Random Process

Jianbin Tan

1 Gaussian Processes

Definition. T is a index set and (Ω, \mathcal{F}, P) is a probability space, $(X_t)_{t \in T}$ is called a random process if $X_t \in \mathcal{F}$, $\forall t \in T$.

Note. (1) If X_t is measurable on $(\Omega_t, \mathcal{F}_t, P_t)$, we can assume that exist a new probability space (Ω, \mathcal{F}, P) and $X_t' \in \mathcal{F}$ s.t. $X_t' \stackrel{d}{=} X_t$ by Kolmogorov extension theorem.

- (2) The distribution of $(X_t)_{t\in T}$ is uniquely determined by all the distributions of $(X_t)_{t\in T_0}$. T_0 is a finite subset of T.
- (3) Normally, the index set T is some compact metric space with order. One may define a measurable structure on E: $(T, \mathcal{B}(T), \mu), \mu(T) < \infty$, if you are interesting in the stochastic integral $\int_T X_t f(t) \mu(dt)$.

Example. Random vector, random matrix and random field.

Example. Random walk: Z_i are independent, mean zero and $X_n = \sum_{k \le n} Z_k$.

Example. Brownian motion: $T = [0, \infty), X_0 = 0$:

- (a) $t_0 < t_1 < ... < t_n, X_{t_0}, X_{t_1} X_{t_0}, ..., X_{t_n} X_{t_{n-1}}$ are independent.
- (b) t > s, $X_t X_s \sim N(0, t s)$.
- (c) $X_t \in C([0,\infty))$ a.s. P.

Definition. A random process $(X_t)_{t\in T}$ is called a Gaussian process if for \forall finite $T_0\subset T$, $(X_t)_{t\in T_0}$ has a normal distribution.

Note. Noticed that if $(X_t)_{t\in T}$ is a mean zero Gaussian process, then it's completely determined by $EX_sX_t := K(s,t)$.

Example. If $(X_t)_{t\in T}$ is a Brownian motion, $EX_sX_t = EX_s(X_t - X_s) + EX_s^2 = s$ if t > s $\Rightarrow K(s,t) = \min(s,t)$. We can alternatively define the Brownian motion:

- (a) $(X_t)_{t \in T}$ is a mean zero Gaussian process.
- (b) $X_0 = 0$, $K(s,t) = \min(s,t)$.
- (c) $X_t \in C([0, \infty))$ a.s..

Definition. $(X_t)_{t\in T}$ is a mean zero Gaussian process with K(s,t), then we can define a canonical metric on T: $d_X(s,t) = ||X_t - X_s||_2 = (E(X_t - X_s)^2)^{1/2}$.

Note. (1) The canonical metric may not be a metric since $d_X(s,t) = 0 \rightarrow s = t$.

(2) Assume that $X_p=0$, d can determine the covariance function K since $K(s,t)=\frac{d^2(t,p)+d^2(s,p)-d^2(s,t)}{2}$. Then the canonical metric completely determines the mean zero Gaussian process.

Example. Let $T \subset \mathbb{R}^n$ and $g \sim N(0, I_n)$, $X_t = \langle g, t \rangle$, $t \in T$. $(X_t)_{t \in T}$ is called canonical Guassian processes and $d_X(s,t) = ||s-t||_2$.

2 Slepian's Inequality

Lemma 1. Let $X \sim N(0,1)$ and f is a differentiable function on \mathcal{R} s.t. $E|f'(X)| < \infty$ and $E|Xf(X)| < \infty$, we have Ef'(X) = EXf(X).

Proof. Let $f_n = fI_{[-n,n]}$, then $f_n(x) \to f(x)$.

$$Ef'_{n}(X) = \int_{\mathcal{R}} f'_{n}(x)p(x)dx = -\int_{\mathcal{R}} f_{n}(x)p'(x)dx = \int_{\mathcal{R}} f_{n}(x)p(x)xdx = EXf_{n}(X)$$

Let $n \to \infty$ and apply dominated convergence theorem.

Lemma 2. Let $X \sim N(0, \Sigma)$, $f: \mathbb{R}^n \to \mathbb{R}$ and ∇f exist, then $\Sigma E \nabla f(X) = EXf(X)$.

Proof. Let $\Sigma = I$, then

$$E\partial f(X)/\partial X_i = EX_i f(X) \Rightarrow E\nabla f(X) = EX f(X)$$

Let $Z = \Sigma^{-1/2}X$, then

$$EXf(X) = E \Sigma^{1/2} Zf(X) = \Sigma^{1/2} E \Sigma^{1/2} \nabla f(X) = \Sigma E \nabla f(X)$$

Note. $EX \nabla f(X)^T = \sum E \nabla^2 f(X)$ since $EX \frac{\partial f(X)}{\partial X_i} = \sum E(X \frac{\partial^2 f(X)}{\partial X_i \partial X_i})_j$.

Definition. X, Y are two Gaussian random vector valued in \mathbb{R}^n , we define a continuous interpolates: $Z(u) = \sqrt{u} \ X + \sqrt{1-u} \ Y, \ u \in [0,1].$

Lemma 3. Let $X \sim N(0, \Sigma)$, $Y \sim N(0, \Lambda)$ are independent, then for all twice-differentiable $f: \mathbb{R}^n \to \mathbb{R}$, we have $\frac{d}{du} Ef(Z(u)) = \frac{1}{2} tr((\Sigma - \Lambda) E\nabla^2 f(Z))$.

Proof.

$$\frac{d}{du}Ef(Z(u)) = E\nabla f(Z)^T \frac{dZ}{du}(u) = \frac{1}{2}E\nabla f(Z)^T \left(\frac{X}{\sqrt{u}} - \frac{Y}{\sqrt{1-u}}\right)$$

And $E \nabla f(Z)^T X$ and $E \nabla f(Z)^T Y$ can be represented as:

$$E \nabla f(Z)^T X = E \ tr(X \nabla f(Z)^T) = tr(E_Y E_X X \nabla f(Z)^T) = \sqrt{u} \ tr(\Sigma \ E \nabla^2 f(Z))$$
$$E \nabla f(Z)^T Y = E \ tr(Y \nabla f(Z)^T) = tr(E_X E_Y Y \nabla f(Z)^T) = \sqrt{1-u} \ tr(\Lambda \ E \nabla^2 f(Z))$$

Theorem 1. (Slepian's Inequality, functional form) Consider two mean zero Gaussian random vectors X and Y in \mathbb{R}^n , $X \sim N(0, \Sigma)$, $Y \sim N(0, \Lambda)$. Then $Ef(X) \geq Ef(Y)$ if:

(a)
$$||X_i||_2 = ||Y_i||_2$$
 and $||X_i - X_j||_2 \le ||Y_i - Y_j||_2$;

(a)
$$||X_i||_2 = ||Y_i||_2$$
 and $||X_i - X_j||_2 \le ||Y_i - Y_j||_2$;
(b) $f: \mathbb{R}^n \to \mathcal{R}$ s.t. $\frac{\partial^2 f}{\partial x_i \partial x_j} \ge 0$ for all $i \ne j$.

Proof. We can supposed that X and Y are independent, if not, we can create another independent X', Y' s.t. $X \stackrel{d}{=} X'$ and $Y \stackrel{d}{=} Y'$. Let $Z(u) = \sqrt{u} X + \sqrt{1-u} Y$, noticed that:

$$\frac{d}{du}Ef(Z(u)) = \frac{1}{2}tr((\Sigma - \Lambda) \ E\nabla^2 f(Z)) \ge 0 \Rightarrow Ef(X) \ge Ef(Y)$$

Corollary 1. (Slepian's Inequality) $P(\max_i X_i \ge \tau) \le P(\max_i Y_i \ge \tau)$.

Proof. Let $h_n(x) \geq 0$ is some smooth and non-increasing functions s.t. $h_n(x) \to I_{(-\infty,\tau)}(x)$. Let $f_n(x) = \prod_i h_n(x_i) \to \prod_i I_{(-\infty,\tau)}(x_i) = I_{(-\infty,\tau)}(\max_i x_i)$. Noticed that:

$$\frac{\partial^2 f_n}{\partial x_i \partial x_j} \ge 0 \Rightarrow Ef_n(X) \ge Ef_n(Y) \Rightarrow P(\max_i X_i < \tau) \ge P(\max_i Y_i < \tau)$$

Note. $EX = \int_0^\infty P(X > t) dt - \int_{-\infty}^0 P(X < t) dt \Rightarrow E \max_i X_i \leq E \max_i Y_i$. For two Gaussian Processes $(X_t)_{t \in T}$ and $(Y_t)_{t \in T}$, $E \sup X_t \leq E \sup Y_t$ also achieves.

Theorem 2. (Sudakov-Fernique Inequality) We drop the condition: $||X_t||_2 = ||Y_t||_2$, which means that if two pseudo-metric d_X and d_Y defined on T s.t. $d_X(s,t) \leq d_Y(s,t)$, then $E \sup X_t \leq E \sup Y_t$ holds.

Proof. Similarly, we just prove $E \max_i X_i \leq E \max_i Y_i$, $X \sim N(0, \Sigma)$, $Y \sim N(0, \Lambda)$. Let $f(z) = \frac{1}{\beta} \log(\sum_i e^{\beta z_i})$, it's easy to show that $f(x) \to \max_i x_i$, if $\beta \to \infty$.

Let $\frac{\partial f}{\partial Z_i}(Z) = \frac{e^{\beta Z_i}}{\sum_m e^{\beta Z_m}} := P_i$ and $\frac{\partial^2 f}{\partial Z_i \partial Z_j}(Z) = \beta(\delta_{ij}P_i - P_iP_j)$. The next step is to show $tr((\Sigma - \Lambda) \ E \nabla^2 f(Z)) \ge 0$:

Since $\sum_{i,j} (EX_i^2 + EX_j^2 - EY_i^2 - EY_j^2)(\delta_{ij}P_i - P_iP_j) = \sum_{i,j} (EX_i^2 - EY_i^2 + EX_j^2 - EY_j^2)\delta_{ij}P_i - \sum_{i,j} (EX_i^2 - EY_i^2 + EX_j^2 - EY_j^2)P_iP_j = 0$

$$\sum_{i,j} (\Sigma_{ij} - \Lambda_{ij}) (\delta_{ij} P_i - P_i P_j) = \sum_{i,j} (EY_i Y_j - EX_i X_j) (\delta_{ij} P_i - P_i P_j)$$

$$= \frac{1}{2} (\sum_{i,j} (E(X_i - X_j)^2 - E(Y_i - Y_j)^2) (\delta_{ij} P_i - P_i P_j) - \sum_{i,j} (EX_i^2 + EX_j^2 - EY_i^2 - EY_j^2) (\delta_{ij} P_i - P_i P_j))$$

$$= -\frac{1}{2} (\sum_{i \neq j} (E(X_i - X_j)^2 - E(Y_i - Y_j)^2) P_i P_j \ge 0$$

Corollary 2. (Norms of Gaussian random matrices) Let $A \in M_{m \times n}(\mathcal{R})$ with iid N(0,1), then $E||A||_2 \leq \sqrt{m} + \sqrt{n}$.

Proof. Note that $||A||_2 = \max_{u \in S^{n-1}, v \in S^{m-1}} \langle Au, v \rangle_2$ and $\langle Au, v \rangle_2 = v^T Au = \sum_{i,j} v_i A_{ij} u_j$ is Gaussian distribution, which mean is 0 and variance is 1. We can view $||A||_2$ is a Gaussian process $\{X_{uv}\}$ in $S^{n-1} \times S^{m-1}$ and

$$E(X_{uv} - X_{wz})^2 = E(\sum_{i,j} A_{ij} (v_i u_j - z_i w_i))^2 = \sum_{i,j} (v_i u_j - z_i w_j)^2 = ||uv^T - wz^T||_F^2$$
$$= ||(u - w)v^T + w(v - z)^T||_F^2$$

And $||\alpha\beta^T||_F^2 = tr(\alpha\beta^T\beta\alpha^T) = \beta^T\beta\alpha^T\alpha \Rightarrow ||(u-w)v^T + w(v-z)^T||_F^2 = ||u-w||_2^2 + ||v-z||_2^2 + 2(1-v^Tz)(w^Tu-1) \leq ||u-w||_2^2 + ||v-z||_2^2.$

Let $Y_{uv} = \langle g, u \rangle_2 + \langle h, v \rangle_2$, $g \sim N(0, I_n)$, $h \sim N(0, I_m)$ independent. Then

$$E(Y_{uv} - Y_{wz})^2 = ||u - w||_2^2 + ||v - z||_2^2 \Rightarrow E||A||_2 \le E \sup\{\langle g, u \rangle_2 + \langle h, v \rangle_2\}$$

$$\le E||g||_2 + E||h||_2 = (E||g||_2^2)^{1/2} + (E||h||_2^2)^{1/2} = \sqrt{n} + \sqrt{m}$$

Lemma 4. $\{X_n\}_{n\leq N}$ iid standard normal distribution, then $E \max_n X_n \simeq \sqrt{\log N}$.

Corollary 3. (Sudakov's Minoration Inequality) $(X_t)_{t\in T}$ is a mean zero Gaussian process and recall $\mathcal{N}(E,d,\varepsilon)$ is the smallest covering number of T by ε -net. Then

$$E \sup X_t \ge c\varepsilon \sqrt{\log \mathcal{N}(T, d, \varepsilon)}$$

Proof. If (T,d) is totally bounded, recall the ε -separated subset E of T: $d(x,y) > \varepsilon$, $x,y \in E$. And \mathcal{N} denotes the maximal number of |E|, then $\mathcal{N} \geq \mathcal{N}(T,d,\varepsilon)$ and $E(X_t - X_s)^2 = d_X^2(s,t) \geq \varepsilon^2$, if $s,t \in E$. Let $Y_t = \frac{\varepsilon}{\sqrt{2}}g_t$, $g_t \sim N(0,1)$, then $d_Y(s,t) = \varepsilon^2$:

$$E \sup_{t \in T} X_t \ge E \sup_{t \in E} X_t \ge E \sup_{t \in E} Y_t = \frac{\varepsilon}{\sqrt{2}} E \sup_{t \in E} g_t \ge c\varepsilon \sqrt{\log \mathcal{N}} \ge c\varepsilon \sqrt{\log \mathcal{N}(T, d, \varepsilon)}$$

Example. If $(X_t)_{t\in T}$ is a canonical Gaussian process, then $\forall \ \varepsilon > 0$, $E\sup_{t\in T} \langle g, t \rangle_2 \ge c\varepsilon\sqrt{\log \mathcal{N}(E, d, \varepsilon)}$, d is Euclidean distance.

3 Gaussian Width

Definition. $E \sup_{t \in T} \langle g, t \rangle_2$ above is defined as the Gaussian width of $T: \omega(T)$, which is a basic geometric quantities associated with subset $T \subset \mathbb{R}^n$.

Property 1.

- (a) $\omega(T) < \infty \Leftrightarrow T$ is bounded.
- (b) $U \in M_{nn}(\mathcal{R})$ is orthonormal matrix and $y \in \mathcal{R}^n$, then $\omega(UT + y) = \omega(T)$.
- (c) $\omega(T) = \omega(conv(T))$.
- (d) $\omega(A+B) = \omega(A) + \omega(B)$ and $\omega(aT) = |a|\omega(T)$.
- (e) $\omega(T) = \frac{1}{2}\omega(T-T) = \frac{1}{2}E\sup_{x,y\in T}\langle g, x-y\rangle_2.$
- $(f) \frac{1}{\sqrt{2\pi}} diam(T) \le \omega(T) \le \frac{\sqrt{n}}{2} diam(T).$

Proof.

- (a) " \Rightarrow ": $\omega(T) < \infty \Rightarrow T$ is totally bounded $\Rightarrow T$ is bounded. " \Leftarrow ": $\langle g, t \rangle_2 \le ||g||_2 ||t||_2 \Rightarrow \omega(T) \le (\sup_{t \in T} ||t||_2) E||g||_2$.
- $(b) \langle Ut+y,g\rangle_2 = \langle t,U^Tg\rangle_2 + \langle y,g\rangle_2 \Rightarrow \omega(UT+y) = E\sup_{t\in T} \langle Ut+y,g\rangle_2 = E\sup_{t\in T} \langle t,U^Tg\rangle_2 = E\sup_{t\in T} \langle t,g\rangle_2.$
- $\begin{array}{l} (c) \ \langle \sum_n a_n t_n, g \rangle_2 = \sum_n a_n \langle t_n, g \rangle_2 \leq \sup_{t \in T} \langle t, g \rangle_2 \Rightarrow \sup_{h \in conv(T)} \langle h, g \rangle_2 \leq \sup_{t \in T} \langle t, g \rangle_2 \Rightarrow \\ \omega(conv(T)) \leq \omega(T) \Rightarrow \omega(conv(T)) = \omega(T). \end{array}$
- $(d) \ \omega(A+B) = E \sup_{t \in A+B} \langle t, g \rangle_2 = E \sup_{t_1 \in A, t_2 \in B} \langle t_1 + t_2, g \rangle_2 = \omega(A) + \omega(B). \ \omega(aT) = E \sup_{t \in T} \langle at, g \rangle_2 = |a|E \sup_{t \in T} \langle t, sign(a)g \rangle_2 = |a|\omega(T).$
 - (e) $\omega(T-T)=2\ \omega(T)$.
- $(f) \ \omega(T) \ge \frac{1}{2} E|\langle g, x y \rangle_2|, \ \forall \ x, y \in T.$ Notice that $\langle g, x y \rangle_2 \sim N(0, ||x y||_2^2)$. Let $X \sim N(0, \sigma^2)$,

$$|E|X| = \int |x|p(x)dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_0^\infty \exp(-\frac{x^2}{2\sigma^2})dx^2 = \sqrt{\frac{2\sigma^2}{\pi}}$$

Then
$$\omega(T) \ge \frac{1}{\sqrt{2\pi}} ||x - y||_2 \Rightarrow \omega(T) \ge \frac{1}{\sqrt{2\pi}} diam(T)$$

$$\omega(T) \le \frac{1}{2} \sup_{x,y \in T} ||x - y||_2 E||g||_2 \le \frac{\sqrt{n}}{2} \sup_{x,y \in T} ||x - y||_2.$$

Lemma 5. If $g \sim N(0, I)$, then $r = ||g||_2$ and $\theta := \frac{g}{r}$ are independent.

Note. If $g \sim N(0, I_n)$, $g = r\theta$. Moreover, $r \to \sqrt{n}$ and $\theta \sim Unif(S^{n-1})$. We can approximately think $N(0, I_n) \approx \sqrt{n} \ Unif(S^{n-1})$.

Definition. $\omega_s(T) := E \sup_{t \in T} \langle \theta, t \rangle_2 = \frac{1}{2} E \sup_{x,y \in T} \langle \theta, x - y \rangle_2, \ \theta \sim Unif(S^{n-1}).$

Note. $\omega(T) = E \sup_{t \in T} \langle t, r\theta \rangle_2 = Er \ \omega_s(T) \approx \sqrt{n} \ \omega_s(T)$. $\omega_s(T)$ indeed is the mean width of T.

Example. Let $B_p^n = \{x \in \mathcal{R}^n; ||x||_p \le 1\}, \ \omega_s(B_p^n) = \int_{S^{n-1}} \frac{1}{||\theta||_p} d\theta :$

$$\omega(B_p^n) = \int_0^\infty r \ P(dr) \int_{S^{n-1}} \frac{1}{||\theta||_p} d\theta = E \frac{||g||_2^2}{||g||_q}$$

If p=2, $\omega(B_p^n)=Er$.

Definition. We define a s squared version of Gaussian width $h(T) := \sqrt{E \sup_t \langle g, t \rangle_2^2}$, $g \sim N(0, I_n)$.

Property 2. $2\omega(T) \leq h(T-T) \leq 2C \ \omega(T)$.

Definition. For a bounded $T \in \mathcal{R}^n$, the statistical dimension of T: $d(T) = \frac{h(T-T)^2}{diam(T)^2} \approx \frac{\omega(T)^2}{diam(T)^2}$.

Theorem 3. $d(T) \leq \dim(T)$.

Proof.

$$\begin{split} h(T-T)^2 &= E \sup_{t,s \in T} \langle g,t-s \rangle_2^2 \leq E \sup_{z \in diam(T)B_2^{\dim(T)}} \langle g,z \rangle_2^2 = diam(T)^2 E \sup_{z \in B_2^{\dim(T)}} |g||_2^2 \langle g,z \rangle_2^2 = diam(T)^2 E \sup_{z \in B_2^{\dim(T)}} |g||_2^2 \langle g,z \rangle_2^2 = diam(T)^2 \dim(T). \end{split}$$

Note. If T is a Ball, d(T) = dim(T).

Example. $A \in M_{mn}(\mathcal{R})$, then

$$h(AB_2^n - AB_2^n) = E \sup_{t,s \in AB_2^n} \langle g, t - s \rangle_2^2 = n \ E \sup_{t,s \in AB_2^n} \langle \theta, t - s \rangle_2^2$$

Noticed that $\partial AB_2^n = \{x \in \mathcal{R}^n; \sum_{i \le n} \frac{x_i^2}{\lambda_i^2} = 1\}$, λ_i is the singular value of $A \Rightarrow h(AB_2^n - AB_2^n) = 4n \int_{S^{n-1}} \frac{1}{\sum_{i \le n} \frac{\theta_i^2}{\lambda^2}} d\theta = 4||A||_F^2 \Rightarrow d(AB_2^n) = \frac{||A||_F^2}{||A||_2^2}$.

Note. $r(A) = d(AB_2^n)$ is the stable rank of A.

4 Random Projection s of sets

 $G_{n,m}$ is the collection of all the m dimensional subspace of \mathbb{R}^n and P is a random projection from \mathbb{R}^n onto $E \sim Unif(G_{n,m})$. And without loss of generality, we can assume that rows of P are orthonormal.

Theorem 4. $P(diam(PT) \leq C(\omega_s(T) + \sqrt{\frac{m}{n}}diam(T))) \geq 1 - 2e^{-m}$.

Proof.

$$diam(PT) = \sup_{x \in T-T} ||Qx||_2 = \sup_{x \in T-T} \max_{z \in S^{m-1}} \langle Qx, z \rangle_2. \text{ Let } \mathcal{N} = \mathcal{N}(S^{m-1}, 1/2)$$

$$\Rightarrow |\mathcal{N}| \leq 5^m.$$

$$\sup_{x \in T - T} \max_{z \in S^{m-1}} \langle Qx, z \rangle_2 \le 2 \sup_{x \in T - T} \max_{z \in \mathcal{N}} \langle Qx, z \rangle_2 = 2 \max_{z \in \mathcal{N}} \sup_{x \in T - T} \langle x, Q^T z \rangle_2.$$

Let $z \sim Unif(S^{m-1})$, $E \sup_{x \in T-T} \langle x, Q^T z \rangle_2 = 2\omega_s(T)$. Note that $f(z) = \sup_{x \in T-T} \langle x, Q^T z \rangle_2$ is Lipschitz function and its norm is diam(T).

$$P(\sup_{x \in T-T} \langle x, Q^T z \rangle_2 \ge 2\omega_s(T) + t)) \le 2\exp(-\frac{cnt^2}{diam(T)^2})$$

Then $P(\max_{z \in \mathcal{N}} \sup_{x \in T - T} \langle x, Q^T z \rangle_2 \ge 2\omega_s(T) + t)) \le 2|\mathcal{N}| \exp(-\frac{cnt^2}{diam(T)^2})$. Let $t = C\sqrt{\frac{m}{n}}diam(T)$, if C is large enough, $P(\frac{1}{2}diam(QT) \ge 2\omega_s(T) + C\sqrt{\frac{m}{n}}diam(T))) \le 2e^{-m}$. \square

Note. Let m be the phase transition:

$$m = \frac{(\sqrt{n}w_s(T))^2}{\operatorname{diam}(T)^2} \approx \frac{w(T)^2}{\operatorname{diam}(T)^2} \approx d(T)$$

Then

$$\operatorname{diam}(PT) \leq \left\{ \begin{array}{ll} C\sqrt{\frac{m}{n}}\operatorname{diam}(T), & m \geq d(T) \\ Cw_s(T), & m \leq d(T) \end{array} \right.$$