PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-303388

(43)Date of publication of application: 31.10.2001

(51)Int.CI.

D03D 1/00 D03D 15/00

E04G 21/32

(21)Application number: 2000-165157

(71)Applicant: KYOWA CO LTD

UNITICA FIBERS LTD

(22)Date of filing:

26.04.2000

(72)Inventor:

SAKAI TADAKATSU

TANAKA TOSHIHIRO NOZAKI SEIJI

NOZAKI SEIJI SAKOBE TADAYUKI MORIGUCHI YOSHIFUMI KARATO YOSHINORI

(54) BIODEGRADABLE MESH SHEET FOR CONSTRUCTION WORK

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a mesh sheet for construction work degradable by embedding in soil or a compost after use thereof and convertible into substances existing in the natural world.

SOLUTION: This biodegradable mesh sheet for construction work having flame retardance is composed of a woven fabric which is woven from polylactic acid fibers having ≥ 2.6 cN/dex strength and at least partially comprising flame retardant polylactic acid fibers and has 95–70% filling ratio.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-303388 (P2001-303388A)

最終頁に続く

(43)公開日 平成13年10月31日(2001.10.31)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)		
D03D	1/00	ZBP	D03D	1/00	ZBPZ	Z 4L048		
	15/00		19	5/00	Α			
					E			
E 0 4 G	21/32		E 0 4 G 2	1/32	В			
			審査請求	未請求	請求項の数6	書面(全 6 頁)		
(21)出願番号		特顧2000-165157(P2000-165157)	(71)出願人	392031572				
				キョー	フ株式会社			
(22)出願日		平成12年4月26日(2000.4.26)		大阪府ス	大阪市中央区南船:	場1丁目13番20号		
			(71)出願人	3990654	99065497			
				ユニチ	カファイバー株式	バー株式会社		
				大阪府	大阪市中央区備後	町四丁目1番3号		
			(72)発明者	坂井 に	忠勝			
					大阪市中央区南船 - ワ株式会社内	場1丁目13番20号		
			(74)代理人	1000951	75			
				弁理士	渡辺 秀夫			
				Nex	box 33X			

(54) 【発明の名称】 生分解性建設工事用メッシュシート

(57)【要約】

【課題】 使用後土中や堆肥中に埋没すると分解して、 自然界に存在する物質に変換する建設工事用メッシュシ ートを提供する。

【解決手段】 強度が2.6 c N/d t e x以上のポリ乳酸繊維で織成された織物で構成され、少なくともポリ乳酸繊維の一部が難燃性のポリ乳酸繊維あって該織物の充実率が95~70%である難燃性を有する生分解性建設工事用メッシュシートである。

【特許請求の範囲】

【請求項1】 強度が2.6cN/dtex以上のポリ乳酸繊維で織成された織物で構成され、少なくともポリ乳酸繊維の一部が難燃性のポリ乳酸繊維あって該織物の充実率が95~70%である難燃性を有する生分解性建設工事用メッシュシート。

【請求項2】 ポリ乳酸繊維が原着糸である、請求項1 に記載された生分解性建設工事用メッシュシート。

【請求項3】 難燃性のボリ乳酸繊維が、難燃剤を繊維 に配合して難燃化したボリ乳酸繊維である、請求項1ま 10 たは2に記載された生分解性建設工事用メッシュシー ト。

【請求項4】 繊度が110dtex以上で強度が2.6cN/dtex以上のボリ乳酸モノフィラメントで織成された織物で構成され、少なくともポリ乳酸モノフィラメントの一部が難燃性のボリ乳酸モノフィラメントあって該織物の充実率が95~70%である難燃性を有する生分解性建設工事用メッシュシート。

【請求項5】 ポリ乳酸モノフィラメントが原着モノフィラメントである、請求項3に記載された生分解性建設 20 工事用メッシュシート。

【請求項6】 難燃性のポリ乳酸モノフィラメントが難 燃剤をモノフィラメントに配合して難燃化したポリ乳酸 モノフィラメントである、請求項4または5に記載され た生分解性建設工事用メッシュシート。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はボリ乳酸繊維またはボリ乳酸モノフィラメントで織成された織物で構成された、軽量で作業性に優れ、難燃性を有する生分解性建設 30 工事用メッシュシートに関するものである。

[0002]

【従来の技術】従来から建設工事現場に展張して資材の 落下、火花の放散、塗料の飛散を防止するためメッシュ シートが用いられている。通気性のないシートは風圧を 受けるので好ましくない。従来用いられている建設工事 用メッシュシートはボリエステルやポリアミド繊維等の 合成繊維から織編された繊維布帛に塩化ビニル樹脂をコ ーティングしたものが使用されている。しかし該塩化ビ ニル樹脂で加工された建設工事用メッシュシート類に関 40 しては廃棄時に燃焼工程を通過するとダイオキシン等が 発生する問題や、塩酸が発生し焼却炉等を痛める等の問 題が発生した。またこれ等メッシュシート類を埋め立て て廃棄される場合もあるが塩化ビニル樹脂をはじめ繊維 布帛を構成する合成繊維は長期間にわたり分解せず、樹 脂に含有される可塑剤の抜け出し等が地下地盤を汚染す る等社会問題になってきている。例えば、特開平9-1 703号公報には「編物、織物及び不織布」の群より選 ばれた少なくとも1種の繊維構造物(A)に対して、脂 肪族形ポリエステルを主成分とする重合体(B)溶融

液、溶剤溶液または/及びフィルムをコーティング法または/及びラミネート法によって付与及び/または接着し、両者(AとB)を一体化する方法が開示されている。該公報には難燃性を付与する概念は全くなく、建設工事用に使用するには不向きであり、また一部シリコーンやフッ素化合物を導入して撥水性を高めることや接着剤として水系アクリルエマルジョン等を使用するとの記載があり、これ等シリコーン、フッ素系化合物及びアクリル樹脂は生分解性を有しておらず、土中や堆肥中に埋没しても完全に分解せず、一部ボリマーとして残留する問題がある。

[0003]

【発明が解決しようとする課題】上記のような従来用いられている建設工事用メッシュシートは、難燃性を有しかつ分解後自然界に存在する物質に変わる建設工事用メッシュシートではないという問題があった。本発明は、このような現状に鑑みて行われたもので、使用後に土中や堆肥中に埋没すると自然界に存在する物質に変換する建設工事用メッシュシートを提供することを目的とするものである。

[0004]

【課題を解決するための手段】本発明は、

- 「1. 強度が2.6cN/dtex以上のポリ乳酸繊維で織成された織物で構成され、少なくともポリ乳酸繊維の一部が難燃性のポリ乳酸繊維あって該織物の充実率が95~70%である難燃性を有する生分解性建設工事用メッシュシート。
- 2. ポリ乳酸繊維が原着糸である、1項に記載された 生分解性建設工事用メッシュシート。
- 3. 難燃性のポリ乳酸繊維が、難燃剤を繊維に配合して難燃化したポリ乳酸繊維である、1項または2項に記載された生分解性建設工事用メッシュシート。
- 4. 繊度が110dtex以上で強度が2.6cN/dtex以上のポリ乳酸モノフィラメントで織成された織物で構成され、少なくともポリ乳酸モノフィラメントの一部が難燃性のポリ乳酸モノフィラメントあって該織物の充実率が95~70%である難燃性を有する生分解性建設工事用メッシュシート。
- 5. ポリ乳酸モノフィラメントが原着モノフィラメントである、3項に記載された生分解性建設工事用メッシュシート。
- 6. 難燃性のポリ乳酸モノフィラメントが難燃剤をモノフィラメントに配合して難燃化したポリ乳酸モノフィラメントである、4項または5項に記載された生分解性建設工事用メッシュシート。」に関する。

[0005]

【発明の実施の形態】本発明に使用するボリ乳酸繊維とはその2量体ラクチドをモノマーとして重合せしめたボリマーを紡糸したものであり、光学異性体 D体もしくは50 し体のホモボリマー及び共重合体のいずれでもよい。該

ポリ乳酸モノフィラメントの強度は2.6cN/dtex以上でなければならず、2.6cN/dtex未満であれば建設工事用メッシュシートとして要求される引張強力や引裂強力等の機械的物性が低くなり、メッシュシートとしての機能を発揮できなくなる。好ましくは3.0cN/dtex以上である。

【0006】繊維の技術分野では、モノフィラメントは、マルチフィラメント、紡績糸等の繊維に区別されている。難燃性ボリ乳酸繊維とボリ乳酸モノフィラメントの難燃剤に関しては土中等に埋没すると自然界に存在す 10る物質になるものであれば特に限定するものではなく、分解しやすいように低分子化合物であることが望ましい。難燃性ボリ乳酸繊維とボリ乳酸モノフィラメントは、重合工程で該難燃剤を添加する練り込み製造方法を採用して製糸あるいはフィラメントにすればよい。難燃剤は繊維の強力を低下させるため、難燃剤の添加量を好適な範囲の添加量を選択する必要がある。難燃剤が少ないと効果が十分ではなく、多くなるとメッシュシートの強力、を低下させるので、難燃剤の添加量は0.2~1.0 w t %であるのが好ましい。 20

【0007】好ましい難燃剤は2官能性燐化合物及び/ または金属酸化物である。2官能性燐化合物としては (2-カルボキシエチル) メチルホスフィン酸、(2-カルボキシエチル)フェニルホスフィン酸、(2-メト キシカルボキシエチル)フェニルホスフィン酸メチル、 (4-メトキシカルボキシエチル)フェニルホスフィン 酸、 $(2-(\beta-E)$ には、 β のでは、 β ので ル) メチルホスフィン酸のエチレングリコールエステ ル、(1,2-ジカルボキシエチル)ホスフィンオキシ ド、(2,3-ジメトキシカルボキシルプロピル)ジメ チルホスフィンオキシド、(2,3-ジメトキシカルボ キシエチル) ジメチルホスフィンオキシド、(1,2-ジ(β-ヒドロキシエトキシカルボニル)ジメチルホス フィンオキシド、1,2-ジカルボキシエチルホスフィ ンオキシド(2,3-ジメトキシカルボキシプロピル) ジメチルホスフィンオキシド、(2,3-ジメトキシカ ルボキシエチル) ジメチルホスフィンオキシド、(1. 2-ジ(β-ヒドロキシエトキシカルボニル) ジメチル ホスフィンオキシド等が挙げられる。好ましくは(1, 2-ジカルボキシエチル) ホスフィンオキシド。(2. 3-ジメトキシカルボキシルプロピル) ジメチルホスフ ィンオキシド、(2,3-ジメトキシカルボキシエチ ル) ジメチルホスフィンオキシド、(1, 2-ジ(β-ヒドロキシエトキシカルボニル) ジメチルホスフィンオ キシドであり、2価の有機基を有しているため反応性が 良好であり、また分解速度が比較的速い。金属水酸化物 として天然に存在する物質である水酸化マグネシウム、 水酸化アルミニウムが好ましい。

【0008】本発明の建設工事用メッシュシートは、難 酸モノフィラメントの織物を染色工程の染料で染め加工燃性ポリ乳酸繊維のみで織物を構成してもよいが、難燃 50 してもよく、難燃剤を水中に溶解、または分散した溶液

4

性を有する設計とすれば、難燃性を有しないボリ乳酸繊維と交織、合燃した織物が構成されてもよい。本発明の建設工事用メッシュシートを構成するボリ乳酸繊維とボリ乳酸モノフィラメントは、その繊度、密度を調整することにより、引張強さ、空気の通気性等を変化させることができるが、建設工事用メッシュシートの充実率が95%~70%であることが必要である。充実率が95%をこえると空気の通気性が悪くなり、また工事現場で使用される建設工事用メッシュシートは汚れの付着が激しく飛散防止メッシュシートとして使用すると目詰まりをおこし長期間の使用に耐えなく透明性にも欠ける。さらに風合いが硬くなりすぎて建設工事用メッシュシートの折り曲げ・運搬・張りつけ等の作業性が悪くなる。充実率が70%未満では目ずれが起りやすくなる。

【0009】本発明の建設工事用メッシュシートの織組 織は平・綾・朱子の三原組織及びそれ等を変化したも の、混合したもの、他の特殊なものであっても差し支え ないが、特に軽量で、目ずれが起こりにくく、通気性を 多くする上で好ましいのは、平組織、模紗組織、搦み織 組織等である。これは経糸、緯糸の集束部で通気性を付 与し、平織部の経糸、緯糸の屈曲で曲げ抵抗が大きくな り交錯部が動きにくくなり固定され目ずれ防止効果が付 与される。同様に、難燃性ポリ乳酸モノフィラメントの みで織物を構成してもよいが、難燃性を有する設計とす れば、難燃性を有しないポリ乳酸モノフィラメントと交 織、合撚した織物が構成されてもよい。ポリ乳酸モノフ ィラメントを用いると糸条の剛性が高く、曲げ抵抗が大 きいため交錯点が動きにくくなり固定され、目ズレ、目 曲がりが発生し難くなる効果が奏される。本発明の建設 工事用メッシュシートの強力は、JIS L-1096 ストリップ法にて測定した時の引張強力は、飛散防止メ ッシュシートとしては600N/3cm以上、工事用メ ッシュシートとしては1500N/3cm以上であるこ とが耐久性、安全性、落下防止効果の上からでも必要で ある。

【0010】本発明の建設工事用メッシュシートに用いる原着ポリ乳酸繊維と、原着ポリ乳酸モノフィラメントは、着色剤として一般に用いられているシアニン系、スチレン系、フタロシアニン系、アンスラキノン系、ベリノン系、イソインドリノン系、キノフタロン系、デオインディゴ系等の有機顔料、及び、無機顔料の酸化チタン等のうち1種または2種以上を、混合して着色チップを得て、ベースポリマーと該着色チップとを適宜混合し、溶融紡糸して得る。原着糸は染色工程を経ることとができるだけでなく、一般に上記の顔料等は耐光性が優れているので変退色しにくく、ポリマーの紫外線による劣化を防止するのでメッシュシートの耐久性向上にも寄与する利点がある。ポリ乳酸モノフィラメントの織物を染色工程の染料で染めれておよく、難燃剤を水中に溶解、または分散した溶液

を染浴に添加し、繊維内部や表面に吸尽してもよい。また織物を難燃剤溶液中に浸漬し、マングルで均一に絞った後、熱を加えて固着してもよい。

【0011】織物の充実率については空隙がある開口部が複数存在するように写真を撮り、該写真の重量を秤量し(A)、該写真の開口部を切り取った後の重量を続いて秤量する(B)。これらの数値を下記の式を用いて充実率を算出する。

充実率(%)=(B/A)×100

本発明のメッシュシートは必要により市販の耐候性向上 10 剤、撥水剤、汚染剤等を付与できる。

[0012]

【実施例】次に本発明を実施例により説明する。引張強力や防炎性の物性については、JIS L 1096、及びJIS A8952(建築工事用シート)に準じて測定を行った。

【0013】実施例1

ポリ乳酸重合工程にて、難燃剤として[2-(β-ヒド ロキシエトキシカルボニル) エチル] メチルホスフィン 酸0.5重量部と三酸化アンチモン0.03重量部を添 20 加して重合反応を行い、相対粘度2.05の難燃性ボリ 乳酸チップを得た。との難燃性ポリ乳酸チップを円形の 吐出孔から押し出して溶融紡糸を行い、延伸して、11 20dtex/192fil、強度3.5cN/dte xの難燃性ボリ乳酸繊維を得た。同様に難燃剤を添加し ないレギュラーポリ乳酸チップを用い、溶融紡糸を行 い、延伸して、1120dtex/192fil、強度 4. 0 c N / d t e x の ポリ乳酸繊維を 得た。 タテ糸 と して1120dtex/192fi1難燃性ポリ乳酸繊 維の施撚糸(S方向80T/m)、ヨコ糸として112 30 0 d t e x / 1 9 2 f i 1 ポリ乳酸繊維の 2 本合撚糸 (S方向80T/m)を用い、レピア織機にて、タテ密 度35本/インチ、ヨコ密度18本/インチの織物をか らみ組織にて製織し、ヒートセッターにて120℃で3 ①秒間セットを行い、実施例1の建設工事用ポリ乳酸繊 維製メッシュシート織物を得た。

【0014】実施例2

実施例1でタテ糸用に用いた難燃性ポリ乳酸チップに、着色剤としてシアニン系ブルーとカーボンを2.0:
0.1の重量比で混合して10重量%添加し、ブルーの 40 マスターチップを得た。該ブルーのマスターチップと、実施例1のタテ糸用に用いた難燃性ポリ乳酸チップとを1:45の割合で混合し、円形の吐出孔から押し出して溶融紡糸を行い、延伸して、1120dtex/192fil、強度4.0cN/dtex、伸度35%の難燃性原着ポリ乳酸繊維を得た。得られた難燃性原着ポリ乳酸繊維の施撚糸(S方向80T/m)を、タテ糸、ヨコ糸として用い、レビア織機にて、タテ密度35本/イン*

塩化ビニルペースト組成

塩化ビニルペースト 50重量部 (ゼオン121、日本ゼオン株式会社)

* チ、ヨコ密度35本/インチの完全組織6×6模紗組織 織物を製織し、ヒートセッターにて120℃で60秒間 セットを行い、実施例2の難燃性原着ボリ乳酸繊維建設 工事用メッシュシート織物を得た。

【0015】実施例3

ポリ乳酸重合工程にて、難燃剤として[2-(β-ヒド ロキシエトキシカルボニル) エチル] メチルホスフィン 酸0.5重量部と三酸化アンチモン0.03重量部を添 加して重合反応を行い、相対粘度2.05の難燃性ポリ 乳酸チップを得た。この難燃性ポリ乳酸チップを円形の 吐出孔から押し出して溶融紡糸を行い、延伸して、60 Odtex、強度3.5cN/dtexの難燃性ポリ乳 酸モノフィラメントを得た。同様に難燃剤を添加しない レギュラーポリ乳酸チップを用い、溶融紡糸を行い、延 伸して、600dtex、強度4.0cN/dtexの ポリ乳酸モノフィラメントを得た。タテ糸として難燃性 ポリ乳酸モノフィラメント、ヨコ糸としてポリ乳酸モノ フィラメントを用い、レピア織機にて、タテ密度25本 //インチ、ヨコ密度28本/インチの平組織織物を製織 し、ヒートセッターにて120℃で30秒間セットを行 い、実施例3の建設現場で使用する飛散防止用ポリ乳酸 モノフィラメント製メッシュシート織物を得た。

【0016】実施例4

実施例3でタテ糸用に用いた難燃性ポリ乳酸チップに、着色剤としてシアニン系ブルーとカーボンを2.0:
0.1の重量比で混合して10重量%添加し、ブルーのマスターチップを得た。該ブルーのマスターチップと、実施例3のタテ糸用に用いた難燃性ポリ乳酸チップとを1:45の割合で混合し、円形の吐出孔から押し出して溶融紡糸を行い、延伸して、800dtex/、強度4.2cN/dtex、伸度35%の難燃性原着ポリ乳酸モノフィラメントを得た。得られた難燃性原着ポリ乳酸モノフィラメントをタテ糸、ヨコ糸として用い、レビア織機にて、タテ密度39本/インチ、ヨコ密度39本/インチの完全組織6×6模紗組織織物を製織し、ヒートセッターにて120℃で60秒間セットを行い、実施例4の工事用の難燃性原着ポリ乳酸モノフィラメント製メッシュシート織物を得た。

【0017】比較例1

ポリエステルフィラメントヤーン1100dtex96フィラメントに80T/M施撚してタテ糸とヨコ糸に用い、レビア織機にて、タテ密度21本/インチ、ヨコ密度21本/インチの完全組織6×6模紗組織織物を製織した、製織したメッシュシートはそのままでは目ずれが発生するので、下記組成よりなる塩化ビニルペーストを両面コーティング加工し、130℃で乾燥した後、170℃にて熱処理を行い、比較例1の建設工事用メッシュシートを得た。

DOP 15重量部

(可塑剤、三菱モンサイト株式会社)

DINP 15重量部

(可塑剤、三菱モンサイト株式会社)

アデカー-〇-130日 3重量部 (アデカアーガス株式会社)

KV-62B-4 3重量部

(安定剤、共立薬品株式会社)

三酸化アンチモン(防炎剤) 7重量部

炭酸カルシウム(充填剤) 7重量部

【0018】比較例2

テレフタル酸とエチレングリコールをエステル化して得 たビスβ-ヒドロキシテレフタレート、及び、その低重 キシエトキシカルボニル) エチル] メチルホスフィン酸 0.5重量部と三酸化アンチモン0.03重量部、艷消 剤として酸化チタン0.5重量部を添加して0.6mm Hgに減圧し、280℃にて重合反応を行い、固有粘度 0.78のポリエステル難燃性チップを得た。このポリ エステル難燃性チップを円形の吐出孔から押し出して溶 融紡糸を行い、延伸して、融点255℃の444dte x、強度6.0cN/dtexの難燃性ポリエステルモ ノフィラメントを得た。同様に難燃剤を添加しないレギ ュラーポリエステルチップを用い、溶融紡糸を行い、延 20 伸して、融点255℃の444dtex、強度6.2c N/dtexのレギュラーポリエステルモノフィラメン*

* ト糸条を得た。タテ糸として難燃性ポリエステルモノフ ィラメント、ヨコ糸としてレギュラーポリエステルモノ フィラメントを用い、レピア織機にて、タテ密度25本 合体100重量部に、難燃剤として〔2-(β-ヒドロ 10 /インチ、ヨコ密度25本/インチの平組織織物を織成 し、ヒートセッターにて180℃で30秒間セットを行 い、比較例2の飛散防止用ポリエステルモノフィラメン ト製メッシュシート織物を得た。

【0019】比較例3

ポリエステルフィラメントヤーン1100 d t e x 9 6 フィラメントに80T/M施撚してタテ糸とヨコ糸に用 い、レピア織機にて、タテ密度21本/インチ、ヨコ密 度21本/インチの完全組織6×6模紗組織織物を製織 し、下記組成よりなる塩化ビニルペーストを両面コーテ ィング加工し、130℃で乾燥した後、170℃にて熱 処理を行い、比較例3の建設工事用メッシュシートを得 た。

塩化ビニルペースト組成

塩化ビニルペースト 50重量部 (ゼオン121、日本ゼオン株式会社)

DOP 15重量部

(可塑剤、三菱モンサイト株式会社)

DINP 15重量部

(可塑剤、三菱モンサイト株式会社) アデカー-〇-130P 3重量部 (アデカアーガス株式会社)

KV-62B-4 3重量部

(安定剤、共立薬品株式会社)

三酸化アンチモン(防炎剤) 7重量部

炭酸カルシウム(充填剤) 7重量部

得られた実施例1~4及び比較例1~3のメッシュシー トの評価結果を表1に示す。

※【0020】 【表1】

		実 施 例			比 較 例			
	1	2	3	4	1	2	3	
目付(g/	332	345	137	268	430	94	430	
樹脂付着土	0	. 0	0	0	73	0	73	
充実率	(%)	92	90	56	63	68	48	68
引張強力	タテ	1620	1625	620	1525	1940	705	1940
(N/3cm)	37	1850	1750	680	1550	1960	744	1960
切断伸度	タテ	41	38	38	36	29	21	29
(%)	ヨコ	38	39	36	34	28	23	28
ピン引掛強力(N)		975	830	252	950	1029	245	1029
防炎試験	区分3	合格	合格	合格	合格	合 格	合格	合 格
		分解	分解	分解	分解	分解	分解	分解
自然分解		した	した	した	した	しない	しない	しない

*

【0021】表1の実施例1~2から明らかなように、 本発明の建設工事用メッシュシート合成繊維の繊度、密

気の通気性に大きく影響する充実率を変化させることが でき、模紗組織、搦み織組織等で製織することにより目 度、織組織を調整することにより、重さ、引張強さ、空 50 ずれがしにくくなる。これは経糸、緯糸の収束部で通気

性を付与し、平織部の経糸、緯糸の屈曲で曲げ抵抗が大きくなり交錯点が動きにくくなり固定され目ずれ防止効果が付与され、建設工事用メッシュシートとしての特性を満足するものであった。

【0022】これ等を福井県坂井郡丸岡町の土中に埋没放置し状況を観察した結果、実施例1~4のメッシュシートは、1年後にはメッシュシートの状態を保っており、容易には引き裂けなかったが、2年後には形態は保っているが、簡単に裂ける状態になり、3年後には分解*

* していて、ほぼその形状を保っていないことが確認され、比較例1~3のボリエステル繊維、塩ビ被覆のメッシュシートは、3年間の埋設後も形状を保持しており、容易に引き裂ける状態にはないことが確認された。 【0023】

10

【発明の効果】本発明によれば、使用後に土中や堆肥中に埋没すると自然界に存在する物質に変化する建設工事用メッシュシートを提供することができる。

フロントページの続き

(72)発明者 田中 敏博

大阪府大阪市中央区南船場1丁目13番20号 キョーワ株式会社内

(72)発明者 野▲ザキ▼ 齊治

大阪府大阪市中央区南船場1丁目13番20号 キョーワ株式会社内

(72)発明者 迫部 唯行

大阪府大阪市中央区久太郎町四丁目1番3 号 ユニチカファイバー株式会社内 (72)発明者 森口 芳文

大阪府大阪市中央区久太郎町四丁目1番3 号 ユニチカファイバー株式会社内

(72)発明者 唐渡 義伯

大阪府大阪市中央区久太郎町四丁目1番3 号 ユニチカファイバー株式会社内

Fターム(参考) 4L048 AA20 AA42 AA48 AA49 AA53

AA56 AB10 AB11 AB12 AC09 AC10 AC14 BA01 BA02 BA07 BA08 CA00 CA01 CA15 DA31 EA00 EB05