C++ for C Programmers

Victor Eijkhout

TACC Training 2018

Introduction

Stop Coding C!

- 1. C++ is a more structured and safer variant of C: There are very few reasons not to switch to C++.
- 2. C++ (almost) contains C as a subset. Where new and better mechanisms exist, stop using the old style C-style idioms.

In this course

- 1. Object-oriented programming.
- 2. New mechanisms that replace old ones: I/O, strings, arrays, pointers.
- 3. Other new mechanisms: exceptions, namespaces, closures, templating

I'm assuming that you know how to code C loops and functions and you understand what structures and pointers are!

About this course

Slides and codes are from my open source text book:

https://bitbucket.org/VictorEijkhout/

 ${\tt textbook-introduction-to-scientific-programming}$

Minor enhancements

Just to have this out of the way

- There is a bool type with values true, false
- Single line comments:

```
int x\{1\}; // set to one
```

- Many variants of initialization syntax!
- Loop variable can be local:

```
for (int i=0; i<N; i++) // do whatever
```


Simple I/O

```
#include <iostream>
using std::cout;
using std::endl;
int main() {
   int 0C=4;
   cout << "Hello world (ABEND CODE OC" << 0C << ")" << endl;</pre>
```

Input:

```
int i;
cin >> i:
```


C standard header files

#include <cmath>
#include <cstdlib>

But a number of headers are not needed anymore.

Functions

Big and small changes

- Minor changes: default values on parameters, and polymorphism.
- Big change: use references instead of addresses for argument passing.

Parameter passing

Mathematical type function

Pretty good design:

- pass data into a function,
- return result through return statement.
- Parameters are copied into the function.
- pass by value
- 'functional programming'

Results other than through return

Also good design:

- Return no function result,
- or return *return status* (0 is success, nonzero various informative statuses), and
- return other information by changing the parameters.
- pass by reference
- Parameters are also called 'input', 'output', 'throughput'.

Reference

A reference indicated with an ampersand, and it acts as an alias of the thing it references.

Code:

Output:

```
int i;
int &ri = i;
i = 5;
cout << i << "," << ri << endl;
i *= 2;
cout << i << "," << ri << endl;
ri -= 3;
cout << i << "," << ri << endl;
ri -< si;</pre>
```

(You will not use references often this way.)

Parameter passing by reference

The function parameter n becomes a reference to the variable i in the main program:

```
void f(int &n) {
  n = /* some expression */;
};
int main() {
  int i;
  f(i);
  // i now has the value that was set in the function
```


Different from C

- C mechanism passes address by value.
- If you find yourself writing asterisks, you're not writing C++.

Pass by reference example 1

Code:

Output:

```
void f( int &i ) {
   i = 5;
}
int main() {
   int var = 0;
   f(var);
   cout << var << endl;</pre>
```

Compare the difference with leaving out the reference.

Pass by reference example 2

```
bool can_read_value( int &value ) {
  int file_status = try_open_file();
  if (file_status==0)
    value = read_value_from_file();
  return file_status!=0;
}
int main() {
  int n;
  if (!can_read_value(n))
    // if you can't read the value, set a default
    n = 10;
```


Exercise 1

Write a function swapij of two parameters that exchanges the input values:

```
int i=2,j=3;
swapij(i,j);
// now i==3 and j==2
```


Exercise 2

Write a function that tests divisibility and returns a remainder:

```
int number,divisor,remainder;
// get the number and divisor from the user
if ( is_divisible(number,divisor,remainder) )
   cout << number << " is divisible by " << divisor << endl;
else
   cout << number << "/" << divisor <<
        " has remainder " << remainder << endl;</pre>
```


More about functions

Default arguments

Functions can have *default argument*(s):

```
double distance( double x, double y=0. ) {
  return sqrt( (x-y)*(x-y) );
}
...
d = distance(x); // distance to origin
d = distance(x,y); // distance between two points
```

Any default argument(s) should come last in the parameter list.

Polymorphic functions

You can have multiple functions with the same name:

```
double sum(double a,double b) {
  return a+b; }
double sum(double a,double b,double c) {
  return a+b+c; }
```

Distinguished by type or number of input arguments: can not differ only in return type.

Even more new features

Use of auto and const. Later.

Object-Oriented Programming

Classes look a bit like structures

Code: Output:

We'll get to that 'public' in a minute.

Class initialization and use

Use a constructor: function with same name as the class.

```
class Vector {
private: // recommended!
  double vx,vy;
public:
  Vector( double x,double y ) {
    vx = x; vy = y;
  };
}; // end of class definition
int main() {
    Vector p1(1.,2.);
```


Example of accessor functions

Getting and setting of members values is done through accessor functions:

```
class Vector {
private: // recommended!
double vx,vy;
public:
   Vector( double x,double y ) {
    vx = x; vy = y;
};

double x() { return vx; };
double y() { return vy; };
void setx( double newx ) {
   vx = newx; };
void sety( double newy ) {
   vy = newy; };
```

```
}; // end of class definition
int main() {
    Vector p1(1.,2.);

Usage:

p1.setx(3.12);
/* ILLEGAL: p1.x() = 5; */
cout << "P1's x=" << p1.x() << end1;</pre>
```


Interface versus implementation

- Implementation: data members, keep private,
- Interface: public functions to get/set data.
- Protect yourself against inadvertant changes of object data.
- Possible to change implementation without rewriting calling code.

Private access gone wrong

We make a class with two members that sum to one. You don't want to be able to change just one of them!

```
class SumIsOne {
public:
   float x,y;
   SumIsOne( double xx ) { x = xx; y = 1-x; };
}
int main() {
   SumIsOne pointfive(.5);
   pointfive.y = .6;
}
```

In general: enforce predicates on the members.

Member default values

Class members can have default values, just like ordinary variables:

```
class Point {
private:
   float x=3., y=.14;
private:
   // et cetera
}
```

Each object will have its members initialized to these values.

Member initialization

Other syntax for initialization:

```
class Vector {
private:
   double x,y;
public:
   Vector( double userx,double usery ) : x(userx),y(usery) {
}
```


'this'

Inside an object, a *pointer* to the object is available as this:

```
class Myclass {
private:
   int myint;
public:
   Myclass(int myint) {
    this->myint = myint;
};
};
```

(also for calling functions inside the object that need the object as argument)

Methods

Functions on objects

Code: Output:

```
class Vector {
    private:
        double vx,vy;
    public:
    Vector( double x,double y ) {
        vx = x; vy = y;
    };
    double length() { return sqrt(vx*vx + vy*vy); };
    double angle() { return 0.; /* something trig */; };
};
int main() {
    Vector p1(1.,2.);
    cout << "p1 has length " << p1.length() << endl;</pre>
```

We call such internal functions 'methods'.

Data members, even private, are global to the methods.

Methods that alter the object

Code:

Output:

```
class Vector {
    /* ... */
    void scaleby( double a ) {
        vx *= a; vy *= a; };
    /* ... */
};

/* ... */
Vector p1(1.,2.);
    cout << "p1 has length 4.47214
    /* ... */
Vector p1(1.,2.);
    cout << "p1 has length " << p1.length() << end1;
    p1.scaleby(2.);
    cout << "p1 has length " << p1.length() << end1;</pre>
```


Methods that create a new object

Code:

Output:

```
class Vector {
    /* ... */
    Vector scale( double a ) {
        return Vector( vx*a, vy*a ); };
    /* ... */
};
    /* ... */
cout << "p1 has length 4.47214
        return Vector( vx*a, vy*a ); };
    /* ... */
    cout << "p1 has length " << p1.length() << end1;
    Vector p2 = p1.scale(2.);
    cout << "p2 has length " << p2.length() << end1;
}</pre>
```


Default constructor

The problem is with p2. How is it created? We need to define two constructors:

```
Vector() {};
Vector( double x,double y ) {
  vx = x; vy = y;
};
```


Preliminary to the following exercise

A prime number generator has: an API of just one function: nextprime

To support this it needs to store: an integer last_prime_found

Exercise 3

Write a class primegenerator that contains members number_of_primes_found and last_number_tested, and methods nextprime, isprime. Hint: the function nextprime does not need the object as argument, because the members are in the object, and therefore global to that function.

Your main program should look as follows:

```
cin >> nprimes;
primegenerator sequence;
while (sequence.number_of_primes_found() <nprimes) {
  int number = sequence.nextprime();
  cout << "Number " << number << " is prime" << endl;
}</pre>
```


Direct alteration of internals

Return a reference to a private member:

```
class Vector {
private:
    double vx,vy;
public:
    double &x() { return vx; };
};
int main() {
    Vector v;
    v.x() = 3.1;
}
```


Reference to internals

Returning a reference saves you on copying. Prevent unwanted changes by using a 'const reference'.

```
class Grid {
private:
    vector<Point> thepoints;
public:
    const vector<Point> &points() {
    return thepoints; };
};
int main() {
    Grid grid;
    cout << grid.points()[0];
    // grid.points()[0] = whatever ILLEGAL</pre>
```


More constructors

Copy constructor

- Several default copy constructors are defined
- They copy an object, recursively.
- You can redefine them as needed.

```
class has_int {
private:
   int mine{1};
public:
   has_int(int v) { mine = v; };
   void printme() { cout
        << "I have: " << mine << endl; };
};</pre>
```

Code:

```
has_int an_int(5);
has_int other_int(an_int);
an_int.printme();
other_int.printme();
```

Output:

```
I have: 5
I have: 5
```


Destructor

- Every class myclass has a destructor ~myclass defined by default.
- The default destructor does nothing: ^{myclass()} ();
- A destructor is called when the object goes out of scope.
 Great way to prevent memory leaks: dynamic data can be released in the destructor.

Destructor example

Destructor called implicitly:

Code:

```
class SomeObject {
public:
    SomeObject() { cout <<
        "calling the constructor"
        << endl; };
    SomeObject() { cout <<
        "calling the destructor"
        << endl; };
};

/* ... */
    cout << "Before the nested scope" << endl;
{
        SomeObject obj;
        cout << "Inside the nested scope" << endl;
}
cout << "After the nested scope" << endl;
}</pre>
```

Output:

Before the nested scope calling the constructor Inside the nested scope calling the destructor After the nested scope

Destructors and exceptions

Code:

Output:

calling the constructor Inside the nested scope calling the destructor Exception caught

Class relations: has-a

Has-a relationship

A class usually contains data members. These can be simple types or other classes. This allows you to make structured code.

```
class Course {
private:
  Person the_instructor;
  int year;
}
class Person {
  string name;
  ....
}
```

This is called the has-a relation.

Literal and figurative has-a

A line segment has a starting point and an end point.

A Segment class can store those points:

or store one and derive the other:

```
class Segment {
private:
  Point starting_point, ending_point;
                                                   class Segment {
public:
                                                   private:
 Point get_the_end_point() {
                                                     Point starting_point;
    return ending_point; };
                                                     float length, angle;
                                                   public:
                                                     Point get the end point() {
 Segment somesegment;
                                                       /* some computation from the
 Point somepoint =
                                                           starting point */ }:
    somesegment.get the end point():
```

Implementation vs API: implementation can be very different from user interface.

Polymorphism in constructors

You have to decide what to store and what to derive, but you can construct two ways:

```
class Segment {
private:
   // up to you how to implement!
public:
   Segment( Point start,float length,float angle )
   { .... }
   Segment( Point start,Point end ) { ... }
```

Advantage: with a good API you can change your mind about the implementation without bothering the user.

Exercise 4

Make a class Rectangle (sides parallel to axes) with two constructors:

```
Rectangle(Point bl,Point tr);
Rectangle(Point bl,float w,float h);
```

and functions

```
float area(); float width(); float height();
```

Let the Rectangle object store two Point objects.

Then rewrite your exercise so that the Rectangle stores only one point (say, lower left), plus the width and height.

Class inheritance: is-a

General case, special case

You can have classes where an object of one class is a special case of the other class. You declare that as

```
class General {
protected: // note!
  int g;
public:
  void general_method() {};
};

class Special : public General {
  public:
    void special_method() { g = ... };
};

int main() {
    Special special_object;
    special_object.general_method();
    special_object.special_method();
```


Inheritance: derived classes

Derived class Special inherits methods and data from base class General:

```
int main() {
   Special special_object;
   special_object.general_method();
```

Members and methods need to be protected, not private, to be inheritable.

Constructors

When you run the special case constructor, usually the general case needs to run too. By default the 'default constructor', but:

```
class General {
public:
    General( double x,double y ) {};
};
class Special : public General {
public:
    Special( double x ) : General(x,x+1) {};
};
```


Access levels

Methods and data can be

- private, because they are only used internally;
- public, because they should be usable from outside a class object, for instance in the main program;
- protected, because they should be usable in derived classes (see section ??).

Exercise 5

Take your code where a Rectangle was defined from one point, width, and height.

Make a class Square that inherits from Rectangle. It should have the function area defined, inherited from Rectangle.

First ask yourself: what should the constructor of a Square look like?

Overriding methods

- A derived class can inherit a method from the base class.
- A derived class can define a method that the base class does not have.
- A derived class *override* a base class method:

```
class Base {
public:
    virtual f() { ... };
};
class Deriv : public Base {
public:
    virtual f() override { ... };
};
```


Operator overloading

```
<returntype> operator<op>( <argument> ) { <definition> }
```

For instance:

```
class Point {
private:
   float x,y;
public:
   Point operator*(float factor) {
      return Point(factor*x,factor*y);
   };
};
```

Can even redefine equals and parentheses.

More

- Multiple inheritance: an X is-a A, but also is-a B.
 This mechanism is somewhat dangerous.
- Virtual base class: you don't actually define a function in the base class, you only say 'any derived class has to define this function'.

Arrays

General note about syntax

Many of the examples in this lecture need the compiler option -std=c++11. This works for both compilers, so:

```
// for Intel:
icpc -std=c++11 yourprogram.cxx
// for gcc:
g++ -std=c++11 yourprogram.cxx
```

Later examples with auto even need -std=c++17. There is no reason not to use that all the time.

Static arrays

Array creation

```
int numbers[] = {5,4,3,2,1};
  cout << numbers[3] << endl;
}
{
  int numbers[5] {5,4,3,2,1};
  cout << numbers[3] << endl;
}
{
  int numbers[5] = {2};
  cout << numbers[3] << endl;
}</pre>
```


Range over elements

You can write a *range-based for* loop, which considers the elements as a collection.

```
for ( int i=0; i<N; i++) {
  float e = array[i]; /* something with e */ };
for ( float e : array )
  // statement about element with value e
for ( auto e : array )
  // same, with type deduced by compiler</pre>
```

Code:

Output:

```
int numbers[] = {1,4,2,6,5};
int tmp_max = numbers[0];
for (auto v : numbers)
   if (v>tmp_max)
       tmp_max = v;
cout << "Max: " < tmp_max << " (should be 6)" << endl;</pre>
```


Range over elements by reference

Range-based loop indexing makes a copy of the array element. If you want to alter the array, use a reference:

Code:

Output:

```
int numbers[] = {1,4,2,6,5};
int tmp_max = numbers[0];
for ( auto &v : numbers )
   v *= 3;
cout << "Scale 0'th by 3: " << numbers[0] << end1;</pre>
```


Vectors

Vector definition

```
#include <vector>
using std::vector;
vector<type> name;
vector<type> name(size);
vector<type> name(size,value);
```

where

- vector is a keyword,
- type (in angle brackets) is any elementary type or class name,
- name is up to you, and
- size is the (initial size of the array). This is an integer, or more precisely, a size_t parameter.
- value is the uniform initial value of all elements.

Vector elements

In a number of ways, vector behaves like an array:

```
vector<double> x(5, 0.1 );
x[1] = 3.14;
cout << x[2];</pre>
```


Vectors, the new and improved arrays

- C array/pointer equivalence is silly
- C++ vectors are just as efficient
- ... and way easier to use.

Don't use use explicitly allocated arrays anymore

double *array = new double[n]; // please don't

Ranging over a vector

```
for ( auto e : my_vector)
  cout << e;</pre>
```

Note that e is a copy of the array element:

Code: Output:

Ranging over a vector by reference

To set array elements, make e a reference:

```
for ( auto &e : my_vector)
  e = ....
```

Code:

Output:

6.6

Vector initialization

You can initialize a vector with much the same syntax as an array:

```
vector<int> odd_array{1,3,5,7,9};
vector<int> even_array = {0,2,4,6,8};
```

(This syntax requires compilation with the -std=c++11 option.)

Vector initialization'

There is a syntax for initializing a vector with a constant:

vector<float> x(25,3.15);

which gives a vector of size 25, with all elements initialized to 3.15.

Vector copy

Vectors can be copied just like other datatypes:

. .

```
./vectorcopy
```

Output:

```
vector<float> v(5,0), vcopy;
v[2] = 3.5;
vcopy = v;
cout << vcopy[2] << endl;</pre>
```

Code:

Vector methods

- Get elements with ar [3] (zero-based indexing).
 (for C programmers: this is not dereferencing, this uses an operator method)
- Get elements, including bound checking, with ar.at(3).
- Size: ar.size().
- Other functions: front, back.

Vector indexing

Your choice: fast but unsafe, or slower but safe

```
vector<double> x(5);
x[5] = 1.; // will probably work
x.at(5) = 1.; // runtime error!
```


Dynamic extension

```
vector<int> array(5);
array.push_back(35);
cout << array.size(); // is now 6 !</pre>
```

also pop_back, insert, erase. Flexibility comes with a price.

Multi-dimensional vectors

Multi-dimensional is harder with vectors:

```
vector<float> row(20);
vector<vector<float>> rows(10,row);
```

Vector of vectors.

Dynamic behaviour

Dynamic size extending

```
vector<int> iarray;
```

creates a vector of size zero. You can then

```
iarray.push_back(5);
iarray.push_back(32);
iarray.push_back(4);
```


Vector extension

You can push elements into a vector:

```
vector<int> flex;
point = std::chrono::system_clock::now();
for (int i=0; i<LENGTH; i++)
    flex.push_back(i);</pre>
```

If you allocate the vector statically, you can assign with at:

```
vector<int> stat(LENGTH);
point = std::chrono::system_clock::now();
for (int i=0; i<LENGTH; i++)
    stat.at(i) = i:</pre>
```


Vector extension

With subscript:

```
vector<int> stat(LENGTH);
stat[0] = 0.;
point = std::chrono::system_clock::now();
for (int i=0; i<LENGTH; i++)
stat[i] = i;</pre>
```

You can also use new to allocate:

```
int *stat = new int[LENGTH];
point = std::chrono::system_clock::now();
for (int i=0; i<LENGTH; i++)
stat[i] = i;</pre>
```


Timing

Flexible time: 2.445 Static at time: 1.177 Static assign time: 0.334 Static assign time to new: 0.467

Vectors and functions

Vector as function return

You can have a vector as return type of a function:

Code: Output:

```
vector<int> make_vector(int n) {
    vector<int> x(n);
    x[0] = n;
    return x;
}

/* ... */
vectorreturn
x1 size: 10
zero element check: 10
zero elemen
```


Vector as function argument

You can pass a vector to a function:

```
void print0( vector<double> v ) {
  cout << v[0] << endl;
};</pre>
```

Vectors, like any argument, are passed by value, so the vector is actually copied into the function.

Vector pass by value example

Code:

```
void set0
  ( vector<float> v,float x )
{
   v[0] = x;
}
  /* ... */
   vector<float> v(1);
   v[0] = 3.5;
   set0(v,4.6);
   cout << v[0] << endl;</pre>
```

Output:

```
./vectorpassnot
3.5
```


Vector pass by reference

If you want to alter the vector, you have to pass by reference:

Code:

```
void set0
  ( vector<float> &v,float x )
{
   v[0] = x;
}
  /* ... */
  vector<float> v(1);
  v[0] = 3.5;
  set0(v,4.6);
  cout << v[0] << endl;</pre>
```

Output:

```
./vectorpassref
4.6
```


Vectors in classes

Can you make a class around a vector?

Vector needs to be created with the object:

```
class witharray {
private:
  vector<int> the_array( ???? );
public:
  witharray( int n ) {
    thearray( ???? n ???? );
}
```


Create and assign

The following mechanism works:

```
class witharray {
private:
  vector<int> the_array;
public:
  witharray( int n ) {
    thearray = vector<int>(n);
}
```


Matrix class

```
class matrix {
private:
  int rows, cols;
  vector<vector<double>> elements;
public:
 matrix(int m.int n) {
    rows = m; cols = n;
    elements =
      vector<vector<double>>(m.vector<double>(n)):
  void set(int i,int j,double v) {
    elements.at(i).at(j) = v;
 };
  double get(int i,int j) {
    return elements.at(i).at(j);
 }:
};
```


Matrix class'

Better idea:

```
elements = vector<double>(rows*cols);
...
void get(int i,int j) {
   return elements.at(i*cols+j);
}
```


Exercise 6

Add methods such as transpose, scale to your matrix class.

Implement matrix-matrix multiplication.

Strings

String declaration

```
#include <string>
using namespace std;
// .. and now you can use 'string'
```

(Do not use the C legacy mechanisms.)

String creation

A *string* variable contains a string of characters.

```
string txt;
```

You can initialize the string variable (use -std=c++11), or assign it dynamically:

```
string txt{"this is text"};
string moretxt("this is also text");
txt = "and now it is another text";
```


Concatenation

Strings can be concatenated:

```
txt = txt1+txt2;
txt += txt3;
```


String is like vector

You can query the size:

```
int txtlen = txt.size();
```

or use subscripts:

More vector methods

Other methods for the vector class apply: insert, empty, erase, push_back, et cetera.

http://en.cppreference.com/w/cpp/string/basic_string

Pointers and references

C and F pointers

C++ and Fortran have a clean reference/pointer concept: a reference or pointer is an 'alias' of the original object

C/C++ also has a very basic pointer concept: a pointer is the address of some object (including pointers)

If you're writing C++ you should not use it. if you write C, you'd better understand it.

Reference: change argument

```
void f( int &i ) { i += 1; };
int main() {
  int i = 2;
  f(i); // makes it 3
```


Reference: save on copying

```
class BigDude {
private:
  vector<double> array(5000000);
int main() {
  BigDude big;
  f(big); // whole thing is copied
Instead write:
void f( BigDude &thing ) { .... };
Prevent changes:
void f( const BigDude &thing ) { .... };
```


Automatic memory management

Memory leaks

- Vectors obey scope: deallocated automatically.
- Stuff in objects get destructed when the object is destructed:
- Vectors in objects prevent memory leaks!
- Destructor called when object goes out of scope, including exceptions.
- 'RAII'

Shared pointers

Shared pointers look like regular pointers:

Reference counting illustrated

We need a class with constructor and destructor tracing:

```
class thing {
public:
    thing() { cout << "calling constructor\n"; };
    `thing() { cout << "calling destructor\n"; };
};</pre>
```


Trace1: pointer overwrite

Let's create a pointer and overwrite it:

Code:

```
cout << "set pointer1"
     << endl;
auto thing_ptr1 =
     shared_ptr<thing>
           ( new thing );
cout << "overwrite pointer"
           << endl;
thing_ptr1 = nullptr;</pre>
```

Output:

set pointer1 calling constructor overwrite pointer calling destructor

Trace2: pointer copy

Code:

```
cout << "set pointer2" << endl;
auto thing_ptr2 =
shared_ptr<thing>
   ( new thing );
cout << "set pointer3 by copy"
   << endl;
auto thing_ptr3 = thing_ptr2;
cout << "overwrite pointer2"
   << endl;
thing_ptr2 = nullptr;
cout << "overwrite pointer3"
   << endl;
thing_ptr3 = nullptr;</pre>
```

Output:

set pointer2 calling constructor set pointer3 by copy overwrite pointer2 overwrite pointer3 calling destructor

Linked list code

```
node *node::prepend_or_append(node *other) {
   if (other->value>this->value) {
      this->tail = other;
      return this;
   } else {
      other->tail = this;
      return other;
   }
};
```

Can we do this with shared pointers?

A problem with shared pointers

```
shared_pointer<node> node:prepend_or_append
  ( shared_ptr<node> other ) {
  if (other->value>this->value) {
    this->tail = other;
```

So far so good. However, this is a node*, not a shared_ptr<node, so

return this;

returns the wrong type.

Solution: shared from this

Solution: define your node class with (warning, major magic alert):

```
class node : public enable_shared_from_this<node> {
```

This allows you to write:

```
return this->shared_from_this();
```


Headers

C headers plusplus

You know how to use .h files in C.

Classes in C++ need some extra syntax.

Class prototypes

Header file:

```
class something {
public:
   double somedo(vector);
};
```

Implementation file:

```
double something::somedo(vector v) {
   .... something with v ....
};
```

Strangely, data members also go in the header file.

Namespaces

You have already seen namespaces

Safest:

```
#include <vector>
int main() {
   std::vector<stuff> foo;
}
```

Drastic:

```
#include <vector>
using namespace std;
int main() {
   vector<stuff> foo;
}
```

Prudent:

```
#include <vector>
using std::vector;
int main() {
   vector<stuff> foo;
}
```


Why not 'using namespace std'?

This compiles, but should not: This gives an error:

```
#include <iostream>
using namespace std;
int main() {
  int i=1,j=2;
  swap(i,j);
  cout << i << endl;
  return 0;
}</pre>
```

```
#include <iostream>
using std::cout;
using std::endl;
int main() {
   int i=1,j=2;
   swap(i,j);
   cout << i << endl;
   return 0;
}</pre>
```


Big namespace no-no

Do not put using in a header file that a user may include.

Defining a namespace

You can make your own namespace by writing

```
namespace a_namespace {
   // definitions
   class an_object {
   };
}
```


Namespace usage

```
a_namespace::an_object myobject();

Or
using namespace a_namespace;
an_object myobject();

Or
using a_namespace::an_object;
an_object myobject();
```


Templates

Templated type name

Basically, you want the type name to be a variable. Syntax:

```
template <typename yourtypevariable> // \dots stuff with yourtypevariable \dots
```


Example: function

Definition:

```
template<typename T>
void function(T var) { cout << var << end; }</pre>
```

Usage:

```
int i; function(i);
double x; function(x);
```

and the code will behave as if you had defined function twice, once for int and once for double.

Exercise 7

Machine precision, or 'machine epsilon', is sometimes defined as the smallest number ϵ so that $1+\epsilon>1$ in computer arithmetic.

Write a templated function epsilon so that the following code prints out the values of the machine precision for the float and double type respectively:

```
float float_eps;
epsilon(float_eps);
cout << "For float, epsilon is " << float_eps << endl;
double double_eps;
epsilon(double_eps);
cout << "For double, epsilon is " << double_eps << endl;</pre>
```


Templated vector

the Standard Template Library (STL) contains in effect

```
template<typename T>
class vector {
private:
    // data definitions omitted
public:
    T at(int i) { /* return element i */ };
    int size() { /* return size of data */ };
    // much more
}
```


Exceptions

Exception throwing

Throwing an exception is one way of signalling an error or unexpected behaviour:

```
void do_something() {
  if ( oops )
     throw(5);
}
```


Catching an exception

It now becomes possible to detect this unexpected behaviour by *catching* the exception:

```
throw {
  do_something();
} catch (int i) {
  cout << "doing something failed: error=" << i << endl;
}</pre>
```


Exception classes

```
class MyError {
public :
    int error_no; string error_msg;
    MyError( int i,string msg )
    : error_no(i),error_msg(msg) {};
}
throw( MyError(27,"oops");

try {
    // something
} catch ( MyError &m ) {
    cout << "My error with code=" << m.error_no
    <" "msg=" << m.error_msg << endl;
}</pre>
```


Multiple catches

You can multiple catch statements to catch different types of errors:

```
try {
   // something
} catch ( int i ) {
   // handle int exception
} catch ( std::string c ) {
   // handle string exception
}
```


Catch-all

Catch all exceptions:

```
try {
   // something
} catch ( ... ) { // literally: three dots
   cout << "Something went wrong!" << endl;
}</pre>
```


More about exceptions

- Functions can define what exceptions they throw:
 void func() throw(MyError, std::string);
 void funk() throw():
- Predefined exceptions: bad_alloc, bad_exception, etc.
- An exception handler can throw an exception; to rethrow the same exception use 'throw;' without arguments.
- Exceptions delete all stack data, but not new data.

Destructors and exceptions

Code:

Output:

calling the constructor Inside the nested scope calling the destructor Exception caught

I/O

Basic formatting

Code: Output:

```
for (int i=1; i<200000000; i*=10)
    cout << "Number: "
<< setfill('.') << setw(6) << i << endl;
cout << endl;</pre>
```

Code:

```
cout << setblase(16) << setfill(' ');
for (int i=0; i<16; i++) {
   for (int j=0; j<16; j++)
      cout << i*16+j << " ";
   cout << endl;
}</pre>
```

Output:

```
0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f
80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
a0 a1 a2 a3 a4 a5 a6 acpp8439 at AdOCaFrankinge2018—140
b0 b1 b2 b3 b4 b5 b6 b7 88 b9 ba bb bc bd be bf
```


Streams

```
class container {
    /* ... */
    int value() const {
    /* ... */
    };
    /* ... */
ostream &operator<<(ostream &os,const container &i) {
    os << "Container: " << i.value();
    return os;
};
    /* ... */
    container eye(5);
    cont << eye << endl;</pre>
```


Auto

Type deduction

In:

the compiler can figure it out:

Type deduction in functions

Return type can be deduced in C++17:

```
auto equal(int i,int j) {
  return i==j;
};
```


Type deduction in functions

Return type can be deduced in C++17:

```
class A {
private: float data;
public:
   A(float i) : data(i) {};
   auto &access() {
    return data; };
   void print() {
    cout << "data: " << data << endl; };
};</pre>
```


Auto and references, 1

auto discards references and such:

Code: Output:

```
A my_a(5.7);
auto get_data = my_a.access();
get_data += 1;
my_a.print();
```

data: 5.7

Auto and references, 2

Combine auto and references:

Code: Output:

```
A my_a(5.7);
auto &get_data = my_a.access();
get_data += 1;
my_a.print();
```

data: 6.7

Auto and references, 3

For good measure:

Code:

```
A my_a(5.7);
const auto &get_data = my_a.access();
get_data += 1;
my_a.print();
```

Output from running constrefget in code directory auto:

```
g++ -g -c -std=c++17 \
    -02 \
    -0 constrefget.o constrefget.cxx
constrefget.cxx: In function 'int main()':
constrefget.cxx:32:15: error: assignment of read-only re
    get_data += 1;
make[2]: *** [constrefget.o] Error 1
```


Auto iterators

```
vector<int> myvector(20);
for ( auto copy_of_int : myvector )
   s += copy_of_int;
for ( auto &ref_to_int : myvector )
   ref_to_int = s;
```

Can be used with anything that is iteratable (vector, map, your own classes!)

Lambdas

Lambda expressions

```
[capture] ( inputs ) -> outtype { definition };
```

Example:

```
[] (float x,float y) -> float { return x+y; } ( 1.5, 2.3 )
```

Store lambda in a variable:

```
auto summing =
 [] (float x,float y) -> float {
  return x+y; };
cout << summing ( 1.5, 2.3 ) << endl;</pre>
```


Capture parameter

Capture value and reduce number of arguments:

```
auto powerfunction = [exponent] (float x) -> float {
  return pow(x,exponent); };
```

Now powerfunction is a function of one argument, which computes that argument to a fixed power.

Lambda in object

```
#include <functional>
using std::function;
   /* ... */
class SelectedInts {
  private:
   vector(int) bag;
   function< bool(int) > selector;
public:
   SelectedInts( function< bool(int) > f ) {
      selector = f; };
   void add(int i) {
      if (selector(i))
         bag.push_back(i);
   };
   int size() { return bag.size(); };
};
```


Illustration

```
SelectedInts greaterthan
  ( [threshold] (int i) -> bool { return i>threshold; } );
for (int i=0; i<upperbound; i++)
  greaterthan.add(i);
cout << "Ints under " << upperbound <<
   " greater than " << threshold << ": " << greaterthan.size() << endl;</pre>
```


Casts

C++ casts

Old-style 'take this byte and pretend it is XYZ': reinterpret_cast

Casting with classes:

- static_cast cast base to derived without check.
- dynamic_cast cast base to derived with check.

Adding/removing const: const_cast

Syntactically clearly recognizable.

Const cast

```
int hundredk = 100000;
int overflow;
overflow = hundredk*hundredk;
cout << "overflow: " << overflow << endl;
size_t bignumber = static_cast<size_t>(hundredk)*hundredk;
cout << "bignumber: " << bignumber << endl;</pre>
```

Code: Output:

```
long int hundredg = 100000000000;
cout << "long number: " << hundredg << endl;
int overflow; long number: 100000000000
overflow = static_cast<int>(hundredg);
cout << "assigned to int: " << overflow << endl;</pre>
```


Pointer to base class

Class and derived:

```
class Base {
public:
    virtual void print() = 0;
};
class Derived : public Base {
public:
    virtual void print() {
        cout << "Construct derived!" << endl; };
};
class Erived : public Base {
public:
    virtual void print() {
        cout <= "Construct erived!" << endl; };
};</pre>
```

Pass base pointer:

```
Base *object = new Derived();
f(object);
Base *nobject = new Erived();
f(nobject);
```


Cast to derived class

This is how to do it:

Code: Output:

Do not use this function g:

Code: Output:

```
void g( Base *obj ) {
  Derived *der = static_cast<Derived*>(obj);
  der->print();
};
```

Construct derived! Construct erived!

