FEUILLE D'EXERCICES N°1

Éléments de topologie Calcul sous-différentiel

Exercice 1 – Indicatrices d'ensemble

Module A1, Propositions 2, 6 & 8

Soit $A_1, A_2 \subset \mathcal{X}$ deux ensembles non vides.

(a) Justifier que

- $\operatorname{dom}\chi_{\mathcal{A}_1} = \mathcal{A}_1$
- (b) On suppose que A_1 est convexe. Montrer que χ_{A_1} convexe.
- (c) On suppose que \mathcal{A}_1 est fermé. Montrer que $\chi_{\mathcal{A}_1}$ s.c.i.
- (d) Montrer que

$$\chi_{\mathcal{A}_1 \cap \mathcal{A}_2} = \chi_{\mathcal{A}_1} + \chi_{\mathcal{A}_2}$$

À quelle condition dom $\chi_{A_1 \cap A_2}$ est-il non vide?

(e) En déduire que si A_1 et A_2 sont convexes, fermés et non vides, alors $\chi_{A_1 \cap A_2}$ est convexe, s.c.i. et propre.

Exercice 2 – Fonctions continues sur son domaine fermé

Module A1, Proposition 1

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction de domaine fermé non vide. On suppose que J est continue sur son domaine.

- (a) Soit $x^0 \in \text{dom } J$. Montrer que J est s.c.i. en x^0 .
- (b) Soit $x^0 \notin \text{dom } J$. Soit $(x_k)_{k \in \mathbb{N}}$ une suite convergente, de limite x^0 . Montrer que l'ensemble

$$\left\{k \in \mathbb{N} \mid x_k \in \operatorname{dom} J\right\}$$

est fini.

(c) On suppose que dom J est fermé non vide. Montrer que J est s.c.i.

Exercice 3 – Enveloppe supérieure de fonctions convexes s.c.i

Module A1, Propositions 5 & 11

Soit $\mathcal{I} \subset \mathbb{R}$ et $f_i : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe s.c.i. propre pour tout $i \in \mathcal{I}$. On note f l'enveloppe supérieure des f_i . Pour toute fonction $g : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$, on définit

$$\operatorname{epi} g = \left\{ (x, t) \in \mathcal{X} \times \mathbb{R} \mid t \ge g(x) \right\}$$

- (a) Soit $(x, y) \in \text{epi} f$. Montrer que
- $\forall i \in \mathcal{I}, \quad y \ge f_i(x)$

- (b) En déduire que
- $(x,y) \in \operatorname{epi} f \iff (x,y) \in \bigcap_{i \in \mathcal{I}} \operatorname{epi} f_i$
- (c) Justifier que epi f_i est convexe pour tout $i \in \mathcal{I}$.
- (d) Montrer que $\operatorname{epi} f$ est convexe. En déduire que f est convexe.
- (e) Soit $t \in \mathbb{R}$. Vérifier que
- $\left\{ x \in \mathcal{X} \mid t \ge f_i(x) \right\}$

est fermé pour tout $i \in \mathcal{I}$.

- (f) En déduire que $\operatorname{epi} f_i$ est fermé, puis que $\operatorname{epi} f$ est fermé.
- (g) En raisonnant par l'absurde, montrer que f est s.c.i.
- (h) La fonction f est-elle propre?

Exercice 4 – Fonction convexe non continue

On considère la fonction $f: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ définie par

$$\forall x \in \mathbb{R}, \qquad f(x) = \begin{cases} 0 & \text{si } x > 0 \\ 1 & \text{si } x = 0 \\ +\infty & \text{si } x < 0 \end{cases}$$

- (a) Quel est le domaine de f? La fonction f est-elle continue sur dom f?
- (b) Montrer que f est convexe.
- (c) La fonction f est-elle s.c.i.?

Exercice 5 – Caractérisation des fonctions fortement convexes

Module A1, Proposition 13

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction fortement convexe de module α .

(a) Justifier que f est strictement convexe.

Soit $x^0 \in \mathcal{X}$. On introduit la fonction

$$g: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ x & \mapsto & f(x) - \frac{\alpha}{2} \|x - x^0\|^2 \end{array} \right.$$

- (b) Montrer que g est convexe. En déduire que toute fonction fortement convexe est la somme d'une fonction convexe et d'une fonction quadratique.
- (c) Montrer que la somme d'une fonction convexe et d'une fonction fortement convexe, de module α , est fortement convexe, de module α .

Exercice 6 – Sous-différentiel de la norme

Soit \mathcal{X} un espace de HILBERT muni d'un produit scalaire noté $\langle \cdot, \cdot \rangle$, de norme associée $\| \cdot \|$.

- (a) Justifier que | · | est une fonction convexe.
- (b) Montrer que $\|\cdot\|$ est différentiable sur $\mathcal{X}\setminus\{0\}$, de gradient

$$\forall x \neq 0, \qquad \nabla \| \cdot \|(x) = \frac{x}{\|x\|}$$

- (c) Montrer que tout $p \in \mathcal{X}$ de norme inférieure ou égale à 1 est sous-gradient de $\|\cdot\|$ en 0.
- (d) Montrer que, si ||p|| > 1, alors

$$p \in \partial \|\cdot\|(0) \implies \|p\| \ge \|p\|^2$$

(e) En déduire que le sous-différentiel de la norme | · | est la boule unité fermée pour la même norme.

Exercice 7 – Sous-différentiel de la somme de fonctions convexes

Module A2, Proposition 8

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ et $g: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ deux fonctions convexes telles que dom $f \cap \text{dom } g \neq \emptyset$.

- (a) Montrer que
- $\forall x \in \text{dom}(f+g), \qquad \partial f(x) + \partial g(x) \subset \partial (f+g)(x)$
- (b) On considère la fonction réelle définie par

$$\forall x \in \mathbb{R}, \qquad f(x) = \begin{cases} -\sqrt{x} & \text{si } x \ge 0\\ +\infty & \text{sinon} \end{cases}$$

Montrer que f est convexe, propre et s.c.i.

(c) Supposons qu'il existe $p \in \partial f(0)$. Justifier que

$$\forall x > 0, \qquad -1 > p\sqrt{x}$$

et que p < 0. Montrer que ce n'est pas possible.

- (d) Justifier que la fonction $g = \chi_{]-\infty;0]}$ est convexe, propre et s.c.i. Montrer que $\partial f(0) + \partial g(0) = \emptyset$.
- (e) Vérifier que $\partial(f+g)(0) =]-\infty; +\infty[$. Conclure.

Soit $A_1, A_2 \subset \mathcal{X}$ deux ensembles non vides.

(a) Justifier que

$$dom \chi_{\mathcal{A}_1} = \mathcal{A}_1$$

- (b) On suppose que A_1 est convexe. Montrer que χ_{A_1} convexe.
- (c) On suppose que A_1 est fermé. Montrer que χ_{A_1} s.c.i.
- (d) Montrer que

$$\chi_{\mathcal{A}_1 \cap \mathcal{A}_2} = \chi_{\mathcal{A}_1} + \chi_{\mathcal{A}_2}$$

À quelle condition dom $\chi_{A_1 \cap A_2}$ est-il non vide?

(e) En déduire que si A_1 et A_2 sont convexes, fermés et non vides, alors $\chi_{A_1 \cap A_2}$ est convexe, s.c.i. et propre.

(a)
$$\chi_{A_i}(x) = \begin{cases} 0 & \text{si } x \in A_i \\ +\infty & \text{si } x \notin A_i \end{cases}$$

dom 2/4, = {x \in X | 2/4, (x) & {+00, -00}} = A,

16) A, est convexe $\Rightarrow \forall x, y \in A$, $\lambda x + (1-\lambda)y \in A$,

c Yx, y e A.,

 $\chi_{A,(\lambda x+(1-\lambda)y)}=0 \leq \lambda \cdot \chi_{A,(x)+(1-\lambda)} \cdot \chi_{A,(y)}=0$

@ YXEA., YX&A.

XA,(7x+(1-3)y) = {0,+∞} < 7. XA,(x)+(1-3). XA,(y) = +∞

3 Dx, y & A.

 $\chi_{A,(\lambda x+(1-\lambda)y)} = \{0,+\infty\} \leq \lambda \cdot \chi_{A,(x)} + (1-\lambda) \cdot \chi_{A,(y)} = +\infty$

donc XA est convexe

(c) D'après la définition du XA., on a que XA. est
continue sur A, et 2/A.
Donc pour les points frontières de A., noté fr(A.)
comme A. est fermé, on a fr(A.) c A
Alors $\forall x \in fr(A)$, $\forall (x_k^0)_{k \in A} \in X$ tel que $\lim_{k \to \infty} x_k^0 = x_k^0$
or a
$\lim_{k\to\infty} \chi_{A_n}(x_k^0) \in \{0,+\infty\} \ge f(x^0) = 0$
donc XA, est s.c.i.
(d) Montrer que $\chi_{\mathcal{A}_1 \cap \mathcal{A}_2} = \chi_{\mathcal{A}_1} + \chi_{\mathcal{A}_2}$ À quelle condition dom $\chi_{\mathcal{A}_1 \cap \mathcal{A}_2}$ est-il non vide?
ob @ YxEA.NAr.
$\chi_{A, A}(x) = 0 = \chi_{A}(x) + \chi_{A}(x)$
@ YXEA, et X&Az
$\chi_{A, 1/A_2}(x) = +\infty = 0 + (+\infty) = \chi_{A, 1}(x) + \chi_{A_2}(x)$
3 Yx&A, et xeA,
$\chi_{A, A_2}(x) = +\infty = +\infty + 0 = \chi_{A_1}(x) + \chi_{A_2}(x)$
© ∀x¢A, et x¢A>
$\chi_{A, A_2}(x) = +\infty = +\infty + (+\infty) = \chi_{A_1}(x) + \chi_{A_2}(x)$
À la condition que $A. \cap A_z * \emptyset$

(c) On suppose que \mathcal{A}_1 est fermé. Montrer que $\chi_{\mathcal{A}_1}$ s.c.i.

0.890	4	 AAII IA2		

(e) En déduire que si A_1 et A_2 sont convexes, fermés et non vides, alors $\chi_{A_1 \cap A_2}$ est convexe, s.c.i. et propre.

(e) A, et A_z sont convexes $\Rightarrow A \cap A_z$ est convexe

 $\Rightarrow \lambda_{A, nA_{r}}$ est convexe

A. et Az sont Jermés -> A. NAz est Jermé

⇒ 24.11Az est s.c.i.

假没有效集

A et Az sont non vide => A nAz est non vide

⇒ dom 2AMAz = AMAz + Ø

 $\Rightarrow \chi_{A, \Lambda A_{r}}$ est propre

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction de domaine fermé non vide. On suppose que J est continue sur son domaine.

- (a) Soit $x^0 \in \text{dom } J$. Montrer que J est s.c.i. en x^0 .
- (b) Soit $x^0 \notin \text{dom } J$. Soit $(x_k)_{k \in \mathbb{N}}$ une suite convergente, de limite x^0 . Montrer que l'ensemble

$$\left\{k \in \mathbb{N} \mid x_k \in \operatorname{dom} J\right\}$$

est fini.

- (c) On suppose que dom J est fermé non vide. Montrer que J est s.c.i.
- (a) soit $(x_k)_{k\in\mathbb{N}}$ une suite de points de x convergeant vers x^o .

 Prisque $x = \text{dom } J \cup \text{dom } J^c$, deux cas de figure sont possibles.
 - On peul extraire de la suite (XX) REA une sous-suite dans don J.

Dans ce cas, on a pour tout neN,

liminf $J(x_k) = \inf_{n \ge k} J(x_n) = \inf_{n \ge k} J(x_n) = \lim_{k \to +\infty} J(x_k) = J(x_n)$ $x_n \in dom J \qquad x_k \in dom J$

en passant à la borne supérieure sur les nell.

sup inf $J(x_n) = J(x^0)$ nell $n \ge k$

© on ne peul pas extraire de la suite (Xx) KEN une sous-suite dans dom J.

Dans ce cas, il existe un varg k°EN à partir duquel les Xx n'appartient pas à domJ.

Il s'ensuit puisque I ne prend pas la valeur - ∞ que liminf $J(x_k) = \lim_{k \to +\infty} J(x_k) = +\infty > J(x_k^0)$

Dans les deux cas. I est s.c.i. en xº.

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction de domaine fermé non vide. On suppose que J est continue sur son domaine.

- (a) Soit $x^0 \in \text{dom } J$. Montrer que J est s.c.i. en x^0 .
- (b) Soit $x^0 \notin \text{dom } J$. Soit $(x_k)_{k \in \mathbb{N}}$ une suite convergente, de limite x^0 . Montrer que l'ensemble

$$\left\{k \in \mathbb{N} \mid x_k \in \operatorname{dom} J\right\}$$

est fini.

b) Comme dom J est fermé, abors fr(dom J) c dom J

donc x° & fr(dom J).

Soit (xk) kelv une suite convergente de limite x°.

alors il existe k° ∈ N à partir duquel les xk

riappartient pas à dom J.

Donc {kelv | xk ∈ dom J} est fini.

- (c) On suppose que $\operatorname{dom} J$ est fermé non vide. Montrer que J est s.c.i.
- (c) D'après (a). J'est s.c.i. sur dom J.

Et par définition, Jest S.C.i. sur dom J^c

D x° ∈ fr(dom]), soit (xx) ker une suite convergente

de limite xº, on a

liminf $J(x_k) = \{J(x^0), +\infty\} \gg J(x^0)$

donc Jest s.c.i.

Soit $\mathcal{I} \subset \mathbb{R}$ et $f_i : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe s.c.i. propre pour tout $i \in \mathcal{I}$. On note f l'enveloppe supérieure des f_i . Pour toute fonction $g : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$, on définit

$$\operatorname{epi} g = \left\{ (x, t) \in \mathcal{X} \times \mathbb{R} \mid t \ge g(x) \right\}$$

(a) Soit $(x,y) \in \text{epi} f$. Montrer que

$$\forall i \in \mathcal{I}, \qquad y \geq f_i(x)$$

(b) En déduire que

$$(x,y) \in \operatorname{epi} f \iff (x,y) \in \bigcap_{i \in \mathcal{I}} \operatorname{epi} f_i$$

- (c) Justifier que epi f_i est convexe pour tout $i \in \mathcal{I}$.
- (d) Montrer que $\operatorname{epi} f$ est convexe. En déduire que f est convexe.
- (e) Soit $t \in \mathbb{R}$. Vérifier que

$$\left\{ x \in \mathcal{X} \mid t \ge f_i(x) \right\}$$

est fermé pour tout $i \in \mathcal{I}$.

- (f) En déduire que $epif_i$ est fermé, puis que epif est fermé.
- (g) En raisonnant par l'absurde, montrer que f est s.c.i.
- (h) La fonction f est-elle propre?

(a) D'après la définition,
$$f(x) = \sup_{i \in I} f_i(x)$$

pour
$$(x,y) \in epif$$
, or a $y > f(x) = \sup_{i \in I} f_i(x)$

donc on a

(b)
$$(x,y) \in epif = \{(x,t) \in \chi \times \mathbb{R} \mid t > \sup_{i \in I} f_i(x)\}$$

$$\iff$$
 $(x,y) \in \{(x,t) \in \chi \times \mathbb{R} \mid \forall i \in I, t > f_i(x)\}$

$$\iff$$
 $(x,y) \in \bigcap_{i \in I} \{(x,i) \in \chi \times \mathbb{R} \mid 1 \gg f_i(x)\}$

$$\iff$$
 $(x,y) \in \bigcap_{i \in I} epifi$

on a
$$y_1 \ge f_i(x_1)$$
, $y_2 \ge f_i(x_2)$

$$f_{i}(\lambda x_{i}+(1-\lambda)x_{i}) \leq \lambda f(x_{i})+(1-\lambda)\cdot f(x_{i})$$

$$\leq \lambda \cdot y_{i}+(1-\lambda)\cdot y_{i}$$

donc
$$(1-\lambda) \times_1 \in epi-fi$$

epi-fi est convexe

(d) Montrer que $\mathrm{epi}f$ est convexe. En déduire que f est convexe.

(d) D'après (c),
$$\forall i \in I$$
, epifi est convexe alors epif = $i \in I$ epifi est convexe

donc
$$\forall (x_1, y_1), (x_2, y_2) \in \text{epif}, \lambda \in]0,1[$$

on a $(\lambda x_1 + (1-\lambda)x_2, \lambda y_1 + (1-\lambda)y_2) \in \text{epif}$
 $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda y_1 + (1-\lambda)y_2 \leq \lambda f(x_1) + (1-\lambda)f(x_2)$

alors $f(x_1, y_1), (x_2, y_2) \in \text{epif}$
 $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda y_1 + (1-\lambda)y_2 \leq \lambda f(x_1) + (1-\lambda)f(x_2)$

(e) Soit
$$t \in \mathbb{R}$$
. Vérifier que

$$\left\{ x \in \mathcal{X} \mid t \ge f_i(x) \right\}$$

est fermé pour tout $i \in \mathcal{I}$.

(e)
$$\forall i \in \mathcal{I}$$
, $\{x \in \chi \mid t \ge f_i(x)\} = f_i([t,+\infty))$
Comme f_i est s.c.i. et $[t,+\infty)$ est $f_i(x)$ est $f_i(x)$ est $f_i(x)$ est $f_i(x)$

(f) En déduire que $\operatorname{epi} f_i$ est fermé, puis que $\operatorname{epi} f$ est fermé.
(f) D'après (e), YtER, {XEX t>fi(x)} est fermé
ed YXEX, on a [filx),+xx) est fermé
donc $\{t \in \mathbb{R} \mid t > f_i(x)\}$ est fermé
alors on a epiti = $\{x \in X \mid t > f_i(x)\} \times \{t \in \mathbb{R} \mid t > f_i(x)\}$
est Jermé.
Puis epif = n epifi est fermé.
(g) En raisonnant par l'absurde, montrer que f est s.c.i.
(g) Si f n'est pas s.c.i., soit $\chi^0 \in \chi$ et $(\chi_k)_{k \in \mathbb{N}}$ whe state
convergente de limite x°.
Supposons que liminf $f(x_k) < f(x^0) \in \mathbb{R} \cup \{+\infty\}$
$ERU\{-\infty\}$
en particulier, il existe leR tel que
liminf $f(x_k) < l < f(x^0)$
il s'ensuit qu'il existe $\varepsilon > 0$ tel que, pour $k \in \mathbb{N}$
inf $f(xn) \leq 1-\epsilon$
pour tout kelv, on construire par récurrence
une sous-suite $(x_{n_k})_{k\in\mathbb{N}}$ tel que $f(x_{n_k}) \leq 1 - \frac{\varepsilon}{r}$
l'ensemble de niveau inférieur $l-\frac{\varepsilon}{2}$ étant fermé,

	44.00		
-	日日	-	
_	六刀		

on a $\lim_{k \to \infty} \chi_{n_k} = \chi^0 \in \{\chi \in \chi \mid l - \frac{\varepsilon}{2} > f(\chi)\}$ soil $f(\chi^0) \leq l - \frac{\varepsilon}{2} < f(\chi)$

ce qui est absurde.

(h) La fonction f est-elle propre?

(h) comme $(f_i)_{i \in I}$ sont propre, on a dom $f_i \neq \emptyset$ donc epi $f_i \neq \emptyset$

or a dom f * \$

donc f est propre

Exercice 4 – Fonction convexe non continue

On considère la fonction $f: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ définie par

$$\forall x \in \mathbb{R}, \qquad f(x) = \begin{cases} 0 & \text{si } x > 0 \\ 1 & \text{si } x = 0 \\ +\infty & \text{si } x < 0 \end{cases}$$

- (a) Quel est le domaine de f? La fonction f est-elle continue sur dom f?
- (b) Montrer que f est convexe.
- (c) La fonction f est-elle s.c.i.?

(a)
$$dom f = [0, +\infty)$$

I n'est pas continue sur domf

f(1)x1+(1-1)x2) = f(1)x1) = +00 < 1 f(21) + (1-1) f(x2)

 $f(\lambda x_1 + (1-\lambda) x_2) = \{0, 1, +\infty\} \leq +\infty = \lambda f(x_1) + (1-\lambda) - f(x_2)$

$$3$$
 $\lambda_1 = 0, \lambda_2 > 0$

 $f(\lambda x_1 + (1-\lambda)x_2) = f((1-\lambda)x_2) = 0 \le \lambda = \lambda f(x_1) + (1-\lambda)f(x_2)$

(c) pour
$$x^{\circ} = 0$$
, soit $(x_k)_{k \in \mathbb{N}}$ convergence vers x°

on a

liminf
$$f(x_k) = 1 \ge 1 = f(x_0)$$

donc f est s.c.i

② 从避到趋于 0 面情况呢

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction fortement convexe de module α .

(a) Justifier que f est strictement convexe.

Soit $x^0 \in \mathcal{X}$. On introduit la fonction

$$g: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ \\ x & \mapsto & f(x) - \frac{\alpha}{2} \, \|x - x^0\|^2 \end{array} \right.$$

- (b) Montrer que g est convexe. En déduire que toute fonction fortement convexe est la somme d'une fonction convexe et d'une fonction quadratique.
- (c) Montrer que la somme d'une fonction convexe et d'une fonction fortement convexe, de module α , est fortement convexe, de module α .

 $\forall (x_1, x_2) \in \chi^{2}, \forall \lambda \in [0,1],$

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2) - \frac{\alpha}{2} \cdot \lambda (1-\lambda) \cdot ||x_1 - x_2||^2$$

$$< \lambda f(x_1) + (1-\lambda)f(x_2)$$

donc of est strictement convexe

(b)
$$\forall (x_1, x_2) \in \chi^2, \forall \lambda \in [0,1],$$

$$\leq \lambda f(x_1) + (1-\lambda) \cdot f(x_2) - \frac{\alpha}{2} \cdot \lambda \cdot (1-\lambda) \cdot \|x_1 - x_2\|^2 - \frac{\alpha}{2} \cdot \lambda \cdot \|x_1 - x_0\|^2 - \frac{\alpha}{2} \cdot (1-\lambda) \cdot \|x_2 - x_0\|^2$$

Comme f et g sont arbitraires, alors on a

$$\int(x) = g(x) + \frac{\alpha}{2} \|x - x^0\|^2$$

Donc toute fonction fortement convexe est la somme d'une fonction convexe et d'une fonction quadratique.

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction fortement convexe de module α .

(a) Justifier que f est strictement convexe.

Soit $x^0 \in \mathcal{X}$. On introduit la fonction

$$g: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ \\ x & \mapsto & f(x) - \frac{\alpha}{2} \, \|x - x^0\|^2 \end{array} \right.$$

- (b) Montrer que g est convexe. En déduire que toute fonction fortement convexe est la somme d'une fonction convexe et d'une fonction quadratique.
- (c) Montrer que la somme d'une fonction convexe et d'une fonction fortement convexe, de module α , est fortement convexe, de module α .

(c)	soit f est fortement convexe, g est convexe
	d'après (b), $f = l + \frac{\alpha}{2} x-x^{\circ} ^2$ avec ℓ convexe
	alors (g+1) est convexe
	donc $h = f + g = (g + l) + \frac{\alpha}{2} \ x - x^{\circ}\ ^{2}$ est fortement
	CONVEXE.
	wivere.

Exercice 6 - Sous-différentiel de la norme

Soit \mathcal{X} un espace de HILBERT muni d'un produit scalaire noté $\langle \cdot, \cdot \rangle$, de norme associée $\| \cdot \|$.

- (a) Justifier que | | | est une fonction convexe.
- (b) Montrer que $\|\cdot\|$ est différentiable sur $\mathcal{X}\setminus\{0\}$, de gradient

$$\forall x \neq 0, \qquad \nabla \| \cdot \|(x) = \frac{x}{\|x\|}$$

- (c) Montrer que tout $p \in \mathcal{X}$ de norme inférieure ou égale à 1 est sous-gradient de $\|\cdot\|$ en 0.
- (d) Montrer que, si ||p|| > 1, alors

$$p \in \partial \|\cdot\|(0) \implies \|p\| \ge \|p\|^2$$

(e) En déduire que le sous-différentiel de la norme $\|\cdot\|$ est la boule unité fermée pour la même norme.

$$\|\lambda x_1 + (1-\lambda)x_2\| = \sqrt{\langle \lambda x_1 + (1-\lambda)x_2, \lambda x_1 + (1-\lambda)x_2 \rangle}$$

$$= \sqrt{3^{2} \|x_{1}\|^{2} + (1-3)^{2} \|x_{2}\|^{2} + 2 \cdot 3 \cdot (1-3) \langle x_{1}, x_{2} \rangle}$$

$$\leq \lambda \cdot \|x_1\| + (1-\lambda) \cdot \|x_2\|$$

donc | | · | est une fonction convexe

$$\|x\| = \sqrt{\langle x, x \rangle}$$

$$\nabla \|\mathbf{x}\| = \nabla \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \frac{1}{2} \cdot \langle \mathbf{x}, \mathbf{x} \rangle^{-\frac{1}{2}} \partial_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{x} \rangle)$$

(c) Pour
$$x=0$$
, tout minorante affine de $\|\cdot\|$ vérifie $\|x\| \gg \langle P, x \rangle + c$

pour
$$||0||=0$$
, or a $C=0$.

Ainsi, il s'agit de trouver les valeurs de p telle que $\|x\| \ge \langle p, x \rangle$

Dans le cas
$$x=0$$
, or a $-1 \le p \le 1$

(d) Montrer que, si
$$||p|| > 1$$
, alors

$$p \in \partial \|\cdot\|(0) \implies \|p\| \ge \|p\|^2$$

(d) pour
$$P \in \partial \|\cdot\|(0)$$
, or a

$$\forall x \in \mathcal{X}, \|x\| > \langle p, x \rangle$$

si on prend
$$x=p\in X$$
, alors

$$\|p\| \ge \|p\|^2$$

ce qui est absurde pour
$$||p|| > 1$$
 (?)

(e) En déduire que le sous-différentiel de la norme $\|\cdot\|$ est la boule unité fermée pour la même norme.

$$\frac{\partial \|\cdot\|\langle x\rangle = \left\{\frac{x}{\|x\|} & \text{si } x \neq 0 \\ \left\{p \in x \mid \|p\| \leq 1\right\} & \text{si } x = 0}{\left\{p \in x \mid \|p\| \leq 1\right\}}$$

Donc le sous-différentiel de la norme II·II est la boule unité fermée pour la même norme.

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ et $g: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ deux fonctions convexes telles que $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$.

- (a) Montrer que
- $\forall x \in \text{dom}(f+g), \qquad \partial f(x) + \partial g(x) \subset \partial (f+g)(x)$
- (b) On considère la fonction réelle définie par

$$\forall x \in \mathbb{R}, \qquad f(x) = \begin{cases} -\sqrt{x} & \text{si } x \ge 0\\ +\infty & \text{sinon} \end{cases}$$

Montrer que f est convexe, propre et s.c.i.

(c) Supposons qu'il existe $p \in \partial f(0)$. Justifier que

$$\forall x > 0, \qquad -1 \ge p\sqrt{x}$$

et que p < 0. Montrer que ce n'est pas possible.

- (d) Justifier que la fonction $g = \chi_{]-\infty;0]}$ est convexe, propre et s.c.i. Montrer que $\partial f(0) + \partial g(0) = \emptyset$.
- (e) Vérifier que $\partial(f+g)(0) =]-\infty; +\infty$ [. Conclure.

soit $x \in dom(f+g)$ et $(p,q) \in \partial f(x) \times \partial g(x)$, alors

UZEX, f(z)+g(z) > f(x)+g(x)+ (p+q, z-x)

donc $(p,q) \in \partial (f+g)(x)$

c-à-d Hx E dom(f+g), 2f(x) + 2g(x) C 2(f+g)(x)

Convexe (4)

@ \x1>0, x2>0, \x2\60,1]

 $f(\lambda x_{1} + (1-\lambda)x_{2}) = -\sqrt{\lambda x_{1} + (1-\lambda)x_{2}} \leq -\lambda \sqrt{x_{1}} - (1-\lambda)\sqrt{x_{2}}$

 $= \lambda + (x_1) + (1-\lambda) + (x_2)$

& Hx, >0, x, <0, HAE [0,1]

 $\int (\lambda x_1 + (1-\lambda)x_2) = \left\{ -\sqrt{\lambda x_1 + (1-\lambda)x_2}, +\infty \right\} \leq +\infty$

= > f(x,) + (1->) f(x)

3 Yx, <0, x, <0, f est convexe

Donc + est convexe

	_
H	∃ -
	1.

/

S.C.Z.

Soit
$$x^{\circ} = 0$$
, $\{x_{k}\}_{k \in \mathbb{N}}$ suite convergente vers x°

$$S_i \times_k > 0$$
, par définitions

liminf
$$f(x_k) = \lim_{k \to +\infty} f(x_k) = f(x^0)$$

$$Si \times < 0$$
, or a

$$\lim_{k \to +\infty} f(x_k) = +\infty > 0 = f(x^0)$$

propre

D'après la définition, domf =
$$[0,+\infty) \neq \emptyset$$

donc f est propre

(c) Supposons qu'il existe
$$p \in \partial f(0)$$
. Justifier que

$$\forall x > 0, \qquad -1 \ge p\sqrt{x}$$

et que p < 0. Montrer que ce n'est pas possible.

et donc
$$P \leq -\frac{1}{\sqrt{x}} < 0$$

(?) Et p ne peut être strictement négative, car il vérifie
$$\forall x > 0, -\frac{1}{p} = \frac{1}{|p|} \leq \sqrt{x}$$

(d) Justifier que la fonction $g = \chi_{]-\infty;0]}$	est convexe, propre et s.c.i.	Montrer que $\partial f(0) + \partial g(0) = \emptyset$.
()	, I I	1 3 ()

(e) Vérifier que $\partial (f+g)(0) =]-\infty; +\infty$ [. Conclure.

(d) Comme
$$]-\infty;0]$$
 est convexe, non vide et fermé alors $g=\chi_{]-\infty;0]$ est convexe, propre et s.c.i.

D'après (c), on a
$$\partial f(0) = \emptyset$$

Et par définition.
$$\partial g(0) = \emptyset$$

(e)
$$(f+g)(x) = \begin{cases} 0 & \text{si } x=0 \\ +\infty & \text{si } x\neq 0 \end{cases}$$