PERTH MODERN SCHOOL

UNIT 3CD MAS - 2014

TEST 1

POLAR COORDINATES, COMPLEX NUMBERS & VECTORS

NAME:		DATE:	Thurs. 13 th Feb.	
Total:	43 marks		Time:	45 min.

1. Z is a complex number. Sketch the region given by

$$Re(Z) < 1$$
 and $Im(Z) > -2$

and
$$1 < |Z| < 3$$

and
$$-\frac{5\pi}{12} \le ArgZ \le \frac{2\pi}{3}$$

2. Express $Z = -1 - \sqrt{3} i$ in polar form.

[2]

3. If $Z_1 = 5 \operatorname{cis} \frac{\pi}{6}$ and $Z_2 = 2 \operatorname{cis} \frac{\pi}{12}$, then prove $Z_1 Z_2 = 5\sqrt{2} (1 + i)$

[4]

4. Find Z if $Z\overline{Z} + 2Z = \frac{1}{4} + i$

[6]

$$\overrightarrow{OA} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$
 and $\overrightarrow{OB} = 5\mathbf{i} + \mathbf{j} - 3\mathbf{k}$

Determine:

a) the length of \overrightarrow{AB} .

b) ∠AOB to the nearest degree.

c) the vector equation of the line, in parametric form, through the points A and B.

A has the rectangular coordinates $\left[-1 , \sqrt{3} \right]$ and B has polar coordinates $\left[4 , \frac{5\pi}{4} \right]$.

a) What are the exact polar coordinates of A? (1)

b) What are the exact rectangular coordinates of B? (2)

c) The graph of the polar equation $\mathbf{r} = \mathbf{k}\theta$ passes through the point B. If $\mathbf{k} > 0$, determine the value of \mathbf{k} .

Then, on the axes below, sketch the graph of $\mathbf{r} = \mathbf{k}\theta$ for $0 \le \theta \le \pi$., showing important features. (5)

7. [10]

ABCD is a parallelogram with points E and F such that \overrightarrow{AE} : \overrightarrow{EB} = 1 : 4 and \overrightarrow{BF} : \overrightarrow{FC} = 3 : 1.

→ ED and AF intersect each other at G.

Let
$$\overrightarrow{AB} = a$$
 and $\overrightarrow{AD} = d$.

a) Complete the diagram below with the information given above. (2)

b) Determine the ratios in which \overrightarrow{AF} and \overrightarrow{ED} intersect each other, if the intersection point is at G. (8)