CS 412 Introduction to Machine Learning

Logistic Regression – Code Tutorial

Instructor: Wei Tang

Department of Computer Science
University of Illinois at Chicago
Chicago IL 60607

https://tangw.people.uic.edu tangw@uic.edu

Slides credit: Martín Pellarolo

Data

```
def generate_random_points(size=10, low=0, high=1):
    data = (high - low) * np.random.random_sample((size, 2)) + low
    return data
            N = 20 # number of samples in each class
            X1 = generate_random_points(N, 0, 1)
             y1 = np.ones(N)
            X2 = generate_random_points(N, 1, 2)
             y2 = np.zeros(N)
            X = np.concatenate((X1, X2), axis=0)
             y = np.concatenate((y1, y2), axis=0)
```

numpy.random.random_sample

random.random_sample(size=None)

Return random floats in the half-open interval [0.0, 1.0).

Results are from the "continuous uniform" distribution over the stated interval. To sample Unif[a,b), b>a multiply the output of **random_sample** by (b-a) and add a:

Note

New code should use the random method of a default_rng() instance instead; please see the Quick Start.

Parameters: size: int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns: out: float or ndarray of floats

Array of random floats of shape **size** (unless **size=None**, in which case a single float is returned).

Some useful functions

```
def sigmoid(z):
                res = \frac{1}{1} + np.exp(-z)
                return res
   def add_intercept(X):
        intercept = np.ones((X.shape[0], 1))
        res = np.concatenate((intercept, X), axis=1)
        return res
def loss(h, y):
    res = (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
   return res
```

Learning

```
def learning(X, y, lr=0.01, num_iter=100000):
    X = add_intercept(X)
    # weights initialization
    theta = np.zeros(X.shape[1])
    for i in range(num_iter):
        z = np.dot(X, theta)
        h = sigmoid(z)
        gradient = np.dot(X.T, (h - y)) / y.size
        theta -= lr * gradient
        if (i % 10000 == 0):
            z = np.dot(X, theta)
            h = sigmoid(z)
            print(f'loss: {loss(h, y)} \t')
    return theta
```

Prediction

```
def predict(X, theta, threshold=0.5):
    X = add_intercept(X)
    prob = sigmoid(np.dot(X, theta))
    res = prob >= threshold
    return res
```

The complete pipeline

```
N = 20 # number of samples in each class
X1 = generate_random_points(N, 0, 1)
y1 = np.ones(N)
X2 = generate_random_points(N, 1, 2)
y2 = np.zeros(N)
X = np.concatenate((X1, X2), axis=0)
y = np.concatenate((y1, y2), axis=0)
theta = learning(X, y)
y_preds = predict(X, theta)
print("Average classification accuracy:", (y_preds == y).mean())
plt.plot(X1[:,0], X1[:,1], 'ro', X2[:,0], X2[:,1], 'bs')
\# x2 = a*x1 + b
a = -theta[1]/theta[2]
b = -theta[0]/theta[2]
plt.plot(np.array([0,2]), np.array([0,2])*a+b, "g-")
plt.show()
```

Results

```
loss: 0.6918238344332963
```

loss: 0.12193492747304553

loss: 0.08102355257708946

loss: 0.0644580154145817

loss: 0.05511618732298669

loss: 0.0489784090151211

loss: 0.0445705016555993

loss: 0.04121452216444617

loss: 0.03855167714157677

loss: 0.036372816541204736

Average classification accuracy: 1.0

Results

Exploration

How is the decision boundary changed during the learning process?

What will happen if the data are not linearly separable?

What is the effect of using different learning rates?