Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently Amended): A ferromagnetic <u>p-type single-crystal zinc oxide material</u>

consisting essentially of: <u>p-type single-crystal zinc oxide material including</u>

1 to 99 mol% manganese and,

a p-type dopant selected from a group consisting of C, N, and oxides thereof, and the balance p-type single-crystal zinc oxide,

wherein said p-type single-crystal zinc oxide material having a hole concentration of 1×10^{18} cm⁻³ or more and a low resistance of $1 \Omega \cdot$ cm or less.

2. (Currently Amended): A ferromagnetic <u>p-type single-crystal zinc oxide material</u> consisting essentially of: <u>p-type single-crystal zinc oxide material including</u>

1 to 99 mol% manganese,

and

a p-type dopant selected from a group consisting of C, N, and oxides thereof, and an n-type dopant selected from a group consisting of B, Al, In, Ga, Zn, and oxides thereof,

the balance p-type single-crystal zinc oxide,

wherein said p-type single-crystal zinc oxide material having a hole concentration of 1×10^{18} cm⁻³ or more and a low resistance of $1 \Omega \cdot \text{cm}$ or less.

3. (Currently Amended): A method for manufacturing a ferromagnetic p-type single-crystal zinc oxide material as defined in claim 1, in which comprising steps of:

holding a semiconductor substrate within a temperature range of 300-800 °C in a vacuum atmosphere of about 10⁻⁸ Torr;

supplying an atomic gas from a solid-state source of Zn or Zn oxide and an activated oxygen are supplied onto a said semiconductor substrate to grow a single-crystal zinc-oxide thin film on the substrate while an atomic p-type dopant selected from a group consisting of C, N, and oxides thereof and an atomic Mn are supplied all together onto the substrate at a partial pressure of about 5×10^{-7} .

4. (Currently Amended): A method as defined in claim 3 for manufacturing a ferromagnetic p-type single crystal zinc oxide material including, a p-type dopant, and an n-type dopant, in which, further comprising a step of doping the n-type dopant is doped so as to provide a higher concentration of the p-type dopant than that of the n-type dopant.