

MAHIDOL UNIVERSITY Window of the Land		ructure and pharma	
Anandamide (AEA)	NHV OH	CB, >> CB ₂ agonist TRPV ₁ agonist	Mechoulam et al., 1995 Khanolkar et al., 1996 Schowalter et al., 1996 Felder et al., 1995 Zygmunt et al., 1999
2-Arachidonoyl glycerol (2-AG)	OH OH	CB ₁ ≈ CB ₂ agonist	Mechoulam et al., 1995 Ben-Shabat et al., 1998
2-Arachidonoyl glycerol ether	OH OH	CB ₁ >> CB ₂ agonist	Hanus et al., 2001
O-Arachidonoyl ethanolamine (virodhamine)	NH,	CB ₁ >> CB ₂ agonist	Porter et al., 2002
N-Arachidonoyl dopamine	NHT OH	CB, >> CB, agonist TRPV, agonist	Bisogno et al., 2000 Huang et al., 2002
3	Pharmacol R	ev 2006; 58(3): 389–462	

MAHIDOL UNIVERSITY Window of the Land	Cannabinoids pharmacological actions		
	THC (delta-9- tetrahydro- cannabinol)	CBD (Cannabidiol)	CBN (Cannabinol)
Psychoactive	V		√
Anti-emetic	√		
Appetite stimulant	V		
Analgesic	V	√	
Anti-inflammatory		√	√
Anti-seizure		√√	√
Anti-spasmodic		√	
Neuroprotective		√	

MAHIDOL UNIVERSITY Window of the Land	Molecular mechanisms of phytocannabinoids
Activity	at cannabinoid receptors
• Cannab	ninoid receptor independent activity
14	

Location	Structure	Function
CB ₁ receptors		
CNS	Hippocampus	Memory storage
	Cerebellum	Coordination of motor function, posture, balance
	Basal ganglia	Movement control
	Hypothalamus	Thermal regulation, neuroendocrine release, appetit
	Spinal cord	Pain
	Vomiting center/ N tractus solitarius	Emesis
Periphery	Lymphoid organs	Cell-mediated and innate immunity
	Vascular smooth muscle cells	Control of blood pressure
	Duodenum, ileum, myenteric plexus	Control of emesis
	Lung smooth muscle cells	Bronchodilation
	Eye ciliary body	Intraocular pressure
CB ₂ receptors		
Periphery	Lymphoid tissue	Cell-mediated and innate immunity
	Peripheral nerve terminals	Peripheral nervous system
	Retina	Intraocular pressure
CNS	Cerebellar granule cells mRNA	Coordination of motor function

- Coupled with Gi therefore suppresses adenylyl cyclase and downregulates signaling responses mediated by second messenger c-AMP
- CB1 receptor inhibits N/P/Q-type voltage-gated Ca2+ channels and activates A-type and G-protein-coupled inwardly-rectifying K+ channels (GIRK)
- Both the CB1 and CB2 cannabinoid receptors regulate the phosphorylation and activation of different members of all three families of mitogen-activated protein kinases (MAPKs), including p44/42 MAP kinase, p38 kinase, and JUN-terminal kinase
- 17 http://dx.doi.org/10.1016/B978-0-12-800756-3.00068-5

Chronic Effects

- · CNS
 - Cognitive and executive decline: poor memory, vagueness of thought, decreased verbal fluency, learning deficits
 - daily high doses can cause chronic intoxication syndrome (apathy), confusion, depression, paranoia
 - cannabis dependence (DSM-V criteria)

Chronic cannabis exposure

- Cannabinoid tolerance dvelops in the absence of pharmacokinetic changes
- CB1 receptor downregulation following chronic cannabis exposure (confirmed in human using PET)
- Significant reduction in cortical region but not in noncortical areas

Molecular Psychiatry 2012;17: 642-9

Mesolimbic dopamine pathway
 project from ventral tegmental area (VTA) to the nucleus accumbens (NAcc) shell region

 Mesocortical dopamine pathway project from ventral tegmental area (VTA) to the prefrontal cortex

MAHIDOL and CB2 receptors

• At < 1 uM THC can activate GPR18, GPR55, PPARγ, TRPV2 and TRPA1 receptor

• THC block the activity of 5-HT3 receptors (antiemetic effects) and TRPM8 receptors at concentration < 1 uM

MAHIDOL CBD pharmacology: "Multitarget"

- Cannabidiol has low affinity for both cannabinoid CB1 and CB2 receptors (negative allosteric moderator of CB1)
- CBD has agonist effect at the 5-HT1A receptor, the α3 and α1 glycine receptors and TRPV1
- · Moderately inhibit cellular reuptake of anandamide
- · Moderate inhibitor of anandamide hydrolysis by FAAH
- At low micromolar to sub-micromolar concentrations, CBD is a blocker of the equilibrative nucleoside transporter (ENT), the orphan G-protein-coupled receptor GPR55, and the transient receptor potential of melastatin type 8 (TRPM8) channel
- · Potent antioxidant

Rambam Maimonides Med J 2013;4 (4):e0022. doi:10.5041/RMMJ.10129; Epilepsia, 55(6):791–802, 2014

MAHIDOL

CBD pharmacology: "Multitarget"

- Negative allosteric moderator of CB1: reduce unwanted effect of THC
- 5-HT1A receptor agonist: anxiolytic effect, analgesic effect
- Glycine receptors agonist: anti-seizure, antispasmodic
- · Increase anandamide: anxiolytic effect, analgesic
- seffect, anti-seizure

Anti-Seizure Effects of CBD – Animal Studies

- · Active in the MES, MET and 6Hz ECS models.
- Broad spectrum
- · Promising clinical effects in epilepsy

39

Increase

39

MAHIDOL UNIVERSITY

CBD has anti-inflammatory effects

- Increase adenosine stimulation at A1A and A2A adenosine receptors via the inhibition of adenosine uptake by equilibrative nucleoside transporter (ENT1)
- Activation of strychnine-sensitive α1 and α1β glycine receptors
- CBD dose-dependently suppressed the production and secretion of both IL-17 and of IL-6, a key factor in Th17 induction

Eur J Pain 2018; 22: 471-84 J Basic Clin Physiol Pharmacol 2016; 27(3): 181–7

MAHIDOL

Cannabinoid hyperemesis syndrome (CHS)

- Clinical entity characterized by chronic marijuana use with intractable vomiting
- TRPV1 is expressed in area postrema of the medulla, along gastric enteric and vagal nerves, and on cutaneous receptors in the dermis and epidermis.
- · delta-9-tetrahydrocannabinoil, activate both CB1 and TRPV1
- Prolonged exposure to cannabinoids inactivates TRPV1, potentially resulting in central nausea, altered gastric motility, and abdominal pain.
- Exposure to nociceptive heat, such as with compulsive hot-water bathing, may transiently augment cutaneous TRPV1 firing and restore gastric motility, temporarily mitigating symptoms.
- Use of another TRPV1 agonist, capsaicin, may also provide relief.
- Cessation ofmarijuana use gradually leads to normalization of TRPV1 function and fully ameliorates symptoms

ACG Case Rep J 2018;5:e3

Pharmacokinetic parameters	Clinical Implications	
 Very lipophilic THC: Vd = ~10L/kg 	Distributes into tissues Long duration of effect Safety concerns in pregnancy and lactation	
 Hepatic metabolism (CYP3A4, 2C9, 2C19, 2D6) 	High first pass effect Genetic variability Many drug interactions	
 Long half-life and many active metabolites (THC: ~25-36h; tissue 5-7d) Elimination over days to weeks, hundreds of metabolites, via urine and feces 	Long duration of effect Natural taper when discontinue Prolonged exposure to toxins Affects timing of monitoring	

