Particle spectrograph

Wave operator and propagator

Spin-parity form Covariant form	ariant form	Multiplicities
#1 0+ \sigma ==0	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}=0$	1
#1 0+ r ==0	$\partial_{\beta}\partial_{\alpha} \tau^{\alpha\beta} = \partial_{\beta}\partial^{\alpha} \tau^{\alpha}$	1
$^{#2}_{0}$ ==0	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}=0$	1
$\frac{\#^2}{1^-} \frac{\alpha}{t} + 2 i k_1^{\#^2} \frac{\alpha}{\sigma} = 0$	$\partial_\chi \partial_\beta \partial^\alpha t^{\beta\chi} == \tilde{Q}_{\partial}^{\lambda} \partial_\beta t^{\alpha\beta} + 2 \ \partial_\delta \partial^\delta \partial_\chi \partial_\beta \sigma^{\alpha\beta\chi}$	е
$\frac{\#1}{1} \frac{\alpha}{r} == 0$	$\partial_{\chi}\partial_{\rho}\partial^{\alpha}t^{\beta\chi}==\dot{Q}\partial^{\chi}\partial_{\beta}t^{\beta\alpha}$	е
$1 + \frac{\pi 1}{\tau} \alpha \beta + i k_1^{\#2} \alpha \beta == 0$	$ 1^{\#1}_{-1} {}^{\alpha\beta} + i \ k^{\#2}_{1} {}^{\alpha\beta} = 0 \ \ \partial_{\chi} \partial^{\alpha} t^{\beta\chi} + \partial_{\chi} \partial^{\beta} t^{\chi\alpha} + \partial_{\chi} \partial^{\chi} t^{\alpha\beta} + 2 \ \partial_{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\beta\chi\delta} + 2 \ \partial_{\delta} \partial_{\lambda} \partial^{\alpha} \partial^{\beta\chi\delta} = 0 $	8
	$\partial_\chi \partial^\alpha t^{\chi\beta} + \partial_\chi \partial^\beta t^{\alpha\chi} + \partial_\chi \partial^\chi t^{\beta\alpha} + 2 \ \partial_\delta \partial_\chi \partial^\beta \sigma^{\alpha\chi\delta}$	
$2^{+1}_{1} \alpha^{\beta} - 2 i k_2^{+1} \alpha^{\beta} = 0$	$ 2^{*}_{1} {}_{1} {}_{\alpha\beta} - 2 i k_{2}^{*}_{1} {}_{\alpha\beta} = 0 $ $ -i (4 \partial_{\delta} \partial_{\chi} \partial^{\delta} \partial^{\alpha} r^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\alpha} r^{\chi} {}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} r^{\beta \chi} - 3 \partial_{\delta} \partial^{\alpha} r^{\beta \chi} - 3 \partial_{\delta} \partial^{\alpha} r^{\beta \chi} - 3 \partial_{\delta} \partial^{\alpha} r^{\gamma \beta} - 3 \partial_{$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\iota^{\alpha\chi}$ -3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\iota^{\chi\alpha}$ +3 $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\iota^{\alpha\beta}$ +	
	$3\partial_\delta\partial^\delta\partial_\chi\partial^\chi t^{eta a} + 4ik^\chi\partial_e\partial_\chi\partial^eta\partial^\sigma \sigma^{ar{b}_e}_\delta - 6ik^\chi\partial_e\partial_\lambda\partial^\sigma \sigma^{eta \delta e}_\delta$ -	
	$6ik^{\chi}\partial_{\varepsilon}\partial_{\varsigma}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\delta\varepsilon} + 2\eta^{\alpha\beta}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial_{\chi}\tau^{\chi\delta} +$	
	$6ik^{\chi}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\delta\beta} + 6ik^{\chi}\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial_{\chi}\sigma^{\beta\delta\alpha} -$	
	$2 \ \eta^{\alpha\beta} \ \partial_e \partial^e \partial_\delta \partial^\delta t^\chi_{\ \chi} - 4 \ i \ \eta^{\alpha\beta} \ k^X \ \partial_\phi \partial^\phi \partial_e \partial_\chi \partial^\phi \partial_\delta) = 0$	
Total expected gauge generators:	nerators:	17

2^{+1} 2^{+} $\beta_{\alpha\beta}$ 2^{+} $\beta_{\alpha\beta\chi}$																				
								$\overset{\#1}{2^+}\mathscr{R}\dagger^{\alpha\beta}$		<u>t</u> 1 2	$-\frac{i \ k \ t}{\sqrt{2}}$	0]	$0^{#1} \sigma$	^{#1} σ 0 ⁺ τ 0 ⁺		#1 r 0 c	r	
								$\overset{\#1}{2^+}f \dagger^{\alpha\beta}$		i k ⊈ √2	$k^2 t_1$			^{#1} 0 ⁺ σ†	0	0	0	0		
					rst1		1.5	#1 2 <i>J</i> (0	p		<u>t₁</u>	#1 0 ⁺ τ†	0	0	0	0		
$^{#2}_{1}$ τ_{lpha}	0	0	0	i k &+2k³rs	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$	αβχ	0					# ₂ 0 ⁺ τ†	0	0	0	0		
				*	i(6 √2 k(;		(1+1)	#1 2 ⁻ σαβχ			2 t ₁			^{#1} σ†	0	0 0		$-\frac{1}{t_1}$		
1^{*1}	0	0	0	0	0	0	0	#1 2 ⁺ ταβ	21 VZ k	$\frac{4k^2}{(1+2k^2)^2 t_1}$		0.# 0	0	0	0	-t ₁				
				2 k ⁴ r ₅)	r ₅ t ₁		²) ² r ₅ t ₁		- 1		0	#5 0+ <i>f</i>	0	0	0	0				
$^{\#2}_{1}\sigma_{lpha}$				$\frac{1}{\sqrt{2} (k^2 r_5 + 2k^4 r_5)}$	$\frac{6k^2r_5+t_1}{2(k+2k^3)^2r_5t_1}$		$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	$^{#1}_{2}$	2	$2i\sqrt{2}k$ $2i\sqrt{2}k$ $(1+2k^2)^2t_1$	0	#1 # 0 ⁺ f	0	0	0	0				
	0	0	0	- 1	·	0	- 1 i				Χβχ	$_{0}^{*1}$	0	0	0	0				
τα				۵۰ ا	+2 k ⁴ r ₅)		k ³ r ₅		$^{#1}_{2}$ $^{\alpha\beta}_{3}$	$^{*1}_{2}^{\alpha\beta}$	$\frac{*1}{2}\sigma^{\dagger}$		#1 0+ A+	#1 0 ⁺ f†	#2 0 ⁺ f †	#1 0				
$1^{*1}\sigma_{lpha}$	0	0	0	$\frac{1}{k^2 r_5}$	$\frac{1}{\sqrt{2} \left(k^2 r_5 \! + \! 2 k^4 r_5 \right)}$	0	i k 8+2k³rs		_	$\overset{\#1}{1^+}\mathcal{F}\!\!/\!\!/lphaeta$	#2 1+ A	β 1 ^{#1}	fαβ	$\overset{\#1}{1}\mathcal{F}\!\!/_{lpha}$;	$\overset{\#^2}{1}\mathcal{F}\!\!/_{lpha}$	1	$\overset{\#1}{1}f_{\alpha}$	$1^{2}f_{\alpha}$	
g	4 ا ئ	水丸) :t1 ²	k² t1		i			$\overset{\#1}{1^+}\mathscr{F}_{\!\!\!\!/}$	† ^{αβ}	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	_ <u>i</u>	$\frac{k t}{\sqrt{2}}$	0	0	0)		0	
$_{1}^{*1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_5+k_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0			0	#2 1+ <i>F</i> († ^{αβ}	$-\frac{t_1}{\sqrt{2}}$	0	0	¢)		0		0	0	
αβ	2 t ₁	-			0	0		$1^{+}f$	† ^{αβ}	$\frac{i \ k \ t}{\sqrt{2}}$	0	0	¢)		0		0	0	
$^{#2}_{1}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3r_5-k\ 4)}{(1+k^2)^2t_1^2}$	0	0	0	0	$\overset{\#1}{1}\mathcal{G}$	q † ^α	0	0	0		$k^2 r_5 + \frac{t}{6}$	<u>1</u>	$\frac{t_1}{3\sqrt{2}}$		0	i k <u>f</u>	
$_{1}^{*1}^{*1}$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0	$\overset{\#2}{1}\mathcal{F}$	L	0	0	(0	$\frac{t_1}{3\sqrt{2}}$		<u>t</u> 1 3		0	$\frac{1}{3} i \sqrt{2} k t_1$	
# [αβ			+α	+α	+α	+α		$f \uparrow^{\alpha}$	0	0	0		0	0	0)		0	
	$^{#1}_{1}\sigma^{\dagger}_{1}$	$^{#2}_{1}^{\alpha\beta}$	$_{1}^{\#1}\tau ^{\alpha \beta }$	$\frac{#1}{1}\sigma^{\dagger}$	$\frac{#2}{1}\sigma^{\dagger}$	$\frac{#1}{1}\tau + \frac{\alpha}{\alpha}$	$\frac{#2}{1}\tau^{\alpha}$	#2 1	$f \uparrow^{\alpha}$	0	0	0		$-\frac{1}{3}i k 1$	$-\frac{1}{3}I$	$\sqrt{2} k$	有	0	$\frac{2k^2t_1}{3}$	

 $\partial_\theta \mathcal{A}_{/\kappa}^{\ \ \kappa} \ \partial^\theta \mathcal{A}_{\alpha}^{\ \ \alpha} \ - (\partial_\alpha \mathcal{A}^{\alpha\theta} - 2 \ \partial^\theta \mathcal{A}_{\alpha}^{\ \ \alpha}) (\partial_\kappa \mathcal{A}_{/\theta}^{\ \ \kappa} - \partial_\kappa \mathcal{A}_{/\theta}^{\ \ \kappa}))][t,\kappa,y,z] \ \text{\it d} \ z \ \text{\it d} \ y \ \text{\it d} \ \kappa$

Massive and massless spectra

Polarisations: 2	Pole residue: -	Massless particle	$\begin{array}{c} ? \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	(No particles)
2	$\frac{1}{r_5t_1^2} > 0$	rticle		

Unitarity conditions