计算物理第 6 次作业第 13 题

1 题目重述

用 Metropolis-Hasting 抽样方法计算积分:

$$I = \int_0^\infty (x - \alpha \beta)^2 f(x) dx = \alpha \beta^2 ($$
理论精确值) (1)

其中

$$f(x) = \frac{1}{\beta \Gamma(a)} \left(\frac{x}{\beta}\right)^{\alpha - 1} \exp(-\frac{x}{\beta})$$
 (2)

对于权重函数为

$$p_1(x) = f(x), p_2(x) = (x - \alpha\beta)^2 f(x)$$
 (3)

分别进行计算。在给定 α, β 的情况下,选用不同的步长 i,讨论精度与效率。

这里根据自己的理解稍微改动了题目的表述细节,最主要的改动是将原题中的 γ 改成了抽样的步长(用 i 表示)。如与原题意思不符合还请见谅。

2 题目分析

本题的所有程序均采用 Anaconda 3 编写。

本题的核心在于 Metropolis-Hasting 抽样。在参考文献 [1] 中,对于实现该类抽样的方法有清晰的表述:

设 p(x) 为所考虑的几率密度分布,问题在于是如何产生下一个抽样点 x_{n+1} 。可以在上一个点附近构造一个试探解, $x_t = x_n + \delta$, δ 是试探步长, $\delta = (\xi - 0.5)i$ 该点是否被选取决定于比值 $r = \frac{p(x_t)}{p(x_n)}$: 若 r > 1,则选取。否则,产生均匀分布的随机数 $\xi in[0,1]$: 若 $\xi < r$ 则选取;否则,放弃。

由上述方法,去除热化部分后,可得到按被抽样函数 p(x) 分布的数组 x_i 。若待积分的式子形式为:

$$I = \int g(x)p(x)dx = \sum_{x} g(x)p(x)\Delta x \tag{4}$$

则在抽样点足够密集时,可由 $p(x)\Delta x$ 正比于 $\frac{1}{N}\sum_{j\in\{j|x< x_j< x+\Delta x\}}$,得到:

$$I = \frac{A}{N} \sum_{j=1}^{N} g(x_j) \tag{5}$$

其中 A_0 为一与 g(x) 无关的常数, 令 g(x) = 1, 则:

$$\int p(x)dx = I = A \tag{6}$$

所以积分方法为:

$$I = \frac{\int p(x)dx}{N} \sum_{j=1}^{N} g(x_j)$$
(7)

对于 $p_1 = f(x)$, 由 Γ 函数相关定义, 可得 $\int_0^\infty f(x)dx = 1$, 即:

$$I_1 = \frac{1}{N} \sum_{j=1}^{N} (x_j - \alpha \beta)^2$$
 (8)

对于 $p_2 = f(x)(x - \alpha\beta)^2$, 方法略复杂些。 令 $g(x) = \frac{1}{(x - \alpha\beta)^2}$, 则:

$$1 = \int_0^\infty f(x)dx = I = \frac{\int_0^\infty f(x)(x - \alpha\beta)^2 dx}{N} \sum_{j=1}^N (x_j - \alpha\beta)^{-2}$$
 (9)

即得:

$$\int_0^\infty f(x)(x - \alpha\beta)^2 dx = N(\sum_{i=1}^N (x_i - \alpha\beta)^{-2})^{-1}$$
(10)

即可计算出所需的积分。

3 结果

表 1: $\alpha = 2.5, \beta = 2.5$ 时积分值与抽样效率和步长的关系

i	0.1	0.2	0.4	0.8	1.6	3.2	6.4	12.8	25.6	51.2
(p_1) eff%	66.3	66.1	65.5	64.5	62.6	59.0	53.2	44.6	31.8	18.4
$p_1) res - \alpha \beta^2 $	4.82	5.62	2.87	1.41	0.35	0.45	0.37	0.67	4.48	7.35
(p_2) eff%	65.9	65.2	64.6	63.3	61.3	56.8	49.6	41.1	35.3	25.8
$p_2) res - \alpha \beta^2 $	3.20	5.92	2.81	0.61	1.14	1.71	0.55	0.47	0.84	2.54
	$(p_1) \text{eff}\%$ $(p_1) res - \alpha \beta^2 $ $(p_2) \text{eff}\%$	$(p_1) \text{eff}\%$ 66.3 $(p_1) res - \alpha \beta^2 $ 4.82 $(p_2) \text{eff}\%$ 65.9	(p_1) eff% 66.3 66.1 $(p_1) res - \alpha\beta^2 $ 4.82 5.62 (p_2) eff% 65.9 65.2	(p_1) eff% 66.3 66.1 65.5 $(p_1) res - \alpha\beta^2 $ 4.82 5.62 2.87 (p_2) eff% 65.9 65.2 64.6	(p_1) eff% 66.3 66.1 65.5 64.5 $p_1) res - \alpha\beta^2 $ 4.82 5.62 2.87 1.41 (p_2) eff% 65.9 65.2 64.6 63.3	(p_1) eff% 66.3 66.1 65.5 64.5 62.6 $(p_1) res - \alpha \beta^2 $ 4.82 5.62 2.87 1.41 0.35 (p_2) eff% 65.9 65.2 64.6 63.3 61.3	(p_1) eff% 66.3 66.1 65.5 64.5 62.6 59.0 $p_1) res - \alpha\beta^2 $ 4.82 5.62 2.87 1.41 0.35 0.45 (p_2) eff% 65.9 65.2 64.6 63.3 61.3 56.8	(p_1) eff% 66.3 66.1 65.5 64.5 62.6 59.0 53.2 $p_1) res - \alpha\beta^2 $ 4.82 5.62 2.87 1.41 0.35 0.45 0.37 (p_2) eff% 65.9 65.2 64.6 63.3 61.3 56.8 49.6	(p_1) eff% 66.3 66.1 65.5 64.5 62.6 59.0 53.2 44.6 $p_1) res - \alpha \beta^2 $ 4.82 5.62 2.87 1.41 0.35 0.45 0.37 0.67 (p_2) eff% 65.9 65.2 64.6 63.3 61.3 56.8 49.6 41.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $2.5, \beta = \overline{2.5}$ 时, 10^6 次抽样下,积分值与抽样效率和步长的关系如图 1,表 1 所示。由图表中的数据分析可得:对于两种不同的分布函数,均在步长接近 6.4 时,抽样效率接近 50%,且积分计算的精确度最高。

另一组 α , β 的图像如图二所示,表略去,分析结果类似:对于两种不同的分布函数,均在步长接近 6.4 时,抽样效率接近 50%,且积分计算的精确度最高。

由此可以得到初步结论: $\alpha, \beta \sim 10^0$ 时,抽样步长在 3-10 的范围内效果最佳。

参考文献

[1] 丁泽军. 计算物理讲义 [M]

图 1: $\alpha=2.5, \beta=2.5$ 时积分值与抽样效率关于步长的曲线 (红线为积分理论值和抽样概率为 0.5 的参考值)

图 2: $\alpha=1.5, \beta=3.5$ 时积分值与抽样效率关于步长的曲线 (红线为积分理论值和抽样概率为 0.5 的参考值)