Scilab Textbook Companion for Engineering Electromagnetics by W. H. Hayt And J. A. Buck¹

Created by
Prof. R. Senthilkumar
B.Tech. + M.Tech
Electronics Engineering
Institute of Road and Transport Technology
College Teacher
Na
Cross-Checked by

August 18, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Electromagnetics

Author: W. H. Hayt And J. A. Buck

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 7

Year: 2006

ISBN: 0070612234

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Vector Analysis	7
2	Columbs Law and Electric Field Intensity	11
3	Electric Flux Density Gausss Law and Divergence	15
4	Energy and Potential	21
5	Current and Conductors	26
6	Dielectrics and Capacitance	30
7	Poissons and Laplaces Equation	33
8	The Steady Magnetic Field	39
9	Magnetic Forces Materials and Inductance	43
11	Transmission Lines	55
12	The Uniform Plane Wave	66
13	Plane Wave Reflection and Dispersion	7 3
14	Guided Wave and Radiation	84

List of Scilab Codes

Exa 1.1	Program to find the unit vector	7
Exa 1.2	find the phase angle between two vectors	7
Exa 1.3	Rectangular coordinates into cylindrical	8
Exa 1.4	Rectangular coordinates into spherical	9
Exa 2.1	Caculate force exerted on Q2 by Q1	11
Exa 2.2	Caculate Electric Field	12
Exa 2.3	Total Charge Enclosed	13
Exa 3.1	find Electric Flux density 'D	15
Exa 3.2	calculate surface charge density	16
Exa 3.3	total charge enclosed in a volume	17
Exa 3.4	Find the Divergence	18
Exa 3.5	verify the Divergence theorem	19
Exa 4.1	find the work involved	21
Exa 4.2	find the work involved 'W'	22
Exa 4.3	Program to calculate E, D and volume charge	23
Exa 5.1	find the resistance, current and current density	26
Exa 5.2	find potential at point P	27
Exa 5.3	equation of the streamline	28
Exa 6.1	calculate D,E and Polarization P	30
Exa 6.2	Program to calculate E and Polarization P	31
Exa 6.3	Program to calculate the capacitance	31
Exa 7.1	Derivation of capacitance	33
Exa 7.2	Capacitance of a Cylindrical Capacitor	34
Exa 7.3	Determine the electric field	35
Exa 7.4	capacitance of a spherical capacito	36
Exa 7.5	Potential in spherical coordinates	37
Exa 8.1	find the magnetic field intensity	39
Exa 8.2	to find the curl H	40

Exa 8.3	verify Stokes theorem	41
Exa 9.1		43
Exa 9.2		44
Exa 9.3	calculate the total torque acting	45
Exa 9.4	find the torque and force acting	46
Exa 9.5	find Magnetic Susceptibility, H, Magentization M	48
Exa 9.6	find the boundary conditions on magnetic field	49
Exa 9.7	magnetomotive force 'Vm'	50
Exa 9.8	total Magnetic Flux Density	52
Exa 9.9		52
Exa 11.1		55
Exa 11.2		55
Exa 11.3		56
Exa 11.4	output power and attenuation coefficient	57
Exa 11.5	power dissipated in the lossless	58
Exa 11.6	find the total loss	58
Exa 11.7		59
Exa 11.8	find the input impedance and power delivered	60
Exa 11.9	find the input impedance	61
Exa 11.10		62
Exa 11.11		63
Exa 11.12		64
Exa 12.1		66
Exa 12.2		66
Exa 12.3	find the Phase constant, Phase velocity, Electric Field	67
Exa 12.4		68
Exa 12.5		69
Exa 12.6		70
Exa 12.7		71
Exa 13.1	electric field of incident, reflected and transmitted waves	73
Exa 13.2		74
Exa 13.3	determine the intrinsic impedance	76
Exa 13.4	*	76
Exa 13.5	1 0 0	77
Exa 13.6		78
Exa 13.7		79
Exa 13.8		80
Exa 13 9		R1

Exa 13.10	group velocity and phase velocity	82
Exa 13.11	pulse width at the optical fiber	83
Exa 14.1	determine the cutoff frequency	84
Exa 14.2	number of modes propagate in waveguide	85
Exa 14.3	determine the group delay and difference	85
Exa 14.4	determine the operating range	86
Exa 14.5	maximum allowable refractive index	87
Exa 14.6	find the V number of a step index fiber	87

Vector Analysis

Scilab code Exa 1.1 Program to find the unit vector

```
1 //clear//
2 //Caption:Program to find the unit vector
3 //Example1.1
4 //page 8
5 G = [2,-2,-1]; //position of point G in cartesian coordinate system
6 aG = UnitVector(G);
7 disp(aG, 'Unit Vector aG = ')
8 //Result
9 //Unit Vector aG =
10 // 0.6666667 - 0.66666667 - 0.33333333
```

Scilab code Exa 1.2 find the phase angle between two vectors

```
4 //page 11
5 clc;
6 Q = [4,5,2]; //point Q
7 x = Q(1);
8 y = Q(2);
9 z = Q(3);
10 G = [y, -2.5*x, 3]; //vector field
11 disp(G, G(rQ) = 1)
12 aN = [2/3,1/3,-2/3]; //unit vector - direction of Q
13 G_dot_aN = dot(G,aN); //dot product of G and aN
14 disp(G_dot_aN, 'G.aN =')
15 G_dot_aN_aN = G_dot_aN*aN;
16 disp(G_dot_aN_aN, '(G.aN)aN=')
17 teta_Ga = Phase_Angle(G,aN) //phase angle between G
     and unit vector aN
18 disp(teta_Ga, 'phase angle between G and unit vector
     aN in degrees =')
19 // Result
20 // G(rQ) =
                5. - 10.
                              3.
21 // G.aN =
                - 2.
22 // (G.aN)aN =
                  -1.3333333 -0.6666667
     1.3333333
23 // phase angle between G and unit vector aN in
     degrees =
                 99.956489
```

Scilab code Exa 1.3 Rectangular coordinates into cylindrical

```
8 z = sym('z');
9 \text{ ax = sym('ax')};
10 ay = sym('ay');
11 az = sym('az');
12 ar = sym('ar');
13 aphi = sym('aphi');
14 phi = sym('phi');
15 B = y*ax-x*ay+z*az;
16 disp(B, 'Given vector in cartesian co-ordinate system
      B=')
17 Br = B*ar;
18 Bphi = B*aphi;
19 Bz = B*az;
20 disp('Components of cylindrical vector B')
21 disp(Br, 'Br=')
22 disp(Bphi, 'Bphi=')
23 disp(Bz, 'Bz=')
24 // Result
25 // Given vector in cartesian co-ordiante system B=
26 // az*z+ax*y-ay*x
27 // Components of cylindrical vector B
28 // Br=
29 //
     ar*(az*z+ax*y-ay*x)
30 // Bphi =
31 //
     aphi*(az*z+ax*y-ay*x)
32 // Bz =
33 // az*(az*z+ax*y-ay*x)
34 //
```

Scilab code Exa 1.4 Rectangular coordinates into spherical

```
4 //page 22
5 clc;
6 y = sym('y');
7 x = sym('x');
8 z = sym('z');
9 \text{ ax = sym('ax')};
10 ay = sym('ay');
11 az = sym('az');
12 ar = sym('ar');
13 aTh = sym('aTh');
14 aphi = sym('aphi');
15 G = (x*z/y)*ax;
16 disp(G, 'Given vector in cartesian co-ordinate system
      B=')
17 r = sym('r');
18 teta = sym('teta')
19 phi = sym('phi')
20 x1 = r*sin(teta)*cos(phi);
21 y1 = r*sin(teta)*sin(phi);
22 	 z1 = r*cos(teta);
23 \text{ G1} = (x1*z1/y1)*ax;
24 \text{ Gr} = G1*ar;
25 GTh = G1*aTh;
26 Gphi = G1*aphi;
27 \text{ Gsph} = [Gr, GTh, Gphi];
28 disp(Gr, 'Gr=')
29 disp(GTh, 'GTh=')
30 disp(Gphi, 'Gphi=')
31 // Result
32 //Given vector in cartesian co-ordiante system B =
        ax*x*z/y
33 //Gr = ar*ax*cos(phi)*r*cos(teta)/sin(phi)
34 //GTh =
             ax*cos(phi)*r*cos(teta)*aTh/sin(phi)
               aphi*ax*cos(phi)*r*cos(teta)/sin(phi)
35 //\mathrm{Gphi} =
36 //
```

Columbs Law and Electric Field Intensity

Scilab code Exa 2.1 Caculate force exerted on Q2 by Q1

```
1 // \operatorname{clear} //
2 // Caption: Program to Caculate force exerted on Q2 by
3 / \text{Example } 2.1
4 //page 29
5 clc;
6 	 r2 = [2,0,5];
7 \text{ r1} = [1,2,3];
8 R12 = norm(r2-r1);
9 \text{ aR12} = \text{UnitVector}(r2-r1);
10 disp(R12, 'R12=')
11 disp(aR12, 'aR12=')
12 Q1 = 3e-04; // charge 1 in Coulombs
13 Q2 = -1e-04; //charge 2 in Coulombs
14 Eps = 8.854e-12; //free space permittivity
15 F2 = ((Q1*Q2)/(4*\%pi*Eps*R12^2))*aR12;
16 \text{ F1} = -\text{F2};
17 disp(F2, 'Force exerted on Q2 by Q1 in N/m F2 =')
18 disp(F1, 'Force exerted on Q1 by Q2 in N/m F1 =')
```

```
19 // Result
20 / R12 =
21 //
        3.
22 / aR12 =
23 //
         0.3333333
                   -0.6666667
                                    0.6666667
24 //Force exerted on Q2 by Q1 in N/m F2 =
25 // - 9.9863805
                      19.972761 - 19.972761
26 //Force exerted on Q1 by Q2 in N/m F1 =
27 //
          9.9863805 - 19.972761
                                     19.972761
```

Scilab code Exa 2.2 Caculate Electric Field

```
1 // \operatorname{clear} //
2 //Caption:Program to Caculate Electric Field E at P
      due to 4 identical charges
3 / \text{Example } 2.2
4 //page 33
5 clc;
6 P = [1,1,1];
7 P1 = [1,1,0];
8 P2 = [-1,1,0];
9 P3 = [-1, -1, 0];
10 P4 = [1,-1,0];
11 R1 = norm(P-P1);
12 aR1 = UnitVector(P-P1);
13 R2 = norm(P-P2);
14 aR2 = UnitVector(P-P2);
15 R3 = norm(P-P3);
16 aR3 = UnitVector(P-P3);
17 R4 = norm(P-P4);
18 aR4 = UnitVector(P-P4);
19 disp(R1, 'R1=')
20 disp(aR1, 'aR1=')
21 disp(R2, 'R2=')
22 disp(aR2, 'aR2=')
```

```
23 disp(R3, 'R3=')
24 disp(aR3, 'aR3=')
25 disp(R4, 'R4=')
26 disp(aR4, 'aR4=')
27 Q = 3e-09; //charge in Coulombs
28 Eps = 8.854e-12; //free space permittivity
29 E1 = (Q/(4*\%pi*Eps*R1^2))*aR1;
30 E2 = (Q/(4*\%pi*Eps*R2^2))*aR2;
31 E3 = (Q/(4*\%pi*Eps*R3^2))*aR3;
32 E4 = (Q/(4*\%pi*Eps*R4^2))*aR4;
33 E = E1+E2+E3+E4;
34 disp(E, 'Electric Field Internity at any point P due
      to four identical Charges in V/m=')
35 // Result
36 / R1 =
               1.
37 / aR1 =
               0.
                     0.
                            1.
               2.236068
38 / R2 =
               0.8944272
                            0.
                                   0.4472136
39 / aR2 =
40 / R3 =
               3.
               0.6666667
41 / aR3 =
                             0.6666667
                                           0.3333333
42 / R4 =
               2.236068
                                   0.4472136
43 //aR4 =
               0.
                     0.8944272
44 // Electric Field Intesnity at any point P due to
      four identical Charges in V/m=
                     6.8206048
45 //
       6.8206048
                                   32.785194
46 //
```

Scilab code Exa 2.3 Total Charge Enclosed

```
1 //clear//
2 //Example2.3
3 //page 35
4 clc;
5 r = sym('r');
6 z = sym('z');
```

```
7 phi = sym('phi');
8 \text{ rv} = -5e-06*\exp(-1e05*r*z);
9 disp(rv, 'Volume Charge density in C/cubic.metre rv='
     )
10 Q1 = integ(rv*r,phi);
11 Q1 = limit(Q1,phi,2*\%pi);
12 Q2 = integ(Q1,z);
13 Q2 = limit(Q2,z,0.04)-limit(Q2,z,0.02);
14 Q3 = integ(Q2,r);
15 Q3 = limit(Q3,r,0.01)-limit(Q3,r,0);
16 disp(Q1, 'Q1=')
17 disp(Q2, 'Q2=')
18 disp(Q3, 'Total Charge Enclosed in a 2cm length
                                                οf
     electron beam in coulombs Q=')
19 //Result
20 //Volume Charge density in C/cubic.metre rv = -\%e
     -(100000*r*z)/200000
21 / Q1 =
           -103993*r*\%e^-(100000*r*z)/3310200000
22 / Q2 =
           -103993*\%e^{-(2000*r)/33102000000000}
23 //Total Charge Enclosed in a 2cm length
                                        of electron
      beam in coulombs Q=
^{-40/13240800000000000000}
25 //Q approximately equal to
```

Electric Flux Density Gausss Law and Divergence

Scilab code Exa 3.1 find Electric Flux density 'D

```
1 // \operatorname{clear} //
2 // Caption: Program to find Electric Flux density 'D'
       of a uniform line charge
3 / Example 3.1
4 //page 54
5 clc;
6 e0 = 8.854e-12; //free space permittivity in F/m
7 rL = 8e-09; //line charge density c/m
8 r = 3; // distance in metre
9 E = Electric_Field_Line_Charge(rL,e0,r); //electric
      field intensity of line charge
10 D = e0*E;
11 disp(D, 'Electric Flux Density in Coulombs per square
       metre D = ')
12 //Result
13 // Electric Flux Density in Coulombs per square
     metre D =
14 // 4.244D-10
```

Scilab code Exa 3.2 calculate surface charge density

```
1 // clear //
2 //Caption: Program to calculate surface charge
     density, Flux density, Field Intensity of coaxial
     cable
3 / Example 3.2
4 //page 64
5 clc;
6 Q_innercyl = 30e-09; //total charge on the inner
     conductor in coulombs
7 a = 1e-03; // inner radius of coaxial cable in metre
8 b = 4e-03; // outer radius of coaxial cable in metre
9 L = 50e-02; //length of coaxial cable
10 rs_innercyl = Q_innercyl/(2*%pi*a*L);
11 rs_outercyl = Q_innercyl/(2*%pi*b*L);
12 e0 = 8.854e-12; //free space relative permittivity F
     /m
13 r = sym('r');
14 Dr = a*rs_innercyl/r;
15 Er = Dr/e0;
16 disp(rs_innercyl, 'Surface charge density of inner
     cylinder of coaxial cable in C/square.metre,
      rs_i n n e r c y l = ')
17 disp(rs_outercyl, 'Surface charge density of outer
      cylinder of coaxial cable in C/square.metre,
      rs_outercyl=')
18 disp(Dr, 'Electric Flux Density in C/square.metre Dr=
19 disp(Er, 'Electric Field Intensity in V/m Er=')
20 //Result
21 // Surface charge density of inner cylinder of
      coaxial cable in C/square.metre, rs_innercyl=
22 //
         0.0000095
```

Scilab code Exa 3.3 total charge enclosed in a volume

```
1 // clear //
2 //Caption: Program to calculate the total charge
      enclosed in a volume at the origin
\frac{3}{\sqrt{\text{Example 3}}}.
4 //page 67
5 clc;
6 V = 1e-09; //volume in cubic metre
7 x = sym('x');
8 y = sym('y');
9 z = sym('z');
10 //Components of Electric Flux Density in cartesian
      coordinate system
11 Dx = \exp(-x) * \sin(y);
12 Dy = -\exp(-x)*\cos(y);
13 Dz = 2*z;
14 //Divergence of electric flux density 'D'
15 	ext{ dDx = diff(Dx,x);}
16 \text{ dDy} = \text{diff}(Dy,y);
17 	ext{ dDz} = diff(Dz,z);
18 //Total charge enclosed in a given volume
19 del_Q = (dDx+dDy+dDz)*V;
20 disp(del_Q, 'Total charge enclosed in an incremental
      volume in coulombs, del_Q = 
21 //Total Charge enclosed in a given volume at origin
      (0,0,0)
```

```
22 del_Q = limit(del_Q,x,0);
23 del_Q = limit(del_Q,y,0);
24 del_Q = limit(del_Q,z,0);
25 disp(del_Q*1e09, 'Total charge enclosed in an incremental volume in nano coulombs at origin, del_Q =')
26 //Result
27 //Total charge enclosed in an incremental volume in coulombs, del_Q = 2.0000000000000001E-9
28 //Total charge enclosed in an incremental volume in nano coulombs at origin, del_Q =
29 // 2.0
```

Scilab code Exa 3.4 Find the Divergence

```
1 // clear //
2 //Caption: Program to Find the Divergence of 'D' at
      the origin
3 / Example 3.4
4 //page 70
5 clc;
6 x = sym('x');
7 y = sym('y');
8 z = sym('z');
9 //Components of Electric Flux Density in cartesian
      coordinate system
10 Dx = \exp(-x) * \sin(y);
11 Dy = -\exp(-x)*\cos(y);
12 Dz = 2*z;
13 // Divergence of electric flux density 'D'
14 	ext{ dDx} = diff(Dx,x);
15 \text{ dDy} = \text{diff}(Dy,y);
16 \text{ dDz} = \text{diff}(Dz,z);
17 \text{ divD} = dDx + dDy + dDz
18 disp(divD, 'Divergence of Electric Flux Density D in
```

```
C/cubic.metre, divD = ')

19  divD = limit(divD,x,0);
20  divD = limit(divD,y,0);
21  divD = limit(divD,z,0);
22  disp(divD,'Divergence of Electric Flux Density D in C/cubic.metre at origin, divD = ')

23  //Result
24  //Divergence of Electric Flux Density D in C/cubic.metre, divD =

25  // 2

26  //Divergence of Electric Flux Density D in C/cubic.metre at origin, divD =

27  // 2
```

Scilab code Exa 3.5 verify the Divergence theorem

```
1 //clear//
2 //Caption: Program to verify the Divergence theorem
      for the field 'D'
3 / Example 3.5
4 //page 74
5 clc;
6 x = sym('x');
7 y = sym('y');
8 z = sym('z');
9 //Components of Electric Flux Density in cartesian
      coordinate system
10 Dx = 2*x*y;
11 Dy = x^2;
12 Dz = 0;
13 // Divergence of electric flux density 'D'
14 \text{ dDx} = \text{diff}(Dx,x);
15 \text{ dDy} = \text{diff}(Dy, y);
16 \text{ dDz} = 0;
17 \text{ divD} = dDx+dDy+dDz
```

```
18 disp(divD, 'Divergence of Electric Flux Density D in
      C/cubic.metre, divD = ')
19 //Evaluate volume integral on divergence of 'D'
20 Vol_int_divD = integ(divD,x);
21 Vol_int_divD = limit(Vol_int_divD,x,1)-limit(
      Vol_int_divD,x,0);
22 Vol_int_divD = integ(Vol_int_divD,y);
23 Vol_int_divD = limit(Vol_int_divD,y,2)-limit(
      Vol_int_divD,y,0);
24 Vol_int_divD = integ(Vol_int_divD,z);
25 Vol_int_divD = limit(Vol_int_divD,z,3)-limit(
      Vol_int_divD,z,0);
26 disp(Vol_int_divD, 'Volume Integral of divergence of
      D, in coulombs vol_int(divD)=')
27 //Evaluate surface integral on field D
28 \text{ Dx} = \text{limit}(Dx,x,1);
29 \text{ sur}_D = \text{integ}(Dx,y);
30 \text{ sur}_D = \text{limit}(\text{sur}_D, y, 2) - \text{limit}(\text{sur}_D, y, 0);
31 sur_D = integ(sur_D,z);
32 \text{ sur}_D = \text{limit}(\text{sur}_D, z, 3) - \text{limit}(\text{sur}_D, z, 0);
33 disp(sur_D, 'Surface Integral of field D, in coulombs
       sur_int(D.ds)=')
34 if(sur_D==Vol_int_divD)
     disp('Divergence Theorem verified')
35
36 end
37 //Result
38 // Divergence of Electric Flux Density D in C/cubic.
      metre, divD =
39 //
       2*v
40 //Volume Integral of divergence of D, in coulombs
      vol_int(divD) =
41 // 12
42 // Surface Integral of field D, in coulombs sur_int(
      D. ds =
43 // 12
```

Energy and Potential

Scilab code Exa 4.1 find the work involved

```
1 //clear//
2 //Caption: Program to find the work involved 'W' in
      moving a charge 'Q' along shorter arc of a circle
3 / Example 4.1
4 //page 84
5 clc;
6 x = sym('x');
7 y = sym('y');
8 z = sym('z');
9 y1 = sym('y1');
10 y = sqrt(1-x^2);
11 Q = 2; //charge in coulombs
12 \text{ Edot\_dL1} = integ(y,x);
13 disp(Edot_dL1, 'E.dx*ax = ')
14 Edot_dL1 = limit(Edot_dL1,x,0.8)-limit(Edot_dL1,x,1)
15 disp(Edot_dL1, 'Value of E.dx*ax = ')
16 \quad Edot_dL2 = 0;
17 disp(Edot_dL2, 'Value of E.dz*az=')
18 x = sqrt(1-y1^2);
19 Edot_dL3 = integ(x,y1)
```

```
20 disp(Edot_dL3, 'E.dy*ay=')
21 Edot_dL3 = limit(Edot_dL3,y1,0.6)-limit(Edot_dL3,y1
22 disp(Edot_dL3, 'Value of E.dy*ay =')
23 W = -Q*(Edot_dL1+Edot_dL2+Edot_dL3);
24 disp(W, 'Work done in moving a point charge along
      shorter arc of circle in Joules, W=')
25 // Result
26 // E. dx*ax =
                  a \sin(x)/2 + x * sqrt(1-x^2)/2
27 // Value of E. dx*ax = (25*asin(4/5)+12)/50-\%pi/4
28 // Value of E.dz*az =
                                0.
29 // E.dy*ay = a \sin(y1)/2+y1*sqrt(1-y1^2)/2
30 // Value of E.dy*ay = (25*a\sin(3/5)+12)/50
31 //Work done in moving a point charge along shorter
     arc of circle in Joules, W =
32 // -2*((25*a\sin(4/5)+12)/50+(25*a\sin(3/5)+12)/50-\%pi
     /4)
33 //Which is equivalent to
34 // -2*((25*0.9272952+12)/50+(25*0.6435011+12)/50-\%pi
     (4) = -0.96 Joules
```

Scilab code Exa 4.2 find the work involved 'W'

```
1 //clear//
2 //Caption: Program to find the work involved 'W' in moving a charge 'Q' along straight line
3 //Example4.2
4 //page 84
5 clc;
6 x = sym('x');
7 y = sym('y');
8 z = sym('z');
9 y1 = sym('y1');
10 y = -3*(x-1);
11 Q = 2; //charge in coulombs
```

```
12 \text{ Edot\_dL1} = integ(y,x);
13 disp(Edot_dL1, 'E.dx*ax = ')
14 Edot_dL1 = limit(Edot_dL1,x,0.8)-limit(Edot_dL1,x,1)
15 disp(Edot_dL1, 'Value of E.dx*ax =')
16 \quad Edot_dL2 = 0;
17 disp(Edot_dL2, 'Value of E.dz*az=')
18 x = (1-y1/3);
19 Edot_dL3 = integ(x,y1)
20 disp(Edot_dL3, 'E.dy*ay=')
21 Edot_dL3 = limit(Edot_dL3,y1,0.6)-limit(Edot_dL3,y1
      ,0);
22 disp(Edot_dL3, 'Value of E.dy*ay =')
23 W = -Q*(Edot_dL1+Edot_dL2+Edot_dL3);
24 disp(W, 'Work done in moving a point charge along
      shorter arc of circle in Joules, W=')
25 // Result
26 / E \cdot dx * ax = -3*(x^2/2-x)
27 / Value of E. dx*ax = -3/50
28 / Value of E.dz*az =
29 / E. dy*ay = y1-y1^2/6
30 // Value of E.dy*ay =
                          27/50
31 //Work done in moving a point charge along shorter
      arc of circle in Joules, W = -24/25 = -0.96
      Joules
```

Scilab code Exa 4.3 Program to calculate E, D and volume charge

```
1 //clear//
2 //Caption: Program to calculate E, D and volume
        charge density using divergence of D
3 //Example4.3
4 //page 100
5 clc;
6 x = -4;
```

```
7 y = 3;
8 z = 6;
9 V = 2*(x^2)*y-5*z;
10 disp(float(V), 'Potential V at point P(-4,3,6) in
        volts is Vp = ')
11 \times 1 = sym('x1');
12 \text{ y1} = \text{sym}('y1');
13 z1 = sym('z1');
14 ax = sym('ax');
15 \text{ ay = sym('ay')};
16 \text{ az = sym('az')};
17 V1 = 2*(x1^2)*y1-5*z1;
18 // Electric Field Intensity from gradient of V
19 Ex = -diff(V1, x1);
20 \text{ Ey} = - \text{diff}(V1, y1);
21 \text{ Ez} = - \text{diff}(V1,z1);
22 \text{ Ex1} = \text{limit}(\text{Ex}, \text{x1}, -4);
23 \text{ Ex1} = \text{limit}(\text{Ex1}, \text{y1}, 3);
24 \text{ Ex1} = limit(Ex1,z1,6);
25 \text{ Ey1} = \text{limit}(\text{Ey}, \text{x1}, -4);
26 \text{ Ey1} = \text{limit}(\text{Ey1}, \text{y1}, 3);
27 \text{ Ey1} = limit(Ey1, z1, 6);
28 \text{ Ez1} = \text{limit}(\text{Ez}, \text{x1}, -4);
29 \text{ Ez1} = limit(Ez1, y1, 3);
30 \text{ Ez1} = limit(Ez1, z1, 6);
31 E = Ex1*ax+Ey1*ay+Ez1*az;
32 Ep = sqrt(float(Ex1^2+Ey1^2+Ez1^2));
33 disp(Ep, 'Electric Field Intensity E at point P
       (-4,3,6) in volts E = ')
34 \text{ aEp} = float(E/Ep);
35 disp(aEp, 'Direction of Electric Field E at point P
       (-4,3,6) aEp=')
36 \, \text{Dx} = \text{float}(8.854*\text{Ex});
37 \text{ Dy} = \text{float}(8.854*\text{Ey});
38 \text{ Dz} = float(8.854*Ez);
39 D = Dx*ax+Dy*ay+Dz*az;
40 disp(D, 'Electric Flux Density in pico.C/square.metre
        D = '
```

```
41 	ext{ dDx} = diff(Dx, x1);
42 \text{ dDx} = \text{limit}(\text{dDx}, x1, -4);
43 	ext{ dDx} = limit(dDx, y1, 3);
44 \text{ dDx} = \text{limit(dDx,z1,6)};
45 \text{ dDy} = \text{diff}(Dy,y1);
46 \text{ dDy} = \text{limit(dDy,x1,-4)};
47 \text{ dDy} = limit(dDy, y1, 3);
48 \text{ dDy} = limit(dDy,z1,6);
49 	ext{ dDz} = diff(Dz,z1);
50 \text{ dDz} = \text{limit(dDz,x1,-4)};
51 	ext{ dDz} = limit(dDz, y1, 3);
52 	ext{ dDz} = limit(dDz, z1, 6);
53 \text{ rV} = dDx+dDy+dDz;
54 disp(rV, 'Volume Charge density from divergence of D
      in pC/cubic.metre is rV=')
  //Result
56 //Potential V at point P(-4,3,6) in volts is Vp =
      66.
57 // Electric Field Intensity E at point P(-4,3,6) in
       volts E = 57.9050947672137
  //Direction of Electric Field E at point P(-4,3,6)
      aEp=
  //0.01726963756851*(5*az-32*ay+48*ax)
59
60 //equivalent to aEp= 0.0863482*az-0.5526284*ay
      +0.8289426*ax
61 // Electric Flux Density in pico. C/square. metre D =
62 // -35.416*ax*x1*y1-17.708*ay*x1^2+44.27*az
63 //Volume Charge density from divergence of D in pC/
      cubic metre is rV=
       -106.248
64 //
```

Current and Conductors

Scilab code Exa 5.1 find the resistance, current and current density

```
1 //clear//
2 // Caption: Program to find the resistance, current
     and current density
3 / Example 5.1
4 //page 123
5 clc;
6 clear;
7 D = 0.0508; //diameter of conductor in inches
8 D = 0.0508*0.0254; //diameter in metres
9 r = D/2; //radius in metres
10 A = \pi^2; //area of the conductor in square metre
11 L = 1609; //length of the copper wire in metre
12 sigma = 5.80e07; //conductivity in siemens/metre
13 R = L/(sigma*A); //resistance in ohms
14 I = 10; //current in amperes
15 J = I/A; //current density in amps/square.metre
16 disp(R, 'Rresistance in ohms of given copper wire R =
17 disp(J, 'Current density in A/square.metre J = ')
18 // Result
19 //Rresistance in ohms of given copper wire R =
```

Scilab code Exa 5.2 find potential at point P

```
1 // clear //
2 // Caption: Program to find potential at point P,
      Electric Field Intensity E, Flux density D
3 / \text{Example } 5.2
4 //page 126
5 clc;
6 x = sym('x');
7 y = sym('y');
8 z = sym('z');
9 \text{ ax = sym('ax')};
10 ay = sym('ay');
11 az = sym('az');
12 V = 100*(x^2-y^2);
13 disp(V, 'Potential in Volts V =')
14 Ex = diff(V,x);
15 Ey = diff(V,y);
16 \text{ Ez} = \text{diff}(V,z);
17 E = -(Ex*ax+Ey*ay+Ez*az);
18 disp(E, 'Electric Field Intensity in V/m E =')
19 E = limit(E,x,2);
20 E = limit(E, y, -1);
21 V = limit(V,x,2);
22 V = limit(V,y,-1);
23 disp(V, 'Potential at point P in Volts Vp =')
24 disp(E, 'Electric Field Intensity at point P in V/m
      Ep = ')
25 D = 8.854e - 12 * E;
26 disp(D*1e09, 'Electric FLux Density at point P in nC/
      square.metre Dp =')
```

Scilab code Exa 5.3 equation of the streamline

```
1 // clear //
2 //Caption: Program to determine the equation of the
      streamline passing through any point P
3 / Example 5.3
4 //page 128
5 clc;
6 x = sym('x');
7 y = sym('y');
8 z = sym('z');
9 C1 = integ(1/y,y)+integ(1/x,x);
10 disp(C1, 'C1 = ')
11 C2 = exp(C1);
12 disp(C2, 'The Stream line Equation C2 = ')
13 C2 = limit(C2, x, 2);
14 C2 = limit(C2, y, -1);
15 disp(C2, 'The value of constant in the streamline
      equation passing through the point P is C2=')
16 // Result
17 //C1 = \log(y) + \log(x)
18 //The Stream line Equation C2 = x*y
19 //The value of constant in the streamline equation
      passing through the point P is C2 = -2
```

Dielectrics and Capacitance

Scilab code Exa 6.1 calculate D,E and Polarization P

```
1 //clear//
2 // Caption: Program to calculate D,E and Polarization
      P for Teflon slab
3 / Example 6.1
4 / page 142
5 clc;
6 \text{ ax = sym('ax')};
7 e0 = sym('e0');
8 E0 = sym('E0');
9 Ein = sym('Ein');
10 er = 2.1; //relative permittivity of teflon
11 chi = er-1; //electric susceptibility
12 Eout = E0*ax;
13 Dout = float(e0*Eout);
14 Din = float(er*e0*Ein);
15 Pin = float(chi*e0*Ein);
16 disp(Dout, 'Dout in c/square.metre = ')
17 disp(Din, 'Din in c/square.metre = ')
18 disp(Pin, 'Polarization in coulombs per square metre
     Pin = ')
19 //Result
```

```
20 //Dout in c/square.metre = ax*e0*E0
21 //Din in c/square.metre = 2.1*e0*Ein
22 //Polarization in coulombs per square metre Pin = 1.1*e0*Ein
```

Scilab code Exa 6.2 Program to calculate E and Polarization P

```
1 // \operatorname{clear} //
2 //Caption: Program to calculate E and Polarization P
       for Teflon slab
3 / Example 6.2
4 //page 146
5 clc;
6 \text{ ax = sym('ax')};
7 \text{ e0} = \text{sym}('e0');
8 E0 = sym('E0');
9 er = 2.1; //relative permittivity of teflon
10 chi = er-1; //electric susceptibility
11 Eout = E0*ax;
12 Ein = float(Eout/er);
13 Din = float(e0*Eout);
14 Pin = float(Din - e0*Ein);
15 disp(Ein, 'Ein in V/m = ')
16 disp(Pin, 'Polarization in coulombs per square metre
      Pin = ')
17 // Result
18 //Ein in V/m = 0.47619047619048*ax*E0
19 // Polarization in coulombs per square metre Pin =
      0.52380952380952*ax*e0*E0
```

Scilab code Exa 6.3 Program to calculate the capacitance

```
1 // clear //
```

```
2 //Caption: Program to calculate the capacitance of a
      parallel plate capacitor
3 / Example 6.3
4 //page 151
5 clc;
6 S = 10; //area in square inch
7 S = 10*(0.0254)^2; //area in square metre
8 d = 0.01; //distance between the plates in inch
9 d = 0.01*0.0254; //distance between the plates in
     metre
10 e0 = 8.854e-12; //free space permittivity in F/m
11 er = 6; //relative permittivity of mica
12 e = e0*er;
13 C = parallel_capacitor(e,S,d);
14 disp(C*1e09, 'Capacitance of a parallel plate
     capacitor in pico farads C = ')
15 //Result
16 //Capacitance of a parallel plate capacitor in pico
     farads C = 1.3493496
```

Poissons and Laplaces Equation

Scilab code Exa 7.1 Derivation of capacitance

```
1 //clear//
2 // Caption: Derivation of capacitance of a parallel
      plate capacitor
3 / Example 7.1
4 //page 177
5 clc;
6 x = sym('x');
7 d = sym('d');
8 \text{ Vo = sym('Vo')};
9 e = sym('e');
10 ax = sym('ax');
11 A = sym('A');
12 B = sym('B');
13 S = sym('S');
14 V = integ(A,x)+B;
15 V = limit(V,A,Vo/d);
16 V = limit(V,B,0);
17 disp(V, 'Potential in Volts V =')
18 E = -diff(V,x)*ax;
19 disp(E, 'Electric Field in V/m E =')
20 D = e*E;
```

```
21 DN = D/ax;
22 disp(D, 'Electric Flux Density in C/square metre D ='
        )
23 Q = -DN*S;
24 disp(Q, 'Charge in Coulombs Q =')
25 C = Q/Vo;
26 disp(C, 'Capacitance of parallel plate capacitor C ='
        )
27 //Result
28 //Potential in Volts V = Vo*x/d
29 //Electric Field in V/m E = -ax*Vo/d
30 //Electric Flux Density in C/square metre D = -ax*e
        *Vo/d
31 //Charge in Coulombs Q = e*Vo*S/d
32 //Capacitance of parallel plate capacitor C = e*S/d
```

Scilab code Exa 7.2 Capacitance of a Cylindrical Capacitor

```
1 // \operatorname{clear} //
2 //Caption: Capacitance of a Cylindrical Capacitor
3 / \text{Example 7.2}
4 //page 179
5 clc;
6 A = sym('A');
7 B = sym('B');
8 r = sym('r');
9 ar = sym('ar');
10 ruo = sym('ruo');
11 a = sym('a');
12 b = sym('b');
13 L = sym('L');
14 Vo = sym('Vo');
15 V = integ(A/r,r)+B;
16 \operatorname{disp}(V, 'Potential V = ')
17 V = limit(V, A, Vo/log(a/b));
```

```
18 V = limit(V,B,-Vo*log(b)/log(a/b));
19 disp(V, 'Potential V by substitute the values of
      constant A \& B = ')
20 V = Vo*log(b/r)/log(b/a);
21 E = -diff(V,r)*ar;
22 \text{ disp}(E, 'E = ');
23 E = limit(E,r,a);
24 disp(E, 'E at r = a is = ')
25 D = e * E;
26 DN = D/ar;
27 \text{ disp}(DN, 'DN = ')
28 S = float(2*\%pi*a*L); //area of cylinder
29 \ Q = DN*S
30 \text{ disp}(Q, 'Q = ')
31 C = Q/Vo;
32 disp(C, 'Capacitance of a cylindrical Capacitor <math>C = ')
33 //Result
34 // Potential V = B + log(r) *A
35 // Potential V by substitute the values of constant
      A & B = (\log (r) - \log (b)) * Vo / \log (a/b)
36 // E = ar*Vo/(log(b/a)*r)
37 // E at r =a is = ar*Vo/(a*log(b/a))
38 // DN = e*Vo/(a*log(b/a))
39 // Q = 6.283185306023805 * e *Vo*L/log(b/a)
40 // Capacitance of a cylindrical Capacitor C =
      6.283185306023805 * e*L/log(b/a)
```

Scilab code Exa 7.3 Determine the electric field

```
1 //clear//
2 //Caption: Program to Determine the electric field
    of a two infinite radial planes with an interior
    angle alpha
3 //Example 7.3
4 //page 180
```

```
5 clc;
6 phi = sym('phi');
7 A = sym('A');
8 B = sym('B');
9 \text{ Vo = sym('Vo')};
10 alpha = sym('alpha');
11 aphi = sym('aphi');
12 r = sym('r');
13 V = integ(A, phi) + B;
14 disp(V, 'V = ');
15 V = limit(V,B,0);
16 V = limit(V,A,Vo/alpha);
17 disp(V, 'Potential V after applying boundary
      conditions =')
18 E = -(1/r)*diff(V,phi)*aphi;
19 disp(E, 'E = ')
20 //Result
21 // V = B+phi*A
22 // Potential V after applying boundary conditions =
      phi*Vo/alpha
23 // E = -aphi*Vo/(alpha*r)
```

Scilab code Exa 7.4 capacitance of a spherical capacito

```
1 //clear//
2 //Caption: Derivation of capacitance of a spherical capacitor
3 //Example7.4
4 //page 181
5 clc;
6 a = sym('a');
7 b = sym('b');
8 Vo = sym('Vo');
9 r = sym('r');
10 e = sym('e');
```

```
11 V = Vo*((1/r)-(1/b))/((1/a)-(1/b));
12 disp(V, V = ')
13 E = -diff(V,r)*ar;
14 disp(E, 'E = ')
15 D = e*E;
16 DN = D/ar;
17 disp(DN, 'DN = ')
18 S = float(4*\%pi*r^2); //area of sphere
19 Q = DN*S;
20 disp(Q, 'Q = ')
21 C = Q/Vo;
22 disp(C, 'Capacitance of a spherical capacitor =')
23 //Result
24 /V = (1/r - 1/b) *Vo/(1/a - 1/b)
          ar*Vo/((1/a-1/b)*r^2)
25 / E =
26 / DN =
            e * Vo / ((1/a - 1/b) * r^2)
27 / Q = 12.56637060469643 * e * Vo / (1/a - 1/b)
28 // Capacitance of a spherical capacitor =
      12.56637060469643 * e/(1/a-1/b)
```

Scilab code Exa 7.5 Potential in spherical coordinates

```
1 //clear//
2 //Caption: Potential in spherical coordinates as a function of teta V(teta)
3 //Example7.5
4 //page 182
5 clc;
6 teta = sym('teta');
7 A = sym('A');
8 B = sym('B');
9 V = integ(A/float(sin(teta)),teta)+B;
10 disp(V,'V = ')
11 //Result
12 //V = B+(log(cos(teta)-1)/2-log(cos(teta)+1)/2)*A
```

13 // Equivalent to $V = B + \log(\tan(\tan(2)) *A$

Chapter 8

The Steady Magnetic Field

Scilab code Exa 8.1 find the magnetic field intensity

```
1 // \operatorname{clear} //
2 //Caption: Program to find the magnetic field
      intensity of a current carrying filament
3 / Example 8.1
4 //page 217
5 clc;
6 I = 8; //current in amps
7 alpha1x = -90/57.3; // phase angle along with x-axis
8 x = 0.4;
9 y = 0.3;
10 z = 0;
11 alpha2x = atan(x/y);
12 aphi = sym('aphi');
13 az = sym('az');
14 rx = y; // distance in metres in cynlindrical
      coordiante system
15 H2x = float((I/(4*\%pi*rx))*(sin(alpha2x)-sin(alpha1x
      )))*-az;
16 \text{ disp}(H2x, 'H2x = ')
17 alpha1y = -atan(y/x);
18 \text{ alpha2y} = 90/57.3;
```

```
19  ry = 0.4;
20  H2y = float((I/(4*%pi*ry))*(sin(alpha2y)-sin(alpha1y)))*-az;
21  disp(H2y, 'H2y =')
22  H2 = H2x+H2y;
23  disp(H2, 'H2 =')
24  //Result
25  //H2x = -3.819718617079289*az
26  //H2y = -2.546479080730701*az
27  //H2 = -6.36619769780999*az
```

Scilab code Exa 8.2 to find the curl H

```
1 // clear //
2 //Caption: Program to find the curlH of a square
      path of side 'd'
3 / \text{Example 8.2}
4 //page 230
5 clc;
6 \text{ ax = sym('ax')};
7 \text{ az = sym('az')};
8 \text{ ay = sym('ay')};
9 z = sym('z');
10 \ y = sym('y');
11 d = sym('d');
12 \text{ H} = 0.2*z^2*ax;
13 Hx = float(H/ax);
14 HdL = float (0.4*z*d^2);
15 //curlH evaluated from the definition of curl
16 curlH = (HdL/(d^2))*ay;
17 //curlH evaluated from the determinant
18 del_cross_H = -ay*(-diff(Hx,z))+az*(-diff(Hx,y));
19 disp(curlH, 'curlH = ')
20 disp(del_cross_H, 'del_cross_H = ')
21 // Result
```

```
22 //curlH = 0.4*ay*z
23 //del_cross_H = 0.4*ay*z
```

Scilab code Exa 8.3 verify Stokes theorem

```
1 // clear //
2 //Caption: Program to verify Stokes theorem
3 / \text{Example 8.3}
4 //page 233
5 clc;
6 \text{ teta} = \text{sym}('\text{teta}');
7 phi = sym('phi');
8 ar = sym('ar');
9 aphi = sym('aphi');
10 az = sym('az');
11 r = sym('r');
12 curlH = float(36*\cos(\text{teta})*\cos(\text{phi})*r^2*\sin(\text{teta}));
13 curlH_S = integ(curlH, teta);
14 curlH_S = float(limit(curlH_S,r,4));
15 curlH_S = float(limit(curlH_S,teta,0.1*%pi))-float(
      limit(curlH_S, teta, 0));
16 curlH_S = integ(curlH_S,phi);
17 curlH_S = float(limit(curlH_S,phi,0.3*%pi))-float(
      limit(curlH_S,phi,0));
18 disp(curlH_S, 'Surface Integral of curlH in Amps =')
19 Hr = 6*r*sin(phi);
20 Hphi = 18*r*sin(teta)*cos(phi);
21 HdL = float(limit(Hphi*r*sin(teta),r,4));
22 HdL = float(limit(HdL,teta,0.1*%pi));
23 HdL = float(integ(HdL,phi))
24 HdL = float(limit(HdL,phi,0.3*%pi));
25 disp(HdL, 'Closed Line Integral of H in Amps =')
26 //Result
27 //Surface Integral of curlH in Amps =
      22.24922359441324
```

28 // Closed Line Integral of H in Amps = 22.24922359441324

Chapter 9

Magnetic Forces Materials and Inductance

Scilab code Exa 9.1 find magnetic field and force produced

```
1 // \operatorname{clear} //
2 //Caption: Program to find magnetic field and force
      produced in a square loop
3 / \text{Example 9.1}
4 //page 263
5 clc;
6 x = sym('x');
7 y = sym('y');
8 z = sym('z');
9 \text{ ax = sym('ax')};
10 ay = sym('ay');
11 az = sym('az');
12 I = 15; //filament current in amps
13 I1 = 2e-03; //current in square loop
14 u0 = 4*\%pi*1e-07; //free space permeability in H/m
15 H = float(I/(2*\%pi*x))*az;
16 disp(H, 'Magnetic Field Intensity in A/m H =')
17 B = float(u0*H);
18 disp(B, 'Magnetic Flux Density in Tesla B = ')
```

```
19 Bz = B/az;
20 / Bcross_dL = ay*diff(Bz,x);
21 F1 = float(-I1*integ(ay*Bz,x));
22 F1 = float(limit(F1,x,3)-limit(F1,x,1));
23 F2 = float(-I1*integ(ax*-Bz,y));
24 F2 = float(limit(F2,x,3));
25 F2 = float(limit(F2,y,2)-limit(F2,y,0));
26 F3 = float(-I1*integ(ay*Bz,x));
27 F3 = float(limit(F3,x,1)-limit(F3,x,3));
28 F4 = float(-I1*integ(ax*-Bz,y));
29 F4 = float(limit(F4,x,1));
30 F4 = float(limit(F4,y,0)-limit(F4,y,2));
31 F = float((F1+F2+F3+F4)*1e09);
32 disp(F, 'Total Force acting on a square loop in nN F
     = ')
33 //Result
34 //Magnetic Field Intensity in A/m H =
      2.387324146817574*az/x
35 //Magnetic Flux Density in Tesla B =
      3.0000000003340771E-6*az/x
\frac{36}{\sqrt{\text{Total}}} Force acting on a square loop in nN F =
      -8.000000000890873*ax
```

Scilab code Exa 9.2 determine the differential force

```
1 //clear//
2 //Caption: Program to determine the differential force between two differential current elements
3 //Example9.2
4 //page 265
5 clc;
6 ax = sym('ax');
7 ay = sym('ay');
8 az = sym('az');
9 //position of filament in cartesian coordinate
```

```
system
10 \text{ P1} = [5,2,1];
11 P2 = [1,8,5];
12 //distance between filament 1 and filament 2
13 R12 = norm(P2-P1);
14 disp(R12, 'R12 =')
15 I1dL1 = [0,-3,0]; //current carrying first filament
16 I2dL2 = [0,0,-4]; //current carrying second filament
17 u0 = 4*\%pi*1e-07; //free space permeability in H/m
18 aR12 = UnitVector(P2-P1); //unit vector
19 disp(aR12, 'aR12 = ')
20 C1 = cross_product(I1dL1, aR12);
21 C2 = cross_product(I2dL2,C1);
22 	ext{ dF2} = (u0/(4*\%pi*R12^2))*C2;
23 	ext{ dF2_y = float(dF2(2)*1e09);}
24 disp(dF2_y*ay, 'the differential force between two
      differential current elements in nN =')
25 //Result
26 / R12 = 8.2462113
27 / aR12 = -0.4850713
                             0.7276069
                                        0.4850713
28 //the differential force between two differential
      current elements in nN = 8.560080878105142*ay
```

Scilab code Exa 9.3 calculate the total torque acting

```
1 // clear //
2 // Caption: Program to calculate the total torque
    acting on a planar rectangular current loop
3 // Example 9.3
4 // page 271
5 clc;
6 ax = sym('ax');
7 ay = sym('ay');
```

```
8 az = sym('az');
9 x = 1;//length in metre
10 y = 2; //wide in metre
11 S = [0,0,x*y]; //area of current loop in square metre
12 I = 4e-03; //current in Amps
13 B = [0,-0.6,0.8];
14 T = I*cross_product(S,B);
15 Tx = float(T(1));
16 disp(Tx*ax*1e03, 'Total Torque acting on the rectangular current loop in milli N/m=')
17 //Result
18 //Total Torque acting on the rectangular current loop in milli N/m = 4.8*ax
```

Scilab code Exa 9.4 find the torque and force acting

```
1 //clear//
2 //Caption: Program to find the torque and force
      acting on each side of planar loop
3 / Example 9.4
4 //page 271
5 clc;
6 \text{ ax = sym('ax')};
7 ay = sym('ay');
8 \text{ az = sym}('az');
9 I = 4e-03; //current in Amps
10 B = [0, -0.6, 0.8]; //Magentic Field acting on current
       loop in Tesla
11 L1 = [1,0,0]; //length along x-axis
12 L2 = [0,2,0]; //length along y-axis
13 F1 = I*cross_product(L1,B);
14 \text{ F3} = -\text{F1};
15 	ext{ F2} = I*cross_product(L2,B);
16 \text{ F4} = -\text{F2};
```

```
17 R1 = [0,-1,0]; //distance from center of loop for
      side1
18 R2 = [0.5,0,0]; //distance from center of loop for
      side2
  R3 = [0,1,0]; //distance from center of loop for
      side3
20 R4 = [-0.5,0,0]; // distance from center of loop for
      side4
21 T1 = cross_product(R1,F1);
22 T2 = cross_product(R2,F2);
23 T3 = cross_product(R3,F3);
24 	ext{ T4} = cross_product(R4,F4);
25 T = T1+T2+T3+T4;
26 \text{ Tx} = float(T(1)*1e03);
27 \text{ disp}(F1, 'F1 = ')
28 disp(F2, 'F2 = ')
29 disp(F3, 'F3 = ')
30 \text{ disp}(F4, `F4 = `)
31 \text{ disp}(T1, 'T1 = ')
32 \text{ disp}(T2, `T2 = `)
33 \text{ disp}(T3, `T3 = `)
34 \text{ disp}(T4, `T4 = `)
35 disp(Tx*ax, 'Total torque acting on the rectangular
      planar loop in milli N/m T = ')
36 //Result
37 // F1 =
38 //
           0.
39 //
      -0.0032
40 //
       -0.0024
41 // F2 =
42 //
          0.0064
43 //
          0.
44 //
          0.
45 // F3 =
46 //
          0.
47 //
          0.0032
48 //
          0.0024
49 // F4 =
```

```
-0.0064
50
51 //
          0.
52 //
          0.
53 // T1 =
54 //
          0.0024
55 //
          0.
56
          0.
57
      T2 =
58
          0.
59 //
          0.
60 //
          0.
61 // T3 =
62 //
          0.0024
63 //
          0.
64 //
          0.
65 //
      T4 =
66 //
          0.
67
          0.
68 //
          0.
69 // Total torque acting on the rectangular planar
      loop in milli N/m T = 4.8*ax
```

Scilab code Exa 9.5 find Magnetic Susceptibility, H, Magentization M

```
11 H = B/u; //magnetic field intensity in A/m
12 M = chim*ceil(H); //magnetization in A/m
13 disp(chim, 'chim =')
14 disp(H, 'H =')
15 disp(M, 'M = ')
16 //Reuslt
17 //chim = 49.
18 //H = 795.77472
19 //M = 39004.
```

Scilab code Exa 9.6 find the boundary conditions on magnetic field

```
1 // \operatorname{clear} //
2 //Caption: Program to find the boundary conditions
      on magnetic field
3 / \text{Example 9.6}
4 //page 283
5 clc;
6 \text{ ax = sym('ax')};
7 ay = sym('ay');
8 \text{ az = sym('az')};
9 u1 = 4e-06; // relative permeability in medium1
10 u2 = 7e-06; //relative permeability in medium2
11 k = [80,0,0]; //in A/m
12 B1 = [2e-03, -3e-03, 1e-03]; // field in region1
  aN12 = [0,0,-1];
14 //To find Normal Components of Magnetic Field
15 \text{ Bz} = \text{dot}(B1, aN12);
16 \text{ BN1} = [0,0,-Bz];
17 \text{ BN1} = \text{float(BN1)};
18 BN2 = float(BN1);
19 //To Find the Tangential Components of Magnetic
      Field
20 \text{ Bt1} = \text{float}(B1 - BN1);
21 Ht1 = float(Bt1/u1);
```

```
22 v = cross_product(aN12,k);
23 Ht2 = float(Ht1-v');
24 Bt2 = float(u2*Ht2);
25 disp(BN1(1)*ax+BN1(2)*ay+BN1(3)*az, 'BN1 =')
26 disp(BN2(1)*ax+BN2(2)*ay+BN2(3)*az, 'BN2 =')
27 disp(Bt1(1)*ax+Bt1(2)*ay+Bt1(3)*az, 'Bt1 =');
28 disp(Ht1(1)*ax+Ht1(2)*ay+Ht1(3)*az, 'Ht1 =');
29 disp(Ht2(1)*ax+Ht2(2)*ay+Ht2(3)*az, 'Ht2 = ');
30 disp(Bt2(1)*ax+Bt2(2)*ay+Bt2(3)*az, 'Bt2 =');
31 //Total Magnetic Field Region 2
32 B2 = (BN2+Bt2)*1e03;
33 B2 = B2(1)*ax+B2(2)*ay+B2(3)*az;
34 disp(B2, 'Total Magnetic Field Region2 in milli Tesla
       B2 = ')
35 // Result
36 // BN1 =
37 // 0.001*az
38 / BN2 =
39 // 0.001 * az
40 / Bt1 =
41 // 0.002*ax - 0.003*ay
42 / \text{Ht1} =
43 // 500.0*ax - 750.0*ay
44 / / Ht2 =
45 // 500.0*ax - 670.0*ay
46 / Bt2 =
47 // 0.0035*ax - 0.00469*ay
48 //Total Magnetic Field Region2 in milli Tesla B2 =
49 // 1.0 * az - 4.69 * ay + 3.5 * ax
```

Scilab code Exa 9.7 magnetomotive force 'Vm'

```
1 //clear//
2 //Caption: Program to find find magnetomotive force
    'Vm' and reluctance 'R'
```

```
\frac{3}{\sqrt{\text{Example 9.7}}}
4 //page 288
5 clc;
6 u0 = 4*\%pi*1e-07; //free space permeability in H/m
7 ur = 1; //relative permeability
8 u = u0*ur;
9 dair = 2e-03; //air gap in toroid
10 dsteel = 0.3*\%pi;
11 S = 6e-04; //area of cross section in square metre
12 B = 1; //flux density 1 tesla
13 N = 500; //\text{number of turns}
14 Rair = dair/(u*S);
15 disp(Rair, 'Reluctance in A.t/Wb Rair =')
16 phi = B*S;
17 disp(phi, 'Magnetic Flux in weber phi =')
18 Vm_air = S*Rair;
19 disp(Vm_air, 'mmf required for the air gap in A.t
      Vm_air = ')
20 Hsteel = 200; //magnetic field intensity of steel in
      A/m
21 Vm_steel = Hsteel*dsteel;
22 disp(Vm_steel, 'mmf required for the steel in A.t
      Vm_steel = ')
  disp(Vm_steel+Vm_air, 'Totla mmf required for toroid
      in A. t Vm = ')
24 I = (Vm_steel + Vm_air)/N;
25 disp(I, 'Total coil current in Amps I =')
26 //Result
27 //Reductance in A.t/Wb Rair = 2652582.4
\frac{28}{Magnetic} Flux in weber phi = 0.0006
29 //mmf required for the air gap in A.t Vm_air =
      1591.5494
30 //mmf required for the steel in A.t Vm_steel =
      188.49556
31 // \text{Totla mmf required for toroid in A.t Vm} =
      1780.045
32 //Total coil current in Amps I = 3.56009
```

Scilab code Exa 9.8 total Magnetic Flux Density

```
1 // clear //
2 //Caption: Program to find total Magnetic Flux
      Density in Weber
3 / Example 9.8
4 //page 289
5 clc;
6 I = 4; //current through toroid in Amps
7 r = 1e-03; //air gap radius in metre
8 Hphi = I/(2*\%pi*r);
9 u0 = 4*\%pi*1e-07 ; //free space permeability in H/m
10 ur = 1; // relative permeability
11 u = u0*ur;
12 N = 500; //number of turns
13 S = 6e-04; //cross section area in square metre
14 Rair = 2.65e06; //\text{reluctance} in air A.t/Wb
15 Rsteel = 0.314e06; //reluctance in steel A.t/Wb
16 R = Rair+Rsteel; //total reluctance in A.t/Wb
17 Vm = I*500; //total mmf in A.t
18 phi = Vm/R; //total flux in webers
19 B = phi/S; //flux density in Wb/Square metre
20 disp(B, 'Magentic Flux Density in tesla B =')
21 // Result
\frac{22}{Magentic} Flux Density in tesla B = 1.1246064
```

Scilab code Exa 9.9 self inductances and Mutual Inductances

```
4 //page 297
5 clc;
6 \text{ n1} = \text{sym}('\text{n1}');
7 \text{ n2} = \text{sym}('n2');
8 I1 = sym('I1');
9 	ext{ I2 = sym('I2');}
10 az = sym('az');
11 R1 = sym('R1');
12 R2 = sym('R2');
13 u0 = sym('u0');
14 \text{ H1} = n1*I1*az;
15 disp(H1, 'H1 = ');
16 \text{ H2} = n2*I2*az;
17 disp(H2, 'H2 = ');
18 S1 = float(%pi*R1^2);
19 S2 = float(\%pi*R2^2);
20 Hz =
          float(H1/az);
21 phi12 = float(u0*Hz*S1);
22 disp(phi12, 'phi12 = ')
23 \text{ M12} = n2*phi12/I1;
24 disp(M12, 'M12 = ')
25 / R1 = 2e - 02;
26 / R2 = 3e - 02;
27 //n1 = 50*100; //number of turns/m
28 //n2 = 80*100; //number of turns/m
29 / u0 = 4*\%pi*1e-07;
30 \text{ M12} = \text{float(limit(M12,R1,2e-02))};
31 M12 = float(limit(M12,R2,3e-02));
32 \text{ M12} = float(limit(M12,n1,5000));
33 M12 = float(limit(M12, n2, 8000));
34 M12 = float(limit(M12,u0,4*%pi*1e-07));
35 disp(M12*1e03, 'Mutual Inductance in mH/m M12=')
36 L1 = u0*n1^2*S1;
37 L1 = float(limit(L1,u0,4*\%pi*1e-07));
38 L1 = float(limit(L1,n1,5000));
39 L1 = float(limit(L1,R1,2e-02));
40 disp(L1*1e3, 'Self Inductance of solenoid 1 in mH/m
      L1 = ')
```

```
41 L2 = u0*n2^2*S2;
42 L2 = float(limit(L2,u0,4*%pi*1e-07));
43 L2 = float(limit(L2, n2,8000));
44 L2 = float(limit(L2,R2,3e-02));
45 disp(L2*1e3, 'Self Inductance of solenoid 1 in mH/m
     L2 = ')
  //Result
46
47 // H1 =
             az*n1*I1
48 // H2 =
              az*n2*I2
49 // phi12 =
                  3.141592653011903*n1*u0*I1*R1^2
50 // M12 =
               3.141592653011903*n1*n2*u0*R1^2
51 // Mutual Inductance in mH/m M12= 63.16546815077
52 // Self Inductance of solenoid 1 in mH/m L1 =
      39.47841759423
53 // Self Inductance of solenoid 1 in mH/m L2 =
      227.39568534276
```

Chapter 11

Transmission Lines

Scilab code Exa 11.1 determine the total voltage

Scilab code Exa 11.2 characteristic impedance

```
1 //clear//
2 //Caption:Program to find the characteristic
```

```
impedance, the phase constant an the phase
      velocity
3 //Example11.2
4 //page344
5 clear;
6 clc;
7 close;
8 L = 0.25e-6; //0.25uH/m
9 C = 100e-12; //100pF/m
10 f = 600e06; //frequency f = <math>100MHz
11 W = 2*\%pi*f; //angular frequency
12 \text{ Zo} = \text{sqrt}(L/C);
13 B = W*sqrt(L*C);
14 Vp = W/B;
15 disp(Zo, 'Characteristic Impedance in ohms Zo =')
16 disp(B, 'Phase constant in rad/m B=')
17 disp(Vp, 'Phase velocity in m/s Vp=')
18 // Result
19 // Characteristic Impedance in ohms Zo =
20 //
          50.
21 // Phase constant in rad/m B=
22 //
         18.849556
23 //Phase velocity in m/s Vp=
         2.000D+08
24 //
```

Scilab code Exa 11.3 magnitude and phase of characteristic

```
8 disp(Zo, 'Characteristic impedance Zo =')
9 disp(teta, 'The phase angle teta=')
10 //Result
11 //Characteristic impedance Zo =
12 // sqrt(L/C)*(1-%i*R/(2*L*W))
13 //The phase angle teta=
14 // -atan(R/(2*L*W))
```

Scilab code Exa 11.4 output power and attenuation coefficient

```
1 // clear //
2 //Caption: Program to find the output power and
      attenuation coefficient
\frac{3}{\sqrt{\text{Example}11.4}}
4 //page349
5 clear;
6 clc;
7 close;
8 z = 20; // distance in meters
9 Pz_PO_dB = -2; //fraction of power drop in dB
10 \text{ Pz}_P0 = 10^(\text{Pz}_P0_dB/10);
11 disp(Pz_Po, 'Fraction of input power reaches output P
      (z)/P(0)=')
12 PO_mid_dB = -1; //fraction of power drop at midpoint
       in dB
13 P0_{mid} = 10^{(P0_{mid}dB/10)};
14 disp(P0_mid, 'Fraction of the input power reaches the
       midpoint P(10)/P(0)=')
15 alpha = -Pz_P0_dB/(8.69*z);
16 disp(alpha, 'attenuation in Np/m alpha=')
17 // Result
18 //Fraction of input power reaches output P(z)/P(0)=
19 //
       0.6309573
20 //Fraction of the input power reaches the midpoint P
      (10)/P(0) =
```

```
21 // 0.7943282

22 //attenuation in Np/m alpha=

23 // 0.0115075
```

Scilab code Exa 11.5 power dissipated in the lossless

```
1 // clear //
2 // Caption: Program to find the power dissipated in
     the lossless
3 //transmission line
4 // Example 11.5
5 / page 352
6 clc;
7 close;
8 ZL = 50-\%i*75; //load impedance in ohms
9 Zo = 50; //characteristic impedance in ohms
10 R = reflection_coeff(ZL,Zo);
11 Pi = 100e-03; //input power in milliwatts
12 Pt = (1-abs(R)^2)*Pi;//power dissipated by the load
13 disp(R, 'Reflection coefficient R =')
14 disp(Pt*1000, 'power dissipated by the load in milli
     watss Pt=')
15 // Result
16 / Reflection coefficient R = 0.36 - 0.48i
17 //power dissipated by the load in milli watss Pt =
     64.
```

Scilab code Exa 11.6 find the total loss

```
1 //clear//
2 //Caption:Program to find the total loss in lossy
          lines
3 //Example11.6
```

```
4 / page 352 - 353
5 clc;
6 close;
7 L1 = 0.2*10; //loss(dB) in first line of length = 10 m
8 L2 = 0.1*15; //loss(dB) in second line of length =15m
9 R = 0.3; //reflection coefficient
10 Pi = 100e-03; //input power in milli watts
11 Lj = 10*log10(1/(1-abs(R)^2));
12 Lt = L1+L2+Lj;
13 Pout = Pi*(10^(-Lt/10));
14 disp(Lt, 'The total loss of the link in dB is Lt=')
15 disp(Pout*1000, 'The output power will be in milli
      watss Pout =')
16 //Result
17 //The total loss of the link in dB is Lt=
          3.9095861
19 //The output power will be in milli watss Pout =
20 //
         40.648207
```

Scilab code Exa 11.7 find the load impedance

```
1 //clear//
2 //Caption:Program to find the load impedance of a slotted line
3 //Example11.7
4 //page357
5 clear;
6 clc;
7 close;
8 S = 5; //standing wave ratio
9 T = (1-S)/(1+S); //reflection coefficient
10 Zo = 50; //characteristic impedance
11 ZL = Zo*(1+T)/(1-T);
12 disp(ZL, 'Load impedance of a slotted line in ohms ZL = ')
```

```
13\ //\,\mathrm{Result} 14\ //\,\mathrm{Load} impedance of a slotted line in ohms \mathrm{ZL}=10.
```

Scilab code Exa 11.8 find the input impedance and power delivered

```
1 // clear //
2 // Caption: Program to find the input impedance and
     power delivered to
3 //the load
4 //Example11.8
5 //page363
6 clc;
7 close;
8 ZR1 = 300; //input impedance of first receiver
9 ZR2 = 300; //input impedance of second receiver
10 Zo = ZR1; //characteristic impedance = 300 ohm
11 Zc = -\%i*300; // capacitive impedance
12 L = 80e-02; //length = 80 cm
13 Lambda = 1; //wavelength = 1m
14 Vth = 60; // voltage 300 volts
15 Zth = Zo;
16 ZL1 = parallel(ZR1,ZR2);
17 ZL = parallel(ZL1,Zc); //net load impedane
18 T = reflection_coeff(ZL,ZR2);//reflection
      coefficient
  [R, teta1] = polar(T); //reflection coefficient in
19
      polar form
20 teta1 = real(teta1)*57.3;//teta value in degrees
21 S = VSWR(R); //voltage standing wave ratio
22 EL = electrical_length(L,Lambda);
23 EL = EL/57.3; //electrical length in degrees
24 \quad Zin = Zo*(ZL*\cos(EL)+\%i*Zo*\sin(EL))/(Zo*\cos(EL)+\%i*
     ZL*sin(EL));
25 disp(Zin, 'Input Impedance in ohms Zin =')
26 Is = Vth/(Zth+Zin); //source current in amps
```

Scilab code Exa 11.9 find the input impedance

```
1 // clear //
2 //Caption:Program to find the input impedance for a
      line terminated with pure capacitive impedance
\frac{3}{\sqrt{\text{Example}11.9}}
4 //page363
5 clc;
6 close;
7 ZL = -%i*300; //load impdance is purely capacitive
      impedance
8 \text{ ZR} = 300;
9 T = reflection_coeff(ZL,ZR);//reflection_coefficient
       in rectandular form
10 [R, teta] = polar(T); // reflection coefficient in
      polar form
11 S = VSWR(R)
12 \quad if(S ==\%inf)
13
     Zo = ZR;
14 end
15 Zin = Zo*(ZL*cos(EL)+%i*Zo*sin(EL))/(Zo*cos(EL)+%i*ZL)
      *sin(EL));
16 disp(T, 'Reflection coefficient in rectangular form')
```

```
disp(S,'Voltage Standing Wave Ratio S=')

disp(Zin,'Input impedance in ohms Zin =')

// Result

// Reflection coefficient in rectangular form

// - i

// Voltage Standing Wave Ratio S=

// Inf

// Input impedance in ohms Zin =

// 588.78315 i
```

Scilab code Exa 11.10 find the input impedance

```
1 // \operatorname{clear} //
2 //Caption: Program to find the input impedance for a
      line terminated with impedance (with inductive
      reactance)
3 / \text{Example } 11.10
4 //page369
5 clc;
6 close;
7 ZL = 25+\%i*50; //load impdance in ohms
8 Zo = 50; //characteristic impedance in ohms
9 T = reflection_coeff(ZL,Zo);//reflection_coefficient
       in rectandular form
  [R, teta] = polar(T); // reflection coefficient in
10
      polar form
11 L = 60e-02; //length 60 cm
12 Lambda = 2; // wavelength = 2m
13 EL = electrical_length(L,Lambda);
14 EL = EL/57.3; //electrical length in radians
15 Zin = (1+T*exp(-\%i*2*EL))/(1-T*exp(-\%i*2*EL));
16 disp(Zin, 'Input impedance in ohms Zin =')
17 //Result
18 //Input impedance in ohms Zin =
19 // 0.2756473 - 0.4055013 i
```

Scilab code Exa 11.11 Steady state voltage

```
1 // clear //
2 // Caption:
3 //Example11.11
4 //page381
5 clc;
6 close;
7 Rg = 50; //series resistance with battery in ohms
8 Zo = Rg; //characteristic impedance
9 RL = 25; //load resistance
10 Vo = 10; //battery voltage in volts
11 V1_S = (Rg/(Zo+Rg))*Vo;
12 T = reflection_coeff(RL,Zo);
13 V1_R = T*V1_S;
14 \text{ I1_S} = \text{V1_S/Zo};
15 I1_R = -V1_R/Z_0;
16 IB = Vo/(Zo+RL);
17 VL = Vo*(RL/(Rg+RL));
18 disp(V1_S, 'Voltage at source in volts V1plus =')
19 disp(V1_R, 'Voltage returns to battery in volts
      V1minus=')
20 disp(I1_S, 'Current at battery in amps I1plus=')
21 disp(I1_R, 'Current at battery in amps I1minus=')
22 disp(IB, 'Steady state current through battery in
     amps IB=')
23 disp(VL, 'Steady state load voltage in volts VL=')
24 // Result
25 // Voltage at source in volts V1plus =
27 //Voltage returns to battery in volts V1minus=
28 // - 1.6666667
29 //Current at battery in amps I1plus=
30 //
         0.1
```

```
31 //Current at battery in amps I1minus=
32 // 0.0333333
33 //Steady state current through battery in amps IB=
34 // 0.1333333
35 //Steady state load voltage in volts VL=
36 // 3.3333333
```

Scilab code Exa 11.12 voltage and current through a resistor

```
1 //clear//
2 // Caption: Program to plot the voltage and current
     through a resistor
3 //Example11.12
4 //page 386
5 clear;
6 close;
7 clc;
8 t1 = 0:0.1:2;
9 t2 = 2:0.1:4;
10 \ t3 = 4:0.1:6;
11 t4 = 6:0.1:8;
12 VR=[40*ones(1,length(t1)),-20*ones(1,length(t2)),10*
      ones(1,length(t3)),-5*ones(1,length(t4))];
13 IR = [-1.2*ones(1, length(t1)), 0.6*ones(1, length(t2))]
      ,-0.3*ones(1,length(t3)),0.15*ones(1,length(t4))
     ];
14 subplot (2,1,1)
15 a=gca();
16 a.x_location = "origin";
17 a.y_location = "origin";
18 a.data_bounds = [0,-100;10,100];
19 plot2d([t1,t2,t3,t4],VR,5)
20 xlabel('
     t ')
```

Chapter 12

The Uniform Plane Wave

Scilab code Exa 12.1 phasor of forward propagating field

```
1 // \operatorname{clear} //
2 // Caption: Program to determine the phasor of forward
       propagating field
3 / Example 12.1
4 //page400
5 clc;
6 close;
7 Eyzt = sym('100*\exp(\%i*10^8*t-\%i*0.5*z+30)');
8 Eysz = sym('100*\exp(\%i*10^8*t-\%i*0.5*z+30)*\exp(-\%i
      *10^8*t)';
9 disp(Eyzt)
10 disp(Eysz, 'Forward Propagating Field in phasor form
      = , )
11 //Result
12 //100*\exp(-0.5*\%i*z+100000000*\%i*t+30)
13 // Forward Propagating Field in phasor form =100*exp
      (30-0.5*\%i*z)
```

Scilab code Exa 12.2 determine the instanteous field

```
1 // clear //
2 //Caption: Program to determine the instanteous field
       of a wave
3 / \text{Example } 12.2
4 / page 400 - 401
5 clc;
6 t = sym('t');
7 z = sym('z');
8 Ezt1 = sym('100*\cos(-0.21*z+2*\%pi*1e07*t)');
9 Ezt2 = sym('20*cos(-0.21*z+30+2*\%pi*1e07*t)');
10 ax = sym('ax');
11 ay = sym('ay');
12 Ezt = Ezt1*ax+Ezt2*ay;
13 disp(Ezt, 'The real instantaneous field Ezt =')
14 //Result
15 //The real instantaneous field Ezt =
16 // 100*ax*cos(0.21*z-2.0E+7*\%pi*t)+20*ay*cos(0.21*z)
     -2.0E + 7*\% pi*t - 30
```

Scilab code Exa 12.3 find the Phase constant, Phase velocity, Electric Field

```
1 //clear//
2 //Caption:Program to find the Phase constant, Phase velocity, Electric Field Intensity and Intrinsci ratio.
3 //Example12.3
4 //page408
5 clc;
6 syms t;
7 z = %z;
8 [uo,eo] = muo_epsilon();
9 ur = 1;
10 f = 10^6;
```

```
11 \text{ er1} = 81;
12 \text{ er2} = 0;
13 \text{ etta0} = 377;
14 \text{ Ex0} = 0.1;
15 beta1 = phase_constant_dielectric(uo,eo,f,er1,er2,ur
16 disp(beta1, 'phase constant in rad/m beta=')
17 Lambda = 2*\%pi/beta1;
18 Vp = phase_velocity(f, beta1);
19 disp(Vp, 'Phase velocity in m/sec')
20 etta = intrinsic_dielectric(etta0,er1,er2)
21 disp(etta, 'Intrinsic impedancein ohms =')
22 Ex = 0.1*\cos(2*\%pi*f*t-beta1*z)
23 disp(Ex, 'Electric field in V/m Ex=')
24 Hy = Ex/etta;
25 disp(Hy, 'Magnetic Field in A/m Hy=')
26 //Result
27 // phase constant in rad/m beta=
                                          0.1886241
28 // Phase velocity in m/\sec =
                                        33310626.
29 // Intrinsic impedancein ohms =
                                            41.888889
30 // Electric field in V/m Ex=
                                   \cos (58342*z)
      /309303 - 81681409 * t / 13) / 10
31 //equivalent to Ex = 0.1*\cos(0.19*z - 6283185.3*t)
32 // Magnetic Field in A/m Hy = 9*\cos(58342*z)
      /309303 - 81681409 * t / 13) / 3770
33 //equivalent to Hy = 0.0023873*\cos(0.19*z-6283185.3*
      t )
```

Scilab code Exa 12.4 find the penetration depth and intrinsic impedance

```
1 //clear//
2 //Caption:Program to find the penetration depth and intrinsic impedance
3 //Example12.4
4 //page409
```

```
5 clc;
6 f = 2.5e09; //high microwave frequency = 2.5GHz
7 er1 = 78; // relative permittivity
8 \text{ er2} = 7;
9 C = 3e08; //free space velocity in m/sec
10 [uo,eo] = muo_epsilon(); //free space permittivity
     and permeability
11 ur = 1; //relative permeability
12 etta0 = 377; //free space intrinsic imedance in ohms
13 alpha = attenuation_constant_dielectric(uo,eo,f,er1,
     er2,ur);
14 etta = intrinsic_dielectric(etta0,er1,er2);
15 disp(alpha, 'attenuation constant in Np/m alpha=')
16 disp(etta, 'Intrinsic constant in ohms etta=')
17 //Result
18 // attenuation constant in Np/m alpha= 20.727602
19 // Intrinsic constant in ohms etta=
                                              42.558673
     + 1.9058543i
```

Scilab code Exa 12.5 find the attenuation constant, propagation constant

```
alpha = attenuation_constant_gooddie(uo,eo,f,er1,er2,ur);

tetta = intrinsic_good_dielectric(etta0,er1,er2);

beta1 = phase_constant_gooddie(uo,eo,f,er1,er2,ur);

disp(alpha,'attenuation constant per cm alpha=')

disp(beta1,'phase constant in rad/m beta1 =')

disp(etta,'Intrinsic constant in ohms etta=')

// Result

// Attenuation constant per cm alpha=

// 20.748417

// phase constant in rad/m beta1 =

// 462.3933

// Intrinsic constant in ohms etta=

// 42.558673 + 1.9058543i
```

Scilab code Exa 12.6 find skin depth, loss tangent and phase velocity

```
1 //clear//
2 //Caption: Program to find skin depth, loss tangent
      and phase velocity
3 / \text{Example } 12.6
4 //page419
5 clc;
6 	ext{ f1} = 1e06; //frequency in Hz
7 / er1 = 81;
8 \text{ ur} = 1;
9 [uo,eo] = muo_epsilon();//free space permittivity
      and permeability
10 sigma = 4; //conductivity of a conductor in s/m
11 [del] = SkinDepth(f1,uo,ur,sigma);
12 pi = 22/7;
13 Lambda = 2*pi*del;
14 \text{ Vp} = 2*pi*f1*del;
15 disp(del*100, 'skin depth in cm delta =')
16 disp(Lambda, 'Wavelength in metre Lambda =')
```

```
disp(Vp, 'Phase velocity in m/sec Vp =')

// Result

// skin depth in cm delta =

// 25.17737

// Wavelength in metre Lambda =

// 1.5825775

// Phase velocity in m/sec Vp =

// 1582577.5
```

Scilab code Exa 12.7 Electric field

```
1 //clear//
2 / /
3 clc;
4 s = sym('s');
5 B = sym('B');
6 \text{ Eo} = \text{sym}('\text{Eo}');
7 z = sym('z');
8 \text{ ax = sym('ax')};
9 EsL = Eo*(ax+\%i*ay)*exp(\%i*s)*exp(-\%i*B*z);
10 EsR = Eo*(ax-\%i*ay)*exp(-\%i*B*z);
11 Est = Eo*exp(%i*s/2)*(2*cos(s/2)*ax-%i*2*%i*sin(s/2)
      *ay)*exp(-%i*B*z);
12 disp(EsL, 'Left circularly polarized field EsL=')
13 disp(EsR, 'Right circularly polarized field EsR=')
14 disp(Est, 'Total Elecetric field of a linearly
      polarized wave EsT = ')
15 // Result
16 //Left circularly polarized field EsL=
17 // (\%i*ay+ax)*Eo*exp(\%i*s-\%i*z*B)
18 //Right circularly polarized field EsR=
19 // (ax-\%i*ay)*Eo*\%e^-(\%i*z*B)
20 //Total Elecetric field of a linearly polarized wave
       EsT =
21 // Eo*(2*ay*sin(s/2)+2*ax*cos(s/2))*exp(\%i*s/2-\%i*z*
```

Chapter 13

Plane Wave Reflection and Dispersion

Scilab code Exa 13.1 electric field of incident, reflected and transmitted waves

```
1 // \operatorname{clear} //
2 //Caption:Program to finid the electric field of
      incident, reflected and transmitted waves
3 / \text{Example } 13.1
4 //page439
5 \text{ etta1} = 100;
6 etta2 = 300; //intrinsic impedance in ohms
7 T = reflection_coefficient(etta1,etta2);
8 Ex10_i = 100; //incident electric field in v/m
9 Ex10_r = T*Ex10_i; //reflected electric field in v/m
10 Hy10_i = Ex10_i/etta1; //incident magnetic field A/m
11 Hy10_r = -Ex10_r/etta1; //reflected magnetic field A
      /m
12 Si = (1/2)*Ex10_i*Hy10_i; //average incident power
      density in W/square metre
13 Sr = -(1/2)*Ex10_r*Hy10_r;//average reflected power
      denstiy in W/square metre
14 tuo = 1+T; //transmission coefficient
```

```
15 Ex20_t = tuo*Ex10_i; //transmitted electric field v/
16 Hy20_t = Ex20_t/etta2; //transmitted magnetic field
     A/m
17 St = (1/2)*Ex20_t*Hy20_t; //average power density
      transmitted
18 disp(T, 'reflection coefficient t =');
19 disp(Ex10_i, 'incident electric field in v/m Ex10_i =
20 disp(Ex10_r, 'reflected electric field in v/m Ex10_r
     = ^{\prime} )
21 disp(Hy10_i, 'incident magnetic field A/m Hy10_i =')
22 disp(Hy10_r, 'reflected magnetic field A/m Hy10_r=')
23 disp(Si, 'average incident power density in W/square
     metre Si=')
24 disp(Sr, 'average reflected power denstly in W/square
      metre Sr=')
  disp(St, 'average power density transmitted in W/
      square metre St=')
26 //Result
27 //reflection coefficient t =
                                       0.5
28 //incident electric field in v/m Ex10_i =
                                                   100.
29 //reflected electric field in v/m Ex10_r =
                                                     50.
30 //incident magnetic field A/m Hy10_i =
31 //reflected magnetic field A/m Hy10_r=
32 //average incident power density in W/square metre
      Si =
            50.
33 //average reflected power density in W/square metre
34 //average power density transmitted in W/square
     metre St=
                    37.5
```

Scilab code Exa 13.2 maxima and minma electric field

```
1 // clear //
```

```
2 // Caption: Program to find the maxima and minma
      electric field
3 / \text{Example } 13.2
4 //page443
5 clc;
6 \text{ er1} = 4;
7 \text{ ur1} = 1;
8 \text{ er2} = 9;
9 \text{ ur2} = 1;
10 [uo,eo] = muo_epsilon(); //free space permittivity
      and permeability
11 u1 = uo*ur1; //permeability of medium 1
12 u2 = uo*ur2; //permeability of medium 2
13 e1 = eo*er1; //permittivity of medium 1
14 e2 = eo*er2; //permittivity of medium 2
15 \text{ etta1} = \text{sqrt}(\text{u1/e1});
16 \text{ etta2} = \text{sqrt}(u2/e2);
17 T = reflection_coefficient(etta1,etta2)
18 Exs1_i = 100; //incident electric field in v/m
19 Exs1_r = -20; //reflected electric field in v/m
20 Ex1T_max = (1+abs(T))*Exs1_i; //maximum transmitted
      electric field in v/m
21 Ex1T_min = (1-abs(T))*Exs1_i; //minimum transmitted
      electric field in v/m
22 S = VSWR(T); // voltage standing wave ratio
23 disp(Ex1T_max, 'maximum transmitted electric field in
       v/m = ')
24 disp(Ex1T_min, 'minimum transmitted electric field in
       v/m = ')
25 disp(S, 'voltage standing wave ratio S=')
26 // Result
27 //maximum transmitted electric field in v/m =
28 //
           120.
29 //minimum transmitted electric field in v/m =
31 //voltage standing wave ratio S=
32 //
```

Scilab code Exa 13.3 determine the intrinsic impedance

```
1 // clear //
2 //Caption:Program to determine the intrinsic
     impedance of the unknown material
3 / \text{Eample } 13.3
4 //page441
5 clc;
6 maxima_spacing = 1.5; //Lambda/2 in metres
7 Lambda = 2*maxima_spacing; //wavelength in metres
8 C = 3e08; //free space velocity in m/sec
9 f = C/Lambda; //frequency in Hz
10 S = 5; //voltage standing wave ratio
11 T = (1-S)/(1+S); //reflection coefficient
12 etta0 = 377; //intrinsic impedance in ohms
13 ettau = etta0/S;//intrinsic impedance of unkonwn
     material in ohms
14 disp(T, 'reflection coefficient T=')
15 disp(ettau, 'intrinsic impedance in ohms =')
16 //Result
17 //reflection coefficient T = -0.6666667
18 // intrinsic impedance in ohms =
                                          75.4
```

Scilab code Exa 13.4 determine the required range of glass thickness

```
7 Lambda0 = 600e-09; //wavelength of red part of
    visible spectrum 600nm
8 n = 1.45; //refractive index of glass plate
9 delta_Lambda = 50e-09; //optical spectrum of full
    width = 50nm
10 l = Lambda0^2/(2*n*delta_Lambda);
11 disp(1*1e06, 'required range of glass thickness in
    micro meter l=')
12 //Result
13 //required range of glass thickness in micro meter l
    = 2.4827586
```

Scilab code Exa 13.5 Index for coating

```
1 // clear //
2 //Caption:Program to find the required index for the
      coating and its thickness
3 / \text{Example } 13.5
4 //page451
5 clear;
7 etta1 = 377; //intrinsic impedance of free space in
     ohms
8 n3 = 1.45; //refractive index of glass
9 etta3 = etta1/n3; //intrinsic impedance in glass
10 etta2 = sqrt(etta1*etta3);//intrinsic impedance in
     ohms for coating
11 n2 = etta1/etta2; //refractive index of region2
12 Lambda0 = 570e-09; // free space wavelength
13 Lambda2 = Lambda0/n2; //wavelength in region2
14 l = Lambda2/4; //minimum thickness of the dielectric
      layer
15 disp(1*1e06, 'minimum thickness of the dielectric
      layer in um = ')
16 //Result
```

```
17 //minimum thickness of the dielectric layer in um = 18 // 0.1183398
```

Scilab code Exa 13.6 phasor expression

```
1 //clear//
2 //Caption:Program to find the phasor expression for
      the electric field
3 / \text{Example } 13.6
4 //page456
5 clc;
6 \text{ ax = sym('ax')};
7 \text{ ay = sym('ay')};
8 \text{ az = sym}('az');
9 x = sym('x');
10 \ y = sym('y');
11 z = sym('z');
12 teta = 30; //phase angle in degrees
13 teta = 30/57.3; //phase angle in radians
14 Eo = 10; // Electric field in v/m
15 f = 50e06; //frequency in Hz
16 er = 9.0; //relative permittivity
17 ur = 1; //relative permeability
18 [uo,eo] = muo_epsilon();
19 k = propagation_constant(f,uo,ur,eo,er);
20 K = k*(cos(teta)*ax+sin(teta)*ay);
21 r = x*ax+y*ay;
22 Es = Eo*exp(-sqrt(-1)*K*r)*az;
23 disp(K, 'propagation constant per metre K=')
24 disp(r, 'distance in metre r=')
25 disp(Es, 'Phasor expression for the electric field of
       the uniform plane wave Es=')
26 //Result
27 / K = 5607 * (14969 * ay / 29940 + 25156 * ax / 29047) / 1784
28 // r = ay * y + ax * x
```

```
29 //Es=10*az*\%e^-(5607*\%i*(14969*ay/29940+25156*ax/29047)*(ay*y+ax*x)/1784)
```

Scilab code Exa 13.7 find the fraction of incident power

```
1 //clear//
2 //Caption:Program to find the fraction of incident
     power that is reflected and transmitted
\frac{3}{\sqrt{\text{Example }13.7}}
4 //page460
5 clc;
6 teta1 = 30; //incident angle in degrees
7 n2 = 1.45; //refractive index of glass
8 teta2 = snells_law(teta1,n2);
9 etta1 = 377*cos(teta1/57.3); // intrinsic impedance
     in medium 1 in ohms
10 etta2 = (377/n2)*\cos(\text{teta2}); //intrinsic impedance
     in medium2 in ohms
11 Tp = reflection_coefficient(etta1,etta2);//
      reflection coefficient for p-polarization
12 Reflected_Fraction_p = (abs(Tp))^2;
13 Transmitted_Fraction_p = 1-(abs(Tp))^2;
14 etta1s = 377*sec(teta1/57.3); //intrinsic impedance
     for s-polarization
15 etta2s = (377/n2)*sec(teta2);
16 Ts = reflection_coefficient(etta1s,etta2s);//
      reflection coefficient for s-polarization
17 Reflected_Fraction_s = (abs(Ts))^2;
18 Transmitted_Fraction_s = 1-(abs(Ts))^2;
19 disp(teta2*57.3, 'Transmission angle using snells law
      in degrees teta2 =')
20 disp(Tp, 'Reflection coefficient for p-polarization
     Tp=')
21 disp(Reflected_Fraction_P, 'Fraction of incident
     power that is reflected for p-polarization =')
```

```
22 disp(Transmitted_Fraction_p, 'Fraction of power
     transmitted for p-polarization =')
23 disp(Ts, 'Reflection coefficient for s-polarization
     Tp=')
24 disp(Reflected_Fraction_s, 'Fraction of incident
     power that is reflected for s-polarization =')
  disp(Transmitted_Fraction_s, 'Fraction of power
     transmitted for s-polarization =')
26 //Result
27 //Transmission angle using snells law in degrees
     teta2 =
          20.171351
28 //
29 // Reflection coefficient for p-polarization Tp=
30 // - 0.1444972
31 //Fraction of incident power that is reflected for p
     -polarization =
         0.0337359
32 //
33 //Fraction of power transmitted for p-polarization =
34 //
        0.9791206
35 // Reflection coefficient for s-polarization Tp=
36 // - 0.2222748
37 //Fraction of incident power that is reflected for s
     -polarization = //
                            0.0494061
38 //Fraction of power transmitted for s-polarization =
       0.9505939
39 //
```

Scilab code Exa 13.8 find the refractive index

```
7 n2 =1.00; //refractive index of air
8 teta1 = 45; //incident angle in degrees
9 teta1 = 45/57.3; //incident angle in radians
10 n1 = n2/sin(teta1);
11 disp(n1, 'refractive index of prism material n1=')
12 //Result
13 //refractive index of prism material n1=
14 // 1.4142954
```

Scilab code Exa 13.9 determine incident and transmitted anless

```
1 // clear //
2 // Caption: Program to determine incident and
      transmitted anlges
\frac{3}{\sqrt{\text{Example}13.9}}
4 //page464
5 clear;
6 clc;
7 n1 =1.00; //refractive index of air
8 n2 =1.45; //refractive index of glass
9 teta1 = asin(n2/sqrt(n1^2+n2^2));
10 teta2 = asin(n1/sqrt(n1^2+n2^2));
11 Brewster_Condition = teta1+teta2;
12 disp(teta1*57.3, 'Incident angle in degrees teta1 =')
13 disp(teta2*57.3, 'transmitted angle in degrees teta2=
      ')
14 disp(Brewster_Condition*57.3, 'sum of the incident
      angle and transmitted angle, Brewster_Condition='
      )
15 // Result
16 //Incident angle in degrees teta1 = 55.411793
17 //transmitted angle in degrees teta2 = 34.594837
18 //sum of the incident angle and transmitted angle,
      Brewster_Condition 90.00663
```

Scilab code Exa 13.10 group velocity and phase velocity

```
1 // clear //
2 // Caption: Program to determine group velocity and
      phase velocity of a wave
3 //Example13.10
4 //page470
5 clc;
6 \text{ w} = \text{sym}('\text{w}');
7 wo = sym('wo');
8 no = sym('no');
9 c = sym('c');
10 beta_w = (no*w^2)/(wo*c);
11 disp(beta_w, 'Phase constant=')
12 d_beta_w = diff(beta_w,w);
13 disp(d_beta_w, 'Differentiation of phase constant w.r
      . to w = ')
14 \text{ Vg} = 1/d_beta_w;
15 Vg = limit(Vg,w,wo);
16 \text{ Vp = w/beta_w};
17 Vp = limit(Vp, w, wo);
18 disp(Vg, 'Group velocity =')
19 disp(Vp, 'Phase velocity=')
20 //Result
21 //Phase constant=
22 // no*w^2/(c*wo)
23 // Differentiation of phase constant w.r.to w =
24 // 2*no*w/(c*wo)
25 //Group velocity =
26 // c / (2*no)
27 //Phase velocity=
28 // c/no
```

Scilab code Exa 13.11 pulse width at the optical fiber

```
1 // clear //
2 //Caption: Program to determine the pulse width at
     the optical fiber output
3 //Example13.11
4 //page474
5 clear;
6 clc;
7 T = 10; //width of light pulse at the optical fiber
     input in pico secs
8 beta2 = 20; //dispersion in pico seconds square pre
     kilometre
9 z = 15; // length of optical fiber in kilometre
10 delta_t = beta2*z/T;
11 T1 = sqrt(T^2+delta_t^2);
12 disp(delta_t, 'Pulse spread in pico seconds delta_t =
13 disp(ceil(T1), 'Output pulse width in pico seconds T1
14 // Result
15 // Pulse spread in pico seconds delta_t =
          30.
17 //Output pulse width in pico seconds T1 =
18 //
         32.
```

Chapter 14

Guided Wave and Radiation

Scilab code Exa 14.1 determine the cutoff frequency

```
1 //clear//
2 // Caption: Program to determine the cutoff frequency
     for the first waveguide mode (m=1)
3 //Example14.1
4 //page 499
5 clear;
7 er1 = 2.1; //dielectric constant of teflon material
8 er0 = 1; //dielectric constant of air
9 d = 1e-02; //parallel plate waveguide separation in
10 C = 3e08; //free space velocity in m/sec
11 n = sqrt(er1/er0); //refractive index
12 fc1 = C/(2*n*d);
13 disp(fc1, 'cutoff frequency for the first waveguide
     mode in Hz fc1 = ')
14 // Result
15 //cutoff frequency for the first waveguide mode in
     Hz fc1 =
16 // 1.035D+10
```

Scilab code Exa 14.2 number of modes propagate in waveguide

```
1 // clear //
2 // Caption: Program to determine the number of modes
     propagate in waveguide
3 / \text{Example } 14.2
4 //page 499
5 clear;
6 clc;
7 er1 = 2.1; //dielectric constant of teflon material
8 er0 = 1; //dielectric constant of air
9 n = sqrt(er1/er0); //refractive index
10 Lambda_cm = 2e-03; //operating cutoff wavelength in
     metre
11 d = 1e-02; //parallel-plate waveguide separation
12 m = (2*n*d)/Lambda_cm;
13 disp(floor(m), 'Number of waveguides modes propagate
     m = ')
14 // Result
15 // Number of waveguides modes propagate m =
16 //
          14.
```

Scilab code Exa 14.3 determine the group delay and difference

```
1 // clear //
2 // Caption: Program to determine the group delay and difference in propagation times
3 // Example14.3
4 // page 502
5 clc;
6 C = 3e08; // free space velocity in m/sec
7 er = 2.1; // dielectric constant of teflon material
```

```
8 fc1 = 10.3e09; // cutoff frequency for mode m =1
9 fc2 = 2*fc1; // cutoff frequency for mode m =2
10 f = 25e09; // operating frequency in Hz
11 Vg1 = group_delay(C,er,fc1,f); // group delay for mode
        m = 1
12 Vg2 = group_delay(C,er,fc2,f); // group delay for mode
        m = 2
13 del_t = group_delay_difference(Vg1,Vg2);
14 disp(ceil(del_t*1e10), 'group delay difference in ps/
        cm del_t=')
15 // Result
16 // group delay difference in ps/cm del_t=
17 // 33.
```

Scilab code Exa 14.4 determine the operating range

```
1 //clear//
2 //Caption: Program to determine the operating range
      of frequency for TE10 mode of air filled
      rectangular waveguide
3 / \text{Example } 14.4
4 / page 509
5 clear;
6 clc;
7 //dimensions of air filled rectangular waveguide
8 a = 2e-02;
9 b = 1e-02;
10 //Free space velocity in m/sec
11 C = 3e08;
12 //the value of m for TE10 mode
13 \, \text{m} = 1;
14 n = 1; //refractive index for air filled waveguide
15 fc = (m*C)/(2*n*a);
16 disp(fc*1e-09, 'Operating range of frequency for TE10
       mode in GHz fc=')
```

```
17 // Result  
18 // Operating range of frequency for TE10 mode in GHz fc=  
19 // 7.5
```

Scilab code Exa 14.5 maximum allowable refractive index

```
1 // clear //
2 //Caption: Program to determine the maximum
      allowable refractive index of the slab material
3 / \text{Example } 14.5
4 //page 517
5 clear;
6 clc;
7 Lambda = 1.30e-06; //wavelength range over which
      single-mode operation
8 d = 5e-06; //slab thickness in metre
9 n2 = 1.45; //refractive index of the slab material
10 n1 = sqrt((Lambda/(2*d))^2+n2^2);
11 disp(n1, 'The maximum allowable refractive index of
      the slab material n1=')
12 //Result
13 //The maximum allowable refractive index of the slab
      material n1=
14 // 1.4558159
```

Scilab code Exa 14.6 find the V number of a step index fiber

```
1 //clear//
2 //Caption:Program to find the V number of a step index fiber
3 //Example14.6
4 //page 524
```

```
5 clear;
6 clc;
7 Lambda = 1.55e-06; //operating wavelength in metre
8 LambdaC = 1.2e-06; //cutoff wavelength in metre
9 V = (LambdaC/Lambda)*2.405;
10 disp(V, 'the V number of a step index fiber V=')
11 //Result
12 //the V number of a step index fiber V=
13 // 1.8619355
```