Power Series and Taylor series

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Definition

Definition: A series of the form $\sum_{n=0}^{\infty} a_n(x-c)^n$, where $a_n, c \in \mathbb{R}$ is called **power series** with center c.

Some remarks

- Power series is a function of x provided it converges for x. If a power series converges, then the domain of convergence is either a bounded interval or the whole of \mathbb{R} .
- A power series always converges for x = c.
- The translation x' = x c reduces a power series around c to a power series around 0.

• Consider the series for c = 0, i.e., the power series around 0 of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + \dots + a_n x^n + \dots$$
 (1)

Even though the functions appearing in (1) are defined over all of \mathbb{R} , it is not to be expected that the series (1) will converge for all x in \mathbb{R} . For example, the series

$$\sum_{n=0}^{\infty} n! x^n, \quad \sum_{n=0}^{\infty} x^n, \quad \sum_{n=0}^{\infty} x^n / n!,$$

converge for *x* in the sets

$$\{0\}, \quad \{x \in \mathbb{R} : |x| < 1\}, \quad \mathbb{R}, \quad \text{respectively.}$$

Theorem

If $\sum a_n x^n$ converges at x = r, then $\sum a_n x^n$ converges for |x| < |r|.

Proof: We can find C > 0 such that $|a_n r^n| \le C$ for all n. Then

$$|a_nx^n| \leq |a_nr^n||\frac{x}{r}|^n \leq C|\frac{x}{r}|^n.$$

Conclusion follows from comparison theorem.

Remark

If $\sum a_n x^n$ diverges at $x = r_1$, then $\sum a_n x^n$ diverges for $|x| > |r_1|$.

Proof: Proof of this follows by using contradiction and above theorem.

Theorem and Remark for $\sum a_n(x-c)^n$

The above theorem and remark can be stated for general power series with center c.

Theorem : If $\sum a_n(x-c)^n$ converges at x=r, then it converges for |x-c|<|r-c|.

Remarks : If $\sum a_n(x-c)^n$ diverges at $x=r_1$, then it diverges for $|x-c|>|r_1-c|$.

Theorem

For a power series $\sum_{n=0}^{\infty} a_n x^n$ exactly one of the following three cases is true:

- Case 1: The series converges only for x = c.
- Case 2: There exists a positive real number R such that the series converges absolutely for all real x satisfying |x c| < R and diverges for all x satisfying |x c| > R.
- Case 3: The series converges for all $x \in \mathbb{R}$.
- Define R = 0 and $R = \infty$ for Case 1 and Case 3 of above Theorem, respectively.
- The *R* is called as **radius of convergence** of the power series.

Theorem

Consider the power series $\sum_{n=0}^{\infty} a_n(x-c)^n$. The radius of convergence is given as follows:

$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

For a given power series $\sum_{n=0}^{\infty} a_n (x-c)^n$ with radius of convergence R, we have:

- Series converges absolutely for all real x satisfying |x c| < R, that is c R < x < c + R.
- Series diverges for all x satisfying |x c| > R, that is x < c R or x > c + R.
- No conclusion about the series about points x = c R and x = c + R.

Examples

Find the radius of convergence of (i) $\sum \frac{x^n}{n}$, (ii) $\sum \frac{x^n}{n!}$, (iii) $\sum 2^{-n}x^n$.

- (i) $\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, So R = 1.
- (ii) $\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$. So $R = \infty$, and series converges everywhere.
- (iii) $\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|a_n|} = 2^{-1} = \frac{1}{2}$. Therefore, R = 2.

Taylor series

Taylor's series

Suppose f is infinitely differentiable at c then we write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^{n}.$$

This series is called Taylor series of f(x) about the point c.

Remark

- If c = 0, the formula obtained in Taylor's theorem is known as *Maclaurin's formula* and the corresponding series that one obtains is known as *Maclaurin's series*.
- ullet Taylor series representation of a function about some c is unique.

Examples

Examples

(i) Find Taylor series of $f(x) = e^x$ about c = 0.

We have $f^{(n)}(x) = e^x$. So $f^{(n)}(0) = e^0 = 1$.

$$f(x) = e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x-0)^n = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

(ii) Find Taylor series of $f(x) = e^x$ about c = -1.5.

We have $f^{(n)}(x) = e^x$. So $f^{(n)}(-1.5) = e^{-1.5}$.

$$f(x) = e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(-1.5)}{n!} (x+1.5)^n = \sum_{n=0}^{\infty} \frac{e^{-1.5}}{n!} (x+1.5)^n.$$

