

PROTOTYPE OF THE SYSTEM SIMULATING THE FORCE ACTING ON THE OBJECT, REFERRING TO THE FORCE FROM THE IMU SENSOR VALUE

สมาชิก

นายไกรวิชญ์ วิชาโคตร, 65340500004 นายชญานิน นาเพีย, 65340500009 นายวริทธิ์ธร คงหนู, 65340500050

บทคัดย่อ

โครงงานี้นำเสนอต้นแบบการนำ IMU Sensor ไปใช้ในการตรวจวัดแรงที่กระทำต่อวัตถุในโลก จริงและส่งแรงที่เกิดขึ้นไปกระทำต่อวัตถุในระบบจำลองบน Gazebo โดยในการทำงานของ ระบบจะใช้การทำงานร่วมกันของเซนเซอร์วัดความเร่ง (Accelerometer) และไจโรสโคป (Gyroscope) ทำให้สามารถวัดค่าความเร่งในสามแกน (x,y,z) และ ความเร็วเชิงมุมในการ หมุนรอบสามแกน (roll,pitch,yaw) ได้ตามลำดับเพื่อใช้ในการคำนวณหาแรงที่เกิดขึ้นผ่าน แนวคิดเบื้องต้นโดยใช้ กฎการเคลื่อนที่ของนิวตัน (Newton's Law) และทำการเชื่อมต่อการ ทำงานของระบบจำลองผ่าน ROS และใช้ Micro ROS ในการเชื่อมต่อระหว่าง Microcontroller กับระบบจำลอง

คำสำคัญ: ROS2 Humble, Micro ROS ,Gazebo ,IMU Sensor

1. บทน้ำ

จากความสามารถในการวัดค่าของ IMU Sensor ที่ประกอบด้วยเซนเซอร์วัดความเร่ง (Accelerometer) และไจโรสโคป (Gyroscope) ทำ ให้สามารถวัดค่าความเร่งในสามแกน (x,y,z) และ ความเร็วเชิงมุมในการหมุนรอบสามแกน (roll,pitch,yaw) ได้โดยในโครงการนี้นั้นจะทำการ นำเอาค่าที่ได้มาทำการคำนวณผ่านแนวคิดเบื้องต้นโดยใช้ กฎการเคลื่อนที่ของนิวตัน (Newton's Law) เพื่อที่จะได้มาซึ่งแรงที่กระทำต่อวัตถุใน โลกจริงและทำการนำไปใช้งานต่อในระบบจำลองการเคลื่อนที่ของวัตถุเพื่อเป็นการสร้างต้นแบบการนำ IMU Sensor ไปใช้ในการตรวจจับแรง เพื่อใช้งานในระบบจำลองต่อไป

1.1. จุดประสงค์โครงการ

1.1.1. เพื่อสร้างระบบจำลองการเคลื่อนที่ของวัตถุเมื่อมีแรงมากระทำบน Gazebo โดยใช้การนำแรงที่เกิดขึ้นจริงที่ได้ผ่านการนำค่าจาก IMU Sensor มาแปลงเป็นแรงที่จะกระทำกับวัตถุบน Gazebo

1.2. ขอบเขต

- 1.2.1. วัตถุจริง
 - 1.2.1.1. วัตถุจริงเป็นทรงกระบอก ขนาดเส้นผ่านศูนย์กลาง 32 mm. สูง 60 mm. มี IMU Sensor ติดอยู่ตรงจุดศูนย์กลางของวัตถุ ทำจากพลาสติก PFTG
- 1.2.2. ระบบจำลอง
 - 1.2.2.1. ระบบถูกสร้างขึ้นบน Gazebo โดยมีโมเดลวัตถุเป็นทรงกระบอกขนาดเท่ากับวัตถุจริง
 - 1.2.2.2. แรงที่กระทำต่อวัตถุบนระบบจำลองจะกระทำที่จุดศูนย์กลาง (origin frame) ของวัตถุเท่านั้น
 - 1.2.2.3. แรงที่กระทำจะมีแรงในแนวแกน x และ y เท่านั้น

1.2.3. ระบบการทดสอบ

- 1.2.3.1. ทำการทดโดยการนำ วัตถุจริงติดบบระบบเคลื่อนที่ core XY ที่สามารถเคลื่อนที่ในแนวแกน x ได้ 0.18 m และแนวแกน y ได้ 0.18 m
- 1.2.3.2. ระบบจะเคลื่อนที่ด้วยความเร่งไม่เกิน 0.5 m/s²

2. ทบทวนวรรณกรรม และ ทฤษฎีที่เกี่ยวข้อง (Literature Review)

2.1. EXTENDED APPLICATION OF INERTIAL MEASUREMENT UNITS IN BIOMECHANICS: FROM ACTIVITY RECOGNITION TO FORCE ESTIMATION[1]

จากบทความนี้เป็นการอธิบายในเชิงการประเมินการเคลื่อนไหวและแรงที่เกิดขึ้นในร่างกายของมนุษย์โดยการใช้ IMU Sensor ในการเกิบข้อมูลร่วมกับการใช้ Machine Learning ในการวิเคราะห์ค่าที่เกิดขึ้นกับข้อต่อ และกล้ามเนื้อภายในร่างกายของมนุษย์ โดยมี โครงสร้างระบบการทำงานในเบื้องต้นดังนี้

รูปที่ 1 ภาพรวมโครงสร้างการทำงานของระบบ

ซึ่งในการทลองนั้นจะทำการติดตั้ง IMU Sensor ในตำแหน่งเดิมบนร่างการเพื่อให้ค่าที่ได้มีความเสถียรและแม่นยำที่สุด

รูปที่ 2 ภาพรวมการทำ Force Estimation

ในส่วนของการทำ Force Estimation นั้น มีการใช้งานการทำ Inverse Dynamics เพื่อหาความสัมพันธ์ของของแรงที่เกิดขึ้น ในแต่ละข้อต่อและกล้ามเนื้อของมนุษย์เมื่อมองโครงสร้างของมนุษย์เป็นการเชื่อมต่อกันของ Joints และ Links จำนวนมากชึ่งวิธีการนี้นั้น ต้องการข้อมูลจำนวนมากในหลายประเด็นเพื่อหาค่าที่ถูกต้อง เที่ยวกับการใช้ Machine Learning Model นั้นให้ประสิทธิภาพที่ดีกว่าใน การทำนายแรงที่เกิดขึ้นในข้อต่อและกล้ามเนื้อโดยใช้ข้อมูลที่มาจาก IMU Sensor ในการทำนาย

3. เนื้อหาในรายวิชาที่เกี่ยวข้อง

- 3.1. Basic ROS Function (Ex. topic, service, launch file)
- 3.2. Micro ROS
- 3.3. Gazebo

4. System Diagram / System Overview (Function and Argument

รูปที่ 3 System Diagram การทำงานของแต่ละ Node

ในระบบการทำงานได้แบ่งการทำงานออกเป็น 7 node ด้วยกันประกอบด้วย

- 4.1. IMU_Node เป็น Node ที่ทำงานบน Micro ROS เป็น STM32 G474RE มีหน้าที่รับค่าของ IMU มาและ Pub ค่าขึ้นไปโดยใช้ Topic : /IMU data ไปที่ node IMU calibrate node และ lowpass accel collector node
- 4.2. IMU calabrate node เป็น Node ที่รับค่าจาก IMU node (Micro ROS) มาใช้ Calibrate ค่า IMU ให้มีความแม่นยำมากขึ้น
- 4.3. lowpass_accel_collector_node เป็น Node ที่รับค่าจาก IMU_node (Micro Ros) หลังจากที่ Celibate ค่าไปแล้วโดยจะค่าค่า ความเร่งโดยจะ Pub Topic : /acceleration ไปที่ Node Force control node
- 4.4. Force_control_node เป็น Node ที่จะรับค่าความเร่งจาก Node : lowpass_accel_collector_node มาคำนวณโดยใช้ Newton's equations เพื่อควบคุม Object ผ่าน Service :/apply link wrench ของ Gazebo
- 4.5. dummy imu acceleration เป็น Node ที่เอาไว้ใช้ทดสอบการทำงานของ Force control node ที่จะควบคุม Object ของ Gazebo
- 4.6. Gazebo_node จะเป็น Node ของโปรแกรม Gazebo ที่เอาไว้แสดงผลของระบบ โดยจะมี Topic : /Odom สำหรับการแสดงตำแหน่ง ของ Object บน Ground truth
- 4.7. distance_gazebo_node เป็น Node ที่รับค่าจาก Gazebo_node เพื่อคำนวณระยะห่างและระยะกระจัดจากจุดกำเนิด

ผลการศึกษาที่คาดหวัง

5.1. ระบบจำลองการเคลื่อนที่ของวัตถุเมื่อมีแรงมากระทำบน Gazebo โดยใช้การนำแรงที่เกิดขึ้นจริงที่ได้ผ่านการนำค่าจาก IMU Sensor มา พิจารณา

6. รายละเอียดโครงการ

ลำดับ	การดำเนินงาน	สัปดาห์ที่					
		1	2	3	4	5	6
1	ศึกษาข้อมูลและหาแนวคิดการทำงานของระบบ						
2	จัดทำ Proposal						
3	พัฒนาระบบจำลองการเคลื่อนที่ของวัตถุเมื่อมีแรงมากระทำบน Gazebo						
4	พัฒนาระบบการคำนวณแรงผ่านการใช้ IMU Sensor						
5	รวมระบบการทำงาน						
6	ทดสอบและบันทึกผลการทำงานของระบบ						
7	จัดทำเอกสารสรุปการดำเนินงานและจัดทำสื่อนำเสนอ						
8	นำเสนอและจัดส่งงาน						

7. เอกสารอ้างอิง

[1] Wenqi Liang, Fanjie Wang, Ao Fan, Wenrui Zhao, Wei Yao and Pengfei Yang, "Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation" Sensors, 2023