- **19.1.** Пусть X, Y топологические векторные пространства. Докажите, что
- 1) линейный оператор $T: X \to Y$ непрерывен \iff он непрерывен в нуле;
- **2)** множество $\mathcal{L}(X,Y)$ непрерывных линейных операторов из X в Y векторное подпространство в $\mathrm{Hom}_{\mathbb{K}}(X,Y)$.
- **19.2.** Пусть (X, P) полинормированное пространство. Докажите, что для каждого $x \in X$ все множества вида $U_{p_1,\dots,p_n,\varepsilon}(x) = \{y \in X : p_i(y-x) < \varepsilon \ \forall i=1,\dots,n\}$ (где $p_1,\dots,p_n \in P$ и $\varepsilon > 0$) образуют базу в x.
- **19.3.** Докажите, что векторное пространство с топологией, порожденной семейством полунорм, является топологическим векторным пространством.
- **19.4.** Докажите, что направленность (x_{λ}) в полинормированном пространстве (X, P) сходится к $x \in X$ тогда и только тогда, когда $p(x x_{\lambda}) \to 0$ для всех $p \in P$.
- **19.5.** Докажите, что топология на векторном пространстве X, порожденная семейством полунорм P, хаусдорфова тогда и только тогда, когда для каждого $0 \neq x \in X$ найдется такая полунорма $p \in P$, что p(x) > 0.
- **19.6.** Для полунормы p на векторном пространстве X положим $U_p = \{x \in X : p(x) < 1\}$. Докажите, что **1**) $U_p \cap U_q = U_{\max\{p,q\}};$ **2**) $U_p \subseteq U_q \iff q \leqslant p;$ **3**) $U_p \prec U_q \iff q \prec p.$ (Здесь отношение \prec для полунорм означает «мажорируется», а для множеств «поглощается»; см. лекцию.)
- **19.7.** Докажите, что семейство полунорм P на векторном пространстве X является направленным (относительно порядка \prec) тогда и только тогда, когда для каждого $x \in X$ (или, эквивалентно, для x=0) множества вида $U_{p,\varepsilon}(x)$ (где $p \in P, \ \varepsilon > 0$) образуют базу в x.
- **19.8.** Докажите, что **1)** выпуклая оболочка и **2)** закругленная оболочка открытого подмножества в топологическом векторном пространстве открыты.
- **19.9.** Докажите, что хаусдорфова локально топология на векторном пространстве, порожденная семейством полунорм P, нормируема тогда и только тогда, когда P эквивалентно некоторому своему конечному подсемейству. (Если семейство P направленное, то последнее равносильно тому, что $P \sim \{p_0\}$ для некоторого $p_0 \in P$).
- **19.10.** На каких из следующих топологических векторных пространств существует хотя бы одна непрерывная норма?
- 1) \mathbb{K}^S (где S множество);
- **2)** C(X) (где X тихоновское¹ топологическое пространство);
- 3) пространство голоморфных функций $\mathcal{O}(U)$ на открытом множестве $U \subseteq \mathbb{C}$;
- **4)** $C^{\infty}[a,b]$;
- **5)** $C^{\infty}(U)$, где $U \subseteq \mathbb{R}^n$ открытое множество;
- 6) нормированное пространство, снабженное слабой топологией;
- 7) сопряженное к нормированному пространству, снабженное слабой топологией;
- 8) $\mathscr{B}(X,Y)$ с сильной операторной топологией (где X и Y нормированные пространства);
- 9) $\mathscr{B}(X,Y)$ со слабой операторной топологией (где X и Y нормированные пространства).
- 19.11. Какие пространства из предыдущей задачи нормируемы?

¹Хаусдорфово топологическое пространство X называется muxoнoвcким, если для каждого замкнутого множества $F \subset X$ и каждого $x \in X \setminus F$ найдется такая непрерывная функция $f \colon X \to [0,1]$, что $f|_F = 0$ и f(x) = 1. Тихоновскими являются все метризуемые пространства (докажите!), все хаусдорфовы компакты и, более общим образом, все nopmanbhie пространства (см. любой учебник по общей топологии).

- **19.12.** 1) Докажите, что на конечномерном векторном пространстве любые два семейства полунорм, каждое из которых задает хаусдорфову топологию, эквивалентны.
- **2-b)** Докажите, что на конечномерном векторном пространстве есть только одна топология, превращающая его в хаусдорфово топологическое векторное пространство.
- **19.13.** Пусть S множество.
- 1) Докажите, что для любой функции $f \in \mathbb{K}^S$ оператор умножения $M_f \colon \mathbb{K}^S \to \mathbb{K}^S, \ M_f(g) = fg$, непрерывен.
- **2)** Опишите все непрерывные линейные функционалы на пространстве \mathbb{K}^{S} .
- **19.14. 1)** Пусть $U \subseteq \mathbb{R}^n$ открытое множество. Докажите, что любой линейный дифференциальный оператор $\sum_{|\alpha| \leq N} a_{\alpha} D^{\alpha}$ в пространстве $C^{\infty}(U)$ (где $a_{\alpha} \in C^{\infty}(U)$) непрерывен.
- **2)** Докажите аналогичное утверждение для пространства $\mathcal{O}(U)$, где $U\subseteq\mathbb{C}$ (см. п.3 задачи 19.10).
- **19.15.** Пусть $\mathscr{O}(\mathbb{D}_R)$ пространство голоморфных функций в круге $\mathbb{D}_R = \{z \in \mathbb{C} : |z| < R\}$. Для $f \in \mathscr{O}(\mathbb{D}_R)$ положим $c_n(f) = f^{(n)}(0)/n!$. Докажите, что компактно-открытая топология на $\mathscr{O}(\mathbb{D}_R)$ порождается любым из следующих эквивалентных семейств полунорм:
 - 1) $||f||_r = \sum_{n=0}^{\infty} |c_n(f)| r^n$ (0 < r < R);
 - 2) $||f||_{r,p} = \left(\sum_{n=0}^{\infty} (|c_n(f)|r^n)^p\right)^{1/p}$ $(0 < r < R, p \in [1, +\infty)$ фиксировано);
 - 3) $||f||_{r,\infty} = \sup_{n \ge 0} |c_n(f)| r^n \quad (0 < r < R);$
 - 4) $||f||_r^I = \int_{|z|=r} |f(z)| d\mu(z)$ (0 < r < R);
 - 5) $||f||_{r,p}^I = \left(\int_{|z|=r} |f(z)|^p d\mu(z) \right)^{1/p}$ $(0 < r < R, p \in [1, +\infty)$ фиксировано).

В пп. 4 и 5 μ — мера Лебега на окружности |z|=r.

- **19.16.** Пусть $U \subseteq \mathbb{C}$ открытое множество. Докажите, что компактно-открытая топология на $\mathscr{O}(U)$ совпадает с топологией, унаследованной из $C^{\infty}(U)$.
- **19.17.** Пусть $U \subseteq \mathbb{R}^n$ открытое множество и $C_c^\infty(U)$ пространство гладких функций с компактным носителем в U, снабженное стандартной индуктивной топологией (см. лекцию). Докажите, что последовательность (f_n) сходится к функции f в $C_c^\infty(U)$ тогда и только тогда, когда существует такой компакт $K \subset U$, что $\mathrm{supp}\, f_n \subseteq K$ для $\mathrm{Bcex}\, n$, и $f_n \to f$ равномерно на K со всеми частными производными.
- **19.18.** Пространство быстро убывающих последовательностей $s(\mathbb{Z})$ определяется так:

$$s(\mathbb{Z}) = \left\{ x = (x_n) \in \mathbb{K}^{\mathbb{Z}} : ||x||_k = \sum_{n \in \mathbb{Z}} |x_n| |n|^k < \infty \ \forall k \in \mathbb{Z}_{\geq 0} \right\}.$$

Топология на $s(\mathbb{Z})$ порождается последовательностью полунорм $\{\|\cdot\|_k : k \in \mathbb{Z}_{\geqslant 0}\}$. Постройте топологический изоморфизм $C^{\infty}(\mathbb{T}) \cong s(\mathbb{Z})$.

19.19-b. Докажите, что хаусдорфова локально топология на векторном пространстве, порожденная семейством полунорм P, метризуема тогда и только тогда, когда P эквивалентно некоторому своему не более чем счетному подсемейству.

Указание. Если $(p_n)_{n\in\mathbb{N}}$ — последовательность полунорм, то функция

$$\rho(x,y) = \sum_{n} \frac{1}{2^n} \frac{p_n(x-y)}{1 + p_n(x-y)}$$

удовлетворяет неравенству треугольника.

19.20-Ь. Какие пространства из задач 19.10 и 19.17 метризуемы?