

既是世间法、自当有分别

艾新波 / 2018 • 北京

课程体系

- 第2章 所谓学习、归类而已
- 第3章 格言联璧话学习
- 第4章 源于数学、归于工程
- 中部:执具
 - 第5章 工欲善其事必先利其器
 - 第6章 基础编程
 - 第7章 数据对象

- 第10章 观数以形
- 第11章 相随相伴、谓之关联
 - 🗐 第12章 既是世间法、自当有分别
 - 第13章 方以类聚、物以群分
 - 第14章 庐山烟雨浙江潮

```
library(kknn)
set.seed(2012)
imodel <- kknn(wlfk ~ .,</pre>
                    train = cjb[train set idx, ],
                    test = cjb[train set idx, ])
predicted train <- imodel$fit</pre>
#ce: classification error
Metrics::ce(cjb$wlfk[train set idx], predicted train)
#> [1] 0.1090573
```

```
#作为惰性学习法,训练和测试同时进行
imodel <- kknn(wlfk ~ .,</pre>
                   train = cjb[train set idx, ],
                   test = cjb[-train set idx, ])
predicted test <- imodel$fit</pre>
Metrics::ce(cjb$wlfk[-train set idx], predicted test)
#> [1] 0.1888412
```

```
#选取最优的k和核
train kk <- train.kknn(</pre>
 wlfk ~ .,
 data = cjb,
  kmax = 100,
  kernel = c(
    "rectangular", "epanechnikov",
    "cos", "inv",
    "gaussian", "optimal"))
```

#查看具体结果

#> Best k: 49

```
train kk
#> Call: train.kknn(formula = wlfk ~ ., data = cjb,
#>
       kmax = 100, kernel = c("rectangular",
#>
        "epanechnikov", "cos", "inv", "gaussian", "optimal"))
#>
#> Type of response variable: nominal
#> Minimal misclassification: 0.2105943
#> Best kernel: gaussian
```

```
#最佳的k值
best k <- train kk$best.parameters$k</pre>
best k
#> [1] 49
best kernel <- train kk$best.parameters$kernel</pre>
best kernel
#> [1] "gaussian"
```

#提取不同k和核相应的分类错误率

ce kk <- train kk\$MISCLASS

View(ce kk)

#最小错误率

min ce <- min(ce kk)

*	rectangular [‡]	epanechnikov [‡]	cos [‡]	inv [‡]	gaussian [‡]	optimal [‡]
1	0.291	0.291	0.291	0.291	0.291	0.291
2	0.298	0.291	0.291	0.291	0.291	0.291
3	0.257	0.273	0.274	0.257	0.257	0.291
4	0.269	0.266	0.266	0.244	0.247	0.291
5	0.258	0.257	0.258	0.257	0.256	0.252
6	0.261	0.257	0.256	0.242	0.242	0.244
7	0.240	0.242	0.245	0.239	0.245	0.243
8	0.251	0.245	0.244	0.242	0.240	0.243
9	0.251	0.248	0.247	0.253	0.252	0.249
10	0.247	0.245	0.243	0.242	0.245	0.253
11	0.245	0.243	0.242	0.247	0.249	0.253
12	0.240	0.238	0.235	0.239	0.240	0.253
13	0.239	0.243	0.238	0.238	0.242	0.248
14	0.243	0.243	0.240	0.242	0.240	0.248
15	0.242	0.244	0.244	0.239	0.243	0.248
16	0.236	0.244	0.244	0.234	0.235	0.249
17	0.235	0.245	0.243	0.234	0.233	0.249
18	0.231	0.245	0.244	0.230	0.234	0.251
19	0.233	0.244	0.244	0.231	0.234	0.244
20	0.220	0.242	0.242	0.226	0.229	0.244
Showing 1 to 20 of 100 entries						

```
#通过gaplot2进行绘制
as.data.frame(ce kk) %>%
 mutate(k = 1:nrow(ce kk)) %>%
 gather(key = "kernel", value = "ce", -k) %>%
 ggplot(aes(x = k, y = ce, colour = kernel)) +
 geom vline(aes(xintercept = best k), linetype = "dashed") +
 geom hline(aes(yintercept = min ce), linetype = "dashed") +
 geom line() +
 geom point(aes(shape = kernel)) +
  theme (legend.position = c(0.9, 0.8))
```



```
library(kknn)
sp <- Sys.time() #记录开始时间
cat("\n[Start at:", as.character(sp))
for (i in 1:length(kfolds)) {
 curr fold <- kfolds[[i]] #当前这一折
 train set <- cjb[-curr fold,] #训练集
 test set <- cjb[curr fold,] #测试集
 predicted train <- kknn(</pre>
   wlfk ~ ., train = train set, test = train set,
   k = best k, kernel = best kernel)$fit
```

```
imetrics("kknn", "Train", predicted train, train set$wlfk)
  predicted test <- kknn(</pre>
    wlfk ~ ., train = train set, test = test set,
    k = best k, kernel = best kernel)$fit
  imetrics("kknn", "Test", predicted test, test set$wlfk)
ep <- Sys.time()
cat("\tFinised at:", as.character(ep), "]\n")
cat("[Time Ellapsed:\t",
   difftime(ep, sp, units = "secs"), " seconds]\n")
```

```
#>
       method type accuracy error rate
#> 1
        kknn Train 0.8333333 0.1666667
#> 2
        kknn Test 0.8076923 0.1923077
#> 3
        kknn Train 0.8405172 0.1594828
#> 4
        kknn Test 0.8076923 0.1923077
#> 5
        kknn Train 0.8333333 0.1666667
#> 6
        kknn Test 0.8461538 0.1538462
. . . . . .
#> 19
        kknn Train 0.8278336 0.1721664
#> 20
        kknn
             Test 0.7792208 0.2207792
```

究竟是一种什么关系

既然所有规律都是关系

那么,请问:

近邻法

究竟是什么关系

得到规律的表现形式是什么

近邻法:空间划分的角度

100-nearest neighbour

左图引自: 李航 统计学习方法. 北京: 清华大学出版社, pp.38

謝謝聆听 Thank you

教师个人联系方式

艾新波

手机: 13641159546

QQ: 23127789

微信: 13641159546

E-mail: 13641159546@126.com

axb@bupt.edu.cn

地址:北京邮电大学科研楼917室

课程 网址: https://github.com/byaxb/RDataAnalytics

