DLP Hash Theory

A collision resistant hash function using DLP can be formulated as follows: $f(x,y) = g^x \times h^y \mod p$ where g is a primitive root of p, h is another generator from the same cyclic group and p is a prime.

Proof that the above formulation is collision resistant:

Assume that (x_1, y_1) and (x_2, y_2) lead to a collision. Then, $f(x_1, y_1) = f(x_2, y_2)$

That implies that,

 $g^{x_1} \times h^{y_1} \bmod p = g^{x_2} \times h^{y_2} \bmod p$

Implies,

 $g^{x_1-x_2} \bmod p = h^{y_2-y_1} \bmod p$

Assume $h = g^u \mod p$

This implies that $g^{x1-x2-z\times(y2-y1)} \mod p = 1$, i.e. $g^a \mod p = 1$. This is highly improbable, as g is given to be the primitive root of p.