

Building a bus rapid transport system simulator with SimPy and GeoPandas

Ture Friese, Michael Gfeller, Henrik Holhjem, Gullik Vetvik Killie, Christoph Imler, Patrick Merlot

About us...

Michael Gfeller Chief Engineer

Computas Oslo

mgf@computas.com

Ture FrieseData Scientist

Bouvet Stavanger

ture.friese@bouvet.no

Objective

- "Build a traffic simulator for the new BRT system"
- Client: Kolumbus AS
- Provider: Computas AS
- Time frame: mars-okt 2018
- "Don't use microscopic traffic simulation framework e.g. SUMO"
- Our choice of technology: Python + Simpy + Geopandas

Bus rapid transport in Rogaland/Norway

- Three line:
 - A: 37 km
 - o B: 25 km
 - o C: 14 km
- Constructed as separate dual bus lane mid-placed between two car lanes
- Other bus lines share the same track but no other traffic (taxis, electric cars etc.)
- Currently 15% is build
- Expected date of completion: 2023
- More info:
 - o http://bussveien.no
 - https://www.vegvesen.no/vegprosjek ter/bussveien

81 bus stops

Stavanger bus terminal

Congestion prevention

Vehicle holding strategies for avoiding "bus bunching"

- First bus rules
- Simple interval regularization
- Optimal interval regularization

...other strategies

- Skipping stops
- Dwelling times

Quick demo

Find the code here:

https://github.com/Ture2019/DemoTrafficLightSimulator.git

Use of Geopandas

We used it to calculate the distance from previous waypoints:

```
route['prev_geometry'] = route.geometry.shift(1)
route['distance'] = route.apply(lambda row: row.geometry.distance(row.prev_geometry), axis=1)
```

• Or for joining geographic data:

```
gdf = gpd.sjoin(left_df=gdf, right_df=right_df, how='left')
gdf[column] = gdf.index_right + 1
gdf.drop(columns='index_right', inplace=True)
```

 As the sentral data structure "Driving book" (see next slide)

Driving book

r	oute	A	В	С	direction	section	category	id	name	entrance	geometry	distance	azimuth	objectRef
0	Α	0.0	NaN	NaN	go	a1g	stop	1.0	Risavika Havn	1.0	POINT (303172.98762263 6536164.5821019)	0.000000	322.0	stop01_RisavikaHavn
1	Α	1.0	NaN	NaN	go	a1g	waypoint	0.0	waypoint_248	NaN	POINT (303417.56544243 6535834.8834327)	410.511294	323.0	NaN
2	Α	2.0	NaN	NaN	go	a1g	trigger1	NaN	Kv3575 x Enerigivegen	1.0	POINT (303753.2779296887 6535806.445222044)	336.914835	275.0	crossing_Kv3575XEnerigivegen
3	Α	3.0	NaN	NaN	go	a1g	trigger2	NaN	Kv3575 x Enerigivegen	1.0	POINT (303857.9032163142 6535797.582412188)	105.000000	275.0	crossing_Kv3575XEnerigivegen
4	Α	4.0	NaN	NaN	go	a1g	trigger3	NaN	Kv3575 x Enerigivegen	1.0	POINT (303872.8496858321 6535796.316296494)	15.000000	275.0	crossing_Kv3575XEnerigivegen
5	Α	5.0	NaN	NaN	go	a1g	crossing	0.0	Kv3575 x Enerigivegen	1.0	POINT (303887.79615535 6535795.0501808)	15.000000	275.0	crossing_Kv3575XEnerigivegen
6	Α	6.0	NaN	NaN	go	a1g	trigger1	NaN	Kv3575 x Tankvegen	1.0	POINT (303994.3727563186 6535790.454311474)	106.675648	272.0	crossing_Kv3575XTankvegen
7	Α	7.0	NaN	NaN	go	a1g	stop	2.0	Kontinentalvegen	1.0	POINT (304088.9769886167 6535786.374722846)	94.692153	272.0	stop02_Kontinentalvegen

Other libraries we used: matplotlib.animation

Ref.
 https://matplotlib.org/3.1.0/ap
 i/animation api.html

Collision Detection

Collision Detection - Buses in Pipelines

Collision Detection and Avoidance

Simulator as a Decisions Support System

Find Optimal Strategy and Parametrization, Improve Understanding of the System

Main Simulator Application Design Requirement

be able to generate and run many simulations with no user interaction required

Application Architecture

Scaling / Parallelizing Using Kubernetes Jobs

Optimizing Optimal Interval Regulation, Morning Rush 06:00-09:00

computds7

Train Graphs, Morning Rush 06:00-09:00

No interval regulation

Optimized optimal interval regulation

Review

- Technical limitations
 - performance
- Review design decisions
 - Discrete-Event-Simulation (DES) pattern
- Which strategy is best?
- Is the simulator suitable as a planning tool?
 - practical values of simulators and models (abstractions / simplifications of reality)
- Can it be used as a tool for real time decision support?

