سوال ۱. گزارههای زیر را اثبات کنید:

الف) در صورتی که $f[x.,x_1,x_7,...,x_n]$ تفاضلات تابع دلخواه f در نقاط x_n تا x_n باشد، $f[x.,x_1,...,x_n]=\sum_{\substack{i=1\\i\neq i}}^n\frac{f(x_i)}{n}$

ب) فرض کنید f در بازه g شامل g شامل g بار مشتق پذیر است. در این صورت به ازای g در بازه g شامل نقاط g ثقاط g ثابت کنید:

$$f[x, ..., x_n] = \frac{f^{(n)}(\xi)}{n!}$$

سوال ۲. فرض کنید چند جملهای درجهی دوم $P_{\mathsf{Y}}(x)$ تابع f(x) را در نقاط متمایز x_1, x_1, x_2 درونیابی می کند نشان دهید:

$$det \begin{bmatrix} P_{\mathsf{Y}}(x) & \mathsf{V} & x & x^{\mathsf{Y}} \\ f. & \mathsf{V} & x. & x^{\mathsf{Y}} \\ f_{\mathsf{Y}} & \mathsf{V} & x_{\mathsf{Y}} & x^{\mathsf{Y}} \end{bmatrix} = \bullet$$

سوال ٣.

با در نظر گرفتن نقاط ۱/۱ x، x، x ابر تابع $x_1 = 1/7$ ، با استفاده از درونیابی خطی مقدار تقریبی $f(x) = \ln(x+1)$ را محاسبه کنید و حد بالای خطا را بیابید.

سوال ۴.

الف) با توجه به مقادیر داده شده مقدار تقریبی تابع را در x=m محاسبه کنید.

ب) فرض کنید داده ی $x_* = 0$ و $x_* = 0$ به جدول بالا اضافه شود. بین روش لاگرانژ و تفاضلات تقسیم شده کدام روش را برای محاسبه ی چند جمله ای درونیاب جدید انتخاب می کنید؟ چرا؟ با استفاده از روشی که انتخاب کر دید چند جمله ای درونیاب را بیابید.

سوال ۵. بهترین منحنی به شکل $y=ax^{\mathsf{r}}$ که دادههای زیر را برازش کند بدست آورید.

\boldsymbol{x}	<u> </u>	<u> </u>	۲	٣
y	١	١	٣	۴

موفق باشيد.