Lösungen zu Übungsblatt 02 - Zusatzaufgaben

12.10.2021

- 6. Ein Zufallsexperiment bestehe aus dem gleichzeitigen Werfen dreier unterscheidbarer Münzen. Wie groß sind die Wahrscheinlichkeiten für
 - a) Es erscheint dreimal "Zahl",
 - b) Es erscheint einmal "Zahl" und zweimal "Wappen"?

Lösung:

3 unterscheidbare Münzen

$$\Omega = \{(Z, Z, Z); (Z, Z, W); (Z, W, Z); (W, Z, Z); (W, W, Z); (W, Z, W); (Z, W, W); (W, W, W)\}$$

$$|\Omega| = V_W(2; 3) = 2^3 = 8$$

a) $A = \{ dreimal "Zahl" \} = \{ (Z, Z, Z) \}$ |A| = 1

ODER:

Berechnung der Mächtigkeit der Menge A mithilfe der Kombinatorik:

$$V_W(1;3) = 1^3 = 1$$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{1}{8} = 0,125 \implies 12,5\%$$

b) $B = \{ \text{einmal "Zahl" und zweimal "Wappen"} \} = \{ (W,W,Z); (W,Z,W); (Z,W,W) \} \ |B| = 3$

ODER:

Berechnung der Mächtigkeit der Menge B mithilfe der Kombinatorik:

Zahl-orientiert: $C(3;1) = \binom{3}{1} = \frac{3!}{1! \cdot 2!} = 3$

ODER:

Wappen-orientiert: $C(3;2) = \binom{3}{2} = \frac{3!}{2! \cdot 1!} = 3$

$$P(B) = \frac{|B|}{|\Omega|} = \frac{3}{8} = 0,375 \implies 37,5\%$$

7. Bei der Fertigung eines Loses Elektronenröhren in der Probefertigung treten drei Fehlerarten auf:

$$F_1$$
 zu niedrige Kathodenemission Anteil 15% F_2 Schluss Anteil 5% F_3 Isolationsfehler Anteil 10%

Die Entstehung der verschiedenen Fehlerarten ist völlig unabhängig voneinander, die Fehler schließen sich aber gegenseitig nicht aus.

- a) Wie groß ist der Anteil fehlerhafter Röhren?
- b) Wie groß ist der Anteil der Röhren, die alle drei Fehlerarten aufweisen?

Lösung:

$$\begin{split} F_1 &= \{ \text{zu niedrige Kathodenemission} \} &\rightarrow P(F_1) = 0, 15 \\ F_2 &= \{ \text{Schluss} \} &\rightarrow P(F_2) = 0, 05 \\ F_3 &= \{ \text{Isolationsfehler} \} &\rightarrow P(F_3) = 0, 1 \\ F_1, F_2 \text{ und } F_3 \text{ stochastisch unabhängig, aber nicht disjunkt} \end{split}$$

a)
$$P(F_1 \cup F_2 \cup F_3) = P(F_1) + P(F_2) + P(F_3) - P(F_1 \cap F_2) - P(F_1 \cap F_3)$$

 $- P(F_2 \cap F_3) + P(F_1 \cap F_2 \cap F_3)$
 $= P(F_1) + P(F_2) + P(F_3) - P(F_1) \cdot P(F_2) - P(F_1) \cdot P(F_3)$
 $- P(F_2) \cdot P(F_3) + P(F_1) \cdot P(F_2) \cdot P(F_3)$
 $= 0, 15 + 0, 05 + 0, 1 - 0, 15 \cdot 0, 05 - 0, 15 \cdot 0, 1 - 0, 05 \cdot 0, 1$
 $+ 0, 15 \cdot 0, 05 \cdot 0, 1$
 $= 0, 15 + 0, 05 + 0, 1 - 0, 0075 - 0, 015 - 0, 005 + 0, 00075$
 $= 0, 27325 = 27, 325\%$

Besser

$$P(\overline{F_3}) = 1 - P(F_3) = 0,9$$

$$P(F_1 \cup F_2 \cup F_3) = 1 - P(\overline{F_1} \cup \overline{F_2} \cup \overline{F_3}) = 1 - P(\overline{F_1} \cap \overline{F_2} \cap \overline{F_3})$$

$$= 1 - P(\overline{F_1}) \cdot P(\overline{F_2}) \cdot P(\overline{F_3}) = 1 - 0,85 \cdot 0,95 \cdot 0,9$$

$$= 0,27325 = 27,325\%$$

27, 325% beträgt der Anteil fehlerhafte Röhren.

b)
$$P(F_1 \cap F_2 \cap F_3) = P(F_1) \cdot P(F_2) \cdot P(F_3) = 0,15 \cdot 0,05 \cdot 0,1$$

= 0,00075 = 0,075%

 $P(\overline{F_1}) = 1 - P(F_1) = 0.85, \quad P(\overline{F_2}) = 1 - P(F_2) = 0.95,$

0,075% = 0,75% beträgt der Anteil Röhren, die alle drei Fehlerarten aufweisen.

8. Zwei Abwasserpumpen arbeiten völlig unabhängig voneinander (Redundanz). Nach Auswertung der Wartungshefte zeigt sich, dass die neue Pumpe eine Ausfallwahrscheinlichkeit von 5%, die ältere von 10% hat. Die Wahrscheinlichkeit für den gleichzeitigen Ausfall beider Pumpen beträgt 0,5%. Da ein Notbetrieb mit einer Pumpe nur kurzzeitig möglich ist, ist die Wahrscheinlichkeit für das Eintreten dieses Notbetriebes gesucht.

Lösung:

$$\begin{split} N &= \{ \text{neue Pumpe f\"{a}llt aus} \} &\rightarrow P(N) = 0,05 \\ A &= \{ \text{alte Pumpe f\"{a}llt aus} \} &\rightarrow P(A) = 0,1 \\ N \cap A &= \{ \text{beide Pumpen fallen aus} \} &\rightarrow P(N \cap A) = 0,005 \\ P((\overline{A} \cap N) \cup (A \cap \overline{N})) = P(A) + P(N) - 2 \cdot P(N \cap A) \\ &= 0,05 + 0,1 - 2 \cdot 0,005 \\ &= 0,14 = 14\% \end{split}$$

Schnittmenge muss hier zweimal abgezogen werden, da jeweils nur ein der beiden Pumpen ausfallen darf für Notbetrieb. In der Addition von P(A) mit P(N) ist die Schnittmenge jedoch zweimal enthalten.

ODER:

$$\begin{split} P((\overline{A} \cap N) \cup (A \cap \overline{N})) &= P(\overline{A} \cap N) + P(A \cap \overline{N}) \\ &= P(\overline{A}) \cdot P(N) + P(A) \cdot P(\overline{N}) \\ &= 0, 9 \cdot 0, 05 + 0, 1 \cdot 0, 95 \\ &= 0, 045 + 0, 095 \\ &= 0, 14 = 14\% \end{split}$$