Problem Set 1

1. (Preference Relations)

If \succeq is rational, then:

- 1. \succ is **transitive**, but **not** reflexive ($x \succ x$ false $\forall x$).
- 2. \sim is an **equivalence relation** (reflexive, transitive and symmetric).

Transitivity
$$(x\succ y\land y\succ z\stackrel{?}{\Longrightarrow} x\succ z)$$

$$x\succ y \Longleftrightarrow x\succeq y\land y\not\succeq x \\ y\succ z \Longleftrightarrow y\succeq z\land z\not\succeq y$$

 $x\succeq y \land y\succeq z \implies x\succeq z$ (by transitivity).

We know

$$x \succ z \Longleftrightarrow x \succeq z \land z \not\succeq x$$

We need to prove that $z \not\succeq x$. Suppose $z \succeq x$

$$z \succeq x \land x \succeq y \implies z \succeq y \quad \text{by transitivity}$$
 $z \succeq y \land z \not\succeq y \quad \text{contradiction}$
 $z \not\succeq x$
 $x \succeq z \land z \not\succeq x \implies z \succ x$

 \succ is transitive.

Irreflexivity $(x \succ x, \forall x)$

$$x \succ x \Longleftrightarrow x \succeq x \land x \npreceq x \quad \text{not possible}$$

Equivalence relation
$$(x \sim y \land y \sim z \stackrel{?}{\Longrightarrow} x \sim z)$$

$$x \sim y \Longleftrightarrow x \succeq y \land y \succeq x \quad \text{by reflexivity}$$

$$y \sim z \Longleftrightarrow y \succeq z \land z \succeq y \quad \text{by reflexivity}$$

$$x \succeq y \land y \succeq z \implies x \succeq z \quad \text{by transitivity}$$

$$z \succeq y \land y \succeq x \implies z \succeq x \quad \text{by transitivity}$$

$$x \succeq z \land z \succeq x \implies x \sim z$$

2. (Preference Relations)

3.(Indifference sets)

3(a)

$$I(x) \equiv \{y \in X : y \sim x\}$$

Prove:

$$I(x) \neq I(x') \implies I(x) \cap I(x') = \emptyset$$

3(b)

Prove:

 $rationality \implies no intersection$ $intersection \implies irrational$

Example:

$$\succeq = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,c)\}$$

$$I(a) = \{y \in \{a,b,c\} : y \sim a\}$$

$$= \{y \in \{a,b,c\} : y \succeq a \land a \succeq y\}$$

$$= \{a,b,c\}$$

$$I(b) = \{y \in \{a,b,c\} : y \sim b\}$$

$$= \{y \in \{a,b,c\} : y \succeq b \land b \succeq y\}$$

$$= \{a,b\}$$

$$I(c) = \{y \in \{a,b,c\} : y \sim c\}$$

$$= \{y \in \{a,b,c\} : y \succeq c \land c \succeq y\}$$

$$= \{a,c\}$$

$$I(a) \cap I(b) \cap I(c) = \{a\}$$

Completeness is satisfied while transitivity is violated.

4. (WARP)

Let $X=\{x,y,z\}$ and

$$\mathcal{B}_1 = (\{x,y\},\{x,y,z\}) \quad \mathcal{B}_2 = \{\{x,y\},\{x,z\},\{y,z\}\}$$

Two choice structures:

$$(\mathscr{B}_1,C_1(\cdot)) \quad (\mathscr{B}_2,C_2(\cdot))$$
 $C_1(\{x,y\})=\{x,y\}, \quad C_1(\{x,y,z\})=\{y,z\}$ $C_2(\{x,y\})=\{x\}, \quad C_2(\{x,z\})=\{z\}, \quad C_2(\{y,z\})=\{y\}$

4(a)

For
$$(\mathscr{B}_1,C_1(\cdot))$$
 , set $B_1=\{x,y\}$ and $B_2=\{x,y,z\}$

$$C_1(B_1) = \{x,y\} \implies x \in C_1(B_1)$$
 $C_1(B_2) = \{y,z\} \implies y \in C_1(B_2)$
 $x,y \in B_1 \land x \in C_1(B_1), \exists B_2 \text{ with } x,y \in B_2 : y \in C_1(B_2) \text{ but } x \notin C_1(B_2)$
 $x,y \in B_1, B_2 \quad x \in C_1(B_1) \land y \in C_1(B_2) \not\Rightarrow x \in C_1(B_2)$

Therefore, choice structure $(\mathcal{B}_1, C_1(\cdot))$ violates WARP.

For $(\mathscr{B}_2, C_2(\cdot)), \not\exists x, y \in B, B'$, we cannot find a WARP violation.

4(b)

$$C^*(B,\succeq) = \{x \in B : x \succeq y \ \forall \ y \in B\}$$
rational preference \implies WARP not WARP \implies not rational preference

- Since choice structure $(\mathcal{B}_1, C_1(\cdot))$ does not satisfy WARP, it cannot be rationalized by a rational preference relation.
- For the choice structure $(\mathcal{B}_2, C_2(\cdot))$, we cannot know whether it can be rationalized given the information.

6. (Utility and Preferences)

6(a)

The function
$$u:X \to \mathbb{R}^2_+$$
 represents \succeq on X if for any $x,y \in X$, then $x\succeq y \Longleftrightarrow u(x) \geq u(y)$
$$u_1(x,y) = 10(\ln x + \ln y)$$

$$u_2(x,y) = \exp{(xy)}$$

$$u_3(x,y) = \sqrt{2xy} - 10$$

i)

$$egin{aligned} v_1(x,y) &= \exp\left(rac{u_1(x,y)}{10}
ight) \ &= \exp\left(rac{10(\ln x + \ln y)}{10}
ight) \ &= \exp\left(\ln x + \ln y
ight) \ &= xy \ &= u(x,y) \end{aligned}$$

Note: domain in this case is a bit different from that given in this problem $(x, y \neq 0)$

$$egin{aligned} v_2(x,y) &= \ln u_2(x,y) \ &= \ln e^{xy} \ &= xy \ &= u(x,y) \end{aligned}$$

$$egin{aligned} v_3(x,y) &= rac{(u_3(x,y)+10)^2}{2} \ &= xy \ &= u(x,y) \end{aligned}$$

6(c)

- Monotone but not strictly monotone when the bundle is on the slope.
- Convex but not strictly convex when the bundle is on the slope.