Моисеев ПИН-22

ЛАБОРАТОРНАЯ РАБОТА №2

НЕРАЗВЕТВЛЁННЫЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Цель работы Практическое ознакомление с установившимися режимами в последовательных RL-, RC- и RLC-цепях синусоидального тока.

Задание 1

$$L = 60$$
, мГн, $C = 260$ мкф $N = 16$
 $X_L = \omega L = 2 \pi f L$ и $X_C = 1/(\omega C) = 1/(2 \pi f C)$,

Сопротивление Х		При частоте f							
		30	40	50	60	80	100	120	
Рассчитано	XL	11.31	15.08	18.85	22.62	30.16	37.70	45.24	
Измерено	U	10	10	10	10	10	10	10	
	I	0.884	0.663	0.531	0.442	0.332	0.265	0.221	
	XL	11.31	15.08	18.85	22.62	30.16	37.70	45.24	
Рассчитано	Xc	20.40	15.30	12.24	10.20	7.65	6.12	5.10	
Измерено	U	10	10	10	10	10	10	10	
	I	0.490	0.653	0.817	0.980	1.307	1.634	1.960	
	Xc	20.40	15.30	12.24	10.20	7.65	6.12	5.10	

```
close all; clc; clear;
syms f;
L = 60*10^{(-3)}; C = 260*10^{(-6)};
X1 = 2*pi*f*L;
Xc = 1./(2*pi*f*C);
f = abs(solve(Xc == Xl, f));
f = double(f(1))
Xc = 1./(2*pi*f*C)
figure
hold on; grid on;
plot(f, Xc, 'k*');
f = 30:0.1:120;
Xl = 2*pi*f*L;
Xc = 1./(2*pi*f*C);
plot(f, Xl);
plot(f, Xc);
title('Xl(f) и Xc(f)'); legend('Точка пересечения (40.3; 15.2)', 'Xl(f)',
'Xc(f)');
xlabel('f'); ylabel('X')
```


Вывод:

Полученные значения из формул и измеренные сходятся до тысячных. При последовательном соединении катушки и конденсатора между собой и с источником синусоидального напряжения возможен резонанс напряжений(в точке пересечения графиков при частоте 40.3 герц)

Вывод: успех. Я – молодец

Задание 3

Провести измерение токов, напряжений и углов сдвига фаз между ними в ветвях, содержащих соответственно резистивный R1, индуктивный L2 и емкостный C3 элементы $f = 50~\Gamma \mu$

 $\phi 4 = arctg(XL4/R4);$

 $\varphi 5 = \operatorname{arctg}(XC5/R5);$

 $\varphi 6 = \operatorname{arctg}(XL6 - XC6)/R6 > 0$

φο <i>αποι</i> β (πμο πεο <i>γ</i> , πο ν ο							
Ветвь	Измерено			Рассчитано			
	U, B	I A	ф гр	Z=U/I ом	R=Zсоsф ом	X=Zsinф ом	
R4L4	10	0.497	-70	20.12	12.74	15.57	
R5C5	10	0.709	62	14.10	9.50	10.42	
R6L6C6	10	1.039	-37.5	9.62	9.43	1.90	

Фи 4 град	Фи 5 град	Фи 6 град
70	62	37

Вывод: я ознакомился с установившимися режимами в последовательных RL-, RC- и RLC-цепях синусоидального тока. Нашел зависимость индуктивного и емкостного сопротивлений от частоты. Было наглядно продемонстрировано измерение угла сдвига фаз и его зависимости от участков цепи.