How to Grow Distributed Random Forests

Jan Vitek

Purdue University on sabbatical at Oxdata

Overview

- Not data scientist...
- I implement programming languages for a living...
- Leading the FastR project; a next generation R implementation...
- Today I'll tell you how to grow a distributed random forest in 2KLOC

PART I Why so random?

Introducing:
Random Forest
Bagging
Out of bag error estimate
Confusion matrix

Leo Breiman. Random forests. Machine learning, 2001.

Classification Trees

- Consider a supervised learning problem with a simple data set with two classes and the data has two features **x** in [1,4] and **y** in [5,8].
- We can build a classification tree to predict classes of new observations

Classification Trees

- Consider a supervised learning problem with a simple data set with two classes and the data has two features **x** in [1,4] and **y** in [5,8].
- We can build a classification tree to predict classes of new observations

Classification Trees

• Classification trees overfit the data

Random Forest

 Avoid overfitting by building many randomized, partial, trees and vote to determine class of new observations

• Each tree sees part of the training sets and captures part of the information it contains

Bagging

• First rule of RF:

each tree see is a different random selection (without replacement) of the training set.

Split selection

Gini impurity

$$I_G(f) = \sum_{i=1}^m f_i(1 - f_i) = \sum_{i=1}^m (f_i - f_i^2) = \sum_{i=1}^m f_i - \sum_{i=1}^m f_i^2 = 1 - \sum_{i=1}^m f_i^2$$

$$I_E(f) = -\sum_{i=1}^m f_i \log_2 f_i$$
 Information gain

Second rule of RF:

Splits are selected to maximize gain on a random subset of features. Each split sees a new random subset.

- One can use the training data to get an error estimate ("out of bag error" or OOBE)
- Validate each tree on complement of training data

Validation

assigned / actual	Red	Green	
Red	15	5	33%
Green	I	10	10%

- Validation can be done using OOBE (which is often convenient as it does not require preprocessing) or with a separate validation data set.
- A Confusion Matrix summarizes the class assignments performed during validation and gives an overview of the classification errors

PART II Demo Running RF on Iris Photo credit: http://foundwalls.com/winter-snow-forest-pine/

Iris RF results

Confusion matrix - OOB error estimate

classification error 4.667 % used / skipped rows 150 / 0 (0.0 %)

Actual \ Predicted	Iris-setosa	Iris-versicolor	Iris-virginica	Error
Iris-setosa	50	0	0	0.000 = 0 / 50
Iris-versicolor	0	47	3	0.060 = 3 / 50
Iris-virginica	0	4	46	0.080 = 4 / 50
Totals	50	51	49	0.047 = 7 / 150

Trees used: 50

Sample tree

Comparing accuracy

Dataset	$\mathbf{H}_2\mathbf{O}$	\mathbf{R}	Weka	wiseRF
Iris	2.0%	2.0%	2.0%	2.0%
Vehicle	21.3%	$\boldsymbol{21.3\%}$	22.0%	22.0%
Stego	13.6%	13.9%	14.0%	14.9%
Spam	4.2%	$\boldsymbol{4.2\%}$	4.4%	5.2%
Credit	6.7%	6.7%	6.5%	6.5%
Intrusion	21.2%	$\boldsymbol{19.0\%}$	19.5%	20.4%
Covtype	3.6%	22.9%	_	14.8%

Dataset	Features	Predictor	Instances (train/test)	Imbalanced	Missing observations
Iris	4	3 classes	100/50	NO	0
Vehicle	18	4 classes	564/282	NO	0
Stego	163	3 classes	3,000/4,500	NO	0
Spam	57	2 classes	3,067/1,534	YES	0
Credit	10	2 classes	100,000/50,000	YES	29,731
Intrusion	41	2 classes	125,973/22,544	NO	0
Covtype	54	7 classes	387,342/193,672	YES	0

• We compared several implementations and found that we are OK

PART III Writing a DRF algorithm in Java with H2O

Design choices, implementation techniques, pitfalls.

Distributing and Parallelizing RF

- When data does not fit in RAM, what impact does that have for random forest:
 - How do we sample?
 - How do we select splits?
 - How do we estimate OOBE?

Insights

- RF building parallelize extremely well when random data sample fits in memory
- Trees can be built in parallel trivially
- Trees size increases with data volume
- Validation requires trees to be co-located with data

Strategy

- Start with a randomized partition of the data on nodes
- Build trees in parallel on subsets of each node's data
- Exchange trees for validation

Reading and Parsing Data

 H2O does that for us and returns a ValueArray which is roworder distributed table

```
class ValueArray extends Iced implements Cloneable {
    long numRows()
    int numCols()
    long length()

    double datad(long rownum, int colnum) {
```

• Each 4MB chunk of the VA is stored on a (possibly) different node and identified by a unique key

Extracting random subsets

• Each node holds a random set of 4MB chunks of the value array

Evaluating splits

• Each feature that must be considered for a split requires processing data of the form (feature value, class)

```
{ (3.4, red), (3.3, green), (2, red), (5, green), (6.1, green) }
```

We should sort the values before processing

```
{ (2, red), (3.3, green), (3.4, red), (5, green), (6.1, green) }
```

- But since each split is done on different sets of rows, we have to sort features at every split
- Trees can have 100k splits

Evaluating splits

• Instead we discretize the value

```
{ (2, red), (3.3, green), (3.4, red), (5, green), (6.1, green) }
```

becomes

```
{ (0, red), (1, green), (2, red), (3, green), (4, green) }
```

- and no sorting is required as we can represent the colors by arrays (of size #cardinality of the feature)
- For efficiency we can bin multiple values together

Evaluating splits

• The implementation of entropy based split is now simple

```
Split ltSplit(int col, Data d, int[] dist, Random rand) {
final int[] distL = new int[d.classes()], distR = dist.clone();
final double upperBoundReduction = upperBoundReduction(d.classes());
double maxReduction = -1; int bestSplit = -1;
for (int i = 0; i < columnDists[col].length - 1; ++i) {
  for (int j = 0; j < distL.length; ++j) {
    double v = columnDists[col][i][j]; distL[j] += v; distR[j] -= v;
  int totL = 0, totR = 0;
  for (int e: distL) totL += e;
  for (int e: distR) totR += e;
  double eL = 0, eR = 0;
  for (int e: distL) eL += gain(e,totL);
  for (int e: distR) eR += gain(e,totR);
  double eReduction = upperBoundReduction-( (eL*totL + eR*totR) / (totL+totR) );
  if (eReduction > maxReduction) { bestSplit = i; maxReduction = eReduction; }
return Split.split(col,bestSplit,maxReduction);
```

Parallelizing tree building

• Trees are built in parallel with the Fork/Join framework

```
Statistic left = getStatistic(0,data, seed + LTSSINIT);
Statistic rite = getStatistic(1,data, seed + RTSSINIT);
int c = split.column, s = split.split;
SplitNode nd = new SplitNode(c, s,...);
data.filter(nd,res,left,rite);
FJBuild fj0 = null, fj1 = null;
Split ls = left.split(res[0], depth >= maxdepth);
Split rs = rite.split(res[1], depth >= maxdepth);
if (ls.isLeafNode()) nd.l = new LeafNode(...);
else fj0 = new FJBuild(ls,res[0],depth+1, seed + LTSINIT);
if (rs.isLeafNode()) nd.r = new LeafNode(...);
else fj1 = new FJBuild(rs,res[1],depth+1, seed - RTSINIT);
if (data.rows() > ROWSFORKTRESHOLD)...
fi0.fork();
nd.r = fj1.compute();
nd.l = fj0.join();
```

Challenges

- Found out that Java Random isn't
- Tree size does get to be a challenge
- Need more randomization
- Determinism is needed for debugging

PART III Playing with DRF

Covtype, playing with knobs

Covtype

Dataset	Features	Predictor	Instances (train/test)	Imbalanced	Missing observations
Iris	4	3 classes	100/50	NO	0
Vehicle	18	4 classes	564/282	NO	0
Stego	163	3 classes	3,000/4,500	NO	0
Spam	57	2 classes	3,067/1,534	YES	0
Credit	10	2 classes	100,000/50,000	YES	29,731
Intrusion	41	2 classes	125,973/22,544	NO	0
Covtype	54	7 classes	387,342/193,672	YES	0

Varying sampling rate for covtype

- Changing the proportion of data used for each tree affects error
- The danger is overfitting; and loosing the OOBE

Changing #feature / split for covtype

- Increasing the number of features can be beneficial
- Impact is not huge though

Ignoring features for covtype

• Some features are best ignored

Conclusion

- Random forest is a powerful machine learning technique
- It's easy to write a distributed and parallel implementation
- Different implementations choices are possible
- Scaling it up to TB data comes next...