CS & IT ENGING

Algorithms

Algorithms

Lecture No. 15

Topic

LCS

Topics to be Covered

Topic

01 Knapsack

Difference between fractional and 0/1 knapsack-

0/1 Knapsack

Example:

Find max profit

1. Using greedy method:

P/W ratio - 10 6

 Objects →
 1
 2
 3

 Weight →
 1
 2 ⋅
 4.

 Profit →
 10
 12 ⋅
 28

Put the object according to height P/W ratio.

Hence, greedy method fails \rightarrow (0/1 Knapsack)

Example:

Why greedy method fails in 0-1 knapsack

W > 1

Objects \longrightarrow 01 02

Refit Weight \longrightarrow 2 W

Capacity of Knapsack

W/O

P/W 2 1

Then we can't put second object. These why greedy method fails.

2. Using Dynamic programming to solve 0-1 knapsack problem.

Object:
$$1 \quad 2 \quad 3 \quad 4 \quad n$$

$$2 \times 2 \times 2 \times 2 \times 2 \times 2 \quad \text{Choice put or left alone}$$

$$2^{n} \quad O(2^{n})$$

2. Using Dynamic programming to solve 0-1 knapsack problem.

• Recursion tree for 10 items and Ksize=10 assuming each object wgt is $1 \checkmark$

Recursion tree for 10 items and Ksize=10 assuming each object wgt is 1

Recursion tree for 10 items and Ksize=10 assuming each object wgt is 1

Example:

$$C = 6$$

Objects
$$\rightarrow$$
 1 2 3 Weight \rightarrow 1 2 4 Profit \rightarrow 10 12 28

Example:

$$\begin{array}{c|ccccc} C = 6 & \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ & \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2.	3 •	4.	5 •	6
0	0	0	0	0	0	0	0
1.	0						
2.	0						
3.	0						

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

Example:

$$\begin{array}{c|ccccc} C = 6 & \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ & \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

KS (1, 2) = max
$$\begin{cases} P_1 + KS(0, 1) \to 10 \\ KS(0, 2) \end{cases}$$

Example:

$$\begin{array}{c|ccccc} C = 6 & \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ & \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i - 1, w - w_i), KS(i - 1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i - 1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10			
2	0						
3	0						

KS
$$(1, 3) = \max \begin{cases} P_1 + KS(0, 2) \\ P_2 + KS(0, 3) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ & \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10		
2	0						
3	0						

KS
$$(1, 4) = \max \begin{cases} P_1 + KS(0, 3) \\ P_2 + KS(0, 4) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	
2	0						
3	0						

KS (1, 5) = max
$$\begin{cases} P_1 & 0 \\ P_1 + KS(0, 4) \\ 0 \\ KS(0, 5) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0						
3	0						

KS (1, 6) = max
$$\begin{cases} P_1 + KS(0, 5) \\ P_2 + KS(0, 6) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10					
3	0						

$$K(2,1) = \begin{cases} M_i \\ M_i \end{cases} m 2 > 1 \\ K(1,1)$$

Example:

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10	12				
3	0						

$$K(2,2) = \begin{cases} P_{2} + KS(1,0) \\ P_{2} + KS(1,0) \\ KS(1,2) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ \text{Weight} & \longrightarrow & 1 & \underline{2} & 4 \\ \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
12	0	10	12	22			
3	0						

$$K(2,3) = \begin{cases} P_2 + KS(1,1) \\ P_2 + KS(1,1) \\ KS(1,3) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ \text{Weight} & \longrightarrow & 1 & \underline{2} & 4 \\ \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10	12	22	22		
3	0						

$$K(2,4) = \begin{cases} P_2 + KS(1,2) \\ P_2 + KS(1,2) \\ KS(1,4) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} Objects & \longrightarrow & 1 & 2 & 3 \\ \hline Weight & \longrightarrow & 1 & 2 & 4 \\ \hline Profit & \longrightarrow & 10 & 12 & 28 \\ \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
/2	0	10	12	22	22	22	
3	0						

$$K(2,5) = \begin{cases} P_2 + KS(1,3) \\ KS(1,5) \end{cases}$$

Example:

$$\begin{array}{c|ccccc} C = 6 & \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ & \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10	12	22	22	22	22
3	0						

$$K(2,6) = \begin{cases} P_2 + KS(1,4) \\ P_3 + KS(1,4) \\ KS(1,6) \end{cases}$$

Example:

$$C = 6 Objects \longrightarrow 1 2 3 \\ Weight \longrightarrow 1 2 4 \\ Profit \longrightarrow 10 12 28 KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); & w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10	12	22	22	22	22
3	0	10					

$$K(3,1) = \begin{cases} (3,1) \\ (3,1) \end{cases}$$

Example:

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10	12	22	22	22	22
J_3 .	0	10	12				

$$K(3,2) = \begin{cases} K(3,2) = \\ KS(2,2) \end{cases}$$

Example:

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10	12	22	22	22	22
/3	0	10	12	22			

$$K(3,3) = \begin{cases} K(3,3) = \begin{cases} 22 \\ KS(2,3) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ \hline & \text{Profit} & \longrightarrow & 10 & 12 & 28 \\ \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10	12	22	22	22	22
3	0	10	12	22	28		

$$K(3,4) = \begin{cases} 28 & 0 \\ P_3 + KS(2,0) \\ KS(2,4) \end{cases}$$

Example:

$$C = 6 \qquad \begin{array}{c|cccc} \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2	0	10	12	22	22	22	22
3	0	10	12	22	28	3 8	

$$K(3,5) = \begin{cases} 28 & 10 \\ P_3 + KS(2,1) \\ KS(2,5) \end{cases}$$

Example:

$$\begin{array}{c|cccc} C = 6 & \text{Objects} & \longrightarrow & 1 & 2 & 3 \\ & \text{Weight} & \longrightarrow & 1 & 2 & 4 \\ & & \text{Profit} & \longrightarrow & 10 & 12 & 28 \end{array}$$

$$KS(i,w) = \begin{cases} max (P_i + KS (i-1, w-w_i), KS(i-1, w)); & w_i <= w \\ 0; i = 0 \text{ or } w = 0 \\ KS (i-1, w); w_i > w \end{cases}$$

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	10	10	10	10	10	10
2,	0	10	12	22	22	22	22
3	0	10	12	22	28	38	40

$$K(3,6) = \begin{cases} P_3 + KS(2,2) \\ P_3 + KS(2,2) \\ KS(2,6) \end{cases}$$

0-1 Knapsack Algorithm

```
for w = 0 to W
B[0,w] = 0
for i = 0 to n
B[i,0] = 0
for w = 0 to w
if w_i <= w \text{ // item } i \text{ can be part of the solution}
if b_i + B[i-1,w-w_i] > B[i-1,w]
B[i,w] = b_i + B[i-1,w-w_i]
else
B[i,w] = B[i-1,w]
else
B[i,w] = B[i-1,w] \text{ // } w_i > w
```


Pw

0-1 Knapsack Algorithm

```
for w = 0 to W
B[0,w] = 0
for i = 0 to n
B[i,0] = 0
for w = 0 to w
if w_i <= w \text{ // item } i \text{ can be part of the solution}
if b_i + B[i-1,w-w_i] > B[i-1,w]
B[i,w] = b_i + B[i-1,w-w_i]
else
B[i,w] = B[i-1,w]
else
B[i,w] = B[i-1,w] \text{ // } w_i > w
```

Time complexity =
$$O(nw)$$

Space complexity = $O(nw)$
 $T(n) = min(O(2^n), O(nw))$
 $\omega = O(2^n)$

THANK - YOU