Prácticas de Lógica y Computabilidad

Mauro Abel Campillo

11/05/2012

• PRÁCTICA 3

- 1. (a) No se que es, creo que no es nada porque por definición f_2 es binaria pero aqui se la usa como si fuese una función unaria. Además el cuantificador existencial está cuantificando una fórmula cuando debería cuantificar una variable
 - (b) Es una fórmula ya que f_1 es unaria y f_2 es binaria
 - (c) No es una fórmula debido a que se está cuantificando una constante C con el cuantificador existencial, cuando solo se deben cuantificar variables ¿Es un término?
 - (d) Idem anterior
 - (e) El $\exists x$ aparece dos veces en la misma sentencia, esta mal formado, no es fórmula ¿Es un término?
 - (f) Es fórmula
- 2. (a) En la primera parte x aparece ligada en el $\forall x$, también y aparece ligada pues ambas estan siendo afectadas por cuantificadores
 - (b) En $(\exists x P(y,y))$ y aparece libre, x NO debido a que está siendo afectada por un cuantificador, luego en $\exists y P(y,z)$ y aparece ligada y z libre
 - (c) Veamos que x aparece ligada ya que está afectada por el cuantificador existencial, de modo que en subsiguientes apariciones x ya estará ligada. Analizando la primera parte de la conjunción $(\exists y P(x,x))$ y aparece ligada pero en la segunda parte (P(x,y)) y aparece libre pues el cuantificador solo afecta a la primera parte de la conjunción
 - (d) Bastante parecido al anterior
- 3. (a) No es una interpretación válida ya que f_1 va de los $\mathbb{N} \to \mathbb{R}$ mientras que el universo de interpretación $U_I = \mathbb{N}$, absurdo ya que la imagén de la función corresponde a algo que cae fuera del universo de interpretación
 - (b) Es válida
 - (c) Si el universo de interpretación U_I son los $\mathbb N$ entonces esta no es una interpretación válida debido a que las constantes $c_I = d_I = 0$ y el 0 esta fuera del universo de interpretación. Si se esta incluyendo al 0 dentro de los $\mathbb N$, es decir $\mathbb N \cup 0$ entonces la interpretación es válida. Además la imagen de la función $g_1(n,n) = n^2 n$ es siempre $\geq 0 \ \forall n \in \mathbb N \cup 0$ y puede demostrarse por inducción
- 4. (a) Para todo x, y si $x \le y$ existe un numero z tal que $x \le z$ y $z \le y$. Me esta diciendo en los reales dados dos numeros siempre voy a poder encontrar un numero mayor al primero y menor al segundo.
 - (b) Todos los días nace un esclavo
 - (c) Para todos los números, si son pares, vale que su suma da como resultado un número impar
- 5. (a) Hay una persona que quiere a todas
 - (b) Toda persona tiene alguien que lo quiera
 - (c) Para toda persona que quiera a alguien, hay una persona que lo quiere a él.
 - (d) Hay alguien que no quiere a nadie
- 6. (a) Caso Suma: Para todo número a existe otro número b que multiplicado por 2 me devuelve a. O puede ser que le tenga que sumar una constante c. Verdadero ya que todo número par puede dividirse por 2 y ese sería nuestro b o puedo hacer la división por 2 si es impar y quedarme con el cociente truncado y sumarle 1(nuestra constante c).
 - Caso Multiplicación: Todo número a puede obtenerse mediante algún b^2 o mediante algun $((b^2).0)$ Esto es claramente falso porque si selecciono un número a que no es un cuadrado no podré encontrar dicho b
 - (b) Caso Suma: Este enunciado dice que existe un solo número para todos tal que multiplicado por dos me devuelve todos los numeros, o multiplicado por dos más una constante c. Falso Caso Multiplicación: Existe un número b tal que b^2 me devuelve todos los números, o $((b^2).0)$. Falso
 - (c) Caso Suma: Si la suma de dos números da como resultado 1 entonces alguno de los dos era 1. Verdadero Caso Multiplicación: Si la multiplicación de dos números da como resultado 0 entonces alguno de los dos era 0. Verdadero

- 7. (a)
- 8. (a)
- 9. (a)
 - (b) $\forall x (f(x,y) = x)$
- 10. (a) Por hipótesis sabemos que tenemos un U_I que es finito con n+1 elementos de los cuales n son distinguibles. Entonces tendremos un conjunto de funciones $\varphi = \{\phi_1, \phi_2, ..., \phi_n\}$ donde cada ϕ_i es una función que describe a cada uno de los n elementos. Si suponemos que el elemento n+1 no es distinguible entonces existiría una función ϕ_i ($0 < i \le n$) tal que distinguiría al elemento n+1 y a otro de los n elementos. Pero esto es absurdo ya que por definición un elemento es distinguible si solo si una función ϕ es verdadera para dicho elemento y solo para él además esto lo sabemos por hipótesis de modo que si tenemos un conjunto de funciones $\varphi = \{\phi_1, \phi_2, ..., \phi_n\}$ necesariamente debe existir una función ϕ_{n+1} que distingue al elemento n+1
- 11. (a) En el primer gráfico se distingue al 5 y en el segundo al 4
 - (b) Primer gráfico: $\exists x \exists y ((x < y) \land \neg (y \le x) \land (y < w) \land \neg (w \le y))$
 - Segundo gráfico: $\exists x \exists y \exists w \exists z ((x < y) \land \neg (x \le y) \land (y < w) \land \neg (w \le y) \land (w < z) \land \neg (z \le w) \land (z < x))$
- 12. Para demostrar que todos los elementos de este universo son distinguibles deberíamos hallar un conjunto de funciones $\phi_{\{1,2,\dots,n-1,n\}}$ donde cada una distinga un y solo un elemento.

Vamos a describir con el subíndice de ϕ al elemento que queremos distinguir de modo que ϕ_1 distinguirá al elemento 1.

Usaremos la igualdad (=) y el menor estricto (<) así que pasemos a la definición de ambos:

Igualdad: $x = y \longleftrightarrow ((x \le y) \land (y \le x))$

Menor Estricto: $x < y \longleftrightarrow ((x \le y) \land \neg (y \le x))$

- Primer Gráfico:
 - $* \phi_1 = \forall x (y < x)$
 - * Idea: Para describir a 2 pienso que es el único elemento que tiene 3 sucesores (4, 5 y 6) aunque el elemento 1 también tiene 3 sucesores (tiene 5 exactamente) asi que también voy a decir que existe otro elemento que es antecesor (por el 1) o no es antecesor ni sucesor (por el 3).

$$\phi_2 = \exists x \exists y \exists w \exists z ((t < x) \land (t < y) \land (t < w) \land ((z < t) \lor \neg ((z < t) \land (t < z))))$$

* Idea: Similar a la anterior, el 3 es el único elemento que tiene 2 sucesores, un antecesor y cualquier otro elemento no es sucesor ni antecesor.

$$\phi_3 = \exists x, y, z ((t < x) \land (t < y) \land (z < t)) \land \forall w (\neg(w = x) \land \neg(w = y) \land \neg(w = z) \land \neg(w = t) \rightarrow \neg((w < z) \lor (z < w)))$$

* Idea: Es el único que tiene 2 antecesores, un sucesor y cualquier otro elemento no es antecesor ni sucesor.

$$\phi_4 = \exists x, y, z ((x < t) \land (y < t) \land (t < z)) \land \forall w (\neg(w = x) \land \neg(w = y) \land \neg(w = z) \land \neg(w = t) \rightarrow \neg((w < z) \lor (z < w)))$$

* Idea: Es el único elemento que tiene 3 antecesores, 1 sucesor y cualquier otro elemento no es antecesor ni sucesor.

$$\phi_5 = \exists x, y, w, z((x < t) \land (y < t) \land (w < t) \land ((t < z) \lor \neg ((z < t) \land (t < z))))$$

* Idea: Ya sabemos que si tenemos un conjunto finito de n+1 elementos y n elementos son distinguibles entonces todos los elementos son distinguibles (lo probamos en el ejercicio 10) igual escribimos la fórmula pues es muy sencilla.

$$\phi_6 = \forall x (x < y)$$

• PRÁCTICA 4