Assignment-4: Pattern Recognition

Contents

1	2			
	1.1 HMM			
	1.2 DTW			
	1.3 HMMs versus DTW			
2 Connected Digits				
3	3 Handwritten	5		

1 Isolated Digits

1.1 HMM

Data: Classes given to us are "1", "5" and "z".

Algorithm: The data is divided into train (70%) and test (30%). The data is quantized using K-means with the number of symbols being equal to the number of means. A left-right HMM is trained on each class. Given a test datapoint, the likelihood of all three HMM-models on this datapoint are obtained. The predicted class is the one having the maximum likelihood.

Experiments: The number of states and the number of symbols are the free variables. Each state-symbol combination corresponds to one experiment. The ROC-DET curves are plotted for all these models.

Performance as a function of symbols

Figure 1: HMM is labelled as < symbols > $_$ < states >

Performance as a function of states

Figure 2: HMM is labelled as < symbols $> _ <$ states >

Figure 3: HMM is labelled as < symbols $> _ <$ states >

Observations: The design of the codebook has a much greater impact on the performance than that of the states. 16 is observed to be the optimal codebook size. Even a single state HMM, 16-symbols HMM performs better than HMMs with a smaller codebook.

1.2 DTW

Figure 4: Each model is labelled by the number of nearest neighbours chosen.

Observations: Near perfect classification is obtained using just a single neighbour. This suggests that DTW is a very good distance measure for time series data.

1.3 HMMs versus DTW

- No training or hyperparameter tuning required in DTW.
- Unlike HMMs, DTW is memory and compute intensive during test time.

2 Connected Digits

Results on test-1				
Ground truth	Known model	Unknown model		
	length	length		
11z	11z	11z		
15	15	1555		
15z	1zz	1zz		
1z51	1z51	1z51z		
1z	1z	1z5z1		
1zz	1zz	1zz		
1zzz1	1zzz1	1zzz1		
51	51	511z1		
51z	51z	51z1z		
51zz5	51zz1	51zz1		
55	55	55		
z1	z1	z1zzz		
z1z	ZZZ	ZZZ		
z51z	z1z5	z1z5		
z 5	z5	z51		
z5z	z5z	z5z1		
z5zzz	z5zzz	z5zzz		
ZZ	ZZ	ZZ		

Results on test-2				
Ground truth	Fixed model	Unknown model		
	length = 3	length		
154.txt	111	11		
155.txt	155	155z1		
156.txt	151	15151		
157.txt	1zz	1zz15		
158.txt	z51	z51z1		
159.txt	551	55111		
160.txt	1zz	1zz		
161.txt	z1z	z1zzz		
162.txt	zz5	zz5z1		
163.txt	zz5	zz5z1		
164.txt	ZZZ	ZZ		
165.txt	ZZZ	zzz5z		
166.txt	ZZZ	ZZZ		

-symbol, 10-state HMM models trained on each class are used for this task. The HMMs are then concatenated to form different continuous models. During concatenation the final state's self-transition probability is set to 0.5, and its

next state transition probability is also set to 0.5. Sequence lengths upto 5 are considered. So there are a total of $3^1+3^2+3^3+3^4+3^5=363$ HMM models against which each datapoint is tested.

3 Handwritten