

Representation

Independencies

I-maps and Perfect Maps

Capturing Independencies in P $I(P) = \{(X \perp Y \mid Z) : P \models (X \perp Y \mid Z)\}$

$$I(P) = \{ (\boldsymbol{X} \perp \boldsymbol{Y} \mid \boldsymbol{Z}) : P \models (\hat{\boldsymbol{X}} \perp \boldsymbol{Y} \mid \boldsymbol{Z}) \}$$

• P factorizes over $G \Rightarrow G$ is an I-map for P:

d-se pardon
$$I(G) \subseteq I(P)$$

• But not always vice versa: there can be independencies in I(P) that are not in I(G)

Want a Sparse Graph

- If the graph encodes more independencies
 - it is sparser (has fewer parameters)
 - and more informative
- Want a graph that captures as much of the structure in P as possible

Minimal I-map

- Minimal I-map may still not capture I(P)

Perfect Map

- Perfect map: I(G) = I(P)
 - G perfectly captures independencies in P

Perfect Map

Another imperfect map

X ₁	X ₂	У	Prob
0	0	0	0.25
0	1	1	0.25
1	0	1	0.25
1	1	0	0.25

MN as a perfect map

- Perfect map: I(H) = I(P)
 - H perfectly captures independencies in P

Uniqueness of Perfect Map

I-equivalence

Definition: Two graphs G_1 and G_2 over X_1 , ..., X_n are I-equivalent if $I(G_1)=I(G_2)$

Most G's have many I-equivalent variants

Summary

- Graphs that capture more of I(P) are more compact and provide more insight
- A minimal I-map may fail to capture a lot of structure even if present and representable as a pen
- A perfect map is great, but may not exist
- BN to MN: loses independencies in v-structures
 MN to BN: must add triangulating edges to loops