You have 20 minutes to complete this quiz. Eyes on your own paper and good luck!

- 1. Definitions/Concepts.
 - (a) (3 pts) The function f is **continuous at the point** a means it satisfies the Continuity Checklist:

(b) (2 pts) "The limit of f(x) as x approaches a equals L" means that for any positive number ϵ , there is another positive number δ such that

_____ whenever ____

2. Questions/Problems. Suppose $\lim_{x\to 3} f(x) = 4$, where f is the function in Figure 1.

Figure 1: f(x) (Briggs, W. and Cochran, L. Calculus: Early Transcendentals, p. 116)

What must δ equal in order to satisfy $|f(x)-4|<\epsilon$ whenever $0<|x-3|<\delta$, for

- (a) (1 pt) $\epsilon = 2$?
- (b) (1 pt) $\epsilon = \frac{1}{2}$?

- (c) (1 pt) Write a formula for δ in terms of ϵ that works, once ϵ gets small enough.
- (d) (ChAlLeNgE pRoBlEm) Justify your answer to (c).
- 3. Computations/Algebra. (2 pts) Let

$$g(x) = \begin{cases} \frac{x^2 + 3x + 2}{x + 1} & x \neq -1 \\ k & x = -1 \end{cases}.$$

Using the Continuity Checklist, find the value of k that makes g continuous at the point -1.