#### Machine Learning: Lineare Regression

Präsentation: Vorname, Nachname

#### Lizenz:

HTW Berlin – Informatik und Wirtschaft – Aktuelle Trends der Informations- und Kommunikationstechnik – Machine Learning: Lineare Regression by Christoph Jansen (deep.TEACHING - HTW Berlin) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Based on a work at gitlab.com/deep.TEACHING.

# deep.TEACHING

#### Regression und Klassifikation

Regression: Bestimmung kontinuierlicher Zielwerte für einen Datensatz.

Beispiel: ein Haus wurde **1970** erbaut, hat eine Fläche von **350 m²** und wurde **nicht renoviert**.

→ Wie hoch ist der übliche **Marktpreis**?

Klassifikation: Einordnung eines Datensatzes in diskrete Klassen.

Beispiel: Ein Haus wurde 1970 erbaut, hat eine Fläche von 350 m² und kostet 250000 €.

 $\rightarrow$  Wurde das Haus renoviert, **ja** oder **nein**?

#### **Python**

Python ist die wichtigste High-Level-Sprache im Machine Learning-Umfeld.

- Explorativer Ansatz durch dynamisches Ausführen von Code (Jupyter)
- Machine Learning ist Rechenintensiv, Python nutzt hochoptimierte Bibliotheken im Hintergrund
  - Erspart dem Anwender das Programmieren in C, C++, Fortran, Cuda,
     OpenCL, ...
- Konkurrierende Sprachen: R, Lua, Matlab (Octave), Julia, JavaScript, ...

# Auszug des Python Ökosystems

| Datenstrukturen                         | Numpy, Scipy, Pandas             |
|-----------------------------------------|----------------------------------|
| Plotting                                | Matplotlib, Seaborn, Graphviz    |
| Klassisches Machine Learning            | Scikit-Learn                     |
| Bildverarbeitung                        | Pillow, Scikit-Image             |
| Computational Graphs (low-level)        | Tensorflow, Theano, PyTorch      |
| Künstliche Neuronale Netze (high-level) | Keras (nutzt low-level), PyTorch |

#### **Fishers Iris-Daten**

In [4]: df.head()

Out[4]:

|   | sepal_length | sepal_width | petal_length | petal_width | species     |
|---|--------------|-------------|--------------|-------------|-------------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | Iris-setosa |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | Iris-setosa |
| 2 | 4.7          | 3.2         | 1.3          | 0.2         | Iris-setosa |
| 3 | 4.6          | 3.1         | 1.5          | 0.2         | Iris-setosa |
| 4 | 5.0          | 3.6         | 1.4          | 0.2         | Iris-setosa |

In [5]: df['species'].value\_counts() # Schwertlilien

Out[5]: Iris-versicolor 50 Iris-setosa 50

Iris-virginica 50

Name: species, dtype: int64

#### Blumen?



- 1. Kelchblätter (Sepalen)
- 2. Kronblätter (Petalen)

#### Plot der Daten

```
In [6]: sns.scatterplot(data=df, x='petal_width', y='petal_length', hue='species')
  plt.xlabel('x: Kronblattbreite (cm)'); plt.ylabel('y: Kronblattlänge (cm)')
  plt.xlim(0, None); plt.ylim(0, None);
```



Angenommen eine Blüte weist eine Breite von 1,5 cm auf, wie lang ist sie vermutlich?

### X- und Y-Arrays

```
In [7]: X = df['petal_width'].values
Y = df['petal_length'].values

In [8]: X[:5]
Out[8]: array([0.2, 0.2, 0.2, 0.2])

In [9]: Y[:5]
Out[9]: array([1.4, 1.4, 1.3, 1.5, 1.4])

In [10]: X.shape, Y.shape
Out[10]: ((150,), (150,))
```

# **Lineare Hypothese**

Geradengleichung ist

$$h(x) = x \cdot w + b$$

mit

- ullet w als Steigung (weight),
- *b* als Y-Achsenabschnitt (bias),
- und x als Eingabe (feature)

#### **Lineare Hypothese in Python**

$$h(x) = x \cdot w + b$$

```
In [11]: def make_linear_hypothesis(w, b):
    # this is a closure
    def linear_hypothesis(x):
        return x * w + b

    return linear_hypothesis

h = make_linear_hypothesis(2.5, 1)
h(1.5) # prediction
```

Out[11]: 4.75

### Plot der Hypothese

```
In [12]: df_reduced = pd.DataFrame(X, columns=['x'])
     df_reduced['y'] = Y
     df_reduced.head()
```

#### Out[12]:

|   | X   | У   |
|---|-----|-----|
| 0 | 0.2 | 1.4 |
| 1 | 0.2 | 1.4 |
| 2 | 0.2 | 1.3 |
| 3 | 0.2 | 1.5 |
| 4 | 0.2 | 1.4 |

In [14]: | plot(df\_reduced, make\_linear\_hypothesis(2.5, 1))



#### Vorhersage

In [15]: plot(df\_reduced, make\_linear\_hypothesis(2.5, 1))



Eine Vorhersage (prediction) der Kronblattlänge gegeben der Kronblattbreite.

```
In [16]: h = make\_linear\_hypothesis(2.5, 1)
 h(0.25), h(1.5), h(2)
```

Out[16]: (1.625, 4.75, 6.0)

#### Vorhersage

```
In [17]: h = make_linear_hypothesis(2.5, 1)
plot(df_reduced, h)
```



Wir wissen nicht ob sich der Trend außerhalb der ursprünglichen Daten fortsetzt.

```
In [18]: h(-1), h(0.75), h(3)
```

Out[18]: (-1.5, 2.875, 8.5)

#### **Lineare Regression**

Ziel: Finde mathematisches Modell für die möglichst genaue Vorhersage (prediction) kontinuierlicher Werte.

Benötigte Komponenten:

- 1. Hypothese (hypothesis) / Modell zur Vorhersage
- 2. Fehlerfunktion (cost / loss function) zum Lernen / Trainieren und zur Evaluation
- 3. Optimierungsalgorithmus (optimizer) zum Lernen / Trainieren

#### Fehlerfunktion: Mean Squared Error

Die für eine Lineare Regression übliche Fehlerfunktion J ist Mean Squared Error. Die mathematische Definition lautet

$$J(w,b) = rac{1}{2m} \sum_{i=1}^m (h_{w,b}(x_i) - y_i)^2.$$

 $\mathsf{mit}\, x_i \in X, y_i \in Y \, \mathsf{und}\, m = |Y| = |X|.$ 

Für jedes  $x_i$  und  $y_i$  wird der Abstand zwischen  $h(x_i)$  und  $y_i$  berechnet. Anschließend werden diese Abstände (Fehler) quadriert und der Mittelwert gebildet.

Durch 2m zu teilen, statt durch m, ist ein mathematischer Trick, der später noch relevant wird.

### Visualisierung der Fehler

```
In [19]: plot(df_reduced, make_linear_hypothesis(2.5, 1), show_errors=True)
```



#### Fehlerberechnung

In [20]: plot(df\_reduced, make\_linear\_hypothesis(2.5, 1), show\_errors=True)



```
In [22]: J = make_mse_cost(X, Y) # Implemetierung in der Übung J(2.5, 1) # Mean Squared Error
```

Out[22]: 0.16308333333333333

### Fehlerberechnung für schlechte Parameter

In [23]: plot(df\_reduced, make\_linear\_hypothesis(-1, 4.5), show\_errors=True)



In [24]: J(-1, 4.5)

Out[24]: 3.2278

### Visualisierung der Kostenfunktion

Wert von b ist fix, w ist variabel.

```
In [25]: spacing = np.linspace(-5, 10, 100)
    costs = [J(w, 1) for w in spacing]

plt.plot(spacing, costs)
    plt.xlabel('w')
    plt.ylabel('cost');
```



### Visualisierung der Kostenfunktion

Wert von w ist fix, b ist variabel.

```
In [26]: spacing = np.linspace(-5, 10, 100)
    J(X, Y)
    costs = [J(2.5, b) for b in spacing]

plt.plot(spacing, costs)
    plt.xlabel('b')
    plt.ylabel('cost');
```



#### 3D Visualisierung der Kostenfunktion

- Bei nicht optimalen Werten der Variablen w oder b, ergibt sich für die jeweils andere Variable eine verzerrte Kostenfunktion (z.B. an der Stelle b=-7.5).
- Je nach Ausgangspunkt kann dies den Optimierungsalgorithmus verlangsamen.

```
In [28]: plot_cost_3d(w_range=(-5, 10), b_range=(-5, 10), w_opt=2.5, b_opt=1)
```



### Skalierung der Eingabevariable

Der StandardScaler aus Scikit-Learn skaliert X, indem

- der Mittelwert abgezogen und
- durch die Standardabweichung geteilt wird,

#### sodass

- die Daten einen Mittelwert von 0 und
- eine Standardabweichung von 1 haben.

#### Skalierung der Eingabevariable

```
In [29]: scaler = StandardScaler() # import aus Scikit-Learn
X_scaled = scaler.fit_transform(X.reshape(-1, 1))
X_scaled = X_scaled.flatten()
```

In [31]: comparison()

Out[31]:

|          | min   | max  | mean | std  |
|----------|-------|------|------|------|
| X        | 0.10  | 2.50 | 1.2  | 0.76 |
| X_scaled | -1.44 | 1.71 | -0.0 | 1.00 |

#### Plot der skalierten Daten

```
In [32]: df_scaled = pd.DataFrame(X_scaled, columns=['x'])
    df_scaled['y'] = Y
    plot(df_scaled, make_linear_hypothesis(1.9, 3.8))
```



# 3D Visualisierung nach Skalierung

```
In [33]: J = make_mse_cost(X_scaled, Y)
    plot_cost_3d(w_range=(-5, 10), b_range=(-5, 10), w_opt=1.9, b_opt=3.8)
```



#### **Optimierung**

Ziel: Finde automatisiert Werte für w und b, die einen minimalen Fehlerwert liefern.

- Startpunkt ist eine zufällige Initialisierung von w und b.
- Iterative Anwendung des Gradientenabstiegsverfahrens (Stochastic Gradient Descent) zur schrittweisen Annäherung an das Minimum.
  - Berechnung der partiellen Ableitungen (Steigungen) von J an einem Punkt  $(w_i, b_i)$  in die Richtungen w und b.
  - lacktriangle Aktualisierung von w und b anhand des Ableitungswertes.

# Visualisierung der Ableitung nach b

```
In [34]: w = 1.9
 b = -2.5
```

In [36]: plot\_b\_derivative()



#### Partielle Ableitungen

Die Ergebnisse der partiellen Ableitungen nach b und w lauten

$$egin{aligned} rac{\partial}{\partial w}J(w,b) &= rac{1}{m}\sum_{i=1}^m (h_{w,b}(x_i)-y_i)\cdot x_i \ rac{\partial}{\partial b}J(w,b) &= rac{1}{m}\sum_{i=1}^m (h_{w,b}(x_i)-y_i) \end{aligned}$$

 $\operatorname{\mathsf{mit}} x_i \in X, y_i \in Y \operatorname{\mathsf{und}} m = |Y| = |X|.$ 

Erklärung zur Berechnung der Ableitung: <a href="mailto:mccormickml.com/2014/03/04/gradient-descent-derivation/">mccormickml.com/2014/03/04/gradient-descent-derivation/</a> (<a href="http://mccormickml.com/2014/03/04/gradient-descent-derivation/">http://mccormickml.com/2014/03/04/gradient-descent-derivation/</a>)

#### Partielle Ableitung nach b

-1.75866666666667 -0.758666666666669 0.2413333333333333 1.2413333333333333 2.2413333333333334 4.241333333333333 5.2413333333333333

#### Partielle Ableitung nach w

```
In [39]: b = 3.8
          gradient = make gradient(X scaled, Y)
          for w in range(-5, 10):
              pd w, pd b = gradient(w, b)
              print(pd w)
          -6.693036451694907
          -5.693036451694907
          -4.693036451694907
          -3.6930364516949057
          -2.6930364516949057
          -1.693036451694906
          -0.6930364516949057
         0.3069635483050944
         1.3069635483050943
         2.3069635483050948
         3.3069635483050948
         4.306963548305095
         5.306963548305095
         6.306963548305095
         7.306963548305095
```

#### Gradientenabstiegsverfahren

Stochastic Gradient Descent (SGD)

Pseudocode:

Initialisiere w und b zufällig.

Für eine Anzahl an Epochen wiederhole:

$$egin{aligned} pd\_w &:= rac{\partial}{\partial w} J(w,b) \ pd\_b &:= rac{\partial}{\partial b} J(w,b) \end{aligned}$$

$$w := w - lpha * pd\_w$$
  
 $b := b - lpha * pd\_b$ 

Die Lernrate  $\alpha$  bestimmt die Schrittgröße der Updates und ist ein Wert größer Null, üblicherweise im Bereich [0,1].

#### **Anwendung von SGD**

```
In [42]: alpha = 0.1
    epochs = 100
    w, b = np.random.randn(2)
    w, b, cost_per_epoch = sgd(X_scaled, Y, w, b, alpha, epochs) # Implementierung
    in der Übung
    w, b
```

Out[42]: (1.6930383379764007, 3.758577459957277)

In [44]: plot\_over\_time(cost\_per\_epoch) # Implementierung in der Übung



#### Zu kleine Lernrate

Das Training endet bevor der Kostenwert konvergiert ist.

```
In [46]: alpha = 0.01
    epochs = 100
    w, b = np.random.randn(2)
    w, b, cost_per_epoch = sgd(X_scaled, Y, w, b, alpha, epochs)
    plot_over_time(cost_per_epoch)
```



#### Zu große Lernrate

Der Kostenwert wird schlechter, weil das Update von w und b über das Ziel hinaus schießt.

```
In [48]: alpha = 2.01
    epochs = 100
    w, b = np.random.randn(2)
    w, b, cost_per_epoch = sgd(X_scaled, Y, w, b, alpha, epochs)
    plot_over_time(cost_per_epoch)
```



#### Machine Learning Algorithmen

Das Gradientenabstiegsverfahren ist einer von vielen Machine Learning-Algorithmen zur iterativen **Optimierung** eines mathematischen **Modells** anhand von **Trainingsdaten**.

- Lineare Regression  $\rightarrow$  Lösung von Regressionsproblemen
- Logistische Regression  $\rightarrow$  Lösung von Klassifikationsproblemen (der Name ist irreführend)
  - wie Lineare Regression, aber mit anderer Kostenfunktion
- Künstliche Neuronale Netze  $\rightarrow$  Lösung komplexer Regressions- und Klassifikationsprobleme
  - wie Lineare / Logistische Regression, aber größere / vielschichtige Modelle

# Supervised und Unsupervised Learning

Die genannten Regressions- und Klassifikationsalgorithmen sind **supervised** Learning Algorithmen, weil die gesuchten **Zielwerte** Y für die Trainingsdaten **bekannt** sind.

Beispiel für Supervised Learning:

• Hausklassifikation: Klassen **renoviert** und **nicht renoviert** sind für Trainingsdaten bekannt.

Beispiel für Unsupervised Learning:

• Clustern von Bildern in 5 möglichst unterschiedliche Farbkategorien, wobei vorher nicht bekannt ist, welche Farben die Clusternzentren bilden werden.

Wir werden in dieser Vorlesungsreihe keine unsupervised Learning Algorithmen behandeln.