General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(#ASA-CR-173730) EFFECTS OF VOLTAGE CONTROL IN STILLITY INTERACTIVE DISPERSED STORAGE AND GENERATION SYSTEMS (Jet Propulsion Lab.) 260 P HC A12/MF A01 CSCL 10B N84-28211

Unclas 3/44 19802

Effects of Voltage Control in Utility Interactive Dispersed Storage and Generation Systems

H. Kirkham

R. Das

March 15, 1983

Prepared for

Electric Energy Systems Division, U.S. Department of Energy Through an Agreement with National Aeronautics and Space Administration

by

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Effects of Voltage Control in Utility Interactive Dispersed Storage and Generation Systems

H. Kirkham

R. Das

March 15, 1983

Prepared for

Electric Energy Systems Division, U.S. Department of Energy Through an Agreement with National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Prepared by the Jet Propulsion Laboratory, California Institute of Technology, for the U.S. Department of Energy through an agreement with the National Aeronautics and Space Administration.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply 1.2 endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This publication reports on work performed under NASA Task RE-152, Amendment 203 (change 7, paragraph II.A.(7)) and sponsored through DOE/NASA Interagency Agreement No. DE-Al01-79ET 29372 (Mod. A009).

ABSTRACT

When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. This report examines the effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and de/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as well as the effect of connecting and disconnecting the generator at ten percent of its rated power.

Operation with a constant slightly lagging power factor is shown to have some advantages.

TABLE OF CONTENTS

ABSTRACT
INTRODUCTION
DSG voltage Control
Relationship Between Voltage and Reactive Power
Relationship Between Power and Frequency
Load Flow Problems: General Approach 1-
Solution Methods
MATHEMATICAL MODELS
General Assumptions
Power System Model
Load Model
DSG Models
Synchronous Generator
Induction Machine
Induction Machine with Capacitor Compensation
Inverter: Constant Extinction Angle Control
CEA Controller Compensated at Full Load
PV-Type Inverter
Base Case
PRESENTATION AND DISCUSSION OF RESULTS
Results
Synchronous Machine: Constant Voltage
Synchronous Machine: Constant Reactive
Synchronous Machine: Constant Excitation
Induction Generator
Compensated Induction Generator
DC/AC Inverter: Constant Extinction Angle Control
Compensated CEA Inverter
Photovoltaic type Inverter
Companies of DCCs
Comparison of DSGs
Problems and Disadvantages
Connection
Proposed New Exciter Control
ONCLUSIONS
REFERENCES
APPENDIX A PROGRAM LISTINGS
APPENDIX B DATA LISTINGS
APPENDIX C NEW EXCITER CONTROL

PRECEDING PAGE BLANK NOT FILMED

LIST OF TABLES

Table		Page
2-1	DSG Models and Typical Applications.	2-9
3-1	Comparison of DSG/Exciter Types Consumption or Generation of Reactive Power.	3-62
3-2	Percentage Load Voltage Variation due to Connecting at 10% rated Power.	3-66
3-3	Percentage Load Voltage Variation due to Change in Input Power from 0.02 to 0.2 p.u.	3-67
3-4	Comparison of DSG/Exciters.	3-69
A-I	Listing for Synchronous Machine, Constant Voltage.	A-2
A-II	Listing for Synchronous Machine, Constant Reactive.	A6
A-III	Listing for Synchronous Machine, Constant Excitation.	A-9
A-IV	Listing for Induction Machine.	A-13
A-V	Listing for Induction Machine, Power Factor Corrected.	A-18
A-VI	Listing for Inverter, CEA Control.	A-23
A-VII	Listing for Inverter, CEA - Compensated.	A-26
A-VIII	Listing for PV type Inverter.	A-29
A-IX	Listing for Base Case.	A-32
B-I	Data for Synchronous Machine, Constant Voltage Light Load Case.	B-2
B-II	Data for Synchronous Machine, Constant Voltage Heavy Load Case.	B-7
B-III	Data for Synchronous Machine, Constant Reactive Light Load Case.	B-12
B-IV	Data for Synchronous Machine, Constant Reactive Heavy Load Case.	B-17
B-V	Data for Synchronous Machine, Constant Excitation Light Load Case.	B-22

Table		Page
B-VI	Data for Synchronous Machine, Constant Excitation Heavy Load Case.	B-27
B-VII	Data for Induction Machine Light Load Case.	B-32
B-VIII	Data for Induction Machine Heavy Load Case.	B ~3 7
B-IX	Data for Inductor Machine, Power Factor Corrected Light Load Case.	B-42
в-х	Data for Inductor Machine, Power Factor Corrected Heavy Load Case.	B-47
B-XI	Data for Inverter, CEA Control Light Load Case.	B-52
B-XII	Data for Inverter, CEA Control Heavy Load Case.	B-57
B-XIII	Data for Inverter, CEA - Compensated Light Load Case.	B-62
B-XIV	Data for Inverter, CEA - Compensated Heavy Load Case.	B-67
B-XV	Data for PV Inverter, Light load Case	B-72
B-XVI	Data for PV Inverter, Heavy Load Case	B-77
B-XVII	Data for Base Case, Light Load Case	B-82
B-XVIII	Data for Base Case, Heavy Load Case	B-83
c-r	Listing of constant (leading) power factor program	C-4
C-TT	Date for constant (leading) nower factor age	C-7

LIST OF FIGURES

Figure		Page
1-1.	An Ac Generator Supplying Power to a Load.	1-3
1-2	Vector Diagram for Circuit of Figure 1-1.	1-4
1-3	Typical Power/Voltage Characteristics of Power System Load.	1-8
1-4	Power System Circuit Diagram and Values Used to Illustrate Solution Method.	1-10
1-5	Power System Circuit Diagram and Values Used to Illustrate Solution Method.	1-13
2-1	Thevenin Equivalent for Generation or Transmission System.	2-2
2-2	Equivalent Circuit for Distribution System.	2-4
2-3	Real and Reactive Power as a Function of Voltage for the Different Load Models, Normalized.	2-7
2-4	Equivalent Circuit of Distribution System with Synchronous Generator.	2-11
2-5A	Vector Diagram for Synchronous Machine with Constant Voltage Exciter and Heavy Load (Vs = 1.0 p.u.).	2-13
2-5B	Vector Diagram for Synchronous Machine with Constant Voltage Exciter and Heavy Load (Vs = 0.9 p.u.).	2-13
2-6	Method Used to Solve Distribution System/Synchronous Machine Problem with the Exciter Controlled for Constant Terminal Voltage.	2-14
2-7	Equivalent Circuit of an Induction Machine.	2-16
2-8	Circuit of Induction Generator Connected to Distribution System.	2-18
2-9	Vector Diagram of System with Induction Machine.	2-19
2-10	Solution Method for the Distribution System/Induction Machine Problem.	2-20
3-1	Load Voltage as a Function of Input Power, Vs = 1, Synchronous Machine with Constant Voltage Exciter.	3-4

Figure		Page
3-2	DSG Reactive Output as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter.	3-5
3-3	Load Voltage as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter.	3-6
3-4	Excitation as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter.	3-7
3-5	DSG Output Power as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter.	3-8
3-6	DSG Power Factor as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter.	3-9
3-7	System Power Factor as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter.	3-10
3-8	System Reactive Power as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter.	3-11
3-9	Load Voltage as a Function of Input Power, Vs = 1. Synchronous Machine with Constant Reactive Exciter.	3-13
3-10	Excitation as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter.	3-14
3-11	Load Voltage as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter.	3-15
3-12	DSG Power Factor as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter.	3-16
3-13	System Power Factor as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter.	3-17
3-14	DSG Power as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter.	3-18
3-15	Load Voltage as a Function of Input Power, VS = 1 Synchronous Machine with Constant Excitation.	3-20
3-16	Load Voltage as a Function of System Voltage, Synchronous Machine with Constant Excitation.	3-21
3-17	DSG Power Factor as a Function of System Voltage,	3-22

<u>Figure</u>		Page
3-18	System Power Factor as a Function of System Voltage, Synchronous Machine with Constant Excitation	3-23
3-19	DSG Power as a Function of System Voltage, Synchronous Machine with Consent Excitation.	3-24
3-20	DSG Reactive Power as a Function of System Voltage, Synchronous Machine with Constant Excitation.	3-25
3-21	System Reactive Power as a Function of System Voltage, Synchronous Machine with Constant Excitation.	3-26
3-22	Load Voltage as a Function of Input Power, $VS = 1$ Induction Generator.	3-28
3-23	DSG Reactive Power as a Function of System Voltage, Induction Generator.	3-29
3-24	Slip as a Function of System Voltage, Induction Generator.	3-30
3-25	DSG Power Factor as a Function of System Voltage, Induction Generator.	3-31
3-26	System Power Factor as a Function of System Voltage, Induction Generator.	3-32
3-27	Load Voltage as a Function of System Voltage, Induction Generator.	3-33
3-28	DSG Output Power as a Function of System Voltage, Induction Generator.	3-34
3-29	Load Voltage as a Function of Input Power, VS = 1 Compensated Induction Generator.	3-37
3-30	DSG Reactive Power as a Function of System Voltage, Compensated Induction Generator.	3-38
3-31	Slip as a Function of System Voltage, Compensated Induction Generator.	3-39
3-32	DSG Power Factor as a Function of System Voltage, Compensated Induction Generator.	3-40
3-33	System Power Factor as a Function of System Voltage, Compensated Induction Generator.	3-41

Figure		Page
3-34	Load Voltage as a Function of System Voltage, Compensated Induction Generator.	3-42
3-35	DSG Output Power as a Function of System Voltage, Compensated Induction Generator.	3-43
3-36	System Reactive Power as a Function of System Voltage, Compensated Induction Generator.	3-44
3-37	Load Voltage as a Function of Input Power, VS = 1 CEA Inverter.	3-46
3~38	Load Voltage as a Function of System Voltage, CEA Inverter.	3-47
3-39	System Power Factor as a Function of System Voltage, CEA Inverter.	3-48
3-40	Load Voltage as a Function of Input Power, VS = 1 Compensated CEA Inverter.	3-50
3-41	DSG Reactive Power as a Function of System Voltage, Compensated CEA Inverter.	3-51
3-42	System Power Factor as a Function of System Voltage, Compensated CEA Inverter.	3-52
3-43	Load Voltage as a Function of Input Power, VS = 1 Photovoltaic type Inverter	3-54
3-44	Load Voltage as a Function of System Voltage Photovoltaic type Inverter	3-55
3-45	System Power Factor as a Function of System Voltage Photovoltaic type Inverter	3-56
3-46	Reactive Power as a Function of System Voltage for the Eight DSG/Exciter Types Modelled.	3-58
3-47	Reactive Power as a Function of Real Power for the Eight DSG/Exciter Types Modelled.	3-60
3-48	Load Voltage as a Function of Input Power, VS = 1 Leading Power Factor Machine.	3-72
3-49	Excitation as a Function of System Voltage Leading Power Factor Machine.	3-73

Piguro		Pago
3-50	Load Voltage as a Function of System Voltage Leading Power Factor Machine.	3-74
3-51	DSG Power as a Function of System Voltage Leading Power Factor Machine.	3-75
C-1	Method Used to Solve the Distribution System/ Synchronous Machine Problem with the Exciter Controlled for Constant Power Factor.	C-3

SECTION 1 INTRODUCTION

DSG Voltage Control

Dispersed Storage and Generation (DSG) Systems such as hydroelectric, solar thermal electric, photovoltaic, wind, storage battery, hydroelectric pumped storage and co-generation systems have some common and some distinctive attributes. Three attributes that DSGs have in common are: (1) their kW size is small compared to the kW size of conventional utility plants, (2) they may not be available as a source of constant power throughout the day and (3) they can only be economically connected to the distribution system or to the subtransmission system of a large utility network. Three attributes which tend to make DSGs different from one another are: (1) some of DSG technologies are proven while others are still maturing, (2) some DSG technologies use conventional turbine-generators for energy conversion while others use electronic ac-dc-ac or dc-dc conversion to obtain utility-grade ac power, and (3) their individual control systems are quite different. Of course, cost factors may also differ significantly.

Based on these commonalities and differences among DSG technologies, it is evident that, for a significant penetration, a large number of these DSGs will be required and connected at the distribution or subtransmission level of the utility power system. Their individual and aggregate believior during system steady-state or transient conditions will be different, and their desirability or value as a source of power in terms of busbar energy cost (g/kW_ch) will be different since this cost in dependent on the status and type of technology used in energy conversion.

The flow of real and reactive power is related to frequency and voltage. If a DSG has independent voltage control capability, it can be operated cooperatively with any method of voltage control on the existing power system. If the DSG is small, this can be done by local measurements and local control alone. Keeping the generation or consumption of reactive power within reasonable limits may be a sufficient control algorithm.

The effects of voltage control in a power system with large generating plants are routinely studied. However, DSGs present a new class of problems since their size is small, since there may be a large multiplicity of them scattered around the distribution network and their terminal characteristics at the point of inter-connection may be distinctly different from those of conventional generators. A study of the effect of DSG voltage control has not been performed in any detail.

The objective of this study is to examine the effects of voltage control in utility-interactive DSGs. To that end, several DSG types have been mathematically represented according to certain assumptions and the impact of voltage control on real and reactive power flow and on power factor is evaluated.

Relationship Between Voltage and Reactive Power

Consider an ac generator with output voltage ELS supplying real power P, and reactive power Q, to a load over a line of impedance R+jX at a terminal voltage, VLO, as shown in Figure 1-1. The relationship between the various quantities is shown in the vector diagram of Figure 1-2.

Figure 1-1. An ac Generator Supplying Power to a Load

Figure 1-2. Vector Diagram for Circuit of Figure 1-1

From Figures 1-1 and 1-2, it is found that

$$E^2 = (V + RI \cos \phi + XI \sin \phi)^2 + (XI \cos \phi - RI \sin \phi)^2$$

where \$\delta\$ is the power factor angle and I is the load current.

But $P = VI \cos \phi$

and Q = VI sin \$\delta\$

Therefore,

$$E^{2} = \left(V + \frac{RP + XQ}{V}\right)^{2} + \left(\frac{XP - RQ}{V}\right)^{2}$$

For small δ , $V + \Delta V > \delta V$

Therefore, $E \simeq V + \frac{RP + XQ}{V}$,

and $\Delta V = E - V \sim \frac{RP + XQ}{V}$ (1.1)

Also, $\delta \simeq \sin^{-1} \left(\frac{XP - RQ}{VE}\right)$

When R = 0 and E is fixed, using equation 1.1 it can be shown that

$$V = E + (E^2 - 4XQ)^{1/2}$$

or
$$V \simeq E - \frac{QX}{E}$$
 (1.2)

Therefore from equations 1.1 or 1.2, at is evident that the reactive power flow determines the voltage profile throughout the power system. Conversely, the voltage control is equivalent to control of reactive power flow in a power system. They are interrelated.

Whenever the magnitude of a particular bus voltage is changed, Q-balance at that bus is disturbed. That is, if there is a change in Q demand at the bus, this demand must be matched locally at the bus if the voltage profile is to be maintained.

Relationship Between Power and Frequency

Constant impedance loads and composite loads vary with voltage and frequency. Their behavior can be described as follows [1-1]

$$P = P(f, |V|)$$

$$Q = Q(f, |V|)$$

Therefore, changes in real and reactive power caused by small variations in frequency and voltage can be obtained by expressions

$$\Delta P = \frac{\partial P}{\partial f} \cdot \Delta f + \frac{\partial P}{\partial |V|} \cdot \Delta |V|$$
 (1.3)

and
$$\Delta Q = \frac{\partial Q}{\partial f}$$
. $\Delta f + \frac{\partial Q}{\partial |V|}$. $\Delta |V|$ (1.4)

The exact values of the partial derivatives in 1.3 and 1.4 will depend on the type of load. For incandescent lamps there is a considerable variation in efficiency with applied voltage. It is commonly assumed that for a tungsten filament incandescent lamp a 10% reduction in rated voltage will result in a light output of 70% of rated value and a power consumption of 85% of rated. With a 10% increase in voltage the output and power consumption increase to roughly 140% and 115%, respectively.

Fluorescent lamps are not nearly so sensitive to applied voltage. Roughly speaking, a one percent change above or below the rated voltage will produce a one percent change in light output and power consumption. Below about 90% there may be difficulty starting the fluorescent lamp and above about 110% there may be an overheating problem.

Resistance heaters are very nearly constant resistance, so that the energy input to such devices varies very nearly as the square of the applied voltage. Devices in this category would include the resistance heaters used for home heating and home cooking as well as for electric clothes drying and, in industry, for various forms of process heat.

Induction motors are particularly sensitive to applied voltage in terms of the starting torque and starting current, but since the present study is concerned more with their steady-state performance it may noted that their full load current decreases with increasing applied voltage such that a 10% increase in applied voltage may result in a 10 to 15% decrease in the full load current. There may also be some change in slip although this will not directly affect the power consumed.

Synchronous motors are not particularly sensitive to the applied voltage in terms of their power consumption since their speed and, hence, power are fixed exactly by the frequency of the power system, but their reactive demand may increase or decrease in a manner similar to that for synchronous generators. It is difficult to go into more detail for this kind of load.

For composite loads, the four partial derivatives of equations 1.3 and 1.4 must be evaluated empirically, since their values can not be determined analytically. Studies with a typical composite load consisting of some induction motors, some synchronous motors and various other loads indicate the following average approximate values of three partial derivatives.

$$\frac{\partial P}{\partial |V|}$$
 ~ 1.0 percent/percent

$$\frac{\partial Q}{\partial |V|}$$
 ~ 1.3, $\frac{\partial P}{\partial f}$ ~ 1.0

The value of the fourth derivative is not available and is of less practical importance.

Figure 1.3 shows typical variations of real and reactive powers with the voltage for a composite load on a power system. In typical power systems, power station operators control generator output voltage by fixing the field current. The output power is determined by the amount of mechanical energy being supplied to the generator. The power grid is fed through the specification of generator power and voltage while a load, in a statistical sense, is characterized by its power requirements.

It is the function of governor or its equivalent control system to keep the frequency variations within a small range. Since DSGs under consideration in this report will be utility interactive, it is assumed that the frequency will be controlled by the utility and it will remain nearly constant. Therefore, frequency variations will not be considered in this study.

Figure 1-3. Typical Power/Voltage Characteristics of Power System Load

Load Flow Problems: General Approach

The term 'load flow problem' refers to steady state calculations that provide power flows and voltages for a specified power system subject to constraints imposed by regulating capability of generators, condensers and tap changing transformers as well as net interchanges among individual operating systems. Load flow studies are performed for planning purposes and may encompass either normal or emergency operating conditions.

The normal type of power system load flow solution cannot be employed for our present study because the method used typically requires that the load be specified in terms of real and reactive power consumption and the generators be similarly specified. At some busses a voltage may be specified and there may be within the system a slack bus at which only voltage magnitude and phase angle are specified. A generator is typically connected to such a bus to make up whatever real and reactive power is required at that location. However, in the present study there are somewhat fewer degrees of freedom and the additional constraint of a voltage controller or exciter equation must be taken care of. Nevertheless, an iterative solution is still required. In order to illustrate the issues involved consider the system shown in Figure 1-4. This example is taken from a power systems text book presently being written by Harold Kirkham of the Jet Propulsion Laboratory, Walter J. Gajda Jr., of the University of Notre Dame and Radhe S. L. Das of California State University, Long Beach.

In the example, there are two generators, a single load, and two resistors which represent ohmic losses in the transmission system.

Figure 1-4. Power System Circuit Diagram and Values Used
To Illustrate Solution Method

Figure 1-4 is a de example for simplicity. As a problem in conventional network analysis with the source voltages and resistance values specified, this is a rather straightforward problem. However, as a power system problem, analysis is rather circuitous.

One may begin by specifying that:

- a. The left generator will put out 100 watts and,
- b. Load must receive 150 watts at 100 volts.

It may noted that this is not the normal way to specify a network analysis problem, but such specification would not be unusual in a power system. The problem is to determine both voltages V_1 and V_3 and the power developed by right generator P_r . When these three quantities are known, the operation of the generators will be completely specified in that the operator would know the field currents and powers required to satisfy the load.

The load current is

$$I_2 = \frac{150W}{100V} = 1.5A$$

Two expressions can be written for I1.

$$I_1 = \frac{100}{V_1} = \frac{V_1 - V_2}{1} = \frac{V_1 - 100}{1}$$

The voltage, V1, of the left generator is uniquely specified because

$$\frac{100}{V_1} = V_1 - 100$$

Or

$$V_1^2 - 100 V_1 - 100 = 0$$

This may be solved directly

$$V_1 = 100.99$$

Of course,

$$I_1 = \frac{100}{V_1} = .99A$$

By Kirchoff's Current Law

$$I_2 = I_1 + I_3$$
 and we solve I_3
 $I_3 = I_2 - I_1 = 1.5 - .99 = .51A$

Further

$$V_3 = V_2 + (1 \text{ ohm}) (I_3) = 100.51V$$

Now the right generator's output can be found

$$P_r = V_3 I_3 = 51.26 W$$

The system model is completely analyzed. Power flows are:

Power-generated = 100 + 51.26 = 151.26W.

Power absorbed = P load + P losses = 150 + .98 + .26 = 151.24W.

These values balance to within the accuracy of the calculations.

The operator of the right generator must burn sufficient fuel to yield an electrical generation rate of 51.26 watts. In addition, he must supply field current to hold V_3 at 100.51 volts. The operator of the left generator must supply 100 watts at 100.99 volts.

There are five degrees of freedom in the circuit to Figure 1-4. By this is meant that the specification of five independent quantities serves to totally determine the behavior of the circuit. In the most familiar terms, these five quantities consist of the values of the two line resistances, the load resistance, and the two generator voltages. When these are specified, the powers and currents are determined. This observation can be generalized to the recognition that there are b degrees of freedom in a circuit made of b elements. In the power system above, the circuit was characterized by five values (as is essential if the unique solution is to be found) which were not traditional. These consisted of the power of the left generator, load power and voltage, and the two line resistances. The problem was then completely characterized and it was possible to solve for the other voltages, currents, and powers of interest.

The five values chosen to specify the problem are somewhat arbitrary although they must be independent, that is, any one of them must not be determined by any combination of the other four. For example, three of the quantities could not be the voltage, current and resistance associated with one of the transmission lines since these three do not form a set of independent quantities. Specification of any two will serve to fix the third.

The apparent arbitrary nature of the initial choice of five quantities is further amplified via another analysis of the same circuit specified differently as sketched in Figure 1-5. The analysis begins with knowledge of the power generated by the left generator, the two line resistances, the power absorbed by the load and the voltage associated with the right generator. The method proceeds in a straightforward fashion with a determination of the power to be supplied by the right generator and the two remaining node voltages, V₁ and V₂.

Figure 1-5. Power System Circuit Diagram and Values
Used To Illustrate Solution Method

$$I_{3} = \frac{P}{100}$$

$$V_{2} = 100 - I_{3}$$

$$= 100 - \frac{P}{100}$$

$$P_{1 \text{ ond}} = V_{2}I_{2} = 150$$

$$I_{2} = \frac{150}{100 - P/100}$$

$$I_{1} = I_{2} - I_{3} = (150/(100 - P/100)) - P/100$$

$$V_{1} = V_{2} + I_{1} = (100 - P/100) + (150/(100 - P/100)) - P/100$$

$$P_{1 \text{ eft}} = 100 = V_{1}I_{1}$$

Substituting for V_1 I_1 in this equation yields one equation involving P, and it can be used to determine the right generator's power output. The equation is a fourth order polynomial in P, and numerical evaluation leads to

P = 51.25 watts

The other values follow immediately:

 $I_3 = .5125 \text{ amps}$

 $v_2 = 99.487 \text{ volts}$

 $I_2 = 1.5077$ amps

 $I_1 = .9952 \text{ amps}$

 $V_1 = 100.483 \text{ volts}$

The analytic complexity of the solution is masked by the few lines above indicating that the equation is a fourth order polynomial in P. Other methods of circuit analysis also lead to complex expressions. In short, although this second problem appears to be a minor variation of the first, and indeed the final values for current voltage and power are not significantly different, the mathematical complexity is such as to require numerical techniques. If the problem is extended to the ac equivalent, the complexity of the solution becomes even greater and numerical techniques would become even more necessary.

Solution Methods

Three types of DSG systems were considered: (1) DSGs using synchronous generators (e.g., solar thermal electric generating system), (2) DSGs using induction generators (e.g., wind systems), and (3) DSGs using dc/ac inverters (e.g., photovoltaic system). Steady-state mathematical models for each DSG system were used and effects of varying performance parameters on load terminal voltage and system VARs were evaluated.

For each DSG system, some reasonable performance conditions are assumed. In order to obtain a complete set of solutions for the system equations, the value of one or two variables is guessed and values of all variables are obtained iteratively.

Usually the value of system voltage was gressed sometimes along with one other system variable. In some generator models, knowledge of the terminal voltage of the machine completely specified the conditions inside the machine. For example, a synchronous machine controlled with an exciter using voltage feedback operates so that the magnitude of the exciter voltage is completely specified by the terminal voltage. The machine power angle delta is the only parameter which can vary to accommodate the required power output from the machine. Similarly, in the case of an induction machine, the model of the generator consists entirely of passive components, and conventional network analysis can be used to solve for the various current flows, given the terminal voltage on the machine and adjusting the slip so as to accommodate the appropriate power output.

In some of the generators, knowledge of the terminal voltage does not specify the conditions within the generator, and in these cases the second parameter guessed at would be the angle between the voltage behind system reactance and terminal voltage. This angle is frequently called beta. In such cases, the program iterated on the initial guessed terminal voltage and on the value of beta so as to obtain convergence.

In terms of the analytical complexity of the solution as indicated above, several of the combined generator load and power system models have 10 degrees of freedom and present sufficient complexity to completely rule out the idea of developing closed form solutions.

SECTION TWO

MATHEMATICAL MODELS

General Assumptions

In the previous section it was shown that the power system problem must ordinarily be solved iteratively, and methods of doing so were discussed.

If reasonable assumptions are made about the efficiency of the DSG, it might be possible to describe the variation of output power with input power. However, the variation of the output voltage cannot be handled so easily. In the usual power system solution, loads and generators are described by their real and reactive demands, and for the DSGs studied here these parameters are not known. Consequently, it becomes necessary to model each DSG, load and power system as a complete electrical circuit (rather than a one-line diagram) and to solve it using the equations of circuit analysis.

The remainder of this section will discuss the various models used and the numerical techniques used to solve the system problem.

Power System Model

Most portions of the generation side of a power system can be represented, for circuit analysis, by a very simple Thevenin equivalent. For generation and transmission this equivalent would simply be an inductance in series with a voltage source, as shown in Figure 2-1.

Figure 2-1. Thevenin Equivalent for Generation or Transmission System

Distribution systems differ in a number of ways from transmission systems. They are generally much less interconnected (with some exceptions) and the equivalent circuit frequently contains an appreciable resistance. Voltage control is rarely applied at the load, but is frequently applied at distribution substations and along some feeders

If we assume that the load under consideration is connected somewhere along a feeder (at one point), the feeder may be represented by a complex impedance. The effect of voltage control can then be modelled by allowing the voltage source to take on a range of values. The arrangement is shown in Figure 2-2.

Figure 2-2. Equivalent Circuit for Distribution System

The parameter values in Figure 2-2 are chosen to be representative of a typical system, in per unit.

Since design practice of distribution systems varies widely, it is quite difficult to give representative values for the resistance and reactance of the power system as seen from the customer's terminals. Furthermore, design practice is usually based on consideration of voltage drop rather than system impedance as it would be in a transmission system.

Nevertheless some estimates of typical values can be made. The impedance of the distribution transformer might be in the order of 2 or 3 percent, the higher impedances being associated usually with the larger ratings. The distribution transformer impedance is mostly reactive, the resistive component being perhaps one quarter of the total impedance. To this complex impedance must be added an impedance representing the feeder and secondary line to the customer, and the service drop.

The feeder and service drops vary somewhat with line design, but circuit conductors typically have an R to X ratio in the order of one. [2-1] That is to say, they are equally resistive and reactive. The exact amount of resistance and reactance to be added in our model, of course, depends on the circuit design and the length of line between the distribution transformer (whose impedance was considered above) and the customer.

The values taken as representative of the sum of transformer reactance and line resistance and reactance in this study were R = .04 and X =0.1 pu. The programs were also run with half this value as system impedance, producing results which were not substantially different. Some verification of the validity of these numbers may be obtained from consideration of volt drop, as is normally done in a distribution system design. In a residential feeder at heavy load there may be three-volts drop between the first distribution transformer and the last, and there may be three volts drop in the distribution transformer. Another three and one-half volts might be lost in the secondary line, and the service drop under (maximum) load for the consumer is rarely above one volt. This gives a total maximum volt drop on a residential feeder of 11 volts or .1 per unit. In the base case calculation of the studied power system where there is no DSG. the volt drop from the equivalent generator to the load at maximum load is about 9%, which is close to the maximum quoted above. The system is therefore quite representative of a distribution system and a typical customer. The alternate case results, with half this system impedance, might represent a customer connected closer to the distribution substation.

A rural feeder usually has about the same total volt drop as a residential feeder, but in the case of a rural feeder more of the volt drop exists across the primary feeder and service drop and there is, of course, typically no secondary line at all.

Load Model

In the solution of the single line version of the power system problem, the load is usually represented by a fixed real and reactive demand. However, since the voltage on a load bus may vary as the solution is approached, it is sometimes necessary to express the real and reactive loads as a function of voltage. Frequency effects can be neglected in the steady state load flow because governor action can be assumed to hold the frequency at its nominal value.

Clearly, the load performance will depend on the kind of load, as discussed in Section 1. For example, the real power demand of motor loads is practically independent of voltage, because the motor speed does not change with voltage. (There may be a very small change in the case of an induction motor.) Reactive demand will vary, however.

The real power demand of constant impedance load varies quadratically with voltage, as does the reactive demand.

Other loads have other properties, some being almost constant current for example, so that the problem of representing a load is by no means trivial.

Experimental investigations have shown that many aggregate loads can be represented as simple functions of voltage such as $P = kv^n$. Perhaps this is not too surprising, since for n = 1 this represents a linear function which lies between the quadratic dependence of constant impedance loads and the independence of motor loads. Figure 2-3 shows the effect of this load representation.

Figure 2-3. Real and Reactive Power as a Function of Voltage for Two Different Load Models, Normalized

Both the load models shown in Figure 2-3 have been used in this study. Both are represented by equations of the form:

$$P = K_1 V^n$$

and

$$Q = \kappa_2 v^n$$

For constant impedance loads, of course, n=2 and the constants K_1 and K_2 are fixed by the load resistance and reactance. The real part of current is given by

$$I_{R} = P/V$$

$$= K_{1}V^{n-1}$$

$$= K_{1}V$$

so that K₁ is simply the equivalent (parallel) conductance of the load. Similarly, K₂ is the equivalent susceptance of the load.

For $n \neq 2$ the equations are equally simple, but the apparent impedance is dependent on the value of n.

DSG Models

There is a large variety of DSGs that could be modelled and included in this study. Indeed, the number of different DSG types is so large that some means of reducing the size of the problem must be employed if an economical job is to be done.

Fortunately, the mathematical model need only extend as far as the power conversion device, and can be considered to be independent of the primary source of energy. Thus, for example, if a synchronous generator is modelled, its impact on system voltage, in the steady state, will be the same whether it is driven by a water turbine or by an industrial cogeneration system. Similarly, the model used for a dc-ac inverter would be the same whether it is used in a photovoltaics installation or in a battery storage. Further justification for this approach may be found in the fact that, for practical machines, the dynamics of the exciter are always faster than the dynamics of the input power and its control system.

The number of models required is therefore considerably less than the number of DSG types. Table 2-1 shows the models developed for the study, and typical applications.

TABLE 2-1.
DSG MODELS AND TYPICAL APPLICATIONS

Mode1	Application
Synchronous Machine	Low Head Hydro
Induction Generator	Wind Turbine
dc-ac Inverter	Photovoltaics, Fuel Cell

The synchronous machine and the inverter both have their own control systems that determine their performance. In the case of the synchronous generator connected to a power system, for example, the exciter system determines the reactive power output of the generator. Depending on what assumptions are made regarding the control system for the exciter, different models must be used to represent it.

Synchronous Generator

Synchronous generators are used in many cogeneration applications, and are also used in conjunction with water turbines. Unlike the induction machine, synchronous generators have a separate source of excitation to produce the rotating magnetic field, and they are capable of producing or consuming reactive power.

Whether a synchronous generator consumes or produces reactive power in a power system application depends upon the excitation. This in turn depends on the exciter control system.

In our present study the distribution system voltage is largely determined by the power system (this is quite typical of power system application of synchronous machines) and the DSG excitation system is controlled by a feedback system.

Three different controllers were modelled. One controller model assumes an exciter set to maintain constant voltage (assumed to be one per unit) at the terminals. This is a reasonable exciter control for a generator operating independently, and also seems to be the kind of controller called for by the interconnection agreements between some utilities and DSG operators.

A second exciter control model assumes that the exciter is attempting to maintain constant reactive power at the terminals. Unity power factor (i.e., zero reactive) was assumed in the study, but there is no reason why the same program could not be used with other reactive power values.

The third exciter model is the simplest of all. In this model the exciter current is held constant. This may be taken as representative of a synchronous machine without exciter feedback, or of a permanent magnet type machine.

The first exciter model assumes a simple static feedback type of controller in which the excitation is derived by amplifying an error signal which represents the difference between the terminal voltage and a reference voltage. Thus, if VT is the terminal voltage and VREF is the reference voltage, the excitation is given by

$$V1 = KG(VT - VREF)$$

where V1 is the voltage behind generator reactance, i.e., the excitation, and KG is a gain constant. (Note that we are using the same symbols here, without subscript, that are used in the computer programs.) In this study a gain of 10 was assumed, as this allows the terminal voltage to depart somewhat from the nominal value without causing the exciter system to reach under—and over—excitation limits, set at 0.0 and 2.5, respectively.

The second exciter model assumes a simple exciter feedback system where the feedback signal is obtained by amplifying an error signal which represents the difference between the output reactive power and a reference reactive power. By setting the reference value for reactive power to zero, this control is equivalent to power factor control with a reference power factor of unity. Unity power factor control, achieved as described above, can be represented by

$$V1 = K(Q - QREF)$$

where Q and QREF are the reactive power output and the reference reactive power, respectively. (In this study, QREF = 0.)

The permanent magnet exciter is simply represented by

VI = CONSTANT

The constant value was chosen to produce unity power factor operation at full load at rated voltage.

The system studied is shown in Figure 2-4. The same circuit is used for the three exciter types studied.

Figure 2-4. Equivalent Circuit of Distribution System with Synchronous Generator. (The same circuit is used for the three exciter types studied.)

The solution method proceeds as follows for the constant voltage type exciter.

- To simulate voltage control on the distribution system, VS is varied from 0.9 to 1.1pu.
- To simulate input power variations the value of PG, the input mechanical power, is varied from 0.02 to 0.20pu. This represents 20% penetration.
- VT is taken as reference for the calculations. The magnitude is not known at the outset, so a guess is made to provide an initial starting point. The value of VT is then determined iteratively.
 - A value is guessed for the angle between V1 and VT.
 - Using this angle the vector VI is determined. Since the exciter is assumed to be set to control the terminal voltage and hold it constant, a knowledge of the magnitude of VI immediately gives the magnitude of VI. The angle of VI was guessed, and is updated iteratively. At this point the magnitude of VI is checked to see if excitation limits are exceeded, and if so, limit values are substituted.
 - Since the drop across Z1 is now fixed, I1 can be found.
 - The power delivered to the terminals can now be found, using I1 and VT.
 - The power loss in R1 is added to the delivered power to find the required input power.
 - This input power is compared to the given shaft power PM, and the process repeated iterating on the angle until a power match is obtained.
- Once the power match is obtained for the generator, the value of IS can be found.
- The volt-drop across ZS is found.
- The value of VS can be calculated,
- The magnitude of this calculated value of VS can be compared with the given value of VS and the process repeated, iterating on the initial guess of the value of VT.
- Once convergence is obtained, the required terminal parameters are calculated and printed.

Vector diagrams for the system are shown in Figures 2-5A (VS = 1.0 pu) and 2-5B (VS = 0.9 pu).

Scale - Voltage, 1 cm = 0.1 pu Current, 1 cm = 0.1 pu

Figures 2-5A and B. Vector Diagrams for Synchronous Machine with Constant Voltage Exciter and Heavy Load.

The solution method is shown in diagram form in Figure 2-6.

Figure 2-6. Method Used to Solve the Distribution System/Synchronous Machine Problem with the Exciter Controlled for Constant Terminal Voltage.

The solution method for the exciter controlling for constant power factor at the generator terminals is very similar. The principal difference is in the relationship between the terminal voltage and the exciter voltage.

Whereas, in the case of the constant voltage exciter, the exciter equation generates an excitation depending on a reference voltage and the measured terminal voltage, for the constant reactive controller a reference value of reactive power was used. It happens that the resulting excitation is more nearly constant than in the case of the constant voltage controller, with the result that we are able to increase the controller gain and reduce the steady state error. In this model a gain of 100 was used along with a reference value for reactive power of zero.

The third model of synchronous machine is even simpler. In this model the excitation voltage is held constant at such a value as to produce unity power factor into rated voltage at full power output from the DSG.

It may be noted that with this kind of exciter the power system is now specified in a very conventional circuit analysis kind of way, that is to say, both generators voltage magnitude is specified along with values of all the system impedances. It might therefore be possible in principle to obtain a closed form solution for the power flows. However, it is simpler by far to modify the existing coding and continue to solve the problem iteratively. This model was implemented last and the program which solves it was derived from the previous two.

Induction Machine

An induction machine can be operated as a generator by driving it above synchronous speed, that is to say, with slip negative. Since there is no inherent means for producing excitation, the induction machine draws reactive power from the system to which it is connected. The equivalent circuit of an induction machine is similar to that of a transformer, with the transformer secondary short circuited. The rotor portion of the equivalent circuit contains a slip-dependent resistance, which accounts conveniently for the fact that the machine is either developing mechanical or electrical power.

The equivalent circuit is shown in Figure 2-7. [2-2]

Figure 2-7. Equivalent Circuit of an Induction Machine

The equivalent circuit of Figure 2-7 will not be developed here. The circuit is quite standard, and its derivation may be found in any text on electromechanical energy conversion. Figure 2-8 shows the generator connected to the distribution system.

The solution method proceeds as follows:

- To simulate voltage control on the distribution system, VS is varied from 0.9 to 1.1pu.
- To simulate input power variations, which may be regarded as typical of DSGs, the value of PG, the input mechanical power, is varied from 0.02 to 0.20pu, representing 20% penetration.
- Since the DSG terminals are the location for measurements of parameters such as power factor, voltage, power and so on, VT is taken as a reference. Since the value is not known at the beginning of the calculation, a reasonable guess is made. This guess is updated iteratively.
 - A value of slip is guessed. This value is corrected iteratively to solve the power balance for the DSG as follows:
 - A value is found for the parallel combination of (R2/s + jX2) and (RM + jXM).
 - This value is added to (R1 + iX1).
 - The voltage VT is applied to find I1.
 - The drop across Z1 is calculated.
 - V1 is found from VT and Z1 drop.
 - IM is found by applying V1 to ZM.
 - IG is found by adding I1 and IM.
 - Input power is found by multiplying IG2 and R2/s.
 - If this input power does not match the value of PM, the value of slip is corrected and the process repeated.
- Once the slip is found, I2 is found by subtracting I1 from IL.
- The ZS drop is found,

and the second s

- VS is found by adding VT and the ZS drop. If VS does not match the value set at the outset, the value of VT is modified and the procedure repeated.
- Various required parameters are calculated and printed.

A vector diagram for the system is shown in Figure 2-9.

The procedure is shown diagrammatically in Figure 2-10.

Figure 2-8. Circuit of Induction Generator Connected to Distribution System.

Scales

Voltage 1cm = 0.1 pu Current 1cm = 0.1 pu

Figure 2-9. Vector Diagram of System with Induction Machine

Figure 2-10. Solution Method for the Distribution System/Induction Machine Problem

Induction Machine with Capacitor Compensation

A criticism that may be levelled at the induction generator is that it consumes too much reactive power. The amount of reactive power consumed depends upon the terminal voltage and the output power, and it is not simple to give it in closed form. It is entirely possible, however, that the utility to which this kind of DSG is connected will require that the owner provide compensation for the reactive power consumed. Normally this compensation would consist of a power factor correction capacitor, sized to bring the combined power factor up to a value acceptable to the utility. Since this is a generic study, we have chosen to correct the power factor to unity when the DSG is operating at rated power into rated voltage. This corresponds to the largest power factor correction capacitor that may reasonably be required.

The computer program which calculates the results for the compensated induction machine is based on the uncompensated version. Once the current injected by the DSG into the system is calculated, a

correction is applied to the imaginary component, such that at rated power into the DSG and 1 per unit terminal voltage, the imaginary component vanishes.

Inverter: Constant Extinction Angle (CEA) Control

The constant extinction angle control frequently used for line-commutated inverters may be represented in a gross sense by a power injection with reactive demand equal to about 50% of the injected power. This will correspond to an extinction angle (gamma) of 15° which would be quite normal for a line-commutated inverter. Such a representation does not allow the detailed workings of the inverter to be modelled — perhaps this is fortunate — but an excellent representation of the terminal conditions may be obtained. [2-3]

The program which solves this model assumed that the inverter is 100% efficient and the output power is stepped from .02 to .2 per unit in the same way that the input power of the various other models is stepped.

The solution method is somewhat similar to the others. It begins by assuming a terminal voltage and from it calculating an injected current. The load current is found and consequently the current required from the power system is calculated. This current is multiplied by the series drop in the power system to give a value for the power system voltage and the magnitude of this voltage is then compared with the known value of the VS. Any difference between the two is used to correct the initial guess for terminal voltage.

When sufficient accuracy has been obtained, the values required for the output are calculated and printed. Since there is only one iterative loop in this program, it tends to run faster than some of the others.

CEA Controller Compensated at Full Load

A drawback of the previous type of DSG might be that the DSG consumes 50% as much reactive power as it generates active power. The owner of such a DSG may be required to compensate the terminals of his device for this reactive consumption. The simplest way to do this is with a capacitor. To model this compensation, a capacitor value was assumed such that 100% compensation was obtained when the DSG was injecting its rated power into the power system at rated voltage.

The computer program which solves this case is based on the uncompensated CEA inverter and differs only in that once the injected current is calculated a correction factor is applied to the imaginary component of this current before the power system contribution is calculated. The remainder of the program is the same and the speed at which it operates is similarly rapid.

Photovoltaic-type Invertor

While the details of the operation of many of the inverters used with low power photovoltaic arrays are proprietary, some information regarding their external characteristics is available. A simple type of inverter in current use has external properties unlike either of the two inverters described above. In this inverter the reactive power at full load is roughly the same as the CEA inverter (say 40% of the real power) but it drops only slightly as the real power decreases (to say 30% of the rated power at zero real power).

The program which solves this case is based on the program for the CEA inverter, the difference being the way in which the generator reactive power is calculated. Execution is quite fast.

Base Case

One of the programs was modified to represent the case of no injection from the DSG. Consequently the major loop (that which incremented the injected power) was not used and a rather diminished set of calculations resulted.

Again, it would be possible to calculate the required values in this rather simple situation in closed form, but it was decided that it would be more efficient to modify an existing program to solve the problem iteratively. Indeed, in view of the small size of the printout and the speed with which convergence can be obtained, this choice is clearly justified.

The principal use of the base case program is in finding the volt drop under various load conditions and with various values of system impedance.

SECTION THREE

PRESENTATION AND DISCUSSION OF RESULTS

Results

The results of the various computer programs are presented in Appendix B, Tables B-I to B-XIV, organized as follows:

Tables B-I and B-II	Synchronous machine	
	Constant voltage exciter	
	Light and heavy load	

Tables B-III and B-IV	Synchronous machine	
	Constant reactive control	
	Light and heavy load	

Tables B-V and B-VI	Synchronous machine	
	Constant excitation	
	Light and heavy load	

Tables B-VII and B-VIII	Induction machine
	Light and heavy load

Tables B-IX and B-X	Induction machine		
	Power factor corrected		
	Light and heavy load		

Tables B-XI and B-X	B-XI	and	B-XII	Inverter	Inverter	
		CEA conti	:01			
				Light an	i heavy	load

Light and heavy load

Tables B-XIII and B-XIV Inverter
CEA — compensated at full output

Light and heavy load

Tables B-XV and B-XVI Inverter
PV type -- uncompensated

Light and heavy load

It may be noted that the case of the dc/ac inverter with unity power factor control was not explicitly modelled. Since the controller in this case causes the inverter to look like a synchronous generator with unity power factor control, the results of that case (Tables B-III and B-IV) can be used. The synchronous machine on constant power factor control did not subject the exciter to any unusual conditions.

In the remainder of this section, the results of the computer programs are presented graphically. In all the graphs, the quantities are in per

unit (system base). The terms 'heavy' and 'light' refer to loads of 0.8 + j0.6 pu and 0.08 + j0.06 pu respectively, and the parameter P is the DSG input power.

Synchronous Machine: Constant Voltage

The synchronous machine with constant voltage exciter is, at first sight, a very reasonable sort of DSG. Indeed, there is at least one utility/qualifying tacility agreement in existence which requires small power producers to implement precisely this sort of control.

Since some DSG types use energy whose moment-to-moment availability is uncertain. voltage flicker might be thought of as a possible problem area. However, it may be expected that with a constant voltage controller on the exciter, variations of input power would not cause voltage fluctuations, and this is in fact the case. Figure 3-1 shows the variation of load voltage with DSG input power for the two values of load. It can be clearly seen that load voltage is independent of input power.

There is a price to pay for this kind of control. Figure 3-2 shows the reactive consumption or generation of the machine as a function of the system voltage. Since the generator is attempting to hold its terminal voltage constant, and yet the power system is actually dominant in setting the voltage, the DSG reactive reaches unreasonably large values for moderate excursions of system voltage.

The actual magnitude of the reactive demand will be limited by the machine rating and by the exciter rating. Since the model used in the computer program is only a generic representation, no details of machine or exciter ratings are available. However, in order to hold the exciter current down, the controller gain was set low (KG = 10). It might be expected that this could result in a somewhat 'soft' voltage control, and this is indeed the case.

Figure 3-3 shows the variation of load voltage with system voltage for two values of load and two input powers. The DSG exciter controller does improve the system regulation. A change in system voltage of 10% results in a load voltage change of about 6.4%

This improvement in regulation, of course, is the result of changes in DSG excitation. The excitation is shown in Figure 3-4 as a function of system voltage.

It can be seen that the excitation decreases to quite low values for values of system voltage above one per unit. However, since the maximum power that can be extracted from a machine is dependent on the magnitude of the excitation, the power transfer capability of the machine is restricted for values of system voltage above one per unit. In the case of a lossless machine, the maximum power is given by

$$P_{MAX} = \frac{V_{T} \cdot V_{EXC}}{X}$$

In the model used in the computer program, the effect of machine resistance was included, so the maximum power value is not so simple to calculate. During the running of the program, it was noticed that the machine's power angle (delta) was reaching quite large values as the system voltage increased, and stable solutions to the generator equations could not be reached for values of system voltage above 1.02 pu with the power system lightly loaded and the DSG input power at 0.2 pu.

The efficiency of the machine suffers because of the large reactive flow. While efficiency was not calculated explicitly, the effect can be seen in Figure 3-5, which shows the DSG output power as a function of system voltage

Figure 3-5 shows that the machine power output falls considerably for system voltages above one per unit, and results in the machine motoring when the input power is only 0.02 pu. This may be desirable from the power system point of view, but it would probably be difficult to persuade the owner of a DSG to pay an energy bill for the privilege of improving system voltage regulation!

Because of the reactive flow, the DSG power factor is poor most of the time, being near unity only for a very small range of system voltage. This is shown in Figure 3-6. In Figure 3-6 the ordinate is labelled 'P and Q same sign' and 'P and Q opposite sign'. This allows the graph to avoid discontinuities as the machine goes from lagging to leading power factor or from generating to motoring. The same approach has been used for all power factor diagrams.

In spite of the fact that the DSG power factor is poor, the system power factor is also poor, as shown in Figure 3-7. This somewhat paradoxical result arises because of the fact that the system voltage and the DSG voltage are essentially 'fighting' one another. When the system voltage rises, for example, and the DSG reactive consumption increases, this reactive has to be generated by the system, as shown in Figure 3-8. The effect is particularly noticeable at light load because the power is so small.

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 3-1. Load Voltage as a Function of Input Power, VS = 1 Synchronous Machine with Constant Voltage Exciter

Figure 3-2. DSG Reactive Output as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter

Figure 3-3. Load Voltage as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter

Figure 3-4. Excitation as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter

Figure 3-5. DSG Output Power as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter

Figure 3-6. DSG Power Factor as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter

Figure 3-7. System Power Factor as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter

Figure 3-8. System Reactive Power as a Function of System Voltage, Synchronous Machine with Constant Voltage Exciter

Synchronous Machine: Constant Reactive

The constant-voltage exciter resulted in an output voltage which was sensibly independent of the power output. It may be thought that the constant reactive controller would not give such good results in this regard. Figure 3-9 shows the load voltage as a function of input power for the constant reactive (unity power factor) generator. It can be seen that the load voltage is still fairly independent of the DSG input power. The load voltage is also somewhat lower than in the constant-voltage case.

The constant reactive synchronous machine model was originally written as a model of the dc/ac inverter with unity power factor control. In order to be used to represent a synchronous machine, it was necessary only to verify that the exciter would not be over-stressed. Figure 3-10 shows the exciter voltage as a function of system voltage.

The excitation can be seen to be almost constant, increasing only slightly as the system voltage increases. The model can therefore be used for the synchronous machine as well as the dc/ac inverter. Since the results are presented here, they are not repeated under the heading 'ac/dc inverter'.

Load voltage with this kind of controller is somewhat more dependent on the system voltage than in the case of the constant-voltage exciter. This is shown in Figure 3-11.

As shown in Figure 3-11, a 10% change in system voltage results in about a 10% change in load voltage. Voltage regulation is therefore no worse than it would be without the DSG.

DSG power factor and system power factor are shown as functions of system voltage in Figures 3-12 and 3-13.

The DSG power factor is, of course, uniformly good (even though a constant (zero) Q controller was used in the computer model rather than a constant (unity) power factor controller). The DSG power factor scarcely went below 0.88 and was above 0.96 for all except the lowest value of DSG input power.

System power factor, on the other hand, becomes quite poor - reaching zero when the DSG input power exactly matches the load. Under these conditions, the system is supplying only reactive power.

The efficiency of the DSG is uniformly good, because of the good power factor. This is evident from the curves of DSG power against system voltage, shown in Figure 3-14.

There is little point in showing the DSG or system reactive power for the synchronous machine with this kind of controller. The DSG reactive consumption is, as the name implies, approximately constant and the load reactive power determines the system reactive output.

Figure 3-9. Load Voltage as a Function of Input Power, VS = 1
Synchronous Machine with Constant Reactive Exciter

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 3-10. Excitation as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter

Figure 3-11. Load Voltage as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter

Figure 3-12. DSG Power Factor as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter

Figure 3-13. System Power Factor as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 3-14. DSG Power as a Function of System Voltage, Synchronous Machine with Constant Reactive Exciter

Synchronous Machine: Constant Excitation

Since the excitation for the constant reactive generator is more nearly constant than in the case of the constant voltage controller, it was thought worthwhile to examine the effect on the system of a generator with constant excitation. This might also be taken as representative of a permanent magnet type generator. Once again, the series of graphs begins with a curve of the load voltage against the input power, as shown in Figure 3-15. It can be seen that the load voltage is still fairly independent of the DSG input power,

The load voltage varies with the system voltage in a manner very much akin to the constant reactive generator. This is shown in Figure 3-16.

The DSG power factor is shown in Figure 3-17. It can be seen that the power factor is quite reasonable for values of machine power about 0.1, or 50% of the rating of the machine. For lower values of output power, the power factor becomes quite poor, especially under heavy load where the voltage on the system has gone down. This is not surprising since the excitation for this machine was fixed so that it would deliver rated output at unity power factor into rated voltage.

Figure 3-18 shows the system power factor as a function of system voltage. At heavy load the power factor is quite good, being largely determined by the load on the systems, but at light load, as the voltage changes, the system power factor goes through some quite violent excursions. This is because the system power is quite small and the DSG can be absorbing or generating reactive power, depending on the relationship between its excitation and the system voltage.

Figure 3-19 shows the DSG power as a function of system voltage. It can be seen in this figure that the effect of the wide variations in DSG power factor is some slight inefficiency as the system voltage drops below 1 per unit, the effect being more pronounced for heavy load. The inefficiencies are, however, very much smaller than the inefficiencies in the case of the constant voltage controller. This is perhaps surprising in view of the extreme simplicity of this control system. It should be borne in mind that the DSG models are otherwise identical.

Figure 3-20 shows the variation of DSG reactive as a function of system voltage. As expected, the reactive output of the machine is positive for low values of system voltage, because here the machine is effectively over-excited, and negative for high values of system voltage because it is effectively under-excited. In this respect it is somewhat similar to the constant voltage exciter, but the variation in DSG reactive is much smaller than in that case.

As a result the system reactive varies somewhat less, as is shown in Figure 3-21.

Figure 3-15. Load Voltage as a Function of Input Power, VS = 1 Synchronous Machine with Constant Excitation

Figure 3-16. Load Voltage as a Function of System Voltage, Synchronous Machine with Constant Excitation

Figure 3-17. DSG Power Factor as a Function of System Voltage, Synchronous Machine with Constant Excitation

Figure 3-18. System Power Factor as a Function of System Voltage, Synchronous Machine with Constant Excitation

Figure 3-19. DSG Power as a Function of System Voltage, Synchronous Machine with Constant Excitation

Figure 3-20. DSG Reactive Power as a Function of System Voltage, Synchronous Machine with Constant Excitation

Figure 3-21. System Reactive Power as a Function of System Voltage, Synchronous Machine with Constant Excitation

Induction generator

The rotating tield for the 'excitation' of an induction generator is drawn from the system to which the machine is connected. The generator always consumes reactive power, but in amounts which depend upon the power output as well as the terminal voltage. Voltage variations as a function of DSG power might therefore be expected. The results are shown in Figure 3-22.

It can be seen in Figure 3-22 that the load voltage does vary with input power to some extent. It may be that this is partly because the DSG reactive demand increases as the power output increases, thereby loading the system down with reactive current as it unloads the real power.

This reactive power is shown in Figure 3-23.

Figure 3-23 shows that the DSG reactive consumption varies strongly with DSG power and system voltage. The large consumption of reactive power is associated with a large slip, as shown in Figure 3-24.

Maximum power output from the generator occurs with a slip of about -5%, and for some values of system voltage at heavy system load the DSG input power exceeded the peak power capability of the machine. As a result, convergence was not obtained for system voltage below 1.0 pu, input power of 0.2 pu and full load on the system or below 0.92 pu volts with input power of 0.2 pu and light load on the system. Convergence was otherwise satisfactorily obtained, indicating that the machine parameters were appropriately chosen for an input power of 0.2 pu.

Since a characteristic of the induction generator is that its reactive demand increases as the real power output increases, and decreases as the terminal voltage increases, its power factor does not vary very much as these parameters vary. This is shown in Figure 3-25.

The system power factor, as shown in Figure 3-26, is quite poor except when the DSG is making only a slight contribution to the load. The power factor is so poor because the DSG consumes reactive power.

In spite of the reactive demand, the load voltage varies with the system voltage in much the same way as the constant Q generator. This is shown in Figure 3-27

The induction generator, like the constant power factor synchronous generator, is reasonably efficient. As shown in Figure 3-28, the DSG output power remains close to the input power, independent of the system voltage.

Figure 3-22. Load Voltage as a Function of Input Fower, VS=1 Induction Generator

Figure 3-23. DSG Reactive Power as a Function of System Voltage, Induction Generator

Figure 3-24. Slip as a Function of System Voltage, Induction Generator

Figure 3-25. DSG Power Factor as a Function of System Voltage, Induction Generator

Figure 3-26. System Power Factor as a Function of System Voltage, Induction Generator

Figure 3-27. Load Voltage as a Function of System Voltage, Induction Generator

Figure 3-28. DSG Output Power as a Function of System Voltage, Induction Generator

Compensated Induction Generator

The compensated induction machine gives a somewhat better performance in terms of load voltage against input power than the uncompensated machine. This is shown in Figure 3-29. It may also be added that the load voltage for both heavy and light load is somewhat higher than for the uncompensated induction generator because of the power factor correcting capacitor.

The DSG reactive, instead of being uniformly negative as in the uncompensated version, is now positive for low output powers and may be positive or negative for higher output powers, depending on the system voltage. Again the effect is clearly due only to the power factor correcting capacitor. This is shown in Figure 3-30.

Figure 3-31 shows the slip for the compensated induction generator. Of course, any difference between the slip curves of the compensated generator and the uncompensated generator are du; to changes in the terminal voltage and, since the slip is largely determined by the power generated by the machine, these slip curves are not significantly different from the slip curves for the uncompensated generator. It may also be added that the same range of operation was obtained — that is to say, the improvement in terminal voltage due to the power factor correcting capacitor was not sufficient to extend the range of the generator below 1 pu system volts at heavy load and full power, or below 0.92 pu system volts at light load and full power.

The DSG power factor is shown in Figure 3-32. For full power, or 0.2 pu power on the generator, the DSG power factor is uniformly good, and very close to unity, because of the correcting capacitor. However, at smaller values of power output, the reactive drawn by the generator itself is smaller and the system as a whole is over-corrected. As a result, the DSG's apparent power factor is rather poor.

The system power factor, shown in Figure 3-33, is reasonably good for most values of DSG power and system voltage. Only when the DSG output almost exactly balances the real component of load is the system power factor poor, so that unless the DSG power output is about 50% of its rated value, in this example, the system power factor is quite reasonable.

The variation in load voltage with system voltage, shown in Figure 3-34, is quite similar to the variations for the uncompensated generator. The difference is that, in this case, the voltages are all slightly higher.

The variation in DSG power with system voltage shown in Figure 3-35 is very similar to the variations seen in the case of the induction generator. This should not be surprising, since the only difference would be due to the slight change in slip resulting from the slight change in terminal voltage.

Figure 3-36 shows the system reactive power for light load as a function of the system voltage. The system absorbs reactive power when the generator is putting out less than rated power, and is not called on to generate a significant amount of reactive when the generator is at full output. This contrasts with the case of the uncompensated generator, where even at light load the system is required to furnish between 0.1 and 0.2 pu reactive power all the time.

Figure 3-29. Load Voltage as a Function of Input Power, VS = 1
Compensated Induction Generator

Figure 3-30. DSG Reactive Power as a Function of System Voltage, Compensated Induction Generator

Figure 3-31. Slip as a Function of System Voltage, Compensated Induction Generator

Figure 3-32. DSG Power Factor as a Function of System Voltage, Compensated Induction Generator

Figure 3-33. System Power Factor as a Function of System Voltage, Compensated Induction Generator

Figure 3-34. Load Voltage as a Function of System Voltage, Compensated Induction Generator

Figure 3-35. DSG Output Power as a Function of System Voltage, Compensated Induction Generator

Figure 3-36. System Reactive Power as a Function of System Voltage, Compensated Induction Generator

DC/AC Invertor: Constant Extinction Angle Control

Constant extinction angle (CEA) control is a possible, perhaps even likely, control method for line-commutated inverters. Self-commutated inverters are represented in this study by the unity power factor synchronous machine, which they generally resemble.

The reactive demand of a CFA inverter is very nearly a constant fraction of the real power delivered. For extinction angles typically used, around 15°, this fraction is typically 50%. As with the induction generator, this reactive power demand does not cause a problem in the load voltage as the power delivered varies. This is shown in Figure 3-37.

Because of the rather simple inverter representation used, some of the graphs presented for the other DSGs cannot be derived for the CEA inverter. For example, the DSG power factor is, perferce, constant and the DSG reactive demand is independent of system voltage.

The load voltage varies with system voltage, as shown in Figure 3-38, much like the induction machine case.

The machine efficiency cannot be examined through the model used here.

Because the DSG picks up only the real component of the load, the system power factor can be quite poor over quite a broad range of power levels, and actually becomes zero when the real power is precisely matched by the DSG. This is shown in Figure 3-39. DSG power factor is not shown since it is constant (by assumption).

Figure 3-37. Load Voltage as a Function of Input Power, VS = 1 CEA Inverter

Figure 3-38. Load Voltage as a Function of System Voltage, CEA Inverter

Figure 3-39. System Power Factor as a Function of System Voltage, CFA Inverter

Compensated CEA Inverter

Capacitor compensation can be applied to the CEA inverter to reduce its reactive demand. In the case examined here, a capacitor was added across the terminals of the inverter so that, at 1 pu voltage and 1 pu input power, the DSG presented unity power factor generation to the power system. As a result of this capacitor, the DSG is overcompensated for all lower values of input power, and operates at an (apparent) leading power factor. The power factor also becomes somewhat voltage-dependent.

As before, we begin by examining the variation of load voltage with input power, as in Figure 3-40.

Figure 3-40 shows that the compensated CEA inverter behaves somewhat differently than the other DSGs. Because of the fixed compensation, a considerable amount of voltage support is provided at low power inputs, and the voltage at the load is quite high. As the DSG power increases this voltage support decreases and, in spite of the fact that the DSG is supplying more power, the load voltage decreases. The reactive support is shown in Figure 3-41 as a function of system voltage and input power.

As expected, the capacitive support is quite small for rated power from the DSG, and quite substantial for small power output.

The system power factor is shown in Figure 3-42.

The DSG power factor is, of course, excellent for rated power from the DSG, and poor for other, lower, values. System power factor depends on the system load. At heavy load the system power factor is fair until the DSG picks up a large amount of the real power - the system power factor then gets as low as about 0.6. With light load the system power factor is remarkably constant. This is because of a coincidence in the choice of load impedance and the amount of reactive compensation in this model. Other compensations yielded different results.

< - ک

Figure 3-40. Load Voltage as a Function of Input Power, VS = 1
Compensated CEA Inverter

Figure 3-41. DSG Reactive Power as a Function of System Voltage, Compensated CEA Inverter

Figure 3-42. System Power Factor as a Function of System Voltage, Compensated CEA Inverter

Photovoltaic type Inverter

In this type of inverter, which is used with small photovoltaic arrays, the reactive power consumption is almost constant, increasing from 30% of the rated power at no (real power) output to 40% of the rated power at full load. This reactive power demand does not cause a problem in the load voltage as the power generated varies. This is shown in Figure 3-43.

There is nothing unusual about the way load voltage varies with system voltage, as shown in Figure 3-44.

As with the other inverters, the model used here is rather simple and cannot be used to show all the detail presented for the other DSGs. System power factor is shown in Figure 3-45. Machine efficiency cannot be examined through the model used here, but must be quite poor at low power. Since the input energy with this type of converter is likely to be solar (and therefore free), low efficiency at low power is not likely to be a deterrent to the use of the system.

Figure 3-43. Lead Voltage as a function of Input Power, VS=1
Photovoltaic type Inverter

Figure 3-44. Load Voltage as a function of System Voltage, Photovoltaic type Inverter

Figure 3-45. System Power Factor as a function of System Voltage,
Photovoltaic type Inverter

Comparison of DSGs

The eight DSG types considered in this study evidently behave differently as far as voltage effects are concerned. Obviously, this is because of the different kinds of exciter control used, but it is difficult to see exactly what the differences will be if consideration is given only to the exciter equations. A better understanding of the reasons for the different voltage effects can be obtained by comparing the way in which the generation or consumption of reactive power varies.

Figure 3-46 shows the variation of reactive power for the eight DSG/exciter types studied, as a function of system voltage.

Figure 3-46. Reactive Power as a Function of System Voltage for the Eight DSG/Exciter Types Modelled.

Input Power = 0.2 pu, Heavy Load.

As shown in Figure 3-46, there are basically three kinds of behavior as far as Q-variation with system voltage is concerned. The compensated CEA inverter type and the constant power factor synchronous machine generate or consume relatively little reactive power at their rated power output, and this reactive power does not vary strongly with system voltage.

The induction machine, the CEA inverter and the PV type inverter consume a moderately large amount of reactive power at rated output and, in the case of the induction machine, this power increases as the system voltage decreases. This is likely to cause a further decrease in terminal voltage, and could lead to voltage—induced instability.

The compensated induction machine is intermediate. It consumes relatively little power at full output, like the compensated CEA inverter, but its reactive demand increases considerably as the system voltage falls, like the induction machine.

The constant-voltage synchronous generator generates Q when the terminal voltage is below its set point, and consumes Q when the voltage rises above this point, in an effort to hold the voltage constant. As we have seen, the large reactive flow leads to considerable inefficiency in the machine.

The permanent magnet machine (constant excitation) is rather like a low-gain constant voltage machine, or it may be regarded as intermediate between the constant voltage and constant reactive machines.

Perhaps of equal concern is the variation of reactive power with real power. Figure 3-47 shows this for the eight DSG/exciter types.

Figure 3-47. Reactive Power as a Function of Real Power for the Eight DSG/Exciter Types Modelled. VS = 1.08, Heavy Load

In Figure 3-47 the exciter types are more like one another, but with some differences still.

The constant-voltage synchronous machine, the compensated induction machine, the compensated CEA inverter and the permanent magnet type machine generate reactive power. The two compensated DSGs do so at low input power because they are over-compensated under these conditions. The constant voltage synchronous generator does so because the terminal voltage tends to drop as the DSG contribution to load power decreases.

The constant-Q controller naturally maintains very constant reactive domand. The CEA inverter, the PV type inverter and the induction machine both consume more reactive power as their real power input to the system is increased.

Again, the constant excitation synchronous machine is intermediate in performance, between the constant voltage and constant reactive machines.

The differences among the DSG/exciters can be seen in Table 3-1, which summarizes the information in Figures 3-46 and 3-47.

TABLE 3-1

COMPARISON OF DSG/EXCITER TYPES

CONSUMPTION OR GENERATION OF REACTIVE POWER

——————————————————————————————————————	VARIATION WITH VOLTAGE		VARIATION WITH POWER	
DSG/EXCITER	SLOPEa	INTERCEPT	SLOPEa	INTERCEPT
SYNCHRONOUS/CONSTANT VOLTAGE	NEGATIVE		NEGATIVE	
SYNCHRONOUS/CONSTANT REACTIVE	0	SMALL	0	SMALL NEGATIVE
SYNCHRONOUS/ CONSTANT EXCITATION	NEGATIVE	POSITIVE	NEGATIVE	POSITIVE
INDUCTION _	POSITIVE	LARGE NEGATIVE [©]	NEGATI	VE 0 ^c
INDUCTION (COMPENSATED)	POSITIVE	NEGATTVE [©]	NEGA'ITVE	POSITIVE
INVERTER/ CEA	0	NEGATIVE		0
INVERTER/ COMPENSATED CEA	VERY SMALL POSITIVE	SMALL	negative	POSITIVE
INVEKIER/ PV TYPE	0	NEGATIVE	NEGATIVE	NEGATIVE

The slope of interest is the slope of the parameter in the range shown in Figures 3-46 and 3-47, i.e., 0.9 to 1.1 pu voltage and no-load to rated power for the DSG.

The intercept of interest is the effective intercept in Figures 3-46 and 3-47, i.e., on the VS = 0.9 and PM = 0 axes.

c Approximated by a straight line.

Table 3-1 shows that no two DSG-exciter combinations are exactly alike. Most similar are the compensated CEA and the PV type inverter. Broadly speaking, systems which are similar with respect to voltage change are dissimilar as far as power is concerned, and vice versa.

Since the DSG/exciter combinations are all different in some respect, a logical question to ask is 'which one is best?' It may be easier to examine problems and disadvantages of various DSG/exciter combinations before proceeding with that question.

Problems and Disadvantages

The synchronous machine equipped with an exciter compounded for constant terminal voltage may be desirable from the power system point of view, but it results in an unacceptably large flow of reactive power in the DSG. As a result of this reactive power, the DSG efficiency is low and, if the DSG is privately owned, it may become economically unattractive.

It may be added here that if the utility wishes to do voltage control on the distribution system they would not employ a small generator or synchronous condenser to do it. Tap changing transformers, autotransformers, and capacitor banks are usually employed instead. Although there are many techniques for voltage control, none of which is a general standard, it may be noted that in most power systems large generator exciters are not usually employed to satisfy voltage constraints. It seems odd that such a use would be required of a DSG owner. In any event, aside from the question of machine efficiency, the fact that the machine excitation decreases as the system voltage increases means that the power transfer capability of the DSG is restricted at high system voltage, and this must be regarded as unacceptable.

This criticism of the controller does not apply in the case of the synchronous machine with a constant reactive power controller. This controller results in a relatively constant excitation, and there is no sign of a power limit being reached. The load voltage is more dependent on the system voltage than in the previous case (this is not a criticism), but still does not vary significantly with input power.

The constant excitation (permanent magnet) machine is evidently intermediate in performance between the constant voltage exciter and the constant reactive exciter. It is perhaps surprising that so simple an exciter could produce such a useful result. The DSG reactive power is positive at low voltage, and falls as the terminal volts rise (but not so rapidly as in the case of the constant voltage machine) and the reactive output falls with increasing power output (again not so rapidly as in the constant voltage machine).

The main criticism of this exciter is that the DSG power factor can be quite poor, resulting in decreased efficiency at low power and voltage.

The DSG power factor is, of course, always good, as a result of which the system power factor becomes very poor at light load. The situation is somewhat like the previous case in reverse - now there are times when the power system is absorbing power and supplying reactive power. This may be unacceptable to the utility if the DSG is privately owned, and the utility is paying for the input of power.

The induction generator consumes reactive power for its excitation all the time, and in large amounts at low system voltage. The large reactive consumption tends to further decrease the terminal voltage, which is exactly the opposite of what is required. This kind of DSG may be unacceptable from both the utility and the DSG-owner point of view. Its main advantage is simplicity - it is easy to start (without synchronizing, it could be started as a motor) and easy to operate (no control system for excitation).

The compensated induction machine suffers most of the disadvantages of the uncompensated generator, with the exception of its apparent power factor at full load. However, the machine still will not operate at high power and low voltage, and causes voltage variations as the input power changes.

The CEA inverter, like the induction machine, consumes more reactive power as its real power output increases. As a consequence, the system power factor is uniformly poor at light load, and not very good at heavy load.

In the case of the compensated CEA inverter, which is equivalent to a CEA inverter and a fixed power-factor correction capacitor, the system power factor is much improved at full load, and may be acceptable at light load. It should be noted that, as with some of the other DSGs at the point where the system power factor is at its worst, the actual amount of reactive power involved may be quite small. Thus, when the compensated CEA inverter real power output matches the load, in the light load case, the system power factor falls to zero. However, the reactive power is at this time being absorbed by the power system, and is less than 0.02pu.

The biggest criticism of the compensated CEA inverter is that it may lead to high-voltage conditions, and could also affect harmonics. Properly coordinated with the distribution system it could be a useful addition to the power system.

The PV type inverter, like the CEA inverter, consumes more reactive power as its real power output increases. As a consequence, the system power factor is uniformly poor at light load, and not very good at heavy load.

Connection

Up to this point in the evaluation of the various DSG voltage controllers one important parameter has not been considered, and that is the effect on the load voltage of merely connecting the DSG. Without the DSG the load voltage will be determined by the magnitude of the load and the system voltage. With the DSG connected the picture is much more complex. For the sake of comparison, it has been assumed that the DSGs are synchronized smoothly when their available power is 10% of their rating. It is then possible to recalculate the load voltage.

In the steady state (which is the condition computed) the load voltage may be higher or lower after the DSG has been connected than it was before the addition of the DSG, depending on the reactive power consumed or produced by the DSG. If the difference under the two circumstances is large, the addition of the DSG may cause objectionable lamp flicker, and result in voltage complaints (presumably from the neighbors). This voltage flicker is not caused by the generator dynamics.

It is assumed that the startup transient, if any, has died away. The exact nature of this transient will depend on the design of the DSG and the system. For many DSGs, particularly PV systems, the dynamic characteristics vary very widely, depending on inverter manufacturer and topology. Inclusion of transient effects would have made difficult our objective of providing results of general applicability. Our main interest is in the steady state effects in the absence of a communication system.

Small DSGs operating without a communication system may not be continually manned — if the DSG is manned the question of voltage control may be most in any case. Small automatic DSGs will presumably be programmed to operate as long as operation is profitable. In the case of PV, for example, the system should operate as soon as enough sun is available to overcome internal losses. If such a system were to come on— and off-line a few times a minute, perhaps because of cloud cover, any voltage changes might be particularly objectionable.

For this reason it is worthwhile to compare the various DSGs on a basis of the voltage change caused by the connection of the DSG at (an assumed reasonable starting power of) 10% of rated output. These results are shown in Table 3-2.

Table 3-3 compares the voltage changes which result from increasing the power from the 10% connection value to full rated output.

TABLE 3-2
PERCENTAGE LOAD VOLTAGE VARIATION DUE TO CONNECTING AT 10% RATED POWER

		System	Voltage	
DSG/Exciter Type	1.	08	1.	00
	Load		Load	
	Heavy	Light	Heavy	Light
ynchronous				
Constant Voltage	0.8	-3.7	4.0	0.7
Unity Power Factor	0.0	0.0	0.0	0.0
Constant Excitation	0.4	-0.2	2.0	0.5
Induction	•••••	• • • • • • • •	• • • • • • • • •	• • • • • •
Uncompensated	-0.2	-0.2	-0.2	-0.2
Compensated	0.9	3.1	8.0	1.0
inverter	•••••	• • • • • • • • •		• • • • • •
CEA	0.0	0.0	-0.1	0.0
	0.9	1.1	0.8	1.0
Componsated CEA	V.,			

TABLE 3-3

PERCENTAGE LOAD VOLTAGE VARIATION
DUE TO CHANGE IN INPUT POWER
FROM 0.02 TO 0.2 P.U.

	System Voltage				
DSG/Exciter Type	1.08 Load		_ 1	1.00	
			Load		
	Heavy	Light	Невуу	Light	
Synchronous					
Constant Voltage	0.2	0.1	0.3	0.1	
Unity Power Factor	0.7	0.6	0.7	0.7	
Constant Excitation	0.4	0.3	0.4	0.3	
• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • • • • • •	• • • • • • • • •	••••••	
Induction					
Uncompensated	-0.2	-0.1	-0.7	-0.3	
Compensated	-0.3	-0.1	-0.6	-0.2	
*************	• • • • • • • • •	••••••	••••••	• • • • • • • •	
Inverter					
CEA	-0.1	-0.1	-0.1	-0.1	
Compensated CEA	~0.1	-0.1	-0.1	-0.1	
PV type	0.6	0.5	0.6	0.5	

Tables 3-2 and 3-3 show the impact on voltage for system voltages at 1.08 and 1.0. These values correspond to normal operation at heavy load and light load respectively. The value of 1.0 at heavy load may also be regarded as a representation of brownout conditions at heavy load.

The constant voltage exciter and the constant excitation machine show qualitatively similar behavior in Table 3-2. Both are attempting to maintain the terminal voltage. Thus, they both cause the voltage to increase when connected at heavy load, and they both cause the voltage to decrease when connected at light load with system voltage of 1.08. The unity power factor machine has no impact when connected, for any load and voltage combination.

The uncompensated induction machine causes a slight (0.2%) voltage droop when it is connected, but the compensating capacitor in the p.f. corrected version causes a voltage rise (of about 1%) when the induction machine is connected, because it is then overcorrected. The voltage rise is over 3% for high voltage light load conditions.

The PV type of dc/ac inverter causes a more or less uniform voltage droop when it is connected, the 'optimized' CEA inverter has practically no impact, and the capacitor compensated version causes about a 1% voltage rise.

It can be seen in Table 3-3 that a variation from practically no load to full load on the DSG usually results in only a very small change in the terminal voltage for each of these DSGs. The two worst DSGs are the unity power factor machine and the simplest PV inverter. In both these cases the reactive demand is almost constant as the power input changes.

Table 3-4 summarizes these discussions.

TABLE 3-4 COMPARISON OF DSG/EXCITERS

DSG/EXCITER	GOOD FEATURES	BAD FEATURES	COMMENTS*
SYNCHRONOUS/ CONSTANT VOLTAGE	STABILIZES LOAD VOLTAGE	LOW DSG EFFICIENCY MAY LIMIT POWER TRANSFER CAPABILITY	UNDESIRABLE TO DSG OWNER
CONSTANT Q (UNITY PF) SYNCH. OR INVERTER	MAXIMIZES DSG EFFICIENCY	SYSTEM POWER FACTOR POOR AT LIGHT LOAD	
SYNCIRONOUS/ CONSTANT EXCITATION	HAS NO CONTROLLER	SYSTEM POWER FACTOR MAY BE POOR	VOLTAGE JUMP AT START-UP.
INDUCTION MACHINE	SIMPLE TO OPERATE HAS NO CONTROLLER	SYSTEM POWER FACTOR POOR. LOW VOLTAGE CONDITION MAY BE AGGRAVATED BY DSG	UNDESIRABLE TO UTILITY
	SIMPLE TO OPERATE HAS NO CONTROLLER	COULD LEAD TO HARMONIC RESONANCE OR HIGH-VOLTAGE CONDITIONS	POSSIBLE VOLTAGE JUMP AT START-UP. COMPENSATION MAY BE COSTLY FOR DSG OWNER
INVERTER/ CEA CONTROL	SIMPLE, PROVEN DESIGN	SYSTEM POWER FACTOR POOR	
	SIMPLE, PROVEN	HARMONIC RESONANCE OR HIGH-VOLTAGE CONDITIONS	POSSIBLE VOLTAGE JUMP AT START-UP. COMPENSATION MAY BE COSTLY FOR DSG OWNER
INVERTER - PV TYPE		SYSTEM POWER FACTOR MAY BE POOR	

^{*}Whether or not a particular DSG/exciter type is acceptable to a utility or to the owner of the DSG depends upon many factors. It is assumed in this table that the utility and DSG owner are separate entities, that the DSG owner is to be paid only for real power, and that the utility does not wish to change its operating policies.

Table 3-4 suggests that none of the DSG/exciter types studied would be universally acceptable. Among the best may be the constant Q (unity p.f.) generators (whether self-commutated inverter or synchronous machine) which can only be criticized for leaving the load reactive demand constant as it reduces the real power load on the power system, and the CEA type inverter. which has practically no impact on the load voltage, either as it is connected or as the input power varies. This results in a poor power factor on the power system and, in the case of separate DSG ownership, could result in the utility's 'paying for the privilege of supplying reactive power'.

On the other hand, many utilities experience high-voltage problems at night, when the light load on the system (and its lines) results in a surplus of reactive generation. If this is the case, this kind of DSG may be quite acceptable.

On the basis of voltage variations alone, the CEA type inverter has the least impact on the load voltage of all the types considered.

Proposed New Exciter Control

While all the DSG types studied behave differently in terms of their real:reactive power ratios, as in Figure 3-47, they all have one thing in common. The reactive power generation either decreases or is constant as real power output increases. None of the DSGs succeeds in generating reactive power in proportion to its real power generation.

This singular omission was rectified by a modification of the constant Q program. Results are given in Appendix C, which also includes the program listing and description. The control system was modelled to have no loop error for a leading power factor of 0.8. Operation of the generator was then at approximately 0.83 p.f. (leading), the power factor improving somewhat at low values of output power.

As in the other presentations. we begin with the graph of load voltage against input power, Figure 3-48. Unlike most of the other graphs, this one shows a distinct increase in the load voltage with input power for both heavy and light loads. The reason is clearly that as the input power increases so does the amount of reactive power which is removed from the system.

Figure 3-49 shows the excitation voltage varying with system voltage. Again, the values are not unusual. increasing only slightly as the system voltage increases.

Figure 3-50 shows the load voltage as a function of system voltage. In this case the load voltage is more dependent on the input power than in some of the other cases, but its dependence on system voltage, as shown here, is no worse than without the DSG.

Figure 3-51 shows the DSG power as a function of system voltage. The DSG is quite reasonably efficient, independent of the value of system

voltage. This is to be expected since the power factor is uniformly quite good.

It is not worthwhile to show the variation in DSG reactive power as a function of real power for this machine since the assumption behind the exciter control system is that the power factor is constant at 0.8 leading. For the same reason the system reactive power is not shown, nor is the power factor of the system or the DSG.

In view of the poor voltage regulation with this version of the DSG (it is in this regard the worst of all the DSGs modelled), it is extremely difficult to see why more effort should be expended on its development. The program and data are given in Appendix C.

Figure 3-48. Load Voltage as a Function of Input Power, VS = 1
Leading Power Factor Machine

Figure 3-49. Excitation as a Function of System Voltage Leading Power Factor Machine

Figure 3-50. Load Voltage as a Function of System Voltage Leading Power Factor Machine

Figure 3-51. DSG Power as a Function of System Voltage Leading Power Factor Machine

SECTION 4

CONCLUSIONS

Eight different kinds of DSG/exciter combination have been studied. They were:

- 1. Synchronous machine with a constant voltage exciter.
- 2. Synchronous machine with a unity power factor excitor.
- 3. Synchronous machine with a constant excitation exciter.
- 4. Induction machine.
- 5. Induction machine with power factor correcting capacitor.
- 6. Constant extinction angle inverter with tap-changer.
- 7. Constant extinction angle inverter with tap-changer and power factor correcting capacitor.
- 8. PV type inverter.

Many of these DSG/exciter combinations have shortcomings which mean that their application to the distribution system should be regarded with some care by either the owner or the utility.

In this study, the effect of uncertainties in prime mover power was modelled by varying the input power to the DSG model. It may be possible to regard this variation in power as representative also of varying penetrations of DSGs, bearing in mind that such an extension of the original purpose of varying the input power might sometimes be misleading. It may be observed that for heavy load, maximum penetration is 20%, whereas for light load more than 100% penetration is effectively achieved. In fact, at light load, 100% penetration is achieved when the input power is 0.08 pu.

Problems on the power system caused by poor power factor or large relative reactive power consumption at light load may not be serious because, at light load, the power system components are (by definition) not particularly stressed. However, if we take the light load conditions as being representative of some future high penetration situation, then the system power factor becomes of more interest.

In Section Three the system power factor behavior at light load was shown to fall into basically two categories. In Figure 3-7 for the constant voltage exciter and Figure 3-18 for the constant excitation machine, the system power factor at light load was shown to go through violent excursions at approximately one per unit voltage. This arises because the DSG is essentially trying to maintain the terminal voltage constant, independent of the power system to which it is connected. If the utility were attempting to reduce voltage, perhaps as a Commission-directed conservation measure, DSGs of this type would essentially be fighting the power system.

All of the other DSGs resulted in a system power factor which was more or less independent of the system voltage.

At low penetration, heavy load, none of the DSGs had a particularly adverse effect on the system power factor or the terminal voltage after they were connected. There would seem to be no reason for any utility to prohibit or limit the use of any of these DSGs on those grounds. On the other hand, the independent DSG owner may be reluctant to suffer the losses involved in the constant voltage machine or to pay for the compensation that may be required on the induction machine or the CEA inverter.

Some of the DSGs did cause a noticeable change in voltage as they were connected. Connection was assumed to take place at 10% of the DSG rated power, which amounts to only 2% of the system rating, so it is clear that any voltage effects observed must be due to reactive power. Voltage increases were seen for the capacitor compensated DSGs (because they were over compensated at 10% power) and decreases were seen for the DSGs which consume reactive power at light load.

The DSG which had the least impact on voltage, either as it was connected or when its input power varied, was the optimized CEA inverter, which was modelled to have constant (lagging) power factor.

The reason that this performed so well as far as terminal voltage is concerned is clear. As it is synchronized at low power, it consumes or generates only a small amount of reactive power. As the power output increases, which might cause a rise in voltage, the reactive demand increases and compensates for this effect.

The power factor in this case was between 0.8 and 0.9 lagging. It seems likely that the value of power factor at which the load voltage will change least will depend on the load (whose power factor will itself change with DSG penetration level) and the system impedance. Nonetheless, it is interesting that this is bound to be a lagging power factor.

In this study we have neglected transient effects, such as current inrush into the induction machines. Consideration of such transients would have further complicated an already involved situation. It must be acknowledged, however, that many kinds of DSG can cause start-up transients, and these also must be limited.

It is our feeling that any DSG which draws little reactive power as it is synchronized and operates at a slightly lagging power factor will have minimum impact on load voltage, and could operate without system-coordinated voltage control.

SECTION 5

REFERENCES

- 1-1 O. I. Elgerd, <u>Electric Energy Systems Theory: An Introduction</u>, (McGraw-Hill, 1971).
- 2-1 <u>Electric Utility Engineering Reference Book Distribution</u>
 <u>System</u>, Westinghouse Electric Corporation, 1965.
- 2-2 G. R. Slemon and A. Straughen, <u>Electric Machines</u>, (Addison-Wesley Publishing Company, 1980).
- 2-3 C. Beeriger, 'Reactive Load at HVDC Terminals', Brown Boveri, Rev. 2/3-73, pp 95.

APPENDIX A PROGRAM LISTINGS

```
10 REM VOLTAGE STUDY
                          FILE B:SYNC
20 REM
30 LPRINT "THIS PROGRAM CALCULATES THE CASE OF A SYNCHRONOUS GENERATOR"
40 REM
50 REM INITIALIZE
60 REM
70 REM SET THE VALUES OF THE VARIOUS PARAMETERS IN THE SYSTEM
80 REM
90 REM
100 RS = .04
110 XS
        = . 1
120 R1=.1
130 X1=1
140 KG=10
150 VREF=1.104
160 \text{ VLIMIT} = 2.5
170 KV=-.4
180 \text{ KD} = -10
190 REM
200 REM SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
210 REM
220 FOR LTYPE = 1 TO 2 STEP 1
230 IF(LTYPE=1) GOTO 270
240 LPRINT
250 LPRINT "REALISTIC LOAD REPRESENTATION"
260 GDTD 330
270 LPRINT "CONSTANT IMPEDANCE LOAD"
280 REM
290 REM SET THE INPUT POWER
300 REM IN THIS PROGRAM THIS IS THE DUTER LOOP
310 REM NOT COUNTING THE LTYPE CHANGES AS A LOOP
320 REM
330 FOR PG = .02 TO .2 STEP .02
340 LPRINT
350 LPRINT
340 LPRINT "SYS V P IN DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOA
V EXCITN"
370 VT
       = .88
380 REM
390 REM SET THE SYSTEM VOLTAGE
400 REM THIS IS THE MAIN INNER LOOP
410 REM
420 FOR VS = .9 TO 1.1 STEP .02
430 DELTA = 45
440 VITER = 0
450 DITER = 0
460 REM
470 REM START HERE WITH INTERNAL ITERATION LOOP FINDING ANGLE
480 REM THIS IS THE FIRST LOOP USED IN THE SOLUTION
490 REM
500 DITER = DITER +1
```

```
ORIGINAL PAGE 13
OF POOR QUALITY
```

1040 N

= 2

```
510 VITER = VITER +1
520 V1

□ KG*(VREF-VT)

530 IF(V1<=0) GOTO 1660
540 IF(V1<=VLIMIT) GOTO 570
550 PRINT "OVER EXCITATION"
560 V1 = VLIMIT
570 VIR
          □ V1*CDS(DELTA*3.1416/180)
580 V1I
          = V1*8IN(DELTA*3.14159/180)
          = V1R-VT
590 A
600 B
          == V1I
610 C
           = R1
620 D
          = X1
630 GOSUB 1690
640 IIR = DIVR
450 III
          ≖ DIVI
660 REM
670 REM
          GOT CURRENT, NOW FIND THE POWER
680 REM
        = V1R
690 A
700 B
          = V1.I
710 C
          = I1R
720 D
         ≔ -- I 1 I
730 GOSUB 1690
740 INPWR = PRODR
750 REM THE NEXT LINE IS A DIAGNOSTIC USED IN PROGRAM DEVELOPMENT
760 REM PRINT "CALCULATED INPUT POWER IS "; INPWR; " AND PG IS "; PG
770 PWRERR= INPWR - PG
780 IF(ABS(PWRERR)<.001)GOTO 930
             = DELTA + KD*PWRERR
790 DELTA
800 IF DELTA < 90 GOTO 850
810 REM THE NEXT LINE IS A DIAGNOSTIC
820 PRINT "DELTA EXCEEDS STEADY STATE LIMIT, CASE TERMINATED"
830 GOTO 1610
840 REM THE NEXT LINE IS A DIAGNOSTIC USED IN PROGRAM DEVELOPMENT
850 REM PRINT "DELTA = ";DELTA;"AND EXCITATION IS ";V1;"AT ITERATION ";DITER
860 GOTO 500
870 REM
880 REM FALL THROUGH HERE WHEN THE DELTA IS CORRECT
890 REM THIS IS THE END OF THE FIRST SOLUTION LOOP
900 REM OR THE START OF THE SECOND SOLUTION LOOP
910 REM
920 REM THE NEXT LINE IS A DIAGNOSTIC USED IN FROGRAM DEVELOPMENT
930 REM PRINT "DELTA ITERATED "; DITER; " TIMES"
940 REM
950 REM NOW ITS TIME TO FIND THE VOLTAGE CONDITIONS
960 REM
970 REM FIRST FIND I2 BY ADDING I1 AND IL
980 REM
           CALCULATE IL
990 REM
          CHECK THE LOAD TYPE
1000 REM
1010 IF (LTYPE = 1) GOTO 1040
1020 N
        = 1.3
1030 GOTO 1050
```

TABLE A-I, cont.

```
1050 ILR = .08*(VT^{(N-1)})
1060 ILI =-.06*(VT^{(N-1)})
1070 REM WITH IL AND I1 FIND I2
1080 I2R = ILR - I1R
1090 \text{ I2I} = \text{ILI} - \text{I1I}
                                                ORIGINAL PAGE 18
1100 REM
                                                OF POOR QUALITY
1110 REM NOW FIND THE ZS DROP
1120 REM
1130 A = I2R
1140 B = I2I
1150 C = RS
1160 D = XS
1170 GOSUB 1690
1180 ZSDRR= PRODR
1190 ZSDRI= PRODI
1200 REM
1210 REM NOW WE GOT THE VALUE OF VS:
1220 REM
1230 VSR = VT + ZSDRR
1240 \text{ VSI} = +ZSDRI
1250 MAGVS= SQR(VSR^2 + VSI^2)
1260 REM
1270 REM COMPARE THE VALUE OF VS AND MAGVS, AND CORRECT IF NEEDED
1280 REM
1290 VERR = MAGVS - VS
1300 IF (ABS(VERR)<.001)GOTO 1370
1310 \text{ VT} = \text{VT} + \text{KV*VERR}
1320 REM THE NEXT LINE IS A DIAGNOSTIC USED IN PROGRAM DEVELOPMENT
1330 REM PRINT "TERMINAL VOLTS ";VT;" AT VOLTAGE ITERATION ";VITER
1340 GOTO 450
1350 REM
1360 REM FALL THROUGH HERE WHEN VOLTAGE CONDITIONS ARE CORRECT
1370 REM TIME TO CALCULATE ALL THE VALUES NEEDED FOR THE PRINTOUT
1380 REM
1390 REM FIRST THE DSG PARAMETERS
1400 REM
1410 A = VT
1420 B = 0
1430 C
         = I1R
1450 GOSUN 1690
1460 DSGP = PRODR
1470 DSGQ = PRODI
1480 DSGPF = COS(ATN(DSGQ/DSGP))
1490 REM
1500 REM NOW FOR THE SYSTEM PARAMETERS
1510 A = VT
1520 B = 0
1530 C = I2R
1540 D = -I2I
```

TABLE A-I, cont.

```
1550 GOSUB 1690
1560 SYSP = PRODR
                                                              ORIGINAL PAGE IS
1570 \text{ SYSQ} = PRODI
                                                              OF POOR QUALITY
1580 SYSPF = COS(ATN(SYSQ/SYSP))
1590 LPRINT USING "#.## ": VS:
1600 LPRINT USING "#.### ";PG;DSGP;DSGQ;DSGPF;SYSP;SYSQ;SYSPF;VT;V1
1610 NEXT VS
1620 VT = .88
1630 NEXT PG
1640 NEXT LTYPE
1650 STOP
1660 PRINT "NO EXCITATION, CASE TERMINATED"
1670 GDTD 1610
1680 REM
1690 REM
         SUBROUTINE TO FIND COMPLEX PRODUCTS AND DO COMPLEX DIVISIONS
1700 PRODR \Rightarrow A * C \rightarrow B * D
1710 PRODI = B * C + A * D
1720 DEN = C*C +D*D
1730 \text{ DIVFLG} = 0
1740 IF (DEN=0)GOTO 1780
1750 DIVE = (A*C + B*D)/DEN
1760 \text{ DIVI} = (E*C - A*D)/DEN
1770 RETURN
1780 DIVFLG = 1
1790 REM CHECK DIVFLG ON DIVISIONS BY VARIABLES ONLY
1800 RETURN
```

LISTING FOR SYNCHRONOUS MACHINE. CONSTANT REACTIVE

```
10 REM KIRKHAM'S FAMOUS VOLTAGE STUDY FILE B: CONREACT
20 REM
SO LPRINT "THIS PROGRAM CALCULATES THE CASE OF A SYNCHRONOUS GENERATOR"
40 LPRINT "
                       CONSTANT POWER FACTOR CONTROL"
50 REM
60 REM INITIALIZE
70 REM
80 RS
         □ □ .04
        = .1
90 X8
100 R1=.1
110 X1=1
120 \text{ KG} = 100
130 OREF = 0
140 VLIMIT = 2.5
150 KV = -.0004
160 KB = - 3
          SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
170 REM
180 FOR LTYPE = 1 TO 2 STEP 1
190 IF(LTYPE=1) GOTO 230
200 LPRINT
210 LPRINT "REALISTIC LOAD REPRESENTATION"
220 GOTO 250
230 LPRINT "CONSTANT IMPEDANCE LOAD"
240 REM SET THE INPUT POWER
250 \text{ FOR PG} = .02 \text{ TO } .2 \text{ STEP } .02
260 LPRINT
270 LPRINT
                             DSG P DSG Q DSG PF SYS P SYS Q
                                                                         SYS PF
                                                                                 LOA
280 LPRINT "SYS V P IN
V EXCITN'
290 REM GUESS THE VALUE OF VT
300 VT = .86
310 REM GUESS THE ANGLE OF VS...CALL IT BETA
320 \text{ BETA} = 1.447
330 REM SET THE SYSTEM VOLTAGE
340 \text{ FOR VS} = .9 \text{ TO } 1.1 \text{ STEP } .02
350 VITER = 0
360 \text{ DITER} = 0
370 DITER = DITER +1
380 VITER = VITER +1
390 REM
          CALCULATE IL
400 REM CHECK THE LOAD TYPE
410 IF (LTYPE = 1) GOTO 440
420 N
         = 1.3
430 GOTO 450
440 N
         = 2
450 \text{ ILR} = .8*(VT^{(N-1)})
460 \text{ ILI} = -.6*(VT^{(N-1)})
470 REM WITH IL. VS AND BETA FIND 12
480 \text{ VSR} = \text{VS*COS}(BETA*3.14159/180)
```

490 VSI = VS*SIN(BETA*3.14159/180)

TABLE A-II, cont.

LISTING FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE

```
500 A
        = VSR-VT
 510 B
         □ VSI
                                                    OFIGINAL PARTY
 520 C
          = RS
                                                    OF PARTY OF A 1
530 D
        = XS
 540 GUSUD 1330
 550 I2R = DIVR
 560 IZI
         ⇒ DIVI
570 REM
580 REM NOW FIND II
590 REM
 600 IIR
         = ILR - I2R
 610 \text{ III} = \text{ILI} - \text{I2I}
620 REM NOW WE GOT A VALUE FOR II, CALCULATE THE VALUE OF VI
630 A
        = IiR
640 B
          == I1I
650 C
          = R1
660 D
         = X1
670 GUSUB 1330
680 ZiDRR = PRODR
690 ZIDRI = PRODI
700 \text{ VIR} = \text{VT} + 21DRR
710 V1I
         = Z1DRI
720 REM
730 REM NOW WE GOT THE VALUE OF V1:
740 REM
750 MAGV1= SQR(V1R^2 + V1I^2)
760 REM
770 REM COMPARE THE CALCULATED VALUE OF DSGQ WITH THE VALUE NEEDED ACCORDING TO
THE CONTROLLER EQUATION, AND CORRECT IF NEEDED
780 REM
790 A
        ≖ VT
BOO B
        = ()
810 C
         = I1R
       = -I1I
820 D
830 GOSUB 1330
840 DSGP = PRODR
850 DSGQ = PRODI
860 PRINT DSG0, MAGV1
870 PRINT "TERMINAL VOLTS "; VT; " AT VOLTAGE ITERATION "; VITER
880 REM USE THE CONTROLLER EQUATION
890 V1
        = KG*(QREF-DSGQ)
900 REM PRINT "LINE 885
                            V1 FROM 0 IS "#V1
910 VERR = MAGV1 - V1
920 PRINT "LINE 920
                       VERR IS "; VERR
'930 IF ABS(VERR)<.001 GOTO 980
940 VT
       = VT + KV*VERR
745 PRINT "LINE 945
                     UPDATED VT IS ";VT
.750 GOTO 360
₽760 REM
到770 REM FALL THROUGH HERE WHEN VOLTAGE CONDITIONS ARE CORRECT
*980 REM TIME TO CALCULATE THE POWER BALANCE
◆990 FRINT "STARTING POWER BALANCE"
```

TABLE A-II, cont.

LISTING FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE

```
1000 A = V1R
1010 B = V11
1020 C = I1R
                                                       ORIGINAL PAGE 19
1030 D = -11I
                                                       OF POOR QUALITY
1040 GUSUB 1330
1050 PIN ≈ PRODR
1060 PERR = PG - FIN
1070 PRINT "LINE 1070 PERR IS "#PERR
1000 IF ABS(PERR)<.0001 GOTO 1130
1090 BETA = BETA + KB*PERR
1100 GOTO 370
1110 REM FIRST THE DSG POWER FACTOR
1120 REM
1130 DSGPF = COS(ATN(DSGQ/DSGP))
1140 PRINT "LINE 1140 BETA IS "#BETA
1150 REM
1160 REM NOW FOR THE SYSTEM PARAMETERS
1170 A == ∀T
1180 B = 0
1190 C = 12R
1200 D = -121
1210 GOSUB 1330
1220 SYSP = PRODR
1230 \text{ SYSU} = PRODI
1240 \text{ SYSPF} = COS(ATN(SYSQ/SYSP))
1250 LPRINT USING "#.## "; VS;
                           "; PG; DSGP; DSGQ; DSGPF; SYSP; SYSQ; SYSPF; VT; V1
1260 LPRINT USING "非, ####
1270 NEXT VS
1280 VT = .86
1290 NEXT PG
1300 NEXT LTYPE
1310 STOP
1320 REM
1330 REM SUBROUTINE TO FIND COMPLEX PRODUCTS AND DO COMPLEX DIVISIONS
1340 PRODR = A \times C - B \times D
1350 PRODI = B * C + A * D
1360 DEN = C*C +D*D
1370 \text{ DIVFLG} = 0
1380 IF (DEN=0)GOTO 1420
1390 DIVR = (A*C + B*D)/DEN
1400 DIVI = (B*C - A*D)/DEN
1410 RETURN
1420 DIVFLG = 1
1430 REM CHECK DIVELG ON DIVISIONS BY VARIABLES ONLY
```

1440 RETURN

TABLE A-III

```
LISTING FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION
  THE POOR IS 11 Y
10 REM FAMOUS VOLTAGE STUDY FILE B:PMAG
20 REM
30 LPRINT "THIS PROGRAM CALCULATES THE CASE OF A SYNCHRONOUS GENERATOR"
40 REM
50 REM INITIALIZE
60 REM
70 RS
         ≔ .04
80 XS
        = .1
90 Ri=.1
100 X1=1
110 KG=10
120 VI
        ≈ 1.03B
130 VLIMIT = 2.5
140 KV=-.8
150 \text{ KD} = -150
160 REM SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
170 FOR LTYPE = 1 TO 2 STEP 1
180 IF(LTYPE=1) GOTO 220
190 LPRINT
200 LPRINT "REALISTIC LOAD REPRESENTATION"
210 GOTO 240
220 LPRINT "CONSTANT IMPEDANCE LOAD"
230 REM SET THE INPUT POWER
240 FOR PG = .02 TO .2 STEP .02
250 LFRINT
260 LPRINT
270 LPRINT "SYS V
                   PIN
                           DSG P
                                  DSG Q DSG FF SYS P
                                                             SYS Q
                                                                     SYS PF LOAD
✓ DELTA"
280 VT
         = .88
290 REM SET THE SYSTEM VOLTAGE
300 \text{ FOR VS} = .9 \text{ TO 1.1 STEP .02}
310 DELTA = 11
320 \text{ VITER} = 0
330 \text{ DITER} = 0
540 REM START HERE WITH INTERNAL ITERATION LOOP FINDING ANGLE
750 DITER = DITER +1
540 VITER = VITER +1
370 V1R=V1*COS(DELTA*3.1416/180)
380 V1I
        = V1*SIN(DELTA*3.14159/180)
390 A=V1R-VT
-00 B=V1I
 10 C=R1
 20 D=X1
 30 GDSUB 1460
40 I1R
        = DIVR
50 I1I
           ≕ DIVI
        GOT CURRENT, NOW FIND THE POWER
LUGO REM
70 REM
"80 A
        = V1R
,90 B
         = V1I
***
```

TABLE A-III, cont.

LISTING FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION

```
500 C
         ≕ I1R
                                  ORIGINAL PAGE IS
510 D
         ≔ -I1I
520 GOSUB 1440
                                   OF POOR QUALITY
550 INPWR = PRODE
540 PRINT "CALCULATED INPUT POWER IS ": INPWR: " AND PG IS ":PG
550 PWRERR INPWR - PG
560 IF (ABS(PWRERR)<.0001)GOTO 710
570 DELTA = DELTA + KD*PWRERR
580 IF DELTA < 90 GDTO 610
590 PRINT "DELTA EXCEEDS STEADY STATE LIMIT, CASE TERMINATED"
600 GDTD 1380
610 \text{ KD} = -50
620 IF DELTA < 10 GOTO 680
630 \text{ KD} = -100
640 IF DELTA < 30 GOTO 680
450 \text{ KD} = -200
660 IF DELTA < 50 GOTO 680
670 \text{ KD} = -250
680 PRINT "DELTA = "; DELTA; "; "AT ITERATION "; DITER
690 GOTO 350
700 REM FALL THROUGH HERE WHEN THE DELTA IS CORRECT
710 PRINT "DELTA ITERATED "; DITER; " TIMES"
720 REM
730 REM NOW ITS TIME TO FIND THE VOLTAGE CONDITIONS
740 REM
750 REM FIRST FIND I2 BY ADDING I1 AND IL
760 REM CALCULATE IL
770 REM
          CHECK THE LOAD TYPE
780 IF (LTYPE = 1) GOTO 810
        = 1.3
790 N
800 GOTO 820
810 N = 2
820 ILR = .8*(VT^{\wedge}(N-1))
B30 ILI = -.6*(VT^{\wedge}(N-1))
840 REM WITH IL AND I1 FIND I2
850 I2R = ILR - I1R
860 I2I = ILI - I1I
870 REM
880 REM NOW FIND THE ZS DROP
870 REM
900 A
        = I2R
        = I2I
910 B
920 C
        = RS
930 D
       = XS
940 GOSUB 1460
950 ZSDRR# PRODR
960 ZSDRI= PRODI
970 REM
980 REM NOW WE GOT THE VALUE OF VS:
990 REM
```

TABLE A-III, cont.

LISTING FOR SYNCHRONOUS MACHINE: CONSTANT EXCITATION

```
ORIGINAL PAGE 19
                                                      OF POOR QUALITY
1000 VSR = VT + ZSDRR
1010 VSI = +ZSDRI
1020 MAGVS= SQR(VSR^2 + VSI^2)
1030 REM
1040 REM COMPARE THE VALUE OF VS AND MAGVS, AND CORRECT IF NEEDED
1050 REM
1060 VERR = MAGVS - VS
1070 IF(ABS(VERR)<.0001)60T0 1130
1080 VT = VT + KV*VERR
1090 PRINT "TERMINAL VOLTS "; VT; " AT VOLTAGE ITERATION "; VITER
1100 GOTO 330
1110 REM
1120 REM FALL THROUGH HERE WHEN VOLTAGE CONDITIONS ARE CORRECT
1130 REM TIME TO CALCULATE ALL THE VALUES NEEDED FOR THE PRINTOUT
1140 REM
1150 REM FIRST THE DSG PARAMETERS
1160 REM
1170 A = VT
1180 B
        ≕ ()
1190 C = IIR
1200 D = -I1I
1210 GOSUB 1460
1220 DSGP = PRODR
1230 \text{ DSGQ} = PRODI
1240 DSGPF = COS(ATN(DSGQ/DSGP))
1250 REM
1260 REM NOW FOR THE SYSTEM PARAMETERS
1270 A = VT
1280 B
        = 0
1290 C
        = I2R
1300 D = -12I
1310 GOSUB 1460
1320 \text{ SYSP} = PRODR
1330 \text{ SYSO} = PRODI
1340 \text{ SYSPF} = COS(ATN(SYSQ/SYSP))
1350 LPRINT USING "#.## "; VS;
1360 LPRINT USING "#.### ";FG;DSGP;DSGQ;DSGPF;SYSP;SYSQ;SYSPF;VT;
1370 LPRINT USING "##.##"; DELTA
1380 NEXT VS
1390 VT = .88
1400 NEXT PG
1410 NEXT LTYPE
1420 STOP
1430 PRINT "NO EXCITATION, CASE TERMINATED"
1440 GOTO 1380
1450 REM
          SUBROUTINE TO FIND COMPLEX PRODUCTS AND DO COMPLEX DIVISIONS
1460 REM
1470 FRODR = A * C - B * D
1480 PRODI = B * C + A * D
1490 DEN = C*C +D*D
```

TABLE A-III, cont.

LISTING FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION

```
1500 DIVFLG = 0

1510 IF (DEN=0)GOTO 1550

1520 DIVR = (A*C + B*D)/DEN

1530 DIVI = (B*C - A*D)/DEN

1540 RETURN

1550 DIVFLG = 1

1560 REM CHECK DIVFLG ON DIVISIONS BY VARIABLES ONLY

1570 RETURN
```

ORIGINAL PAGE IST

TABLE A-IV

LISTING FOR INDUCTION MACHINE

OF POOR CHARTY

```
10 REM KIRKHAM'S FAMOUS VOLTAGE STUDY FILE B: INDU
20 REM
30 LPRINT "THIS PROGRAM CALCULATES THE CASE OF AN INDUCTION GENERATOR"
40 REM
50 REM INITIALIZE
60 REM
70 RS
          = .04
80 XS
          = . 1
90 RL
          ≈ .8
100 XL = .6
110 KV = -.875
          = .1
120 KS
130 R2
        = .1
        = .1
= 1
140 R1
150 X1
160 X2
         = 1
170 RM
         = 10
180 XM
         = 40
190 REM SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
200 FOR LTYPE = 1 TO 2 STEP 1
210 IF(LTYPE=1) GOTO 290
220 LPRINT
230 LPRINT
240 LPRINT
250 LPRINT
260 LFRINT
270 LPRINT "REALISTIC LOAD REPRESENTATION"
280 GOTO 310
290 LPRINT "CONSTANT IMPEDANCE LOAD"
300 REM SET THE INPUT POWER
310 \text{ FOR PG} = .02 \text{ TO } .2 \text{ STEP } .02
320 LPRINT
330 LPRINT
340 LPRINT "SYS V P IN DSG P DSG Q DSG PF 10 * S SYS P SYS Q SYS P
F LOAD V"
350 VT
          = 1
360 REM SET THE SYSTEM VOLTAGE
370 FOR VS = .9 TO 1.1 STEP .02
380 VITER = 0
390 SITER = 0
400 REM START HERE WITH INTERNAL ITERATION LOOP FINDING SLIP
410 S = -.00005
420 REM
          FIND THE PARALLEL COMBINATION
430 SITER = SITER +1
440 VITER = VITER +1
          = RM
450 A
          = XM
460 B
;;470 C
          = R2/S
480 D = X
490 GOSUB 1950
          = X2
```

TABLE A-IV, cont.

LISTING FOR INDUCTION MACHINE

```
500 NUMR = PRODR
510 NUMI = PRODI
520 REM GOT PRODUCT DO DIVISION
530 REM
          = NUMR
540 A
       = NUMI
= RM + R2/S
= XM + X2
550 B
560 C
570 D
580 GOSUB 1950
590 ZPR = DIVR
600 ZPI = DIVI
610 REM GOT PARALLEL COMBO NOW
620 REM NOW ADD THE Z1 TERMS
                                               ORIGINAL PAGE IS
                                             OF POOR QUALITY
630 REFF = ZPR + R1
640 XEFF = ZPI + X1
650 REM
660 REM NOW APPLY VT TO FIND I1
670 A = VT
          = 0
480 B
690 C
          = REFF
700 D = XEFF
710 GOSUB 1950
720 IIR = -DIVR
730 III
          = -DIVI
740 REM
750 REM
760 REM NOW FIND DROP ACROSS Z1
770 A = I1R
780 B
          = I1I
790 C
          = R1
800 D
          = X1
810 GOSUB 1950
820 DR1R = PRODR
830 DR1I = PRODI
840 REM
850 REM NOW WE KNOW VT AND THE Z1 DROP, SO LET'S FIND V1
860 REM
870 VIR = VT + DRIR
880 V1I
          = DR1I
890 REM
900 REM NOW WE CAN FIND IM, THE SHUNT TERM
910 REM
920 A
          = V1R
930 B
          = V1I
940 C
          = RM
950 D
          ≃ XM
960 GUSUB 1950
970 IMR = DIVR
980 IMI
          = DIVI
990 REM
```

TABLE A-IV, cont.

LISTING FOR INDUCTION MACHINE

```
1000 REM NOW FIND IG BY ADDING I1 AND IM
1010 REM
                                                      ORIGINAL PAGE 18
1020 IGR = I1R + IMR
                                                      OF POOR OUALITY
1030 IGI
          = I1I + IMI
1040 REM
1050 REM NOW FIND THE INPUT POWER TO THE MACHINE
1060 REM
1070 A
           = V1R
1080 B
           = V1I
1090 C
           ⇒ IGR
1100 D
        = - IGI
1110 GOSUB 1950
1120 INPWR = PRODR
1130 PRINT "CALCULATED INPUT POWER IS "; INPWR; " AND PG IS "; PG
1140 PWRERR= INPWR - PG
1150 IF(ABS(PWRERR)<.00001)G0T0 1210
1140 S
           = S + KS*PWRERR
1170 IF S<-.1 GOTO 1920
1180 PRINT "SLIP = ";S; "AT ITERATION ";SITER
1190 GOTO 430
1200 REM FALL THROUGH HERE WHEN THE SLIP IS CORRECT
1210 PRINT "SLIP ITERATED "; SITER; " TIMES"
1220 REM
1230 REM NOW ITS TIME TO FIND THE VOLTAGE CONDITIONS
1240 REM
1250 REM FIRST FIND I1 BY ADDING I1 AND IL
           CALCULATE IL
1260 REM
1270 REM
           CHECK THE LOAD TYPE
1280 IF (LTYPE = 1) GOTO 1310
1290 N
          = 1.3
1300 GOTO 1320
1310 N = 2
1320 ILR = .08*(VT^{(N-1)})
1330 ILI = -.06*(VT^{(N-1)})
1340 REM WITH IL AND I1 FIND I2
1350 I2R = ILR - I1R
1360 I2I = ILI - I1I
1370 REM
1380 REM NOW FIND THE ZS DROP
1390 REM
1400 A
          = I2R
          = 121
1410 B
1420 C
         = RS
1430 D
         = XS
1440 GUSUB 1950
1450 ZSDRR = PRODR
1460 ZSDRI = PRODI
1470 REM
1480 REM NOW WE GOT THE VALUE OF VS:
1490 REM
```

TABLE A-IV, cont.

```
ORIGINAL PAGE 10 OF POOR QUALITY
```

1990 DIVFLG = 0

LISTING FOR INDUCTION MACHINE

```
1500 VSR = VT + ZSDRR
1510 VSI = +ZSDRI
1520 \text{ MAGVS} = SQR(VSR^2 + VSI^2)
1530 REM
1540 REM COMPARE THE VALUE OF VS AND MAGVS, AND CORRECT IF NEEDED
1550 REM
1560 VERR = MAGVS - VS
1570 IF(ABS(VERR)<.0001)GOTO 1630
1580 VT = VT + KV*VERR
1590 PRINT "TERMINAL VOLTS "; VT; " AT VOLTAGE ITERATION "; VITER
1600 GOTO 390
1610 REM
1620 REM FALL THROUGH HERE WHEN VOLTAGE CONDITIONS ARE CORRECT
1630 REM TIME TO CALCULATE ALL THE VALUES NEEDED FOR THE PRINTOUT
1640 REM
1650 REM FIRST THE DSG PARAMETERS
1660 REM
1670 A = VT
1680 B = 0
1690 C = I1R
1700 D = -III
1710 GOSUB 1950
1720 DSGP = PRODR
1730 DSGQ = PRODI
1740 DSGPF = COS(ATN(DSGQ/DSGP))
1750 REM
1760 REM
           NOW FOR THE SYSTEM PARAMETERS
1770 A = VT
1780 B = 0
1790 C = I2R
1800 D = -I2I
1810 GOSUB 1950
1820 SYSP = PRODR
1830 \text{ SYSQ} = \text{PRODI}
1840 SYSPF = COS(ATN(SYSQ/SYSP))
1850 LPRINT USING "#.## "; VS;
1860 LPRINT USING "#.### ";PG;DSGP;DSGQ;DSGPF;10*S;SYSP;SYSQ;SYSPF;VT
1870 \ VT = VT*1.05
1880 NEXT VS
1870 NEXT PG
1900 NEXT LTYPE
1910 STOP
1920 PRINT "NO CONVERGENCE -- CASE TERMINATED"
1930 GOTO 1870
1940 REM
1950 REM SUBROUTINE TO FIND COMPLEX PRODUCTS AND DO COMPLEX DIVISIONS
1960 PRODR = A * C - B * D
1970 PRODI = B * C + A * D
1980 DEN = C*C + D*D
```

TABLE A-IV, cont.

LISTING FOR INDUCTION MACHINE

ORIGINAL PAGE IS OF POOR QUALITY

2000 IF (DEN=0)GOTO 2040

2010 DIVR = (A*C + B*D)/DEN

2020 DIVI = (B*C - A*D)/DEN

2030 RETURN

2040 DIVFLG = 1

2050 REM CHECK DIVFLG ON DIVISIONS BY VARIABLES ONLY

2060 RETURN

```
ORIGINAL PAGE IS
OF POOR QUALITY
```

LISTING FOR INDUCTION MACHINE, POWER FACTOR CORRECTED

```
10 REM KIRKHAM'S FAMOUS VOLTAGE STUDY FILE B:COMPINDU
20 REM
30 LPRINT "THIS PROGRAM CALCULATES THE CASE OF AN INDUCTION GENERATOR"
40 REM
50 REM INITIALIZE
40 REM
70 RS
         = .04
80 X8
         = .1
90 RL
         = .8
100 XL
         = .4
110 KV
         = -.875
120 KS
          = .1
130 R2
         = .1
140 RI
         = .1
150 X1
          ≕ 1
160 X2
         === 1
170 RM
         = 10
         = 40
180 XM
190 REM SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
200 FOR LTYPE = 1 TO 4 STEP 1
210 IF(LTYPE=1) GOTO 300
220 IF LTYPE = 3 GOTO 300
230 LPRINT
240 LPRINT
250 LPRINT
260 LPRINT
270 LPRINT
280 LPRINT "REALISTIC LOAD REPRESENTATION"
290 GOTO 320
300 LPRINT "CONSTANT IMPEDANCE LOAD"
310 REM SET THE INPUT POWER
320 \text{ FOR PG} = .02 \text{ TO} .2 \text{ STEP} .02
330 LPRINT
340 LPRINT
350 LPRINT "SYS V P IN DSG P DSG Q DSG PF 10 * S SYS P SYS Q
                                                                          SYS
F LOAD V"
360 VT
          = 1
370 REM SET THE SYSTEM VOLTAGE
380 FOR VS = .9 TO 1.1 STEP .02
390 VITER = 0
400 \text{ SITER} = 0
410 REM START HERE WITH INTERNAL ITERATION LOOP FINDING SLIP
420 S
         = -.0005
430 REM
          FIND THE PARALLEL COMBINATION
440 SITER = SITER +1
450 VITER = VITER +1
460 A
          = RM
470 B
         = R2/S
480 C
      = X2
490 D
```

TABLE A-V, cont.

LISTING FOR INDUCTION MACHINE. POWER FACTOR CORRECTED

```
500 GOSUB 2060
510 NUMR = PRODR
                                                   ORIGINAL PARTIE
520 NUMI = PRODI
                                                   OF COOP OURLEY
530 REM
          GOT PRODUCT DO DIVISION
540 REM
550 A
          = NUMR
          = NUMI
560 B
570 C
          = RM + R2/S
580 D
          = XM + X2
590 GOSUB 2060
600 \text{ ZPR} = \text{DIVR}
610 ZPI = DIVI
620 REM GOT PARALLEL COMBO NOW
630 REM NOW ADD THE Z1 TERMS
640 REFF = ZPR + R1
650 XEFF = ZPI + X1
660 REM
670 REM NOW APPLY VT TO FIND I1
680 A
        = VT
490 B
          ≕ ()
700 C
          = REFF
710 D = XEFF
720 GOSUB 2060
730 \text{ IIR} = -\text{DIVR}
740 I1I
          = -DIVI
750 REM CORRECT THE DSG POWER FACTOR TO UNITY
760 REM AT FULL LOAD INTO RATED VOLTAGE
770 \text{ III} = \text{III} -.120532*VT
780 REM
790 REM
800 REM NOW FIND DROP ACROSS Z1
        = I1R
810 A
820 B
          = I1I
830 C
          = R1
840 D
          = X1
850 GOSUB 2060
860 DR1R = PRODR
970 DR1I
          = FRODI
880 REM
890 REM NOW WE KNOW VT AND THE Z1 DROP, SO LET'S FIND V1
900 REM
910 V1R
          = VT + DR1R
920 V1I
          = DR1I
930 REM
940 REM NOW WE CAN FIND IM, THE SHUNT TERM
950 REM
960 A
          = V1R
970 B
         = V1I
980 C
         = RM
990 D
         = XM
```

LISTING FOR INDUCTION MACHINE, POWER FACTOR CORRECTED

```
1000 GOSUB 2060
1010 IMR □ DIVR
1020 IMI
           ≂ DIVI
1030 REM
1040 REM NOW FIND IG BY ADDING II AND IM
1050 REM
1060 IGR
         □ IIR + IMR
1070 IGI
         = I1I + IMI
1080 REM
1090 REM NOW FIND THE INPUT POWER TO THE MACHINE
1100 REM
1110 A
           = V1R
1120 B
           = V1.I
           = IGR
1130 C
1140 D
           = - IGI
1150 GOSUB 2060
1160 INPWR = PRODR
1170 PRINT "CALCULATED INPUT POWER IS "; INPWR; " AND PG IS "; PG
1180 PWRERR= INPWR - PG
1190 IF (ABS(PWRERR)<.0001)GDTO 1250
1200 8
          = S + KS*PWRERR
1210 IF SK-.1 GOTO 2030
1220 PRINT "SLIP = ";S; "AT ITERATION ";SITER
1230 GOTO 440
1240 REM FALL THROUGH HERE WHEN THE SLIP IS CORRECT
1250 PRINT "SLIP ITERATED "; SITER; " TIMES"
1260 REM
1270 REM NOW ITS TIME TO FIND THE VOLTAGE CONDITIONS
1280 REM
1290 REM FIRST FIND I1 BY ADDING I1 AND IL
1300 REM
            CALCULATE IL
1310 REM
           CHECK THE LOAD TYPE
1320 IF (LTYPE = 1) GOTO 1360
1330 IF LTYPE = 3 GOTO 1360
1340 N
           = 1.3
1350 GOTO 1370
1360 N
           = 2
1370 ILR
           = .08*(VT^{(N-1)})
1380 ILI
          = -.06*(VT^(N-1))
1390 IF LTYPE = 3 GOTO 1440
1400 IF LTYPE = 4 GOTO 1440
1410 \text{ ILR} = 10 \times \text{ILR}
1420 \text{ ILI} = 10 * \text{ILI}
1430 REM
             WITH IL AND I1 FIND 12
1440 I2R
           = ILR - IIR
1450 IZI
          = ILI - I1I
1460 REM
1470 REM NOW FIND THE ZS DROP
1480 REM
1490 A
          = 12R
```

TABLE A-V, cont.

LISTING FOR INDUCTION MACHINE, POWER FACTOR CORRECTED

```
1500 B = 12I
1510 C = RS
1520 D
          ≈ XS
                                                     ORICHIAN POR CO.
1530 GOSUB 2040
                                                     OF FRANK GARAGEN
1540 ZSDRR = PRODR
1550 ZSDRI = PRODI
1560 REM
1570 REM NOW WE GOT THE VALUE OF VS:
1580 REM
1590 VSR
         □ VT + ZSDRR
1600 VSI = +ZSDRI
1610 \text{ MAGVS} = SQR(VSR^2 + VSI^2)
1620 REM
1630 REM COMPARE THE VALUE OF VS AND MAGVS, AND CORRECT IF NEEDED
1640 REM
1650 VERR = MAGVS - VS
1660 IF(ABS(VERR)<.0001)GOTO 1730
1670 V\Gamma = V\Gamma + KV*VERR
1680 PRINT "TERMINAL VOLTS "; VT; " AT VOLTAGE ITERATION "; VITER
1690 IF S > -.04 GDTD 440
1700 GDTO 400
1710 REM
1720 REM FALL THROUGH HERE WHEN VOLTAGE CONDITIONS ARE CORRECT
1730 REM. TIME TO CALCULATE ALL THE VALUES NEEDED FOR THE PRINTOUT
1740 REM
1750 REM FIRST THE DSG PARAMETERS
1760 REM
1770 A
         = VT
1780 B
         = 0
1790 C
         = I1R
1800 D = -111
1810 GOSUB 2040
1820 DSGP = PRODR
1830 DSGQ = PRODI
1840 DSGPF = COS(ATN(DSGQ/DSGP))
1850 REM
1860 REM
          NOW FOR THE SYSTEM PARAMETERS
1870 A
          = VT
1880 B
         ≔ ()
1890 C
         = I2R
1900 D = -12I
1910 GOSUB 2040
1920 SYSP = PRODR
1930 SYSQ = PRODI
1940 \text{ SYSPF} = COS(ATN(SYSQ/SYSP))
1950 REM LFRINT "CALCULATED UNCORRECTED VALUES IIR AND III "; IIR; III
1960 LPRINT USING "#.## "; VS;
1970 LPRINT USING "#.### "; PG; DSGP; DSGQ; DSGPF; 10*S; SYSP; SYSQ; SYSPF; VT
1980 VT = VT*1.05
```

1990 NEXT VS

TABLE A-V, cont.

ORIGINAL PAGE 19 OF POOR QUALITY

LISTING FOR INDUCTION MACHINE, POWER FACTOR CORRECTED

```
2000 NEXT PG
2010 NEXT LTYPE
2020 STOP
2030 PRINT "NO CONVERGENCE -- CASE TERMINATED"
2040 GOTO 1980
2050 REM
2060 REM
          SUBROUTINE TO FIND COMPLEX PRODUCTS AND DO COMPLEX DIVISIONS
2070 PRODR = A * C - B * D
2080 PRODI = B * C + A * D
2090 DEN = C*C +D*D
2100 \text{ DIVFLG} = 0
2110 IF (DEN=0)GOTO 2150
2120 DIVR = (A*C + B*D)/DEN
2130 \text{ DIVI} = (B*C - A*D)/DEN
2140 RETURN
2150 DIVFLG = 1
2160 REM CHECK DIVFLG ON DIVISIONS BY VARIABLES ONLY
2170 RETURN
```

TABLE A-VI

LISTING FOR INVERTER, CEA CONTROL

ORIGINAL: PARTY

```
FILE B:DCINV
EM THE FAMOUS VOLTAGE STUDY
EM
PRINT "THIS PROGRAM CALCULATES THE CASE OF AN INVERTOR SYSTEM".
ŒM
(EM
REM INITIALIZE
EM
RS = .04
S = 1
KV = -1
REM SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
FOR LTYPE = 1 TO 2 STEP 1
LPRINT
       "FULL LOAD CASE"
LPRINT
LPRINT
IF LTYPE = 1 \text{ GOTO } 190
I.PRINT "REALISTIC LOAD REPRESENTATION"
GOTO 200
LPRINT "CONSTANT IMPEDANCE LOAD"
FOR PG = .02 \text{ TO } .2 \text{ STEP } .02
        = -.5* PG
QG
LPRINT
LPRINT
LPRINT "SYS V DSG P
                                                              SYS PF LOAD V"
                        DSG Q DSG PF SYS P
                                                    sys a
VT
       = .9
REM SET THE SYSTEM VOLTAGE
FOR VS = .9 TO 1.1 STEP .02
VITER = 0
REM START HERE WITH THE ITERATION ON TERMINAL VOLTAGE
VITER = VITER + 1
REM CALCULATE I1
       = PG
Α
B
       = QG
\Box
       = VT
       = 0
D
GOSUB 950
       = DIVR
I1R
I1I
       = -DIVI
REM NOW CALCULATE IL
REM FIRST CHECK THE LOAD TYPE
IF LTYPE = 1 GOTO 440
        = 1.3
N
GOTO 450
Ν
ILR
        = .8*(VT^{\wedge}(N-1))
        =-.6*(VT^(N-1))
ILI
REM
REM
     NOW FIND THE ZS DROP
REM
```

TABLE A-VI, cont.

LISTING FOR INVERTER. CEA CONTROL

```
500 I2R = ILR - I1R
                                       ORIGINAL PAGE 19
         = ILI - I1I
= I2R
510 IZI
                                        OF POOR QUALITY
520 A
         = 121
= RS
= XS
530 B
540 C
550 D
560 GOSUB 950
570 ZGDRR = PRODR
580 ZSDRI = PRODI
590 REM
400 REM NOW WE GOT ENOUGH TO FIND THE VALUE OF VS
610 REM
620 VSR = VT + 1
630 VSI = ZSDRI
          = VT + ZSDRR
640 \text{ MAGVS} = SOR(VSR^2 + VSI^2)
650 REM
660 REM COMPARE THE VALUE OF VS AND MAGVS, AND CORRECT IF NEEDED
670 REM
480 VERR = MAGVS - VS
690 IF ABS(VERR) < .0001 GOTO 750
700 VT
           = VT + KV*VERR
710 PRINT "TERMINAL VOLTS ";VT; "AT VOLTAGE ITERATION ";VITER
720 GOTO 300
730 REM
740 REM FALL THROUGH HERE WHEN THE VOLTAGE CONDITIONS MATCH
750 REM SINCE THIS IS THE ONLY ITERATION, IT MUST BE TIME
760 REM TO GO CALCULATE ALL THE VALUES NEEDED FOR THE LISTING
770 REM
780 DSGPF = COS(ATN(QG/PG))
790 A = VT
         = 0
800 B
810 C
         = 12R
         = -121
820 D
830 GOSUB 950
840 SYSP = PRODR
850 \text{ SYSQ} = PRODI
840 SYSPF = COS(ATN(SYSQ/SYSP))
870 LPRINT USING "#.## "; VS;
880 LPRINT USING "#.###
                          "; PG; QG; DSGPF; SYSP; SYSQ; SYSPF;
890 LPRINT USING "#.### ";VT
900 NEXT VS
910 \ VT = .9
920 NEXT PG
930 NEXT LTYPE
940 STOP
950 REM
960 REM UNIVERSAL SUBROUTINE FOR COMPLEX ALGEBRA
970 REM
980 PRODR
          990 PRODI = B*C+A*D
```

TABLE A-VI, cont.

LISTING FOR INVERTER, CEA CONTROL

1000 DEN	= C^2+D^2	
1010 IF DEN	= 0 GOTO 1050	ORIGINAL PAGE IS
1020 DIVR	= (A*C+B*D)/DEN	OF POOR QUALITY
1030 DIVI	= (B*C-A*D)/DEN	OOK OUNTILLY
1040 RETURN		
1050 DIVFLG	= 1	
1060 RETURN		

LISTING FOR INVERTER, CEA - COMPENSATED OF POOR QUALITY

```
10 REM THE FAMOUS VOLTAGE STUDY
                                            FILE B: COMPINV
20 REM
30 LPRINT "THIS PROGRAM CALCULATES THE CASE OF AN INVERTOR SYSTEM"
40 LPRINT
50 LPRINT
60 LPRINT "CEA CONTROLLER COMPENSATED AT FULL LOAD"
70 REM
80 REM
90 REM INITIALIZE
100 REM
110 RS = .04
120 XS = .1
130 \text{ KV} = -1
140 REM SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
150 FOR LTYPE = 1 TO 2 STEP 1
160 LPRINT
170 LPRINT
180 IF LTYPE = 1 GOTO 210
190 LPRINT "REALISTIC LOAD REPRESENTATION HEAVY LOAD CASE"
200 GOTO 220
210 LPRINT "CONSTANT IMPEDANCE LOAD
                                               HEAVY LOAD CASE"
220 \text{ FOR PG} = .02 \text{ TO } .2 \text{ STEP } .02
           = -.5* ₽G
230 QG
240 LPRINT
250 LPRINT
260 LPRINT "SYS V DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V
270 \text{ VT} = .9
280 REM SET THE SYSTEM VOLTAGE
290 FOR VS = .9 TO 1.1 STEP .02
300 \text{ VITER} = 0
310 REM START HERE WITH THE ITERATION ON TERMINAL VOLTAGE
320 VITER = VITER + 1
330 REM CALCULATE I1
340 A = PG
          = QG
350 B
360 C
          = VT
370 D
          = 0
380 GDSUB 990
390 I1R = DIVR
400 I1I
          = -DIVI
410 III = III - .1*VT
420 REM NOW CALCULATE IL
430 REM FIRST CHECK THE LOAD TYPE
440 IF LTYPE = 1 GOTO 470
450 N = 1.3
460 GOTO 480
470 N = 2
480 ILR = .8*(VT^(N-1))
490 ILI =-.6*(VT^(N-1))
```

TABLE A-VII, cont.

LISTING FOR INVERTER, CEA - COMPENSATED

```
ORIGINAL PAGE 19
                                                   OF FOOR QUALITY
500 REM
510 REM NOW FIND THE ZS DROP
520 REM
530 I2R = ILR - I1R

540 I2I = ILI - I1I

550 A = I2R

560 B = I2I

570 C = RS
560 L
570 C
           = XS
590 GOSUB 990
600 ZSDRR = PRODR
610 ZSDRI = PRODI
620 REM
630 REM NOW WE GOT ENOUGH TO FIND THE VALUE OF VS
640 REM
450 VSR = VT + ZSDRR
660 VSI = ZSDRI
670 \text{ MAGVS} = SQR(VSR^2 + VSI^2)
680 REM
690 REM COMPARE THE VALUE OF VS AND MAGVS, AND CORRECT IF NEEDED
700 REM
710 VERR = MAGVS - VS
720 IF ABS(VERR) < .000001 GOTO 780
730 VT = VT + KV*VERR
740 PRINT "TERMINAL VOLTS "; VT; "AT VOLTAGE ITERATION "; VITER
750 GOTO 320
760 REM
770 REM FALL THROUGH HERE WHEN THE VOLTAGE CONDITIONS MATCH
780 REM SINCE THIS IS THE ONLY ITERATION, IT MUST BE TIME
790 REM TO GO CALCULATE ALL THE VALUES NEEDED FOR THE LISTING
800 REM
B10 DSGQ = -I1I*VT
820 DSGPF = COS (ATN(DSGQ/PG))
830 A = VT
          = 0
840 B
          = I2R
850 C
860 D = -I2I
870 GOSUB 990
880 SYSP = PRODR
890 SYSQ = PRODI
900 \text{ SYSPF} = COS(ATN(SYSQ/SYSP))
910 LPRINT USING "#.## "; VS;
920 LPRINT USING "#.### "; PG; DSGQ; DSGPF; SYSP; SYSPF;
930 LPRINT USING "#.### ";VT
940 NEXT VS
950 \text{ VT} = .9
940 NEXT PG
970 NEXT LTYPE
980 STOP
990 REM
```

TABLE A-VII, cont.

ORIGINAL PAGE IS OF POOR QUALITY

LISTING FOR INVERTER, CEA - COMPENSATED

```
1000 REM UNIVERSAL SUBROUTINE FOR COMPLEX ALGEBRA
1010 REM
1020 PRODR = A*C-B*D
1030 PRODI = B*C+A*D
1040 DEN = C^2+D^2
1050 IF DEN = 0 GOTO 1090
1060 DIVR = (A*C+B*D)/DEN
1070 DIVI = (B*C-A*D)/DEN
1080 RETURN
1090 DIVFLG = 1
1100 RETURN
```

TABLE A-VIII

LISTING FOR PV TYPE INVERTER


```
O REM THE FAMOUS VOLTAGE STUDY
) REM
> LPRINT "THIS PROGRAM CALCULATES THE CASE OF AN INVERTOR SYSTEM"
) REM
) REM
O REM INITIALIZE
) REM
0 RS = .04
0 \times S = 1
00 KV = -1
10 REM SET THE LOAD TYPE (1 FOR RESISTIVE. 2 FOR MORE REALISM)
20 FOR LTYPE = 1 TO 2 STEP 1
30 LPRINT
40 LPRINT
         "FULL LOAD CASE"
SO LERINT
50 IF LTYPE = 1 GOTO 190
70 LPRINT "REALISTIC LOAD REPRESENTATION"
30 GOTO 200
70 LPRINT "CONSTANT IMPEDANCE LOAD"
00 \text{ FOR PG} = .02 \text{ TO } .2 \text{ STEP } .02
10 0G = -.06 - .1*PG
20 LPRINT
30 LFRINT
40 LPRINT "SYS V DSG P
                           DSG Q
                                    DSG PF SYS P
                                                        SYS 0
                                                                 SYS PF LOAD V"
50 VT
         = .9
60 REM SET THE SYSTEM VOLTAGE
70 FOR VS = .9 TO 1.1 STEP .02
BO VITER = 0
70 REM START HERE WITH THE ITERATION ON TERMINAL VOLTAGE
DO VITER = VITER + 1
10 REM CALCULATE I1
20 A
          = PG
30 B
          = QG
40 C
          = VT
          = ()
50 D
60 GOSUB 950
70 I1R
         = DIVR
30 I1I
          = -pivi
90 REM NOW CALCULATE IL
OO REM FIRST CHECK THE LOAD TYPE
10 IF LTYPE = 1 GOTO 440
20 N
           = 1.3
30 GOTO 450
40 N
50 ILR
          = .8*(VT^{\wedge}(N-1))
```

60 ILI

=-.6*(VT^(N-1))

TABLE A-VIII, cont.

LISTING FOR PV TYPE INVERTER

```
470 REM
480 REM NOW FIND THE ZS DROP
490 REM
500 I2R = ILR - I1R
510 I2I = ILI - I1I
520 A = I2R
530 B = I2I
540 C = RS
                                               ORIGINAL PAGE 19
                                               OF POOR QUALITY
550 D = XS
560 GOSUB 950
570 ZSDRR = PRODR
580 ZSDRI
           = PRODI
590 REM
600 REM NOW WE GOT ENOUGH TO FIND THE VALUE OF VS
610 REM
620 VSR = VT + ZSDRR
630 VSI = ZSDRI
640 MAGVS = SQR(VSR^2 + VSI^2)
650 REM
660 REM COMPARE THE VALUE OF VS AND MAGVS, AND CORRECT IF NEEDED
670 REM
680 VERR
           = MAGVS - VS
690 IF ABS(VERR) < .0001 GOTO 750
700 \text{ VT} = VT + KV*VERR
710 PRINT "TERMINAL VOLTS "; VT; "AT VOLTAGE ITERATION "; VITER
720 GOTO 300
730 REM
740 REM FALL THROUGH HERE WHEN THE VOLTAGE CONDITIONS MATCH
750 REM SINCE THIS IS THE ONLY ITERATION. IT MUST BE TIME
760 REM TO GO CALCULATE ALL THE VALUES NEEDED FOR THE LISTING
770 REM
780 DSGPF = COS(ATN(QG/PG))
790 A = VT
800 B
          = O
810 C = 12R
820 D = -12I
830 GOSUB 950
840 SYSP = PRODR
850 \text{ SYSO} = PRODI
860 \text{ SYSPF} = COS(ATN(SYSQ/SYSP))
870 LPRINT USING "#.## "; VS;
880 LPRINT USING "#.###
                           "; PG; QG; DSGPF; SYSP; SYSQ; SYSPF;
890 LPRINT USING "#.### ";VT
900 NEXT VS
910 VT = .9
920 NEXT PG
930 NEXT LTYPE
940 STOP
```

TABLE A-VIII, cont.

LISTING FOR PV TYPE INVERTER

ORIGINAL MALLINY

950 REM 960 REM UNIVERSAL SUBROUTINE FOR COMPLEX ALGEBRA 970 REM 980 PRODR = A*C-B*D 990 FRODI = B*C+A*D 1000 DEN = C^2+D^2 1010 IF DEN = 0 GOTO 1050 1020 DIVR = (A*C+B*D)/DEN 1030 DIVI = (B*C-A*D)/DEN1040 RETURN 1050 DIVFLG = 1 1060 RETURN

TABLE A-IX

ORIGINAL PAGE 19 OF POOR QUALITY

LISTING FOR BASE CASE

```
10 REM FAMOUS VOLTAGE STUDY FILE B:BASE
20 REM
30 LPRINT "THIS PROGRAM CALCULATES THE BASE CASE OF NO DSG "
40 REM
50 REM INITIALIZE
60 REM
70 RS
         = .04
BO XS
        = .1
90 R1=.1
100 X1≈1
110 KV
        = -.9
120 REM SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
130 FOR LTYPE = 1 TO 2 STEP 1
140 IF(LTYPE=1) GOTO 180
150 LPRINT
160 LPRINT "REALISTIC LOAD REPRESENTATION"
170 GOTO 220
180 LPRINT
190 LPRINT
200 LPRINT "CONSTANT IMPEDANCE LOAD"
210 REM SET THE INPUT POWER
220 LPRINT
230 LPRINT
240 LPRINT "SYS V SYS P SYS Q SYS PF LOAD V"
250 VT
        = .88
240 REM SET THE SYSTEM VOLTAGE
270 \text{ FOR VS} = .9 \text{ TO } 1.1 \text{ STEP } .02
280 \text{ VITER} = 0
290 \text{ DITER} = 0
300 REM START HERE WITH INTERNAL ITERATION LOOP FINDING ANGLE
310 DITER = DITER +1
320 VITER = VITER +1
330 REM
340 REM NOW ITS TIME TO FIND THE VOLTAGE CONDITIONS
350 REM
360 REM
          CALCULATE IL
370 REM CHECK THE LOAD TYPE
380 IF (LTYPE = 1) GOTO 410
390 N
        = 1.3
400 GOTO 420
410 N = 2
420 ILR = .8*(VT^{(N-1)})
430 \text{ ILI } = -.6*(VT^{(N-1)})
440 REM
450 REM NOW FIND THE ZS DROP
460 REM
470 A
       = ILR
480 B = ILI
490 C = RS
```

TABLE A-IX, cont.

LISTING FOR BASE CASE

ORIGINAL PAGE 13 OF POOR QUALITY 500 D = XS 510 GOSUB 900 520 ZSDRR= PRODR 530 ZSDRI= PRODI 540 REM 550 REM NOW WE GOT THE VALUE OF VS: 560 REM 570 VSR = VT + ZSDRR 580 VSI = +ZSDRI $590 \text{ MAGVS} = SQR(VSR^2 + VSI^2)$ 600 REM 610 REM COMPARE THE VALUE OF VS AND MAGVS, AND CORRECT IF NEEDED 620 REM 630 VERR = MAGVS - VS 640 IF(ABS(VERR)<.0001)G0T0 700 = VT + KV*VERR 660 PRINT "TERMINAL VOLTS ":VT;" AT VOLTAGE ITERATION ":VITER 670 GOTO 290 **680 REM** 490 REM FALL THROUGH HERE WHEN VOLTAGE CONDITIONS ARE CORRECT 700 REM TIME TO CALCULATE ALL THE VALUES NEEDED FOR THE PRINTOUT 710 REM NOW FOR THE SYSTEM PARAMETERS 720 REM 730 A = VT = 0 740 B 750 C = ILR 760 D = -ILI770 GOSUB 900 780 SYSP = PRODR790 SYSQ = PRODI800 SYSPF = COS(ATN(SYSQ/SYSP))810 LPRINT USING "#.## "; VS; 820 LPRINT USING "#.### "; SYSP; SYSQ; SYSPF; VT 830 NEXT VS 840 VT = **.**88 850 NEXT LTYPE 860 STOP 870 FRINT "NO EXCITATION, CASE TERMINATED" 880 GOTO 830 890 REM SUBROUTINE TO FIND COMPLEX PRODUCTS AND DO COMPLEX DIVISIONS 900 REM 910 PRODR = A * C - B * D920 PRODI = B * C + A * D930 DEN = C*C +D*D 940 DIVFLG = 0950 IF (DEN=0)GOTO 990 960 DIVR = (A*C + B*D)/DEN 970 DIVI = (B*C - A*D)/DEN 980 RETURN 990 DIVFLG = 1 1000 REM CHECK DIVFLG ON DIVISIONS BY VARIABLES ONLY

1010 RETURN

APPENDIX B DATA LISTINGS

TABLE B-I

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE LIGHT LOAD CASE

CONSTANT IMPEDANCE LOAD

		թանանքնքին Կահ րերս Էսևեր	JP1AZ						
SYS V	P IN	DSG P	DSG 0	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0,020	017	0.566	0.029	0.089	512	0.171	0.949	1,546
0.72	0.020	,008	0.470	0.010	0.079	415	0.186		
0.94	0.020	0.004	0.371	0.012			0.219	0.959	1.450
0.96	0.020	0.004	0.270		0.071	315		0.969	1.75%
0.70 0.98				0.042	0.065	*.213	0.293	0.978	1.254
	0.020	0.016	0.148	0,095	0.062	-,110	0.492	0.98 8	1.160
1.00	0.020	0.019	0.065	0.275	0.061	~. 005	0.996	0.998	1.065
1.02	0.020	0.019	O4Q	0,430	0.062	0.101	O.525	1.007	0.970
1.04	0,020	0.017	146	0.116	\circ . \circ 66	0.208	0.301	1.016	0.875
1.06	0.020	0,013	265	0.051	0.071	0.517	0.219	1.026	0.781
1.08	0,020	0.007	-, 362	0.019	0.079	0.427	0.182	1.035	0.687
1.10	0,026	, 001	 473	0,003	0.089	0.578	0.163	1.045	0.594
SYS V	MI 4	DSG P	*\{^\chi\	ም ኒመውው ምንም	203.429 Pb	Pikipk za	F-1-4-89 #4-1-1-		
0.90	0.040		១១១ ខ	DSG PF	SYS P	978 0	SYS PF	LOAD V	EXCILN
0.92		0.004	0.561	0.008	0.048	507	0.133	0.950	1.542
	0,040	0.016	0.465	0.033	0.058	410	0.140	0.959	1.446
0.94	0.040	0.025	0.366	0.068	0.050	~ ₊ 309	0,161	0.969	1.549
0.96	0.040	0.032	0.245	0.118	0.045	~. 203	0.212	0.979	1.253
0.78	0.040	0.036	0.163	0.217	0.042	 104	0.373	0.988	1 . 1357
1,00	0.040	0.039	0.060	0.545	0.041	$O_{\mu}OOO$	1,000	0.998	1.062
1.02	Q.040	0.039	~. 045	0.650	0.042	0.106	0.371	1,007	0.967
1.04	0.040	O. Q37	152	0.235	0.046	0.214	0.211	1.017	0.873
1.06	0.040	0.033	259	0.125	0.052	0.722	0.153	1.026	0.779
1.08	0.040	0.026	368	0.071	0.059	0.432	0.136	1.035	0.665
1.10	0.040	0.018	478	0.038	0.069	0.544	0.126	1.045	0.592
							"o" PI WA dots bod		101 H 102 F 224
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS F	SYS 0	SYS PF	LOAD V	EXCITN
Q., 90	0.060	0.025	0.556	0.045	0.047	501	0.094	0.950	1.538
0.92	0.060	0.036	0.460	0.078	0.038	405	0.093	0.960	1.443
O. 94	0.060	0.045	0,360	0.124	0.030	- 304	0.099	0.769	1.346
0.96	0,060	0.052	0.260	0.195	0.025	202	0.123	0.979	1.250
0.98	0.040	0.056	0.157	0.337	0.022	099	0.216	0.777	
1.00	0.060	0.058	0.054	0.735	0.021	0.006			1.154
1.02	0.060	0.058	051	0.754	0.023		0.964	0.998	1.059
1.04	0.060	0.056	157	0.338		0.112	0.199	1.008	0.965
1.06	0.060	0.052	265		0.026	0.219	0.119	1.017	0.871
1.08	0.060	0.046		0.193	0.032	0.328	0.097	1.026	0.777
1.10	0.040	0.046	374	0.122	0.040	0.438	0.091	1.036	0.684
T # 1, Cr	04000	O a Qui Z	, 485	0.077	0.050	0.550	0.090	1.045	0.591
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.080	0.045	0.550	0.082	0.027	496	0,054	0.951	
0.92	0.080	0.056	0.454	0.123	0.017	399	0.044		1.534
0.94	0.080	0.065	0.355	0.181	0.010			0.960	1.439
0.96	0.080	0.072	0.284	0.272		299 197	0.033	0.970	1.343
0.98	0,080	0.076	0.152		0.005	197	0.025	0,979	1.247
1.00	0.080			0.448	0.002	093	0.022	0.989	1.152
1.02	0.080	0.078	0.048	0.851	0.002	0.012	0.132	0 998	1.057
		0.078	057	0.809	0.003	0.118	0.026	1.008	0.963
1.04	0.080	0.076	163	0.422	0.007	0.225	0.030	1.017	0.869
1.06	0.080	0.072	271	0.255	0.013	0.334	0.038	1.026	0,775
1.08	0.080	0.065	380	0.169	0.021	0.445	0.046	1.036	0.482
1.10	0.080	0.057	491	0.115	0.031	0.556	0.055	1.045	0.589

ORIGINAL PAGE IS OF POOR QUALITY

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE LIGHT LOAD CASE

				LIGHT	LOAD CASE		•		
SYS V	ni a V	D86 P	D Energi	DGG PI	GYS P	£ 15. £5. £5.	5 3		
$O_n Q O$	0.100	0085	0.549		0.007				
U ₄ 92	0.100	0.077	0.449					0.951	1.535
0.94	0.100	0.095	0,349		-	÷, 394		ু, 960	1.436
On 96	0.100	0.092	0.248		010	293	0.035	0.970	1.340
0. ១ឰ	0.100	0.098	0.146		015	-191	0.079	0.980	1.244
1.QG	0.100	0.098	0.042		01B	, Q8Z	0.196	0.989	1.149
1.02	0.100	0.098			018	0.017	v. 7 20	0.999	1.056
1.04	0.100	0.095	063		~ "Q16	0.124	0.132	1.008	0.961
1.06	0.100	0.073	169		~.013	0.231	0.055	1.017	0.867
1.08	0.100		* 277		~.007	0:341	0.019	1.027	0.774
1.10	0.100	0.084	. 387		0.001	0.451	0.003	1.036	0.681
## 132	CAM TO STATE	Q#0 7 6	49B	0.151	0.012	9.563	0.021	1.045	0.589
SYS V	r" IN	DSG F	DSG Q	DSG PF	# 1 5.2#5 - # 0				
Q., 9Q	0.120	0.086	0.543		SYS P	ទម្ង	SYS PE		EXCITN
0.93	0.120	0,097	0.043	0.156	013	487	0.027	0.951	11732
0.94	0.120	0.105	0.344	0.213 6 per	oz.:	388	0.059	0.961	1.43.
0.96	0.126	0.103		0.293	~. Q3Q	~. 267	0.104	0.470	1.337
0.78	0.120	0.116	0.243	0.418	055	- 185	0.185	0.780	1.242
1.00	9.120		0.140	0. 636	O37	Q81	0.417	0.989	1.147
1,02	0.120	0.113	9.936	0.955	Q3G	0.024	0.849	0.999	1.055
1.04		0.117	069	୦. ଅଧ୍ୟ	036	0.130	0.266	1.008	6.959
1.06	0.120	0.115	176	0.547	- 032	0.278	0.133	1.017	0.866
	0.120	Q. 110	284	0.362	026	0.347	0.075	1.027	
1.08	0.120	0.104	393	0.255	018	0.458	0,039	1.034	0.773
1.10	0.120	0.095	~. BOA	0.185	008	0.570	0.013	1.045	0.430 0.588
SYS V	e in	DGG P	11/2/2	No. 10. No. 10. 10.					
0.90	0.140		DSG Q	DSG PF	SYS P	SYS 0	SYS PF	LOAD V	EXCITM
0.92		0.106	0.538	0.193	O34	483	0.069	0.951	1.528
0,94	0.140	0.117	0.438	0.258	043	-,382	0.112	0.761	1.431
	0.140	0.125	0.338	O.348	050	281	0.175	0.971	1.325
0.96	0.140	0.131	0.237	0.485	-,055	179	0.292	0.980	1.240
0.98	0.140	0.135	0.134	0.710	057	075	0.603	0.787	
1.00	0.140	0.137	0.030	0.977	057	0.030	0.888		1.145
1.02	0.140	0.137	~.075	0.876	055	0.136		() 490	1.051
1.04	0.140	0.134	182	0.593	051	0.244	0.377	1.008	0.958
1.04	0.140	0.129	290	0.407	-, 045	0.354	0.205	1.018	0.845
1.08	0.140	0.123	-, 400	0.293	037	0.465	9.126	1.027	0.772
1.10	9.140	0.114	512	0.217	027		0.079	1.036	0.680
			***************************************		a Wali.	0.577	0.046	1.045	0.588
SYS V	PIN	DSG P	DSG Q	DSG PF	ays P	SYS Q	SYS PF	LOAD V	F= \(\frac{1}{2} \text{Piss of some } 1
0.90	0.160	0.126	0.532	0.231	054	477	0.112		EXCITN
0.92	0.160	0.137	0.432	0.302	063	376	0.145	0.951	1.526
0.94	0.160	0.145	0.332	0.401	070	275		0.761	1.428
0.96	0.160	0.151	0.231	0.548	074	173	0.246	0.971	1.333
0.98	0.160	0.155	0.128	0.771	077		0.394	0.980	1.238
1.00	0.160	0.157	0.024	0.989	077	069 0. 0#4	0.742	0.990	1.144
1.02	0.160	0.156	082	0.886	077 075	0.036	0.905	0.999	1.050
1.04	0.160	0.153	189			0.143	0.464	1.008	0.957
	0.160	0.149	297	0.631	071	0.251	0.271	1.018	0.864
	0.160	0.142	407	0.447	064	0.361	0.176	1.027	0.772
1.10	0.160	0.133	519	0.329	056	0.472	0.118	1.036	0.480
- -	or: with the the the the the the the the the t	was de tabled	317	0.248	045	0.585	0.077		0.588
								•	

TABLE B-I, cont.

ORIGINAL	PAGE 19	
OF POOR	OUALITY	

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE LIGHT LOAD CASE

0.90 0.180 0.146 0.526 0.268074471 0.155 0.950 1.528 0.92 0.180 0.187 0.426 0.276085371 0.183 0.950 1.1528 0.94 0.180 0.165 0.336 0.451 0.089249 0.318 0.971 1.333 0.96 0.180 0.171 0.225 0.606 0.094167 0.471 0.990 1.333 0.98 0.180 0.174 0.122 0.820094167 0.471 0.990 1.132 0.98 0.180 0.174 0.172 0.995 0.094065 0.837 0.990 1.142 1.00 0.180 0.175088 0.893094 0.1042 0.911 0.999 1.107 1.00 0.180 0.175088 0.893094 0.1042 0.911 0.999 1.096 1.04 0.180 0.175088 0.893094 0.1042 0.532 1.008 0.936 1.04 0.180 0.125596 0.665 0.093 0.268 0.329 1.008 0.965 1.04 0.180 0.161415 0.351 0.095 0.429 0.154 1.036 0.665 1.04 0.180 0.161415 0.351 0.095 0.429 0.154 1.036 0.666 1.09 0.180 0.161415 0.351 0.095 0.429 0.154 1.036 0.666 1.09 0.180 0.161 0.415 0.351 0.095 0.429 0.154 1.036 0.666 1.10 0.180 0.192 0.527 0.276064 0.592 0.108 1.055 0.589 SYS V P IN DSG P DSG 0 DSG PF SYS P SYS D SYS PF LOAD V EXCITN 0.90 0.200 0.177 0.420 0.355094465 0.197 0.952 1.520 0.94 0.200 0.190 0.218 0.657114161 0.577 0.991 1.329 0.98 0.200 0.190 0.218 0.657114161 0.577 0.991 1.329 0.98 0.200 0.190 0.218 0.657114161 0.577 0.991 1.329 0.98 0.200 0.194 0.115 0.860109263 0.883 0.893 0.990 1.141 1.00 0.200 0.195 0.011 0.998115 0.056 0.890 0.990 1.048 1.04 0.200 0.195 0.011 0.998115 0.056 0.890 0.990 1.048 1.04 0.200 0.197 0.203 0.689113 0.156 0.587 0.991 1.235 0.98 0.200 0.170535 0.391094 0.487 0.189 1.035 0.680 1.04 0.200 0.170535 0.391094 0.487 0.189 1.035 0.680 1.04 0.200 0.170535 0.391094 0.487 0.199 1.035 0.680 1.04 0.200 0.190 0.004 0.372 0.001 0.008 0.009 0	SYS V	P IN	DSG P	pse o	DSG PF	SYS P	SYS O	SYS PF	LOAD V	EXCITN
0.94	0.90	0.180	0.146							
0.94 0.180 0.165 0.326 0.481 0.089 - 2269 0.318 0.971 1.331 0.96 0.96 0.180 0.171 0.122 0.666 - 0.094 - 1.67 0.471 0.900 1.236 0.96 0.98 0.180 0.174 0.1122 0.820 - 0.96 - 0.63 0.471 0.990 1.142 0.190 1.000 0.180 0.176 0.017 0.999 - 0.96 0.042 0.915 0.099 1.142 1.02 0.180 0.175 - 0.08 0.893 - 0.996 0.042 0.915 0.099 1.049 1.049 1.049 0.180 0.175 - 0.08 0.893 - 0.996 0.042 0.915 0.099 1.049 1.049 0.180 0.175 - 0.080 0.893 - 0.990 0.228 0.329 1.018 0.863 1.000 0.180 0.168 - 3.04 0.462 - 0.030 0.328 0.329 1.018 0.863 1.000 0.180 0.161 - 4415 0.361 0.075 0.479 0.184 1.036 0.680 1.100 0.180 0.162 - 8527 0.274 - 0.064 0.592 0.108 1.045 0.589 0.589 0.990 0.200 0.164 0.522 0.355 - 0.94 0.592 0.108 1.045 0.589 0.990 0.900 0.200 0.164 0.520 0.335 - 0.94 - 4.455 0.197 0.992 1.520 0.92 0.900 0.177 0.420 0.388 - 1.03 - 3.34 0.221 1.094 0.592 1.520 0.992 0.200 0.177 0.420 0.388 - 1.03 - 3.34 0.221 0.962 1.420 0.992 0.900 0.190 0.218 0.657 - 1.14 - 1.61 0.577 0.991 1.233 0.98 0.900 0.190 0.218 0.657 - 1.14 - 1.61 0.577 0.991 1.233 0.98 0.990 0.200 0.194 0.115 0.865 - 1.15 - 0.056 0.898 0.990 1.048 1.000 0.200 0.194 0.115 0.865 - 1.15 - 0.056 0.898 0.990 1.048 1.000 0.200 0.194 0.015 0.898 - 1.13 0.156 0.891 0.999 1.048 1.000 0.200 0.194 0.015 0.898 - 1.13 0.156 0.891 1.000 0.200 0.194 0.059 0.998 - 1.15 0.056 0.891 1.000 0.853 1.000 0.197 0.358 0.0591 - 0.094 0.467 0.191 0.359 0.865 1.000 0.197 0.358 0.000 0.197 0.358 0.000 0.197 0.358 0.300 0.300 0.300 0.300 0.199 0.300 0.	0.92	0.189								
0.98 0.180 0.174 0.225 0.406 0.094 -167 0.491 0.905 1.236 0.98 0.180 0.174 0.172 0.820 -1094 0.042 0.837 0.995 1.422 0.820 -1094 0.042 0.837 0.995 1.442 1.000 0.180 0.175 -0.080 0.995 -0.094 0.042 0.915 0.997 1.049 1.042 0.180 0.175 -0.080 0.993 -0.094 0.042 0.915 0.997 1.049 0.956 1.04 0.180 0.175 -0.080 0.993 -0.094 0.147 0.553 1.008 0.956 1.00 0.180 0.161 -415 0.361 -0.093 0.258 0.321 1.027 0.771 1.03 0.180 0.161 -415 0.361 -0.095 0.462 0.004 0.258 0.221 1.027 0.771 1.03 0.180 0.161 -415 0.361 -0.053 0.499 0.141 0.036 0.480 1.10 0.180 0.152 0.327 0.276 -0.064 0.592 0.108 1.045 0.589 1.10 0.180 0.152 0.327 0.276 -0.064 0.592 0.108 1.045 0.589 1.10 0.180 0.152 0.327 0.276 0.494 0.465 0.197 0.992 1.420 0.94 0.200 0.146 0.520 0.500 -109 0.263 0.100 1.045 0.589 1.020 0.190 0.218 0.557 0.190 0.263 0.383 0.971 1.235 0.98 0.900 0.190 0.218 0.557 -114 1.161 0.577 0.992 1.422 0.94 0.200 0.190 0.218 0.557 -114 1.161 0.577 0.991 1.235 0.98 0.200 0.190 0.195 0.011 0.998 0.115 0.049 0.920 0.999 1.048 1.00 0.200 0.195 0.011 0.998 0.115 0.049 0.920 0.999 1.048 1.020 0.195 0.011 0.998 0.115 0.049 0.920 0.999 1.048 1.00 0.200 0.197 0.015 0.998 0.115 0.049 0.920 0.999 1.048 1.00 0.200 0.197 0.015 0.998 0.115 0.049 0.920 0.999 1.048 1.00 0.200 0.197 0.015 0.998 0.115 0.049 0.920 0.999 1.048 1.00 0.200 0.197 0.568 0.988 0.113 0.156 0.587 1.008 0.995 1.141 0.000 0.200 0.197 0.555 0.305 0.083 0.400 0.137 1.005 0.999 1.048 1.000 0.200 0.170 0.555 0.305 0.083 0.400 0.137 1.005 0.999 1.048 1.000 0.200 0.170 0.555 0.305 0.083 0.400 0.137 1.045 0.590 1.049 0.020 0.004 0.372 0.010 0.081 0.415 0.191 0.195 0.496 0.492 0.096 0.472 0.006 0.137 1.045 0.499 1.547 0.992 0.020 0.014 0.056 0.079 0.001 0.005 0.004 0.372 0.001 0.008 0.275 0.061 0.096 0.097 0.097 1.045 0.096 0.097 0.007 0.007 0.000 0.007 0.	0.94	0.180								
0.98	0.96									
1.00	Q.98									
1.02										
1.04										
1.08										
1.0G 0.180 0.181 -415 0.361 0.775 0.479 0.181 1.056 0.660 1.010 0.180 0.152527 0.276064 0.592 0.108 1.045 0.589 SYS V F IN DSG F DSG 0 DSG PF SYS F SYG 0 SYS PF LOAD V EXCITN 0.90 0.200 0.164 0.520 0.305094465 0.197 0.952 1.520 0.90 0.177 0.420 0.388103364 0.271 0.962 1.424 0.94 0.200 0.185 0.320 0.500109263 0.383 0.971 1.329 0.96 0.200 0.190 0.218 0.657114161 0.577 0.981 1.235 0.98 0.200 0.194 0.115 0.860115056 0.898 0.990 1.411 1.00 0.200 0.194 0.115 0.860115056 0.898 0.990 1.411 1.00 0.200 0.194 0.095 0.898113 0.156 0.587 1.008 0.995 1.048 1.002 0.200 0.194095 0.898113 0.156 0.587 1.008 0.995 1.048 1.002 0.200 0.197422 0.391094 0.245 0.380 1.013 0.863 1.014 0.200 0.187312 0.514102 0.375 0.265 1.008 0.995 1.008 0.200 0.179422 0.391094 0.487 0.187 1.035 0.580 1.10 0.200 0.170535 0.303083 0.600 0.137 1.045 0.590 1.10 0.200 0.170535 0.303083 0.600 0.137 1.045 0.590 0.590 0.200 0.170535 0.303083 0.600 0.137 1.045 0.590 0.590 0.000										
SYS V F IN DSG F DSG U DSG PF SYS F SYS U SYS PF LOAD V EXCITN Co. 90 Co. 100 Co. 194 Co. 195 Co. 196 Co. 197										
SYS V P IN DSG F DSG U DSG PF SYS F SYS G SYS FF LOAD V EXCITN C-90 C-200 C-164 C-520 C-305 C-094 C-465 C-197 C-924 C-420 C-420 C-364 C-271 C-924 C-420 C-944 C-200 C-185 C-320 C-500 C-109 C-263 C-383 C-971 C-324 C-94 C-200 C-195 C-320 C-500 C-109 C-263 C-383 C-971 C-329 C-98 C-200 C-194 C-115 C-98 C-114 C-161 C-577 C-98 C-990 C-194 C-115 C-98 C-990 C-114 C-161 C-577 C-98 C-990 C-194 C-151 C-98 C-990 C-114 C-161 C-97 C-98 C-990 C-194 C-151 C-98 C-115 C-956 C-896 C-990 C-911 C-98 C-990 C-911 C-98 C-990 C-911 C-98 C-990 C-911 C-98 C-990 C-991 C-98 C-990 C-991 C-98 C-990 C-9										0.480
0.90 0.200 0.164 0.520 0.305094465 0.197 0.952 1.520 0.92 0.200 0.177 0.420 0.388103364 0.271 0.962 1.424 0.294 0.200 0.185 0.320 0.500109263 0.383 0.971 1.325 0.98 0.200 0.190 0.218 0.657114141 0.577 0.981 1.235 0.98 0.200 0.194 0.115 0.860115 0.056 0.898 0.990 1.141 1.00 0.200 0.194 0.115 0.860115 0.049 0.720 0.990 1.141 1.00 0.200 0.194095 0.898115 0.049 0.720 0.999 1.048 1.02 0.200 0.194095 0.898115 0.049 0.720 0.999 1.048 1.02 0.200 0.194095 0.898113 0.156 0.587 1.008 0.955 1.040 0.200 0.197203 0.687109 0.265 0.380 1.013 0.863 1.06 0.200 0.179422 0.391094 0.487 0.189 1.034 0.680 1.00 0.200 0.179422 0.391094 0.487 0.189 1.034 0.680 1.10 0.200 0.170535 0.303083 0.600 0.137 1.034 0.680 1.10 0.200 0.170535 0.303083 0.600 0.137 1.034 0.680 1.10 0.200 0.170535 0.303083 0.600 0.137 1.034 0.680 1.09 0.200 0.004 0.372 0.011 0.081415 0.176 0.949 1.354 0.990 0.994 0.020 0.004 0.372 0.012 0.072315 0.224 0.949 1.354 0.990 0.994 0.020 0.004 0.372 0.012 0.072315 0.224 0.969 1.354 0.96 0.994 0.020 0.014 0.169 0.095 0.042 0.072315 0.224 0.969 1.354 0.96 0.020 0.014 0.169 0.095 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.169 0.095 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.169 0.095 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.169 0.095 0.065 0.100 0.920 0.019 0.065 0.275 0.063110 0.494 0.988 1.160 1.00 0.020 0.019 0.065 0.275 0.061 0.005 0.999 0.998 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.057 0.965 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.00 0.020 0.019040 0.428 0.051 0.000 0.799 1.045 0.592 1.000 0.	E S I U	A. 100	Unitidat	िक प्रतिसेक /	9.278	-, Q64	0.592	0.108	1.045	0.589
0.90 0.200 0.164 0.520 0.305094465 0.197 0.952 1.520 0.92 0.200 0.177 0.420 0.388103364 0.271 0.962 1.424 0.294 0.200 0.185 0.320 0.500109263 0.383 0.971 1.325 0.98 0.200 0.190 0.218 0.657114141 0.577 0.981 1.235 0.98 0.200 0.194 0.115 0.860115 0.056 0.898 0.990 1.141 1.00 0.200 0.194 0.115 0.860115 0.049 0.720 0.990 1.141 1.00 0.200 0.194095 0.898115 0.049 0.720 0.999 1.048 1.02 0.200 0.194095 0.898115 0.049 0.720 0.999 1.048 1.02 0.200 0.194095 0.898113 0.156 0.587 1.008 0.955 1.040 0.200 0.197203 0.687109 0.265 0.380 1.013 0.863 1.06 0.200 0.179422 0.391094 0.487 0.189 1.034 0.680 1.00 0.200 0.179422 0.391094 0.487 0.189 1.034 0.680 1.10 0.200 0.170535 0.303083 0.600 0.137 1.034 0.680 1.10 0.200 0.170535 0.303083 0.600 0.137 1.034 0.680 1.10 0.200 0.170535 0.303083 0.600 0.137 1.034 0.680 1.09 0.200 0.004 0.372 0.011 0.081415 0.176 0.949 1.354 0.990 0.994 0.020 0.004 0.372 0.012 0.072315 0.224 0.949 1.354 0.990 0.994 0.020 0.004 0.372 0.012 0.072315 0.224 0.969 1.354 0.96 0.994 0.020 0.014 0.169 0.095 0.042 0.072315 0.224 0.969 1.354 0.96 0.020 0.014 0.169 0.095 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.169 0.095 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.169 0.095 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.169 0.095 0.065 0.100 0.920 0.019 0.065 0.275 0.063110 0.494 0.988 1.160 1.00 0.020 0.019 0.065 0.275 0.061 0.005 0.999 0.998 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.057 0.965 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.00 0.020 0.019040 0.428 0.051 0.000 0.799 1.045 0.592 1.000 0.	(5)/(5) 1.1	м. жы	The All Ballen Inc.							
0.90 0.200 0.164 0.520 0.305094465 0.197 0.952 1.520 0.97 0.97 0.200 0.177 0.420 0.588 -1.03364 0.271 0.962 1.424 0.94 0.200 0.185 0.320 0.500109263 0.383 0.971 1.329 0.94 0.200 0.194 0.115 0.860115054 0.898 0.990 1.141 1.00 0.200 0.194 0.115 0.860115 0.049 0.200 0.999 1.048 1.02 0.200 0.195 0.011 0.998115 0.049 0.920 0.999 1.048 1.02 0.200 0.194095 0.898113 0.156 0.587 1.008 0.955 1.04 0.200 0.194203 0.687109 0.265 0.380 1.019 0.863 1.04 0.200 0.192203 0.687109 0.265 0.380 1.019 0.863 1.04 0.200 0.197312 0.514102 0.375 0.263 1.027 0.771 1.08 0.200 0.170555 0.303083 0.600 0.137 1.035 0.680 1.10 0.200 0.170555 0.303083 0.600 0.137 1.045 0.590 0						·	SYS Q	SYS PF	LOAD V	EXCITN
0.94 0.200 0.177 0.420 0.588 -1.03344 0.271 0.962 1.424 0.94 0.200 0.185 0.320 0.500 -1.09263 0.3B3 0.971 1.329 0.94 0.200 0.190 0.218 0.657114161 0.577 0.981 1.235 0.99 0.200 0.194 0.115 0.860115056 0.898 0.990 1.141 1.00 0.200 0.195 0.011 0.998 -1.113 0.156 0.897 1.008 0.999 1.048 1.00 0.200 0.194095 0.898 -113 0.156 0.587 1.008 0.995 1.048 1.040 0.200 0.194095 0.898113 0.156 0.587 1.008 0.953 1.046 0.200 0.194095 0.898113 0.156 0.587 1.008 0.953 1.04 0.200 0.194312 0.514102 0.375 0.263 1.027 0.771 1.08 0.200 0.197422 0.391094 0.487 0.189 1.034 0.480 1.10 0.200 0.170535 0.303083 0.400 0.137 1.045 0.590 0.590 0.100 0.200 0.170535 0.303083 0.400 0.137 1.045 0.590 0.590 0.990 0.002 0.004 0.372 0.011 0.081415 0.191 0.176 0.949 1.547 0.92 0.020005 0.472 0.011 0.081415 0.191 0.959 1.451 0.990 0.020 0.004 0.372 0.012 0.0072315 0.224 0.969 1.354 0.96 0.990 0.004 0.372 0.012 0.002213 0.224 0.969 1.354 0.96 0.90 0.002 0.014 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.016 0.169 0.095 0.063110 0.496 0.988 1.160 1.00 0.020 0.014 0.169 0.095 0.063110 0.496 0.998 1.160 1.00 0.020 0.019 0.065 0.275 0.061005 0.994 0.998 1.065 1.002 0.001040 0.428 0.062 0.101 0.524 1.007 0.995 1.065 1.002 0.001474 0.005 0.005 0.007 0.316 0.215 1.026 0.780 1.006 0.020 0.017146 0.115 0.065 0.208 0.297 1.017 0.875 1.065 0.000 0.000 0.320 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.045 0.000 0.0						094	 465	0.197	0.952	1.520
0.94 0.200 0.185 0.320 0.500109263 0.3E3 0.971 1.329 0.96 0.200 0.190 0.218 0.657114161 0.577 0.981 1.235 0.98 0.200 0.194 0.115 0.860115056 0.888 0.990 1.141 1.00 0.200 0.195 0.011 0.998115 0.049 0.720 0.999 1.048 1.02 0.200 0.194095 0.898113 0.156 0.587 1.008 0.955 1.04 0.200 0.192203 0.687109 0.265 0.380 1.019 0.863 1.06 0.200 0.187312 0.514102 0.375 0.263 1.027 0.771 1.08 0.200 0.179422 0.391094 0.487 0.189 1.035 0.680 1.10 0.200 0.179535 0.303083 0.600 0.137 1.045 0.590 REALISTIC LOAD REPRESENTATION SYS V P IN DSG P DSG 0 DSG PF SYS P SYS Q SYS PF LOAD V EXCITN 0.90 0.020005 0.472 0.011 0.081415 0.191 0.959 1.547 0.90 0.020005 0.472 0.011 0.081415 0.191 0.959 1.451 0.94 0.020 0.014 0.372 0.012 0.072315 0.224 0.969 1.354 0.98 0.020 0.016 0.169 0.095 0.665110 0.494 0.988 1.160 1.00 0.020 0.016 0.169 0.095 0.665110 0.494 0.988 1.160 1.00 0.020 0.019 0.065 0.275 0.061005 0.996 0.998 1.065 1.02 0.020 0.019 0.065 0.275 0.061005 0.996 0.998 1.065 1.03 0.020 0.017144 0.115 0.042 0.062 0.101 0.524 1.007 0.969 1.040 0.020 0.017363 0.018 0.077 0.426 0.178 1.035 0.684 1.10 0.020 0.007363 0.018 0.077 0.426 0.178 1.035 0.686 1.10 0.020 0.007363 0.018 0.077 0.426 0.178 1.035 0.686 1.10 0.020 0.040 0.052 0.367 0.067 0.052309 0.168 1.045 0.99 0.040 0.035 0.266 0.118 0.077 0.426 0.178 1.035 0.686 1.10 0.040 0.035 0.266 0.118 0.047261 0.188 0.959 1.454 0.99 0.040 0.035 0.266 0.118 0.046 0.038 0.188 0.959 1.543 0.99 0.040 0.035 0.266 0.118 0.046 0.043104 0.378 0.988 1.157 0.99 0.040 0.035 0.266 0.163 0.041 0.000 1.000 0.998 1.062 0.040 0.037152 0.235 0.045 0.041 0.000 1.000 0.998 1.062 0.040 0.037152 0.235 0.045 0.041 0.000 1.000 0.998 1.062 0.040 0.037152 0.235 0.045 0.041 0.000 1.000 0.998 1.062 0.040 0.037152 0.235 0.045 0.045 0.213 0.207 1.017 0.872 0.040 0.040 0.037152 0.235 0.045 0.045 0.213 0.207 1.017 0.872 0.08 0.040 0.037152 0.235 0.045 0.045 0.132 0.057 0.432 0.055 0.045 0.000 0.000 0.998 1.062						103	364	0.271		
0.98 0.200 0.190 0.218 0.657114161 0.577 0.981 1.235 0.98 0.200 0.194 0.115 0.860115056 0.898 0.990 1.141 1.00 0.200 0.195 0.011 0.998115 0.049 0.920 0.999 1.048 1.02 0.200 0.194095 0.898113 0.156 0.587 1.008 0.955 1.04 0.200 0.194095 0.898113 0.156 0.587 1.008 0.955 1.04 0.200 0.197203 0.687 -109 0.265 0.587 1.008 0.955 1.08 0.200 0.179422 0.391094 0.487 0.189 1.035 0.680 1.108 0.200 0.179422 0.391094 0.487 0.189 1.035 0.680 1.10 0.200 0.179422 0.391094 0.487 0.189 1.035 0.590 REALISTIC LOAD REPRESENTATION SYS V P IN DSG F DSG D DSG PF SYS F SYS G SYS PF LOAD V EXCITN 0.90 0.020005 0.472 0.011 0.081415 0.191 0.959 1.451 0.94 0.020 0.004 0.372 0.012 0.072315 0.224 0.969 1.354 0.94 0.020 0.001 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.169 0.095 0.063 -110 0.494 0.998 1.160 1.00 0.020 0.019 0.065 0.275 0.063 -110 0.494 0.998 1.065 1.02 0.020 0.019040 0.428 0.662 0.101 0.524 1.007 0.965 1.04 0.020 0.019040 0.428 0.662 0.101 0.524 1.007 0.965 1.06 0.020 0.017146 0.115 0.065 0.208 0.297 1.017 0.875 1.08 0.020 0.017353 0.018 0.077 0.424 0.178 1.035 0.486 1.09 0.020 0.017474 0.003 0.086 0.558 PF LOAD V EXCITN 0.90 0.020 0.010474 0.003 0.086 0.558 D.158 1.045 0.592 SYS V P IN DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V EXCITN 0.90 0.040 0.032 0.264 0.118 0.077 0.424 0.178 1.035 0.486 0.90 0.040 0.032 0.264 0.118 0.077 0.424 0.178 1.035 0.486 0.91 0.040 0.032 0.264 0.118 0.077 0.424 0.178 1.035 0.486 0.94 0.040 0.035 0.264 0.118 0.044 0.208 0.184 1.007 0.999 1.254 0.99 0.040 0.035 0.264 0.118 0.044 0.208 0.184 1.097 0.999 1.254 0.99 0.040 0.035 0.264 0.118 0.044 0.208 0.184 1.097 0.999 1.254 0.90 0.040 0.036 0.264 0.118 0.044 0.208 0.184 1.097 0.999 1.254 0.90 0.040 0.036 0.264 0.118 0.046 0.040 0.378 0.998 1.157 1.00 0.040 0.037045 0.467 0.055 0.052 0.014 0.050 0.799 1.254 0.90 0.040 0.036 0.264 0.118 0				0.320	0.500	109	263			
0.98 0.200 0.194 0.115 0.860115056 0.898 0.990 1.141 1.00 0.200 0.195 0.011 0.998115 0.049 0.920 0.999 1.048 1.02 0.200 0.194095 0.898113 0.156 0.587 1.008 0.955 1.04 0.200 0.197203 0.687109 0.265 0.380 1.019 0.863 1.04 0.200 0.187312 0.514102 0.375 0.263 1.027 0.771 1.08 0.200 0.179422 0.391094 0.487 0.189 1.035 0.680 1.10 0.200 0.170525 0.303083 0.600 0.137 1.045 0.590 REALISTIC LOAD REPRESENTATION SYS V P IN DSG F DSG D DSG PF SYS P SYS G SYS PF LOAD V EXCITN 0.90 0.020017 0.568 0.029 0.091511 0.176 0.949 1.547 0.92 0.020005 0.472 0.011 0.081415 0.191 0.959 1.451 0.94 0.020 0.014 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.169 0.095 0.063110 0.496 0.988 1.160 1.09 0.020 0.014 0.055 0.275 0.061 0.095 0.798 0.998 1.065 1.00 0.020 0.019 0.065 0.275 0.061 0.095 0.798 0.998 1.065 1.04 0.020 0.017446 0.115 0.065 0.208 0.297 1.017 0.875 1.08 0.020 0.017444 0.115 0.065 0.208 0.297 1.017 0.875 1.08 0.020 0.017444 0.115 0.065 0.208 0.277 1.017 0.875 1.08 0.020 0.017474 0.003 0.086 0.538 0.158 1.045 0.592 SYS V P IN DSG P DSG D DSG PF SYS F SYS D SYS PF LOAD V EXCITN 0.90 0.004 0.004 0.004 0.004 0.005 0.006 0.178 1.035 0.686 1.10 0.020 0.007365 0.018 0.077 0.426 0.178 1.035 0.686 1.10 0.020 0.007365 0.018 0.077 0.426 0.178 1.035 0.686 1.10 0.020 0.040 0.032 0.264 0.118 0.043309 0.166 0.959 1.448 0.94 0.040 0.035 0.264 0.118 0.044 0.208 0.218 0.979 1.448 0.95 0.040 0.035 0.264 0.118 0.044 0.208 0.218 0.979 1.448 0.96 0.040 0.036 0.163 0.216 0.043104 0.378 0.988 1.157 0.90 0.040 0.037045 0.164 0.043104 0.378 0.988 1.157 0.90 0.040 0.037045 0.164 0.043104 0.378 0.988 1.157 0.00 0.040 0.037045 0.645 0.042 0.043104 0.378 0.988 1.157 0.00 0.040 0.037045 0.645 0.042 0.045 0.021 0.079 1.066 0.799 1.062 0.040 0.037045 0.645 0.042 0.045 0.021 0.000 0.798 1.062 0.040 0.040 0.037045 0.645 0.042 0.050 0.213 0.207 1.017 0.872 0.040 0.040 0.040 0.044 0.040 0.044 0.050 0.251 0.045 0.045 0.045 0.045 0.045 0.045 0		0.200		0.218	0.657	114				
1.00 0.200 0.195 0.011 0.998115 0.049 0.920 0.999 1.048 1.02 0.200 0.194095 0.898113 0.156 0.587 1.008 0.955 1.04 0.200 0.192203 0.687109 0.265 0.580 1.019 0.663 1.06 0.200 0.187312 0.514102 0.375 0.263 1.027 0.771 1.08 0.200 0.179422 0.391094 0.487 0.189 1.036 0.680 1.10 0.200 0.179422 0.391094 0.487 0.189 1.035 0.680 1.10 0.200 0.170535 0.303083 0.600 0.137 1.045 0.590 0.590 0.100 0.200 0.170 0.568 0.029 0.091511 0.176 0.949 1.547 0.990 0.020017 0.568 0.029 0.091511 0.176 0.949 1.547 0.99 0.020005 0.472 0.011 0.081415 0.191 0.959 1.451 0.94 0.020 0.004 0.372 0.012 0.072315 0.224 0.969 1.354 0.94 0.020 0.004 0.372 0.012 0.072315 0.224 0.969 1.354 0.94 0.020 0.011 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.014 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.019 0.065 0.275 0.061105 0.996 0.996 1.065 1.00 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.02 0.020 0.019346 0.115 0.065 0.208 0.297 1.017 0.875 1.06 0.020 0.013254 0.051 0.070 0.316 0.215 1.026 0.780 1.08 0.020 0.013254 0.051 0.070 0.316 0.215 1.026 0.780 1.08 0.020 0.015254 0.051 0.070 0.316 0.215 1.026 0.780 1.08 0.020 0.015254 0.051 0.070 0.316 0.215 1.026 0.780 1.08 0.020 0.015 0.467 0.033 0.086 0.538 0.158 0.950 1.543 0.692 0.992 0.094 0.004 0.005 0.364 0.004 0.032 0.266 0.118 0.077 0.426 0.158 0.950 1.543 0.992 0.993 0.040 0.032 0.266 0.118 0.077 0.426 0.158 0.995 1.543 0.992 0.994 0.040 0.032 0.266 0.118 0.044 0.052 0.158 0.995 1.543 0.992 0.998 1.150 0.994 0.040 0.032 0.266 0.118 0.044 0.052 0.158 0.995 1.543 0.992 0.994 0.040 0.032 0.266 0.118 0.044 0.050 0.138 0.997 1.254 0.996 0.040 0.032 0.266 0.118 0.044 0.033 0.060 0.1164 0.999 1.254 0.996 0.040 0.034 0.034 0.044 0.033 0.064 0.044 0.037 0.064 0.037 0.065 0.044 0.000 0.000 0.999 1.062 0.040 0.040 0.037 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.0	Q.98	0.200	0.194	0.115	0.860					
1.02	1.00	0.200	0.195							
1.04	1.02	0.200	0.194							
1.06 0.200 0.187 312 0.514 102 0.375 0.263 1.027 0.771 1.08 0.200 0.179 422 0.391 094 0.487 0.189 1.035 0.680 1.10 0.200 0.170 535 0.303 083 0.600 0.137 1.045 0.590	1.04	0.200								
1.08	1.06									
1.10										
REALISTIC LOAD REPRESENTATION SYS V P IN DS6 F DS6 D DS6 PF SYS P SYS D SYS PF LOAD V EXCITN 0.90 0.020017 0.568 0.029 0.091511 0.176 0.949 1.547 0.92 0.020005 0.472 0.011 0.081415 0.191 0.959 1.451 0.94 0.020 0.004 0.372 0.012 0.072315 0.224 0.969 1.354 0.98 0.020 0.011 0.271 0.042 0.066213 0.298 0.978 1.257 0.98 0.020 0.016 0.169 0.095 0.063110 0.496 0.988 1.160 1.00 0.020 0.019 0.065 0.275 0.061005 0.996 0.998 1.065 1.02 0.020 0.019040 0.428 0.062 0.101 0.524 1.007 0.969 1.065 1.02 0.020 0.017146 0.115 0.065 0.208 0.297 1.017 0.875 1.06 0.020 0.013254 0.051 0.070 0.316 0.215 1.026 0.780 1.08 0.020 0.013254 0.051 0.070 0.316 0.215 1.026 0.780 1.08 0.020 0.007363 0.018 0.077 0.426 0.178 1.035 0.686 1.10 0.020001474 0.003 0.086 0.538 0.158 1.045 0.592										
SYS V P IN DSG F DSG B DSG PF SYS F SYS G SYS PF LOAD V EXCITN 0.70 0.020 017 0.568 0.029 0.091 511 0.176 0.949 1.547 0.72 0.020 005 0.472 0.011 0.081 415 0.191 0.959 1.451 0.74 0.020 0.004 0.372 0.012 0.072 315 0.224 0.969 1.354 0.74 0.020 0.011 0.271 0.042 0.066 213 0.278 0.978 1.257 0.79 0.020 0.016 0.167 0.095 0.063 110 0.496 0.978 1.257 0.98 0.020 0.019 0.065 0.275 0.061 005 0.796 0.798 1.065 1.02 0.020 0.017 146 0.115 0.045 0.208 0.277 1.01 0.524 1.007 0.780	• •		W. W. T. J.	* 675167	Part of Spirit S	- " (7(3) 2)	0.000	0.137	1,045	0.590
0.90	REALIS	STIC LOAD	D REPRESI	ENTATION						
0.90	SYS V	P IN	DSG P	DSG Q	DSG PF	SVS P	eve a	eve pe	LOAD O	ሮፓ V ლ ተ ግንአ I
0.92	0.90									
0.94	0.92									
0.96	0.94									
0.98										
1.00										
1.02										
1.04										
1.06										
1.08										
1.10 0.020001474 0.003 0.086 0.538 0.158 1.045 0.592 SYS V P IN DSG P DSG D DSG PF SYS F SYS D SYS PF LOAD V EXCITN 0.90 0.040 0.004 0.562 0.007 0.071506 0.138 0.950 1.543 0.972 0.040 0.015 0.467 0.033 0.060410 0.146 0.959 1.448 0.94 0.040 0.025 0.367 0.067 0.052309 0.166 0.969 1.350 0.96 0.040 0.032 0.266 0.118 0.046208 0.218 0.979 1.254 0.98 0.040 0.036 0.163 0.216 0.043104 0.378 0.988 1.157 1.00 0.040 0.039 0.060 0.543 0.041 0.000 1.000 0.998 1.062 1.02 0.040 0.039045 0.645 0.042 0.106 0.368 1.007 0.967 1.04 0.040 0.037152 0.235 0.045 0.213 0.207 1.017 0.872 1.06 0.040 0.033260 0.124 0.050 0.322 0.154 1.026 0.778 1.08 0.040 0.026369 0.071 0.057 0.432 0.132 1.036 0.684										0.780
SYS V P IN DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V EXCITN 0.90 0.040 0.004 0.562 0.007 0.071 506 0.138 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.543 0.950 1.448 0.959 1.448 0.959 1.448 0.959 1.448 0.959 1.448 0.959 1.350 0.969 1.350 0.969 1.350 0.969 1.350 0.979 1.254 0.979 1.254 0.979 1.254 0.979 1.254 0.979 1.254 0.979 1.062 0.988 1.157 0.988 1.157 0.967 0										0.686
0.90 0.040 0.004 0.562 0.007 0.071 506 0.138 0.950 1.543 0.92 0.040 0.015 0.467 0.033 0.060 410 0.146 0.959 1.448 0.94 0.040 0.025 0.367 0.067 0.052 309 0.166 0.969 1.350 0.96 0.040 0.032 0.266 0.118 0.046 208 0.218 0.979 1.254 0.98 0.040 0.036 0.163 0.216 0.043 104 0.378 0.988 1.157 1.00 0.040 0.039 0.060 0.543 0.041 0.000 1.000 0.998 1.062 1.02 0.040 0.039 045 0.645 0.042 0.106 0.368 1.007 0.967 1.04 0.040 0.037 152 0.235 0.045 0.213 0.207 1.017 0.872 1.08 0.040 0.026 369 0.071 0.057 0.432 0.132 1.036 0.6		10 a 10 a2 0	" (OO I	··· , 4/4	0.003	0.084	0.538	0.158	1.045	0.592
0.90 0.040 0.004 0.562 0.007 0.071 506 0.138 0.950 1.543 0.92 0.040 0.015 0.467 0.033 0.060 410 0.146 0.959 1.448 0.94 0.040 0.025 0.367 0.067 0.052 309 0.166 0.969 1.350 0.96 0.040 0.032 0.266 0.118 0.046 208 0.218 0.979 1.254 0.98 0.040 0.036 0.163 0.216 0.043 104 0.378 0.988 1.157 1.00 0.040 0.039 0.060 0.543 0.041 0.000 1.000 0.998 1.062 1.02 0.040 0.039 045 0.645 0.042 0.106 0.368 1.007 0.967 1.04 0.040 0.037 152 0.235 0.045 0.213 0.207 1.017 0.872 1.08 0.040 0.026 369 0.071 0.057 0.432 0.132 1.036 0.6	gve u	ED The	Dec e	17,179,279	gril, prog. proc. soc. com	ank a direct	40.00		•	
0.92 0.040 0.015 0.467 0.033 0.060 410 0.146 0.959 1.448 0.94 0.040 0.025 0.367 0.067 0.052 309 0.166 0.969 1.350 0.96 0.040 0.032 0.266 0.118 0.046 208 0.218 0.979 1.254 0.98 0.040 0.036 0.163 0.216 0.043 104 0.378 0.988 1.157 1.00 0.040 0.039 0.060 0.543 0.041 0.000 1.000 0.998 1.062 1.02 0.040 0.039 045 0.645 0.042 0.106 0.368 1.007 0.967 1.04 0.040 0.037 152 0.235 0.045 0.213 0.207 1.017 0.872 1.08 0.040 0.033 260 0.124 0.050 0.322 0.154 1.026 0.778 1.08 0.040 0.040 0.050 0.071 0.057 0.432 0.132 1.036 0.6								SYS PF	LOAD V	EXCITN
0.94							504	0.138	0.950	1,543 '
0.96						0.060	-,410	0.146	0.959	1.448
0.78						0.052	309	0.166	0.969	1.350
0.78						0.046	208			
1.00 0.040 0.037 0.060 0.543 0.041 0.000 1.000 0.778 1.062 1.02 0.040 0.037045 0.646 0.042 0.106 0.368 1.007 0.767 1.04 0.040 0.037152 0.235 0.045 0.213 0.207 1.017 0.872 1.06 0.040 0.033260 0.124 0.050 0.322 0.154 1.026 0.778 1.08 0.040 0.026369 0.071 0.057 0.432 0.132 1.036 0.684					0.216	0.043				
1.02 0.040 0.039045 0.646 0.042 0.106 0.368 1.007 0.967 1.04 0.040 0.037152 0.235 0.045 0.213 0.207 1.017 0.872 1.06 0.040 0.033260 0.124 0.050 0.322 0.154 1.026 0.778 1.08 0.040 0.026369 0.071 0.057 0.432 0.132 1.036 0.684					0.543	0.041				
1.04					0.646					
1.06			0.037		0.235					
1.08 0.040 0.026369 0.071 0.057 0.432 0.132 1.036 0.684			0.033							
1.10 0.040 0.040 - 200 0.077 0.077			0.026							
	1.10	0.040	0.018	-,480						

B-4

ORIGINAL PAGE 19 OF POOR QUALITY

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE LIGHT LOAD CASE

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02	P IN 0.060 0.060 0.060 0.060 0.060 0.060	DSG P 0.025 0.036 0.045 0.052 0.056 0.058 0.058	DSG 0 0.557 0.461 0.362 0.260 0.158 0.054 051 150	DSG PF 0.044 0.077 0.123 0.194 0.336 0.734 0.752	SYS P 0.050 0.040 0.032 0.024 0.023 0.021 0.022	SYS 0 501 404 304 202 099 0.004 0.112 0.219	5YS PF 0.099 0.099 0.105 0.128 0.222 0.945 0.194 0.115	LOAD V 0.950 0.960 0.969 0.989 0.998 1.008	EXCITN 1.540 1.444 1.347 1.251 1.155 1.059 0.965 0.870
1.06	0.060	0.052	-, 266	0.192	0.031	0.328	0.093	1.026	0.776
1.08	0.040 0.060	0.046 0.037	375 486	0.121 0.077	0.038 0.047	0.438 0.550	0.086 0.084	1.036 1.045	0.483 0.589
SYS V 0.90 0.92 0.94 0.96	P IN 0.080 0.080 0.080 0.080	DSG P 0.045 0.056 0.065 0.072	DSG 0 0.552 0.456 0.354 0.255	DSG PF 0.081 0.122 0.180 0.271	SYS P 0.030 0.020 0.012 0.004	SYS 0 496 399 298 197	SYS PF 0.060 0.047 0.039 0.031	LOAD V 0.950 0.960 0.970 0.979	EXCITN 1.536 1.441 1.344 1.248
0.98	0.080	0,076	0.152	0.447	0,003	Q93	0.029	0.989	1.152
1.00 1.02	0.080 0.080	0.078 0.078	0.048 057	0.850 0.808	0.002 0.003	0.011 0.118	0.142 0.022	0.998 1.008	1.057 0.963
1.04	0.080	0.076	164	0.421	0.006	0.225	0.026	1.017	0.848
1.06 1.08	0.080 0.080	0.072 0.065	272 381	0.255 0.168	0.011 0.019	0.334 0.444	0.033 0.042	1.027 1.036	0.775 0.681
1.10	0.080	0.057	492	0.114	0.028	0, 556	0.051	1.045	0.588
SYS V	PIN	DSG P	DSG Q	DSG PF	9 RYB	sys o	SYS PF	LOAD V	EXCITN
0.90 0.92	0.100 0.100	0.066 0.077	0.547 0.450	0.119 0.148	0.009 001	490 393	0.019 0.002	0.951 0.960	1.533 1.438
0.94	0.100	0.085	0.351	0.236	008	293	0.029	0.970	1.341
0.96	0.100	0.092	0.249	0.346	014	191	0.073	0.979	1.245
0.98	0.100	0.096	0.147	0.548	017	~.087	0.192	0.989	1.150
1.00	0.100 0.100	0.098 0.098	0.042 063	0.918 0.841	~. 018	0.017	0.722	0.998	1.055
1.04	0.100	0.075	170	0.490	017 014	0.124 0.231	0.136 0.059	1.008	0.961
1.06	0.100	0.071	- 278	0.311	008	0.231	0.034	1.017 1.027	0.867 0.773
1.08	0.100	0.084	388	0.213	001	0.451	0.001	1.036	0.680
1.10	0.100	0.076	499	0.150	0.009	0.543	0.016	1.045	0.587
SYS V O.90	P IN 0.120	DSG P 0.086	DSG 0 0.545	DSG PF 0.155	SYS P	SYS 0 489	SYS PF 0.022	LOAD V 0.951	EXCITN
0.92	0.120	0.097	0.445	0.212	021	388	0.054	0.961	1.533 1.435
0.94	0.120	0.105	0.345	0.292	028	287	0.099	0.970	1338
0.96	0.120	0.112	0.243	0.417	034	185	0.179	0.980	1.243
0.98	0.120	0.116	0.141	J. 635	-,037	OB1	0.411	0.989	1.148
1.00	0.120	0.118	0.036	0.955	-,038	0.023	0.849	0.999	1.053
1.02	0.120 0.120	0.117 0.115	069 - 174	0.861 0.546	-,036 - 037	0.130	0.270	1.008	0.959
1.04	0.120	0.110	176 285	0.546 0.361	033 027	0.238	0.138	1.017	0.865
1.08	0.120	0.104	395	0.361	020	0.347 0.457	0.079 0.043	1.027 1.036	0.772 0.679
1.10	0.120	0.095	506	0.184	010	0.570	0.018	1.036	0.587

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE LIGHT LOAD CASE

				DTO!!!	CUD CUDD				
34% V	FIN	086 P	psa u	DSG PF	SYS P	SYS U	SYS PF	LOAD V	GACITN
G (20)	0.140	0.105	0.539	0.192	···, O\$1	···. 485	0.064	o. 951	1.530
On William	1410	0.117	0.439	0.257	, O41	-, 382	Q. 106	0.961	1.452
() . 7 · 1	0.140	0,125	0.339	0.347	· 048	281	0.169	0.970	1.356
0.95	0.140	0.131	. 237	Q. 464	∞O53	 , 17 9	0.286	0.990	1.241
) , 7 13	0.140	0.135	0.1.5%	0.209	-, OB7	~. 075	0.600	0,989	1.146
1.067	0.140	0.137	0.030	0.976	~. 057	0,030	0.888	0.999	1.052
1.0	0.140	0.137	··· , 075	0.876	056	9.136	O. 380	1.008	0.958
1.04	0.140	0.1.4	- 135	0.892		O.244	0.209	1.018	0.864
1.06	0.140	0.129	291	0.406	~. O47	0.353	0.131	1.027	0.771
1.08	0.140	0.122	401	0.292	·· · 039	0.464	0.083	1.036	0.679
1.10	0.140	0.114	~. 513	0.216	O29	0.577	0.050	1.045	0.587
	6.: W 5. 4	manus to	* \ P \ E \ \ - E \ \	75.65 FB(FB)	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
sys V	P IN	DSG F	DSG 0	DSO PF	051		0.106	0.951	1.527
0,90	0.160	0.126	0.533	0.230	- , 051 - , 061	376	0.160	0.961	1.429
0.92	0.160	0.137	0.433	0.301		275	0.240	0.971	1.334
0.94	0.160	0.145	0,333	0.399	a 06B	173	0.389	0.780	1.239
0.46	0.160	0.451	0,231	0.547	, Q7∑		0.740	0.700	1.144
0.98	0.160	0.155	0.120	0.77 0	~, 076	-,069 0,036	0.740	0.999	1.050
\$ * (M)	0.160	0.157	0.024	0.988	~ , 077 ~ ~ cm=	0.038	0.466	1.008	0.957
1,02	0.160	0.154	082	0.885	075		0.488	1.018	0.863
1,40%	0,160	0.153	189	0.630	072	0.251	0.180	1.027	0.771
1,404	0.160	0.149	-,298	0.446	∾ " ዕልል	0.360	0.122	1.036	0.679
1,08	0.160	0.142	4Q9	0.327	058	0.471 0.584	0.082	1.045	0.587
1.10	0.160	0.133	≈. 521	0.247	-,04B	A* AB+	O P WOW	4: 10 15 m) to	". N 19109 F
SYS V	F IN	D\$6 P	DSG Q	DSG FF	SYS F	SYS Q	SYS PF	LOAD V	EXCITN
() , ⁽ 7()	0.180	0.146	0.528	0.267	071	471	0.149	0.952	1.524
0.92	o. 180	0.157	0.427	0.344	~.oat	-1:270	0.213	0.961	1.427
O. 94	0.180	0.165	0.327	0.450	O88	269	0,310	0.971	1.332
0.96	0.180	0.171	0.225	0.604	~. 093	167	0.487	0.780	1.237
0.98	Q.18Q	0.174	0.122	0.819	Q96	065	o.835	0.990	1.143
1,00	0.180	0.176	0.018	0.995	·• , 496	0.042	0.915	0.999	1.049
1.02	0.180	0.175	089	0.893	094	0.149	0.535	1.008	0.956
1.04	0,180	0.173	~, 196	0.460	091	0.257	0.332	1.018	0.863
1.06	0.180	0.168	305	0.481	085	0.367	0.225	1.027	771
1.08	0.180	0.161	416	0.360	Q77	0.479	0.155	1.036	0.679
1.10	0.180	0.151	528	0.275	067	0.592	0.112	1,045	0.588
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	sys Q	SYS PF	LOAD V	EXCITN
0.90	0.200	0.166	0.522	0,303		465	0.192	0.952	1.522
0.92	0.200	0.177	0.421	0.384	101	364	0.266	0.962	1.425
0.94	0.200	0.185	0.321	0.499	108	260	0.378	0.971	1.330
0.96	0.200	0.190	0.219	0.456	112	140	0.574	0.780	1.235
0.98 0.98	0.200	Q.194	0.116	0.859	115	-,056	0.897	0.990	1.141
1.00	0.200	0.195	0.011	0.998	115	0.049	0.920	0.999	1.049
1.02	0.200	0.194	095	0.878	114	0.156	0.588	1,009	0.955
1.04	0.200	0.192	- 203	0.686	-,110	0.264	0.383	1.018	0.863
1.04	0.200	0.186	-1312	0.512	104	0.375	0.267	1.027	0.771
1,08	0.200	0.179	- 424	0.390	096	0.486	0.193	1.036	0.679
1.10	0,200	0.170	- , 536	0.302	085	0.400	0.141	1.045	0.588
AL M AL T	and M. Spiers all a series	ran on an E TAT	M has the said		*				

A R TOOK GAVELLA

TABLE B-II

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE HEAVY LOAD CASE

CONSTANT IMPEDANCE LOAD

									4 N - N - N - 10 4 h
SYS V	PIN	DSG P	pen o	DSG PF	SYS F	SYS Q	SYS PF	LCAD V	EXCLIN
0.70	0.020	037	0.741	0.094	0.751	445	0.860	0.910	1.945
0.92	0.020	067	0.852	0.079	0.743	345	0.907	0.919	1.846
0.94	0.020	048	0.760	0.063	0.739	242	0.950	0.929	1.747
0.96	0,020	···. 031	0.668	0.047	0.737	-, 139	0.783	0.939	1.650
0.98	0.020	017	0.573	0.030	0.737	Q33	0.999	0.949	1,555
1.00	0,020	00 <u>4</u>	0.473	0.012	0,740	0.073	0.995	0.958	1.458
1.02	0.020	0.004	0.382 0.284	0.009	0.746	0.180	0.972	0.748	1.363
1.04	0,020	0.011		០.០38	0.753 0.763	0.289	0.934	0.977 6.884	1.269
1.06 1.08	0.020 0.020	0.016 0.018	0.185 0.085	$0.084 \\ 0.213$	0.775	0.399 0.510	0.886 0.835	0.986 0.996	1.175 1.083
1.10	0.020	0.018	017	0.749	0.773	0.623	0.785	1.005	0.990
4 0 4 4	That do That dischar	12 H 12 J 16 F	- * O T 1	57 # 7 *Y Y	0.47697	52 ± €0,62,43	V. / GU	السواريا والقا	17 4 7 7 W
SYS V	F IN	DSG P	DSG Q	DSG PF	SYS P	SYS 0	SYS PF	LOAD V	EXCITN
0,90	0.040	~. 067	0.936	0.072	0.730	439	O.857	0.910	1.939
0.92	0.040	046	0.847	0.054	0.723	339	0,905	0,920	1.841
0.74	0.040	027	0.755	0.036	0.718	236	0.950	0.930	1.742
0.96	0.040	Q1O	0.662	0.016	0.717	-, 133	0.983	0.939	1.645
0.98	0.040	0.003	0.568	0.006	0.717	028	0.999	0.949	1,549
1.00	0.040	0.015	Q.473	0.031	0.720	0.079	0.994	0.959	1.454
1.02	0.040	0.024	0.376	0.064	0.726	0.186	0.969	0.968	1.059
1.04	0.040	0.031	0.278	0.110	0.733	0.295	0.928	0.977	1,265
1.06	0.040	0.036	0.179	0.196	0.743	0.405	0.878	0.987	1.172
1.08	0.040	0,038	0.079	0.437	0.755	0.516	0.826	o. 996	1.079
1.10	0.040	0.039	~.023	0.863	0.770	0.629	0.774	1,,005	0.987
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	SAS G	SYS PF	LOAD V	EXCITM
0.90	0.060	046	0.951	O.O49	0.709	433	0.853	0.911	1.933
0.92	0.060	024	0.841	0.029	0.702	ानाः ह्या स्थापना स्था स्थापना स्थापना स्थापन	0.904	0.920	1.836
0.94	0.060	,006	0.750	0.008	0,698	230	0.750	0.930	1738
0.96	0,040	0.010	0.657	0.016	0.696	126	0.984	O.940	1.641
0.78	0,060	0.024	0.562	0.043	0.697	021	1.000	0.950	1.545
1,00	0.060	0,035	0.467	0.075	0.701	0.085	0.993	0.959	1.450
1.02	0.060	0.044	0.370	0.119	Q., 706	0.192	0.965	0.968	1.355
1.04	0.060	0.051	0.272	0.184	0.714	0,301	0.921	0.978	1,262
1.06	0.060	0.056	0.173	0.306	0.724	0.411	0.869	0.987	1,169
1,08	0.060	0.058	0.073	0.624	0.736	0.523	0.815	0.996	1.077
1.10	0.060	0.059	029	O.898	0.750	0.635	0.763	1.006	0,985
SYS V	PIN	DSG P	pag q	DSG PF	SYS P	sys o	SYS PF	LOAD V	EXCITM
0.90	0.080	024	0.925	0.026	0.488	427	0.850	0.91i	1.928
0.92	0.080	003	0.834	0.004					
0.94	0.080		0.744		0.682	327	0.902	0.921	1.831
		0.015		0.020	0.678	224	0.949	0.931	1.733
0.76	0.080	0.031	0.651 0.557	0.048	0.676	120	0.985	0.940 0.050	1.636
0.98	0.080	0.045	0.557 0.441	0.080	0.677 0.401	015	1.000	0.950 o.ee	1.541
1.00	0.080	0.056	0.461	0.120	0.681	0.091	0.791	0.959	1.446
1.02	0.080	0.064	0.364	0.174	0.686	0.199	0.961	0.969	1.352
1.04	0.080	0.071	0.266	0.258	0.694	0,308	0.914	0.978	1.259
1.06	0.080	0.076	0.167	0.412	0.704	0.418	0.860	0.987	1.166
1.08	0.080	0.078	0.067	0.760	0.716	0.529	0.804	0.997	1.074
110	0.080	0.078	035	0.913	0.731	0.642	0.751	1,006	0.982
				D 07					
				B-7					

TABLE B-II, cont.

ORIGINAL PAGE 19 DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE OF POGR QUALITY HEAVY LOAD CASE

SYS V 0.90 0.92 0.94 0.96 1.00 1.02 1.04 1.06 1.08	P IN 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG P 003 0.018 0.036 0.052 0.045 0.076 0.085 0.091 0.098 0.098	DSG 0 0.920 0.830 0.738 0.645 0.551 0.455 0.359 0.260 0.161 0.060	DSG PF 0.003 0.022 0.047 0.080 0.117 0.165 0.230 0.330 0.510 0.851 0.921	SYS P 0.668 0.658 0.658 0.657 0.661 0.667 0.675 0.685 0.697 0.712	SYS 0 421 321 218 114 009 0.097 0.205 0.314 0.424 0.536 0.649	SYS PF 0.844 0.900 0.949 0.985 1.000 0.989 0.954 0.907 0.850 0.793 0.739	LOAD V 0.912 0.921 0.931 0.941 0.950 0.960 0.969 0.978 0.988 0.997	EXCITN 1.923 1.824 1.728 1.632 1.537 1.442 1.349 1.254 1.163 1.071 0.980
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	F IN 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG P 0.019 0.039 0.057 0.072 0.085 0.094 0.105 0.111 0.115 0.117	DSG Q 0.914 0.825 0.733 0.639 0.545 0.545 0.352 0.254 0.155 0.054 048	DSG PF 0.020 0.047 0.077 0.112 0.155 0.209 0.285 0.401 0.598 0.908	SYS P 0.647 0.641 0.637 0.636 0.638 0.641 0.647 0.655 0.678 0.678	SYS 0 415 315 212 108 003 0.104 0.211 0.321 0.431 0.542 0.655	SYS PF 0.842 0.878 0.949 0.987 0.987 0.951 0.878 0.839 0.724	LOAD V 0.912 0.922 0.932 0.941 0.951 0.960 0.969 0.979 0.988 0.997 1.006	EXCITN 1.918 1.821 1.724 1.628 1.533 1.439 1.346 1.253 1.161 1.069 0.978
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG P 0.040 0.060 0.078 0.093 0.106 0.114 0.125 0.131 0.135 0.137	DSG 0 0.908 0.819 0.727 0.633 0.539 0.443 0.346 0.248 0.148 0.048	DSG PF 0.044 0.073 0.106 0.145 0.193 0.254 0.339 0.467 0.673 0.929	SYS P 0.627 0.617 0.617 0.618 0.622 0.628 0.636 0.659 0.659	SYS 0 409 308 206 102 0.004 0.110 0.218 0.327 0.438 0.549 0.662	SYS PF 0.838 0.894 0.949 0.987 1.000 0.985 0.945 0.889 0.828 0.769 0.713	LOAD V 0.913 0.922 0.932 0.942 0.951 0.960 0.970 0.979 0.988 0.997	EXCITN 1.913 1.817 1.720 1.625 1.530 1.436 1.343 1.250 1.158 1.067 0.976
SYS V O.90 O.92 O.94 O.98 1.00 1.02 1.04 1.06 1.10	F IN 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG F 0.061 0.081 0.078 0.113 0.124 0.137 0.145 0.151 0.155 0.156	DSG Q 0.903 0.813 0.721 0.627 0.533 0.437 0.340 0.241 0.142 J.041 062	DSG PF 0.067 0.099 0.135 0.178 0.230 0.298 0.392 0.530 0.737 0.968 0.931	SYS P 0.404 0.400 0.597 0.597 0.598 0.402 0.408 0.414 0.427 0.440	SYS 0 402 302 199 095 0.010 0.117 0.225 0.334 0.444 0.556 0.669	SYS PF 0.833 0.893 0.949 0.988 1.000 0.982 0.938 0.879 0.816 0.755 0.699	LOAD V 0.913 0.923 0.932 0.942 0.951 0.961 0.970 0.979 0.588 0.997	EXCITN 1.909 1.812 1.716 1.621 1.527 1.433 1.340 1.248 1.156 1.065 0.974

TABLE B-II, cont.

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE HEAVY LOAD CASE

ORIGINAL PROTE IS OF POOR QUALITY

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG P 0.082 0.102 0.119 0.134 0.146 0.156 0.164 0.170 0.174 0.176	DSG 0 0.897 0.807 0.715 0.621 0.527 0.431 0.333 0.235 0.135 0.034 069	DSG PF 0.091 0.125 0.164 0.210 0.267 0.341 0.443 0.587 0.790 0.982 0.931	SYS P 0.586 0.580 0.577 0.578 0.589 0.589 0.697 0.608 0.420 0.435	SYS Q 376 294 197 007 0.017 0.123 0.231 0.341 0.451 0.563 0.677	SYS PF 0.828 0.891 0.949 0.988 1.000 0.978 0.931 0.869 0.803 0.740 0.684	LOAD V 0.914 0.923 0.933 0.942 0.952 0.961 0.970 0.979 0.989	EXCITN 1.904 1.808 1.712 1.618 1.524 1.430 1.338 1.246 1.154 1.063 0.973
SYS V 0.90 0.92 0.94 0.96 1.00 1.02 1.04 1.06 1.08	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG P 0.103 0.122 0.139 0.154 0.154 0.176 0.176 0.190 0.195	DSG Q Q.891 Q.801 Q.709 Q.615 Q.520 Q.424 Q.327 Q.228 Q.128 Q.027 076	DSG PF 0.115 0.151 0.193 0.243 0.304 0.384 0.491 0.640 0.834 0.991 0.932	SYS P 0.566 0.567 0.557 0.559 0.569 0.569 0.578 0.678 0.616	SYS Q 390 289 186 082 0.023 0.130 0.238 0.348 0.348 0.458 0.684	SYS PF 0.823 0.889 0.949 0.989 0.974 0.922 0.857 0.789 0.725 0.669	LOAD V O.914 O.924 O.933 O.943 O.952 O.961 O.970 O.980 O.989 O.998	EXCITN 1.900 1.804 1.709 1.614 1.521 1.428 1.335 1.244 1.153 1.062 0.972
REALIS	TIC LOAD	REFRESE	MOITATION						
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG F 097 073 053 035 020 007 0.002 0.010 0.015 0.018 0.019	DSG Q O.970 O.875 O.784 O.488 O.591 O.493 O.293 O.190 O.087 018	DSG PF 0.099 0.083 0.067 0.051 0.034 0.015 0.006 0.035 0.080 0.204 0.730		SYS Q 442 339 241 137 032 0.074 0.181 0.289 0.399 0.510 0.622	SYS PF 0.875 0.918 0.955 0.985 0.995 0.973 0.935 0.888 0.836	LOAD V O.906 O.917 O.927 O.937 O.947 O.957 O.967 O.966 O.996	EXCITN 1.978 1.871 1.773 1.672 1.571 1.472 1.374 1.277 1.181 1.085 0.990
5YS V 0.90 0.92 0.94 0.96 1.00 1.00 1.00 1.00	F IN 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG P 075 051 032 014 0.001 0.013 0.023 0.030 0.035 0.038 0.039	DSG Q 0.965 0.869 0.778 0.683 0.586 0.487 0.388 0.287 0.185 0.081 024	DSG PF 0.077 0.059 0.040 0.020 0.001 0.027 0.059 0.105 0.188 0.428 0.854 B-9	SYS F 0.779 0.766 0.757 0.749 0.745 0.743 0.746 0.750 0.757	SYS Q 436 333 235 131 026 0.080 0.187 0.295 0.405 0.516 0.628	SYS PF 0.873 0.917 0.955 0.985 0.999 0.970 0.930 0.880 0.827 0.774	LOAD V O.907 O.917 O.927 O.937 O.947 O.957 O.967 O.977 O.976 1.005	EXCITN 1.971 1.866 1.767 1.667 1.567 1.468 1.370 1.273 1.177 1.082 0.986

TABLE B-II, cont.

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE HEAVY LOAD CASE

				UDWAT P	OAD CASE				
SYS V	PIN	DSG P	DSG Q	DSG PF	CARS 11	#33.6m #:	and the state of the state of		
0.90	0.060	-,053	0.959	0.055	SYS P 0.758	SYS G	SYS PF		EXCITN
0.92	0.060	030	0.868	6.035		430	0.870	0.907	1.965
0.74	0.040	~.010	0.773		0.746	-,331	0.714	0.918	1.864
0.96	0,040	0.007		0.013	0.736	229	0.955	0.928	1.762
0.98	0,060	0.022	0.677	0.010	0.729	F. 125	0.584	0.938	1.662
1.00	0,040		0.580	0.037	0.725	~.¢20	1,000	0.948	1.562
1.02	0.0 <u>60</u>	0.034	0.481	0.070	0.722	0.086	0.993	0, 958	1.464
1.04		0.043	0.382	0.113	0.723	0.193	0.966	0.967	1.366
	0.040	0.051	0.281	0.178	0.726	0.301	0.924	0.977	1.270
1.06	0.040	0.056	0.179	0.297	0.731	0.411	0.872	0.987	1.174
1.08	0.060	0.058	0.075	0.613	0.738	0.522	0.816	0.996	1.078
1.10	0.060	0.059	030	0.891	0.747	0.634	0.762	1.006	0.984
275 S. E. PTS									
SYS V	P IN	DSG P	DSG W	DSG PF	SYS F	SYS Q	SYS PF	LOAD V	EXCITY
0.90	0.080	031	0.954	0.033	0.737	-,424	0.867	0.908	1,960
0.92	0.080	. 009	0.362	0.011	0.725	-, 325	0.913	0.918	1.859
0.74	បានខេត្ត	0.011	0.767	0.014	0.716		0.955	0.928	1.757
0.95	0,080	0,028	0.671	0.041	0.709	119	0.936	0.938	1.657
0.9a	0.080	0.042	0.674	0.074	0.704	-,014	1,000	0.948	1.558
1.00	0.080	0.054	0.475	0.113	0.703	0.092	0.992	0.758	
1.02	0.080	0.064	0.376	0.167	0.703	0.199	0,742		1.460
1.04	0.080	0.071	0.275	0.249	0.706	0.309		0,968	1.363
I.Qa	0.080	0.075	0.172	0.401	0.711		0.917	0.977	1.266
1.08	0.080	0.078	0.069	0.750		0.417	0.862	0.787	1.171
1.10	0,080	0.078	~.03 6	0.700	0.718	0.528	୍ . ଥଠୁଧ	0.996	1.076
	and the state of the	to the same said	m Narvalija	O. YOU	0.728	0.641	の。751	1.006	0.981
SYS V	P IN	Lag P	DSG Q	DSG PP	SYS P	P33.47% - 273	**** * * * * * * * * * * * * * * * * *		
0.90	9.100	010	0.748			SYS 🤉	SYS PF	1.0AD 7	EXCITN
0.52	0.100	0.012		0.010	0.716	418	0.864	0.909	1.954
0.94	0.100		0.856	0.014	0.704	319	0.911	0.919	1.854
U. 96	0.100	0.032	0.761	0.042	0.695	-,210	0.955	0.929	1.753
0.78		0.049	0.665	0.073	0.688	113	O. 987	0.939	1.653
	0.100	0.063	0.568	0.110	0.684	008	1.,000	0.949	1.554
1.00	0.100	0.075	0.470	0.157	0.482	0.098	0.790	0.958	1.456
1.02	0.100	0.084	0.370	0.221	0.683	0.206	0.958	0.968	1.359
1.04	0.100	0.091	0.269	0.320	0.486	0.314	0.909	0.978	1.263
1.06	0.100	O. 095	O. 166	O.498	0.691	0.424	0.853	0.987	1.168
1.08	0.100	O.098	0.062	0.343	0.699	0.535	0.794	0.997	1.073
1.10	0.100	0098	043	0.917	0.708	0.647	0.738	1.006	0.979
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	That A had als where I
0.70	0.120	0.012	0.942	0.012	0.695	412			EXCITN
0.92	0.120	0.034	0.850	0.039	0.483	313	0.860	0,909	1.949
0.94	0.120	0.053	0.755	0.069			0.909	0.919	1.849
0.95	0.120	0.069	0.659	0.105	0.675 0.466	- 210	0.955	0.929	1.748
0.98	0.120	0.083	0.562	0.103	0.668	106	0.988	0,939	1.649
1.00	0.120	0.095			0.664	001	1.000	0.949	1.550
1.02	0.120		0.463	0.201	0.662	0.105	0.988	0,759	1.453
1.04	0.120	0.104	0.363	0.275	0.663	0.212	0.753	0.968	1.356
1.06		0.111	0.262		0.667	0.321	0.901	0.978	1.260
	0.120	0.115	0.160	0.584	0.672	0.431	0.842	0.987	1.165
1.08	0.120	0.117	0.056	0.903	0.679	0.542	0.782	0.997	1.071
1.10	0.120	0.117	049	0.922	0.689	O.654	0.725	1.006	0.977

DATA FOR SYNCHRONOUS MACHINE, CONSTANT VOLTAGE HEAVY LOAD CASE

ORIGINAL PACE IS OF POOR QUALITY

•	5YS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P 1N 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG P 0.033 0.055 0.074 0.070 0.104 0.115 0.124 0.130 0.135 0.137	DSG Q 0.936 0.844 0.749 0.653 0.556 0.457 0.357 0.256 0.153 0.049 056	DSG PF 0.035 0.045 0.098 0.136 0.183 0.244 0.328 0.454 0.661 0.941 0.925	SYS P 0.674 0.663 0.654 0.648 0.644 0.643 0.647 0.647 0.652 0.660 0.670	SYS 0 406 306 204 100 0.005 0.111 0.219 0.327 0.437 0.549 0.661	SYS FF 0.857 0.908 0.955 0.988 1.000 0.985 0.947 0.892 0.831 0.769	LGAD V 0.910 0.920 0.930 0.940 0.949 0.959 0.969 0.988 0.978	EXCITN 1.944 1.844 1.744 1.645 1.547 1.449 1.353 1.258 1.163 1.068 0.975
	SYS V 0,90 0,92 0,94 0,98 1,00 1,02 1,04 1,06 1,08 1,10	P IN 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG P 0.054 0.075 0.074 0.110 0.124 0.135 0.144 0.156 0.156 0.156	DSG Q Q.930 Q.838 Q.743 Q.647 Q.550 Q.451 Q.351 Q.249 Q.146 Q.Q42 Q63	DSG PF 0.059 0.090 0.126 0.148 0.220 0.287 0.379 0.516 0.726 0.927	SYS P 0.453 0.443 0.634 0.628 0.624 0.623 0.628 0.628 0.653 0.651	SYS 0 400 300 197 094 0.012 0.118 0.225 0.334 0.444 0.556 0.668	SYS PF 0.853 0.904 0.955 0.989 1.000 0.983 0.941 0.883 0.819 0.754 0.498	LOAD V 0.910 0.920 0.930 0.940 0.959 0.969 0.978 0.988 0.997	EXCITN 1.939 1.839 1.740 1.641 1.543 1.446 1.350 1.255 1.161 1.067 0.973
	SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG F 0.076 0.096 0.115 0.131 0.144 0.155 0.164 0.170 0.174	DSG Q 0.924 0.832 0.737 0.641 0.543 0.444 0.344 0.243 0.140 0.035 070	DSG PF 0.081 0.115 0.154 0.200 0.257 0.329 0.429 0.574 0.780 0.929	SYS F O.433 O.422 O.613 O.608 O.605 O.605 O.608 O.614 O.622 O.632	SYS 0 393 293 191 087 0.018 0.124 0.232 0.341 0.451 0.563 0.676	SYS PF 0.849 0.904 0.955 0.990 1.000 0.979 0.934 0.872 0.806 0.741	LOAD V 0.911 0.921 0.930 0.940 0.950 0.960 0.969 0.979 0.988 0.998	EXCITN 1.934 1.835 1.736 1.637 1.540 1.443 1.345 1.253 1.159 1.065 0.972
	of the National	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG P 0.097 0.117 0.135 0.151 0.164 0.175 0.183 0.190 0.195 0.195	DSG Q 0.918 0.826 0.731 0.634 0.537 0.438 0.337 0.236 0.133 0.028	DSG PF 0.105 0.141 0.182 0.232 0.273 0.371 0.477 0.627 0.825 0.970 0.929	SYS F 0.612 0.602 0.593 0.588 0.584 0.585 0.587 0.594 0.602 0.613	SYS Q 387 287 184 080 0.025 0.131 0.239 0.348 0.458 0.570	SYS PF 0.845 0.903 0.955 0.971 0.999 0.976 0.926 0.861 0.792 0.726 0.468	LGAD V O.911 O.921 O.931 O.950 O.960 O.969 O.979 O.988 O.998	EXCITN 1.930 1.831 1.732 1.634 1.537 1.441 1.345 1.251 1.063 0.970

DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE LIGHT LOAD CASE

CONSTANT IMPEDANCE LOAD

ORIGINAL PAGE 19 OF POOR QUALITY

SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	ピソロエがい
0.90	0.020	0.019	009	0.908	0.044	0.057	0.618	0.892	EXCITN
0.92	0.020	0.020	009	0.708	0.046	0.059	0.619		0.885
0.94	0.020	0.020	007	0.708	0.046	0.057		0.911	0.906
0.96	0.020	0.020	007				0.627	0.931	0.923
0.78	0.020			0.904	0.052	0.064	0.635	0.951	0.944
1.00		0.021	-,010	0.908	0.055	0.066	0.636	0.971	0.964
	0.020	0.020	010	0.896	0.059	0.069	0.649	0.991	0.986
1.02	0.020	0.021	010	0.901	0.061	0.071	0.450	1.011	1.000
1.04	0.020	0.020	010	0.888	0.045	0.074	0.661	1.030	1.022
1.04	0.020	0.021	010	0.892	0.068	0.077	0 "662	1.050	1.044
1.08	0.020	0.020	011	0.880	0.072	0.079	0.672	1.070	1.061
1.10	0.020	0.020	011	0.884	0.075	0.082	0.672	1.090	1.081
646 11	- 5	P3 69 69 69							
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.040	0.039	009	0.975	0.025	0.057	0.400	0.893	0.889
0.92	0.040	0.040	009	0.975	0.027	0.059	0.412	0.912	0.907
0.94	0.040	0.040	009	0.974	0.030	0.061	0.434	0.932	0.926
0.96	0.040	0.040	009	0.973	0.033	0.064	0.455	0.952	0.947
0.78	0.040	0.040	010	0.972	0.036	0.066	0.474	0.972	O. 768
1.00	0.040	0.040	010	0.970	0.039	0.069	0.492	0.771	0.989
1.02	0.040	0.040	010	0.969	0.042	0.071	0.508	1,011	1.006
1.04	0.040	0.040	010	0.968	0.045	0.074	0.523	1.031	1.025
1.06	0.040	0.040	010	0.967	0.049	0.077	O., 536	1.051	1.045
1.08	0.040	0.040	011	0.966	0.052	0.079	0.549	1.071	1.064
1.10	0.040	0.040	011	0.964	0.056	0.082	0.560	1.090	1.084
									i
									,
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	sys o	SYS PF	LOAD V	EXCITN
0.90	0.060	0.059	009	0.989	0.005	8YS 0 0.057	SYS PF 0.090	LOAD V 0.893	EXCITN O.893
0.90 0.92	0.060 0.060	0.059 0.060	009 009	0.989 0.989	0.005 0.007				-
0.90 0.92 0.94	0.060 0.060 0.060	0.059 0.060 0.060	009 009 009	0.989	0.005	0.057	0.090	0.893	0.893
0.90 0.92 0.94 0.96	0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060	009 009	0.989 0.989	0.005 0.007	0.057 0.059	0.090 0.117	0.893 0.913	0.893 0.910
0.90 0.92 0.94 0.96 0.98	0.060 0.060 0.060 0.060 0.060	0.059 0.060 0.060	009 009 009	0.989 0.989 0.988	0.005 0.007 0.010	0.057 0.059 0.062	0.090 0.117 0.158	0.893 0.913 0.933	0.893 0.910 0.930 0.951
0.90 0.92 0.94 0.96 0.98 1.00	0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060	009 009 009 010	0.989 0.989 0.988 0.988	0.005 0.007 0.010 0.013	0.057 0.059 0.062 0.064	0.090 0.117 0.158 0.198	0.893 0.913 0.933 0.953 0.973	0.893 0.910 0.930 0.951 0.973
0.90 0.92 0.94 0.96 0.98	0.060 0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060 0.060	009 009 009 010 010	0.989 0.989 0.988 0.988 0.987	0.005 0.007 0.010 0.013 0.016	0.057 0.059 0.062 0.064 0.066	0.090 0.117 0.158 0.198 0.235	0.893 0.913 0.933 0.953 0.973 0.992	0.873 0.910 0.930 0.951 0.973 0.990
0.90 0.92 0.94 0.96 0.98 1.00	0.060 0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060 0.060 0.059	009 009 009 010 010	0.989 0.989 0.988 0.988 0.987 0.986	0.005 0.007 0.010 0.013 0.016 0.019 0.023	0.057 0.059 0.062 0.064 0.066 0.069	0.090 0.117 0.158 0.198 0.235 0.269 0.300	0.893 0.913 0.933 0.953 0.973 0.992 1.012	0.893 0.910 0.930 0.951 0.973 0.990
0.90 0.92 0.94 0.96 0.98 1.00	0.060 0.060 0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060 0.060 0.059 0.059	009 009 009 010 010 010	0.989 0.989 0.988 0.988 0.987 0.986 0.986	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.026	0.057 0.059 0.062 0.064 0.066 0.069 0.072	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329	0.893 0.913 0.933 0.953 0.973 0.992 1.012	0.893 0.910 0.930 0.951 0.973 0.990 1.009
0.90 0.92 0.94 0.96 0.98 1.00	0.060 0.060 0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060 0.059 0.059 0.059	009 009 010 010 010 010 010	0.989 0.989 0.988 0.987 0.986 0.986 0.985	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.024 0.029	0.057 0.059 0.062 0.064 0.066 0.069 0.072 0.074 0.077	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355	0.893 0.913 0.953 0.953 0.973 0.992 1.012 1.032	0.893 0.910 0.930 0.951 0.973 0.990 1.009 1.029
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04	0.040 0.060 0.060 0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060 0.059 0.059 0.059	009 009 009 010 010 010 010	0.989 0.989 0.988 0.988 0.987 0.986 0.986	0.005 0.007 0.010 0.013 0.016 0.019 0.023 0.026 0.029 0.033	0.057 0.059 0.062 0.064 0.066 0.072 0.072 0.077 0.080	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355 0.379	0.893 0.913 0.953 0.953 0.973 0.992 1.012 1.032 1.052	0.893 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.047
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06	0.040 0.060 0.060 0.060 0.060 0.060 0.060	0.057 0.060 0.060 0.060 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 010	0.989 0.989 0.988 0.987 0.986 0.986 0.985 0.985	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.024 0.029	0.057 0.059 0.062 0.064 0.066 0.069 0.072 0.074 0.077	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355	0.893 0.913 0.953 0.953 0.973 0.992 1.012 1.032	0.893 0.910 0.930 0.951 0.973 0.990 1.009 1.029
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 011 011	0.989 0.989 0.988 0.987 0.986 0.986 0.985 0.985	0.005 0.007 0.010 0.013 0.016 0.019 0.023 0.026 0.029 0.033	0.057 0.059 0.062 0.064 0.066 0.072 0.072 0.077 0.080	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355 0.379	0.893 0.913 0.953 0.953 0.973 0.992 1.012 1.032 1.052	0.893 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.047
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	0.040 0.040 0.040 0.040 0.040 0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 011 011	0.989 0.989 0.988 0.987 0.986 0.986 0.985 0.985	0.005 0.007 0.010 0.013 0.016 0.019 0.023 0.026 0.029 0.033	0.057 0.059 0.062 0.064 0.066 0.072 0.072 0.077 0.080	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355 0.379	0.893 0.913 0.953 0.953 0.973 0.992 1.012 1.032 1.052	0.893 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.047
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10 SYS V	0.040 0.040 0.040 0.040 0.040 0.060 0.060 0.060 0.060	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 011 011	0.989 0.988 0.988 0.987 0.986 0.985 0.985 0.985	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.024 0.029 0.033	0.057 0.059 0.062 0.064 0.066 0.072 0.074 0.077 0.080	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355 0.379 0.401	0.893 0.913 0.953 0.953 0.973 0.992 1.012 1.052 1.052	0.873 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.047
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.10 SYS V 0.90 0.92	0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 011 011	0.989 0.989 0.988 0.987 0.986 0.985 0.985 0.984 0.984	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.024 0.029 0.033 0.034	0.057 0.059 0.062 0.064 0.066 0.072 0.074 0.077 0.080 0.082	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355 0.379 0.401	0.893 0.913 0.953 0.953 0.973 0.992 1.012 1.032 1.052 1.071 1.091	0.893 0.910 0.930 0.951 0.973 0.970 1.009 1.029 1.048 1.047 1.086
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.10 SYS V 0.90 0.92 0.94	0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 PIN 0.080 0.080	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 011 011	0.989 0.989 0.988 0.987 0.986 0.985 0.985 0.984 0.984	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.024 0.029 0.033 0.034	0.057 0.059 0.062 0.064 0.066 0.072 0.074 0.077 0.080 0.082 SYS Q	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355 0.379 0.401 SYS PF 0.245	0.893 0.913 0.933 0.953 0.973 0.992 1.012 1.032 1.052 1.071 1.091 LOAD V 0.894 0.914	0.873 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.047 1.086 EXCITN 0.898 0.914
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.10 SYS V 0.90 0.92	0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 011 011	0.989 0.989 0.988 0.987 0.986 0.985 0.985 0.985 0.984 0.984	0.005 0.007 0.010 0.013 0.016 0.019 0.023 0.026 0.029 0.033 0.036 SYS P 014 013	0.057 0.059 0.062 0.064 0.064 0.072 0.077 0.080 0.082 SYS G 0.057 0.059 0.062	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.355 0.355 0.379 0.401 SYS PF 0.245 0.209 0.156	0.893 0.913 0.933 0.953 0.973 0.992 1.012 1.032 1.052 1.071 1.091 LOAD V 0.894 0.914 0.934	0.893 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.067 1.086 EXCITN 0.898 0.914 0.934
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.10 SYS V 0.90 0.92 0.94	0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 PIN 0.080 0.080	0.059 0.060 0.060 0.059 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 011 011 011 011 011	0.989 0.988 0.988 0.987 0.986 0.985 0.985 0.985 0.984 0.984	0.005 0.007 0.010 0.013 0.016 0.019 0.023 0.026 0.029 0.033 0.036 SYS P 014 013 010	0.057 0.059 0.062 0.064 0.066 0.072 0.077 0.080 0.082 SYS 0 0.057 0.057 0.057	0.090 0.117 0.158 0.198 0.235 0.269 0.355 0.355 0.379 0.401 SYS PF 0.245 0.209 0.156 0.103	0.893 0.913 0.933 0.953 0.973 0.972 1.032 1.052 1.071 1.091 LOAD V 0.894 0.914 0.934 0.954	0.873 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.047 1.086 EXCITN 0.898 0.914 0.934 0.956
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08 1.10 SYS V 0.90 0.92 0.94 0.96	0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 011 011 011 011 009 009 009 009 009	0.989 0.988 0.988 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.983 0.993 0.993 0.993	0.005 0.007 0.010 0.013 0.016 0.019 0.023 0.026 0.029 0.033 0.036 SYS P 014 013 010 007 003	0.057 0.059 0.062 0.064 0.069 0.072 0.074 0.077 0.080 0.082 SYS 0 0.057 0.057 0.057 0.062 0.064 0.067	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355 0.379 0.401 SYS PF 0.245 0.209 0.156 0.103 0.052	0.893 0.913 0.953 0.953 0.972 1.012 1.052 1.052 1.071 1.091 LOAD V 0.894 0.914 0.934 0.954 0.973	0.873 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.067 1.086 EXCITN 0.898 0.914 0.934 0.956 0.978
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08 1.10 SYS 0.90 0.92 0.94 0.98	0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 011 011 011 011 009 009 009 009 010 010	0.989 0.988 0.988 0.986 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.024 0.029 0.033 0.036 SYS P 014 013 010 007 003 000	0.057 0.059 0.062 0.064 0.069 0.072 0.077 0.080 0.082 SYS G 0.057 0.057 0.062 0.064 0.067 0.069	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.355 0.379 0.401 SYS PF 0.245 0.245 0.156 0.103 0.052 0.004	0.893 0.913 0.953 0.953 0.972 1.012 1.052 1.052 1.071 1.091 LOAD V 0.894 0.914 0.934 0.954 0.973	0.873 0.910 0.930 0.951 0.973 0.990 1.009 1.029 1.048 1.086 EXCITN 0.934 0.934 0.934 0.978 0.978
0.90 0.92 0.94 0.98 1.02 1.04 1.06 1.08 1.10 SYS 0.90 0.92 0.94 0.98 1.00	0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059 0.059 0.059	009 009 010 010 010 010 010 011 011 011 011 009 009 009 009 009	0.989 0.988 0.988 0.986 0.985 0.985 0.985 0.985 0.985 0.995 0.993 0.993 0.993 0.993 0.992 0.992	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.024 0.029 0.033 0.034 SYS P 014 013 010 007 003 000 0.003	0.057 0.059 0.062 0.064 0.069 0.072 0.074 0.077 0.080 0.082 SYS G 0.057 0.059 0.062 0.064 0.064 0.067 0.069 0.072	0.090 0.117 0.158 0.198 0.235 0.269 0.300 0.329 0.355 0.379 0.401 SYS PF 0.245 0.209 0.156 0.103 0.052 0.004 0.042	0.893 0.913 0.953 0.953 0.972 1.012 1.052 1.052 1.052 1.071 1.091 V0.894 0.914 0.934 0.954 0.973 0.973	0.873 0.910 0.930 0.951 0.973 0.990 1.029 1.048 1.047 1.086 EXCITN 0.934 0.934 0.934 0.934 0.978 0.978 0.974
0.90 0.92 0.94 0.98 1.02 1.04 1.06 1.08 1.10 V 0.90 0.92 0.94 0.98 1.00 1.02	0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080	0.059 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.059 0.059 0.079 0.079 0.079 0.079	009 009 010 010 010 010 010 011 011 011 011 009 009 009 009 010 010 010 010	0.989 0.988 0.988 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985	0.005 0.007 0.010 0.013 0.016 0.019 0.023 0.026 0.029 0.033 0.036 SYS P 014 013 010 007 003 0.003 0.003	0.057 0.059 0.062 0.064 0.064 0.072 0.077 0.080 0.082 SYS Q 0.057 0.059 0.062 0.064 0.067 0.069 0.069	0.090 0.117 0.158 0.198 0.235 0.269 0.355 0.355 0.379 0.401 SYS PF 0.245 0.209 0.156 0.103 0.052 0.004 0.042 0.085	0.893 0.913 0.953 0.953 0.972 1.032 1.052 1.052 1.071 1.091 LOAD V 0.894 0.914 0.934 0.954 0.973 1.013	0.873 0.910 0.930 0.951 0.970 1.009 1.009 1.048 1.047 1.086 EXCITN 0.898 0.914 0.934 0.954 0.954 0.978 0.978
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08 1.10 V 0.90 0.92 0.94 0.98 1.00 1.02 1.02	0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080	0.059 0.060 0.060 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.079 0.079 0.079 0.079	009 009 010 010 010 010 010 011 011 011 011 010 010 010 010 010 010 010	0.989 0.988 0.988 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.993 0.993 0.993 0.993 0.992 0.992 0.992	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.026 0.029 0.033 0.036 SYS P 014 013 010 007 003 0.003 0.004 0.010	0.057 0.059 0.062 0.064 0.069 0.072 0.077 0.080 0.082 SYS G 0.057 0.059 0.064 0.064 0.069 0.072 0.072 0.074 0.077	0.090 0.117 0.158 0.198 0.235 0.269 0.355 0.355 0.379 0.401 SYS PF 0.245 0.209 0.156 0.103 0.052 0.042 0.042 0.085 0.125	0.893 0.933 0.953 0.953 0.972 1.0352 1.052 1.071 1.091 UOAB94 0.934 0.934 0.973 1.033 1.033	0.873 0.970 0.973 0.975 0.970 1.029 1.048 1.047 1.086 EXCITN 0.934 0.934 0.934 0.978 0.978 0.978
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.08 1.10 V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.04	0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.059 0.060 0.060 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.079 0.079 0.079 0.079 0.079	009 009 010 010 010 010 010 011 011 011 010 009 009 009 010 010 010 011 011	0.989 0.988 0.988 0.986 0.985 0.988 0.988 0.988 0.988 0.988 0.998 0.998 0.999 0.999 0.999 0.9991 0.991	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.024 0.029 0.033 0.034 SYS P 014 013 010 007 003 000 0.003 0.004 0.010	0.057 0.059 0.062 0.064 0.069 0.072 0.077 0.080 0.059 0.059 0.059 0.064 0.064 0.069 0.072 0.074 0.077 0.080	0.090 0.117 0.158 0.198 0.235 0.269 0.355 0.355 0.379 0.401 SYS PF 0.245 0.245 0.209 0.156 0.103 0.052 0.042 0.085 0.125 0.162	0.893 0.913 0.953 0.953 0.972 1.052 1.052 1.071 1.091 COB94 0.914 0.934 0.954 0.953 1.052 1.052	0.873 0.970 0.973 0.970 1.029 1.029 1.048 1.046 1.086 EXEMPLE 0.934 0.934 0.934 0.934 0.974 1.032 1.031 1.051
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.08 1.10 V 0.92 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.059 0.060 0.060 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.079 0.079 0.079 0.079	009 009 010 010 010 010 010 011 011 011 011 010 010 010 010 010 010 010	0.989 0.988 0.988 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.993 0.993 0.993 0.993 0.992 0.992 0.992	0.005 0.007 0.010 0.013 0.014 0.019 0.023 0.026 0.029 0.033 0.036 SYS P 014 013 010 007 003 0.003 0.004 0.010	0.057 0.059 0.062 0.064 0.069 0.072 0.077 0.080 0.082 SYS G 0.057 0.059 0.064 0.064 0.069 0.072 0.072 0.074 0.077	0.090 0.117 0.158 0.198 0.235 0.269 0.355 0.355 0.379 0.401 SYS PF 0.245 0.209 0.156 0.103 0.052 0.042 0.042 0.085 0.125	0.893 0.933 0.953 0.953 0.972 1.0352 1.052 1.071 1.091 UOAB94 0.934 0.934 0.973 1.033 1.033	0.873 0.970 0.973 0.975 0.970 1.029 1.048 1.047 1.086 EXCITN 0.934 0.934 0.934 0.978 0.978 0.978

TABLE B-III, cont.

DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE LIGHT LOAD CASE

OF POUR QUALITY

**	SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08 1.10 SYS V 0.90 0.92	P IN 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG P 0.078 0.079 0.079 0.079 0.079 0.079 0.078 0.078 0.078	DSG Q 009 009 010 010 010 011 011 011 011	0.996 0.996	034 032 029 026 023 020 013 010 006 003	0.057 0.059 0.062 0.064 0.067 0.072 0.074 0.077 0.080 0.083	0.510 0.477 0.428 0.376 0.325 0.274 0.223 0.174 0.126 0.079 0.034 SYS PF	0.895 0.915 0.935 0.954 0.974 0.994 1.014 1.033 1.053 1.053	EXCITN 0.903 0.918 0.939 0.961 0.983 0.998 1.017 1.036 1.055 1.074 1.092 EXCITN 0.909
	0.94	0.120	0.119	009	0.997	052 049	0.060 0.062	0.455 0.418	0.916	0.928
	0.96 0.98	0.120 0.120	0.118	010	0.997	045	0.064	0.577	0.935 0.955	0.944 0.967
	1.00	0.120	0.118 0.118	010 010	0.997 0.996	042	0.067	0.535	0.975	0.787
	1.02	0.120	0.118	010	0.796 0.796	039 036	0.069 0.072	0.491	0.995	1.003
	1.04	0.120	0.118	~.010	0.996	032	0.072	0.445 0.399	1.014 1.034	1.022
	1.06 1.08	0.120 0.120	0.118	011	0.996	029	0.077	0.353	1.054	1.040 1.059
	1.10	0.120	0.118 0.119	011 011	0.99 <u>6</u>	026	0.080	0.306	1.073	1.037
		···	n -m -4. f	* 7.7.7	0.776	023	0.083	0.273	1.093	1,101
	SYS V	FIN	DSG P	DSG Q	DSG PF	SYS P	sys Q	C3\/C3 =====	• en a · ·	
	0.90	0.140	0.137	009	0.998	073	575 W 0.057	SYS PF 0.784	LOAD V	EXCITN
	0.92 0.94	0.140 0.140	0.138	009	0.998	O71	0.060	0.765	0.897 0.917	0.915 0.934
	0.96	0.140	0.138 0.138	009 010	0.998	068	0.062	0.738	0.936	0.950
	O.98	0.140	0.138	010 010	0.998 0.997	065 062	0.065	0.709	0.956	0.973
	1.00	0.140	0.138	010	0.997	058	0.067 0.070	0.677	0.976	0.990
	1.02 1.04	0.140	0.138	010	O.997	055	0.070	0.643 0.607	0.995 1.015	1.008
	1.04	0.140 0.140	0.137 0.137	010	0.997	052	0.075	0.570	1.035	1.027 1.045
	1.08	0.140	0.137	011 011	0.997 0.997	048	0.077	0.530	1.054	1.063
	1.10	0.140	0.139	011	0.997	046 043	0.080	0.500	1.074	1.086
						# 2/11/63	0.083	0.462	1.094	1.106
	9YS V 0.90	P IN 0.160	DSG F 0.154	DSG Q	DSG PF	SYS P	sys @	SYS PF	LOAD V	EXCITN
(0.92	0.160	0.158	009 009	0.998 0.998	092 090	0.058	0.847	O.898	0.922
	0.94	0.160	0.157	010	0.778	090 087	0.060	0.833	0.917	0.940
	9.96 3.00	0.160	0.157	010	0.998	084	0.062 0.065	0.814 0.792	0.937 0.957	0.956
	098 100	0.160	0.157	010	0.998	081	0.067	0.752 0.769	0.957 0.976	0.979 0.005
	1.02	0.160 0.160	0.157 0.157	010 010	0.998	078	0.070	0.744	0.776	0.995 1.014
	1.04	0.160	0.157	010 010	0.998 0.998	074 - 074	0.072	0.717	1.016	1.032
. 1	L.O6	0.160	0.158	011	0.998	071 069	0.075	0.488	1.035	1.050
		0.160	0.158	011	0.778	066	0.078 0.080	0.664 0.634	1.055	1.071
.1.	10	0.160	0.158	011	0.998	063	0.083	0.602	1.075 1.095	1.091
ı					B-13				~ = W / C	1.111
					n= i ⊀					

DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE LIGHT LOAD CASE

ORIGINAL PAGE IS OF POOR QUALITY

و و معرون اسم	F , **:	Photon or	V- 104 104	TI				_	•	
SYS V	PIN	DSG P	nse a	DSG PF	SYS P	sys a	SYS PF	LOAD V	EXCITN	
0.90	0.180	0.175	OO9	0.999	111	0.058	O.887	0.898	0.929	
0.92	0.180	0.177	009	0.999	109	0.060	0.877	0.918	0.947	
0.94	0.180	0.177	010	0.999	106	0.062	0.863	0.938	0.962	
0.96	0.180	0.177	010	0.998	103	0.065	0.847	0.957	0.986	
0.98	0.180	0.176	010	0.998	100	0.067	0.830	0.977	1.001	
1.00	0.180	0.176	010	0.998	097	0.070	0.811	0.777		
1.02	0.180	0.176	010	0.798	093	0.072			1.019	
1.04	0.180	0.177	011	0.778			0.791	1.016	1.037	
1.06					091	0.075	0.773	1.036	1.054	
	0.180	0.177	O11	0.998	088	0.078	0.751	1.056	1.077	
1.08	0.180	0.178	-,011	0.998	085	0.080	0.727	1.076	1.096	
1.10	0.180	0.178	011	0.998	082	0.083	0.702	1.095	1.116	
SYS V	F IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITM	
0.90	0.200	0.195	009	0.999	130	0.058	0.913	0.899	0.937	
0.92	0.200	0.196	010	0.999	128	0.040	0.905	0.919	0.954	
0.94	0.200	0.196	010	0.999	125	0.063	0.895	0.939	0.969	
0.96	0.200	0.196	010	0.999	122	0.065		0.757		
0.98	0.200	0.176 0.196	010	0.777	117		0.883		0.993	
						0.067	0.870	0.978	1.008	
1.00	0.200	0.195	010	0.999	116	0.070	0.856	0.998	1.025	
1.02	0.200	0.196	010	0.999	114	0.073	0.843	1.017	1.042	
1.04	0.200	0.197	011	0.999	111	0.075	0.827	1.037	1.063	
1.06	0.200	0.197	O11	0.998	108	0.078	0.810	1.057	1.082	
1.08	0.200	0.197	011	0.998	105	0.081	0.792	1.076	1.101	
1.10	0.200	0.198	011	0.998	101	0.083	0.773	1.096	1.121	
REALIS	TIC LOAD	REPRESE	NOTATION							
,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
SYS V	F IN	DSG P	DSG Q	DSG PF	SYS F	SYS Q	SYS PF	LOAD V	EXCITN	
0.90	0.020	0.019	009	0.708						
0.72					0.050	0.060	0.635	0.891	0.884	
	0.020	0.019	009	0.905	0.052	0.062	0.638	0.911	0.905	
0.94	0.020	0.019	009	0.904	0.053	0.064	0.641	0.931	0.924	
0.96	0.020	0.020	009	0.901	0.055	0.066	0.644	0.951	0.945	
0.98	0.020	0.020	010	0.899	0.057	0.067	0.647	0.971	0.962	
1.00	0.020	0.020	010	0.896	0.059	0.069	0.450	0.991	0.983	
1.02	0.020	0.020	010	0.894	0.061	0.071	0.453	1.011	1.001	
1.04	0.020	0.020	010	0.890	0.063	0.073	0.454	1.030	1.023	
1.06	0.020	0.020	010	0.887	0.065	0.074	0.459	1.050	1.044	
1.08	0.020	0.020	011	0.884	0.067	0.076	0.662	1.070	1.066	
1.10	0.020	0.020	O11	0.881	0.069	0.078	0.665	1.090	1.081	
2 2 12 13	75 H 15 42 15	ANT II AMENDMAN	- 1.7 1 1	V. OO1	TO B TO CO.	O E O Y C	V = UUU	1.070	1 " (/() 1	
sys V	F IN	DSG P	DSG Q	nee ee	eve e		C) / C) F: F	1.000	por 1.2 cm as man.	
				DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN	
0.90	0.040	0.039	009	0.975	0.030	0.061	0.443	0.892	0.888	
0.92	0.040	0.040	009	0.975	0.031	0.042	0.444	0.912	0.909	
0.94	0.040	0.040	009	0.974	0.033	0.064	0.459	0.932	0.926	
0.96	0.040	0.040	009	0.973	0.035	0.046	0.472	0.952	0.947	
Q.9B	0.040	0.040	010	0.972	0.037	0.067	0.483	0.972	0.967	
1.00	0.040	0.041	010	0.972	0.038	0.069	0.485	0.991	0.986	
1.02	0.040	0.040	010	0.969	0.042	0.071	0.505	1.011	1.006	
1.04	0.040	0.041	010	0.767	0.043	0.073	0.507	1.031	1.027	
1.06	0.040	0.040	010	0.967	0.046	0.073	0.524	1.051		
1.08	0.040	0.040	010	0.767	0.048				1.045	
1.10	0.040		011			0.076	0,525	1.071	1.069	٠
* * * *	V. V40	0.040	-"011	0.964	0.050	0.078	0.540	1.091	1.084	
				B-14						

TABLE B-III, cont.

Thomas D-LLL, Cont.									
DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE LIGHT LOAD CASE									
SYS V 0.90	P IN 0.060	DSG P	DSG Q	DSG PF	SYS P	sys a	SYS PF	LOAD V	EXCITN
0.92	0.060	0.059 0.060	009	0.989	0.010	0.061	0.167	0.893	0.892
0.94	0.040	0.060	009 009	0.989	0.011	0.062	0.179	0.913	0.910
0.76	0.060	0.060	010	0.788	0.013	0.064	0.204	0.933	0.930
0.98	0.060	0.060		0.988 0.987	0.015	0.066	0.228	0.952	0.951
1.00	0.060	0.040	-,010	0.787	0.018	0.068	0.251	0.972	0.972
1.02	0.060	0.059	010	0.786	0.020	0.069	0.273	0.992	0.993
1.04	0.060	0.059	010	0.785	0.022 0.024	0.071	0.293	1.012	1.014
1.06	0.060	0.059	010	0.785	0.024	0.073	0.312	1.032	1.029
1.08	0.060	0.057	011	0.984	0.028	0.075	0.329	1.052	1.049
1.10	0.060	0.059	- O11	0.784	0.030	0.076 0.078	0.346 0.362	1.072 1.092	1.068
					The B The High The	010/0	weeda	1 4 9 7 2	1.088
SYS V 0.90	P IN 0.080	DSG P 0.078	DSG 0 009	DSG PF	SYS P	sys a	SYS PF	LOAD V	EXCITN
0.92	0.080	0.076	009	0.994	009	0.061	0.151	0.894	0.897
0.94	0.080	0.079	009	0.993 0.993	008	0.062	0.132	0.914	0.914
0.96	0.080	0.079	010	0.773	006	0.064	0.098	0.933	0.934
0.98	0.080	0.079	010	0.992	004 002	0.066	0.063	0.953	0.955
1.00	0.080	0.079	010	0.772 0.792	0.002	0.048 0.049	0.030	0.973	0.977
1.02	0.080	0.079	010	0.992	0.000	0.007	0.001	0.993	0.998
1.04	0.080	0.079	010	0.992	0.004	0.071	0.031 0.059	1.013	1.013
1.06	0.080	0.079	-,011	0.991	0.004	0.075	0.086	1.033	1.033
1.08	0.080	0.079	011	0.991	0.009	0.075	0.000	1.053	1.052
1.10	0.080	0.079	011	0.991	0.011	0.078	0.137	1.073 1.092	1.071 1.091
					*** # *# #, #,	10° H 10° 7 \u	W# 1.W/	1.072	1.1071
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.100	0.098	009	0.996	029	0.061	0.427	0.894	0.903
0.92	0.100	0.099	009	0.996	028	0.063	0.407	0.914	0.918
0.54	0.100	0.099	009	0.996	026	0.064	0.373	0.934	0.938
0.96	0.100	0.099	010	0.995	024	0.066	0.338	0.954	0.960
0.98	0.100	0.099	010	0.995	022	0.068	0.303	0.974	0.982
1.00	0.100	0.099	010	0.995	019	0.070	0.269	0.994	0.999
1.02	0.100	0.099	010	0.995	017	0.071	0.236	1.014	1.018
1.04	0.100	0.099	010	0.995	015	0.073	0.203	1.034	1.037
1.06	0.100	0.099	011	0.994	013	0.075	0.171	1.053	1.056
1.08	0.100	0.099	-,011	0.994	011	0.077	0.141	1.073	1.075
1.10	0.100	0.098	011	0.994	009	0.078	0.110	1.093	1.094
sys v	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.120	0.117	009	0.997	048	0.061	0.619	0.895	0.909
0.92	0.120	0.117	009	0.997	047	0.063	0.602	0.915	0.707
0.94	0.120	0.119	009	0.997	045	0.064	0.575	0.935	0.727
0.96	0.120	0.118	010	0.997	043	0.066	0.546	0.955	0.745
0.98	0.120	0.118	010	0.997	041	0.048	0.517	0.975	0.788
1.00	0.120	0.118	010	0.996	039	0.070	0.487	0.995	1.003
1.02	0.120	0.118	010	0.996	037	0.071	0.457	1.014	1.022
1.04	0.120	0.118	010	0.996	035	0.073	0.427	1.034	1.041
1.06	0.120	0.118	011	0.996	032	0.075	0.397	1.054	1.060
1.08	0.120	0.118	011	0.996	030	0.077	0.367	1.074	1.079
1.10	0.120	0.118	011	0.996	028	0.078	0.337	1.094	1.097
i									

TABLE B-III, cont.

DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE LIGHT LOAD CASE

ORIGINAL PAGE IS OF POOR QUALITY

SYS V	PIN	DSG P	pse a	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.140	0.137	009	0.998	067	0.061	0.741	0.896	0.915
0.92	0.140	0.138	009	0.998	067	0.063	0.728	0.916	0.933
0.94	0.140	0.138	~.009	0.998	იგნ	0.065	0.708	0.936	0.949
0.96	0.140	0.138	010	0.998	063	0.066	0.486	0.956	0.971
0.98	0.140	0.138	010	0.997	060	0.068	0.664	0.975	0.994
1.00	0.140	0.138	010	0.997	058	0.070	0.641	0.995	1,008
1.02	0.140	0.138	010	0.997	056	0.071	0.617	1.015	1.027
1.04	0.140	0.138	010	0.997	054	0.073	0.593	1.035	1.046
1.06	0.140	0.137	-,011	0.997	052	0.075	0.568	1.055	1.064
1.08	0.140	0.137	011	O. 997	050	0.077	0.543	1.075	1.083
1.10	0.140	0.139	011	0.997	049	0.079	0.527	1.095	1.105
SYS V	PIN	pae e	pse a	DSG PF	SYS P	ទYទ ៣	SYS PF	LOAD V	EXCITN
0.90	0.160	0.156	009	0.998	087	0.061	0.817	0.897	0.922
0.92	0.160	0.157	009	0.998	086	0.063	0.807	0.917	0.940
0.94	0.160	0.157	010	0.998	-, 084	0.065	0.792	0.937	0.955
0.96	0.160	0.157	010	0.998	082	0.066	0.776	0.956	0.977
Q.98	0.160	0.157	010	0.998	080	0.068	0.760	0.976	0.995
1.00	0.160	0.157	010	0.998	077	0.070	0.743	0.996	1.014
1.02	0.160	0.157	010	0.778	075	0.072	0.725	1.016	1.032
1.04	0.160	0.157	O11	0.998	073	0.073	0.706	1.036	1.051
1.06	0.160	0.157	011	0.798	071	0.075	0.687	1.056	1.069
1.08	0.160	0.158	O11	0.998	070	0.077	0.674	1.075	1.091
1.10	0.160	0.158	011	0.998	-,068	0.079	0.456	1.095	1.111
SYS V	F IN	DSG P	DSG Q	DSG PF	SYS P	sys Q	SYS PF	LOAD V	EXCITN
0.90	0.180	0.175	009	0.999	106	0.061	0.865	0.898	0.929
0.92	0.180	0.177	009	0.999	105	0.063	0.858	0.918	0.946
0.94	0.180	0.177	010	0.999	103	0.065	0.847	0.937	0.961
0.96	0.180	0.177	010	0.998	101	0.067	0.835	0.957	0.984
0.98	0.180	0.176	010	0.998	099	0.068	0.823	0.977	1.001
1.00	0.180	0.176	010	0.998	097	0.070	0.810	0.997	1.019
1.02	0.180	0.176	010	0.998	094	0.072	0.797	1.017	1.038
1.04	0.180	0.176	011	0.778	092	0.073	0.783	1.036	1.056
1.06	0.180	0.177		0.998		0.075	0.773	1.056	1.077
1.08	0.180			0.998			0.759	1.076	1.096
1.10	0.180	0.178	011	0.998	088	0.079	0.745	1.096	1.116
SYS V	P IN	DSG F	DSG Q	DSG PF	SYS P	sys Q	SYS PF	LOAD V	EXCITN
0.90	0.200	0.195	009	0.999	125	0.042	0.897	0.899	0.936
0.92	0.200	0.196	010	0.999	124	0.063	0.891	0.918	0.953
0.94	0.200	0.196	010	0.799	122	0.065	0.883	0.938	0.972
0.96	0.200	0.196	010	0.999	120	0.067	0.874	0.958	0.991
0.98	0.200	0.196	010	0.999	118	0.048	0.865	0.978	1.008
1.00	0.200	0.195	010	0.999	116	0.070	0.855	0.998	1.025
1.02	0.200	0.195	010	0.999	114	0.072	0.845	1:017	1.043
1.04	0.200	0.197	011	0.999	113	0.074	0.838	1.037	1.060
1.06	0.200	0.197	-,011	0.998	111	0.075	0.827	1.057	1.082
1.08	0.200	0.197	011	0.998	109	0.077	0.817	1.077	1.102
1.10	0.200	0.197	011	0.998	107	0.079	0.806	1,097	1.121

TABLE B-IV

DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE HEAVY LOAD CASE

CONSTANT IMPEDANCE LOAD

ORIGINAL PAGE IS OF POOR QUALITY

F IN 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG, P 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG Q 008 009 009 009 009 009 010 010	DSG PF 0.926 0.923 0.920 0.917 0.914 0.911 0.908 0.905 0.905 0.898 0.895	SYS P 0.522 0.546 0.571 0.597 0.623 0.649 0.676 0.704 0.732 0.760 0.790	SYS 0 0.415 0.433 0.452 0.471 0.491 0.511 0.531 0.552 0.573 0.595 0.617	SYS PF 0.783 0.784 0.785 0.785 0.785 0.786 0.787 0.787 0.787	LOAD V 0.823 0.841 0.860 0.878 0.876 0.915 0.951 0.969 0.988	EXCITN 0.815 0.852 0.870 0.888 0.906 0.924 0.943 0.941 0.979
P IN 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 008 009 009 009 009 009 010 010	DSG PF 0.979 0.979 0.978 0.977 0.975 0.974 0.973 0.972 0.971	SYS P 0.504 0.528 0.553 0.578 0.604 0.631 0.658 0.713 0.713	SYS 0 0.414 0.453 0.453 0.472 0.472 0.532 0.553 0.574 0.574 0.618	SYS PF 0.771 0.772 0.773 0.774 0.775 0.776 0.777 0.778 0.779 0.780	LOAD V 0.824 0.842 0.861 0.879 0.897 0.915 0.952 0.950 0.988 1.007	EXCITN 0.820 0.838 0.854 0.874 0.892 0.910 0.928 0.946 0.965 0.983
P IN 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG P 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG 0 008 009 009 009 009 010 010 010	DSG PF 0.991 0.990 0.989 0.989 0.988 0.988 0.988 0.987	SYS P 0.485 0.509 0.534 0.560 0.586 0.612 0.639 0.647 0.752	SYS Q 0.417 0.435 0.454 0.473 0.513 0.533 0.554 0.575 0.619	SYS PF 0.759 0.760 0.762 0.764 0.765 0.766 0.769 0.770	LOAD V 0.825 0.843 0.862 0.880 0.898 0.916 0.935 0.953 0.971 0.989 1.008	EXCITN 0.825 0.843 0.860 0.878 0.896 0.914 0.932 0.950 0.768 0.987
P IN 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG F 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079	DSG G 008 009 009 009 009 010 010 010	DSG FF 0.995 0.994 0.994 0.994 0.993 0.993 0.993 0.993 0.992 0.992 B-17	SYS P 0.467 0.491 0.516 0.541 0.567 0.621 0.648 0.676 0.705	SYS 0 0.418 0.436 0.455 0.474 0.494 0.514 0.555 0.576 0.598 0.620	SYS PF 0.745 0.748 0.750 0.752 0.754 0.756 0.759 0.759 0.761 0.762	LOAD V 0.826 0.844 0.863 0.881 0.899 0.917 0.935 0.954 0.972 0.990	EXCITN 0.830 0.848 0.866 0.884 0.901 0.917 0.937 0.955 0.973
	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.040	0.020	0.020	0.020	0.020	0.020	0.020	0.020

TABLE B-IV, cont.

DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE HEAVY LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

SYS V	FIN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.100	0.099	008	0.996	0.449	0.419	0.731		
0.92	0.100	0.099	009					0.827	0.837
				0.996	0.473	0.437	0.734	0.845	0.854
0.94	0.100	0.099	009	0.996	0.498	0.456	0.737	0.863	0.871
0.96	0.100	0.079	009	0.996	0.523	0.475	0.740	0.882	0.889
0.98	0.100	0.099	009	0.996	0.549	0.495	0.743	0.900	0.907
1.00	0.100	0.099	009	0.996	0.575	0.515	0.745	0.918	0.924
1.02	0.100	0.099	009	0.795	0.602	0.535	0.747	0.936	0.942
1.04	0.100	0.099	010	0.995	0.630	0.556	0.750	0.754	0.960
1.06	0.100	0.099	-,010	0.995					
					0.458	0.577	0.752	0.973	0.977
1.08	0.100	0.099	010	0.995	0.486	0.577	0.753	0.991	0.995
1.10	0.100	0.099	010	0.995	0.716	0.621	0.755	1.009	1.013
SYS V	F IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.120	O.118	008	0.997	0.430	0.420	0.716	0.828	0.843
0.92	0.120	0.118	009	0.997	0.455	0.438	0.720	0.846	0.861
0.94	0.120	0.118	009	0.997	0.479	0.457	0.724	O.864	0.878
0.96	0.120	0.118	007	0.997	0.505	0.476			
0.78	0.120	0.118					0.727	0.882	0.895
			009	0.997	0.53i	0.496	0.731	0.901	0.913
1.00	0.120	0.118	009	0.997	0.557	0.516	0.734	0.919	0.930
1.02	0.120	0.118	009	0.997	0.584	O. 536	0.737	0.937	0.947
1.04	0.120	0.119	010	0.997	0.611	0.557	0.739	0.955	0.965
1.06	0.120	0.119	010	0.997	0.640	O.578	0.742	0.973	0.983
1.08	0.120	0.119	010	0.996	0.668	0.600	0.744	0.992	1.000
1.10	0.120	0.119	010	0.996	0.697	0.622	0.746	1.010	
			F 151 ± 157	ψ. / / G	Waltery /	بته بند ته	V4 / 40	T # 2/ T 2/	1.018
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.140	0.137	009	0.998	0.412				
0.72						0.421	0.700	0.829	0.851
	0.140	0.137	009	0.998	0.437	0.439	0.705	0.847	0.848
0.94	0.140	0.138	009	0.998	0.461	0.458	0.710	0.865	0.885
0.96	0.140	0.138	009	0.998	0.487	0.477	0.714	0.883	0.902
0.98	0.140	0.138	009	0.998	0.512	0.497	0.718	0.902	0.919
1.00	0.140	0.138	009	0.998	0.539	0.517	0.722	0.920	0.936
1.02	0.140	0.138	010	0.998	0.566	0.537	0.725	0.938	0.953
1.04	0.140	0.138	010	0.998	0.593	0.558	0.728	0.956	0.970
1.06	0.140	0.138	010	0.997	0.621				
1.08	0.140	0.138				0.579	0.731	0.974	0.988
			010	0.997	0.450	0.601	0.734	0.992	1.005
1.10	0.140	0.138	010	0.997	0.679	0.623	,0.737	1.011	1.023
SYS V	F IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.160	0.157	009	0.999	0.393				
0.92	0.160	0.157	009	0.998	0.418	0.422	0.682	0.830	0.859
0.94	0.160	0.157				0.440	0.689	0.848	0.874
0.96	0.160		009	0.998	0.443	0.459	0.694	0.866	0.893
		0.157	009	0.998	0.468	0.478	0.700	0.884	0.907
0.98	0.160	0.157	009	0.998	0.494	0.498	0.705	0.902	0.929
1.00	0.160	0.157	009	0.998	0.521	0.518	0.709	0.921	0.943
1.02	0.160	0.157	010	0.998	0.548	0.538	0.714	0.739	0.959
1.04	0.160	0.157	010	0.998	0.576	0.559	0.717	0.957	
1.06	0.160	0.157	010	0.998	0.604				0.976
1.08	0.160	0.157	010	0.978		0.580	0.721	0.975	0.992
1.10	0.160	0.158			0.633	0.602	0.724	0.993	1.009
کمر دی ۱۹۵۱ کا	era # CD	たってつむ	010	0.998	0.661	0.624	0.727	1.011	1.030

TABLE B-IV, cont

ORIGINAL PAGE EU OF POOR QUALITY DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE HEAVY LOAD CASE

									. •
Y SYE	PIN	DSG P	DSG O	DSG PF	SYS P	BYS Q	SYS PF	LOAD V	EXCITN
0.90	0.180	0.176	. 009	0.999	0.376	0.423	0.665	0.831	0.867
0.92	0.180	0.176	009	0.999	0.401	0.441	0.672	0.849	0.882
0.94	0.180	0.176	009	0.999	0.425	0.460	0.678	0.867	0,900
0.96	0.180	0.176	009	0.999	0.450	0.479	0.485	0.885	0.915
0.98	0.180	0.176	009	0.999	0.476	0.499	0.691	0.903	0.956
1.00	0.180	0.176	009	0.999	0.503	0.519	0.696	0.721	0.950
1.02	0.180	0.176	010	0.978	0.530	0.539	0.701	0.939	0.966
1.04	0.180	0.176	010	0.778	0.558	0.560	0.706	0.757	0.982
1.06	0.180	0.176	010	0.998	0.586	0.581			
1.08							0.710	0.976	0.998
1,10	0.180	0.177	~.010	0.998	0.613	0.403	0.713	0.994	1.018
1,10	0.180	0.177	010	Q.99B	0.642	0.625	0.717	1.012	1.036
SYS V	PIN	DSG P	nsg a	DSG PF	sys p	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.200	0.195	009	0.999	0.358	0.424	0.646	0.832	0.873
0.92	0.200	0.195	009	0.999	0.383	0.442	0.654	0.850	0.891
0.94	0.200	0.196	- 009	0.999	0.407	0.461	0.662	0.888	0.908
0.76	0.200	0.195	009	0,799	0.432	0.480	0.662	0.884	0.700
0.98	0.200	0.175	009	0.999					
1.00		0.195			0.459	0.500	0.676	0.904	0.944
	0.200		010	0.999	0.485	0.520	0.682	0.922	0.957
1.02	0.200	0.195	~.010	0.799	0.512	0.540	0.488	0.940	0.972
1.04	0.200	0.195	010	0.999	0.540	0.561	0.693	0.958	0.988
1.06	0.200	0.196	010	0.999	0.567	0.582	0.698	0.977	1003
1,08	0.200	0.196	010	0.999	0.575	0.604	0.702	0.995	1.025
1.10	0.200	0.197	010	0.777	0.624	0.626	0.706	1.013	1.042
REALIS	TIC LOAD	REPRESE	ENTATION						
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	SYS O	SYS PF	LOAD V	EXCITN
0.90	0.020	0.020	008	0.930	0.590	0.466	0.785	0.812	0.804
0.92	0.020	0.019	008	0.917	0.610	0.480	0.786	0.831	0.826
0.94	0.020	0.020	008	0.919	0.629	0.495	0.786	0.851	0.847
0.96	0.020	0.019	009	0.912	0.649	0.507	0.786		
0.98	0.020	0.019	- 009	0.911	0.668	0.524	0.787	0.870	0.864
1.00	0.020	0.020	009	0.909	0.687			0.890	0.883
1.02	0.020	0.020	009	0.707		0.539	0.787	0.909	0.902
1.04	0.020	0.020	007 009		0.707	0.554	0.787	0.929	0.923
1.06	0.020	0.020		0.907	0.726	0.569	0.787	0.948	0.937
1.08			010	0.905	0.746	0.584	0.787	0.967	0.960
	0.020	0.021	010	0.904	0.766	0.600	0.787	0.987	0.980
1.10	0.020	0.021	010	0.902	0.786	0.615	0.787	1.006	1.000
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	sys Q	eve ee	t man u	· ことでませい
0.90	0.040	0.040	008	0.980			SYS PF	LOAD V	EXCITN
0.92	0.040	0.040		0.988	0.571	0.467	0.774	0.813	0.809
0.74			008 008		0.591	0.481	0.776	0.833	0.830
	0.040	0.039	008	0.977	0.611	0.496	0.776	0.852	0.849
0.96	0.040	0.039	009	0.976	0.630	0.510	0.777	0.871	0.868
0.98	0.040	0.039	009	0.976	0.649	0.525	0.777	O.891	0.887
1.00	0.040	0.040	009	0.975	0.668	0.540	0.778	0.710	0.906
1.02	0.040	0.040	OO9	0,974	0.688	0.555	0.778	0.929	0.926
1.04	0.040	0.040	009	0.974	0.707	0.570-	0.779	0.949	0.941
1.06	0.040	0.040	010	0.973	0.727	0.585	0.779	0.768	0.964
1.08	0.040	0.040	010	0.972	0.747	0.600	0.779	0.788	0.983
1.10	0.040	0.041	010	0.971	0.767	0.616	0.780	1.007	1.003
							. •	•	

TABLL R-IV, cont.

DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE HEAVY LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

							• • •		
SYS V 0.90 0.92 0.94	P IN 0.060 0.060 0.060	DSG P 0.060 0.059 0.059	DSG Q 008 009	DSG PF 0.991 0.990	SYS P 0.553 0.573	SYS 0 0.468 0.482	9YS PF 0.764 0.765	LOAD V 0.814 0.834	EXCITN 0.814 0.835
0.94 0.96 0.98	0.060 0.060	0.059 0.059 0.059	009 009 009	0.990 0.989 0.989	0.592 0.611 0.630	0.496 0.511 0.526	0.766 0.767	0.853 0.872	0.854 0.872
1.00	0.040 0.060	0.059 0.060	009 009	0.988 0.988	0.649	0.541 0.554	0.768 0.768 0.769	0.892 0.911 0.930	0.891 0.916 0.930
1.04	0.060	0.060 0.060	009 010	0.988 0.987	0.488 0.708	0.571 0.584	0.770 0.771	0.950 0.969	0.946 0.968
1.08 1.10	0.060 0.060	0.060	010 010	0.987 0.986	0.728 0.748	0.601 0.616	0.771 0.772	0.989 1.008	0.987 1.007
SYS V 0.90	P IN 0.080	DSG P 0.079	DSG Q 008	DSG PF 0.995	SYS P 0.534	SYS () 0.468	SYS PF 0.752	LOAD V	EXCITN
0.92 0.94	0.080 0.080	0.079 0.079	008 009	0.794 0.794	0.554 0.573	0.483 0.497	0.754 0.755	0.835 0.854	0.820 0.840 0.859
0.96 0.98	0.080	0.079 0.079	009 009	0.994 0.994	0.592 0.611	0.512 0.527	0.756 0.758	0.873 0.893	0.878 0.896
1.00 1.02 1.04	0.080 0.080 0.080	0.079 0.079 0.080	009 009	0.993	0.631 0.650	0.541 0.556	0.759 0.760	0.912 0.931	0.918 0.934
1.06	0.080 0.080	0.080	010 010 010	0.993 0.993 0.992	0.670 0.689 0.709	0.571 0.586 0.602	0.761 0.762 0.763	0.951 0.970	0.950 0.972
1.10	0.080	0.080	010	0.992	0.729	0.617	0.763	0.989 1.009	0.991 1.011
8Y8 V 0.90	F IN 0.100	DSG P 0.099	DSG Q 008	DSG PF 0.997	SYS P 0.516	SYS 0 0.469	SYS PF	LOAD V	EXCITN
0.92 0.94	0.100 0.100	0.098 0.098	008 009	0.996 0.996	0.535 0.554	0.484 0.498	0.740 0.742 0.744	0.816 0.836 0.855	0.823 0.844 0.845
0.98 0.98	0.100	0.098 0.099	009 009	0.996 0.996	0.573 0.592	0.513 0.527	0.745 0.747	0.874 0.894	0.883 0.902
1.00 1.02 1.04	0.100 0.100 0.100	0.099 0.099 0.099	009 009	0.996 0.996	0.612 0.631	0.542 0.557	0.748 0.750	0.913 0.932	0.923 0.939
1.06	0.100	0.099 0.099	010 010 010	0.995 0.995 0.995	0.651 0.671 0.691	0.572 0.587 0.602	0.751 0.752	0.952 0.971	0.956 0.977
1.10	0.100	0.100	010	0.995	0.711	0.602	0.754 0.755	0.990 1.010	0.996 1.015
SYS V 0.90	P IN 0.120	DSG P 0.119	DSG 0 008	DSG PF 0.998	SYS F	SYS 0 0.470	SYS PF	LOAD V	EXCITN
0.92 0.94	0.120 0.120	0.118 0.118	009 009	0.997 0.997	0.517 0.536	0.470 0.484 0.499	0.726 0.730 0.732	0.817 0.837 0.856	0.833 0.854
0.96 0.93	0.120 0.120	0.118 0.118	009 009	0.997 0.997	0.555 0.574	0.513 0.528	0.734 0.736	0.875 0.894	0.871 0.889 0.910
1.00 1.02 1.04	0.120	0.118	009 009	0.997 0.997	0.593 0.613	0.543 0.558	0.738 0.739	0.914 0.933	0.928 0.945
1.04	0.120 0.120 0.120	0.119 0.119 0.119	010 010 010	0.997 0.997 0.996	0.632 0.652	0.573 0.588	0.741	0.952	0.962 0.978 ·
1.10	0.120	0.119	010	0.776	0.672 0.692	0.603 0.618	0.744 0.746	0.991 1.011	1.001

ORIGINAL PAGE 19 OF POOR QUALITY

DATA FOR SYNCHRONOUS MACHINE, CONSTANT REACTIVE HEAVY LOAD CASE

SYS \	/ PIN	DSG P	DSG Q	DSG PF	SYS P	eve o	233.473 Proper	t tenanen in	
Q.90	0.140	0.138	008		0.479	SYS Q	SYS PF		
0.92	0.140	0.137	009		0.478	0.471	0.713	0.818	0.841
0.94	0.140	0.137	009			0.485	0.716	0.838	0.862
0.96	0.140	0.137	009	*	0.517	0.500	0.719	0.857	0.878
0.98	0.140	0.138			0.536	0.514	0.722	0.876	0.898
1.00	0.140		009		0.555	0.529	0.724	0.675	0.915
		0.138	009		0.575	0.544	0.726	0.915	0.933
1.02	0.140	0.138	010	0.998	0,594	0.559	0.729	0.934	0.950
1.04	0.140	0.138	010		0.614	0.574	0.731	0.953	0.968
1.06	0.140	0.138	010	0.997	0.633	0.589	0.733	0.973	0.985
1.08	0.140	0.138	010	0.997	0.453	0.604	0.734	0.992	1.002
1.10	0.140	0.138	010	0.997	0.673	0.619	0.736	1.011	1.025
								*****	* * 1242.01
SYS V	PIN	nee e	D. C. C. C.	T					
0.90	0.160	DSG P	DSG Q	DSG PF	SYS P	sys Q	SYS PF	LOAD V	EXCITN
0.70		0.157	008	0.999	0.461	0.472	0.699	0.819	0.849
	0.160	0.157	009	0.998	0.479	0.486	0.702	0.839	0.870
0.94	0.160	0.157	009	0.778	0.499	0.500	0.706	0.858	0.882
0.96	0.160	0.157	009	O.998	0.518	0.515	0.709	0.877	0.903
Ð.98	0.160	0.157	~. 009	0.998	0.537	0.530	0.712	0.896	0.922
1,00	0.160	0.157	OO9	0.998	0.557	0.544	0.715	0.916	0.722
1.02	0.160	0.156	010	0.998	0.577	0.559	0.718	0.935	
1.04	0.160	0.157	010	0.998	0.595	0.574	0.720		0.957
106	0.160	0.157	010	0.998	0.616	0.589		0.954	0.973
1.08	0.160	0.158	010	0.998	0.635		0.723	0.973	0.992
1.10	0.140	0.157	010	0.998	0.656	0.405	0.724	0.993	1.012
			N 18' 64 12'	9177G	7.000	0.620	0.727	1.012	1.030
SYS V	E 761	Tr. 244 Au							
	PIN	DSG F	DSG Q	DSG PF	SYS P	SYS G	SYS PF	LOAD V	EXCITN
0.90	0.180	0.176	-,009	O.999	0.443	0.472	0.484	0.820	0.858
0.92	0.180	0.176	009	0.999	0.461	0.487	0.488	0.839	0.875
0.94	0.180	0.176	009	0,999	0.480	0.501	0.692	0.859	0.890
0.96	0.180	0.176	009	0.999	0.499	0.516	0.696	0.878	0.908
0.98	0.180	0.177	009	0.999	0.518	0.530	0.699	0.897	
1.00	0.180	0.176	009	0.999	0.538	0.545	0.702		0.929
1.02	0.180	0.177	010	0.999	0.557	0.560	0.702	0.916	0.945
1.04	0.180	0.177	010	0.778	0.577	0.575		0.936	0.963
1.06	0.180	0.177	010	0.798	0.597		0.708	0.955	0.981
1.03	0.180	0.177	010	0.998	0.617	0.590	0.711	0.974	0.998
1.10	0.180	0.176	010	0.778		0.605	0.714	0.994	1.014
			44 . M. 17 . P	0.776	0.637	0.620	0.716	1.013	1.036
C) / C . I .	pare, sas d. s								
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0,200	0.195	009	0.999	0.425	0.473	0.668	0.821	
0.92	0.200	0.195	009	0.999	0.443	0.487	0.673	0.840	0.867
0.94	0.200	0.195	009	0.999	0.462	0.502	0.677		0.884
0.96	0.200	0.195	007	0.999	0.481			0.860	0.901
0.78	0.200	0.195	-,009	0.999	0.500	0.516	0.482	0.879	0.914
1.00	0.200	0.195	010	0.999		0.531	0.686	0.898	0.933
1.02	0.200	0.196	010	0.777	0.520	0.546	0.690	0.917	0.952
1.04	0.200	0.197	010		0.539	0.561	0.693	0.937	0.970
1.06	0,200	0.196	010	0.999	0.558	0.576	0.696	0.956	0.988
1.08	0.200	0.176		0.999	0.578	0.591	0.700	0.975	1.008
1.10	0.200	0.176 0.197	010	0.999	0.598	0.606	0.702	0.994	1.021
•• # ± 1±/	W C SELVIN	U. 17/	010	0.999	0.618	0.621	0.705	1.014	1.042

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION LIGHT LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

CONSTANT IMPEDANCE LOAD

V ave	F IN	DSG P	DSG 0	DSG PF	SYS F	SYS Q	SYS FF	LOAD V	DEL TA
0,90	0.020	0.018	0.118	0.152	0.047	069			
							0.566	0.905	0.39
0.92	0.020	0.019	0.104	0.177	0.050	053	0.485	0.923	0,49
0, 74	Q#Q20	0.019	O. Q89	0.209	0.052	036	O.824	0.942	0.69
U. 965	0.050	0.019	Q#073	0.255	0.054	018	0.949	9.960	0.69
Q. 9B	0.050	Q., Q2O	0.057	0,325	0.057	0.000	1,000	0.978	0.78
1,00	0.020	0.02G	0.040	0.442	0.060	0.019	0.951	0.996	0.87
1.02	0.020	0.020	0.023	0.661	0.042	0.039	0.847	1.014	0.96
1.04	0.020	0.020	0.004	0.977	0.045	0.059	0.739	1.032	1.04
1.06	0.020	0.020	014	0.809	0.068	0.081	0.646	1.050	1.12
1.03	0.020	0.020	034	o.5os	0.071	0.102	0.572		
1,10	0.020	0.020	054					1.068	1.20
T 11 T . 1	A nie nanestas	Charleton	# (7/4-1-4)	0.342	0.075	0.125	0.513	1.086	1.28
SYS V	PIN	DSG P	DSG 0	DSG PF	SYS P	SYS O	SYS PF	LOAD V	DELTA
0.90	0.040	0.038	0.115	0.314	0.028	066	0.384	0.906	1.62
0.92	0.040	0.037	0.101	0.357	0.030	050	0.513	0.924	1.70
0.94	0.040	0.039	0.086						
				0.413	0.032	033	0.699	0.942	1.78
0.96	0.040	0.039	0.070	0.487	0.034	O15	0.917	0.960	1.85
0.98	0.040	0.040	0.054	0.590	0.037	0.003	0.996	0.978	1.92
1 - 00	0.040	0.040	0.037	0.730	0.040	0.022	0.871	0.996	1. , 77
1.02	0.040	0.040	0.020	0.878	0.043	0.042	0.710	1.014	2.06
1.04	0.040	0.040	0.001	0.999	0.045	0.043	0.587	1.032	2.12
1.06	0.040	0.040	018	0.915	0.048	0.084	0.501	1.050	2.19
1.08	0.040	0,040	037	0.731	0.052	0.106	0.439	1.068	2.24
1.10	0.040	0.040	057	0.569	0.055	0.128	0.394	1.086	2.30
P 10 15 14.	W # W W.		# 4/W/	12 ii 12/12 /	77 H 77 CD CD	Wallacter	0.074	1,1000	الواقيه وابتد
SYS V	P IN	DSG P	DSG Q	DSG PD	SYS P	SYS 0	SYS PF	LOAD V	DELTA
0.90	0.060	0.058	0.112	0.459	0.008	063	0.122	0.907	2.85
0.92	0.060	0.058	0.078	0.513	0.010	047	0.209	0.925	2.91
0.94	0.060	0.059	0.083	0.579	0.012	029			
0.96	0.060						0.384	0.943	2,96
		0.059	0.067	0.461	0.015	012	0.782	0.961	3.01
0.98	0.060	0.059	0.051	0.760	0.017	0.007	0.932	0.979	3,06
1,00	0.060	0.060	0.034	0.867	0,020	0.026	0.612	0.997	3.11
1.02	0.060	0.060	0.016	0.965	0.023	0.046	0.447	1.015	3.16
1.04	0.060	0.060	002	0.999	0.026	0.066	0.362	1.033	3.20
1.06	0.060	0.060	021	0.944	0.029	0.087	0.313	1.051	3,24
1.08	0.060	0.060	-,040	0.827	0.032	0.109	0.280	1.069	3.29
110	0.060	0.059	061	0.700	0.035	0.131	0.258	1.087	3.33
11. 17 .44 .4.	THE RESERVE SALES	THE BETWEEN THE	# 101 (LD 14)	THE RESTRICTOR	12/11/12/22	1,00 M 1,10 1,00 M,	لبالبا عند لا ترا	J. # 14/(J.)	المسادية المسادية
SYS V	PIN	DSG F	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.080	0.078	0.109	0.582	012	-,059	0.198	0.907	4.08
0.92	0.080	0.078	0.094	0.639	010	043	0.222	0.925	4.11
0.94	0.080	0.079	0.079	0,705	007	026	0.277	0.943	4.14
0.96	0.080	0.079	0.063	0.779	005	008	0.527	0.961	4.17
0.78	0.080	0.077	0.047	0.859	003	0.010			
							0.227	0.979	4.20
1.00	0.080	0.079	0.030	0.935	0.000	0.029	0.011	0.997	4.22
1.02	0.080	0.079	0.013	0.788	0.003	0.049	0.063	1.015	4.25
1.04	0.080	0.079	006	0.997	0.006	0.070	0.086	1.033	4.27
1.06	0.080	0.079	025	0.955	0.009	0.091	0.099	1.051	4.30
1.08	0.080	0.079	044	0.873	0.012	0.113	0.108	1.069	4.32
1.10	0.080	0.079	064	0.776	0.015	0.135	0.114	1.087	4.35
				B-22			*	•	•
				D-66					

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION LIGHT LOAD CASE

original page is of poor quality

SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS 0	SYS PF	LOAD V	DELTA
0.90	0.100	0.097	0.105	0.681	- 032	055	0.496	0.907	5.30
0.92	0.100	0.098	0.090	0.735	029	039	0.603	0.725	5.31
0.94	0.100	0.078	0.075	0.794	027	022	0.778	0.723	5.31
0.96	0.100	0.078	0.059	0.856	025	004	0.787	0.743	
0.78	0.100	0.079							5.32
			0.043	0.916	022	0.014	0.836	0.979	5.33
1.00	0.100	0.099	0.025	0.967	019	0.034	0.500	0.997	5.34
1.02	0.100	0.099	0.008	0.996	017	0.053	0.296	1.015	5.35
1.04	0.100	0.099	, O1O	0.995	014	0.074	0.181	1.033	5.35
1.06	0.100	0.099	029	0.961	011	0.095	0.110	1.051	5,35
1.08	0.100	0.099	· 048	0.899	007	0.117	0.063	1.067	5.36
1.10	0.100	0.099	068	0.822	-, 004	0.139	0.030	1.087	5.37
SYS V	' F IN	DSG F	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.120	0.117	0.100	0.759	051	051	0.709		
0.70	0.120	0.118	0.086		049			0.908	4.53
0.94	0.120			0.808 0.857		034	0.818	0.926	6.51
0.74		0.118	0.071		047	017	0.937	0.944	6.50
0.78	0.120	0.118 0.118	0.055	0.906	044	0.000	1.000	0.962	6.48
	0.120		0.039	0.950	042	0.019	0.911	0.980	6.47
1.00	0.120	0.119	0.022	0.984	039	0.038	0.716	0.998	6.45
1.02	0.120	0.119	0.004	0.999	036	0.058	0.531	1.016	6.44
1.04	0.120	0.119	014	0.993	033	6. 178	0.391	1.034	6.43
1.06	0.120	0.119	033	0.963	030	0.099	0.291	1.052	6.42
1.08	0.120	0.119	053	0.914	027	0.121	0.218	1.070	6.40
1.10	0.120	0.118	073	0.852	-,024	0.144	0.163	1,088	6.39
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.140	0.137	0.096	0.819	071	046	0.837	0.908	7.75
0.92	0.140	0.137	0.081	0.860	069	030	0.917	0.926	7.71
0.94	0.14	0.137	0.066	0.901	-,066	013	0.982	0.944	7.67
0.96	0.140	0.138	0.050	0.939	064	0.005	0.997	0.962	7.63
O. 98	0.140	0,138	0.034	0.971	061	0,024	0.933	0.980	7,60
1.00	0.140	0.138	0.017	0.992	058	0.043	0.807	0.998	7.56
1.02	0.140	0.138	-,001	1,000	056	0.062	0.665	1,016	7.53
1.04	0.140	0.138	019	0.991	053	0.083	0.536	1.034	7.50
1.06	0.140	0.138	038	0.965	050	0.104	0.431	1.052	7.47
1.08	0.140	0.138	057	0.924	047	0.126	0.347	1.070	7.44
1.10	0.140	0.138	077	0.872	Õ43	0.149	0.580	1.088	7.41
	<u>.</u>								
SYS V	P IN	DSG P	psg o	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.70	0.160	0.156	0.091	0.865	090	041	0.910	0.908	8.97
0.92	0.160	0.157	0.076	0.899	088	025	0.963	0.926	8.91
0.94	0.160	0.157	0.061	0.932	086	-,008	0.996	0.944	B. 85
0.96	0.160	0.157	0.045	0.961	083	0.010	0.993	0.962	8.75
0.98	0.160	0.157	0.029	0.983	080	0.029	0.942	0.980	8.73
1.00	0.160	0.156	0.012	0.997	078	0.048	0.852	0.998	8.48
1.02	0.160	0.158	~ 006	0.999	075	0.068	0.743	1.016	8.62
1.04	0.160	0.158	024	0.989	072	0.088	0.634	1.034	8.57
1.06	0.160	0.158	043	0.965	069	0.109	0.535	1.052	8.52
1.08	0.160	0.158	062	0.930	0გგ	0.131	0.449	1.070	9.48
1.10	0.160	0.157	082	0.886	063	0.154	0.378	1.088	8.43

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION LIGHT LOAD CASE

				TABLE B-V	7, cont.				
		DATA FO	OR SYNCHRO	NOUS MACHI LIGHT LO	INE, CONSTA ND CASE	ANT EXCITA	AO NOLL	IIGINAL PAG POOR QUA	ae ia
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.180	0.175	0.085	0.900	- 109	036	0.951	0.909	10.19
0.92	0.180	0.176	0.071	0.928	- 107	019	0.984	0.927	10.11
0.94	0.180	0.176	0.056	0.954	105	002	1.000	0.945	10.03
0.96	0,180	0.176	0.040	0.975	102	0.016	0.787	0.963	9.94
0.98	0.180	0.177	0.024	0.991	100	0.034	0.947	0.781	9.86
1.00	0.180	0.177	0.007	0.999	- 097	0.053	0.877	0.998	9.79
1.02	0.180	0.177	011	0.998	-, 094	0.073	0.791	1.016	9.72
1.04	0.180	0.177	029	0.987		0.093	0.700	1.034	9.65
1.06	0.180	0.177	048	0.965	-1088	0.115	0.611	1.052	9.58
1.08	0.180	0.177	048			0.136			9.51
1.10	0.180	0.177	088	0.896	082	0.159	0.459		9.45
									,
SYS V	P IN	DSG P	pse Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.200	0.195	0.079	0.926	129	-,030	0.974	0.909	11,41
0.92	0.200	0.195	0.065	0.949	126	013	0.994	0.927	11.30
0.94	0.200	0.195	0.050	0.969	124	0,004	1.000	0.945	11.19
0.96	0.200	0.196	0.034	0.985	122	0.021	0.785	0.963	11,09
O.98	0.200	0.196	0.018	0.996	119	0.040	0.948	0.981	10.99
1.00	0.200	0.196	0.001	1.000	116	0.059	O.892	0.999	10.90
1.02	0.200	0.196	017	0.996	113	0.079	0.822	1.017	10.81
1.04	0.200	0.196	035	0.985	111	0.099	0.745	1.035	10.73
1,,06	0.200	0.196	O54	0.965	108	0.120	0.667	1.053	10.64
1.08	0.200	0.196	073	0.937	105	0.142	0.593	1.071	10.56
1.10	0.200	0.196	~.093	0.903	101	0.164	O. 524	1.088	10.48
REALIS	TIC LOAI) REPRESE	ENTATION						
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS F	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.020	0.018		0.151	0.052	-,066	0.620	0,905	0.38
0.92	0.020	0.019	0.104	0.176	0.053	-,050	0.729	0.923	0.49
	0.020			0.208	0.055	034	0.852	0.941	
0.96	0.020	0.019	0.073	0.254	0.056	017	0.959	0.959	0.69
0.98	0.020	0.020	0.057	0.324	0.058	0.001	1.000	0.977	0.78
1.00	0.020	0.020	0.040	0.442	0.060	0.020	0.951	0.996	0.87
1.02	0.020	0.020	0.022	0.662	0.062	0.039	0.847	1.014	0.96
1.04	0.020	0.020	0.004	0.979	0.063	0.058	0.736	1.032	1.04
1.04	0.020	0.020	015	0.803	0.065	0.079	0.639	1.050	1.12
1.08	0.020	0.020	034	0.500	0.067	0.100	0.559	1.068	1.20
1.10	0.020	0.020	055	0.339	0.069	0.121	ዕ. 496	1.086	1.28
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS F	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.040	0.038	0.116	0.313	0.032	063	0.455	0.905	1.62
0.92	0.040	0.039	0.101	0.356	0.034	047	0.579	0.924	1.70
0.94	0.040	0.039	0.086	0.411	0.035	031	0.751	0.942	1.78
0.96	0.040	0.039	0.071	0.486	0.037	014	0.937	0.960	1.85
0.98	0.040	0.039	0.054	0.589	0.038	0.004	0.994	0.978	1.92
1.00	0.040	0.040	0.037	0.730	0.040	0.023	0.871	0.996	1.99
1.02	0.040	0.040	0.019	0.878	0.042	0.042	0.708	1.014	2.06
1.04	0.040	0.040	0.001	1.000	0.044	0.061	0.579	1.032	2.12
1.06	0.040	0.040	018	0.912	0.045	0.082	0.486	1.050	2.19
1.08	0.040	0.040	O37	0.727	0.047	0.103	0.415	1.069	2.25
1.10	0.040	0.040	058	0.545	0.050	0.125	0.370	1.087	2.30
				B-24					

ORIGINAL PAGE IS OF POOR QUALITY

	OOK ONN	LIIY							
9 SYS 0.9: 0.9: 0.9: 0.9: 1.00: 1.00: 1.00: 1.00:	0.06 2 0.06 4 0.06 6 0.06 6 0.06 7 0.06 7 0.06 7 0.06 7 0.06 7 0.06 7 0.06	0.058 0.058 0.059 0.059 0.059 0.059 0.060 0.060 0.060	0.113 0.098 0.083 0.067 0.051 0.034 0.016	0.456 0.512 0.576 0.460 0.759 0.869 0.965	0.013 0.014 0.015 0.017 0.016 0.020 0.022 0.024	2060 4044 5026 7010 8 0.007 9 0.024 9 0.045 9 0.085 9 0.106	0.202 0.298 0.485 0.851 0.927 0.614 0.438 0.344 0.289	0.906 0.924 0.942 0.960	V DELTA 2.85 2.91 2.96 3.01 3.06 3.11 3.16 3.20 3.24 3.29 3.33
SYS 0.90 0.92 0.94 0.96 1.00 1.02 1.04 1.06 1.08	0, 080 0, 080	0.078 0.078 0.079 0.079	DSG Q 0.109 0.095 0.079 0.064 0.047 0.030 0.012 006 025 045	DSG PF 0.581 0.637 0.703 0.778 0.859 0.934 0.988 0.997 0.954 0.871	SYS P 007 004 003 001 0.001 0.002 0.004 0.006 0.008	SYS Q 056 040 024 007 0.011 0.030 0.049 0.069 0.089 0.110 0.132	SYS PF 0.130 0.146 0.185 0.400 0.115 0.017 0.047 0.060 0.068 0.073	LOAD V 0.906 0.925 0.943 0.961 0.979 0.997 1.015 1.051 1.069 1.087	DELTA 4.08 4.11 4.17 4.17 4.20 4.22 4.25 4.30 4.30 4.35
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG P 0.097 0.098 0.098 0.099 0.099 0.099 0.099 0.099	DSG Q 0.105 0.071 0.075 0.060 0.043 0.024 0.008 010 029 049	DSG PF 0.480 0.734 0.793 0.855 0.916 0.967 0.995 0.960 0.897	SYS P 027 026 024 022 021 019 017 016 014 012	SYS Q 052 036 020 003 0.015 0.034 0.053 0.073 0.073 0.114 0.136	SYS PF 0.459 0.576 0.771 0.993 0.809 0.496 0.313 0.209 0.144 0.100 0.070	LOAD V 0.907 0.925 0.943 0.961 0.979 0.997 1.015 1.052 1.052	DELTA 5.30 5.31 5.32 5.33 5.35 5.35 5.35 5.37
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.08 1.10	P IN 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	0.119 0.119 0.119 0.119	0.101 0.086 0.071 0.055 0.039 0.022 0.004 014 033	0.913	SYS P 047 045 044 042 041 039 037 035 033	SYS Q 048 032 015 0.002 0.020 0.038 0.057 0.057 0.097 0.119 0.140	0.817 0.943 0.979 0.901 0.714 0.544 0.415 0.323 0.254	LOAD V 0.907 0.925 0.943 0.962 0.980 0.998 1.016 1.034 1.052 1.070 1.088	DELTA 6.51 6.50 6.47 6.45 6.43 6.42 6.40 6.39
1				5 0-					

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION LIGHT LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

(**** 13	records a	#3#\$() #9	T > 25 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	73.555 PSP4	255.225 FG	C33.463 C3	emala diema i arregioni	1 (20)	15 CT T A
SYS V	P IN	DSG P	DSG Q	DSG FF	SYS F	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.140	0.137	0.096	0.818	066	043	0.837	0.908	7.75
0.92	0.140	0.137	0.082	0.859	065	027	0.922	0.926	7.71
0.94	0.140	0.137	0.066	0.900	063	011	0.986	0.944	7.67
0.96	0.140	0.138	0.051	0.939	062	0,006	0.995	0.962	7.63
0.98	0.140	0.138	0.034	0.971	060	0.024	0.927	0.980	7.60
1.00	0.140	0.138	0.017	0.992	-··. 058	0.043	0.806	0.998	7.56
1.02	0.140	0.138	· 001	1.000	· 056	0.062	0.674	1.016	7.53
1.04	0.140	0.138		0.991					
			019		055	0.082	0.556	1.034	7.50
1.06	0.140	0.138	038	O.964	053	0.102	0.459	1.052	7.47
1.08	Q.14Q	0.138	OS8	0.923	051	0.123	0.381	1.070	7.44
1.10	0.140	0.138	078	0.870	049	0.145	0.318	1.038	7.41
, ,									
(***) (***	75 Y 61	*** *** *** ***	thenen on	Page 2007 Taris	AMAN A AMAN A MIN	****			
SYS V	6 IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.160	0.156	0.091	0.864	- , 086	o38	0.914	0.908	8.97
0.92	0.160	0.156	0.076	O.878	084	022	0.967	0.926	8.91
0.94	0.140	0.157	0.061	0.931	083	006	0.998	0.944	8.85
0.96	0.160	0.157	0.046	0.960	081	0.011	0.990	0.962	8,79
0.78	0.160	0.157	0.029	0.983	079	0.029	0.938	0.980	8.73
L. 00	0.160	0.158	0.012	0.997	078	0.048	0.852	0.998	8.68
1.02	0.160	0.158	-,006	0.799	076	0.067	0.750	1.016	8.62
1.04	0.160	0.158	-,024	0.989	074	0,087	0.649	1.034	,ma, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.05	0.140	O. 158	-,045	0.965	072	0.107	0.558	1.052	8.52
1.08	0.160	0.158	-,063	0.929	070	0.128	0.479	1.071	8.48
1.10	0.160	0.157	-,083	0.884	-,048	0.150	0.413	1.099	8.43
									,
SYS 9	F: IM	DSG P	DSG Ø	nse ee	SVS P	svs o	SYS PE	J MAD V	DELTA
SYS 9	F IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.70	V 430	0.175	0.086	0.899	tos	033	0.955	0.908	10.19
0.90 0.90	0.130 6.130	0.175 0.176	0.086 0.071	0.899 0.927	105 103	033 017	0.955 0.987	0.908 0.926	10.19 10.10
0,90 0.90 0.94	0.130 0.130 0.180	0.175 0.176 0.176	0.086	0.899	tos	033	0.955	0.908	10.19
0.90 0.90	0.130 6.130	0.175 0.176	0.086 0.071	0.899 0.927	105 103	033 017 000	0.955 0.987 1.000	0.908 0.926 0.944	10.19 (10.10 10.03
0.90 0.90 0.94 0.96	0.130 0.130 0.180 0.130	0.175 0.176 0.176 0.176	0.086 0.071 0.056 0.040	0.899 0.927 0.953 0.975	105 103 102 100	033 017 000 0.017	0.955 0.987 1.000 0.984	0.908 0.926 0.944 0.962	10.19 10.10 10.03 9.94
0.90 0.90 0.94 0.96 0.98	0.130 0.130 0.130 0.130	0.175 0.176 0.176 0.176 0.177	0.086 0.071 0.056 0.040 0.024	0.899 0.927 0.953 0.975 0.991	105 103 102 100 099	033 017 000 0.017 0.035	0.955 0.987 1.000 0.984 0.943	0.908 0.926 0.944 0.962 0.980	10.19 10.10 10.03 9.94 9.86
0.70 0.90 0.94 0.96 0.98 1.00	0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.176 0.177 0.177	0.086 0.071 0.056 0.040 0.024 0.007	0.899 0.927 0.953 0.975 0.991 0.999	105 103 102 100 099 097	033 017 000 0.017 0.035 0.053	0.955 0.987 1.000 0.984 0.943 0.877	0.908 0.926 0.944 0.962 0.980 0.998	10.19 10.10 10.03 9.94 9.86 9.79
0.90 0.90 0.94 0.96 0.98 1.00	0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.176 0.177 0.177	0.086 0.071 0.056 0.040 0.024 0.007 011	0.899 0.927 0.953 0.975 0.991 0.999	105 103 102 100 099 097 095	033 017 000 0.017 0.035 0.053 0.072	0.955 0.987 1.000 0.986 0.943 0.877 0.797	0.908 0.926 0.944 0.962 0.980 0.998	10.19 10.10 10.05 9.94 9.86 9.79 9.72
0.90 0.94 0.96 0.98 1.00 1.02 1.04	0.180 0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.176 0.177 0.177 0.177	0.086 0.071 0.056 0.040 0.024 0.007 011	0.899 0.927 0.953 0.975 0.991 0.999 0.998	105 103 102 100 099 097 095 093	033 017 000 0.017 0.035 0.053 0.072	0.955 0.987 1.000 0.984 0.943 0.877	0.908 0.926 0.944 0.962 0.980 0.998	10.19 10.10 10.03 9.94 9.86 9.79
0.90 0.90 0.94 0.96 0.98 1.00	0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.176 0.177 0.177	0.086 0.071 0.056 0.040 0.024 0.007 011	0.899 0.927 0.953 0.975 0.991 0.999	105 103 102 100 099 097 095	033 017 000 0.017 0.035 0.053 0.072	0.955 0.987 1.000 0.986 0.943 0.877 0.797	0.908 0.926 0.944 0.962 0.980 0.998	10.19 10.10 10.05 9.94 9.86 9.79 9.72
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06	0.180 0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.176 0.177 0.177 0.177 0.177	0.086 0.071 0.054 0.040 0.024 0.007 011 029	0.899 0.927 0.953 0.975 0.991 0.999 0.987 0.987	105103102100099097095093091	033 017 000 0.017 0.035 0.053 0.072 0.072	0.955 0.987 1.000 0.984 0.943 0.877 0.797 0.712	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035	10.19 10.10 10.03 9.94 9.86 9.79 9.72 9.45 9.58
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.04	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.176 0.177 0.177 0.177 0.177 0.177	0.086 0.071 0.056 0.040 0.024 0.007 011 029 048	0.899 0.927 0.953 0.975 0.991 0.999 0.987 0.985	105102100099097095093091089	033 017 000 0.017 0.035 0.053 0.072 0.072 0.113 0.134	0.955 0.987 1.000 0.984 0.943 0.877 0.797 0.712 0.631 0.556	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053	10.19 10.10 10.03 9.94 9.86 9.79 9.72 9.45 9.51
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06	0.180 0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.176 0.177 0.177 0.177 0.177	0.086 0.071 0.054 0.040 0.024 0.007 011 029	0.899 0.927 0.953 0.975 0.991 0.999 0.987 0.987	105103102100099097095093091	033 017 000 0.017 0.035 0.053 0.072 0.072	0.955 0.987 1.000 0.984 0.943 0.877 0.797 0.712	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035	10.19 10.10 10.03 9.94 9.86 9.79 9.72 9.45 9.58
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.04	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.176 0.177 0.177 0.177 0.177 0.177	0.086 0.071 0.056 0.040 0.024 0.007 011 029 048	0.899 0.927 0.953 0.975 0.991 0.999 0.987 0.985	105102100099097095093091089	033 017 000 0.017 0.035 0.053 0.072 0.072 0.113 0.134	0.955 0.987 1.000 0.984 0.943 0.877 0.797 0.712 0.631 0.556	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053	10.19 10.10 10.03 9.94 9.86 9.79 9.72 9.45 9.51
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.177 0.177 0.177 0.177 0.177 0.177	0.086 0.071 0.056 0.040 0.024 0.007 011 029 048 088	0.899 0.927 0.953 0.975 0.999 0.998 0.987 0.965 0.933	105103102100099097095091089087	033 017 000 0.017 0.035 0.053 0.072 0.072 0.113 0.134 0.155	0.955 0.987 1.000 0.984 0.943 0.877 0.797 0.712 0.631 0.556 0.490	0.908 0.926 0.944 0.942 0.980 0.998 1.017 1.035 1.053	10.19 10.10 10.03 9.94 9.79 9.72 9.45 9.551 9.45
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	O.175 O.176 O.176 O.177 O.177 O.177 O.177 O.177 O.177	0.086 0.071 0.056 0.040 0.024 0.007 011 029 048 068	O.899 O.927 O.953 O.975 O.999 O.998 O.987 O.965 O.933 O.894	105 103 100 099 097 095 091 089 087	033 017 000 0.017 0.035 0.053 0.072 0.072 0.113 0.134 0.155	0.955 0.987 1.000 0.984 0.943 0.877 0.797 0.712 0.631 0.656 0.490	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053 1.053	10.19 10.10 10.03 9.94 9.86 9.79 9.72 9.45 9.51 9.45
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	0.175 0.176 0.176 0.177 0.177 0.177 0.177 0.177 0.177	0.086 0.071 0.056 0.040 0.024 0.007 011 029 048 088	0.899 0.927 0.953 0.975 0.999 0.998 0.987 0.965 0.933	105103102100099097095091089087	033 017 000 0.017 0.035 0.053 0.072 0.072 0.113 0.134 0.155	0.955 0.987 1.000 0.984 0.943 0.877 0.797 0.712 0.631 0.556 0.490	0.908 0.926 0.944 0.942 0.980 0.998 1.017 1.035 1.053	10.19 10.10 10.03 9.94 9.86 9.79 9.72 9.45 9.51 9.45
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 FIN 0.200	O.175 O.176 O.176 O.177 O.177 O.177 O.177 O.177 O.177 O.177	0.086 0.071 0.054 0.040 0.024 0.007 011 029 048 088	0.899 0.927 0.953 0.975 0.991 0.998 0.987 0.945 0.933 0.894	105 103 102 100 099 097 093 091 089 087	033 017 000 0.017 0.035 0.053 0.072 0.072 0.113 0.134 0.155	0.955 0.987 1.000 0.984 0.943 0.877 0.797 0.712 0.631 0.556 0.490 SYS PF	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053 1.071 1.089	10.19 10.10 10.03 9.94 9.86 9.79 9.72 9.55 9.51 9.45 DELTA 11.42
0.90 0.94 0.94 0.98 1.00 1.02 1.04 1.06 1.10 SYS V 0.90 0.92	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	O.175 O.176 O.176 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177	0.086 0.071 0.054 0.040 0.024 0.007 011 029 048 068 0.080 0.080	0.899 0.927 0.953 0.975 0.999 0.998 0.987 0.965 0.933 0.894 DSG PF 0.925 0.948	105 102 100 099 097 095 095 097 089 087	033 017 000 0.017 0.035 0.053 0.072 0.072 0.113 0.134 0.155 SYS Q 027 011	0.955 0.987 1.000 0.984 0.943 0.877 0.712 0.631 0.556 0.490 SYS PF 0.977 0.996	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053 1.053 1.071 1.089	10.19 10.10 10.03 9.94 9.86 9.79 9.72 9.65 9.51 9.45 DELTA 11.42 11.31
0.90 0.94 0.94 0.98 1.00 1.02 1.04 1.06 1.08 1.10 SYS V 0.90 0.92 0.94	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	O.175 O.176 O.176 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177	0.086 0.071 0.054 0.040 0.024 0.007 011 029 048 088 DSG 0 0.080 0.085 0.050	0.899 0.927 0.953 0.975 0.999 0.987 0.985 0.933 0.894 DSG PF 0.925 0.948 0.949	105102100099097095093097089087 SYS P124123121	033 017 000 0.017 0.035 0.053 0.072 0.072 0.134 0.134 0.155 SYS Q 027 011 0.006	0.955 0.987 1.000 0.984 0.943 0.877 0.712 0.631 0.556 0.490 SYS FF 0.977 0.996 0.999	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053 1.071 1.089 LOAD V 0.908 0.926 0.944	10.19 10.10 10.03 9.94 9.79 9.72 9.55 9.51 9.45 DELTA 11.31 11.20
0.90 0.94 0.94 0.98 1.00 1.02 1.04 1.06 1.08 1.10 SYSO 0.92 0.94 0.94	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200	O.175 O.176 O.176 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.175 O.195 O.195 O.196	0.086 0.071 0.054 0.040 0.024 0.007 011 029 048 088 DSG Q 0.080 0.065 0.050 0.050	0.899 0.927 0.953 0.975 0.999 0.987 0.985 0.965 0.965 0.925 0.948 0.969 0.969	105102100099097095093097089087 SYS P124123121120	033 017 000 0.017 0.035 0.053 0.072 0.072 0.134 0.135 SYS Q 027 011 0.006 0.023	0.955 0.987 1.000 0.984 0.943 0.877 0.712 0.631 0.556 0.490 SYS PF 0.976 0.999 0.999	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.053 1.053 1.071 1.089 LOAD V 0.908 0.926 0.944 0.962	10.19 10.10 10.03 9.84 9.79 9.45 9.55 9.55 11.31 11.20 11.09
0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.00 9.90 0.92 0.94 0.98	P IN 0.200 0.200 0.200 0.200 0.200	O.175 O.176 O.176 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.195 O.195 O.195 O.196 O.196	0.086 0.071 0.054 0.024 0.007011029048088088 0.080 0.055 0.055 0.018	0.899 0.927 0.953 0.975 0.999 0.987 0.965 0.965 0.965 0.948 0.948 0.969 0.965	105102100099097095091089087 SYS P124123121120118	033 017 000 0.017 0.035 0.053 0.072 0.072 0.134 0.134 0.155 SYS Q 027 011 0.006	0.955 0.987 1.000 0.984 0.943 0.877 0.712 0.631 0.556 0.490 SYS FF 0.977 0.996 0.999	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053 1.071 1.089 LOAD V 0.908 0.926 0.944	10.19 10.10 10.03 9.94 9.79 9.72 9.55 9.51 9.45 DELTA 11.31 11.20
0.90 0.94 0.94 0.98 1.00 1.02 1.04 1.06 1.08 1.10 SYSO 0.92 0.94 0.94	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200	O.175 O.176 O.176 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.175 O.195 O.195 O.196	0.086 0.071 0.054 0.040 0.024 0.007 011 029 048 088 DSG Q 0.080 0.065 0.050 0.050	0.899 0.927 0.953 0.975 0.999 0.987 0.985 0.965 0.965 0.925 0.948 0.969 0.969	105102100099097095093097089087 SYS P124123121120	033 017 000 0.017 0.035 0.053 0.072 0.072 0.134 0.135 SYS Q 027 011 0.006 0.023	0.955 0.987 1.000 0.984 0.943 0.877 0.712 0.631 0.556 0.490 SYS PF 0.976 0.999 0.999	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.053 1.053 1.071 1.089 LOAD V 0.908 0.926 0.944 0.962	10.19 10.10 10.03 9.84 9.79 9.45 9.55 9.55 11.31 11.20 11.09
0.70 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.06 1.00 9.90 0.92 0.94 0.98 0.98	F IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	O.175 O.176 O.177	0.086 0.071 0.054 0.040 0.024 0.007011029048088 0.080 0.055 0.055 0.051 0.018 0.001	0.899 0.927 0.953 0.975 0.999 0.987 0.965 0.965 0.965 0.965 0.948 0.948 0.965 0.965	105102100099097099091089087 SYS P123121120118116	033 017 000 0.017 0.035 0.053 0.072 0.072 0.113 0.134 0.155 SYS Q 027 011 0.006 0.023 0.040 0.059	0.955 0.987 1.000 0.984 0.943 0.877 0.712 0.655 0.490 SYS PF 0.996 0.999 0.983 0.944 0.872	0.908 0.926 0.944 0.942 0.980 0.998 1.017 1.025 1.053 1.071 1.089 LOAD V 0.908 0.926 0.944 0.962 0.981 0.999	10.19 10.10 10.94 9.89 9.72 9.55 9.55 7.45 11.20 11.99 10.99
0.70 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.00 9.90 0.92 0.94 0.98 1.00	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	O.175 O.176 O.177	0.086 0.071 0.056 0.040 0.024 0.007011029048088 0.086 0.056 0.050 0.050 0.018 0.001017	0.899 0.927 0.953 0.975 0.999 0.998 0.965 0.965 0.948 0.948 0.969 0.965 0.976	105103100099097097099091099121120121120114	033017000 0.017 0.035 0.053 0.072 0.072 0.113 0.155 SYS Q027011 0.006 0.023 0.040 0.059 0.078	0.955 0.987 1.000 0.984 0.943 0.777 0.712 0.655 0.490 SYS PF 0.995 0.995 0.995 0.995 0.983 0.892	0.908 0.926 0.944 0.942 0.980 0.998 1.017 1.053 1.053 1.053 1.071 1.089 LOAD V 0.908 0.926 0.944 0.962 0.981 0.999 1.017	10.19 10.10 10.94 9.84 9.72 9.45 9.55 9.45 11.29 11.29 10.99 10.90
0.90 0.94 0.94 0.98 1.00 1.02 1.04 1.08 1.10 SY90 0.92 0.94 0.98 1.00 1.02	P IN 0.200 0	O.175 O.176 O.177	0.086 0.071 0.054 0.040 0.024 0.007 011 029 048 088 0.080 0.085 0.050 0.050 0.050 0.018 0.017 017	0.899 0.927 0.953 0.975 0.999 0.998 0.965 0.933 0.894 DSG PF 0.948 0.948 0.949 0.985 0.996 1.000 0.994	105 103 100 099 099 099 099 099 087 108 121 120 121 121 114 114	033017000 0.017 0.035 0.053 0.072 0.072 0.113 0.134 0.155 SYS Q027011 0.006 0.023 0.040 0.059 0.078 0.098	0.955 0.987 1.000 0.983 0.977 0.712 0.655 0.490 SYS PF 0.975 0.999 0.998 0.999 0.9826 0.826 0.755	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053 1.053 1.071 1.089 LOAD V 0.908 0.926 0.926 0.944 0.962 0.981 0.999 1.017 1.035	10.19 10.10 10.94 9.87 9.72 9.55 9.55 7.45 11.20 11.29 10.79 10.79 10.72
0.90 0.94 0.94 0.98 1.00 1.02 1.04 1.08 1.10 V 0.92 0.94 0.94 0.98 1.00 1.02	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	O.175 O.176 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.195 O.195 O.196 O.196 O.196 O.196 O.196 O.196	0.086 0.071 0.054 0.027011029048088088088088 0.065 0.054 0.054 0.018 0.017035054	0.899 0.927 0.953 0.975 0.999 0.989 0.965 0.965 0.948 0.948 0.969 0.985 0.996 0.996 0.996	105102100099099709950991089089123121120118114113111	033017000 0.017 0.035 0.053 0.072 0.072 0.134 0.155 SYS Q027011 0.006 0.023 0.040 0.059 0.078 0.078 0.078 0.118	0.955 0.985 0.984 0.984 0.977 0.712 0.655 0.490 F7 0.999 0.999 0.999 0.999 0.9825 0.825 0.684	0.908 0.926 0.944 0.942 0.980 0.998 1.035 1.053 1.053 1.069 LOAD V 0.908 0.926 0.944 0.962 0.971 1.035 1.035	10.19 10.10 9.94 9.87 9.87 9.55 9.55 9.45 DEL.42 11.20 11.09 10.99 10.99 10.64
0.70 0.74 0.74 0.76 1.02 1.04 1.06 1.00 1.00 9.72 0.74 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	P IN 0.200 0	O.175 O.176 O.176 O.177	0.086 0.071 0.050 0.040 0.027029028088088 0.046 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.899 0.927 0.955 0.975 0.999 0.987 0.985 0.965 0.965 0.948 0.965 0.965 0.966 0.9764 0.986 0.986	105 103 100 099 099 099 099 099 087 108 121 120 121 121 114 114	033017000 0.017 0.035 0.053 0.072 0.072 0.113 0.134 0.155 SYS Q027011 0.006 0.023 0.040 0.059 0.078 0.098	0.955 0.987 1.000 0.983 0.977 0.712 0.655 0.490 SYS PF 0.975 0.999 0.998 0.999 0.9826 0.826 0.755	0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035 1.053 1.053 1.071 1.089 LOAD V 0.908 0.926 0.926 0.944 0.962 0.981 0.999 1.017 1.035	10.19 10.10 10.94 9.87 9.72 9.55 9.55 7.45 11.20 11.29 10.79 10.79 10.72
0.90 0.94 0.94 0.98 1.00 1.02 1.04 1.08 1.10 V 0.92 0.94 0.94 0.98 1.00 1.02	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	O.175 O.176 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.177 O.195 O.195 O.196 O.196 O.196 O.196 O.196 O.196	0.086 0.071 0.054 0.027011029048088088088088 0.065 0.054 0.054 0.018 0.017035054	0.899 0.927 0.953 0.975 0.999 0.989 0.965 0.965 0.948 0.948 0.969 0.985 0.996 0.996 0.996	105102100099099709950991089089123121120118114113111	033017000 0.017 0.035 0.053 0.072 0.072 0.134 0.155 SYS Q027011 0.006 0.023 0.040 0.059 0.078 0.078 0.078 0.118	0.955 0.985 0.984 0.984 0.977 0.712 0.655 0.490 F7 0.999 0.999 0.999 0.999 0.9825 0.825 0.684	0.908 0.926 0.944 0.942 0.980 0.998 1.035 1.053 1.053 1.069 LOAD V 0.908 0.926 0.944 0.962 0.971 1.035 1.035	10.19 10.10 9.94 9.87 9.87 9.55 9.55 9.45 DEL.42 11.20 11.09 10.99 10.99 10.64

TABLE B-VI

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION HEAVY LOAD CASE

2 M. J. W. L. 128 . 1991 .				HEAVY LOA	D CASE				
Chiab D	गता १४४१-	DANCE LO	AD				ORI	IGINAL FA	er is
							OF	POOR QUA	ALITY
SYS V	to Thi	T1. P3. P3 - F24	957375 AS	*****	em \$ 4.4% 200	### 4 ## ###			
	PIN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SVS FF	LOAD V	DELTA
0.90	0.020	0.016	0.164	0.079	0.550	0.261	0.904	0.841	-0.01
0.92	0.020	0.017	0.155	0.109	0.572	0.289	0.893	O.858	0.10
0.94	0.050	0.017	0.141	0.122	0.595	0.318	0.882	0.875	0.20
0.96	0,020	0.018	0.129	0.137	0.618	0.348	0.871	0.892	0.31
0.98	0.020	0.018	0.116	0.156	0.642	0.379	0.861	0.908	0.41
100	0,020	0.019	0.102	0.180	0.666	0.411	0.851	0.925	០. ១វ
1.02	0.020	0.019	0.088	0.211	0.691	0.444	0.841	0.942	0.60
1.04	0.020	0.019	0.074	0.252	0.716	0.478	0.832	0.959	0.48
1.06	0.020	0.020	0.059	0.315	0.742	0.512	0.823	0.976	0.77
1.08	0.020	0.020	0.043	0.415	0,768	0.548	0.814	0.992	0.84
1.10	0.020	0.020	0.027	0.592	0.795	0.584	0.806	1.009	0.94
				* # (# · -	347.4	9.001	12 11 12 12 12 12 12 12 12 12 12 12 12 1	4- 8-12/12/-7	A * 3 44.
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS F	SYS Q	SYS PF	LOAD V	DEL.TA
0.90	0.040	0.036	0.161	0.219	0.531	0.264	0.895	0.842	1.32
0.92	0.040	0.037	0.150	0.238	0.553	0.292	0.884	0.859	1.40
0.94	0.040	0.037	0.138	0.261	0.576	0.322	0.873	0.876	1.48
0.96	0.040	0.038	0.126	0.288	0.599	0.352	0.862	0.872	
0.98	0.040	0.038	0.113	0.320	0.623	0.383	0.852		1.56
1.00	0.040	0.039	0.100	0.361	0.647			0.909	1.63
1.02	0.040	0.039	0.086			0.415	0.842	0.926	1.71
1.04	0.040			0.414	0.672	0.448	0.832	0.943	1.78
		0.039	0.071	0.484	0.697	0.481	0.823	0.959	1.85
1.06	0.040	0.039	0.056	0.577	0.723	0.516	0.814	0.976	1,91
1.08	0.040	0.040	0.040	0.702	0.749	0.551	0.805	0.993	1.98
1,10	0.040	0.040	0.024	0.857	0.776	0.588	0.797	1.010	2.04
SYS V	P IN	DSG P	psa a	Non De	m m	(3)/(3) (3)	/35/Ph (Ps.)Pm	1 5 4 5 11	** ***
0.90	0.060			DSG PF	SYS P	SYS Q	SYS FF	LOAD V	DELTA
0.70		0.056	0.158	0.334	0.512	0.268	0.886	0.843	2.64
0.94	0.060	0.057	0.147	0.359	0.534	0.296	0.875	0.859	2.69
	0.060	0.057	0.135	0.390	0.557	0.325	0.863	0,876	2.75
0.96	0.060	0.058	0.123	0.425	0.580	0.356	0.853	0.893	2.81
0.98	0.060	0.058	0.110	0.468	0.604	0.387	0.842	0,910	2.86
1.00	0.060	0.058	0.096	0.519	0.628	0.419	0.832	0.926	2.91
1.02	0.060	0.059	0.082	0.582	0.653	O.451	0.822	0.943	2.96
1.Q4	0.060	0.059	0.068	0.658	0.678	O.485	0.813	0.960	3.01
1.06	0.060	0.059	0.053	0.749	0.704	0.520	0.804	0.977	3,04
1.08	0.060	0.059	0.037	0.850	0.730	0.555	0.796	0.993	3.10
1.10	0.060	0.060	0.021	0.945	0.757	0.592	0.788	1.010	3.15
eve u	25 ቸ ነለ	nsere e	מיים אי	T\m\rs m.rm	PK\$ 1 PK - PK	programme and	200 t 2 200 au tor) (max 15 mm	#14 bass
SYS V	PIN	DSG P	DSG Q	DSG FF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.080	0.076	0.155	0.441	0.493	0.272	0.875	0.843	3.96
0.92	0.080	0.076	0.143	0.470	0.515	0.300	0.864	0.860	3.99
0.94	0.080	0.077	0.131	0.505	0.538	0.330	0.853	0.877	4.02
0.96	0.080	0.077	0.119	0.545	0.561	0.360	0.842	0.893	4.05
0.78	0.080	0.078	0.106	0.592	0.585	0.391	0.831	0.910	4.08
1.00	0.080	0.078	0.093	0.645	0.609	0.423	0.821	0.927	4.11
1.02	0.080	0.079	0.079	0.707	0.634	0.456	0.812	0.944	4.14
1.04	0.080	0.079	0.064	0.776	0.659	0.489	0.803	0.940	4.17
1.06	0.080	0.079	0.049	0.851	0.485	0.524	0.794	0.977	4.19
108	0.080	0.079	0.033	0.923	0.711	0.560	0.786	0.994	4.22
1.10	0.080	0.079	0.017	0.978	0.738	0.596	Q.778	1.011	4.24
					in w r millour	ran to their it had	to the Fold Said	as we have also	-т н .с.,•т
				B-27					

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION OF POOR QUALITY HEAVY LOAD CASE

SYS V	P IN	DSG P	pse a	DSG PF	SYS P	sys o	SYS PF	LOAD V	DELTA
0.90	0.100	0.096	0.151	0.536				Q.844	5.28
					0.474	0.277	0.864		
0.92	0,100	0.096	0.139	0.567	0.496	0.305	0.852	0.860	5.28
O.94	0.100	0.097	0.128	0.604	0.519	0.334	0.841	0.877	5,28
0.96	0.100	0.097	0.115	0.645	0.542	0.364	0.830	0.894	5.29
0.98	0.100	0.097	0.102	0.690	0.566	0.395	0.820	0.911	5.30
1.00	0.100	0.098	0.089	0.741	0.590	0.427	0.810	0.927	5.31
1.02	0.100	0.098	0.075	0.797	0.615	0.460	0.801	0.944	5.32
								0.744	
1.04	0.100	0.098	0.060	0.854	0.640	0.494	0.792		5,32
1.06	0,100	0.099	0.045	0.911	0.666	0.529	0.783	0.978	5.33
1.08	0.100	0.099	0.029	0.759	0.692	0.564	0.775	0.994	5,33
1.10	0.100	O. 099	0.013	0.992	0.719	0.601	0.767	1.011	5.34
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.120	0.115	0.146	0.618	O.455	0.281	0.851	Q.844	4.58
0.72	0.120	0.116	0.135	0.651	0.477	0.310	0.839	0.841	6.57
0.94	0.120	0.116	0.123	0.687	0.500	0.339	0.828	0.878	6.56
0,76	0.120	0.117	0.111	0.726	0.523	0.369	0.817	0.894	6.54
0.98	0.120	0.117	0.098	0.768	0.547	0.400	0.807	0.911	6.53
1.00	0.120	0.118	0.084	0.813	0.571	0.432	0.797	0.928	6.51
1.02	0.120	0.118	0.070	0.859	0.596	0.465	0.788	0.945	6.50
1.04	0.120	0.118	0.056	0.905	0.621	0.499	0.780	0.961	48
1.06	0.120	0.118	0.040	0.947	0.647	0.534	0.771	0.978	6.47
1.03	0.120	0.119	0.025	0.979	0.673	0.569	0.764	0.995	6.46
1.10	0.120	0.119	0.008	0.798	0.700	0.606	0.756	1.011	6.44
SYS V	P IN	DSG P	psg Q	DSG PF	SYS F	sys a	SYS PF	LOAD V	DELTA
0.90	0.140	0.135	0.142	0.489	0.436	0.287	0.836	0.845	7.90
0.92	0.140	0.135	0.130	0.720	0.458	0.315	0.824	0.861	7.86
0.94	0.140	0.136	0.118	0.754	0.481	0.344	0.813	0.878	7.82
0.96	0.140	0.136	0.106	0.790	0.504	0.374	0.803	0.895	7.78
0.98	0.140	0.137	0.093	0.827	0.528	0.405	0.793	0.911	7.74
1.00	0.140	0.137	0.079	0.865	0.552	0.437	0.784	0.928	7.71
1.02	0.140	0.137	0.065	0.903	0.577	0.470	0.775	0.745	7.67
1.04	0.140	0.138	0.051	0.938	0.602	0.504	0.767	0.962	7.63
1.06	0.140	0.138	0.036	0.968	0.628	o. 539	0.759	0.978	7,61
1.08	0.140	0.138	0.020	0.990	0.654	0.574	0.751	0.995	7.57
1.10	0.140	0.138	0.004	1.000	0.681	0.611	0.744	1.012	7.54
							·		
don 6 4 41						44.4.1-			
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.160	0.154	0.136	0.749	0.417	0.292	0.819	0.845	9.21
0.92	0.160	0.155	0.125	0.778	0.439	0.320	0.808	0.862	9.15
0.94	0.160	0.155	0.113	0.808	0.462	0.350	0.797	0.878	9.09
0.96	0.160	0.156	0.101	0.840	0.485	0.380	0.787	0.875	9.02
0.98	0.160	0.156	0.088	0.872	0.509	0.411	0.778	0.912	8.96
1.00	0.160	0.157	0.074	0.903	0.533	0.443	0.769	0.929	8.90
1.02	0.160	0.157	0.060	0.933	0.558	0.476	0.761	0.945	8.84
1.04	0.160	0.157	0.046	0.960	0.583	0.510	0.753	0.962	8.79
1.06	0.160	0.157	0.030	0.982	0.409	0.544	0.746	0.979	8.74
1.08	0.160	0.157	0.015	0.996	0.435	0.580	0.739	0.995	8.48
1.10	0.160	0.158	002	1,000	0.662	0.616	0.732	1.012	8.63
* * * *	AT A PROPERTY.	0.100	11 July 1 July 200	T # 47127171	Sen in in in in	A # (1) T (2)	مشداليبه الإسلام	مثقد بالدائدة الد	المراقبا يوايسا

ORIGINAL PAGE 19 OF POOR QUALITY

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION HEAVY LOAD CASE

SYS V	P IN	DSG P	DSG Q	DSG FF	SYS P	SYS 0	5Y8 PF	LOAD V	DEL TA
0.90	0.180	0.173	0.131	0.799	0.398				
							0.801	Q.845	10.53
0.92	O. 180	0.174	0.120	0.824	0.420	0.326	0.790	0.862	10.43
0.94	0.180	0.175	0.108	0.851	O. 443	0.356	0.780	0.879	10.34
0.96	0,180	0.175	0.095	0.878	0.466	0.386	0.771	0.875	10.25
0.98	0.180	0.175	0.082	0.905	0.490				
						0.417	0.762	0.912	10.17
1.00	0.180	0.176	0.069	0.931	0.514	0.449	0.754	0.929	10.09
1.02	0.180	0.176	0.055	0.955	Q., 539	O. 482	0.746	0.946	10,02
1.04	0.180	0.176	0.040	O.975	0.564	0.515	0.738	0.962	9.94
1.06	0.180	0.177	0.025	0.990	0.590				
						0.550	0.731	0,979	9.87
1.08	0.180	Q.177	0.009	0.999	0.616	0.586	0.725	0.996	9.80
110	0.180	0.177	" UQ7	O. 999	0.643	0.622	0.719	1.012	9.75
SYS V	P IN	DSG P	DSG Q	TATACA CALLA	ms/ms m	milion m	5', 5 2 5'45 AM, 610	1 401 41 400	
				DSG_PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.200	0.193	0.125	0.839	0.379	0.304	0.780	O.846	11.84
0.92	0,200	0.193	0.114	0.862	0.402	0.333	0.770	0.862	11.73
0.94	0.200	0.194	0.102	o.885	0.424	0.362	0.761	0.879	11.61
0.96	0.200	0.194	0.087						
				0.908	0.448	0.392	0.752	0.896	11-49
0.98	0.200	0.195	0.076	0.931	0.471	0.423	0.744	0.912	11,39
1.00	0.200	O.195	O.063	0.952	0.495	0.455	0.737	0.929	11.29
1.02	0.200	0.196	0.049	0.970	0.520	0.488	0.729	0.946	11.20
1.04	0.200	0.196	0.034	0.985					
					0.545	0.521	0.723	0.963	11,10
1.06	0.200	0.196	0.019	0.995	0.571	O.556	0.717	ዕ • 979	11,00
1.08	0.200	0.196	0.004	1.000	0.597	0.592	0.710	0,996	10.92
1.10	0.200	0.196	013	0.998	0.624	0.628	0.705	1.013	10.82
					P - 1-1-1 1	W F 141 414 122	THE P. 187502	ole 10 "m" sta 7:m"	4 57 8 (117,111
REALIS	STIC LOAL) REPRESE	ENTATION						
SYS V	F IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.020	0.016	0.170	0.093	0.614	0.303	0.897		
0.92	0.020	0.016						0.832	-0.07
			0.158	0.103	0.631	0.327	0.888	0.850	0.04
0.94	0.020	0.017	Q.146	0.116	0.648	0.353	0.878	0.868	0.16
0.96	0.020	0.018	0.133	0.131	0.665	0.379	0.869	0.885	0.27
0.98	0.020	0.018	0.120	0.150	0.683	0.406	0.860	0.903	0.38
1.00	0.020	0.019	0.106	0.173	0.700				
1.02	0.020					0.433	0.850	0.921	0.48
		0.019	0.091	0.203	0.718	0.461	0.841	0.939	0.58
1.04	0.020	0.019	0.076	0.246	0.736	0.490	0.832	0.956	0.67
1.06	0.020	0.020	0.060	0.309	0.754	0.520	0.823	0.974	0.77
1.08	0.020	0.020	0.044	0.413	0.772	0.550	0.814	0.992	0.86
1.10	0.020	0.020	0.026	0.601					
-th 10 -do 'as'	الواليند الواالة الوالوا	Wa Wally	043220	O. DOT	0.790	0.581	0.806	1.010	0.94
SYS V	P IN	DSG F	nee e	There is a	mym m	2317es es	/m\/ /m ==	1 755 25 25 1 .	10 to
			DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	DELTA
0.90	0.040	0.036	0.167	0.210	0.595	0.306	0.889	0.833	1.27
0.92	0.040	0.036	0.156	0.228	0.612	0.331	0.880	0.851	1.35
0.94	0.040	0.037	0.143	0.250	0.629	0.356	0.870	0.868	
0.96	0.040	0.038	0.131	0.277					1.44
					0.646	0.382	0.861	0.884	1.53
0.98	0.040	0.038	0.117	O.309	0.663	0.409	0.851	0.904	1.61
1.00	0.040	0.039	0.103	0.350	0.681	0.437	0.842	0.922	1.69
1.02	0.040	0.039	0.088	0.403	0.699	0.465	0.833	0.939	1.77
1.04	0.040	0.039	0.073	0.473	0.716	0.494			
1.06	0.040	0.039					0.823	0.957	1.84
			0.057	0.569	0.734	0.523	0.814	0.975	1.91
1.08	0.040	0.040	0.041	0.699	0.753	0,554	0.806	0.993	1.98
1.10	0.040	0,040	0.023	0.862	0.771	0.585	0.797	1.010	2.05
				B-29					
				n-53					

ORIGINAL PAGE IS OF POOR QUALITY

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION HEAVY LOAD CASE

4.5444			***	nic Aricana Ana ma			#		
SYS V	P IN	DSG P	DSG O	DSG PF	SYS P	SYS C	SYS PF	LOAD V	DELTA
0.90	Ģ. QĄQ	0.056	0.164	0.322	0.576	0.310	0.881	0.834	2.61
0.92	0.060	0.056	0.152	0.347	0.593	0.334	0.871	0.851	2.66
0.94	9.9 69	0.057	0.140	0.376	0.610	0.340	0.861	0.869	2.73
0.96	0.040	0.057	0.127	0.412	0.627	0.386	0.852	0.887	2.79
0.98	0.040	0.058	0.114	0.454	0.644	0.413	0.842	0.904	2.84
1.00	0.060	0.058	0.100	0.505	0.662	0.440	0.833	0.922	2.90
1.02	0.060	0.059	0.085	0.569	0.679	O.468	0.823	0.940	2.75
1.04	u.060	0.059	0,070	0.646	0.697	0.497	0.814	0.758	3.00
1.06	0.050	0.059	0.054	0.741	0.715	0.527	0.805	0.975	3.05
1.08	0.060	0.059	0.037	0.848	0.733	0.557	0.796	0.993	3.10
1.10	0.060	0,060	0.020	0.948	0.752	0.589	0.787	1.011	3.15
mater 11	ro 2.61	tyeses ru	tyrers ry	TO COLO - POLO	Conversion to	myre m	COME PIE	1.0000 11	TOTAL TEX
SYS V	PIN	DSG P	DSG O	DSG PF	SYS P	SYS 0	SYS PF	LOAD V	DELTA
0.90	0.080	0.076	0.160	0.426	0.557	0.314	0.871	0.834	3.94
0.92	0.080	0.076	0.149	0.455	0.573	0.338	0.861	0.852	3.97
0.94	0.080	0.077	0.137	0.490	0.590	0.364	0.851	0.870	4.01
0.96	0.080	0.077	0.124	0.530	0.408	0.370	0.842	0.887	4.04
0.98	0.080	0.078	0.110	0.576	0.625	0.417	0.832	0.905	4.07
1.00	0.080	0.078	0.096	0.631	0.642	0.444	0.822	0.923	4.11
1.02	0.080	0.079	0.081	0.694	0.460	0.473	0.813	0.940	4.14
1.04	0.080	0.079	0.066	0.767	0.678	0.502	0.804	0.958	4, 17
1.06	0.080	0.079	0.050	0.845	0.696	0.531	0.795	0.976	4.19
1.08	0.080	0.079	0.033	0.921	0.714	0.562	0.786	0.994	4.22
1.10	0.080	0.079	0.016	0.980	0.733	0.593	0.777	1.011	4.24
C11/C1 11	ლა უგე	rseries es	20.63 CT	his har his tarting	C14C C	מער מ	mytes min	L MAIN LE	TS C"1 "C /S
SYS V	PIN	DSG P	nsg q	DSG PF	SYS P	SYS Q	SYS FF	LOAD V	DELTA
Q. 9Q	0.100	0.095	0.156	0.520	0.537	0.318	0.861	0.835	5.27
0.90 0.92	0.100 0.100	0.095 0.096	0.156 0.145	0.520 0.552	0.537 0.554	0.318 0.343	0.861 0.851	0.835 0.852	5.27 5.27
0.90 0.92 0.94	0.100 0.100 0.100	0.095 0.096 0.096	0.156 0.145 0.133	0.520 0.552 0.588	0.537 0.554 0.571	0.318 0.343 0.348	0.861 0.851 0.841	0.835 0.852 0.870	5.27 5.27 5.28
0.90 0.92 0.94 0.96	0.100 0.100 0.100 0.100	0.095 0.096 0.096 0.097	0.156 0.145 0.133 0.120	0.520 0.552 0.588 0.629	0.537 0.554 0.571 0.588	0.318 0.343 0.368 0.394	0.861 0.851 0.841 0.831	0.835 0.852 0.870 0.888	5.27 5.27 5.28 5.29
0.90 0.92 0.94 0.96 0.98	0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.096 0.097 0.097	0.156 0.145 0.133 0.120 0.106	0.520 0.552 0.588 0.629 0.676	0.537 0.554 0.571 0.588 0.404	0.318 0.343 0.348 0.394 0.421	0.861 0.851 0.841 0.831 0.821	0.835 0.852 0.870 0.888 0.906	5.27 5.27 5.28 5.29 5.30
0.90 0.92 0.94 0.96 0.98 1.00	0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.096 0.097 0.097 0.098	0.156 0.145 0.133 0.120 0.106 0.092	0.520 0.552 0.588 0.629 0.676 0.728	0.537 0.554 0.571 0.588 0.404 0.423	0.318 0.343 0.368 0.394 0.421 0.449	0.861 0.851 0.841 0.831 0.821 0.812	0.835 0.852 0.870 0.888 0.906 0.923	5.27 5.27 5.28 5.29 5.30 5.31
0.90 0.92 0.94 0.96 0.98 1.00	0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.096 0.097 0.097 0.098	0.156 0.145 0.133 0.120 0.106 0.092 0.077	0.520 0.552 0.588 0.629 0.676 0.728	0.537 0.554 0.571 0.588 0.404 0.423 0.441	0.318 0.343 0.368 0.394 0.421 0.449 0.477	0.861 0.851 0.841 0.831 0.821 0.812 0.802	0.835 0.852 0.870 0.888 0.906 0.923 0.941	5.27 5.27 5.28 5.29 5.30 5.31
0.90 0.92 0.94 0.96 0.98 1.00 1.00	0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.096 0.097 0.097 0.098 0.098	0.156 0.145 0.133 0.120 0.106 0.092 0.077	0.520 0.552 0.588 0.629 0.676 0.728 0.786	0.537 0.554 0.571 0.588 0.404 0.423 0.441	0.318 0.343 0.368 0.394 0.421 0.449 0.477	0.861 0.851 0.841 0.831 0.821 0.812 0.802	0.835 0.852 0.870 0.888 0.906 0.923 0.941	5.27 5.27 5.28 5.29 5.30 5.31 5.31
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04	0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.098	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.062 0.046	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.846 0.906	0.537 0.554 0.571 0.588 0.404 0.423 0.441 0.459	0.318 0.343 0.368 0.394 0.421 0.449 0.477 0.506 0.536	0.861 0.851 0.841 0.831 0.821 0.812 0.802 0.793 0.784	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959	5.27 5.27 5.28 5.29 5.30 5.31 5.31 5.32
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.098 0.099	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.062 0.046 0.029	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.966 0.959	0.537 0.554 0.571 0.588 0.404 0.423 0.441 0.459 0.459	0.318 0.343 0.368 0.394 0.421 0.447 0.506 0.536	0.861 0.851 0.841 0.831 0.821 0.812 0.802 0.793 0.784	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.976	5.27 5.28 5.29 5.30 5.31 5.31 5.32 5.33
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04	0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.098	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.062 0.046	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.846 0.906	0.537 0.554 0.571 0.588 0.404 0.423 0.441 0.459	0.318 0.343 0.368 0.394 0.421 0.449 0.477 0.506 0.536	0.861 0.851 0.841 0.831 0.821 0.812 0.802 0.793 0.784	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959	5.27 5.27 5.28 5.29 5.30 5.31 5.31 5.32
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.098 0.099	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.062 0.046 0.029	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.966 0.959	0.537 0.554 0.571 0.588 0.404 0.423 0.441 0.459 0.477	0.318 0.343 0.368 0.394 0.421 0.447 0.506 0.536	0.861 0.851 0.841 0.831 0.821 0.812 0.802 0.793 0.784	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.976	5.27 5.28 5.29 5.30 5.31 5.31 5.32 5.33
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.098 0.099 0.099	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.042 0.046 0.029 0.012	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.846 0.906 0.959	0.537 0.554 0.571 0.588 0.606 0.623 0.641 0.659 0.677 0.675 0.713	0.318 0.343 0.368 0.394 0.421 0.449 0.556 0.556	0.861 0.851 0.841 0.831 0.821 0.802 0.793 0.784 0.775	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012	5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.33
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 J.10	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099	0.156 0.145 0.133 0.120 0.106 0.077 0.042 0.046 0.029 0.012	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.846 0.906 0.959 0.959	0.537 0.554 0.551 0.588 0.404 0.423 0.441 0.459 0.477 0.477	0.318 0.343 0.348 0.394 0.421 0.447 0.506 0.536 0.577	0.861 0.851 0.831 0.821 0.812 0.802 0.793 0.784 0.775 0.767	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012	5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.33
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.099	0.156 0.145 0.133 0.120 0.106 0.077 0.062 0.046 0.029 0.012 DSG Q	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.846 0.906 0.959 0.9793	0.537 0.554 0.571 0.588 0.404 0.423 0.459 0.459 0.713 SYS P	0.318 0.343 0.368 0.394 0.421 0.447 0.506 0.536 0.566 0.597	0.861 0.851 0.831 0.821 0.802 0.793 0.784 0.775 0.767 SYS PF	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012	5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.33 5.34
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 J.10 SYS V 0.90 0.92	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.099 0.099	0.156 0.145 0.133 0.120 0.106 0.077 0.062 0.046 0.029 0.012 DSG 0 0.152 0.140	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.959 0.959 0.973 DSG PF 0.602 0.635	0.537 0.554 0.571 0.588 0.404 0.423 0.459 0.459 0.713 SYS P 0.518 0.535	0.318 0.343 0.368 0.394 0.421 0.447 0.506 0.536 0.556 0.577 SYS Q 0.323 0.348	0.861 0.851 0.841 0.831 0.821 0.802 0.793 0.784 0.775 0.767 SYS PF 0.849 0.839	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 LOAD V 0.835 0.853	5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 DELTA 6.58
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 J.10 SYS V 0.90 0.92 0.94	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.099 0.115 0.116	0.156 0.145 0.133 0.120 0.106 0.077 0.062 0.046 0.029 0.012 DSG 0 0.152 0.140 0.128	0.520 0.552 0.588 0.629 0.676 0.728 0.786 0.959 0.959 0.973 DSG PF 0.602 0.635 0.671	0.537 0.554 0.551 0.588 0.404 0.423 0.441 0.457 0.4713 P.513 0.552	0.318 0.343 0.368 0.394 0.421 0.447 0.506 0.536 0.5567 SYS Q 0.348 0.373	0.861 0.851 0.831 0.821 0.802 0.793 0.784 0.775 0.767 SYS PF 0.849 0.839 0.829	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 LOAD V 0.835 0.853 0.871	5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 DELT9 6.58 6.57
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 SYS V 0.90 0.92 0.94 0.96	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.120 0.120	0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.099 0.099 0.115 0.116 0.116 0.114	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.062 0.046 0.029 0.012 DSG Q 0.152 0.140 0.128 0.115	0.520 0.552 0.558 0.629 0.676 0.728 0.786 0.846 0.959 0.975 0.975 0.635 0.635 0.635 0.671 0.711	0.537 0.554 0.5571 0.588 0.404 0.423 0.459 0.459 0.459 0.553 0.553 0.552 0.552	0.318 0.343 0.368 0.394 0.421 0.447 0.506 0.536 0.5597 SYS 23 0.348 0.373 0.379	0.861 0.851 0.841 0.831 0.821 0.802 0.793 0.784 0.775 0.767 SYS PF 0.839 0.839 0.829 0.819	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 LOAD V 0.835 0.853 0.871 0.888	5.27 5.28 5.29 5.31 5.32 5.33 5.34 A DEL.55 6.55
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 V0.90 0.92 0.94 0.98	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.120 0.120 0.120	0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.099 0.115 0.116 0.116 0.117	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.062 0.046 0.029 0.012 DSG Q 0.152 0.140 0.128 0.115 0.102	0.520 0.552 0.558 0.629 0.676 0.728 0.786 0.846 0.909 0.959 0.975 0.602 0.635 0.635 0.711 0.755	0.537 0.5571 0.5571 0.5604 0.404 0.405 0.405 0.405 0.405 0.555 0.555 0.569 0.569	0.318 0.343 0.368 0.394 0.421 0.447 0.536 0.5566 0.557 SYS 23 0.348 0.379 0.426	0.841 0.851 0.831 0.821 0.812 0.802 0.793 0.784 0.775 0.747 SYS PF 0.839 0.839 0.819 0.809	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 LOAD V 0.853 0.871 0.888 0.906	5.27 5.28 5.29 5.33 5.33 5.33 5.33 4 A 4 6.55 6.55 6.55
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 SYS V 0.90 0.92 0.94 0.96 0.98 1.00	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.120 0.120 0.120 0.120	0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.099 0.115 0.116 0.117 0.117	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.042 0.046 0.029 0.012 0.152 0.140 0.152 0.140 0.152 0.102 0.088	0.520 0.552 0.558 0.676 0.728 0.786 0.904 0.959 0.959 0.975 0.62 0.635 0.635 0.671 0.755 0.802	0.537 0.5571 0.5571 0.5604 0.4041 0.4057 0.4057 0.4057 0.5552 0.5552 0.5569 0.5569 0.5604	0.318 0.348 0.368 0.421 0.447 0.5546 0.5567 0.5567 9 0.328 0.3379 0.424	0.841 0.851 0.831 0.821 0.812 0.802 0.793 0.784 0.775 0.747 SYS PF 0.839 0.839 0.829 0.819 0.800	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 LOAD V 0.835 0.853 0.871 0.888 0.906 0.924	5.27 5.28 5.29 5.33 5.33 5.33 5.33 4 A 9 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 V0.90 0.92 0.94 0.98 1.00 1.00	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.120 0.120 0.120 0.120 0.120	0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.099 0.115 0.116 0.117 0.118 0.118	0.156 0.145 0.133 0.120 0.106 0.092 0.077 0.042 0.046 0.029 0.012 0.152 0.140 0.128 0.152 0.140 0.128 0.152	0.520 0.552 0.558 0.429 0.678 0.786 0.786 0.959 0.959 0.9793 DSG PF 0.635 0.635 0.671 0.715 0.851	0.537 0.5571 0.5571 0.5603 0.6421 0.6457 0.6477 0.6477 0.753 9.55547 0.55547 0.6422	0.318 0.348 0.374 0.447 0.447 0.5540 0.559 0.559 0.3379 0.3379 0.454 0.454	0.841 0.851 0.841 0.821 0.821 0.802 0.793 0.784 0.775 0.747 SYS PF 0.849 0.839 0.829 0.829 0.819 0.800 0.790	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 LOAD V 0.835 0.853 0.871 0.888 0.906 0.924 0.941	5.27 5.29 5.33 5.33 5.33 5.33 4 A 9 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.10 SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	0.095 0.096 0.097 0.099 0.098 0.098 0.099 0.099 0.099 0.099 0.115 0.116 0.116 0.116 0.118 0.118	0.156 0.145 0.133 0.120 0.106 0.077 0.062 0.046 0.029 0.012 0.152 0.140 0.128 0.152 0.150 0.152	0.520 0.552 0.558 0.629 0.676 0.728 0.784 0.959 0.959 0.973 DSG 6035 0.635 0.635 0.635 0.711 0.851 0.851 0.899	0.537 0.5571 0.5571 0.403 0.403 0.4419 0.4577 0.673 P8 9.5352 0.5569 0.5569 0.422 0.420	0.318 0.348 0.368 0.421 0.447 0.477 0.534 0.556 0.597 SYS 23 0.348 0.379 0.424 0.4511	0.841 0.851 0.831 0.821 0.821 0.802 0.793 0.784 0.775 0.767 SYS PF 0.849 0.839 0.839 0.829 0.800 0.790 0.790 0.781	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 LOAD V 0.835 0.853 0.853 0.860 0.924 0.924 0.959	5.27 5.28 5.33 5.33 5.33 5.33 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.10 SYS V 0.90 0.92 0.94 0.94 0.98 1.00 1.02	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	0.095 0.096 0.097 0.099 0.098 0.099 0.099 0.099 0.099 0.115 0.116 0.116 0.117 0.118 0.118	0.156 0.145 0.133 0.120 0.106 0.077 0.042 0.046 0.029 0.012 0.152 0.140 0.128 0.150 0.152 0.102 0.058 0.058 0.042	0.520 0.558 0.629 0.676 0.728 0.7846 0.959 0.979 0.635 0.6371 0.755 0.851 0.851 0.944	0.537 0.5571 0.5571 0.5603 0.6421 0.64577 0.6471 9.55559 9.55569 0.6420 0.6458	0.348 0.348 0.447 0.447 0.477 0.534 0.559 0.559 0.348 0.379 0.379 0.4511 0.540	0.841 0.851 0.831 0.821 0.821 0.802 0.793 0.784 0.775 0.767 SYS PF 0.839 0.839 0.829 0.829 0.819 0.800 0.790 0.781 0.773	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 V 0.853 0.853 0.853 0.860 0.924 0.959 0.977	5.27 5.28 5.33 5.33 5.33 5.33 4 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.10 V 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	0.095 0.096 0.097 0.098 0.098 0.098 0.099 0.099 0.099 0.115 0.116 0.117 0.118 0.118 0.118 0.119	0.156 0.145 0.133 0.120 0.106 0.077 0.042 0.042 0.012 0.152 0.140 0.128 0.152 0.152 0.152 0.152 0.058 0.058 0.058	0.520 0.558 0.627 0.678 0.784 0.784 0.999 0.999 0.635 0.6371 0.750 0.851 0.851 0.979 0.979	0.5571 0.5571 0.5571 0.5571 0.6423 0.64577 0.64577 9.55529 0.64647 9.55529 0.64648 0.6476	0.348 0.348 0.349 0.447 0.477 0.5540 0.559 0.559 0.559 0.348 0.559 0.348 0.348 0.481 0.542 0.542 0.5542	0.841 0.851 0.831 0.821 0.821 0.802 0.793 0.784 0.775 0.767 SYS PF 0.839 0.839 0.829 0.829 0.819 0.800 0.791 0.781 0.744	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 V 0.853 0.853 0.866 0.924 0.959 0.977 0.977	5.22901123334 A98755555555 DE6.6555320874
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.10 SYS V 0.90 0.92 0.94 0.94 0.98 1.00 1.02	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	0.095 0.096 0.097 0.099 0.098 0.099 0.099 0.099 0.099 0.115 0.116 0.116 0.117 0.118 0.118	0.156 0.145 0.133 0.120 0.106 0.077 0.042 0.046 0.029 0.012 0.152 0.140 0.128 0.150 0.152 0.102 0.058 0.058 0.042	0.520 0.558 0.629 0.676 0.728 0.7846 0.959 0.979 0.635 0.6371 0.755 0.851 0.851 0.944	0.537 0.5571 0.5571 0.5603 0.6421 0.64577 0.6471 9.55559 9.55569 0.6420 0.6458	0.348 0.348 0.447 0.447 0.477 0.534 0.559 0.559 0.348 0.379 0.379 0.4511 0.540	0.841 0.851 0.831 0.821 0.821 0.802 0.793 0.784 0.775 0.767 SYS PF 0.839 0.839 0.829 0.829 0.819 0.800 0.790 0.781 0.773	0.835 0.852 0.870 0.888 0.906 0.923 0.941 0.959 0.974 1.012 V 0.853 0.853 0.853 0.860 0.924 0.959 0.977	5.27 5.28 5.33 5.33 5.33 5.33 4 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B-30

ORIGINAL PAGE 19 TABLE B-VI, cont. OF POOR QUALITY

DATA FOR SYNCHRONOUS MACHINE, CONSTANT EXCITATION HEAVY LOAD CASE

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.10	F IN 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG P 0.134 0.135 0.136 0.137 0.137 0.137 0.138 0.138 0.138	DSG 0 0.147 0.136 0.123 0.110 0.097 0.083 0.068 0.053 0.037 0.020 0.003	DSG PF 0.474 0.705 0.740 0.777 0.815 0.856 0.896 0.934 0.966 0.990	SYS P 0.499 0.516 0.533 0.550 0.567 0.585 0.603 0.620 0.638 0.657 0.675	SYS Q Q.328 Q.353 Q.378 Q.404 Q.431 Q.459 Q.487 Q.516 Q.516 Q.576 Q.607	SYS PF 0.836 0.826 0.816 0.806 0.796 0.778 0.769 0.760 0.752 0.744	LOAD V 0.836 0.853 0.871 0.889 0.906 0.924 0.942 0.959 0.977 0.975 1.013	DELTA 7.92 7.88 7.80 7.70 7.72 7.64 7.64 7.54
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.04 1.08	P IN 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG P 0.154 0.155 0.155 0.156 0.156 0.157 0.157 0.157 0.157	DSG 0 0.142 0.130 0.118 0.105 0.072 0.078 0.063 0.048 0.032 0.015 002	DSG PF 0.734 0.764 0.795 0.828 0.862 0.896 0.928 0.957 0.950	SYS P 0.480 0.497 0.514 0.531 0.548 0.564 0.584 0.601 0.619 0.637 0.656	SYS 0 0.333 0.358 0.384 0.410 0.436 0.464 0.492 0.521 0.551 0.581 0.612	SYS PF 0.822 0.811 0.801 0.792 0.782 0.764 0.756 0.747 0.739 0.731	LOAD V 0.836 0.854 0.871 0.889 0.907 0.924 0.942 0.950 0.977	DELTA 9.24 9.18 9.11 9.04 8.98 8.91 8.85 8.85 8.65
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG F O.173 O.174 O.175 O.175 O.176 O.176 O.176 O.177 O.177	DSG Q 0.136 0.125 0.113 0.100 0.086 0.072 0.057 0.042 0.026 0.010	DSG PF 0.785 0.812 0.840 0.869 0.925 0.925 0.951 0.973 0.989 0.999	SYS P O.461 Q.478 O.475 O.512 O.529 O.547 O.564 O.582 O.600 O.618 O.637	SYS 0 0.339 0.364 0.389 0.415 0.442 0.470 0.55 0.557 0.587 0.587	SYS PF 0.805 0.796 0.786 0.767 0.759 0.750 0.741 0.733 0.725	LOAD V 0.837 0.854 0.872 0.889 0.907 0.925 0.942 0.960 0.978 0.995	DELTA 10.58 10.48 10.29 10.20 10.11 10.03 9.88 9.80 9.73
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG P 0.192 0.193 0.194 0.195 0.195 0.195 0.196 0.196 0.196	DSG Q 0.130 0.119 0.107 0.094 0.080 0.064 0.052 0.036 0.020 0.004	DSG FF 0.828 0.851 0.874 0.900 0.924 0.947 0.967 0.963 0.995 1.000 0.998	SYS P 0.442 0.459 0.476 0.493 0.510 0.528 0.546 0.563 0.563 0.618	SYS 0 0.346 0.370 0.396 0.422 0.448 0.476 0.504 0.503 0.563 0.563 0.593	SYS PF 0.788 0.779 0.769 0.760 0.751 0.743 0.735 0.726 0.719 0.711	LOAD V 0.837 0.854 0.872 0.870 0.907 0.925 0.943 0.960 0.978 0.978	DELTA 11.91 11.78 11.66 11.55 11.42 11.32 11.21 11.11 11.01 10.91 10.82

TABLE B-VII

DATA FOR INDUCTION MACHINE LIGHT LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

CONSTANT IMPEDANCE LOAD

SYS V	P IN	DSG P	pse a	DSG PF	10 * 9	SYS P	aya a	SYS P F	LOAD V	
ប្.ទីព	$O_{\mathbf{H}}O_{\mathbf{H}}^{2}O$	0.015	~ Q19	0.628	026	0.048	0.067	0.584	0.890	
o. 92	e, 020	0.015	~ , O2O	0.608	ogs	0.051	0.070	0.591	0.910	
0.94	0.020	Q.Q15	~. 021	ៈ ដទទ	024	0.054	0.073	0.598	0.930	
0.7a	0.020	0.015		ៈ ភូមិន	••. O23	0.057	0.076	0.604	0.950	
O. 98	o., o2Q	0.015	~.022	0.548		0.061	0.079	0.610	0.969	
1,00	0.Q20	0,014	02 3	0.528	021	0.064	0.082	0.615	0.989	
1.02	0.020	0.014	024	O.508	021	0.067	0.085	0.620	1.009	
1,04	0,020	0.014	·· . 025	0.488	020	0.071	0.088	0.624	1,029	
1.06	0.020	0.014	~. 026	0.469	019	0.074	0.092	0.628	1.048	
1.08	Q_+Q_{2N}	0.014	~.027	0.450	018	0.078	0.095	0.632	1.068	
1.10	0.020	0.013	029	0.431	018	0.081	0.099	0.636	1.088	
SYS V	P IN	DSG P	nse e	DSG PF	10 * 8	SYS P	ova m	eve o r	LOAN II	
0.90	0.040	0.035	022	0.847	053	0.028	8Y3 Q 0.070	SYS P F	LOAD V	
0.92	0.040	0.035	, 023	0.839	055	0.031	0.073	0.375 0.375	0.891	
0.74	0.040	0.038	023	0.830	048	0.031	0.073		0.911	
0.96	0.040	0.035	024	0.821	046	0.038	0.078	0.414	0.930 0.980	
0.78	0.040	0.035	025	0.811	045	0.041	0.028	0.432	0.950 0.950	
1.00	0.040	0.034	026	0.801	043	0.041 0.044	0.084	0.448	0.970	
1.02	0.040	0.034	~,026	0.790	041	0.047	0.088	0.463	0.990 1.000	
1.04	0.040	0.034	027	0.779	040	0.047	0.088	0.476	1.009	
1.06	0.040	0.034	028	0.768	038	0.051	0.071	0.489 0.501	1.029	
1,08	0.040	0.033	- 029	0.756	-,037	0.058	0.074		1.049	
1.10	0,040	0.033	030	0.744	035	0.053	0.097	0.511 0.521	1.069 1.089	
. • •	2 32 W T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HE ARE TRANSPORTED	er nan teet het	- <u>∞</u>	99 - 76° 1447 144 7	nar ar ner 100 ag	AND HE SHEAT	V H M∠CLI	1.4407	
BYS V	P IN	DSG P		DSG FF	10 * S	SYS P	SYS Q	SYS P F	LOAD V	
). 90	0.060	0.055	027	0.896	080	0.008	0.075	0.112	0.891	
9.92	0.060	0.055	" 058	0.893	076	0.012	0.078	0.147	0.911	
1.94	0.060	0.055	028	0.889	073	0.015	0.080	0.179	0.931	
2,96	0.060	0.055	, 029	0.885	070	0.018	0.083	0.210	0.751	
), 98	0.060	0.054	029	0.881	067	0.021	0.086	0.238	0.970	
00	0.060	0.054	, 030	0.876	064	0.024	0.089	0,265	0.990	
1.02	0.040	0.054	030	0.871	062	0.028	0.092	0.290	1.010	
L. 04	0.060	0.054	031	0.866	059	0.031	0.095	0.312	1.030	
1.06	0.060	0.053	032	0,860	057	0.035	0.098	0.334	1.049	
08	0.060	0.053	032	0.854	055	0.038	0.101	0.354	1.069	
1.10	0.060	0.053	033	0.848	053	0.042	0.104	0.372	1.089	
V eya	P IN	DSG P	DSG Q	DSG PF	10 * 5	SYS P	SYS Q	SYS P F	LOAD V	
9.90	0.080	0.075	035	0.906	108	011	0.082	0.134	0.891	
1,92	0.080	0.075	035	0.906	103	008	0.085	0.076	0.911	
94	0.080	0.074	035	0.905	ÖŸŸ	005	0.087	0.058	0.931	
· 96	0.080	0.074	035	0.904	- 094	002	0.089	0.036	0.751	
. 98	0.080	0.074	035	0.902	090	0.001	0.092	0.021	0.971	
.00	0.080	0.074	036	0.900	087	0.005	0.095	0.014	0.771	
.02	0.080	0.074	-, 036	0.898	083	0.008	0.097	0.082	1,010	
.04	0.080	0.073	036	0.896	080	0.011	0.100	0.002	1.030	
.06	0.080	0.073	037	0.893	077	0.015	0.103	0.113	1.050	
.08	0.080	0.073	037	0.890	- 074	0.018	0.106	0.172	1.059	
, 10	0,080	0.073	038	0.887	071	0.022	0.100	0.172	1.089	
·-		7 36°	m rat feat bear	THE WORKS F	4 .m.\ T	مثلو بناد البراء بوالبراء	W = 4 W/7	W + 1.77	3. # WC) 7	

B-32

OF FOOR SUCLIV DATA FOR INDUCTION MACHINE LIGHT LOAD CASE

		*							
SYS V	PIN	១៦០ ខ		nse er	10 * 8	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.100	a. 094	~. 045	0.903		, Ç 31	0.093	0.316	0.891
0.92	0,100	0.094	·· . 044	0.964	***	~ംവ28	0.094	0.283	0.911
94	0.400	0,094	·, 044	0.906	. 125	~"O25	0. 098	0.249	0.931
0.96	0.100	0.094	···. 044	0.906	120	~.022	0.098	0.215	0.951
0.98	0.100	0.094	··. 044	0.907	115	···, 018	0.100	0.180	0.970
1,00	0.100	0.093	044	0.907	··. 110	015	0.102	0.145	0.990
1.02	0.100	0.093	044	0.906	105	~.012	0.105	0.111	1.010
1,04	0.100	0.093	~. Q44	0.906	··· 101	-, 008	0.107	0,077	1.030
1 06	0,100	0.093	-, 044	0.905	 097	- OOS	0.110	0.043	1.050
1.08	0.100	0.093	···. 044	0.903	093	OQ1	0.113	0.011	1.070
1.10	0.100	0.092	⊶ . 044	0.902	ogo	0,002	0.116	0.021	1 089
SYS V	P IN	DSG P	ngo n	DSG PF	10 4 6	1553 <i>0</i> 5 - 15	PILIPS PR	##** A and	
0.90	0.120	0.114	058	0.891	10 * 5	SYS F	SYS O	SYS P F	LOAD V
0.92	0.120	0.114	~.O57	0.894	172	050	0.106	0.430	0.890
0.94	0,120	0.113	~.056	0.878	163	~.047	0.107	0.406	0.910
0.96	0.120	0.113	~.OSS		154	~. O44	0.108	0.380	0,930
0.98	0.120	0.113		0.900 0.900	147	041	0.109	0.353	0.950
1.00	0.120	0.113	054 053	0.902	140	038	0.111	0.324	0.970
1.02	0.120			0.904	134	~,035	0.112	0.275	0.990
1.04	0.120	0.113 0.113	053	0.905	128	~,031	O.114	0.264	1.010
1.06			053	0.906	-, 193	028	0.116	0.233	1.030
1.08	0.120	0.113	052	0.908	118	·· .·024	Q.119	0.201	1.050
1.10	0.120	0.112	-,052	0.907	113	·· . 021	0.121	0.170	1.070
	0.120	0.112	052	0.708	109	017	0.123	0.138	1,089
BYS V	P IN	DSG P	DSG Q	DSG PF	10 * 5	SYS P	SYS A	SYS P F	LOAD V
0.9Q	0.140	0.133	075	0.870	210	070	0.123	0.494	0.889
0.92	0.140	0.133	-,073	0.877	198	- 067	0.122	0.479	0.909
J. 94	0.140	0.133	071	0.883	187	-, 064	0.122	0.462	0.930
).96	0.140	0.133	069	0.888	177	Q61	0.123	0.442	0.950
). 9B	0.140	0.133	067	0.892	168	057	0.124	0.421	0.970
L.00	0.140	0.132	. Oáá	0.895	160	·~. 054	0.125	0.398	0.990
1,,02	0.140	0.132	065	0.878	153	051	0.126	0.374	1.010
04	0.140	0.132	064	0.901	146	047	0.127	0.349	1.029
. 06	0.140	0.132	063	0.902	140	044	0.129	0.322	
. , 08	0.140	0.132	062	0.704	134	040	0.131		1.049
. 10	0,140	0.132	062	0.905	129	037	0.133	0.295 0.267	1.069 1.089
YS V	P IN	DSG P	nee n	15 C2 C3 C3 C3 C3	al eta so eta	CD \$ 1 MM . III.			
), 90	0.160	0.152	098	DSG PF	10 * 8	SYS P	sys a	SYS P F	LOAD V
1.92	0.160	0.152	098	0.840	-, 257	089	0.146	0.521	0.887
94	0.160	0.152		0.852	239	086	0.143	0.515	0.708
1. 9 <u>4</u>	0.160	0.152 0.152	090	0.861	224	083	0.141	0.507	0.928
)	0.160		086	0.869	211	080	0.140	0.495	O. 949
.00	0.160	0.152	084	0.876	199	077	0.140	0.481	0.969
.02		0.152	081	0.882	187	074	0.140	0.466	0.989
.02 .04	0.160	0.152	079	0.887	180		0.140	0.448	1.009
.04 .06	0.160	0.152	077	0.891	171	067	0.141	0.429	1.029
. 08	0.160	0.151	076	0.894	163	063	0.142	0.408	1.049
	0.160	0.151	075	0.897	156	060	0.143	0.386	1.069
.10	0.160	0.151	074	0.899	150	056	0.145	0.363	1.089

DATA FOR INDUCTION MACHINE

ORIGINAL PAGE IS OF POOR QUALITY

				LIGHT	LOAD CASE	<u>-</u>	OF P	OOR QUALI	ΤY
SYS V		pag la		DSG PF		SYS P	SYS Q	SYS r F	LOAD V
0.90	0.190	0.170	**. 133	0.789		··.108	0.180	0.515	Q.884
0.92	0.180	0.171	123	0.812		~.1 05	0.172	0.522	0.906
0.94	0.180	0.171	115	0,829		102	0.167	0.523	0.926
0.76	0.180	0.171	~.109	0.843		099	0.163	0.520	0.947
0.98	6.180	0.171	104	0.854		096	0.160	O.514	0.967
1.00	0.180	0.171	100	0.863		~ ↓09\$	0.159	0.505	0.988
1.02	0.180	0.171	097	0.870		090	0.158	0.494	1.008
1.04	0.190	0.171	··· 094	0.874		~. 084	0.157	0.481	1.028
1.06	0.180	Q. 171	091	0.882		083	0.157	0.466	1.048
1.08	0.180	0.171	089	0.886		079	0.158	0.450	1.063
1.10	0.180	0.171	087	0.890	172	076	0.158	0.432	1.088
3YS V	PIN	DSG P	DSG Q	aq aed	10 * S	SYS P	SYS O	SYS P F	LOAD V
0.92	0.200	0.188	175	0.732		- 124	0.224	0.483	0.900
0.94	0.200	0.189	153	0.777	342	121	0.205	0.509	0.923
0.96	0.200	0.190	141	0.803	308	118	0.194	0.520	0.944
0.78	0.200	0.190	···. 132	0.821		115	0.188	0.523	0.965
1.00	0.200	0.190	125	0.836	263	112	0.183	0.522	0.986
1.02	0.200	0.190	119	0.847		109	0.180	0.518	1.006
1.04	0.200	0.190	114	O.857	231	106	0.178	0.511	1.027
1.06	0.200	0.190	110	0.865	~.217	102	0.176	0.502	1.047
1.08	0.200	0.190	~±07	0.872	~.207	099	0.175	0.491	1.067
1.10	0.200	0.190	-,104	0.877	197	- O95	0.175	0.479	1.087
		REPRESE							
SYS V	F IN	DSG F		DSG PF	10 * 5	SYS P	SYS Q	SYS P F	LOAD V
0.90	0,020	0.015	· 019	0.629	026	0.053	0.071	0.602	0.890
0.92	0.020	0.015	020	0.609	025	0.055	0.073	0.605	0.910
0.94 0.96	0.020	0.015	··. 021	0.589	024	0.058	0.075	0.609	0.929
0.98	0.020 0.020	0.015 0.015	~, 022 ant	0.568	023	0.060	0.078	0.511	0.949
1.00			022 027	0.548	~.022	0.062	0.080	0.614	0.769
1.02	0.020 0.020	0.014 0.014	023	0,528	-,021	0.054	0.082	0.616	0.989
1.04	0.020	0.014	024 025	0.509 0.488	~.021	0.067	0.085	0.619	1.009
1.06	0.020	0.014	025	0.468	020 019	0.059	0.087	0.421	1.029
1.08	0.020	0.013	027	0.449	019	0.071 0.074	0.090 0.092	0.622 0.624	1.049
1.10	0.020	0.013	028	0.430	018	0.074	0.095	0.624	1.069
ir a straw	Tar R. Varidas Var	A & A 17.71		0.430		0.076	0,073	U.O.C	1.089
SYS V	P IN	DSG P	nse o i		10 * 8	SYS P	SYS Q	SYS P F	LOAD V
0.70	0.040	0.035	022	O.847	053	0.033	0.074	0.413	0.890
0.92	0.040	0.035	023	0.839	051	0.036	0.076	0.425	0.910
0.74	0.040	0.035	023	0.830	-,048	0.038	0.078	0.437	0.930
0.96	0.040	0.035	·024	0.821	046	0.040	0.080	0.447	0.950
0.78	0.040	0.035	~.025	0.811	045	0.042	0.083	0.457	0.970
1.00	0.040	0.034	02a	0.801	043	0.045	0.085	0.466	0.990
1.02	0.040	0.034	026	0.790	-,041	0.047	0.087	0.474	1.010
1.04	0.040	0.034	027	0.779	-, 040	0.049	0.090	0.482	1.029
1.06	0.040	0.034	028	0.768	038	0.052	0.092	0.489	1.049
1,08	0.040	0.033	029	0.756	037	0.054	0.054	0.496	1.069
1,10	0.040	0.033	030	0.744	035	0 , 0556 _,	0.097	0.502	1.087
				n alı					

B-34

DATA FOR INDUCTION MACHINE LIGHT LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

					HOWD OVER	•		•	
SYG V		DSG P	pse o	DSG PF	10 * S	(00) (05)	PROPOR III.		
0.90	0,060	0០55	027			SYS F	SYS 0	a e eye	
D. 97	0,060	0.055	÷. o28					-	0.891
Q. 94	. OAO	០. ០២៦	UŽB				~ , ••		0.910
0.96		0. បន្ស	029						0.930
0.98	• • • • • • • • • • •	0.054	-, 0229		- ,				0.950
1,00	9.040	0.054	030	0.881					0.970
1.02	' ធ <u>ំ</u> ពី	0.054	Q3Q	0.876		•		0.269	0.990
1.04	0,080	0.054		0.371	101 700			0.285	1.010
1.06	$\hat{O}_{\alpha}\hat{O}_{\alpha}\hat{Q}$	0.053	*** O'51	0.866				0.301	1.030
1.08	0.060	0.053	032	0.860				0.315	1.050
1.10	0.060	0.053	032	0.854		0.034	0,098	0.329	1.070
	A K AND O	O # 12/QUQ	, Q33	O. 648	~.053	0,036	0.100	0.342	1.090
SYS V	F IN	P DEC	Nga a	DSG PF	atara u ara	27 5			
0.90	0.080	0.075	Q35		10 * \$	SYS P	SYS 0	SYS P F	LOAD V
0.92	0.080	0.075	035	0.906	~.108	006	0.086	0.068	0.871
0.94	୍ର ପ୍ରତ୍ର	0.074	035	0.906	103	~.004	0.088	0.043	0.911
0.96	0.080	0.074	035	0.905	099	002	0.090	0.017	0.930
0.98	0.080	0.074		0.904	094	0.001	0.091	0.007	0.950
1.00	0.080	0.074	035	0.902	-,090	0.003	0.093	0.031	0.970
1.02	0.080	0.074	036	0.700	08 <i>7</i>	0.005	0.095	0.054	0.990
1.04	0.030	0.074	036	0.898	083	0.007	0.097	0.076	1.010
1.06	0.080		036	0.896	080	0.010	0.099	0.098	1.030
1.08	0.080	0.073	037	0.893	, 077	0.012	0.101	0.118	1.050
1.10	0.080	0.073	037	0.890	 ∎074	0.014	0.103	0.138	1.070
	A. A. D. D. D.	0.073	038	0.886	071	0.017	0.105	0.157	1.090
SYS V	₽ IN	DSG P	156765 (5)	The property property					
0.90	0.100	0.094		DSG PF	10 * \$	SYS P	SYS Q	SYS P F	LOAD V
0.92	0.100	0.094	045	0.903	139	026	0.097	0.256	0.890
0.94	0.100	0.074	- 044	0.904	132	023	0.098	0.233	0.910
0.96	0.100		044	0.906	126	021	0.099	0.210	0.930
0.98	0.100	0.094	044	0.906	120	019	0.100	0.186	0.950
1.00	0.100	0.094	 044	0.907	115	017	0.101	0.163	0.970
1.02	0.100	0.093	044	0.907	110	014	0.103	0.140	0.990
1.04	0.100	0.093	044	0.906	105	012	0.104	0.116	1.010
1.04	0.100	0.093	044	0.906	101	010	0.106	0.094	1.030
1.08		0.093	044	0.905	097	008	0.108	0.071	1.050
1.10	0.100 0.100	0.093	044	0.903	093	005	0.110	0.049	1.070
T 4 T 77	0.100	0.092	044	0.902	089	003	0.111	0.027	1.090
SYS V	P IN	13 (2) (2) - 124	914 Jan						
0.90	0.120	9 82C	DSG Q D		10 * S	SYS P	SYS Q	SYS P F	LOAD V
9.72	0.120	0.114	058	O.890	172	045	0.110	0.379	0.890
0.94		0.114	057	0.894	163	043	0.110	0.363	0.910
96	0.120	0.113	056	0.898	155	041	0.110	0.346	0.930
	0.120	0.113	055	0.900	- 147	039	0.111	0.328	0.950
98	0.120	0.113	O54	0.902	- 140	-,036	0.112	0.307	0.970
00	0.120	0.113	053	0.904	134	034	0.113	0.287	0.990
.02	0.120	0.113	053	0.905	128	032	0.114	0.269	1,010
.04	0.120	0.113	053	0.906	123	030	0.115	0.249	
04	0.120	0.113	052	0.906	118	- 027	0.116	0.228	1.030
	0.120	0.112	052	0.907	113	025	0.118	0.207	1.050
.10	0.120	0.112	052	0.906	109	023	0.119	0.187	1.070
							rene na da f	U = 10/	1.090

DATA FOR INDUCTION MACHINE LIGHT LOAD CASE

ORIGINAL PAGE IS OF POOR QUALITY

sys V	F IN	DSG P	DSG Q	DSG PF	10 * 5	SYS P	sys Q	esse e e	1 (2022)
0,90	0.140	0.133	075			064	0.127	SYS P F	LOAD V
0.92	0.140	0.133	··· 073			062	0.126	0.452 0.443	0.889
0.94	0.140	0.133	-,071	0.883		-,060	0.125		0,909
0.96	0.140	0.133	- 069			-, 058	0.125	0.433	0.929
Q.98	0.140	0.133	067			O56	0.125	0.421	0.949
1.00	0.140	0.132	046	0.895		OSA		0.408	0.969
1.02	0.140	0.132	045		153	051	0.125	0.394	0.990
1.04	0.140	0.132	064	0.901	146	O49	0.126	0.379	1.010
1.06	Q. 140	0.132	063	0.902	140	047	0.126	0.363	1.030
1,08	0.140	0.132	062	0.904	134	045	0.127	0.346	1.050
1.10	0.140	0.132	062	0.905	128		0.128	0.329	1.070
		w 14-14-60	* 10 tal AL	THE PARTY OF	120	042	0.129	0.311	1.090
WW II	Ph. Thi	was direction to the							
SYS V	FIN	DSG F		DSG PF	10 * 5	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.140	0.152	099	0.839	258	083	0150	0.487	0.887
0.92	0.160	0.152	··· • 094	O.851	240	081	0.147	0.486	0.907
0.94	0.160	0.152	090	0.861	225	079	0.144	0.482	0.928
0.96	0.160	0.152	086	0.869	211	077	0.142	0.477	0.948
0.98	0.160	0.152	084	0.876	-, 200	075	0.141	0.470	0.969
1.00	0.160	0.152	081	0.882	189	073	0.140	0.461	0.989
1,.02	0.160	0.152	079	0.887	180	071	0.140	0.452	1.009
1.04	0.160	0.152	077	0.891	171	069	0.140	0.441	1.029
1.06	0.160	0.151	076	0.894	163	066	0.140	0.429	1.049
1.08	0.160	0.151	075	0.897	156	-, 064	0.140	0.416	1.069
1.10	0,160	0.151	073	0.899	150	062	0.141	0.402	1.089
								1-5-4-1	do H 'p' (u) ?
SYS V	P IN	DSG P	7)/7/2 C:	Y's Physical process	d 195 and				•
0.90	0.180			DSG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.92	0.180	0.170	155	0.788	327	102	0.184	0.486	O.884
0.94		0.171	123	0.812	296	100	0.175	0.497	0.905
0.74 0.76	0.180	0.171	115	0.829	272	O98	0.169	0.502	0.926
	0.180	0.171	109	0.843	253	-, 096	0.145	0.504	0.947
0.78	0.180	0.171	104	0.854	236	094	0.162	0.504	0.967
1.00	0.180	0.171	100	0.863	222	092	0.159	0.501	0.988
1.02	0.180	0.171	-,097	0.870	210	090	0.157	0.497	1.008
1.04	0.180	0.171	-,094	0.876	199	088	0.156	0.491	1.028
1.06	0.180	0.171	·~ " O91	0.882	189	086	0.155	0.483	1.048
1.08	0.180	0.171	087	0.886	180	083	0.155	0.475	1.069
110	0.180	0.171	087	0.890	172	081	0.154	0.466	1.089
SYS V	P IN	DSG P	DSG Q	DSG PF	10 * S	SYS P	SYS Q	eve e e	I man u
0.92	0.200	0.188	176	0.730	402	119		SYS F F	LOAD V
0.94	0.200	0.189	154	0.776	343		0.229	0.461	0.900
0.96	0.200	0.190	141	0.802		117	0.208	0.491	0.922
0.98	0.200	0.190	-, 132	0.802	~.309 ~.207	115	0.197	0.506	0.944
1.00	0.200	0.190	125		283	113	0.189	0.514	0.965
1.02	0.200	0.170		0.836	263	111	0.184	0.518	0.986
1.04	0.200	0.170	119	0.847	246	109	0.180	0.520	1.006
1.04	0.200		- 114	0.857	231	107	0.176	0.519	1.027
1.08	0.200	0.190	110	0.865	219	105	0.174	0.517	1.047
1.10	0.200	0.190	107	0.872	207	103	0.172	0.513	1.048
- · ·	Urzyu	0.190	104	0.877	197	101	0.171	0.508	1.088
									į

TABLE B-VIII

DATA FOR INDUCTION MACHINE

ORIGINAL PAGE IS OF POOR QUALITY HEAVY LOAD CASE

CONSTANT IMPEDANCE LOAD

SYS V	P IN	DSG P	DSG Q	DSG PF	10 * S	SYS P	sys a	SYS P F	LOAD V
0.90	0.020	0.016	017	0.696	031	0.525	0.422	0.779	0.822
0.92	0.020	0.016	017	0.678	030	0.549	0.441	0.780	0.840
0.94	0.020	0.016	018	0.660	028	0.574	0.460	0.780	0.859
0.96	0.020	0.016	019	0.642	027	0.599	0.480	0.781	0.877
0.98	0.020	0.015	019	0.624	026	0.626	0.500	0.781	0.895
1.00	0.020	0.015	020	0.605	025	0.652	0.521	0.782	0.913
1.02	0.020	0.015	021	0.586	024	0.679	0.541	0.782	0.932
1.04	0.020	0.015	022	0.548	023	0.707	0.563	0.782	0.750
1.06	0.020	0.015	022	0.549	022	0.735	0.585	0.783	0.750
1.08	0.020	0.014	023	0.531	022	0.764	0.607		
1.10	0.020	0.014	024	0.512	021	0.793		0.783	0.986
2	AN M. IST SECTOR	ARATT	* 1727	W = 1.1 1 A		9.773	0.629	0.783	1.005
m) (m)									
SYS V	FIN	DSG P		DSG PF	10 * 5	SYS P	SYS Q	SYS F F	LOAD V
0.90	0.040	0.036	020	0.872	062	0.506	0.426	0.764	0.823
0.92	0.040	0.036	021	0.866	O59	0.530	O.445	0.766	0.841
0.94	0.040	0.034	021	0.859	057	0.555	0.464	0.767	0.859
0.96	0.040	0.035	022	0.852	055	0.580	0.484	0.768	0.877
0.98	0.040	0.035	022	0.845	052	0.607	0.504	0.769	0.894
1.00	0.040	0.035	023	0.837	050	0.633	0.524	0.770	0.914
1.02	0.040	0.035	024	0.829	048	0.660	0.545	0.771	0.932
1.04	0.040	0.035	024	0.821	O46	0.488	0.566	0.772	0.950
1.06	0.040	0.035	025	0.812	045	0.716	0.588	0.773	0.969
1.08	0.040	0.034	026	0.803	043	0.745	0.610	0.774	0.987
1.10	0.040	0.034	026	0.793	041	0.774	0.632	0.774	1.005
SYS V	₽ IN	DSG P	DSG Q	DSG PF	10 * S	SYS F	SYS Q	SYS P F	LOAD V
0.90	0.040	0.054	026	0.904	094	0,486	0.433	0.747	0.823
0.92	0.060	0.056	027	0.902	090	0.511	0.451	0.749	0.841
0.94	0,060	0.055	027	0.900	086	0.536	0.470	0.752	
0.96	0.060	0.055	027	0.898	082	0.561	0.470		0.860
0.98	0.040	0.055	027	0.875	079	0.587		0.754	0.878
1.00	0.060	0.055	028	0.873	076		0.509	0.756	0.896
1.02	0.060	0.055	028	0.872	073	0.614	0.529	0.757	0.914
1.04	0.060	0.055	029			0.641	0.550	0.759	0.933
1.06	0.060			0.885	070	0.669	0.571	0.760	0.951
1.08	0.060	0.054	029	0.881	047	0.697	0.593	0.762	0.969
1.10	0.060	0.054	030	0.877	065	0.726		0.763	0.987
TH TA	0.000	0.054	030	0.872	062	0.755	0.637	0.764	1.006
	pro. sp. c.s	700	**************************************	سندست بالدروسوروس	.				
SYS V	P IN	DSG P		DSG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.080	0.075	035	0.905	129	0.467	0.442	0.726	0.823
0.92	0.080	0.075	035	0.906	123	0.491	0.460	0.730	0.841
0.94	0.080	0.075	-,035	0.906	117	0.516	0.478	0.734	0.860
0.96	0.080	0.075	035	0.907	112	0.542	0.497	0.737	0.878
0.78	0.080	0.075	035	0.906	107	0.568	0.517	0.740	0.896
1.00	0.080	0.075	035	0.906	102	0.595	0.537	0.742	0.915
1.02	0.080	0.074	035	0.905	098	0.622	0.557	0.745	0.933
1.04	0.080	0.074	035	0.904	 094,	0.649	0.578	0.747	0.951
1.06	0.080	0.074	035	0.902	091	0.678	0.599	0.749	0.969
1.08									
1.10	0.080 0.080	0.074 0.074	036 036	0.901 0.899	087 084	0.704 0.736	0.621 0.643	0.751 0.753	0.988 1.004

B-37

DATA FOR INDUCTION MACHINE HEAVY LOAD CASE

ORIGINAL PAGE IS

					J J				
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.10	P IN 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG P 0.095 0.095 0.094 0.094 0.094 0.094 0.094 0.094 0.094	048 047 045 045 044 044 044 044 044	0.905 0.906 0.906 0.907 0.907	158150143137130125120115110	SYS P 0.447 0.471 0.496 0.522 0.548 0.575 0.602 0.630 0.658 0.687 0.716	SYS 0 0.454 0.471 0.489 0.508 0.527 0.546 0.566 0.607 0.629 0.651	SYS P F 0.701 0.707 0.712 0.717 0.721 0.725 0.729 0.732 0.735 0.738	LOAD V O.823 O.841 O.859 O.878 O.876 O.914 O.933 O.951 O.969 O.988
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.08 1.10	P IN 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG P 0.114 0.114 0.114 0.114 0.114 0.113 0.113 0.113 0.113	DSG 0 065 063 061 059 057 056 055 054 053	DSG FF 0.849 0.877 0.883 0.892 0.895 0.898 0.900 0.902 0.905	10 * S 211 179 188 178 167 161 154 147 141 135 129	SYS F 0.426 0.451 0.476 0.502 0.528 0.555 0.582 0.610 0.638 0.647	SYS Q 0.470 0.484 0.503 0.521 0.539 0.558 0.577 0.618 0.639 0.660	SYS P F 0.672 0.680 0.687 0.694 0.705 0.715 0.715 0.715 0.722 0.726	LOAD V 0.822 0.840 0.859 0.877 0.876 0.914 0.932 0.951 0.969 0.988 1.006
5YS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG P 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133	DSG 0 089 084 090 077 075 072 070 069 065	DSG PF 0.832 0.845 0.856 0.872 0.878 0.884 0.888 0.892 0.895 0.898	10 * S 268 249 233 219 206 195 186 177 169 161 154	SYS F 0.405 0.430 0.455 0.481 0.508 0.535 0.562 0.590 0.418 0.677	SYS Q 0.472 0.504 0.522 0.538 0.555 0.573 0.571 0.430 0.451 0.672	SYS P F O.635 O.647 O.658 O.667 O.675 O.682 O.689 O.700 O.705 O.710	LOAD V 0.820 0.839 0.858 0.876 0.875 0.913 0.932 0.950 0.969 0.987
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.140 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG F 0.151 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152	DSG Q 129 117 108 102 097 093 089 084 081 080	DSG FF 0.760 0.792 0.814 0.830 0.843 0.854 0.862 0.870 0.876 0.881 0.886	10 * S 364 322 293 270 252 236 223 211 200 190 181	SYS F 0.382 0.408 0.434 0.460 0.487 0.514 0.541 0.569 0.627 0.656	SYS Q 0.529 0.536 0.547 0.561 0.576 0.592 0.609 0.627 0.646 0.665	SYS F F 0.585 0.605 0.621 0.634 0.645 0.655 0.664 0.672 0.679 0.686 0.692	LOAD V 0.814 0.836 0.855 0.874 0.893 0.912 0.931 0.949 0.968 0.987

ORIGINAL PAGE 19 OF POOR QUALITY

DATA FOR INDUCTION MACHINE HEAVY LOAD CASE

				HEAVI L	LUAD CASE				
SYS V 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG F 0.169 0.170 0.171 0.171 0.171 0.171 0.171 0.171	DSG Q 163 141 129 121 114 109 104 101	DSG FF 0.720 0.770 0.797 0.817 0.832 0.844 0.853 0.862 0.869	10 * S 416 351 315 289 269 251 237 224 212	SYS F 0.409 0.437 0.464 0.492 0.520 0.548 0.577 0.606 0.636	SYS 0 0.597 0.597 0.605 0.618 0.632 0.648 0.665 0.683 0.702	SYS P F 0.565 0.591 0.609 0.623 0.635 0.646 0.655 0.643	LOAD V O.850 O.871 O.891 O.910 O.929 O.948 O.967 O.986
SYS V 1.00 1.02 1.04 1.06 1.08 1.10	P IN 0.200 0.200 0.200 0.200 0.200	DSG P 0.189 0.189 0.190 0.190 0.190	DSG Q 168 151 140 132 125 120	DSG PF 0.747 0.782 0.804 0.821 0.835 0.845	10 * S 381 336 306 283 264 249	SYS P 0.448 0.497 0.526 0.555 0.585 0.615	SYS Q 0.661 0.666 0.677 0.691 0.706 0.723	SYS F F 0.578 0.578 0.614 0.627 0.638 0.647	LOAD V 0.906 0.926 0.946 0.965 0.984 1.003

REALISTIC LOAD REPRESENTATION

SYS V	P IN	DSG P	DSG Q	DSG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.020	0.016	016	0.706	032	0.593	0.473	0.782	0.811
0.92	0.020	0.016	017	0.488	030	0.612	0.488	0.782	0.830
0.94	0.020	0.016	018	0.669	029	0.632	0.503	0.782	0.850
0.96	0.020	0.016	018	0.650	028	0.451	0.518	0.782	0.869
0.78	0.020	0.015	019	0.630	027	0.670	0.534	0.782	o.888
1.00	0.020	0.015	020	0.611	025	0.690	0.549	0.783	0.908
1.02	0.020	0.015	021	0.591	024	0.710	0.564	0.783	0.927
1.04	0.020	0.015	021	0.571	023	0.730	0.580	0.783	0.947
1 . OA	0.020	0.015	022	0.551	022	0.750	0.596	0.783	0.966
1.08	0.020	0.014	023	0.531	022	0.770	0.612	0.783	0.985
1.10	0.020	0.014	024	0.512	021	0.791	0.628	0.783	1.005
SYS V	P IN	DSG P	DSG Q	DSG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.040	0.036	020	0.875	064	SYS F 0.574	SYS 0 0.477	SYS P F 0.769	LOAD V 0.812
0.90 0.92	0.040 0.040	0.036 0.036	020 020	0.875 0.869					
0.90 0.92 0.94	0.040 0.040 0.040	0.036 0.036 0.036	020	0.875 0.869 0.862	064	0.574	0.477	0.769	0.812
0.90 0.92 0.94 0.96	0.040 0.040 0.040 0.040	0.036 0.036 0.036 0.036	020 020	0.875 0.869 0.862 0.855	-,064 -,061	0.574 0.593	0.477 0.492	0.769 0.770	0.812 0.831
0.90 0.92 0.94 0.96 0.98	0.040 0.040 0.040 0.040	0.036 0.036 0.036 0.036 0.035	020 020 021 022 022	0.875 0.869 0.862	064 061 058	0.574 0.593 0.612	0.477 0.492 0.507	0.769 0.770 0.770	0.812 0.831 0.850
0.90 0.92 0.94 0.96 0.98	0.040 0.040 0.040 0.040 0.040	0.036 0.036 0.036 0.035 0.035	020 020 021 022	0.875 0.869 0.862 0.855 0.848 0.840	064 061 058 056	0.574 0.593 0.612 0.632	0.477 0.492 0.507 0.522	0.769 0.770 0.770 0.771	0.812 0.831 0.850 0.870
0.90 0.92 0.94 0.96 0.98 1.00	0.040 0.040 0.040 0.040 0.040 0.040	0.036 0.036 0.036 0.036 0.035 0.035	020 020 021 022 023 023	0.875 0.869 0.862 0.855 0.848 0.840	064 061 058 056 053	0.574 0.593 0.612 0.632 0.651	0.477 0.492 0.507 0.522 0.537	0.769 0.770 0.770 0.771 0.772	0.812 0.831 0.850 0.870 0.889
0.90 0.92 0.94 0.96 0.98 1.00 1.02	0.040 0.040 0.040 0.040 0.040 0.040 0.040	0.036 0.036 0.036 0.035 0.035 0.035	020 020 021 022 022 023	0.875 0.869 0.855 0.855 0.848 0.840 0.831	064 061 058 056 053 051	0.574 0.593 0.612 0.632 0.651 0.671	0.477 0.492 0.507 0.522 0.537 0.552	0.769 0.770 0.770 0.771 0.772 0.772	0.812 0.831 0.850 0.870 0.889 0.908
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04	0.040 0.040 0.040 0.040 0.040 0.040	0.036 0.036 0.036 0.036 0.035 0.035	020 020 021 022 023 023	0.875 0.869 0.855 0.855 0.848 0.840 0.831 0.822 0.813	064 061 058 056 053 051	0.574 0.593 0.612 0.632 0.651 0.671	0.477 0.492 0.507 0.522 0.537 0.552 0.568	0.769 0.770 0.770 0.771 0.772 0.772	0.812 0.831 0.850 0.870 0.889 0.908 0.928
0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06	0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	0.036 0.036 0.036 0.035 0.035 0.035	020 021 022 022 023 023	0.875 0.869 0.855 0.855 0.848 0.840 0.831	064 061 058 056 053 051 049 047	0.574 0.593 0.612 0.632 0.651 0.671 0.691	0.477 0.492 0.507 0.522 0.537 0.552 0.568 0.583	0.769 0.770 0.770 0.771 0.772 0.772 0.773	0.812 0.831 0.850 0.870 0.889 0.908 0.928
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04	0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	0.036 0.036 0.036 0.035 0.035 0.035 0.035	020 021 022 022 023 023 024 025	0.875 0.869 0.855 0.855 0.848 0.840 0.831 0.822 0.813	064 058 056 053 051 049 047	0.574 0.593 0.612 0.632 0.651 0.671 0.691 0.711	0.477 0.492 0.507 0.522 0.537 0.552 0.568 0.583	0.769 0.770 0.770 0.771 0.772 0.772 0.773 0.773	0.812 0.831 0.850 0.870 0.889 0.908 0.928 0.947

DATA FOR INDUCTION MACHINE HEAVY LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG P 0.056 0.055 0.055 0.055 0.055 0.055 0.055 0.054	DSG 0 026 027 027 027 028 028 029 029 030	DSG PF 0.905 0.903 0.901 0.899 0.894 0.889 0.884 0.882 0.877	092 088 084 080 077 073 070 068	SYS P 0.555 0.574 0.593 0.612 0.632 0.671 0.671 0.712 0.752	SYS Q 0.484 0.498 0.513 0.528 0.543 0.558 0.573 0.588 0.604 0.619 0.635	5YS P F 0.753 0.755 0.756 0.758 0.759 0.760 0.761 0.762 0.763 0.764	LOAD V 0.812 0.831 0.851 0.870 0.889 0.909 0.928 0.948 0.947 0.964
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG P 0.075 0.075 0.075 0.075 0.075 0.074 0.074 0.074	DSG 0 036 035 035 035 035 035 035 035 035	DSG PF 0.904 0.906 0.907 0.906 0.906 0.905 0.905 0.902 0.901 0.899	126 120 114 109 104 099 095 091	SYS F 0.535 0.554 0.573 0.593 0.612 0.632 0.652 0.672 0.733	SYS 0 0.493 0.507 0.534 0.550 0.565 0.580 0.595 0.410 0.425 0.641	SYS F F 0.735 0.738 0.740 0.742 0.744 0.744 0.747 0.749 0.750 0.753	LOAD V 0.812 0.831 0.851 0.870 0.890 0.909 0.928 0.948 0.947 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG P O.095 O.095 O.095 O.094 O.094 O.094 O.094 O.094 O.094 O.093	DSG Q 048 044 046 045 044 044 044 044	DSG PF 0.890 0.898 0.901 0.903 0.904 0.905 0.906 0.907 0.907	163 154 146 139 132 126 121	SYS F 0.515 0.534 0.554 0.573 0.573 0.613 0.632 0.673 0.673 0.713	SYS 0 0.504 0.519 0.532 0.544 0.560 0.574 0.589 0.604 0.618 0.633	SYS F F 0.713 0.717 0.721 0.724 0.727 0.729 0.732 0.734 0.736 0.738 0.740	LOAD V 0.811 0.831 0.851 0.870 0.870 0.909 0.928 0.948 0.947 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG P 0.114 0.114 0.114 0.114 0.114 0.113 0.113 0.113 0.113	DSG 0 064 062 060 058 057 056 055 054 053	DSG FF 0.845 0.873 0.880 0.894 0.897 0.900 0.902 0.905	10 * S 219 205 193 182 172 165 148 141 135 129	SYS P 0.495 0.514 0.534 0.553 0.573 0.573 0.613 0.633 0.653 0.673	SYS 0 0.523 0.535 0.547 0.560 0.573 0.587 0.600 0.614 0.629 0.643 0.658	SYS F F 0.687 0.693 0.698 0.703 0.707 0.711 0.714 0.717 0.720 0.723 0.725	LOAD V 0.810 0.830 0.850 0.869 0.889 0.909 0.928 0.948 0.947 0.987

DATA FOR INDUCTION MACHINE HEAVY LOAD CASE

OF MODE CALLEY

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	P IN 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG P 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133	DSG 0 092 086 082 078 075 073 067 067 065	DSG PF 0.822 0.838 0.851 0.841 0.870 0.877 0.883 0.891 0.895 0.898	10 * S 282 259 240 224 211 199 188 178 169 161 154	SYS P 0.474 0.493 0.513 0.533 0.553 0.573 0.593 0.613 0.633 0.633	SYS Q 0.547 0.556 0.578 0.579 0.602 0.645 0.642 0.645 0.670	SYS P F 0.655 0.664 0.671 0.678 0.684 0.689 0.694 0.702 0.706 0.709	LOAD V 0.808 0.828 0.848 0.868 0.908 0.908 0.928 0.947 0.947
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.10	P IN 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG P 0.151 0.151 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152	DSG Q 143 123 112 104 099 094 087 084 082 079	DSG PF 0.725 0.776 0.804 0.824 0.839 0.851 0.861 0.869 0.875 0.881	10 * S 409 343 304 279 258 241 224 213 201 191 181	SYS P O.451 O.472 O.512 O.532 O.552 O.572 O.573 O.613 O.633 O.654	SYS Q 0.594 0.595 0.602 0.612 0.622 0.633 0.645 0.645 0.658 0.684	SYS P F 0.605 0.624 0.637 0.648 0.656 0.664 0.671 0.676 0.682 0.687 0.691	LDAD V 0.803 0.825 0.846 0.866 0.887 0.907 0.926 0.946 0.986
SYS V 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG P 0.170 0.170 0.171 0.171 0.171 0.171 0.171	DSG 0 149 133 123 116 110 105 101 097	DSG PF 0.753 0.788 0.811 0.828 0.842 0.852 0.861 0.869	10 * S 373 327 296 273 254 238 224 212	SYS P 0.490 0.511 0.531 0.552 0.572 0.593 0.613 0.634	SYS Q 0.644 0.649 0.657 0.667 0.678 0.689 0.701	SYS P F 0.606 0.621 0.633 0.643 0.651 0.658 0.665	LOAD V 0.862 0.884 0.904 0.925 0.945 0.965 0.965
SYS V 1.00 1.02 1.04 1.06 1.08	P IN 0.200 0.200 0.200 0.200 0.200 0.200	DSG F 0.188 0.189 0.190 0.190 0.190 0.190	DSG 0 177 155 142 133 126 120	0.801 0.819 0.834	10 * S 403 345 311 285 265 248	SYS P 0.509 0.530 0.551 0.572 0.593 0.413	SYS Q 0.699 0.694 0.697 0.704 0.712 0.722	SYS P F 0.588 0.607 0.620 0.630 0.639 0.647	LOAD V 0.899 0.921 0.942 0.943 0.983

TABLE B-IX

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED LIGHT LOAD CASE

CONSTANT INFEDANCE LOAD

ORIGINAL PAGE IS OF POOR QUALITY

								יר אטטא ענ	ALITY
SYS V	PIN	DSG P	nea a	DSG PF	al Charles and all a	25 s.a. 15 - 880	and a part of	ASSESS A BANK NO. TO THE RESIDENCE OF THE PARTY NAMED IN CO.	
0.90	0,020	0.013	Q. Q78	0.168	10 * 5	aya F	SYS 0	SYS F F	LOAD V
0,92	0.020	0.013	0.082			0.052	~.030	ି - ଅଧି	0.901
0.74	0.020	0.013		0.158		0.055	, OJ1	0.869	0.921
0.96	0.020		0,086 6,088	0.148		0.058	033	0.872	0.941
0.78		0.013	0.087	0.139		0.061	··· . 034	0.874	0.961
	0.020	0.012	0.093	0.130		0.065	036	0.877	O.981
1.00	0.020	0.012	0.097	0.122		0,068	037	0.879	1.001
1.02	0.020	0.012	0.101	0.114		0.072	039	0.881	1.021
1.04	6.020 a aga	0.011	0.105	0.107	017	0.075	Q4O	0.882	1.041
1.06	0.020	0.011	0.109	0,099	-,016	0.079	O42	O.884	1.061
1.08	0.020	0.011	0.114	0.093	015	0.083	043	୦₊ ସଥ∂	1.091
1.10	0.020	0.010	0.118	0.087	~"Ö15	0.087	045	0.887	1.101
SYS V	F IN	ose P	DSG Q	DSG FF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.040	0.033	0.076	0.402	049	0.032	027	0,760	0.902
0.92	0,040	0. 033	0.080	0.385	- 047	0.035	029	0.774	0.922
0.94	0.040	0.033	0.083	0.365	-,045	0.038	-,030	0.795	0.742
0.96	0.040	0.032	0.087	0.348	043	0.042	032	0.794	0.942 0.962
0.98	0.040	0.032	0.091	0.332	- 041	0.045	-,033	0.803	0.982
1.400	0,040	0.032	() . () ១១៦	0.317	039	0.048	035	0.811	1.002
1.02	0.040	0.032	0.099	0.303	OZ8	0.052	037	0.817	1.022
1.04	0,040	0.031	0,103	0.289	034	0,056	038	0.823	
1,06	0.040	0.021	0.108	0.276	035	0.059	040	0.829	1.042
1.03	0.040	0.031	0.112	0.263	033	0.063	-,042		1.062
1.10	O.OAO	0,030	0.116	0.252	032	0.065 0.067	043	0.834 0.839	1.082
			- 4	The Miles of hell place)	en var eur de.	Tar it Tar Lad /	14 27/24/20	SATE CONTRACT	1.102
sys v	P IN	DSG F	DSG 0	DSG PF	10 * 5	SYS P	SYS 0	SYS P F	1 /"/A" U
0.90	0.060	0.053	0.071	0,599	076	0.012	~.Q22	0.471	LOAD V
0.92	0.060	0.053	0.075	0.577	072	0.015	~.024		0.902
0.94	0.060	0.053	0.079	ំ. ១១១	069	0.018	024	0.551	0.922
0.96	0.060	0.052	0.083	0.533	066	0.022	028	0.579 0.43	0.942
0.98	0.060	0.052	0.087	0.512	-,063	0.025	-,029	0.617	0.962
1.00	0.060	0.052	0.071	0.492	060	0.029	- 031	0.650	0.982
1.02	0,060	0.051	0.096	0.473	058	0.032		0.676	1.002
1.04	0.040	0.051	0.100	0.455	056	0.034	-,033	0.698	1.022
106	0.050	0.051	0.104	0.438	053	0.039	~.035	0.716	1.042
1.08	0.000	0.050	0.109	0.421	05:	0.037	037	0.732	1.062
1.10	0.060	0.050	0.113	0.405	045	0.047	039 - 040	0.746	1.082
			14F	W B TTWO	# (Co.4.)	V. OT7	- _* 040	0.759	1.102
SYS V	P IN	DSG P	DSG Q	USG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.080	0.073	0.064	0.753	103	-,008	Q15	0.469	0.902
0.92	0.080	0.073	0.068	0.729	098	005	017	0.265	0.722
0.94	0.080	0.072	0.073	0.706	094	001	019	0.076	0.942
0,96	0.080	0.072	0.077	0.684	, 090	0.002	021	0.084	0.742
0,98	0.080	0.072	0.081	0.462	086	0.005	024	0.216	0.702
1.00	0.080	0.072	0.086	0.641	082	0.009	026	0.322	1.002
1.02	0.080	0.071	0.090	0.619	079	0,012	028	0.407	1,022
1.04	0.080	0.071	0.095	0.599	075	0.012	030	0.473	
1.04	0.080	0.071	0.099	0.579	073	0.020	032	0.473 0.525	1.042
1,08	0.080	0.070	0.104	0.560	070	0.023	032 034		1.062
1.10	0.080	0.070	0.109	0.541	067	0.023	036	0.568 0.404	1.082
		· · · · · · ·		B-42	H SESALE	Park III. Park John Jr.	i sandi	0.604	1.102
				D-46					•

OF POOR OUALITY

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED
LIGHT LOAD CASE

,									
SYS V	/ PIN	D56 P	096-0	D36 PF	10 * S	633.263 PV			
0.20	$\phi_{s}/\phi\phi$	0.093	Q, Q54			eys p	SYS Q	9 4 BYB	L DAD A
0.92	0.100	0.073	0,059	10,,			™. QOS		O ₆ 902
6.94	0.100	0.092	0.064				⊷"ហិនិ		0.922
0.96	0.100	0.092	0.069				~.O11		0.942
0.98	0.100	0.072		- 17 . 7			013	, , ,	0.962
1.00	0.100	0.092	0.024	0.781	109		- OI6	0.683	0.982
1.02	0.100		0.078	0.760			018	0.524	1.002
1.04	0.100	0.091	0.083	Q.739		008	···. 021	0.347	1.022
1.06		0.091	0.088	0.718	096	~, QQ4	023	0.171	1.042
1,08	0.100	0.090	0.093	0.697	092	, OQO	025	0.008	1.062
	0.100	0.090	O. 098	0.678	~ . O88	0.064	028	0.127	1.082
1.10	0.100	0.090	0.103	0.458	Q85	0.007	Q3Q	0.239	1.103
								to a district of	A 1 4 1/2 (m)
SYS V	PIN	tycoty in	Vikerson an						
0.90	0,120	DSG P		DSG PF	10 * 8	SYS P	SYS Q	SYS P F	LOAD V
0.92		0.113	0.041	0.939	1 <i>4</i> 5	048	0.007	9.988	0.901
	0.120	0.112	0.047	0.923	156	O44	0.004	0.996	0.922
0.94	0.120	0.112	0.053	0.906	148	041	0.001	1.000	0.942
0.96	0.120	0.112	O. 058	0.888	141	038	002	0.998	0.962
0.98	0.120	0.112	0.063	0.870	134	-,034	006	0.987	
1.00	0.120	O.111	0.069	0.851	128	031	008		0.982
1.02	0.120	0.111	0.074	0.832	123	027	011	0.964	1.002
1.04	0.120	0.111	0.079	0.813	117	024		0.924	1.022
1,06	0.120	0,110	0.085	0.794	113	020	014	0.859	1.042
1.08	0.120	0.110	0.090	0.774	108		017	0.765	1.067
1.10	0.120	0.110	0.095	0.755	104	016	020	0.437	1.082
			· - 11 · 14 · 7 · 112	'A' # / LJ LJ	* T (*) *+	012	022	O.487	1.103

SYS V	P IN	DSG P	DSG Q	DSG PF	10 # 8	SYS F	SYS Q	C)\/C) (") (")	
0.90	0.140	0.132	0.024	0.983	202	068	0,024	SYS P F	LOAD V
0.72	0.140	0.132	0.031	0.973	- 190	064		0.941	0.900
0.94	0.140	0.132	0.038	0.961	180		0.019	0.957	0.921
0.96	0.140	0,132	0.044	0.948	170	-,061	0.015	0.971	0.941
0.98	0.140	0.131	0.051	0.933		058	0.011	0.982	0.961
1.00	0.140	0.131	0.057	0.718	162	054	0.007	0.991	0.982
1.02	0.140	0.131	0.063		154	051	0.004	O.998	1.002
1,04	0,140	0.131		0.902	147	047	0.000	1.000	1.022
1.06	0.140	0.130	0.069	0.885	140	044	-,003	0.997	1042
1 , 08	0.140	0.130	0.074	0.868	134	040	007	Q., 986	1,062
1,10	0.140		0.080	0.851	128	O36	010	0.965	1.082
4. 11 4. 34.	ለያ # ፲ º ተ የ_1	0.130	0.084	0.833	123	032	013	0.928	1.102
SYS V	P IN	DSG P	DSG Q I	162 <i>6</i> 2 858 - 4	Lata us ma	6445 E & 5445			
0.90	0,160	0.152			10 * S	SYS F	SYS Q	SYS P F	LOAD V
0.92	0.160		0.002	1.000	247	-,087	0.047	0.882	0.899
0.94		0.152	0.011	0.997	-,230	084	0.040	0.904	0.919
	0.160		0.019	0.992	216	- OB1	0.034	0.923	0.940
0.96	0.160	0.151	0.027	0.984	203	078	0.028	0.940	0.960
0.98	0.160	0.151	0.035	0.975	192	074	0.023	0.754	0.781
1.00	0.160	0.151	0.042	0.964	182	071	0.018	0.968	
1.02	0.160	0.151	0.049	0.952	173	067	0.014		1.001
1.04	0.160	0.150	0.055	0.938	165	063	0.010		1.021
1.06	0.160	0.150	0.062	0.924	157	060		0.988	1.042
1.08	0.160	0.150	0.068	0.910	150		0.006	0.995	1.062
1.10	0.160	0.149	0.075	0.895	144	05&	0.002		1.082
	·	- · •	er er ren gribad	the state of had	. n . L =1.←1	052	002	0.999	1.102

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED LIGHT LOAD CASE

SYS V	/ PIN	DSG P	DSG C	DSG PF	10 * 5	SYS P	SYS Q	COMPORTS IN	1 /3 /3 /3
$\phi_* 9 \alpha$	0,180	0.171	* . O 32			107		9YS P F 0.802	
0.92	0.180	0.171	018					- 1	0.896
Q.94	0.180	0.171	- 004			- 101			9.917
0.76	0.180	0,171	0.005		-		0.059	.,	0.938
0.98	0. 18ŏ	0.171	0.014		, ,				0,959
1.00	0.180	0.170							Q . 979
1.02			0.023			-	0.032	0.925	1,000
	0.180	0.170	0.031			•	0.031	O.941	1.020
1.04	0.180	0.170	0.039			(0.026	0.955	1.041
1.06	0.180	0.170	0.047			OBO	0.021	0.967	1.061
1.08	0.180	0.169	0.054			076	0,016	0.978	1.081
1.10	0.180	0.169	0.061	0.941	166	~. o72	0.012	0.987	1.102
								2 4 4 4 4 4 4	tel M. 161 JS, spel
SYS V	MI H	DSG P	DSG Q	DSG PF	10 * S	SYS P	sys Q	SYS P F	LOAD V
0.92	0.200	0.190	067	0.944		124	0.116	0.728	
O.94	0.200	0.190	043			**. 121			0.913
0.96	0.200	0.190	026	0.991			0.095	0.784	0.935
0.98	0,200	0.190	013			117	0.081	0.822	0.956
1.00	0.200	0.170		0.998		114	0.070	0.851	0.977
1.02			~.001	1.000		110	0.061	0.875	0.998
	0.200	0.190	0.009	0.999		10 7	0.053	0.896	1.019
1.04	0.200	0.190	0.019	0.995		103	0.046	0.914	1,040
1.06	0.200	0.189	0.028	Q. 989	210	~. 099	0.039	0.930	1.060
1.08	0.200	0.189	0.037	0.982	200	096	0.033	0.944	1.080
1.10	0.200	O. 189	0.045	0.973	190	092	0.028	0.957	1.101
								W = 7 (4.7)	# # T- 12 T
11.00 A. L. W.									
REALI	STIC LOA	D REPRES	ENTATION	N .					
									•
SYS V	P IN	DSG P		DSG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD Y
0.90	0.020	0.013	0.078	0.168	023	0.056	026	0.908	0.900
O.92	0.020	0.013	0.082	0.158	022	0.059	028	0.703	0.700
0.94	0.020	0.013	0.086	0.148	021	0.061	~.030	0.896	
0.96	0.020	0.013	0.089	0.139	020	0.063	032		0.941
0.98	0.020	0.012	0.093	0.130	019			0.890	0.961
1.00	0.020	0.012	0.097	0.122		0.066	-,035	0.884	0.981
1.02	0.020	0.012	0.101		018	0.048	037	0.878	1.001
1.04	0.020	0.011		0.114	018	0.071	040	0.872	1.021
1.06	0.020		0.105	0.107	017	0.073	042	0.867	1.041
1.08		0.011	0.107	0.099	016	0.076	045	0.841	1.061
	0.020	0.011	0.114	0.093	015	0.078	···.047	0.855	1.082
1.10	0.020	0.010	0.118	0.087	O15	0.080	050	O.850	1.102
/m>//m									
SYS V	P IN	DSG F	DSG Q	DSG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.040	0.033	0.076	0.403	049	0.037	023	0.843	0.901
0.92	0.040	0.033	0.079	O.384	047	0.039	026	0.835	
0.94	0,040	0.033	0.083	0.366	045	0.041			0.921
0.96	0.040	0.032	0.087	0.349	043	0.041 0.044	028	0.828	0.941
0.98	0.040	0.032	0.091	0.332			030	0.822	0.961
1.00	0.040	0.032	0.075		041	0.046	033	0.816	0.981
1.02	0.040	0.032		0.317	-,039	0.048	035	0.809	1.002
1.04	0.040		0.099	0.303	038	0.051	038	0.804	1.022
1.04		0.031	0.103	0.289	-,036	0.053	- " 040	0.798	1.042
	0.040	0.031	0.108	0.276	035	0.,056	043	0.792	1.062
1.08	0.040	0.031	0.112	0.263	033	0.058	046	0.787	1.082
1.10	0.040	0.030	0.116	0.251	032	0.061	048	0.782	1.102
				B-44		•	•	107	

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED LIGHT LOAD CASE

5Y5 V	F IN	DSG P	psa a	DGO PE	10 * 8	SYS P	SY9 0	SYS P F	LOAD V
$\alpha_s 90$	0,060	0.053	0.071	0.601	≈, 07€	0.017	018	0.668	0.401
0.92	0.060	0.053	0.075	0.577	072	0.019	.021	0.671	0.922
0.94	0.060	0.053	0.079	0.595		0.021		0.672	0.942
0.96	0.060	0.052	០.០83	0.534	-, 066	0.024	. 026	0.673	0.982
0.98	0.060	0.052	0.087	0.512	÷ Ωδιβ	0.026	··. 029	0.674	0.982
1.00	0,060	0.052	0.091	0.492		0.028	· 031	0.673	1.002
1.02	០, ០ភូទ	0.051	0.096	0.475	058	0,031	034	0.673	1.022
1.04	0.060	0.051	0.100	0.455	∾. 0ã6	0.033	··· , O.5.7	0.672	1.042
1.06	0.060	0.051	0.104	0.437	··. 053	0.036	∞, O4O	0.671	1.062
1.08	0.060	0.050	0.109	0.420	. 051	0.038	~, 042	0.670	1.083
1,10	0.060	0.050	0.113	0.404	049	0.041	045	Q.669	1.107
u, ii w, g.	The Market Market	CONTRACTOR	To € Pt He He Sect	MARINE TO STORY	H STORY	01001	THE SAFET SOF	## GG7	ale will de Nothal
SYS V	F IN	DSG P		DSG PF	10 * \$	SYS F	SYS C	SYS L' F	LOAD V
0.90	O, OBO	0.073	0.064	0.754	103	003	~. O11	0.273	0.901
0.92	0.080	0.073	0.068	0.730	~. o98	~.001	- u O14	0.063	0.922
0.94	O" OBO	0.072	0.073	0,707	- O94	0.002	017	0.088	0.942
0.96	0.080	0.072	0.077	0.685	090	0.004	020	0.188	0.962
0.98	0.080	0.072	0.081	0.662	Q86	0.006	023	0.262	0.982
1.00	0.080	0.072	0.086	0.641	082	0.009	026	0.317	1.002
1.02	0.080	0.071	0.090	0.619	÷, 079	0.011	~ " Q29	0.361	1,022
1.04	0.080	0.071	0.095	0.599	~.075	0.013	o32	0.392	1.043
1.06	O.OBO	0.071	0.100	0.579	072	0,016	035	0.418	1,063
1.08	0.080	0.070	0.104	0.559	-,070	0.018	038	0.438	1.083
1.10	0.080	0.070	0.109	0.541	067	0.021	-,041	0.455	1.105
SYS V	FIN	DSG P	nsa n	DSG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.90	0.100	0.093	0.054	0.864	133	023	002	0.998	
0.92	0.100	0.093	0.059	0.844	126	021	005	0.972	0.901
0.94	0.100	0.092	0.064	0.823	120	018	008		0.921
0.96	0.100	0.092	0.067	0.802	115	016	012	0.912 0.810	0.942
0.98	0.100	0.092	0.074	0.781	109	014	015		0.962
1.00	0.100	0.092	0.078	0.759	105	011	018	0.676	0.982
1.02	0.100	0.071	0.083	0.739	100			0.524	1.002
1.04	0.100	0.091	0.088	0.718	096	00 <i>4</i>	021	0.381	1.023
1.06	0.100	0.090	0.093	0.710	~"07G		025	0.251	1.043
1.08	0.100	0.090	0.078	0.677		QQ4	028	0.137	1.063
1.10	0.100	0.070	0.103		088	001	031	0.046	1.083
والجراماة المادية	AND SERVED	W H 1217 121	0 1 100	0.657	O85	0.001	035	0.029	1.103
•									
SYS V	P IN	DSG P	DSG Q	DSG PF	10 * 8	SYS P	SYS Q	SY8 F F	LOAD V
0.90	0.120	0.113	0.041	0,939	165	043	0.011	0.967	0.901
0.92	0.120	0.112	0.047	0.923	156	041	0.007	0.785	0.921
0.94	0.120	0.112	0.052	0.906	: 1.48	038	0.003	0.997	0.941
0.96	0.120	0.112	0,058	0.888	141	036	001	1.000	0.962
.O.98	0.120	0.112	0.063	0,870	134	033	005	0.990	0.982
1.00	0.120	0.111	0.069	0.851	128	031	-,009	0.964	1.002
1.02	0.120	0.111	0.074	0.832	123	029	012	0.918	1.022
1.04	0.120	0.111	0.079	0.812	117	026	016	0.852	1,043
<u> 1.06</u>	0.120	0.110	0.085	0.793	112	024	020	0.769	1.063
1.08	0.120	0.110	0.090	0.774	108	021	024	0.672	1.083
1.10	0.120	0.110	0.095	0.754	104	019	-,027	0.567	1.103
						· ·	promote gr	THE WAY THE F	and the second of the second

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED LIGHT LOAD CASE

Sig V	क्षा स	មិនប៉ុ 🕜	1/36 0	हे हो ल हिन्ह	10 4 5	SYS I	SYS D	SYS P F	เมลม ง
4 3 1 m	0.140	0.432	$O_{\mathbf{n}} O_{\mathbf{n}}^{\mathbf{n}} A_{\mathbf{n}}^{\mathbf{n}}$			es. ()6: 3	ប ្ចប់រួម្ប	0.912	0,900
$\{j\}_{\mathbf{H}}^{-1}\mathbf{y}_{\mathbf{A},\mathbf{C}}^{+1}$	0.140	0.132	0.0.1	0.973		ം വ്യക്	0.023	0.936	0.926
1.44	0.140	0.132	$\phi_{s}\phi_{s}^{*}\phi_{s}^{*}\beta$. 190	< , ០៦ព	0.010	0.957	941
13, 6, 9	O_{π} 140	0.1%.	0.044			- ១ភូភ	0.013	0.975	0.961
G. 98	0.140	0.131	0.951	6,933		÷ ព្រឹត្តិ	0.068	0.989	0,961
1 , (10)	0.140	0.131	0.097	0.918		· .051	0.00	0.994	1.000
1.62	0,440	0.131	ប.បន្ទ	0.902	-,147	OAB	··· COL	1,000	1.022
1.04	0.140	0.131	0,969	0.885	140	-, 046	, 00°;	0.993	1.042
1.06	0.140	0.130	0.074	0.968	1 34	044	010	0.922	1.042
1.06	0.140	0.130	០ ១៩០	0.651	128	041	··· 014	0.946	1.083
1.10	0.140	0.130	0.086	0.833	123	∞. μ39	019	0.907	1.103
					20 May 12,	# W W	M .44. Hr 365	104 7107	# # # A.T.
SYS V	PIN	DSG P	31 6 37.2 75	DSG PF	10 * S	my/m m	mars en	THE SAME AND THE	4
0.90	0.160	0.152	0.001	1,000	246	978 P 082	SYS O	SYS P F	LOAD V
0.92	0.160	0.152	0.011	0,798	231		0.051	0.852	0.698
0.94	0.160	0, 152	0.019	0.770		···. 080	0.043	0.891	0.919
0,96	G. 160	0.151	0.027	0.772	216 203	078	0.036	0.906	0.739
↓	0.160	0.151	0.027	0.975		075	0.030	0.930	0.960
1.00	0.160	0.151	0.042	0.964	192	073	0.024	0.950	0.981
1.02	0.160	0.151	0.042	0.952	182 173	071	0.018	0.968	1.001
1.04	0.160	0.150	0.055	0.732		~. 048	0.013	0.982	1.021
1.06	0.140	0.150	0.053		- 164	066	0.008	0.993	1.042
1.08	0.160	0.150	0.068	0.924	157	063	0.003	0.999	1.062
1.10	0.160	0.149	0.075	0.909 0.894	150	061	~.002	0.999	1.083
46 M 46 17	ter in the surface	A P. T. A.	Wa W/W	V = (374	143	058	007	0.994	1.103
SYS V	ь ти	DSG F	क्षाद्धाः त	DSO PF	10 * 5	SYS P	sys Q	C)/C C C	1 77 475 11
0.90	0180	0.171	032	0.983	312			SYS P F	COAD V
Q. 923	0,180	0.171	018	0.995		102	0.084	0.772	0.895
0.94	0.180	0.171	-,004		283	100	0.071	0.813	0.916
0.74	0,180	0.171	0.005	0.999	261	098	0.061	0.847	0.938
0.78	0.180	0.171	0.014	1,000	243	095	0.05%	0.877	0.959
1.00	0.180	0.170	0,023	0.997	227	093	0.044	0.902	0.979
1.02	0.180	0.170		0.991	214	-,090	0.037	0.925	1.000
1.04	0.180	0.170	0.031 0.039	0.984	202	088	0.030	0.945	1.021
1.04	0.180	0.170		0.974	191	086	0.024	0.963	2.041
1.08	0,180	0.169	0.047 0.054	0.964	182	083	0.018	0.977	1.061
1,10	0.180	0.169		0.953	173	081	0.012	0.989	1.082
4. 9. 4.5.7	Mark CM	OHIOT	0.061	0.940	-,166	078	0.007	0.996	1.102
SYS V	gy TLJ	1)(2)(2 P)	Profession City	4.5 64.6.4 64.500	al 2°s	FM L J FM			
		DSG P			10 # 5	SYS P	sys o	SYS P F	LOAD V
0.92	0.200	0.190	067	0.943	376	119	0.121	0.704	0.912
0.94 0.04	0.200	0.190	043	0.975	327	117	0.098	0.766	0.934
0.96 5.00	0.200	0.190	027	0.990	295	115	0.083	0.810	0.956
0.98	0.200	0.190	013	0.998	272	113	0.071	0.845	0.977
1,00	0.200	0.190	001	1.000	252	110	0.061	0.875	0 , 998
1.02	0.200	Q.190	0.009	0.999	236	108	0.052	0.900	1.019
1.04	0.200	0.190	0.019	0.995	222	105	0.044	0.923	1.040
1.06	0.200	0.187	0.028	0.989	210	103	0.036	0.943	1.060
1.08	0.200	0.189	0.037	0.981	199	101	0.029	0.960	1.081
1.10	0.200	0.189	0.045	0.973	190	098	0.023	0.974	1.101

ORIGINAL PAGE IS OF POOR QUALITY

TABLE B-X

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED HEAVY LOAD CASE

CONSTANT IMPEDANCE LUAD

579 V		DSG P	មនុក្ខ	DSG PF	10 # \$	SYS P	SYS O	SYS F F	LOAD V
0.90	9,020	0.014	0.066	0.211	028		0.348		0.851
0.92	0.020	0,014	0.070	0.199		0.563	0.365		0,849
Q.94	0.020	0.014	0.073	0.186		0.589	0.379		0.000
0,90	0.020	0.014	0.076	0.177		0.615	0.395		්. සේස
0.98	0,020	0.013	0.079	0.167		0.641	0.412		
1.00	0.020	0.013	0.082	0.156	022	0.669	0.429		0,905
1.02	0,020	0.013	0.086	0.147		0.697	0,446		0.923
1.04	0,020	0.013	0.089	0.139	020	0.725	0.464		0.942
1.06	0.020	0.012	0.093	0.131	- 019	0.754	0.482		0.960 6.070
1,08	0,020	0.012	0.096	0.123	019	0.783	0.500	0.843	0.978
1.10	0.020	0,012	0.100	0.115	OIB	0,813	0.500		0.957
						SIZE.	78 # FM T. A.	Q.843	1,015
(55)/75 13	P4 Pas	was seen as							
SVS V	P IN	DSG P		DSG PF	10 * 3	SYS P	SYS O	SYS P F	LCAD V
0.90	0.040	0.034	O. OAT	0.476	058	0.519	0.352	0.828	0.832
0.92	0.040	0.034	0.067	0.456	-, 056	0.544	0.367	0.829	0.850
0.94	0.040	0.034	0.070	0.436	~. OB&	0.570	o. Men	0.830	0.869
0.96	0.040	0.034	0.073	0.417	051	0.596	0.399	0.931	0.887
0.98	0.040	Q.033	0.077	0.399	049	0.622	0.415	0.832	0.905
1.00	0.040	0.033	0.080	0.382	047	0.650	0.432	0.833	0.724
1.02	0.040	0.033	6.094	0.368	- " OAE	0.678	0.449	0.833	0.942
1.04	0.040	0.032	0.087	0.350	043	0.706	0.467	0.834	0.742
1.06	0.Q4Ç	្ព ុពាធិ្ធ	0.091	0.335	~.041	0.735	0.435	0.835	
1.08	0.040	7. 1 3.2	0.094	0.521	~. 040	0.764	0.503	0.835	0.979
1.10	O.CEO	ro, o.g	0.078	0.307	- 038	0.794	0.521	0.83a	0.798 1.0.4
					- - 101 100	· # / / T	To the finding of	2014-03-03-03-03	1.0 6
SYS V	P IN	DSG P	#N/50) (n	Windstein engen					
0.90	0.060		DSG O		10 * S	SYS F	SYS 0	SYS 2 F	LOAD V
0.92	0.060	0.054	0.059	0.686	-,090	0.50Q	O.358	0.813	0.833
0.94		0.054	0.061	0.662	**# 086	0.529	0.3 7 3	0.615	0.850
0.96	0.060	0,054	0.065	0.639	082	0.550	0.388	0.817	0.869
	0.040	0.053	0.068	0.617	Q78	0.577	0.404	0.819	0.887
0.98	0.060	0.053	0.072	0.575	075	0.600	0.421	0.820	0.906
1.00	0.040	0.053	0.075	0.574	"".07 2	0.631	0.437	0.822	0.924
1.02	0.060	0.053	Q. 079	0.554	··• 069	0.658	0.454	0.823	0.943
1.04	0.060	0.052	0.083	0.534	066	0.487	0.471	0.824	0.740
1,06	0.060	0.052	0.087	0.515	063	0.716	0.489	0.824 0.824	0.781 0.980
1.08	0.060	9.052	0.091	0.497	-,061	0.745	0.507	0.827	0.700
1.10	0.060	0.052	0094	0.479	059	0.775	0.525	0.828	1.016
•								on a solding	4 H 2/ 4 🖾
SYS V	PIN	DSG P	DSG Q I	NOTE TO THE PERSON OF	1.60 0 0				
0.90	0,080	0.074	0.049		10 * 5	SYS P	SYS Q	SYS P F	LOAD V
0.92	0.080	0.074		0.835	124	0.480	O. 367	0.795	0.832
0.94	0.080	0.074	0.053	0.813	118	0.505	0.381	0.798	0.851
0.96	0.080	0.073	0.057	0.791	112	0.531	O.396	0.801	0.869
0.98	0.080		0.061	0.770	107	0.557	0.412	0.804	0.688
1.00	0.080	0,073 0.073	0.045	0.748	~.102	Q., 584	0.428	0.807	0.905
		0.073	0.069	0.727	978	0.611	0.444	0609	0.925
	0.080	0.073	0.073	0.706	~094	0.659	0.461	0.811	0.943
	0.080	0.072	0.077	0.685	096	0.667	0.478	0.013	0.961
	0.980 0.080	0.072	0.081	0.655	086	0 ሪ ዎሪ	0.495	0.815	o. 980
	0.080	0.072	0.085	0.645	084	0.726	0.513	0.817	0.998
1,10	0.080	0.071	0.089	0.625	080	0.756	0.531	0.818	1,017
				B-47			· 	· see no tot	were to the f
				- #					

TABLE B-X, cont.

ORIGINAL PAGE IS OF POOR QUALITY

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED HEAVY LOAD CASE

					0				
5Y5 7	F 1N	ogg e	ns6 ()	D56 PF	10 * 5	978 P	sys e	SYS P F	LOAD V
1, 2 4 Y 4 Y	O _w (Qn)	3,1194	0,032	0.031	~.160	0.460	0.378	0.772	0.832
9.9.	1 1 1 1 1	$O_B O 94$	() \pi 4 \}	0.914	~.152	0.485	0.392	0.777	0.850
() , 'y.7	$x_n \downarrow OO$	$O_{\mu}O/\sqrt{3}$	0.046	0.697	ee, 145)	1.511	0.407	0.782	Q. 867
O. Vá	1.100	$\phi_a \phi \phi \beta_a$	0.051	o#378	130	0.537	0.422	0.786	0.837
O. 98	$\phi_{*}1\phi\phi$	0.093	ϕ_* OSS	0.860	131	0,564	0.437	0.790	0.906
La COS	Θ_{*} 1400	0.093	9.069	0.840		0.591	0.453	0.794	0.925
1.02	0.100	0.092	Q. 064	0.821	120	0.619	0.469	0.797	0.943
1.44	0.100	0.092	0.069	0.802	115	0.648	0.436	0.800	0.962
1,06	9.100	0.092	0.073	0.283	110	0.627	0.503	0.802	0.980
1. េខ	0.100	$_{9,092}$	0.077	0.763		0.706	0.521	0.805	0.999
1.10	0.100	0.091	0.082	0.744	a 1Q1	0.736	0.539	0.807	1.017
avs v	FIN	DSG P	DSG 0	DSG PF	10 * 3	SYS P	SYS O	SYS P F	LOAD V
0.50	0.120	0.113	0,020	0.985	204	0.439	0.394	0.744	0.831
0.92	0.120	0.113	0.026	0.975	192	0.464	0.407	0.752	0.850
0.94	0.120	0.113	0.032	0.963	181	0.490	0.421	0.759	0.830
0.96	0.120	0.113	0.037	0,950	171	0.517	0.435	0.765	0.887
0.98	0.120	0.113	0.043	0.936	163	0.544	0.450	0.700	0.906
1.00	0,120	0.112	0.048	0.920	155	0.571	0.465	0.776	0.700
1.02	0.120	0.112	0.053	0.905	148	0.599	0.481	0.780	0.743
1.04	0.120	0.112	0.058	0.888	141	0.627	0.497	0.783 0.784	0.743
06	0.120	0.112	0,063	0.872	135	0.657	0.513	0.788	0.780
1.08	0.120	0.111	0.068	0.854	129	0.686	0.530	0.791	0.760
1.10	6.120	0.111	0.073	0.837	124	0.716	0.548	0.791	1.017
		2.11.1	27 11 727 7 121	7p* [6 3m2*5m* 9	4 A. disc***	7 L 7 L L	Gra GIFTGI	0.774	1.017
SYS V	P IN	DSG P	DSG Q	DSG PF	10 * S	SYS P	sys a	SYS P F	LOAD V
0.90	0.140	0.133	OO4	1.000	258	0.417	0.416	0.708	0.829
0.92	Q.140	0.133	0.005	0. 999	240	0.443	0.427	0.720	0.848
0.74	0.140	0.133	0.012	0.996	224	0.469	0.439	0.730	0.867
0.96	O, 140	0.133	0.019	0.990	211	0.495	0.452	0.739	0.886
0.98	0.140	0.132	0.026	0.981	199	0.523	0.465	0.747	0.866
1.00	0.140	0.132	0.032	0.971	188	0.550	0.479	0.754	0.703
1,02	0.140	0.132	0.038	0.960	179	0.578	0.494	0.760	0.742
1.04	0.140	0.132	0.044	0.748	170	0.607	0.510	0.766	0.742
1.06	0.140	0.131	0.050	0.735	162	0.636	0.526	0.771	0.979
1.08	0.140	0.131	0.056	0.921	155	0.666	0.542	0.775	0.777
1.10	0.140	0.131	0.061	0.906	148	0.696	0.559	0.780	1.017
		Carrier Mar 1985 and	Sale as see fine by		# 'Tr.1 (*)	VII () / L)	V a CiC /	0.700	14017
SYS V	P IN	DSG P	pse e	DSG PF	10 * 5	SYS P	sys Q	SYS P F	LOAN U
0.90	0.160	0.152	043	0.962	347	0.393	0.452		LOAD V
0.92	0.160	0.152	027	0.782	347 309	0.420	0.456	0.656	0.826
0.94	0.160	0.152	015	0.764	282	0.420		0.677 0.487	0.846
0.75 0.96	0.160	0.152	005	0.773	262	0.447	0.464	0.693 0.707	0.865
0.78	0.160	0.152	0 004	1,000	243	0.474	0.474	0.707	0.884
1.00	0,160	0.152	0.012	0.997	228		0.486	0.718	0.903
1.02	0.160	0.152	0.012	0.992	228 215	0.529	0.498	0.728	0.922
1.04	0.160	0.151	0.020	0.772	203	0.557 0.586	0.512	0.736	0.941
1.06	0.160	0.151	0.027	0.976	203 193		0.526	0.744	0.960
1.08	0.160	0.151	0.040	0.7/6	184	0.615	0.541	0.751	0.979
1.10	0,160	0.151	0.040	0.755	175	0.645	0.557	0.757 0.767	0.998
ate of the Nat	to property	W. LUI	W* W**/	Va 700	113	0.676	0.573	0.763	1.016

TABLE B-X, cont.

ORIGINAL PAGE 19 OF POOR QUALITY DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED HEAVY LOAD CASE

				HEAVY L	OAD CASE			. ,1	17
375 V	P IN	D56 F	DSG &	D56 PF	10 * 5	575 P	SYS Q	SYS PF	LOAD V
U. 94	0.180	0.121	~Oa7	0.952		0.421	0.511	0.636	0.861
0,96	0.180	0.171	÷, 043	0.970	~. 336	0.450	0.509	0.662	0.881
0.78	0.180	0.171	028	0.987	- "SQ."	0.478	0.515	0,681	0.901
1,00	0.180	0.171	~015	0.,996	279	0.507	0.524	0.695	0.921
1.02	0.180	0.171	~ QOS	1.000		0.535	0,535	0.708	0.940
1.04	0.180	0.474	ប្ដូលប្រ	1,000	-, 242	0.565	0.547	0.718	0.959
1.06	0.180	0.171	0.013	0.797		0.594	0.560	0.728	0.978
1.08	0.180	0.171	0.021	0,992		0.624	0.574	Q.756	0.997
1,10	0, 180	0.170	O_009	0.986	205	0.455	0.589	0.745	1.015
SYS V	r in	DSG P	DSG (A	DSG PF	10 * 5	SYS P	sys o	EYS P F	LOAD V
1.00	0.200	Q. 190	041	0.953		0.482	0.545	0.649	0.917
1.02	0.200	0.190	- 041	0.978	322	0.512	0.568	0.670	0.937
1.04	0.200	0.190	026	0.991	- 294	0.542	0.575	0.686	0.957
1.06	0.200	0.190	014			0.572	0.585	0.699	C.976
1.08	0.200	0.190	oos	1.000		0.402	0.597	0.710	0.995
1.10	0.200	0.190	0.007			0.633	0.610	0.720	1.014
REALIS	STIC LOAD	O REPRESI	IOITATIO	N					
603265 E.C	P*** * 4.1	₩ % # ^{5%} # ⁵ % - \$14,	Themen en	արդ չուն թ. գ. լագ բա	al and the property	2005 L 2 2005 E 110	mum m	hard that has been	1 /2 /2 11
SYS V	P IN	DSG P		DSG PF	10 * S	SYS P	SYS Q	SYS P F	LOAD V
0.90 0.92	0.020 0.020	0.015 0.014	0.065 0.068	0.219 0.205	029 027	0.604 0.623	0.399	0.834 0.835	0.820 0.840
0.72	0.020	0.014	0.071	0.193	026	0.643	0.410 0.422	0.836	0.859
0.96	0.020	0.014	0.075	0.181	025	0.663	0.433	0.837	0.879
0.78	0.020	0.013	0.078	0.170	023	0.683	0.444	0.838	0.877
1.00	0.020	0.013	0.082	0.159	022	0.703	0.455	0.837	0.918
1.02	0.020	0.013	0.085	0.150	021	0.723	0.467	0.840	0.738
1.04	0.020	0.013	0.089	0.140	020	0.743	0.478	0.841	0.957
1.06	0.020	0.012	0.093	0.132	019	0.764	0.490	0.842	0.977
1.08	0.020	0.012	0.096	0.123	019	0.785	0.501	0.843	0.997
1.10	0.020	0.012	0.100	0.116	018	0.805	0.513	0.844	1.016
SYS V	PIN	nee e	nee o	DSG PF	10 * 5	eve b	eve e	676 6 E.	1 ጠሊኮ U
0.70	0.040	DSG P 0.034	0.061	0.489	10 * S 060	SYS P 0.585	SYS Q 0.403	SYS P F 0.823	LOAD V 0.821
0.92	0.040	0.034	0.065	0.466	057	0.604	0.403	0.825	0.821
0.94	0.040	0.034	0.048	0.444	057 054	0.624	0.425	0.825	0.841
0.74	0.040	0.034	0.072	0.424	052	0.624	0.436	0.828	0.880
0.78	0.040	0.033	0.075	0.424	032 049	0.664	0.430	0.829	0.899
1.00	0.040	0.033	0.079	0.386	- 047	0.684	0.458	0.831	0.919
1.02	0.040	0.033	0.083	0.348	045	0.704	0.470	0.832	0.939
4 252	0.040	0.020	0.000	A TEST	* O" O	25 m/ 10 m/	0 401	AN COMME	0.707

0.351

0.336

0.320

0.306

-.043

-.041

- 040

-.038

0.724

0.745

0.765

0.786

0.481

0.492

0.504

0.515

0.833

0.834

0.835

0.836

0.958

0.978

0.997

1.017

0.040

0.040

0.040

0.040

1.04

1.06

.L.O8

1.10

0.032

0.032

0.032

0.032

0.087

0.090

0.094

0.098

T/BLE B-X, cont.

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED HEAVY LOAD CASE

SYS V	ाम भ	DSG P	DSG U	DSG PF	10 * 8	378 P	575 Q	SYS P F	LOAD Y
0.90	0.060	0.054	0.056	0.699	092	0.565	0,409	0.810	D.833
0.92	0.060	0.054	0.059	0.674	~. ○88	0.595	0,420	0.812	0.841
0.94	ዕክ ዕልዕ	o. Q54	0.043	0.649	<u>0</u> 84	0.604	0,431	C.814	0.861
0.96	0.060	o. o54	0.067	0.625	080	0.624	0.441	0.816	0.980
0.98	0,060	0.052	0.071	0.602	076	0.644	0.452	O.818	0,900
1.00	0.060	0.053	0.074	0.590	 0.73	0.664	0.463	0.820	0.919
1.02	0,060	0.053	0.078	0.558	069	0684	0.474	0.822	0.939
1.04	0.040	0.052	0.082	0.536	···. 066	0.705	O.485	0.824	0.959
1.06	୍ଦ୍ର ଦ୍ୱରଣ	0.052	0.086	0.814	064	0.725	0.497	0.825	0.978
1.08	0.060	0.05%	0.091	0.496	··. 061	0.746	0.508	0.827	0.993
1.10	0.060	0.051	0.095	0.478	058	0.767	0.519	0.828	1.018
	* • · · · · · · · · · · · · · · · · · ·						- 1,		:
SYS V	F IN	១៩៤ ២		PF 080	10 * S	SYS P	SYS Q	SYS F F	LOAD V
0.90	0,080	0.074	0.047	0.847	127	0,545	0.418	o.794	0.821
0.92	0.080	0.074	0.051	0.824	121	0.565	0.428	0.797	0.841
0.94	0.080	0.074	0.055	0.801	114	0.585	O., 439	0.800	O#B61
0.96	0,,080	0.073	0.059	0.778	to9	0.604	O.449	0.803	0.880
O.98	Capao	0.073	0.063	0.755	a 104	0.624	0.460	០, ৪೦ឆ	0.900
1.00	0.030	0.073	$\phi_* \phi_0 \phi$	0,732	Q99	0.645	0.470	0.808	Q.720
1.02	u, 080	0.073	0.072	0.710	~. 094	0.665	0.481	O.815	0.939
1.04	U. 080	0.072	0.076	0.486	~, 09 0	0.685	0.492	0.812	0.959
1.06	0,080	0.072	0.081	0.666	~ , 08 6	0.706	0.503	0.814	0.979
1.08	0.080	0.072	0.085	0.645	~.og::	0.726	0.514	0.817	0. 9 98
1.10	0,080	0.071	6.089	0. 524	··· 079	0.747	0.525	0.818	1.018
	, , , , , , ,								
SYS V	FIN	DSG P	DSG O	DSG PF	10 * S	SYS P	SYS 0	SYS P F	LOAD V 🖟
0.90	0.100	Θ_n O94	Q. 0534	0.940	166	0.825	0.430	0.773	0.821
0.92	0.100	Q.094	0.039	0,923	156	0.545	0.440	0.778	0.841
0.94	0.100	0.093	0.044	0.905	148	0.565	0.450	0.782	0.860
0.96	0.100	0,093	0,049	0.886	140	o., 585	0.459	0.786	0.880
0.98	0.100	0.093	0.054	Q.866	133	0.605	0.469	0.790	0.900
1.00	0.100	0.093	0.058	0.845	127	0.625	0.480	0.793	0.920
1.02	$Q_{*}100$	0.092	0,063	0.825	121	0.645	0.490	0.796	0.939
1.04	0.100	0.092	O. Q63	0.805	115	0.466	0.500	0.799	0.959
1.04	0.100	0.092	0.073	0.784	110	0.486	0.511	0.802	0.979
1.08	0,100	0.092	0.077	0.764	106	0.707	0.521	0.805	0.998
1.10	0.100	0.071	0.082	0.743	101	0.728	0.532	0.807	1.018
2, 2	Committee of the control of the cont	135 13 12 1 24	-w. 41 -m. 244-1444	100 M 2 M 100		ar w r am ar	- M- C - FR - M M-	an an paramy	
SYS V	PIN	DSG P		DSG PF	10 * 5	SYS F	SAS C	SYS P F	LOAD V
0.90	0.120	0.114	0.016	0.990	211	0.505	0.447	0.748	0.820
0.92	0.120	0.113	0.023	0.980	198	0.524	0.455	0.755	0.840
0.94	0.120	0.113	0.029	O.958	18a	0.544	0.464	0.761	0.860
0.96	0.120	0.113	0.035	0.955	175	0.564	0.473	0.766	0.880
o.98	0.120	0.113	0.041	0.940	166	0.584	0.482	0.771	0.899
1.00	0.120	0.112	0.046	0.925	157	0.605	0.491	0.776	0.919
1.02	0.120	0.112	0.052	0.908	1.49	0.625	0.501	0.780	0.939
1.04	0,120	0.112	0.057	0.891	142	0.645	0.511	0.784	0.959
1.06	0.120	0.112	0.062	0.873	136	0	0.521	0.738	0.979
1.08	0.120	0.111	0.068	0.854	129	0.487	0.531	0.791	0.798
1.10	0.120	0.111	0.073	0.834		0.708	0.541	0.794	1.018
1									

TABLE B-X, cont.

DATA FOR INDUCTION MACHINE, POWER FACTOR CORRECTED HEAVY LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

SYS V	I» IN	DGG P	DSG Q	DSG PF	10 * 5	SYS P	SYS 0	SYS P F	LOAD V
0.90	0.140	0.133	-, 009			0.483	0.471	0.716	0.818
0.92	0.140	0.133	0.001	1,000	249	0.507	0.477	0.726	0.838
0.94	0.140	0.133	0,009	0.998	231	0.523	0.483	0.735	0.859
Q. 96	0,140	0.133	0.017	0.992	216	9.544	0.490	0.742	0.879
0.98	0.140	0.132	0.024	0.984	203	ō.564	0.498	0.749	0.877
1,00	0,140	0.132	0.031	0.974	191	0.584	0.507	0.756	0.919
1.02	0.140	0.132	0.037	0.963	181	0.605	0.515	0.761	0.938
1.04	0.140	0.132	0.043	0.950	171	0.625	0.524	0.765	0.758
106	0.140	0.131	0.050	0.936	163	0.646	0.533	0.77%	0.978
1.08	0.140	0.131	0.056	0.921	155	0.667	0.543	0.775	0.778
1.10	0.140	0.131	0.061	0.905	-, 148	0.688	0.552	0.780	1.018
					K . 150	.v. n. co.ten cet	'A d taltalai.	04760	1.010
SYS V	P IN	DSG P	mera n	DSG PF	4.00 0 00	M3.403 195	175 b 1775 - d c		
0.90	0.160	0.152	054	0.938	10 * 5	SYS F	SYS Q	SYS P F	LOAD A
0.92	0.160	0.152	035		**.383	0.460	0.515	0.665	0.814
0.94	0.160	0.152	-,020	0.975	327	0.481	0.510	0.686	0.835
0.96	0.160	0.152	009	0,991	293	0.502	0.511	0.701	0.856
0.78	0.160	0.152		0.998	248	0.522	0.515	0.712	0.877
1.00	0.160	0.152	0.001	1.000	248	0.543	0.520	0.722	0.897
1.02	0.160	0.152	0.010	0.998	232	0.563	0.526	0.731	0.917
1.04	0.160	0.151	0.018	0.993	217	0.584	0.533	0.738	0.937
1.06	0.140		0.026	0.786	205	0.605	0.541	0.745	C.957
1.08	0.160	0.151	0.033	0.976	194	0.626	0.549	0.752	0.977
1.10		0.151	0.040	0.966	184	0.646	0.558	0.757	0.997
ple on Ale Val	0.160	0.151	0.047	0.954	175	0.667	0.566	0.763	1.017
SYS V	F IN	DSG P		DSG PF	10 * 8	SYS P	SYS 0	SYS P F	LOAD V
0.96	0.180	$Q_{*}171$	051	0.958	354	0.499	0.554	0 . 669	0.873
0.78	0.180	0.171	-, O33	0.982	313	0.521	0.552	0.484	0.895
1.00	0.180	0.171	O19	0.994	285	0.542	0.553	0.700	0.915
1.02	0.180	0.171	007	0.999	263	0.563	0.557	0.711	0.936
1.04	0.180	0.171	0.003	1.000	-, 245	0.584	0.563	0.720	0.956
1.06	0.180	0.171	0.013	0.997	229	0.605	0.569	0.728	0.976
1.08	0.180	0.170	0.021	0.992	216	0.626	0.576	0.736	0.996
1.10	0.180	0.170	0.030	0.985	- 204	0.647	0.583	0.743	1.016
							and the state of the	Se # 7 1 5.5	als 99 Year als Year
SYS V	PIN	DSG P	nee o	DSG PF	10 ac 19	mares es	PN / PN 174	JMC & J. JMC . 100. 100.	
1.00	0.200	0.190	069		10 * 8	978 P	SYS Q	SYS P F	LOAD V
1.02	0.200	0.170	045	0.741	-,379	0.518	0.600	0.654	0.911
1.04	0.200	0.190		0.974	329	0.540	0.593	0.674	0.933
1.06	0.200		028	0.989	298	0.562	0.592	0.688	0.954
1.08		0.190	015	0.997	- 274	0.583	0.595	0.700	0.975
1.00	0.200 0.200	0.190	003	1.000	255	0.605	0.579	0.710	0.995
g den de la? É	O' EOO	0.190	0.007	0.999	239	0.626	0.604	0.719	1.015
-									

SYS V DS6 P DS6 B DS6 PF SYS P SYS R O.004 O.005 O.002 O.002 O.002 O.002 O.002 O.002 O.004 O.044 O.058 O.603 O.891 O.944 O.022 O.044 O.022 O.643 O.971 O.944 O.022 O.004 O.062 O.623 O.971 O.946 O.020 O.010 O.894 O.052 O.064 O.632 O.951 O.968 O.002 O.010 O.894 O.057 O.067 O.640 O.632 O.951 O.969 O.020 O.010 O.894 O.057 O.067 O.640 O.971 O.002 O.010 O.894 O.057 O.067 O.640 O.971 O.002 O.010 O.894 O.057 O.067 O.647 O.991 O.002 O.010 O.894 O.055 O.071 O.654 O.011 O.654 O.001 O.002 O.010 O.894 O.065 O.074 O.661 O.002 O.010 O.894 O.065 O.074 O.661 O.000 O.667 O.667 O.667 O.667 O.667 O.667 O.667 O.667 O.000 O.000	CONST	ANT IMPEI	DANCE LOAD		INVERTER, C			iginal page 19 poor quality
0.98 0.020010 0.894 0.055 0.067 0.640 0.991 1.00 0.020010 0.894 0.059 0.069 0.647 0.991 1.02 0.020010 0.894 0.065 0.071 0.654 1.010 1.04 0.020010 0.894 0.065 0.074 0.661 1.030 1.06 0.020010 0.894 0.066 0.074 0.661 1.030 1.08 0.020010 0.894 0.068 0.076 0.667 1.050 1.08 0.020010 0.894 0.072 0.079 0.673 1.070 1.10 0.020010 0.894 0.075 0.081 0.678 1.090 SYS V DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V 0.90 0.040020 0.894 0.024 0.068 0.329 0.891 0.92 0.040020 0.894 0.024 0.068 0.329 0.891 0.94 0.040020 0.894 0.025 0.072 0.377 0.931 0.96 0.040020 0.894 0.035 0.077 0.354 0.911 0.96 0.040020 0.894 0.035 0.077 0.430 0.951 0.98 0.040020 0.894 0.035 0.077 0.430 0.971 1.00 0.040020 0.894 0.035 0.077 0.430 0.971 1.02 0.040020 0.894 0.035 0.077 0.430 0.971 1.04 0.040020 0.894 0.035 0.077 0.430 0.971 1.05 0.040020 0.894 0.035 0.079 0.439 0.991 1.02 0.040020 0.894 0.045 0.084 0.473 1.030 1.04 0.040020 0.894 0.045 0.084 0.473 1.030 1.06 0.040020 0.894 0.045 0.084 0.473 1.030 1.06 0.040020 0.894 0.055 0.091 0.516 1.090 1.09 0.040020 0.894 0.055 0.091 0.516 1.090 1.09 0.040030 0.894 0.055 0.091 0.516 1.090 0.99 0.040030 0.894 0.055 0.091 0.516 1.090 0.99 0.060030 0.894 0.009 0.082 0.113 0.931 0.94 0.060030 0.894 0.009 0.082 0.113 0.96 0.060030 0.894 0.009 0.082 0.113 0.96 0.060030 0.894 0.015 0.087 0.175 0.970 1.10 0.060030 0.894 0.015 0.087 0.175 0.970 1.00 0.060030 0.894 0.015 0.087 0.175 0.970 1.00 0.060030 0.894 0.015 0.087 0.175 0.970 1.04 0.060030 0.894 0.015 0.087 0.155 0.091 0.97 0.060030 0.894 0.015 0.087 0.155 0.091 0.98 0.060030 0.894 0.015 0.087 0.155 0.991 0.99 0.060030 0.894 0.015 0.087 0.155 0.991 0.90 0.060030 0.894 0.015 0.087 0.155 0.991 0.90 0.060030 0.894 0.015 0.087 0.155 0.991 0.90 0.060030 0.894 0.015 0.087 0.155 0.991 0.90 0.080040 0.894017 0.088 0.185 0.891 0.99 0.080040 0.894 0.090 0.090 0.090 0.090 0.991 0.99 0.080040 0.894017 0.090 0.090 0.090 0.090 0.991 0.90 0.0800	0.90 0.92 0.94	0.020 0.020 0.020	010 010 010	0.894 0.894	0.044 0.046	0.058 0.040	0.603 0.613	0.891 0.911
1.04	0.98	0.020	010	0.894	0.055	0.067	0.640	0.971
	1.00	0.020	010	0.894	0.059	0.069	0.647	0.991
SYS V DSG P DSG B DSG PF SYS P SYS P SYS PF LOAD V 0.90 0.040 020 0.894 0.024 0.046 0.329 0.891 0.92 0.040 020 0.894 0.024 0.070 0.354 0.911 0.94 0.040 020 0.894 0.029 0.072 0.377 0.931 0.98 0.040 020 0.894 0.032 0.074 0.379 0.951 0.98 0.040 020 0.894 0.035 0.077 0.420 0.971 1.00 0.040 020 0.894 0.038 0.079 0.439 0.990 1.02 0.040 020 0.894 0.045 0.084 0.473 1.030 1.04 0.040 020 0.894 0.045 0.084 0.473 1.035 1.05 0.040 020 0.894 0.052 0.089 0.503 1.070 <td< td=""><td>1.04 1.06 1.08</td><td>0.020 0.020 0.020</td><td>010 010 010</td><td>0.894 0.894 0.894</td><td>0.065 0.068</td><td>0.074 0.076 0.079</td><td>0.661 0.667</td><td>1.030 1.050</td></td<>	1.04 1.06 1.08	0.020 0.020 0.020	010 010 010	0.894 0.894 0.894	0.065 0.068	0.074 0.076 0.079	0.661 0.667	1.030 1.050
0.90 0.040020 0.894 0.024 0.068 0.329 0.891 0.92 0.940020 0.894 0.026 0.070 0.354 0.911 0.94 0.040020 0.894 0.029 0.072 0.377 0.931 0.96 0.040020 0.894 0.032 0.074 0.399 0.951 0.96 0.040020 0.894 0.032 0.074 0.399 0.951 0.96 0.040020 0.894 0.035 0.077 0.420 0.971 1.00 0.040020 0.894 0.038 0.079 0.439 0.990 1.02 0.040020 0.894 0.038 0.079 0.439 0.990 1.02 0.040020 0.894 0.042 0.081 0.456 1.010 1.04 0.040020 0.894 0.045 0.084 0.473 1.030 1.06 0.040020 0.894 0.045 0.084 0.473 1.030 1.06 0.040020 0.894 0.048 0.086 0.488 1.050 1.08 0.040020 0.894 0.052 0.089 0.503 1.070 1.10 0.040020 0.894 0.055 0.091 0.516 1.090 0.040 0.040020 0.894 0.055 0.091 0.516 1.090 0.040 0.040020 0.894 0.055 0.091 0.516 1.090 0.040 0.040020 0.894 0.055 0.091 0.516 1.090 0.040 0.040 0.030 0.894 0.004 0.078 0.045 0.891 0.991 0.992 0.060030 0.894 0.004 0.080 0.080 0.911 0.940 0.060 0.080 0.911 0.940 0.060 0.080 0.911 0.940 0.060 0.030 0.894 0.009 0.082 0.113 0.931 0.941 0.094 0.060 0.080 0.911 0.940 0.060 0.030 0.894 0.012 0.084 0.144 0.951 0.98 0.060 0.030 0.894 0.012 0.084 0.144 0.951 0.98 0.060 0.030 0.894 0.015 0.087 0.175 0.970 1.00 0.060030 0.894 0.015 0.087 0.175 0.970 1.00 0.060030 0.894 0.012 0.084 0.144 0.951 0.96 0.060 0.030 0.894 0.012 0.084 0.144 0.951 0.09 0.060 0.030 0.894 0.012 0.081 0.023 0.990 1.02 0.060030 0.894 0.012 0.089 0.203 0.990 1.02 0.060030 0.894 0.012 0.089 0.203 0.990 1.02 0.060030 0.894 0.012 0.089 0.203 0.990 1.02 0.060030 0.894 0.015 0.087 0.155 0.091 0.231 1.010 0.060 0.060 0.030 0.894 0.012 0.081 0.089 0.203 0.990 1.02 0.060 0.030 0.894 0.012 0.089 0.091 0.231 1.010 0.060 0.060 0.030 0.894 0.022 0.091 0.231 1.010 0.060 0.060 0.030 0.894 0.022 0.091 0.231 1.010 0.060 0								
0.98	0.90	0.040	020	0.894	0.024	0.068	0.329	0.891
	0.92	0.040	020	0.894	0.024	0.070	0.354	0.911
	0.94	0.040	020	0.894	0.029	0.072	0.377	0.931
1.04	0.98	0.040	020	0.894	0.035	0.077	0.420	0.971
	1.00	0.040	020	0.894	0.038	0.079	0.439	0.990
SYS V DS6 P DS6 Q DS6 PF SYS P SYS P SYS PF LOAD V 0.90 0.060 030 0.894 0.004 0.078 0.045 0.891 0.92 0.060 030 0.894 0.006 0.080 0.911 0.94 0.060 030 0.894 0.007 0.082 0.113 0.931 0.96 0.060 030 0.894 0.012 0.084 0.144 0.951 0.98 0.040 030 0.894 0.015 0.087 0.175 0.970 1.00 0.060 030 0.894 0.018 0.087 0.175 0.970 1.02 0.060 030 0.894 0.018 0.089 0.203 0.990 1.04 0.060 030 0.894 0.022 0.091 0.231 1.010 1.08 0.060 030 0.894 0.028 0.096 0.281 1.050 1.08	1.06	0.040	020	0.894	0.048	0.086	0.488	1.050
	1.08	0.040	020	0.894	0.052	0.089	0.503	1.070
0.92 0.060 030 0.894 0.006 0.080 0.711 0.94 0.060 030 0.894 0.009 0.082 0.113 0.931 0.96 0.060 030 0.894 0.012 0.084 0.144 0.951 0.98 0.060 030 0.894 0.015 0.087 0.175 0.970 1.00 0.060 030 0.894 0.018 0.089 0.203 0.990 1.02 0.060 030 0.894 0.022 0.091 0.231 1.010 1.04 0.060 030 0.894 0.025 0.094 0.257 1.030 1.06 0.060 030 0.894 0.028 0.096 0.281 1.050 1.08 0.060 030 0.894 0.032 0.097 0.304 1.070 1.10 0.060 040 0.894 017 0.088 0.185 0.891 0.99 0.08					SYS P	sys Q	SYS PF	LOAD V
1.00	0.92	0.040	030	0.894	0.004	0.080	0.080	0.911
	0.94	0.040	030	0.894	0.009	0.082	0.113	0.931
	0.96	0.040	030	0.894	0.012	0.084	0.144	0.951
1.06	1.00	0.060	030	0.894	0.018	0.089	0.203	0.990
	1.02	0.060	030	0.894	0.022	0.091	0.231	1.010
0.90 0.080 040 0.894 017 0.088 0.185 0.891 0.92 0.080 040 0.894 014 0.090 0.150 0.911 0.94 0.080 040 0.894 011 0.092 0.116 0.931 0.96 0.080 040 0.894 008 0.094 0.082 0.950 0.98 0.080 040 0.894 005 0.096 0.049 0.970 1.02 0.080 040 0.894 002 0.099 0.016 0.990 1.02 0.080 040 0.894 0.002 0.101 0.016 1.010	1.08	0.060	030	0.894	0.032	0.099	0.304	1.070
0.94 0.080 040 0.894 011 0.092 0.116 0.931 0.96 0.080 040 0.894 008 0.094 0.082 0.950 0.98 0.080 040 0.894 005 0.096 0.049 0.970 1.00 0.080 040 0.894 002 0.099 0.016 0.990 1.02 0.080 040 0.894 0.002 0.101 0.016 1.010	0.90	0.080	040	0.894	017	0.088	0.185	0.891
1.02 0.080040 0.894 0.002 0.101 0.016 1.010	0.94	0.080	040	0.894	011	0.092	0.116	0.931
	0.96	0.080	040	0.894	008	0.094	0.082	0.950
	0.98	0.080	040	0.894	005	0.096	0.049	0.970
1.04 0.080040 0.894 0.008 0.104 0.076 1.050	1.02	0.080	040	0.894	0.002	0.101	0.016	1.010
	1.04	0.080	040	0.894	0.005	0.104	0.047	1.030

0.011

0.015

0.109

0.111

0.105

0.133

1.069

1.089

0.894

0.894

1.08

1.10

0.080

0.080

-.040

-.040

DATA FOR INVERTER, CEA CONTROL LIGHT LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

			PTG	IT LOAD CAS	E		
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG Q 050 050 050 050 050 050 050	DSG PF O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894	SYS P 037 034 031 028 025 022 018 015 012 009 005	SYS Q 0.078 0.100 0.102 0.104 0.106 0.109 0.111 0.114 0.114 0.115	SYS PF 0.351 0.320 0.289 0.258 0.226 0.195 0.164 0.133 0.102 0.072 0.042	LOAD V 0.891 0.910 0.930 0.950 0.970 0.970 1.010 1.030 1.049 1.069
SYS V 0.90 0.92 0.94 0.96 1.00 1.02 1.04 1.06 1.08	DSG P 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG 0 040 040 060 060 060 060 060 060	DSG PF O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894	SYS P 057 054 051 045 045 035 035 032 025	SYS 0 0.108 0.110 0.112 0.114 0.116 0.119 0.121 0.124 0.126 0.129 0.131	SYS PF 0.466 0.440 0.413 0.386 0.359 0.331 0.303 0.274 0.246 0.217 0.188	LOAD V 0.890 0.910 0.930 0.950 0.970 0.990 1.009 1.029 1.049 1.049
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG Q 070 070 070 070 070 070 070 070 070	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS F 077 074 071 065 065 059 055 052 049 045	SYS Q 0.118 0.120 0.122 0.124 0.126 0.129 0.131 0.134 0.136 0.139 0.141	SYS PF 0.546 0.525 0.502 0.480 0.456 0.452 0.382 0.382 0.357	LGAD V 0.890 0.910 0.930 0.950 0.970 0.989 1.009 1.029 1.049 1.069
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG Q 080 080 080 080 080 080 080 080	DSG PF O.894	SYS P 097 094 091 085 085 082 079 075 072 065	SYS Q 0.128 0.130 0.132 0.134 0.136 0.139 0.141 0.144 0.149 0.149	SYS PF 0.604 0.586 0.548 0.548 0.528 0.508 0.486 0.445 0.442 0.420	LOAD V 0.890 0.910 0.930 0.949 0.969 1.009 1.029 1.049 1.069

DATA FOR INVERTER, CEA CONTROL LIGHT LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

0.94 0.180090 0.894111 0.142 0.616 0.949 0.96 0.180090 0.894105 0.144 0.600 0.949 0.98 0.180090 0.894105 0.144 0.582 0.969 1.00 0.180090 0.894105 0.144 0.582 0.969 1.00 0.180090 0.894099 0.151 0.547 1.009 1.004 0.180090 0.894099 0.151 0.547 1.009 1.006 0.180090 0.894099 0.151 0.547 1.009 1.006 0.180090 0.894099 0.151 0.547 1.009 1.006 0.180090 0.894099 0.151 0.547 1.009 1.006 0.180090 0.894099 0.153 0.528 1.029 1.006 0.180090 0.894099 0.153 0.528 1.049 1.008 0.180090 0.894089 0.158 0.488 1.068 1.100 0.180090 0.894089 0.158 0.488 1.068 1.100 0.180090 0.894085 0.161 0.468 1.088 1.008 0.90 0.200100 0.894137 0.147 0.680 0.889 0.94 0.200100 0.894137 0.147 0.680 0.889 0.94 0.200100 0.894131 0.152 0.653 0.929 0.94 0.200100 0.894131 0.152 0.653 0.929 0.94 0.200100 0.894128 0.154 0.639 0.949 0.90 0.200100 0.894125 0.156 0.624 0.969 0.940 0.200100 0.894125 0.156 0.624 0.969 0.940 0.200100 0.894125 0.156 0.624 0.969 0.940 0.200100 0.894125 0.156 0.624 0.969 0.989 0.200100 0.894112 0.156 0.624 0.969 0.989 0.200100 0.894112 0.156 0.624 0.969 0.989 0.000 0.200100 0.894112 0.164 0.550 0.628 0.969 0.980 0.200100 0.894115 0.163 0.577 0.009 0.989 0.000 0.200100 0.894115 0.163 0.577 0.008 0.550 0.008 0.200 0.100 0.894 0.105 0.106 0.540 0.989 0.008 0.200 0.100 0.894 0.105 0.164 0.540 0.989 0.991 0.008 0.200 0.100 0.894 0.005 0.065 0.633 0.971 0.068 0.000	SYS V 0.90 0.92	0.180 0.180	DSG 0 -,090 -,090	DSG PF 0.894 0.894	SYS P 117 114	SYS 0 0.137 0.140	SYS PF 0.647 0.632	LOAD V 0.870 0.909
0.98 0.180090 0.894105 0.146 0.582 0.969 1.00 0.180090 0.894009 0.151 0.545 0.989 1.02 0.180090 0.894099 0.151 0.547 1.009 1.04 0.180090 0.894099 0.153 0.528 1.029 1.05 0.180090 0.894099 0.153 0.528 1.029 1.06 0.180090 0.894089 0.158 0.508 1.049 1.08 0.180090 0.894089 0.158 0.488 1.068 1.10 0.180090 0.894089 0.158 0.488 1.068 1.10 0.180090 0.894085 0.161 0.468 1.088 SYS V DSG P DSG DSG PF SYS P SYS G SYS PF LOAD V 0.90 0.200100 0.894137 0.147 0.680 0.889 0.92 0.200100 0.894133 0.152 0.653 0.929 0.94 0.200100 0.894133 0.152 0.653 0.929 0.96 0.200100 0.894128 0.154 0.639 0.949 0.98 0.200100 0.894128 0.154 0.639 0.949 0.98 0.200100 0.894128 0.154 0.639 0.949 1.02 0.200100 0.894125 0.156 0.624 0.969 1.04 0.200100 0.894112 0.155 0.609 0.989 1.04 0.200100 0.894115 0.156 0.52 0.651 1.00 0.200100 0.894115 0.156 0.52 0.694 1.00 0.200100 0.894119 0.161 0.593 1.009 1.04 0.200100 0.894119 0.161 0.593 1.009 1.04 0.200100 0.894119 0.161 0.593 1.009 1.04 0.200100 0.894119 0.166 0.542 1.048 1.08 0.200100 0.894100 0.168 0.542 1.048 1.09 0.200100 0.894100 0.168 0.542 1.048 1.00 0.200100 0.894100 0.168 0.542 1.048 1.00 0.200100 0.894 0.051 0.063 0.627 0.911 0.94 0.020010 0.894 0.051 0.063 0.627 0.911 0.94 0.020010 0.894 0.051 0.063 0.627 0.911 0.99 0.020010 0.894 0.057 0.068 0.644 0.971 0.99 0.020010 0.894 0.057 0.068 0.644 0.971 0.99 0.020010 0.894 0.057 0.068 0.644 0.971 0.99 0.020010 0.894 0.057 0.066 0.649 0.991 0.99 0.020010 0.894 0.057 0.066 0.649 0.991 0.99 0.020010 0.894 0.057 0.068 0.644 0.971 0.00 0.020010 0.894 0.057 0.068 0.644 0.971 0.00 0.020010 0.894 0.057 0.068 0.644 0.971 0.00 0.020010 0.894 0.057 0.068 0.644 0.971 0.90 0.040020 0.894 0.057 0.068 0.497 0.991 0.99 0.040020 0.894 0.057 0.069 0.497 0.991 0.99 0.040020 0.894 0.033 0.075 0.403 0.911 0.94 0.040020 0.894 0.037 0.070 0.492 0.491 0.99 0.040020 0.894 0								
1.00								
1.02 0.180								
1.04								
1.06								
1.08								
SYS V DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V								
SYS V DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V 0.90 0.200100 0.894137 0.147 0.680 0.889 0.92 0.200100 0.894131 0.152 0.667 0.909 0.94 0.200100 0.894131 0.152 0.663 0.929 0.94 0.200100 0.894128 0.154 0.639 0.949 0.96 0.90 0.200100 0.894128 0.154 0.639 0.949 0.96 0.200100 0.894125 0.156 0.624 0.969 0.98 0.200100 0.894125 0.156 0.604 0.989 1.00 0.200100 0.894125 0.156 0.604 0.989 1.00 0.200100 0.894112 0.159 0.609 0.989 1.00 0.200100 0.894115 0.161 0.593 1.009 1.04 0.200100 0.894115 0.163 0.577 1.028 1.04 0.200100 0.894115 0.164 0.550 1.048 1.08 0.200100 0.894112 0.164 0.560 1.048 1.08 0.200100 0.894109 0.168 0.542 1.068 1.00 0.200100 0.894109 0.168 0.542 1.068 1.10 0.200100 0.894105 0.171 0.524 1.088 REALISTIC LOAD REPRESENTATION SYS V DSG P DSG Q DSG FF SYS P SYS Q SYS PF LOAD V 0.90 0.020010 0.894 0.051 0.063 0.627 0.911 0.94 0.020010 0.894 0.053 0.065 0.633 0.931 0.991 0.904 0.020010 0.894 0.055 0.066 0.644 0.971 0.90 0.020010 0.894 0.055 0.066 0.644 0.971 0.90 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.645 0.533 0.991 1.00 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.649 0.991 1.00 0.020010 0.894 0.057 0.068 0.649 0.991 1.00 0.020010 0.894 0.057 0.066 0.649 0.991 1.00 0.020010 0.894 0.057 0.066 0.649 0.991 1.00 0.020010 0.894 0.057 0.066 0.649 0.991 1.00 0.00 0.00 0.00 0.00 0.00 0.								
0.90						V 2	** / /	
0.92 0.200100 0.894134 0.150 0.667 0.909 0.94 0.200100 0.894131 0.152 0.653 0.929 0.96 0.200100 0.894128 0.154 0.623 0.929 0.98 0.200100 0.894128 0.154 0.624 0.969 1.00 0.200100 0.894122 0.155 0.607 0.609 0.989 1.00 0.200100 0.894122 0.159 0.609 0.897 1.00 0.200100 0.894119 0.161 0.593 1.009 1.04 0.200100 0.894119 0.161 0.593 1.009 1.04 0.200100 0.894112 0.164 0.560 1.048 1.08 0.200100 0.894112 0.164 0.560 1.048 1.08 0.200100 0.894109 0.168 0.542 1.068 1.010 0.200100 0.894109 0.168 0.542 1.068 1.10 0.200100 0.894105 0.171 0.524 1.088 REALISTIC LDAD REPRESENTATION SYS V DSG P DSG Q DSG FF SYS P SYS Q SYS PF LOAD V 0.90 0.020010 0.894 0.051 0.063 0.627 0.911 0.94 0.020010 0.894 0.051 0.065 0.633 0.931 0.931 0.94 0.020010 0.894 0.055 0.065 0.633 0.931 0.931 0.94 0.020010 0.894 0.055 0.066 0.639 0.951 0.96 0.020010 0.894 0.055 0.066 0.639 0.951 0.96 0.020010 0.894 0.057 0.069 0.649 0.971 0.000 0.020010 0.894 0.057 0.069 0.649 0.971 0.000 0.020010 0.894 0.057 0.069 0.649 0.971 0.000 0.020010 0.894 0.057 0.069 0.649 0.971 0.000 0.020010 0.894 0.057 0.069 0.649 0.971 0.000 0.000010 0.894 0.055 0.066 0.639 0.951 0.066 0.600 0.000 0.								
0.94								
0.96								
0.78								
1.00								
1.02								
1.04								
1.06								
1.08			· ·					
1.10								
REALISTIC LOAD REPRESENTATION SYS V DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V 0.90 0.020010 0.894 0.049 0.062 0.621 0.891 0.92 0.020010 0.894 0.051 0.063 0.627 0.911 0.94 0.020010 0.894 0.053 0.065 0.633 0.931 0.96 0.020010 0.894 0.055 0.066 0.633 0.931 0.96 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.644 0.971 1.02 0.020010 0.894 0.059 0.069 0.649 0.991 1.02 0.020010 0.894 0.061 0.071 0.653 1.011 1.04 0.020010 0.894 0.061 0.071 0.653 1.011 1.04 0.020010 0.894 0.065 0.074 0.662 1.051 1.08 0.020010 0.894 0.065 0.074 0.662 1.051 1.08 0.020010 0.894 0.065 0.074 0.662 1.051 1.08 0.020010 0.894 0.065 0.074 0.664 1.070 1.10 0.020010 0.894 0.067 0.076 0.649 1.090 SYS V DSG P DSG P SYS P SYS Q SYS P LOAD V 0.90 0.040020 0.894 0.029 0.072 0.373 0.891 0.990 SYS P SYS Q SYS P LOAD V 0.90 0.040020 0.894 0.031 0.073 0.389 0.911 0.990 SYS V DSG P DSG P DSG P SYS P SYS Q SYS P DSG 0.911 0.990 SYS P SYS Q SYS P DSG 0.911 0.990 0.040020 0.894 0.031 0.073 0.389 0.911 0.990 O.940020 0.894 0.035 0.075 0.403 0.931 0.93	1.10	0.200						
0.90 0.020010 0.894 0.049 0.062 0.621 0.891 0.92 0.020010 0.894 0.051 0.063 0.627 0.911 0.94 0.020010 0.894 0.053 0.065 0.633 0.931 0.96 0.020010 0.894 0.055 0.066 0.633 0.951 0.96 0.020010 0.894 0.055 0.066 0.639 0.951 0.96 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.059 0.067 0.649 0.649 0.991 1.02 0.020010 0.894 0.061 0.071 0.653 1.011 1.04 0.020010 0.894 0.063 0.072 0.658 1.031 1.06 0.020010 0.894 0.065 0.074 0.662 1.051 1.08 0.020010 0.894 0.065 0.074 0.662 1.051 1.08 0.020010 0.894 0.067 0.076 0.666 1.070 1.10 0.020010 0.894 0.070 0.077 0.669 1.090 0.920 0.000010 0.894 0.070 0.077 0.669 1.090 0.920 0.040020 0.894 0.031 0.073 0.389 0.911 0.92 0.040020 0.894 0.031 0.073 0.389 0.911 0.94 0.040020 0.894 0.035 0.075 0.403 0.931 0.96 0.040020 0.894 0.035 0.075 0.403 0.931 0.96 0.040020 0.894 0.035 0.076 0.417 0.951 0.98 0.040020 0.894 0.035 0.076 0.417 0.951 0.98 0.040020 0.894 0.035 0.076 0.417 0.951 0.98 0.040020 0.894 0.037 0.078 0.429 0.971 1.00 0.040020 0.894 0.037 0.078 0.429 0.971 1.00 0.040020 0.894 0.037 0.078 0.429 0.971 1.00 0.040020 0.894 0.037 0.078 0.429 0.971 1.00 0.040020 0.894 0.037 0.078 0.429 0.971 1.00 0.040020 0.894 0.037 0.086 0.444 1.030 1.04 0.040020 0.894 0.041 0.081 0.453 1.010 1.04 0.040020 0.894 0.045 0.082 0.464 1.030 1.040 0.040020 0.894 0.045 0.082 0.464 1.030 1.04 0.040020 0.894 0.045 0.085 0.046 0.475 1.050 1.08 0.040020 0.894 0.045 0.045 0.085 0.464 1.030 1.06 0.040020 0.894 0.045 0.085 0.046 0.475 1.050 1.08 0.040020 0.894 0.047 0.086 0.485 1.070	REALIS	TIC LOAD	REPRESEN	TATION				
0.92		DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V
0.94					0.049	0.062	0.621	0.891
0.96								
0.98 0.020010 0.894 0.057 0.068 0.644 0.971 1.00 0.020010 0.894 0.059 0.069 0.649 0.991 1.02 0.020010 0.894 0.061 0.071 0.653 1.011 1.04 0.020010 0.894 0.063 0.072 0.658 1.031 1.06 0.020010 0.894 0.065 0.074 0.662 1.051 1.08 0.020010 0.894 0.067 0.074 0.662 1.051 1.09 0.020010 0.894 0.067 0.074 0.666 1.070 1.10 0.020010 0.894 0.070 0.077 0.669 1.090 SYS V DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V 0.70 0.040020 0.894 0.029 0.072 0.373 0.891 0.92 0.040020 0.894 0.031 0.073 0.389 0.911 0.94 0.040020 0.894 0.031 0.073 0.389 0.911 0.94 0.040020 0.894 0.035 0.075 0.403 0.931 0.96 0.040020 0.894 0.035 0.076 0.417 0.951 0.98 0.040020 0.894 0.037 0.078 0.429 0.971 1.00 0.040020 0.894 0.037 0.078 0.429 0.971 1.02 0.040020 0.894 0.039 0.079 0.442 0.990 1.02 0.040020 0.894 0.031 0.082 0.464 1.030 1.04 0.040020 0.894 0.045 0.084 0.475 1.050 1.08 0.040020 0.894 0.047 0.086 0.485 1.070								
1.00 0.020010 0.894 0.059 0.069 0.649 0.991 1.02 0.020010 0.894 0.061 0.071 0.653 1.011 1.04 0.020010 0.894 0.063 0.072 0.658 1.031 1.06 0.020010 0.894 0.065 0.074 0.662 1.051 1.08 0.020010 0.894 0.067 0.076 0.666 1.070 1.10 0.020010 0.894 0.070 0.077 0.669 1.090 SYS V DSG P DSG Q DSG FF SYS P SYS Q SYS PF LOAD V 0.90 0.040020 0.894 0.029 0.072 0.373 0.891 0.92 0.040020 0.894 0.031 0.073 0.389 0.911 0.94 0.040020 0.894 0.035 0.075 0.403 0.931 0.96 0.040020 0.894 0.035 0.076 0.417 0.951 0.98 0.040020 0.894 0.037 0.078 0.429 0.971 1.00 0.040020 0.894 0.037 0.078 0.429 0.971 1.00 0.040020 0.894 0.039 0.079 0.442 0.990 1.02 0.040020 0.894 0.039 0.079 0.442 0.990 1.02 0.040020 0.894 0.041 0.081 0.453 1.010 1.04 0.040020 0.894 0.043 0.082 0.464 1.030 1.06 0.040020 0.894 0.045 0.084 0.475 1.050 1.08 0.040020 0.894 0.047 0.086 0.485 1.070								
1.02								
1.04								
1.06								
1.08								
1.10 0.020010 0.894 0.070 0.077 0.669 1.090 SYS V DSG F DSG Q DSG FF SYS P SYS Q SYS PF LOAD V 0.90 0.040020 0.894 0.029 0.072 0.373 0.891 0.92 0.040020 0.894 0.031 0.073 0.389 0.911 0.94 0.040020 0.894 0.033 0.075 0.403 0.931 0.96 0.040020 0.894 0.035 0.076 0.417 0.951 0.96 0.040020 0.894 0.037 0.078 0.429 0.971 0.098 0.040020 0.894 0.037 0.078 0.429 0.971 0.00 0.040020 0.894 0.039 0.079 0.442 0.990 1.02 0.040020 0.894 0.039 0.079 0.442 0.990 1.02 0.040020 0.894 0.041 0.081 0.453 1.010 1.04 0.040020 0.894 0.043 0.082 0.464 1.030 1.06 0.040020 0.894 0.045 0.084 0.475 1.050 1.08 0.040020 0.894 0.047 0.086 0.485 1.070								
0.90	1.10							
0.90	(C)/(C)	73 <i>(71)</i>	r\mzn zn	you produce and and				
0.92 0.040 020 0.894 0.031 0.073 0.389 0.911 0.94 0.040 020 0.894 0.033 0.075 0.403 0.931 0.96 0.040 020 0.894 0.035 0.076 0.417 0.951 0.98 0.040 020 0.894 0.037 0.078 0.429 0.971 1.00 0.040 020 0.894 0.039 0.079 0.442 0.990 1.02 0.040 020 0.894 0.041 0.081 0.453 1.010 1.04 0.040 020 0.894 0.043 0.082 0.464 1.030 1.08 0.040 020 0.894 0.045 0.084 0.485 1.070								
0,74 0.040 020 0.874 0.033 0.075 0.403 0.931 0.96 0.040 020 0.894 0.035 0.076 0.417 0.951 0.98 0.040 020 0.894 0.037 0.078 0.429 0.971 1.00 0.040 020 0.894 0.039 0.079 0.442 0.990 1.02 0.040 020 0.894 0.041 0.081 0.453 1.010 1.04 0.040 020 0.894 0.043 0.082 0.464 1.030 1.08 0.040 020 0.894 0.045 0.084 0.475 1.050 1.08 0.040 020 0.894 0.047 0.086 0.485 1.070								
0.96								
0.98 0.040 020 0.894 0.037 0.078 0.429 0.971 1.00 0.040 020 0.894 0.039 0.079 0.442 0.990 1.02 0.040 020 0.894 0.041 0.081 0.453 1.010 1.04 0.040 020 0.894 0.043 0.082 0.464 1.030 1.06 0.040 020 0.894 0.045 0.084 0.475 1.050 1.08 0.040 020 0.894 0.047 0.086 0.485 1.070								
1.00 0.040020 0.894 0.039 0.079 0.442 0.990 1.02 0.040020 0.894 0.041 0.081 0.453 1.010 1.04 0.040020 0.894 0.043 0.082 0.464 1.030 1.06 0.040020 0.894 0.045 0.084 0.475 1.050 1.08 0.040020 0.894 0.047 0.086 0.485 1.070								
1.02 0.040020 0.894 0.041 0.081 0.453 1.010 1.04 0.040020 0.894 0.043 0.082 0.464 1.030 1.06 0.040020 0.894 0.045 0.084 0.475 1.050 1.08 0.040020 0.894 0.047 0.086 0.485 1.070								,
1.04 0.040020 0.894 0.043 0.082 0.464 1.030 1.06 0.040020 0.894 0.045 0.084 0.475 1.050 1.08 0.040020 0.894 0.047 0.086 0.485 1.070								
1.06 0.040020 0.894 0.045 0.084 0.475 1.050 1.08 0.040020 0.894 0.047 0.086 0.485 1.070	1.04	0.040	020					
					0.045	0.084		
1.10 0.040020 0.894 0.050 0.087 0.494 1.090								
	1.10	0.040	020	0.894	0.050	0.087	0.494	1.090

B-54

ORIGINAL PART A 13 OF POOR QUALITY

DATA FOR INVERTER, CEA CONTROL LIGHT LOAD CASE

SYS 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06	V DSG P 0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG @ 030 030 030 030 030 030 030 030 030	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.009 0.011 0.013 0.015 0.017 0.019 0.021 0.023 0.025 0.027	SYS 0 0.082 0.083 0.085 0.086 0.088 0.089 0.091 0.092 0.094 0.097	SYS PF 0.107 0.129 0.150 0.170 0.190 0.208 0.224 0.243 0.260 0.275 0.271	LOAD V 0.870 0.910 0.930 0.970 0.970 1.010 1.030 1.050 1.070
SYS V 0.90 0.92 0.94 0.96 1.00 1.02 1.04 1.06 1.08	DSG P 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG Q 040 040 040 040 040 040 040 040 040	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 011 009 007 005 003 001 0.001 0.003 0.005 0.007	SYS 0 0.092 0.093 0.095 0.098 0.099 0.101 0.102 0.104 0.106 0.107	SYS PF 0.122 0.098 0.074 0.053 0.032 0.010 0.010 0.050 0.050 0.069 0.088	LOAD V 0.890 0.910 0.930 0.950 0.970 0.990 1.010 1.030 1.050
SYS V 0.90 0.92 0.94 0.96 1.00 1.02 1.04 1.06 1.08	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG G 050 050 050 050 050 050 050 050	DSG PF O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894	SYS F 031 029 027 025 023 021 019 017 015 013	SYS Q 0.102 0.103 0.105 0.106 0.108 0.109 0.111 0.112 0.114 0.115 0.117	SYS PF 0.294 0.273 0.252 0.231 0.210 0.189 0.169 0.169 0.109 0.090	LOAD V 0.890 0.910 0.930 0.950 0.970 0.990 1.010 1.030 1.050 1.070
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG G 060 060 060 060 060 060 060 060	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 051 049 047 045 045 041 039 037 035 033	SYS 0 0.112 0.113 0.115 0.116 0.118 0.119 0.121 0.122 0.124 0.125 0.127	SYS PF 0.418 0.399 0.381 0.363 0.344 0.326 0.307 0.289 0.271 0.252 0.234	LUAD V 0.890 0.910 0.930 0.950 0.970 0.990 1.010 1.030 1.050

TABLE B-XI, cont.

			INDLE	B-XT, COUR	ODICINIAL DAGE IS			
			DATA FOR INV	ERTER, CEA LOAD CASE		ORIGINAL PAGE 19 OF POOR QUALITY		
SYS V	DSG P 0.140	DSG 0 070	DSG PF 0.894	SYS P	SYS Q 0.122	SYS PF 0.506	LOAD V 0.889	
0.70	0.140	070	0.874 0.894					
						0.491	0.909	
0.94	0.140	** , 070	0.894			0.475	0.929	
0.96	0.140	070	0.894			0.459	0.949	
0.78	0.140	~.070	0.894		0.128	0.444	0.969	
1.00	0.140	- 070	0.894	061	0.129	0.428	O.989	
1.02	0.140	-,070	0.894	059	0.131	0.412	1.009	
1.04	0.140	070	0.894	057	0.132	0.375	1.029	
1.06	0.140	070	0.894	055	0.134	0.379	1 . O49	
1.08	0.140	070	0.894	053	0.135	0.363	1.069	
1.10	0,140	070	0.894	051	0.137	0.346	1.089	
sys v	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	
0.90	0.160	-, 080	0.874	- 071	0.132	0.570	0.889	
0.92	0.160	080	0.894	089	0.133	0.557	0.707	
0.94	0.160	080	0.894	- OB7	0.135	0.544	0.929	
0.96	0.160	080	0.894	- 085	0.136	0.531	0.747	
0.98	0.160	-,080	0.894	083	0.138	0.517	0.969	
1.00	0.160	080	0.894	081	0.139	0.504	0.787	
1.02	0.160	080	0.894	079		0.490	1.009	
1.04	0.160	080	0.894	- 077		0.476	1.029	
1.06	0.160	080	0.894	075		0.462	1.049	
1.08	0.160	080	0.874			0.447		
1.10	0.160	080	0.894	071			1.069	
1 a 11d	(1) T (3)/1	~, 000	U. 074	071	0.147	0.433	1.089	
SYS V	DSG P	DSG @	DSG PF			SYS PF	LOAD V	
0.90	0.180	090	0.894	111	0.141	0.618	0.889	
0.92	0.180	090	0.894	109	0.143	0.607	0.909	
0.94	O.180	090	O.894	107	0.145	0.596	0.929	
0.96	0,180	090	0.894	105	0.146	0.585	0.949	
0.98	0.180	090	0.894	103	0.148	0.573	0.969	
	0.180	090	0.894	101		0.561	0.989	
	0.180		0,894			0.549		
	0.180	090	0.894	097		0.537		
	0.180			095		0.525		
	0.180		0.874			0.513		
	0.180		0.894			0.500		
M (1) 1 M =		V-0. 1000 2775	70, 50, 50,	page of page and	enties en	pro, 5 / 270 miles		
SYS V	DSG P	DSG Q				SYS PF	LOAD V	
0.90	0.200	100	0.894			0.655	0.889	
	0.200	100	0.894	129	0.153	0.646	0.909	
0.94	0.200	100	0.894	127	0.154	0.636	0.929	
0.96	0.200	100	0.894	125	0.156	0.626	0.949	
Ö.98	0.200	100	0.894	123	0.158	0.616	0.969	
1.00	0.200	100	0.894	121	0.159	0.606	0.989	
1.02	0.200		0.894 .	119	0.161	0.595	1.009	
	0.200		0.894		0.162	0.585	1.029	
	0.200	100		115		0.574	1.049	
	0.200		0.894				1.069	
1.10	0.200	100	0.894		0.167		1.089	
A & & W	ایرا او باند کیا کدا	po per fer ter		· -	,			

CONSTA	NT IMPEDA	DATA NCE LOAD	FOR INVER	TER, CEA COAD CASE	ONTROL .	original of Poor	PAGE IS QUALITY
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10	DSG P 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG Q 010 010 010 010 010 010 010 010 010	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.522 0.546 0.571 0.597 0.623 0.649 0.676 0.704 0.732 0.760 0.790	SYS Q 0.416 0.435 0.453 0.472 0.492 0.512 0.532 0.553 0.574 0.595 0.617	SYS PF 0.782 0.783 0.783 0.785 0.785 0.786 0.786 0.787 0.787	LOAD V 0.823 0.841 0.860 0.878 0.896 0.914 0.933 0,951 0.969 0.988
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG 0 020 020 020 020 020 020 020 020 020	DSG PF 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874	SYS F 0.502 0.526 0.551 0.576 0.602 0.629 0.656 0.684 0.712 0.740 0.769	SYS Q 0.426 0.445 0.463 0.482 0.502 0.522 0.542 0.542 0.563 0.605 0.627	SYS PF 0.762 0.764 0.765 0.767 0.768 0.770 0.771 0.772 0.773 0.774	LOAD V 0.823 0.841 0.860 0.878 0.896 0.914 0.933 0.951 0.969 0.988 1.006
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10	DSG P 0.040 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060	DSG 0 030 030 030 030 030 030 030 030 030	DSG PF O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894	SYS P 0.482 0.506 0.531 0.556 0.582 0.609 0.636 0.663 0.691 0.720 0.749	SYS Q 0.436 0.454 0.473 0.492 0.512 0.532 0.552 0.573 0.574 0.615 0.637	SYS PF 0.741 0.744 0.747 0.749 0.751 0.753 0.755 0.757 0.759 0.760	LOAD V 0.823 0.841 0.859 0.878 0.896 0.914 0.933 0.951 0.969 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG F 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG Q 040 040 040 040 040 040 040 040 040	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.461 0.486 0.511 0.536 0.562 0.589 0.616 0.643 0.671 0.700 0.729	SYS Q 0.444 0.463 0.502 0.522 0.541 0.562 0.582 0.603 0.625 0.647	SYS PF 0.719 0.723 0.727 0.730 0.733 0.736 0.739 0.741 0.744 0.746	LOAD V 0.823 0.841 0.859 0.878 0.896 0.914 0.933 0.951 0.969 0.987

TABLE B-XII, cont.

DATA FOR INVERTER, CEA CONTROL

ORIGINAL PAGE 19

OF POOR QUALITY HEAVY LOAD CASE SYS V DSG P SYS P SYS Q DSG Q DSG PF SYS PF LUAD V 0.90 0.100 -.050 0.894 0.441 0.456 0.495 0.822 0.92 0.100 -.050 0.474 0.701 0.894 0.466 0.841 0.493 0.491 0.94 -.050 0.705 0.100 0.894 0.859 0.96 0.100 -.050 0.894 0.516 0.512 0.710 0.877 -.050 0.98 0.100 0.894 0.542 0.531 0.714 0.896 1.00 0.100 -.050 0.894 0.548 0.551 0.718 0.914 0.100 -.050 1.02 0.894 0.596 0.572 0.7210.932 0.100 -.050 0.592 0.725 0.951 1.04 0.894 0.623 0.100 -.050 1.06 0.894 0.651 0.613 0.728 0.969 0.100 -.0501.08 0.894 0.480 0.435 0.731 0.987 1.10 0.100 -.050 0.894 0.709 0.657 0.734 1.006 SYS V DSG P DSG Q DSG PF SYS P SYS Q SYS PF LUAD V 0.894 0.90 0.120 -.040 0.421 0.466 0.671 0.822 0.92 0.120 -.060 0.894 0.445 0.484 0.677 0.841 0.94 0.120 -.060 0.483 0.894 0.470 0.503 0.859 0.120 0.96 -.040 0.894 0.496 0.5220.489 0.877 0.78 0.120 -.060 0.894 0.522 0.541 0.694 0.896 1.00 0.120 -.040 0.561 0.894 0.548 0.699 0.914 0.120 1.02 -.060 0.894 0.575 0.582 0.703 0.932 1.04 0.120 -.060 0.894 0.603 0.602 0.708 0.951 0.120 -.060 0.894 0.623 0.711 0.969 1.06 0.631 1.08 6,120 -.060 0.894 0.645 0.715 0.987 0.660 1.10 0.120-.060 0.894 0.689 0.667 0.719 1.006 SYS V DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V 0.90 0.140 -.070 0.894 0.401 0.476 0.644 0.822 0.140 -.070 0.920.894 0.425 0.494 0.652 0.841 -.070 0.94 0.1400.894 0.450 0.513 0.460 0.859 0.894 0.76 0.140 -.070 0.476 0.5320.667 0.877 0.98 0.140 -.070 0.894 0.502 0.551 0.673 0.896 1.00 0.140 -.070 0.894 0.528 0.571 0.679 0.914 1.02 0.140 -.070 0.894 0.555 0.591 0.684 0.932 -.070 1.04 0.140 0.894 0.583 0.612 0.690 0.950 0.894 1.06 0.140 -.070 0.694 0.611 0.633 0.969 1.08 0.140 -.070 0.874 0.640 0.455 0.699 0.987 1.10 0.140 -.070 0.894 0.669 0.677 0.703 1.005 SYS V SYS P DSG P DSG Q DSG PF SYS Q SYS PF LOAD V 0.90 0.160 -.080 0.894 0.381 0.485 0.617 0.822 0.92 0.160 -.080 0.894 0.405 0.504 0.627 0.840 0.94 0.160 -.080 0.894 0.430 0.523 0.635 0.859 0.96 0.160 -.080 0.894 0.455 0.542 0.644 0.877 0.98 0.160 -.080 0.894 0.481 0.561 0.651 0.895 1.00 0.160 -.080 0.894 0.508 0.581 0.914 0.658 1.02 0.160 -.080 0.894 0.535 0.601 0.665 0.932 1.04 -.080 0.160 0.894 0.563 0.622 0.671 0.950 1.06 -.080 0.160 0.894 0.591 0.643 0.677 0.969 1.08 0.160 -.080 0.894 0.619 0.664 0.682 0.987 1.10 0.160 -.080 0.894 0.649 0.686 0.687 1.005

TABLE B-XII, cont.

ORIGINAL PAGE IS OF POOR QUALITY

DATA FOR INVERTER, CEA CONTROL HEAVY LOAD CASE

			HEVAX 1.0VD	CASE			
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG Q 090 090 090 090 090 090 090 090	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.360 0.385 0.410 0.435 0.461 0.488 0.515 0.542 0.570 0.599 0.628	SYS 0 0.495 0.514 0.532 0.551 0.571 0.591 0.411 0.632 0.674 0.674	SYS PF 0.588 0.600 0.610 0.620 0.628 0.637 0.644 0.651 0.658 0.664	LOAD V 0.822 0.840 0.857 0.877 0.895 0.914 0.932 0.950 0.969 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.05 1.08	DSG P 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG Q 100 100 100 100 100 100 100 100 100 100	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.340 0.345 0.390 0.415 0.441 0.468 0.495 0.550 0.579 0.608	SYS Q 0.505 0.524 0.542 0.561 0.581 0.601 0.621 0.642 0.643 0.684 0.706	SYS PF 0.559 0.572 0.584 0.595 0.605 0.614 0.623 0.631 0.639 0.646 0.653	LOAD V 0.822 0.840 0.858 0.877 0.895 0.913 0.932 0.950 0.968 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG @ 010 010 010 010 010 010 010 010 010	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.590 0.609 0.628 0.648 0.667 0.706 0.726 0.726 0.746	SYS Q 0.468 0.482 0.496 0.511 0.525 0.540 0.555 0.570 0.585 0.600 0.615	SYS PF 0.784 0.785 0.785 0.786 0.786 0.786 0.787 0.787	LOAD V 0.812 0.831 0.851 0.870 0.870 0.909 0.928 0.948 0.967 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG F 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 020 020 020 020 020 020 020 020 020	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS F 0.570 0.589 0.608 0.628 0.647 0.667 0.686 0.706 0.726 0.726	SYS 0 0.478 0.492 0.506 0.521 0.535 0.550 0.565 0.580 0.595 0.610 0.625	SYS PF 0.767 0.768 0.769 0.770 0.771 0.771 0.772 0.773 0.774 0.774	LCIAD V 0.812 0.831 0.851 0.870 0.889 0.909 0.928 0.948 0.947 0.987

ORIGINAL PAGE 19 OF POOR QUALITY

DATA FOR INVERTER, CEA CONTROL HEAVY LOAD CASE

			UDVAT P	ממאט מאט			
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.060	DSG Q 030 030 030 030 030 030 030 030 030	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.550 0.569 0.588 0.627 0.647 0.646 0.686 0.706 0.726	SYS Q 0.488 0.502 0.516 0.531 0.545 0.545 0.575 0.695 0.620 0.635	SYS PF 0.748 0.750 0.752 0.753 0.755 0.756 0.757 0.758 0.760 0.761	LOAD V 0.812 0.831 0.851 0.870 0.889 0.909 0.928 0.948 0.947 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG Q 040 040 040 040 040 040 040 040 040	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.530 0.549 0.568 0.587 0.607 0.626 0.646 0.646 0.706 0.726	SYS Q 0.498 0.512 0.524 0.555 0.555 0.559 0.599 0.614 0.645	SYS PF 0.729 0.731 0.734 0.736 0.738 0.740 0.742 0.743 0.745 0.746	LCAD V 0.812 0.831 0.850 0.870 0.889 0.909 0.928 0.948 0.948 0.967
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG 0 050 050 050 050 050 050 050 050	DSG PF O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894 O.894	SYS P 0.510 0.529 0.548 0.567 0.587 0.626 0.626 0.646 0.686 0.706	SYS Q 0.507 0.522 0.536 0.550 0.565 0.565 0.595 0.624 0.635	SYS PF 0.709 0.712 0.715 0.718 0.720 0.723 0.725 0.727 0.727	LOAD V 0.812 0.831 0.850 0.870 0.889 0.909 0.928 0.948 0.967 0.986 1.006
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG Q 040 040 040 040 040 040 040 040	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.490 0.509 0.528 0.547 0.567 0.584 0.606 0.646 0.646 0.686	SYS Q O.517 O.532 O.546 O.575 O.575 O.604 O.619 O.649 O.645	SYS PF 0.688 0.691 0.695 0.699 0.702 0.705 0.708 0.711 0.713 0.716	LOAD V 0.812 0.831 0.850 0.870 0.889 0.909 0.928 0.947 0.947 0.986 1.006

DATA FOR INVERTER, CEA CONTROL HEAVY LOAD CASE

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG Q 070 070 070 070 070 070 070 070 070	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.470 0.489 0.508 0.527 0.547 0.546 0.666 0.626 0.646	SYS Q 0.527 0.541 0.556 0.570 0.585 0.600 0.614 0.629 0.644 0.659 0.674	SYS PF 0.645 0.670 0.679 0.683 0.687 0.690 0.693 0.697 0.703	LOAD V 0.811 0.831 0.850 0.870 0.889 0.928 0.928 0.947 0.947 0.986 1.006
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG 0. 080 080 080 080 080 080 080 080	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P O.450 O.468 O.488 O.526 O.526 O.546 O.566 O.606 O.626 O.646	SYS Q O.537 O.551 O.566 O.595 O.624 O.624 O.639 O.654 O.669 O.684	SYS PF 0.642 0.647 0.653 0.658 0.663 0.667 0.671 0.676 0.679 0.686	LOAD V 0.811 0.850 0.850 0.869 0.908 0.928 0.947 0.967 0.984
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG Q 090 090 090 090 090 090 090 090 090	DSG PF 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894	SYS P 0.429 0.4487 0.467 0.506 0.546 0.5465 0.565 0.626	SYS Q 0.547 0.561 0.576 0.590 0.605 0.619 0.634 0.649 0.664 0.679	SYS PF 0.617 0.624 0.630 0.636 0.642 0.652 0.657 0.651 0.665 0.669	LOAD V 0.811 0.830 0.850 0.869 0.889 0.908 0.928 0.928 0.947 0.967
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG Q 100 100 100 100 100 100 100 100 100	DSG PF 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874	SYS F 0.409 0.428 0.447 0.467 0.486 0.525 0.545 0.545 0.565	SYS Q 0.557 0.571 0.585 0.400 0.415 0.429 0.429 0.459 0.459 0.459	SYS PF 0.572 0.600 0.607 0.614 0.620 0.632 0.638 0.643 0.647 0.652	LOAD V 0.811 0.830 0.850 0.869 0.889 0.908 0.927 0.947 0.946 0.986

TABLE B-XIII

ORIGINAL PAGE 19 OF POOR QUALITY

DATA FOR INVERTER, CEA - COMPENSATED LIGHT LOAD CASE

COMSTANT IMPEDANCE LUAD

SYS V DSG F DSS O DEG PF SYS P 9YS 0 SYS PF LOAD V $\phi_a 90$ 0.020 0.071 0.271 -,022 0.045 0.894 0.900 0.0950.020 0.0250.259 0.048 -. 024 0.894 0.920 0.073 0.94 0.0200.247 0.051 ~.025 0.894 0.941 0.96 0,082 0.0200.236 0.054 -.027 0.394 0.961 0.98 U_02'0 0,086 0.2260.057 ··. 028 0.894 0.981 1.00 0.0200.090 0.217 ~ . OBO 0.060 0.894 1.001 1. 02 0.0200.094 0.208 -.0320.043 0.894 1.021 0.1991.:04 0.0200.098 0.067 -.033 0.894 1.041 1.06 0.0200.102 Q.192 -.035 0.0700.894 1.061 1.08 0,020 9.107 0.184 0.073 -.037 0.894 1.081 1.10 $O_{+}Q_{-}^{*}Q$ 0.111 0.177 0.077 -.038 0.894 1.101 6Y5 V DSG P DSG 0 DSO PF SYS P G EYB SYS PF LOAD Y 0.90 0.040 0.061 0.548 0.025 -.0120.894 0.900 0.040 0.92 0.0650,526 0.028 -.014 0.894 0.920 0.040 0.94 0.058 0.505 0.031 -.0150.894 0.940 0.96 0.040 0.072 0.484 0.034-.0170.894 0.960 0,98 0.040 0.076 0.465 0.037 -.018 0.874 0.980 1,00 0.040 0.080 0.447 0.040 -.020 0.894 1.000 1.02 0.040 0.084 0.429 0.043 -.0220.894 1,020 1,04 0.040 0.088 0.413 0.047 -.023 0.894 1,040 0.397 0,092 1.06 0.040 0.050 -.025 0.874 1.060 0.382 1.08 0.040 0,097 0.053 -.027 0.894 1.080 1.10 0.0400.101 0.368 0.057 -.028 0.894 1.100 SYS V DSG P DSG 0 DSG PF SYS F SYS Q SYS PF LOAD V 0.060 0.762 0.90 0.051 0.005 -.0020.894 0.700 0.92 0.060 0.055 0.739 0.920 0.008 -.004 0.894 0.94 0.060 0.058 0.717 0.011 -.005 0.894 0.940 0.96 0.060 0.062 0.694 0.014 -.0070.894 0.960 0.78 0.066 0.060 0.472 0.017 -.008 0.894 0.980 1,00 0.060 0.070 0.651 0.020 -.010 0.894 1,000 0.074 0.629 1.02 0,040 0.023 -.0120.894 1.020 1.04 0.060 0.078 0.609 0.027 -.013 0.894 1.040 1.05 0.060 0.082 0.589 0.030 -.015 0.894 1.060 1.08 0.060 0.087 0.569 0.033 -.0170.894 1.080 1.10 0.060 0.091 0.550 -.018 0.037 0.894 1.100 SYS V DSG P DSG 0 DSG FF SYS P SYS Q SYS PF LOAD V 0.890 0.90 0.080 0.041 -.0150.008 0.894 0.900 0.92 0.080 0.045 0.873 -.0120.006 0.894 0.920 0.94 0.080 0.048 0.856 -.009 0.0050.874 0.940 0.052 0.95 0.080 0.838 -.006 0.003 0.894 0.960 0.78 0.080 0.056 0.819 -.003 0.894 0.980 0.002 1.00 0.060 0.800 0.080 -.000 0.000 0.936 1,000 1.02 0.064 0.781 0.0800.003 -.0020.894 1.020 1.04 0.080 0.068 0.761 0.007 -.003 0.894 1.040 1.06 0.080 0.072 0.742 0.010 -.005 0.894 1.060 1.08 0.080 0.077 0.722 0.013 -.007 0.894 1.080 1.10 0.080 0.081 0.703 0.017 -.008 0.894 1.100

B-62

TABLE B-XIII, cont. ORIGINAL PAGE 18 OF POOR QUALITY,

DATA FOR INVERTER, CEA - COMPENSATED LIGHT LOAD CASE

SYS V	DSG P	DSG Q	DSG PF	SYS P	SYS C	SYS PF	LOAD V
0.90	0.100	0.031	0.955	035	0.018	0.894	0.900
0,92	0.100	0.035	0.945	032	0.016	0.894	0.920
0.94	0,100	0.038	0.934	029	0.015	0.894	0.940
0.96	0.100	0.042					
			0.922	026	0.013	0.894	0.960
0.98	0.100	0.046	0.909	023	0.012	0.894	0.980
1.00	0.100	0,050	0.895	020	0.010	0.894	1.000
1.02	0.100	0.054	0.880	O17	0.008	0.874	1.020
1.04	0.100	0.058	Q.865	013	0.007	0.894	1.040
1.06	0.100	O.OA2	0.849	010	0.005	0.894	1.060
1.08	0.100	0.067	0.832	~. 007	0.003	0.894	1,080
1.10	0.100	0.071	0.815	~. 003	0,002	0.094	1,100
						,	12 17 2
SYS V	DSG F	DSG G	भन करव	SYS P	SYS Q	SYS PF	LOAD V
0.90	0.120	0.021	0.985	055	0.028	0.894	O.899
0.92	0.120	0.025	0.980	052	0.026	0.894	0.919
0.94	0.120	0.028	0 x 973	O40	0.025	0.894	0.939
0.96	0.120	0.032	0.944	046	0.023	0.894	0.959
0.78	0.120	0.036	0.958	043	0.022	0.891	0.980
1.00	0.120	0.040	0.949	-, 04Q	0.020	0.894	
1.02	0.120	0.044					1.000
			0.939	037	0.018	0.894	1.020
1.04	0.120	0.048	0,928	034	0.017	0.894	1.040
1.06	0.120	0.052	0.917	030	0.015	0.894	1.060
1.08	0.120	0.057	0.904	027	0.013	0.894	1.080
1.10	0.120	0.061	0.892	023	0.012	0.894	1.100
SYS V	DSG P	DSG 0	DSG PF	sys p	sys Q	ove or	LONG
0.90	0.140					SYS PF	LOAD V
		0.011	0.997	075	0.038	0.894	0.899
0.92	0.140	0.014	0.995	072	0.036	O.894	0.919
0.94	0.140	0.018	0.992	069	0.035	0.894	0.939
0.96	0.140	0.022	0.988	, 066	0.033	0.894	0.959
Q.98	0.140	0.026	0.983	063	0.032	0.894	0.979
1.00	0.140	0.030	0.978	060	0.030	0.894	0.999
1.02	0.140	Q.034	0.972	057	0.028	0.874	1.019
1,04	0.140	0.038	0.965	054	0.027	0.894	1.039
1,06	0.140	0.042	0.957	050	0.025	0.894	1.060
1.08	0.140	0.047	0.949	047	0,023	0.894	1.080
1.10	0.140	0.051	0.740	043	0.022	0.894	1.100
Str. M. IE TOP	O# 11-11-3	ORGUL	WH 7 TW	H 2 ^{mg} m L 2 ^{mg}	SO ii Solutiustii	V+074	1.100
SYS V	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V
0.90	0.160	0.001	1.000	095	0.048	ୁ. ଥେବ	0.899
0.92	0.160	0.004	1.000	092	0.046	0.894	0.919
Q.94	0.160	0.008	0.999	089	0.045	0.894	Õ. 939
0.96	0.160	0.012	0.997	084	0.043	0.894	0,757
0.98	0.160	0.015	0.995	083	0.042	0.894	0.979
1.00	0.160	0.020	0.773	080	0.040		
1.02	0.160	0.024	0.789			0.894	0.999
				077	0.038	0.894	1.019
1.04	0.160	0.028	0.985	074	0.037	0.894	1,039
1.06	0.160	0.032	0.980	070	0.035	0.874	1.059
1.08	0.160	0.037	0.975	067	0.033	0.894	1.079
1.10	0.160	0.041	0.969	063	0.032	0.894	1.099
							_

TABLE B-XIII, cont.

		DATA FOR	INVERTER, LIGHT LOA	CEA - COMF D CASE	PENSATED		PAGE 19 QUALITY
5Y5 V		DSG 0	D50 PF	9 aya	SYS O	SYS PF	LOAD V
0.90	១. 180	~ , QQ9	0,999	··.115	0.058	0.894	0.699
0,92	0.180	~"QQ A	1,000	112	O.Q56	0.894	
U _# 94	0.180	≈ dQ2	1.000	110	0.955	0.874	0.939
0.96	ο _n 180	0.002	1.000	1 06	0.053	O.894	0.959
0.93	o_*180	O , 006	0.999	÷, 105	0.052	0.394	0.979
1.00	0.180	0.010	α_{μ} which	<u>, 100</u>	0.050	0.894	0.999
1.92	0,180	0.014	0.997	~. ○97	O.048	0.894	1.019
1.04	0.180	០បាខ	0.995	094	0.047	0.874	1.039
1 , 06	0.180	0.022	0.993	090	0.045	0.894	1.059
1.08	0.180	0.026	0.989	087	0.043	0.894	1.079
1.10	0,480	0.031	୍କ ମଥର	QB3	0.042	0.894	1.099
SYS V	DSG P	nsa o	DSG PF	SYS P	sys o	SYS PF	LOAD V
0.90	0.200	019	0.995	135	0.068	0.894	0.898
0.92	0.200	-,016	0.997	133	0.066	0.874	0.918
0.94	0.200	012	0.998	130	0.065	0.894	0.718
0.96	0.200			126	0.063	0.894	0.755
0.98	0.200			123	0.062	0.874	0.979
1.00	0.200	-,,000	1.000	120		0.894	0.999
1.02	0.200	0.004		117	0.058	0.874	1.019
1.04	0.200	0.008	0.777		0.057		1.039
1.06	0.200	0.012		110			1.057
1.08	0.200		0.997	107		0.874	1.079
1.10	0.200	0.021	0.995	103	0.052	0.894	1.099
REAL18	TIC LUAD	REPRESENT	ATION	LIGHT L	DAD CASE		
SYS V	DSG F	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	L.OAD V
0.90	0.020	0.071	0.271	0.050	019	0.936	0.900
0.92	0.020	0.075	0.259	0.052	021	0.928	0.920
0.94	0.020	0.078	0.247	0.054	023	0.920	0.940
0.96	0.020	0.082	0.236	0.054	025	0.911	0.960
0.98	0.020	0.086	0.226	0.058	028	0.903	0.980
1,00	0.020	0.090	0.217	0.060	030	0.894	1.001
1.02	0.020	0.094	0.208	0.062	033	0.884	1.021
1.04	0.020	0.098	0.199	0.064	035	0.877	1.041
106	0.020	0.103	0.191	0.066	038	0.869	1.061
	0.020	0.107	0.184	0.069	040		1.081
1,10	0.020	0.111	0.177	0.071			1.101
SYS ·V	DSG P	DSG Q	nsg pf	SYS P	sys o	SYS PF	LOAD V
	0.040	0.061	0.549	0.030	009	0.960	0.900
0.92	0.040	0.065	0.524	0.032	011	0.947	0.920
0.72			0.505				
0.96	0.040 0.040	0.068 0.072	0.303 0.485	0.034	013 015	0.933	0.940
0.78	0.040		0.465	0.036		0.920	0.960
1.00		0.076	0.447	0.038	018	0.907	0.980
	0.040	0.080		0.040	020 - 027	0.894	
1.02	0.040	0.084	0.429	0.042	023	0.882	1.021
1.04	0.040	0.088	0.413	0.044	025	0.870	1.041
1.06	0.040	0.093	0.397	0.046	028	0.858	1.061
1.08	0.040	0.097	0.382	0.049	030	0.847	1.081
1.10	0.040	0.101	0.367	0.051	033	0.836	1.101

B-64

TABLE B-XIII, cont.

DATA FOR INVERTER, CEA - COMPENSATED LIGHT LOAD CASE

SYS V	DSG P	DSG Q	DSG PF	SYS P	SYS 0	SYS PF	LOAD
0.90	Q.06Q	0.051	0.763	0.010	0.001	0.990	LOAD V
0.92	0.060	0.055	0.740	0.012	OO1		0.899
0.94	0.060	0.058	0.717			0.798	0.920
0.96	0.060	0.042		0.014	003	O.978	0.940
0.98	0.060		0.695	0.016	005	0.949	O.960
		0.056	0.672	0.018	008	0.921	0.780
1,00	0.060	0.070	0.651	0.020	-, O10	0.894	1.000
1.02	0.060	0.074	0.629	0.022	013	0.870	1,020
1.04	0,060	O.078	O. 608	0.024	015	0.849	1.041
1.0c	0.040	0.082	O.588	0.026	018	0.830	1.061
1.08	0.060	0.087	0.569	0.029	~.020	0.313	1.081
1.10	0.060	0.091	0.550	0.031	023	0.797	1.101
				-			
SYS V	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V
0.90	0.080	0.041	O.891	010	0.011	0.671	0.899
0.92	0.080	0.045	0.874	008	0.009	0.666	0.717
0.94	0.080	0.048	0.856	006	0.007	0.662	0.740
0.96	0.080	0.052	0.838	004	0.005	0.658	0.960
0.98	0.080	0.056	0.819	002	0.002	0.653	
1.00	0.080	0.060	0.800	000	0.000		0.980
1,02	0.080	0.044	0.781	0.002		0.555	1.000
1.04	0.080	0.048			002	0.644	1.020
1.06	0.080	0.072	0.761	0.004	005	0.640	1.040
			0.741	0.006	~. 008	0.636	1.060
1.08	0.080	0.077	0.721	0.008	010	0.632	1.081
1.10	0.080	0.081	0.702	0.011	013	0.628	1.101
SYS V	DSG F	DCC 0	4-6 2 ^{mg} 2 ⁻¹⁶ pi2, pist	****			
		DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V
0.90	0.100	0.031	0.956	030	0.021	0.817	0.899
0.92	0.100	0.034	0.945	028	0.019	0.824	0.919
0.94	0.100	0.038	0.934	026	0.017	0.838	0.939
0.96	0.100	0.042	0.922	024	0.015	0.853	0.959
0.98	0.100	0.046	0.909	022	0.012	0.871	0.980
1.00	0.100	0.050	0.895	020	0.010	0.894	1.000
1 , 02	0.100	0.054	0.880	018	0.008	0.922	1.020
1.04	0.100	0.058	0.864	016	0.005	0.954	1.040
1.06	0.100	0.062	0.848	014	0.002	0.986	1.060
1.08	0.100	0.067	0.832	012	000	0.999	1.080
1.10	0.100	0.071	0.815	009	003	0.947	1.101
			- " "		.000	W # 7-T7	1 4 1 () 1
SYS V	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V
0.90	0.120	0.021	0.985	050	0.031	0.848	0.899
0.92	0.120	0.024	0.980	048	0.029	0.855	0.919
0.94	0.120	0.028	0.974	046	0.027	0.863	
0.96	0.120	0.032	0.966	044			0.939
0.98	0.120	0.034	0.758	042	0.025	0.872	0.959
1.00	0.120	0.036			0.022	0.882	0.979
1.02	0,120	0.040	0.949	040	0.020	0.894	1.000
1.04			0.939	038	0.018	0.508	1.020
	0.120	0.048	0.928	036	0.015	0.923	1.040
1.06	0.120	0.052	0.916	034	0.012	0.939	1,060
1.08	0.120	0.057	0.904	032	0.010	0.956	1.080
1.10	0.120	0.061	0.891	029	0.007	0.974	1.100

TABLE B-XIII, cont.

ORIGINAL PAGE IS

DATA FOR INVERTER, CEA - COMPENSATED LIGHT LOAD CASE

SYS V	DSG P	DSG Q	DSG PF	SYS P	SYS D	SYS PF	LOAD V
0.90	0.140	0.011	0.997	~.070	0.041	0.362	O.898
0.92	0.140	0.014	0.995	Q68	0.039	0.867	0.919
0.94	O.140	0.018	0.992	~. 066	0.037	0.872	0.939
0.96	0.140	0.022	0.988	064	0.035	0.879	0.959
0.98	0.140	0.026	0.983	062	0.033	0.886	0.979
1.00	0.140	0.030	0.978	060	0.030	0.694	0.999
1.02	0.140	0.034	0.972	058	0.028	0.903	1.020
1.04	0.140	0.038	0.965	056	0.025	0.913	
1.06	0.140	0.042	0.957	054			1.040
1,08	0.140	0.047	0,949		0.022	0.923	1.060
1,10	0.140	0.051	0.747	052 049	0.020 8.047	0.934	1.030
# H # 2.8	San Array	Car Contra	11 × 7+37	***	0.017	0.946	1.100
SYS V		DSG O	DSG PF	SYS P	SYS D	SYS PF	LOAD V
0.90	0.140	0.001	1.000	090	0.052	0 . ፀሬዎ	0.898
O.92	0.160	0.004	1.000	-,088	0.049	0.873	0.918
0.94	0.160	0.008	Q.999	086	0.047	0.878	0.937
0.96	0.160	0.012	0.997	O84	0.045	0.883	0.959
0.98	0.160	0.016	0.995	082	0.043	0.888	0.979
1,00	0.160	0.020	0,992	080	0.040	0.894	0.799
1.02	0.140	0.024	0.989	078	0.038	0.901	1.019
1.04	0.160	0.028	0.985	076	0.035	0.908	1.040
1.06	0.160	0.032	0.780	074	0.032	0.916	
1,08	0.160	0.037	0.975	072	0.032		1.060
1.10	0.160	0.037	0.769	069		0.924	1.030
an an an say	tar militaritar	AN HINETE A	0.707	~.007	0.027	0.931	1.100
255225 13	ምት የማረዋሉ ነው።	aris armatini — a is	with group drive, print, June				
SYS V	DSG P	DSG ()	DSG PF	SYS P	SYS C	SYS PF	LOAD V
0.90	0.180	·- " 009	0.999	110	0.062	Q.874	0.878
0.92	0.180	~ QQ6	0.999	108	0.057	0.877	0.718
0.94	0.180	002	1.000	106	0.057	0.881	0.938
0.95	0.180	0.002	1.000	104	0.055	0.885	0.959
0.98	0.180	0.006	0.999	102	0,053	O.887	0.979
$1_{+}\cup \mathcal{O}$	0.180	$Q_{\rm e} O I Q$	O. 777	100	0.050	0.894	0.999
1.02	Q.180	0.014	0.997	098	0.048	0.879	1.019
1.04	0.180	0.013	0.995	096	0.045	0.905	1.039
1.06	0.130	0.022	0.792	094	0.042	0.911	1.059
1.08	0.180	0.027	O. 989	092	0.040	0.717	1.080
1.10	0.180	0.031	0.986	089	0.037	ō. 924	1,100
							- /
SYS V	DSG P	DSG Q	DSG PF	SYS P	sys o	SYS FF	LOAD V
0.90	0.200	019	0.775	130	0.072	0.877	
0.92	0.200	016	0.997	128	0.069		0.878
0.94	0.200	012	0.998	126		0.880	0.918
0.96	0.200	008	0,999		0.067	0.883	0.938
0.98	0.200	-,004	1,000	124	0.045	0.886	0.958
1.00	0.200	-,000		122	0.063	0.890	0,978
1.02			1.000	120	0.060	0.894	0.999
	0.200	0.004	1.000	118	0.058	0.877	1.019
1.04	0.200	0.008	0.999	116	0.055	0.903	1.039
1.06	0.200	0.012	0.998	1.1.4	0.052	0.908	1.059
1.08	0.200	0.017	0,997	112	0.050	0.913	1.079
1.10	0.200	0.021	O.995	109	0.047	0.919	1,100

DATA FOR INVERTER, CEA - COMPENSATED OF POOR QUALITY CONSTANT IMPEDANCE LOAD

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10	DSG F 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG Q 0.059 0.062 0.065 0.068 0.072 0.075 0.079 0.082 0.084 0.089	DSG PF 0.321 0.307 0.293 0.280 0.268 0.257 0.247 0.237 0.227 0.219 0.210	SYS P 0.532 0.556 0.582 0.608 0.634 0.661 0.689 0.717 0.745 0.774	SYS 0 0.355 0.370 0.384 0.402 0.419 0.436 0.453 0.470 0.488 0.507 0.525	SYS PF 0.832 0.833 0.833 0.834 0.835 0.835 0.836 0.836 0.837	LOAD V 0.830 0.849 0.867 0.886 0.904 0.923 0.941 0.960 0.978 0.977
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08 1.10	DSG F 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 0.049 0.052 0.055 0.058 0.062 0.065 0.069 0.072 0.076 0.079	DSG PF 0.633 0.609 0.587 0.545 0.544 0.523 0.504 0.485 0.467 0.450	SYS P 0.512 0.536 0.562 0.588 0.614 0.641 0.649 0.725 0.725	SYS 0 0.365 0.380 0.396 0.412 0.429 0.446 0.463 0.480 0.498 0.535	SYS PF 0.814 0.816 0.817 0.819 0.820 0.821 0.822 0.823 0.825 0.825	LOAD V 0.830 0.849 0.867 0.866 0.904 0.923 0.941 0.960 0.978 0.996 1.015
1.08	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 0.039 0.042 0.045 0.048 0.052 0.055 0.059 0.062 0.064 0.069		0.705 0.734	0.526	0.813	
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG Q 0.029 0.032 0.035 0.038 0.042 0.045 0.049 0.052 0.054 0.059	0.940 0.928 0.915 0.901 0.887	0.471 0.496 0.521 0.547 0.574 0.601 0.628 0.656 0.485	0.385 0.400 0.416	0.778 0.782 0.785 0.788	

ORIGINAL PAGE IS OF POOR QUALITY

DATA FOR INVERTER, CEA - COMPENSATED HEAVY LOAD CASE

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG 0 0.019 0.022 0.025 0.028 0.032 0.035 0.039 0.042 0.046 0.049	DSG PF 0.983 0.977 0.970 0.962 0.953 0.944 0.933 0.922 0.910 0.897	SYS P 0.451 0.476 0.501 0.527 0.554 0.581 0.608 0.636 0.645 0.6724	SYS D 0.394 0.410 0.426 0.422 0.459 0.475 0.510 0.528 0.546	SYS PF 0.753 0.758 0.762 0.766 0.770 0.774 0.777 0.780 0.783 0.786 0.788	LOAD V 0.830 0.847 0.867 0.885 0.904 0.922 0.941 0.959 0.978 0.996
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG Q 0.009 0.012 0.015 0.018 0.022 0.025 0.029 0.034 0.034 0.039	DSG PF 0.997 0.995 0.992 0.988 0.984 0.979 0.973 0.959 0.950	SYS P 0.431 0.456 0.481 0.507 0.533 0.560 0.588 0.616 0.645 0.674 0.704	SYS Q 0.404 0.420 0.436 0.452 0.468 0.465 0.520 0.538 0.556 0.575	SYS PF 0.729 0.736 0.741 0.747 0.751 0.756 0.760 0.764 0.768 0.771	LDAD V 0.830 0.848 0.867 0.885 0.904 0.922 0.941 0.959 0.978 0.978
	0.140	DSG Q 001 0.002 0.005 0.008 0.012 0.015 0.018 0.022 0.026 0.029 0.033	DSG FF 1.000 1.000 0.999 0.997 0.994 0.991 0.988 0.984 0.979		SYS Q O.414 O.430 O.446 O.462 O.478 O.478 O.512 O.530 O.548 O.566 O.585	SYS PF 0.704 0.712 0.719 0.726 0.732 0.737 0.742 0.747 0.752 0.756 0.760	LOAD V 0.830 0.848 0.867 0.885 0.904 0.922 0.941 0.959 0.978 0.976
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08		DSG Q 011 008 005 002 0.002 0.005 0.008 0.012 0.014 0.019 0.023	DSG PF 0.998 0.999 1.000 1.000 1.000 0.999 0.997 0.993 0.990	SYS F 0.391 0.415 0.441 0.467 0.520 0.520 0.576 0.604 0.634 0.663	SYS D 0.424 0.440 0.456 0.472 0.488 0.505 0.522 0.522 0.558 0.576 0.595	SYS PF 0.677 0.687 0.695 0.703 0.711 0.717 0.724 0.729 0.735 0.740	

LOAD V

SYS PF

DATA FOR INVERTER, CEA - COMPENSATED HEAVY LOAD CASE

SYS P

SYS Q

DSG PF

SYS V DSG P

DSG Q

0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	021 018 015 012 008 005 002 0.002 0.004 0.009	0.993 0.995 0.997 0.998 0.999 1.000 1.000 1.000 0.999	9YS P 0.370 0.395 0.421 0.447 0.473 0.500 0.528 0.554 0.584 0.613 0.643	9YS Q 0.434 0.450 0.465 0.498 0.515 0.532 0.550 0.568 0.586	SYS PF 0.649 0.660 0.671 0.680 0.689 0.697 0.704 0.711 0.717	0.829 0.848 0.866 0.865 0.903 0.922 0.940 0.959 0.977 0.976
SYS V 0.90 0.92 0.94 0.96 1.00 1.02 1.04 1.04 1.08	0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG Q 031 028 025 022 018 015 012 008 004 001 0.003	DSG PF 0.988 0.990 0.992 0.994 0.997 0.998 0.999 1.000 1.000	SYS P 0.350 0.375 0.400 0.426 0.453 0.480 0.507 0.555 0.564 0.593 0.623	SYS Q 0.444 0.459 0.475 0.491 0.508 0.525 0.542 0.560 0.578 0.578 0.614	SYS PF . 0.619 0.632 0.644 0.655 0.665 0.675 0.691 0.699 0.706 0.712	LOAD V 0.829 0.848 0.866 0.885 0.903 0.922 0.940 0.959 0.977 0.976
SYS (0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08		DSG Q 0.057 0.060 0.064 0.067 0.071 0.078 0.078 0.082 0.085	DSG PF 0.330 0.314 0.299 0.285 0.272 0.260 0.249 0.238 0.228 0.219		0.508	0.837	
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 0.047 0.050 0.054 0.057 0.061 0.064 0.068 0.072 0.075 0.079	DSG PF 0.647 0.621 0.597 0.573 0.551 0.529 0.508 0.488 0.469 0.451	SYS P 0.578 0.597 0.616 0.636 0.656 0.675 0.756 0.716 0.756 0.777	SYS 0 0.416 0.427 0.439 0.450 0.461 0.472 0.484 0.495 0.506 0.518 0.529	SYS PF 0.811 0.813 0.815 0.816 0.818 0.819 0.821 0.822 0.824 0.825 0.826	LOAD V 0.820 0.839 0.859 0.878 0.898 0.918 0.937 0.957 0.977

ORIGINAL PAGE IS OF POOR QUALITY

DATA FOR INVERTER, CEA - COMPENSATED HEAVY LOAD CASE

SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG Q 0.037 0.040 0.044 0.047 0.051 0.054 0.058 0.065 0.065 0.069	DSG PF 0.850 0.829 0.808 0.786 0.764 0.742 0.720 0.698 0.676 0.655 0.634	SYS P 0.558 0.577 0.594 0.616 0.636 0.655 0.675 0.757	SYS Q O.426 O.437 O.448 O.460 O.471 O.482 O.494 O.505 O.516 O.528 O.539	SYS PF 0.795 0.797 0.799 0.801 0.803 0.805 0.807 0.807 0.811	LOAD V 0.820 0.839 0.859 0.878 0.878 0.918 0.937 0.957 0.977
SYS V 0.90. 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10	DSG P 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG Q 0.027 0.030 0.034 0.037 0.041 0.048 0.052 0.055 0.059	DSG PF 0.947 0.935 0.921 0.907 0.892 0.875 0.858 0.841 0.822 0.804 0.785	SYS P 0.538 0.557 0.576 0.596 0.615 0.635 0.655 0.675 0.716 0.736	SYS Q O.436 O.447 O.458 O.470 O.481 O.492 O.504 O.515 O.526 O.538 O.549	SYS PF 0.777 0.780 0.783 0.785 0.788 0.790 0.793 0.795 0.797 0.800 0.802	LOAD V 0.819 0.839 0.859 0.878 0.898 0.918 0.937 0.957 0.976
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG Q 0.017 0.020 0.024 0.027 0.031 0.034 0.038 0.042 0.045 0.045	DSG PF 0.986 0.980 0.973 0.965 0.956 0.946 0.935 0.924 0.911 0.897	SYS P 0.517 0.537 0.554 0.576 0.595 0.615 0.655 0.655 0.675 0.716	SYS Q O.446 O.457 O.468 O.480 O.491 O.502 O.514 O.525 O.536 O.558	SYS PF 0.758 0.761 0.765 0.768 0.772 0.775 0.778 0.780 0.783 0.784 0.788	LOAD V 0.819 0.839 0.859 0.878 0.878 0.977 0.957 0.976 0.976
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.04 1.08	DSG P 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG 0 0.007 0.010 0.014 0.017 0.021 0.024 0.028 0.035 0.035 0.039	DSG PF 0.998 0.994 0.990 0.986 0.980 0.974 0.967 0.959 0.951	SYS P 0.497 0.517 0.536 0.556 0.575 0.615 0.635 0.635 0.676 0.696	SYS Q 0.456 0.467 0.478 0.490 0.501 0.512 0.524 0.535 0.546 0.558	SYS PF 0.737 0.742 0.746 0.750 0.754 0.758 0.762 0.765 0.765 0.771	LOAD V 0.819 0.839 0.858 0.878 0.878 0.917 0.937 0.957 0.976 0.976

DATA FOR INVERTER, CEA - COMPENSATED HEAVY LOAD CASE

ORIGINAL PAGE IS OF POOR QUALITY

	DSG P 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG Q 003 0.000 0.004 0.007 0.011 0.014 0.018 0.021 0.025 0.029 0.033	DSG PF 1.000 1.000 1.000 0.999 0.995 0.995 0.984 0.984 0.979	SYS P 0.477 0.476 0.516 0.535 0.555 0.575 0.655 0.635 0.636 0.676	SYS Q 0.466 0.477 0.488 0.500 0.511 0.522 0.533 0.545 0.5568 0.579	SYS PF 0.716 0.721 0.726 0.731 0.736 0.740 0.745 0.752 0.756 0.760	LOAD V 0.819 0.839 0.858 0.878 0.898 0.917 0.937 0.956 0.976
0.96 0.98 1.00 1.02 1.04 1.06	DSG P 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG Q 013 010 004 003 0.001 0.004 0.008 0.011 0.015 0.019 0.023	0.999 0.997 0.995	SYS P 0.457 0.476 0.496 0.535 0.555 0.555 0.575 0.615 0.636	0.544		0.917 0.937 0.956 0.976
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG 0 023 020 016 013 009 004 002 0.001 0.005 0.009 0.013	DSG PF 0.992 0.994 0.996 0.999 0.999 1.000 1.000 1.000 0.999	SYS P 0.437 0.456 0.476 0.475 0.535 0.555 0.575 0.575 0.636	SYS 0 0.484 0.497 0.508 0.519 0.531 0.542 0.555 0.557 0.576 0.599	SYS PF 0.469 0.676 0.683 0.690 0.702 0.708 0.713 0.718 0.728	LOAD V 0.819 0.838 0.858 0.878 0.897 0.917 0.937 0.956 0.976
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG @ 033 030 026 023 020 016 012 009 005 001	DSG PF 0.987 0.989 0.991 0.993 0.995 0.997 0.999 1.000 1.000	SYS P 0.417 0.436 0.455 0.475 0.475 0.515 0.555 0.555 0.575 0.575	SYS Q 0.496 0.507 0.518 0.529 0.541 0.552 0.563 0.575 0.586 0.597	SYS PF 0.644 0.652 0.660 0.668 0.675 0.688 0.695 0.700 0.706 0.711	LOAD V 0.819 0.838 0.858 0.878 0.877 0.917 0.936 0.956 0.976

CONSTANT IMPEDA	NCE LOAD		R PV INVER T LOAD CAS	ORIGINAL PAGE IS OF POOR QUALITY		
1.06 0.020	DSG Q 062 062 062 062 062 062 062 062 062	DSG PF 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307	SYS P 0.043 0.046 0.049 0.052 0.055 0.058 0.061 0.064 0.067 0.071	0.128 0.130	SYS PF 0.365 0.380 0.394 0.407 0.420 0.433 0.445 0.456 0.456 0.478 0.488	LOAD V 0.886 0.906 0.926 0.946 0.966 1.005 1.025 1.045 1.085
SYS V DSG P 0.90 0.040 0.92 0.040 0.94 0.040 0.96 0.040 1.00 0.040 1.02 0.040 1.04 0.040 1.06 0.040 1.08 0.040 1.10 0.040	DSG 0 064 064 064 064 064 064 064 064	DSG PF 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530	SYS P 0.023 0.026 0.029 0.032 0.035 0.038 0.041 0.044 0.048 0.051	SYS Q 0.111 0.113 0.115 0.118 0.120 0.122 0.125 0.127 0.130 0.132 0.135	SYS PF 0.201 0.221 0.241 0.260 0.278 0.295 0.312 0.328 0.344 0.359 0.374	LOAD V 0.886 0.906 0.926 0.946 0.986 1.006 1.026 1.046 1.086
SYS V DSG P 0.90 0.060 0.92 0.060 0.94 0.060 0.96 0.060 1.00 0.060 1.02 0.060 1.04 0.060 1.04 0.060 1.08 0.060 1.10 0.060	066 066 066			0.134		LOAD V 0.887 0.907 0.927 0.947 0.967 0.987 1.007 1.026 1.046 1.086
	DSG Q 048 048 048 048 048 048 048 048 048	DSG PF 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762	SYS P 017 014 011 008 005 002 0.001 0.004 0.008 0.011	0.115		LOAD V 0.888 0.908 0.928 0.948 0.967 0.987 1.007 1.027 1.047 1.067

ORIGINAL PALE TO OF POOR QUALITY

DATA FOR PV INVERTER LIGHT LOAD CASE

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG 0 070 070 070 070 070 070 070 070 070	DSG PF 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819	SYS P037034031028025022019014012009005	SYS Q 0.117 0.120 0.122 0.124 0.126 0.129 0.131 0.133 0.136 0.138	SYS PF 0.300 0.274 0.247 0.221 0.195 0.168 0.142 0.116 0.090 0.064 0.039	LOAD V 0.888 0.908 0.928 0.948 0.968 1.008 1.028 1.047 1.047
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.04 1.08	DSG P 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG Q 072 072 072 072 072 072 072 072 072	DSG PF 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	SYS P057051048045042039035032025	SYS Q 0.117 0.122 0.124 0.126 0.128 0.131 0.133 0.135 0.138 0.140	SYS PF 0.429 0.405 0.381 0.356 0.331 0.305 0.279 0.253 0.227 0.201 0.175	LOAD V 0.889 0.909 0.929 0.949 0.968 1.008 1.028 1.048 1.068
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.04 1.08	DSG F 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG 0 074 074 074 074 074 074 074 074 074	DSG PF 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884	SYS P 077 074 071 068 065 062 059 055 052 049 045	SYS Q 0.121 0.124 0.126 0.128 0.130 0.133 0.135 0.137 0.140 0.142 0.145	SYS PF 0.534 0.513 0.491 0.468 0.445 0.422 0.378 0.373 0.348 0.323 0.298	LOAD V 0.890 0.910 0.929 0.949 0.969 1.009 1.029 1.049 1.068 1.088
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG Q 076 076 076 076 076 076 076 076 076	DSG PF 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903	SYS P 097 094 091 088 085 082 078 075 072 069	SYS Q 0.124 0.126 0.128 0.130 0.132 0.135 0.137 0.140 0.142 0.145 0.147	SYS PF 0.414 0.598 0.579 0.559 0.539 0.518 0.497 0.455 0.452	LOAD V 0.890 0.910 0.930 0.950 0.970 0.970 1.009 1.029 1.049 1.069 1.089

TABLE B-XV, cont.

	DATA FOR PV INVERTER OF POOR QUALITY LIGHT LOAD CASE								
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	DSG P 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180		DSG PF 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918		SYS Q 0.126 0.128 0.130 0.132 0.134 0.137 0.139 0.142 0.144 0.147	SYS PF 0.680 0.645 0.648 0.632 0.614 0.576 0.577 0.558 0.537 0.517	LOAD V 0.891 0.911 0.950 0.970 0.970 1.010 1.050 1.050 1.089		
SYS V 0.70 0.72 0.74 0.76 0.78 1.00 1.02 1.04 1.06 1.08 1.10	DSG P 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG Q 080 080 080 080 080 080 080 080 080 REPRESEN	DSG PF 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928	136	SYS Q 0.128 0.130 0.132 0.134 0.137 0.139 0.141 0.144 0.144 0.145	SYS PF 0.730 0.717 0.703 0.689 0.674 0.658 0.642 0.625 0.607 0.589 0.570	LOAD V 0.891 0.911 0.931 0.971 0.971 1.011 1.030 1.050 1.070		
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG G 062 062 062 062 062 062 062 062 062 062	DSG PF 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307		SYS Q 0.113 0.115 0.116 0.118 0.119 0.121 0.122 0.124 0.126 0.127 0.127	SYS PF 0.392 0.401 0.410 0.419 0.427 0.436 0.443 0.451 0.458 0.465 0.472	LOAD V 0.885 0.905 0.925 0.945 0.945 1.025 1.025 1.046 1.086		
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG 0 064 064 064 064 064 064 064 064 064	DSG PF 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530	SYS P 0.028 0.030 0.032 0.034 0.036 0.039 0.041 0.043 0.045 0.047	SYS Q 0.115 0.117 0.118 0.120 0.121 0.123 0.124 0.126 0.128 0.129 0.131	SYS PF 0.239 0.251 0.264 0.276 0.288 0.299 0.310 0.321 0.331 0.341	LOAD V 0.886 0.906 0.926 0.946 0.966 0.986 1.006 1.026 1.046 1.086		

B-74

TABLE B-XV, cont.

DATA FOR PV INVERTER LIGHT LOAD CASE

ORIGINAL PASE IS

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG Q 066 066 066 066 066 066 066 066	DSG PF 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673	SYS P 0.008 0.010 0.012 0.014 0.017 0.019 0.021 0.023 0.025 0.027	SYS Q 0.117 0.119 0.120 0.123 0.125 0.125 0.127 0.128 0.130 0.131	SYS PF 0.071 0.087 0.103 0.118 0.133 0.147 0.161 0.175 0.188 0.201 0.214	LOAD V 0.886 0.906 0.926 0.946 0.967 0.987 1.007 1.027 1.047 1.087
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	DSG P 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG Q 048 048 068 068 068 068 068 068 068	DSG PF 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762	SYS P012010007005003001 0.001 0.003 0.005 0.007	SYS 0 0.119 0.121 0.122 0.124 0.125 0.127 0.129 0.130 0.132 0.133	SYS PF 0.079 0.061 0.044 0.027 0.010 0.006 0.022 0.038 0.053 0.068	LOAD V 0.887 0.907 0.927 0.947 0.967 1.007 1.027 1.047 1.087
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG Q 070 070 070 070 070 070 070 070 070	DSG PF 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819	SYS P031029027025023021019017015013011	SYS Q 0.121 0.123 0.124 0.126 0.127 0.129 0.131 0.132 0.135 0.135	SYS PF 0.251 0.233 0.215 0.198 0.180 0.163 0.145 0.128 0.111	LOAD V 0.888 0.908 0.928 0.948 0.968 1.008 1.028 1.048 1.068
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	DSG F 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG Q 072 072 072 072 072 072 072 072 072 072	DSG PF 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	SYS P 051 049 047 045 043 041 039 037 035 033	SYS Q 0.123 0.125 0.126 0.128 0.130 0.131 0.133 0.134 0.136 0.137	SYS PF 0.384 0.368 0.351 0.334 0.317 0.300 0.283 0.266 0.249 0.232 0.216	LOAD V 0.888 0.908 0.928 0.948 0.968 0.988 1.008 1.028 1.048 1.068

ORIGINAL PAGE 19 OF POOR QUALITY

DATA FOR PV INVERTER LIGHT LOAD CASE

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG Q 074 074 074 074 074 074 074 074 074 074	DSG PF 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884	SYS P071069067065063061057055051	SYS Q 0.125 0.127 0.129 0.130 0.132 0.135 0.135 0.136 0.138 0.139	SYS PF 0.494 0.479 0.464 0.449 0.433 0.417 0.402 0.386 0.370 0.354 0.338	LOAD V 0.889 0.909 0.949 0.969 0.989 1.009 1.049 1.069 1.089
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.140 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG Q 076 076 076 076 076 076 076 076 076	DSG PF 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903	SYS P 091 089 085 085 083 079 077 075 073	SYS Q 0.128 0.129 0.131 0.132 0.134 0.135 0.137 0.138 0.140 0.141	SYS PF 0.582 0.569 0.556 0.542 0.528 0.514 0.500 0.486 0.472 0.457	LOAD V 0.870 0.910 0.950 0.970 0.970 1.010 1.029 1.049 1.089
SYS V 0.70 0.72 0.74 0.76 0.78 1.00 1.02 1.04 1.06 1.08	DSG F 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG Q 078 078 078 078 078 078 078 078 078	DSG PF 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918	SYS P111109107105103101099097095093091	SYS Q 0.130 0.131 0.133 0.134 0.136 0.137 0.139 0.140 0.142 0.144	SYS PF 0.651 0.640 0.629 0.617 0.605 0.593 0.581 0.568 0.555 0.542 0.529	LOAD V 0.890 0.910 0.930 0.970 0.970 1.010 1.030 1.050 1.070
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG Q 080 080 080 080 080 080 080 080 080	DSG PF 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928	SYS P131129127125123121119117115113110	SYS @ 0.132 0.133 0.135 0.136 0.138 0.139 0.141 0.142 0.144 0.144	SYS PF 0.706 0.696 0.686 0.676 0.656 0.656 0.634 0.623 0.612 0.600	LOAD V 0.891 0.911 0.931 0.951 0.971 0.991 1.011 1.031 1.051 1.071

Table B-XVI ORIGINAL PAGE IS										
CONSTAN	NT IMPEDA	ANCE LOAD		V INVERTER OAD CASE	OF POOR QUALITY					
SYS V 0.70 0.72 0.74 0.76 0.78 1.00 1.02 1.04 1.06 1.08	DSG P 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG Q 062 062 062 062 062 062 062 062 062 062	DSG PF 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307	SYS P 0.514 0.539 0.564 0.589 0.615 0.642 0.649 0.724 0.753	SYS Q 0.463 0.481 0.500 0.519 0.538 0.558 0.578 0.579 0.642 0.642	SYS PF 0.743 0.746 0.748 0.750 0.753 0.754 0.756 0.758 0.760 0.761	LOAD V 0.817 0.836 0.854 0.873 0.891 0.909 0.928 0.946 0.945 0.983 1.001			
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 064 064 064 064 064 064 064 064 064	DSG PF 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530	SYS P 0.495 0.520 0.545 0.570 0.574 0.623 0.650 0.677 0.705 0.734 0.763	SYS Q 0.465 0.484 0.503 0.522 0.541 0.561 0.581 0.602 0.623 0.644	SYS PF 0.729 0.732 0.735 0.738 0.740 0.743 0.745 0.747 0.747	LOAD V 0.818 0.836 0.855 0.873 0.872 0.910 0.928 0.947 0.965 0.984 1.002			
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG @ 066 066 066 066 066 066 066 066	DSG PF 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673	SYS P 0.474 0.501 0.526 0.551 0.577 0.604 0.631 0.658 0.686 0.715 0.744	SYS Q 0.468 0.487 0.505 0.524 0.544 0.564 0.584 0.626 0.626 0.647 0.669	0.741	LOAD V 0.819 0.837 0.854 0.874 0.892 0.911 0.929 0.947 0.966 0.984 1.003			
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG Q 068 068 068 068 068 068 068 068	DSG PF 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762	SYS P 0.457 0.482 0.507 0.532 0.558 0.585 0.412 0.639 0.647 0.696	SYS Q 0.471 0.489 0.508 0.527 0.547 0.566 0.587 0.607 0.628 0.650 0.672	SYS PF 0.697 0.702 0.706 0.710 0.714 0.718 0.722 0.725 0.728 0.731	LOAD V 0.920 0.838 0.856 0.875 0.873 0.911 0.930 0.948 0.948 0.985			

DATA FOR PV INVERTER HEAVY LOAD CASE

ORIGINAL PAGE 19 OF POOR QUALITY

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG Q 070 070 070 070 070 070 070 070	DSG PF 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819	SYS P 0.438 0.463 0.488 0.513 0.539 0.546 0.593 0.648 0.648 0.677 0.706	SYS Q 0.474 0.472 0.511 0.530 0.549 0.569 0.589 0.610 0.631 0.653 0.675	SYS PF 0.679 0.685 0.691 0.496 0.700 0.705 0.709 0.713 0.716 0.720	LOAD V 0.820 0.839 0.857 0.875 0.874 0.912 0.930 0.949 0.967 0.985 1.004
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG 0 072 072 072 072 072 072 072 072 072 072	DSG PF 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	SYS P 0.419 0.444 0.469 0.520 0.520 0.574 0.601 0.629 0.658 0.687	SYS Q 0.476 0.475 0.513 0.533 0.552 0.572 0.572 0.613 0.635 0.655	SYS PF 0.661 0.668 0.674 0.680 0.686 0.691 0.696 0.700 0.704 0.708 0.712	LOAD V 0.821 0.839 0.858 0.874 0.913 0.931 0.949 0.968 0.986
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG Q 074 074 074 074 074 074 074 074 074	DSG PF 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884	SYS F 0.400 0.425 0.450 0.501 0.528 0.555 0.582 0.610 0.639 0.668	SYS Q 0.479 0.498 0.516 0.535 0.555 0.575 0.595 0.616 0.637 0.658 0.680	SYS PF 0.641 0.649 0.657 0.664 0.670 0.676 0.682 0.687 0.692 0.697	LOAD V 0.822 0.840 0.859 0.877 0.895 0.913 0.932 0.950 0.968 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG Q 076 076 076 076 076 076 076 076 076	DSG PF 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903	SYS P 0.381 0.406 0.431 0.456 0.482 0.509 0.536 0.543 0.543 0.591 0.620 0.649	SYS Q 0.482 0.500 0.519 0.538 0.558 0.577 0.598 0.618 0.639 0.661 0.683	SYS PF 0.620 0.630 0.639 0.647 0.654 0.651 0.667 0.673 0.679 0.684 0.689	LOAD V 0.823 0.841 0.859 0.878 0.896 0.914 0.932 0.951 0.969 0.987

TABLE B-XVI, cont.

ORIGINAL PALL IN OF POOR QUALITY

DATA FOR PV INVERTER HEAVY LOAD CASE

SYS	V DSG P			T TOUR CHOR	•		
0.90 0.93 0.94 0.96 1.00 1.00 1.04 1.06	0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180		DSG PI 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918	SYS P 0.362 0.387 0.412 0.437 0.463 0.517 0.517 0.572 0.601 0.630	SYS Q 0.485 0.503 0.522 0.541 0.560 0.580 0.600 0.621 0.642 0.664 0.686	SYS PF 0.599 0.609 0.619 0.629 0.637 0.652 0.659 0.665 9.671	0.823 0.842 0.860 0.878 0.897 0.915 0.933 0.951
SYS 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.10	0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG Q 080 080 080 080 080 080 080 080	DSG PF 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928	SYS P 0.343 0.348 0.393 0.418 0.444 0.470 0.498 0.525 0.553 0.582 0.611	SYS 0 0.487 0.504 0.524 0.543 0.563 0.624 0.645 0.645 0.688	SYS PF 0.576 0.588 0.599 0.619 0.628 0.636 0.644 0.651 0.658 0.664	LOAD V 0.824 0.842 0.861 0.879 0.897 0.915 0.952 0.950 0.989
REALI	STIC LOAD) REFRESEN	TATION				,
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	DSG F 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG Q 062 062 062 062 062 062 062 062 062	DSG PF 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307	SYS P 0.584 0.603 0.623 0.642 0.662 0.681 0.701 0.721 0.741 0.761	SYS Q 0.515 0.530 0.544 0.558 0.573 0.588 0.603 0.618 0.633 0.648 0.648	SYS PF 0.750 0.752 0.753 0.754 0.756 0.757 0.758 0.759 0.760 0.762	LOAD V 0.806 0.825 0.845 0.864 0.884 0.904 0.923 0.943 0.943 0.962 0.982
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 064 064 064 064 064 064 064 064	DSG PF 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530	SYS P 0.565 0.584 0.603 0.623 0.642 0.662 0.702 0.722 0.742 0.762	SYS Q 0.518 0.532 0.547 0.561 0.576 0.590 0.605 0.620 0.635 0.650 0.666	0.751 0.752	LOAD V 0.807 0.826 0.846 0.865 0.885 0.904 0.924 0.943 0.963 0.982
			B-7	9			

DATA FOR PV INVERTER HEAVY LOAD CASE

ORIGINAL PAGE 18 OF POOR QUALITY

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060	DSG Q 066 066 066 066 066 066 066 066	DSG PF 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673	SYS P 0.546 0.565 0.584 0.604 0.623 0.643 0.662 0.702 0.723 0.723	SYS Q 0.520 0.535 0.549 0.578 0.578 0.623 0.623 0.638 0.638	SYS PF 0.724 0.726 0.729 0.731 0.733 0.735 0.737 0.739 0.740 0.742	LOAD V 0.808 0.827 0.847 0.866 0.905 0.925 0.944 0.964 0.983 1.003
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG Q 048 048 048 048 048 048 048 048 048	DSG PF 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762	SYS P 0.527 0.546 0.565 0.584 0.604 0.623 0.643 0.643 0.683 0.703 0.724	SYS Q 0.523 0.552 0.552 0.546 0.581 0.596 0.610 0.625 0.640 0.655 0.671	SYS PF 0.710 0.713 0.715 0.718 0.721 0.723 0.725 0.728 0.730 0.732 0.733	LOAD V 0.808 0.828 0.847 0.867 0.886 0.906 0.925 0.945 0.945 0.984 1.003
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG Q 070 070 070 070 070 070 070 070 070	DSG PF 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819 0.819	SYS P 0.508 0.527 0.546 0.565 0.585 0.404 0.624 0.644 0.664 0.684	SYS Q 0.524 0.554 0.554 0.569 0.598 0.613 0.643 0.643 0.658 0.673	SYS PF 0.695 0.698 0.702 0.705 0.708 0.711 0.713 0.716 0.716 0.721	LOAD V 0.809 0.829 0.848 0.868 0.907 0.926 0.946 0.965 0.985
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG Q 072 072 072 072 072 072 072 072 072 072	DSG PF 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	SYS P 0.488 0.507 0.527 0.546 0.565 0.565 0.605 0.625 0.645 0.665	SYS Q 0.528 0.543 0.557 0.571 0.586 0.601 0.615 0.645 0.645 0.660	SYS PF 0.679 0.683 0.687 0.691 0.698 0.701 0.704 0.707 0.709	LCAD V 0.810 0.829 0.849 0.868 0.888 0.907 0.927 0.946 0.966 0.985

ORIGINAL PAGE 18 OF POOR QUALITY

DATA FOR PV INVERTER HEAVY LOAD CASE

SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG Q 074 074 074 074 074 074 074 074 074	DSG PF 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884 0.884	SYS P 0.469 0.488 0.507 0.527 0.546 0.585 0.605 0.645 0.645	SYS 0 0.531 0.545 0.559 0.574 0.589 0.603 0.618 0.633 0.648 0.643	SYS PF 0.662 0.667 0.672 0.676 0.680 0.684 0.688 0.691 0.697 0.700	LOAD V 0.811 0.830 0.850 0.869 0.889 0.908 0.927 0.947 0.966 0.986 1.005
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG F 0.140 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG Q 076 076 076 076 076 076 076 076 076 076	DSG PF 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903	SYS F 0.450 0.469 0.488 0.507 0.527 0.546 0.566 0.626 0.626	SYS 0 0.533 0.548 0.562 0.577 0.591 0.606 0.621 0.635 0.650 0.666 0.681	SYS PF 0.645 0.650 0.656 0.661 0.665 0.670 0.674 0.678 0.682 0.685 0.689	LOAD V 0.812 0.831 0.850 0.870 0.989 0.928 0.928 0.948 0.967 0.987
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	DSG P 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG Q 078 078 078 078 078 078 078 078 078 078	DSG PF 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918	SYS F 0.431 0.450 0.469 0.488 0.508 0.527 0.547 0.567 0.567 0.607	SYS Q O.536 O.550 O.565 O.579 O.594 O.608 O.623 O.638 O.633 O.683	SYS PF 0.626 0.633 0.639 0.644 0.650 0.655 0.660 0.664 0.668 0.672	LOAD V 0.813 0.832 0.851 0.871 0.870 0.709 0.729 0.748 0.948 0.987 1.007
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10	DSG P 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG Q 080 080 080 080 080 080 080 080 080	DSG PF 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928	SYS P 0.412 0.430 0.450 0.469 0.488 0.508 0.528 0.547 0.567 0.587 0.608	SYS 0 0.539 0.553 0.567 0.582 0.596 0.611 0.626 0.641 0.655 0.671	SYS PF 0.607 0.614 0.621 0.628 0.634 0.639 0.645 0.650 0.654 0.659	LOAD V 0.813 0.833 0.852 0.871 0.891 0.910 0.930 0.949 0.948 0.988 1.007

TABLE XVII

DATA FOR BASE CASE LIGHT LOAD

ORIGINAL PAGE IS OF POOR QUALITY

CONSTANT IMPEDANCE LOAD

sys V	SYS P	SYS Q	SYS PF	LOAD V
0.90	0.064	0.048	0.800	0.892
0.92	0.066	0.050	0.800	0.912
0,94	0.069	0.052	0.800	0.931
0.76	0.072	O. 054	0.800	0.951
0.98	0.075	0.057	0.800	0.971
1.00	0.079	0.059	0,800	0.991
1.02	0.082	0.061	0.800	1.011
1.04	0,085	O.064	0.800	1.030
1.06	0.088	0.066	0.800	1.050
1.08	0.092	0.069	0.800	1.070
1.10	0.095	0.071	0.800	1.090

REALISTIC LOAD REPRESENTATION

SYS V	SYS P	SYS Q	SYS PF	LOAD V
0.90	0.069	0.052	0.800	0.871
0.92	0.071	0.053	0.800	0.911
0.94	0.073	0.055	0.800	0.931
0.96	0.075	0.056	0.800	0.951
0.78	0.077	0.058	0.800	0.971
1 ,, 00	0.079	0.059	0.800	0.991
1.02	0.081	0.061	0.800	1.011
104	0.083	0.062	0.800	1.031
1.06	0.085	0.064	0.800	1.051
1.08	0.087	0.066	0.800	1.071
1.10	0.090	0.067	0.800	1.091

TABLE B-XVII

DATA FOR BASE CASE HEAVY LOAD

ORIGINAL PAGE 18 OF POOR QUALITY

CONSTANT IMPEDANCE LOAD

SYS V	SYS F	SYS O	SYS PF	LOAD V
0.90	0.542	0.407	0.800	
				0.823
0.92	0.566	0.425	0.800	0.841
0.94	0.591	0.443	0.800	0.860
0.96	0.617	0.462	0.800	0.878
0.98	0.643	0.482	0.800	0.896
1.00	0.669	0.502	0.800	0.915
1.02	0.696	0.522	0.800	0.933
1.04	0.724	0.543	0.800	0.951
1.06	0.752	O.564	0.800	0.969
1.08	0.780	0.585	0.800	0.988
1.10	0.810	0.607	0.800	1.006

REALISTIC LOAD REPRESENTATION

SYS V	SYS P	SYS Q	SYS PF	LOAD V
0.90	0.610	0.458	0.800	0.812
0.92	0.629	0.472	0.800	0.831
0.94	O.648	0.486	0.800	0.851
0.96	0.668	0.501	0.800	0.870
O.98	0.687	0.515	0.800	0.890
1.00	0.707	0.530	0.800	0.909
1.02	0.726	O.545	0.800	0.929
1.04	0.746	0.560	0.800	0.948
1.06	0.766	0.575	0.800	0.967
1.08	0.786	0.590	0.800	0.987
1.10	0.807	0.405	0.800	1.006

APPENDIX C

NEW EXCITER CONTROL

APPENDIX C

NEW EXCITER CONTROL

The case of constant power factor control of DSGs using synchronous generators was not included in the main text of this report because it was a special situation and did not represent a common mode of control. However, it is an interesting case from the point of view of utilities. Utilities would like to be reasonably sure that the power factor does not deteriorate and fluctuate when DSGs are interconnected into their systems. This case, therefore, was studied and the results are tabulated here. Graphical results are given at the end of Section 3.

The control strategy uses a simple exciter feedback that is obtained by amplifying an error signal which represents the difference between the output reactive power and a reference reactive power. The case of constant power factor control at unity power factor (i.e. zero reactive power) was analyzed and presented in Sections 2 and 3. Since power factor is cosine of arctangent of the ratio of reactive power to real power, the reference reactive power may be set equal to $\tan \phi$ times power input to the machine or to $\tan \phi$ times power output of the DSG, where ϕ is the desired power factor angle. Therefore, these two strategies give excitation equations

V1 = KG (tan \$\delta\$, PG-QDSG)

or V1 = KG (tan \$\delta\$, PDSG-QDSG),

Where KG is a gain constant.

The solution method proceeds as follows (Figure 2-4).

- To simulate voltage control on the distribution system, VS is varied from 0.9 to 1.1 pu.
- To simulate input power variations the value of PM, the input mechanical power. is varied from 0.02 to 0.20 pu. This represents 20% penetration.
- VT is taken as reference for the calculations. The magnitude is not known at the outset, so a guess is made to provide an initial starting point. The value of VT is then determined iteratively.
 - A value is guessed for the angle β of VS
 - Knowing the load (terminal) characteristics and VT,
 IL is calculated
 - Knowing VT and VS, IS is calculated
 - Knowing 1L and IS, I1 is calculated

- Knowing VT, Z1, and I1, V1 is calculated
- Using VT and II, PDSG and QDSG are calculated
- Knowing PG or PDSG and QDSG, excitation voltage V1 is calculated
- With the error between the two values of magnitude of VI, the value of VI is updated
- With the updated value of VT, all earlier calculations are repeated until the convergence criterion on voltage error is satisfied
- With known phasors VT and V1, I1 is calculated to find error between the input and calculated values of real power.
- Based on this error, the angle β is updated.
- With the updated value of β and previously obtained value of VT, earlier steps are repeated until the convergence criterion on real power error is satisfied.
- Once complete convergence is obtained, the required performance parameters are calculated and printed.

The solution method is shown in diagram form in Figure C-1.

Table C-I presents the program listing, and Table C-II the data obtained by running the program.

Figure C-1. Method Used to Solve the Distribution System/Synchronous Machine Problem with the Exciter Controlled for Constant Power Factor

TABLE C-I

LISTING OF CONSTANT (LEADING) POWER FACTOR PROGRAM

```
10 REM KIRKHAM'S FAMOUS VOLTAGE STUDY
                                            FILE B: CONPF-THREE
20 REM
30 LPRINT "THIS PROGRAM CALCULATES THE CASE OF A SYNCHRONOUS GENERATOR"
40 LFRINT "
                      CONSTANT POWER FACTOR CONTROL"
50 REM
60 REM INITIALIZE
70 REM
80 RS
         ≔ .04
90 XS
         m . 1
100 R1=.1
110 X1=1
120 KG = 100
130 DREF = 0
140 VLIMIT = 2.5
150 KV = -.002
160 KB = - 5
170 REM SET THE LOAD TYPE (1 FOR RESISTIVE, 2 FOR MORE REALISM)
180 FOR LTYPE = 1 TO 4 STEP 1
190 IF(LTYPE=1) GOTO 225
191 IF LTYPE = 3 GOTO 225
200 LPRINT
210 LPRINT "REALISTIC LOAD REPRESENTATION"
220 GOTO 250
225 LPRINT
226 LPRINT
230 LPRINT "CONSTANT IMPEDANCE LOAD"
240 REM SET THE INPUT POWER
250 FOR PG = .02 TO .2 STEP .02
260 LPRINT
270 LPRINT
280 LPRINT "SYS V P IN DSG P DSG Q DSG PF SYS P SYS Q
                                                                     SYS PF LOG
V EXCITN"
290 REM GUESS THE VALUE OF VT
300 VT = .86
310 REM GUESS THE ANGLE OF VS...CALL IT BETA
320 \text{ BETA} = 1.447
330 REM SET THE SYSTEM VOLTAGE
340 \text{ FOR VS} = .9 \text{ TO } 1.1 \text{ STEP } .02
350 VITER = 0
360 DITER = 0
370 DITER = DITER +1
380 VITER = VITER +1
390 REM
          CALCULATE IL
400 REM
          CHECK THE LOAD TYPE
410 IF (LTYPE = 1) GOTO 440
415 IF LTYPE = 3 GOTO 440
       = 1.3
420 N
430 GOTO 450
```

440 N

= 2

TABLE C-I contd.

LISTING OF CONSTANT (LEADING) POWER FACTOR PROGRAM

```
A50 ILR □ .08*(VT^(N-1))
 160 ILI = -.06*(VT^(N-1))
 161 IF LTYPE = 3 GOTO 464
 162 IF LTYPE = 4 GOTO 464
 163 GOTO 470
 164 ILR
              = 10*ILR
 145 ILI
              = 10*ILI
 170 REM WITH IL. VS AND BETA FIND 12
 160 VSR
           □ VS*COS(BETA*3.14159/180)
 190 VSI
           □ VS*SIN(BETA*3.14159/180)
 500 A
           = VSR-VT
 510 B
           = VSI
 520 C
           = RS
 730 D
           ₩ XS
 740 GOSUB 1330
 50 I2R
         = DIVR
 160 121
           = DIVI
 570 REM
 180 REM NOW FIND I1
 190 REM
 100 I1R
           = ILR - I2R
 10 III
           = ILI - I2I
 ,20 REM NOW WE GOT A VALUE FOR II, CALCULATE THE VALUE OF V1
 30 A
           = I1R
 140 B
           = I1I
 ,50 C
           = R1
 160 D
           = X1
 .70 GOSUB 1330
 80 ZIDRR = PRODR
 90 ZIDRI = PRODI
 '00 V1R
           = VT + Z1DRR
 '10 V1I
           = Z1DRI
  20 REM
 30 REM NOW WE GOT THE VALUE OF V1:
  40 REM
  50 MAGV1= SQR(V1R^2 + V1I^2)
  60 REM
  70 REM COMPARE THE CALCULATED VALUE OF DSGQ WITH THE VALUE NEEDED ACCORDING TO
  HE CONTROLLER EQUATION, AND CORRECT IF NEEDED
  BO REM
  90 A
          = VT
  00 B
          ≔ ()
  10 C
          = IIR
  20 D
          = -III
  30 GOSUB 1330
__BAO DSGP = PRODR
50 DSGQ = PRODI
 ~60 FRINT DSGQ,MAGV1
70 PRINT "TERMINAL VOLTS "; VT; " AT VOLTAGE ITERATION "; VITER
_ 80 REM
         USE THE CONTROLLER EQUATION
85 QREF = .75*DSGP
                                         C-5
  90 V1
          = KG*(QREF-DSGQ)
```

TABLE C-I contd.

LISTING OF CONSTANT (LEADING) POWER FACTOR PROGRAM

```
910 VERR = MAGV1 - V1
920 PRINT "LINE 920
                      VERR IS "; VERR
930 IF ABS(VERR)<.0001 GOTO 980
940 VT
         = VT + KV*VERR
945 PRINT "LINE 945
                        UPDATED VT IS ":VT
950 GOTO 340
960 REM
970 REM FALL THROUGH HERE WHEN VOLTAGE CONDITIONS ARE CORRECT
980 REM TIME TO CALCULATE THE POWER BALANCE
990 PRINT "STARTING POWER BALANCE"
1000 A
       ₩ V1R
1010 B
         = V1I
1020 C
         ≕ I1R
       = -I1I
1030 D
1040 GOSUB 1330
1050 PIN = PRODR
1060 PERR = PG - PIN
1070 PRINT "LINE 1070
                        PERR IS ":PERR
1080 IF ABS(PERR)<.0001 GDT0 1130
1090 BETA = BETA + KB*PERR
1100 GDTD 370
1110 REM
         FIRST THE DSG POWER FACTOR
1120 REM
1130 DSGPF = COS(ATN(DSGQ/DSGP))
1140 PRINT "LINE 1140 BETA IS "; BETA
1150 REM
1140 REM
           NOW FOR THE SYSTEM PARAMETERS
1170 A
         ≕ VT
1.180 B
         ≕ ()
1190 C
         = I2R
1200 D
         = -12I
1210 GOSUB 1330
1220 \text{ SYSP} = PRODR
1230 SYSO = PRODI
1240 \text{ SYSPF} = COS(ATN(SYSQ/SYSP))
1250 LPRINT USING "#.## "; VS;
1260 LPRINT USING "#.### ":PG:DSGP:DSGQ:DSGPF:SYSP:SYSQ:SYSPF:VT:V1
1270 NEXT VS
1280 \ VT = .86
1290 NEXT PG
1300 NEXT LTYPE
1310 STOP
1320 REM
            SUBROUTINE TO FIND COMPLEX PRODUCTS AND DO COMPLEX DIVISIONS
1330 REM
1340 PRODR = A * C - B * D
1350 PRODI = B * C + A * D
1360 DEN

    □*C +D*D

1370 \text{ DIVFLG} = 0
1380 IF (DEN=0)GOTO 1420
1390 DIVR = (A*C + B*D)/DEN
1400 DIVI = (B*C - A*D)/DEN
1410 RETURN
1420 \text{ DIVFLG} = 1
1430 REM CHECK DIVFLG ON DIVISIONS BY VARIABLES ONLY
```

C-6

1440 RETURN

CONSTANT IMPEDANCE LOAD

	SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG P 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG Q 0.004 0.005 0.005 0.005 0.005 0.005 0.004 0.004	DSG PF 0.958 0.961 0.964 0.966 0.970 0.972 0.975 0.977 0.980	SYS P 0.044 0.047 0.050 0.053 0.054 0.059 0.062 0.065 0.065 0.069	SYS Q 0.042 0.044 0.047 0.052 0.054 0.057 0.059 0.062 0.065	SYS PF 0.723 0.726 0.729 0.731 0.734 0.736 0.738 0.740 0.742 0.743	LOAD V 0.873 0.913 0.933 0.953 0.972 0.972 1.012 1.032 1.051 1.071 1.091	EXCITN 0.902 0.922 0.941 0.941 0.980 1.000 1.019 1.038 1.058 1.077
	SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P 1N 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 0.021 0.020 0.020 0.020 0.020 0.019 0.019 0.019 0.019	DSG PF 0.888 0.890 0.891 0.895 0.895 0.897 0.898 0.900 0.901	SYS P 0.024 0.027 0.030 0.033 0.034 0.039 0.043 0.044 0.049 0.056	SYS Q 0.028 0.030 0.032 0.035 0.037 0.040 0.042 0.045 0.047 0.050	SYS PF 0.463 0.474 0.683 0.691 0.704 0.709 0.714 0.718 0.722 0.725	LOAD V 0.894 0.935 0.955 0.975 0.994 1.014 1.034 1.054 1.073	EXCITN 0.924 0.943 0.962 0.981 1.000 1.019 1.038 1.057 1.076 1.075
	SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG P 0.059 0.059 0.060 0.059 0.059 0.059 0.059 0.060 0.060	DSG Q 0.035 0.035 0.035 0.034 0.034 0.034 0.034 0.034 0.034	DSG PF 0.861 0.862 0.863 0.864 0.866 0.867 0.868 0.869 0.871 0.872	SYS P 0.005 0.001 0.011 0.014 0.017 0.020 0.023 0.024 0.030 0.033	SYS @ 0.013 0.016 0.018 0.020 0.023 0.025 0.028 0.030 0.033 0.034 0.039	SYS PF 0.361 0.454 0.516 0.560 0.594 0.619 0.638 0.653 0.666 0.677	LOAD V 0.898 0.918 0.938 0.957 0.977 0.977 1.016 1.036 1.075 1.095	EXCITN 0.946 0.964 0.983 1.001 1.020 1.038 1.057 1.076 1.095 1.113
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	SYS V 0.90 0.92 0.94 0.98 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG P 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079	DSG Q O.049 O.049 O.049 O.049 O.049 O.049 O.049 O.048 O.048	DSG PF 0.847 0.848 0.850 0.850 0.851 0.852 0.853 0.854 0.855	SYS P 014 011 008 005 002 0.001 0.004 0.007 0.010 0.014	SYS G 001 0.001 0.004 0.006 0.009 0.011 0.014 0.016 0.019 0.022 0.024	SYS PF 0.998 0.992 0.914 0.655 0.261 0.068 0.268 0.395 0.480 0.536 0.573	LOAD V 0.901 0.920 0.940 0.960 0.979 0.999 1.019 1.038 1.058 1.077	EXCITN 0.948 0.984 1.004 1.022 1.040 1.058 1.077 1.095 1.113 1.132

			DIMI TAD		C-II contd.	no gyanob c	OR	IGINAL PA	क्षितः ॥प्रह
OF POOR QUALITY									
SYS V 0.90	P IN 0.100	DSG P 0.098	DSG Q 0.064	DSG PF 0.839	033	SYS Q	SYS PF	LOAD V	EXCITN 0.990
0.70	0.100	0.078	0.064	0.837	030	015 013	0.912 0.923	0.903 0.923	1.007
0.94	0.100	0.078	0.064	0.840	027	010	0.936	0.942	1.025
0.96	0.100	0.098	0.043	0.841	024	008	0.951	0.962	1.043
0.98 1.00	0.100 0.100	0.099 0.099	0.063 0.063	0.841 0.842	021 018	005 003	0.969 0.986	0.981 1.001	1.060
1.02	0.100	0.077	0.063	0.843	015	003	0.788	1.001	1.078 1.096
1.04	0.100	0.099	0.063	0.843	012	0.002	0.986	1.040	1.114
1.06	0.100	0.099	0.063	0.844	009	0.005	0.883	1.040	1.132
1.08 1.10	0.100 0.100	0.099 0.099	0.063 0.062	0.845 0.845	006 002	0.007 0.010	0.615 0.208	1.080	1.150 1.168
1.10	0.100	0.077	v.vaz	O. 040	002	0.010	0.200	1.099	1.100
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS F	sys Q	SYS PF	LOAD V	EXCITN
0.90	0.120	0.117	0.078	0.833	052	029	0.874	0.905	1.012
0.92	0.120	0.118	0.078	0.834	049	027	0.879	0.925	1.029
0.94 0.96	0.120 0.120	0.118 0.118	0.078 0.078	0.834 0.835	046 043	024 022	0.884 0.893	0.945 0.964	1.046 1.063
0.78	0.120	0.118	0.078	0.835	041	020	0.900	0.784	1.080
1.00	0.120	0.118	0.078	0.836	038	017	0.909	1.003	1.098
1.02	0.120	0.118	0.077	0.836	034	015	0.920	1.023	1.115
1.04 1.06	0.120 0.120	0.118 0.118	0.077 0.077	0.837 0.837	031 028	012 010	0.933 0.947	1.042 1.062	1.133 1.151
1.08	0.120	0.118	0.077	0.838	025	007	0.964	1.082	1.168
1.10	0.120	0.118	0.077	0.839	021	004	0.981	1.101	1.186
	ano. 300 C.3								
SYS V 0.90	P IN 0.140	DSG F 0.137	DSG 0 0.092	DSG PF 0.829	SYS P 071	SYS 0 043	SYS PF 0.856	LOAD V 0.908	EXCITN 1.034
0.70	0.140	0.137	0.072	0.830	068	043	0.859	0.700	1.050
0.94	0.140	0.137	0.092	0.830	065	038	0.863	0.947	1.067
0.96	0.140	0.137	0.092	0.830	062	036	0.866	0.966	1.084
0.98 1.00	0.140 0.140	0.137 0.137	0.092 0.092	0.831 0.831	059 057	034 031	0.871 0.875	0.986 1.005	1.101 1.118
1.02	0.140	0.137	0.072	0.832	053	031	0.881	1.025	1.135
1.04	0.140	0.137	0.092	0.832	050	026	0.887	1.044	1.152
1.06	0.140	0.138	0.092	0.833	047	024	0.894	1.064	1.169
1.08 1.10	0.140 0.140	0.138 0.138	0.091 0.091	0.833 0.834	044 040	021 018	0.902 0.911	1.084 1.103	1.184 1.204
	the of the	7 E 2 (1)	01071	01001	# W-1 W		J4 / Z I	14100	11201
sys V	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.160	0.156	0.106	0.826	089	057	0.845	0.910	1.054
0.92 0.94	0.160 0.160	0.156 0.156	0.106 0.106	0.826 0.827	087 084	054 052	0.847 0.850	0.930 0.949	1.072 1.088
0.96	0.160	0.156	0.106	0.827	081	050	0.852	0.747	1.104
0.98	0.160	0.156	0.106	Ö.828	078	048	0.855	0.988	1.121
1.00	0.160	0.157	0.106	0.828	075	045	0.858	1.007	1.138
1.02 1.04	0.140 0.160	0.157 0.157	0.106 0.106	0.828 0.829	072 069	043 040	0.861 0.865	1.027 1.046	1.154 1.171
1.04	0.160	0.157	0.106	0.829	066	038	0.869	1,046	1.188
1.08	0.160	0.157	0.106	0.830	063	035	0.873	1.086	1.205
1.10	0.160	0.157	0.106	0.830	059	032	0.878	1.105	1.222
				No North State					•

TABLE C-II contd.

UNIGINAL PAGE 18

OF POOR QUALITY, DATA FOR CONSTANT (LEADING) POWER FACTOR CASE SYS V FIN DSG P DSG PF DSG Q SYS P SYS Q SYS PF LOAD V EXCITN 0.90 0.180 0.175 0.120 0.824 -.108 -.070 0.838 0.912 1.07B 0.72 0.180 0.175 0.120 0.824 -.105-.068 0.840 0.932 1.094 0.94 0.180 0.175-.103 0.1200.824 -.066 0.842 0.951 1.109 0.96 0.180 0.175 0.120 0.825 -.100 -.064 0.843 0.971 1.125 0.98 0.180 0.175 0.120 0.825 -.097 -.061 0.845 0.990 1.141 1.00 0.180 0.176 0.120 0.825 -.094 -.059 0.847 1.010 1.157 1.02 0.180 0.176 0.120 0.826 -.091-.056 0.850 1.029 1.173 1.04 0.180 0.176 0.1200.826 -.088 -.054 0.852 1.190 1.048 1.06 0.180 0.176 0.1200.826 -.085 -.0510.855 1,068 1.206 1.08 0.180 0.176 0.120 0.827 -.082 -.049 0.857 1.087 1.223 1.10 0.180 0.176 0.120 0.827 -.078 -.046 0.861 1.107 1.240 SYS V PIN DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V EXCITN 0.90 0.200 0.193 0.134 0.822 -.126 -.084 0.833 0.915 1.100 0.92 0.200 0.194 0.134 0.822 -.124-.082 0.835 0.934 1.115 0.94 0.200 0.1940.134 0.822 -.121 -.080 0.836 0.953 1.130 0.96 0.200 0.194 0.134 0.823 -.118 --077 0.837 0.973 1.146 0.98 0.200 0.194 0.134 0.823 -.116 -.075 0.839 0.992 1.162 1.00 0.200 0.194 0.134 0.823 -.113 -.073 0.840 1.012 1.177 1.02 0.200 0.195 0.134 0.824 -.110 -.070 0.842 1.031 1.193 1.04 0.200 0.195 0.134 0.824 -.107 -.068 0.844 1.051 1.209 1.06 0.200 0.195 0.134 0.824 -.103 -.065 0.846 1,070 1.225 1.08 0.200 0.195 0.134 0.824 -.100 -.063 0.847 1.089 1.242 1.10 0.200 0.196 0.134 0.825 -.097 -.060 0.8501.109 1.258 REALISTIC LOAD REPRESENTATION SYS V P IN DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V EXCITN 0.90 0.020 0.020 0.006 0.958 0.049 0.046 0.731 0.893 0.902 0.92 0.020 0.0200.006 0.961 0.051 0.048 0.732 0.913 0.921 0.94 0.020 0.020 0.006 0.963 0.053 0.049 0.733 0.932 0.941 0.96 0.020 0.020 0.005 0.966 0.055 0.0510.734 0.952 0.960 0.98 0.020 0.020 0.005 0.968 0.057 0.735 0.053 0.972 0.980 1.00 0.020 0.0200.005 0.970 0.059 0.054 0.736 0.992 0.999 1.02 0.020 0.020 0.005 0.9720.061 0.056 0.737 1.012 1.019 1.04 0.020 0.020 0.005 0.974 0.043 0.058 0.738 1.032 1.038 1.06 0.0200.020 0.004 0.976 0.065 0.060 0.739 1.052 1.058 1.08 0.020 0.020 0.004 0.978 0.067 0.061 0.740 1.072 1.078 1.10 0.020 0.020 0.004 0.781 0.070 0.043 0.741 1.092 1.097 SYS V P IN DSG P DSG Q DSG PF SYS P SYS Q SYS PF LOAD V EXCITN 0.90 0.040 0.040 0.021 0.888 0.030 0.031 0.685 0.895 0.924 0.92 0.040 0.040 0.020 0.890 0.032 0.033 0.690 0.915 0.942 0.94 0.040 0.040 0.020 0.892 0.034 0.035 0.694 0.935 0.961 0.96 0.040 0.040 0.020 0.893 0.036 0.036 0.698 0.955 0.981 0.98 0.040 0.040 0.020 0.895 0.038 0.038 0.701 0.975 1.000 1.00 0.040 0.040 0.020 0.896 0.040 0.040 0.704 0.994 1.019 1.02 0.040 0.040 0.020 0.898 0.042 0.042 0.707 1.014 1.038 1.04 0.040 0.040 0.019 0.900 0.044 0.043 0.710 1.034 1.057 1.06 0.040 0.040 0.019 0.902 0.046 0.045 0.713 1.054 1.076 1.08 0.040 0.040 0.019 0.903 0.048 0.047 0.715 1.074 1.096 1.10 0.040 0.040 0.019 0.905 0.050 0.049 0.717 1.094 1.115

ORIGINAL PAGE IS OF POOR QUALITY

									CALITY
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060	DSG P 0.059 0.059 0.060 0.060 0.059 0.060 0.059 0.060	DSG 0 0.035 0.035 0.035 0.034 0.034 0.034 0.034 0.034	DSG PF 0.861 0.862 0.863 0.864 0.865 0.867 0.868 0.869 0.870 0.871	SYS P 0.010 0.012 0.014 0.016 0.020 0.022 0.024 0.026 0.028 0.030	SYS 0 0.017 0.019 0.020 0.022 0.024 0.025 0.027 0.029 0.031 0.032	SYS PF 0.511 0.543 0.568 0.589 0.605 0.620 0.632 0.642 0.651 0.658 0.665	LOAD V 0.898 0.917 0.937 0.957 0.977 1.016 1.036 1.076 1.096	EXCITN 0.945 0.964 0.982 1.001 1.020 1.038 1.057 1.076 1.095 1.114 1.133
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG P 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079	DSG Q 0.049 0.049 0.049 0.049 0.049 0.048 0.048 0.048	DSG PF 0.847 0.848 0.849 0.850 0.851 0.852 0.853 0.853 0.855 0.855	SYS P 009 007 005 003 001 0.003 0.005 0.007 0.007	SYS @ 0.003 0.004 0.006 0.009 0.011 0.013 0.015 0.016 0.020	SYS PF 0.955 0.853 0.457 0.398 0.129 0.071 0.214 0.312 0.386 0.446 0.489	LOAD V 0.900 0.920 0.940 0.959 0.979 1.019 1.038 1.058 1.078	EXCITN 0.967 0.985 1.003 1.022 1.040 1.058 1.077 1.095 1.114 1.132
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG P 0.098 0.099 0.099 0.099 0.099 0.099 0.099 0.099	DSG Q 0.064 0.064 0.063 0.063 0.063 0.063 0.063 0.063	DSG PF 0.839 0.839 0.840 0.841 0.841 0.843 0.843 0.843 0.845		0.004	SYS PF 0.929 0.938 0.949 0.961 0.974 0.987 0.986 1.000 0.987 0.939 0.842	LOAD V 0.902 0.922 0.942 0.962 0.981 1.001 1.021 1.041 1.060 1.080	EXCITN 0.989 1.007 1.025 1.042 1.060 1.078 1.094 1.114 1.132 1.150 1.169
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	F IN 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG P 0.117 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118	DSG Q 0.078 0.078 0.078 0.078 0.078 0.077 0.077 0.077	DSG PF 0.833 0.834 0.835 0.835 0.835 0.836 0.837 0.837 0.838 0.839	SYS P 047 045 043 042 040 038 034 034 032 030 028	SYS 0 025 024 022 021 019 017 014 014 012 011	SYS PF 0.881 0.884 0.891 0.896 0.903 0.909 0.916 0.924 0.933 0.942	LOAD V 0.905 0.925 0.944 0.964 0.984 1.003 1.023 1.043 1.062 1.082	EXCITN 1.011 1.028 1.046 1.063 1.080 1.098 1.115 1.133 1.151 1.169 1.186

ORIGINAL PAGE 19 OF POOR QUALITY

							•	אטטא ק	MELLA
SYS 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.10	0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG P 0.137 0.137 0.137 0.137 0.137 0.137 0.138 0.138 0.138	DSG G 0.092 0.092 0.092 0.092 0.092 0.092 0.091 0.091	DSG PF 0.829 0.830 0.830 0.831 0.831 0.832 0.833 0.833	SYS P 064 062 061 059 055 055 051 049 047	SYS Q 039 038 035 033 031 030 028 024 025 023	SYS PF 0.860 0.862 0.865 0.872 0.875 0.877 0.883 0.897	LOAD V 0.907 0.927 0.946 0.966 0.986 1.005 1.025 1.045 1.084 1.104	EXCITN 1.033 1.050 1.067 1.084 1.100 1.118 1.135 1.152 1.170 1.187 1.205
SYS 0.70 0.72 0.74 0.76 0.78 1.00 1.02 1.04 1.06	0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG F 0.154 0.154 0.156 0.156 0.157 0.157 0.157 0.157 0.157	DSG Q 0.104 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106	DSG PF 0.824 0.827 0.827 0.828 0.828 0.828 0.829 0.830 0.830	SYS P 085 083 081 079 078 074 072 070 068 066	SYS Q 053 052 050 047 045 044 042 041 039 037	SYS PF 0.848 0.849 0.851 0.855 0.858 0.858 0.860 0.862 0.865 0.868	LOAD V 0.910 0.929 0.949 0.968 0.988 1.008 1.027 1.047 1.066 1.086 1.106	EXCITN 1.056 1.072 1.088 1.104 1.121 1.138 1.154 1.171 1.188 1.205 1.223
SYS 0.90 0.90 0.94 0.96 0.98 1.00 1.02 1.04 1.06		DSG P 0.175 0.175 0.175 0.175 0.176 0.176 0.176 0.176 0.176	DSG 0 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG PF 0.824 0.824 0.825 0.825 0.825 0.826 0.826 0.826 0.827	SYS P 104 102 100 098 095 095 097 087 085	SYS 0 047 045 064 062 059 058 056 055 053	SYS FF 0.840 0.841 0.843 0.844 0.845 0.847 0.850 0.852 0.854 0.854	LOAD V 0.912 0.931 0.951 0.970 0.990 1.010 1.029 1.049 1.068 1.088	EXCITN 1.078 1.093 1.109 1.125 1.141 1.158 1.174 1.174 1.207 1.207 1.224
9YS 0.90 0.92 0.94 0.98 1.02 1.04 1.06	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG P 0.193 0.194 0.194 0.194 0.195 0.195 0.195 0.195 0.195	DSG 0 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134	DSG PF 0.822 0.822 0.823 0.823 0.823 0.824 0.824 0.824 0.824	SYS P122120117115115111110108104	SYS Q 081 079 078 075 075 073 072 070 068 067	SYS PF 0.835 0.836 0.837 0.838 0.839 0.840 0.841 0.842 0.842	LOAD V 0.914 0.934 0.953 0.973 0.992 1.012 1.031 1.051 1.070 1.090	EXCITN 1.100 1.115 1.130 1.146 1.161 1.177 1.193 1.209 1.226 1.242 1.259

CONSTA	ANT IMPE	DANCE LO	AD				ORIGI OF PC	na l page Dor Quali	ig Ty
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG P 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG Q 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.005	DSG PF 0.949 0.952 0.955 0.957 0.961 0.963 0.966 0.968 0.970	SYS P 0.524 0.549 0.574 0.599 0.625 0.651 0.678 0.706 0.734 0.743 0.792	SYS Q 0.402 0.420 0.439 0.458 0.478 0.518 0.539 0.560 0.582 0.604	SYS PF 0.794 0.794 0.794 0.794 0.795 0.795 0.795 0.795 0.795	LOAD V 0.825 0.843 0.861 0.880 0.878 0.914 0.952 0.971 0.989	EXCITN 0.834 0.853 0.871 0.889 0.907 0.925 0.943 0.960 0.978 0.996 1.014
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 0.021 0.021 0.021 0.021 0.020 0.020 0.020 0.020 0.020	DSG PF 0.882 0.884 0.885 0.887 0.890 0.892 0.893 0.895 0.895	SYS P 0.508 0.532 0.557 0.582 0.608 0.635 0.662 0.689 0.717 0.746 0.775	SYS Q 0.390 0.408 0.427 0.446 0.486 0.506 0.527 0.548 0.570 0.570	SYS PF 0.794 0.794 0.794 0.794 0.794 0.795 0.795 0.795	LOAD V 0.827 0.846 0.864 0.882 0.900 0.918 0.937 0.955 0.973 0.991	EXCITN 0.859 0.876 0.874 0.911 0.928 0.946 0.963 0.981 0.981
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10	P IN 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG F 0.059 0.059 0.059 0.059 0.059 0.059 0.060 0.060	DSG Q 0.034 0.035 0.035 0.035 0.035 0.035 0.035 0.035	DSG PF 0.857 0.858 0.859 0.860 0.861 0.862 0.863 0.865 0.865	SYS P 0.492 0.516 0.541 0.546 0.592 0.619 0.646 0.673 0.701 0.730 0.759	SYS Q 0.378 0.376 0.415 0.434 0.474 0.474 0.515 0.536 0.558	SYS PF 0.793 0.794 0.794 0.794 0.794 0.794 0.794 0.795 0.795	LOAD V 0.830 0.848 0.866 0.884 0.902 0.921 0.939 0.957 0.975 0.975	EXCITN 0.882 0.899 0.914 0.933 0.950 0.967 0.984 1.001 1.018 1.035
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG P 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079	DSG 0 0.050 0.050 0.050 0.050 0.049 0.049 0.049 0.049 0.049	DSG FF 0.844 0.845 0.846 0.847 0.848 0.849 0.850 0.850 0.851 0.852	SYS P 0.476 0.500 0.525 0.550 0.576 0.629 0.627 0.657 0.685 0.714	SYS 0 0.366 0.384 0.403 0.422 0.442 0.462 0.482 0.503 0.524 0.546	SYS PF 0.793 0.793 0.793 0.794 0.794 0.794 0.794 0.794 0.794	LOAD V 0.832 0.850 0.869 0.887 0.905 0.923 0.941 0.959 0.977 0.975	EXCITN 0.906 0.923 0.939 0.955 0.972 0.988 1.005 1.022 1.038 1.055

TABLE C-II contd.

			DATA FOR C	CONSTANT (LE	ADING) POWI	er factor ca		AML DOS	
sys v	P IN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	OF F SYS PF	GON CON	EXCITN
0.90	0.100	0.098	0.064	0.836	0.459	0.354	0.792	0.835	0.930
0.92	0.100	0.098	0.064	0.837	0.484	0.372	0.793	0.853	0.946
0.94	0.100	0.098	0.064	0.838	0.509	0.391	0.793	0.871	0.961
0.96	0.100	0.098	0.044	0.838	0.534	0.410	0.793	0.889	0.977
0.98	0.100	0.098	0.064	0.839	0.560	0.430	0.793	0.907	0.993
1.00	0.100 0.100	0.098 0.099	0.064	0.839	0.586	0.450	0.793	0.925	1.009
1.04	0.100	0.077	0.064 0.063	0.840 0.841	0.613 0.641	0.470 0.491	0.794 0.794	0.943 0.961	1.026 1.042
1.04	0.100	0.078	0.063	0.841	0.669	0.512	0.794	0.701	1.058
1.08	0.100	0.099	0.063	0.842	0.697	0.534	0.794	0.997	1.075
1.10	0.100	0.099	0.063	0.843	0.726	0.554	0.794	1.016	1.071
				• • • •	• • • • • •				
SYS V	P IN	DSG P	DSG Q	DSG PF	SYS P	sys Q	SYS PF	LOAD V	EXCITN
0.90	0.120	0.117	0.078	0.831	0.444	0.342	0.792	0.837	0.954
0.92	0.120	0.117	0.078	0.832	0.468	0.361	0.792	0.855	0.969
0.94	0.120	0.117	0.078	0.832	0.493	0.379	0.792	0.873	0.984
0.96	0.120	0.117	0.078	0.833	0.518	0.398	0.793	0.891	1.000
0.98	0.120	0.118	0.078	0.833	0.544	0.418	0.793	0.909	1.015
1.00	0.120	0.118	0.078	0.834	0.570	0.438	0.793	0.927	1.031
1.02	0.120 0.120	0.118 0.118	0.078 0.078	0.834	0.597	0.458	0.793	0.945	1.047
1.04	0.120	0.118	0.078	0.835 0.835	0.625 0.653	0.479 0.500	0.793 0.794	0.963 0.981	1.043
1.08	0.120	0.118	0.078	0.835	0.681	0.522	0.794	0.797	1.078 1.074
1.10	0.120	0.118	0.077	0.836	0.710	0.544	0.794	1.018	1.111
		2124	0.0	7.1000	~	₩ W-1-1	0.,,,	11010	****
SYS V	PIN	DSG P	DSG 0	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.140	0.136	0.092	0.828	0.428	0.331	0.791	0.840	0.978
0.92	0.140	0.134	0.092	0.828	0.452	0.349	0.792	0.858	0.992
0.94	0.140	0.136	0.092	0.828	0.477	0.368	0.792	0.875	1.007
0.96	0.140	0.137	0.092	0.829	0.502	0.387	0.792	0.893	1.022
0.98	0.140	0.137	0.092	0.829	0.528	0.406	0.792	0.911	1.037
1.00 1.02	0.140 0.140	0.137	0.092	0.830	0.554	0.426	0.793	0.929	1.052
1.04	0.140	0.137 0.137	0.092 0.092	0.830 0.830	0.581 0.609	0.447 0.467	0.793 0.793	0.947 0.945	1.068
1.06	0.140	0.137		0.831	0.637		0.793		1.083 1.099
1.08	0.140		0.092	0.831	0.665		0.773		1.114
1.10	0.140	0.137		0.832	0.694		0.794	1.020	1.130
SYS V	PIN	DSG P	DSG Q	DSG PF	SYS P	SYS Q	SYS PF	LOAD V	EXCITN
0.90	0.160	o.155	0.106	0.825	0.412	0.319	0.791	0.842	1.001
0.92	0.160	0.155	0.106	0.825	0.436	0.337	0.791	0.860	1.015
0.94	0.160	0.155	0.106	0.825	0.461	0.356	0.791	0.878	1.030
0.96	0.160	0.156	0.106	0.826	0.486	0.375	0.792	0.896	1.044
0.98	0.160	0.156	0.106	0.826	0.512	0.395	0.792	0.914	1.059
1.00	0.160 0.160	0.156	0.106	0.826	0.538	0.415	0.792	0.932	1.074
1.02 1.04	0.160	0.156 0.156	0.106 0.106	0.827 0.827	0.545 0.593	0.435 0.456	0.793 0.793	0.950 0.968	1.089
1.04	0.160	0.156	0.104	0.828	0.621	0.438	0.793	0.786	1.104 1.119
1.08	0.160	0.157	0.106	0.828	0.649	0.477	0.793	1.004	1.134
1.10	0.160	0.157	0.106	0.828	0.678	0.520	0.794	1.022	1.149
Ī	_	• •				· · · · · · · ·			·

ORIGINAL PAGE 19
OF POOR QUALITY

							OF	POOR QUA	LITY
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.08 1.10	P IN 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG P 0.174 0.174 0.174 0.175 0.175 0.175 0.175 0.175 0.175	DSG Q 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG PF 0.823 0.823 0.824 0.824 0.824 0.825 0.825 0.825 0.825	SYS P 0.396 0.421 0.445 0.470 0.496 0.523 0.550 0.577 0.605 0.633 0.662	SYS 0 0.308 0.324 0.345 0.364 0.383 0.403 0.423 0.423 0.425 0.465 0.487	SYS PF 0.790 0.791 0.791 0.792 0.792 0.793 0.793 0.793	LOAD V 0.844 0.862 0.898 0.914 0.934 0.952 0.970 0.988 1.006	EXCITN 1.025 1.039 1.052 1.067 1.081 1.095 1.110 1.124 1.139 1.154 1.169
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.10	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG P 0.192 0.193 0.193 0.193 0.194 0.194 0.194 0.194 0.194	DSG Q 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134	DSG PF 0.821 0.821 0.822 0.822 0.822 0.822 0.823 0.823 0.823	SYS P 0.381 0.405 0.430 0.455 0.481 0.507 0.534 0.541 0.589 0.618 0.647	SYS Q 0.296 0.314 0.333 0.352 0.372 0.371 0.412 0.453 0.453	SYS PF 0.789 0.790 0.790 0.791 0.791 0.792 0.792 0.792 0.793	LOAD V 0.846 0.864 0.900 0.918 0.936 0.954 0.972 1.008	EXCITN 1.049 1.062 1.075 1.089 1.103 1.116 1.131 1.145 1.159 1.174 1.189
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06	P IN 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG P 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	DSG Q 0.007 0.007 0.006 0.006 0.006 0.006 0.005 0.005	DSG PF 0.948 0.951 0.953 0.956 0.958 0.960 0.962 0.966 0.968 0.970	SYS P 0.572 0.411 0.430 0.450 0.650 0.669 0.708 0.728 0.728 0.748 0.788	SYS Q 0.452 0.467 0.481 0.496 0.511 0.525 0.556 0.571 0.586 0.601	SYS PF 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795	LOAD V 0.814 0.833 0.853 0.872 0.871 0.930 0.949 0.949 0.968 1.008	EXCITN 0.825 0.844 0.863 0.881 0.900 0.919 0.938 0.957 0.976 0.976
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSB P 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	DSG Q 0.021 0.021 0.021 0.021 0.020 0.020 0.020 0.020 0.020 0.020	DSG PF 0.881 0.883 0.885 0.886 0.888 0.890 0.891 0.893 0.895 0.896	SYS P 0.575 0.594 0.613 0.632 0.652 0.671 0.711 0.730 0.750	SYS Q 0.440 0.454 0.469 0.483 0.498 0.513 0.528 0.543 0.558 0.573 0.588	SYS PF 0.794 0.794 0.795 0.795 0.795 0.795 0.795 0.795	LOAD V 0.817 0.836 0.855 0.874 0.894 0.913 0.932 0.952 0.951 0.971	EXCITN 0.849 0.867 0.885 0.904 0.922 0.941 0.959 0.978 0.978

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	P IN 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	DSG P 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.060 0.040	DSG 0 0.036 0.035 0.035 0.035 0.035 0.035 0.034 0.034	DSG PF 0.858 0.859 0.860 0.861 0.862 0.863 0.865 0.865 0.866	SYS P 0.558 0.577 0.596 0.615 0.634 0.654 0.674 0.673 0.733	SYS Q 0.427 0.442 0.456 0.471 0.485 0.500 0.515 0.530 0.545 0.560 0.575	SYS PF 0.794 0.794 0.794 0.794 0.794 0.794 0.795 0.795	LOAD V 0.819 0.839 0.858 0.877 0.896 0.916 0.935 0.954 0.974 0.973	EXCITN 0.873 0.891 0.908 0.926 0.944 0.962 0.980 0.998 1.017 1.035
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	DSG P 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079	DSG Q (.050 (.050 (.050 (.050 (.050 (.049 (.049 (.049 (.049 (.049	DSG PF 0.844 0.845 0.845 0.846 0.847 0.848 0.850 0.851 0.851	SYS P 0.541 0.560 0.579 0.598 0.617 0.637 0.656 0.676 0.716	SYS Q 0.415 0.429 0.444 0.458 0.473 0.502 0.517 0.532 0.547 0.543	SYS PF 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794	LOAD V 0.822 0.841 0.860 0.899 0.918 0.937 0.954 0.975 1.014	EXCITN 0.897 0.914 0.931 0.949 0.966 0.984 1.001 1.019 1.037 1.055
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	DSG P 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.079	DSG Q 0.064 0.064 0.064 0.064 0.064 0.063 0.063 0.063	DSG PF 0.834 0.837 0.837 0.838 0.839 0.839 0.840 0.841 0.841 0.842	SYS P 0.525 0.543 0.562 0.581 0.600 0.639 0.639 0.679 0.679	SYS 0 0.403 0.417 0.431 0.446 0.460 0.475 0.505 0.505 0.535 0.550	SYS PF 0.793 0.793 0.794 0.794 0.794 0.794 0.794 0.794 0.794	LOAD V 0.825 0.844 0.863 0.882 0.901 0.920 0.940 0.959 0.978 0.977	EXCITN 0.921 0.938 0.954 0.971 0.988 1.005 1.022 1.040 1.057 1.075 1.092
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	DSG F 0.117 0.117 0.117 0.118 0.118 0.118 0.118 0.118 0.118	DSG Q 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078	DSG PF 0.831 0.832 0.833 0.833 0.834 0.834 0.835 0.835 0.835	SYS P 0.508 0.527 0.546 0.545 0.565 0.603 0.622 0.642 0.662 0.681 0.701	SYS 0 0.391 0.405 0.419 0.433 0.448 0.462 0.477 0.492 0.507 0.522 0.537	SYS PF 0.793 0.793 0.793 0.793 0.793 0.794 0.794 0.794 0.794	LOAD V 0.827 0.846 0.865 0.884 0.904 0.923 0.942 0.941 0.980 0.999	EXCITN 0.945 0.961 0.977 0.994 1.010 1.027 1.044 1.060 1.077 1.094 1.111

ORIGINAL PAGE IS OF POOR QUALITY

SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.10	P IN 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	DSG P 0.134 0.136 0.137 0.137 0.137 0.137 0.137 0.137 0.137	DSG Q 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092	DSG PF 0.827 0.828 0.828 0.829 0.829 0.829 0.830 0.831 0.831	SYS P 0.492 0.510 0.529 0.548 0.567 0.586 0.606 0.625 0.645 0.664	SYS Q 0.378 0.373 0.407 0.421 0.435 0.450 0.465 0.465 0.494 0.507 0.525	SYS PF 0.792 0.793 0.793 0.793 0.793 0.793 0.793 0.794 0.794	LOAD V 0.830 0.847 0.868 0.887 0.706 0.725 0.744 0.763 0.782 1.002	EXCITN 0.970 0.985 1.001 1.017 1.032 1.049 1.045 1.081 1.098 1.114 1.131
SYS V 0.90 0.92 0.94 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160	DSG P 0.155 0.155 0.156 0.156 0.156 0.156 0.156 0.156 0.156	DSG 0 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106	DSG PF 0.825 0.825 0.825 0.826 0.826 0.827 0.827 0.828 0.828	SYS P 0.475 0.494 0.512 0.531 0.550 0.569 0.608 0.628 0.648 0.647	SYS 0 0.344 0.380 0.395 0.409 0.423 0.452 0.452 0.467 0.482 0.497	SYS PF 0.792 0.792 0.792 0.793 0.793 0.793 0.793 0.793 0.793	LOAD V 0.832 0.851 0.870 0.889 0.908 0.927 0.946 0.945 0.985 1.004 1.023	EXCITN 0.994 1.009 1.024 1.039 1.055 1.070 1.086 1.102 1.118 1.134 1.151
SYS V 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08	P IN 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180	DSG P 0.174 0.174 0.174 0.175 0.175 0.175 0.175 0.175				SYS Q 0.354 0.368 0.383 0.397 0.411 0.425 0.440 0.455 0.470 0.485 0.499	SYS PF 0.791 0.792 0.792 0.792 0.792 0.793 0.793 0.793	LOAD V 0.835 0.854 0.873 0.872 0.911 0.930 0.949 0.948 0.987 1.004 1.025	EXCITN 1.018 1.032 1.047 1.062 1.077 1.092 1.107 1.123 1.138 1.154 1.170
	P IN 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	DSG P 0.192 0.193 0.193 0.193 0.194 0.194 0.194 0.194 0.194	DSG Q 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134		SYS P 0.443 0.461 0.498 0.517 0.536 0.555 0.575 0.575 0.574 0.614	SYS 0 0.343 0.356 0.370 0.385 0.399 0.413 0.428 0.443 0.457 0.457	SYS PF 0.791 0.791 0.791 0.792 0.792 0.792 0.792 0.793 0.793	LOAD V 0.837 0.856 0.875 0.894 0.913 0.932 0.951 0.970 0.989 1.008	EXCITN 1.042 1.056 1.070 1.084 1.099 1.113 1.128 1.143 1.159 1.174 1.179