

Computer Network | BCS015

Assignment 06

Faculty:	Faculty of Data Science
Major:	Computer Science
Name:	Yuchen Shi Jason
Student ID:	D23090120503

Friday $4^{\rm th}$ October, 2024

Contents

1	习题		3
	1.1	地址前缀匹配	3
	1.2	掩码与网络前缀	3
	1.3	路由表更新	4
	1.4	IPv4 地址转换	5
	1.5	IPv4 计渡至 IPv6	6

1 习题

1.1 地址前缀匹配

问:以下地址前缀中的哪一个地址与 2.52.90.140 匹配?请说明理由。

- I) 0/4;
- II) 32/4;
- III) 4/6;
- IV) 80/4°

答: 2.52.90.140 的二进制表示为: 00000010.00110100.01011010.10001100

- 1. 0/4 的二进制表示为: 00000000.00000000.00000000.00000000, 前缀为 0000
- 2. 32/4 的二进制表示为: 00100000.00000000.00000000.00000000, 前缀为 0010
- 3. 4/6 的二进制表示为: 00000100.00000000.00000000.00000000, 前缀为 000001
- 4. 80/4 的二进制表示为: 01010000.00000000.00000000.00000000, 前缀为 0101 因此,只有 0/4 的前缀与 2.52.90.140 的前缀的前四位相匹配

1.2 掩码与网络前缀

问:与下列掩码相对应的网络前缀各有多少位?

- I) 192.0.0.0;
- II) 240.0.0.0;
- III) 255.224.0.0;
- IV) 255.255.255.252.

答: 子网掩码中1的个数即为网络前缀的位数。

- 1. 192.0.0.0 的二进制表示为: 11000000.00000000.00000000.00000000, 所以其网络前 缀为 2 位
- 2. 240.0.0 的二进制表示为: 11110000.00000000.00000000.00000000, 所以其网络前缀为 4 位
- 3. 255.224.0.0 的二进制表示为: 11111111.11100000.00000000.000000000, 所以其网络 前缀为 11 位

1.3 路由表更新

问: 假定网络中的路由器 B 的路由表如表1所示:

表 1: 路由器 B 的路由表

目的网络	距离	下一跳路由器			
N_1	7	A			
N_2	2	C			
N_6	8	F			
N_8	4	E			
N_9	4	F			

现在 B 收到从 C 发来的路由信息,如表2所示:

表 2: 路由器 C 至路由器 B 的更新信息

目的网络	距离
N_2	4
N_3	8
N_6	4
N_8	3
N_9	5

试求出路由器 B 更新后的路由表 (详细说明每一个步骤)。

答: 因为 C 距离目的网络 N_2 的距离为 4,若 C 通过 B 到达 N_2 ,则现需要有 B 至 C (此距离为 1),因此 B 至 N_2 的距离为 5;以此类推,所有至目的网络的距离都应增加 1。更新后的信息如表3所示。

目的网络	距离	路由器
N_2	5	С
N_3	9	С
N_6	5	С
N_8	4	С
N_9	6	C

表 3: 路由器 C 至路由器 B 的更新信息-new

目的网络 距离 下一跳路由器		下一跳路由器	说明
N_1	7	A	未接收到新信息,不改变
N_2	5	C	${ m C} \cong { m N_2}$ 的跳数增加,更新路由表
N_3	9	C	由 C 发来的新信息,更新路由表
N_6	5	C	因 N_6 至 F 需要 8 跳,但 N_6 至 C 仅需 5 跳,根据 RIP 协议,应选择距离近的路由器,所以更新为 C
N_8	4	E	下一跳至 E 或 C 的距离均为 4, 因此不更新
N_9	4	F	$N_9 \cong \mathbb{C}$ 的距离为 6 ,大于原来至 \mathbb{F} 的距离,因此不更新

表 4: 更新后的路由器 B 的路由表

1.4 IPv4 地址转换

问: 试把下列 IPv4 地址从二进制记法转换为点分十进制记法:

- I) 10000001 00001011 00001011 11101111
- II) 11000001 10000011 00011011 11111111
- $III) \ 11100111 \ 11011011 \ 10001011 \ 01101111$
- IV) 11111001 10011011 11111011 00001111

答:

二进制记法	10000001	00001011	00001011	11101111
转换	$1*2^7 + 1*2^0$	$1*2^3 + 1*2^1 + 1*2^0$	$1*2^3 + 1*2^1 + 1*2^0$	$1 * 2^7 + 1 * 2^6 + 1 * 2^5 + 1 * 2^3 + 1 * 2^2 + 1 * 2^1 + 1 * 2^0$
十进制记法	129	11	11	239

表 5: 129.11.11.239

二进制记法	11000001	10000011	00011011	11111111
转换	$1*2^7 + 1*2^6 + 1*2^0$	$1*2^7 + 1*2^1 + 1*2^0$	$1*2^4 + 1*2^3 + 1*2^1 + 1*2^0$	$1 * 2^7 + 1 * 2^6 + 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 1 * 2^2 + 1 * 2^1 + 1 * 2^0$
十进制记法	193	131	27	255

表 6: 193.131.27.255

二进制记法	11100111	11011011	10001011	01101111
转换	$1*2^7 + 1*2^6 + 1*2^5 + 1*2^2 + 1*2^1 + 1*2^0$	$1*2^7 + 1*2^6 + 1*2^4 + 1*2^3 + 1*2^1 + 1*2^0$	$1*2^7+1*2^3+1*2^1+1*2^0 \\$	$1 * 2^6 + 1 * 2^5 + 1 * 2^3 + 1 * 2^2 + 1 * 2^1 + 1 * 2^0$
十进制记法	231	219	139	111

表 7: 231.219.139.111

二进制记法	11111001	10011011	11111011	00001111
转换	$1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^0$	$1*2^7 + 1*2^4 + 1*2^3 + 1*2^1 + 1*2^0$	$1*2^7+1*2^6+1*2^5+1*2^4+1*2^3+1*2^1+1*2^0$	$1*2^3 + 1*2^2 + 1*2^1 + 1*2^0$
十进制记法	249	155	251	15

1.5 IPv4 过渡至 IPv6

问: 从 IPv4 过渡到 IPv6 的方法有哪些? 答:

- 1. 双协议栈:该方法指主机或路由器装有 IPV4 和 IPV6 两种协议栈,可以同时支持 IPV4 和 IPV6 的通信。使用双栈协议的主机或路由器具有 IPV6 和 IPV4 两种地址,在使用时通过 DNS 解析域名,若 DNS 返回的是 IPV6 地址,则使用 IPV6 协议,若返回的是 IPV4 地址,则使用 IPV4 协议。
- 2. 隧道技术: 隧道是一种使用网络不支持的协议在该网络中传输数据的方法。隧道的工作原理是对数据包进行封装: 将数据包包装在其他数据包内。该方法将 IPV6 数据包封装在 IPV4 数据包中,这样 IPV6 的数据报就成为了 IPV4 的数据部分,通过 IPV4 的网络隧道传输,IPV4 数据离开隧道时,再将 IPV6 数据包解封,并交付给主机或路由器的 IPV6 协议栈,这样就实现了 IPV4 网络中的 IPV6 通信。