WHAT IS CLAIMED IS:

1	1. An integrated circuit comprising a first impedance termination circuit,
2	the first impedance termination circuit comprising:
3	a first termination resistor coupled to a first input/output pin on the integrated
4	circuit;
5	a common mode driver; and
6	a first transistor coupled between the first termination resistor and the common
7	mode driver, the first transistor blocking current flow through the first termination resistor
8	when the first transistor is OFF,
9	wherein a body of the first transistor is coupled to a first supply voltage.
1	2. The integrated circuit according to claim 1 further comprising:
2	a second transistor coupled in parallel with the first transistor that blocks
3	current flow through the first termination resistor when the first and the second transistors are
4	OFF,
5	wherein a body of the second transistor is coupled to a second supply voltage.
1	3. The integrated circuit according to claim 1 wherein the first impedance
2	termination circuit further comprises:
3	a first pass gate coupled in parallel with the first termination resistor.
1	4. The integrated circuit according to claim 3 wherein the first
2	termination impedance circuit further comprises:
3	a second pass gate coupled in parallel with the first termination resistor and
4	the first pass gate.
1	5. The integrated circuit according to claim 3 wherein a second
2	termination resistor is coupled in series with the first termination resistor and the first pass
3	gate.
1	6. The integrated circuit according to claim 1 further comprising a second
2	impedance termination circuit, the second impedance termination circuit comprising:
3	a second termination resistor coupled to a second input/output pin on the
4	integrated circuit; and

5	second and third transistors coupled in parallel between the second termination
6	resistor and the common mode driver, the second and the third transistors blocking current
7	flow through the second termination resistor when the second and the third transistors are
8	OFF,
9	wherein a body of the second transistor is coupled to the first supply voltage,
10	and a body of the third transistor is coupled to a second supply voltage.
1	7. The integrated circuit according to claim 6 wherein the second
2	impedance termination circuit further comprises:
3	first and second pass gates coupled in parallel with the second termination
4	resistor; and
5	a third termination resistor coupled in series between the second termination
6	resistor and the second pin.
1	8. The integrated circuit according to claim 6 further comprising a third
2	impedance termination circuit, the third impedance termination circuit comprising:
3	a third termination resistor coupled to the first input/output pin; and
4	fourth and fifth transistors coupled in parallel between the third termination
5	resistor and the common mode driver, the fourth and the fifth transistors blocking current
6	flow through the third termination resistor when the fourth and the fifth transistors are OFF,
7	wherein a body of the fourth transistor is coupled to the first supply voltage,
8	and a body of the fifth transistor is coupled to the second supply voltage.
1	9. The integrated circuit according to claim 8 further comprising a fourth
2	impedance termination circuit, the fourth impedance termination circuit comprising:
3	a fourth termination resistor coupled to the second input/output pin; and
4	sixth and seventh transistors coupled in parallel between the fourth termination
5	resistor and the common mode driver, the sixth and the seventh transistors blocking current
6	flow through the fourth termination resistor when the sixth and the seventh transistors are
7	OFF,
8	wherein a body of the sixth transistor is coupled to the first supply voltage,
9	and a body of the seventh transistor is coupled to the second supply voltage.
1	10. The integrated circuit according to claim 1 wherein the integrated
2	circuit is a field programmable gate array.

L	11. A method for providing termination impedance to a first pin using a
2	first termination resistor on an integrated circuit, the method comprising:
3	turning OFF a first pass gate to block current through the first termination
1	resistor on the integrated circuit, wherein the first pass gate includes first and second
5	transistors;
5	driving a voltage on the first pin to high and low supply voltages while the
7	first pass gate is OFF; and
3	preventing leakage current from flowing through drain/source-to-body diodes
)	of the first and the second transistors while the first pass gate is OFF.
l	12. The method as defined in claim 11 wherein preventing the leakage
2	current from flowing further comprises:
3	coupling a body region of the first transistor to the high supply voltage and a
4	body region of the second transistor to the low supply voltage.
1	13. The method as defined in claim 11 further comprising:
2	turning ON the first pass gate to provide a current path through the termination
3	resistors; and
4	turning ON a second pass gate coupled in parallel with the first termination
5	resistor.
1	14. The method as defined in claim 13 further comprising:
2	turning ON a third pass gate coupled in parallel with the first termination
3	resistor, wherein a second termination resistor is coupled between the first pin and the first
4	termination resistor.
1	15. The method as defined in claim 11 further comprising:
2	turning OFF a second pass gate to block current through a second termination
3	resistor on the integrated circuit, wherein the second termination resistor provides termination
4	impedance to a second pin, and the first pass gate includes third and fourth transistors;
5	driving a voltage on the second pin to the high and the low supply voltages
6	while the second pass gate is OFF; and
7	preventing leakage current from flowing through drain/source-to-body diodes
Ω	of the third and the fourth transistors while the second pass gate is OFF.

1	16. The method as defined in claim 15 wherein the first and the second
2	pass gates are coupled to a common mode driver.
1	17. The method as defined in claim 15 wherein preventing the leakage
2	current from flowing through the third and the fourth transistors further comprises:
3	coupling a body region of the third transistor to the high supply voltage and a
4	body region of the fourth transistor to the low supply voltage.
1	18. A method for providing termination impedance on an integrated
2	circuit, the method comprising:
3	providing a current path through a first on-chip resistor to a pin of the
4	integrated circuit;
5	blocking current flow through the first on-chip resistor by turning OFF a first
6	transistor; and
7	preventing source/drain-to-body diodes of the first transistor from becoming
8	forward biased in response to voltage changes on the pin.
1	19. The method of claim 18 wherein preventing the source/drain-to-body
2	diodes of the first transistor from becoming forward biased further comprises:
3	coupling a body region of the first transistor to a first supply voltage.
1	20. The method of claim 19 wherein blocking the current flow through the
2	first on-chip resistor further comprises:
3	turning OFF a second transistor coupled in parallel with the first transistor;
4	and
5	preventing the source/drain-to-body diodes of the second transistor from
6	becoming forward biased in response to voltage changes on the pin.
1	21. The method of claim 20 wherein preventing the source/drain-to-body
2	diodes of the second transistor from becoming forward biased further comprises:
3	coupling a body region of the second transistor to a second supply voltage.