

Stable Bases for Music in Time-Frequency Plane

Juan Vuletich, Ana Ruedin

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

Harmonic Analysis and Applications, Merlo August 2006

Gabor Weyl-Heisenberg

Regular tiling

Optimal time-freq localization

Music

geometric progression

frequency ratio of 2 adjacent notes = constant

$$a_0 = 2^{1/12}$$
 irrational

Discrete dyadic wavelets

$$\left\{\Psi(2^{j}t-k)\right\}$$

Stable basis

Excellent time localization

Not too good freq. localization

Special tiling for an octave

Tiles: constant area

Longer tiles needed to identify lower frequencies

Real Gabor Wavelet

on special tiling!

Goal:

reduce the inner products between basis functions

(I) Rational approximation of the tiling

Orthogonality between odd shifts of the basis function

(II) Modification of the basis function

All inner products below 0.01

Modified Wavelet

Tests a) Melody: Coefficients in our basis

Tests b) Rythm : Coefficients in our basis

All frequencies at given times

Tests c) Mix: Coefficients in our basis

Gabor wavelet Irrational tiling

Autocorrelation matrix

Gabor wavelet Rational tiling

Modified wavelet
Rational tiling

