Formación de Equipos Múltiples con Sociometría

Ignacio Martínez Hernández

Doctorado en Sistemas de Ingeniería

Universidad de Talca

martinez17@alumnos.utalca.cl

Código Fuente:

github.com/DarkNacho/Multiple-Team-Formation

Motivación

- Las organizaciones deben asignar personas a múltiples proyectos simultáneamente.
- No basta con cubrir lo técnico: ¡La dinámica social importa!
- ¿Cómo lograr equipos eficientes y cohesionados?

Objetivo

- Asignar personas a proyectos maximizando:
 - Eficiencia técnica
 - Afinidad social
- Proveer una herramienta formal y flexible para la toma de decisiones.

Metodología

- 1. Definición formal del problema
- 2. Generación de datos sintéticos
- 3. Implementación computacional
- 4. Análisis experimental y validación

Simplificaciones del Modelo

- Cada persona tiene una habilidad principal.
- Asignaciones de tiempo discretas (ej: 0%, 50%, 100%).
- Relaciones sociales fijas durante la asignación.
- Proyectos independientes y con prioridad.

Componentes del Problema

- Individuos (\mathcal{H}): habilidades y afinidades sociales.
- Proyectos (\mathcal{P}): requieren habilidades y tienen prioridad.
- Habilidades (K): tipos de competencias técnicas.
- Asignación (x_{il}): ¿Quién va a qué proyecto y cuánto tiempo?

Definición Formal del Modelo

Conjuntos:

- \mathcal{H} : Conjunto de individuos (i)
- \mathcal{P} : Conjunto de proyectos (l)
- \mathcal{K} : Conjunto de habilidades (a)
- \mathcal{D} : Fracciones de tiempo permitidas

Definición Formal del Modelo

Parámetros:

- s_{ij} : Afinidad social entre i y j (+1, 0, -1)
- ullet r_{al} : Requerimiento de habilidad a en proyecto l
- w_l : Peso o prioridad del proyecto l

Variables:

ullet x_{il} : Fracción de tiempo de i asignada a l ($x_{il} \in \mathcal{D}$)

Función Objetivo

Eficiencia de cada proyecto:

$$e_l = rac{1}{2} \Biggl(1 + rac{\sum_{i,j \in \mathcal{H}} s_{ij} x_{il} x_{jl}}{\left(\sum_{a \in \mathcal{K}} r_{al}
ight)^2} \Biggr)$$

Eficiencia global a maximizar:

$$\max E = \sum_{l \in \mathcal{P}} w_l \cdot e_l$$

Interpretación de la Función Objetivo

- Numerador: Suma de afinidades ponderada por la colaboración conjunta.
- Denominador: Normaliza por el tamaño del proyecto.
- Resultado: Índice de cohesión entre 0 y 1, ponderado por prioridad.

Restricciones del Modelo

1. Capacidad individual:

$$\sum_{l \in \mathcal{P}} x_{il} \leq 1 \quad orall i \in \mathcal{H}$$

2. Requerimientos de habilidad:

$$\sum_{i \in Q_a} x_{il} = r_{al} \quad orall a \in \mathcal{K}, orall l \in \mathcal{P}$$

3. Asignación discreta:

$$x_{il} \in \mathcal{D}$$

Visualización del Modelo

Implementación Computacional

• Lenguaje: Python

• Modelado: Pyomo

• Solver: Bonmin (MINLP)

• Datos: Archivos JSON configurables

Resultados: Validación de Correctitud

• Comparación entre el modelo MINLP y fuerza bruta en instancias pequeñas.

Instancia	Eficiencia Global (Fuerza Bruta)	Eficiencia Global (Solver)
2p / 1pr / 1sk (afin. pos)	100.00%	100.00%
3p / 2pr / 2sk (afin. mix)	100.00%	100.00%
4p / 2pr / 2sk (afin. nega)	75.00%	75.00%
6p / 1pr / 2sk (excedente)	75.00%	75.00%

El modelo es correcto y coincide con la solución óptima.

Resultados: Escalabilidad

• Evaluación del tiempo de resolución y eficiencia global al aumentar el tamaño del problema.

Instancia	Eficiencia Global	Tiempo (s)
10p / 2pr / 2sk	81.90%	0.22
20p / 5pr / 4sk	75.11%	0.84
30p / 5pr / 4sk	60.22%	5.05
50p / 10pr / 8sk	73.65%	45.11
100p / 10pr / 8sk	67.86%	622.19

El modelo resuelve instancias realistas en tiempos razonables.

Resultados: Impacto de la Discretización del Tiempo

• Comparación de eficiencia y tiempos de cómputo según la granularidad de las fracciones de tiempo.

Fracciones Permitidas	Eficiencia Global	Tiempo Solver (s)	Tiempo Fuerza Bruta (s)
{0, 1}	88.89%	0.18	0.04
{0, 0.5, 1}	88.89%	0.13	3.56
{0, 0.25, 0.5, 0.75, 1}	88.89%	0.13	1407.97

El solver es eficiente incluso con mayor granularidad, a diferencia de fuerza bruta.

Resultados: Robustez ante Afinidades Negativas

• Eficiencia global al aumentar la proporción de afinidades negativas.

Proporción Negativas	Eficiencia Global
50%	55.56%
60%	38.89%
80%	33.33%
90%	22.22%
100%	22.22%

El modelo penaliza fuertemente los equipos con alta conflictividad.

Resultados: Sensibilidad a la Prioridad de Proyectos

• El modelo responde correctamente a los pesos asignados a los proyectos.

Pesos (P1, P2)	Eficiencia P1	Eficiencia P2	Eficiencia Global
(80%, 20%)	88.89%	77.78%	86.67%
(95%, 5%)	88.89%	77.78%	88.33%

La eficiencia global ponderada aumenta al priorizar proyectos más cohesionados.

Gestión de Casos Inviables

- Si no hay suficientes personas:
 - El modelo estricto reporta "inviable".
 - Se activa un modelo relajado:
 - Permite déficit de habilidades.
 - Penaliza fuertemente el déficit en la función objetivo.

Definición Formal del Modelo Relajado

- Se introducen variables de déficit $\delta_{al} \geq 0$.
- Restricción de habilidad relajada:

$$\sum_{i \in Q_a} x_{il} + \delta_{al} = r_{al}$$

• Nueva función objetivo:

$$\max E_{ ext{relajado}} = \left(\sum_{l \in \mathcal{P}} w_l \cdot e_l
ight) - \lambda \sum_{l \in \mathcal{P}} \sum_{a \in \mathcal{K}} \delta_{al}$$

Resultados: Modelo Relajado en Instancias Inviables

• El modelo relajado informa el déficit de habilidades y la eficiencia alcanzada.

Instancia	Eficiencia Global	Déficit Total
4p / 2pr / 2sk	66.39%	3.0
6p / 2pr / 2sk	54.32%	12.0
10p / 3pr / 2sk	79.93%	1.5
15p / 4pr / 5sk	66.80%	3.0

El modelo no falla: entrega la mejor asignación posible y cuantifica el déficit.

Utilidad para la Gestión

- Herramienta de diagnóstico y apoyo a la decisión.
- Identifica exactamente qué falta y dónde.
- Ayuda a priorizar acciones en recursos humanos y proyectos.

Conclusiones

- El modelo permite formar equipos eficientes y cohesionados.
- Es robusto ante conflictos y escalable a problemas reales.
- La gestión de inviabilidad es una contribución clave.

Trabajo Futuro

- Incluir habilidades secundarias y penalizar sobreasignación.
- Mejorar la matriz de afinidad para capturar más factores.
- Probar otros solvers o heurísticas para problemas aún más grandes.

Formación de Equipos Múltiples con Sociometría

Ignacio Martínez Hernández

Doctorado en Sistemas de Ingeniería

Universidad de Talca

martinez17@alumnos.utalca.cl

Código Fuente:

github.com/DarkNacho/Multiple-Team-Formation