Problema No.1

Considerar el siguiente diagrama de bloques de un proceso de alquilación, tal como se ilustra en la Fig. 1.

Fig. 1: Diagrama de bloques proceso de alquilación

Las ecuaciones que describen al sistema se han realizado a través de regresión, es decir, corresponden a ecuaciones empíricas. Se obtuvo que el rendimiento (cantidad producida) de alquilato (x_4) es función de la alimentación de oleofina (x_1) y de la razón (ratio) de reciclo de isobutano respecto a la olefina alimentada (x_8). La relación no lineal es la siguiente:

$$x_4 = x_1(1.12 + 0.1317 x_8 - 0.0067 x_8^2)$$

La adición de isobutano se determina mediante un balance volumétrico al reactor. Se conoce que la mezcla de olefina e isobutano fresco alimentados ocupan un 22% más que el alquilato. Además, la pureza del ácido (x_6) se puede expresar como:

$$x_6 = \frac{98000 \, x_3}{x_4 x_9 + 1000 \, x_3}$$

El número de octano se representa mediante la siguiente ecuación:

$$x_7 = 85.88 + 1.098 x_8 - 0.04 x_8^2 + 0.325(x_6 - 88.8)$$

La razón (ratio) de isobutano a olefinas está referida al isobutano total (reciclado más aporte). El factor de dilución (x_9) se puede expresar como una función linear del factor de comportamiento (x_{10}), siendo este último expresado en función del número de octano.

$$x_9 = 35.80 - 0.222 x_{10}$$
$$x_{10} = -133 + 3 x_7$$

Estas ecuaciones conforman el modelo que expresa el valor de las variables dependientes en función de 3 variables independientes y de las propias variables dependientes. Notar que hay dos ecuaciones que no están expresadas explícitamente.

Considerar la siguiente lista de precios y costos:

	Precios/costes		
C1	Precio del alquilato producto	0,063	\$/barril de octanos
C2	Coste de la olefina	5,04	\$/barril
C3	Coste del reciclo de isobutano	0,035	\$/barril
C4	Coste de la adición de ácido	10	\$/klb
C5	Coste del isobutano de aporte	3,36	\$/barril

Y la definición de variables de la siguiente forma:

Variable	Descripción	limite inferior	limite superior
x1	Alimentación olefina (bbl/d)	0	2000
x2	Reciclo de isobutano (bbl/d)	0	16000
х3	Ratio de adición de ácido (klb/d)	0	120
x4	Rendimiento del alquilato (bbl/d)	0	5000
x5	Isobutano fresco (aporte) (bbl/d)	0	2000
x6	Pureza del ácido (%)	85	93
x7	Número de octano	90	95
x8	Relación externa de isobutano a olefina	3	12
x9	Factor de dilución del ácido	0,01	4
x10	F-4 performance number	145	162

Si el problema de optimización (beneficio económico) se define como:

$$\max_{x} c_1 x_4 x_7 - c_2 x_1 - c_3 x_2 - c_4 x_3 - c_5 x_5$$

Responder:

Formular el problema de optimización utilizando MS Excel y Python. Obtener los valores de las variables de decisión que maximizan la función objetivo.