Building a Linear Regression Model to Predict Total Daily Rental Bike Demands

Helen Liang, Ivy Zhao, Xiaotong Zhao

Dataset & Research Question

- The Bike Sharing Dataset (source: UCI Machine Learning Repository) includes the daily rental bike demands (casual and registered) from the Capital bikeshare system spanning from 2011 to 2012.
- This dataset contains 731 observations and 16 variables. We excluded time variables (e.g., date, month, etc.) and focused on using 9 of those 16 variables for our study (e.g., weather, season, normalized temperature, etc).
- Research Question: Can we use the Bike Sharing Dataset to create a linear regression model to predict the daily rental bike demands?
- Outcome: Daily rental bike demands.

Table 1. Summary of the Bike Sharing Dataset (n=731), 2011-2012. Mean (SD), median (min, max) are reported for continuous variables. Frequencies (%) are reported for categorical variables.

	Overall
	(n=731)
Total Daily Rental Bike Count	
Mean (SD)	4504 (1937.21)
Median [Min, Max]	4548 [22, 8714]
Year	
2011	365 (49.93%)
2012	366 (50.07%)
Season	
Spring	181 (24.76%)
Summer	184 (25.17%)
Fall	188 (25.72%)
Winter	178 (24.35%)
Holiday	
No	710 (97.13%)
Yes	21 (2.87%)
Workday	
No	231 (31.60%)
Yes	500 (68.40%)
Weather	
Clear, Few Clouds, Partly Cloudy	463 (63.34%)
Mist + Cloudy, Mist + Broken Clouds, Mist + Few Clouds, Mist	247 (33.79%)
Light Snow, Light Rain, Thunderstorm + Scattered Clouds, Light Rain + Scattered Clouds	21 (2.87%)
Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog	0
Normalized Temperature	
Mean (SD)	0.50 (1.83)
Median [Min, Max]	0.50 [0.06, 0.86]
Normalized Feeling Temperature	
Mean (SD)	0.47 (1.63)
Median [Min, Max]	0.49 [0.08, 0.84]
Normalized Humidity	
Mean (SD)	0.63 (1.42)
Median [Min, Max]	0.63 [0, 0.97]
Normalized Windspeed	
Mean (SD)	0.19 (7.75)
Median [Min, Max]	0.18 [0.02, 0.51]

Acryonym: SD (standard deviation)

Univariable Plots

Figure 1. Univariable plots for continuous variables. A) Bike Count. B) Normalized Temperature. C) Normalized Feeling Temperature. D) Normalized Humidity. E) Normalized Wind Speed.

B)

Univariable Plots (cont.)

Bivariable Plots

Figure 2. Bivariable plots for continuous variables. A) Normalized Temperature. B) Normalized Feeling Temperature. C) Normalized Humidity. D) Normalized Wind Speed.

Bivariable Plots (cont.)

Initial Model

- Our adjusted R² for the initial model is **0.7914**.
- We will use diagnostic plots to check for model assumptions (e.g., normality, homoscedasticity, influential outliers, etc.)

```
Call:
lm(formula = cnt \sim ., data = bikeDf)
Residuals:
   Min
                            30
            10 Median
                                   Max
-4258.3 -458.1
                  75.1
                         539.6 3149.2
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
            1730.19
                               7.344 5.62e-13 ***
            2034.07
                         66.09 30.778 < 2e-16 ***
yr
                         32.20 12.714 < 2e-16 ***
season
             409.40
            -621.06
                        202.71 -3.064 0.002267 **
holiday
workinaday
             124.12
                         73.02
                               1.700 0.089582 .
            -580.37
                         79.20 -7.328 6.28e-13 ***
weathersit
temp
            2326.31
                       1421.46 1.637 0.102158
            3312.12
                       1609.35
                               2.058 0.039945 *
atemp
hum
           -1202.79
                        315.67 -3.810 0.000151 ***
windspeed
           -2582.41
                        462.54 -5.583 3.35e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 884.7 on 721 degrees of freedom
Multiple R-squared: 0.794,
                               Adjusted R-squared: 0.7914
F-statistic: 308.8 on 9 and 721 DF, p-value: < 2.2e-16
```

```
cnt = 1730.19 + 2034.07 \text{ (yr)} + 409.40 \text{ (season)} - 621.06 \text{ (holiday)} + 124.12 \text{ (workingday)} - 580.37 \text{ (weathersit)} + 2326.31 \text{ (temp)} + 3312.12 \text{ (atemp)} - 1202.79 \text{ (hum)} - 2582.41 \text{ (windspeed)}
```

Initial Model Plots

Figure 4. Plots for the initial model. A) Residual vs. Fitted Plot. B) Quantile-Quantile Plot. C) Histogram. D) Fitted vs. Square-Root of Standardized Residuals. E) Residuals vs. Leverages. F) Half-Norm Plot for Leverages. G) Half-Norm Plot for Cook's Distances.

Standardized Residuals

Initial Model Plots (cont.)

Obs #595 has a high leverage and cook's distance and therefore is an influential outlier and is removed from the initial model as the first step to improve our model.

Initial Model

(influential outlier removed)

- After removing the influential outlier Obs #595, Our model slightly improved according to the adjusted R². (From 0.7914 to 0.7999)
- Our next step is to check for Variance Inflation Factors (VIF) and see if any predictor(s) can be dropped to further improve our model.

```
Call:
lm(formula = cnt \sim ... data = bikeDf_new)
Residuals:
   Min
            10 Median
                                 Max
-3234.7 -467.2
                        523.3 3149.6
                 61.0
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1551.82
                       231.19
                             6.712 3.89e-11 ***
            2060.51
                    64.51 31.942 < 2e-16 ***
            426.24
                        31.52 13.524 < 2e-16 ***
season
holiday
            -621.54
                      197.36 -3.149 0.00170 **
workingday
           136.59 71.24 1.917 0.05560 .
                    77.28 -7.184 1.69e-12 ***
weathersit
           -555.18
temp
            2070.38
                      1385.96 1.494 0.13566
atemp
            3531.90
                      1569.18 2.251 0.02470 *
hum
           -1103.53
                      307.81 -3.585 0.00036 ***
                      452.66 -5.108 4.17e-07 ***
windspeed
           -2312.29
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 861.2 on 718 degrees of freedom
Multiple R-squared: 0.8024,
                            Adjusted R-squared: 0.7999
F-statistic: 324 on 9 and 718 DF, p-value: < 2.2e-16
```

```
cnt = 1730.19 + 2034.07 \text{ (yr)} + 409.40 \text{ (season)} - 621.06 \text{ (holiday)} + 124.12 \text{ (workingday)} - 580.37 \text{ (weathersit)} + 2326.31 \text{ (temp)} + 3312.12 \text{ (atemp)} - 1202.79 \text{ (hum)} - 2582.41 \text{ (windspeed)}
```

Multicollinearity

- By looking at the VIFs of the initial model, we can see that both "Normalized Temperature" and "Normalized Feeling Temperature" have large VIFs, indicating that multicollinearity exists in our model.
- We're going to see if removing "Normalized Feeling Temperature", the predictor with the highest VIF, will reduce our issue with multicollinearity and further improve our model.

Table 2. Variance Inflation Factors (VIF) for the initial model. This table shows the VIFs calculated for each predictor in the initial model after removal of leverages/outliers/influential points.

Variable	Year	Season	Holiday	Workday	Weather	Normalized Temperature	Normalized Feeling Temperature	Normalized Humidity	Normalized Windspeed
VIF	1.02	1.19	1.07	1.08	1.72	63.20	64.22	1.87	1.20

Fixing Multicollinearity

- We calculated the VIFs for each predictor for our new model and each VIF is close to 1, indicating that removing "Normalized Feeling Temperature" did solve our issue with multicollinearity.

Table 3. Variance Inflation Factors (VIF) of the new model after removing "Normalized Feeling Temperature". This table shows the VIFs calculated for each predictor in the new model after removing "Normalized Feeling Temperature" from the model.

Variable	Year	Season	Holiday	Workday	Weather	Normalized Temperature	Normalized Humidity	Normalized Windspeed
VIF	1.02	1.19	1.07	1.08	1.71	1.20	1.86	1.17

New Model a.k.a Model 2

- It seems that removing "Normalized Feeling Temperature" slightly decreased the adjusted R² of our model (From 0.7999 to 0.7988).
- However, "Normalized Temperature" became a significant predictor of the model (p < 0.01) while the overall p-value of the model stayed the same (p < 0.01).
- Our next step is to use the Akaike Information Criterion (AIC)-based model selection to select the best model.

Call:

```
lm(formula = cnt \sim yr + season + holiday + workingday + weathersit + \\temp + hum + windspeed, data = bikeDf_new)
```

Residuals:

```
Min 1Q Median 3Q Max -3169.9 -472.9 54.1 519.3 3190.0
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1701.99
                       221.98 7.667 5.72e-14 ***
            2060.78
                       64.69 31.856 < 2e-16 ***
vr
            429.52
                       31.57 13.604 < 2e-16 ***
season
            -637.14
                       197.79 -3.221 0.001334 **
holiday
workingday
            135.76
                     71.44 1.900 0.057806 .
                     77.30 -7.341 5.75e-13 ***
weathersit -567.47
            5160.16
                       191.46 26.952 < 2e-16 ***
temp
           -1044.52
                       307.56 -3.396 0.000721 ***
hum
windspeed
          -2484.42
                       447.41 -5.553 3.96e-08 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 863.7 on 719 degrees of freedom

Multiple R-squared: 0.801, Adjusted R-squared: 0.7988

F-statistic: 361.8 on 8 and 719 DF, p-value: < 2.2e-16

AIC-Based Model Selection

- We used the AIC-based model selection to see if dropping any other predictor(s) will further improve our model by selecting the model with the lowest AIC value and we decided to keep Model 2 since it has the lowest AIC value.

	(Intercept)	yr	season	holiday	workingday	weathersit	temp	hum	windspeed
1	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
2	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
3	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
4	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE
5	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	FALSE	TRUE
6	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE
7	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
8	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
F4	1 10000 440	10107	200 100	001 100	0035 530 (2015 200 00	102 45	7 000	12 424

^{[1] 10690.446 10197.308 10061.100 9935.528 9915.260 9902.437 9892.43}

[8] 9890.770

More Steps in Determining Final Model

Interaction Term: We checked for interaction terms using ANOVA. 12 out of 28 interaction terms are significant (p < 0.05) and the addition of these significant interaction terms improved our model (adjusted $R^2 = 0.8252$). We'll call this new model Model 3

yr:season	
3.085459e-03	
yr:temp	
2.798929e-05	
season:workingday	
4.355133e-01	
season:windspeed	
2.185703e-01	
holiday:hum	
3.061417e-01	
workingday:hum	
7.897260e-02	
eathersit:windspeed	
2.559463e-02	

yr:workingday	yr:holiday
3.055526e-02	5.122350e-02
yr:windspeed	yr:hum
2.627452e-01	1.826086e-01
season:temp	season:weathersit
1.663141e-11	4.814197e-01
holiday:weathersit	holiday:workingday
1.421502e-01	NA
workingday:weathersit	holiday:windspeed
4.600119e-01	5.745760e-01
weathersit:temp	orkingday:windspeed
6.931291e-02	8.647682e-03
temp:windspeed	temp:hum
4.435588e-02	6.153892e-01

yr:weathersit 3.422734e-02

season:holiday

6.682483e-01 season:hum

2.890197e-02 holiday:temp

3.553888e-02

workingday:temp 2.708902e-03

weathersit:hum 1.966592e-03 hum:windspeed 3.389265e-01

Transformation: We used the Box-Cox method to transform Model 3 to find λ that maximizes the likelihood (λ = 0.7071) and created a new model with λ which we'll call it Transformed Model 3. The transformation improved our model (adjusted R² = **0.8328**).

Final Model

(Transformed Model 3)

- Our final model for predicting total daily rental bike demands includes the following 8 predictors and 12 interaction terms, with the final adjusted $R^2 = 0.8328$.
- <u>Note:</u> `trans` is the transformed outcome variable.

 $trans = -26.816 + 102.404 \ (yr) + 71.918 \ (season) - 70.071 \ (holiday) + 10.215 \ (workingday) + 64.941 \ (weathersit) + 588.851 \ (temp) + 62.654 \ (hum) + 33.738 \ (windspeed) + 2.352 \ (yr*season) + 13.147 \ (yr*workingday) - 11.910 \ (yr*weathersit) + 41.648 \ (yr*temp) - 106.206 \ (season*temp) - 4.571 \ (season*hum) + 61.627 \ (holiday*temp) - 55.069 \ (workingday*temp) + 99.090 \ (workingday*windspeed) - 79.309 \ (weathersit*hum) - 202.108 \ (weathersit*windspeed) + 75.596 \ (temp*windspeed)$

Call:

 $\label{lm} \begin{tabular}{ll} $lm(formula = trans \sim yr + season + holiday + workingday + weathersit + temp + hum + windspeed + yr * season + yr * workingday + yr * weathersit + yr * temp + season * temp + season * hum + holiday * temp + workingday * temp + workingday * windspeed + weathersit * hum + weathersit * windspeed + temp * windspeed, data = bikeDf_new) \end{tabular}$

Residuals:

Min 1Q Median 3Q Max -205.608 -23.250 2.409 28.506 153.965

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-26.816	43.100	-0.622	0.534020	
yr	102.404	16.721	6.124	1.51e-09	***
season	71.918	9.106	7.898	1.08e-14	***
holiday	-70.071	29.168	-2.402	0.016549	*
workingday	10.215	16.756	0.610	0.542322	
weathersit	64.941	19.974	3.251	0.001204	**
temp	588.851	50.934	11.561	< 2e-16	***
hum	62.654	47.376	1.322	0.186441	
windspeed	33.738	103.229	0.327	0.743895	
yr:season	2.352	3.546	0.663	0.507272	
yr:workingday	13.147	7.930	1.658	0.097784	
yr:weathersit	-11.910	7.057	-1.688	0.091931	
yr:temp	41.648	21.594	1.929	0.054175	
season:temp	-106.206	12.961	-8.194	1.18e-15	***
season:hum	-4.571	12.416	-0.368	0.712867	
holiday:temp	61.627	57.622	1.070	0.285206	
workingday:temp	-55.069	22.398	-2.459	0.014183	*
workingday:windspeed	99.090	51.798	1.913	0.056152	
weathersit:hum	-79.309	23.099	-3.433	0.000631	***
weathersit:windspeed	-202.108	43.214	-4.677	3.49e-06	***
temp:windspeed	75.596	151.753	0.498	0.618533	

Residual standard error: 49.15 on 707 degrees of freedom
Multiple R-squared: 0.8374, Adjusted R-squared: 0.8328
F-statistic: 182.1 on 20 and 707 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Final Model Plots

Future Directions

Analysis/Study Design Improvements: Using machine learning techniques to conduct analyses on the Bike Sharing Dataset can potentially improve accuracy and robustness of our predictions.

Examples: Stepwise Selection Methods, KNN, Random Forests, Time Series Analysis

Advantages: Reduce overfitting/underfitting, increase flexibility

Thanks for watching!! Any questions?

References

Fanaee-T, Hadi. (2013). Bike Sharing. UCI Machine Learning Repository. https://doi.org/10.24432/C5W894.