

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES Prof. Me. Antônio Clementino Neto

CENTRO PAULA SOUZA

Simplificação de Expressões Booleanas Através dos Diagramas de Veitch-Karnaugh

CURSO TECNOLÓGICO SUPERIOR EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto,

Simplificações - Regiões

Figura 3.18 - Regiões do mapa de Veitch-Karnaugh:

- (a) Região na qual A = 1.
- (b) Região na qual $\overline{A} = 1(A = 0)$.
- (c) Região na qual B = 1.
- (d) Região na qual $\overline{B} = 1(B = 0)$.
- (e) Região na qual C = 1.
- (f) Região na qual $\overline{C} = 1(C = 0)$.

CURSO TECNOLÓGICO SUPERIOR EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto,

Simplificações - Casos

Caso 5	0	Ó	0
1	0	ď	
2	0	i	0
3	0	1	1
4	1	0	0
5	1	Ó	1
6	1	1	0
7	1	1	1
Tabela	27		

	B		В	
Ā	Caso 0	Caso 1	Caso 3	Caso 2
	0 0 0	0.0 1	0 1 1	0 1 0
	A B C	ABC	A B C	A B C
A	Caso 4	Caso 5	Caso 7	Caso 6
	1 <u>0 0</u>	1 0 1	111	11 <u>0</u>
	A B C	A B C	ABC	ABC
	C	C		C

Figura 3.19

CURSO TECNOLÓGICO SUPERIOR EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

CENTRO PAULA SOUZA

Simplificações - Agrupamentos

Transpondo a tabela para o diagrama, temos:

	B		В	
Ā	Caso 0	Caso 1 0	Caso 3	Caso 2
A	Caso 4	Caso 5	Caso 7 0	Caso 6
C		-	2	C

Figura 3.21

Para efetuarmos a simplificação, seguimos o mesmo processo visto anteriormente, somente que, para 3 variáveis, os agrupamentos possíveis são os seguintes:

a) Oitava:

Agrupamento máximo, onde todas as localidades valem 1. A figura 3.22 apresenta esta situação:

Figura 3.22

b) Quadras

Quadras são agrupamentos de 4 regiões, onde S é igual a 1, adjancentes ou em sequência. Vamos agora formar algumas quadras possíveis num diagrama de 3 variáveis, a título de exemplo:

Figura 3.23 - (a) Quadra A.
(b) Quadra B.

(c) Quadra C.

c) Pares:

A figura 3.24 apresenta, como exemplo, 2 pares entre os 12 possíveis en um diagrama de 3 variáveis:

Par AC (está localizado na intersecção das regiões A e C)

Figura 3.24

d) Termos isolados:

Vejamos na figura 3.25, alguns exemplos de termos isolados, que, como já dissemos, são os casos de entrada sem simplificação.

Para o exemplo, agrupamos primeiramente uma quadra e, logo após, um par, conforme mostra a figura 3.26.

Figura 3.26

Notamos que esse par não depende de C, pois está localizado tanto em C como em \overline{C} , resultando sua expressão independente de C, ou seja, o termo \overline{AB} .