Ensemble Learning

disusun oleh:

Bagus Sartono

bagusco@gmail.com 0852-1523-1823

Program Studi Statistika

Jurusan Matematika - FMIPA Universitas Tadulako

Departemen Statistika

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

Bagus Sartono

statistician and data scientist

Pengal	laman
Kerja	

2000 – sekarang Dosen, Departemen Statistika IPB

2012 – sekarang Dosen, Sekolah Bisnis IPB

2015 – sekarang Data Science Advisor, Starcore

2014 Technical Advisor, MarkPlus Insight

2014 Consultant, CIFOR

2000 – sekarang Tenaga Ahli/Trainer,/Narasumber di OJK, Bank

Indonesia, Kementerian Keuangan, Bank Mandiri, LIPI, InfoKomputer, SAS Indonesia,

Ganesha Cipta Informatika

			• 1	I	
םע	na	1	ı	12	n
Pe	пu	ıu	П	Na	11

2000 Sarjana Sains, Statistika IPB

2004 Magister Sains, Statistika IPB

2012 PhD in Applied Economics, Universiteit Antwerpen

alah satu aktivitas nonting dalam proso analitik adalah mendhasilkan model prediktif. yaitu suatu model yang diharapkan dapat emberikan prediksi yang sangat balk terhadap keiadian di masa mendatang.

di Masa Depan

Model Prediktif

Model prediktif tersebut antara lain diperlukan oleh bank dan perusahaan pembiayaan dalam bentuk credit scoring model. Tujuannya, memperkirakan apakah seseorang yang mengajukan aplikasi pinjaman akan macet kreditnya atau tidak. Tentu sala, prediksi kreditnya tersebut perlu dilakukan jauh hari sebelum diberikan keputusan apakah aplikasinya ditolak atau diterima. Mereka yang diprediksi akan memiliki peluang besar untuk gagal bayar akan memperoleh skor kecil berdasarkan model yang dibangun. Sebaliknya, yang diprediksi akan mampu membayar dengan lancar diber skor besar oleh model.

Model-model yang serupa juga diperlukan oleh banyak perusahaan berbasis telemarketing yang memerlukan short-list calon pelandgan untuk dihubundi dan ditawari produk. Short-/ist tersebut umumnya diperoleh dari list yang sangat panjang dan memuat

bagusco@gmail.co bagusco@iph.ac.id

yang tidak. Individu yang potensial adalah mereka yang diprediksi akan menerima tawaran produk yang diajukan oleh petugas telemarketer. Aktivitas ini sangat identik dengan yang dikerjakan dalam campaign via SMS (short message service) oleh berbagai perusahaan retail. Tersedia banyak pemodelan prediktif untuk melakukan

prediksi terjadinya (atau tidak terjadinya) suatu kejadian. masa mendatang. Beberapa yang disebut berikut adalah teknik dan algoritma pemodelan yang sering digunakan oleh analis baik yang berbasis pemikiran statistika maupun machine learning, vaitu: regresi logistik, analisis diskriminan, k-nearest-neighbor, Bayesian classifier, classification tree, neural network, dan support vector machine. Ada beberapa aldoritma lain yand dapat ditemukan dengan mudah di banyak literatur ilmiah maupun praktis.

Berbagai macam algoritma yang disebutkan di atas dapat digunakan untuk menjawah tujuan sama, dan hanyak nrand hernendanat hahwa satu sama lain danat. dipandang memiliki sifat complementary. Karena itu, kemudian muncul pertanyaan besar: algoritma atau teknik mana yang sebaiknya digunakan? Tidak hanya itu, dengan menerapkan salah satu teknik yang sama, dua orang analis dapat menghasilkan model yang berbeda karena dalam proses pemodelannya dapat saja mereka menggunakan prediktor vang berbeda, menggunakan sampel data yang berbeda, serta menerapkan pre-processing yang berbeda sesuai dengan kreativitas masing-masing. Dengan demikian, sekali lagi kemudian muncul pertanyaan: model mana yang sebaiknya didunakan?

80 I INFOKOMPUTER Desember 2016

BUSINESS ANALYTIC

Model Selection

Pertanyaan tersebut kemudian berujung pada penggunaan berbagai kriteria untuk menentukan model terbaik. Diskusi kemudian berkembang dalam ranah model selection (pemilihan model) yang menggunakan berbagai macam

Secara umum, penulis memahami bahwa ada dua kriteria besar dalam penentuan model mana yang digunakan. Kriteria pertama terkait dengan kinerja prediksinya. Dalam bahasa lain, orang menggunakan istilah akurasi atau ketepatan prediksi. Model dengan akurasi yang lebih tinggi disebut sebagai model yang sebaiknya digunakan. Kriteria ini dikenal sebagai goodness of fit. Ukuran yang termasuk dalam kategori ini antara lain likelihood function, correct classification rate. sensitivity, dan specificity.

Kriteria yang kedua adalah terkait dengan kesederhanaan model. Secara naturiah, model yang disukai adalah model vang lebih ringkas, menggunakan predictor yang lebih sedikit, atau bentuk-bentuk fungsi yang lebih sederhana. Kriteria kedua ini dikenal sebagai complexity cost. Ukuran yang tergolong dalam kriteria ini meliputi banyaknya parameter dalam model, banyaknya simpul pada tree dan neural network, serta derajat polinomial dari variabel predictor. Complexity cost ini penting diperhatikan agar model prediksi tidak mendalami masalah overfit.

Kriteria-kriteria di atas selanjutnya digunakan oleh para analis untuk menentukan model mana yang digunakan. Dua jenis kriteria tersebut banyak digabungkan menjadi satu kriteria gabungan seperti yang dilakukan pada AIC (Akaike's Information Criterion) dan yang sejenisnya. Model dengan goodness-of-fit besar dan complexity cost kecil merupakan model vang terpilih dalam proses model selection ini.

Pergeseran Paradigma

Kemajuan teknologi komputasi mendorong berbagai perubahan dan perkembangan dalam analitik. Perkembangan tidak hanya terjadi dengan munculnya algoritma dan teknik baru, yang awalnya tidak mudah dan tidak murah dari sisi komputasi. Perkembandan juda terjadi pada paradidma penggunaan model akhir dalam melakukan prediksi.

Pada saat komputasi masih menjadi kendala besar dalam pemodelan, ada pemikiran bahwa algoritma yang diterapkan tinggal menggunakan salah satu saja dari yang tersedia. Pasalnya, untuk memperoleh model dari satu algoritma bisa jadi memerlukan waktu yang tidak sedikit. Dengan teknologi terkini, satu buah algoritma dapat menghasilkan sebuah model prediktif dalam waktu yang singkat apabila data-data vang diperlukan telah tersedia

Kondisi ini kemudian memunculkan ide untuk melakukan prediksi tidak hanya didasarkan pada satu buah model (yang dianggap paling baik), namun melakukan prediksi dengan cara menggabungkan hasil prediksi dari banyak model. Paradigma ini yang dikenal sebagai ensemble learning. Theodosios Tsiakis (2015) dalam buku yang dieditnya berjudul. Trends and Innovations in Marketing Information Systems memuat bagaimana ensemble learning ini bekerja. Gambar 1 menyajikan secara ringkas sistem ensemble ini dipergunak untuk melakukan prediksi.
Dari satu buah dataset dapat diperoleh banyak model

prediksi baik menggunakan berbagai teknik yang berbeda maupun menggunakan algoritma yang sejenis. Setiap model selanjutova menghasilkan prediksi yang danat berbeda satu dengan yang lainnya. Pendekatan ensemble learning menggabungkan berbagai macam prediksi tersebut menjadi satu buah prediksi akhir. Teknik penggabungan vang banyak digunakan adalah averaging dan majority vote. Pada penerapan majority vote untuk credit scoring misalnya keputusan apakah individu yang mengajukan aplikasi pinjaman akan ditolak atau diterima aplikasinya didasarkan pada suara terbanyak dari hasil prediksi macet-lancar dari banyak model.

Secara umum ensemble learning terbagi menjadi dua kelompok valtu bybrid ensemble dan non-hybrid ensemble. Yang disebut hybrid ensemble adalah jika model-model yang nanti digabungkan prediksinya merupakan model-model yang dihasilkan dari berbadai ienis aldoritma berbeda, Sementara non-hybrid ensemble menggabungkan model-model yang diperoleh dari algoritma selenis

Ensemble Learning, Pilihan yang Tepat

Kenyataan bahwa pendekatan ensemble learning mampu memberikan solusi prediksi yang lebih akurat daripada model-model tunggal dapat ditemui dari berbagai paper di jurnal ilmiah. Teknik-teknik ensemble yang mengandalkan variasi dari pendekatan random forest dan boosting mampu memberikan prediksi dengan akurasi yang sangat baik. Random forest bekerja dengan membuat model-model penyusun ensemble sedernikian rupa sehingga berbagal kemungkinan dapat terakomodir secara maksimal, sedangkan boosting bekeria secara iterative sehingga kasus-kasus yang tidak mudah diprediksi menjadi bukan masalah lagi.

Kemampuan pendekatan ensemble ini tidak hanya tertuang pada berbagai paper ilmiah, namun juga dapat dilihat pada penyelesalan kasus-kasus aplikatif seperti yang dapat dilihat pada kompetisi data science Kaggle (https:// www.kaggle.com/). Kompetisi ini terbuka bagi pegiat data science dan data mining untuk memberikan solusi prediktif. dari kasus-kasus yang disampalkan oleh banyak perusahaan besar berskala internasional.

Setiap tim atau individu dipersilakan mendembandkan solusi dan menyajikan prediksinya untuk kemudian dinilai. Mereka yang memberikan prediksi dengan akurasi yang paling tinggi yang dinyatakan sebagai pemenang. Peringkat tiga besar dalam lima tahun terakhir dari kompetisi ini didominasi oleh mereka yang menggunakan pendekatan ensemble yang digabungkan dengan berbagai macam algoritma dasar.

Berdasarkan apa yang berkembang saat ini, pendekatan ensemble dalam pemodelan prediktif menjadi pilihan tepat bagi mereka yang berupaya memperoleh prediksi yang memuaskan dengan cara yang sangat mudah untuk dikeriakan. Hal senada juga telah dikemukanan oleh Mu Zhu (University of Waterloo) pada jurnal The American Statistician pada tahun 2008. 🖾

INFOKOMPUTER Desember 2016 | 81

Outline

- Pengantar
- Classification Tree [optional]
- Bagging, Random Forest
- Boosting
- Lain-lain [optional]:
 - Ensemble untuk pemodelan klasifikasi pada data tidak seimbang
 - Ensemble of Ensembles

Prinsip Dasar

single expert

vs

a team of experts

Cambridge Series in Statistical and Probabilistic Mathematics

Model Selection and Model Averaging

Gerda Claeskens and Nils Lid Hjort

 Andaikan ingin diprediksi status kolektabilitas nasabah berdasarkan variabel prediktor berikut

age	Age in years
ed	Level of education
employ	Years with current employer
address	Years at current address
income	Household income in thousands
debtinc	Debt to income ratio (x100)
creddebt	Credit card debt in thousands
othdebt	Other debt in thousands

• Model prediktif yang mungkin digunakan: binary logistic regression (BLR), discriminant analysis (DA), dll

Nasabah	BLR	DA	Dugaan
1	0	1	0
2	1	0	1
3	0	0	0
4	0	0	0
5	0	0	0
6	1	1	1
7	1	0	0
8	0	1	0
•••			

> Setelah pemodelan, diperoleh akurasi klasifikasi:

■ BLR: 80%

■ DA: 78%

Metode mana yang akan dipilih?

- Bisakah kita gabungkan kedua metode itu agar akurasinya meningkat?
- → Ensemble Approach

note: $1 \rightarrow default$; $0 \rightarrow not default$

- Tidak tersedia algoritma yang selalu paling akurat
- Bangkitkan satu gugus base-learners yang kalau digabungkan bisa memberikan akurasi yang lebih tinggi
- Tiap base-learner dapat berbeda dalam hal:
 - Algoritma
 - Hyperparameter
 - Gugus data training
 - Subproblems

Why Ensemble Works?

Ensemble gives the global picture!

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

What is the Main Challenge for Developing Ensemble Models?

- The main challenge is not to obtain highly accurate base models, but rather to obtain base models which make different kinds of errors.
- High accuracies can be accomplished if different base models misclassify different training examples, even if the base classifier accuracy is low.

Pohon Klasifikasi (Classification Tree)

Apa itu Klasifikasi

systematic arrangement in groups or categories according to established criteria

identifying to which of a set ub-populations) a new ongs, on the basis of a training aining observations (or ir WIKIPEDIA se category membership is

Departemen Statistika

FMIPA - IPB

Persetujuan aplikasi pembiayaan (kredit)

CREDIT SCORING

Bank atau Lembaga Pembiayaan berkepentingan untuk menyeleksi calon nasabah pembiayaan (kredit).

Berdasarkan data karateristik resiko (demografi, income, perilaku selama ini), calon nasabah diklasifikasikan menjadi highrisk atau low-risk.

Penentuan target pemasaran

Up-Sell, Cross-Sell, Direct Campaign

Beberapa perusahaan memiliki data base pelanggan yang bisa dijadikan target pemasaran produk tertentu.

Diperlukan proses klasifikasi terhadap database pelanggan untuk memisahkan pelanggan potensial dan yang tidak potensial.

- o Pria
- Rumah Sendiri
- Penghasilan 8 juta per bulan
- Bujangan

- o Pria
- Rumah Sendiri
- Penghasilan 8 juta per bulan
- Bujangan

- o Pria
- Rumah Sendiri
- Penghasilan 8 juta per bulan
- Bujangan

- o Pria
- Rumah Sendiri
- Penghasilan 8 juta per bulan
- Bujangan

- o Pria
- Rumah Sendiri
- Penghasilan 8 juta per bulan
- Bujangan

Mencari pemisah terbaik antara individu *\precedot* dengan individu •

Pemisahan dilakukan untuk masing-masing variabel, bukan kombinasinya.

Pemisah yang dicari adalah yang menyebabkan data hasil pemisahannya bersifat homogen kelasnya.

Pemisahan menggunakan garis A = 2, menghasilkan dua kelompok:

Kelompok 1 A < 2

Kelompok 2 $A \ge 2$

13 obs

Lanjutkan mencari pemisahan untuk masing-masing kelompok....

Representasi Hasil Pemisahan

Pohon Klasifikasi

- Tahap 1: Mencari pemisahan/penyekatan (splitting) terbaik di setiap variabel
- Tahap 2:
 Menentukan variabel terbaik untuk penyekatan
- Tahap 3: Melakukan penyekatan berdasarkan hasil dari Tahap 2, dan memeriksa apakah sudah waktunya menghentikan proses

Lakukan tiga tahapan di atas untuk setiap simpul dan hasil sekatannya

Pengantar

- Bagging, bootstrap + aggregating
- Breiman, L.1996. Bagging predictors. *Machine Learning*. 24 (2): 123–140.

Algorithm 5.6 Bagging algorithm.

```
1: Let k be the number of bootstrap samples.
```

2: for
$$i = 1$$
 to k do

- 3: Create a bootstrap sample of size N, D_i .
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for

6:
$$C^*(x) = \underset{y}{\operatorname{argmax}} \sum_i \delta(C_i(x) = y)$$
. $\{\delta(\cdot) = 1 \text{ if its argument is true and 0 otherwise}\}.$

Training Data

M predictors

Create bootstrap samples from the training data

Construct a decision tree

Create decision tree from each bootstrap sample

Create decision tree from each bootstrap sample

Mari kita coba di R

 Bandingkan performa tree (pohon tunggal) dengan bagging.... Data diadopsi dari https://archive.ics.uci.edu/ml/datasets/ionosphere

 Data dan program bisa didownload pada https://github.com/bagusco/tadulako

• 34 prediktor

Alur Analisis

Menyiapkan data

```
#membaca data
alamat <- "D:/"
ion <- read.csv(paste0(alamat,"Ionosphere_ok.csv"))[,-1]</pre>
#membagi dataset menjadi dua dataset
library(caret)
set.seed(100)
idx <- createDataPartition(ion$Class, p=0.7, list=FALSE)</pre>
train <- ion[idx,]
test <- ion[-idx,]</pre>
```

Tree dan prediksinya

```
#membuat pohon klasifikasi dan memprediksi data testing
library(rpart)
mod.tree <- rpart(Class~., data=train, method="class")
prob <- predict(mod.tree, test)[,2]
pred.tree <- as.factor(ifelse(prob>.5, "good", "bad"))
```

Bagging dan prediksinya

```
#bagging dan memprediksi data testing
k<-50
prediksi <- matrix(NA,nrow(test),k)
for(i in 1:k) {
   resample <- sample(1:nrow(train), replace=TRUE)
   contoh.boot <- train[resample,]
   tree <- rpart(Class~., data=contoh.boot, method="class")
   prob <- predict(tree, test)[,2]
   prediksi[,i] <-ifelse(prob<0.5, 0, 1)
}
vote1 <- apply(prediksi,1,sum)
pred.bag <- as.factor(ifelse(vote1 < k/2, "bad", "good"))</pre>
```

Membandingkan antara kelas prediksi dan aktual

```
library(caret)
kinerja.tree <-
confusionMatrix(pred.tree,test$Class,positive = "good")
kinerja.bagging <-
confusionMatrix(pred.bag,test$Class,positive = "good")
kinerja.tree
kinerja.bagging</pre>
```

> kinerja.tree Confusion Matrix and Statistics Reference Prediction bad good bad 24 good 13 65 Accuracy : 0.8558 95% CI : (0.7733, 0.917) No Information Rate: 0.6442 P-Value [Acc > NIR] : 1.262e-06 Kappa : 0.6629 Mcnemar's Test P-Value: 0.009823 Sensitivity: 0.9701 Specificity: 0.6486 Pos Pred Value: 0.8333 Neg Pred Value: 0.9231 Prevalence: 0.6442 Detection Rate: 0.6250 Detection Prevalence: 0.7500 Balanced Accuracy: 0.8094 'Positive' Class: good

```
> kinerja.bagging
Confusion Matrix and Statistics
         Reference
Prediction bad good
      bad
           29
                65
     good
             Accuracy: 0.9038
                 95% CI : (0.8303, 0.9529)
    No Information Rate: 0.6442
    P-Value [Acc > NIR] : 1.168e-09
                 Kappa : 0.7823
Mcnemar's Test P-Value: 0.1138
           Sensitivity: 0.9701
           Specificity: 0.7838
        Pos Pred Value: 0.8904
        Neg Pred Value: 0.9355
             Prevalence: 0.6442
        Detection Rate: 0.6250
   Detection Prevalence: 0.7019
      Balanced Accuracy: 0.8770
       'Positive' Class : good
```


Random Forest

Prinsip Dasar

• Breiman L (2001). "Random Forests". Machine Learning. 45 (1): 5–32

 Prinsipnya serupa dengan bagging yaitu bekerja dengan subset dari data.

 Perbedaan dengan bagging, RF juga melakukan subset terhadap variabel input, tidak hanya subset pengamatan.

Random Forest

- Pohon yang dihasilkan akan memiliki diversity yang lebih tinggi dibandingkan bagging.
 - ada yang pendek ada yang tinggi, ada yang rindang ada yang menjulang
- Dalam beberapa studi empirik, hasilnya lebih baik dibandingkan bagging.
- Pengambilan kesimpulan ditentukan berdasarkan majority vote.

Algoritma

For b = 1 to B:

- (a) Draw a bootstrap sample Z* of size N from the training data.
- (b) Grow a random-forest tree to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.

Output the ensemble of trees.

To make a prediction at a new point x we do:

For regression: average the results

For classification: majority vote

Mari kita coba di R

• Bandingkan performa tree (pohon tunggal) dengan bagging dan random forest....

Alur Analisis


```
#pemodelan random forest dan memprediksi data testing
library(randomForest)
model.forest <- randomForest(Class~.,data=train,
importance=TRUE, ntree=200, mtry=3)

pred.rf <- predict(model.forest, test)

kinerja.rf <-confusionMatrix(pred.rf, test$Class,
positive = "good")

kinerja.rf</pre>
```

> kinerja.rf Confusion Matrix and Statistics Reference Prediction bad good bad 32 3 good 5 64 Accuracy : 0.9231 95% CI : (0.854, 0.9662) No Information Rate: 0.6442 P-Value [Acc > NIR] : 3.604e-11 Kappa : 0.8301 Mcnemar's Test P-Value: 0.7237 Sensitivity: 0.9552 Specificity: 0.8649 Pos Pred Value: 0.9275 Neg Pred Value: 0.9143 Prevalence: 0.6442 Detection Rate: 0.6154 Detection Prevalence: 0.6635

Balanced Accuracy: 0.9100

'Positive' Class: good

Boosting

Prinsip Dasar

- Prosesnya iteratif
- Melihat kesalahan dari pengklasifikasi awal, dan kemudian membuat pengklasifikasi baru pada iterasi berikutnya yang focus pada amatan yang salah klasifikasi
- Model yang baru tergantung pada model sebelumnya
- Ide utama: memberi bobot lebih besar pada amatan yang "sulit diduga" (yaitu amatan yang salah klasifikasi pada iterasi sebelumnya)

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all Nrecords are assigned equal weights
 - Unlike bagging, weights may change at the end of a boosting round
 - Different implementations vary in terms of (1) how the weights of the training examples are updated and (2) how the predictions are combined

Algoritma

Initialization step: for each example x, set $D(x)=\frac{1}{N}$, where N is the number of examples

Iteration step (for t=1...T):

- 1. Find best weak classifier $h_t(x)$ using weights $D_t(x)$
- 2. Compute the error rate ε_t as

$$\varepsilon_t = \sum_{i=1}^N D(x_i) . I[y_i \neq h_t(x_i)]$$

3. assign weight α_t to classifier $h_t(x)$ in the final hypothesis

$$\alpha_t = \log((1 - \varepsilon_t)/\varepsilon_t)$$

- 4. For each x_i , $D(x_i) = D(x_i) \cdot \exp(\alpha_t \cdot I[y_i \neq h_t(x_i)])$
- 5. Normalize $D(x_i)$ so that $\sum_{i=1}^{N} D(x_i) = 1$

$$f_{final}(x) = sign\left[\sum \alpha_t \ h_t(x)\right]$$

Mari kita coba di R

• Bandingkan performa tree (pohon tunggal) dengan bagging, random forest, dan boosting....

Alur Analisis


```
#menjalankan algoritma boosting dan menilai kinerjanya
library(ada)
model.boost <- ada(Class~.,data=train,type="discrete")
pred.boost <- predict(model.boost,test,type="vector")
kinerja.boosting <- confusionMatrix(pred.boost,
test$Class, positive = "good")
kinerja.boosting</pre>
```

```
> kinerja.boosting
Confusion Matrix and Statistics
         Reference
Prediction bad good
     bad 29 0
     good 8 67
              Accuracy: 0.9231
                95% CI: (0.854, 0.9662)
   No Information Rate: 0.6442
   P-Value [Acc > NIR] : 3.604e-11
                 Kappa : 0.8237
Mcnemar's Test P-Value: 0.01333
           Sensitivity: 1.0000
           Specificity: 0.7838
        Pos Pred Value: 0.8933
        Neg Pred Value: 1.0000
            Prevalence: 0.6442
        Detection Rate: 0.6442
  Detection Prevalence: 0.7212
     Balanced Accuracy: 0.8919
```

'Positive' Class : good

Departemen Statistika FMIPA – IPB

Apa itu Data dengan Kelas Tak Seimbang?

 Data dengan kelas tidak seimbang merujuk pada situasi dimana keberadaan amatan dari masingmasing kelas timpang jumlahnya.

 Sebagai contoh, kita barangkali memiliki 1000 buah amatan dimana kelas pertama sebanyak 800 amatan dan kelas kedua sebanyak 200 amatan, atau dengan rasio 4:1. Situasi lain dapat saja terjadi dengan ketimpangan yang jauh lebih tinggi.

Ketakseimbangan adalah masalah yang umum ditemui

- Data dengan kelas yang tidak seimbang jumlahnya merupakan masalah yang umum dijumpai.
 - Kasus kredit macet... non-performing loan hanya sekitar 2%-3%
 - Penawaran produk melalui telepon... yang merespon positif tidak lebih dari 1%
 - Kejadian terjangkitnya penyakit tertentu di masyarakat... sangat kecil proporsinya
- Kelas yang memiliki proporsi yang sedikit disebut sebagai kelas "minoritas", sedangkan kelas yang proporsinya dominan disebut kelas "mayoritas".

Accuracy Paradox

- Bayangkan kita punya data dimana perbandingan banyaknya amatan antara kelas 0 dan kelas 1 adalah 95:5
- Jika kita memperoleh model, dan dugaan dari model tersebut menghasilkan prediksi kelas 0 untuk semua amatan.
- Akurasinya 95%....
- Tapi model itu gagal memprediksi dengan benar satupun amatan dari kelas minoritas.

A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches

Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, Member, IEEE, and Francisco Herrera, Member, IEEE

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince and F. Herrera, "A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches," in *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, vol. 42, no. 4, pp. 463-484, July 2012.

Beberapa pilihan

- Over-Bagging, gabungan antara oversampling dan Bagging
- Under-Sampling, gabungan antara undersampling dan Bagging
- EasyEnsemble , kombinasi undersampling dan Boosting
- RUSBoost, kombinasi undersampling dan Boosting
- dll

Undersampling dan Oversampling

Under/Over-Bagging

EasyEnsemble

Algorithm 1 The EasyEnsemble algorithm.

- 1: {Input: A set of minority class examples \mathcal{P} , a set of majority class examples \mathcal{N} , $|\mathcal{P}| < |\mathcal{N}|$, the number of subsets T to sample from \mathcal{N} , and s_i , the number of iterations to train an AdaBoost ensemble H_i }
- 2: $i \Leftarrow 0$
- 3: repeat
- 4: $i \Leftarrow i + 1$
- 5: Randomly sample a subset \mathcal{N}_i from \mathcal{N} , $|\mathcal{N}_i| = |\mathcal{P}|$.
- 6: Learn H_i using \mathcal{P} and \mathcal{N}_i . H_i is an AdaBoost ensemble with s_i weak classifiers $h_{i,j}$ and corresponding weights $\alpha_{i,j}$. The ensemble's threshold is θ_i , i.e.

$$H_i(x) = \operatorname{sgn}\left(\sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \theta_i\right).$$

- 7: until i = T
- 8: Output: An ensemble:

$$H(x) = \operatorname{sgn}\left(\sum_{i=1}^{T} \sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \sum_{i=1}^{T} \theta_i\right).$$

RUS-Boost

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). RUSBoost: A hybrid approach to alleviating class imbalance. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40*(1), 185-197.

Algorithm RUSBoost

Given: Set S of examples $(x_1, y_1), ..., (x_m, y_m)$ with minority class $y^r \in Y$, |Y| = 2

Weak learner, WeakLearn

Number of iterations, T

Desired percentage of total instances to be represented by the minority class, N

- 1 Initialize $D_1(i) = \frac{1}{m}$ for all i.
- 2 Do for t = 1, 2, ..., T
 - a Create temporary training dataset S'_t with distribution D'_t using random undersampling
 - b Call WeakLearn, providing it with examples S'_t and their weights D'_t .
 - c Get back a hypothesis $h_t: X \times Y \to [0,1]$.
 - d Calculate the pseudo-loss (for S and D_t):

$$\epsilon_t = \sum_{(i,y): y_i \neq y} D_t(i) (1 - h_t(x_i, y_i) + h_t(x_i, y)).$$

e Calculate the weight update parameter:

$$\alpha_t = \frac{\epsilon_t}{1 - \epsilon_t}.$$

f Update D_t :

$$D_{t+1}(i) = D_t(i)\alpha_t^{\frac{1}{2}(1+h_t(x_i,y_i)-h_t(x_i,y:y\neq y_i))}.$$

g Normalize D_{t+1} : Let $Z_t = \sum_i D_{t+1}(i)$.

$$D_{t+1}(i) = \frac{D_{t+1}(i)}{Z_t}.$$

3 Output the final hypothesis:

$$H(x) = \underset{y \in Y}{\operatorname{argmax}} \sum_{t=1}^T h_t(x,y) {\log \frac{1}{\alpha_t}}.$$

Mari kita coba di R

• Bandingkan performa tree (pohon tunggal) dengan bagging, random forest, dan boosting....

Terima Kasih

