MEC-based Stable Topology Prediction for Vehicular Networks

- Asif Mehmood,
- Afaq Muhammad,
- Wang-Cheol Song,
- Taekyung Lee

Jeju National University, ATTO Research

Objectives of Blueprint

Problem:

• Vehicle-OBUs have different processing latency in sensors.

Solution:

At the edge:

- Predict the locations using Kalman filter (rectify the location coordinates)
- Expose the predicted information to edge applications

Use case:

- What? To orchestrate the resources required for vehicular networks at the edge.
- How? Proactive orchestration of the edge-resources for vehicular networks based on ML-based predicted resource utilization at the edge.

Automotive

New cellular networks like 5G enables additional applications such as:

- Autonomous driving
- V2X communications

Datsa-set generation

Kalman filter prediction

Vehicle to edge
ProxAppServer
push mechanism

API exposure
(on which vehicle-info
will be pushed)

Road-info extraction mechanism

ERD design for storing road-info

Rectification procedure

Machine Learning Model (ML)

Resource Orchestration (RO)

ETSI MEC 3GPP NGMN

Much more to do

Kalman filter model API information					
Model	Parameter type	Parameter name	Description of parameter		
Kalman filter	Inputs	vehicleid	the unique identifier of a vehicle.		
		time	current timestamp 't'.		
		longitude	Geographic coordinate that specifies the east–west position of a vehicle the Earth's surface.		
		latitude	Geographic coordinate that specifies the north–south position of a point on the Earth's surface.		
		angle	Angle 0-359.99 to approximate the direction of a vehicle.		
		speed	Speed of the vehicle at time 't'.		
		lane	Lane number on which the vehicle is running.		
		pos	Position of vehicle on which the vehicle is running on.		
	Outputs	longitude	Predicted longitude.		
		latitude	Predicted latitude.		

Note: The API has not yet been developed but is a work in progress.

10,000 vehicle trace data-set

	For	Name	Version/Info	
	Running Notebooks	Conda:	4.9.2	
Kalma	n filter predcitions =>	Python:	3.8.10	
		Jupyter Core:	4.7.1	
		Jupyter Notebook	6.4.0	
		Conda Environment File:	env_kf_model (file)	
	Pushing CD Logs	Jenkins:	2.303.1	
	Jenkins	Docker-hub image link:	mehmoodasif/jenkins	
		pip3	20.0.2	
		lftools:	0.35.10	
	Running Containers Docker	Docker:	20.10.8	
	Docker	Docker build:	3967b7d	
	Map and Data-set Generation	SUMO:	1.10.0	
Dat	a-set Generation =>	TraceExporter.py	traceExporter (file)	
		Netedit:	Netedit - SUMO	
		Netconvert:	Netconvert - SUMO	
	Note:			

9/28/2021

api database others

esp mno customer

left right straight about-turn

ETSI GS MEC 002

Multi-access Edge Computing (MEC); Use Cases and Requirements

- A.7: Active device location tracking
- A.36: In-vehicle MEC hosts supporting automotive workloads

ETSI GS MEC 003 Multi-access Edge Computing (MEC);

Framework and Reference Architecture

• 5: Multi-access Edge Computing framework

ETSI White Paper No. 20

Developing Software for Multi-Access Edge Computing

2nd edition - February 2019

ISBN No. 979-10-92620-29-0

Authors:

Dario Sabella, Vadim Sukhomlinov, Linh Trang, Sami Kekki, Pietro Paglierani, Ralf Rossbach, Xinhui Li, Yonggang Fang, Dan Druta, Fabio Giust, Luca Cominardi, Walter Featherstone, Bob Pike, Shlomi Hadad

References

- o ATTO Research
- o Website Akraino
- o Wiki Akraino
- o Gerrit Akraino
- o Mailing lists Akraino
- o Blueprints Akraino
- o Calendars Akraino

