PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-036271

(43)Date of publication of application: 10.02.1998

(51)Int.CI.

A61K 31/70 A61K 31/70 A61K 31/70 A61K 35/78 A61K 35/78 CO7H 7/04

(21)Application number: 08-214316

(71)Applicant: KUREHA CHEM IND CO LTD

(22)Date of filing:

25.07.1996

(72)Inventor: SHOBU YOICHI

TSUZUKI TOMOKO SHIRAGAMI TOSHIMI MORINO MASAYOSHI YOSHIKUMI CHIKAO

(54) SYNTHETIC SUPPRESSANT CONTAINING ALOIN DERIVATIVE FOR PROTEIN BELONGING TO HSP 27 (27KDA HEAT SHOCK PROTEIN) FAMILY

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject synthetic suppressant capable of suppressing the synthesis of heat shock protein in cells and curing diseases such as cancer and multiple sclerosis by containing a specific aloin derivative as an active ingredient.

SOLUTION: This synthetic suppressant contains an aloin derivative of formula I (R1 is a hexose residue excluding a hydroxy group at the 1-position of hexose; R2 is a 1-3 C hydroxyalkyl). As this aloin derivative, aloin of formula II is preferable. Aloin is contained in a crude drug such as aloe and the like and obtained by extracting e.g. aloe with water (e.g. cold water, warm water or boiling water) or an organic solvent. By this suppressant, cancers relating to the change of normal cells to malignant tumors and the reduce of effect in the thermotherapy and autoimmune diseases such as multiple sclerosis and the like relating to the occurrence caused by heat shock protein from 16kDa to 40kDa in molecular weight can be effectively cured.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

BEST AVAILABLE COPY

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-36271

(43)公開日 平成10年(1998) 2月10日

東京都国立市東2-19-46

(74)代理人 弁理士 森田 憲一

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ					技術表示箇所
A 6 1 K 31/70	ADS		A 6 1	K 3	1/70		ADS	
	AAA						AAA	
	ABC						ABC	
35/78	ADU			35/78			ADUV	
	AGZ						AGZ	
		審査請求	未請求	請求項	頁の数 3	FD	(全 8 頁)	最終頁に続く
(21)出願番号	特願平8-214316 (71)出		人類出	000001100				
					呉羽化	学工業	株式会社	
(22)出願日	平成8年(1996)7月	125日	東京都中央区日本橋堀留町1丁目9番11号					
			(72)	(72)発明者 清輔		洋一		
			東京都新			新宿区百人町 3 -26-1-303		
			(72) §	発明者	都築	智子		
			埼玉県蕨市北町4-8-26-106					
			(72)	色明者	白神	俊美		
				東京都小平市大沼町1-180-1-306				
			(72) §	発明者	森野	鼠嘉		
					東京都練馬区光が丘3-7-2-207			
			(72) 5	発明者	吉汲	親雄		

(54)【発明の名称】 HSP27ファミリーに属するタンパク質のアロイン誘導体含有合成抑制剤

(57)【要約】

キル基)

【課題】 分子量16キロダルトンから40キロダルトンまでの間の熱ショックタンパク質(HSP27ファミリー)がその悪性化や温熱療法の効果の減少に関連する癌、又はHSP27ファミリーに属するタンパク質がその発症に関連する多発性硬化症などの自己免疫疾患の患者の生理学的状態を有効に改善させ、前記病気を効果的に治療することができる、HSP27ファミリーに属するタンパク質の合成抑制剤を提供する。

【解決手段】 下記一般式 (I) で表されるアロイン誘導体を有効成分として含有する。

【化1】

$$\bigcap_{R^1} \bigcap_{QH} \bigcap_{QH} \bigcap_{R^2} \bigcap_{QH} \bigcap_{QH$$

(式中、R¹ は、ヘキソースの1位の水酸基を除いたヘキソース残基、R² は、炭素数1~3のヒドロキシアル

the second with the second

【特許請求の範囲】

【請求項1】 式(I):

【化1】

$$\begin{array}{cccc}
\text{OH} & \text{O} & \text{OH} \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

(式中、R'は、ヘキソースの1位の水酸基を除いたへ 10 キソース残基であり、R⁴ は、炭素数1~3のヒドロキ シアルキル基である)で表されるアロイン誘導体を有効 成分として含有することを特徴とする、分子量16キロ ダルトンから40キロダルトンまでの間の熱ショックタ ンパク質の合成抑制剤。

【請求項2】 式(1):

【化2】

$$\begin{array}{cccc}
\text{OH} & \text{O} & \text{OH} \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

(式中、R は、ヘキソースの1位の水酸基を除いたへ キソース残基であり、R² は、炭素数1~3のヒドロキ シアルキル基である) で表されるアロイン誘導体を含有 する植物の抽出物を有効成分として含有することを特徴 とする、分子量16キロダルトンから40キロダルトン までの間の熱ショックタンパク質の合成抑制剤。

【請求項3】 アロエの抽出物を有効成分として含有す 30 ることを特徴とする、分子量16キロダルトンから40 キロダルトンまでの間の熱ショックタンパク質の合成抑 制剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アロイン誘導体を 有効成分として含有する、分子量が16キロダルトン (kD) から40kDまでの間の熱ショックタンパク質 群(以下、HSP27ファミリーと称する)に属するタ ンパク質の合成抑制剤に関する。本発明によるHSP2 40 7ファミリーに属するタンパク質の合成抑制剤は、特 に、HSP27ファミリーに属するタンパク質の組織内 合成を抑制することによって、HSP27ファミリーに 属するタンパク質が発症、悪性化、又は治療の障害に関 与するものと考えられている病気、例えば、癌、又は多 発性硬化症などの患者の生理学的状態を有効に改善さ せ、前記の病気を効果的に治療することができる。

[0002]

【従来の技術】近年の化学療法、外科療法、放射線療

て癌による死亡原因に癌の悪性化が直接的又は間接的に 関わっており、癌の悪性化の克服が今後の癌治療の大き な課題の一つとなっている。癌の悪性度は、癌の増殖 性、浸潤性、又は転移性などによって定められる。悪性 化の現象の一つである転移は原発癌の種類により、転移 を起こしやすい臓器が異なる。癌の転移は複合事象であ り、原発腫瘍の増殖、癌細胞の原発巣からの離脱と周辺 組織への浸潤・増殖から始まって、腫瘍血管新生、癌細 胞の最寄りの血管内への侵入、血流による遠隔部位への 移動と血管内皮細胞への接着・着床、更に、血管外への 浸潤、遠隔部位(転移組織)での増殖の開始に続いて新 たな腫瘍血管が新生され、やがて可視的な転移巣の形成 に至るまでの複雑な反応カスケードから成り立ってい る。一般に、癌は、高い悪性度を有するものと、比較的 に悪性度の低いものとに分けられる。しかし、悪性度の 高い癌に対しては根本的な治療法は確立しておらず、患 者は遂には死に至ることが極めて多い。

【0003】また、癌の温熱療法 (ハイパーサーミア; hyperthermia) とは、癌組織を加温することにより、腫 20 瘍細胞を選択的に殺し、癌を治療しようとする方法であ り、近年注目を浴びている。温熱療法による癌治療は、 温熱の生物学的効果をみると、41~45℃の比較的温 和な加温で細胞致死効果が得られること、また放射線や 抗癌剤などと併用することにより相乗的な効果が得られ ることなど、有利な点が多い。温熱療法による癌の治療 法は、臨床においてはほとんどすべての各科で試みられ ている。しかし、温熱療法の問題点の一つは、加温後一 過性に誘導される温熱耐性である。すなわち、癌細胞が 1回目の加温により一時的に温熱耐性になるために、次 の加温による殺細胞効果が減少する。温熱耐性とは、細 胞(又は組織)を一度亜致死的な加温をすることによ り、次の加温に対してその細胞(又は組織)が一過性に 温熱抵抗性になることである。温熱耐性のため、現在ほ とんどの施設において温熱療法を行うのは週1~2回に 限定されているのが現状である。

【0004】また、癌の化学療法においても、化学療法 に殆ど反応しない肺癌や大腸癌などの固型癌が依然とし て存在する一方で、化学療法剤に反応する癌でも、やが て抗癌剤が効かなくなる耐性化が問題となっている。1 988年のアメリカの統計によれば、1年間に診断され た癌の49%が化学療法に最初から抵抗性を示す内因性 耐性であり、47%が当初化学療法が有効で、腫瘍がい ったん消退した後に再発した獲得性耐性とされている。 これらの事実から、癌に対する化学療法の効果を妨げる 最も重要な問題の一つは細胞毒性薬剤に対する耐性であ ることがわかる。

【0005】また、多発性硬化症(multiple sclerosi s, MS) は中枢神経白質を特異的に障害する炎症性脱 髄性疾患であり、その発症機序に、神経線維を包んでい 法、及び免疫療法などの進歩にもかかわらず、依然とし 50 るミエリン鞘を免疫系が攻撃することが示されている自

己免疫疾患である。多発性硬化症は多くの場合、初期に は急性憎悪・寛解を繰り返すが、その後徐々に進行性の 経過をとるようになる。急性期の症状改善を目的とした ものとして、副腎皮質刺激ホルモン (ACTH) や副腎 皮質ステロイド剤が、また寛解期での再発予防や慢性進 行型の症状進展防止を目的として、アザチオプリンやサ イクロフォスファミドなどの免疫抑制剤が用いられてき た。しかし、現在、多発性硬化症患者に投与されている 薬剤の多くは、その効果が期待されていたほどでなく、 非特異的な療法で副作用も多くみられるなど、十分とは 10 いい難いのが現状である。多発性硬化症のより特異的な 治療法の開発が期待されている。

【0006】一方、熱ショックタンパク質 (heat shock protein; HSP、ストレスタンパク質ともいう) は、 細胞を何らかのストレス、例えば熱、重金属、薬剤、ア ミノ酸類似体、又は低酸素(低濃度酸素)などで刺激す ることにより、細胞に発現される一群のタンパク質であ る。熱ショックタンパク質は、自然界に普遍的に存在し ており、細菌、酵母、植物、昆虫、及びヒトを含む高等 動物により産生される。

【0007】HSPは、その種類は多種多様であるが、 分子量の大きさからHSP90ファミリー (例えば、9 0kD又は110kDのHSPなど)、HSP70ファ ミリー (例えば、70~73kDのHSPなど)、HS P60ファミリー (例えば、57~68kDのHSPな ど)、低分子HSPファミリー(例えば、20kD、2 5~28kD、又は47kDのHSPなど) の4ファミ リーに大別することができる。なお、本明細書において は、特定分子量を有するHSPを、HSPとその直後に 記載する数字とによって示すものとし、例えば、分子量 30 27kDのHSPを『HSP27』と称するものとす る。以上のように、HSPには多くの種類が存在する が、これらは分子量だけでなく、構造、機能、又は性質 などもそれぞれ異なるものである。ストレスへの応答に 加えて、これらのタンパク質の中には構成的に合成され るものがあり、正常な環境の下で、タンパク質のフォー ルディング、アンフォールディング、タンパク質サブユ ニットの会合、タンパク質の膜輸送のような、必須の生 理的な役割を演じていることが示されている。熱ショッ クタンパク質としてのこれらの機能は、分子シャペロン 40 と称される。

【0008】 HSP27ファミリーに属するタンパク質 の発現は、ヒト乳癌において、リンパ節転移、リンパや 血管への浸潤、より短い生存率との間に顕著な相関があ る ("J. Natl. Cancer Inst." 83: 170-178, 1991)。胃 癌においてもHSP27ファミリーに属するタンパク質 はネガティブな予後因子であるとの報告がある("Br. J. Surg. ", 78: 334-336, 1991)。 HSP27ファミリー に属するタンパク質の原発癌細胞における発現レベルが

もあるので ("Breast Cancer Res. Treat.", 12: 130. 1988; "Proc. Am. Assoc. Cancer Res.", 30: 252, 19 89)、HSP27ファミリーに属するタンパク質の発現 を抑制することにより、癌の悪性化を防止することが可 能である。

【0009】癌の温熱療法で問題となる温熱耐性にHS P27ファミリーに属するタンパク質が関与するという 報告がある。ヒトHSP27遺伝子をマウス又はハムス ター細胞に導入して発現させたところ、熱ショック後に 生き残る温熱耐性の細胞がHSP27のタンパク質の量 に依存して誘導され増加する ("J. Cell. Biol.", 109 _: 7-15, 1989)。また、チャイニーズハムスター細胞 で、HSP27を定常的に発現するようになった変異株 が熱耐性を獲得できるようになる ("J. Cell. Physio 1. ", <u>137</u>: 157, 1988)。α-Βクリスタリンは、熱シ ョック処理で誘導され、HSP27とアミノ酸配列の相 同性が高いタンパク質であり、HSP27ファミリーに 属するタンパク質の一つであるが、α-Bクリスタリン を過剰発現させた細胞も熱ストレスに対する耐性を獲得 20 する ("J. Cell. Biol.", 125: 1385-1393, 1994)。こ のことは、HSP27ファミリーに属するタンパク質の 発現を抑制することにより、温熱耐性を抑え、癌に対す る温熱療法の効果を増強する可能性を示している。ま た、HSP27ファミリーに属するタンパク質の発現と 薬剤耐性とが相関するとの報告もあるので ("Breast Ca ncer Res. Treat.", 23:178, 1992; "Cancer Res.", 5 1: 5245-5252, 1991)、HSP27ファミリーに属する タンパク質の発現を抑制することにより、薬剤耐性を抑 え、化学療法の効果を増強することも可能である。

【0010】多発性硬化症における免疫的に優性な抗原 が、HSP27ファミリーに属するタンパク質であるα -Bクリスタリンであることが突き止められている (*N ature", 375: 739-740, 1995), $\alpha - B \rho J \lambda \beta J \lambda$ は、多発性硬化症患者の神経組織中での発現が、非発病 者の組織中での発現よりも強く、非常に免疫原性が高い ("Nature", <u>375</u>: 798-801, 1995)。これらの事実は、 多発性硬化症で自己抗原となっているのは、HSP27 ファミリーに属するタンパク質の1種であるα-Bクリ スタリンであり、ミエリン鞘におけるα-Bクリスタリ ンの発現を抑制することが多発性硬化症の根本的治療に 結び付くことを示している。

【発明が解決しようとする課題】本発明者らは、上記事 情に鑑み、癌や多発性硬化症などの病気の患者の生理学 的状態を有効に改善させ、前記の病気を効果的に治療す ることのできる方法を開発するために、HSP27ファ ミリーに属するタンパク質に対して合成抑制作用を示す 化合物に関して、種々検討を重ねてきた。その結果、本 発明者らは、意外にも、アロエの成分であるアロイン、 癌悪性度、特に癌の再発率と正の相関があるという報告 50 又はその誘導体が、病態を示す組織の細胞におけるHS

,,,,,

P27ファミリーに属するタンパク質の合成を特異的に 抑制することを見出した。すなわち、アロイン誘導体を 投与することによって、細胞内でのHSP27ファミリ ーに属するタンパク質の合成が抑制され、従って、癌や 多発性硬化症などの病気の治療が可能であることを見出 したのである。本発明はこうした知見に基づくものであ り、癌や多発性硬化症などの病気を効果的に治療するこ とのできる、HSP27ファミリーに属するタンパク質 の合成抑制剤を提供することを目的とする。

[0012]

【課題を解決するための手段】従って、本発明は、式 (I):

$$\bigcap_{\text{OH}} \bigcap_{\text{O}} \bigcap_{\text{OH}} \bigcap_{\text{R}^2} \bigcap_$$

(式中、R'は、ヘキソースの1位の水酸基を除いたへ 20 キソース残基であり、R´ は、炭素数1~3のヒドロキ シアルキル基である)で表されるアロイン誘導体を有効 成分として含有することを特徴とする、分子量16キロ ダルトンから40キロダルトンまでの間の熱ショックタ ンパク質(すなわち、HSP27ファミリーに属するタ ンパク質)の合成抑制剤に関する。

【0013】本明細書において、「HSP27ファミリ ー」とは、前記のとおり、分子量が16kD~40kD の熱ショックタンパク質群を意味する。HSP27ファ ミリーに属するタンパク質としては、例えば、哺乳動物 30 のHSP27(すなわち、分子量27kDの熱ショック タンパク質) 〔若しくはHSP28(すなわち、分子量 28kDの熱ショックタンパク質) 〕、トリのHSP2 5 (すなわち、分子量25kDの熱ショックタンパク 質)、又は酵母のHSP26(すなわち、分子量26k Dの熱ショックタンパク質)などを挙げることができ る。なお、一般的に、タンパク質の分子量は、例えば、 分子量測定方法又は実験条件などの違いにより多少の差 が生じるので、HSP27ファミリーに属するタンパク 質の中には、例えば、哺乳動物におけるHSP27とH 40 SP28とのように、分子量表記が異なっていても、そ れらがアミノ酸配列の異なる別異のタンパク質であるの か、あるいは単に分子量表記のみが外見上異なる同一の タンパク質であるのかが、現在のところ明らかではない ものも含まれている。HSP27ファミリーに属するタ ンパク質は、前記の低分子HSPファミリーに属する熱 ショックタンパク質のうち哺乳動物において最も主要な 熱ショックタンパク質であり、生物種を超えてよく保存 された特徴を示す。しかし、HSP27ファミリーに属

り、種ごとに異なる分子量を有しており、分子量16k D~40kDと、非常に多様なタンパク質である。ま た、HSP27とアミノ酸配列の相同性の高いα-Bク リスタリンも熱ショック処理で誘導され、HSP27フ ァミリーに属するタンパク質の一つである

[0014]

【発明の実施の形態】以下、本発明について詳細に説明 する。本発明の合成抑制剤は、有効成分として前記式

(1) で表されるアロイン誘導体を含有する。本明細書 10 においてヘキソース残基とは、ヘキソースの1位の水酸 基を除いた残基である。前記へキソースとしては、例え ば、アロース、アルトロース、グルコース、マンノー ス、グロース、イドース、ガラクトース、タロース、プ シコース、フルクトース、ソルボース、又はタガトース などを挙げることができる。ヘキソースは、D-体又は L-体のいずれでもあってもよく、また、ピラノース型 又はフラノース型のいずれであってもよい。好ましいへ キソースは、グルコースである。前記へキソース残基と アントラセノン部分との結合は、グリコシド結合であ る。グリコシド1位の立体配置は、 α -アノマー又は β -アノマーのいずれであってもよい。

【0015】本明細書において炭素数1~3のヒドロキ シアルキル基とは、1又はそれ以上の水酸基で置換され ている炭素数1~3のアルキル基、例えば、ヒドロキシ メチル基、ヒドロキシエチル基、3-ヒドロキシプロピ ル基、2-ヒドロキシプロピル基、1-ヒドロキシプロ ピル基、又は2-ヒドロキシー1-メチルエチル基など であり、ヒドロキシメチル基が好ましい。

【0016】前記式(1)で表されるアロイン誘導体に は、立体異性体が存在し、それらの任意の純粋の立体異 性体又はそれらの混合物を、本発明の合成抑制剤の有効 成分として用いることができる。

【0017】本発明の合成抑制剤において有効成分とし て使用することのできるアロイン誘導体としては、式 (II):

で表されるアロイン [aloin; 10-グルコピラノ シルー1, 8-ジヒドロキシー3-(ヒドロキシメチ ル) -9 (10H) -アントラセノン〕が好ましい。ア ロインは、例えば、アロエ等の生薬に含まれている。ア するタンパク質は、他の熱ショックタンパク質とは異な 50 ロインには、立体異性体が存在し、アロインの任意の純

粋の立体異性体又はそれらの混合物を、本発明の合成抑 制剤の有効成分として用いることができる。

【0018】本発明の合成抑制剤に含有されるアロイン 誘導体は、化学合成によって、又は天然物から抽出して 精製することによって、調製することができる。あるい は、市販品を用いてもよい。本発明の合成抑制剤におい て有効成分として用いるアロイン誘導体を、天然物から 抽出する場合には、例えば、アロイン誘導体を含有する 植物の全体又は一部分(例えば、全草、葉、根、根茎、 茎、根皮、若しくは花)をそのまま用いて、又は簡単に 加工処理(例えば、乾燥、切断、湯通し、蒸気加熱、若 しくは粉末化) したもの (例えば、生薬) を用いて抽出 する。抽出条件は一般的に植物抽出に用いられる条件な らば特に制限はない。アロインを含有する植物として は、これに限定するものではないが、例えば、アロエ・ フェロックス・ミラー (Aloeferox Mill er)、アロエ・フェロックス・ミラーとアロエ・アフ リカナ・ミラー (Aloe africana Mil ler) との雑種、又はアロエ・フェロックス・ミラー とアロエ・スピカタ・ベイカー (Aloe spica ta Baker)との雑種などを使用することができ

【0019】本発明におけるアロインを生薬から抽出す る場合、これに限定するものではないが、例えば、アロ エから抽出することが好ましい。アロエ(ロカイ;AI oe) とは、アロエ・フェロックス・ミラー、アロエ・ フェロックス・ミラーとアロエ・アフリカナ・ミラーと の雑種、又はアロエ・フェロックス・ミラーとアロエ・ スピカタ・ベイカーとの雑種などの葉から得た液汁を乾 燥したものを意味し、それらの部分を単独であるいは任 30 意に組み合わせて使用することができる。

【0020】本発明による合成抑制剤において有効成分 として用いることのできるアロエ抽出物は、前記のアロ インを含有していればよく、従って、アロエの粗抽出物 を用いることができる。本発明で用いることのできるア ロエ抽出物の製造方法としては、アロエを、水 (例え ば、冷水、温水、又は熱湯) によって抽出するか、又は 有機溶媒を用いて抽出することによって、得ることがで きる。有機溶媒としては、例えば、炭素数1~6のアル コール(例えば、メチルアルコール、エチルアルコー ル、n-プロピルアルコール、イソプロピルアルコー ル、若しくはブチルアルコール)、エステル (例えば、 酢酸メチル、酢酸エチル、酢酸プロピル、若しくは酢酸 ブチル)、ケトン(例えば、アセトン若しくはメチルイ ソブチルケトン)、エーテル、石油エーテル、n-ヘキ サン、シクロヘキサン、トルエン、ベンゼン、炭化水素 のハロゲン誘導体(例えば、四塩化炭素、ジクロロメタ ン、若しくはクロロホルム)、ピリジン、グリコール (例えば、プロピレングリコール、若しくはブチレング

リルなどを用いることができ、これらの有機溶媒を単 独、又は適宜組み合わせ、一定の比率で混合し、更には 無水又は含水状態で用いることができる。水抽出又は有 機溶媒抽出の方法としては、通常の生薬抽出に用いられ る方法を用いることができ、例えば、(乾燥)アロエ1 重量部に対し、水又は有機溶媒3~300重量部を用い て、攪拌しながら、その沸点以下の温度で加熱還流、常 温で超音波抽出、あるいは冷浸することが望ましい。抽 出工程は、通常は5分~7日間、好ましくは10分~6 0時間実施し、必要に応じて、攪拌等の補助的手段を加 えることにより、抽出時間を短縮することができる。

【0021】抽出工程終了後、濾過又は遠心分離等の適 当な方法により、水又は有機溶媒抽出液から、不溶物を 分離して粗抽出物を得ることができる。なお、本発明の 合成抑制剤において、天然物より抽出、分画したアロイ ンを用いる場合には、前記の粗抽出物を特に精製するこ となく、そのまま使用してもよい。常法による水抽出物 又は有機溶媒抽出物の他に、前記の粗抽出物を各種有機 溶媒又は吸着剤等により、更に処理した精製抽出物も、 本発明の合成抑制剤の有効成分として用いることができ る。これらの粗抽出物及び各種の精製処理を終えた精製 抽出物を含むアロエ抽出物は、抽出したままの溶液を用 いても、溶媒を濃縮したエキスを用いても良いし、溶媒 を留去し乾燥した粉末、更には結晶化して精製したも の、あるいは粘性のある物質を用いても良く、またそれ らの希釈液を用いることもできる。こうして得られたア ロエ抽出物は、アロエに含まれるアロインを含み、同時 に原料のアロエに由来する不純物を含んでいる。

【0022】本発明の合成抑制剤は、アロイン誘導体、 又はアロイン誘導体を含有する植物の抽出物、例えば、 アロイン誘導体を含有する生薬の抽出物(特には、アロ エ抽出物)を、それ単独で、又は好ましくは製剤学的若 しくは獣医学的に許容することのできる通常の担体と共 に、動物、好ましくは哺乳動物(特にはヒト)に投与す ることができる。投与剤型としては、特に限定がなく、 例えば、散剤、細粒剤、顆粒剤、錠剤、カプセル剤、懸 濁液、エマルジョン剤、シロップ剤、エキス剤、若しく は丸剤等の経口剤、又は注射剤、外用液剤、軟膏剤、坐 剤、局所投与のクリーム、若しくは点眼薬などの非経口 40 剤を挙げることができる。これらの経口剤は、例えば、 ゼラチン、アルギン酸ナトリウム、澱粉、コーンスター チ、白糖、乳糖、ぶどう糖、マンニット、カルポキシメ チルセルロース、デキストリン、ポリビニルピロリド ン、結晶セルロース、大豆レシチン、ショ糖、脂肪酸エ ステル、タルク、ステアリン酸マグネシウム、ポリエチ レングリコール、ケイ酸マグネシウム、無水ケイ酸、又 は合成ケイ酸アルミニウムなどの賦形剤、結合剤、崩壊 剤、界面活性剤、滑沢剤、流動性促進剤、希釈剤、保存 剤、着色剤、香料、矯味剤、安定化剤、保湿剤、防腐 リコール)、ポリエチレングリコール、又はアセトニト 50 剤、又は酸化防止剤等を用いて、常法に従って製造する

10

ことができる。例えば、アロイン1重量部と乳糖99重量部とを混合して充填したカプセル剤などである。

【0023】非経口投与方法としては、注射(皮下、静 脈内等)、又は直腸投与等が例示される。これらのなか で、注射剤が最も好適に用いられる。例えば、注射剤の 調製においては、有効成分としてのアロイン誘導体、又 はアロイン誘導体を含有する植物の抽出物、例えば、ア ロイン誘導体を含有する生薬の抽出物(特には、アロエ 抽出物)の他に、例えば、生理食塩水若しくはリンゲル 液等の水溶性溶剤、植物油若しくは脂肪酸エステル等の 10 非水溶性溶剤、ブドウ糖若しくは塩化ナトリウム等の等 張化剤、溶解補助剤、安定化剤、防腐剤、懸濁化剤、又 は乳化剤などを任意に用いることができる。また、本発 明の合成抑制剤は、徐放性ポリマーなどを用いた徐放性 製剤の手法を用いて投与してもよい。例えば、本発明の 合成抑制剤をエチレンビニル酢酸ポリマーのペレットに 取り込ませて、このペレットを治療すべき組織中に外科 的に移植することができる。

【0024】本発明の合成抑制剤は、これに限定される ものではないが、アロイン誘導体を、0.01~99重 20 量%、好ましくは0.1~80重量%の量で含有するこ とができる。また、アロイン誘導体を含有する植物の抽 出物、例えば、アロイン誘導体を含有する生薬の抽出物 (特には、アロエ抽出物)を有効成分として含有する本 発明の合成抑制剤は、その中に含まれるアロイン誘導体 が前記の量範囲になるように適宜調整して、調製するこ とができる。なお、アロイン誘導体を含有する植物の抽 出物、例えば、アロイン誘導体を含有する生薬の抽出物 (特には、アロエ抽出物)を有効成分として含有する合 成抑制剤を、経口投与用製剤とする場合には、製剤学的 30 に許容することのできる担体を用いて、製剤化すること が好ましい。本発明の合成抑制剤を用いる場合の投与量 は、病気の種類、患者の年齢、性別、体重、症状の程 度、又は投与方法などにより異なり、特に制限はない が、アロイン誘導体量として通常成人1人当り1mg~ 10g程度を、1日1~4回程度にわけて、経口的に又 は非経口的に投与する。更に、用途も医薬品に限定され るものではなく、種々の用途、例えば、機能性食品や健 康食品として飲食物の形で与えることも可能である。

[0025]

【作用】上記したように、本発明の合成抑制剤に含有されるアロイン誘導体は、細胞内のHSP27ファミリーに属するタンパク質の合成を特異的に抑制する作用があるので、前記アロイン誘導体を投与すると細胞でのHSP27ファミリーに属するタンパク質の生合成が特異的に減少する。従って、前記アロイン誘導体は、例えば、HSP27ファミリーに属するタンパク質がその悪性化に関連する癌の予防及び治療、HSP27ファミリーに属するタンパク質がその療法への障害となる温熱耐性に関連する癌温熱療法の効果の増強、又はHSP27ファ 50

ミリーに属するタンパク質がその発症に関連する多発性 硬化症などの自己免疫疾患の予防及び治療などに使用することができる。また、HSP27ファミリーに属する タンパク質の発現と薬剤耐性とが相関するとの報告もあるので ("Breast Cancer Res. Treat.", 23: 178, 1992; "Cancer Res.", 51: 5245-5252, 1991)、HSP27ファミリーに属するタンパク質の発現を抑制することにより、薬剤耐性を抑え、化学療法の効果を増強することも可能である。

[0026]

【実施例】以下、実施例によって本発明を具体的に説明 するが、これらは本発明の範囲を限定するものではない

実施例1:ヒト培養癌細胞のHSP発現量の測定

(1) ヒト培養癌細胞の培養

神経腫瘍細胞株(神経芽細胞腫)SK-N-MC(AT CC HTB 10)を、非必須アミノ酸(L-アラニン8.9mg/1、L-アスパラギン・H₂ O15.0mg/1、L-アスパラギン酸13.3mg/1、L-グルタミン酸14.7mg/1、グリシン7.5mg/1、L-プロリン11.5mg/1及びL-セリン10.5mg/1)及び10%非働化ウシ胎児血清を含むMEM培地中で、5%二酸化炭素条件下で、熱ショック処理時以外は、37℃で培養した。

【0027】(2) アロイン処理及び熱ショック処理 播種2日後の神経腫瘍細胞株(神経芽細胞腫)SK-N-MCの培地中に、最終濃度 100μ Mになるように前 記式(II) で表されるアロイン(一丸ファルコス)を添 加し、24時間培養した。その後、45℃にて15分間 熱ショック処理をしてから、37℃にて終夜培養した。 対照試験は、アロインを添加しないこと以外は前記と同 様に実施した。

【0028】(3)ヒト培養癌細胞でのHSP発現量の 測定

前項(2)で処理した各細胞を、以下に示す方法により ホモジナイズし、HSP発現量をウェスタンブロット法 にて測定した。すなわち、前項(2)で処理した細胞 を、リン酸緩衝生理食塩水〔組成:KCl=0.2g/ 1. $KH_2 PO_1 = 0$. 2g/1, NaCl = 8g/40 1, Na₂HPO₄ (無水) = 1. 15g/1;以下、 PBS (-) と称する) で洗浄した後、ライシスバッフ 7-(lysis buffer) [1.0%NP-4 0、0.15M塩化ナトリウム、50mMトリスーHC 1 (pH8. 0), 5 mM - EDTA, 2 mM - N - xチルマレイミド、2mMフェニルメチルスルホニルフル オリド、2μg/mlロイペプチン及び2μg/mlペ プスタチン] 1mlを加え、氷上で20分間静置した。 その後、4℃で12000 r p mにて、20分間、遠心 を行った。遠心後の上清10μ1をPBS (-) 790 μ l に加え、更にプロテインアッセイ染色液(Dye Reag (7)

特開平10-36271

12

ent Concentrate: バイオラッド, カタログ番号500-00 06) 200 μ l を加えた。 5分間、室温にて静置した後、595 n m で吸光度を測定してタンパク質定量を行った。

【0029】タンパク質定量を行った試料を用いて、L a e m m l i のバッファー系 (Laemmli, N. K., "Natur e", 283: pp. 249-256, 1970)にて、等量のタンパク質 を含むライセートのSDSポリアクリルアミドゲル電気 **泳動を行った。電気泳動後、ブロッティング及びそれに** 続くブロッキングを行った。すなわち、タンパク質転写 装置(Trans-Blot Electrophoretic Transfer Cell:バ イオ・ラッド,カタログ番号170-3946)を用いて、室温 にて100Vにて、0. 45μmニトロセルロース膜 (Schleicher & Schuell, カタログ番号401196) にゲル を密着させ、3時間ブロッティングを行った。ブロッテ ィングバッファーとしては、0.025Mトリス及び 0.192MグリシンよりなりpH8.5に調整された トリスグリシンバッファー (Tris Gly Running and Blo tting Buffer; Enprotech, 米国マサチューセッツ州, カタログ番号 SA100034)にメチルアルコールを20%に 20 なるように加えて調製したバッファーを用いた。ブロッ ティング後、ニトロセルロース膜を10%スキムミルク (雪印乳業) - PBS (-) 溶液に室温にて30分間、 インキュベートし非特異的結合をブロックした。

【0030】ブロッキング後、ニトロセルロース膜の上 で、抗ヒトHSP27マウスモノクローナル抗体 (Stre ssGen, Victoria, B.C., Canada, カタログ番号 SPA-8 00) により、1次抗体反応を行った。この抗ヒトHSP 27マウスモノクローナル抗体は、ヒト乳癌細胞株MC F7 (ATCC HTB 22) より単離したHSP2 4を免疫原として作製した抗体であり("Cancer Res.", 42, 4256-4258, 1982), HSP27 (thhsP2 7、チンパンジーHSP27、及びヒツジHSP27) と特異的に反応し("Cancer Res.", <u>42</u>, 4256-4258, 1 982; "Cancer Res.", 43, 4297-4301, 1983), HSP 24及びHSP28とも特異的に反応する。1次抗体反 応後、PBS (一) で5分間ずつ、溶液を取り替えて2 回の洗浄をスロー・ロッキング・シェイカーによって行 い、更にPBS (-) -0. 1%Tween20 (バイ オ・ラッド, カタログ番号170-6531) 溶液で15分間ず 40 つ、溶液を取り替えて4回の洗浄を行った。最終的に、 PBS(-)で5分間ずつ、2回の洗浄を行った。

【0031】洗浄終了後、ペルオキシダーゼ標識ヤギ抗マウスIgG抗体 (CAPPEL, カタログ番号55550)を、2

%スキムミルクを含むPBS (一) 溶液で5000倍に 希釈して調製した抗体溶液5mlを用いて、2時間、2 次抗体反応を行った。反応終了後、ニトロセルロース膜に関して、PBS (一) 溶液で5分間ずつ溶液を変えて 2回、更にPBS (一) ー0. 1%Tween20溶液で15分間ずつ溶液を変えて5回の洗浄をスロー・ロッキング・シェイカーにより行った。最後にPBS (一) 溶液で5分間ずつ2回の洗浄を行った。余分なPBS

(一) 溶液を除去した後、ウェスタンブロッティング検出試薬 (ECL Western blotting detectionreagent; Amersham, カタログ番号RPN2106)をニトロセルロース膜上に振りかけ、1分間インキュベートした後、余分な検出試薬を除去し、ニトロセルロース膜をラップに包み、反応面をX線フィルム (コダック X-OMAT, AR, カタログ番号165 1454) に密着させて露光し、現像してHSP27の有無の検討を行った。

【0032】その結果、対照試験、すなわち、アロインを添加しなかった神経腫瘍細胞株(神経芽細胞腫)SK-N-MCでは、分子量約27kDのバンドが一本検出された。なお、分子量は、前記抗ヒトHSP27マウスモノクローナル抗体との結合、及び分子量マーカー(ダイズトリプシンインヒビター及びウシカーボニックアンヒドラーゼ)により決定した。アロインを添加した神経腫瘍細胞株(神経芽細胞腫)SK-N-MCでは、分子量約27kDのバンドが検出されなかった。すなわち、アロインは、HSP27の発現を抑制する合成抑制剤の活性を有するものと結論することができる。

[0033]

【発明の効果】以上詳述したように、アロイン誘導体は、細胞内のHSP27ファミリーに属するタンパク質の発現を抑制する合成抑制剤の活性を有する。従って、アロイン誘導体を投与することにより、例えば、HSP27ファミリーに属するタンパク質がその悪性化や温熱療法の効果の減少に関連する癌、その発症に関連する多発性硬化症などの自己免疫疾患の患者の生理学的状態を有効に改善させ、前記病気を効果的に治療することができる。また、HSP27ファミリーに属するタンパク質発現と薬剤耐性とが相関するとの報告もあるので("Breast Cancer Res. Treat.", 23: 178, 1992; "Cancer Res.", 51: 5245-5252, 1991)、HSP27ファミリーに属するタンパク質の発現を抑制することにより、薬剤耐性を抑え、化学療法の効果を増強することも可能である。

フロントページの続き

(51) Int. C1. 6 C O 7 H 7/04 識別記号 广内整理番号

F I C 0 7 H 7/04 技術表示箇所