CSE 215: Data Structures and Algorithms II

Topological Sorting Strongly Connected Components

Directed Acyclic Graph

Topological Sort

A topological sort of a DAG is

a linear ordering of all vertices of the graph G such that vertex u comes before vertex v if (u, v) is an edge in G.

- DAG indicates precedence among events:
 events are graph vertices, edge from u to v means event u has precedence over event v
- Real-world example:
 - getting dressed
 - course registration
 - tasks for eating meal

Precedence Example

- Tasks that have to be done to eat breakfast:
 - get glass, pour juice, get bowl, pour cereal, pour milk, get spoon, eat.
- Certain events must happen in a certain order (ex: get bowl before pouring milk)
- For other events, it doesn't matter (ex: get bowl and get spoon)

Precedence Example

Topological Sort: Using in-degree

Topological Sort: Using in-degree

Delete the vertex whose in-degree 0. (v1 or v2)

Topological Sort: Using in-degree

Delete the vertex whose in-degree 0. (v2)

Topological Sort: Using in-degree

Delete the vertex whose in-degree 0. (v3)

Topological Sort: Using in-degree

Delete the vertex whose in-degree 0. (v4)

Topological Sort: Using in-degree

Delete the vertex whose in-degree 0. (v5)

Topological Sort: Using in-degree

Delete the vertex whose in-degree 0. (v6)

Topological Sort: Using in-degree

Delete the vertex whose in-degree 0. (v6)

Topological Sort: Using in-degree

T: v1 v2 v3 v4 v5 v6

Delete the vertex whose in-degree 0. (v7)

Topological Sort: Using in-degree

T: v1 v2 v3 v4 v5 v6 v7

Delete the vertex whose in-degree 0.

Topological Sort: Using in-degree

Steps for finding the topological ordering of a DAG:

Step-1: Compute in-degree for each of the vertices present in the DAG and initialize the count of visited nodes as 0;

Step-2: Add all **vertices with in-degree equals 0** into a queue

Step-3: Remove a vertex from the queue and then

- Increment count of visited nodes by 1;
- Decrease in-degree by 1 for all its neighboring nodes;
- If in-degree of a neighboring node is reduced to zero, then add it to the queue;

Step 4: Repeat Step 3 until **the queue is empty**;

Step 5: If count of visited nodes is **not** equal to the number of nodes in the graph then the topological sort is not possible for the given graph

Topological Sort

Topological Sort

Α

В

C

Ε

D

Topological Sort

Q: F

Topological Sort

In-degree

1	2	3	0	2	0
А	В	С	D	E	F

Q: F

Topological Sort

In-degree

1	2	3	0	2	0
Α	В	С	D	Е	F

Q: F D

Topological Sort

In-degree

0	1	3	0	2	0
Α	В	С	D	E	F

Q: F D

Topological Sort

In-degree

0	1	3	0	2	0
Α	В	С	D	Е	F

Q: FDA

Topological Sort

In-degree

0	0	2	0	1	0
Α	В	С	D	Е	F

Q: FDA

Topological Sort

In-degree

0	0	2	0	1	0
А	В	С	D	Е	F

Q: FDAB

Topological Sort

In-degree

0	0	1	0	0	0
А	В	С	D	Е	F

Q: FDAB

Topological Sort

In-degree

0	0	1	0	0	0
А	В	С	D	Е	F

Q: FDABE

Topological Sort

 \bigcirc

In-degree

0	0	0	0	0	0
А	В	С	D	Е	F

Q: FDABE

Topological Sort

С

In-degree

0	0	0	0	0	0
Α	В	С	D	Е	F

Q: FDABEC

Topological Sort

In-degree

0	0	0	0	0	0
А	В	С	D	Е	F

Q: FDABEC

DFS Application: Strongly Connected Components

- Consider a directed graph G.
- A strongly connected component (SCC) of the graph *G* is a maximal set of vertices with a (directed) path between every pair of vertices
- Problem: Find all the SCCs of the graph.

SCC Example

four SCCs

How Can DFS Help?

- Suppose we run DFS on the directed graph.
- All vertices in the same SCC are in the same DFS tree.
- But there might be several different SCCs in the same DFS tree.
 - Example: start DFS from the vertex a in the following graph

How Can DFS Help?

- Suppose we run DFS on the directed graph.
- All vertices in the same SCC are in the same DFS tree.
- But there might be several different SCCs in the same DFS tree.
 - Example: start DFS from the vertex a in the following graph

Main Idea of SCC Algorithm

- DFS tells us which vertices are reachable from the roots of the individual trees
- Also need information in the "other direction": is the root reachable from its descendants?
- Run DFS again on the "transpose" graph (reverse the directions of the edges)

SCC Algorithm

input: directed graph G = (V, E)

- 1. call DFS(G) to compute finishing times
- 2. compute G^T // transpose graph
- 3. call DFS(G^T), considering vertices in decreasing order of finishing times
- 4. each tree from Step 3 is a separate SCC of G

SCC Algorithm Example

input graph - run DFS

Order of vertices for Step 3: f, g, h, a, e, b, d, c

Order of vertices for Step 3: f, g, h, a, e, b, d, c

transposed input graph - run DFS with specified order of vertices

Order of vertices for Step 3: f, g, h, a, e, b, d, c

SCCs are {f,h,g}, {a,e}, {b,c}, and {d}

Running Time of SCC Algorithm

- Step 1: O(V + E) to run DFS
- Step 2: O(V + E) to construct transpose graph, assuming adjacency list rep.
- Step 3: O(V + E) to run DFS again
- Step 4: O(V) to output result
- Total: *O*(*V* + *E*)

Correctness of SCC Algorithm

- Proof uses concept of component graph GSCC, of G.
- Vertices are the SCCs of G;
 call them C₁, C₂, ..., C_k
- Put an edge from C_i to C_j iff G has an edge from a vertex in C_i to a vertex in C_i

Example of Component Graph

based on example graph from before

Facts About Component Graph

- Claim: GSCC is a directed acyclic graph.
- Why?
- Suppose there is a cycle in G^{SCC} such that component C_i is reachable from component C_i and vice versa.
- Then C_i and C_i would not be separate SCCs.

Facts About Component Graph

- Consider any component C during Step 1 (running DFS on G)
- Let d(C) be earliest discovery time of any vertex in C
- Let f(C) be latest finishing time of any vertex in C
- Lemma: If there is an edge in G^{SCC} from component C' to component C, then

$$f(C') > f(C)$$
.

Proof of Lemma

- Case 1: d(C') < d(C).
- Suppose x is first vertex discovered in C'.
- By the way DFS works, all vertices in C' and C become descendants of x.
- Then x is last vertex in C' to finish and finishes after all vertices in C.
- Thus f(C') > f(C).

Proof of Lemma

- Case 2: d(C') > d(C).
- Suppose y is first vertex discovered in C.
- By the way DFS works, all vertices in C become descendants of y.
- Then y is last vertex in C to finish.
- Since C' → C, no vertex in C' is reachable from y, so y finishes before any vertex in C' is discovered.
- Thus f(C') > f(C).

SCC Algorithm is Correct

- Prove this theorem by induction on number of trees found in Step 3 (running DFS on G^T).
- Hypothesis is that the first k trees found constitute k SCCs of G.
- Basis: k = 0. No work to do!
- Induction: Assume the first k trees constructed in Step 3 (running DFS on G^T) correspond to k SCCs; consider the (k+1)st tree.
- Let u be the root of the (k+1)st tree.
- u is part of some SCC, call it C.
- By the inductive hypothesis, C is not one of the k SCCs already found and all so vertices in C are unvisited when u is discovered.
 - By the way DFS works, all vertices in C become part of u's tree

SCC Algorithm is Correct

• Show *only* vertices in C become part of u's tree. Consider an outgoing edge from C.

SCC Algorithm is Correct

- By lemma, in Step 1 (running DFS on G) the last vertex in C' finishes after the last vertex in C finishes [f(C') > f(C)].
- Thus in Step 3 (running DFS on G^T), some vertex in C' is discovered before any vertex in C is discovered.
- Thus in Step 3, all of C', including w, is already visited before u's DFS tree starts

hank