Magnetic Properties of Materials

- a) Transmission electron micrograph showing the microstructure of the perpendicular magnetic recording medium used in hard-disk drives.
- b) Magnetic storage hard disks used in laptop (left) and desktop (right) computers.
- c) Inside of a hard disk drive.
- d) Laptop

Magnetism

- The phenomenon by which materials exert an attractive or repulsive force or influence on other materials.
- The underlying principles and mechanisms that explain magnetic phenomena are complex and subtle
- Many modern technological devices rely on magnetism and magnetic materials, including electrical power generators and transformers, electric motors, radio, television, telephones, computers, and components of sound and video reproduction systems.
- Iron, some steels, and the naturally occurring mineral lodestone are well-known examples of materials that exhibit magnetic properties.
- In fact, **all** substances are influenced to one degree or another by the presence of a magnetic field.

Topics included

A brief description of the origin of magnetic fields and magnetic field vectors and magnetic parameters;

- Diamagnetism,
- paramagnetism,
- ferromagnetism, and
- ferrimagnetism;
- different magnetic materials; and superconductivity.

Magnetic dipole and Magnetic Field

Magnetic forces are generated by moving electrically charged particles;

Let us consider these magnetic forces in terms of a field.

- Imaginary lines of force that may be drawn to indicate the direction of force at positions in the vicinity of the source (bar magnet or moving current).
- The magnetic field distributions as indicated by lines of force.

Generation of a Magnetic Field -- Vacuum

Created by current through a cylindrical coil:

N = total number of turns

l = length of the coil (m)

I = current (ampere)

H = magnetic field strength

$$H = \frac{NI}{l}$$

Magnetic flux density, B - magnitude of the internal field strength within a substance that is subjected to an H field Units: webers per square meter (Wb/m²)

The magnetic field strength and flux density are related as:

$$B = \mu H$$

The parameter is called the permeability, which is a property of the specific medium through which the H field passes and in which B is measured

Units: webers per ampere-meter (Wb/A·m) or henries per meter.

In a vacuum,

$$B_0 = \mu_0 H$$

where $_0$ is the permeability of a vacuum, a universal constant, which has a value of 4×10^{-7} (1.257 × 10⁻⁶) H/m.

B = Magnetic field (tesla) induced in the material

$$B = \mu \frac{NI}{I}$$

• Relative permeability (dimensionless) $\mu_r = \frac{1}{4}$

a measure of the degree to which the material can be magnetized, or the ease with which a B field can be induced in the presence of an external H field.

Magnetization of the solid

In the presence of an H field, the magnetic moments within a material tend to become aligned with the field.

The measure of this contribution is:

$$B=\mu_0 H + \mu_0 M$$

Recall:

Analogous expression for the dielectric case

$$D = \varepsilon_0 \mathcal{E} + P$$

• D is also called the dielectric displacement, and P is the polarization, or the increase in charge density above that for a vacuum because of the presence of the dielectric.

The magnitude of M is proportional to the applied field as follows

$$M=\chi_m H$$

What is the relation between χ_m and μ_r ?

Magnetization of the solid

In the presence of an H field, the magnetic moments within a material tend to become aligned with the field.

The measure of this contribution is:

$$B=\mu_0 H + \mu_0 M$$

Recall:

Analogous expression for the dielectric case

$$D = \varepsilon_0 \mathcal{E} + P$$

• D is also called the dielectric displacement, and P is the polarization, or the increase in charge density above that for a vacuum because of the presence of the dielectric.

The magnitude of M is proportional to the applied field as follows

$$M=\chi_m H$$

 χ_m and μ_r are related as:

$$\chi_m = \mu_r - 1$$

Magnetic field distributions is typically indicated by lines of force are shown for a current loop and a bar magnet

 Within a magnetic field, the force of the field exerts a torque that tends to orient the dipoles with the field.

A familiar example is the way in which a magnetic compass needle lines up with the Earth's magnetic field.

Let's learn how things work:

- Compass in your smartphone
- Compass in the aircraft

https://www.youtube.com/watch?v=f2oMZdRuVBY

Magnetic quantities and their units

Quantity	Symbol	SI Units	
		Derived	Primary
Magnetic induction (flux density)	B	Tesla (Wb/m ²) ^a	kg/s•C
Magnetic field strength	Н	Amp·turn/m	C/m⋅s
Magnetization	M (SI) I (cgs-emu)	Amp·turn/m	C/m⋅s
Permeability of a vacuum	μ_0	Henry/m ^b	kg·m/C ²
Relative permeability	μ_r (SI) μ' (cgs–emu)	Unitless	Unitless
Susceptibility	χ_m (SI) χ'_m (cgs-emu)	Unitless	Unitless

Origins of Magnetic Moments

 Magnetic moments arise from electron motions and the spins on electrons.

magnetic moments

Bohr magneton Bohr magnitude = $9.27 \times 10^{-24} \,\text{A} \cdot \text{m}^2$

For each electron in an atom, the spin magnetic moment is \pm _{\square}

- Net atomic magnetic moment:
 - -- sum of moments from all electrons.
- Four types of response...

Magnetic moments of atoms

- The net magnetic moment for an atom is the sum of the magnetic moments of each of the constituent electrons, including both orbital and spin contributions.
- In each atom, orbital moments and/or spin moments of some electron pairs cancel each other.
- For an atom having completely filled electron shells or subshells, when all electrons are considered, there is total cancellation of both orbital and spin moments.
- Hence, the inert gases (He, Ne, Ar, etc.) as well as some ionic materials are not capable of being permanently magnetized.
- The type of magnetic response includes diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism and ferrimagnetism.

Types of Magnetism

Magnetic Responses of 4 Types Weak and non-

No Applied Magnetic Field (H = 0)

Applied Magnetic Field (H)

Permanent, change (1) diamagnetic in orbital motion of electrons to H.

(2) paramagnetic

Each atom has a permanent dipole Moment: incomplete cancellation of

electron spin and/or

(3) ferromagnetic

(4) ferrimagnetic

possess a permanent magnetic moment in the absence of an external field and manifest very large and permanent magnetizations

orbital magnetic moments.

Ferromagnetic materials

- The maximum possible magnetization, or saturation magnetization, M_s of a ferromagnetic material represents the magnetization that results when all the magnetic dipoles in a solid piece are mutually aligned with the external field; there is also a corresponding saturation flux density, B_s .
- The <u>saturation magnetization</u> is equal to the product of the net magnetic moment for each atom and the number of atoms present.
- For each of iron, cobalt, and nickel, the net magnetic moments per atom are 2.22, 1.72, and 0.60 Bohr magnetons, respectively.
- Magnetic susceptibilities χ_m is as high as 10⁶ for ferromagnetic materials. Hence, H << M. Therefore, we can obtain the magnetic flux density as:

 $B \cong \mu_0 M$

Influence of Temperature on Magnetic Behavior

With increasing temperature, the saturation magnetization diminishes gradually and then abruptly drops to zero at Curie Temperature, Tc.

Numerical:

Calculate (a) the saturation magnetization and (b) the saturation flux density for nickel, which has a density of 8.90 g/cm³.

Magnetic moment per atom for Ni: 0.60 Bohr magneton

 $A_{Ni} = 58.71 \text{ g/mol}$

Solution:

The saturation magnetization is the product of the number of Bohr magnetons per atom (0.60, as given), the magnitude of the Bohr magneton $_{\rm B}$, and the number N of atoms per cubic meter.

The number of atoms per cubic meter can be obtained from density as:

$$N = \frac{\rho N_{\rm A}}{A_{\rm Ni}}$$