MATB24 TUTORIAL PROBLEMS 2SOLUTIONS

KEY WORDS: subspace, spanning set, linearly independent, basis RELEVANT SECTIONS IN THE TEXTBOOK: Sec 3.2 FB or Sec 2.A and Sec 1.C SA

WARM-UP: Write down a complete definition or a complete mathematical characterization for the following terms.

Let V be an F-vector space

• A subspace of V

A non-empty subset W of V is a *subspace* of V if W is itself a vector space with the vector addition and the scalar multiplication in V.

• A linear combination of v_1, v_2, \dots, v_k in V

A linear combination of v_1, v_2, \dots, v_k in V is an expression of the form $c_1v_1 + c_2v_2 + \dots + c_kv_k$ where c_1, c_2, \dots, c_k are in F.

• A dependency relation in a subset X of V

Consider vectors v_1, \dots, v_k in $X \subset V$. A relation of the form

$$c_1v_1 + \cdots + c_kv_k = 0$$
, where $(c_1, \cdots, c_k) \neq (0, \cdots, 0)$

is called a dependency relation among v_i 's or on X.

 $\bullet\,$ A spanning set for a subspace W of V

S is a spanning set of W if span(S) = W

 \bullet The span of a subset X of V

Let $S \subseteq V$. The span of S is the set of all linear combinations of vectors in S.

$$\operatorname{Span}(S) = \operatorname{Sp}(S) = \{c_1v_1 + \dots + c_rv_r, \mid c_1, \dots, c_r \in \mathbb{R}, v_1, \dots, v_r \in S, r \in \mathbb{N}\}\$$

If $S = \{v_1, \dots v_r\}$ (that is if S is finite) we write $\operatorname{Span}(S) = \operatorname{Span}(v_1, \dots v_r)$. If $\operatorname{Span}(S) = W$ for a subspace W of V we say S spans W or S generates W or S is a spanning set for W.

- A linearly independent subset of V
- A linearly dependent subset of V

A subset X of V is called linearly dependent if there exists a dependency relation among vectors in X. We say X is linearly independent if it is not linearly dependent.

A basis for a vector space V is a subset of V that

- (1) spans V.
- (2) is linearly independent.

A: Let \mathcal{F} be the set of all functions from \mathbb{R} to \mathbb{R} . Recall that \mathcal{F} is a vector space, with operations (f+g)(x)=f(x)+g(x) and (kf)(x)=kf(x), for all $f,g\in\mathcal{F},k\in\mathbb{R}$, and $x\in\mathbb{R}$. Prove or disprove the following:

- (1) The set $\{\sin^2(x), \cos^2(x)\}$ is linearly independent.
- (2) The set $\{\sin(x), \cos(2x), \sin(3x)\}\$ is linearly independent.
- (3) The set $\{1, e^x + e^{-x}, e^x e^{-x}\}$ is linearly independent.
- (4) Span($\sin^2(x)$, $\cos^2(x)$) contains all the constant function.
- (5) If V is the subspace of \mathcal{F} spanned by $\{1, 2\sin^2(x), 3\cos^2(x)\}$, then $\dim(V) = 2$.

Solution. If you want to prove two functions f, g are linearly independent, you show that af(x) + bg(x) = 0 imply a = 0, b = 0. Be careful that here the zero on the right hand side is the zero function, not a real number, which means you are not solving specific x, a, b such that the equation holds, but solve a, b such that the equation holds for all x. You can substitute specific value of x to get some equations that a and b must satisfy.

- (1) Suppose $a\sin^2(x) + b\cos^2(x) = 0$, for some scalars a and b. That means the equality holds for all $x \in \mathbb{R}$. In particular, the equality holds for $x = \pi/2$ and x = 0. Substituting these values, we have a + 0 = 0 and 0 + b = 0. Therefore $\{\sin^2(x), \cos^2(x)\}$ is linearly independent.
- (2) Linearly independent. Suppose $a\sin(x) + b\cos(2x) + c\sin(3x) = 0$ for some $a,b,c \in \mathbb{R}$. Setting x=0 yields b=0, so now $a\sin(x) + c\sin(3x) = 0$. Setting $x=\pi/3$ yields a=0, and hence $c\sin(3x) = 0$ so that c=0 (e.g. set $x=\pi/6$).
- (3) Linearly independent. Suppose $a + b(e^x + e^{-x}) + c(e^x e^{-x}) = 0$. Substituting the values x = 1, 2, 3 yields three equations $a + (e^i + e^{-i})b + (e^i e^{-i})c = 0$ for i = 1, 2, 3. The coefficients of these three equations, in variables a, b, c, yields a 3×3 matrix which can be shown to be row equivalent to the identity. This shows that the only solution is a = b = c = 0.
- (4) Note that $\sin^2(x) + \cos^2(x) = 1$. For any constant $c \in \mathbb{R}$, $c = c\sin^2(x) + c\cos^2(x)$, which is a linear combination of $\sin^2(x), \cos^2(x)$, thus the span of $\sin^2(x), \cos^2(x)$ contain all the constants
- (5) Note that $(1/2)2\sin^2(x) + (1/3)3\cos^2(x) = \sin^2(x) + \cos^2(x) = 1$. That is 1 is linear combination of the other vectors in the set, and hence V is spanned by $\{2\sin^2(x), 3\cos^2(x)\}$. Now, suppose $a2\sin^2(x) + b3\cos^2(x) = 0$ for all $x \in \mathbb{R}$ for some $a, b \in \mathbb{R}$. In particular, the equality holds for x = 0 and $x = \pi/2$. Substituting these values for x gives us b = 0 and a = 0. So, $\{2\sin^2(x), 3\cos^2(x)\}$ is a linearly independent spanning set of V, that is a basis. Dimension of V is the number of vectors in a basis for V. Hence, $\dim(V) = 2$.

B: Let V be a real vector space and $\vec{v_i}$ and $\vec{w_i}$ be in V, i = 1, ..., n.

- (1) Give a necessary and sufficient condition for $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$.
- (2) Prove that $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$ if and only if $\vec{v}_1, \dots, \vec{v}_n$ are in $\operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$ and $\vec{w}_1, \dots, \vec{w}_n$ are in $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$. Is this the same condition that you gave in 1? If not, is it equivalent?
- (3) Prove that $\operatorname{Span}(\vec{v}_1, \vec{v}_2) = \operatorname{Span}(\vec{v}_1, 2\vec{v}_1 + 3\vec{v}_2)$. You can use the previous parts.
- (4) Let $\vec{w} \in V$. Prove or disprove: $\vec{w} \in \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$ if and only if $\operatorname{Span}(\vec{w}, \vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$

Solution.

- (1) $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$ if and only if $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) \subseteq \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$ and $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) \supseteq \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$. In other words if and only if every linear combination of v_i 's is a linear combination of w_i 's and every linear combination of w_i 's is a linear combination of v_i 's.
- (2) Since $\vec{v_i}$ are elements of $\mathrm{Span}(\vec{v_1},\ldots,\vec{v_n})$, and likewise for the $\vec{w_i}$, it is immediate that $\mathrm{Span}(\vec{v_1},\cdots,\vec{v_n})=\mathrm{Span}(\vec{w_1},\cdots\vec{w_n})$ implies $\vec{v_1},\cdots,\vec{v_n}$ are in $\mathrm{Span}(\vec{w_1},\cdots\vec{w_n})$ and $\vec{w_1},\cdots\vec{w_n}$ are in $\mathrm{Span}(\vec{v_1},\cdots,\vec{v_n})$. Consider the converse. An element of $\mathrm{Span}(\vec{v_1},\cdots,\vec{v_n})$ is of the form $r_1\vec{v_1}+\cdots+r_n\vec{v_n}$. Since $\vec{v_i}\in\mathrm{Span}(\vec{w_1},\cdots\vec{w_n})$, therefore $\vec{v_i}=r_{i1}\vec{w_1}+\cdots+r_{in}\vec{w_n}$. Substituting each $\vec{v_i}$ with this expression in $r_1\vec{v_1}+\cdots+r_n\vec{v_n}$, expanding, and collecting terms, it is clear that the result is a linear combination of the $\vec{w_i}$. This shows that $\mathrm{Span}(\vec{v_1},\cdots,\vec{v_n})\subseteq\mathrm{Span}(\vec{w_1},\cdots\vec{w_n})$. Showing $\mathrm{Span}(\vec{v_1},\cdots,\vec{v_n})\supseteq\mathrm{Span}(\vec{w_1},\cdots\vec{w_n})$ is similar, and hence $\mathrm{Span}(\vec{v_1},\cdots,\vec{v_n})=\mathrm{Span}(\vec{w_1},\cdots\vec{w_n})$.
- (3) Using part two, all we need to show is that \vec{v}_1, \vec{v}_2 are in $\mathrm{Span}(\vec{v}_1, 2\vec{v}_1 + 3\vec{v}_2)$ and $\vec{v}_1, 2\vec{v}_1 + 3\vec{v}_2$ are in $\mathrm{Span}(\vec{v}_1, \vec{v}_2)$. Well. \vec{v}_1 is clearly in $\mathrm{Span}(\vec{v}_1, 2\vec{v}_1 + 3\vec{v}_2)$, and $\vec{v}_2 = 1/3(2\vec{v}_1 + 3\vec{v}_2) 2/3\vec{v}_1$ and hence in $\mathrm{Span}(\vec{v}_1, 2\vec{v}_1 + 3\vec{v}_2)$. Conversely, both \vec{v}_1 , and $2\vec{v}_1 + 3\vec{v}_2$ are linear combination of \vec{v}_1 and \vec{v}_2 , and hence in $\mathrm{Span}(\vec{v}_1, \vec{v}_2)$.
- (4) True. If $\vec{w} \in \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$, then it immediately follows from (2) that $\operatorname{Span}(\vec{w}, \vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$. Conversely, if $\operatorname{Span}(\vec{w}, \vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$, we have $\vec{w} \in \operatorname{Span}(\vec{w}, \vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)$.

¹Means fill in the blank for if and only if $\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$.

²Remember how we proved two sets are equal in class. You need to show they are subsets of one another.

C: Let P denote the vector space of all polynomials (that is, functions of the form $f(x) = a_n x^n + \cdots + a_1 x + a_0$ where each $a_i \in \mathbb{R}$ and n is any non-negative integer).

- (1) Give two spanning sets for P.
- (2) What do you think it means for a vector space to be finitely generated? Write down the definition explicitly. Check your definition with your TA.
- (3) Suppose V is a finitely generated subspace of P, and S is a finite spanning set for V. Let $m = \max\{\deg(f(x)) \mid f \in S\}$. Discuss with your group why m is a well defined integer. One way to think about this is, if you were to program a computer to find m what would your algorithm be, and does that algorithm end.
- (4) Construct an element g in P of degree m+1. Prove that g is not in $\mathrm{Span}(S)$.
- (5) Prove that P is not finitely generated.

Solution.

- (1) $\{1, 1+x, 1+x+x^2, 1+x+x^2+x^3, \ldots\}$ and $\{1, x, x^2, x^3 \ldots\}$.
- (2) A vector space V is finitely generated if there exists a finite subset S of V such that $\operatorname{Span}(S) = V$.
- (3) "Well defined" means that according to the definition, there is no ambiguities in finding the elements and the elements always exists. In this question, the question defined m using \max function, and the \max of a infinite set can possibly be not exist. But here since S is finite, therefore m is a maximum of a finite set and hence maximum always exist.
- (4) An example of g is $g(x) = x^{m+1}$. To see that g is not in $\mathrm{Span}(S)$, note that the largest degree polynomial in $\mathrm{Span}(S)$ is degree m: This is true for S, and $\mathrm{Span}(S)$ is obtained from S by taking linear combinations of elements of S, and linear combinations of polynomials has the degree given by those polynomials. So, $g \notin \mathrm{Span}(S)$ because its degree is bigger than m.
- (5) If P were finitely generated, then by (3) there would exist some m such that P would not contain polynomials of degree greater than m, which is false.

COOL-OFF: Give an example of the described object or explain why such an example does not exists.

- (1) A finitely generated vector space.
- (2) A vector space that is not finitely generated
- (3) A linearly dependent subset of \mathcal{F} and a dependency relation among its vectors
- (4) A linearly independent subset of \mathcal{F} .

Solution.

- (1) \mathbb{R}^n and any vector space that "looks similar" (you will have a precise definition of what does looks similar mean) to \mathbb{R}^n is finitely generated.
- (2) The vector space consists of all continuous functions from \mathbb{R} to \mathbb{R} . (Think about it why the function space cannot be finitely generated) or the vector space of all polynomials \mathbb{P} .
- (3) Recall that \mathcal{F} is the set of functions from \mathbb{R} to \mathbb{R} . The subset $\{\sin^2(x), \cos^2(x), 1\}$ is a linear dependent set since $\sin^2(x) + \cos^2(x) = 1$
- (4) $\{1, \ln x\}$ is a linear independent subset of \mathcal{F}