Epreuve disponible sur www.emergencetechnocm.com

Ministère des Enseignements Secondaires Office du Baccalauréat du Cameroun

Examen: Baccalauréat Session: 2012

Série : D

Épreuve : Mathématiques

Durée: 4 heures Coefficient: 4

Exercice 1:4,5 points

Une maîtresse a regroupé dans un tableau statistique les résultats d'une enquête portant sur le nombre de gâteaux consommés pendant la récréation par 200 élèves d'une maternelle.

Modalités	0	1	2	3	4
Effectifs	10			35	
Effectifs cumulés croissants	10		80	115	
Fréquences en pourcentage		20		17,5	

1° Quelle est la nature du caractère étudié?

 $0.5 \, \mathrm{pt}$

2º Recopier et compléter le tableau ci-dessus.

2 pts

3° Quel est le mode de cette série statistique?

 $0,25\,\mathrm{pt}$

4º Calculer la moyenne, la variance et l'écart-type de la série étudiée.

1,75 pt

Exercice 2:4,5 points

1° Résoudre dans l'ensemble \mathbb{C} des nombres complexes l'équation : $2z^2 - 2iz - 1 = 0$. 1,5 pt

2º Le plan orienté étant rapporté à un repère orthonormé direct $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$, on considère les points A et B d'affixes respectives $\frac{-1+i}{2}$ et $\frac{1+i}{2}$.

Démontrer que OAB est un triangle rectangle de sommet principal O.

1 pt

3° On pose $Z = \frac{-1+i}{1+i}$.

a) Écrire Z sous la forme trigonométrique.

 $0.5 \, \mathrm{pt}$

b) En déduire les racines cubiques de Z sous la forme trigonométrique puis sous la forme algébrique.

1,5 pt

Problème: 11 points

Le problème comporte trois parties A, B et C.

Partie A: 5,25 points

Soit la fonction numérique définie sur]-1,0] par $f(x) = \ln(1-x^2) - x$. On désigne par (\mathcal{C}) la courbe représentative de f dans le plan rapporté a un repère orthonormé (unité graphique 10 cm).

1° Déterminer la limite de f à droite de -1. Donner une interprétation graphique du résultat obtenu.

0,5 pt

2º Étudier les variations de f et dresser son tableau de variations.

1,5 pt

3° Donner le coefficient directeur de la tangente (\mathcal{D}) à (\mathcal{C}) au point d'abscisse 0.

0,25 pt

4° Démontrer que l'équation f(x) = 0 admet dans l'intervalle]-0.72; -0.71[une unique **0.75 pt** solution α.

5° Tracer (\mathcal{D}) et (\mathcal{C}) .

 $1,5 \, \mathrm{pt}$

 6° Tracer dans le même repère la courbe représentative de |f(x)|.

 $0,75 \, \mathrm{pt}$

Partie B: 3 points

1° Vérifier l'égalité
$$\int_{\alpha}^{0} \ln \left(1 - x^{2}\right) dx = \int_{\alpha}^{0} \ln (1 + x) dx + \int_{\alpha}^{0} \ln (1 - x) dx.$$
 0,5 pt

Epreuve disponible sur www.emergencetechnocm.com

 2° À l'aide des intégrations par parties, calculer, en fonction de α , les intégrales

suivantes :
$$I = \int_{\alpha}^{0} \ln(1+x) dx$$
 et $J = \int_{\alpha}^{0} \ln(1-x) dx$.

(On pourra remarquer que $\frac{x}{1+x} = 1 - \frac{1}{1+x}$ et $\frac{x}{1-x} = -1 + \frac{1}{1-x}$)

3° On désigne par $\mathscr A$ l'aire exprimée en cm² de la partie du plan délimitée par l'axe des abscisses, la courbe $(\mathcal C)$, et les droites d'équations $x=\alpha$ et x=0. Calculer $\mathscr A$ en fonction de α .

 $1\,\mathrm{pt}$

Partie C: 2,75 points

On considère la suite u à termes positifs définie sur \mathbb{N}^* par : $u_{n+1} = 2\sqrt{u_n}$ et $u_1 = 1$.

1º Calculer u_2 et u_3 . Donner les résultats sous la forme 2^{λ} où λ est un réel.

 $0.5 \, \mathrm{pt}$

- $\mathbf{2^o}~\mathrm{Soit}~(v_n)$ la suite définie par $v_n = \ln u_n 2 \ln 2.$
 - a) Montrer que (v_n) est une suite géométrique.

 $0,75 \, \mathrm{pt}$

b) Exprimer v_n en fonction de n.

 $0,5 \, \mathrm{pt}$

c) En déduire l'expression de u_n en fonction de n et calculer la limite de u_n quand n tend vers $+\infty$.

1 pt

EMERGENCE TECHNOCM

Le pôle de l'innovation

Epreuve disponible sur www.emergencetechnocm.com