Advanced Analytical Theory and Methods: Association Rules

Prof. Dr. Shamim Akhter

Professor, Dept. of CSE

Ahsanullah University of Science and Technology

Association Rules

 Association rules represent interesting associations and relationships hidden in a large dataset.

These are unsupervised but descriptive, not predictive

learning methods.

Here are some possible questions that association rules can answer:

- Which products tend to be purchased together?
- Of those customers who are similar to this person, what products do they tend to buy?
- Of those customers who have purchased this product, what other similar products do they tend to view or purchase?

General logic behind association rules

- Given a large collection of transactions, each transaction consists of one or more items.
- Association rules review the items being purchased to see what items are frequently bought together and to discover a list of rules describing the purchasing behavior.

The first three rules suggest that when cereal is purchased, milk is purchased 90% of the time. When bread is purchased, 40% of the time milk is purchased. When milk is purchased, 23% of the time cereal is purchased.

Each uncovered rule is in the form X->Y, meaning that when item X is observed, item Y is also observed. In this case, the left-hand side (LHS) of the rule is X, and the right-hand side (RHS) of the rule is Y.

DEFINITION 6.4. Given a set of items $I = \{I_1, I_2, ..., I_m\}$ and a database of transactions $D = \{t_1, t_2, ..., t_n\}$ where $t_i = \{I_{i1}, I_{i2}, ..., I_{ik}\}$ and $I_{ij} \in I$, the **association rule problem** is to identify all association rules $X \Rightarrow Y$ with a minimum support and confidence. These values (s, α) are given as input to the problem.

TABLE 6.1: Sample Data to Illustrate Association Rules

Transaction	Items	
t_1	Bread, Jelly, Peanut	Butter
t_2	Bread, PeanutButter	
<i>t</i> ₃	Bread, Milk, Peanu	Butter
<i>t</i> ₄	Beer, Bread	
<i>t</i> ₅	Beer, Milk	

DEFINITION 6.2. The support (s) for an association rule $X \Rightarrow Y$ is the percentage of transactions in the database that contain $X \cup Y$.

DEFINITION 6.3. The confidence or strength (α) for an association rule $X \Rightarrow Y$ is the ratio of the number of transactions that contain $X \cup Y$ to the number of transactions that contain X.

$$Support = \frac{frq(X,Y)}{N}$$

Rule:
$$X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

Apriori Algorithm

- The most well-known association rule algorithm is used in most commercial products.
- It uses the following property, which we call the large itemset property: any subset of a large itemset must be large.

DEFINITION 6.5. A large (frequent) itemset is an itemset whose number of occurrences is above a threshold, s. We use the notation L to indicate the complete set of large itemsets and l to indicate a specific large itemset.

ALGORITHM 6.1

```
Input:
            //Database of transactions
    D
            //Items
    T
           //Large itemsets
            //Support
            //Confidence
Output:
            //Association Rules satisfying s and \alpha
ARGen algorithm:
    R = \emptyset;
    for each l \in L do
        for each x \subset 1 such that x \neq \emptyset do
            if \frac{\text{support}(1)}{\text{support}(x)} \ge \alpha then
                R = R \cup \{x \Rightarrow (1-x)\};
```

TABLE 6.2: Support of All Sets of Items Found in Table 6.1

Set	Support	Set	Support
Beer	40	Beer, Bread, Milk	0
Bread	80	Beer, Bread, PeanutButter	0
Jelly	20	Beer, Jelly, Milk	0
Milk	40	Beer, Jelly, PeanutButter	0
PeanutButter	60	Beer, Milk, PeanutButter	0
Beer, Bread	20	Bread, Jelly, Milk	0
Beer, Jelly	0	Bread, Jelly, PeanutButter	20
Beer, Milk	20	Bread, Milk, PeanutButter	20
Beer, PeanutButter	0	Jelly, Milk, PeanutButter	0
Bread, Jelly			0
read, Milk 20 Beer, Bread, Jelly, PeanutButter		0	
read, PeanutButter 60 Beer, Bread, Milk, PeanutButter		0	
Jelly, Milk			0
Jelly, PeanutButter	20	Bread, Jelly, Milk, PeanutButter	
Milk, PeanutButter	20	Beer, Bread, Jelly, Milk, PeanutButter	0
Beer, Bread, Jelly	0		

To illustrate this algorithm, again refer to the data in Table 6.1 with associated supports shown in Table 6.2. Suppose that the input support and confidence are s = 30% and $\alpha = 50\%$, respectively. Using this value of s, we obtain the following set of large itemsets:

 $L = \{\{Beer\}, \{Bread\}, \{Milk\}, \{PeanutButter\}\}\}$.

We now look at what association rules are generated from the last large itemset. Here $l = \{Bread, PeanutButter\}$. There are two nonempty subsets of l: $\{Bread\}$ and $\{PeanutButter\}$. With the first one we see:

$$\frac{\text{support}(\{\text{Bread}, \text{PeanutButter}\})}{\text{support}(\{\text{Bread}\})} = \frac{60}{80} = 0.75$$

This means that the confidence of the association rule Bread \Rightarrow PeanutButter is 75%, Since this is above α , it is a valid association rule and is added to R. Likewise with the second large itemset

$$\frac{\text{support}(\{\text{Bread}, \text{PeanutButter}\})}{\text{support}(\{\text{PeanutButter}\})} = \frac{60}{60} = 1$$

This means that the confidence of the association rule PeanutButter ⇒ Bread is 100%, and this is a valid association rule.

TABLE 6.5: Using Apriori with Transactions in Table 6.1

Pass	Candidates	Large Itemsets
1	{Beer}, {Bread}, {Jelly}, {Milk}, {PeanutButter}	{Beer}, {Bread}, {Milk}, {PeanutButter}
2	{Beer, Bread}, {Beer, Milk}, {Beer, PeanutButter}, {Bread, Milk}, {Bread, PeanutButter}, {Milk, PeanutButter}	{Bread, PeanutButter}

A classic example of association rules in data mining.

 On Friday afternoons, young American males who buy diapers also have a predisposition to buy beer.

- A supermarket has 200,000 customer transactions. About 4,000 transactions, or about 2% of the total number of transactions, include the purchase of diapers.
- About 5,500 transactions (2.75%) include the purchase of beer. Of those, about 3,500 transactions, 1.75%, include both the purchase of diapers and beer.
- Based on the percentages, that large number should be much lower. However, the fact that about 87.5% of diaper purchases include the purchase of beer indicates a link between diapers and beer.

Example 2

T	ltems
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

{ Milk, Diaper} => {Beer}

Support	{Milk,Diaper U Beer}/N =2/5=0.4	
Confidence	2/3=0.67	
Lift	Confidence/Support(y)=Support/{Support(x).Support(y)} = 0.67/{3/5}=0.67/0.6=1.11 Lift value near 1 indicates X& Y appear almost together. Lift > 1 means they appear together more than expected Lift < 1 means they appear together less than expected Greater Lift value indicates a stronger association	