Chapter 11

11.1

最好使用Briggs标准来进行保守合并。

1. Freeze

因为没有可以简化的节点,采用Briggs标准进行判断,也没有可以合并的节点。可以 冻结节点u和r1之间的MOVE

2. Simplify u

3. Freeze

此时又没有可以简化的节点了,采用briggs标准进行判断,也没有可以合并的节点,也没有可以合并的节点。可以冻结t和r1之间的MOVE

4. Simplify t

此时degree[p] = 4, degree[s] = 4, degree[c] = 4

5. Spill c

仍然没有可以简化的节点,采用briggs标准进行判断,也没有可以合并的节点,也不存在可以冻结的的节点。因此只能进行spill。

计算spill 分数,程序中没有循环,因此不需要考虑循环内的def和use

	defs	uses	degree	score
р	1	3	4	1
S	1	1	4	0.5
С	1	1	6	0.33

因此,选择c进行spill

此时, degree[p] = 3, degree[s]=3

6. Spill s

此时, degree[p] = 2

6. Simplify p

此时图中只剩下了预着色节点

7. Select

select stack

p	
S	
С	
t	
u	

pop p, color r3

pop s, actual spill

pop c, actual spill

pop t, color r1

pop u, color r1

8. Rewrite

因为存在actual spill,因此对程序进行重写

```
c1 <- r3
    M[Cloc] <- c1
    p <- r1
    if p=0 goto L1
    r1 <- M[p]
    call f
    s1 <- r1
    M[Sloc] <- s1
   r1 <- M[p+4]
    call f
    t <- r1
    s2 <- M[Sloc]
    u < - s2 + t
    goto L2
L1: u <- 1
L2: r1 <- u
    c2 <- M[Cloc]</pre>
   r3 <- c2
    return
```

9. Build

构建重写后程序的冲突图

10. Simplify s2

11. **Coalesce t, r1, u, s1**

由Briggs标准可知,他们可以被合并

12. **Coalesce c1,c2,r3**

由Briggs标准可知,他们可以被合并

经历上述合步骤之后,冲突图如下

13. Simplify p

14. Select

Select Stack

p		
s2		

pop p, color r3

pop s2, color r2 (r3也可以)

最终的着色

s1	r1
t	r1
u	r1
c1	r3
c2	r3
р	r3
s2	r2

15. 用寄存器替换程序中的变量

```
r3 <- r3
   M[Cloc] <- r3
   r3 <- r1
   if r3=0 goto L1
   r1 <- M[r3]
   call f
   r1 <- r1
   M[Sloc] <- r1
   r1 <- M[r3+4]
   call f
   r1 <- r1
   r2 <- M[Sloc]
   r1 <- r2 + r1
   goto L2
L1: r1 <- 1
L2: r1 <- r1
   r3 <- M[Cloc]
   r3 <- r3
   return
```

16. 删除源操作数和目标操作数相同的MOVE

```
M[Cloc] <- r3
    r3 <- r1
    if r3=0 goto L1
    r1 <- M[r3]
    call f
    M[Sloc] <- r1
    r1 <- M[r3+4]
    call f
    r2 <- M[Sloc]
    r1 <- r2 + r1
    goto L2
L1: r1 <- 1
L2: r3 <- M[Cloc]
    return</pre>
```

11.3

11.3a

Select Stack和着色情况 (不唯一)

g	r1
f	r1
е	r2
d	r3
С	r4
b	r2
а	r4

a为潜在溢出

有潜在溢出,无实际溢出

11.3b

Briggs:合并f, g

Select Stack和着色情况(不唯一)

f&g	r1
е	r2
d	r3
С	r2
a	r4
b	r3

无潜在溢出,无实际溢出。

George:无法合并,因为d(或a)是高度数节点