

PVsyst - Simulation report

Grid-Connected System

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

Trackers single array

System power: 114 kWp

Thessaloniki/Livadákion - Greece

PVsyst TRIAL

PVsyst TRIAL

Author

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:23 with v7.2.15

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

Project summary

Geographical Site

Thessaloniki/Livadákion

Greece

Situation

Latitude Longitude

Altitude

Time zone

22.97 °E

40.52 °N

UTC+2

4 m

Project settings

Albedo

0.20

Meteo data

Thessaloniki/Livadákion

Meteonorm 8.0 (1994-2006), Sat=14% - Synthetic

System summary

Grid-Connected System

Trackers single array

PV Field Orientation

Orientation

Tracking plane, vertical axis

Plane tilt

30°

Tracking algorithm

Astronomic calculation

Near Shadings

Linear shadings

System information

PV Array

Nb. of modules Pnom total

216 units 114 kWp

Inverters

Nb. of units Pnom total

1 unit 111 kWac

Pnom ratio 1.031

User's needs

Unlimited load (grid)

Results summary

Produced Energy

170.3 MWh/year

Specific production

1487 kWh/kWp/year Perf. Ratio PR

69.25 %

Table of contents

Desired and acquire surrous	0
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Horizon definition	5
Near shading definition - Iso-shadings diagram	6
Main results	7
Loss diagram	8
Special graphs	9

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:23 with v7.2.15

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

General parameters

Grid-Connected System Trackers single array

PV Field Orientation

Orientation Tracking plane, vertical axis

Plane tilt 30° Tracking algorithm

Astronomic calculation

Trackers configuration Nb. of trackers

4 units

Sizes

Tracker Spacing 0.00 m Collector width 31.1 m Azimut min / max. -/+ 120.0 °

Models used

Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Horizon

Average Height 7.4° **Near Shadings**

Linear shadings

User's needs

Unlimited load (grid)

PV Array Characteristics

PV module Inverter

Manufacturer Manufacturer Generic Generic JKM530M-72HL4-BDVP SG111-HV Model Model

(Custom parameters definition)

(Original PVsyst database) Unit Nom. Power 530 Wp Unit Nom. Power 111 kWac Number of PV modules 216 units Number of inverters 1 unit Nominal (STC) 114 kWp Total power 111 kWac 780-1450 V Modules 8 Strings x 27 In series Operating voltage At operating cond. (50°C) Pnom ratio (DC:AC) 1.03

105 kWp Pmpp U mpp 995 V I mpp 105 A

Total PV power

Nominal (STC) 114 kWp Total power 111 kWac Total 216 modules Number of inverters 1 unit 557 m² Pnom ratio 1.03 Module area

Cell area 514 m²

Array losses

Total inverter power

Array Soiling Losses Thermal Loss factor DC wiring losses

Loss Fraction 1.5 % Module temperature according to irradiance Global array res. 104 mΩ Loss Fraction 1.0 % at STC

Uc (const) 29.0 W/m2K

Uv (wind) 0.0 W/m2K/m/s

Module Quality Loss Module mismatch losses

Loss Fraction 0.0 % Loss Fraction 0.6 % at MPP

IAM loss factor

Incidence effect (IAM): User defined profile

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	1.000	1.000	1.000	0.989	0.967	0.924	0.729	0.000

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:23 with v7.2.15

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

System losses

Auxiliaries loss

Proportionnal to Power 4.0 W/kW

0.0 kW from Power thresh.

AC wiring losses

Inv. output line up to MV transfo

Inverter voltage 540 Vac tri
Loss Fraction 0.21 % at STC

Inverter: SG111-HV

Wire section (1 Inv.) Copper 1 x 3 x 240 mm 2 Wires length 70 m

AC losses in transformers

MV transfo

Grid voltage 20 kV

Operating losses at STC

PVsyst TRIAL

PVsyst TRIAL

Variant: 114 kW 1 axis

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:23 with v7.2.15

Horizon definition

Horizon from PVGIS website API, Lat=39°37"58', Long=22°13"41', Alt=153m

Average Height	7.4 °	Albedo Factor	0.40
Diffuse Factor	0.91	Albedo Fraction	100 %

Horizon profile

Azimuth [°]	-180	-173	-165	-158	-143	-135	-128	-120	-113	-105	-98	-90
Height [°]	1.9	3.4	4.6	5.7	7.3	6.5	4.6	4.2	5.3	6.1	5.7	5.3
Azimuth [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	0	8
Height [°]	4.6	4.2	3.4	3.1	2.3	1.9	0.4	1.1	1.5	1.1	1.1	3.4
Azimuth [°]	15	23	38	45	135	143	150	158	165	173	180	
Height [°]	6.5	11.5	11.5	14.9	14.9	8.0	8.0	5.3	1.9	1.5	1.9	

Sun Paths (Height / Azimuth diagram)

Variant: 114 kW 1 axis

Variant: 114 kW 1 axis

PVsyst V7.2.15

VC0, Simulation date: 14/06/22 03:23 with v7.2.15

Main results

System Production

Produced Energy

170.3 MWh/year

Specific production Performance Ratio PR 1487 kWh/kWp/year

69.25 %

Normalized productions (per installed kWp)

Balances and main results

Jan

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	52.6	29.21	4.95	87.9	67.6	7.84	7.57	0.753
February	76.4	39.36	6.71	116.6	94.2	10.78	10.45	0.783
March	118.0	57.36	9.91	166.3	133.2	14.97	14.53	0.764
April	150.3	77.02	13.73	194.6	149.1	16.52	16.05	0.720
May	195.0	84.41	19.52	250.0	178.6	19.33	18.80	0.657
June	218.4	75.24	24.54	279.8	195.0	20.67	20.09	0.627
July	214.7	82.15	27.83	275.8	194.7	20.37	19.81	0.627
August	194.0	76.29	27.71	261.1	192.1	20.06	19.51	0.653
September	144.2	53.93	21.67	205.4	161.1	17.19	16.70	0.710
October	94.1	43.87	16.53	143.5	115.3	12.71	12.32	0.750
November	57.9	29.79	11.46	94.5	75.2	8.49	8.20	0.759
December	43.4	24.96	6.66	72.1	56.0	6.47	6.22	0.753
Year	1559.1	673.58	15.99	2147.5	1611.8	175.40	170.25	0.693

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation T_Amb **Ambient Temperature**

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** E_Grid PR

Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Variant: 114 kW 1 axis

PVsyst V7.2.15 VC0, Simulation date:

VC0, Simulation date 14/06/22 03:23 with v7.2.15

Variant: 114 kW 1 axis

Special graphs Daily Input/Output diagram 1000 Values from 01/01 to 31/12 0 800 Energy injected into grid [kWh/day] 600 400 200 10 12 Global incident in coll. plane [kWh/m²/day] **System Output Power Distribution** 3500 Values from 01/01 to 31/12 3000 2500 2000 1500