

INSTITUTO FEDERAL

Norte de Minas Gerais Campus Januária

Lógica Computacional && Eletrônica Digital

Apresentação Pessoal

- Prof. Adriano Antunes Prates
 - https://github.com/adrianoifnmg
 - @adrianoantunesp

- Bacharel em Sistemas de Informação (Unimontes, 2008)
- Especialista Redes de Computadores (ESAB, 2011)
- Mestre em Computação (UFF, 2014)
 - Redes de Computadores e Sistemas Distribuídos
- Docente do IFNMG desde 2009.
 - Bacharelado em Sistemas de Informação

Latim computatio

- Computadores (modernos) são <u>eletrônicos</u>.
- Eletrônica = Ciência que estuda o controle sobre a movimentação da <u>eletricidade</u> para representar, armazenar, transmitir ou processar dados e informações.

• Qual a diferença na representação de números entre um humano e um computador?

 Qual a diferença na representação de números entre um humano e um computador?

COMPUTADOR ELETRÔNICO

> **Base** Binária

- Qualquer dispositivo eletrônico consegue apresentar apenas DOIS estados fundamentais...
 - Ligado / Desligado
 - Com tensão elétrica / Sem tensão elétrica
 - ~5 volts / ~0 volts
 - 1 ou 0 (Representação simbólica desses estados)
- Baseado nesta condição, apresenta-se o conceito de COMPUTADORES DIGITAIS BINÁRIOS (2 dígitos possíveis, ou seja, 0 ou 1).

BIT

- BIT
 - BInary digiT

- 0 é um BIT
- 1 é um BIT

Mas um computador só sabe contar até 1 ???

Como fazer a representação de números através de bits???

Como fazer a representação de números através de bits???

Como fazer a representação de números através de bits???

Como fazer a representação de números através de bits???

Como fazer a representação de números através de bits???

Como fazer a representação de números através de bits???

- A representação correta é dada de outra forma.
- Acompanhe...

- A representação correta é dada de outra forma.
- Acompanhe...

- A representação correta é dada de outra forma.
- Acompanhe...

- A representação correta é dada de outra forma.
- Acompanhe...

- A representação correta é dada de outra forma.
- Acompanhe...

- A representação correta é dada de outra forma.
- Acompanhe...

- A representação correta é dada de outra forma.
- Acompanhe...

- A representação correta é dada de outra forma.
- Acompanhe...

- A representação correta é dada de outra forma.
- Acompanhe...

- Perceba que, com 3 bits, conseguimos representar um conjunto de 8 números (de 0 até 7).
- Isto porque $2^{3 \text{ bits}} = 8$ combinações distintas

onde...

2 = Sistema Binário (0 ou 1)

3 = Qtde. de bits disponíveis

- Perceba que, com 3 bits, conseguimos representar um conjunto de 8 números (de 0 até 7).
- Isto porque $2^{3 \text{ bits}} = 8$ combinações distintas

onde...

2 = Sistema Binário (0 ou 1)

3 = Qtde. de bits disponíveis

Mas e se tivéssemos 5 bits ???

0 = 00000	08 = 01000	16 = 10000	24 = 11000
1 = 00001	09 = 01001	17 = 10001	25 = 11001
2 = 00010	10 = 01010	18 = 10010	26 = 11010
3 = 00011	11 = 01011	19 = 10011	27 = 11011
4 = 00100	12 = 01100	20 = 10100	28 = 11100
5 = 00101	13 = 01101	21 = 10101	29 = 11101
6 = 00110	14 = 01110	22 = 10110	30 = 11110
7 = 00111	15 = 01111	23 = 10111	31 = 11111

Antes porém... Analise as afirmações a seguir...

[] Para cursar Licenciatura em Física você deve ter concluído o ensino médio ou ser aprovado em processo seletivo.

[] Para cursar Licenciatura em Física você deve ter concluído o ensino médio e ser aprovado em processo seletivo.

Antes porém... Analise as afirmações a seguir...

[Para cursar Licenciatura em Física você deve ter concluído o ensino médio OU ser aprovado em processo seletivo.

[V] Para cursar Licenciatura em Física você deve ter concluído o ensino médio E ser aprovado em processo seletivo.

- Operadores Lógicos => Portas Lógicas
 - AND (E)
 - o OR (OU)
 - NOT (NÃO)

- NAND (NOT AND)
- NOR (NOT OR)
- XOR (EXCLUSIVE OR)
- NXOR (NOT XOR)

Portas ou circuitos lógicos
são dispositivos que operam
e trabalham com um ou
mais sinais lógicos de
entrada para produzir uma
(e somente uma) saída.

- Operadores Lógicos => Portas Lógicas
 - AND (E)
 - o OR (OU)
 - NOT (NÃO)

- NAND (NOT AND)
- NOR (NOT OR)
- XOR (EXCLUSIVE OR)
- NXOR (NOT XOR)

Portas ou circuitos lógicos
são dispositivos que operam
e trabalham com um ou
mais sinais lógicos de
entrada para produzir uma
(e somente uma) saída.

Porta Lógica AND (e)

Porta AND

TABELA VERDADE				
А	В	Υ		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

Porta Lógica OR (ou)

Porta OR

TABELA VERDADE				
А	В	Υ		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Porta Lógica NOT (não)

Porta **NOT**

TABELA VERDADE			
Α	L		
0	1		
1	0		

Circuitos Integrados

Portas Lógicas podem ser combinadas de infinitas maneiras para se conseguir atingir um objetivo específico, formando assim os circuitos integrados...

Aplicação Prática

Para observar a aplicação prática disso tudo, vamos construir um circuito digital para controlar um display de 7 segmentos, como na imagem abaixo...

Referências

- Wiki Eletrônica Digital IFSC
 - Disponível em: <u>LINK</u>
- Ney Trevas, YouTube
 - Disponível em: LINK
- Wagner Rambo, Circuitos Digitais Programáveis
 - Disponível em: LINK