Week 3

Isaac Santelli Open Source Economics Lab - Math Problem Set

July 23, 2019

Exercise 1.3

- $G_1 = \{A : A \subset \mathbb{R}, A \text{ open }\}$ This is not algebra. Take any subset A_i s.t. $A_i \subseteq A$. A is a strict subset of \mathbb{R} . $\exists x_0 \in \mathbb{R}$ s.t. $x_0 \notin A$ if $x_0 \notin A$, $A_i \in A \implies x_o \notin A_i$ but $x \in \mathbb{R} \implies G_1$ is not an algebra
- $\mathcal{G}_2 = \{A : A \text{ is a finite union of intervals of the form } (a, b], (-\infty, b], \text{ and } (a, \infty)\}$ $\forall x \in \mathbb{R} | x < b, \ x \in A, \ \forall x \in \mathbb{R} | x > a, \ x \in A, \ a < b \implies \forall x \in \mathbb{R}, x \in A$ By construction $\emptyset \in A$. Now $\forall A_i \subset A, \ A^c = \mathbb{R} - A. \forall x \in \mathbb{R} \implies A^c \in X \text{ together} \implies A$ is an algebra
- $\mathcal{G}_3 = \{A : A \text{ is a countable union of } (a, b], (-\infty, b], \text{ and } (a, \infty)\}$ By the same logic as $\mathcal{G}_2, \mathcal{G}_3$ is an algebra

Exercise 1.7

First we prove that $\{\emptyset, X\}$ is the smallest σ -algebra. Remove any point x_0 from the set. now if $B := \{\emptyset, X\} - x_0, B^c = X - B$. By construction $x_0 \in X, x_0 \notin B \implies B$ is not an algebra. Since the point we removed was arbitrary $\{\emptyset, X\}$ is the smallest σ -algebra

Second we prove that $\mathcal{P}(X)$ is the largest σ -algebra. $\mathcal{P}(X) = \{A : A \subset X\}$ if we add any point x_0 to $\mathcal{P}(X)$, either $x_0 \in X$ in which case we have not changed $\mathcal{P}(X)$ since already $x_0 \in \mathcal{P}(X)$. If $x_0 \notin X$ then $\mathcal{P}(X) + x_0$ is not a σ -algebra

Exercise 1.10

- $\forall \alpha, \emptyset \in S_{\alpha} \implies \emptyset \in \{\bigcap_{\alpha} S_{\alpha}\}\$ so (i) of the definition is satisfied.
- Suppose $\exists B_0 \subset \{\bigcap_{\alpha} S_{\alpha}\}, \Longrightarrow B_0 \in S_{\alpha} \ \forall \ \alpha$. If we extend this to an infinite collection of B_i $i = \{1, 2, 3,\}, \forall i$, $B_i \subset S_{\alpha} \forall \alpha$ so $\bigcup B_i \subset \{\bigcap_{\alpha} S_{\alpha}\}$. Finally if we take $B \in \{\bigcap_{\alpha} S_{\alpha}\}, B^c = X B$ assume $\exists x_0 \in B^c$ s.t. $x_0 \notin \{\bigcap_{\alpha} S_{\alpha}\} \Longrightarrow \forall \alpha \exists B_{\alpha} \text{ s.t. } B_{\alpha} \subset S_{\alpha} \text{ and } B_{\alpha}^c \notin S_{\alpha}$

Exercise 1.22

Let (X, \mathcal{S}, μ) be a measure space.

• μ is monotone: if $A, B \in \mathcal{S}, A \subset B$, then $\mu(A) \leq \mu(B)$

$$B = (A \cap B + A^c \cap B)$$

$$\mu(B) = \mu (A \cap B \cup A^c \cap B)$$

$$A \subset B \implies \mu(B) = \mu (A \cup A^C \cap B)$$

$$\mu(B) = \mu(A) + \mu (A^c \cup B)$$
measure is nonneg $\implies \mu(B) \ge \mu(A)$

• μ is countably subadditive: if $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$, then $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$ If $\{A_i\}_{i=1}^{\infty}$ disjoint then trivially true by the property of measures. Assume that it is not disjoint. Without loss of generality, take A_i, A_j s.t. $A_i \cap A_j = B \neq \emptyset$. By (ii) of definition,

$$\mu(A_i \cup A_j) = \mu\left((A_i \backslash B) \cup (A_j \backslash B) \cup B\right)$$

$$= \mu\left(A_i \backslash B\right) + \mu(A_j \backslash B) + \mu(B)$$

$$\leq \mu\left(A_i \backslash B\right) + \mu(A_j \backslash B) + 2\mu(B)$$

$$== \mu\left(A_i\right) + \mu(A_j)$$

So without loss of generality the measure of the union is less than or equal to the sum of the measures \Box

Exercise 1.23

Let (X, \mathcal{S}, μ)) be a measure space. Let $B \in \mathcal{S}$. Show that $\lambda : \mathcal{S} \to [0, \infty]$ defined by $\lambda(A) = \mu(A \cap B)$ is also a measure (X, \mathcal{S})

- (i) $\lambda(\emptyset) = \mu(B \cap \emptyset) = \mu(\emptyset) = 0$ \checkmark
- (ii) Take a set of sets $\{A_i\}_{i=1}^{\infty}$

$$\lambda(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} A_i \cap B)$$
$$= \sum_{i=1}^{\infty} \mu(A_i \cap B)$$
$$= \sum_{i=1}^{\infty} \lambda(A_i)$$

Exercise 1.26

Given $A_i \forall x \in A_i, \ x \in A_j \forall j < i$. Given any point $y \notin A_N, y \notin \bigcap_{i=1}^N A_i \forall N$

$$\implies \bigcap_{i=1}^{i} A_n = A_i$$

$$\implies \mu(\bigcap_{i=1}^{i} A_n) = \mu(A_i) \quad \forall i$$

$$\implies \lim_{i \to \infty} \mu(\bigcap_{i=1}^{i} A_n) = \lim_{i \to \infty} \mu(A_i)$$

Exercise 2.10

Explain why (*) in the preceding theorem could be replaced by $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$

s.t.s
$$\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$$

 $B = (B \cap E) \cup (B \cap E^c)$ Basic Set Property
 $\mu^*(B) = \mu^*((B \cap E) \cup (B \cap E^c))$
 $(B \cap E) \cap (B \cap E^c) = \emptyset$ so by prop (ii) of outer measure
 $\implies \mu^*((B \cap E) \cup (B \cap E^c)) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$
 $\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$

Exercise 2.14

By Thm 2.12 if \mathcal{M} is the σ algebra from Thm 2.8 If $\sigma(\mathcal{A})$ be the σ -algebra generated by \mathcal{A} then $\sigma(\mathcal{A}) \subset \mathcal{M}$

If the Borel Sigma algebra is generated by $\sigma(\mathcal{O})$ where \mathcal{O} is the set of all open sets in R. Clearly this is an algebra so $B(\mathbb{R}) = \sigma(\mathcal{O})$ and by Thm 2.12 $B(\mathbb{R}) \subset \mathcal{M}$

Exercise 3.1

Given a subset $A \subset \mathbb{R}$ s.t. A is countable.

The lebesgue measure $\mu^*(B) := \inf \{ \sum_{n=1}^{\infty} (b_n - a_n) : B \subset \bigcup_{i=1}^{\infty} (a_i, b_i) \}$ If we take $A : \{x_1, x_2, ...\}$ we can construct intervals of the form

$$\left[x_i - \frac{\epsilon}{2^{i+2}}, x_i + \frac{\epsilon}{2^{i+2}}\right]$$

Then

$$\sum_{i=1}^{\infty} \left[x_i + \frac{\epsilon}{2^{i+2}} - \left(x_i - \frac{\epsilon}{2^{i+2}} \right) \right]$$
$$= \sum_{i=1}^{\infty} \frac{\epsilon}{2^i + 1} = \frac{\epsilon}{2} < \epsilon \quad \Box$$

Exercise 3.7

By Thm 3.3:

Let $(X, \mathcal{M}_X, \mu_X)$, $(Y, \mathcal{M}_Y, \mu_Y)$ be a measure spaces. Let \mathcal{G}_Y be a set that generates the σ -algebra \mathcal{M}_Y , i.e. $\sigma(\mathcal{G}_Y) = \mathcal{M}_Y$.

Then $f: \mathbb{X} \to \mathbb{Y}$ is $\mathcal{M}_X, \mathcal{M}_Y$ -measurable if and only if $\forall B \in \mathcal{G}_Y, f^{-1}(B) \in \mathcal{M}_X$

Since the thm requires that any set work the idea set B in \mathcal{G}_{\dagger} must be sufficiently general. The sets given in the examples below are equally general as they all allow for any value of a and thus follow identical logic.

Exercise 3.10

If f, g are continuous then the property is immediate from 1. If f, g are not continuous then the property follows immediately for f * g, f + g, |f| since the functions are continuous from the domain $\mathbb{R}^2 \to \mathbb{R}$. Now given that f, g are measurable then $\forall B \in \mathcal{M}, f^{-1}(B) \in \mathcal{M}_X, g^{-1}(B) \in \mathcal{M}_X$. Since the max/min of two functions is the true value of one them, the pre-image of any point in max or min function lies in the pre-image of f or g and thus the function is measurable.

3.17

If f is bounded then max(f) - min(x) = b - a = c. Assume w/out loss of generality that a = 0, if not then the same effect is accomplished by redefining f' = f - a and we assert that the function a is integrable so by Thm 3.10 s.t.s f' is integrable. For a given S_n The range of f is now partitioned into a set of $2^n * n$ intervals of height $\frac{1}{2^n}$ and by construction of if we take S_b then $max(f - S_n) = \frac{1}{2^n} \ \forall n > b$. A sequence of functions f_n uniformly converges to a function f if $\forall \epsilon > 0, \exists N_\epsilon$ s.t. $\forall x$ if $n > N_\epsilon f(x) - f(n) < \epsilon$. Take $\epsilon > 0$ and since we can take n arbitarily high, take N_ϵ s.t. $\frac{1}{2^{N_\epsilon}} < \epsilon \implies N_\epsilon > -\frac{\ln(\epsilon)}{\ln(2)}$ and thus for N sufficiently large S_n converges uniformly to f

4.13

 $\forall i, c_i = f(x)$ for some value of x and since $|f| < x, |c_i| < M$

$$\sup \sum_{i=1}^{N} c_{i} \mu \left(E \cap E_{i} \right) \leq \sup \sum_{i=1}^{N} |c_{i}| \mu \left(E \cap E_{i} \right)$$

$$\leq \sup \sum_{i=1}^{N} M \mu \left(E \cap E_{i} \right)$$

$$= M \sup \sum_{i=1}^{N} \mu \left(E \cap E_{i} \right)$$

$$\leq M \mu(E) < \infty \implies \text{f is integrable}$$

4.14

Assume $\exists E_i \subset E$ some subset with $\mu(E_i) > 0$ s.t f attains a value that is not finite for $x \in E_i$

$$\int_{E} f = \sup \sum_{j=1}^{N} c_{i} \mu \left(E_{j} \cap E \right)$$

By applying the sup operator we can assume $\exists N \text{ s.t. }, c_i = \infty$

$$=\sup\sum_{j=1}^{N}c_{i}\mu\left(E_{j}\cap E\right)=\infty$$

$$f \notin L^1(\mu, E)$$

4.15

$$\int_{E} f = \sup \sum_{i=1}^{N} c_{i} \mu \left(E_{i} \cap E \right)$$

$$\int_{E} g = \sup \sum_{i=1}^{N} d_{i} \mu \left(E_{i} \cap E \right)$$

$$\forall i, c_{i} \leq d_{i}, \mu \left(E_{i} \cap E \right) identical for both.$$

$$\implies \sup \sum_{i=1}^{N} c_{i} \mu \left(E_{i} \cap E \right) \leq \sup \sum_{i=1}^{N} d_{i} \mu \left(E_{i} \cap E \right)$$

$$\implies \int_{E} f \leq \int_{E} g$$

4.16

$$\int_{E} f = \sup \sum_{i=1}^{N} c_{i} \mu (E_{i} \cap E)$$

$$\int_{A} f = \sup \sum_{i=1}^{N} c_{i} \mu (E_{i} \cap A)$$

$$A \subset E \implies A \cap E = A$$

$$\implies \mu(E_{i} \cap A) = \mu(E_{i} \cap (A \cap E))$$

$$\leq \mu(E_{i} \cap E)$$

$$\implies \int_{A} f \leq \int_{E} f$$

4.21

$$C=A-B, \quad \mu(C)=0, \quad A=B\cup C, \quad B\cap C=\emptyset$$
 By prop (ii) of measure $\mu(\bigcup A_i)=\sum \mu(A_i)$ if $A_i\cap A_j=\emptyset \forall i\neq j.$ If $\{A\}=\{B,C\}$ then
$$\mu(B\cup C)=\mu(B)+\mu(C)$$

$$\mu(A)=\mu(B)+0 \quad \Box$$