FIS Project1

RUEI-BO CHEN

416082

1. Full GMRES

For the full GMRES without preconditioning (set m = 600 to make it converge before restart), the relative error will converge below the threshold 10^{-8} after the 512th iteration. I would display relative residual ($\left\|\frac{r_k}{r_0}\right\|$), actual residual ($\left\|x_k - x^*\right\|$) and orthogonality here.

(1) Unpreconditioned Full GMRES

So we know that full GMRES without preconditioning takes 512 vectors to solve the system.

Next, apply Jacobi respectively to see the difference.

(2) Full GMRES with Jacobi as preconditioner

With Jacobi as preconditioner, we need just 288 vectors tot finish the calculation. The number of needed vectors decreased enormously.

(3) Full GMRES with Gauss-Seidel as preconditioner

It took only 159 vectors to solve the same system. Moreover, the spent time is just 1/10 of it without preconditioner.

2. Restarted GMRES

Restarted GMRES with m = 10	Can't converge under the threshold
Restarted GMRES with m = 12	181.5s
Restarted GMRES with m = 30	53.3s
Restarted GMRES with m = 50	42.9s
Restarted GMRES with m = 100	48.9s
Full GMRES (equal to m = 600)	84.5s

From the table above, we notice that Restarted GMRES with any parameter m except for m = 10 are faster than Full GMRES. Restarted GMRES with m = 10 can't converge to a number below the threshold.

I think the reason is that I build the matrix multiply function on my own, which takes many for loop to reach the result. It will consume a huge amount of time to finish the computation, especially when the size of matrix is large. Full GMRES requires multiplying matrix of size bigger than 100. As a result, Full GMRES will take much more time than Restarted GMRES.

In a better case, in which the memory are allocated well, Full GMRES might be faster than restarted GMRES. However, Full GMRES demand a large memory space to store all of the Krylov vectors needed, while restarted GMRES will fresh the vectors after m iteration. Thus, although Full GMRES probably take less time, it requires higher space complexity. We prefer to select Restarted GMRES if the available memory space is not enough.

Since m = 50 is likely to be the best parameter, I also apply those 2 preconditioner with this max iteration number.

(1) Unpreconditioned with m = 50

(2) Jacobi as preconditioner with m = 50

(3) Gauss-Seidel as preconditioner with m = 50

3. CG Algorithm

Not implemented