Combinatorics - A Toric Algebraic Geometry Approach

Guanyu Li

Sum, Product and Power

Contents

1	A Bad Definition of Toric Varieties	2
2	Cones and Fourier-Motzkin	3
3	Polytope Geometry	3
4	Toward Toric Varieties	7
5	Slogan: In Toric World, Geometries are Combinatorics	10

Caution. Within this notes we will only work on varieties $/\mathbb{C}$ [1].

In this talk, you will see

- 1. how do we construct a geometric object by combinatorial information, i.e. polytopes,
- 2. the correspondence between geometric information and combinatorial information,
- 3. how combinatorics simplifies the computation in algebraic geometry.

Example 1. Given the polytope

we then can produce a morphism

$$\varphi: \mathbb{A}^2_{(s,t)} \to \mathbb{P}^5$$
$$(s,t) \mapsto [1, s, s^2, s^3, t, st].$$

Let $X := \overline{\varphi(\mathbb{A}^2)}$, then X is our first toric variety.

1 A Bad Definition of Toric Varieties

Definition. The n-torus is defined to be

$$(\mathbb{C}^*)^n := \operatorname{Spec} \mathbb{C}[x_1, x_1^{-1}, \cdots, x_n, x_n^{-1}],$$

where the group structure is given component-wisely.

Proposition 1 (Good properties). 1. Let T_1 and T_2 be tori and let $\varphi: T_1 \to T_2$ be a morphism that is a group homomorphism. Then the image of φ is closed in T_2 .

2. Let T be a torus and let $H \subseteq T$ be an irreducible subvariety of T that is a subgroup. Then H is a torus.

Definition. A character of torus $(\mathbb{C}^*)^n$ is a morphism $\chi:(\mathbb{C}^*)^n\to\mathbb{C}^*$. Dually, a cocharacter, or say a one parameter subgroup is a morphism $\lambda:\mathbb{C}^*\to(\mathbb{C}^*)^n$.

Example 2. Given an $m=(a_1,\cdots,a_n)\in\mathbb{Z}^n$, there is a character $\chi^m:(\mathbb{C}^*)^n\to\mathbb{C}^*$ defined by

$$\chi^m(t_1,\cdots,t_n)=t_1^{a_1}\cdots t_n^{a_n}.$$

The amazing thing is that all characters come in this way. Also, there is a 1-PS associated with m

$$\lambda^m: \mathbb{C}^* \to (\mathbb{C}^*)^n$$
$$t \mapsto (t_1^{a_1}, \cdots, t_n^{a_n}).$$

All 1-PS's come in this way as well.

Assume that a torus T acts linearly on a finitely dimensional vector space W over \mathbb{C} . A basic result is that the maps $w \mapsto t \cdot w$ are simultaneously diagonalizable as follows. Given $m \in M$, define the eigenvector space

$$W_m := \{ w \in W \mid t \cdot w = \chi^m(t) w \text{ for all } t \in T \}.$$

Then one can show that $W \cong \bigoplus_{m \in \mathbb{Z}^n} W_m$.

Definition (Bad Definition). A *toric variety* is an irreducible variety V containing a torus $T := (\mathbb{C}^*)^n$ as a Zariski open subset such that the action of T on itself extends to an algebraic action of T on V.

2 Cones and Fourier-Motzkin

Definition. Let V be a finite dimensional vector space over \mathbb{R} , $S \subseteq V$ is a non-empty subset.

- 1. S be a (convex) cone if $\forall x, y \in S, \alpha, \beta \in \mathbb{R}$, if $\alpha, \beta \geq 0$ then $\alpha x + \beta y \in S$.
- 2. S be a (convex) set if $\forall x, y \in S, \alpha, \beta \in \mathbb{R}$, if $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$ then $\alpha x + \beta y \in S$.

Example 3 (Key examples).

1. Let $A \in \mathbb{R}^{m \times n}$, $A = [a_1, \dots, a_n]$ where $a_i \in \mathbb{R}^m$. Define

$$vcone(A) := \{x_1 a_1 + \dots + x_n a_n \mid x_i \ge 0\} = \{Ax \mid x \ge 0\},\$$

where a cone of this form is called finitely generated.

2. Notations as before, define

$$conv(A) = \{x_1 a_1 + \dots + x_n a_n \mid x_i \ge 0, \sum_{i=1}^n x_i = 1\},$$

where a set of this form is called a polytope.

3. Let
$$B = \begin{bmatrix} m{b}_1 \\ \vdots \\ m{b}_n \end{bmatrix}$$
 where $m{b}_i \in (\mathbb{R}^m)^*$. Define

$$hcone(B) := \{ \boldsymbol{y} \in (\mathbb{R}^m)^* \mid \langle \boldsymbol{y}, \boldsymbol{b}_i \rangle \le 0 \} = \{ \boldsymbol{y} \in (\mathbb{R}^m)^* \mid B\boldsymbol{y} \le 0 \}.$$

4. $A \in \mathbb{R}^{m \times n}$, $\boldsymbol{b} \in \mathbb{R}^m$, define

$$P(A, \boldsymbol{b}) := \{ \boldsymbol{x} \in \mathbb{R}^n \mid A\boldsymbol{x} \le \boldsymbol{b} \}.$$

This is called to be polyhedral.

Definition. For a cone $\sigma \subseteq V$, its dual cone is

$$\sigma^{\vee} := \{ \boldsymbol{y} \in V^* \mid \langle \boldsymbol{y}, \boldsymbol{x} \rangle < 0, \forall \boldsymbol{x} \in V \}.$$

Lemma 1. 1. If $\sigma = \text{vcone}(A)$, then $\sigma^{\vee} = \text{hcone}(A^T)$.

- 2. σ is a vecone if and only if it is an heone.
- 3. $\sigma^{\vee\vee} = \sigma$.

Theorem 2 (Fourier-Motzkin Elimination).

Theorem 3 (Weyl-Minkowski). Let $\sigma \subseteq \mathbb{R}^n$ be a cone. Then σ is finitely generated if and only if σ is polyhedral.

3 Polytope Geometry

Definition. Let $\sigma \subseteq \mathbb{R}^n$ be a polyhedral cone. The *linear space* of σ is the largest subspace contained in σ . The cone σ is said to be *pointed* or *strongly convex* if its linear space is 0.

Proposition 4. 1. The following are equivalent:

- (a) $\sigma \cap -\sigma = 0$.
- (b) σ is pointed.
- (c) There is a $u \in \sigma^{\vee}$ with $\sigma \cap U^{\perp} = 0$.
- (d) σ^{\vee} spans V.
- (e) $\dim \sigma = \dim \sigma^{\vee} = \dim V$.

2. Any cone $\sigma \subseteq V$ can be written as the sum of a linear space and a pointed cone. In face

$$\sigma = L + \tau$$
,

where $L := \sigma \cap -\sigma$ and $\tau := \sigma \cap L^{\perp}$ is pointed.

Definition. A *face* of a polyhedral cone $\sigma \subseteq \mathbb{R}^n$ is a subset $\tau \subseteq \sigma$ of the form

$$\tau := \sigma \cap u^{\perp}$$

for some $u \in \sigma^{\vee}$. A 1-dimensional face is called an *edge* or an *extremal ray*. A 1-codimensional face is called a facet.

Definition. Given any $u \in \mathbb{R}^n$, we define

$$H_m := \{ f \in (\mathbb{R}^n)^* \mid \langle f, u \rangle = 0 \}$$

and

$$H_m^+ := \{ f \in (\mathbb{R}^n)^* \mid \langle f, u \rangle \ge 0 \}.$$

Lemma 2. 1. σ it self is a face.

- 2. The smallest face is $\sigma \cap -\sigma$.
- 3. A face τ of σ is also a polyhedral cone.
- 4. A face of a face is also a face.
- 5. If $\sigma = \text{vcone}(\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$, $\boldsymbol{u} \in \sigma^{\vee}$, then $\tau = \text{vcone}(\boldsymbol{a}_i \mid \langle \boldsymbol{u}, \boldsymbol{a}_i \rangle = 0)$.

Definition. A cone σ in $V = \mathbb{R}^n$ is said to be *rational* if it is generated by vectors (i.e. vcone) in \mathbb{Q}^n (or equivalently \mathbb{Z}^n).

Lemma 3. A cone $\sigma \subseteq \mathbb{R}^n$ is rational if and only if σ^{\vee} is rational.

Definition. Let M be a lattice, then $M \cong \mathbb{Z}^n$ for some integer n which is the rank. We have $M \subseteq M_{\mathbb{Q}} := \mathbb{Q}^n \subseteq M_{\mathbb{R}} := \mathbb{R}^n$, and $M_k := M \otimes_{\mathbb{Z}} k$. Let N be the dual lattice $:= \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z}) = M^*$. We say σ is a cone in N if σ is a rational polyhedral cone in $N_{\mathbb{R}}$.

Definition. Let σ be a cone in N, we define

$$S_{\sigma} := \sigma^{\vee} \cap M.$$

Note that S_{σ} is a semi-group. Natural question: why not $S_{\sigma} := \sigma \cap N$?

Example 4. Let $\sigma := \text{vcone} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$.

One can read from the picture that

$$S_{\sigma} = \left\langle \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\rangle.$$

Example 5. Let $\sigma := \text{vcone} \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}$.

One can read from the picture that

$$S_{\sigma} = \left\langle \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \right\rangle.$$

Proposition 5 (Gordan's Lemma). If σ is a cone in N, then S_{σ} is a finitely generated semi-group.

Proof. Let $\sigma^{\vee} = \text{vcone}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_s)$, and let $K := \{x_1\boldsymbol{v}_1 + \dots + x_s\boldsymbol{v}_s \mid 0 \leq x_i < 1\}$. Then $\sigma^{\vee} \cap M$ is generated by $\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_s\} \cap K$.

Definition. Let σ be a pointed cone. Consider $0 \neq m \in \sigma^{\vee} \cap M = S_{\sigma}$, it is called *irreducible* if for any decomposition m = k + l in S_{σ} , either k = 0 or l = 0.

Proposition 6. Let σ be a pointed polyhedral cone in \mathbb{R}^n , and let

$$H := \{ m \in S_{\sigma} \mid m \text{ is irreducible} \},$$

then

- 1. $|H| < \infty$.
- 2. H generates S_{σ} .
- 3. Every generating set contains H.

Here the set is called the Hilbert basis.

Definition. A polytope P is said to be *simplicial* if all its facets are simplices.

Definition. A lattice polytope $P \subseteq M_{\mathbb{R}}$ is said to be *normal* if

$$(kP) \cap M + (lP) \cap M = ((k+l)P) \cap M$$

for all $k, l \in \mathbb{N}$.

Theorem 7. Let $P \subseteq M_{\mathbb{R}}$ be a full dimensional lattice polytope of dimension $n \geq 2$, then kP is normal for all $k \geq n-1$.

Definition. A sub-semi-group $S \subseteq M$ is said to be *saturated* if whenever $m \in M$ and $pm \in M$ for some $p \in \mathbb{N}_+$, $m \in S$.

Definition. A lattice polytope $P \subseteq M_{\mathbb{R}}$ is said to be *very ample* if for every vertex $m \in P$, the semi-group $S_{P,m} := \mathbb{N}\langle P \cap M - m \rangle$ is saturated in M.

Proposition 8. A normal lattice polytope is very ample.

Definition. A fan Σ in $N_{\mathbb{R}}$ is a finite collection of cones such that:

- 1. Every $\sigma \in \Sigma$ is a strongly convex rational polyhedral cone.
- 2. For all $\sigma \in \Sigma$, each face of σ is also in Σ .
- 3. For all $\sigma_1, \sigma_2 \in \Sigma$, the intersection $\sigma_1 \cap \sigma_2$ is a face of each.

Definition. Given a full-dimensional lattice polytope P in \mathbb{R}^n , for each face F of the polytope, define

$$\sigma_F := \{ \boldsymbol{u} \in N_{\mathbb{R}} \mid \langle \boldsymbol{y} - \boldsymbol{x}, \boldsymbol{u} \rangle \leq 0, \forall \boldsymbol{x} \in F, \boldsymbol{y} \in P \}.$$

Let $\Sigma_P := \{ \sigma_F \mid F \subseteq P \text{ is a face} \}$, then Σ_P is a fan, called the normal fan associated with the polytope P.

Example 6. Given the polytope

we shall have the normal fan

Example 7. Given the polytope

we shall have the normal fan

4 Toward Toric Varieties

Here comes our main construction:

Definition. Let $A_{\sigma} := \mathbb{C}[S_{\sigma}]$ be a \mathbb{C} -algebra, such that

- 1. $\{t^m \mid m \in S_\sigma\}$ forms a \mathbb{C} -basis for A_σ .
- 2. $t^{m_1}t^{m_2}=t^{m_1+m_2}$.

We then call $U_{\sigma} := \operatorname{Spec} A_{\sigma}$ the affine toric variety associated to σ .

If $S_{\sigma}=\langle m_1,\cdots,m_r\rangle$, then A_{σ} is generated (as a ring) by t^{m_1},\cdots,t^{m_r} . In particular A_{σ} is Noetherian. Consider

$$0 \to \operatorname{Ker} \varphi \to \mathbb{C}[x_1, \cdots, x_r] \xrightarrow{\varphi} A_{\sigma} \to 0$$

where φ maps x_i to t^{m_i} . $I_{\sigma} := \operatorname{Ker} \varphi$ is called the toric ideal.

Theorem 9. All affine toric varieties defined at the beginning come from this way.

Example 8. Let $\sigma := \operatorname{vcone} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$. Then $S_{\sigma} = \left\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\rangle$ and thus $\mathbb{C}[S_{\sigma}] = \mathbb{C}[s,t]$, $U_{\sigma} = \mathbb{C}^2$. Similarly, if $\sigma := \operatorname{vcone}(-I_n)$, then $U_{\sigma} = \mathbb{C}^n$.

 $\textit{Example 9. Let $\sigma:= vcone \begin{pmatrix} -1 \\ -1 & -1 \end{pmatrix}$. Then $S_\sigma = \left\langle \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\rangle$ and thus $\mathbb{C}[S_\sigma] = \mathbb{C}[s^{-1}t^{-1}, t] = \mathbb{C}[x, y]$, $U_\sigma = \mathbb{C}^2$.}$

Example 10. Let $\sigma := \text{vcone} \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}$. From previous computation we know that $A_{\sigma} = \mathbb{C}[s, st, st^2] = \mathbb{C}[x, y, z]/(y^2 - xz)$.

Question: the previous examples have 2 generators and 3 generators respectively. What are the differences? Example 11. Let $\sigma := \text{vcone}(0)$, then $S_{\sigma} = \mathbb{Z}^2$ and $A_{\sigma} = \mathbb{C}[s, s^{-1}, t, t^{-1}]$, hence U_{σ} is the 2-torus.

Proposition 10. If $S_{\sigma} = \langle m_1, \cdots, m_r \rangle$, then I_{σ} is generated by

$$\{x_1^{a_1}\cdots x_r^{a_r}-x_1^{b_1}\cdots x_r^{b_r}\mid \sum_{i=1}^r (a_i-b_i)m_i=0\}.$$

Definition. Let σ be a pointed cone in $N = \mathbb{Z}^n$. We say

- 1. σ is *simplicial* if the number of extremal rays = dim σ .
- 2. σ is *smooth* if σ is generated by a part of a \mathbb{Z} -basis of N.

Theorem 11. Let σ be a pointed cone in N and dim Span $\sigma = k$, then the following are equivalent:

- 1. U_{σ} is smooth.
- 2. $U_{\sigma} \cong \mathbb{C}^k \times (\mathbb{C}^*)^{n-k}$.
- 3. σ is smooth.

Theorem 12. For an affine toric variety V, the following are equivalent:

- 1. V is normal.
- 2. $V := \operatorname{Spec} \mathbb{C}[S]$ where S is a saturated affine semi-group.
- 3. $V \cong U_{\sigma}$ for some rational polyhedral cone.

Proposition 13. Let $V = \operatorname{Spec} \mathbb{C}[S]$ be the affine toric variety of the affine semi-group S. Then there is a correspondence between the following:

- 1. \mathbb{C} -points in V.
- 2. *Maximal ideals* \mathfrak{m} *in* $\mathbb{C}[S]$.
- 3. Semi-group homomorphisms $S \to \mathbb{C}$, where \mathbb{C} is considered as a semi-group under multiplication.

We can actually use this proposition to get the group action.

Proposition 14. Let $\tau = \sigma \cap u^{\perp}$ be a face of σ where $u \in \sigma^{\vee}$. Then the semi-group algebra $\mathbb{C}[S_{\tau}]$ is the localization of $\mathbb{C}[S_{\sigma}]$ at the point $t^m \in \mathbb{C}[S_{\sigma}]$.

Actually Proposition 14 gives us the information which is called the gluing data. Suppose τ is a common face of σ_1, σ_2 , then we have

$$U_{\sigma_1} \leftarrow U_{\tau} \hookrightarrow U_{\sigma_2}$$
,

and we can glue U_{σ_1} and U_{σ_2} along U_{τ} . But where can we find the structures including common faces? The definition of a fan and here is also where polytopes can be related.

Example 12. Consider the normal fan of the polytope P =

then by previous computation, the associated fan

has affine pieces $U_{1,2} = \operatorname{Spec} \mathbb{C}[s^{-1}, st] = \mathbb{C}^2, U_{1,3} = \operatorname{Spec} \mathbb{C}[s^{-1}, t^{-1}] = \mathbb{C}^2, U_{1,3} = \operatorname{Spec} \mathbb{C}[st, t^{-1}] = \mathbb{C}^2$, and gluing affine open subsets $U_1 = \mathbb{C}[s^{-1}, st]_{s^{-1}} = \operatorname{Spec} \mathbb{C}[s^{-1}, t^{-1}]_{s^{-1}}, U_2 = \operatorname{Spec} \mathbb{C}[s^{-1}, st]_{st} = \mathbb{C}[st, t^{-1}]_{st}$, and $U_3 = \mathbb{C}[s^{-1}, t^{-1}]_{t^{-1}} = \mathbb{C}[st, t^{-1}]_{t^{-1}}$. This gives the variety \mathbb{CP}^2 .

Example 13. Consider the normal fan of the polytope P =

then by previous computation, the associated fan

has affine pieces $U_{1,2}=\operatorname{Spec} \mathbb{C}[st^2,t]=\mathbb{C}^2, U_{1,4}=\operatorname{Spec} \mathbb{C}[s^{-1},t]=\mathbb{C}^2, U_{3,4}=\operatorname{Spec} \mathbb{C}[s^{-1},t^{-1}]=\mathbb{C}^2, U_{2,3}=\operatorname{Spec} \mathbb{C}[st^2,t^{-1}]=\mathbb{C}^2,$ and gluing affine open subsets $U_1=\mathbb{C}[t,st^2]_t=\operatorname{Spec} \mathbb{C}[s^{-1},t]_t, U_2=\operatorname{Spec} \mathbb{C}[st^2,t]_{st^2}=\operatorname{Spec} \mathbb{C}[st^2,t^{-1}]_{st^2}, U_3=\operatorname{Spec} \mathbb{C}[st^2,t^{-1}]_{t^{-1}}=\operatorname{Spec} \mathbb{C}[s^{-1},t^{-1}]_{t^{-1}},$ and $U_4=\mathbb{C}[s^{-1},t^{-1}]_{s^{-1}}=\mathbb{C}[t,s^{-1}]_{s^{-1}}.$ This gives the variety at the very beginning. The surface is called the Hirzebruch surface \mathbb{F}_2 .

In conclusion, we have the following

Theorem 15. Given a fan Σ , there is a toric variety X_{Σ} associated with the fan. Furthermore,

- 1. X_{Σ} is smooth if and only if Σ is smooth, i.e. all the cones are smooth.
- 2. X_{Σ} is simplicial (i.e. X_{Σ} is an orbifold, having only finitely many quotient singularities) if and only if Σ is simplicial. When the fan Σ comes from a polytope, this is equivalent to that the polytope is simplicial.
- 3. X_{Σ} is complete if and only if the support $|\Sigma| = \bigcup_{\sigma \in \Sigma} \sigma$ is all of $N_{\mathbb{R}}$.

5 Slogan: In Toric World, Geometries are Combinatorics

Theorem 16. A normal toric variety is Cohen-Macaulay.

When the polytope is very ample, we not only get a projective toric variety, but also the morphism how it is embedded into a projective space. This information is called a very ample line bundle.

Theorem 17 (Ehrhart). We have seen that the Ehrhart series for a full dimensional polytope $P \subseteq \mathbb{R}^n$

$$\operatorname{Ehr}(P,-): \mathbb{N} \to \mathbb{N}$$
$$t \mapsto \#(tP \cap \mathbb{Z}^n)$$

is a polynomial with a reciprocity

$$Ehr(P, -t) = (-1)^d Ehr(P, t)$$

where d is the degree of the polynomial.

This theorem can be proved using toric varieties. Let V be the (projective) toric variety associated with the polytope P, then (some enlarged) the polytope gives an ample line bundle L over V. Then the Ehrhart series coincides with the Hilbert series of this line bundle almost by definition. Since the Hilbert series is a polynomial, we are done.

Theorem 18 (Stanley, 86', [2]). Let P be a n-dimensional simplicial polytope, and let the f-vector $f = (f_0, \dots, f_{n-1})$ be a sequence of numbers where f_j is the number of j-faces of P. Let $f_{-1} = 1$. Define

$$h_i := \sum_{j=0}^{i} {d-j \choose d-i} (-1)^{i-j} f_{j-1}$$

then we have the so called h-vector. The Dehn-Sommerville equations say that

$$h_i = h_{n-i}, \forall 1 \le i \le n,$$

which hold for any simplicial convex polytope. A sequence of integers (k_0, \dots, k_n) is said to be an M-vector (after F.S.Macauley) if

$$k_0 = 1$$
 and $k_{i+1} \le k_i^{\langle i \rangle}$ for all $1 \le i \le n-1$,

where $k_i^{\langle i \rangle}$ is defined to be

$$k_i^{\langle i \rangle} := \binom{n_i+1}{i+1} + \cdots \binom{n_j+1}{j+1},$$

where $n_i \ge n_{i-1} \ge n_j \ge j \ge 1$ are those (unique) numbers such that

$$k_i = \binom{n_i}{i} + \cdots + \binom{n_j}{j}.$$

A sequence of integers (h_0, \dots, h_n) is the h-vector of a simplicial convex n-polytope if and only if $h_0 = 1$, $h_i = h_{n-i}$ and the sequence $(h_0, h_1 - h_0, \dots, h_{\lfloor n/2 \rfloor} - h_{\lfloor n/2 \rfloor - 1})$ is an M-vector.

This was originally conjectured by McMullen [3], and proved by Stanley using some great toric tools (Hard Lefschetz).

References

- [1] David A. Cox, John B. Little, and Henry K. Schenck. *Toric varieties*, volume 124 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2011.
- [2] Richard P. Stanley. The number of faces of a simplicial convex polytope. Adv. in Math., 35(3):236–238, 1980.
- [3] P. McMullen. The numbers of faces of simplicial polytopes. *Israel J. Math.*, 9:559–570, 1971.