Exercices proposés - Semaine

Yassine Ait Mohamed

Session d'hiver 2025

9

Université de Sherbrooke

Théorème de Cayley-Hamilton et polynôme minimal.

Définition Soit A une matrice d'ordre n. Un polynôme $p_A(t)$ est le polynôme minimal de A s'il satisfait les conditions suivantes :

- (i) $p_A(A) = 0_n$ et le degré $p_A(t)$ est le plus petit degré des polynômes non-nulles f(t) tels que $f(A) = 0_n$.
- (ii) Le coefficient principal de $p_A(t)$ est 1.

1. Soit
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$
,

- (a) Trouvez le polynôme caractéristique $g_A(t)$ de la matrice A.
- (b) En utilisant le polynôme caractéristique trouvez A^{-1} .
- (c) Considérez le polynôme h(t) = (t-1)(t-2). Vérifiez que $h(A) = 0_3$ et calculez A^{-1} .
- (d) Soit f(t) un polynôme tel que $f(A) = 0_3$. Démontrez que h(t) = (t-1)(t-2) divise f(t). En particulier, h(t) divise $g_A(t)$.
- (e) Soit $J = \{f(t) \in K[t] | f(A) = 0_3\}$. Démontrez :
 - i. $J \neq \emptyset$
 - ii. Si $f_1(t), f_2(t) \in J$ et $g_1(t), g_2(t) \in K[t]$ alors $g_1(t)f_1(t) + g_2(t)f_2(t) \in J$.
 - iii. Montrez que J est engendré par h(t)=(t-1)(t-2), c'est-à-dire $J=\{(t-1)(t-2)q(t)|q(t)\in K[t]\}.$
- (f) Démontrez que h(t) = (t-1)(t-2) est le polynôme minimal de A, c'est-à-dire $p_A(t) = h(t)$.
- 2. Démontrez que chaque racine du polynôme caractéristique $g_A(t)$ d'une matrice nonnulle A est une racine du polynôme minimal $p_A(t)$ de A.
- 3. Trouvez le polynôme minimal de la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- 4. Trouvez le polynôme minimal de la matrice $A = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$.
- 5. Soit $A = (a_{ij})$ une matrice triangulaire supérieure d'ordre 3 où $a_{ij} \in \mathbb{R}$. Si $a_{11} = 1$, $a_{22} = 2$ et $a_{33} = 3$ trouvez α, β et γ tel que $A^{-1} = \alpha A^2 + \beta A + \gamma I$.
- 6. Soit la matrice

$$A = \begin{pmatrix} 0 & -b & a \\ b & 0 & -c \\ -a & c & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- (a) A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?
- (b) A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?
- (c) Soit λ un réel non nul. La matrice $B = A + \lambda I_3$ est-elle inversible?
- (d) Montrer qu'il existe trois réels α, β, γ tels que

$$B^{-1} = \alpha A^2 + \beta A + \gamma I_3.$$

7. Calculer le polynôme minimal des matrices suivantes (on travaille sur le corps $\mathbb{K} = \mathbb{R}$) :

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

8. À l'aide du théorème de Cayley-Hamilton, calculer le polynôme minimal des matrices suivantes (on travaille sur le corps $\mathbb{K} = \mathbb{R}$) :

$$\begin{pmatrix} -2 & -2 & 1 \\ -2 & 1 & -2 \\ 1 & -2 & -2 \end{pmatrix}, \quad \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

- 9. Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soit $u \in \mathcal{L}(E)$ et soient F_1, F_2 deux sous-espaces vectoriels stables par u tels que $E = F_1 \oplus F_2$. On désigne par u_1 et u_2 les restrictions de u aux sous-espaces F_1 et F_2 respectivement.
 - (a) Soient $P, Q \in \mathbb{K}[X]$. Expliquer comment définir un ppcm de P et Q dans $\mathbb{K}[X]$, et donner ses propriétés.
 - (b) Montrer que $\Pi_u = \operatorname{ppcm}(\Pi_{u_1}, \Pi_{u_2})$.
- 10. (a) Déterminer toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ ayant pour polynôme minimal X+1.
 - (b) Déterminer une matrice de $\mathcal{M}_3(\mathbb{R})$ ayant pour polynôme minimal (X+1)(X-2).
 - (c) Déterminer une matrice de $\mathcal{M}_3(\mathbb{R})$ ayant pour polynôme minimal $(X+1)(X-2)^2$.
- 11. Soit $n \geq 2$ et soit $E = \mathcal{M}_n(\mathbb{R})$. On considère l'application $u: E \longrightarrow E$ définie par

$$u(M) = \operatorname{tr}(M)I_n - M.$$

- (a) Montrer que u est un endomorphisme de E.
- (b) Trouver deux valeurs propres distinctes de u.
- (c) Montrer que le sous-espace V de E constitué des matrices de trace nulle est stable par u.
- (d) Que peut-on en déduire?

12. Soit A une matrice non nulle de $\mathcal{M}_3(\mathbb{R})$ telle que $A^3 = -A$. Le but de l'exercice est de montrer qu'il existe une base \mathcal{B} de \mathbb{R}^3 telle que la matrice de A dans la base \mathcal{B} soit donnée par

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- (a) Justifier que A admet au moins une valeur propre.
- (b) Justifier que $\ker(A) \neq 0$ et $\ker(A^2 + \operatorname{Id}) \neq 0$. [Indication : pour le premier, on pourra montrer que A n'est pas inversible].
- (c) Puisque $\ker(A^2 + \operatorname{Id}) \neq 0$, soit $v \in \ker(A^2 + \operatorname{Id})$, $v \neq 0$. Montrer que $A(v) \in \ker(A^2 + \operatorname{Id})$, que $A(v) \neq 0$, et que $\{v, A(v)\}$ sont linéairement indépendants.
- (d) Conclure.