106 6221

Claims:

1. A method of forming a toner image, comprising:

electrically charging a photoreceptor containing an organic photosensitive material;

imagewise exposing the photoreceptor so that a latent image is formed on the photoreceptor;

developing the latent image with toner so that a toner image is formed on the photoreceptor by a reversal development;

wherein

the photoreceptor comprises a charge generation layer containing an N-type charge generation material and a charge transportation layer containing a charge transportation material and has a thickness of from 5 to 15 µm;

the toner contains colored particles comprising a resin and a colorant, and the colored particles have a ratio, Dv_{50}/Dp_{50} , of the 50% volume particle diameter Dv_{50} to the 50% number particle diameter Dp_{50} of from 1.0 to 1.15 and a ratio, Dv_{75}/Dp_{75} , of an accumulate of 75% volume average particle diameter from larger particle side to an accumulate of 75% number average particle diameter from larger particle side of from 1.0 to 1.20, and content of colored particles

107 - 6221

having a diameter of 0.7 \times Dp₅₀ is not more than 10 in number; and

the reversal development is performed under condition satisfying the following expression;

Expression 1 $50 \le |E| \le 100$

E: Electrical field intensity applied to the organic photoreceptor during development.

- 2. The image forming method of claim 1, wherein the charge generation layer further contains a P-type pigment in an amount of not more than 10% by weight of the N-type charge generating material.
- The image forming method of claim 1, wherein the N-type charge generation material is a pervlene compound pigment.
- 4. The image forming method in which the perylene compound is a 3,4,9,10-tetracarboxylic acid imide derivative represented by the Formula 1, 2, 3a or 3b, or a mixture thereof,

108 6221

Formula 1

$$R_1-N$$
 $N-R_2$

Formula 2

Formula 3a

Formula 3b

in the above formulas, R_1 and R_2 are each a hydrogen atom, or an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an alkylamino group, a dialkylamino group, a benzyl group, a phenethyl group or a heterocyclic group, and the above organic groups may be substituted or unsubstituted. When the compound is a polymer, R_1 and R_2 each may be a 1,4-

109 6221

phenylene group. Z is a group of atoms necessary to form a heterocyclic group.

 The image forming method in which the perylene compound is represented by one of the following Formulas,

$$R - \overbrace{\stackrel{1}{U}}{\stackrel{1}{V}} \underbrace{\stackrel{N}{\underset{N}{\bigvee}} \underbrace{\stackrel{1}{\underset{N}{\bigvee}}}_{N} R}$$

wherein R is a hydrogen atom, a halogen atom, an alkyl group having from 1 - 10 carbon atoms, an aryl group, an alkoxy group or a heterocyclic group.

- 6. The image forming method of claim 2, wherein the P-type charge generating material is a titanyl phthalocyanine compound.
- 7. The image forming method of claim 1, wherein the static latent image is formed by exposure to a light beam having an exposing spot area of not more than 2×10^{-9} m².