Tests	Null Hypothesis	Test Statistic	Type
One-sample test of proportions	$H_0: p=p_0$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$	Parametric
Two-sample test of proportions	$H_0: p_x = p_y$	$z = \frac{\hat{p}_x - \hat{p}_y}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_x} + \frac{1}{n_y}\right)}}$ $\hat{p} = \frac{n_x \hat{p}_x + n_y \hat{p}_y}{n_x + n_y}$	Parametric
Two-sample z-test	$H_0: \mu_x = \mu_y$	$z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}$	Parametric
Independent- Two- sample t-test	$H_0: \mu_1 = \mu_2$	$egin{align} t &= rac{ar{x_1} - ar{x_2} - 0}{se} \ &= \sqrt{rac{(n_1 - 1) * s_1^2 + (n_2 - 1) * s_2^2}{n_1 + n_2 - 2}} \ &= s * \sqrt{rac{1}{n_1} + rac{1}{n_2}} df = n_1 + n_2 - 2 \ &= \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}} df = \min(n_1 - 1, n_2 - 1) \ &= min(n_1 - 1, n_2 - 1) \ &= min(n_$	Parametric
Paired-Two- Sample-t-test	$H_0: \mu_1 = \mu_2$	$egin{aligned} ar{d} &= ar{x}_{diff} = ar{x}_1 - ar{x}_2. \ s_d &= \sqrt{(\sum{(di - ar{d})^2}/(n-1))} \ SE(d) = se = s_d/\sqrt{n} \ T &= rac{ar{d}}{SE(ar{d})}. df = n-1 \end{aligned}$	Parametric
McNemar Test for paired proportions	H_0 : $n_{01} = n_{10}$	$z = rac{n_{01} - n_{10}}{\sqrt{n_{01} + n_{10}}}$	Parametric
Chi-square test for independence	Independent	$\sum \frac{(observed_i - expected_i)^2}{expected_i}$ $df = (nrows - 1) * (ncolumns - 1).$	Parametric
Strength of Association		$\sqrt{\frac{\chi^2}{n*m}}$	Parametric

Regression Overall Test	All the coefficients are zero	F-statistic $\dfrac{\dfrac{SS_{total}-SS_{residual}}{k-1}}{\dfrac{SS_{residual}}{n-k}}$ $dfl=k-1$ $df2=n-k$	Parametric
One-way ANOVA	All the group means are equal	$F = rac{Between - groups - variability}{within - groups - variability} \ df1 = g - 1 \ df2 = N - g \ rac{n_1 * (ar{y}_1 - ar{y})^2 + n_2 * (ar{y}_2 - ar{y})^2 + \ldots + n_g * (ar{y}_g - ar{y})^2}{g - 1} \ rac{\sum (y_{i1} - ar{y}_1)^2 + \sum (y_{i2} - ar{y}_2)^2 + \ldots + \sum (y_{ig} - ar{y}_g)^2}{n - g} \ rac{1}{n - g}$	Parametric
Kruskal Wallis	All the group ranks are equal	$ \begin{array}{c} g \text{ groups} \\ \downarrow \\ \frac{12}{N(N+1)} \sum_{i=1}^{g} n_i (\bar{R} - \bar{R}_i)^2 = H \sim \chi^2(g-1) \end{array} $	Non Parametric

Two-Way ANOVA Table

It is assumed that main effect A has a levels (and A = a-1 df), main effect B has b levels (and B = b-1 df), is the sample size of each treatment, and N = abn is the total sample size. Notice the overall degrees of freedom is once again one less than the total sample size.

a so notation in the first line is to the line in the						
Source	SS	df	MS	F		
Main Effect A	given	A, a-1	SS / df	MS(A) / MS(W)		
Main Effect B	given	B, b-1	SS / df	MS(B) / MS(W)		
Interaction Effect	given	A*B, (a-1)(b-1)	SS / df	MS(A*B) / MS(W)		
Within (Error)	given	N - ab, ab(n-1)	SS / df			
Total	sum of others	N - 1, abn - 1				