

Allan Salamanca February 23, 2025

MLS Home Price Index (HPI)

- Established by the Canadian Real Estate Association (CREA) to gauge home price levels and trends.
- Statistical model that considers quantitative (# of rooms) and qualitative (finished basement) features.
- Based on four home categories, detached, semi-detached, townhouse and apartment.

TPS - Major Crime Indicators (MCI)

- 5 crime categories that include: Assault, Break and Enter, Auto Theft, Robbery and Theft.
- Data is either provided by the victim, or as the offence occurs or is reported.

Problem Area

Home Prince Index in Toronto have increased 8% YoY from 2015 to 2024.

At the end of 2024, HPI for properties in Toronto:

- Detached \$1.6M
- Semi-detached \$1.2M
- Townhouse \$850K
- Apartments \$670K

Problem Area

Major crime incidents have increased 4% YoY in Toronto from 2015 to 2024.

Problem Area: Solution

It's then crucial to understand what factors can affect housing prices, to maximize equity and return on investment. With this tool, we aim to predict the housing price impact by neighborhood, based on the estimated crime rate incidents.

Data Set: Toronto Home Price Index

- Toronto Municipality Code (Neighbourhood)
- HPI Single-Family Detached
- HPI Single-Family Attached
- HPI Townhouse
- HPI Apartment
- Date (2015-2024)

	Toronto Municipality	HPI - Single-Family Detached	HPI - Single-Family Attached	HPI - Townhouse	HPI - Apartment	Effective Date
0	City of Toronto	787300	625000	413100.0	330200	2015-01-01
1	Toronto W01	849400	677500	415100.0	326300	2015-01-01
2	Toronto W02	805300	661100	410300.0	563000	2015-01-01
3	Toronto W03	509900	493700	NaN	257400	2015-01-01
4	Toronto W04	538000	501900	337000.0	206400	2015-01-01
4315	Toronto E07	1219200	1013700	824900.0	593600	2024-12-01
4316	Toronto E08	1219900	872600	752500.0	530000	2024-12-01
4317	Toronto E09	1026700	884600	656600.0	575000	2024-12-01
4318	Toronto E10	1171300	887000	620300.0	486100	2024-12-01
4319	Toronto E11	1062900	885800	709300.0	500300	2024-12-01

Data Set: Toronto Major Crime Indicators

- Occurrence Date
- Division
- MCI Category
- Offence (Subcategory)
- Neighbourhood
- Date (2015-2024)

	EVENT_UNIQUE_ID	OCC_DATE	DIVISION	PREMISES_TYPE	OFFENCE	MCI_CATEGORY	NEIGHBOURHOOD_140
26	GO-20151956	2015-01-01 05:00:00	D32	House	Assault With Weapon	Assault	Newtonbrook West (36)
27	GO-20151923	2015-01-01 05:00:00	D14	Outside	Assault	Assault	Waterfront Communities-The Island (77)
28	GO-20151955	2015-01-01 05:00:00	D42	Outside	Robbery - Mugging	Robbery	Malvern (132)
29	GO-20151945	2015-01-01 05:00:00	D41	Apartment	Assault	Assault	Wexford/Maryvale (119)
30	GO-20152177	2015-01-01 05:00:00	D14	Apartment	Assault	Assault	Dufferin Grove (83)
386176	GO-20242816627	2024-12-24 05:00:00	D32	Outside	Theft Of Motor Vehicle	Auto Theft	Clanton Park (33)
386177	GO-20242815828	2024-12-30 05:00:00	D31	Outside	Theft Of Motor Vehicle	Auto Theft	Glenfield-Jane Heights (25)
386178	GO-20242814680	2024-12-31 05:00:00	D51	Outside	Robbery - Mugging	Robbery	Church-Yonge Corridor (75)
386179	GO-20242815237	2024-12-31 05:00:00	D32	Commercial	B&E	Break and Enter	Englemount-Lawrence (32)
386180	GO-20242815267	2024-12-31 05:00:00	D14	Commercial	B&E	Break and Enter	Trinity-Bellwoods (81)

Data Set: Toronto Neighbourhood Index

- Manually created table.
- Helper table to join TPS and MLS neighbourhood to MLS municipality codes.

	Toronto Police Neighbourhood Categories	MLS Neighbourhood Categories	MLS Municipality Code
0	Agincourt North (129)	Agincourt North	Toronto E07
1	Agincourt South-Malvern West (128)	Agincourt South-Malvern West	Toronto E07
2	Alderwood (20)	Alderwood	Toronto W06
3	Annex (95)	Annex	Toronto C02
4	Banbury-Don Mills (42)	Banbury-Don Mills	Toronto C13
136	Wychwood (94)	Wychwood	Toronto C02
137	Yonge-Eglinton (100)	Yonge-Eglinton	Toronto C03
138	Yonge-St.Clair (97)	Yonge-St.Clair	Toronto C02
139	York University Heights (27)	York University Heights	Toronto W05
140	Yorkdale-Glen Park (31)	Yorkdale-Glen Park	Toronto W04

Data Science Approach

- **Target:** Predict home price index (HPI) by house type (Detached, Semi-Detached, Town House, or Apartment), and neighbourhood, based on major crime incident occurrences.
- Features: Home Price Index, House Type, Neighbourhood, MCI Category.
- Utilize Logistic Regression to predict HPI.

Next Steps

- Address the null values in the HPI Townhouse columns, in the MLS data. Utilize the K Nearest Neighbours approach to get approximate values.
- Address the null values (NSA) in the NEIGHBOURHOOD_140 column, in the Toronto Police data. Since these areas are unknown, we can omit this from the total data set.
- Create a joined data frame, to link all the data sets together.
- Conduct logistics regression, to determine relationship and statistical significance.
- Feature engineering, to determine which levers we can use for our prediction.