OM-M20-05: IP Formulations

Prof. C. V. Jawahar

IIIT Hyderabad

21 Jan 2020

IP formulations

Maximize $5x_1+8x_2$ s.t $x_1+x_2\leq 6$ and $5x_1+9x_2\leq 45$, $x_1,x_2\leq 0$ and integer

	Continuous optimum	Round off	Nearest feasible point	Integer optimum
x_1	$\frac{9}{4} = 2.25$	2	2	0
x2	$\frac{15}{4} = 3.75$	4	3	5
ż	41.25	Infeasible	34	40

- Knapsack Style Max $c^T x$ s.t $Ax \le b$.
 - x real number
 - x integers
 - x 0 or 1 (Binary)
- Terminologies: LP, IP, MIP, BIP

MIP formulation - Function of K discrete variables

- Say you have to go from A to B; You can go by bus, bike or car.
- You are allowed to spend Rs 5 if you choose bus, Rs 10 if you choose bike and Rs 20 if you choose car.
- We introdice a set of new variables y_i . Let y_i , denote whether you choose *vehicle*; and x_i denote the amount spent on *vehicle*.
- The constraints can be written as

$$y_1 + y_2 + y_3 = 1$$

 $x_1 + x_2 + x_3 = 5y_1 + 10y_2 + 20y_3$
 $y_i \in \{0, 1\}; i = 1, 2, ..., 5$

• Notice that y_i 's need to be 0 or 1 but no such constraint x_i 's.

Setting up a Warehouse

- Let f_i is the fixed operating cost of warehouse i. c_{ij} is the per unit operating cost of warehouse i plus transportation cost for shipping from warehouse i to customer j.
- $y_i = 1$, if warehouse is opened; Goods can be shipped only if it is opened.
- d_i is the demand of customer j

$$Minimize \sum_{i} \sum_{j} c_{ij} x_{ij} + \sum_{i} f_{i} y_{i}$$

Complete the problem statement and write the entire constraints.

Constraints

Multiple choice problems:

$$\sum_{i=1}^n y_i \le 1 \text{ or } = 1$$

A specific constraint is satisfied:

$$f(x_1, x_2, \ldots, x_n) < b$$

How do we make a constraint to be trivially True/Satisfied?

Either of the constraints to be satisfied?

$$f_1(x_1, x_2, \ldots, x_n) - By < b_1$$

$$f_2(x_1, x_2, \ldots, x_n) - B(1-y) < b_2$$

- What does it mean when y is 0 and 1 respectively?
- When only *m* out of the *n* constraints to be true?
- When only one set of the multiple sets of constraints to be true?

IP formulations: Cost of Production

Fixed Cost + Variable Cost

$$K + Cx$$

- Piece-wise Linear Cost
 - If the production is below 4000 units, unit price is c_1
 - If the production is between 4000 and 9000 units, unit price is c_2
 - If it is above 8000, and below 15000then cost is c_3

$$0 \le x_1 \le 4000; 0 \le x_2 \le 5000; 0 \le x_3 \le 6000$$

$$cost = c_1x_1 + c_2x_2 + c_3x_3$$

$$4000w_1 \le x_1 \le 4000$$
; $9000w_2 \le x_2 \le 9000w_1$; $0 \le x_3 \le 6000w_2$