北京师范大学 2021-2022 学年第一学期近世代数期末考试试题(A卷)

课程名称:	近世代数		任课老师姓名:			
卷面总分:	分	考试时长:_	120	_ 分钟	考试类别:[闭卷
院(系):_		专业: _			年级:_	
姓名:		学号:				

- 一、 (18分) 给定正整数 $n, R = \mathbb{Z}_n$.
 - (1) 若 $n = n_1 n_2$, $(n_1, n_2) = 1$ 且 $n_1, n_2 \ge 2$, 证明存在 R 的两个非平凡理想 I, J 使得 $R = I \oplus J$;
 - (2) 若 $n = p^k$, p 为素数, $k \in \mathbb{Z}^+$, 是否存在 R 的两个非平凡理想 I, J 使得 $R = I \oplus J$? 请给出 判断并证明你的结论.
- 二、 (18分) 给定正整数 $m \ge 2$, 令 $R_m = \{a + bmi \mid a, b \in \mathbb{Z}, i = \sqrt{-1}\}$.
 - (1) 证明 R_m 是高斯整环 $R = \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}, i = \sqrt{-1}\}$ 的子环;
 - (2) 判断 R_m 是否是 R 的理想, 并证明你的结论;
 - (3) 对于不同的素数 p, q, 判断 R_p 是否与 R_q 同构, 并证明你的结论.
- 三、 (16分) 设 $R = M_n(F)$ 是数域 F 上的全体 n 阶矩阵环, R 是一个非零环. 若 φ 是 R 到 R 的一个满同态, 证明 R 与 R 同构.
- 四、(16分) 设 R 是一个交换环, M 是 R 的一个极大理想. 若对于任意 $a \notin M$, 都存在 $b \notin M$ 使得 $ab \notin M$, 证明 R/M 是域.
- 五、(16分) 给定 s 个不同的素数 p_1, \ldots, p_s . 令

$$T = \{ \sqrt[p_i]{p_i} \mid i = 1, \dots, s \}, \quad \alpha = \prod_{i=1}^s \sqrt[p_i]{p_i}.$$

证明 $\mathbb{Q}(T) = \mathbb{Q}(\alpha)$, 并求出 $[\mathbb{Q}(T) : \mathbb{Q}]$.

- 六、(16分) 设 E 是域 F 的一个扩张, α , β 为 E 中的两个不同的元素且均为 F 上的代数元.
 - (1) 证明 $F(\alpha) = F(\beta) \iff \alpha$ 可被 $F(\beta)$ 的一组基线性表出, β 可被 $F(\alpha)$ 的一组基线性表出;
 - (2) 设 $F(\alpha) = F(\beta)$,
 - (i) 若 ch F = p, p 是一个素数, 证明 $F(\alpha^p) = F(\beta^p)$;
 - (ii) 若 ch F = 0, 判断是否有 $F(\alpha^2) = F(\beta^2)$, 并证明你的结论.