Так как $\overline{M} \cup \overline{N} = \overline{M} \cup \overline{N}$, то из включения (*) получаем $\overline{M} \cup \overline{N} \subset \overline{M} \cup \overline{N}$. Из двух противоположных включений следует равенство $\overline{M} \cup \overline{N} = \overline{M} \cup \overline{N}$ что и требовалось доказать.

Имеет место следующая

<u>Теорема</u> (Куратовского) Пусть на произвольном множестве X задан оператор, ставящий в соответствие каждому подмножеству $A \subset X$ множество A^c таким образом, что выполняются следующие условия:

- 1. $\mathcal{O} = \mathcal{O}$:
- 2. $A \subset A^c$ для любого множества $A \subset X$;
- 3. $A^{cc}=A^c$:
- 4. $(A \cup B)^c = A^c \cup B^c$ для любых множеств $A \subset X u B \subset X$;

Если λ семейство всех множеств A ($A \subset X$), для которых $A^c = A$, а τ семейство подмножеств X, состоящее из дополнений κ множествам из λ , то τ - топология на X, причем для каждого множества $A \subset X$ множество A^c совпадает C \overline{A} - замыканием A в топологическом пространстве (X, τ).

Биографическая справка

Куратовский Кажимеж (Kuratowski Kazimerz) 2.2. 1986-18.6.1980 - польский математик. С 1927 проф. Политехникума во Львове, с 1934 профессор университета в Варшаве, с 1948 директор математического института Польской АН. Основные труды по теории множеств, топологии и теории функций действительного переменного.

<u>Определение</u> Точка x_0 топологического пространства X называется **предельной точкой** множества A, если любая окрестность этой точки, содержит хотя бы одну точку из A, отличную от x_0 .

Очевидно. что всякая предельная точка является точкой прикосновения. Обратное не верно. Так изолированные точки могут являются точками прикосновения но не являются предельными точками.

Очевидно, что каждая точка множества $\overline{M} \setminus M$ является предельной. Таким образом замыкание \overline{M} состоит из точек трех видов:

- изолированные точки;
- предельные точки, принадлежащие множеству;
- предельные точки, не принадлежащие множеству;

<u>Определение</u> Совокупность всех предельных точек множества M называется **производным множеством** и обозначается M'.

<u>Определение</u> Множество M топологического пространства X называется **совершенным**, если оно совпадает со своим производным множеством.

Очевидно, что множество совершенно тогда и только тогда, когда оно во - первых замкнуто, во- вторых лишено изолированных точек.

Примером совершенного множества является множество на числовой прямой, построенное создателем классической теории множеств, немецким математиком Георгом Кантором.

Рассмотрим замкнутое множество [0;1]. Обозначим его F_0 . Разделим этот отрезок на три равные части и удалим из него средний интервал $\left(\frac{1}{3};\frac{2}{3}\right)$ длиной $\frac{1}{3}$. Оставшееся множество $\left[0;\frac{1}{3}\right] \cup \left[\frac{2}{3};1\right]$ обозначим F_1 . С каждым из оставшихся отрезков поступим как и с предыдущим: разделим на три равные части и удалим средний интервал. Таким образом из F_1 удаляются два интервала $\left(\frac{1}{9};\frac{2}{9}\right)$ и $\left(\frac{7}{9};\frac{8}{9}\right)$, имеющие длину $\frac{1}{3^2}$. Объединение оставшихся четырех отрезков обозначается F_2 .

Продолжая этот процесс мы получаем бесконечную последовательность вложенных друг в друга множеств:

$$F_0 \supset F_1 \supset F_2 \supset \dots \supset F_n \supset F_{n+1} \dots$$

Замкнутое множество $F = \bigcap_{n=0}^{\infty} F_n$, которое является пересечением построенных выше множеств называется канторовым совершенным множеством или канторывым дисконтинуумом.

	0	F ₀	1	
	0	1/3 F ₁	2/3 1	
	0 1/9 2/9	1/3 F ₂	2/3 7/9 8/9 1	
	0 1/9 2/9	1/3 F ₃	2/3 7/9 8/9 1	
0 1/9	2/9 1/3	F_5	2/3 7/9	8/9 1
		1 3		

Приведем (без доказательства) два утверждения, которые описывают некоторые свойства этого множества:

<u>Теорема</u> Канторов дисконтинуум является совершенным множеством.

Теорема Канторов дисконтинуум имеет мощность континуума.

§ 6 Внутренность, внешность, граница

Определение Точка x множества A топологического пространства (X, τ) называется внутренней точкой множества A, если существует окрестность U точки x, целиком содержащаяся в A. Множество A всех внутренних точек множества A называется внутренностью (или ядром) множества A.

 $\underline{\textit{Теорема}}$ если A - произвольное множества топологического пространства, то

- 1. Внутренность A $^{\circ}$ множества A является открытым множеством;
- 2. Множество A ° является наибольшим открытым множеством, содержащимся в A;
- 3. Множество A отрыто тогда и только тогда, когда $A=A^{\circ}$;
- 4. Множество всех точек из A, не являющихся предельными для $X \setminus A$ равно A;
- 5. $\overline{X \setminus A} = X \setminus A \stackrel{\circ}{,}$
- ⊳ Докажем некоторые свойства
- 1. Пусть $x \in A^{\circ}$, тогда x внутренняя точка множества A т.е. существует окрестность $U \subset A$. Но множество U является окрестностью каждой своей точки. Следовательно все точки множества U внутренние для A, поэтому $U \subset A^{0}$. Следовательно множество A^{0} является окрестностью каждой своей очки и поэтому является открытым множеством.
 - 2. Возьмем произвольное отрытое множество М входящее в А.

Пусть произвольная точка $x \in M$, так как M является окрестностью каждой своей точки, то оно является окрестностью и для x. Имеем $x \in M \subset A$. Получаем, что точка x является внутренней точкой множества A, т.е. $x \in A^0$. Тем самым доказано включение $M \subset A^0$. Это означает, что любое отрытое множество, входящее в A, входит и в A^0 , следовательно внутренность A^0 является максимальным отрытым множеством, содержащимся в A.

3. Если A отрыто, то оно совпадает с максимальным отрытым множеством, входящим в A, т.е. $A=A^0$.

Наоборот, если $A = A^0$, то A - открытое множество, т.к. A^0 - отрыто.

<u>Примеры</u>

- 1. В тривиальном пространстве (X,τ) у каждой точки только одна окрестность X. Тогда $X^0 = X$, $\emptyset^0 = \emptyset$.
- 2. В дискретном топологическом пространстве все множества открыты (и замкнуты одновременно). Внутренностью каждого множества будет являться само множество.
- 3. В топологическом пространства R^1 (т.е. на числовой прямой) внутренностью сегмента [a;b] является интервал (a;b).

<u>Определение</u> Точка с называется **граничной точкой множества М,** если она является точкой прикосновения одновременно для двух мно-

жеств: M и $X \setminus M$. Совокупность всех граничных точек множества M называется границей множества M.

Будем обозначать границу множества A b(A). Сформулируем теорему о свойствах границы.

 $\underline{\mathit{Teopema}}\ \mathit{Ecлu}\ \mathit{A}$ - произвольное множество топологического пространства, то

- 1. $b(A) b(A) = \overline{A} \cap \overline{X \setminus A} = \overline{A} \setminus A^{\circ}$;
- 2. $X \setminus b(A) = A^{\circ} \bigcup (X \setminus A)^{\circ}$;
- 3. $\overline{A} = A \cup b(A)$;
- 4. $A^{\circ} = A \setminus b(a)$;
- 5. Множество A замкнуто тогда и только тогда, когда $b(A) \subset A$;
- 6. Множество A открыто тогда и только тогда, когда $A \cap b(A) = \emptyset$.

Данное утверждение примем без доказательства.

<u>Определение</u> Точка x называется внешней точкой множества A, если она является внутренней точкой дополнения множества A. Совокупность всех внешних точек множества A называется внешностью этого множества.

§ 7. База топологии. Аксиомы счетности

Известен факт, что в метрических пространствах открыты те и только те множества, которые можно представить в виде объединения открытых шаров. Эта идея привела к введению в топологических пространствах нового понятия.

<u>Определение</u> Пусть (X, τ) - топологическое пространство. Базой топологии τ называется семейство подмножеств β , удовлетворяющее следующими свойствами:

- 1. $\beta \subset \tau$;
- 2. Для каждой точки $x \in X$ и любой ее окрестности U существует такое множество $V \in \beta$, что $x \in V$ и $V \subset U$.

База топологии определяется неоднозначно. На числовой прямой базу топологии образует семейство всех отрытых интервалов. Но семейство отрытых интервалов с рациональными концами также будет образо-

вывать базу. В метрическом пространстве семейство открытых шаров образует базу метрического пространства. Множество шаров с рациональными радиусами так же образует базу.

Докажем теорему (критерий базы), которая часто принимается за определение базы

<u>Теорема</u> Подмножество β топологии τ топологического пространства (X, τ) тогда и только тогда образует базу этой топологии, когда каждое непустое множество из τ представимо в виде объединения некоторого количества множеств из β .

 \triangleright Пусть β - база топологии и A - произвольное отрытое множество, т.е. $A\!\in\!\tau.$

Пусть
$$x_1 \in A \Rightarrow \exists U_1 \in \beta, \quad x_1 \in U_1 \subset A;$$

 $x_2 \in A \Rightarrow \exists U_2 \in \beta, \quad x_2 \in U_2 \subset A;$

Переберем все точки множества А и найдем объединение всех включений, получаем

$$A \subset \bigcup_{\alpha} U_{\alpha} \subset A \Leftrightarrow A = \bigcup_{\alpha} U_{\alpha} \ .$$

Таким образом получили, что А есть объединение множеств из β.

Пусть теперь $\beta \subset \tau$ и любое открытое множество можно представить в виде объединения множеств из β . Докажем, что β - база топологии τ . Возьмем произвольную точку x и произвольную окрестность U этой точки. Так как $U = \bigcup_{\alpha} \beta_{\alpha}$, где $\beta_{\alpha} \in \beta$. Очевидно, что $x \in \bigcup_{\alpha} \beta_{\alpha}$, следовательно $\exists \beta_0, \ x \in \beta_0$. Обозначим $V = \beta_0$. Мы получили, что для произвольной точки x и любой ее окрестности U существует множество $V \in \beta$ такое, что $x \in V$ и $V \subset U$. Следовательно β - база топологии τ . \lhd

<u>Следствие</u> Если на некотором множестве заданы две топологии, имеющие одну и ту же базу, то эти топологии совпадают.

Имеет место следующая

<u>Определение</u> **Конечным пресечением** множеств некоторой совокупности называется пересечений любой конечной совокупности этих множеств.

<u>Определение</u> Пусть (X, τ) топологическое пространство. Семейство μ подмножеств X называется **предбазой** топологии τ , если совокупность всех конечных пересечений множеств из μ образует базу топологии τ .

Другими словами, μ - предбаза топологии τ, если каждое множество из т представимо в виде объединения конечных пересечений из μ.

<u>Определение</u> Если в топологическом пространстве (X, τ) существует счетная база, то топологическое пространство (X, τ) называют удовлетворяющим второй аксиоме счетности.

<u>Определение</u> Множество A топологического пространства (X, τ) называется всюду плотным в X, если замыкание этого множества совпадает с пространством X, т.е. $\overline{A} = X$.

<u>Определение</u> Топологическое пространство называется **сепарабельным**, если в нем существует счетное, всюду плотное множество.

Примеры

- 1. Числовая прямая удовлетворяет второй аксиоме счетности. Роль счетной базы выполняет система открытых интервалов с рациональными концами. числовая прямая является также сепарабельным пространством, так как множество рациональных чисел счетно и всюду плотно в пространстве R¹.
- 2. В дискретном пространстве (X, τ) минимальной базой является семейство всех одноточечных множеств. Следовательно это пространство будет удовлетворять второй аксиоме счетности если носитель топологии будет счетным множеством.

<u>Теорема</u> Топологическое пространство, удовлетворяющее второй аксиоме счетности, сепарабельно.

ightharpoonup Пусть (X, au) топологическое пространство и $\beta = \{u_1, u_2, ..., u_n, ...\}$ его счетная база.

Выделим из множества u_1 элемент a_1 , из множества u_2 элемент a_2 и т.д. Обозначим $A = \{a_1, a_2, ..., a_n, ...\}$. Очевидно, что A не более чем счетное

множество. Рассмотрим $X \setminus \overline{A}$. Так как \overline{A} замкнуто, то $X \setminus \overline{A}$ открыто. Следовательно как любое открытое множество оно может быть представлено в виде объединения некоторого количества множеств из базы т.е.

$$X \setminus \overline{A} = \bigcup_{i} u_{i} .$$

 $X \setminus \overline{A} = \bigcup_i u_i \;.$ Элемент $\begin{cases} a_1 \in A \\ a_1 \in u_1 \end{cases} \Rightarrow a_1 \in \overline{A} \Rightarrow a_1 \notin X \setminus \overline{A} \;$ следовательно u_1 не входит в объединение $\bigcup u_i$. Такие рассуждения справедливы для всех элементов a_i множества А. Следовательно ни одно из множеств базы не входит в объединение. Это означает, что $X \setminus \overline{A} = \emptyset \Leftrightarrow X = \overline{A}$. Последнее равенство, учитывая счетность множества А, означает сепарабельность топологического пространства Х. ⊲

П. Система окрестностей точки. Первая аксиома счетности

Определение Системой окрестностей точки х топологического пространства (X, τ) называется совокупность всех окрестностей этой точки.

Определение Семейство окрестностей точки х называется базой системы окрестностей точки х или базой в х, если в каждой окрестности точки х содержится некоторая окрестность из совокупности.

Определение Говорят, что топологическое пространство удовле**творяет первой аксиоме счетности,** если система окрестностей произвольной точки обладает счетной базой.

Примером пространства, удовлетворяющего первой аксиоме счетности является любое метрическое пространство. Базой системы окрестностей точки образуют здесь отрытые шары с центром в точке и имеющие рациональный радиус.

Очевидным является утверждение: Топологическое пространство, удовлетворяющее второй аксиоме счетности, удовлетворяет и первой аксиоме счетности.

§ 8. Подпространства и отделенность

В метрическом пространстве каждое подмножество образует так же метрическое пространство. Аналогичная идея имеет место и в топологических пространствах.

Пусть (X,τ) топологическое пространство и A - подмножество множества X. Обозначим через τ_A систему множеств, являющихся всевозможными пересечениями А и всех подмножеств из топологической структуры τ:

Другими словами множества системы τ_A представляют собой множества вида $\tau_j \cap A$, где $\tau = \{\tau_j\}$ - топология. Докажем, что совокупность τ_A удовлетворяет аксиомам топологического пространства.

- 1. Так как $X, \varnothing \in \tau \varnothing = \varnothing \cap A$, $A = X \cap A$, следовательно $\varnothing, A \in \tau_A$;
- 2. Пусть множества U_{α} принадлежат семейству τ_{A} , тогда $\bigcup_{\alpha}U_{\alpha}=\bigcup_{\alpha}(V_{\alpha}\cap A)=\biggl(\bigcup_{\alpha}V_{\alpha}\biggr)\cap A\,,$ где множества $V_{\alpha}\in\tau$. Так как $\bigcup_{\alpha}V_{\alpha}\in\tau\,,$ то $\bigcup_{\alpha}U_{\alpha}\in\tau_{A};$
- 3. Выполнение третьей аксиомы доказывается аналогично п.2.

<u>Определение</u> Семейство τ_A называется топологией на A, индуцированной топологией τ . Топологическое пространство (A, τ_A) называется подпространством топологического пространства (X, τ) .

<u>Определение</u> Множества A и B топологического пространства (X, τ) называются отделенными в этом пространстве, если выполнены следующие два условия:

1.
$$\overline{A} \cap B = \emptyset$$
;

2.
$$A \cap \overline{B} = \emptyset$$
;

т.е. если в каждом из множеств нет ни точек другого множества ни его предельных точек.

Например множества A=(0;1) и B=(1;2) в пространстве R^1 являются отделенными.

Определение. Пусть на множестве X заданы две топологии τ_1 и τ_2 , если $\tau_1 \subset \tau_2$, то говорят что топология τ_1 мажорирует топологию τ_2 , если кроме того $\tau_1 \neq \tau_2$ то говорят, что топология τ_1 сильнее топологии τ_2 .

Замечание. Если топология au_1 мажорирует топологию au_2 , то всякое множество из X открытое в топологии au_2 открыто и в топологии au_1 .

<u>Теорема</u>. Пусть τ_1 и τ_2 две топологии на множестве X, тогда эквивалентны следующие утверждения:

- а) τ_1 мажорирует τ_2 .
- б) тождественное отображение из $X_1 \to X_2$ (где X_i множество

X наделенное топологией τ_i i = 1,2) непрерывно.

- в) Всякая окрестность точки $x \in X$ в топологии τ_2 является окрестностью точки x в топологии τ_1 .
- г) Для всякого $A \subset X$ замыкание A в топологии τ_1 содержится в замыкании A в топологии τ_2 .
 - д) Всякое множество из X , замкнутое в топологии τ_2 , замкнуто в топологии τ_1 .

Доказательство. а) \Rightarrow б) Пусть τ_1 мажорирует τ_2 . Рассмотрим тождественное отображение $1_X: X_1 \to X_2$, если V открыто в X_2 , т.е. $V \in \tau_2$, то $(1_X)^{-1}(V) = V \in \tau_1$, т.е. $(1_X)^{-1}(V)$ открыто в X_1 , что и означает отображение $1_X: X_1 \to X_2$ непрерывно.

- б) \Rightarrow в) Пусть V_x окрестность точки x в X_2 , т.к. $(1_X)(x) = x$ и по предположению 1_X непрерывно, то $V_x = (1_X)^{-1}(V_x)$ окрестность точки x в X_1 .
- в) \Rightarrow г) Пусть $A\subset X$ и пусть \overline{A}_i замыкание A в топологии τ_i (i = 1,2).

Если $x\in\overline{A}_1$ и V_x - окрестность точки x в топологии τ_2 , тогда V_x - окрестность точки x в топологии τ_1 и следовательно $V_x\cap A\neq \emptyset$, т.е. $x\in\overline{A}_2$. Т.о. $\overline{A}_1\subset\overline{A}_2$.

- г) \Rightarrow д) Пусть B замкнуто в X_2 , тогда $\overline{B}_2=B$, то из (2) следует $\overline{B}_1\subset\overline{B}_2=B$, т.о. $\overline{B}_1=B$, что и означает B замкнуто в X_1 .
- д) \Rightarrow а) Пусть V открыто в X_2 , тогда $X \setminus V$ замкнуто в X_2 и следовательно $X \setminus V$ замкнуто в X_1 и поэтому V открыто в X_1 . Т.о. доказано, что если $V \in \tau_2$ то $V \in \tau_1$, т.е. $\tau_2 \subset \tau_1$. Теорема доказана.

Пусть $f: X \to Y$, где X - множество, Y - топологическое пространство, если τ такая топология в X, что отображение f непрерывно, то f будет непрерывным отображением и для всякой топологии мажорирующей топологию τ .

<u>Определение</u>. Пусть $f: X \to Y$, где X - множество, Y - топологическое пространство, слабеющая топология на X, относительно которой отображение f непрерывно, называется прообразом топологии на Y относительно отображения f.

Замечание. Т.о. если τ - прообразом топологии на Y относительно отображения f , то τ состоит из всех множеств вида $f^{-1}(V)$, где V открыто в Y .

Определение. Пусть $f_i: X \to Y_i$ (где $i \in I$) - семейство отображений, где X - множество, $(Y_i)_{i \in I}$ - семейство топологических пространств, топология τ на X такая, что для всякого топологического пространства Z отображение $h: Z \to X$ непрерывно тогда и только тогда, когда непрерывны $f_i \circ h$ для всякого $i \in I$ называется инициальной топологией на X относительно семейства $f_i: X \to Y_i$.

<u>Лемма</u>. Пусть τ инициальная топология на X относительно

семейства $f_i: X \to Y_i$, если τ' такая топология на X, что все отображения $f_i: X \to Y_i$ непрерывны, то τ' мажорирует τ .

Доказательство. Обозначим X - топологическое пространство с топологией τ , а X' - с топологией τ' , и пусть $1_X: X' \to X$ - тождественное отображение , тогда $f_i \circ 1_X = f_i$ - непрерывны, следовательно отображение $1_X: X' \to X$ непрерывно, что и означает τ' мажорирует τ .

Следствие. Инициальная топология на X относительно семейства отображений $f_i: X \to Y_i$ - единственна.

Доказать самостоятельно.

Покажем что инициальная топология на X относительно семейства $\{f_i: X \to Y_i\}_{i \in I}$ существует. Пусть $U_i = f^{-1}(V_i)$, где V_i открыто в Y_i . Рассмотрим в X множество всех подмножеств вида $U_{i_1} \cap U_{i_2} \cap ... \cap U_{i_k}$, это множество является базой некоторой топологии τ на X (проверить самостоятельно). Относительно топологии τ все отображения f_i - непрерывны, и поэтому если $h: Z \to X$ непрерывное отображение, то и все $f_i \circ h$ - непрерывны.

Пусть теперь непрерывны все $f_i \circ h: Z \to Y_i$, покажем что в этом случае непрерывно отображение h, для этого достаточно проверить в случае когда открытыми в X берутся базисные множества топологии τ . Имеем $h^{-1}\left(U_{i_1}\cap U_{i_2}\cap ...\cap U_{i_k}\right)=h^{-1}\left(U_{i_1}\right)\cap ...\cap h^{-1}\left(U_{i_k}\right)$, но $f_i\circ h$ - непрерывны, поэтому $h^{-1}\left(U_{i_s}\right)=h^{-1}\left(f_{i_s}^{-1}\left(V_{i_s}\right)\right)=\left(f_i\circ h\right)^{-1}\left(V_{i_s}\right)$ (s=1,2,...k) открыто в Z , следовательно, $h^{-1}\left(U_{i_1}\right)\cap ...\cap h^{-1}\left(U_{i_k}\right)$ - открыто в Z . Т.о. $h:Z\to X$ - непрерывное отображение. Топология τ на X - инициальная топология относительно семейства отображений $f_i:X\to Y_i$. Кроме того, очевидно, что инициальная топология на X относительно семейства $f_i:X\to Y_i$ является слабейшей топологией на X , относительно которой непрерывны все отображения $f_i:X\to Y_i$.

Важнейшим примером инициальной топологии является произведение топологий.

Пусть $\{X_i\}_{i\in I}$ - семейство топологических пространств и $X=\prod_{i\in I}X_i$,

слабеющая топология на $\prod_{i \in I} X_i$ относительно которой непрерывны все

 $pr_i: X \to X_i$ называется произведением топологий пространств X_i .

Определение. Пусть $\{f_i:Y_i\to X\}_{i\in I}$ семейство отображений, причем X - множество, $\{Y_i\}_{i\in I}$ - семейство топологических пространств, топология τ на X, такая что для всякого топологического пространства Z отображение $h:X\to Z$ непрерывно тогда и только тогда, когда непрерывны все отображения $h\circ f_i$ ($i\in I$) называется финальной топологией на X относительно семейства $\{f_i:Y_i\to X\}_{i\in I}$.

<u>Лемма</u>. Пусть τ - финальная топология на X относительно семейства $f_i:Y_i\to X$, если τ' такая топология на X , что все

отображения $f_i: Y_i \to X$ непрерывны, то τ мажорирует τ' .

Доказательство. аналогично для инициальных топологий Также как и для инициальных топологий следует единственность финальной топологии на X относительно семейства отображений $f_i:Y_i\to X$. Покажем что финальная топология на X относительно семейства отображений $f_i:Y_i\to X$ существует. Рассмотрим множество всех подмножеств V в X таких, что $f_i^{-1}(V)$ открыто в Y_i для всякого $i\in I$. Множество таких подмножеств в X является некоторой топологией τ на X. (проверить самостоятельно). Очевидно, что в этой топологии на X непрерывны все отображения f_i , и поэтому если h - непрерывно, то и все $h\circ f_i$ - непрерывны.

Пусть теперь непрерывны все $h\circ f_i:Y_i\to Z$. Покажем что в этом случае h - непрерывно, пусть U открыто в Z , тогда $h^{-1}(U)=V$ и $f_i^{-1}(V)=f_i^{-1}\big(h^{-1}(U)\big)=\big(h\circ f_i\big)^{-1}\big(U\big)$ открыто в Y_i $\big(i\in I\big)$, что и означает V открыть в τ на X . Таким образом топология τ на X является финальной относительно семейства отображений $f_i:Y_i\to X$.

Кроме того, очевидно, что финальная топология на X относительно семейства отображений $f_i:Y_i\to X$ сильнейшая топология на X, относительно которой непрерывны все отображения $f_i:Y_i\to X$.

Простым , но очень важным примером финальной топологии является фактортопология. Пусть X - топологическое пространство и на X (как множестве) задано отношение эквивалентности, тогда возникает фактор множество X/R и естественная проекция $\pi: X \to X/R$, сильнейшая топология на X/R , при которой непрерывна проекция π , называется фактортопологией топологии пространства X .