Práctica Dirigida N°1

Semana 1

ECUACIONES DIFERENCIALES

Ecuaciones Diferenciales I

1. Resolver las siguientes ecuaciones diferenciales ordinarias

a)
$$\frac{dy}{dt} = 15$$

b)
$$\frac{dy}{dt} + 5y = 0$$

c)
$$\frac{dy}{dt} - 6y = 18$$

d)
$$\frac{dy}{dt} + 4ty = 6t$$

e)
$$2\frac{dy}{dt} - 2t^2y = 9t^2$$
 $y(0) = -2.5$

f)
$$\frac{dy}{dt} - 2ty = e^{t^2}$$

g)
$$(t+5)dy - (y+9)dt = 0$$

h)
$$y^2(t^3+1)dy+t^2(y^3-5)dt=0$$

i)
$$y''_{(t)} - 5y'_{(t)} + 4y_{(t)} = 2$$

j)
$$y''_{(t)} + 3y'_{(t)} = 12$$

k)
$$y''_{(t)} = 16$$

l)
$$y'' + 3y' - 10y = 7te^t$$
; $y_{(0)} = -\frac{5}{36}$; $y'_{(0)} = -\frac{5}{39}$

m)
$$2ty'' - y' + \frac{1}{y'} = 0$$
 $(t \neq 0)$

n)
$$2yy'' = 1 + (y')^2$$

- 2. Resolver las siguientes ecuaciones diferenciales de primer orden, describiendo el procedimiento y simular los resultados en Rstudio o Pyhton
 - 2.1 EDO de primero orden

a)
$$\frac{dy}{dt} + 4y = -20$$
; $y(0) = 10$

b)
$$\frac{dy}{dt} = 3y$$
; $y(0) = 2$

c)
$$\frac{dy}{dt} + 3y = 6t$$
; $y(0) = \frac{1}{2}$

2.2 EDO de segundo orden

a)
$$y''(t) + y'(t) + \frac{1}{4}y(t) = 9$$
; $y(0) = 30$ y $y'(0) = 15$

b)
$$y''(t) - 4y'(t) - 5y(t) = 35$$
; $y(0) = 5$ y $y'(0) = 6$

c)
$$y''(t) - \frac{1}{2}y'(t) = 13$$
; $y(0) = 17$ y $y'(0) = -19$

d)
$$y''(t) + 2y'(t) + 10y(0) = 80$$
; $y(0) = 10$ y $y'(0) = 13$

3. Aplicación: Demanda de Dinero

Suponga que la demanda de dinero es solo para fines de transacción. Así,

$$M_d = kP(t)Q$$

donde k es constante, P es el nivel de precios y Q es el PBI rea. Asumiendo $M_o = M_d$ y exógenamente determinada por la autoridad monetaria. Si la inflación o el cambio en el ratio de precios es proporcional al exceso de demanda por bienes en una sociedad y siguiendo la $Ley\ de\ Walras$, un exceso de demanda por bienes es lo mismo que un exceso de oferta de dinero, por lo tanto

$$\frac{dP(t)}{dt} = b(M_o - M_d)$$

encontrar las condiciones de estabilidad, cuando el PBI real Q es constante.