

ფეხსაცმელების დალაგება

ადნანი ბაქოში ფლობს ფეხსაცმელების უდიდესს საწყობს. ახლახან მან კონტეინერით მიიღო ფეხსაცმელის n წყვილი. ყოველ წყვილში ორი ერთი და იგივე ზომის ფეხსაცმელია: მარცხენა და მარჯვენა.

ადნანმა დააწყო ყველა 2n ფეხსაცმელი ერთ მწკრივში, რომელიც შედგება 2n პოზიციისგან, დანომრილი მარცხნიდან მარჯვნივ 0 -დან 2n-1 -ის ჩათვლით.

ადნანს სურს გადაალაგოს მწკრივში ფეხსაცმელები ისე, რომ მიიღოს მათი **დასაშვები წყობა**. წყობა დასაშვებია მაშინ და მხოლოდ მაშინ, თუ ყოველი i ($0 \le i \le n-1$) -სთვის სრულდება შემდეგი პირობები:

- ullet ფეხსაცმელები, განლაგებული 2i და 2i+1 არიან ერთი და იგივე ზომის.
- 2i პოზიციაში დევს მარცხენა ფეხსაცმელი.
- 2i+1 პოზიციაში დევს მარჯვენა ფეხსაცმელი.

ამ მიზნის მისაღწევად ადნანს შეუძლია შეასრულოს გაცვლების სერია. ყოველ გაცვლისას მას შეუძლია მწკრივში შეარჩიოს მიმდინარე მომენტში ორი **მეზობელი** ფეხსაცმელი და გაცვალოს ისინი ერთმანეთში. ორი ფეხსაცმელი მეზობელია, თუ მათი პოზიციების ნომრები განსხვავდება ერთით.

დაადგინეთ გაცვლების მინიმალური რაოდენობა, რომლის შესრულების შედეგად ადნანი მიიღებს ფეხსაცმელების დასაშვებ წყობას.

იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი ფუნქციის იმპლემენტაცია:

int64 count_swaps(int[] S)

- S: მასივი, რომელშიც 2n რაოდენობით მთელი ელემენტია. ყოველი i ($0 \le i \le 2n-1$) ნომრისთვის, S[i] წარმოადგენს ნოლისგან განსხვავებულ მთელ რიცხვს, რომელიც აღწერს i პოზიციაში განლაგებულ ფეხსაცმელს. ამ რიცხვის აბსოლუტური სიდიდე აღწერს ფეხსაცმლის ზომას, რაც არ აღემატება n-ს. თუ S[i] < 0, მაშინ i პოზიციიაში დევს მარცხენა ფეხსაცმელი, ხოლო წინააღმდეგ შემთხვევაში დევს მარჯვენა ფეხსაცმელი.
- ქვეპროგრამამ უნდა დააბრუნოს მეზობელი ფეხსაცმელების გაცვლების მინიმალური რაოდენობა, რომლის შედეგად უნდა მიიღოთ დასაშვები წყობა.

მაგალითები

მაგალითი 1

განვიხილოთ შემდეგი გამოძახება:

```
count_swaps([2, 1, -1, -2])
```

ადნანს შეუძლია მიიღოს დასაშვები წყობა 4 გაცვლის შედეგად.

მაგალითად, პირველად მას შეუძლია გაცვალოს ფეხსაცმელები 1 და -1, შემდეგ 1 და -2, შემდეგ -1 და -2, და საბოლოოდ 2 და -2. შედეგად მიიღება დასაშვები წყობა [-2,2,-1,1]. შეუძლებელია დასაშვები წყობის მიღება 4 -ზე ნაკლებ გაცვლის შედეგად. ამიტომ ქვეპროგრამამ უნდა დააბრუნოს პასუხი 4.

Shoes (2 of 3)

მაგალითი 2

შემდეგ მაგალითში ყველა ფეხსაცმელი თანაბარი ზომის არის.

```
count_swaps([-2, 2, 2, -2, -2, 2])
```

ადნანს შეუძლია გაცვალოს 2 და 3 პოზიციებში მდებარე ფეხსაცმელები, რის შედეგად მიიღება დასაშვები წყობა [-2,2,-2,2,-2,2], ამიტომ ფუნქციამ უნდა დააბრუნოს პასუხი 1.

შეზღუდვები

- $1 \le n \le 100\,000$
- ullet ყოველი i-ვის ($0 \leq i \leq 2n-1$), $1 \leq |S[i]| \leq n$. აქ |x| აღნიშნავს x სიდიდის აბსოლუტურ მნიშვნელობას.
- დასაშვები წყობა გარანტირებულად მიიღება გაცვლების გარკვეული მიმდევრობის შედეგად.

ქვეამოცანები

- $1. \, (10\, dag) \, n = 1$
- 2. (20 ქულა) $n \leq 8$
- 3. (20 ქულა) ყველა ფეხსაცმელი თანაბარი ზომის არის.
- 4. (15 ქულა) ყველა ფეხსაცმელი პოზიციებში $0,\ldots,n-1$ არის მარცხენა, ხოლო ყველა ფეხსაცმელი პოზიციებში $n,\ldots,2n-1$ არის მარჯვენა. ასევე, ყოველი i-სთვის ($0\leq i\leq n-1$), i და i+n პოზიციებში მდებარე ფეხსაცმელები თანაბარი ზომის არიან.
- 5. (20 ქულა) $n \leq 1000$
- 6. (15 ქულა) დამატებითი შეზღუდვების გარეშე.

სანიმუშო გრადერი

სანიმუშო გრადერი შესატან მონაცემებს კითხულობს შემდეგ ფორმატში:

- სტრიქონი 1: n
- ullet სტრიქონი 2: S[0] S[1] S[2] \dots S[2n-1]

სანიმუშო გრადერი გამოიტანს ერთ ხაზს, რომელიც მოიცავს count_swaps ფუნქციის დაბრუნებულ მნიშვნელობას.