CONICS (TITLE TBD)

ABSTRACT. to be written

Contents

1.	Introduction	1
2.	Projectivization of the problem	1
3.	Diagonalization of quadratic forms	2
4.	Counting solutions of a conic in \mathbb{P}^2	2
4.1.	. Extraneous solutions	2
4.2.	2. Total solutions	3
5.	Counting solutions of a conic in \mathbb{A}^2	4
6.	To the p-adics via Hensel's lemma	5
7.	To ♥ via Hasse-Minkowski	5

1. Introduction

to be written

2. Projectivization of the problem

For now, let us fix a conic

$$(2.1) ax^2 + bxy + cy^2 + dx + ey + f = 0$$

as well as a base field \mathbb{F}_p , for p an odd prime. (We defer treatment of the case p=2 to $\S 5$.)

Let \mathbb{A}^n denote *n*-dimensional affine space over \mathbb{F}_p . Taking the quotient of $\mathbb{A}^3 \setminus \{0\}$ by the relation $(x, y, z) \sim (\lambda x, \lambda y, \lambda z)$ for $\lambda \neq 0$ produces the projective plane \mathbb{P}^2 . We will write $[X:Y:Z] \in \mathbb{P}^2$ to denote the equivalence class of $(X,Y,Z) \in \mathbb{A}^3 \setminus \{0\}$.

Let S denote the solution set of (2.1) in \mathbb{A}^2 . Our aim is to characterize |S| as a function of a, b, c, d, e, f, and p. To do so, we will first consider the homogeneous equation

(2.2)
$$aX^{2} + bXY + cY^{2} + dXZ + eYZ + fZ^{2} = 0$$

whose solutions define a set $S' \subset \mathbb{P}^2$. This "projectivization" of the conic enables us to apply the theory of quadratic forms, which we shall do in §3.

There is an evident injection $S \mapsto S'$ sending (x,y) to [x:y:1]. However, elements of S' of the form [X:Y:0] do not correspond to elements of S. These are solutions "at infinity" in the affine plane. Thankfully, these extraneous solutions are easily characterized: they are the solutions to the equation

$$(2.3) aX^2 + bXY + cY^2 = 0$$

on the projective line \mathbb{P}^1 . Call this solution set $S_0 \subset \mathbb{P}^1$.

Lemma 2.1. $|S'| = |S| + |S_0|$.

Proof. A solution [X:Y:Z] of (2.2) corresponds to a solution (X/Z,Y/Z) of (2.1) if $Z \neq 0$ and to a solution [X:Y] of (2.3) if Z=0.

3. Diagonalization of quadratic forms

(to be written)

4. Counting solutions of a conic in \mathbb{P}^2

We precede this undertaking with a brief review of relevant number theory.

The nonzero elements $\mathbb{F}_p^{\times} \subset \mathbb{F}_p$ form an abelian group under multiplication, and the squaring map

$$s \colon \mathbb{F}_p^{\times} \xrightarrow{x \mapsto x^2} \mathbb{F}_p^{\times}$$

is a homomorphism. If p divides $x^2 - 1 = (x+1)(x-1)$, we must have $x = \pm 1 \mod p$, thus $\ker s = \{\pm 1\}$. The quotient $\mathbb{F}_p^{\times}/s(\mathbb{F}_p^{\times})$ is a group of order two:

$$\mathbb{F}_p^{\times}/s(\mathbb{F}_p^{\times}) \cong \{\pm 1\}.$$

Consider the homomorphism

$$\left(\frac{\cdot}{p}\right) \colon \mathbb{F}_p^{\times} \to \mathbb{F}_p^{\times} / s(\mathbb{F}_p^{\times}) \cong \{\pm 1\},$$

so that $\left(\frac{a}{p}\right)$ is -1 if a is a nonresidue, and 1 if a is a nonzero residue. For the sake of extending the above map to a monoid homomorphism

$$(\mathbb{F}_p, \times) \to (\{-1, 0, 1\}, \times)$$

one defines $\binom{0}{n} = 0$. This completes the definition of the Legendre symbol.

Note that each nonzero residue has exactly two square-roots (as we are assuming p > 2 throughout).

In §3, we showed that, for an appropriate choice of coordinates, $aX^2 + bXY + cY^2$ can be rewritten as

$$(4.1) a_1 X_1^2 + c_1 Y_1^2 = 0$$

and similarly, $aX^2 + bXY + cY^2 + dXZ + eYZ + fZ^2 = 0$ can be rewritten as

$$(4.2) a_2 X_2^2 + c_2 Y_2^2 + f_2 Z_2^2 = 0.$$

The different subscripts express that the base changes involved for (4.1) and (4.2) need not be the same!

Recall that the assumptions on the original coefficients $a,b,c,d,e,f\in\mathbb{Z}$ were that

- not all of a, b, c are zero, and
- gcd(a, b, c, d, e, f) = 1.

If p divides a, b, and c, then $a_1 = c_1 = 0$ above. However, it will never be the case that $a_2 = c_2 = f_2 = 0$.

- 4.1. Extraneous solutions. Fix a quadratic nonresidue $r \in \mathbb{F}_p$. By scaling the equation (4.1) and by scaling and permuting the coordinates as appropriate, we can obtain one of the following equivalent forms:
 - (1) 0 = 0 if both a_1, c_1 are zero,
 - (2) $X^2 = 0$ if exactly one of a_1, c_1 is zero,
 - (3) $X^2 + Y^2 = 0$ if a_1c_1 is a nonzero quadratic residue, and
 - (4) $X^2 + rY^2 = 0$ if a_1c_1 is a nonzero quadratic nonresidue.

The first of these has $|\mathbb{P}^1| = p + 1$ solutions.

The second has one solution, namely [0:1].

Evidently Y must be nonzero for the last two cases, so we can rewrite them as $(X/Y)^2 = -1$ and $(X/Y)^2 = -r$ respectively. If -1 is a quadratic residue, then -r is not. It follows that $X^2 + Y^2 = 0$ has two solutions and $X^2 + rY^2 = 0$ has none.

If -1 is a nonresidue, the situation is reversed: $X^2 + Y^2 = 0$ has no solutions and $X^2 + rY^2 = 0$ has two solutions.

- 4.2. **Total solutions.** Let r be a quadratic nonresidue in \mathbb{F}_p as before. Just as in $\S4.1$, we can rewrite (4.2) as one of the following:
 - (1) $X^2 = 0$ if two of a_2, c_2, f_2 are zero,
 - (2) $X^2 + Y^2 = 0$ if exactly one of a_2, c_2, f_2 is zero, and the product of the other two is a quadratic residue,
 - (3) $X^2 + rY^2 = 0$ if exactly one of a_2, c_2, f_2 is zero, and the product of the other two is a quadratic nonresidue,
 - (4) $X^2 + Y^2 + Z^2 = 0$ if $a_2c_2f_2$ is a nonzero quadratic residue, and (5) $X^2 + Y^2 + rZ^2 = 0$ if $a_2c_2f_2$ is a nonzero quadratic nonresidue.

Now we count the number of solutions in each of these cases.

Rank 1 (first case). The equation $X^2 = 0$ has p + 1 solutions.

Rank 2 (second and third cases). The only solution with Y = 0 is [0:0:1]. So assume $Y \neq 0$, and rewrite the equations as $(X/Y)^2 = -1$ and $(X/Y)^2 = -r$ respectively.

Suppose -1 is a quadratic residue mod p. The equation $(X/Y)^2 = -1$ gives two possibilities for X/Y, and thus 2p solutions in \mathbb{P}^2 . Hence $X^2+Y^2=0$ has 2p+1solutions in total. On the other hand, $(X/Y)^2 = -r$ has no solutions, meaning [0:0:1] is the only solution to $X^2 + rY^2 = 0$.

If -1 is a nonresidue, the situation is reversed, and $X^2 + Y^2 = 0$ has one solution while $X^2 + rY^2 = 0$ has 2p + 1 solutions.

Rank 3 (fourth and fifth cases). Suppose -1 is a quadratic residue mod p. If Z=0, then we are in the setting of $\S4.1$ case (3), which has two solutions. Otherwise, we can divide by Z and obtain

$$(X/Z)^{2} + (Y/Z)^{2} = -1$$
$$(X/Z)^{2} + (Y/Z)^{2} = -r$$

respectively. By Proposition 4.1 below, these each have p-1 solutions. Therefore $X^{2} + Y^{2} + Z^{2} = 0$ and $X^{2} + Y^{2} + rZ^{2} = 0$ each have p + 1 solutions.

Suppose -1 is a nonresidue. There are no solutions with Z=0, so rewrite the equations as above. By Proposition 4.1 again, they each have p+1 solutions.

Proposition 4.1. For $a \neq 0$, the equation $x^2 + y^2 = a$ has $p - \left(\frac{-1}{p}\right)$ solutions over \mathbb{F}_p . usage of S_0 in this proof is conflicting notation; need to address

Proof. Let $S_a \subset \mathbb{A}^2$ denote the solution set of $x^2 + y^2 = a$. First we will show the statement for a = 1.

Let T denote the square-roots of -1 in \mathbb{F}_p . In the case that -1 is a nonresidue, T is empty. Consider the maps $f: S_1 \setminus (1,0) \to \mathbb{F}_p \setminus T$ and $g: \mathbb{F}_p \setminus T \to S_1 \setminus (1,0)$ defined by

$$f(x,y) = \frac{y}{x-1}$$
$$g(m) = \left(\frac{m^2 - 1}{m^2 + 1}, \frac{-2m}{m^2 + 1}\right).$$

It is easy to check that they are inverse to one another, from which it follows that $|S_1| = |\mathbb{F}_p| - |T| + 1 = p - \left(\frac{-1}{p}\right)$ as desired.

¹add comment about isomorphism to \mathbb{P}^1

Note that if a, a' are both nonzero residues (or both nonresidues) then $|S_a| = |S_{a'}|$. From the preceding, we have the claim for all residues a. Observe that $S_0 \cup \cdots \cup S_{p-1}$ gives a partition of \mathbb{A}^2 . Since

$$|S_0| = \begin{cases} 1 & \text{if } \left(\frac{-1}{p}\right) = -1, \\ 2p+1 & \text{if } \left(\frac{-1}{p}\right) = 1, \end{cases}$$

for a nonresidue a we have

$$|S_a| = \frac{2}{p-1} \left(p^2 - |S_0| - \frac{p-1}{2} |S_1| \right) = p - \left(\frac{-1}{p} \right).$$

Example 4.1 (A zoo of possibilities). In the table below, the first two columns reflect the discussion immediately preceding. The remaining columns consider the number of extraneous solutions. The entries marked "N/A" are impossible and explanation is given afterwards. For all other entries, examples are given for the specific case p=3.

		# soln. in $\{Z=0\}$				
rank of proj.	$\#$ soln. in \mathbb{P}^2	0	1	2	p+1	
1	p+1	N/A	x^2	N/A	1	
2	1	$x^2 + y^2$	$x^2 + 1$	N/A	N/A	
2	2p + 1	N/A	$x^2 + x$	xy	X	
3	p+1	$x^2 + y^2 + 1$	$x+y^2$	$x^2 + 2y^2 + 1$	N/A	

- When the projectivization has rank 1, it is a double line. If this line is distinct from $\{Z=0\}$, they meet at exactly one point. Otherwise they are the same line, giving p+1 solutions in $\{Z=0\}$.
- When the projectivization has rank 2 and has 2p+1 solutions, it is the union of two intersecting lines. These lines cannot be disjoint from $\{Z=0\}$.
- There are p+1 solutions in $\{Z=0\}$ only when the coefficients a,b,c are all zero. In particular, such a conic cannot have a projectivization of rank 3.

5. Counting solutions of a conic in \mathbb{A}^2

Given a conic, we now have almost all of the necessary pieces to determine how many solutions it has in \mathbb{A}^2 over \mathbb{F}_p . The remaining case is that of a conic over \mathbb{F}_2 .

Fortunately there are very few such conics, and the solutions to

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

are the same as the solutions to

$$bxy + (a+d)x + (c+e)y + f = 0.$$

At this point, one can simply list out all the possibilities. It can be checked that the number of solutions in each case can be concisely written as $2 + b(-1)^{(a+d)(c+e)+f}$, where b is either 0 or 1. I have temporarily put this here, but this might flow better if moved into the proof of the theorem below.

(remainder to be written)

Theorem 5.1. main theorem determining F(a, b, c, d, e, f, p)

get a reference for the following fact (which we'll probably need)?

Proposition 5.1. For an odd prime p, the Legendre symbol $\left(\frac{-1}{n}\right)$ is given by

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \cong 1 \pmod{4} \\ -1 & \text{if } p \cong 3 \pmod{4}. \end{cases}$$

6. To the p-adics via Hensel's Lemma

(to be written)

7. To $\mathbb Q$ via Hasse-Minkowski

(to be written)