Нахождение интеграла для F

Нугманов Булат

25 ноября 2022 г.

${\sf P}$ азложение z_k

Разложение функции Ламберта из статьи

Следующая формула взята из статьи "On the Lambert W Function" (DOI:10.1007/BF02124750), формула (4.20):

$$W_k(z) = \log z + 2\pi i k - \log(\log z + 2\pi i k) + \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} c_{km} \log^m(\log z + 2\pi i k) (\log z + 2\pi i k)^{-k-m}$$
(1)

Для того, чтоб ветви функции Ламберта совпадали с общепринятыми, ветви $\log z$ необходимо так же брать привычными — с разрезом на отрицательных числах и нулевой мнимой частью при положительных z. Коэффициенты c_{km} определены в статье после формулы (4.18):

$$c_{km} = \frac{(-1)^k}{m!}c(k+m,k+1) \tag{2}$$

c(k+m,k+1) — это беззнаковые числа Стирлинга первого рода. В вольфраме они обозначаются как "Abs@StirlingS1[k+m, k+1]".

В нашей же задаче, требуется определить $z_k=\frac{i}{2}W_k(-2i\alpha\gamma)$. Обозначая $z=-2i\alpha\gamma$, k+m=n, получаем:

$$-2iz_{k} = W_{k}(z)$$

$$= \log z + 2\pi i k - \log(\log z + 2\pi i k) + \dots$$

$$\dots + \sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{(-1)^{n-m}}{m!} c(n, n-m+1) \frac{\log^{m}(\log z + 2\pi i k)}{(\log z + 2\pi i k)^{n}}$$
(3)

В такой форме наглядно видно разложение по малости остаточных членов. В дальнейшем будет видно, что большим параметром при разложении здесь является номер функции Ламберта — k. Ещё можно использовать знаковые числа Стирлинга $(s(n,k)=(-1)^{n-k}c(n,k)\Rightarrow (-1)^{n-m}c(n,n-m+1)=(-1)^{n+1}s(n,n-m+1))$, однако в этом нет пока необходимости.

Метод перевала с остаточными членами

Общая теория метода перевала

Следует быть осторожным при использовании чужих формул по методу перевала. Сейчас будет сформулировано утверждение под названием "Perron's formula" 1 . Это формула для нахождения интеграла через перевальную точку z_0 вдоль кривой наискорейшего спуска γ .

$$\int_{\gamma} e^{\lambda f(z)} dz = e^{\lambda f(z_0)} \sum_{n=0}^{\infty} \Gamma\left(n + \frac{1}{2}\right) \frac{c_{2n}}{\lambda^{n + \frac{1}{2}}}$$

$$c_{2n} = \frac{1}{(2n)!} \left[\left(\frac{d}{dz}\right)^{2n} \left\{ \frac{(z - z_0)^2}{f(z) - f(z_0)} \right\}^{n + \frac{1}{2}} \right]_{z = z_0}$$
(4)

Если же использовать разложение функции f в ряд Тейлора, то можно получить "Campbell – Froman – Walles – Wojdylo formula"².

$$f(z) = f(z_0) + \sum_{p=0}^{\infty} a_p (z - z_0)^{p+2}$$

$$c_{2n} = \frac{1}{a_0^{n+\frac{1}{2}}} \sum_{j=0}^{2n} C_{-n-\frac{1}{2}}^j \hat{B}_{2n,j} (a_1, a_2, \dots, a_{2n-j+1})$$
(5)

Обобщённые числа Стирлинга

Они упоминаются в английской вики на странице о числах Стирлинга. Там же приводится ссылка на книгу Кометта, посвящённую комбинаторике. (см. papers)

$$\exp\left(u\left(\frac{t^r}{r!} + \frac{t^{r+1}}{(r+1)!} + \dots\right)\right) = \sum_{n=(r+1)k,k=0}^{\infty} S_r(n,k) u^k \frac{t^n}{n!}$$
 (6)

Для чисел Стирлинга есть рекуррентная формула всё в той же книжке "Advanced combinatorics":

$$S_r(n+1,k) = kS_r(n,k) + C_n^r S_r(n-r+1,k-1)$$
(7)

Немного о полиномах Белла

$$\exp\left(u\sum_{j=1}^{\infty}x_{j}t^{j}\right) = \sum_{n\geq k\geq 0}\hat{B}_{n,k}\left(x_{1}, x_{2}, \dots, x_{n-k+1}\right)t^{n}\frac{u^{k}}{k!}$$
(8)

Подставляя необходимые x_i в нашем случае, получаем следующий ряд:

 $^{^1}$ Формула (2.5) в файле "Метод перевала с остаточными членами". Сразу рассмотрим более частный случай, имеющий непосредственное влияние на нашу задачу. А именно возьмём перевальную точку второго порядка m=2, положим функцию рядом с экспонентой под интегралом g(z)=1, будем считать, что контур проходит через перевальную точку, а не имеет в ней начало или конец, как это приведено в книге.

 $^{^{2}}$ формула (1.11) в книжке по методу перевала.

$$\sum_{n\geq k\geq 0} \hat{B}_{n,k} \left(\frac{1}{r!}, \frac{1}{(r+1)!}, \dots, \frac{1}{(n-k+r)!} \right) t^n \frac{u^k}{k!} = \exp\left(\frac{u}{t^{r-1}} \left(\frac{t^r}{r!} + \frac{t^{r+1}}{(r+1)!} + \dots \right) \right)$$

$$= \sum_{n,k}^{\infty} S_r(n,k) \frac{u^k}{t^{(r-1)k}} \frac{t^n}{n!}$$

$$= \sum_{n,k}^{\infty} S_r(n+(r-1)k,k) u^k \frac{t^n}{(n+(r-1)k)!}$$
(9)

$$\hat{B}_{n,k}\left(\frac{1}{r!}, \frac{1}{(r+1)!}, \dots, \frac{1}{(n-k+r)!}\right) = \frac{k!}{(n+(r-1)k)!} S_r(n+(r-1)k, k)$$
(10)

Применение теории

Как упоминается в приложении к диплому:

$$\sum_{n=0}^{\infty} \frac{\alpha^n e^{i\gamma n^2}}{n!} = \frac{e^{\frac{i\pi}{4}}}{\sqrt{\pi\gamma}} \int_{-\infty}^{\infty} e^{-i\frac{x^2}{\gamma} + \alpha e^{2ix}} dx = \frac{e^{\frac{i\pi}{4}}}{\sqrt{\pi\gamma}} \int_{-\infty}^{\infty} e^{\frac{1}{\gamma} \left(-ix^2 + \alpha\gamma e^{2ix}\right)} dx \tag{11}$$

В таком виде очевидно, что в формуле 4 будут использоваться следующие замены: $\lambda \leadsto \frac{1}{\gamma}$, $f(x) \leadsto -ix^2 + \alpha \gamma e^{2ix} = -ix^2 - \frac{z}{2i}e^{2ix}$. (А так же вспомним обозначение из первой части $z=-2i\alpha\gamma$).

$$\frac{f(x) - f(z_k)}{(x - z_k)^2} = \sum_{p=0}^{\infty} \frac{f^{(p+2)}(z_k)}{(p+2)!} (x - z_k)^p$$

$$= \underbrace{\left(-i - ize^{2iz_k}\right)}_{a_0} - \sum_{p=1}^{\infty} \underbrace{\frac{(2i)^{p+1}ze^{2iz_k}}{(p+2)!}}_{a_1, a_2, \dots} (x - z_k)^p$$
(12)

Теперь мы готовы воспользоваться формулой 5 и выразить интеграл по перевальному контуру через z_k (а так же используем формулу 5.6 из моего диплома):

$$\int_{\gamma_k} e^{\frac{1}{\gamma}\left(-ix^2 + \alpha\gamma e^{2ix}\right)} dx = \exp\left(\frac{z_k(1 - iz_k)}{\gamma}\right) \sum_{n=0}^{\infty} \Gamma\left(n + \frac{1}{2}\right) c_{2n} \gamma^{n + \frac{1}{2}}$$

$$c_{2n} = \sum_{j=0}^{2n} C^j_{-n - \frac{1}{2}} \frac{1}{\left(-i - ize^{2iz_k}\right)^{n + j + \frac{1}{2}}} \hat{B}_{2n,j} \left(-\frac{(2i)^2 z e^{2iz_k}}{3!}, -\frac{(2i)^4 z e^{2iz_k}}{4!}, \dots, -\frac{(2i)^{2n - j + 2} z e^{2iz_k}}{(2n - j + 3)!}\right)$$
(13)

Для упрощения последнего выражения нам понадобиться пара свойств полиномов Белла. А именно можно использовать их однородность и экспоненциальные полиномы Белла:

$$\hat{B}_{2n,j}(\zeta x_1, \zeta x_2, \dots, \zeta x_{2n-j+1}) = \zeta^j \hat{B}_{2n,j}(x_1, x_2, \dots, x_{2n-j+1})$$

$$\hat{B}_{2n,j}(\zeta x_1, \zeta^2 x_2, \dots, \zeta^{2n-j+1} x_{2n-j+1}) = \zeta^{2n} \hat{B}_{2n,j}(x_1, x_2, \dots, x_{2n-j+1})$$
(14)

Из этого следует:

$$\hat{B}_{2n,j}\left(-\frac{(2i)^2 z e^{2iz_k}}{3!}, -\frac{(2i)^4 z e^{2iz_k}}{4!}, \dots, -\frac{(2i)^{2n-j+2} z e^{2iz_k}}{(2n-j+3)!}\right) =$$

$$= (-2ize^{2iz_k})^j (2i)^{2n} \hat{B}_{2n,j}\left(\frac{1}{3!}, \frac{1}{4!}, \dots, \frac{1}{(2n-j+3)!}\right)$$
(15)

Используя выше перечисленное³, можно написать:

$$c_{2n} = \sum_{j=0}^{2n} C_{-n-\frac{1}{2}}^{j} \frac{(-2ize^{2iz_{k}})^{j}(2i)^{2n}}{(-i-ize^{2iz_{k}})^{n+j+\frac{1}{2}}} \frac{j!}{(2n+2j)!} S_{3}(2n+2j,j)$$

$$= \sum_{j=0}^{2n} \frac{n!(2n+2j)!}{(n+j)!(2n)!j!(2i)^{2j}} \frac{(-2ize^{2iz_{k}})^{j}(2i)^{2n}}{(-i-ize^{2iz_{k}})^{n+j+\frac{1}{2}}} \frac{j!}{(2n+2j)!} S_{3}(2n+2j,j)$$

$$= \sum_{j=0}^{2n} \frac{n!}{(n+j)!(2n)!} \frac{(-2ize^{2iz_{k}})^{j}(2i)^{2n-2j}}{(-i-ize^{2iz_{k}})^{n+j+\frac{1}{2}}} S_{3}(2n+2j,j)$$

$$(16)$$

Альтернативное переписывание

Как можно было заметить, в полученных формулах много некрасивостей. Сейчас, когда мы уже знаем, какие выражения придётся ворочить, предлагается сделать следующие переобозначения:

$$A \leadsto \alpha$$

$$\Gamma \leadsto \gamma$$

$$Z = Re^{i\Phi} = -2iA\Gamma \leadsto -2i\alpha\gamma$$
(17)

Мотивация следующая:

- 1. Большие буквы обозначают неизменность, что важно в контексте множества сумм, парамтров и всего такого
- $2. \ A$ позволит не путать моё ошибочно выбранное обозначение с общепринятым
- 3. Γ совпадает с общепринятым обозначением
- 4. Большая буква Z обозначает неизменную комплексную величину 4

Так же для упрощения формул с методом перевала немного переписать подынтегральную функцию:

$$\sum_{n=0}^{\infty} \frac{A^n e^{i\Gamma n^2}}{n!} = \frac{e^{\frac{i\pi}{4}}}{\sqrt{\pi\Gamma}} \int_{-\infty}^{\infty} e^{-i\frac{z^2}{\Gamma} + Ae^{2iz}} dz$$

$$= \frac{e^{\frac{i\pi}{4}}}{2\sqrt{\pi\Gamma}} \int_{-\infty}^{\infty} e^{-i\frac{z^2}{4\Gamma} + Ae^{iz}} dz$$

$$= \frac{e^{\frac{i\pi}{4}}}{2\sqrt{\pi\Gamma}} \int_{-\infty}^{\infty} \exp\left(\frac{-i\frac{z^2}{2} + Zie^{iz}}{2\Gamma}\right) dz$$
(18)

 $^{^3}$ А также $\Gamma\left(\frac{1}{2}-n
ight)=rac{(2i)^{2n}n!}{(2n)!}\sqrt{\pi}$

⁴Надеюсь на благоразумие читателей, потому что автор против Z-движения в России

Сделаем следующее обозначение:

$$f(z) = \frac{z^2}{2i} + iZe^{iz} \tag{19}$$

Далее мы будем пользоваться методом перевала. Здесь нам нужно обосновать, что контур действительно можно деформировать ... Этому посвящена моя прога и анализ до этого момента, так что дописать это будет не трудно.

Теперь решения $f'(z_k) = 0$ можно просто обозначить в виде:

$$e^{iz_k} = \frac{z_k}{iZ} \Rightarrow z_k = iW_k(Z)$$
 (20)

По-моему, такие обозначения просто прекрасны. Вот, например, разложение вокруг перевальной точки:

$$f(z) = \underbrace{\frac{z_k^2}{2i} + z_k}_{f(z_k)} + \underbrace{\frac{-i - z_k}{2}}_{a_0} (z - z_k)^2 + \sum_{n=1}^{\infty} \underbrace{\frac{-i^n z_k}{(n+2)!}}_{a_1, a_2, \dots} (z - z_k)^{n+2}$$
(21)

Полагая $\lambda=\frac{1}{2\Gamma}$ можно написать 5 :

$$\int_{\gamma_{k}} \exp\left(\lambda f(z)\right) dz = \exp\left(\lambda f(z_{k})\right) \sum_{n=0}^{\infty} \Gamma\left(n + \frac{1}{2}\right) \frac{c_{2n}}{\lambda^{n + \frac{1}{2}}}$$

$$c_{2n} = \sum_{j=0}^{2n} C_{-n - \frac{1}{2}}^{j} \frac{1}{a_{n + j + \frac{1}{2}}^{j}} \hat{B}_{2n,j} \left(a_{1}, a_{2}, \dots, a_{2n - j + 1}\right)$$

$$= \frac{1}{\left(\frac{-i - z_{k}}{2}\right)^{\frac{1}{2}}} \sum_{j=0}^{2n} \frac{\Gamma\left(-n + \frac{1}{2}\right)}{j! \Gamma\left(-n - j + \frac{1}{2}\right)} \frac{1}{\left(\frac{-i - z_{k}}{2}\right)^{n + j}} (-1)^{n} (-z_{k})^{j} \hat{B}_{2n,j} \left(\frac{1}{3!}, \frac{1}{4!}, \dots, \frac{1}{(2n - j + 3)!}\right)$$

$$= \frac{1}{\left(\frac{-i - z_{k}}{2}\right)^{\frac{1}{2}}} \sum_{j=0}^{2n} \frac{\frac{n!}{(2n)!}}{j! \frac{(-1)^{n} (-z_{0})^{j}}{(2n + 2j)!}} \frac{j!}{(2n + 2j)!} S_{3}(2n + 2j, j)$$

$$= \frac{(-1)^{n} n!}{(2n)!} \frac{1}{\left(\frac{-i - z_{k}}{2}\right)^{\frac{1}{2}}} \sum_{j=0}^{2n} \frac{1}{(-4)^{j} (n + j)!} \frac{(-z_{k})^{j}}{\left(\frac{-i - z_{k}}{2}\right)^{n + j}} S_{3}(2n + 2j, j)$$

$$= \frac{(-1)^{n} n!}{(2n)!} \frac{1}{\left(\frac{-i - z_{k}}{2}\right)^{\frac{1}{2}}} \sum_{j=0}^{2n} \frac{1}{(-4)^{j} (n + j)!} \frac{(-z_{k})^{j}}{\left(\frac{-i - z_{k}}{2}\right)^{n + j}} S_{3}(2n + 2j, j)$$

$$= \frac{\sqrt{2\pi}}{(-i - z_{k})^{\frac{1}{2}}} \sum_{j=0}^{2n} \left(-\frac{1}{2} \frac{z_{k}}{i + z_{k}}\right)^{n + j} \frac{S_{3}(2n + 2j, j)}{(n + j)!}$$
(23)

Резюмируя выше написанное одной формулой:

$$\sum_{n=0}^{\infty} \left(\frac{iZ}{2\Gamma}\right)^n \frac{e^{i\Gamma n^2}}{n!} = e^{\frac{i\pi}{4}} \sum_{k=0}^{-\operatorname{sign}\Gamma \cdot \infty} \frac{\exp\left(\frac{-i-i(z_k+i)^2}{4\Gamma}\right)}{(-i-z_k)^{\frac{1}{2}}} \sum_{n=0}^{\infty} (2\Gamma)^n \sum_{j=0}^{2n} \left(-\frac{1}{2} \frac{z_k}{i+z_k}\right)^{n+j} \frac{S_3(2n+2j,j)}{(n+j)!},$$
(24)

 $^{^5}$ Надеюсь, что читатель не перепутает Γ и Γ -функцию. Для удобства чтения после использования числа Γ не будет скобочек.

где $z_k = iW_k(Z)$. От него так же можно избавиться и придти к следующую формулу:

$$\sum_{n=0}^{\infty} \left(\frac{iZ}{2\Gamma}\right)^n \frac{e^{i\Gamma n^2}}{n!} = i \sum_{k=0}^{-\operatorname{sign}\Gamma \cdot \infty} \frac{\exp\left(\frac{-i+i(1+W_k(Z))^2}{4\Gamma}\right)}{(1+W_k(Z))^{\frac{1}{2}}} \sum_{n=0}^{\infty} (2\Gamma)^n \sum_{j=0}^{2n} \left(-\frac{1}{2} \frac{W_k(Z)}{1+W_k(Z)}\right)^{n+j} \frac{S_3(2n+2j,j)}{(n+j)!},$$
(25)

Поговорим немного о выборе ветви корня. Так как изначальный интеграл брался в пределах $\int\limits_{-\infty}^{\infty}$, то направление каждой из ветвей должно было выбираться из условия, чтоб $\arg\frac{dz}{ds}\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, где s — натуральный параметр кривой постоянной фазы. Это значит:

$$\arg(-i-z_k)^{-\frac{1}{2}} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$$
 (26)

что соответствует определению корня с разрезом в $z: \mathrm{Re}(z) \leq 0; \mathrm{Im}(z) = 0.$ В последней же формуле используется разрез в $z: \mathrm{arg}(z) = -\frac{3\pi}{4}$, что соответствует $\mathrm{Im} + \mathrm{Re}(\sqrt{1+W(Z)}) > 0.$

Kakoe k вносит основной вклад

В полученном выражении стоит сумма по k с лидирующими вкладами вида $\exp\left(\frac{i+(z_k+i)^2}{4\Gamma}\right)$. Стоит заметить, что, например, при $\Gamma=10^{-6}$, а значит незначительная разница на 0.01 в $\operatorname{Re}\left((z_k+i)^2\right)$ при различных k приведёт к разнице слагаемых в $\sim e^{-10^4}$, что значит, что меньшим из слагаемых можно пренебречь, не сильно потеряв в точности. Найдём, при каком k вносится основной вклад.

$$\operatorname{Re}(f(z_k)) = \frac{1}{2}\operatorname{Re}(-i(z_k+i)^2) = \frac{1}{2}\operatorname{Im}((z_k+i)^2) = \operatorname{Re}(z_k)(1+\operatorname{Im}(z_k))$$

$$= -\operatorname{Im}(W_k(Z))(1+\operatorname{Re}(W_k(Z)))$$
(27)

Применим разложение, с которого начинается данный документ, огрубив его до суммирования $(R,|k| \to \infty)$:

$$W_k \left(Z = Re^{i\Phi} \right) = \log R + i\Phi + 2\pi ik - \log\left(\log R + i\Phi + 2\pi ik\right) + O\left(\frac{\log\left(\log R + i\Phi + 2\pi ik\right)}{\log R + i\Phi + 2\pi ik}\right)$$

$$= \log R + i\Phi + 2\pi ik - \log\left(\log R + 2\pi ik\right) + \underbrace{\log\left(1 + \frac{i\Phi}{\log R + 2\pi ik}\right)}_{\sim \frac{1}{\log R + 2\pi ik} \approx 0} + O\left(\frac{\log\left(\log R + 2\pi ik\right)}{\log R + 2\pi ik}\right)$$

$$= \log R - \frac{1}{2} \log \left(\log^2 R + (2\pi k)^2 \right) + i \left(\Phi + 2\pi k - \arctan \left(\frac{2\pi k}{\log R} \right) \right) + O \left(\frac{\log \left(\log R + 2\pi i k \right)}{\log R + 2\pi i k} \right)$$
(28)

Воспользуемся сначала самым простым и тупым приближением: $W_k(Z) \approx \log R + i\Phi + 2\pi i k$

$$\operatorname{Re}\left(f(z_k)\right) \approx -(2\pi k + \Phi)(1 + \log R) \tag{29}$$

Получаем, что в первом приближении $k \approx \infty$. Воспользуемся следующим порядком приближения без учёта суммы:

$$\operatorname{Re}\left(f(z_{k})\right) \approx -\left(\Phi + 2\pi k - \arctan\left(\frac{2\pi k}{\log R}\right)\right) \left(1 + \log R - \frac{1}{2}\log\left(\log^{2} R + (2\pi k)^{2}\right)\right)$$

$$\approx -\left(\Phi + 2\pi k - \frac{\pi}{2}\operatorname{sign}k\right) \left(1 + \log R - \log|2\pi k|\right),$$
(30)

где мы пренебрегли всеми слагаемыми, которые при раскрытии скобок дадут вклад $O\left(\frac{\log^2 R}{R}\right)$. Попробуем оптимизировать данное выражение так, как если бы $k \in \mathbb{R}$:

$$\frac{d}{dk}\operatorname{Re}\left(f(z_k)\right) = 0\tag{31}$$

$$2\pi \left(1 + \log R - \log|2\pi k|\right) = \frac{1}{k} \left(\Phi + 2\pi k - \frac{\pi}{2}\operatorname{sign} k\right)$$

$$\frac{2\pi|k|}{R} \log\left(\frac{2\pi|k|}{R}\right) = \frac{\left|\Phi - \frac{\pi}{2}\operatorname{sign} k\right|}{R}$$
(32)

Введём временно обозначение $e^{\varkappa}=\frac{2\pi|k|}{R}>0$:

$$\varkappa e^{\varkappa} = \frac{\left|\Phi - \frac{\pi}{2}\operatorname{sign} k\right|}{R} \approx 0$$

$$\varkappa = W_0 \left(\frac{\left|\Phi - \frac{\pi}{2}\operatorname{sign} k\right|}{R}\right)$$
(33)

Для нулевой функции Ламберта у нас так же есть небольшое разложение $W_0(x) \approx x$. Применим его и подставим \varkappa :

$$|k| = \left[\frac{1}{2\pi} \left(R + \left| \Phi - \frac{\pi}{2} \operatorname{sign} k \right| \right) \right] \tag{34}$$

Такое приближённое решение почти всегда даёт наилучшее приближение, потому что при учёте высших порядков вклад будет $\ll 1$ при больших R. Значения функции Ламберта в окрестности малых R требует уже численных расчётов. Далее мы будем обозначать это оптимальное k через \overline{k} , подразумевая его зависимость от Z и $\operatorname{sign} \Gamma$.

Какой вклад вносит слагаемое под номером \overline{k}

Как бы нам не хотелось убрать знак округления (квадратные скобки в формуле выше), оно неизбежно. Введём следующее обозначение:

$$\varkappa = 2\pi \overline{k} - R \operatorname{sign} k \sim 1$$

$$2\pi |\overline{k}| = R + \varkappa \operatorname{sign} k$$
(35)

Максимум по Φ

Будем рассматривать только показатель экспоненты основной ветви, считая, что она одна на всём промежутке $(-\pi,\pi)$. Нам понадобиться формула для производной функции Ламберта:

$$\frac{dW}{dZ} = \frac{1}{Z} \frac{W}{1+W},\tag{36}$$

где подразумевается тот же аргумент Z. Для поиска точки максимума по Φ сделаем следующее:

$$\frac{d}{d\Phi} \operatorname{Re} (f(z_k)) = \frac{1}{2} \operatorname{Im} \left(\frac{d}{d\Phi} (iW_k(Z) + i)^2 \right)$$

$$= -\operatorname{Im} \left((W_k(Z) + 1) \frac{dW_k(Z)}{d\Phi} \right)$$

$$= -\operatorname{Im} \left((W_k(Z) + 1) \underbrace{\frac{d \log Z}{d\Phi}}_{=i} \frac{W_k(Z)}{1 + W_k(Z)} \right)$$

$$= -\operatorname{Im} (iW_k(Z)) = -\operatorname{Re}(W_k(Z)) = 0$$
(37)

Воспользуемся определением W-функции Ламберта и возьмём модуль от обоих частей:

$$i\operatorname{Im} W_k(Z)e^{i\operatorname{Im} W_k(Z)} = Re^{i\Phi} \Rightarrow |\operatorname{Im} W_k(Z)| = R$$
 (38)

Тут у нас встаёт небольшой вопрос о выборе знака. Для этого посмотрим на значение $\operatorname{Re} f(z_k)$ и учтём, что $\operatorname{sign} k = -\operatorname{sign} \Gamma$:

$$\operatorname{sign}\left(\frac{f(z_k)}{\Gamma}\right) = \operatorname{sign} k \operatorname{sign}\left(\operatorname{Im} W_k(Z)\right) = 1 \Rightarrow$$

$$\operatorname{Im} W_k(Z) = R \operatorname{sign} k \Rightarrow$$

$$\left(\frac{f(z_k)}{2\Gamma}\right)_{\Phi = \Phi_{max}} = \frac{R}{2|\Gamma|}$$
(39)

А это обстоятельство очень полезно для определения угла Φ :

$$iR \operatorname{sign} k e^{iR \operatorname{sign} k} = R e^{i\Phi} = R e^{i\frac{\pi}{2} \operatorname{sign} k + iR \operatorname{sign} k} \Rightarrow$$

$$\Phi = \left(R + \frac{\pi}{2}\right) \operatorname{sign} k \mod 2\pi$$
(40)

Важным здесь является то, что мы получили этот результат не использовав ни одного приближения.

Граница выбора z_k

На комплексной плоскости для любого Z можно указать, каков оптимальный выбор \bar{k} . Этот выбор полностью определяется максимумом $\mathrm{Re}\,(f(z_k)) = -\mathrm{Im}(W_k(Z))\,(1+\mathrm{Re}(W_k(Z)))$. Данная функция дискретна по k и не имеет простого описания при малых Z. На границе:

$$\operatorname{Re}\left(f(z_k)\right) = \operatorname{Re}\left(f(z_{k+\operatorname{sign}k})\right) \tag{41}$$

Давайте посмотрим на асимптотику $|Z|\gg 1$. В этом случае мы снова применяем асимп-

тотическое выражение для поиска пограничного Z при $2\pi k = R \operatorname{sign} k + \varkappa$, где $\varkappa = O(1)$:

$$L_{1} = \log R + i\Phi + i\left(\underbrace{R \operatorname{sign} k + \varkappa}_{2\pi k}\right) = O(R)$$

$$L_{2} = \log(L_{1}) = O(\log(R))$$

$$W_{k}(Z) = L_{1} - L_{2} + \frac{L_{2}}{L_{1}} + \frac{L_{2}(-2 + L_{2})}{2L_{1}^{2}} + O\left(\frac{\log^{3} R}{R^{3}}\right) = \dots$$

$$\operatorname{Re}(f(z_{k})) = -R \operatorname{sign} k + \frac{\left(\Phi + \varkappa - \frac{\pi}{2} \operatorname{sign} k\right)^{2}}{2R} + O\left(\frac{\log^{3} R}{R^{2}}\right)$$
(42)

Замена k на $k+\mathrm{sign}\,k$ в данных обозначениях это замена \varkappa на $\varkappa+2\pi\,\mathrm{sign}\,k$. На границе:

$$-\frac{\pi \operatorname{sign} k}{R} + \frac{2}{R} \left(\varkappa + \Phi + \pi \operatorname{sign} k \right) = O\left(\frac{\log^3 R}{R^2}\right)$$

$$\varkappa + \Phi + \frac{\pi}{2} \operatorname{sign} k = O\left(\frac{\log^3 R}{R}\right)$$
(43)

Или если интересоваться только значением Φ :

$$\Phi \approx \left(R - \frac{\pi}{2}\right) \operatorname{sign} k \mod 2\pi$$
(44)

И всё же об асимптотике

Окей, мы точно знаем, какое надо выбирать \bar{k} для каждого Z. Мы знаем, что вклад от остальных слагаемых крайне мал. Ещё, если немного углубиться в вычисления чисел Стирлинга 2 рода 3 типа, то можно заметить, что S(2,2+2k)=0, а значит первый необнуляющийся член в разложении метода перевала вносит коррекцию по относительной величине порядка Γ^2 . Временно пренебрежём и этим вкладом:

$$\sum_{n=0}^{\infty} \left(\frac{iZ}{2\Gamma}\right)^n \frac{e^{i\Gamma n^2}}{n!} \approx e^{\frac{i\pi}{4}} \frac{\exp\left(\frac{-i-i(z_{\bar{k}}+i)^2}{4\Gamma}\right)}{(-i-z_{\bar{k}})^{\frac{1}{2}}}$$
(45)

Эту же формулу можно ещё упростить, если считать $|Z|\gg 1$. Ещё проще она станет, если мы будем интересоваться лишь модулем полученного выражения. Чудовищные выкладки опять же в вольфраме. Отмечу лишь, что при рассчёте $W_k(Z)$ необходимо удерживать члены $O\left(\frac{1}{R^2}\right)$, чтоб получить значение $f(z_k)$ с точностью $O\left(\frac{1}{R}\right)$, так как $W_k(Z)=O(R)$.

$$\left| \sum_{n=0}^{\infty} \left(\frac{iZ}{2\Gamma} \right)^n \frac{e^{i\Gamma n^2}}{n!} \right| \approx \frac{\exp\left(\frac{R}{2|\Gamma|} - \frac{\delta^2}{4R|\Gamma|} + \dots \right)}{\sqrt{R}} \exp\left(-\frac{\delta \operatorname{sign} k}{2R} + \frac{\delta^2}{4R^2} \right) \left(1 - \frac{1}{4R^2} + \frac{5}{32R^4} + \dots \right), \tag{46}$$

где мы ввели обозначение $\Phi+\varkappa-\frac{\pi}{2}\operatorname{sign} k=\delta$. Эти из поправки к максимуму по Φ вымученные $\frac{5}{32}$ очень похожи на еле различимую $\frac{1}{6}$ в моём дипломе. А линейная добавка в экспоненту

⁶Чудовищные выкладки можно найти в моём вольфраме

 $\sim \frac{\delta}{R}$ так же отлично согласуется с численными расчётами, потому что в действительности максимум наблюдался не при $\delta=0$:

$$\left| \sum_{n=0}^{\infty} \left(\frac{iZ}{2\Gamma} \right)^n \frac{e^{i\Gamma n^2}}{n!} \right| \approx \frac{1}{\sqrt{R}} \left(1 - \frac{1}{4R^2} + \frac{5}{32R^4} \right) \exp\left(\frac{R}{2|\Gamma|} - \frac{(\delta - \Gamma)^2 - \Gamma^2}{4R|\Gamma|} \right) \tag{47}$$

И это просто превосходно сходится с моим дипломом!!!