DS4

Exercice 1. Le but de cet exercice est de calculer la valeur de

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$$

Convergence On note $S_n = \sum_{k=0}^n \frac{1}{k!}$ et $R_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n(n!)}$

- 1. Donner la monotonie de $(S_n)_{n\in\mathbb{N}}$ et de $(R_n)_{n\geq 1}$
- 2. En déduire que les suites $(S_n)_{n\in\mathbb{N}}$ et de $(R_n)_{n\geq 1}$ convergent et ont même limite.

Informatique

- 1. Ecrire une fonction factorielle qui prend en argument un entier n et retourne la valeur de n!
- 2. Ecrire deux fonctions S et R qui prennent en argument un entier n et retourne respectivement la valeur de S_n et R_n .
- 3. Ecrire une fonction limite qui prend en argument un réel positif ϵ et retourne la valeur de S_n pour laquelle $|S_n R_n| \le \epsilon$ (la premiere valeur pour laquelle cette condition est satisfaite).

Calcul de la limite Pour tout $n \in \mathbb{N}$ on définit la fonction f_n par

$$f_n(x) = \sum_{k=0}^{n} \frac{x^k}{k!}$$
 et $g_n(x) = f_n(x)e^{-x}$

On rappelle que par convention $\forall x \in \mathbb{R}, x^0 = 1$, et 0! = 1

- 1. Exprimer $g_1(x)$ sans le signe somme.
- 2. Calculer $g_n(0)$ et exprimer $g_n(1)$ à l'aide de S_n .
- 3. Montrer que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$:

$$f'_n(x) = \sum_{k=0}^{n-1} \frac{x^k}{k!}$$

- 4. En déduire que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$ $g'_n(x) = \frac{-x^n e^{-x}}{n!}$
- 5. (a) Exprimer en fonction de $n \in \mathbb{N}$ la valeur de $\int_0^1 \frac{-e^{-x}}{n!} dx$
 - (b) A l'aide d'un encadrement de $g_n'(x)$, montrer que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$

$$\frac{e^{-1} - 1}{n!} \le \int_0^1 g_n'(x) dx \le 0$$

6. En déduire que pour tout $n \in \mathbb{N}$:

$$\frac{e^{-1} - 1}{n!} \le S_n e^{-1} - 1 \le 0$$

7. En déduire la limite de $(S_n)_{n\in\mathbb{N}}$.

Exercice 2. 1. Résoudre l'inéquation :

$$(E_1)$$
 : $2x-1 \le \frac{1}{2x+1}$

2. En déduire les solutions de (E_2) sur $[0, 2\pi]$

$$(E_2)$$
 : $2\cos(X) - 1 \le \frac{1}{2\cos(X) + 1}$

Exercice 3. Une urne contient 3 boules jaunes, 2 boules vertes et 5 boules rouges. Les boules sont toutes distingables, numérotées par exemple. On tire successivement et avec remise 4 boules.

- 1. Combien y-a-t-il de tirages possibles?
- 2. Combien de tirages amènent aucune boule rouge?
- 3. Combien de tirages amènent que des boules vertes?
- 4. Combien de tirages amènent exactement 2 boules jaunes?
- 5. Combien de tirages amènent des boules d'une seule couleur?
- 1. On fait 4(=p) tirages successifs (ordre) avec remise dans un ensemble à 10 éléments (n=10)

2. Pour obtenir aucune boule rouge il faut tirer des boules vertes ou jaunes, il y en a 5. On a donc

3. Il y a 2 boules vertes donc

Il y a
$$2^4$$
 tirages possibles avec que des boules vertes

4. Il faut tirer 2 boules jaunes (3 possibilités) et 2 boules parmi les vertes ou rouges (7 possiblités). Ensuite il faut positionner les boules jaunes parmi les 4 tirages, cela fait (4) positions possibles.

Il y a $\binom{4}{2}3^27^2$ tirages possibles exactement 2 boules jaunes

5. Pour obtenir qu'une seule couleur on a 3 façons de faire : que des vertes V, que des jaunes J ou que des rouges R. On a déjà calcule le cardinal de V à la question 3. On fait de même avec J on obtient $\operatorname{Card}(J)=3^4$ et $\operatorname{Card}(R)=5^4$. Finalement

Il y a
$$2^4 + 3^4 + 5^4$$
 tirages qui amènent qu'une seule couleur

Exercice 4. On considère les mains de 5 cartes (tirages simultanés de 5 cartes) que l'on peut obtenir d'un jeu de 52 cartes.

- 1. Combien y-a-t-il de mains différentes?
- 2. Combien y-a-t-il de mains comprenant exactement deux as?
- 3. Combien y-a-t-il de mains comprenant au moins un coeur?
- 4. Combien y-a-t-il de mains comprenant exactement un roi et un coeur?

Exercice 5. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sin(u_n) \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < \frac{\pi}{2}$.
- 2. On note $f(x) = \sin(x) x$. A l'aide d'une étude de fonction, montrer que pour tout $x \in \mathbb{R}_+^*$, f(x) < 0.
- 3. En déduire le sens de variation de $(u_n)_{n\in\mathbb{N}}$.
- 4. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$
- 5. Montrer que $f(x) = 0 \iff x = 0$.
- 6. Déterminer la valeur de ℓ .

Info

- 1. Ecrire une fonction qui prend en paramètre $n \in \mathbb{N}$ et qui retourne la valeur de u_n .
- 2. Ecrire une fonction qui prend en paramètre $e \in \mathbb{R}^+$ et qui retourne la valeur du premier terme $n_0 \in \mathbb{N}$ telle que $|u_{n_0} \ell| \le e$ et la valeur de u_{n_0} .