

Dans le cube ABCDEFGH ci-dessous, I, J et K sont les milieux respectifs des arêtes [AF], [FG] et [BC]. On nomme O le centre de ce cube.

- ${\bf 1.}\,$ Citer, sans justifier, deux vecteurs égaux à :
 - a. \overrightarrow{DC}

c. \overrightarrow{JK}

 $\mathbf{h} = \frac{1}{GI}$

- d. \overrightarrow{OB}
- 2. Compléter avec un point de la figure :
 - $\mathbf{a.} \ \overrightarrow{HG} + \overrightarrow{\cdots J} = \overrightarrow{HJ}$
 - $\mathbf{b.} \ \overrightarrow{H\cdots} = \frac{1}{2} \overrightarrow{HB}$
 - $\mathbf{c.} \ \overrightarrow{EB} + \overrightarrow{\cdots J} = \overrightarrow{AK}$

On reprend la figure de l'exercice précédent. Les triplets de vecteurs suivants sont-ils des triplets de vecteurs coplanaires?

- 1. \overrightarrow{DC} , \overrightarrow{DB} et \overrightarrow{CB} .
- **2.** \overrightarrow{AB} , \overrightarrow{KC} et \overrightarrow{IJ} .
- 3. \overrightarrow{HG} , \overrightarrow{FB} et \overrightarrow{EH} .
- **4.** \overrightarrow{OE} , \overrightarrow{OB} et \overrightarrow{OG} .

ABCDEFGH est un cube, I est le milieu de [AB] et J celui de [CG] : $_{\rm H}$

- 1. Quelle est la position relative des droites :
 - **a.** (AD) et (FG)?
- **c.** (EC) et (BH)?
- **b.** (AD) et (BG)?
- **d.** (EJ) et (AC)?

- 2. Quelle est l'intersection des plans :
 - **a.** (DBF) et (AEB)?
- **c.** (ABJ) et (CDH)?
- **b.** (ABG) et (CDH)?
- **d.** (DFB) et (EAD)?

On considère un cube ABCDEFGH donné cidessous. On note M le milieu du segment [EH], N celui de [FC] et P le point tel que

$$\overrightarrow{HP} = \frac{1}{4} \overrightarrow{HG}$$
.

1. Justifier que les droites (MP) et (FG) sont sécantes en un point L.

Construire le point L

2. On admet que les droites (LN) et (CG) sont sécantes et on note T leur point d'intersection.

On admet que les droites (LN) et (BF) sont sécantes et on note Q leur point d'intersection.

- **a.** Construire les points T et Q en laissant apparents les traits de construction.
- **b.** Construire l'intersection des plans (MNP) et (ABF).
- **3.** En déduire une construction de la section du cube par le plan (MNP).

La figure ci-contre représente un cube ABCDEFGH.

Les trois points I, J, K sont définis par les conditions suivantes:

- I est le milieu du segment [AD];
- J est tel que $\overrightarrow{AJ} = \frac{3}{4}\overrightarrow{AE}$; K est le milieu du segment [FG].
- 1. Sur la figure donnée ci-après, construire sans justifier le point d'intersection P du plan (IJK) et de la droite (EH). On laissera les traits de construction sur la figure.
- 2. En déduire, en justifiant, l'intersection du plan (IJK) et du plan (EFG).

Tracer un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ et placer les points suivants:

A(2;1;0), B(0;2;10), C(1;1;-3) et D(-1;2;3).

Dans l'espace muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on considère les points A(2; 1; -3) et B(0; 2; 4).

- 1. Calculer les coordonnées du point M milieu du segment [AB].
- **2.** Calculer les coordonnées du vecteur \overrightarrow{AB} .
- **3.** Soit le point C(1; -2; -1). Calculer les coordonnées du point D pour que le quadrilatère ABCD soit un parallélogramme.

Tracer un repère $\left(O\;;\;\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ et placer les points

A(2;1;0), B(0;2;10), C(1;1;-3) et D(-1;2;3).

Dans l'espace muni d'un repère $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les points A(1; 0, 5; 2), B(0; 2; 0, 5), C(3; 2, 5; 7)et D(3; -2, 5; 1).

- 1. a. Les points A, B et C sont-ils alignés?
 - **b.** Le point A appartient-il à la droite (BD)?
- **2.** On considère les points E(1; 0, 5; 4)F(-3; -2; 1).
 - **a.** Les points A, B, D et E sont-ils coplanaires?
 - **b.** Le point F appartient-il au plan (ABD)?

Dans l'espace muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on considère les vecteurs $\overrightarrow{u} \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$, $\overrightarrow{v} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ et

$$\overrightarrow{w} \left(\begin{array}{c} 2\\5\\-3 \end{array} \right).$$

- 1. Calculer les coordonnées du vecteur $\overrightarrow{u} + 3\overrightarrow{v} 2\overrightarrow{w}$.
- **2.** Les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont-ils coplanaires?

Dans l'espace muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}),$

on considère les vecteurs $\overrightarrow{u} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $\overrightarrow{v} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ et

$$\overrightarrow{w} \left(\begin{array}{c} 0 \\ -6 \\ 3 \end{array} \right).$$

- 1. Justifier que le vecteur \overrightarrow{w} n'est pas colinéaire au vecteur $\overrightarrow{v}-\overrightarrow{u}$.
- 2. Donner un vecteur colinéaire au vecteur \overrightarrow{w} .
- 3. Calculer les coordonnées du vecteur $3\overrightarrow{u} 3\overrightarrow{v} + 2\overrightarrow{w}$.
- 4. Que peut-on en déduire pour les trois vecteurs \vec{u} , \vec{v} et \vec{w} ?

- 5. Donner les coordonnées d'un vecteur \overrightarrow{t} non colinéaire à \overrightarrow{v} et coplanaire à \overrightarrow{u} et \overrightarrow{w} .
- **6.** Déterminer les coordonnées d'un vecteur \overrightarrow{h} de cote nulle et coplanaire à \overrightarrow{u} et \overrightarrow{v} .
- 7. Justifier que les vecteurs \overrightarrow{h} et \overrightarrow{i} sont colinéaires.

Soit A, B et C trois points de l'espace non alignés. On considère les points M et N tels que $\overrightarrow{AM} = 2\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ et $\overrightarrow{BN} = 3\overrightarrow{AB}$.

- 1. Faire une conjecture. Quelle conjecture peut-on émettre pour les points M, N et C.
- 2. Démontrer cette conjecture.

 $\overrightarrow{ABCDEFGH}$ est un cuve. Soit U et V les points tels que $\overrightarrow{UF} = \frac{1}{4}\overrightarrow{GF}$ et $\overrightarrow{BV} = \frac{1}{4}\overrightarrow{BA}$. Montrer que les vecteurs \overrightarrow{FB} , \overrightarrow{UV} et \overrightarrow{GA} sont coplanaires.

On considère le cube ABCDEFGH ci-contre. Pour tout nombre réel m, on définit le point G_m tel que :

$$\overrightarrow{G_mE} + (1-m)\overrightarrow{G_mB} + (2m-1)\overrightarrow{G_mG} + (1-m)\overrightarrow{G_mD} = \overrightarrow{0}.$$

- 1. Préciser la position du point G_1 .
- 2. Vérifier que $G_0 = A$. En déduire que les points A, I et G sont alignés.
- 3. Démontrer que pour tout réel m, $\overrightarrow{AG_m} = m \overrightarrow{AG_1}$. En déduire l'ensemble des points G_m lorsque m parcourt l'ensemble des nombres réels.

4. On note I le centre du carré ABCD. Montrer que les points A, G_m , E et I sont coplanaires.

La figure ci-contre représente un cube ABCDEFGH d'arête 1.

On désigne par I et J les milieux respectifs des arêteF [BC] et [CD].

Soit M un point quelconque du segment [CE].

- **1. a.** Donner, sans justification, les coordonnées des points C, E, I et J.
 - **b.** Justifier l'existence d'un réel t appartenant à l'intervalle [0; 1], tel que les coordonnées du point M soient (1 t; 1 t; t).
- 2. a. Démontrer que les points C et E appartiennent au plan médiateur du segment [IJ].
 - **b.** En déduire que le triangle $M \mathrm{IJ}$ est un triangle isocèle en M.
 - **c.** Exprimer IM^2 en fonction de t.
- 3. Le but de cette question est de déterminer la position du point M sur le segment [CE] pour laquelle la mesure de l'angle $\widehat{\mathrm{IMJ}}$ est maximale.

On désigne par θ la mesure en radian de l'angle $\widehat{\mathrm{IMJ}}$.

- a. En admettant que la mesure θ appartient à l'intervalle $[0 \ ; \ \pi]$, démontrer que la mesure θ est maximale lorsque $\sin\left(\frac{\theta}{2}\right)$ est maximal.
- **b.** En déduire que la mesure est maximale lorsque la longueur IM est minimale.
- **c.** Étudier les variations de la fonction f définie sur l'intervalle [0; 1] par :

$$f(t) = 3t^2 - t + \frac{1}{4}.$$

d. En déduire qu'il existe une unique position M_0 du point M sur le segment [EC] telle que la mesure de l'angle $\widehat{\text{IMJ}}$ soit maximale.