

PolarFire Design Document

Wi-Fi (Pan9320) Basic Demo

rev 1.00.000

1. Overview

The goal of this basic Wi-Fi demo is to provide a starting point to work with the Panasonic Pan9320 Wi-Fi module available on the Avalanche Development Board using a Mi-V softcore system.

Some features of the Avalanche board are included in this design: UART, user LEDs, user pushbuttons (BasicIO interface) and the Pan9320 interface. On the RISC-V side: Interrupts (External IRQs), Pan9320 drivers, GPIO and UART configuration and management and access to different memory devices.

2. Description

Platform	Avalanche Development Board	
Target	PolarFire MPF300TS-1FGC484	
Clock(s)	Main: 80 MHz	
	MMIO Sub-system: 80 MHz	
FPGA usage	Around 29.0k LE (9.7%)	

Steps to run the demo

- Once the Avalanche board is powered up and USB connected, configure your preferred terminal software (ie PuTTY) on your host PC for serial communication (115200 / 8 / 1 / No parity / No Flow Control) with the FPGA.
- 2. Wait for the heartbeat on LED2 red to go then depress Pushbutton #1 to start the demo. The host computer terminal should display the demo welcome message.
- 3. On a remote PC with Wi-Fi capabilities, connect to the broadcasted Access Point from the Avalanche board:
 - SSID: PAN9320_AP, Password: PAN_9320 (WPA2 key protected)
- 4. Start a terminal software (ie Tera Term) on the remote PC with the following setup:
 - TCP/IP mode
 - Host: 192.168.1.1
 - TCP port#: 2018
 - Service: Other (no Telnet or SSH) with no specific protocol
 - Once connected, having a "local echo" is always nice to see your inputs.
- 5. From the remote PC, the following commands are available (Case sensitive):
 - "LED1 green on": Turn on the LED if not.
 - "LED1 green off": Turn off the LED if not.
 - "LED1 red on": Turn on the LED if not.
 - "LED1 red off": Turn off the LED if not.

- "LED2 green on": Turn on the LED if not.
- "LED2 green off": Turn off the LED if not.
- "Heartbeat off": Stop the heartbeat on LED2 red.
- "Heartbeat on": Start the heartbeat on LED2 red.
- "LED status": Request a full LED status.
- Any other text up to 20 characters at a time will be transmitted to the Avalanche and echoed on the host PC terminal.
- 6. From the host PC, any text up to 20 characters at a time will be transmitted and echoed on the remote PC terminal.
- 7. From the Avalanche board, depression of PB#2 will send to the remote PC terminal the current LED board status.

3. Functions

Device	Description			
Basic IO - UART	- Use to communicate/interact with the board.			
	- Echo all communication received by the Wi-Fi module.			
	- Any text typed in the Terminal window will be transfer for			
	transmission to the Wi-Fi module after hitting RETURN.			
System Timer	- Generate a 0.5 Hz heartbeat on the red LED 2.			
Basic IO - Pushbutton #1	- Upon depression, activate the demo.			
Basic IO - Pushbutton #2	- Upon depression, read LED and Heartbeat statuses and send			
	them to the Wi-Fi module for transmission to the remote PC.			
Pan9320	- Provide serial communications for both command and data.			
	- Provide configured GPIO for all other control signals required by			
	the module.			

4. FPGA Blocks Configuration

Device	Configuration
BasicIO_Interface	UART for Terminal communication configured through Mi-V code
	(115200 / 8 / 1 / No parity / No Flow Control)
	User pushbutton #1: USER_PB1_IRQ connected to Mi-V External
	IRQ 30
	User pushbutton #2: USER_PB2_IRQ connected to Mi-V External
	IRQ 29
	Other ports pushed as Top Level ports to be mapped on I/O pads.
Pan9320_Interface	UART for Command communication configured through Mi-V code
	(115200 / 8 / 1 / No parity / No Flow Control)
	UART for NetCat communication configured through Mi-V code
	(115200 / 8 / 1 / No parity / No Flow Control)
	Other ports pushed as Top Level ports to be mapped on I/O pads.

5. Memory Description

Memory Device	Туре	Size
Mi-V Boot	LSRAM	128KB (32768 x 32 bits)

6. Memory Map

Device	First Address	Last Address
MMIO – BasicIO_Interface	0x7000 0000	0x7000 0FFF
MMIO – Pan9320_Interface	0x7000 1000	0x7000 1FFF
Memory – Mi-V Boot (LSRAM)	0x8000 0000	0x800F FFFF