Suites de fonctions numériques

Je me s	ouviens	2
Cours		3
Cours 1	Quelques exemples	3
2	Convergence simple	3
2	2.1 Définition	3
	2.1 Definition	3 4
3	Interlude: la norme infinie	
3 4		4 5
4	Convergence uniforme	
	F	6
-	4.2 Convergence uniforme sur tout segment	6 7
5	Transfert de continuité par convergence uniforme	
6	Théorème de la double limite	7
7	Intégration	8
	7.1 Intégration sur un segment/primitivation et convergence uniforme	8
	7.2 Intégration sur un intervalle quelconque – Convergence dominée	9
8	Dérivation	9
	8.1 Limite d'une suite de fonctions de classe \mathcal{C}^1	9
	8.2 Extension aux fonctions de classe \mathcal{C}^k	
9	Théorèmes d'approximation uniforme	
	9.1 Approximation par des fonctions en escalier	
	9.2 Approximation par des fonctions polynomiales	11
Exercic	ves 1	.
	ercices et résultats classiques à connaître	
Line	Étude et utilisation de la convergence uniforme	
	Utiliser le non transfert de continuité pour montrer la non convergence uniforme	
	Utiliser le théorème d'approximation de Weierstrass	
Face	ercices du CCINP	
	ercices	
ret	its problèmes d'entrainement	14

Je me souviens

- 1. Que signifie « f est continue par morceaux sur [a,b] » ?
- 2. Que signifie « g est en escalier sur [a,b] » ?
- 3. Selon les valeurs de x réel, que peut-on dire de la suite $\left(\frac{1-x^{2n}}{1+x^{2n}}\right)_n$?
- 4. Y a-t-il une différence entre

$$\forall x \in [0, 1[, \forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ t.q. } \forall n \geqslant n_0, |x^n| \leqslant \varepsilon$$

et

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ \text{t.q.} \ \forall x \in [0, 1[, \ \forall n \geqslant n_0, \ |x^n| \leqslant \varepsilon \ ?]$$

5. Que vaut
$$\lim_{x \to 1} \left(\lim_{n \to +\infty} (x^n) \right)$$
? et $\lim_{n \to +\infty} \left(\lim_{x \to 1} (x^n) \right)$?

1 Quelques exemples

Exemple. Pour $n \in \mathbb{N}$, on pose :

$$\begin{array}{ccc} f_n : [0,1] & \to & \mathbb{R} \\ x & \mapsto & x^n \end{array}$$

- 1. Représenter quelques fonctions f_n .
- 2. Est-ce que $(f_n(x))_n$ admet une limite?
- 3. Continuité?

Exemple. Pour $n \in \mathbb{N}$, on pose :

$$f_n: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto n^2 x (1-x^2)^n$

- 1. Représenter quelques fonctions f_n .
- 2. Est-ce que $(f_n(x))_n$ admet une limite?
- 3. Intégrale sur [0,1]?

Exemple. Pour $n \in \mathbb{N}$, on pose :

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{\sin(nx)}{\sqrt{n}}$$

- 1. Est-ce que $(f_n(x))_n$ admet une limite?
- 2. Dérivées?

Remarque. La convergence « point à point » des suites de fonctions ne permet pas le passage à la limite dans la continuité, le calcul d'intégrales, la dérivation.

2 Convergence simple

2.1 Définition

<u>Définition.</u> Soit $(f_n)_n$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} et $f: I \to \mathbb{K}$ une fonction. On dit que $(f_n)_n$ converge simplement sur I vers f si et seulement si, pour tout $x \in I$ fixé, la suite numérique $(f_n(x))_n$ converge vers f(x). La fonction f s'appelle alors la **limite simple** de la suite de fonctions $(f_n)_n$.

Remarque.

- $(f_n)_n$ converge simplement sur I si et seulement s'il existe f telle que $(f_n)_n$ converge simplement vers f.
- Étudier la convergence simple de $(f_n)_n$, c'est étudier la convergence de la suite $(f_n(x))_n$ à x fixé.
- On trouve parfois la notation $f_n \xrightarrow[n \to +\infty]{\text{CS}} f$.
- On peut quantifier la proposition « $(f_n)_n$ converge simplement vers f »:

$$\forall x \in I, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N, \ |f_n(x) - f(x)| \leqslant \varepsilon$$

Dans cette quantification, l'indice N à partir duquel $f_n(x)$ approche f(x) à ε près dépend de x.

Interprétation graphique.

Exemple. Étudier la convergence simple des suites de fonctions définies par :

1.
$$f_n: [0,1] \to \mathbb{R}$$
 où $f_n(x) = x^n$

2.
$$g_n: \mathbb{R}_+ \to \mathbb{R} \text{ où } g_n(x) = \frac{1}{n+x^2}$$

3.
$$h_n: \mathbb{R} \to \mathbb{R}$$
 où $h_n(x) = \begin{cases} n^2 x & \text{si } |x| \leqslant \frac{1}{n} \\ \frac{1}{x} & \text{si } |x| > \frac{1}{n} \end{cases}$

2.2 Propriétés

Proposition. Si $B \subset I$ et si la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f sur I, alors $(f_n)_{n \in \mathbb{N}}$ converge simplement vers $f_{|B}$ sur B.

Proposition. Si les suites de fonctions $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ convergent simplement vers f et g sur I et si $\lambda, \mu \in \mathbb{K}$, alors la suite de fonctions $(\lambda f_n + \mu g_n)_{n\in\mathbb{N}}$ converge simplement vers $\lambda f + \mu g$ sur I.

3 Interlude : la norme infinie

L'étude plus systèmatique des normes sera faite dans un chapitre dédié. On peut déjà donner la définition, où E désigne un \mathbb{K} -espace vectoriel :

Définition. On appelle **norme** sur E une application $N: E \to \mathbb{R}$ vérifiant :

• $\forall x \in E, \ N(x) \geqslant 0$ positivité

• $\forall x \in E, \ \forall \lambda \in \mathbb{K}, \ N(\lambda x) = |\lambda|N(x)$ homogénéité

• $\forall x, y \in E, N(x+y) \leq N(x) + N(y)$ inégalité triangulaire

• $\forall x n E, N(x) = 0 \implies x = 0$ séparation

Pour A partie non vide de \mathbb{R} , l'ensemble $\mathcal{B}(A,\mathbb{K})$ des fonctions $A \to \mathbb{K}$ bornées est un espace vectoriel, que l'on peut munir d'une norme en définissant :

Définition. Pour $f \in \mathcal{B}(A, \mathbb{K})$, on note :

$$||f||_{\infty} = \sup_{x \in A} |f(x)|$$

Proposition. $\|\cdot\|_{\infty}$ est une norme.

Preuve.

Remarque. Il importe de savoir rédiger l'inégalité triangulaire.

Corollaire. $\|\cdot\|_{\infty}$ est aussi une norme sur l'espace $\mathcal{C}^0([a,b],\mathbb{K})$ des fonctions continues sur le segment [a,b].

Preuve. Par le théorème des bornes atteintes (fonctions continues sur un segment), $C^0([a,b],\mathbb{K}) \subset \mathcal{B}([a,b],\mathbb{K})$.

4 Convergence uniforme

<u>Définition.</u> Soit $(f_n)_n$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} et $f: I \to \mathbb{K}$ une fonction. On dit que $(f_n)_n$ converge uniformément sur I vers f si et seulement si la suite numérique $(\|f_n - f\|_{\infty})_n$ converge vers 0. La fonction f est alors appelée **limite uniforme** de $(f_n)_n$.

Remarque.

- Pour que cette définition ait un sens, on doit naturellement supposer que, au moins à partir d'un certain rang, la fonction $f f_n$ soit bornée sur I.
- On trouve parfois la notation $f_n \xrightarrow[n \to +\infty]{\text{CU}} f$.
- On peut quantifier la proposition $(f_n)_n$ converge uniformément vers f »:

$$\forall \varepsilon > 0, \exists n \in \mathbb{N} \ t.q. \ \forall n \geqslant N, \ \forall x \in I, \ |f_n(x) - f(x)| \leqslant \varepsilon$$

Dans cette quantification, l'indice N à partir duquel $f_n(x)$ approche f(x) à ε près est indépendant de x. C'est le même pour tout x, on dit qu'il est uniforme, ce qui donne son nom à ce mode de convergence de la suite de fonctions.

Interprétation graphique.

Théorème.

La convergence uniforme implique la convergence simple.

Remarque.

- La réciproque est fausse.
- Si une suite de fonctions $(f_n)_n$ converge uniformément, sa limite uniforme coïncide avec sa limite simple.

2024-2025 http://mpi.lamartin.fr **5/15**

Étude pratique pour montrer la convergence uniforme.

- On commence par déterminer la limite simple de $(f_n)_n$, notée f. Une représentation graphique peut aider.
- On cherche à majorer $|f_n(x) f(x)|$ indépendamment de x par une suite qui converge vers 0.
- La recherche précise de $||f_n f||_{\infty}$ peut se faire par l'étude des variations de $|f_n f|$.

Étude pratique pour montrer la non-convergence uniforme.

- On commence par déterminer la limite simple de $(f_n)_n$, notée f. Une représentation graphique peut aider.
- S'il n'existe pas de rang à partir duquel $f_n f$ est bornée, la convergence ne peut pas être uniforme.
- On peut montrer le non-transfert à la limite d'une propriété (voir § 5 et § 7).
- On exhibe une suite $(x_n)_n$ d'éléments de I telle que la suite $(f_n(x_n) f(x_n))_n$ ne converge pas vers 0.

Exemple. Étudier la convergence uniforme des trois suites de fonctions :

1.
$$f_n: [0,1] \to \mathbb{R}$$
 où $f_n(x) = x^n$

2.
$$g_n: \mathbb{R}_+ \to \mathbb{R} \text{ où } g_n(x) = \frac{1}{n+x^2}$$

3.
$$h_n: \mathbb{R} \to \mathbb{R}$$
 où $h_n(x) = \begin{cases} n^2 x & \text{si } |x| \leqslant \frac{1}{n} \\ \frac{1}{x} & \text{si } |x| > \frac{1}{n} \end{cases}$

4.1 Propriétés

Proposition. Si $B \subset I$ et si la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur I, alors $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur B.

Proposition. Si les suites de fonctions $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ convergent uniformément vers f et g sur I et si $\lambda, \mu \in \mathbb{K}$, alors la suite de fonctions $(\lambda f_n + \mu g_n)_{n\in\mathbb{N}}$ converge uniformément vers $\lambda f + \mu g$ sur I.

4.2 Convergence uniforme sur tout segment

<u>Définition.</u> Soit I un intervalle de \mathbb{R} et $(f_n)_n$ une suite de fonctions $I: \mathbb{K}$ et $f: I \to \mathbb{K}$. On dit que $(f_n)_n$ converge vers f uniformément sur tout segment de I si et seulement si pour tout segment $[a,b] \subset I$, $(f_{n|[a,b]})_n$ converge uniformément vers $f_{|[a,b]}$ sur [a,b].

Exemple. Étudier la convergence uniforme sur tout segment des trois suites de fonctions :

1.
$$f_n :]0,1[\to \mathbb{R} \text{ où } f_n(x) = x^n$$

2.
$$g_n: \mathbb{R}_+ \to \mathbb{R} \text{ où } g_n(x) = \frac{1}{n+x^2}$$

3.
$$h_n: \mathbb{R} \to \mathbb{R}$$
 où $h_n(x) = \begin{cases} n^2 x & \text{si } |x| \leqslant \frac{1}{n} \\ \frac{1}{x} & \text{si } |x| > \frac{1}{n} \end{cases}$

Remarque. La convergence uniforme sur tout segment de I n'est pas équivalente à la convergence uniforme sur I. C'est une notion plus faible, mais on verra qu'elle pourra suffire à transmettre à la limite certaines propriétés.

Exemple.

- 1. Utiliser la formule de Taylor avec reste-intégral pour montrer : $t \frac{t^2}{2} \le \ln(1+t) \le t$ pour tout $t \ge 0$.
- 2. Étudier la convergence uniforme sur tout segment de \mathbb{R}_+^* de la suite de fonctions définies par :

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$

5 Transfert de continuité par convergence uniforme

Théorème.

Soit $(f_n)_n$ une suite de fonctions définies sur I.

Si:

- pour tout n, f_n est continue sur I,
- $(f_n)_n$ converge uniformément sur I vers f,

alors:

 \circ f est continue sur I.

Remarque.

- La convergence simple ne suffit pas pour justifier la continuité de f, comme le montre l'exemple des fonctions $f_n: x \in [0,1] \mapsto x^n$.
- La continuité des f_n et de f ne suffit pas à justifier la convergence uniforme, comme le montre l'exemple des fonctions $f_n: x \in [0,1] \mapsto n^2 x (1-x^2)^n$.

Corollaire. Si $(f_n)_n$ converge simplement sur I vers f, que les f_n sont continues sur I mais que f n'est pas continue sur I, alors la convergence n'est pas uniforme sur I.

Raisonnement classique. Si $(f_n)_n$ converge simplement sur I vers f, que les f_n sont continues sur I et qu'il y a convergence uniforme sur tout segment [a,b] de I, alors f est continue sur tout $[a,b] \subset I$ donc sur I.

Remarque. Ce résultat, qui exploite le caractère local de la continuité, s'adapte aussi lorsque la convergence uniforme est vérifiée sur une famille d'intervalles adaptés à la situation.

6 Théorème de la double limite

Théorème de la double limite.

Soit $(f_n)_n$ une suite de fonctions définies sur I et a un point de I ou une extrémité éventuellement infinie de I.

Si:

- pour tout n, $f_n(x)$ admet une limite finie ℓ_n lorsque $x \to a$,
- $(f_n)_n$ converge uniformément vers f sur I,

alors:

- la suite $(\ell_n)_n$ converge vers $\ell \in \mathbb{R}$,
- f(x) admet une limite lorsque $x \to a$,
- \circ cette limite est égale à ℓ .

Preuve. La démonstration est hors programme.

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites envisagées et de mode de convergence de la suite de fonctions.

Exemple. On considère la suite de fonctions $(f_n)_n$ définie par :

$$f_n(x) = \frac{nx^2 e^{-nx}}{1 - e^{-x^2}}$$

- 1. Déterminer la limite de f_n en 0.
- 2. Étudier la convergence simple de $(f_n)_n$ sur \mathbb{R}_+^* .
- 3. Utiliser le théorème de la double limite pour montrer qu'il n'y a pas convergence uniforme sur R^{*}₊.
- 4. Étudier la convergence uniforme de $(f_n)_n$ sur tout $[a, +\infty[, a > 0.$

7 Intégration

7.1 Intégration sur un segment/primitivation et convergence uniforme

Soit $(f_n)_n$ une suite de fonctions définies sur un intervalle I et $a \in I$. Lemme.

- $(f_n)_n$ converge uniformément vers f sur tout segment $K \subset I$,
- les f_n sont continues.

alors, en notant $F_n(x) = \int_a^x f_n(t) dt$ et $F(x) = \int_a^x f(t) dt$,

• $(F_n)_n$ converge uniformément vers F sur tout segment de I.

Preuve.

Remarque. Ainsi, la convergence uniforme sur tout segment se transmet par primitivation, à condition de prendre les primitives qui s'annulent toutes en un même point a donné.

Théorème d'interversion limite-intégrale par cv uniforme sur un segment.

Soit $(f_n)_n$ une suite de fonctions définies sur un segment [a,b].

- $(f_n)_n$ converge uniformément vers f sur [a,b],
- [a, b] est un segment,
- les f_n sont continues.

alors:

• la suite
$$\left(\int_a^b f_n(t) dt\right)_n$$
 converge,

$$\circ \int_a^b f_n(t) dt \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt$$

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n \to +\infty} f_n(t) dt$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites envisagées et de mode de convergence de la suite de fonctions.

8/15 2024-2025 http://mpi.lamartin.fr

Remarque. Le théorème de convergence dominée étudié au § 7.2 fournit un autre critère pour intégrer la limite d'une suite de fonctions, y compris lorsque l'intégrale est généralisée.

Exemple. Étudier la convergence de la suite de terme général :

$$u_n = \int_0^1 \frac{\mathrm{d}t}{n\sin\left(\frac{t^2}{n}\right) + 1}$$

On donne l'encadrement $x - \frac{x^3}{6} \leqslant \sin x \leqslant x$.

7.2 Intégration sur un intervalle quelconque - Convergence dominée

Remarque. On verra plus tard le théorème suivant, après avoir défini l'intégration sur un intervalle quelconque.

Théorème de convergence dominée.

Soit $(f_n)_n$ une suite de fonctions définies sur un intervalle I. Si :

- $(f_n)_n$ converge simplement vers f sur I;
- $(f_n)_n$ satisfait l'hypothèse de domination : il existe φ telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ |f_n(x)| \leqslant \varphi(x)$$

où φ indépendante de n et **intégrable** sur I;

• les fonctions f_n et f sont continues par morceaux sur I.

alors:

- les fonctions f_n et f sont intégrables sur I,
- la suite $\left(\int_I f_n(t) dt\right)_n$ converge,

$$\circ \int_{I} f_n(t) dt \xrightarrow[n \to +\infty]{} \int_{I} f(t) dt.$$

8 Dérivation

8.1 Limite d'une suite de fonctions de classe C^1

Théorème de dérivabilité de la limite d'une suite de fonctions.

Soit $(f_n)_n$ une suite de fonctions définies sur I intervalle. Si

- pour tout n, f_n est de classe C^1 sur I,
- $(f_n)_n$ converge simplement sur I vers f,
- la suite des fonctions dérivées $(f'_n)_n$ converge uniformément sur I vers une fonction g,

alors:

- f est de classe C^1 sur I,
- \circ f'=g.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\frac{\mathrm{d}}{\mathrm{d}x} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- La convergence uniforme de $(f_n)_n$ n'entraı̂ne pas la dérivabilité de la limite.
- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I de $(f'_n)_n$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.

Exemple. Étudier la convergence et la dérivabilité de la limite de la suite de fonctions définies par :

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

8.2 Extension aux fonctions de classe C^k

Théorème.

Soit $(f_n)_n$ une suite de fonctions définie sur I intervalle, et $k \in \mathbb{N}^*$.

- pour tout n, f_n est de classe C^k sur I,
- pour tout $0 \le j \le k-1$, $(f_n^{(j)})_n$ converge simplement sur I vers une fonction g_i ,
- la suite $(f_n^{(k)})_n$ converge uniformément sur I vers une fonction g_k ,

alors

- la limite simple g_0 de $(f_n)_n$ est de classe \mathcal{C}^k sur I
- pour tout $1 \leq j \leq k$, $g_0^{(j)} = g_i$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}^k}{\mathrm{d}x^k} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\frac{\mathrm{d}^k}{\mathrm{d}x^k} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I des $(f_n^{(k)})_n$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.
- Pour montrer que g_0 est de classe C^{∞} , on montre la convergence simple de $(f_n)_n$ et la convergence uniforme de toutes les $(f_n^{(j)})_n$, pour $j \ge 1$.

9 Théorèmes d'approximation uniforme

9.1 Approximation par des fonctions en escalier

Théorème.

Toute fonction continue (par morceaux) sur un segment est limite uniforme sur ce segment d'une suite de fonctions en escalier.

9.2 Approximation par des fonctions polynomiales

Théorème de Weierstrass.

Toute fonction continue sur un segment est limite uniforme sur ce segment d'une suite de fonctions polynomiales.

Exercices et résultats classiques à connaître

Étude et utilisation de la convergence uniforme

53.1

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose :

$$f_n(x) = x(1 + e^{-nx})$$

- (a) Sur quelle partie D de \mathbb{R} la suite $(f_n)_{n\in\mathbb{R}}$ converge simplement?
- (b) La convergence est-elle uniforme sur D?
- (c) Déterminer la limite, pour $n \to +\infty$, de $\int_0^1 f_n(t) \, \mathrm{d}t$.

Utiliser le non transfert de continuité pour montrer la non convergence uniforme

53.2

Pour $n \in \mathbb{N}$ et $x \in [0, 1]$, on pose :

$$f_n(x) = x^n$$

- (a) Représenter quelques fonctions f_n .
- (b) Étudier la convergence simple et uniforme de $(f_n)_n$ sur [0,1].

Utiliser le théorème d'approximation de Weierstrass

53.3

Soit $f:[0,1]\to\mathbb{R}$ continue telle que, pour tout $n\in\mathbb{N}$:

$$\int_0^1 t^n f(t) \, \mathrm{d}t = 0$$

Montrer que f est la fonction nulle.

1. Soit X un ensemble, (g_n) une suite de fonctions de X dans \mathbb{C} et g une fonction de X dans \mathbb{C} .

Donner la définition de la convergence uniforme sur X de la suite de fonctions (g_n) vers la fonction g.

- 2. On pose $f_n(x) = \frac{n+2}{n+1} e^{-nx^2} \cos(\sqrt{nx})$.
 - (a) Étudier la convergence simple de la suite de fonctions (f_n) .
 - (b) La suite de fonctions (f_n) converge-t-elle uniformément sur $[0, +\infty[$?
 - (c) Soit a > 0. La suite de fonctions (f_n) converge-t-elle uniformément sur $[a, +\infty[$?
 - (d) La suite de fonctions (f_n) converge-t-elle uniformément sur $]0,+\infty[\,?\,$

53.5

http://mpi.lamartin.fr

 $ho_{
m NP}~10$

On pose $f_n(x) = (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x}$.

- 1. Démontrer que la suite de fonctions (f_n) converge uniformément sur [0,1].
- 2. Calculer $\lim_{n \to +\infty} \int_{0}^{1} (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x} dx$.

53.6

GNP 11

1. Soit X une partie de \mathbb{R} , (f_n) une suite de fonctions de X dans \mathbb{R} convergeant simplement vers une fonction f.

On suppose qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X telle que la suite $(f_n(x_n)-f(x_n))_{n\in\mathbb{N}}$ ne tende pas vers 0.

Démontrer que la suite de fonctions (f_n) ne converge pas uniformément vers f sur X.

- 2. Pour tout $x \in \mathbb{R}$, on pose $f_n(x) = \frac{\sin(nx)}{1 + n^2x^2}$.
 - (a) Étudier la convergence simple de la suite (f_n) .
 - (b) Étudier la convergence uniforme de la suite (f_n) sur $[a, +\infty[$ (avec a > 0), puis sur $[0, +\infty[$.

53.7

GNP 12

1. Soit (f_n) une suite de fonctions de [a, b] dans \mathbb{R} .

On suppose que la suite de fonctions (f_n) converge uniformément sur [a,b] vers une fonction f, et que, pour tout $n \in \mathbb{N}$, f_n est continue en x_0 , avec $x_0 \in [a,b]$.

Démontrer que f est continue en x_0 .

2. On pose : $\forall n \in \mathbb{N}^*$, $\forall x \in [0; 1]$, $g_n(x) = x^n$. La suite de fonctions $(g_n)_{n \in \mathbb{N}^*}$ converge-t-elle uniformément sur [0; 1]?

53.8

53. Suites de fonctions numériques

 $C^{0}\left(\left[0,1\right],\mathbb{R}\right)$ désigne l'espace vectoriel des fonctions continues sur $\left[0,1\right]$ à valeurs dans \mathbb{R} .

Soit $f \in C^0([0,1], \mathbb{R})$ telle que : $\forall n \in \mathbb{N}, \int_0^1 t^n f(t) dt = 0.$

- 1. Énoncer le théorème de Weierstrass d'approximation par des fonctions polynomiales.
- 2. Soit (P_n) une suite de fonctions polynomiales convergeant uniformément sur le segment [0,1] vers f.
 - (a) Montrer que la suite de fonctions $(P_n f)$ converge uniformément sur le segment [0,1] vers f^2 .
 - (b) Démontrer que $\int_0^1 f^2(t) dt = \lim_{n \to +\infty} \int_0^1 P_n(t) f(t) dt$.
 - (c) Calculer $\int_{0}^{1} P_{n}(t) f(t) dt$.
- 3. En déduire que f est la fonction nulle sur le segment [0,1] .

53.9

53.13

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose :

$$f_n(x) = \frac{n}{n+1}x$$

- (a) Étudier la convergence simple de $(f_n)_{n\in\mathbb{R}}$ sur \mathbb{R} .
- (b) Montrer que $(f_n)_{n\in\mathbb{R}}$ ne converge pas uniformément sur \mathbb{R} .
- (c) Montrer que $(f_n)_{n\in\mathbb{R}}$ converge uniformément sur tout segment [a,b].

53.10

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose :

$$f_n(x) = \begin{cases} 1 + x^2 \sin\left(\frac{1}{nx}\right) & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

- (a) Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de \mathbb{R} .
- (b) La convergence est-elle uniforme sur \mathbb{R} ?

53.11

Étudier la convergence de la suite de fonctions

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{2^n x}{1 + n2^n x^2}$$

53.12

Étudier la convergence de la suite de fonctions

$$h_n: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \sin(nx)e^{-nx^2}$

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sin\left(\frac{n+1}{n}x\right)$$

53.14

On pose $f_n(x) = \frac{x^n}{1 + x + \dots + x^n}$ pour $x \ge 0$. Donner l'allure du graphe de f_n . Étudier la convergence simple et la convergence uniforme de la suite (f_n) .

53.15

Soit f continue sur \mathbb{R} , étudier la convergence de la suite de fonctions $(f_n)_n$ où :

$$f_n: x \mapsto \sqrt{f(x)^2 + \frac{1}{n}}$$

Petits problèmes d'entrainement

53.16

Soit (f_n) la suite de fonctions définie par : $\forall n \ge 1$,

$$f_n: \mathbb{R}_+ \to \mathbb{R}$$

$$x \mapsto \frac{1+x^{2n+1}}{1+x^{2n}}$$

- (a) Étudier la convergence simple de (f_n) sur \mathbb{R}_+ .
- (b) Étudier la convergence uniforme de (f_n) sur \mathbb{R}_+ .

53.17

On s'intéresse à l'équation fonctionnelle :

$$f(2x) = 2f(x) - 2f(x)^2$$
 (E)

(a) Quelles sont les solutions constantes sur \mathbb{R} ?

(b) Pour $h: \mathbb{R} \to \mathbb{R}$, on pose, pour tout x, f(x) = xh(x). À quelle condition sur h la fonction f est-elle solution de (E)?

On définit par récurrence une suite de fonctions de $\mathbb R$ dans $\mathbb R$ en posant :

$$h_0: x \mapsto 1$$

et, pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$:

$$h_{n+1}(x) = h_n\left(\frac{x}{2}\right) - \frac{x}{2}\left(h_n\left(\frac{x}{2}\right)\right)^2$$

Pour $x \in [0,1]$, on définit $T_x : y \mapsto y - \frac{xy^2}{2}$.

- (c) Montrer que T_x est 1-lipschitzienne sur [0,1], et que [0,1] est stable par T_x .
- (d) Montrer que $(h_n)_n$ converge uniformément sur [0,1].
- (e) Montrer que (E) admet une solution continue, non constante, sur [0,1]
- (f) Montrer que (E) admet une solution continue, non constante, sur \mathbb{R}_+ .

53.18

Étudier les convergences simple, uniforme, uniforme sur tout segment pour la suite de fonctions :

(a)
$$f_n: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto (x(1-x))^n$

(b)
$$f_n : [0, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \frac{nx^3}{1 + n^2x}$

(c)
$$f_n: [0,1[\rightarrow \mathbb{R} \\ x \mapsto \operatorname{Min}\left(n, \frac{1}{\sqrt{1-x}}\right)]$$

53.19

Soit $(f_n)_n$ la suite de fonction définie sur \mathbb{R}_+ par :

$$f_0(x) = x$$
 et $f_{n+1}(x) = \frac{x}{2 + f_n(x)}$ pour $n \in \mathbb{N}$

Étudier la convergence simple et uniforme de la suite $(f_n)_n$ sur \mathbb{R}_+ .

53.20

Soit $f_0: \mathbb{R} \to \mathbb{R}$, une fonction positive et bornée. Étudier la convergence simple et la convergence uniforme de la suite de fonctions $(f_n)_n$ définie par :

$$\forall n, \forall x, f_{n+1}(x) = \ln(1 + f_n(x))$$

53.21

Pour $n \in \mathbb{N}^*$ et $x \geqslant 0$, on pose :

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$

- (a) Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}^*}$ sur $[0,+\infty[$.
- (b) Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $x \ge 0$, $0 \le f_n(x) \le e^x$.
- (c) Pour a > 0, montrer que $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [0, a].
- (d) La convergence est-elle uniforme sur $[0, +\infty[$?

53.22

Pour $n \in \mathbb{N}$ et x > 0, on pose :

$$f_n(x) = \operatorname{Arctan}\left(\frac{n+x}{x}\right)$$

- (a) Étudier la limite simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.
- (b) Utiliser le théorème de la double limite pour montrer que la convergence n'est pas uniforme sur $]0, +\infty[$.
- (c) Montrer qu'il y a convergence uniforme sur tout $]0,a]\subset]0,+\infty[.$

53.23

Existe-t-il une suite de polynômes convergeant uniformément sur $\mathbb R$ vers exp ?