Causal Inference

a summary

Contents

1	General	3		2.2 G-Methods	4
				2.2.1 Time-varying A	5
2	Models	4			
	2.1 Traditional Methods	4	3	Longitudinal Data	6

General 1

Causal Roadmap (Petersen and van der Laan, 2014) systematic approach linking causality to statistical procedures

- 1. Specifying Knowledge. structural causal model (unifying counterfactual language, structural equations, & causal graphs): a set of possible data-generating processes, expresses background knowledge and its limits
- 2. Linking Data. specifying measured variables and sampling specifics (latter can be incorporated into the model)
- 3. Specifying Target. define hypothetical experiment: decide
 - 1. variables to intervene on: one (point treatment), multiple (longitudinal, censoring/missing, (in)direct effects)
 - 2. intervention scheme: static, dynamic, stochastic
 - 3. counterfactual summary of interest: absolute or relative, marginal structural models, interaction, effect modification
 - 4. population of interest: whole, subset, different population
- 4. Assessing Identifiability. are knowledge and data sufficient to derive estimand and if not, what else is needed?
- 5. Select Estimand. current best answer: knowledge-based assumptions + which minimal convenience-based asspumptions (transparency) gets as close as possible
- 6. Estimate. choose estimator by statistical properties, nothing causal here
- 7. Interpret. hierarchy: statistical, counterfactual, feasible intervention, randomized trial

Average Causal Effect
$$E[Y^{a=1}] \neq E[Y^{a=0}]$$

 $E[Y^a] = \sum_y y p_{Y^a}(y)$ (discrete)
 $= \int y f_{Y^a}(y) dy$ (continuous)

individual causal effect $Y_i^{a=1} \neq Y_i^{a=0}$ generally unidentifiable null hypothesis: no average causal effect

sharp null hypothesis: no causal effect for any individual **notation** A, Y: random variables (differ for individuals); a, y: particular values; counterfactual $Y^{a=1}$: Y under treatment a=1stable unit treatment value assumption (SUTVA) Y_i^a is well-defined: no interference between individuals, no multiple versions of treatment (weaker: treatment variation irrelevance) causal effect measures typically based on means

risk difference:
$$\Pr[Y^{a=1}=1] - \Pr[Y^{a=0}=1]$$
risk ratio: $\Pr[Y^{a=1}=1] / \Pr[Y^{a=0}=1]$
odds ratio: $\Pr[Y^{a=0}=1] / \Pr[Y^{a=1}=0]$
 $\Pr[Y^{a=0}=1] / \Pr[Y^{a=0}=0]$

number needed to treat (NNT) to save 1 life: -1/risk difference sources of random error: sampling variability (use consistent estimators), nondeterministic counterfactuals

association compares E[Y|A=1] and E[Y|A=0], causation compares $E[Y^{a=1}]$ and $E[Y^{a=0}]$ (whole population)

Target Trial emulating an ideal randomized experiment explicitly formulate target trial & show how it is emulated \rightarrow less vague causal question, helps spot issues

 ${\bf missing~data~problem~} {\bf unknown~} {\bf counterfactuals}$ randomized experiments: missing completely at random \rightarrow exchangeability (= exogeneity as treatment is exogenous) ideal randomized experiment: no censoring, double-blind, well-defined treatment, & adherence \rightarrow association is causation

pragmatic trial: no placebo/blindness, realistic monitoring PICO (population, intervention, comparator, outcome): some components of target trial

three types of causal effects:

intention-to-treat effect (effect of treatment assignment) per-protocol effect (usually dynamic when toxicity arises) other intervention effect (strategy changed during follow-up)

controlled direct effects: effect of A on Y not through B natural direct effect A on Y if $B^{a=0}$ (cross-world quantity) principal stratum effect A on Y for subset with $B^{a=0}=B^{a=1}$

crossover experiment: sequential treatment & outcome t=0, 1 individual causal effect $Y_{it}^{a_t=1}-Y_{it}^{a_t=0}$ only identifiable if: no carry over effect, effect $\bot\!\!\!\bot$ time, outcome $\bot\!\!\!\bot$ time **time zero** if eligibility at multiple t (observational data): earliest, random t, all t (adjust variance with bootstrapping) grace periods: usually treatment starts x months after first

eligible, if death before: randomly assign strategy/copy into both

Identifiability Conditions hold in ideal experiments **consistency** counterfactuals correspond to data $Y = Y^A$: if A = a, then $Y^a = Y$ for each individual

- precise definition of Y^a via specifying a (sufficiently well-defined a maybe impossible (effect of DNA before it was discovered), relies on expert consensus)
- linkage of counterfactuals to data (a must be seen in data) **positivity** $Pr[A = a|L = l] > 0 \ \forall l \text{ with } Pr[L = l] > 0;$

$$f_L(l) \neq 0 \Rightarrow f_{A|L}(a|l) > 0 \ \forall a, l$$

- structural violations (inference not on full population)
- \bullet random variability (smooth over with parametric models) can sometimes be empirically verified (if all is seen in data) exchangeability unverifiable without randomization
- marginal: $Y^a \perp \!\!\!\perp A \cong$ randomized experiment, counterfactuals are missing completely at random (MCAR)
- conditional: $Y^a \perp \!\!\!\perp A | L \cong$ conditionally randomized, counterfactuals are missing at random (MAR)

alternative definition: $\Pr[A = 1|Y^{a=0}, L] = \Pr[A = 1|L]$ additional conditions:

correct measurement mismeasurement of A, Y, L results in bias $correct\ model\ specification\ models\ \stackrel{\mathrm{may}}{ o}\ misspecification\ bias$

effect modification chapter 4

interaction chapter 5

causal diagrams chapter 6, include swigs from 7.5 and that one technical point

more on SWIGS p 242ff

confounding chapter 7

selection bias chapter 8

measurement bias chapter 9

random variabilty chapter 10

2 Models

Modeling data are a sample from the target population

estimand: quantity of interest, e. g. E[Y|A = a]e. g. $\widehat{E}[Y|A=a]$ estimator:function to use, estimate: apply function to data,

model: a priori restriction of joint distribution/dose-response curve; assumption: no model misspecification (usually wrong)

non-parametric estimator: no restriction (saturated model) = Fisher consistent estimator (entire population data \rightarrow true value) parsimonious model: few parameters estimate many quantities bias-variance trade-off:

wiggliness $\uparrow \to {\rm misspecification~bias} \downarrow,$ CI width \uparrow

2.1Traditional Methods

 ${f Stratification}$ calculate risk for each stratum of Lonly feasible, if enough data per stratum

Outcome regression chapter 15

instrumental variable estimation chapter 16

causal survival analysis chapter 17 (and technical point 22.3)

Variable Selection can induce bias if L includes:

(decendant of) collider: selection bias under the null noncollider effect of A: selection bias under the alternative mediator: $over adjustment\ for\ mediators$

temporal ordering is not enough to conclude anything

bias amplification: e.g. by adjusting for an instrument Z (can also reduce bias)

Machine Learning L is high-dimensional

use lasso or ML for IP weighting/standardization

but: ML does not guarantee elimination of confounding and has largely unknown statistical properties

 \rightarrow doubly robust estimator: consistent if bias $<\frac{1}{\sqrt{n}}$ sample splitting: train estimators on training sample, use resulting estimators for doubly robust method on estimation sample (CIs on estimation sample are valid, but n halved) cross-fitting: do again the other way round, average the two estimates, get CI via bootstrapping

problems: unclear choice of algorithm, is bias small enough?

G-Methods 2.2

G-Methods generalized treatment contrasts: adjust for (surrogate) confounders L

- standardization two types of g-formula
- IP weighting also g-formula
- g-estimation: not needed unless longitudinal

Standardization plug-in (or parametric if so) g-formula

$$\mathbf{E}\left[Y^{a}\right] = \underbrace{\mathbf{E}\left[\mathbf{E}\left[Y|A=a,L=l\right]\right]}_{\text{conditional expectation}} \underbrace{\int \mathbf{E}\left[Y|L=l,A=a\right]f_{L}\left[l\right]dl}_{\text{joint density estimator}}$$

weighted average of stratum-specific risks; unknowns can be estimated non-parametrically or modeled

no need to estimate $f_L[l]$ /integrate as empirical distribution can be used: estimate outcome model \rightarrow predict counterfactuals on whole dataset \rightarrow average the results (\rightarrow CI by bootstrapping)

for discrete
$$L \to [Y|A=a] = \sum_l \to [Y|L=l, A=a] \Pr[L=l]$$

time-varying standardize over all possible \bar{l} -histories simulates joint distribution of counterfactuals $(Y^{\bar{a}}, \bar{L}^{\bar{a}})$ for \bar{a} joint density estimator (jde)

$$\text{discrete: } \mathbf{E}\left[Y^{\bar{a}}\right] = \sum_{\bar{l}} \mathbf{E}\left[Y|\bar{A} = \bar{a}, \bar{L} = \bar{l}\right] \prod_{k=0}^{K} f\left(l_{k}|\bar{a}_{k-1}, \bar{l}_{k-1}\right)$$

continuous:
$$\int f(y|\bar{a},\bar{l}) \prod_{k=0}^K f\left(l_k|\bar{a}_{k-1},\bar{l}_{k-1}\right) dl$$

for stochastic strategies multiply with $\prod_{k=0}^{K} f^{int}\left(a_k | \bar{a}_{k-1}, \bar{l}_k\right)$

estimation (Young et al., 2011; Schomaker et al., 2019)

- 1. model $f(l_k|\bar{a}_{k-1},\bar{l}_{k-1})$ and $E[Y|\bar{A}=\bar{a},\bar{L}=\bar{l}]$
- 2. simulate data forward in time: at k = 0: use empirical distribution of L_0 (observed data) at k > 0: set $\bar{A} = \bar{a}$, draw from models estimated in 1.
- 3. calculate mean of $\hat{Y}_{K,i}^{\bar{a}}$ (bootstrap for CI)

iterated conditional expectation (ice)

$$\mathbf{E}\left[Y_{T}^{\bar{a}}\right] = \mathbf{E}\left[\mathbf{E}\left[\mathbf{E}\left[...\mathbf{E}\left[Y_{T}|\bar{A}_{T-1}{=}\bar{a}_{T-1},\bar{L}_{T}\right]...|\bar{A}_{0}{=}a_{0},L_{1}\right]|L_{0}\right]\right]$$

estimation (Schomaker et al., 2019)

- 1. model inside out: $Q_T = \mathbb{E}\left[Y_T | \bar{A}_{T-1}, \bar{L}_T\right]$ to $Q_0 = \mathbb{E}\left[Q_1 | \bar{L}_0\right]$, predict Q_t with $\bar{A} = \bar{a}$ in each step
- 2. calculate mean of $\hat{Q}_{0,i}^{\bar{a}}$ (bootstrap for CI)

g-null paradox even if the sharp null holds, model misspecification can lead to it being falsely rejected

$$\begin{split} & \text{Proof: for } L_0 \to A_0 \to Y_0 \to L_1 \to A_1 \to Y_1, \ \bar{a} = (a_0, a_1) \\ & \to \left[Y_1^{\bar{a}} \right] \overset{\text{CE}}{=} \to \left[\to \left[Y_1^{\bar{a}} \middle| A_0 \! = \! a_0, L_0 \right] \right] \\ & \text{(ice)} \quad \overset{\text{CE*}}{=} \to \left[\to \left[\to \left[Y_1 \middle| \bar{L}, \bar{A} \! = \! \bar{a}, Y_0 \right] \middle| A_0 \! = \! a_0, L_0 \right] \right] \\ & \overset{\text{LTP}}{=} \to \left[\to \left[\to \left[Y_1 \middle| A_0 \! = \! a_0, \bar{L}, Y_0 \right] \Pr\left[l_1 \middle| a_0, l_0, y_0 \right] \right] \\ & \overset{\text{LTP}}{=} \to \int_{l_0} \left[\to \left[Y_1 \middle| A_0 \! = \! a_0, \bar{L}, Y_0 \right] \Pr\left[l_1 \middle| a_0, l_0, y_0 \right] \right] \Pr\left[l_0 \right] \\ & \text{(jde)} \quad \overset{\text{sum}}{=} \to \int_{\bar{l}} \to \left[Y_1 \middle| A_0 \! = \! a_0, \bar{L}, Y_0 \right] \Pr\left[l_1 \middle| a_0, l_0 \right] \Pr\left[l_0 \right] \\ & \text{CE: conditional expectation; *: exchangeability;} \\ & \text{LTP: law of total probability} \end{split}$$

Marginal Structural Models association is causation in the IP weighted pseudo-population

associational model $E[Y|A] = \text{causal model } E[Y^a]$ step 1: estimate/model f[A|L] (and f[A]) \rightarrow get $(S)W^A$ step 2: estimate regression parameters for pseudo-population effect modification variables V can be included (e. g. $\beta_0 + \beta_1 a + \beta_2 V a + \beta_3 V$; technically not marginal anymore), $SW^A(V) = \frac{f[A|V]}{f[A|L]}$ more efficient than SW^A

Censoring measuring joint effect of A and C

$$E[Y^{a,c=0}]$$
 is of interest

standardization $E[Y|A=a] = \int E[Y|L=l, A=a, C=0] dF_L[l]$ $\mathbf{IP} \ \mathbf{weights} \ \ W^{A,C} = W^A \times W^C$ $SW^{A,C} = SW^A \times SW^C$ (uses $n^{c=0}$)

g-estimation can only adjust for confounding, not selection bias \rightarrow use IP weights

G-Estimation (additive) structural nested models

logit Pr
$$\left[A = 1 | H(\psi^{\dagger}), L\right] = \alpha_0 + \alpha_1 H(\psi^{\dagger}) + \alpha_2 L$$

 $H(\psi^{\dagger}) = Y - \psi_{\dagger} A$

find ψ^{\dagger} which renders $\alpha_1 = 0$; 95 %-CI: all ψ^{\dagger} for which p > 0.05closed-form solution for linear models

derivation: $H(\psi^{\dagger}) = Y^{a=0}$

logit Pr
$$[A = 1|Y^{a=0}, L] = \alpha_0 + \alpha_1 Y^{a=0} + \alpha_2 L$$

 $Y^{a=0}$ unknown, but because of exchangeability α_1 should be zero $Y^{a=0} = Y^a - \psi_1 a$

equivalent to $Y^{a=0} = Y^{a=1} - \psi_1$, but using no counterfactuals structural nested mean model

$$\begin{array}{ll} \text{additive:} & \mathrm{E}\left[Y^a-Y^{a=0}|A=a,L\right] & =\beta_1 a\left(+\beta_2 a L\right) \\ \\ \text{multiplicative:} & \log\left(\frac{\mathrm{E}\left[Y^a|A=a,L\right]}{\mathrm{E}\left[Y^{a=0}|A=a,L\right]}\right) & =\beta_1 a\left(+\beta_2 a L\right) \end{array}$$

extend to longitudinal case

semi-parametric: agnostic about β_0 and effect of $L \to \text{robust} \uparrow$ no time-varying: no nesting; model equals marginal structural models with missing β_0, β_3 (unspecified "no treatment") sensitivity analysis: unmeasured confounding $(\alpha_1 \neq 0)$ can be examined: do procedure for different values of $\alpha_1 \to \text{plot } \alpha_1 \text{ vs.}$ $\psi^{\dagger} \rightarrow \text{how sensitive is estimate to unmeasured confounding?}$ effect modification: add V in both g-estimation equations doubly robust estimators exist

$$\mathbf{E}\left[Y^{a}\right] = \mathbf{E}\left[\frac{I(A=a)Y}{f\left[A|L\right]}\right]; W^{A} = \frac{1}{f\left[A|L\right]}; SW^{A} = \frac{f(A)}{f\left[A|L\right]}$$

pseudo-population: everyone is treated & untreated $(L \not\to A)$

FRCISTG (fully randomized causally interpreted structured graph): probability tree for $L \to A \to Y$, can be used to calculate/visualize simulation of values for Afor discrete A, L f[a|l] = Pr[A = a, L = l]estimators: Horvitz-Thompson; Hajek (modified version) stabilized weights SW^A should have an average of 1 (check!) \rightarrow pseudo-population same size \rightarrow CI width \downarrow

Standardization and IP Weighting are equivalent, ${\it but}$ if modeled, different "no misspecification" assumptions: standardization: outcome model

IP weighting: treatment model

doubly robust estimators: reduce model misspecification bias,

consistent if either model is correct; e. g.: 1. fit outcome regression with variable $R = \begin{cases} +W^A & \text{if } A{=}1\\ -W^A & \text{if } A{=}0 \end{cases}$

2.2.1 Time-varying A

IP Weighting

$$W^{\bar{A}} = \prod_{k=0}^{K} \frac{1}{f\left(A_k | \bar{A}_{k-1}, \bar{L}_k\right)}$$

$$SW^{\bar{A}} = \prod_{k=0}^{K} \frac{f(A_k | \bar{A}_{k-1})}{f(A_k | \bar{A}_{k-1}, \bar{L}_k)}$$

Doubly Robust Estimator sequential estimation

- 1. estimate $\hat{f}(A_m|\bar{A}_{m-1},\bar{L}_m)$ (e. g. logistic model), use it to calculate at each time m: $\hat{W}^{\bar{A}_m} = \prod_{k=0}^m \frac{1}{\hat{f}(A_k|\bar{A}_{k-1},\bar{L}_k)}$ and modified IP weights at m: $\widehat{W}^{\bar{A}_{m-1,a_m}} = \frac{\widehat{W}^{\bar{A}_{m-1}}}{\widehat{f}(a_m|\bar{A}_{m-1},\bar{L}_m)}$
- 2. with $\widehat{T}_{K+1} := Y$, recursively for m = K, K-1, ..., 0: (a) fit outcome regression on \widehat{T}_{m+1} with variable $\widehat{W}^{\bar{A}_m}$ (b) calculate \widehat{T}_m using the outcome model with $\widehat{W}^{\bar{A}_{m-1,a_m}}$
- 3. calculate standardized mean outcome $\widehat{\mathbf{E}}[Y^{\bar{a}}] = \mathbf{E}[\widehat{T}_0]$ valid, if treatment or outcome model correct, or treatment correct until k and outcome otherwise (k + 1 robustness)

G-Estimation nested equations: for each time kstrutural nested mean models separate effect of each a_k

$$E\left[Y^{\bar{a}_{k-1},a_{k},\underline{0}_{k+1}} - Y^{\bar{a}_{k-1},\underline{0}_{k+1}} | \bar{L}^{\bar{a}_{k-1}} = \bar{l}_{k}, \bar{A}_{k-1} = \bar{a}_{k-1}\right] = a_{k}\gamma_{k} \left(\bar{a}_{k-1}, \bar{l}_{k}, \beta\right)$$

calculations

$$H_k\left(\psi^{\dagger}\right) = Y - \sum_{j=-k}^{K} A_j \gamma_j \left(\bar{A}_{j-1}, \bar{L}_j, \psi^{\dagger}\right)$$

function γ_i can be, e.g. constant (ψ_1) , time-varying only $(\psi_1 + \psi_2 k)$, or dependent on treatment/covariate history

$$\begin{aligned} & \operatorname{logit} \operatorname{Pr} \left[A_k = 1 | H_k \left(\psi^{\dagger} \right), \bar{L}_k, \bar{A}_{k-1} \right] = \\ & \alpha_0 + \alpha_1 H_k \left(\psi^{\dagger} \right) + \alpha_2 w_k \left(\bar{L}_k, \bar{A}_{k-1} \right) \end{aligned}$$

find α_1 that is closest to zero

closed form estimator exists for the linear case

standardization:

$$\int f(y|\bar{a},\bar{c}=\bar{0},\bar{l}) \prod_{k=0}^{K} dF \left(l_k|\bar{a}_{k-1},c_{k-1}=0,\bar{l}_{k-1}\right)$$
IP weighting:

$$SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{1 \cdot \Pr\left(C_k = 0 | \bar{A}_{k-1}, C_{k-1} = 0\right)}{\Pr\left(C_k = 0 | \bar{A}_{k-1}, C_{k-1} = 0, \bar{L}_k\right)}$$

3 Longitudinal Data

Time-Varying Treatments compare 2 treatments treatment history up to k: $\bar{A}_k = (A_0, A_1, ..., A_k)$ shorthand: always treated $\bar{A} = \bar{1}$, never treated $\bar{A} = (\bar{0})$ static strategy: $g = [g_0(\bar{a}_{-1}), ..., g_K(\bar{a}_{K-1})]$ dynamic strategy: $g = [g_0(\bar{l}_0), ..., g_K(\bar{l}_K)]$ stochastic strategy: non-deterministic g optimal strategy is where $E[Y^g]$ is maximized (if high is good)

Sequential Identifiability sequential versions of **exchangability:** $Y^g \perp \!\!\!\perp A_k | \bar{A}_{k-1} \ \, \forall g,k=0,1,...,K$ conditional exchangeability:

$$\begin{split} \left(Y^g, L_{k+1}^g\right) & \perp \!\!\! \perp A_k | \bar{A}_{k-1} \!\!\! = \!\!\! g\left(\bar{L}_k\right), \bar{L}^k \; \forall g, k = 0, 1, ..., K \\ \textbf{positivity:} \; & f_{\bar{A}_{k-1}, \bar{L}_k}(\bar{a}_{k-1}, \bar{l}_k) \neq 0 \; \Rightarrow \\ & f_{A_k | \bar{A}_{k-1}, \bar{L}_k}(a_k | \bar{a}_{k-1}, \bar{l}_k) > 0 \; \forall \left(\bar{a}_{k-1}, \bar{l}_k\right) \end{split}$$

consistency:

$$Y^{\bar{a}} = Y^{\bar{a}^*}$$
 if $\bar{a} = \bar{a}^*$; $Y^{\bar{a}} = Y$ if $\bar{A} = \bar{a}$;

 $\bar{L}_k^{\bar{a}} = \bar{L}_k^{\bar{a}^*}$ if $\bar{a}_{k-1} = \bar{a}_{k-1}^*$; $\bar{L}_k^{\bar{a}} = \bar{L}_k$ if $\bar{A}_{k-1} = \bar{a}_{k-1}$ generalized backdoor criterion (static strategy): all backdoors into A_k (except through future treatments) are blocked $\forall k$

 $Y^{\bar{a}} \perp \!\!\!\perp A_k | \bar{A}_{k-1}, \bar{L}_k \quad \text{for } k = 0, 1, ..., K$

use SWIGs to visually check d-separation time-varying confounding $\mathrm{E}\left[Y^{\bar{a}}|L_{0}\right] \neq \mathrm{E}\left[Y|A=\bar{a},L_{0}\right]$

static sequential exchangeability for $Y^{\bar{a}}$

Treatment-Confounder Feedback $A_0 \to L_1 \to A_1$: an unmeasured U influencing L_1 and Y turns L_1 into a collider; traditional adjustment (e. g. stratification) biased: use g-methods **g-null test** sequential exchangeability & sharp null true \Rightarrow $Y^g = Y \forall g \Rightarrow Y \perp \!\!\!\perp A_0 \mid L_0 \& Y \perp \!\!\!\perp A_1 \mid A_0, L_0, L_1$; therefore: if last two independences don't hold, one assumption is violated **g-null theorem:** $E[Y^g] = E[Y]$, if the two independences hold (\Rightarrow sharp null: only if strong faithfulness (no effect cancelling))

References

If no citation is given, the information is taken from the book (Hernán and Robins, 2020)

- Hernán, M. A. and Robins, J. M. (2020). Causal inference: what if. Boca Raton: Chapman & Hall/CRC.
- Petersen, M. L. and van der Laan, M. J. (2014). Causal models and learning from data: integrating causal modeling and statistical estimation. *Epidemiology (Cambridge, Mass.)*, 25(3):418–426.
- Schomaker, M., Luque-Fernandez, M. A., Leroy, V., and Davies, M.-A. (2019). Using longitudinal targeted maximum likelihood estimation in complex settings with dynamic interventions. *Statistics in medicine*, 38(24):4888–4911. ISBN: 0277-6715 Publisher: Wiley Online Library.
- Young, J. G., Cain, L. E., Robins, J. M., O'Reilly, E. J., and Hernán, M. A. (2011). Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula. *Statistics in biosciences*, 3:119–143.