Topic 5: Physical Layer

Ross Emile Aparece

Class 8 02/25/2025

- Physical layer is the lowest level:
 - Understanding that the physical properties of various transition mediums define the proctocls we use
 - Bit by bit encoding of information into physical signal
- Ethernet (copper) cables:
 - Encoded as pulses of electricity
- Fiber cables:
 - Encoded as pulses of light
- Different physical properties so they may have different protocols
- Cabled connections
 - DLL protocol = 802.3 Ethernet
 - Point to point connections (exactly two devices)
 - * Fiber
 - · Full enclosed glass tubes with mirrored shielding
 - · Photons bounce along the cable until it reaches a detecor
 - · Needs to be as straight as possible
 - * Copper / Twisted Pair
 - · Pair needed to complete the circuit
 - · Two electrical magnetic field generated positive and negatively charged respectively
 - · Field is powerful enough to corrupt data
 - · Electomagnetic inteference cancel each other out if they are close enough hence twisted
- Wireless connections

- DLL protocol = 802.11 WiFi
- Non-directional
 - * All wireless devices go in every direction
 - * Only matters if the device is within the range
 - * Everyone in the recipient range of the device recieves the data
- Encryption by default
 - * Encryption by default has speed cost
- Encoded as radiowaves

• Channel Types

- Simplex (unidirectionality)
- Duplex (biderectionality)
 - * Full Duplex (send and receive at the same time)
 - * Half Duplex (send or receive at any time only one receiver)
- All cables can full duplex only restriction is cost
- All wireless operate at half duplex
- Modern devices operate at half duplex but extremely highspeed
 - * Operates on the scale of picoseconds
- Feels like full duplex

• Hardware

- Each layer has a specific hardware devices
- Network Hub (Physical Layer, Historical)
 - * Solve the limitation of the cable
 - * Central hub that ideally connects all devices
 - * Act as an n-dimensional cables
 - * No CPU or memory, just a bunch of logic gates (reducing cost)
 - * Duplicates signal and sends the signal to all ports
 - * Problem arises when two or more devices send at the same time data easily corrupted
 - · This is called a collision domain
 - \cdot If there is more than one sender none of the messages get through
 - * Cannot update the hub so you have to update all the devices connected
 - * Carrier Sense Multiple Access
 - · Solves collission domain problem by sharing the network

```
function CSMA(message) {
    while(receiving) {
        wait();
    }
    send(message);
}
```

- · Downgrades connection to half duplex
- · Limitation is assuming everyone upgrading at the same time
- \cdot Devices with CSMA and devices with no CSMA do not play well together
- · Device without CSMA can still corrupt transmitted data
- * CSMA With Collision Dection

```
function CSMACD (message){
   for(i = 0; i < message.length; i++){
      while(receiving){
        wait();;
    }
      send(messaage[i]);
   }
}</pre>
```

- Network Switch

*

Class 9 02/27/2025

- Topic 6: Data Link Layer
 - Translation from digital bits into physical bits
 - Hop to hop delivery between two directly connect adjacent nodes over a single transmission medium (can be wireless)
 - Addressing:
 - \ast How to distinguish between different devices
 - $\ast\,$ DLL (Data Link Layer): MAC Address
 - · A globally unique hardware identifier assigned to every network card
 - · No two MAC addresses should be the same
 - \cdot 48 bits $2^{48} = 281$ trillion
 - · ex. 6E-3F-BB-22-A0-0F (6 pairs of hexadecimal numbers)

- · First 3 pairs = Organizational Unique Identifier
- · Last 3 pairs = Network Interface Component/Card
- · MAC addresses managed by IEEE
- · First 3 pairs are assigned to a company
- \ast You can change the MAC address but in 99% it doesn't make sense
- * MAC address survive a single hop and only used to bring you one hop closer
- * Cannot fool anyone more than 1 hop away from you

Protocols

- $\ast~802.3$ Ethernet (wired connections): simple header and data protocol
- * 802.11 WiFi (wireless): complex protocol
 - · Many (100s) of different types of messages
- * Underlying physical properties between the two are so different they need different protocols
- * Ex. ethernet cable you just need to plug in but for wireless you need to select the correct device and put in a password
- * Wireless needs a more complex protocol to accommodate its physical properties
- * Ethernet has a faster protocol focused on throughput
- What is provided by the header?
 - * Preamble = alternating set of 0 and 1 used to provide synchronization between sender and receiver
 - · Devices operate at different speeds but need to communicate
 - \cdot SFD last byte of preamble contains a bunch of 1's to signal that the preamble is over
 - * Destination MAC and Source MAC
 - · Lets us know who the sender is and who the receiver is
 - Each number = number of bytes
 - * EtherType
 - \cdot Tells us the network protocol used in the payload, most common:
 - 0x0800 = IPv4
 - 0x86DD = IPv6
 - 0x0806 = ARP
 - 0x8100 = IPv4 and 802.1Q
 - $\ast\,$ IPv4: mainly used in the US, we didn't make the IP address field large enough
 - * IPv6: used in addition, used in the rest of the world
 - * ARP: used to translate IP to MAC address

- * IPv4 + 802.1Q: 802.1Q provides VLAN support
- * Provides logical seperation of networks where you are phsyically conencted to other devices
- * Provides quality of service, refers to priority
- * Allows us to assign higher priority to different devices
- * Can make a difference in real time applications
- * CRC/FCS
 - Frame Check Sequence
 - · Algorithm provides data integrity
 - · Ability to detect when data is corrupted while in transit
 - \cdot Internally uses CRC32 hash algorithm to provide the property
 - · Takes variable sized input, fed into hash algorithm, received fixed length digest
- * Interframe = ensures messages dont collide
- * Data Integrity vs Reliable delivery
 - · Data Integrity = Ability to detect when data is corrupted
 - \cdot Reliable delivery = Constantly redeliver message until it is delivered
- * Ethernet itself does not provide reliable delivery
- * Reliable delivery is not free, data integrity is more important