Optimization in Machine Learning

Lecture 14: Algorithms for Optimization, Convergence Analysis of Gradient Descent under Lipschitz Continuity and Convexity, Enhancements via Smoothness and Strong Convexity

Ganesh Ramakrishnan

Department of Computer Science Dept of CSE, IIT Bombay https://www.cse.iitb.ac.in/~ganesh

February, 2025

[Recap] Convergence rate for Convexity + Lipschitz Continuity

• Define $\hat{x} = \operatorname{argmin}_i f(x_i)$. Then,

$$|f(\hat{x}) - f(x^*)| \le \frac{RB}{\sqrt{T}}$$

• If we need $|f(\hat{x}) - f(x^*)| \le \epsilon$, it suffices to have

$$\frac{RB}{\sqrt{T}} \le \epsilon$$

Which implies that:

$$T \geq \frac{R^2B^2}{\epsilon^2}$$

• Final Result: Given a Lipschitz continuous function f, gradient descent with step size $\gamma = \frac{R}{B\sqrt{T}}$ achieves a solution \hat{x} s.t $|f(\hat{x}) - f(x^*)| \le \epsilon$ in $\frac{R^2B^2}{\epsilon^2}$ iterations.

[Recap] Convergence rate for Convexity + Lipschitz Smoothness

- Putting everything together: $f(x_T) f(x^*) \le \frac{L}{2T} ||x_0 x^*||^2 = \frac{LR^2}{2T}$
- To ensure that $f(x_T) f(x^*) \le \epsilon$, we require $\frac{LR^2}{2T} \le \epsilon$.
- This implies that $T \geq \frac{R^2L}{2\epsilon}$
- To achieve an error of 0.01, we require $50R^2L$ iterations instead of $10^4R^2B^2$ in the Lipschitz case!
- Final Result: Given a L smooth convex function f, Gradient descent with step size $\gamma = \frac{1}{L}$ achieves a solution x_T s.t $|f(x_T) f(x^*)| \le \epsilon$ in $\frac{R^2L}{\epsilon}$ iterations.

Recall this value was to give a lowest upper bound In practice line/ray search techniques are used and convergence can be proved with Strong Wolfe conditions on step size

Smooth + Strongly Convex Functions

Source: Martin Jaggi (CS 439)

Smooth + Strongly Convex Functions

Source: Martin Jaggi (CS 439)

• Recall from Analysis I, (1) based on straightforward algebra:

$$g_t^T(x_t - x^*) = \frac{\gamma_t}{2} ||g_t||^2 + \frac{1}{2\gamma_t} \left(||x_t - x^*||^2 - ||x_{t+1} - x^*||^2 \right)$$
 (1)

TRICK 1 Used

Deviation: Instead of convexity followed by telescopic summing, why not STRONG convexity next...

Homework: How do we use strong convexity in conjunction with L-smothness to get a sufficient condition as

$$T >= \log(1/\epsilon)$$

Can it be through some intermediate steps culminating in

$$f(\mu/L)^T \le \epsilon$$

• Recall from Analysis I, (1) based on straightforward algebra:

$$g_t^T(x_t - x^*) = \frac{\gamma_t}{2} ||g_t||^2 + \frac{1}{2\gamma_t} \left(||x_t - x^*||^2 - ||x_{t+1} - x^*||^2 \right)$$
 (1)

• We can use a stronger lower bound on the above expression(s) via strong convexity:

$$g_t^T(x_t - x^*) \ge f(x_t) - f(x^*) + \frac{\mu}{2}||x_t - x^*||^2$$
 (2)

• Recall from Analysis I, (1) based on straightforward algebra:

$$g_t^T(x_t - x^*) = \frac{\gamma_t}{2} ||g_t||^2 + \frac{1}{2\gamma_t} \left(||x_t - x^*||^2 - ||x_{t+1} - x^*||^2 \right)$$
 (1)

• We can use a stronger lower bound on the above expression(s) via strong convexity:

$$\frac{g_t^T(x_t - x^*)}{g_t^T(x_t - x^*)} \ge |f(x_t) - f(x^*) + \frac{\mu}{2}||x_t - x^*||^2$$
 (2)

• Putting together (1) and (2) and rearranging terms:

$$|f(x_t) - f(x^*)| \le \frac{1}{2\gamma} (\gamma^2 ||g_t||^2 + ||x_t - x^*||^2 - ||x_{t+1} - x^*||^2) - \frac{\mu}{2} ||x_t - x^*||^2$$

$$\Rightarrow \frac{||x_{t+1} - x^*||^2}{2\gamma \left(f(x^*) - f(x_t)\right)} + \frac{\gamma^2 ||g_t||^2}{\gamma^2 ||g_t||^2} + \frac{(1 - \mu \gamma)||x_t - x^*||^2}{||x_t - x^*||^2}$$

• From previous slide:

$$||x_{t+1} - x^*||^2 \le 2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{2} + \frac{(1 - \mu \gamma)||x_t - x^*||^2}{2}$$

• From previous slide:

$$||x_{t+1} - x^*||^2 \leq 2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{\gamma^2 ||g_t||^2} + \frac{(1 - \mu \gamma)||x_t - x^*||^2}{(1 - \mu r)^{t+1}}$$

$$||x_{t+1} - x^*||^2 \leq 2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{\gamma^2 ||g_t||^2} + \frac{||x_t - x^*||^2}{\gamma^2 ||g_t||^2}$$

$$||x_{t+1} - x^*||^2 \leq \sum_{t=0}^{T-1} \frac{2r (f(x^*) - f(x_t))}{(1 - \mu r)^{t+1}} + \frac{||x_t - x^*||^2}{(1 - \mu r)^{t+1}}$$

$$||x_t - x^*||^2 \leq \sum_{t=0}^{T-1} \frac{2r (f(x^*) - f(x_t))}{(1 - \mu r)^{t+1}} + \frac{||g_t||^2}{||g_t||^2} + \frac{||x_t - x^*||^2}{(1 - \mu r)^{t+1}}$$

$$||x_t - x^*||^2 \leq \sum_{t=0}^{T-1} \frac{2r (f(x^*) - f(x_t))}{(1 - \mu r)^{t+1}} + \frac{||g_t||^2}{||g_t||^2} + \frac{||x_t - x^*||^2}{||g_t||^2}$$

$$||x_t - x^*||^2 \leq \sum_{t=0}^{T-1} \frac{2r (f(x^*) - f(x_t))}{(1 - \mu r)^{t+1}} + \frac{||g_t||^2}{||g_t||^2} + \frac{||x_t - x^*||^2}{||g_t||^2}$$

$$||x_t - x^*||^2 \leq \sum_{t=0}^{T-1} \frac{2r (f(x^*) - f(x_t))}{(1 - \mu r)^{t+1}} + \frac{||g_t||^2}{||g_t||^2} + \frac{||g_t||^2}{||g_t||^2}$$

$$||x_t - x^*||^2 \leq \sum_{t=0}^{T-1} \frac{2r (f(x^*) - f(x_t))}{(1 - \mu r)^{t+1}} + \frac{||g_t||^2}{||g_t||^2} + \frac{||g_t||^2}{||g_t||^2}$$

• From previous slide:

$$||x_{t+1} - x^*||^2 \le |2\gamma (f(x^*) - f(x_t))| + \frac{\gamma^2 ||g_t||^2}{|\gamma^2||g_t||^2} + \frac{(1 - \mu \gamma)||x_t - x^*||^2}{|\gamma^2||g_t||^2}$$

• Recall (from previous Lecture), for Lipschitz smooth function f,

$$f(x_{t+1}) \leq f(x_t) + g_t^T(x_{t+1} - x_t) + \frac{L}{2}||x_{t+1} - x_t||^2 \leq f(x_t) - \gamma||g_t||^2 + \frac{L}{2}\gamma^2||g_t||^2$$

$$Will it help us simplify this expression?$$

$$V(1-Mr)^{t+1}$$

$$Should we substitute with T (for T= L) f(x_t) - \frac{1}{2L} ||g_t||^2$$

$$F(x_t) - \frac{1}{2L} ||g_t||^2$$

• From previous slide:

$$||x_{t+1} - x^*||^2 \le 2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{2} + \frac{(1 - \mu \gamma)||x_t - x^*||^2}{2}$$

• Recall (from previous Lecture), for Lipschitz smooth function f,

$$f(x_{t+1}) \le f(x_t) + g_t^T(x_{t+1} - x_t) + \frac{L}{2}||x_{t+1} - x_t||^2 \le f(x_t) - \gamma||g_t||^2 + \frac{L}{2}\gamma^2||g_t||^2$$
 (3)

• For $\gamma = 1/L$, $f(x_t) - \gamma ||g_t||^2 + \frac{L}{2} \gamma^2 ||g_t||^2$ is minimized and since $f(x^*) \le f(x_{t+1})$,

$$f(x^*) \le f(x_{t+1}) \le f(x_t) - \frac{1}{2L}||g_t||^2$$

• From previous slide:

$$||x_{t+1} - x^*||^2 \le 2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{2} + \frac{(1 - \mu \gamma)||x_t - x^*||^2}{2}$$

• Recall (from previous Lecture), for Lipschitz smooth function f,

$$f(x_{t+1}) \le f(x_t) + g_t^T(x_{t+1} - x_t) + \frac{L}{2}||x_{t+1} - x_t||^2 \le f(x_t) - \gamma||g_t||^2 + \frac{L}{2}\gamma^2||g_t||^2$$
 (3)

• For $\gamma = 1/L$, $f(x_t) - \gamma ||g_t||^2 + \frac{L}{2} \gamma^2 ||g_t||^2$ is minimized and since $f(x^*) \leq f(x_{t+1})$,

$$f(x^*) \le f(x_{t+1}) \le f(x_t) - \frac{1}{2L}||g_t||^2$$

• Now let us show that $2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{2} \le 0$. For step size $\gamma = 1/L$.

$$2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{L^2} = \frac{2}{L} (f(x^*) - f(x_t)) + \frac{1}{L^2} ||g_t||^2$$

$$\leq -\frac{1}{L^2}||g_t||^2 + \frac{1}{L^2}||g_t||^2$$

• From previous slide:

$$||x_{t+1} - x^*||^2 \le 2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{2} + \frac{(1 - \mu \gamma)||x_t - x^*||^2}{2}$$

Recall (from previous Lecture), for Lipschitz smooth function f,

$$f(x_{t+1}) \le f(x_t) + g_t^T(x_{t+1} - x_t) + \frac{L}{2}||x_{t+1} - x_t||^2 \le f(x_t) - \gamma||g_t||^2 + \frac{L}{2}\gamma^2||g_t||^2$$
 (3)

• For $\gamma = 1/L$, $f(x_t) - \gamma ||g_t||^2 + \frac{L}{2} \gamma^2 ||g_t||^2$ is minimized and since $f(x^*) \leq f(x_{t+1})$,

$$f(x^*) \le f(x_{t+1}) \le f(x_t) - \frac{1}{2L}||g_t||^2$$

• Now let us show that $2\gamma \left(f(x^*) - f(x_t)\right) + \frac{\gamma^2 ||g_t||^2}{2} \le 0$. For step size $\gamma = 1/L$.

$$2\gamma \left(f(x^*) - f(x_t) \right) + \frac{\gamma^2 ||g_t||^2}{2} = \frac{2}{L} \left(f(x^*) - f(x_t) \right) + \frac{1}{L^2} ||g_t||^2$$

$$\leq \left| -\frac{1}{L^2} ||g_t||^2 + \frac{1}{L^2} ||g_t||^2 \right|$$

• Since:
$$||x_{t+1} - x^*||^2 \le |2\gamma (f(x^*) - f(x_t))| + \frac{\gamma^2 ||g_t||^2}{|\gamma^2||g_t||^2} + \frac{(1 - \mu \gamma)||x_t - x^*||^2}{|\gamma^2||g_t||^2}$$

• Since:
$$||x_{t+1} - x^*||^2 \le |2\gamma (f(x^*) - f(x_t))| + |\gamma^2||g_t||^2 + |(1 - \mu\gamma)||x_t - x^*||^2$$

• And for Lipschitz smooth function f,

$$2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{2} = \frac{2}{L} (f(x^*) - f(x_t)) + \frac{1}{L^2} ||g_t||^2$$

$$\leq -\frac{1}{L^2} ||g_t||^2 + \frac{1}{L^2} ||g_t||^2$$

• Since:
$$||x_{t+1} - x^*||^2 \le |2\gamma (f(x^*) - f(x_t))| + |\gamma^2||g_t||^2 + |(1 - \mu\gamma)||x_t - x^*||^2$$

• And for Lipschitz smooth function f,

$$2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{L^2} = \frac{2}{L} (f(x^*) - f(x_t)) + \frac{1}{L^2} ||g_t||^2$$

$$\leq -\frac{1}{L^2} ||g_t||^2 + \frac{1}{L^2} ||g_t||^2$$

We have, by packing everything together:

$$||x_{t+1} - x^*||^2 \le \left(1 - \frac{\mu}{L}\right) ||x_t - x^*||^2$$

• Since:
$$||x_{t+1} - x^*||^2 \le |2\gamma (f(x^*) - f(x_t))| + |\gamma^2||g_t||^2 + |(1 - \mu\gamma)||x_t - x^*||^2$$

• And for Lipschitz smooth function f,

$$2\gamma (f(x^*) - f(x_t)) + \frac{\gamma^2 ||g_t||^2}{L^2} = \frac{2}{L} (f(x^*) - f(x_t)) + \frac{1}{L^2} ||g_t||^2$$

$$\leq -\frac{1}{L^2} ||g_t||^2 + \frac{1}{L^2} ||g_t||^2$$

We have, by packing everything together:

$$||x_{t+1} - x^*||^2 \le \frac{\left(1 - \frac{\mu}{L}\right)||x_t - x^*||^2}{\left(0.1\right)} \qquad \text{all} \le \sqrt{2}f \le LT$$

$$\text{Recall} \qquad \text{all} \le \sqrt{2}f \le LT$$

• Packing everything together:

$$||x_{t+1} - x^*||^2 \le \left| \left(1 - \frac{\mu}{L} \right) ||x_t - x^*||^2 \right|$$

• Packing everything together:

$$||x_{t+1}-x^*||^2 \leq \frac{\left(1-\frac{\mu}{L}\right)||x_t-x^*||^2}{\left(1-\frac{\mu}{L}\right)||x_t-x^*||^2} \frac{\text{Finally this is}}{\text{Q-linearly convergent}} \\ \text{in } x \text{ (not in f yet)} \\ \text{• } v^1,\ldots,v^k \text{ is Q-linearly convergent if} \\ \frac{\left\|v^{k+1}-v^*\right\|}{\left\|v^k-v^*\right\|} \leq r \\ \text{for some } k \geq \theta, \text{ and } \underline{r} \in (0,1) \\ \text{Multiply 4. have what we jumped earlies}$$

$$\frac{\|x_{1}-x^{2}\|^{2}}{(1-M_{L})^{T}} \leq \|x_{0}-x^{2}\|^{2}$$

February, 2025

• Packing everything together:

$$||x_{t+1} - x^*||^2 \le \left(1 - \frac{\mu}{L}\right) ||x_t - x^*||^2$$

• Multiplying all terms from $t = 0, \dots, T - 1$:

$$||x_T - x^*||^2 \le \left| \left(1 - \frac{\mu}{L} \right)^T ||x_0 - x^*||^2$$

• Packing everything together:

$$||x_{t+1} - x^*||^2 \le \left(1 - \frac{\mu}{L}\right) ||x_t - x^*||^2$$

• Multiplying all terms from $t = 0, \dots, T - 1$:

$$||x_T - x^*||^2 \le \left(1 - \frac{\mu}{L}\right)^T ||x_0 - x^*||^2$$

What we seek is f(2T)-sf(2)

10 / 18

Ganesh Ramakrishnan

• Packing everything together:

$$||x_{t+1} - x^*||^2 \le \left(1 - \frac{\mu}{L}\right) ||x_t - x^*||^2$$

• Multiplying all terms from $t = 0, \dots, T - 1$:

$$||x_T - x^*||^2 \le \left| \left(1 - \frac{\mu}{L} \right)^T ||x_0 - x^*||^2 \right|$$

• In our final step, we combine smoothness and the fact that $\nabla f(x^*) = 0$:

$$|f(x_T) - f(x^*) \le \nabla f(x^*)^T (x_T - x^*) + \frac{L}{2} ||x_T - x^*||^2 = \frac{L}{2} ||x_T - x^*||^2$$

$$\Rightarrow \frac{f(x_T) - f(x^*)}{2} \le \frac{L}{2} ||x_T - x^*||^2 \le \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T ||x_0 - x^*||^2$$

• Packing everything together:

$$||x_{t+1} - x^*||^2 \le \left(1 - \frac{\mu}{L}\right) ||x_t - x^*||^2$$

• Multiplying all terms from $t = 0, \dots, T - 1$:

$$||x_T - x^*||^2 \le \left(1 - \frac{\mu}{L}\right)^T ||x_0 - x^*||^2$$
Necessary

• In our final step, we combine smoothness and the fact that $\nabla f(x^*) = 0$:

$$|f(x_T) - f(x^*)| \le \nabla f(x^*)^T (x_T - x^*) + \frac{L}{2} ||x_T - x^*||^2 = \frac{L}{2} ||x_T - x^*||^2$$

$$\Rightarrow \frac{f(x_T) - f(x^*)}{2} \le \frac{L}{2} ||x_T - x^*||^2 \le \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T ||x_0 - x^*||^2$$

• Setting $R^2 = ||x_0 - x^*||^2$, we get:

$$|f(x_T)-f(x^*)| \leq \frac{L}{2}\left(1-\frac{\mu}{L}\right)^T R^2$$

11 / 18

• Setting $R^2 = ||x_0 - x^*||^2$, we get:

• Setting $R^2 = ||x_0 - x^*||^2$, we get:

$$|f(x_T)-f(x^*)| \leq \frac{L}{2}\left(1-\frac{\mu}{L}\right)^T R^2$$

• To get an error of ϵ , we require $\frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T R^2 \le \epsilon$ which implies $T \ge \frac{L}{\mu} \log(\frac{R^2 L}{2\epsilon})$.

• Setting $R^2 = ||x_0 - x^*||^2$, we get:

$$|f(x_T) - f(x^*)| \le \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T R^2$$

• To get an error of ϵ , we require $\frac{L}{2} \left(1 - \frac{\mu}{I}\right)^T R^2 \le \epsilon$ which implies $T \ge \frac{L}{\mu} \log(\frac{R^2 L}{2\epsilon})$.

• Setting $R^2 = ||x_0 - x^*||^2$, we get:

$$|f(x_T)-f(x^*)| \leq \frac{L}{2}\left(1-\frac{\mu}{L}\right)^T R^2$$

- To get an error of ϵ , we require $\frac{L}{2} \left(1 \frac{\mu}{I}\right)^T R^2 \le \epsilon$ which implies $T \ge \frac{L}{\mu} \log(\frac{R^2 L}{2\epsilon})$.
- To get an error of $\epsilon = 0.01$, we now need only $L/\mu \log(50R^2L)$ iterations as opposed to $50R^2I$ iterations in the smooth case!

Summary of Results so Far...(with convexity by default)

- Lipschitz continuous functions (C). With $\gamma = \frac{R}{B\sqrt{T}}$, achieve an ϵ -approximate solution in R^2B^2/ϵ^2 iterations
- Smooth Functions (S): With $\gamma=1/L$, achieve an ϵ -approximate solution in $\frac{R^2L}{\epsilon}$ iterations.
- Smooth + Strongly Convex (SS): With $\gamma=1/L$, achieve an ϵ -approximate solution in $\frac{L}{\mu}\log(\frac{R^2L}{2\epsilon})$ iterations.
- Concrete examples. Let $L=B=10, R=1, \mu=1$. Then, we have the following:
 - ϵ = 0.1, C: 10000, S = 50, SS = 8.49 iterations
 - ϵ = 0.01, C: 1000000, S = 500, SS = 13.49 iterations
 - $ightharpoonup \epsilon = 0.001$, C: 100000000, S = 5000, SS = 18.49 iterations
- As ϵ reduces by 10, the number of iterations of strongly + smooth case increases only by a additive constant! This is linear convergence!

Summary of Results so Far...(with convexity by default)

- Lipschitz continuous functions (C). With $\gamma=\frac{R}{B\sqrt{T}}$, achieve an ϵ -approximate solution in R^2B^2/ϵ^2 iterations
- Smooth Functions (S): With $\gamma=1/L$, achieve an ϵ -approximate solution in $\frac{R^2L}{\epsilon}$ iterations.
- Smooth + Strongly Convex (SS): With $\gamma=1/L$, achieve an ϵ -approximate solution in $\frac{L}{\mu}\log(\frac{R^2L}{2\epsilon})$ iterations.
- ullet Concrete examples. Let $L=B=10, R=1, \mu=1.$ Then, we have the following:
 - $\epsilon = 0.1$, C: 10000, S = 50, SS = 8.49 iterations • $\epsilon = 0.01$, C: 1000000, S = 500, SS = 13.49 iterations • $\epsilon = 0.001$, C: 100000000, S = 5000, SS = 18.49 iterations
- As ϵ reduces by 10, the number of iterations of strongly + smooth case increases only by a additive constant! This is linear convergence! Revisist optional slides and notice that this is Q-linear convergence.

