

- 주제
 - 주제 선정 이유
- 요구사항 정의서
- 전처리
 - 컬럼 정리
 - 결측치 / 이상치 / 중복값 처리
- 데이터 분포 확인

- 모델링
- 결과
 - train score / test score
 - rmse 오차
- 결론
- 출처

■ 주제 & 선정 원인 - 한우가격 폭락

- 2023년 한우 사육두수 역대 최대치 갱신
- 국내 한우 사육두수가 늘며 도매 가격이 하락

■ 주제 & 선정 원인 - 초보 농가 서포트

- 청년 농가 지원을 위한 서비스를 구축
- 한우 가격 폭락으로 가격 예측이 어려운 청년 농가에서 활용하기 좋은 서비스

■ <u>요구사항 정의서</u>							
	대분류	중분류	소분류	상세설명	우선순 위	담당자	비고

					شعكســ	
대분류	중분류	소분류	상세설명	우선순 위	담당자	비고
데이터 수 집	데이터 수집	지역 데이터 추가 수집 (스마트한우경매사이트)	데이터 추가 수집 _ 전라남도(함평, 순천광양) _ 경상남도(합천, 의령, 창녕, 김해, 고성) _ 경상북도(영주, 고령성주)	1	전원	
	컬럼 정리	불필요한 컬럼 제거	번호, 출하주, 상태, 개체번호(중복값 확인 후 삭제)	1	전원	
		비고 컬럼 처리, 새로운 컬럼 생성	결격사유 여부 컬럼 추가 _ 결격사유 있으면 1, 없으면 0 부여	1	전원	
데이터 전 처리		범주형 컬럼 처리	범주형 데이터를 수치형으로 매핑 _ 성별: 수소-0, 암소-1 _ 종류: 큰소-0, 혈통우-1, 일반우-2	1	전원	
714	결측치 처리	Null 값 처리	낙찰가 0값 행 삭제	2	전원	
	이상치 처리	컬럼 내 단위 통일	낙찰가 컬럼 중 단위가 다른 데이터 확인 _ 만 원 단위로 데이터 통일	2	전원	
	중복값 처리	모든 요소 동일한 행 삭제	행 내의 모든 요소가 동일한 중복행을 삭제	2	전원	

◉ 요구사항 정의서

대분류	중분류	소분류	기능설명	우선순 위	담당자	비고
	예측 타겟 설정	회귀모형 구현을 위한 타겟 설정	낙찰가 컬럼을 타겟으로 설정	3	전원	
	예측 모델 구축	<u>ੈ</u> 구축 회귀 모형 구축	Ensemble Regression 모델 구축	3	이태형	
기능 설			KNN Regression 모델 구축	3	김대환	
계 			RandomForest Regression 모델 구축	3	박선경	
			GradientBoosting Regression 모 델 구축	3	나서영	
			XGBoost Regression 모델 구축	3	김찬수	

■ <u>컬럼설명</u>

1. 종류

- 큰소 : 임신우(임신 중이거나 계획이 있는 암소)

- 혈통우 : 송아지(암, 수)

- 일반우 : 비육우(먹기위해 살찌우는 소)

2. 최저가

- 축협에서 지정한 시세 조정위원들이 소의 기본정보를 토대로 매긴 가격

3. 단위

- 최저가, 낙찰가 : 만 원

- 중량 : kg

축협에서 지정한 시세 조정위원들이 한우를 이리저리 살펴 보고 생년월일과 유전능력 등을 토대로 최저가격(기준가)을 매긴다.

이를 기준으로 가장 높은 가격을 스마트폰에 입력한 구매자가 낙찰받는다.

1회 유찰 시 기준가보다 10만원씩 낮게 책정돼 추가 경매에 부쳐진다.

2차례 이상 유찰돼 낙찰자가 나오지 않으면 거래 없이 빈손 돌아가는 농장주도 적지 않다고 축협 직원들은 귀띔한다.

출처: https://www.hankyung.com/society/article/202308046271Y

■ <u>전처리 과정</u>

1. 컬럼 정리

- 번호, 출하주, 상태, 개체번호(중복값 확인 후 삭 제)
- 결격사유 여부 컬럼 추가(상처 여부, 이모색 여 부)
- 범주형 데이터를 수치형으로 매핑

1. 이상치 처리

- 낙찰가 컬럼 만 원 단위로 통일
- 낙찰가 0값 행 삭제

1. 중복값 처리

	성별	중량	최저가	낙찰가	결격사유 여부	종류	성별_n	종류_n
0	암	580	360	363	1	큰소	0	0
1	암	460	320	353	0	큰소	0	0
2	암	340	400	471	1	큰소	0	0
3	암	380	400	432	1	큰소	0	0
4	암	550	650	766	0	큰소	0	0
17443	암	635	970	11750	0	일반우	0	2
17444	암	620	940	10950	0	일반우	0	2
17445	암	614	1100	13500	0	일반우	0	2
17446	암	569	900	9450	0	일반우	0	2
17447	암	543	760	7600	0	일반우	0	2

	중량	최저가	낙찰가	결격사유 여부
count	17448.000000	17448.000000	17448.000000	17448.000000
mean	499.346114	669.672513	5122.761692	0.112391
std	173.233963	297.998572	5350.663271	0.315856
min	110.000000	0.000000	57.000000	0.000000
25%	310.000000	410.000000	460.000000	0.000000
50%	545.000000	560.000000	636.000000	0.000000
75%	634.000000	980.000000	10950.000000	0.000000
max	1114.000000	1250.000000	14250.000000	1.000000

■ Barplot - 시간별 낙찰가

- 전반적으로 한우 가격이 하락하는 것을 볼 수 있다.

■ 모델링 - KNN Regression


```
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model selection import train test split
from sklearn.utils import *
from sklearn.metrics import *
for i in range(3,21,2):
   train x, test x, train y, test y = train test split(cow DF[['중량','최저가','종류 N']],cow DF['낙찰가'],random state=0)
   cow li=KNeighborsRegressor(n neighbors=i)
   cow li.fit(train x,train y)
   train score=cow li.score(train x,train y)
   test_score=cow_li.score(test_x,test_y)
   print(f'[k={i}] train score : {train_score}, test score : {test_score}')
   preds y = cow li.predict(test x)
   mse=mean squared error(test y,preds y)
   rmse=np.sqrt(mse)
   print(f'MSE : {mse}, RMSE : {rmse}')
   print(f'R2 : {r2 score(test y,preds y)}')
```

KNN Regression을 활용한 ML 모델 구축

주요 분석 방법 : 회귀 분석

- 상세 분석 방법 : KNeighborsRegressor

피쳐 : 중량, 최저가, 종류

타겟 : 낙찰가

- 평가지표 : r2, rmse

[k=3] train score : 0.9791, test score : 0.9633, train - test : 0.0157 MSE: 4221.6910, RMSE: 64.9745 R2 : 0.9633407167691251 [k=5] train score : 0.9772, test score : 0.9665, train - test : 0.0107 MSE: 3861.5289, RMSE: 62.1412 R2: 0.9664682042069781 [k=7] train score : 0.9760, test score : 0.9685, train - test : 0.0075 MSE: 3628.4229, RMSE: 60.2364 R2: 0.9684923923613974 [k=9] train score : 0.9752, test score : 0.9694, train - test : 0.0059 MSE: 3528.8660, RMSE: 59.4043 R2: 0.9693569006599976 [k=11] train score : 0.9746, test score : 0.9699, train - test : 0.0047 MSE: 3470.0317, RMSE: 58.9070 R2: 0.969867791681857 [k=13] train score : 0.9743, test score : 0.9701, train - test : 0.0042 MSE: 3444.1061, RMSE: 58.6865 R2: 0.9700929176559352 [k=15] train score : 0.9740, test score : 0.9703, train - test : 0.0037 MSE: 3424.4608, RMSE: 58.5189 R2: 0.9702635090131824 [k=17] train score : 0.9738, test score : 0.9705, train - test : 0.0033 MSE: 3394.4171, RMSE: 58.2616 [k=19] train score : 0.9737, test score : 0.9707, train - test : 0.0030

MSE : 3376.9437, RMSE : 58.1115 R2 : 0.9706761262355044

■ 모델링 - Random Forest Regression


```
def ml_GridSearchCV(grid_Models,params_,n_splits_,train_X,train_Y):

'''
GridSearchCV 이용해서 하이퍼파라미터 찾고 객체 반환
n_splits_:KFold의 n_splits
'''
grid_Dict={}
kf=KFold(n_splits=n_splits_,shuffle=True,random_state=0)
for model in grid_Models:
    model_name = model.__class__.__name__
    if model_name in params_.keys():
        param_grid_ = params_[model_name]
        gridCV = GridSearchCV(model, param_grid=param_grid_,cv=kf)
        gridCV.fit(train_X, train_Y)

        grid_Dict[gridCV.best_estimator_]=[gridCV.best_params_,gridCV.best_score_]
return grid_Dict
```

- 주요 분석 방법 : 회귀 분석
- 상세 분석 방법:
- Random Forest Regression
- 피쳐 : 중량, 최저가, 종류
- 타겟: 낙찰가
- 교차 검증 :
- GridSearchCV, KFold
- 평가지표:
- r2, rmse

```
train_score : 0.9741, test_score : 0.9715
성능평가 => r2 : 0.972, RMSE : 56.8
```

■ 모델링 - XGBoost Regression

[test score : 0.9713717299966214]
[train score : 0.9727002597324552]
[val score : 0.9701157237596847]

[RMSE: 57.781954195511204, R2: 0.9713717299966214]

XGBoost Regression 을 활용한 ML 모델 구축

- 주요 분석 방법 : 트리 기반 앙상블 학습
- 상세 분석 방법 : XGBoost Regression
- 피쳐: 중량, 최저가, 종류, 성별, 결격사유
- 타겟: 낙찰가
- 평가지표 : r2, rmse

■ 모델링 - Ensemble Regression


```
from autogluon.tabular import TabularPredictor
# 정규화는 AutoGluon 내부에서 자동으로 수행됩니다.
predictor3 = TabularPredictor(label='낙찰가')
predictor3.fit(train_data=train_data[['중량','최저가','낙찰가','종류']], presets= 'medium_quality')
            performance: -55.28517066854829
                   model: WeightedEnsemble L2
             model type: WeightedEnsembleModel
        hyperparameters: use_orig_features: False
                          max base models: 25
                          max base models per type: 5
                          save bag folds: True
       inference latency: 0.05186009407043457
```

training time: 3.1904146671295166

Autogluon 패키지를 활용한 ML 모델 구축

- 주요 분석 방법 : 앙상블
- · 상세 분석 방법 : WeightedEnsemble_L2
- 피쳐 : 중량, 최저가, 종류
- 타겟: 낙찰가
- 평가지표 : r2, rmse

train r2 : 97.52%, test r2 : 97.25%

train rmse : 54, test rmse : 57

{|'GBM': {}, 'CAT': {}, 'XGB': {}, 'RF': {}, 'XT': {}, 'KNN': {}, 'LR': {}, 'NN_TORCH': {}, 'FASTAI': {}}

■ 모델링 - Gradient Boosting Regression

	Parameters
alpha	0.9
ccp_alpha	0.0
criterion	friedman_mse
init	None
learning_rate	0.1
loss	squared_error
max_depth	3
max_features	None
max_leaf_nodes	None
min_impurity_decrease	0.0
min_samples_leaf	1
min_samples_split	2
$min_weight_fraction_leaf$	0.0
n_estimators	100
n_iter_no_change	None
random_state	0
subsample	1.0
tol	0.0001
validation_fraction	0.1
verbose	0
warm_start	False

Pycaret 패키지를 활용한 ML 모델 구축

- 주요 분석 방법: 회귀 분석
- 상세 분석 방법: Gradient Boosting Regression
- 피쳐: 중량, 최저가, 종류
- 타겟: 낙찰가
- 평가지표: R², RMSE

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	Gradient Boosting Regressor	41.9723	3013.9577	54.8995	0.9743	0.0798	0.0614
	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	Gradient Boosting Regressor	44.3209	3334.1213	57.7419	0.9714	0.0827	0.0644

■ 결 론 - 최고 성능의 모델 선정

Autogluon 패키지를 활용한 ML 모델 구축

- 주요 분석 방법 : 앙상블

- 상세 분석 방법 : weightedEnsembld_L2

피쳐: 중량, 최저가, 종류

타겟 : 낙찰가

- 평가지표 : r2, rmse

train r2 : 97.52%, test r2 : 97.25%

train rmse : 54, test rmse : 57

중량: 600kg, 최저가: 800만원, 종류: 일반우

858(± 50) 만원

97.52%의 모델 적합도(R2)를 가진 모델을 구현,

1,106만 원 일반우의 경우

가격의 약 5%인 55만 원 내외의 오차 내에서

낙찰가를 예측하는 모델을 개발함

초보 농가에서 해당 서비스를 활용하여

니비ㅅㄹ ㅁㅋㅋ 베ㅠ친ㄱ 저그 ㅎㅂ찮 에저

적절한 판매가를 미리 예측하여 활용할 수 있도록

서비스를 무료로 배포하고 적극 홍보할 예정

■フ	사 출처		
-	© 뉴제주일보	(http://www.jejuilbo.net/news/articleView.html?idxno=208816)	
)	© 5개국어 글로벌 경	에신문' 아주경제 (https://www.ajunews.com/view/20230608162702348)	
	◎ 팜인사이트	(https://www.farminsight.net/news/articleView.html?idxno=10101)	
-	© BizWatch	(http://news.bizwatch.co.kr/article/consumer/2022/12/15/0026)	
-	◎ 팜인사이트	(https://www.farminsight.net/news/articleView.html?idxno=6781)	(/
-	◎ 중부메일	(http://www.jbnews.com/news/articleView.html?idxno=1406021)	
-	◎ 예천연합뉴스	(https://www.y-cnews.com/news/articleView.html?idxno=13360)	
-	© 식약일보	(http://www.kfdn.co.kr/42808)	
-	◎ 팜인사이트	(https://www.farminsight.net/news/articleView.html?idxno=10057)	
	◎ 농축유통신문	(https://www.amnews.co.kr/news/articleView.html?idxno=54088)	_A=18-41
ATEVATA	□ 경향신문	(https://m.khan.co.kr/economy/economy-general/article/202303061425001)	111/11
	© 한국농정	(http://www.ikpnews.net/news/article/view.htm/hexno=4.53)	
-	© 한국농어촌방송	(http://www.newskr.kr/news/articleview.html@idxno=84774)	
<u> </u>	© 농축유통신문	(https://www.amnews.co.kr/news/articleview.html?idxno=54157)	