After this tutorial you should be able to:

- 1. Put formulas into prenex normal form.
- 2. Read and devise proofs in ND for predicate logic.

Problem 1. Prove $\vdash (A \lor \neg A)$.

Hint: Start by assuming the negation with the aim of ending with negation elimination.

Solution 1.

Line	Assumptions	Formula	Justification	References
1	1	$\neg (A \lor \neg A)$	Asmp. I	
2	2	A	Asmp. I	
3	2	$(A \vee \neg A)$	\vee I	2
4	1, 2	\perp	\perp I	1, 3
5	1	$\neg A$	$\neg I$	2, 4
6	1	$(A \vee \neg A)$	\vee I	5
7	1	\perp	\perp I	1, 6
8		$(A \vee \neg A)$	$\neg E$	1,7

Problem 2. The following are not equivalence laws of predicate logic. Show this by providing counterexamples.

1.
$$\forall x P(x) \lor \forall x Q(x) \not\equiv \forall x (P(x) \lor Q(x))$$

2.
$$\forall x \exists y R(x,y) \not\equiv \exists y \forall x R(x,y)$$

Problem 3. For each of the formulas below, indicate the free and bound occurrences of the variables, and put the formulas into prenex normal form, justifying each step.

1.
$$(\forall x Q(x) \rightarrow \exists z \forall y R(z,y))$$

2.
$$\forall x (R(x,y) \land \neg \forall y R(x,y))$$

Solution 3.

1. All variables are bound. No renaming necessary

$$(\forall x Q(x) \to \exists z \forall y R(z,y))$$

$$(\neg \forall x Q(x) \lor \exists z \forall y R(z,y))$$

$$(\exists x \neg Q(x) \lor \exists z \forall y R(z,y))$$

$$\exists x (\neg Q(x) \lor \exists z \forall y R(z,y))$$

$$\exists x \exists z (\neg Q(x) \lor \forall y R(z,y))$$

$$\exists x \exists z \forall y (\neg Q(x) \lor R(z,y))$$

$$Q \text{ Extr}$$

$$\exists x \exists z \forall y (\neg Q(x) \lor R(z,y))$$

$$Q \text{ Extr}$$

Note: $\exists z \exists x \forall y, \exists z \forall y \exists x$ are also correct orders, but we could not extract y before z.

2. All occurrences of *x* are bound, the first *y* is free, but the second is bound.

$$\forall x \big(R(x,y) \land \neg \forall y R(x,y) \big)$$

$$\forall x \big(R(x,y) \land \neg \forall z R(x,z) \big)$$

$$\forall x \big(R(x,y) \land \exists z \neg R(x,z) \big)$$

$$\forall x \exists z \big(R(x,y) \land \neg R(x,z) \big)$$

$$Q \text{ Extr}$$

Note that we had to relabel the *bound y*. We *cannot* relabel the free *y*.

Problem 4. Consider the following argument: Every dog likes people or hates cats. Rover is a dog. Rover likes cats. Therefore, some dog likes people.

- 1. Express the English sentences in predicate logic over a suitably chosen vocabulary.
- 2. The argument itself can be expressed as the consequence $E_1, E_2, E_3 \vdash F$. Prove this consequence in Natural Deduction.

Solution 4.

- 1. Take the vocabulary with unary predicates *D* (for the set of dogs), *C* (for the set of dogs that like cats), *P* (for the set of dogs that like people), and constant symbol *rover*.
- 2. Because the Logic Tutor requires constants to be lowercase symbols in the first half of the alphabet, we use *a* to denote *rover* in the following proof.

Line	Assumptions	Formula	Justification	References
1	1	$\forall x (D(x) \to (P(x) \lor \neg C(x)))$	Asmp. I	
2	2	D(a)	Asmp. I	
3	3	C(a)	Asmp. I	
4	1	$(D(a) \to (P(a) \lor \neg C(a)))$	(∀ E)	1
5	1, 2	$(P(a) \vee \neg C(a))$	\rightarrow E	2, 4
6	6	P(a)	Asmp. I	
7	7	$\neg C(a)$	Asmp. I	
8	3, 7	<u> </u>	\perp I	3, 7
9	3, 7	P(a)	\perp E	8
10	1, 2, 3	P(a)	\vee E	5, 6, 6, 7, 9
11	1, 2, 3	$(D(a) \wedge P(a))$	\wedge I	2, 10
12	1, 2, 3	$\exists x (D(x) \land P(x))$	(∃ I)	11

Problem 5. Pick any two of the following and prove them in Natural Deduction:

- 1. $\exists x P(x) \vdash \exists y P(y)$
- 2. $\forall y \forall x P(x,y) \vdash \exists y \exists x P(x,y)$
- 3. $\forall x P(x), \forall x (P(x) \rightarrow Q(x)) \vdash \forall x Q(x)$
- 4. $\exists x (P(x) \land Q(x)) \vdash \exists x P(x) \land \exists x Q(x)$
- 5. $\exists x (P(x) \land Q(y)) \vdash \exists x P(x) \land Q(y)$

Solution 5.

1.	1 2	Assumptions 1 2 1 1	Formula J $\exists x P(x)$ A P(c) A $\exists y P(y)$ \exists $\exists y P(y)$ \exists	Asmp. I Asmp. I ∃ I		nces
	Line	Assumptions	Formula	Justif	ication Ref	erences
2.	1	1	$\forall y \forall x P(x,y)$) Asm	p. I	
	2	1	$\forall x P(x,b)$	$\forall E$	1	
	3	1	P(a,b)	$\forall E$	2	
	4	1	$\exists x P(x,b)$	$\exists \ \mathrm{I}$	3	
	4 5	1	$\exists y \exists x P(x,y)$) ∃ I	4	
3.	Line	Assumptions	Formula		Justification	References
	1	1	$\forall x P(x)$		Asmp. I	
	2	2	$\forall x (P(x) \rightarrow$	Q(x)	Asmp. I	
	3	1				1
		2	$(P(a) \rightarrow Q($	(a))	$\forall E$	2
	4 5 6	1, 2	Q(a)		\rightarrow E	3, 4
	6	1, 2	$\forall x Q(x)$		\forall I	5

4.	Line 1 2 3 4 5 6 7 8	Assumptions 1 2 2 2 2 2 2 1	Formula $\exists x (P(x) \land Q(x))$ $(P(a) \land Q(a))$ $P(a)$ $\exists x P(x)$ $Q(a)$ $\exists x Q(x)$ $(\exists x P(x) \land \exists x Q(x)$ $(\exists x P(x) \land \exists x Q(x)$	Asmp. I Asmp. I \wedge E \exists I \wedge E \exists I \wedge E \exists I $)$ \wedge I	2 3 2 5 4, 6 1, 2, 7
5.	Line 1 2 3 4 5 6 7	Assumptions 1 2 2 2 2 2 1	Formula $\exists x (P(x) \land Q(y))$ $(P(a) \land Q(y))$ $P(a)$ $\exists x P(x)$ $Q(y)$ $(\exists x P(x) \land Q(y))$ $(\exists x P(x) \land Q(y))$		References 2 3 2 4, 5 1, 2, 6