Problem 1:

Let $f_n \to f$ in measure, with an integrable function g such that $|f_n| \leq g$ for all n.

We proceed by proving the fact if the domain of each f_n is [0,1], then extending it to all of \mathbb{R} by applying the $\epsilon 2^{-n}$ method.

Let $\epsilon > 0$.

Because $f_n \to f$ in measure, there's an $N \in \mathbb{N}$ such that for all $n \geq N$, $m(x:|f_n(x)-f(x)| \geq \epsilon/2) < \epsilon/2$.

Problem 2:

Let f be continuous on [a, b], with one of its derivates everywhere nonnegative on (a, b).

First, we will show this for a function g with $D^+(g) \ge \epsilon > 0$. If g is such a function, then $\limsup_{h\to 0^+} \frac{f(x+h)-f(x)}{h} \ge \epsilon > 0$. This means that g is nondecreasing:

We proceed by contradiction: let there be $x, y \in [a, b]$ (with x < y, without loss of generality) be such that f(x) > f(y).

Consider the set $A = \{\alpha \in [x,y] : f(\alpha) > f(y)\}$. This set has a supremum, as it's nonempty. Define $\alpha = \sup(A)$. There is a $\delta > 0$ such that if $t \in [\alpha, \alpha + \delta]$, then f(t) < f(y): (Is pretty trivial). Moreover, $f(\alpha) = f(y)$: (Proof is clear, follows from continuity). So for any sequence (t_n) decreasing to α , we have $\frac{f(t_n) - f(\alpha)}{t_n - \alpha}$ negative. This means that $D^+(\alpha) \leq 0$. This contradicts our assumption on D^+ .

We can mimic this proof to show that if g has $D^-(g) \ge \epsilon > 0$, then g is nondecreasing.

Now, let f have a derivate everywhere nonnegative on (a, b). This means, in particular, that either D^+ or D^- is everywhere nonnegative on (a, b).

Then for every $\epsilon > 0$, $g_{\epsilon}(x) = f(x) + \epsilon x$ has $D^{+}(g_{\epsilon})$ (or $D^{-}(g_{\epsilon})$) greater than ϵ . So for all $\epsilon > 0$, g_{ϵ} is nondecreasing. So for all $x, y \in [a, b]$ with x < y, $g_{\epsilon}(x) \leq g_{\epsilon}(y)$. That is, $f(x) + \epsilon x \leq f(y) + \epsilon y$. Taking limits as $\epsilon \to 0$, this means that $f(x) \leq f(y)$, for all $x, y \in [a, b]$ with x < y.

So f is nondecreasing on [a, b] if some derivate is everywhere nonnegative on [a, b].

Problem 3:

Suppose that $f_n(x) \to f(x)$ at each $x \in [a, b]$.

Problem 4:

Suppose that $f \in BV([a,b])$. Then f' exists almost everywhere, by a theorem in class. Moreover, f is the difference of two monotone functions. That is, $f = f^+ - f^-$ for some monotone functions f^+ and f^- .

So, this means that we have

$$\int_{a}^{b} |f'| = \int_{a}^{b} |(f^{+})' - (f^{-})'|$$

$$\leq \int_{a}^{b} |(f^{+})'| + |(f^{-})'|$$

Now, we show that $\int_a^b |(f^+)'| \leq P_a^b(f)$.

By a theorem we have, $\int_a^b |(f^+)'| \le f^+(b) - f^-(a)$

Similarly, $\int_a^b |(f^-)'| \le N_a^b(f)$. So, we have

$$\int_{a}^{b} |f'| \le \int_{a}^{b} |(f^{+})'| + |(f^{-})'|$$

$$\le P_{a}^{b} + N_{a}^{b}$$

$$\le T_{a}^{b}$$

as we desired.

Problem 5:

Let g be an absolutely continuous monotone function on [0,1], and E be a set of measure 0.

Problem 6:

Let f be a nonnegative measurable function on [0, 1].

We know that \ln is a concave function on [0,1] (if this is not clear, it's the inverse of a convex function).

So $-\ln$ is a convex function on [0, 1].

So Jensen's inequality applies:

$$-\ln \int f \le -\int \ln f$$
$$\ln \int f \ge \int \ln f$$

This satisfies the problem.