1. Solution

The sample size, *n*, is 21. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Χ
Q1	$\lceil 0.25 \times 21 \rceil$	6	63.55
Q2	$\lceil 0.5 \times 21 \rceil$	11	64.03
Q3	$\lceil 0.75 \times 21 \rceil$	16	64.33

We determine the IQR.

$$IQR = Q3 - Q1$$

$$= 64.33 - 63.55$$

$$= 0.78$$

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $63.55 - 1.5 \times 0.78$
= 62.38
upper boundary = Q3 + $1.5 \times IQR$
= $64.33 + 1.5 \times 0.78$
= 65.5

We determine the outliers.

outliers =
$$\{62.13\}$$

We identify the ends of the whiskers: 62.86 and 64.99. We plot the boxplot.

2. Solution

The sample size, *n*, is 36. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 36 ceil$	9	54.65
Q2	$\lceil 0.5 \times 36 \rceil$	18	55.17
Q3	$\lceil 0.75 \times 36 \rceil$	27	55.73

We determine the IQR.

$$IQR = Q3 - Q1$$

$$= 55.73 - 54.65$$

$$= 1.08$$

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $54.65 - 1.5 \times 1.08$
= 53.03
upper boundary = Q3 + $1.5 \times IQR$
= $55.73 + 1.5 \times 1.08$
= 57.35

We determine the outliers.

outliers =
$$\{52.97, 57.7\}$$

We identify the ends of the whiskers: 53.32 and 56.73. We plot the boxplot.

