A Dedekind ring is defined to be a subring \mathfrak{o} of a field K such that every element of K is a quotient of elements of \mathfrak{o} , and the fractional ideals form a multiplicative group. Since a Dedekind ring is defined as a subring of a field, we know \mathfrak{o} is an integral domain. Let \mathfrak{o} be a Dedekind ring and K its quotient field. Unless otherwise specified, all ideals are nonzero.

13. Every ideal is finitely generated.

Proof. Let $\mathfrak{a} \subseteq \mathfrak{o}$ be an ideal. If $\mathfrak{a} = 0$ then clearly \mathfrak{a} is finitely generated, so assume otherwise. \mathfrak{o} is a Dedekind domain, so there is a fractional ideal \mathfrak{b} such that $\mathfrak{ab} = \mathfrak{o}$, so $\sum a_i b_i = 1$ for some $a_i \in \mathfrak{a}$, $b_i \in \mathfrak{b}$, $i = 1, \ldots, n$. For any $a \in \mathfrak{a}$, we know $ab_i \in \mathfrak{ab} = \mathfrak{o}$. Thus,

$$a = a \sum a_i b_i = \sum (ab_i)a_i \in (a_1, \dots, a_n)$$

since each $ab_i \in \mathfrak{o}$. So $\mathfrak{a} \subseteq (a_1, \ldots, a_n)$. The reverse inclusion is obvious, since each a_i is in \mathfrak{a} .

14. Every ideal has a factorization as a product of prime ideals, uniquely determined up to permutation.

Proof. First, note that \mathfrak{o} is Noetherian. For, let $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \cdots$ be a properly increasing chain of ideals in \mathfrak{o} . Then the union $\mathfrak{a} = \bigcup_1^\infty \mathfrak{a}_i$ is an ideal of \mathfrak{o} (we have shown this for increasing unions) and is thus generated by a finite set (a_1,\ldots,a_n) . For each $i=1,\ldots,n$ there is some k_i such that $a_i \in \mathfrak{a}_{k_i}$. Let $N=\max\{k_1,\ldots,k_n\}$. Then for all $m\geq N$, $a_i\in\mathfrak{a}_m$ for all i, hence $\mathfrak{a}\subseteq\mathfrak{a}_m$. But clearly $\mathfrak{a}_m\subseteq\mathfrak{a}$, hence we have equality. Thus every properly increasing chain of ideals terminates, so \mathfrak{o} is Noetherian.

First consider the case of the zero ideal. The proposition is technically false in this case: since \mathfrak{o} is an integral domain, (0) is prime, thus we have factorizations $(0) = (0)\mathfrak{p}_1\cdots\mathfrak{p}_n$ for any prime ideals $\mathfrak{p}_1,\ldots,\mathfrak{p}_n$. However, if $(0) = \mathfrak{p}_1\cdots\mathfrak{p}_n$ were another factorization where none of the factors were (0), then taking a nonzero element p_i from each factor, we would have $p_1\cdots p_n = 0$, contradicting that \mathfrak{o} is entire. Therefore, any factorization of (0) must contain (0) as a factor.

Let \mathfrak{a} be a nonzero proper ideal of \mathfrak{o} . \mathfrak{a} is contained in a maximal (hence prime) nonzero ideal \mathfrak{p}_1 . Let $\mathfrak{a}_1 = \mathfrak{a}\mathfrak{p}_1^{-1}$. Since $\mathfrak{a} \subseteq \mathfrak{p}_1$, we know $\mathfrak{a}_1 = \mathfrak{a}\mathfrak{p}_1^{-1} \subseteq \mathfrak{p}_1\mathfrak{p}_1^{-1} = \mathfrak{o}$, so \mathfrak{a}_1 is an ideal of \mathfrak{o} . Now, if \mathfrak{a}_1 is proper, then letting \mathfrak{a}_1 take the place of \mathfrak{a} , we find maximal ideal \mathfrak{p}_2 containing \mathfrak{a}_1 , and again $\mathfrak{a}_2 = \mathfrak{a}_1\mathfrak{p}_2^{-1}$ is an ideal of \mathfrak{o} . Continuing in this fashion, we have at the *n*th step produced a chain $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \cdots \subseteq \mathfrak{a}_n$. If we were able to continue this process forever, it would create an infinite chain which never stabilizes, a contradiction. So there is some n such that $\mathfrak{a}_n = \mathfrak{a}_{n-1}\mathfrak{p}_n^{-1}$ is not proper, i.e. $\mathfrak{a}_{n-1}\mathfrak{p}_n^{-1} = \mathfrak{o}$. But multiplication of ideals is associative, thus $\mathfrak{a}_{n-1} = \mathfrak{p}_n$ is prime. This gives us a factorization

$$\mathfrak{a} = \mathfrak{a}_1\mathfrak{p}_1 = \mathfrak{a}_2\mathfrak{p}_2\mathfrak{p}_1 = \cdots = \mathfrak{a}_{n-1}\mathfrak{p}_{n-1}\cdots\mathfrak{p}_1 = \mathfrak{p}_n\cdots\mathfrak{p}_1$$

of \mathfrak{a} into prime ideals.

One direction of the proof of exercise 17(a) is immediate: if $\mathfrak{a} \mid \mathfrak{b}$, then $\mathfrak{b} = \mathfrak{ac} \subseteq \mathfrak{a}$. Also, if \mathfrak{p} contains a product \mathfrak{ab} , then it must contain one of \mathfrak{a} or \mathfrak{b} . If this were not the case, then there would be some $a \in \mathfrak{a}, b \in \mathfrak{b}$ such that $a, b \notin \mathfrak{p}$. This is a contradiction, since \mathfrak{p} is prime and $ab \in \mathfrak{ab} \subseteq \mathfrak{p}$. Obviously, this extends inductively to a product of any number of ideals.

Now, suppose we have two factorizations $\mathfrak{p}_1 \cdots \mathfrak{p}_n = \mathfrak{a} = \mathfrak{q}_1 \cdots \mathfrak{q}_m$ into prime ideals (say with $n \leq m$). Assume without loss of generality that \mathfrak{p}_1 is a minimal element of the set $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$, meaning that it is not properly contained in any of the others. \mathfrak{p}_1 divides the product $\mathfrak{q}_1 \cdots \mathfrak{q}_m$, hence it contains one of the factors; assume without loss of generality it is \mathfrak{q}_1 . \mathfrak{q}_1 divides the product $\mathfrak{p}_1 \cdots \mathfrak{p}_n$, thus it contains some \mathfrak{p}_k . This gives $\mathfrak{p}_k \subseteq \mathfrak{q}_1 \subseteq \mathfrak{p}_1$. By the minimality of \mathfrak{p}_i , we must have equalities throughout, thus $\mathfrak{q}_1 = \mathfrak{p}_1$. Since \mathfrak{a} is nonzero, \mathfrak{p}_1 and \mathfrak{q}_1 are nonzero, hence invertible. Using the associativity of multiplication of fractional ideals, we can cancel them from the product, leaving us with $\mathfrak{p}_2 \cdots \mathfrak{p}_n = \mathfrak{q}_2 \cdots \mathfrak{q}_m$.

After repeating this process n times, we will have shown the first n factors to be equal (up to reordering). If $n \neq m$, we will have $(1) = \mathfrak{q}_{n+1} \cdots \mathfrak{q}_m$. This would imply that \mathfrak{q}_m divides, and thus contains, (1) - contradicting that \mathfrak{q}_m is prime. So we must have n = m, and the factors are equal up to permutation.

15. Suppose \mathfrak{o} has only one prime ideal \mathfrak{p} . Let $t \in \mathfrak{p}$ and $t \notin \mathfrak{p}^2$. Then $\mathfrak{p} = (t)$ is principal.

Proof. We cannot have t = 0 or else $t \in \mathfrak{p}^2$. Also, $(t) \neq \mathfrak{o}$ or else $\mathfrak{o} \subseteq \mathfrak{p}$, contradicting that \mathfrak{p} is prime. Thus, (t) is a nonzero proper ideal, hence it has a unique factorization into prime ideals. This must be of the form \mathfrak{p}^k for some $k \geq 1$, since \mathfrak{p} is the only prime ideal. If $k \geq 2$, then $\mathfrak{p}^2 \mid (t)$ and hence $(t) \subseteq \mathfrak{p}^2$, a contradiction. So k = 1, thus $(t) = \mathfrak{p}$ is principal.

16. Let \mathfrak{o} be any Dedekind ring. Let \mathfrak{p} be a prime ideal. Let $\mathfrak{o}_{\mathfrak{p}}$ be the local ring at \mathfrak{p} . Then $\mathfrak{o}_{\mathfrak{p}}$ is Dedekind and has only one prime ideal.

Proof. First, we will develop some facts about the localization of an arbitrary integral domain R, with field of fractions K, at a multiplicative subset S. Given an R-module $\mathfrak{a} \subseteq K$, we define the extension of \mathfrak{a} to be $S^{-1}\mathfrak{a} = \{a/s \mid a \in \mathfrak{a}, s \in S\}$, identifying the localization of R at S as a subring of K. Note $S^{-1}\mathfrak{a}$ is an $S^{-1}R$ -module: if $a/s, b/t \in S^{-1}\mathfrak{a}$ for some $a, b \in \mathfrak{a}, s, t \in S$ then $\frac{a}{s} + \frac{b}{t} = \frac{as+bt}{st} \in S^{-1}\mathfrak{a}$ since $as, bt \in \mathfrak{a}$ and $st \in S$; also, if $c/r \in S^{-1}R$ then $\frac{c}{r} = \frac{ca}{rs} = \frac{ca}{rs} \in S^{-1}\mathfrak{a}$ since $ca \in \mathfrak{a}$ and $rs \in S$. So clearly if \mathfrak{a} is an ideal then $S^{-1}\mathfrak{a}$ is as well. Also, if $c\mathfrak{a} \subseteq R$ for some $c \in R$, then $c\mathfrak{a}^e \subseteq S^{-1}R$. So extension preserves both ideals and fractional ideals.

Extension also distributes over multiplication of R-modules. If $I, J \subseteq K$ are R-submodules, then

$$S^{-1}(IJ) = \left\{ \frac{\sum_{i} a_i b_i}{s} : a_i \in I, b_i \in J, s \in S \right\}$$

$$(S^{-1}I)(S^{-1}J) = \left\{ \sum_{i} \frac{a_i}{s_i} \frac{b_i}{t_i} \mid a_i \in I, b_i \in J, s_i, t_i \in S \right\} = \left\{ \sum_{i} \frac{a_i b_i}{\prod_{i \neq j} s_i t_i} \mid a_i \in I, b_i \in J, s_i, t_i \in S \right\}.$$

Given an element in $S^{-1}(IJ)$, we can express it in the form $\sum_{i} \frac{a_i}{s_i} \frac{b_i}{t_i}$ by taking $s_1 = s, s_i = 1$ for i > 1,

and $t_i=1$ for all i. Given an element of the form $\sum_i \frac{a_i b_i \prod\limits_{i \neq j} s_j t_j}{\prod\limits_{i} s_i t_i}$, we know $a_i \prod\limits_{j \neq i} s_j \in I$ and $b_i \prod\limits_{j \neq i} t_j \in J$ since I and J are R-modules, and $\prod\limits_{i} s_i t_i \in S$, giving the reverse inclusion. So $S^{-1}(IJ)=(S^{-1}I)(S^{-1}J)$.

Note also that, if \mathfrak{a} is an ideal of $S^{-1}R$, then $\mathfrak{a} \cap R = \{a \mid a/s \in \mathfrak{a} \text{ for some } s \in S\}$ is an ideal of R: the intersection of submodules is a submodule, and the $S^{-1}R$ -action on \mathfrak{a} restricts to an action of R on \mathfrak{a} ; hence both \mathfrak{a} and R are R-modules. Also, the extension $S^{-1}(\mathfrak{a} \cap R)$ of $\mathfrak{a} \cap R$ is \mathfrak{a} , since if $a/s \in \mathfrak{a}$ for some $s \in S$, then $a/s \in \mathfrak{a}$ for all $s \in S$ because \mathfrak{a} is closed under multiplication by $S^{-1}R$.

Consider an ideal \mathfrak{a} of $\mathfrak{o}_{\mathfrak{p}}$. Here, we will denote the extension of an ideal \mathfrak{b} by $\mathfrak{b}_{\mathfrak{p}}$. $\mathfrak{a} \cap \mathfrak{o}$ has an inverse $(\mathfrak{a} \cap \mathfrak{o})^{-1}$, which is a fractional ideal of \mathfrak{o} . So

$$\mathfrak{a}((\mathfrak{a}\cap\mathfrak{o})^{-1})_{\mathfrak{p}}=((\mathfrak{a}\cap\mathfrak{o})(\mathfrak{a}\cap\mathfrak{o})^{-1})_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}}$$

thus $((\mathfrak{a} \cap \mathfrak{o})^{-1})_{\mathfrak{p}}$ is the inverse of \mathfrak{a} . Now, if \mathfrak{b} is a fractional ideal of $\mathfrak{o}_{\mathfrak{p}}$, then there is some $c/s \in \mathfrak{o}_{\mathfrak{p}}$ such that $\frac{c}{s}\mathfrak{b}$ is an ideal of $\mathfrak{o}_{\mathfrak{p}}$. It has an inverse \mathfrak{a} , which is a fractional ideal. But then $\mathfrak{o}_{\mathfrak{p}} = (\frac{c}{s}\mathfrak{b})\mathfrak{a} = \mathfrak{b}(\frac{c}{s}\mathfrak{a})$, hence $\frac{c}{s}\mathfrak{a}$ is the inverse of \mathfrak{b} . So all fractional ideals of $\mathfrak{o}_{\mathfrak{p}}$ are invertible, thus $\mathfrak{o}_{\mathfrak{p}}$ is Dedekind.

In exercise 18, we show (without using this result) that prime ideals of a Dedekind domain are maximal. Thus, $\mathfrak{o}_{\mathfrak{p}}$ has a unique prime ideal.

- 17. As for the integers, we say $\mathfrak{a} \mid \mathfrak{b}$ if there exists and ideal \mathfrak{c} such that $\mathfrak{b} = \mathfrak{ac}$. Prove:
 - (a) $\mathfrak{a} \mid \mathfrak{b}$ if and only if $\mathfrak{b} \subseteq \mathfrak{a}$.

Proof. If $\mathfrak{a} \mid \mathfrak{b}$, then there is some ideal \mathfrak{c} such that $\mathfrak{b} = \mathfrak{a}\mathfrak{c} \subseteq \mathfrak{a}$. Suppose now that $\mathfrak{b} \subseteq \mathfrak{a}$. Then $\mathfrak{b}\mathfrak{a}^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} = \mathfrak{o}$. There is some nonzero $k \in \mathfrak{o}$ such that $k\mathfrak{a}^{-1} \subseteq \mathfrak{o}$, so $\mathfrak{b}(k\mathfrak{a}^{-1}) \subseteq k\mathfrak{a}\mathfrak{a}^{-1} = (k)$. Thus, every element of $\mathfrak{b}(k\mathfrak{a}^{-1})$ is divisible by k, hence (k) divides $\mathfrak{b}(k\mathfrak{a}^{-1})$. So there is some ideal \mathfrak{c} such that $(k)\mathfrak{c} = \mathfrak{b}(k\mathfrak{a}^{-1})$. So $(k)\mathfrak{c}\mathfrak{a} = \mathfrak{b}(k\mathfrak{a}^{-1})\mathfrak{a} = \mathfrak{b}(k)$. Since $(k) \neq 0$, it is invertible, thus $\mathfrak{c}\mathfrak{a} = \mathfrak{b}$. So $\mathfrak{a} \mid \mathfrak{b}$.

(b) Let $\mathfrak{a}, \mathfrak{b}$ be ideals. Then $\mathfrak{a} + \mathfrak{b}$ is their greatest common divisor. In particular, $\mathfrak{a}, \mathfrak{b}$ are relatively prime if and only if $\mathfrak{a} + \mathfrak{b} = \mathfrak{o}$.

Proof. Suppose $\mathfrak{c} \mid \mathfrak{a}$ and $\mathfrak{c} \mid \mathfrak{b}$. Then $\mathfrak{c} \supseteq \mathfrak{a}$ and $\mathfrak{c} \supseteq \mathfrak{b}$, thus $\mathfrak{c} \supseteq \mathfrak{a} + \mathfrak{b}$ and so $\mathfrak{c} \mid \mathfrak{a} + \mathfrak{b}$. By definition, $\mathfrak{a} + \mathfrak{b}$ is the greatest common divisor of \mathfrak{a} and \mathfrak{b} .

If $\mathfrak{a} + \mathfrak{b} = \mathfrak{o}$, then every common divisor of \mathfrak{a} and \mathfrak{b} contains \mathfrak{o} , hence the only one is \mathfrak{o} . So \mathfrak{a} and \mathfrak{b} are relatively prime. Conversely, if the only common divisor of \mathfrak{a} and \mathfrak{b} is \mathfrak{o} , then the only divisor of $\mathfrak{a} + \mathfrak{b}$ is \mathfrak{o} . So the only ideal containing $\mathfrak{a} + \mathfrak{b}$ is \mathfrak{o} . So $\mathfrak{a} + \mathfrak{b}$ is not contained in a maximal ideal, hence it must be \mathfrak{o} .

18. Every prime ideal \mathfrak{p} is maximal. In particular, if $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are distinct primes, then the Chinese remainder theorem applies to their powers $\mathfrak{p}_1^{r_1}, \ldots, \mathfrak{p}_n^{r_n}$.

Proof. Let $\mathfrak p$ be a prime ideal. $\mathfrak p$ is contained in a maximal ideal $\mathfrak m$, so $\mathfrak m \mid \mathfrak p$. Due to unique factorization, $\mathfrak m = \mathfrak p$. So $\mathfrak p$ is maximal. By uniqueness of prime factorizations, the only divisors of $\mathfrak p_i^{r_i}$ are of the form $\mathfrak p_i^{s_i}$ for $s_i \leq r_i$, and the only factors of $\mathfrak p_j^{r_j}$ are of the form $\mathfrak p_j^{s_j}$ where $s_j \leq r_j$. The only ideal that is of both these forms has $s_i = s_j = 0$, which means it is $\mathfrak o$. Since $\mathfrak p_i^{r_i} + \mathfrak p_j^{r_j}$ divides $\mathfrak p_i^{r_i}$ and $\mathfrak p_j^{r_j}$, it must be $\mathfrak o$. So the Chinese Remainder Theorem applies.

19. Let $\mathfrak{a}, \mathfrak{b}$ be ideals. Show that there exists an element $c \in K$ such that $c\mathfrak{a}$ is an ideal relatively prime to \mathfrak{b} . In particular, every ideal class in $\operatorname{Pic}(\mathfrak{o})$ contains representative ideals prime to a given ideal.

Proof. Let the prime factors of \mathfrak{b} be $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$, and represent \mathfrak{a} as $\mathfrak{a} = \mathfrak{p}_1^{r_1} \cdots \mathfrak{p}_n^{r_n} \mathfrak{p}_{n+1}^{r_{n+1}} \cdots \mathfrak{p}_{n+m}^{r_{n+m}}$, where the \mathfrak{p}_i are distinct primes and each $r_i \geq 0$. There exists some $a \in \mathfrak{o}$ such that $a \equiv x_i \pmod{\mathfrak{p}_i^{r_i+1}}$ for each i, where $x_i \in \mathfrak{p}_i^{r_i} \setminus \mathfrak{p}_i^{r_i+1}$. This guarantees that (a) factors as

$$(a) = \mathfrak{p}_1^{r_1} \cdots \mathfrak{p}_n^{r_n} \mathfrak{q}_1^{s_1} \cdots \mathfrak{q}_k^{s_k}$$

where the \mathfrak{a}_i are primes distinct from each other and from the \mathfrak{p}_i . Next, find $b \in \mathfrak{o}$ for which $b \equiv 0 \pmod{\mathfrak{q}_i^{s_i}}$ for all $i \leq k$, but $b \equiv 1 \pmod{\mathfrak{p}_i}$ for all $i \leq n$. Thus,

$$(b) = \mathfrak{ca}_1^{s_1} \cdots \mathfrak{a}_k^{s_k}$$

where \mathfrak{c} is relatively prime to \mathfrak{b} (it is possible that \mathfrak{c} has some factors of \mathfrak{a}_i , but we have guaranteed it has no factors of any \mathfrak{p}_i). Letting $c = \frac{b}{a}$, we now have

$$\begin{split} c\mathfrak{a} &= (b)(a)^{-1}\mathfrak{a} \\ &= (\mathfrak{c}\mathfrak{a}_1^{s_1} \cdots \mathfrak{a}_k^{s_k})(\mathfrak{p}_1^{-r_1} \cdots \mathfrak{p}_n^{-r_n}\mathfrak{a}_1^{-s_1} \cdots \mathfrak{a}_k^{-s_k})(\mathfrak{p}_1^{r_1} \cdots \mathfrak{p}_n^{r_n}\mathfrak{p}_{n+1}^{r_{n+1}} \cdots \mathfrak{p}_{n+m}^{r_{n+m}}) \\ &= \mathfrak{c}\mathfrak{p}_{n+1}^{r_{n+1}} \cdots \mathfrak{p}_{n+m}^{r_{n+m}} \end{split}$$

which is an ideal of \mathfrak{o} relatively prime to \mathfrak{b} .

For a given ideal \mathfrak{b} and a given ideal class $C \in \operatorname{Pic}(\mathfrak{o})$, choose any ideal $\mathfrak{a} \in C$ and let $c\mathfrak{a}$ be relatively prime to \mathfrak{b} . $c\mathfrak{a} \in C$ because (c) is principal, therefore C contains a representative relatively prime to any fixed ideal.