b.i.	Illustrate the working of Bifilament headlamps with a neat sketch.	5	3	2	1
ii.	Explain the construction and working of electric horn with a neat sketch.	5	3	2	1
28. a.	Explain the construction and working of programmed ignition system and various sensors used in it with suitable sketches.	10	3	3	1,3
	(OR)				
b.	Explain the principle of operation of Multipoint Fuel Injection (MPFI) system pertaining to a gasoline engine with a neat sketch. Also discuss its advantages.	10	3	3	1
29. a.	What do you mean by electronic suspension system? Discuss the variable damping suspension control system is an automobile with an example.	10	3	4	1
	(OR)				
b.	What is ABS? Describe the working of ABS with suitable block diagram. Also mention the types of ABS.	10	3	4	1,3
30. a.	Discuss the inertial navigation and dead reckoning navigation system with	10	3	5	1
	suitable block diagram.				
	(OR)	10	3	5	1,5
b.	Explain the objectives of onboard diagnostics II (OBD II) and brief its fault codes.	10		5	1,5

* * * * *

	 	_	 	-	 _		_	_	
Reg. No.						16.			

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

	18.			RICAL AND ELECTRONIC SYS cademic year 2018-2019 to 2019-2020	-	S				
Note: (i)	Par	t - A should be answered in OMR	sheet v	within first 40 minutes and OMR shee	et shou	ld be	han	ıde		
(ii)		to hall invigilator at the end of 40 th t - B should be answered in answer								
Time: 2	½ Ho	ars — — — — — — — — — — — — — — — — — — —			Max	. Ma	rks:	7		
		PART – A (25 × 1	= 25]	Marks)	Marks	BL	со	F		
		Answer ALL (
1.	Αł	attery with a reserve capacit	ty of	120 would be able to deliver	1	1	1	1		
		for 120 mins before its v	_	_						
		10.5 amps		15 amps						
	(C)	25 amps	(D)	35 amps						
2	A	is used for checking the	sneci	fic gravity of the electrolyte.	1	1	1			
2.	-	Hydrometer		Manometer						
	(C)	Ammeter	` /	voltmeter						
	(0)	Timmotor	(2)	Volumeter						
3.	The	material used for field conducto	or in fi	eld windings used in a DC motor	1	3	1	1		
	is	770000								
	(A)	Aluminium	(B)	Copper						
	(C)	Cast iron	(D)	Cast steel						
4.		are not used as automat	ive et	arters because of their low initial	1	2	1	1		
4.		ue, but are used to power other								
	_	AC motors		Compound type motors						
	(C)	Series motors	\ /	Shunt motors						
	()									
5.	The	makes contact with t	he me	tal disc that connects the battery	1	1	1	1		
	terminal post of the solenoid to the motor terminal.									
	(A)	Roller bearing	. ,	Plunger						
	(C)	Overrunning clutch	(D)	Pole shoe						
6.		is belt driven by the e	engine	that converts mechanical motion	1	1	2	1		
		charging voltage and current.	U							
		Alternator	(B)	Battery						
	` ,	Voltage regulator		Cut out relay						
7	The	housing of an AC generator is a	made i	in of	1	2	2	1		
7.		Cast steel		Cast iron						
	(C)	Cast aluminium	` '	Stainless steel						
0	` /	d current in the AC generator is	11011211	y about	1	1	2			
0.		0.5 to 1.0 ampere		1.0 to 2.5 amperes						
	(2 x)	o.o to 1.0 dilipolo		1.0 to 2.0 attiputed						

(D) 3.0 to 4.5 amperes

18MF6-18AUC303J

(C) 1.5 to 3.0 amperes

Page 1 of 4

9.	provides protection to the bat	ttery and the generators by stopping	1	2	2	1,4										
	the flow of electric current when not r							19.	A trac	ction control system in automol	oile c	ontrols the	1	1	4	1
	system.											Vibrations on the steering wheel				
	(A) Ignition coil (E	3) Slip rings								acceleration	, (2)	violations on the steering wheel				
		O) Cut out relay									· (D)	Togue that is transmitted by the				
	(C) Voltage regulator (E) Cut out letay									(ע)	Toque that is transmitted by the				
10	TT : :1 C/1 /: 1 111	11 ' (*11 1 '.1	1	1	2	1				emergenc <u>y</u>		tyres to the road surface				
10.	The inside of the conventional sealed he		1	1	2	1										
		B) Helium						20.	A typ	pical cruise control system sense	es the	difference between	1	2	4	1,4
	(C) Neon (D	O) Xenon							(A)	Vehicle speed and tyre speed	(B)	Set speed and actual speed				
												Vehicle speed and engine				
11.	fires the injectors according	to engine firing order and is most	1	1	3	1,3				wheel speed		angular speed				
	accurate and desirable method of regular									Wheel speed		ungular speed				
	(A) Grouped injection (E							21		amuliantian will magning or	. 1	ud vahiala diaital aanuumiaatiana	1	1	5	1
												rd vehicle digital communications	•	•		Ť
	(C) Sequential injection (I) I frome body injection								ome sort of control system for h						
							*		` '	Telematics	` '	Genetics				
12.	provides information to the EC		1	1	3	1			(C)	Hydraulics	(D)	Pneumatics	d			
		B) Lambda sensor														
	(C) Engine coolant temperature (D	O) Mass air flow sensor						22.	Whic	h of the following trouble co	odes	are grouped for suspension and	1 -	2	-5	1,5
	sensor									ng related faults in OBD II?		2 1				
13.	has an advantage of equal ful	l distribution to all the cylinders and	1	2	3	1,4				P _{XXX} codes	(B)	B _{XXX} codes				
	no chance for it to condense on the walls									C _{XXX} codes						
									(C)	CXXX codes	(D)	U _{XXX} codes				
		B) CRDI						22	3371	1 64 64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			,	_	_	1.4
	(C) MPFI (D	D) TBI									roubl	e code indicates emission control	1	2	5	1,5
									-	m fault?						
14.	In conventional ignition system, the ig		1	3	3	1,3			(A)	P0100	(B)	P0200				
	voltage fromupto ignition volta	age							(C)	P0300	(D)	P0400				
	(A) 6V, 1000V (E										` '					
	(C) 1.5V, 15000V (D	D) 12V, 20000V						24.	The	most critical and costly com	none	nt in the navigation system is	1	1	5	1
		.,,							1110	most official and obstry our	ропе	in the havigation system is				
15	is the process of altering the	timing of a valve lift event and is	1	1	3	1			(A)	Sneed sensor	(D)	Vehicle angular motion sensor				
15,																
	often and to improve performance, fuel ((C)	Position sensor	(D)	Map sensor				
		B) Cam switching														
	(C) Cam phasing (D	D) Gear hobbing										present position from a known	1	1	4	1
									earlie	er position and information about	it veh	icle motion.				
16.	aims to eliminate the physic	cal connection between the steering	1	1	4	1			(A)	Dead reckoning navigation	(B)	Inertial navigation				
	wheel and the wheel of a car by using ele	ectric motors to change the direction							(C)	Radio navigation		Signpost navigation				
	of the wheels.								, ,	9	()	8 1				
	(A) Belt drive (E	3) Steer by wire														
		D) Electronic power assisted								DADT D (5 v 10 .	- 50 1	Mayles)	Marks	BL	CO	PO
	(c) Thy and also power steering (E	steering								PART – B (5 × 10 =						
		steering								Answer ALL Q	uesti	ons				
17	and a lead of the state of		1	1	5	1										
1/.	system locates the vehicle pe		1	1	3	1	20					inciple of lead acid battery. Also	10	3	1	1
	point by integrating acceleration twice w								write	short notes on sulphation issue	in ba	ttery.				
	(A) Inertial navigation (E															
	(C) Celestial navigation (D	Radar navigation								(OR)						
								b.	With	` ,	rcuit	diagram, explain the construction	10	3	1	1,3
18.	The function of anti-lock braking system	n (ABS) is that it	1	1	4	1				vorking principle of starter motor		orani, orpium me construction				
	(A) Reduces the stopping distance (E	* /							unu W	orking principle of starter mote	<i>J</i> 1.	= W 9	E)			
		D) Prevents nose dives during					2"	7. a	Expla	in the working of mechanical	and a	electronic voltage regulator using	10	3	2	1,3
							2			sary sketches and circuit diagra		According voltage regulator using				
		braking and thereby postpones							neces	sary skewnes and encur diagra	1115.					
	the wheels from locking	locking of the wheels								(OD)						
										(OR)						

Page 2 of 4