METTOP

David Wiedemann

T	Table des matières	
1	Sets 1.1 Finite sets	2 2
\mathbf{L}	ist of Theorems	
	1 Definition (Finite sets)	2

Lecture 1: Introduction

Tue 21 Sep

1 Sets

- set : list of elements
- notion of equivalence : bijection
- can we classify up to eq classes?

1.1 Finite sets

Definition 1 (Finite sets)

We call a set finite if $\exists n \in \mathbb{N}, A[n]$ and we say the size of A is n.

Why is size well defined?