Física - Discussão Projeto I

Parâmetros dos experimentos

```
p.massa = 0.2107

# Posição inicial do fim da bandeira
p.bandeira = 0.204

# Tamanho da bandeira
p.tam_bandeira = 0.0975

# Distância entre sensores adjacentes
p.MRU.distancias = c(0.373, 0.322, 0.655, 0.37)
p.MRU.posicoes = cumsum(p.MRU.distancias)

p.MUV.distancias = c(0.207 + p.bandeira, 0.414, 0.427, 0.49)
p.MUV.posicoes = cumsum(p.MUV.distancias)

p.MUV_flag.distancias = c(0.406, 0.49, 0.354, 0.495)
p.MUV_flag.posicoes = cumsum(p.MUV.distancias)
```

Dados dos experimentos

Os dados dos experimentos MU e MUV já foram carregados a partir de arquivos .csv .

```
dados.MRU = read.csv("mru.csv")
grid.table(dados.MRU)
```

	t1	t2	t3	t4
1	0.222	0.603	1.372	1.811
2	0.197	0.604	1.498	1.898
3	0.199	0.599	1.39	1.948
4	0.182	0.556	1.313	1.745
5	0.137	0.548	1.38	1.855

```
dados.MUV = read.csv("muv.csv")
grid.table(dados.MUV)
```

	t1	t2	t3	t4
1	2.531	4.378	5.696	6.917

```
dados.MUV_flag = read.csv("muv_flag.csv")
grid.table(dados.MUV_flag)
```

	t1	t2	t3	t4
1	0.755	0.479	0.371	0.308
2	0.761	0.476	0.369	0.307
3	0.755	0.479	0.367	0.306
4	0.778	0.476	0.371	0.308
5	0.764	0.475	0.37	0.307

Funções e constantes

```
# Constantes comuns (physics)
ph.G = 9.807

# Funções comuns (physics)
ph.peso = function(m, g = ph.G) { m*g }
ph.e.potencial = function(m, h, g = ph.G) { m*g*h }
ph.e.cinetica = function(v, m) { 0.5*m*v^2 }
ph.trabalho = function(f, dx, theta) { f*dx*theta }

# Funções MRU
MRU.velocidade = function(ds, dt) { ds/dt }
MRU.deslocamento = function(v, t) { v*t }

# Funções MUV
MUV.velocidade = function(a, t, v0 = 0) { v0 + a*t }
MUV.deslocamento = function(a, t, v0 = 0) { t*v0 + 0.5*a*t^2 }
```

Tabelas

MRU

```
velocidades = t(MRU.velocidade(p.MRU.posicoes - p.bandeira, t(dados.MRU)))
colnames(velocidades) = paste0("v", (1:4))
grid.table(round(velocidades, digits=2))
```

v1	v2	v3	v4
0.76	0.81	0.84	0.84
0.86	0.81	0.77	8.0
0.85	0.82	0.82	0.78
0.93	0.88	0.87	0.87
1.23	0.9	0.83	0.82

```
cineticas = ph.e.cinetica(velocidades, p.massa)
colnames(cineticas) = paste0("ec", (1:4))
grid.table(round(cineticas, digits=2))
```

ec1	ec2	ec3	ec4
0.06	0.07	0.07	0.07
0.08	0.07	0.06	0.07
0.08	0.07	0.07	0.06
0.09	0.08	0.08	0.08
0.16	0.08	0.07	0.07