Анализ временных рядов.

- 1 (1 балл) Пусть временной ряд $\{X_n\}_{n\in\mathbb{Z}}$ с нулевым матожиданием подчиняется модели авторегрессии $AR(2): X_n = \alpha X_{n-1} + \beta X_{n-2} + \varepsilon_n$, где белый шум ε_n не зависит от X_{n-i} , $i\geq 1$. Не используя утверждение с 19-го слайда лекции, доказать, что необходимыми условиями того, чтобы ряд X_n являлся стационарным в широком смысле, являются $|\alpha+\beta|\leq 1, \ |\alpha-\beta|\leq 1$.
- **2** (2 балла) Выдан временной ряд $\{X_i\}_{i=1}^{n+k}$. С помощью модели ARIMA сделать прогноз значений ряда $(\widehat{X}_{n+1},\dots,\widehat{X}_{n+2k})$ по первым n наблюдениям. Визуализировать прогноз на графике в сравнении с истинными значениями ряда.
- 3 (3 балла) Выдан временной ряд $\{X_i\}_{i=1}^{n+k}$. Предсказать значения $(\widehat{X}_{n+1},\dots,\widehat{X}_{n+k})$ по первым n наблюдениям с помощью метода экспоненциального сглаживания и в рамках модели ARIMA, сравнить качество полученных прогнозов с помощью U-коэффициента Тейла (если он равен 1, то прогноз так же плох, как и наивный: $\widehat{X}_{n+i} = X_n$)

$$U = \frac{\sqrt{\sum_{i=1}^{k} (\widehat{X}_{n+i} - X_{n+i})^2}}{\sqrt{\sum_{i=1}^{k} (X_{n+i} - X_n)^2}}.$$

- 4 (3 балла) Выдан временной ряд $\{Y_i\}_{i=1}^{n+k}$, а также признаки $\{x_{ij}\}_{i=1}^{n+k}$, $j=1,\ldots,m$. Методами анализа временных рядов и регрессионного анализа построить прогноз значений ряда $(\widehat{Y}_{n+1},\ldots,\widehat{Y}_{n+2k})$ по первым n наблюдениям. Визуализировать прогнозы на графике в сравнении с истинными значениями ряда.
- 5 (3 балла) Пусть $(X_t, t \in \mathbb{R})$ гауссовский центрированный стационарный процесс с ковариационной функцией $R(s,t) = e^{-|t-s|}$. Промоделировать этот процесс моделями AR(1) и AR(2). Вывести несколько траекторий смоделированных процессов. По полученным значениям оценить ковариационную функцию процесса с помощью оценки

$$\widehat{R}_N(m) := rac{1}{N-m} \sum_{k=0}^{N-m-1} X_{m+k} X_k$$
 при $0 \le m \le N-1,$

и сравнить её с истинным значением функции. Как зависит близость оценки к истинному значению от величины шага при моделировании?