Vježbe 2

- 1. Učitajte podatke iz datoteke *Podaci_AR*. Obratite pažnju na zaglavlje (header) podataka te na izgled decimalne točke/zareza.
 - Koristeći naredbu 1m procijenite parametre linearnih autoregresija $X_t = \alpha + \beta_1 X_{t-1} + \varepsilon_t$ i $X_t = \beta_2 X_{t-1} + \varepsilon_t$. Usporedite parametre β_1 i β_2 . Možete li zaključiti koji od modela je prikladniji?
 - Procijenite parametre modela $X_t = \alpha + \beta X_{t-1}$ koristeći naredbe ar i arima. Obratite pažnju na postavke modela tj. usporedite rezultate s prethodnima. Zbog čega dobivamo različite vrijednosti parametara?
 - Pretpostavimo da podaci dolaze iz AR(p) modela, $X_t = \alpha + \beta_1 X_{t-1} + \dots + \beta_p X_{t-p} + \varepsilon_t$. Akakike informacijski kriterij pomaže odrediti koji p je stvarni tj. najbolji. Kako možemo vidjeti AIC vrijednost koristeći lm naredbu, a kako iz lm naredbe?
- 2. Simulirajte niz duljine 1000 iz ARMA modela, $X_t = c + \alpha X_{t-1} + \beta \varepsilon_{t-1} + \varepsilon_t$. Uzmimo $c = 1, \ \alpha = 0.5, \ \beta = 0.8, \ X_1 = 1$.
 - Koristeći naredbu arima procijenite parametre modela za simulirane podatke.
 - Kako biste procijenili parametre modela $X_t = \alpha X_{t-1} + \beta \varepsilon_{t-1} + \varepsilon_t$ (bez slobodnog člana) koristeći istu naredbu?
 - Što se događa s podacima ako variramo parametre α , β ?
 - Usporedite ARMA i ARIMA model.