

STUDENT NUMBER

CLASS: 12M1 12M2

2015 **YEAR 12**

YEARLY EXAMINATION

Mathematics Extension 2

Outcomes

Y01	Uses a variety of methods to: determine the important features of the graphs of a wide variety of functions; and solve problems involving polynomials.
YO2	Applies a number of techniques to integration, including partial fractions and integration by parts.
YO3	Makes use of appropriate techniques to solve problems involving complex numbers.
YO4	Determines volumes through the use of techniques involving slices and shells and applies techniques involving conics.
YO5	Solves problems in mechanics involving resolution of forces and resisted motion, and makes use of appropriate techniques from the Extension1.

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show relevant mathematical reasoning and/or calculations in Questions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Outcomes Tally Sheet

	\underline{ST}	UDE	NT I	NUM	BER		
	l					 	
	l						
 	L						

CLASS: 12M1 12M2

2015 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

OUTCOMES ASSESSED: A student

YO1	Uses a variety of methods to: determine the important features of the graphs of a wide variety of functions; and solve problems involving polynomials.
YO2	Applies a number of techniques to integration, including partial fractions and integration by parts.
YO3	Makes use of appropriate techniques to solve problems involving complex numbers.
YO4	Determines volumes through the use of techniques involving slices and shells and applies techniques involving conics.
YO5	Solves problems in mechanics involving resolution of forces and resisted motion, and makes use of appropriate techniques from the Extension1.

OUTCOME QUESTION	YO1 GRAPES A POLYNOMI	<u>&</u>	Y(Y(D3 exnos	YC cone volu	S&	YC MECHAL EXTENS	VICS &	TOTALS
Q 1 = 10	689	/3	5	/1	27	/2	3 4 10	/3	1	/1	/10
Q 11			bcd	/10	ае	/5					/15
Q 12	e	/3		-	аb	/5	c d	. /7	·		/15
Q 13	b	/4					а	/6	С	/5	/15
Q 14			Ъ	/5	a	/3	С	/4	đ	/3	/15
015	a b	/7							С	/8	/15
0.16			С	/3	ai ii	/4			aiii b	/8	/15
TOTALS	/	17		/19		/19		/20		/25	/100

Section I

Attempt Questions 1 - 10.

1 mark each.

Total: 10 marks

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1 In the diagram below DA = x, DC = y, BE = s and BC = t.

The correct relationship between x, y, s and t is

(A)
$$xy - st = 0$$

(B)
$$xt - sy = 0$$

(C)
$$st - xy = (y - t)(y + t)$$
 (D) $st - xy = (x - s)(x + s)$

(D)
$$st - xv = (x - s)(x + s)$$

- The locus of the graph of $\arg\left(\frac{z-2}{z+2i}\right) = \frac{\pi}{2}$ is
 - (A) a semicircle passing through the origin
 - (B) a circle with centre at the origin
 - an ellipse with a focus at the origin (C)
 - a hyperbola not passing through the origin (D)
- 3 What is the volume of the solid formed when the region bounded by the curves $y = 2x^3$ and $y = 2\sqrt{x}$ is rotated about the x-axis?
 - (A) $\frac{5\pi}{14}$ cubic units
 - (B) $\frac{10\pi}{14}$ cubic units
 - (C) $\frac{5\pi}{7}$ cubic units
 - (D) $\frac{10\pi}{7}$ cubic units

4 The normal to the point $P(cp, \frac{c}{p})$ on the rectangular hyperbola $xy = c^2$ has the equation $p^3x - py + c - cp^4 = 0$. The normal cuts the hyperbola at another point $Q(cq, \frac{c}{q})$.

What is the relationship between p and q?

- (A) pq = -1
- (B) $p^2q = -1$
- (C) $p^3 q = -1$
- (D) $p^4q = -1$
- 5 Which of the following is an expression for $\int \frac{1}{x^2 6x + 13} dx$?
 - (A) $\frac{1}{2} \tan^{-1} \frac{(x-3)}{4} + C$
 - (B) $\frac{1}{2} \tan^{-1} \frac{(x-3)}{2} + C$
 - (C) $\frac{1}{4} \tan^{-1} \frac{(x-3)}{4} + C$
 - (D) $\frac{1}{4} \tan^{-1} \frac{(x-3)}{2} + C$
- 6 What is the number of asymptotes on the graph of $f(x) = \frac{x^2}{x^2 1}$?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- 7 What is $(-1+i)^n$ expressed in modulus-argument form? (n is a positive integer)
 - (A) $\left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right)$
 - (B) $\left(\sqrt{2}\right)^n \left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right)$
 - (C) $\left(\cos\frac{3n\pi}{4} + i\sin\frac{3n\pi}{4}\right)$
 - (D) $\left(\sqrt{2}\right)^n \left(\cos\frac{3n\pi}{4} + i\sin\frac{3n\pi}{4}\right)$

- 8 Let α , β and γ be the roots of the equation $x^3 + 2x^2 + 5 = 0$.
 - Which of the following polynomial equations have the roots α^2 , β^2 and γ^2 ?
 - (A) $x^3 4x^2 20x 25 = 0$
 - (B) $x^3 4x^2 10x 25 = 0$
 - (C) $x^3 4x^2 20x 5 = 0$
 - (D) $x^3 4x^2 10x 5 = 0$
- 9 When $x^y = e$ is implicitly differentiated the result for $\frac{dy}{dx}$ is
 - (A) $\frac{-y}{x \log_e x}$
- (B) $\frac{y}{x \log_e x}$
- (C) $\frac{-x \log_e x}{y}$
- (D) $\frac{x \log_e x}{y}$
- 10 Points $P(a\cos\theta, b\sin\theta)$ and $Q(a\cos\phi, b\sin\phi)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The chord PQ subtends a right angle at (0,0).
 - Which of the following is the correct expression?
 - (A) $\tan \theta \tan \phi = -\frac{b^2}{a^2}$
 - (B) $\tan \theta \tan \phi = -\frac{a^2}{b^2}$
 - (C) $\tan \theta \tan \phi = \frac{b^2}{a^2}$
 - (D) $\tan \theta \tan \phi = \frac{a^2}{b^2}$

Section II

Attempt Questions 11 - 16.

Allow about 2 hours and 45 minutes for this section.

All questions are worth 15 marks each.

Total: 90 marks

Answer each question in a new writing booklet.

Include relevant mathematical reasoning and/or calculations in your responses.

Question11 (15 marks) Begin a new writing booklet. Marks

(a) (i) On the Argand diagram sketch the graph of
$$|z - (\sqrt{2} + \sqrt{2}i)| = 1$$
.

(ii) Find the largest possible value of both
$$|z|$$
 and $\arg z$ if z satisfies $|z - (\sqrt{2} + \sqrt{2}i)| = 1$.

(b) (i) Find real numbers
$$a$$
, b and c such that
$$\frac{3x^2 - 3x + 2}{(2x - 1)(x^2 + 1)} = \frac{a}{2x - 1} + \frac{bx + c}{x^2 + 1}$$

(ii) Hence evaluate
$$\int \frac{3x^2 - 3x + 2}{(2x-1)(x^2+1)} dx$$
 in simplest form.

(c) Use the substitution
$$x = u^2$$
 ($u > 0$) to evaluate $\int \frac{1}{x(1+\sqrt{x})} dx$.

(d) Find the exact value of
$$\int_0^{\frac{\pi}{6}} \sec 4x \tan 4x dx$$
.

(e) Let
$$z_1 = \cos \theta_1 + i \sin \theta_1$$
 and $z_2 = \cos \theta_2 + i \sin \theta_2$ for real θ_1 and θ_2 .
Show that $z_1 z_2 = \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)$.

Question 12 (15 marks)

Begin a new writing booklet.

Marks

(a) Let
$$z_1 = \frac{a}{1+i}$$
 and $z_2 = \frac{b}{1+2i}$ where a and b are real numbers.

What is the value of a and b , if $z_1 + z_2 = 1$?

- (b) Let z=1+i be a root of the polynomial $z^2-biz+c=0$ where b and c are real numbers. Find the value of b and c.
- (c) The parabola $y = 4 x^2$ is rotated about the line y = 4 for $\{x : 0 \le x \le 2\}$ to form a solid. Use the method of slicing to find the volume of the solid.
- (d) The point *P* lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.

- (i) Use the parametric representation of an ellipse to show that the equation of the tangent is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$.
- (ii) The tangent at P cuts the x-axis at A, y-axis at B and C is the foot of the perpendicular from P to the y-axis. Show that $OC \times OB = b^2$.
- (e) (i) Consider the function $f(x) = x^4 4x^3$. Sketch the graph of y = f(x).
 - (ii) Hence or otherwise find the number of real roots of the equation $x^4 4x^3 = kx$, where k is a positive real number.

- (a) Hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ has focus S on the positive x-axis and the corresponding directrix cuts the asymptotes to the hyperbola at points P and Q in the first and fourth quadrants respectively.
 - (i) Show that PS is perpendicular to the asymptote through P. 2
 - (ii) Show that PS = b.
 - (iii) A circle with centre S touches the asymptotes of the hyperbola.

 Deduce that the point of contact are the points P and Q.

 1
 - (iv) The circle with centre S touches the asymptotes of the hyperbola and cuts the hyperbola at the points R and T.

 Show that RT is a diameter of the circle if a = b.
- (b) By first sketching $f(x) = \frac{x^2}{x^2 1}$, draw separate one-third page sketches of:

 (i) y = |f(x)|(ii) $y = log_2[f(x)]$ 2
- (c) The line AB drawn through a fixed point P(m, n) cuts the x-axis at A and the y-axis at B. Angle $BAO = \theta$.

- (i) Show that $L(\theta)$, the length of AB, is given by $L(\theta) = m \sec \theta + n \csc \theta$. 2
- (ii) Prove that $tan^3\theta = \frac{n}{m}$ when $L'(\theta) = 0$.

 Show that this generates a length of $\sqrt{(m^{\frac{2}{3}} + n^{\frac{2}{3}})}$ for AB.

Question 14 (15 marks) Begin a new writing booklet.

Marks

1

- (a) Show that $z\overline{z} = |z|^2$ for any complex number z.
 - (ii) A sequence of complex numbers z_n is given by the rule $z_1 = w$ and $z_n = v\overline{z}_{n-1}$ where w is a given complex number and v is a complex number with modulus 1. Show that $z_3 = w$.
- (b) Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$, where *n* is positive integer.
 - (i) Show that $I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$ when $n \ge 2$.
 - (ii) Prove that $I_n = \frac{(n-1)}{n} I_{n-2}$ when $n \ge 2$.
 - (iii) What is the value of I_4 ?
- (c) A solid is formed by rotating about the y-axis the region bounded by the curve $y = \log_e x$ and the x-axis between $1 \le x \le e$.

Find the volume of this solid using the method of cylindrical shells.

(d) Show, by mathematical induction for even integer values of n, that $2n^2 \ge n^2 + n + 2$ for n > 1.

Question 15 (15 marks) Begin a new writing booklet. Marks

- (a) (i) The polynomial P(x) has a double root at $x = \alpha$.

 Prove that P'(x) has a root at $x = \alpha$.
 - (ii) The polynomial $P(x) = x^3 ax^2 + b$ has a double root at $x = \alpha$. 2 Show that $4a^3 27b = 0$.
- (b) A and B are on the curve $y = x^4 + 4x^3$ at $x = \alpha$ and $x = \beta$ respectively. The line y = mx + b is a tangent to the curve at both points A and B.
 - (i) The zeros of the equation $x^4 + 4x^3 mx b = 0$ are α, α, β and β .

 Explain this result.
 - (ii) Use relationships between the coefficients and the roots to find the values for m and b.
- (c) A rock is dropped under gravity g, from rest, at the top of a cliff.The vertical distance travelled is represented by x in time t.Air resistance is proportional to the velocity v of the rock.

(i) Explain why
$$\frac{dv}{dt} = g - kv$$
.

(ii) Show that
$$v = \frac{g}{k}(1 - e^{-kt})$$
 when $t \ge 0$.

(iii) Show that
$$x = -\frac{1}{k}v + \frac{g}{k^2}\log_e\left(\frac{g}{g - kv}\right)$$
.

(iv) Verify that kv < g.

Question 16 (15 marks)

Begin a new writing booklet.

Marks

- (a) Let $z = r(\cos \theta + i \sin \theta)$ where $z \neq 0$ and $n \geq 1$ for integer n.
 - (i) Use De Moivre's theorem to show $z^n \frac{1}{z^n} = 2i \sin n\theta$ for $n \ge 1$.

(ii) You may assume
$$\left(z - \frac{1}{z}\right)^5 = \left(z^5 - \frac{1}{z^5}\right) - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right)$$
.
Show that $\sin^5 \theta = \frac{1}{16} \left(\sin 5\theta - 5\sin 3\theta + 10\sin \theta\right)$.

- (iii) Hence solve $\sin 5\theta = 5\sin 3\theta$ to the nearest radian for $0 \le \theta \le \pi$.
- (b) Tangents PA and PB are drawn to a circle. Point Q is on the minor arc AB. Perpendiculars QL, QM and QN are drawn from Q to PA, AB and PB respectively.

- (i) Show that $\triangle BNQ \parallel \triangle AMQ$ and $\triangle ALQ \parallel \triangle BMQ$.
- (ii) Hence show that QN, QM and QL form a geometric sequence.
- (c) Find a primitive function of $\frac{1}{1+\sin x}$.

End of paper

ACE Examination 2015

HSC Mathematics Extension 2 Yearly Examination

Worked solutions and marking guidelines

SOLUTIONS

Section	I	
	1.6.3.6.6	Criteria
1	$y \times (x+y) = t \times (s+t)$ = $ts - xy = y^2 - t^2$ $xy + y^2 = ts + t^2$ $ts - xy = (y-t)(y+t)$	1 Mark: C
2	Gra $\left(\frac{z-2}{z-\lambda}\right) = \frac{\pi}{2} \frac{\pi_{-arg}(z-2) - arg(z-\lambda)}{2}$ Seni circle $z=0$ arg $\left(\frac{z-2}{z-\lambda}\right) = \frac{\pi}{2}$ angle in a somicircle is 90°	1 Mark: A
3	Slices are taken perpendicular to the axis of rotation (x-axis). The base is an annulus. $A = \pi(r_2^2 - r_1^2) = \pi((2\sqrt{x})^2 - (2x^3)^2)$ $= \pi(4x - 4x^6) = 4\pi(x - x^6)$ $V = \lim_{\delta x \to 0} \sum_{x=0}^{1} 4\pi(x - x^6) \delta x$ $= \int_0^1 4\pi(x - x^6) dx = 4\pi \int_0^1 (x - x^6) dx$ $= 4\pi \left[\frac{x^2}{2} - \frac{x^7}{7} \right]_0^1 = 4\pi \left[\left(\frac{1}{2} - \frac{1}{7} \right) - 0 \right] = \frac{10\pi}{7}$	1 Mark: D
4	$Q(cq, \frac{c}{q})$ is on the normal and satisfies the equation. $p^3cq-p\frac{c}{q}+c-cp^4=0$ $p^3q^2-p+q-qp^4=0$ $p^3q(q-p)=-(q-p) \text{ or } p^3q=-1$	1 Mark: C
5	$\int \frac{1}{x^2 - 6x + 13} dx = \int \frac{dx}{(x - 3)^2 + 2^2} = \frac{1}{2} \tan^{-1} \frac{(x - 3)}{2} + C$	1 Mark: B
6	$\lim_{x \to \infty} \frac{x^2}{x^2 - 1} = \lim_{x \to \infty} \frac{1}{x^2}$ $= \lim_{x \to \infty} \frac{1}{x^2} = \lim_{x \to \infty} $	1 Mark: C

. 7	$\tan \theta = \frac{1}{-1} \text{ or } \theta = \frac{3\pi}{4} r^2 = x^2 + y^2 = 1^2 + 1^2 \text{ or } r = \sqrt{2}$ $-1 + i = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)$ $\left(-1 + i\right)^n = \left(\sqrt{2}\right)^n \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)^n$ $= \left(\sqrt{2}\right)^n \left(\cos \frac{3n\pi}{4} + i \sin \frac{3n\pi}{4}\right)$	1 Mark: D
8	If α , β and γ are zeros of $x^3 + 2x^2 + 5 = 0$ then the polynomial equation with roots α^2 , β^2 and γ^2 is: $(\sqrt{x})^3 + 2(\sqrt{x})^2 + 5 = 0$ $(\sqrt{x})^3 = -(2x + 5)$ $x^3 = 4x^2 + 20x + 25$ $x^3 - 4x^2 - 20x - 25 = 0$	1 Mark: A
9	12 = 0 $12 = 0$ $12 = 0$ $12 = 0$ $12 = 0$ $13 = 0$ 1	1 Mark: A
10	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $P(a\cos\theta,b\sin\theta)$ $POQ \text{ is a right-angled triangle. Therefore } OP^2 + OQ^2 = PQ^2$ $a^2\cos^2\theta + b^2\sin^2\theta + a^2\cos^2\varphi + b^2\sin^2\varphi \qquad \text{OR} \text{ Softe } OP^2 + \frac{b\sin^2\varphi}{a\cos\varphi}$ $= a^2(\cos\theta - \cos\varphi)^2 + b^2(\sin\theta - \sin\varphi)^2 \qquad \text{Softe } OP = \frac{b\sin^2\varphi}{a\cos\varphi}$ $a^2(\cos\theta - \cos\varphi)^2 + b^2(\sin\theta - \sin\varphi)^2 \qquad \text{Softe } OP = \frac{b\sin^2\varphi}{a\cos\varphi}$ $= a^2(\cos\theta - \cos\varphi)^2 + b^2(\sin\theta - \sin\varphi)^2 \qquad \text{Softe } OP = \frac{b\sin^2\varphi}{a\cos\varphi}$ $= a^2(\cos\theta - \cos\varphi)^2 + b^2(\sin\theta - \sin\varphi)^2 \qquad \text{Softe } OP = \frac{b\sin^2\varphi}{a\cos\varphi}$ $0 = -2a^2\cos\theta\cos\varphi - 2b^2\sin\theta\sin\varphi$ $2b^2\sin\theta\sin\varphi = -2a^2\cos\theta\cos\varphi$ $\frac{\sin\theta\sin\varphi}{\cos\theta\cos\varphi} = \frac{-2a^2}{2b^2} \text{ or } \tan\theta\tan\varphi = -\frac{a^2}{b^2}$ $\text{Softe } OP = \frac{b\sin^2\varphi}{a\cos\varphi}$ $\frac{\sin\theta\sin\varphi}{a\cos\varphi} = \frac{-2a^2}{2b^2} \text{ or } \tan\theta\tan\varphi = -\frac{a^2}{b^2}$ $\text{Hence } \frac{\cos\theta\cos\varphi}{\cos\varphi\cos\varphi} = \frac{-2a^2}{2b^2} \text{ or } \tan\theta\tan\varphi = -\frac{a^2}{b^2}$	1 Mark: B

Section	П	
	Solution	Criteria
11(a) (i)	$\left z - (\sqrt{2} + \sqrt{2}i)\right = 1$	2 Marks: Correct answer.
11(a)	Represents a circle with centre $(\sqrt{2}, \sqrt{2})$ and radius of 1 unit. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1 Mark: Draws a circle or states the radius or centre.
(ii)	$OC = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = 2$ $\therefore OE = 1 \text{ and } OD = 3 \text{ and therefore } 1 \le z \le 3$ $Arg OC = \frac{\pi}{4}$ $\sin \angle AOC = \frac{1}{2}, \angle AOC = \frac{\pi}{6} \sin \angle BOC = \frac{1}{2}, \angle BOC = \frac{\pi}{6}$ $\frac{\pi}{4} - \frac{\pi}{6} \le \arg z \le \frac{\pi}{4} + \frac{\pi}{6} \text{ or } \frac{\pi}{12} \le \arg z \le \frac{5\pi}{12}$ $\frac{\pi}{4} - \frac{\pi}{6} \le \arg z \le \frac{\pi}{4} + \frac{\pi}{6} \text{ or } \frac{\pi}{12} \le \arg z \le \frac{5\pi}{12}$	Correct answer. 1 Mark: Finds
11(b) (i)	$\frac{3x^2 - 3x + 2}{(2x - 1)(x^2 + 1)} = \frac{a}{2x - 1} + \frac{bx + c}{x^2 + 1}$	2 Marks: Correct answer.
	$3x^{2}-3x+2 = a(x^{2}+1)+(bx+c)(2x-1)$ Let $x = \frac{1}{2}$ and $x = 0$ $\frac{5}{4} = a \times \frac{5}{4} \text{ or } a = 1$ Equating the coefficients of x^{2} $3 = a+2b \text{ or } b = 1$ $\therefore a = 1, b = 1 \text{ and } c = -1$	1 Mark: Makes some progress in finding <i>a,b</i> or <i>c</i> .
11(b) (ii)	$\int \frac{3x^2 - 3x + 2}{(2x - 1)(x^2 + 1)} dx = \int \left(\frac{1}{2x - 1} + \frac{x - 1}{x^2 + 1}\right) dx$	2 Marks: Correct answer.
	$= \int \left(\frac{1}{2x-1} + \frac{x}{x^2+1} - \frac{1}{x^2+1}\right) dx$ $= \frac{1}{2} \log_e 2x-1 + \frac{1}{2} \log_e x^2+1 - \tan^{-1} x + C$	1 Mark: Correctly finds one of the integrals.
	$= \frac{1}{2} \log_{e} \left[2x - 1 (x^{2} + 1) \right] - \tan^{-1} x + C$	

11(c)	Let $x = u^2$ then $\frac{dx}{du} = 2u$ or $dx = 2udu$	3 Marks: Correct answer.
	$\int \frac{1}{x(1+\sqrt{x})} dx = \int \frac{1}{u^2(1+u)} 2u du$ $= 2\int \frac{1}{u(1+u)} du$	2 Marks: Finds the primitive function.
	$= 2\int \left(\frac{1}{u} - \frac{1}{1+u}\right) dx$ $= 2\left[\log_e u - \log_e (1+u)\right]$	1 Mark: Sets up the integral in terms of u
	$= 2\log_{e} \left \frac{u}{1+u} \right + C$ $= 2\log_{e} \frac{\sqrt{x}}{1+\sqrt{x}} + C$	
11(d)	$\int_{0}^{\pi} \sec 4x \cdot \tan 4x dx = \left[-\frac{1}{4} (\cos 4x)^{-1} \right]_{0}^{\pi}$	3 Mark: Correct answer.
,	$= \int_{0}^{5} \frac{1}{\cos 4x} \cdot \frac{\sin 4x}{\cos 4x} dx = \frac{1}{4} \left(\frac{\cos 2\pi}{3} - \frac{\cos 0}{\cos 0} \right)$ $= \int_{0}^{5} \sin 4x \cdot (\cos 4x)^{-2} dx = \frac{1}{4} \left(\frac{1}{\cosh 0} - \frac{1}{\cosh 0} \right)$ $= \frac{1}{4} \int_{0}^{5} 4 \sin 4x \cdot (\cos 4x)^{-2} dx = -\frac{3}{4}$	2 Mark: Correct answer.
11(e)	$Z_1Z_2=(\cos\phi_1+i\sin\phi_2)(\cos\theta_2+i\sin\phi_2)$	2 Marks: Correct answer.
	= $cosp_1 cosh_1/(cosh_1)$ (cosh_1) $cosh_1$ + $is_1 o_1 cosh_2$ + $is_1 o_2 cosh_1$ + $is_1 o_2 cosh_2$ + $is_1 o_1 sin o_2 cosh_1$ = $cosh_1 cosh_2 cosh_2$ + $is_1 o_1 sin o_2 cosh_2$ + $is_1 o_2 cosh_2$ + $is_1 o_2 cosh_2$ + $is_1 o_1 cosh_2$ + $is_1 o_2 o_1 cosh_2$ + $is_1 o_2 cos$	1 Mark: Substitutes into $z_1 + z_2 = 1$ and uses the conjugate.
RNATE O166	SOUTIONS $\int \frac{1}{\sin^2 x} dx \times \frac{1-\sin^2 x}{1-\sin^2 x}$ $= \int \frac{1-\sin^2 x}{1-\sin^2 x} = \int \frac{1-\sin^2 x}{\cos^2 x} dx$	1
ARC)	$= \int \frac{1}{\sqrt{2\pi}} - \frac{2\pi x}{2\pi x} \cdot \frac{1}{\sqrt{2\pi}} dx$	
	= See'n - Seexton x dx = See'n - Seexton x dx = Son = Son = Cos = Cos = Cos	-1 x cosx cocx -1) x cosx - snx)(1+ snx)
	4 = =	easn

12(a)	/ ->	2 Marks:
12(4)	$\frac{2}{14i} + \frac{b}{1+2i} = 1$ $a(1+2i) + b(1+i) = (1+i)(1+2i)$ $a(1+2i) + b(1+i) = (1+2i+2i)$ $a+b+i(2a+b) = 1+2i+2i$ $= -1+3i$	Correct answer.
	He Itzi ((V) (2)	
	a(H2i) + b(H1)=(H1)(H2i)	1 Mark: Shows
	a+b+i(2a+b) = 1+2+1+2+1	some
		understanding
	atb=-1 So a+b=-	of the problem
	a+b=-1 So $a+b=-12+b=3 4+b=-1-a=-4$ $b=-5$.	2 Mark: Show
	a= 4	
		good understanding
	and the second s	
12(b)	$z=1+i$ satisfies the polynomial $z^2-biz+c=0$	2 Marks:
	$(1+i)^2 - bi(1+i) + c = 0$	Correct answer.
	1+2i-1-bi+b+c=0	
	(b+c)+(2-b)i=0	1 Mark: Uses the factor
	Equating real and imaginary parts	the factor
	Therefore $b=2$ and $c=-2$	
12(c)	у	3 Marks:
`	84	Correct answer.
	Same volume as $y = x^2$ rotated about the x-axis. Area of the slice is a circle radius is y and height x $A = \pi y^2$ $= \pi x^4$ $\delta V = \delta A.\delta x$ $V = \lim_{\delta x \to 0} \sum_{x=0}^{2} \pi x^4 \delta x$ $= \int_{0}^{2} \pi x^4 dx$ $= \pi \left[\frac{1}{5} x^5 \right]_{0}^{2}$ $= \frac{\pi}{5} \times 2^5 = \frac{32\pi}{5}$ cubic units	2 Marks: Correct integral for the volume of the solid. 1 Marks: Sets up the area of the slice
	5 5	

12(d)	To find the equation of tangent through P	2 Marks:
(i)	$y = b \sin \theta$	Correct answer
	$x = a \cos \theta$ $\frac{dy}{d\theta} = b \cos \theta$ $\frac{dx}{d\theta} = -a \sin \theta$ $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$ $= b \cos \theta \times \frac{1}{-a \sin \theta} = \frac{-b \cos \theta}{a \sin \theta}$ Equation of the tangent $y - y_1 = m(x - x_1)$ $y - b \sin \theta = \frac{-b \cos \theta}{a \sin \theta} (x - a \cos \theta)$ $ay \sin \theta - ab \sin^2 \theta = -bx \cos \theta + ab \cos^2 \theta$ $bx \cos \theta + ay \sin \theta = ab(\sin^2 \theta + \cos^2 \theta)$	1 Mark: Correctly calculates the gradient
12(d) (ii)	$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ C $P(a\cos\theta b\sin\theta)$ At $B \ x = 0$ and $\frac{0}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ or $y = b\csc\theta$ Point $B \ is \ (0, b\csc\theta)$ and Point $C \ is \ (0, b\sin\theta)$ $OC \times OB = b\sin\theta \times b\csc\theta = b^2$	2 Marks: Correct answer 1 Mark: Finds the coordinates or <i>B</i> or <i>C</i> .
12(e) (i)	$f(x) = x^4 - 4x^3, f'(x) = 4x^3 - 12x^2, f''(x) = 12x^2 - 24x$ Stationary points $f'(x) = 0$ $4x^3 - 12x^2 = 0 \text{ or } 4x^2(x-3) = 0 \text{ or } x = 0 \text{ or } 3$ $f''(0) = 0 \text{ possible point of inflection.}$ $f''(3) = 36 > 0 (3, -27) \text{ is a Minima}$ $f''(x) = 0$ Points of inflection $f''(x) = 0$ $12x^2 - 24x = 0 \text{ or } 12x(x-2) \text{ or } x = 0 \text{ or } x = 2 \text{ As } x = 0 \text{ is frow a}$	2 Marks: Correct sketch I Marks: Turning point and cutting af x= 16.
March	$f''(0^-) > 0$ and $f''(0^+) < 0$ (which we have $f''(0^-) > 0$ and $f''(0^+) < 0$ (which is $f''(0^-) > 0$). Hence $(0,0)$ is a point of inflection $f''(2^-) < 0$ and $f''(2^+) > 0$ (where $f''(0^+) > 0$ is a point of inflection.)	1 Mark: Pont et inferior at 2=0 (like y=x3)

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
12(e) (ii)	The real solution of $x^4 - 4x^3 = kx$ is given by the x values where $y = x^4 - 4x^3$ and $y = kx$ intersect. If $k > 0$ then from the graph there are 2 real roots.	1 Mark: Correct answer.
13(a) (i)	Focus $S(ae, 0)$ and at P (directrix $x = \frac{a}{e}$ and asymptote $y = \frac{b}{a}x$) At $P = \frac{a}{e}$ and $y = \frac{b}{a} \times \frac{a}{e} = \frac{b}{e}$ $\therefore P\left(\frac{a}{e}, \frac{b}{e}\right)$ Gradient $PS = \frac{\frac{b}{e}}{\frac{a}{e} - ae} = \frac{b}{a(1 - e^2)}$ Gradient $OP = \frac{b}{a}$ $\therefore m_1 m_2 = \frac{b}{a(1 - e^2)} \times \frac{b}{a} = \frac{b^2}{a^2(1 - e^2)} = \frac{b^2}{-b^2} = -1$ Hence PS is perpendicular to OP .	2 Marks: Correct answer. 1 Mark: Finds the coordinates of P or shows some understanding of the problem.
13(a) (ii)	$PS^{2} = \left(\frac{a}{e} - ae\right)^{2} + \left(\frac{b}{e}\right)^{2}$ $= \frac{1}{e^{2}} \left[a^{2} (1 - e^{2})^{2} + b^{2}\right]$ $= \frac{1}{e^{2}} \left[-b^{2} (1 - e^{2}) + b^{2}\right]$ $= \frac{1}{e^{2}} \left[b^{2} e^{2}\right]$ $PS = b$	1 Mark: Correct answer.

13(a) (iii)	Perpendicular distance from S to P is b (from parts (i) and (ii)). Tangent to a circle is perpendicular to the radius through the point of contact. Therefore P is the point of contact of a circle with centre S and radius b . Similarly, by symmetry Q is the point of contact of a circle with centre S and radius b .	1 Mark: Correct answer.
13(a) (iv)	If $a = b$ then $b^2 = a^2(e^2 - 1)$ $b^2 = b^2(e^2 - 1)$	2 Marks: Correct answer.
	$e^2 = 2$ or $e = \sqrt{2}$ Hence $S(a\sqrt{2},0)$ Using the locus definition of a hyperbola with $SR = ST = b$ $\frac{b}{x - \frac{a}{e}} = e$	1 Mark: Finds the eccentricity or the x-coordinate of R or T in terms of a, b and e.
	$b = e(x - \frac{a}{e})$ $x = \frac{a+b}{e} = \frac{a+a}{\sqrt{2}} = a\sqrt{2}$ Therefore, if $a = b$, R and T have the same x coordinate ($a\sqrt{2}$) as S . Hence R , S and T are collinear and RT is the diameter of the circle with centre S .	
13(6) (i)	$\frac{c}{13(1)} \stackrel{\text{y}}{\nearrow} B \qquad \frac{n}{PA} = s \stackrel{\text{m}}{\rightarrow} \Phi \qquad (1)$	Marks: 2 Correct answer.
	$\frac{n}{Sm\phi} = PA$ $\frac{n}{Sm\phi} = PA$ $n \text{ Cas } \phi = PA$ $\frac{n}{BP} = \frac{m}{tot} \phi$	Marks: / Makes significant progress towards the solution.
(ii)	<i>c</i> a	2 Marks: 45 mill carted
	$\frac{dL}{d\theta} = 0 0 = \frac{m\sin\theta}{\cos^2\theta} - n\frac{\cos\theta}{\sin^2\theta}$ $S_0 m\sin^3\theta = n\cos^3\theta$	1 Mark:
	$fm^{3}\theta = \frac{1}{m}$ $Now fm\theta = \frac{n^{\frac{1}{3}}}{m^{\frac{1}{3}}} \frac{n^{\frac{1}{3}}}{n^{\frac{1}{3}}} \frac{1}{m^{\frac{1}{3}}} \frac{1}{m^{\frac{1}{3}}}} \frac{1}{m^{\frac{1}{3}}} \frac{1}{m^{\frac{1}{3}}}} \frac{1}{m^{\frac{1}{3}}} \frac{1}{m^{\frac{1}{3}}}} \frac{1}{m^{1$	3 Merks : Hill correct.

	The state of the s	
13(b) (i)	$y = \left \frac{x^2}{x^2 - 1} \right = \left \frac{x^2}{(x+1)(x-1)} \right $ (asymptote at $x = \pm 1$)	2 Marks: Correct answer.
	$y = \left \frac{x^2}{x^2 - 1} \right = \left \frac{1}{1 - \frac{1}{x^2}} \right x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = f(x) = \frac{x^2}{x^2 - 1}$	1 Mark $y = \frac{x^2}{x^2 - 1}$ Determines the asymptotes or shows some
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	understanding. I Wark for $y = \left(\frac{x^2}{x^2-1}\right)$
13(5)	y	2 Marks:
(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Mark: Determines the asymptotes or shows some understanding. (No negotive loge)
14(a) (i)	Let $z = a + ib$ where a and b are real. $z\overline{z} = (a + ib)(a - ib)$	1 Mark: Correct answer.
	$= a^{2} - i^{2}b^{2}$ $= a^{2} + b^{2} = z ^{2}$	
14(a) (ii)	Now $z_1 = w$, $z_2 = v\overline{z_1} = v\overline{w}$ and $ v = 1$ $z_3 = v\overline{z_2}$	2 Marks: Correct answer.
	$= v \times v\overline{w}$ $= v\overline{v}w$ $= v ^2 w \text{ from (i)}$ $= w$	1 Mark: Uses the formula to obtain an expression for z_3 .

14(b)	Integration by parts	2 Marks:
(i)	$I_n = \int_a^{\frac{\pi}{2}} \sin^{n-1} x \sin x dx$	Correct answer.
	$I_n = \int_0^{\pi} \sin^{n-1} x \cos x \Big]_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$	1 Mark: Sets up the integration and shows
	$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$	some understanding.
14(b) (ii)	$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$	2 Marks: Correct answer.
	$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1-\sin^2 x) dx$	1 Marly Malros
	$= (n-1) \int_0^{\frac{\pi}{2}} (\sin^{n-2} x - \sin^n x) dx$	1 Mark: Makes some progress towards the
	$= (n-1)[I_{n-2} - I_n] = (n-1)I_{n-2} - nI_n + I_n$	solution.
	$nI_n = (n-1)I_{n-2}$	
	$I_n = \frac{(n-1)}{n} I_{n-2}$	
14(b) (iii)	$I_4 = \frac{(4-1)}{4}I_2$	1 Mark: Correct answer.
	$= \frac{3}{4} \times \frac{(2-1)}{2} I_0$	
	$= \frac{3}{8} \times \int_0^{\pi} 1 dx = \frac{3\pi}{16}$	
14(c)		4 Marks: Correct answer.
		3 Marks: Correct integral for the volume of the solid.
	-3 -2 -1 3 x	2 Marks:
	Cylindrical shell – inner radius x , outer radius $x + \delta x$, height y .	Correct
	$\delta V = \pi \left[\left(x + \delta x \right)^2 - x^2 \right] y$	expression for δV .
	$= \pi \Big[2x\delta x + \delta x^2 \Big] y = \pi (2x + \delta x) (\log_e x) \delta x$	126.1
	$V = 2 \times \lim_{\delta x \to 0} \sum_{x=1}^{e} \pi (2x + \delta x) \log_{e} x \delta x = 2\pi \int_{1}^{e} (x \log_{e} x) dx$	1 Mark: Determines the radius or height
	$=2\pi\left(\left[\log_e x \times \frac{1}{2}x^2\right]_1^e - \int_1^e \left(\frac{1}{2}x^2 \times \frac{1}{x}\right) dx\right)$	of the cylindrical shell.
	$=2\pi \left[\frac{1}{2}e^2 - \frac{1}{2}\int_1^e x dx\right] = \pi \left(e^2 - \left[\frac{x^2}{2}\right]_1^e\right) = \frac{\pi}{2}(e^2 + 1)$	

14(d) Steft Thoms true for $n=2$ (EVEN III) LMS = $2n^2=8$ RMS = $2^2+2+2=8$ Steft Assume true for $n=2k$ $2(2k)^2 \geqslant (2k)^2 + (2k) + 2$ $4k^2 \geqslant 2k^2 + k + 1$ To prove: $2(2k+2)^2 \geqslant (2k+2)^2 + (2k+2) + 2$ To prove: $2(2k+2)^2 \geqslant (2k+2)^2 + (2k+2) + 2$ The fix $4k^2+8k+4 \geqslant 2(k^2+2k+1) + (k+1) + 1$ $4k^2+8k+4 \geqslant 2k^2+5k+4$ LMS $4k^2+8k+4 \geqslant (2k^2+k+1) + 8k+4$ from (4) $2k^2+3k+4 \Rightarrow 2k^2+5k+4$ 1 Mark: Proves the result for $n=2k+2$. $2k^2+3k+4 \Rightarrow 2k^2+5k+4$ $2k^2+4k+1 \Rightarrow 2k^2+4k+1 \Rightarrow 2k+4$ $2k^2+4k+1 \Rightarrow 2k^2+4k+1 \Rightarrow 2k+4 \Rightarrow 2k$			
Therefore $P > 8$ $1 \le x \ge x \ge x \le x \le$	14(d)	14(d) Step 1 Show true for n= 2 (EVEN!(1)	1
slep? Ascent true for $n=2k$ $2(2k)^2 \geqslant (2k)^2 + (2k) + 2$ $4k^2 > 2k^2 + k + 1$ $4k^2 > 2k^2 + k + 1$ $4k^2 > 2(2k+2)^2 > (2k+2)^2 + (2k+2) + 2$ To prove: $2(2k+2)^2 > (2k+2)^2 + (2k+2) + 2$ That is $4k^2 + 8k + 4 > 2(k^2 + 2k + 1) + k + 1$ $4k^2 + 8k + 4 > 2(k^2 + 2k + 1) + 8k + 4$ $4k^2 + 8k + 4 > 2(k^2 + 2k + 1) + 8k + 4$ $4k^2 + 8k + 4 > 2(k^2 + 2k + 1) + 8k + 4$ $4k^2 + 8k + 4 > 2(k^2 + 2k + 1) + 8k + 4$ $4k^2 + 8k + 4 > 2(k^2 + 2k + 1) + 8k + 4$ $4k^2 + 8k + 4 > 2(k^2 + 2k + 1) + 8k + 4$ $4k^2 + 8k + 4 > 2(k^2 + 2k + 1) + 8k + 4$ $4k^2 + 8k + 4 > 2k^2 + 5k + 4$ $4k^2 + 8k + 4 > 2k^2 + 5k + 4$ $4k^2 + 8k + 4 > 2k^2 + 2k + 4$ $4k$			
result true for $n=2$ to prove: $2(2k)^2/(2k)$ $2(2k+2)^2/(2k+2)$ $2(2k+2)$ $2(2k+$		selet) Are once true for n= LB	
$4k^{2} > 2k^{2} + k + 1$ $4k^{2} > 2k + k + 1$ $7c $		1 9/26/4 3/20/2 4(44/2)	
To prove: $2(2k+2)^2 > (2k+2) + (2k+2) + 2$ That is $4k^2 + 8k + 4 > 2(k^2 + 2k+1) + (k+1) + 1$ All $4k^2 + 8k + 4 > 2k^2 + 5k + 4$ Let $4k^2 + 8k + 4 > (2k^2 + k + 1) + 8k + 4$ Let $4k^2 + 8k + 4 > (2k^2 + k + 1) + 8k + 4$ Let $4k^2 + 8k + 4 > (2k^2 + k + 1) + 8k + 4$ The state of the form $(+)$ The state of the state of the state of the result true for $n = 2k + 4k +$		4b2>, 2k2+ k+1	n=2 and
To prove: $2(2k+2)^2 > (2k+2) + (2k+2) + 2$ That is $4k^2 + 8k + 4 > 2(k^2 + 2k+1) + (k+1) + 1$ All $4k^2 + 8k + 4 > 2k^2 + 5k + 4$ Let $4k^2 + 8k + 4 > (2k^2 + k + 1) + 8k + 4$ Let $4k^2 + 8k + 4 > (2k^2 + k + 1) + 8k + 4$ Let $4k^2 + 8k + 4 > (2k^2 + k + 1) + 8k + 4$ The state of the form $(+)$ The state of the state of the state of the result true for $n = 2k + 4k +$:	Step 3 Prove true for 1=2k+2	
That is $4k+8k+4 > 2(k+10k+1)$ the result for $n=2k+1$. The second (the second content of the result true for $n=2k+1$. I Mark: Proves the result true for n		To amore 3/2/2/2/2/2/2/42) +(2/12)+2	
$4k^{2}+8k+4 \Rightarrow 2k^{2}+5k+4$ $2k^{2}+k+1) + 8k+4$ $1 \text{ Mark: Proves the result true for } n=2$ $2k^{2}+5k+4 \text{ as required } \text{ is fame } 1 $		Met 14 40 +8k+4 > 2(k+2k+1) = -1	
1 Mark: Proves the result true for $n=2$ 1 Mark: Proves the result true for $n=2$ 2 k^2+8k+4 k^2+8k+4 k^2+5k+4		4k78k+4 > 2k2+5k+4	n=2k+2.
$\frac{1}{2k} + \frac{1}{3k} + \frac{1}{4k} + \frac{1}{3k} + \frac{1}{4k} + \frac{1}{4k} + \frac{1}{3k} + \frac{1}{4k} $		LHS 4k2+8k+4 > (2k2+k+1) + 8k+4	
$\frac{1}{2k} + 3k + 4 \Rightarrow 2k^2 + 5k + 4$ $\frac{1}{2k} + 4k + 4 \Rightarrow 2k^2 + 5k + 4$ $\frac{1}{2k} + 4k + 4 \Rightarrow 2k + 2 \Rightarrow 4k + 2 \Rightarrow 4k + 2k + 2 \Rightarrow 4k + 2 \Rightarrow$:	7, 212+9b+5	1
$ \frac{15(a)}{(i)} P(x) = (x-\alpha)^2 Q(x) + b = 0 $ $ \frac{15(a)}{(i)} P(x) = (x-\alpha)^2 Q(x) + 2(x-\alpha)Q(x) $ $ = (x-\alpha)[(x-\alpha)Q'(x) + 2Q(x)] $ Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$. $ \frac{15(a)}{(ii)} P(x) = x^3 - ax^2 + b \text{ has a root } x = \alpha $ $ P(\alpha) = \alpha^3 - a\alpha^2 + b = 0 $ $ P'(x) = 3\alpha^2 - 2a\alpha = 0 $ Substituting $A = 2a$ into equation (1) $ \frac{2a}{2a} P(x) = 3a$ $ \frac{2a}{3} P(x) = 3a$ $\frac{2a}{3} P(x) = $		> 262+5k+4 as required	
(i) $P(x) = (x - \alpha)^{2}Q(x)$ $P'(x) = (x - \alpha)^{2}Q'(x) + 2(x - \alpha)Q(x)$ $= (x - \alpha)[(x - \alpha)Q'(x) + 2Q(x)]$ Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$. 15(a) $P(x) = x^{3} - ax^{2} + b \text{ has a root } x = \alpha$ $P(\alpha) = \alpha^{3} - a\alpha^{2} + b = 0 \text{ (1)}$ $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ Substituting $A = 24$ into equation (1) $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ $P'(\alpha) = 3\alpha^{2} - 2\alpha^{2} = 0$ $P'(\alpha) =$		2 462+86+4 > 2k2+5k+4 larn=2.	
(i) $P(x) = (x - \alpha)^{2}Q(x)$ $P'(x) = (x - \alpha)^{2}Q'(x) + 2(x - \alpha)Q(x)$ $= (x - \alpha)[(x - \alpha)Q'(x) + 2Q(x)]$ Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$. 15(a) $P(x) = x^{3} - ax^{2} + b \text{ has a root } x = \alpha$ $P(\alpha) = \alpha^{3} - a\alpha^{2} + b = 0 \text{ (1)}$ $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ Substituting $A = 24$ into equation (1) $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ $P'(\alpha) = 3\alpha^{2} - 2\alpha^{2} = 0$ $P'(\alpha) =$		Step 4 The statement is face it is true step to the state in face	
(i) $P(x) = (x - \alpha)^{2}Q(x)$ $P'(x) = (x - \alpha)^{2}Q'(x) + 2(x - \alpha)Q(x)$ $= (x - \alpha)[(x - \alpha)Q'(x) + 2Q(x)]$ Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$. 15(a) $P(x) = x^{3} - ax^{2} + b \text{ has a root } x = \alpha$ $P(\alpha) = \alpha^{3} - a\alpha^{2} + b = 0 \text{ (1)}$ $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ Substituting $A = 24$ into equation (1) $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ $P'(\alpha) = 3\alpha^{2} - 2\alpha^{2} = 0$ $P'(\alpha) =$		Suise it 15 true	
(i) $P(x) = (x - \alpha)^{2}Q(x)$ $P'(x) = (x - \alpha)^{2}Q'(x) + 2(x - \alpha)Q(x)$ $= (x - \alpha)[(x - \alpha)Q'(x) + 2Q(x)]$ Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$. 15(a) $P(x) = x^{3} - ax^{2} + b \text{ has a root } x = \alpha$ $P(\alpha) = \alpha^{3} - a\alpha^{2} + b = 0 \text{ (1)}$ $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ Substituting $A = 24$ into equation (1) $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ $P'(\alpha) = 3\alpha^{2} - 2\alpha^{2} = 0$ $P'(\alpha) =$		all even values of no	
$P'(x) = (x - \alpha)^{2}Q'(x) + 2(x - \alpha)Q(x)$ $= (x - \alpha)[(x - \alpha)Q'(x) + 2Q(x)]$ Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$. $P(x) = x^{3} - ax^{2} + b \text{ has a root } x = \alpha$ $P(\alpha) = \alpha^{3} - a\alpha^{2} + b = 0 (1)$ $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ Substituting $\alpha = 2a$ into equation $\alpha = 3a$	15(a)	$P(x) = (x - \alpha)^2 Q(x)$	1
Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$. $P(x) = x^3 - ax^2 + b \text{ has a root } x = \alpha$ $P(\alpha) = \alpha^3 - a\alpha^2 + b = 0 \text{ (1)}$ $P'(x) = 3x^2 - 2ax$ $P'(\alpha) = 3\alpha^2 - 2a\alpha = 0$ Substituting $\alpha = 2x$ into equation (1) $P'(x) = 3x^2 - 2a\alpha = 0$ $P'(\alpha) = 3\alpha^2 - 2\alpha^2 = 0$ P	(1)	$P'(x) = (x - \alpha)^2 Q'(x) + 2(x - \alpha)Q(x)$	Correct answer.
Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$. 15(a) $P(x) = x^3 - ax^2 + b \text{ has a root } x = \alpha$ $P(\alpha) = \alpha^3 - a\alpha^2 + b = 0 \text{ (1)}$ $P'(x) = 3x^2 - 2ax$ $P'(\alpha) = 3\alpha^2 - 2a\alpha = 0$ Substituting $\alpha = 2x$ into equation (1) $P'(x) = 3x^2 - 2a = 0$ $P'(\alpha) = 3\alpha^2 - 2a = 0$ $P'(\alpha) = 3\alpha^$		$= (x - \alpha) [(x - \alpha)Q'(x) + 2Q(x)]$	3
(ii) $P(\alpha) = \alpha^{2} - a\alpha^{2} + b = 0 \text{ (1)}$ $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0 \text{ Take } \alpha = \frac{2a}{3} \text{ (at = 0 is a not standing of the problem.}$ Substituting $\alpha = \frac{2a}{3}$ into equation (1) $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0 \text{ Take } \alpha = \frac{2a}{3} \text{ (at = 0 is a not standing of the problem.}$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0 \text{ Take } \alpha = \frac{2a}{3} \text{ (at = 0 is a not standing of the problem.}$ $P'(\alpha) = 0 \text{ and } \alpha = 0 \text{ Take } \alpha = \frac{2a}{3} \text{ (at = 0 is a not standing of the problem.}$ $P'(\alpha) = 0 \text{ and } \alpha = 0 \text{ Take } \alpha = \frac{2a}{3} \text{ (at = 0 is a not standing of the problem.}$ $P'(\alpha) = 0 \text{ and } \alpha = 0 \text{ Take } \alpha = \frac{2a}{3} \text{ (at = 0 is a not standing of the problem.}$ $P'(\alpha) = 0 \text{ and } \alpha = 0 \text{ Take } \alpha = 0 \text$		Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$.	
$P(\alpha) = \alpha^{3} - a\alpha^{2} + b = 0 (1)$ $P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0 \text{Take } \alpha = \frac{2a}{3} (d = 0 \text{ is } a)$ $= \kappa(3x - 2a) = 0$ Substituting $\alpha = \frac{2a}{3}$ into equation (1) $2a = \frac{2a}{3} \text{into equation (1)}$ $2a = \frac{2a}{3} \text{into equation (1)}$ $2a = \frac{2a}{3} \text{ord}$	15(a)	$P(x) = x^3 - ax^2 + b$ has a root $x = \alpha$	1
$P'(x) = 3x^{2} - 2ax$ $P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ $= (3x - 2a) = 0$ Substituting $\alpha = \frac{2a}{3}$ into equation (1) $(2a)^{3} = a(2a)^{2} + b = 0$ $1 \text{ Mark: Shows some understanding of the problem.}$ $P'(\alpha) = 3a^{2} - 2a\alpha = 0$ $Audi = aa$ $Audi = aa$ $A(\alpha) $	(11)	$P(\alpha) = \alpha^{3} - a\alpha^{2} + b = 0 $ (1)	Correct answer.
$P'(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ $= \kappa(3x - 2a) = 0$ Substituting $\alpha = \frac{2a}{3}$ into equation (1) $\sum_{k=0}^{3} \frac{a}{3} = a \left(\frac{2a}{3} + b = 0 \right)$ $\kappa(\alpha) = 3\alpha^{2} - 2a\alpha = 0$ Some understanding of the problem. $P'(\alpha) = 0 \text{ and } $ $\kappa(\alpha) = 0$ $\kappa(\alpha) $			1 Mark: Shows
Substituting $\alpha = \frac{1}{3}$ into equation (1) $\beta(\alpha) = 0 \text{ and } \alpha = \frac{1}{3}$ $\alpha(\alpha) = 0 \text{ and } \alpha = \frac{1}{3}$ $\alpha(\alpha) = 0 \text{ and } \alpha = \frac{1}{3}$ $\alpha(\alpha) = 0 \text{ and } \alpha = \frac{1}{3}$		P(a) -322-200-0 Take - 29 (= 2 is a)	1
Substituting $\alpha = \frac{1}{3}$ into equation (1) $\beta(\alpha) = 0 \text{ and } \alpha = \frac{1}{3}$ $\alpha(\alpha) = 0 \text{ and } \alpha = \frac{1}{3}$ $\alpha(\alpha) = 0 \text{ and } \alpha = \frac{1}{3}$ $\alpha(\alpha) = 0 \text{ and } \alpha = \frac{1}{3}$		= x(3x-Za)=0 (Not result)	1 0 1
$(2a)^2 - a(2a)^2 + b = 0$ $(x = 2a)$ $(x = 2a)$		Substituting $\alpha = \frac{24}{3}$ into equation (1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{(2a)^3}{a} = a / (2a)^2 + b = 0$	1 - /_
$\frac{27}{4a^3} + \frac{4}{6} = 0$ $\frac{4a^3}{27} + \frac{27}{6} = 0$		$\begin{pmatrix} 3/ & 3/ \\ 8a^3 - 4a^3 & -D \end{pmatrix}$	2,7
- 42° 16=0 (403-276=0		27 9493+276=0	1
in the land the second		50 fa3-27b=0	
Solving the equations $y = x^4 + 4x^3$ and $y = mx + b$ 1 Mark: Correct	15(b)		1 Mark: Correct
(i) simultaneously has two solutions $(x = \alpha \text{ and } x = \beta)$. answer.	(1)		answer.
$\therefore x^4 + 4x^3 - mx - b = 0 \text{ is degree 4 with multiple roots at } x = \alpha$		$\therefore x^4 + 4x^3 - mx - b = 0$ is degree 4 with multiple roots at $x = \alpha$	
and $x = \beta$. Zeros are α, α, β and β .			

15(b) (ii) $\alpha + \alpha + \beta + \beta = -\frac{b}{a}$ $2(\alpha + \beta) = -4$ or $\alpha + \beta = -2$ $2(\alpha + \beta) = -4$ or $\alpha + \beta = -2$ $2(\alpha + \beta) = -4$ or $\alpha + \beta = -2$ $2(\alpha + \beta) = -4$ or $\alpha + \beta = -2$ $2(\alpha + \beta) = -4$ or $\alpha + \beta = -2$ $2(\alpha + \beta) = \alpha + \beta + \alpha + \alpha$	
Makes significant progress towards the solution. $\alpha\alpha + \alpha\beta + \alpha\beta + \alpha\beta + \alpha\beta + \beta\beta = \frac{c}{a}$ $\alpha^2 + \beta^2 + 4\alpha\beta = 0$ $(\alpha + \beta)^2 + 2\alpha\beta = 0$ $\alpha\beta = -2$ $\alpha\alpha\beta + \alpha\alpha\beta + \alpha\beta\beta + \alpha\beta\beta = -\frac{d}{a} \text{and} \alpha\alpha\beta\beta = \frac{e}{a}$ $2\alpha\beta(\alpha + \beta) = m$ $2\alpha\beta(\alpha + \beta) = m$ $m = 8$ $(\alpha\beta)^2 = -b$ $m = 8$ $b = -4$ 15(c) (i) $x = g - kv$ $\frac{dv}{dt} = g - kv$ $\frac{dv}{dt} = g - kv$ $\frac{dt}{dv} = \frac{1}{g - kv}$ $t = -\frac{1}{k}\log_e(g - kv) + C$ Initial conditions $t = 0$ and $v = 0$ $0 = -\frac{1}{k}\log_e(g) + C$ $C = \frac{1}{k}\log_e(g - kv) + \frac{1}{k}\log_e g$ 1 Makes significant progress towards the solution. 1 Mark: Uses the relationships between the roots and coefficients. 2 Marks: Correct answer. 2 Marks: Correct answer. 2 Marks: Correctly substitutes the initial conditions into the expression for t 1 Mark: Finds the correction expression for t	1 ' '
$\alpha\alpha + \alpha\beta + \alpha\beta + \alpha\beta + \beta\beta = \frac{c}{a}$ $\alpha^2 + \beta^2 + 4\alpha\beta = 0$ $(\alpha + \beta)^2 + 2\alpha\beta = 0$ $\alpha\beta = -2$ $\alpha\alpha\beta + \alpha\alpha\beta + \alpha\beta\beta + \alpha\beta\beta = -\frac{d}{a} \text{and} \alpha\alpha\beta\beta = \frac{e}{a}$ $2\alpha\beta + \alpha\alpha\beta + \alpha\beta\beta + \alpha\beta\beta = -\frac{d}{a} \text{and} \alpha\alpha\beta\beta = \frac{e}{a}$ $2\alpha\beta(\alpha + \beta) = m (\alpha\beta)^2 = -b \text{relationships}$ between the roots and coefficients. 15(c) (i) $x = g - kv$ $\frac{dv}{dt} = g - kv$ $\frac{dv}{dt} = g - kv$ $\frac{dt}{dv} = \frac{1}{g - kv}$ $15(c) (ii) \frac{dv}{dt} = g - kv$ $15(c) (iii) \frac{dv}{dt} = g - kv$ $15(c) $	
$\alpha^2 + \beta^2 + 4\alpha\beta = 0$ $(\alpha + \beta)^2 + 2\alpha\beta = 0$ $\alpha\beta = -2$ $\alpha\alpha\beta + \alpha\alpha\beta + \alpha\beta\beta + \alpha\beta\beta = -\frac{d}{a} \text{and} \alpha\alpha\beta\beta = \frac{e}{a}$ $2\alpha\beta(\alpha + \beta) = m (\alpha\beta)^2 = -b$ $m = 8 b = -4$ $15(c)$ (i) Newton's second law: $\ddot{x} = g - kv$ $\frac{dv}{dt} = g - kv$ $\frac{dt}{dv} = \frac{1}{g - kv}$ $15(c)$ (ii) $\frac{dv}{dt} = g - kv$ $\frac{dt}{dv} = \frac{1}{g - kv}$ $15(c)$ (iii) $\frac{dv}{dt} = g - kv$ $15(c)$	
$\alpha\beta = -2$ $\alpha\alpha\beta + \alpha\alpha\beta + \alpha\beta\beta + \alpha\beta\beta = -\frac{d}{a} \text{and} \alpha\alpha\beta\beta = \frac{e}{a}$ $2\alpha\beta(\alpha + \beta) = m$ $2\alpha\beta(\alpha + \beta) = m$ $m = 8$ $1 \text{ Mark: Uses the relationships between the roots and coefficients.}$ $1 \text{ Since the roots and coefficients.}$ $1 \text{ Mark: Correct answer.}$ $2 \text{ Marks: Correct answer.}$ $2 \text{ Marks: Correctly substitutes the initial conditions } t = 0 \text{ and } v = 0$ $0 = -\frac{1}{k} \log_e(g - kv) + C$ $1 \text{ Initial conditions } t = 0 \text{ and } v = 0$ $0 = -\frac{1}{k} \log_e(g) + C$ $C = \frac{1}{k} \log_e(g) + C$ $C = \frac{1}{k} \log_e(g - kv) + \frac{1}{k} \log_e g$ $1 \text{ Mark: Finds the correction expression for } t$	
the relationships between the roots and coefficients. 15(c) Newton's second law:	
between the roots and coefficients.	
(i) $\ddot{x} = g - kv$ answer. $\frac{dv}{dt} = g - kv$ $\frac{dv}{dt} = g - kv$ $\frac{dt}{dv} = \frac{1}{g - kv}$ $t = -\frac{1}{k} \log_e(g - kv) + C$ Initial conditions $t = 0$ and $v = 0$ $0 = -\frac{1}{k} \log_e(g) + C$ $C = \frac{1}{k} \log_e(g - kv) + \frac{1}{k} \log_e g$ $1 \text{ Mark: Finds the correction expression for } t$	
15(c) (ii) $\frac{dv}{dt} = g - kv$ $\frac{dt}{dv} = \frac{1}{g - kv}$ $t = -\frac{1}{k} \log_e(g - kv) + C$ Initial conditions $t = 0$ and $v = 0$ $0 = -\frac{1}{k} \log_e(g) + C$ $C = \frac{1}{k} \log_e(g - kv) + \frac{1}{k} \log_e g$ $1 \text{ Mark: Finds the correction expression for } t$	1 1
(ii) $\frac{dt}{dt} = g - kv$ $\frac{dt}{dv} = \frac{1}{g - kv}$ $t = -\frac{1}{k} \log_e(g - kv) + C$ Initial conditions $t = 0$ and $v = 0$ $0 = -\frac{1}{k} \log_e(g) + C$ $C = \frac{1}{k} \log_e(g) + C$ $C = \frac{1}{k} \log_e(g) + C$ $t = -\frac{1}{k} \log_e(g) + C$	
Correctly substitutes the initial conditions $t = 0$ and $v = 0$ $0 = -\frac{1}{k} \log_e(g) + C$ $C = \frac{1}{k} \log_e(g) + C$ $t = -\frac{1}{k} \log_e(g) + C$	
Correctly substitutes the initial conditions $t = 0$ and $v = 0$ $0 = -\frac{1}{k} \log_e(g) + C$ $C = \frac{1}{k} \log_e(g) + C$ $t = -\frac{1}{k} \log_e(g) + C$	
Initial conditions $t = 0$ and $v = 0$ $0 = -\frac{1}{k} \log_{e}(g) + C$ $C = \frac{1}{k} \log_{e} g$ $t = -\frac{1}{k} \log_{e}(g - kv) + \frac{1}{k} \log_{e} g$ Initial conditions into the expression for t $1 \text{ Mark: Finds the correction expression for } t$	
Initial conditions $t = 0$ and $v = 0$ $0 = -\frac{1}{k} \log_{e}(g) + C$ $C = \frac{1}{k} \log_{e} g$ $t = -\frac{1}{k} \log_{e}(g - kv) + \frac{1}{k} \log_{e} g$ conditions into the expression for t $1 \text{ Mark: Finds the correction expression for } t$	
$0 = -\frac{1}{k}\log_{e}(g) + C$ $C = \frac{1}{k}\log_{e}g$ $t = -\frac{1}{k}\log_{e}(g - kv) + \frac{1}{k}\log_{e}g$ for t 1 Mark: Finds the correction expression for t	
the correction expression for t $t = -\frac{1}{k} \log_e(g - kv) + \frac{1}{k} \log_e g$	
the correction expression for t $t = -\frac{1}{k} \log_e(g - kv) + \frac{1}{k} \log_e g$	
$\begin{bmatrix} -1_{log} (g) \end{bmatrix}$	
$= \frac{1}{k} \log_{e} \left(\frac{g}{g - k \nu} \right)$	
$kt = \log_{\epsilon}\left(\frac{g}{g - k\nu}\right)$	
$e^{kt} = \frac{g}{g - kv}$	
$ge^{kt} - kve^{kt} = g$	
$kve^{kt} = ge^{kt} - g$	
$v = \frac{g}{k}(1 - e^{-kt})$	

15(0)		234-1
15(c) (iii)	$\frac{dv}{dt} = v \frac{dv}{dx}$	3 Marks: Correct answer.
(111)	$\int dt dx$	Correct answer.
	$v\frac{dv}{dt} = g - kv$	
	$\int dx^{-g}$	2 Marks:
	$\frac{dv}{dr} = \frac{g - kv}{v}$	Makes
	$\frac{dx}{dx} = \frac{1}{v}$	significant
	dx v	progress towards the
	$\frac{dx}{dv} = \frac{v}{g - kv}$	solution.
	$x = \int \frac{-\frac{1}{k}(g - kv) + \frac{g}{k}}{g - kv} dv$	1 Maria II
	g-kv	1 Mark: Uses results for part
	$= -\frac{1}{h}v - \frac{g}{h^2}\log_e(g - kv) + C$	(i) to determine
	$k k^2 \log_e(g)$	an expression
	When $x = 0$ and $v = 0$	
	$0 = -\frac{1}{L} \times 0 - \frac{g}{L^2} \log_e(g - k \times 0) + C$	for $\frac{dx}{dv}$
	Calling the 91	(_ bt)
	$C = \frac{g}{k^2} \log_e g \qquad \qquad (iY) \lim_{k \to \infty} V = \lim_{k \to \infty} \frac{f(k)}{k}$	1-4
	$1 q q = q \gamma$	Vatoroache
	$x = -\frac{1}{k}v - \frac{g}{k^2}\log_e(g - kv) + \frac{g}{k^2}\log_e g$	V <z< td=""></z<>
	$C = \frac{g}{k^2} \log_e g$ $x = -\frac{1}{k} v - \frac{g}{k^2} \log_e (g - kv) + \frac{g}{k^2} \log_e g$ $= -\frac{1}{k} v + \frac{g}{k^2} \log_e \left(\frac{g}{g - kv}\right)$ $z^n = [\cos \theta + i \sin \theta]^n$ $(iY) \lim_{k \to \infty} V = \lim_{k \to \infty} \frac{g}{k}$ $= \frac{g}{k^2} \log_e g$ $= \frac{g}{k^2}$	I MARK
16(a)	$z^{n} = [\cos\theta + i\sin\theta]^{n}$	2 Marks:
(i)		Correct answer.
	$=\cos n\theta + i\sin n\theta$	
	$\frac{1}{\sigma^n} = [\cos\theta + i\sin\theta]^{-n}$	1 Mark: Uses
	2	De Moivre's
	$=\cos n\theta - i\sin n\theta$	theorem
	$z^{n} - \frac{1}{z^{n}} = \cos n\theta + i \sin n\theta - \cos n\theta + i \sin n\theta$	
	Z .	
	$= 2i \sin n\theta$	
16(a) (ii)	$\left(z - \frac{1}{z}\right)^{5} = z^{5} + 5z^{4} \left(-\frac{1}{z}\right) + 10z^{3} \left(-\frac{1}{z}\right)^{2} + 10z^{2} \left(-\frac{1}{z}\right)^{3}$	Z Marks: Correct answer.
	$+5z\left(-\frac{1}{z}\right)^4+\left(-\frac{1}{z}\right)^5$	/Marks: Makes
		significant
	$= \left(z^{5} - \frac{1}{z^{5}}\right) - 5\left(z^{3} - \frac{1}{z^{3}}\right) + 10\left(z - \frac{1}{z}\right)$	progress.
		5 . 7 - 13
	$(2i\sin\theta)^5 = 2i\sin 5\theta - 10i\sin 3\theta + 20i\sin\theta$	5 5 20
	1	C 5/2011 1/24
	$\sin^5\theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$	
L		l

		Mathematics Extension 2
16(b) (iii)	165in 50 - 105in 8 = 5in 50 - 55in 30 = 0 So selve 165in 8 - 105in 8 = 0 (8cin 40 - 5) sin 8 = 0 25in 6 = 0 or sin 6 = ±45 in 0<0<0 0=0, 11 0=1.09546 = 1.09576 2.04613 c To rearest reduce 0=0, 3, 1, 2	3 Marks: 9,423 Correct answer. 2 Marks: flath of Southern 1 Mark: Makes some progress to login be by the
16(b) (i)	Consider $\triangle BNQ$ and $\triangle AMQ$. $\angle QBN = \angle QAM$ (angle between a tangent and a chord equals the angle in the alternate segment)	3 Marks: Correct answer.
	$\angle QNB = \angle QMA = 90^\circ$ (perpendiculars from Q) $\therefore \Delta BNQ \parallel \Delta AMQ$ (Two angles of one triangle are respectively equal to two angles of another triangle) $\Delta ALQ \parallel \Delta BMQ$ is a similar proof. Consider ΔALQ and ΔBMQ .	Makes significant progress towards the solution.
	$\angle QAL = \angle QBM$ (angle between a tangent and a chord equals the angle in the alternate segment) $\angle QLA = \angle QMB = 90^{\circ} \text{ (perpendiculars from } Q\text{)}$ $\therefore \Delta ALQ \parallel \Delta BMQ \text{ (Two angles of one triangle are respectively}$	1 Mark: Applies a relevant circle theorem.
16(b) (ii)	equal to two angles of another triangle) $\frac{QN}{QM} = \frac{QB}{QA} \text{ (matching sides in similar triangles } \Delta BNQ \parallel \Delta AMQ$	2 Marks: Correct answer.
	$\frac{QM}{QL} = \frac{QB}{QA} \text{ (matching sides in similar triangles } \Delta ALQ \parallel \Delta BMQ \text{)}$ $\therefore \frac{QN}{QM} = \frac{QM}{QL}$ This represents a geometric sequence QN, QM, QL, \dots	1 Mark: Matches the sides in the similar triangles.
16(4)	Jax trent substitution dx = 2dt	3 Marks: Correct answer.
	$=\int \frac{2dt}{1+\frac{2t}{1+2t}} = \int \frac{2dt}{1+t^2+2t}$ $=\int \frac{2dt}{(t+1)^2} = \int 2(t+1)^2 dt$ $=\frac{2(t+1)^2}{t+1} + c$	2 Marks: Makes significant progress towards the solution.
	$ \frac{PRIMINUE}{fm_{2}^{2}+1} = \frac{-2}{fm_{2}^{2}+1} + C $ $ \frac{-\cos x}{1+\sin x} + C \text{ or } fmx - \sec x + C $	1 Mark: Sets up $f(x)$ and uses calculus.