Teoria de Linguagem

Alfabetos, Palavras e Linguagens Formais

Vinicius H. S. Durelli

□ durelli@ufsj.edu.br

Organização

- 1 Contextualização...
- 2 Alfabetos
- 3 Palavras
- 4 Linguagens
- Considerações finais

Contextualização...
Alfabetos
Palavras
Linguagens
Considerações finais

O que é linguagem?

O que é linguagem?

Dicionário Aurélio

O uso da palavra articulada ou escrita como meio de expressão e comunicação entre pessoas.

O que é linguagem?

Dicionário Aurélio

O uso da palavra articulada ou escrita como meio de expressão e comunicação entre pessoas.

→ Claramente, **a definição acima não é suficiente** para permitir o desenvolvimento matemático de uma teoria baseada em linguagens.

- Contextualização...
- 2 Alfabetos
- 3 Palavras
- 4 Linguagens
- Considerações finais

Alfabetos

Definição → *Alfabeto*

Um conjunto finito de símbolos ou caracteres (Sipser 2012; Menezes 2011).^a

^aOs membros de um alfabeto são os **símbolos** do alfabeto.

Iremos utilizar letras gregas maiúsculas Σ e Γ para denotar alfabetos. Exemplos de alfabetos:

$$\begin{split} \Sigma_1 &= \{0,1\} \\ \Sigma_2 &= \{a,b,c,d,e,f,g,h,i,j,k,l,m,\\ n,o,p,q,r,s,t,u,v,w,x,y,z\} \\ \Gamma &= \{0,1,x,y\} \end{split}$$

Pergunta \odot : O conjunto $\mathbb N$ é um exemplo de alfabeto? Por quê?

Pergunta ②: O conjunto vazio (i.e., \emptyset) é um alfabeto?

Pergunta 1: O conjunto $\mathbb N$ é um exemplo de alfabeto? Por quê?

Não, pois o conjunto $\mathbb N$ (conjunto dos números naturais) é infinito.

Pergunta ②: O conjunto vazio (i.e., \emptyset) é um alfabeto?

Pergunta 1: O conjunto $\mathbb N$ é um exemplo de alfabeto? Por quê?

Não, pois o conjunto $\mathbb N$ (conjunto dos números naturais) é infinito.

Pergunta ②: O conjunto vazio (i.e., \emptyset) é um alfabeto?

Sim.

- 1 Contextualização...
- 2 Alfabetos
- 3 Palavras
- 4 Linguagens
- Considerações finais

Palavras

Definição → Palavra

Uma *string*, cadeia, sentença ou palavra é uma sequência finita de símbolos do alfabeto justapostos (Menezes 2002).

Exemplos:

- Se $\Sigma_1 = \{0,1\}$, então 01001 é uma cadeia de símbolos em Σ_1 .
- Se $\Sigma_2 = \{a, b, c, \dots, x, y, z\}$, então *abracadabra* é uma palavra sobre Σ_2 .

Tamanho de uma palavra...

Se w é uma palavra sobre Σ , o tamanho (ou comprimento) de w, denotado |w|, é o número de símbolos que formam a palavra. Exemplos:

$$|1| = 1$$

 $|10| = 2$
 $|0000| = 4$
 $|001101| = 6$

Palavra vazia: uma palavra de tamanho zero é denominada **palavra vazia**. O símbolo usado para representar tal palavra é ε . Portanto:

$$|\varepsilon| = 0$$

Mais sobre palavras...

- Se uma palavra w tem tamanho n, podemos dizer que $w = w_1, w_2, w_3, \ldots, w_n$, onde cada $w_i \in \Sigma$.
- O **reverso** de uma palavra w, denotado por w^R , é a palavra obtida quando inverte-se a ordem dos símbolos de w: $w_n, \ldots, w_3, w_2, w_1$. Exemplos:

$$banana^R = ananab$$

$$teoria^R = airoet$$

• Dado um alfabeto Σ , é possível denotar o conjunto de todas as palavras de tamanho k usando a notação Σ^k .

Por exemplo, dado $\Sigma = \{0, 1\}$, então:

$$\Sigma^1 = \{0,1\} \qquad \qquad \Sigma^2 = \{00,01,10,11\}$$

Mais sobre palavras e alfabetos: fechamento recursivo e transitivo

O fechamento recursivo e transitivo definido como o conjunto de todas as palavras sobre um alfabeto Σ é normalmente denotado por Σ^* .

Definição → Fechamento Recursivo e Transitivo

O fechamento recursivo^a e transitivo é formalmente definido como a seguir:

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots = \bigcup_{i=0}^{\infty} \Sigma^i$$

^aÀs vezes chamado fechamento flexivo e transitivo.

Mais sobre palavras e alfabetos: fechamento transitivo

Em alguns casos, é conveniente remover a palavra vazia do conjunto de palavras. O **fechamento transitivo** representa o conjunto de palavras **não vazias** sobre um alfabeto Σ e é denotado por Σ^+ .

Definição → Fechamento Transitivo

O fechamento transitivo é formalmente definido como a seguir:

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots = \bigcup_{i=1}^{\infty} \Sigma^i$$

Portanto, como se pode perceber:

$$\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$$

Concatenação de palavras (1)...

Dado duas palavras α e β de comprimentos n e m respectivamente. Então, pode-se dizer que $\alpha\beta$ representa a concatenação de α e β , ou seja, representa a palavra formada por uma cópia de α seguida por uma cópia da palavra β

• Mais precisamente, se α é uma palavra composta de i símbolos $\alpha = a_1 a_2 a_3 a_4 \cdots a_i$ e se β é uma palavra composta de j símbolos $\alpha = b_1 b_2 b_3 b_4 \cdots b_j$, então $\alpha \beta$ tem comprimento i + j: $\alpha \beta = a_1 a_2 a_3 a_4 \cdots a_i b_1 b_2 b_3 b_4 \cdots b_j$.

Exemplo: Dado $\alpha=$ 01101 e $\beta=$ 110, então $\alpha\beta=$ 01101110 e $\beta\alpha=$ 11001101.

Concatenação de palavras (2)...

A notação de expoente é utilizada para concatenar uma palavra com si própria. Dado uma palavra w, w^n representa a concatenação de w com si própria n vezes:

$$\overbrace{www\cdots w}^n$$

Exemplo: Dado w = 0011, então $w^3 = 001100110011$

Propriedades → Concatenação

A operação de concatenação satisfaz as seguintes propriedades:

- Associatividade^a
- Elemento neutro à esquerda e à direita

^aEmbora associativa, a concatenação não é comutativa.

Concatenação de palavras (2)...

A notação de expoente é utilizada para concatenar uma palavra com si própria. Dado uma palavra w, w^n representa a concatenação de w com si própria n vezes:

$$\overbrace{www\cdots w}^n$$

Exemplo: Dado w = 0011, então $w^3 = 001100110011$

Propriedades → Concatenação

A operação de concatenação satisfaz as seguintes propriedades:

- Associatividade $^a \rightarrow v(wt) = (vw)t$
- Elemento neutro à esquerda e à direita

^aEmbora associativa, a concatenação não é comutativa.

Concatenação de palavras (2)...

A notação de expoente é utilizada para concatenar uma palavra com si própria. Dado uma palavra w, w^n representa a concatenação de w com si própria n vezes:

$$\overbrace{www\cdots w}^n$$

Exemplo: Dado w = 0011, então $w^3 = 001100110011$

Propriedades → Concatenação

A operação de concatenação satisfaz as seguintes propriedades:

- Associatividade $^a \rightarrow v(wt) = (vw)t$
- Elemento neutro à esquerda e à direita $\rightarrow \varepsilon w = w = w\varepsilon$

^aEmbora associativa, a concatenação não é comutativa.

Prefixos, sufixos e subpalavras

- Diz-se que uma palavra α é **prefixo** de uma outra palavra β se é possível escrever β como $\alpha\gamma$.
- Uma palavra α é **sufixo** de outra palavra β se é possível escrever β como $\gamma\alpha$.
- Dado quatro palavras, α , β , γ e δ , uma palavra α é denominada **subpalavra** de uma palavra β quando $\beta = \gamma \alpha \delta$. (Se γ e δ ou ambos forem vazios, a definição ainda se aplica.)

- 1 Contextualização...
- 2 Alfabetos
- 3 Palavras
- 4 Linguagens
- Considerações finais

Linguagens (formais)

Definição → Linguagem

Uma **linguagem formal** é um conjunto (finito ou infinito) de cadeias de comprimento finito formadas pela concatenação de um alfabeto finito e não vazio.

Mais formalmente, uma linguagem pode ser vista como o conjunto de todas as palavras que podem ser selecionadas de um dado alfabeto Σ , i.e., Σ^* (Hopcroft et al. 2006).

Exemplo:

A linguagem de todas as palavras que consistem de n 0s seguidos de n 1s para todo $n \ge 0$: $\{\varepsilon, 01, 0011, 000111, \ldots\}$

O conjunto vazio (i.e., \emptyset) e o conjunto formado pela palavra vazia (i.e., $\{\varepsilon\}$) são linguagens sobre qualquer alfabeto.

Pergunta ③: $\emptyset = \{\varepsilon\}$? Por quê?

Pergunta 4: Qual \acute{e} o conjunto resultante de Σ^0 ?

O conjunto vazio (i.e., \emptyset) e o conjunto formado pela palavra vazia (i.e., $\{\varepsilon\}$) são linguagens sobre qualquer alfabeto.

Pergunta 3: 0 = 67? Por quê?

Obviamente, $\emptyset \neq \{\varepsilon\}$.

Pergunta 4: Qual \acute{e} o conjunto resultante de Σ^0 ?

O conjunto vazio (i.e., \emptyset) e o conjunto formado pela palavra vazia (i.e., $\{\varepsilon\}$) são linguagens sobre qualquer alfabeto.

Pergunta ③: $\emptyset = \{\varepsilon\}$? Por quê?

Obviamente, $\emptyset \neq \{\varepsilon\}$.

Pergunta 4: Qual \acute{e} o conjunto resultante de Σ^0 ?

Independentemente de qual seja o alfabeto, $\Sigma^0=\varepsilon$, pois ε é a única palavra de tamanho 0.

Como descrever linguagens formais?

No decorrer da disciplina, usaremos a notação para construção de conjuntos (set-builder notation) para descrever linguagens complexas ou que contém muitas palavras. Considere o seguinte exemplo:

$$L = \{w | w \text{ contém o mesmo número de 0s e 1s} \}$$

ou

$$L = \{w : w \text{ contém o mesmo número de 0s e 1s}\}$$

- 1 Contextualização...
- 2 Alfabetos
- Palavras
- 4 Linguagens
- Considerações finais

Considerações finais...

Na aula de hoje nós vimos:

- Alfabetos;
- Palavras; e
- Linguagens.

Na próxima aula:

Autômatos finitos determinísticos.

Referências

- Menezes, Paulo Blauth (2002). *Linguagens Formais e Autômatos*. 3rd ed. Livros Didáticos do Instituto de Informática da UFRGS. Sagra Luzzatto, p. 165.
- Hopcroft, John E., Rajeev Motwani, & Jeffrey D. Ullman (2006). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson, p. 750.
- Menezes, Paulo Blauth (2011). Linguagens Formais e Autômatos. 6th ed. Livros Didáticos Informática da UFRGS. Bookman, p. 256.
- Sipser, Michael (2012). *Introduction to the Theory of Computation*. 3rd ed. Cengage Learning, p. 480.
- "Quiz" icon by iconsphere, from the Noun Project (https://thenounproject.com/).