Analisi Matematica 2 – agosto 2023 – Ing. Informatica Proff. Garrione - Gazzola - Noris - Piovano

Cognome:	Nome:	Matricola:

Parte A	Es.1	Es.2	Es.3	Totale

Per superare l'esame devono essere raggiunte le seguenti soglie: parte $A \ge 4$, parte $B \ge 12$, totale ≥ 18 . Tempo di svolgimento complessivo delle parti A+B = 100 minuti.

PARTE A. Teoria (4 punti). Enunciare e dimostrare il criterio della matrice Hessiana.

Domande a risposta multipla $(4 \times 1 = 4 \text{ punti})$: una sola è corretta.

- (1) Sia $\sum_{n=1}^{+\infty} a_n (x-x_0)^n$ una serie di potenze reale e si denoti con R il suo raggio di convergenza. Si ha:
- (a) se R=0, la serie non converge puntualmente in nessun punto
- (b) se $R = +\infty$, la serie converge totalmente in ogni sottointervallo chiuso e limitato di \mathbb{R} V
- (c) $R = \lim_{n \to +\infty} \sqrt[n]{|a_n|}$, se tale limite esiste
- (d) nessuna delle altre
- (2) Sia $\Omega = \{(x, y) \in \mathbb{R}^2 : \log(xy) \le 1\}$. Allora
- (a) Nessuna delle altre affermazioni è corretta V (b) Ω è aperto (c) Ω è chiuso (d) Ω è limitato
- (3) Sia $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, \ y \le x + 2, \ x \le 0 \right\}$ e sia f continua in Ω . Allora $\int_{\Omega} f(x,y) \, dx \, dy = \int_{\Omega} f(x,y)$
- (a) $\int_{-2}^{0} \int_{-\sqrt{4-x^2}}^{x+2} f(x,y) dy dx \ \boxed{V}$ (b) $\int_{\pi/2}^{3/2\pi} \int_{0}^{2} f(\rho \cos \theta, \rho \sin \theta) d\rho d\theta$ (c) $\int_{-\sqrt{4-y^2}}^{0} \int_{-2}^{2} f(x,y) dy dx$ (d) $\int_{-2}^{0} \int_{0}^{x+2} f(x,y) dy dx$
- (4) Data una serie di funzioni $\sum_n f_n$ con $f_n:I\subset\mathbb{R}\to\mathbb{R},\,I$ non vuoto, si ha
- (a) se $f_n(x) \to 0$ per ogni $x \in I$, allora la serie data converge puntualmente in I
- (b) se esiste $x_0 \in I$ tale che $f_n(x_0) \not\to 0$, allora la serie data non converge totalmente in $I \mid V \mid$
- (c) se la serie data converge puntualmente su I, allora è integrabile termine a termine su I
- (d) se $|f_n(x)| \leq 1/n$ per ogni $x \in I$ ed ogni n, allora la serie data converge totalmente in I

Esercizio 1 (i) (6 punti) Determinare l'integrale generale del sistema omogeneo $\underline{y}'(t) = A\underline{y}(t)$, dove

$$A = \left(\begin{array}{cc} 2 & 3 \\ -1 & 0 \end{array}\right).$$

(ii) (2 punti) Determinare la soluzione $y(t) = (y_1(t), y_2(t))$ di tale sistema che soddisfa $y_1(0) = 1$, $y_2(0) = -1$.

(S) (i) Per risolvere il sistema determiniamo autovalori e autovettori della matrice A. Il polinomio caratteristico è

$$\det(A - \lambda I) = \det\begin{pmatrix} 2 - \lambda & 3 \\ -1 & -\lambda \end{pmatrix} = \lambda^2 - 2\lambda + 3,$$

avente zeri complessi e coniugati $1\pm i\sqrt{2}$. Scegliendo ad esempio l'autovalore $\lambda=1+i\sqrt{2}$, l'autovettore associato $\underline{v}=(v_1,v_2)$ è soluzione del sistema

$$\begin{pmatrix} 2 - (1 + i\sqrt{2}) & 3 \\ -1 & -(1 + i\sqrt{2}) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

che è equivalente alla condizione $v_1 = -(1 + i\sqrt{2})v_2$. Un possibile autovettore associato a λ è

$$\underline{v} = \begin{pmatrix} -(1+i\sqrt{2}) \\ 1 \end{pmatrix} \qquad \text{quindi} \qquad e^{\lambda t}\underline{v} = e^t \left(\cos(\sqrt{2}t) + i\sin(\sqrt{2}t) \right) \begin{pmatrix} -(1+i\sqrt{2}) \\ 1 \end{pmatrix}.$$

Svolgendo i conti si ottiene

$$e^{\lambda t}\underline{v} = \begin{pmatrix} e^t \left(\sqrt{2} \sin(\sqrt{2}t) - \cos(\sqrt{2}t) \right) \\ e^t \cos(\sqrt{2}t) \end{pmatrix} + i \begin{pmatrix} -e^t \left(\sin(\sqrt{2}t) + \sqrt{2} \cos(\sqrt{2}t) \right) \\ e^t \sin(\sqrt{2}t) \end{pmatrix}.$$

L'integrale generale del sistema lineare omogeneo è perciò

$$\underline{y}(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = c_1 \begin{pmatrix} e^t \left(\sqrt{2} \sin(\sqrt{2}t) - \cos(\sqrt{2}t) \right) \\ e^t \cos(\sqrt{2}t) \end{pmatrix} + c_2 \begin{pmatrix} -e^t \left(\sin(\sqrt{2}t) + \sqrt{2}\cos(\sqrt{2}t) \right) \\ e^t \sin(\sqrt{2}t) \end{pmatrix},$$

al variare di $c_1, c_2 \in \mathbb{R}$.

(ii) Essendo $y_1(0) = -c_1 - \sqrt{2}c_2$ e $y_2(0) = c_1$, per risolvere il problema di Cauchy imponiamo le condizioni

$$\begin{cases} -c_1 - \sqrt{2}c_2 = 1\\ c_1 = -1, \end{cases}$$

da cui $c_1 = -1$ e $c_2 = 0$, che fornisce la soluzione

$$\begin{pmatrix} e^t \left(\cos(\sqrt{2}t) - \sqrt{2}\sin(\sqrt{2}t)\right) \\ -e^t \cos(\sqrt{2}t) \end{pmatrix}.$$

Esercizio 2 Sia f la funzione 2π -periodica, pari, definita in $[0,\pi]$ da f(x)=x.

- (i) (1 punto) Rappresentare f sull'intervallo $[-2\pi, 2\pi]$.
- (ii) (4 punti) Calcolare la serie di Fourier di f.
- (iii) (3 punti) Relativamente a tale serie: determinare l'insieme di convergenza puntuale e la funzione somma della serie; stabilire se la convergenza sia totale in tutto \mathbb{R} ; discutere la convergenza in media quadratica.

(ii) Essendo f pari, $b_n = 0$ per ogni $n \ge 1$. Inoltre:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} x dx = \frac{\pi}{2}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) \, dx = \frac{2}{\pi} \frac{\cos(n\pi) - 1}{n^2} = \frac{2}{\pi} \frac{(-1)^n - 1}{n^2},$$

cioè $a_{2k+1}=-\frac{4}{\pi(2k+1)^2}$ per $k\geq 0$, mentre $a_{2k}=0$ per ogni $k\geq 1$. In conclusione, la serie di Fourier di f è

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{+\infty} \frac{\cos((2k+1)x)}{(2k+1)^2}.$$

(iii) Essendo f regolare a tratti sul suo periodo, concludiamo che la sua serie di Fourier converge puntualmente in tutto \mathbb{R} e che si ha convergenza in media quadratica in ogni intervallo limitato. Essendo inoltre f continua in tutto \mathbb{R} , la funzione somma coincide con f stessa e la convergenza è totale in tutto \mathbb{R} .

Esercizio 3 Sia f la funzione di due variabili definita da

$$f(x,y) = -\frac{x^2}{9} - \frac{y^2}{4} + 2.$$

- (i) (3 punti) Motivando la risposta, dire se f è differenziabile in \mathbb{R}^2 . Detto I_1 l'insieme di livello 1 di f, determinare un vettore ortogonale ad I_1 nel punto $P_0 = \left(1, \frac{4\sqrt{2}}{3}\right)$.
- (ii) (2 punti) Immaginando che la regione $M = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le f(x, y)\}$ rappresenti una montagna, calcolare la direzione di minima pendenza (crescita) della montagna nel punto P_0 ,
- (iii) (3 punti) Considerare l'insieme $\gamma = \{(x,y,1) \in \mathbb{R}^3 : (x,y) \in I_1\}$ come sostegno di una curva in \mathbb{R}^3 e, immaginando che si scavi un fossato sulle pendici della montagna lungo γ , calcolare la massa totale del materiale rimosso per lo scavo nel caso in cui la densità di massa $\delta : M \to \mathbb{R}$ sia definita per ogni $(x,y,z) \in M$ da

$$\delta(x, y, z) = \frac{x^2|y|}{\sqrt{\frac{4}{9}x^2 + \frac{9}{4}y^2}}.$$

- (S) Le risposte ai quesiti sono:
 - (i) La funzione f è definita in \mathbb{R}^2 . Le derivate parziali di f esistono e sono continue in \mathbb{R}^2 , in quanto sono date da:

$$\frac{\partial f}{\partial x}(x,y) = -\frac{2}{9}x$$
 e $\frac{\partial f}{\partial y}(x,y) = -\frac{y}{2}$,

quindi $f \in C^1(\mathbb{R}^2)$. Per il teorema del differenziale totale, f risulta quindi differenziabile in \mathbb{R}^2 .

Osserviamo che I_1 è dato dai punti $(x,y) \in \mathbb{R}^2$ appartenenti all'ellisse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1,$$

che è il sostegno della curva regolare $\mathbf{r}(\theta):[0,2\pi)\to\mathbb{R}^2$ definita da $\mathbf{r}(\theta)=(3\cos\theta,2\sin\theta)$ per ogni $\theta\in[0,2\pi)$. Pertanto, sappiamo dal teorema sull'ortogonalità del gradiente agli insiemi di livello, che

$$\mathbf{v} = \nabla f(P_0) = \left(-\frac{2}{9}, -\frac{2\sqrt{2}}{3}\right)$$

è un vettore ortogonale a I_1 .

(ii) Siccome $\nabla f(P_0) \neq (0,0)$, possiamo utilizzare il teorema sulle direzioni di massima e minima crescita e ottenere che la direzione di minima pendenza della montagna nel punto P_0 è

$$\mathbf{v}_{\min} = -\frac{\nabla f(P_0)}{\|\nabla f(P_0)\|} = \frac{9}{2\sqrt{19}} \left(\frac{2}{9}, \frac{2\sqrt{2}}{3}\right) = \frac{1}{\sqrt{19}} (1, 3\sqrt{2}).$$

(iii) Definita la curva $\widetilde{\mathbf{r}}(\theta):[0,2\pi)\to\mathbb{R}^3$ con $\widetilde{\mathbf{r}}(\theta)=(3\cos\theta,2\sin\theta,1)$ per ogni $\theta\in[0,2\pi)$, si ha

$$\widetilde{\mathbf{r}}'(\theta) = \begin{pmatrix} -3\sin\theta\\ 2\cos\theta\\ 0 \end{pmatrix}, \qquad \|\widetilde{\mathbf{r}}'(\theta)\| = \sqrt{9\sin^2\theta + 4\cos^2\theta}$$

е

$$\delta(\widetilde{\mathbf{r}}(\theta)) = \frac{9\cos^2\theta \, 2|\sin\theta|}{\sqrt{9\sin^2\theta + 4\cos^2\theta}}.$$

La massa totale del materiale rimosso è data dal valore dell'integrale curvilineo:

$$\int_{\gamma} \delta \, ds = \int_{0}^{2\pi} \delta(\widetilde{\mathbf{r}}(\theta)) \|\widetilde{\mathbf{r}}'(\theta)\| \, d\theta = \int_{0}^{2\pi} 9(\cos\theta)^{2} 2|\sin\theta| \, d\theta$$
$$= 36 \int_{0}^{\pi} (\cos\theta)^{2} \sin\theta \, d\theta = 36 \int_{-1}^{1} u^{2} \, du = 36 \left[\frac{u^{3}}{3} \right]_{-1}^{1} = 24$$

dove abbiamo usato il cambio di variabili $u = \cos \theta$.