1. Aplicando o teorema de Stokes, calcule as integrais abaixo.

- a) $\int_{\gamma} (y+z) dx + (z+x) dy + (x+y) dz$, onde γ é a circunferência $x^2 + y^2 + z^2 = a^2$, x+y+z=0.
- b) $\int_{\gamma} (y-z) dx + (z-x) dy + (x-y) dz$, onde γ é a elipse $x^2 + y^2 = 1$, x + z = 0.
- c) $\int_{\gamma} y^2 dx + z^2 dy + x^2 dz$, onde γ é o triângulo de vértices (a, 0, 0), (0, a, 0) e (0, 0, a), a > 0.
- d) $\iint_S \operatorname{rot} \vec{F} \cdot \vec{n} \, dS$, onde $\vec{F} = 2y\vec{i} + e^z\vec{j} \arctan x\vec{k}$ e S é a parte do parabolóide $z = 4 x^2 y^2$ acima do plano z = 0 e \vec{n} é a normal superior (apontando para cima).
- 2. Calcule $\iint_S rot \vec{F} \cdot \vec{n} dS$. Quando achar conveniente, use o teorema de Stokes.
 - a) $\vec{F}(x,y,z) = (x,y,z)$ e S é a parte superior da esfera unitária centrada na origem.
 - b) $\vec{F}(x,y,z) = (3z,4x,2y)$ e S é a porção do parabolóide $z = 10 x^2 y^2$ compreendida entre os planos z = 1 e z = 9.
 - c) $\vec{F}(x, y, z) = (x^4, xy, z^4)$ e S é o triângulo de vértices (2, 0, 0), (0, 2, 0) e (0, 0, 2).
 - d) $\vec{F}(x,y,z) = z\vec{i} + x\vec{j} + y\vec{k}$ e S é a parte do paraboloide $z = 1 x^2 y^2$, com $z \ge 0$
 - e) $\vec{F}(x, y, z) = y^2 \vec{i} + xy \vec{j} 2xz \vec{k}$ e S é $x^2 + y^2 + z^2 = a^2$, $z \ge 0$

Respostas

- 1. a) 0 b) -4π c) $-\alpha^3$ d) -8π
- 2. a) 0 b) 32π c) $\frac{4}{3}$ d) π e) 0