CD19-positive and capable of B cell mediated immunity.			
class	http://purl.obolibrary.org/obo/GO_0001783			
ontology	GO-PLUS			
Equivalent	apoptotic process and (occurs in some B cell)			
SubClassOf	assOf occurs in some B cell, lymphocyte apoptotic process			
id	GO:0001783			
has_obo_name	espace biological_process			

Ontologies: axioms, not graphs!

Gene Ontology:

- behavior DisjointWith: 'developmental process'
- behavior SubclassOf: only-in-taxon some metazoa
- 'cell proliferation' DisjointWith: in-taxon some fungi
- 'cell growth' EquivalentTo: growth and ('results in growth of' some cell)

• ...

Ontology embeddings

Definition

Let $O = (\Sigma = (C, R, I); ax; \vdash)$ be an ontology with a set of classes C, a set of relations R, a set of instances I, a set of axioms ax and an inference relation \vdash . An ontology embedding is a function $f_{\eta}: C \cup R \cup I \mapsto \mathbb{R}^n$ (or $\Sigma(O) \mapsto \mathbb{R}^n$ (subject to certain constraints).

Ontology embeddings

Definition

Let $O = (\Sigma = (C, R, I); ax; \vdash)$ be an ontology with a set of classes C, a set of relations R, a set of instances I, a set of axioms ax and an inference relation \vdash . An ontology embedding is a function $f_{\eta}: C \cup R \cup I \mapsto \mathbb{R}^n$ (or $\Sigma(O) \mapsto \mathbb{R}^n$ (subject to certain constraints).

For example, we can use co-occurrence within ax^{\vdash} to constrain the embedding function, where the constraints on co-occurrence are formulated using the Word2Vec skipgram model.

Onto2Vec

Word2Vec

Maximize:

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{-c \le j \le c, j \ne 0} \log p(w_{n+j}|w_n) \tag{1}$$

with

$$p(w_o|w_i) = \frac{\exp(v_{w_o}^{\prime T} v_{w_i})}{\sum_{w=1}^{W} \exp(v_w^{\prime T} v_{w_i})}$$
(2)

(at least conceptually; different strategies are used to approximate Eqn. 2)

Predicting PPIs: trainable similarity measures

Smaili et al. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.

Visualizing embeddings

Combination with text

- ontologies contain more than axioms:
 - ▶ labels, synonyms, definitions, authors, etc.
- Description Logic axioms != natural language
- transfer learning: learn on one domain/task, apply to another
 - e.g.: learn on literature, apply to ontologies
 - words have "meaning" in literature, Description Logic symbols have "meaning" in ontology axioms
- Ontologies Plus Annotations 2 Vec (OPA2Vec) combines both

Ontologies Plus Annotations 2 Vec

Axioms contribute to prediction tasks: GO and GO-PLUS

	Human	Yeast	Arabidopsis
GO_Onto2Vec	0.7660	0.7701	0.7559
GO_Onto2Vec_NN	0.8779	0.8711	0.8364
GO_plus_Onto2Vec	0.7880	0.7943	0.7889
$GO_plus_Onto2Vec_NN$	0.9021	0.8937	0.8834

Evaluating individual axioms

Testing how much each ontologies' axioms contribute to predictions:

	Hu	ıman	Arabidopsis	
	Onto2Vec	Onto2Vec_NN	Onto2Vec	Onto2Vec_NN
GO (Baseline)	0.7660	0.8779	0.7559	0.8364
ChEBI	0.7899(+0.0239)	0.8914(+0.0135)	0.7703(+0.0144)	0.8518(+0.0154
PO	0.7752(+0.0092)	0.8776(-0.0003)	0.7671(+0.0112)	0.8469(+0.0105)
CL	0.7743(+0.0083)	0.8810(+0.0031)	0.7612(+0.0053)	0.8371(+0.0007)
PATO	0.7657(-0.0003)	0.8768(-0.0011)	0.7563(+0.0004)	0.8380(+0.0016)

Evaluating definitions

Testing how much each ontologies' annotation properties contribute to predictions:

	F	luman	Arabidopsis		
	Onto2Vec	Onto2Vec_NN	Onto2Vec	Onto2Vec_NN	
GO (Baseline)	0.8727	0.9033	0.8613	0.8903	
ChEBI	0.8571(-0.0156)	0.8801(-0.0232)	0.8601(-0.0012)	0.8880(-0.0023)	
PO	0.8680(-0.0047)	0.8824(-0.0209)	0.8632(+0.0019)	0.8908(+0.0005)	
CL	0.8811(+0.0084)	0.9037(+0.0004)	0.8614(+0.0001)	0.8899(-0.0004)	
PATO	0.8562(-0.0165)	0.8711(-0.0322)	0.8544(-0.0069)	0.8860(-0.0043)	

OPA2Vec

- https:
 //github.com/bio-ontology-research-group/opa2vec
- command line tool
 - input: OWL ontology, set of entities with annotations/associations
 - output: vectors for each class and entity
- includes Elk and HermiT
- limitations: word-based
 - completely ignores any semantics!

How to measure similarity?

- Shortest Path
 - applicable to arbitrary "knowledge graphs"
 - does not capture similarity well over all edge types, e.g., disjointWith, differentFrom, opposite-of, etc.
- Random Walk
 - with or without restart.
 - iterated
 - ▶ does not consider edge labels ⇒ captures only adjacency of nodes
 - scores whole graph with probability of being in a state
 - can take multiple seed nodes
 - can be used to find disease genes

• feature learning on graphs

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - ▶ walks form *sentences*
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - walks form sentences
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
- Translational knowledge graph embeddings: TransE, TransE, TransE, HolE, etc.
 - ► analogy- or translation-based
 - ► https://github.com/SmartDataAnalytics/PyKEEN

- feature learning on graphs
- e.g., iterated, edge-labeled random walk
 - walks form sentences
 - sentences form a corpus
 - feature learning on corpus through Word2Vec (or factorization of co-occurrence matrix)
 - ► RDF2Vec: http: //data.dws.informatik.uni-mannheim.de/rdf2vec/
 - with support for reasoning over ontologies: https://github.com/bio-ontology-research-group/ walking-rdf-and-owl
- Translational knowledge graph embeddings: TransE, TransE, TransE, HolE, etc.
 - analogy- or translation-based
 - ▶ https://github.com/SmartDataAnalytics/PyKEEN
- Graph Convolution Neural Networks (not discussed here)

Graph embeddings

Definition

Let $KG = (V, E, L; \vdash)$ be an ontology graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . An ontology graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbb{R}^{n}$.

Graph embeddings

Definition

Let $KG = (V, E, L; \vdash)$ be an ontology graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . An ontology graph embedding is a function $f_{\eta}: L(V) \cup L(E) \mapsto \mathbb{R}^{n}$.

- key idea: preserve *some* structure of the graph in \mathbb{R}^n (under operations in \mathbb{R}^n)
- \mathbb{R}^n enables *new* operations (such as many similarity measures)
- useful as feature vectors

- FOXP2 is characterized by adjacent and close nodes and edges
- different edges may "transmit" information differently

- precompute the deductive closure:
- for all ϕ : if $\mathcal{KG} \models \phi$, add ϕ to \mathcal{KG}

- precompute the deductive closure:
- for all ϕ : if $\mathcal{KG} \models \phi$, add ϕ to \mathcal{KG}

• Exploring the graph:

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708

- Exploring the graph:
- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Word2Vec and Random Walks

- random walks "flatten" a graph
 - walks capture node neighborhood
 - and generate a "corpus"
- random walks capture graph "structure"
 - ▶ in ABox and TBox
 - ▶ hub-nodes, communities, etc.
 - determine "importance" of nodes
- embeddings capture co-occurrence
 - Similar graph neighborhood ⇒ similar co-occurrence ⇒ similar vector
- embeddings generate "feature" vectors
 - functions from symbols (words, labels) into \mathbb{R}^n

What to do with embeddings?

- useful for edge prediction, similarity, clustering, as feature vectors
 - supervised: edge prediction (e.g., SVM, ANN)
 - e.g.: find a function $f: \mathbb{R}^n \times \mathbb{R}^n \mapsto [0,1]$ s.t. $\sqrt{\frac{\sum_{t=1}^T (\hat{y_t} y_t)^2}{T}}$ (RMSE) is minimized for a set of true labels y_k
 - unsupervised: clustering, similarity, visualization
 - cosine similarity (for L2-normalized features)
 - Word2Vec embeddings capture similarity between co-occurrence vectors

Ontologies, graphs, and text

The forkhead-box P2 (FOXP2) gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between FOXP2 gene polymorphism and clinical symptoms in schizophrenia.

Ontologies, graphs, and text

The forkhead-box P2 (FOXP2) gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Ontologies, graphs, and text

The <u>:FOXP2</u> gene polymorphism has been reported to be involved in the susceptibility to schizophrenia; however, few studies have investigated the association between <u>:FOXP2</u> gene polymorphism and clinical symptoms in schizophrenia.

- :FOXP2 :binds :MET :coex :ST7 :hasFunction GO:0044708
- :FOXP2 :hasFunction GO:0071625 subClassOf GO:0044708
- :FOXP2 :coex :TBR1 :coex :NKX2-1 :coex :TBR1 :coex ...

Tools and resources

- RDF2Vec: random walks on RDF + Word2Vec
- RDF2Vec: Weisfeiler-Lehmann kernel on RDF
- https://datalab.rwth-aachen.de/embedding/RDF2Vec/

Tools and resources

- RDF2Vec: random walks on RDF + Word2Vec
- RDF2Vec: Weisfeiler-Lehmann kernel on RDF
- https://datalab.rwth-aachen.de/embedding/RDF2Vec/
- Walking RDF+OWL: random walks on RDF + Elk + Word2Vec
 - inference
- https://github.com/bio-ontology-research-group/ walking-rdf-and-owl

Some limitations

- "word"-based (Word2Vec):
 - semantics is reduced to co-occurrence (in ABox/TBox statements)
 - "disjointWith" vs. "part-of" vs. "subClassOf"

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_n : L(V) \cup L(E) \mapsto \mathbb{R}^n$.

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta} : L(V) \cup L(E) \mapsto \mathbb{R}^{n}$.

Graph as edgelist: set of (s, p, o) statements

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta}: L(V) \cup L(E) \mapsto \mathbb{R}^{n}$.

Graph as edgelist: set of (s, p, o) statements

Idea: $\mu(s) + \mu(p) \approx \mu(o)$

Definition

Let $KG = (V, E, L; \vdash)$ be a knowledge graph with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L: V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A knowledge graph embedding is a function $f_{\eta}: L(V) \cup L(E) \mapsto \mathbb{R}^{n}$.

Graph as edgelist: set of (s, p, o) statements

Idea: $\mu(s) + \mu(p) \approx \mu(o)$

Minimize: $\sum_t \|\mu(s) + \mu(p) - \mu(o)\|$ (chose your norm, usually L2)

Entity and Relation Space

FOXP2 + binds = MET

- FOXP2 + binds = MET
- MET + activates = MAPK3

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2
- ST7 + hasFunctionG0:0044708

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2
- ST7 + hasFunction = G0:0044708
- ...

- FOXP2 + binds MET = 0
- MAP + activates -MAPK3 = 0
- MET + binds FOXP2 = 0
- ST7 + hasFunction G0:0044708 = 0
- ...

Some properties of TransE

- graph-based
 - works well on RDF graphs
 - and ontology graphs
- 1:1 relations only
 - not suitable for hierarchies (1-N relations)
 - not suitable for N-N relations
 - no transitive, symmetric, reflexive relations

Entity and Relation Space

PyKEEN

- Python package to generate knowledge graph embeddings
- supports many different graph embedding types: TransE, TransR, TransD, RESCAL, etc.
- hyperparameter optimization ("HPO") and evaluation included
- https://github.com/SmartDataAnalytics/PyKEEN

Some limitations

- graph-based (same as random walks):
 - ontologies are not graphs!
 - converting ontologies to graphs loses information
 - no axioms, no definitions
- (this also holds for Graph Convolutional Networks, which are not covered here)

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ► graph-based or based on axioms

- none of the models discussed above are truly "semantic"
 - ► all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?

- none of the models discussed above are truly "semantic"
 - ▶ all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?
 - ► formal definition of "truth" relies on "models"

- none of the models discussed above are truly "semantic"
 - ▶ all syntactic
 - ▶ graph-based or based on axioms
- what do we actually mean by "semantics"?
 - ► formal definition of "truth" relies on "models"
 - lacktriangle universal algebra over formal languages (with signature Σ)

Description Logic EL++

Name	Syntax	Semantics
top	T	$\Delta^{\mathcal{I}}$
bottom	Τ	Ø
nominal	{a}	$\{a^{\mathcal{I}}\}$
conjunction	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$
existential	∃r.C	$ \{x \in \Delta^{\mathcal{I}} \exists y \in \Delta^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} $
restriction		
generalized	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$
concept		
inclusion		
role inclu-	$r_1 \circ \circ r_n \sqsubseteq r$	$r_1^{\mathcal{I}} \circ \circ r_n^{\mathcal{I}} \subseteq r^{\mathcal{I}}$
sion		

Models

- ullet Interpretations and Σ -structures
- Model $\mathfrak A$ of a formula ϕ : ϕ is true in $\mathfrak A$ ($\mathfrak A \models \phi$)
- Theory T: set of formulas
- ullet ${\mathfrak A}$ is a model of T if ${\mathfrak A}$ is a model of all formulas in T
- Ontologies are (special kinds of) theories

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function is an interpretation function

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function *is* an interpretation function
- ullet any consistent \mathcal{EL}^{++} theory has infinite models

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function is an interpretation function
- ullet any consistent \mathcal{EL}^{++} theory has infinite models
- any consistent \mathcal{EL}^{++} theory has models in \mathbb{R}^n (Loewenheim-Skolem, upwards; compactness)

Key idea

- for all $r \in \Sigma(T)$ and $C \in \Sigma(T)$, define $f_e(r)$ and $f_e(C)$
- $f_e(C)$ maps to points in an open *n*-ball such that $f_e(C) = C^{\mathcal{I}}$: $C^{\mathcal{I}} = \{x \in \mathbb{R}^n | \|f_e(C) x\| < r_e(C)\}$
 - ▶ these are the *extension* of a class in \mathbb{R}^n
- $f_e(r)$ maps a binary relation r to a vector such that $r^{\mathcal{I}} = \{(x,y)|x + f_e(r) = y\}$
 - ► that's the TransE property for individuals
- use the axioms in T as constraints

Algorithm

- normalize the theory:
 - every \mathcal{EL}^{++} theory can be expressed using four normal forms (Baader et al., 2005)
- eliminate the ABox: replace each individual symbol with a singleton class: a becomes {a}
- rewrite relation assertions r(a,b) and class assertions C(a) as $\{a\} \sqsubseteq \exists r.\{b\}$ and $\{a\} \sqsubseteq C$
 - something to remember for the next class-vs-instance discussion?
- normalization rules to generate:
 - $ightharpoonup C \Box D$
 - $ightharpoonup C \sqcap D \sqsubseteq E$
 - **►** *C* \sqsubseteq $\exists R.D$
 - **▶** ∃*R*.*C* □ *D*

$$loss_{C \sqsubseteq D}(c, d) = max(0, ||f_{\eta}(c) - f_{\eta}(d)|| + r_{\eta}(c) - r_{\eta}(d) - \gamma) + ||f_{\eta}(c)|| - 1| + ||f_{\eta}(d)|| - 1|$$
(3)

Let $h=\frac{r_{\eta}(c)^2-r_{\eta}(d)^2+\|f_{\eta}(c)-f_{\eta}(d)\|^2}{2\|f_{\eta}(c)-f_{\eta}(d)\|}$, then the center and radius of the smallest n-ball containing the intersection of $\eta(C)$ and $\eta(D)$ are $f_{\eta}(c)+\frac{h}{\|f_{\eta}(c)-f_{\eta}(d)\|}(f_{\eta}(d)-f_{\eta}(c))$ and $\sqrt{r_{\eta}(c)^2-h^2}$.

□ ▶

$$loss_{C \sqsubseteq \exists R.D}(c, d, r) = \\ \max(0, \|f_{\eta}(c) + f_{\eta}(r) - f_{\eta}(d)\| + r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1|$$
(4)

$$loss_{\exists R.C \sqsubseteq D}(c, d, r) = \\ \max(0, \|f_{\eta}(c) - f_{\eta}(r) - f_{\eta}(d)\| - r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ + |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1|$$
(5)

$$loss_{C \sqcap D \sqsubseteq \bot}(c, d, e) = \max(0, r_{\eta}(c) + r_{\eta}(d) - ||f_{\eta}(c) - f_{\eta}(d)|| + \gamma) + ||f_{\eta}(c)|| - 1| + ||f_{\eta}(d)|| - 1|$$
(6)

Male	<i>□ Person</i>	(7)
Female	⊑ Person	(8)
Father	\sqsubseteq <i>Male</i>	(9)
Mother	<i>⊑ Female</i>	(10)
Father	<i>□</i> Parent	(11)
Mother	<i>□</i> Parent	(12)
Female \sqcap Male	⊑⊥	(13)
Female <i>□</i> Parent	\sqsubseteq Mother	(14)
$Male \sqcap Parent$	\sqsubseteq Father	(15)
$\exists has Child. Person$	<i>□</i> Parent	(16)
Parent	⊑ Person	(17)
Parent	$\sqsubseteq \exists \mathit{hasChild}. \top$	(18)

- model with $\Delta = R^n$
- support quantifiers, negation, conjunction,...

□ ▶