Análise descritiva

Francisco Rubens

Carregando a base

```
data <- read.csv2("usairpollution.csv")</pre>
```

Análise

Os dados são de poluição do ar de 41 cidades dos Estados Unidos. Relativos a base, as variáveis são:

Variável	Descrição		
X	Cidade dos Estados Unidos		
SO2	Teor de SO2 (dióxido de enxofre) do ar em microgramas por metro cúbico.		
$_{\text{temp}}$	Temperatura média anual em Fahrenheit.		
manu	Número de empresas manufatureiras que empregam 20 ou mais trabalhadores		
popul	Tamanho da população (censo de 1970) em milhares.		
wind	Velocidade média anual do vento em milhas por hora.		
precip	Precipitação média anual em polegadas.		
predays	Número médio de dias com precipitação por ano.		

```
summary(data[,-1])
```

S02	temp	manu	popul
Min. : 8.00	Min. :43.50	Min. : 35.0	Min. : 71.0
1st Qu.: 13.00	1st Qu.:50.60	1st Qu.: 181.0	1st Qu.: 299.0
Median : 26.00	Median :54.60	Median : 347.0	Median : 515.0
Mean : 30.05	Mean :55.76	Mean : 463.1	Mean : 608.6
3rd Qu.: 35.00	3rd Qu.:59.30	3rd Qu.: 462.0	3rd Qu.: 717.0

```
Max.
       :110.00
                  Max.
                          :75.50
                                   Max.
                                           :3344.0
                                                      Max.
                                                              :3369.0
     wind
                      precip
                                       predays
Min.
       : 6.000
                  Min.
                          : 7.05
                                   Min.
                                           : 36.0
1st Qu.: 8.700
                  1st Qu.:30.96
                                    1st Qu.:103.0
Median : 9.300
                  Median :38.74
                                    Median :115.0
Mean
       : 9.444
                          :36.77
                                           :113.9
                  Mean
                                   Mean
3rd Qu.:10.600
                  3rd Qu.:43.11
                                    3rd Qu.:128.0
Max.
       :12.700
                  Max.
                          :59.80
                                   Max.
                                           :166.0
```

Pelo summary é possível ver os mínimos, máximos, médias e os quartis. É possível porceber as variáveis que são bem assimétricas (SO2, manu, popul). Nota-se também que algumas variáveis devem possuir outliers (SO2, manu, popul).

```
for(i in 2:8){
  boxplot(data[,i], main=paste("Boxplot de",names(data)[i]), col=rainbow(7)[i-1])
}
```

Boxplot de SO2

Boxplot de temp

Boxplot de manu

Boxplot de popul

Boxplot de wind

Boxplot de precip

Boxplot de predays

Pelos boxplots é possível perceber as assimetrias e os outliers.

Relação entre as variáveis

A concentração média anual de dióxido de enxofre, em microgramas por metro cúbico, é uma medida da poluição do ar em cidades. A questão de interesse aqui é quais ou como os aspectos do clima e da ecologia humana medidos pelas outras seis variáveis influenciam a poluição?

Por esse gráfico é possível perceber as relação entre as variáveis, e nota-se uma correlação linear forte entre manu e popul. Já SO2 não parece ter nenhuma correlação forte com outras variáveis, mas é possível perceber alguma correlação com manu e popul, principalmente com manu, em que os valores estão menos dispersos.

Para verificar a influência das variáveis na poluição foram ajustados alguns modelos, o modelo que mais explicou a poluição foi:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$$

Sendo, X_{i1} a variável manu e X_{i2} a variável popul, além disso, foram removidos os outliers (valores acima de 70) de S02.

```
df <- data[data$S02 <= 70,]
fit <- lm(df[,2]~., data = df[,c(-1,-2, -3, -6, -7, -8)])
summary(fit)</pre>
```

Call:

 $lm(formula = df[, 2] \sim ., data = df[, c(-1, -2, -3, -6, -7, -8)])$

Residuals:

Min 1Q Median 3Q Max -22.107 -10.828 -2.621 8.853 36.551

Coefficients:

Residual standard error: 13.3 on 36 degrees of freedom Multiple R-squared: 0.4227, Adjusted R-squared: 0.3907 F-statistic: 13.18 on 2 and 36 DF, p-value: 5.069e-05

Sendo assim, o modelo ajustado foi:

$$Y_i = 22,36 + 0,07X_{i1} - 0,04X_{i2} + \epsilon_i$$

Modelo que explica 39% da variação dos dados, com todos os coeficiente significativos a 5% de significância.

Verificando as suposições

```
plot(fit$residuals)
abline(h=0, col="red")
```


No gráfico de dispersão não se percebe nenhuma tendência, logo os resíduos parecem estar aleatoriamente distribuidos em torno do zero.

```
par(mfrow=c(1,2))
hist(fit$residuals, main="Histograma dos resíduos")
qqnorm(fit$residuals)
qqline(fit$residuals, col="red")
```

Histograma dos resíduos

Normal Q-Q Plot

Theoretical Quantiles

Verificando a suposição de normalidade, vemos uma pequena assimetria no histograma dos resíduos, porém um gráfico os valores concentrados em torno do zero com as caudas mais leves. Já no gráfico Quantil-Quantil da normal, nota-se que apenas as caudas não estão em conformidade com a linha da normal teórica, o que não é um problema.

```
shapiro.test(fit$residuals)
```

Shapiro-Wilk normality test

```
data: fit$residuals
W = 0.95846, p-value = 0.1584
```

```
manu <- df[,4]
popul <- df[,5]
bptest(formula(fit))</pre>
```

studentized Breusch-Pagan test

```
data: formula(fit)
BP = 0.009341, df = 2, p-value = 0.9953
```

Para complementar a análise gráfica foi feito o teste de Shapiro-Wilk, que não rejeita a hipótese de normalidade (p-valor de 0,1584) e o teste de Breusch-Pagan que não rejeita a hipótese de homogeneidade da variância (p-valor de 0,9953).

Conclusão do modelo

Dado que o modelo parece não violar as suposições do modelo, conclui-se que o número de empresas manufatureiras que empregam 20 ou mais trabalhadores influenciam no aumento do teor de SO2 (dióxido de enxofre) do ar em microgramas por metro cúbico, enquanto o tamanho da população (censo de 1970) em milhares influencia na diminuição.