PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-214744

(43) Date of publication of application: 06.08.1999

(51)Int.CI. H01L 33/00

27.01.1998

(21)Application number : 10-013867

(71)Applicant: NICHIA

NICHIA CHEM IND LTD

(72)Inventor:

YANAGIMOTO TOMOYA NAGAHAMA SHINICHI

NAKAMURA SHUJI

(54) NITRIDE SEMICONDUCTOR LIGHT-RECEIVING ELEMENT

(57)Abstract:

(22)Dat of filing:

PROBLEM TO BE SOLVED: To realize a laser element of a structure, wh rein light which leaks mainly in the side of a substrate is effectively made to reflect to improve the light extraction efficiency of a light-emitting element and at the same time, effective reflecting mirrors, which are used as r sonators, are provided in the interior of a semiconductor layer. SOLUTION: First, reflecting mirrors 100, which are not grown with a nitride s miconductor film on the surfaces thereof or have a property to hardly grow the nitride semiconductor film on the surfaces thereof and make light mission from an active layer reflect, are partially formed on a base layer consisting of a first nitride semiconductor layer 2 formed on a h t rosubstrate 1, consisting of a material different from a nitride s miconductor material. Moreover, a second nitride semiconductor layer 3 grown in such a way that the layer 3 reaches from the window parts of the mirrors 100 to the surface of the mirrors 100 is used as a substrate, and a plurality of nitride semiconductor layers including at least the active layer ar laminated on the substrate, whereby the light emission from the active lay r is made to be reflected upwards by the mirrors 100.

LEGAL STATUS

[Date of request for examination]

01.02.2001

[Date of sending the examiner's decision of rejection]

[Kind f final disposal of application other than the examin r's decision of rejection or application converted r gistration]

[Date of final disposal for application]

[Pat nt number]

3301601

[Date of registration]

26.04.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rjction]

[Dat of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This d cument has be n translat d by c mputer. So the translati n may not reflect the original precisely.
- 2. *** shows the w rd which can n t b translat d.
- 3.In the drawings, any words ar not translat d.

CLAIMS

[Claim(s)]

[Claim 1] On the ground layer which consists of the 1st nitride semiconductor formed on the different-species substrat which consists of a different material from a nitride semiconductor Or it has the property to be hard to grow up. or [that a nitrid semiconductor does not grow up to be a front face] — And the 1st reflecting mirror which reflects luminescenc of a barrier layer is formed partially, and the 2nd nitride semiconductor which grew so that the front face of the reflecting mirror might be reached is further used as a substrate from the window part of the 1st reflecting mirror. The nitride s miconductor light emitting device to which the laminating of two or more nitride semiconductor layers which contain a barrier layer at least on the substrate is carried out, and they are characterized by the bird clapper.

[Claim 2] The nitride semiconductor light emitting device according to claim 1 which the 2nd reflecting mirror is partially form d on the nitride semiconductor layer of the above 2nd, and two or more nitride semiconductor layers which contain a barrier layer at least on the substrate grow by using as a substrate the 3rd nitride semiconductor which grew from the wind w part of the 2nd reflecting mirror so that the front face of the 2nd reflecting mirror might be reached, and is charact rized by the bird clapper.

[Claim 3] The 2nd reflecting mirror of the above is a nitride semiconductor light emitting device according to claim 2 charact rized by being formed on the 2nd nitride semiconductor layer corresponding to the position of the window part of the 1st reflecting mirror.

[Claim 4] The nitride semiconductor light emitting device according to claim 1 to which area of the aforementioned reflecting mirror is characterized by being larger than the area of a window part.

[Translation done.]

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.

3.In th drawings, any w rds are not translated.

DETAILED DESCRIPTION

[D tailed Description of the Invention]

[0001]

[Industrial Application] this invention relates to the light emitting device which consists of a nitride semiconductor (InaAlbGa1-a-bN, 0<=a, 0<=b, a+b<=1) used for light emitting diode (Light Emitting Diode), a laser diode (LD), a super lumin scent diode (SLD), etc.

[0002]

[Description of the Prior Art] The nitride semiconductor is already put in practical use as blue Light Emitting Diode and a gr en Light Emitting Diode. These Light Emitting Diodes have terrorism structure to the double by which the laminating of n typ and the p type nitride semiconductor was carried out on silicon on sapphire, and the barrier layer has the nitride semiconductor layer of quantum well structure. The nitride semiconductor light emitting device which constitutes Light Emitting Diode is divided into two kinds of modes, the case where this silicon—on—sapphire side is made into a luminescence observation side side, and when a nitride semiconductor layer side is made into a luminescence observation side side. Since the chip size became large, and it generally uses the property of transparent sapphire positively although handling nature also has the fault which becomes bad in case an electrode is connected to a base material like a leadframe since positive and the negative electrode are prepared in the same side side when a nitride semiconductor makes a silicon—on—sapphir side a luminescence observation side for example, there is an advantage that optical ejection efficiency becomes good. On the oth r hand, although a chip size can also be made small and handling nature is also very excellent compared with the case of the former when making a nitride semiconductor side into a luminescence observation side, the light which leaks to a silic n—on—sapphire side has the fault that it is absorbed by the adhesives of a leadframe and optical ejection efficiency becomes bad. The direction of the latter with handling nature sufficient [Light Emitting Diode generally marketed] is chos n.

[0003]

[Probl m(s) to be Solved by the Invention] Although the technology which forms a light reflex film in a silicon-on-sapphire front fac was also proposed in order to reflect the light which leaks to a silicon-on-sapphire side in the case of the latter, it was not what it can still be satisfied [with this technology] of enough. Moreover, in the technology which forms a reflecting mirror in the interior of a semiconductor layer like a surface emission-type laser element, when a reflecting mirror is pr par d in a silicon-on-sapphire side, it is in a difficult inclination that distance with a barrier layer is too large, and us a r fl cting mirror as a resonator.

[0004] It is in realizing the laser element which has the effective reflecting mirror which this invention is made in view of such a situation, and the place made into the purpose makes reflect effectively the light which leaks mainly to a substrat side, and is to raise the optical ejection efficiency of a light emitting device, and serves as a resonator inside a semic inductor layer.

[0005]

[M ans f r Solving the Problem] The light emitting device of this invention on the ground layer which consists of the 1st nitrid semiconductor formed on the different-species substrate which consists of a different material from a nitride s mic nductor Or it has the property to be hard to grow up. or [that a nitride semiconductor does not grow up to be a front face] — And the 1st reflecting mirror which reflects luminescence of a barrier layer is formed partially, and the 2nd nitride semiconductor which grew so that the front face of the reflecting mirror might be reached is further used as a substrate from the window part of the 1st reflecting mirror. The laminating of two or more nitride semiconductor layers which contain a barrier layer at least on the substrate is carried out, and they are characterized by the bird clapper. [0006] Furthermore, the 2nd reflecting mirror is partially formed on the nitride semiconductor layer of the above 2nd, from the window part of the 2nd reflecting mirror, by using as a substrate the 3rd nitride semiconductor which grew so that th fr nt fac of the 2nd reflecting mirror might be reached, two or more nitride semiconductor layers which contain a barrier lay r at least on the substrate grow, and the light emitting device of this invention is characterized by the bird clapper. [0007] As for the 2nd reflecting mirror of the above, it is desirable to be formed on the 2nd nitride semiconductor layer corresponding to the position of the window part of the 1st reflecting mirror. In addition, in this invention, you may grow up th s miconductor layer which consists of material which a different-species substrate, the 1st reflecting mirror, a ground lay r, the nitride semiconductor layer containing the barrier layer above the 2nd nitride semiconductor, and the 2nd nitride s mic nductor touch, and do not nec ssarily n d to b f rm d, for xample, is different from a nitrid s miconductor am ng them.

[0008] Mor over, in the light mitting d vice f this inventi n, ar a of the aforemention d r flecting mirr r is characterized by b ing larger than the area of a window part.

[0009]

[Emb dim nts of the Invention] <u>Drawing 1</u> is the typical cross section showing the structure of the nitridesemic nductor wafer betained in ach process until it grows up the 2nd nitrides miconductor lay refrom a different—species substrate in the light emitting device of this invention.

[0010] In rder t gr w up the substrate which c nsists of the 2nd nitride semiconductor 3, as first shown in <u>drawing 1</u> (a), on the different—speci s substrate 1, the ground lay r 2 which c nsists of the 1st nitrid semic nductor is gr wn up, and http://www4.ipdl.jpo.go.jp/cgi-bin/tran_web_cgi_ jje 03/09/03

the 1st reflecting mirr r 100 is partially formed in the ground lay r 2. The different-spicies substrate 1 consists of a different material from the nitride semiconductor priposed convintionally, and the material with which a nitrid semiconductor can griw up to be the front face through a buffir layer is chosen. The xide system substrate which carries out grid adjustment als in it with a spin I (MgAl 204) bisides the sapphire put in practical use, ZnO, GaAs, Si and SiC, and a nitride simic inductor is priposed.

[0011] The ground layer 2 can grow in 200 degr es C – 900 degr es C low temperatur through the buffer layer which consists of AlXGa1-XN (0<=X<=1) by growing up a nitrided semiconductor at an elevated temperature rather than the buffer layer. In this invention, it is called a ground layer including a nitride semiconductor including the buffer layer. That is, the ground layer may consist of two or more nitrided semiconductor layers. However, in order that a ground layer may grow on a different-species substrate, according to factors, such as a coefficient-of-thermal-expansion difference of a different-species substrate and a ground layer, and grid mismatching, it has very many crystal defects, for example, has 109 more than [/cm / 2] penetration transposition, and does not serve as a nitride semiconductor substrate. As most desirable ground layer, undoping or n type high impurity concentration grows up three or less 1x1017-/cm GaN through a buffer layer. In addition, the buffer layer which consists of nitride semiconductors, such as ZnO, and a different semiconductor between a ground layer and a different-species substrate can also be grown up.

[0012] The 1st reflecting mirror 100 formed on the ground layer 2 has the operation which lessens the crystal defect of the 2nd nitride semiconductor layer which grows up to be a longitudinal direction so that the front face of a reflecting mirror may be reached [from the window part of a reflecting mirror] while having the operation which reflects luminescence of a barrier layer in the upper part. A reflecting mirror is preferably formed in the shape of a stripe, although what configuration is sufficient as long as it forms partially on a shape of shape for example, of stripe, and dot, in-a-grid-pattern **, and ground layer, or [that a nitride semiconductor does not grow up to be the front face of the reflecting mirror as a material far floting mirror] — or if it is the material which has the property to be hard to grow up and is the material which refl cts luminescence of a barrier layer in a barrier-layer side, the multilayer which what material is sufficient as, for xampl , consists of the dielectric of SiO2, SixNy, TiO2, TixNy, and ZrO2 grade can be chosen It acts as a reflecting mirror by carrying out the laminating of these dielectrics so that it may be set to lambda/4n (lambda:luminescence wavelength, refractive index of n:dielectric). Moreover, the metal which has the property in which luminescence of a barrier layer is reflected with the metal of silver white, and a nitride semiconductor cannot grow up to be a front face easily like Pt, nick I, Cr. and Ag is sufficient. In addition, as for a reflecting mirror, it is desirable to choose the material which has the melting point to which a dielectric multilayer, a metal, etc. bear the growth temperature of the 2nd nitride semiconductor. [0013] Although the 1st reflecting mirror 100 is formed on the ground layer which consists of the 1st nitride semiconductor which gr w on the different-species substrate 1 as shown in drawing 1, it can also be directly formed on the differentspecies substrate 1. For example, when sapphire is used for the different-species substrate 1, it is desirable to grow up the 1st nitride semiconductor 2 on sapphire when growing up the 2nd nitride semiconductor 3 with more few crystal defects. On the other hand, when using for a substrate the substrate which carried out grid adjustment with the nitride s miconductor, and a substrate with a near lattice constant, it is also possible to form the 1st reflecting mirror 100 in c ntact with a different-species substrate directly.

[0014] Next, as shown in drawing 1 (b), the 2nd nitride semiconductor 3 is grown up from the window part of the ground lay r in which the aforementioned reflecting mirror was formed. Since the reflecting mirror 100 has the property in which a nitride semiconductor cannot grow up to be a front face easily, as the 2nd nitride semiconductor 3 grows from a window part and is shown in a broth and (b), it grows up to be a longitudinal direction in the upper part of the 1st reflecting mirror 100. If growth is furthermore continued, as shown in <u>drawing 1</u> (c), the 2nd nitride semiconductor which grows up to be a longitudinal direction and lengthwise will be about connected in the upper part of a reflecting mirror center section, and will s rve as a nitride semiconductor substrate. When the 2nd nitride semiconductor 3 is grown up, the crystal defect of th 2nd nitride semiconductor which grows up to be a longitudinal direction stops thus, extending from a ground layer by covering the crystal defect of the ground layer 2 with the reflecting mirror. Moreover, as the crystal defect extended fr m a window part is the 2nd nitride semiconductor layer, in order to stop, after the 2nd nitride semiconductor layer growth, th crystal d fect which appears in a front face decreases very much, for example, becomes 2 or less [108 //cm] and 2 or less [107 more //cm]. The 2nd nitride semiconductor 3 is the most desirable when it produces a crystalline good substrat that undoping or n type high impurity concentration grows up three or less 1x1017-/cm GaN. [0015] As a still more desirable mode, as shown in <u>drawing 1</u> (d), the 2nd reflecting mirror 101 as well as [still] the 1st r fl cting mirror is formed on the 2nd nitride semiconductor layer, and the 3rd nitride semiconductor layer 4 is similarly grown up into the upper part of this 2nd reflecting mirror 101. By forming the 2nd reflecting mirror 101, the crystal def ct of the 3rd nitride semiconductor 4 grown up into the upper part of the 2nd reflecting mirror decreases further. That is

b cause there are few crystal defects of the 2nd nitride semiconductor layer 3 used as a ground. As preferably shown in (d), it se s superficially from a nitride semiconductor layer side by forming the position of the 2nd reflecting mirror 101 in the front face of the 2nd nitride semiconductor layer 3 corresponding to the window part of the 1st reflecting mirror, and since it becomes the form where all were covered with the reflecting mirror, optical ejection efficiency improves further. Mr ov r, when the crystal defect of the 2nd nitride semiconductor 3 has appeared in the window part, for example, for a wrap reason, the crystal defect of the 3rd nitride semiconductor layer which grows up to be a longitudinal direction on the 2nd reflecting mirror decreas s the window part further with the 2nd reflecting mirror. That is, as for the 2nd reflecting mirror 101, it is most desirable to f rm on the 1st nitride s miconductor layer 3 to which the crystal defect has appeared in the front face. Here we r, y u may f rm the 3rd r flecting mirror at random.

[0016] The peration of the reflecting mirror of this invention is as follows. The nitride semiconductor layer which grow from the wind wind wind part of a reflecting mirror and growing to be all ngitudinal direction on the surface of the reflecting mirror has very followed the control of the reflecting mirror has very followed to the control of the reflecting mirror has very followed to the control of the reflecting mirror has very followed to the control of the reflecting mirror has very followed to the control of the reflecting mirror followed the control of the contr

peration which reflects luminescence f a barrier layer in a barrier-layer side which leaks t a substrate side decr as s, and optical j ction ffici ncy of a reflecting mirr r improves in the light emitting devic which mak s a semiconductor side a luminescenc bservation side. The reflective section becomes large and optical ejection fficiency improves by making area of a reflecting mirrer larger than the area of a window part, the number of the crystal dects extended from a window part also decreas s, and a still more desirable light emitting device can be realized. As stated also in advance preferably, since it becomes the form where the reflecting mirror was wearing all the fields substantially on the flat surface, by arranging a reflecting mirror in twent reflecting mirror was wearing all the fields substantially on the flat surface, by arranging a reflecting mirror in twent reflecting mirror was wearing all the fields substantially on the flat surface, by arranging a reflecting mirror in twent reflecting mirror was wearing all the fields substantially on the flat surface, by arranging a reflecting mirror in twent reflecting mirror was wearing all the fields substantially on the flat surface, by arranging a reflecting mirror in twent reflecting mirror was wearing all the fields substantially on the flat surface, by arranging a reflecting mirror in twent reflecting mirror was wearing all the fields substantially on the flat surface, by arranging a reflecting mirror in twent reflective surface emission—type laser element is reflecting mirror was wearing all the fields substantially on the flat surface, by arranging a reflecting mirror in twent reflective surface, and in the field surface which we have a surface emission—type laser element with a surface which with a barrier layer is near, and if we have a surface which we h

[Example] [Example 1] drawing 2 is the type section view showing the structure of the Light Emitting Diode element conc rning an example 1. Based on this drawing, an example 1 is explained below. First, the MOVPE method is used on the different-species substrate 1 which consists of sapphire, and the 1st nitride semiconductor layer 2 is grown up. The 1st nitride semiconductor layer 2 consists of a buffer layer which consists of GaN which grew at 500 degrees C sequentially from a different-species substrate side, and GaN which grew at 1050 degrees C on the buffer layer.

[0018] N xt, by the CVD system, all over the 1st nitride semiconductor layer 2, a wafer is picked out from a reaction contain r, and two or more dielectric multilayers which consist of SiO2 and SiN are formed by turns so that single thickn ss may be set to lambda/4n, and a dielectric multilayer is formed.

[0020] N xt, after forming the 1st reflecting mirror 100, a wafer is returned in a MOVPE reaction container and the 2nd nitride s miconductor layer 3 which consists of undoping GaN at 1050 degrees C is grown up by 20-micrometer thickness. [0021] A wafer is picked out from a reaction container after the 2nd nitride semiconductor layer 3 growth, and after forming again the dielectric multilayer which consists of SiO2 and SiN all over the 2nd nitride semiconductor layer 3 in a CVD syst m, from selective etching, it considers as stripe width of face of 10 micrometers, and 2 micrometers of window parts, and considers as the 2nd reflecting mirror 102. However, it forms so that the stripe of the 1st reflecting mirror 100 and the 2nd reflecting mirror 101 may become parallel, and it sees from a flat surface, and is made for the window part of the 1st r fl cting mirror 100 to be closed as the formation position of the 2nd reflecting mirror 101 is shown in drawing 2. [0022] Next, a wafer is returned in a reaction container and the 3rd nitride semiconductor layer 4 which consists of undoping GaN at 1050 degrees C is grown up by 20-micrometer thickness.

[0023] Then, 4 micrometers of the n side contact layers 11 which consist of n type GaN which carried out Si dope at 1050 d gr s C are grown up, and 0.1 micrometers of the n side clad layers 12 to which Si concentration consists of GaN fewer than the n side contact layer on it are grown up.

[0024] N xt, the barrier layer 13 which consists of undoping In0.1Ga0.9N which has the single quantum well structure of 30A of thickness at 800 degrees C is grown up, 0.1 micrometers of the p side clad layers 14 which consist of Mg dope p typ aluminum0.1Ga0.9N at 1050 degrees C on it are grown up, and 0.5 micrometers of the p side contact layers 15 which b c me the last from Mg dope p type GaN are grown up.

[0025] After picking out a wafer from a reaction container after a reaction end, performing annealing at 700 degrees C am ng nitrogen-gas-atmosphere mind and forming p type layer into low resistance further, as shown in <u>drawing 2</u>, etching is performed from the p side contact layer 15 side, and the front face of the n side contact layer 11 is exposed, then, the front fac of the p side contact layer of the best layer — almost — the whole surface — ohmic one of a translucency — the pel ctrode 16 of business is formed and p pad electrode 17 for bondings is formed on it On the other hand, the next of t

[0026] After grinding silicon on sapphire and making it thin finally, when it separated into the chip of 350-micrometer angle and considered as the blue Light Emitting Diode element, as compared with the conventional Light Emitting Diode element which do s not prepare a reflecting mirror, it improved 50% or more with the output, and improved several or more times from the element life. Moreover, pressure-proofing of an opposite direction also improved 50% or more as compared with the conventional thing. Since the 2nd and 3rd nitride semiconductor serves as a substrate, the crystal defect of this of the lement itself decreases and it can be imagined to be that pressure-proofing of an opposite direction and whose element life improved.

[0027] [Exampl 2] drawing 3 is the type section view showing the structure of LD I ment concerning the exampl 2 of this invention, and specifically shows the structure of a surface emission—type laser lement. Based in this drawing, an example 2 is explained by 1 w.

[0028] The laminating of the 2nd reflecting mirror 101 of the shap of a stripe which consists of a GaN buff relay report that reflecting mirror 100 of the shape of a strip which consists for a displayer, the 2nd nitride semiconductor layer 3 which consists of undoping GaN, and a displayer, the 2nd nitride semiconductor layer 3 which consists of undoping GaN, and a displayer like an example 1 in the different—species substrated 1 which consists of sapphire, and the 3rd nitrides is miconducted to 1 and 1 an

[0029] Then, after gr wing up 4 micr m ters of the n side contact lay rs 21 which consist of Si d pe n typ GaN, th

laminating f the undoping aluminum0.15Ga0.85N lay r and the Si dope GaN layer of 25A of thickness of 25A of thickness is carried out by turns, and the n side clad layer 22 which consists f the superlattice of the 0.4 micrometers of the total thickness is grown up.

[0030] Next, the laminating of the well layer which consists of the barrier lay r and 40A undoping In0.2Ga0.8N which c nsists of 40A undoping In0.01Ga0.95N is carried out by turns, finally it is finished as a barrier layer, and the barrier lay r 23 of the multiplex quantum w II structure (MQW) of th 440A of the total thickness is gr wn up.

[0031] Next, the laminating of 25A undoping aluminum0.15Ga0.85N layer and a 25A Mg dope GaN layer is carri d out by turns, and the p side clad layer 24 which consists of a superlattice layer of the consists of the consists of a superlattice layer of the consists of the consists

[0032] A wafer is picked out from a reaction container after the p side clad layer growth, and the protective coat which consists of SiO2 which has a round shape is formed in the front face of the p type clad layer. However, the position of the mask is smaller than the 2nd reflecting mirror 101 of the above, and it is formed so that it may become right above the reflecting mirror.

[0033] After protective coat formation, again, a wafer is moved in a reaction container and the current blocking layer 26 which consists of Si dope n type aluminum0.1Ga0.9N is formed in the front face of the p side clad layer 24 in which the which consists of Si dope n type aluminum0.1Ga0.9N is formed in the front face of the p side clad layer 24 in which the which consists of Si dope n type aluminum0.1Ga0.9N is formed in the front face of the p side clad layer 24 in which the which consists of Si dope n type aluminum0.1Ga0.9N is formed in the front face of the p side clad layer 24 in which the which the consists of Si dope n type aluminum0.1Ga0.9N is formed in the front face of the p side clad layer 24 in which the which the consists of Si dope n type aluminum0.1Ga0.9N is formed in the front face of the p side clad layer 24 in which the which the consists of Si dope n type aluminum0.1Ga0.9N is formed in the front face of the p side clad layer 24 in which the which the consists of Si dope n type aluminum0.1Ga0.9N is formed in the front face of the p side clad layer 24 in which the which the class of the p side clad layer 24 in which the which the class of the p side clad layer 25 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side clad layer 26 in which the class of the p side cl

[0034] After picking out a wafer from a reaction container after current blocking-layer 26 formation and carrying out diss lution removal of the protective coat, the p side contact layer 25 which consists of Mg dope p type GaN on the curr nt blocking layer 26 in a reaction container again is grown up.

[0035] After a reaction end, annealing is performed and p layers are further formed into low resistance, as well as an example 1 While forming the n electrode 28 in the n side contact layer 22 which was made to expose a part of n side example 1 While forming the n electrode 28 in the n side contact layer 22 by etching, and was exposed After forming the p electrode 27 in the front face of the p side contact lay r, contact layer 22 by etching, and was exposed After forming the p electrode 27 in the front face of the p side contact lay r, when it considered as the laser element of structure as divided a wafer into a chip and shown in drawing 3, continuous when it considered as the laser element of structure and the 410nm laser beam was observed from the silicon-on-sapphire side. [0036] [Example 3] drawing 4 is the type section view showing the structure of LD element concerning the example 3 of [0036] [Example 3] drawing 4 is the type section view showing the structure of LD element. Based on this drawing, an example 3 is explained below.

[0037] In an example 1, in case the 2nd nitride semiconductor layer 3 is grown up after forming the 1st reflecting mirror 100 of the shape of a stripe which consists of a GaN buffer layer, the 1st nitride semiconductor layer 2 which consists of undoping GaN, and a dielectric multilayer on the different—species substrate 1 which consists of sapphire, GaN which doped Si 5x1016—/cm3 is grown up by 60—micrometer thickness. Thickness of this 2nd nitride semiconductor layer is set to 60 micrometers or more for removing a different—species substrate behind and using the 2nd nitride semiconductor layer as a substrate. When thinner than 60 micrometers, the 2nd nitride semiconductor layer breaks during different—species substrate rem val, and it is in the inclination for element production to become difficult. Furthermore, the little dope of the n typ impurity is carried out because the 2nd nitride semiconductor layer 3 and the very thing which are exposed are used as a impurity is carried out because the 2nd nitride semiconductor layer 3 and the very thing which are exposed are used as a contact layer after removing a different—species substrate. When doping n type impurity in the 2nd nitride semiconductor layer which furthermore serve as a substrate, it is desirable to be referred to as layer and the 3rd nitride semiconductor layer which furthermore serve as a crystalline good substrate is mic nductor layer will increase if it is made [more] than it, and cannot serve as a crystalline good substrate easily. [0038] The 2nd reflecting mirror 101 is formed like an example 1 after the 2nd nitride semiconductor layer 3 growth. 15 micr meters of 3rd nitride semiconductor layer 4 which consists of undoping GaN are grown up after the 2nd reflecting mirror formation.

[0039] Next, the crack prevention layer 20 which consists of In0.05Ga0.95N which doped Si is grown up by 0.15-microm ter thickness. By using the crack prevention layer 20 as the nitride semiconductor containing In, a crack stops easily being able to g into the nitride semiconductor layer containing aluminum which this layer grows up behind by becoming a buffer coat. In addition, this crack prevention layer cannot be overemphasized by that you may put into the laser element of an example

[0040] The rest carries out the laminating of the n side clad layer 22 which consists of a superlattice, the barrier layer 23 of MQW, the p side clad layer 24 which consists of a superlattice, the current blocking layer 26, and the p side contact layer 25 like an example 2.

[0041] After a reaction end, after performing annealing and forming p layers into low resistance further, it grinds from a sapphire side and the different-species substrate 1, the 1st nitride semiconductor layer 2, and the 1st reflecting mirror 101 are r moved. Then, after preparing ring-like n electrode in the front face of the 2nd exposed nitride semiconductor lay r 2, the wafer was separated in the shape of a chip, when considered as the laser element of structure as shown in drawing 4, the wafer was separated in the shape of a chip, when considered as the laser element of structure as shown in drawing 4, the ninuous oscillation was shown in the room temperature and, similarly the 410nm laser beam was observed from the 2nd nitride semiconductor layer 3 side. In addition, in case the n electrode 28 is formed, in order to improve the ohmic contact of the 1 ctrode contact surface, t chnology, such as ion implantation, may be used and n type impurity may be doped on the front face of the 2nd nitride semiconductor layer at high concentration.

[Eff ct f the Invention] By the light mitting device of this inv nti n, as xplain d above, since th crystal defect of a nitride semiconductor layer which grew fr m th wind w part f a r fl cting mirr r and gr w up to be a longitudinal direction n th surface f th refl cting mirror decr as s v ry much, the crystal defect f two or m re nitrid semiconductor layers containing th barrier lay r grown up on the substrate decreases, and th reliability of an el m nt improv s. M r ov r, sinc a r fl cting mirr r reflects lumin sc nce of a barri r lay r in a barrier—layer side in a n ar distance of d z ns of micrometers r less, the optical ejection efficiency of a light emitting d vice improv s. Therefore, if this refl cting mirror is used positiv ly, a surface emissi n—type las r element is realizable.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This docum nt has been translated by computer. So the translation may not reflict the riginal precisely.
- 2.*** shows the word which can not b translated.
- 3.In th drawings, any words are not translat d.

DESCRIPTION OF DRAWINGS

[Bri f Description of the Drawings]

Drawing 1 The type section view showing partially the structure of the wafer for explaining each process at the time of manufacturing the light emitting device of this invention, respectively.

[Drawing 2] The type section view showing the structure of the light emitting device of an example 1.

[Drawing 3] The type section view showing the structure of the light emitting device of an example 2.

[Drawing 4] The type section view showing the structure of the light emitting device of an example 3.

[Description of Notations]

- 1 ... Different-species substrate
- 2 ... 1st nitride semiconductor layer
- 3 ... 2nd nitride semiconductor layer
- 4 ... 3rd nitride semiconductor layer
- 11 21 ... The n side contact layer
- 12 22 ... The n side clad layer
- 13 23 ... Barrier layer
- 14 24 ... The p side clad layer
- 15 25 ... The p side contact layer
- 20 ... Crack prevention layer
- 26 ... Current blocking layer
- 16 27 ... p electrode
- 17 ... p pad electrode
- 18 28 ... n electrode
- 100 ... The 1st reflecting mirror
- 101 ... The 2nd reflecting mirror

[Translation done.]

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-214744

(43)公開日 平成11年(1999)8月6日

(51) Int. Cl. 6

識別記号

H 0 1 L 33/00

FΙ

H O 1 L 33/00

Α

С

審査請求 未請求 請求項の数4

ΟL

(全6頁)

(21)出願番号

特願平10-13867

(22)出願日

平成10年(1998)1月27日

(71)出願人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(72)発明者 柳本 友弥

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(72)発明者 長濱 慎一

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(72)発明者 中村 修二

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(54) 【発明の名称】窒化物半導体発光素子

(57)【要約】

【目的】 主として基板側に漏れる光を有効に反射させて、発光素子の光取り出し効率を向上させることにあり、また半導体層内部に共振器となる有効な反射鏡を有するレーザ素子を実現することにある。

【構成】 窒化物半導体と異なる材料よりなる異種基板上に形成された第1の窒化物半導体よりなる下地層の上に、表面に窒化物半導体が成長しないか若しくは成長しにくい性質を有し、かつ活性層の発光を反射する第1の反射鏡が部分的に形成されており、さらにその第1の反射鏡の窓部から、その反射鏡の表面に至るように成長された第2の窒化物半導体を基板として、その基板の上に少なくとも活性層を含む複数の窒化物半導体層が積層されいることにより、第1の反射鏡で活性層の発光を上方に反射させる。

1

【特許請求の範囲】

【請求項1】 窒化物半導体と異なる材料よりなる異種基板上に形成された第1の窒化物半導体よりなる下地層の上に、表面に窒化物半導体が成長しないか若しくは成長しにくい性質を有し、かつ活性層の発光を反射する第1の反射鏡が部分的に形成されており、さらにその第1の反射鏡の窓部から、その反射鏡の表面に至るように成長された第2の窒化物半導体を基板として、その基板の上に少なくとも活性層を含む複数の窒化物半導体層が積層されてなることを特徴とする窒化物半導体層の上に第2の

【請求項2】 前記第2の窒化物半導体層の上に第2の反射鏡が部分的に形成され、その第2の反射鏡の窓部から、第2の反射鏡の表面に至るように成長された第3の窒化物半導体を基板として、その基板の上に少なくとも活性層を含む複数の窒化物半導体層が成長されてなることを特徴とする請求項1に記載の窒化物半導体発光素子。

【請求項3】 前記第2の反射鏡は、第1の反射鏡の窓 部の位置に対応した第2の窒化物半導体層の上に形成さ れていることを特徴とする請求項2に記載の窒化物半導 20 体発光素子。

【請求項4】 前記反射鏡の面積が、窓部の面積よりも 大きいことを特徴とする請求項1に記載の窒化物半導体 発光素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は発光ダイオード(LE D)、レーザダイオード(LD)、スーパールミネッセントダイオード(SLD)等に使用される窒化物半導体(In $_a$ A $_b$ Ga $_{1-a-b}$ N、 $0 \le a$ 、 $0 \le b$ 、 $a+b \le 1)よりなる発光素子に関する。$

[0002]

【従来の技術】窒化物半導体は青色LED、緑色LED として既に実用化されている。これらLEDはサファイ ア基板上にn型、p型の窒化物半導体が積層されたダブ ルヘテロ構造を有し、活性層は量子井戸構造の窒化物半 導体層を有している。LEDを構成する窒化物半導体発 光素子は、このサファイア基板側を発光観測面側とする 場合と、窒化物半導体層側を発光観測面側とする場合の 2種類の態様に分けられる。一般に窒化物半導体は正と 40 負の電極が同一面側に設けられているため、サファイア 基板側を発光観測面とした場合、例えばリードフレーム のような支持体に電極を接続する際に、チップサイズが 大きくなり、ハンドリング性も悪くなる欠点があるが、 透明なサファイアの性質を積極的に利用しているので、 光取り出し効率が良くなるという利点がある。一方、窒 化物半導体側を発光観測面とする場合、チップサイズも 小さくすることができ、ハンドリング性も前者の場合に 比べて非常に優れているが、サファイア基板側に漏れる 光は、例えばリードフレームの接着剤に吸収されて光取 50

り出し効率が悪くなるという欠点がある。一般に市販されているLEDは、ハンドリング性の良い後者の方が選択されている。

2

[0003]

【発明が解決しようとする課題】後者の場合、サファイア基板側に漏れる光を反射させるために、サファイア基板表面に光反射膜を形成する技術も提案されているが、この技術では未だ十分満足できるものではなかった。また、面発光レーザ素子のような半導体層内部に反射鏡を形成する技術において、サファイア基板側に反射鏡を設けると活性層との距離が大きすぎて、反射鏡を共振器とするのが難しい傾向にある。

【0004】本発明はこのような事情を鑑みてなされたものであって、その目的とするところは、主として基板側に漏れる光を有効に反射させて、発光素子の光取り出し効率を向上させることにあり、また半導体層内部に共振器となる有効な反射鏡を有するレーザ素子を実現することにある。

[0005]

【課題を解決するための手段】本発明の発光素子は、窒化物半導体と異なる材料よりなる異種基板上に形成された第1の窒化物半導体よりなる下地層の上に、表面に窒化物半導体が成長しないか若しくは成長しにくい性質を有し、かつ活性層の発光を反射する第1の反射鏡が部分的に形成されており、さらにその第1の反射鏡の窓部から、その反射鏡の表面に至るように成長された第2の窒化物半導体を基板として、その基板の上に少なくとも活性層を含む複数の窒化物半導体層が積層されてなることを特徴とする。

30 【0006】さらに、本発明の発光素子は、前記第2の 窒化物半導体層の上に第2の反射鏡が部分的に形成され、その第2の反射鏡の窓部から、第2の反射鏡の表面 に至るように成長された第3の窒化物半導体を基板として、その基板の上に少なくとも活性層を含む複数の窒化 物半導体層が成長されてなることを特徴とする。

【0007】前記第2の反射鏡は、第1の反射鏡の窓部の位置に対応した第2の窒化物半導体層の上に形成されていることが望ましい。なお、本発明において、異種基板、第1の反射鏡、下地層、第2の窒化物半導体より上の活性層を含む窒化物半導体層と第2の窒化物半導体とは必ずしも接して形成されている必要はなく、例えば窒化物半導体と異なる材料よりなる半導体層を、それらの間に成長させても良い。

【0008】また本発明の発光素子では、前記反射鏡の 面積が、窓部の面積よりも大きいことを特徴とする。

[0009]

【発明の実施の形態】図1は、本発明の発光素子において、異種基板から第2の窒化物半導体層を成長させるまでの各工程において得られる窒化物半導体ウェーハの構造を示す模式的な断面図である。

【0010】第2の窒化物半導体3よりなる基板を成長させるには、まず図1(a)に示すように、異種基板1の上に第1の窒化物半導体よりなる下地層2を成長させ、その下地層2の上に第1の反射鏡100を部分的に形成する。異種基板1は従来より提案されている窒化物半導体と異なる材料よりなり、その表面に例えばバッファ層を介して窒化物半導体が成長できる材料が選択される。その中でも、実用化されているサファイアの他、スピネル($MgAl_2O_4$)、ZnO、GaAs、Si、SiC、窒化物半導体と格子整合する酸化物系基板等が提 10案されている。

【0011】下地層2は、例えば200℃~900℃の低温において、 $A1_xGa_{1-x}N$ (0 $\leq X \leq 1$) よりなるパッファ層を介して、そのパッファ層よりも高温で窒化物半導体を成長させることによって成長できる。本発明では、パッファ層を含めた窒化物半導体を含んで下地層という。つまり、下地層は複数の窒化物半導体層から成っていても良い。但し、下地層は異種基板の上に成長されるため、異種基板と下地層との熱膨張係数差、格子不整合等の要因により結晶欠陥が非常に多く、例えば貫通転位が10°個/ cm^2 以上あり、窒化物半導体基板とならない。最も好ましい下地層としてはアンドープ若しくは
n型不純物濃度が $1 \times 10^{17}/cm^3$ 以下のGaNをパッファ層を介して成長させる。なお、下地層と異種基板との間に例えばZnO等の窒化物半導体と異なる半導体よりなるパッファ層を成長させることもできる。

【0012】下地層2の上に形成する第1の反射鏡10 0は、活性層の発光を上部に反射させる作用を有すると 共に、反射鏡の窓部から反射鏡の表面に至るように横方 向に成長する第2の窒化物半導体層の結晶欠陥を少なく する作用を有する。反射鏡は、例えばストライプ状、ド ット状、碁盤目状等、下地層の上に部分的に形成すれば どのような形状でも良いが、好ましくはストライプ状に 形成する。反射鏡の材料としては、窒化物半導体がその 反射鏡の表面に成長しないか若しくは成長しにくい性質 を有する材料で、活性層の発光を活性層側に反射させる 材料であれば、どのような材料でも良く、例えばSiO 2、SixNy、TiO2、TixNy、ZrO2等の誘電体 より成る多層膜が選択できる。これら誘電体を例えば入 /4n (入:発光波長、n:誘電体の屈折率)となるよ うに積層することにより反射鏡として作用する。またP t、Ni、Cr、Ag等のように、例えば銀白色の金属 で活性層の発光を反射して、表面に窒化物半導体が成長 しにくい性質を有する金属でもよい。なお、反射鏡は、 誘電体多層膜、金属等が第2の窒化物半導体の成長温度 に耐える融点を有している材料を選択することが望まし

【0013】第1の反射鏡100は図1に示すように異種基板1の上に成長した第1の窒化物半導体よりなる下地層の上に形成されているが、異種基板1の上に直接形 50

成することもできる。例えば異種基板1にサファイアを使用した場合には、サファイアの上に第1の窒化物半導体2を成長させることが、より結晶欠陥の少ない第2の窒化物半導体3を成長させる上で望ましい。一方、基板に窒化物半導体と格子整合した基板、格子定数の近い基板を用いる場合には、第1の反射鏡100を直接、異種基板に接して形成することも可能である。

【0014】次に図1(b)に示すように第2の窒化物 半導体3を、前記反射鏡を形成した下地層の窓部から成 長させる。反射鏡100は表面に窒化物半導体が成長し にくい性質を有しているため、第2の窒化物半導体3は 窓部から成長しだし、(b) に示すように、第1の反射 鏡100の上部では横方向に成長する。さらに成長を続 けると、図1(c)に示すように、横方向及び縦方向に 成長する第2の窒化物半導体がおよそ反射鏡中央部の上 部で繋がって、窒化物半導体基板となる。このように第 2の窒化物半導体3を成長させると、下地層2の結晶欠 陥が反射鏡で覆われていることにより、横方向に成長す る第2の窒化物半導体の結晶欠陥は、下地層から伸びて こなくなる。また窓部から伸びてくる結晶欠陥が第2の 窒化物半導体層の途中で止まるため、第2の窒化物半導 体層成長後、表面に現れる結晶欠陥は非常に少なくな り、例えば10°個/cm²以下、さらには10°個/cm²以 下になる。第2の窒化物半導体3は、アンドープ若しく はn型不純物濃度が1×10¹⁷/cm³以下のGaNを成 長させることが結晶性の良い基板を作製する上で最も好

 ${\tt 【0015】}$ さらに好ましい態様として、 ${\tt 図1(d)}$ に 示すように、第2の窒化物半導体層の上に、さらに第1 の反射鏡と同様に第2の反射鏡101を形成し、この第 2の反射鏡101の上部に、第3の窒化物半導体層4を 同様にして成長させる。第2の反射鏡101を形成する ことにより、その第2の反射鏡の上部に成長させる第3 の窒化物半導体4の結晶欠陥がさらに少なくなる。それ は下地となる第2の窒化物半導体層3の結晶欠陥が少な いからである。好ましくは (d) に示すように、第2の 反射鏡101の位置を、第1の反射鏡の窓部に対応した 第2の窒化物半導体層3の表面に形成することにより、 窒化物半導体層側から平面的に見て、全てが反射鏡で覆 われた形となるため、光取り出し効率がさらに向上す 40 る。また例えば第2の窒化物半導体3の結晶欠陥が窓部 に現れている場合には、その窓部を第2の反射鏡でさら に覆うため、第2の反射鏡の上に横方向に成長される第 3の窒化物半導体層の結晶欠陥がさらに少なくなる。即 ち第2の反射鏡101は結晶欠陥が表面に現れている第 1の窒化物半導体層3の上に形成することが最も好まし い。但し、第3の反射鏡はランダムに形成してもよい。 【0016】本発明の反射鏡の作用は次の通りである。 反射鏡の窓部から成長されて、反射鏡の表面で横方向に 成長された窒化物半導体層は結晶欠陥が非常に少ない。

30

そのため、その窒化物半導体を基板とすることにより、 その基板の上に成長させる活性層を含む複数の窒化物半 導体層の結晶欠陥が窒化物半導体基板と同じように少な くなる。従って、発光素子を作製した際には、活性層に 結晶欠陥が転位しないため、素子が長寿命となる。また 逆方向の耐圧、リーク電流の電流特性等全ての面におい て向上する。しかも、反射鏡は活性層の発光を活性層側 に反射させる作用もあるため、基板側に漏れる光が少な くなって、半導体側を発光観測面とする発光素子では光 取り出し効率が向上する。そのため、窓部の面積よりも 反射鏡の面積を大きくすることにより、反射部が大きく なって光取り出し効率が向上すると共に、窓部から伸び る結晶欠陥の数も少なくなり、さらに好ましい発光素子 が実現できる。好ましくは先にも述べたように、反射鏡 を縦方向に二段階以上に並べることにより、平面上では 反射鏡が実質的に全ての面を覆った形となるため、光取 り出し効率はさらに向上する。また、レーザ素子の場合 には、第1の反射鏡100若しくは第2の反射鏡101 が半導体層内部にあり、活性層との距離が近い一方の共 振器として作用するため、窒化物半導体で面発光レーザ 20 素子が実現できる。

[0017]

【実施例】 [実施例1] 図2は実施例1に係るLED素子の構造を示す模式断面図である。以下この図を元に、実施例1を説明する。まず、サファイアよりなる異種基板1の上にMOVPE法を用いて、第1の窒化物半導体層2を成長させる。第1の窒化物半導体層2は異種基板側から順に、500℃で成長されたGaNよりなるパッファ層と、バッファ層の上に1050℃で成長されたGaNからなる。

【0018】次に反応容器からウェーハを取り出し、C VD装置により、第1の窒化物半導体層2の全面に、S iO₂とSiNよりなる誘電体多層膜を単一膜厚が入/ 4nとなるように、交互に複数形成し、誘電体多層膜を 形成する。

【0019】誘電体多層膜形成後、その誘電体多層膜の上の所定の位置にマスクを形成して、その誘電体多層膜を選択エッチングして、ストライプ幅10μm、ストライプ間隔(窓部)2μmとし、第1の反射鏡100とする。このような第1の反射鏡100を誘電体多層膜で形成する際、最初に第1の窒化物半導体層の全面に誘電体多層膜を形成し、その後誘電体多層膜を選択エッチングして、所定の形状とする技術は、窒化物半導体層の上の所定の位置にマスクを形成して、その上から誘電体多層膜を形成して、そのとから誘電体多層膜を形成して、その上から誘電体多層膜を形成して、その上から誘電体多層膜を形成して、その上から誘電体多層膜を形成して、その上から誘電体多層膜が形成して、その上から誘電体多層膜が形成して、その上から誘電体多層にで誘電体多層膜が形成しやすい。また、窓部の窒化物半導体層表面もエッチングされるため、表面に現れているエッチビット、結晶欠陥等を観察しやすい。この手法の利点は、第2の反射鏡101の場合も同様である。

。 【0020】次に第1の反射鏡100を形成した後、ウェーハをMOVPE反応容器内に戻し、1050℃でア

ンドープGaNよりなる第2の窒化物半導体層3を20 μmの膜厚で成長させる。

【0021】第2の窒化物半導体層 3成長後、ウェーハを反応容器から取り出し、再度 CVD装置にて、第2の窒化物半導体層 3の全面に SiO_2 と SiNよりなる誘電体多層膜を形成した後、選択エッチングより、ストライブ幅 10μ m、窓部 2μ mとし、第2の反射鏡 102とする。但し第2の反射鏡 101の形成位置は、図2に示すように、第1の反射鏡 100と第2の反射鏡 101のストライブが平行になるように形成して、平面から見て、第1の反射鏡 100の窓部が塞がるようにする。

【0022】次に、ウェーハを反応容器内に戻し、1050℃でアンドープGaNよりなる第3の窒化物半導体層4を20μmの膜厚で成長させる。

【0023】続いて、1050℃でSiドープしたn型 GaNよりなるn側コンタクト層11を $4\mu m$ 成長させ、その上にSi濃度がn側コンタクト層よりも少ない GaNよりなるn側クラッド層12を $0.1\mu m$ 成長させる。

【0.0.2.4】次に8.0.0℃で、膜厚3.0オングストロームの単一量子井戸構造を有するアンドープ $I.n._1Ga$ 。。Nよりなる活性層1.3を成長させ、その上に1.0.50℃でMgドープp型 $A.l._1Ga$ 。。Nよりなるp側クラッド層1.4を0.1 μ m成長させ、最後に、Mgドープp型GaNよりなるp側コンタクト層1.5を0.5 μ m成長させる。

【0025】反応終了後、ウェーハを反応容器から取り出し、窒素雰囲気中700℃でアニーリングを行い、p型層をさらに低抵抗化した後、図2に示すようにp側コンタクト層15側からエッチングを行い、n側コンタクト層11の表面を露出させる。その後、最上層のp側コンタクト層の表面のほぼ全面に透光性のオーミック用のp電極16を形成し、その上にポンディング用のpパッド電極17を形成する。一方、先ほど露出させたn側コンタクト層18の表面には、W/A1よりなるn電極18を形成する。

【0026】最後に、サファイア基板を研磨して薄くした後、350µm角のチップに分離して青色LED素子としたところ、反射鏡を設けない従来のLED素子に比較して、出力で50%以上向上し、素子寿命で数倍以上に向上した。また逆方向の耐圧も従来のものに比較して、50%以上向上した。これは第2、第3の窒化物半導体が基板となっているために、素子自体の結晶欠陥が少なくなり、逆方向の耐圧、素子寿命が向上したものと推察できる。

【0027】[実施例2]図3は本発明の実施例2に係るLD素子の構造を示す模式断面図であり、具体的には 50 面発光レーザ索子の構造を示している。以下この図を元 . 7

に、実施例2を説明する。

【0028】実施例1と同様にして、サファイアよりな る異種基板1の上に、GaNバッファ層、アンドープG aNよりなる第1の窒化物半導体層2、誘電体多層膜よ り成るストライプ状の第1の反射鏡100、アンドープ GaNよりなる第2の窒化物半導体層3、誘電体多層膜 より成るストライプ状の第2の反射鏡101、アンドー プGaNよりなる第3の窒化物半導体層4を順に積層さ せる。

【0029】続いて、Siドープn型GaNよりなるn 10 側コンタクト層 2 1 を 4 μm成長させた後、膜厚 2 5 オ ングストロームのアンドープAlo.15Gao.85N層と、 膜厚25オングストロームのSiドープGaN層とを交 互に積層して、総膜厚0. 4μmの超格子より成るn側 クラッド層22を成長させる。

【0030】次に、40オングストロームのアンドープ Ι n_{0.01} G a_{0.95} Nよりなる障壁層と40 オングストロ ームのアンドープIno.2Gao.8Nよりなる井戸層とを 交互に積層し、最後に障壁層で終わり、総膜厚440オ ングストロームの多重量子井戸構造 (MQW) の活性層 23を成長させる。

【0031】次に、25オングストロームのアンドープ Alo. 15Gao. 85N層と、25オングストロームのMg ドープGaN層とを交互に積層して、総膜厚0.4μm の超格子層よりなるp側クラッド層24を成長させる。

【0032】p側クラッド層成長後、ウェーハを反応容 器から取り出し、円形を有するSi0₂よりなる保護膜 をそのp型クラッド層の表面に形成する。但し、そのマ スクの位置は前記第2の反射鏡101よりも小さく、そ の反射鏡の真上になるように形成する。

【0033】保護膜形成後、再度、ウェーハを反応容器 内に移し、その保護膜が形成されていないp側クラッド 層24の表面にSiドープn型Ala.1Gaa.gNよりな る電流阻止層 2 6 を 0. 4 μmの膜厚で形成する。 なお この電流阻止層はZn、Cdのようなp型不純物をドー プしてもp型になりにくいp型不純物をドープして、高 抵抗な
主型の
窒化物
半導体層として
もよいし、
また
A1 混晶比をクラッド層よりも大きくして高抵抗なi型A1 GaNを形成することもできる。

【0034】電流阻止層26形成後、ウェーハを反応容 40 器から取り出し、保護膜を溶解除去した後、再び反応容 器内において、その電流阻止層26の上にMgドープp 型GaNよりなるp側コンタクト層25を成長させる。

【0035】反応終了後、アニーリングを行いp層をさ らに低抵抗化し、実施例1と同じく、エッチングにより n側コンタクト層22の一部を露出させ、露出したn側 コンタクト層22にn電極28を形成する一方、p側コ ンタクト層の表面に p 電極 2 7 を形成した後、ウェーハ をチップに分離して図3に示すような構造のレーザ素子 としたところ、室温において連続発振を示し、410m 50 mのレーザ光がサファイア基板側から観測された。

【0036】[実施例3] 図4は本発明の実施例3に係 るLD索子の構造を示す模式断面図であり、これもまた 面発光レーザ索子の構造を示している。以下この図を元 に、実施例3を説明する。

【0037】実施例1において、サファイアよりなる異 種基板1の上に、GaNバッファ層、アンドープGaN よりなる第1の窒化物半導体層2、誘電体多層膜より成 るストライプ状の第1の反射鏡100を形成した後、第 2の窒化物半導体層3を成長させる際に、Siを5×1 0 16 / cm³ドープしたGaNを60μmの膜厚で成長さ せる。この第2の窒化物半導体層の膜厚を60μm以上 にするのは、後に異種基板を除去して、第2の窒化物半 導体層を基板とするためである。60μmよりも薄い「 と、異種基板除去中に第2の窒化物半導体層が割れて、 素子作製が難しくなる傾向にある。さらにn型不純物を 少量ドープするのは、異種基板を除去した後に、露出さ れる第2の窒化物半導体層3、そのものをコンタクト層 とするからである。さらに基板となる第2の窒化物半導 体層、第3の窒化物半導体層に n型不純物をドープする 場合、先にも述べたように1×10¹⁷/cm³以下とする ことが望ましい。それよりも多くすると窒化物半導体層 中の結晶欠陥の数が多くなって、結晶性の良い基板とな りにくいからである。

【0038】第2の窒化物半導体層3成長後、実施例1 と同様にして、第2の反射鏡101を形成する。第2の 反射鏡形成後、アンドープGaNよりなる第3の窒化物 半導体層4を15μm成長させる。

【0039】次にSiをドープしたIno.osGao.ssN より成るクラック防止層20を0.15 mmの膜厚で成 長させる。クラック防止層20はInを含む窒化物半導 体とすることにより、この層が緩衝層となり、後に成長 させるA1を含む窒化物半導体層にクラックが入りにく くなる。なお、このクラック防止層は実施例2のレーザ 素子に入れても良いことは言うまでもない。

【0040】あとは実施例2と同様にして、超格子より なるn側クラッド層22、MQWの活性層23、超格子 よりなるp側クラッド層24、電流阻止層26、p側コ ンタクト層25を積層する。

【0041】反応終了後、アニーリングを行いp層をさ らに低抵抗化した後、サファイア側から研磨して、異種 基板1、第1の窒化物半導体層2、第1の反射鏡101 を除去する。その後、露出させた第2の窒化物半導体層 2の表面にリング状のn電極を設けた後、ウェーハをチ ップ状に分離して、図4に示すような構造のレーザ素子 としたところ、室温において連続発振を示し、同じく4 10 nmのレーザ光が第2の窒化物半導体層3側から観 測された。なおn電極28を形成する際に、電極接触面 のオーミックコンタクトを良くするために、イオンイン プランテーション等の技術を用いて、第2の窒化物半導

10

体層の表面にn型不純物を高濃度にドープしても良い。 【0042】

【発明の効果】以上説明したように、本発明の発光素子では、反射鏡の窓部から成長されて、反射鏡の表面で横方向に成長された窒化物半導体層の結晶欠陥が非常に少なくなるために、その基板の上に成長させる活性層を含む複数の窒化物半導体層の結晶欠陥が少なくなり、素子の信頼性が向上する。また、反射鏡が活性層の発光を数十ルm以下という近い距離において、活性層側に反射させるので、発光素子の光取り出し効率が向上する。その10ため、この反射鏡を積極的に利用すれば、面発光レーザ素子が実現できる。

【図面の簡単な説明】

【図1】 本発明の発光素子を製造する際の各工程を説明するためのウェーハの構造をそれぞれ部分的に示す模式断面図。

【図2】 実施例1の発光素子の構造を示す模式断面図。

【図3】 実施例2の発光素子の構造を示す模式断面図。

【図4】 実施例3の発光素子の構造を示す模式断面図。

【符号の説明】

1・・・異種基板

2・・・第1の窒化物半導体層

3・・・第2の窒化物半導体層

4・・・第3の窒化物半導体層

11,21・・・n側コンタクト層

12,22···n側クラッド層

0 13,23・・・活性層

14,24・・・p側クラッド層

15,25···p側コンタクト層

20・・・クラック防止層

26・・・電流阻止層

16,27···p電極

17··・pパッド電極

18,28···n電極

100・・・第1の反射鏡

101・・・第2の反射鏡

20

