EP2420 - Project 1: Task 1, Task 2.1

André Silva

October 31, 2020

Task I

1. The dataset *VoD flashcrowd* provides us with 36633 samples of 1670 features, and 9 different types of targets. In Table 1, the statistics for the chosen features, as well as the target *DispFrames*, which represents the video frame rate, are displayed.

Feature name	Mean	Std Dev	Maximum	Minimum	25th percentile	90th percentile
3_cpu16sys	3.55	1.95	1.50×10^{1}	0.00	0.00	0.00
23_RxPacktes	3.15×10^{2}	4.12×10^{2}	2.37×10^{3}	0.00	3.70×10^{1}	4.70×10^{1}
$\beta_{-}frmpg.s$	-1.15×10^{1}	2.07×10^{4}	1.08×10^{5}	-7.49×10^4	-5.31×10^4	-4.55×10^4
$\theta_{-}cpu18_{-}.idle$	9.97×10^{1}	5.98×10^{-1}	1.00×10^{2}	9.50×10^{1}	9.70×10^{1}	9.80×10^{1}
2_cpu17usr	6.03×10^{1}	1.82×10^{1}	9.20×10^{1}	0.00	8.00	1.34×10^{1}
4_cpu15iowait	4.65×10^{-3}	7.21×10^{-2}	3.03	0.00	0.00	0.00
4_cpu5sys	2.90×10^{1}	1.08×10^{1}	7.40×10^{1}	0.00	6.06	9.18
$\beta_{-}cswch.s$	7.30×10^{4}	1.79×10^{4}	1.07×10^{5}	7.82×10^{3}	2.19×10^{4}	2.65×10^{4}
$38_TxBytes$	2.79×10^{6}	3.18×10^{6}	1.96×10^{7}	0.00	3.47×10^{5}	4.63×10^{5}
$2_dev8.0_avgrq.sz$	2.21×10^{1}	5.78×10^{1}	1.02×10^{3}	0.00	0.00	0.00
DispFrames	2.20×10^{1}	4.32	2.50×10^{1}	0.00	3.00	8.00

Table 1: Statistics for chosen features and target

The following list gives a short description of these features. This information was retrieved from linux manual pages for the command sar [1].

- 3_cpu16.sys Percentage of CPU utilization that occurred while executing at the system level (kernel).
- 23_RxPackets Total number of packets received per second.
- 3_frmpg.s Number of memory pages freed by the system per second.
- 0-cpu18_.idle Percentage of time that the CPU or CPUs were idle and the system did not have an outstanding disk I/O request.
- 2_cpu17_.usr Percentage of CPU utilization that occurred while executing at the user level (application).
- 4_cpu15_.iowait Percentage of time that the CPU was idle during which the system had an outstanding disk I/O request.
- 4-cpu5..sys Percentage of CPU utilization that occurred while executing at the system level (kernel).
- 3_cswch.s Total number of context switches per second.
- $\bullet~38_TxBytes$ Total number of bytes transmitted per second.
- 2_dev8.0_avgrq.sz The average size (in sectors) of the requests that were issued to the device.

Task II - 2.1

4. Table 2 provides the calculated *Normalized Mean Absolute Error* (NMAE) for each of the regressors. The parameters utilized for the random forest regression and the neural network regression are the default parameters of, respectively, RandomForestRegressor [2] and MLPRegressor [3], unless specified in the table.

Regressor				
LinearRegression				
RandomForestRegressor(n_estimators=10)				
MLPRegressor(max_iter=1000, activation='logistic', hidden_layers=(10,10))	0.144			

Table 2: Normalized Mean Absolute Error for each regressor tested

 $\label{thm:cond} \mbox{Figure 1: Time series plot for } \textit{VoD flashcrowd} \ \mbox{using RnadomForestRegressor}$

Figure 2: Density plot of the target values in the test set

Figure 3: Histogram of the target values in the test set

Figure 4: Density plot of the estimation errors $y_i - \hat{y}_i$ in the test set

- 9. Of the three regression techniques utilized, linear regression was the least expensive in computational power, but also the one which provided the worst accuracy.
 - Neural network regression was more expensive when compared to random forest regression, but provided worse accuracy.

Random forest regression was better both in terms of accuracy and cost-performance trade-off when compared to the other two models.

References

- [1] sar command manual page. https://linux.die.net/man/1/sar. accessed: 2020-10-31.
- [2] sklearn.ensemble.randomforestregressor. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.randomforestregressor.html#sklearn.ensemble.randomforestregressor.accessed: 2020-10-31.
- [3] sklearn.neural_network.MLPRegressor. https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor.accessed: 2020-10-31.