The Erdős Institute

# Foursquare Location Matching

Team Hopf Bundle: Halley Fritze, Jay Hathaway, Max Vargas

#### Motivation and Problem Statement

#### **Motivation:**

Businesses require reliable location information to run locals ads or expand to new cities.

#### **Problem:**

These location data sets contain a lot of noise, unstructured information, and incomplete or inaccurate attributes.

#### Goal:

Match data points describing the same POIs using machine learning.

#### **Data Extraction**

Foursquare is a location technology company which supplied our data via Kaggle.

| id               | name                          | latitude  | longitude | address                             | city                        | state     | zip   | country | url | phone       | categories             | point_of_interest |
|------------------|-------------------------------|-----------|-----------|-------------------------------------|-----------------------------|-----------|-------|---------|-----|-------------|------------------------|-------------------|
| E_00001d92066153 | Restaurante<br>Casa<br>Cofiño | 43.338196 | -4.326821 | NaN                                 | Caviedes                    | Cantabria | NaN   | ES      | NaN | NaN         | Spanish<br>Restaurants | P_809a884d4407fb  |
| E_7e0d8e9138dd56 | Casa<br>Cofiño                | 43.338130 | -4.326717 | Barrio de<br>los<br>Caviedes<br>s/n | Valdáliga<br>/<br>Cantabria | Spain     | 39593 | ES      | NaN | 34942708046 | Spanish<br>Restaurants | P_809a884d4407fb  |

The above two data points represent the same POI.

Additionally, they supplied a data set containing pairs of points with a boolean 'match' feature.

# **Exploratory Data Analysis**



- Many of our features are missing entries.
- Close distant pairs may not be the same POI.



### Feature Engineering



## **Baseline Training**

|                                     | Accuracy | Precision | Recall |
|-------------------------------------|----------|-----------|--------|
| Logistic Regression (Distance)      | 0.6889   | 1.0       | 0.6889 |
| Logistic Regression (Category+Name) | 0.7205   | 0.8994    | 0.7467 |
| K Nearest Neighbors                 | 0.7269   | 0.7612    | 0.8793 |
| Feed-Forward NN                     | 0.7259   | 0.9308    | 0.7390 |
| Random Forest                       | 0.7285   | 0.8644    | 0.7697 |

- Baseline models were trained on location, name, and category features.
- KNN, Neural Networks, and Random Forests achieved the best performances.
- Improvements depended on better data-cleaning techniques.

## Training with all features

|                     | Accuracy | Precision | Recall |
|---------------------|----------|-----------|--------|
| K Nearest Neighbors | 0.7731   | 0.8010    | 0.8922 |
| Feedforward NN      | 0.7771   | 0.9166    | 0.7924 |
| XGBoost             | 0.7842   | 0.8998    | 0.8086 |

- Models were trained with all features in the dataset.
- XGBoost yields the highest accuracy.
- Missing data was imputed using mean values (+2% accuracy for XGB)

- \* "1 Towne Centre Blvd #2800" and "1 Towne Centre Blvd" have a Tfldf similarity of 0.8036.
- \* "400 Fairview Ave" and <NaN> have a similarity score of 0.5375 due to mean imputation.

### Further Improvements

- Consider using BERT as our vectorizer for feature engineering.
- Develop better cleaning techniques to improve accuracy
- Analyze reasons behind false positives and false negatives
- Better zip-code processing



Thank you to Akul and the Erdos Institute!