Examen du module Analyse Numérique

Exercice 1 (6pt).

- 1. Donner le théorème de Gershgorin appliqué à une matrice A de taille $n \times n$ quelconque.
- 2. Expliquer la méthode de la puissance appliqée à une matrice A en donnant l'algorithme.
- 3. Calculer les deux premières itérations de la méthode de la puissance apliquée à :

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 avec $y_0 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$.

Exercice 2 (4pt). Exercice: Soient (x_i, f_i) pour i = 0..n des points réels ou complexes. Ecrire un algorithme permettant de calculer le polynôme de Lagrange se basant sur les polynômes d'interpolation $L_i(x)$ pour i = 0..n.

Déterminer la complexité de cet algorithme en fonction de n.

Problème (10pt). Soit n = 3. Nous considérons l'ensemble de points

$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$,
 $f_0 = 1$, $f_1 = 0$, $f_2 = 1$, $f_3 = 4$.

- 1. Donner le théorème de convergence globale de la méthode de Newton pour une fonction de classe C^2 . Peut-on appliquer ce théorème au calcul de la racine de P(x) = 0 sur l'intervalle [0,3] avec $x_0 = 1$?
- 2. Soit $A = \begin{pmatrix} \sum_{i=0}^{i=n} x_i^2 & \sum_{i=0}^{i=n} x_i \\ \sum_{i=0}^{i=n} x_i & n+1 \end{pmatrix}$. Donner la décomposition LU de A.
- 3. Résoudre le système $A \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{i=n} x_i f_i \\ \sum_{i=0}^{i=n} f_i \end{pmatrix}$ par une descente puis une remontée.
- 4. En déduire une approximation du nuage de points (x_i, f_i) par la droite de régression linéaire.
- 5. Quelle est la différence entre le polynôme de Lagrange et la droite de régression linéaire?

Examen de contrôle du module Analyse Numérique

Problème 1 (10pt). Notons A une matrice symétique définie positive d'ordre n.

$$r_{1,1} = \sqrt{a_{1,1}}$$

pour i de 2 à n faire :

$$\begin{array}{lll} r_{i,j} & = & \frac{a_{i,j} - \sum_{k=1}^{k=j-1} r_{ik} r_{jk}}{r_{j,j}} & \text{pour} & j = 1..i-1 \\ \text{et} & & \\ r_{i,i} & = & \sqrt{a_{i,i} - \sum_{k=1}^{k=i-1} r_{i,k}^2}. \end{array}$$

- 1. Ecrire l'algorithme de la méthode de Cholesky
- 2. Supposons que la fonction racine suppose au plus 9 opérations élémentaires. Déterminer la complexité de la méthode de factorisation de Cholesky de A en fonction de n.
- 3. Donner les 2 premières itérations de cette méthode appliquée à la matrice

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right)$$

Problème 2 (10pt). Soit n = 3. Nous considérons l'ensemble de points

$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$,
 $f_0 = 1$, $f_1 = 0$, $f_2 = 1$, $f_3 = 4$.

- 1. Donner le théorème de convergence globale de la méthode de Newton pour une fonction de classe C^2 . Peut-on appliquer ce théorème au calcul de la racine de P(x) = 0 sur l'intervalle [0,3] avec $x_0 = 1$?
- 2. Soit $A = \begin{pmatrix} \sum_{i=0}^{i=n} x_i^2 & \sum_{i=0}^{i=n} x_i \\ \sum_{i=0}^{i=n} x_i & n+1 \end{pmatrix}$. Donner la décomposition LU de A.
- 3. Résoudre le système $A \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{i=n} x_i f_i \\ \sum_{i=0}^{i=n} f_i \end{pmatrix}$ par une descente puis une remontée.
- 4. En déduire une approximation du nuage de points (x_i, f_i) par la droite de régression linéaire.
- 5. Quelle est la différence entre le polynôme de Lagrange et la droite de régression linéaire?