Equazioni differenziali 2

Equazioni lineari del secondo ordine

Sono le equazioni della forma

$$a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = g(t),$$

dove $a_i(t)$ (i = 0, 1, 2) e g(t) sono funzioni continue in $I \subseteq \mathbb{R}$.

Se g(t) = 0, l'equazione si dice *omogenea*. In questo caso, si usa denotare con z(t) la funzione incognita.

Se $a_2(t) \neq 0$ per ogni $t \in I$, l'equazione si può scrivere in forma normale,

$$y''(t) + a(t)y'(t) + b(t)y(t) = f(t)$$
.

Se *a* e *b* sono costanti l'equazione si dice a coefficienti costanti.

Per le equazioni del secondo ordine il problema di Cauchy consiste nell'assegnare ad un dato istante t_0 le condizioni iniziali

$$y(t_0) = y_0, y'(t_0) = y_1.$$

(Nel caso delle equazioni della dinamica, posizione e velocità iniziali).

Equazioni differenziali 2 2 / 21

Esempi.

L'equazione delle oscillazioni forzate

$$y'' + 2\delta y' + \omega^2 y = f(t), \qquad \delta \ge 0, \quad \omega \ge 0,$$

modellizza le vibrazioni di un sistema meccanico o la corrente elettrica in un circuito RLC.

Le equazioni della forma

$$t^2y'' + aty' + by = g(t)$$
, a, b costanti,

si scrivono in forma normale dividendo per t^2 nei due intervalli t>0 e t<0. Se g=0, l'equazione omogenea

$$t^2z'' + atz' + bz = 0,$$

prende il nome di Equazione di Eulero.

Le soluzioni dell'equazione omogenea (Hermite)

$$z'' - 2tz' + 2nz = 0, \qquad n \in \mathbb{N},$$

definiscono le autofunzioni dell'oscillatore armonico quantistico.

Equazioni differenziali 2

Sulle soluzioni del problema di Cauchy per le equazioni lineari del secondo ordine abbiamo:

Teorema.

Siano a(t), b(t), f(t), funzione continue in un intervallo I. Per ogni $t_0 \in I$ e per ogni $y_0, y_1 \in \mathbb{R}$, il problema

$$\begin{cases} y''(t) + a(t)y'(t) + b(t)y(t) = f(t) \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$

ha un'unica soluzione in $C^2(I)$.

Osservazioni.

Si tratta di un risultato di carattere *globale* (analogo a quello per le equazioni lineari del primo ordine).

Il teorema seguirà da un risultato generale di esistenza e unicità (globale) per i *sistemi* di equazioni differenziali.

Equazioni differenziali 2 4 / 21

Struttura dell'integrale generale

Denotiamo con $L: \mathcal{C}^2(I) \to \mathcal{C}^0(I)$ l'operatore differenziale definito da

$$y(t)\mapsto Ly(t):=y''(t)+a(t)y'(t)+b(t)y(t).$$

La generica equazione del secondo ordine in forma normale si scrive allora Ly(t) = f(t).

L'osservazione fondamentale è che L è un *operatore lineare* tra gli spazi vettoriali $\mathcal{C}^2(I)$ e $\mathcal{C}^0(I)$. Da questa proprietà si ricava:

Teorema

- i) L'insieme delle soluzioni dell'equazione *omogenea* Lz(t) = 0 è uno spazio vettoriale (sottospazio di $\mathcal{C}^2(I)$);
- ii) Data una soluzione $\bar{y}(t)$ dell'equazione *completa* $(L\bar{y}(t) = f(t))$ l'integrale generale si ottiene sommando a $\bar{y}(t)$ l'integrale generale dell'equazione omogenea.

Equazioni differenziali 2 5 / 21

Dimostrazione.

Se $z_1(t), z_2(t)$ soddisfano $Lz_1(t) = Lz_2(t) = 0$ e $c_1, c_2 \in \mathbb{R}$, allora

$$L\big[c_1z_1(t)+c_2z_2(t)\big]=c_1Lz_1(t)+c_2Lz_2(t)=0\,.$$

Quindi, qualunque *combinazione lineare* di soluzioni dell'equazione omogenea è ancora soluzione dell'equazione. Questo dimostra i).

Se ora \bar{y} risolve $L\bar{y}(t) = f(t)$ e z(t) è soluzione dell'equazione omogenea,

$$L[\bar{y}(t)+z(t)]=L\bar{y}(t)+Lz(t)=f(t)+0=f(t).$$

Dunque, aggiungendo a una soluzione dell'equazione completa una soluzione dell'equazione omogenea si ottiene ancora una soluzione dell'equazione completa.

Viceversa, se $y(t) \neq \bar{y}(t)$ è un'altra soluzione dell'equazione completa,

$$L[y(t) - \bar{y}(t)] = Ly(t) - L\bar{y}(t) = f(t) - f(t) = 0.$$

Si conclude che *tutte* le soluzioni dell'equazione completa si possono scrivere nella forma $y(t) = \bar{y}(t) + z(t)$, dove z(t) risolve Lz(t) = 0. \diamond

Equazioni differenziali 2 6 / 21

Teorema.

Lo spazio vettoriale delle soluzioni di un'equazione lineare omogenea del secondo ordine ha dimensione 2.

Dimostrazione.

Mostreremo che si possono sempre trovare due soluzioni *linearmente indipendenti* dell'equazione Lz=0 tali che ogni altra soluzione è combinazione lineare di queste due.

Fissato $t_0 \in I$, siano $z_1(t)$, $z_2(t)$, le soluzioni in I rispettivamente dei problemi di Cauchy

$$Lz_1(t) = 0$$
, $z_1(t_0) = 1$, $z'_1(t_0) = 0$;

$$Lz_2(t) = 0$$
, $z_2(t_0) = 0$, $z_2'(t_0) = 1$.

L'esistenza di tali soluzioni è garantita dal teorema di esistenza e unicità. Se per assurdo fossero linearmente dipendenti, avremmo $z_2(t) = \lambda z_1(t)$ per ogni $t \in I$; ma $z_1(t_0) = 1$ e $z_2(t_0) = 0$, per cui deve essere $\lambda = 0$; ma allora si avrebbe $z_2(t) = 0$ per ogni $t \in I$, impossibile.

Sia ora $z(t) \in C^2(I)$ una soluzione dell'equazione omogenea e poniamo $c_1 := z(t_0), c_2 := z'(t_0)$.

Definiamo la funzione

$$\bar{z}(t) := c_1 z_1(t) + c_2 z_2(t)$$

Dalla definizione delle soluzioni z_1 e z_2 , si vede facilmente che \bar{z} risolve il problema di Cauchy

$$L\bar{z}(t) = 0$$
, $\bar{z}(t_0) = c_1$, $\bar{z}'(t_0) = c_2$,

cioè con i medesimi valori iniziali di z(t).

Ancora per il teorema di esistenza e unicità si conclude che $\bar{z}(t) = z(t)$, ovvero che ogni soluzione di Lz = 0 è combinazione lineare di z_1 e z_2 . \diamond

Dai precedenti teoremi si deduce che per scrivere l'integrale generale di un'equazione lineare del secondo ordine Ly = f occorre:

- a) trovare due soluzioni linearmente indipendenti z_1 , z_2 dell'equazione omogenea Lz = 0;
- b) procurarsi una (qualsiasi) soluzione \bar{y} dell'equazione completa.

L'integrale generale sarà allora $y(t) = \bar{y}(t) + c_1 z_1(t) + c_2 z_2(t)$, con c_1 , c_2 costanti arbitrarie.

Esempio.

Si consideri l'equazione

$$y''(t) + \frac{1}{t}y'(t) - \frac{1}{t^2}y(t) = \frac{1}{t^2}$$
.

L'equazione omogenea associata $z''(t)+\frac{1}{t}\,z'(t)-\frac{1}{t^2}\,z(t)=0$ ha le due soluzioni indipendenti $z_1(t)=t$, $z_2(t)=1/t$, come si verifica facilmente. Inoltre la funzione costante $\bar{y}=-1$ è una soluzione particolare dell'equazione completa.

L'integrale generale è allora

$$y(t) = c_1 t + c_2 \frac{1}{t} - 1.$$

Equazioni differenziali 2 9 / 21

Equazioni a coefficienti costanti

Nel caso delle equazioni omogenee a coefficienti costanti

$$z''(t) + az'(t) + bz(t) = 0,$$
 $a, b \in \mathbb{R},$

è sempre possibile trovare l'integrale generale.

Cerchiamo una soluzione nella forma $z(t)=e^{\lambda t}$, dove $\lambda \in \mathbb{C}$. Sostituendo nell'equazione si trova:

$$e^{\lambda t}(\lambda^2 + a\lambda + b) = 0$$
.

Dunque l'esponenziale è una soluzione (definita in \mathbb{R}) se λ è una radice dell'equazione caratteristica

$$\lambda^2 + a\lambda + b = 0.$$

Si distinguono tre casi:

- $a^2 > 4b \Rightarrow$ due radici reali e distinte λ_1, λ_2 ; $\left[(-a \pm \sqrt{\Delta})/2 \right]$
- 2 $a^2 = 4b \Rightarrow$ una radice reale doppia $\lambda = -a/2$;
- **3** $a^2 < 4b \Rightarrow$ due radici complesse coniugate $\alpha \pm i\beta$; $\left[(-a \pm i\sqrt{-\Delta})/2 \right]$

Nel primo caso abbiamo $z_1(t)=e^{\lambda_1 t}, z_2(t)=e^{\lambda_2 t}$, linearmente indipendenti, per cui l'integrale generale è

$$z(t)=c_1\,e^{\lambda_1t}+c_2\,e^{\lambda_2t}.$$

Nel secondo caso, due soluzioni indipendenti sono $z_1(t)=e^{\lambda t},\,z_2(t)=t\,e^{\lambda t}$, e quindi

$$z(t) = c_1 e^{\lambda t} + c_2 t e^{\lambda t}$$

è l'integrale generale.

Nel terzo caso, le due soluzioni $e^{(\alpha+i\beta)t}$, $e^{(\alpha-i\beta)t}$, sono indipendenti, ma assumono valori complessi.

Ricordando le formule

$$e^{(\alpha \pm i\beta)t} = e^{\alpha t}(\cos(\beta t) \pm i\sin(\beta t))$$

e la linearità dell'equazione, possiamo definire le soluzioni reali:

$$\begin{aligned} z_1(t) &= \frac{1}{2} (e^{(\alpha+i\beta)t} + e^{(\alpha-i\beta)t}) = e^{\alpha t} \cos(\beta t) \,, \\ z_2(t) &= \frac{1}{2i} (e^{(\alpha+i\beta)t} - e^{(\alpha-i\beta)t}) = e^{\alpha t} \sin(\beta t) \,, \end{aligned}$$

da cui l'integrale generale

$$z(t) = e^{\alpha t} (c_1 \cos(\beta t) + c_2 \sin(\beta t)).$$

Equazioni differenziali 2 11 / 21

Esempio

Scriviamo l'integrale generale dell'equazione delle oscillazioni smorzate (libere)

$$z''(t) + 2\delta z'(t) + \omega^2 z(t) = 0,$$

nei tre casi:

$$z(t) = c_1 e^{(-\delta + \sqrt{\delta^2 - \omega^2})t} + c_2 e^{(-\delta - \sqrt{\delta^2 - \omega^2})t};$$

$$\delta = \omega$$
,

$$z(t) = c_1 e^{-\delta t} + c_2 t e^{-\delta t};$$

$$\delta < \omega$$
,

$$z(t) = e^{-\delta t} \Big[c_1 \cos \left(\sqrt{\omega^2 - \delta^2} \, t \right) + c_2 \sin \left(\sqrt{\omega^2 - \delta^2} \, t \right) \Big].$$

Verificare che nell'ultimo caso l'integrale generale si può scrivere

$$z(t) = A e^{-\delta t} \cos(\sqrt{\omega^2 - \delta^2} t + \phi),$$

con A e ϕ costanti arbitrarie (oscillazioni smorzate di frequenza $\sqrt{\omega^2 - \delta^2}/2\pi$).

Risoluzione dell'equazione completa

In accordo con la teoria svolta, per ottenere l'integrale generale dell'equazione completa

$$y''(t) + ay'(t) + by(t) = f(t),$$

è ora sufficiente trovarne una soluzione particolare.

Se il termine f(t) ha una forma speciale (per esempio un polinomio o un esponenziale) si può cercare una soluzione di forma simile ($metodo\ di\ somiglianza$).

Schematicamente (assumendo $b \neq 0$) si procede nel modo seguente:

Se $f(t) = p_r(t)$, polinomio di grado r, si cerca $\bar{y}(t) = q_r(t)$, polinomio dello stesso grado, con coefficienti da determinarsi.

Se $f(t) = f_0 e^{\lambda t}$, si cerca $\bar{y}(t)$ nella forma

- i) $Ae^{\lambda t}$, se λ non è radice dell'equazione caratteristica;
- ii) $A t e^{\lambda t}$, se λ è radice semplice dell'equazione caratteristica;
- iii) $A t^2 e^{\lambda t}$, se λ è radice doppia dell'equazione caratteristica,

con A coefficiente da determinarsi.

() Equazioni differenziali 2 13/21

Esempi

Trovare l'integrale generale dell'equazione

$$y''+2y'+2y=t^2.$$

L'equazione omogenea associata z''+2z'+2z=0 ha equazione caratteristica $\lambda^2+2\lambda+2=0$; le radici sono $\lambda=-1\pm i$. Quindi l'integrale generale dell'equazione omogenea è

$$z(t) = e^{-t} (c_1 \cos t + c_2 \sin t).$$

Cerchiamo una soluzione dell'equazione completa nella forma $\bar{y}(t)=At^2+Bt+C$. Sostituendo $\bar{y},\,\bar{y}',\,\bar{y}'',\,$ nell'equazione si trova

$$2A + 2(2At + B) + 2(At^2 + Bt + C) = t^2$$
.

Riordinando i termini:

$$(2A-1)t^2+(4A+2B)t+2(A+B+C)=0.$$

L'equazione è soddisfatta per ogni t se e solo se A=1/2, B=-1, C=1/2. L'integrale generale è allora

$$y(t) = e^{-t} (c_1 \cos t + c_2 \sin t) + \frac{1}{2} t^2 - t + \frac{1}{2}.$$

Equazioni differenziali 2 14 / 21

Trovare, per ogni $\alpha \in \mathbb{R}$, l'integrale generale dell'equazione

$$y''-2y'+y=e^{\alpha t}.$$

L'equazione omogenea associata z''-2z'+2z=0 ha equazione caratteristica $\lambda^2-2\lambda+1=0$, con la radice doppia $\lambda=1$. Quindi l'integrale generale dell'equazione omogenea è

$$z(t)=c_1 e^t+c_2 t e^t.$$

Se $\alpha \neq$ 1, cerchiamo una soluzione dell'equazione completa nella forma $\bar{y}(t) = Ae^{\alpha t}$. Sostituendo nell'equazione si trova

$$A(\alpha^2 - 2\alpha + 1) e^{\alpha t} = e^{\alpha t}.$$

L'equazione è soddisfatta per ogni t se e solo se $A = 1/(\alpha - 1)^2$.

Se $\alpha=1$ (radice doppia dell'equazione caratteristica) la soluzione va cercata nella forma $\bar{y}(t)=At^2e^t$.

Sostituendo nell'equazione si ottiene

$$Ae^{t}[(t^{2}+4t+2)-2(t^{2}+2t)+t^{2}]=e^{t}$$

da cui, semplificando, A = 1/2.

Equazioni differenziali 2 15 / 21

L'integrale generale dell'equazione si scrive allora:

Se $\alpha \neq 1$,

$$y(t) = c_1 e^t + c_2 t e^t + \frac{1}{(\alpha - 1)^2} e^{\alpha t}.$$

Se $\alpha = 1$,

$$y(t) = c_1 e^t + c_2 t e^t + \frac{1}{2} t^2 e^t$$
. \diamond

Nella ricerca di una soluzione dell'equazione completa, può essere utile il cosiddetto *principio di sovrapposizione*, valido per le equazioni lineari:

Se $y_1(t)$, $y_2(t)$, risolvono rispettivamente le equazioni

$$y_1'' + a(t)y_1' + b(t)y_1 = f_1(t), \qquad y_2'' + a(t)y_2' + b(t)y_2 = f_2(t),$$

allora $\bar{y}(t) := k_1 y_1(t) + k_2 y_2(t) \ (k_1, k_2 \in \mathbb{R})$ soddisfa

$$\bar{y}'' + a(t)\bar{y}' + b(t)\bar{y} = k_1f_1(t) + k_2f_2(t)$$
.

Esercizio

Trovare l'integrale generale dell'equazione $y'' + y = t + e^{-t}$.

Equazioni differenziali 2 16 / 21

Equazioni di Eulero

Le equazioni omogenee

$$t^2z'' + atz' + bz = 0, \quad a, b \in \mathbb{R},$$

sono tra i pochi esempi di equazioni del secondo ordine a coefficienti *variabili* che si risolvono con metodi elementari.

Se t > 0, cerchiamo due soluzioni indipendenti nella forma $z(t) = t^{\gamma}$, con γ da determinarsi.

Calcolando $z'(t)=\gamma t^{\gamma-1}$, $z''(t)=\gamma(\gamma-1)t^{\gamma-2}$ e inserendo nell'equazione si ottiene

$$t^{\gamma}(\gamma(\gamma-1)+a\gamma+b)=0, \qquad \forall \, t>0,$$

da cui l'equazione caratteristica:

$$\gamma^2 + (a-1)\gamma + b = 0.$$

Ancora si distinguono i tre casi:

due radici reali e distinte γ_1 , γ_2 , una radice reale doppia γ , due radici complesse conjugate $\alpha \pm i\beta$.

Equazioni differenziali 2 17 / 21

Nel primo caso abbiamo $z_1(t)=t^{\gamma_1},\,z_2(t)=t^{\gamma_2},$ per cui l'integrale generale è

$$z(t) = c_1 t^{\gamma_1} + c_2 t^{\gamma_2}$$
.

Nel secondo caso, due soluzioni indipendenti sono $z_1(t)=t^{\gamma},\,z_2(t)=t^{\gamma}\ln t$, e quindi

$$z(t) = c_1 t^{\gamma} + c_2 t^{\gamma} \ln t$$

è l'integrale generale.

Nel terzo caso, si può ancora passare dalla coppia di soluzioni complesse $t^{(\alpha\pm i\beta)}$, alle soluzioni reali

$$z_1(t) = t^{\alpha} \cos(\beta \ln t), z_2(t) = t^{\alpha} \sin(\beta \ln t),$$

da cui l'integrale generale

$$z(t) = t^{\alpha} (c_1 \cos(\beta \ln t) + c_2 \sin(\beta \ln t)).$$

Esercizio

Scrivere l'integrale generale dell'equazione

$$t^2 z'' + 3t z' + z = 0,$$

nell'intervallo t > 0.

Metodo di variazione delle costanti

Per le equazioni lineari, esiste un metodo generale per trovare una particolare soluzione dell'equazione *completa* se si conoscono due soluzioni indipendenti dell'equazione *omogenea*: il metodo di variazione delle costanti arbitrarie.

Ci limitiamo a descriverlo su un esempio di interesse fisico: le oscillazioni forzate in assenza di attrito. L'equazione del moto si scrive

$$y''(t) + \omega^2 y(t) = f(t),$$

dove assumiamo f(t) continua in \mathbb{R} , ma di forma qualsiasi.

L'equazione omogenea $z''(t) + \omega^2 z(t) = 0$ (oscillazioni libere) ha equazione caratteristica $\lambda^2 + \omega^2 = 0$, da cui le radici $\lambda = \pm i\omega$.

Le due soluzioni reali indipendenti sono: $z_1(t) = \cos(\omega t)$, $z_2(t) = \sin(\omega t)$.

Cercheremo una soluzione dell'equazione completa nella forma

$$\bar{y}(t) = c_1(t) \cos(\omega t) + c_2(t) \sin(\omega t)$$

dove ora $c_1(t)$, $c_2(t)$ sono *funzioni* incognite, che vanno determinate in modo che $\bar{y}(t)$ risolva l'equazione.

Equazioni differenziali 2 19 / 21

Poiché le incognite sono due, potremo anche imporre una condizione aggiuntiva: richiediamo che nell'espressione della derivata prima

$$\bar{y}'(t) = c_1'(t) \cos(\omega t) + c_2'(t) \sin(\omega t) - \omega c_1(t) \sin(\omega t) + \omega c_2(t) \cos(\omega t),$$

sia

$$c_1'(t)\cos(\omega t)+c_2'(t)\sin(\omega t)=0$$
.

La derivata seconda si scrive allora:

$$\bar{y}''(t) = -\omega c_1'(t) \sin(\omega t) + \omega c_2'(t) \cos(\omega t) - \omega^2 (c_1(t) \cos(\omega t) + c_2(t) \sin(\omega t)).$$

Osserviamo che l'ultimo termine tra parentesi è esattamente $\bar{y}(t)$. Inserendo nell'equazione, troviamo allora la condizione:

$$-\omega c_1'(t) \sin(\omega t) + \omega c_2'(t) \cos(\omega t) = f(t).$$

Mettiamo a sistema le due condizioni:

$$\begin{cases} \cos(\omega t) c_1'(t) + \sin(\omega t) c_2'(t) = 0 \\ -\omega \sin(\omega t) c_1'(t) + \omega \cos(\omega t) c_2'(t) = f(t) \end{cases}$$

Equazioni differenziali 2 20 / 21

Il sistema ha un'unica soluzione poiché per ogni t il determinante della matrice dei coefficienti è uguale a $\omega>0$. Con semplici calcoli si ottiene

$$c_1'(t) = -\frac{1}{\omega}f(t)\sin(\omega t);$$
 $c_2'(t) = \frac{1}{\omega}f(t)\cos(\omega t).$

Possiamo ancora richiedere che $c_1(t),\,c_2(t)$ si annullino in un punto assegnato, per esempio l'origine. Avremo allora

$$c_1(t) = -rac{1}{\omega}\int_0^t f(au)\sin(\omega au)\,d au\,; \qquad c_2(t) = rac{1}{\omega}\int_0^t f(au)\cos(\omega au)\,d au\,.$$

La soluzione $\bar{y}(t) = c_1(t)\cos(\omega t) + c_2(t)\sin(\omega t)$ si scrive allora

$$ar{y}(t) = rac{1}{\omega} \int_0^t f(au) \Big[-\sin(\omega au)\cos(\omega t) + \cos(\omega au)\sin(\omega t) \Big] d au$$

$$= rac{1}{\omega} \int_0^t f(au)\sin[\omega(t- au)] d au.$$

Esercizio

Calcolare $\bar{y}(t)$ nel caso $f(t) = f_0 \cos(\omega t)$ (risonanza).

Equazioni differenziali 2 21 / 21