Devoir maison 10 - équation aux dérivées partielles

U désigne un ouvert non vide de \mathbb{R}^2 , et $\lambda \in \mathbb{R}$. On considère l'équation aux dérivées partielles

$$E_{\lambda}: x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = \lambda f(x, y).$$

On note $S_{\lambda}(U)$ l'ensemble des fonctions réelles définies sur U, de classe C^1 , solutions de E_{λ} .

PARTIE I : Généralités

1. Vérifier que les applications $p_x:(x,y)\mapsto x$ et $p_y:(x,y)\mapsto y$ appartiennent à $S_1(\mathbb{R}^2)$. p_x et p_y sont de classe C^1 .

$$\frac{\partial p_x}{\partial x}(x,y) = 1, \frac{\partial p_x}{\partial y}(x,y) = 0, \frac{\partial p_y}{\partial x}(x,y) = 0, \frac{\partial p_y}{\partial y}(x,y) = 1 \text{ donc}:$$

$$x\frac{\partial p_x}{\partial x}(x,y) + y\frac{\partial p_x}{\partial y}(x,y) = x = 1.p_x(x,y) \text{ donc } p_x \in S_1(\mathbb{R}^2) \text{ et}$$

$$x\frac{\partial p_y}{\partial x}(x,y) + y\frac{\partial p_y}{\partial y}(x,y) = y = 1.p_y(x,y) \text{ donc } p_y \in S_1(\mathbb{R}^2).$$

2. Soit $f \in S_{\lambda}(U)$ de classe C^2 . Montrer que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ appartiennent à $S_{\lambda-1}(U)$.

f est de classe C^2 donc $\frac{\partial f}{\partial x}$ est de classe C^1 sur U.

En dérivant $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \lambda f(x,y)$ par rapport à x, on obtient :

$$\frac{\partial f}{\partial x}(x,y) + x \frac{\partial^2 f}{\partial x^2}(x,y) + y \frac{\partial^2 f}{\partial x \partial y}(x,y) = \lambda \frac{\partial f}{\partial x}(x,y) \text{ donc, } f \text{ étant de classe } C^2, \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \text{ et on a } : x \frac{\partial^2 f}{\partial x^2}(x,y) + y \frac{\partial^2 f}{\partial y \partial x}(x,y) = (\lambda - 1) \frac{\partial f}{\partial x}(x,y) \text{ donc } \frac{\partial f}{\partial x} \text{ est solution de } E_{\lambda-1}.$$

La démarche est la même pour $\frac{\partial f}{\partial u}$.

3. Soit $(\lambda, \mu) \in \mathbb{R}^2$. Montrer que si $f \in S_{\lambda}(U)$ et $g \in S_{\mu}(U)$ alors $fg \in S_{\theta}(U)$ pour un réel θ que l'on précisera en fonction de λ et μ .

Par produit, fg est de classe C^1 sur U et on a :

$$\begin{split} &x\frac{\partial(fg)}{\partial x}(x,y)+y\frac{\partial(fg)}{\partial y}(x,y)=\\ &x\left(f(x,y)\frac{\partial g}{\partial x}(x,y)+g(x,y)\frac{\partial f}{\partial x}(x,y)\right)+y\left(f(x,y)\frac{\partial g}{\partial y}(x,y)+g(x,y)\frac{\partial f}{\partial y}(x,y)\right)=\\ &f(x,y)\left(x\frac{\partial g}{\partial x}(x,y)+y\frac{\partial g}{\partial y}(x,y)\right)+g(x,y)\left(x\frac{\partial f}{\partial x}(x,y)+y\frac{\partial f}{\partial y}(x,y)\right)=(\mu+\lambda)f(x,y)g(x,y).\\ &\operatorname{Donc}\ fg\in S_{\lambda+\mu}(U) \end{split}$$

4. Soit $f \in S_{\lambda}(U)$ telle que $\forall (x,y) \in U, f(x,y) > 0$.

Montrer que pour $\alpha \in \mathbb{R}$, $f^{\alpha}: (x,y) \mapsto (f(x,y))^{\alpha}$ appartient à $S_{\alpha\lambda}(U)$.

Par composition,
$$f^{\alpha}$$
 est de classe C^{1} sur U et on a:

$$x\frac{\partial(f^{\alpha})}{\partial x}(x,y) + y\frac{\partial(f^{\alpha})}{\partial y}(x,y) = x\alpha (f(x,y))^{\alpha-1} \frac{\partial f}{\partial x}(x,y) + y\alpha (f(x,y))^{\alpha-1} \frac{\partial f}{\partial y}(x,y)$$

$$= \alpha (f(x,y))^{\alpha-1} \lambda f(x,y) = \alpha \lambda (f(x,y))^{\alpha}.$$

Donc $f^{\alpha} \in S_{\alpha\lambda}(U)$.

PARTIE II : Résolution sur $U = \mathbb{R} \times \mathbb{R}^{+*}$

Dans cette partie, $U = \mathbb{R} \times \mathbb{R}^{+*}$.

1. Justifier que l'application $\Phi: U \to \mathbb{R}^2$ définie par $\Phi(u, v) = (uv, v)$ réalise une bijection de U sur U, et déterminer sa bijection réciproque.

 Φ est bien définie sur U à valeurs dans U.

Considérons $\Psi:(x,y)\mapsto\left(\frac{x}{y},y\right)$, elle est également définie sur U à valeurs dans U.

Comme $\Phi \circ \Psi = \Psi \circ \Phi = \operatorname{Id}_{U}$, Φ est bijective, et $\Phi^{-1} = \Psi$.

- **2.** Soient $f \in C^1(U, \mathbb{R})$ et $g: U \to \mathbb{R}$ définie par $g = f \circ \Phi$.
 - **a.** Justifier que g est de classe C^1 , et exprimer $\frac{\partial g}{\partial u}$ et $\frac{\partial g}{\partial v}$ en fonction de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$. f est Φ étant de classe C^1 , g est de classe C^1 . $\frac{\partial g}{\partial u}(u,v) = \frac{\partial}{\partial u}\left(f(uv,v)\right) = v\frac{\partial f}{\partial x}(uv,v)$ et $\frac{\partial g}{\partial v}(u,v) = \frac{\partial}{\partial v}\left(f(uv,v)\right) = u\frac{\partial f}{\partial x}(uv,v) + \frac{\partial f}{\partial y}(uv,v)$.
 - **b.** Justifier que $f \in S_{\lambda}(U)$ si, et seulement si g est solution sur U de l'équation

$$(E): v\frac{\partial g}{\partial v} = \lambda g(u, v).$$

$$f \in S_{\lambda}(U) \Leftrightarrow \forall (x, y) \in U, x\frac{\partial f}{\partial x}(x, y) + y\frac{\partial f}{\partial y}(x, y) = \lambda f(x, y)$$

$$\Leftrightarrow \forall (u, v) \in U, uv\frac{\partial f}{\partial x}(uv, v) + v\frac{\partial f}{\partial y}(uv, v) = \lambda f(uv, v) \Leftrightarrow \forall (u, v) \in U, v\frac{\partial g}{\partial v}(u, v) = \lambda g(u, v).$$

c. Résoudre (E) et décrire $S_{\lambda}(U)$.

Soit g solution sur U de $v \frac{\partial g}{\partial v}(u, v) = \lambda g(u, v)$.

Pour u fixé, l'application partielle $v \mapsto g(u, v)$ est solution sur \mathbb{R}^{+*} de l'équation différentielle $xy' = \lambda y$ dont les solutions sont $y(x) = Cx^{\lambda}$.

On en déduit que : $\exists C : \mathbb{R} \to \mathbb{R}$ telle que $g(u, v) = C(u)v^{\lambda}$.

g étant de classe C^1 , $C: u \mapsto \frac{g(u,v)}{v^{\lambda}}$ l'est aussi.

Ainsi, g est de la forme $g(u,v) = C(u)v^{\lambda}$ avec C une fonction de classe C^1 de \mathbb{R} dans \mathbb{R} . La réciproque est immédiate.

En conclusion, $S_{\lambda}(U) = \left\{ (x,y) \mapsto C\left(\frac{x}{y}\right) y^{\lambda}, C \in C^{1}(\mathbb{R}, \mathbb{R}) \right\}.$

PARTIE III : Résolution sur $U = \mathbb{R}^2 \setminus \{(0,0)\}$

Dans cette partie, $U = \mathbb{R}^2 \setminus \{(0,0\}.$

- 1. Soit $f \in C^2(U, \mathbb{R})$.
 - **a.** Soit $(x,y) \in U$ fixé. Pour $t \in \mathbb{R}^{+*}$, on pose $\varphi(t) = f(tx,ty)$. Justifier que φ est de classe C^1 , et calculer φ' . $t \mapsto (tx,ty)$ est C^1 donc par composition φ l'est aussi. $\varphi'(t) = x \frac{\partial f}{\partial x}(tx,ty) + y \frac{\partial f}{\partial y}(tx,ty)$.
 - **b.** Etablir : $f \in S_0(U) \Leftrightarrow (\forall (x,y) \in U, \forall t > 0, f(tx,ty) = f(x,y)).$ Si $f \in S_0(U)$ alors $\forall t \in \mathbb{R}^{+*}, t\varphi'(t) = 0$ donc $\varphi'(t) = 0$. On en déduit que φ est constante égale à $\varphi(1)$ donc $\forall t > 0, f(tx,ty) = f(x,y)$. Réciproquement, si $\forall t > 0, f(tx,ty) = f(x,y)$, en dérivant par rapport à t, on obtient : $x\frac{\partial f}{\partial x}(tx,ty) + y\frac{\partial f}{\partial y}(tx,ty) = 0$, avec t = 1 on obtient $f \in S_0(U)$.

c. En déduire que les solutions de E_0 sur U sont des fonctions de la forme :

$$(x,y)\mapsto \psi\left(\frac{x}{\sqrt{x^2+y^2}},\frac{y}{\sqrt{x^2+y^2}}\right),\quad \text{où }\psi\in C^1(U,\mathbb{R})$$

Si $f \in S_0(U)$, alors en prenant $t = \frac{1}{\sqrt{x^2 + y^2}}$ dans la relation établie à la question précédente

on a
$$f(x,y) = f\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$
, donc f a la forme attendue (avec $\psi = f$).

Réciproquement, si $f(x,y) = \psi\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$ avec $\psi \in C^1(U, \mathbb{R})$, alors f est de classe C^1 par composition, et vérifie $\forall (x,y) \in U, \forall t > 0, f(x,y) = f(tx,ty)$ donc $f \in S_0(U)$.

- **2.** Soient $r_{\lambda}: U \to \mathbb{R}$ définie par $r_{\lambda}(x,y) = (x^2 + y^2)^{\frac{\lambda}{2}}$, et $g: U \to \mathbb{R}$ définie par $g(x,y) = f(x,y)r_{-\lambda}(x,y)$.
 - **a.** Justifier que $r_{\lambda} \in S_{\lambda}(U)$.

 $r_{\lambda} = (p_x^2 + p_y^2)^{\frac{\lambda}{2}}$. D'après la question **1** de la partie I, p_x et p_y sont dans $S_1(\mathbb{R})$, donc d'après la question **4** de la partie I, p_x^2 et p_y^2 sont dans $S_2(U)$.

 $\forall \lambda \in \mathbb{R}, S_{\lambda}(U)$ est clairement un sous-espace vectoriel de $C^{1}(U, \mathbb{R})$, on en déduit que $p_{x}^{2} + p_{y}^{2}$ est dans $S_{2}(U)$ puis, toujours d'après la question 4 de la partie I, que r_{λ} est dans $S_{\lambda}(U)$.

b. Montrer que $f \in S_{\lambda}(U) \Leftrightarrow g \in S_0(U)$.

 \Rightarrow Si $f \in S_{\lambda}(U)$, alors d'après la question **3** de la partie I, $g = f r_{-\lambda} \in S_0(U)$. \Leftarrow Si $g \in S_0(U)$, alors $f = g r_{\lambda} \in S_{\lambda}(U)$.

c. En déduire $S_{\lambda}(U)$.

Les solutions de E_{λ} sur U sont les fonctions de la forme :

$$(x,y) \mapsto \left(\sqrt{x^2 + y^2}\right)^{\lambda} \psi\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right) \text{ avec } \psi \in C^1(U, \mathbb{R})$$