Tutorial - Part 5: Using Knowledge Graphs for Text Retrieval

Tutorial - Part 5: Using Knowledge Graphs for Text Retrieval

Laura Dietz dietz@cs.unh.edu

Document Retrieval with Entities

Different Queries - Different Entities

Query	nicolas cage movies	dark chocolate health benefits
Query	Nicolas Cage	chocolate health
Latent entities	• Left Behind • Lea Thompson	Theobromine circulatory system
[Hasibi ICTIR16]	Named Entities	Concepts

Matching Entities in Documents by Name

dark chocolate health benefits

... health ...
...health...
... Theobromine ...
... dark chocolate ...
circulatory system

Should this doc be promoted in the ranking?

Matching Entities in Documents by Entity Links

dark chocolate health benefits

Using Entities as a Vocabulary of Concepts

$$score(\square) = \lambda_1 query terms +$$

 λ_2 names +

use your favorite retrieval model here!

 λ_3 entity links +

 λ_4 article terms + ...

Matching Entities in Documents by Article Terms

dark chocolate health benefits

Should this doc be promoted in the ranking?

Using more from the Knowledge Base

So far we used names and entity links. But KBs have so much more information!

Names

Links and Relations

Different taxonomic Type systems

How can we make use of it?

Using Relations and Types with Entity Links

infered as relevant because of link originally · hame relevant has type content similarity article

Using Relations and Types with Entity Links

infered as relevant

because of link originally · hame relevant has type content Similarity infered as relevant because of same type

article

Using Relations and Types with Entity Links

Document Retrieval with (more) Entities

Entities Documents Query Entities known or -> assumed to be relevant Docs we -> want to rank

KG expansion: A Potential Issue

Example query: Heart disease

Consider:

Correct connection, but:

The connection is not relevant in context of "heart" as in "heart disease".

If we promote docs because they talk about love, we ruin a fine ranking on the topic heart disease.

General Approach: Graph Expansion

So many connections in a knowledge graph

- Some are relevant!
- But many are only relevant in a certain (other?) context.

Expanding with non-relevant entities leads to low precision rankings.

Using the Graph Structure (KG)

Using seed entity nodes and...

- Graph walks: PageRank / HITS
- Different edge types
- Edge weighting + Clustering

Big Question

How to infer which other connected entities / nodes are relevant for the information need Q?

...and therefore safe for expansion?

Maybe entities in between relevant entities?

Source: Relevance Feedback with Entity Links

Pseudo-Relevance Feedback (RM3)

Document = bag of Entity Links (instead of terms)

[Dalton SIGIR14, Liu IRJ15]

Beyond the Graph Structure

Why only look at graph structure, and ignore all the other kinds of information?

Typical approaches:

- 1) Use complementary sources: graph, article text, relevance feedback, type info
- Use machine learning:
 Train weights for sources on test collection
- 3) Model relevant Entity Aspects

Source: Entity Types (or Wikipedia Categories)

a) same-type major entities amon [Kaptein CIKM10, Dalton SIGIR14]

majority types among entities

prefer docs with entities of this type

b) term classifier [Xiong CIKM15] classify query terms with naive Bayes

classify documents with naive Bayes

Source: Object AND Article Content Retrieval

[Xiong CIKM15, Dalton SIGIR14]

Machine Learning / Probabilistic Models

Three approaches based on similar ideas:

- Dalton: Entity Query Feature Expansion
- Xiong: EsdRank
- Liu: Latent Entity Space

Probabilistic model with random variables Q,E,D.

An edge represents a measure of compatability or similarity.

One possible value for E -> no ground truth!

<- One possible value for D ground truth available (TREC)</p>

Latent Entity Space [Liu IRJ15]

$$p(q|D=d,R=1) = \sum_{e \in \mathcal{E}} p(q|e) \cdot p(e|d)$$

similarity of similarity of LM(q) and LM(e) LM(e) and LM(d)

Wide range of experiments on which similarity measure / data source combination works best.

Entity Query Feature Expansion [Dalton SIGIR14]

n different ways to compute p(q|e)

m different ways to compute p(e|d)

Relation to Query / Latent Concept Expansion

Various vocabularies, but all represented by sets

EsdRank [Xiong CIKM15]

$$p(d_i|q) = \sum_{e \in \mathcal{E}} \underbrace{p(d_i|e)}_{\frac{1}{Z_1} \exp\langle \vec{w}_1, \vec{f}_{D,E} \rangle} \cdot \underbrace{p(e|q)}_{\frac{1}{Z_2} \exp\langle \vec{w}_2, \vec{f}_{E,Q} \rangle}$$

Discriminative probabilistic model based on Generalized linear models + EM Algorithm for learning weights w1, w2.

Only n+m features! But needs custom learning code.

Query Expansion with Uncertainties

Taking uncertainty and confidences into account.

Entity Aspects

An entity might be relevant, but: only some aspects about might make it relevant => non-relevant aspects of relevant entities.

Example aspects about UK:

- still a member of the European Union
- is a constitutional monarchy
- the Raspberry Pi was invented in the UK
- some movies were filmed in the UK

Depending on query, some are relevant, some not.

How to Represent Entity Aspects?

As terms? UK movies

brexit

As types? UK member of "European Union"

As is-a? UK as a European country

Related entities? [UK] [Raspberry Pi]

Relations? [UK] place of invention

[Raspberry Pi]

Language Model p(brexit)=0.4

p(leave)=0.25

p(immigration)=0.10

[Reinanda SIGIR15, Liu IRJ15, Prasojo CIKM15]

Entity Aspects: Using KG and Text

[UK] [Raspberry Pi] [UK] place_of_invention [Raspberry Pi]

Entity Aspects: Infer Relevance, Match, Extract

1) Relevance:

Which aspects are relevant?

2) Match:

How to match in text?

pseudo relevance feedback

inverse tasks

3) Extract:

How to extract new aspects? (KB population)

Entity Aspects as Terms

Extract/Infer relevant Entity Aspects?

- From collocations in pseudo-relevant documents
- From passages surrounding entity links
- Through graph analysis
- What is this frequent among other relevant entities
- Extracting a language model

Entity Aspects through Co-mentioned Entities

Passage with

- link to entity

- matching query terms

=> other enties relevant?

which are linked in KG

=> Promote documents that mention both

Infer & Extract Aspects

Match Aspects

Entity Aspects through Relations (Triples)

Relation Extraction:

- Supervised Extraction from Text

[Schuhmacher ECIR16]

Infer & Extract Aspects

Feature-based retrieval:

- Relation terms

 Cosine of word vectors [Voskarides ACL15]

Match Aspects

Summary (Part 5)

- Query -> Entities -> Documents
- Knowledge graph expansion
- Un-/structured sources of entities: Entity Links, Attributes, Article, Type classifier
- Machine learning
- Entity Aspects: Infer relevance, match & extract

Retrieving/Matching relevant Entity Aspects?

- Terms and entity links in documents
- Co-occurrence (AND versus OR)
- Proximity
- Frequency
- Probability under a language model
- Classification (e.g., Naive Bayes for types)
- Information Extraction and matching

Outook: Moving Beyond Aggregation of Features

Can we refine the features through a deeper integration of different sources?

Examples:

- Use context of entity links to extract term-models
- Language models from types and link context
- Use terms to find relevantly connected entities
- Factoring in uncertainty from extraction tools