Periodicidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1C04

Nível I

PROBLEMA 1.1

1C01

Considere as ordenações de raio atômico.

- 1. Si > S > Cl
- 2. Ti > Cr > Co
- 3. Hg > Cd > Zn
- **4.** Bi > Sb > P

Assinale a alternativa que relaciona as ordenações corretas.

- A 1, 2 e 3
- **B** 1, 2 e 4
- **c** 1, 3 e 4
- **D** 2, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 1.5

PROBLEMA 1.4

A $K^+ > S^{2-}$

 $Cs^+ > S^{2-}$

 $Ba^{2+} < S^{2-}$

1C05

Assinale a alternativa *correta*.

A primeira energia de ionização do cálcio é maior que a do magnésio.

Assinale a alternativa com a comparação correta de raio iô-

B $K^+ = S^{2-}$

 $K^+ < S^{2-}$

- **B** A primeira energia de ionização do magnésio é menor que a do sódio.
- A primeira energia de ionização do alumínio é maior que a do sódio.
- A segunda energia de ionização do cálcio é maior que a do magnésio.
- A segunda energia de ionização do magnésio é maior que a do sódio.

PROBLEMA 1.2

1C02

Considere as ordenações de raio atômico.

- 1. Cl > Br > I
- $\mathbf{2.} \;\; \mathsf{Ga} > \mathsf{As} > \mathsf{Se}$
- 3. K > Ca > Zn
- **4.** Ba > Sr > Ca

Assinale a alternativa que relaciona as ordenações corretas.

A 2 e 3

B 2 e 4

c 3 e 4

- **D** 2, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 1.6

1C06

Assinale a alternativa com a ordenação *incorreta* de raio atômico.

- lacksquare Cs > Na > Al > S > Cl
- \mathbf{B} $\mathrm{Bi} > \mathrm{Ga} > \mathrm{Al} > \mathrm{Br} > \mathrm{Ar}$
- K > Ca > P > F > Ne
- $D \quad B > C > N > O > F$
- $E \quad I > Se > Xe > Br > Si$

PROBLEMA 1.3

1C03

Assinale a alternativa com a comparação *incorreta* de raio iônico.

- A Na⁺ < Na.
- **B** $Na^{+} < F^{-}$.
- $Mg^{2+} < O^{2-}$.
- $F^- < O^{2-}$.
- $F^- < Mg^{2+}$.

Considere as energias de ionização de um elemento.

Assinale a alternativa com o grupo a que esse elemento pertence.

- **A** 1
- **B** 2
- **c** 13

- **D** 14
- **E** 15

PROBLEMA 1.8

1C08

Considere as energias de ionização de um elemento.

Assinale a alternativa com o grupo a que esse elemento pertence.

- **A** 1
- **B** 2
- **c** 13

- **D** 14
- **E** 15

PROBLEMA 1.9

Assinale a alternativa com a comparação *incorreta* de afinidade eletrônica.

- A Se > Ge
- B C > B
- c As $> \mathsf{P}$
- \mathbf{D} F > Cl
- **E** K > Na

PROBLEMA 1.10

1C10

C Co

Assinale a alternativa com o elemento com maior afinidade eletrônica.

- A He
- ВК
- **D** S
- **E** Br

PROBLEMA 1.11

1C11

Assinale a alternativa com a comparação *incorreta* de eletronegatividade.

- A S > P
- B Se > Te
- c Na > Cs
- \mathbf{D} O > Si
- $\mathbf{E} \quad \mathbf{Be} > \mathbf{B}$

PROBLEMA 1.12

1C12

Assinale a alternativa com a comparação *incorreta* de eletronegatividade.

- A Ca > Ba
- \mathbf{B} As > Ga
- $\mathsf{C} \mathsf{S} > \mathsf{Te}$
- \mathbf{D} Sn > Ge
- \mathbf{E} Br > Cl

PROBLEMA 1.13

1C13

Assinale a alternativa com o composto mais instável para o titânio.

- A K₃TiF₆
- \mathbf{B} $K_2Ti_2O_5$

- C TiCl₃
- D K₂TiO₄
- E K₂TiF₆

PROBLEMA 1.14 1C14

Assinale a alternativa correta com relação ao ósmio.

- A Tem ponto de fusão superior ao do ferro.
- **B** Seu íon bivalente apresenta configuração [Xe]6s²4f¹⁴5d⁴.
- **C** Tem número de oxidação máximo +8.
- D É um elemento de transição interna.
- **E** Forma o óxido OsO₆.

PROBLEMA 1.15

1C15

Considere as características dos elementos.

- 1. Líquido vermelho-escuro.
- 2. Gás incolor que queima com oxigênio.
- 3. Metal reativo que reage com água.
- 4. Metal brilhante encontrado em joias.
- 5. Gás inerte.

Assinale a alternativa com os elementos referentes às características, respectivamente.

- A Ca, Au, H₂, Ar, Br
- **B** Br₂, H₂, Ca, Au, Ar
- **c** Br₂, Ar, Ca, Ar, H₂
- \mathbf{D} Br₂, H₂, Au, Ca, Ar
- **E** Br₂, Ar, Ar, Ca, Au

PROBLEMA 1.16

1C16

Considere as características dos elementos.

- 1. Gás amarelo-pálido que reage com água.
- 2. Metal pouco duro que reage com água.
- 3. Metaloide com alto ponto de ebulição.
- 4. Gás inerte.
- Metais mais reativo que o ferro, mas que não sofre corrosão na atmosfera.

Assinale a alternativa com os elementos referentes às características, respectivamente.

- **A** N₂, B, Al, F₂, Na
- **B** F₂, B, Al, N₂, Na
- \mathbf{c} F_2 , Na, B, N_2 , Al
- **D** N₂, Na, B, F₂, Al
- \mathbf{E} F_2 , Al, B, N_2 , Na

Nível II

PROBLEMA 2.1

1C17

Considere um aparelho de ionização, que pode ser útil para medir baixas pressões. Nesse dispositivo, elétrons partem de um filamento aquecido, atravessam uma rede cuja tensão fixa a energia do elétron, e atingem uma região do tubo sonda ligada ao sistema de alto vácuo cuja pressão se deseja medir. Esses elétrons ionizam espécies neutras presentes no tubo e formam íons positivos atraídos por uma placa coletora negativa. Além disso, produzem uma corrente que pode ser medida e correlacionada com a pressão do sistema de vácuo. Portanto, quanto mais baixa a pressão, menor o número de moléculas neutras e, consequentemente, menor o número de íons positivos formados no tubo. Um aparelho de ionização cuja energia eletrônica é 15 eV foi calibrado medindo-se a pressão de um sistema que continha vapor de sódio.

Assinale a alternativa com a leitura do instrumento se o vapor de sódio fosse substituído por neônio à mesma pressão.

- A leitura seria maior.
- **B** A leitura manter-se-ia inalterada.
- **c** A leitura seria até 50% menor.
- D A leitura seria de até 50% do valor medido com sódio.
- E A leitura seria zero.

Dados

- EI(Na) = 5,14 eV
- EI(Ne) = 21,6 eV

1C18

Os dados a seguir foram obtidos em um experimento de efeito fotoelétrico utilizando os metais rubídio, potássio e sódio.

Assinale a alternativa com a identidade de \mathbf{A} , \mathbf{B} e \mathbf{C} , respectivamente.

- A Na, K, Rb
- B Na, Rb, K
- C K, Na, Rb
- D Rb, Na, K
- E Rb, K, Na

PROBLEMA 2.3

1C19

Assinale a alternativa com a ordenação *correta* de energia de ionização.

B Na
$$<$$
 Al $<$ Mg $<$ Si $<$ S $<$ P $<$ Cl $<$ Ar

$$\mathbf{D}$$
 Na < Mg < Si < Al < P < Cl < S < Ar

PROBLEMA 2.4

1C20

Assinale a alternativa com a ordenação *correta* de afinidade eletrônica.

- $B \quad N < O < C$
- $\mathbf{C} \quad \mathbf{C} < \mathbf{N} < \mathbf{O}$
- \mathbf{D} $\mathbf{C} < \mathbf{O} < \mathbf{N}$

Considere os elementos com configurações eletrônicas a se-

1.
$$1s^22s^22p^63s^23p^6$$

- 2. $1s^22s^22p^63s^2$
- 3. $1s^22s^22p^63s^23p^64s^1$
- 4. $1s^22s^22p^63s^23p^5$

Assinale a alternativa incorreta.

- A 1 tem o maior potencial de ionização.
- **B** A perda de dois elétrons pelo átomo 2 leva à formação do cátion Mg²⁺.
- **c** 3 tem a maior afinidade eletrônica.
- **D** O ganho de um elétron pelo átomo 4 ocorre com a liberação de energia.
- E O átomo 4 é o mais eletronegativo.

PROBLEMA 2.6

1C22

Considere a configuração eletrônica da camada de valência do ânion monovalente dos átomos 1, 2, 3 e 4.

1.
$$ns^2np^6nd^{10}(n+1)s^2(n+1)p^6$$

2.
$$ns^2np^6$$

3.
$$ns^2np^6nd^{10}(n+1)s^2(n+1)p^3$$

4.
$$ns^2np^3$$

Assinale a alternativa correta.

- A 1 deve ter a maior energia de ionização entre eles.
- **B** 2 deve ter a maior energia de ionização entre eles.
- **c** 1 deve ter maior afinidade eletrônica do que 2.
- **D** 4 deve ter maior afinidade eletrônica do que 2.
- **E** 4 deve ter maior afinidade eletrônica do 3.

PROBLEMA 2.7

1C23

Assinale a alternativa com os elementos com maior diferença de raio atômico.

- A Li, Be
- **B** B, C
- **C** Ga, Al
- D Ru, Os
- E Ce, Pr

Assinale a alternativa correta com relação aos raios do molibdênio e do tungstênio.

- A São praticamente iguais.
- **B** O raio do molibdênio é 50% maior.
- O raio do tungstênio é 50% maior.
- Ambos são menores que o cromo.
- O raio do molibdênio é próximo da média entre os raios do cromo e do tungstênio.

PROBLEMA 2.9

1C25

1C24

Assinale a alternativa com o elemento que não apresenta efeito do par inerte.

- A Pb
- Sb

- T1
- Ra

PROBLEMA 2.10

1C26

Assinale a alternativa com o elemento que apresenta efeito do par inerte mais acentuado.

- A Sn
- **C** Ga

- **D** Bi
- Zn

PROBLEMA 2.11

1C27

Assinale a alternativa com o par de elementos que possuem relação diagonal.

- A Li, Mg
- Ca, Al

c F, S

- O, S
- E V, Mo

PROBLEMA 2.12

1C28

Assinale a alternativa com pares de elementos que não possuem relação diagonal.

- A Be, Al
- As, Sn
- Ga, Sn
- B, Si

E C, Al

PROBLEMA 2.13 1C29

Assinale a alternativa com o aspecto provável para o elemento sintético fleróvio (Z = 114).

- A Metal cinza-prateado.
- Líquido volátil avermelhado.
- Gás verde amarelo pálido.
- Cristal incolor.
- Sólido em pó preto.

PROBLEMA 2.14

1C30

Considere as proposições.

- O índio é um mau condutor de eletricidade.
- 2. O raio atômico do índio é maior que o do estanho.
- **3.** A densidade do índio é menor que a do paládio.
- 4. O ponto de fusão do índio é maior que o do gálio.

Assinale a alternativa que relaciona as proposições corretas.

- A 2 e 3
- B 2 e 4
- C 3 e 4
- D 2,3e4
- **E** 1, 2, 3 e 4

PROBLEMA 2.15

1C31

Considere as afirmações a seguir, todas relacionadas a átomos e íons no estado gasoso:

- 1. A energia do íon Be²⁺, no seu estado fundamental, é igual à energia do átomo de He neutro no seu estado fundamental.
- 2. A segunda energia de ionização do átomo de He neutro, é igual à afinidade eletrônica do íon He^{2+} .
- 3. O primeiro estado excitado do átomo de He neutro tem a mesma configuração eletrônica do primeiro estado excitado do íon Be²⁺.
- **4.** A primeira energia de ionização de íon H⁻ é menor do que a primeira energia de ionização do átomo de H neutro.

Assinale a alternativa que relaciona as proposições corretas.

- A 2 e 3
- 2 e 4
- C 3 e 4

- D 2, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 2.16 1C32

Considere as seguintes transições eletrônicas em uma espécie A cuja configuração do primeiro estado excitado é $ns^2np^5(n+1)s^2$.

- 1. $s^2 np^4 (n+1)s^2 \to ns^2 np^5$
- **2.** $ns^2np^6(n+1)s^1(n+1)p^1 \rightarrow ns^2np^6(n+1)s^2$
- 3. $ns^2np^5 \rightarrow ns^2np^6$
- **4.** $ns^2np^6(n+1)s^1(n+1)p^1 \rightarrow ns^2np^6(n+1)s^1$
- 5. $ns^2np^5(n+1)s^1(n+1)p^1 \rightarrow ns^2np^6(n+1)s^1$

Assinale a alternativa *correta*.

- A 1 pode representar a energia equivalente a uma excitação eletrônica do cátion (A⁺).
- **B** 2 pode representar a energia equivalente a uma excitação eletrônica do ânion (A⁻).
- 3 pode representar a energia equivalente à ionização do cátion (A⁺).
- **D** 4 pode representar a energia equivalente à afinidade eletrônica do átomo neutro (A).
- **E** 5 pode representar a energia equivalente a uma excitação eletrônica do átomo neutro (A).

Nível III

PROBLEMA 3.1 1C33

Considere as proposições.

- a. Explique porque a primeira energia de ionização e a afinidade eletrônica do cátion diferem para todos os elementos, exceto o hidrogênio.
- b. **Explique** porque a primeira afinidade eletrônica do enxofre é endotérmica enquanto a segunda é exotérmica.
- c. **Explique** porque a primeira afinidade eletrônica do flúor é menor que a do cloro.
- d. **Explique** porque as afinidades eletrônicas do carbono e do oxigênio são positivas, enquanto, a afinidade eletrônica do nitrogênio é próxima de zero.

PROBLEMA 3.2

1C34

Considere as proposições.

- a. **Explique** porque a energia de ionização do alumínio é menor que a do magnésio.
- Explique porque a energia de ionização do oxigênio é menor que a do nitrogênio.

PROBLEMA 3.3

1C35

Considere as proposições.

- a. Explique porque o raio covalente do germânio é muito próximo do raio covalente do silício.
- Explique porque a energia de ionização do alumínio é muito próximo da energia de ionização do gálio.

PROBLEMA 3.4

1C36

Considere as proposições.

- a. **Explique** porque o raio atômico aumenta no grupo Sc, Y, La, entretanto, o mesmo não acontece no grupo Ti, Zr, Hf.
- b. **Explique** a diferença entre os raios atômicos do praseodímio e o samário é menor que entre o háfnio e o tântalo.
- Explique porque a primeira energia de ionização do chumbo é maior que a do estanho.

Gabarito

Nível I

- 1. E
 2. D
 3. E
 4. D
 5. C

 6. E
 7. C
 8. E
 9. D
 10. E

 11. E
 12. D
 13. D
 14. C
 15. B
- 16. C

Nível II

- 1. E 2. A 3. B 4. A 5. C 6. E 7. A 8. A 9. E 10. D 11. A 12. E 13. A 14. D 15. D 16. D
- Nível III
 - 1. a. Hidrogenoide.
 - b. Aumento da carga nuclear.
 - c. Raio muito pequeno.
 - d. Simetria semi-esférica.
 - 2. a. Simetria esférica.
 - b. Simetria esférica.
 - **3.** a. Contração do bloco d.
 - b. Contração do bloco d.
 - 4. a. Contração dos lantanídeos.
 - b. Contração dos lantanídeos.
 - c. Contração dos lantanídeos.