Data ScienceTech Institute Time Series Analysis Final Project Report

S19 Cohort Motoharu DEI

January 18th, 2020

Contents

PAI	RT 1: E	xercise	3
1	l.1.	Quiz 1	3
1	L.2.	Quiz 2	6
1	L.3.	Quiz 3	9
1	L.4.	Quiz 4	10
PAI	RT 2: (Case Study	12
2	2.1. Te	chnical explanation of the steps	12
	2.1.	1. Preprocessing	12
	2.1.	2. Modeling of "FR001" product_reference	13
	2.1.	3. Modeling of "ESA154" product_reference	15
	2.1.	4. Modeling of "WW01AA" product_reference	17
	2.1.	5. Final prediction of next 16 months	20
2	2.2. A	quick report to sales department	21

PART 1: Exercise

1.1. Quiz 1

1. You receive the SAS data set E1 from a colleague. Represent with a graph the timeseries and identify and estimate an appropriate model to fit the data. Justify your choice. (2 points)

Here is the graph of SAS data set E1.

ADF test results are the followings.

	Augmented Dickey-Fuller Unit Root Tests											
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F					
Zero Mean	0	-0.0027	0.6814	-0.07	0.6595							
	1	-0.0044	0.6810	-0.19	0.6163							
	2	-0.0008	0.6818	-0.06	0.6624							
	3	-0.0010	0.6817	-0.11	0.6458							
Single Mean	0	-234.322	0.0001	-17.89	<.0001	159.96	0.0010					
	1	-507.138	0.0001	-16.07	<.0001	129.24	0.0010					
	2	-4755.64	0.0001	-12.93	<.0001	83.59	0.0010					
	3	744.7233	0.9999	-10.85	<.0001	58.83	0.0010					
Trend	0	-234.328	0.0001	-17.84	<.0001	159.10	0.0010					
	1	-508.110	0.0001	-16.05	<.0001	128.88	0.0010					
	2	-5029.33	0.0001	-12.92	<.0001	83.44	0.0010					
	3	725.3341	0.9999	-10.87	<.0001	59.05	0.0010					

Apparently, the data is not zero mean. Otherwise, most p-values are small, meaning non-stationarity hypothesis (H0) was rejected.

	Autocorrelation Check for White Noise											
To Lag	Chi-Square	Pr > e DF ChiSq Autocorrelations										
6	30.32	6	<.0001	-0.273	-0.259	0.010	0.066	0.006	-0.118			
12	32.69	12	0.0011	0.073	0.014	0.036	-0.010	-0.070	0.019			
18	42.62	18	0.0009	0.034	0.024	-0.068	-0.096	0.178	-0.035			
24	51.65	24	0.0009	-0.093	0.046	0.141	-0.079	-0.041	-0.066			

Here, the p-values in autocorrelation check for white noise (Ljung-Box test) is very low, meaning there exists auto correlation. PACF's trend is not evident but IACF has clearly exponential decreasing trend. ACF is zero after t=2. Therefore, this is assumed to be MA(2) model.

Here's the results of Ljung-Box test and autocorrelation plots with assigning ARMA(p=0, q=2), which represents the goodness of fit is high.

Here's the final model parameters.

Model for variable Y
Estimated Mean 62.60008

Moving Average Factors

Factor 1: 1 - 0.56908 B**(1) - 0.30819 B**(2)

1.2. Quiz 2

2. Identify and estimate a relevant model for the variable Y in the SAS data set E2. You will use the Maximum Likelihood estimation method to obtain your model. Explain how you have decided which model to select. (2 points)

Here is the graph of SAS data set E2.

ADF test results are the followings.

	Αι	gmented Dic	key-Fuller U	Jnit Root	Tests		
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	-0.0038	0.6812	-0.09	0.6516		
	1	-0.0047	0.6810	-0.15	0.6307		
	2	0.0005	0.6822	0.03	0.6916		
	3	-0.0001	0.6820	-0.01	0.6793		
Single Mean	0	-201.802	0.0001	-14.27	<.0001	101.85	0.0010
	1	-526.528	0.0001	-16.45	<.0001	135.28	0.0010
	2	-3398.64	0.0001	-13.17	<.0001	86.75	0.0010
	3	1392.561	0.9999	-10.57	<.0001	55.87	0.0010
Trend	0	-202.126	0.0001	-14.26	<.0001	101.72	0.0010
	1	-530.990	0.0001	-16.51	<.0001	136.40	0.0010
	2	-3942.38	0.0001	-13.27	<.0001	88.01	0.0010
	3	1194.449	0.9999	-10.74	<.0001	57.67	0.0010

Apparently, the data is not zero mean. Otherwise, most p-values are small, meaning non-stationarity hypothesis (H0) was rejected.

	Autocorrelation Check of Residuals												
То			Pr >										
Lag	Chi-Square	DF	ChiSq			Autocorr	elations						
6	53.09	6	<.0001	-0.014	-0.442	-0.156	0.150	0.084	-0.099				
12	56.39	12	<.0001	0.006	0.061	0.054	-0.048	-0.078	0.022				
18	65.08	18	<.0001	0.068	-0.012	-0.096	-0.041	0.148	-0.043				
24	77.28	24	<.0001	-0.089	0.067	0.148	-0.037	-0.099	-0.091				
30	84.81	30	<.0001	0.058	0.024	0.052	0.002	-0.155	0.035				
36	91.64	36	<.0001	0.143	0.020	-0.049	-0.027	0.007	-0.067				

Here, the p-values in autocorrelation check for white noise (Ljung-Box test) is very low, meaning there exists auto correlation. Now it looks to be the model is ARMA model with non-zero p and non-zero-q. Therefore, I will estimate parameters by ESACF, SCAN, and MINIC with p=0:12 and q=0:12.

ARMA(p+d,q) Tentative	Order Selection Tests
ESA	CF
p+d	q
0	4
8	4
9	3
6	6
4	7
5	7
11	3
12	2
	(5% Significance Level)

ARMA(p+d,q) Tentative	Order Selection Tests
SC	AN
p+d	q
2	1
3	0
0	3
	(5% Significance Level)

Minimum Table Value: BIC(3,0) = -4.85277

Through three estimations, I will check following four options: (p,q) = (0,4), (2,1), (3,0), (0,3). Based on AICs below, I choose (p,q)=(2,1).

(p,q)	AIC
(0,4)	-368.205
(2,1)	-372.378
(3,0)	-366.918
(0,3)	-365.058

Here're the Ljung-Box test results and autocorrelation plots, which represents the model is reasonable.

	Autocorrelation Check of Residuals												
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations									
6	0.91	3	0.8232	0.011	0.004	-0.010	0.005	-0.008	-0.064				
12	3.78	9	0.9255	0.073	0.031	0.037	-0.024	-0.064	-0.035				
18	10.34	15	0.7981	-0.020	-0.043	-0.060	-0.083	0.128	-0.028				
24	17.73	21	0.6658	0.012	0.070	0.119	-0.052	-0.036	-0.097				
30	23.11	27	0.6792	0.040	-0.050	0.023	0.064	-0.089	0.078				
36	27.43	33	0.7407	0.110	0.026	-0.002	-0.024	0.020	-0.064				

And the final model parameters are the followings.

1.3. Quiz 3

3. Perform the Ljung-Box White Noise Probability test on the variable PercentUnemployed in the SAS data set E3. You should give the null and alternative hypothesis. What can you conclude from this test? (2 points)

Here is the plot of the data.

Here is the results of the Ljung-Box White Noise Probability test.

The null hypothesis and alternative hypothesis of Ljung-Box White Noise Probability test are:

- H0: The error term ε_t is white noise (meaning with zero mean, constant variance, and no autocorrelation) on $Y_t=\phi_0+\varepsilon_t$.
- H1: Otherwise.

1.4. Quiz 4

4. Using the PROC ESM in SAS, generate a forecast for the next 12 periods for the variable Biscuits in the SAS data set E4 with the model of your choice. Justify your choice. (2 points)

This is the plot of the data.

The data has no trend nor yearly seasonality. Funnel effect was not observed. No outstanding outlier observed. However, the data has strong cyclic movement where cycle length=3 or 4.

Then, I will try Double ESM, Additive Holt-Winter with cycle = 3 and 4 weeks, and Multicative Holt-Winter with cycle = 3 and 4.

I also plan the following 6 train/validation splits and choose the model having minimum average MAE over the 6 validation sets.

- Fold1 training: January to June, test: July to December
- Fold2 training: January to July, test: August to December
- Fold3 training: January to August, test: September to December
- Fold4 training: January to September, test: October to December
- Fold5 training: January to October, test: November to December
- Fold6 training: January to November, test: December

Here is the summary of the average MAEs for all the models.

Variable	N	Mean	Std Dev	Minimum	Maximum
MAE_double1	6	9.8151022	0.7394115	8.8655802	10.8485332
MAE_addwinters3	6	11.7928508	1.9553108	8.5827825	14.2237050
MAE_addwinters4	6	10.7839279	1.7912023	9.2885852	14.2343501
MAE_winters3	6	12.2246935	2.3079573	8.6196000	14.6953726
MAE_winters4	6	10.7628090	1.7550603	9.5199402	14.2335079

, where

double1: Double ESM,

• addwinter3: Additive Holt-Winter ESM with 3-week cycle,

• addwinter4: Additive Holt-Winter ESM with 4-week cycle,

• winter3: Multicative Holt-Winter ESM with 3-week cycle, and

• winter4: Multicative Holt-Winter ESM with 4-week cycle.

Double ESM has minimum average MAE and MAE SD, therefore I choose Double ESM as my final model. A possible reason why seasonal model was not chosen would be the cycle in the data is irregular and the seasonal models tend to mis-capture it.

Here is the forecast for the next 12 periods by Double ESM, the final ESM.

PART 2: Case Study

The Sales department asked you to provide a statistical forecast for 3 key products for the next 16 months (last forecast in December 2019). You managed to extract the relevant data in the file DSTI_SAS_ETS_Evaluation_Part2.csv.

Using all what you have learned in Times Series in SAS, generate a forecast for the 3 different products. You will explain all the steps you have followed to choose the models and you will write a quick report for the Sales department to understand the sales evolution of these products.

2.1. Technical explanation of the steps

2.1.1. Preprocessing

The very first step of preprocessing was after the import of .csv file, the conversion of month to date time format of the SAS. See the attached SAS code for more details.

The data of product_reference=WW01AA had three missing months in the data, which were January of 2016, June of 2016, and September of 2016. I imputed them with the averages of neighboring months, 8.5, 101, and 456, respectively.

Here are the plots of preprocessed data by product_reference.

Also, here are the plots after log transformation.

2.1.2. Modeling of "FR001" product_reference

Firstly, I detected the outliers using *proc arima* and *outlier* option with *maxnum=7*. There were 6 spikes and 1 level shift identified.

	Outlier Details											
Obs	Time ID	Туре	Estimate	Chi-Square	Approx Prob>ChiSo							
2	01-OCT-2015	Additive	76611.0	7.85	0.0051							
1	01-SEP-2015	Additive	71259.0	7.47	0.0063							
28	01-DEC-2017	Shift	-19465.4	5.74	0.0166							
26	01-OCT-2017	Additive	47134.0	6.56	0.0104							
13	01-SEP-2016	Additive	44487.0	10.31	0.0013							
14	01-OCT-2016	Additive	41251.0	11.08	0.0009							
6	01-FEB-2016	Additive	-40327.0	10.72	0.001							

The following two charts are the comparison of before (left) and after (right) the adjustments of outliers.

Using *proc timeseries*, the outlier-adjusted data has the following decompositions: a somewhat strong trend and a strong seasonality.

Based on these observations, the following four models are examined. The model fit was done on the data from September of 2015 to December of 2017 (28 months) and the model validation was don on the data from January of 2018 to August of 2018 (8 months). I chose MAE as the validation score.

Model #	Data	Explanatory Variable	Differencing	MAE on
				Validation Set
1	Raw	Dummy variables for three spikes	None	17,535.00
		and one level shift		
2	Raw	Deterministic trend	12 months	8,878.19
3	Raw	None	1 month and 12	18,116.70
			months	
4	Outlier-	Exponential smoothing (Winters a	8,510.06	
	adjusted			

Since model 2 and 4 are closely good, I will take a further look at the results.

Model 2:

Model 4:

Both look successfully captured the seasonality with lower January and February, and increasing trend toward the end of year as we observed after the outlier adjustments. For narrower CI, I preferred exponential smoothing model (Model 4).

2.1.3. Modeling of "ESA154" product_reference

As we observed in '2.1.1. Preprocessing' section, this product has more unskewed distributed with logarithmic transformation. Therefore, I will use the log transformed data for entire modeling and exponentialize back after prediction.

Firstly, I detected the outliers using *proc arima* and *outlier* option with *maxnum=5*. There were 2 spikes.

Outlier Details						
Obs	Time ID	Туре	Estimate	Chi-Square	Approx Prob>Chi Sq	
4	01-DEC-2015	Additive	0.57532	5.31	0.0212	
27	01-NOV-2017	Additive	0.55924	5.11	0.0238	

The following two charts are the comparison of before (left) and after (right) the adjustments of outliers.

Using *proc timeseries*, the outlier-adjusted data has the following decompositions: a very weak trend and a strong seasonality.

Based on these observations, the following four models are examined. The model fit was done on the data from September of 2015 to December of 2017 (28 months) and the model validation was don on the data from January of 2018 to August of 2018 (8 months). I chose MAE as the validation score.

Model #	Data	Explanatory Variable	Differencing	MAE on
				Validation Set
1	Raw (log	None	12 months	0.1185
	transformed)			
2	Raw (log	None	2 months and 12	0.1387
	transformed)		months	
3	Outlier-	Exponential smoothing (Addi	0.2234	
	adjusted	exponential smooth		

Model 1 is the best. A further look at the results (next page):

The diagnosis metrics look good.

2.1.4. Modeling of "WW01AA" product_reference

Firstly, I detected the outliers using *proc arima* and *outlier* option with *maxnum=5*. There were 3 spikes and two temporary shifts.

Outlier Details					
Obs	Time ID	Туре	Estimate	Chi-Square	Approx Prob>ChiSq
2	01-OCT-2015	Additive	4912.4	17.57	<.0001
3	01-NOV-2015	Temp(12)	-921.77778	7.80	0.0052
27	01-NOV-2017	Additive	2400.4	15.42	<.0001
15	01-NOV-2016	Temp(12)	526.76389	12.00	0.0005
1	01-SEP-2015	Additive	-1210.6	6.34	0.0118

The following two charts are the comparison of before (left) and after (right) the adjustments of outliers.

The original data is highly volatile and finding cycles is not apparent. Therefore, I will used the outlier-adjusted data for the entire modeling.

Using *proc timeseries*, the outlier-adjusted data has the following decompositions: a very weak trend and a strong seasonality.

Based on these observations, the following four models are examined. The model fit was done on the data from September of 2015 to December of 2017 (28 months) and the model validation was don on the data from January of 2018 to August of 2018 (8 months). I chose MAE as the validation score.

Model #	Data	ARIMA(p,q)	Differencing	MAE on
				Validation Set
1	Outlier-adjusted	p=2, q=2	12 months	654.11
2	Outlier-adjusted	p=2	1 month and 12 months	884.16
3	Outlier-adjusted	p=2, q=2	None	556.30
4	Outlier-adjusted	Exponential smoo	532.34	
		exponent		

Since model 3 and 4 are closely good, I will take a further look at the results.

Model 3:

Model 4:

Though Model 2 diagnosis looks good but there appeared an error message notifying the estimate is unstable. Therefore, I prefer Model 4.

2.1.5. Final prediction of next 16 months

2.2. A quick report to sales department

We predict the future sales quantity of product "FR001" as below (right to the dotted red line).

We predict the highest sales in November in a year, next two months, December and January, have sharp drop of sales which reaches at the lowest in a year on January. The sales from February bounce back and keep going up to the end of the year, with some monthly variance. Also, we predict the overall increasing trend.

We predict the future sales quantity of product "ESA154" as below.

We predict the sharp high sales in every November. Other months have up and down cycle within every two months, with lowest in April and highest in July. Also, we predict the overall increasing trend.

We predict the future sales quantity of product "WW01AA" as below.

We predict there will be a mid-term cycle in the sales for six months, with lowest on January and July, and highest on April and October. Please also note that due to high data volatility in the past, our prediction returns wide range of confidence interval, meaning the possible range of sales value is wide, as much as plus or minus 750. We would suggest to keep our eye wide open for the couple of next months to see how the actual sales turn out compared to our prediction.

[End of report]