

Universidade do Estado do Rio de Janeiro UERJ-ZO FCEE/DEPCOMP – Ciências da Computação

Comunicação sem Fio
Projeto Zona Oeste Conectada
Prover acesso a internet no campus da UERJ-ZO

Aluno:

Breno Sales da Silva Leandro da Silva Pimentel Luan Silva Aguiar

Sumário

		/				
CO	NI	TC	T T	\Box	\cap	C
			U I	U	U	O

	TECEOS	
1.	OBJETIVO	3
2.	EQUIPE	.4
3.	ESTRUTURA ANALÍTICA DO PROJETO	5
	3.1. Rede MAN/W-MAN.	5
	3.2. Rede LAN/W-LAN	5
4.	CRONOGRAMA	6
5.	PLANTA BAIXA	7
6.	LINK DE RÁDIO	22
7.	CABEAMENTO ESTRUTURADO	.36
8.	SEGURANÇA & RESFRIAMENTO	.50
	8.1. Cameras	.50
	8.2. Controle de Acesso	.52
	8.3. Sistema contra Incêndio.	.53
	8.4. Sistema de Resfriamento.	.55
	8.5. Redundância	.56
9.	REDE	.56
	9.1. Diagrama Geral	56
	9.2. Posicionamento dos Aps & Radiação	
	9.3. Projeto no Packet Tracer	63
	9.4. Especificações do Projeto	70
10	. SOLUÇÃO EM NÚVEM (GCP)	72
	10.1. Motivação	.72
	10.2. Comparação Infraestrutura Física x Núvem	.77
	10.3. Custo	.78
11	. TCO (TOTAL COST OF OWNERSHIP)	.79
	11.1. TCO Solução Física	79
	11.2. TCO Solução em Núvem & Conclusão	83
12	RIRLIOGRAFIA	85

OBJETIVO

Nosso projeto Zona Oeste Conectada, tem como objetivo de definir um link de Rádio conectando SUMARÉ x MENDANHA para que conecte então MENDANHA x UERJ-ZO incluindo no projeto os gráficos de Zona de Fresnel.

O projeto Zona Oeste Conectada também contará com o objetivo de prover acesso à internet no campus da UERJ-ZO, incluindo no processo o mapeamento do local (plantas baixas), verificação das necessidades do campus, projetar a infraestrutura de redes e cabeamento conforme às normas IEEE 802.1x, além de selecionar os equipamentos adequados para tal infraestrutura (como fibra óptica, cabos, switches, APs). A infra contará com Access Points com diagrama de radiação, juntamente com a definição do provedor de internet. A Rede será distribuída nos prédios 1 e 2 em todos os departamentos com redes independentes (Redes Acadêmica, de Pesquisa, Administrativa Alunos). para Novamente, o projeto tem como objetivo de implementar toda solução com cabeamento estruturado, redes bem definidas, redundância, segurança contra falhas, monitoramento e segurança contra incêndio, prosseguimento conforme as normas.

O projeto não possui limite de valores orçamentários, portanto levaremos em consideração para o gasto final principalmente opções visando a qualidade da implantação do projeto.

OBJETIVO DO PROJETO - DIAGRAMA

EQUIPE

A equipe conta com os Cientistas da Computação Breno Sales da Silva, Leandro da Silva Pimentel e Luan Silva Aguiar.

Estudantes capacitados da UERJ-ZO pelo professor Carlos Alberto de Lemos.

Estrutura Analítica:

1 - Rede MAN/W-MAN:

2 - Rede LAN/W-LAN:

<u>https://prnt.sc/mfHB2XiYY95j</u> - Estrutura Completa.

CRONOGRAMA

https://prnt.sc/N5Q1jssiMHA8 - Cronograma.

Planta UERJ-ZO

Tiramos a planta da UERJ-ZO com as medidas para começarmos a disposição dos equipamentos utilizando algumas ferramentas como Google Maps, VisiWave e FloorPlanner. Acomodaremos os equipamentos nos locais destacados.

Falaremos sobre os equipamentos, infraestrutura e de todas as redes mais a frente.

Planta baixa individual de cada cômodo separado, destacada da planta acima. Começando pelo prédio 1 + Rede sirius/ Biblioteca:

Planta baixa do prédio 2 térreo + Anexo:

Padrão das salas do Anexo

Zoom no lab 101

Prédio 2, segundo andar:

Paredes padronizadas em 15cm de espessura.

Plantas escala 1:50 software

Projeto de conexão via rádio Sumaré x Mendanha x UERJ-ZO

Para iniciarmos, devemos definir bem quais são os pontos no mapa que devemos utilizar para a conexão do projeto.

São eles:

Parque de transmissão via rádio Sumaré:

Com a presença de torres de televisão e rádio de 165m de altura (https://bafafa.com.br/turismo/bairros/parque-de-transmissao-do-sumare-unico-lugar-do-rio-onde-se-ve-o-cristo-redentor-de-cima)

Área de Sumaré - 27,461.10m² +/- 800m de altura.

Parque de transmissão do Mendanha:

Possui torre de rádio e televisão de aproximadamente 100m.

Area do Mendanha - 6,473.48m² +/- 700m de altura.

O polo universitário UERJ-ZO:

Conexão Sumaré x Mendanha:

Conexão Mendanha x UERJ-ZO

Conexão completa Sumaré x Mendanha x UERJ-ZO

Torre do sumaré: +16m de altura para completar 760m de altura total do nível do mar (altura do morro + torre)

Torre do Mendanha: +28m de altura para completar 760m de altura total do nível do mar(altura do morro + torre)

UERJ-ZO: Podendo utilizar de uma elevação de +40 metros de altura (altura do predio + torre) levando em consideração que a uezo está a 23 metros de altura em relação ao nível do mar, completando 63 metros totais de altura.

Antenas que poderiam ser usadas: (sugestões)

OBS: nivel de desempenho ideal para uma conexão no local da RX (antena receptora) tem que ser na faixa de -55 a -35 dBm

Ubiquiti PowerBeam 5AC

Valor Aproximado: R\$ 900

Especificações:

Frequência de Operação: 5 GHz Potência de Tx: Até 25 dBm (ajustável)

Limiar de Rx: Aproximadamente -96 dBm @ MCS0 e -65 dBm @ MCS9

Ganho: 25 dBi

Perda: A perda do sistema é mínima, pois é uma antena integrada com alto ganho e design otimizado para eficiência. A perda de cabo e conectores é eliminada, sendo estimada em menos de 1 dB.

Polarização: Dupla (H/V) – Suporta MIMO 2x2

Sumaré x Mendanha:

Mendanha x UERJ-ZO:

ALGcom UHP 5800 30.5 dBi

Valor aproximado: R\$ 1300 (valor unitário)

Especificações:

Frequência de Operação: 5.8 GHz

Potência de Tx: Dependente do rádio conectado, mas compatível com potências até 30

dBm.

Limiar de Rx: Varia conforme o rádio, mas a antena oferece excelente ganho e eficiência

de feixe para captar sinais de baixa potência.

Polarização: Dupla polarização (Horizontal/Vertical) para suporte MIMO.

Sumaré x mendanha:

Mendanha x UERJ-ZO

MikroTik LHG XL HP5

Valor aproximado: R\$ 880 (valor unitário)

Especificações:

Frequência de Operação: 5150 MHz – 5875 MHz Potência de Tx: Até 27 dBm (500 mW)

Limiar de Rx: Aproximadamente -96 dBm @ 6 Mbps e -80 dBm @ 54 Mbps

Polarização: Linear dupla (Horizontal/Vertical)

Sumaré x Mendanha:

Mendanha x UERJ-ZO:

Teremos também um link da Rede-Rio com a UERJ-ZO como ISP.

Link de Internet Rede-Rio

Cabeamento Estruturado

Após o mapeamento, o cabeamento estruturado do projeto é uma parte crucial para manter a universidade totalmente integrada e em funcionamento de forma segura, escalável, de fácil detecção de erros e custo de manutenção bem reduzido.

Vamos nos guiar utilizando as premissas de um Sistema de Cabeamento Estruturado:

Nomenclaturas versus Normas

ANSI/TIA-568-C	ISO/IEC 11801	NBR 14565
Entrance Facilities (EF)	Building Entrace Facility	 Sala de Entrada de Telecomunicações (SET) Infraestrutura de Entrada (EF)
Equipment Room (ER)	Equipment Room (ER)	Sala de Equipamentos (ER)Distribuidor de Edifício (BD)
Intrabuilding Backbone	Building Backbone Cabling	 Cabeamento Primário Cabeamento Vertical Cabeamento de Backbone Backbone de Edifício
Telecommunication Room (TR)	Telecommunication Room	 Armário de Telecomunicações (TC) Sala de Telecomunicações (TR) Distribuidor de Piso (FD)
Horizontal Cabling	Horizontal Cabling	Cabeamento SecundárioCabeamento Horizontal
Work Area (WA)	Work Area	Área de Trabalho (ATR)Tomada de Telecomunicações (TO)

<u>OBS:</u> as nomenclaturas destacadas em "cinza" não estão mais em uso na versão atual da norma.

https://www.caism.unicamp.br/download/ti/cabeamento_estruturado/05-Subsistemas%20de%20Cabeamento%20Estruturado.pdf Para a implementação do projeto de cabeamento estruturado, é necessário levar em consideração alguns fatores importantes antes de partir diretamente para a estruturação: Seguir fielmente as normas para Cabeamento Estruturado (NBR 14565) e caminhos e espaços para o Cabeamento Estruturado (NBR 16415)

Objetivo:

Seção 6.4 da norma NBR 14565.

Diagrama para a UERJ-ZO

Definiremos a seguinte formação do campus UERJ-ZO:

Sala de Telecomunicações Principal (MTR) / Backbone — Prédio 1.

Sala de Telecomunicações (TR) / Backhaul — Prédio 2 Segundo andar.

Facilidade de Entrada (EF) — Prédio 1 Térreo.

Legenda

- 1 Infraestrutura de entrada principal
- 2 Infraestrutura de entrada alternativa
- 3 Sala de entrada
- 4 Caminhos de campus
- 5 Caminhos de edifício

- 6 Sala de telecomunicações
- 7 Sala de equipamentos
- 8 Tomada de telecomunicações
- 9 Entrada de antena
- 10 Área de trabalho

Elementos básicos de caminhos e espaços para cabeamento estruturado em um edifício

https://www.caism.unicamp.br/download/ti/cabeamento_estruturado/05-Subsistemas%20de%20Cabeamento%20Estruturado.pdf

Distâncias máximas de 100m até a distribuição Horizontal das Áreas de Trabalho (TO)

Energização mínima

Em caso de não possuirmos energização initerrupta (gerador), todos os equipamentos que recebem energia deverão ter:

- Transformador de Isolamento
- Transformador de Isolamento Blindado
- Transformador de Mitigação Harmônica
- Dispositivos de proteção contra surtos
- Reguladores de Tensão
- Condicionador de Energia
- Filtro Harmônico

Caso tenhamos gerador, todas as tomadas da Sala Facilidade de Entrada (EF) deverão estar conectadas ao gerador.

Para prosseguirmos mantendo a conformidade com estas normas, também devemos manter toda a estrutura propriamente energizada, aterrada, e ligada, incluindo os racks e equipamentos, como descrevemos no diagrama a seguir.

Obs: Cabeamento horizontal do prédio 2 para o térreo, vem do segundo andar verticalmente para distribuir horizontalmente.

Aterramento da UERJ-ZO em normas do cabeamento estruturado.

ITS Sample Equipment Rack Grounding and Bonding

Exemplo de aterramento nos racks

Como padronização, manteremos o *exemplo C*, onde *'jumpearemos'* os RGB (Barra de aterramento do rack) verticalmente.

Localização das tomadas
 Tomadas padronizadas na norma NBR 5410, com 4 pontos de tomada, com o tamanho
 Baixo de 30cm de altura e 2 pontos extras com o tamanho alto de 2m nas extremidades.

Padronização de tomada de salas comuns

Padronização de tomada de Labs

Capacidade de cabos no conduite	
Tamanho do Conduite	CAT 6
2.5cm	3
5.0cm	22
7.5cm	49
10.0cm	83

NBR 5410 - sobre a ocupação de condutores em eletrodutos

Conduit EB20 para concreto

Na instalação os conduítes precisam estar enterrados numa profundidade mínima de 45.7cm para as conexões outdoor. (que faremos do prédio 1 ao prédio 2)

E utilizaremos aproximadamente 600m dos cabos CAT6 Furuwaka.

Diagrama da Padronização do cabeamento Horizontal, e chegada nas áreas de trabalho, TO (labs).

Seguindo as normas ABNT 14565, também é necessário para a distribuição horizontal dos cabos acima, equiparmos esta distribuição com *conduítes*, *caixas de junção*, *caneletas*, *pullboxes* e *trilho para os cabos (cable tray)*

Caixa de junção Pullbox Cabletray

• Localização do Backbone/backhaul

Predio 1 Backbone

ER/Backhaul Prédio 2, segundo andar.

Podemos observar o piso elevado nas salas do Backbone/Backhaul acima;

 $https://imdtec.imd.ufrn.br/assets/imagens/data-center/Datacenter_a03_f03.png$

 $Padroniza ção\ das\ salas\ de\ servidores\ em:\ https://www.envolvebr.com/blog/blog/2020/08/04/ambientes-seguros-de-alta-performance$

A norma também diz que devem ser padronizada as portas dos servidores para portas cortafogo

Padrão de vista de frente das ER/Servidores, em: https://www.portasespeciais.assaabloy.com.br/pt/assa-abloy-portasespeciais/blog/porta-corta-fogo-para-data-center

Segurança e Posicionamento das câmeras:

Prédio 1

Prédio 1 Backbone

Prédio 2 Térreo ER/FR

Prédio 2, segundo andar, Backhaul

Controle de Acesso ao Datacenter & para sala de equipamentos:

Câmeras acopladas.

Segurança física de pessoas autorizadas.

Autenticação física (carteirinha)

e assinatura de entrada/saída via Software.

Layout da Plataforma web de controle de acesso ao datacenter

SISTEMA CONTRA INCÊNDIO

Sistema EZ Path

Como mais uma maneira de redundância contra incêndio, vimos a utilização do sistema EZ Path plausível nas paredes em que chegam os cabeamentos no caminho horizontal do datacenter / backhaul. Este sistema protege as salas contra incêndios e fumaças. Ao passar os cabos neste sistema, ele se ajusta corretamente à largura dos cabos e, ao ser exposto a um incêndio, o sistema se expande cobrindo toda a área dos cabos, não permitindo a passagem de fogo ou fumaça ao local sensível.

Se expande ao ser exposto ao incêndio, prevenindo a entrada de fogo e fumaça.

Custo = 2 kits de R\$2558,78 cada

Climatização do Datacenter (CRACS)

Melhores práticas estruturada para posicionar o conduíte.

Diagrama Interior do Teto para o Access Point

Redundância / Resiliência na infraestrutura.

Afim de prover uma infraestrutura com alta disponibilidade (HA) e tolerância a falhas (FT), a redundância é necessária nos diversos aspéctos em que já citamos e estamos trabalhando neste projeto.

Por isso optamos por focar nas seguintes redundâncias:

- 1. Padronização nos equipamentos, para eventuais substituições de equipamentos apresentando falhas.
- 2. Redundância nos ISP (provedores de internet), utilizando do link da Rede Rio juntamente com o da Proderj.
- 3. Redundância em segurança ao backbone mencionados (vigilância, piso elevado, nobreaks, sistema de proteção contra incêndio e resfriamento).
- 4. E ainda para melhorar ainda mais a resiliência, indicamos a contratação de equipes especializadas para o monitoramento de possíveis falhas nos sistemas de refrigeração e proteção contra incêndio 24h/7d por semana.

ESTRUTURA GERAL DAS REDES

DIAGRAMA DE REDES FÍSICO, topologia estrela

DIAGRAMA DE REDE DO PRÉDIO 1 + BIBLIOTECA

DIAGRAMA DE REDE DO PRÉDIO 2, SEGUNDO ANDAR

DIAGRAMA DE REDES PRÉDIO 2, TÉRREO

Posicionamento dos APs & Radiação

Radiação Prédio 1 + Biblioteca

Radiação P2, segundo andar.

Radiação Prédio 2, térreo

Projeto de Redes completo

Visão Geral da estrutura de rede

Prédio 1 + Biblioteca

Prédio 2 Térreo

Prédio 2, segundo andar.

Especificações do Projeto de Redes Prédio 1 & 2

Todos os Switch estão recebendo todas as 4 redes vlans (estudante, administração, pesquisa e

alunos), porém suas respectivas saídas estão definidas de modo que atendam apenas a finalidade

especifica da alocação deles, sendo elas:

Switchs de corredor: normalmente para fornecimento de rede para laboratórios de pesquisa

(Vlan de pesquisa)

Switchs de salas de aula/laboratórios: fazer a distribuição de rede para os alunos e 1 único ponto

para o professor (vlans academica para professor e alunos para os alunos)

Switchs de área administrativa (logistica e prédio 1): realizar a distribuição de rede para a área

administrativa (vlan administrativa)

Todos os Roteadores terão seus Ips reservados 192.168.(80 - 100).1 e irão atribuir IP via DHCP

para os dispositivos wireless a partir do 20 podendo ter até 60 dispositivos conectados naquele

roteador

OBS: Novos roteadores do mercado que utilizam o wifi 6 tendem a suportar em média de 50 a

100 dispositivos simultâneos.

Configuração do Wifi:

SSID 2.4G: UERJzo

SSID 5G: UERJzo 5G

Senha: UEZOUEZO

Modo de senha: WPA2-PSK

Criptografia: AES

Ips finais dos roteadores utilizados no prédio 2:

• Wireless Router Lab210 corredor – ip 80.1

• Wireless Router lab201 corredor – ip 81.1

• Wireless Router escada p2 2andar – ip 82.1

• Wireless corredor LEMA oposto – ip 83.1

• Wireless corredor LEMA – ip 84.1

• Wireless Router ANEXO – ip 85.1

• Wireless Router Patio Aberto – ip 86.1

70

- Wireless Router LAREM ip 87.1
- Wireless Router Refeitorio ip 88.1
- Wireless Router Lab101 ip 89.1
- Wireless Router p1 principal ip 90.1
- Wireless Router p1 secundário ip 91.1
- Wireless Router p1 BIBLIOTECA ip 92.1

Solução em Núvem

A nuvem reduz gastos iniciais e facilita a gestão de TI, mas é necessário monitorar o consumo e ajustar o uso. É uma abordagem bem diferente comparado à solução física e tráz muitas vantagens quando diz respeito à escalabilidade, flexibilidade e redução de manutenção.

Avaliamos que as partes chave que poderíam ser transferídas para a núvem seriam as partes de servidores, armazenamento, banco de dados e segurança. Os outros aspéctos da infraestrutura como rádio e cabeamento continuarão na estrutura on-premises.

Afim de centralizar a solução em núvem em um único serviço, escolhemos o *Google Cloud Platform (GCP)* como solução por possuir uma disponibilidade mensal de 99.99%, em conta e por ser uma gigante no mercado.

Para os servidores, instâncias de VMs, C3D para melhor desempenho dos servidores.

Duas instâncias para redundância, e modelo regular para disponibilidade initerrúpta 24/7

Custo calculado por mês, com desconto selecionando o pacote fidelidade de 3 anos.

Para o armazenamento e backup, Google Cloud Storage (Archive Storage para 365 dias de armazenamento).

Local	Standard Storage	Nearline Storage	Coldline Storage	Archive Storage
	(por GB mensal)	(por GB mensal)	(por GB mensal)	(por GB mensal)
São Paulo (southamerica-east1)	US\$ 0,035	US\$ 0,020	US\$ 0,007	US\$ 0,0030

custo de \$0,0030 por GB mensal. Ex: Utilizando 10TB por mês = \$30.00 mensais ou em média \$360.00 anual

Banco de dados com Firestore da Google Cloud escalonável

RECURSO	PREÇO	
Dados armazenados	US\$ 0,18/GB	
Largura de banda	Preços do Google Cloud	
Gravações de documento	US\$ 0,18/100 mil	
Leituras de documento	US\$ 0,06/100 mil	
Exclusões de documento	US\$ 0,02/100 mil	

Segurança e redes (Firewall NGFW, Cloud VPN, VPC)

Logs e métricas com Google Cloud Operations

https://cloud.google.com/products/operations#pricing

Load Balancer em torno de \$0.025 por hora mais taxas de tráfego.

O diagrama abaixo ilustra bem nossa decisão:

https://www.gliffy.com/resources/cloud-architecture-diagrams

Comparação entre infraestruturas física x núvem

Gasto	Infraestrutura Física	Infraestrutura na Nuvem
Custo Inicial	Alto, com investimento em equipamentos	Baixo, pagamento conforme uso (com possibilidade de escalabilidade)
Custo Operacional	Manutenção e energia elétrica constante	Custos recorrentes de serviços; armazenamento e largura de banda
Escalabilidade	Limitada, requer novos equipamentos físicos	Alta, com auto-scaling e provisionamento on-demand
Segurança	Hardware dedicado e sistema de firewall físico	Segurança gerenciada por provedor (firewalls, criptografia, IAM)
Backup e Recuperação	Backup manual ou via sistemas específicos	Backups automáticos, replicação entre zonas de disponibilidade
Tempo de Implementação	Longo, envolvendo instalação física	Rápido, com provisionamento em minutos a partir do console
Redundância e Alta Disponibilidade	Custo elevado para múltiplos datacenters físicos	Integrada com regiões e zonas de disponibilidade geograficamente distintas

Custo total, mensal da solução em núvem discutida acima

R\$10.634,41 mensal, ou **R\$127.612,92 anual**

Levando em consideração que a solução que abordamos é uma solução completamente segura e sem tolerância a falhas, com redundância e configurações para comportar uma quantidade alta de acessos simultâneos.

Total Cost of Ownership (TCO)

Para calcularmos o Total Cost of Ownership, vamos primeiramente aos custos gerais da implementação do projeto como um todo:

Para as antenas:

Item	Quantidade	Preço Unitário	Custo Total
Antenas Direcionais de Rádio	3	R\$ 3.500,00	R\$ 10.500,00
Rádios Ubiquiti/ MikroTik	3	R\$ 2.200,00	R\$ 6.600,00
Cabos Coaxiais (50 metros por local)	150 metros	R\$ 20,00/m	R\$ 3.000,00
Mastros e Suportes para Antenas	3	R\$ 1.000,00	R\$ 3.000,00
Switch POE	3	R\$ 500,00	R\$ 1.500,00
Kit de Proteção Elétrica	3	R\$ 700,00	R\$ 2.100,00
Serviços de Licenciamento	-	-	R\$ 2.500,00 R\$250,00 (90% de desconto domínio publico)
Total de Equipamentos			R\$ 26.950,00

Mão de obra:

Equipe de instalação: 4 profissionais (2 técnicos de redes, 1 eletricista, 1 supervisor).

Taxa horária: R\$ 90,00/hora para técnicos de rede, R\$ 120,00/hora para o eletricista, e R\$ 150,00/hora para o supervisor.

Tempo estimado: 5 dias (40 horas de trabalho).

Custo da mão de obra:

Profissional	Horas Totais	Taxa por Hora	Custo Total
2 Técnicos de Rede	80	R\$ 90,00	R\$ 7.200,00
1 Eletricista	40	R\$ 120,00	R\$ 4.800,00
1 Supervisor	40	R\$ 150,00	R\$ 6.000,00
Total Mão de Obra			R\$ 18.000,00

Equipamentos

Equipamentos	Preço (Un)	Quantidade	Custo Total
Access Point	R\$ 1.298,00	14	R\$ 18.172,00
Switch	R\$ 2.210,75	20	R\$ 44.215,00
Switch POE	R\$ 11.899,15	3	R\$ 35.697,45
Patch Panel (24 portas)	R\$ 209,99	40	R\$ 8.399,60
Rack Padrão	R\$ 148,43	20	R\$ 2.968,60
Rack Fechado	R\$ 1.893,90	2	R\$ 3.787,80
CAT-6 furukawa	R\$ 1.020,00	2 (cada caixa 300 m, preto e azul)	R\$ 20.40,00
Conectores RJ45	R\$ 729,49	1 (caixa com 1000)	R\$ 729,49
Fibra Óptica	R\$ 850,00	1 (bobina 1Km)	R\$ 850,00
Conectores SC/APC	R\$ 300,00	1 (caixa com 100)	R\$ 300,00
PC p/ Servidor	R\$ 4.099,00	1	R\$ 4.099,00
Nobreak power vision NG	R\$3,969.90	1	R\$3,969.90
Total:			R\$ 158.818,09

Mão de obra: Equipe de instalação: 4 profissionais (2 técnicos de rede, 1 eletricista e 1 supervisor). Taxa horária: R\$ 80,00/hora para técnicos de rede, R\$ 90,00/hora para eletricista, e R\$ 120,00/hora para o supervisor. Tempo de instalação: Previsão de 30 dias úteis (240 horas de trabalho).

Access Point e Switches: Instalação de 14 APs e 20 Switches (incluindo switches POE) pode levar cerca de 120 horas. Cabling (CAT-6, Fibra Óptica, Conectores): Pode levar cerca de 60 horas. Racks e Patch Panels: Instalação de racks e patch panels levará cerca de 30 horas . Configuração de Servidor e Calhas Elétricas: 30 horas.

Profissional	Horas Totais	Taxa por Hora	Custo Total
2 Técnicos de Rede	240 *2	R\$ 80,00	R\$ 38.400,00
1 Eletricista	240	R\$ 90,00	R\$ 21.600,00
1 Supervisor	240	R\$ 120,00	R\$ 28.800,00
Total Mão de Obra			R\$ 88.800

Datacenter

Item	Custo
Proteção contra incêndio	R\$ 9750,00
Monitor de Temperatura e Umidade	R\$ 3.700,00
Sistema de supressão e combate a incêndio	~R\$ 30.000,00
10 Extintor CO2	R\$ 6.000,00
Total:	R\$ 49.450,00

Mão de obra:

Equipe de instalação: 4 profissionais (2 técnicos de infraestrutura, 1 engenheiro de segurança contra incêndios e 1 supervisor). Taxa horária: R\$ 100,00/hora para técnicos de infraestrutura, R\$ 150,00/hora para o engenheiro, e R\$ 120,00/hora para o supervisor. Tempo estimado para instalação:

Proteção contra incêndio: 60 horas. Monitor de Temperatura e Umidade: 30 horas. Sistema de supressão e combate a incêndio: 120 horas. Extintores CO2 (incendio elétrico): 10 horas.

Profissional	Horas Totais	Taxa por Hora	Custo Total
2 Técnicos de Infraestrutura	150*2	R\$ 100,00	R\$ 30.000,00
1 Engenheiro de Segurança	150	R\$ 150,00	R\$ 22.500,00
1 Supervisor	150	R\$ 120,00	R\$ 18.000,00
Total Mão de Obra			R\$ 70.500,00

TOTAL DO PROJETO -----> R\$ 412.583,33

Para o TCO, consideramos não apenas este custo total, mas o custo em que teremos durante os anos com reparo e suporte vitalício. Consideraremos um suporte anual com os custos operacionais de 10% do custo incial de equipamento e infraestrutura.

Custo anuais de operação e manutenção:

Considerando o uso do um sistema de rádio, datacenter e outros equipamentos, além da manutenção e suporte contínuo de uma equipe para o sistema de segurança, sistema contra incêndio e energia, julgamos para o cálculo anual como sendo 10% do valor do custo total do projeto.

- Custo total de Instalação: R\$ 412.583,33
 - + TCO anual de manutenção física: **R\$ 41.258,30**

TCO = (R\$412.583,33) + (R\$41.258,30) Anual

TCO Anual para Núvem

Para solução em nuvem, podemos calcular o TCO abdicando de todo o custo que calculamos acima para a infraestrutura do datacenter, de aproximadamente **R\$119.950,00** e somamos então o restante com o cálculo da solução anual em núvem que calculamos anteriormente de **R\$127.612,92** (página 78).

Teremos então um TCO para a solução em núvem de:

- Custo total de Instalação: **R\$292.633,33**
 - o + TCO de manutenção física de: R\$ 41.258,30
 - + TCO Anual em núvem de: **R\$127.612,92**

TCO = (R\$292.633,33) + (R\$41.258,30 + R\$127.612,92) Anual

Conclusão

A longo prazo com a solução em núvem teremos um TCO maior que a solução física, mas em contrapartida teremos uma confiabilidade, disponibilidade e escalabilidade muito maior.

Ambas as soluções são válidas e possuem seus prós e contras que listamos na página 77, porém para este projeto e pensando na futura troca de campus, mesmo com os altos custos a longo prazo a solução em núvem seria a nossa escolha favorita por este motivo.

83

Obrigado!

Bibliografia

1. Redes/Data center:

 $\underline{https://www.youtube.com/watch?v=qIbhkmTB8Q8\&list=PLvUOx2WG6R7PMM8Uh$

MWevH75QzGyXOv4g&index=6&ab_channel=GurutechNetworkingTraining

https://networkencyclopedia.com/network-infrastructure-design/

http://www.heatmapper.ca/image/

software visiwave

https://www.se.com/ww/en/work/solutions/system/s1/data-center-and-network-

systems/trade-off-tools/data-center-it-pod-sizing-calculator/

https://www.se.com/ww/en/work/solutions/system/s1/data-center-and-network-

systems/trade-off-tools/data-center-capital-cost-calculator/

https://www.teleco.com.br/tutoriais/tutorialdcseg1/pagina 2.asp - norma ANSI/TIA

942 Datacenter

https://cloud.google.com/products/calculator - calculadora GCP

2. Antenas/Radio:

https://www.ve2dbe.com/english1.html

3. Sistema de Incêndio:

https://www.a5s.com.br/blog/como-instalar-sistemas-de-hidrantes-e-mangotinhos-em-

edificacoes/ - instalação

https://www.globalsyst.com.br/site/produtos/combate-a-incendio-fm-200/

https://www.youtube.com/watch?v=8rZ_39fzzBw&ab_channel=FireProtection -

posicionamento

https://conexaogasrj.com.br/empresas/tecnogas-combate-a-incendios-e-instalacoes-de-

gas/ - orçamento

https://www.habitissimo.com.br/orcamentos/contra-incendios/rio-de-janeiro

https://www.colocationamerica.com/blog/different-fire-supression-systems-in-data-

centers

4. Cabeamento Estruturado:

https://thenetworkinstallers.com/blog/structured-cabling-installation/

https://its.uchicago.edu/structured-cabling-specifications/

https://www.tecnolan.com.br/2019/06/25/o-projeto-de-arquitetura-e-as-salas-de-

telecomunicacoes/

 $\underline{https://qualidadeonline.wordpress.com/2021/11/03/os-caminhos-e-os-espacos-para-o-number of the properties of the pro$

cabeamento-estruturado/

https://a3aengenharia.com.br/blog/sistema-de-cabeamento-estruturado/

5. Climatização (CRACS):

https://zeittec.com.br/climatizacao-para-data-center/