Production Approach Workshop@IDE-JETRO Session 1

Yoichi Sugita

Keio University

March 26, 2024

Markup

Price markup over marginal costs

$$\mu_{it} = \frac{P_{it}}{MC_{it}}$$

- A measure of firm's market power
 - Efficiency
 - Income distributions

Production Approach to Markup Estimation

- A traditional approach to estimating markups is to estimate a demand function (demand approach)
- Recently, another "production" approach has become popular in trade and macroeconomics.
 - Firm-level production data on output and inputs
 - De Loecker and Warzynski (2012)(1880 google citations)
- Discrepancy between theory and applications
 - Theory: firm-level data on output quantity
 - Many applications: data on revenue, not quantity
 - Non-identification of markup with revenue data: Bond, Hashemi, Kaplan and Zoch (2020)

Agenda

- Session 1: Production Approach with Output Quantity Data
- Session 2: Production Approach with Revenue Data: Kasahara and Sugita (2023)
- Session 3: Estimation Codes of Kasahara and Sugita (2023)

Markup

Firm's maximization problem

$$\min_{Y_{it}} P_t(Y_{it}, z_{it}) Y_{it} - C_t(Y_{it})$$

 z_{it} : vector of demand shifters

FOC leads to markup formula

$$\mu_{it} = \frac{P_{it}}{MC_{it}} = \left(1 - \frac{1}{\epsilon_{it}^D}\right)$$

where
$$\epsilon_{it}^D \equiv -\left(rac{\partial P_t}{\partial Y_{it}} rac{Y_{it}}{P_{it}}
ight)^{-1}$$
: demand elasticity

Demand Approach

- ullet Estimate a demand system and a demand elasticity ϵ^D_{it} under oligopoly
 - Berry, Levinsohn and Pakes (1995); Gandhi and Nevo (2021)(survey)
- Requirement
 - Data on price and quantity sold in many markets
 - Instrument variable for price
 - Specify the functional form of the demand function
 - Specify the market structure (e.g. Bertrand competition)

Production Approach

• A firm produces a good by using material M_{it} , capital K_{it} , and labor L_{it} :

$$Y_{it} = F_{it}(M_{it}, K_{it}, L_{it})$$

- Mit: flexible input (no adjustment cost) and perfect competition
- K_{it} , L_{it} : determined at t-1

Production Approach

• Firm *i* chooses material M_{it} given (K_{it}, L_{it}, Y_{it}) to minimize its cost:

$$C_{it}(K_{it}, L_{it}, Y_{it}) \equiv \min_{M_{it}} P_t^M M_{it}$$
s.t. $Y_{it} \leq F_{it} (M_{it}, K_{it}, L_{it})$

FOC

$$P_t^M = \lambda_{it} \frac{\partial F_{it}}{\partial M_{it}}$$

where the Lagrange multiplier is

$$\lambda_{it} = \frac{\partial C_{it}(K_{it}, L_{it}, Y_{it})}{\partial Y_{it}} = MC_{it}$$

Production Approach

Price markup over marginal cost

$$\frac{P_{it}}{\lambda_{it}} = \frac{\partial F_{it}}{\partial M_{it}} \frac{P_{it}}{P_t^M} = \frac{\partial F_{it}}{\partial M_{it}} \frac{M_{it}}{Y_{it}} \frac{P_{it}Y_{it}}{P_t^M M_{it}}$$

Markup formula

$$\mu_{it} = \frac{P_{it}}{\lambda_{it}} = \frac{\theta_{it}^M}{\alpha_{it}^M}$$

where

$$\theta_{it}^{M} \equiv \frac{\partial F_{it}}{\partial M_{it}} \frac{M_{it}}{Y_{it}}$$
: material elasticity
$$\alpha_{it}^{M} \equiv \frac{P_{t}^{M} M_{it}}{P_{it} Y_{it}}$$
: material expenditure share in revenue

Production Approach to Markup Estimation

- Estimate a production function F_{it} , calculate a material elasticity θ_{it}^{M} and α_{it}^{M} in data
- Requirement
 - Production data: output and inputs, short panel data
 - Assumptions for production function estimation

Constant Material Elasticity Case

E.g., Cobb-Douglas production function

$$\theta_{it}^{M} = b$$

• $1/\alpha_{it}^{M}$ itself identifies markup up to scale.

$$\frac{1}{\alpha_{it}^{M}} = \frac{\mu_{it}}{b}$$

Relative markups can be identified

$$\frac{\mu_{it}}{\mu_{jt}} = \frac{\alpha_{jt}^M}{\alpha_{it}^M}$$
 and $\frac{\mu_{it}}{\mu_{it-1}} = \frac{\alpha_{it-1}^M}{\alpha_{it}^M}$.

Constant Material Elasticity Case

• β : causal impact of X on a markup change can be identified:

$$\ln \mu_{it} = \alpha + \beta X_{it} + \epsilon_{it}$$

$$\Rightarrow \ln \frac{1}{\alpha_{it}^{M}} = (\alpha - b) + \beta X_{it} + \epsilon_{it}$$

Application: Marginal Cost

- We can estimate marginal costs with price data: $MC_{it} = P_{it}/\mu_{it}$
 - Price pass-through of tariffs on inputs (De Loecker, Goldberg, Khandelwal and Pavcnik, 2016)

Application: Wage Markdown

• $w_{it}(L_{it})$: inverse labor supply curve for firm i

$$\begin{aligned} \max_{L_i, M_{it}} R_{it}(Y_{it}) - w_{it}(L_{it}) L_{it} - P_{it}^M M_{it} \\ \text{s.t.} Y_{it} &= F_{it} \left(M_{it}, L_{it}, K_{it} \right) \end{aligned}$$

FOCs

$$\begin{aligned} \frac{\partial R_{it}}{\partial Y_{it}} \frac{\partial F_{it}}{\partial M_{it}} &= P_{it}^{M} \\ \frac{\partial R_{it}}{\partial Y_{it}} \frac{\partial F_{it}}{\partial L_{it}} &= w_{it} \left(1 + \frac{1}{\epsilon_{it}^{LS}} \right) \end{aligned}$$

Application: Wage Markdown

• Wage markdown (Lu, Sugita and Zhu (2019))

$$\eta_{it} = \frac{w_{it}}{\frac{\partial R_{it}}{\partial Y_{it}} \frac{\partial F_{it}}{\partial L_{it}}} = \frac{w_{it}}{P_{it}^{M}} \frac{\frac{\partial F_{it}}{\partial M_{it}}}{\frac{\partial F_{it}}{\partial L_{it}}}$$

$$= \frac{w_{it} L_{i}}{P_{it}^{M} M_{it}} \frac{\frac{\partial F_{it}}{\partial M_{it}} \frac{M_{it}}{Y_{it}}}{\frac{\partial F_{it}}{\partial L_{it}} \frac{V_{it}}{Y_{it}}}$$

$$= \frac{\alpha_{it}^{L}}{\alpha_{it}^{M}} \frac{\theta_{it}^{M}}{\theta_{it}^{L}}$$

Application: Labor Share

Labor share in value-added (Lu, Sugita and Zhu (2019))

$$\begin{split} \frac{w_{it}L_{it}}{V\!A_{it}} &= \alpha_{it}^L \left(\frac{R_{it}}{V\!A_{it}}\right) \\ &= \left(\frac{\alpha_{it}^L}{\alpha_{it}^M} \frac{\theta_{it}^M}{\theta_{it}^L}}{\frac{\theta_{it}^M}{\alpha_{it}^M}}\right) \theta_{it}^L \left(\frac{R_{it}}{V\!A_{it}}\right) \\ &= \left(\frac{\text{wage markdon}_{it}}{\text{price markup}_{it}}\right) \theta_{it}^L \left(\frac{R_{it}}{V\!A_{it}}\right) \end{split}$$

Production Function Estimation with Quantity data

- Production data
 - Y_{it} : output
 - (Mit, Kit, Lit): inputs (materials, capital, labor)
 - (Short) panel data
- Single product firm
- Notation
 - $y_{it} = \ln Y_{it}, m_{it} = \ln M_{it}, I_{it} = \ln L_{it}$

Setting

Inverse demand for firm i

$$p_{it} = \psi \left(y_{it}, z_{it}^d, a_t \right)$$
$$= \psi_t \left(y_{it}, z_{it}^d \right)$$

- z_{it}^d : firm-level demand shifters
 - In an oligopoly setting, z_{it} should include other firms' choice variables (price in Bertrand, quantity in Cournot)
 - Demand shocks, quality difference, etc.
- a_t: industry-level demand shifters that the firm
 - E.g., market size; aggregate price (quantity) index under monopolistic competition

Input Endogeneity

 \bullet Log production function with total factor productivity (TFP) ω

$$y_{it} = f(m_{it}, k_{it}, l_{it}) + \omega_{it}$$

- Input endogeneity
 - (m_{it}, k_{it}, l_{it}) are correlated with ω_{it}
 - With persistent ω_{it} , past inputs $(m_{it-1}, k_{it-1}, l_{it-1})$ are correlated with ω_{it}

Dynamic panel approach

- Arellano and Bond (1991); Arellano and Bover (1995); Blundell and Bond (1998, 2000)
 - Olley and Pakes (1996); Levinsohn and Petrin (2003); Ackerberg et al. (2015)
- Model a dynamic process of (persistent) ω_{it} , e.g., first order Markov process:

$$\omega_{it} = h(\omega_{it-1}) + \eta_{it}$$

- $\eta_{it} \sim G_{\eta}$: i.i.d. shock
- h may include control variables (e.g., ownership; past export status; past R&D investment)

Dynamic panel approach

Production function

$$y_{it} = f(m_{it}, k_{it}, l_{it}) + h(\omega_{it-1}) + \eta_{it}$$

= $f(m_{it}, k_{it}, l_{it}) + h[y_{it-1} - f(m_{it-1}, k_{it-1}, l_{it-1})] + \eta_{it}$

ullet Search for variables uncorrelated with η_{it} instead of ω_{it}

Dynamic panel approach

- Predetermined variables
 - $(y_{it-1}, m_{it-1}, k_{it-1}, l_{it-1})$ are determined at t-1 and uncorrelated with η_{it}
 - k_{it} and l_{it} are often assumed to be determined at t 1 because of adjustment costs.
- m_{it} is a main endogenous variable correlated with η_{it}
 - m_{it-s} (s=2,...) may be used for an IV for m_{it} under certain conditions.

Control function approach

Profit maximization

$$\begin{aligned} \max_{m} \exp\left(p_{t} + y_{it}\right) - \exp\left(p_{t}^{m} + m_{it}\right) \\ \text{s.t.} \ \ y_{it} = f\left(m_{it}, k_{it}, l_{it}\right) + \omega_{it} \\ p_{it} = \psi_{t}\left(y_{it}, z_{it}^{d}\right) \end{aligned}$$

Material demand function

$$m_{it} = \mathbb{M}_t \left(\omega_{it}, k_{it}, l_{it}, z_{it}^d \right)$$

Proxy variable approach

• Assume $\mathbb{M}_t(\omega_{it}, k_{it}, l_{it})$ is increasing in ω_{it} and take its inverse:

$$\omega_{it} = \mathbb{M}_{t}^{-1}\left(m_{it}, k_{it}, l_{it}, z_{it}^{d}\right)$$

- A (unknown) function of inputs and demand shifters may control for productivity
- Proxy variable (control function) approach
 - Early studies ((Olley and Pakes, 1996; Levinsohn and Petrin, 2003)) aimed to use this idea to identify some parameters of f.
 - Ackerberg, Caves and Frazer (2015): not possible except special circumstances.

Proxy variable approach

Production function

$$y_{it} = f(m_{it}, k_{it}, l_{it}) + M_t^{-1}(m_{it}, k_{it}, l_{it}, z_{it}^d)$$

= $\phi_t(m_{it}, k_{it}, l_{it}, z_{it}^d)$

• We can only identify $\phi_t(m_{it}, k_{it}, l_{it}, z_{it})$ but not $f(m_{it}, k_{it}, l_{it})$ separately.

De Loecker and Warzynski (2012)(DLW)

• Step1: Remove a measurement error ϵ_{it} in y_{it} (Ackerberg et al., 2015)

$$\begin{aligned} y_{it}^{Data} &= y_{it} + \epsilon_{it} \\ &= \phi_t \left(m_{it}, k_{it}, l_{it}, z_{it}^d \right) + \epsilon_{it} \end{aligned}$$

Step2: identify a production function

$$y_{it} = f(m_{it}, k_{it}, l_{it}) + h[y_{it-1} - f(m_{it-1}, k_{it-1}, l_{it-1})] + \eta_{it}$$

by using past m_{it-s} as an IV for m_{it}

Discussion

- Myth: "no need to specify the demand function and the market structure"
 - True only if z_{it} includes all demand shifters and all rival firms' choice variables, which is impossible.
 - No unobserved demand shocks
- De Loecker and Warzynski (2012)

$$\mathbb{M}_{t}^{-1}(m_{it}, k_{it}, wage_{it}, export_{it})$$

Implicitly assumption: monopolistic competition with a demand function

$$p_{it} = \psi_t(y_{it}, export_{it})$$

Discussion

• In many applications, z_{it} is not included.

$$\omega_{it} = \mathbb{M}_{t}^{-1}\left(m_{it}, k_{it}, l_{it}\right)$$

• Gandhi, Navarro and Rivers (2020)(GNR): m_{it-1} is a weak instrument for m_{it} :

$$\begin{split} m_{it} &= \mathbb{M}_{t} \left(\omega_{it}, k_{it}, l_{it} \right) \\ &= \mathbb{M}_{t} \left(h(\omega_{it-1}) + \eta_{it}, k_{it}, l_{it} \right) \\ &= \mathbb{M}_{t} \left(h(y_{it-1} - f(m_{it-1}, k_{it-1}, l_{it-1})) + \eta_{it}, k_{it}, l_{it} \right). \end{split}$$

• When $(k_{it}, l_{it}, y_{it-1}, m_{it-1}, k_{it-1}, l_{it-1})$ are conditioned, m_{it-2} cannot affect m_{it} .

Discussion

• Suppose another variable w_{it} affects the material demand

$$m_{it} = \mathbb{M}(\omega_{it}, k_{it}, l_{it}, w_{it})$$

= $\mathbb{M}_t(h(y_{it-1} - f(m_{it-1}, k_{it-1}, l_{it-1})) + \eta_{it}, k_{it}, l_{it}, w_{it}).$

- If w_{it} is correlated with w_{it-2} , then m_{it-2} may correlate with m_{it} .
 - E.g., demand shifters z_{it}^d ; material price p_{it}^m that varies across firms
 - w_{it} may be unobservable
- Note: to use $\mathbb{M}_t^{-1}(m_{it}, k_{it}, l_{it}, w_{it})$ in step 1, all w_{it} must be observable and uncorrelated with η_{it} .

Address the GNR critique

- Three approaches are proposed to address the GNR critique.
- They all transforms the problem into

$$y_{it} = g(k_{it}, l_{it}) + h[y_{it-1} - g(k_{it-1}, l_{it-1})] + \eta_{it},$$

which has no endogeneous variable.

Ackerberg, Caves and Frazer (2015)

 Ackerberg, Caves and Frazer (2015) consider a structural value-added function

$$y_{it} = \min \left\{ c(m_{it}), g(k_{it}, l_{it}) + \omega_{it} \right\},\,$$

which implies

$$y_{it} = g(k_{it}, l_{it}) + \omega_{it}.$$

• However, this production function is not differentiable with respect to m_{it} .

Gandhi, Navarro and Rivers (2020)

FOC for material under perfect competition

$$\alpha_{it}^{m} = \frac{\partial f}{\partial m}(m_{it}, k_{it}, l_{it})$$

- Identify $\frac{\partial f}{\partial m}(m_{it}, k_{it}, l_{it})$ from regression of α_{it}^m on (m_{it}, k_{it}, l_{it}) .
 - \bullet They also analyze imperfect competition but assume a common markup μ_t

Gandhi, Navarro and Rivers (2020)

Integrate

$$f(m_{it}, k_{it}, l_{it}) = f(m_0, k_{it}, l_{it}) + \int_{m_0}^{m_{it}} \frac{\partial f}{\partial m}(m, k_{it}, l_{it}) dm$$

$$\equiv g(k_{it}, l_{it}) + \int_{m_0}^{m_{it}} \alpha^m(m, k_{it}, l_{it}) dm$$

• Defining $\mathcal{Y}_{it} \equiv y_{it} - \int_{m_0}^{m_{it}} \alpha^m(m, k_{it}, l_{it}) dm$, we have

$$\mathcal{Y}_{it} = g(k_{it}, l_{it}) + \omega_{it}$$

Flynn, Gandhi and Traina (2019)

- Flynn, Gandhi and Traina (2019) proposes imposing constant returns to scale.
- E.g., Cobb-Douglas case

$$y_{it} = (1 - \theta_k - \theta_l) m_{it} + \theta_k k_{it} + \theta_l l_{it} + \omega_{it}$$
$$y_{it} - m_{it} = \theta_k (k_{it} - m_{it}) + \theta_l (l_{it} - m_{it}) + \omega_{it}$$

• Define $\tilde{y}_{it} \equiv y_{it} - m_{it}$, $\tilde{k}_{it} \equiv k_{it} - m_{it}$, $\tilde{i}_{t} \equiv y_{it} - m_{it}$,

$$\tilde{y}_{it} = \theta_k \tilde{k}_{it} + \theta_l \tilde{l}_{it} + \omega_{it}$$

They also analyze general production functions.

Production approach with quantity data

- Approach 1: DLW approach with Flynn, Gandhi and Traina (2019) in Step 2
 - Assume constant returns to scale.
 - Step1 is the same as DLW: to remove the measurement error in y_{it}
 - Step 2 estimate as Flynn, Gandhi and Traina (2019).
- Step 1 implicitly specifies the market structure and the demand function

Production approach with quantity data

- Approach 2: dynamic panel approach (or DLW approach without step 1)
 - Assume no measurement error in y_{it}^{Data} as for other variables
 - Assume some unobserved and serially correlated w_{it} that correlates with m_{it}
 - Past m_{it-2} can be used for an IV
- Weaker assumptions on the market structure and the demand function

Issues

- Multi-product firms
 - Output quantity may be observed at product-level, but inputs are rarely observed at product-level.
 - De Loecker, Goldberg, Khandelwal and Pavcnik (2016); Orr (2022)
- Labor- and capital-augmenting productivity
 - Automation, PC, AI, etc.
 - Demirer (2022)
- Quality
 - Production of high quality products sometimes require more inputs than that of low quality products.
 - Orr (2022)

- Ackerberg, Daniel A, Kevin Caves, and Garth Frazer, "Identification Properties of Recent Production Function Estimators," *Econometrica*, 2015, 83 (6), 2411–2451.
- **Arellano, Manuel and Olympia Bover**, "Another look at the instrumental variable estimation of error-components models," *Journal of Econometrics*, 1995, *68* (1), 29–51.
- _ and Stephen Bond, "Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations," *Review of Economic Studies*. 1991. 58 (2). 277–297.
- Economic Studies, 1991, 58 (2), 277–297.

 Berry, Steven, James Levinsohn, and Ariel Pakes, "Automobile Prices in Market Equilibrium," Econometrica, 1995, 63 (4), 841–890.
- **Blundell, Richard and Stephen Bond**, "Initial conditions and moment restrictions in dynamic panel data models," *Journal of Econometrics*, 1998, 87 (1), 115–143.
- _ and _ , "GMM estimation with persistent panel data: an application to production functions," *Econometric Reviews*, 2000, *19* (3), 321–340.
- production functions," *Econometric Reviews*, 2000, *19* (3), 321–340.

 Bond, Stephen, Arshia Hashemi, Greg Kaplan, and Piotr Zoch,
 "Some Unpleasant Markup Arithmetic: Production Function Elasticities

- and Their Estimation from Production Data," NBER Working Paper w27002 2020.
- **Demirer, Mert**, "Production function estimation with factor-augmenting technology: An application to markups," *working paper*, 2022.
- Flynn, Zach, Amit Gandhi, and James Traina, "Measuring Markups with Production Data," Unpublished 2019.
- Gandhi, Amit and Aviv Nevo, "Empirical models of demand and supply in differentiated products industries," in "Handbook of industrial organization," Vol. 4, Elsevier, 2021, pp. 63–139.
- _ , Salvador Navarro, and David A Rivers, "On the identification of gross output production functions," *Journal of Political Economy*, 2020, 128 (8), 2973–3016.
- **Levinsohn, James and Amil Petrin**, "Estimating Production Functions Using Inputs to Control for Unobservables," *Review of Economic Studies*, 2003, pp. 317–341.
- Loecker, Jan De and Frederic Warzynski, "Markups and Firm-Level Export Status," *American Economic Review*, 2012, *102* (6), 2437–71.

- _ , Pinelopi K Goldberg, Amit K Khandelwal, and Nina Pavcnik, "Prices, Markups, and Trade Reform," *Econometrica*, 2016, *84* (2), 445–510.
- Lu, Yi, Yoichi Sugita, and Lianming Zhu, "Wage and Markdowns and FDI Liberalization," Technical Report, Hitotsubashi Institute for Advanced Study, Hitotsubashi University 2019.
- Olley, G Steven and Ariel Pakes, "The Dynamics of Productivity in the Telecommunications Equipment Industry," *Econometrica*, 1996, pp. 1263–1297.
- Orr, Scott, "Within-firm productivity dispersion: Estimates and implications," *Journal of Political Economy*, 2022, *130* (11), 2771–2828.