オペレーションズ・リサーチ

Operations Research: Models, Algorithms, and Implementations

劉子昂

2025-08-31

目次

Preface)	5
第Ⅰ部	在庫モデル	7
第1章	在庫管理とは	9
1.1	在庫モデルの分類	9
1.2	在庫の費用	10
第2章	経済的発注量	13
2.1	コスト関数	15
2.2	最適発注量	15
2.3	リードタイム	19
2.4	他の EOQ モデル	19
Referen	aces	21

Preface

This is a Quarto book.

To learn more about Quarto books visit $\label{eq:learn} {\it https://quarto.org/docs/books.}$

第I部

在庫モデル

第1章 在庫管理とは

商店・工場・倉庫などで、原材料・部品・製品などを適切に管理することを**在庫管理**(Inventory Management)という。一般的に、在庫管理の目的は、顧客の需要を満たしつつ、在庫に関わる費用を最小化することである。

i ノート

豊田自動車が提唱した**ジャストインタイム**(Just In Time, JIT)は、生産方式としてよく知られている。

JIT とは必要なものを、必要な時に、必要な量だけ生産することである。 JIT の目的は、在庫を最小限に抑え、効率的な生産を実現することである。

アメリカの研究者らは、その生産方式を体系化し、**リーン生産方式** (Lean Manufacturing)という概念を提唱した。

• トヨタ生産方式

在庫が多すぎると、保管費用がかかる。逆に、在庫が少なすぎると、欠品が発生 し、顧客の需要を満たせなくなる。在庫管理は次の二つの問題を決定する。

- 1. どのくらいの量を発注するか?(発注量)
- 2. いつ発注するか?(発注時期)

科学的在庫管理(Scientific Inventory Management)では、これらの問題に答えるために、次の手順で在庫管理を行う。

- 1. 在庫システムを数学モデルとして定式化する。
- 2. 最適な発注量と発注時期を決定する。

1.1 在庫モデルの分類

在庫モデルは、次のような要素で分類される。

需要(demand) 需要が決定論的 (Deterministic) か確率的(Stochastic)か。 **観測(review)** 在庫量を連続観測 (Continuous Review) するか、周期観測 (Periodic Review) するか。連続観測の場合、在庫量が連続的に観測で

- き、いつでも発注が可能である。周期観測の場合、一定の期間(例えば1週間)ごとに在庫量を観測する。
- リードタイム(lead time) 発注から納品までの期間。調達期間とも呼ばれる。リードタイムが決定論的か確率的か。また、リードタイムが 0 かどうか。在庫モデルを単純化するために、リードタイムを 0 とし、発注から納品までの期間を無視することもある。
- バックオーダー(backorder) バックオーダーが許容されるかどうか。需要が在庫を上回った場合、バックオーダーが許容されると、欠品が発生しても、後で需要を満たすことができる。バックオーダーが許容されない場合、欠品が発生すると、上回った需要は失われ、機会損失が発生する。
- 計画期間(planning horizon) 単一期間 (Single Period) か、複数期間 (Multi Period) か、無限 (Infinite) か。

以下の表に、需要と観測に基づく、古典的な在庫モデルを示す。

在庫モデル	需要	観測
EOQ モデル	決定論的	連続観測
Wagner-Whitin	決定論的	周期観測
安全在庫	確率的	連続観測
新聞売り子問題	確率的	周期観測

1.2 在庫の費用

ここでは、在庫に関わる費用を紹介する。

- **発注費用(ordering cost)** 発注量に関わらず、1 回の発注にかかる費用。調 達費用、固定費用(fixed cost)などとも呼ばれる。通常、1 回の発注にか かる費用を K とする。
- **購入費用(purchase cost)** 商品を購入するためにかかる費用。通常、単位あたりの購入費用をcとする。
- **欠品費用(stockout cost)** 需要が在庫を上回った場合に発生する費用。通常、単位あたりの欠品費用をpとする。
- 保管費用(holding cost) 在庫を保管するためにかかる倉庫費用、保険費用、税金、機会費用など。通常、単位時間あたりの1単位あたりの保管費用 をhとする。

例えば、1日あたり1単位の在庫を保管するために、h の費用がかかるとする。 30 日間、50 単位の在庫を保管するための総保管費用は $30\times50\times h=1500h$ となる。下の図を見ると、保管費用は

1.2. 在庫の費用 11

面積 $\times h = 1500h$

となることがわかる。

```
import matplotlib.pyplot as plt
import numpy as np

t = np.linspace(0, 30, 1000)
inventory = np.full_like(t, 50)

# Plotting the inventory level
plt.fill_between(t, inventory, color="lightgray", alpha=0.5, label="Inventory Level")
plt.plot(t, inventory, label="Inventory Level", color="black", linewidth=2)
plt.xlabel("Time")
plt.ylabel("Inventory Level")
plt.axhline(0, color="gray", linewidth=1)
plt.tight_layout()
plt.show()
```


一般的に、在庫量が定数ではなく、時間とともに変化する。例えば、発注量を 500 とし、6 日間の在庫量を考える。

```
# Parameters
d = 250  # Demand rate
Q = 500  # Order quantity
T = Q / d  # Cycle length
```

```
t = np.linspace(0, 2.999 * T, 1000)

# Inventory level over time
inventory = np.maximum(0, Q - (d * t) % Q)

# Plotting the inventory level
plt.fill_between(t, inventory, color="lightgray", alpha=0.5, label="Inventory Level
plt.plot(t, inventory, label="Inventory Level", color="black", linewidth=2)
plt.xlabel("Time")
plt.ylabel("Inventory Level")
plt.axhline(0, color="gray", linewidth=1)
plt.ylim(bottom=0, top=Q + 200)
plt.tight_layout()
plt.show()
```


保管費用は次のように計算される。

$$\frac{2\times 500}{2}\times 3\times h$$

第2章 経済的発注量

経済的発注量 (EOQ: Economic Order Quantity)モデルは、最も基本的な在庫管理モデルの一つである。Harris (1990) このモデルを最初に提案した。

EOQ モデルは、単位時間あたりの需要量は決定論的で、一定であると仮定する。すなわち、需要量は事前に分かっており、時間とともに変化しない。単位時間あたりの需要量は需要率 (demand rate) と呼ばれ、記号 d で表される。リードタイムは 0 とし、発注から納品までの時間はないと仮定する。一回の発注量を Q とし、一定であるとする。欠品は許せないとする。全ての需要は満されなければならない。また、EOQ モデルでは、在庫量は連続的に観測され、いつでも発注が可能であるとする。

在庫に関わる費用は、発注費用 K、保管費用 h と、購入費用(購入単価を c と表す)がある。

EOQ モデルの最適解は次の二つの性質を持つ (Snyder と Shen 2019):

- 1. Zero-inventory ordering (ZIO). 在庫量が 0 のときに発注を行う。リードタイムは 0 であるため、在庫量が 0 でないときに発注すると、保管費用が発生する。
- 2. Constant order sizes. 発注量は一定である。需要率 d が一定であり、在 庫量が 0 のときに発注を行うため、最適発注量も一定である。

以上の性質から、在庫量の時間的変化は下図のようになる。

```
import matplotlib.pyplot as plt
import numpy as np

# Parameters
d = 250  # Demand rate
Q = 500  # Order quantity
T = Q / d  # Cycle length
t = np.linspace(0, 3 * T, 1000)  # Time from 0 to 3 cycles
# Inventory level over time
```

```
inventory = np.maximum(0, Q - (d * t) % Q)
inventory[0] = 0

# Plotting the inventory level
plt.plot(t, inventory, label="Inventory Level", color="black", linewidth=2)
plt.xlabel("Time")
plt.ylabel("Inventory Level")
plt.axhline(0, color="gray", linewidth=1)
plt.ylim(bottom=0, top=Q + 100)
plt.tight_layout()
plt.show()
```


発注の間隔をサイクル (cycle) と呼び、サイクル期間は

$$T = \frac{Q}{d}$$

で与えられる。

例 2.1. A 社は、毎月 250 個の需要がある商品を取り扱っている。一回の発注量は 500 個とし、サイクル期間は

$$T = \frac{500}{250} = 2 \,$$
ヶ月

となる。

2.1. コスト関数 15

2.1 コスト関数

ここでは、1サイクルあたりのコストを考える。

発注費用:発注は1回だけ行うため、発注費用はKである。

購入費用:Q 個の商品を単価 c で購入するため、購入費用は cQ である。

保管費用: 在庫量はサイクル期間 T の間に Q 個から 0 個まで減少するため、平均在庫量は $\frac{Q}{2}$ である。したがって、平均保管費用は $\frac{hQ}{2}$ である。サイクル期間 T は $\frac{Q}{d}$ であるため、1 サイクルあたりの保管費用は

$$\frac{hQ}{2} \cdot T = \frac{hQ^2}{2d}$$

となる。

以上より、1サイクルあたりのコストは次のように表される。

$$K + cQ + \frac{hQ^2}{2d}$$

平均コストは、これをサイクル期間 T で割ったものとして定義される。したがって、平均コスト g(Q) は次のように表される。

$$g(Q) = \frac{1}{T} \left(K + cQ + \frac{hQ^2}{2d} \right)$$
$$= \frac{d}{Q} \left(K + cQ + \frac{hQ^2}{2d} \right)$$
$$= \frac{Kd}{Q} + cd + \frac{hQ}{2}$$

以上より、平均コストは発注量 Q の関数として次のように表される。

$$g(Q) = \frac{Kd}{Q} + cd + \frac{hQ}{2}$$

2.2 最適発注量

EOQ モデルの目的は、平均コスト g(Q) を最小化する発注量 Q を求めることである。

平均コストの導関数 g'(Q) が 0 となる点を求めることで、最適発注量 Q^* を求めることができる。

$$g'(Q)=-\frac{Kd}{Q^2}+\frac{h}{2}=0$$

これを解くと、最適発注量

$$Q^* = \sqrt{\frac{2Kd}{h}}$$

を得る。これを EOQ 公式 (EOQ formula) と呼ぶ。 Q^* を経済的発注量と呼ぶ (経済的は最適という意味である)。

二階導関数 q''(Q) を求めて、最適発注量が最小値を与えることを確認する。

$$g''(Q) = \frac{2Kd}{Q^3} > 0$$

g''(Q) > 0 であるため、 Q^* は最小値を与える。

最適発注量 Q^* を次の定理にまとめる。

定理 2.1. EOQ モデルにおいて、最適発注量 Q^* は

$$Q^* = \sqrt{\frac{2Kd}{h}}$$

で与えられる。

 Q^* を用いて、最適なサイクル期間 T^* を求めることができる。

$$T^* = \frac{Q^*}{d} = \sqrt{\frac{2K}{hd}}$$

注釈 2.1. 以下の性質がわかる。

- $1. Q^*$ は c には依存しない。
- 2. h の増加に伴い、 Q^* は減少する。保管費用が高い場合は、少量で高い頻度で発注することが望ましい。
- 3. K の増加に伴い、 Q^* は増加する。発注費用が高い場合は、多量で低い頻度で発注することが望ましい。

次の図は、発注コスト、保管コスト、平均コストの関係を示している。購入単価を c=0 とする。

2.2. 最適発注量 17

```
# Parameters
K = 500 # Order cost
h = 15 # Holding cost
c = 0 # Purchase cost
Q = np.linspace(1, 50, 50)
# Average cost function
g = (K / Q) + c + (h * Q / 2)
# Plotting the costs vs order quantity
plt.plot(Q, K / Q, label="Order Cost", color="blue", linewidth=2)
plt.plot(Q, c + (h * Q / 2), label="Holding Cost", color="orange", linewidth=2)
plt.plot(Q, g, label="Average Cost", color="green", linewidth=2)
plt.axvline(
    x=np.sqrt(2 * K / h),
    color="red",
    linestyle="--",
    label="Optimal Order Quantity",
    linewidth=2,
plt.xlabel("Order Quantity (Q)")
plt.ylabel("Cost")
plt.tight_layout()
plt.show()
```


平均コストが最小となる発注量 Q^* は、発注コストと保管コストの交差点である。すなわち、発注コストと保管コストを等しくする発注量は最適な発注量 Q^* である。この性質は以下の式からわかる。

$$\frac{Kd}{Q^*} = \frac{hQ^*}{2} \Longrightarrow Q^* = \sqrt{\frac{2Kd}{h}}$$

また、この図からもわかるように、Q の増加に伴い、平均発注コストは減少し、平均保管コストは増加する。逆もまた然りである。

例 2.2. ある電気量販店では、毎月 250 台の PC が販売されている。発注費用は 5000 円、保管費用は 1 台あたり月 150 円、購入単価は 10 万円とする。このとき、最適発注量 Q^* は次のように求められる。

$$Q^* = \sqrt{\frac{2 \cdot 5000 \cdot 250}{150}}$$

最適発注量 Q^* を次で計算する。

```
def eoq(K, d, h):
    """
    Calculate the Economic Order Quantity (EOQ).

Parameters:
    K (float): Order cost
    d (float): Demand rate
    h (float): Holding cost

Returns:
    float: Optimal order quantity Q*
    """
    return np.sqrt(2 * K * d / h)

if __name__ == "__main__":
    K = 5000  # Order cost
    d = 250  # Demand rate (units per month)
    h = 150  # Holding cost (per unit per month)

Q_star = eoq(K, d, h)
    print(f"Optimal Order Quantity (Q*): {Q_star:.2f}")
```

Optimal Order Quantity (Q*): 129.10

PC の場合は、注文量が整数である必要があるため、g(129) と g(130) を比較して最適発注量を決定する。

2.3 リードタイム

EOQ モデルでは、リードタイムは 0 と仮定している。リードタイムが L>0 の場合も、最適発注量 Q^* も変換せず、L 期間前に Q^* を発注すればよい。

ここでは、r を発注点(reorder point)とする。在庫量が r になったときに発注を行う。リードタイム L の間に需要が dL 個あるため、発注点は次のように表される。

$$r = dL$$

例 2.3. 上の例で、リードタイムが一週間とし、一か月を4週間とすると、リードタイムは L=1/4 となる。したがって、発注点は次のように求められる。

$$r = dL = 250 \times \frac{1}{4} = 62.5$$

PC の在庫量が 63 台になったときに発注を行う。

2.4 他の EOQ モデル

- バックオーダーを考慮した EOQ モデル
- 数量割引(quantity discount)を考慮した EOQ モデル
 - 総量割引(all-units discount)
 - 増分割引(incremental discount)

References

Harris, Ford W. 1990. 「How many parts to make at once」. Oper. Res. 38 (6): 947–50.

Snyder, Lawrence V, と Zuo-Jun Max Shen. 2019. Fundamentals of supply chain theory. 2nd 版. Nashville, TN: John Wiley & Sons.