Automi e Linguaggi Formali – A.A. 2016/17

Appello 28.6.17 Parte II – Versione 1

Esercizio 1. (a) Descrivete in italiano il linguaggio accettato dalla macchina di Turing M definita dalla seguente tabella di transizione:

	0	1	X	В
q_0	(q_1, X, R)	(q_2, X, R)	(q_0, X, R)	
q_I	$(q_1, 0, R)$	(q_3, X, L)	(q_1, X, R)	(q_4, B, R)
q_2	(q_3, X, L)	$(q_2, 1, R)$	(q_2, X, R)	(q_4, B, R)
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_3, X, L)	(q_0, B, R)
$*q_4$				

(b) Scrivete tre esempi di stringhe accettate dalla TM M, e tre esempi di stringhe non accettate da M.

Esercizio 2. Definite una macchina di Turing M per il linguaggio $\{a^{n-l}b^mc^n \mid n > 0, m \ge 0\}$. Definite la specifica formale della TM M, riportando δ sia come tabella che come grafo di transizione.

Esercizio 3. Scrivete le descrizioni istantanee della TM M definita nell'Esercizio 2 quando il nastro di input contiene: (a) bbc (b) aacc (c) abbcc.

Esercizio 4. Data la TM *M* definita nell'Esercizio 2, riportate (e descrivete) la sua rappresentazione binaria seguendo la codifica presentata a lezione.

Esercizio 5. (a) Date la definizione del linguaggio universale L_u e della macchina di Turing Universale U. (b) A quale classe di linguaggi appartiene L_u (indicate la classe e datene la definizione)?

Esercizio 6. (a) Date la definizione formale della classe dei problemi NP-hard. (b) A quale classe di problemi appartiene il problema del commesso viaggiatore (TSP)?

Esercizio 7. Dite quali tra le seguenti affermazioni è corretta:

- (a) I linguaggi che possiamo accettare usando una macchina di Turing sono detti ricorsivi.
- (b) L'espressione $(x \land \neg y) \lor (\neg x \land z) \lor (x \land \neg z)$ è in 2-CNF.
- (c) Il linguaggio L_e è non ricorsivamente enumerabile.
- (d) Il problema della soddisfacibilità di espressioni booleane (SAT) è NP-completo.
- (e) Il problema di corrispondenza di Post è NP-hard.