

Java is a trademark of Sun Microsystems, Inc.

avaone

The Ghost in the Virtual Machine A Reference to References

Bob Lee Google Inc.

JavaOne

Goals

- > Take the mystery out of garbage collection.
- > Perform manual cleanup the Right way.
- > Become honorary VM sanitation engineers.

How does garbage collection work?

If the reference to D goes away...

We can no longer reach D or E.

So the collector reclaims them.

The GC can't do everything.

- > Some things require manual cleanup.
 - Listeners
 - File descriptors
 - Native memory
 - External state (IdentityHashMap)
- > Tools at your disposal:
 - finally
 - Overriding Object.finalize()
 - References (and reference queues)

Try finally first.

- > Pros:
 - More straightforward
 - Handles exceptions in main thread
 - Ensures cleanup keeps pace
- > Cons:
 - More work for programmers
 - More error prone
 - Cleanup happens in main thread
- > ARM will help.

What is a finalizer?

```
public class Foo extends Bar {
    @Override protected void finalize() throws Throwable {
        try {
            ... // Clean up Foo.
        } finally {
            super.finalize(); // Clean up Bar.
        }
    }
}
```


Finalizers are seductively simple, but...

- > They're not guaranteed to run, especially not timely.
- > Avoid System.runFinalizersOnExit() and runFinalization().
- > Undefined threading model, can run concurrently!
- > You must call super.finalize().
- > Exceptions are ignored (per spec).
- > You can resurrect references.
- > Keeps objects alive longer.
- Can make allocation/reclamation 430X slower
 (Bloch, Effective Java)

Example

```
public class NativeMemory {
  final int address = allocate();
  /** Allocates native memory. */
  static native int allocate();
  /** Writes to native memory. */
  public void write(byte[] data) {
    write(address, data);
  static native void write(int address, byte[] data);
  /** Frees native memory. */
  @Override protected void finalize() {
    free(address);
  static native void free(int address);
```


Let's play War!

SegfaultFactory can cause a segfault if its finalizer executes after NativeMemory's:

```
public class SegfaultFactory {
   private final NativeMemory nm;

public SegfaultFactory(NativeMemory nm) {
    this.nm = nm;
}

@Override protected void finalize() {
    // 50/50 chance of failure
    nm.write("I'm taking the VM with me!".getBytes());
}
}
```


Always use protection.

```
public class NativeMemory {
  final int address = allocate();
  /** Allocates native memory. */
  static native int allocate();
  /** Writes to native memory. */
  boolean finalized:
  public synchronized void write(byte[] data) {
    if (!finalized) write(address, data);
    else /* do nothing? */;
  static native void write(int address, byte[] data);
  /** Frees native memory. */
  @Override protected synchronized void finalize() {
    finalized = true;
    free(address);
  static native void free(int address);
```


Basically, finalizers are good for one thing.

Logging warnings

package java.lang.ref

```
public abstract class Reference<T> {
 public T get() { ... }
public class SoftReference<T> extends Reference<T> {
 public SoftReference(T referent) { ... }
 public SoftReference(T referent, ReferenceQueue<? super T> q) { ... }
public class WeakReference<T> extends Reference<T> {
 public WeakReference(T referent) { ... }
 public WeakReference(T referent, ReferenceQueue<? super T> q) { ... }
public class PhantomReference<T> extends Reference<T> {
 public PhantomReference(T referent, ReferenceQueue<? super T> q) { ... }
public class ReferenceQueue<T> {
 public ReferenceQueue() { ... }
 public Reference<? extends T> poll() { ... }
 public Reference<? extends T> remove() { ... }
```


Can you hear me now?

```
public class Button {
  public interface Listener {
    void onClick();
  private final List<WeakReference<Listener>> listeners
      = new ArrayList<WeakReference<Listener>>();
  public void add(Listener 1) {
    listeners.add(new WeakReference<Listener>(1));
  public void click() {
    Iterator<WeakReference<Listener>> i
        = listeners.iterator();
    while (i.hasNext()) {
      Listener l = i.next().get();
      if (l == null) i.remove();
      else l.onClick();
```


JavaOne

Reachability

- > An object is *reachable* if a live thread can access it.
- > Examples of heap roots:
 - System classes (which have static fields)
 - Thread stacks
 - In-flight exceptions
 - JNI global references
 - The finalizer queue
 - The interned String pool
 - etc. (VM-dependent)

Making maps

- > Strong
- > Soft
- > Weak
- > Finalizer
- > Phantom, JNI weak
- > Unreachable

- > Strong
- > Soft
- > Weak
- > Finalizer
- > Phantom, JNI weak
- > Unreachable

- > Strong
- > Soft
- > Weak
- > Finalizer
- > Phantom, JNI weak
- > Unreachable

- > Strong
- > Soft
- > Weak
- > Finalizer
- > Phantom, JNI weak
- > Unreachable

- > Strong
- > Soft
- > Weak
- > Finalizer
- > Phantom, JNI weak
- > Unreachable

- > Strong
- > Soft
- > Weak
- > Finalizer
- > Phantom, JNI weak
- > Unreachable

- > Strong
- > Soft
- > Weak
- > Finalizer
- > Phantom, JNI weak
- > Unreachable

Java One

Weak references aren't for caching!

- > Many collectors will reclaim weak refs immediately.
- > Use soft reference for caching, as intended:

"Virtual machine implementations are encouraged to bias against clearing recently-created or recently-used soft references."

- The SoftReference documentation

