Lecture 9

1 Uncountable probability spaces

Recall from Probability Theory 1 that a (discrete) probability space is a pair (Ω, \mathbb{P}) , where Ω is a finite or countably infinite set called the *sample space*, and $\mathbb{P}: \Omega \to [0,1]$ is a function, called the *probability function*, which satisfies $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$. We then extended \mathbb{P} to 2^{Ω} by defining $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\omega)$ for every $A \subseteq \Omega$. One of the properties of this extended \mathbb{P} , called *finite additivity*, is that $\mathbb{P}(A_1 \cup \ldots \cup A_k) = \sum_{i=1}^k \mathbb{P}(A_i)$ holds for every positive integer k and pairwise disjoint sets $A_1, \ldots, A_k \subseteq \Omega$.

As a simple example consider the uniform distribution on $\{0,1\}$. In this case $\Omega = \{0,1\}$ and $\mathbb{P}: 2^{\Omega} \to [0,1]$ is a function satisfying $\mathbb{P}(\{0\}) = \mathbb{P}(\{1\})$. Since we also want to have

$$\mathbb{P}(\{0\}) + \mathbb{P}(\{1\}) = \mathbb{P}(\{0\} \cup \{1\}) = \mathbb{P}(\{0,1\}) = \mathbb{P}(\Omega) = 1,$$

it follows that $\mathbb{P}(\{0\}) = \mathbb{P}(\{1\}) = 1/2$.

Now, let us try to define an analogous distribution on the uncountably infinite set [0,1]. Let $\Omega = [0,1]$ and let $\mathbb{P}: 2^{\Omega} \to [0,1]$ be a function satisfying $\mathbb{P}(\{x\}) = p$ for every $x \in [0,1]$. It remains to determine the "correct" value of p. Assume first that p > 0. Let p be a positive integer such that p > 1/p. Then, assuming finite additivity, we have

$$\mathbb{P}(\{1, 1/2, 1/3, \dots, 1/n\}) = \sum_{i=1}^{n} \mathbb{P}(\{1/i\}) = np > 1$$

which means that \mathbb{P} is not a probability function. Assume then that p=0. Finite additivity now implies that $\mathbb{P}(A)=0$ for every finite set $A\subseteq [0,1]$. We will in fact require \mathbb{P} to satisfy the stronger property of infinite countable additivity (usually referred to as σ -additivity). That is, for every (possibly infinite) countable set I and family of pairwise disjoint sets $\{A_i\subseteq [0,1]: i\in I\}$, we require $\mathbb{P}(\bigcup_{i\in I}A_i)=\sum_{i\in I}\mathbb{P}(A_i)$. It will then imply that $\mathbb{P}(A)=0$ for every countable set $A\subseteq [0,1]$. We cannot go further and expect uncountable additivity as this will imply

$$0 = \sum_{x \in [0,1]} \mathbb{P}(\{x\}) = \mathbb{P}([0,1]) = 1$$

which is an obvious contradiction.

Now that we have defined \mathbb{P} for every $x \in [0,1]$, we would like, as in the discrete case, to extend the definition of \mathbb{P} to all subsets of $\Omega = [0,1]$. What else should we require? It seems reasonable to expect $\mathbb{P}([0,1/2]) = 1/2$ to hold. We then expect $\mathbb{P}((1/2,1]) = 1 - \mathbb{P}([0,1/2]) = 1/2$ to hold as well. More generally, for every $0 \le a \le b \le 1$ we require

$$\mathbb{P}\left(\left[a,b\right]\right) = \mathbb{P}\left(\left(a,b\right]\right) = \mathbb{P}\left(\left[a,b\right]\right) = \mathbb{P}\left(\left(a,b\right)\right) = b - a.$$

That is, we require the probability of a point x, chosen uniformly at random from [0, 1], to fall in a given line segment to be the length of that segment.

Finally, the probability that the random point x belongs to some set A should not be affected by its location in [0,1]. Namely, for a set $A \subseteq [0,1]$ and a real number r, let

$$A \oplus r = \{a + r : a \in A, a + r \le 1\} \cup \{a + r - 1 : a \in A, a + r > 1\}.$$

Then $\mathbb{P}(A \oplus r) = \mathbb{P}(A)$ for every set $A \subseteq [0,1]$ and every real number $0 \le r \le 1$. We can now try to define a uniform distribution on [0,1], but as the next result shows, we have already asked for too much.

Proposition 1.1. There does not exist a function $\mathbb{P}: 2^{[0,1]} \to [0,1]$ which satisfies all of the following conditions:

- (1) $\mathbb{P}([a,b]) = \mathbb{P}((a,b]) = \mathbb{P}([a,b)) = \mathbb{P}((a,b)) = b a \text{ for every } 0 \le a \le b \le 1;$
- (2) \mathbb{P} is σ -additive;
- (3) $\mathbb{P}(A \oplus r) = \mathbb{P}(A)$ for every set $A \subseteq [0,1]$ and every real number $0 \le r \le 1$.

Proof. Suppose for a contradiction that $\mathbb{P}: 2^{[0,1]} \to [0,1]$ is a function which satisfies properties (1), (2) and (3) of Proposition 1.1. Define a relation \sim on [0,1] as follows: $\forall x,y \in [0,1] \ x \sim y$ if and only if y-x is rational. Observe that \sim is an equivalence relation. Let $H \subseteq [0,1]$ be a set consisting of one element from each equivalence class of \sim (such a set H exists by the axiom of choice). For convenience assume that $0 \notin H$ (if $0 \in H$, then replace it with 1/2).

Claim 1.2. $\{H \oplus r : r \in \mathbb{Q} \cap [0,1)\}$ is a partition of (0,1].

Proof. We need to prove that for every $x \in (0,1]$ there is a unique $r \in \mathbb{Q} \cap [0,1)$ such that $x \in H \oplus r$. We begin by proving that at least one set $H \oplus r$ containing x exists. Since \sim is an equivalence relation, it partitions the elements of [0,1] into equivalence classes. Let A denote the equivalence class of x and let a be the unique element in $A \cap H$. Then $x \sim a$, that is, x - a = r for some $r \in \mathbb{Q} \cap (-1,1)$. If $r \geq 0$, then $x \in H \oplus r$ and if x < 0, then $x \in H \oplus (r+1)$.

Suppose now for a contradiction that there are real numbers $0 \le r_1 < r_2 < 1$ such that $x \in H \oplus r_1$ and $x \in H \oplus r_2$. Then, there are real numbers $a, b \in H$ such that $x \in \{a + r_1, a + r_1 - 1\} \cap \{b + r_2, b + r_2 - 1\}$. It thus follows that $a - b \in \mathbb{Q}$ and so a and b belong to the same equivalence class of \sim . It then follows by the construction of H that a = b. Since, moreover, $r_1 < r_2$, it must hold that $a + r_1 = a + r_2 - 1$. However, we then have $r_2 = r_1 + 1$ which is not possible since $r_1, r_2 \in [0, 1)$.

Now, it follows by Claim 1.2 and by Property (2) that

$$\mathbb{P}\left((0,1]\right) = \sum_{r \in \mathbb{Q} \cap [0,1)} \mathbb{P}\left(H \oplus r\right).$$

Since, moreover, $\mathbb{P}(H \oplus r) = \mathbb{P}(H)$ holds for every $r \in \mathbb{Q} \cap [0,1)$ by Property (3), it follows that

$$1 = \mathbb{P}\left((0,1]\right) = \sum_{r \in \mathbb{Q} \cap [0,1)} \mathbb{P}\left(H\right),$$

where the first equality holds by Property (1). This is a contradiction as a countably infinite sum of the same non-negative quantity can only equal 0 or ∞ .

Remark 1.3. Note that in the proof of Proposition 1.1 we used Property (1) only in order to justify the equality $1 = \mathbb{P}((0,1])$. Indeed, while requiring \mathbb{P} to satisfy properties (1), (2) and (3) is natural, a stronger form of Proposition 1.1 is true (but harder to prove). Namely, there does not exist a function $\mathbb{P}: 2^{[0,1]} \to \mathbb{R}$ which satisfies all of the following conditions:

- (a) $0 < \mathbb{P}([0,1]) < \infty$;
- **(b)** \mathbb{P} is σ -additive;
- (c) $\mathbb{P}(\{x\}) = 0 \text{ for every } x \in [0, 1].$

What can we do if we cannot even define the uniform distribution on [0, 1]? We have to give up at least one of the requirements made in the statement of Proposition 1.1. We will give up the requirement that "every event has a probability", that is, the requirement that \mathbb{P} is defined for every $A \subseteq [0, 1]$.

Definition 1.4. A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where

- (i) Ω is a non-empty set called the sample space;
- (ii) $\mathcal{F} \subseteq 2^{\Omega}$ is a σ -algebra, that is, \mathcal{F} contains \emptyset and is closed under the formation of complements, countable unions and countable intersections;
- (iii) $\mathbb{P}: \mathcal{F} \to [0,1]$ is a probability function which is σ -additive and satisfies $\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(\Omega) = 1$.

Remark 1.5. When Ω is finite or countably infinite, we can take $\mathcal{F} = 2^{\Omega}$. Therefore, we often denote the corresponding probability space by (Ω, \mathbb{P}) .