MATH 425a MIDTERM EXAM 2 November 6, 2015 Prof. Alexander

Last Name:	
First Name:	
USC ID:	
Signature:	

Problem	Points	Score
1	25	
2	20	
3	32	
4	28	
Total	100	

Notes:

- (1) Use the backs of the sheets if you need more room.
- (2) If you can't do, say, part (a) of a problem, you can assume it and do parts (b), (c), etc.
- (3) Points total 105 but 100 is maximum. This means the first 5 points you lose don't count against you.

- (1)(25 points)(a) State what it means for a series $\sum_n a_n$ to converge. (b) Prove the following part of Theorem 4.8: for $f: X \to Y$, if f is continuous then $f^{-1}(V)$ is open in X for every open set V in Y.

- (2)(20 points) These two questions are "yes/no with justification." This means formal proof is not required, just say enough to show you understand the reason.
- (a) Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and f(x) = 0 for all rational numbers x. Is it necessarily true that f(x) = 0 for all $x \in \mathbb{R}$?
- (b) Suppose the Ratio Test is used to show that the series $\sum_n a_n$ converges to some finite s. Is it possible that some rearrangement $\sum_n a'_n$ converges to a value other than s?

(3)(32 points) Establish convergence or divergence of the series (a), (b) and (c): (a) $\sum \frac{n}{n^3 - 2}$

(a)
$$\sum \frac{n}{n^3 - 2}$$

(b)
$$\sum 2^{-\sqrt{\log_2 n}}$$
 (Note $\log_2 n$ means base 2 logarithm.)

(b)
$$\sum_{n=0}^{\infty} 2^{-\sqrt{\log_2 n}}$$
 (c)
$$\sum_{n=0}^{\infty} (-1)^n \frac{n}{n+1}$$

(d) Find the radius of convergence: $\sum n^2 \left(\frac{2}{n}\right)^n z^n$. (e) Suppose $a_n > 0$ and $a_n/n \to 0$ as $n \to \infty$. Show that $\sum 1/a_n$ diverges. HINT: Comparison test.

- (4)(28 points) Suppose $g:(0,1]\to\mathbb{R}$ is uniformly continuous, and $p_n>0$ with $p_n\to 0$.
- (a) Show that $\{g(p_n)\}$ is a Cauchy sequence. HINT: All you need are the relevant definitions.
 - (b) If also $t_n > 0$ with $t_n \to 0$, show that $|g(p_n) g(t_n)| \to 0$.
- (c) Show that $\lim_{x\to 0} g(x)$ exists. HINT: Recall that by Theorem 4.2, this limit exists and is equal to q, if and only if $g(t_n) \to q$ for all sequences $t_n \to 0$ in (0,1].

REMINDER LIST-TESTS FOR CONVERGENCE

- (1) Cauchy criterion ($\{s_n\}$ must be a Cauchy sequence, where s_n is the nth partial sum)
- (2) Comparison test
- (3) Cauchy condensation test
- (4) Root test
- (5) Ratio test
- (6) Alternating series test
- (7) "Two bounds" method