Examen Algebră - seria 10 - 23.01.2015.

- (1) Demonstrați criteriul " xy^{-1} " pentru subgrupuri.
- (2) Demonstrați teorema fundamentală de izomorfism pentru grupuri.
- (3) Demonstrați Lema Chineză a Resturilor pentru inele.
- (4) Fie $\eta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 4 & 8 & 6 & 2 & 5 & 1 \end{pmatrix} \in S_8$. Calculați η^{-101} și signatura lui η . (5) Este $< I, \rho^2 >$ subgrup normal al grupului diedral $D_4 = \{I, \rho, \rho^2, \rho^3, \epsilon, \rho\epsilon, \rho^2\epsilon, \rho^3\epsilon\}$?
- (6) Arătați că funcția $a+bi \stackrel{f}{\mapsto} \widehat{a+13b}: \mathbb{Z}[i] \to \mathbb{Z}_{17}$ este morfism de inele și că nucleul lui f este $(4+i)\mathbb{Z}[i]$.
- (7) Calculați (2-i+4j-k)(1+2i-j-2k) în corpul cuaternionilor.
- (8) Rezolvați ecuația $\widehat{61}x = \widehat{1}$ în inelul \mathbb{Z}_{103} .
- (9) Sunt inelele de polinoame $\mathbb{Z}[X_1, X_2]$ şi $\mathbb{Z}[X_1, X_2, X_3]$ izomorfe?

Examen Algebră - seria 10 - 23.01.2015.

- (1) Explicați succint noțiunea de "bună-definire" și dați exemple.
- (2) Subgrupul generat de o submulțime a unui grup, proprietăți (cu demonstrație).
- (3) Caracteristica unui inel (definiție), morfismul lui Frobenius (demonstrație).
- (4) Fie $\eta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 2 & 6 & 3 & 4 & 7 & 5 \end{pmatrix} \in S_8$. Calculați η^{-98} și signatura lui η . (5) Este $\langle I, \epsilon \rangle$ subgrup normal al grupului diedral $D_4 = \{I, \rho, \rho^2, \rho^3, \epsilon, \rho\epsilon, \rho^2\epsilon, \rho^3\epsilon\}$?
- (6) Arătați că funcția $a + bi \stackrel{f}{\mapsto} \widehat{a + 31b} : \mathbb{Z}[i] \to \mathbb{Z}_{37}$ este morfism de inele și că nucleul lui f este $(6+i)\mathbb{Z}[i]$.
- (7) Calculați (3-i+4j-2k)(1+3i-j-2k) în corpul cuaternionilor.
- (8) Găsiţi inversul lui $\widehat{52}$ în inelul \mathbb{Z}_{101} .
- (9) Sunt inelele de polinoame $\mathbb{Z}_2[X_1,X_2]$ și $\mathbb{Z}_2[X_1,X_2,X_3]$ izomorfe ?

Examen Algebră - seria 10 - 23.01.2015.

- (1) Demonstrați rezultatul referitor la unitățile monoidului multiplicativ \mathbb{Z}_n .
- (2) Prezentați, cu demonstrații, construcția grupului factor.
- (3) Demonstrați teorema lui Bezout referitoare la polinoame. (4) Fie $\eta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 5 & 1 & 4 & 2 & 8 & 3 \end{pmatrix} \in S_8$. Calculați η^{101} și signatura lui η .
- (5) Este $\langle I, \rho \epsilon \rangle$ subgrup normal al grupului diedral $D_4 = \{I, \rho, \rho^2, \rho^3, \epsilon, \rho \epsilon, \rho^2 \epsilon, \rho^3 \epsilon\}$?
- (6) Arătați că funcția $a+bi \stackrel{f}{\mapsto} \widehat{a+5b} : \mathbb{Z}[i] \to \mathbb{Z}_{13}$ este morfism de inele și că nucleul lui f este $(2-3i)\mathbb{Z}[i]$.
- (7) Calculați (1-i+j+3k)(-2+2i-j-3k) în corpul cuaternionilor.
- (8) Rezolvați ecuația $\widehat{71}x = -\widehat{1}$ în inelul \mathbb{Z}_{105} .
- (9) Sunt inelele de polinoame $\mathbb{Z}_4[X_1,X_2]$ și $\mathbb{Z}_4[X_1,X_2,X_3]$ izomorfe ?

Examen Algebră - seria 10 - 23.01.2015.

- (1) Demonstrați rezultatul referitor la subgrupurile lui $(\mathbb{Z}, +)$.
- (2) Demonstrați Lema Chineză a Resturilor pentru \mathbb{Z} .
- (3) Demonstrați teorema lui Euclid de descompunere în K[X] (fără unicitate).
- (4) Fie $\eta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 8 & 1 & 6 & 7 & 3 & 2 & 5 \end{pmatrix} \in S_8$. Calculați η^{102} și signatura lui η . (5) Este $< I, \rho^2 \epsilon >$ subgrup normal al grupului diedral $D_4 = \{I, \rho, \rho^2, \rho^3, \epsilon, \rho \epsilon, \rho^2 \epsilon, \rho^3 \epsilon\}$?
- (6) Arătați că funcția $a+bi \stackrel{f}{\mapsto} \widehat{a+4b} : \mathbb{Z}[i] \to \mathbb{Z}_{17}$ este morfism de inele și că nucleul lui f este $(4-i)\mathbb{Z}[i]$.
- (7) Calculați (2+2i-j-k)(2-i-j-2k) în corpul cuaternionilor. (8) Găsiți inversul lui $\widehat{71}$ în inelul \mathbb{Z}_{104} .
- (9) Sunt inelele de polinoame $\mathbb{Z}_6[X_1,X_2]$ și $\mathbb{Z}_6[X_1,X_2,X_3]$ izomorfe ?

Examen Algebră - seria 10 - 23.01.2015.

- (1) Fie $\beta: G \to L$ un morfism de grupuri și H < L. Arătați că $\beta^{-1}(H) < G$.
- (2) Ordinul unui element intr-un grup, proprietăți (cu demonstrație).
- (3) Fie K un corp comutativ. Arătați că orice ideal al lui K[X] este principal.
- (4) Fie $\eta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 1 & 6 & 7 & 2 & 8 & 4 & 3 \end{pmatrix} \in S_8$. Calculați η^{104} și signatura lui η . (5) Este $\langle I, \rho^3 \epsilon \rangle$ subgrup normal al grupului diedral $D_4 = \{I, \rho, \rho^2, \rho^3, \epsilon, \rho \epsilon, \rho^2 \epsilon, \rho^3 \epsilon\}$?
- (6) Arătați că funcția $a+bi \stackrel{f}{\mapsto} \widehat{a+6b} : \mathbb{Z}[i] \to \mathbb{Z}_{37}$ este morfism de inele și că nucleul lui f este $(6-i)\mathbb{Z}[i]$.
- (7) Calculați (2-i+3j+k)(-2+i-2j-3k) în corpul cuaternionilor.
- (8) Rezolvați ecuația $\widehat{31}x = -\widehat{1}$ în inelul \mathbb{Z}_{106} .
- (9) Sunt inelele de polinoame $\mathbb{Z}_8[X_1,X_2]$ și $\mathbb{Z}_8[X_1,X_2,X_3]$ izomorfe ?

Examen Algebră - seria 10 - 23.01.2015.

- (1) Dați definiția monoidului liber și enunțați proprietatea sa de universalitate.
- (2) Demonstrați că orice grup ciclic este izomorf cu \mathbb{Z} sau cu \mathbb{Z}_n .
- (3) Prezentați Algoritmul lui Euclid pentru \mathbb{Z} și demonstrați corectitudinea. (4) Fie $\eta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 5 & 2 & 3 & 1 & 4 & 8 & 7 \end{pmatrix} \in S_8$. Calculați η^{107} și signatura lui η .
- (5) Este $< I, \rho \epsilon > \text{subgrup normal al grupului diedral } D_4 = \{I, \rho, \rho^2, \rho^3, \epsilon, \rho \epsilon, \rho^2 \epsilon, \rho^3 \epsilon\}$?
- (6) Arătați că funcția $a+bi \stackrel{f}{\mapsto} \widehat{a+8b} : \mathbb{Z}[i] \to \mathbb{Z}_{13}$ este morfism de inele și că nucleul lui f este $(2+3i)\mathbb{Z}[i]$.
- (7) Calculați (1-2i-3j-k)(3-2i-j-2k) în corpul cuaternionilor.
- (8) Găsiţi inversul lui $\widehat{49}$ în inelul \mathbb{Z}_{102} .
- (9) Sunt inelele de polinoame $\mathbb{Z}_{10}[X_1,X_2]$ și $\mathbb{Z}_{10}[X_1,X_2,X_3]$ izomorfe ?