
UK Patent (19) **GB** (11) **2 410 518** (13) **B**

(45) Date of publication: **14.12.2005**

(54) Title of the invention: Collapsible expansion cone

(51) Int Cl⁷: **E21B 43/10**

(21) Application No:	0506697.2	(72) Inventor(s): Brock Wayne Watson David Paul Brisco
(22) Date of Filing:	12.11.2002	(73) Proprietor(s): Enventure Global Technology (Incorporated in USA - Delaware) 16200-A Park Row, Houston, Texas 77084, United States of America
Date Lodged:	01.04.2005	(74) Agent and/or Address for Service: Haseltine Lake & Co Redcliff Quay, 120 Redcliff Street, BRISTOL, BS1 6HU, United Kingdom
(30) Priority Data: (31) 60338996	(32) 12.11.2001	(33) US
(31) 60339013	(32) 12.11.2001	(33) US
(31) 60363829	(32) 13.03.2002	(33) US
(31) 60387961	(32) 12.06.2002	(33) US
(62) Divided from Application No 0412533.2 under Section 15(4) of the Patents Act 1977		
(43) Date A Publication:	03.08.2005	
(52) UK CL (Edition X): E1F FLA		
(56) Documents Cited: WO 2001/038693 A1		
(58) Field of Search: As for published application 2410518 A viz: INT CL ⁷ E21B Other: Online: WPI, EPODOC updated as appropriate		

2410518

1/20

Fig. 1a

Fig. 1b

*Fig. 2a**Fig. 2b*

Fig. 3

Fig. 3b

Fig. 4

7/20

Fig. 4a

○

Fig. 7b

38

Fig. 7c

○

11/20

Fig. 7d

38

Fig. 7e

Fig. 7f

Fig. 8b

Fig. 8a

Fig. 8c

13/20

Fig. 8d

Fig. 9

Fig. 8e

Fig. 10a

Fig. 10b

15/20

Fig. 11a

16/20

Fig. 12

17/20

Fig. 13

Fig. 14

19/20

Fig. 15

Fig. 16

Fig. 17a

Fig. 17b

COLLAPSIBLE EXPANSION CONE

This invention relates generally to oil and gas exploration, and in particular to a collapsible expansion cone assembly for use in forming and repairing wellbore casings
5 to facilitate oil and gas exploration.

Background of the Invention

During oil exploration, a wellbore typically traverses a number of zones within a
10 subterranean formation. Wellbore casings are then formed in the wellbore by radially expanding and plastically deforming tubular members that are coupled to one another by threaded connections. Existing methods for radially expanding and plastically deforming tubular members coupled to one another by threaded connections are not always reliable or produce satisfactory results. In particular, the threaded connections
15 can be damaged during the radial expansion process.

The present invention is directed to overcoming one or more of the limitations of the existing processes for radially expanding and plastically deforming tubular members coupled to one another by threaded connections.

20

Summary of the Invention

According to the present invention there is provided a collapsible expansion cone assembly comprising:
25 an upper tubular support member comprising an internal flange;
an upper cam assembly coupled to the upper tubular support member comprising:
30 a tubular base coupled to the upper support member; and
a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;

- a lower tubular support member comprising an internal flange;
one or more frangible couplings for releasably coupling the upper and lower tubular support members;
- a lower cam assembly coupled to the lower tubular support member comprising:
- 5 a tubular base coupled to the lower tubular support member; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
- wherein the cams arms of the upper cam assembly are interleaved with and
10 overlap the cam arms of the lower cam assembly; and
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
- 15 wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments; and
wherein the upper and lower expansion cone segments together define at least a partial spherical external surface for plastically deforming and radially expanding an expandable tubular member.
- 20 Preferably, each upper expansion cone segment comprises:
an inner portion defining at least a partial cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and at least partial cylindrical lower surfaces;
- 25 an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and
an outer portion defining at least partial cylindrical upper and lower surfaces; and
wherein each lower expansion cone segment comprises:
an inner portion defining at least a partial cylindrical upper surface including a
30 hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and at least partial cylindrical lower surface;
an intermediate portion defining at least partial cylindrical and spherical upper surfaces and an at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces.

Preferably, each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion;

5 and

wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.

According to another aspect of the present invention there is provided a collapsible
10 expansion cone assembly, comprising:

an upper tubular support member comprising an internal flange;

an upper cam assembly coupled to the upper tubular support member comprising:

a tubular base coupled to the upper support member; and

15 a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;

a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;

20 a lower tubular support member comprising an internal flange;

one or more frangible couplings for releasably coupling the upper and lower tubular support members;

a lower cam assembly coupled to the lower tubular support member comprising:

a tubular base coupled to the lower tubular support member; and

25 a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;

wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and

30 a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;

wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments;

wherein the upper and lower expansion cone segments together define at least a partial spherical external surface for plastically deforming and radially expanding the
5 expandable tubular member;

wherein each upper expansion cone segment comprises:

an inner portion defining at least a partial cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and at least partial cylindrical lower surface;

10 an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces;

wherein each lower expansion cone segment comprises:

an inner portion defining at least a partial cylindrical upper surface including a
15 hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and at least partial cylindrical lower surfaces;

an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces;

20 wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and

wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.

25 According to another aspect of the present invention there is provided a collapsible expansion cone, comprising:

an upper cam assembly comprising:

a tubular base; and

30 a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;

a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly;

a lower cam assembly comprising:

- a tubular base; and
- a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
- 5 wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly;
- a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
- 10 means for moving the upper cam assembly away from the lower expansion cone segments; and
- means for moving the lower cam assembly away from the upper expansion cone segments.
- 15 Preferably, the upper and lower expansion cone segments together define at least a partial spherical external surface.
- Preferably, each upper expansion cone segment comprises:
- an inner portion defining at least a partial cylindrical upper surface and at least a 20 partial cylindrical lower surface;
- an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and
- an outer portion defining at least partial cylindrical upper and lower surfaces; and
- wherein each lower expansion cone segment comprises:
- 25 an inner portion defining at least a partial cylindrical upper surface and at least a partial cylindrical lower surface;
- an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and
- an outer portion defining at least partial cylindrical upper and lower surfaces.
- 30 Preferably, each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and

wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.

According to another aspect of the present invention there is provided a collapsible

5 expansion cone assembly comprising:

an upper tubular support member comprising an internal flange;

an upper cam assembly coupled to the upper tubular support member comprising:

a tubular base coupled to the upper support member; and

10 a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;

a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;

15 a lower tubular support member comprising an internal flange;

a lower cam assembly coupled to the lower tubular support member comprising:

a tubular base coupled to the lower tubular support member; and

19 a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;

wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and

25 a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined

surface of a corresponding one of the cam arms of the upper cam assembly;

wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments.

30 Preferably, the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and radially expanding an expandable tubular member.

Preferably, each upper expansion cone segment comprises:

an inner portion defining at least a partial cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and at least a partial cylindrical lower surface;

5 an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces; and wherein each lower expansion cone segment comprises:

an inner portion defining at least a partial cylindrical upper surface including a
10 hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and at least a partial cylindrical lower surface;

an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces.

15

Preferably, each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.

20

Brief Description of the Drawings

Fig. 1a is a fragmentary cross-sectional illustration of the placement of a portion of an exemplary embodiment of an apparatus for radially expanding and plastically deforming a tubular member that includes a collapsible expansion cone within a
25 preexisting structure.

Fig. 1b is a fragmentary cross-sectional illustration of another portion of the apparatus of Fig. 1a.

30 Figs. 2a and 2b are fragmentary cross-sectional illustration of a portion of the apparatus of Figs. 1a and 1b.

Fig. 3 is a fragmentary cross-sectional illustration of a portion of the apparatus of Figs. 1a and 1b.

5 Fig. 3a is a fragmentary cross-sectional illustration of a portion of the apparatus of Fig 3.

Fig. 3b is a fragmentary cross-sectional illustration of a portion of the apparatus of Fig 3.

10 Fig. 4 is a fragmentary cross-sectional illustration of a portion of the apparatus of Figs. 1a and 1b.

Fig. 4a is a fragmentary cross-sectional illustration of a portion of the apparatus of Fig 4.

15

Fig. 5 is a fragmentary cross-sectional illustration of a portion of the apparatus of Figs. 1a and 1b.

20 Fig. 6 is a fragmentary cross-sectional illustration of a portion of the apparatus of Figs. 1a and 1b.

Figs. 7a-7e are fragmentary cross-sectional and perspective illustrations of the upper cam assembly of the apparatus of Figs. 1a and 1b.

25 Fig. 7f is a fragmentary cross-sectional illustration of the lower cam assembly of the apparatus of Figs. 1a and 1b.

30 Figs. 8a-8d are fragmentary cross-sectional and perspective illustrations of one of the upper cone segments of the apparatus of Figs. 1a and 1b.

Fig. 8e is a fragmentary cross-sectional illustration of one of the lower cone segments of the apparatus of Figs. 1a and 1b.

Fig. 9 is a side view of a portion of the apparatus of Figs. 1a and 1b.

Fig. 10a is a fragmentary cross sectional illustration of a portion of the apparatus of Figs. 1a and 1b during the radial expansion of the expandable tubular member.

5

Fig. 10b is a fragmentary cross sectional illustration of another portion of the apparatus of Fig. 10a.

Fig. 11a. is a fragmentary cross sectional illustration of a portion of the apparatus of
10 Figs. 10a and 10b during the adjustment of the expansion cone to a collapsed position.

Fig. 11b is a fragmentary cross sectional illustration of another portion of the apparatus of Fig. 11a.

15 Fig. 12 is a fragmentary cross sectional illustration of a portion of the apparatus of Figs. 11a and 11b.

Fig. 13 is a fragmentary cross sectional illustration of a portion of the apparatus of Figs. 11a and 11b.

20

FIG. 14 is a fragmentary cross sectional illustration of a portion of the apparatus of Figs. 11a and 11b with the expansion cone in a half collapsed position.

FIG. 15 is a fragmentary cross sectional illustration of a portion of the apparatus of
25 Figs. 11a and 11b with the expansion cone in a fully collapsed position.

Fig. 16 is a side view of a portion of the apparatus of Figs. 10a and 10b.

30 Fig. 17a. is a fragmentary cross sectional illustration of a portion of the apparatus of Figs. 11a and 11b after the removal of the apparatus from interior of the expandable tubular member.

Fig. 17b is a fragmentary cross sectional illustration of another portion of the apparatus of Fig. 17a

Detailed Description of the Illustrative Embodiments

Referring to Figs. 1a, 1b, 2a, 2b, 3, 3a, 4, 4a, 5, 6, 7a, 7b, 7c, 7d, 7e, 7f, 8a, 8b, 8c, 8d,
5 8e, and 9, an exemplary embodiment of an apparatus 10 for radially expanding and
plastically deforming a tubular member includes a tubular support member 12 that
defines a passage 12a. An end of the tubular support member 12 is coupled to an end
of a safety collar 14 that defines a passage 14a, a recess 14b at one end for receiving
the end of the tubular support member, and recesses 14c and 14d at another end.

10

A torque plate 16 is received within and is coupled to the recess 14c of the safety collar 14 that defines a passage 16a and a plurality of meshing teeth 16b at one end. An end of an upper mandrel collar 18 is received within and is coupled to the recess 14d of the safety collar 14 proximate and end of the torque plate 16 that defines a passage 18a.
15 Torque pins 20a and 20b further couple the end of the upper mandrel collar 18 to the end of the safety collar 14.

An end of an upper mandrel 22 is received within and is coupled to the upper mandrel collar 18 that defines a passage 22a, a plurality of meshing teeth 22b that mate with
20 and transmit torque to and from the meshing teeth 16b of the torque plate 16, and an external flange 22c at another end.

An upper packer cup 24 mates with, receives and is coupled to the upper mandrel 22 proximate the end of the upper mandrel collar 18. In an exemplary embodiment, the
25 upper packer cup 24 is a Guiberson™ packer cup. An upper spacer sleeve 26 mates with, receives, and is coupled to the upper mandrel 22 proximate an end of the upper packer cup 24. A lower packer cup 28 mates with, receives and is coupled to the upper mandrel 22 proximate an end of the upper spacer sleeve 26. In an exemplary embodiment, the lower packer cup 28 is a Guiberson™ packer cup. A lower spacer sleeve 30 mates with, receives, and is coupled to the upper mandrel 22 proximate an
30 end of the lower packer cup 28 and the external flange 22c of the upper mandrel. A retaining sleeve 32 mates with, receives, and is coupled to an end of the lower spacer sleeve proximate the external flange 22c of the upper mandrel 22.

An end of a lower mandrel 34 defines a recess 34a that mates with, receives, and is coupled to the external flange 22c of the upper mandrel 22, a recess 34b that mates with, receives, and is coupled to the end of the upper mandrel, a passage 34c, and an external flange 34d including circumferentially spaced apart meshing teeth 34da on an end face of the external flange. Torque pins 36a and 36b further couple the recess 34a of the end of the lower mandrel 34 to the external flange 22c of the upper mandrel 22. During operation, the torque pins 36a and 36b transmit torque loads between the recess 34a of the end of the lower mandrel 34 and the external flange 22c of the upper mandrel 22.

An upper cam assembly 38 includes a tubular base 38a for receiving and mating with the lower mandrel 34 that includes an external flange 38aa, a plurality of circumferentially spaced apart meshing teeth 38b that extend from one end of the tubular base in the longitudinal and radial directions for engaging the meshing teeth 34da of the end face of the external flange 34d of the lower mandrel, and a plurality of circumferentially spaced apart cam arms 38c that extend from the other end of the tubular base in the opposite longitudinal direction and mate with and receive the lower mandrel. During operation, the meshing teeth 34da of the end face of the external flange 34d of the lower mandrel 34 transmit torque loads to the meshing teeth 38b of the upper cam assembly 38. Each of the cam arms 38c include an inner portion 38ca extending from the tubular base 38a that has partial cylindrical inner and outer surfaces, 38caa and 38cab, a tapered intermediate portion 38cb extending from the inner portion that has a partial cylindrical inner surface 38cba and a partial conical outer surface 38ccb, and an outer portion 38cc extending from the intermediate portion that has partial cylindrical inner and outer surfaces, 38cca and 38ccb. In an exemplary embodiment, the radius of curvatures of the partial cylindrical outer surfaces 38cab are greater than the radius of curvatures of the partial cylindrical outer surfaces 38ccb. In an exemplary embodiment, the radius of curvatures of the partial cylindrical inner surfaces, 38caa, 38cba, and 38cca are equal.

A lower cam assembly 40 includes a tubular base 40a for receiving and mating with the lower mandrel 34 that includes an external flange 40aa, a plurality of circumferentially

spaced apart meshing teeth 40b that extend from one end of the tubular base in the longitudinal and radial directions, and a plurality of circumferentially spaced apart cam arms 40c that extend from the other end of the tubular base in the opposite longitudinal direction and mate with and receive the lower mandrel. Each of the cam arms 40c

5 include an inner portion 40ca extending from the tubular base 40a that has partial cylindrical inner and outer surfaces, 40caa and 40cab, a tapered intermediate portion 40cb extending from the inner portion 40ca that has a partial cylindrical inner surface 40cba and a partial conical outer surface 40ccb, and an outer portion 40cc extending from the intermediate portion that has partial cylindrical inner and outer surfaces, 40cca and 40ccb. In an exemplary embodiment, the radius of curvatures of the partial cylindrical outer surfaces 40cab are greater than the radius of curvatures the partial cylindrical outer surfaces 40ccb. In an exemplary embodiment, the radius of curvatures of the partial cylindrical inner surfaces, 40caa, 40cba, and 40cca are equal.

10 In an exemplary embodiment, the upper and lower cam assemblies, 38 and 40, are substantially identical. In an exemplary embodiment, the cam arms 38c of the upper cam assembly 38 interleave the cam arms 40c of the lower cam assembly 40. Furthermore, in an exemplary embodiment, the cam arms 38c of the upper cam assembly also overlap with the cam arms 40c of the lower cam assembly 40 in the longitudinal direction thereby permitting torque loads to be transmitted between the

15 upper and lower cam assemblies.

20

An end of an upper retaining sleeve 42 receives and is threadably coupled to the external flange 34d of the lower mandrel 34 that defines a passage 42a for receiving and mating with the outer circumferential surfaces of the external flange 38aa and the

25 meshing teeth 38b of the upper cam assembly 38, and an inner annular recess 42b, and includes an internal flange 42c for retaining the external flange 38aa of the upper cam assembly, and an internal flange 42d at one end of the upper retaining sleeve that includes a rounded interior end face. An o-ring seal is received within the annular recess 42b for sealing the interface between the upper retaining sleeve 42 and the

30 external flange 34d of the lower mandrel 34. A disc shaped shim 43 is positioned within the upper retaining sleeve 42 between the opposing end faces of the internal flange 42c of the retaining sleeve and the meshing teeth 38b of the upper cam assembly 38.

A plurality of upper expansion cone segments 44 are interleaved among the cam arms 38c of the upper cam assembly 38. Each of the upper expansion cone segments 44 include inner portions 44a having partial cylindrical inner surfaces, 44aaa and 44aab, and a partial cylindrical outer surface 44ab, intermediate portions 44b extending from the interior portions that have a partial conical inner surface 44ba and partial cylindrical and spherical outer surfaces, 44bba and 44bbb, and outer portions 44c having partial cylindrical inner and outer surfaces, 44ca and 44cb. In an exemplary embodiment, the outer surfaces 44ab of the inner portions 44a of the upper expansion cone segments 5 define hinge grooves 44aba that receive and are pivotally mounted upon the internal 10 flange 42d of the upper retaining sleeve 42.

The partial cylindrical inner surfaces 44aaa mate with and receive the lower mandrel 34, the partial cylindrical inner surfaces 44aab mate with and receive the partial 15 cylindrical outer surfaces 40ccb of the outer portions 40cc of the corresponding cam arms 40c of the lower cam assembly 40, and the partial conical inner surfaces 44ba mate with and receive the partial conical outer surfaces 40cbb of the intermediate portions 40cb of the corresponding cam arms of the lower cam assembly.

20 In an exemplary embodiment, the radius of curvature of the partial cylindrical inner surface 44aaa is less than the radius of curvature of the partial cylindrical inner surface 44aab. In an exemplary embodiment, the radius of curvature of the partial cylindrical inner surface 44ca is greater than the radius of curvature of the partial cylindrical surface 44aab. In an exemplary embodiment, the partial cylindrical inner surfaces, 44aaa and 44aab, are parallel. In an exemplary embodiment, the partial cylindrical outer surface 44ab is inclined relative to the partial cylindrical inner surface 44aaa. In an exemplary embodiment, the partial cylindrical outer surface 44bba is parallel to the 25 partial cylindrical inner surfaces, 44aaa and 44aab. In an exemplary embodiment, the partial cylindrical outer surface 44cb is inclined relative to the partial cylindrical inner surface 44ca.

30 A plurality of lower expansion cone segments 46 are interleaved among, and overlap, the upper expansion cone segments 44 and the cam arms 38c of the lower cam

assembly 38. In this manner, torque loads may be transmitted between the upper and lower expansion cone segments, 44 and 46. Each of the lower expansion cone segments 46 include inner portions 46a having partial cylindrical inner surfaces, 46aaa and 46aab, and a partial cylindrical outer surface 46ab, intermediate portions 46b

- 5 extending from the interior portions that have a partial conical inner surface 46ba and partial cylindrical and spherical outer surfaces, 46bba and 46bbb, and outer portions 46c having partial cylindrical inner and outer surfaces, 46ca and 46cb. In an exemplary embodiment, the outer surfaces 46ab of the inner portions 46a of the upper expansion cone segments 46 define hinge grooves 46aba.

10

- The partial cylindrical inner surfaces 46aaa mate with and receive the lower mandrel 34, the partial cylindrical inner surfaces 46aab mate with and receive the partial cylindrical outer surfaces 38ccb of the outer portions 38cc of the corresponding cam arms 38c of the upper cam assembly 38, and the partial conical inner surfaces 46ba mate with and receive the partial conical outer surfaces 38cbb of the intermediate portions 38cb of the corresponding cam arms of the lower cam assembly.

- In an exemplary embodiment, the radius of curvature of the partial cylindrical inner surface 46aaa is less than the radius of curvature of the partial cylindrical inner surface 46aab. In an exemplary embodiment, the radius of curvature of the partial cylindrical inner surface 46ca is greater than the radius of curvature of the partial cylindrical surface 46aab. In an exemplary embodiment, the partial cylindrical inner surfaces, 46aaa and 46aab, are parallel. In an exemplary embodiment, the partial cylindrical outer surface 46ab is inclined relative to the partial cylindrical inner surface 46aaa. In 20 an exemplary embodiment, the partial cylindrical outer surface 46bba is parallel to the partial cylindrical inner surfaces, 46aaa and 46aab. In an exemplary embodiment, the partial cylindrical outer surface 46cb is inclined relative to the partial cylindrical inner surface 46ca.

- 25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115<br

lower expansion cone segments 46 are tapered in the longitudinal direction from the ends of the intermediate portions 46b to the ends of the outer portions 46c. In an exemplary embodiment, when the upper and lower expansion segments, 44 and 46, are positioned in a fully expanded position, the partial cylindrical outer surfaces, 44bba and 46cb, of the upper and lower expansion cone segments define a contiguous cylindrical surface, the partial spherical outer surfaces, 44bbb and 46bbb, of the upper and lower expansion cone segments define an contiguous partial spherical surface, and the partial cylindrical outer surfaces, 44cb and 46bba, of the upper and lower expansion cone segments define a contiguous cylindrical surface.

10

An end of a lower retaining sleeve 48 defines a passage 48a for receiving and mating with the outer circumferential surfaces of the external flange 40aa and the meshing teeth 40b of the lower cam assembly 40, and an inner annular recess 48b, and includes an internal flange 48c for retaining the external flange of the lower cam assembly, and an internal flange 48d at one end of the lower retaining sleeve that includes a rounded interior end face for mating with the hinge grooves 46 aba of the lower expansion cone segments 46 thereby pivotally coupling the lower expansion cone segments to the lower retaining sleeve. An o-ring seal 50 is received within the annular recess 48b. A disc shaped shim 49 is positioned within the lower retaining sleeve 48 between the opposing end faces of the internal flange 48c of the retaining sleeve and the external flange 40aa of the lower cam assembly 40.

In an exemplary embodiment, the partial cylindrical outer surfaces 44bba of the upper expansion cone segments 44 and the partial cylindrical outer surfaces 46cb of the lower expansion cone segments 46 are aligned with the outer surface of the upper retaining sleeve 42. In an exemplary embodiment, the partial cylindrical outer surfaces 44cb of the upper expansion cone segments 44 and the partial cylindrical outer surfaces 46 bba of the lower expansion cone segments are aligned with the outer surface of the lower retaining sleeve 48.

30

An end of a float shoe adaptor 50 that includes a plurality of circumferentially spaced apart meshing teeth 50a for engaging the meshing teeth 40b of the lower cam assembly 40 is received within and threadably coupled to an end of the lower retaining

sleeve 48 that defines a passage 50b at one end for receiving an end of the lower mandrel 34, a passage 50c having a reduced inside diameter at another end, a plurality of radial passages 50d at the other end, and includes an internal flange 50e, and a torsional coupling 50f at the other end that includes a plurality of torsional coupling

- 5 members 50fa. During operation, the meshing teeth 40b of the lower cam assembly 40 transmit torque loads to and from the meshing teeth 50a of the float shoe adaptor.

An end of a retaining sleeve 52 abuts the end face of the tubular base 40a of the lower cam assembly 40 and is received within and mates with the passage 50b of the float

- 10 shoe adaptor 50 that defines a passage 52a for receiving an end of the lower mandrel 34, a throat passage 52b including a ball valve seat 52c, and includes a flange 52d, and another end of the retaining sleeve, having a reduced outside diameter, is received within and mates with the passage 50c of the float shoe adaptor 50.

- 15 A stop nut 54 receives and is threadably coupled to the end of the lower mandrel 34 within the passage 52a of the retaining sleeve 52, and shear pins 56 releasably couple the stop nut 54 to the retaining sleeve 52. Locking dogs 58 are positioned within an end of the retaining sleeve 52 that receive and are releasably coupled to the lower mandrel 34, and a disc shaped adjustment shim 60 receives the lower mandrel 34 and 20 is positioned within an end of the retaining sleeve 52 between the opposing ends of the tubular base 40a of the upper cam assembly 40 and the locking dogs 58. Burst discs 62 are releasably coupled to and positioned within the radial passages 50d of the float shoe adaptor 50.

- 25 An end of a float shoe 64 mates with and is releasably coupled to the torsional coupling members 50fa of the torsional coupling 50f of the float shoe adaptor 50 that defines a passage 64a and a valveable passage 64b. In this manner torsional loads may be transmitted between the float shoe adaptor 50 and the float shoe 64. An end of an expandable tubular member 66 that surrounds the tubular support member 12, the safety collar 14, the upper mandrel collar 18, the upper packer cup 24, the lower packer cup 28, the lower mandrel 34, the upper expansion cone segments 44, the lower expansion cone segments 46, and the float shoe adaptor 50, is coupled to and receives an end of the float shoe 64 and is movably coupled to and supported by the

partial spherical external surfaces, 44bbb and 46bbb, of the upper and lower expansion cone segments, 44 and 46.

- During operation, as illustrated in Figs. 1a and 1b, the apparatus 10 is at least partially positioned within a preexisting structure such as, for example, a borehole 100 that traverses a subterranean formation that may include a preexisting wellbore casing 102. The borehole 100 may be oriented in any position, for example, from vertical to horizontal. A fluidic material 104 is then injected into the apparatus 10 through the passages 12a, 14a, 22a, 34c, 50c, 64a, and 64b into the annulus between the expandable tubular member 66 and the borehole 100. In an exemplary embodiment, the fluidic material 104 is a hardenable fluidic sealing material. In this manner, an annular sealing layer may be formed within the annulus between the expandable tubular member 66 and the borehole 100.
- As illustrated in Figs. 10a and 10b, a ball 106 is then be positioned within and blocking the valveable passage 64b of the float shoe 64 by injecting a fluidic material 108 into the apparatus 10 through the passages 12a, 14a, 22a, 34c, and 50c. As a result, the increased operating pressure within the passage 50c bursts open the burst discs 62 positioned within the radial passages 50d of the float shoe adaptor 50. The continued injection of the fluidic material 108 thereby pressurizes the interior of the expandable tubular member 66 below the lower packer cup 28 thereby displacing the upper and lower expansion cone segments, 44 and 46, upwardly relative to the float shoe 64 and the expandable tubular member 66. As a result, the expandable tubular member 66 is plastically deformed and radially expanded. Thus, the burst discs 62 sense the operating pressure of the injected fluidic material 108 within the passage 50c and thereby control the initiation of the radial expansion and plastic deformation of the expandable tubular member 66.
- In an exemplary embodiment, any leakage of the pressurized fluidic material 108 past the lower packer cup 28 is captured and sealed against further leakage by the upper packer cup 24. In this manner, the lower packer cup 28 provides the primary fluidic seal against the interior surface of the expandable tubular member 66, and the upper packer cup 24 provides a secondary, back-up, fluidic seal against the interior surface of

the expandable tubular member. Furthermore, because the lower packer cup 28 and/or the upper packer cup 24 provide a fluid tight seal against the interior surface of the expandable tubular member 66, the upper and lower expansion cone segments, 44 and 46, are pulled upwardly through the expandable tubular member by the axial forces created by the packer cups.

In an exemplary embodiment, during the radial expansion process, the interface between the partial spherical external surfaces, 44bbb and 46bbb, of the upper and lower expansion cone segments, 44 and 46, and the interior surface of the expandable tubular member 66 is not fluid tight. As a result, the fluidic material 108 may provide lubrication to the entire extent of the interface between the cylindrical external surfaces, 44bba and 46cb, and the partial spherical external surfaces, 44bbb and 46bbb, of the upper and lower expansion cone segments, 44 and 46, and the interior surface of the expandable tubular member 66. Moreover, experimental test results have indicated the unexpected result that the required operating pressure of the fluidic material 108 for radial expansion of the expandable tubular member 66 is less when the interface between the cylindrical external surfaces, 44bba and 46cb, and the partial spherical external surfaces, 44bbb and 46bbb, of the upper and lower expansion cone segments, 44 and 46, and the interior surface of the expandable tubular member 66 is not fluid tight. Furthermore, experimental test results have also demonstrated that the partial spherical external surface provided by the partial spherical external surfaces, 44bbb and 46bbb, of the upper and lower expansion cone segments, 44 and 46, provides radial expansion and plastic deformation of the expandable tubular member 66 using lower operating pressures versus an expansion cone having a conical outer surface.

25

In an exemplary embodiment, as illustrated in Figs. 11a, 11b, 12, 13, 14, 15, and 16, the upper and lower expansion cone segments, 44 and 46, may then be adjusted to a collapsed position by placing a ball 110 within the ball valve seat 52c of the throat passage 52b of the retaining sleeve 52. The continued injection of the fluidic material 108, after the placement of the ball 110 within the ball valve seat 52c, creates a differential pressure across the ball 110 thereby applying a downward longitudinal force onto the retaining sleeve 52 thereby shearing the shear pins 56. As a result, the retaining sleeve 52 is displaced in the downward longitudinal direction relative to the

float shoe adaptor 50 thereby permitting the locking dogs 58 to be displaced outwardly in the radial direction. The outward radial displacement of the locking dogs 58 disengages the locking dogs from engagement with the lower mandrel 34. Thus, the shear pins 56 sense the operating pressure of the injected fluidic material 108 within 5 the throat passage 52b and thereby controlling the initiation of the collapsing of the upper and lower expansion cone segments, 44 and 46.

The continued injection of the fluidic material 108 continues to displace the retaining sleeve 52 in the downward longitudinal direction relative to the float shoe adaptor 50 10 until the external flange 52d of the retaining sleeve 52 impacts, and applies a downward longitudinal force to, the internal flange 50e of the float shoe adaptor. As a result, the float shoe adaptor 50 is then also displaced in the downward longitudinal direction relative to the lower mandrel 34. The downward longitudinal displacement of the float shoe adaptor 50 relative to the lower mandrel 34 causes the lower cam assembly 40, the lower expansion cone segments 46, and the lower retaining sleeve 15 48, which are rigidly attached to the float shoe adaptor, to also be displaced downwardly in the longitudinal direction relative to the lower mandrel 34, the upper cam assembly 38, and the upper expansion cone segments 44.

20 The downward longitudinal displacement of the lower cam assembly 40 relative to the upper expansion cone segments 44 causes the upper expansion cone segments to slide off of the conical external surfaces 40ccb of the lower cam assembly and thereby pivot inwardly in the radial direction about the internal flange 42d of the upper retaining sleeve 42. The downward longitudinal displacement of the lower expansion cone 25 segments 46 relative to the upper cam assembly 38 causes the lower expansion cone segments 46 to slide off of the external conical surfaces 38ccb of the upper cam assembly and thereby pivot inwardly in the radial direction about the internal flange 48d of the lower retaining sleeve. As a result of the inward radial movement of the upper and lower expansion cone segments, 44 and 46, the partial external spherical surfaces, 30 44bbb and 46bbb, of the upper and lower expansion cone segments, 44 and 46, no longer provide a substantially contiguous outer partial spherical surface.

The downward longitudinal movement of the retaining sleeve 42 and float shoe adaptor 50 relative to the lower mandrel 34 is stopped when the stop nut 54 impacts the locking dogs 58. At this point, as illustrated in Figs. 17a and 17b, the apparatus 10 may then be removed from the interior of the expandable tubular member 66.

5

Thus, the apparatus 10 may be removed from the expandable tubular member 66 prior to the complete radial expansion and plastic deformation of the expandable tubular member by controllably collapsing the upper and lower expansion cone segments, 44 and 46. As a result, the apparatus 10 provides the following benefits: (1) the apparatus 10 is removable when expansion problems are encountered; (2) lower expansion forces are required because the portion of the expandable tubular member 66 between the packer cups, 24 and 28, and the expansion cone segments is exposed to the expansion fluid pressure; and (3) the expansion cone segments can be run down through the expandable tubular member, prior to radial expansion, and then the 15 expansion cone segments can be expanded.

In several alternative embodiments, resilient members such as, for example, spring elements are coupled to the upper and lower expansion cone segments, 44 and 46, for resiliently biasing the expansion cone segments towards the expanded or collapsed 20 position.

In several alternative embodiments, the placement of the upper and lower expansion cone segments, 44 and 46, in an expanded or collapsed position is reversible.

25 In several alternative embodiments, a small gap is provided between the upper and lower expansion cone segments, 44 and 46, when positioned in the expanded condition that varies from about 0.127 mm to 0.762 mm (.005 to .030 inches).

30 It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present illustrative embodiments may be used to provide a wellbore casing, a pipeline, or a structural support. Furthermore, the elements and teachings of the various illustrative

embodiments may be combined in whole or in part in some or all of the illustrative embodiments within the scope of the claims.

Although illustrative embodiments of the invention have been shown and described, a
5 wide range of modification, changes and substitution is contemplated in the foregoing disclosure within the scope of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

LLC
SCHNEIDER
HORN
WILSON
HORN

Claims

1. A collapsible expansion cone assembly comprising:
 - an upper tubular support member comprising an internal flange;
 - an upper cam assembly coupled to the upper tubular support member
- 5 comprising:
 - a tubular base coupled to the upper support member; and
 - a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;
 - 10 a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;
 - 15 a lower tubular support member comprising an internal flange;
 - one or more frangible couplings for releasably coupling the upper and lower tubular support members;
 - 20 a lower cam assembly coupled to the lower tubular support member comprising:
 - a tubular base coupled to the lower tubular support member; and
 - 25 a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
 - wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and
 - a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
 - 25 wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments; and
 - 30 wherein the upper and lower expansion cone segments together define at least a partial spherical external surface for plastically deforming and radially expanding an expandable tubular member.

2. The assembly of claim 1, wherein each upper expansion cone segment comprises:

an inner portion defining at least a partial cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and at least partial cylindrical lower surfaces;

5 an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces; and

10 wherein each lower expansion cone segment comprises:

an inner portion defining at least a partial cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and at least partial cylindrical lower surface;

15 an intermediate portion defining at least partial cylindrical and spherical upper surfaces and an at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces.

3. The assembly of claim 1, wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion;

20 and

wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.

4. A collapsible expansion cone assembly, comprising:

25 an upper tubular support member comprising an internal flange;

an upper cam assembly coupled to the upper tubular support member comprising:

a tubular base coupled to the upper support member; and

30 a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;

35 a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;

- a lower tubular support member comprising an internal flange;
one or more frangible couplings for releasably coupling the upper and lower tubular support members;
- a lower cam assembly coupled to the lower tubular support member
- 5 comprising:
- a tubular base coupled to the lower tubular support member; and
a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;
- 10 wherein the cams arms of the upper cam assembly are interleaved with and overlap the cam arms of the lower cam assembly; and
a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;
- 15 wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments;
- wherein the upper and lower expansion cone segments together define at least a partial spherical external surface for plastically deforming and radially expanding the
- 20 expandable tubular member;
- wherein each upper expansion cone segment comprises:
an inner portion defining at least a partial cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and at least partial cylindrical lower surface;
- 25 an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and
an outer portion defining at least partial cylindrical upper and lower surfaces;
- wherein each lower expansion cone segment comprises:
an inner portion defining at least a partial cylindrical upper surface including a
- 30 hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and at least partial cylindrical lower surfaces;
an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces;
wherein each upper expansion cone segment is tapered in the longitudinal
direction from the intermediate portion to the outer portion; and
wherein each lower expansion cone segment is tapered in the longitudinal
5 direction from the intermediate portion to the outer portion.

5. A collapsible expansion cone, comprising:

an upper cam assembly comprising:

a tubular base; and

10 a plurality of cam arms extending from the tubular base in a downward
longitudinal direction, each cam arm defining an inclined surface;
a plurality of upper expansion cone segments interleaved with the cam arms of
the upper cam assembly;

a lower cam assembly comprising:

15 a tubular base; and

a plurality of cam arms extending from the tubular base in an upward
longitudinal direction, each cam arm defining an inclined surface that mates with the
inclined surface of a corresponding one of the upper expansion cone segments;

wherein the cams arms of the upper cam assembly are interleaved with and
20 overlap the cam arms of the lower cam assembly;

a plurality of lower expansion cone segments interleaved with cam arms of the
lower cam assembly, each lower expansion cone segment mating with the inclined
surface of a corresponding one of the cam arms of the upper cam assembly;

means for moving the upper cam assembly away from the lower expansion
25 cone segments; and

means for moving the lower cam assembly away from the upper expansion
cone segments.

6. The apparatus of claim 5, wherein the upper and lower expansion cone

30 segments together define at least a partial spherical external surface.

7 The apparatus of claim 5, wherein each upper expansion cone segment
comprises:

an inner portion defining at least a partial cylindrical upper surface and at least a partial cylindrical lower surface;

an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

5 an outer portion defining at least partial cylindrical upper and lower surfaces; and

wherein each lower expansion cone segment comprises:

an inner portion defining at least a partial cylindrical upper surface and at least a partial cylindrical lower surface;

10 an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces.

8. The apparatus of claim 5, wherein each upper expansion cone segment is

15 tapered in the longitudinal direction from the intermediate portion to the outer portion; and

wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.

20 9. A collapsible expansion cone assembly comprising:

an upper tubular support member comprising an internal flange;

an upper cam assembly coupled to the upper tubular support member comprising:

a tubular base coupled to the upper support member; and

25 a plurality of cam arms extending from the tubular base in a downward longitudinal direction, each cam arm defining an inclined surface;

a plurality of upper expansion cone segments interleaved with the cam arms of the upper cam assembly and pivotally coupled to the internal flange of the upper tubular support member;

30 a lower tubular support member comprising an internal flange;

a lower cam assembly coupled to the lower tubular support member comprising:

a tubular base coupled to the lower tubular support member; and

a plurality of cam arms extending from the tubular base in an upward longitudinal direction, each cam arm defining an inclined surface that mates with the inclined surface of a corresponding one of the upper expansion cone segments;

- wherein the cams arms of the upper cam assembly are interleaved with and
5 overlap the cam arms of the lower cam assembly; and

a plurality of lower expansion cone segments interleaved with cam arms of the lower cam assembly, each lower expansion cone segment pivotally coupled to the internal flange of the lower tubular support member and mating with the inclined surface of a corresponding one of the cam arms of the upper cam assembly;

- 10 wherein the lower expansion cone segments interleave and overlap the upper expansion cone segments.

10. The assembly of claim 9, wherein the upper and lower expansion cone segments together define an arcuate spherical external surface for plastically deforming and
15 radially expanding an expandable tubular member.

11. The assembly of claim 9, wherein each upper expansion cone segment comprises:

- 20 an inner portion defining at least a partial cylindrical upper surface including a hinge groove for pivotally coupling the upper expansion cone segment to the upper tubular support member and at least a partial cylindrical lower surface;

an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

- 25 an outer portion defining at least partial cylindrical upper and lower surfaces; and

wherein each lower expansion cone segment comprises:

an inner portion defining at least a partial cylindrical upper surface including a hinge groove for pivotally coupling the lower expansion cone segment to the lower tubular support member and at least a partial cylindrical lower surface;

- 30 an intermediate portion defining at least partial cylindrical and spherical upper surfaces and at least a partial conical lower surface; and

an outer portion defining at least partial cylindrical upper and lower surfaces.

12. The assembly of claim 9, wherein each upper expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion; and wherein each lower expansion cone segment is tapered in the longitudinal direction from the intermediate portion to the outer portion.

5

10
20
30
40
50
60
70
80
90