

CAN Frames for controlling the iWheel

CAN configuration

CAN Bus speed: 1MBps

Sample point: 62.5% of a bit time.

Setpoints write commands

	CAN Frame ID	Data		B2	B3	B4			B7
	(dec)	B0					B5	B6	
		Left Motor Setpoint Type	left Coord	haft Carad	a fa Current	Loft Current			
LEFT		(0: Free,	Left Speed	Left Speed	Left Current	Left Current Setpoint LSB			
	200	1: Speed,		Setpoint LSB	Setpoint MSB				
_	266	2: Current)	(int16s, mm/s)	(intibs, min/s)	(Intabs, ma)	(int16s, mA)		_	-
		Right Motor							
RIGHT		Setpoint Type							
		(O: Free,	Right Speed	Right Speed	Right Current	Right Current			
		1: Speed,	Setpoint MSB	Setpoint LSB	Setpoint MSB	Setpoint LSB			1
	298	2: Current)	(int16s, mm/s)	(int16s, mm/s)	(int16s, mA)	(int16s, mA)			

Important notes

- Setpoint frames (write commands) must be sent periodically at a frequency higher than 1 frame/second. There is a 1 second timeout that make the motor stops if no more frames are sent.

Range for current Setpoint is +/- 2000mA

Max Strom ZA

Variables read commands

Was ist max Speed ?

	CAN Frame ID Data (dec) BO			0 16	DIT - 0 0 0	000 1 000		Wine	
		BO	B1	B2	B3	B4	B5	B6	B7
LEFT	256	Speed MSB * (int16s, RPH)	Speed LSB (int16s, RPU)						
		111	Controller	Odometry			Odometry		
		Battery Voltage	Temperature	Ticks MSB	Odometry	Odometry	Ticks LSB	CPU Usage	
	257	(int8u, dV)	(int8u, ºC)	(int32s)	Ticks (int32s)	Ticks (int32s)	(int32s)	(int8u, %)	
RIGHT		Speed MSB 🗶	Speed LSB						
	288	(int16s, RPH)	(int16s, RPH)						
			Controller	Odometry			Odometry		
		Battery Voltage	Temperature	Ticks MSB	Odometry	Odometry	Ticks LSB	CPU Usage	
	289	(int8u, dV)	(int8u, ºC)	(int32s)	Ticks (int32s)	Ticks (int32s)	(int32s)	(int8u, %)	
									Estimated
			Estimated	Estimated	Estimated	Estimated	Estimated	Estimated	Pose PSI
		Estimated Pose	Pose X (int16s,	Pose Y (int16s,	Pose Y (int16s,	Pose Z	Pose Z	Pose PSI	(int16s,
	290	X (int16s, mm)	mm)	mm)	mm)	(int16s, mm)	(int16s, mm)	(int16s, mrad)	mrad)

Important notes

Odometry: 60 ticks/rotor revolution

Variables are send out without request periodically (40ms period for: 257,289,290 and 4ms period for: 256,288)

First trials with the iWheel attached to a table

On the pictures above you can see the iWheel component without tire-

We have assembled the shaft of the iWheel to a fork to facilitate you to attach this set to your table by using a clamp.

Important:

You will receive 2 iWheels, the once assembled to the fork will be programmed as a "Right iWheel", the other one will be programmed as a "Left iWheel"

Allocating the rotor in the middle

Pouring the orange colored polyurethane resin

iWheel with cover

