Day-2 Session-1: Incidence Weighting Estimation under BIG Sampling

 $Li ext{-}Chun \,\,Zhang^{\scriptscriptstyle{1,2,3}} \,\,{
m and}\,\,Melike\,\,\,Oguz ext{-}Alper^{\scriptscriptstyle{2}}$

 $^1University\ of\ Southampton\ (L.Zhang@soton.ac.uk)$ $^2Statistisk\ sentralbyraa,\ Norway$ $^3Universitetet\ i\ Oslo$

Sample graph under BIGS

Sample graph by BIGS, or sample BIG, defined to be

$$\mathcal{B}_s = (s_0, \Omega_s; H_s)$$

given initial sample s_0 from F, where Ω_s consists of the nodes (in Ω) connected to s_0 , and H_s contains the edges connecting s_0 to Ω_s denoted by $H_s = H \cap (s_0 \times \Omega)$

Ancestry knowledge

Ancestry knowledge for sample graph $\mathcal{B}_s = (s_0, \Omega_s; H_s)$:

$$\{\beta_{\kappa} : \kappa \in \Omega_{S}\}$$
 and $\beta(\Omega_{S}) = \bigcup_{\kappa \in \Omega_{S}} \beta_{\kappa}$

In particular, out-of-sample nodes $\beta(\Omega_s) \setminus s_0$ needed

Incidence weighting estimator (Patone and Zhang, 2020)

Total of interest: $\theta = \sum_{\kappa \in \Omega} y_{\kappa}$ IWE based on $\mathcal{B}_s = (s_0, \Omega_s; H_s)$ by BIGS:

$$\hat{\theta} = \sum_{(i\kappa)\in H_s} W_{i\kappa} \frac{y_{\kappa}}{\pi_i}$$

The IWE is unbiased for θ provided, for each $\kappa \in \Omega$,

$$\sum_{i \in \beta_{\kappa}} E(W_{i\kappa} | \delta_i = 1) = 1$$

Moreover,

$$V(\hat{\theta}) = \sum_{\kappa \in \Omega} \sum_{\ell \in \Omega} (\Delta_{\kappa\ell} - 1) y_{\kappa} y_{\ell}$$
$$\Delta_{\kappa\ell} = \sum_{i \in \beta_{\kappa}} \sum_{j \in \beta_{\ell}} \frac{\pi_{ij}}{\pi_{i}\pi_{j}} E(W_{i\kappa} W_{j\ell} | \delta_{i}\delta_{j} = 1)$$

So-called Hansen-Hurwitz (HH) type estimator uses weights $\omega_{i\kappa}$ that are constant of sampling, such that

$$\sum_{i \in \beta_{\kappa}} E(\omega_{i\kappa} | \delta_i = 1) = \sum_{i \in \beta_{\kappa}} \omega_{i\kappa} = 1$$

(Birnbaum and Sirken, 1965), where multiplicity weights

$$\omega_{i\kappa} \equiv d_{\kappa}^{-1}$$
 and $d_{\kappa} = |\beta_{\kappa}|$

are common for network sampling (e.g. Sirken, 2005), ACS (Thompson, 1990), indirect sampling (Birnbaum and Sirken, 1965; Lavalleè, 2007). Probability and inverse degree-adjusted (PIDA) weights (Patone and Zhang, 2020):

$$\omega_{i\kappa} \propto d_i^{-\gamma} \pi_i$$

where $d_i = \text{no.}$ nodes connected to sampling unit i in s_0

HH-type estimator

- F = clinics, $\Omega = \text{patients}$ of a certain disease $d_i = \text{no.}$ patients receiving treatment at hospital i $d_{\kappa} = \text{no.}$ hospitals that treat patient κ
- F = parent (mother or father), Ω = children d_i = no. children of person i d_{κ} = no. parents in F of child κ
- F = Twitter accounts, $\Omega = \text{followers (Twitter accounts)}$ $d_i = \text{no. followers of account } i$ $d_{\kappa} = \text{no. accounts } \kappa \text{ follows}$
- F = products (online market), $\Omega = \text{buying customers}$ $d_i = \text{no. buyers of product } i$ $d_{\kappa} = \text{no. products bought by } \kappa$
- $F = \Omega = \text{individuals}, (i\kappa) \in H \text{ if in-contact, incl. } i = \kappa$

$$\hat{\theta}_z = \sum_{i \in s_0} \frac{z_i}{\pi_i}$$
 and $z_i = \sum_{\kappa \in \alpha_i} \omega_{i\kappa} y_{\kappa}$

where z_i is a constructed constant for each $i \in F$ and $\alpha_i = \{\kappa \in \Omega : (i\kappa) \in H\}$ its connected study units Associated sampling variance

$$V(\hat{\theta}_z) = \sum_{i \in F} \sum_{j \in F} \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1 \right) z_i z_j$$

PIDA weights (prop. to $d_i^{-\gamma}\pi_i$) aim to even out z_i/π_i However, $d_i = |\alpha_i|$ for $i \in \beta(\Omega_s) \setminus s_0$ requires additional information beyond the ancestry knowledge E.g. no. children to an out-of- s_0 parent in Birth Register

HT-estimator (HTE)

$$\hat{\theta}_y = \sum_{\kappa \in \Omega_s} y_{\kappa} \pi_{(\kappa)}^{-1} = \sum_{\kappa \in \Omega_s} y_{\kappa} \left(\sum_{i \in s_0 \cap \beta_{\kappa}} W_{i\kappa} \pi_i^{-1} \right)$$

is an IWE, where $W_{i\kappa}$ satisfy $\sum_{i \in s_0 \cap \beta_{\kappa}} W_{i\kappa} \pi_i^{-1} = \pi_{(\kappa)}^{-1}$ $W_{i\kappa}$ sample-dependent if $|\beta_{\kappa}| > 1$, e.g. $\beta_{\kappa_1} = \{i_1, i_2\}$ in

- $s_0 \cap \beta_{\kappa_1} = \{i_1\}: W_{i_1\kappa_1} = \pi_{i_1}/\pi_{(\kappa_1)}$
- $s_0 \cap \beta_{\kappa_1} = \{i_2\}$: $W_{i_2\kappa_1} = \pi_{i_2}/\pi_{(\kappa_1)}$
- $s_0 \cap \beta_{\kappa_1} = \{i_1, i_2\}$: $W_{i_1\kappa_1} = a \frac{\pi_{i_1}}{\pi_{(\kappa_1)}}, W_{i_2\kappa_1} = (1-a) \frac{\pi_{i_2}}{\pi_{(\kappa_1)}}$

Let sample-dependent weights $W_{i\kappa}$ satisfy

$$\eta_{s_{\kappa}} = \pi_{(\kappa)} \sum_{i \in s_{\kappa}} \frac{W_{i\kappa}}{\pi_{i}}$$
$$\sum_{s_{\kappa}} \Pr(s_{0} \cap \beta_{\kappa} = s_{\kappa}) \eta_{s_{\kappa}} = \pi_{(\kappa)}$$

HTE is the special case of $\eta_{s_{\kappa}} \equiv 1$ HT-type estimator given $\eta_{s_{\kappa}}$ that differs for different sample intersects s_{κ} subject to the restriction above

But HTE = RB-estimator of such a HT-type estimator

$$E\left(\sum_{\kappa \in \Omega_{s}} \sum_{i \in s_{\kappa}} \frac{W_{i\kappa}}{\pi_{i}} y_{\kappa} | \Omega_{s}\right) = \sum_{\kappa \in \Omega_{s}} y_{\kappa} E\left(\frac{\eta_{s_{\kappa}}}{\pi_{(\kappa)}} | \kappa \in \Omega_{s}\right)$$

$$= \sum_{\kappa \in \Omega_{s}} \frac{y_{\kappa}}{\pi_{(\kappa)}} \sum_{s_{\kappa}} \frac{\Pr(s_{0} \cap \beta_{\kappa} = s_{\kappa})}{\pi_{(\kappa)}} \eta_{s_{\kappa}} = \sum_{\kappa \in \Omega_{s}} \frac{y_{\kappa}}{\pi_{(\kappa)}}$$

Priority-rule estimator (Birnbaum and Sirken, 1965)

Apply priority rule to the sample edges H_s :

$$I_{i\kappa} = \begin{cases} 1 & \text{if } i = \min(s_0 \cap \beta_{\kappa}) \\ 0 & \text{otherwise.} \end{cases}$$

Let $p_{(i\kappa)} = \Pr(I_{i\kappa} = 1 | \kappa \in \Omega_s)$ for prioritisation, and

$$\hat{\theta}_p = \sum_{(i\kappa) \in H_s} \left(\frac{I_{i\kappa} \omega_{i\kappa}}{p_{(i\kappa)}} \right) \frac{y_{\kappa}}{\pi_i}$$

<u>Biased</u> if $p_{(i\kappa)}$ can be 0 for some $(i\kappa) \in H_s$, e.g. $\beta_{\kappa} = F$, or generally, if $\exists \kappa \in \Omega$ with $|\beta_{\kappa}| > 1$, where

$$\Pr(|s_0 \cap \beta_{\kappa}| > 1 \mid \kappa \in \Omega_s) = 1$$

then $p_{(i\kappa)} = 0$ for $i = \max(\beta_{\kappa})$ — Patone and Zhang (2020)

Numerical example (Patone, 2020)

Consider BIGS from below, with SRS of s_0 and $|s_0| = 2$:

HH-type PIDA weights given γ

$\overline{\text{PIDA-}\gamma}$	z_1	z_2	z_3	z_4	S_z^2
0	0.33	1.83	3.17	1.67	1.34
1	0.69	2.00	2.83	1.48	0.81
2	0.91	2.16	2.61	1.32	0.60
3	0.98	2.31	2.48	1.23	0.57

Variance of IWE

Variance 5.37 3.25 2.41 2.28 3.06 2.55 6.32		$\hat{ heta}_{z0}$	$\hat{ heta}_{z1}$	$\hat{ heta}_{z2}$	$\hat{ heta}_{z3}$	$\hat{ heta}_p$	$\hat{ heta}_{pD}$	$\hat{ heta}_{pA}$	$\hat{ heta_y}$
^ ~	Variance	5.37		2.41	2.28	3.06		6.32	3.98

 $\hat{\theta}_{pD}$ given ordered $\tilde{F} = \{3, 4, 2, 1\}$ $\hat{\theta}_{pA}$ given $\tilde{F} = \{1, 2, 4, 3\}$

REFERENCES

[1] Birnbaum, Z.W. and Sirken, M.G. (1965). Design of Sample Surveys to Estimate the Prevalence of IRareDiseases: Three Unbiased Estimates. Vital and Health Statistics, Ser. 2, No.11. Washington:Government Printing Office.

- [2] Lavalleè, P. (2007). Indirect Sampling. Springer.
- [3] Patone, M. (2020) Topics of Statistical Analysis with Social Media Data. Unpublished PhD Thesis.
- [4] Patone, M. and Zhang, L.-C. (2020). Incidence weighting estimation under bipartite incidence graph sampling. https://arxiv.org/abs/2004.04257
- [5] Sirken, M.G. (2005). Network Sampling. In Encyclopedia of Biostatistics, John Wiley & Sons, Ltd. DOI: 10.1002/0470011815.b2a16043
- [6] Thompson, S.K. (1990). Adaptive cluster sampling. Journal of the American Statistical Association, 85:1050–1059.