proj_arima

lbq

2020/11/28

```
getwd()
## [1] "F:/FA2020/VE406/proj/Stock_Price_Prediction-main/Stock_Price_Prediction-main/ARIMA"
library(forecast)
## Warning: package 'forecast' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
##
     as.zoo.data.frame zoo
TSLA.full = read.csv("11_28.csv", header = T)
for simple multilinear regression model
Y_i = \beta X_i + \varepsilon_i
TSLA.full$Date = as.Date(TSLA.full$Date, format = "%Y-%m-%d")
TSLA.full.lm = lm(Close ~ Volume + OilPrice + deaths + DPRIME + TOTALSA, data = TSLA.full)
summary(TSLA.full.lm)
##
## Call:
## lm(formula = Close ~ Volume + OilPrice + deaths + DPRIME + TOTALSA,
##
       data = TSLA.full)
##
## Residuals:
       Min
                10 Median
                                3Q
                                       Max
## -63.013 -8.752 -2.171
                             8.254 108.953
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.347e+00 4.035e+00
                                       1.821
                                               0.0688 .
                3.507e-07 1.297e-08 27.034
## Volume
                                               <2e-16 ***
## OilPrice
               -4.412e-01 1.434e-02 -30.773
                                               <2e-16 ***
## deaths
                3.740e+00 1.726e+00
                                       2.167
                                               0.0304 *
                6.350e+00 4.571e-01 13.892
                                                <2e-16 ***
## DPRIME
## TOTALSA
                6.012e+01 6.156e+00
                                       9.765
                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 16.1 on 2447 degrees of freedom
     (161 observations deleted due to missingness)
```

```
## Multiple R-squared: 0.6587, Adjusted R-squared: 0.658
## F-statistic: 944.7 on 5 and 2447 DF, p-value: < 2.2e-16
plot(TSLA.full.lm, which = 1)</pre>
```


library(leaps)

```
## Warning: package 'leaps' was built under R version 4.0.3

regsubsets.out = regsubsets(
   Close ~ Volume + OilPrice + deaths + DPRIME + TOTALSA, data = TSLA.full,
   nbest = 1,
   nvmax = NULL,
   method = "exhaustive"
)
plot(regsubsets.out , scale = "r2", main = "R^2")
```

R^2

plot(regsubsets.out , scale = "adjr2", main = "Adjust R^2")

Adjust R^2

plot(regsubsets.out , scale = "Cp", main = " Mallow's Cp ")

Mallow's Cp

plot(regsubsets.out , main = "BIC")

BIC

There is no evidence that the deaths is significant

```
TSLA.no.deaths.lm = lm(Close ~ Volume + OilPrice + DPRIME + TOTALSA, data = TSLA.full)
summary(TSLA.no.deaths.lm)
```

```
##
## Call:
## lm(formula = Close ~ Volume + OilPrice + DPRIME + TOTALSA, data = TSLA.full)
##
## Residuals:
##
      Min
               1Q Median
                                ЗQ
                                      Max
##
  -63.148 -8.745 -2.163
                            8.366 108.701
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.374e+00 4.038e+00
                                      1.826
                                              0.0679 .
## Volume
               3.513e-07 1.298e-08 27.073
                                               <2e-16 ***
## OilPrice
               -4.434e-01
                          1.431e-02 -30.974
                                               <2e-16 ***
## DPRIME
               6.416e+00
                          4.564e-01
                                     14.059
                                               <2e-16 ***
## TOTALSA
               6.009e+01 6.161e+00
                                      9.754
                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.11 on 2448 degrees of freedom
     (161 observations deleted due to missingness)
## Multiple R-squared: 0.6581, Adjusted R-squared: 0.6575
## F-statistic: 1178 on 4 and 2448 DF, p-value: < 2.2e-16
```


acf(TSLA.no.deaths.lm\$residuals)

Series TSLA.no.deaths.lm\$residuals

From acf plot the errors are highly correlated.

Price with date

the time series is not stationary so we log the Price and diff it

log Price with date

acf(Close.diff)

Series Close.diff

pacf(Close.diff)

Series Close.diff

auto.arima(TSLA.full\$Close, trace = T, xreg = cbind(TSLA.full\$Volume, TSLA.full\$OilPrice, TSLA.full\$DPR

```
##
##
    Fitting models using approximations to speed things up...
##
                                      : -1471.996
##
    ARIMA(2,2,2)
    ARIMA(0,2,0)
                                      : 11810.58
##
    ARIMA(1,2,0)
                                      : 11113.72
##
##
    ARIMA(0,2,1)
                                      : Inf
                                       -1645.739
##
    ARIMA(1,2,2)
    ARIMA(0,2,2)
##
                                      : Inf
##
    ARIMA(1,2,1)
                                      : -1523.86
##
    ARIMA(1,2,3)
                                      : -1651.51
    ARIMA(0,2,3)
##
                                      : Inf
##
    ARIMA(2,2,3)
                                      : -1761.045
##
    ARIMA(3,2,3)
                                      : Inf
    ARIMA(2,2,4)
                                      : -1763.744
##
    ARIMA(1,2,4)
                                      : -1673.424
##
    ARIMA(3,2,4)
##
    ARIMA(2,2,5)
                                      : -1762.126
##
    ARIMA(1,2,5)
                                      : -1674.423
    ARIMA(3,2,5)
                                      : Inf
##
##
##
   Now re-fitting the best model(s) without approximations...
##
   ARIMA(2,2,4)
##
                                      : Inf
```

```
## ARIMA(2,2,5)
                                    : Inf
## ARIMA(2,2,3)
                                    : Inf
## ARIMA(1,2,5)
                                    : Inf
## ARIMA(1,2,4)
                                    : Inf
## ARIMA(1,2,3)
                                    : Inf
## ARIMA(1,2,2)
                                    : Inf
## ARIMA(1,2,1)
                                    : Inf
## ARIMA(2,2,2)
                                    : Inf
## ARIMA(1,2,0)
                                    : 11178.25
##
## Best model: Regression with ARIMA(1,2,0) errors
## Series: TSLA.full$Close
## Regression with ARIMA(1,2,0) errors
##
## Coefficients:
                        xreg2
                                 xreg3
                                            xreg4
             ar1 xreg1
##
         -0.4844
                      0 0.1188 0.0946
                                         -60.3090
## s.e.
        0.0178
                      0 0.0257 0.0755
##
## sigma^2 estimated as 5.196: log likelihood=-5583.11
## AIC=11178.22
                 AICc=11178.25
                                BIC=11213.08
The best model is ARIMA(1,2,0) SO
ARIMA.m = arima(TSLA.full$Close,
                order = c(1,2,0),
                xreg = cbind(TSLA.full$Volume, TSLA.full$OilPrice, TSLA.full$DPRIME, TSLA.full$TOTALSA)
                method="ML")
summary(ARIMA.m)
##
## arima(x = TSLA.full$Close, order = c(1, 2, 0), xreg = cbind(TSLA.full$Volume,
       TSLA.full$OilPrice, TSLA.full$DPRIME, TSLA.full$TOTALSA), method = "ML")
##
## Coefficients:
##
             ar1
         -0.4844
##
## s.e.
         0.0178
         cbind(TSLA.full$Volume, TSLA.full$OilPrice, TSLA.full$DPRIME, TSLA.full$TOTALSA)1
##
                                                                                          0
                                                                                          0
## s.e.
         cbind(TSLA.full$Volume, TSLA.full$OilPrice, TSLA.full$DPRIME, TSLA.full$TOTALSA)2
##
##
                                                                                     0.1188
## s.e.
                                                                                     0.0257
##
         cbind(TSLA.full$Volume, TSLA.full$0ilPrice, TSLA.full$DPRIME, TSLA.full$TOTALSA)3
##
                                                                                     0.0755
## s.e.
         cbind(TSLA.full$Volume, TSLA.full$0ilPrice, TSLA.full$DPRIME, TSLA.full$TOTALSA)4
##
##
                                                                                   -60.3090
                                                                                     3.4079
## s.e.
##
## sigma^2 estimated as 5.527: log likelihood = -5583.11, aic = 11178.22
## Training set error measures:
```

```
## ME RMSE MAE MPE MAPE MASE
## Training set -0.005657444 2.350017 1.171349 -0.01540201 3.400764 0.7808799
## ACF1
## Training set -0.1690465

plot(ARIMA.m$residuals)
```


acf(price)

Series price


```
ndiffs(price)
## [1] 2
price.diff2 = diff(price, 2)
ndiffs(price.diff2)
## [1] 1
price.diff21 = diff(price.diff2, 1)
ndiffs(price.diff21)
## [1] 0
acf(price.diff21)
```

Series price.diff21

pacf(price.diff21)

Series price.diff21

plot(price.diff21)

auto.arima(price, trace = T)

```
##
##
    Fitting models using approximations to speed things up...
##
##
    ARIMA(2,2,2)
                                      : Inf
##
    ARIMA(0,2,0)
                                      : 17044.8
##
    ARIMA(1,2,0)
                                      : 16116.68
                                      : Inf
##
    ARIMA(0,2,1)
    ARIMA(2,2,0)
                                       15707.75
##
##
    ARIMA(3,2,0)
                                       15622.1
    ARIMA(4,2,0)
                                       15623.8
##
    ARIMA(3,2,1)
                                      : Inf
##
                                      : Inf
##
    ARIMA(2,2,1)
    ARIMA(4,2,1)
                                      : Inf
##
##
    Now re-fitting the best model(s) without approximations...
##
##
    ARIMA(3,2,0)
##
                                     : 15627.26
##
##
    Best model: ARIMA(3,2,0)
## Series: price
## ARIMA(3,2,0)
##
## Coefficients:
##
             ar1
                      ar2
                               ar3
```

```
-0.8263 -0.520 -0.1827
## s.e. 0.0192 0.023 0.0193
##
## sigma^2 estimated as 23.17: log likelihood=-7809.62
                AICc=15627.26 BIC=15650.72
## AIC=15627.25
arima.model = arima(price, order = c(3,2,0), method = "ML")
summary(arima.model)
##
## Call:
## arima(x = price, order = c(3, 2, 0), method = "ML")
## Coefficients:
##
            ar1
                    ar2
                             ar3
        -0.8263 -0.520 -0.1827
## s.e. 0.0192 0.023 0.0193
## sigma^2 estimated as 23.14: log likelihood = -7809.62, aic = 15627.25
## Training set error measures:
                         ME
                                RMSE
                                         MAE
                                                   MPE
                                                           MAPE
## Training set -0.001950509 4.808729 1.743037 0.0121328 2.780508 1.161996
                       ACF1
## Training set -0.004363582
plot(arima.model$residuals)
```


acf(arima.model\$residuals)

Series arima.model\$residuals

qqnorm(arima.model\$residuals)

Normal Q-Q Plot


```
Box.test(arima.model$residuals, type = "Ljung-Box")
##
##
   Box-Ljung test
##
## data: arima.model$residuals
## X-squared = 0.04983, df = 1, p-value = 0.8234
pred = predict(arima.model, 10)
pred
## $pred
## Time Series:
## Start = 2615
## End = 2624
## Frequency = 1
   [1] 406.5806 404.6747 401.6749 399.3270 397.0068 394.5246 392.0428 389.6398
    [9] 387.2011 384.7508
##
##
## $se
## Time Series:
## Start = 2615
## End = 2624
## Frequency = 1
  [1] 4.810570 7.417724 10.382657 14.022083 18.106999 22.389519 27.012926
   [8] 31.946606 37.137646 42.579304
```

```
plot(c(2605:2615),price[(length(price)-10) : length(price)-1], type = 'l')
lines(pred$pred, col = "red")
```

