Overview of graphics system

Basic Graphics System

Raster-Scan Systems

Architecture Of Simple Raster System

Raster-Scan Systems

Architecture Of Raster System with fixed portion of the system memory reserved for frame buffer

Video Controller

- Coordinate system
 - Frame-buffer locations are referenced in Cartesian coordinates.
 - Coordinate origin
 - Lower left screen corner
 - Upper left screen corner
- Refresh operations of video controller
 - Top-to-bottom, left-to right
 - x register (initial value = o)
 - y register (initial value = ymax)

Video Controller

- Display processor (graphics controller, display coprocessor)
 - To free the CPU from the graphics chores
 - Digitize a picture definition into a set of pixel-intensity values
- Scan conversion: The digitization process is called.
 - Straight-line segments (locate closest path to line)
 - Curved lines and polygon outlines
 - Characters

Display processor functions

- Generating various line styles
- Displaying color areas
- Performing certain transformations
- Manipulations on display objects

Run-length encoding

- Reduce memory requirements (if most part contains same color)
- Organizing the frame buffer as a linked list
- Store a scan line as a set of integer pairs
 - An intensity value
 - The number of adjacent pixels with the same intensity

- - If we apply the run-length encoding (RLE) data compression algorithm to the above hypothetical scan line, we get the following:
- 12W1B12W3B24W1B14W Interpret this as twelve W's, one B, twelve W's, three B's, etc.

Random-Scan Systems

