ГУАП

КАФЕДРА № 34

ТЧЕТ АЩИЩЕН С ОЦЕНКОЙ			
РЕПОДАВАТЕЛЬ			
Старший преподаватель			Жиданов К.А.
должность, уч. степень, звание		подпись, дата	инициалы, фамилия
ОТЧ	ЕТ О ЛА	БОРАТОРНОЙ РАБОТ	E
		по курсу:	
ER.	ВЫКИ ПР	ОГРАММИРОВАНИЯ	
АБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. 31	45		А. А. Москаленко
	 -	подпись, дата	инициалы, фамилия

Санкт-Петербург 2022

Вариант №1

Вычислить значение синуса с заданной точностью

Цель работы

Изучить методы разработки консольных приложений, способы их запуска и обработки кодов возврата.

Ход работы

1. Реализуем на языке Си функцию, вычисляющую корень квадратный из двух. Данная функция будет вычислять корень с помощью вавилонского метода по формуле:

Код функции:

```
double sin_acc( double x ) {
    double tmp = x;
    double sum = tmp;
    int n = 0;

while (abs_v(tmp) > E) {
        n++;
        tmp = tmp * (-1) * (x * x) / (2 * n) / (2 * n + 1);
        sum += tmp;
    }

    return sum;
}
```

- **2.** Составляем набор эталонных параметров и результатов для проверки работы программы. В качестве параметра будет выступать точность вычисления корня квадратного.
- 3. Реализуем тестирующую функцию

```
int test_sin() {
    int r = 0;

r = r || (abs_v(abs_v(sin_acc(0)) - 0 >= E)));
    r = r || (abs_v(abs_v(sin_acc(PI/2)) - 1 >= E));
    r = r || (abs_v(abs_v(sin_acc(PI)) - 0 >= E));
    r = r || (abs_v(abs_v(sin_acc(3 * PI/2)) - 1 >= E));
    r = r || (abs_v(abs_v(sin_acc(2 * PI)) - 0 >= E));

// wrong:
    r = r || (abs_v(abs_v(sin_acc(PI/3)) - 0.866) >= E);
    return r;
}
```

Для корректной работы данной функции напишем вспомогательную функцию, возвращающую модуль числа:

```
double abs_v( double x ) {
    if (x > 0) return x;
    else return -1 * x;
}
```

4. Реализуем программу, возвращающую код ошибки, соответствующий результату работы тестирующий функции:

```
#define E 0.001
#define PI 3.1415
double abs v( double x ) {
       if (x > 0) return x;
        else return -1 * x;
}
double sin acc( double x ) {
        double tmp = x;
        double sum = tmp;
        int n = 0;
        while (abs v(tmp) > E) {
                n++;
                tmp = tmp * (-1) * (x * x) / (2 * n) / (2 * n + 1);
                sum += tmp;
        }
        return sum;
}
int test sin() {
        int r = 0;
        r = r \mid \mid (abs_v(abs_v(sin_acc(0)) - 0 >= E)));
        r = r \mid \mid (abs_v(abs_v(sin_acc(PI/2)) - 1 \ge E));
        r = r \mid \mid (abs_v(abs_v(sin_acc(PI)) - 0 >= E));
        r = r \mid \mid (abs_v(abs_v(sin_acc(3 * PI/2)) - 1 \ge E));
        r = r \mid \mid (abs_v(abs_v(sin_acc(2 * PI)) - 0 >= E));
    // wrong:
    r = r \mid \mid (abs \ v(abs \ v(sin \ acc(PI/3)) - 0.866) >= E);
        return r;
}
int main() {
       return test sin();
}
```

5. Компилируем программу, при имеющемся эталонном наборе данных программа работает корректно.

При добавлении неправильных данных в набор эталонных данных программа выдаёт код ошибки 1.