Contents

1	Intr	oduction and Motivation	3
2	Rela	ated Literature	4
3	Fact	tor Strength	5
	3.1	Definition	5
	3.2	Estimation	6
	3.3	Estimation Under Multi-Factor Setting	8
4	Mor	nte Carlo Design	9
	4.1	Design	9
	4.2	Experiment Setting	10
	4.3	Monte Carlo Discoveries	12
	4.4	Elastic Net	13
5	Emp	pirical Application	13
	5.1	Data	13
Re	eferen	ces	15
A	Sim	ulation Result Table	16

List of Figures

1	Strength Comparison	44
2	The scatter Plot for three period	50
List	of Tables	
1	Data Set Dimensions	1.4
1		
2	Simulation result for experiment 1	16
3	Simulation result for experiment 2	17
4	Simulation result for experiment 3	18
5	Ranked Three Data Set Comparison	19
6	Three Data Set Comparison	24
7	Ten and Twenty Comparison	27
8	Ten and Thirty Comparison	30
9	Twenty and Thirty Comparison	33
10	Twenty Year Decompose	36
11	Thirty Year Decompose	40

1 Introduction and Motivation

Capital Asset Pricing Model (CAPM) (Sharpe (1964), Lintner (1965), and ? (?)) introduces a risk pricing paradigm. The model divided asset's risk into two parts: systematic risk and asset specified idiosyncratic risk. Researches (see Fama and French (1992), ? (?), ? (?)) has shown that, by adding new factors into the CAPM model, the multi-factor CAPM outperform the initial model in risk pricing. Because of this, factor identification becomes an important topic in financial. Harvey and Liu (2019) had collected over 500 factors from papers published in the top financial and economic journals, and they found the growth of new factors speed up since 2008.

But we should notice that not all factors can pass the significant test comfortably almost every time like factors in three-factor model (Fama & French, 1992). ? (?) provide a criteria called factor strength to measure such discrepancy. In general, if a factor can generate loading significantly different from zero for all assets, then we call such a factor a strong factor. And the less significant loading a factor can generate, the weaker the strength it has.

In his 2011 president address? emphasis the importance of finding factor which can provides independent information about average return and risk. With regard of this, a number of scholars had applied various methods to find such factor. ? (?) provided a bootstrap methods to adjust the threshold of factor loading's significant test, trying to exclude some falsely significant factor caused by multiple-test problem. Some other scholars use machine learning methods to reduce the potential candidates, more precisely, a stream of them have used a shrinkage and subset selection method called Lasso (?, ?) and it's variations to find suitable factors. One example is ? (?). They applied the Lasso regression, trying to find some characteristics from a large group to predict the global stock market's return.

But an additional challenge is that factors, especially in the high-dimension, are commonly correlated. ? (?) point out that when facing a group of correlated factors, Lasso will only pick several highly correlated factors seemly randomly, and then ignore the other and shrink them to zero. In other word, Lasso fails to handle the correlated factor appropriately.

Therefore, the main empirical problem in this project is: how to select useful factors from a large group of highly correlated candidates. To answer this problem, we employed a two-step method. First, we consider the selection of factor base on their strength. And then we will use

another variable selection method called Elastic Net (?, ?) to select factors. With regard of the first stage, Bailey, Kapetanios, and Pesaran (2020) provides a consistent estimates method for the factor strength, and we will use such method to exam the strength of each candidate factors, and filter out those spurious factors, therefore, reduce the dimension of the number of potential factors. For the second part, elastic net fixes the problem of Lasso can not handle correlated variables by adding extra penalty term, which makes it suitable for our purpose.

For the rest of this plan, we will first go through some literatures relates with CAPM model and methods about selecting factors. Then we will give detailed description of factor strength and elastic net, as well as some preliminary discoveries about factor strength. Finally, we will talks about the further plan for this project.

2 Related Literature

This project is builds on papers devoted on risk pricing. Formularised d by Sharpe (1964), Lintner (1965), and ? (?), the CAPM model only contains the market factor, which is denotes by the difference between market return and risk free return. Fama and French (1992) develop the model into three-factors, and then it been extend it into four (?, ?), and five (?, ?). Recent research created a six-factors model and claim it outperform all other sparse factor model. (?, ?).

This project also connect with papers about involving factors has no or weak correlation with assets' return into CAPM model. Kan and Zhang (1999) found that the test-statistic of FM two-stage regression (?, ?) will inflate when incorporating factors which are independent with the cross-section return. Kleibergen (2009) pointed out how a factor with small loading would deliver a spurious FM two-pass risk premia estimation. Gospodinov, Kan, and Robotti (2017) show how the involving of a spurious factor will distort the statistical inference of parameters. And, ? (?) studied the behaviours of the model with the presence of weak factors under asymptotic settings, find the regression will lead to an inconsistent risk premia result.

This project also relates to some researches effort to identify useful factors from a group of potential factors. Harvey, Liu, and Zhu (2015) exam over 300 factors published on journals, presents that the traditional threshold for a significant test is too low for newly proposed factor, and they suggest to adjust the p-value threshold to around 3. Methods like a Bayesian procedure introduced

by ? (?) were used to compare different factor models. ? (?) defined several criteria for "genuine risk factor", and base on those criteria introduced a protocol to exam does a factor associated with the risk premium.

This project will attempt to address the factor selection problem by using machine learning techniques. ? (?) elaborate the advantages of using emerging machine learning algorithms in asset pricing such as more accurate predict result, and superior efficiency. Various machine learning algorithms have been adopted on selecting factors for the factor model, especially in recent years. ? (?) applying Principle Components Analysis on investigating the latent factor of model. Lasso method, since it's ability to select features, is popular in the field of the factor selection. ? (?) used the double-selected Lasso method (?, ?), and a grouped lasso method (?, ?) is used by ? (?) on picking factors from a group of candidates. ? (?) used a Bayesian-based method, combing with both Ridge and Lasso regression, argues that the sparse factor model is ultimately futile.

3 Factor Strength

The concept of factor strength employed by this project comes from Bailey et al. (2020), and it was first introduced by Bailey, Kapetanios, and Pesaran (2016). They defined the strength of factor from prospect of the cross-section dependences of large panel and connect it to the pervasiveness of the factor, which is captured by the factor loadings. In a latter paper, ? (?) extended the method by loosen some restrictions, and proved that their estimation can also be applied on the residuals or regression result. Thereafter, they focusing on the case of observed factors, and proposed the method we employed in this project (Bailey et al., 2020).

3.1 Definition

Consider the following multi-factor model for n different cross-section units and T observations with k factors.

$$x_{it} = a_t + \sum_{j=1}^k \beta_{ij} f_{jt} + \varepsilon_{it}$$
 (1)

In the left-hand side, we have x_{it} denotes the cross-section unit i at time t, where $i = 1, 2, 3, \dots, n$ and $t = 1, 2, 3, \dots T$. In the other hand, a_i is the constant term. f_{jt} of $j = 1, 2, 3 \dots k$ is factors included in the model, and β_{ij} is the corresponding factor loading. ε_{it} is the stochastic error term.

The factor strength is relates to how many non-zero loadings correspond to a factor. More precisely, for a factor f_{jt} with n different factor loading β_j , we assume that:

$$|\beta_i| > 0$$
 $i = 1, 2, \dots, [n^{\alpha_j}]$

$$|\beta_i| = 0$$
 $i = [n^{\alpha_j}] + 1, [n^{\alpha_j}] + 2, \dots, n$

The α_j represents strength of factor f_{jt} and $\alpha_j \in [0,1]$. If factor has strength α_j , we will assume that the first $[n^{\alpha_j}]$ loadings are all different from zero, and here $[\cdot]$ is defined as integral operator, which will only take the integral part of inside value. The rest $n - [n^{\alpha_j}]$ terms are all equal to zero. Assume for a factor which has strength $\alpha = 1$, the factor's loadings will be non-zero for all cross-section units. We will refer such factor as strong factor. And if we have factor strength $\alpha = 0$, it means that the factor has all factor loadings equal to zero, and we will describe such factor as weak factor (Bailey et al., 2016). For any factor with strength in [0.5, 1], we will refer such factor as semi-strong factor. In general term, the more non-zero loading a factor has, the stronger the factor's strength is.

3.2 Estimation

To estimate the strength α_i , Bailey et al. (2020) provides following estimation.

To begin with, we consider a single-factor model with only factor named f_t . β_i is the factor loading of unit i. v_{it} is the stochastic error term.

$$x_{it} = a_i + \beta_i f_t + v_{it} \tag{2}$$

Assume we have n different units and T observations for each unit: $i = 1, 2, 3, \dots, n$ and $t = 1, 2, 3, \dots, T$. Running the OLS regression for each $i = 1, 2, 3, \dots, n$, we obtain:

$$x_{it} = \hat{a}_{iT} + \hat{\beta}_{iT} f_t + \hat{v}_{it}$$

For every factor loading $\hat{\beta}_{iT}$, we can examining their significance by constructing a t-test. The t-test statistic will be $t_{iT} = \frac{\hat{\beta}_{iT} - 0}{\hat{\sigma}_{iT}}$. Then the test statistic for the corresponding $\hat{\beta}_i$ will be:

$$t_{iT} = \frac{(\mathbf{f}'\mathbf{M}_{\tau}\mathbf{f})^{1/2}\,\hat{\beta}_{iT}}{\hat{\sigma}_{iT}} = \frac{(\mathbf{f}'\mathbf{M}_{\tau}\mathbf{f})^{-1/2}\,(\mathbf{f}'\mathbf{M}_{\tau}\mathbf{x}_{i})}{\hat{\sigma}_{iT}}$$
(3)

Here, the $\mathbf{M}_{\tau} = \mathbf{I}_{T} - T^{-1}\tau\tau'$, and the τ is a $T \times 1$ vector with every elements equals to 1. \mathbf{f} and \mathbf{x}_{i} are two vectors with: $\mathbf{f} = (f_{1}, f_{2} \cdots, f_{T})' \mathbf{x}_{i} = (x_{i1}, x_{i2}, \cdots, x_{iT})$. The denominator $\hat{\sigma}_{iT} = \frac{\sum_{i=1}^{T} \hat{v}_{it}^{2}}{T}$.

Using this test statistic, we can then define an indicator function as: $\ell_{i,n} := \mathbf{1}[|\beta_i| > 0]$. If the factor loading is none-zero, $\ell_{i,n} = 1$. In practice, we use the $\hat{\ell}_{i,nT} = := \mathbf{1}[|t_{it}| > c_p(n)]$ Here, if the t-statistic t_{iT} is greater than critical value $c_p(n)$, $\hat{\ell}_{i,n} = 1$, otherwise $\hat{\ell}_{i,n} = 0$ In other word, we are counting how many $\hat{\beta}_{iT}$ are significant. With the indicator function, we then defined $\hat{\pi}_{nT}$ as the fraction of significant factor loading amount to the total factor loadings:

$$\hat{\pi}_{nT} = \frac{\sum_{i=1}^{n} \hat{\ell}_{i,nT}}{n} \tag{4}$$

In term of the critical value $c_p(n)$, rather than use the traditional critical value from student-t distribution $\Phi^{-1}(1-\frac{P}{2})$, we use:

$$c_p(n) = \Phi^{-1}(1 - \frac{p}{2n^{\delta}})$$
 (5)

Suggested by ? (?), here, $\Phi^{-1}(\cdot)$ is the inverse cumulative distribution function of a standard normal distribution, P is the size of the test, and δ is a non-negative value represent the critical value exponent. This adjusted critical value, adopt helps to tackle the problem of multiple-test.

After obtain the $\hat{\pi}_{nT}$, we can use the following formula provided by Bailey et al. (2020) to estimate our strength indicator α_j :

$$\hat{\alpha} = \begin{cases} 1 + \frac{\ln(\hat{\pi}_{nT})}{\ln n} & \text{if } \hat{\pi}_{nT} > 0, \\ 0, & \text{if } \hat{\pi}_{nT} = 0. \end{cases}$$
(6)

Whenever we have $\hat{\pi}_{nT}$, the estimated $\hat{\alpha}$ will be equal to zero. From the estimation, we can find out that $\hat{\alpha} \in [0,1]$

3.3 Estimation Under Multi-Factor Setting

This estimation can also be extended into a multi-factor set up. Consider the following multi-factor model:

$$x_{it} = a_i + \sum_{i=1}^k \beta_{ij} f_{jt} + v_{it} = a_i + \beta_i' \mathbf{f_t} + v_{it}$$

In this set up, we have $i=1,2,\cdots,n$ units, $t=1,2,\cdots,T$ time observations, and specially, $j=1,2,\cdots,k$ different factors. Here $\beta_i=(\beta_{i1},\beta_{i2},\cdots,\beta_{ij})'$ and $\mathbf{f}_t=(f_{1t},f_{2t},\cdots,f_{jt})$. We employed the same strategy as above, after running OLS and obtain the:

$$x_{it} = \hat{a}_{iT} + \hat{\beta}_{ij} \mathbf{f}_{jt} + \hat{v}_{it}$$

To conduct the significant test, we calculates the t-statistic: $t_{ijT} = \frac{\hat{\beta}_{ijT} - 0}{\hat{\sigma}_{ijT}}$. Empirically, the test statistic can be calculated using:

$$t_{ijT} = \frac{\left(\mathbf{f}'_{j\circ}\mathbf{M}_{F_{-j}}\mathbf{f}_{j\circ}\right)^{-1/2}\left(\mathbf{f}'_{j\circ}\mathbf{M}_{F_{-j}}\mathbf{x}_{i}\right)}{\hat{\sigma}_{iT}}$$

Here, $\mathbf{f}_{j\circ} = (f_{j1}, f_{j2}, \dots, f_{jT})'$, $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iT})'$, $\mathbf{M}_{F_{-j}} = \mathbf{I} - \mathbf{F}_{-j} (\mathbf{F}'_{-j} \mathbf{F}_{-j})^{-1} \mathbf{F}'_{-j}$, and $\mathbf{F}_{-j} = (\mathbf{f}_{1\circ}, \dots, \mathbf{f}_{j-1\circ}, \mathbf{f}_{j+1\circ}, \dots, \mathbf{f}_{m\circ})'$ For the denominator's $\hat{\sigma}_{iT}$, it was from $\hat{\sigma}_{iT}^2 = T^{-1} \sum_{t=1}^T \hat{u}_{it}^2$, the \hat{u}_{it} is the residuals of the model. Then, we can use the same critical value from (5). Obtaining the correspond ratio $\hat{\pi}_{nTj}$ from (4), and after that use the function:

$$\hat{\alpha}_j = \begin{cases} 1 + \frac{\ln \hat{\pi}_{nT,j}}{\ln n}, & \text{if } \hat{\pi}_{nT,j} > 0 \\ 0, & \text{if } \hat{\pi}_{nT,j} = 0 \end{cases}$$

to estimates the factor loading.

4 Monte Carlo Design

4.1 Design

In order to study the finite sample property of factor strength $\hat{\alpha}_j$, we designed a Monte Carlo simulation. Through the simulation, we compare the property of the factor strength in different settings. We set up the experiments to reflect the CAPM model and it's extension. Consider the following data generating process (DGP):

$$r_{it} - r_{ft} = q_1(r_{mt} - r_f) + q_2(\sum_{i=1}^k \beta_{ij} f_{jt}) + \varepsilon_{it}$$

In the simulation, we consider a dataset has $i=1,2,\ldots,n$ different cross-section units, with $t=1,2,\ldots,T$ different observations. r_{it} is the unit's return, and r_{ft} represent the risk free rate at time t, therefore, the left hand side term $r_{it}-r_{ft}$ is the excess return of the unit i. For simplicity, we define $x_{it}:=r_{it}-r_{ft}$. f_{jt} represents different risk factors, and the corresponding β_{ij} are the factor loadings. We use $r_{mt}-r_{ft}$ to denotes the market factor, and here r_{mt} is the average market return. Also, we use the term $f_{mt}:=r_{mt}-r_{ft}$ to denotes the market factor. We expect the market factor will has strength equals to one all the time, so we consider the market factor has strength $\alpha_m=1$. ε_{it} is the stochastic error term. Therefore, the simulation model can be simplified as:

$$x_{it} = q_1(f_{mt}) + q_2(\sum_{i=1}^k \beta_{ij} f_{jt}) + \varepsilon_{it}$$

 $q_1(\cdot)$ and $q_2(\cdot)$ are two different functions represent the unknown mechanism of market factor and other risk factors in pricing asset risk. In the classical CAPM model and it's multi-factor extensions, for example the three factor model introduced by Fama and French (1992), both q_1 and q_2 are linear.

For each factor, we assume they follow a multinomial distribution with mean zero and a $k \times k$

variance-covariance matrix Σ .

$$\mathbf{f_t} = \begin{pmatrix} f_{i,t} \\ f_{2,t} \\ \vdots \\ f_{k,t} \end{pmatrix} \sim MVN(\mathbf{0}, \Sigma) \quad \Sigma := \begin{pmatrix} \sigma_{f_1}^2, & \rho_{12}\sigma_{f_1}\sigma_{f_2} & \cdots & \rho_{1k}\sigma_{f_1}\sigma_{fk} \\ \rho_{12}\sigma_{f_2}\sigma_{f_1}, & \sigma_{f_2}^2 & \cdots & \rho_{2k}\sigma_{f_2}\sigma_{fk} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1k}\sigma_{fk}\sigma_{f_1}, & \rho_{k2}\sigma_{fk}\sigma_{f_2} & \cdots & \sigma_{fk}^2 \end{pmatrix}$$

The diagonal of matrix Σ indicates the variance of each factor, and the rest represent the covariance among all k factors.

4.2 Experiment Setting

Follow the general model above, we assume both $q_1(\cdot)$ and $q_2(\cdot)$ are linear function:

$$q_1(f_{mt}) = a_i + \beta_{im} f_{mt}$$

$$q_2(\sum_{j=1}^k \beta_{ij} f_{jt}) = \sum_{j=1}^k \beta_{ij} f_{jt}$$

To start the simulation, we consider a two factor model:

$$x_{it} = a_i + \beta_{i1} f_{1t} + \beta_{i2} f_{2t} + \varepsilon_{it} \tag{7}$$

The constant term a_i is generate from a uniform distribution, $a_{it} \sim U[-0.5, 0.5]$. For the factor loading β_{i1} and β_{i2} , we first use a uniform distribution $IIDU(\mu_{\beta} - 0.2, \mu_{\beta} + 0.2)$ to produce the values. Here we set $\mu_{beta} = 0.71$ to make sure every generated loading value is sufficiently larger than 0. Then we randomly assign $n - [n^{\alpha_1}]$ and $n - [n^{\alpha_2}]$ factor loadings as zero. α_1 and α_2 are the true factor strength of f_1 and f_2 . In this simulation, we will start the factor strength from 0.7 and increase it gradually till unity with pace 0.05, say $(\alpha_1, \alpha_2) = \{0.7, 0.75, 0.8, \dots, 1\}$. $[\cdot]$ is the integer operator defined at section (3.2). This step reflects the fact that only $[n^{\alpha}]$ factor loadings are non-zero. In terms of the factors, they comes from a multinomial distribution $MVN(\mathbf{0}, \Sigma)$, as we discuss before.

Currently, we consider three different experiments set up:

Experiment 1 (single factor, normal error, no correlation) Set β_{i2} from (7) as 0, the error term ε_{it} and the factor f_{1t} are both standard normal.

Experiment 2 (two factors, normal error, no correlation) Both β_{i1} and β_{i2} are non-zero. Error term and both factors are standard normal. The correlation ρ_{12} between f_{1t} and f_{2t} is zero. The factor strength for the first factor $\alpha_1 = 1$ all the time, and α_2 various.

Experiment 3 (two factors, normal error, weak correlation) Both β_{i1} and β_{i2} are non-zero. Error term and both factors are standard normal. The correlation ρ_{12} between f_{1t} and f_{2t} is 0.3. The factor strength for the first factor $\alpha_1 = 1$ all the time, and α_2 various.

The factor strength in each experiment is estimated using the method discussed in section (3.2), the size of significant test is p = 0.05, and the critical value exponent σ has been set as 0.5. For each of the experiment, we calculate the bias, the RMSE and the size of the test to justify the estimation performances. The bias is calculated as the difference between the true factor strength α and the estimate factor strength $\hat{\alpha}$. The Root Square Mean Error (RMSE) comes from:

$$RMSE = \left[\frac{1}{R} \sum_{r=1}^{R} (bias_r)^2\right]^{1/2}$$

Where the R represent the total replicate times. The size of the test is under the hypothesis that $H_0: \hat{\alpha}_j = \alpha_j, \ j = 1,2$ against the alternative hypothesis $H_1: \hat{\alpha}_j \neq \alpha_j, \ j = 1,2$. Here we employed the following test statistic from Bailey et al. (2020).

$$z_{\hat{\alpha}_{j}:\alpha_{j}} = \frac{(\ln n) \left(\hat{\alpha}_{j} - \alpha_{j}\right) - p\left(n - n^{\hat{\alpha}_{j}}\right) n^{-\delta - \hat{\alpha}_{j}}}{\left[p\left(n - n^{\hat{\alpha}_{j}}\right) n^{-\delta - 2\hat{\alpha}_{j}} \left(1 - \frac{p}{n^{\delta}}\right)\right]^{1/2}} \quad j = 1, 2$$
(8)

Define a indicator function $\mathbf{1}(|z_{\hat{\alpha}_j:\alpha_j}| > c|H_0)$. For each replication, if this test statistic is greater than the critical value of standard normal distribution: c = 1.96, the indicator function will return value 1, and 0 otherwise. Therefore, we calculate the size of the test base on:

$$size = \frac{\sum_{r=1}^{R} \mathbf{1}(|z_{\hat{\alpha}_{j}:\alpha_{j}}| > 1.96|H_{0})}{R} \quad j = 1, 2,$$
(9)

In purpose of Monte Carlo Simulation, we consider the different combinations of T and n with $T = \{120, 240, 360\}$, $n = \{100, 300, 500\}$. The market factor, if included in the experiment, will

have strength $\alpha_m = 1$ all the time, and the strength of the other factor will be $\alpha_x = \{0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1\}$. For every setting, we will replicate 2000 times independently, all the constant and variables will be re-generated for each replication.

4.3 Monte Carlo Discoveries

We report the results in Table (2), (3) and (4) in Appendix A.

Table (2) provides the results under the experiment 1. The estimation method we applied tends to under-estimate the strength slightly most of the time when the true strength is relatively weak under the single factor set up. The bias is about 0.01 lower when the true underlying factor strength is 0.7. Such bias, however, vanish quickly while time t, unit amount n, and α increase. When we increase the time spam by including more data from the time dimensions, the bias, as well as the RMSE decrease significantly. Also, when including more cross-section unit n into the simulation, the performance of the estimation improves, showing by the decrease bias and RMSE values. An impressing result is that, the gap between estimation and true strength will goes to zero when we have $\alpha = 1$, the strongest we can have. With the strength approaching unity, the both bias and RMSE will converge to zero. Then we turn our attention to the size of the test. The size of the test will not variate too much when the strength increases, so as the unit increases, But we can observe that when observations for each unit increase, in other word, when t increases, the size will shrinkage dramatically. The size will smaller than the 0.05 threshold after we extend the t to 240, or empirically speaking, when we included 20 years monthly return data into estimation. Notice that, from the equation (8), when $\hat{\alpha} = \alpha = 1$, the nominator will becomes zero. Therefore, the size will collapse into zero in all settings, so we do not report the size for $\hat{\alpha} = \alpha = 1$

For the two factors scenarios, we obtain similar conclusions in both the no correlation setting and weak correlation setting. The result of no correlation settings is shown in the table (3), and the table (4) shows the result when the correlation between two factors is 0.3. Same as the single factor results, in most of the time, our estimation method will slightly under estimates the factor strength. But we can improve the estimation result by increasing either the observations amount t, or the cross-section units amount n. We also have the same unbiased estimation when true factor strength is unity under all unit-time combination. In some cases, even when the factor strength is relatively weak, we can have unbiased estimation if the n and t are big enough. (see table (4)). The

results of size of the test in two factors setting are performing similar to the single factor result. The size will shrink with the observation amount t increasing, and when we have t grater than 240, the size will be smaller than 0.05 threshold in all situations.

4.4 Elastic Net

Elastic net is variable selection model that can be used for factor selection, introduced by ? (?). Applying elastic net method to estimate the factor loading β_{ij} requires:

$$\hat{\beta}_{ij} = \arg\min\{\sum_{i=1}^{n} [(r_{it} - r_{ft}) - \beta_{ij}f_{jt}]^2 + \lambda_2 \sum_{i=1}^{n} \beta_{ij}^2 + \lambda_1 \sum_{i=1}^{n} |\beta_{ij}|\}$$
(4)

Because the Lasso regression only contains L_1 penalty term $\sum_{i=1}^{n} |\beta_{ij}|$, it will shows no preference when selecting variables when they are highly correlated. So when Lasso regression will either randomly choose factors from highly correlated candidates, or eliminate them together as a whole. Elastic Net, however, by containing L_2 penalty term $\sum_{i=1}^{n} \beta_{ij}^2$, solves this problem. The L_2 penalty term tend to shrink the potential parameters when they does not provide enough explanatory power, but it will not remove redundant factors. Therefore, the elastic net method will shrink those parameters associated with the correlated factors and keep them, or drop them if they are redundant at pricing risk.

5 Empirical Application

5.1 Data

In the empirical section, for the return of assets, we use the monthly excess returns from Standard Poor (S&P) 500 index component companies. We prepared three data sets for different time spams: 10 years (January 2008 to December 2017), 20 years (January 1998 to December 2017), and 30 years (January 1989 to December 2017). Because of the components companies of the index are constantly changing, for each of the datasets, the companies amount (n) is different, the dimensions of the data set is showing in the table (1).

¹The data was obtained from the Global Finance Data, Osiris, and Yahoo Finance

Table 1: Data Set Dimensions

	Time Spam	Companies Amount (n)	Observations Amount (T)
10 Years	January 2008 - December 2017	419	120
20 Years	January 1998 - December 2017	342	240
30 Years	January 1988 - December 2017	242	360

The one-month U.S. treasury bill return rate was set as the risk free return r_{ft} . For company i, we calculates the companies return at month t (r_{it}) use the following formula:

$$r_{it} = \frac{p_{it} - p_{it-1}}{p_{it-1}} \times 100$$

and calculate the excess return $x_{it} = r_{it} - r_{ft}$. Here the p_{it} and p_{it-1} are the company's close stock price at the first day of month t and t-1. The price is adjusted for the dividends and splits.²

With regard of the factors, we use 146 different risk factors, including the market factors as market return minus risk free rate from ? (?).

²The data is adjusted base on the Central for Research in Security Price (CRSP) method.

References

- Bailey, N., Kapetanios, G., & Pesaran, M. H. (2016, 9). Exponent of cross-sectional dependence: Estimation and inference. *Journal of Applied Econometrics*, *31*, 929-960. Retrieved from http://doi.wiley.com/10.1002/jae.2476 doi: 10.1002/jae.2476
- Bailey, N., Kapetanios, G., & Pesaran, M. H. (2020). *Measurement of factor strength: Theory and practice*.
- Fama, E. F., & French, K. R. (1992, 6). The cross-section of expected stock returns. *The Journal of Finance*, 47, 427-465. Retrieved from http://doi.wiley.com/10.1111/j.1540-6261.1992.tb04398.x doi: 10.1111/j.1540-6261.1992.tb04398.x
- Gospodinov, N., Kan, R., & Robotti, C. (2017, 9). Spurious inference in reduced-rank asset-pricing models. *Econometrica*, 85, 1613-1628. doi: 10.3982/ecta13750
- Harvey, C. R., & Liu, Y. (2019, 3). A census of the factor zoo. *SSRN Electronic Journal*. doi: 10.2139/ssrn.3341728
- Harvey, C. R., Liu, Y., & Zhu, H. (2015, 10). ... and the cross-section of expected returns. *The Review of Financial Studies*, 29, 5-68. Retrieved from https://doi.org/10.1093/rfs/hhv059 doi: 10.1093/rfs/hhv059
- Kan, R., & Zhang, C. (1999, 2). Two-pass tests of asset pricing models with useless factors. The Journal of Finance, 54, 203-235. Retrieved from http://doi.wiley.com/10.1111/0022-1082.00102 doi: 10.1111/0022-1082.00102
- Kleibergen, F. (2009, 4). Tests of risk premia in linear factor models. *Journal of Econometrics*, 149, 149-173. doi: 10.1016/j.jeconom.2009.01.013
- Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. *The Review of Economics and Statistics*, 47, 13-37. doi: 10.2307/1924119
- Sharpe, W. F. (1964, 9). Capital asset prices: A theory of market equilibrium under conditions of risk. *The Journal of Finance*, 19, 425-442. Retrieved from http://doi.wiley.com/10.1111/j.1540-6261.1964.tb02865.x doi: 10.1111/j.1540-6261.1964.tb02865.x

A Simulation Result Table

Table 2: Simulation result for experiment 1

				Sing	gle Facto	or							
	Е	$Bias \times 10$	0	RN	$MSE \times 1$	00	S	$ize \times 10$	00				
				$\alpha_1 =$	0.7								
n\T	120	240	360	120	240	360	120	240	360				
100	0.256	0.265	0.227	0.612	0.623	0.560	7.85	7.7	5.55				
300	0.185	0.184	0.184	0.363	0.338	0.335	8.9	4.45	4.5				
500	0.107	0.124	0.109	0.259	0.248	0.234	6.9	2.5	1.6				
	$lpha_1=0.75$												
100	-0.178	-0.159	-0.168	0.490	0.465	0.450	2.5	0.85	0.4				
300	0.154	0.156	0.143	0.281	0.258	0.234	9.4	3.7	3.35				
500	0.024	0.033	0.263	0.171	0.155	0.148	7.8	2	1.25				
				$\alpha_1 =$									
100	-0.270	-0.265	-0.258	0.434	0.409	0.411	71.4	72.05	71.45				
300	-0.052	-0.044	-0.043	0.183	0.149	0.150	10.15	2.45	2.9				
500	0.045	0.068	0.067	0.136	0.126	0.121	16.6	6.4	5.9				
				$\alpha_1 =$									
100	0.053	0.062	0.058	0.253	0.228	0.221	6.05	2.95	2.5				
300	-0.012	0.009	-0.001	0.124	0.104	0.095	10.55	1.8	1.15				
500	-0.026	-0.007	-0.011	0.096	0.073	0.069	13.25	0.9	0.7				
				$\alpha_1 =$									
100	0.025	0.038	0.360	0.191	0.163	0.157	6.85	2	1.65				
300	-0.034	-0.018	-0.020	0.099	0.069	0.068	13.2	0.8	0.9				
500	-0.025	-0.001	-0.001	0.072	0.044	0.044	22.3	1.95	1.8				
				$\alpha_1 =$									
100	-0.099	-0.088	-0.090	0.156	0.125	0.126	5.6	0.3	0.55				
300	-0.046	-0.025	-0.026	0.083	0.045	0.045	22.5	2.2	2.25				
500	-0.030	-0.006	-0.006	0.061	0.026	0.025	33.1	4.4	3.8				
	$\alpha_1 = 1$												
100	0	0	0	0	0	0	_	-	-				
300	0	0	0	0	0	0	-	-	-				
500	0	0	0	0	0	0	-	-	_				

Notes: This table shows the result of experiment 1. Factors and error are generate from standard normal distribution. Factor loadings come form uniform distribution $IIDU(\mu_{\beta}-0.2,\mu_{\beta}+0.2)$, and $\mu_{\beta}=0.71$. We keep $[n^{\alpha_j}]$ amount of loadings and assign the rest as zero. For each different time-unit combinations, we replicate 2000 times. For the size of the test, we use a two-tail test, under the hypothesis of H_0 , $\hat{\alpha}_j=\alpha_j$ j=1,2. Cause under the scenarios of $\alpha=1$, the size of the test will collapse, therefore the table does not report the sizes for $\alpha_1=1$.

Table 3: Simulation result for experiment 2

			Double 1	Factor wit	th correl	ation ρ_1	$\frac{1}{2} = 0$		
	E	$Bias \times 10$			$1SE \times 1$			$ze \times 1$	00
				$\alpha_1 = 1, \alpha_2$	2 = 0.7		l		
$n\T$	120	240	360	120	240	360	120	240	360
100	0.567	0.737	0.628	4.062	3.819	3.799	2.95	1.45	1.85
300	0.512	0.611	0.518	2.398	2.103	1.979	6.25	0.55	0.5
500	-0.149	0.08	-0.019	1.796	1.498	1.443	8	0.2	0.1
			C	$\alpha_1 = 1, \alpha_2$	= 0.75				
100	-3.051	-3.02	-3.092	4.582	4.245	4.248	2.45	0.1	0.10
300	0.491	-1.035	0.640	1.843	1.460	1.576	7.6	0.8	0.55
500	-0.611	-0.372	-0.393	1.520	1.136	1.125	11.35	0.15	0.1
			($\alpha_1 = 1, \alpha_2$	2 = 0.8		1		
100	-3.752	-3.630	-3.581	4.557	4.213	4.210	84.65	85.9	85.25
300	-1.218	-0.331	-1.021	1.812	0.792	1.438	9.35	0.2	0.3
500	-0.022	0.192	0.147	1.047	0.782	0.742	15.35	1.1	1.1
				$\alpha_1=1,\alpha_2$	= 0.85				
100	-0.075	0.127	0.088	1.996	1.697	1.606	5.4	1.15	0.95
300	-0.531	-0.406	-0.351	1.097	0.613	0.777	10.8	0.15	0.2
500	-0.647	-0.391	-0.391	1.020	0.643	0.630	19.1	0.15	0
				$\alpha_1=1,\alpha_2$					
100	-0.128	0.043	0.025	1.428	1.143	1.118	4.9	0.65	0.7
300	-0.651	-0.334	-0.394	1.002	0.435	0.617	17.1	0.6	0.2
500	-0.434	-0.168	-0.171	0.7435	0.367	0.368	25.2	0.4	0.3
				$\alpha_1=1,\alpha_2$					
100	-1.218	-1.043	-1.036	1.603	1.222	1.212	6.65	0.25	0.05
300	-0.611	-0.344	-0.356	0.881	0.435	0.434	23.35	0.6	0.45
500	-0.415	-0.123	-0.134	0.661	0.220	0.216	36.75	1.35	1.1
				$\alpha_1 = 1, \alpha_2$					
100	0	0	0	0	0	0	-	-	-
300	0	0	0	0	0	0	-	-	-
500	0	0	0	0	0	0	-	-	-

Notes: This table shows the result of experiment 2. Factors and errors are generate from standard normal distribution. Between two factors, we assume they have no correlation. Factor loadings come form uniform distribution $IIDU(\mu_{\beta}-0.2,\mu_{\beta}+0.2)$, and μ_{β} is set to 0.71. We keep $[n^{\alpha_j}]$ amount of loadings and assign the rest as zero. For each different time-unit combinations, we replicate 2000 times. For the size of the test, we use a two-tail test, under the hypothesis of H_0 , $\hat{\alpha}_j = \alpha_j$ j = 1,2. Cause under the scenarios of $\alpha = 1$, the size of the test will collapse, therefore the table does not report the sizes for $\alpha_1 = \alpha_2 = 1$

Table 4: Simulation result for experiment 3

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			D	ouble Fa	ctor with	correla	tion ρ_{12}	= 0.3						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Е	$Bias \times 10$	0	RN	$\overline{MSE \times 1}$	00	Siz	$ze \times 10$	00				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\alpha_1 = 1, \alpha_2$	2 = 0.7								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n\T	120	240	360	120	240	360	120	240	360				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	0.038	0.064	0.072	0.421	0.382	0.389	4.6	1.75	1.95				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	300	0.021	0.058	0.056	0.253	0.206	0.198	9.95	0.9	0.25				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	-0.032	0.006	0	0.201	0.153	0	12.20	0.1	0.05				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	-0.325	-0.313	-0.310	0.488	0.419	0.420	4.75	0.1	0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	0.028	0.063	0.065	0.253	0.157	0.159	9.95	0.55	0.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	-0.082	-0.037	-0.039	0.175	0.114	0.112	19.25	0.25	0.3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				α	$\alpha_1 = 1, \alpha_2$	2 = 0.8								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	-0.393	-0.361	-0.368	0.477	0.418	0.421	85.45	85.2	86.4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	0.029	-0.099	-0.100	0.192	0.145	0.145	12.2	0.65	0.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	-0.037	-0.016	0.016	0.129	0.074	0.074	27.8	0.25	1.2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				α_1	$=1,\alpha_2$	= 0.85								
$\begin{array}{c c ccccccccccccccccccccccccccccccccc$	100	-0.027	0.008	0.007	0.234	0.160	0.155	9.3	0.9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	-0.147	-0.031	-0.037	0.219	0.079	0.077	16.75	0.3	0.2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	-0.088	-0.039	-0.039	0.136	0.063	0.062	30.6	0.15	0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\alpha_1=1,\alpha_2$	2 = 0.9								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	-0.033	0.003	0.002	0.173	0.111	0.110	9.4	0.6	0.55				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	-0.087	-0.040	-0.041	0.131	0.061	0.061	27.8	0.1	0.05				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	-0.070	-0.017	-0.018	0.111	0.037	0.037	41.15	0.6	0.35				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				α_1	$=1,\alpha_2$	= 0.95								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	-0.134	-0.101	-0.104	0.185	0.122	0.122	10.15	0.1	0.15				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	-0.083	-0.034	-0.034	0.118	0.043	0.044	39.35	0.6	0.6				
100 0 0 0 0 0 -	500	-0.062	-0.013	-0.012	0.937	0.022	0.023	51.8	1.25	2.0				
300 0 0 0 0 0		$\alpha_1 = 1, \alpha_2 = 1$												
	100	0	0	0	0	0	0	_	-	-				
500 0 0 0 0 0	300	0	0	0	0	0	0	_	-	-				
	500	0	0	0	0	0	0	-	-					

Notes: This table shows the result of experiment 2. Factors and errors are generate from standard normal distribution. Between two factors, we assume they have correlation $\rho_{12} = 0.3$ Factor loadings come form uniform distribution $IIDU(\mu_{\beta} - 0.2, \mu_{\beta} + 0.2)$, and μ_{β} is set to 0.71. We keep $[n^{\alpha_j}]$ amount of loadings and assign the rest as zero. For each different time-unit combinations, we replicate 2000 times. For the size of the test, we use a two-tail test, under the hypothesis of H_0 , $\hat{\alpha}_j = \alpha_j$ j = 1, 2. Cause under the scenarios of $\alpha = 1$, the size of the test will collapse, therefore the table does not report the sizes when $\alpha_1 = \alpha_2 = 1$

Table 5: Ranked Three Data Set Comparison

	Te	en Year Data		Twe	enty Year Data		Th	irty Year Data	
	Fastan	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Fastan	Market Factor	Risk Factor
	Factor	Strength	Strength	Factor	Strength	Strength	Factor	Strength	Strength
1	beta	0.976	0.749	ndp	0.960	0.904	salecash	0.905	0.857
2	baspread	0.980	0.730	salecash	0.958	0.902	ndp	0.905	0.852
3	turn	0.983	0.728	quick	0.958	0.901	quick	0.905	0.851
4	zerotrade	0.983	0.725	dy	0.957	0.897	age	0.905	0.851
5	idiovol	0.981	0.723	lev	0.959	0.897	roavol	0.904	0.850
6	retvol	0.978	0.721	cash	0.958	0.897	ep	0.905	0.849
7	std_turn	0.983	0.719	ZS	0.959	0.896	depr	0.905	0.848
8	HML_Devil	0.989	0.719	ср	0.960	0.894	cash	0.905	0.847
9	maxret	0.981	0.715	roavol	0.957	0.894	rds	0.905	0.843
10	roavol	0.985	0.713	age	0.959	0.894	currat	0.905	0.840
11	age	0.989	0.703	cfp	0.960	0.893	chesho	0.905	0.840
12	sp	0.985	0.699	op	0.958	0.893	zs	0.903	0.839
13	ala	0.986	0.699	nop	0.958	0.893	nop	0.904	0.839
14	ndp	0.987	0.686	ebp	0.959	0.893	dy	0.905	0.838
15	orgcap	0.989	0.686	ер	0.958	0.891	lev	0.903	0.838
16	tang	0.990	0.683	rds	0.958	0.890	cfp	0.905	0.838
17	ebp	0.988	0.683	depr	0.958	0.889	stdacc	0.905	0.837
18	invest	0.986	0.683	sp	0.958	0.888	ср	0.905	0.836
19	dpia	0.986	0.681	currat	0.958	0.887	stdcf	0.905	0.836
20	UMD	0.989	0.678	kz	0.958	0.887	op	0.904	0.835
21	ZS	0.986	0.675	chesho	0.957	0.884	ebp	0.903	0.835
22	grltnoa	0.988	0.675	tang	0.960	0.884	tang	0.904	0.833
23	dy	0.988	0.672	ato	0.958	0.884	kz	0.903	0.831
24	HML	0.987	0.672	stdacc	0.958	0.883	ato	0.904	0.831
25	kz	0.986	0.669	adm	0.958	0.881	ww	0.904	0.827
26	ob_a	0.989	0.669	cashpr	0.959	0.878	std_turn	0.902	0.826
27	BAB	0.989	0.666	stdcf	0.956	0.878	adm	0.904	0.825
28	op	0.990	0.663	HML	0.958	0.874	idiovol	0.902	0.825
29	realestate_hxz	0.987	0.663	nef	0.956	0.873	maxret	0.902	0.825
30	ol	0.987	0.663	std_turn	0.956	0.870	baspread	0.902	0.820
31	adm	0.988	0.660	idiovol	0.955	0.870	IPO	0.905	0.818
32	lev	0.986	0.657	zerotrade	0.953	0.865	nef	0.902	0.818
33	nxf	0.989	0.651	turn	0.955	0.864	sp	0.903	0.817

Table 5: Ranked Three Data Set Comparison (Cont.)

	Т	en Year Data			enty Year Data		Th	irty Year Data	
	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor
	ractor	Strength	Strength	ractor	Strength	Strength	ractor	Strength	Strength
34	nop	0.989	0.651	ww	0.959	0.863	turn	0.902	0.813
35	pm	0.986	0.648	maxret	0.956	0.863	retvol	0.902	0.813
36	pchcapx3	0.988	0.644	absacc	0.960	0.859	zerotrade	0.900	0.812
37	nef	0.988	0.644	baspread	0.955	0.854	absacc	0.905	0.812
38	cash	0.989	0.637	hire	0.959	0.851	HML	0.903	0.811
39	QMJ	0.978	0.637	IPO	0.960	0.850	lgr	0.905	0.810
40	rds	0.989	0.634	lgr	0.959	0.850	cashpr	0.903	0.808
41	LIQ_PS	0.988	0.634	nxf	0.956	0.849	dcol	0.905	0.807
42	ato	0.988	0.634	retvol	0.955	0.848	beta	0.900	0.806
43	salerec	0.992	0.630	salerec	0.957	0.847	RMW	0.904	0.806
44	currat	0.989	0.626	RMW	0.957	0.847	hire	0.905	0.805
45	acc	0.989	0.619	beta	0.954	0.846	salerec	0.905	0.803
46	stdcf	0.989	0.619	sin	0.959	0.844	nxf	0.903	0.801
47	HXZ_ROE	0.989	0.619	acc	0.960	0.843	acc	0.904	0.797
48	depr	0.988	0.615	bm_ia	0.960	0.843	dfin	0.902	0.791
49	noa	0.989	0.615	dcol	0.959	0.838	niner	0.904	0.790
50	cashpr	0.987	0.615	dfin	0.959	0.838	noa	0.902	0.787
51	absacc	0.989	0.615	HML_Devil	0.953	0.838	HML_Devil	0.902	0.781
52	gma	0.987	0.615	HXZ_IA	0.960	0.838	HXZ_IA	0.904	0.780
53	dncl	0.986	0.611	niner	0.959	0.834	rdm	0.904	0.778
54	ms	0.980	0.611	rna	0.958	0.826	rna	0.904	0.778
55	rna	0.989	0.611	noa	0.957	0.825	rd	0.903	0.774
56	STR	0.987	0.607	herf	0.957	0.824	bm_ia	0.904	0.772
57	rdm	0.988	0.607	rdm	0.958	0.823	sgr	0.904	0.769
58	chesho	0.987	0.607	sgr	0.958	0.819	ps	0.904	0.769
59	sin	0.987	0.607	dnco	0.959	0.816	sin	0.904	0.769
60	salecash	0.989	0.602	ps	0.957	0.807	realestate_hxz	0.905	0.769
61	dnco	0.988	0.598	CMA	0.960	0.805	herf	0.902	0.766
62	quick	0.989	0.593	egr_hxz	0.958	0.803	dnco	0.904	0.761
63	stdacc	0.989	0.593	realestate_hxz	0.957	0.798	CMA	0.905	0.759
64	poa	0.988	0.593	gad	0.958	0.788	egr_hxz	0.904	0.750
65	cp	0.988	0.589	rd	0.958	0.787	ob_a	0.903	0.745
66	tb	0.988	0.589	ol	0.954	0.787	ol	0.902	0.741
67	HXZ_IA	0.987	0.584	cinvest_a	0.959	0.784	cinvest_a	0.903	0.739

Table 5: Ranked Three Data Set Comparison (Cont.)

	To	en Year Data		Twe	enty Year Data			irty Year Data	
	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor
	racioi	Strength	Strength	ractor	Strength	Strength	ractor	Strength	Strength
68	saleinv	0.987	0.579	dolvol	0.960	0.774	gad	0.902	0.723
69	cfp	0.988	0.579	ob_a	0.955	0.764	SMB	0.902	0.721
70	egr	0.987	0.579	ala	0.958	0.762	dolvol	0.904	0.715
71	dnca	0.986	0.579	pchdepr	0.959	0.761	gma	0.902	0.715
72	egr_hxz	0.988	0.579	BAB	0.960	0.757	ala	0.904	0.715
73	os	0.984	0.569	gma	0.955	0.756	cto	0.902	0.710
74	pps	0.983	0.563	pchcapx3	0.957	0.752	aeavol	0.905	0.710
75	cto	0.987	0.563	dnca	0.958	0.747	BAB	0.905	0.710
76	grltnoa_hxz	0.986	0.563	SMB	0.957	0.745	convind	0.904	0.710
77	cei	0.988	0.563	poa	0.957	0.739	tb	0.902	0.708
78	CMA	0.988	0.563	aeavol	0.961	0.737	QMJ	0.903	0.708
79	em	0.989	0.552	tb	0.953	0.732	pricedelay	0.904	0.701
80	ww	0.990	0.546	grltnoa_hxz	0.958	0.730	egr	0.902	0.699
81	std_dolvol	0.987	0.539	cei	0.953	0.730	orgcap	0.902	0.699
82	grcapx	0.986	0.539	indmom	0.956	0.725	pchdepr	0.903	0.696
83	pctacc	0.989	0.539	egr	0.958	0.725	indmom	0.902	0.696
84	ep	0.989	0.533	moms12m	0.957	0.725	dcoa	0.902	0.696
85	pricedelay	0.989	0.533	dsti	0.957	0.723	moms12m	0.903	0.694
86	hire	0.988	0.519	orgcap	0.956	0.715	pchcapx3	0.902	0.691
87	SMB	0.987	0.512	pchcurrat	0.958	0.710	cei	0.902	0.691
88	pchcapx_ia	0.989	0.512	UMD	0.951	0.706	roic	0.902	0.691
89	aeavol	0.988	0.512	dcoa	0.959	0.706	pm	0.903	0.691
90	moms12m	0.987	0.512	roic	0.951	0.703	dnca	0.902	0.689
91	cashdebt	0.984	0.504	QMJ	0.951	0.703	saleinv	0.903	0.686
92	lgr	0.987	0.504	cinvest	0.958	0.701	grltnoa_hxz	0.903	0.683
93	cinvest	0.988	0.496	HXZ_ROE	0.957	0.699	poa	0.903	0.681
94	herf	0.987	0.496	cto	0.955	0.694	HXZ_ROE	0.905	0.678
95	bm_ia	0.988	0.487	pctacc	0.954	0.694	UMD	0.902	0.672
96	cfp_ia	0.987	0.479	pricedelay	0.958	0.691	petace	0.902	0.672
97	cinvest_a	0.989	0.479	pchcapx_ia	0.957	0.681	cinvest	0.903	0.660
98	chmom	0.989	0.469	convind	0.955	0.669	dsti	0.902	0.660
99	RMW	0.987	0.469	cdi	0.958	0.654	em	0.902	0.657
100	sue	0.987	0.459	rsup	0.957	0.651	pchcurrat	0.902	0.654
101	mom36m	0.986	0.459	chtx	0.958	0.644	ms	0.902	0.648

Table 5: Ranked Three Data Set Comparison (Cont.)

	Te	n Year Data		Twe	enty Year Data		Thi	rty Year Data	
	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor
	Factor	Strength	Strength	Factor	Strength	Strength	Factor	Strength	Strength
102	indmom	0.987	0.459	invest	0.957	0.644	invest	0.902	0.641
103	dcoa	0.988	0.459	em	0.952	0.644	pchcapx_ia	0.902	0.630
104	etr	0.986	0.448	pm	0.957	0.641	os	0.900	0.623
105	chinv	0.988	0.448	saleinv	0.955	0.637	chtx	0.902	0.623
106	ill	0.988	0.448	ta	0.958	0.634	dpia	0.902	0.623
107	roic	0.986	0.448	dpia	0.957	0.634	cdi	0.903	0.623
	convind	0.988	0.448	pchquick	0.957	0.626	pps	0.902	0.611
109	sgr	0.988	0.437	os	0.948	0.626	roaq	0.900	0.602
110	IPO	0.989	0.437	ms	0.950	0.619	rs	0.902	0.584
111	dolvol	0.989	0.437	roaq	0.953	0.607	rsup	0.902	0.579
112	dcol	0.987	0.425	grcapx	0.955	0.593	chinv	0.902	0.569
113	niner	0.989	0.411	pps	0.952	0.589	cfp_ia	0.902	0.563
114	chempia	0.987	0.411	ndf	0.957	0.589	ta	0.903	0.563
115	rs	0.988	0.411	cfp_ia	0.957	0.584	cashdebt	0.900	0.557
116	pchcapx	0.988	0.411	dncl	0.957	0.584	ndf	0.902	0.557
117	chtx	0.988	0.397	pchsale_pchrect	0.955	0.574	grcapx	0.902	0.552
118	ivg	0.988	0.381	mom6m	0.958	0.569	STR	0.902	0.546
119	LTR	0.985	0.364	rs	0.955	0.563	pchcapx	0.902	0.546
120	mom6m	0.987	0.364	pchcapx	0.958	0.563	pchquick	0.902	0.539
121	cdi	0.987	0.364	cashdebt	0.951	0.557	grltnoa	0.902	0.539
	chatoia	0.987	0.364	pchsaleinv	0.955	0.557	pchsaleinv	0.902	0.519
123	gad	0.985	0.364	chempia	0.958	0.557	dncl	0.902	0.519
124	pchcurrat	0.988	0.297	LIQ_PS	0.956	0.557	ivg	0.902	0.504
125	pchgm_pchsale	0.988	0.297	dwc	0.955	0.546	mom6m	0.902	0.496
126	rd	0.986	0.297	grltnoa	0.956	0.533	chempia	0.902	0.496
	dsti	0.989	0.297	STR	0.956	0.526	LIQ_PS	0.902	0.496
128	dfnl	0.987	0.297	dfnl	0.955	0.519	mom36m	0.902	0.479
129	roaq	0.986	0.297	mom36m	0.957	0.496	std_dolvol	0.903	0.459
	pchdepr	0.988	0.266	std_dolvol	0.955	0.496	pchsale_pchinvt	0.902	0.448
	dnoa	0.988	0.230	sue	0.956	0.487	pchsale_pchxsga		0.448
132		0.988	0.230	LTR	0.954	0.487	dwc	0.902	0.448
	chpmia	0.987	0.230	chmom	0.953	0.479	dfnl	0.902	0.437
	pchquick	0.987	0.182	pchsale_pchinvt	0.955	0.448	chmom	0.902	0.437
135	dfin	0.988	0.182	chatoia	0.957	0.437	pchsale_pchrect	0.902	0.425

Table 5: Ranked Three Data Set Comparison (Cont.)

	Те	en Year Data		Twe	enty Year Data		Thirty Year Data			
	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	
	racioi	Strength	Strength	ractor	Strength	Strength	racioi	Strength	Strength	
136	rsup	0.988	0.182	pchsale_pchxsga	0.957	0.425	sue	0.902	0.397	
	pchsaleinv	0.988	0.115	lfe	0.956	0.425	LTR	0.902	0.381	
138	pchsale_pchinvt	0.988	0.115	chinv	0.956	0.397	pchgm_pchsale	0.902	0.322	
139	pchsale_pchrect	0.988	0.115	ivg	0.957	0.397	lfe	0.902	0.297	
140	ps	0.990	0.115	pchgm_pchsale	0.957	0.381	ill	0.902	0.297	
141	dwc	0.989	0.115	etr	0.955	0.344	dnoa	0.902	0.182	
142	pchsale_pchxsga	0.989	0.000	chpmia	0.957	0.344	ear	0.903	0.182	
143	lfe	0.988	0.000	ill	0.955	0.266	chatoia	0.902	0.182	
144	ndf	0.986	0.000	dnoa	0.955	0.266	chpmia	0.902	0.182	
145	ear	0.988	0.000	ear	0.958	0.266	etr	0.902	0.115	

Notes: This table presents the estimation results of factors' strength, ordered decreasingly by risk factor strength. For the estimation, we use the method from Section 3.3, with one market factor and one risk factor. The three data set is describe in the section 5.1

Table 6: Three Data Set Comparison

Factor	10 Year Strength	20 Year Strength	30 Year Strength	Mean	Standard Deviation
1 ps	0.115	0.807	0.769	0.564	0.318
2 dfin	0.182	0.838	0.791	0.604	0.299
3 ndf	0.000	0.589	0.557	0.382	0.270
4 rd	0.297	0.787	0.774	0.619	0.228
5 pchdepr	0.266	0.761	0.696	0.574	0.219
6 rsup	0.182	0.651	0.579	0.471	0.206
7 pchsale_pchxsga	0.000	0.425	0.448	0.291	0.206
8 pchsaleinv	0.115	0.557	0.519	0.397	0.200
9 pchquick	0.182	0.626	0.539	0.449	0.192
10 pchsale_pchrect	0.115	0.574	0.425	0.371	0.191
11 nincr	0.411	0.834	0.790	0.678	0.190
12 dsti	0.297	0.723	0.660	0.560	0.188
13 dcol	0.425	0.838	0.807	0.690	0.188
14 IPO	0.437	0.850	0.818	0.702	0.188
15 gad	0.364	0.788	0.723	0.625	0.187
16 dwc	0.115	0.546	0.448	0.370	0.185
17 pchcurrat	0.297	0.710	0.654	0.554	0.183
18 lfe	0.000	0.425	0.297	0.240	0.178
19 ta	0.230	0.634	0.563	0.475	0.176
20 sgr	0.437	0.819	0.769	0.675	0.170
21 RMW	0.469	0.847	0.806	0.707	0.169
22 ep	0.533	0.891	0.849	0.758	0.160
23 pchsale pchinvt	0.115	0.448	0.448	0.337	0.157
24 lgr	0.504	0.850	0.810	0.721	0.155
25 bm_ia	0.487	0.843	0.772	0.701	0.154
26 dolvol	0.437	0.774	0.715	0.642	0.147
27 hire	0.519	0.851	0.805	0.725	0.147
28 roaq	0.297	0.607	0.602	0.502	0.145
29 herf	0.496	0.824	0.766	0.695	0.143
30 ww	0.546	0.863	0.827	0.745	0.142
31 etr	0.448	0.344	0.115	0.302	0.139
32 cfp	0.579	0.893	0.838	0.770	0.137
33 quick	0.593	0.901	0.851	0.782	0.135
34 cinvest_a	0.479	0.784	0.739	0.667	0.135
35 cp	0.589	0.894	0.836	0.773	0.133
36 salecash	0.602	0.902	0.857	0.787	0.132
37 cdi	0.364	0.654	0.623	0.547	0.130
38 stdacc	0.593	0.883	0.837	0.771	0.127
39 chcsho	0.607	0.884	0.840	0.777	0.127
40 depr	0.615	0.889	0.848	0.784	0.121
41 indmom	0.459	0.725	0.696	0.627	0.119
42 roic	0.448	0.703	0.691	0.614	0.117
43 convind	0.448	0.669	0.710	0.609	0.117
44 dcoa	0.459	0.706	0.696	0.620	0.113
45 stdcf	0.619	0.878	0.836	0.020	0.114
46 currat	0.626	0.887	0.840	0.778	0.114
47 cash	0.626	0.897	0.847	0.783	0.113
48 chtx	0.397	0.644	0.623	0.794	0.113
49 rds	0.634	0.890	0.843	0.333	0.112
50 cashpr	0.615	0.878	0.843	0.767	0.111
o cashpi	0.013	0.078	0.008	0.707	V.111

Table 6: Three Data Set Comparison (Cont.)

Factor	10 Year Strength	20 Year Strength	30 Year Strength	Mean	Standard Deviation
51 ear	0.000	0.266	0.182	0.149	0.111
52 HXZ_IA	0.584	0.838	0.780	0.734	0.109
53 ato	0.634	0.884	0.831	0.783	0.107
54 chatoia	0.364	0.437	0.182	0.328	0.107
55 absacc	0.615	0.859	0.812	0.762	0.106
56 SMB	0.512	0.745	0.721	0.659	0.105
57 CMA	0.563	0.805	0.759	0.709	0.105
58 nop	0.651	0.893	0.839	0.794	0.104
59 lev	0.657	0.897	0.838	0.798	0.102
60 aeavol	0.512	0.737	0.710	0.653	0.101
61 sin	0.607	0.844	0.769	0.740	0.099
62 nef	0.644	0.873	0.818	0.778	0.097
63 op	0.663	0.893	0.835	0.797	0.097
64 acc	0.619	0.843	0.797	0.753	0.097
65 egr_hxz	0.579	0.803	0.750	0.711	0.096
66 dy	0.672	0.897	0.838	0.803	0.095
67 moms12m	0.512	0.725	0.694	0.644	0.094
68 adm	0.660	0.881	0.825	0.789	0.094
69 salerec	0.630	0.847	0.803	0.760	0.094
70 zs	0.675	0.896	0.839	0.803	0.094
71 rdm	0.607	0.823	0.778	0.736	0.093
72 ndp	0.686	0.904	0.852	0.814	0.093
73 dnco	0.598	0.816	0.761	0.725	0.093
74 rna	0.611	0.826	0.778	0.738	0.092
75 kz	0.669	0.887	0.831	0.796	0.092
76 dfnl	0.297	0.519	0.437	0.418	0.092
77 noa	0.615	0.825	0.787	0.742	0.091
78 cinvest	0.496	0.701	0.660	0.619	0.089
79 ebp	0.683	0.893	0.835	0.804	0.088
80 tang	0.683	0.884	0.833	0.800	0.085
81 mom6m	0.364	0.569	0.496	0.476	0.085
82 nxf	0.651	0.849	0.801	0.767	0.084
83 HML	0.672	0.874	0.811	0.786	0.084
84 age	0.703	0.894	0.851	0.816	0.082
85 ill	0.448	0.266	0.297	0.337	0.080
86 sp	0.699	0.888	0.817	0.801	0.078
87 roavol	0.713	0.894	0.850	0.819	0.077
88 pricedelay	0.533	0.691	0.701	0.642	0.077
89 rs	0.411	0.563	0.584	0.519	0.077
90 chiny	0.448	0.397	0.569	0.471	0.072
91 cei	0.563	0.730	0.691	0.661	0.071
92 pchcapx_ia	0.512	0.681	0.630	0.608	0.071
93 grltnoa hxz	0.563	0.730	0.683	0.659	0.070
94 dnca	0.579	0.747	0.689	0.671	0.070
95 petace	0.539	0.694	0.672	0.635	0.068
96 chpmia	0.230	0.344	0.182	0.252	0.068
97 pchcapx	0.411	0.563	0.546	0.507	0.068
98 cto	0.563	0.694	0.710	0.656	0.066
99 grltnoa	0.675	0.533	0.539	0.582	0.066
100 egr	0.579	0.725	0.699	0.668	0.064
100 egr	0.719	0.870	0.826	0.805	0.064
101 314_14111	0.717	0.070	0.020	0.003	0.007

Table 6: Three Data Set Comparison (Cont.)

Factor	10 Year Strength	20 Year Strength	30 Year Strength	Mean	Standard Deviation
102 maxret	0.715	0.863	0.825	0.801	0.063
103 tb	0.589	0.732	0.708	0.676	0.063
104 idiovol	0.723	0.870	0.825	0.806	0.061
105 poa	0.593	0.739	0.681	0.671	0.060
106 chempia	0.411	0.557	0.496	0.488	0.060
107 gma	0.615	0.756	0.715	0.695	0.059
108 realestate_hxz	0.663	0.798	0.769	0.743	0.058
109 zerotrade	0.725	0.865	0.812	0.801	0.058
110 turn	0.728	0.864	0.813	0.802	0.056
111 LIQ_PS	0.634	0.557	0.496	0.562	0.056
112 LTR	0.364	0.487	0.381	0.411	0.055
113 ivg	0.381	0.397	0.504	0.427	0.055
114 retvol	0.721	0.848	0.813	0.794	0.054
115 baspread	0.730	0.854	0.820	0.801	0.053
116 ol	0.663	0.787	0.741	0.731	0.051
117 HML_Devil	0.719	0.838	0.781	0.779	0.049
118 em	0.552	0.644	0.657	0.618	0.047
119 cfp_ia	0.479	0.584	0.563	0.542	0.046
120 pchcapx3	0.644	0.752	0.691	0.696	0.044
121 saleinv	0.579	0.637	0.686	0.634	0.044
122 ob_a	0.669	0.764	0.745	0.726	0.041
123 beta	0.749	0.846	0.806	0.800	0.040
124 dncl	0.611	0.584	0.519	0.571	0.038
125 sue	0.459	0.487	0.397	0.448	0.038
126 BAB	0.666	0.757	0.710	0.711	0.037
127 pchgm_pchsale	0.297	0.381	0.322	0.333	0.035
128 dnoa	0.230	0.266	0.182	0.226	0.035
129 STR	0.607	0.526	0.546	0.559	0.034
130 HXZ_ROE	0.619	0.699	0.678	0.665	0.034
131 std_dolvol	0.539	0.496	0.459	0.498	0.033
132 QMJ	0.637	0.703	0.708	0.683	0.032
133 ala	0.699	0.762	0.715	0.725	0.027
134 os	0.569	0.626	0.623	0.606	0.026
135 cashdebt	0.504	0.557	0.557	0.540	0.025
136 dpia	0.681	0.634	0.623	0.646	0.025
137 greapx	0.539	0.593	0.552	0.561	0.023
138 pm	0.648	0.641	0.691	0.660	0.022
139 pps	0.563	0.589	0.611	0.587	0.019
140 invest	0.683	0.644	0.641	0.656	0.019
141 chmom	0.469	0.479	0.437	0.461	0.018
142 ms	0.611	0.619	0.648	0.626	0.016
143 mom36m	0.459	0.496	0.479	0.478	0.015
144 UMD	0.678	0.706	0.672	0.685	0.015
145 orgcap	0.686	0.715	0.699	0.700	0.012

Notes: This table presents the estimated factor strength, using data from three different data set. For the data description see Section 5.1. The table also presents the calculated mean and standard deviation of each factors. The table is ordered decreasingly by the standard deviation.

Table 7: Ten and Twenty Comparison

Factor	10 Year Strength	20 Year Strength	Difference
1 ps	0.115	0.807	0.692
2 dfin	0.182	0.838	0.656
3 ndf	0.000	0.589	0.589
4 pchdepr	0.266	0.761	0.494
5 rd	0.297	0.787	0.490
6 rsup	0.182	0.651	0.469
7 pchsale pchrect	0.115	0.574	0.459
8 pchquick	0.182	0.626	0.445
9 pchsaleinv	0.115	0.557	0.443
10 dwc	0.115	0.546	0.431
11 dsti	0.297	0.723	0.427
12 pchsale_pchxsga	0.000	0.425	0.425
13 lfe	0.000	0.425	0.425
14 gad	0.364	0.788	0.425
15 niner	0.411	0.834	0.423
	0.411	0.710	0.423
16 pchcurrat17 dcol	0.425	0.710	0.414
18 IPO	0.423	0.850	0.414
	1		0.413
19 ta	0.230	0.634	
20 sgr	0.437	0.819	0.382
21 RMW	0.469	0.847	0.378
22 ep	0.533	0.891	0.358
23 bm_ia	0.487	0.843	0.356
24 lgr	0.504	0.850	0.346
25 dolvol	0.437	0.774	0.337
26 pchsale_pchinvt	0.115	0.448	0.334
27 hire	0.519	0.851	0.332
28 herf	0.496	0.824	0.328
29 ww	0.546	0.863	0.318
30 cfp	0.579	0.893	0.314
31 roaq	0.297	0.607	0.310
32 quick	0.593	0.901	0.308
33 cp	0.589	0.894	0.306
34 cinvest_a	0.479	0.784	0.306
35 salecash	0.602	0.902	0.300
36 cdi	0.364	0.654	0.290
37 stdacc	0.593	0.883	0.290
38 chcsho	0.607	0.884	0.278
39 depr	0.615	0.889	0.274
40 indmom	0.459	0.725	0.266
41 ear	0.000	0.266	0.266
42 cashpr	0.615	0.878	0.263
43 currat	0.626	0.887	0.260
44 cash	0.637	0.897	0.260
45 stdcf	0.619	0.878	0.259
46 rds	0.634	0.890	0.256
47 roic	0.448	0.703	0.255
48 HXZ IA	0.584	0.838	0.254
49 ato	0.634	0.884	0.250
50 chtx	0.397	0.644	0.247

Table 7: Ten and Twenty Comparison (Cont.)

Factor	10 Voor Strongth	20 Voor Strongth	Difference
Factor		20 Year Strength	
51 dcoa	0.459	0.706	0.247
52 absacc	0.615	0.859	0.244
53 nop	0.651	0.893	0.242
54 CMA	0.563	0.805	0.241
55 lev	0.657	0.897	0.240
56 sin	0.607	0.844	0.238
57 SMB	0.512	0.745	0.233
58 op	0.663	0.893	0.230
59 nef	0.644	0.873	0.229
60 aeavol	0.512	0.737	0.226
61 dy	0.672	0.897	0.225
62 acc	0.619	0.843	0.225
63 egr_hxz	0.579	0.803	0.224
64 dfnl	0.297	0.519	0.222
65 convind	0.448	0.669	0.221
66 zs	0.675	0.896	0.221
67 adm	0.660	0.881	0.221
68 ndp	0.686	0.904	0.218
69 dnco	0.598	0.816	0.218
70 kz	0.669	0.887	0.217
71 salerec	0.630	0.847	0.217
72 rdm	0.607	0.823	0.216
73 rna	0.611	0.826	0.215
74 moms12m	0.512	0.725	0.214
75 noa	0.615	0.825	0.210
76 ebp	0.683	0.893	0.210
77 cinvest	0.496	0.701	0.205
78 mom6m	0.364	0.569	0.205
79 HML	0.672	0.874	0.202
80 tang	0.683	0.884	0.200
81 nxf	0.651	0.849	0.198
82 age	0.703	0.894	0.191
83 sp	0.699	0.888	0.189
84 roavol	0.713	0.894	0.182
85 ill	0.448	0.266	0.182
86 pchcapx_ia	0.512	0.681	0.169
87 dnca	0.579	0.747	0.168
88 grltnoa_hxz	0.563	0.730	0.166
89 cei	0.563	0.730	0.166
90 pricedelay	0.533	0.691	0.158
91 petace	0.539	0.694	0.154
92 rs	0.411	0.563	0.152
93 pchcapx	0.411	0.563	0.152
94 std_turn	0.719	0.870	0.151
95 maxret	0.715	0.863	0.149
96 idiovol	0.723	0.870	0.147
97 egr	0.579	0.725	0.147
98 poa	0.593	0.739	0.146
99 chempia	0.411	0.557	0.146
100 tb	0.589	0.732	0.143
101 grltnoa	0.675	0.533	0.142

Table 7: Ten and Twenty Comparison (Cont.)

Factor	10 Year Strength	20 Year Strength	Difference
102 gma	0.615	0.756	0.141
103 zerotrade	0.725	0.865	0.140
104 turn	0.728	0.864	0.137
105 realestate hxz	0.663	0.798	0.135
106 cto	0.563	0.694	0.131
107 retvol	0.721	0.848	0.127
108 baspread	0.730	0.854	0.125
109 LTR	0.364	0.487	0.124
110 ol	0.663	0.787	0.124
111 HML_Devil	0.719	0.838	0.119
112 chpmia	0.230	0.344	0.115
113 pchcapx3	0.644	0.752	0.108
114 cfp_ia	0.479	0.584	0.105
115 etr	0.448	0.344	0.104
116 beta	0.749	0.846	0.098
117 ob_a	0.669	0.764	0.095
118 em	0.552	0.644	0.093
119 BAB	0.666	0.757	0.091
120 pchgm_pchsale	0.297	0.381	0.085
121 STR	0.607	0.526	0.080
122 HXZ_ROE	0.619	0.699	0.080
123 LIQ_PS	0.634	0.557	0.076
124 chatoia	0.364	0.437	0.073
125 QMJ	0.637	0.703	0.066
126 ala	0.699	0.762	0.064
127 saleinv	0.579	0.637	0.059
128 os	0.569	0.626	0.058
129 grcapx	0.539	0.593	0.054
130 cashdebt	0.504	0.557	0.053
131 chinv	0.448	0.397	0.051
132 dpia	0.681	0.634	0.047
133 std_dolvol	0.539	0.496	0.043
134 invest	0.683	0.644	0.039
135 mom36m	0.459	0.496	0.037
136 dnoa	0.230	0.266	0.037
137 orgcap	0.686	0.715	0.029
138 sue	0.459	0.487	0.028
139 UMD	0.678	0.706	0.028
140 dncl	0.611	0.584	0.027
141 pps	0.563	0.589	0.026
142 ivg	0.381	0.397	0.016
143 chmom	0.469	0.479	0.009
144 ms	0.611	0.619	0.008
145 pm	0.648	0.641	0.007

Notes: This table presents the estimated factor strength, using data from the ten year data and twenty year data. For the data description see Section 5.1. The table also presents the difference between the two estimated strengths. The table is ordered decreasingly by the difference.

Table 8: Ten and Thirty Comparison

Factor	10 Year Strength	30 Year Strength	Difference
1 ps	0.115	0.769	0.654
2 dfin	0.182	0.791	0.609
3 ndf	0.000	0.557	0.557
4 rd	0.297	0.774	0.477
5 pchsale pchxsga	0.000	0.448	0.448
6 pchdepr	0.266	0.696	0.430
7 pchsaleinv	0.115	0.519	0.404
8 rsup	0.182	0.579	0.397
9 dcol	0.425	0.807	0.382
10 IPO	0.437	0.818	0.381
11 nincr	0.411	0.790	0.378
12 dsti	0.297	0.660	0.364
13 gad	0.364	0.723	0.360
14 pchquick	0.182	0.539	0.358
15 pehcurrat	0.297	0.654	0.358
16 RMW	0.469	0.806	0.337
17 pchsale_pchinvt	0.115	0.448	0.334
18 etr	0.448	0.115	0.334
19 dwc	0.115	0.448	0.334
20 ta	0.230	0.563	0.334
21 sgr	0.437	0.769	0.332
22 ep	0.533	0.849	0.316
23 pchsale_pchrect	0.115	0.425	0.310
24 roaq	0.297	0.602	0.306
25 lgr	0.504	0.810	0.306
26 lfe	0.000	0.297	0.297
27 hire	0.519	0.805	0.285
28 bm ia	0.487	0.772	0.285
29 ww	0.546	0.827	0.282
30 dolvol	0.437	0.715	0.278
31 herf	0.496	0.766	0.270
32 convind	0.448	0.710	0.262
33 cinvest a	0.479	0.739	0.261
34 cfp	0.579	0.838	0.259
35 cdi	0.364	0.623	0.259
36 quick	0.593	0.851	0.258
37 salecash	0.602	0.857	0.255
38 cp	0.589	0.836	0.247
39 stdacc	0.593	0.837	0.244
40 roic	0.448	0.691	0.243
41 indmom	0.459	0.696	0.237
42 dcoa	0.459	0.696	0.237
43 chcsho	0.607	0.840	0.234
44 depr	0.615	0.848	0.233
45 chtx	0.397	0.623	0.235
46 stdcf	0.619	0.836	0.220
47 currat	0.626	0.840	0.217
48 cash	0.637	0.847	0.214
49 SMB	0.512	0.721	0.210
50 rds	0.634	0.843	0.210
50 Tus	0.034	0.043	0.209

Table 8: Ten and Thirty Comparison (Cont.)

Factor	10 Year Strength	30 Year Strength	Difference
51 aeavol	0.512	0.710	0.199
52 absacc	0.615	0.812	0.197
53 ato	0.634	0.831	0.197
54 CMA	0.563	0.759	0.196
55 HXZ IA	0.584	0.780	0.196
56 cashpr	0.615	0.808	0.194
57 nop	0.651	0.839	0.188
58 moms12m	0.512	0.694	0.182
59 chatoia	0.364	0.182	0.182
60 ear	0.000	0.182	0.182
61 lev	0.657	0.838	0.181
62 acc	0.619	0.797	0.178
63 nef	0.644	0.818	0.174
64 salerec	0.630	0.803	0.173
65 rs	0.411	0.584	0.172
66 noa	0.615	0.787	0.172
67 rdm	0.607	0.778	0.172
68 op	0.663	0.835	0.172
69 egr_hxz	0.579	0.750	0.172
70 pricedelay	0.533	0.701	0.168
71 rna	0.611	0.778	0.167
72 ndp	0.686	0.852	0.166
72 hdp 73 dy	0.672	0.838	0.166
74 adm	0.660	0.825	0.165
75 cinvest	0.496	0.660	0.164
76 zs	0.675	0.839	0.164
77 dnco	0.598	0.761	0.163
78 sin	0.607	0.769	0.162
79 kz	0.669	0.831	0.162
80 ill	0.448	0.297	0.152
81 ebp	0.683	0.835	0.152
82 nxf	0.651	0.801	0.150
83 tang	0.683	0.833	0.150
84 age	0.703	0.851	0.130
85 cto	0.563	0.710	0.147
86 dfnl	0.297	0.437	0.147
87 HML	0.672	0.811	0.140
88 LIQ_PS	0.634	0.496	0.139
89 roavol	0.713	0.850	0.138
90 grltnoa	0.675	0.539	0.136
91 pchcapx	0.411	0.546	0.130
92 petace	0.539	0.672	0.134
93 mom6m	0.364	0.496	0.133
94 cei	0.563		0.132
94 cei 95 ivg	0.381	0.691 0.504	0.128
95 lvg 96 chinv	0.381		l .
		0.569	0.120
97 grltnoa_hxz	0.563	0.683	0.120
98 egr 99 tb	0.579	0.699	0.120
	0.589 0.512	0.708	0.119
100 pchcapx_ia		0.630	0.118
101 sp	0.699	0.817	0.118

Table 8: Ten and Thirty Comparison (Cont.)

Factor	10 Year Strength	30 Year Strength	Difference
102 maxret	0.715	0.825	0.110
103 dnca	0.579	0.689	0.110
104 saleinv	0.579	0.686	0.107
105 std turn	0.719	0.826	0.107
106 em	0.552	0.657	0.106
107 realestate hxz	0.663	0.769	0.105
108 idiovol	0.723	0.825	0.102
109 gma	0.615	0.715	0.100
110 retvol	0.721	0.813	0.092
111 dncl	0.611	0.519	0.092
112 baspread	0.730	0.820	0.091
113 poa	0.593	0.681	0.087
114 zerotrade	0.725	0.812	0.087
115 turn	0.728	0.813	0.086
116 cfp_ia	0.479	0.563	0.085
117 chempia	0.411	0.496	0.085
118 std_dolvol	0.539	0.459	0.080
119 ol	0.663	0.741	0.078
120 ob_a	0.669	0.745	0.076
121 QMJ	0.637	0.708	0.071
122 sue	0.459	0.397	0.062
123 HML_Devil	0.719	0.781	0.062
124 STR	0.607	0.546	0.061
125 HXZ_ROE	0.619	0.678	0.059
126 dpia	0.681	0.623	0.058
127 beta	0.749	0.806	0.057
128 os	0.569	0.623	0.054
129 cashdebt	0.504	0.557	0.053
130 dnoa	0.230	0.182	0.048
131 chpmia	0.230	0.182	0.048
132 pps	0.563	0.611	0.048
133 pchcapx3	0.644	0.691	0.047
134 BAB	0.666	0.710	0.044
135 pm	0.648	0.691	0.043
136 invest	0.683	0.641	0.042
137 ms	0.611	0.648	0.037
138 chmom	0.469	0.437	0.032
139 pchgm_pchsale	0.297	0.322	0.026
140 mom36m	0.459	0.479	0.019
141 LTR	0.364	0.381	0.017
142 ala	0.699	0.715	0.016
143 orgcap	0.686	0.699	0.013
144 greapx 145 UMD	0.539	0.552 0.672	0.012 0.006
143 UNID	0.678	0.072	0.000

Notes: This table presents the estimated factor strength, using data from the ten year data and thirty year data. For the data description see Section 5.1. The table also presents the difference between the two estimated strengths. The table is ordered decreasingly by the difference.

Table 9: Twenty and Thirty Comparison

Factor	20 Year Strength	30 Year Strength	Difference
1 chatoia	0.437	0.182	0.255
2 etr	0.344	0.115	0.230
3 chiny	0.397	0.569	0.172
4 chpmia	0.344	0.182	0.162
5 pchsale_pchrect	0.574	0.425	0.149
6 lfe	0.425	0.297	0.128
7 ivg	0.397	0.504	0.107
8 LTR	0.487	0.381	0.106
9 dwc	0.546	0.448	0.097
10 sue	0.487	0.397	0.090
11 pchquick	0.626	0.539	0.087
12 dnoa	0.266	0.182	0.085
13 ear	0.266	0.182	0.085
14 dfnl	0.519	0.437	0.082
15 sin	0.844	0.769	0.075
16 mom6m	0.569	0.496	0.073
17 rsup	0.651	0.579	0.072
18 bm ia	0.843	0.772	0.071
19 ta	0.634	0.563	0.071
20 sp	0.888	0.817	0.071
21 cashpr	0.878	0.808	0.070
22 gad	0.788	0.723	0.065
23 dncl	0.584	0.519	0.065
24 pchdepr	0.761	0.696	0.065
25 dsti	0.723	0.660	0.063
26 HML	0.874	0.811	0.063
27 chempia	0.557	0.496	0.062
28 LIQ PS	0.557	0.496	0.062
29 pchcapx3	0.752	0.691	0.061
30 dy	0.897	0.838	0.059
31 lev	0.897	0.838	0.059
32 pchgm_pchsale	0.381	0.322	0.059
33 dolvol	0.774	0.715	0.059
34 poa	0.739	0.681	0.059
35 HXZ IA	0.838	0.780	0.058
36 cp	0.894	0.836	0.058
37 dnca	0.747	0.689	0.058
38 herf	0.824	0.766	0.058
39 op	0.893	0.835	0.058
40 ebp	0.893	0.835	0.058
41 HML Devil	0.838	0.781	0.057
42 zs	0.896	0.839	0.057
43 adm	0.881	0.825	0.056
44 kz	0.887	0.831	0.056
45 pchcurrat	0.710	0.654	0.056
46 dnco	0.816	0.761	0.055
47 nef	0.873	0.818	0.055
48 cfp	0.893	0.838	0.055
49 nop	0.893	0.839	0.054
50 zerotrade	0.865	0.812	0.053
	0.003	0.012	0.000

Table 9: Twenty and Thirty Comparison (Cont.)

Factor	20 Vear Strength	30 Year Strength	Difference
51 ato	0.884	0.831	0.053
52 egr_hxz	0.803	0.750	0.053
53 rdp	0.904	0.852	0.053
54 turn	0.864	0.832	0.052
55 tang	0.884	0.813	0.051
56 sgr	0.819	0.833	0.051
57 pchcapx_ia	0.681	0.630	0.050
58 pm	0.641	0.691	0.050
59 cash	0.897	0.847	0.050
60 quick	0.901	0.851	0.050
61 nxf	0.849	0.801	0.030
62 saleinv	0.637	0.686	0.049
63 rna	0.826	0.778	0.049
64 ala	0.762	0.778	0.048
65 BAB	0.757	0.710	0.047
66 dfin	0.838	0.791	0.047
67 absacc	0.859	0.812	0.047
68 hire	0.851	0.805	0.047
69 acc	0.843	0.797	0.047
70 rds	0.890	0.843	0.047
70 rus 71 currat	0.887	0.840	0.047
72 grltnoa hxz	0.730	0.683	0.047
72 granoa_nxz 73 stdacc	0.883	0.837	0.046
74 ol	0.383	0.741	0.046
75 CMA	0.805	0.759	0.046
76 idiovol	0.870	0.825	0.045
77 salecash	0.902	0.857	0.045
78 cinvest a	0.784	0.739	0.045
79 rdm	0.823	0.778	0.045
80 chcsho	0.884	0.840	0.044
81 std turn	0.870	0.826	0.044
82 roavol	0.894	0.850	0.044
83 nincr	0.834	0.790	0.044
84 salerec	0.847	0.803	0.044
85 age	0.894	0.851	0.043
86 stdcf	0.878	0.836	0.042
87 chmom	0.479	0.437	0.042
88 grcapx	0.593	0.552	0.042
89 RMW	0.847	0.806	0.041
90 ep	0.891	0.849	0.041
91 convind	0.669	0.710	0.041
92 gma	0.756	0.715	0.041
93 depr	0.889	0.848	0.041
94 lgr	0.850	0.810	0.041
95 cinvest	0.701	0.660	0.041
96 beta	0.846	0.806	0.040
97 cei	0.730	0.691	0.038
98 pchsaleinv	0.557	0.519	0.038
99 maxret	0.863	0.825	0.038
100 ps	0.807	0.769	0.038
101 noa	0.825	0.787	0.038
	1		

Table 9: Twenty and Thirty Comparison (Cont.)

Factor	20 Year Strength	30 Year Strength	Difference
102 std dolvol	0.496	0.459	0.037
103 ww	0.863	0.827	0.036
104 retvol	0.848	0.813	0.035
105 baspread	0.854	0.820	0.034
106 UMD	0.706	0.672	0.033
107 IPO	0.850	0.818	0.032
108 moms12m	0.725	0.694	0.032
109 cdi	0.654	0.623	0.031
110 ndf	0.589	0.557	0.031
111 dcol	0.838	0.807	0.031
112 ill	0.266	0.297	0.030
113 indmom	0.725	0.696	0.029
114 realestate_hxz	0.798	0.769	0.029
115 ms	0.619	0.648	0.029
116 aeavol	0.737	0.710	0.027
117 egr	0.725	0.699	0.027
118 SMB	0.745	0.721	0.024
119 pchsale_pchxsga	0.425	0.448	0.024
120 tb	0.732	0.708	0.024
121 pps	0.589	0.611	0.022
122 chtx	0.644	0.623	0.022
123 pctacc	0.694	0.672	0.021
124 cfp_ia	0.584	0.563	0.021
125 rs	0.563	0.584	0.021
126 HXZ_ROE	0.699	0.678	0.021
127 STR	0.526	0.546	0.019
128 ob_a	0.764	0.745	0.019
129 pchcapx	0.563	0.546	0.017
130 mom36m	0.496	0.479	0.017
131 cto	0.694	0.710	0.017
132 orgcap	0.715	0.699	0.016
133 rd	0.787	0.774	0.013
134 em	0.644	0.657	0.013
135 roic	0.703	0.691	0.012
136 dpia	0.634	0.623	0.011
137 pricedelay	0.691	0.701	0.010
138 dcoa	0.706	0.696	0.010
139 grltnoa	0.533	0.539	0.006
140 QMJ	0.703	0.708	0.005
141 roaq	0.607	0.602	0.004
142 os	0.626	0.623	0.004
143 invest	0.644	0.641	0.003
144 cashdebt	0.557	0.557	0.000
145 pchsale_pchinvt	0.448	0.448	0.000

Notes: This table presents the estimated factor strength, using data from the twenty year data and thirty year data. For the data description see Section 5.1. The table also presents the difference between the two estimated strengths. The table is ordered decreasingly by the difference.

Table 10: Twenty Year Decompose

		Factor Strength	â	
Factor	Full Sample			Difference between
	-	December 2007	December 2017	Sub samples
1 ndf	0.589	0.721	0.000	0.721
2 invest	0.644	0.000	0.648	0.648
3 dpia	0.634	0.000	0.644	0.644
4 ps	0.807	0.752	0.115	0.637
5 dfin	0.838	0.810	0.182	0.628
6 rsup	0.651	0.663	0.115	0.549
7 pchsale_pchxsga	0.425	0.512	0.000	0.512
8 rd	0.787	0.756	0.266	0.489
9 pchquick	0.626	0.602	0.115	0.487
10 pchsale_pchrect	0.574	0.584	0.115	0.469
11 pchsaleinv	0.557	0.574	0.115	0.459
12 pchcurrat	0.710	0.634	0.182	0.452
13 pchdepr	0.761	0.696	0.266	0.430
14 pchsale_pchinvt	0.448	0.539	0.115	0.425
15 dcol	0.838	0.786	0.364	0.422
16 nincr	0.834	0.777	0.364	0.413
17 ta	0.634	0.593	0.182	0.411
18 IPO	0.850	0.802	0.397	0.405
19 grltnoa	0.533	0.230	0.634	0.404
20 dwc	0.546	0.519	0.115	0.404
21 dfnl	0.519	0.648	0.266	0.381
22 lfe	0.425	0.364	0.000	0.364
23 RMW	0.847	0.808	0.448	0.360
24 gad	0.788	0.626	0.266	0.360
25 lgr	0.850	0.787	0.437	0.350
26 sgr	0.819	0.741	0.397	0.344
27 ep	0.891	0.862	0.519	0.342
28 dsti	0.723	0.626	0.297	0.330
29 bm ia	0.843	0.793	0.469	0.324
30 roaq	0.607	0.584	0.266	0.317
31 dolvol	0.774	0.752	0.437	0.315
32 cinvest_a	0.784	0.737	0.425	0.313
33 ww	0.863	0.822	0.512	0.310
34 etr	0.344	0.115	0.411	0.297
35 cfp	0.893	0.853	0.557	0.296
36 herf	0.824	0.778	0.487	0.291
37 mom6m	0.569	0.519	0.230	0.290
38 hire	0.851	0.783	0.496	0.287
39 cp	0.894	0.858	0.574	0.284
40 salecash	0.902	0.861	0.584	0.277
41 quick	0.901	0.852	0.579	0.273
42 chcsho	0.884	0.843	0.574	0.270
43 roic	0.703	0.694	0.425	0.269
44 stdacc	0.703	0.842	0.574	0.269
45 STR	0.883	0.842	0.563	0.266
46 ear	0.326	0.266	0.000	0.266
	0.288	0.266	0.589	0.266
47 depr	0.889	0.834	0.389	0.248
48 SMB	0.743	0.730	0.48/	0.248

Table 10: Thirty Year Decompose (Cont.)

		Factor Strength α̂				
Factor	Full Sample			Difference between		
	1	December 2007	December 2017	Sub samples		
49 cdi	0.654	0.569	0.322	0.246		
50 stdcf	0.878	0.839	0.593	0.246		
51 rds	0.890	0.852	0.607	0.246		
52 indmom	0.725	0.669	0.425	0.245		
53 cash	0.897	0.856	0.615	0.241		
54 cei	0.730	0.719	0.479	0.241		
55 lev	0.897	0.861	0.626	0.234		
56 dnco	0.816	0.770	0.539	0.231		
57 sin	0.844	0.810	0.579	0.231		
58 nop	0.893	0.857	0.626	0.230		
59 currat	0.887	0.844	0.615	0.230		
60 convind	0.669	0.611	0.381	0.230		
61 HML	0.874	0.853	0.626	0.227		
62 kz	0.887	0.860	0.634	0.226		
63 cashpr	0.878	0.832	0.607	0.225		
64 zs	0.896	0.858	0.641	0.217		
65 mom36m	0.496	0.626	0.411	0.215		
66 moms12m	0.725	0.683	0.469	0.214		
67 nef	0.873	0.833	0.619	0.214		
68 ato	0.884	0.827	0.619	0.209		
69 ndp	0.904	0.862	0.654	0.208		
70 op	0.893	0.852	0.644	0.208		
71 dy	0.897	0.853	0.648	0.205		
72 ebp	0.893	0.859	0.654	0.205		
72 cop 73 noa	0.825	0.787	0.584	0.203		
74 CMA	0.825	0.699	0.496	0.203		
75 acc	0.803	0.799	0.602	0.203		
76 adm	0.843	0.833	0.637	0.197		
77 salerec	0.847	0.801	0.615	0.195		
78 sue	0.847		0.613			
79 absacc		0.230		0.182		
	0.859	0.788	0.607	0.182		
80 ivg	0.397	0.182	0.364	0.182		
81 HXZ_IA	0.838	0.739	0.557	0.182		
82 pchgm_pchsale	0.381	0.448	0.266	0.182		
83 rdm	0.823	0.764	0.584	0.180		
84 aeavol	0.737	0.657	0.479	0.179		
85 age	0.894	0.847	0.669	0.178		
86 LIQ_PS	0.557	0.425	0.598	0.173		
87 cinvest	0.701	0.626	0.459	0.167		
88 nxf	0.849	0.790	0.623	0.167		
89 roavol	0.894	0.858	0.691	0.167		
90 sp	0.888	0.847	0.681	0.167		
91 tang	0.884	0.830	0.669	0.160		
92 pchcapx_ia	0.681	0.651	0.496	0.155		
93 egr_hxz	0.803	0.686	0.533	0.153		
94 maxret	0.863	0.838	0.686	0.152		
95 grcapx	0.593	0.344	0.496	0.152		
96 tb	0.732	0.703	0.552	0.152		
97 zerotrade	0.865	0.835	0.691	0.144		

Table 10: Thirty Year Decompose (Cont.)

	Factor Strength $\hat{\alpha}$				
Factor	Full Sample	January 1998 to	January 2008 to	Difference between	
	run Sample	December 2007	December 2017	Sub samples	
98 rna	0.826	0.730	0.589	0.141	
99 retvol	0.848	0.834	0.694	0.140	
100 std_turn	0.870	0.832	0.694	0.138	
101 idiovol	0.870	0.832	0.694	0.138	
102 chtx	0.644	0.519	0.381	0.138	
103 baspread	0.854	0.840	0.703	0.137	
104 pchcapx	0.563	0.459	0.322	0.137	
105 turn	0.864	0.830	0.696	0.133	
106 HML Devil	0.838	0.818	0.686	0.132	
107 cfp ia	0.584	0.589	0.459	0.130	
108 poa	0.739	0.696	0.574	0.122	
109 pm	0.641	0.512	0.634	0.122	
110 pctace	0.694	0.641	0.519	0.122	
111 chinv	0.397	0.297	0.411	0.115	
112 dcoa	0.706	0.563	0.448	0.115	
113 chmom	0.479	0.322	0.437	0.115	
114 chpmia	0.344	0.344	0.230	0.115	
115 BAB	0.757	0.749	0.637	0.111	
116 beta	0.846	0.838	0.728	0.111	
117 HXZ ROE	0.699	0.672	0.563	0.109	
118 realestate hxz	0.099	0.752	0.648	0.105	
119 grltnoa_hxz	0.730	0.623	0.519	0.103	
120 std dolvol	0.730	0.023	0.519	0.100	
120 std_dolvol		0.766			
	0.762		0.666	0.099	
122 pps	0.589	0.448	0.546	0.097	
123 QMJ	0.703	0.701	0.607	0.094	
124 cashdebt	0.557	0.563	0.469	0.094	
125 dnca	0.747	0.611	0.519	0.092	
126 pricedelay	0.691	0.598	0.512	0.086	
127 dnoa	0.266	0.266	0.182	0.085	
128 saleinv	0.637	0.469	0.552	0.083	
129 gma	0.756	0.660	0.579	0.082	
130 chempia	0.557	0.487	0.411	0.076	
131 egr	0.725	0.593	0.533	0.060	
132 ol	0.787	0.703	0.644	0.059	
133 cto	0.694	0.602	0.552	0.051	
134 LTR	0.487	0.411	0.364	0.048	
135 ill	0.266	0.381	0.425	0.043	
136 ob_a	0.764	0.694	0.651	0.043	
137 rs	0.563	0.364	0.397	0.033	
138 dncl	0.584	0.615	0.584	0.031	
139 pchcapx3	0.752	0.637	0.607	0.031	
140 em	0.644	0.546	0.519	0.027	
141 chatoia	0.437	0.344	0.322	0.022	
142 ms	0.619	0.563	0.584	0.021	
143 os	0.626	0.533	0.546	0.013	
144 orgcap	0.715	0.657	0.666	0.009	
145 UMD	0.706	0.641	0.637	0.003	

Notes: This table presents the estimated factor strength, using the decomposed twenty years data. The thirty year data set is decomposed into two subsets: January 1998 to December 2007, and January 2008 to December 2017. For each data set, it contains 120 observations (t = 120), and 342 units (n = 342) The table also contains the full sample estimation results of factor strength, and the difference between the two sub samples results. The table is ordered decreasingly by the difference.

Table 11: Thirty Year Decompose

	Factor Strength â					
	E 11.0 1			January 2008 to	Standard Deviation of	
Factor	Full Sample		December 2007		Three sub-samples	
1 ps	0.769	0.425	0.715	0.000	0.294	
2 ndf	0.557	0.230	0.678	0.000	0.281	
3 pchdepr	0.696	0.000	0.666	0.182	0.281	
4 dfin	0.791	0.266	0.772	0.115	0.281	
5 invest	0.641	0.557	0.000	0.607	0.275	
6 dpia	0.623	0.546	0.000	0.607	0.273	
7 pchquick	0.539	0.000	0.569	0.000	0.268	
8 pchcapx_ia	0.630	0.000	0.589	0.437	0.250	
9 pehcurrat	0.654	0.000	0.593	0.182	0.248	
10 rd	0.774	0.364	0.715	0.115	0.246	
11 gad	0.723	0.000	0.584	0.182	0.244	
12 sin	0.769	0.182	0.770	0.469	0.244	
13 IPO	0.703	0.230	0.777	0.364	0.233	
14 pchsale pchrect	0.425	0.115	0.519	0.000	0.223	
15 tb	0.708	0.115	0.651	0.448	0.223	
16 ta	0.768	0.344	0.533	0.000	0.221	
17 rsup	0.503	0.519	0.533	0.000	0.221	
18 pchsaleinv	0.579	0.182	0.519	0.000	0.215	
19 dsti	0.519	0.182	0.563	0.000	0.213	
20 dncl		0.115	0.546	0.563	l control of the cont	
	0.519				0.207	
21 pchsale_pchinvt	0.448	0.266	0.496	0.000	0.203	
22 adm	0.825	0.297	0.786	0.552	0.200	
23 dcol	0.807	0.526	0.752	0.266	0.198	
24 stdacc	0.837	0.322	0.803	0.526	0.197	
25 pchsale_pchxsga		0.230	0.469	0.000	0.192	
26 cinvest_a	0.739	0.266	0.708	0.364	0.189	
27 ivg	0.504	0.569	0.115	0.297	0.186	
28 noa	0.787	0.297	0.741	0.519	0.182	
29 LIQ_PS	0.496	0.115	0.397	0.552	0.181	
30 ato	0.831	0.364	0.797	0.533	0.178	
31 roaq	0.602	0.425	0.533	0.115	0.177	
32 stdcf	0.836	0.381	0.805	0.546	0.174	
33 ep	0.849	0.504	0.826	0.425	0.174	
34 rna	0.778	0.266	0.686	0.519	0.172	
35 grltnoa	0.539	0.425	0.182	0.593	0.169	
36 ww	0.827	0.397	0.791	0.496	0.167	
37 dwc	0.448	0.479	0.437	0.115	0.163	
38 bm_ia	0.772	0.584	0.756	0.364	0.160	
39 pchgm_pchsale	0.322	0.000	0.381	0.266	0.160	
40 RMW	0.806	0.448	0.774	0.425	0.159	
41 rds	0.843	0.437	0.810	0.546	0.156	
42 niner	0.790	0.519	0.736	0.364	0.152	
43 dfnl	0.437	0.344	0.589	0.230	0.150	
44 lgr	0.810	0.496	0.752	0.397	0.150	
45 cfp	0.838	0.512	0.816	0.487	0.149	
46 sgr	0.769	0.546	0.703	0.344	0.147	
47 dolvol	0.715	0.397	0.703	0.397	0.144	
48 herf	0.766	0.689	0.728	0.411	0.141	

Table 11: Thirty Year Decompose (Cont.)

	Factor Strength α				
Factor	Full Sample				Standard Deviation of
			December 2007		Three sub-samples
49 lev	0.838	0.504	0.817	0.539	0.140
50 salecash	0.857	0.539	0.823	0.519	0.139
51 chesho	0.840	0.504	0.808	0.526	0.139
52 cp	0.836	0.557	0.820	0.512	0.136
53 lfe	0.297	0.230	0.322	0.000	0.135
54 zs	0.839	0.519	0.813	0.539	0.134
55 kz	0.831	0.519	0.813	0.539	0.134
56 cdi	0.623	0.546	0.552	0.266	0.133
57 convind	0.710	0.589	0.563	0.297	0.132
58 STR	0.546	0.469	0.230	0.533	0.131
59 mom6m	0.496	0.182	0.479	0.230	0.130
60 quick	0.851	0.607	0.819	0.512	0.129
61 moms12m	0.694	0.411	0.657	0.381	0.124
62 hire	0.805	0.569	0.749	0.448	0.123
63 cfp_ia	0.563	0.266	0.569	0.425	0.123
64 ebp	0.835	0.557	0.816	0.557	0.122
65 ndp	0.852	0.574	0.823	0.557	0.121
66 HML	0.811	0.539	0.815	0.589	0.120
67 cashpr	0.808	0.557	0.790	0.519	0.120
68 cash	0.847	0.584	0.819	0.552	0.119
69 chiny	0.569	0.557	0.266	0.397	0.119
70 depr	0.848	0.637	0.820	0.533	0.119
71 absacc	0.812	0.469	0.756	0.579	0.118
72 roic	0.691	0.563	0.641	0.364	0.117
73 BAB	0.710	0.425	0.706	0.598	0.116
74 age	0.851	0.546	0.817	0.630	0.113
75 indmom	0.696	0.479	0.630	0.364	0.109
76 SMB	0.721	0.607	0.699	0.437	0.108
77 HXZ_ROE	0.678	0.364	0.623	0.519	0.106
78 acc	0.797	0.519	0.764	0.574	0.105
79 nop	0.839	0.615	0.824	0.598	0.103
80 currat	0.840	0.626	0.810	0.574	0.101
81 rdm	0.778	0.519	0.725	0.512	0.099
82 chatoia	0.182	0.411	0.182	0.230	0.099
83 CMA	0.759	0.496	0.678	0.448	0.099
84 chpmia	0.182	0.000	0.230	0.182	0.099
85 roavol	0.850	0.593	0.826	0.654	0.099
86 saleinv	0.686	0.663	0.425	0.533	0.098
87 chtx	0.623	0.364	0.504	0.266	0.098
88 cinvest	0.660	0.397	0.602	0.397	0.097
89 dnco	0.761	0.557	0.736	0.512	0.097
90 cei	0.691	0.487	0.666	0.448	0.095
91 chmom	0.437	0.487	0.266	0.322	0.094
92 op	0.835	0.626	0.819	0.615	0.094
93 salerec	0.803	0.557	0.754	0.557	0.093
94 sp	0.817	0.593	0.805	0.630	0.092
95 HML_Devil	0.781	0.557	0.774	0.619	0.091
96 dy	0.838	0.634	0.820	0.626	0.090
97 pchcapx	0.546	0.322	0.448	0.230	0.090

Table 11: Thirty Year Decompose (Cont.)

98 realestate hxz		Factor Strength $\hat{\alpha}$				
	Factor	Full Sample				
99 cashdebt		-				Three sub-samples
100 nef	-					
101 mom36m	99 cashdebt	0.557	0.344	0.533	0.344	0.089
102 ob_a	100 nef	0.818	0.657	0.799	0.589	
103 aeavol	101 mom36m		0.397	0.574	0.381	0.087
104 HXZ_IA		0.745	0.437	0.637	0.598	0.087
105 tang	103 aeavol	0.710	0.589	0.615	0.425	0.084
106 maxret	104 HXZ_IA	0.780	0.563	0.713	0.519	0.083
107 pricedelay	105 tang	0.833	0.615	0.793	0.626	0.081
108 grcapx	106 maxret	0.825	0.615	0.803	0.654	0.081
109 baspread 0.820 0.630 0.808 0.663 0.077 110 nxf 0.801 0.623 0.762 0.584 0.077 111 pps 0.611 0.512 0.344 0.496 0.076 112 LTR 0.381 0.182 0.297 0.364 0.075 113 etr 0.115 0.230 0.115 0.297 0.075 114 dnoa 0.182 0.000 0.182 0.115 0.075 115 ear 0.182 0.115 0.182 0.000 0.075 115 ear 0.182 0.115 0.182 0.000 0.075 116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 0.063 123 beta 0.806 0.666 0.807 0.696 0.062 0.621	107 pricedelay	0.701	0.593	0.563	0.411	0.080
110 nxf 0.801 0.623 0.762 0.584 0.077 111 pps 0.611 0.512 0.344 0.496 0.076 112 LTR 0.381 0.182 0.297 0.364 0.075 113 etr 0.115 0.230 0.115 0.297 0.075 114 dnoa 0.182 0.000 0.182 0.115 0.075 115 ear 0.182 0.115 0.182 0.000 0.075 115 ear 0.182 0.115 0.182 0.000 0.075 116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 petace 0.672 0.546 0.600 0.552 0.053 131 gma 0.715 0.637 0.619 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.657 0.593 0.594 0.052 137 dnca 0.689 0.487 0.487 0.049 138 chempia 0.496 0.437 0.584 0.487 0.045 138 chempia 0.496 0.487 0.487 0.045 140 cr 0.699 0.539 0.563 0.496 0.028 140 cr 0.597 0.584 0.411 0.344 0.381 0.027 141 pehcapx3 0.691 0.530 0.182 0.230 0.022	108 grcapx	0.552	0.411	0.266	0.448	0.078
111 pps 0.611 0.512 0.344 0.496 0.076 112 LTR 0.381 0.182 0.297 0.364 0.075 113 etr 0.115 0.230 0.115 0.297 0.075 114 dnoa 0.182 0.000 0.182 0.115 0.075 115 ear 0.182 0.115 0.182 0.000 0.075 116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.062 124 cto 0.710 0.657 0.539	109 baspread	0.820	0.630	0.808	0.663	0.077
112 LTR 0.381 0.182 0.297 0.364 0.075 113 etr 0.115 0.230 0.115 0.297 0.075 114 dnoa 0.182 0.000 0.182 0.115 0.075 115 ear 0.182 0.115 0.182 0.000 0.075 116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539	110 nxf	0.801	0.623	0.762	0.584	0.077
112 LTR 0.381 0.182 0.297 0.364 0.075 113 etr 0.115 0.230 0.115 0.297 0.075 114 dnoa 0.182 0.000 0.182 0.115 0.075 115 ear 0.182 0.115 0.182 0.000 0.075 116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 ger hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 122 turn 0.813 0.666 0.798	111 pps	0.611	0.512	0.344	0.496	0.076
114 dnoa 0.182 0.000 0.182 0.115 0.075 115 ear 0.182 0.115 0.182 0.000 0.075 116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 125 pm 0.691 0.611 0.479 <		0.381	0.182	0.297	0.364	0.075
115 ear 0.182 0.115 0.182 0.000 0.075 116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.053 127 std_dolvol 0.459 0.381 0.297	113 etr	0.115	0.230	0.115	0.297	0.075
116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.066 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660	114 dnoa	0.182	0.000	0.182	0.115	0.075
116 retvol 0.813 0.634 0.801 0.660 0.073 117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.066 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660	115 ear	0.182	0.115	0.182	0.000	0.075
117 std_turn 0.826 0.637 0.799 0.657 0.072 118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660	116 retvol					
118 idiovol 0.825 0.644 0.799 0.657 0.070 119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.052 130 QMJ 0.708 0.546 0.660 <td< td=""><td>117 std turn</td><td></td><td></td><td></td><td></td><td></td></td<>	117 std turn					
119 zerotrade 0.812 0.651 0.803 0.663 0.069 120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.5						
120 dcoa 0.696 0.557 0.546 0.411 0.066 121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 133 ms 0.648 0.437 0.557 0.512						
121 egr_hxz 0.750 0.563 0.666 0.512 0.064 122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 133 ms 0.648 0.437 0.557 0.512 0.593 0.469 0.052 134 grltnoa_hxz 0.683 0.5						
122 turn 0.813 0.666 0.798 0.663 0.063 123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 </td <td></td> <td></td> <td></td> <td>0.666</td> <td></td> <td></td>				0.666		
123 beta 0.806 0.660 0.807 0.696 0.062 124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 pctacc 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615						
124 cto 0.710 0.657 0.539 0.519 0.061 125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 pctace 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579<						
125 pm 0.691 0.611 0.479 0.602 0.060 126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 pctace 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487						
126 ill 0.297 0.182 0.230 0.322 0.058 127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 pctace 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437						
127 std_dolvol 0.459 0.381 0.297 0.437 0.058 128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 pctacc 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 140 rs 0.584 0.411 0.344 0						
128 poa 0.681 0.552 0.660 0.533 0.056 129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 pctace 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 <td>127 std dolvol</td> <td></td> <td></td> <td></td> <td></td> <td></td>	127 std dolvol					
129 em 0.657 0.546 0.504 0.411 0.056 130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 pctace 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.5						
130 QMJ 0.708 0.546 0.660 0.552 0.053 131 gma 0.715 0.637 0.619 0.519 0.052 132 pctacc 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.						
131 gma 0.715 0.637 0.619 0.519 0.052 132 pctace 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022						
132 pctace 0.672 0.512 0.593 0.469 0.052 133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022	_	0.715				
133 ms 0.648 0.437 0.557 0.512 0.050 134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022		l .				l .
134 grltnoa_hxz 0.683 0.512 0.602 0.487 0.049 135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022						
135 ala 0.715 0.651 0.728 0.615 0.047 136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022						
136 UMD 0.672 0.496 0.607 0.579 0.047 137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022						
137 dnca 0.689 0.487 0.584 0.487 0.045 138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022						
138 chempia 0.496 0.437 0.437 0.364 0.034 139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022						
139 egr 0.699 0.539 0.563 0.496 0.028 140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022						
140 rs 0.584 0.411 0.344 0.381 0.027 141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022	-				I .	
141 pchcapx3 0.691 0.539 0.598 0.574 0.024 142 sue 0.397 0.230 0.182 0.230 0.022						
142 sue 0.397 0.230 0.182 0.230 0.022						
143 ol 0.741 0.644 0.657 0.619 0.016	143 ol	0.741	0.644		0.619	
144 os 0.623 0.437 0.469 0.469 0.015						
145 orgcap 0.699 0.611 0.615 0.607 0.003						

Notes: This table presents the estimated factor strength, using the decomposed thirty years data. The thirty year data set is decomposed into three subsets: January 1988 to December 1997, January 1998 to December 2007, and January 2008 to December 2017. For each data set, it contains 120 observations (t = 120), and 242 units (n = 242) The table also contains the full sample estimation results of factor strength, and the standard deviation among the three sub samples results. The table is ordered decreasingly by the standard deviation.

Figure 1: Strength Comparison

Notes: The figure compare the strength of every factor's strength in different data set. The x-axis indicates the data set: thirty is thirty years data set (January 1987 to December 2017), twenty is twenty year data set (January 1997 to December 2017), and ten is ten year data set (January 2007 to December 2017). The red dash line draws from the 0,5 as the 0.5 threshold for weak and strong factor.

Figure 2: The scatter Plot for three period

Notes: This scatter plot illustrates the relationship between the factor strength and the factor's publish year. The x-axis represent the year, and the y-axis represent the factor strength. For each factor, we estimate it's strength base on three different data sets, and we use different colour to indicates the three different data set.