5. 凸优化问题的定义

朱天宇

1 凸的定义

1.1 仿射集 Affine set

如果一个集合的任意两个元素的线性组合都在这个集合内,称这个集合为仿射集¹,即对于集合 C,有:

$$\forall x, y \in C, \theta \in \mathbb{R}, \rightarrow \theta x + (1 - \theta)y \in C$$

这个定义很容易推广到多个元素的情况,即

$$\forall x_1, x_2, ..., x_n \in C, \theta_1, \theta_2, ..., \theta_n \in \mathbb{R}, \rightarrow \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n \in C$$

其中 $\theta_1 + \ldots + \theta_n = 1$ 。 $\theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$ 被称为仿射组合

1.2 子空间

对于一个仿射集 C 以及其内部任意一点 x_0 , 定义集合 V

$$V = C - x_0 = \{x - x_0 | x \in C\}$$

这里 V 是一个子空间。(满足性质:零向量属于子空间,子空间任意两个向量的加和,单向量与标量的乘积也在子空间里),仿射空间是子空间的一个平移。

对于矩阵 $\mathbf{A} \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n$,其解集 $C = \{x | \mathbf{A}x = b\}$ 是一个仿射集。令集合 $V = \{v | \mathbf{A}v = 0\}$ 是一个子空间,并且有 $\mathbf{A}x_0 = b$,那么就有 $C = V + x_0$ 。

举例 考虑方程组 $x_1 + 2x_2 = 3$,其含有解 $x_1 = -1$, $x_2 = 2$ 以及 $x_1 = 1$, $x_2 = 1$,那么这两个解的线性组合也是原方程组的解。比如 $x_1 = 0.8*-1+0.2*1 = -0.6$, $x_2 = 0.8*2+0.2*1 = 1.8$ 也是方程的解。其齐次形式 $x_1 + 2x_2 = 0$ 的任意解,比如 $x_1 = -2$, $x_2 = 1$ 加上一个特解 $x_1 = 1$, $x_2 = 1$,也是原方程的解。

1.3 仿射包 affine hull

一个集合 C 内所有点的仿射组合,被称为仿射包

$$\mathsf{aff}C = \{\theta_1 x_1 + ... + \theta_k x_k | x_1, ..., x_k \in C, \theta_1 + ... + \theta_k = 1\}$$

仿射包 affC 是包含集合 C 中所有元素的最小的仿射集。

1.4 凸集 convex set

对于集合 C, 如果有:

$$\forall x, y \in C, \theta \in \mathbb{R}, \theta > 0 \to \theta x + (1 - \theta)y \in C$$

对比仿射集的定义,凸集要求系数 $\theta > 0$ 。同样可以推广到任意个点的情况。同样,仿射组合也对应"凸组合"

1.5 凸包 convex hull

类似的定义,集合 C 的凸包,记为 convC,是包含集合 C 中所有元素的凸组合的集合,是包含集合 C 的所有元素的最小的凸集:

$$convC = \{\theta_1 x_1 + ... + \theta_k x_k | x_i \in C, \theta_i \ge 0, i = 1...k, \theta_1 + ... + \theta_k = 1\}$$

¹https://blog.csdn.net/robert_chen1988/article/details/80048245

1.6 锥 cone

一个集合 C 被称为锥,如果对于 $\forall x \in C, \theta \ge 0 \rightarrow \theta x \in C$

一个集合 C 被称为 凸锥 , 如果对于 $\forall x_1, x_2 \in C, \theta_1, \theta_2 \geq 0, \rightarrow \theta_1 x_1 + \theta_2 x_2 \in C$

维组合: $\theta_1 x_1 + ... + \theta_k x_k, \theta_1, ..., \theta_k \geq 0$ 。

锥包 (conic hull): $\{\theta_1 x_1 + ... + \theta_k x_k | x_i \in C, \theta_i \geq 0\}$

下图分别展示了一组离散点的锥包和一个非凸形状的锥包。

Figure: Left. The shaded set is the conic hull of a set of fifteen points (not including the origin). Right. The shaded set is the conic hull of the non-convex kidney-shaped set that is surrounded by a curve.

值得注意的是两个图中都绘制了一个原点。

1.7 一些例子和应用

超平面 一个超平面是满足 $\{\mathbf{x}|a^{\mathsf{T}}\mathbf{x}=b\}$ 的集合,是一个凸集。

半空间 半空间是满足 $\{\mathbf{x}|a^{\mathsf{T}}\mathbf{x} \leq b\}$ 的集合,也是一个凸集。

多面体 Polyhedra 一个多面体被定义为一组有限的线性等式与不等式的解。当然是凸的。

$$\mathcal{P} = \{\mathbf{X} | a_j^{\intercal} \mathbf{X} \leq b_j, j = 1, ..., m, c_k^{\intercal} \mathbf{X} = d_k, k = 1, ..., p\}$$

球 Ball $B(\mathbf{x}_c, r) = \{\mathbf{x} | ||\mathbf{x} - \mathbf{x}_c||_2 \le r\}$ 这里半径大于 $\mathbf{0}$,范数也可以不是 $\mathbf{2}$ 。但不可以小于 $\mathbf{1}$,小于 $\mathbf{1}$ 无法满足范数的定义所满足的性质 (三角不等式约束)。

范式球与范式锥 2

球心和半径都确定的范式球的定义为 $\{\mathbf{x}||\mathbf{x}-\mathbf{x}_c|| \leq r\}$

同样,定义范式锥: $C = \{(\mathbf{x}, t) | ||\mathbf{x}|| \le t\}$

值得注意的是,范式锥比范式球高一维——范式锥的 r 也是维度之一。

如果在矩阵空间中定义,则有一些其他的凸结构例子:

半正定锥 3 对称矩阵 S^n , 半正定对称矩阵 S^n_+ ,正定对称矩阵 S^n_{++} 都是凸的。(详见参考链接)

1.8 正常锥 proper cone 以及广义不等性

定义 正常锥可以用于对锥中的元素定义一个偏序的关系。一个正常锥 K 是满足如下几个条件的锥:

- 1. 凸的
- 2. 闭的,即包含边界

²https://blog.csdn.net/robert_chen1988/article/details/80479813

³https://www.bilibili.com/read/cv4665074

- 3. 非空的 (solid), 即具有非空内部。
- **4**. 定向的 (pointed),含义是,锥的内部不能含有直线,例如: $x \in K$ and $-x \in K \Rightarrow x = 0$ 也就是说除非 x 就是原点,否则 x = -x 不能同时在集合内部。

根据这个定义,就可以定义一个集合内部的偏序关系。在 \mathbb{R}^n 中的偏序拥有在 \mathbb{R} 中的有序的许多性质。

$$x \preceq_K y \Leftrightarrow y - x \in K$$
$$x \prec_K y \Leftrightarrow y - x \in \mathsf{int}K$$

在 $K = \mathbb{R}_+$ 的时候 (也就是正的数轴), \preceq_K 和 \leq 是相同含义;

举例

- 1. n 维的非负象限 (orthant) $K=\mathbb{R}^n_+$ 是一个正常锥。此时 $\mathbf{x} \preceq_K \mathbf{y}$ 的含义就是 \mathbf{x} 的每一个分量都小于 \mathbf{y} ,即 $x_i < y_i, i=1...n$ 。
- 2. 在由所有的 n 维对称矩阵构成的空间 S^n 中,半正定锥 S^n_+ 是一个正常锥。此时 $X \preceq_K Y$ 的含义是 X Y 是半正定的。由于经常使用,对于半正定矩阵,可以忽略广义不等 \preceq_K 的下标。 $X \preceq Y$ 就可以直接表示一种偏序关系。
- 3. 在[0,1]区间上的非负多项式,也就是

$$K = \{ \mathbf{c} \in \mathbb{R}^n | c_1 + c_2 t + c_3 t^2 + \dots + c_n t^{n-1}, t \in [0, 1] \}$$

此时对于两个向量 $\mathbf{c}, \mathbf{d}, \mathbf{c} \leq \mathbf{d}$ 当且仅当 $c_1 + c_2 t + ... + c_n t^{n-1} \leq d_1 + d_2 t + ... + d_n t^{n-1}$

1.9 极小元和最小元

广义不等 \leq 的类比。有些属性是可以类比的,但有些属性不能类比。最常见的就是,在 \mathbb{R} 中,任意两个元素都是 可比 的。因此,在广义不等中,极小和最小的定义就变得复杂。

最小元 minimum 称 x 是 S 中的最小元,如果 $\forall y \in S \Rightarrow x \preceq_K y$,显然,最小元是唯一的。使用**集合符号**来描述的话,就是: $x \in S$ 是最小元当且仅当 $S \subseteq x + K$ 。

极小元 minimal 称 $\mathbf{x} \in S$ 中的极小元,如果 $\mathbf{y} \preceq \mathbf{y} \Rightarrow \mathbf{y} = \mathbf{x}$ 。也就是说,如果 \mathbf{x}, \mathbf{y} 可比,那么一定有 $\mathbf{x} \preceq \mathbf{y}$ 。用集合符号描述就是: $\mathbf{x} \in S$ 是极小元当且仅当 $(\mathbf{x} - K) \cap S = \{\mathbf{x}\}$ 。

Figure 2.17 Left. The set S_1 has a minimum element x_1 with respect to componentwise inequality in \mathbf{R}^2 . The set x_1+K is shaded lightly; x_1 is the minimum element of S_1 since $S_1\subseteq x_1+K$. Right. The point x_2 is a minimal point of S_2 . The set x_2-K is shown lightly shaded. The point x_2 is minimal because x_2-K and S_2 intersect only at x_2 .

2 凸函数 convex funtion

2.1 定义

函数是一个 $\mathbb{R}^n \to \mathbb{R}$ 的一个映射。如果这个映射是凸的,当且仅当

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

也就是凸组合的函数值小于等于函数值的凸组合。严格凸就是当 $x \neq y$ 的时候, $\leq \Rightarrow <$

二阶导定义 充要条件: $\nabla^2 f(x) \succeq 0$,也就是 Hessian 矩阵是半正定的。但值得注意的是,Hessian 正定可以推出 严格凸,但反之,严格凸无法推导出 Hessian 正定。比如 $f(x) = x^4$,其 Hessian 在 x = 0 处等于 $\mathbf{0}$ 。(但也满足半 正定的要求)。

和前述最优性条件的区分:最优性条件是在特定的点处的性质,且满足二阶最优性条件的前提是满足一阶最优性条件;而凸性的一阶二阶条件是在整个函数上的性质。

2.2 常见的凸函数

- 1. 指数函数 e^{ax} , 在 \mathbb{R} 上。
- **2**. 幂函数 x^a ,在 \mathbb{R}_{++} 上,也就是要求 x 是正数;当 $a \ge 1$ or $a \le 0$ 的时候是凸的,在 [0,1] 上是凹的。
- 3. 绝对值的幂函数 $|x|^p, p \ge 1$ 在 ℝ 上是凸的
- 4. 对数函数在 ℝ++ 上是凸的
- 5. 熵函数也是凸的 $x \log(x)$,但要注意定义域。(约定 $0 \log(0) = 0$)
- 6. 范数是凸的。
- 7. 最大值函数 $f(\mathbf{x}) = \max(x_1, x_2, ..., x_n)$ 是凸函数。这个函数无法求导,但是可以从定义角度来证明。
- 8. 指数求和函数 $f(\mathbf{x}) = \log(e^{x_1} + e^{x_2} + ... + e^{x_n})$ 是凸的。这个函数满足

$$\max\{x_1, ..., x_n\} \le f(\mathbf{x}) \le \max\{x_1, ..., x_n\} + \log(n)$$

- 9. 几何平均 $f(\mathbf{x}) = (\prod_{i=1}^n)^{1/n}$ 是 凹 的。
- 10. 行列式的对数函数 $f(X) = \log \det(x)$ 是凸的。

2.3 常见的凸函数算子

以下介绍一些常见的可以使得函数保持凸性的函数算子。

1. 非负的加权和 $f = w_1 f_1 + ... + w_m f_m, w_1, ..., w_m \ge 0$

2. 推广到无限项相加的情况,即为积分: 如果对于 $\forall y \in A$, 都有 f(x,y) 是凸的,且 $w(y) \geq 0$, 那么函数

$$g(x) = \int_{\mathcal{A}} w(y) f(x, y) dy$$

关于x也是凸的。

3. 和仿射变换组合: $f: \mathbb{R}^n \mapsto \mathbb{R}, A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n, g: \mathbb{R}^m \mapsto \mathbb{R}$, 那么有

$$g(x) = f(\mathsf{A}x + b)$$

如果 f 是凸的,那么 g 也是凸的。

- **4**. 分片最大值: $f(x) = \max\{f_1(x), f_2(x)\}$, 如果 f_1, f_2 都是凸的, 那么 f 也是凸的。
- 5. 分片上确界: 如果对于 $\forall y \in \mathcal{A}$, 都有 f(x,y) 是凸的, 那么有

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

也是凸的。(当然要满足定义域存在、上确界存在等等条件。)

- 6. Quasi-convex 拟凸函数 $S_{\alpha} = \{x \in \text{dom} f | f(x) \leq \alpha \}$ 也是凸的 (水平集)。拟凸函数:如果一个函数本身不是凸的,但是其水平集都是凸的,则称其为拟凸函数。⁴
- 7. 对数凹函数: 如果函数 f 满足 $f(x) > 0, \forall x \in \mathsf{dom} f$,且 $\mathsf{log} f$ 是凹的,那么这就是一个对数凹函数。也就是说对于函数本身不要求是凹的,但是其对数是凹的,那么这种类型就是对数凹函数。

⁴https://zhuanlan.zhihu.com/p/131604034