

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2023-2024 (Odd Semester 2023)

DEPARTMENT OF MATHEMATICS

Test 1- Scheme and Solution

Course Title: Mathematics for Artificial Intelligence & Machine Learning, Course Code:MAT231ET

Sl.	Answers					
No.		1	2	3		
	$P(B_i)$	0.5	0.3	0.2	sum=1	1
	$P(W B_i)$	0.75	0.8	0.85		1
	$P(W B_i)P(B_i)$	0.375	0.24	0.17	sum=0.785	1
	$P(B_i W)$	0.375	0.24	0.17		
		0.785	0.785	0.785		
	(i) $P(W) = 0.785$	= 0.4777 (ii) $P(A W)$	= 0.3057 = 0.4777 PC	= 0.2166 $(R W) = 0.30$] 157 P(C W) = 0.2166	1 2
1b	(i) $P(W) = 0.785$, (ii) $P(A W) = 0.4777$, $P(B W) = 0.3057$, $P(C W) = 0.2166$.					1,3
	P(X) k 2	2k 2k	3k k			
	$(i) \sum P(X) = 1 \implies 9k = 1 \implies k = 1/9, (ii) P[1 < X \le 7] = 7k = 7/9$					2, 2
2a	X 0 1 2					
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	(i) $E[X] = 1 \times 0.2 + 2 \times 0.1 = 0.4$, expectation of the company's daily loss = $0.4 \times 4000 = Rs$. 1,600					
	(ii) $Var[X] = E[X^2] - \{E[X]\}^2 = 1^2 \times 0.2 + 2^2 \times 0.1 - 0.4^2 = 0.44$,					$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
	variance of the company's daily loss = $0.44 \times 4000 = Rs.1,760$.					1
2b	Given $f(x) = e^{- x }$, should have been $f(x) = \frac{1}{2}e^{- x }$					
	$E[X] = \frac{1}{2} \left\{ \int_{-\infty}^{0} x e^{x} dx + \int_{0}^{\infty} x e^{-x} dx \right\} = \frac{1}{2} \left\{ x e^{x} - e^{x} \Big _{-\infty}^{0} + -x e^{-x} - e^{-x} \Big _{0}^{\infty} \right\}$					
	$= \frac{1}{2} ((0-1) - (0-0) + (-0-0) - (0-1)) = 0$					
	$Var[X] = E[X^2] - \left[E[X]\right]^2 = \frac{1}{2} \left\{ \int_{-\infty}^0 x^2 e^x dx + \int_0^\infty x^2 e^{-x} dx \right\} - 0^2$					
	$= \frac{1}{2} \{ x^2 e^x - 2x e^x + 2e^x _{-\infty}^0 + -x^2 e^{-x} - 2x e^{-x} - 2e^{-x} _{0}^{\infty} \}$					
	$= \frac{1}{2} ((0-0+2) - (0-0+0) + (-0-0-0) - (-0-0-2)) = 2$					
20	(Credit will be given if the mean(0) and variance(4) found using the given function					
3a	$f(x) = k(1 - x^3) \text{ for } 0 < x < 1$					
	(i) $\int_0^1 k(1-x^3)dx = 1 \Longrightarrow k\left[x - \frac{x^4}{4}\right] = 1 \Longrightarrow k\left[1 - \frac{1}{4}\right] \Longrightarrow k = \frac{4}{3}$					
	(ii) $P\left(X < \frac{1}{2}\right) = \int_0^{1/2} \frac{4}{3} (1 - x^3) dx = \frac{4}{3} \left[x - \frac{x^4}{4}\right]_0^{1/2} = \frac{4}{3} \left[\frac{1}{2} - \frac{1}{64}\right] = \frac{31}{48}$					
	(iii) $P\left(X > \frac{3}{4}\right) = \int_{3/4}^{1} \frac{4}{3} (1 - x^3) dx = \frac{4}{3} \left[x - \frac{x^4}{4}\right]_{3/4}^{1} = \frac{4}{3} \left[\left(1 - \frac{1}{4}\right) - \left(\frac{3}{4} - \frac{81}{1024}\right) = \frac{27}{256}\right]$					

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2023-2024 (Odd Semester 2023)

3b	$f(x) = \begin{cases} \frac{3}{x^4} & \text{for } x \ge 1 \\ \end{cases}$				
	$ \left(0 for \ x < 1 \right) $				
	$0, \qquad t < 1$				
	$f(x) = \begin{cases} \frac{3}{x^4} & for \ x \ge 1\\ 0 & for \ x < 1 \end{cases}.$ $CDF = \begin{cases} 0, & t < 1\\ \int_1^t \frac{3}{x^4} dx = -\frac{1}{x^3} \Big _1^t = 1 - \frac{1}{t^3}, t \ge 1 \end{cases}$				
	$P(x > 2) = 1 - P(x \le 2) = 1 - F(x = 2) = 1 - \left(1 - \frac{1}{8}\right) = \frac{1}{8}$	1			
4a	p = 0.25, q = 0.75, n = 20				
	$(i)P(X \ge 4) = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)]$				
	$= 1 - [(0.75)^{20} + 20 \times (0.25) \times (0.75)^{19} + 190 \times (0.25)^{2} (0.75)^{18}$				
	$+ 1140 \times (0.25)^3 \times (0.75)^{17}$				
	= 0.7748	3			
	(ii) $P(X = 4) = 4845 \times (0.25)^4 \times (0.75)^{16} = 0.1897$				
	(iii) $P(X \le 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)$				
	$(0.75)^{20} + 20 \times (0.25) \times (0.75)^{19} + 190 \times (0.25)^{2} (0.75)^{18} + 1140 \times (0.25)^{3} \times (0.75)^{17}$				
	$+4845 \times (0.25)^4 \times (0.75)^{16} = 0.4149$	2			
4b	n = 5, P(X = 1) = 0.2592, P(X = 2) = 0.3456				
	$5pq^4 = 0.2592, 10p^2q^3 = 0.3456 \Longrightarrow \frac{1}{2}\frac{q}{p} = 0.75 \Longrightarrow q = \frac{3}{2}p$	2			
	$\Rightarrow p + \frac{3}{2} p = 1 \Rightarrow \frac{5}{2} p = 1 \Rightarrow p = \frac{2}{5}, q = \frac{3}{5}$				
		2			
5a	$\mu = 10$, $f(x) = \frac{e^{-\mu}\mu^x}{x!}$				
	(i) $P(X > 4) = 1 - P(X \le 4)$				
	= 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)]				
	$=1-e^{-10}\left[1+\frac{10}{1}+\frac{10^2}{2}+\frac{10^3}{6}+\frac{10^4}{24}\right]=0.9707$				
	(ii) $P(X < 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$				
	$=e^{-10}\left[1+\frac{10}{1}+\frac{10^2}{2}+\frac{10^3}{6}+\frac{10^4}{24}+\frac{10^5}{120}=0.0671\right]$				
		2			
	(iii) $P(X=5) = \frac{e^{-10}10^5}{5!} = 0.0378$	1			
5b	(iii) $P(X = 5) = \frac{e^{-10}10^5}{5!} = 0.0378$ $\mu = 0.3 \times 12 = 3.6, f(x) = \frac{e^{-3.6}3.6^x}{x!}$				
	(i) $P(X \ge 3) = 1 - P(X < 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$				
	$= 1 - e^{-3.6} \left[1 + \frac{3.6}{1} + \frac{3.6^2}{2} \right] = 0.6973$				
	(ii) $P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$				
	$=e^{-3.6}\left[1+\frac{3.6}{1}+\frac{3.6^2}{2}+\frac{3.6^3}{6}\right]=0.5152$	2			
		1			