5 Mayıs 2021 Çarşamba

08:02

03 ADC

Giris

- Doğada var olan bütün fiziksel büyüklükler (ısı, ışık, ses, zaman vs.) analog büyüklük kavramına girer.
- Dünyadaki herhangi bir şeyi dijital sistemlerimiz ile ölçmek, değerlendirmek, işlemek ve bu değerlere göre işlem yapabilmek için ADC (Analog Digital Converter) ihtiyaç vardır.
- ADC modülleri gerek harici, gerek dahili olsun hepsi bir referans voltaja ihtiyaç duyarlar. Genellikle mikroişlemcilerde referans voltajı işlemcinin besleme gerilimidir. Bu değer aynı zamanda ayarlar yapılarak harici olarak verilebilir.
- STM32'de 12-bit ADC, ardışık yaklaşım prensibine dayanan bir analog-dijital çeviricidir. Bu çevirici, 16 harici kaynaktan, iki dahili kaynaktan ve VBAT kanalından gelen sinyalleri ölçebilmek için en fazla 19 multiplexli kanala sahiptir. Kanalların A/D dönüşümü single, continuous, scan veya discontinuous modda gerçekleştirilebilir. ADC'nin sonucu, sola ya da sağa hizalanmış 16-bit veri kaydına depolanır.
- analog watchdog özelliği, uygulamanın giriş voltajının kullanıcı tanımlı üst veya alt sınırları aşmasını algılamasına olanak tanır.

Cözünürlük

- ADC'ler 10, 12, 16, 24 vb. bit çözünürlükte bulunurlar.
- STM32F407'de ADC'ler 6, 8, 10 ve 12 bit çözünürlükte çalışabilirler.
- Referans voltajı default 3.3V'dur.
- ADC modülün 10 bit olduğunu düşünelim. 2^10 = 1024 değeri okunacak maksimum değerdir yani 0V=0, 3.3V=1023 değeri bize döner. Buradan her bit değerin alacağı voltaj değerini 3,3 / 1024 = 0,0032 olarak buluruz. Buradan da biz ADC modülünden okuduğumuz değeri bu ifade ile çarparsak voltaj değerini buluruz. 640 değeri için 640 * 0,0032 = 2,048 V olarak buluruz.
- STM32F407'de 0-3.6V aralığında ölçümler yapılabilmektedir. Buradaki voltaj aralığında ADC birimin beslemesi (VDDA-VSSA) ile ilgili bir durumdur.
- ADC birimin besleme voltajı (VDD) ve referans gerilimi (VREF), ADC birimin ölçebileceği gerilim aralığını belirler.
- Her ne olursa olsun ADC birimi 3.6V'dan fazlasını ölçemez.
- Analog bir değerden dijital bir değer dönüşüm yapılırken dikkat edilmesi gereken hususlar vardır. Bunlardan en önemlisi, ölçülecek analog gerilim değerinin dönüşümü yapacak çipin ölçüm aralığında olması gerekir. Diğer en önemli nokta, ölçüm yapılacak hassasiyetin belirlenmesi ve buna uygun bir genişliğinde bir dönüştürücü seçilmelidir.
- Ölçüm hassasiyetinde önemli olan dönüşüm yapacak sistemin bir çözünürlüğüdür. Resolution = VREF/(2^n-1)
 - Örneğin 0-3.3V aralığı arası ölçüm yapabilen bir ADC ölçüm ünitesinin ölçebileceği minimum değer yaklaşık olarak formülden 8 bit çözünürlük için 12mV, 12 bit çözünürlük için 805uV'tur.

Çevrim Süresi

- https://controllerstech.com/adc-conversion-time-frequency-calculation-in-stm32/ linkten ADC için çevrim süresinin nasıl hesaplandığı ile ilgili yazıyı okuyabiliriz.
- STM32F407'de ADC birimin ulaşabileceği maximum hız 36 MHz'dir. Bu hız aynı zamanda ADC çözünürlüğü ile ters orantılıdır. Çözünürlük arttıkça ADC birimin ölçüm hızı düşmektedir.

ÇÖZÜNÜRLÜK 12 Bit 10 Bit 8 Bit	ADC ÇEVRİM HIZI
12 Bit	12 Cycle
10 Bit	10 Cycle
8 Bit	8 Cycle
6 Bit	6 Cycle

- Çevrim süresi hesabı için üç değere ihtiyaç var. Bunlar Cycles, Sampling Time ve Clock'tur.
- Cycles değeri seçilen Resolution değerine bağlıdır.
- Sampling Time ve Clock değerleri ise istediğimiz çevrim süresine göre değiştirebiliriz.
- Clock değeri ADC'nin bağlı olduğu clock hattına bağlıdır.
- Tüm işlemcilerde aynı mantıktır fakat formül işlemciye göre farklılık gösterebilir bunun için kaynaklardan bakılması gerekir.

Tconv = Sampling time + Cycles

ADC CLOCK

Çalışma Modları

- **Single Conversion Mode** (Tek Dönüşüm Modu): Bu mod, bir tek dönüşüm gerçekleştirildikten sonra ADC'nin otomatik olarak durmasını sağlar. Her dönüşüm, başlatma komutu ile başlatılır ve tamamlandığında ADC otomatik olarak durur.
- Continuous Conversion Mode (Sürekli Dönüşüm Modu): Bu modda ADC, başlatıldığı andan itibaren sürekli olarak dönüşümler gerçekleştirir. Otomatik durma olmadığı için dönüşümler devam eder, kullanıcı tarafından durdurulana kadar devam eder.
- **Scan Mode** (Tarama Modu): Bu modda ADC, belirli bir kanal listesini otomatik olarak tarama yeteneğine sahiptir. Tarama modu, birden fazla kanalı tek bir dönüşüm başlatma komutu ile sırayla ölçmeyi sağlar.
- **Discontinuous Mode** (Kesikli/Süreksiz Mod), kullanıcı belirli bir kanal listesinin ardışık olarak ölçülmesini sağlayabilir. Ancak, kanal arasında belirli bir gecikme bulunabilir.

Birim Yapısı

Register

Offset	Register	31	000	20	29	28	27	26	36	24	23	22	21	20	19	18	17	16	2 !	15	4 5	12	7	10	6	œ	7		•	2	4	3	2	-	0
0x00	ADC_SR	Reserved																				0/10	200	JEOC	EOC	AWD									
	Reset value																						0	0	o JSTRI	0	0	0							
0x04	ADC_CR1	Reserved Ookur Reserved NOM [2:0]													JDISCEN	DISCEN	JAUTO	AWD SGL	SCAN	JEOCIE	AWDIE	בוסטום	EOCIE	A	AW[ОСН	I[4:0]							
	Reset value							0	0	0	0	0								0 0 0 0				0	0	0						0	0	0	0
0x08	ADC_CR2	Re Se EXTEN[1:0] EXTEN[1:0] EXTSEL [3:0]							[3:0]	Re se rv ed	VSTA	TO TENIE	טבעו בואן ויסן	JEXTSEL [3:0]					Re	eserve	ed	ALIGN	EOCS	SQQ	DMA			Reserved					CONT	ADON	
	Reset value		0		0	0	0	0	0	0		0	0	0			0	_	_				0	0		0								0	0
0x0C	ADC_SMPR1		_	_	_	_	_		_			_		_	_	_	_	_	_	_	SMPx		_	_	_	_	_		_	_	_	_	_		
	Reset value	0	0	1	0	0	0	0	0	0	0	0	0	0		0	0	0			0 0		0	0	0	0	0	0		0	0	0	0	0	0
0x10	ADC_SMPR2	_	10		^	_	_	10	10	10	10	10	10	10	_		_				SMPx	_	Ι.	_	^	10	10	10		^	^	^	_		
	Reset value ADC_JOFR1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	<u> </u>	0 0	0	0	0	0	0	0	FFS		0	0	0	0	0	0
0x14	Reset value	-									F	Res	erve	d									0	0	0	0	0	_	_	0	0	0	0	0	0
	ADC_JOFR2											_											۲	U	U								U	U	_
0x18	Reset value	-									F	Res	erve	d									JOFFSET2[11:0]											0	
	ADC_JOFR3		_											_									۲												_
0x1C	Reset value	-									F	Res	erve	d									JOFFSET3[11:0]												0
	ADC_JOFR4		_									.,											۲	_	_	_	_	FFS	_				_		Ť
0x20	Reset value	1									F	Res	erve	d									0000000000000												
100000	ADC_HTR																HT[11:0]																		
0x24	Reset value										F	Res	erve	d									1 1 1 1 1 1 1 1 1 1 1 1												
000	ADC_LTR		_											_									LT[11:0]												
0x28	Reset value										,	Res	erve	a									0 0 0 0 0 0 0 0 0 0 0												
0x2C	ADC_SQR1		Reserved L[3:0] R														egula	r ch	channel sequence SQx_x bits								_								
UXZC	Reset value				-	(CS)	EIVE	·u			0	0	0	0	0	0	0	0	1	0	0 0	0													
	ADC_SQR2) Pa	9												Reg	gula	ch	anr	nel	sec	quenc	e S	Ωx_>	bit	3										
0x30	Reset value	Privad Reserved	Deser		0	0	0	0	0	0	0	0	0	0			0	0			0 0	0	0	0	0	0	0	0		0	0	0	0	0	0
	ADC_SQR3	Va.	Neg Neg						_					_	Re	gula	ch	anr	nel	sec	quenc	e S((_xÇ	bit	3		_								
0x34	Reset value	Recer	באבו		0	0	0	0	0	0	0	0				0	0	0	1		0 0								\perp			0	0	0	0
0x38	ADC_JSQR					F	Res	erve	ed				JL[_		_	_	_	_	jected				_			_							
	Reset value												0	0	0	0	0	0	1	0	0 0	0	0	0		0				0	0	0	0	0	0
0x3C	ADC_JDR1 Reset value		Reserved 0														0	0 0	0	0	0		0 0	_	_	_	0	0	0	0	0	0			
0x40	ADC_JDR2									Res	on/o	d												_	JE	ATA	4[1	5:0]		_				_	
0,40	Reset value									IXCS	CIVC	u								0	0 0	0	0	0		0				0	0	0	0	0	0
0x44	ADC_JDR3									Res	erve	d														ATA			_						
0,44	Reset value		Reserved 0 0 0 0													0	0	0	0	0	0		0	0	0	0	0	0							
0x48	ADC_JDR4									Res	erve	d											JDATA[15:0]												
	Reset value																		(0	0 0	0	0	0		0	_	_	_	0	0	0	0	0	0
0x4C	ADC_DR		Reserved												L			_		_	_	ar D		-	-	_		0	0	_					
	Reset value																		(0	0 0	0	0	0	0	0	0	0		0	0	0			

- ADC_SR (Status Register), ADC durumunu izleyen bu register, dönüşüm tamamlandığında, taşma veya analog bekçi olaylarının gerçekleştiğini belirten bayrakları içerir.
- ADC_CR1 (Control Register 1), Bu register, dönüşüm kesmelerini etkinleştirme, scan modunu kontrol etme, discontinuous modu ve enjekte dönüşümleri yönetme gibi temel ADC kontrol ayarlarını içerir.
- ADC_CR2 (Control Register 2), ADC'nin genel kontrolünü sağlayan bu register, ADC'nin etkinleştirilmesi, continuous conversion modu, DMA modu, kalibrasyon ve harici tetikleme seçenekleri gibi ayarları içerir.
- ADC_SMPR1 ve ADC_SMPR2 (Sampling Time Register 1 ve 2): Örnekleme süresini belirleyen bu registerlar, her bir kanalın örnekleme süresini ayarlamanızı sağlar.
- ADC_DR (Data Register), Dönüşüm sonuçlarını depolar; yani ADC tarafından ölçülen analog sinyalin dijital karşılığını içerir.

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	11	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
	ADC_CSR											OVR	STRT	JSTRT	JEOC	EOC	AWD	Post	Reserved		STRT	JSTRT	JEOC	EOC	AWD	Reserved		OVR	STRT	JSTRT	JEOC	EOC	AWD
0x00	Reset value	Reserved											0	0	0	0	0	000		0	0	0	0	0	0	1000		0	0	0	0	0	0
												ADC3							2			AD	C2			2			ADC1				
0x04	ADC_CCR	Reserved 5							TSVREFE	VBATE	F	Rese	erve	d	ADCPREI1-01	ייין אין אין	DAMA 14-01	נס. ון אוויס	SQQ	Reserved	DE	ELΑ	Y [3	:0]	Re	sen	ved		MUI	LTI	[4:0]		
	Reset value	0														0	0	0 0		0		0	0	0	0				0	0	0	0	0
0x08	ADC_CDR						Re	gula	r D	ATA	2[15	5:0]											Re	gula	r D	ATA	1[1	5:0]					
0,00	Reset value	0 0 0 0 0 0 0 0							0	0	0	0	0	0	0	0	0 0		0	0	0	0 0 0		0	0	0	0	0	0	0	0	0	

- ADC'deki "common registerlar," birden fazla ADC modülünün ortak kullanıldığı durumlar için genel ayarları ve durumu izlemek için tasarlanmış registerlardır. Bu registerlar, birden fazla ADC'nin ortak özelliklerini kontrol etmek ve izlemek için kullanılır.
- ADC_CSR (Common Status Register): ADC modülünün genel durumunu gösteren bu register, özellikle birden fazla ADC'nin kullanıldığı durumlarda ortak durumu izlemek için kullanılır.
- ADC_CCR (Common Control Register): Bu register, ortak ayarları içerir. Örneğin, referans voltajlarını (VREF+ ve VREF-) belirlemek gibi genel ADC kontrol parametrelerini içerir.
- ADC_CDR (Common Data Register): Birden fazla ADC kullanıldığında, çeşitli ADC'lerden gelen verileri depolar.

Ölçüm Yöntemleri

- ADC ölçümlerini almak için kullanılan farklı yöntemler şunlardır: Polling, Interrupt ve DMA
- http://www.elektrobot.net/stm32-adc-kullanimi-polling-interrupt-ve-dma/ ile
 https://controllerstech.com/stm32-adc-single-channel/ linkten Polling, Interrup ve DMA metodu kullanarak yapılan örnekleri inceleyebiliriz.
- **Polling** yöntemi, mikrodenetleyici ADC'nin çevrim süresince farklı bir işlem yapmaz ve çevrimin bitmesini bekler. Yapılacak ölçümün çok hızlı olmasının gerekmediği yada uzun zaman aralıklarında tek ölçüm yapılmasının yeterli olduğu durumlarda sıklıkla kullanılır.
- Interrupt yöntemi, ADC dönüşümü tamamlandığında bir kesme çağrısı gerçekleşir. Böylece
 mikrodenetleyicinin başka işlerle meşgulken dahi ADC verilerini işlemesine izin verir.
 Daha karmaşık uygulamalarda, dönüşüm tamamlandığında hemen yanıt verilmesi gereken durumlar için
 uygundur. Verimli kullanım, mikrodenetleyicinin diğer görevlere odaklanmasını sağlar.
- **DMA** yöntemi, ADC sonuçları doğrudan belleğe kopyalanır, bu da CPU'nun dahil olmadan çalışmasına olanak tanır. Büyük veri setlerini hızlı bir şekilde işlemek ve mikrodenetleyicinin CPU'sunu diğer görevlere odaklamak için uygundur. Bellek yönetimi konusunda dikkatlice ele alınması gerekebilir.
- DMA'nın Interrupt ile kullanımından en büyük farkı, ADC' nin çevrimi tamamladıktan sonra elde ettiği değeri hafıza bölgesine DMA tarafından yazılmasıdır. Böylece mikrodenetleyici hiç bir şekilde ADC işlemleri ile meşgul olmaz. Özellikle çok sayıda ölçümün ard arda ve hızlı yapılmasının istendiği durumlarda DMA kullanılır.