

Fondamenti di Internet e Reti

Antonio Capone, Matteo Cesana, Ilario Filippini, Guido Maier

Fondamenti di Internet e Reti

5 appendice – Esempi di protocolli di linea HDLC, PPP

HDLC High-level Data Link Control

- Vediamo un esempio di protocollo di linea (il più diffuso)
- E' istruttivo vedere come anche in un caso semplice come il protocollo di linea punto-punto ci siano molte opzioni e parametri nel protocollo
- standard ISO degli anni 60
- Caratteristiche:
 - orientato al bit
 - può operare in molti modi differenti e con diversi meccanismi di controllo d'errore e di flusso
 - half-duplex o full-duplex
 - master-slave o peer-to-peer

HDLC: configurazioni

Tipo di stazione

- Primaria: responsabile del collegamento, emette comandi
- Secondaria: asservita alla primaria, emette risposte
- Combinata: emette sia comandi, sia risposte

Configurazione del collegamento

- Sbilanciata: 1 primaria, ≥1 secondarie
- Bilanciata: 2 stazioni combinate

Modi di trasferimento

- Asynchronous Balanced Mode (ABM): configurazione bilanciata
 - o 2 stazioni combinate
 - Trasmissione di tipo full-duplex
- Normal Response Mode (NRM): configurazione sbilanciata
 - o 1 stazione primaria e almeno 1 stazione secondaria
 - Trasmissione di tipo half-duplex
- Asynchronous Response Mode (ARM): configurazione sbilanciata
 - o Come NRM ma il secondario può iniziare la trasmissione senza permesso

HDLC: Modalità di funzionamento

Normal Response Mode (NRM)

- Una stazione primaria è collegata a una o più stazioni secondarie in modalità half-duplex.
- Solo la stazione primaria può inviare i comandi e le stazioni secondarie trasmettono solo a seguito di un permesso (polling) esplicito inviato dalla stazione primaria: half-duplex

HDLC: Modalità di funzionamento

- Asynchronous Response Mode (ARM)
 - Anche in questo caso come nel NRM il colloquio è di tipo sbilanciato, ma la stazione secondaria ha la possibilità di iniziare una trasmissione senza il permesso esplicito della stazione primaria iniziando così un colloquio full-duplex. (poco usata)

HDLC: Modalità di funzionamento

- Asynchronous Balanced Mode (ABM)
 - Fornisce una modalità di funzionamento bilanciato su configurazioni punto-punto tra stazioni combinate che possono, in modalità full-duplex, inviare informazioni in modo indipendente ed asincrono.

Trama HDLC: Flag

1 byte

Flag	Address	Control	Information	Frame Check Sequence	Flag	
F	A	C	Info	FCS	F	

- uso del bit stuffing
- di solito in caso di mancanza di informazione si esegue l'invio continuo dei flag

Trama HDLC: Indirizzo

- normalmente di 8 bit, ma può essere esteso a n byte (modalità EXTENDED)
- l'ultimo bit di ogni byte è usato per indicare se segue un ulteriore byte del campo A

Trama HDLC: indirizzo

- L'indirizzo contenuto può essere quello della stazione destinataria o quello della stazione sorgente
 - nelle modalità sbilanciate (NRM, ARM) è sempre quello della stazione secondaria
 - nella modalità ABM è quello della stazione destinataria

Trama HDLC: Campo di controllo

SN - Send Number

RN - Request Number

P/F - Polling bit

SS - indicatore trame di supervisione

M - Modificatore di funzione

Trama HDLC: Trame di informazione (I)

- Sono trame numerate per la trasmissione di informazione d'utente contenuta nel campo I
- Consentono il riscontro delle trame ricevute in modalità piggybacking
- Consentono il polling (bit P alzato)
- e la chiusura (bit F (Final) alzato) della controparte

Trama HDLC: Trame di supervisione (S)

Sono trame numerate per il controllo dell'invio del flusso di informazione

ACK, NAK e controllo di flusso.

Comandi	SS	Risposte
RR Receiver Ready RNR Receiver Not Ready REJ Reject SRJ Selective Reject	00 10 01 11	RR Receiver Ready RNR Receiver Not Ready REJ Reject SRJ Selective Reject

Trama HDLC: Trame di supervisione (S)

- RR (Receiver Ready), è normalmente usato come ACK e il campo RN contiene la prossima trama attesa (riscontro delle trame fino a RN-1)
- RNR (Receiver Not Ready), serve a bloccare l'invio di trame da parte dell'altra stazione (controllo di flusso) e, contemporaneamente a riscontare le trame fino a RN-1
- REJ (Reject), serve a richiedere la ritrasmissione delle trame da RN in avanti e, contemporaneamente, a riscontrare le trame fino a RN-1 (NAK)
- SREJ (Selective Reject), è usato per richiedere la ritrasmissione della sola trama con numero RN (NAK)

Trama HDLC: Trame non numerate (U)

 Sono usate per l'invio di informazione di controllo (ad esempio per l'instaurazione delle connessioni) o per l'invio di informazione in modalità senza connessione.

MM (modifier) indica il tipo di trama

Trama HDLC: Trame non numerate (U)

Utilizzate per l'instaurazione e il controllo della connessione

Comandi	Risposte	
SNRM Set Normal Response Mode SARM Set Asynchronous Response Mode SABM Set Asynchronous balanced Mode SNRME SNRM estesa SARME SARM estesa SABME SABM estesa SIM Set Initialization Mode DISC Disconnect	UA Unnumbered Ack DM Disconnect RIM Request Inizialization Mode	
RSET Reset	FRMR Frame	
XID Exchange Identification	XID Exchange Identification RD RejectRequest Disconnect	

Utilizzate per scambio di informazione

UI	Unnumbered Information	UI Unnumbered Information
UP	Unnumbered Poll	of officered information

Trama HDLC: Campo informazione

1	1 ÷ n	1 ÷ 2	≥ 0		1
Flag F	Address A	Control C	Information Info	Frame Check Sequence FCS	Flag F

Contiene l'informazione d'utente (dei livelli superiori) può non essere presente

è presente solo nella trame I e nella trame UI usate per trasferimento di informazione in modalità connectionless lunghezza variabile

Trama HDLC: Campo di parità

Contiene il codice rivelatore d'errore usato per riconoscere le trame errate

HDLC Instaurazione della connessione - modalità NRM

 il bit P/F serve per passare il controllo dalla stazione primaria a quella secondaria e viceversa
 (Polling/Final)

HDLC: Esempi di trasferimento dell'informazione - modalità NRM

HDLC: Esempi di trasferimento dell'informazione - modalità NRM

HDLC: Instaurazione della connessione - modalità ABM

HDLC: Esempi di trasferimento dell'informazione

- modalità ABM

 modalità full-duplex

HDLC: Esempi di trasferimento dell'informazione - modalità ABM

Il protocollo PPP (Point to Point Protocol)

 E' nato in ambito IETF per connessioni punto-punto su collegamenti senza errori e per consentire procedure di accesso a Internet

II PPP su modem

 Viene anche usato con connessioni fisiche ottenute attraverso i modem e la rete telefonica (vecchio accesso a Internet dial-up)

II PPP su ADSL

Viene anche usato per accesso ADSL con router in modalità MPOA

II protocollo PPP

- E' in realtà un insieme di protocolli diversi che offrono supporto ai protocolli di livello 3 per effettuare la negoziazione degli indirizzi IP e l'autenticazione
- La trama e i meccanismi base sono basati direttamente su HDLC, con aggiunta di un livello (header) per multiplare vari flussi di livello superiore

PPP: architettura protocollare

PPP-Trama e Incapsulamento

- Il campo address contiene sempre 11111111
- Il campo Control contiene sempre 11000000 ovvero l'indicazione di trama UI (datagram e niente recupero d'errore)
- Information: campo protocol + PDU degli altri protocolli

PPP - Link Control Protocol (LPC)

Usa i seguenti messaggi di controllo

- 1. Configure-Request
- 2. Configure-ACK
- 3. Configure-NAK
- 4. Configure-Reject
- 5. Terminate-Request
- 6. Terminate-ACK

- 7. Code-Reject
- 8. Protocol-Reject
- 9. Echo-Request
- 10. Echo-Replay
- 11. Discard-Request

PPP: uso dei diversi protocolli

PPP: protocolli ausiliari

 Dopo la connessione si hanno le seguenti possibilità

c023	Password Authentication Protocol
c025	Link Quality Report
c223	Challenge Handshake Authentication Protocol

poi si passa ai NCP per i protocolli di livello 3

NCP: IP Control Protocol (IPCP)

- E' il protocollo NCP che gestisce il trasporto e il controllo di IP
- Il protocollo di controllo (protocol 8021) stabilisce una connessione in cui si decide
 - l'assegnazione dinamica dell'indirizzo IP
 - Il tipo di compressione
- Il protocollo di trasporto incapsulato:
 - 0021 IP non compresso
 - 002d TCP/IP compresso
 - 002f TCP non compresso