Assignment 1

Rin Meng Student ID: 51940633

September 25, 2024

1. (a) The linear regression model can be written as,

$$P = \beta_0 + \beta_1 C + \epsilon$$

where,

- P is the prime interest rate
- ullet C is the core inflation rate
- β_0 is the intercept of the regression line
- β_1 is the slope of the regression line
- ϵ is the error term

Assumptions of the linear regression model are,

- i. Linearity: The relationship between P and C is linear
- ii. Independence: The error term ϵ is independent of C
- iii. Normality: The error term ϵ is normally distributed
- iv. Homoscedasticity: The error term ϵ has a constant variance across all levels of C
- 2. Remark: from ch2A.pdf slide 9 and 13,
 - $\bullet \ \hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$

 - $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$ $S_{xy} = \sum_{i=1}^n (x_i \bar{x})(y_i \bar{y})$
 - $S_{xx} = \sum_{i=1}^{n} (x_i \bar{x})^2$

Let e_i be the *i*th residual term. Then for each observation, we can see that the residual for each observation *i* is defined as:

$$e_i = y_i - \hat{y_i}$$

then we can say that the predicted value \hat{y}_i is equivalent to

$$\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$$

(a) $\sum_{i=1}^{n} e_i = 0$

Proof. LHS:

$$\sum_{i=1}^{n} e_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y} + \hat{\beta}_{1}\bar{x} - \hat{\beta}_{1}x_{i})$$

$$= \sum_{i=1}^{n} y_{i} - n\bar{y} + \hat{\beta}_{1}n\bar{x} - \hat{\beta}_{1}\sum_{i=1}^{n} x_{i}$$

$$= n\bar{y} - n\bar{y} + \hat{\beta}_{1}n\bar{x} - \hat{\beta}_{1}n\bar{x}$$

$$= 0$$

$$LHS = 0 = RHS$$

 \therefore It is true that the sum of residuals e_i is zero.

(b) $\sum_{i=1}^{n} x_i e_i = 0$

Proof. LHS:

$$\begin{split} \sum_{i=1}^{n} x_{i}e_{i} &= \sum_{i=1}^{n} x_{i}(y_{i} - \hat{y}_{i}) \\ &= \sum_{i=1}^{n} x_{i}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i}) \\ &= \sum_{i=1}^{n} (x_{i}y_{i} - x_{i}(\bar{y} - \hat{\beta}_{1}\bar{x}) - \hat{\beta}_{1}x_{i}^{2}) \\ &= \sum_{i=1}^{n} (x_{i}y_{i} - x_{i}\bar{y} + x_{i}\hat{\beta}_{1}\bar{x} - \hat{\beta}_{1}x_{i}^{2}) \\ &= \sum_{i=1}^{n} (x_{i}(y_{i} - \bar{y}) + \hat{\beta}_{1}(\bar{x}x_{i} - x_{i}^{2})) \\ &= \sum_{i=1}^{n} x_{i}y_{i} - \bar{y}\sum_{i=1}^{n} x_{i} - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - \bar{x}\sum_{i=1}^{n} x_{i}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}\bar{x} - n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y} - n\bar{x}\bar{y} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y} - n\bar{x}\bar{y} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - \bar{y}\sum_{i=1}^{n} x_{i} - \bar{x}\sum_{i=1}^{n} y_{i} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2\bar{x}\sum_{i=1}^{n} x_{i} + n\bar{x}^{2}\right) \\ &= \sum_{i=1}^{n} \left(x_{i}y_{i} - \bar{y}x_{i} - \bar{x}y_{i} + \bar{x}\bar{y}\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i}^{2} - 2\bar{x}x_{i} + \bar{x}^{2}\right) \\ &= \sum_{i=1}^{n} \left(x_{i}(y_{i} - \bar{y}) + \bar{x}(y_{i} - \bar{y})\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2} \\ &= \sum_{i=1}^{n} \left(x_{i} + \bar{x}\right) \left(y_{i} - \bar{y}\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2} \\ &= S_{xy} - \frac{S_{xy}}{S_{xx}} \\ &= S_{xy} - \frac{S_{xy}}{S_{xx}} \\ &= S_{xy} - S_{xy} \end{aligned}$$

$$LHS = 0 = RHS$$

 \therefore It is true that the independent variables x_i is completly uncorrelated to the residuals e_i .

(c) $\sum_{i=1}^{n} \hat{y}_i e_i = 0$

Proof. LHS:

$$\begin{split} \sum_{i=1}^{n} \hat{y}_{i}e_{i} &= \sum_{i=1}^{n} \hat{y}_{i}(y_{i} - \hat{y}_{i}) \\ &= \sum_{i=1}^{n} (y_{i}\hat{y}_{i} - \hat{y}_{i}^{2}) \\ &= \sum_{i=1}^{n} (y_{i}(\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}) - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i})^{2}) \\ &= \sum_{i=1}^{n} (y_{i}(\bar{y} - \hat{\beta}_{1}\bar{x} + \hat{\beta}_{1}x_{i}) - (\bar{y} - \hat{\beta}_{1}\bar{x} + \hat{\beta}_{1}x_{i})^{2}) \\ &= \sum_{i=1}^{n} (y_{i}\bar{y} - y_{i}\hat{\beta}_{1}\bar{x} + y_{i}\hat{\beta}_{1}x_{i} \\ &- (\bar{y}^{2} - 2\hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}^{2}\bar{x}^{2} + 2\hat{\beta}_{1}\bar{y}x_{i} - 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (\sum_{i=1}^{n} y_{i}\bar{y} - \sum_{i=1}^{n} y_{i}\hat{\beta}_{1}\bar{x} + \sum_{i=1}^{n} y_{i}\hat{\beta}_{1}x_{i} \\ &- \sum_{i=1}^{n} (\bar{y}^{2} - 2\hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}^{2}\bar{x}^{2} + 2\hat{\beta}_{1}\bar{y}x_{i} - 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (n\bar{y}^{2} - \hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}\bar{y}\hat{\beta}_{1}x_{i} \\ &- (\sum_{i=1}^{n} \bar{y}^{2} - \sum_{i=1}^{n} 2\hat{\beta}_{1}\bar{y}\bar{x} + \sum_{i=1}^{n} \hat{\beta}_{1}^{2}\bar{x}^{2} + 2\hat{\beta}_{1}n\bar{y}x_{i} - \sum_{i=1}^{n} 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}\sum_{i=1}^{n} \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (n\bar{y}^{2} - (n\bar{y}^{2} - 2\hat{\beta}_{1}n\bar{y}\bar{x} + \hat{\beta}_{1}^{2}n\bar{x}^{2} + 2\hat{\beta}_{1}n\bar{y}\bar{x} - 2\hat{\beta}_{1}^{2}n\bar{x}\bar{x} + \hat{\beta}_{1}^{2}\sum_{i=1}^{n} x_{i}^{2})) \end{split}$$

proof continued.

$$\sum_{i=1}^{n} \hat{y_i} e_i = (n\bar{y}^2 - (n\bar{y}^2 - \hat{\beta_1}^2 n\bar{x}^2 + \hat{\beta_1}^2 n\bar{x}^2))$$

$$= (n\bar{y}^2 - n\bar{y}^2)$$

$$= 0$$

LHS = 0 = RHS

... It is true that the predicted values $\hat{y_i}$ is completely orthogonal to the residuals e_i .

3. (a) It is given that:

• $S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$ • $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$

We want to show that

$$\hat{\beta_1} \sim N(\beta_1, \frac{\sigma^2}{S_{xx}})$$

Where β_1 is the mean of the distribution and $\frac{\sigma^2}{S_{xx}}$ is the variance.

Proof. LHS:

$$\hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{S_{xx}}$$
$$= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})\epsilon_{i}}{S_{xx}}$$

we know that

$$\epsilon_i \sim N(0, \sigma^2) \Rightarrow Var(\epsilon_i) = \sigma^2$$

and that

$$Var(\beta_1) = \frac{\sigma^2}{S_{rr}}$$

so then it must also be true that,

$$Var(\hat{\beta}_1) = Var\left(\frac{\sum_{i=1}^n (x_i - \bar{x})\epsilon_i}{S_{xx}}\right)$$

$$= \frac{\sum_{i=1}^n (x_i - \bar{x})^2 Var(\epsilon_i)}{Var(S_{xx})}$$

$$= \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \sigma^2}{S_{xx}^2} = \frac{S_{xx}\sigma^2}{S_{xx}^2}$$

$$= \frac{\sigma^2}{S_{xx}}$$

and we know that, $E[\hat{\beta}_1] = \beta_1$ so then we zz can conclude that

• Variance: $Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$

• Mean: $E[\hat{\beta}_1] = \beta_1$

thus,

$$\hat{\beta_1} \sim N(\beta_1, \frac{\sigma^2}{S_{rr}})$$

 $\therefore \hat{\beta}_1$ is normally distributed with mean β_1 and variance $\frac{\sigma^2}{S_{xx}}$.

4. Since $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$, we want to show that: $E[SSE] = \frac{\sigma^2}{n-2}$.

Proof. It is given that,

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

we recall that $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ so now

we have,

$$\begin{split} \sum_{i=1}^{n} (y_i - \hat{y})^2 &= \sum_{i=1}^{n} ((\beta_0 + \beta_1 x_i + \epsilon_i) - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2 \\ &= \sum_{i=1}^{n} (\beta_0 + \beta_1 x_i + \epsilon_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 \\ &= SSE = \sum_{i=1}^{n} \left[(\beta_0 - \hat{\beta}_0) + (\beta_1 - \hat{\beta}_1) x_i + \epsilon_i \right]^2 \\ &= SSE = \sum_{i=1}^{n} \left[(\beta_0 - \hat{\beta}_0)^2 + (\beta_1 - \hat{\beta}_1)^2 x_i^2 + \epsilon_i^2 \right. \\ &+ 2(\beta_0 - \hat{\beta}_0)(\beta_1 - \hat{\beta}_1) x_i + 2(\beta_0 - \hat{\beta}_0) \epsilon_i + 2(\beta_1 - \hat{\beta}_1) x_i \epsilon_i \right] \\ &E[SSE] = nE[\epsilon_i^2] + nVar(\hat{\beta}_0) + nVar(\hat{\beta}_1)E[x_i^2] + n(\beta_0 - \hat{\beta}_0)^2 + n(\beta_1 - \hat{\beta}_1)^2 E[x_i^2] \end{split}$$