A Hybrid Deep Learning Approach for Bottleneck Detection in IoT

ABSTRACT

Cloud computing is perhaps the most enticing innovation in the present figuring situation. It gives an expense-effective arrangement by diminishing the enormous forthright expense of purchasing equipment foundations and processing power. Fog computing is an additional help to cloud infrastructure by utilizing a portion of the less-registered undertaking at the edge devices, reducing the end client's reaction time, such as IoT. However, most of the IoT devices are resource-constrained, and there are many devices that cyber attacks could target. Cyber-attacks such as bottleneck, Dos, DDoS, and botnets are still significant threats in the IoT environment. Botnets are currently the most significant threat on the internet. A set of infected systems connected online and directed by an adversary to carry out malicious actions without authorization or authentication is known as a botnet. A botnet can compromise the system and steal the data. It can also perform attacks, like Phishing, spamming, and more. To overcome the critical issue, we exhibit a novel botnet attack detection approach that could be utilized in fog computing situations to dispense with the attack using the programmable nature of the software-defined network (SDN) environment. We carefully tested the most recent dataset for our proposed technique, standard and extended performance evaluation measures, and current DL models. To further illustrate overall performance, our findings are crossvalidated. The proposed method performs better than previous ones in correctly identifying 99.98% of multi-variant sophisticated bot attacks. Additionally, the time of our suggested method is 0.022(ms), indicating good speed efficiency results.

EXISTING SYSTEM

Several researchers are focusing on detecting botnet attacks these days [28]_[30]. The main requirement in botnet detection is identifying the infected devices before they can exploit the network by initiating malicious activity. Authors propose numerous methods that claim to secure the network against botnet attacks. These approaches focus on anomaly detection schemes using artificial intelligence, primarily ML and DL algorithms. In various research approaches, authors [21]_[23] used ML and hybrid ML techniques for botnet detection such as BayesNet (BN), Support Vector Machine (SVM), J48, Decision Tree (DT), and Naive Bayes (NB). Furthermore, Machine Learning methods are categorized as the supervised, the unsupervised, or the semi-supervised learning.

Parakash *et al.* performed experiments using three well-known machine learning algorithms to detect DDoS packets: K-Nearest Neighbors algorithm (KNN), SVM, and NB. The findings show that the KNN performs better in detecting DDoS attacks having 97% accuracy, while SVM and NB algorithms achieve 82% and 83% accuracy, respectively [33]. In [34], the authors proposed a detection scheme that uses the SVM algorithm with their own proposed idle timeout adjustment algorithm (IA). They demonstrated the way their proposed methodology outperforms and achieves better results. In another work, [35] uses, NB, SVM and neural network. Results show that the neural network and NB models performed outclass and achieved 100% accuracy, while the SVM model was at 95% accuracy. Ye *et al.* [36] also used the SVM algorithm and achieved an average accuracy of 95.24%. In [37], authors performed experiments using various algorithms such as Naive Bayesian and decision tree classifier algorithms. They achieved a 99.6% detection accuracy rate.

DL algorithms are the subset of ML. That can deal with large datasets and unstructured data. ML algorithms do not provide better results for extensive data produced by IoT devices and unstructured data [38]. Hence DL algorithms are

preferable for IoT compared to traditional ML algorithms such as KNN, SVM, NB, and others. Different DL and hybrid DL approaches are applied for detecting various kinds of malware in IoT devices [39]_[41]. In [42], the authors described a technique for defending the IoT environment against malware and cyber attacks, such as DDoS, brute force, bot, and infiltration. This strategy makes use of DL in SDN.

Disadvantages

- An existing system is not hybrid deep learning detection policy to improve the efficiency and effectiveness of the SDN-based fog computing architecture. Results show that the proposed scheme works better and provides a better detection rate.
- > can't customize the policies and applications dues to its programmable nature.

Proposed System

- The system suggests an efficient deep learning framework for detecting Botnet attacks in an SDN-based fog computing environment.
- ➤ The practical experiment is performed on N_BaIoT Dataset, which comprises both Botnet attack and benign samples.
- ➤ The proposed technique is evaluated against well-known performance evaluation metrics of the machine and deep learning algorithms known as precision, F1-score, recall, accuracy, and so forth.
- For unbiased results, we also applied the technique of 10-fold-cross-validation.

Advantages

System can manage the secure connection for thousands of devices connected over the fog for data transmission.

System can provide real-time monitoring and awareness with low latency.

System can dynamically balance the load with its flexible architecture.

SYSTEM REQUIREMENTS

> H/W System Configuration:-

> Processor - Pentium –IV

➤ RAM - 4 GB (min)

➤ Hard Disk - 20 GB

Key Board - Standard Windows Keyboard

➤ Mouse - Two or Three Button Mouse

➤ Monitor - SVGA

SOFTWARE REQUIREMENTS:

❖ Operating system : Windows 7 Ultimate.

Coding Language: Python.

*** Front-End** : Python.

❖ Back-End : Django-ORM

❖ Designing : Html, css, javascript.

❖ Data Base : MySQL (WAMP Server).