Automorfizmy algebry macierzy

Marcin Ból

Politechnika Krakowska ul. Warszawska 24, Kraków

14 maja 2021

Algebra nad ciałem

Automorfizmy algebry macierzy

Definicja

Niech V będzie przestrzenią wektorową nad ciałem \mathbb{F} . Jeżeli na V określono działanie mnożenia wektorów $*:V\times V\longrightarrow V$ spełniające warunki

to V nazywamy algebrą nad ciałem \mathbb{F} (\mathbb{F} -algebrą).

Automorfizmy algebry macierzy

 \blacksquare Ciało liczb zespolonych $\mathbb C$ (dowolne ciało),

- lacktriangle Ciało liczb zespolonych $\Bbb C$ (dowolne ciało),
- \blacksquare \mathbb{R}^3 z iloczynem wektorowym (algebra niełączna nad \mathbb{R}),

- Ciało liczb zespolonych \mathbb{C} (dowolne ciało),
- \blacksquare \mathbb{R}^3 z iloczynem wektorowym (algebra niełączna nad \mathbb{R}),
- lacktriangleright C[0,1] z działaniem mnożenia funkcji,

- Ciało liczb zespolonych C (dowolne ciało),
- \blacksquare \mathbb{R}^3 z iloczynem wektorowym (algebra niełączna nad \mathbb{R}),
- $lackbox{c}[0,1]$ z działaniem mnożenia funkcji,
- Algebra $M_n(\mathbb{F})$ wszystkich macierzy kwadratowych stopnia n o współczynnikach z ciała \mathbb{F} .

Homomorfizmy algebr

Automorfizmy algebry macierzy

Definicja

Niech A,B będą \mathbb{F} -algebrami. Odwzorowanie $\phi:A\longrightarrow B$ nazywamy homomofizmem \mathbb{F} -algebr, jeżeli ϕ jest multiplikatywnym odwzorowaniem liniowym, czyli odwzorowaniem liniowym spełniającym warunek $\phi(x*y)=\phi(x)*\phi(y)$, dla dowolnych $x,y\in A$.

Homomorfizmy algebr

Automorfizmy algebry macierzy

Definicja

Niech A,B będą \mathbb{F} -algebrami. Odwzorowanie $\phi:A\longrightarrow B$ nazywamy homomofizmem \mathbb{F} -algebr, jeżeli ϕ jest multiplikatywnym odwzorowaniem liniowym, czyli odwzorowaniem liniowym spełniającym warunek $\phi(x*y)=\phi(x)*\phi(y)$, dla dowolnych $x,y\in A$.

Definicja

Endomorfizmem \mathbb{F} -algebry nazywamy jej homomorfizm w siebie.

Homomorfizmy algebr

Automorfizmy algebry macierzy

Definicja

Niech A,B będą \mathbb{F} -algebrami. Odwzorowanie $\phi:A\longrightarrow B$ nazywamy homomofizmem \mathbb{F} -algebr, jeżeli ϕ jest multiplikatywnym odwzorowaniem liniowym, czyli odwzorowaniem liniowym spełniającym warunek $\phi(x*y)=\phi(x)*\phi(y)$, dla dowolnych $x,y\in A$.

Definicja

Endomorfizmem \mathbb{F} -algebry nazywamy jej homomorfizm w siebie.

Automofizmem \mathbb{F} -algebry nazywamy jej bijektywny endomorfizm.

Twierdzenie strukturalne dla automorfizmów algebry macierzy

Automorfizmy algebry macierzy

Twiedzenie

Niech $\mathbb F$ będzie dowolnym ciałem oraz $\phi: M_n(\mathbb F) \longrightarrow M_n(\mathbb F)$ bijektywnym odwzorowaniem liniowym spełniającym warunek

$$\phi(AB) = \phi(A)\phi(B)$$

dla dowolnych $A,B\in \mathrm{M}_{\mathrm{n}}(\mathbb{F}).$

Twierdzenie strukturalne dla automorfizmów algebry macierzy

Automorfizmy algebry macierzy

Twiedzenie

Niech $\mathbb F$ będzie dowolnym ciałem oraz $\phi: M_n(\mathbb F) \longrightarrow M_n(\mathbb F)$ bijektywnym odwzorowaniem liniowym spełniającym warunek

$$\phi(AB) = \phi(A)\phi(B)$$

dla dowolnych $A,B\in \mathrm{M}_{\mathrm{n}}(\mathbb{F}).$

Wtedy istnieje macierz odwracalna $\, \mathcal{T} \in \mathrm{M}_n(\mathbb{F})$ taka, że

$$\phi(A) = TAT^{-1}$$

dla każdego $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$.

Twierdzenie strukturalne dla automorfizmów algebry macierzy

Automorfizmy algebry macierzy

Twiedzenie

Niech \mathbb{F} będzie dowolnym ciałem oraz $\phi: M_n(\mathbb{F}) \longrightarrow M_n(\mathbb{F})$ bijektywnym odwzorowaniem liniowym spełniającym warunek

$$\phi(AB) = \phi(A)\phi(B)$$

dla dowolnych $A,B\in \mathrm{M}_{\mathrm{n}}(\mathbb{F}).$

Wtedy istnieje macierz odwracalna $\mathcal{T} \in \mathrm{M}_n(\mathbb{F})$ taka, że

$$\phi(A) = TAT^{-1}$$

dla każdego $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$.

Innymi słowy, każdy automorfizm algebry macierzy jest jej automorfizmem wewnętrznym.

Poważna algebra...

Automorfizmy algebry macierzy

> ■ To twierdzenie wynika wprost z twierdzenia Skolema-Noether, jednak nie trzeba stosować tak zaawansowanej algebry, aby je udowodnić.

Poważna algebra...

- To twierdzenie wynika wprost z twierdzenia Skolema-Noether, jednak nie trzeba stosować tak zaawansowanej algebry, aby je udowodnić.
- My udowodnimy je używając mniej skomplikowanych metod.

Poważna algebra...

- To twierdzenie wynika wprost z twierdzenia Skolema-Noether, jednak nie trzeba stosować tak zaawansowanej algebry, aby je udowodnić.
- My udowodnimy je używając mniej skomplikowanych metod.
- Ale najpierw przypomnijmy sobie pewne twierdzenie z algebry liniowej, którego będziemy używać w dowodzie.

Szybkie przypomnienie

Automorfizmy algebry macierzy

Twierdzenie o odwzorowaniu liniowym zadanym na bazie

Niech V, W będą przestrzeniami liniowymi, B bazą przestrzeni V, a $\bar{f}: B \longrightarrow W$ dowolnym odwzorowaniem.

Szybkie przypomnienie

Automorfizmy algebry macierzy

Twierdzenie o odwzorowaniu liniowym zadanym na bazie

Niech V, W będą przestrzeniami liniowymi, B bazą przestrzeni $V, a \bar{f}: B \longrightarrow W$ dowolnym odwzorowaniem.

Istnieje dokładnie jedno odwzorowanie liniowe $f:V\longrightarrow W$ takie, że $\bar{f}=f|_{B}$

Uwaga

Automorfizmy algebry macierzy

Jeżeli wektory $u, y \in \mathbb{F}^n$, są niezerowe, to macierz

$$uy^{T} = \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \dots & y_{n} \end{bmatrix} = \begin{bmatrix} u_{1}y_{1} & \dots & u_{1}y_{n} \\ \vdots & \ddots & \vdots \\ u_{n}y_{1} & \dots & u_{n}y_{n} \end{bmatrix} \in M_{n}(\mathbb{F})$$

jest macierzą niezerową. (Jeżeli $u_i \neq 0, y_j \neq 0$, to $[uy^T]_{ij} \neq 0$).

Uwaga

Automorfizmy algebry macierzy

Jeżeli wektory $u, y \in \mathbb{F}^n$, są niezerowe, to macierz

$$uy^{T} = \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \dots & y_{n} \end{bmatrix} = \begin{bmatrix} u_{1}y_{1} & \dots & u_{1}y_{n} \\ \vdots & \ddots & \vdots \\ u_{n}y_{1} & \dots & u_{n}y_{n} \end{bmatrix} \in M_{n}(\mathbb{F})$$

jest macierzą niezerową. (Jeżeli $u_i \neq 0, y_j \neq 0$, to $[uy^T]_{ij} \neq 0$).

Wspomniane wcześniej $\phi: \mathrm{M_n}(\mathbb{F}) \longrightarrow \mathrm{M_n}(\mathbb{F})$ jest automorfizmem, a więc w szczególności injekcją, czyli $\phi(uy^T) \neq \mathbf{0}_{n \times n}$, gdyż jądro ϕ jest trywialne.

Niech ϕ będzie dowolnym automorfizmem algebry macierzy $\mathrm{M_n}(\mathbb{F})$. Wybieramy i ustalamy dwa niezerowe wektory $u,y\in\mathbb{F}^n$. Ponieważ ϕ jest injekcją, możemy wybrać (i wybieramy) $z\in\mathbb{F}^n$ taki, że $\phi(uy^T)z\neq\mathbf{0}$.

Niech ϕ będzie dowolnym automorfizmem algebry macierzy $\mathrm{M}_\mathrm{n}(\mathbb{F})$. Wybieramy i ustalamy dwa niezerowe wektory $u,y\in\mathbb{F}^n$. Ponieważ ϕ jest injekcją, możemy wybrać (i wybieramy) $z\in\mathbb{F}^n$ taki, że $\phi(uy^T)z\neq\mathbf{0}$.

Definiujemy odwzorowanie $T: \mathbb{F}^n \longrightarrow \mathbb{F}^n$ wzorem

$$Tx = \phi(xy^T)z, \qquad x \in \mathbb{F}^n.$$

Niech ϕ będzie dowolnym automorfizmem algebry macierzy $\mathrm{M}_\mathrm{n}(\mathbb{F})$. Wybieramy i ustalamy dwa niezerowe wektory $u,y\in\mathbb{F}^n$. Ponieważ ϕ jest injekcją, możemy wybrać (i wybieramy) $z\in\mathbb{F}^n$ taki, że $\phi(uy^T)z\neq\mathbf{0}$.

Definiujemy odwzorowanie $T: \mathbb{F}^n \longrightarrow \mathbb{F}^n$ wzorem

$$Tx = \phi(xy^T)z, \qquad x \in \mathbb{F}^n.$$

Liniowość odwzorowania T wynika z liniowości ϕ .

Przypomnienie:

$$T: \mathbb{F}^n \longrightarrow \mathbb{F}^n$$
, $Tx = \phi(xy^T)z$, $y, z \in \mathbb{F}^n$, ust.

Dowód

Rzeczywiście,

$$T(\lambda x) = \phi((\lambda x)y^T)z = \phi(\lambda(xy^T))z = \lambda\phi(xy^T)z = \lambda T(x)$$

Przypomnienie:

$$T: \mathbb{F}^n \longrightarrow \mathbb{F}^n, \quad Tx = \phi(xy^T)z, \quad y, z \in \mathbb{F}^n, \text{ust.}$$

Dowód

Rzeczywiście,

$$T(\lambda x) = \phi((\lambda x)y^T)z = \phi(\lambda(xy^T))z = \lambda\phi(xy^T)z = \lambda T(x)$$

oraz

$$T(x_1 + x_2) = \phi((x_1 + x_2)y^T)z = \phi(x_1y^T + x_2y^T)z =$$

$$= (\phi(x_1y^T) + \phi(x_2y^T))z = \phi(x_1y^T)z + \phi(x_2y^T)z = Tx_1 + Tx_2.$$

Dowód

Ponadto, T nie jest odwzorowaniem zerowym, gdyż $Tu = \phi(uy^T)z \neq \mathbf{0}$.

Ponadto, T nie jest odwzorowaniem zerowym, gdyż $Tu = \phi(uy^T)z \neq \mathbf{0}$.

Dla dowolnej macierzy $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$ oraz $x \in \mathbb{F}^n$ mamy

$$TAx = \phi((Ax)y^T)z = \phi(A \cdot xy^T)z = \phi(A)\phi(xy^T)z = \phi(A)Tx$$

a zatem

$$TA = \phi(A)T$$
.

Dowód

Niech w będzie dowolnym wektorem z \mathbb{F}^n . Ponieważ $Tu \neq \mathbf{0}$ oraz ϕ jest surjekcją, możemy znaleźć $B \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$ takie, że

$$\phi(B)Tu=w=TBu.$$

Dowód

Niech w będzie dowolnym wektorem z \mathbb{F}^n . Ponieważ $Tu \neq \mathbf{0}$ oraz ϕ jest surjekcją, możemy znaleźć $B \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$ takie, że

$$\phi(B)Tu=w=TBu.$$

Dzieje się tak dzięki twierdzeniu o odwzorowaniu liniowym zadanym na bazie: Tu jest elementem pewnej bazy przestrzeni \mathbb{F}^n (tw. o uzupełnieniu do bazy).

Dowód

Niech w będzie dowolnym wektorem z \mathbb{F}^n . Ponieważ $Tu \neq \mathbf{0}$ oraz ϕ jest surjekcją, możemy znaleźć $B \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$ takie, że

$$\phi(B)Tu=w=TBu.$$

Dzieje się tak dzięki twierdzeniu o odwzorowaniu liniowym zadanym na bazie: Tu jest elementem pewnej bazy przestrzeni \mathbb{F}^n (tw. o uzupełnieniu do bazy).

Istnieje wtedy takie odwzorowanie liniowe $f: \mathbb{F}^n \longrightarrow \mathbb{F}^n$, że f(Tu) = w. Teraz wystarczy przyjąć $\phi(B) = [f]$, gdzie [f] jest macierzą odwzorowania f w bazie kanonicznej.

Dowód

Niech w będzie dowolnym wektorem z \mathbb{F}^n . Ponieważ $Tu \neq \mathbf{0}$ oraz ϕ jest surjekcją, możemy znaleźć $B \in \mathrm{M_n}(\mathbb{F})$ takie, że

$$\phi(B)Tu=w=TBu.$$

Dzieje się tak dzięki twierdzeniu o odwzorowaniu liniowym zadanym na bazie: Tu jest elementem pewnej bazy przestrzeni \mathbb{F}^n (tw. o uzupełnieniu do bazy).

Istnieje wtedy takie odwzorowanie liniowe $f: \mathbb{F}^n \longrightarrow \mathbb{F}^n$, że f(Tu) = w. Teraz wystarczy przyjąć $\phi(B) = [f]$, gdzie [f] jest macierzą odwzorowania f w bazie kanonicznej. Mamy zatem

$$\forall w \in \mathbb{F}^n \exists B \in M_n(\mathbb{F}) : w = TBu,$$

czyli T jest surjekcja.

Dowód

Przypomnijmy, że $T: \mathbb{F}^n \longrightarrow \mathbb{F}^n$. Ponieważ surjektywność, injektywność i bijektywność są równoważne dla odwzorowań liniowych między przestrzeniami tego samego, skończonego wymiaru, to T jest bijekcją, a zatem T jest odwracalne.

Przypomnijmy, że $T: \mathbb{F}^n \longrightarrow \mathbb{F}^n$. Ponieważ surjektywność, injektywność i bijektywność są równoważne dla odwzorowań liniowych między przestrzeniami tego samego, skończonego wymiaru, to T jest bijekcją, a zatem T jest odwracalne. Mamy zatem

$$TA = \phi(A)T \iff \phi(A) = TAT^{-1},$$

co kończy dowód.

Uogólnienie

Automorfizmy algebry macierzy

Twierdzenie to da się uogólnić, rozważając $M_n(\mathbb{F})$ tylko jako pierścień. Od teraz przedmiotem naszego zainteresowania będą automorfizmy pierścienia $M_n(\mathbb{F})$, czyli bijekcje postaci

$$\phi:\mathrm{M}_{\mathrm{n}}(\mathbb{F})\longrightarrow\mathrm{M}_{\mathrm{n}}(\mathbb{F})$$

takie, że

$$\phi(A+B) = \phi(A) + \phi(B)$$

oraz

$$\phi(AB) = \phi(A)\phi(B),$$

dla $A, B \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$

Przypomnijmy, że centrum pierścienia macierzy jest równe zbiorowi macierzy skalarnych.

$$Z(\mathrm{M_n}(\mathbb{F}))=\{A\in\mathrm{M_n}(\mathbb{F})\,|\,AB=BA \;\;\; ext{dla każdego}\;\,B\in\mathrm{M_n}(\mathbb{F})\}=$$
 $=\{\lambda\,\mathbb{I}\,|\,\lambda\in\mathbb{F}\}\cong\mathbb{F}.$

Ponieważ ϕ jest automorfizmem, przeprowadza ono centrum $M_n(\mathbb{F})$ na siebie.

Przypomnijmy, że centrum pierścienia macierzy jest równe zbiorowi macierzy skalarnych.

$$Z(\mathrm{M_n}(\mathbb{F}))=\{A\in\mathrm{M_n}(\mathbb{F})\,|\,AB=BA \;\;\; ext{dla każdego}\;\,B\in\mathrm{M_n}(\mathbb{F})\}=$$
 $=\{\lambda\,\mathbb{I}\,|\,\lambda\in\mathbb{F}\}\cong\mathbb{F}.$

Ponieważ ϕ jest automorfizmem, przeprowadza ono centrum $M_n(\mathbb{F})$ na siebie. Stąd mamy

$$\phi(\lambda \mathbb{I}) = f(\lambda)\mathbb{I}$$

dla pewnej funkcji $f : \mathbb{F} \longrightarrow \mathbb{F}$.

Przypomnijmy, że centrum pierścienia macierzy jest równe zbiorowi macierzy skalarnych.

$$Z(\mathrm{M_n}(\mathbb{F}))=\{A\in\mathrm{M_n}(\mathbb{F})\,|\, AB=BA \quad ext{dla każdego}\,\,\, B\in\mathrm{M_n}(\mathbb{F})\}=$$
 $=\{\lambda\,\mathbb{I}\,|\,\lambda\in\mathbb{F}\}\cong\mathbb{F}.$

Ponieważ ϕ jest automorfizmem, przeprowadza ono centrum $M_n(\mathbb{F})$ na siebie. Stąd mamy

$$\phi(\lambda \mathbb{I}) = f(\lambda)\mathbb{I}$$

dla pewnej funkcji $f : \mathbb{F} \longrightarrow \mathbb{F}$.

Funkcja f jest automorfizmem ciała \mathbb{F} , ponieważ

$$f = \phi|_{Z(\mathrm{M}_{\mathrm{n}}(\mathbb{F}))}.$$

Dla dowolnej macierzy A, oznaczmy przez $A_{f^{-1}}$ macierz otrzymaną przez zastosowanie automorfizmu f^{-1} po współrzędnych, czyli

$$A_{f^{-1}} = [a_{ij}]_{f^{-1}} = [f^{-1}(a_{ij})].$$

Dla dowolnej macierzy A, oznaczmy przez $A_{f^{-1}}$ macierz otrzymaną przez zastosowanie automorfizmu f^{-1} po współrzędnych, czyli

$$A_{f^{-1}} = [a_{ij}]_{f^{-1}} = [f^{-1}(a_{ij})].$$

Odwzorowanie $A \longmapsto A_{f^{-1}}$ jest automorfizmem pierścienia $\mathrm{M}_{\mathrm{n}}(\mathbb{F})$ (wynika to z własności f).

Dla dowolnej macierzy A, oznaczmy przez $A_{f^{-1}}$ macierz otrzymaną przez zastosowanie automorfizmu f^{-1} po współrzędnych, czyli

$$A_{f^{-1}} = [a_{ij}]_{f^{-1}} = [f^{-1}(a_{ij})].$$

Odwzorowanie $A \longmapsto A_{f^{-1}}$ jest automorfizmem pierścienia $\mathrm{M}_{\mathrm{n}}(\mathbb{F})$ (wynika to z własności f). Odwzorowanie

$$\psi:\mathrm{M}_{\mathrm{n}}(\mathbb{F})\longrightarrow\mathrm{M}_{\mathrm{n}}(\mathbb{F})$$

zdefiniowane wzorem

$$\psi(A) = \phi(A_{f^{-1}})$$

również jest automorfizmem pierścienia $\mathrm{M}_n(\mathbb{F})$ (jako złożenie automorfizmów). Co więcej, jest to odworowanie liniowe.

$$\psi(A) = \phi(A_{f^{-1}})$$

Rzeczywiście,

$$\psi(\lambda A) = \phi([\lambda A]_{f^{-1}}) = \phi([f^{-1}(\lambda a_{ij})]) =$$

$$= \phi([f^{-1}(\lambda)f^{-1}(a_{ij})]) = \phi(f^{-1}(\lambda) \mathbb{I} A_{f^{-1}}) =$$

$$= \phi(f^{-1}(\lambda) \mathbb{I}) \phi(A_{f^{-1}}) = \lambda \phi(A_{f^{-1}}) = \lambda \psi(A).$$

$$\psi(A) = \phi(A_{f^{-1}})$$

Rzeczywiście,

$$\psi(\lambda A) = \phi([\lambda A]_{f^{-1}}) = \phi([f^{-1}(\lambda a_{ij})]) =$$

$$= \phi([f^{-1}(\lambda)f^{-1}(a_{ij})]) = \phi(f^{-1}(\lambda) \mathbb{I} A_{f^{-1}}) =$$

$$= \phi(f^{-1}(\lambda) \mathbb{I}) \phi(A_{f^{-1}}) = \lambda \phi(A_{f^{-1}}) = \lambda \psi(A).$$

A zatem ψ jest multiplikatywnym odwzorowaniem liniowym, do którego możemy zastosować wcześniej udowodnione twierdzenie.

Zauważmy dwie proste rzeczy, których za chwilę użyjemy.

$$A = A_{id}$$
$$(A_f)_g = A_{g \circ f}$$

Zauważmy dwie proste rzeczy, których za chwilę użyjemy.

$$A = A_{id}$$
$$(A_f)_g = A_{g \circ f}$$

Teraz stosujemy nasze twierdzenie do odwzorowania $\psi.$ Otrzymujemy w ten sposób

$$\psi(A) = TAT^{-1}$$
 $\phi(A_{f^{-1}}) = TAT^{-1}$

Zauważmy dwie proste rzeczy, których za chwilę użyjemy.

$$A = A_{id}$$
$$(A_f)_g = A_{g \circ f}$$

Teraz stosujemy nasze twierdzenie do odwzorowania ψ . Otrzymujemy w ten sposób

$$\psi(\mathsf{A}) = \mathsf{T}\mathsf{A}\mathsf{T}^{-1}$$
 $\phi(\mathsf{A}_{\mathsf{f}^{-1}}) = \mathsf{T}\mathsf{A}\mathsf{T}^{-1}$

Stąd mamy

$$\phi(A)=\phi(\,(A_f)_{f^{-1}})=\psi(A_f)=T\!A_f\,T^{-1}$$

I I al access also

Udowodniliśmy w ten sposób następujący wniosek.

Twierdzenie strukturalne dla automorfizmów pierścienia macierzy

Automorfizmy algebry macierzy

Wniosek

Niech $\mathbb F$ będzie dowolnym ciałem oraz $\phi: \mathrm{M}_\mathrm{n}(\mathbb F) \longrightarrow \mathrm{M}_\mathrm{n}(\mathbb F)$ addytywną bijekcją spełniającą warunek $\phi(AB) = \phi(A)\phi(B)$, dla $A, B \in \mathrm{M}_\mathrm{n}(\mathbb F)$. Wtedy istnieje automorfizm f ciała $\mathbb F$ i macierz odwracalna $T \in \mathrm{M}_\mathrm{n}(\mathbb F)$ takie, że

$$\phi(A) = TA_f T^{-1}$$

dla każdego $A \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$.

Jeszcze jedno uogólnienie

Automorfizmy algebry macierzy

Niech $f:\mathbb{F}\longrightarrow\mathbb{F}$ będzie automorfizmem ciała \mathbb{F} . Odwzorowanie $A\longmapsto A_f$ będziemy nazywać automorfizmem pierścienia $\mathrm{M}_\mathrm{n}(\mathbb{F})$ indukowanym przez f.

Jeszcze jedno uogólnienie

Automorfizmy algebry macierzy

Niech $f:\mathbb{F}\longrightarrow\mathbb{F}$ będzie automorfizmem ciała \mathbb{F} . Odwzorowanie $A\longmapsto A_f$ będziemy nazywać automorfizmem pierścienia $\mathrm{M}_\mathrm{n}(\mathbb{F})$ indukowanym przez f.

Z naszego twierdzenia o automorfizmach algebry macierzy wynika jeszcze jeden prosty wniosek dla antyautomorfizmów algebry $\mathrm{M}_n(\mathbb{F})$, czyli bijektywnych odwzorowań liniowych

$$\phi: \mathrm{M}_{\mathrm{n}}(\mathbb{F}) \longrightarrow \mathrm{M}_{\mathrm{n}}(\mathbb{F})$$

spełniających warunek

$$\phi(AB) = \phi(B)\phi(A).$$

Jeszcze jedno uogólnienie

Automorfizmy algebry macierzy

Niech $f:\mathbb{F}\longrightarrow\mathbb{F}$ będzie automorfizmem ciała \mathbb{F} . Odwzorowanie $A\longmapsto A_f$ będziemy nazywać automorfizmem pierścienia $\mathrm{M}_\mathrm{n}(\mathbb{F})$ indukowanym przez f.

Z naszego twierdzenia o automorfizmach algebry macierzy wynika jeszcze jeden prosty wniosek dla antyautomorfizmów algebry $\mathrm{M}_\mathrm{n}(\mathbb{F})$, czyli bijektywnych odwzorowań liniowych

$$\phi: \mathrm{M}_{\mathrm{n}}(\mathbb{F}) \longrightarrow \mathrm{M}_{\mathrm{n}}(\mathbb{F})$$

spełniających warunek

$$\phi(AB) = \phi(B)\phi(A).$$

Przykładem antyautomorfizmu jest odwzorowanie $A \stackrel{t}{\mapsto} A^T$.

Co więcej, jeżeli złożymy dowolny antyautomorfizm $M_n(\mathbb{F})$ z transpozycją, otrzymujemy automorfizm $M_n(\mathbb{F})$. Rzeczywiście, $(\phi \circ t)(AB) = \phi(B^TA^T) = \phi(A^T)\phi(B^T) = (\phi \circ t)(A)(\phi \circ t)(B)$.

Co więcej, jeżeli złożymy dowolny antyautomorfizm $M_n(\mathbb{F})$ z transpozycją, otrzymujemy automorfizm $M_n(\mathbb{F})$. Rzeczywiście,

$$(\phi \circ t)(AB) = \phi(B^T A^T) = \phi(A^T)\phi(B^T) = (\phi \circ t)(A)(\phi \circ t)(B).$$

Do odwzorowania $\phi \circ t$ możemy teraz zastosować twierdzenie strukturalne dla automorfizmów algebry macierzy, otrzymując następujący wniosek.

Co więcej, jeżeli złożymy dowolny antyautomorfizm $M_n(\mathbb{F})$ z transpozycją, otrzymujemy automorfizm $M_n(\mathbb{F})$. Rzeczywiście, $(\phi \circ t)(AB) = \phi(B^TA^T) = \phi(A^T)\phi(B^T) = (\phi \circ t)(A)(\phi \circ t)(B)$.

Do odwzorowania $\phi \circ t$ możemy teraz zastosować twierdzenie strukturalne dla automorfizmów algebry macierzy, otrzymując następujący wniosek.

Wniosek

Niech $\mathbb F$ będzie dowolnym ciałem oraz $\phi: \mathrm{M_n}(\mathbb F) \longrightarrow \mathrm{M_n}(\mathbb F)$ będzie bijektywnym odwzorowaniem liniowym spełniającym warunek $\phi(AB) = \phi(B)\phi(A), \ A, B \in \mathrm{M_n}(\mathbb F).$ Wtedy istnieje nieosobliwa macierz $T \in \mathrm{M_n}(\mathbb F)$ taka, że $\phi(A) = TA^T T^{-1}$

dla każdego
$$A \in \mathrm{M}_{\mathrm{n}}(\mathbb{F})$$
.

Na koniec pokażemy, dlaczego nasze twierdzenie wynika z twierdzenia Skolema-Noether.

Na koniec pokażemy, dlaczego nasze twierdzenie wynika z twierdzenia Skolema-Noether.

Definicja

Niech A będzie \mathbb{F} -algebrą. Ideałem obustronnym algebry A nazywamy taką podprzestrzeń liniową B tej przestrzeni, że

$$\forall x \in A \forall y \in B \quad x * y \in B \quad \text{oraz} \quad y * x \in B$$

Na koniec pokażemy, dlaczego nasze twierdzenie wynika z twierdzenia Skolema-Noether.

Definicja

Niech A będzie \mathbb{F} -algebrą. Ideałem obustronnym algebry A nazywamy taką podprzestrzeń liniową B tej przestrzeni, że

$$\forall x \in A \forall y \in B \quad x * y \in B \quad \text{oraz} \quad y * x \in B$$

Definicia

Łączną \mathbb{F} -algebrę A z jedynką nazywamy centralną algebrą prostą, jeżeli A nie posiada nietrywialnych ideałów obustronnych oraz $Z(A) = \mathbb{F}$.

Twierdzenie

Algebra macierzy $\mathrm{M}_n(\mathbb{F})$ jest centralną algebrą prostą.

Twierdzenie

Algebra macierzy $\mathrm{M}_n(\mathbb{F})$ jest centralną algebrą prostą.

Twierdzenie Skolema-Noether

Niech B będzie centralną algebrą prostą skończonego wymiaru nad ciałem $\mathbb F$ oraz niech A będzie $\mathbb F$ -algebrą prostą. Wtedy dla dowolnych homomorfizmów $\mathbb F$ -algebr

$$f,g:A\longrightarrow B$$

istnieje element odwracalny $b \in B$ taki, że dla każdego $a \in A$

$$g(a) = b * f(a) * b^{-1}$$
.

W szczególności każdy automorfizm centralnej algebry prostej jest automorfizmem wewnętrznym.

Przygotowując tę prezentację opierałem się na pracy P. Šemrl, *Maps on matrix spaces*, Linear Algebra Appl. 413: 364-393 (2006).

Inny elementarny dowód twierdzenia Skolema-Noether dla algebry macierzy można znaleźć w pracy Jeno Szigettiego oraz Leona van Wyka A Constructive Elementary Proof of the Skolem-Noether Theorem for Matrix Algebras.

Bardzo dziękuję doktorowi Marcinowi Skrzyńskiemu za pomoc w tworzeniu tej prezentacji.