A

Zadanie	1	2	3	4	5	6	7	8	9	10	Σ
Punkty											
(maks)	(2)	(2)	(2)	(2)	(4)	(6)	(8)	(8)	(12)	(12)	(40)

UWAGA: TA CZĘŚĆ ZOSTANIE WYPEŁNIONA PRZEZ EGZAMINATORA!

Nazwis	о і Іміę:			NR.	INDEK	KSU:
	${\bf Systemy\ uczące\ się-SUS'201}$	2				
	— Czas pisania pracy: 75 minut —					
	. [4 punkty] W tabeli poniżej przedstawiony jest zbiór treningowy, v cztery atrybuty (a_1, a_2, a_3, a_4) i decyzję (c) .	v któr	ym ka	żdy p	rzykła	d ma
	a. Jaka jest entropia tego zbioru danych?					
		a_1	a_2	a_3	a_4	c
		$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	1 1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	+ + + + + + + + + + + + + + + + + + + +
	b. Jaki jest oczekiwany przyrost informacji (Information Gain) po obserwacji atrybutu a_1 ?		0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	-
				0	0	
	<u>•</u>					
	2. [4 punkty] Co to jest boosting?					
	a) Proces, w którym przestrzeń hipotez jest explicite kolej mentami.	jno uz	upełni	ana n	.owym	i ele-
	b) Niekorzystny efekt przeuczenia, gdy w modelu jest zbyt	wiele s	topni	swobo	ody.	
	c) Technika budowy klasyfikatorów poprzez łączenie wielu s	łabych	uczn	iów.		
	d) Korzystny efekt wpływający na tempo uczenia.					
	3. [4 punkty] Co się stanie, gdy zwiększymy liczbę ukrytych węzłów	v w d	wuwar	stowe	j sieci	neu-
	ronowej?					
	a) Będzie w stanie reprezentować bardziej skomplikowane w	zorce.				
	a) Będzie mniej skłonna do przeuczenia.					
	a) Będzie lepiej generalizowała/uogólniała. a) Sieć będzie szybciej zbiegała.					
		\ D	(4.0)	~	(0, 0)	D
	I. [8 punkty] Dany jest następujący zbiór punktów w \mathbb{R}^2 : $\{A = (5, 3, 1, 0), E = (3, 0), F = (1, 1), G = (6, 2), H = (2, 3), I = (1, 2),$					
	(4,1), M = (6,1), N = (3,4). Wypisz wektor grupowania na dwa pe	odzbio	ry (pr	zypisz	poszc	zegól-
	nym punktom numer grupy), który jest wynikiem zastosowania hiera eracyjnego z minimum jako funkcją łączącą (single linkage) (w me					giom-

- 5. [8 punkty] Dane są obiekty $\{(0,0,+),(1,0,+),(0,3,-),(1,3,-),(0,6,+),(1,6,+)\}$. Oszacujemy skuteczność algorytmu k-NN przy k=3 (z metryką Euklidesową) metodą 3-CV, czyli walidacją krzyżową z trzema równolicznymi podzbiorami.
 - a. Jaka jest najmniejsza możliwa skuteczność algorytmu? Odpowiedź uzasadnij.

b. Jaka jest największa możliwa skuteczność algorytmu? Odpowiedź uzasadnij.

6. [8 punkty] Skonstruuj sieć neuronową która dla danych wejściowych $(x,y) \in [0,1] \times [0,1]$ rozpoznaje obszar zaznaczony na rysunku.

Zakładamy, że funkcją aktywacji jest:

$$f(w) = \begin{cases} 1 & \text{dla } w \ge 0\\ -1 & \text{dla } w < 0 \end{cases}$$

Podaj najprostszą możliwą strukturę sieci oraz wagi poszczególnych neuronów.

7. [12 punkty] Zadana jest tablica danych:

has shell	aquatic	predator	venomous	type
F	F	Т	F	mollusc
T	Т	Т	F	mollusc
Т	F	F	F	insect
Т	F	F	Т	insect
Т	Т	F	F	insect
F	F	Т	F	insect
F	F	Т	T	mollusc
Т	F	T	T	mollusc
F	Т	F	F	mollusc

a. Wypisz najlepszą regułę długości 1.

a. Wypisz najlepszą regułę długości 2.

Wskazówka: Regułę taką można wygenerować algorytmem CN2 dla $K \geqslant 3$.

Do obliczania jakości reguł wykorzystaj estymatę Laplace'a zdefiniowaną jako:

$$L(\tau) = \frac{S_d(\tau) + 1}{S(\tau) + N_d},$$

gdzie $S(\tau)$ odpowiada liczbie obiektów wspierających regułę $\tau, S_d(\tau)$ to liczba obiektów poprawnie klasyfikowanych przez τ , a N_d to liczba klas decyzyjnych.

8. [8 punkty] Na podstawie tablicy decyzyjnej z Zadania 7 sklasyfikuj obiekt x=(T,T,F,T,?) przy pomocy algorytmu NaiveBayes.

9. [12 punkty] Rozpatrzmy przestrzeń \mathbb{R}^n_+ , czyli przestrzeń *n*-wymiarowych wektorów o współczynnikach dodatnich. Niech K_{θ} będzie funkcją definiowaną jak następująco:

$$K_{\theta}: \mathbb{R}^{n}_{+} \times \mathbb{R}^{n}_{+} \longrightarrow \mathbb{R}$$

$$(\mathbf{a}, \mathbf{b}) \longmapsto K_{\theta}(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} \delta_{\theta}(a_{i}, b_{i})$$

gdzie $\mathbf{a} = \langle a_1, \dots a_n \rangle$, $\mathbf{b} \langle b_1, \dots b_n \rangle$ są wektorami z \mathbb{R}^n_+ , a

$$\delta_{\theta}(a_i, b_i) = \begin{cases} 1 & \text{jeśli } a_i > \theta \text{ oraz } b_i > \theta \\ 0 & wpp \end{cases}$$

Innymi słowami, $K_{\theta}(\mathbf{a}, \mathbf{b})$ jest liczbą pozycji, w których oba wektory \mathbf{a} i \mathbf{b} mają większą wartość niż próg θ .

a. Pokazać, że $K_{\theta}(\mathbf{a}, \mathbf{b})$ jest funkcją jądrową (ang. kernel function) dla pewnego zanurzenia przestrzeni \mathbb{R}^n_+ w inną przestrzeń.

b. Naszym celem jest szukanie dobrej wartości θ dla odpowiedniego klasyfikatora SVM. Jak się zachowuje funkcja $K_{\theta}(\mathbf{a}, \mathbf{b})$?

 $(wsk. \text{ podaj właściwości liczbowe tej miary kiedy zmieniamy wartość } \theta \text{ od } 0 \text{ do } \infty.$

c. Zaproponuj (heurystyczny) algorytm ustalenia optymalnej wartości dla θ

Rozpatrujemy klasę \mathcal{K} zawierającą hipotezy definiowane jako części wspólne dwóch perceptronów (półpłaszczyzn). Każda hipoteza może być traktowana jako wypukły kąt na płaszczyźnie (por. rysunek obok).

a. Pokazać, że trzy punkty mogą być rozbite (ang. shattered) przez hipotezy z \mathcal{K} ;

b. Podaj przykład zbioru punktów na płaszczyźnie, który nie jest rozbity przez klasę $\mathcal{K};$

c. Oblicz wymiar Vapnika-Chervonenkisa VCdim dla klasy hipotez \mathcal{K} . Odpowiedź uzasadnij.

