CSE 533: The PCP Theorem and Hardness of Approximation

(Autumn 2005)

Lecture 8: Linearity and Assignment Testing

26 October 2005

Lecturer: Venkat Guruswami

Scribe: Paul Pham & Venkat Guruswami

1 Recap

In the last class, we covered the Composition Theorem except for the O(1)-query assignment tester (AT). Today we will develop some machinery relating to linearity testing to be used in the construction of such an AT. This can be treated as a self-contained lecture on linearity testing and the necessary Fourier analysis.

2 Linearity Testing

We work in an n-dimensional binary vector space $\{0,1\}^n$ with inner product $x \cdot y = \sum_{i=1}^n x_i y_i$ defined as usual, where the summation is done modulo 2 (in other words, it is the binary \oplus operator). The binary \oplus operator will denote bitwise XOR on two vectors. The linear functions on $\{0,1\}^n$ are of the form $L(x) = a \cdot x$ for some $a \in \{0,1\}^n$. There are 2^n such functions. If $S \subseteq \{1,2,\ldots,n\}$ is the set $\{i:S\ni i\}$, then clearly $L(x)=\sum_{i\in S}x_i$ (again, the summation is in the field $\{0,1\}$). We will use such subsets to index linear functions — the linear function L_S corresponding to a subset $S \subset \{1,2,\ldots,n\}$ is defined as

$$L_S(x) = \sum_{i \in S} x_i$$

Definition 2.1 (linear function). A function $f: \{0,1\}^n \to \{0,1\}$ is linear if

$$\forall_{x,y \in \{0,1\}^n} : f(x+y) = f(x) + f(y) \tag{1}$$

(where x + y denotes coordinatewise addition mod 2).

Alternatively, a function f is linear if it is equal to L_S for some $S \subset \{1, 2, ..., n\}$.

The goal of *linearity testing* is then: given $f: \{0,1\}^n \to \{0,1\}$ as a table of 2^n values, check whether f is linear using just a few probes into the table f. Clearly, we cannot check that f is exactly linear without looking at the entire table, so we will aim to check whether f is close to a linear function. A natural test is the Blum-Luby-Rubinfeld (BLR) test where we check the above condition (1 for a single triple (x, y, x+y) with x, y chosen randomly and independently. Formally the BLR test proceeds as follows:

1. Pick $x, y \in \{0, 1\}^n$ uniformly and independently at random.

2. If f(x+y) = f(x) + f(y) accept, otherwise reject.

We can describe the distance/closeness between two functions as follows.

Definition 2.2. We say two functions f and g are δ -far if they differ in at least a fraction δ of places, $0 \le \delta \le 1$, i.e.,

$$\Pr_{x \in \{0,1\}^n} \left[f(x) \neq g(x) \right] \ge \delta$$

We say two functions f and g are δ -close if they differ in at most a fraction δ of places, $0 \le \delta \le 1$, i.e.,

$$\Pr_{x \in \{0,1\}^n} \left[f(x) \neq g(x) \right] \le \delta$$

The completeness of the above test is obvious.

Theorem 2.3 (BLR Completeness). *If f is linear, the BLR test accepts with probability 1.*

In the rest of this lecture we will show the following on the efficacy of the test in detecting the non-linearity of f as a function of the distance of f from linearity.

Theorem 2.4 (BLR Soundness). *If* f *is* δ -far from every linear function then the BLR test rejects with probability at least δ .

3 Notation Change

We now introduce a change in notation from Boolean binary values in $\{0,1\}$ to $\{1,-1\}$ which turns out to be more convenient. The transformation for $a \in \{0,1\}$ is:

$$a \to (-1)^a$$

which maps 0 to 1, 1 to -1. The advantage with this change is that the xor (or summation mod 2) operation becomes multiplication.

$$a + b \to (-1)^{a+b} = (-1)^a (-1)^b$$

We now consider functions $f: \{-1,1\}^n \to \{-1,1\}$ and have a new form for the linear function associated with a subset $S \subset \{1,2,\ldots,n\}$:

$$\chi_S(x) = \prod_{i \in S} x_i \tag{2}$$

and a new linearity test that checks

$$f(x \cdot y) = f(x) \cdot f(y)$$

for randomly chosen $x, y \in \{1, -1\}^n$, where $x \cdot y$ denotes coordinatewise multiplication, i.e., $(x \cdot y)_i = x_i y_i$.

The expression f(x)f(y)f(xy) equals 1 if the test accepts for that choice of x, y, and equals -1 if the test rejects. The quantity

$$\left(\frac{1 - f(x)f(y)f(xy)}{2}\right)$$

is thus an indicator for whether the test accepts. It follows that the probability that the BLR test rejects using this new notation can be expressed as:

$$\Pr\left[\text{BLR test rejects}\right] = \mathop{\mathbb{E}}_{x,y \in \{1,-1\}^n} \left[\frac{1 - f(x)f(y)f(xy)}{2} \right] \tag{3}$$

In order to calculate the value of this expectation, we will need some background in discrete Fourier analysis.

4 Fourier Analysis on Discrete Binary Hypercube

Consider the vector space \mathbb{G} consisting of all *n*-bit functions from $\{-1,1\}^n$ to the real numbers:

$$\mathbb{G} = \{g \mid g : \{-1, 1\}^n \to \mathbb{R}\}\$$

 \mathbb{G} has dimension 2^n , and a natural basis for it are the indicator functions $e_a(x) = \mathbb{1}(x = a)$ for $a \in \{1, -1\}^n$. The coordinates of $g \in \mathbb{G}$ in this basis is simply the table of values g(a) for $a \in \{1, -1\}^n$.

We will now describe an alternate basis for \mathbb{G} . We begin with an inner product on this space defined as follows:

$$\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{-1, 1\}^n} f(x)g(x) \tag{4}$$

The linear functions $\chi_S(x)$ for various subsets S form an orthonormal basis with respect to the above inner product. Since $|\chi_S(x)| = 1$ for every S, x, clearly $\langle \chi_S, \chi_S \rangle = 1$ for all $S \subseteq \{1, 2, \ldots, n\}$. The following shows that different linear functions are orthogonal w.r.t the inner product (4).

Lemma 4.1.

$$S \neq T \rightarrow \langle \chi_S, \chi_T \rangle = 0$$

Proof:

$$\langle \chi_S, \chi_T \rangle = \frac{1}{2^n} \sum_{x \in \{-1,1\}^n} \chi_S(x) \chi_T(x)$$

$$= \frac{1}{2^n} \sum_{x \in \{-1,1\}^n} \left(\prod_{i \in S} x_i \right) \left(\prod_{i \in T} x_i \right)$$

$$= \frac{1}{2^n} \sum_{x \in \{-1,1\}^n} \left(\prod_{i \in S \triangle T} x_i \right)$$

$$= 0$$

 $S\triangle T$ denotes the symmetric difference of S and T. This is not empty because we have specified $S \neq T$. The last step follows because we can always pair any x with an \tilde{x} such that $x_j = -\tilde{x}_j$ for a fixed $j \in S\triangle T$.

Thus we have shown that the $\{\chi_S\}$ form an orthonormal basis for \mathbb{G} . We can therefore any function f in this basis as follows (in what follows we use [n] to denote the set $\{1, 2, \ldots, n\}$):

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x) ,$$

where the coefficients $\hat{f}(S)$ w.r.t this basis are called the *Fourier coefficients* of f, and are given by

$$\hat{f}(S) = \langle f, \chi_S \rangle = \frac{1}{2^n} \sum_{x \in \{1, -1\}^n} f(x) \chi_S(x) .$$

Fact 4.2 (Fourier Coefficients of a Linear Function).

$$f \ \textit{linear} \Longleftrightarrow \left(\exists S \subseteq [n] : \hat{f}(S) = 1 \right) \land \left(\forall T \subseteq [n], T \neq S : \hat{f}(T) = 0 \right)$$

The following describes how the Fourier coefficients are useful in understanding of a function to the various linear functions.

Lemma 4.3. For every $S \subseteq [n]$,

$$\hat{f}(S) = 1 - 2\operatorname{dist}(f, \chi_S) = 1 - 2\Pr_{x \in \{1, -1\}^n} \left[f(x) \neq \chi_S(x) \right]. \tag{5}$$

Proof:

$$2^{n} \hat{f}(S) = \sum_{x} f(x) \chi_{S}(x)$$

$$= \sum_{x:f(x)=\chi_{S}(x)} 1 + \sum_{x:f(x)\neq\chi_{S}(x)} (-1)$$

$$= 2^{n} - 2|\{x \mid f(x) \neq \chi_{S}(x)\}|$$

$$= 2^{n} (1 - 2 \Pr_{x} \left[f(x) \neq \chi_{S}(x) \right])$$

It follows that $\hat{f}(S) = 1 - 2 \text{dist}(f, \chi_S)$ as claimed.

In particular, the above implies that any two distinct linear functions differ in exactly 1/2 of the points. This implies that in the *Hadamard code* which we define below the encodings of two distinct messages differ in exactly a fraction 1/2 of locations.

Definition 4.4 (Hadamard code). The Hadamard encoding of a string $a \in \{0,1\}^n$, denoted $\operatorname{Had}(a) \in \{0,1\}^{2^n}$, is defined as follows. Its locations are indexed by strings $x \in \{0,1\}^n$, and $\operatorname{Had}(a)_{|x} = a \cdot x$.

Parseval's identity

We now state a simple identity that the Fourier coefficients of a Boolean function must obey.

Lemma 4.5. For any $f: \{-1,1\}^n \to \{-1,1\}$,

$$\sum_{S \subseteq [n]} \hat{f}(S)^2 = 1 .$$

Proof:

$$\langle f, f \rangle = \frac{1}{2^n} \sum_{x \in \{-1,1\}^n} f(x)f(x) = 1.$$

On the other hand

$$\begin{split} \langle f, f \rangle &= \langle \sum_{S \subseteq [n]} \hat{f}(S) \chi_S, \sum_{T \subseteq [n]} \hat{f}(T) \chi_T \rangle \\ &= \sum_{S \subseteq [n]} \hat{f}(S)^2 \langle \chi_S, \chi_S \rangle \text{ (since } \langle \chi_S, \chi_T \rangle = 0 \text{ for } S \neq T) \\ &= \sum_{S \subseteq [n]} \hat{f}(S)^2 \,. \quad \Box \end{split}$$

5 Proof of BLR Soundness

We now set out to prove Theorem 2.4. By Equation (3) we need to analyze the expectation:

We claim that the expectation in the last line is 0 unless S=T=U. Indeed this expectation

equals

If $S \neq U$ or $T \neq U$, then one of the symmetric differences is non-empty, and the expectation is 0, as claimed.

Hence we have the following expression for the desired expectation:

where the last step used Lemma 4.3. Together with (3) we have the following conclusion:

$$\Pr\left[\text{ BLR test rejects} \right] \geq \min_{S} \operatorname{dist}\left(f, \chi_{S}\right)$$

This is precisely the claim of Theorem 2.4.

6 Self-Correction

Another tool which will be useful in constructing an assignment tester is a self-correction procedure for the Hadamard code. Assume we have $f: \{0,1\}^n \to \{0,1\}$, a function or table of values, that is δ -close to some linear function L. (We now move back to the $\{0,1\}$ notation; the $\{1,-1\}$ notation was used only for analysing the linearity test.)

Remark 6.1. If $\delta < \frac{1}{4}$ then such a δ -close L is uniquely determined.

Using f we would like to compute L(x) for any desired x with high accuracy. (Note that simply probing f at x doesn't suffice since x could be one of the points where f and L differ.) Such a procedure is called a self-correction procedure since a small amount of errors in the table f can be corrected using probes only to f to provide access to a noise-free version of the linear function L.

Consider the following procedure:

Procedure Self-Corr(f, x):

- 1. Select $y \in \{0,1\}^n$ uniformly at random.
- 2. Return f(x+y) f(y)

Lemma 6.2. If f is δ -close to a linear function L for some $\delta < 1/4$, then for any $x \in \{0,1\}^n$ the above procedure Self-Corr(f,x) computes L(x) with probability at least $1-2\delta$.

Proof: Since y and x + y are both uniformly distributed in $\{0, 1\}^n$, we have

$$\Pr_{y} \left[f(x+y) \neq L(x+y) \right] \leq \delta$$

$$\Pr_{y} \left[f(y) \neq L(y) \right] \leq \delta$$

Thus with probability at least $1-2\delta$, f(x+y)-f(y)=L(x+y)-L(y)=L(x), and so Self-Corr(f,x) outputs L(x) correctly.

7 Constant Query Assignment Tester: Arithmetizing Circuit-SAT

We now have a way to test for linearity and self-correction procedure to gain access to the Hadamard encoding of a string using oracle access to a close-by function. How can we use this for assignment testing? Let's review the assignment testing problem.

Let Φ be a circuit on Boolean variables X and Ψ be a collection of constraints on on $X \cup Y$ where Y are auxiliary Boolean variables produced by an assignment tester. We want the following two properties:

- 1. if $\Phi(a) = 1$, then $\exists b$ such that $\forall \psi \in \Psi, a \cup b$ satisfies ψ
- 2. If a is δ -far from every a' for which $\Phi a' = 1$ then $\forall b \Pr_{\psi \in \Psi} [(a \cup b) \text{ violates } \psi] = \Omega(\delta)$.

We can reduce any given circuit over Boolean variables (CIRCUIT-SAT) to a set of quadratic equations over \mathbb{F}_2 (QFSAT). Then the existence of solutions for the system of equations implies that the original circuit is satisfiable, and vice versa. How do we do this? We have one \mathbb{F}_2 -valued variable w_i for each gate of the circuit Φ (including each input gate that each has an input variable connected to it). We only need to provide quadratic equations that enforce proper operation of AND and NOT gates.

- $(w_k = w_i \wedge w_j) \rightarrow (w_k w_i w_j = 0)$
- $(w_l = \neg w_i) \to (w_i + w_l 1 = 0)$

If w_N denotes the variable for the output gate, we also add the equation $w_N - 1 = 0$ to enforce that the circuit outputs 1.

It is easy to check that all these constraints can be satisfied iff Φ is satisfiable.

In the next lecture, we'll describe how to use linearity testing and self-correction codes to give an assignment tester for input an arbitrary circuit Φ .