

02-16-00 A

02/14/00
U.S. PTO
j51

UTILITY PATENT APPLICATION TRANSMITTAL

(Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
MICR131.02Total Pages in this Submission
37TO THE ASSISTANT COMMISSIONER FOR PATENTSBox Patent Application
Washington, D.C. 20231

Transmitted herewith for filing under 35 U.S.C. 111(a) and 37 C.F.R. 1.53(b) is a new utility patent application for an invention entitled:

RANDOM ACCESS MEMORY

j51 09/503636 PRO

02/14/00

and invented by:

Kirk D. Prall, et al.

If a CONTINUATION APPLICATION, check appropriate box and supply the requisite information:

 Continuation Divisional Continuation-in-part (CIP) of prior application No.: 08/868,058

Which is a:

 Continuation Divisional Continuation-in-part (CIP) of prior application No.: 08/399,843

Which is a:

 Continuation Divisional Continuation-in-part (CIP) of prior application No.: _____

Enclosed are:

Application Elements

1. Filing fee as calculated and transmitted as described below
2. Specification having 20 pages and including the following:
 - a. Descriptive Title of the Invention
 - b. Cross References to Related Applications (*if applicable*)
 - c. Statement Regarding Federally-sponsored Research/Development (*if applicable*)
 - d. Reference to Microfiche Appendix (*if applicable*)
 - e. Background of the Invention
 - f. Brief Summary of the Invention
 - g. Brief Description of the Drawings (*if drawings filed*)
 - h. Detailed Description
 - i. Claim(s) as Classified Below
 - j. Abstract of the Disclosure

UTILITY PATENT APPLICATION TRANSMITTAL
(Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
MICR131.02

Total Pages in this Submission
37

Application Elements (Continued)

3. Drawing(s) (*when necessary as prescribed by 35 USC 113*)
 - a. Formal Number of Sheets _____ 7
 - b. Informal Number of Sheets _____
4. Oath or Declaration
 - a. Newly executed (*original or copy*) Unexecuted
 - b. Copy from a prior application (37 CFR 1.63(d)) (*for continuation/divisional application only*)
 - c. With Power of Attorney Without Power of Attorney
 - d. **DELETION OF INVENTOR(S)**
Signed statement attached deleting inventor(s) named in the prior application,
see 37 C.F.R. 1.63(d)(2) and 1.33(b).
5. Incorporation By Reference (*usable if Box 4b is checked*)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
6. Computer Program in Microfiche (*Appendix*)
7. Nucleotide and/or Amino Acid Sequence Submission (*if applicable, all must be included*)
 - a. Paper Copy
 - b. Computer Readable Copy (*identical to computer copy*)
 - c. Statement Verifying Identical Paper and Computer Readable Copy

Accompanying Application Parts

8. Assignment Papers (*cover sheet & document(s)*)
9. 37 CFR 3.73(B) Statement (*when there is an assignee*)
10. English Translation Document (*if applicable*)
11. Information Disclosure Statement/PTO-1449 Copies of IDS Citations
12. Preliminary Amendment
13. Acknowledgment postcard
14. Certificate of Mailing

First Class Express Mail (*Specify Label No.*): EL497002983US

UTILITY PATENT APPLICATION TRANSMITTAL
(Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
MICR131.02

Total Pages in this Submission
37

Accompanying Application Parts (Continued)

15. Certified Copy of Priority Document(s) (if foreign priority is claimed)

16. Additional Enclosures (please identify below):

Fee Calculation and Transmittal

CLAIMS AS FILED

For	#Filed	#Allowed	#Extra	Rate	Fee
Total Claims	7	- 20 =	0	x \$18.00	\$0.00
Indep. Claims	5	- 3 =	2	x \$78.00	\$156.00
Multiple Dependent Claims (check if applicable)	<input type="checkbox"/>				\$0.00
				BASIC FEE	\$690.00
OTHER FEE (specify purpose)					\$0.00
				TOTAL FILING FEE	\$846.00

A check in the amount of \$846.00 to cover the filing fee is enclosed.

The Commissioner is hereby authorized to charge and credit Deposit Account No. as described below. A duplicate copy of this sheet is enclosed.

Charge the amount of _____ as filing fee.
 Credit any overpayment.
 Charge any additional filing fees required under 37 C.F.R. 1.16 and 1.17.
 Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311(b).

Signature

Steven R. Ormiston
Reg. No. 35,974
Attorney for Applicant
(208) 336-1234

Dated: February 14, 2000

cc:

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
Kirk D. Prall, et al.) Attorney
Serial No:) Docket Number: MICR131.02
Filed: February 14, 2000)
For: RANDOM ACCESS MEMORY)

) Group Art Unit:
) Examiner:
)
)

February 14, 2000

Assistant Commissioner of Patents
Washington, DC 20231

Sir:

PRELIMINARY AMENDMENT

Please amend the Application as follows.

In The Specification

Change the title to read --RANDOM ACCESS MEMORY--

--Cross Reference to Related Applications

This is a division of Application Serial No. 08/868,058 filed June 3, 1997,
which is a continuation of Application Serial No. 08/399,843 filed March 7, 1995.--

In The Claims

Please cancel all of the existing Claims 1-22 and add the following new claims. These new claims are identical to Claims 32-38 which were canceled in the parent case as being drawn to a non-elected invention.

23.(new) A semiconductor memory device, comprising:
a silicon structure having a first conductivity type;
a gate electrode over the silicon structure;
a capacitor contact region in the silicon structure adjacent to one side of the gate electrode;

a bit line contact region in the silicon structure adjacent to the other side of the gate electrode;

a first dopant implant in the capacitor and bit line contact regions, the first dopant having a second conductivity type opposite the first conductivity type; and
a second dopant implant in only the capacitor contact region.

24.(new) A device according to Claim 23, wherein the second dopant implant is deeper than the first dopant implant.

25.(new) A device according to Claim 24, wherein the depth of the first dopant implant is in the range of 500 angstroms to 1000 angstroms and the depth of the second dopant implant is up to 2,000 angstroms.

26.(new) A semiconductor memory device, comprising:
a silicon structure having a first conductivity type;
a gate electrode over the silicon structure;
a capacitor contact region in the silicon structure adjacent to one side of the gate electrode;
a bit line contact region in the silicon structure adjacent to the other side of the gate electrode;
a first dopant implant in the capacitor and bit line contact regions, the first dopant having a second conductivity type opposite the first conductivity type;
insulating spacers extending vertically along the sidewalls of the gate electrode and horizontally over a portion of the first dopant implant in the capacitor and bit line contact regions; and
a second dopant implant in only the capacitor contact region.

27.(new) A semiconductor memory device, comprising:
a silicon structure having a first conductivity type;
a gate electrode over the silicon structure having a first conductivity type;

a capacitor contact region in the silicon structure adjacent to one side of the gate electrode;

a bit line contact region in the silicon structure adjacent to the other side of the gate electrode;

a first dopant implant in the capacitor and bit line contact regions, the first dopant having a second conductivity type opposite the first conductivity type;

insulating spacers extending vertically along the sidewalls of the gate electrode and horizontally over a portion of the first dopant implant in the capacitor and bit line contact regions;

a second dopant implant in only the capacitor contact region;

a capacitor first conductor in electrical contact with the capacitor contact region;

a dielectric over the capacitor first conductor; and

a capacitor second conductor over the dielectric.

28.(new) A semiconductor memory device, comprising:

a silicon structure having a first conductivity type;

a gate electrode over the silicon structure;

a capacitor contact region in the silicon structure adjacent to one side of the gate electrode;

a bit line contact region in the silicon structure adjacent to the other side of the gate electrode;

a first dopant implant in the capacitor and bit line contact regions, the first dopant having a second conductivity type opposite the first conductivity type, and the first dopant implanted at a dosage of about 10^{13} ions per square centimeter at an implantation energy in the range of 20 KeV to 100 KeV;

insulating spacers extending vertically along the sidewalls of the gate electrode and horizontally over a portion of the first dopant implant in the capacitor and bit line contact regions;

a second dopant implant in only the capacitor contact, the second dopant implant having the second conductivity type, and the second dopant implanted at a dosage of about 10^{13} ions per square centimeter at an implantation energy up to 200 KeV;

a capacitor first conductor in electrical contact with the capacitor contact region, the capacitor first conductor comprising polysilicon doped to the second conductivity type to a level in the range of 1×10^{19} to 1×10^{20} atoms per cubic centimeter;

a dielectric over the capacitor first conductor; and

a capacitor second conductor over the dielectric.

29.(new) A semiconductor device, comprising:

a silicon structure having first conductivity type;

a gate electrode over the silicon structure;

a capacitor contact region comprising a portion of the silicon structure adjacent to one side of the gate electrode;

a bit line contact region comprising a portion of the silicon structure adjacent to the other side of the gate electrode;

the bit line contact region lightly doped to a second conductivity type opposite the first conductivity type; and

the capacitor contact region heavily doped to the second conductivity type.

Respectfully submitted,

Steven R. Ormiston
Attorney for Applicant
Registration No. 35,974
(208) 336-1234

ATTORNEY
DOCKET NO. 94-0155

**PROCESS FOR ENHANCING REFRESH IN
DYNAMIC RANDOM ACCESS MEMORY DEVICES**

INVENTORS:

**KIRK D. PRALL
ROBERT KERR
CHRISTOPHER MURPHY
D. MARK DURCAN**

PROCESS FOR ENHANCING REFRESH IN
DYNAMIC RANDOM ACCESS MEMORY DEVICES

Field of the Invention

The invention relates generally to the formation of integrated circuit devices and more particularly to a process for enhancing refresh in Dynamic Random Access Memory devices (DRAMs).

5

Background of the Invention

Generally, integrated circuits are mass produced by forming many identical circuit patterns on a single silicon wafer, which is thereafter cut into many identical dies or "chips." Integrated circuits, also commonly referred to as semiconductor devices, are made of various materials that may be electrically conductive, electrically nonconductive (insulators) or electrically semiconductive. Silicon, in single crystal or polycrystalline form, is the most commonly used semiconductor material. Both forms of silicon can be made electrically conductive by adding impurities. The introduction of impurities into silicon is commonly referred to as doping. Silicon is typically doped with boron or phosphorus. Boron atoms have one less valence electron than silicon atoms. Therefore, if the silicon is doped with boron, then electron "holes" become the dominant charge carrier and the doped silicon is referred to as p-type silicon. By contrast, phosphorous atoms have one more valence electron than silicon atoms. If the silicon is doped with phosphorous, then electrons become the dominant charge carriers and the doped silicon is referred to as n-type silicon.

Dynamic Random Access Memory devices (DRAMs) comprise arrays of memory cells which contain two basic components -- a field effect access transistor and a capacitor. Typically, one side of the transistor is connected to one side of the capacitor. This connection is made between a capacitor bottom

electrode and an active area. The areas in a DRAM in which electrical connections are made are generally referred to as active areas. Active areas consist of discrete specially doped regions in the surface of the silicon substrate which serve as electrical contact points (or "buried contacts") as well as source/drain regions for the access transistor. The other side of the transistor and the transistor gate electrode are connected to external contacts -- a bit line and a word line, respectively. The other side of the capacitor, the capacitor top electrode, is connected to a reference voltage. Therefore, the formation of the DRAM memory cell comprises the formation of a transistor, a capacitor, a connection between the capacitor and the transistor, and contacts to external circuits.

The many advantages of the formation of smaller circuit components, so that more and more memory cells may be packed onto each chip, are well known. One such advantage of miniaturization of cell components, and the corresponding reduction in memory cell spacing, is that the operating voltages for the DRAM may be decreased. Thus, the cost to operate the device is reduced and its reliability and longevity is enhanced.

Lower operating voltages, however, reduce the time within which each memory cell must be recharged or "refreshed" because less charge is stored on the cell. In DRAMs, the charge on each memory cell must be refreshed periodically because the cell loses or "leaks" charge through the junctions between areas within the silicon substrate having different doping/conductivity characteristics. If the cell is not refreshed before losing a threshold level of charge, then the cell will fail, i.e., lose the bit of information stored therein. And, if a cell fails, then the chip itself is defective and cannot be used. The rate at which charge is leaked through these junctions is an important factor in determining refresh time -- the time within which each cell

must be recharged. Consequently, it is advantageous to minimize junction leakage to increase refresh time and help compensate for the reductions in refresh time caused by lower operating voltages.

5 Improvements in refresh are also needed to compensate for increased packing densities and refresh degradation associated with contact misalignment. As more and more cells are packed onto each chip, more time is required to refresh all of the cells on the chip. Further, increased packing densities and
10 corresponding cell miniaturization increases refresh degradation due to trap assisted tunneling, micro zenering and other such refresh loss mechanisms. Since refresh time is controlled by the weakest cell, the average refresh for all cells must be increased to keep the weakest cell above the
15 minimum threshold. There is, thus, a need to enhance refresh to lessen or eliminate the effects of these loss mechanisms and otherwise provide for sufficient time within which all cells on the chip may be refreshed.

20 Refresh degradation has been observed when contact corridors are misaligned to the active areas. As the size of the memory cell is reduced, the size of the active areas and the corridors available for the capacitor bottom electrodes to reach those active areas are also reduced. Hence, proper alignment of the contacts formed in these corridors becomes
25 more difficult.

One approach to a solution for the problem of obtaining proper contact alignment in narrow contact corridors is the use of an etch stop layer or similar structure to control the corridor etch. One such process of forming contacts is disclosed in U.S. Pat. No. 5,292,677, issued to Dennison on March 8, 1994. Dennison describes a DRAM formation process using an etch stop layer to self-align the contact corridors to the transistor gate and word lines, and corresponding active areas in the substrate. Although this process substantially reduces the risk of contact misalignment and,
30
35

incidentally, may lessen refresh degradation associated therewith, it does not address refresh problems associated with lower operating voltages or junction leakage.

Another approach to the problem of contact misalignment
5 is illustrated in U.S. Patent No. 4,512,073, issued to Hsu on April 23, 1985. Hsu describes a process for precluding a metal contact from short circuiting the doped regions to the substrate and for preventing the "spiking" of a metal contact through the doped region. In Hsu, phosphorous is implanted
10 into the previously doped active areas to dope that portion of the substrate that may have been exposed due to misalignment of the contact corridor. As with the Dennison patent, Hsu does not address the problems of refresh degradation in general, and specifically with regard to refresh degradation
15 associated with junction leakage, lower device operating voltages, and misalignment of the contact between the polysilicon capacitor bottom electrode and the transistor source/drain.

There is a need for a DRAM fabrication process that minimizes the problems of refresh degradation associated with miniaturization of cell components and decreased operating voltages, as well as refresh degradation that may result from contact misalignment and junction leakage.
20

Summary of the Invention

One object of the invention is to enhance refresh in dynamic access memory devices.
25

Another object is to alleviate refresh degradation associated with the miniaturization of memory cell components and decreased operating voltages.
30

Another object is to lessen the adverse effect that contact misalignment and junction leakage may have on refresh.

According to the present invention, these and other objects are achieved by a process of implanting impurities into (i.e., doping) the capacitor buried contact after

formation of the access transistor components. The process comprises forming a gate insulating layer on a substrate and a transistor gate electrode on the gate insulating layer. First and second transistor source/drain regions are formed on the substrate adjacent to each side of the gate electrodes. Impurities are then implanted into the first source/drain region which will serve as the capacitor buried contact. If the starting material for the substrate is p-type silicon, then n-type impurities will be implanted into the source/drain region.

In another aspect of the invention, the n-type impurities are phosphorous atoms. The phosphorous ions are implanted at an implantation energy level up to 200 KeV to a depth of approximately 500-2000 angstroms.

In another aspect of the invention, a capacitor first (or bottom) conductor, made of doped polysilicon, is formed to contact the source/drain region after the phosphorous implant. Then, a dielectric layer is formed over the first conductor and a polysilicon second conductor is formed over the dielectric layer. The memory cell may be completed by forming an insulating layer over the structure previously formed, patterning and etching the insulating layer and continuing to etch down to expose portions of the second source/drain region and, thereafter, forming a metal bit line contact contacting the exposed second source/drain region.

The process of the invention, implanting impurities into the capacitor buried contact after formation of the source/drain regions, thus enhances refresh of the memory cell by, it is believed, eliminating one or more defects in the cell.

Additional objects, advantages and novel features of the invention will be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the

invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

Brief Description of the Drawings

5 Figs. 1-8 are cross section views of a container type stacked capacitor DRAM memory cell at various stages of formation illustrating one embodiment of the invention.

10 Figs. 9-13 are cross section views of a portion of a standard stacked capacitor DRAM memory cell at various stages of formation illustrating a second embodiment of the invention.

The figures are not meant to be actual views of a DRAM memory cell, but merely idealized representations used to depict the structure and process of the invention.

15 Detailed Description of the Preferred Embodiments

The present invention will be described in terms of Metal Oxide Semiconductor (MOS) technology which is currently the most commonly used integrated circuit technology. MOS generally refers to any integrated circuit in which Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) are used. MOS integrated circuits are typically formed with a lightly doped p-type silicon substrate or a lightly doped n-type silicon substrate. The present invention will be described using lightly doped p-type silicon as the starting material, although the invention may be implemented with other substrate materials. If other substrate materials are used, then there may be corresponding differences in materials and structure of the device as is well known in the art.

30 The formation of integrated circuits includes photolithographic masking and etching. This process consists of creating a photolithographic mask containing the pattern of the component to be formed, coating the wafer with a light-sensitive material called photoresist, exposing the

photoresist coated wafer to ultra-violet light through the mask to soften or harden parts of the photoresist (depending on whether positive or negative photoresist is used), removing the softened parts of the photoresist, etching to remove the materials left unprotected by the photoresist and stripping the remaining photoresist. This photolithographic masking and etching process is referred to herein as "patterning and etching."

Reference will now be made to Figs. 1-8, which illustrate a process for forming a container type stacked capacitor DRAM memory cell. Referring to Fig. 1, wafer 10 comprises a lightly doped p-type single crystal silicon substrate 12 which has been oxidized to form thin gate insulating layer 14 and thick field oxide regions 16. Field oxide regions 16 provide electrical isolation between the memory cell array and the periphery as well as between individual memory cells within the array. Field oxide regions 16 are formed by conventional methods well known in the art, such as forming an apertured layer of silicon nitride (not shown) or other non-oxidizable material on the surface of substrate 12 and thereafter oxidizing the exposed portions of the substrate. Thin gate insulating layer 14 is formed by thermally growing or depositing silicon dioxide on the surface of substrate 12.

Transistor gate electrodes 18 are formed by successively depositing or "stacking" layers of polysilicon 20, tungsten silicide 22 and silicon dioxide 24 over thin gate insulating layer 14, and then patterning and etching those layers to expose substrate 12 at the desired locations of the source and drain for the access transistors. These layers are deposited, patterned and etched using conventional methods well known in the art. Alternatively, transistor gate electrodes 18 may be formed of a single layer of polysilicon deposited and etched as described above. The tungsten silicide and silicon dioxide layers are included herein simply to better illustrate the details of one of the preferred embodiments of the invention.

P-type impurities, typically boron atoms, are then implanted into the exposed portions of substrate 12, as shown symbolically by arrows 26. Boron ions are implanted at an energy level of approximately of 25-50 KeV, to a depth of approximately 1000 angstroms. The resulting doped p- regions extend into the channel area between the subsequently formed source and drain for each access transistor. The boron implant improves the transistor characteristic by reducing short channel effects such as V_t rollover, sub V_t slope, punch-through and the like.

Referring to Fig. 2, lightly doped drain implants (LDDs) are formed by implanting n-type impurities, typically phosphorous or arsenic atoms, in the exposed portions of substrate 12. The implantation of the n-type impurities is shown symbolically by arrows 30. The LDDs form source/drain regions 32a and 32b. The capacitor first conductors 44, shown on Fig. 5, will contact source/drain region 32a. This contact is commonly referred to as the capacitor buried contact.

The bit line contact 54, shown on Fig. 8, will contact source/drain region 32b. The LDD dopant is implanted at doses of approximately $1-5 \times 10^{13}$ ions per square centimeter and an implantation energy in the range of 20 to 100 KeV. Implantation at these energy levels results in ion distribution depths of approximately 500-1000 angstroms.

Referring to Fig. 3, insulating spacers 34 are formed on either side of transistor gate electrodes 18. Then, lower insulating layer 36, made of boro-phospho-silicate glass (BPSG), is deposited and, if necessary, planarized. Lower insulating layer 36 is patterned and etched to define capacitor contact corridor 38 (also commonly referred to as the capacitor container) in lower insulating layer 36 and to expose portions of substrate 12 at source/drain region 32a.

N-type impurities, preferably phosphorous atoms, are then implanted into the re-exposed portions of substrate 12, as shown symbolically by arrows 40. Phosphorous ions may be

implanted before or after removal of the photoresist used during the patterning and etching of the lower insulating layer 36. Preferably, the phosphorous ions are implanted at doses of approximately 10^{13} ions per square centimeter and an implantation energy up to 200 KeV. Implantation at these energy levels results in phosphorous ion distribution depths up to approximately 2,000 angstroms, as shown by the dotted line on Fig. 3. The above and other implant parameters may be varied, as is well known in the art, to optimize the junction profile to cover the boron implant with the phosphorous and to grade the junction as much as possible to reduce the electric field, without adversely affecting performance of the access transistor.

After the phosphorous implant, a second layer of polysilicon 42, also commonly referred to as storage poly or "poly2", is deposited as shown in Fig. 4. Storage poly 42 is doped, preferably rough textured, polysilicon. The storage poly may be doped insitu, by implantation or by diffusion. Storage poly 42 is typically doped insitu with phosphorous. It has been observed that relatively high doping levels for the storage poly, in conjunction with the phosphorous implant described above, will adversely effect refresh and offset the refresh enhancement gained through the phosphorous implant. Therefore, the storage poly doping level should be within the range of 1×10^{19} to 1×10^{20} atoms per cubic centimeter.

Referring to Fig. 5, storage poly 42 is patterned and etched to form capacitor first conductors 44. This storage poly etch may be followed by a partial oxide etch of lower insulating layer 36 which is selective to polysilicon so as not to etch the exposed storage poly. This oxide etch exposes much of the outer peripheries of capacitor first conductors 44, which significantly increases the capacitance area of the cell.

Referring to Fig. 6, capacitor dielectric 46 is deposited. Capacitor dielectric 46 is preferably made of

silicon nitride or other materials with high dielectric constants.

Referring to Fig. 7, a third layer of polysilicon 48, also commonly referred to as the cell poly, is stacked over substrate 12. Cell poly 48 is patterned and etched to form capacitor second conductor 50 and the etch may continue down through capacitor dielectric 46. This cell poly etch is preferably anisotropic, but a timed isotropic etch may also be used.

Referring to Fig. 8, a thick upper insulating layer 52 of BPSG or other suitable insulating material is formed over the exposed upper surfaces of the structure previously formed. Upper insulating layer 52 is patterned and etched to form an opening for bit line contact 54. Upper insulating layer 52 may be planarized using chemical mechanical polish (CMP) or other suitable processes prior to etching. Bit line contact 54 and bit line 56 are formed using metal deposition techniques well known in the art.

In the above and following discussion, some well-known aspects of DRAM fabrication have been simplified. For example, the boron and phosphorous implants typically will be annealed by heating the structure to about 900°C for about 30 minutes. The particular materials, structures and processes described are intended only to illustrate the invention so that it can be fully understood. Other materials, structures and processes may be substituted for the particular ones described. Silicon nitride may be used for silicon dioxide in some of the insulating layers and spacers. Spin-On Glass (SOG), Polyamide Insulator (PI), Chemical Vapor Deposited (CVD) oxide or other insulators may be used in place of the BPSG. Additional materials, structures and processes may also be added to those disclosed.

An alternative embodiment of the invention will now be described with reference to Figs. 9-13, which illustrate a process for forming a standard stacked capacitor DRAM memory

cell. For convenience, the reference numerals for the various components are the same as those used to describe the container cell illustrated in Figs. 1-8. In addition, the materials and processes used to form the individual components shown in Figs. 9-14 are essentially the same as those used for the container cell described above.

The structure shown in Fig. 9, which illustrates the memory cell after LDD implantation, is formed according to the same process steps described above. Thereafter, and referring to Fig. 10, an insulating layer 58, typically made of silicon dioxide, is stacked over substrate 12. Referring to Fig. 11, insulating layer 58 is patterned and etched, the etch being self aligned to the vertical portion of insulating layer 58, to re-expose substrate 12 at source/drain regions 32a, also commonly referred to as the capacitor buried contact. N-type impurities, preferably phosphorous atoms, are then implanted into the re-exposed portion of substrate 12 at source/drain regions 32a, as shown symbolically by arrows 40. Phosphorous ions are implanted at doses of approximately 10^{13} atoms per square centimeter and an implantation energy up to 200 KeV. Implantation at these energy levels results in phosphorous ion distribution depths up to approximately 2,000 angstroms, as shown by the dotted line in Fig. 11.

It has been observed that this phosphorous implant eliminates the severe degradation in refresh that occurs when the capacitor contact corridor is misaligned to the edge of the field oxide region. The phosphorous implant also enhances refresh when there is no misalignment. The mechanism through which refresh is thus enhanced is not known. It has been observed that a substantial number of weak cells are eliminated by the phosphorous implant. It is believed, therefore, that the phosphorous implant eliminates one or more defects in the cell, although the nature of those defect(s) is unknown. There are many possible defects that may be repaired by the phosphorous implant. For example, the elimination of

trap assisted tunneling is consistent with the temperature and doping parameters under which refresh is enhanced. The phosphorous implant may place the operating junction in the optimal range, as illustrated in G. A. M. Hurkx, et al., A New Recombination Model For Device Simulation Including Tunneling, IEEE TRED Vol. 39, No. 2, pp. 331-338 (February 1992) and F. Hurkx, Anomalous Behavior Of Surface Leakage Currents In Heavily Doped Gated Diodes, IEEE TRED Vol. 40, No. 12, pp. 2273-2281 (December 1993), incorporated herein by reference.

The phosphorous implant may also deepen the n- junction in the capacitor buried contact covering up any defects in that junction and at the edge of the field oxide.

Referring to Fig. 12, storage poly 42 is deposited and patterned and etched to form capacitor first conductor 44.

Referring to Fig. 13, capacitor dielectric layer 46 is stacked over substrate 12. Cell poly 48 is then stacked over substrate 12. Cell poly 48 is patterned and etched to form capacitor second conductor 50 and this etch may continue down through dielectric layer 46.

Referring to Fig. 14, upper insulating layer 52 is stacked over substrate 12. Upper insulating layer 52 is then patterned and etched to form an opening for bit line contact 54. Bit line contact 54 and bit line 56 are formed using metal deposition techniques well known in the art.

The particular dimensions of the various layers and components described above can vary widely. The following are the nominal sizes of components in this embodiment, assuming a 4 Mbit DRAM using about a $1.5 \mu\text{m}^2$ cell spacing: field oxide regions 16 are about 4000 angstroms thick; thin gate insulating layer 14 is about 125 angstroms thick; storage poly 42 is about 2,000 angstroms thick; cell poly 48 is about 1,000 angstroms thick; capacitor dielectric layer 46 is about 80 angstroms thick; and transistor gate electrodes 18 are about $0.4 \mu\text{m}$ wide.

Inventor(s): Prall et al.

There has been shown and described a novel integrated circuit formation process which enhances refresh in DRAM memory cells by, it is believed, eliminating defects in the cells. The particular embodiments shown in the drawings and described herein are for purposes of example and should not be construed to limit the invention as set forth in the appended claims. Those skilled in the art may now make numerous uses and modifications of the specific embodiments described without departing from the scope of the invention. The process steps described may in some instances be performed in a different order and/or equivalent structures and processes may be substituted for the various structures and processes described. A variety of different dimensions and materials may also be used.

We claim:

1. A process for making an integrated circuit device, comprising:

5 a. forming a gate insulating layer on a substrate having a first conductivity type and a gate electrode on the gate insulating layer;

10 b. forming first and second source/drain regions on the substrate adjacent sides of the gate electrode, each source/drain region having a second conductivity type opposite the first conductivity type, the first source/drain region defining the location of a capacitor buried contact; and

15 c. implanting a second conductivity type dopant into at least a portion of the first source/drain region.

2. A process for making an integrated circuit device according to Claim 1, wherein the second conductivity type dopant is phosphorous.

3. A process for making an integrated circuit device according to Claim 2, wherein the phosphorous is implanted at an energy level of up to 200 KeV.

20 4. A process for making an integrated circuit device according to Claim 2, wherein the phosphorous is implanted to a depth of up to about 2,000 angstroms.

25 5. A process for making an integrated circuit device according to Claim 2, wherein the phosphorous is implanted at doses of about 10^{13} ions per square centimeter.

6. A process for making an integrated circuit device, comprising:

5 a. forming a gate insulating layer on a substrate having a first conductivity type and a gate electrode on the gate insulating layer;

10 b. implanting a first conductivity type dopant into the substrate on opposite sides of the gate electrode;

15 c. implanting a second conductivity type dopant into portions of the substrate on opposite sides of the gate electrode previously doped to a first conductivity type in step (b) to form first and second source/drain regions, the first source/drain region defining the location of a buried contact; and

20 d. implanting a second conductivity type dopant into at least a portion of the first source/drain region.

7. A process for making an integrated circuit device according to Claim 6, wherein the first conductivity type dopant is boron.

25 8. A process for making an integrated circuit device according to Claim 7, wherein the boron is implanted at an energy level in the range of 25 KeV to 50 KeV.

9. A process for making an integrated circuit device according to Claim 8, wherein the boron is implanted to a depth of approximately 1,000 angstroms.

25 10. A process for making an integrated circuit device according to Claim 6, wherein the second conductivity type dopant of step (d) is phosphorous.

11. A process for making an integrated circuit device according to Claim 10, wherein the phosphorous is implanted at doses of about 10^{13} ions per square centimeter and an energy level of up to 200 KeV.

5 12. A process for making an integrated circuit device according to Claim 11, wherein the phosphorous is implanted to a depth of up to about 2,000 angstroms.

10 13. A process for making an integrated circuit device according to Claim 6, further comprising:

10 a. forming a first conductor in electrical contact with the first source/drain region;

15 b. forming a dielectric layer over of the first conductor; and

15 c. forming a second conductor over the dielectric layer and the first conductor.

14. A process for making an integrated circuit device according to Claim 13, wherein the first conductor is made of polysilicon doped to the second conductivity type.

20 15. A process for making an integrated circuit device according to Claim 14, wherein the polysilicon first conductor is doped with phosphorous to a level in the range of 1×10^{19} to 1×10^{20} atoms per cubic centimeter.

16. A process for making an integrated circuit device according to Claim 13, further comprising:

a. forming an upper insulating layer over the structure previously formed;

5 b. patterning and etching the upper insulating layer and continuing to etch down to expose portions of the second source/drain region; and

c. forming a bit line contact in electrical contact with the exposed portions of the second source/drain region.

10 17. In a process for forming an integrated circuit device, the device comprising a semiconductor substrate having a first conductivity type, a gate insulating layer on the substrate, a gate electrode on the gate insulating layer, and a source/drain region having a second conductivity type in the surface of the substrate adjacent one side of the gate electrode, the process comprising:

a. implanting a second conductivity type dopant into at least a portion of the source/drain region; and

b. forming a polysilicon conductor in electrical contact with the source/drain region.

20 18. A process for making an integrated circuit device according to Claim 17, wherein the second conductivity type dopant is phosphorous.

25 19. A process for making an integrated circuit device according to Claim 18, wherein the phosphorous is implanted at doses of about 10^{13} ions per square centimeter and an energy level of up to 200 KeV.

20. A process for making an integrated circuit device, comprising:

5 a. forming a gate insulating layer on a substrate having a first conductivity type and a gate electrode on the gate insulating layer;

10 b. implanting a first conductivity type dopant into the substrate on opposite sides of the gate electrode;

15 c. implanting a second conductivity type dopant into portions of the substrate on opposite sides of the gate electrode previously doped to a first conductivity type in step (b) to form first and second source/drain regions, the first source/drain region defining the location of a buried contact;

20 d. forming an insulating layer over the structure previously formed;

25 e. patterning and etching the insulating layer to form substantially vertical spacers along opposite sides of the gate electrode and to expose a portion of the first source/drain region; and

30 f. implanting a second conductivity type dopant into the exposed portion of the first source/drain region.

21. A process for making an integrated circuit device according to Claim 20, wherein the spacer etch is self-aligned to a vertical portion of the insulating layer.

25 22. A process for making an integrated circuit device according to Claim 20, further comprising:

30 a. forming a first conductor in electrical contact with the first source/drain region;

35 b. forming a dielectric layer over of the first conductor; and

40 c. forming a second conductor over the dielectric layer and the first conductor.

ABSTRACT

A process for enhancing refresh in Dynamic Random Access Memories wherein n-type impurities are implanted into the capacitor buried contact after formation of the access transistor components. The process comprises forming a gate insulating layer on a substrate and a transistor gate electrode on the gate insulating layer. First and second transistor source/drain regions are formed on the substrate adjacent to opposite sides of the gate electrodes. N-type impurities, preferably phosphorous atoms, are then implanted into the first source/drain region which will serve as the capacitor buried contact.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

DECLARATION AND POWER OF ATTORNEY

As below named inventors, we hereby declare that:

Our residence, post office address and citizenship are as stated below next to our names.

We believe we are the original, first and sole inventors of the subject matter which is claimed and for which a patent is sought on the invention entitled; **PROCESS FOR ENHANCING REFRESH IN DYNAMIC RANDOM ACCESS MEMORY DEVICES**; the specification of which is attached hereto.

We hereby state that we have reviewed and understand the contents of the above identified specification, including the claims.

We acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations Section 1.56(a).

We hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed: NONE.

We hereby claim the benefit under Title 35, United States Code Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code Section 112, we acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application: NONE.

We hereby declare that all statements made of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As the named inventors, we appoint the following as attorneys to transact all business in the Patent and Trademark Office for this application -- Steven R. Ormiston (Registration No. 35,974), Angus C. Fox (Registration No. 31,828), and David J. Paul (Registration No. 34,692).

Send Correspondence To: Steven R. Ormiston
350 N. 9th St., Suite 304
P.O. Box 2894
Boise, ID 83701

Inventor's Full Name: KIRK D. PRALL
Inventor's Signature: Kirk Prall Date: 2/22/95
Citizenship: United States of America
Post Office Address: 2548 Harmony
City, State and
Country of Residence: Boise, Idaho, 83706 United States of America

Inventor's Full Name: Robert Kerr
Inventor's Signature: Robert Kerr Date: 2-22-95
Citizenship: United States of America
Post Office Address: 10058 Countryman Dr.
City, State and
Country of Residence: Boise, Idaho, 83706 United States of America

Inventor's Full Name: Christopher Murphy
Inventor's Signature: Christopher Murphy Date: 2-23-95
Citizenship: United States of America
Post Office Address: 711 N. 20th
City, State and Country of Residence: Boise, Idaho, 83702 United States of America

Inventor's Full Name: D. Mark Durcan
Inventor's Signature: D. Mark Durcan Date: 2-28-95
Citizenship: United States of America
Post Office Address: 1128 Hearthstone
City, State and Country of Residence: Boise, Idaho, 83702 United States of America