

Final

Environmental Investigation Report for Fort Douglas

Volume II Appendices

Fort Douglas Environmental Investigation/Alternatives Analysis

Contract No. DAAA15-90-D-0018 Task Order 0005, Data Item A009

Prepared by: Watkins-Johnson Environmental, Inc. Urie Environmental Health, Inc. Environmental Science & Engineering, Inc.

Prepared for: U.S. Army Environmental Center Aberdeen Proving Ground, Maryland 21010-5401

19980722 026

March 1994

PACE VALITY INSPECTED 1

FINAL ENVIRONMENTAL INVESTIGATION REPORT

MARCH 1994

CONTRACT NO. DAAA15-90-D-0018

TASK ORDER 0005

FORT DOUGLAS ENVIRONMENTAL INVESTIGATION/ALTERNATIVES ANALYSIS

Volume II Appendices

Prepared by:

WATKINS-JOHNSON ENVIRONMENTAL, INC. URIE ENVIRONMENTAL HEALTH, INC. ENVIRONMENTAL SCIENCE & ENGINEERING, INC.

Prepared for:

U.S. ARMY ENVIRONMENTAL CENTER

Distribution unlimited approved for public release.

TABLE OF CONTENTS

			PAG	ìΕ
VOL	UME I			
EXE	CUTIVE	SUMMA	ARY	I
1.0	INTRO	DUCTIO	ON 1	-1
1.1	Purpo	OSE		-1
	1.2 1.3 1.4	SITE H		
2.0	SITE B	BACKGR	OUND 2	-1
	2.1	PHYSIC	al Setting	-1
		2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	CLIMATE 2 LAND USE 2 SOILS 2 GEOLOGY 2 SURFACE HYDROLOGY 2 HYDROGEOLOGY 2	-1 -3 -3
	2.2 2.3		ry Description	-
		2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6	POTENTIAL CONTAMINANTS AND SOURCES BUILDING 39 SOUTHEAST FENCE LINE AREA STORAGE YARD TRANSFORMERS BUILDINGS 2-1 2-2 2-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2	13 16 21 21
3.0	FIELD	INVES	rigation	-1
	3.1	QUALI	TY Assurance and Quality Control Program and Procedures 3	-1
		3.1.1 3.1.2	QUALITY CONTROL SAMPLES	
	3.2	SOIL S	AMPLING 3	-4
		3.2.1		-5 -6

TABLE OF CONTENTS (continued)

				PAGE
			CONTAMINANT SOURCES	
			BACKGROUND SAMPLES	
		3.2.5	GEOLOGY AND HYDROGEOLOGY	3-18
	3.3	Transf	ORMER SAMPLING	3-19
	3.4	PAINT S	SAMPLING	3-21
	3.5	RADON	Sampling	3-22
	3.6		Management	
	3.7		APHIC AND LOCATION SURVEY	
	3.8		REPORTING	
	3.9	Data N	Management	3-28
4.0	NATU	IRE AND	EXTENT OF CONTAMINATION	. 4-1
	4.1	QUALIT	Y Assurance/Quality Control Results	. 4-1
		4.1.1	SUMMARY OF SOURCE WATER DETECTIONS	. 4-1
		4.1.2	EVALUATION OF FIELD-GENERATED QC BLANK DATA	. 4-3
		4.1.3	EVALUATION OF DUPLICATE DATA	. 4-5
	4.2	BACKGR	ROUND SOILS	. 4-9
	4.3	BUILDIN	NG 39 AREA	4-12
	4.4	Southe	EAST FENCE LINE AREA	4-16
	4.5	STORAG	E YARD	4-19
	4.6	SOIL OF	RGANIC UNKNOWNS	4-25
	4.7	Transf	ORMERS	
	4.8	Buildin	NGS	4-26
		4.8.1	Lead	4-26
		4.8.2	RADON	4-31
5.0	CONT	AMINAT	TION ASSESSMENT	. 5-1
	5.1	Buildin	ng 39 Area	. 5-1
		5.1.1	POTENTIAL CONTAMINANT MIGRATION PATHWAYS	5-2
			CONTAMINANT DEGRADATION/PERSISTENCE/MOBILITY	
			CONTAMINANT MIGRATION	
	5.2	Southe	EAST FENCE LINE AREA	. 5-3
		5.2.1	POTENTIAL CONTAMINANT MIGRATION PATHWAYS	. 5-6
		5.2.2	CONTAMINANT DEGRADATION/PERSISTENCE/MOBILITY	
		5.2.3	CONTAMINANT MIGRATION	. 5-7

TABLE OF CONTENTS (continued)

				P.	AGE				
	5.3 5.4	STORAGE YARD TRANSFORMERS							
		5.4.1 5.4.2		ONTAMINANT MIGRATION PATHWAYS	5-8				
			MIGRATION .		5-8				
	5.5	LEAD F	PAINT	· · · · · · · · · · · · · · · · · · ·	5-9				
	•	5.5.1 5.5.2	CONTAMINAN	ONTAMINANT MIGRATION PATHWAYS	5-9				
	5.6	RADON		• • • • • • • • • • • • • • • • • • • •	5-9 5-9				
		5.6.1 5.6.2		GRATION PATHWAYS	5-10				
		3.0.2			5-10				
	5.7	Conce	ptual Site Mo	DDEL	5-11				
6.0	RISK A	SSESSN	MENT		6-1				
	6.1	IDENTII	FICATION OF CH	IEMICALS OF POTENTIAL CONCERN	6-2				
		6.1.1	POTENTIAL SIT	re-Related Contamination	6-5				
		6.1.2		Contamination					
		6.1.3 6.1.4	COMPARISON	TRIENTS					
		6.1.5		ONS AND PROPOSED SOIL ACTION LEVELS					
		6.1.6		R RELEVANT AND APPROPRIATE REQUIREMENTS	6-11 6-11				
	6.2	Expost	JRE ASSESSMEN	T	6-16				
		6.2.1	REASONABLE I	LAND USE SCENARIOS	6-16				
		6.2.2 EXPOSURE PATHWAYS							
		6.2.3			6-20				
		6.2.4	EXPOSURE EQU	JATIONS	6-20				
			6.2.4.1		6-22				
			6.2.4.2	Dermal Contact with Chemicals in Soil	6-23				
	6.3	Toxici	TY ASSESSMENT		6-23				

TABLE OF CONTENTS (continued)

		•	PAC	iΕ
		6.3.1 6.3.2	LEAD (INORGANIC) 6-2 POLYCYCLIC AROMAŢIC HYDROCARBONS 6-2	
			6.3.2.1 Noncancer Effects	
	6.4	Risk C	HARACTERIZATION	32
		6.4.1 6.4.2 6.4.3 6.4.4	QUANTIFICATION OF CARCINOGENIC RISKS6-QUANTIFICATION OF NONCARCINOGENIC RISKS6-RISK CHARACTERIZATION FOR TPH6-RISK CHARACTERIZATION FOR LEAD6-	33 37
	6.5	Uncer	TAINTY ANALYSIS	38
		6.5.1 6.5.2 6.5.3 6.5.4	Uncertainties Associated with Identification of COCs Uncertainties Associated with Exposure Assessment Uncertainties Associated with Toxicity Assessment Uncertainties Associated with Risk Characterization 6-4	40 41
7.0	SUMM	IARY A	ND CONCLUSIONS	-1
8.0	REFEI	RENCES		-1

APPENDICES TABLE OF CONTENTS

VOL	JIN	Æ.	II

APPENDIX A	O C TT. 1	YY 1 1	α.	T 1	\sim 1	T
A DUMININ A	State at 1 Itah	Lindararound	NTO COO	Innu	LACINEA	Danart
MEEDINIJIA A	STATE OF CHAIL	Onderstound	оппаве	I allin	CHUSUIE	NEDUL

- APPENDIX B Transformer Information
- APPENDIX C Asbestos Abatement Summary
- APPENDIX D Analytical Methods
- APPENDIX E Boring Logs, Surface Soil Sample Data Forms, and Physical Analysis Results
 - E-1 Boring Logs
 - E-2 Surface Soil Sample Data Forms (Supplemental EI program)
 - E-3 Physical Analysis Results
- APPENDIX F Paint/Wipe Sample Log and Assessment Forms
- APPENDIX G Analytical Results
 - G-1 Field QC Data
 - G-2 Source Water Data
 - G-3 Soil Data Level 3
 - G-4 Soil Organic Unknowns
 - G-5 Transformer Oil Data
 - G-6 Paint Wipe and Chip Data
 - G-7 Radon Data
- APPENDIX H Data Summary Tables for the Risk Assessment

APPENDIX A

STATE OF UTAH UNDERGROUND STORAGE TANK CLOSURE PLAN REPORT

Note: Laboratory results (TPH, BETX) for Westech samples that are summarized in the EI report, and results not pertinent to the EI have not been reproduced for this Appendix.

FORT DOUGLAS, UTAH

REPORT

ON THE REMOVAL

OF UNDERGROUND STORAGE TANKS

AND

EXCAVATION OF CONTAMINATED SOILS

HITH

RESULTS OF SOIL SAMPLE ANALYSIS

WESTECH FUEL EQUIPMENT DECEMBER, 1991 Between August 14 and September 20, 1991, ten Underground Storage Tanks (UST) were permanently closed by removal at Ft. Douglas, Utah (Figure 1). Two tanks were removed from a single excavation at Building 39 ("Fred's Head") and three tanks were removed from a single excavation at Building 216. Single tanks were removed from excavations at Buildings 122, 129, 134, 135 and 223. Light diesel contamination was found at Building 135. Waste oil contamination was found at Building 223 and diesel and gasoline contamination at Building 223. No contamination or other evidence of a release from the UST system was found at the other four sites. Around 2,500 cubic yards of both clean and contaminated soil were removed and disposed of in comptiance with local and Utah State regulations. All fill material was removed and replaced with clean soil. No soils excavated at Fort Douglas were reused to fill any of the excavations.

All samples were analyzed at Utah Certified Laboratories using EPA Method 8015 Mod. for Total Petroleum Hydrocarbons (TPH) and benzene, toluene, xylene and ethylbenzene (BTEX) and EPA Method 413.1 or 418.1 for oil and grease. Unified Soil Classification (USC) was done using accepted manual test methods. Results of soil analysis are in Appendix A. Field measurements for contamination were done with a Foxboro 128GC Organic Vapor Analyzer (OVA).

A pre-closure site investigation was performed at Buildings 39, 122, 129, 134, and 216. This investigation was done by ICF Technology, Inc., 9300 Lee Highway, Fairfax, VA 22031. The assessment included soil gas surveys, soil borings and soil analysis, and installation of groundwater monitoring wells and groundwater analysis. This investigation is referred to several times and copies of appropriate maps and tables are in Appendix B.

<u>Building 39</u>

Also known as "Fred's Head", this building was formerly the service station for the Post Exchange system. This station was abandoned sometime prior to 1968, with the tanks left in place.

A 10,000 gallon and a 600 gallon UST were removed by Westech Fuel Equipment. The larger tank had been abandoned in place by filling it with water. The fill pipe was removed, but vent and product lines were left intact. The tank was still full of water when uncovered, and the water was analyzed, then

removed, treated, and disposed of by Advanced Petroleum Recycling. The tank was free of holes and corrosion. The product piping was pulled from beneath the adjacent concrete. The site map showed possible locations of two dispensers, but only one patch in the concrete was tentatively identified as a former dispenser location. Upon excavation, this patch proved to be from a recent sewer excavation.

ICF's Soil Gas Survey found indications of slight contamination beneath the concrete pad in the former dispenser area, but soil samples taken from borings found no contamination. Because the former locations of the dispensers could not be identified and because the soil samples from the pre-closure site assessment found no contamination beneath the concrete pad, no further attempt was made to obtain dispenser soil samples at this building.

The 600 gallon tank had been identified as a waste oil tank. It had no product piping attached when removed, but it did have a product pick-up line inside, so there is a possibility it was a small fuel tank. The fill pipe to this tank was open to the surface and the tank had several inches of water and debris when first checked. The water was analyzed and removed, treated and disposed of by Advanced Petroleum Recycling. At removal, the tank was opened and the interior was triple rinsed. The debris consisted mainly of rocks, but also included twigs, small objects and two baseball bats, evidently placed down the open fill pipe over the years. The tank was corroded and had several holes, but there was no evidence of soil contamination. Soil analysis confirmed there had been no product released.

All fill material from the original UST excavation was removed from this excavation, analyzed and disposed as clean fill at Salt Lake Valley Landfill.

Building 122

This is a small building behind (west) of Building 101. The UST, buried on the south side of the building, stored fuel for a generator located inside. The UST still contained one inch of gasoline when first checked. This fuel was removed and the tank was cleaned by Advanced Petroleum Recycling.

No holes or corrosion were found on the tank and soil analysis indicated no release. All fill material was removed from the excavation, analyzed, and disposed of as clean fill at Salt Lake Valley Landfill. The vent line was removed. The product line was cut where it entered the foundation of the building, four inches below the surface. The tank excavation

reached to within a foot of the foundation and no soil sample was taken for this product line.

ICF Technology's pre-closure site assessment found low level contamination SE and SW of the UST. No attempt was made to remove soil in these areas because of the low level of contamination and because the 300 amp main power supply to Building 101 is buried along the west and south sides of the UST excavation, separating these areas from the UST excavation.

Building 129

The UST adjacent to this building had been identified as a waste oil tank, but Dean Buchanan, manager of the USAR ECS #1 facility that uses this site, said it had been used for kerosene to fuel a heater in the building. It had been out of service since about 1965.

The top of the tank was buried under less than a foot of unpaved roadbase. The tank's top was corroded and at the east end there was a six inch diameter opening from the surface into the tank, where the metal and overlying dirts had collapsed into the tank. Because of surface drainage into this hole, the tank was about 3/4 full of dirt, and water filled the remaining space to the top.

Analysis of the water showed no contamination, and the water was removed and disposed of by Advanced Petroleum Recycling. Analysis of the fill material around the tank and of the debris from within the tank showed no contamination and both were disposed of at Salt Lake Valley Landfill as clean soil. Samples of the native soil also showed no contamination and no over-excavation was done.

The pre-closure site assessment by ICF Technology found areas of low level contamination nearby. The area around Building 129 is unpaved and used for both vehicle traffic and storage so low level contamination is not unexpected. This contamination does not seem related to the UST that was removed, the highest soil gas readings occuring 20-30 feet from the UST.

There was no product line attached to the UST at the time of removal, and the line was reported to have been aboveground when in use, so no dispenser or piping sample was taken.

Building 134

A 1,000 gallon waste oil UST was removed from the west side of this building, next to the fence. The surrounding surface was

paved, but the area over the tank was unpaved. There was visible contamination from spillage at the surface. This contamination reached down several feet at the north end. This tank had been emptied and taken out of use around 1986. When removed it was corroded and had several holes, although handling of the corroded tank during removal may have created at least some of Contamination was also found beneath the tank. Buchanan, manager for this facility, said that another UST had been buried in the same location previously and it had been removed around 1969-1970 because it was leaking. No remediation had been done. Pre-closure site-assessment by ICF Technology involved several soil borings and installation of a groundwater monitoring well. Additional borings were done by Westech Fuel Equipment after closure to help determine the extent of contamination. Boring locations are with the sample results in Appendix A.

Over-excavation removed 406 cubic yards of contaminated soil, which was taken to the E.T. Technologies, Inc. soil reclamation facility at the Salt Lake Valley Landfill. Excavation and borings extended down to groundwater, 14-17 feet below the surface. Excavation was done on both sides of the fence. Confirmation soil samples from the excavation and soil samples from the borings indicate that over-excavation reached clean soil on the east, north and west sides. Contamination remains on the south side, where excavation was stopped because of trees, power poles, the fence and overhead and underground power lines. On the south side, analyses indicate TPH and BTEX levels are below Utah Recommended Clean-up Levels (RCL's) for Level I (most sensitive) sites, and Oil and Grease contamination is below Level II RCL's. The groundwater monitoring well installed by ICF remains in place if further analysis of groundwater is needed.

A four to six inch thick layer of black soil was seen at a depth of approximately six feet around the north end of the excavation. This was checked with an Organic Vapor Analyzer (OVA) and a sample was sent for analysis. It appears to be an old asphalt surface. The OVM detected nothing and analysis showed only very low Oil and Grease levels (Sample 8445-01).

Builing 135

A 5,000 gallon diesel UST was in use at this building up to the time of its removal in September, 1991. The tank and lines were in excellent condition when removed, with no indications of soil contamination. Soil analysis, however, showed light diesel contamination beneath the tank and dispenser. The detected contamination was below Level I RCL's for diesel. Overfill and spillage are the suspected sources of the contam-

ination. This UST system was in an unpaved area.

Over-excavation removed 94 cubic yards of soil that was taken to the Salt Lake Valley Landfill where it was disposed of as clean fill because of the low level of diesel contamination. Soil was over-excavated from both the dispenser area and from beneath the tank. Confirmation samples were taken from the bottom of the UST excavation and they showed no remaining contamination. The dispenser area was no longer indentifiable and was not resampled.

Building 216

This was the Post Exchange service staion up to about 1984. Residual fuel and water were removed from the three UST's by Advanced Petroleum Recycling. The tanks were found to be in excellent condition, free of holes or corrosion. The product lines were pulled from beneath the concrete pad. There was no evidence of a release of fuel into the soil and analytical results confirmed there was no contamination at either the tanks or dispenser area. All fill material from the original excavation was removed and disposed of at Salt Lake Valley Landfill.

Building 223

The UST was located just southeast of Building 224, but the system was operated from Building 223, located approximately 200 feet to the northeast. An aboveground diesel tank stood at the west end of the UST and was removed just before excavation was done for the UST. The diesel dispenser was located at the southwest corner of Building 224.

Unleaded gasoline was dispensed from this UST system until it was removed in September, 1991. At the time of closure, the cover over the submersible pump was out of place and had been bent and forced down into the sub-pump access opening, possibly by a heavy vehicle driving over it. When the top of the tank was uncovered, contamination was found around the sub-pump and it appeared that pipe fittings had been loosened or broken when the lid was forced into the hole. Gasoline had been leaking from this part of the system every time gasoline was dispensed. Except for this problem, the rest of the UST system was free of corrosion, holes, or leaks.

Over-excavation was done to a depth of 26 feet before reaching a hard, red elastic silt layer that was not contaminated. The silt was overlain by a layer of boulders and coarse where contamination had spread west and south. Soil borings down to the coarse sand were used to determine the extent of

of contamination migration. Soil borings were also done on the west and south side of the aboveground diesel tank location. Soil analysis of samples from these borings indicated gasoline and diesel contamination under the former diesel tank location to a depth of 26', but it did not appear to have spread far laterally. Additional over-excavation was done to remove this contamination. A total of 520 cubic yards of contaminated soil was sent to E.T. Technologies, Inc. soil remediation facility at the Salt Lake Valley Landfill. Roughly 800 cubic yards of clean soil was removed to reach the contaminated soil. The clean soil was sent to the Salt Lake Valley Landfill and Northern Nevada Contruction's commercial landfill.

There were no surface obstacles to excavation, and field checks with the OVM and confirmation samples indicate that no significant contamination was left at this site after over-excavation.

CLOSURE NOTICE

							Facility II) # <u>400</u>	1149	00
TANK OWNER	Nan	ne HQ 4th	n Infantr	y Divisio	n .		1	Phone(<u>719</u>	579-22)) 579-48	
AddressA										
	ort Carson				te Colora	ıdo		Zip 809	13-5022	 .
ANK OPERAT			Name, Titl	e U.S. Ar	my/U.S. A	rmy Reser	ve			
Business Name										; -
	proprietor			ion, []	X - Fed partnershi	leral Agne p. Phor	ecy 1e(719)	579-482	8 John C	<u>loo</u> na
Address B		-					as	·		
Citys					ty Salt I			Zip 841	13	
TANK HANDL				mith/West	ech Fuel	Equipment	<u> </u>	Cert. # <u>T</u>	R-0042	
Address 195 I										
OIL/GROUNI										
Address 195										
TYPE OF CLO							•			•
ermanent or C							•			
Pate Closed A	ug. 15,19	91-Sept.	<u>20</u> , 1991	[x]Ren	noved	[] In-J	olace			
[X] Fuel was	emptied.		[x] Sludg	ge was rem	oved.	[X] Tar	ık was cle	aned.		
Tank was: [volume	
Location of Clo										
ubstance to be				_						
Temporary		•						•		
Date of Closure	N/A			_ []	Fuel was	emptied.				
Residue dept	h remainin	ıg in tank		or, %	by weight	of total c	apacity of	UST:		
[] Corrosion	ı protectioi	n equipme	nt is oper	ating.	[]	Release de	etection ed	luipment i	s operation	ng.
months: []	Vent line	s open	Cap	/Secure:	[] lines	[] pu	mps [] manways		
2 months: []	Permane	ntly closed	i .	[] New/	Upgraded		[] Exte	nsion		
TANKS CLOSE	<u>ED</u>									
ank #	1	2	3	4	5	6	7	8	9	. 10
Age of tank	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unkn
Capacity	5000	5000	5000	10,000	600	1000	300	1000	5000	5000 unle
Subs. stored*	<u>unleade</u> d	regular	premium	regular	waste oil fuel?	waste n	kerosene.	?)_diesel	diesel	_ ade
Date last used	1984 ?	1984 ?	1984?	unknown	unknown	1986?	1965?	unknown	9/91	9/9
*Indicate the sp	pecific subs	stance stor	ed in eacl	n tank clos	sed (regul	ar, unlead	ed, diesel,	waste oil,	etc.)	
•										

DISPOSAL SITES USED:	
	Date 8/15-9/20/91 Number 10
Product from Tank: Advanced Petroleum Recycling	Date 8/5-9/20/91 Amount 800 gallons
ludge:Advanced Petroleum Recycling	Date 8/15-9/20/91 Amount 100 gallons
Contaminated Soils: E.T. Technologies & Salt Lake Valley	Date 9/17-12/4/91 Amount 2500 cubic yard
Contaminated Water: Advanced Petroleum Recycling	Date 8/5-9/20/91 Amount 15000 gallon water from tan
ITE ASSESSMENT (A copy of the lab analysis report must	be attached to this notice)
Groundwater samples: TPH: [] 8015 modified; O	il & Grease: [] 413.1 [] 418.1 BETX: [] 8020
Results: No groundwater sampled	
oil samples: TPH: [x] 8015 modified; O Other: USC	
Results: Contamination found at Bldg's 134, 135, and	
Certified Laboratory:American West Analytical - 463 West Address:DataChem - 960 West LeVoy Drive, Salt Lake	City, Utah 84123
amples were properly: [X] Collected [X] Labeled	
[X] Samples were in sight of the person in custody at all	
certify under penalty of law that I am familiar with the informal complete and further, that the procedures described here	mation on this form and that it is true, accurate in were followed during tank closure.
ignature of UST Owner/Operator	
Full name of Owner/Operator	Date
	Shw\ust\all\clplfrm2 Revised 01/01/91

Bldg. 39 TPH, BETX Results (see Table 2-2)

Bldg. 134 TPH, BETX Results (see Table 2-3) Waste Characterization Results (see following pages)

lab# 7477

CHAIN OF CUSTODY RECORD

Survey F+Douglas - Bldg 134					Samplers; Signature			
Sample Number	Sample Location	Date	Time	Sample Comp		Matrix	No. of Containers	Analysis Required
	Fill Material from Waste Oil Execustron	105pt	1:50	1		soil	3{	ET Profile FLIST Volatiles -
	·						(-	ET Profile FLIST Volatiles - FLIST Semi Volatiles -8270
		,						
							·	·
	·							
,								
	·							
	ed by: Signature		I	Received b				Date/Time 10 15:15
	1			Received by	y: Signa	ture		Date/Time /
Relinquish	ed by: Signature			Received b	y: Signa	ture		Date/Time
	by: Signature Shipment	Date/	Time	Recei	ved for la	aboratory by:	lies	Date/Time 9-10-91 [5-27

3 West 3600 South alt Lake City, Utah 84115

(801) 263-8686 Fax (801) 263-8687

INORGANIC ANALYSIS REPORT

Contact: Jim Smith

Received By: Chris Moulding

Client: Westech

Date Received: September 10, 1991

Lab Sample ID. Number: 7477-01

Field Sample ID.: Ft. Douglas - Bldg. 134/Fill Material from Waste Oil Excavation

Analytical Results			
Units = mg/kg	Method Used:	Detection <u>Limit</u> :	Amount <u>Detected:</u>
TOTAL METALS	-0.60	0.05	2.0
Arsenic	7060	0.05	3.9
Barium	6010	0.01	110.
Boron	6010	0.05	34.
Cadmium	6010	0.05	2.0
Chromium (Total)	6010	0.05	13.
Copper	6010	0.05	94.
Lead	6010	0.30	91.
Manganese	6010	0.10	320.
Mercury	7471	0.01	< 0.01
Molybdenum	6010	0.20	18.
Nickel	6010	0.10	9.0
Selenium	7740	0.10	0.10
Silver	6010	0.05	3.3
Vanadium	6010	0.05	14.
Zinc ·	6010	0.03	110.
OTHER CHEMISTRIES			
Chloride	407A	5.0	35.
Sulfate	375.4	1.0	40.
Oil & Grease	503A	100.	3,000.
Cyanide Reactivity	7.3/9010	5.0	<5.0
Sulfide Reactivity	7.3/9030	5.0	<5.0
% Passing 0.7 μ filter	160.2	1.0	- <1.0
% Solids	1311	0.5	100.
Flashpoint	1010		>200.°F
pН	150.1	·	7.8
Density (lb/ft ³)			125.

Released by: _

Laboratory Supervisor

Report Date 9/23/91

1 of 1

ORGANIC ANALYSIS REPORT

Client: Westech

Date Received: September 10, 1991 Set Identification Number: 7477

Set Description: One Soil Sample

Analysis Requested:

Listed Organic Constituents

in Non-Waste Water

Method Ref. Number:

EPA SW-846 #8270 (mod.)

Date Analyzed:

Received By: Chris Moulding

Contact: Jim Smith

September 14, 1991

Amount

(Extraction/Direct Injection - GC/MS)

3 West 3600 South alt Lake City, Utah 84115

(801) 263-8686

Fax (801) 263-8687

Lab Sample ID. Number: 7477-Method Blank

Field Sample ID. Number:

Method Blank

RCRA LISTED NON-PURGABLE CONSTITUENTS Analytical Results

Units = mg/kg (ppm)

Detection Series Limit: Detected: Listing(s) Compound: < 0.20.2 F004/D024 m-Cresol < 0.2 0.2 F004/D023 o-Cresol < 0.2 0.2 F004/D025 p-Cresol < 0.1F003 0.1 Cyclohexanone 5.0 < 5.0 F005 2-Ethoxyethanol < 0.5 F003 0.5Methanol < 0.5 0.5 F004/D036 Nitrobenzene < 0.1 F005/D038 0.1Pyridine < 0.1 0.1 D030 2.4-Dinitrotoluene < 0.1 0.1D032 Hexachlorobenzene < 0.1 D033 0.1Hexachloro-1,3-butadiene < 0.10.1Hexachloroethane D034 <10.0 10.0 Pentachlorophenol D037 0.1 < 0.1 2,4,5-Trichlorophenol D041

D042

T = Trace. Detectable amount is lower than the practical quantitation limit for this compound.

Song Bosts Released by:

2,4,6-Trichlorophenol

< 0.1

Laboratory Supervisor

Report Date 9/23/91

0.1

1 of 1

THIS REPORT IS PROVIDED FOR THE EXCLUSIVE USE OF THE ADDRESSEE. PRIVILEGES OF SUBSEQUENT USE OF THE NAME OF THIS COMPANY OR ANY MEMBER OF ITS STAFF, OR REPRODUCTION OF THIS REPORT IN CONNECTION WITH THE ADVERTISEMENT, PROMOTION OR SALE OF ANY PRODUCT OR PROCESS OR IN CONNECTION WITH THE RE-PUBLICATION OF THIS REPORT FOR ANY PURPOSE THAN FOR THE ADDRESSEE WILL BE GRANTED ONLY ON THE CONTRACT THE CONTRACT OF THE PROPERTY OF THE PROPERTY OF THE PUBLICATION OF THE PROPERTY OF THE PUBLICATION OF THE PROPERTY OF THE PUBLICATION OF THE PUBLICATIO CONTRACT. THIS COMPANY ACCEPTS NO RESPONSIBILITY EXCEPT FOR THE DUE PERFORMANCE OF INSPECTION AND/OR ANALYSIS IN GOOD FAITH AND ACCORDING TO THE RULES OF THE TRADE AND OF SCIENCE.

< Value = None detected above the specified method detection limit, or a value that reflects a reasonable limit due to interferences.

ORGANIC ANALYSIS REPORT

Client: Westech

Date Received: September 10, 1991

Set Identification Number: 7477 Set Description: One Soil Sample

Analysis Requested:

Listed Organic Constituents

in Non-Waste Water

Method Ref. Number:

EPA SW-846 #8270 (mod.)

Date Analyzed:

Received By: Chris Moulding

September 14, 1991

Contact: Jim Smith

(Extraction/Direct Injection - GC/MS)

West 3600 South alt Lake City, Utah

84115

Lab Sample ID. Number: 7477-01

Field Sample ID. Number:

Ft. Douglas - Bldg. 134/Fill Material from Waste Oil

Excavation

Analytical Results RCRA LISTED NON-PURGABLE CONSTITUENTS

Units = mg/kg (ppm)

(801) 263-8686 Fax (801) 263-8687

Compound:	Series <u>Listing(s)</u>	Detection <u>Limit:</u>	Amount Detected:
m-Cresol	F004/ D024	1.0	<1.0
o-Cresol	F004/ D023	1.0	<1.0
p-Cresol	F004/ D025	1.0	<1.0
Cyclohexanone	F003	0.5	<0.5
2-Ethoxyethanol	F005	30.	<30.
Methanol	F003	3.0	<3.0
Nitrobenzene	F004/ D036	3.0	<3.0
Pyridine	F005/ D038	0.5	<0.5
2,4-Dinitrotoluene	D030	0.5	<0.5
Hexachlorobenzene	D032	0.5	<0.5
Hexachloro-1,3-butadiene	D033	0.5	<0.5
Hexachloroethane	D034	0.5	<0.5
Pentachlorophenol	D037	60.0	<60.0
2,4,5-Trichlorophenol	D041	0.5	<0.5
2,4,6-Trichlorophenol	D042	0.5	<0.5

T = Trace. Detectable amount is lower than the practical quantitation limit for this compound.

San Back Released by: Orc.

Laboratory Supervisor

Report Date 9/23/91

1 of 1

THIS REPORT IS PROVIDED FOR THE EXCLUSIVE USE OF THE ADDRESSEE. PRIVILEGES OF SUBSEQUENT USE OF THE NAME OF THIS COMPANY OR ANY MEMBER OF ITS STAFF, OR REPRODUCTION OF THIS REPORT IN CONNECTION WITH THE ADVERTISEMENT, PROMOTION OR SALE OF ANY PRODUCT OR PROCESS OR IN CONNECTION WITH THE RE-PUBLICATION OF THIS REPORT FOR ANY PURPOSE THAN FOR THE ADDRESSEE WILL BE GRANTED ONLY ON CONTRACT. THIS COMPANY ACCEPTS NO RESPONSIBILITY EXCEPT FOR THE DUE PERFORMANCE OF INSPECTION AND/OR ANALYSIS IN GOOD FAITH AND ACCORDING TO THE BULLES OF THE TRADE AND OF SCIENCE

< Value = None detected above the specified method detection limit, or a value that reflects a reasonable limit due to interferences.

ORGANIC ANALYSIS REPORT

Client: Westech

Date Received: September 10, 1991 Set Identification Number: 7477 Set Description: One Soil Sample Contact: Jim Smith

Received By: Chris Moulding

Analysis Requested:

Listed Organic Constituents in Non-Waste Water

Method Ref. Number: EPA SW-846 #8240 (Purge & Trap GC/MS) <u>Date Analyzed:</u> September 11, 1991

8 West 3600 South alt Lake City, Utah 84115

(801) 263-8686 Fax (801) 263-8687 <u>Lab Sample ID. Number:</u> 7477-Method Blank

Field Sample ID. Number: Method Blank

Analytical Results

RCRA VOLATILE WASTE CONSTITUENTS

Units = mg/kg (ppm)

Compound:	Listing(s):	Detection <u>Limit:</u>	Amount <u>Detected:</u>
Acetone	F003	0.040	<0.040
Benzene	F005	0.040	<0.040
n-Butyl alcohol	F003	1.0	<1.0
Carbon disulfide	F005	0.040	<0.040
Carbon tetrachloride	F001	0.040	<0.040
Chlorobenzene	F002	0.040	<0.040
Cyclohexanone	F003	0.040	<0.040
1,2-Dichlorobenzene	F002	0.10	<0.10
Ethyl acetate Ethyl benzene Ethyl ether Isobutyl alcohol	F003	0.040	<0.040
	F003	0.040	<0.040
	F003	0.040	<0.040
	F005	0.5	<0.5
Methylene chloride	F001/F002	0.040	<0.040
Methyl ethyl ketone	F005	0.040	<0.040
Methyl isobutyl ketone	F003	0.040	<0.040
2 Nitropropane	F005	0.040	<0.040
Nitrobenzene Tetrachloroethylene Toluene 1,1,1-Trichloroethane	F004	0.10	<0.10
	F001/F002	0.040	<0.040
	F005	0.040	<0.040
	F001/F002	0.040	<0.040

West 3600 South alt Lake City, Utah 84115 Lab Sample ID. Number: 7477-Method Blank

Field Sample ID. Number: Method Blank

Analytical Results

RCRA VOLATILE WASTE CONSTITUENTS

Units = mg/kg (ppm)

Compound:	<u>Listing(s)</u>	Detection <u>Limit:</u>	Amount Detected:
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane Trichloroethene Trichlorofluoromethane Xylenes (total)	F002	0.040	<0.040
	F001/F002	0.040	<0.040
	F001/F002	0.040	<0.040
	F001/F002	0.040	<0.040
	F003	0.040	<0.040

Fax (801) 263-8687

(801) 263-8686

Released by:

Date: $9/z^3/9$

Laboratory Supervisor

Report Date 9/23/91

2 of 2

THIS REPORT IS PROVIDED FOR THE EXCLUSIVE USE OF THE ADDRESSEE, PRIVILEGES OF SUBSEQUENT USE OF THE NAME OF THIS COMPANY OR ANY MEMBER OF ITS STAFF, OR REPRODUCTION OF THIS REPORT IN CONNECTION WITH THE ADVERTISEMENT, PROMOTION OR SALE OF ANY PRODUCT OR PROCESS OR IN CONNECTION WITH THE RE-PUBLICATION OF THIS REPORT FOR ANY PURPOSE THAN FOR THE ADDRESSEE WILL BE GRANTED ONLY ON PROCESS OR IN CONNECTION WITH THE RE-PUBLICATION OF THIS REPORT FOR ANY PURPOSE THAN FOR THE ADDRESSEE WILL BE GRANTED ONLY ON CONTRACT. THIS COMPANY ACCEPTS NO RESPONSIBILITY EXCEPT FOR THE DUE PERFORMANCE OF INSPECTION AND/OR ANALYSIS IN GOOD PAITH AND

< Value = None detected above the specified method detection limit, or a value that reflects a reasonable limit due to interferences.

T = Trace. Detectable amount is lower than the practical quantitation limit for this compound.

ORGANIC ANALYSIS REPORT

Client: Westech

Date Received: September 10, 1991 Set Identification Number: 7477 Set Description: One Soil Sample

Contact: Jim Smith

Received By: Chris Moulding

Analysis Requested:

Listed Organic Constituents in Non-Waste Water

Method Ref. Number: EPA SW-846 #8240 (Purge & Trap GC/MS) Date Analyzed: September 11, 1991

West 3600 South It Lake City, Utah 84115

(801) 263-8686 Fax (801) 263-8687 Lab Sample ID. Number: 7477-01

Field Sample ID. Number:

Ft. Douglas - Bldg. 134/Fill Material from Waste Oil

Excavation

Analytical Results

RCRA VOLATILE WASTE CONSTITUENTS

Units = mg/kg (ppm)

Compound:	<u>Listing(s)</u> :	Detection <u>Limit:</u>	Amount <u>Detected:</u>
Acetone Benzene n-Butyl alcohol Carbon disulfide	F003	0.040	<0.040
	F005	0.040	<0.040
	F003	1.0	<1.0
	F005	0.040	<0.040
Carbon tetrachloride	F001	0.040	<0.040
Chlorobenzene	F002	0.040	<0.040
Cyclohexanone	F003	0.040	<0.040
1,2-Dichlorobenzene	F002	0.10	<0.10
Ethyl acetate Ethyl benzene Ethyl ether Isobutyl alcohol	F003	0.040	<0.040
	F003	0.040	<0.040
	F003	0.040	<0.040
	F005	0.5	<0.5
Methylene chloride	F001/F002	0.040	<0.040
Methyl ethyl ketone	F005	0.040	<0.040
Methyl isobutyl ketone	F003	0.040	<0.040
2 Nitropropane	F005	0.040	<0.040
Nitrobenzene Tetrachloroethylene Toluene 1,1,1-Trichloroethane	F004	0.10	<0.10
	F001/F002	0.040	<0.040
	F005	0.040	<0.040
	F001/F002	0.040	<0.040

West 3600 South It Lake City, Utah 84115

(801) 263-8686 Fax (801) 263-8687

Lab Sample ID. Number:

Field Sample ID. Number:

Ft. Douglas - Bldg. 134/Fill Material from Waste Oil

Excavation

Analytical Results

RCRA VOLATILE WASTE CONSTITUENTS

Units = mg/kg (ppm)

Compound:	Listing(s)	Detection Limit:	Amount <u>Detected:</u>
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane Trichloroethene Trichlorofluoromethane Xylenes (total)	F002	0.040	<0.040
	F001/F002	0.040	<0.040
	F001/F002	0.040	<0.040
	F001/F002	0.040	<0.040
	F003	0.040	<0.040

to interferences.

Juny Back Released by: Je Changet Date: 9/25/91

Laboratory Supervisor

Report Date 9/23/91

2 of 2

< Value = None detected above the specified method detection limit, or a value that reflects a reasonable limit due 1.

T = Trace. Detectable amount is lower than the practical quantitation limit for this compound. 2.

APPENDIX B
TRANSFORMER INFORMATION

March 25, 1991

R. L. STOLLAR & ASSOC. 303 E. 17th Ave. - Suite 550 Denver, CO 80203

Attention: Nan Glenn

Reference: Hevi-Duty/Dowzer New Transformers - PCB Content?

Dear Ms. Glenn:

In reference to your request for information as to PCB content of oil used in Hevi-Duty/Dowzer new distribution transformers, the following will help clarify any concern.

- Hevi-Duty/Dowzer Electric has never manufactured transformers filled with PCB liquid. This eliminates any possibility of contamination in the plant's oil handling system.
- 2. Hevi-Duty/Dowzer has received written assurance from mineral oil suppliers that no PCB material is used in the processing of petroleum products nor does PCB occur naturally in petroleum. They have analyzed their oil and no PCBs were detected at the minimum detectable level.

Hevi-Duty/Dowzer Electric has also analyzed the new oil and confirmed that no PCBs exist at the minimum detectable level.

We reel the above explanation should relieve any concern as to the classification of Hevi-Duty/Dowzer new transformers as non-PCB when shipped.

For further information or additional questions please contact the Hevi-Duty/Dowzer office at the address or phone number listed below.

Yours truly,

HEVI-DUTY/DOWZER ELECTRIC A Unit of General Signal

Kevin Edwards

Engineering Manager

KE/nm

FAMILY CAMP FORT DOUGLAS, UTAH ELECTRICAL SUBMITALS

AMERICAN ELECTRICAL SERVICE P.O. BOX 151007, S.L.C., UT. 84115 PHONE 288-3222

QUANITY		DESCRIPTION
1	Transformer:	Dowzer 50 KVA single phase
2	Arresters:	VariSTAR type AZS
2	Cutouts:	S&C Open Cutouts type XS' Catalog Number 89021R9
2	Fuse Links:	McGraw Edison C Fuse Link 100 Amp
1	Load Center:	Square "D" QO30M225RB

OIL FILLED DISTRIBUTION TRANSFORMERS

POLE MOUNT SINGLE PHASE

Conventional Type CA Mechanical Data

DOWZER TYPE CA TRANSFORMERS

Conventional style transformer with one set of mounting brackets, two high voltage bushings tank wall mounted. Designed, manufactured and tested in accordance with NEMA and ANSI specifications.

PATENTED* POWER CORE CONSTRUCTION The low loss, low exciting current characteristics and quiet operation results from the patented POWER CORE Made of high grade silicon steel, the core is assembled with a precise, distributed-gap technique providing the best magnetic qualities.

DURABLE WEATHER-TESTED FINISH Tanks are primed with a rust inhibitor then coated with a pre-heated acrylic enamel. Less thinner is required resulting in a heavier finish.

ARC WELDED BRACKETS AND LIFTING LUGS Designed with a built-in extra margin of safety, mounting brackets and lifting lugs are secured with a continuous arc weldment.

MANUFACTURED UNDER RIGID QUALITY CONTROL

Transformers are 100% inspected through every phase of manufacturing. Up-to-the-minute test equipment assures reliability and product integrity

*Potont No. 3404360

MECHANICAL DATA TYPE CA SINGLE PHASE / 60 HERTZ / 65° RISE / OISC

HIGH VOLTAGE

2400 / 4160Y BIL 60 KV 4160 / 7200Y BIL 75 KV 4800 / 8320Y BIL 75 KV

LOW VOLTAGE

120 / 240 BIL 30 KV 240 / 480 BIL 30 KV

		DIMENSIONS INCHES		OIL GALS.	WEIGHT LBS.	REFERENCE	
1	KVA	A	В	C]		
ſ	10	25 5	25.5	20.5	8	225	FIGURE 1
ſ	15	26 5	26.5	21.5	10	265	FIGURE 1
1	25	31	28	23.5	16	365	FIGURE 1
*	37%	31	30	25.5	20	495	FIGURE 1
下	50	36	30	25.5	22	600	FIGURE 1
Ì	75	425	33	29.5	40	850	FIGURE 1
	100	43.5	33	30	42	1070	FIGURE 2
	167	44.5	38.5	32	50	1300	FIGURE 3
	250	44.5	40.5	34.5	61	1730 -	FIGURE 3
1	333	45	46	39	72	2055	FIGURE 3
i	500	58	46	39	95	2850	FIGURE 3

For additional Information contact: DOWZER ELECTRIC P.O. BOX 828 • MT. VERNON, IL 62864 • 618/242-0190 • TELEX 40-4402

Surge Arresters

VariSTAR® Type AZS Distribution-Class (IEC 5-kA Series B) **Certified Test Data**

3235-6

Design tests have been conducted on the McGraw-Edison VariSTAR Type AZS distribution-class arrester for overhead system application. They have been tested in accordance with the appropriate sections of the ANSI/IEEE Standard C62.1, IEC Publication 99-1, and CSA Standard 233 and has met the requirements of these standards. In addition, tests have been performed on the variSTAR arrester not specified by ANSI, IEC or CSA standards but appropriate to metal-oxide varistor (MOV) surge arresters. The results of these standard tests are summarized in this text. Refer to Table 1 for the reference between required tests and specific paragraphs or clauses of the standard.

VOLTAGE-WITHSTAND TESTS

OF ARRESTER INSULATION The external insulation of VariSTAR Type AZS arresters has been tested in accordance with the standards. The withstand voltage of these arresters exceeds the values In these standards for all voltage ratings as shown in Table 2. Creepage and arcing distances are also listed.

DISCHARGE (RESIDUAL) **VOLTAGE CHARACTERISTICS**

The discharge (residual) voltage characteristics of the VarISTAR Type AZS are shown in Table 3 for various surge current magnitudes. These values are assured in production arresters by a discharge voltage test performed on every disk. Discharge voltage oscillograms are shown in Figures 1 through 5.

Surge Arrester Standards Cross Reference

Test	ANSI C62.1-1981 Paragraph No.	CSA 223-1972 Clause No.	IEC 99-1-1970 Clause No.	
Insulation Withstand	8.1	8.2		
Discharge (Residual) Voltage	8.4	6.5	62	
High-Current, Short-Duration impulse	8.6.1	6.6.2	63.2	
Low-Current, Long-Duration impulse	8.6.2.2	6.6.5	63.3.3	
Duty Cycle	8.7.1.3	6.7	64	
Influence Voltage	8.8	6.8	\ -	
Arrester Disconnector	8.11	6.10	66	
Contamination (Pollution)	8.12		Appendix i	

Insulation Characteristics

Arrester Rating	Creepage Distance	Arcing Distance	Minimum 1.2 × 50 Withstand	Minimum Power Frequency Withster kV rms		
(kV rms)	In. (cm)	in. (cm)	(kV crest)	Wet	Dry	
3/4.5	3.0 (7.6)	1.8 (4.6)	45	15	20 35 50	
6/7.5	5.5 (14.0)	3.5 (8.8)	60	25	35	
` 9/10	8.5 (21.6)	5.2 (13.2)	95	35	50	
12	8.5 (21.6)	5.2 (13.2)	95	35	50	
15	12.2 (31.0)	7.7 (19.6)	120	45	66	
18	13.5 (34.3)	8.5 (21.6)	140	50	70	
21	13.5 (34.3)	8.5 (21.6)	140	50	70	
24	16.0 (40.6)	9.2 (23.4)	150	60	85	
27	22.0 (55.9)	12.5 (31.8)	200	1 80	120	
30	22.0 (55.9)	12.5 (31.8)	200	80	120	

Protective Characteristics

Arrester MCOV*		Equivalent**	Discharge Voltage for 8 × 20µ∎ Wave kV crest					
Rating (kV rms)	Front of Wave (kV creat)	1.5 kA	5 kA	10 kA	20 kA	40 kA	65 ka	
3/4.5 6/7.5 9/10 12 15 18 21 24 27	3.0 6.0 8.4 10.2 12.7 15.3 17.0 19.5 22.0 24.7	19 30 45 57 67 76 95 111 114	13.0 21.0 31.0 39.0 46.0 52.0 66.0 76.0 79.0 91.0	14.0 22.5 34.0 43.0 50.0 57.0 71.0 82.5 85.0 97.0	16.5 26.0 39.0 49.5 58.0 66.0 82.5 96.0 99.0 113.0	18.0 29.0 43.0 54.0 63.5 72.5 91.0 105.0 109.0 125.0	20.0 31.0 47.0 59.0 69.0 79.0 99.0 115.0 119.0	22.0 34.0 52.0 65.0 76.0 87.0 109.0 127.0 131.0 152.0

+MCOV — Maximum continuous operating voltage.

^{**}Based on a 10-kA discharge voltage using 0.5 x 1.5 microsecond wave. For equivalent front-of-wave protective levels at other times to crest, see Figure 8.

APPENDIX C
ASBESTOS ABATEMENT SUMMARY

INFORMATION PAPER

SUBJECT: Trip Report, Fort Douglas Asbestos Assessment

- 1. Purpose. To inform the DEH of the results of asbestos abatement at Fort Douglas, UT.
- 2. Point of major interest and facts.
- a. 0700 Friday 11 Oct 91 Arrived Ft Douglas, QEH, Bldg 232 with DEH's Help.
 - (1) Started scheduling quarters for site assessment.
- (2) After site assessment team started scheduling work for Saturday, 12 Oct 91.
- (3) Held Public Meeting, 1900, in post theater, Bldg 36, for residents for notification of assessment teams mission. Attendance was 12 people plus LTC Jensen and team members.

b. GENERAL

- (1) SOP FOR ASSESSMENT TEAM -
 - (a) Assessment.
 - (b) Material set-up.
- (c) Closed off area suited up, moved misc. material, furniture, etc., and covered remaining area with visqueen (pastic sheets).
 - (d) Sprayed encapsulant on required areas.
 - (e) Wrapped with "Klote-Kwik" and tape as needed.
 - (f) Clean-up.
 - (g) Reinspected and posted ACM signs as needed.
 - c. Saturday, 12 Oct 91 Started encapsulation as required.

List of occupied quarters accomplished:

1A, 1B, 2A, 2B, 3, 6A, 6B, 7B-Rewrapped by request (Visqueen), 8B, 9A, 9B, 10A, 11B, 14A, 14B, 15B-Wrapped (Visqueen), 16A, 16B, 17A, 17B, 18A, 18B, 18C, 20, 21, 22, 23, 55, 56B, 57A, 60B, 64A, 65A, 65B, 66A, 66B, 13A - Vacant, 13B - Vacant, 56A - Vacant

AFZC-FE-ENR SUBJECT: Trip Report, Fort Douglas Asbestos Assessment

- d. All air samples taken during site assessment were analyzed and were below clean air clearance levels of .01f/cc as per EPA recommendations for clearances of projects. Air sample results are on file in EENR asbestos file.
- e. RECOMMENDATIONS: ACM in basements of all occupied quarters, basements has been repaired to minimize any exposure until other abatement can take place. This assessment team recommends basement areas in quarters not be used as living and/or storage areas do to the fact that asbestos located in these areas are so accessible for potential disturbance by various means.

APPENDIX D
ANALYTICAL METHODS

D.1 ANALYTICAL METHODS

To provide a common point of reference for all projects and to provide a means of evaluating laboratory performance, USAEC prescribes the use of standardized methods for commonly encountered analytes. The standardized methods are based on published methods of analysis (e.g., by USEPA, American Society for Testing and Materials (ASTM), United States Geological Survey (USGS)) or past USAEC experience (e.g., for military-unique compounds). Methods have been evaluated in terms of sound analytical practice and applicability to projects. In addition to specifying sample preparation and analysis, each method also specifies calibration procedures and frequency, calibration check acceptance criteria, methods of preparing standard solutions, and preparation of QC samples. A description of any proposed deviations from the standardized methods must be submitted to USAEC prior to generation of the Precertification Performance Data Package. After certification of a method, additional deviations will not be acceptable, unless written approval, in advance, is provided by the USAEC Chemistry Branch. Changes made after certification may require generation of new Precertification and Certification Performance Data Packages.

Some methods, including calibration of test and measurement equipment, do not require certification, due to either the nature of the measurement or the intended used of the data. When such methods are part of the project, USAEC will not provide a standardized method. However, laboratories must submit sufficient information in Test Plans, Work Plans, Project QC Plans, etc. to describe exactly the procedures to be used.

The following methods performed for the EI program at Fort Douglas do not require certification by the USAEC Chemistry Branch:

- Lead Paint
- Total Petroleum Hydrocarbons (TPH)
- PCBs in oil

Certification may be required for these types of analyses if the resulting data serves as the basis for project decisions or regulatory compliance.

Any analytical method must be described by a set of written instructions completely defining the procedure to be used to process a sample and obtain an analytical result. Descriptions of analytes, sample type (matrix), sample preparation, types and quantities of reagents, instrumental calibration and measurements, and computations are all integral parts of a complete method.

Table D-1 lists the laboratory-specific USAEC approved analytical methods, USEPA equivalent methods, and reporting limits and the upper ranges for each type of certified analysis.

Table D-1 Certified Methods for Target Compounds (Page 1 of 12)

WATER

USAEC Method No.	USEPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/1	Upper Limit µg/l
SD30 SD30 SD30 SD30 WW8 SS14 SS14 SS14 SS14 SS14 SS14 SS14 SS1	7060 7421 7740 6010 6010 6010 6010 6010 6010 6010 60	Metals/Water/GFAA Metals/Water/GFAA Metals/Water/GFAA Metals/Water/GFAA Metals/Water/ICP	AS BE	Arsenic Lead Selenium Mercury Aluminum Antimony Barium Calcium Calcium Calcium Copper Iron Magnesium Magnesium Manganese Nickel Potassium Silver	2.00 4.54 2.54 0.50 200 25.1 3.0 5.0 5.0 5.0 5.0 10.0 112 89.2 23.3 10.0	50.0 50 50 10000 5000 5000 10000 7500 7500
SS14 SS14 SS14 SS14	6010 6010 6010	Metals/Water/ICP Metals/Water/ICP Metals/Water/ICP	NA TL	Sodium Thallium Vanadium	251 288 7.62	10000 7500 10000

Table D-1 Certified Methods for Target Compounds (Page 2 of 12)

Table D-1 Certified Methods for Target Compounds (Page 3 of 12)

USAEC Method No.	BPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/1	Upper Limit µg/l
UM27 UM27 UM27 UM27 UM27 UM27 UM27 UM28 UM28 UM28 UM28 UM28 UM28 UM28 UM28	8240 8240 8240 8240 8240 8240 8240 8270 8270 8270 8270 8270 8270 8270 827	Volatiles/Water/GCMS Semivolatiles/Water/GCMS	CH2CL2 MIBK STYR TCLEA TCLEE MEC6H5 111TCE 112TCE TRCLE C2AVE C2AVE C2H3CL XYLEN ANAPNE ANAPNE BRFANT BRFANT BRFANT BRFANT BRFANT BRCENT BREANT	Methylene chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl acetate Vinyl chloride Xylenes (Total) Acenaphthene Acenaphthylene Anthracene Benzo(a)authracene Benzo(b)fluoranthene Benzo(s,h,i)perylene Benzo(a)pyrene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroethyl)phthalate	2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.1 1.1 1.3 3.8 1.3 1.3 1.3 1.3	150 200 200 200 200 200 200 200 120 120 12

Table D-1 Certified Methods for Target Compounds (Page 4 of 12)

Upper Limit µg/l	160 120 120 160 160 160 160 160 160 160 160 160 16
CRL µg/l	1.1 1.1 1.6 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte	4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 2-Chloronaphthalene 4-Chlorophenol 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Dibenzofuran Di-n-butylphthalate 1,3-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimitrophenol Dimethylphthalate 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,6-Dimitrophenol
Analyte Code	4BRPPE BBZP CARBAZ 4CANIL 2CNAP 4CLAPE 4CLPPE CHRY DBAHA DBZFUR DNBP 13DCLB 14DCLB 12DCLB 12DCLB 24DMPN DMP 46DN2C 24DMP DMP 24DNT 24DNT
Method Name	Semivolatiles/Water/GCMS
EPA Method No.	8270 8270 8270 8270 8270 8270 8270 8270
USAEC Method No.	UM28 UM28 UM28 UM28 UM28 UM28 UM28 UM28

Table D-1 Certified Methods for Target Compounds (Page 5 of 12)

Method No.	Method Name	Analyte Code	Analyte	$\frac{\text{CRL}}{\mu \text{g}/1}$	Upper Limit μg/l
	A CANADA				
8270	Semivolatiles/Water/GCMS	DNOP	Di-n-octylphthalate	8.0	40
8270	Semivolatiles/Water/GCMS	FANT	Fluoranthene	1.0	4
8270	Semivolatiles/Water/GCMS	FLRENE	Fluorene	1.3	120
8270	Semivolatiles/Water/GCMS	CL6BZ	Hexachlorobenzene	1.0	160
8270	Semivolatiles/Water/GCMS	HCBD	Hexachlorobutadiene	1.0	160
8270	Semivolatiles/Water/GCMS	CL6CP	Hexachlorocyclopentadiene	7.6	160
8270	Semivolatiles/Water/GCMS	CLGET	Hexachloroethane	1.2	160
8270	Semivolatiles/Water/GCMS	ICDPYR	Indeno(1,2,3-cd)pyrene	4.4	160
8270	Semivolatiles/Water/GCMS	ISOPHR	Isophorone	1.1	160
8270	Semivolatiles/Water/GCMS	2MNAP	2-Methylnaphthalene	1.9	80
8270	Semivolatiles/Water/GCMS	2MP	2-Methylphenol	3.9	160
8270	Semivolatiles/Water/GCMS	4MP	4-Methylphenol	6.1	160
8270	Semivolatiles/Water/GCMS	NAP	Naphthalene	3.8	08
8270	Semivolatiles/Water/GCMS	2NANIL	2-Nitroaniline	9.6	160
8270	Semivolatiles/Water/GCMS	3NANIL	3-Nitroaniline	. 30	160
8270	Semivolatiles/Water/GCMS	4NANIL	4-Nitroaniline	4	160
8270	Semivolatiles/Water/GCMS	NB	Nitrobenzene	2.9	160
8270	Semivolatiles/Water/GCMS	2NP	2-Nitrophenol	6.7	160
8270	Semivolatiles/Water/GCMS	4NP	4-Nitrophenol	4	160
8270	Semivolatiles/Water/GCMS	NNDNPA	N-Nitroso-di-n-propylamine	3.2	160
8270	Semivolatiles/Water/GCMS	NNDPA	N-Nitrosodiphenylamine	5.9	120
8270	Semivolatiles/Water/GCMS	PCP	Pentachlorophenol	12	120
8270	Semivolatiles/Water/GCMS	PHANTR	Phenanthrene	1.0	160
8270	Semivolatiles/Water/GCMS	PHENOL	Phenol	6.2	160

Table D-1 Certified Methods for Target Compounds (Page 6 of 12)

USAEC Method No.	EPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/1	Upper Limit μg/l
UM28 UM28 UM28 UM28 UH02 UH02 UH02 UH02 UH02	8270 8270 8270 8270 608 608 608 608 608	Semivolatiles/Water/GCMS Semivolatiles/Water/GCMS Semivolatiles/Water/GCMS Semivolatiles/Water/GCMS PCBs/Water/GCEC	PYR 124TCB 245TCP 246TCP PCB016 PCB220 PCB221 PCB232 PCB232 PCB232 PCB232 PCB232	Pyrene 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Aroclor-1016 Aroclor-1250 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	1.0 1.4 4.6 4.8 0.15 0.15 0.15 0.15 0.15 0.15	80 160 160 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

Certified Methods for Target Compounds (Page 7 of 12)

Table D-1

SOIL

				Variable of the second of the		
USATHAMA Method No.	USEPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/g	Upper Limit µg/g
JD19 JD17 JD15 HG9 JS13 JS13 JS13 JS13 JS13 JS13 JS13 JS13	7060 7421 7740 7471 6010 6010 6010 6010 6010 6010 6010 60	Metals/Soil/GFAA Metals/Soil/GFAA Metals/Soil/GFAA Metals/Soil/GFAA Metals/Soil/CP Metals/Soil/ICP	A TANA AGE CO CA CO CA AGE CO CA CA AGE CO CA CA CA AGE CO CA	Arsenic Lead Selenium Mercury Aluminum Aluminum Antimony Barium Baryllium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Thallium Vanadium	0.250 0.177 0.250 0.027 20.0 41.3 0.962 0.500 0.515 0.669 0.669 0.665 0.937 11.3 37.1 2.00 1.54 11.9 0.521 44.8	10.0 10.0 10.0 5000 5000 5000 5000 5000

Table D-1 Certified Methods for Target Compounds (Page 8 of 12)

USAEC Method No.	EPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/g	Upper Limit µg/g
JS13 KY01 LM28 LM28 LM28 LM28 LM28 LM28 LM28 LM28	6010 82240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240 8240	Metals/Soil/ICP Cyanide/Soil/Color Volatiles/Soil/GCMS	ZN CYN ACET C6H6 BRDCLM CHBR3 CH3BR MEK CS2 CCL4 CLC6H5 CCL4 CLC6H5 CCL4 CLC6H5 CH3CL DBRCLM 11DCLE 11DCLE 11DCE 11DCE 11DCE 11DCE 11DCE	Zinc Cyanide Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloronethane 1,1-Dichloroethane 1,2-Dichloroethane 1,3-Dichloropropane cis-1,3-Dichloropropene	1.94 0.926 0.046 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	2000 10.0 0.20 0.20 0.20 0.20 0.20 0.20
LM28 LM28 LM28	8240 8240 8240	Volatiles/Soil/GCMS Volatiles/Soil/GCMS Volatiles/Soil/GCMS	T13DCP ETC6H5 MNBK	trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone	0.013 0.002 0.022*	0.094 0.20 0.20

Certified Methods for Target Compounds (Page 9 of 12)

Table D-1

USAEC Method No.	EPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/g	Upper Limit μg/g
LM28 LM28 LM28 LM28 LM28 LM28 LM28 LM28	8240 8240 8240 8240 8240 8240 8240 8270 8270 8270 8270 8270 8270 8270 827	Volatiles/Soil/GCMS Semivolatiles/Soil/GCMS	CH2CL2 MIBK STYR TCLEA TCLEE MEC6H5 111TCE 112TCE TRCLE C2AVE C2AVE C2AVE C2AVE C2AVE ANAPNE ANAPNE ANAPYL ANAPYL ANAPYL ANAPYL BEFANT BEFANT BEFANT BECEXM B2CEXM B2CEXM B2CEXM B2CEE B2CEE	Methylene chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (Total) Acenaphthene Acenaphthene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(c)h,i)perylene Bis(2-chloroethyl)ether Bis(2-chloroethyl)ether	0.040 0.005* 0.002 0.002 0.002 0.002* 0.002* 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Certified Methods for Target Compounds (Page 10 of 12)

Table D-1

USAEC Method No.	EPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/g	Upper Limit µg/g
LM27 LM27 LM27 LM27 LM27 LM27 LM27 LM27	8270 8270 8270 8270 8270 8270 8270 8270	Semivolatiles/Soil/GCMS	4BRPPE BBZP CARBAZ 4CANIL 2CNAP 4CL3C 2CLP 4CLPPE CHRY DBAHA DBZFUR DNBP 13DCLB 14DCLB 12DCLB 12DCLB 33DCBD 24DCLP DEP 24DMPN DMP 24DMP DMP	4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline 2-Chloroaphthalene 4-Chloro-3-methylphenol 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene Dibenz(a,h)anthracene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimethylphthalate 2,4-Dimethylphenol Diethylphthalate 2,4-Dimitrochenol 2,4-Dimitrochenol 2,4-Dimitrochene 2,6-Dimitrochene 2,6-Dimitrochene 2,6-Dimitrochene	0.033 0.033 3.4* 1.6 0.14 0.073 0.011 0.022 0.033 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.036 0.037 0.036 0.037 0.047	8.8. 8.8.8.4.4.8.4.8.8.8.8.4.8.8.8.8.8.8

Table D-1 Certified Methods for Target Compounds (Page 11 of 12)

USAEC Method No.	EPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/g	Upper Limit µg/g
LM27 LM27 LM27 LM27 LM27 LM27 LM27 LM27	8270 8270 8270 8270 8270 8270 8270 8270	Semivolatiles/Soil/GCMS	DNOP FANT FLRENE CL6BZ HCBD CL6CP CL6CP CL6ET ICOPYR ISOPHR 2MP 4MP NAP 2MP ANP NAP 2NANIL 4NANIL 4NP NB 2NP 4NP NB 2NP 4NP NB 2NP 4NP NB 2NP 4NP NB 2NP 4NP NB 2NP 4NP NB 2NP 4NP NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB POPY NB NB POPY NB NB POPY NB NB POPY NB NB NB NB NB NB NB NB NB NB NB NB NB	Di-n-octylphthalate Fluoranthene Fluorane Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylphenol A-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitrophenol N-Nitrophenol N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine Pentachlorophenol Phenanthrene Phenol	0.26 0.085 0.033 0.046 0.18 1.7 0.067 0.033 0.033 0.033 0.079 0.95 0.95 0.079 0.079 0.079 0.079 0.079 0.071 0.069 0.069 0.069 0.069	1.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.

Table D-1 Certified Methods for Target Compounds (Page 12 of 12)

USAEC Method No.	EPA Method No.	Method Name	Analyte Code	Analyte	CRL µg/g	Upper Limit µg/g
LM27 LM27 LM27 LM27	8270 8270 8270 8270	Semivolatiles/Soil/GCMS Semivolatiles/Soil/GCMS Semivolatiles/Soil/GCMS Semivolatiles/Soil/GCMS	PYR 124TCB 245TCP 246TCP	Pyrene 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	0.033 0.033 0.086 0.082	1.3 5.3 5.3

D.1.1 GC/MS VOLATILES

Water Method and Reference: The method of analysis for water is certified Method UM27, which is based on USEPA Method 8240 (SW-846 USEPA, 1986).

Water Method Summary: A 5-milliliter (mL) portion of the sample is spiked with internal standard and surrogate then transferred to the purging device. The sample is purged with helium and the analytes are trapped on a 3-phase sorbent tube. The analytes are desorbed at 185°C into a gas chromatograph/mass spectrometer with electron impact ionization and quadrupole detector.

Soil Method and Reference: The method of analysis for soil is certified Method LM28, which is based on USEPA Method 8240 (SW-846).

Soil Method Summary: An inert gas (helium) is bubbled through a 5-mL water and 5-gram soil sample (low level method) contained in a specifically designed purging chamber at ambient temperature. The purgeables are transferred from the soil/aqueous phase to the vapor phase and trapped on a three-phased sorbent column. The column is then heated to 180°C and the VOCs transferred onto a Megabore DB-624 column for temperature-programmed GC separation. Compounds from the GC column are detected and quantified by low-resolution mass spectroscopy. Quantitation is performed using internal standard techniques.

In addition, this method is applicable to the screening of VOCs which can be purged from soil and determined by thermal desorption GC/MS techniques. Compounds which can be determined by this method are nonpolar organic compounds having boiling points in the range of approximately 40° - 200°C.

D.1.2 GC/MS SEMIVOLATILES (BASE NEUTRAL ACIDS)

<u>Water Method and Reference</u>: The method of analysis for water is certified Method UM28, which is based on USEPA Method 8270 (SW-846).

Water Method Summary: An 1-liter portion of sample is spiked with surrogate compounds, and extracted with methylene chloride. The extract is dried with sodium sulfate and concentrated to 1 mL with a Kuderna-Danish apparatus. After the sample extract is screened by gas chromatography/flame ionization detector (GC/FID) it is injected with a gas chromatograph equipped with a mass spectrometer detector.

<u>Soil Method and Reference</u>: The method of analysis for soil is certified Method LM27, which is based on USEPA Methods 3540 and 8270.

Soil Method Summary: A 30-gram sample is mixed with sodium sulfate in a thimble. The thimble is spiked with surrogate spiking solution and extracted for 8 hours in a soxhlet apparatus. The solvent is

concentrated to 1.0 mL with a Kuderna-Danish apparatus. The sample extract is screened by GC/FID and injected into a gas chromatograph equipped with a mass spectrometer detector.

D.1.3 ICP METALS

Water Method and Reference: The method of analysis for water is certified Method SS14, which is based on USEPA Method 6010 (SW-846) and USEPA Method 200.7 (600/4-79-020, March 1983).

<u>Water Method Summary</u>: A 50-mL portion of the sample is heated in the presence of nitric and hydrochloric acids. The volume is reduced to 25 mL. The sample is cooled and diluted to 50 mL with ASTM Type I water. The resulting digest is analyzed using an Inductively Coupled Plasma (ICP) Spectrometer.

Soil Method and Reference: The methods of analysis for soil is certified method JS13 which is based on USEPA Methods 3050 and 6010 (SW-846).

<u>Soil Method Summary</u>: A 1-gram portion of the sample is heated in the presence of nitric acid and hydrogen peroxide. The sample is evaporated to near-dryness on a hot plate and refluxed with hydrochloric acid. The digest is analyzed using a sequential ICP. The ICP is integrated with a data system capable of controlling the instrument data acquisition function and processing the data acquired, including correcting for interelement interferences.

<u>Lead Wipe Method and Reference</u>: The method of analysis for wipe samples is Method AS01, which is based on USEPA Methods 3050 (Modified) and 6010 (SW-846).

<u>Wipe Method Summary</u>: The wipe sample is weighed and placed in a beaker with nitric acid. The sample is heated and refluxed with the nitric acid. The sample is then evaporated to near dryness and diluted to volume with deionized water. The resulting digest is analyzed using an ICP Spectrometer. Results are reported as total micrograms of lead per square centimeter.

D.1.4 GRAPHITE FURNACE ATOMIC ABSORPTION (GFAA)

D.1.4.1 Arsenic

<u>Water Method and Reference</u>: The method of analysis for water is certified Method SD30 which is based on USEPA Method 7060.

<u>Water Method Summary</u>: A 100-mL portion of the sample is heated in the presence of nitric acid and hydrogen peroxide. The solution is diluted to 100 mL with ASTM type I water. A portion of the resulting digest is mixed with a modifier solution (containing nickel nitrate) and analyzed using an atomic absorption spectrophotometer equipped with a graphite furnace.

<u>Soil Method and Reference</u>: The method of analysis for soil is certified Method JD19 which is based on USEPA Methods 3050 and 7060 (SW-846).

<u>Soil Method Summary</u>: A 1-gram portion of the sample is digested with nitric acid and hydrogen peroxide. The solution is diluted to 100 mL with ASTM type I water. A portion of the resulting digest is mixed with a modifier solution (containing nickel nitrate) and analyzed using an atomic absorption spectrophotometer equipped with a graphite furnace.

D.1.4.2 <u>Lead</u>

<u>Water Method and Reference</u>: The method of analysis for water is SD30 which is based on USEPA Method 7421.

Water Method Summary: A 100-mL portion of the sample is heated in the presence of nitric acid and hydrogen peroxide. The solution is filtered and diluted to 100 mL with ASTM type I water. A portion of the resulting digest is mixed with a modifier solution (containing magnesium nitrate and ammonium phosphate) and then analyzed using an atomic absorption spectrophotometer equipped with a graphite furnace.

Soil Method and Reference: The method of analysis for soil is certified Method JD17 which is based on USEPA Methods 3050 and 7421.

<u>Soil Method Summary</u>: A 1-gram portion of the sample is digested with nitric acid and hydrogen peroxide. The solution is diluted to 100 mL with ASTM type I water. A portion of the resulting digest is mixed with a modifier solution (continuing nickel nitrate) and analyzed using atomic absorption spectrophotometer equipped with a graphite furnace.

<u>Paint Method and Reference</u>: The analysis for paint utilizes atomic absorption techniques. The method, ASTM 3335-85A, is not a USAEC certified procedure.

D.1.4.3 <u>Selenium</u>

<u>Water Method and Reference</u>: The method of analysis for water is SD30 which is based on USEPA Method 7740.

Water Method Summary: A 100-mL portion of sample is heated in the presence of nitric acid and hydrogen peroxide. The solution is diluted to 100 mL with ASTM type I water. A portion of the resulting digest is mixed with a modifier solution (Magnesium nitrate and nickel nitrate) and analyzed using an atomic absorption spectrophotometer equipped with a graphite furnace.

EI-DF.APP D - 16

Soil Method and Reference: The method of analysis for soil is JD15 which is based on USEPA Methods 3050 and 7740 (SW-846).

<u>Soil Method Summary</u>: A 1-gram portion of sample is heated in the presence of nitric acid and hydrogen peroxide. The solution is diluted to 100 mL with ASTM type I water. A portion of the resulting digest is mixed with a modifier solution (Magnesium nitrate and nickel nitrate) and analyzed using an atomic absorption spectrophotometer equipped with a Zeeman Furnace.

D.1.5 MERCURY

<u>Water Method and Reference</u>: The method of analysis for water is WW8 which is based on USEPA Method 245.1.

<u>Water Method Summary</u>: A 100-mL portion of sample is digested with a sulfuric/nitric acid-potassium permanganate solution by heating for 2 hours at 95°C. After reduction with hydroxylamine hydrochloride, stannous chloride is introduced into the vessel containing the digest and the vessel is attached to an atomic absorption spectrophotometer fitted for determination of mercury by cold vapor.

<u>Soil Method and Reference</u>: The method of analysis for soil is HG9 which is based on USEPA Method 7471 (SW-846).

<u>Soil Method Summary</u>: A 1-gram portion of sample is digested with aqua regia-potassium permanganate by heating at 95°C. After reduction with hydroxylamine hydrochloride, stannous chloride is introduced into the vessel containing the digest and the vessel is attached to an atomic absorption spectrophotometer fitted for determination of mercury by cold vapor.

D.1.6 POLYCHLORINATED BIPHENYLS (PCBs)

<u>Water Method and Reference</u>: The method of analysis for water is UHO2, which is based on USEPA Method 608.

Water Method Summary: An 800-mL sample is extracted with 3 x 50 mL of methylene chloride. The solvent is exchanged to hexane and concentrated to a final volume of 5 mL. The extracts are analyzed by gas chromatography/electron capture detector (GC/ECD) with helium as a carrier gas.

Oil Method and Reference: The method of analysis for transformer oil is not a USAEC certified procedure. The method is based on USEPA-600/4-81-045.

Oil Method Summary: The sample is diluted on a weight/volume basis so that the concentrations of each PCB isomer is within the capability of the GC system. The diluted sample is then injected into a gas chromatograph for separation of the PCB isomers.

D - 17

D.1.7 TOTAL PETROLEUM HYDROCARBONS

<u>Water Method and Reference</u>: The method of analysis for water is based on USEPA Method 418.1 (USEPA, 1983).

<u>Water Method Summary</u>: An 800-mL sample is extracted with 3 X 30 mL of fluorocarbon-113 and brought to a final volume of 100 mL. Following the addition of silica gel, the extract is analyzed by infrared spectrophotometry.

<u>Soil Method and Reference</u>: The method of analysis for soil is based on USEPA Method 418.1, modified for the analysis of soil.

<u>Soil Method Summary</u>: A 10-gram sample is extracted with 3 X 30 mL of fluorocarbon-113 and brought to a final volume of 100 mL. Following the addition of silica gel, the extract is analyzed by infrared spectrophotometry.

D.1.8 CYANIDE

<u>Water Method and Reference</u>: The method of analysis for water is CN1 which is based on USEPA Method 9010.

<u>Water Method Summary</u>: The cyanide, as hydrocyanic acid (HCN), is released by refluxing 500 mLs of sample with strong acid and distillation of the HCN into an absorber-scrubber containing sodium hydroxide solution. The cyanide ion in the absorbing solution is then manually determined colorimetrically.

<u>Soil Method and Reference</u>: The method of analysis for soil is KY01 which is based on Contract Lab Program Modification (CLP-M) Method 335.2.

<u>Soil Method Summary</u>: A 15-gram sample is wetted with 500 mLs of water. Cyanide, as hydrocyanic acid (HCN), is released from cyanide complexes by means of a reflux-distillation operation and absorbed in a scrubber containing sodium hydroxide solution. The cyanide ion in the absorbing solution is then determined by volumetric titration or colorimetrically.

APPENDIX E

BORING LOGS, SURFACE SOIL SAMPLE DATA FORMS, AND PHYSICAL ANALYSIS RESULTS

E-1 Boring Logs

1		L. STOLL E <i>LD LO</i>				CIATES, II R ING	NC.			ſ	ORING		<u></u>	B -	2	4			SHEET	1_	_OF _		
=	PRC	DJECT NAME	ANE	LOC	ATION			PRO	DJECT NU	IMBER	ELEV	/ATIO	N AN(DAT	UМ								_
	DRI	H. Dau	<u>gla</u>	_ ک_	TEE	S EXCE	<u>55(NG</u>	DR	ILLER	-020 SULUA		AND			1	325		ł	E AND TH			TED	
` ت	DRI	LLING EOUIF					1.0					PLETI	ON D	ERTH	l		-		AL NO. O				
	SIZE	HAND EAND TYPE	OF B	IT			O. C	7 73			NO.	OF	BUI		ss	;		ORIV	E		LABOP	ATORY	
_	DRI	しいの FLUID		2 7	toati	h hit					 	IPLES TER	FIR	IST	i				AFTER _		HOURS		-
ı	-	N /T	, (50)							······	LEV	ÆL: ROGE		21970			SW.		CKED BY	MAT	=		_
7	TYF	04	A H			DRIVING WT.	ا 10 س	165	ÐRC	DP 1.5ff	1							ł	16-			Ц	
Ì			MPLE		·							EST	IMATI	ED									
	DEPTHYFEET	TYPE AND NUMBER	NTERVAL	RECOVERY	BLOW		DESC	RIPTIO	N		USCS	GR	SA		MOISTURE	CONSISTENCY	COLOR		c	ОММ	ENTS		
	0-	Y		6"		SURF: #	TLL	MATE	RIAL	- mado	130	50	25	25	Dry	بهم	. 3	<i></i>	lead St	rico	0.0	ppm	_
	معر					up of 9	saveli	Sand,	si/1 z	clay	12						12	-	Sangl	0	400	-FA	_
ì		0		6"		Ganalle	. <	4.0	1 11	\$ silt	GM	(-0	25	15	0 ₀ w	edit	535	H	oodSpa	200	0.0	DOM.	_
3)	7.			6		alluvian	low	noi	ist po	orly soil	Gc		<i>g-1</i>				77	a				uning	_ -
	8-					Gravels	are M	ode	up of	orly soit sands lo zite	le					_		15				y hadi	1
				-		Limeston	0 \$ 500	ne g	uant.	zite						-		70	hand	am	zez_		_
9	1					auger	Rede	Sas	1-1	1 larg								Hea	d Space	2 =	0-00	ppm	_
Í	18				-	1	· /			· 0,	 						<u> </u>	<u> </u>				•	_
<u>.</u>				-	-	Moved	10 0	adjo	reent	asla				·			-	1 8	ampl	L	0.5_1	n 1.0f	1
į	84.																						
-	1		_	ļ	<u> </u>				·	+ -							-	ļ					_
				-		Hard this ar		will	not,	RENELIA	1					-	_	-			····-		-
~()	30					1105 20			4 Min.	T TOUT													
ì	8		<u> </u>		ļ						<u> </u>												_
					 	 				·						ļ	-	<u> </u>					-
ï	16-																						
	11-		_		ļ	<u> </u>						_			-		_	_					4
							 				 	-			-		-						4
	12-							·															
-	13-				<u> </u>	1					ļ						_	_			-	n. 0-94	_
					 					•			=		-							· · · · · · · · · · · · · · · · · · ·	-
~	14-																						_
	15			<u> </u>	 						ļ							ļ					_
Ĵ	-		L	l	<u></u>	1					I	I	l	l	L	l	l	L					4
						G F	TDP TLL	0 ,0	o - /	ft off	L	ı,H	/;	י מ	(o.	1)							

FOPM11/JAN 1988

	0.7.01.1	40		000	CLATEC INC	SH	- 1 Y F	't:		SHE			_			
	STOLL E LD LO				CIATES, INC. RING	ВС	RINC	3	58		23 24	75	10-	3-91 SHEET	OF	
		4410		- TION	IPROJECT NUM	BER	ELEV	/ATIO								
Ŧ	-4. Do	wa	las	J	EPS EXCESSING 1333.1	020	0.75	- 4440	T.1.15	CTAG)TCD			DATE AND TIME CO	OMPLETED 40	 -
oriu	LLING COMP	KNY			TODO SU	ILC (JAX	DAIL	: AND 10 - :	11ME 3-9	I	13	25	5	10 - 3 - 91 TOTAL NO. OF SAN	OMPLETED 1915	10/8/
DRII	LING EQUIF	PMEN	T: M	ETHO			сом	PLETI								(-/• /
3 /	LAND TYPE	AUC	38	<u> </u>	3" 0.0. 1.0		NO.	OF	TBUL	<i>к</i>	ff SS	N.C	10/	(1) DRIVE	LABORATORY	
Size	3	1.0	'	2	Tooth auger			PLES	:						ED-	
DRII	LLING FLUID)			0		WA'	TER ŒL:	FIR	ST		No	Gu	AFTER	HOURS	
SAN	APLER HAMI	MER		·····			HYD	ROGE	OLOX	SISTA	DATE	10-3		CHECKED BY/DAT	E /0.4	
TYP	E 2/4	<i>''</i>	_		DRIVING WT. ~ 10/65 DROP	1.5ft	10	200	50	LLI	(UA	N		mx 10/	7 (4)	
HE	SAI TYPE AND NUMBER	MPLE:	<u>S</u> ->:	r			٦ ا	EST PER	IMATE CENT	D	MOISTURE	S S	<u>ج</u>			
THY	7,05,440	RVAI	ECOVERY	BLOW	DESCRIPTION		USCS SYMBOL				TSIC	ISIST	COLOR	COMM	ENTS	
ä	NUMBER	IN IN	RECC	목용			ာ ဖ	GR	SA	FI	ž	ģ		- PID		
ø			I		Clayer Sand - fine to v. fine	2,	SC		80	20	low	bose	1:77	Hood Spore	_ 0.00 but	
1	•		1	ļ	moderate sorting, < 3%	gravels	ļ			-		_	• (collected:	sample 00	5-4
			*		Ţ		SC		90	20	اما	1~4		Very Dogy -	1000 e	
1	2		+	 	Same as above				4U	10	w	302		Collected	Somple 0.5-1.0 a	
			J													
F	3				Some as above uf	more	SC		80	20	Mod	10058		Hard space	= 0.00 ppm	
1			4	-	moisture			_						Collected s.	1.0 - 1.5 con	100 /00
	۸ –		*	\vdash	Sitty Sand - med to fin	ne .	51		80	10	Mod	lose	5.1	DID =	0.00 ppm	770510
\$	-1	 	-	1	moderate sorting, no gra		7.	1	<i>D</i>		100		4/6		Sample	
ير آ			\downarrow		Mr. 5 Mm Content				60	40					1.5-2.0 com	posites
	5		1		Clayer Sand - fine to	. V. fine	50	_	85	10-3-	Mad	1000	3/t	۷ ۲	, 0 1-	
x 1			-	<u> </u>	well sorted, low ant of sil	<u>/</u>	 		17		·			Sample	5.5 to compos	JE#
	6		4	 	CLAY - loan moderat	1. S. o.c.	CI.		30	70	Nost	med	25	41 P. ID =	0.00	
18.	6		\parallel		moist								31	Collecte	ed Sample	
-			\checkmark				-	<u> </u>						2.5	-3.0 conpre	ted
	7_	ļ	_	ļ	Some as above		├	-		_					3.0-3.5 cm	/l
1/6			 	 			+	-	ļ	-				Sample	3.0-3.5 cm	position
	8	-	V	1	Not logged-NE 10/1/11 - Le	Grend	Sa	46	- @	19	15	07	0/3	191 (3.5 h	, 4.0 A)	
74.					lost auger in hole			ľ				Se,	1	do la 5 10/3	1/21 %	
W.		<u> </u>	1	4	<u> </u>		-		-	<u> </u>		60	npo	site wit	0.5-3.5	
		 	_	 	will try to recover	Jomp	yor	NOU	<u> </u>	-	-					
7 14		-	-				\vdash	-	-	-	-					
					-	145										
V						' 70-3	19		ļ		<u> </u>					
16		ļ		┦			/	-	-	 -	-					1
	l	1	L	<u> </u>	1-			1 .	<u> </u>	1	i	L	L	<u> </u>		1
					BFILL 0.0 f		, _	4	4	0.11	, X	Lu	٠,	(01)		
Ĭ						ד ס	. 0	'	•			(J'			
					BSTAT = FS											

BBEI MALVITMOOT

SITE TYPE R. L. STOLLAR & ASSOCIATES, INC. **BORING** FIELD LOG OF BORING SHEET OF PROJECT NAME AND LOCATION PROJECT NUMBER ELEVATION AND DATUM DO - TOPS &
DRILLING COMPANY

K: L. Shollow
DRILLING EQUIPMENT: METHOD Excessing DATE AND TIME STARTED DATE AND TIME COMPLETED 0/7/91 COMPLETION DEPTH Hand augh / chine sampler 3,4ft BULK Continuous - in heles 3" 10 2 to the bit NO, OF SAMPLES: FIRST NOGWT WATER LEVEL: DRIVING WT. 10 165 DROP 1-5 AT SHEM 10/ SAMPLER HAMMER CHECKED BY/DATE TYPE 2 1/4" ny 10/9/90 INTERVAL DIVE BACKERY BLOW COUNT PERCENT OF DESCRIPTION COMMENTS GR SA 00-10 Bown gravely Sit, grant is M 20 5 75 SAMPL SB-26 0-0,5F in cuttings place of 1.0 2.0 Bown gravelly silly day of CL 20 10 70 00 H MM M 4/3 HS (25 H) = 0.0 ppm 0-3.4 as above, black nativid Hs(3,4ft) = 0.0 yem appears to increase and is not alway " hard") no wood No oder; little mettled SAMPI SB-26 15 to 38 M nger refusal at 3,4 ft 1/thi Dama (3) are stored nahu BFILL 0.0-3,4ft Cuthings (01)
BSTAT - EB FS
Sampled w/ 2" x 6" polybuterate hules Mide sampler

File Type: GFD

SITE TYPE SITE ID

R. L. STOLLAR & ASSOCIATES, INC. FIELD LOG OF BORING

BORING SB-27

SHEET / OF /

PRO	DIECT NAME				F	PROJECT NUMBE		ELEV	ATION	1 VN	D DAT	UM					<u></u>
0	0-72	85	_2	XU	ssing	7333~0	20		E AND	-				······································	D. T. C. A	· <u>·</u>	
	LLING COM		las	_		N. Olen	11	DAIL	: AND ノテ	11ME 197	:STAF /	≀≀ED V∕\	50	,	DATE AND TIME	COMPLET	ED 4.
DRI	R/ S-	PMEN	T: M	ETHO	· f ,			COM	17 PLETIO	OND	EPTH	. 1.			10/7-/9/ TOTAL NO. OF S	AMPLES	2
C171	Hond	06.8	<u>u</u>	SLa	I dive samples				_3	. 4 BU	1 1	Tss			DRIVE	- In W2	es TODY
3121	3 / L	n N		ž	tooks bit			NO.	OF IPLES:		u	33			Dillive	2	TORY FD
DRI	LLING FLUI	1/							rer EL:	FIR	rst No	2/ (/	•	AFTER		
SAN	IPLER HAM	MER	ne					нүр	ROGE	OLO	GIST/C	DATE	·		CHECKED BY/D/	NTE	
TYF	<u>€</u> 2"	4"			DRIVING WT. VIO	165 DROP	1.5H	7	<u>] k</u>	He	m	10	17	191		10/91	9 \$
EFT	SA	MPLE							ESTI PER	MATI	ED		SC.	_	-		
DEPTHÆEET		₹	VER	₹¥	DESCRIE	PTION		USCS SYMBOL			\mathbb{H}	STU	ISTE	COLOR	COM	IMENTS	
DEP	TYPE AND NUMBER	INTERVAL	RECOVERY	BLOW	DESCRIE	TION		S S	GR	SA	FI	δ	SNO	ŏ		WACIATO	
0-		0.0	5		0-0,5 Bown grave	Ilm sit		Λ/	20	¥			1	7.5.7	SAMPLS	8-27 0	254
		107	AJ		2-215 Bom 8	eavelby silly	day	CL	20	5	75	LM	14	7.5%	2	0010	<u>v.J.,</u>
'-		لمكيا	31		FEL STIM	minor black									At 1,2ft - NC	neud ·	nament
2-		لإمرا	,5		· material, c	obble are up	b							2 - 2	ast 1000	pipe_	
		251	.3±		14 mm diax	rette, mottle	d colo	CI				MM	46.0	3	16 6/7/21		
3-		34	- Y		25-3.0 dark bow	2 granelly	sily	CL	20	<u>S</u>	1/5		<u> </u>	3/2	becovered		
		37.2			clay some	171	رئـرا		\Box						at 3.0 ff		
4-					aria ariam	\									purde.	piece.	'8
5-															•		.0
							· · · · · · · · · · · · · · · · · · ·								SAMPL C		4 14
6-	•	_			Anger ref	usal as		 			\vdash				<u>S</u> 6-2		NG 2/11/92
		 			3.4	<u> </u>		\vdash									2/11/1
7-															,		
8-															·		
		<u> </u>						<u> </u>									
9-						•	·	<u> </u>									
		_						-									
10-	<u> </u>							-		-	-					· , · · · · · · · · · · · · · · · · · ·	
					Location is a GOO I do	diacent to	ocu :	ci		/0	- 1	مما	hal	21	Some 5	all be	class
11-					610) 1 di	m, sevue	J	15	ell.	90	sol	سن	ولم	a.	containe	are	
12-		<u> </u>			nearby, a	igainst s	تيكعد	_	03	کے	140		0				
	,	_			Natural gra	sces/wee	de	an	٧_	M	esi	nA		·~	this a	ua	
13-				•				-									
14-																	
15-																	
		<u> </u>						<u> </u>	Ll						····		
	B	FI	CL	2	0.0-3.4ft 16/7/9) FS	cu thui	0) (0	1)									
	מ	・・・ Cグ⁄	⊦ <i>7</i> —	ント	16/7/9) FS		-	-									
	0 .	٠/١٠	1	1.	1 2" x 6",	soly bat	cal	Í	A	, 6	واعد		11	1 Sic	Le sang	lez	
	Š	inj	ne.	a w	1 = "	<i>"</i>			-						8		1

File Type: 6-FD SITE TYPE SITE ID

R. L. STOLLAR & ASSOCIATES, INC. *FIELD LOG OF BORING*

BORING SB-28

SHEET ___OF ___

	DJECT NAM				~ ,	PROJECT NUMBER	ELE'	VATIO	N AN	D DAT	UM				
1 2	0-77	PS	F	art	Douglas	1333-020	ĺ								
						DRILLER				ESTA				DATE AND TIM	
4	ayne	_ (<u>-</u> n	VICO	mental	Kevin Cross	10/	1/9	/_	(OU	16			10/1/91 TOTAL NO. OF	1460
DR	ILLING EQUI	PME	41: N —	A A M) 11/11/11/11	1 o H- 1)					l			TOTAL NO. OF	SAMPLES , 2
SIZ	TYLE FAND TYPE	ZS	RIT	1410 V	AU 08 (414)	2D/1St)		OF.	TRU	<u>I</u> LK	Iss			CONTINUON	S-IN MES LABORATORY
"	41/11	10	,	77	ku no castil	•		.OF APLES	•	CIV	~	•		Dillec	2-E,1
DR	LLING FLUI)			8" OD carbid	3	WA	TER	FIF	RST			-	AFTER_	HOURS
	None MPLER HAM	•					LE/	ÆL:	N	GISTA	oT				
SAI	MPLER HAM	MER												CHECKED BY/C	
TYI					DRIVING WT.	DROP	3/	124	la	~_	101			ne	0/9/40
EF	SA	MPLE	15.				_ ا		MAT		ıμ.	CONSISTENCY		·	
DEPTHYFEET		I₹	RECOVERY	≥ ₹			ကြည်	PEH	CEN	TOF	MOISTURE	STE	COLOR		
E	TYPE AND	NTERVAL	8	BLOW	DESCRI	PTION	USCS			_:	QIS	NSI	8	co	MMENTS
0.	NUMBER	1	188	1				1 1	SA	1 1	_				
		0.0	1000	10	0.0-0.8 dark bown	candysi H (bosoil)	OH_	0	20	80	MM	MD	3/2	SAMIL S	B-28
1-		Ц	ا نام	HE	with gous no	k	GC-	sc."	19/92						[0.0-0.5A]
		Ш	<u></u>	<u> </u>	08-10 redduh	bown gavelly	Cr	30	30	40	in	M	5/4	Hs (14) 0.0ppm
2.	ļ	Ш	<u> </u>		andy day	, gravel up to	<u></u>								
-		Ц	<u> </u>		3ª dram, s	and is fb if	<u> </u>					<u>.</u>		SAMPL SB	-28 0.5-0.8
3-			<u> </u>		Grained		<u> </u>								4,0-4,3
-					<i>V</i>					·					4.3-5,0
١.	,	401	<u> </u>				SC	اد عا	792						
'		101	4.01	1	4.0-58 ft redde	sh hown claver	02-	35	45	20	2M	VL	51K		
5.				3,1		d saull upp	Mr						,		-
"				pec		d is subang b									
6-		\sqcup		<u> </u>	Shounded.	sand is use to regard.									
"							SP	-	95	5	MM	SO	757	Z	
7-					Sind nul	Sated . shang to									
'			7.13		rouded, s	harp erosional								Hs (7.14)	0,0 2000
8-					contact(>).	who abone mit									- Ppull
ľ															
9-		10			-	•				· 1					
	•	201	1.0		9.0-10.0 Brown S	andy clay sandis	CL	-	45	55	γM	NS	7.5%	2	
10-					vf grad,	ι ,							7		
"					, -		CL	-	20	80	TH	אג	754	e I	
11-				5,0		it moreases							71		
				uc	down and	ugly, webres.									
12-					Inciences										
1'2															
13-															
['3]											NGT				,
		4.0	M.9												· · · · · ·
14		140		.,		,						,		HS (14.0 F1	1) 00 am
				att										112 (1111).	J. O. V. FFIN
15		1573	15.)											He (10) K) 0.0 pm
	TD	me	eas	mea	1 15.2 ft	S/	MI.	PLE	v	wi	<u></u>			"OP CI	
	00	1/1	, ,	2.0-	1.0 duthings	01)								side	
	NI nc			1.0-	-15.2 grout	(02) 4	14	111	//\	H	c.A	1	4"	00 Cons	7
	131	1-		~ ~	U	,) הה	. 11	 ,	tul	ار ا	7	•		
	BST	A)		LB		•	oan	1	Ċ	inu					

To Le Pype ! GAS.
TE TYPE SITE ID

SITE TYPE

R. L. STOLLAR & ASSOCIATES, INC. FIELD LOG OF BORING

BORING SB-29

SHEET __OF_2

PF	OJECT NAME	E AND	LOC	ATION		PROJECT NUMBER	ELEV	/ATIO	NA V	D DAT	UM					
					+ Douglias	1333-020										
Of	RILLING COM	PANY	•		()	LORILLER				E STAI				, , ,	IME COMPLET	
	Layno HILLING/EQUI	2	En	VIA	inner lat	Kevin Cross	10/	2/9	1		30 9	<u>}</u>		10/2/9		5
DF	HLLING/EQUI	PMEN	NT: N	IETHOD VAVV	08 (4'4"10 11		COM	いしこう つ	0ND	EPTH	_ '	•			OF SAMPLES	71.
	F AND TYPE	OF F	ATP (MA	08 (4 4 10 1)	2/4/	NO.			<u>S</u>	Iss			ORIVE	LLABOR	ATORY
13"	4	11 /	D.	- フ	76"00 cars	de		OF 1PLES							2	7-ED
DF	ILLING FLUIC)			0 00 000	<u>~</u>		TER	FIF	RST		-		AFTER	HOURS	
	/	Vo	ne		<u> </u>		rev	EL:		Nã	60	<u>s 7</u>	-			
SA	MPLER HAM	MER					HYD			GISTA	DATE	_,		CHECKED B		
	PE			·····	DRIVING WT.	DROP	1/	Elle	m		$\frac{2}{2}$	19	/_	114	10/9/91	
يا 🛚	SA	MPLE				N.	ار' ا	EST	MAT	ED ED	щ	CONSISTENCY				
EPTHYFEET		₹	RECOVERY	ᆉ			USCS SYMBOL	PER	CEN	. 0+	MOISTURE	STE	COLOR			
	TYPE AND	INTERVAL	ļģ	BLOW	DESCRI	PTION	SYN				SIO	NSI	8	•	COMMENTS	
ă	NUMBER			шΟ				GR	SA	Fl	2	8			1	
7 °		8.0	60		0-0.8 fill-dark box	in silly pand.	Fц		83	15	14	۲	64K			
۔ ا				OEL		whounded, moderated							<i>''</i>			
1	1.	П		21			ក្ប	مد	30	18	13	S	SXI		•	
l		П	ابر		clarou said	. Stranded sovel			NG	.,			7			
2	1	\Box	*	1	in the 9 mass	diameter party								1/2/21	ff) = 0.0	v.m
					ted 600	i handrand								11126		r f
3						, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									***	
		40			- paru			-					·			
	<u> </u>	40	40		4.0-6.8-6:11-yell	avich bour come. Ol.	FILE	10-	45	40	CM	5	109K	,	***************************************	
		H				, of to have	110	-13	<u>, , , , , , , , , , , , , , , , , , , </u>	ا ا	<u> </u>		12/			
5		\Box		1th		orly sorter							\vdash			
				2.8	June + Po	orn array		\Box								
6	1	Н	\Box									-		 		
			LAS		,							-				•
7	1		1												•	
			1				-									
8	 	\vdash	1										-	<u> </u>		
1	<u> </u>		1			•			<u>`</u>	-					· · · · · ·	
9	 	10	9.01		0. 101	a his		$\vdash \vdash$					-			
	 	-	+	1 46/	9,0 to 9.6 as	11 ×	(1)	1/5	70	172	15.46	<i>u</i> ^	512	CMMI	979	9 50 -0
10	+		100	1.2	9.6 & 10.2 re gravely s	dawn bour	<u> </u>	10	10	10	νM	<i>(1</i> /1)	#4	SIMPL	9.7 - 9.	1 36-29
M		$\left - \right $	1-	-	gravely 5	andy clay	-							dia li	11\~	
11		\vdash	-		rock in U	and tube				-			-	HS (10	124)=0	1.0 gm
d		\vdash	1		prevented	an more sample							_			
12	-		-	\sim	from enter	ing outer							_			
וע	<u> </u>		-	ļ	•						<u> </u>					
13										-				· · · ·		
	ļ		_	ļ	,								<u> </u>	Leinn Ji	loughthe. I mat a	rache
14	<u> </u>	Ho.	1 00 1	ļ										nhu	il mat a	1359
		٧١.٠	H. ¹⁰										<u> </u>	-		
15				ļ								•				
<i>[</i>]	<u> </u>	1	1	<u></u>												
						•								V.		

R. L. STOLLAR & ASSOCIATES, INC. SITE TYPE SITE ID FIELD LOG OF BORING BORING SB-29 CONTINUATION SHEET: PROJECT NUMBER 1333-020 SHEET 2 OF 2SAMPLES ESTIMATED PERCENT OF BLOW COMMENTS DESCRIPTION TYPE AND NUMBER CL clay, moto (?) , send is vf 16 grained, 1, the mottled redoit SAMPL SB-29 14-17 (16.3-17.3 Lilled col ble) j 8 · U 25 15 60 M MS SIG SOMPL SB-29 9 190-21.1 reddin brown sandy 19.00 grovely vlay, porty 20 appear to be in thin (I'moh 21 15(21.18+)=0.0 pm Tences) gravel 13 strangular 22 dulled colble @ 2258 Drabont 1.5 ft 23 Ci. 5 15 80 LET NS STY SAMPL SB-29 /24.0 4 24 24-25,0 reddech bon sandy SM 10 15 25 ME 25.0-26,6 reddish 6 an Silly Dand, made sortel, s.kangulan HS (26.6 ft) =0.08pm 27 dulled colle at 3 0 BFILL 0.0-8.0 ft cother (01) BFILL 8.0-29.5 ft growt (0 BSTAT - CB clear a most rest tube MARCED WITH 3,5" OF neasured TD @ 28.4 ft however it was after augus rere pulled up slightly to measure wit. Direller Said Toy at 29-5 ft., Grand surface is the ven and slightly one than surondy area because of excavahai of tanks.

R. L. STOLLAR & ASSOCIATES, INC.

SITE TYPE

FI.	ELD LC	G	OF	BOF	RING	[8	IORIN	G	8	β-	- 3	\bigcirc		SHEET_/	_OF_2
PRO	OJECT NAM	E AN	0 LO	NOITA		PROJECT NUMBER	ELE	VATIO	N AN	IO OA	TUM				
	00 -72	Eρ.	S	Fo	rt Donglas	1333-020									
δΩ	ILLING COM	PAN	(1 /	1333-020 DRILLER KLUN COSS	DAT	EAN) TIM	E STA	RTEC)		DATE AND TIME	COMPLETED * Still nead h the off gran
	ayne	ع	NV	1/m	men bel	Kenn Cross	10	/1 /9	1/		21	4_		10/3/91 1015	- H > 1111 ARACK
DH	ILLING EQUI	PMEI	ΝΙ: Ι . Λ.	11A	11 per (111/111 - 1	1101		1PLET 9. 3			H	•		TOTAL NO. OF S	AMPLES #
SIZ	E AND TYPE	S OF E	/T	דייט ען	U 08 (4"4" TA	<u> </u>		7, <u>5</u> .0F		JLK	Iss	<u> </u>		Continuous-	LABORATORY
1 4	4114 "	ZΛ	~ '	7%	"OD conside			MPLE:							4-ED
DR				·				TER		RST				AFTER 18	_HOURS/30 hs
	MPLER HAM	777	<u>e</u>					VEL:	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	VOC	cw	Z		NOGWI	- / ΝΟ 6ωτ ΤΕ
ł		MEH					HYC	OROG	EOLC	GIST	DATE	. /a	,		
M	1	MPLE	==		DRIVING WT.	DROP		11'			1	<i>(((</i>	{	ms 10	19 177
EPTHYFEET	3^	· · · ·	7.	1					TIMAT RCEN	TED TOF	MOISTURE	2	COLOR		
Ę		INTERVAL	RECOVERY	35	DESCRIE	PTION	USCS	-		T	ほ	IST	윉		MENTS
DE L	TYPE AND NUMBER	빌		BLOW	DE301111	11014	NS &	GR	SA	FI	₽	18	ŏ		WICINI S
0-			0.2]		aiphalt 0 to 0,2 ft 0,2-1,3 ft dark 1		1.0		ļ	1	 				
			+	(EC)	0,2-1,3 ft dark	uddish kowa	100	30	130	190	LM	 	3/2		
1-		H	137		gravelly pardy	clay, grove look	100	الحا	192	├-	├		Ė	HS (13 A)=	0.0 pm
		H	122	1-	8 am diameta;	gravel and sand an	٠	╂	 	├	1		├	Cobble at bas	a peaenled
2.		\vdash	+	 	Coated with	day	+-	╀─		 	 		-	Sangle hom	entains hube
			-	├─				╁	-	┼	╂			SAMPL SB-3	0 [0.5-1.0ft
3-			-	1-			╫	-	-	1.		H	├		4.0-5.0FH
İ		,,	-				-		 	 	 		 		
4-		4.0\ 4p	401	┼	110 / 2 (/ 1:1	,, , , , ,	CC.	SC.	176.3	462	- 11	 	254	<u> </u>	
		עד		 -	4.0-6.3 ff dout	reddish viava	CS	30	30	40	211	1	3/4		<u> </u>
5-			/22	EZ)	gravely san	lyday, is above	1—	├		\vdash	┢	\vdash		SAMP 58-30	5.0-6.34
			(10)	1			1—	╫	-	1—	 	_	\vdash		19.0-9.5Ft
6-				 	`		+-	 		 	 	 		. (
		-	133	1			╂	-		1-			_	Hs. (6,3 ft)	= 0,0 ppm
7-				1			+	-	-	\vdash	 		-		
			$\parallel -$	 				-			-	-	_		
8-		 	1	 		•	+	 	-	\vdash	 	-			
		9.0\	!	1		•	. 	 	-	\vdash		-			
9-		201			9.0-9.8 Ff dark re	11 1 6	 SC	35.2	7192	1/0	LM	14	2574		
			44	(0,5 (47)	10 118 Pf Cane 1	MICH DOWN	ICK	00	.55	73	CM	M	3/4	4- ((1)	
10-	-			1	gavery sera	oday; mich ie gained, simil colle at beig	-	-		 -	-		-	HS (98 FF)=	O.Oppm
					7 1 4	Le grained, since	4			 			 		
11				ļ —	Sample hibe	COOST AT VALLY	1-	_		\vdash					
				 	- sample rese		1-	 		\vdash					
12				 			1	 					-	V : 5. 1 - 1	-111
				 			1							Kewin Suid and	of calle
13		\Box	 		100		1							@ 12-ft	
	7	14.0					 								
14		4.0	AA	,	W.0-15.0 4 0: 5	ilb. Dead and	SM	1	7-	20	M	ر.	7512	SIMP SB-30	IF A=KT.N
			\Box	REC 21 Ft	4.0-15.0 Brown s	Glasulares	17.1	 	/.S_	20	r.	<u>ں</u>	5/4	105.01 Anul	19.0-20.0 Ft
15			17	 1.111/	Sen) had also	to a boom with	1			\vdash					11.0-20.0 FT
			<u></u>	·	pand in cons	to of bonn cilly	ч	1	L	L		لـــــا	ـــــ ا		
i															

INI		EET:	PRO	JECT N	UMBER / 333-020	BO			IMAT		3-			SHEET 2 OF
DEPTHVFEET	TYPE AND NUMBER	INTERVAL	RECOVERY	BLOW	DESCRIPTION	nscs	SYMBOL	PET GR	SA	r OF FI	MOISTURE	CONSISTENCY	COLOR	COMMENTS
5					150-16.1 Roddick bown grawly.	andy s			30	40	UM TO WET	M	512 414	Kern said drilled Co
6			itel s	<u> </u>	Clay sa abone	<u> </u>	:-\$ 71	<u>C</u>						from 15 to 16 ft. 115 (161) = 0.0 ppm
7							7							A
							1							
8				<u> </u>			+		192					
9		190	190		19.0-20.0 redish bram gavelly	and the		30	50	20	ЯM	M	37K	
۰			1.1		day smiles to above	oand M		15	50	35	NM	MS	759K 4/4	
,			PEG		20,4-21,8 read on brown sa	uely ši	5다	30_	40	30	WW	M	535,	
			21.8		ounds classey sav	A I		1/1/2	u/qlq					HS (218) = 0.0 ppm
2			1	-			\dashv							44
3														
4		4.0	24.0	1	24,0-25.5 gravelly clasers	and is	d	20	45	35	W	M	512 414	
5-			7,1	A GZ	smiles to above	, W	-			_				
.6-	1,		اماد		25.5-26.1 spanelly sandy	day, 4)]	20 20	40	90	nM	M	5 8 Kg	
		$\ \cdot \ $	3	1-	Similar la abone	M	4		<u> </u>		_	-	<u> </u>	HS (2:14) = 0.0 pp SAMPSB-30 S25.0-
.7-							\exists							YAME SO LASI
8-		-	 -	-			\dashv		-	-	-			:
9-		71,3							-					
0-		110-			·									
		-	+	-			-		-	┼	-	-	-	
1-										_		-	 	
2-														
3-				-			-		-	-	-	\vdash	-	
4.														
		-	-	-			-		\vdash	-	+-	-		
5 -		<u> </u>		1					1				<u> </u>	
	TO	m	las	med	29.3 ft 5 3-suf. grovt(02)*	MAPLED	ù	1177	4 3	13	, 0	00	10 a	y"ob cont.

R	LSTOL	AR.	г Д	ടടവ	CIATES, INC.		SITE	TYP	E		SITE	E ID			
	ELD LC						ВОР	RINC	3	SI	5-	3/	1		SHEET OF
PR	OJECT NAM				— · ·	PROJECT NUMBER	- 1	ELEV	ΆΤΙΟ	N VNI	DAT	TUM			
00	UO- ILLING COM	Ff.	<u> D</u>	ng lu	is TEB Excep.	1333-0	20	DATE	ANO	TIME	STA	RTED		. 1	DATE AND TIME COMPLETED
	RL	S	6	lla	<u> </u>	N Glan				91 ON D			:30	2	10/8/9/ 1059 TOTAL NO. OF SAMPLES
	ILLING EQUI					. la.	C			21		۲			
SIZ	Han EAND TYPE	OF BI	T	<u>er</u>	c/ crice sa	myee		NO.	OF.	BU	<u> </u>	SS			ORIVE LABORATORY
DB	3 " /	$D_{\underline{\underline{\underline{\underline{\underline{D}}}}}}$	مد	100	to bit			ŞAM WA1	PLES	FIR	ST	_L_			AFTER HOURS
	/V	on	<u>e</u>				1	rev	EL:	N	0/1	150			
SA	MPLER HAM PE 2 //	MER F ¹¹			DRIVING WT. \(\sigma / o \)	be name /s	-54	HYDI M	ROGE	llu	GISTA	DATE 0/	181	19/	CHECKED BY/DATE
1.		MPLES	S		Diliving VII. 70 I	VB 01101 773		-//	EST	IMATI	EO	I 1	ζ Σ		71× (0/9/9/
PH/FEET		VAL.	ÆRY	≥ ₽				S d	PER	CEM	OF	MOISTURE	STE	COLOR	00111151550
DEPT	TYPE AND NUMBER	INTERVAL	RECOVERY	BLOW	DESCRI	PTION		SYMB(GR	SA	FL	ğ	CONSISTENCY	႘	COMMENTS
0		ا مِوطِ	<u>~</u>	PEL	0.0-0.5 datchow	on clama surly	4	ML	_	5	95	2M		7154	topsell guas sed.
,	*kk1	ادی		REC.3	0.5-1.7 applie	with masm									5AMPL SB-31 1.0-0.54
	hr.	15	<u> 4</u>	120	ranciek p	e ces	0.	,,		-			41.5	4-lika	()
2		244	<u>-¥</u>	ed	1.7-2.1 darkedde	shoon city of	24. K	-4	5	5	40	7M	MS	SIR	3/2 HS(2.0+1) = 0.0 pm
3	·	201	_¥	La	May 2 SIR	still at this	Lo.	$\overline{\cdot}$				pey.	#	4/	to ne word 1
		54	_#	REL	217 Todd wh brau	ganely day	4 !	SC	10	50	40	ORI	#_	25%	ζ.
4	30	1-0-1				Silly no maso	0	_							piece of Inst gravel -1" diam
	NF (•/x/s	[VG- 10	10/91 1	this dypth?	\neg		·			-			SAMPL SB-31
5						1 1									0.5-3.2H
6					Anger refu	sal at									0
					(, د	8T	_								
7															
8					Note - description	of soil did					_				
					not midude	concett a	۱. ه								
9					a 401 (60)	Na 21462							-		
10															
	·							\dashv							
11						· · · · · · · · · · · · · · · · · · ·									,
12															
-					•		_								(
13				·	4	****			_						
14															
15								_							
 	100				2 - //						L				
	Bri	LL .	- (0.0	-3,2H c	a Henje (0 L)							
	BST	AT	⁻ ニ	Γ.	S	, , , -+		,		1	1		1.	- -	J I
	Sam	p le	d	W	5 2" × 6" 1	poly bule	na	ti		M	مح	صا	11	.J (
	<i>→</i>	•			sampler										

Tite type: GFO
SITE TYPE SITE ID

R. L. STOLLAR & ASSOCIATES, INC. FIELD LOG OF BORING

BORING BEG-SB-01

SHEET ___OF Q

DRILLING FOURMENT: METHOD COMPLETION DEPTH TOTAL NO. COMPLETION DEPTH	
SIZE AND TYPE OF BIT SIZE AND TYPE OF BIT 4/4/10 - 7/4 OD Carbide DRILLING FLUID DRILLING FLUID DRIVING WT. DRIVING WT. DROP DRIVING WT. DROP DESCRIPTION DESCRIPTI	191 //37 D. OF SAMPLES 3 D. OF SAMPLES 3 LABORATORY 3-ED ER_HOURS BY/DATE 10/9/91
SIZE AND TYPE OF BIT SIZE AND TYPE OF BIT 4/4/10 - 7/4 OD Carbide DRILLING FLUID DRILLING FLUID DRIVING WT. DRIVING WT. DROP DRIVING WT. DROP DESCRIPTION DESCRIPTI	LABORATORY LABORA
SIZE AND TYPE OF BIT SIZE AND TYPE OF BIT 4/4/10 - 7/4 OD Carbide DRILLING FLUID DRILLING FLUID DRIVING WT. DRIVING WT. DROP DRIVING WT. DROP DESCRIPTION DESCRIPTI	LABORATORY LABORA
DRILLING FLUID DRILLING FLUID DRIVING WT. DROP DROP DROP DROP DRIVING WT. DROP DR	ERHOURS BY/DATE (0 9 9
DRILLING FLUID DRILLING FLUID DRIVING WT. DROP DRO	BY/DATE (0 /9/9/
DRIVING WI. DROP WATER FIRST LEVEL: NOGWT CHECKED TYPE DRIVING WI. DROP DESCRIPTION DES	BY/DATE \$\(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\)
SAMPLER HAMMER TYPE DRIVING WT. DROP DRIVING WT. DROP DROP DRIVING WT. DROP DROP DRIVING WT. DROP d 10/9/91	
TYPE DRIVING WT. DROP SAMPLES SAMPLES SAMPLES DESCRIPTION DES	d 10/9/91
DESCRIPTION SAMPLES TYPE AND NUMBER BY SET BOTH SET STIMATED PERCENT OF BY SET BY SE	
00 00 00 0.0-0.8 dant bear sandy dazey ML 5 20 75 MM MS 75 5 5 MM MS 75 5 MM MS 15 7 MM M	COMMENTS
00 00 00 0.0-0.8 dant bear sandy dazey ML 5 20 75 MM MS 75 5 5 MM MS 75 5 MM MS 15 7 MM M	COMMENTS
00 00 00 0.0-0.8 dant bear sandy dazey ML 5 20 75 MM MS 75 5 5 MM MS 75 5 MM MS 15 7 MM M	
2 23 cauelly clay. Sand is 2 23 cauelly clay. Sand is 3 23 South Side of the record of the same of t	- <u>-</u>
2 23 cauelly clay. Sand is 2 23 cauelly clay. Sand is 5 20 45 (1) 1 5/4 2 23 cauelly clay. Sand is 5 20 45 (1) 1 5/4 2 2 3 cauelly clay. Sand is 6 2 4.7 - 6.2 sifty clay. Lat Lam CL - 5 95 M MS 1.572 daily 6 6 67 (Frie change to similar Sec.)	PL BKG-SB-01
2 23 gauelly clay sand is Sini snd. -4" Gh'lle in base of tribe rereas may be quarrite-conted by (lary 100 4.0 4.0-4.7 as above sharp contact by below with 5 22 4.7-6.2 silty clay dark ban Cl - 5 95 M MS 1,572 dark (This change is similar de	0.0 to 0.5/t
23 Some good. 34 Some good. -4" Got ble in base of take reveal may be quarrite-conted by clay clay 4.0-4.7 as above. sharp contact by below onit 3.2 4.7-6.2 silty clay dark law CL - 5 95 M MS 1,372 dark Grant Character is similar de cold	-
3 -4" Cot le in base of tree may be quarrite-conted by clay clay 4.0-4.7 as above. sharp contact by by clay onit 3.24.7-6.2 silty clay dark law Cl - 5 95 M MS 1,572 dark from change is similar de	
may be quarrite-conted who clay 4.0-4.7 as above sharp contrad 5 22 4.7-6.2 sisty clay dark law CL - 5 95 M MS 1,372 dark 6 17 18 18 18 18 18 18 18 18 18	3 ft) 0.0 ppm
1 (lay change to smith of 1 M MS 1,372 della control (1 M	12 hrs lette = 8.7 pm
5 per 4.0-4.7 As above sharp contact IM 5	-
5 pet w/ belas init 3,24,7-6,2 sisty clay dark ham CL - 5 95 M MS 1,372 dark 6 the change is similar the Cold	
3.24.7-6.2 silty clay dark law CL - 5 95 M MS vig dall	•
6 (Fire change to consider the	1. 5.1
	a said and
1 1/15(6	2 Ft) = 0.0.
The second secon	d 31 - 6 -
	3.2 pym
8	
	·
1.0 1.0 9:0-13,6 ac above VM SMM	
10 9	0 to 13.6 ft
	· ·
11 5. 1	
<u> </u>	
12	***************************************
13 12 14 2 1 5 2 2 1	(H.C. (4) 2 AM
13.6-14.0 boun chapen show, SC = 70 20 MM MS 2.55 TH	12:017) - 0.0 pm
14 HO HO HO WAS SON AND STRING SC 10.9) AND MIS 7544 "	y reast) has letter
13.6-14.0 bown clayer pard, 14.0 Hill Mill some hon Staining SC - 70.31 MM MS 2554 r 14.0-15.8 Jank bown clayer pard, 15.0 HO HO N MS 7554 15.0 Dand	a. G
15 and a	ogpm Suit it 11
	14.0H)=0.0 ppm eread 2 live leta? 0.9 ppm said vito colle 0.1515ff

R. L. STOLLAR & ASSOCIATES, INC. SITE ID SITE TYPE FIELD LOG OF BORING CONTINUATION SHEET: PROJECT NUMBER 1333-020 BORING BKG-SB-0 SHEET DOF 2 PERCENT OF COMMENTS DESCRIPTION TYPE AND GR SA NUMBER CL 20 15 65 MM M 54K sandy savelly clay 4" cobble @ buse of 113 (16.5) 0.0 ppm resead 2 hrs later -17 2.9 ppm Lutling Thou CL 20 15 65 MM M 4/3 Ļ٥ SAMPL BKG-SB-01 base of Sample 19.0-21.814 HS (21.8 4)= 211 ppm 23 240 0.4 of a coney was pirtinh quantyite (?) colble. 25 2 6 27 refusal at 25.2 H 2 8 29 ه 3 Sanyled w/ 3.5" OD Clear polybaterate tubes inside of TD measured 25.2 H BFILL 0.0 to 1.5 ft cutting (01) BFILL 1.5 to 25.2 ft growt (02 41/4" 10 1/5A (4" 00 cont smple hibe) BSTAT-CB

E-2 Surface Soil Sample Data Forms (Supplemental EI Program)

_	.	Matking Johnson Frankrauser I I					Cit-	NID.	
		Natkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM					Site	FID SS	503
ro	ect N	ame Project No.	Tota	I Drilled De	epth	٠ ·	<u> </u>	,	
Prill	ing E	DO-TEPS-Excessing 1333-020 quipment Boring Diameter	Date	/Time Drill			5 	•	e/Time Total Depth Reached
		NA 3 1/4"	7/	/ r	09			7//	5/1000/0,5ft
		ampling Device	1	logist	1-		\+	71	Onecked by/Date
C	ation I	Drive Sawyler, 2/4" D. 1.5'drop, 10165. Description (include sketch in field logbook)	<u> </u>	URKO	/ / .	<u> </u>	at	M	N/2 1/2 1/2
	Vu) of Bldg 39 in gully							
		Description	Symbol		Content		stima % of		Remarks
를 등	Interval	(include lithology, grain size, sorting, angularity, Munsell color name & notation,	SS	Lithology	ပိ		76 UI		(Include all sample types & depth, odor, organic vapor
д	Inter	mineralogy, structure, density, consistency, etc. as applicable)	nscs	Ĕ	Water	Gr	Sa	Fi	measurements, etc.)
L	-	Silt, some clay & sand, very fine grained, angular 54R 23/2 dark reddish brown (0.0-0.25ft) granular	ML		Sli	0	5	95	Sample
	_	angular 54R 23/2 dark reddish		~	Mix				tagt
	-	Drown (0.0-0.25ft) granular			5li				
~ 5	-	5:1t some clay & gravel angular 7.5 YR 3/2 darkbrown (0.25-0.5H) Stift-dense	ML	0	Mois	./	0	99	03037
	-	7.5 YR 3/a darkbrown (0.25-0.5H)							-
_		Stiff-dense							
	-								
_	_							,	
	-								
	-								·
	-								
	<u>-</u>								
	-								
	-								
	-								
	MDI	E LOCATION SKETCH	<u> </u>		LI				
		cation of mapped features, distances from these features to sample location	n, an	d North a	ırrow)			A.
		WAT 26ft-> 5503							7N
		₩,							
		39							•
			÷						
		•							

Description Compared to the control of the contr	
prilling Equipment Date/Time Drilling Started Date/Time Total Det/Time Total	
proof Sampling Device Drive Sampler 3/4" D. I.S'drip, 101bs ITWK T. Water N. 1/2 i coation Description (include sketch in field logbook) NW Bldg 39 at 6NDOM of Slope (boase of 8lope) Begin Estimate 9/4 of 6 fine logbook) NW Bldg 39 at 6NDOM of Slope (boase of 8lope) Include lithology, grain size, sorting, angularly, Minsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable) Silt, with clay very fine sand, subrounded 41 - 30 0 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel, ML 20 M 90 samples of 1/2 fine -coarse sand to gravel sand to grav	pth Reached
Description (include steeth in field logbook) NW Plag 39 at bottom of sloppl (base of slope) Description (include lithology, grain size, sorting, angularly, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable) Silf, with clay very fine sand, subrounded HI 500 0 10 90 Simple of Silf, with clay fine -coarse sand & gravel, ML 20 10 10 90 Simple angular, gravel mostly shale, stiff 7.5 [R] 3/4 dark pround AMPLE LOCATION SKETCH how location of mapped features, distances from these features to sample location, and North arrow)	ate
NW Bldg 39 at Wotom of Slope (base of Slope) Description (include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable) Silt, with clay, very fine sand, subrounded ML 38 D 10 90 Sample of SVR 25/2 dark reddish brown, granular (0.0 - 0.4 ft) Silt with clay, fine -coarse sand & gravel, ML 200 M 25 10 65 argular, gravel mouthy shale stiff 7.5 VR 3/4 dark prown AMPLE LOCATION SKETCH how location of mapped features, distances from these features to sample location, and North arrow)	92
Include lithology, grain size, sorting, angularly, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable) Silt, with clay, very fine sand, subrounded HI = 580 0 10 90 Sample 54R 2.5/2 dark reddish brown, granular (0.0 - 0.4 ft) Silt with clay, fine -coarse sand & gravel, MLaco M 25 10 65 angular, gravel mostly, shale, stiff 7.5 [R] 3/4 dark brown AMPLE LOCATION SKETCH how location of mapped features, distances from these features to sample location, and North arrow)	
Silt, with clay, very fine sand, subrounded MI = 580 0 90 Sample 54R 2.5/2 dark reddish brown, granular (0.0 - 0.4 ft) Silt with clay, fine - coarse sand & gravel, MLao of Mi 25 10 65 angular, gravel mostly shale stiff (0.4 - 6.5 ft) AMPLE LOCATION SKETCH how location of mapped features, distances from these features to sample location, and North arrow)	iarks imple types &
Sitt with clay, fine -coarse sand & gravel, ML 25 10 65 argular, gravel mostly shale stiff O.4 - 6.5 ft) 7.5 /R/3/4 dark brown AMPLE LOCATION SKETCH how location of mapped features, distances from these features to sample location, and North arrow)	organic vapor nents, etc.)
Silt with clay fine -coarse sand & gravel, ML 25 10 65 argular, gravel mostly shale stiff (0.4-6.5ft) 7.5 VR 3/4 dark provon AMPLE LOCATION SKETCH how location of mapped features, distances from these features to sample location, and North arrow)	etag#
Sitt with clay fine -coarse sand & gravel, ML 25 12 10 65 argular, gravel mostly shale stiff 7.5 /R 3/4 dark prown AMPLE LOCATION SKETCH now location of mapped features, distances from these features to sample location, and North arrow)	38
AMPLE LOCATION SKETCH now location of mapped features, distances from these features to sample location, and North arrow)	
AMPLE LOCATION SKETCH now location of mapped features, distances from these features to sample location, and North arrow)	
AMPLE LOCATION SKETCH now location of mapped features, distances from these features to sample location, and North arrow)	
AMPLE LOCATION SKETCH now location of mapped features, distances from these features to sample location, and North arrow)	, - + -
AMPLE LOCATION SKETCH now location of mapped features, distances from these features to sample location, and North arrow)	iace Dle
now location of mapped features, distances from these features to sample location, and North arrow)	
now location of mapped features, distances from these features to sample location, and North arrow)	•
now location of mapped features, distances from these features to sample location, and North arrow)	
now location of mapped features, distances from these features to sample location, and North arrow)	
now location of mapped features, distances from these features to sample location, and North arrow)	
$\frac{10ft}{39}$	
39	

L							<u> </u>	. 10	
		Watkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM					Site) ID	SCAC
6		lame o Project No.	Tota	Drilled De	pth			. 0	<i>J</i> 5/J5
Dei		O TEPS Exclusing 333-020 quipment a Boring Diameter	Data	/Time Drilli	ing St			Date	/Time Total Depth Reached
	"ig L	Dolling Diameter 2 1/4 "	7/1	5/92/	, -	24.S		7/1	SAZINATIONSFL
Тур	e of S	Sampling Device		ogist /	<u>, </u>	7 =		// j	Checked by/Date
		Description (Include sketch in field logbook)	\mathcal{J}_{ζ}	Turke) [۲,۱	Nov	tre	NG 7/3/192
	V			ope	l 				
		Description	Symbol		Content		stima % of		Remarks
ų,	nterval	(include lithology, grain size, sorting, angularity, Munsell color name & notation,	S SOSI	Lithology	ter Co		ř.		(Include all sample types & depth, odor, organic vapor
Ď	Infe	mineralogy, structure, density, consistency, etc. as applicable)	1		Water	Gr	Sa	Fi	mocouromonte etc.
	-	Silt with Very fine-fine sand, subrounds 54R 3/2 dark reddish brown	HZ		Si M	0	5	95	Sample tag#
		54R 3/2 dark reddish brown		_r _	٠				Sample tag# D3003
	-	Slightly styl (0.0-0,5 ft)		· _,					
	<u> </u>			-/-					
									- · · · ·
	-			~, ~					
				- (-					
	-			~					
05	-			ت - ت					Rinse Sample
	-								taken
		*							tag#'s
R	-								D 3004
	-								D 3005 D 3006
	-								D 3007 D 3008
		E LOCATION SKETCH							
(sh	ow lo	ocation of mapped features, distances from these features to sample location	ı, an	d North a	rrow	')		,	M
									V
ŀ		1 20 FE > 5505							, ,
		73							,
		*·							·
-									
		1391							
	•								
		•							

Westing Johnson Envisenmental to							Cito ID + AT landes				
Watkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM								Site ID 5MT ₁ /15/12 \$\frac{25}{55}\$5506			
roject Name DO TEPS EXCOSING 1333. 020					Total Drilled Depth				5f4		
Prilling Equipment A Boring Diameter			-	Date/Time Drilling Started				- 1 / / 1 6 - 0			
Type of Sampling Device Drive Sampler, 24" D. 1.5 drop 10/bs				T Tusko/T.V				Volat Jan 1990			
ocation Description (include)sketch in field logbook)											
	Description			Symbol		Content	Estimate			Remarks	
Depth (π) Interval	(include lithology, grain size, sorting, ar mineralogy, structure, density, consiste	gularity, Munsell color name & notation, ncy, etc. as applicable)		USCS Sy	Lithology	Water Cor		% of Sa		(include all sample types & depth, odor, organic vapor measurements, etc.)	
0	Sand, with some si Subangular some	It, fine-medium poorle L, 104R4/3, brown -122 mixed with L, granular structu	Yed -	54	ر تراثی در افخر	Sli M	70	75	23		
	to dark brown I	The mixed with	7		14,	,				D3009	
	(0.0-0.4 ft)	granular structu	vre		ن نام						
				1	()					-	
	6-11 110 1	line cand who				sli			ar-		
	Jet with clay &	7510 1/2 has	earl	12 1	1	水水	d	13	95		
9.5	dark brown ?	fine sand subangu 7.54R 4/2, brown Stiff LO.4-0.5 ft)				1/5				·	
F	,								١ .		
E											
SAMPLE LOCATION SKETCH (show location of mapped features, distances from these features to sample location, and North arrow)											
JMT TO DOSK > SSOS											
	1/15/97	,									
Ì	30			1		7				,	
39									>-		
										51 V5506	
										V5506	

Watkins-Johnson Environmental, Inc.					Site	e ID	
SURFACE SOIL SAMPLE DATA FORM						<	5507
Project Name Project No. 333.020	Tota	l Drilled De	ерф	,5	-f.	4	·
Drilling Equipment Boring Diameter	Date	/Time Drill	ling S	tarte))	Date	Time/Total Depth Reached
Type of Sampling Device	Geol	D/72/ logist	_//_ ,	1 <u>0</u>	<u>, </u>	1//	Checked by/Date
Drive Sampler, 3/4" (), 1.5 krop 101bs Location Description (include sketch in field logbook)	J	Turk	Ø,	<u>/ l</u>	Mi	tre	NG-7/3/192
N-NW Bldg 39 along top	01	So	P	2			
Description	Symbol] '	Content		stima % of		Remarks
(include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)	uscs s	Lithology	Water Co			T	(Include all sample types & depth, odor, organic vapor
			<u>š</u> ‰	-	Sa	Fi	measurements, etc.)
0.0 Silt, some very fine sand subangular 54R 3/2 dark reddish brown	ML		M	0	10	90	Sample
(0.0-0.4ft)		<u>.</u>					Sample tag#
							D3010
							0.5070
		—· ·.					
		<u>o</u>					
1.5 SI/t with some clay & gravel subround	HL	0-0	Si	15	10	75	-
1.5- Sitt with some clay & gravel subround to subangular, some fine sand subangular 104R 4/2 dark grayish brown hard (8.4-0.5')			M				
E subangular 104R 4/2 dark							
F grayen brown hard							
7/3/192							
F I							
SAMPLE LOCATION SKETCH (show location of mapped features, distances from these features to sample location	n. an	d North a	arrow	n)		*	
, , , , , , , , , , , , , , , , , , , ,	,	- , , , , , , ,		,		ls	↑
·	45	107					\ \
						/	\vee
	, ,						
39							
20	,						

<u> </u>)	Watkins-Johnson Environmental, Inc.					Site	e ID	C
		SURFACE SOIL SAMPLE DATA FORM	I						5508
	ect N	01EPS Eccessing 1333,020		al Drilled De		C	<u> </u>	5	1-
Prill	ing E	Quipment Boring Diameter	Date	e/Time Drill	ing Si	_		Date	Time Total Depth Reached
Тур	of S	ampling Device	G e0	> 1 3 logist	<u>//</u> C) 7	<u> </u>		5/9 <i>7//03//05f/</i> Ohecked by/Date
I		VE Sumpler 24"D 1,5drop, 101bs	J,	Turke	<u> 7, 7,</u>	W	ret	ne	NG 7/31/92
		Description (include sketch in field logbook) J-WB dc_4 39	1		_				
		Description	Symbol		Content		stima % of		Remarks
Depth (n	Interval	(include lithology, grain size, sorting, angularity, Munsell color name & notation,	uscs s	Lithology	Water Co				(Include all sample types & depth, odor, organic vapor
90	Inte	mineralogy, structure, density, consistency, etc. as applicable)		当	21	_	Sa	Fi	measurements, etc.)
F U		Silt with some clay, very fine sand subrounded 7.34R 3/2 dk brown subrounded cobbles, expt	Mi	-2 -	Shi	25	10	65	Sample tag,
ì	-	suprounded 7.54R 3/2 dk brown		1-6-6	/ 1				# \ 70.1
	-	suprounded copples, ext							FD3011
	-	(D-0-0.3H)		- 6					
•	-	0 D 751/01/	MI	0 _	Sli	ą	13	85	-
n	<u> </u>	Sitt with very fine sand, 7.54R4/4	1		Non	t			
Ì	- -	brown, dark brown, soft		-0 -					
_	<u> </u>								
	-	(0.3-0.5At)							
)5	 -			<u></u>					
	- -								·
	-								
}	- -						[
	- -								
ì	-								
		E LOCATION SKETCH	•	•			·		
(sh	ow Ic	ecation of mapped features, distances from these features to sample location	n, ar	nd North a	arrow	')		1	,
								7/	
_								α 4	<u>,</u>
							0	50	V
_			\neg				1		
		120					2		
		1 27				,	ン		
			4	-20	HE		À		

_							0.4	- 15	
\$	Watkins-Johnson Environmental, Inc. Site ID BXG-SS-O1								
Proi	ect N		Tota	l Drilled De	anth		1	_	(G-SS-01
	00	2- TEPS Excessing 1333-020	1000	Dimed Di) (Ĵ.	5	fŁ	
Drill	ing E	Quipment (/ Boring Diameter	Date	/Time Drill	ing S	tarte	đ	Date	Time Total Depth Reached
	Λ	A 24"	7//	5/92	10	90	\mathcal{B}	1	15/92/0910 0.5ft
		ampling Device		logist	/ _ }_	1	M1	. '/ 	Ohecked by/Date
100		rive Sampler, 21/4/3/.5/drop 10/bs Description (include sketch in field logbook)	71	URKC	2/7	, W	<i>P</i> (1	·	NG 7/3/192
), C	nic area near Stover and Conner	R	d.	•				
	,_	me area hear silver song anner	18		en t	E	stima	ate	Remarks
3	-	Description	Symbol	<u> </u>	Content		% of		(Include all sample types &
fg.	nterval	(include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)	SCS	Lithology	Water			I =	depth, odor, organic vapor
S Depth (ft)	ᅙ		12	= -		 	Sa	Fi	measurements, etc.)
	- ;	Silt, sandy, very fine grained sand, 5 /R 2.5/2, Jark reddish brown, granular (00-0.25ft)	الل	:	D	0	5	95	A-horizon, but
	-	dark reddish brown, granular (OD-0.25ft	JML.	=	L				only slightly- organic rich
	-			_4					organic man
	-	silt, sandy, fine grained sand, 7.54R3/4, dark brown, stiff (0.25-0.5ft)	ML	~`_	1	0	5	95	Sample-tagg
0.5	_	Silt, saray, fine grained sand, 13/1/4,			10		2	1/5	10000
	-	dark brown, stiff (0.25-015ft)							P.3033
	_	• •							
	-								
									·
	-								
ļ .	-	•							
	-								
	-								
	_								·
	- -	•							
	_								
	-								
			L						
		E LOCATION SKETCH							
(sh	ow Ic	cation of mapped features, distances from these features to sample locatio	n, an	d North a	arrow	/)			
		Rd							
		A Conner Rd							Ŋ
									1
									1
									<u> </u>
İ		12,1			S	dd	be	ai	ξ α.
						Si	o pir	îq -	ea, to southwest
		72.6 7 89.6					v	S	-
1		(0,10)							
		Picniz Stove	R	٦					
		Sheller	ハー	~					

L		Watkins-Johnson Environmental, Inc.					Sit	e ID			
		SURFACE SOIL SAMPLE DATA FORM						<	509		
	ject N	O-TEPS-EXCESSING 1330.020	Tota	l Drilled De	epth		0	5	ff		
Dri	ing E	ruinment Paring Diameter	Date	/Time Drill	- /	tarte	d	Date	Time Total Depth Reached		
Typ	e of S	Pampling Device	7/ Geo	<i> 5 92</i> ogist	<u>/ </u>	<u>33</u>	5	L <i>7</i> //	/ <i>5/42//338/ 0.5</i> # Checked by/Date /		
)r	ive Generalize 2/40 1.5 dran 1016s	J.7	<u>rurko</u>	, -) <u>, (</u>		UAT	ME	NG-7/3/192		
	ation	Description (include sketch in field logbook) OR 132 ON WARD DAY tion	n	8/ S	X es	1	2Q_	•			
£		Description	Symbol	0	Content		stima		Remarks		
epth (nterval	(include lithology, grain size, sorting, angularity, Munsell color name & notation,	scs sy	Lithology	er Co		% of		(Include all sample types & depth, odor, organic vapor		
	Inte	mineralogy, structure, density, consistency, etc. as applicable)	>		Water		Sa	Fi	measurements, etc.)		
	1 -	51LT, gravel, subangular - subrounded shale/53; fine sand subrounded 104R 4/3 brown, dark brown	ML	- <u>-</u> D	Þ	25	10	65	Sample to IT		
	-	involule by a so due to be been		1/50					to 71		
	111	10Th 4/3 Arown, Sauce Niown		5-1					_		
	-	(0.0-0.5ft)		D					D3012		
	111			5					-		
	-			109					•		
	-			- 7-5							
2	-			00					•		
75	-										
	- -						·				
	-										
	<u>-</u>										
_	-										
		E LOCATION SKETCH cation of mapped features to sample location of mapped features, distances from these features to sample location	i, and	d North a	rrow)			<u></u>		
		·							7\		
_		•									
	1										
_									·		
	<	137 x 5509									
	\	1 ' / 11									
_	304,2										
		1									

		Watkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM					Site		5-10
L	ject N	0-TEPS Excessing 1333-020	Tota	Drilled De	epth	2,5	-	_	
Dril	ling E	quipment / Boring Diameter	1	/Time Drill				Date	e/Time Total Depth Reached
Tvo		W.A. 2 1/4"	Geol	15/92		<u>500</u>		7//	15/92 /5/0 Checked by/Date 7/6/12 No
1.7	Δ					<u> </u>	1)_6	100	NE 7/3/14 L
Loc	ation	Description (Include sketch in field logbook)	' 	your	<u> </u>	! · [/	-T.,.7.1	احت	100 113(14)
\vdash	NE	Description Description Description Description Description	<u> </u>	area	, F				
12		Description	ymb	>	Content	•	timat % of	te	Remarks
Depth (ft)	nterval	(include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)	uscs s	Lithology	Water C	_			(Include all sample types & depth, odor, organic vapor
5.0	_	0.0-0.2 Sandy gravelly sick, some roots,		# <u></u>		┤		-	measurements, etc.)
	Ell		ML	-9-	D	15	25	69	
		Soft 10912 4/2 daile grayish burn minar black otaming							
	E\			- 9			i	İ	5. 1.1.1
ŀ		0.1 = 0.5		-0-6-	-				Sampledal (1505 (000.5/f)
	Ell	0,2-0,5 as abone, but from, no rooks. 104K 4/3 brown, No Stari roted.	M	· — · [-	Δ	20	امد	60	Taj number
	-	2.000x 1 700 STOOK ROLLY.		-00-					Ŭ
	EH			0:0				- 1	03013
	ᆌ								Collected RNSW
	[[]]	٧.		_ ح					KNSW
05	₩	;		2 - 2					
								Ì	
	-					ĺ	i		
					4		ł	1	
	<u> - </u>				İ				
_									
		E LOCATION SKETCH cation of mapped features, distances from these features to sample location	າ ຂກທ	1 North 2	rrow	١			
```	0	N A	ı, an	a rioitii a	.1044	,			
		\$5-10							
		40 4							
		132 / 54							
		132 10 th							
									1

	Walking Johnson En		antal lug					Г	Site I	<u> </u>
	Watkins-Johnson Environmental, Inc.  SURFACE SOIL SAMPLE DATA FORM					[	•			
Project N		IVIFLE	Project No.		T	· > ''- 4 Da	- 44		<u></u> _	SS-11
	- TSPS Excession	· M · D	1333-0	2.0	lota	Drilled De ا ک، ک		4		
Drilling E	Equipment	~5	Boring Diameter		Date	/Time Drilli	ong S	tarted	D:	ate/Time Total Depth Reached
NA	<u>-</u>		2 1/4"	!	7/	15/92	1	420	-	7/15/92 1421
Type of S	Sampling Device		/			logist				7/15/92 1426 Checked by/Date
$D_r$	ine Sampler 2	1/4" 1	D 1,5 dias	10/65	NO	Hun	7	Wa	tre	NG 7/31/92
Location	Description (include sketch in fi	field logboo	)k) /				1		•	
	Sof Blog 13	3 <u>2</u>	an midpo	int of a		pe	·	<del>,</del>		
1	~	Dos	. r	V	eg		Content	,	mate	Remarks
£   7	finaluda lithology, grain siza		scription	P natation	\ \( \frac{1}{2} \)	ògò	ပိ	70	of	(Include all sample types &
Depth (ft)	(include lithology, grain size, mineralogy, structure, density	sorung, هر y, consiste	igularity, muniseli color nai ency, etc. as applicable)	ne & notation,	USCS Symbol	Lithology	Water	Gr S	Sa F	depth, odor, organic vapor
10 T	1				12					
E)	SIT, gravelly	104R	4/3 brown. in oubrounded Some fill mai avels pok lille ft to girm	Gavel	ML	0,	U	20 3	5 /2	5 Sumpled at 1425-0.0-0.5
IE	1 to 3"	Kaner	a oub romala	10 300		ه				1425-0.0-0.5
1 ET	anguan . ma	y re	some fel ma	unal (gravel)		.0-:-				_
	( counted	1. So	14 to dirm	"The rock"		0				Sample Fag nomber
I [		)   0	0							nember
<b>1</b> F/						16-1.6		1 1		D3019
I FI						., ~;	l			1,000
				•		. 06_			ĺ	
I A						. a c_				
1 1										
I A									1	
0.5 <del>  Y</del>										
<b> </b>										
F									-	
F										
F_									İ	
IF										
I E						į				
					Ш	l			Ш_	
	LE LOCATION SKETCH		form they a fambuur.	- 4la laaatla	- <b>-</b> -	سادستاها				
(Show in	location of mapped features	i, distanc	es from these features	to sample location	n, and	J North a	irrow	<b>')</b> .		· · ·
	N,									
	1`									
				٠						·
						. *				
	132									
	\									
	30	L.								
1	1.66	y' - il								
	¥ >≥	> 11								
1										
1										
1										,
1										

	$\approx$	Watkins-Johnson Environm	ental, Inc.						Site		
Ī		SURFACE SOIL SAMPLE			_					<u>ک</u>	S-/5
		Name  0 - TPPS (Noning)	Project No. /2 2 2 - 0 2 0			I Drilled De		1			÷ ·
C	rilling	0 - TBRS Excessing	Boring Diameter		Date	<i>⊘,5</i> ∕Time Drill	ing S	tarted		Date	e/Time Total Depth Reached
L	. /	VA ,	244.		7/	15/92	j	44	5		7/15/92 ;446 Checked by/Date
		Sampling Device		1/	Geol	logist	•			,	Checked by/Date
-	catio	rive Samples 2 1/4 'n Description (include sketch in field logboo	0, 1.5 day ~ 10	165		anxil	en,	/,	Was	ne	NG 7/3/192
	S	E of Ble 132,	on Some								
Γ			•		log		ig.	Es	tima	te	Remarks
	ଛା ଲ	1	cription		Symbol	) 6	Content	•	% of		(Include all sample types &
	Depun (II)	(include lithology, grain size, sorting, ar mineralogy, structure, density, consiste	igularity, Munsell color name & notation incy, etc. as applicable)	n <b>,</b>	uscs	Lithology	Water	Gr	60	-	depth, odor, organic vapor
φZ				(			≥	10			measurements, etc.)
l		may be sucht:	et. 10123/3 dark 2/acle staining nom	eine	m Z		D		سور		R +0 -
		rooks, Soft								,	Susta &
	E					4					or This
	H	2857/5/12				· - · · · ·					Jan (20-0.5)A
	F	0.3-0.5	with 104R 4/2 has	Crew	mi	—	D	20	10	70	Regarded a displicate of this sample (2005) # THE NO 03020
	EL	0.2-0.5 gravelly.	rui noted	,,,,	"	6 .					Sampled of
	-										1445
	<b>F</b>										Note-2 of)
	Ħ										Filters on sound
	H,					6.0		i	İ	l	outare in
\$.5							-				arla. Also
	F										Dome wood
	F									- 1	·
1	ļ		•								
	F										
	E		,								
L	<u> </u>										
		LE LOCATION SKETCH									
(S	now	ocation of mapped features, distance ${\cal N}$	es from these features to sample	location	n, and	North a	rrow	)			
		<b>*</b>									
			5 ft down aua	ca ha	n	i n	4	-67	NG	. 7	7/15/92
			5 ft down	Slo	ne	. Na	hu	. 0 ~ 10		/	1-1-1
		132	aua						<i>y u</i>	reg	eralist
			~ ~1)								•
		30 kg 30 th 70 5	20. (2								
		Val.									
											. ]
1											

	<b>,</b>	Vatkins-Johnson Environmental, Inc.				Sit	e.ID	
		SURFACE SOIL SAMPLE DATA FORM					5	15 ¹ /3
Pr	ject N	Project No.	Tota	I Drilled De	epth	0.5	5+	$\leftarrow$
Dr	iling E	uipment Boring Diameter	Date	/Time Drilli	ing S	tarted	Date	Time Total Depth Reached
Tv	ne of S	ampling Device	7//	5/9/2/ logist / '	13	20	ĽZĄ	15/9 2/1322/0.5f( Checked by/Date/
]	<u> </u>	1e Camplin 2/4"D, 1.5 trop 10/bs	5	TURK	20	TWO	tre	N/- 7/31/9 2
Lo	ation I	Description (include sketch in field logbook)	. 6		l.	0.4	•	
$\vdash$		Of bldg 132, on upper portion	<u>/</u>   <u>8</u>			Estima	ate	Remarks
1		Description	Syml	) A6	Content	% of		(Include all sample types &
Deoth (ft)	Interval	(include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)	USCS Symbol	Lithology	ē	Gr Sa	Fi	depth, odor, organic vapor measurements, etc.)
0.		Sitt grapel out 1/15/12 lar to subrounded			_			- 5 + 10 h + 20
	-	19101/	ML	+ -	D	15210	75	The lag
	F	Fine sand, subsounded dark brown		0-				# 123021
	E	(O.D- U.STE)						
				-0				
				0				•
	F		'	<u> </u>				
	E	·		- 0				
				a -				
05	E							
10;	Έl							
l	E	·						
	E			,		•		
	上					•		
	E							
-		E LOCATION SVETCH	<u> </u>				<u> </u>	
		E LOCATION SKETCH cation of mapped features, distances from these features to sample location	n, an	d North a	ırrow	<b>'</b> )		A
İ						•		'W./
								·
		(132)						
		5513						ļ
		20ft						
		- CH-H						
		b*C						
		SS13						
								,

<b>1</b>		Watkins-Johnson Environm SURFACE SOIL SAMPLE	ental, Inc.						Site		SS-14/
Pro	ject N	lame C	Project No.		Tota	Drilled De	enth			<u> </u>	SS-14
	D	0-1EDS Excessing	1333-020			0.5	- 6	+		80	
Drill	ling E	equipment	Boring Diameter		Date	/Time Drill	ing S	tarted	1		/Time Total Depth Reached
Tvo	2015	OAT Sampling Device	21/4"		7/15/92 1545 7/15/92 1546 Geologist Checked by/Date						
ار ا	ارر ر ا	- 6 / 1/1/1/10	1.5 dop, ~ 10/bs		7/1	al A	7	- (1	1. L	- 1	1 1
Loc		Description (include sketch in field logboo	15 000 1 10 105 k)		1	Sum	·_/_	·W	la ty	حا	NG-7/3/192
	Λ	1/	, on relatively	2	la	L an	00	٤.			
			,	V.	Symbol		Content		timat	e	Remarks
E	ਲ		cription		Syr	ò	ပို	'	% of		(Include all sample types &
Depth (ft)	Interval	(include lithology, grain size, sorting, an mineralogy, structure, density, consiste	guiarity, munseil color name & notation, ncy, etc. as applicable)		nscs	Lithology	Water	Gr	Sa	Fi	depth, odor, organic vapor measurements, etc.)
0.0		0.0-0.5 61040144 8	and Silt Incoul.		کور ز			<del>  </del>	20		
	<b>上</b>	carle grayish	andy Silt 104R 4/2		8	7/15/92	lo.	70	~	۳٩	
		,			ML	· · · - ·					
	E I	,					-		ı		Saughed at
	E					- %			1		Sampled at 1545 (0.0-0.5/f) Sample Tag #D3022
1	-					0					Sample Tag
	-					6. 0	]				#D3022
	-1								1		2 - 0
	-					E GC -	-				
	H	_				- 6			l		
	EI					6			ł		
0.5	1					8 0					
	-	•									
1	F								ŀ		
	E								Ì		
	-				,				ŀ		
	-										
		LE LOCATION SKETCH									
(sn		ocation of mapped features, distance	es from these features to sample loc	atio	n, an	d North a	irrow	<i>t</i> )			
	٧								*		
	1	^									
1											
1			SC-14								
1		132	7								
											i
	1_	2011 501									
		<b>V</b>	\								
											• •
		e-									

	<b>.</b>	Mothing Johnson Environmental Inc					Site	JD.	
â	Watkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM							<i>ا</i> . 10	C-10
Des	ject N		· 	LD air LE				<u>√</u> .	3-15
File	gect iv	DO-TEVS Excessing 1333-020	Tota	l Drilled De	epth	0.	5	4	- 690
Dril	ling E	quipment Boring Diameter	Date	/Time Drilli	ing S				/Time Total Depth Reached
L		NA 2 1/4 4	71	15/92	. /	61	0	7/	15/92 1611
1	$\sim$	Sampling Device		logist			<del>-  </del> ,	<u> </u>	15/92 1611 Checked by/Date
	$\mathcal{D}$	Description (include sketch in field logbook)	N	Ellenn,	7	, Wa	Bre.		NC 7/31/92
Loc	ation	— · / / / / /			_		1		/
-	<i>ر</i> د	of Bldg 132, on slight tenace,	<u>ハ</u> T 8	ear	1 <u>5</u> C	1			
		Description	Symbol		Content		timat % of	te	Remarks
E	দু	(include lithology, grain size, sorting, angularity, Munsell color name & notation,	S	ithology	ŭ	·	,o oı		(Include all sample types &
O Depth (ft)	Interval	mineralogy, structure, density, consistency, etc. as applicable)	nscs	Fig.	Water	Gr	Sa	Fi	depth, odor, organic vapor measurements, etc.)
<b>०</b> ०	-1	0.0-0.5 gravely sit, bourn to dark brown	EM	_ · · -		20	10	70	
	Ell	0.0-0.5 gravely sit, bown to dark brown 10TR 4/3 soft to firm 1/15/12	ML	:				.	Collected
	H	7/15/17	1					l	Commit
ĺ	EI	,							Sample 0.0-0.5'
	H	<i>"</i>							@ 1610
	네.								
	١		Ť. · · ·	=-:-					Taj Number 03023
	Ħ			_:				1	D2012
	-								03023
	H							I	
	F]							1	
1		·		.,					:
3.5	F				-			l	
	-	·							
	F		l	;					
	-	,		-					
	Ŀ								
	Ė I								
	-		ŀ						
SA	MPI	E LOCATION SKETCH	<b>!</b>		ليبسا				
		ocation of mapped features, distances from these features to sample location	n, an	d North a	rrow	<b>(</b> )			
'		N	•			,			
		··							}
		1							
		(48 ft is measured from	, da	na les	حف	)			
_	/		0			/			
		32							·
\	١	107/1							
	1/X	48 64							
'	r.r	50 pt NC 7/16/92							
		\.							
		* SS-15							
		-0 10							

Watkins-Johnson Environmental, Inc.							ſ	Site	) ID		
		SURFACE SOIL SAMPLE	DATA FORM							-	5-16
Pro	ject N	lame	Project No.	T	otal [	Orilled De	pth	~			_
<u></u>	<u>A</u>	7-TEPS Excessing	1333-020							_ /	12/
Dril	ling E	quipment	Boring Diameter	D	<b>7</b> /	īme Drilli	ing St	arted			7/Time Total Depth Reached
-	6	NA	21/4"			<u>-/92</u>	16	21	$\bigcirc$	_//	15/92 1622 Checked by/Date
		Sampling Device	- 1511 - 1./1		eolog			٥			
100	./ <i>) (</i>	Twe Samp (u 2 1/4" Description (include sketch in field logboo	D; 1.5 drep, -10/65		/V. /	Eller	1	W	a to	re_	NG 7/31/92
				. 17	7.		ſa. a	1.		0	all as a 1 1
		10 10	Take STROB VAL			<u> </u>	E I	Est	tima	te	Remarks (Include all sample types &
12	_	Des	cription		Ĕ	<u>≻</u>	ont	9	% of		(lasted the
Depth (ft)	Interval	(include lithology, grain size, sorting, an	guianty, munisen color hame a notation,	2	3	Lithology	ter (	_			(Include all sample types & depth, odor, organic vapor
		mineralogy, structure, density, consiste				_=	_	Gr	Sa	FI	measurements, etc.)
0.0	ŧ1	0.0-0.5' gravelly s	silt, 101R 4/3 , brown" ek_Stain at base of	16-12	4	ر. ــــــــــــــــــــــــــــــــــــ	0	20	10	70	Collected
	-	soft to fine		М	L  -						sample
1	Ħ	noted some bla	ele Stain at base of		-	· -					0.0-0.51
		Sample.			-   -	0-					_
	ᅵ				-						@ 1620
	-					0 0					Tac Number
1	-				,	. — .					Tag Number D3024
					,	.a_ ;·					2002/
					-	~_		İ			i.
	니				-	0					
					-	۔ ک					,
1					-	.0. ~		Ì			
0,5	1				-  -			-			
	-										
	_										
ŀ	-	•									
	-						- 1				
	_					ļ					
$\vdash$											
		E LOCATION SKETCH									,
(sn	OW IC		es from these features to sample locati	ion, a	and	North a	rrow)				
		V									
İ		$\sim$									
Ì		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<b>K</b>								
	Ń	132									
1	'	132									:
ł			CO. 11								
		* \$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	g SS-16								
1		53'	29'								
		NG 7/16/62	No- 7/14/92								
		1.6/47	\								
		(53' is measured.	from fence line)								

		Watkins-Johnson Environmental, Inc.					Si	te ID	
Γ ₀ ,		SURFACE SOIL SAMPLE DATA FORM	<del></del>				上		55-17
L	roject N	) TEKS-Excessing 1333.020	_	al Drilled De	2,5	5 F	et		
Dri	illing E	quipment Boring Diameter	1 4/	e/Time Drill	ling S		d ~	Date	te/Time Total Depth Reached
Ту		Sampling Device		16/92/ ologist	<u> 10</u>	) <u>2 :</u>	<u>&gt;</u>	141	(6/9 <i>3/030/0</i> :57;  Checked by/Date/
		Je Sample G. 21/4" D. 1.5' Drap 1010s  Description (include sketch in field logbook)	10	TURK	D/-	I.U	AT	WE	NG-7/31/92
		Description (include sketch in field logbook)			/				
	T	Description	Symbol		Content		stima		Remarks
Depth (ft)	Interval	(include lithology, grain size, sorting, angularity, Munsell color name & notation	S Sy	Lithology	er Co		% of	i !	(Include all sample types &
		mineralogy, structure, density, consistency, etc. as applicable)	nscs		Water	Gr	Sa	Fi	depth, odor, organic vapor measurements, etc.)
0.0	乍 '	SICT-with gravels subrounded, 104R 5/2 grayish brown, stiff Charocoal-like black fragments Throughout sample interval (0.0-0.5 ft)	ML	@ . W		32	0	70	Imm size
	<u> </u>	104R 5/2 grayish brown, stiff	'	-C					Charcol like fragments at
	F '	Charocool-like black fragments	'	!					The surface
	F 1	Throughout sample interval	'	1-1					Stuining from
	E	100-0< Pt)	'	4		'	'		these through
	F 1					'			$\sim$
	E	•				/	'		sample.
	E I	•		2:1		-	'		İ
	F. 1	,							Sample
0.5	FI			A	+ '		1		Tag #
	E								1 ag ti
	F	. ·					1		103025
	EI	,		1					
	E	<b>!</b>							l
<u></u>	£ا					Ш			L
SA (sh	MPL now ic	E LOCATION SKETCH cation of mapped features, distances from these features to sample location	- on	⊒ Morth e		- -			ท์
<b> </b> `	•	which of mapped founding, distances from filese foundings to sample founding	i, and	J Notui a	.rro _{vv}	)		1	//\
		Purce							$\mathcal{N}$
		The text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the text of the te							
		56 pt / 60 a							
		15 / 60 ₁₁							
	•								
		1/./							
7	<u> </u>	2/-							
1	11:		<b>»</b> 5	55-17	7				i
1	1/			1					•

		Watkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM					Site	e.ID	SS-18 JMT
Pro	ject N	lame Project No.	Tota	l Drilled De	epth		<u> </u>	- M	(
Dril	ling E	1333.02.0 Quigment () Boring Diameter	Date	/Time Drill	ina S	(C) tarted	· S	Date	Time Total Depth Reached
		SA 294	7/	16/92	13	34	5	7/	16/92/1349/0.576
		Sampling Device	Geol	logist /	_	T.	ب دار		Checked by/Date
Loc	ation.	VE Sampler 2/4 D, 1.5 drop, 10/bs Description (include sketch in field logbook)	0	Turk	0,	(+	00	w	- NG-7(31/92
Ē	= 8	OS B/da 131							
		Page de la la la la la la la la la la la la la	Symbol		Content		tima		Remarks
£	val	Description  (include lithology, grain size, sorting, angularity, Munsell color name & notation,	SSy	logy		l '	% of		(Include all sample types &
Depth (ft)	Interval	mineralogy, structure, density, consistency, etc. as applicable)	nscs	Lithology	Water	Gr	Sa	Fi	depth, odor, organic vapor measurements, etc.)
0.0	-	SILT, with fine med, subrounded sand,	ML	~ ·~ `	Dr.	30	スカ	ار ا	
	-	Subangular to subrounded gravel 104R 5/2 grayish brown (0:0 - 0.5ft)		.0.	1		טני	40	Noted blade stain
	E	INVA 5/2		/ ,					coal in almple
1	-	10 11 912 grayion brown		70					tube, - No
		(0,0-0,5AL)		2					
	E								-
	-			0					
	Ē	•							Chan No da
	-			0					sumple lag
						ŀ			Sampletag # D3026
0,5		•							2.5022
	-	·							
1	-								
	-								
						Ì			
<u> </u>									
		E LOCATION SKETCH pocation of mapped features, distances from these features to sample location	n n=	d Nadh -	<b></b>	١.			
(311	O11 IC	roadon of mapped realures, distances from these leatures to sample location	ા, લઇ او	D ADITIES	urow	)			
			/	1W					
		1 to		1 1					
	,								
	1	(A) 1/2 (A)							
		The second							
	6	15 HOW 14 5518							
		TX							İ
	\	Hili							ĺ
		ton							l
									ļ
		` `							

_	_ ,	Modelino Johnson Engineering Land					Cit	e ID		
		Watkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM					Sit		55-19	
Pro	ject_\	lame Project No.	Tota	al Drilled D	epth		).5ft			
	()	0-1E/S-Excessing 1333.020								
Uni	uing E	quipment Boring Diameter 214"	Date	Date/Time Drilling Started Date/Time Total Depth Reached						
Typ	e of S	Sampling Device	7/16/92 /0905 11/16/92/09/0 /0.57/ Geologist   Checked by/Date							
		ve sander 2/4"0, 1.5 drap. 10/bs	J. Turko, T. Watre No. 7/3/192							
Loc	ation	Description (include sketch in field logbook)		1 1	<u> </u>	<u>'</u>	-		101-45/112	
<u> </u>	$\overline{\mathcal{M}}$	of drainage dutch NE Of F	<u> </u>	19-13	$\sum_{i}$	<u>}                                    </u>				
		Description	Symbol	~	Content		stima % of		Remarks	
Depth (ft)	Interval	(include lithology, grain size, sorting, angularity, Munsell color name & notation,	SS	Lithology	ပြို		/0 UI		(Include all sample types &	
60	Inter	mineralogy, structure, density, consistency, etc. as applicable)	nscs	l ig	Water	Gr	Sa	Fi	depth, odor, organic vapor measurements, etc.)	
0.0	-	SANO with some silt and gravel.	54	- 0	ON	20	45	20		
	-	SAND with some silt and gravel, sand	' (	,O ~··	"/	1~	۱''		Sample tag,	
	F,	gravel are supparular to supparunde	1	77					#1)3027	
	E	poorly sorted, 104R S/2 grayish	1	19 CP					•	
	F	(11000000)		7,7						
	-	(0.0-0.3ft)		,,,					-	
	<b> </b>			01:					•	
	E	all, with few substituted	ML	0,0	Dry	10	0	90		
	E	gravels composed of shale			/					
	-	SILT, with few subrounded gravels composed of shale, 5 YR 54 reddish prown, stiff		-0						
6-	E			0.7						
P ₁ 5	<u> </u>	(0.3-0.5ff)		0						
	-									
	E								,	
	-									
i	-									
	-									
-		ELOCATION OVETON		,	<b>_</b>	j		لـــا		
		E LOCATION SKETCH cation of mapped features, distances from these features to sample location	an	d North s	errow	Λ				
		The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	,,	o (10)(ii) 0		,				
1										
1										
		\0;\tag{\partial}								
		Fence								
		` <b>*</b>								
و. ا	/	7								
1/	2	$\gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma $							4	
	10	$\Gamma$								
1 `	<b>\</b>	/ /71								
		¥ 55-19								
Ц.		11604								

		Watkins-Johnson Environmental, Inc.				s	ite ID			
		SURFACE SOIL SAMPLE DATA FORM					٠	55-20		
Pro	ject N		Tota	l Drilled De	epth	Δ.	< f	1 (-		
Dri	ling E	guipment () Boring Diameter	Date	/Time,Drill	ina S			e/Time Total Depth Reached		
		WA 2.4"	1	16/90	1/	925	1 . /	16/92/0930/0.54		
Type of Sampling Device					Geologist / Checked by/Date /					
100	シー(	Description (include sketch in field logbook)	J,	Turk	200	, 1. W	atre	N6 7/3/192		
	E	of sence made the chains	010	dia	for the	/ ሳ				
			Symbol	,,	ig t	Estin	nate	Remarks		
3	न्न	Description  (include lithology, grain size, sorting, angularity, Munsell color name & notation,	Syn	) di	Content	%	of	(Include all sample types &		
Depth (ft)	Interval	mineralogy, structure, density, consistency, etc. as applicable)	nscs	Lithology	Water	Gr S	Fi	depth, odor, organic vapor measurements, etc.)		
02		SUT NO O	<del>                                     </del>		>		+-			
	E	SILT, with few subsounded gravels 54R 5/2 reddishgray, Stiff (0.0.0.5ft)	MZ	~		10 0	90			
1	F	gravels 54R 5/2 heddishgray,		- '						
İ	E	2016 (0.0.0.5 ft)		60						
l	-			1				Sample		
	ļ			) /				Tarant		
	_			D -				1 ag 4		
	E							カスハつは		
	上			-				17 30 00		
	E									
25				53						
P	Ė									
	E	•								
	-									
	-							1.5A-8R		
	-							sedimentin		
	-							Granage Litch		
SA	MPL	E LOCATION SKETCH						U ···		
		cation of mapped features, distances from these features to sample location	n, and	d North a	rrow	)		<b>!</b>		
		$\mathbb{A}$ .								
		1/								
		/						İ		
								ļ		
		Fence						ĺ		
		10112								
		/ 1/2-								
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						ļ		
9	175	7\								
\	\'_	520								

Watkins-Johnson Environmental, Inc.  SURFACE SOIL SAMPLE DATA FORM  Project Name  Description  Froject Name  Description (include sketch in field logbook)  SCHOOL STATE OF STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREE
Project Name  D-TEPS-Excessing 133300 Total Drilled Depth  O. S.F. Excessing 133300 Total Drilled Depth  O. S.F. Excessing 133300 Total Drilled Depth  NA  Type of Sampling Device  Dividing Equipment  Type of Sampling Device  Dividing Equipment  Type of Sampling Device  Dividing Equipment  Type of Sampling Device  Dividing Equipment  Total Drilled Depth  O. S.F. Excessing 10 Depth Reached 11/16/92 1000 0.S. O. S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/16/92 1000 0.S. O. S. T. Wolfar 11/1
Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Device  Type of Sampling Devi
Description (Include sketch in field logbook)  SEND WILL A SOMPLE SS-ZZ  Description  (Include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)  DILT, with subnounded gravel sand & she ML - o Dy 25 0 75  Time of Checked by/Date / NG- 7/31/42  Checked by/Date / NG- 7/31/42  Checked by/Date / NG- 7/31/42  Checked by/Date / NG- 7/31/42  Checked by/Date / NG- 7/31/42  Checked by/Date / NG- 7/31/42  Checked by/Date / NG- 7/31/42  Checked by/Date / NG- 7/31/42  Remarks  (Include all sample types & depth, odor, organic vapor measurements, etc.)  SILT, with subnounded gravel sand & she ML - o Dy 25 0 75  Time of Checked by/Date / NG- 7/31/42  Checked by/Date / NG- 7/31/42  Remarks  (Include all sample types & depth, odor, organic vapor measurements, etc.)  To Dy 25 0 75  To SYR 5/2 Brown, granular Suff  Co Dy 35 0 75  Co Dy 35 0 75  Co Dy 35 0 75  Place of Clear glass Annual at Norther Dorings  Description
Location Description (Include Sketch in field logbook)  School witch a Sample SS-ZZ  Description  (Include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)  SILT, with subnounded gravel, sand & slobe MZ - O Dy 25 C 75  7.5 YR 5/2 Brown, granular - Suff - O Dy 25 C 75  Similar to staining in other borings occurs from 0.3-0.5 ft), small  Pulce of Clear glass squared at wettern
Location Description (Include Sketch in field logbook)  Stand witch & Sample SS-22  Description  (Include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)  SILT, with subnounded gravel, sand & shele ML - o Dy 25 0 75  7.5 YR 5/2 Brown, granular - Suff  Similar to Laining in other borings  Similar to Laining in other borings  Pulce of Clevr glass Spund at Northan
Description  (include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)  SILT, with subnounded gravel sand & Sale M2 - O Dy 25 0 75  7.5 YR 5/2 Brown, granular - Suffe  Similar to staining in other borings  Similar to staining in other borings  Pulce of Clewr glass Laund at wetter
51LT, with subnounded gravel, sand & shell ML 50 Dy 25 0 75  7.5 YR 5/2 Brown, granular- Fifth  Dlack, Charcoal-like in 0.35 mm  Similar to staining in other borings  Occurs from 0.3-0.5 ft), small  Piece of Clear glass Lound at botton
51LT, with subnounded gravel, sand & shell ML 50 Dy 25 0 75  7.5 YR 5/2 Brown, granular- Fifth  Dlack, Charcoal-like in 0.35 mm  Similar to staining in other borings  Occurs from 0.3-0.5 ft), small  Piece of Clear glass Lound at botton
51LT, with subnounded gravel, sand & shell ML 50 Dy 25 0 75  7.5 YR 5/2 Brown, granular- Fifth  Dlack, Charcoal-like in 0.35 mm  Similar to staining in other borings  Occurs from 0.3-0.5 ft), small  Piece of Clear glass Lound at botton
7.5 YR 5/2 Brown, granular-Flife Dlack, Charcoal-like in 0.35 mm  Similar to Staining in other borings  Occurs from 0.3-0.5 ft), small  Piece of Clear glass Lound at botton
Similar to Staining in other borings  Occurs from 0.3-0.5ft), small  Piece of clear glass found at botton
Similar to Staining in other borings  Occurs from 0.3-0.5ft), small  Piece of clear glass found at botton
1   Cleve glass bound at hotton   1   1
1   Cleve glass bound at hotton   1   1
1 - Clear glass tound at hotton - 1
I +   Dance of Dounce on Dough   - o
- OB sampler
Sample tag # 13029
F
SAMPLE LOCATION SKETCH
(show location of mapped features, distances from these features to sample location, and North arrow)
7.
Fence
/ 67fz
$\downarrow$
/ n/>/ 5.5 tt
450(

	<b>**</b>	Watkins-Johnson Environmental, Inc.				s	ite ID	
1		SURFACE SOIL SAMPLE DATA FORM						55-22
	Project I	) TEPS- Excessing 1333 020	Tota	l Drilled De	epth	0.5	_	
	Drilling E	auipment O Boring Diameter	Date	/Time Drill	Ĭ.,		Date	e/Time Total Depth Reached
	Type of:	Sampling Device	///d	9/9/ logist	09	35	<i>17//</i>	6/92/0940/0.577 Checked by/Dare
	Dri	Je 2/4"D, 1,5'don 1016s.		Turko	Ī	. Wa	tne	NG 731/92
	-	Description (include sketch in field logbook)  Own gradient in ditch and 5		20	7		-	
			Symbol		tent	Estin	nate	Remarks
	Depth (ft) Interval	Description (include lithology, grain size, sorting, angularity, Munsell color name & notation,	SSyn	logy	r Content	%	of	(Include all sample types &
	Depth (f Interval	mineralogy, structure, density, consistency, etc. as applicable)	nscs	Lithology	Water	Gr Sa	a Fi	depth, odor, organic vapor measurements, etc.)
	0.4	SILT, ine gravel content with depth	ML		Di	100	90	Pecovery
	-	7.5 YR 5/2 brown, stiff		1.1	1			(0.0-0.3f)
	F	(0.0-0.3ft)		-0-				
	F	1		00				
	E	(Drove to 0.5ft, but only recovered top 0.3ft)		07				-
	- <del> </del>	recovered top 0.3tt)						<b>Y</b>
	<u> </u>							Sampletage #D3030
١	-							#D3030
	05-							
	E							
١	E	•						
	F							
١	F							1001 -00
	Ę							1.0ft sedinus
Ī		E LOCATION SKETCH	لــــا			l	_[	11,00,00
	(show lo	ocation of mapped features, distances from these features to sample location	n, and	d North a	rrow	)		
		/						
ı		/	J					
١			1					
			!		•			
		.0						
	/	70 m 676						
		1 (2)	,					
	<\n'>	\$ 350°°						

		<b>,</b>	Votking Johnson Fusiyanussulat Iss					Site	e ID		
•			Vatkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM						٠ ^	K6-55-02	
2	Proj	ect N	eme · Project No.	Tota	d Drilled De	epth			1	1	
	Ţ	<u> </u>	- TEPS- Excessing 1333.020					5	_1	<u>C</u>	
	Drill	ing E	Doring Diameter	Date	e/Time Drill	1"		i	_ /	Time Total Depth Reached	
Type of Sampling Device Céologii							116/97/1305 7/16/92/1308/0.5f				
'	Ť		Je gampler 214"), 15 drop, 10/bs	T	Twik	60	7	Wh	tuo	1 :	
П	Loca	ation I	Description (include sketch in field logbgok)	1 <u> </u>		<del></del>	<u>,,</u>	<u> </u>	•	NG 7/31/92	
H	2	<u> </u>	OR BIKE DATE								
1			Description.	Symbol		Content		tima		Remarks	
Ì	3	त्तु	Description	l g	λβς	Ö		% of		(include all sample types &	
1	Depth (ft)	Interval	(include lithology, grain size, sorting, angularity, Munsell color name & notation, mineralogy, structure, density, consistency, etc. as applicable)	nscs	Lithology	Water	Gr	Sa	Fi	depth, odor, organic vapor measurements, etc.)	
	D.C		SUT Me as a los culoses a del	1	_					moduloments, etc.)	
N		-	JILI worn gravel that is subjounded	ML	Q-	Wy	25	0	15		
'			to subangular,		1						
N		-	512T with gravel that is subrounded to subangular, 104R 5/2 grayish brown, stiff		-0						
		_	11 1 of acycon. 2000 11,51111		05						
		- (	(00 004)		- 5						
۱		-	(0.0-0.5ft)								
,		-			0_						
		-			\						
	Ì	-			-0						
1	Ì	-	··		0-						
1	3.5	_		1		†					
		-									
	Ì	-	·								
4		-								Sa 0/a	
		-								Semple tag#	
		-									
		-								D3034	
<b>'</b>	SAI	——і MPI	E LOCATION SKETCH		1	1					
۱ ا			cation of mapped features, distances from these features to sample location	on, ar	d North a	arrow	')				
1					>						
			\$ BK6-65-02	1							
1			A CALO SI SI								
۱ ا		~ < 1 f	$\mathcal{C}'$	2 -							
١l	/	2/V	no New								
	•		$\chi$								
'		[	X 52: 1								
١											
			* Notes							į	
		1									
ij											

1		<b>,</b>	Matking Johnson Environmental Inc				1	Site	2 ID	
			Natkins-Johnson Environmental, Inc. SURFACE SOIL SAMPLE DATA FORM							G-SS-03
	Proj	ect N		Total	Drilled De	∍pth	C		- 4	A
	Drill	ing E	quipment Boring Diameter	Date	/Time Drill	ing S				e/Time Total Depth Reached
NA 2 14."							151	4	7/	16/92 1517 651
			ampling Device	Geologist Checked by/Date						
	Loca	ation i	Description (include sketch in field logbook)	JV.	Menn,	J	, 16	ur	0	NG 7/31/92
			s of Gample BLG-5502		,	<del></del>	,			
	_		Description	Symbol		Content		tima % of		Remarks
	Depth (ft)	Interval	(include lithology, grain size, sorting, angularity, Munsell color name & notation,	S SC	Lithology	ŭ	<u> </u>			(Include all sample types & depth, odor, organic vapor
	Ded	lute	mineralogy, structure, density, consistency, etc. as applicable)	nscs	£	Water		Sa	Fi	measurements, etc.)
\	20	-	SILI, some gravel that is subrounded to subangular, stible	ML	1.1	Ory	25	0	75	
Ì			to subangular, still		0	'				
١					7.3					•
			104R5/2 grayish brown -							
		-			•					
		-			-					
,					1					
		-								
					15					
		-								
ľ	رد,(				- D					
		-			12					
		-	•							
1		-	·							Sample
١		-								Sample tag #
										D 3035
1	SA	MPL	E LOCATION SKETCH	Ll					!	<u> </u>
			cation of mapped features, distances from these features to sample location	n, and	d North a	irrow	<b>'</b> )			
)			Tilla MAN							
			1011 During							
`			$\star$							
			Lat."							
			$\mathcal{N}^{\mathcal{O}}$							·
`		/	K.							
	~	$\langle$	10.Cc							
j		7	6 PK6-55-03							
}		7	h and h							

1	4	<b>-</b> .						<u> </u>		
1			Watkins-Johnson Environmental, Inc.					1 .	te ID T⊋ <i>L</i>	
ſ	=		SURFACE SOIL SAMPLE DATA FORM	<del></del>						K6-55-04
	Proj	ect Na	lame D- TEPS - EXCESSING 1333.020	Tota	al Drilled De	∍pth	8	.5	fe	Ė
Ī	Drilli	ng Er		Date	Time Drilli	iing S			· · · · · · · · · · · · · · · · · · ·	te/Time Total Depth Reached
ļ		<u>N</u>	H 2/4	7/	16/92/	<u> </u>	1429	<u>{</u>	7/1	16/92/ 1427 O.SfE
1	$\sim$	` -		Geor	logist	~ `	- -	· \d	~/ \ ~/\c	checked by/Date
ŀ			VE Sampler, 24"D, 15'drop, 10165.  Description (include sketch in field/logbook)	<u>၂.</u>	TORKO	<u>)</u> _	<u> </u>	WAI	1140	N 4 7/31/92
1	1		Of Pla 131						•	
ŀ	4	7	1) CIG-1-SI	ह्य		ΙË	ΤE	stima	ote	Remarks
1	2		Description _.	Symbol	≥ '	Content	1	% of		
-	Depth (ft)	Interval	(include lithology, grain size, sorting, angularity, Munsell color name & notation,	nscs s	Lithology	Water C	<u></u>	т—	T	(include all sample types & depth, odor, organic vapor
ŀ			mineralogy, structure, density, consistency, etc. as applicable)	S	<u> </u>	×a	Gr	Sa	Fi	measurements, etc.)
þ	7.4	<u>-</u>	SILT-with fine-med subrounded	ML	-,_,'	Pry	135	15	60	1
1	ļ	-	I grand subrange Dan to subra Al		1 1	1		/~	1	
	ſ	-	Fand, subangular to subrounded gracel, 104R 5/2 grayish brown	1	1				,	
	ſ	<i>i</i>	, graver, 104K 3/2 grayish brown	1	7				'	
	}	-	(0.0-0.5 ft)	!	1, -1				'	
	ŀ	$\dot{\varepsilon}$	(0.0 -013 70)		k '		'		'	
	ł	<u>.</u>	1		<u>                                     </u>		'		'	
	ł	-	·	1	-'	'	'		'	
	ţ	-	1	1	16 ^.	'	'		'	
1		-		1	· ~ '		'		'	
	F	-	1		1		'		'	
l	0.5	-	1			.  '	1		'	
	1	$\frac{\cdot}{2}$	1	1 1	'	1 '	'		'	
	ł	_	·	1	1 '	1	1		'	
	ł	-	r de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	1	1 1	1 '	1		'	
1	ļ	-	1	1 1	1	ĺ '	1		'	Sample tagy
	1	-	i -	1	1 1	'			1	Sumple togy
		-	1	1 1	1 '	1	'		'	000
H	<del>_</del>	<u></u>	7 : 22 : 22 : 21 : 21 : 21 : 21 : 21 : 2	ل		لـــــا	لـــا	<u></u> '	<u></u> '	<u> </u>
1	SAN	VIPL: TW (c	LE LOCATION SKETCH  coation of mapped features, distances from these features to sample location	າຊກ	d North a	arroy	47\			
1		/VI	validit di mapped realures, distantes nom moss realures le sample issuissi.	i, tarr	J 1401111 w	ilio.	<i>'</i> )			
			th	1	7					
			Jan L	- 1	Ńι					I
1			12 1et sport		10					!
			(1) X/ 50						4	
			offix,							
			/. NY A XX							,
			1/14							!
\			X							ļ
<u>'</u>  '	1	`	*\/							ļ
	\	\								1
		/								!
1					-					1

E-3 Physical Analysis Results

Fort Douglas Physical Soil Data Table E-1

		, ,	37311						Atterbero	h
	Denth	Sample	Classi-		Particle Size Analysis	ize Analy	/sis		Limits	n
Site ID	(ft-bgs)	I O	fication	Gravel	Gravel Sand	Silt	Clay	TI	ΡΓ	ΡΙ
SB-28	0.5-5.0	90220003*22	CW-GC	20	46	_	3	25	17	∞
BKG-SB-01	9.0-13.6	90220003*44	CL	2	6	09	29	30	19	11
SB-29	24.0-26.6	90220003*49	SC-SM	ć	70	25	7	20	16	4
SB-31	0.5-3.2	90220003*142	GW-GC	51	45	-	33	36	22	14
Note: Sai	mples *22 and *142 h	Samples *22 and *142 had insufficient quantity to	o test in strict accordance with ASTM D 422.	unce with ASTM	D 422.					

liquid limit plastic limit plasticity index LL = PL = PI =









APPENDIX F

Project: Fort Douglas
Building Number:
Type of Building: Dupley
Age of Building:
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  COMMENTS  O 1 2 3  0 1 2 3  0 1 2 3  0 1 2 3
brick dupler - some Him in poor condition.
* peeling paint ower several basement book walls.
SAMPLE INFORMATION
Sample ID Number(s)
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $cm^2$ (wipe an area = $100 cm^2$ )
Area Wipedcm² (wipe an area = 100 cm²)  Sample Location (also mark on floor plan)bs mt - peeling pain t on wall  Film Roll/Picture Numbers / //5
Sample Date/Time
Sampler's Name // / / / / / / / / / / / / / / / / /
A MAINTEAN I MACHITE

Project: Fort Douglas  Building Number: 2 B  Type of Building: Living quarters				
Age of Building:				
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is integrated to a windows/woodwork is integrated to a windows/woodwork is graded to a windows/woodwork is graded to a windows/woodwork is graded to a windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork is graded to windows/woodwork	peeling or b	roke: peeli:	n ng or broken	
use the following ratings for 1C,D,E and 200 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several 1 3 = problem areas are large and in many problem.	large proble	m are	eas	
Rate the following:				
<ol> <li>Interior Condition</li> <li>A. Painted windows</li> <li>B. Painted woodwork</li> <li>C. Peeling paint on walls</li> <li>D. Broken plaster on walls</li> <li>E. Water leaks</li> </ol>		2 2 2 2 2	3 3 3 3	
<ul> <li>2. Exterior Condition</li> <li>A. Peeling paint</li> <li>B. Rotted, painted wood</li> <li>C. Broken, painted masonry</li> </ul>	0 (1) (0) 1 (0) 1	2 2 2	3 3 3	
SAMPLE INFORMATION				
Sample ID Number(s) 28-001			·	
	AINT CHIP		2 \	
Area Wiped 100 cm ² (wipe Sample Location (also mark on floor plan	an area = $1$	00  cr	m- )	
Film Roll/Picture Numbers	1			
Sample Date/Time 10-4-91	0814			
Sampler's Name TOON SULLIVA!				
Analytical Results				

Project: Fort Douglas
Building Number: 3
Type of Building: Single Wait housing
Age of Building:
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeiing paint on walls  D. Broken plaster on walls  E. Water leaks  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 been replaced?) With  0 1 2 3 aluminum framed window  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have  0 1 ② 3 - exterion molding - windows have
2. Exterior Condition A. Peeling paint B. Rotted, painted wood C. Broken, painted masonry  0 2 3 0 2 3 C. Broken, painted masonry 0 1 2 3
bork exterior, tim is painted
SAMPLE INFORMATION
Sample ID Number(s) 3-00/
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\int 00 \text{ cm}^2 \text{ (wipe an area} = 100 \text{ cm}^2 \text{)}$
Sample Location (also mark on floor plan) along voca jam (Swinging door Shicks  Film Roll/Picture Numbers, 1/16
Film Roll/Picture Numbers ///6 Sample Date/Time /0/3/9/1447
$\sim 2$
Sampler's Name
Allarytical Results

Project: Fort Douglas													
Building Number: 4													
Type of Building: Education Bldg.													
Age of Building: 1875 / 76													
SURVEY DATA													
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact													
2 = some paint on windows/woodwork is peeling or broken													
3 = large amounts of paint on windows/woodwork is peeling or broken													
use the following ratings for 1C,D,E and 2A,B,C:													
0 = no visible problems or defects 1 = a few problem areas, limited in size													
<ul> <li>2 = either many problem areas or several large problem areas</li> <li>3 = problem areas are large and in many places</li> </ul>													
Rate the following:													
1. Interior Condition													
A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  O 1 2 3  O 1 2 3  D 2 3													
B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  0 1 2 3 0 1 2 3													
B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  F. Water leaks													
E. Water leaks (9 1 2 3													
2. Exterior Condition													
A. Peeling paint $0  1  2  3$ B. Rotted, painted wood $0  0  2  3$													
C. Broken, painted masonry (0) 1 2 3													
COMMENTS													
SAMPLE INFORMATION													
Sample ID Number(s) PAINT CHIP													
								Area Wiped $100$ cm ² (wipe an area = 100 cm ² )  Sample Location (also mark on floor plan) $100$ September $100$ Cm ² (wipe an area = 100 cm ² )					
Sample Date/Time 10-4-91, 1020 Sampler's Name 7000 SUCLIVAN													
Analytical Results													

Project: Fort Douglas							
Building Number:							
Type of Building: Roadiness QTrs							
Age of Building: 1904							
SURVEY DATA							
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken							
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places							
Rate the following:							
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3							
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3							
COMMENTS							
SAMPLE INFORMATION							
Sample ID Number(s) 5-00							
Type of Sample (circle one) WIPE PAINT CHIP							
Area Wiped cm ² (wipe an area = $100 \text{ cm}^2$ )							
Sample Location (also mark on floor plan) on door frien wall near dooning							
Film Roll/Picture Numbers							
Sample Date/Time <u>10-4-91</u> , <u>0935</u>							
Sampler's Name TODD SULLIUNN							
Analytical Results							

	Project: Fort Douglas					
	Building Number: 68					
	Type of Building: Living Quarters  Age of Building: 1875/76					
	Age of Building: 1875/76					
	,					
	SURVEY DATA					
	use the following ratings for 1A and 1B:					
	) = no painted windows/woodwork					
	1 = all paint on windows/woodwork is intact 2 = some paint on windows/woodwork is peeling or broken					
	3 = large amounts of paint on windows/woodwork is peeling or broken					
	use the following ratings for 1C,D,E and 2A,B,C:					
	0 = no visible problems or defects					
	1 = a few problem areas, limited in size 2 = either many problem areas or several large problem areas					
	3 = problem areas are large and in many places					
	Rate the following:					
	1. Interior Condition A. Painted windows  (0) 1 2 3					
	B. Painted windows  0 ① 2 3					
	C. Peeling paint on walls Q 1 2 3					
	A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3					
	2. Exterior Condition A. Peeling paint 0 1 ② 3					
	A. Peeling paint 0 1 (2) 3 B. Rotted, painted wood 0 (1) 2 3 C. Broken painted masonry (0) 1 2 3					
	C. Broken, painted masonry 0 1 2 3					
	COMMENTS					
•						
	SAMPLE INFORMATION					
	Sample ID Number(s) 6 B - 001					
	Type of Sample (circle one) WIPE PAINT CHIP					
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )						
Sample Location (also mark on floor plan) hallway base found						
	Film Roll/Picture Numbers A, 14					
Sample Date/Time 10-2-91 / 0835						
	Sampler's Name TODD SULLINH N					
	Analytical Results					

Project: Fort Douglas						
Building Number: $\mathcal{IB}$						
Type of Building: Living Otrs						
Age of Building: $\frac{1815176}{}$						
SURVEY DATA						
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken						
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places						
Rate the following:						
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  0 2 3  1 2 3  1 2 3  1 2 3						
2. Exterior Condition A. Peeling paint B. Rotted, painted wood C. Broken, painted masonry  2. Exterior Condition 0 1 2 3 1 2 3 1 2 3						
COMMENTS						
SAMPLE INFORMATION						
Sample ID Number(s) $\frac{7B-00}{}$						
Type of Sample (circle one WIPE PAINT CHIP						
Area Wiped $100$ cm ² (wipe an area = 100 cm ² )						
Sample Location (also mark on floor plan) Wall in hallway						
Film Roll/Picture Numbers 40 20						
Sample Date/Time 10-2-91, 1318 Sampler's Name 7000 SULLIVAN						
Analytical Results						

	Project: Fort Douglas							
	Building Number: 57							
Type of Building: 4 na ters								
Age of Building:								
	<b>,</b>							
	SURVEY DATA							
	use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken							
	use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places							
	Rate the following:							
	1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O D 2 3  O D 2 3  O D 2 3  O D 2 3  O D 2 3  O D 2 3  O D 2 3  O D 2 3  O D 2 3  O D 2 3  O D 2 3  O D 2 3							
	2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  O  1  2  3  0  1  2  3  0  1  2  3							
	COMMENTS							
	<u></u>							
,	SAMPLE INFORMATION							
j	Sample ID Number(s) 8A-001							
	Type of Sample (circle one) WIPE PAINT CHIP							
	Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )							
	Sample Location (also mark on floor plan) on shelf by freplace							
Film Roll/Picture Numbers _ + 2								
Sample Date/Time								
Sampler's Name TODD SULLIVA-W								
	Analytical Results							

Project: Fort Douglas								
Building Number: / //								
Type of Building: Living Qtrs								
Age of Building: /875/76								
SURVEY DATA								
use the following ratings for 1A and 1B:								
0 = no painted windows/woodwork 1 = all paint on windows/woodwork is intact								
<ul> <li>2 = some paint on windows/woodwork is peeling or broken</li> <li>3 = large amounts of paint on windows/woodwork is peeling or broken</li> </ul>								
3 = large amounts of paint on windows/woodwork is peening of oforcin								
use the following ratings for 1C,D,E and	2A,B,C:							
0 = no visible problems or defects 1 = a few problem areas, limited in size								
2 = either many problem areas or several	2 = either many problem areas or several large problem areas							
3 = problem areas are large and in many p	3 = problem areas are large and in many places							
Rate the following:								
1. Interior Condition								
A. Painted windows	$ \begin{array}{cccc} (0) & 1 & 2 \\ (0) & 1 & 2 \\ 0 & (1) & 2 \\ (0) & 1 & 2 \end{array} $	3						
<ul><li>B. Painted woodwork</li><li>C. Peeling paint on walls</li></ul>	$0 \stackrel{1}{\bigcirc} 2$	3 3 3						
D. Broken plaster on walls	$(\overset{\circ}{\mathbb{Q}})\overset{\circ}{1}\overset{\circ}{2}$	3						
E. Water leaks	Ø 1 2	3						
2. Exterior Condition	_							
A. Peeling paint	$ \begin{array}{cccc} 0 & \bigcirc & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{array} $	3 3 3						
<ul><li>B. Rotted, painted wood</li><li>C. Broken, painted masonry</li></ul>	$ \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} $	3						
•								
COMMENTS								
			,					
<u> </u>								
SAMPLE INFORMATION								
Sample ID Number(s) 9A - 00	Sample ID Number(s) 9A - 00							
Type or dampie (united the	PAINT CHIP							
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )								
	Sample Location (also mark on floor plan)							
Film Roll/Picture Numbers A, 25								
Sample Date/Time 10-2-91, 1520								
Sampler's Name TODD SULLIMN								
Analytical Results								

Project: Fort Douglas
Building Number: 10B
Type of Building: Living Quarters
Age of Building:
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O D 2 3  O D 2 3  D 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 2 3 0 1 2 3
COMMENTS
•
SAMPLE INFORMATION
Sample ID Number(s) 108-001 108-002
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $100$ cm ² (wipe an area = 100 cm ² ) $001$ on Wall Sample Location (also mark on floor plan) $002$ on Soffit $100$
Film Roll/Picture NumbersA - 2, 3
Sample Date/Time
Sampler's Name TODD SULLIVA N
Analytical Results

Project: Fort Douglas
Building Number:// A
Type of Building: Living Quarters
Age of Building: $\frac{1875}{76}$
Age of Building. 7070 / 10
CHRYPY DATA
SURVEY DATA
use the following ratings for 1A and 1B: 0 = no painted windows/woodwork
1 = all paint on windows/woodwork is intact
2 = some paint on windows/woodwork is peeling or broken 3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C: 0 = no visible problems or defects
1 = a few problem areas, limited in size
2 = either many problem areas or several large problem areas 3 = problem areas are large and in many places
•
Rate the following:
1. Interior Condition
A. Painted windows  B. Painted woodwork  2 0 0 2 3  B. Painted woodwork
C. Peeling paint on walls Q 1 2 3
D. Broken plaster on walls  E. Water leaks  0 1 2 3 1 2 3
2. Exterior Condition
A. Peeling paint 0 (1) 2 3
B. Rotted, painted wood  O 1 2 3 C. Broken, painted masonry  O 1 2 3
C. Broken, painted masonry
COMMENTS
SAMPLE INFORMATION
Sample ID Number(s) 11A - 00/
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = $100 \text{ cm}^2$ )
Sample Location (also mark on floor plan), on shelf by freplace
Film Roll/Picture Numbers $\mathcal{H}$
Sample Date/Time 10-1-91 1132
Sampler's Name TODD SULVIUA
Analytical Results

Project: Fort Douglas	
Building Number: 12 A	
Type of Building: Doanters	
Age of Building:	
Age of Building	
SURVEY DATA	
use the following ratings for 1A and 1B:	
0 = no painted windows/woodwork 1 = all paint on windows/woodwork is intact	
2 = some paint on windows/woodwork is peeling or broken	
3 = large amounts of paint on windows/woodwork is peeling or broken	
use the following ratings for 1C,D,E and 2A,B,C:	
0 = no visible problems or defects	
<ul> <li>1 = a few problem areas, limited in size</li> <li>2 = either many problem areas or several large problem areas</li> </ul>	
3 = problem areas are large and in many places	
Rate the following:	
1. Interior Condition	
A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  O (1) 2 3  O 1 2 3	
B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  0 1 2 3 0 1 2 3	
E. Water leaks 6 1 2 3	
2. Exterior Condition	
A. Peeling paint 0 (1) 2 3 B. Rotted, painted wood 0 (1) 2 3	
C. Broken, painted masonry (0) 1 2 3	
COMMENTS	
SAMPLE INFORMATION	
Sample ID Number(s) 12A - 001	
Type of Sample (circle one) WIPE PAINT CHIP	
Area Wiped $/OO$ cm ² (wipe an area = 100 cm ² )	
Sample Location (also mark on floor plan) on shelf	
Film Roll/Picture Numbers A, 5	
Sample Date/Time 10~1~91 1206	•
Sampler's Name TODD SUCCIDAN	
Analytical Results	

Project: Fort Douglas  Building Number: /3f  Type of Building: /3f  Age of Building: /875/76
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3
COMMENTS
·
SAMPLE INFORMATION
Sample ID Number(s) 13A - 00 (
Type of Sample (circle one WIPE PAINT CHIP
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan)
Film Roll/Picture Numbers $H$ , (12.2)
Sample Date/Time 10-1-91 1232 Sampler's Name 7000 Succive N
Applytical Pacults

Project: Fort Douglas		
Building Number: 14B	·	
Type of Building: Living Otrs		
Building Number: 14 B  Type of Building: Living Qtrs  Age of Building: 1875/76	2	
Tigo of Zamanig.		
SURVEY DATA		
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is into  2 = some paint on windows/woodwork is paint on windows/woodwork is paint on windows/woodwork	peeling or broken	
use the following ratings for 1C,D,E and 2 0 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several 1 3 = problem areas are large and in many p	large problem areas	
Rate the following:		
<ol> <li>Interior Condition</li> <li>A. Painted windows</li> <li>B. Painted woodwork</li> <li>C. Peeling paint on walls</li> <li>D. Broken plaster on walls</li> <li>E. Water leaks</li> </ol>	① 1 2 3 0 ① 2 3 ② 1 2 3 ② 1 2 3 ① 1 2 3 ① 1 2 3	
2. Exterior Condition	~	
A. Peeling paint	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
<ul><li>B. Rotted, painted wood</li><li>C. Broken, painted masonry</li></ul>	(0) 1 2 3	
COMMENTS		
SAMPLE INFORMATION		
Sample ID Number(s) $14B - 00$	<u> </u>	
Type of Sample (circle one) WIPE PA	AINT CHIP	
Area Wiped //OC cm² (wipe		
Sample Location (also mark on floor plan	1) hallway base board	
Film Roll/Picture Numbers $\frac{A}{15}$	; <u> </u>	
Sample Date/Time 10-2-91		
Sampler's Name		
Analytical Results		

Project: Fort Douglas
Building Number:
Living a -
100 101
Age of Building: /8/5//6
SURVEY DATA
use the following ratings for 1A and 1B:
0 = no painted windows/woodwork 1 = all paint on windows/woodwork is intact
2 = some paint on windows/woodwork is peeling or broken
3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:
0 = no visible problems or defects
<ul> <li>1 = a few problem areas, limited in size</li> <li>2 = either many problem areas or several large problem areas</li> </ul>
3 = problem areas are large and in many places
Rate the following:
1. Interior Condition A. Painted windows  0 2 3
B. Painted woodwork
B. Painted woodwork C. Peeling paint on walls D. Broken plaster on walls  0 1 2 3 0 1 2 3 0 1 2 3
E. Water leaks (0) 1 2 3
2. Exterior Condition
A. Peeling paint  B. Rotted, painted wood  0 1 2 3 1 2 3
C. Broken, painted masonry 0 1 2 3
COMMENTS
·
SAMPLE INFORMATION
Sample ID Number(s) 15A - 001
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) Shelf
Film Roll/Picture Numbers A B
Sample Date/Time
Sampler's Name
Analytical Results

Project: Fort Douglas				
Building Number:				
Type of Building: Living Otrs	_			
Age of Building: /884/	_			
Algo of Bullaning.				
SURVEY DATA				
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intac  2 = some paint on windows/woodwork is pe  3 = large amounts of paint on windows/woodwork	eling or broke	en ling or bro	oken	
use the following ratings for 1C,D,E and 2A 0 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several land 3 = problem areas are large and in many plan	rge problem a	reas		
Rate the following:				
<ol> <li>Interior Condition</li> <li>A. Painted windows</li> <li>B. Painted woodwork</li> <li>C. Peeling paint on walls</li> <li>D. Broken plaster on walls</li> <li>E. Water leaks</li> </ol>	(1) 1 2 0 1 2 (1) 1 2 (1) 1 2 (1) 1 2	3 3 3 3		
<ol> <li>Exterior Condition</li> <li>A. Peeling paint</li> <li>B. Rotted, painted wood</li> </ol>	(b) 1 2 (c) 1 2 (d) 1 2	3 3 3		
C. Broken, painted masonry	0 1 2	3		
COMMENTS				
			· · · · · · · · · · · · · · · · · · ·	 
SAMPLE INFORMATION				
Sample ID Number(s) $\frac{16 A - 00 I}{}$		<u></u>		
Type of Sample (circle one) WIPE PA	INT CHIP			
	n area = 100	cm²)		
Sample Location (also mark on floor plan)	wall		•	
Film Roll/Picture Numbers _ H, 24				
	1500			
Sampler's Name TODD SULLIAN				
Analytical Results				

Project: Fort Douglas
Building Number: 17B
Type of Building: Daplex
Age of Building:
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  0 0 2 3 06 16/3   9/ 2 3 0 1 2 3 0 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  O 1 2 3  O 1 2 3  O 1 2 3
Some paint was chigged off stampost railing
some paint was chiqued off stainpost railing area. Siding is painted all over extensinof
SAMPLE INFORMATION
Sample ID Number(s) 178-00 /
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\frac{\sqrt{00} \text{ cm}^2 \text{ (wipe an area = 100 cm}^2\text{)}}{\text{cm}^2 \text{ (wipe an area = 100 cm}^2\text{)}}$
Sample Location (also mark on floor plan) Stair post in entry way  Film Roll/Picture Numbers / 14 (may have mislabled chalkboard)
Film Roll/Picture Numbers / /14 (may have mislabeled Chalkboard)
Sample Date/Time $\frac{342^{\prime}}{10(3/9)}$
Sampler's Name Man Slow
Analytical Results

Project: Fort Douglas
Building Number:
Type of Building: Living Qtrs
Age of Building: $1875/73$
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 2 3  O 1 2 3  O 1 2 3
2. Exterior Condition
A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  O  1  2  3  C. Broken, painted masonry  O  1  2  3
, 0
COMMENTS
SAMPLE INFORMATION
Sample ID Number(s) $\frac{18C-001}{}$
Type of Sample (circle one) WIPE PAINT CHIP 15 10-3-91
Area Wiped $f \circ O$ cm ² (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan)
Film Roll/Picture Numbers 4, 27
Sample Date/Time $10-3-91$ , $0824$
Sampler's Name
Analytical Results

Project: Fort Douglas
Building Number:/9B
Type of Building: Quarter 5
Age of Building:
Age of building.
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  3  0  1  2  3  0  1  2  3  1  1  1  2  3  1  1  2  3  1  1  2  3  1  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3
2. Exterior Condition A. Peeling paint B. Rotted, painted wood C. Broken, painted masonry  A. Peeling paint B. Rotted, painted wood C. Broken, painted masonry  A. Peeling paint B. 1 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2 3 B. 2
COMMENTS
<u> </u>
SAMPLE INFORMATION
Sample ID Number(s) 19.B - 00/
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped cm ² (wipe an area = $100 \text{ cm}^2$ )
Sample Location (also mark on floor plan) on window Sill
Film Roll/Picture Numbers # 8
Sample Date/Time 10-1-9/ 14/0 Sampler's Name TODA SULLIVAN
Sampler's Name SULLIVAN

Project: Fort Douglas
Building Number: 20
Type of Building: Sing 4 Family housing
Age of Building: 1875
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  0 1 0 3  0 1 2 3  1 2 3  1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  COMMENTS  O D 2 3  0 D 2 3  0 D 2 3  0 D 2 3  0 D 2 3  0 D 2 3  0 D 2 3
some walls have been plastered oner. Sand shone
Back pock are a / garage is painted, peeling.
SAMPLE INFORMATION N 6 10/4/9,
Sample ID Number(s)
Type of Sample (circle one) WIPE (PAINT CHIP)
Area Wipedcm ² (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan)wall
Film Roll/Picture Numbers // 2 C
Sample Date/Time $\frac{10/4/9  \text{M}}{1/30}$
Sampler's Name
Analytical Results

Project: Fort Douglas  Building Number: 2/  Type of Building: 1-iving Q+rs  Age of Building: /93/  SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 275 2 3  O 1 2 3  O 275 2 3  O 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3 0 1 2 3
COMMENTS
SAMPLE INFORMATION
Sample ID Number(s) 21-001
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\underline{00}$ cm ² (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) <u>radiator cover</u>
Film Roll/Picture Numbers <u>ft</u> , <u>29</u>
Sample Date/Time 10-3-91, 0939 Sampler's Name 7000 SULLIVAN
Analytical Results
Auxivical results

Project: Fort Douglas
Building Number:
Type of Building: Single family housing
Age of Building: $\frac{/9.31}{}$
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks
2. Exterior Condition A. Peeling paint B. Rotted, painted wood C. Broken, painted masonry  0 ① 2 3 0 ① 2 3 0 1 2 3
Brick exterior, small ant of painted from and exterior painted back purch
and externor parted back purch
SAMPLE INFORMATION
Sample ID Number(s) 22-00/
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $/ 00 \text{ cm}^2 \text{ (wipe an area = 100 cm}^2 \text{)}$
Sample Location (also mark on floor plan) Shelf over radiator in Cont half
Film Roll/Picture Numbers // 7
Film Roll/Picture Numbers $\frac{1}{\sqrt{7}}$ Sample Date/Time $\frac{10/3/9}{\sqrt{3}}$
Sample Date/Time/0/3/9/ 1509  Sampler's Name

Project: Fort Douglas
Building Number: 23
Type of Building: Single Family housing
Age of Building: $\frac{934}{31}$
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  0 0 2 3 0 2 3 0 2 3 0 2 3 0 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3 0 1 2 3
SAMPLE INFORMATION  COMMENTS  bock exterion, little painted him, back  painted porch - Wall sampled had small areas of  broken plasta
Sample ID Number(s) $\frac{23-007}{2}$
Type of Sample (circle one) WIPE (PAINT CHIP)
Area Wiped cm ² (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) basement wall to the left of stains a going Film Roll/Picture Numbers
Film Roll/Picture Numbers //13 davr
Sample Date/Time $\frac{10/3/91^{\circ}}{1.320}$
Sampler's Name
Analytical Results

Project: Fort Douglas  Building Number: 24-00    Type of Building: 493/		,		
SURVEY DATA				
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is int  2 = some paint on windows/woodwork is  3 = large amounts of paint on windows/w	peeling or brok	ten ling or broken		
use the following ratings for 1C,D,E and 0 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several 3 = problem areas are large and in many problem.	large problem a	nreas	*	
Rate the following:				
<ol> <li>Interior Condition</li> <li>A. Painted windows</li> <li>B. Painted woodwork</li> <li>C. Peeling paint on walls</li> <li>D. Broken plaster on walls</li> <li>E. Water leaks</li> </ol>	0 1 2 0 1 2 0 1 2 0 1 2 0 1 2	3 3 3 3 3		
<ul><li>2. Exterior Condition</li><li>A. Peeling paint</li><li>B. Rotted, painted wood</li><li>C. Broken, painted masonry</li></ul>	0 1 2 0 1 2 0 1 2	3 3 3		·
COMMENTS				
SAMPLE INFORMATION				
Sample ID Number(s) <u>24 - 00 /</u>				
	AINT CHIP			
Area Wiped /00 cm ² (wipe	an area = 100	cm ² )		
Sample Location (also mark on floor plan	1) Shelf ove	r rodutos	,	
Film Roll/Picture Numbers	9			
Sample Date/Time 10-1-9/	1430			
Sampler's Name <u>TODD</u> SULLI	#W	· · · · · · · · · · · · · · · · · · ·		
Analytical Results				•

Project: Fort Douglas  Building Number: 25 001 75 10-1-91  Type of Building: 4731  Age of Building: 1931	
SURVEY DATA	
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken	
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places	
Rate the following:	
A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3	
2. Exterior Condition A. Peeling paint B. Rotted, painted wood C. Broken, painted masonry  O 1 2 3 0 1 2 3 0 1 2 3	
COMMENTS	
SAMPLE INFORMATION	
Sample ID Number(s) 25 - 00	
Type of Sample (circle one) WIPE PAINT CHIP	
Area Wiped $100$ cm ² (wipe an area = 100 cm ² )	
Sample Location (also mark on floor plan) Living from Skall	
Film Roll/Picture Numbers $4 - 1 - 91$ $459$	
Sample Date/Time 10-1-91 1439 Sampler's Name TODD SULLIVAN	
Analytical Results	

Project: Fort Douglas
Building Number: 3/
Type of Building: former recent offices
Age of Building: $\sqrt{876}/75$
,
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:
0 = no visible problems or defects 1 = a few problem areas, limited in size
2 = either many problem areas or several large problem areas
3 = problem areas are large and in many places
Rate the following:    The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large and in many places   The problem areas are large areas are large areas are large areas are large areas are large areas are large areas are large areas are large areas are large areas are large areas are large areas areas are large areas are large areas areas areas areas areas are
1. Interior Condition A. Painted windows  O 1 2 3
B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O (1) [2] 3  O(1) 1 2 3  O(1) 1 2 3  O(1) 1 2 3  O(1) 2 3
C. Peeling paint on walls $1001123$ D. Broken plaster on walls $01123$
E. Water leaks 10 1 2 3
2. Exterior Condition
A. Peeling paint 0 1 2 3 B. Rotted, painted wood 0 1 2 3
B. Rotted, painted wood  O 1 (2) 3 C. Broken, painted masonry  O 1 2 3
C. Broken, painted masonry
COMMENTS
Main floor (most of bidg) appears to have been renovaled and paint is in good
condition, hower soll live has not been renovated and to rated
SAMPLE INFORMATION Separately, Sandstone Billion - also
SAMPLE INFORMATION  Separately, Sandsvore Bill Settler Constraints Sandsvore Bill Settler Constraints on Sample ID Number(s)  Sample ID Number(s)  31-001  Front parch, Fring
Sample 1D Number(s)
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) buse board in lover level
Film Roll/Picture Numbers //20
Sample Date/Time $\frac{10/3/91}{2}$
Sampler's Name
Analytical Results

Project: Fort Douglas		
Building Number: 32 -00 13 (0-2-3)		
Type of Building: Museum		
Age of Building: 1876   75		
7		
SURVEY DATA		
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken	,	·
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places		
Rate the following:		
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O (1) 2 3  O (1) 2 3  O (1) 2 3  O (1) 2 3  O (1) 2 3  O (1) 2 3	·	
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3		
COMMENTS		
	<del></del>	
SAMPLE INFORMATION		
Sample ID Number(s)		
Type of Sample (circle one) WIPE PAINT CHIP	•	
Area Wiped cm ² (wipe an area = 100 cm ² ) -		
Sample Location (also mark on floor plan) bbll - near window		
Film Roll/Picture Numbers $A, 26$		
Sample Date/Time 10 - 2 - 91 1605		
Sampler's Name TODD SUCCIVAN		
Analytical Results		

Project: Fort Douglas
Building Number: 37
Type of Building: Offices
Age of Building:
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  0 1 2 3 0 2 3 0 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3 0 1 2 3
COMMENTS
Exterior alim. Siding, from is in good condition
SAMPLE INFORMATION
Sample ID Number(s) 37-00/
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $cm^2$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) of window sills
Film Roll/Picture Numbers // 2/
Sample Date/Time /0/4/9/ 0940
Sampler's Name //an XIII

Project: Fort Douglas	
Building Number: 39	
Type of Building:	
Age of Building:	
SURVEY DATA	
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken	
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places	
Rate the following:	
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 75 3  O 1 2 3  O 1 2 3  O 1 2 3	
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3 0 1 2 3	
COMMENTS	
SAMPLE INFORMATION	_
Sample ID Number(s) 39 - 004	
Type of Sample (circle one) WIPE PAINT CHIP	
Area Wiped cm ² (wipe an area = 100 cm ² )	
Sample Location (also mark on floor plan) Womens bathoom - on window Sill	
Film Roll/Picture Numbers A, 28	
Sample Date/Time/0-3-91 , 0905	
Sampler's Name Tabb SuccivAN	
A polytical Dagulta	

Project: Fort Douglas
Building Number: 4/
Type of Building:
Age of Building:
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork— Metalwork— 0 1 2 3  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks
2. Exterior Condition
A. Peeling paint (0) 1 2 3 B. Rotted, painted wood (0) 1 2 3 C. Broken, painted masonry (0) 1 2 3
C. Broken, painted masonry 0 1 2 3
COMMENTS
SAMPLE INFORMATION
Sample ID Number(s) $41-00$
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\underline{\hspace{1cm}}$ cm ² (wipe an area = $100 \text{ cm}^2$ )
Sample Location (also mark on floor plan) door trim
Film Roll/Picture Numbers A 3
Sample Date/Time 10-3-91 1054
Sampler's Name TODD SULLIVAN
A malvetraal 12 aaulta

Project: Fort Douglas	
Building Number: 548	
Type of Building: lost Chapel	
Age of Building:	
SURVEY DATA	
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken	
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places	
Rate the following:	
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  0 1 2 3 0 1 2 3 0 1 2 3	
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3 0 1 2 3	
COMMENTS	
	*****
SAMPLE INFORMATION	
Sample ID Number(s) <u>548 - 00</u>	•
Type of Sample (circle one) WIPE PAINT CHIP	
Area Wiped cm ² (wipe an area = $100 \text{ cm}^2$ )	
Sample Location (also mark on floor plan) on wall	
Film Roll/Picture Numbers $B$	
Sample Date/Time/0-4-91 ; f045	
Sampler's Name	
Analytical Results	

Project: Fort Douglas
Building Number: 49
Type of Building: Recreation Bldg.
Type of Building: Recreation Bldg.  Age of Building: 1876
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  0 1 2 3 0 1 2 3 0 1 2 3
2. Exterior Condition
A. Peeling paint 0 1 2 3
B. Rotted, painted wood C. Broken, painted masonry 0 1 2 3
COMMENTS
SAMPLE INFORMATION
Sample ID Number(s) 49 - 00
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) wall
Film Roll/Picture Numbers B 8
Sample Date/Time 10-4-91, 42 1110
Sampler's Name TODO SUCCIVAN
Analytical Results

Project: Fort Douglas  Building Number: 52 00 75 10 1-91  Type of Building: Living Otrs  Age of Building: 1900 / 1893
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  2. Exterior Condition  A. Peeling paint  D. 1 2 3  1 2 3  1 2 3
COMMENTS
Sample ID Number(s) 52 - 00
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\underline{\hspace{0.5cm}}$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) bosaboard
Film Roll/Picture Numbers A, 12
Sample Date/Time 10-1-91, 1528
Sampler's Name
Analytical Results

Project: Fort Douglas  Building Number: 53  Type of Building: Living Afrs  Age of Building: 1910	·		
SURVEY DATA			
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is inta  2 = some paint on windows/woodwork is p  3 = large amounts of paint on windows/wo	peeling or broken		
use the following ratings for 1C,D,E and 2 0 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several la 3 = problem areas are large and in many pl	large problem areas		
Rate the following:			
<ol> <li>Interior Condition</li> <li>A. Painted windows</li> <li>B. Painted woodwork</li> <li>C. Peeling paint on walls</li> <li>D. Broken plaster on walls</li> <li>E. Water leaks</li> </ol>	① 1 2 3 0 ① 2 3 0 ① 2 3 ② i 2 3 ② i 2 3		
<ul><li>2. Exterior Condition</li><li>A. Peeling paint</li><li>B. Rotted, painted wood</li><li>C. Broken, painted masonry</li></ul>	(i) 1 2 3 (i) 2 3 (ii) 1 2 3 (iii) 2 3		
COMMENTS			
SAMPLE INFORMATION			
Sample ID Number(s) <u>53 - 00 1</u>			
Type of Sample (circle one) WIPE PA	AINT CHIP		
Area Wipedom² (wipe a			
Sample Location (also mark on floor plan)	a) baseloard		
Film Roll/Picture Numbers B - 12			
Sample Date/Time 10-5-91	<u> 1015</u>		
Sampler's Name <u>TODD SULLWA</u>	) <i>N</i>		
Analytical Decults			

Project: Fort Douglas  Building Number: 54  Type of Building: Recepting Building  Age of Building: 1933	<u></u>	
SURVEY DATA		
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is inta  2 = some paint on windows/woodwork is p  3 = large amounts of paint on windows/wo	peeling or broken	
use the following ratings for 1C,D,E and 2 0 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several la 3 = problem areas are large and in many plants.	arge problem areas	
Rate the following:		
<ol> <li>Interior Condition</li> <li>A. Painted windows</li> <li>B. Painted woodwork</li> <li>C. Peeling paint on walls</li> <li>D. Broken plaster on walls</li> <li>E. Water leaks</li> </ol>	0 1 (2) 3 0 1 (2) 3 0 1 (2) 3 0 1 (2) 3 (0) 1 2 3	
<ol> <li>Exterior Condition</li> <li>A. Peeling paint</li> <li>B. Rotted, painted wood</li> <li>C. Broken, painted masonry</li> </ol>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I
COMMENTS		
SAMPLE INFORMATION		
Sample ID Number(s) <u>54-00 (</u>		
Type of Sample (circle one) WIPE PA	AINT CHIP	•
• • • • • • • • • • • • • • • • • • • •	an area = $100 \text{ cm}^2$ )	
Sample Location (also mark on floor plan)	) baseboard	
Film Roll/Picture Numbers 3		
	<u>140</u>	
Sampler's Name TOBD SULLIVE	AN	
Analytical Results		

F	Project: Fort Douglas
E	Building Number: 55
7	Type of Building: Former housing to the
A	Age of Building: 1874 & Placen bldg lists it as 1863 - constricted of wood and aclobe
	SURVEY DATA
1	use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
:	use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
]	Rate the following:
	1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  2. Exterior Condition  A. Peeling paint  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3
	B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3
Hd	COMMENTS  Paint chips are all over fromt procharea i broleside of pecling off laves i a dobe. All trum opening and exterior siding
	Sample ID Number(s)
	Type of Sample (circle one) WIPE PAINT CHIP
	Area Wiped $cm^2$ (wipe an area = $100 cm^2$ )
	Sample Location (also mark on floor plan) between rooms 10 and 11
	Film Roll/Picture Numbers //22
	Sample Date/Time 10/9/9/, 1005
	Sampler's Name
	Analytical Results

Project: Fort Douglas
Building Number: 564
Type of Building: Living Qtrs
Age of Building: 1916
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3
COMMENTS
SAMPLE INFORMATION Lexterior chip
Sample ID Number(s) <u>56A-001</u> , <u>56A-002</u>
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\frac{OO}{cm^2}$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) <u>oo1 - baseboard</u> , 002 poich ceiling
Film Roll/Picture Numbers A, 12-13
Sample Date/Time 10-1-91, 1555, 1600
Sampler's Name TODD SULLIVAN
Analytical Results

Project: Fort Douglas
Building Number: $578 - 0 + 310^{-2}$
Type of Building: Living Otry
Age of Building:
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3
2. Exterior Condition A. Peeling paint B. Rotted, painted wood C. Broken, painted masonry  0 1 2 3 0 1 2 3 0 1 2 3
problem area is under porch 5700 ft
SAMPLE INFORMATION
Sample ID Number(s) $57B - 00$ (
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) on Wall
Film Roll/Picture Numbers A, 16
Sample Date/Time 10-2-91 / 1017
Sampler's Name TODD SUCCIVAN
Analytical Results

Project: Fort Douglas
Building Number:
Type of Building: Living ats
Age of Building: $\frac{\cancel{930}}{\cancel{930}}$
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 75 3  O 1 2 3  O 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3 0 1 2 3
COMMENTS
SAMPLE INFORMATION
Sample ID Number(s) 58A - 00 /
Type of Sample (circle one) WIPE PAINT CHIP
Area Wipedcm ² (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) wall area
Film Roll/Picture Numbers $A 18$
Sample Date/Time $\frac{10-2-91}{1227}$
Sampler's Name TODD SULLIUAN
Analytical Results

Project: Fort Douglas  Building Number: 59 00+15 10-291  Type of Building: 1917  Age of Building: 1917	:
SURVEY DATA	
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken	٠
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places	
Rate the following:	-
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  2. Exterior Condition  A. Painted windows  O 1 2 3  O 1 2 3  Water damage New bath	Fu
A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  O 1 2 3  O 1 2 3  O 1 2 3	
COMMENTS	
·	
SAMPLE INFORMATION	
Sample ID Number(s) <u>59 - 00/</u>	
Type of Sample (circle one) WIPE PAINT CHIP	
Area Wiped $\underline{\hspace{0.5cm}}$ cm ² (wipe an area = 100 cm ² )	
Sample Location (also mark on floor plan) Wall  Film Roll/Picture Numbers	
Sample Date/Time 10-2-91 1245	
Sampler's Name TODD SUCCIVEN	
Analytical Results	

Project: Fort Douglas
Building Number: 664
Type of Building: dryslex - living Ars
Age of Building: $\frac{/9.30}{}$
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3
is in fair to poor condition
SAMPLE INFORMATION
$\mathcal{L}$
Sample ID Number(s) 60 H - 00 I  Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped $\frac{100}{\text{cm}^2}$ (wipe an area = 100 cm ² )
Sample Location (also mark on floor plan) baseloand-Wallarea
Film Roll/Picture Numbers of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco
Sample Date/Time 7/0/9/1 10-5-91, 1110
Sampler's Name Man Slem
Analytical Results

Project: Fort Douglas		
Building Number: 6 / 8013 10-3.91		
Type of Building: Living Otes		
Age of Building:/79/		
Age of building.		
SURVEY DATA		
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork		
1 = all paint on windows/woodwork is intact		
<ul> <li>2 = some paint on windows/woodwork is peeling or broken</li> <li>3 = large amounts of paint on windows/woodwork is peeling or broken</li> </ul>		
use the following ratings for 1C,D,E and 2A,B,C: 0 = no visible problems or defects		
1 = a few problem areas, limited in size		
2 = either many problem areas or several large problem areas 3 = problem areas are large and in many places		
Rate the following:		
1. Interior Condition		
A. Painted windows $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		
C. Peeling paint on walls $Q \bigcirc 2 3$		
D. Broken plaster on walls  E. Water leaks  O 1 2 3  1 2 3		
2. Exterior Condition A. Peeling paint  (0) 1 2 3		
B. Rotted, painted wood (0) 1 2 3		
C. Broken, painted masonry 0 1 2 3		
COMMENTS		
·		
SAMPLE INFORMATION		
Sample ID Number(s) 61-001		
Type of Sample (circle one) WIPE PAINT CHIP		
Area Wiped $cm^2$ (wipe an area = 100 cm ² )		
Sample Location (also mark on floor plan) on woodwork		
Film Roll/Picture Numbers $\frac{H}{30}$		
Sample Date/Time $10-3-91$ , $1008$		
Sampler's Name <u>TODD</u> SULLIVAN		
A polytical Pacults		

Project: Fort Douglas  Building Number: 42  Type of Building: Living Otrs  Age of Building: 189/  SURVEY DATA  use the following ratings for IA and IB: 0 = no painted windows/woodwork  1 = all paint on windows/woodwork is interpretable.					
<ul><li>2 = some paint on windows/woodwork is</li><li>3 = large amounts of paint on windows/w</li></ul>	oodwork is pee	eling or b	roken		
use the following ratings for 1C,D,E and 0 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several 3 = problem areas are large and in many	large problem :	areas			
Rate the following:					
<ol> <li>Interior Condition</li> <li>A. Painted windows</li> <li>B. Painted woodwork</li> <li>C. Peeling paint on walls</li> <li>D. Broken plaster on walls</li> <li>E. Water leaks</li> </ol>	0 1 2 0 1 2 0 1 2 0 1 2 0 1 2	3 3 3 3			
<ul> <li>2. Exterior Condition</li> <li>A. Peeling paint</li> <li>B. Rotted, painted wood</li> <li>C. Broken, painted masonry</li> </ul>	0 (1) 2 (0) 1 2 (0) 1 2	3 3 3			
COMMENTS				4 .	
SAMPLE INFORMATION					
Sample ID Number(s) 62-001			_		
Type of Sample (circle one) WIPE P	AINT CHIP				
Area Wipedcm ² (wipe				,	
Sample Location (also mark on floor plan	i) boseboard	<i>(</i>	-		
Film Roll/Picture Numbers A , 2			-		
Sample Date/Time 10-2-91	<u>355</u>		_		
Sampler's Name TOAD SULLIVAN	/		-		
Analytical Results			<del>-</del>		

Project: Fort Douglas		
Building Number: <u>63</u>		
Type of Building: Living atrs		
Age of Building:/89/	<del>:</del>	
SURVEY DATA		
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is in  2 = some paint on windows/woodwork is  3 = large amounts of paint on windows/w	peeling or broken	
use the following ratings for 1C,D,E and 0 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several 3 = problem areas are large and in many	large problem areas	
Rate the following:		•
<ol> <li>Interior Condition</li> <li>A. Painted windows</li> <li>B. Painted woodwork</li> <li>C. Peeling paint on walls</li> <li>D. Broken plaster on walls</li> <li>E. Water leaks</li> </ol>	(i) 1 2 3 0 (i) 2 3 (ii) 1 2 3 (iii) 1 2 3 (iii) 1 2 3 (iii) 1 2 3	
<ul><li>2. Exterior Condition</li><li>A. Peeling paint</li><li>B. Rotted, painted wood</li><li>C. Broken, painted masonry</li></ul>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
COMMENTS		
		<u> </u>
CAMPI E INCOPMATION		
SAMPLE INFORMATION	t.	
Sample ID Number(s) 63-00		
	PAINT CHIP	•
Area Wipedcm ² (wipe	.n.i i	•
Sample Location (also mark on floor plan	n) <u>wall</u>	
Film Roll/Picture Numbers H	<u> </u>	
Sample Date/Time $10-2-91$	•	
Sampler's Name <u>TODD SULCIJI</u>	4 ~	
Analytical Results		

Project: Fort Douglas  Building Number: 64A  Type of Building: Living Otrs	
Age of Building:	
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken	
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places	
Rate the following:	
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3	
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 1 2 3 1 2 3	
COMMENTS	
SAMPLE INFORMATION	
Sample ID Number(s) 64A - 001	
Type of Sample (circle one) WIPE PAINT CHIP	
Area Wiped $cm^2$ (wipe an area = $100 cm^2$ )	
Sample Location (also mark on floor plan) on window from	
Film Roll/Picture Numbers $\frac{H}{123}$ Sample Date/Time $\frac{10-2-91}{1430}$	
Sampler's Name	
Analytical Results	

Project: Fort Douglas	·~.	
Building Number: 65B		
Type of Building:		
Age of Building:		
SURVEY DATA		
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peel:  3 = large amounts of paint on windows/woodwork	ing or broken work is peeling or broken	
use the following ratings for 1C,D,E and 2A,I 0 = no visible problems or defects 1 = a few problem areas, limited in size 2 = either many problem areas or several large 3 = problem areas are large and in many place	e problem areas	
Rate the following:		
1. Interior Condition A. Painted windows B. Painted woodwork C. Peeling paint on walls D. Broken plaster on walls E. Water leaks	0 (1) 2 3 0 (1) 2 3 0 1) 2 3 0 1) 2 3 0 1) 2 3	
2. Exterior Condition A. Peeling paint B. Rotted, painted wood C. Broken, painted masonry	0 1 2 3 0 1 2 3 0 1 2 3	
COMMENTS		
SAMPLE INFORMATION		
Sample ID Number(s) 65 B - 00	1	
Type of Sample (circle one) WIPE PAIN	IT CHIP	
Area Wiped /00 cm ² (wipe an a		
Sample Location (also mark on floor plan)		
Film Roll/Picture Numbers flone tak	15. 10 = 5 - 91	
Sample Date/Time 10-5-91, 10	7 1038	
Sampler's Name <u>TODA</u> SULCIU	AN	
Analytical Results		

Project: Fort Douglas
Building Number: 668-001
Type of Building: Living Q+rs.
Type of Building: Living Otrs.  Age of Building: 1900 / 1933
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  O 1 2 3  O 1 2 3  O 1 2 3
COMMENTS
(hippod area was small & all chips were removed for sample,
the chips also represented earlier layers of paint
SAMPLE INFORMATION
Sample ID Number(s) $66B-001$
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped cm ² (wipe an area = $100 \text{ cm}^2$ )
Sample Location (also mark on floor plan) Entrance base loand
Film Roll/Picture Numbers A, 15
Sample Date/Time <u>10-2-91</u> , 0932
Sampler's Name TODD SULLIVA N
Analytical Results

Project: Fort Douglas
Building Number: 350
Type of Building: Swimming pool loclars/dressing rooms
Type of Building: Swimming pool lockus/dressing rooms  Age of Building: 1937/36
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks  O 1 2 3  O 1 2 3  O 1 2 3  O 1 2 3
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  0 1 2 3 0 1 2 3 0 1 2 3
COMMENTS & eaves are
Sand stone bele exterior, from 18 10 poor condition
. 700-76/4(17
SAMPLE INFORMATION
Sample ID Number(s) 350-00/
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped cm ² (wipe an area = $100 \text{ cm}^2$ )
Sample Location (also mark on floor plan) womons lo clearoom wall
Film Roll/Picture Numbers // 23
Sample Date/Time $\frac{10/4/91}{2000000000000000000000000000000000000$
Sampler's Name / /an Slow
Analytical Results

Project: Fort Douglas
Puilding Number: 35/
Type of Building: Sivimnis pool Cyclahas
Age of Building: $\frac{1937}{1942}$
SURVEY DATA
use the following ratings for 1A and 1B:  0 = no painted windows/woodwork  1 = all paint on windows/woodwork is intact  2 = some paint on windows/woodwork is peeling or broken  3 = large amounts of paint on windows/woodwork is peeling or broken
use the following ratings for 1C,D,E and 2A,B,C:  0 = no visible problems or defects  1 = a few problem areas, limited in size  2 = either many problem areas or several large problem areas  3 = problem areas are large and in many places
Rate the following:
1. Interior Condition  A. Painted windows  B. Painted woodwork  C. Peeling paint on walls  D. Broken plaster on walls  E. Water leaks
2. Exterior Condition  A. Peeling paint  B. Rotted, painted wood  C. Broken, painted masonry  A. Peeling paint  D. 1 2 3  1 2 3  1 2 3
Exterior is a luminim siding, metal doors.
·
SAMPLE INFORMATION
Sample ID Number(s) 351-001
Type of Sample (circle one) WIPE PAINT CHIP
Area Wiped cm ² (wipe an area = $100 \text{ cm}^2$ )
Sample Location (also mark on floor plan)
Film Roll/Picture Numbers //24
Sample Date/Time
Sampler's Name
Analytical Results

APPENDIX G
ANALYTICAL RESULTS

G-1 Field QC Data

#### Field QC

#### Level 3 Data

			Level 3 Data		Flag				
	QC	D		Value		Units	Lot	Method	Dilution
Site Id	Sample Date Type Depth	Paramete	er	Value	Code	0.111.03		,	Ditution
				0.027		UGC2	RTH	99	1.000
11A-001	01-oct-1991 QCFB 0.000		LEAD				RTH	99	1.000
49-001	04-oct-1991 QCRB 0.000		LEAD	LT 0.002		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		1,1,1-TRICHLOROETHANE	LT 3.600				UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		1,1,2-TRICHLOROETHANE	LT 2.000		UGL			
SB-28	01-oct-1991 QCTB 0.000	11DCE	1,1-DICHLOROETHYLENE	LT 21.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	11DCLE	1,1-DICHLOROETHANE	LT 2.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	123CPR	1,2,3-TRICHLOROPROPANE	LT 2.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	12DCLB	1,2-DICHLOROBENZENE	LT 17.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	12DCLE	1,2-DICHLOROETHANE	LT 6.700		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		1,2-DICHLOROPROPANE	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		1.3-DICHLOROBENZENE	LT 10.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		1,4-DICHLOROBENZENE	LT 17.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		2-CHLOROETHYLVINYL ETHER	LT 4.100		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		ACETONE	LT 17.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		ACROLEIN	LT 20.000		UGL	RFC	UM27	1.000
	01-oct-1991 QCTB 0.000		ACRYLONITRILE	LT 2.300		UGL	RFC	UM27	1.000
SB-28	* *		BROMODICHLOROMETHANE	LT 2.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		CIS-1,3-DICHLOROPROPYLENE	LT 2.400		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		·	LT 2.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		ACETIC ACID, VINYL ESTER	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		CHLOROETHENE			UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		CHLOROETHANE	LT 8.000			RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		BENZENE	LT 2.800		UGL		UM27	1.000
\$B-28	01-oct-1991 QCTB 0.000		DICHLORODIFLUOROMETHANE	LT 17.000		UGL	RFC		
SB-28	01-oct-1991 QCTB 0.000		TRICHLOROFLUOROMETHANE	LT 11.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	CCL4	CARBON TETRACHLORIDE	LT 4.400		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	CDCBU	CIS-1,4-DICHLORO-2-BUTENE	LT 2.300		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	CH2BR2	METHYLENE BROMIDE	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	CH2CL2	METHYLENE CHLORIDE	LT 19.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	CH3BR	BROMOMETHANE	LT 36.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	CH3CL	CHLOROMETHANE	LT 9.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	CHBR3	BROMOFORM	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	CHCL3	CHLOROFORM	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		CHLOROBENZENE	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		CARBON DISULFIDE	LT 16.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		DIBROMOCHLOROMETHANE	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		ETHYLBENZENE	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		ETHYL METHACRYLATE	LT 2.000		UGL	RFC	UM27	1.000
	01-oct-1991 QCTB 0.000		TOLUENE	LT 2.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		METHYLETHYL KETONE	LT 6.200		UGL		UM27	1.000
SB-28			METHYLISOBUTYL KETONE	LT 2.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000					UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		METHYL-N-BUTYL KETONE	LT 4.800			RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		STYRENE	LT 2.000		UGL		UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		TRANS-1,2-DICHLOROETHYLENE	LT 37.000		UGL	RFC		1.000
SB-28	01-oct-1991 QCTB 0.000		TRANS-1,3-DICHLOROPROPENE	LT 1.600		UGL	RFC	UM27	
SB-28	01-oct-1991 QCTB 0.000		1,1,2,2-TETRACHLOROETHANE	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		TETRACHLOROETHYLENE	LT 2.000		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	TDCBU	TRANS-1,4-DICHLORO-2-BUTENE	LT 3.600		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000		TRICHLOROETHYLENE	LT 2.200		UGL	RFC	UM27	1.000
SB-28	01-oct-1991 QCTB 0.000	XYLEN	XYLENES	LT 11.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991 QCRB 0.000	111TCE	1,1,1-TRICHLOROETHANE	LT 3.600		UGL	RFC	UM27	1.000
SB-29	02-oct-1991 QCTB 0.000		1,1,1-TRICHLOROETHANE	LT 3.600		UGL	RFC	UM27	1.000
SB-29	02-oct-1991 QCRB 0.000		1,1,2-TRICHLOROETHANE	LT 2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991 QCTB 0.000		1,1,2-TRICHLOROETHANE	LT 2.000	•	UGL	RFC	UM27	1.000
SB-29	02-oct-1991 QCRB 0.000		1,1-DICHLOROETHYLENE	LT 21.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991 QCTB 0.000		1,1-DICHLOROETHYLENE	LT 21.000		UGL	RFC	UM27	1.000
	02-oct-1991 QCRB 0.000		1,1-DICHLOROETHANE	LT 2.000		UGL		UM27	1.000
SB-29	02-001-1331 MCKB 0:000	O TIDULE	i, i bionconocimac	2. 2.300			•	<del>-</del> -	

#### Field QC

					Level 3 Data							
		QC						Flag				
Site Id	Sample Date	Type	Depth	Paramete	r	Val	ue	Code	Units	Lot	Method	Dilution
					•							
SB-29	02-oct-1991	QCTB	0.000	11DCLE	1,1-DICHLOROETHANE		2.000		UGL		UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	123CPR	1,2,3-TRICHLOROPROPANE		2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCTB	0.000	123CPR	1,2,3-TRICHLOROPROPANE		2.000		UGL		UM27	1.000
\$B-29	02-oct-1991	QCRB	0.000	124TCB	1,2,4-TRICHLOROBENZENE	LT	1.400		UGL	RXE	UM28	1.000
SB-29	02-oct-1991	QCRB	0.000	12DCLB	1,2-DICHLOROBENZENE	LT	17.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			12DCLB	1,2-DICHLOROBENZENE	LT	1.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			12DCLB	1,2-DICHLOROBENZENE	LT	17.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			12DCLE	1,2-DICHLOROETHANE	LT	6.700		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			12DCLE	1,2-DICHLOROETHANE	LT	6.700		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			12DCLP	1,2-DICHLOROPROPANE	LT	2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			12DCLP	1,2-DICHLOROPROPANE	LT	2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			13DCLB	1,3-DICHLOROBENZENE	LT	10.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			13DCLB	1,3-DICHLOROBENZENE	LT	1.100		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			13DCLB	1,3-DICHLOROBENZENE	LT	10.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			14DCLB	1,4-DICHLOROBENZENE	LT	17.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			14DCLB	1,4-DICHLOROBENZENE	LT	1.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			14DCLB	1,4-DICHLOROBENZENE	LT	17.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991				2,4,5-TRICHLOROPHENOL	LT	4.600		UGL	RXE	UM28	1.000
SB-29	02-oct-1991				2,4,6-TRICHLOROPHENOL	LT	4.800		UGL	RXE	UM28	1.000
SB-29	02-oct-1991				2,4-DICHLOROPHENOL		5.800		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			24DMPN	2.4-DIMETHYLPHENOL	LT	4.600		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			24DNP	2,4-DINITROPHENOL	LT	33.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			24DNT	2.4-DINITROTOLUENE	LT	9.700		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			26DNT	2,6-DINITROTOLUENE		5.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			2CLEVE	2-CHLOROETHYLVINYL ETHER		4.100		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			2CLEVE	2-CHLOROETHYLVINYL ETHER		4.100		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			2CLP	2-CHLOROPHENOL	LT	2.400		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			2CNAP	2-CHLORONAPHTHALENE		1.600		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			2MNAP	2-METHYLNAPHTHALENE		1.900		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			2MP	2-METHYLPHENOL		3.900		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			2NANIL	2-NITROANILINE		9.600		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			2NP	2-NITROPHENOL		6.700		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			33DCBD	3,3'-DICHLOROBENZIDINE		32.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			3NANIL	3-NITROANILINE		30.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			46DNTC	4,6-DINITRO-2-METHYLPHENOL		14.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			4BRPPE	4-BROMOPHENYLPHENYL ETHER		1.400		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			4CANIL	4-CHLOROANILINE		17.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			4CL3C	4-CHLORO-3-CRESOL	LT	7.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			4CLPPE			4.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			4MP	4-METHYLPHENOL		6.100		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			4NANIL	4-NITROANILINE	LT	40.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			4NP	4-NITROPHENOL		44.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			ACET	ACETONE		17.000		UGL	RFC	UM27	1.000
	02-oct-1991			ACET	ACETONE		17.000		UGL	RFC	UM27	1.000
SB-29 SB-29	02-00t-1991 02-oct-1991			ACROLN	ACROLEIN		20.000		UGL	RFC	UM27	1.000
	02-00t-1991 02-oct-1991			ACROLN	ACROLEIN		20.000		UGL	RFC	UM27	1.000
SB-29							2.300		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			ACRYLO ACRYLO	ACRYLONITRILE ACRYLONITRILE		2.300		UGL		UM27	1.000
SB-29	02-oct-1991						10.000		UGL	RGC	SS14	1.000
SB-29	02-oct-199			AG	SILVER		200.000		UGL	RGC	\$\$14	1.000
SB-29	02-oct-199			AL	ACENABUTUENE		3.400		UGL	RXE	UM28	1.000
SB-29	02-oct-199			ANAPNE	ACENAPHTHENE		1.100		UGL	RXE	UM28	1.000
SB-29	02-oct-199			ANAPYL	ACENAPHTHYLENE		1.000		UGL		UM28	1.000
SB-29	02-oct-199			ANTRC	ANTHRACENE		24.800		UGL	RGC		1.000
SB-29	02-oct-199			AS	ARSENIC		2.000		UGL		SD30	1.000
SB-29	02-oct-199			AS	ARSENIC		7.800		UGL		UM28	1.000
SB-29	02-oct-199	1 QCR	R 0.000	B2CEXM	BIS (2-CHLOROETHOXY) METHANE	L.I	3.000		Jul	AAC	SHEO	

#### Field QC

					Level 3 Data							
		QC		ŧ				Flag				
Site Id	Sample Date	Туре	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
SB-29	02-oct-1991	QCRB	0.000	B2CIPE	BIS (2-CHLOROISOPROPYL) ETHER	LT	1.300		UGL	RXE	UM28	1.000
SB-29	02-oct-1991	QCRB	0.000	B2CLEE	BIS (2-CHLOROETHYL) ETHER	LT	1.800		UGL	RXE	UM28	1.000
SB-29	02-oct-1991	QCRB	0.000	B2EHP	BIS (2-ETHYLHEXYL) PHTHALATE	LT	1.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991	QCRB	0.000	ВА	BARIUM	LT	3.000		UGL	RGC	SS14	1.000
SB-29	02-oct-1991			BAANTR	BENZO [A] ANTHRACENE	LT	5.800		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			BAPYR	BENZO [A] PYRENE	LT	1.200		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			BBFANT	BENZO [B] FLUORANTHENE		1.300		UGL.	RXE	UM28	1.000
SB-29	02-oct-1991			BBZP	BUTYLBENZYL PHTHALATE		1.100		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			BE	BERYLLIUM		2.090		UGL	RGC	SS14	1.000
	02-0ct-1991 02-oct-1991			BGHIPY	BENZO [G,H,I] PERYLENE	1 T	1.100		UGL	RXE	UM28	1.000
SB-29	02-0ct-1991 02-oct-1991			BKFANT	BENZO [K] FLUORANTHENE		2.300		UGL	RXE	UM28	1.000
SB-29				BRDCLM	BROMODICHLOROMETHANE		2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991						2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			BRDCLM	BROMODICHLOROMETHANE		2.400		UGL		UM27	1.000
SB-29	02-oct-1991			C13DCP	CIS-1,3-DICHLOROPROPYLENE				UGL	RFC	UM27	1.000
SB-29	02-oct-1991				CIS-1,3-DICHLOROPROPYLENE		2.400		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			C2AVE	ACETIC ACID, VINYL ESTER		2.000				UM27	1.000
SB-29	02-oct-1991			C2AVE	ACETIC ACID, VINYL ESTER		2.000		UGL	RFC		
SB-29	02-oct-1991			C2H3CL	CHLOROETHENE		2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCTB	0.000	C2H3CL	CHLOROETHENE		2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	C2H5CL	CHLOROETHANE		8.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCTB	0.000	C2H5CL	CHLOROETHANE		8.000		UGL		UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	C6H6	BENZENE		2.800		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCTB	0.000	C6H6	BENZENE	LT	2.800		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	CA	CALCIUM		224.000		UGL	RGC	SS14	1.000
SB-29	02-oct-1991	QCRB	0.000	CCL2F2	DICHLORODIFLUOROMETHANE	LT	17.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCTB	0.000	CCL2F2	DICHLORODIFLUOROMETHANE	LT	17.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	CCL3F	TRICHLOROFLUOROMETHANE	LT	11.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCTB	0.000	CCL3F	TRICHLOROFLUOROMETHANE	LT	11.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	CCL4	CARBON TETRACHLORIDE	LT	4.400		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CCL4	CARBON TETRACHLORIDE	LT	4.400		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	CD	CADMIUM	LT	5.000		UGL	RGC	SS14	1.000
SB-29	02-oct-1991			CDCBU	CIS-1,4-DICHLORO-2-BUTENE	LT	2.300		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CDCBU	CIS-1,4-DICHLORO-2-BUTENE	LT	2.300		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CH2BR2	METHYLENE BROMIDE	LT	2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CH2BR2	METHYLENE BROMIDE	LT	2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CH2CL2	METHYLENE CHLORIDE		19.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CH2CL2	METHYLENE CHLORIDE		19.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CH3BR	BROMOMETHANE		36.000		UGL		UM27	1.000
SB-29	02-oct-1991			CH3BR	BROMOMETHANE		36.000		UGL	RFC	UM27	1.000
SB-29	02-0ct-1991 02-oct-1991			CH3CL	CHLOROMETHANE		9.000		UGL	RFC	UM27	1.000
					CHLOROMETHANE		9.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CH3CL			2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991 02-oct-1991			CHBR3 CHBR3	BROMOFORM		2.000		UGL		UM27	1.000
SB-29					BROMOFORM				UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CHCL3	CHLOROFORM		2.000			RFC	UM27	1.000
SB-29	02-oct-1991			CHCL3	CHLOROFORM		2.000		UGL			
SB-29	02-oct-1991			CHRY	CHRYSENE		2.500		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			CL6BZ	HEXACHLOROBENZENE		1.000		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			CL6CP	HEXACHLOROCYCLOPENTAD I ENE		7.600		UGL	RXE	UM28	1.000
SB-29	02-oct-1991			CL6ET	HEXACHLOROETHANE		1.200		UGL	RXE	UM28	1.000
SB-29	02-oct-1991	QCRB	0.000	CLC6H5	CHLOROBENZENE		2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCTB	0.000	CLC6H5	CHLOROBENZENE		2.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	CO	COBALT	LT	10.800		UGL	RGC	S\$14	1.000
SB-29	02-oct-1991	QCRB	0.000	CR	CHROMIUM	LT	22.400		UGL	RGC	SS14	1.000
SB-29	02-oct-1991	QCRB	0.000	CS2	CARBON DISULFIDE	LT	16.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CS2	CARBON DISULFIDE	LT	16.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			CU	COPPER		13.500		UGL	RGC	SS14	1.000

#### Field QC

	QC				Flag				
Site Id Sample		n Paramet	er	Value	Code	Units	Lot	Method	Dilution
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•						
SB-29 02-oct	-1991 QCRB 0.000	CYN	CYANIDE	LT 8.900		UGL	QXY	CN1	1.000
	-1991 QCRB 0.00		DIBENZ [A,H] ANTHRACENE	LT 2.000		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		DIBROMOCHLOROMETHANE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCTB 0.00		DIBROMOCHLOROMETHANE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCRB 0.00			LT 2.600		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		DIETHYL PHTHALATE	LT 2.200		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		DIMETHYL PHTHALATE	LT 5.100		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		DI-N-BUTYL PHTHALATE	LT 4.900		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		DI-N-OCTYL PHTHALATE	LT 8.000		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		ETHYLBENZENE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCTB 0.00		ETHYLBENZENE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCRB 0.00		ETHYL METHACRYLATE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCTB 0.00		ETHYL METHACRYLATE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCRB 0.00		FLUORANTHENE	LT 1.000		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		IRON	LT 112.000		UGL	RGC	SS14	1.000
	-1991 QCRB 0.00		FLUORENE	LT 1.300		UGL	RXE	UM28	1.000
			HEXACHLOROBUTAD I ENE	LT 1.000		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00			LT 0.500	L	UGL	RRR	WW8	1.000
	-1991 QCRB 0.00		MERCURY	LT 4.400	L	UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		INDENO [1,2,3-C,D] PYRENE	LT 1.100	-	UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		ISOPHORONE	LT 1080.000	•	UGL	RGC	SS14	1.000
	-1991 QCRB 0.00		POTASSIUM	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCRB 0.00		TOLUENE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCTB 0.00		TOLUENE	LT 6.200		UGL	RFC	UM27	1.000
	-1991 QCRB 0.00		METHYLETHYL KETONE	LT 6.200		UGL	RFC	UM27	1.000
	-1991 QCTB 0.00		METHYLETHYL KETONE	LT 89.200		UGL	RGC	SS14	1.000
	-1991 QCRB 0.00		MAGNESIUM			UGL	RFC	UM27	1.000
	-1991 QCRB 0.00		METHYLISOBUTYL KETONE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCTB 0.00		METHYLISOBUTYL KETONE	LT 2.000		UGL	RGC	SS14	1.000
	-1991 QCRB 0.00		MANGANESE	LT 20.000			RFC	UM27	1.000
	-1991 QCRB 0.00		METHYL-N-BUTYL KETONE	LT 4.800		UGL		UM27	1.000
	-1991 QCTB 0.00		METHYL-N-BUTYL KETONE	LT 4.800		UGL	RFC	SS14	
	-1991 QCRB 0.00		MOLYBDENUM	LT 10.000		UGL	RGC		1.000
	-1991 QCRB 0.00		SODIUM	LT 251.000		UGL	RGC	SS14	1.000
	-1991 QCRB 0.00		NAPHTHALENE	LT 3.800		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		NITROBENZENE	LT 2.900		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		NICKEL	LT 23.300		UGL	RGC	SS14	1.000
	-1991 QCRB 0.00		N-NITROSO DI-N-PROPYLAMINE	LT 3.200		UGL	RXE		1.000
*	-1991 QCRB 0.00		N-NITROSO DIPHENYLAMINE	LT 5.900		UGL	RXE		1.000
	-1991 QCRB 0.00		LEAD	LT 51.600		UGL	RGC		1.000
	-1991 QCRB 0.00		LEAD	LT 4.540		UGL		SD30	1.000
	-1991 QCRB 0.00		PENTACHLOROPHENOL	LT 12.000		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		PHENANTHRENE	LT 1.000		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		PHENOL	LT 6.200		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		PYRENE	LT 1.000		UGL	RXE	UM28	1.000
	-1991 QCRB 0.00		ANTIMONY	LT 25.100		UGL	RGC	SS14	1.000
	-1991 QCRB 0.00		SELENIUM	LT 200.000		UGL	RGC	SS14	1.000
	-1991 QCRB 0.00		SELENIUM	LT 2.540		UGL		SD30	1.000
	-1991 QCRB 0.00		STYRENE	LT 2.000		UGL	RFC		1.000
SB-29 02-oct	-1991 QCTB 0.00	O STYR	STYRENE	LT 2.000		UGL		UM27	1.000
SB-29 02-oct	-1991 QCRB 0.00	0 T12DCE	TRANS-1,2-DICHLOROETHYLENE	LT 37.000		UGL	RFC	UM27	1.000
SB-29 02-oct	-1991 QCTB 0.00	O T12DCE	TRANS-1,2-DICHLOROETHYLENE	LT 37.000		UGL	RFC	UM27	1.000
	-1991 QCRB 0.00		TRANS-1,3-DICHLOROPROPENE	LT 1.600		UGL	RFC	UM27	1.000
SB-29 02-oct	-1991 QCTB 0.00	0 T13DCP	TRANS-1,3-DICHLOROPROPENE	LT 1.600		UGL	RFC	UM27	1.000
SB-29 02-oct	-1991 QCRB 0.00	O TCLEA	1,1,2,2-TETRACHLOROETHANE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCTB 0.00		1,1,2,2-TETRACHLOROETHANE	LT 2.000		UGL	RFC	UM27	1.000
	-1991 QCRB 0.00		TETRACHLOROETHYLENE	LT 2.000		UGL	RFC	UM27	1.000

#### Field QC

					Level 3 Data							
		QC						Flag				
Site Id	Sample Date	Type	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
					TETRACIII ODOSTIIVI SUS	ιT	2.000		UGL	BEC	UM27	1.000
SB-29	02-oct-1991			TCLEE	TETRACHLOROETHYLENE		3.600		UGL		UM27	1.000
SB-29	02-oct-1991			TDCBU	TRANS-1,4-DICHLORO-2-BUTENE				UGL	RFC	UM27	1.000
SB-29	02-oct-1991			TDCBU	TRANS-1,4-DICHLORO-2-BUTENE		3.600		UGL	RGC	SS14	1.000
SB-29	02-oct-1991			TI	TITANIUM		10.000			RGC	SS14	1.000
SB-29	02-oct-1991	QCRB	0.000	TL	THALLIUM	LI	288.000		UGL		00	1.000
SB-29	02-oct-1991			TPHC	TOTAL PETROLEUM HYDROCARBONS		270.000		UGL	RTE		1.000
\$B-29	02-oct-1991			TRCLE	TRICHLOROETHYLENE		2.200		UGL	RFC	UM27	
\$B-29	02-oct-1991			TRCLE	TRICHLOROETHYLENE		2.200		UGL	RFC	UM27	1.000 1.000
SB-29	02-oct-1991			٧	VANADIUM		7.620		UGL	RGC	SS14	
SB-29	02-oct-1991			XYLEN	XYLENES		11.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991			XYLEN	XYLENES		11.000		UGL	RFC	UM27	1.000
SB-29	02-oct-1991	QCRB	0.000	ZN	ZINC		20.000		UGL	RGC	SS14	1.000
SB-31	08-oct-1991	QCRB	0.000	111TCE	1,1,1-TRICHLOROETHANE		3.600		UGL	RFD	UM27	1.000
SB-31	08-oct-1991	QCTB	0.000	111TCE	1,1,1-TRICHLOROETHANE	LT	3.600		UGL	RFD	UM27	1.000
SB-31	08-oct-1991	QCRB	0.000	112TCE	1,1,2-TRICHLOROETHANE	LT	2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991	QCTB	0.000	112TCE	1,1,2-TRICHLOROETHANE	LT	2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991	QCRB	0.000	11DCE	1,1-DICHLOROETHYLENE	LT	21.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			11DCE	1,1-DICHLOROETHYLENE	LT	21.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			11DCLE	1,1-DICHLOROETHANE	LT	2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991	QCTB	0.000	11DCLE	1,1-DICHLOROETHANE	LT	2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			123CPR	1,2,3-TRICHLOROPROPANE	LT	2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			123CPR	1,2,3-TRICHLOROPROPANE		2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			124TCB	1,2,4-TRICHLOROBENZENE		1.400		UGL	RXD	UM28	1.000
SB-31	08-oct-1991	QCRB	0.000	12DCLB	1,2-DICHLOROBENZENE	LT	17.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			12DCLB	1,2-DICHLOROBENZENE	LT	1.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			12DCLB	1,2-DICHLOROBENZENE	LT	17.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			12DCLE	1,2-DICHLOROETHANE	LT	6.700		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			12DCLE	1,2-DICHLOROETHANE	LT	6.700		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			12DCLP	1,2-DICHLOROPROPANE	LT	2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			12DCLP	1.2-DICHLOROPROPANE	LT	2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			13DCLB	1.3-DICHLOROBENZENE	LT	10.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			13DCLB	1.3-DICHLOROBENZENE		1.100		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			13DCLB	1.3-DICHLOROBENZENE	LT	10.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			14DCLB	1,4-DICHLOROBENZENE	LT	17.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			14DCLB	1,4-DICHLOROBENZENE	LT	1.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			14DCLB	1,4-DICHLOROBENZENE	LT	17.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			245TCP	2,4,5-TRICHLOROPHENOL	LT	4.600		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			246TCP	2,4,6-TRICHLOROPHENOL	LT	4.800		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			24DCLP	2,4-DICHLOROPHENOL	LT	5.800		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			24DMPN	2,4-DIMETHYLPHENOL	LT	4.600		UGL	RXD	UM28	1.000
SB-31	08-oct-199			24DNP	2,4-DINITROPHENOL	LT	33.000		UGL	RXD	UM28	1.000
SB-31	08-oct-199			24DNT	2.4-DINITROTOLUENE	LT	9.700		UGL	RXD	UM28	1.000
SB-31	08-oct-199			26DNT	2,6-DINITROTOLUENE		5.000		UGL	RXD	UM28	1.000
SB-31	08-oct-199			2CLEVE	2-CHLOROETHYLVINYL ETHER		4.100		UGL	RFD	UM27	1.000
SB-31	08-oct-199			2CLEVE	2-CHLOROETHYLVINYL ETHER		4.100		UGL	RFD	UM27	1.000
	08-oct-199			2CLP	2-CHLOROPHENOL		2.400		UGL	RXD	UM28	1.000
SB-31	08-oct-199			2CNAP	2-CHLORONAPHTHALENE		1.600		UGL	RXD	UM28	1.000
SB-31	08-oct-199			2MNAP	2-METHYLNAPHTHALENE		1.900		UGL	RXD	UM28	1.000
SB-31	08-oct-199			2MP	2-METHYLPHENOL		3.900		UGL	RXD	UM28	1.000
SB-31	08-oct-199			2MANIL	2-NITROANILINE		9.600		UGL	RXD	UM28	1.000
SB-31					2-NITROPHENOL		6.700		UGL	RXD	UM28	1.000
SB-31	08-oct-199			2NP	3,31-DICHLOROBENZIDINE		32.000		UGL	RXD	UM28	1.000
SB-31	08-oct-199			33DCBD	•		30.000		UGL	RXD	UM28	1.000
SB-31	08-oct-199			3NANIL	3-NITROANILINE		14.000		UGL	RXD	UM28	1.000
SB-31	08-oct-199			46DNTC	4,6-DINITRO-2-METHYLPHENOL		r 1.400		UGL	RXD	UM28	1.000
SB-31	08-oct-199			4BRPPE	4-BROMOPHENYLPHENYL ETHER		1 17.000		UGL	RXD		1.000
SB-31	08-oct-199	1 QCR	ย บ.000	4CANIL	4-CHLOROANILINE	Li	17.000		Jul	האט	SILLO	

#### Field QC

					Level 3 Data			Clas				•
Site Id	Sample Date	QC Type	Depth	Paramete	er.	Val	ue	Flag Code	Units	Lot	Method	Dilution
SB-31	08-oct-1991	OCRB	0.000	4CL3C	4-CHLORO-3-CRESOL	LT	7.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991				4-CHLOROPHENYLPHENYL ETHER	LT ·	4.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991				4-METHYLPHENOL	LT .	6.100		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			4NANIL	4-NITROANILINE	LT -	40.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			4NP	4-NITROPHENOL	LT -	44.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			ACET	ACETONE	LT	17.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			ACET	ACETONE	LT	17.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			ACROLN	ACROLEIN		20.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			ACROLN	ACROLEIN	LT	20.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991	QCRB	0.000	ACRYLO	ACRYLONITRILE		2.300		UGL	RFD	UM27	1.000
SB-31	08-oct-1991	QCTB	0.000	ACRYLO	ACRYLONITRILE		2.300		UGL	RFD	UM27	1.000
SB-31	08-oct-1991	QCRB	0.000	AG	SILVER		10.000		UGL	RGD	SS14	1.000
SB-31	08-oct-1991	QCRB	0.000	AL	ALUMINUM		200.000		UGL	RGD	SS14	1.000
SB-31	08-oct-1991	QCRB	0.000	ANAPNE	ACENAPHTHENE		3.400		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			ANAPYL	ACENAPHTHYLENE	LT	1.100		UGL	RXD	UM28	1.000
SB-31	08-oct-1991	QCRB	0.000	ANTRC	ANTHRACENE		1.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991	QCRB	0.000	AS	ARSENIC		24.800		UGL	RGD	SS14	1.000
SB-31	08-oct-1991	QCRB	0.000	AS	ARSENIC		2.000		UGL	RSK	SD30	1.000
SB-31	08-oct-1991	QCRB	0.000	B2CEXM	BIS (2-CHLOROETHOXY) METHANE		3.800		UGL	RXD	UM28	1.000
SB-31	08-oct-1991	QCRB	0.000	B2CIPE	BIS (2-CHLOROISOPROPYL) ETHER		1.300		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			<b>B2CLEE</b>	BIS (2-CHLOROETHYL) ETHER	LT	1.800		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			B2EHP	BIS (2-ETHYLHEXYL) PHTHALATE		1.820	•	UGL	RXD	UM28	1.000 1.000
SB-31	08-oct-1991			BA	BARIUM		3.000		UGL	RGD	SS14 UM28	1.000
SB-31	08-oct-1991			BAANTR	BENZO [A] ANTHRACENE		5.800		UGL	RXD RXD	UM28	1.000
SB-31	08-oct-1991			BAPYR	BENZO [A] PYRENE		1.200		UGL UGL	RXD	UM28	1.000
SB-31	08-oct-1991			BBFANT	BENZO [B] FLUORANTHENE		1.300			RXD	UM28	1.000
SB-31	08-oct-1991			BBZP	BUTYLBENZYL PHTHALATE		1.100		UGL UGL	RGD	SS14	1.000
SB-31	08-oct-1991			BE	BERYLLIUM		2.000		UGL	-RXD	UM28	1.000
SB-31	08-oct-1991			BGHIPY	BENZO [G,H,I] PERYLENE		1.100		UGL	RXD	UM28	1.000
SB-31	08-oct-1991			BKFANT	BENZO [K] FLUORANTHENE		2.300		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			BRDCLM	BROMODICHLOROMETHANE		2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			BRDCLM	BROMODICHLOROMETHANE		2.400		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			C13DCP	CIS-1,3-DICHLOROPROPYLENE		2.400		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			C13DCP	CIS-1,3-DICHLOROPROPYLENE		2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			C2AVE	ACETIC ACID, VINYL ESTER		2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			C2AVE	ACETIC ACID, VINYL ESTER		2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991			C2H3CL	CHLOROETHENE CHLOROETHENE		2.000		UGL	RFD		1.000
SB-31	08-oct-1991			C2H3CL	CHLOROETHANE		8.000		UGL		UM27	1.000
SB-31	08-oct-199			C2H5CL C2H5CL	CHLOROETHANE		8.000		UGL	RFD	UM27	1.000
SB-31	08-oct-199°			C6H6	BENZENE		2.800		UGL	RFD	UM27	1.000
SB-31				C6H6	BENZENE		2.800		UGL	RFD	UM27	1.000
SB-31	08-oct-199°			CA	CALCIUM		191.000		UGL	RGD	SS14	1.000
SB-31	08-oct-199			CCL2F2	DICHLORODIFLUOROMETHANE	LT	17.000		UGL	RFD	UM27	1.000
SB-31	08-oct-199			CCL2F2	DICHLORODIFLUOROMETHANE		17.000		UGL	RFD	UM27	1.000
SB-31	08-oct-199				TRICHLOROFLUOROMETHANE		11.000		UGL	RFD	UM27	1.000
SB-31	08-oct-199			CCL3F	TRICHLOROFLUOROMETHANE		11.000		UGL	RFD	UM27	1.000
SB-31 SB-31	08-oct-199			CCL4	CARBON TETRACHLORIDE		4.400		UGL	RFD	UM27	1.000
SB-31	08-oct-199			CCL4	CARBON TETRACHLORIDE		4.400		UGL	RFD	UM27	1.000
SB-31	08-oct-199			CD	CADMIUM		5.000		UGL	RGD	\$\$14	1.000
SB-31	08-oct-199			CDCBU	CIS-1,4-DICHLORO-2-BUTENE		2.300		UGL	RFD	UM27	1.000
SB-31	08-oct-199				CIS-1,4-DICHLORO-2-BUTENE		2.300		UGL	RFD	UM27	1.000
SB-31	08-oct-199				METHYLENE BROMIDE		2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-199					LT	2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-199					LT	19.000		UGL	RFD	UM27	1.000
SB-31	08-oct-199					LT	19.000		UGL	RFD	UM27	1.000

#### Field QC

			Level 3 Data						
	QC				Flag				
Site Id	Sample Date Type Depth	Paramete	er ,	Value	Code	Units	Lot	Method	Dilution
	, , , , , , , , , , , , , , , , , , , ,								
SB-31	08-oct-1991 QCRB 0.000	CH3BR	BROMOMETHANE	LT 36.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	CH3BR	BROMOMETHANE	LT 36.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000	CH3CL	CHLOROMETHANE	LT 9.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	CH3CL	CHLOROMETHANE	LT 9.000		UGL	RFD	UM27	1.000
	08-oct-1991 QCRB 0.000	CHBR3	BROMOFORM	LT 2.000		UGL	RFD	UM27	1.000
SB-31			BROMOFORM	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	CHBR3	CHLOROFORM	5.160		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000	CHCL3		LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	CHCL3	CHLOROFORM	LT 2.500		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	CHRY	CHRYSENE			UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	CL6BZ	HEXACHLOROBENZENE	LT 1.000			RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	CL6CP	HEXACHLOROCYCLOPENTAD I ENE	LT 7.600		UGL			
SB-31	08-oct-1991 QCRB 0.000	CL6ET	HEXACHLOROETHANE	LT 1.200		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	CLC6H5	CHLOROBENZENE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	CLC6H5	CHLOROBENZENE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000	CO	COBALT	LT 10.800		UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000	CR	CHROMIUM	LT 22.400		UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000	CS2	CARBON DISULFIDE	LT 16.000	•	UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	CS2	CARBON DISULFIDE	LT 16.000		UGL.	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000	CU	COPPER	12.700		UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000	CYN	CYANIDE	LT 8.900		UGL	QXY	CN1	1.000
SB-31	08-oct-1991 QCRB 0.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT 2.000		UGL	RXD	UM28	1.000
	08-oct-1991 QCRB 0.000	DBRCLM	DIBROMOCHLOROMETHANE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	DBRCLM	DIBROMOCHLOROMETHANE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000	DBZFUR	DIBENZOFURAN	LT 2.600		UGL	RXD	UM28	1.000
SB-31		DEP	DIETHYL PHTHALATE	LT 2.200		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000		DIMETHYL PHTHALATE	LT 5.100		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	DMP		LT 4.900		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	DNBP	DI-N-BUTYL PHTHALATE	LT 8.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	DNOP	DI-N-OCTYL PHTHALATE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000	ETC6H5	ETHYLBENZENE			UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	ETC6H5	ETHYLBENZENE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000	ETMACR	ETHYL METHACRYLATE	LT 2.000				UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	ETMACR	ETHYL METHACRYLATE	LT 2.000		UGL	RFD		1.000
SB-31	08-oct-1991 QCRB 0.000	FANT	FLUORANTHENE	LT 1.000		UGL	RXD	UM28	
SB-31	08-oct-1991 QCRB 0.000	FE	IRON	LT 112.000		UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000	FLRENE	FLUORENE	LT 1.300		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	HCBD	HEXACHLOROBUTAD I ENE	LT 1.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	HG	MERCURY	LT 0.500	L	UGL	RRR	ww8	1.000
SB-31	08-oct-1991 QCRB 0.000	ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT 4.400		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	ISOPHR	ISOPHORONE	LT 1.100		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000		POTASSIUM	LT 1080.000		UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000		TOLUENE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000		TOLUENE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		METHYLETHYL KETONE	LT 6.200		UGL	RFD	UM27	1.000
	08-oct-1991 QCTB 0.000		METHYLETHYL KETONE	LT 6.200		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		MAGNESIUM	LT 89.200		UGL	RGD	SS14	1.000
SB-31			METHYLISOBUTYL KETONE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		METHYLISOBUTYL KETONE	LT 2.000		UGL	RFD		1.000
SB-31	08-oct-1991 QCTB 0.000			LT 20.000		UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000		MANGANESE	LT 4.800		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		METHYL-N-BUTYL KETONE			UGL	RFD		1.000
SB-31	08-oct-1991 QCTB 0.000		METHYL-N-BUTYL KETONE	LT 4.800		UGL	RGD		1.000
SB-31	08-oct-1991 QCRB 0.000		MOLYBDENUM	LT 10.000					1.000
SB-31	08-oct-1991 QCRB 0.000		SODIUM	LT 251.000		UGL	RGD		
SB-31	08-oct-1991 QCRB 0.000		NAPHTHALENE	LT 3.800		UGL	RXD		1.000
SB-31	08-oct-1991 QCRB 0.000		NITROBENZENE	LT 2.900		UGL	RXD		1.000
SB-31	08-oct-1991 QCRB 0.000	NI	NICKEL	LT 23.300		UGL	RGD		1.000
SB-31	08-oct-1991 QCRB 0.000	NNDNPA	N-NITROSO DI-N-PROPYLAMINE	LT 3.200		UGL	RXD	UM28	1.000

### Field QC

	QC				Flag				
Site Id		Paramet	er	Value	Code	Units	Lot	Method	Dilution
3116 14	Sample Bace 17pe 1-per								
SB-31	08-oct-1991 QCRB 0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LT 5.900		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	PB	LEAD	LT 51.600		UGL	RGD	SS14	1.000
	08-oct-1991 QCRB 0.000	. –	LEAD	LT 4.540		UGL	RSK	SD30	1.000
SB-31	08-oct-1991 QCRB 0.000		PENTACHLOROPHENOL	LT 12.000		UGL	RXD	UM28	1.000
SB-31			PHENANTHRENE	LT 1.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000			LT 6.200		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000	PHENOL	PHENOL	LT 1.000		UGL	RXD	UM28	1.000
SB-31	08-oct-1991 QCRB 0.000		PYRENE			UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000		ANTIMONY	LT 25.100		UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000		SELENIUM	LT 200.000				SD30	1.000
SB-31	08-oct-1991 QCRB 0.000		SELENIUM	LT 2.540		UGL	RSK	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		STYRENE	LT 2.000		UGL	RFD		
SB-31	08-oct-1991 QCTB 0.000	STYR	STYRENE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000	T12DCE	TRANS-1,2-DICHLOROETHYLENE	LT 37.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	T12DCE	TRANS-1,2-DICHLOROETHYLENE	LT 37.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		TRANS-1,3-DICHLOROPROPENE	LT 1.600		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000	T13DCP	TRANS-1,3-DICHLOROPROPENE	LT 1.600		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		1,1,2,2-TETRACHLOROETHANE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000		1,1,2,2-TETRACHLOROETHANE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		TETRACHLOROETHYLENE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000		TETRACHLOROETHYLENE	LT 2.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		TRANS-1,4-DICHLORO-2-BUTENE	LT 3.600		UGL	RFD	UM27	1.000
	08-oct-1991 QCTB 0.000		TRANS-1,4-DICHLORO-2-BUTENE	LT 3.600		UGL	ŔFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		TITANIUM	LT 10.000		UGL	RGD	SS14	1.000
SB-31				LT 288.000		UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000		THALLIUM	114000.000		UGL	RTN	00	20.000
SB-31	08-oct-1991 QCRB 0.000		TOTAL PETROLEUM HYDROCARBONS	LT 200.000		UGL	UBG	00	1.000
SB-31	15-jul-1992 QCRB 0.000		TOTAL PETROLEUM HYDROCARBONS	LT 2.200		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		TRICHLOROETHYLENE	LT 2.200		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCTB 0.000		TRICHLOROETHYLENE			UGL	RGD	SS14	1.000
SB-31	08-oct-1991 QCRB 0.000		VANADIUM	LT 7.620				UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		XYLENES	LT 11.000		UGL	RFD		1.000
SB-31	08-oct-1991 QCTB 0.000	XYLEN	XYLENES	LT 11.000		UGL	RFD	UM27	1.000
SB-31	08-oct-1991 QCRB 0.000		ZINC	LT 20.000		UGL	RGD	SS14	
SS-05	15-jul-1992 QCRB 0.000	124TCB	1,2,4-TRICHLOROBENZENE	LT 1.400		UGL	RXV	UM28	1.000
ss-05	15-jul-1992 QCRB 0.000	12DCLB	1,2-DICHLOROBENZENE	LT 1.000		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.000	13DCLB	1,3-DICHLOROBENZENE	LT 1.100		UGL	RXV	UM28	1.000
ss-05	15-jul-1992 QCRB 0.000	14DCLB	1,4-DICHLOROBENZENE	LT 1.000		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.000	245TCP	2,4,5-TRICHLOROPHENOL	LT 4.600		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.000	246TCP	2,4,6-TRICHLOROPHENOL	LT 4.800		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.000		2,4-DICHLOROPHENOL	LT 5.800		UGL	RXV	UM28	1.000
ss-05	15-jul-1992 QCRB 0.000			LT 4.600		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.000		2,4-DINITROPHENOL	LT 33.000		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.00		2,4-DINITROTOLUENE	LT 9.700		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.00		2,6-DINITROTOLUENE	LT 5.000		UGL	RXV	UM28	1.000
	15-jul-1992 QCRB 0.00		2-CHLOROPHENOL	LT 2.400		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.00		2-CHLORONAPHTHALENE	LT 1.600		UGL	RXV	UM28	1.000
SS-05			2-METHYLNAPHTHALENE	LT 1.900		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.00		2-METHYLPHENOL	LT 3.900		UGL		UM28	1.000
SS-05	15-jul-1992 QCRB 0.00			LT 9.600		UGL		UM28	1.000
ss-05	15-jul-1992 QCRB 0.00			LT 6.700		UGL		UM28	1.000
SS-05	15-jul-1992 QCRB 0.00		2-NITROPHENOL	LT 32.000		UGL	RXV		1.000
ss-05	15-jul-1992 QCRB 0.00						RXV		1.000
ss-05	15-jul-1992 QCRB 0.00			LT 30.000		UGL			1.000
SS-05	15-jul-1992 QCRB 0.00			LT 14.000		UGL	RXV		
ss-05	15-jul-1992 QCRB 0.00		4-BROMOPHENYLPHENYL ETHER	LT 1.400		UGL	RXV		1.000
ss-05	15-jul-1992 QCRB 0.00		4-CHLOROANILINE	LT 17.000		UGL	RXV		1.000
ss-05	15-jul-1992 QCRB 0.00		4-CHLORO-3-CRESOL	LT 7.000		UGL	RXV		1.000
ss-05			4-CHLOROPHENYLPHENYL ETHER	LT 4.000		UGL	RXV	UM28	1.000
	-								

#### Field QC

						Level 3 Data							
,			QC						Flag				
	Site Id	Sample Date		Depth	Paramete	er.	Val	ue	Code	Units	Lot	Method	Dilution
	0,10 14	oumpto serie	.,,-	- '									
	ss-05	15 - jul - 1992	OCRB	0.000	4MP	4-METHYLPHENOL	LT	6.100		UGL		UM28	1.000
	SS-05	15- jul-1992			4NANIL	4-NITROANILINE	LT	40.000		UGL	RXV		1.000
	SS-05	15-jul-1992			4NP	4-NITROPHENOL	ET	44.000		UGL	RXV	UM28	1.000
		15-jul-1992			AG	SILVER	LT	10.000		UGL	TKH	SS14	1.000
	SS-05	15-jul-1992 15-jul-1992				ALUMINUM	LT	200.000		UGL.	TKH	SS14	1.000
١	ss-05					ACENAPHTHENE		3.400		UGL	RXV	UM28	1.000
	ss-05	15-jul-1992				ACENAPHTHYLENE		1.100		UGL	RXV	UM28	1.000
	ss-05	15-jul-1992						1.000		UGL	RXV	UM28	1.000
	ss-05	15-jul-1992			ANTRC	ANTHRACENE		2.540		UGL	AAA	SD22	1.000
	SS-05	15-jul-1992			AS	ARSENIC		3.800		UGL	RXV	UM28	1.000
	SS-05	15- jul - 1992				BIS (2-CHLOROETHOXY) METHANE		1.300		UGL		UM28	1.000
	SS-05	15-jul-1992				BIS (2-CHLOROISOPROPYL) ETHER		1.800		UGL		UM28	1.000
	SS-05	15 - jul - 1992			B2CLEE	BIS (2-CHLOROETHYL) ETHER	LI	1.500		UGL	RXV		1.000
ì	SS-05	15- jul - 1992			B2EHP	BIS (2-ETHYLHEXYL) PHTHALATE				UGL	TKH	SS14	1.000
i	SS-05	15 - jul - 1992			BA	BARIUM		3.000			RXV	UM28	1.000
	SS-05	15 - jul - 1992			BAANTR	BENZO [A] ANTHRACENE		5.800		UGL		UM28	1.000
	SS-05	15- jul - 1992			BAPYR	BENZO [A] PYRENE		1.200		UGL	RXV		1.000
1	SS-05	15- jul - 1992	QCRB	0.000	BBFANT	BENZO [B] FLUORANTHENE		1.300		UGL	RXV	UM28	
	ss-05	15-jul-1992			BBZP	BUTYLBENZYL PHTHALATE		1.100		UGL	RXV	UM28	1.000
	ss-05	15 - jul - 1992	QCRB	0.000	BE	BERYLLIUM		2.000		UGL	TKH	SS14	1.000
	ss-05	15-jul-1992			BGHIPY	BENZO [G,H,I] PERYLENE	LT	1.100		UGL	RXV	UM28	1.000
	SS-05	15- jul - 1992			BKFANT	BENZO [K] FLUORANTHENE	LT	2.300		UGL	RXV	UM28	1.000
	SS-05	15- jul-1992			CA	CALCIUM		126.000		UGL	TKH	SS14	1.000
	SS-05	15 - jul - 1992			CARBAZ	9H-CARBAZOLE	ND	5.000	R	UGL	RXV	UM28	1.000
	SS-05	15 - jul - 1992			CD	CADMIUM	LT	5.000		UGL	TKH	SS14	1.000
		15-jul-1992 15-jul-1992			CHRY	CHRYSENE	LT	2.500		UGL	RXV	UM28	1.000
	SS-05	15- jul-1992 15- jul-1992			CL6BZ	HEXACHLOROBENZENE		1.000		UGL	RXV	UM28	1.000
	ss-05	15- jul-1992 15- jul-1992			CL6CP	HEXACHLOROCYCLOPENTAD I ENE		7.600		UGL	RXV	UM28	1.000
	ss-05					HEXACHLOROETHANE		1.200		UGL	RXV	UM28	1.000
;	ss-05	15- jul - 1992			CL6ET			10.800		UGL	TKH	SS14	1.000
	ss-05	15-jul-1992			CO	COBALT		22.400		UGL	TKH	SS14	1.000
•	ss-05	15- jul - 1992			CR	CHROMIUM	۲.	29.200		UGL	TKH	SS14	1.000
	\$S-05	15 - jul - 1992			CU	COPPER	1.7	2.000		UGL	RXV	UM28	1.000
	ss-05	15- jul - 1992			DBAHA	DIBENZ [A,H] ANTHRACENE		2.600		UGL	RXV	UM28	1.000
	SS-05	15- jul - 1992			DBZFUR	DIBENZOFURAN				UGL	RXV	UM28	1.000
	ss-05	15 - jul - 1992			DEP	DIETHYL PHTHALATE		2.200			RXV	UM28	1.000
	SS-05	15- jul - 1992			DMP	DIMETHYL PHTHALATE		5.100		UGL			1.000
	ss-05	15- jul - 1992			DNBP	DI-N-BUTYL PHTHALATE		4.900		UGL	RXV		1.000
	SS-05	15 - jul - 1997	QCRE	0.000	DNOP	DI-N-OCTYL PHTHALATE		8.000		UGL	RXV		
	ss-05	15 - jul - 1997	QCRE	0.000	FANT	FLUORANTHENE	LT	1.000		UGL	RXV		1.000
	ss-05	15 - jul - 1997	QCRE	0.000	FE	IRON		112.000		UGL	TKH		1.000
}	ss-05	15- jul - 1997				FLUORENE		1.300		UGL	RXV		1.000
	SS-05	15 - jul - 1997			HCBD	HEXACHLOROBUTAD I ENE	LT	1.000		UGL	RXV		1.000
	ss-05	15 - jul - 199	2 QCRI	в 0.000	HG	MERCURY	LT	0.500		UGL	SXY		1.000
	ss-05	15- jul - 199				INDENO [1,2,3-C,D] PYRENE	LT	4.400		UGL	RXV		1.000
	ss-05	15- jul - 199				ISOPHORONE	L1	1.100		UGL	RXV	UM28	1.000
	SS-05	15- jul - 199				POTASSIUM	LT	1080.000		UGL	TKH	SS14	1.000
	SS-05	15- jul - 199				MAGNESIUM	L٦	89.200		UGL	TKH	SS14	1.000
		15- jul-199				MANGANESE	LT	20.000		UGL	TKH	<b>SS14</b>	1.000
	SS-05	15- jul-199 15- jul-199				SODIUM		251.000		UGL	TKH		1.000
	SS-05					NAPHTHALENE		7.800		UGL	RXV	UM28	1.000
	ss-05	15- jul-199						r 2.900		UGL	RXV		1.000
	\$S-05	15-jul-199				NITROBENZENE		r 23.300		UGL	TKH		1.000
	<b>\$</b> \$-05	15- jul - 199				NICKEL		7 <b>3.2</b> 00		UGL	RXV		1.000
	SS-05	15- jul - 199									RXV		1.000
	SS-05	15 - jul - 199				N-NITROSO DIPHENYLAMINE		T 5.900		UGL			1.000
	ss-05	15 - jul - 199				LEAD		T 1.260		UGL	ZUF		
	ss-05	15- jul - 199				PENTACHLOROPHENOL		T 12.000		UGL	RXV		1.000
	ss-05	15 - jul - 199	2 QCR	в 0.000	PHANTR	PHENANTHRENE	L	T 1.000		UGL	RXV	UM28	1.000
		-											

#### Field QC

			Level 3 Data							
	QC					Flag				
Site I	d Sample Date Type Depth	Paramete	er.	۷a	ılue	Code	Units	Lot	Method	Dilution
										4 000
\$\$-05	15-jul-1992 QCRB 0.000	PHENOL	PHENOL		6.200		UGL	RXV		1.000
SS-05	15-jut-1992 QCRB 0.000	PYR	PYRENE		1.000		UGL	RXV	UM28	1.000
SS-05	15-jul-1992 QCRB 0.000	SB	ANTIMONY		25.100		UGL	TKH	SS14	1.000
ss-05	15-jul-1992 QCRB 0.000	SE	SELENIUM		3.020		UGL	ZGL	SD21	1.000
ss-05	15-jul-1992 QCRB 0.000	TL	THALLIUM		288.000		UGL	TKH	SS14	1.000
ss-05	15-jul-1992 QCRB 0.000	V	VANADIUM	LI	7.620		UGL	TKH	SS14	1.000
ss-05	15-jul-1992 QCRB 0.000	ZN	ZINC		38.900		UGL	TKH	SS14	1.000
ss-10	15-jul-1992 QCRB 0.000	124TCB	1,2,4-TRICHLOROBENZENE	L٦	1.400		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	12DCLB	1,2-DICHLOROBENZENE	LI	1.000		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000	13DCLB	1,3-DICHLOROBENZENE	L	r 1.100		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000		1,4-DICHLOROBENZENE	L1	1.000		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000	245TCP	2,4,5-TRICHLOROPHENOL	L1	r <b>4.6</b> 00		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	246TCP	2,4,6-TRICHLOROPHENOL	L	r <b>4.8</b> 00		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000	24DCLP	2,4-DICHLOROPHENOL	L٦	r <b>5.8</b> 00		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000	24DMPN	2,4-DIMETHYLPHENOL	L	4.600		UGL	RXV	UM28	1.000
\$5-10	15-jul-1992 QCRB 0.000	24DNP	2,4-DINITROPHENOL	L	г 33.000		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000	24DNT	2,4-DINITROTOLUENE	L.	r 9.700		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000	26DNT	2,6-DINITROTOLUENE	L.	r 5.000		UGL	RXV	UM28	1.000
SS-10	15-jut-1992 QCRB 0.000	2CLP	2-CHLOROPHENOL	L.	Г 2.400		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	2CNAP	2-CHLORONAPHTHALENE	Ľ.	т 1.600		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	2MNAP	2-METHYLNAPHTHALENE	F.	r 1.900		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	2MP	2-METHYLPHENOL	L.	т 3.900		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	2NANIL	2-NITROANILINE	Ľ	т 9.600		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	2NP	2-NITROPHENOL	L'	r 6.700		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000		3,3'-DICHLOROBENZIDINE	L	T 32.000		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	3NAN I L	3-NITROANILINE	Ľ	T 30.000		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000	46DNTC	4,6-DINITRO-2-METHYLPHENOL	Ľ	т 14.000		UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000		4-BROMOPHENYLPHENYL ETHER	L	т 1.400		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000		4-CHLOROANILINE	L	T 17.000	-	UGL	RXV	UM28	1.000
SS-10	15-jul-1992 QCRB 0.000		4-CHLORO-3-CRESOL	L	7.000		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000		4-CHLOROPHENYLPHENYL ETHER	Ľ	T 4.000		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000	4MP	4-METHYLPHENOL	L	т 6.100		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000		4-NITROANILINE	L	т 40.000		UGL	RXV	UM28	1.000
SS-10			4-NITROPHENOL	L	т 44.000		UGL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000		SILVER		т 10.000		UGL	TKH	SS14	1.000
SS-10	15-jul-1992 QCRB 0.000	AL	ALUMINUM	L	Т 200.000		UGL	TKH	SS14	1.000
ss-10	15-jul-1992 QCRB 0.000		ACENAPHTHENE	L	T 3.400		UĞL	RXV	UM28	1.000
ss-10	15-jul-1992 QCRB 0.000		ACENAPHTHYLENE	L	т 1.100		UGL		UM28	1.000
ss-10	15-jul-1992 QCRB 0.000	ANTRC	ANTHRACENE	L	т 1.000		UGL	RXV	UM28	1.000
SS-10	· · · · · · · · · · · · · · · · · · ·		ARSENIC	L	T 2.540		UGL	AAA	SD22	1.000
<b>SS-10</b>	15-jul-1992 QCRB 0.000	B2CEXM	BIS (2-CHLOROETHOXY) METHANE	L	т 3.800		UGL	RXV	UM28	1.000
ss-10		B2CIPE	BIS (2-CHLOROISOPROPYL) ETHER	L	T 1.300		UGL	RXV	UM28	1.000
ss-10		B2CLEE	BIS (2-CHLOROETHYL) ETHER	L	T 1.800		UGL	RXV	UM28	1.000
ss-10		B2EHP	BIS (2-ETHYLHEXYL) PHTHALATE	L	Т 1.000		UGL	RXV	UM28	1.000
SS-10		BA	BARIUM	Ł	T 3.000		UGL	TKH	SS14	1.000
SS-10	15-jul-1992 QCRB 0.000	BAANTR	BENZO [A] ANTHRACENE	L	T 5.800		UGL	RXV	UM28	1.000
SS-10		BAPYR	BENZO [A] PYRENE	L	T 1.200		UGL	RXV		1.000
ss-10		BBFANT	BENZO [B] FLUORANTHENE	L	т 1.300		UGL	RXV		1.000
SS-10		BBZP	BUTYLBENZYL PHTHALATE	L	T 1.100		UGL	RXV		1.000
ss-10	•		BERYLLIUM		T 2.000		UGL	TKH		1.000
SS-10		BGHIPY	BENZO [G,H,I] PERYLENE	L	т 1.100		UGL	RXV		1.000
ss-10	•		BENZO [K] FLUORANTHENE	L	т 2.300		UGL	RXV	UM28	1.000
ss-10			CALCIUM		121.000		UGL	TKH	SS14	1.000
ss-10	•		9H-CARBAZOLE	N	D 5.000	R	UGL	RXV	UM28	1.000
SS-10	•		CADMIUM	ι	т 5.000		UGL	TKH		1.000
SS-10			CHRYSENE	L	T 2.500		UGL	RXV	UM28	1.000

#### Field QC

					Level 3 Data						
			QC		•		Flag				
	Site Id	Sample Date	Type Dep	th Paramet	er .	Value	Code	Units	Lot	Method	Dilution
	SS-10	15- iul - 1992	QCRB 0.0	00 CL6BZ	HEXACHLOROBENZENE	LT 1.000		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992			HEXACHLOROCYCLOPENTADIENE	LT 7.600		UGL	RXV	UM28	1.000
	SS-10	15 - jul - 1992			HEXACHLOROETHANE	LT 1.200		UGL	RXV	UM28	1.000
	SS-10	15 jul 1992			COBALT	LT 10.800		UGL	TKH	SS14	1.000
	SS-10	15 - jul - 1992			CHROMIUM	LT 22.400		UGL	TKH	SS14	1.000
	SS-10	15 jul 1772			COPPER	LT 10.000		UGL	TKH	SS14	1.000
	SS-10	15- jul - 1992			DIBENZ [A,H] ANTHRACENE	LT 2.000		UGL	RXV	UM28	1.000
	SS-10	15-jul-1992			DIBENZOFURAN	LT 2.600		UGL	RXV	UM28	1.000
	SS-10	15 jul 1992			DIETHYL PHTHALATE	LT 2.200		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992			DIMETHYL PHTHALATE	LT 5.100		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992			DI-N-BUTYL PHTHALATE	LT 4.900		UGL	RXV	UM28	1.000
	SS-10	15-jul-1992			DI-N-OCTYL PHTHALATE	LT 8.000		UGL	RXV	UM28	1.000
	SS-10	15-jul-1992			FLUORANTHENE	LT 1.000		UGL	RXV	UM28	1.000
	SS-10	15-jul-1992			IRON	LT 112.000		UGL	TKH	SS14	1.000
	SS-10	15 jul - 1992			FLUORENE	LT 1.300		UGL	RXV	UM28	1.000
	SS-10	15-jul-1992			HEXACHLOROBUTADIENE	LT 1.000		UGL	RXV	UM28	1.000
	SS-10	15-jul-1992			MERCURY	LT 0.500		UGL	SXY	ww8	1.000
	SS-10	15-jul-1992			INDENO [1,2,3-C,D] PYRENE	LT 4.400		UGL	RXV	UM28	1.000
	SS-10	15 jul - 1992			ISOPHORONE	LT 1.100		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992			POTASSIUM	LT 1080.000		UGL	TKH	SS14	1.000
	SS-10	15-jul-1992			MAGNESIUM	LT 89.200		UGL	TKH	SS14	1.000
	SS-10	15-jul-1992			MANGANESE	LT 20.000		UGL	TKH	SS14	1.000
	SS-10	15 - jul - 1992			SODIUM	LT 251.000		UGL	TKH	SS14	1.000
	SS-10	15-jul-1992			NAPHTHALENE	LT 3.800		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992			NITROBENZENE	LT 2.900		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992			NICKEL	LT 23.300		UGL	TKH	SS14	1.000
	SS-10	15- jul - 1992			N-NITROSO DI-N-PROPYLAMINE	LT 3.200		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992	QCRB 0.0	OO NNDPA	N-NITROSO DIPHENYLAMINE	LT 5.900		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992	QCRB 0.0	00 PB	LEAD	1.520		UGL	ZUF	SD20	1.000
•	SS-10	15- jul-1992	QCRB 0.0	OO PCP	PENTACHLOROPHENOL	LT 12.000		UGL	RXV	UM28	1.000
	SS-10	15 - jul - 1992	QCRB 0.0	OO PHANTR	PHENANTHRENE	LT 1.000		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992	QCRB 0.0	DO PHENOL	PHENOL	LT 6.200		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992	QCRB 0.0	OO PYR	PYRENE	LT 1.000		UGL	RXV	UM28	1.000
	SS-10	15- jul - 1992	QCRB 0.0	00 SB	ANTIMONY	LT 25.100		UGL	TKH	SS14	1.000
	SS-10	15- jul-1992			SELENIUM	LT 3.020		UGL	ZGL	SD21	1.000
	SS-10	15-jul-1992			THALLIUM	LT 288.000		UGL	TKH	SS14	1.000
	ss-10	15-jul-1992			TOTAL PETROLEUM HYDROCARBONS	LT 200.000		UGL	UBG	00	1.000
	ss-10	15- jul - 1992			VANADIUM .	LT 7.620		UGL	TKH	SS14	1.000
	ss-10	15 - jul - 1992			ZINC .	LT 20.000		UGL	TKH	SS14	1.000
		•									

G-2 Source Water Data





August 7, 1991

R.L. Stollar & Associates Attn: Brian Myller 303 East 17th Street, Suite 550 Denver, Colorado 80203

Dear Brian Myller:

Please find enclosed hard copies of the analysis results for the water samples we received June 26, 1991. All of the results were generated using USATHAMA methods.

Should you have any questions or require additional information, please don't hesitate to call.

Sincerely,

Kevin McHugh

Laboratory Coordinator

cc: N. Glenn/RSLA

K. Glover/RLSA
DCC/Denver/RLSA

D.T.Blair/ESE

DCC/Denver/ESE

J. Ballou/RLSA

enclosures

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH

SITE ID'S: ESE ID NUMBER:	SORQ1D 90220003	SORQ1 90220003
ESE SEQUENCE NUMBER:	1	2
· ·	06/25/91	06/25/91
COLLECTION DATE:	14:50	14:50
COLLECTION TIME:	21.50	
CHLOROMETHANE	<9·00	⟨9⋅00
UG/L		
BROMOMETHANE	<36.0	₹36.0
UG/L	.0.00	.2 00
VINYL CHLORIDE	<2.00	<2.00
UG/L CHLOROETHANE	⟨8.00	<8.00
UG/L	(0 00	(,
METHYLENE CHLORIDE	<19.0	<19.0
UG/L		
ACETONE	<17.0	<17.0 -
UG/L	_	
CARBON DISULFIDE	<16.0	<16.0
UG/L	-01 0	.21 0
1,1-DICHLOROETHENE	<21.0	<21.0
UG/L ■ 1,1-DICHLOROETHANE	<2.00	<2.00
UG/L	(2.00	(2.00
1,2-DICHLOROETHENE (TOTAL)	⟨37.0	<37.0
UG/L		
CHLOROFORM	38.5	39.8
UG/L	. 70	. 70
1,2-DICHLOROETHANE	<6.70	<6.70
UG/L	<6.20	<6·20
2-BUTANONE UG/L	(0.20	(0.20
1,1,1-TRICHLOROETHANE	<3.60	<3.60
UG/L		, ,
CARBON TETRACHLORIDE	<4.40	<4.40
UG/L		
VINYL ACETATE	<2.00	<2.00
UG/L	0 17	2 20
BROMODICHLOROMETHANE	2.17	3.20
UG/L 1,2-DICHLOROPROPANE	<2.00	<2.00
UG/L	(2:00	(2 00
CIS-1,3-DICHLOROPROPENE	<2.40	<2.40
UG/L		
TRICHLOROETHENE	<2.20	<2.20
UG/L	0.00	0.00
DIBROMOCHLOROMETHANE	<2.00	<2.00
UG/L	<2.00	<2.00
1,1,2-TRICHLOROETHANE UG/L	(2.00	(2.00
BENZENE	<2.80	<2.80
UG/L	,	, , ,
TRANS-1,3-DICHLOROPROPENE	<1.60	<1.60
UG/L		
BROMOFORM	<2.00	<2.00
UG/L		

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH METHOD: UM27

SITE ID'S:	SORQ1D	SORQ1
ESE ID NUMBER:	90220003	90220003
ESE SEQUENCE NUMBER:	1	06/25/91
COLLECTION DATE:	06/25/91 14:50	14:50
COLLECTION TIME:	14:50	14.50
-4-METHYL-2-PENTANONE	<2.00	<2.00
UG/L	-	
2-HEXANONE	<4.80	<4.80
UG/L	<2.00	<2.00
TETRACHLOROETHENE UG/L	(2.00	•
TOLUENE	<2.00	<2.00
UG/L	0.00	.2 00
1,1,2,2-TETRACHLOROETHANE	<2.00	⟨2.00
UG/L CHLOROBENZENE	<2.00	<2.00
UG/L	•	
TETHYLBENZENE	<2.00	<2.00
UG/L	<2.00	<2.00
STYRENE	(2.00	(2.00
UG/L  XYLENE (TOTAL)	<11.0	<11.0
UG/L		
ACROLEIN	<20.0	<20.0
UG/L	⟨2.30	<2.30
ACRYLONITRILE UG/L	(2.50	(2 00
2-CHLOROETHYLVINYLETHER	<4.10	<4.10
UG/L		11.0
TRICHLOROFLUOROMETHANE	<11.0	<11.0
UG/L DICHLORODIFLUOROMETHANE	<17.0	<17.0
UG/L	. (2.	•
DIBROMOMETHANE	<2.00	<2.00
UG/L	.0 20	⟨2.30
CIS-1,4-DICHLORO-2-BUTENE UG/L	⟨2.30	(2.50
TRANS-1,4-DICHLORO-2-BUTENE	<3.60	⟨3.60
UG/L		
ETHYL METHACRYLATE	<2.00	<2.00
UG/L	<2.00	<2.00
1,2,3-TRICHLOROPROPANE UG/L	(2.00	(2:00
1,2-DICHLOROBENZENE	<17.0	<17.0
UG/L	10.00	.10 00
1,3-DICHLOROBENZENE	<10.00	<10.00
UG/L 1,4-DICHLOROBENZENE	<17.0	<17.0
UG/L	•	-

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH

SITE ID'S:	SORQ1D	SORQ1
ESE 1D NUMBER:	90220003	90220003
ESE SEQUENCE NUMBER:	1	2
COLLECTION DATE:	06/25/91 14:50	06/25/91 14:50
COLLECTION TIME:		
PHENOL	<12	<12
UG/L BIS(2-CHLOROETHYL)ETHER	⟨3.6	<3.6
UG/L	-	
2-CHLOROPHENOL	<4.8	<4.8
UG/L 1,3- DICHLOROBENZENE	<2.2	<2.2
1,3- DICHLOROBENZENE UG/L	(22	<b>\-</b>
■1,4- DICHLOROBENZENE	<2.0	<2.0
UG/L	.07	<24
BENZYL ALCOHOL	<24	<b>₹</b> 24
UC/L ■ 1,2- DICHLOROBENZENE	⟨2.0	<2.0
UG/L		_
2-METHYLPHENOL	<del>ر</del> 7.8	<7.8
UG/L ■ BIS(2-CHLOROISOPROPYL)ETHER	<2.6	⟨2.6
UG/L	ζ= / υ	
4-METHYLPHENOL	<12	<12
UG/L	<6·4	<6.4
N-NITROSO-DI-N-PROPYLAMINE UG/L	(0.4	(0.4
HEXACHLOROETHANE	<2.4	<2-4
UG/L	5.0	-E 0
NITROBENZENE	<5.8	<5.8
UG/L ISOPHORONE	<2.2	<2.2
UG/L		
2-NITROPHENOL	<13	<13
UG/L 2,4-DIMETHYLPHENOL	⟨9.2	<9.2
UG/L	()	
BENZOIC ACID	<48	<48
UG/L	ر <b>7.</b> 6	⟨7.6
BIS(2-CHLOROETHOXY)METHANE UG/L	(7.0	(7.0
2,4-DICHLOROPHENOL	<12	<12
UG/L	.0.0	<2.8
1,2,4-TRICHLOROBENZENE UG/L	<2.8	(2.0
NAPHTHALENE	<7.6	ر7.6
UG/L	. 34	.34
4-CHLOROANILINE	<34	<34
UG/L HEXACHLOROBUTADIENE	⟨2.0	⟨2.0
UG/L		
4-CHLORO-3-METHYLPHENOL	<14	<14
UG/L 2-METHYLNAPHTHALENE	<3.8	<3.8
UG/L		(2)

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH

SITE ID'S: ESE ID NUMBER:	SORQ1D 90220003	SORQ1 90220003
ESE SEQUENCE NUMBER:	1	2 06/25/91
COLLECTION DATE: COLLECTION TIME:	06/25/91 14:50	14:50
EXACHLOROCYCLOPENTADIENE	<15	⟨15
UG/L 2,4,6-TRICHLOROPHENOL	¢9.6	<9.6
UG/L 2,4,5-TRICHLOROPHENOL	<9.2	⟨9.2
UG/L 2-CHLORONAPHTHALENE	⟨3⋅2	<3⋅2
UG/L →2-NITROANILINE	<19	<19
UG/L	.10	-10
DIMETHYLPHTHALATE UG/L	<10	<10
*ACENAPHTHY LENE	<2.2	<2.2
UG/L 2,6-DINITROTOLUENE	<10.0	<10.0
UG/L 3-NITROANILINE	<60	<60
UG/L		
ACENAPHTHENE UG/L	<6.8	<b>&lt;6.8</b>
2,4-DINITROPHENOL	<b>&lt;</b> 66	<66
UG/L 4-NITROPHENOL	<88	<88
UG/L		
DIBENZOFURAN	⟨5.2	<5.2
UG/L 2,4-DINITROTOLUENE	<19	<19
UG/L DIETHYLPHTHALATE	<4-4	<4.4
UG/L 4-CHLOROPHENYL-PHENYLETHER	<8.0	<8-0
UG/L	•	
FLUORENE	<2.6	<2.6
UC/L 4-NITROANILINE	⟨80	<80
UG/L 4,6-DINITRO-2-METHYLPHENOL	<28	<28
UG/L N-NITROSODIPHENYLAMINE	<12	<12
UG/L 4-BROMOPHENYL-PHENYLETHER	⟨2.8	<2.8
UG/L HEXACHLOROBENZENE	<2.0	⟨2.0
UG/L PENTACHLOROPHENOL	<24	<24
UG/L PHENANTHRENE	⟨2.0	⟨2.0
UG/L		
ANTHRACENE UG/L	⟨2.0	₹2,+0
DI-N-BUTYLPHTHALATE	⟨9⋅8	٠9.8
UG/L		

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH

METHOD: 00120		
SITE ID'S: ESE ID NUMBER: ESE SEQUENCE NUMBER: COLLECTION DATE: COLLECTION TIME:	SORQ1D 90220003 1 06/25/91 14:50	SORQ1 90220003 2 06/25/91 14:50
FLUORANTHENE	<2.0	<2.0
UG/L	0.0	⟨2.0
PYRENE	⟨2.0	, (2.0
UG/L BUTYLBENZYLPHTHALATE	⟨2.2	<2-2
UG/L 3,3'-DICHLOROBENZIDINE	<b>&lt;64</b>	< 64
UG/L		1.0
BENZO(A)ANTHRACENE	<12	<12
UG/L	⟨5.0	<5.0
CHRYSENE	(3.0	
UG/L BIS(2-ETHYLHEXYL)PHTHALATE	<2.0	<2.0
UG/L	.16	⟨16
DI-N-OCTYLPHTHALATE	<16	(10
UG/L ■ BENZO(B)FLUORANTHENE	<2.6	<2.6
UG/L		
BENZO(K)FLUORANTHENE	<4.6	<4.6
UG/L	0. /	<2.4
BENZO(A)PYRENE	<2.4	(2.4
UG/L	<8-8	<8-8
INDENO(1,2,3-CD)PYRENE UG/L	(5 5	
DIBENZ(A, H) ANTHRACENE	<4.0	<4.0
UG/L	<2.2	⟨2.2
BENZO(G,H,T)PERYLENE UG/L	. (2.2	• -
OG/L		

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH METHOD: 418.1

SITE IN'S:	SORQlD	
SITE ID'S: ESE ID NUMBER:	90220003	90220003
ESE SEQUENCE NUMBER:	1	2
COLLECTION DATE:	06/25/91	
COLLECTION TIME:	14:50	14:50
HYDROCARBONS, TOTAL PETROLEUM	<200	<200

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH

METHOD: 1CAP

STTE ID'S:	SORQ1D	SORQl
ESE ID NUMBER:	90220003	90220003
ESE SEQUENCE NUMBER:	06/25/91	06/25/91
COLLECTION DATE:	14:50	14:50
COLLECTION TIME:	14.50	14.50
ALUMINUM, TOTAL	1070	976
UG/L		
ANTIMONY, TOTAL	<26.9	⟨26.9
UG/L		2.0
BARIUM, TOTAL	34.3	31.8
UG/L		1 00
BERYLLIUM, TOTAL	<1.80	<1.80
UG/L	0.75	2 07
CADMIUM, TOTAL	2.75	3.07
UG/L	24000	21900
CALCIUM, TOTAL	24000	21300
UG/L	⟨8.02	<8.02
CHROMIUM, TOTAL UG/L	(0.02	(0.02
COBALT, TOTAL	⟨7.80	⟨7.80
UG/L	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
COPPER, TOTAL	24.7	20.3
UG/L		
IRON, TOTAL	2700	2510
UG/L		
MAGNESIUM, TOTAL	6350	5890
UG/L		
MANGANESE, TOTAL	65.4	58.7
UG/L		
NICKEL, TOTAL	10.2	7.36
UG/L	1100	0.45
POTASSIUM, TOTAL	1130	945
UG/L	.2 01	.2 01
SILVER, TOTAL	<3.81	<3.81
UG/L	5030	4730
'SODIUM, TOTAL UG/L	5050	4750
THALLIUM, TOTAL	<154	<154
UG/L	(154	(154
VANADIUM, TOTAL	₹5.60	⟨5⋅60
UG/L	,	• • • •
ZINC, TOTAL	38.2	30.4
UG/L		

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUCH METHOD: GRAPHITE FURNACE

STTE ID'S: ESE ID NUMBER: ESE SEQUENCE NUMBER: COLLECTION DATE: COLLECTION TIME:	SORQ1D 90220003 1 06/25/91 14:50	90220003 2 06/25/91
ARSENIC.TOTAL	2.8	⟨2.3

LEAD, TOTAL UG/L SELENIUM, TOTAL

<2.2 <2.2

4.8

2.2

UG/L

PAGE 9

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH

METHOD: DCVAA

TTE ID'S: ESE ID NUMBER:	SORQ1D 90220003	SORQ1 90220003
ESE SEQUENCE NUMBER:  COLLECTION DATE:	1	2 06/25/91
COLLECTION TIME:	14:50	
MERCURY, TOTAL	<0.02	<0.02

PAGE 10

Environmental Science and Engineering

PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH

METHOD: CN1

SORQ1D SORQl SITE ID'S: 90220003 90220003 ESE LD NUMBER: 1 ESE SEQUENCE NUMBER: 06/25/91 06/25/91 COLLECTION DATE: 14:50 14:50 COLLECTION TIME: ⟨5.0 CYANIDE <5.0

Environmental Science and Engineering PROJECT NAME: FORT DOUGLAS PROJECT MANAGER: DOYCE BLAIR LAB COORDINATOR: KEVIN MCHUGH

METHOD: UH02

SITE 10'S: ESE 10 NUMBER: ESE SEQUENCE NUMBER: COLLECTION DATE: COLLECTION TIME:	SORQ1D 90220003 1 06/25/91 14:50	SORQ1 90220003 2 06/25/91 14:50
AROCLOR-1016	<0.15	<0.15
UG/L AROCLOR-1221	<0.15	<0.15
MROCLOR-1232	<0.15	<0.15
UG/L AROCLOR-1242	<0.15	<0.15
UG/L AROCLOR-1248	<0.15	<0.15
UG/L AROCLOR-1254	<0.15	<0.15
UG/L AROCLOR-1260	<0.15	<0.15
UG/L		

G-3 Soil Data-Level 3

Soil

				Level 3 bala			Flag				
Site ID	Sample Date	Depth	Paramet	er	Val	lue	Code	Units	Lot	Method	Dilution
DV0 00 01	02 1001	0 500	AG	SILVER	ŧΤ	26.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991 02-oct-1991	0.500 0.500	AL	ALUMINUM		10000.000		UGG	SEA	JS13	50.000
BKG-SB-01		0.500	AS	ARSENIC	1 T	180.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	AS	ARSENIC		4.540		UGG	WDZ	JD19	1.000
BKG-SB-01	02-oct-1991 02-oct-1991	0.500	BA	BARIUM		91.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-00t-1991 02-0ct-1991	0.500	BE	BERYLLIUM	ı T	25.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-0ct-1991 02-oct-1991	0.500	CA	CALCIUM		14000.000		UGG	SEA	JS13	50.000
BKG-SB-01 BKG-SB-01	02-oct-1991 02-oct-1991	0.500	CD	CADMIUM	1.T	26,000	•	UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	CO	COBALT		33.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	CR	CHROMIUM		33.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	CU	COPPER	LT	47.000		UGG	SEA	J\$13	50.000
BKG-SB-01	02-oct-1991	0.500	CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
BKG-SB-01	02-oct-1991	0.500	FE	IRON		12000.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	HG	MERCURY	LT	0.027	L	UGG	QUJ	HG9	1.000
BKG-SB-01	02-oct-1991	0.500	K	POTASSIUM	LT	6000.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	MG	MAGNESIUM		5300.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	MN	MANGANESE		470.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	MO	MOLYBDENUM	LT	50.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	NA	SODIUM	LT	2200.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	NI	NICKEL	LT	77.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	PB	LEAD	LT	150.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	PB	LEAD		82.000		UGG	WKI	JD17	10.000
BKG-SB-01	02-oct-1991	0.500	SB .	ANTIMONY		2100.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	SE	SELENIUM	LT	370.000		UGG	SEA		50.000
BKG-SB-01	02-oct-1991	0.500	SE	SELENIUM		0.250		UGG	WQQ	JD15	1.000
BKG-SB-01	02-oct-1991	0.500	TI	TITANIUM		580.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	TL	THALLIUM		740.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	٧	VANADIUM		88.000		UGG	SEA	JS13	50.000
BKG-SB-01	02-oct-1991	0.500	ZN	ZINC		97.000		UGG	SEA	J\$13	50.000
BKG-SB-01	02-oct-1991	13.600	, AG	SILVER	LT	52.000		UGG	SEA	JS13	100.000 100.000
BKG-SB-01	02-oct-1991	13.600	AL	ALUMINUM		14000.000		UGG	SEA	JS13 JS13	100.000
BKG-SB-01	02-oct-1991	13.600	AS	ARSENIC	Li	360.000		UGG	SEA WDZ	JD19	1.000
BKG-SB-01	02-oct-1991	13.600	AS	ARSENIC		7.690		UGG UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	BA	BARIUM		96.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	BE	BERYLLIUM .	LI	50.000 81000.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	13.600	CA	CALCIUM		52.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	CD	CADMIUM		66.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	CO	COBALT CHROMIUM		67.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	CR	COPPER		94.000		UGG		J\$13	100.000
BKG-SB-01	02-oct-1991	13.600 13.600	CU Cyn	CYANIDE		0.920		UGG	VAS	KY01	1.000
BKG-SB-01	02-oct-1991 02-oct-1991	13.600	FE	IRON	- '	15000.000		UGG	SEA	JS13	100.000
BKG-SB-01 BKG-SB-01	02-00t-1991 02-oct-1991	13.600	HG	MERCURY	LT	0.027	L	UGG	QUJ	HG9	1.000
BKG-SB-01	02-oct-1991	13.600	K	POTASSIUM		12000.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	MG	MAGNESIUM		14000.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	MN	MANGANESE		390.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	MO	MOLYBDENUM	LT	100.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	NA	SODIUM	LT	4500.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	NI	NICKEL	LT	150.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	РВ	LEAD	LT	300.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	PB	LEAD		11.100		UGG	WKI	JD17	1.000
BKG-SB-01	02-oct-1991		SB	ANTIMONY	LT	4100.000		UGG	SEA		100.000
BKG-SB-01	02-oct-1991	13.600	SE	SELENIUM	LT	740.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	SE	SELENIUM		0.250		UGG	MQQ	JD15	1.000
BKG-SB-01	02-oct-1991	13.600	TI	TITANIUM	LT	1200.000		UGG	SEA	JS13	100.000

Soil

Level 3 Data											
							Flag				
Site ID	Sample Date	Depth	Paramet	er	Val	lue	Code	Units	Lot	Method	Dilution
BKG-SB-01	02-oct-1991	13.600	TL	THALLIUM		1500.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	٧	VANAD IUM		180.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	13.600	ZN	ZINC	LT	190.000		UGG	SEA	JS13	100.000
BKG-SB-01	02-oct-1991	21.800	111TCE	1,1,1-TRICHLOROETHANE	LT	0.002		UGG	SF8	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	112TCE	1,1,2-TRICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	11DCE	1,1-DICHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	11DCLE	1,1-DICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	123CPR	1,2,3-TRICHLOROPROPANE	LT	0.003		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	124TCB	1.2.4-TRICHLOROBENZENE	LT	0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800		1,2-DICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991			1,2-DICHLOROETHANE		0.002		UGG		LM28	1.000
BKG-SB-01	02-oct-1991		12DCLP	1,2-DICHLOROPROPANE		0.002		UGG		LM28	1.000
BKG-SB-01	02-oct-1991			1,3-DICHLOROBENZENE		0.002		UGG		LM28	1.000
BKG-SB-01	02-oct-1991			1,3-DICHLOROBENZENE		0.120		UGG		LM27	1.000
BKG-SB-01				1,4-DICHLOROBENZENE		0.002		UGG		LM28	1.000
	02-oct-1991			•		0.033		UGG		LM27	1.000
BKG-SB-01	02-oct-1991			1,4-DICHLOROBENZENE		0.033		UGG		LM27	1.000
BKG-SB-01	02-oct-1991			2,4,5-TRICHLOROPHENOL		0.082		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800		2,4,6-TRICHLOROPHENOL		0.140		UGG		LM27	1.000
BKG-SB-01	02-oct-1991		24DCLP	•							
BKG-SB-01	02-oct-1991	21.800	24DMPN			2.600		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	24DNP	2,4-DINITROPHENOL		0.700		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	24DNT	2,4-DINITROTOLUENE		0.370		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	26DNT	2,6-DINITROTOLUENE		0.066		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	<b>2CLEVE</b>	2-CHLOROETHYLVINYL ETHER		0.011		UGG		LM28	1.000
BKG-SB-01	02-oct-1991	21.800	2CLP	2-CHLOROPHENOL		0.110		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	2CNAP	2-CHLORONAPHTHALENE		0.140		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	2MNAP	2-METHYLNAPHTHALENE	LT	0.033		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	2MP	2-METHYLPHENOL	LT	0.350		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	2NANIL	2-NITROANILINE	LT	0.079		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	2NP	2-NITROPHENOL	LT	0.069		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	33DCBD	3,3'-DICHLOROBENZIDINE	LT	3.400		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	3NANIL			0.950		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	<b>4BRPPE</b>	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	4CANIL	4-CHLOROANILINE	LT	1.600		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	4MP	4-METHYLPHENOL	LT	0.300		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	4NANIL	4-NİTROANILINE	LT	1.200		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	4NP	4-NITROPHENOL	LT	0.860		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	ACET	ACETONE	LT	0.046		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	ACROLN			0.005		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	ACRYLO	ACRYLONITRILE		0.006		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	AG	SILVER		100.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	AL	ALUMINUM		10000.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	ANAPNE	ACENAPHTHENE	1 T	0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	ANAPYL			0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	ANTRC	ANTHRACENE		0.033		UGG	SHB	LM27	1.000
		21.800				720.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991		AS	ARSENIC		3.180		UGG	WDZ	JD19	1.000
BKG-SB-01	02-oct-1991	21.800	AS	ARSENIC		0.033				LM27	1.000
BKG-SB-01	02-oct-1991	21.800	B2CEXM	BIS (2-CHLOROETHOXY)				UGG	SHB		
BKG-SB-01	02-oct-1991	21.800	BZCIPE			0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	B2EHP	BIS (2-ETHYLHEXYL)	LI	0.390		UGG	SHR	LM27	1.000

Soil

Leve	٦l	マ	Dэ	t a
Lev	- 1		υa	Lα

				Level 3 Data			Flag				
a	0	Daneh	Danamata	Nr.	Val	HE	Code	Units	Lot	Method	Dilution
Site ID	Sample Date	рертп	Paramete	<b>:</b> 1	Vac	uc	0000	0,,,,			
	4004	24 200		DADTIM	1 T	190.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	BA	BARIUM BENZO [A] ANTHRACENE		0.033		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	BAANTR	BENZO [A] PYRENE		0.033		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	BAPYR	= -		0.033		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	BBZP	BUTYLBENZYL PHTHALATE		100.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	BE	BERYLLIUM				UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800		BENZO [G,H,I] PERYLENE		0.250			SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG		LM28	1.000
BKG-SB-01	02-oct-1991	21.800	BRDCLM	BROMODICHLOROMETHANE		0.004		UGG	SFB		
BKG-SB-01	02-oct-1991	21.800		CIS-1,3-DICHLOROPROPYLENE				UGG		LM28	1.000
BKG-SB-01	02-oct-1991	21.800	C2AVE	ACETIC ACID, VINYL ESTER				UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	C2H3CL	CHLOROETHENE		0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	C2H5CL	CHLOROETHANE		0.017		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	C6H6	BENZENE	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CA	CALCIUM		71000.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	CARBAZ	9H-CARBAZOLE		3.400	R	UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	CCL2F2	DICHLORODIFLUOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CCL3F	TRICHLOROFLUOROMETHANE		0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CCL4	CARBON TETRACHLORIDE	LT	0.003		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CD	CADMIUM		100.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	CDCBU	CIS-1,4-DICHLORO-2-BUTENE	LT	0.015		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CH2BR2	METHYLENE BROMIDE	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CH2CL2	METHYLENE CHLORIDE	LT	0.040		UGG	ŞFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CH3BR	BROMOMETHANE	LT	0.017		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CH3CL	CHLOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CHBR3	BROMOFORM	LT	0.009		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CHCL3	CHLOROFORM	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CHRY	CHRYSENE	LT	0.220		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	CL6BZ	HEXACHLOROBENZENE		0.046		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	CL6CP	HEXACHLOROCYCLOPENTAD I ENE	LT	1.700		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	CLC6H5	CHLOROBENZENE	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CO	COBALT	LT	130.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	CR	CHROMIUM	LT	130.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	CS2	CARBON DISULFIDE	LT	0.019		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	CU	COPPER	LT	190.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
BKG-SB-01	02-oct-1991	21.800	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	DBRCLM	DIBROMOCHLOROMETHANE	LT	0.005		UGG		LM28	1.000
BKG-SB-01	02-oct-1991	21.800	DBZFUR	DIBENZOFURAN	LT	0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	DEP	DIETHYL PHTHALATE		0.690		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	DNBP	DI-N-BUTYL PHTHALATE		2.000		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	ETC6H5	ETHYLBENZENE	LT	0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	ETMACR	ETHYL METHACRYLATE	LT	0.011		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	FANT	FLUORANTHENE	LT	0.085		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	FE	IRON		12000.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	FLRENE	FLUORENE	LT	0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	HG	MERCURY	LT	0.027	L ·	UGG	QUJ	HG9	1.000
BKG-SB-01	02-oct-1991	21.800	ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991		ISOPHR	ISOPHORONE		0.033		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	K	POTASSIUM	LT	24000.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991		MEC6H5	TOLUENE	LT	0.002		UGG	SFB	LM28	1.000
J 05 01		*									

Soil

	_	_
Level		Data

				20.00		•	Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
0110 10	oumpto out										
BKG-SB-01	02-oct-1991	21.800	MEK	METHYLETHYL KETONE		0.005		UGG		LM28	1.000
BKG-SB-01	02-oct-1991	21.800		MAGNESIUM		15000.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	MIBK	METHYLISOBUTYL KETONE		0.005		UGG		LM28	1.000
BKG-SB-01		21.800	MN	MANGANESE		900.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	MNBK	METHYL-N-BUTYL KETONE		0.022		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	MO	MOLYBDENUM	LT	200.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991		NA	SODIUM		9000.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	NAP	NAPHTHALENE	LT	0.033		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	NB	NITROBENZENE	LT	0.071		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991	21.800	NI	NICKEL	LT	310.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	NNDNPA	N-NITROSO	LT	0.071		UGG	SHB	LM27	1.000
BKG-SB-01		21.800	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG		LM27	1.000
BKG-SB-01	02-oct-1991	21.800	PB	LEAD	LT	590.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	PB	LEAD		4.210		UGG	WKI	JD17	1.000
BKG-SB-01	02-oct-1991	21.800	PCP	PENTACHLOROPHENOL	LT	0.200		UGG	SHB	LM27	1.000
BKG-SB-01		21.800	PHANTR	PHENANTHRENE	LT	0.033		UGG	SHB	LM27	1.000
	02-oct-1991	21.800	PHENOL	PHENOL	LT	0.110		UGG	SHB	LM27	1.000
BKG-SB-01	02-oct-1991 02-oct-1991		PYR	PYRENE	LT	0.033		UGG .	SHB	LM27	1.000
BKG-SB-01		21.800	SB	ANTIMONY		8300.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	SE	SELENIUM		1500.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991		SE	SELENIUM		0.250	•	UGG	WQQ	JD15	1.000
BKG-SB-01	02-oct-1991		STYR	STYRENE		0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	T12DCE	TRANS-1,2-DICHLOROETHYLEN				UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	T13DCP	TRANS-1,3-DICHLOROPROPENE				UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800		1,1,2,2-TETRACHLOROETHANE				UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	TCLEA	TETRACHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	TCLEE	TRANS-1,4-DICHLORO-2-BUTE				UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	TOCBU		LI	2300.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	T I	TITANIUM		2900.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	TL	THALLIUM		0.002		UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991	21.800	TRCLE	TRICHLOROETHYLENE		350.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991	21.800	V	VANADIUM				UGG	SFB	LM28	1.000
BKG-SB-01	02-oct-1991		XYLEN	*XYLENES		0.002 390.000		UGG	SEA	JS13	200.000
BKG-SB-01	02-oct-1991		ZN	ZINC				UGG	TRH		1.000
BKG-SS-01	15-jul-1992		124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRH		1.000
BKG-SS-01	15- jul - 1992		13DCLB	1,3-DICHLOROBENZENE		0.120		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992			1,4-DICHLOROBENZENE		0.033		UGG			1.000
BKG-SS-01	15- jul - 1992			2,4,5-TRICHLOROPHENOL		0.086		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992			2,4,6-TRICHLOROPHENOL		0.082		UGG		LM27	1.000
BKG-SS-01	15-jul-1992			2,4-DICHLOROPHENOL		0.140			TRH		1.000
BKG-SS-01	15- jul - 1992		24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG UGG		LM27	1.000
BKG-SS-01	15 - jul - 1992		24DNP	2,4-DINITROPHENOL		0.700					1.000
BKG-SS-01	15- jul - 1992	0.000	24DNT	2,4-DINITROTOLUENE		0.370		UGG		LM27	
BKG-SS-01	15- jul - 1992	0.000	26DNT	2,6-DINITROTOLUENE		0.066		UGG	TRH		1.000
BKG-SS-01	15 - jul - 1992	0.000	2CLP	2-CHLOROPHENOL		0.110		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992	0.000	2CNAP	2-CHLORONAPHTHALENE		0.140		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992	0.000	2MNAP	2-METHYLNAPHTHALENE		0.033		UGG	TRH		1.000
BKG-SS-01	15- jul - 1992		2MP	2-METHYLPHENOL		0.350		UGG	TRH		1.000
BKG-SS-01	15- jul - 1992		2NANIL	2-NITROANILINE		0.079		UGG	TRH		1.000
BKG-SS-01	15- jul - 1992		2NP	2-NITROPHENOL	LT	0.069		UGG		LM27	1.000
BKG-SS-01	15- jul - 1992		33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG	TRH		1.000
BKG-SS-01	15- jul - 1992		3NANIL	3-NITROANILINE		0.950		UGG		LM27	1.000
BKG-\$\$-01	15- jul - 1992			4,6-DINITRO-2-METHYLPHENG	LT	0.170		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		4BRPPE	4-BROMOPHENYLPHENYL ETHER	R LT	0.033		UGG	TRH		1.000
BKG-SS-01	15- jul - 1992			4-CHLOROANILINE		1.600		UGG	TRH	LM27	1.000
0/0-22-01	jui-1772 دا										

#### Soil

				Level 3 Data			Flag				
							Code	Units	Lot	Method	Dilution
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	LOC	neciloa	Ditacton
						0.077		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992		4CL3C	1 01120110 - 0110		0.073		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992					0.044		UGG		LM27	1.000
BKG-SS-01	15-jul-1992		4MP			0.300			TRH	LM27	1.000
BKG-SS-01	15- jul -1992		4NANIL			1.200		UGG			
BKG-SS-01	15- jul - 1992		4NP	4-NITROPHENOL		0.860		UGG		LM27	1.000
BKG-SS-01	15-jul-1992	0.000	AG	SILVER		0.875		UGG	SEY	JS13	1.000
BKG-SS-01	15-jul-1992	0.000	AL	ALUMINUM		21000.000		UGG	SEY	JS13	5.000
BKG-SS-01	15 - jul - 1992	0.000	ANAPNE			0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992		ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	ANTRC	ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992	0.000	AS	ARSENIC		4.710		UGG	ACB	JD19	1.000
BKG-SS-01	15-jul-1992		B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		B2CIPE		LT	,0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		BA	BARIUM		146.000		UGG	SEY	JS13	1.000
	15-jul-1992 15-jul-1992		BAANTR	BENZO [A] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
BKG-SS-01			BAPYR	BENZO [A] PYRENE		0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
BKG-SS-01	15-jul-1992				٠.	1.730	N	UGG	SEY	JS13	1.000
BKG-SS-01	15-jul-1992		BE	BERYLLIUM BENZO [G,H,I] PERYLENE	ıτ	0.250		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		BGHIPY	BENZO [K] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		BKFANT			25000.000		UGG	SEY	JS13.	5.000
BKG-SS-01	15-jul-1992		CA	CALCIUM	ND	0.170	R	UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992		CARBAZ	9H-CARBAZOLE	NU	1.930	Λ.	UGG	SEY	JS13	1.000
BKG-SS-01	15- jul - 1992		CD	CADMIUM				UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992		CHRY	CHRYSENE		0.220			TRH	LM27	1.000
BKG-SS-01	15-jul-1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG			1.000
BKG-SS-01	15- jul - 1992	0.000	CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG	TRH		
BKG-SS-01	15-jul-1992		CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	TRH		1.000
BKG-SS-01	15- jul - 1992	0.000	CO	COBALT		22.300		UGG	SEY	JS13	1.000
BKG-SS-01	15- jul - 1992	0.000	CR	CHROMIUM		48.100		UGG	SEY	JS13	1.000
BKG-SS-01	15 - jul - 1992	0.000	CU	COPPER		39.600		UGG	SEY		1.000
BKG-SS-01	15-jul-1992	0.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	DBZFUR	DIBENZOFURAN		0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	DEP	DIETHYL PHTHALATE		0.190		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	TRH		1.000
BKG-SS-01	15-jul-1992	0.000	DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG		LM27	1.000
BKG-SS-01	15-jul-1992		DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG .		LM27	1.000
BKG-SS-01	15- jul - 1992	0.000	FANT	FLUORANTHENE	LT	0.085		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992		FE	IRON		21000.000		UGG	SEY	JS13	5.000
BKG-SS-01	15- jul - 1992		FLRENE	FLUORENE	LT	0.033		UGG		LM27	1.000
BKG-SS-01	15- jul-1992		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		HG	MERCURY		0.052		UGG	THK	HG9	1.000
BKG-SS-01	15- jul - 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992		ISOPHR	ISOPHORONE		0.033		UGG	TRH	LM27	1.000
BKG-SS-01	15- jul - 1992	*	K	POTASSIUM		5040.000		UGG	SEY	JS13	1.000
	15-jul-1992 15-jul-1992		MG	MAGNESIUM		7400.000		UGG	SEY	JS13	5.000
BKG-SS-01	15- jul-1992 15- jul-1992		MN	MANGANESE		702.000		UGG	SEY		1.000
BKG-SS-01	15- jul - 1992 15- jul - 1992		NA NA	SODIUM		370.000		UGG	SEY		1.000
BKG-SS-01				NAPHTHALENE	1 T	0.033		UGG	TRH		1.000
BKG-SS-01	15-jul-1992		NAP			0.071		UGG	TRH		1.000
BKG-SS-01	15-jul-1992		NB	NITROBENZENE		25.400		UGG	SEY		1.000
BKG-SS-01	15- jul - 1992		NI	NICKEL	, ~	0.071		UGG	TRH		1.000
BKG-SS-01	15- jul - 1992		NNDNPA	N-NITROSO						LM27	1.000
BKG-SS-01	15 - jul - 1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LI	0.038		UGG	110	LNLI	1.000

Leve	1 7	Data
1 eve		vara

Level 3 Data											
							Flag				
Site ID	Sample Date	Depth	Paramete	r	Val	ue	Code	Units	Lot	Method	Dilution
		•									
BKG-SS-01	15- jul - 1992	0.000	PB	LEAD		14.000		UGG		JD17	5.000
	15-jul-1992		PCP	PENTACHLOROPHENOL	LT	0.200		UGG		LM27	1.000
	15-jul-1992		PHANTR	PHENANTHRENE	LT	0.033		UGG		LM27	1.000
	15-jul-1992		PHENOL	PHENOL	LT	0.110		UGG		LM27	1.000
BKG-SS-01	15-jul-1992		PYR	PYRENE		0.042		UGG	TRH	LM27	1.000
	15- jul -1992		SB		LT	41.300		UGG	UFG	99	1.000
BKG-SS-01	15-jul-1992		SE		LT	0.250		UGG	ZSR	JD15	1.000
BKG-SS-01	15- jul - 1992		TL	THALLIUM		84.900		UGG	SEY	JS13	1.000
BKG-SS-01	15-jul-1992		TPHC	TOTAL PETROLEUM		22.500		UGG	UBK	00	1.000
BKG-SS-01	15-jul-1992		V	VANADIUM		33.600		UGG	SEY	JS13	1.000
BKG-SS-01	15-jul-1992		ZN	ZINC		87.900	٠	UGG	SEY	JS13	1.000
BKG-SS-01			124TCB			0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		12DCLB	·/-/		0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		13DCLB	.,		0.120		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992			170 01011111111111111111111111111111111		0.033		UGG		LM27	1.000
BKG-SS-02	16-jul-1992			.,	,	0.086		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992					0.082		UGG		LM27	1.000
BKG-SS-02	16-jul-1992		246TCP	-, ,, - , ,, - , , , , , , , , , , , ,		0.141		UGG		LM27	1.000
BKG-SS-02	16-jul-1992		24DCLP	2,4-DICHLOROPHENOL		2.600		UGG		LM27	1.000
BKG-SS-02	16-jul-1992			2,4-DIMETHYLPHENOL		0.700		UGG		LM27	1.000
BKG-SS-02	16- jul <b>-</b> 1992		24DNP	2,4-DINITROPHENOL		0.370		UGG		LM27	1.000
BKG-SS-02	16- jul <b>-</b> 1992		24DNT	2,4-DINITROTOLUENE		0.066		UGG		LM27	1.000
BKG-SS-02	16-jul-1992		26DNT	2,6-DINITROTOLUENE		0.110		UGG		LM27	1.000
BKG-SS-02	16- jul - 1992		2CLP	2-CHLOROPHENOL				UGG		LM27	1.000
BKG-SS-02	16- jul - 1992		2CNAP	2-CHLORONAPHTHALENE		0.140		UGG		LM27	1.000
BKG-SS-02	16-jul-1992		2MNAP	2-METHYLNAPHTHALENE		0.033		UGG		LM27	1.000
BKG-SS-02	16- jul - 1992		2MP	2-METHYLPHENOL		0.350		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		2NANIL	2-NITROANILINE		0.079		UGG		LM27	1.000
BKG-SS-02	16- jul - 1992		2NP	2-NITROPHENOL		0.069				LM27	1.000
BKG-SS-02	16- jul -1992		33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG		LM27	1.000
BKG-\$\$-02	16- jul - 1992		3NANIL	3-NITROANILINE		0.950		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul <b>-</b> 1992	0.000	46DNTC		LI	0.16/		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul <b>-</b> 1992	0.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER				UGG			1.000
BKG-SS-02	16-jul-1992		4CANIL			1.600		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992	0.000	4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992		4CLPPE	4-CHLOROPHENYLPHENYL		0.044		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul <b>-</b> 1992		4MP	4-METHYLPHENOL		0.300		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992		4NANIL	4-NITROANILINE		1.200		UGG	TRG		1.000
BKG-SS-02	16- jul - 1992		4NP	4-NITROPHENOL		0.860		UGG		LM27 JS13	1.000
BKG-SS-02	16- jul - 1992		AG	SILVER	LT	0.521		UGG	TWA		2.000
BKG-SS-02	16- jul - 1992		AL	ALUMINUM		9300.000		UGG		JS13	
BKG-SS-02	16- <u>j</u> ul <b>-</b> 1992		ANAPNE	ACENAPHTHENE		0.033		UGG		LM27	1.000
BKG-SS-02	16- jul - 1992	0.000	ANAPYL	ACENAPHTHYLENE		0.033		UGG		LM27	1.000
BKG-SS-02	16- jul - 1992	0.000	ANTRO	ANTHRACENE	LT	0.033		UGG		LM27	1.000
BKG-SS-02	16- jul - 1992	0.000	AS	ARSENIC		4.920		UGG	ACB	JD19	1.000
BKG-SS-02	16- jul - 1992	0.000	B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG		LM27	1.000
BKG-SS-02	16- jul - 1992	0.000	B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992	0.000	B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG			1.000
BKG-SS-02	16- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul -1992		BA	BARIUM		118.000		UGG	TWA	JS13	1.000
BKG-SS-02	16- jul - 1992		BAANTR	BENZO [A] ANTHRACENE	LT	0.033		UGG	TRG		1.000
BKG-SS-02	16- jul - 1992		BAPYR	BENZO [A] PYRENE	LT	0.033		UGG	TRG		1.000
BKG-SS-02	16- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE	LT	0.033		UGG	TRG		1.000
BKG-SS-02	16- jul - 1992		BBZP	BUTYLBENZYL PHTHALATE	L1	0.033		UGG	TRG		1.000
BKG-SS-02	16- jul - 1992		BE	BERYLLIUM		0.914		UGG	TWA		1.000
BKG-SS-02	16- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE	L1	r 0.250		UGG	TRG	LM27	1.000
DIG 50 OL	,						ν,				

Leve	1 7 1	Nata

							Flag				
Site ID	Sample Date	Depth	Paramete	· er	Val	.ue	Code	Units	Lot	Method	Dilution
0,00		•									
BKG-SS-02	16- jul - 1992	0.000	BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992		CA	CALCIUM		40000.000		UGG	TWA	JS13	10.000
BKG-SS-02	16- jul - 1992		CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992		CD	CADMIUM		0.848		UGG	TWA	JS13	1.000
BKG-SS-02	16- jul - 1992		CHRY	CHRYSENE	LT	0.220		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE	LT	1.700		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992		CL6ET	HEXACHLOROETHANE		0.067		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		CO	COBALT		14.100		UGG	TWA	JS13	1.000
BKG-SS-02	16-jul-1992		CR	CHROMIUM		21.900		UGG	TWA	JS13	1.000
BKG-\$S-02	16-jul-1992		CU	COPPER		22.800		UGG	TWA	JS13	1.000
BKG-SS-02	16-jul-1992		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		DBZFUR	DIBENZOFURAN		0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		DEP	DIETHYL PHTHALATE		0.190		UGG	TRG	LM27	1.000
	16- jul - 1992		DMP	DIMETHYL PHTHALATE		0.130		UGG	TRG	LM27	1.000
BKG-SS-02			DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG		LM27	1.000
	16-jul-1992		FANT	FLUORANTHENE		0.085		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992			IRON		11000.000		UGG	TWA	JS13	2.000
BKG-SS-02	16-jul-1992		FE FLRENE	FLUORENE	1.7	0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992					0.180		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		HCBD	HEXACHLOROBUTADIENE		0.027		UGG	THN	HG9	1.000
BKG-SS-02	16-jul-1992		HG	MERCURY INDENO [1,2,3-C,D] PYRENE				UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		ICDPYR	ISOPHORONE		0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		ISOPHR		L. 1	2440.000		UGG	TWA	JS13	1.000
BKG-SS-02	16-jul-1992		K	POTASSIUM		7400.000		UGG	TWA	JS13	2.000
BKG-SS-02	16-jul-1992		MG	MAGNESIUM		516.000		UGG	TWA	JS13	1.000
BKG-SS-02	16-jul-1992		MN	MANGANESE		148.000		UGG	TWA	JS13	1.000
BKG-SS-02	16-jul-1992		NA	SODIUM				UGG	TRG	LM27	1.000
BKG-SS-02	16-jul-1992		NAP	NAPHTHALENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul <b>- 199</b> 2		NB	NITROBENZENE	LI	0.071		UGG	TWA	JS13	1.000
BKG-SS-02	16- jul - 1992		NI	NICKEL		17.200		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992		NNDNPA	N-NITROSO		0.071				LM27	1.000
BKG-SS-02	16- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE	LI	0.038		UGG	TRG	JD17	10.000
BKG-SS-02	16- jul - 1992		PB	LEAD		25.000		UGG	ZXL	LM27	1.000
BKG-SS-02	16- jul -1992		PCP	PENTACHLOROPHENOL		0.200		UGG	TRG		1.000
BKG-SS-02	16- jul - 1992		PHANTR	PHENANTHRENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992		PHENOL			0.110		UGG	TRG	LM27	
BKG-SS-02	16- jul - 1992		PYR	PYRENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-02	16- jul - 1992		SB	ANTIMONY		41.300		UGG	TWA	JS13	1.000 1.000
BKG-SS-02	16- jul - 1992		SE	SELENIUM	LT	0.250		UGG	ZSR		
BKG-SS-02	16- jul - 1992		TL	THALLIUM		43.700		UGG	TWA	JS13	1.000
BKG-SS-02	16- jul - 1992	0.000	TPHC	TOTAL PETROLEUM		22.000		UGG	UBL	00	1.000
BKG-SS-02	16- jul <b>-</b> 1992	0.000	V	VANADIUM		18.200		UGG	TWA	JS13	1.000
BKG-SS-02	16- jul <b>- 199</b> 2	0.000	ZN	ZINC		55.800		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992		124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG		LM27	1.000
BKG-SS-03	16- jul <b>- 199</b> 2	0.000	12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	13DCLB	1,3-DICHLOROBENZENE	LT	0.120		UGG		LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	14DCLB	1,4-DICHLOROBENZENE		0.033		UGG		LM27	1.000
BKG-SS-03	16- jul <b>-</b> 1992	0.000	245TCP	2,4,5-TRICHLOROPHENOL		0.086		UGG		LM27	1.000
BKG-SS-03	16-jul-1992	0.000	246TCP	2,4,6-TRICHLOROPHENOL	LT	0.082		UGG	TRG	LM27	1.000
BKG-SS-03	16-jul-1992	0.000	24DCLP	2,4-DICHLOROPHENOL		0.141		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		24DMPN	2,4-DIMETHYLPHENOL	LT	2.600		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		24DNP	2,4-DINITROPHENOL		0.700		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		24DNT	2,4-DINITROTOLUENE	ĻŢ	0.370		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		26DNT	2,6-DINITROTOLUENE	LT	0.066		UGG	TRG	LM27	1.000
3 30 03	,			•							

Soil

				Level 3 Data							
							Flag	Unita	1.4	Mark and	Dilusian
Site ID	Sample Date	Depth	Paramete	er	Val	.ue	Code	Units	LOL	Method	Dilution
07	44 : 1 4000	0.000	30LD	2-CHLOROPHENOL	ιT	0.110		UGG	TRG	LM27	1.000
BKG-SS-03	16-jul-1992		2CLP 2CNAP	2-CHLORONAPHTHALENE		0.140		UGG		LM27	1.000
BKG-SS-03	16-jul-1992	0.000	2MNAP	2-METHYLNAPHTHALENE		0.033		UGG		LM27	1.000
BKG-SS-03	16-jul-1992			2-METHYLPHENOL		0.350		UGG		LM27	1.000
BKG-SS-03	16-jul-1992		2MP			0.079		UGG	TRG	LM27	1.000
BKG-SS-03	16-jul-1992		2NANIL	2-NITROANILINE 2-NITROPHENOL		0.069		UGG		LM27	1.000
BKG-SS-03	16-jul-1992		2NP	3,3'-DICHLOROBENZIDINE		3.400		UGG		LM27	1.000
BKG-SS-03	16-jul-1992			3-NITROANILINE		0.950		UGG		LM27	1.000
BKG-SS-03	16-jul-1992			4,6-DINITRO-2-METHYLPHENO				UGG		LM27	1.000
BKG-SS-03	16-jul-1992			4-BROMOPHENYLPHENYL ETHER				UGG		LM27	1.000
BKG-SS-03	16-jul-1992					1.600		UGG		LM27	1.000
BKG-SS-03	16-jul-1992		4CANIL	4-CHLOROANILINE		0.073		UGG		LM27	1.000
BKG-SS-03	16-jul-1992		4CL3C	4-CHLORO-3-CRESOL		0.044		UGG		LM27	1.000
BKG-SS-03	16-jul-1992		4CLPPE	4-CHLOROPHENYLPHENYL				UGG	TRG	LM27	1.000
BKG-SS-03	16-jul-1992		4MP	4-METHYLPHENOL		0.300		UGG		LM27	1.000
BKG-SS-03	16-jul-1992			4-NITROANILINE		1.200				LM27	1.000
BKG-SS-03	16- jul - 1992		4NP	4-NITROPHENOL	LI	0.860		UGG			1.000
BKG-SS-03	16- jul - 1992		AG	SILVER		0.746		UGG	TWA	JS13	
BKG-SS-03	16- jul <b>- 19</b> 92		AL .	ALUMINUM		8300.000		UGG		JS13	2.000
BKG-SS-03	16- jul -1992		ANAPNE	ACENAPHTHENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	ANTRC	ANTHRACENE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16-jul-1992	0.000	AS	ARSENIC		5.100		UGG	ACB	JD19	1.000
BKG-SS-03	16- jul - 1992	0.000	B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	BA	BARIUM		135.000		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992		BAANTR	BENZO [A] ANTHRACENE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16-jul-1992	0.000	BAPYR	BENZO [A] PYRENE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	<b>BBFANT</b>	BENZO [B] FLUORANTHENE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		BE	BERYLLIUM		0.927		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		CA	CALCIUM		62000.000		UGG	TWA	JS13	20.000
BKG-SS-03	16-jul-1992		CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		CD	CADMIUM		0.732		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992		CHRY	CHRYSENE	1 T	0.220		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG	TRG	LM27	1.000
BKG-SS-03	16-jul-1992		CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG		LM27	1.000
BKG-SS-03	16- jul - 1992		CL6ET	HEXACHLOROETHANE		0.067		UGG		LM27	1.000
	16- jul - 1992		CO	COBALT		13.600		UGG		JS13	1.000
BKG-SS-03	16- jul-1992		CR	CHROMIUM		24.100		UGG	TWA		1.000
BKG-SS-03	16- jul - 1992		CU	COPPER		24.700		UGG	TWA	JS13	1.000
BKG-SS-03	•			DIBENZ [A,H] ANTHRACENE	1 T	0.033		UGG		LM27	1.000
BKG-SS-03	16-jul-1992		DBAHA			0.033		UGG		LM27	1.000
BKG-SS-03	16-jul-1992		DBZFUR			0.033		UGG		LM27	1.000
BKG-SS-03	16-jul-1992		DEP	DIETHYL PHTHALATE						LM27	1.000
BKG-SS-03	16-jul-1992		DMP	DIMETHYL PHTHALATE		0.130		UGG		LM27	1.000
BKG-SS-03	16- jul - 1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	TRG		
BKG-SS-03	16- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		FANT	FLUORANTHENE	LT	0.085	,	UGG	TRG		1.000
BKG-SS-03	16- jul - 1992	0.000	FE	IRON		11000.000		UGG	TWA	JS13	2.000
BKG-SS-03	16- jul - 1992	0.000	FLRENE	FLUORENE		0.033		UGG	TRG		1.000
BKG-SS-03	16- jul - 1992	0.000	HCBD	HEXACHLOROBUTAD I ENE		0.180		UGG	TRG		1.000
BKG-SS-03	16- jul - 1992	0.000	HG	MERCURY	LT	0.027		UGG	THN	HG9	1.000

# Soil Level 3 Data

				Level 3 Data			Flag				
				-	Val	lue	Code	Units	Lot	Method	Dilution
Site ID	Sample Date	Depth	Paramete	er.	va	tue	Loue	Unites	LUL	ne chou	Ditacton
			T CO DVD	INDENO [1,2,3-C,D] PYRENE	ΙT	n n33		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000				0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	ISOPHR	ISOPHORONE	LI	1870.000		UGG	TWA	J\$13	1.000
BKG-SS-03		0.000	K	POTASSIUM		8800.000		UGG	TWA	JS13	2.000
BKG-SS-03	16- jul - 1992		MG	MAGNESIUM				UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992		MN	MANGANESE		443.000		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992		NA	SODIUM		102.000		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul <b>-</b> 1992		NAP	NAPHTHALENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul <b>- 19</b> 92		NB	NITROBENZENE	LI	0.071		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992		NI	NICKEL		16.800		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		NNDNPA	N-NITROSO		0.071 0.038		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE	LI			UGG	ZXL	JD17	5.000
BKG-SS-03	16- jul - 1992		PB	LEAD		14.000		UGG	TRG	LM27	1.000
BKG-SS-03	16- jul - 1992	0.000	PCP	PENTACHLOROPHENOL		0.200			TRG	LM27	1.000
BKG-SS-03	16- jul <b>- 199</b> 2		PHANTR	PHENANTHRENE		0.033		UGG			1.000
BKG-SS-03	16- jul - 1992		PHENOL	PHENOL		0.110		UGG	TRG	LM27	
BKG-SS-03	16- jul - 1992		PYR	PYRENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-03	16-jul-1992	0.000	SB	ANTIMONY		41.300		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992	0.000	SE	SELENIUM	LT	0.250		UGG	ZSR	JD15	1.000
BKG-SS-03	16-jul-1992	0.000	TL	THALLIUM		42.300		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992	0.000	TPHC	TOTAL PETROLEUM	LT	10.000		UGG	UBK	00	1.000
BkG-SS-03	16- jul - 1992	0.000	٧	VANADIUM		19.500		UGG	TWA	JS13	1.000
BKG-SS-03	16- jul - 1992	0.000	ZN	ZINC		46.800		UGG	TWA	JS13	1.000
BKG-SS-04	16- jul - 1992	0.000	124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992	0.000	12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992	0.000	13DCLB	1,3-DICHLOROBENZENE		0.120		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992	0.000	14DCLB	1,4-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992	0.000	245TCP	2,4,5-TRICHLOROPHENOL		0.086		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992		246TCP	2,4,6-TRICHLOROPHENOL	LT	0.082		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992	0.000	24DCLP	2,4-DICHLOROPHENOL	LT	0.141		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992	0.000	24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992	0.000	24DNP	2,4-DINITROPHENOL	LT	0.700		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992		24DNT	2,4-DINITROTOLUENE	LT	0.370		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		26DNT	2,6-DINITROTOLUENE	LT	0.066		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992	0.000	2CLP	2-CHLOROPHENOL		0.110		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992	0.000	2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		2MNAP	2-METHYLNAPHTHALENE	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		2MP	2-METHYLPHENOL	LT	0.350		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		2NANIL	2-NITROANILINE	LT	0.079		UGG	TRG		1.000
BKG-SS-04	16- jul - 1992	0.000	2NP	2-NITROPHENOL	LT	0.069		UGG	TRG		1.000
BKG-SS-04	16- jul - 1992		33DCBD	3,3'-DICHLOROBENZIDINE	LI	3.400		UGG	TRG		1.000
BKG-SS-04	16- jul - 1992	0.000	3NANIL	3-NITROANILINE	L٦	0.950		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		46DNTC	4,6-DINITRO-2-METHYLPHEN	0 L1	0.167		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		4BRPPE	4-BROMOPHENYLPHENYL ETHE	R L1	r 0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		4CANIL	4-CHLOROANILINE	L1	r 1.600		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul-1992		4CL3C	4-CHLORO-3-CRESOL	L1	r 0.073		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		4CLPPE	4-CHLOROPHENYLPHENYL	L1	r 0.044		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		4MP	4-METHYLPHENOL		0.300		UGG	TRG	LM27	1.000
BKG-\$\$-04	16- jul - 1992		4NANIL			г 1.200		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992		4NP	4-NITROPHENOL		T 0.860		UGG	TRG	LM27	1.000
	16- jul - 1992		AG	SILVER		1.260		UGG	TWA		1.000
BKG-SS-04	16- jul - 1992		AL	ALUMINUM		6900.000		UGG	TWA		2.000
BKG-SS-04	-		ANAPNE	ACENAPHTHENE	1.	т 0.033		UGG	TRG		1.000
BKG-SS-04	16- jul - 1992		ANAPYL	ACENAPHTHYLENE		T 0.033		UGG	TRG		1.000
BKG-SS-04	16- jul - 1992					T 0.033		UGG	TRG		1.000
BKG-SS-04	16- jul - 1992		ANTRC	ANTHRACENE	L	6.120		UGG	ACB		1.000
BKG-SS-04	16- jul <i>-</i> 1992	0.000	AS	ARSENIC		0.140		Juu	ACD	0017	

Soil

				Level 5 Data			Flag				
Cita ID	Comple Date	Donth	Paramete	2	Val	ue	Code	Units	Lot	Method	Dilution
Site ID	Sample Date	Deptii	raiamete		• • • •	-					
BKG-SS-04	16- jul - 1992	0.000	B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992				LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		B2EHP			0.390		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		BA	BARIUM		109.000		UGG	TWA	JS13	1.000
BKG-\$\$-04	16- jul - 1992		BAANTR		LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		BAPYR		LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		BBFANT			0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992		BBZP		LT	0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992		BE	BERYLLIUM		0.910		UGG	TWA	JS13	1.000
BKG-SS-04	16- jul - 1992		BGHIPY			0.250		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992		BKFANT			0.033		UGG	TRG	LM27	1.000
	16- jul - 1992		CA	CALCIUM		94000.000		UGG	TWA	JS13	20.000
BKG-SS-04	16- jul - 1992		CARBAZ	9H-CARBAZOLE		0.170	R	UGG		LM27	1.000
BKG-SS-04	16-jul-1992 16-jul-1992		CARBAZ	CADMIUM		0.730		UGG		JS13	1.000
BKG-SS-04			CHRY	CHRYSENE.		0.220		UGG		LM27	1.000
BKG-SS-04	16-jul-1992			HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
BKG-SS-04	16-jul-1992		CL6BZ	HEXACHLOROCYCLOPENTADIENE				UGG		LM27	1.000
BKG-SS-04	16-jul-1992		CL6CP	HEXACHLOROETHANE		0.067		UGG		LM27	1.000
BKG-SS-04	16-jul-1992		CL6ET	COBALT		11.300		UGG	TWA	JS13	1.000
BKG-SS-04	16- jul -1992		CO CB	CHROMIUM		28.400		UGG	TWA	JS13	1.000
BKG-SS-04	16- jul - 1992		CR CU	COPPER		32.000		UGG		JS13	1.000
BKG-SS-04	16-jul-1992		DBAHA	DIBENZ [A,H] ANTHRACENE	ιT	0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992		DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
BKG-SS-04	16- jul -1992		DEP	DIETHYL PHTHALATE		0.190	•	UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992					0.130		UGG		LM27	1.000
BKG-SS-04	16- jul -1992		DMP	DI-N-BUTYL PHTHALATE		0.920		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		DNBP			0.260		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE		0.085		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		FANT	FLUORANTHENE	LI	8500.000		UGG	TWA	JS13	2.000
BKG-SS-04	16- jul - 1992		FE	IRON		0.033		UGG	TRG	LM27	1.000
BKG-SS-04	16-jul-1992		FLRENE	FLUORENE		0.180		UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		HCBD	HEXACHLOROBUTAD I ENE		0.027		UGG	THN	HG9	1.000
BKG-SS-04	16- jul - 1992		HG	MERCURY				UGG		LM27	1.000
BKG-SS-04	16- jul - 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		ISOPHR	ISOPHORONE	LI	0.033		UGG		JS13	1.000
BKG-SS-04	16- jul - 1992		K	POTASSIUM		1830.000		UGG		JS13	2.000
BKG-SS-04	16- jul - 1992		MG	MAGNESIUM		6900.000		UGG		JS13	1.000
BKG-SS-04	16- jul - 1992		MN	MANGANESE		408.000 44.800		UGG		JS13	1.000
BKG-SS-04	16- jul - 1992		NA ·	SODIUM				UGG		LM27	1.000
BKG-SS-04	16- jul - 1992		NAP	NAPHTHALENE		0.033				LM27	1.000
BKG-SS-04	16- jul - 1992		NB	NITROBENZENE	LI	0.071		ugg ugg		JS13	1.000
BKG-SS-04	16- jul - 1992		NI	NICKEL	. +	12.900		UGG		LM27	1.000
BKG-SS-04	16- jul - 1992		NNDNPA	N-NITROSO		0.071			TRG	LM27	1.000
BKG-SS-04	16- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE	LI	0.038		UGG		`JD17	10.000
BKG-SS-04	16- jul - 1992		PB	LEAD		73.000		UGG			1.000
BKG-SS-04	16- jul - 1992		PCP	PENTACHLOROPHENOL		0.200		UGG		LM27	1.000
BKG-SS-04	16- jul - 1992		PHANTR	PHENANTHRENE		0.033		UGG		LM27	
BKG-SS-04	16- jul - 1992		PHENOL	PHENOL		0.110		UGG		LM27	1.000
BKG-SS-04	16-jul-1992		PYR	PYRENE		0.033		UGG		LM27	1.000
BKG-SS-04	16- jul - 1992		SB	ANTIMONY		41.300		UGG	TWA	JS13	1.000
BKG-SS-04	16- jul - 1992		SE	SELENIUM	LT	0.250		UGG	ZSR		1.000
BKG-SS-04	16- jul - 1992		TL	THALLIUM		37.700		UGG	TWA	JS13	1.000
BKG-SS-04	16- jul - 1992		TPHC	TOTAL PETROLEUM		92.800		UGG	UBK		1.000
BKG-SS-04	16- jul - 1992		V	VANADIUM		15.400		UGG	TWA	JS13	1.000
BKG-SS-04	16- jul - 1992	0.000	ZN	ZINC		147.000		UGG	TWA	JS13	1.000

							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot.	Method	Dilution
0/	07 1001	0.500	A.C	SILVER	ŁT	100.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500 0.500	AG AL	ALUMINUM		7600.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500	AS	ARSENIC	LT	720.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500	AS	ARSENIC		4.600		UGG	WDZ	JD19	1.000
SB-24	03-oct-1991		BA	BARIUM		190.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500 0.500	BE	BERYLLIUM		100.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500	CA	CALCIUM	-	150000.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991 03-oct-1991	0.500	CD	CADMIUM	LT	100.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500	CO	COBALT	LT	130.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500	CR	CHROMIUM	LT	130.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500	CU	COPPER	LT	190.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991		CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
SB-24	03-oct-1991		FE	IRON		12000.000		UGG	SEA	JS13	200.000
SB-24 SB-24	03-oct-1991		HG	MERCURY	LT	0.027	L	UGG	QUJ	HG9	1.000
SB-24 SB-24	03-oct-1991		K	POTASSIUM	LT	24000.000		UGG	SEA	JS13	200.000
SB-24 SB-24	03-oct-1991		MG	MAGNESIUM	LT	7400.000		UGG	SEA	JS13	200.000
SB-24 SB-24	03-oct-1991		MN	MANGANESE	LT	400.000		UGG	SEA	J\$13	200.000
SB-24 SB-24	03-oct-1991		MO	MOLYBDENUM	LT	200.000		UGG	SEA	JS13	200.000
SB-24 SB-24	03-oct-1991		NA	SODIUM	LT	9000.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991		NI	NICKEL	LT	310.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991		PB	LEAD	LT	590.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500	PB	LEAD		34.000		UGG	WKI	JD17	4.000
SB-24	03-oct-1991		SB	ANTIMONY	LT	8300.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991		. SE	SELENIUM	LT	1500.000		UGG	SEA	JS13	200.060
SB-24	03-oct-1991		SE	SELENIUM	LT	0.250		UGG	WQQ	JD15	1.000
SB-24	03-oct-1991		TI	TITANIUM	LT	2300.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991		TL	THALLIUM	LT	2900.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991		TPHC	TOTAL PETROLEUM		34.200		UGG	RTD	00	1.000
SB-24	03-oct-1991		٧	VANADIUM	LT	350.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	0.500	ZN	ZINC		390.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	111TCE	1,1,1-TRICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	112TCE	1,1,2-TRICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	11DCE	1,1-DICHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	11DCLE	1,1-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	123CPR	1,2,3-TRICHLOROPROPANE		0.003		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	12DCLB	1,2-DICHLOROBENZENE		0.002		UGG	SFB	LM28	1.000 1.000
SB-24	03-oct-1991			1,2-DICHLOROBENZENE		0.033		UGG	SHA	LM27 LM28	1.000
SB-24	03-oct-1991	1.000		1,2-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000		1,2-DICHLOROPROPANE		0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	13DCLB	1,3-DICHLOROBENZENE		0.002		UGG	SHA		1.000
SB-24	03-oct-1991		13DCLB	1,3-DICHLOROBENZENE		0.120		UGG		LM28	1.000
SB-24	03-oct-1991	1.000	14DCLB	1,4-DICHLOROBENZENE		0.002		UGG	SHA		1.000
SB-24	03-oct-1991		14DCLB	1,4-DICHLOROBENZENE		0.033		UGG	SHA		1.000
SB-24	03-oct-1991		245TCP			0.086		UGG	SHA		1.000
SB-24	03-oct-1991		246TCP	2,4,6-TRICHLOROPHENOL		0.082			SHA		1.000
SB-24	03-oct-1991		24DCLP	2,4-DICHLOROPHENOL		0.140		UGG UGG	SHA		1.000
SB-24	03-oct-1991		24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG	SHA		1.000
SB-24	03-oct-1991		24DNP	2,4-DINITROPHENOL		0.700		UGG	SHA		1.000
SB-24	03-oct-1991		24DNT	2,4-DINITROTOLUENE		0.370		UGG	SHA		1.000
SB-24	03-oct-1991		26DNT	2,6-DINITROTOLUENE		r 0.066		UGG	SFB		1.000
SB-24	03-oct-199		2CLEVE			T 0.011		UGG	SHA		1.000
SB-24	03-oct-199		2CLP	2-CHLOROPHENOL		T 0.110		UGG	SHA		1.000
SB-24	03-oct-199		2CNAP	2-CHLORONAPHTHALENE		т 0.140 т 0.033		UGG	SHA		1.000
SB-24	03-oct-199	1 1.000	2MNAP	2-METHYLNAPHTHALENE	L	1 0.055			0,,,,		

ı	eve	 Data	

				20731 2 7 2 7		Flag				
Site ID	Sample Date	Depth	Paramete	er .	Value	Code	Units	Lot	Method	Dilution
cp_2/	03-oct-1991	1.000	2MP	2-METHYLPHENOL	LT 0.350		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000			LT 0.079		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000	2NP		LT 0.069		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000		3,3'-DICHLOROBENZIDINE	LT 3.400		UGG	SHA	LM27	1.000
SB-24		1.000		•	LT 0.950		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000		4,6-DINITRO-2-METHYLPHENO	LT 0.170		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000		4-CHLOROANILINE	LT 1.600		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	4CL3C	4-CHLORO-3-CRESOL	LT 0.073		UGG		LM27	1.000
SB-24	03-oct-1991	1.000	4CLPPE	4-CHLOROPHENYLPHENYL	LT 0.044		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	4MP	4-METHYLPHENOL	LT 0.300		UGG		LM27	1.000
SB-24	03-oct-1991	1.000	4NANIL	4-NITROANILINE	LT 1.200		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	4NP	4-NITROPHENOL	LT 0.860		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	ACET	ACETONE	LT 0.046		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	ACROLN	ACROLEIN	LT 0.005		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	ACRYLO	ACRYLONITRILE	LT 0.006		UGG	SFB	LM28	1.000 200.000
SB-24	03-oct-1991	1.000	AG	SILVER	LT 100.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	AL	ALUMINUM	5000.000		UGG	SEA	JS13 LM27	1.000
SB-24	03-oct-1991	1.000	ANAPNE	ACENAPHTHENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	ANAPYL	ACENAPHTHYLENE	LT 0.033		UGG			1.000
SB-24	03-oct-1991	1.000	ANTRC	ANTHRACENE	LT 0.033		UGG	SHA	LM27	200.000
SB-24	03-oct-1991	1.000	AS	ARSENIC	LT 720.000		UGG	SEA	JS13 JD19	1.000
SB-24	03-oct-1991	1.000	AS	ARSENIC	4.020		UGG	WDZ Sha	LM27	1.000
SB-24	03-oct-1991	1.000	B2CEXM	BIS (2-CHLOROETHOXY)	LT 0.033		UGG UGG		LM27	1.000
SB-24	03-oct-1991	1.000		BIS (2-CHLOROISOPROPYL)	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	B2CLEE	BIS (2-CHLOROETHYL) ETHER			UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	B2EHP	BIS (2-ETHYLHEXYL)	LT 0.390 LT 190.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	BA	BARIUM	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	BAANTR	BENZO [A] ANTHRACENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	BAPYR	BENZO [A] PYRENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	BBFANT	BENZO [B] FLUORANTHENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	BBZP	BUTYLBENZYL PHTHALATE	LT 100.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991		BE	BERYLLIUM	LT 0.250		UGG	SHA	LM27	1.000
SB-24	03-oct-1991		BGHIPY	BENZO [G,H,I] PERYLENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991		BKFANT	BENZO [K] FLUORANTHENE	LT 0.004		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	BRDCLM	BROMODICHLOROMETHANE CIS-1,3-DICHLOROPROPYLENE			UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	C13DCP	ACETIC ACID, VINYL ESTER	17 0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991		· C2AVE	CHLOROETHENE	LT 0.002		UGG		LM28	1.000
SB-24	03-oct-1991		C2H5CL		LT 0.017		UGG	SFB	LM28	1.000
SB-24	03-oct-1991		C6H6	BENZENE	LT 0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991		CA	CALCIUM	130000.000		UGG	SEA	JS13	400.000
SB-24	03-oct-1991 03-oct-1991		CARBAZ	9H-CARBAZOLE	ND 3.400	R	UGG	SHA	LM27	1.000
SB-24	03-oct-1991		CCL2F2		LT 0.004		UGG	SFB	LM28	1.000
SB-24	03-0ct-1991 03-oct-1991		CCL3F	TRICHLOROFLUOROMETHANE	LT 0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991		CCL4	CARBON TETRACHLORIDE	LT 0.003		UGG	SFB	LM28	1.000
SB-24	03-oct-1991		CD	CADMIUM	LT 100.000		UGG	SEA	JS13	200.000
SB-24 SB-24	03-oct-1991		CDCBU	CIS-1,4-DICHLORO-2-BUTENE			UGG	SFB	LM28	1.000
\$8-24 \$8-24	03-oct-1991		CH2BR2	METHYLENE BROMIDE	LT 0.002		UGG	SFB	LM28	1.000
SB-24 SB-24	03-oct-1991		CH2CL2	METHYLENE CHLORIDE	LT 0.040		UGG	SFB	LM28	1.000
SB-24 SB-24	03-oct-1991		CH3BR	BROMOMETHANE	LT 0.017		UGG		LM28	1.000
SB-24 SB-24	03-oct-1991		CH3CL	CHLOROMETHANE	LT 0.004		UGG	SFB	LM28	1.000
SB-24 SB-24	03-oct-1991		CHBR3	BROMOFORM	LT 0.009		UGG	SFB	LM28	1.000
SB-24 SB-24	03-oct-1991		CHCL3	CHLOROFORM	LT 0.002		UGG	SFB	LM28	1.000
SB-24 SB-24	03-oct-1991		CHRY	CHRYSENE	LT 0.220		UGG	SHA	LM27	1.000
30 '24	05 000 1771	,,,,,,								

Level 3 Data										
				-		Flag				
Site ID	Sample Date	Depth	Paramete	er	Value	Code	Units	Lot	Method	Dilution
		4 000	CL6BZ	HEXACHLOROBENZENE	LT 0.046		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000		HEXACHLOROCYCLOPENTADIENE			UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000 1.000		HEXACHLOROETHANE	LT 0.067		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000		CHLOROBENZENE	LT 0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991		CO	COBALT	LT 130.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000 1.000	CR	CHROMIUM	LT 130.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	CS2	CARBON DISULFIDE	LT 0.019		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	CU	COPPER	LT 190.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	CYN	CYANIDE	LT 0.920		UGG	VAS	KY01	1.000
SB-24	03-oct-1991 03-oct-1991	1.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000		DIBROMOCHLOROMETHANE	LT 0.005		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000		DIBENZOFURAN	LT 0.033		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000	DEP	DIETHYL PHTHALATE	LT 0.190		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000	DMP	DIMETHYL PHTHALATE	LT 0.130		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000	DNBP	DI-N-BUTYL PHTHALATE	2.600		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000	DNOP	DI-N-OCTYL PHTHALATE	LT 0.260		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000	ETC6H5	ETHYLBENZENE	LT 0.002		UGG	SFB	LM28	1.000
SB-24 SB-24	03-oct-1991	1.000	ETMACR	ETHYL METHACRYLATE	LT 0.011		UGG	SFB	LM28	1.000
SB-24 SB-24	03-oct-1991	1.000	FANT	FLUORANTHENE	LT 0.085		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000	FE	IRON	8400.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	FLRENE	FLUORENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24 SB-24	03-oct-1991	1.000	HCBD	HEXACHLOROBUTAD I ENE	LT 0.180		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	HG	MERCURY	LT 0.027	L	UGG	QUJ	HG9	1.000
SB-24	03-oct-1991	1.000	1 CDPYR	INDENO [1,2,3-C,D] PYRENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	ISOPHR	ISOPHORONE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991	1.000	K	POTASSIUM	LT 24000.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	MEC6H5	TOLUENE	LT 0.002		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	MEK	METHYLETHYL KETONE	LT 0.005		UGG		LM28	1.000
SB-24	03-oct-1991	1.000	MG	MAGNESIUM	9800.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	MIBK	METHYLISOBUTYL KETONE	LT 0.005		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	MN	MANGANESE	LT 400.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	MNBK	METHYL-N-BUTYL KETONE	LT 0.022		UGG	SFB	LM28	1.000
SB-24	03-oct-1991	1.000	· MO	MOLYBDENUM	LT 200.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991	1.000	NA	SODIUM	LT 9000.000		UGG	SEA	JS13	200.000
SB-24	03-oct-1991		NAP	NAPHTHALENE	LT 0.033		UGG	SHA	LM27	1.000
SB-24	03-oct-1991		NB	NITROBENZENE	LT 0.071		UGG	SHA		1.000
SB-24	03-oct-1991		NI	NICKEL	LT 310.000		UGG	SEA		200.000
SB-24	03-oct-1991		NNDNPA	N-NITROSO	LT 0.071				LM27	1.000
SB-24	03-oct-1991		NNDPA	N-NITROSO DIPHENYLAMINE	LT 0.038		UGG		LM27	1.000
SB-24	03-oct-1991		PB	LEAD	LT 590.000		UGG	SEA		200.000
SB-24	03-oct-1991	1.000	₽B	LEAD	5.550		UGG	WKI		1.000
SB-24	03-oct-1991	1.000	PCP	PENTACHLOROPHENOL	LT 0.200		UGG	SHA		1.000
SB-24	03-oct-1991	1.000	PHANTR	PHENANTHRENE	LT 0.033		UGG	SHA		1
SB-24	03-oct-1991	1.000	PHENOL	PHENOL	LT 0.110		UGG	SHA		1.000
SB-24	03-oct-1991	1.000	PYR	PYRENE	LT 0.033		UGG	SHA		1.000
SB-24	03-oct-1991	1.000	SB	ANTIMONY	LT 8300.000		UGG	SEA		200.000
SB-24	03-oct-1991		SE	SELENIUM	LT 1500.000		UGG	SEA		200.000
SB-24	03-oct-1991	1.000	SE	SELENIUM	LT 0.250		UGG	Maa		1.000 1.000
SB-24	03-oct-1991	1.000	STYR	STYRENE	LT 0.002		UGG	SFB		
\$B-24	03-oct-1991	1.000	T12DCE		N LT 0.013		UGG	SFB		1.000
SB-24	03-oct-1991	1.000	T13DCP				UGG	SFB		1.000
SB-24	03-oct-1991		TCLEA	1,1,2,2-TETRACHLOROETHAN			UGG	SFB		1.000
SB-24	03-oct-1991	1 1.000	TCLEE	TETRACHLOROETHYLENE	LT 0.002		UGG		LM28	1.000
SB-24	03-oct-1991	1 1.000	TDCBU	TRANS-1,4-DICHLORO-2-BUT			UGG	SFB		1.000
SB-24	03-oct-199	1 1.000	TI	TITANIUM	LT 2300.000		UGG	SEA	JS13	200.000

#### Soil

Level 3 Data												
								Flag				
	Site ID	Sample Date	Depth	Paramete	er	Val	.ue	Code	Units	Lot	Method	Dilution
	SB-24	03-oct-1991	1.000	TL	THALLIUM	LT	2900.000		UGG	SEA	JS13	200.000
	SB-24	03-oct-1991	1.000	TPHC	TOTAL PETROLEUM		20.500		UGG	RTD	00	1.000
	SB-24	03-oct-1991	1.000	TRCLE	TRICHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
	SB-24	03-oct-1991	1.000	V	VANADIUM	LT	350.000		UGG	SEA	JS13	200.000
	SB-24	03-oct-1991	1.000	XYLEN	*XYLENES	LT	0.002		UGG	SFB	LM28	1.000
	SB-24	03-oct-1991	1.000	ZN	ZINC	LT	390.000		UGG	SEA	JS13	200.000
	SB-25	03-oct-1991	0.500	AG	SILVER	LT	52.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	AL	ALUMI NUM		8600.000		UGG	SEA	JS13	100.000
	·SB-25	03-oct-1991	0.500	AS		LT	360.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	AS	ARSENIC		3.930		UGG	WDZ	JD19	1.000
	SB-25	03-oct-1991	0.500	BA	BARIUM		110.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	BE		LT	50.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	CA	CALCIUM		63000.000		UGG	SEA	JS13	200.000
		03-oct-1991	0.500	CD		1 T	52.000		UGG	SEA		100.000
	SB-25	03-0ct-1991	0.500	CO			66.000		UGG	SEA	JS13	100.000
	SB-25						67.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	CR			94.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	CU					UGG		KY01	1.000
	SB-25	03-oct-1991	0.500	CYN		LI	0.920				-	100.000
	SB-25	03-oct-1991	0.500	FE	IRON		12000.000		UGG	SEA	JS13	1.000
	SB-25	03-oct-1991	0.500	HG ·	MERCURY		0.038	L	UGG	QUJ	HG9	
	SB-25	03-oct-1991	0.500	K		LT	12000.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	MG	MAGNESIUM		8200.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	·MN	MANGANESE		380.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	MO			100.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	NA			4500.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	NI			150.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	PB	LEAD	LT	300.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	PB	LEAD		42.000		UGG	WKI	JD17	10.000
	SB-25	03-oct-1991	0.500	SB	ANTIMONY		4100.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	SE	SELENIUM	LT	740.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	SE			0.250		UGG	WQQ	JD15	1.000
	SB-25	03-oct-1991	0.500	TI	TITANIUM	ŁΤ	1200.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	TL ·	THALLIUM	LT	1500.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	TPHC	TOTAL PETROLEUM		608.000		UGG	RTD	00	2.000
	SB-25	03-oct-1991	0.500	٧	VANADIUM	LT	180.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	0.500	ZN	ZINC	LT	190.000		UGG	SEA	JS13	100.000
	SB-25	03-oct-1991	3.500	111TCE	1,1,1-TRICHLOROETHANE	LT	0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991	3.500		1,1,2-TRICHLOROETHANE	LT	0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		11DCE	1,1-DICHLOROETHYLENE	LT	0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991			1,1-DICHLOROETHANE		0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991			1,2,3-TRICHLOROPROPANE		0.003		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991			1,2-DICHLOROBENZENE		0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991			1,2-DICHLOROETHANE		0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		12DCLP	1,2-DICHLOROPROPANE		0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		13DCLB	1,3-DICHLOROBENZENE		0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		14DCLB	1,4-DICHLOROBENZENE		0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		2CLEVE	· · · · · · · · · · · · · · · · · · ·		0.002		UGG	SFD	LM28	1.000
				ACET	ACETONE		0.046		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991							UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		ACROLN	ACROLEIN		0.005			SFD	LM28	1.000
	SB-25	03-oct-1991		ACRYLO	ACRYLONITRILE		0.006		UGG			
	SB-25	03-oct-1991		BRDCLM	BROMODICHLOROMETHANE		0.004		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		C13DCP	CIS-1,3-DICHLOROPROPYLENE				UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		C2AVE	•		0.007		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991		C2H3CL	CHLOROETHENE		0.002		UGG	SFD	LM28	1.000
	SB-25	03-oct-1991	3.500	C2H5CL	CHLOROETHANE	LT	0.017		UGG	SFD	LM28	1.000

Level	3	Data

SB-25 03-oct-1991 3.500 CCL2F2 DICHLORODIFLUOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CCL3F TRICHLORO-LUOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CCL4 CARBON TETRACHLORIDE LT 0.003 UGG SB-25 03-oct-1991 3.500 CDCBU CL5-1, 4-DICHLORO-2-BUTENE LT 0.005 UGG SB-25 03-oct-1991 3.500 CH2BR2 METHYLENE BROMIDE LT 0.002 UGG SB-25 03-oct-1991 3.500 CH2BR2 METHYLENE BROMIDE LT 0.002 UGG SB-25 03-oct-1991 3.500 CH3CL METHYLENE CHLORIDE LT 0.004 UGG SB-25 03-oct-1991 3.500 CH3CL METHYLENE CHLORIDE LT 0.004 UGG SB-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.004 UGG SB-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CLC4B CHLOROMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CLC6B CHLOROMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CC2 CARBON DISULFIDE LT 0.002 UGG SB-25 03-oct-1991 3.500 CC2 CARBON DISULFIDE LT 0.002 UGG SB-25 03-oct-1991 3.500 CC2 CARBON DISULFIDE LT 0.019 UGG SB-25 03-oct-1991 3.500 ETC6B5 ETHYL METHACRYLATE LT 0.001 UGG SB-25 03-oct-1991 3.500 MEC6B5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6B5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6B5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6B5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6B5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6B5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MIBK METHYLENBUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TOLEA TISSEN-1,2-DICHLOROFETHANE LT 0.002 UGG SB-2	SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II	LM28 LM28 LM28 LM28 LM28 LM28 LM28 LM28	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SB-25	SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II SFD II	LM28 LM28 LM28 LM28 LM28 LM28 LM28 LM28	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
\$8-25 03-oct-1991 3.500 CCL2F2 DICHLOROMETHANE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CCL2F2 DICHLOROMETHANE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CCL4 CABON TETRACHLORIDE LT 0.003 UGG \$\$\$-25 03-oct-1991 3.500 CDCBU CIS-1,4-DICHLORO-2-BUTEN LT 0.015 UGG \$\$\$-25 03-oct-1991 3.500 CDCBU CIS-1,4-DICHLORO-2-BUTEN LT 0.015 UGG \$\$\$-25 03-oct-1991 3.500 CH2GZ METHYLENE BROMIDE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CH2GZ METHYLENE BROMIDE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CH2GZ METHYLENE CHLORIDE LT 0.004 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.004 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.004 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.004 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.004 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.004 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 CH3GR METHYLENE CHLORIDE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 DBRCM DIBROMOCHLOROMETHANE LT 0.005 UGG \$\$\$-25 03-oct-1991 3.500 ETTAGR ETHYL METHACRYLATE LT 0.001 UGG \$\$\$-25 03-oct-1991 3.500 MECAN ETHYLENE CHLOROMETHANE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 MECAN ETHYLENE CHLOROMETHANE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 MISK METHYLINGUMYL KETONE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 MISK METHYLINGUMYL KETONE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 MISK METHYLINGUMYL KETONE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 TCLEE TETACHLOROFTHYLENE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 TCLEE TETACHLOROFTHYLENE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 TCLEE TETACHLOROFTHYLENE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 TCLEE TETACHLOROFTHYLENE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 TCLEE TETACHLOROFTHYLENE LT 0.002 UGG \$\$\$-25 03-oct-1991 3.500 TCLEE TETACHLOROFTHYLENE LT 0.002 UGG \$\$\$-25 03-o	SFD I SFD I SFD I SFD I SFD I SFD I SFD I SFD I	LM28 LM28 LM28 LM28 LM28 LM28 LM28 LM28	1.000 1.000 1.000 1.000 1.000 1.000
SB-25 03-oct-1991 3.500 CCL2F2 DICHLORODIFLUOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CCL2F2 DICHLORODIFLUOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CCL3F TRICHLORODIFLUOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CCL4 CARBON TETRACHLORIDE LT 0.003 UGG SB-25 03-oct-1991 3.500 CCL2F2 METHYLENE BROMIDE LT 0.005 UGG SB-25 03-oct-1991 3.500 CH2BR2 METHYLENE BROMIDE LT 0.002 UGG SB-25 03-oct-1991 3.500 CH3CL METHYLENE BROMOMETHANE LT 0.007 UGG SB-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.007 UGG SB-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CCL6H5 CHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CCCH6H5 CHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CCCH6H5 CHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CCCH6H5 CHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLEMEZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLEMEZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLENEZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLENEZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLENEZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MIBK METHYLENBUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMENZENE LT 0.003 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROMENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500	SFD I SFD I SFD I SFD I SFD I SFD I SFD I SFD I	LM28 LM28 LM28 LM28 LM28 LM28 LM28 LM28	1.000 1.000 1.000 1.000 1.000 1.000
SB-25   03-oct-1991   3.500   CCL2F2   DICHLORODETHANE   LT 0.004   UGG   SB-25   03-oct-1991   3.500   CCL4   CARBON TETRACHLORIDE   LT 0.003   UGG   SB-25   03-oct-1991   3.500   CCL4   CARBON TETRACHLORIDE   LT 0.005   UGG   SB-25   03-oct-1991   3.500   CH2BR2   METHYLENE BROMIDE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   CH2CL2   METHYLENE BROMIDE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   CH3GR   BROMOMETHANE   LT 0.017   UGG   SB-25   03-oct-1991   3.500   CH3GR   BROMOMETHANE   LT 0.017   UGG   SB-25   03-oct-1991   3.500   CH3GR   BROMOMETHANE   LT 0.004   UGG   SB-25   03-oct-1991   3.500   CH3GR   BROMOFORM   LT 0.009   UGG   SB-25   03-oct-1991   3.500   CHC613   CHLOROFORM   LT 0.009   UGG   SB-25   03-oct-1991   3.500   CCCH5   CHLOROFORM   LT 0.002   UGG   SB-25   03-oct-1991   3.500   CS2   CARBON DISULFIDE   LT 0.019   UGG   SB-25   03-oct-1991   3.500   CS2   CARBON DISULFIDE   LT 0.019   UGG   SB-25   03-oct-1991   3.500   BRCH   SB-25   03-oct-1991   3.500   ETC6H5   ETHYLEMECRE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   ETC6H5   ETHYLEMECRE   LT 0.001   UGG   SB-25   03-oct-1991   3.500   ETC6H5   ETHYLEMECRE   LT 0.001   UGG   SB-25   03-oct-1991   3.500   MEC6H5   TOLURE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   MEC6H5   TOLURE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   MEK   METHYLENERNE   LT 0.005   UGG   SB-25   03-oct-1991   3.500   MRK   METHYLENERNE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   MRK   METHYLENERNE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   TOLURE   TRANS-1,2-DICHLOROPETHANE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   TOLURE   TRANS-1,2-DICHLOROPETHANE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   TOLURE   TRANS-1,2-DICHLOROPETHANE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   TOLURE   TRANS-1,2-DICHLOROPETHANE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   TOLURE   TRANS-1,2-DICHLOROPETHANE   LT 0.002   UGG   SB-25   03-oct-1991   3.500   TOLURE   TRANS-1,2-DICHLOROPETHANE   LT 0.002   UGG   SB-25   03-oct-1991	SFD I SFD I SFD I SFD I SFD I SFD I SFD I	LM28 LM28 LM28 LM28 LM28 LM28 LM28	1.000 1.000 1.000 1.000 1.000
SB-25	SFD I SFD I SFD I SFD I SFD I SFD I	LM28 LM28 LM28 LM28 LM28 LM28	1.000 1.000 1.000 1.000
SB-25 03-oct-1991 3.500 CDGBU CIS-1,4-DICHLORO-2-BUTENE LT 0.003 UGG SB-25 03-oct-1991 3.500 CDGBU CIS-1,4-DICHLORO-2-BUTENE LT 0.002 UGG SB-25 03-oct-1991 3.500 CH2CL2 METHYLENE BROMIDE LT 0.002 UGG SB-25 03-oct-1991 3.500 CH2CL2 METHYLENE BROMIDE LT 0.004 UGG SB-25 03-oct-1991 3.500 CH3GR BROMOMETHANE LT 0.017 UGG SB-25 03-oct-1991 3.500 CH3GR BROMOMETHANE LT 0.004 UGG SB-25 03-oct-1991 3.500 CH3GR BROMOMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CH3GR BROMOMETHANE LT 0.009 UGG SB-25 03-oct-1991 3.500 CH3GR BROMOMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CHCL3 CHLOROFORM LT 0.002 UGG SB-25 03-oct-1991 3.500 CHCL3 CHLOROFORM LT 0.002 UGG SB-25 03-oct-1991 3.500 CS2 CARBON DISULFIDE LT 0.019 UGG SB-25 03-oct-1991 3.500 BBRCIM DIBROMOCHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 BBRCIM DIBROMOCHLOROMETHANE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETMACR ETHYL METHACRYLATE LT 0.0012 UGG SB-25 03-oct-1991 3.500 MECM THYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MECM ETHYL METHACRYLATE LT 0.0012 UGG SB-25 03-oct-1991 3.500 MECM METHYLETHYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLLSOBUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLLSOBUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLLSOBUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 MIBK METHYLN-NBUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 T120CE TRANS-1,2-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 T120CE TRANS-1,2-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA T1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE T 0.003 UGG SB-25 03-oct-1991 3.500 TCLEE TRANS-1,2-DICHLOROBE	SFD I SFD I SFD I SFD I SFD I	LM28 LM28 LM28 LM28	1.000 1.000 1.000 1.000
\$8-25 03-oct-1991 3.500 CDCBU CIS-1,4-DICHLORO-2-BUTENE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 CH2BR2 METHYLENE BROMIDE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 CH2CL2 METHYLENE BROMIDE LT 0.0040 UGG \$ \$8-25 03-oct-1991 3.500 CH3BR BROMOMETHANE LT 0.017 UGG \$ \$8-25 03-oct-1991 3.500 CH3BR BROMOMETHANE LT 0.004 UGG \$ \$8-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.004 UGG \$ \$8-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.009 UGG \$ \$8-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 CC645 CHLOROMETHANE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 CS2 CARBON DISULFIDE LT 0.019 UGG \$ \$8-25 03-oct-1991 3.500 BRCLM DISROMOCHLOROMETHANE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 ETC645 ETHYLBENZENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 ETC645 ETHYLBENZENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 MEC645 TOLUENE LT 0.001 UGG \$ \$8-25 03-oct-1991 3.500 MEC645 TOLUENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 MIBK METHYL-NEUTYL KETONE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 STYR STYRENE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,1,2,2-TERACHLOROETHYLEN LT 0.013 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,1,2,2-TERACHLOROETHYLEN LT 0.013 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,1,2,2-TERACHLOROETHYLEN LT 0.013 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,1,2,2-TERACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,1,2,2-TERACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,1,2,2-TERACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TOLEB TRANS-1,3-DICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,2,2-TERACHLOROETHYLENE LT 0.003 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,1,2,2-TERACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,1,2,2-TERACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TOLEA 1,2,4-TRICHLOROBENZENE LT 0.033 UGG \$ \$8-25 03-oct-1991 4.000 120CLB 1,4-DICHLOROBENZENE LT 0.033 UGG \$ \$8-25 03-oct-1991 4.000 120CLB 1,4-DICHLOROBENZENE LT	SFD   SFD   SFD   SFD	LM28 LM28 LM28	1.000 1.000 1.000
SB-25 03-oct-1991 3.500 CH2CL2 METHYLENE BROMIDE LT 0.002 UGG SB-25 03-oct-1991 3.500 CH2CL2 METHYLENE CHLORIDE LT 0.040 UGG SB-25 03-oct-1991 3.500 CH2CL2 METHYLENE CHLORIDE LT 0.040 UGG SB-25 03-oct-1991 3.500 CH3GR BROMOMETHANE LT 0.004 UGG SB-25 03-oct-1991 3.500 CH3GR BROMOMETHANE LT 0.004 UGG SB-25 03-oct-1991 3.500 CH3GR BROMOFORM LT 0.009 UGG SB-25 03-oct-1991 3.500 CH3GR CHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CLC6H5 CHLOROMETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 CLC6H5 CHLOROMENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.001 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLISOBUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLISOBUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TI2DCE TRANS-1,2-DICHLOROFTHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TI2DCE TRANS-1,2-DICHLOROFTHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TI2DCE TRANS-1,2-DICHLOROFTHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TI2DCE TRANS-1,2-DICHLOROFTHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TI2DCE TRANS-1,2-DICHLOROFTHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TICLE 1FTRACHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TICLE TETRACHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TICLE TETRACHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TICLE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TICLE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TICLE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TICLE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TICLE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TICLE TETRACHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 120CLB 1,2-DICHLOROB	SFD   SFD   SFD	LM28 LM28	1.000 1.000
\$8-25 03-oct-1991 3.500 CH3CL METHYLENE CHLORIDE LT 0.040 UGG \$ \$8-25 03-oct-1991 3.500 CH3BR BROMOMETHANE LT 0.007 UGG \$ \$8-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.009 UGG \$ \$8-25 03-oct-1991 3.500 CHBR3 BROMOFORM LT 0.009 UGG \$ \$8-25 03-oct-1991 3.500 CHCL3 CHLOROBENZENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 CCC6H5 CHLOROBENZENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 CS2 CARBON DISULFIDE LT 0.019 UGG \$ \$8-25 03-oct-1991 3.500 DBRCLM DIBROMOCHLOROMETHANE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 MECCH5 ETHYLBENZENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 MECCH5 TOLUENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 MECCH5 TOLUENE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 MECCH5 TOLUENE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 MIBK METHYLENBUTYL KETONE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 MIBK METHYLENBUTYL KETONE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 STYR STYRENE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROPETHYLEN LT 0.013 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.013 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TRCLE TETRACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TRCLE TETRACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TETRACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROBENZENE LT 0.003 UGG \$ \$8-25 03-oct-1991 3.500 TRCLE TETRACHLOROETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TRCLE TETRACHLOROBENZENE LT 0.003 UGG \$ \$8-25 03-oct-1991 4.000 12DCLB 1,2-1-DICHLOROBENZENE LT 0.033 UGG \$ \$8-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG \$ \$8-25 03-oct-1	SFD   SFD   SFD	LM28	1.000
\$8-25 03-oct-1991 3.500 CH3RR BROMOMETHANE LT 0.017 UGG \$8.8-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.004 UGG \$8.8-25 03-oct-1991 3.500 CHBR3 BROMOFORM LT 0.009 UGG \$8.8-25 03-oct-1991 3.500 CHCL3 CHLOROFORM LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 CLC6H5 CHLOROFORM LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 CLC6H5 CHLOROBENZENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 DBRCLM DIBROMOCHLOROMETHANE LT 0.005 UGG \$8.8-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.005 UGG \$8.8-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 MECCH5 TOLUENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 MECCH5 TOLUENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 MECCH5 TOLUENE LT 0.005 UGG \$8.8-25 03-oct-1991 3.500 MIBK METHYLISOBUTYL KETONE LT 0.005 UGG \$8.8-25 03-oct-1991 3.500 MIBK METHYLISOBUTYL KETONE LT 0.005 UGG \$8.8-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 T120CE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG \$8.8-25 03-oct-1991 3.500 T120CE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG \$8.8-25 03-oct-1991 3.500 T120CE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG \$8.8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TCLEE TRICHLOROETHYLENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TCLEE TRICHLOROETHYLENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TCLEE TRICHLOROETHYLENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLOROETHYLENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLOROETHYLENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLOROETHYLENE LT 0.002 UGG \$8.8-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLOROBENZENE LT 0.003 UGG \$8.8-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLOROBENZENE LT 0.003 UGG \$8.8-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG \$8.8-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE	SFD		
\$8-25 03-oct-1991 3.500 CH3CL CHLOROMETHANE LT 0.004 UGG \$ \$8-25 03-oct-1991 3.500 CHBR3 BROMOFORM LT 0.009 UGG \$ \$8-25 03-oct-1991 3.500 CHCL3 CHLOROFORM LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 CLC6H5 CHLOROFORM LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 CLC6H5 CHLOROFORM LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 DBRCLM DIBROMOCHLOROMETHANE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.0011 UGG \$ \$8-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 MEC METHYLETHYL KETONE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.005 UGG \$ \$8-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG \$ \$8-25 03-oct-1991 3.500 T12DCE TRANS-1,3-DICHLOROPROPENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPETHYLENE LT 0.002 UGG \$ \$8-25 03-oct-1991 3.500 TCLEA TRICHLOROPENEZENE LT 0.033 UGG \$ \$8-25 03-oct-1991 4.000 120CLB 1,2-1-OICHLOROPENEZENE LT 0.033 UGG \$ \$8-25 03-oct-1991 4.000 120CLB 1,2-1-OICHLOROPENEZENE LT 0.033 UGG \$ \$8-25 03-oct-1991 4.000 140CLB 1,3-DICHLOROPENEZENE LT 0.033 UGG \$ \$8-25 03-oct-1991 4.000 140CLB 1,4-DICHLOROPENEZENE LT 0.033 UGG \$ \$8-25 03-oct-1991 4.000 140CLB 1,4-DICHLOROPENE	SFD	LM28	
SB-25 03-oct-1991 3.500 CHBR3 BROMOFORM LT 0.009 UGG SB-25 03-oct-1991 3.500 CHCL3 CHLOROBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 CS2 CARBON DISULFIDE LT 0.0119 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC MECH5 TOLUENE LT 0.0011 UGG SB-25 03-oct-1991 3.500 MEC METHYLETHYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.005 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROPETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROPETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROPETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROPETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROPETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROP-2-BUTE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROP-2-BUTE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROP-2-BUTE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROP-2-BUTE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROP-2-BUTE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROPENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROPENZENE LT 0.002 UGG SB-25 03-oct-1991 4.000 120CLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 120CLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 120CLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 120CLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 120CLB 1,2-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.00			1.000
SB-25 03-oct-1991 3.500 CHCL3 CHLOROFORM LT 0.002 UGG SB-25 03-oct-1991 3.500 CLC6H5 CHLOROBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 CS2 CARBON DISULFIDE LT 0.019 UGG SB-25 03-oct-1991 3.500 DBRCLM DIBROMOCHLOROMETHANE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 ETHYLBENZENE LT 0.0011 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 4.000 12ACCB 1,2-A-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12ACCB 1,2-A-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12ACCB 1,2-DICHLOROBENZENE LT 0	SFD	LM28	1.000
SB-25 03-oct-1991 3.500 CLC6H5 CHLOROBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 CS2 CARBON DISULFIDE LT 0.019 UGG SB-25 03-oct-1991 3.500 DBRCLM DIBROMOCHLOROMETHANE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 ETMACR ETHYL METHACRYLATE LT 0.011 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLISOBUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLISOBUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLISOBUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,3-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 124TCB 1,2-1-TICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 124TCB 1,2-1-TICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 124TCB 1,2-1-TICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 1		LM28	1.000
SB-25 03-oct-1991 3.500 CS2 CARBON DISULFIDE LT 0.019 UGG SB-25 03-oct-1991 3.500 DBRCLM DIBROMOCHLOROMETHANE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.0011 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T13DCP TRANS-1,3-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,3-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 4.000 124CCB 1,2-4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 124CCB 1,2-4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 124CCB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,3-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4	SFD	LM28	1.000
SB-25 03-oct-1991 3.500 DBRCLM DIBROMOCHLOROMETHANE LT 0.005 UGG SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T13DCP TRANS-1,3-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.	SFD	LM28	1.000
SB-25 03-oct-1991 3.500 ETC6H5 ETHYLBENZENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.0011 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MNBK METHYL-N-BUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T13DCP TRANS-1,3-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLEN LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLOROP-2-BUTE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.003 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB	SFD	LM28	1.000
SB-25 03-oct-1991 3.500 ETMACR ETHYL METHACRYLATE LT 0.011 UGG SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MECH METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,3-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,3-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 0			1.000
SB-25 03-oct-1991 3.500 MEC6H5 TOLUENE LT 0.002 UGG SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYL-N-BUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T13DCP TRANS-1,3-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.003 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,3-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,3-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-			1.000
SB-25 03-oct-1991 3.500 MEK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MIBK METHYLETHYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MNBK METHYL-N-BUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T13DCP TRANS-1,3-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 120CLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 120CLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.0086 UGG		LM28	1.000
SB-25 03-oct-1991 3.500 MIBK METHYLLISOBUTYL KETONE LT 0.005 UGG SB-25 03-oct-1991 3.500 MNBK METHYL-N-BUTYL KETONE LT 0.002 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T13DCP TRANS-1,3-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.120 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.0086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE		LM28	1.000
SB-25 03-oct-1991 3.500 MNBK METHYL-N-BUTYL KETONE LT 0.022 UGG SB-25 03-oct-1991 3.500 STYR STYRENE LT 0.002 UGG SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROPETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T13DCP TRANS-1,3-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.120 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.034 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.036 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.086 U		LM28	1.000
\$8-25		LM28	1.000
SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROETHYLEN LT 0.013 UGG SB-25 03-oct-1991 3.500 T13DCP TRANS-1,3-DICHLOROETHANE LT 0.0013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.120 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086 UGG		LM28	1.000
SB-25 03-oct-1991 3.500 T12DCE TRANS-1,2-DICHLOROPROPENE LT 0.013 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROPROPENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.120 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086		LM28	1.000
SB-25 03-oct-1991 3.500 TCLEA 1,1,2,2-TETRACHLOROETHANE LT 0.002 UGG SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.120 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086 UGG			1.000
SB-25 03-oct-1991 3.500 TCLEE TETRACHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.120 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.120 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086		LM28	
SB-25 03-oct-1991 3.500 TDCBU TRANS-1,4-DICHLORO-2-BUTE LT 0.016 UGG SB-25 03-oct-1991 3.500 TRCLE TRICHLOROETHYLENE LT 0.002 UGG SB-25 03-oct-1991 3.500 XYLEN *XYLENES LT 0.002 UGG SB-25 03-oct-1991 4.000 124TCB 1,2,4-TRICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 12DCLB 1,2-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 13DCLB 1,3-DICHLOROBENZENE LT 0.120 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086		LM28	1.000
SB-25       03-oct-1991       3.500       TDCBU       TRANS-1,4-DICHLORO-2-BUTE LT       0.016       UGG       SB-25       03-oct-1991       3.500       TRCLE       TRICHLOROETHYLENE       LT       0.002       UGG       SB-25       03-oct-1991       3.500       XYLEN       *XYLENES       LT       0.002       UGG       UGG       SB-25       UGG       SB-25       UGG       UGG       UGG       SB-25       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG		LM28	1.000
SB-25       03-oct-1991       3.500       TRCLE       TRICHLOROETHYLENE       LT 0.002       UGG       SB-25       UGG       SB-25       UGG       SB-25       UGG       SB-25       UGG       UGG       SB-25       UGG       SB-25       UGG       UGG       UGG       SB-25       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG		LM28	1.000
SB-25       03-oct-1991       3.500       XYLEN       *XYLENES       LT 0.002       UGG       SB-25       UGG       SB-25       UGG       SB-25       UGG       SB-25       UGG       UGG       SB-25       UGG       UGG       UGG       SB-25       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG       UGG		LM28	1.000
SB-25       03-oct-1991       4.000       124TCB       1,2,4-TRICHLOROBENZENE       LT       0.033       UGG       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000 <td></td> <td>LM28</td> <td>1.000</td>		LM28	1.000
SB-25       03-oct-1991       4.000       12DCLB       1,2-DICHLOROBENZENE       LT       0.033       UGG         SB-25       03-oct-1991       4.000       13DCLB       1,3-DICHLOROBENZENE       LT       0.120       UGG         SB-25       03-oct-1991       4.000       14DCLB       1,4-DICHLOROBENZENE       LT       0.033       UGG         SB-25       03-oct-1991       4.000       245TCP       2,4,5-TRICHLOROPHENOL       LT       0.086       UGG	SHA		1.000
SB-25       03-oct-1991       4.000       13DCLB       1,3-DICHLOROBENZENE       LT       0.120       UGG         SB-25       03-oct-1991       4.000       14DCLB       1,4-DICHLOROBENZENE       LT       0.033       UGG         SB-25       03-oct-1991       4.000       245TCP       2,4,5-TRICHLOROPHENOL       LT       0.086       UGG		LM27	1.000
SB-25 03-oct-1991 4.000 14DCLB 1,4-DICHLOROBENZENE LT 0.033 UGG SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086 UGG		LM27	1.000
SB-25 03-oct-1991 4.000 245TCP 2,4,5-TRICHLOROPHENOL LT 0.086 UGG		LM27	1.000
1100		LM27	1.000
CR-75 [13-0CT-199] 4.000 240(CP 2,4,0"1KTCHECKOFHEROE ET 0100		LM27	1.000
SB-25 03-oct-1991 4.000 24DCLP 2,4-DICHLOROPHENOL LT 0.140 UGG	SHA	LM27	1.000
	SHA	LM27	1.000
SP-25 03-001-1091 4.000 24DNP 2.4-DINITROPHENOL LT 0.700 UGG		LM27	1.000
SB-25 03-oct-1991 4.000 24DNT 2,4-DINITROTOLUENE LT 0.370 UGG	SHA	LM27	1.000
SB-25 03-oct-1991 4.000 26DNT 2,6-DINITROTOLUENE LT 0.066 UGG	SHA	LM27	1.000
1 0 110 1IGG	SHA	LM27	1.000
38-25 05 0Ct 1771 4.000 LIGG	SHA	LM27	1.000
35 25 35 35 177	SHA	LM27	1.000
38-23 03 000 1771 4.000 2.111111 2.1111111 2.11111111111111	SHA	LM27	1.000
35 25 03 000 1771 11000	SHA	LM27	1.000
3B-23 03 0Ct 1771 4.000 LING	SHA	LM27	1.000
SB-25 03-001-1991 4-000 28F 2-81-10-10-10-10-10-10-10-10-10-10-10-10-10	SHA	LM27	1.000
38 25 05 05 1771 1100 THE THE THE THE THE THE THE THE THE THE		LM27	1.000
SB-25 U3-0CT-1991 4.000 SWANTE S-NTROWNTETTE 2 4.700	SHA	LM27	1.000
11GC	SHA	LM27	1.000
SB-25 U3-0CT-1991 4.000 40RFFE 4 BROWNIETT THE LT 1 4.00 HIGG	SHA	LM27	1.000
SB-25 U3-007-1991 4.000 4CARTE 4 CHERON TOPPOOL 17 0.077	SHA	LM27	1.000
SB-25 03-001-1991 4.000 40230 4 01000 5 01000 1 1 0 0//		LM27	1.000
SB-25 U3-0CT-1991 4.000 4CTPFE 4-CHEROPHICE LITTLE 17 7.00 HIGG		LM27	1.000
SB-25 03-001-1991 4.000 4mp 4-1011111111111111111111111111111111111	SHA	LM27	1.000
SB-25 U3-0CT-1991 4.000 4MANTE 4-MITMONITETAL		LM27	1.000
SB-25 03-oct-1991 4.000 4NP 4-NITROPHENOL LT 0.860 UGG	CHA	LILL	1.000

# Soil

Level 3 Data											
							Flag	_			
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
	•	•									
SB-25	03-oct-1991	4.000	AG	SILVER	LT	52.000		UGG		JS13	100.000
SB-25	03-oct-1991	4.000	AL	ALUMINUM		8900.000		UGG		JS13	100.000
SB-25	03-oct-1991	4.000	ANAPNE	ACENAPHTHENE	LT	0.033		UGG		LM27	1.000
SB-25	03-oct-1991	4.000	ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG		LM27	1.000
SB-25	03-oct-1991		ANTRC	ANTHRACENE	LT	0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	AS	ARSENIC	LT	360.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991		AS	ARSENIC		4.020		UGG	WDZ	JD19	1.000
SB-25	03-oct-1991	4.000	B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000		BIS (2-CHLOROISOPROPYL)	LT	0.033		UGG	SHA	LM27	1.000
SB-25 SB-25	03-oct-1991	4.000		BIS (2-CHLOROETHYL) ETHER				UGG	SHA	LM27	1.000
	03-oct-1991	4.000	B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	SHA	LM27	1.000
SB-25		4.000	BA	BARIUM		96.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991	4.000	BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991			BENZO [A] PYRENE		0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	BAPYR	BENZO [B] FLUORANTHENE		0.033		UGG		LM27	1.000
SB-25	03-oct-1991	4.000	BBFANT	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
SB-25	03-oct-1991	4.000	BBZP			50.000		UGG	SEA	JS13	100.000
SB-25	**	4.000	BE	BERYLLIUM		0.250		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	BGHIPY	BENZO [G,H,I] PERYLENE		0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991		BKFANT	BENZO [K] FLUORANTHENE	LI	47000.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991		CA	CALCIUM	NO	3.400	R	UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	CARBAZ	9H-CARBAZOLE			ĸ	UGG	SEA	J\$13	100.000
SB-25	03-oct-1991	4.000	CD	CADMIUM		52.000		UGG		LM27	1.000
SB-25	03-oct-1991		CHRY	CHRYSENE		0.220	*		SHA	LM27	1.000
SB-25	03-oct-1991	4.000	CL6BZ	HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
SB-25	03-oct-1991	4.000	CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	SHA		1.000
SB-25	03-oct-1991	4.000	CL6ET	HEXACHLOROETHANE		0.067		UGG	SHA		
\$B-25	03-oct-1991	4.000	CO	COBALT		66.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991	4.000	CR	CHROMIUM		67.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991	4.000	CU	COPPER		94.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991	4.000	CYN	CYANIDE		0.920		UGG		KY01	1.000
SB-25	03-oct-1991	4.000	DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	DBZFUR	DIBENZOFURAN		0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	DEP	DIETHYL PHTHALATE		0.190		UGG	SHA	LM27	1.000
SB-25	03-oct-1991		DMP	DIMETHYL PHTHALATE	LT	0.130		ŲGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	DNBP	DI-N-BUTYL PHTHALATE		1.900		UGG	SHA	LM27	1.000
SB-25	03-oct-1991		DNOP	DI-N-CCTYL PHTHALATE	LT	0.260		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	FANT	FLUORANTHENE	LT	0.085		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	FE	IRON		12000.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991		FLRENE	FLUORENE	LT	0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991		HCBD	HEXACHLOROBUTADIENE	LT	0.180		UGG	SHA	LM27	1.000
SB-25	03-oct-1991		HG	MERCURY	LT	0.027	Ł	UGG	QUJ	HG9	1.000
SB-25	03-oct-1991		ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991		ISOPHR	ISOPHORONE		0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991		K	POTASSIUM		12000.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991		MG	MAGNESIUM		9900.000	•	UGG	SEA	JS13	100.000
SB-25	03-oct-1991		MN	MANGANESE		330.000		UGG	SEA	JS13	100.000
	03-oct-1991		MO	MOLYBDENUM	LT	100.000		UGG	SEA	JS13	100.000
\$B-25	03-0ct-1991		NA	SODIUM		4500.000		UGG	SEA	JS13	100.000
SB-25			NAP	NAPHTHALENE		0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991			NITROBENZENE		0.071		UGG		LM27	1.000
SB-25	03-oct-1991		NB	NICKEL		150.000		UGG		JS13	100.000
SB-25	03-oct-1991		NI			0.071		UGG		LM27	1.000
\$B-25	03-oct-1991		NNDNPA	N-NITROSO		0.038		UGG	SHA	LM27	1.000
SB-25	03-oct-1991		NNDPA	N-NITROSO DIPHENYLAMINE		300.000		UGG		JS13	100.000
SB-25	03-oct-1991		PB	LEAD	Li	15.000		UGG		JD17	4.000
SB-25	03-oct-1991	4.000	PB	LEAD		15.000		500	*****		

	-	_	
Leve	 •	112	га

				20101 2 3414			Flag				
Site ID	Sample Date	Depth	Paramet	er	Val	ue	Code	Units	Lot	Method	Dilution
SB-25	03-oct-1991	4.000	PCP	PENTACHLOROPHENOL	LT	0.200		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	PHANTR	PHENANTHRENE	LT	0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	PHENOL	PHENOL	LT	0.110		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	PYR	PYRENE	LT	0.033		UGG	SHA	LM27	1.000
SB-25	03-oct-1991	4.000	SB	ANTIMONY	LT	4100.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991	4.000	SE	SELENIUM	LT	740.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991	4.000	SE	SELENIUM	LT	0.250		UGG	WQQ	JD15	1.000
SB-25	03-oct-1991	4.000	TI	TITANIUM	LT	1200.000		UGG	SEA	JS13	100.000
\$B-25	03-oct-1991	4.000	TL	THALLIUM	LT	1500.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991	4.000	TPHC	TOTAL PETROLEUM		25.400		UGG	RTD	00	1.000
SB-25	03-oct-1991	4.000	٧	VANADIUM	LT	180.000		UGG	SEA	JS13	100.000
SB-25	03-oct-1991	4.000	ZN	ZINC	LT	190.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	AG	SILVER	LT	52.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	AL	ALUMINUM		9600.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	AS	ARSENIC	LT	360.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	AS	ARSENIC		7.190		UGG	WDZ	JD19	1.000
SB-26	07-oct-1991	0.500	BA	BARIUM		140.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	BE	BERYLLIUM	LT	50.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	CA	CALCIUM		44000.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	CD	CADMIUM	LT	52.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	co	COBALT	LT	66.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	CR	CHROMIUM		67.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	cu	COPPER	LT	94.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
SB-26	07-oct-1991		FE	IRON		14000.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	HG	MERCURY		0.034	L	UGG	QUJ	HG9	1.000
SB-26	07-oct-1991	0.500	K	POTASSIUM	LT	12000.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	MG	MAGNESIUM		7800.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	0.500	MN	MANGANESE		450.000		UGG	SEA	JS13	100.000 100.000
SB-26	07-oct-1991	0.500	MO	MOLYBDENUM		100.000		UGG	SEA	JS13	100.000
\$B-26	07-oct-1991	0.500	NA	SODIUM		4500.000		UGG		JS13	100.000
SB-26	07-oct-1991	0.500	NI	NICKEL		150.000		UGG	SEA	JS13 JS13	100.000
SB-26	07-oct-1991	0.500	PB	LEAD	LT	300.000		UGG	SEA	JD17	100.000
SB-26	07-oct-1991		PB	LEAD		290.000		UGG	WKI	JS13	100.000
SB-26	07-oct-1991	0.500	SB	ANTIMONY		4100.000		UGG	SEA SEA		100.000
SB-26	07-oct-1991		SE	SELENIUM		740.000		UGG	WQQ	JD15	1.000
SB-26	07-oct-1991		SE	SELENIUM		0.250		UGG	SEA	JS13	100.000
SB-26	07-oct-1991		· TI	TITANIUM		1200.000		UGG	SEA	JS13	100.000
SB-26	07-oct <b>-19</b> 91		· TL	THALLIUM	LI	1500.000		UGG - UGG		00	20.000
SB-26	07-oct-1991		TPHC	TOTAL PETROLEUM		6110.000		UGG	SEA		100.000
SB-26	07-oct-1991		٧	VANADIUM	Li	180.000		UGG	SEA		100.000
SB-26	07-oct-1991		ZN	ZINC		410.000 0.002		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		111TCE	·		0.002		· UGG	SFD	LM28	1.000
SB-26	07-oct-1991		112TCE			0.002	•	UGG	SFD		1.000
SB-26	07-oct-1991		11DCE	1,1-DICHLOROETHYLENE		0.002		UGG	SFD		1.000
SB-26	07-oct-1991		11DCLE			0.003		UGG	SFD		1.000
SB-26	07-oct-1991		123CPR			0.033		UGG	SHJ		1.000
SB-26	07-oct-1991		124TCB			0.002		UGG	SFD		1.000
SB-26	07-oct-1991		12DCLB	•		0.033	•	UGG	SHJ		1.000
SB-26	07-oct-1991		12DCLB			0.002		UGG	SFD		1.000
SB-26	07-oct-1991		12DCLE 12DCLP			0.002		UGG	SFD		1.000
SB-26	07-oct-1991					0.002		UGG	SFD		1.000
SB-26	07-oct-1991		13DCLB 13DCLB			0.120		UGG	SHJ		1.000
SB-26	07-oct-1991		14DCLE	·		0.002		UGG	SFD		1.000
sB-26	07-oct-1991	1 3.400	IADELE	1,4 DIGHEORODERZEHE		· 3					

					Level 3 Data							
					_	Valu	I I P	Flag Code	Units	Lot	Method	Dilution
	Site ID	Sample Date	Depth	Paramete	r	Vall	ue	boac	011110			-,,-,,,
	SB-26	07-oct-1991	3.400	14DCLB	1,4-DICHLOROBENZENE	LT (	0.033		UGG			1.000
	SB-26	07-oct-1991	3.400	245TCP	2,4,5-TRICHLOROPHENOL	LT (	0.086		UGG			1.000
	SB-26	07-oct-1991	3.400	246TCP	2,4,6-TRICHLOROPHENOL	LT I	0.082		UGG			1.000
	SB-26		3.400	24DCLP	2,4-DICHLOROPHENOL	LT I	0.140		UGG			1.000
	SB-26	07-oct-1991	3.400	24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG			1.000
	SB-26	07-oct-1991	3.400	24DNP	2,4-DINITROPHENOL		0.700		UGG			1.000
	SB-26	07-oct-1991	3.400	24DNT	2,4-DINITROTOLUENE		0.370		UGG			1.000
	SB-26	07-oct-1991	3.400		2,6-DINITROTOLUENE		0.066		UGG		LM27	1.000
	SB-26	07-oct-1991	3.400	2CLEVE	2-CHLOROETHYLVINYL ETHER		0.011		UGG		LM28	1.000
	SB-26	07-oct-1991	3.400	2CLP	2-CHLOROPHENOL		0.110		UGG		LM27	1.000
	SB-26	07-oct-1991	3.400	2CNAP	2-CHLORONAPHTHALENE		0.140		UGG		LM27	1.000
	SB-26	07-oct-1991	3.400	2MNAP	2-METHYLNAPHTHALENE		0.055		UGG		LM27	1.000 1.000
	SB-26	07-oct-1991	3.400	2MP	2-METHYLPHENOL		0.350		UGG		LM27 LM27	1.000
	SB-26	07-oct-1991			2-NITROANILINE		0.079		UGG UGG		LM27	1.000
	SB-26	07-oct-1991		2NP	2-NITROPHENOL		0.069		UGG		LM27	1.000
	SB-26	07-oct-1991			3,3'-DICHLOROBENZIDINE		3.400		UGG		LM27	1.000
	SB-26		3.400		3-NITROANILINE		0.950		UGG		LM27	1.000
	SB-26	07-oct-1991	3.400		4,6-DINITRO-2-METHYLPHENO				UGG		LM27	1.000
	SB-26	07-oct-1991	3.400		4-BROMOPHENYLPHENYL ETHER				UGG		LM27	1.000
	SB-26	07-oct-1991	3.400		4-CHLOROANILINE		1.600 0.073		UGG		LM27	1.000
	SB-26	07-oct-1991	3.400	4CL3C	4-CHLORO-3-CRESOL		0.044		UGG		LM27	1.000
	SB-26	07-oct-1991	3.400		4-CHLOROPHENYLPHENYL		0.300		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991	3.400	4MP	4-METHYLPHENOL		1.200		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991	3.400	4NANIL	4-NITROANILINE		0.860		UGG	SHJ	LM27	1.000
	SB-26	**	3.400	4NP	4-NITROPHENOL		0.046		UGG	SFD	LM28	1.000
	SB-26	**	3.400	ACET	ACETONE		0.005		UGG		LM28	1.000
	SB-26	07-oct-1991	3.400	ACROLN	ACROLEIN ACRYLONITRILE		0.006		UGG	SFD	LM28	1.000
	SB-26	07-oct-1991	3.400	ACRYLO AG	SILVER		52.000		UGG	SEA	JS13	100.000
	SB-26	07-oct-1991 07-oct-1991		AL	ALUMINUM		12000.000		UGG	SEA	JS13	100.000
	SB-26	07-001-1991			ACENAPHTHENE	LT	0.033		UGG	SHJ	LM27	1.000
	SB-26	07-001-1991 07-oct-1991	3.400	ANAPYL		LT	0.033		UGG	SHJ	LM27	1.000
	\$B-26 \$B-26	07-oct-1991	3.400	ANTRC	ANTHRACENE	LT	0.033		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		AS	ARSENIC	LT	360.000		UGG	SEA	JS13	100.000
	SB-26	07-oct-1991	3.400	AS	ARSENIC		5.140		UGG	WDZ	JD19	1.000
	SB-26	07-oct-1991	3.400	B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		B2CIPE	BIS (2-CHLOROISOPROPYL)	LT	0.033		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		<b>B2CLEE</b>	BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		ВА	BARIUM		160.000		UGG	SEA	JS13	100.000
	SB-26	07-oct-1991		BAANTR	BENZO [A] ANTHRACENE	LT	0.033		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		BAPYR	BENZO [A] PYRENE		0.044		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		BBFANT	BENZO [B] FLUORANTHENE		0.076		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991		BE	BERYLLIUM		50.000		UGG	SEA	JS13	100.000
	SB-26	07-oct-1991	3.400	BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG	SHJ	LM27	1.000
•	SB-26	07-oct-1991		BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG	SHJ	LM27	1.000
	SB-26	07-oct-1991	3.400	BRDCLM	BROMOD I CHLOROMETHANE		0.004		UGG	SFD	LM28	1.000 1.000
	SB-26	07-oct-1991	3.400	C13DCP	CIS-1,3-DICHLOROPROPYLEN				UGG	SFD	LM28	1.000
	SB-26	07-oct-1991		C2AVE	ACETIC ACID, VINYL ESTER				UGG	SFD	LM28	1.000
	SB-26	07-oct-1991		C2H3CL			0.002		UGG	SFD	LM28 LM28	1.000
	SB-26	07-oct-1991		C2H5CL	CHLOROETHANE		0.017		UGG	SFD	LM28 LM28	1.000
	\$B-26	07-oct-1991		C6H6	BENZENE	LT	0.002		UGG	SFD	JS13	100.000
	SB-26	07-oct-1991		CA	CALCIUM		45000.000		UGG	SEA	1513 LM27	1.000
	SB-26	07-oct-1991	3.400	CARBAZ	9H-CARBAZOLE	ND	3.400	R	UGG	SHJ	CUC!	

		•		Level 3 Data							
							Flag				5.11
Site ID	Sample Date	Depth	Paramete	er ·	Valu	ue	Code	Units	Lot	Method	Dilution
CD 34	07-oct-1991	3 400	CCL2F2	DICHLORODIFLUOROMETHANE	LT (	0.004		UGG	SFD	LM28	1.000
SB-26 SB-26	07-0ct-1991	3.400	CCL3F	TRICHLOROFLUOROMETHANE	LT (	0.002		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		CCL4	CARBON TETRACHLORIDE	LT (	0.003		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		CD		LT !	52.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991		CDCBU	CIS-1,4-DICHLORO-2-BUTENE	LT (	0.015		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		CH2BR2	METHYLENE BROMIDE		0.002		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		CH2CL2	METHYLENE CHLORIDE	1	0.075		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		CH3BR	BROMOMETHANE	LT	0.017		UGG	SFD	LM28	1.000
SB-26	07-oct-1991	3.400	CH3CL	CHLOROMETHANE	LT	0.004		UGG	SFD	LM28	1.000
SB-26	07-oct-1991	3.400	CHBR3	BROMOFORM	LT	0.009		UGG	SFD	LM28	1.000
SB-26	07-oct-1991	3.400	CHCL3	CHLOROFORM	LT	0.002		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		CHRY	CHRYSENE	LT	0.220		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		CL6CP	HEXACHLOROCYCLOPENTADIENE	LT	1.700		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		CL6ET	HEXACHLOROETHANE		0.067		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		CLC6H5	CHLOROBENZENE	LT	0.002		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		СО	COBALT	LT	66.000		UGG		JS13	100.000
SB-26	07-oct-1991		CR	CHROMIUM		67.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991		CS2	CARBON DISULFIDE	LT	0.019		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		CU	COPPER	LT	94.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991		CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
SB-26	07-oct-1991		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033	•	UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		DBRCLM	DIBROMOCHLOROMETHANE	LT	0.005		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		DBZFUR	DÍBENZOFURAN	LT	0.033		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		DEP	DIETHYL PHTHALATE	LT	0.190		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		DMP	DIMETHYL PHTHALATE		0.130		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		DNBP	DI-N-BUTYL PHTHALATE		1.500		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		DNOP	DI-N-OCTYL, PHTHALATE		0.260		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991		ETC6H5	ETHYLBENZENE		0.002		UGG	SFD	LM28	1.000
SB-26	07-oct-1991	3.400	ETMACR	ETHYL METHACRYLATE		0.011		UGG	SFD	LM28	1.000
SB-26	07-oct-1991		FANT	FLUORANTHENE	LT	0.085		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991	3.400	FE	IRON		21000.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	3.400	FLRENE	FLUORENE		0.033		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991	3.400	HCBD :	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	SHJ	LM27	1.000
SB-26	07-oct-1991	3.400	HG	MERCURY		0.151	L .	UGG	QUJ	HG9	1.000
\$B-26	07-oct-1991	3.400	ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	SHJ	LM27	1.000
SB-26	07-oct-1991	3.400	ISOPHR	ISOPHORONE	LT	0.033		UGG	SHJ	LM27	1.000
\$8-26	07-oct-1991	3.400	K	POTASSIUM		12000.000		UGG	SEA	JS13	100.000
SB-26	07-oct-1991	3.400	MEC6H5	TOLUENE		0.002		UGG		LM28	1.000
SB-26	07-oct-1991	3.400	MEK	METHYLETHYL KETONE	LT	0.005		UGG	SFD	LM28	1.000
SB-26	07-oct-1991	3.400	MG	MAGNESIUM		7300.000		UGG	SEA		100.000
SB-26	07-oct-1991	3.400	MIBK	METHYLISOBUTYL KETONE	LT	0.005		UGG	SFD	LM28	1.000
SB-26	07-oct-1991	3.400	MN	MANGANESE		660.000		UGG	SEA		100.000
SB-26	07-oct-1991	3.400	MNBK	METHYL-N-BUTYL KETONE		0.022		UGG	SFD	LM28	1.000
SB-26	07-oct-1991	3.400	MO	MOLYBDENUM		100.000		UGG	SEA		100.000
SB-26	07-oct-1991	3.400	NA	SODIUM	LT	4500.000		UGG	SEA		100.000 1.000
SB-26	07-oct-1991		NAP	NAPHTHALENE		0.053		UGG	SHJ		1.000
SB-26	07-oct-1991		NB	NITROBENZENE		0.071		UGG	SHJ		100.000
SB-26	07-oct-1991		NI	NICKEL		150.000		UGG	SEA		1.000
\$B-26	07-oct-1991		NNDNPA			0.071		UGG	SHJ		
SB-26	07-oct-1991	3.400	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	SHJ		1.000
SB-26	07-oct-1991		PB	LEAD		360.000		UGG	SEA		100.000
\$8-26	07-oct-1991		PB	LEAD		120.000		UGG	WKI		10.000
SB-26	07-oct-1991		PCP	PENTACHLOROPHENOL	LT	0.200		UGG	SHJ		1.000
SB-26	07-oct-199		PHANTR	PHENANTHRENE		0.050		UGG	SHJ	LM27	1.000

Soil

				Level 3 Data			Flag				
Cito ID	Sample Date	Denth	Paramete	r	Val	ue	Code	Units	Lot	Method	Dilution
Site ID	Sample Bate	Береп		•				1100	CII I	LM27	1.000
SB-26	07-oct-1991	3.400		PHENOL		0.110		UGG		LM27	1.000
SB-26	07-oct-1991	3.400		PYRENE		0.045		UGG UGG		JS13	100.000
SB-26	07-oct-1991	3.400		ANTIMONY		4100.000		UGG		JS13	100.000
SB-26	07-oct-1991	3.400		SELENIUM		740.000		UGG		JD15	1.000
SB-26	07-oct-1991	3.400	SE	SELENIUM		0.250				LM28	1.000
SB-26	07-oct-1991	3.400		STYRENE		0.002		UGG		LM28	1.000
SB-26	07-oct-1991	3.400	T12DCE	TRANS-1,2-DICHLOROETHYLEN	LT	0.013		UGG		LM28	1.000
SB-26	07-oct-1991	3.400	T13DCP	TRANS-1,3-DICHLOROPROPENE	LT	0.013		UGG		LM28	1.000
SB-26	07-oct-1991	3.400		1,1,2,2-TETRACHLOROETHANE				UGG			1.000
SB-26	07-oct-1991	3.400	TCLEE	TETRACHLOROETHYLENE		0.002		UGG		LM28	1.000
SB-26	07-oct-1991	3.400	TDCBU	TRANS-1,4-DICHLORO-2-BUTE				UGG		LM28	100.000
SB-26	07-oct-1991	3.400	ΤI	TITANIUM		1200.000	-	UGG	SEA	JS13 JS13	100.000
SB-26	07-oct-1991	3.400	TL	THALLIUM	LT	1500.000		UGG	SEA	00	10.000
SB-26	07-oct-1991	3.400	TPHC	TOTAL PETROLEUM		1450.000		UGG	RTO		1.000
SB-26	07-oct-1991	3.400	TRCLE	TRICHLOROETHYLENE		0.002		UGG	SFD	LM28	100.000
SB-26	07-oct-1991	3.400	V	VANADIUM		180.000		UGG	SEA	JS13	1.000
SB-26	07-oct-1991	3.400	XYLEN	*XYLENES	LT	0.002		UGG	SFD	LM28 JS13	100.000
SB-26	07-oct-1991	3.400	ZN	ZINC		780.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	AG	SILVER	LT	52.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	AL	ALUMINUM		12000.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	AS	ARSENIC	LT	360.000		UGG	SEA	JD19	1.000
SB-27	07-oct-1991	0.500	AS	ARSENIC		11.600		UGG	WDZ		100.000
SB-27	07-oct-1991	0.500	BA	BARIUM		150.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	BE	BERYLLIUM	LT	50.000		UGG	SEA	JS13	200.000
SB-27	07-oct-1991	0.500	CA	CALCIUM		62000.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	CD	CADMIUM		52.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	CO	COBALT	LŦ	66.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	CR	CHROMIUM		150.000		UGG	SEA	JS13 JS13	100.000
SB-27	07-oct-1991	0.500	CU	COPPER		94.000		UGG	SEA	XY01	1.000
SB-27	07-oct-1991	0.500	CYN	CYANIDE	LT	0.920		UGG	VAS SEA	JS13	100.000
SB-27	07-oct-1991	0.500	FE	IRON		20000.000		UGG	QUJ	HG9	1.000
SB-27	07-oct-1991	0.500	HG	MERCURY		0.036	L	UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	K	POTASSIUM	LT	12000.000		UGG UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	MG	MAGNESIUM		12000.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		MN	MANGANESE		500.000		UGG		JS13	100.000
SB-27	07-oct-1991		MO	MOLYBDENUM		100.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		NA	SODIUM		4500.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		NI	NICKEL	LI	150.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	0.500	PB	LEAD		430.000		UGG	WKI	JD17	50.000
SB-27	07-oct-1991		PB	LEAD		320.000				JS13	100.000
SB-27	07-oct-1991	0.500	SB	ANTIMONY		4100.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		SE	SELENIUM		740.000		UGG UGG	WQQ	JD15	1.000
SB-27	07-oct-1991	0.500	SE	SELENIUM		0.250			SEA	JS13	100.000
SB-27	07-oct-1991	0.500	TI	TITANIUM		1200.000		UGG		J\$13	100.000
SB-27	07-oct-1991	0.500	TL	THALLIUM	LI	1500.000		UGG	SEA RTO		20.000
SB-27	07-oct-1991		TPHC	TOTAL PETROLEUM		924.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		V	VANADIUM	ŁI	180.000		UGG	SEA	JS13	100.000
\$B-27	07-oct-1991		ZN	ZINC		1100.000		UGG UGG	SEA	LM28	1.000
SB-27	07-oct-1991	3.000	111TCE	1,1,1-TRICHLOROETHANE		0.002			SFD	LM28	1.000
SB-27	07-oct-1991		112TCE	1,1,2-TRICHLOROETHANE		0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		11DCE	1,1-DICHLOROETHYLENE		7 0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		11DCLE	1,1-DICHLOROETHANE		T 0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		123CPR	1,2,3-TRICHLOROPROPANE		7 0.003		UGG		LM27	1.000
SB-27	07-oct-1991		124TCB	1,2,4-TRICHLOROBENZENE		T 0.033		UGG	SHJ		1.000
SB-27	07-oct-1991	3.000	12DCLB	1,2-DICHLOROBENZENE	L	т 0.002		UGG	SFD	LNZO	1.000

				Level 3 Data							
				20101 0 2 2 2 2			Flag				
Site ID	Sample Date	Depth	Paramete	r	Value		Code	Units		Method	Dilution
SB-27	07-oct-1991	3.000	12DCLB		LT O.			UGG		LM27	1.000
SB-27	07-oct-1991	3.000		I'T DIGHTOHOUTH	LT O.			UGG		LM28	1.000
SB-27	07-oct-1991	3.000		TIL DIDITEDITOR HOLLING	LT O.			UGG		LM28	1.000
SB-27	07-oct-1991	3.000	13DCLB	1,5 0.0112011011111111	LT O.			UGG		LM28	1.000
SB-27	07-oct-1991	3.000		175 6:000000000000000000000000000000000000	LT O.			UGG	SHJ	LM27	1.000 1.000
SB-27	07-oct-1991	3.000		.,	LT O.			UGG	SFD	LM28	
SB-27	07-oct-1991			.,	LT O			UGG		LM27	1.000
SB-27	07-oct-1991	3.000	245TCP	2,1,2	LT O			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000		L1410 1111011111111111111111111111111111	LT O			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000		-/,	LT 0			UGG	SHJ	LM27	1.000 1.000
SB-27	07-oct-1991	3.000	24DMPN	2,4-DIMETHYLPHENOL	LT 2			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	24DNP	2,4-DINITROPHENOL	LT 0			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	24DNT	2,4-DINITROTOLUENE	LT 0			UGG	SHJ	LM27 LM27	1.000
SB-27	07-oct-1991	3.000	26DNT	2,6-DINITROTOLUENE	LT 0			UGG	SHJ	LM28	1.000
SB-27	07-oct-1991	3.000	2CLEVE	2-CHLOROETHYLVINYL ETHER	LT 0			UGG	SFD	LM27	1.000
SB-27	07-oct-1991	3.000	2CLP	2-CHLOROPHENOL	LT 0			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		2CNAP	2-CHLORONAPHTHALENE	LT 0			UGG	CHS CHS	LM27	1.000
SB-27	07-oct-1991	3.000	2MNAP	2-METHYLNAPHTHALENE	LT 0			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	2MP	2-METHYLPHENOL	LT 0			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	2NANIL	2-NITROANILINE	LT 0			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	2NP	2-NITROPHENOL	LT 0			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	33DCBD	3,3'-DICHLOROBENZIDINE		400		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	3NANIL	3-NITROANILINE	LT 0			UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	46DNTC	4,6-DINITRO-2-METHYLPHENO	LTU	1.170		ugg ugg	SHJ	LM27	1.000
SB-27	07-oct-1991		4BRPPE		LTO	1.033			SHJ	LM27	1.000
SB-27	07-oct-1991		4CANIL			.600		UGG UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		4CLPPE	4-CHLOROPHENYLPHENYL		3.044		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		4MP	4-METHYLPHENOL		300		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	4NANIL	4-NITROANILINE		1.200		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		4NP	4-NITROPHENOL		3.860		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		ACET	ACETONE		0.046 0.005		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		ACROLN	ACROLEIN		0.006		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		ACRYLO	ACRYLONITRILE		52.000		UGG	SEA		100.000
SB-27	07-oct-1991		AG	SILVER		11000.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		AL	ALUMINUM		0.033		UGG	SHJ		1.000
SB-27	07-oct-1991		ANAPNE	ACENAPHTHENE		0.033		UGG		LM27	1.000
SB-27	07-oct-1991		ANAPYL	ACENAPHTHYLENE		0.033		UGG		LM27	1.000
SB-27	07-oct-1991		ANTRC	ANTHRACENE		360.000		UGG		JS13	100.000
SB-27	07-oct-1991		AS	ARSENIC		6.360		UGG		JD19	1.000
SB-27	07-oct-1991		AS	ARSENIC		0.033		UGG		LM27	1.000
SB-27	07-oct-1991		, B2CEXM			0.033		UGG	SHJ		1.000
SB-27	07-oct-1991		B2CIPE	BIS (2-CHLOROISOPROPYL)				UGG	SHJ		1.000
SB-27	07-oct-1991		B2CLEE	BIS (2-CHLOROETHYL) ETHER		0.390		UGG		LM27	1.000
SB-27	07-oct-1991		B2EHP	BIS (2-ETHYLHEXYL)		96.000		UGG	SEA		100.000
SB-27	07-oct-1991		BA	BARIUM		0.150		UGG	SHJ		1.000
SB-27	07-oct-1991		BAANTR			0.190		UGG	SHJ		1.000
SB-27	07-oct-1991		BAPYR	BENZO [A] PYRENE		0.250		UGG	SHJ		1.000
SB-27	07-oct-1991		BBFANT			0.270		UGG	SHJ		1.000
SB-27	07-oct-1991		BBZP	BUTYLBENZYL PHTHALATE		50.000		UGG	SEA		100.000
SB-27	07-oct-1991		BE	BERYLLIUM		0.250		UGG	SHJ		1.000
SB-27	07-oct-199		BGHIPY			0.049		UGG	SHJ		1.000
SB-27	07-oct-199		BKFANT			0.049		UGG	SFD		1.000
SB-27	07-oct-199		BRDCLM					UGG	SFD		1.000
SB-27	07-oct-199	1 3.000	C13DCP	CIS-1,3-DICHLOROPROPYLEN	L LI	0.002		300			

				Level 3 Data							
						•	Flag			Manhad	Dilution
Site ID	Sample Date	Depth	Paramete	er	Valı	ue	Code	Units	Lot	Method	Dilution
00.07	07-oct-1991	3.000	C2AVE	ACETIC ACID, VINYL ESTER	LT (	0.007		UGG	SFD	LM28	1.000
SB-27	07-0ct-1991 07-oct-1991	3.000	C2H3CL	CHLOROETHENE		0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		C2H5CL	CHLOROETHANE	LT	0.017		UGG	SFD	LM28	1.000
SB-27	07-oct-1991	3.000	C6H6	BENZENE	LT	0.002		UGG	SFD	LM28	1.000
SB-27 SB-27	07-oct-1991	3.000	CA	CALCIUM		40000.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	3.000	CARBAZ	9H-CARBAZOLE	ND :	3.400	R	UGG	SHJ	LM27	1.000
SB-27	07-oct-1991			DICHLORODIFLUOROMETHANE	ŁΤ	0.004		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CCL3F	TRICHLOROFLUOROMETHANE	LT	0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CCL4	CARBON TETRACHLORIDE	LT	0.003		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CD	CADMIUM	LT	52.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		CDCBU	CIS-1,4-DICHLORO-2-BUTENE	LT	0.015		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CH2BR2	METHYLENE BROMIDE		0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CH2CL2	METHYLENE CHLORIDE	LT	0.040		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CH3BR	BROMOMETHANE	LT	0.017	•	UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CH3CL	CHLOROMETHANE	LT	0.004		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CHBR3	BROMOFORM	LT	0.009		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CHCL3	CHLOROFORM	LT	0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		CHRY	CHRYSENE	LT	0.220		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		CL6BZ	HEXACHLOROBENZENE		0.046		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		CL6CP	HEXACHLOROCYCLOPENTAD I ENE	LT	1.700		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		CL:C6H5	CHLOROBENZENE	ŁT	0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		co	COBALT	LT	66.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		CR	CHROMIUM		67.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		CS2	CARBON DISULFIDE		0.019		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		cu	COPPER	LT	94.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
SB-27	07-oct-1991		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		DBRCLM	DIBROMOCHLOROMETHANE		0.005		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		DBZFUR	DIBENZOFURAN	LT	0.033		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		DEP	DIETHYL PHTHALATE		0.340		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	DNBP	DI-N-BUTYL PHTHALATE		1.700		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	SHJ	LM27	1.000 1.000
SB-27	07-oct-1991	3.000	ETC6H5	ETHYLBENZENE		0.002		UGG	SFD	LM28 LM28	1.000
SB-27	07-oct-1991	3.000	ETMACR	ETHYL METHACRYLATE	LT	0.011		UGG	SFD SHJ	LM27	1.000
SB-27	07-oct-1991	3.000	FANT	FLUORANTHENE		0.220		UGG			100.000
SB-27	07-oct-1991	3.000	FE	IRON		15000.000		UGG	SEA		1.000
SB-27	07-oct-1991	3.000	FLRENE			0.033		UGG		LM27 LM27	1.000
SB-27	07-oct-1991	3.000	HCBD	HEXACHLOROBUTAD I ENE	Lī	0.180		UGG	QUJ		1.000
SB-27	07-oct-1991	3.000	HG	MERCURY		0.200	L	UGG	SHJ		1.000
SB-27	07-oct-1991		ICDPYR	· · · · · · · · · · · · · · · · · · ·		0.097		UGG	SHJ		1.000
\$8-27	07-oct-1991		ISOPHR			0.033		UGG	SEA		100.000
SB-27	07-oct-1991	3.000	K	POTASSIUM		12000.000		UGG			1.000
SB-27	07-oct-1991	3.000	MEC6H5			0.002		UGG		LM28	1.000
SB-27	07-oct-1991		MEK	METHYLETHYL KETONE		0.005		UGG		LM28 JS13	100.000
SB-27	07-oct-1991		MG	MAGNESIUM		7300.000		UGG		LM28	1.000
SB-27	07-oct-1991	3.000	MIBK	METHYLISOBUTYL KETONE	LT	0.005		UGG		JS13	100.000
SB-27	07-oct-1991		MN	MANGANESE		520.000		UGG		LM28	1.000
SB-27	07-oct-1991		MNBK	METHYL-N-BUTYL KETONE		0.022		UGG UGG	SEA		100.000
SB-27	07-oct-1991		MO	MOLYBDENUM		100.000		UGG	SEA		100.000
SB-27	07-oct-199		NA	SODIUM	LI	4500.000		UGG	SHJ		1.000
SB-27	07-oct-199		NAP	NAPHTHALENE		0.041		UGG	SHJ		1.000
\$8-27	07-oct-199°		NB	NITROBENZENE		r 0.071				JS13	100.000
SB-27	07-oct-199	1 3.000	NI	NICKEL	LI	r 150.000		UGG	SEA	10010	,,,,,,,,

				Level 3 Data							
							Flag	Units	int	Mathad	Dilution
Site ID	Sample Date	Depth	Paramete	r	Valu	ne	Code	Units	LOL	method	Ditution
en - 27	07-oct-1991	3.000	NNDNPA	N-NITROSO	LT (	0.071		UGG		LM27	1.000
SB-27		3.000			LT (	0.038		UGG	SHJ	LM27	1.000
SB-27		3.000		LEAD	LT :	300.000		UGG	SEA	JS13	100.000
SB-27		3.000		LEAD		68.000		UGG	WKI	JD17	10.000
SB-27		3.000	PCP	PENTACHLOROPHENOL	LT	0.200		UGG	SHJ	LM27	1.000
SB-27				PHENANTHRENE		0.039		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991		-	PHENOL		0.110		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991			PYRENE		0.250		UGG	SHJ	LM27	1.000
SB-27	07-oct-1991			ANTIMONY		4100.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	3.000	SB			740.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	3.000	SE	SELENIUM		0.250		UGG	WQQ	JD15	1.000
SB-27	07-oct-1991	3.000	SE	SELENIUM		0.002		UGG	SFD	LM28	1.000
SB-27	••	3.000	STYR	STYRENE TRANS-1,2-DICHLOROETHYLEN				UGG	SFD	LM28	1.000
SB-27	07-oct-1991	3.000	T12DCE	TRANS-1,2-DICHLOROETHILEN	LI	0.013 0.013		UGG	SFD	LM28	1.000
SB-27	07-oct-1991	3.000		TRANS-1,3-DICHLOROPROPENE	LI	0.013		UGG	SFD	LM28	1.000
SB-27	07-oct-1991	3.000	TCLEA	1,1,2,2-TETRACHLOROETHANE		0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		TCLEE	TETRACHLOROETHYLENE				UGG	SFD	LM28	1.000
SB-27	07-oct-1991	3.000	TDCBU	TRANS-1,4-DICHLORO-2-BUTE				UGG	SEA	JS13	100.000
SB-27	07-oct-1991	3.000	TI	TITANIUM		1200.000 1500.000		UGG	SEA	JS13	100.000
SB-27	07-oct-1991	3.000	TL	THALLIUM	LI	733.000		UGG	RTO	00	20.000
SB-27	07-oct-1991	3.000	TPHC	TOTAL PETROLEUM		0.002		UGG	SFD	LM28	1.000
SB-27	07-oct-1991	3.000	TRCLE	TRICHLOROETHYLENE				UGG	SEA	JS13	100.000
SB-27	07-oct-1991		٧	VANADIUM		180.000		UGG	SFD	LM28	1.000
SB-27	07-oct-1991		XYLEN	*XYLENES		0.002		UGG	SEA	JS13	100.000
SB-27	07-oct-1991		ZN	ZINC		190.000		UGG	SEA	JS13	200.000
SB-28	01-oct-1991		AG	SILVER	LI	100.000		UGG	SEA	JS13	200.000
SB-28	01-oct-1991	0.500	AL	ALUMINUM		14000.000		UGG	SEA	JS13	200.000
SB-28	01-oct-1991	0.500	AS	ARSENIC	LI	720.000	•	UGG	WDZ	JD19	1.000
SB-28	01-oct-1991	0.500	AS	ARSENIC		4.380			SEA	JS13	200.000
SB-28	01-oct-1991	0.500	BA	BARIUM		190.000		UGG	SEA	JS13	200.000
SB-28	01-oct-1991		BE	BERYLLIUM	LŦ	100.000		UGG	SEA	JS13	200.000
SB-28	01-oct-1991	0.500	CA	CALCIUM		83000.000		UGG	SEA	JS13	200.000
SB-28	01-oct-1991	0.500	CD	CADMIUM		100.000		UGG		JS13	200.000
SB-28	01-oct-1991	0.500	CO	COBALT		130.000		UGG	SEA	J\$13	200.000
SB-28	01-oct-1991		CR	CHROMIUM		130.000		UGG	SEA	JS13	200.000
SB-28	01-oct-1991	0.500	CU	COPPER		190.000		UGG	SEA		1.000
SB-28	01-oct-1991	0.500	CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	200.000
SB-28	01-oct-1991	0.500	FE	IRON		17000.000		UGG	SEA	JS13	1.000
SB-28	01-oct-1991	0.500	HG	MERCURY		0.055	, L	UGG		HG9	200.000
SB-28	01-oct-1991	0.500	K	POTASSIUM	LT	24000.000		UGG		JS13	200.000
SB-28	01-oct-1991		MG	MAGNESIUM		12000.000		UGG		JS13	200.000
SB-28	01-oct-1991		MN	MANGANESE		760.000		UGG	SEA		200.000
SB-28	01-oct-1991	0.500	MO	MOLYBDENUM		200.000		UGG	SEA		200.000
SB-28	01-oct-1991	0.500	NA	SODIUM		9000.000		UGG	SEA	JS13	200.000
SB-28	01-oct-1991	0.500	NI	NICKEL		310.000		UGG	SEA	JS13	
SB-28	01-oct-1991	0.500	PB	LEAD	LT	590.000		UGG	SEA		200.000
SB-28	01-oct-1991	0.500	PB	LEAD		83.000		UGG	WKI		10.000
SB-28	01-oct-1991	0.500	SB	ANTIMONY		8300.000		UGG	SEA		200.000
SB-28	01-oct-1991		SE	SELENIUM		1500.000		UGG	SEA		200.000
SB-28	01-oct-1991	0.500	SE	SELENIUM		0.250		UGG	Mod	JD15	1.000
SB-28	01-oct-1991	0.500	TI	TITANIUM		2300.000		UGG	SEA		200.000
SB-28	01-oct-1991		TL	THALLIUM	LT	2900.000		UGG	SEA		200.000
SB-28	01-oct-1991		TPHC	TOTAL PETROLEUM		38.100		UGG	RTD		1.000
SB-28	01-oct-1991		V	VANADIUM	LT	350.000		UGG	SEA		200.000
SB-28	01-oct-1991		ZN	ZINC		390.000		UGG	SEA		200.000
SB-28	01-oct-1991		111TCE	1,1,1-TRICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000

Leve	3	Data

					cover 5 bata			Flag				
	Site ID	Sample Date	Depth	Paramete	r	Valu	ue	Code	Units	Lot	Method	Dilution
		04 . 4004	F 000	112TCE	1,1,2-TRICHLOROETHANE	LT (	0.002		UGG	SFB	LM28	1.000
	SB-28	01-oct-1991	5.000		1,1,00		0.002		UGG ·	SFB	LM28	1.000
	SB-28	01-oct-1991	5.000		171 010112011021111		0.002		UGG	SFB	LM28	1.000
	SB-28		5.000		171 0100000000000		0.003		UGG	SFB	LM28	1.000
	\$8-28	01-oct-1991	5.000		1,2,0 (11.01.201.01.11.		0.033		UGG	SHB	LM27	1.000
	\$B-28		5.000		1,2,4 (11201120112011201120112011		0.002		UGG	SFB	LM28	1.000
	SB-28	01-oct-1991	5.000		.,		0.033		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000		,,		0.002		UGG		LM28	1.000
	SB-28	01-oct-1991	5.000		THE DIDITEDROLLING	_	0.002		UGG		LM28	1.000
	SB-28	01-oct-1991	5.000		.,		0.002		UGG		LM28	1.000
	\$B-28	01-oct-1991	5.000		170 0.0112011002112		0.120		UGG		LM27	1.000
	SB-28	01-oct-1991	5.000		170 010		0.002		UGG		LM28	1.000
	SB-28	01-oct-1991	5.000		,,,		0.033		UGG		LM27	1.000
	SB-28	01-oct-1991	5.000		1/1 5.5		0.086		UGG		LM27	1.000
٠	\$B-28	01-oct-1991	5.000		-, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				UGG		LM27	1.000
	SB-28	01-oct-1991			2,4,6-TRICHLOROPHENOL		0.082		UGG		LM27	1.000
	SB-28	01-oct-1991	5.000		-,,		0.140		UGG		LM27	1.000
	SB-28	01-oct-1991	5.000		2,4-DIMETHYLPHENOL		2.600				LM27	1.000
	SB-28	01-oct-1991	5.000	24DNP	2,4-DINITROPHENOL		0.700		UGG		LM27	1.000
	SB-28	01-oct-1991	5.000	24DNT	2,4-DINITROTOLUENE		0.370		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	26DNT	2,6-DINITROTOLUENE		0.066		UGG		LM28	1.000
	SB-28	01-oct-1991	5.000	2CLEVE	2-CHLOROETHYLVINYL ETHER		0.011		UGG	SFB SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	2CLP	2-CHLOROPHENOL		0.110		UGG		LM27	1.000
	SB-28	01-oct-1991	5.000	2CNAP	2-CHLORONAPHTHALENE		0.140		UGG		LM27	1.000
	SB-28	01-oct-1991	5.000	2MNAP	2-METHYLNAPHTHALENE		0.033		UGG	SHB		1.000
	SB-28	01-oct-1991	5.000	2MP	2-METHYLPHENOL		0.350		UGG	SHB	LM27	
	SB-28	01-oct-1991	5.000	2NANIL	2-NITROANILINE		0.079		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	2NP	2-NITROPHENOL		0.069		UGG		LM27	1.000
	SB-28	01-oct-1991	5.000	33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	3NANIL	3-NITROANILINE		0.950		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	<b>4BRPPE</b>	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991		4MP	4-METHYLPHENOL	LT	0.300		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991	5.000	4NANIL	4-NITROANILINE		1.200		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991		4NP	4-NITROPHENOL		0.860		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991		ACET	ACETONE		0.046		UGG	SFB	LM28	1.000
	SB-28	01-oct-1991		ACROLN	ACROLEIN	LT	0.005		UGG	SFB	LM28	1.000
	SB-28	01-oct-1991			ACRYLONITRILE	LT	0.006		UGG		LM28	1.000
	SB-28	01-oct-1991		AG	SILVER	LT	52.000		UGG		JS13	100.000
	SB-28	01-oct-1991		AL	ALUMINUM		15000.000		UGG		JS13	100.000
	SB-28	01-oct-1991		ANAPNE	ACENAPHTHENE	LT	0.033		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991		ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991		ANTRC	ANTHRACENE	LT	0.033		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991		AS	ARSENIC		360.000		UGG	SEA	JS13	100.000
	SB-28	01-oct-1991		AS	ARSENIC		4.060		UGG	WDZ	JD19	1.000
		01-00t-1991 01-oct-1991		B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	SHB	LM27	1.000
	SB-28	01-001-1991 01-001-1991		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	SHB	LM27	1.000
	SB-28			B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	SHB	LM27	1.000
	SB-28	01-oct-1991		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991			BARIUM		130.000		UGG	SEA		100.000
	SB-28	01-oct-1991		BA Baantr	BENZO [A] ANTHRACENE		0.180		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991			BENZO [A] PYRENE		0.250		UGG	SHB	LM27	1.000
	SB-28	01-oct-1991		BAPYR			0.140		UGG	SHB		1.000
	\$B-28	01-oct-1991	5.000	BBFANT	DENZU [D] FLUUKANITENE		3.140					

#### Soil

Level 3 Data											
							Flag	•.			0.11
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
	·										4 000
\$B-28	01-oct-1991	5.000	BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
SB-28	01-oct-1991	5.000	BE	BERYLLIUM		50.000		UGG		JS13	100.000
SB-28	01-oct-1991	5.000	BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG		LM27	1.000
SB-28	01-oct-1991	5.000	BKFANT	BENZO [K] FLUORANTHENE		0.220		UGG		LM27	1.000
SB-28	01-oct-1991		BRDCLM	BROMODICHLOROMETHANE		0.004		UGG		LM28	1.000
SB-28	01-oct-1991		C13DCP	CIS-1,3-DICHLOROPROPYLENE	LT	0.002		UGG		LM28	1.000
SB-28	01-oct-1991		C2AVE	ACETIC ACID, VINYL ESTER	LT	0.007		UGG		LM28	1.000
SB-28	01-oct-1991	5.000	C2H3CL	CHLOROETHENE		0.002		UGG		LM28	1.000
SB-28	01-oct-1991		C2H5CL	CHLOROETHANE	LT	0.017		UGG		LM28	1.000
SB-28	01-oct-1991		C6H6	BENZENE	LT	0.002		UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	CA	CALCIUM		49000.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991	5.000		9H-CARBAZOLE	ND	3.400	R	UGG	SHB	LM27	1.000
	01-oct-1991	5.000	CCL2F2	DICHLORODIFLUOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
SB-28		5.000	CCL3F	TRICHLOROFLUOROMETHANE		0.002		UGG	SFB	LM28	1.000
\$B-28	01-oct-1991		CCL4	CARBON TETRACHLORIDE		0.003		UGG	SFB	LM28	1.000
SB-28	01-oct-1991			CADMIUM		52.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991		CD	CIS-1,4-DICHLORO-2-BUTENE				UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	CDCBU	METHYLENE BROMIDE		0.002		UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	CH2BR2			0.040		UGG	SFB	LM28	1.000
SB-28	01-oct-1991		CH2CL2	METHYLENE CHLORIDE		0.017		UGG	SFB	LM28	1.000
SB-28	01-oct-1991		CH3BR	BROMOMETHANE		0.004		UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	CH3CL	CHLOROMETHANE		0.009		UGG	SFB	LM28	1.000
SB-28	01-oct-1991		CHBR3	BROMOFORM		0.002		UGG	SFB	LM28	1.000
SB-28	01-oct-1991		CHCL3	CHLOROFORM				UGG	SHB	LM27	1.000
SB-28	01-oct-1991		CHRY	CHRYSENE		0.220		UGG	SHB	LM27	1.000
\$B-28	01-oct-1991		CL6BZ	HEXACHLOROBENZENE		0.046			SHB	LM27	1.000
SB-28			CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG		LM27	1.000
SB-28	01-oct-1991	5.000	CL6ET	HEXACHLOROETHANE		0.067		UGG	SHB		1.000
sB-28	01-oct-1991	5.000	CLC6H5	CHLOROBENZENE		0.002		UGG	SFB	LM28	
SB-28	01-oct-1991	5.000	CO	COBALT		66.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991	5.000	CR	CHROMIUM		67.000		UGG	SEA	J\$13	100.000
SB-28	01-oct-1991	5.000	CS2	CARBON DISULFIDE		0.019		UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	CU	COPPER		94.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991	5.000	CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
SB-28	01-oct-1991		DBAHA	DIBENZ [A,H] ANTHRACENE		0.067		UGG	SHB	LM27	1.000
SB-28	01-oct-1991	5.000	DBRCLM	DIBROMOCHLOROMETHANE	LT	0.005		UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	DBZFUR	DIBENZOFURAN	LT	0.033		UGG	SHB	LM27	1.000
SB-28	01-oct-1991	5.000	DEP	DIETHYL PHTHALATE	LT	0.190		UGG	SHB	LM27	1.000
SB-28	01-oct-1991		DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	SHB	LM27	1.000
SB-28	01-oct-1991		DNBP	DI-N-BUTYL PHTHALATE		3.500		UGG	SHB	LM27	1.000
SB-28	01-oct-1991		DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	SHB	LM27	1.000
SB-28	01-oct-1991		ETC6H5	ETHYLBENZENE	LT	0.002		UGG		LM28	1.000
SB-28	01-oct-1991		ETMACR	ETHYL METHACRYLATE	LT	0.011		UGG	SFB	LM28	1.000
SB-28	01-oct-1991		FANT	FLUORANTHENE		0.350		UGG	SHB	LM27	1.000
SB-28	01-oct-1991		FE	IRON		18000.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991		FLRENE	FLUORENE	LT	0.033		UGG	SHB	LM27	1.000
	01-oct-1991		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	SHB	LM27	1.000
\$8-28	01-00t-1991 01-oct-1991		HG	MERCURY		0.027	L	UGG	QUJ	HG9	1.000
\$B-28			I CDPYR	INDENO [1,2,3-C,D] PYREN		0.180		UGG	SHB	LM27	1.000
SB-28	01-oct-1991 01-oct-1991		ISOPHR			0.033		UGG	SHB	LM27	1.000
SB-28			K	POTASSIUM		12000.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991		MEC6H5			0.002		UGG		LM28	1.000
SB-28	01-oct-1991			METHYLETHYL KETONE		0.005		UGG	SFB		1.000
SB-28	01-oct-1991		MEK		- 1	9000.000		UGG	SEA		100.000
SB-28	01-oct-1991		MG	MAGNESIUM	'i T	0.005		UGG		LM28	1.000
SB-28	01-oct-1991		MIBK	METHYLISOBUTYL KETONE	LI	680.000		UGG		JS13	100.000
SB-28	01-oct-1991	3.000	MN	MANGANESE		350.000		544			

Soil

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
SB-28	01-oct-1991	5.000	MNBK	METHYL-N-BUTYL KETONE	LT	0.022		UGG		LM28	1.000
SB-28	01-oct-1991	5.000	MO	MOLYBDENUM	LT	100.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991	5.000	NA	SODIUM	LT ·	4500.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991	5.000	NAP	NAPHTHALENE	LT	0.033		UGG	SHB	LM27	1.000
SB-28	01-oct-1991	5.000	NB		LT	0.071		UGG	SHB	LM27	1.000
SB-28	01-oct-1991		NI		LT	150.000		UGG	SEA	JS13	100.000
	01-oct-1991	5.000	NNDNPA		LT	0.071		UGG	SHB	LM27	1.000
\$B-28	01-oct-1991	5.000	NNDPA			0.038		UGG	SHB	LM27	1.000
SB-28	01-0ct-1991		PB	LEAD		300.000		UGG	SEA	JS13	100.000
SB-28	01-00t-1991	5.000	PB	LEAD		14.000		UGG	WKI	JD17	2.000
SB-28			PCP		LT	0.200		UGG	SHB	LM27	1.000
SB-28	01-oct-1991		PHANTR	PHENANTHRENE		0.091		UGG	SHB	LM27	1.000
SB-28	01-oct-1991	5.000		PHENOL		0.110		UGG	SHB	LM27	1.000
SB-28	01-oct-1991	5.000	PHENOL			0.280		UGG		LM27	1.000
SB-28	01-oct-1991		PYR	PYRENE	1 T	4100.000		UGG		JS13	100.000
SB-28	01-oct-1991		SB	ANTIMONY		740.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991		SE	SELENIUM		0.250		UGG	WQQ	JD15	1.000
SB-28	01-oct-1991		SE	SELENIUM				UGG	SFB	LM28	1.000
SB-28	01-oct-1991		STYR	• · · · · · · · · · · · · · · · · · · ·		0.002		UGG	SFB	LM28	1.000
SB-28	01-oct-1991		T12DCE	TRANS-1,2-DICHLOROETHYLEN	LI	0.013		UGG	SFB	LM28	1.000
SB-28	01-oct-1991		T13DCP	TRANS-1,3-DICHLOROPROPENE					SFB	LM28	1.000
SB-28	01-oct-1991	5.000	TCLEA	1,1,2,2-TETRACHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
\$B-28	01-oct-1991	5.000	TCLEE	TETRACHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	TDCBU	TRANS-1,4-DICHLORO-2-BUTE				UGG		JS13	100.000
SB-28	01-oct-1991	5.000	TI	TITANIUM		1200.000		UGG	SEA	JS13	100.000
SB-28	01-oct-1991	5.000	TL	THALLIUM		1500.000		UGG	SEA		
SB-28	01-oct-1991	5.000	TPHC	TOTAL PETROLEUM		10.000		UGG	RTD	00	1.000
SB-28	01-oct-1991	5.000	TRCLE	TRICHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	٧	VANADIUM		180.000		UGG	SEA	JS13	100.000
sB-28	01-oct-1991	5.000	XYLEN	*XYLENES		0.002		UGG	SFB	LM28	1.000
SB-28	01-oct-1991	5.000	ZN	ZINC		190.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991		111TCE	1,1,1-TRICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		111TCE	1,1,1-TRICHLOROETHANE	LT	0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	112TCE	1,1,2-TRICHLOROETHANE	LT	0.002		UGG		LM28	1.000
SB-29	02-oct-1991	18.700	112TCE	1,1,2-TRICHLOROETHANE	LT	0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		11DCE	1,1-DICHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	11DCE	1,1-DICHLOROETHYLENE	LT	0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		11DCLE	1,1-DICHLOROETHANE	LT	0.002		UGG	SFB	LM28	·1.000
SB-29	02-oct-1991			1,1-DICHLOROETHANE	LT	0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		123CPR	1,2,3-TRICHLOROPROPANE	LT	0.003		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		123CPR	1,2,3-TRICHLOROPROPANE	LT	0.003	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		124TCB	1,2,4-TRICHLOROBENZENE	LT	0.033	D	UGG	SHA	LM27	.1.000
SB-29	02-oct-1991		124TCB	1,2,4-TRICHLOROBENZENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE	LT	0.002	D	UGG	SFB	LM28	1.000
	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE	LT	0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		12DCLE	•		0.002		UGG	SFB	LM28	1.000
SB-29			12DCLE			0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		12DCLP			0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		12DCLP	· · · · · · · · · · · · · · · · · · ·		0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		13DCLP			0.002	-	UGG	SFB	LM28	1.000
SB-29	02-oct-1991					0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		13DCLB			0.120	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		13DCLB			0.120	-	UGG	SHB	LM27	1.000
SB-29	02-oct-1991		13DCLB			0.120		UGG		LM28	1.000
SB-29	02-oct <b>-19</b> 91	18.700	14DCLB	1,4-DICHLOROBENZENE	L	J.00L					

Level	3	Data
-------	---	------

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	r	Valı	ue	Code	Units	Lot	Method	Dilution
0110 15		•									
SB-29	02-oct-1991	18.700	14DCLB	174 DIGHTONIE		0.002	Đ	UGG		LM28	1.000
SB-29	02-oct-1991	18.700	14DCLB	1,4-DICHLOROBENZENE	LT I	0.033	D	UGG		LM27	1.000
SB-29	02-oct-1991	18.700	14DCLB	1,4-DICHLOROBENZENE	LT (	0.033		UGG		LM27	1.000
SB-29	02-oct-1991	18.700	245TCP	2,4,5-TRICHLOROPHENOL	LT	0.086	D	UGG		LM27	1.000
SB-29	02-oct-1991	18.700			LT	0.086		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700		2.4.6-TRICHLOROPHENOL	LT	0.082	D	UGG		LM27	1.000
SB-29	02-oct-1991	18.700		2,4,6-TRICHLOROPHENOL	LT	0.082		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700			LT	0.140	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700			LT	0.140		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700			LT	2.600	D	UGG	SHA	LM27	1.000
	02-oct-1991	18.700			LT	2.600		UGG	SHB	LM27	1.000
SB-29		18.700	24DNP	2,4-DINITROPHENOL	LT	0.700	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	24DNP	2,4-DINITROPHENOL	LT	0.700		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		24DNT	2,4-DINITROTOLUENE		0.370	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700		2,4-DINITROTOLUENE		0.370		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	24DNT	2,6-DINITROTOLUENE		0.066	D	UGG	SHA	LM27	1.000
\$B-29	02-oct-1991	18.700	26DNT	2,6-DINITROTOLUENE		0.066		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	26DNT			0.011		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	2CLEVE			0.011	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	2CLEVE	2-CHLOROETHYLVINYL ETHER		0.110	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	2CLP	2-CHLOROPHENOL		0.110	•	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	2CLP	2-CHLOROPHENOL		0.140	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	2CNAP	2-CHLORONAPHTHALENE		0.140	U	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	2CNAP	2-CHLORONAPHTHALENE		0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	2MNAP	2-METHYLNAPHTHALENE		0.033	U	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	2MNAP	2-METHYLNAPHTHALENE		0.350	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	2MP	2-METHYLPHENOL			U	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	2MP	2-METHYLPHENOL		0.350	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	2NANIL	2-NITROANILINE		0.079	U	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	2NAN I L	2-NITROANILINE		0.079	ς.	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	2NP	2-NITROPHENOL		0.069	D		SHB	LM27	1.000
SB-29	02-oct-1991	18.700	2NP	2-NITROPHENOL		0.069	_	UGG		LM27	1.000
\$B-29	02-oct-1991	18.700	33DCBD	3,3'-DICHLOROBENZIDINE		3.400	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	33DCBD	3,3'-DICHLOROBENZIDINE		3.400	_	UGG	SHB		1.000
SB-29	02-oct-1991	18.700	3NAN1L	3-NITROANILINE		0.950	D	UGG	SHA	LM27	
SB-29	02-oct-1991	18.700	3NANIL	3-NITROANILINE		0.950	_	UGG	SHB	LM27	1.000
SB-29	02-oct-1991		46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.170	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG .	SHB	LM27	1.000
SB-29	02-oct-1991		4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT	0.033	D	UGG		LM27	1.000 1.000
SB-29	02-oct-1991	18.700	4BRPPE	4-BROMOPHENYLPHENYL ETHER				UGG	SHB	LM27	
SB-29	02-oct-1991	18.700	4CANIL	4-CHLOROANILINE		1.600	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	4CANIL	4-CHLOROANILINE		1.600		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4CL3C	4-CHLORO-3-CRESOL	LT	0.073	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044	D	UGG	SHA		1.000
SB-29	02-oct-1991		4CLPPE	4-CHLOROPHENYLPHENYL	LŦ	0.044		UGG	SHB		1.000
SB-29	02-oct-1991		4MP	4-METHYLPHENOL	LT	0.300	D	UGG	SHA		1.000
SB-29	02-oct-1991		4MP	4-METHYLPHENOL		0.300		UGG	SHB		1.000
SB-29	02-oct-1991			4-NITROANILINE	LT	1.200	D	UGG	SHA		1.000
SB-29	02-oct-1991			4-NITROANILINE	LT	1.200		UGG	SHB	LM27	1.000
	02-oct-1991		4NP	4-NITROPHENOL	LT	0.860	D	UGG	SHA		1.000
SB-29	02-oct-1991		4NP	4-NITROPHENOL		0.860		UGG	SHB	LM27	1.000
SB-29			ACET	ACETONE		0.051		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ACET	ACETONE	L1	0.046	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ACROLN			0.005		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ACROLN			r 0.005	Ð	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	1 18.700	ACKOLN	MONOCETH							

Leve	l 3	Data

							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
on 20	03+ 1001	18.700	ACRYLO	ACRYLONITRILE	LT	0.006		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	ACRYLO	MONTE CONTENTE		0.006	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	AG	1,011,1201111111		100.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		AG	OILTER		100.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	AL	ALUMINUM		16000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	AL	ALUMINUM		15000.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700 18.700	ANAPNE	ACENAPHTHENE	ΙT	0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		ANAPNE			0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	ANAPYL			0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	ANAPIL	ACENAPHTHYLENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	ANTRO	ANTHRACENE		0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700		ANTHRACENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	ANTRC			720.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	AS	ARSENIC		720.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	AS .	ARSENIC		7.020	•	UGG	WDZ	JD19	1.000
SB-29	02-oct-1991	18.700	AS	ARSENIC		8.020	D	UGG	WDZ	JD19	1.000
SB-29	02-oct-1991	18.700	AS	ARSENIC		0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	B2CEXM	BIS (2-CHLOROETHOXY)		0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033	v	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	B2CIPE	BIS (2-CHLOROISOPROPYL)			· D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	B2CLEE	BIS (2-CHLOROETHYL) ETHER			U	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	B2CLEE	BIS (2-CHLOROETHYL) ETHER		0.390	Ð	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	в2ЕНР	BIS (2-ETHYLHEXYL)		0.390		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	B2EHP	BIS (2-ETHYLHEXYL)				UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	BA	BARIUM		190.000 190.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	ВА	BARIUM			D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	BAANTR	BENZO [A] ANTHRACENE		0.033	U	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	BAANTR	BENZO (A) ANTHRACENE		0.033		UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	BAPYR	BENZO [A] PYRENE		0.033	D	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	BAPYR	BENZO [A] PYRENE		0.033		UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	BBFANT	BENZO [B] FLUORANTHENE		0.033	D	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG	SHA	LM27	1.000
SB-29	02-oct <b>-19</b> 91	18.700	BBZP	BUTYLBENZYL PHTHALATE		0.033	D		SHB	LM27	1.000
SB-29	02-oct-1991	18.700	BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		BE	BERYLLIUM		100.000	_	UGG		JS13 JS13	200.000
SB-29	02-oct-1991	18.700	BE	BERYLLIUM		100.000	D	UGG	SEA		1.000
SB-29	02-oct-1991	18.700	BGHIPY	BENZO [G,H,I] PERYLENE		0.250	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG	SHB	LM27 LM27	1.000
SB-29	02-oct-1991		BKFANT			0.033	D	UGG			1.000
SB-29	02-oct-1991	18.700	BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG		LM27	
SB-29	02-oct-1991	18.700	BRDCLM			0.004	_	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	BRDCLM			0.004	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	C13DCP					UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	C13DCP				D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	C2AVE	ACETIC ACID, VINYL ESTER				UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	C2AVE	ACETIC ACID, VINYL ESTER	LT	0.007	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	C2H3CL	CHLOROETHENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C2H3CL	CHLOROETHENE		0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C2H5CL	CHLOROETHANE		0.017		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C2H5CL	CHLOROETHANE	LT	0.017	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C6H6	BENZENE	LT	0.002		UGG	SFB		1.000
SB-29	02-oct-1991		C6H6	BENZENE	LT	0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CA	CALCIUM		85000.000		UGG	SEA		200.000
SB-29	02-oct-1991		CA	CALCIUM		80000.000	D	UGG -		JS13	200.000
SB-29	02-oct-199		CARBAZ		NC	3.400	R	UGG	SHA	LM27	1.000
30 - 67	02 000 177										

Leve	1 3	ŠΩ	ata	

					Level 3 Data							
								Flag				
	Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
								_		0115		4 000
	SB-29	02-oct-1991	18.700		9H-CARBAZOLE		3.400	R	UGG		LM27	1.000
	SB-29	02-oct-1991	18.700		DICHLORODIFLUOROMETHANE		0.004	_	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CCL2F2	DICHLORODIFLUOROMETHANE		0.004	D	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CCL3F	TRICHLOROFLUOROMETHANE		0.002		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CCL3F	TRICHLOROFLUOROMETHANE	LT	0.002	D	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CCL4	CARBON TETRACHLORIDE	LT	0.003		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CCL4	CARBON TETRACHLORIDE	LT	0.003	D	UGG	SFB	LM28	1.000
	SB-29 ·	02-oct-1991	18.700	CD	CADMIUM	LT	100.000		UGG	SEA	JS13	200.000
	SB-29	02-oct-1991	18.700	CD	CADMIUM	LT	100.000	D	UGG	SEA	JS13	200.000
	SB-29	02-oct-1991	18.700	CDCBU	CIS-1,4-DICHLORO-2-BUTENE	LT	0.015		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CDCBU	CIS-1,4-DICHLORO-2-BUTENE			D	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CH2BR2	METHYLENE BROMIDE		0.002		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CH2BR2	METHYLENE BROMIDE	LT	0.002	D	UGG	ŞFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CH2CL2	METHYLENE CHLORIDE	LT	0.040		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CH2CL2	METHYLENE CHLORIDE		0.040	D	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CH3BR	BROMOMETHANE		0.017		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CH3BR	BROMOMETHANE		0.017	D	UGG	SFB	LM28	1.000
		02-oct-1991	18.700	CH3CL	CHLOROMETHANE		0.004		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CH3CL	CHLOROMETHANE		0.004	D	UGG	SFB	LM28	1.000
	SB-29		18.700	CHBR3	BROMOFORM		0.009	-	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991			BROMOFORM		0.009	D	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CHBR3	CHLOROFORM		0.002	•	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CHCL3	=		0.002	D	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CHCL3	CHLOROFORM		0.220	D	UGG	SHA	LM27	1.000
	SB-29	02-oct-1991	18.700	CHRY	CHRYSENE		0.220		UGG	SHB	LM27	1.000
	SB-29	02-oct-1991	18.700	CHRY	CHRYSENE		0.046	Đ	UGG	SHA	LM27	1.000
	\$B-29	02-oct-1991	18.700	CL6BZ	HEXACHLOROBENZENE			U	UGG	SHB	LM27	1.000
	SB-29	02-oct-1991	18.700	CL6BZ	HEXACHLOROBENZENE		0.046	D	UGG	SHA	LM27	1.000
	SB-29	02-oct <b>-199</b> 1	18.700	CL6CP	HEXACHLOROCYCLOPENTADIENE			U	UGG	SHB	LM27	1.000
	SB-29	02-oct-1991	18.700	CL6CP	HEXACHLOROCYCLOPENTADIENE			D	UGG	SHA	LM27	1.000
•	SB-29	02-oct-1991	18.700	CL6ET	HEXACHLOROETHANE		0.067	U	UGG	SHB	LM27	1.000
	SB-29	02-oct-1991	18.700	CL6ET			0.067		UGG	SFB	LM28	1.000
	SB-29	02-oct- <b>19</b> 91	18.700	CLC6H5	CHLOROBENZENE		0.002		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	•	CLC6H5	CHLOROBENZENE		0.002	D		SEA	JS13	200.000
	SB-29	02-oct-1991	18.700	CO	COBALT		130.000		UGG		JS13	200.000
	SB-29	02-oct-1991	18.700	CO	COBALT		130.000	Đ	UGG	SEA SEA	JS13	200.000
	SB-29	02-oct-1991	18.700	CR	CHROMIUM		130.000		UGG		JS13	200.000
	SB-29	02-oct-1991	18.700	CR	CHROMIUM		130.000	D	UGG	SEA		1.000
	SB-29	02-oct-1991	18.700	CS2	CARBON DISULFIDE		0.019	_	UGG	SFB	LM28	
	SB-29	02-oct-1991	18.700	CS2			0.019	D	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	CU	COPPER		190.000		UGG	SEA	JS13	200.000
	SB-29	02-oct-1991		CU	COPPER		190.000	D	UGG	SEA	JS13	200.000
	SB-29	02-oct-1991	18.700	CYN	CYANIDE		0.920	D	UGG	VAS	KY01	1.000
	SB-29	02-oct-1991	18.700	CYN	CYANIDE		0.920		UGG	VAS	KY01	1.000
	SB-29	02-oct-1991	18.700	DBAHA	DIBENZ [A,H] ANTHRACENE		0.033	D	UGG	SHA	LM27	1.000
	SB-29	02-oct-1991	18.700	DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	SHB	LM27	1.000
	SB-29	02-oct-1991	18.700	DBRCLM	DIBROMOCHLOROMETHANE		0.005		UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	DBRCLM	DIBROMOCHLOROMETHANE		0.005	D	UGG	SFB	LM28	1.000
	SB-29	02-oct-1991	18.700	DBZFUR	DIBENZOFURAN		0.033	D	UGG	SHA	LM27	1.000
	SB-29	02-oct-1991	18.700	DBZFUR	DIBENZOFURAN	LT	0.033		UGG	SHB	LM27	1.000
	SB-29	02-oct-1991	18.700	DEP	DIETHYL PHTHALATE	LT	0.190	D	UGG	SHA	LM27	1.000
	SB-29	02-oct-1991	18.700	DEP	DIETHYL PHTHALATE	LT	0.190		UGG	SHB	LM27	1.000
	SB-29	02-oct-1991		DMP	DIMETHYL PHTHALATE	LT	0.130	D	UGG	SHA	LM27	1.000
	SB-29	02-oct-1991	18.700	DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	SHB	LM27	1.000
	SB-29	02-oct-1991	18.700	DNBP	DI-N-BUTYL PHTHALATE		4.400	D	UGG	SHA	LM27	1.000
	SB-29	02-oct-1991		DNBP	DI-N-BUTYL PHTHALATE		2.500		UGG	SHB	LM27	1.000
	00 L)	JE 000 1771										

Leve	1 7 1	nata
Leve		Jala

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
3110 10	oumpto out										
SB-29	02-oct-1991	18.700	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260	D	UGG		LM27	1.000
SB-29	02-oct-1991	18.700	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG		LM27	1.000
SB-29	02-oct-1991	18.700	ETC6H5	ETHYLBENZENE	LT	0.002		UGG		LM28	1.000
SB-29	02-oct-1991	18.700	ETC6H5	ETHYLBENZENE	LT	0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	ETMACR	ETHYL METHACRYLATE	LT	0.011		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	ETMACR	ETHYL METHACRYLATE	LT	0.011	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	FANT	FLUORANTHENE	LT	0.085	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	FANT	FLUORANTHENE	LT	0.085		UGG	SHB	LM27	1.000
	02-oct-1991	18.700	FE	IRON		21000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	FE	IRON		21000.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	FLRENE	FLUORENE	LT.	0.033	Đ	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	FLRENE	FLUORENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29		18.700	HCBD	HEXACHLOROBUTADIENE	LT	0.180	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	HCBD	HEXACHLOROBUTAD I ENE		0.180		UGG	SHB	LM27	1.000
′SB-29	02-oct-1991			MERCURY		0.027	L	UGG	QUJ	HG9	1.000
\$B-29	02-oct-1991	18.700 18.700	HG	MERCURY		0.027	L.	UGG	QUJ	HG9	1.000
SB-29	02-oct-1991		HG	INDENO [1,2,3-C,D] PYRENE			D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	ICDPYR			0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	ISOPHR	ISOPHORONE		0.033	•	UGG	SHB	LM27	1.000
\$B-29	02-oct-1991	18.700	ISOPHR	ISOPHORONE		24000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	K	POTASSIUM		24000.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	K	POTASSIUM		0.002	Ū	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	MEC6H5	TOLUENE		0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	MEC6H5	TOLUENE		0.005	•	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	MEK	METHYLETHYL KETONE		0.005	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	MEK	METHYLETHYL KETONE	LI	15000.000	•	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	MG	MAGNESIUM		16000.000	Đ	UGG	SEA	JS13	200.000
SB-29	02-oct-1991		MG	MAGNESIUM METHYLISOBUTYL KETONE	ıτ	0.005	-	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		MIBK	METHYLISOBUTYL KETONE		0.005	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	MIBK	MANGANESE		570.000	•	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	MN	MANGANESE	1 T	400.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991		MN	METHYL-N-BUTYL KETONE		0.022	_	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		MNBK MNBK	METHYL-N-BUTYL KETONE		0.022	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		MO	MOLYBDENUM		200.000		UGG	SEA	JS13	200.000
\$B-29	02-oct-1991	18.700	MO	MOLYBDENUM		200.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NA	SODIUM		9000.000	-	UGG	SEA	JS13	200.000
SB-29	02-oct-1991			SODIUM		9000.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NA NAD	NAPHTHALENE		0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		NAP NAP	NAPHTHALENE		0.033	_	UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NB	NITROBENZENE		0.071	D	UGG	SHA	LM27	1.000
\$B-29	02-oct-1991		NB NB	NITROBENZENE		0.071		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NI	NICKEL		310.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NI	NICKEL		310.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NNDNPA	N-NITROSO		0.071	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		NNDNPA	N-NITROSO		0.071		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NNDPA	N-NITROSO DIPHENYLAMINE		0.038	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991		NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	SHB	LM27	1.000
SB-29	02-oct-1991			LEAD		590.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		PB			590.000	D	UGG	SEA		200.000
SB-29	02-oct-1991		PB DB	LEAD	L 1	20.000	-	UGG	WKI	JD17	3.000
SB-29	02-oct-1991		PB	LEAD		13.000	D	UGG	WKI	JD17	3.000
SB-29	02-oct-1991		PB	LEAD	17	0.200	D	UGG	SHA		1.000
SB-29	02-oct-1991		PCP	PENTACHLOROPHENOL		0.200	-	UGG	SHB		1.000
\$B-29	02-oct-1991		PCP	PENTACHLOROPHENOL		0.033	D	UGG		LM27	1.000
\$8-29	02-oct-1991	18.700	PHANTR	PHENANTHRENE		3.033	-		···		

	. ~	
Level		Data

							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	.ue	Code	Units	Lot	Method	Dilution
SB-29	02-oct-1991	18.700	PHANTR	PHENANTHRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	PHENOL	PHENOL	LT	0.110	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	PHENOL	PHENOL	LT	0.110		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	PYR	PYRENE	LT	0.033	D	UGG	SHA	LM27	1.000
SB-29	02-oct-1991	18.700	PYR	PYRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	18.700	SB	ANTIMONY	LT	8300.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	SB	ANTIMONY	LT	8300.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	SE	SELENIUM	LT	1500.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	SE	SELENIUM	LT	1500.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	SE	SELENIUM	LT	0.250		UGG	MOO	JD15	1.000
SB-29	02-oct-1991	18.700	SE	SELENIUM	LT	0.250	D	UGG	MQQ	JD15	1.000
SB-29	02-oct-1991	18.700	STYR	STYRENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	STYR	STYRENE	LT	0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	T12DCE	TRANS-1,2-DICHLOROETHYLEN	LT	0.013		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	T12DCE	TRANS-1,2-DICHLOROETHYLEN	LT	0.013	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	T13DCP	TRANS-1,3-DICHLOROPROPENE	LT	0.013		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	T13DCP	TRANS-1,3-DICHLOROPROPENE			D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	TCLEA	1,1,2,2-TETRACHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	TCLEA	1,1,2,2-TETRACHLOROETHANE			D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	TCLEE	TETRACHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	TCLEE	TETRACHLOROETHYLENE	LT	0.002	Đ	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	TDCBU	TRANS-1,4-DICHLORO-2-BUTE	LT	0.016		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	TDCBU	TRANS-1,4-DICHLORO-2-BUTE			Đ	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	TI	TITANIUM	LT	2300.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	TI	TITANIUM	LT	2300.000	Ð	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	TL	THALLIUM	LT	2900.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	TL	THALLIUM	LT	2900.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	TPHC	TOTAL PETROLEUM		106.000		UGG	RTD	00	1.000
SB-29	02-oct-1991	18.700	TPHC	TOTAL PETROLEUM		10.000	D	UGG	RTD	00	1.000
SB-29	02-oct-1991	18.700	TRCLE	TRICHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	TRCLE	TRICHLOROETHYLENE		0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	V	VANADIUM		350.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	<b>V</b> .	VANADIUM		350.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	18.700	XYLEN	*XYLENES		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	XYLEN	*XYLENES		0.002	D	UGG	SFB	LM28	1.000
SB-29	02-oct-1991	18.700	ZN	ZINC		390.000	_	UGG	SEA	JS13	200.000
SB-29	02-oct-1991		ZN	ZINC		390.000	D	UGG	SEA	JS13	200.000
SB-29	02-oct-1991	21.100		1,1,1-TRICHLOROETHANE		0.002		UGG	SFB	LM28	1.000 1.000
SB-29	02-oct-1991	21.100	112TCE	1,1,2-TRICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		11DCE	1,1-DICHLOROETHYLENE		0.002		UGG		LM28	
SB-29	02-oct-1991	21.100	11DCLE	1,1-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000 1.000
SB-29	02-oct-1991		123CPR	1,2,3-TRICHLOROPROPANE		0.003		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100	124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	SHB	LM27 LM28	1.000
SB-29	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE		0.002		UGG	SFB	LM27	1.000
SB-29	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	SHB SFB	LM28	1.000
SB-29	02-oct-1991		12DCLE	1,2-DICHLOROETHANE		0.002		UGG		LM28	1.000
SB-29	02-oct-1991		12DCLP	1,2-DICHLOROPROPANE		0.002		UGG UGG	SFB SFB	LM28	1.000
SB-29	02-oct-1991		13DCLB	1,3-DICHLOROBENZENE		0.002 0.120		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		13DCLB	1,3-DICHLOROBENZENE				UGG	SFB	LM28	1.000
\$8-29	02-oct-1991		14DCLB	1,4-DICHLOROBENZENE		0.002		UGG	SHB	LM27	1.000
\$B-29	02-oct-1991		14DCLB			0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		245TCP			0.086		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		246TCP			r 0.082		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		24DCLP			Г 0.140 г 3.400		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	24DMPN	2,4-DIMETHYLPHENOL	L	r 2.600		oud	3110	L1141	,,,,,,

Soil

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
SB-29	02-oct-1991	21.100	24DNP	2,4-DINITROPHENOL	LT	0.700		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	24DNT		LT	0.370		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	26DNT		LT	0.066		UGG	SHB	LM27	1.000
	02-oct-1991	21.100			LT :	0.011		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100	2CLP	2-CHLOROPHENOL	LT	0.110		UGG	SHB	LM27	1.000
SB-29 SB-29	02-oct-1991	21.100	2CNAP			0.140		UGG	SHB	LM27	1.000
	02-oct-1991	21.100	2MNAP			0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	2MP		LT	0.350		UGG	SHB	LM27	1.000
SB-29 SB-29	02-oct-1991	21.100	2NANIL			0.079		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	2NP		LT	0.069		UGG	SHB	LM27	1.000
SB-29 SB-29	02-oct-1991	21.100	33DCBD		LT	3.400		UGG	SHB	LM27	1.000
SB-29 SB-29	02-oct-1991	21.100	3NANIL		LT	0.950		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100		4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100		4-BROMOPHENYLPHENYL ETHER				UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	4CANIL	4-CHLOROANILINE		1.600		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	4CL3C		LT	0.073		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100		4-CHLOROPHENYLPHENYL	LT	0.044		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	4MP	4-METHYLPHENOL	LT	0.300		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	4NANIL	4-NITROANILINE	LT	1.200		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	4NP	4-NITROPHENOL	LT	0.860		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	ACET	ACETONE		0.049		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100	ACROLN	ACROLEIN	LT	0.005		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ACRYLO	ACRYLONITRILE	LT	0.006		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100	AG	SILVER	LT	100.000		UGG	SEA	JS13	200.000
SB-29	. 02-oct-1991		AL	ALUMINUM		14000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		ANAPNE	ACENAPHTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		ANTRC	ANTHRACENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	AS	ARSENIC	LT	720.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	21.100	AS	ARSENIC		14.000		UGG	WDZ	JD19	2.000
SB-29	02-oct-1991	21.100	B2CEXM	BIS (2-CHLOROETHOXY)		0.033	•	UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	<b>B2CLEE</b>	BIS (2-CHLOROETHYL) ETHER				UGG	SHB	LM27	1.000
SB-29	02-oct-1991		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	BA	BARIUM		190.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	21.100	BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		BAPYR	BENZO [A] PYRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	BBFANT	BENZO (B) FLUORANTHENE		0.033		UGG		LM27	1.000
SB-29	02-oct-1991		BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
SB-29	02-oct-1991		BE	BERYLLIUM		100.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	21.100	BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG	SHB	LM27	1.000
\$B-29	02-oct-1991	21.100	BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	BRDCLM	BROMODICHLOROMETHANE		0.004		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100	C13DCP	CIS-1,3-DICHLOROPROPYLENE				UGG	SFB		1.000
		24 400	0241/5	ACCUTE ACID VINVI ESTED	I T	0.007		UGG	SFB	LM28	1.000

ACETIC ACID, VINYL ESTER LT 0.007

CIS-1,4-DICHLORO-2-BUTENE LT 0.015

LT 0.002

LT 0.017

LT 0.002

ND 3.400

LT 0.004

LT 0.002

LT 0.003

LT 100.000

86000.000

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

02-oct-1991 21.100

SB-29

SB-29

SB-29

SB-29

SB-29

SB-29

SB-29

SB-29

SB-29

SB-29

SB-29

C2AVE

C6H6

CCL3F

CCL4

CDCBU

CD

CA

C2H3CL CHLOROETHENE

C2H5CL CHLOROETHANE

CARBAZ 9H-CARBAZOLE

BENZENE

CALCIUM

CADMIUM

CCL2F2 DICHLORODIFLUOROMETHANE

TRICHLOROFLUOROMETHANE

CARBON TETRACHLORIDE

UGG

UGG

UGG

UGG

UGG

UGG

UGG

UGG

UGG

UGG

UGG

SFB LM28

SFB LM28

SHB LM27

SFB

SFB

SEA

SFB

SFB

SFB

SEA

LM28

LM28

JS13

LM28

LM28

LM28

JS13

SFB LM28

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

200.000

200.000

				Level 3 Data							
							Flag				<b>a</b>
Site ID	Sample Date	Depth	Paramete	r	Valu	ae	Code	Units	Lot	Method	Dilution
		24 400	· OUDDD	METHYLENE BROMIDE	I T (	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100				0.040		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100		ALL THI CLINE ON BOTTON		0.017		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100		CHLOROMETHANE		0.004		UGG	SF8	LM28	1.000
SB-29	02-oct-1991	21.100		BROMOFORM		0.009		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100	CHBR3	CHLOROFORM		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100	CHCL3	CHRYSENE		0.220		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	CHRY CL6BZ	HEXACHLOROBENZENE		0.046		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	SHB	LM27	1.000
SB-29	02-oct-1991 02-oct-1991	21.100 21.100	CL6ET	HEXACHLOROETHANE		0.067		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	CLC6H5	CHLOROBENZENE	LT	0.002		UGG		LM28	1.000
SB-29	02-oct-1991	21.100	CO	COBALT	LT	130.000		UGG		JS13	200.000
SB-29 SB-29	02-oct-1991	21.100	CR	CHROMIUM	LT	130.000		UGG		JS13	200.000
SB-29	02-oct-1991	21.100	CS2	CARBON DISULFIDE	LT	0.019		UGG		LM28	1.000
SB-29	02-oct-1991	21.100	CU	COPPER	LT	190.000		UGG		JS13	200.000
SB-29	02-oct-1991	21.100	CYN	CYANIDE		0.920		UGG		KY01	1.000
SB-29	02-oct-1991	21.100	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG		LM27	1.000
SB-29	02-oct-1991	21.100	DBRCLM	DIBROMOCHLOROMETHANE	LT	0.005		UGG		LM28	1.000
SB-29	02-oct-1991	21.100	DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
SB-29	02-oct-1991	21.100	DEP	DIETHYL PHTHALATE		0.190		UGG		LM27	1.000
SB-29	02-oct-1991	21.100	DMP	DIMETHYL PHTHALATE		0.130		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	SHB	LM27 LM27	1.000 1.000
SB-29	02-oct-1991	21.100	DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	SHB	LM28	1.000
SB-29	02-oct-1991	21.100	ETC6H5	ETHYLBENZENE		0.002		UGG	SFB SFB	LM28	1.000
SB-29	02-oct-1991	21.100	ETMACR	ETHYL METHACRYLATE		0.011		ugg ugg	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	FANT	FLUORANTHENE	LT	0.085		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		FE	IRON		20000.000 0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		FLRENE	FLUORENE		0.180		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		HCBD	HEXACHLOROBUTAD I ENE		0.027	L	UGG	QUJ	HG9	1.000
SB-29	02-oct-1991		HG	MERCURY INDENO [1,2,3-C,D] PYRENE			_	UGG	SHB	LM27	1.000
SB-29	02-oct-1991		ICDPYR	ISOPHORONE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		ISOPHR	POTASSIUM		24000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		K	TOLUENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		MEC6H5 MEK	METHYLETHYL KETONE		0.005		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		MG	MAGNESIUM		14000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		MIBK	METHYLISOBUTYL KETONE	LT	0.005		UGG	SFB	LM28	1.000
SB-29	02-oct-1991 02-oct-1991		MN	MANGANESE		400.000		UGG	SEA	JS13	200.000
SB-29	02-0ct-1991		MNBK	METHYL-N-BUTYL KETONE		0.022		UGG	SFB	LM28	1.000
SB-29	02-001-1991 02-oct-1991		MO	MOLYBDENUM		200.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NA	SODIUM		9000.000		UGG	SEA	JS13	200.000
SB-29 SB-29	02-oct-1991		NAP	NAPHTHALENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NB	NITROBENZENE		0.071		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NI	NICKEL	LT	310.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NNDNPA	N-NITROSO	LT	0.071		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		PB	LEAD	LT	590.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		PB	LEAD		11.100		UGG	WKI	JD17	1.000 1.000
SB-29	02-oct-1991		PCP	PENTACHLOROPHENOL		0.200		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	21.100	PHANTR			0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	1 21.100	PHENOL	PHENOL		0.110		UGG	SHB	LM27 LM27	1.000
SB-29	02-oct-1991	1 21.100	PYR	PYRENE		0.033		UGG	SHB		200.000
SB-29	02-oct-199	1 21.100	SB	ANTIMONY		8300.000		UGG	SEA SEA		200.000
SB-29	02-oct-199		SE	SELENIUM		1500.000		UGG	WQQ	_	1.000
SB-29	02-oct-199	1 21.100	SE	SELENIUM	Ll	r 0.250		UGG	MMM	כו סנ	1.000

Level	3	Data
-------	---	------

				20101 # 2232			Flag				•
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
00.00	02+-1001	21.100	STYR	STYRENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100		TRANS-1,2-DICHLOROETHYLEN				UGG	SFB	LM28	1.000
SB-29	02-oct-1991			TRANS-1,3-DICHLOROPROPENE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100		1,1,2,2-TETRACHLOROETHANE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991	21.100	TCLEA			0.002		UGG		LM28	1.000
SB-29	02-oct-1991	21.100	TCLEE	TRANS-1,4-DICHLORO-2-BUTE				UGG		LM28	1.000
SB-29	02-oct-1991				17	2300.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	21.100	TI	TITANIUM		2900.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	21.100	TL	THALLIUM		14.900		UGG	RTD	00	1.000
SB-29	02-oct-1991		TPHC	TOTAL PETROLEUM		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		TRCLE	TRICHLOROETHYLENE				UGG	SEA	JS13	200.000
SB-29	02-oct-1991		V	VANADIUM		350.000		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		XYLEN	*XYLENES		0.002		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	21.100	ZN	ZINC		390.000			SFB	LM28	1.000
SB-29	02-oct-1991	26.600		1,1,1-TRICHLOROETHANE		0.002		UGG		LM28	1.000
SB-29	02-oct-1991	26.600		1,1,2-TRICHLOROETHANE		0.002		UGG	SFB		1.000
SB-29	02-oct-1991	26.600	11DCE	1,1-DICHLOROETHYLENE		0.002		UGG	SFB	LM28	
SB-29	02-oct-1991	26.600		1,1-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	123CPR	1,2,3-TRICHLOROPROPANE		0.003		UGG	SFB	LM28	1.000 1.000
SB-29	02-oct-1991	26.600	124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	SHB	LM27	
SB-29	02-oct-1991	26.600	. —	1,2-DICHLOROBENZENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600		1,2-DICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	12DCLE	1,2-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	12DCLP	1,2-DICHLOROPROPANE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	13DCLB	1,3-DICHLOROBENZENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	13DCLB	1,3-DICHLOROBENZENE		0.120		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	14DCLB	1,4-DICHLOROBENZENE		0.002		UGG	SFB	LM28 LM27	1.000 1.000
SB-29	02-oct-1991	26.600	14DCLB	1,4-DICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	245TCP	2,4,5-TRICHLOROPHENOL		0.086		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	246TCP	2,4,6-TRICHLOROPHENOL		0.082		UGG UGG	SHB	LM27	1.000
SB-29	02-oct-1991		24DCLP	2,4-DICHLOROPHENOL		0.140		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		24DNP	2,4-DINITROPHENOL		0.700		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		24DNT	2,4-DINITROTOLUENE		0.370		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		26DNT	2,6-DINITROTOLUENE		0.066		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	_ :	2CLEVE			0.011		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		2CLP	2-CHLOROPHENOL		0.110		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		2CNAP	2-CHLORONAPHTHALENE		0.140		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		2MNAP	2-METHYLNAPHTHALENE		0.350		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		2MP	2-METHYLPHENOL		0.079		UGG		LM27	1.000
SB-29	02-oct-1991			2-NITROANILINE		0.069		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		2NP	2-NITROPHENOL		3.400		UGG	SHB	LM27	1.000
SB-29	02-oct-1991			3,3'-DICHLOROBENZIDINE		0.950		UGG	SHB	LM27	1.000
SB-29	02-oct-1991			3-NITROANILINE 4,6-DINITRO-2-METHYLPHENO				UGG	SHB	LM27	1.000
SB-29	02-oct-1991			4-BROMOPHENYLPHENYL ETHER				UGG		LM27	1.000
SB-29	02-oct-1991					1.600		UGG	SHB	LM27	1.000
SB-29	02-oct-1991			4-CHLOROANILINE 4-CHLORO-3-CRESOL		0.073		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4CL3C			0.044		UGG	SHB	LM27	1.000
SB-29	02-oct-1991			4-CHLOROPHENYLPHENYL		0.300		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4MP	4-METHYLPHENOL		1.200		UGG	SHB	LM27	1.000
\$B-29	02-oct-1991		4NANIL			0.860		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4NP	4-NITROPHENOL		0.046		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ACET	ACETONE		0.005		UGG	SFB	100	1.000
SB-29	02-oct-1991		ACROLN			0.006		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ACRYLO			52.000		UGG	SEA		100.000
SB-29	02-oct-1991	26.600	AG	SILVER	L. 1	JE.000		3.00			

Leve	1 3	n:	ıta.

				Level 3 Data							
							Flag	•.			
Site ID	Sample Date	Depth	Paramet	er	Val	.ue	Code	Units	Lot	Method	Dilution
										1047	400.000
SB-29	02-oct-1991	26.600	AL	ALUMINUM		12000.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991	26.600	ANAPNE			0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	ANAPYL			0.033		UGG		LM27	1.000
SB-29	02-oct <b>-19</b> 91	26.600	ANTRC	***************************************		0.033		UGG		LM27	1.000
SB-29	02-oct-1991	26.600	AS	ARSENIC		360.000		UGG		JS13	100.000
SB-29	02-oct-1991	26.600	AS	ARSENIC		1.940		UGG	WDZ	JD19	1.000
SB-29	02-oct-1991	26.600	B2CEXM			0.033		UGG		LM27	1.000
SB-29	02-oct-1991	26.600	B2CIPE	D10 (E 01140114111111111111111111111111111111		0.033		UGG		LM27	1.000
SB-29	02-oct-1991	26.600	<b>B2CLEE</b>	BIS (2-CHLOROETHYL) ETHER	LT			UGG		LM27	1.000
SB-29	02-oct-1991	26.600	<b>B2EHP</b>	BIS (2-ETHYLHEXYL)		0.680		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	BA	BARIUM	LT	96.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991	26.600	BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	BAPYR	BENZO [A] PYRENE	LT	0.033		UGG		LM27	1.000
SB-29	02-oct-1991	26.600	BBFANT	BENZO [B] FLUORANTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		BE	BERYLLIUM	LT	50.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991		BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		BRDCLM	BROMODICHLOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C13DCP	CIS-1,3-DICHLOROPROPYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C2AVE	ACETIC ACID, VINYL ESTER				UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C2H3CL	CHLOROETHENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C2H5CL	CHLOROETHANE		0.017		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C6H6	BENZENE		0.002		UGG	SFB	LM28	1.000
	02-oct-1991		CA	CALCIUM		37000.000		UGG	SEA	JS13	100.000
SB-29	02-0ct-1991 02-oct-1991		CARBAZ	9H-CARBAZOLE	ND	3.400	R	UGG	SHB	LM27	1.000
SB-29			CCL2F2	DICHLORODIFLUOROMETHANE		0.004	••	UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CCL2F2	TRICHLOROFLUOROMETHANE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CCL4	CARBON TETRACHLORIDE		0.003		UGG		LM28	1.000
SB-29	02-oct-1991		CD CD	CADMIUM		52.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991		CDCBU	CIS-1,4-DICHLORO-2-SUTENE				UGG		LM28	1.000
SB-29	02-oct-1991 02-oct-1991		CH2BR2	METHYLENE BROMIDE		0.002		UGG	SFB	LM28	1.000
SB-29			CH2CL2	METHYLENE CHLORIDE		0.040		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CH3BR	BROMOMETHANE		0.017		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CH3CL	CHLOROMETHANE		0.004		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CHBR3	BROMOFORM		0.009		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	i i				0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CHCL3	CHLOROFORM CHRYSENE		0.220		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		CHRY			0.046		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		CL6BZ	HEXACHLOROBENZENE HEXACHLOROCYCLOPENTADIENE				UGG	SHB	LM27	1.000
SB-29	02-oct-1991		CL6CP					UGG	SHB	LM27	1.000
SB-29	02-oct-1991		CL6ET	HEXACHLOROETHANE		0.067		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CLC6H5	CHLOROBENZENE				UGG	SEA	JS13	100.000
SB-29	02-oct-1991		CO	COBALT		66.000			SEA		100.000
SB-29	02-oct-1991		CR_	CHROMIUM		67.000		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CS2	CARBON DISULFIDE		0.019		UGG	SEA	JS13	100.000
SB-29	02-oct-1991		CU	COPPER		94.000		UGG		KY01	1.000
SB-29	02-oct-1991		CYN	CYANIDE		0.920		UGG	VAS		1.000
SB-29	02-oct-1991		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	SHB	LM27	
SB-29	02-oct-1991		DBRCLM	DIBROMOCHLOROMETHANE		0.005		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	DBZFUR	DIBENZOFURAN		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	DEP	DIETHYL PHTHALATE		0.190		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		DMP	DIMETHYL PHTHALATE	L1	0.130		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	DNBP	DI-N-BUTYL PHTHALATE		2.100		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	ETC6H5	ETHYLBENZENE	LI	r <b>0.0</b> 02		UGG	SFB	LM28	1.000

1	eve	٦.	Data

				Level 3 Data							
							Flag	• .			B.11
Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
						0.011		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ETMACR	ETHYL METHACRYLATE		0.011		UGG		LM27	1.000
SB-29	02-oct-1991	26.600	FANT	FLUORANTHENE	Li	0.085		UGG		JS13	100.000
SB-29	02-oct-1991		FE	IRON		17000.000		UGG		LM27	1.000
SB-29	02-oct-1991	26.600	FLRENE	FLUORENE		0.033				LM27	1.000
SB-29	02-oct-1991	26.600	HCBD	HEXACHLOROBUTAD I ENE		0.180		UGG		HG9	1.000
SB-29	02-oct-1991	26.600	HG	MERCURY		0.027	Ł	UGG	QUJ	LM27	1.000
SB-29	02-oct-1991		ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	ISOPHR	ISOPHORONE		0.033		UGG			100.000
SB-29	02-oct-1991	26.600	K	POTASSIUM		12000.000		UGG	SEA	JS13	1.000
SB-29	02-oct-1991	26.600	MEC6H5	TOLUENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	MEK	METHYLETHYL KETONE	LT	0.005		UGG		LM28	
SB-29	02-oct-1991	26.600	MG	MAGNESIUM		13000.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991		MIBK	METHYLISOBUTYL KETONE	LT	0.005		UGG		LM28	1.000
SB-29	02-oct-1991	26.600	MN	MANGANESE		400.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991		MNBK	METHYL-N-BUTYL KETONE		0.022		UGG	SFB		1.000
SB-29	02-oct-1991		MO	MOLYBDENUM		100.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991		NA	SODIUM		4500.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991		NAP	NAPHTHALENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	NB	NITROBENZENE		0.071		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	NI	NICKEL		150.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991	26.600	NNDNPA	N-NITROSO		0.071		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	PB	LEAD	LT	300.000		UGG	SEA	J\$13	100.000
SB-29	02-oct-1991	26.600	PB	LEAD		6.710		UGG	WKI	JD17 .	1.000
SB-29	02-oct-1991	26.600	PCP	PENTACHLOROPHENOL		0.200		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	PHANTR	PHENANTHRENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	PHENOL	PHENOL		0.110		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	PYR	PYRENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	26.600	\$B	ANTIMONY		4100.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991	26.600	SE	SELENIUM		740.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991	26.600	SE	SELENIUM		0.250		UGG	WQQ	JD15	1.000
SB-29	02-oct-1991	26.600	STYR	STYRENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	T12DCE	TRANS-1,2-DICHLOROETHYLEN				UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	T13DCP	TRANS-1,3-DICHLOROPROPENE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	TCLEA	1,1,2,2-TETRACHLOROETHANE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	TCLEE	TETRACHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	TDCBU	TRANS-1,4-DICHLORO-2-BUTE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	TI	TITANIUM		1200.000		UGG	SEA		100.000
SB-29	02-oct-1991	26.600	TL	THALLIUM	LT	1500.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991	26.600	TPHC	TOTAL PETROLEUM		63.500		UGG	RTD	00	1.000
SB-29	02-oct-1991	26.600	TRCLE	TRICHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	٧	VANADIUM		180.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991	26.600	XYLEN	*XYLENES		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	26.600	ZN	ZINC		190.000		UGG	SEA	JS13	100.000
SB-29	02-oct-1991	9.900	111TCE	1,1,1-TRICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	9.900	112TCE	1,1,2-TRICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	9.900	11DCE	1,1-DICHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		11DCLE	1,1-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	9.900	123CPR	1,2,3-TRICHLOROPROPANE		0.003		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		124TCB	1,2,4-TRICHLOROBENZENE	LI	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE	Ľ۱	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		12DCLB	1,2-DICHLOROBENZENE	L٦	r 0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		12DCLE	1,2-DICHLOROETHANE	L1	г 0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		12DCLP	1,2-DICHLOROPROPANE	L	r 0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		13DCLB	1,3-DICHLOROBENZENE	LI	г 0.002		UGG	SFB	LM28	1.000
<del></del>											

#### Soil

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
						0.400			CUD	. 427	1 000
SB-29	02-oct-1991					0.120		UGG	SHB	LM27	1.000
SB-29	02-oct-1991					0.002		UGG UGG	SFB SHB	LM28 LM27	1.000 1.000
SB-29	02-oct-1991					0.033				LM27	
SB-29	02-oct-1991					0.086		UGG			1.000
SB-29	02-oct-1991			-1 -1		0.082		UGG		LM27	1.000
SB-29	02-oct-1991			7.		0.140		UGG		LM27	1.000
SB-29	02-oct-1991	9.900	24DMPN			2.600		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	24DNP	=1 :		0.700		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	24DNT	2,4-DINITROTOLUENE	LT	0.370		UGG		LM27	1.000
SB-29	02-oct-1991	9.900	26DNT	2,6-DINITROTOLUENE	LT	0.066		UGG		LM27	1.000
\$B-29	02-oct-1991	9.900	2CLEVE	2-CHLOROETHYLVINYL ETHER	LT	0.011		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	9.900	2CLP	2-CHLOROPHENOL	LT	0.110		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	2MNAP	2-METHYLNAPHTHALENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	2MP	2-METHYLPHENOL	LT	0.350		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	2NANIL	2-NITROANILINE	LT	0.079		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		2NP	2-NITROPHENOL	LT	0.069		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		33DCBD	3,3'-DICHLOROBENZIDINE	LT	3.400		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		3NAN I L	3-NITROANILINE	LT	0.950		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG	SHB	LM27	1.000
SB-29	02-oct-1991							UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4CANIL	4-CHLOROANILINE		1.600		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4MP	4-METHYLPHENOL	LT	0.300		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4NANIL	4-NITROANILINE	LT	1.200		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		4NP	4-NITROPHENOL	LT	0.860		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		ACET	ACETONE	LT	0.046		UGG	SFB	LM28	1.000
sa-29	02-oct-1991		ACROLN	ACROLEIN	LT	0.005		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ACRYLO	ACRYLONITRILE	LT	0.006		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		AG	SILVER	LT	100.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		AL	ALUMINUM		15000.000		UGG	SEA	J\$13	200.000
SB-29	02-oct-1991	9.900	ANAPNE	ACENAPHTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		ANTRC	ANTHRACENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		AS	ARSENIC	LT	720.000		UGG	SEA	JS13	200.000
\$8-29	02-oct-1991	9.900	AS	ARSENIC		4.980		UGG	WDZ	JD19	1.000
SB-29	02-oct-1991	9.900	B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	B2CIPE	BIS (2-CHLOROISOPROPYL)	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	<b>B2CLEE</b>	BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	BA	BARIUM	LT	190.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	9.900	BAANTR	BENZO [A] ANTHRACENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		BAPYR	BENZO [A] PYRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	BBFANT	BENZO [B] FLUORANTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	8E	BERYLLIUM	LT	100.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	9.900	BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG		LM27	1.000
SB-29	02-oct-1991	9.900	BRDCLM	BROMODICHLOROMETHANE		0.004		UGG	SFB	LM28	1.000
SB-29	02-oct-1991	9.900	C13DCP	CIS-1,3-DICHLOROPROPYLENE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C2AVE	ACETIC ACID, VINYL ESTER	LT	0.007		UGG	SFB	LM28	1.000
\$B-29	02-oct-1991		C2H3CL	CHLOROETHENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C2H5CL	CHLOROETHANE	LT	0.017		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		C6H6	BENZENE	LT	0.002		UGG	SFB	LM28	1.000

- 1	eve	 Data

				Level 5 Data			Flag				
Site ID	Sample Date	Depth	Paramet	er	Val	ue	Code	Units	Lot	Method	Dilution
SB-29	02-oct-1991	0 000	CA	CALCIUM		79000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991				ND	3.400	R	UGG	SHB	LM27	1.000
SB-29	02-oct-1991		CCL2F2			0.004		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CCL3F	TRICHLOROFLUOROMETHANE		0.002		UGG	SFB	LM28	1.000
	02-0ct-1991		CCL4	CARBON TETRACHLORIDE		0.003		UGG	SFB	LM28	1.000
SB-29	02-0ct-1991 02-oct-1991		CD	CADMIUM		100.000		UGG	SEA	JS13	200.000
SB-29			CDCBU	CIS-1,4-DICHLORO-2-BUTENE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991			METHYLENE BROMIDE		0.002		UGG	SFB		1.000
SB-29	02-oct-1991		CH2CL2	METHYLENE CHLORIDE		0.040		UGG	SFB	LM28	1.000
SB-29	02-oct-1991 02-oct-1991		CHZCLZ CH3BR	BROMOMETHANE		0.017		UGG	SFB	LM28	1.000
SB-29	02-0ct-1991 02-oct-1991		CH3CL	CHLOROMETHANE		0.004		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		CHBR3	BROMOFORM		0.009		UGG	SFB	LM28	1.000
SB-29	02-oct-1991 02-oct-1991		CHCL3	CHLOROFORM		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991 02-oct-1991		CHRY	CHRYSENE		0.220		UGG	SHB	LM27	1.000
SB-29			CL6BZ	HEXACHLOROBENZENE		0.046		UGG	SHB	LM27	1.000
SB-29	02-oct-1991 02-oct-1991		CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	SHB	LM27	1.000
SB-29	02-0ct-1991 02-oct-1991		CL6ET	HEXACHLOROETHANE		0.067		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		CLC6H5	CHLOROBENZENE		0.002		UGG	SFB	LM28	1.000
SB-29 SB-29	02-oct-1991		CO	COBALT		130.000		UGG	SEA	JS13	200.000
	02-oct-1991		CR	CHROMIUM		130.000		UGG	SEA	JS13	200.000
SB-29	02-0ct-1991 02-oct-1991		CS2	CARBON DISULFIDE		0.019		UGG	SFB	LM28	1.000
SB-29	02-oct-1991 02-oct-1991		CU	COPPER		190.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		CYN	CYANIDE		0.920		UGG	VAS	KY01	1.000
SB-29	02-oct-1991		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991 02-oct-1991		DBRCLM	DIBROMOCHLOROMETHANE		0.005		UGG	SFB	LM28	1.000
SB-29	02-0ct-1991 02-oct-1991		DBZFUR			0.033		UGG	SHB	LM27	1.000
SB-29	02-001-1991 02-001-1991		DEP	DIETHYL PHTHALATE		0.190		UGG	SHB	LM27	1.000
SB-29 SB-29	02-oct-1991		DMP	DIMETRYL PHTHALATE		0.130		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	SHB	LM27	1.000
SB-29 SB-29	02-oct-1991		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		ETC6H5	ETHYLBENZENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ETMACR	ETHYL METHACRYLATE		0.011		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		FANT	FLUORANTHENE		0.085		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		FE	IRON	_	18000.000	1-1	UGG	SEA	JS13	200.000
SB-29	02-oct-1991		FLRENE		LT	0.033	•	UGG	SHB	LM27	1.000
SB-29	02-oct-1991		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		HG	MERCURY		0.027	L	UGG	QUJ	HG9	1.000
SB-29	02-oct-1991			INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		ISOPHR	ISOPHORONE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		K	POTASSIUM		24000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		MEC6H5	TOLUENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		MEK	METHYLETHYL KETONE	LT	0.005		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		MG	MAGNESIUM		16000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		MIBK	METHYLISOBUTYL KETONE	LT	0.005		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		MN	MANGANESE	LT	400.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		MNBK	METHYL-N-BUTYL KETONE	LT	0.022		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		МО	MOLYBDENUM	LT	200.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NA	SODIUM		9000.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NAP	NAPHTHALENE	LŦ	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NB	NITROBENZENE		0.071		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NI	NICKEL	LT	310.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		NNDNPA	N-NITROSO	LT	0.071		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	SHB	LM27	1.000
SB-29	02-oct-1991		РВ	LEAD	LT	590.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		PB	LEAD		19.000		UGG	WKI	JD17	3.000
JU L/	,,,										

Soil

							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
SB-29	02-oct-1991	9.900	PCP	PENTACHLOROPHENOL	LT	0.200		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	PHANTR	PHENANTHRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	PHENOL.	PHENOL	LT	0.110		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	PYR	PYRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-29	02-oct-1991	9.900	SB	ANTIMONY	LT	8300.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	9.900	SE	SELENIUM	LT	1500.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		SE	SELENIUM	LT	0.250		UGG	WQQ	JD15	1.000
SB-29		9.900	STYR	STYRENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29		9.900		TRANS-1,2-DICHLOROETHYLEN	LT	0.013		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		T13DCP	TRANS-1,3-DICHLOROPROPENE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991		TCLEA	1,1,2,2-TETRACHLOROETHANE				UGG	SFB	LM28	1.000
SB-29	02-oct-1991		TCLEE	TETRACHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		TDCBU	TRANS-1,4-DICHLORO-2-BUTE	LT	0.016		UGG	SFB	LM28	1.000
SB-29		9.900	TI	TITANIUM		2300.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991	9.900	TL	THALLIUM	LT	2900.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		TPHC	TOTAL PETROLEUM		73.300		UGG	RTD	00	1.000
SB-29	02-oct-1991		TRCLE	TRICHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		٧ .	VANADIUM	LT	350.000		UGG	SEA	JS13	200.000
SB-29	02-oct-1991		XYLEN	*XYLENES	LT	0.002		UGG	SFB	LM28	1.000
SB-29	02-oct-1991		ZN	ZINC	LT	390.000		UGG	SEA	JS13	200.000
SB-30	01-oct-1991	10.000	111TCE	1,1,1-TRICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	112TCE	1,1,2-TRICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	11DCE	1,1-DICHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	11DCLE	1,1-DICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	123CPR	1,2,3-TRICHLOROPROPANE	LT	0.003		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	124TCB	1,2,4-TRICHLOROBENZENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	12DCLB	1,2-DICHLOROBENZENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	12DCLB	1,2-DICHLOROBENZENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	12DCLE	1,2-DICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	12DCLP	1,2-DICHLOROPROPANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	.01-oct-1991	10.000	13DCLB	1,3-DICHLOROBENZENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	13DCLB	1,3-DICHLOROBENZENE	LT	0.120		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	14DCLB	1,4-DICHLOROBENZENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	14DCLB	1,4-DICHLOROBENZENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	245TCP	2,4,5-TRICHLOROPHENOL	LT	0.086		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	246TCP	2,4,6-TRICHLOROPHENOL	LT	0.082		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	24DCLP	2,4-DICHLOROPHENOL	LT	0.140		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	24DMPN	2,4-DIMETHYLPHENOL	LT	2.600		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	24DNP	2,4-DINITROPHENOL		0.700		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	24DNT	2,4-DINITROTOLUENE	LT	0.370		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	26DNT	2,6-DINITROTOLUENE		0.066		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	<b>2CLEVE</b>	2-CHLOROETHYLVINYL ETHER	LT	0.011		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	2CLP	2-CHLOROPHENOL	LT	0.110		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	2MNAP	2-METHYLNAPHTHALENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	2MP	2-METHYLPHENOL	LT	0.350		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	2NANIL	2-NITROANILINE		0.079		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	2NP	2-NITROPHENOL	LT	0.069		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	33DCBD	3,3'-DICHLOROBENZIDINE	LT	3.400		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	3NAN1L			0.950		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	46DNTC	4,6-DINITRO-2-METHYLPHENO				UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	SHB	LM27	1.000

#### Soil

				20101 0 2210			Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
SB-30	01-oct-1991	10.000	4MP	4-METHYLPHENOL	LT	0.300		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	4NANIL	4-NITROANILINE	LT	1.200		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	4NP	4-NITROPHENOL	LT	0.860		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	ACET	ACETONE	LT	0.046		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	ACROLN	ACROLEIN	LT	0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	ACRYLO	ACRYLONITRILE	LT	0.006		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	AG	SILVER	LT	52.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	AL	ALUMINUM		10000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	ANAPNE	ACENAPHTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	ANTRC	ANTHRACENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	AS	ARSENIC	LT	360.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	AS	ARSENIC		2.510		UGG	WDZ	JD19	1.000
SB-30	01-oct-1991	10.000	B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	B2CIPE		LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000		BIS (2-CHLOROETHYL) ETHER				UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	BA	BARIUM	LT	96.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	BAPYR	BENZO [A] PYRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	BBFANT	BENZO [B] FLUORANTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	BE	BERYLLIUM		50.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	BRDCLM	BROMODICHLOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	C13DCP	CIS-1,3-DICHLOROPROPYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	C2AVE	ACETIC ACID, VINYL ESTER				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	C2H3CL	CHLOROETHENE		0.002 .		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	C2H5CL	CHLOROETHANE	LT	0.017		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	C6H6	BENZENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	CA	CALCIUM		72000.000		UGG	SEA	JS13	200.000
SB-30	01-oct-1991	10.000	CARBAZ		ND	3.400	R	UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	CCL2F2	DICHLORODIFLUOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	CCL3F	TRICHLOROFLUOROMETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	CCL4	CARBON TETRACHLORIDE	LT	0.003		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	CD ·	CADMIUM	LT	52.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	CDCBU	CIS-1,4-DICHLORO-2-BUTENE	LT	0.015		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CH2BR2			0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CH2CL2			0.040		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CH3BR	BROMOMETHANE	LT	0.017		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CH3CL	CHLOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CHBR3	BROMOFORM		0.009		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	CHCL3	CHLOROFORM		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CHRY	CHRYSENE	LT	0.220		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	SHB	LM27	1.000
SB-30	01-oct-1991		CL6ET	HEXACHLOROETHANE		0.067		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	CLC6H5	CHLOROBENZENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CO	COBALT		66.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		CR	CHROMIUM		67.000		UGG		JS13	100.000
SB-30	01-oct-1991		CS2	CARBON DISULFIDE		0.019		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CU	COPPER		94.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		CYN	CYANIDE		0.920		UGG	VAS	KY01	1.000
SB-30	01-oct-1991		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	SHB	LM27	1.000
30-30	01 00C*1771		Samin			- <del>-</del>					

#### Soil

							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
op. 70	04+ 4004	10.000	DBRCLM	DIBROMOCHLOROMETHANE	LT	0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000 10.000	DBZFUR	DIBENZOFURAN		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	DEP	DIETHYL PHTHALATE		0.190		UGG	SHB	LM27	1.000
SB-30	01-oct-1991 01-oct-1991	10.000	DMP	DIMETHYL PHTHALATE		0.130		UGG	SHB	LM27	1.000
SB-30		10.000	DNBP	DI-N-BUTYL PHTHALATE		2.000		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		ETC6H5	ETHYLBENZENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000		ETHYL METHACRYLATE		0.011		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	FANT	FLUORANTHENE		0.085		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000 10.000	FE	IRON		15000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		FLRENE	FLUORENE	ιT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000				0.180		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	HCBD	HEXACHLOROBUTAD I ENE		0.027	L	UGG	QUJ	HG9	1.000
SB-30	01-oct-1991	10.000	HG	MERCURY			-	UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000		INDENO [1,2,3-C,D] PYRENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	•	ISOPHORONE		12000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	K	POTASSIUM		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	MEC6H5	TOLUENE		0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	MEK	METHYLETHYL KETONE	LI	18000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	MG	MAGNESIUM				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	MIBK	METHYLISOBUTYL KETONE	LI	0.005		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	MN	MANGANESE		590.000 0.022		UGG	SFB	LM28	1.000
\$8-30	01-oct-1991	10.000	MNBK	METHYL-N-BUTYL KETONE				UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	MO	MOLYBDENUM		100.000			SEA	JS13	100.000
SB-30	01-oct-1991	10.000	NA	SODIUM	-	4500.000		UGG		LM27	1.000
SB-30	01-oct-1991	10.000	NAP	NAPHTHALENE		0.033		UGG	SHB		1.000
SB-30	01-oct-1991	10.000	NB	NITROBENZENE		0.071		UGG	SHB	LM27	
SB-30	01-oct-1991	10.000	NI	NICKEL		150.000		UGG	SEA	JS13 LM27	100.000 1.000
SB-30	01-oct-1991	10.000	NNDNPA	N-NITROSO		0.071		UGG	SHB		1.000
SB-30	01-oct-1991	10.000	NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	SHB	LM27	
SB-30	01-oct-1991	10.000	PB	LEAD	LT	300.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	PB	LEAD		5.150		UGG	WKI	JD17	1.000
SB-30	01-oct-1991	10.000	PCP	PENTACHLOROPHENOL		0.200		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	PHANTR	PHENANTHRENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	PHENOL	PHENOL		0.110		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	PYR	PYRENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	10.000	SB	ANTIMONY		4100.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	SE	SELENIUM		740.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	SE	SELENIUM		0.250		UĢG	WQQ	JD15	1.000 1.000
SB-30	01-oct-1991		STYR	STYRENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1 <b>9</b> 91	10.000		TRANS-1,2-DICHLOROETHYLEN				UGG	SFB	LM28	
SB-30	01-oct-1991	10.000	T13DCP	TRANS-1,3-DICHLOROPROPENE				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	TCLEA	1,1,2,2-TETRACHLOROETHANE				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	TCLEE	TETRACHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	TDCBU	TRANS-1,4-DICHLORO-2-BUTE				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	TI	TITANIUM		1200.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	TL	THALLIUM		1500.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	10.000	TPHC	TOTAL PETROLEUM		10.000		UGG	RTD	00	1.000
SB-30	01-oct-1991	10.000	TRCLE	TRICHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	٧	VANADIUM		180.000		UGG	SEA		100.000
SB-30	01-oct-1991	10.000	XYLEN	*XYLENES		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	10.000	ZN	ZINC		190.000		UGG	SEA	J\$13	100.000
SB-30	01-oct-1991	20.000	111TCE	1,1,1-TRICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		112TCE	1,1,2-TRICHLOROETHANE		0.002		UGG		LM28	1.000
SB-30	01-oct-1991		11DCE	1,1-DICHLOROETHYLENE	LT	0.002		UGG		LM28	1.000
SB-30	01-oct-1991		11DCLE	1,1-DICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
				•							

Soil

					Ecver 3 bata			Flag				
	Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
	SB-30	01-oct-1991	20.000	123CPR	1,2,3-TRICHLOROPROPANE	LT	0.003		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991	20.000		• •	LT	0.033		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000		• •	LT	0.002		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991	20.000			LT	0.033		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000		•	LT	0.002		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991	20.000			LT	0.002		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991	20.000		•	LT	0.002		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991	20.000		•	LT	0.120		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000		•	LT	0.002		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991	20.000				0.033		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000		• • •		0.086		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000		-1 .12		0.082		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000		2,4-DICHLOROPHENOL		0.140		UGG	SHB		1.000
		01-oct-1991	20.000		2,4-DIMETHYLPHENOL		2.600		UGG	SHB		1.000
	SB-30 SB-30	01-oct-1991	20.000	24DNP	2,4-DINITROPHENOL		0.700		UGG	SHB	LM27	1.000
		01-oct-1991	20.000	24DNT	2,4-DINITROTOLUENE		0.370		UGG	SHB	LM27	1.000
	SB-30 SB-30	01-oct-1991	20.000	26DNT	2,6-DINITROTOLUENE		0.066		UGG		LM27	1.000
	SB-30	01-oct-1991	20.000		·		0.011		UGG	SFB	LM28	1.000
	SB-30	01-0ct-1991	20.000	2CLP	2-CHLOROPHENOL		0.110		UGG			1.000
		01-oct-1991	20.000	2CNAP	2-CHLORONAPHTHALENE		0.140		UGG			1.000
	SB-30 SB-30	01-0ct-1991	20.000	2MNAP	2-METHYLNAPHTHALENE		0.033		UGG		LM27	1.000
		01-oct-1991	20.000	2MP	2-METHYLPHENOL		0.350		UGG	SHB		1.000
	SB-30 SB-30	01-oct-1991	20.000	2NANIL	2-NITROANILINE		0.079		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	2NP	2-NITROPHENOL		0.069		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000		3,3'-DICHLOROBENZIDINE		3.400		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	3NANIL			0.950		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	46DNTC	4,6-DINITRO-2-METHYLPHENO				UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER				UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	4CANIL	4-CHLOROANILINE		1.600		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	4CLPPE	4-CHLOROPHENYLPHENYL		0.044		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	4MP	4-METHYLPHENOL	LT	0.300		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	4NANIL	4-NITROANILINE	LT	1.200		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	4NP	4-NITROPHENOL	LT	0.860		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	ACET	ACETONE		0.046		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991	20.000	ACROLN	ACROLEIN	LT	0.005		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991	20.000	ACRYLO	ACRYLONITRILE		0.006		UGG	SFB	LM28	1.000
	SB-30	01-oct-1991		AG	SILVER		210.000		UGG	SEA	JS13	400.000
	SB-30	01-oct-1991	20.000	AL	ALUMINUM .		9800.000		UGG	SEA	JS13	400.000
•	SB-30	01-oct-1991		ANAPNE			0.033		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	ANAPYL		LT	0.033		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991		ANTRC	ANTHRACENE	LT	0.033		UGG	ŞHB	LM27	1.000
	SB-30	01-oct-1991		AS	ARSENIC		1400.000		UGG	SEA	JS13	400.000
	SB-30	01-oct-1991		AS	ARSENIC		2.550		UGG	WDZ	JD19	1.000
	SB-30	01-oct-1991		B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	SHB	LM27 -	1.000
	SB-30	01-oct-1991		B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	SHB	LM27	1.000
	SB-30	01-oct-1991		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991		BA	BARIUM		380.000		UGG	SEA	JS13	400.000
	SB-30 SB-30	01-oct-1991		BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991	20.000	BAPYR	BENZO [A] PYRENE		0.033		UGG	SHB	LM27	1.000
	SB-30	01-oct-1991		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG		LM27	1.000
	SB-30	01-0ct-1991	20.000	BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
	SB-30	01-oct-1991	20.000	BE	BERYLLIUM		200.000		UGG	SEA	JS13	400.000
	SB-30	01-oct-1991		BGHIPY			0.250		UGG	SHB	LM27	1.000
	30-30	VI-001-1771	20.000	541111								

### Soil

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramet	er	Val	lue	Code	Units	Lot	Method	Dilution
											4 000
SB-30	01-oct-1991	20.000	BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	BRDCLM	BROMODICHLOROMETHANE		0.004		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	C13DCP	CIS-1,3-DICHLOROPROPYLENE				UGG	SFB	LM28	1.000
SB-30	01-oct <b>-199</b> 1	20.000	C2AVE	ACETIC ACID, VINYL ESTER				UGG		LM28	1.000
SB-30	01-oct-1991	20.000	C2H3CL	CHLOROETHENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	C2H5CL			0.017		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	C6H6	BENZENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	CA	CALCIUM		60000.000	_	UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	CARBAZ	9H-CARBAZOLE		3.400	R	UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000		DICHLORODIFLUOROMETHANE		0.004		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	CCL3F	TRICHLOROFLUOROMETHANE		0.002		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	CCL4	CARBON TETRACHLORIDE		0.003		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	CD	CADMIUM		210.000		UGG		JS13	400.000
SB-30	01-oct-1991	20.000	CDCBU	CIS-1,4-DICHLORO-2-BUTENE				UGG		LM28	1.000
SB-30	01-oct-1991	20.000		METHYLENE BROMIDE		0.002		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	CH2CL2	METHYLENE CHLORIDE		0.040		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	CH3BR	BROMOMETHANE		0.017		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	CH3CL	CHLOROMETHANE		0.004		UGG		LM28	1.000
\$B-30	01-oct-1991	20.000	CHBR3	BROMOFORM		0.009		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	CHCL3	CHLOROFORM		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	CHRY	CHRYSENE	ĻŢ	0.220		UGG		LM27	1.000
SB-30	01-oct-1991	20.000	CL6BZ	HEXACHLOROBENZENE		0.046		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	CL6ET	HEXACHLOROETHANE		0.067		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	CLC6H5	CHLOROBENZENE	LT	0.002		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	CO	COBALT		270.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	CR	CHROMIUM		270.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	CS2	CARBON DISULFIDE	LT	0.019		UGG		LM28	1.000
SB-30	01-oct-1991	20.000	CU	COPPER		370.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
sa-30	01-oct-1991	20.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	DBRCLM	DIBROMOCHLOROMETHANE	LT	0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	DBZFUR	DIBENZOFURAN		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	DEP	DIETHYL PHTHALATE	LT	0.190		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	DNBP	DI-N-BUTYL PHTHALATE		6.000		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	ETC6H5	ETHYLBENZENE ·	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	ETMACR	ETHYL METHACRYLATE	LT	0.011		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	FANT	FLUORANTHENE	LT	0.085		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	FE	IRON		13000.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	FLRENE	FLUORENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	HG	MERCURY	LT	0.027	L	UGG	QUJ	HG9	1.000
SB-30	01-oct-1991	20.000	ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	ISOPHR	ISOPHORONE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	K	POTASSIUM	LT	48000.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991		MEC6H5	TOLUENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		MEK	METHYLETHYL KETONE	LT	0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		MG	MAGNESIUM		15000.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991		MIBK	METHYLISOBUTYL KETONE		0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		MN	MANGANESE		800.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991		MNBK	METHYL-N-BUTYL KETONE		0.022		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		MO	MOLYBDENUM		400.000		UGG	SEA		400.000
SB-30	01-oct-1991		NA	SODIUM		18000.000		UGG		JS13	400.000
30 30	01 000-1991	20.000	****	200.1011				-		-	

# Soil

				Level 3 Data			e				
							Flag	Unito	Lat	Mathad	Dilutian
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	LOL	Method	Dilution
				MARINTHAL FUE	. т	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	NAP	NAPHTHALENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	NB	NITROBENZENE				UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	NI .	NICKEL		620.000		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	NNDNPA	N-NITROSO		0.071				LM27	1.000
SB-30	01-oct-1991	20.000	NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	SHB	JS13	400.000
SB-30	01-oct-1991	20.000	PB	LEAD	LI	1200.000		UGG	SEA	JD17	1.000
SB-30	01-oct-1991	20.000	PB	LEAD		6.240		UGG	WK I Shb	LM27	1.000
SB-30	01-oct-1991	20.000	PCP	PENTACHLOROPHENOL		0.200		UGG		LM27	1.000
SB-30	01-oct-1991	20.000	PHANTR	PHENANTHRENE		0.033		UGG	SHB		1.000
SB-30	01-oct-1991	20.000	PHENOL	PHENOL		0.110		UGG	SHB	LM27	
SB-30	01-oct-1991	20.000	PYR	PYRENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	20.000	SB	ANTIMONY		17000.000		UGG	SEA	J\$13	400.000
SB-30	01-oct-1991	20.000	SE	SELENIUM		3000.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	SE	SELENIUM		0.250		UGG	WQQ	JD15	1.000
SB-30	01-oct-1991	20.000	STYR	STYRENE		0.002	•	UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	T12DCE	TRANS-1,2-DICHLOROETHYLEN				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	T13DCP	TRANS-1,3-DICHLOROPROPENE				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	TCLEA	1,1,2,2-TETRACHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	TCLEE	TETRACHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	TDCBU	TRANS-1,4-DICHLORO-2-BUTE	LT	0.016		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	TI	TITANIUM	LT	4700.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	TL	THALLIUM	LT	5900.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	TPHC	TOTAL PETROLEUM	LT	10.000		UGG	RTD	00	1.000
SB-30	01-oct-1991	20.000	TRCLE	TRICHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000		VANADIUM	LT	710.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	20.000	XYLEN	*XYLENES	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	20.000	ZN	ZINC	LT	780.000		UGG	SEA	JS13	400.000
SB-30	01-oct-1991	25.800		1,1,1-TRICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800		1,1,2-TRICHLOROETHANE	LT	0.002		UGG	SFB	LM28 .	1.000
SB-30	01-oct-1991	25.800	11DCE	1,1-DICHLOROETHYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800		1,1-DICHLOROETHANE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800		1,2,3-TRICHLOROPROPANE		0.003		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800		1,2,4-TRICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800		1,2-DICHLOROBENZENE		0.002		UGG	SFB	LM28	1.000
	01-oct-1991	25.800		1,2-DICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-30				1,2-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	12DCLP	1,2-DICHLOROPROPANE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800		1,3-DICHLOROBENZENE		0.002		UGG		LM28	1.000
SB-30	01-oct-1991			1,3-DICHLOROBENZENE		0.120		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	13DCLB			0.002		UGG	SFB	LM28	1.000
\$B-30	01-oct-1991		14DCLB	1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991			•		0.086		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		245TCP	2,4,5-TRICHLOROPHENOL		0.082		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	246TCP	2,4,6-TRICHLOROPHENOL				UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	24DCLP	2,4-DICHLOROPHENOL		0.140		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	24DMPN	2,4-DIMETHYLPHENOL		2.600				LM27	1.000
SB-30	01-oct-1991	25.800	24DNP	2,4-DINITROPHENOL		0.700		UGG	SHB	LM27	
SB-30	01-oct-1991	25.800	24DNT	2,4-DINITROTOLUENE		0.370		UGG	SHB		1.000
SB-30	01-oct-1991		26DNT	2,6-DINITROTOLUENE		0.066		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		<b>2CLEVE</b>	2-CHLOROETHYLVINYL ETHER		0.011		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	<b>2CLP</b>	2-CHLOROPHENOL		0.110		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	2MNAP	2-METHYLNAPHTHALENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	2MP	2-METHYLPHENOL	LT	0.350		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	2NANIL	2-NITROANILINE	LT	0.079		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		2NP	2-NITROPHENOL	LT	0.069		UGG	SHB	LM27	1.000

Soil

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramet	ег	Va	lue	Code	Units	Lot	Method	Dilution
	·	•									
SB-30	01-oct-1991	25.800	33DCBD	3,3'-DICHLOROBENZIDINE	LT	3.400		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	3NANIL	3-NITROANILINE	LT	0.950		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	4BRPPE	4-BROMOPHENYLPHENYL ETHER				UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	4CANIL			1.600		UGG	SHB	LM27	1.000
	01-oct-1991	25.800	4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	SHB	LM27	1.000
SB-30						0.044		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	4CLPPE	4-CHLOROPHENYLPHENYL				UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	4MP	4-METHYLPHENOL		0.300					
SB-30	01-oct-1991	25.800	4NANIL	4-NITROANILINE		1.200		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	4NP	4-NITROPHENOL		0.860		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	ACET	ACETONE		0.046		UGG	SFB	LM28	1.000
\$B-30	01-oct-1991	25.800	ACROLN	ACROLEIN		0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	ACRYLO	ACRYLONITRILE	LT	0.006		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	AG	SILVER	LT	52.000		UGG	SEÁ	JS13	100.000
SB-30	01-oct-1991	25.800	AL	ALUMINUM		13000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	25.800	ANAPNE	ACENAPHTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	ANTRC	ANTHRACENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	AS	ARSENIC		360.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	25.800	AS	ARSENIC		2.420		UGG	WDZ	JD19	1.000
SB-30	01-oct-1991	25.800	B2CEXM	BIS (2-CHLOROETHOXY)	1 T	0.033		UGG	SHB	LM27	1.000
	01-oct-1991	25.800	B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	SHB	LM27	1.000
SB-30								UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	B2CLEE	BIS (2-CHLOROETHYL) ETHER					SHB	LM27	1.000
SB-30	01-oct-1991	25.800	B2EHP	BIS (2-ETHYLHEXYL)	LI	0.390	•	UGG		JS13	
SB-30	01-oct-1991	25.800	BA	BARIUM		160.000		UGG	SEA		100.000
SB-30	01-oct-1991	25.800	BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	BAPYR	BENZO [A] PYRENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	BE	BERYLLIUM		50.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	25.800	BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	BRDCLM	BROMODICHLOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	C13DCP	CIS-1,3-DICHLOROPROPYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	C2AVE	ACETIC ACID, VINYL ESTER				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	C2H3CL	CHLOROETHENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	C2H5CL	CHLOROETHANE	LT	0.017		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		C6H6	BENZENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	CA	CALCIUM		36000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	25.800	CARBAZ	9H-CARBAZOLE	NU	3.400	R	UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	CCL2F2	DICHLORODIFLUOROMETHANE		0.004	**	UGG	SFB	LM28	1.000
		25.800	CCL2F2			0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991			TRICHLOROFLUOROMETHANE				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	CCL4	CARBON TETRACHLORIDE		0.003					
SB-30	01-oct-1991	25.800	CD	CADMIUM		52.000		UGG	SEA	J\$13	100.000
\$B-30	01-oct-1991	25.800	CDCBU	CIS-1,4-DICHLORO-2-BUTENE				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	CH2BR2	METHYLENE BROMIDE		0.002		UGG		LM28	1.000
SB-30	01-oct-1991	25.800	CH2CL2	METHYLENE CHLORIDE	LT	0.040		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	CH3BR	BROMOMETHANE	LT	0.017		UGG	SFB	LM28	1.000
\$B-30	01-oct-1991	25.800	CH3CL	CHLOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	CHBR3	BROMOFORM	LT	0.009		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	CHCL3	CHLOROFORM	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	CHRY	CHRYSENE	LT	0.220		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	CL6BZ	HEXACHLOROBENZENE		0.046		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG	SHB	LM27	1.000
SB-30	01-oct-1991		CL6ET	HEXACHLOROETHANE		0.067		UGG	SHB	LM27	1.000
30 30	01 001 1771	23.000	02021								

				Ecver 3 bara			Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
	•					0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991			•=		0.002		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	25.800	CO	000/121		66.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		CR	011110111		67.000		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		CS2			0.019		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	25.800	CU	00112		94.000		UGG	VAS	KY01	1.000
SB-30	01-oct-1991	25.800	CYN	•		0.920				LM27	1.000
SB-30	01-oct-1991	25.800	DBAHA	DIDLIL LINING THE CONTROL		0.033		UGG	SHB	LM28	1.000
SB-30	01-oct-1991	25.800	DBRCLM			0.005		UGG	SFB	LM27	1.000
SB-30	01-oct-1991		DBZFUR	- 1		0.033		UGG	SHB		1.000
SB-30	01-oct-1991	25.800	DEP			0.190		UGG	SHB	LM27	
SB-30	01-oct-1991	25.800	DMP	DIMETHYL PHTHALATE		0.130		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	DNBP	DI-N-BUTYL PHTHALATE		3.900		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	DNOP			0.260		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	ETC6H5	ETHYLBENZENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		ETMACR	ETHYL METHACRYLATE		0.011		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	FANT	FLUORANTHENE	LT	0.085	•	UGG	SHB	LM27	1.000
SB-30	01-oct-1991		FE	IRON		17000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	25.800	FLRENE	FLUORENE	LT	0.033		UGG		LM27	1.000
SB-30	01-oct-1991		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		HG	MERCURY		0.027	L	UGG	QUJ	HG9	1.000
SB-30	01-oct-1991		ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	ISOPHR	ISOPHORONE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	25.800	ĸ	POTASSIUM		12000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		MEC6H5	TOLUENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		MEK	METHYLETHYL KETONE	LT	0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		MG	MAGNESIUM		12000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		MIBK	METHYLISOBUTYL KETONE	LT	0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		MN	MANGANESE		720.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		MNBK	METHYL-N-BUTYL KETONE	LT	0.022		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		MO	MOLYBDENUM	LT	100.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		NA	SODIUM	LT	4500.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	25.800	NAP	NAPHTHALENE	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		NB	NITROBENZENE	LT	0.071		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		NI ·	NICKEL	LT	150.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		NNDNPA	N-NITROSO	LT	0.071		UGG	SHB	LM27	1.000
	01-oct-1991		NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		PB	LEAD		300.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		PB	LEAD		6.060		UGG	WKI	JD17	1.000
SB-30			PCP	PENTACHLOROPHENOL	LT	0.200		UGG	SHB	LM27	1.000
SB-30 SB-30	01-oct-1991 01-oct-1991		PHANTR	PHENANTHRENE		0.033	•	UGG	SHB	LM27	1.000
	01-oct-1991		PHENOL	PHENOL	LT	0.110		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		PYR	PYRENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		SB	ANTIMONY		4100.000	d	UGG	SEA	JS13	100.000
SB-30	01-oct-1991		SE	SELENIUM		740.000		UGG	SEA	JS13	100.000
SB-30	01-0ct-1991		SE	SELENIUM		0.250		UGG	WQQ	JD15	1.000
SB-30			STYR	STYRENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991			TRANS-1,2-DICHLOROETHYLEN				UGG	SFB	LM28	1.000
SB-30	01-oct-1991		T12DCE T13DCP	TRANS-1,3-DICHLOROPROPENE				UGG	SFB		1.000
SB-30	01-oct-1991			1,1,2,2-TETRACHLOROETHANE				UGG		LM28	1.000
SB-30	01-oct-1991		TCLEA			0.002		UGG		LM28	1.000
SB-30	01-oct-1991		TCLEE	TETRACHLOROETHYLENE				UGG	SFB		1.000
SB-30	01-oct-1991		TDCBU	TRANS-1,4-DICHLORO-2-BUTE				UGG		JS13	100.000
SB-30	01-oct-1991		TI	TITANIUM		1200.000		UGG	SEA		100.000
SB-30	01-oct-1991		TL	THALLIUM		1500.000		UGG	RTD	00	1.000
SB-30	01-oct-1991		TPHC	TOTAL PETROLEUM		10.000				LM28	1.000
SB-30	01-oct-1991	25.800	TRCLE	TRICHLOROETHYLENE	L	r 0.002		UGG	31 0	FLICO	

Soil

				Level 3 Data							
							Flag				D.11. 4.1
Site ID	Sample Date	Depth	Paramete	er.	Val	.ue	Code	Units	Fot	Method	Dilution
cp. 70	01-oct-1991	25.800	v	VANADIUM	1 T	180.000		UGG	SEA	JS13	100.000
SB-30 SB-30	01-oct-1991		XYLEN			0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	25.800	ZN	ZINC		190.000		UGG	SEA	JS13	100.000
	01-oct-1991					0.002		UGG	SFB	LM28	1.000
SB-30 SB-30	01-oct-1991	5.000		1,1,2-TRICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
	01-oct-1991	5.000	11DCE	1,1-DICHLOROETHYLENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000		1,1-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-30		5.000		•		0.003		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	12DCLB	· · · · · · · · · · · · · · · · · · ·		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000		1,2-DICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991			1,2-DICHLOROETHANE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		12DCLP			0.002		UGG		LM28	1.000
SB-30	01-oct-1991		13DCLB	1,3-DICHLOROBENZENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		13DCLB	1.3-DICHLOROBENZENE		0.120		UGG	SHB	LM27	1.000
SB-30	01-oct-1991			1,4-DICHLOROBENZENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991			1,4-DICHLOROBENZENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991			2,4,5-TRICHLOROPHENOL		0.086		UGG	SHB	LM27	1.000
SB-30	01-oct-1991					0.082		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		246TCP			0.140		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	24DCLP	2,4-DICHLOROPHENOL		2.600		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000		2,4-DIMETHYLPHENOL		0.700		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	24DNP	2,4-DINITROPHENOL		0.370		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		24DNT	2,4-DINITROTOLUENE		0.066		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		26DNT	2,6-DINITROTOLUENE		0.011		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000		2-CHLOROETHYLVINYL ETHER		0.110		UGG	SHB	LM27	1.000
\$B-30	01-oct-1991	5.000	2CLP	2-CHLOROPHENOL		0.110		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		2CNAP	2-CHLORONAPHTHALENE 2-METHYLNAPHTHALENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		2MNAP			0.350		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		2MP	2-METHYLPHENOL		0.079		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		2NANIL	2-NITROANILINE		0.069		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	2NP	2-NITROPHENOL		3.400		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		33DCBD	3,3'-DICHLOROBENZIDINE		0.950		UGG	SHB	LM27	-1.000
\$B-30	01-oct-1991		3NANIL	3-NITROANILINE				UGG	SHB	LM27	1.000
SB-30	01-oct-1991			4,6-DINITRO-2-METHYLPHENO				UGG	SHB	LM27	1.000
SB-30	01-oct-1991			4-BROMOPHENYLPHENYL ETHER				UGG	SHB	LM27	1.000
SB-30	01-oct-1991		4CANIL			1.600		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		4CL3C	4-CHLORO-3-CRESOL		0.073					1.000
SB-30	01-oct-1991			4-CHLOROPHENYLPHENYL		0.044		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		4MP	4-METHYLPHENOL		0.300		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		4NANIL	4-NITROANILINE		1.200		UGG	SHB	LM27	
SB-30	01-oct-1991		4NP	4-NITROPHENOL		0.860		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		ACET	ACETONE		0.046		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		ACROLN	ACROLEIN		0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		ACRYLO	ACRYLONITRILE		0.006		UGG	SFB	LM28	1.000
\$B-30	01-oct-1991		AG	SILVER	LT	52.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	AL	ALUMINUM		11000.000		UGG	SEA	J\$13	100.000
SB-30	01-oct-1991		ANAPNE	ACENAPHTHENE		0.033		UGG	SHB	LM27	1.000
\$8-30	01-oct-1991		ANAPYL	ACENAPHTHYLENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		ANTRC	ANTHRACENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		AS	ARSENIC	LT	360.000	•	UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	AS	ARSENIC		1.330		UGG	WDZ	JD19	1.000
SB-30	01-oct-1991	5.000	B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG	SHB	LM27	1.000

Leve	1 7	Data
Leve	L D	vata

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
											400 000
SB-30	01-oct-1991	5.000	ВА			96.000	•	UGG			100.000
SB-30	01-oct-1991	5.000	BAANTR	BENZO [A] ANTHRACENE		0.033		UGG			1.000
SB-30	01-oct-1991	5.000	BAPYR	BENZO [A] PYRENE		0.033		UGG			1.000
SB-30	01-oct-1991	5.000	BBFANT	BENZO [B] FLUORANTHENE	LT	0.033		UGG			1.000
SB-30	01-oct-1991	5.000	BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG			1.000
SB-30	01-oct-1991	5.000	BE .	BERYLLIUM	LT	50.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	SHB	LM27	1.000
	01-oct-1991		BRDCLM	BROMOD I CHLOROMETHANE	LT	0.004		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000		CIS-1,3-DICHLOROPROPYLENE	LT	0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000	C2AVE	ACETIC ACID, VINYL ESTER				UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000	C2H3CL	CHLOROETHENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		C2H5CL	CHLOROETHANE		0.017		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000	C6H6	BENZENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000	CA	CALCIUM		73000.000		UGG	SEA	JS13	200.000
		5.000	CARBAZ			3.400	R	UGG	SHB	LM27	1.000
SB-30	01-oct-1991			DICHLORODIFLUOROMETHANE		0.004	••	UGG			1.000
SB-30	01-oct-1991	5.000	CCL2F2	TRICHLOROFLUOROMETHANE		0.002		UGG			1.000
SB-30	01-oct-1991		CCL3F			0.003		UGG		LM28	1.000
SB-30	01-oct-1991	5.000	CCL4	CARBON TETRACHLORIDE		52.000		UGG		JS13	100.000
SB-30		5.000	CD	CADMIUM						LM28	1.000
SB-30	01-oct-1991		CDCBU	CIS-1,4-DICHLORO-2-BUTENE				UGG		LM28	1.000
SB-30	01-oct-1991		CH2BR2	METHYLENE BROMIDE		0.002		UGG		LM28	1.000
SB-30	01-oct-1991		CH2CL2	METHYLENE CHLORIDE		0.040		UGG			1.000
SB-30	01-oct-1991		CH3BR	BROMOMETHANE		0.017		UGG		LM28	
SB-30	01-oct-1991		CH3CL	CHLOROMETHANE		0.004		UGG		LM28	1.000
SB-30	01-oct-1991		CHBR3	BROMOFORM		0.009		UGG		LM28	1.000
SB-30	01-oct-1991		CHCL3	CHLOROFORM		0.002		UGG		LM28	1.000
SB-30	01-oct-1991		CHRY	CHRYSENE		0.220		UGG		LM27	1.000
SB-30	01-oct-1991	5.000	CL6BZ	HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
SB-30	01-oct-1991	5.000	CL6CP	HEXACHLOROCYCLOPENTADIENE	LT	1.700		UGG		LM27	1.000
SB-30	01-oct-1991	5.000	CL6ET	HEXACHLOROETHANE		0.067		UGG		LM27	1.000
SB-30	01-oct-1991	5.000	CLC6H5	CHLOROBENZENE	LT	0.002		UGG		LM28	1.000
SB-30	01-oct-1991	5.000	CO	COBALT	LT	66.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	CR	CHROMIUM	LT	67.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	CS2	CARBON DISULFIDE	LT	0.019		UGG		LM28	1.000
SB-30	01-oct-1991	5.000	CU	COPPER	LT	94.000	•	UGG		JS13	100.000
SB-30	01-oct-1991		CYN	CYANIDE	LT	0.920		UGG	VAS	KY01	1.000
SB-30	01-oct-1991	5.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	ŚHB	LM27	1.000
SB-30	01-oct-1991	5.000	DBRCLM	DIBROMOCHLOROMETHANE	LT	0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		DBZFUR	DIBENZOFURAN	LT	0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		DEP	DIETHYL PHTHALATE		0.190		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		DNBP	DI-N-BUTYL PHTHALATE	LT	0.920		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	SHB	LM27	1.000
SB-30	01-oct-1991		ETC6H5	ETHYLBENZENE		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		ETMACR	ETHYL METHACRYLATE	LT	0.011		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		FANT	FLUORANTHENE		0.085		UGG	SHB	LM27	1.000
			FE	IRON		16000.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		FLRENE	FLUORENE	ΙT	0.033		UGG		LM27	1.000
SB-30	01-oct-1991					0.180		UGG		LM27	1.000
SB-30	01-oct-1991		HCBD	HEXACHLOROBUTAD I ENE		0.180	L	UGG	QUJ	HG9	1.000
SB-30	01-oct-1991		HG	MERCURY			L		SHB	LM27	1.000
SB-30	01-oct-1991		I CDPYR	INDENO [1,2,3-C,D] PYRENE				UGG		LM27	1.000
\$B-30	01-oct-1991		ISOPHR	ISOPHORONE		0.033		UGG			100.000
SB-30	01-oct-1991		K	POTASSIUM		12000.000		UGG	SEA	JS13	
SB-30	01-oct-1991	5.000	MEC6H5	TOLUENE	LŤ	0.002		UGG	218	LM28	1.000

			-	_	
1	O١	0	l 3	112	ra.

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	LOT	Method	Dilution
						0.005		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000	MEK	METHYLETHYL KETONE	LI	0.005		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	MG	MAGNESIUM		18000.000		UGG		LM28	1.000
SB-30	01-oct-1991	5.000	MIBK		LI	0.005		UGG	SEA	JS13	100.000
\$B-30	01-oct-1991	5.000	MN	MANGANESE		510.000				LM28	1.000
SB-30	01-oct-1991	5.000	MNBK			0.022		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	MO			100.000		UGG			100.000
SB-30	01-oct-1991	5.000	NA	SODIUM		4500.000		UGG	SEA	JS13 LM27	1.000
SB-30	01-oct-1991	5.000	NAP	NAPHTHALENE		0.033		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	NB	NITROBENZENE		0.071		UGG	SHB SEA	JS13	100.000
SB-30	01-oct-1991	5.000	NI	NICKEL		150.000		UGG UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	NNDNPA	N-NITROSO		0.071		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	PB	LEAD	LI	300.000		UGG	WKI	JD17	1.000
SB-30	01-oct-1991	5.000	PB	LEAD		4.470		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	PCP	PENTACHLOROPHENOL		0.200 0.033	•	UGG	SHB	LM27	1.000
	01-oct-1991	5.000		PHENANTHRENE				UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	PHENOL	PHENOL	LI	0.110 0.080		UGG	SHB	LM27	1.000
SB-30	01-oct-1991	5.000	PYR	PYRENE				UGG	SEA	JS13	100.000
SB-30	01-oct-1991		SB	ANTIMONY		4100.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		SE	SELENIUM		740.000 0.250		UGG	WQQ	JD15	1.000
SB-30	01-oct-1991	*	SE	SELENIUM		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		STYR	STYRENE				UGG	SFB	LM28	1.000
SB-30		5.000	T12DCE	TRANS-1,2-DICHLOROETHYLEN				UGG	SFB	LM28	1.000
SB-30	01-oct-1991		T13DCP	TRANS-1,3-DICHLOROPROPENE 1,1,2,2-TETRACHLOROETHANE				UGG	SFB	LM28	1.000
SB-30	01-oct-1991		TCLEA	• • •		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991		TCLEE	TETRACHLOROETHYLENE TRANS-1,4-DICHLORO-2-BUTE				UGG		LM28	1.000
\$B-30	01-oct-1991		TDCBU			1200.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991		TI TL	TITANIUM THALLIUM		1500.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991 01-oct-1991		TPHC	TOTAL PETROLEUM	٠.	20.600		UGĠ	RTD	00	1.000
SB-30	01-0ct-1991	5.000	TRCLE	TRICHLOROETHYLENE	ΙT	0.002		UGG	SFB	LM28	1.000
SB-30 SB-30	01-oct-1991	5.000	V	VANADIUM		180.000		UGG	SEA	JS13	100.000
SB-30	01-oct-1991	5.000	XYLEN	*XYLENES		0.002		UGG	SFB	LM28	1.000
SB-30	01-oct-1991	5.000	ZN	ZINC		190.000		UGG	SEA	JS13	100.000
SB-30	08-oct-1991	0.500	AG	SILVER		100.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	AL	ALUMINUM		16000.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	AS	ARSENIC	LT	720.000		UGG	SEA	JS13	200.000
\$B-31	08-oct-1991	0.500	AS	ARSENIC		6.320		UGG	WDZ	JD19	1.000
SB-31	08-oct-1991	0.500	BA	BARIUM	LT	190.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	BE	BERYLLIUM		100.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	CA	CALCIUM		100000.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	CD	CADMIUM	LT	100.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	CO	COBALT		130.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	CR	CHROMIUM		130.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	CU	COPPER		190.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	CYN	CYANIDE		0.920		UGG	VAS	KY01	1.000
SB-31	08-oct-1991		FE	IRON		20000.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		HG	MERCURY	LT	0.027	L	UGG	QUJ	HG9	1.000
SB-31	08-oct-1991		K	POTASSIUM		24000.000		UGG	SEA	J\$13	200.000
SB-31	08-oct-1991		MG	MAGNESIUM		14000.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		MN	MANGANESE		910.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		MO	MOLYBDENUM	LT	200.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		NA ·	SODIUM		9000.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		NI	NICKEL		310.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		PB	LEAD		590.000		UGG	SEA	JS13	200.000
JU J1	00 000 1771	3.200									

Level	3	Data
Level		vala

				Level 3 Data						
						Flag				
Site ID	Sample Date	Depth	Paramete	r	Value	Code	Units	Lot	Method	Dilution
	•	•								
SB-31	08-oct-1991	0.500	РВ	LEAD	34.000		UGG	WKI	JD17	10.000
SB-31	08-oct-1991	0.500	SB	ANTIMONY	LT 8300.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	SE	SELENIUM	LT 1500.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	SE	SELENIUM	LT 0.250		UGG	MGG	JD15	1.000
SB-31	08-oct-1991	0.500		TITANIUM	LT 2300.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500			LT 2900.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	0.500	TPHC	TOTAL PETROLEUM	15.900		UGG	RTO	00	1.000
SB-31	08-oct-1991	0.500			LT 350.000		UGG	SEA	JS13	200.000
	08-oct-1991	0.500	ZN		LT 390.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991				LT 0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991			1,1,2-TRICHLOROETHANE	LT 0.002		UGG	SFD	LM28	1.000
SB-31					LT 0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991	3.200		1,1 010112011011111111111	LT 0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991			.,	LT 0.003		UGG	SFD	LM28	1.000
SB-31	08-oct-1991			1,2,0 1111011201101111111	LT 0.033		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991			1/6/4 ///20115011655511	LT 0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991			.,	LT 0.033		UGG	SHJ	LM27	1.000
SB-31		3.200		1,2-DICHLOROBENZENE	LT 0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991	3.200		1,2-DICHLOROETHANE			UGG	SFD	LM28	1.000
SB-31	08-oct-1991			. 7	LT 0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991	3.200		1,3-DICHLOROBENZENE	LT 0.002		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991	3.200		1,3-DICHLOROBENZENE	LT 0.120			SFD	LM28	1.000
SB-31	08-oct-1991	3.200		1,4-DICHLOROBENZENE	LT 0.002		UGG		LM27	1.000
SB-31	08-oct-1991	3.200	14DCLB	1,4-DICHLOROBENZENE	LT 0.033		UGG	SHJ		1.000
SB-31	08-oct-1991	3.200		2,4,5-TRICHLOROPHENOL	LT 0.086		UGG	SHJ	LM27	
SB-31	08-oct-1991	3.200	246TCP	2,4,6-TRICHLOROPHENOL	LT 0.082		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991	3.200	24DCLP	2,4-DICHLOROPHENOL	LT 0.140		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991	3.200	24DMPN	2,4-DIMETHYLPHENOL	LT 2.600		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991	3.200	24DNP	2,4-DINITROPHENOL	LT 0.700		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		24DNT	2,4-DINITROTOLUENE	LT 0.370		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		26DNT	2,6-DINITROTOLUENE	LT 0.066		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		2CLEVE	2-CHLOROETHYLVINYL ETHER	LT 0.011		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		2CLP	2-CHLOROPHENOL	LT 0.110		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		2CNAP	2-CHLORONAPHTHALENE	LT 0.140		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		2MNAP	2-METHYLNAPHTHALENE	LT 0.033		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		2MP	2-METHYLPHENOL	LT 0.350		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		2NANIL	2-NITROANILINE	LT 0.079		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		2NP	2-NITROPHENOL	LT 0.069		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		33DCBD	3.3'-DICHLOROBENZIDINE	LT 3.400		UGĢ	SHJ	LM27	1.000
SB-31	08-oct-1991			3-NITROANILINE	LT 0.950		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991			4,6-DINITRO-2-METHYLPHENO	LT 0.170		UGG	SHJ	LM27	1.000
	08-oct-1991		4RRPPF	4-BROMOPHENYLPHENYL ETHER	LT 0.033		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991			4-CHLOROANILINE	LT 1.600		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		4CL3C	4-CHLORO-3-CRESOL	LT 0.073		UGG	SHJ	LM27	1.000
SB-31				4-CHLOROPHENYLPHENYL	LT 0.044		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		401FF2	4-METHYLPHENOL	LT 0.300		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		4MP 4NANIL	4-NITROANILINE	LT 1.200		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991				LT 0.860		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		4NP	4-NITROPHENOL	LT 0.046		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		ACET	ACETONE	LT 0.005		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		ACROLN	ACROLEIN			UGG	SFD	LM28	1.000
SB-31	08-oct-1991		ACRYLO		LT 0.006		UGG	SEA		200.000
SB-31	08-oct-1991		AG	SILVER	LT 100.000	<b>`</b>	UGG	SEA		200.000
SB-31	08-oct-1991		AL	ALUMINUM	13000.000	,				1.000
SB-31	08-oct <b>-199</b> 1		ANAPNE	ACENAPHTHENE	0.057		UGG	SHJ		1.000
SB-31	08-oct-1991		ANAPYL	ACENAPHTHYLENE	LT 0.033		UGG	SHJ		1.000
SB-31	· 08-oct-1991	3.200	ANTRC	ANTHRACENE	LT 0.033		UGG	SnJ	LM27	1.000

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	r	Val	ue	Code	Units	Lot	Method	Dilution
CD 71	08-oct-1991	3 200	AS	ARSENIC	LT	720.000		UGG ·	SEA	JS13	200.000
SB-31	08-oct-1991			ARSENIC		4.840		UGG	WDZ	JD19	1.000
SB-31	08-oct-1991				LT	0.033		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991				LT	0.033		UGG	SHJ	LM27	1.000
SB-31	08-0ct-1991 08-oct-1991			BIS (2-CHLOROETHYL) ETHER				UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	SHJ	LM27	1.000
SB-31			BA	· · •		190.000		UGG	SEA	J\$13	200.000
SB-31	08-oct-1991			BENZO [A] ANTHRACENE		0.033		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		BAPYR	BENZO [A] PYRENE		0.075		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991			BENZO [B] FLUORANTHENE		0.033		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		BBFANT	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
SB-31	08-oct-1991		BBZP			100.000		UGG		JS13	200.000
SB-31	08-oct-1991		BE	BERYLLIUM BENZO [G,H,I] PERYLENE		0.250		UGG		LM27	1.000
SB-31	08-oct-1991		BGHIPY	BENZO [K] FLUORANTHENE		0.033		UGG		LM27	1.000
SB-31	08-oct-1991		BKFANT			0.004		UGG		LM28	1.000
SB-31	08-oct-1991		BRDCLM	BROMODICHLOROMETHANE CIS-1,3-DICHLOROPROPYLENE				UGG		LM28	1.000
SB-31	08-oct-1991		C13DCP	ACETIC ACID, VINYL ESTER	LT	0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		C2AVE	CHLOROETHENE	i T	0.002		UGG		LM28	1.000
SB-31	08-oct-1991		C2H3CL			0.017		UGG .	SFD	LM28	1.000
SB-31	08-oct-1991		C2H5CL	CHLOROETHANE		0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		C6H6	BENZENE	LI	66000.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		CA	CALCIUM	MD	3.400	R	UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		CARBAZ			0.004		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CCL2F2			0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CCL3F	TRICHLOROFLUOROMETHANE		0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CCL4	CARBON TETRACHLORIDE		100.000		UGG	SEA	J\$13	200.000
SB-31	08-oct-1991		CD	CADMIUM CIS-1,4-DICHLORO-2-BUTENE				UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CDCBU			0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CH2BR2	METHYLENE BROMIDE		0.040		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CH2CL2	METHYLENE CHLORIDE		0.040		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CH3BR	BROMOMETHANE		0.004	•	UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CH3CL	CHLOROMETHANE		0.009		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CHBR3	BROMOFORM		0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		CHCL3	CHLOROFORM				UGG	SHJ		1.000
SB-31	08-oct-1991		CHRY	CHRYSENE		0.220 0.046		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		CL6BZ	HEXACHLOROBENZENE				UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		CL6ET	HEXACHLOROETHANE		0.067		UGG	SFD	LM28	1.000
\$B-31	08-oct-1991			CHLOROBENZENE		0.002		UGG		JS13	200.000
SB-31	08-oct-1991		CO	COBALT		130.000		UGG	SEA		200.000
SB-31	08-oct-1991		CR	CHROMIUM		130.000		UGG	SFD		1.000
SB-31	08-oct-1991		CS2	CARBON DISULFIDE		0.019		UGG	SEA		200.000
SB-31	08-oct-1991		CU	COPPER		190.000		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		DBRCLM	DIBROMOCHLOROMETHANE		0.005		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		DBZFUR	DIBENZOFURAN	LI	0.033				LM27	1.000
SB-31	08-oct-1991		DEP	DIETHYL PHTHALATE		0.440		UGG UGG	SHJ	LM27	1.000
SB-31	08-oct <b>-19</b> 91		DMP	DIMETHYL PHTHALATE		0.130			SHJ	LM27	1.000
\$B-31	08-oct-1991		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		ETC6H5	ETHYLBENZENE		0.002		UGG		LM28	1.000
SB-31	08-oct-1991		ETMACR	ETHYL METHACRYLATE	נו	0.011		UGG	SFD	LM27	1.000
SB-31	08-oct-1991		FANT	FLUORANTHENE		0.160		UGG	SHJ		200.000
SB-31	08-oct-1991	3.200	FE	IRON		17000.000		UGG	SEA	JS13	1.000
SB-31	08-oct-1991		FLRENE			0.033		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		HCBD	HEXACHLOROBUTAD I ENE	L	т 0.180	•	UGG	SHJ	LM27	1.000

Soil

		-		Level 3 Data							
							Flag				Dilumian
Site ID	Sample Date	Depth	Paramete	er	Vat	ue	Code	Units			Dilution
SB-31	08-oct-1991	3.200		TILITOOK,		0.027	Ŀ	UGG		HG9	1.000
SB-31	08-oct-1991	3.200	ICDPYR	INDENO [1,2,3-C,D] PYRENE		0.060		UGG		LM27	1.000
SB-31	08-oct-1991	3.200	ISOPHR			0.033		UGG		LM27	1.000
SB-31	08-oct-1991	3.200	K	POTASSIUM		24000.000		UGG		JS13	200.000
SB-31	08-oct-1991	3.200	MEC6H5	TOLUENE		0.002		UGG		LM28	1.000
SB-31	08-oct-1991	3.200	MEK	METHYLETHYL KETONE		0.005		UGG		LM28	1.000 200.000
SB-31	08-oct-1991	3.200	MG	MAGNESIUM		9400.000		UGG		JS13	
SB-31	08-oct-1991		MIBK	METHYLISOBUTYL KETONE		0.005		UGG		LM28	1.000
SB-31	08-oct-1991	3.200	MN	MANGANESE		810.000		UGG		JS13	200.000 1.000
SB-31	08-oct-1991	3.200	MNBK	METHYL-N-BUTYL KETONE		0.022		UGG		LM28	200.000
SB-31	08-oct-1991	3.200	MO	MOLYBDENUM		200.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991	3.200	NA	SODIUM		9000.000		UGG	SEA SHJ	JS13 LM27	1.000
SB-31	08-oct-1991		NAP	NAPHTHALENE		0.033		UGG		LM27	1.000
SB-31	08-oct-1991	3.200	NB	NITROBENZENE		0.071		UGG	SHJ SEA	JS13	200.000
SB-31	08-oct-1991		NI	NICKEL		310.000		UGG		LM27	1.000
SB-31	08-oct-1991		NNDNPA	N-NITROSO		0.071		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG UGG	SEA	JS13	200.000
SB-31	08-oct-1991		PB	LEAD	LI	590.000		UGG	WKI	JD17	10.000
SB-31	08-oct-1991		₽B	LEAD		96.000			SHJ	LM27	1.000
SB-31	08-oct-1991		PCP	PENTACHLOROPHENOL	LI	0.200		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		PHANTR	PHENANTHRENE		0.140		UGG	SHJ	LM27	1.000
SB-31	08-oct-1991		PHENOL	PHENOL	LI	0.110		UGG UGG	SHJ	LM27	1.000
SB-31	08-oct-1991	3.200	PYR	PYRENE		0.140			SEA	JS13	200.000
SB-31	08-oct-1991		SB	ANTIMONY		8300.000		UGG UGG	SEA	JS13	200.000
SB-31	08-oct-1991		SE	SELENIUM		1500.000		UGG	WQQ	JD15	1.000
SB-31	08-oct-1991		SE	SELENIUM		0.250		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		STYR	STYRENE		0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991			TRANS-1,2-DICHLOROETHYLEN	LI	0.013		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		T13DCP	TRANS-1,3-DICHLOROPROPENE	LI	0.013		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		TCLEA	1,1,2,2-TETRACHLOROETHANE		0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		TCLEE	TETRACHLOROETHYLENE				UGG	SFD	LM28	1.000
\$B-31	08-oct-1991		TOCBU	TRANS-1,4-DICHLORO-2-BUTE		2300.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		TI	TITANIUM		2900.000		UGG	SEA	JS13	200.000
\$B-31	08-oct-1991		TL	THALLIUM	LI	548.000		UGG	RTO	00	2.000
SB-31	08-oct-1991		TPHC	TOTAL PETROLEUM	1 T	0.002		UGG	SFD	LM28	1.000
SB-31	08-oct-1991		TRCLE	TRICHLOROETHYLENE		350.000		UGG	SEA	JS13	200.000
SB-31	08-oct-1991		٧	VANADIUM		0.002		UGG		LM28	1.000
SB-31	08-oct-1991		XYLEN			390.000		UGG		JS13	200.000
SB-31	08-oct-1991		ZN	ZINC		100.000		UGG	SEA		200.000
ss-01	04-oct-1991		AG	SILVER	L.1	5400.000		UGG	SEA		200.000
ss-01	04-oct-1991		AL	ALUMINUM	1 T	720.000		UGG	SEA	JS13	200.000
SS-01	04-oct-1991		AS	ARSENIC	Ļi	3.550		UGG	WDZ	JD19	1.000
ss-01	04-oct-1991		AS	ARSENIC	1 T	190.000		UGG	SEA	JS13	200.000
SS-01	04-oct-1991		BA	BARIUM		100.000		UGG	SEA	JS13	200.000
SS-01	04-oct-1991		BE	BERYLLIUM	LI	89000.000		UGG	SEA	JS13	200.000
ss-01	04-oct-1991		CA	CALCIUM		100.000		UGG	SEA	JS13	200.000
ss-01	04-oct-1991		CD	CADMIUM		130.000		UGG	SEA		200.000
ss-01	04-oct-1991		CO	CURONTUM		130.000		UGG	SEA		200.000
SS-01	04-oct-1991		CR	CHROMIUM		190.000		UGG	SEA		200.000
ss-01	04-oct-1991		CU	COPPER		0.920		UGG	VAS	KY01	1.000
ss-01	04-oct-1991		CYN	CYANIDE	LI	8400.000		UGG	SEA		200.000
SS-01	04-oct-1991		FE	IRON		0.027	L	UGG	GUI	HG9	1.000
ss-01	04-oct-1991		HG	MERCURY		7 24000.000	L	UGG	SEA		200.000
ss-01	04-oct-1991		K	POTASSIUM	£	10000.000		UGG	SEA		200.000
\$\$-01	04-oct-1991	0.500	MG	MAGNESIUM		10000.000		odd	JLA		

				Level 3 Data			Flag				
Site ID	Sample Date	Depth	Paramete	r	Val	ue	Code	Units	Lot	Method	Dilution
ss-01	04-oct-1991	0.500	MN	MANGANESE		400.000		UGG	SEA	JS13	200.000
SS-01	04-oct-1991	0.500	MO	MOLYBDENUM		200.000		UGG	SEA	J\$13	200.000
ss-01	04-oct-1991	0.500	NA	SODIUM		9000.000		UGG	SEA	JS13	200.000
SS-01	04-oct-1991	0.500		NICKEL		310.000		UGG	SEA	JS13	200.000
SS-01	04-oct-1991	0.500		LEAD	LT	590.000		UGG	SEA	JS13	200.000 4.000
SS-01	04-oct-1991	0.500		LEAD		23.000		UGG	WKI	JD17 JS13	200.000
ss-01	04-oct-1991	0.500		ANTIMONY		8300.000		UGG	SEA SEA	JS13 JS13	200.000
ss-01	04-oct-1991	0.500	SE	SELENIUM		1500.000		UGG UGG	WQQ	JD15	1.000
ss-01	04-oct-1991	0.500	SE	SELENIUM		0.250		UGG	SEA	JS13	200.000
SS-01	04-oct-1991	0.500	TI	TITANIUM		2300.000		UGG	SEA	JS13	200.000
SS-01	04-oct-1991	0.500	TL	THALLIUM	LI	2900.000		UGG	RTD	00	1.000
SS-01	04-oct-1991	0.500	TPHC	TOTAL PETROLEUM		12.900		UGG	SEA	JS13	200.000
ss-01	04-oct-1991	0.500	٧	VANADIUM		350.000 390.000		UGG	SEA	JS13	200.000
SS-01	04-oct-1991	0.500	ZN	ZINC		100.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991	0.500	AG	SILVER	Li	12000.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991	0.500	AL	ALUMINUM		720.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991	0.500	AS	ARSENIC	LI	6.980		UGG	WDZ	JD19	1.000
ss-02	04-oct-1991	0.500	AS	ARSENIC	1 T	190.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991	0.500	BA	BARIUM BERYLLIUM		100.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991	0.500	BE	CALCIUM		63000.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991		CA	CADMIUM	ΙT	100.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991	0.500	CD CD	COBALT		130.000		UGG	SEA	JS13	200.000
SS-02	04-oct-1991	0.500 0.500	CR	CHROMIUM		130.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991 04-oct-1991	0.500	CU	COPPER		190.000		UGG	SEA	JS13	200.000
SS-02	04-oct-1991	0.500	CYN	CYANIDE		0.920		UGG	VAS	KY01	1.000
SS-02 SS-02	04-oct-1991	0.500	FE	IRON		16000.000		UGG	SEA	J\$13	200.000
SS-02 SS-02	04-oct-1991	0.500	HG	MERCURY	LT	0.027	L	UGG	QUJ	HG9	1.000
SS-02	04-oct-1991	0.500	K	POTASSIUM	LT	24000.000		UGG	SEA	JS13	200.000
SS-02	04-oct-1991	0.500	MG	MAGNESIUM		10000.000		UGG	SEA	JS13	200.000
SS-02	04-oct-1991	0.500	MN	MANGANESE		460.000		UGG	SEA		200.000
SS-02	04-oct-1991	0.500	MO	MOLYBDENUM	LT	200.000		UGG	SEA	JS13	200.000
ss-02	04-oct-1991	0.500	NA	SODIUM	LT	9000.000		UGG	SEA		200.000
SS-02	04-oct-1991	0.500	NI	NICKEL	LT	310.000		UGG	SEA		200.000
ss-02	04-oct-1991	0.500	PB	LEAD	LT	590.000		UGG	SEA		200.000
ss-02	04-oct-1991	0.500	PB	LEAD		20.000		UGG	WKI	JD17	4.000
ss-02	04-oct-1991	0.500	SB	ANTIMONY		8300.000		UGG	SEA		200.000
ss-02	04-oct-1991	0.500	SE	SELENIUM		1500.000		UGG	SEA		200.000
ss-02	04-oct-1991		SE	SELENIUM		0.250		UGG	WQQ		1.000
ss-02	04-oct-1991	0.500	TI	TITANIUM		2300.000		UGG	SEA		200.000
ss-02	04-oct-1991	0.500	TL	THALLIUM	L1	2900.000		UGG	SEA		200.000
ss-02	04-oct-1991	0.500	TPHC	TOTAL PETROLEUM		65.300		UGG	RTD		1.000
ss-02	04-oct-1991	0.500	V	VANADIUM		350.000		UGG	SEA		200.000
ss-02	04-oct-1991	0.500	ZN	ZINC		390.000		UGG	SEA		200.000
ss-03	15- jul - 1992	0.000	124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	TRH		1.000
ss-03	15- jul - 1992	0.000	12DCLB	1,2-DICHLOROBENZENE		r 0.033		UGG	TRH		1.000
SS-03	15- jul - 1992	0.000	13DCLB	1,3-DICHLOROBENZENE		0.120		UGG	TRH		1.000
ss-03	15- jul - 1992	0.000	14DCLB	1,4-DICHLOROBENZENE		0.033		UGG	TRH		1.000
ss-03	15 - jul - 1992	0.000	245TCP			г 0.086		UGG	TRH		1.000
ss-03	15- jul - 1992		246TCP	2,4,6-TRICHLOROPHENOL		r 0.082		UGG	TRH		1.000
ss-03	15 - jul - 1992		24DCLP	2,4-DICHLOROPHENOL		г 0.140		UGG	TRH		1.000
ss-03	15 - jul - 1992		24DMPN	2,4-DIMETHYLPHENOL		T 2.600		UGG	TRH		1.000
ss-03	15- jul - 1992		24DNP	2,4-DINITROPHENOL		T 0.700		UGG	TRH		1.000
ss-03	15 - jul - 1992	0.000	24DNT	2,4-DINITROTOLUENE		T 0.370		UGG	TRH		1.000
ss-03	15- jul - 1992		26DNT	2,6-DINITROTOLUENE	L	т 0.066		UGG	TRH	LM27	1.000

				Level 3 Data							
				COVER D Data			Flag				
Site ID	Sample Date	Depth	Paramete	r	Val	ue	Code	Units	Lot	Method	Dilution
			201.5	2-CHLOROPHENOL	1 T	0.110		UGG	TRH	LM27	1.000
ss-03	15- jul - 1992			E ONEONO NENTE		0.140		UGG	TRH	LM27	1.000
ss-03	15-jul-1992			CITCOROLLA TITAL		0.033		UGG	TRH	LM27	1.000
ss-03	15-jul-1992					0.350		UGG		LM27	1.000
SS-03	15-jul-1992			<b>—</b>		0.079		UGG		LM27	1.000
SS-03	15 - jul - 1992			2-NITROANILINE		0.069		UGG	TRH	LM27	1.000
SS-03	15 - jul - 1992			C Million Hamen				UGG	TRH	LM27	1.000
ss-03	15-jul-1992			3,3'-DICHLOROBENZIDINE		3.400		UGG	TRH	LM27	1.000
ss-03	15-jul-1992	0.000	3NANIL	3-NITROANILINE		0.950		UGG	TRH	LM27	1.000
ss-0 <b>3</b>	15-jul <i>-</i> 1992	0.000	46DNTC	4,6-DINITRO-2-METHYLPHENO	LI	0.170		UGG	TRH	LM27	1.000
ss-03	15- jul - 1992	0.000		4-BROMOPHENYLPHENYL ETHER	LI	0.033			TRH	LM27	1.000
ss-03	15-jul-1992	0.000		4-CHLOROANILINE		1.600		UGG		LM27	1.000
ss-03	15-jul-1992	0.000		4-CHLORO-3-CRESOL		0.073		UGG	TRH		1.000
ss-03	15-jul-1992		4CLPPE	4-CHLOROPHENYLPHENYL		0.044		UGG	TRH	LM27	
ss-03	15-jul-1992		4MP	4-METHYLPHENOL		0.300		UGG	TRH	LM27	1.000
ss-03	15-jul-1992		4NANIL	4-NITROANILINE		1.200		UGG	TRH	LM27	1.000
ss-03	15-jul-1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
ss-03	15-jul-1992		AG	SILVER		1.720		UGG	SEY	JS13	1.000
SS-03	15- jul - 1992		AL	ALUMINUM		12000.000		UGG	SEY	JS13	3.000
SS-03	15-jul-1992		ANAPNE	ACENAPHTHENE	LT	0.033		UGG	TRH	LM27	1.000
	15- jul - 1992		ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	TRH	LM27	1.000
SS-03	15-jul-1992		ANTRC	ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
SS-03	15-jul-1992		AS	ARSENIC		4.130		UGG	ACB	JD19	1.000
SS-03	15-jul-1992 15-jul-1992		B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	TRH	LM27	1.000
ss-03			B2CIPE	BIS (2-CHLOROISOPROPYL)	LT	0.033		UGG	TRH	LM27	1.000
ss-03	15-jul-1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	TRH	LM27	1.000
ss-03	15-jul-1992	0.000	B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG	TRH	LM27	1.000
ss-03	15-jul-1992			BARIUM		145.000		UGG	SEY	JS13	1.000
ss-03	15-jul-1992		BA	BENZO [A] ANTHRACENE	i.T	0.033		UGG	TRH	LM27	1.000
ss-03	15- jul - 1992		BAANTR	BENZO [A] PYRENE		0.033		UGG	TRH	LM27	1.000
ss-03	15- jul -1992		BAPYR	BENZO [B] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000
ss-03	15- jul - 1992		BBFANT	BUTYLBENZYL PHTHALATE		0.033		UGG	TRH	LM27	1.000
ss-03	15-jul-1992		BBZP		-	1.030	N	UGG	SEY	JS13	1.000
ss-03	15-jul-1992	0.000	BE	BERYLLIUM	1 T	0.250	••	UGG	TRH	LM27	1.000
ss-03	15- jul <i>-</i> 1992	0.000	BGHIPY	BENZO [G,H,I] PERYLENE		0.033		UGG	TRH		1.000
ss-03	15- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE	LI	110000.000		UGG	SEY		20.000
ss-03	15 - jul - 1992		CA	CALCIUM	ND	0.170	R	UGG	TRH		1.000
ss-03	15- jul - 1992		CARBAZ		NU	1.270	~	UGG	SEY		1.000
ss-03	15- jul - 1992		CD	CADMIUM		0.220		UGG		LM27	1.000
ss-03	15- jul - 1992		CHRY	CHRYSENE				UGG	TRH		1.000
ss-03	15 - jul - 1992	0.000	CL6BZ	HEXACHLOROBENZENE	-	0.046		UGG	TRH		1.000
ss-03	15- jul - 1992		CL6CP	HEXACHLOROCYCLOPENTAD I EN							1.000
ss-03	15- jul-1992	0.000	CL6ET	HEXACHLOROETHANE	Lī	0.067		UGG	TRH		1.000
ss-03	15- jul <b>-</b> 1992	0.000	CO	COBALT		16.500		UGG	SEY		1.000
ss-0 <b>3</b>	15- jul <b>-</b> 1992	0.000	CR	CHROMIUM		36.600		UGG	SEY		1.000
ss-03	15- jul - 1992	0.000	CU	COPPER		25.900		UGG	SEY		
ss-03	15- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG		LM27	1.000
ss-03	15 - jul <b>-</b> 1992		DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
\$\$-03	15-jul-1992		DEP	DIETHYL PHTHALATE		r 0.190		UGG	TRH		1.000
SS-03	15- jul - 1992		DMP	DIMETHYL PHTHALATE		г 0.130		UGG	TRH		1.000
SS-03	15- jul - 1992		DNBP	DI-N-BUTYL PHTHALATE		r 0.920		UGG		LM27	1.000
SS-03	15- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE		r 0.260		UGG	TRH		1.000
SS-03	15- jul - 1992		FANT	FLUORANTHENE	L.	г 0.085		UGG	TRH		1.000
SS-03	15- jul - 1992		FE	IRON		15000.000		UGG	SEY		3.000
\$\$-03 \$\$-03	15- jul - 1992		FLRENE		L.	τ 0.033		UGG	TRE		1.000
	15- jul - 1992 15- jul - 1992		HCBD	HEXACHLOROBUTADIENE	,L	т 0.180		UGG	TRI		1.000
\$\$-03	15- jul-1992 15- jul-1992		HG	MERCURY	L'	T 0.027		UGG	THE	HG9	1.000
ss-03	15- Jul - 1992	. 0.000	113		_						

# Soil Level 3 Data

					Level 3 Data				Flag				
		n 1: Data	Domath	Danamata	ar.	V	al	ue	Code	Units	Lot	Method	Dilution
Si	ite ID	Sample Date	veptn	Paramete	:1	•	- `	<b></b>	_				
	. 07	15- jul - 1992	0.000	ICDPYR	INDENO [1,2,3-C,D] PYF	RENE LI	T	0.033		UGG	TRH	LM27	1.000
	S-03	15- jul - 1992		ISOPHR	ISOPHORONE			0.033		UGG	TRH	LM27	1.000
	S-03 S-03	15- jul-1992		K	POTASSIUM			3060.000		UGG	SEY	JS13	1.000
		15-jul-1992		MG	MAGNESIUM			8100.000		UGG	SEY	JS13	3.000
	S-03	15- jul - 1992		MN	MANGANESE			571.000		UGG	SEY	JS13	1.000
	S-03	15- jul-1992	0.000	NA NA	SODIUM	L'	T	44.800		UGG	SEY	JS13	1.000
	S-03	15- jul - 1992		NAP	NAPHTHALENE			0.033		UGG	TRH	LM27	1.000
	s-03	15-jul-1992		NB	NITROBENZENE			0.071		UGG	TRH	LM27	1.000
	s-03	15-jul-1992		NI	NICKEL			19.000		UGG	SEY	JS13	1.000
	S-03	15-jul-1992		NNDNPA	N-NITROSO	L'	T	0.071		UGG -	TRH	LM27	1.000
	S-03	15-jul-1992		NNDPA	N-NITROSO DIPHENYLAMI	NE L	T	0.038		UGG	TRH	LM27	1.000
	S-03	15-jul-1992		PB	LEAD			36.000		UGG	ZXL	JD17	10.000
	S-03	15-jul-1992 15-jul-1992		PCP	PENTACHLOROPHENOL	L	τ	0.200		UGG	TRH	LM27	1.000
	S-03	15-jul-1992		PHANTR	PHENANTHRENE	L	T	0.033		UGG	TRH	LM27	1.000
	S-03	15-jul-1992 15-jul-1992		PHENOL	PHENOL	. L	T	0.110		UGG	TRH	LM27	1.000
	S-03	15-jul-1992		PYR	PYRENE	L	T	9.033		UGG	TRH	LM27	1.000
	S-03	15-jul-1992 15-jul-1992		SB	ANTIMONY			41.300		UGG	UFG	99	1.000
	s-03	15-jul-1992 15-jul-1992		SE	SELENIUM	L	Ţ	0.250		UGG	ZSR	JD15	1.000
	s-03	15-jul-1992 15-jul-1992		TL.	THALLIUM			76.400		UGG	SEY	JS13	1.000
	S-03	15-jul-1992		TPHC	TOTAL PETROLEUM	L	T.	10.000		UGG	UBK	00	1.000
	s-03	15-jul-1992		٧	VANADIUM			23.100		UGG	SEY	JS13	1.000
	s-03	15-jul-1992		ZN	ZINC			72.900		UGG	SEY	JS13	1.000
	s-03	15-jul-1992 15-jul-1992		124TCB	1,2,4-TRICHLOROBENZEN	Æ L	T.	0.033		UGG	TRG	LM27	1.000
	s-04	15-jul-1992		124TCB	1,2,4-TRICHLOROBENZEN			0.033		UGG	TRH	LM27	1.000
	S-04	15-jul-1992 15-jul-1992		12DCLB	1,2-DICHLOROBENZENE			0.033		UGG	TRG	LM27	1.000
	s-04	15-jul-1992 15-jul-1992		12DCLB	1,2-DICHLOROBENZENE			0.033		UGG	TRH	LM27	1.000
	s-04	15-jul-1992 15-jul-1992		13DCLB	1,3-DICHLOROBENZENE			0.120		UGG	TRG	LM27	1.000
	S-04	15-jul-1992 15-jul-1992			1,3-DICHLOROBENZENE			0.120		UGG	TRH	LM27	1.000
	S-04	15-jul-1992 15-jul-1992		14DCLB	1,4-DICHLOROBENZENE			0.033		UGG	TRG	LM27	1.000
	SS-04	15-jul-1992 15-jul-1992			1,4-DICHLOROBENZENE			0.033		UGG	TRH	LM27	1.000
	S-04	15-jul-1992		245TCP	2,4,5-TRICHLOROPHENOL			0.086		UGG	TRG	LM27	1.000
	SS-04	15- jul - 1992	0.000	245TCP	2,4,5-TRICHLOROPHENOL		LT	0.086		UGG	TRH	LM27	1.000
	SS-04 SS-04	15-jul-1992		246TCP			LT	0.082		UGG	TRG	LM27	1.000
	SS-04 SS-04	15- jul - 1992		246TCP			LT	0.082		UGG	TRH	LM27	1.000
	SS-04 SS-04	15 - jul - 1992		24DCLP			LT	0.141		UGG	TRG	LM27	1.000
	SS-04 SS-04	15 - jul - 1992		24DCLP		1	LT	0.140		UGG	TRH	LM27	1.000
	SS-04 SS-04	15 - jul - 1992			2,4-DIMETHYLPHENOL	1	LT	2.600		UGG	TRG	LM27	1.000
	ss-04 ss-04	15-jul-1992			2,4-DIMETHYLPHENOL	1	LT	2.600		UGG		LM27	1.000
	SS-04 SS-04	15- jul - 1992		24DNP	2,4-DINITROPHENOL		LT	0.700		UGG	TRG	LM27	1.000
	SS-04 SS-04	15 - jul - 1992		24DNP	2,4-DINITROPHENOL			0.700		UGG	TRH	LM27	1.000
	SS-04	15- jul - 1992		24DNT	2,4-DINITROTOLUENE	1	LT	0.370		UGG	TRG	LM27	1.000
	ss-04	15- jul - 1992		24DNT	2,4-DINITROTOLUENE	- 1	LT	0.370		UGG	TRH	LM27	1.000
	SS-04	15- jul - 1992		26DNT	2,6-DINITROTOLUENE	!	LT	0.066		UGG	TRG	LM27	1.000
	ss-04	15- jul - 1992		26DNT	2,6-DINITROTOLUENE	İ	LT	0.066		UGG	TRH	LM27	1.000
	SS-04	15- jul - 1992		2CLP	2-CHLOROPHENOL	!	LT	0.110		UGG	TRG	LM27	1.000
	SS-04	15- jul - 1992		2CLP	2-CHLOROPHENOL		LT	0.110		UGG	TRH	LM27	1.000
	ss-04 ss-04	15 - jul - 1992		2CNAP	2-CHLORONAPHTHALENE		LT	0.140		UGG	TRG		1.000
	SS-04 SS-04	15 - jul - 1992		2CNAP	2-CHLORONAPHTHALENE			0.140		UGG	TRH		1.000
	SS-04 SS-04	15 - jul - 1992		2MNAP	2-METHYLNAPHTHALENE	•	L1	0.033		UGG	TRG		1.000
	ss-04 ss-04	15 Jul 1772 15 Jul - 1992		2MNAP	2-METHYLNAPHTHALENE		LI	0.033		UGG	TRH		1.000
	SS-04 SS-04	15- jul - 1992		2MP	2-METHYLPHENOL		LI	r 0.350		UGG		LM27	1.000
	\$\$-04 \$\$-04	15 jul - 1992		2MP	2-METHYLPHENOL		L1	0.350		UGG	TRH	LM27	1.000
	ss-04 ss-04	15- jul - 1992		2NANIL			L	0.079		UGG	TRO	LM27	1.000
	SS-04 SS-04	15- jul - 1992		2NANIL				0.079		UGG	TRH	LM27	1.000
	\$\$-04 \$\$-04	15- jul - 1992		2NP	2-NITROPHENOL			0.069		UGG	TRO	LM27	1.000
	33-04	15 jul 1992	. 0.000										

	. 7	_	4
Leve		เบล	та

				Level 3 Data			Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	.ue	Code	Units	Lot	Method	Dilution
											4 000
ss-04	15 - jul - 1992		2NP			0.069		UGG		LM27	1.000
SS-04	15-jul-1992			- <b>-</b> -		3.400		UGG		LM27	1.000
SS-04	15-jul-1992					3.400		UGG		LM27	1.000
SS-04	15- jul - 1992			3-NITROANILINE		0.950		UGG		LM27	1.000
SS-04	15- jul <b>- 199</b> 2			3-NITROANILINE		0.950		UGG		LM27	1.000
SS-04	15-jul-1992			4,6-DINITRO-2-METHYLPHENO				UGG	TRG	LM27	1.000
SS-04	15-jul-1992	0.000		4,6-DINITRO-2-METHYLPHENO				UGG	TRH	LM27	1.000
SS-04	15-jul-1992	0.000		4-BROMOPHENYLPHENYL ETHER				UGG		LM27	1.000
SS-04	15- jul - 1992	0.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER				UGG		LM27	1.000
SS-04	15-jul-1992	0.000	4CANIL	4-CHLOROANILINE		1.600		UGG		LM27	1.000
SS-04	15-jul-1992	0.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG		LM27	1.000
SS-04	15-jul-1992	0.000	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG		LM27	1.000
SS-04	15-jul-1992		4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG		LM27	1.000
ss-04	15-jul-1992		4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	TRG	LM27	1.000
ss-04	15- jul - 1992		4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	TRH	LM27	1.000
ss-04	15-jul-1992		4MP	4-METHYLPHENOL	LT	0.300		UGG	TRG	LM27	1.000
ss-04	15-jul-1992		4MP	4-METHYLPHENOL	LT	0.300		UGG	TRH	LM27	1.000
SS-04	15-jul-1992		4NANIL	4-NITROANILINE	LT	1.200		UGG	TRG	LM27	1.000
SS-04	15-jul-1992		4NANIL	4-NITROANILINE	LT	1.200		UGG	TRH	LM27	1.000
SS-04	15-jul-1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRG	LM27	1.000
SS-04	15- jul - 1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
SS-04	15-jul-1992		AG	SILVER		0.843		UGG	SEY	JS13	1.000
SS-04	15-jul-1992		AG	SILVER		0.835		UGG	TWA	JS13	1.000
SS-04	15-jul-1992		AL	ALUMINUM		17000.000		UGG	SEY	JS13	3.000
SS-04	15-jul-1992		AL	ALUMINUM		13000.000		UGG	TWA	JS13	3.000
SS-04	15-jul-1992			ACENAPHTHENE	LT	0.033		UGG	TRG	LM27	1.000
SS-04	15-jul-1992		ANAPNE	ACENAPHTHENE		0.033		UGG	TRH	LM27	1.000
SS-04 SS-04	15-jul-1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRG	LM27	1.000
SS-04 SS-04	15-jul-1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRH	LM27	1.000
SS-04 SS-04	15-jul-1992		ANTRO	ANTHRACENE		0.033		UGG	TRG	LM27	1.000
	15-jul-1992		ANTRO	ANTHRACENE		0.033		UGG	TRH	LM27	1.000
\$S-04	15-jul-1992 15-jul-1992		AS	ARSENIC		4.130		UGG	ACB	JD19	1.000
SS-04	-		AS	ARSENIC		3.900		UGG	ACB	JD19	1.000
SS-04	15-jul-1992		B2CEXM	BIS (2-CHLOROETHOXY)	1 T	0.033		UGG	TRG	LM27	1.000
SS-04	15- jul -1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	TRH	LM27	1.000
SS-04	15-jul-1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRG	LM27	1.000
SS-04	15-jul-1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG		LM27	1.000
ss-04	15- jul - 1992			BIS (2-CHLOROETHYL) ETHER				UGG		LM27	1.000
SS-04	15- jul - 1992			BIS (2-CHLOROETHYL) ETHER				UGG		LM27	1.000
SS-04	15- jul -1992					0.390		UGG		LM27	1.000
SS-04	15- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)				UGG	TRH		1.000
ss-04	15- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)	LI	0.390		UGG	SEY		1.000
ss-04	15- jul - 1992		BA	BARIUM		139.000					1.000
ss-04	15- jul <b>-</b> 1992		BA	BARIUM		152.000		UGG	TWA		1.000
SS-04	15- jul <b>-</b> 1992		BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	TRG	LM27	1.000
SS-04	15- jul <i>-</i> 1992		BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	TRH		1.000
ss-04	15- jul - 1992		BAPYR	BENZO [A] PYRENE		0.033		UGG		LM27	
SS-04	15- jul -1992		BAPYR	BENZO [A] PYRENE		0.033		UGG	TRH	LM27	1.000
ss-04	15- jul -1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG		LM27	1.000
SS-04	15- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000
SS-04	15 - jul <b>- 1</b> 992		BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
ss-04	15- jul - 1992	0.000	BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	TRH		1.000
ss-04	15- jul - 1992	0.000	BE	BERYLLIUM		1.430	N	UGG	SEY	JS13	1.000
ss-04	15- jul <b>- 199</b> 2	0.000	BE	BERYLLIUM		1.120		UGG	TWA	JS13	1.000
ss-04	15-jul-1992	0.000	BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG		LM27	1.000
SS-04	15- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	TRH	LM27	1.000
•	-										

Soil

				Level 3 Data							
							Flag	_			
Site ID	Sample Date	Depth	Paramete	er.	Val	.ue	Code	Units	Lot	Method	Dilution
		3									
SS-04	15 - jul <del>-</del> 1992	0.000	BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG		LM27	1.000
<b>SS-04</b>	15 - jul - 1992	0.000	BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG		LM27	1.000
ss-04	15- jul <b>- 19</b> 92	0.000	CA	CALCIUM		59000.000		UGG	SEY	JS13	10.000
ss-04	15- jul - 1992	0.000	CA	CALCIUM		71000.000		UGG	TWA	JS13	20.000
\$S-04	15- jul - 1992		CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG		LM27	1.000
ss-04	15-jul-1992		CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG	TRH	LM27	1.000
ss-04	15-jul-1992		CD	CADMIUM		1.490		UGG	SEY	JS13	1.000
ss-04	15- jul - 1992		CD	CADMIUM		1.300		UGG	TWA	JS13	1.000
SS-04	15- jul - 1992		CHRY	CHRYSENE	LT	0.220		UGG	TRG	LM27	1.000
SS-04	15-jul-1992		CHRY	CHRYSENE	LT	0.220		UGG	TRH	LM27	1.000
SS-04 SS-04	15-jul-1992		CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	TRG	LM27	1.000
SS-04 SS-04	15 jul 1772 15-jul-1992		CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	TRH	LM27	1.000
	15-jul-1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG	TRG	LM27	1.000
SS-04	15-jul-1992		CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	TRH	LM27	1.000
ss-04	15-jul-1992 15-jul-1992		CL6ET	HEXACHLOROETHANE		0.067	•	UGG	TRG	LM27	1.000
SS-04	•		CL6ET	HEXACHLOROETHANE		0.067		UGG	TRH	LM27	1.000
SS-04	15- jul -1992			COBALT		20.800		UGG	SEY	JS13	1.000
\$S-04	15-jul-1992		CO			18.100		UGG	TWA	JS13	1.000
SS-04	15- jul - 1992		CO	COBALT		35.700		UGG	SEY	JS13	1.000
SS-04	15-jul-1992		CR	CHROMIUM		31.200		UGG	TWA	JS13	1.000
ss-04	15-jul-1992		CR	CHROMIUM		30.800		UGG	SEY	JS13	1.000
ss-04	15-jul-1992		CU	COPPER		33.100		UGG	TWA	JS13	1.000
SS-04	15- jul - 1992		CU	COPPER		0.033		UGG	TRG	LM27	1.000
ss-04	15- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	TRH	LM27	1.000
ss-04	15- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE				UGG	TRG	LM27	1.000
ss-04	15- jul - 1992		DBZFUR	DIBENZOFURAN		0.033			TRH	LM27	1.000
ss-04	15-jul-1992		DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
SS-04	15- jul <b>-</b> 1992		DEP	DIETHYL PHTHALATE		0.190		UGG	TRG		
SS-04	15- jul - 1992		DEP	DIETHYL PHTHALATE		0.190		UGG	TRH	LM27	1.000 1.000
SS-04	15- jul <b>- 19</b> 92		DMP	DIMETHYL PHTHALATE		0.130		UGG	TRG	LM27 LM27	1.000
SS-04	15- jul - 1992		DMP	DIMETHYL PHTHALATE		0.130		UGG	TRH		
SS-04	15- jul - 1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	TRG	LM27	1.000
ss-04	15 - jul - 1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	TRH	LM27	1.000
SS-04	15- jul <b>-</b> 1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	TRG	LM27	1.000
SS-04	15- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	TRH		1.000
SS-04	15- jul - 1992		FANT	FLUORANTHENE		0.085		UGG	TRG	LM27	1.000
ss-04	15- jul - 1992	0.000	FANT	FLUORANTHENE	LT	0.085		UGG	TRH	LM27	1.000
ss-04	15- jul <b>- 19</b> 92	0.000	FE	IRON		21000.000		UGG	SEY	JS13	10.000
SS-04	15- jul <b>-</b> 1992		FE	IRON		15000.000		UGG	TWA	JS13	3.000
ss-04	15- jul <del>-</del> 1992	0.000	FLRENE	FLUORENE		0.033		UGG		LM27	1.000
SS-04	15- jul - 1992	0.000	FLRENE	FLUORENE		0.033		UGG		LM27	1.000
ss-04	15-jul-1992	0.000	HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRG		1.000
SS-04	15-jul-1992	0.000	HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG		LM27	1.000
ss-04	15-jul-1992		HG	MERCURY		0.044		UGG	THK		1.000
ss-04	15- jul - 1992		HG	MERCURY		0.040		UGG	THN	HG9	1.000
ss-04	15- jul-1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	TRG	LM27	1.000
\$S-04	15- jul - 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	TRH	LM27	1.000
ss-04	15- jul - 1992		ISOPHR	ISOPHORONE		0.033		UGG	TRG	LM27	1.000
ss-04	15- jul - 1992		ISOPHR	ISOPHORONE	LT	0.033		UGG	TRH	LM27	1.000
SS-04	15- jul - 1992		K	POTASSIUM		4620.000		UGG	SEY	JS13	1.000
SS-04	15 - jul - 1992		K	POTASSIUM		3250.000		UGG	TWA	JS13	1.000
SS-04 SS-04	15- jul-1992		MG	MAGNESIUM		9600.000		UGG	SEY	JS13	3.000
SS-04 SS-04	15- jul - 1992		MG	MAGNESIUM		8300.000		UGG	TWA	JS13	3.000
	15- jul-1992 15- jul-1992		MN	MANGANESE		665.000		UGG	SEY	JS13	1.000
SS-04	15- jul-1992 15- jul-1992		MN	MANGANESE		667.000		UGG	TWA	JS13	1.000
SS-04	15- jul - 1992 15- jul - 1992		NA	SODIUM		200.000		UGG	SEY		1.000
ss-04	15-jut-1992	0.000	NA.	0001011							

1 01/0	17	Data	

			•	Level 3 Data							
							Flag	11-34-			Diluki
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
						497 000		UGG	TWA	JS13	1.000
ss-04	15 - jul - 1992		NA	SOD I UM		183.000		UGG		LM27	1.000
SS-04	15- jul <del>-</del> 1992	0.000	NAP			0.033		UGG		LM27	1.000
SS-04	15- jul - 1992	0.000	NAP			0.033		UGG		LM27	1.000
ss-04	15- jul <b>- 1</b> 992	0.000	NB			0.071				LM27	1.000
ss-04	15 - jul - 1992	0.000	NB			0.071		UGG	TRH SEY	JS13	1.000
SS-04	15 - jul - 1992	0.000	NI	NICKEL		23.200		UGG		JS13	1.000
SS-04	15- jul - 1992	0.000	NI	NICKEL		21.700		UGG	TWA	LM27	1.000
ss-04	15 - jul <b>-</b> 1992	0.000	NNDNPA			0.071		UGG		LM27	1.000
SS-04	15- jul <b>- 199</b> 2		NNDNPA			0.071		UGG		LM27	1.000
SS-04	15- jul <b>-</b> 1992		NNDPA			0.038		UGG	TRG TRH	LM27	1.000
ss-04	15- jul <b>- 199</b> 2		NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG		JD17	10.000
SS-04	15- jul - 1992		PB	LEAD		54.000		UGG	ZXL	JD17	10.000
ss-04	15- jul <b>- 19</b> 92		₽B	LEAD		53.000		UGG	ZXL		
ss-04	15 - jul - 1992		PCP	PENTACHLOROPHENOL		0.200		UGG	TRG	LM27	1.000 1.000
SS-04	15-jul-1992		PCP	PENTACHLOROPHENOL		0.200		UGG	TRH	LM27	
SS-04	15-jul-1992	0.000	PHANTR	PHENANTHRENE		0.033		UGG	TRG	LM27	1.000
SS-04	15 - jul - 1992		PHANTR	PHENANTHRENE		0.033		UGG	TRH	LM27	1.000
ss-04	15- jul <b>-</b> 1992	0.000	PHENOL	PHENOL		0.110		UGG	TRG	LM27	1.000
ss-04	15- jul - 1992		PHENOL	PHENOL		0.110		UGG	TRH	LM27 LM27	1.000 1.000
<b>SS-04</b>	15- jul <b>- 199</b> 2	0,000	PYR	PYRENE		0.033		UGG	TRG		
SS-04	15- jul - 1992	0.000	PYR	PYRENE		0.033		UGG	TRH	LM27	1.000
ss-04	15- jul <b>- 19</b> 92		SB	ANTIMONY		41.300		UGG	TWA	JS13 99	1.000 1.000
ss-04	15- jul <b>- 19</b> 92		SB	ANTIMONY		41.300		UGG	UFG		1.000
SS-04	15- jul <b>- 19</b> 92		SE	SELENIUM		0.250		UGG	ZSR	JD15	
SS-04	15- jul - 1992	0.000	SE	SELENIUM	LT	0.250		UGG	ZSR	JD15	1.000
SS-04	15-jul-1992	0.000	TL	THALLIUM		79.300		UGG	SEY	JS13	1.000
SS-04	15-jul-1992	0.000	TL	THALLIUM		62.500		UGG	TWA	JS13	1.000
SS-04	15- jul - 1992	0.000	TPHC	TOTAL PETROLEUM		10.000		UGG	UBK	00	1.000
SS-04	15- jul - 1992	0.000	TPHC	TOTAL PETROLEUM	LT	10.000		UGG	UBL.	00	1.000
SS-04	15- jul - 1992		٧	VANADIUM		29.100		UGG	SEY	JS13	1.000
ss-04	15- jul - 1992		V	VANADIUM		23.000		UGG	TWA	JS13	1.000
ss-04	15- jul - 1992	0.000	ZN	ZINC		89.700		UGG	SEY	JS13	1.000
ss-04	15- jul - 1992	0.000	ZN	ZINC		88.200		UGG	TWA	JS13	1.000
SS-05	15- jul - 1992		124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
ss-05	15- jul - 1992	0.000	12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
<b>\$</b> \$-05	15- jul - 1992		13DCLB	1,3-DICHLOROBENZENE		0.120		UGG	TRH	LM27	1.000
ss-05	15- jul - 1992	0.000	14DCLB	1,4-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000 1.000
ss-05	15- jul - 1992		_	2,4,5-TRICHLOROPHENOL		0.086		UGG	TRH	LM27	
<b>s</b> s-05	15- jul - 1992		246TCP	2,4,6-TRICHLOROPHENOL		0.082		UGG	TRH	LM27	1.000 1.000
ss-05	15- jul - 1992		24DCLP	2,4-DICHLOROPHENOL		0.140		UGG	TRH		
ss-05	15- jul <b>-</b> 1992	0.000	24DMPN	2,4-DIMETHYLPHENOL		2,600		UGG	TRH		1.000 1.000
ss-05	15- jul -1992	0.000	24DNP	2,4-DINITROPHENOL		0.700		UGG	TRH		
ss-05	15- jul <b>- 19</b> 92		24DNT	2,4-DINITROTOLUENE		0.370		UGG	TRH		1.000
ss-05	* 15- jul - 1992	0.000	26DNT	2,6-DINITROTOLUENE		0.066		UGG		LM27	1.000
ss-05	15- jul - 1992	0.000	2CLP	2-CHLOROPHENOL		0.110		UGG		LM27	1.000
ss-05	15 - jul - 1992	0.000	2CNAP	2-CHLORONAPHTHALENE		0.140		UGG	TRH		1.000
\$\$-05	15 - jul - 1992	0.000	2MNAP	2-METHYLNAPHTHALENE		0.033		UGG	TRH		1.000
ss-05	15 - jul - 1992		2MP	2-METHYLPHENOL		0.350		UGG	TRH		1.000
ss-05	15-jul-1992		2NANIL	2-NITROANILINE		0.079		UGG	TRH		1.000
SS-05	. 15- jul-1992	0.000	2NP	2-NITROPHENOL		0.069		UGG	TRH		1.000
ss-05	15- jul - 1992		33DCBD	•		3.400		UGG	TRH		1.000
ss-05	15- jul - 1992	0.000	3NAN1L			0.950		UGG	TRH		1.000
ss-05	15- jul - 1992	0.000		4,6-DINITRO-2-METHYLPHENG				UGG	TRH		1.000
ss-05	15- jul - 1992			4-BROMOPHENYLPHENYL ETHER				UGG	TRH		1.000
<b>\$</b> S-05	15- jul - 1992		4CANIL	4-CHLOROANILINE	LI	1.600		UGG	TRH	LM27	1.000
	•										

# Soil

							Flag				
Site ID	Sample Date	Depth	Paramet	er	Val	ue	Code	Units	Lot	Method	Dilution
ss-05	15- jul - 1992	0.000	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	TRH	LM27	1.000
SS-05	15 - jul - 1992			4-CHLOROPHENYLPHENYL		0.044		UGG	TRH	LM27	1.000
SS-05	15-jul-1992		4MP	4-METHYLPHENOL	LT	0.300		UGG	TRH	LM27	1.000
SS-05	15-jul-1992			4-NITROANILINE	LT	1.200		UGG	TRH	LM27	1.000
SS-05	15-jul-1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
ss-05	15-jul-1992		AG	SILVER		1.620		UGG	SEY	JS13	1.000
SS-05	15-jul-1992		AL	ALUMINUM		16000.000		UGG	SEY	JS13	3.000
SS-05	15-jul-1992		ANAPNE	ACENAPHTHENE	LT	0.033		UGG	TRH	LM27	1,000
SS-05	15-jul-1992			ACENAPHTHYLENE	LT	0.033		UGG	TRH	LM27	1.000
SS-05	15-jul-1992		ANTRC	ANTHRACENE		0.033		UGG	TRH	LM27	1.000
SS-05	15-jul-1992		AS	ARSENIC		6.000		UGG	ACB	JD19	1.000
ss-05	15-jul-1992		B2CEXM		1 T	0.033		UGG	TRH	LM27	1.000
	15-jul-1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRH	LM27	1.000
SS-05	15-jul-1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	TRH	LM27	1.000
SS-05	15-jul-1992 15-jul-1992		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	TRH	LM27	1.000
SS-05	15-jul-1992 15-jul-1992		BA	BARIUM		170.000		UGG	SEY	JS13	1.000
SS-05			BAANTR	BENZO [A] ANTHRACENE	ιT	0.033		UGG	TRH	LM27	1.000
SS-05	15-jul-1992			BENZO [A] PYRENE		0.033		UGG		LM27	1.000
ss-05	15-jul-1992		BAPYR	BENZO [B] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000
SS-05	15- jul - 1992		BBFANT	BUTYLBENZYL PHTHALATE		0.033		UGG	TRH	LM27	1.000
SS-05	15- jul -1992		BBZP	BERYLLIUM	-	1.300	N	UGG	SEY	JS13	1.000
\$\$-05	15-jul-1992		BE		1 T	0.250	.,	UGG	TRH	LM27	1.000
ss-05	15- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE		0.033		UGG	TRH	LM27	1.000
SS-05	15-jul-1992		BKFANT	BENZO [K] FLUORANTHENE	Li	92000.000		UGG	SEY	JS13	20.000
ss-05	15- jul - 1992		CA	CALCIUM	ND		D	UGG	TRH	LM27	1.000
ss-05	15- jul - 1992		CARBAZ	9H-CARBAZOLE	NU	0.170	R	UGG	SEY	JS13	1.000
SS-05	15- jul - 1992		CD	CADMIUM		1.030			TRH	LM27	1.000
SS-05	15- jul - 1992		CHRY	CHRYSENE		0.220		UGG	TRH	LM27	1.000
ss-05	15- jul <b>-</b> 1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
ss-05	15- jul - 1992		CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	TRH	LM27	1.000
SS-05	15- jul - 1992		CL6ET	HEXACHLOROETHANE	LI	0.067		UGG UGG	TRH SEY	JS13	1.000
<b>ss-0</b> 5	15 - jul - 1992		CO	COBALT		21.000		UGG	SEY	J\$13	1.000
ss-05	15 - jul - 1992		CR	CHROMIUM		36.100	•			JS13	1.000
ss-05	15- jul <del>-</del> 1992		CU	COPPER		23.200		UGG	SEY	1813 LM27	1.000
ss-05	15- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	TRH	LM27	1.000
ss-05	15- jul - 1992		DBZFUR	DIBENZOFURAN		0.033		UGG	TRH		1.000
SS-05	15 - jul - 1992		DEP	DIETHYL PHTHALATE		0.190		UGG		LM27	
SS-05	15 - jul - 1992		DMP	DIMETHYL PHTHALATE		0.130		UGG	TRH	LM27 LM27	1.000 1.000
ss-05	15- jul - 1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG			1.000
ss-05	15- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG		LM27	1.000
<b>s</b> s-05 .	15- jul - 1992		FANT	FLUORANTHENE	LI	0.085		UGG		LM27	
<b>ss-</b> 05	15- jul <del>-</del> 1992		FE	IRON		19000.000		UGG	SEY	JS13	3.000
ss-05	15- jul - 1992		FLRENE	FLUORENE		0.033		UGG		LM27	1.000
ss-05	15-jul-1992		HCBD	HEXACHLOROBUTAD I ENE		0.180		UGG	TRH		1.000
ss-05	15- jul - 1992	0.000	HG	MERCURY		0.027		UGG		HG9	1.000
SS-05	15- jul - 1992	0.000	I CDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	TRH	LM27	1.000
ss-05	15- jul - 1992	0.000	ISOPHR	ISOPHORONE	LT	0.033		UGG		LM27	1.000
ss-05	15- jul - 1992		K	POTASSIUM		4370.000		UGG	SEY		1.000
ss-05	15-jul <b>-19</b> 92	0.000	MG	MAGNESIUM		9500.000		UGG	SEY		3.000
ss-05	15- jul - 1992	0.000	MN	MANGANESE		860.000		UGG	SEY		1.000
ss-05	15- jul <b>-</b> 1992	0.000	NA ·	SODIUM		44.800		UGG	SEY		1.000
ss-05	15- jul - 1992	0.000	NAP	NAPHTHALENE .		0.033		UGG		LM27	1.000
ss-05	15-jul-1992	0.000	NB	NITROBENZENE	LT	0.071		UGG	TRH		1.000
ss-05	15- jul - 1992	0.000	NI	NICKEL		23.700		UGG	SEY		1.000
ss-05	15- jul - 1992	0.000	NNDNPA	N-NITROSO	LT	0.071		UGG	TRH		1.000
ss-05	15- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	TRH	LM27	1.000
	-										

				Level 3 Data							
				20.00 0 0 0 0 0			Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
00.05	15- jul - 1992	0.000	PB	LEAD		19.000		UGG	ZXL	JD17	5.000
SS-05	15- jul-1992 15- jul-1992		PCP		LT	0.200		UGG	TRH	LM27	1.000
SS-05	15- jul-1992 15- jul-1992		PHANTR	, Entition Denter manne		0.033		UGG	TRH	LM27	1.000
SS-05	15- jul-1992 15- jul-1992		PHENOL			0.110		UGG	TRH	LM27	1.000
SS-05	15- jul-1992 15- jul-1992				LT	0.033		UGG	TRH	LM27	1.000
SS-05	15- jul-1992 15- jul-1992		SB			41.300		UGG	UFG	99	1.000
ss-05	15-jul-1992 15-jul-1992		SE			0.250		UGG	ZSR	JD15	1.000
SS-05			TL	THALLIUM		86.900		UGG	SEY	JS13	1.000
SS-05	15-jul-1992		TPHC		LT	10.000		UGG	UBK	00	1.000
SS-05	15-jul-1992		٧	VANADIUM		25.700		UGG	SEY	JS13	1.000
SS-05	15-jul-1992		ZN	ZINC		70.000		UGG	SEY	JS13	1.000
SS-05	15-jul-1992		124TCB	1,2,4-TRICHLOROBENZENE	LT	0.033		UGG	TRH	LM27	1.000
ss-06	15-jul-1992 15-jul-1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
ss-06	15-jul-1992 15-jul-1992			1,3-DICHLOROBENZENE	LT	0.120		UGG	TRH	LM27	1.000
ss-06	15-jul-1992 15-jul-1992			1,4-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
ss-06		0.000		2,4,5-TRICHLOROPHENOL	LT	0.086		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992 15- jül - 1992		246TCP	2,4,6-TRICHLOROPHENOL		0.082		UGG	TRH	LM27	1.000
SS-06	15-jul-1992		24DCLP	2,4-DICHLOROPHENOL	LT	0.140		UGG	TRH	LM27	1.000
SS-06	15-jul-1992		24DMPN	2,4-DIMETHYLPHENOL	LT	2.600		UGG	TRH	LM27	1.000
ss-06 ss-06	15-jul-1992		24DNP	2,4-DINITROPHENOL	LT	0.700		UGG	TRH	LM27	1.000
SS-06	15-jul-1992		24DNT	2,4-DINITROTOLUENE	LT	0.370		UGG	TRH	LM27	1.000
\$\$-06 \$\$-06	15- jul - 1992		26DNT	2,6-DINITROTOLUENE		0.066		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		2CLP	2-CHLOROPHENOL	LT	0.110		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992	0.000	2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	TRH	LM27	1.000
\$\$-06 \$\$-06	15 jul 1992	0.000	2MNAP	2-METHYLNAPHTHALENE	LT	0.033		UGG	TRH	LM27	1.000
ss-06 ss-06	15-jul-1992		2MP	2-METHYLPHENOL	LT	0.350		UGG	TRH	LM27	1.000
	15-jul-1992		2NANIL	2-NITROANILINE	LT	0.079		UGG	TRH	LM27	1.000
ss-06 ss-06	15- jul - 1992	0.000	2NP	2-NITROPHENOL	LT	0.069		UGG	TRH	LM27	1.000
ss-06 ss-06	15- jul - 1992		33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG	TRH	LM27	1.000
SS-06	15- jul - 1992	0.000		3-NITROANILINE	LT	0.950		UGG	TRH	LM27	1.000
	15-jul-1992			4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG	TRH	LM27	1.000
ss-06 ss-06	15- jul-1992		4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG	TRH	LM27	1.000
	15-jul-1992			4-CHLOROANILINE		1.600		UGG	TRH	LM27	1.000
\$\$-06 \$\$-06	15- jul-1992		4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	TRH	LM27	1.000
\$\$-06	15- jul-1992	0.000		4-CHLOROPHENYLPHENYL	LT	0.044		UGG	TRH	LM27	1.000
ss-06	15- jul-1992		4MP	4-METHYLPHENOL	LT	0.300		UGG	TRH	LM27	1.000
\$\$-06 \$\$-06	15- jul - 1992		4NANIL		LT	1.200		UGG	TRH	LM27	1.000
\$\$-06	15- jul - 1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
ss-06 ss-06	15 - jul - 1992		AG	SILVER		1.250		UGG	SEY	JS13	1.000
\$\$-06	15 - jul - 1992		AL	ALUMINUM		13000.000		UGG	SEY	JS13	3.000
ss-06	15 - jul - 1992		ANAPNE	ACENAPHTHENE	Lī	0.033		UGG	TRH	LM27	1.000
ss-06	15 - jul - 1992		ANAPYL		LT	0.033		UGG	TRH	LM27	1.000
ss-06	15 - jul - 1992		ANTRC	ANTHRACENE	L1	r 0.033		UGG	TRH	LM27	1.000
ss-06	15 jul 1992 15- jul - 1992		AS	ARSENIC		5.350		UGG .	ACB	JD19	1.000
SS-06	15- jul - 1992		B2CEXM		LI	r 0.033		UGG	TRH	LM27	1.000
\$\$-06 \$\$-06	15 - jul - 1992		B2CIPE			r 0.033		UGG	TRH	LM27	1.000
	15- jul - 1992		B2CLEE		R LI	0.080		UGG	TRH	LM27	1.000
ss-06 ss-06	15- jul - 1992 15- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)		r <b>0.3</b> 90		UGG	TRH	LM27	1.000
\$\$-06	15- jul - 1992 15- jul - 1992		BA	BARIUM		102.000		UGG	SEY	JS13	1.000
	15-jul-1992 15-jul-1992		BAANTR		L.	T 0.033		UGG	TRH	LM27	1.000
SS-06	15- jul - 1992 15- jul - 1992		BAPYR	BENZO [A] PYRENE		T 0.033		UGG	TRH	LM27	1.000
SS-06	15- jul-1992 15- jul-1992		BBFANT			т 0.033		UGG	TRH	LM27	1.000
SS-06			BBZP	BUTYLBENZYL PHTHALATE		T 0.033		UGG	TRH	LM27	1.000
ss-06	15 - jul - 1992		BE BE	BERYLLIUM	_	1.020	N	UGG	SEY	JS13	1.000
ss-06	15- jul - 1992		BGHIPY		ŧ.	T 0.250		UGG	TRH	LM27	1.000
ss-06	15 - jul - 1992	0.000	DUNIFI	DENZO [G/H/I] FERTEENC	-	,					

				Level 3 Data							
							Flag				· ·
Site ID	Sample Date	Depth	Paramete		Val	ue	Code	Units	Lot	Method	Dilution
ss-06	15- jul-1992	0.000	BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992	0.000	C16A	HEXADECANOIC ACID		2.500	S	UGG	TRH	LM27	1.000
ss-06	15- jul - 1992	0.000	CA	CALCIUM		77000.000		UGG	SEY	J\$13	20.000
ss-06	15-jul-1992		CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG	TRH	LM27	1.000
ss-06	15-jul-1992		CD	CADMIUM		1.200		UGG	SEY	JS13	1.000
ss-06		0.000	CHRY	CHRYSENE	LT	0.220		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG	TRH	LM27	1.000
ss-06	15-jul-1992		CL6CP	<b>HEXACHLOROCYCLOPENTADIENE</b>	LT	1.700		UGG	TRH	LM27	1.000
ss-06	15- jul <b>-</b> 1992		CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		co	COBALT		17.400		UGG	SEY	JS13	1.000
ss-06	15- jul - 1992		CR	CHROMIUM		33.700		UGG	SEY	JS13	1.000
ss-06	15 - jul - 1992		CU	COPPER		25.600		UGG	SEY	J\$13	1.000
ss-06	15 - jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992	0.000	DBZFUR	DIBENZOFURAN		0.033		UGG	TRH	LM27	1.000
ss-06	15-jul-1992	0.000	DEP	DIETHYL PHTHALATE		0.190		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		DMP	DIMETHYL PHTHALATE		0.130		UGG	TRH	LM27	1.000
ss-06	15-jul-1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	TRH	LM27	1.000
ss-06	15-jul-1992		FANT	FLUORANTHENE	LT	0.085		UGG	TRH	LM27	1.000
ss-06		0.000	FE	IRON		16000.000		UGG	SEY	JS13	3.000
ss-06	15-jul-1992	0.000	FLRENE	FLUORENE		0.033		UGG	TRH	LM27	1.000
ss-06	15-jul-1992		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRH	LM27	1.000 1.000
ss-06	15-jul-1992	0.000	HG	MERCURY		0.062		UGG	THK	HG9	1.000
ss-06	15 - jul - 1992	0.000	ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	TRH	LM27 LM27	1.000
ss-06	15- jul - 1992		ISOPHR	ISOPHORONE	LT	0.033		UGG	TRH SEY	JS13	1.000
ss-06	15- jul <b>- 199</b> 2		K	POTASSIUM		3760.000		UGG	SEY		20.000
ss-06	15- jul - 1992	0.000	MG	MAGNESIUM		25000.000		UGG UGG	SEY	JS13	1.000
ss-06	15- jul - 1992	0.000	MN	MANGANESE		514.000		UGG	SEY		1.000
ss-06	15- jul - 1992		NA	SODIUM		83.200		UGG	TRH	LM27	1.000
ss-06	15- jul <b>-</b> 1992	0.000	NAP	NAPHTHALENE		0.033		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		NB	NITROBENZENE	LI	0.071		UGG	SEY	JS13	1.000
ss-06	15- jul - 1992	0.000	NI	NICKEL		24.900		UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		NNDNPA	N-NITROSO		0.071		UGG	TRH		1.000
ss-06	15- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE	LI	0.038		UGG	ZXL		10.000
ss-06	15-jul <i>-</i> 1992		PB	LEAD		40.000		UGG	TRH		1.000
<b>s</b> s-06	15- jul <b>-</b> 1992		PCP	PENTACHLOROPHENOL		0.200 0.033		UGG		LM27	1.000
ss-06	15- jul - 1992		PHANTR	PHENANTHRENE				UGG		LM27	1.000
ss-06	15 - jul - 1992		PHENOL	PHENOL	LI	0.110 0.041		UGG		LM27	1.000
ss-06	15-jul-1992		PYR	PYRENE		41.300		UGG	UFG		1.000
ss-06	15- jul - 1992		SB	ANTIMONY		0.250		UGG	ZSR		1.000
ss-06	15- jul - 1992		SE 	SELENIUM		64.800		UGG	SEY		1.000
ss-06	15- jul - 1992		TL	THALLIUM \	. 1	г 10.000		UGG	UBK		1.000
ss-06	15- jul - 1992		TPHC	TOTAL PETROLEUM	L	23.700		UGG	SEY		1.000
ss-06	15- jul - 1992		V 	VANADIUM		74.200		UGG	SEY		1.000
ss-06	15- jul - 1992		ZN	ZINC	, .	r 0.033		UGG	TRH		1.000
ss-07	15- jul - 1992		124TCB	1,2,4-TRICHLOROBENZENE		T 0.033		UGG	TRH		1.000
ss-07	15- jul - 1992		12DCLB	1,2-DICHLOROBENZENE		T 0.120		UGG	TRH		1.000
ss-07	15- jul - 1992		13DCLB	1,3-DICHLOROBENZENE		T 0.033		UGG	TRH		1.000
ss-07	15- jul - 1992		14DCLB			T 0.086		UGG	TRH		1.000
ss-07	15- jul - 1992		245TCP			T 0.082		UGG	TRH		1.000
ss-07	15- jul - 1992		246TCP			T 0.140		UGG	TRH		1.000
ss-07	15- jul - 1992		24DCLP			T 2.600		UGG	TRH		1.000
ss-07	15- jul - 1992		24DMPN			T 0.700		UGG	TRI		1.000
ss-07	15- jul - 1992		24DNP	2,4-DINITROPHENOL		T 0.700		UGG	TRE		1.000
ss-07	15- jul - 1992	2 0.000	24DNT	2,4-DINITROTOLUENE	_	. 0.0.0					

			Level 3 Data					et					
Site ID	Sample Date	Depth	Paramete	er	Valu	ue	Flag Code	Units	Lot	Method	Dilution		
**	45 5 4 4000	0.000	26DNT	2,6-DINITROTOLUENE	LT (	0.066		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992		2CLP			0.110		UGG	TRH	LM27	1.000		
ss-07	15- jul -1992	0.000 0.000	2CNAP	E Olizono nan-		0.140		UGG	TRH	LM27	1.000		
ss-07	-		2MNAP	2-METHYLNAPHTHALENE		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul -1992	0.000	2MP	2-METHYLPHENOL		0.350		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992	0.000	2NANIL	2-NITROANILINE		0.079		UGG	TRH	LM27	1.000		
ss-07	15-jul-1992	0.000	2NP	2-NITROPHENOL		0.069		UGG	TRH	LM27	1.000		
ss-07	15-jul-1992	0.000 0.000	33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG	TRH	LM27	1.000		
ss-07	15-jul-1992	0.000	3NANIL	3-NITROANILINE		0.950		UGG	TRH	LM27	1.000		
SS-07	15-jul-1992		46DNTC	4,6-DINITRO-2-METHYLPHENO				UGG	TRH	LM27	1.000		
SS-07	15- jul - 1992 15- jul - 1992		4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG	TRH	LM27	1.000		
SS-07		0.000	4CANIL	4-CHLOROANILINE		1.600		UGG	TRH	LM27	1.000		
SS-07	15- jul - 1992 15- jul - 1992		4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	TRH	LM27	1.000		
ss-07		0.000	4CLPPE	4-CHLOROPHENYLPHENYL		0.044		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992		4MP	4-METHYLPHENOL		0.300		UGG	TRH	LM27	1.000		
SS-07	15-jul-1992		4NANIL	4-NITROANILINE		1.200		UGG	TRH	LM27	1.000		
ss-07	15-jul-1992		4NP	4-NITROPHENOL		0.860		UGG	TRH	LM27	1.000		
ss-07	15-jul-1992		AG AG	SILVER		1.520		UGG	SEY	JS13	1.000		
ss-07	15-jul-1992		AL	ALUMINUM		15000.000		UGG	SEY	JS13	3.000		
ss-07	15- jul -1992			ACENAPHTHENE		0.033		UGG	TRH	LM27	1.000		
ss-07	15-jul-1992		ANAPNE	ACENAPHTHYLENE		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992		ANAPYL	ANTHRACENE		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992		ANTRC	ARSENIC		5.670		UGG	ACB	JD19	1.000		
ss-07	15- jul - 1992		AS B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992		B2CEAM B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992			BIS (2-CHLOROETHYL) ETHER				UGG	TRH	LM27	1.000		
ss-07	15-jul-1992		B2CLEE B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992		BA	BARIUM		167.000		UGG	SEY	JS13	1.000		
ss-07	15-jul-1992		BAANTR	BENZO [A] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul -1992		BAPYR	BENZO [A] PYRENE		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul -1992		BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul - 1992		BE	BERYLLIUM			- N	UGG	SEY	JS13	1.000		
ss-07	15- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	TRH	LM27	1.000		
ss-07	15- jul -1992		BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000		
ss-07	15- jul -1992		CA	CALCIUM		100000.000		UGG	SEY	JS13	20.000		
ss-07	15 - jul - 1992		CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG	TRH	LM27	1.000		
SS-07	15- jul - 1992 15- jul - 1992		CD	CADMIUM		1.150		UGG	SEY	JS13	1.000		
SS-07	15- jul-1992 15- jul-1992		CHRY	CHRYSENE	LT	0.220		UGG	TRH	LM27	1.000		
SS-07	15-jul-1992 15-jul-1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG	TRH	LM27	1.000		
SS-07	15- jul-1992 15- jul-1992		CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	TRH	LM27	1.000		
SS-07	15- jul - 1992		CL6ET	HEXACHLOROETHANE		0.067		UGG	TRH	LM27	1.000		
\$\$-07	15- jul - 1992		CO	COBALT		20.600		UGG	SEY	JS13	1.000		
SS-07	15- jul - 1992		CR	CHROMIUM		37.000		UGG	SEY	JS13	1.000		
SS-07	15- jul - 1992		CU	COPPER		26.700		UGG	SEY	JS13	1.000		
SS-07	15- jul - 1992 15- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000		
SS-07	15- jul-1992 15- jul-1992		DBZFUR			0.033		UGG	TRH	LM27	1.000		
SS-07	15- jul - 1992 15- jul - 1992		DEP	DIETHYL PHTHALATE		0.190		UGG	TRH	LM27	1.000		
SS-07			DMP	DIMETHYL PHTHALATE		0.130		UGG	TRH	LM27	1.000		
ss-07	15-jul-1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG	TRH		1.000		
ss-07	15- jul - 1992			DI-N-OCTYL PHTHALATE		0.260		UGG	TRH		1.000		
ss-07	15- jul - 1992		DNOP	FLUORANTHENE		0.085		UGG		LM27	1.000		
ss-07	15- jul - 1992		FANT	IRON	- 1	20000.000		UGG	SEY		3.000		
ss-07	15- jul-1992		FE FLRENE		1 T	0.033		UGG		LM27	1.000		
ss-07	15- jul - 1992		HCBD	HEXACHLOROBUTADIENE		0.180		UGG		LM27	1.000		
SS-07	15- jul <b>-</b> 1992	2 0.000	กเชบ	HEARGIEGIOGO TAO TENE	- '								

Soil

				Level 3 Data							
Site ID	Sample Date	Denth	Paramete	e <b>r</b>	Val	ue	Flag Code	Units	Lot	Method	Dilution
Site in	Sample Date	вери.	, 2, 2,								4 000
ss-07	15 - jul - 1992	0.000		MERCURY		0.027		UGG	THK	HG9	1.000
ss-07	15- jul <b>-</b> 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	TRH	LM27	1.000 1.000
ss-07	15- jul - 1992	0.000	ISOPHR	ISOPHORONE	LT	0.033		UGG	TRH	LM27 JS13	1.000
ss-07	15 - jul - 1992	0.000	K	POTASSIUM		3540.000		UGG	SEY		3.000
ss-07	15- jul - 1992	0.000	MG	MAGNESIUM		10000.000		UGG	SEY	JS13 JS13	1.000
ss-07	15- jul - 1992	0.000	MN	MANGANESE		769.000		UGG	SEY	JS13	1.000
ss-07	15 - jul - 1992	0.000	NA	SODIUM		44.800		UGG	SEY	1513 LM27	1.000
ss-07	15 - jul - 1992	0.000	NAP	NAPHTHALENE		0.033		UGG	TRH	LM27	1.000
ss-07	15 - jul - 1992	0.000	NB	NITROBENZENE	LT	0.071		UGG	TRH SEY	JS13	1.000
ss-07	15 - jul - 1992	0.000	NI	NICKEL		23.000		UGG		LM27	1.000
ss-07	15 - jul - 1992	0.000	NNDNPA	N-NITROSO		0.071		UGG	TRH	LM27	1.000
ss-07	15 - jul - 1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG		JD17	10.000
ss-07	15-jul-1992	0.000	PB	LEAD		34.000		UGG	ZXL		1.000
ss-07	15-jul <i>-</i> 1992	0.000	PCP	PENTACHLOROPHENOL		0.200		UGG	TRH	LM27	1.000
ss-07	15- jul - 1992	0.000	PHANTR	PHENANTHRENE		0.033		UGG	TRH	LM27 LM27	1.000
ss-07	15- jul <i>-</i> 1992	0.000	PHENOL	PHENOL		0.110		UGG	TRH		1.000
ss-07	15- jul - 1992	0.000	PYR	PYRENE		0.033		UGG	TRH UFG	99	1.000
ss-07	15-jul-1992	0.000	SB	ANTIMONY		41.300		UGG			1.000
ss-07	15- jul - 1992	0.000	SE	SELENIUM	LT	0.250		UGG	ZSR	JD15 JS13	1.000
ss-07	15 - jul - 1992	0.000	TL	THALLIUM		85.300		UGĢ	SEY		1.000
ss-07	15- jul - 1992	0.000	TPHC	TOTAL PETROLEUM		34.300		UGG	UBK		1.000
ss-07	15- jul - 1992	0.000	V	VANADIUM		26.800		UGG	SEY SEY	JS13 JS13	1.000
SS-07	15 - jul - 1992	0.000	ZN	ZINC		81.800		UGG			1.000
ss-08	15 - jul - 1992	0.000	124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	TRH TRH		1.000
ss-08	15- jul - 1992	0.000	12DCLB	1,2-DICHLOROBENZENE		0.033		UGG UGG	TRH		1.000
ss-08	15- jul - 1992			1,3-DICHLOROBENZENE		0.120		UGG	TRH		1.000
80-22	15- jul - 1992	0.000		1,4-DICHLOROBENZENE		0.033		UGG	TRH		1.000
ss-08	15- jul - 1992		245TCP	2,4,5-TRICHLOROPHENOL		0.086		UGG	TRH		1.000
ss-08	15- jul <b>- 199</b> 2		246TCP	2,4,6-TRICHLOROPHENOL		0.082		UGG	TRH		1.000
80-22	15- jul - 1992	0.000	24DCLP	2,4-DICHLOROPHENOL		0.140		UGG	TRH		1.000
80-22	15- jul - 1992	0.000	24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG	TRH		1.000
80-22	15- jul <del>-</del> 1992		24DNP	2,4-DINITROPHENOL		0.700		UGG	TRH		1.000
ss-08	15- jul - 1992	0.000	24DNT	2,4-DINITROTOLUENE		0.370		UGG	TRH		1.000
ss-08	15 - jul - 1992		26DNT	2,6-DINITROTOLUENE		0.066		UGG	TRH		1.000
80-22	15- jul - 1992		2CLP	2-CHLOROPHENOL		0.110		UGG	TRH		1.000
ss-08	15 - jul - 1992		2CNAP	2-CHLORONAPHTHALENE		0.140		UGG	TRH		1.000
80-22	15 - jul - 1992		2MNAP	2-METHYLNAPHTHALENE		0.033		· UGG	TRH		1.000
ss-08	15 - jul - 1992		2MP	2-METHYLPHENOL		0.350		UGG	TRH		1.000
ss-08	15- jul - 1992		2NANIL	2-NITROANILINE		0.079		UGG	TRH		1.000
ss-08	15 - jul - 1992		2NP	2-NITROPHENOL		0.069 3.400		· UGG	TRH		1.000
ss-08	15- jul - 1992		33DCBD	3,3'-DICHLOROBENZIDINE		7 0.950		UGG		LM27	1.000
ss-08	15- jul - 1992		3NAN I L	3-NITROANILINE				UGG	TRH		1.000
ss-08	15- jul - 1992	0.000	46DNTC	4,6-DINITRO-2-METHYLPHEN				มดด		LM27	1.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

15-jul-1992 0.000

4CL3C

4MP

4NP

AG

ANTRC

SS-08

ss-08

ss-08

ss-08

ss-08

**ss-08** 

ss-08

**ss-08** 

SS-08

SS-08

ss-08

SS-08

# Soil Level 3 Data

				Level 3 Data			Flag		•		
	_				Val	110	Code	Units	Lot	Method	Dilution
Site ID	Sample Date	Depth	Paramete	er	vat	.uc	boac	011120			
	45 4000	0.000	AC	ARSENIC		4.820		UGG	ACB	JD19	1.000
ss-08	15- jul - 1992		AS		1 T	0.033		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		B2CEXM B2CIPE			0.033		UGG	TRH	LM27	1.000
ss-08	15-jul-1992			BIS (2-CHLOROETHYL) ETHER				UGG	TRH	LM27	1.000
ss-08	15-jul-1992					0.390		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		B2EHP	BIS (2-ETHYLHEXYL)	٠.	83.200		UGG	SEY	JS13	1.000
ss-08	15-jul-1992		BA	BARIUM BENZO [A] ANTHRACENE		0.055		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		BAANTR			0.076		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		BAPYR	BENZO [A] PYRENE BENZO [B] FLUORANTHENE		0.067		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		BBFANT	BUTYLBENZYL PHTHALATE	1 T	0.033		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		BBZP			1.060	N	UGG	SEY	JS13	1.000
80-22	15-jul-1992		BE	BERYLLIUM	1 T	0.250		UGG	TRH	LM27	1.000
80-22	15- jul -1992		BGHIPY	BENZO [G,H,I] PERYLENE	۲,	0.110		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE	CT	50000.000		UGG	SEY	J\$13	10.000
ss-08	15- jul - 1992		CA	CALCIUM			R	UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		CARBAZ	9H-CARBAZOLE	NU	0.170	K	UGG	SEY	JS13	1.000
ss-08	15- jul - 1992		CD	CADMIUM		0.949		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		CHRY	CHRYSENE		0.220		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		CL6BZ	HEXACHLOROBENZENE		0.046				LM27	1.000
ss-08	15- jul - 1992	0.000	CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG	TRH		1.000
SS-08	15- jul <i>-</i> 1992	0.000	CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	TRH	LM27	
ss-08	15- jul - 1992	0.000	CO	COBALT		13.600		UGG	SEY	JS13	1.000
ss-08	15- jul - 1992		CR	CHROMIUM		26.900		UGG	SEY	JS13	1.000
ss-08	15- jul - 1992		CU	COPPER		27.000		UGG	SEY	JS13	1.000
ss-08	15- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
ss-08	15- jul-1992		DBZFUR	DIBENZOFURAN		0.033		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		DEP	DIETHYL PHTHALATE	LT	0.190		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		DNBP	DI-N-BUTYL PHTHALATE	LT	0.920		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		FANT	FLUORANTHENE	LT	0.085		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		FE	IRON		12000.000		UGG	SEY	JS13	2.000
ss-08	15- jul - 1992		FLRENE	FLUORENE	LT	0.033		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		HG	MERCURY		0.047		UGG	THK	HG9	1.000
	15- jul - 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	TRH	LM27	1.000
ss-08			ISOPHR	ISOPHORONE		0.033		UGG	TRH	LM27	1.000
ss-08	15-jul-1992		K	POTASSIUM		2190.000		UGG	SEY	JS13	1.000
ss-08	15- jul - 1992		MG	MAGNESIUM		9600.000		UGG	SEY	JS13	2.000
ss-08	15- jul - 1992		MN	MANGANESE		380.000		UGG	SEY	JS13	1.000
ss-08	15- jul - 1992			SODIUM		113.000		UGG	SEY		1.000
ss-08	15- jul - 1992		NA	NAPHTHALENE	! 7	0.033		UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		NAP	NITROBENZENE		r 0.071		UGG		LM27	1.000
80-22	15- jul - 1992		NB		-	16.600		UGG	SEY		1.000
80-22	15- jul - 1992		NI	NICKEL	. 1	r 0.071		UGG	TRH		1.000
ss-08	15 - jul - 1992		NNDNPA	N-NITROSO				UGG	TRH		1.000
ss-08	15- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE	L	7 0.038		UGG	ZXL		10.000
80-22	15- jul - 1992		PB	LEAD		52.000		UGG		LM27	1.000
\$8-08	15- jul - 1992	0.000	PCP	PENTACHLOROPHENOL	L	T 0.200					1.000
ss-08	15- jul <b>-</b> 1992	0.000	PHANTR			0.051		UGG	TRH		1.000
ss-08	15- jul - 1992	0.000	PHENOL	PHENOL	r.	т 0.110		UGG		LM27	
ss-08	15- jul-1992	0.000	PYR	PYRENE		0.120		UGG		LM27	1.000
ss-08	15- jul-1992	0.000	SB	ANTIMONY		т 41.300		UGG	UFG		1.000
ss-08	15- jul - 1992		SE	SELENIUM	L	т 0.250		UGG		JD15	1.000
ss-08	15- jul - 1992		TL	THALLIUM		59.600		UGG	SEY		1.000
ss-08	15- jul - 1992		TPHC	TOTAL PETROLEUM		47.300		UGG	UBK		1.000
ss-08	15 - jul - 1992		V	VANADIUM		19.400		UGG	SEY	JS13	1.000
33-00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_ ++									

### Soil

Level 3 Data							<b>51</b>				
	- <b>.</b>			_	Val		Flag Code	Units	Lot	Method	Dilution
Site ID	Sample Date	Depth	Paramete	er .	vat	ue	Code	Oin cs	LUC	nethod	Ditation
ss-08	15 - jul - 1992	0.000	ZN	ZINC		84.100		UGG	SEY	JS13	1.000
SS-09	15 - jul - 1992		124TCB		LT	0.033		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992		12DCLB		LT	0.033		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992			•	LT	0.120		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992				LT	0.033		UGG	TRH	LM27	1.000
SS-09	15-jul-1992			•	LT	0.086		UGG	TRH	LM27	1.000
SS-09	15- jul-1992				LT	0.082		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		24DCLP	• •	LT	0.140		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992		24DMPN	-	LT	2.600		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992		24DNP	2,4-DINITROPHENOL	LT	0.700		UGG	TRH	LM27	1.000
ss-09	15-jul-1992		24DNT	2,4-DINITROTOLUENE	LT	0.370		UGG	TRH	LM27	1.000
ss-09	15-jul-1992		26DNT	2,6-DINITROTOLUENE	LT	0.066		UGG	TRH	LM27	1.000
ss-09	15-jul-1992		2CLP	2-CHLOROPHENOL	LT	0.110		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	TRH	LM27	1.000
ss-09	15-jul-1992		2MNAP	2-METHYLNAPHTHALENE		0.090		UGG	TRH	LM27	1.000
ss-09	15-jul-1992		2MP	2-METHYLPHENOL	LT	0.350		UGG	TRH	LM27	1.000
\$\$-09	15- jul - 1992		2NANIL	2-NITROANILINE	LT	0.079		UGG	TRH	LM27	1.000
SS-09	15- jul <b>-</b> 1992		2NP	2-NITROPHENOL	LT	0.069		UGG	TRH	LM27	1.000
ss-09	15-jul-1992		33DCBD	3,3'-DICHLOROBENZIDINE	LT	3.400		UGG		LM27	1.000
ss-09	15- jul - 1992		3NANIL	3-NITROANILINE	LT	0.950		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		46DNTC	4,6-DINITRO-2-METHYLPHENO				UGG		LM27	1.000
SS-09	15-jul-1992	0.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG		LM27	1.000
ss-09	15-jul-1992	0.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG		LM27	1.000
ss-09	15- jul - 1992	0.000	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992	0.000	4CLPPE	4-CHLOROPHENYLPHENYL		0.044		UGG	TRH	LM27	1.000
ss-09	15 - jul - 1992	0.000	4MP	4-METHYLPHENOL		0.300		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		4NANIL	4-NITROANILINE		1.200		UGG	TRH	LM27	1.000
SS-09	15 - jul - 1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992		AG	SILVER		1.140		UGG	SEY	JS13	1.000
ss-09	15- jul - 1992		AL	ALUMINUM		11000.000		UGG	SEY	JS13	3.000
ss-09	15 - jul - 1992	0.000	ANAPNE	ACENAPHTHENE		0.033		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		ANTRC	ANTHRACENE	LT	0.033		UGG	TRH		1.000
SS-09	15- jul - 1992		AS	ARSENIC		4.890		UGG	ACB	JD19	1.000
ss-09	15- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992		B2CIPE	BIS (2-CHLOROISOPROPYL)	_	0.033		UGG	TRH	LM27	1.000
ss-09	15- jul <b>-</b> 1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	TRH	LM27	1.000 1.000
ss-09	15- jul - 1992	0.000	B2EHP	BIS (2-ETHYLHEXYL)	Lī	0.390		UGG		LM27	1.000
SS-09	15- jul - 1992		BA	BARIUM		118.000		UGG	SEY	JS13 LM27	1.000
ss-09	15- jul - 1992		BAANTR	BENZO [A] ANTHRACENE		0.033		UGG UGG	TRH Trh	LM27	1.000
ss-09	15- jul - 1992		BAPYR	BENZO [A] PYRENE		0.033		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		BBZP	BUTYLBENZYL PHTHALATE	LI	1.090	N	UGG	SEY	JS13	1.000
SS-09	15- jul - 1992		BE	BERYLLIUM		0.250	n	UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE		0.033		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE	LI	65000.000		UGG	SEY	JS13	20.000
SS-09	15-jul-1992		CADDAZ	CALCIUM OH-CARRAZOLE	ИU	0.170	R	UGG	TRH	LM27	1.000
SS-09	15-jul-1992		CARBAZ	9H-CARBAZOLE CADMIUM	αU	1.720		UGG	SEY	JS13	1.000
SS-09	15- jul -1992		CD		1 T	0.220		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992		CHRY	CHRYSENE UEVACHI OPORENZENE		0.046		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992		CL6BZ CL6CP	HEXACHLOROBENZENE HEXACHLOROCYCLOPENTADIENE				UGG	TRH		1.000
SS-09	15- jul - 1992		CL6ET	HEXACHLOROCTCLOPENTADIENE		0.067		UGG	TRH	LM27	1.000
SS-09	15- jul - 1992 15- jul - 1992		CO	COBALT	- '	15.000		UGG	SEY		1.000
SS-09 SS-09	15- jul - 1992 15- jul - 1992		CR	CHROMIUM		29.800		UGG		JS13	1.000
33-07	13-jul-1992	0.000	OI.	Simonium		<del></del>					

Level	3	Data

				Level 3 Data			<b></b>				
							Flag	llmita	iot	Mothod	Dilution
Site ID	Sample Date	Depth	Paramete	r	Val	.ue	Code	Units	LUL	Method	Dilution
						74 700		UGG	SEY	JS13	1.000
ss-09	15- jul - 1992			COPPER		36.300 0.033		UGG		LM27	1.000
ss-09	15- jul - 1992			DIBENZ [A,H] ANTHRACENE				UGG		LM27	1.000
ss-09	15- jul - 1992			D . D		0.033		UGG	TRH	LM27	1.000
ss-09	15- jul <b>- 199</b> 2			DIETHYL PHTHALATE		0.190		UGG		LM27	1.000
ss-09	15 - jul - 1992			DIMETHYL PHTHALATE		0.130		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992			DI-N-BUTYL PHTHALATE		0.920		UGG	TRH	LM27	1.000
ss-09	15-jul <b>-19</b> 92		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	TRH	LM27	1.000
ss-09	15- jul-1992		FANT	FLUORANTHENE	LI	0.085			SEY	JS13	3.000
ss-09	15- jul - 1992		FE	IRON		13000.000		UGG UGG	TRH	LM27	1.000
ss-09	15- jul -1992			FLUORENE		0.033		UGG	TRH	LM27	1.000
ss-09	15 - jul - 1992			HEXACHLOROBUTAD I ENE	LI	0.180		UGG	THK		1.000
ss-09	15- jul - 1992			MERCURY		0.085		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992			INDENO [1,2,3-C,D] PYRENE	LI	0.033		UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		ISOPHR	ISOPHORONE	LI	0.033		UGG	SEY	JS13	1.000
ss-09	15- jul - 1992		K	POTASSIUM		2800.000			SEY	JS13	3.000
ss-09	15-jul-1992		MG	MAGNESIUM		7400.000		UGG	SEY	JS13	1.000
ss-09	15- jul - 1992	0.000	MN	MANGANESE		471.000		UGG	SEY	JS13	1.000
ss-09	15-jul-1992	0.000	NA	SODIUM		203.000		UGG		LM27	1.000
ss-09	15- jul - 1992	0.000	NAP	NAPHTHALENE		0.074		UGG	TRH		1.000
ss-09	15- jul - 1992	0.000	NB	NITROBENZENE	LT	0.071		UGG	TRH	JS13	1.000
ss-09	15- jul - 1992	0.000	NI	NICKEL		16.900		UGG	SEY		1.000
ss-09	15- jul - 1992	0.000	NNDNPA	N-NITROSO		0.071		UGG	TRH	LM27 LM27	1.000
ss-09	15-jul-1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	TRH		10.000
ss-09	15- jul - 1992		PB	LEAD		71.000		UGG	ZXL	JD17 LM27	1.000
ss-09	15- jul <i>-</i> 1992	0.000	PCP	PENTACHLOROPHENOL	LT	0.200		UGG	TRH	LM27	1.000
ss-09	15-jul-1992	0.000	PHANTR	PHENANTHRENE		0.060		UGG	TRH	LM27	1.000
ss-09	15- jul <b>- 199</b> 2		PHENOL	PHENOL		0.110	•	UGG	TRH TRH	LM27	1.000
ss-09	15- jul <b>- 199</b> 2	0.000	PYR	PYRENE		0.033		UGG		99	1.000
ss-09	15- jul - 1992		SB	ANTIMONY		41.300		UGG	UFG ZSR	JD15	1.000
ss-09	15- jul - 1992	0.000	SE	SELENIUM	LT	0.250		UGG		JS13	1.000
ss-09	15- jul - 1992	0.000	TL	THALLIUM		56.000		UGG	SEY UBK	00	1.000
ss-09	15- jul - 1992	0.000	TPHC	TOTAL PETROLEUM		351.000		UGG	SEY	JS13	1.000
ss-09	15- jul - 1992		ν .	VANADIUM		21.700		UGG		JS13	1.000
ss-09	15- jul - 1992		ZN	ZINC		121.000		UGG	SEY	1513 LM27	1.000
ss-10	15- jul - 1992	0.000	124TCB.	1,2,4-TRICHLOROBENZENE		0.033		UGG	TRH		1.000
SS-10	15- jul - 1992	0.000	12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
ss-10	15- jul - 1992	0.000		1,3-DICHLOROBENZENE		0.120		UGG	TRH	LM27	1.000
ss-10	15- jul <i>-</i> 1992		14DCLB	1,4-DICHLOROBENZENE		0.033		UGG		LM27	1.000
ss-10	15- jul-1992	0.000	245TCP	2,4,5-TRICHLOROPHENOL		0.086		UGG	TRH	LM27	1.000
ss-10	15- jul - 1992	0.000	246TCP	2,4,6-TRICHLOROPHENOL		r 0.082		UGG	TRH	LM27	1.000
ss-10	15- jul - 1992	0.000	24DCLP	2,4-DICHLOROPHENOL		0.140		UGG	TRH	LM27	1.000
ss-10	15- jul - 1992	0.000	24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG	TRH	LM27	
ss-10	15- jul - 1992	0.000	24DNP	2,4-DINITROPHENOL		r 0.700		UGG	TRH	LM27	1.000
ss-10	15 - jul - 1992	0.000	24DNT	2,4-DINITROTOLUENE		г 0.370		UGG	TRH		1.000
ss-10	15- jul - 1992	0.000	26DNT	2,6-DINITROTOLUENE		T 0.066		UGG	TRH		1.000
ss-10	15 - jul - 1992	0.000	2CLP	2-CHLOROPHENOL		T 0.110		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992	0.000	2CNAP	2-CHLORONAPHTHALENE		T 0.140		UGG	TRH		1.000
ss-10	15- jul-1992	0.000	2MNAP	2-METHYLNAPHTHALENE		T 0.033		UGG	TRH		1.000
ss-10	15- jul - 1992		2MP	2-METHYLPHENOL		T 0.350		UGG	TRH		1.000
ss-10	15- jul - 1992		2NANIL	2-NITROANILINE		т 0.079		UGG	TRH		1.000
ss-10	15- jul - 1992		2NP	2-NITROPHENOL		т 0.069		UGG	TRH		1.000
ss-10	15- jul - 1992		33DCBD	3,3'-DICHLOROBENZIDINE	L	т 3.400		UGG	TRH		1.000
ss-10	15- jul - 1992		3NAN1L	3-NITROANILINE		т 0.950		UGG	TRH		1.000
SS-10	15- jul - 1992		46DNTC	4,6-DINITRO-2-METHYLPHEN	O L	τ 0.170		UGG	TRH		1.000
SS-10	15 - jul - 1992		4BRPPE	4-BROMOPHENYLPHENYL ETHE	R L	т 0.033		UGG	TRH	LM27	1.000
55 10											

							Flag				D. L. A. C.
Site ID	Sample Date	Depth	Paramete	г	Val	ue	Code	Units	Lot	Method	Dilution
00.10	15- jul-1992	0.000	4CANIL	4-CHLOROANILINE	LT ·	1.600		UGG	TRH	LM27	1.000
SS-10	15- jul-1992 15- jul-1992					0.073		UGG	TRH	LM27	1.000
SS-10	15- jul-1992 15- jul-1992					0.044		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992 15- jul - 1992			, 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.300		UGG	TRH	LM27	1.000
SS-10	15- jul-1992 15- jul-1992			4-NITROANILINE		1.200		UGG	TRH	LM27	1.000
SS-10	15-jul-1992 15-jul-1992		••••	4-NITROPHENOL		0.860		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		****	SILVER		0.891		UGG	SEY	JS13	1.000
SS-10	15- jul - 1992 15- jul - 1992		•	ALUMINUM		8300.000		UGG	SEY	JS13	3.000
SS-10	15-jul-1992 15-jul-1992			ACENAPHTHENE	LT	0.033		UGG	TRH	LM27	1.000
SS-10 SS-10	15-jul-1992				LT	0.033		UGG	TRH	LM27	1.000
SS-10 SS-10	15-jul-1992		ANTRO		LT	0.033		UGG	TRH	LM27	1.000
SS-10	15-jul-1992		AS	ARSENIC		6.320		UGG	ACB	JD19	1.000
SS-10	15 jul - 1992				LT	0.033		UGG	TRH	LM27	1.000
SS-10	15 - jul - 1992				LT	0.033		UGG	TRH	LM27	1.000
SS-10	15-jul-1992			BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	TRH	LM27	1.000
SS-10	15-jul-1992		ВА	BARIUM		121.000		UGG	SEY	JS13	1.000
SS-10	15-jul-1992			BENZO [A] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		BAPYR	BENZO [A] PYRENE	LT	0.033		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE	LT	0.033		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	TRH	LM27	1.000
SS-10	15- jul-1992		BE	BERYLLIUM		1.040	- N	UGG	SEY	JS13	1.000
SS-10	15- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250	*	UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		CA	CALCIUM		48000.000		UGG	SEY	JS13	10.000
SS-10	15- jul - 1992		CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG	TRH	LM27	1.000
SS-10	15-jul-1992		CD	CADMIUM		0.667		UGG	SEY	JS13	1.000
SS-10	15- jul - 1992		CHRY	CHRYSENE		0.220		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG	TRH		1.000
SS-10	15- jul <b>- 199</b> 2		CL6CP	HEXACHLOROCYCLOPENTAD I ENE	LT	1.700		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992	0.000	CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	TRH	LM27	1.000
ss-10	15- jul - 1992	0.000	co	COBALT		15.500		UGG	SEY	JS13	1.000
ss-10	15- jul - 1992	0.000	CR	CHROMIUM		22.600		UGG	SEY	JS13	1.000
SS-10	15- jul - <b>199</b> 2	0.000	CU	COPPER		44.900		UGG	SEY	JS13	1.000
SS-10	15- jul - 1992	0.000	DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	TRH	LM27	1.000
SS-10	15 - jul - 1992	0.000	DBZFUR	DIBENZOFURAN		0.033		UGG	TRH	LM27	1.000
ss-10	15- jul - 1992	0.000	DEP	DIETHYL PHTHALATE	LT	0.190		UGG		LM27	1.000
ss-10	15- jul - 1992	0.000	DMP	DIMETHYL PHTHALATE		0.130		UGG		LM27	1.000
ss-10	15- jul - 1992	0.000	DNBP	DI-N-BUTYL PHTHALATE		0.920	*	UGG	TRH		1.000
SS-10	15 - jul - 1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	TRH		1.000
ss-10	15 - jul - 1992	0.000	FANT	FLUORANTHENE	LT	0.085		UGG	TRH		1.000 3.000
SS-10	15 - jul - 1992		FE	IRON		14000.000		UGG	SEY		1.000
ss-10	15- jul <b>- 19</b> 92		FLRENE	FLUORENE		0.033		UGG	TRH		1.000
SS-10	15- jul - 1992		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRH		1.000
SS-10	15- jul <b>- 199</b> 2		НG	MERCURY		0.101		UGG	THK		1.000
SS-10	15 - jul - 1992		I CDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	TRH		1.000
SS-10	15 - jul - 1992		ISOPHR	ISOPHORONE	LĨ	0.033		UGG	TRH SEY		1.000
SS-10	15 - jul - 1992		K	POTASSIUM		2060.000		UGG			3.000
SS-10	15 - jul - 1992		MG	MAGNESIUM		8300.000		UGG	SEY		1.000
ss-10	15 - jul - 1992		MN	MANGANESE		386.000		UGG	SEY		1.000
SS-10	15 - jul - 1992		NA	SODIUM		110.000		UGG	SEY		1.000
ss-10	15- jul <b>-</b> 1992		NAP	NAPHTHALENE		0.033		UGG	TRH		1.000
<b>s</b> s-10	15- jul - 1992		NB	NITROBENZENE	LT	0.071		UGG	TRH SEY		1.000
ss-10	15 - jul - 1992		NI	NICKEL		17.800		UGG		JS13 LM27	1.000
ss-10	15- jul - 1992	0.000	NNDNPA	N-NITROSO	LT	0.071		UGG	IKN	LMCI	1.000

Leve	L 3	Data
------	-----	------

Level 3 Data											
							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
0,100 10	• • · · · · · · · · · · · · · · · · · ·	•									
ss-10	15- jul - 1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		PB	LEAD		52.000		UGG	ZXL	JD17	5.000
	15 - jul - 1992		PCP		LT	0.200		UGG	TRH	LM27	1.000
ss-10	15-jul-1992 15-jul-1992		PHANTR		LT	0.033		UGG	TRH	LM27	1.000
ss-10						0.110		UGG	TRH	LM27	1.000
ss-10	15- jul - 1992		PHENOL			0.033		UGG	TRH	LM27	1.000
ss-10	15-jul-1992		PYR			41.300		UGG		99	1.000
SS-10	15-jul-1992		SB			0.250		UGG	ZSR	JD15	1.000
SS-10	15-jul-1992		SE			68.500		UGG	SEY	JS13	1.000
SS-10	15-jul-1992		TL	THALLIUM		71.700		UGG		00	1.000
ss-10	15- jul - 1992		TPHC	TOTAL PETROLEUM				UGG	SEY	JS13	1.000
SS-10	15- jul -1992		V	VANADIUM		16.600				JS13	1.000
ss-10	15-jul-1992	0.000	ZN	ZINC		72.200		UGG	SEY		1.000
ss-11	15-jul-1992	0.000	124TCB	• • • • • • • • • • • • • • • • • • • •		0.033		UGG		LM27	
ss-11	15-jul-1992	0.000	12DCLB	,,		0.033		UGG		LM27	1.000
ss-11	15 - jul - 1992		13DCLB	1,3-DICHLOROBENZENE	LT	0.120		UGG		LM27	1.000
SS-11	15-jul-1992		14DCLB	1,4-DICHLOROBENZENE	LT	0.033		UGG	TRH	LM27	1.000
ss-11	15- jul - 1992			2,4,5-TRICHLOROPHENOL	LT	0.086		UGG	TRH	LM27	1.000
SS-11	15-jul-1992		246TCP		LT	0.082		UGG	TRH	LM27	1. <b>0</b> 00
SS-11	15- jul - 1992		24DCLP	2.4-DICHLOROPHENOL	LT	0.140		UGG	TRH	LM27	1.000
	15-jul-1992		24DMPN		LT	2.600		UGG	TRH	LM27	1.000
SS-11	15- jul-1992 15- jul-1992		24DNP	2,4-DINITROPHENOL		0.700		UGG	TRH	LM27	1.000
SS-11	<u>-</u>		24DNT	2,4-DINITROTOLUENE		0.370		UGG	TRH	LM27	1.000
SS-11	15- jul -1992			2,6-DINITROTOLUENE		0.066		UGG	TRH	LM27	1.000
ss-11	15-jul-1992		26DNT			0.110		UGG	TRH	LM27	1.000
SS-11	15- jul -1992		2CLP	2-CHLOROPHENOL		0.140		UGG	TRH	LM27	1.000
ss-11	15-jul-1992		2CNAP	2-CHLORONAPHTHALENE	۲.	0.049		UGG	TRH	LM27	1.000
ss-11	15- jul - 1992		2MNAP	2-METHYLNAPHTHALENE	1 T	0.350		UGG	TRH	LM27	1.000
ss-11	15- jul - 1992		2MP	2-METHYLPHENOL		0.079		UGG	TRH	LM27	1.000
SS-11	15-jul-1992		2NAN I L					UGG	TRH	LM27	1.000
SS-11	15- jul - 1992		2NP	2-NITROPHENOL		0.069		UGG	TRH	LM27	1.000
ss-11	15- jul - 1992		33DCBD	3,3'-DICHLOROBENZIDINE		3.400				LM27	1.000
SS-11	15- jul - 1992		3NAN1L			0.950		UGG	TRH		1.000
ss-11	15- jul - 1992	0.000	46DNTC	4,6-DINITRO-2-METHYLPHENO				UGG	TRH	LM27	
ss-11 ·	15- jul - 1992	0.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER				UGG	TRH	LM27	1.000
ss-11	15-jul-1992	0.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG	TRH	LM27	1.000
ss-11	15-jul-1992		4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	TRH	LM27	1.000
ss-11	15- jul - 1992		4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	TRH	LM27	1.000
ss-11	15-jul-1992		4MP	4-METHYLPHENOL	LT	0.300		UGG	TRH	LM27	1.000
SS-11	15-jul-1992			4-NITROANILINE	LT	1.200		UGG	TRH	LM27	1.000
SS-11	15-jul-1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
SS-11	15- jul - 1992		AG	SILVER		1.650		UGG	SEY	JS13	1.000
	15 jul 1992 15- jul -1992		AL	ALUMINUM		12000.000		UGG	SEY	JS13	3.000
SS-11	15- jul - 1992		ANAPNE	ACENAPHTHENE	LT	0.033		UGG	TRH	LM27	1.000
ss-11	-		ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRH	LM27	1.000
SS-11	15- jul -1992		ANTRO	ANTHRACENE		0.033		UGG	TRH	LM27	1.000
ss-11	15- jul - 1992				٠.	7.020		UGG	ACB	JD19	1.000
ss-11	15- jul - 1992		AS	ARSENIC		0.033		UGG	TRH	LM27	1.000
ss-11	15- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)				UGG	TRH	LM27	1.000
ss-11	15 - jul - 1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033			TRH		1.000
ss-11	15-jul-1992			BIS (2-CHLOROETHYL) ETHER				UGG	TRH	LM27	1.000
SS-11	15- jul - 1992	0.000	B2EHP	BIS (2-ETHYLHEXYL)	LĪ	0.390		UGG			1.000
ss-11	15- jul - 1992	0.000	BA	BARIUM		143.000		UGG	SEY	JS13	
ss-11	15-jul-1992	0.000	BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	TRH		1.000
\$S-11	15- jul - 1992		BAPYR	BENZO [A] PYRENE		г 0.033		UGG	TRH	LM27	1.000
ss-11	15- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE	LT	г 0.033		UGG	TRH		1.000
SS-11	15- jul - 1992		BBZP	BUTYLBENZYL PHTHALATE	Lī	r 0.033		UGG	TRH		1.000
SS-11	15 - jul - 1992		BE	BERYLLIUM		0.884	N	UGG	SEY	JS13	1.000
33-11	15 jul 1772										

Soil

	•						Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
SS-11	15- jul - 1992	0.000	BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	TRH	LM27	1.000
SS-11	15- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG	TRH	LM27	1.000
SS-11	15- jul - 1992		CA	CALCIUM		85000.000		UGG	SEY	JS13	20.000
SS-11	15-jul-1992		CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG	TRH	LM27	1.000
SS-11	15- jul - 1992		CD	CADMIUM		2.210		UGG	SEY	JS13	1.000
SS-11	15-jul-1992		CHRY	CHRYSENE	LT	0.220		UGG	TRH	LM27	1.000
SS-11	15- jul - 1992		CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	TRH	LM27	1.000
SS-11	15- jul <b>- 1</b> 992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE	LT	1.700		UGG	TRH	LM27	1.000
ss-11	15-jul-1992		CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	TRH	LM27	1.000
SS-11	15- jul-1992		CO	COBALT		16.400		UGG	SEY	JS13	1.000
ss-11	15-jul-1992	0.000	CR	CHROMIUM		33.200		UGG	SEY	JS13	1.000
SS-11	15-jul-1992	0.000	CU	COPPER		47.700		UGG	SEY	JS13	1.000
SS-11	15-jul-1992	0.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG		LM27	1.000
SS-11	15-jul-1992	0.000	DBZFUR	DIBENZOFURAN	LT	0.033		UGG		LM27	1.000
SS-11	15-jul-1992	0.000	DEP	DIETHYL PHTHALATE	LT	0.190		UGG		LM27	1.000
SS-11	15-jul-1992	0.000	DMP	DIMETHYL PHTHALATE	LT	0.130		UGG		LM27	1.000
SS-11	15-jul-1992	0.000	DNBP	DI-N-BUTYL PHTHALATE	LT	0.920		UGG		LM27	1.000
SS-11	15-jul-1992	0.000	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG		LM27	1.000
SS-11	15-jul-1992		FANT	FLUORANTHENE	LT	0.085		UGG		LM27	1.000
SS-11	15-jul-1992		FE	IRON		16000.000		UGG	SEY		3.000
SS-11	15-jul-1992	0.000	FLRENE	FLUORENE	LT	0.033		UGG		LM27	1.000
SS-11	15-jul-1992		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG		LM27	1.000
ss-11	15 - jul - 1992	0.000	HG	MERCURY		0.077		UGG		HG9	1.000
SS-11	15 - jul - 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG		LM27	1.000
SS-11	15- jul - 1992		ISOPHR	ISOPHORONE	LT	0.033		UGG		LM27	1.000
SS-11	15- jul - 1992		K	POTASSIUM		2790.000		UGG	SEY	JS13	1.000
SS-11	15- jul - 1992		MG	MAGNESIUM		8900.000		UGG	SEY		3.000
SS-11	15- jul-1992		MN	MANGANESE		656.000		UGG	SEY	JS13	1.000
SS-11	15- jul - 1992		NA	SODIUM		109.000		UGG	SEY	JS13 LM27	1.000 1.000
SS-11	15-jul-1992		NAP	NAPHTHALENE		0.037		UGG		LM27	1.000
SS-11	15-jul-1992		NB	NITROBENZENE	LI	0.071 18.200		UGG UGG		JS13	1.000
SS-11	15-jul-1992		NI	NICKEL						LM27	1.000
SS-11	15-jul-1992		NNDNPA	N-NITROSO		0.071 0.038		UGG UGG		LM27	1.000
SS-11	15-jul-1992		NNDPA	N-NITROSO DIPHENYLAMINE	LI	90.000		UGG	ZXL	JD17	10.000
SS-11	15-jul-1992		PB	LEAD DENTACUL OPODUENOL	ιт	0.200		UGG		LM27	1.000
SS-11	15-jul-1992 15-jul-1992		PCP PHANTR	PENTACHLOROPHENOL PHENANTHRENE	LI	0.046		UGG		LM27	1.000
SS-11	15-jul-1992 15-jul-1992		PHENOL	PHENOL	ΙT	0.110		UGG	TRH		1.000
SS-11 SS-11	15-jul-1992 15-jul-1992		PYR	PYRENE		0.088		UGG		LM27	1.000
SS-11	15-jul-1992		SB	ANTIMONY	1 T	41.300		UGG	UFG		1.000
SS-11	15- jul - 1992		SE	SELENIUM		0.250		UGG		JD15	1.000
SS-11	15- jul - 1992		TL	THALLIUM		68.400		UGG		JS13	1.000
SS-11	15-jul-1992		TPHC	TOTAL PETROLEUM		182.000		UGG		00	1.000
SS-11	15-jul-1992		v	VANADIUM		21.500		UGG		JS13	1.000
SS-11	15- jul-1992		ZN	ZINC		173.000		UGG		JS13	1.000
\$S-12	15-jul-1992			1,2,4-TRICHLOROBENZENE	LT	0.033		UGG		LM27	1.000
SS-12	15- jul - 1992			1,2,4-TRICHLOROBENZENE		0.033		UGG		LM27	1.000
ss-12	15-jul-1992			1,2-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
SS-12	15-jul-1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
SS-12	15-jul-1992		13DCLB	1,3-DICHLOROBENZENE		0.120		UGG		LM27	1.000
SS-12	15-jul-1992		13DCLB	1,3-DICHLOROBENZENE		0.120		UGG		LM27	1.000
ss-12	15-jul-1992		14DCLB	1,4-DICHLOROBENZENE	LT	0.033		UGG	TRH	LM27	1.000
SS-12	15-jul-1992			1,4-DICHLOROBENZENE		0.033		UGG		LM27	1.000
SS-12	15- jul - 1992		245TCP	•		0.086		UGG		LM27	1.000
SS-12	15- jul - 1992			2,4,5-TRICHLOROPHENOL	LT	0.086		UGG	TRH	LM27	1.000
	<del>-</del>										

# Soil

				Level 3 Data							
							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
								1100	TOU	1427	1 000
SS-12	15-jul-1992			-, ., .		0.082		UGG		LM27	1.000 1.000
ss-12	15- jul - 1992			-, -, -		0.082		UGG		LM27	
SS-12	15 - jul - 1992			-		0.140		UGG		LM27	1.000
SS-12	15 - jul - 1992		24DCLP	** •		0.140		UGG	TRH		1.000
SS-12	15 - jul - 1992	0.000	24DMPN	-1 -		2.600		UGG	TRH		1.000
SS-12	15 - jul <b>-</b> 1992	0.000	24DMPN			2.600		UGG		LM27	1.000
SS-12	15- jul - 1992	0.000	24DNP	-1		0.700		UGG		LM27	1.000
SS-12	15-jul-1992	0.000	24DNP	2,4-DINITROPHENOL	LT	0.700		UGG		LM27	1.000
SS-12	15-jul-1992	0.000	24DNT			0.370		UGG	TRH		1.000
ss-12	15- jul - 1992	0.000	24DNT	2,4-DINITROTOLUENE	LT	0.370		UGG	TRH		1.000
SS-12	15-jul-1992	0.000	26DNT	2,6-DINITROTOLUENE	LT	0.066		UGG	TRH	LM27	1.000
SS-12	15-jul-1992		26DNT	2,6-DINITROTOLUENE	LT	0.066		UGG		LM27	1.000
SS-12	15-jul-1992	0.000	2CLP	2-CHLOROPHENOL	LT	0.110		UGG		LM27	1.000
SS-12	15-jul-1992	0.000	2CLP	2-CHLOROPHENOL	LT	0.110		UGG	TRH	LM27	1.000
SS-12	15- jul-1992		2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		2MNAP	2-METHYLNAPHTHALENE		0.073		UGG	TRH	LM27	1.000
ss-12	15- jul - 1992		2MNAP	2-METHYLNAPHTHALENE		0.076	•	UGG	TRH	LM27	1.000
ss-12	15- jul - 1992		2MP	2-METHYLPHENOL	LT	0.350		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		2MP	2-METHYLPHENOL	LT	0.350		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		2NANIL	2-NITROANILINE	LT	0.079		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		2NANIL	2-NITROANILINE	LT	0.079		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		2NP		LT	0.069		UGG	TRH	LM27	1.000
SS-12	15- jul-1992		2NP		LT	0.069		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992			3,3'-DICHLOROBENZIDINE		20.000		UGG	TRH	LM27	5.000
SS-12	15-jul-1992		33DCBD	3,3'-DICHLOROBENZIDINE	LT	20.000		UGG	TRH	LM27	5.000
SS-12	15- jul - 1992		3NANIL	3-NITROANILINE	LT	0.950		UGG		LM27	1.000
\$S-12	15-jul-1992		3NANIL	3-NITROANILINE	LT	0.950		UGG	TRH	LM27	1.000
ss-12	15- jul - 1992		46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.800		UGG	TRH	LM27	5.000
SS-12	15-jul-1992	0.000	46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG	TRH	LM27	1.000
ss-12	15- jul <b>-</b> 1992	0.000	<b>4BRPPE</b>	4-BROMOPHENYLPHENYL ETHER	LT	0.200		UGG	TRH	LM27	5.000
SS-12	15-jul-1992	0.000	<b>4BRPPE</b>	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG		LM27	1.000
ss-12	15-jul-1992	0.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG	TRH	LM27	1.000
SS-12	15-jul-1992	0.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG	TRH	LM27	1.000
ss-12	15- jul - 1992	0.000	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG		LM27	1.000
SS-12	15-jul-1992	0.000	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG		LM27	1.000
ss-12	15- jul - 1992	0.000	4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG		LM27	1.000
SS-12	15- jul - 1992	0.000	4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG		LM27	1.000
ss-12	15- jul <b>- 199</b> 2	0.000	4MP	4-METHYLPHENOL	LT	0.300		UGG	TRH	LM27	1.000
SS-12	15-jul-1992	0.000	4MP	4-METHYLPHENOL	LT	0.300		UGG	TRH	LM27	1.000
<b>\$\$-12</b>	15-jul-1992	0.000	4NANIL	4-NITROANILINE	LT	1.200		UGG	TRH	LM27	1.000
ss-12	15 - jul - 1992	0.000	4NANIL	4-NITROANILINE	LT	1.200		UGG	TRH	LM27	1.000
ss-12	15- jul - 1992	0.000	4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992	0.000	4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
SS-12	15 - jul - 1992	0.000	AG	SILVER		0.715		UGG	SEY	JS13	1.000
ss-12	15- jul - 1992	0.000	AG	SILVER		1.090	D	UGG	SEY	JS13	1.000
SS-12	15- jul - 1992	0.000	AL	ALUMINUM		13000.000		UGG	SEY	JS13	3.000
SS-12	15- jul - 1992	0.000	AL	ALUMINUM		9400.000	D	UGG	SEY	JS13	2.000
SS-12	15- jul - 1992	0.000	ANAPNE	ACENAPHTHENE		0.033		UGG	TRH	LM27	1.000
ss-12	15- jul - 1992	0.000	ANAPNE	ACENAPHTHENE		0.033		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	TRH	LM27	1.000
SS-12	15- jul <b>-</b> 1992	0.000	ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	TRH	LM27	1.000
ss-12	15- jul - 1992	0.000	ANTRC	ANTHRACENE	LT	0.200		UGG	TRH	LM27	5.000
ss-12	15- jul - 1992	0.000	ANTRC	ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
ss-12	15- jul-1992	0.000	AS	ARSENIC		5.060		UGG	ACB	JD19	1.000

# Soil

					Level 3 Data							
								Flag	_			
Sit	e ID	Sample Date	Depth	Paramete	er	Va	lue	Code	Units	Lot	Method	Dilution
										4.00	10.40	4 000
SS-		15-jul-1992		AS	ARSENIC		4.220		UGG	ACB	JD19	1.000
SS-		15-jul-1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	TRH	LM27	1.000
SS-		15- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG		LM27	1.000
SS-		15- jul - 1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRH	LM27	1.000
SS-	12	15-jul-1992	0.000		BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRH	LM27	1.000
SS-	12	15-jul-1992	0.000	B2CLEE	BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	TRH	LM27	1.000
SS-	12	15-jul-1992	0.000	B2CLEE	BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	TRH	LM27	1.000
ss-	12	15-jul-1992	0.000	B2EHP	BIS (2-ETHYLHEXYL)	LT	2.000		UGG	TRH	LM27	5.000
SS-	12	15- jul - 1992	0.000	B2EHP	BIS (2-ETHYLHEXYL)	LT	2.000		UGG	TRH	LM27	5.000
SS-	12	15- jul-1992	0.000	BA	BARIUM		191.000		UGG	SEY	JS13	1.000
SS-		15-jul-1992	0.000	ВА	BARIUM		175.000	D	UGG	SEY	JS13	1.000
ss-		15-jul-1992	0.000	BAANTR	BENZO [A] ANTHRACENE	LT	0.200		UGG	TRH	LM27	5.000
SS-		15-jul-1992		BAANTR	BENZO [A] ANTHRACENE	LT	0.200		UGG	TRH	LM27	5.000
SS-		15- jul - 1992		BAPYR	BENZO [A] PYRENE	LT	0.200		UGG	TRH	LM27	5.000
SS-		15-jul-1992		BAPYR	BENZO [A] PYRENE	LT	0.200		UGG	TRH	LM27	5.000
SS-		15-jul-1992		BBFANT	BENZO [B] FLUORANTHENE	LT	0.200		UGG	TRH	LM27	5.000
SS-		15- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE		0.200		UGG	TRH	LM27	5.000
ss-		15-jul-1992		BBZP	BUTYLBENZYL PHTHALATE		0.200		UGG		LM27	5.000
SS-		15-iul-1992		BBZP	BUTYLBENZYL PHTHALATE		0.200		UGG		LM27	5.000
SS-		15-jul-1992		BE.	BERYLLIUM		1.080	N	UGG	SEY	JS13	1.000
SS-		15-jul-1992		BE	BERYLLIUM		0.929	N N	UGG	SEY	JS13	1.000
\$S-		15-jul-1992		BGHIPY	BENZO [G,H,I] PERYLENE	1 T	1.000	.,	UGG	TRH	LM27	5.000
SS-		15-jul-1992		BGHIPY	BENZO [G,H,I] PERYLENE		1.000		UGG	TRH	LM27	5.000
SS-		15-jul-1992		BKFANT	BENZO [K] FLUORANTHENE		0.200		UGG	TRH	LM27	5.000
		-					0.200		UGG	TRH	LM27	5.000
SS-		15-jul-1992		BKFANT	BENZO [K] FLUORANTHENE	Li			UGG	SEY	JS13	10.000
SS-		15-jul-1992		CA	CALCIUM	CT	33000.000 50000.000		UGG	SEY	JS13	10.000
SS-		15-jul-1992		CA	CALCIUM			D			1513 LM27	5.000
SS-		15-jul-1992			9H-CARBAZOLE		0.800	R	UGG	TRH		
SS-		15-jul-1992		CARBAZ	9H-CARBAZOLE	ND	0.800	R	UGG	TRH	LM27	5.000
SS-		15-jul-1992		CD	CADMIUM		1.400	_	UGG	SEY	JS13	1.000
SS-		15-jul-1992		CD	CADMIUM		1.290	D	UGG	SEY	JS13	1.000
SS-		15-jul-1992		CHRY	CHRYSENE		1.000		UGG	TRH	LM27	5.000
SS-		15- jul - 1992		CHRY	CHRYSENE		1.000		UGG	TRH	LM27	5.000
SS-		15-jul-1992		CL6BZ	HEXACHLOROBENZENE		0.200		UGG	TRH	LM27	5.000
SS-		15-jul-1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG	TRH	LM27	1.000
SS-		15-jul-1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG		LM27	1.000
SS-		15- jul - 1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG	TRH	LM27	1.000
SS-		15- jul - 1992		CL6ET	HEXACHLOROETHANE		0.067		UGG		LM27	1.000
SS-		15- jul <b>-</b> 1992		CL6ET	HEXACHLOROETHANE	LT	0.067		UGG		LM27	1.000
SS-		15- jul <b>-</b> 1992		CO	COBALT		16.700		UGG	SEY	JS13	1.000
SS-	12	15- jul - 1992	0.000	CO	COBALT		13.900	D	UGG	SEY	JS13	1.000
SS-	12	15-jul-1992	0.000	CR	CHROMIUM		24.400		UGG	SEY	JS13	1.000
SS-	12	15-jul-1992	0.000	CR	CHROMIUM		25.600	D	UGG	SEY	JS13	1.000
SS-	12	15-jul-1992	0.000	CU	COPPER		33.900		UGG	SEY	JS13	1.000
SS-	12	15-jul-1992	0.000	CU	COPPER		35.600	D	UGG	SEY	JS13	1.000
SS-	12	15- jul - 1992	0.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.200		UGG	TRH	LM27	5.000
SS-	12	15-jul-1992	0.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.200		UGG	TRH	LM27	5.000
SS-	12	15- jul - 1992	0.000	DBZFUR	DIBENZOFURAN	LT	0.033		UGG	TRH	LM27	1.000
ss-	12	15-jul-1992	0.000	DBZFUR	DIBENZOFURAN	LT	0.033		UGG	TRH	LM27	1.000
SS-	12	15-jul-1992	0.000	DEP	DIETHYL PHTHALATE	LT	0.190		UGG	TRH	LM27	1.000
SS-		15-jul-1992		DEP	DIETHYL PHTHALATE	LT	0.190		UGG	TRH	LM27	1.000
ss-		15-jul-1992		DMP	DIMETHYL PHTHALATE		0.130		UGG		LM27	1.000
SS-		15-jul-1992		DMP	DIMETHYL PHTHALATE		0.130		UGG	TRH	LM27	1.000
SS-		15-jul-1992		DNBP	DI-N-BUTYL PHTHALATE		5.000		UGG	TRH	LM27	5.000
SS-		15-jul-1992		DNBP	DI-N-BUTYL PHTHALATE		5.000		UGG		LM27	5.000
33-	•••	.5 ,40 1776	3.000	J			<del>-</del>					

				20101 0 5 5 1 1			Flag				
Site ID	Sample Date	Depth	Paramet	er	Val	ue	Code	Units	Lot	Method	Dilution
66 13	15- jul - 1992	0.000	DNOP	DI-N-OCTYL PHTHALATE	LT	1.000		UGG	TRH	LM27	5.000
SS-12 SS-12	15 jul - 1992		DNOP	DI-N-OCTYL PHTHALATE	LT	1.000		UGG	TRH	LM27	5.000
	15- jul - 1992		FANT	FLUORANTHENE		0.400		UGG	TRH	LM27	5.000
SS-12	15-jul-1992 15-jul-1992		FANT	FLUORANTHENE		0.400		UGG	TRH	LM27	5.000
SS-12			FE	IRON		16000.000		UGG	SEY	JS13	3.000
SS-12	15-jul-1992		FE FE	IRON		13000.000	D	UGG	SEY	JS13	10.000
SS-12	15-jul-1992			FLUORENE		0.033		UGG		LM27	1.000
ss-12	15-jul-1992		FLRENE	FLUORENE		0.033		UGG		LM27	1.000
SS-12	15-jul-1992		FLRENE	·		0.180		UGG		LM27	1.000
ss-12	15-jul-1992		HCBD	HEXACHLOROBUTAD I ENE		0.180		UGG		LM27	1.000
ss-12	15-jul-1992		HCBD	HEXACHLOROBUTAD I ENE		0.142		UGG	THK	HG9	1.000
SS-12	15-jul-1992		HG	MERCURY		0.152	D	UGG	THK	HG9	1.000
ss-12	15- jul - 1992		HG	MERCURY			U	UGG	TRH	LM27	5.000
ss-12	15-jul-1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	TRH	LM27	5.000
SS-12	15 - jul - 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE				UGG	TRH	LM27	1.000
ss-12	15- jul - 1992		ISOPHR	ISOPHORONE		0.033			TRH	LM27	1.000
SS-12	15 - jul - 1992		ISOPHR	ISOPHORONE	LI	0.033		UGG	SEY	JS13	1.000
SS-12	15- jul - 1992		K	POTASSIUM		3530.000		UGG UGG	SEY	JS13	1.000
SS-12	15- jul - 1992		K	POTASSIUM		2910.000	D		SEY	JS13	3.000
SS-12	15- jul - 1992		MG	MAGNESIUM		6600.000		UGG		JS13	2.000
ss-12	15- jul - 1992		MG	MAGNESIUM		5900.000	D	UGG	SEY	JS13	1.000
SS-12	15- jul - 1992		MN	MANGANESE		669.000		UGG	SEY	JS13	1.000
SS-12	15- jul - 1992	0.000	MN	MANGANESE		594.000	D	UGG	SEY		1.000
SS-12	15 - jul - 1992	0.000	NA	SODIUM		198.000	_	UGG	SEY	JS13	1.000
ss-12	15 - jul - 1992		NA	SODIUM		108.000	D	UGG	SEY	JS13	
SS-12	15-jul-1992	0.000	NAP	NAPHTHALENE		0.059		UGG	TRH	LM27	1.000
SS-12	15 - jul - 1992	0.000	NAP	NAPHTHALENE		0.061		UGG	TRH	LM27	1.000
ss-12	15- jul - 1992	0.000	NB	NITROBENZENE		0.071		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992	0.000	NB	NITROBENZENE	LT	0.071		UGG	TRH	LM27	1.000
<b>\$</b> \$-12	15- jul - 1992	0.000	NI	NICKEL		17.300	_	UGG	SEY	JS13	1.000
SS-12	15- jul - 1992	0.000	NI	NICKEL		15.300	D	UGG	SEY	JS13	1.000
<b>\$</b> \$-12	15- jul - 1992	0.000	NNDNPA	N-NITROSO		0.071		UGG		LM27	1.000
ss-12	15- jul - 1992	0.000	NNDNPA	N-NITROSO		0.071		UGG	TRH		1.000
\$\$-12	15- jul - 1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE		0.200		UGG	TRH		5.000
SS-12	15- jul - 1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992	0.000	PB	LEAD		170.000		UGG	ZXL	JD17	20.000
ss-12	15 - jul - 1992	0.000	PB	LEAD		150.000		UGG	ZXL	JD17	20.000
SS-12	15-jul-1992	0.000	PCP	PENTACHLOROPHENOL	LT	1.000		UGG	TRH	LM27	5.000
SS-12	15 - jul - 1992	0.000	PCP	PENTACHLOROPHENOL		0.200		UGG	TRH	LM27	1.000
ss-12	15- jul - 1992	0.000	PHANTR	PHENANTHRENE	LT	0.200		UGG		LM27	5.000
\$\$-12	15- jul - 1992		PHANTR	PHENANTHRENE		0.041		UGG		LM27	1.000
ss-12	15- jul - 1992		PHENOL	PHENOL	LT	0.110		UGG	TRH	LM27	1.000
SS-12	15- jul - 1992	0.000	PHENOL	PHENOL	LT	0.110		UGG	TRH		1.000
SS-12	15- jul - 1992		PYR	PYRENE	LT	0.200		UGG	TRH	LM27	5.000
ss-12	15- jul - 1992		PYR	PYRENE	LT	0.200		UGG	TRH	LM27	5.000
SS-12	15- jul - 1992		SB	ANTIMONY	LT	41.300		UGG	UFG	99	1.000
\$\$-12	15- jul - 1992		SB	ANTIMONY	LT	41.300		UGG	UFG	99	1.000
ss-12	15 - jul - 1992	0.000	SE	SELENIUM	LT	0.250		UGG	ZSR	JD15	1.000
SS-12	15- jul - 1992		SE	SELENIUM	LT	0.250		UGG	ZSR		1.000
ss-12	15- jul - 1992		ΤL	THALLIUM		64.400		UGG	SEY		1.000
ss-12	15- jul - 1992		TL	THALLIUM		59.700	D	UGG	SEY	JS13	1.000
SS-12	15- jul - 1992		TPHC	TOTAL PETROLEUM		2330.000		UGG	UBK	00	20.000
SS-12	15 - jul - 1992		TPHC	TOTAL PETROLEUM		2550.000	D	UGG	UBK	00	20.000
SS-12	15 - jul - 1992		V	VANADIUM		24.100		UGG	SEY	JS13	1.000
\$S-12	15 - jul - 1992		v	VANADIUM		17.600	D -	UGG	SEY	JS13	1.000
SS-12	15- jul - 1992		ZN	ZINC		176.000		UGG	SEY	JS13	1.000
33°14	12-jul-1992	. 0.000									

Soil

							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
cc 13	15- jul - 1992	0.000	ZN	ZINC		158.000	D	UGG	SEY	JS13	1.000
SS-12	15-jul-1992		124TCB	1,2,4-TRICHLOROBENZENE	ΙT	0.033	_	UGG	TRH	LM27	1.000
SS-13	15- jul - 1992 15- jul - 1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
SS-13	-			1,3-DICHLOROBENZENE		0.120		UGG	TRH	LM27	1.000
SS-13	15-jul-1992			•		0.033		UGG	TRH	LM27	1.000
ss-13	15-jul-1992			1,4-DICHLOROBENZENE		0.086		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992			2,4,5-TRICHLOROPHENOL		0.082		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992		246TCP	2,4,6-TRICHLOROPHENOL		0.140		UGG	TRH	LM27	1.000
SS-13	15- jul -1992		24DCLP	2,4-DICHLOROPHENOL				UGG	TRH	LM27	1.000
ss-13	15-jul-1992			2,4-DIMETHYLPHENOL		2.600			TRH	LM27	1.000
SS-13	15-jul-1992		24DNP	2,4-DINITROPHENOL		0.700		UGG		LM27	1.000
SS-13	15- jul - 1992		24DNT	2,4-DINITROTOLUENE		0.370		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992		26DNT	2,6-DINITROTOLUENE		0.066		UGG	TRH		
ss-13	15- jul <b>-</b> 1992		2CLP	2-CHLOROPHENOL		0.110		UGG	TRH	LM27	1.000
ss-13	15- jul - 1992	0.000	2CNAP	2-CHLORONAPHTHALENE		0.140		UGG	TRH	LM27	1.000
SS-13	15- jul <b>- 1</b> 992		2MNAP	2-METHYLNAPHTHALENE		0.033		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992	0.000	2MP	2-METHYLPHENOL		0.350		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992	0.000	2NANIL	2-NITROANILINE		0.079		UGG	TRH	LM27	1.000
SS-13	15-jul-1992	0.000	2NP	2-NITROPHENOL	LT	0.069		UGG	TRH	LM27	1.000
ss-13	15- jul-1992	0.000	33DCBD	3,3'-DICHLOROBENZIDINE	LT	3.400		UGG	TRH	LM27	1.000
ss-13	15- jul - 1992	0.000	3NANIL	3-NITROANILINE	LT	0.950		UGG	TRH	LM27	1.000
ss-13	15-jul-1992		46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.170		UGG	TRH	LM27	1.000
· SS-13	15-jul-1992	0.000	<b>4BRPPE</b>	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG	TRH	LM27	1.000
ss-13	15- jul - 1992		4CANIL	4-CHLOROANILINE	LT	1.600		UGG	TRH	LM27	1.000
ss-13	15- jul - 1992		4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	TRH	LM27	1.000
ss-13	15- jul - 1992		4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992		4MP	4-METHYLPHENOL	LT	0.300		UGG	TRH	LM27	1.000
SS-13	15-jul-1992		4NANIL	4-NITROANILINE	LT	1.200		UGG	TRH	LM27	1.000
SS-13	15-jul-1992		4NP	4-NITROPHENOL		0.860		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992		AG	SILVER		1.340		UGG	SEY	JS13	1.000
SS-13	15- jul - 1992		AL	ALUMINUM		9400.000		UGG	SEY	JS13	3.000
SS-13	15- jul - 1992		ANAPNE	ACENAPHTHENE	1 T	0.033		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992		ANTRO	ANTHRACENE		0.033		UGG	TRH	LM27	1.000
	•	0.000	AS	ARSENIC		6.550		UGG	ACB	JD19	1.000
SS-13	15- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992			•		0.033		UGG	TRH	LM27	1.000
SS-13	15- jul - 1992		B2CIPE	BIS (2-CHLOROISOPROPYL) BIS (2-CHLOROETHYL) ETHER				UGG	TRH	LM27	1.000
ss-13	15- jul - 1992		B2CLEE		Li	0.580		UGG	TRH	LM27	1.000
ss-13	15-jul-1992		B2EHP	BIS (2-ETHYLHEXYL)				ÜGG	SEY	JS13	1.000
SS-13	15- jul - 1992		BA	BARIUM		96.800				LM27	1.000
SS-13	15- jul - 1992		BAANTR			0.033		UGG			
ss-13	15- jul - 1992		BAPYR	BENZO [A] PYRENE		0.033		UGG	TRH		1.000
ss-13	15 - jul - 1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000
SS-13	15 - jul - 1992	0.000	BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG		LM27	1.000
ss-13	15 - jul - 1992	0.000	BE	BERYLLIUM		0.828	N	UGG	SEY	JS13	1.000
ss-13	15 - jul <b>- 199</b> 2		BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG	TRH	LM27	1.000
SS-13	15 - jul - 1992	0.000	BKFANT	BENZO [K] FLUORANTHENE	LT	0.033		UGG		LM27	1.000
SS-13	15 - jul - 1992	0.000	CA	CALCIUM		94000.000		UGG	SEY	JS13	20.000
ss-13	15- jul - 1992	0.000	CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG		LM27	1.000
\$\$-13	15-jul-1992	0.000	CD	CADMIUM		0.801		UGG	SEY	JS13	1.000
SS-13	15- jul - 1992		CHRY	CHRYSENE		0.220		UGG	TRH	LM27	1.000
ss-13	15-jul-1992		CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	TRH	LM27	1.000
ss-13	15- jul - 1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG	TRH	LM27	1.000
ss-13	15- jul - 1992		CL6ET	HEXACHLOROETHANE		0.067		UGG	TRH	LM27	1.000
SS-13	15 - jul - 1992		CO	COBALT		14.400		UGG	SEY	JS13	1.000
SS-13	15 - jul - 1992		CR	CHROMIUM		31.200		UGG	SEY	JS13	1.000
JJ 1J	15 Jul 1776	0.000				* *					

Soil

					Level 3 Data							
								Flag				
	Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
	0.00		•									
	ss-13	15 - jul - 1992	0.000	CU	COPPER		24.800		UGG	SEY	JS13	1.000
	ss-13	15 - jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
	SS-13	15-jul-1992		DBZFUR	DIBENZOFURAN	LT	0.033		UGG	TRH	LM27	1.000
	SS-13	15-jul-1992		DEP	DIETHYL PHTHALATE	LT	0.190		UGG	TRH	LM27	1.000
	SS-13	15-jul-1992		DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	TRH	LM27	1.000
	SS-13	15-jul-1992		DNBP	DI-N-BUTYL PHTHALATE	LT	0.920		UGG	TRH	LM27	1.000
		15-jul-1992		DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	TRH	LM27	1.000
	SS-13	15-jul-1992		FANT	FLUORANTHENE		0.085		UGG	TRH	LM27	1.000
	SS-13			FE	IRON		14000.000		UGG	SEY	JS13	3.000
	SS-13	15-jul-1992		FLRENE	FLUORENE	1 T	0.033		UGG	TRH	LM27	1.000
	SS-13	15-jul-1992			HEXACHLOROBUTAD I ENE		0.180		UGG	TRH	LM27	1.000
	SS-13	15-jul-1992		HCBD			0.027		UGG	THK	HG9	1.000
	SS-13	15-jul-1992		HG	MERCURY INDENO [1,2,3-C,D] PYRENE				UGG	TRH	LM27	1.000
	SS-13	15-jul-1992		ICDPYR			0.033		UGG	TRH	LM27	1.000
	ss-13	15- jul - 1992		ISOPHR	ISOPHORONE	LI	2610.000		UGG	SEY	JS13	1.000
	ss-13	15-jul-1992		K	POTASSIUM		9100.000		UGG	SEY	JS13	3.000
	ss-13	15-jul-1992		MG	MAGNESIUM				UGG	SEY	JS13	1.000
	ss-13	15-jul-1992		MN	MANGANESE		443.000 44.800		UGG	SEY	JS13	1.000
	ss-13	15 - jul - 1992		NA	SODIUM				UGG	TRH	LM27	1.000
	ss-13	15 - jul - 1992		NAP	NAPHTHALENE		0.033			TRH	LM27	1.000
	SS-13	15 - jul - 1992		NB	NITROBENZENE	LT	0.071		UGG			1.000
	ss-13	15- jul - 1992		NI	NICKEL		17.500		UGG	SEY	JS13	
	ss-13	15-jul-1992	0.000	NNDNPA	N-NITROSO		0.071		UGG	TRH	LM27	1.000
	ss-13	15 - jul - 1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	TRH	LM27	1.000
	ss-13	15-jul-1992	0.000	PB	LEAD		70.000		UGG	ZXL	JD17	10.000
	SS-13	15- jul - 1992	0.000	PCP	PENTACHLOROPHENOL		0.200		UGG	TRH	LM27	1.000
	SS-13	15- jul - 1992	0.000	PHANTR	PHENANTHRENE	LT	0.033		UGG	TRH	LM27	1.000
	ss-13	15- jul - 1992		PHENOL	PHENOL	LT	0.110		UGG	TRH	LM27	1.000
	ss-13	15-jul-1992	0.000	PYR	PYRENE	LT	0.033		UGG	TRH	LM27	1.000
	SS-13	15- jul - 1992		SB	ANTIMONY	LT	41.300		UGG	UFG	99	1.000
	ss-13	15-jul-1992		SE	SELENIUM	LT	0.250		UGG	ZSR	JD15	1.000
,	ss-13	15-jul-1992		TL	THALLIUM		57.200		UGG	SEY	JS13	1.000
	SS-13	15-jul-1992		TPHC	TOTAL PETROLEUM		64.500		UGG	UBK	00	1.000
	SS-13	15-jul-1992		٧	VANADIUM		20.500		UGG	SEY	JS13	1.000
	SS-13	15-jul-1992		ZN	ZINC		77.700		UGG	SEY	JS13	1.000
	SS-14	15-jul-1992		124TCB	1,2,4-TRICHLOROBENZENE	LT	0.033		UGG	TRH	LM27	1.000
	SS-14	15-jul-1992			1,2-DICHLOROBENZENE	LT	0.033		UGG	TRH	LM27	1.000
	SS-14	15-jul-1992			1,3-DICHLOROBENZENE	LT	0.120		UGG	TRH	LM27	1.000
	SS-14	15- jul-1992			1.4-DICHLOROBENZENE	LT	0.033		UGG	TRH	LM27	1.000
	SS-14	15- jul - 1992		245TCP	•	LT	0.086		UGG	TRH	LM27	1.000
	SS-14 SS-14	15- jul - 1992		246TCP	2,4,6-TRICHLOROPHENOL		0.082		UGG	TRH	LM27	1.000
		15- jul - 1992		24DCLP	2,4-DICHLOROPHENOL		r <b>0.1</b> 40		UGG	TRH	LM27	1.000
	SS-14	15- jul-1992 15- jul-1992		24DCEF 24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG	TRH	LM27	1.000
	SS-14	-		24DNP	2,4-DINITROPHENOL		0.700		UGG	TRH	LM27	1.000
	SS-14	15- jul - 1992			2,4-DINITROTOLUENE		0.370		UGG	TRH	LM27	1.000
	SS-14	15- jul - 1992		24DNT	2,6-DINITROTOLUENE		0.066		UGG	TRH		1.000
	SS-14	15-jul-1992		26DNT			r 0.110		UGG	TRH	LM27	1.000
	SS-14	15- jul - 1992		2CLP	2-CHLOROPHENOL 2-CHLORONAPHTHALENE		г 0.140		UGG	TRH	LM27	1.000
	SS-14	15-jul-1992		2CNAP		_	0.140		UGG	TRH	LM27	1.000
	SS-14	15- jul - 1992		2MNAP	2-METHYLNAPHTHALENE	1.7	T 0.350		UGG	TRH		1.000
	SS-14	15- jul - 1992		2MP	2-METHYLPHENOL .		T 0.079		UGG	TRH		1.000
	SS-14	15- jul - 1992		2NANIL	2-NITROANILINE				UGG	TRH		1.000
	ss-14	15- jul - 1992		2NP	2-NITROPHENOL		T 0.069			TRH		1.000
	ss-14	15-jul <i>-</i> 1992		33DCBD	3,3'-DICHLOROBENZIDINE		T 3.400		UGG			1.000
	SS-14	15 - jul - 1992		3NANIL	3-NITROANILINE		T 0.950		UGG	TRH		1.000
	ss-14	15 - jul - 1992			4,6-DINITRO-2-METHYLPHEN				UGG	TRH		1.000
	ss-14	15 - jul - 1992	0.000	4BRPPE	4-BROMOPHENYLPHENYL ETHE	K L	1 0.033		UGG	IKH	LM27	1.000

Soil

				20101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Flag				
Site ID	Sample Date	Depth	Paramet	er	Va	lue	Code	Units	Lot	Method	Dilution
SS-14	15 - jul - 1992			4-CHLOROANILINE		1.600		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992		4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	TRH	LM27	1.000
SS-14	15-jul-1992		4CLPPE			0.044		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992		4MP	4-METHYLPHENOL		0.300		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992		4NANIL			1.200		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	AG	SILVER		14.000		UGG	SEY	JS13	1.000
SS-14	15- jul - 1992		AL	ALUMINUM		15000.000		UGG	SEY	JS13	5.000
SS-14	15-jul-1992		ANAPNE	ACENAPHTHENE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15-jul-1992		ANAPYL	ACENAPHTHYLENE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	ANTRC	ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	AS	ARSENIC		6.090		UGG	ACB	JD19	1.000
SS-14	15-jul-1992	0.000	B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	B2CIPE	BIS (2-CHLOROISOPROPYL)	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15-jul-1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG	TRH	LM27	1.000
SS-14	15-jul-1992		BA	BARIUM		199.000		UGG	SEY	JS13	1.000
SS-14	15- jul - 1992	0.000	BAANTR	BENZO (A) ANTHRACENE		0.057		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	BAPYR	BENZO [A] PYRENE		0.054		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	BBFANT	BENZO [B] FLUORANTHENE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	BE	BERYLLIUM		1.210	N	UGG	SEY	JS13	1.000
SS-14	15- jul - 1992	0.000	BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	BKFANT	BENZO [K] FLUORANTHENE		0.058		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	CA	CALCIUM		39000.000		UGG	SEY	JS13	10.000
SS-14	15-jul-1992	0.000	CARBAZ	9H-CARBAZOLE	ND	0.170	R	UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	CD	CADMIUM		1.530		UGG	SEY	JS13	1.000
SS-14	15-jul-1992	0.000	CHRY	CHRYSENE	LT	0.220		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	CL6CP	HEXACHLOROCYCLOPENTADIENE	LT	1.700		UGG	TRH	LM27	1.000
SS-14	15-jul-1992		CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	CO	COBALT		18.800		UGG	SEY	JS13	1.000
SS-14	15-jul-1992		CR	CHROMIUM		27.200		UGG	SEY	JS13	1.000
SS-14	15-jul-1992	0.000	CU	COPPER		37.200		UGG	SEY	JS13	1.000
SS-14	15- jul - 1992	0.000	DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	DBZFUR	DIBENZOFURAN	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	DEP	DIETHYL PHTHALATE	LT	0.190		UGG	TRH	LM27	1.000
SS-14	15-jul-1992		DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	DNBP	DI-N-BUTYL PHTHALATE	LT	0.920		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	FANT	FLUORANTHENE	LT	0.085		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	FE	IRON		19000.000		UGG	SEY	JS13	5.000
SS-14	15- jul <b>-</b> 1992	0.000	FLRENE	FLUORENE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	HG	MERCURY		0.285		UGG	THK	HG9	1.000
SS-14	15- jul <b>-</b> 1992	0.000	ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15-jul-1992 _	0.000	ISOPHR	ISOPHORONE	LT	0.033		UGG	TRH	LM27	1.000
SS-14	15-jul-1992	0.000	K	POTASSIUM		3730.000		UGG	SEY	JS13	1.000
SS-14	15-jul-1992	0.000	MG	MAGNESIUM		6500.000		UGG	SEY	JS13	5.000
SS-14	15-jul-1992	0.000	MN	MANGANESE		645.000		UGG	SEY	JS13	1.000
SS-14	15-jul-1992	0.000	NA	SODIUM		313.000		UGG	SEY	JS13	1.000
SS-14	15-jul-1992	0.000	NAP	NAPHTHALENE		0.120		UGG	TRH	LM27	1.000
SS-14	15- jul <b>-</b> 1992		NB	NITROBENZENE	LT	0.071		UGG	TRH	LM27	1.000
SS-14	15 - jul - 1992	0.000	NI	NICKEL		17.700		UGG	SEY	JS13	1.000
SS-14	15-jul-1992	0.000	NNDNPA	N-NITROSO	LT	0.071		UGG	TRH	LM27	1.000

Soil

					Level 3 Data							
	City ID	Cample Date	Danth	Danamat	on	Val	lue	Flag Code	Unite	Lot	Method	Dilution
	Site ID	Sample Date	veptn	Paramet	er	vai	tue	code	Units	LOT	Method	Dilution
	SS-14	15- jul - 1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	TRH	LM27	1.000
	ss-14	15- jul-1992		РВ	LEAD		120.000		UGG	ZXL	JD17	20.000
	SS-14	15- jul - 1992		PCP	PENTACHLOROPHENOL	LT	0.200		UGG	TRH	LM27	1.000
	SS-14	15-jul-1992		PHANTR	PHENANTHRENE		0.058		UGG	TRH	LM27	1.000
	ss-14	15-jul-1992		PHENOL	PHENOL	LT	0.110 .		UGG	TRH	LM27	1.000
	SS-14	15-jul-1992		PYR	PYRENE		0.087		UGG	TRH	LM27	1.000
	SS-14	15-jul-1992		SB	ANTIMONY	LT	41.300		UGG	UFG	99	1.000
	SS-14	15-jul-1992		SE	SELENIUM		0.250		UGG	ZSR	JD15	1.000
	SS-14	15-jul-1992		TL .	THALLIUM		81.200		UGG	SEY	JS13	1.000
	SS-14	15 jul 1992		TPHC	TOTAL PETROLEUM		27.400		UGG	UBK		1.000
	SS-14	15-jul-1992		v	VANADIUM		24.900		UGG	SEY	JS13	1.000
	SS-14	15-jul-1992		ZN	ZINC		129.000		UGG	SEY	JS13	1.000
	SS-14 SS-15	15-jul-1992		124TCB	1,2,4-TRICHLOROBENZENE	ΙT	0.033		UGG	TRH	LM27	1.000
	SS-15	15- jul - 1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRH		1.000
	SS-15	15-jul-1992			1,3-DICHLOROBENZENE		0.120		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		14DCLB	•		0.033		UGG		LM27	1.000
٠	SS-15	15- jul - 1992		245TCP	•		0.086		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		246TCP	• •		0.082		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		24DCLP	• •		0.140		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		24DMPN	•		2.600		UGG	TRH		1.000
	SS-15	15-jul-1992		24DNP	2,4-DINITROPHENOL		0.700		UGG	TRH		1.000
	SS-15	15-jul-1992 15-jul-1992		24DNT	2,4-DINITROTOLUENE		0.370		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992 15-jul-1992		26DNT	2,6-DINITROTOLUENE		0.066		UGG	TRH	LM27	1.000
		15-jul-1992 15-jul-1992		2CLP	2-CHLOROPHENOL		0.110		UGG	TRH	LM27	1.000
	SS-15 SS-15	15-jul-1992 15-jul-1992		2CNAP	2-CHLORONAPHTHALENE		0.140		UGG	TRH	LM27	1.000
		15-jul-1992 15-jul-1992		2MNAP	2-METHYLNAPHTHALENE		0.078		UGG	TRH	LM27	1.000
	SS-15	=		2MP			0.350		UGG	TRH		1.000
	SS-15	15-jul-1992		2MP 2NANIL	2-METHYLPHENOL		0.079		UGG	TRH		1.000
	SS-15	15-jul-1992			2-NITROANILINE		0.069		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		2NP	2-NITROPHENOL		3.400		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		33DCBD	3,3'-DICHLOROBENZIDINE		0.950		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		3NANIL	3-NITROANILINE 4,6-DINITRO-2-METHYLPHENO			-	UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		46DNTC					UGG	TRH	LM27	1.000
	SS-15	15-jul-1992			4-BROMOPHENYLPHENYL ETHER		1.600		UGG	TRH	LM27	1.000
		15-jul-1992	0.000	4CANIL						TRH	LM27	1.000
		15-jul-1992		4CL3C	4-CHLORO-3-CRESOL		0.073		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		4CLPPE	4-CHLOROPHENYLPHENYL		0.044		UGG		LM27	1.000
	SS-15	15-jul-1992		4MP	4-METHYLPHENOL		0.300		UGG	TRH	LM27 LM27	1.000
	SS-15	15-jul-1992			4-NITROANILINE		1.200		UGG	TRH		
	SS-15	15-jul-1992		4NP	4-NITROPHENOL	LI	0.860		UGG		LM27	1.000
	SS-15	15-jul-1992		AG	SILVER		0.758		UGG	SEY	JS13	1.000
	SS-15	15-jul-1992		AL	ALUMINUM		13000.000		UGG	SEY	JS13	3.000
	SS-15	15-jul-1992		ANAPNE			0.033		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRH	LM27	1.000
	SS-15	15- jul - 1992		ANTRC	ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
	<b>\$</b> \$-15	15- jul - 1992		AS	ARSENIC		3.940		UGG	ACB	JD19	1.000
	SS-15	15- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRH	LM27	1.000
	\$S-15	15-jul-1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG	TRH	LM27	1.000
	ss-15	15- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		BA	BARIUM		154.000		UGG	SEY	JS13	1.000
	ss-15	15-jul-1992		BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992	0.000	BAPYR	BENZO [A] PYRENE		0.033		UGG	TRH	LM27	1.000
	SS-15	15-jul-1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG	TRH	LM27	1.000
	SS-15	15 - jul - 1992		BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	TRH	LM27	1.000
	SS-15	15 - jul - 1992	0.000	BE	BERYLLIUM		1.180	N	UGG	SEY	JS13	1.000

Level	3	Data
Leve	LJI	vala

				Level 3 Data							
							Flag		_		
Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
<b></b>			- Autoid	DEUTO TO U 11 DEDVIEW		0.250		UGG	YDU	LM27	1.000
SS-15	15- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG	TRH	LM27	1.000
SS-15	15- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE	LI	0.033				JS13	
SS-15	15-jul-1992		CA	CALCIUM		33000.000		UGG			10.000
SS-15	15-jul-1992			9H-CARBAZOLE	ND	0.170	R	UGG	TRH	LM27	1.000
SS-15	15-jul-1992		CD	CADMIUM		1.300		UGG	SEY	JS13	1.000
SS-15	15-jul-1992	0.000	CHRY	CHRYSENE		0.220		UGG		LM27	1.000
SS-15	15- jul <b>-</b> 1992	0.000	CL6BZ	HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
SS-15	15 - jul - 1992	0.000	CL6CP	HEXACHLOROCYCLOPENTAD I ENE	LT	1.700		UGG	TRH	LM27	1.000
\$S-15	15-jul-1992	0.000	CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	TRH	LM27	1.000
SS-15	15-jul-1992	0.000	CO	COBALT		17.800		UGG	SEY	JS13	1.000
SS-15	15-jul-1992	0.000	CR	CHROMIUM		26.200		UGG	SEY	JS13	1.000
SS-15	15- jul - 1992	0.000	CU	COPPER		29.800		UGG	SEY	JS13	1.000
SS-15	15- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	TRH	LM27	1.000
\$S-15	15- jul - 1992		DBZFUR	DIBENZOFURAN		0.033		UGG	TRH	LM27	1.000
SS-15	15-jul-1992		DEP	DIETHYL PHTHALATE		0.190		UGG	TRH	LM27	1.000
SS-15	15-jul-1992		DMP	DIMETHYL PHTHALATE		0.130		UGG	TRH	LM27	1.000
SS-15	15-jul-1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG		LM27	1.000
SS-15	15-jul-1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG		LM27	1.000
SS-15	15- jul-1992		FANT	FLUORANTHENE		0.085		UGG		LM27	1.000
	15-jul-1992		FE	IRON		16000.000		UGG	SEY	JS13	3.000
SS-15	-		FLRENE	FLUORENE	1 T	0.033		UGG		LM27	1.000
SS-15	15-jul-1992					0.180		UGG		LM27	1.000
SS-15	15-jul-1992		HCBD	HEXACHLOROBUTAD I ENE	LI	0.201		UGG	THK		1.000
SS-15	15-jul-1992		HG	MERCURY				UGG		LM27	1.000
SS-15	15-jul-1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE						LM27	1.000
SS-15	15-jul-1992		ISOPHR	ISOPHORONE	LI	0.033		UGG			
SS-15	15-jul-1992		K	POTASSIUM		3590.000		UGG		JS13	1.000
SS-15	15 - jul - 1992		MG	MAGNESIUM		6600.000		UGG	SEY	JS13	3.000
SS-15	15- jul - 1992		MN	MANGANESE		592.000		UGG	SEY	JS13	1.000
SS-15	15 - jul - 1992		NA	SODIUM		264.000		UGG	SEY	JS13	1.000
SS-15	15- jul - 1992		NAP	NAPHTHALENE		0.060		UGG		LM27	1.000
SS-15	15-jul-1992		NB	NITROBENZENE	LT	0.071		UGG		LM27	1.000
SS-15	15- jul <b>- 199</b> 2		NI	NICKEL		18.200		UGG		JS13	1.000
SS-15	15-jul-1992		NNDNPA	N-NITROSO		0.071		UGG	TRH	LM27	1.000
SS-15	15-jul-1992		NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG		LM27	1.000
SS-15	15- jul - 1992	0.000	PB	LEAD		83.000		UGG	ZXL	JD17	10.000
SS-15	15- jul - 1992	0.000	PCP	PENTACHLOROPHENOL	LT	0.200		UGG		LM27	1.000
SS-15	15- jul -1992	0.000	PHANTR	PHENANTHRENE		0.038		UGG	TRH	LM27	1.000
SS-15	15 - jul - 1992	0.000	PHENOL	PHENOL	LT	0.110		UGG			1.000
SS-15	15-jul-1992	0.000	PYR	PYRENE		0.067		UGG	TRH	LM27	1.000
SS-15	15-jul-1992		SB	ANTIMONY	LT	41.300		UGG	UFG	99	1.000
ss-15	15-jul-1992	0.000	SE	SELENIUM	LT	0.250		UGG	ZSR	JD15	1.000
SS-15	15-jul-1992		TL	THALLIUM		64.800		UGG	SEY	JS13	1.000
ss-15	15- jul - 1992		TPHC	TOTAL PETROLEUM		50.700		UGG	UBK	00	1.000
SS-15	15-jul-1992		V	VANADIUM		25.500		UGG	SEY	JS13	1.000
SS-15	15- jul - 1992		ZN	ZINC		97.800		UGG	SEY	JS13	1.000
SS-16	15-jul-1992		124TCB	1,2,4-TRICHLOROBENZENE	LT	0.033		UGG	TRH	LM27	1.000
ss-16	15-jul-1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		13DCLB	1,3-DICHLOROBENZENE		0.120		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		14DCLB	1,4-DICHLOROBENZENE		0.033		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		245TCP	2,4,5-TRICHLOROPHENOL		0.086		UGG	TRH	LM27	1.000
	15-jul-1992 15-jul-1992		2451CP	2,4,6-TRICHLOROPHENOL		0.082		UGG	TRH	LM27	1.000
\$\$-16 \$\$-16			24DCLP			0.140		UGG	TRH	LM27	1.000
SS-16	15-jul-1992			2,4-DICHLOROPHENOL		2.600		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		24DMPN	2,4-DIMETHYLPHENOL			*		TRH	LM27	1.000
ss-16	15-jul-1992		24DNP	2,4-DINITROPHENOL		0.700		UGG			1.000
ss-16	15-jul-1992	0.000	24DNT	2,4-DINITROTOLUENE	LI	0.370		UGG	ıĸn	LM27	1.000

Soil

				Level 3 Data			Flag				
Site ID	Sample Date	Depth	Paramet	er	Va	lue	Code	Units	Lot	Method	Dilution
SS-16	15- jul - 1992	0.000	26DNT	2,6-DINITROTOLUENE	ŧΤ	0.066		UGG	TRH	LM27	1.000
SS-16	15- jul - 1992		2CLP	2-CHLOROPHENOL		0.110		UGG	TRH	LM27	1.000
SS-16	15- jul - 1992		2CNAP	2-CHLORONAPHTHALENE		0.140		UGG		LM27	1.000
SS-16	15 jul 1992		2MNAP	2-METHYLNAPHTHALENE	٠.	0.052		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		2MP	2-METHYLPHENOL	ΙT	0.350		UGG	TRH	LM27	1.000
\$\$-16	15-jul-1992 15-jul-1992		2NANIL	2-NITROANILINE		0.079		UGG	TRH	LM27	1.000
	15-jul-1992		2NANTE			0.069		UGG	TRH	LM27	1.000
SS-16	15-jul-1992 15-jul-1992		33DCBD	2-NITROPHENOL		3.400		UGG	TRH	LM27	1.000
SS-16 SS-16	•			3,3'-DICHLOROBENZIDINE 3-NITROANILINE		0.950		UGG	TRH	LM27	1.000
\$\$-16 \$\$-16	15-jul-1992 15-jul-1992			4,6-DINITRO-2-METHYLPHENO				UGG		LM27	1.000
\$\$-16 \$\$-16	-			4-BROMOPHENYLPHENYL ETHER				UGG		LM27	1.000
\$\$-16 \$\$-16	15-jul-1992 15-jul-1992			4-CHLOROANILINE		1.600		UGG		LM27	1.000
\$\$-16 \$\$-16	15-jul-1992		4CANTE	4-CHLORO-3-CRESOL		0.073		UGG		LM27	1.000
	15-jul-1992 15-jul-1992		4CLPPE			0.044		UGG	TRH	LM27	1.000
SS-16	•					0.300		UGG		LM27	1.000
SS-16	15-jul-1992		4MP	4-METHYLPHENOL		1.200		UGG .	TRH	LM27	1.000
SS-16	15-jul-1992		4NANIL	4-NITROANILINE						LM27	
SS-16	15-jul-1992		4NP	4-NITROPHENOL	LI	0.860		UGG			1.000
SS-16	15-jul-1992		AG	SILVER		0.747		UGG	SEY	JS13	1.000
SS-16	15-jul-1992		AL	ALUMINUM		12000.000		UGG	SEY	JS13	3.000
SS-16	15- jul - 1992		ANAPNE			0.033		UGG	TRH		1.000
SS-16	15-jul-1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG		LM27	1.000
SS-16	15-jul-1992		ANTRC	ANTHRACENE	LI	0.033		UGG		LM27	1.000
SS-16	15-jul-1992		AS	ARSENIC		4.030		UGG	ACB	JD19	1.000
SS-16	15- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG	TRH	LM27	1.000
SS-16	15-jul-1992			BIS (2-CHLOROETHYL) ETHER				UGG		LM27	1.000
SS-16	15-jul-1992		B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		ВА	BARIUM		146.000		UGG	SEY	JS13	1.000
SS-16	15- jul - 1992		BAANTR	BENZO [A] ANTHRACENE		0.033		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		BAPYR	BENZO [A] PYRENE		0.033		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG		LM27	1.000
SS-16	15-jul-1992		BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		BE	BERYLLIUM		1.120	N	UGG	SEY	JS13	1.000
SS-16	15-jul-1992		BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		BKFANT	BENZO [K] FLUORANTHENE	LT	0.033	_	UGG		LM27	1.000
	15-jul-1992		C16A	HEXADECANOIC ACID		0.850	S	UGG		LM27	1.000
	15-jul-1992		CA	CALCIUM		33000.000	_	UGG		JS13	10.000
SS-16	15-jul-1992				ND	0.170	R	UGG		LM27	1.000
SS-16	15- jul - 1992		CD	CADMIUM		1.180		UGG	SEY	JS13	1.000
SS-16	15- jul - 1992		CHRY	CHRYSENE		0.220		UGG	TRH	LM27	1.000
SS-16	15- jul - 1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG	TRH	LM27	1.000
SS-16	15- jul - 1992		CL6ET	HEXACHLOROETHANE	LT	0.067		UGG		LM27	1.000
SS-16	15-jul-1992		СО	COBALT		15.400		UGG	SEY	JS13	1.000
SS-16	15- jul - 1992		CR	CHROMIUM		23.800		UGG	SEY	JS13	1.000
SS-16	15-jul-1992		CU	COPPER		26.600		UGG	SEY	JS13	1.000
SS-16	15- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG		LM27	1.000
SS-16	15- jul - 1992		DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
SS-16	15 - jul - 1992		DEP	DIETHYL PHTHALATE		0.190		UGG		LM27	1.000
SS-16	15-jul-1992	0.000	DMP	DIMETHYL PHTHALATE		0.130		UGG		LM27	1.000
SS-16	15-jul-1992	0.000	DNBP	DI-N-BUTYL PHTHALATE	LŦ	0.920		UGG	TRH	LM27	1.000
SS-16	15-jul-1992	0.000	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	TRH	LM27	1.000
SS-16	15 - jul - 1992	0.000	FANT	FLUORANTHENE	LT	0.085		UGG	TRH	LM27	1.000
ss-16	15 - jul - 1992	0.000	FE	IRON		14000.000		UGG	SEY	JS13	3.000
SS-16	15 - jul - 1992	0.000	FLRENE	FLUORENE	LT	0.033		UGG	TRH	LM27	1.000

Soil

				Ecvet 3 bata			Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	ue	Code	Units	Lot	Method	Dilution
••	45 1 4000			HEMACIN ODODUTADJENE		0.190		UGG	TRH	LM27	1.000
\$\$-16	15-jul-1992		HCBD	HEXACHLOROBUTADIENE	Li	0.180 0.220		UGG	THK	HG9	1.000
SS-16	15- jul - 1992		HG	MERCURY INDENO [1,2,3-C,D] PYRENE	ı T			UGG	TRH	LM27	1.000
SS-16	15-jul-1992		ICDPYR			0.033		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		ISOPHR	ISOPHORONE	LI	3580.000		UGG	SEY	JS13	1.000
ss-16	15-jul-1992		K	POTASSIUM		6300.000		UGG	SEY	J\$13	3.000
SS-16	15-jul-1992		MG	MAGNESIUM		554.000		UGG	SEY	JS13	1.000
ss-16	15-jul-1992		MN	MANGANESE				UGG	SEY	JS13	1.000
SS-16	15-jul-1992		NA	SODIUM		196.000		UGG	TRH	LM27	1.000
SS-16	15-jul-1992		NAP	NAPHTHALENE		0.043		UGG	TRH	LM27	1.000
SS-16	15- jul -1992		NB	NITROBENZENE	LI	0.071		UGG	SEY	JS13	1.000
<b>SS-16</b>	15- jul - 1992		NI	NICKEL		17.800			TRH	LM27	1.000
ss-16	15- jul - 1992		NNDNPA	N-NITROSO		0.071		UGG	TRH	LM27	1.000
<b>\$</b> S-16	15-jul-1992		NNDPA	N-NITROSO DIPHENYLAMINE	LI	0.038		UGG		JD17	10.000
SS-16	15- jul - 1992		РВ	LEAD		92.000		UGG	ZXL		1.000
ss-16	15-jul-1992		PCP	PENTACHLOROPHENOL		0.200		UGG	TRH	LM27	
SS-16	15- jul - 1992		PHANTR	PHENANTHRENE		0.033		UGG	TRH	LM27	1.000
<b>s</b> s-16	15- jul - 1992		PHENOL	PHENOL		0.110		UGG	TRH	LM27	1.000
SS-16	15- jul - 1992		PYR	PYRENE		0.033		UGG	TRH UFG	LM27 99	1.000 1.000
SS-16	15-jul-1992		SB	ANTIMONY		41.300		UGG			1.000
SS-16	15-jul-1992		SE	SELENIUM	LI	0.250		UGG	ZSR	JD15	
<b>SS-1</b> 6	15-jul-1992		TL	THALLIUM		66.500		UGG	SEY	JS13	1.000
SS-16	15-jul-1992		TPHC	TOTAL PETROLEUM		21.700		UGG	UBK	00	1.000
ss-16	15- jul - 1992		٧	VANADIUM		21.400		UGG	SEY	JS13	1.000
SS-16	15- jul-1992		ZN	ZINC		89.100		UGG	SEY	JS13	1.000
ss-17	16- jul - 1992		124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
SS-17	16- jul - 1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG		LM27	1.000
SS-17	16- jul - 1992	•	13DCLB	1,3-DICHLOROBENZENE		0.120		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992	0.000		1,4-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992		245TCP	2,4,5-TRICHLOROPHENOL		0.086		UGG	TRG	LM27	1.000
SS-17	16-jul-1992		246TCP	2,4,6-TRICHLOROPHENOL		0.082		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992	0.000	24DCLP	2,4-DICHLOROPHENOL		0.141		UGG		LM27	1.000
ss-17	16- jul <b>- 1</b> 992	0.000	24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992	0.000	24DNP	2,4-DINITROPHENOL		0.700		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992	0.000	24DNT	2,4-DINITROTOLUENE		0.370		UGG	TRG	LM27	1.000
SS-17	16- jul - 1992	0.000	26DNT	2,6-DINITROTOLUENE		0.066		UGG		LM27	1.000
ss-17	16- jul - 1992		2CLP	2-CHLOROPHENOL		0.110		UGG		LM27	1.000
ss-17	16- jul - 1992	0.000	2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992		2MNAP	2-METHYLNAPHTHALENE		0.107		UGG		LM27	1.000
SS-17	16- jul - 1992	0.000	2MP	2-METHYLPHENOL		0.350		UGG		LM27	1.000
ss-17	16- jul - 1992	0.000	2NANIL	2-NITROANILINE		0.079	1/+	UGG		LM27	1.000
SS-17	16- jul - 1992	0.000	2NP	2-NITROPHENOL	LT	0.069		UGG		LM27	1.000
SS-17	16- jul - 1992	0.000	33DCBD	3,3'-DICHLOROBENZIDINE	LT	3.400		UGG		LM27	1.000
SS-17	16- jul - 1992	0.000	3NANIL	3-NITROANILINE	LT	0.950		UGG	TRG	LM27	1.000
SS-17	16- jul - 1992	0.000	46DNTC	4,6-DINITRO-2-METHYLPHENO	LT	0.167		UGG		LM27	1.000
SS-17	16- jul - 1992	0.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG	TRG	LM27	1.000
SS-17	16- jul - 1992	0.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG	TRG	LM27	1.000
SS-17	16- jul - 1992	0.000	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992		4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992		4MP	4-METHYLPHENOL	LT	0.300		UGG		LM27	1.000
ss-17	16- jul - 1992		4NANIL	4-NITROANILINE	LT	1.200		UGG		LM27	1.000
ss-17	16- jul - 1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRG	LM27	1.000
ss-17	16- jul - 1992		AG	SILVER		0.589		UGG	TWA	JS13	1.000
SS-17	16- jul - 1992		AL	ALUMINUM		8300.000		UGG	TWA	JS13	2.000
SS-17	16- jul - 1992		ANAPNE	ACENAPHTHENE	LT	0.033		UGG	TRG	LM27	1.000
SS-17	16- jul - 1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRG	LM27	1.000
JJ 11	,										

# Soil

								Flag				
	Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
	SS-17	16- jul - 1992	0.000	ANTRC	ANTHRACENE	LT	0.033		UGG	TRG	LM27	1.000
		16- jul - 1992		AS	ARSENIC		4.680		UGG	ACB	JD19	1.000
		16- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG	TRG	LM27	1.000
		16- jul - 1992		B2CIPE	BIS (2-CHLOROISOPROPYL)	LT	0.033		UGG	TRG	LM27	1.000
		16- jul - 1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER	LT	0.080		UGG	TRG	LM27	1.000
		16- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG	TRG	LM27	1.000
		16-jul-1992		BA	BARIUM		174.000		UGG	TWA	JS13	1.000
		16- jul - 1992 16- jul - 1992		BAANTR	BENZO [A] ANTHRACENE		0.071		UGG		LM27	1.000
		16-jul-1992 16-jul-1992		BAPYR	BENZO [A] PYRENE		0.075		UGG	TRG	LM27	1.000
		16- jul - 1992 16- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE		0.107		UGG	TRG	LM27	1.000
		-		BBZP	BUTYLBENZYL PHTHALATE	ſΤ	0.033		UGG	TRG	LM27	1.000
		16-jul-1992		BE	BERYLLIUM		0.904		UGG	TWA	JS13	1.000
		16-jul-1992			BENZO [G,H,I] PERYLENE	ΙT	0.250		UGG		LM27	1.000
		16- jul - 1992		BGHIPY		۲.	0.042		UGG	TRG	LM27	1.000
		16- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE		49000.000		UGG		JS13	20.000
		16-jul-1992		CA	CALCIUM	ND	0.170	R	UGG	TRG	LM27	1.000
		16-jul-1992		CARBAZ	9H-CARBAZOLE	NU	1.180	K	UGG	TWA	JS13	1.000
		16-jul-1992		CD	CADMIUM		0.220		UGG	TRG	LM27	1.000
		16-jul-1992		CHRY	CHRYSENE		0.046		UGG		LM27	1.000
		16-jul-1992		CL6BZ	HEXACHLOROBENZENE				UGG			1.000
		•		CL6CP	HEXACHLOROCYCLOPENTADIENE		0.067		UGG		LM27	1.000
		16-jul-1992		CL6ET	HEXACHLOROETHANE	Li	12.500		UGG	TWA	JS13	1.000
		16-jul-1992		CO	COBALT		21.600	•	UGG	TWA	JS13	1.000
		16-jul-1992		CR	CHROMIUM		31.200		UGG	TWA	J\$13	1.000
		16-jul-1992		CU	COPPER TA UZ ANTURACENE		0.033		UGG	TRG	LM27	1.000
		16- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG	TRG	LM27	1.000
		16-jul-1992		DBZFUR	DIBENZOFURAN		0.190		UGG	TRG	LM27	1.000
	ss-17	16- jul - 1992		DEP	DIETHYL PHTHALATE		0.130		UGG	TRG	LM27	1.000
		16-jul-1992		DMP	DIMETHYL PHTHALATE		0.920		UGG	TRG	LM27	1.000
		16- jul - 1992		DNBP	DI-N-BUTYL PHTHALATE DI-N-OCTYL PHTHALATE		0.260		UGG		LM27	1.000
	SS-17	16-jul-1992		DNOP FANT	FLUORANTHENE		0.085		UGG		LM27	1.000
	SS-17	16- jul - 1992 16- jul - 1992		FE	IRON		11000.000		UGG	TWA	JS13	2.000
	SS-17	16-jul-1992		FLRENE	FLUORENE	ΙT	0.033		UGG	TRG	LM27	1.000
	SS-17 SS-17	16-jul-1992		HCBD	HEXACHLOROBUTAD I ENE		0.180		UGG	TRG	LM27	1.000
	SS-17	16- jul - 1992		HG	MERCURY		0.216		UGG	THN	HG9	1.000
	SS-17	16-jul-1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT			UGG	TRG	LM27	1.000
	SS-17	16-jul-1992		ISOPHR	ISOPHORONE		0.033		UGG	TRG	LM27	1.000
	SS-17	16-jul-1992		K	POTASSIUM		2800.000		UGG	TWA	J\$13.	1.000
		16-jul-1992		MG	MAGNESIUM		5800.000		UGG	TWA	JS13	2.000
	SS-17	16- jul - 1992		MN	MANGANESE		451.000		UGG	TWA	JS13	1.000
	SS-17	16- jul - 1992		NA	SODIUM		302.000		UGG	TWA		1.000
	SS-17	16-jul-1992		NAP	NAPHTHALENE		0.073		UGG	TRG	LM27	1.000
٠.	SS-17	16-jul-1992		NB	NITROBENZENE	LT	0.071		UGG	TRG	LM27	1.000
	SS-17	16- jul - 1992		NI .	NICKEL		13.400		UGG	TWA	JS13	1.000
	SS-17	16- jul - 1992		NNDNPA	N-NITROSO	LT	0.071		UGG	TRG	LM27	1.000
	SS-17	16-jul-1992		NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	TRG	LM27	1.000
	SS-17	16-jul-1992		PB	LEAD		320.000		UGG	ZXL	JD17	50.000
	SS-17	16-jul-1992		PCP	PENTACHLOROPHENOL	LT	0.200		UGG	TRG	LM27	1.000
	SS-17	16-jul-1992		PHANTR	PHENANTHRENE		0.065		UGG	TRG	LM27	1.000
	SS-17	16-jul-1992		PHENOL	PHENOL	LT	0.110		UGG		LM27	1.000
	SS-17	16-jul-1992		PYR	PYRENE		0.073		UGG	TRG	LM27	1.000
	SS-17	16-jul-1992		SB	ANTIMONY	LT	41.300		UGG		JS13	1.000
	SS-17	16- jul - 1992		SE	SELENIUM		0.250		UGG	ZSR	JD15	1.000
	SS-17	16-jul-1992		TL	THALLIUM		43.500		UGG	TWA	JS13	1.000
	SS-17	16-jul-1992		TPHC	TOTAL PETROLEUM		89.400		UGG	UBL	00	1.000
		,										

Soil

Level 3 Data											
							Flag				
Site ID	Sample Date	Depth	Paramet	er	Val	.ue	Code	Units	Lot	Method	Dilution
	·										
ss-17	16- jul - 1992	0.000	٧	VANAD IUM		16.700		UGG	TWA	JS13	1.000
SS-17	16- jul - 1992		ZN	ZINC		114.000		UGG	TWA	JS13	1.000
\$S-18	16- jul - 1992		124TCB	1,2,4-TRICHLOROBENZENE	LT	0.033		UGG	TRG	LM27	1.000
SS-18	16- jul - 1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
	16- jul - 1992			1,3-DICHLOROBENZENE		0.120		UGG		LM27	1.000
SS-18	-			1,4-DICHLOROBENZENE		0.033		UGG		LM27	1.000
SS-18	16-jul-1992			•		0.086		UGG		LM27	1.000
\$\$-18	16- jul -1992		245TCP	• •				UGG	TRG	LM27	1.000
<b>\$</b> \$-18	16- jul - 1992		246TCP	* *		0.082					
SS-18	16- jul -1992		24DCLP	2,4-DICHLOROPHENOL		0.141		UGG		LM27	1.000
SS-18	16- jul <b>-</b> 1992	0.000	24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG		LM27	1.000
SS-18	16- jul <b>- 199</b> 2	0.000	24DNP	2,4-DINITROPHENOL		0.700		UGG		LM27	1.000
ss-18	16- jul - 1992	0.000	24DNT	2,4-DINITROTOLUENE	LT	0.370		UGG		LM27	1.000
ss-18	16- jul - 1992	0.000	26DNT	2,6-DINITROTOLUENE	LT	0.066		UGG		LM27	1.000
<b>\$</b> \$-18	16- jul - 1992	0.000	2CLP	2-CHLOROPHENOL	LT	0.110		UGG	TRG	LM27	1.000
ss-18	16- jul - 1992		2CNAP	2-CHLORONAPHTHALENE	LT	0.140		UGG	TRG	LM27	1.000
\$S-18	16- jul - 1992		2MNAP	2-METHYLNAPHTHALENE	LT	0.033		UGG	TRG	LM27	1.000
SS-18	16- jul-1992		2MP	2-METHYLPHENOL		0.350		UGG	TRG	LM27	1.000
SS-18	16- jul - 1992		2NANIL	2-NITROANILINE		0.079		UGG		LM27	1.000
	16-jul-1992		2NP	2-NITROPHENOL		0.069		UGG		LM27	1.000
SS-18	16- jul - 1992		33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG		LM27	1.000
SS-18				•		0.950		UGG		LM27	1.000
ss-18	16-jul-1992		3NANIL	3-NITROANILINE				UGG		LM27	1.000
ss-18	16- jul - 1992			4,6-DINITRO-2-METHYLPHENO						LM27	1.000
ss-18	16- jul <b>-</b> 1992			4-BROMOPHENYLPHENYL ETHER				UGG			
ss-18	16- jul <b>-</b> 1992		4CANIL	4-CHLOROANILINE		1.600		UGG		LM27	1.000
SS-18	16- jul - 1992	0.000	4CL3C	4-CHLORO-3-CRESOL		0.073		UGG		LM27	1.000
SS-18	16- jul - 1992	0.000	4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG		LM27	1.000
ss-18	16- jul - 1992	0.000	4MP	4-METHYLPHENOL	LT	0.300		UGG		LM27	1.000
ss-18	16-jul-1992	0.000	4NANIL	4-NITROANILINE	LT	1.200		UGG	TRG	LM27	1.000
SS-18	16- jul - 1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRG	LM27	1.000
SS-18	16- jul - 1992		AG	SILVER		1.560		UGG	TWA	JS13	1.000
ss-18	16- jul - 1992		AL	ALUMINUM		6400.000		UGG	TWA	JS13	2.000
SS-18	16-jul-1992		ANAPNE	ACENAPHTHENE	LT	0.033		UGG	TRG	LM27	1.000
SS-18	16- jul - 1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG	TRG	LM27	1.000
SS-18	16-jul-1992		ANTRC	ANTHRACENE		0.033		UGG	TRG	LM27	1.000
	16- jul - 1992		AS	ARSENIC		6.200		UGG	ACB	JD19	1.000
SS-18	-					0.033		UGG	TRG	LM27	1.000
ss-18	16- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)				UGG		LM27	1.000
SS-18	16- jul - 1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033					
ss-18	16- jul - 1992			BIS (2-CHLOROETHYL) ETHER				UGG		LM27	1.000
ss-18	16- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)	LT	0.390		UGG		LM27	-1.000
SS-18	16- jul - 1992		BA	BARIUM		80.000		UGG	TWA	JS13	1.000
SS-18	16- jul - 1992	0.000	BAANTR	BENZO [A] ANTHRACENE	LT	0.033		UGG		LM27	1.000
ss-18	16- jul - 1992	0.000	BAPYR	BENZO [A] PYRENE	LT	0.033		UGG		LM27	1.000
ss-18	16- jul - 1992	0.000	BBFANT	BENZO [B] FLUORANTHENE	LT	0.033		UGG		LM27	1.000
ss-18	16- jul -1992		BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG	TRG	LM27	1.000
ss-18	16- jul-1992		BE	BERYLLIUM		0.819		UGG	TWA	JS13	1.000
ss-18	16- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG		LM27	1.000
SS-18	16- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG		LM27	1.000
	16- jul - 1992		CA	CALCIUM		100000.000		UGG	TWA	JS13	20.000
SS-18	•			9H-CARBAZOLE		0.170	R	UGG		LM27	1.000
ss-18	16- jul -1992		CARBAZ		ND	0.864		UGG		JS13	1.000
SS-18	16- jul - 1992		CD	CADMIUM						LM27	1.000
SS-18	16- jul - 1992		CHRY	CHRYSENE		0.220		UGG	TRG		
ss-18	16- jul - 1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
SS-18	16- jul - 1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG		LM27	1.000
ss-18	16- jul - 1992	0.000	CL6ET	HEXACHLOROETHANE	LT	0.067		UGG		LM27	1.000
SS-18	16- jul - 1992	0.000	CO	COBALT		10.500		UGG	TWA	JS13	1.000

Soil

							Flag			miat	<b>n:</b> 1 .:
Site ID	Sample Date	Depth	Paramet	e <b>r</b>	Val	ue	Code	Units	Lot	Method	Dilution
				OUR CHATTER		29.900		UGG	TWA	JS13	1.000
SS-18	16- jul - 1992		CR	CHROMIUM		19.800		UGG	TWA	JS13	1.000
ss-18	16- jul - 1992	0.000	CU	COPPER				UGG		LM27	1.000
ss-18	16- jul - 1992	0.000	DBAHA	DIBENZ [A,H] ANTHRACENE		0.033					
SS-18	16- jul - 1992	0.000	DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
ss-18	16- jul - 1992		DEP	DIETHYL PHTHALATE		0.190		UGG		LM27	1.000
SS-18	16- jul - 1992	0.000	DMP	DIMETHYL PHTHALATE		0.130		UGG		LM27	1.000
SS-18	16- jul -1992	0.000	DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG		LM27	1.000
SS-18	16- jul - 1992	0.000	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG		LM27	1.000
SS-18	16- jul - 1992	0.000	FANT	FLUORANTHENE	LT	0.085		UGG		LM27	1.000
SS-18	16- jul <i>-</i> 1992	0.000	FΕ	IRON		7900.000		UGG	TWA	JS13	2.000
SS-18	16- jul - 1992	0.000	FLRENE	FLUORENE	LT	0.033		UGG	TRG	LM27	1.000
SS-18	16- jul - 1992		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRG	LM27	1.000
ss-18	16- jul - 1992		HG	MERCURY		0.062		UGG	THN	HG9	1.000
SS-18	16- jul - 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG		LM27	1.000
SS-18	16- jul - 1992		ISOPHR	ISOPHORONE		0.033		UGG	TRG	LM27	1.000
ss-18	16- jul - 1992		K	POTASSIUM		1660.000		UGG	TWA	JS13	1.000
SS-18	16- jul - 1992		MG	MAGNESIUM		6000.000		UGG	TWA	JS13	2.000
SS-18	16- jul - 1992		MN	MANGANESE		414.000		UGG	T₩A	JS13	1.000
SS-18	16-jul-1992		NA	SODIUM	LT	44.800		UGG	TWA	JS13	1.000
SS-18	16- jul - 1992		NAP	NAPHTHALENE		0.033		UGG	TRG	LM27	1.000
SS-18	16- jul - 1992		NB	NITROBENZENE		0.071		UGG [,]	TRG	LM27	1.000
SS-18	16- jul - 1992		NI	NICKEL		12.500	•	UGG	TWA	JS13	1.000
SS-18	16- jul - 1992		NNDNPA	N-NITROSO	LΤ	0.071		UGG		LM27	1.000
	16- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG		LM27	1.000
SS-18	16- jul - 1992		PB	LEAD		55.000		UGG	ZXL	JD17	10.000
SS-18	16- jul - 1992		PCP	PENTACHLOROPHENOL	ΙT	0.200		UGG		LM27	1.000
3S-18	16- jul-1992		PHANTR	PHENANTHRENE		0.033		UGG		LM27	1.000
SS-18			PHENOL	PHENOL		0.110		UGG		LM27	1.000
SS-18	16- jul - 1992		PYR	PYRENE		0.033		UGG		LM27	1.000
SS-18	16- jul - 1992 16- jul - 1992		SB	ANTIMONY		41.300		UGG	TWA	JS13	1.000
SS-18			SE	SELENIUM		0.250		UGG	ZSR	JD15	1.000
\$S-18	16-jul-1992		JE TL	THALLIUM	٠.	30.600		UGG	TWA	JS13	1.000
SS-18	16- jul -1992				,	33.900		UGG	UBK		1.000
SS-18	16-jul-1992		TPHC V	TOTAL PETROLEUM . VANADIUM		14.500		UGG		JS13	1.000
SS-18	16- jul -1992			ZINC		70.800		UGG	TWA	JS13	1.000
SS-18	16-jul-1992		ZN 43/TCD		ı'T	0.033		UGG		LM27	1.000
SS-19	16-jul-1992		124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG		LM27	1.000
SS-19	16- jul -1992		12DCLB	1,2-DICHLOROBENZENE		0.120		UGG		LM27	1.000
SS-19	16- jul - 1992		13DCLB	1,3-DICHLOROBENZENE		0.033		ŲGG	TRG	LM27	1.000
SS-19	16- jul -1992			1,4-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
SS-19	16- jul - 1992		245TCP	2,4,5-TRICHLOROPHENOL				UGG	TRG	LM27	1.000
SS-19	16- jul - 1992		246TCP	2,4,6-TRICHLOROPHENOL		0.082		UGG		LM27	1.000
SS-19	16- jul - 1992		24DCLP	2,4-DICHLOROPHENOL		0.141	,			LM27	1.000
SS-19	16- jul - 1992		24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG	TRG	LM27	1.000
ss-19	16- jul - 1992		24DNP	2,4-DINITROPHENOL		0.700		UGG			
SS-19	16- jul - 1992		24DNT	2,4-DINITROTOLUENE		0.370		UGG	TRG	LM27	1.000 1.000
SS-19	16- jul - 1992	i i	26DNT	2,6-DINITROTOLUENE		0.066		UGG	TRG	LM27	
ss-19	16- jul - 1992		2CLP	2-CHLOROPHENOL		0.110		UGG	TRG		1.000
ss-19	16- jul - 1992		2CNAP	2-CHLORONAPHTHALENE		0.140		UGG	TRG	LM27	1.000
SS-19	16- jul <b>-</b> 1992		2MNAP	2-METHYLNAPHTHALENE		0.033		UGG		LM27	1.000
SS-19	16- jul <b>- 19</b> 92	0.000	2MP	2-METHYLPHENOL		0.350		UGG	TRG	LM27	1.000
SS-19	16- jul - 1992		2NAN1L	2-NITROANILINE		0.079		UGG		LM27	1.000
ss-19	16- jul <b>-</b> 1992		2NP	2-NITROPHENOL		0.069		UGG	TRG	LM27	1.000
SS-19	16- jul <b>- 19</b> 92	0.000	33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG	TRG	LM27	1.000
ss-19	16- jul <b>- 19</b> 92		3NAN1L			0.950		UGG		LM27	1.000
ss-19	16- jul - 1992	0.000	46DNTC	4,6-DINITRO-2-METHYLPHENC	LT	0.167		UGG	TRG	LM27	1.000

Soil

					Level 5 bata			Flag				
:	Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
!	ss-19	16- jul - 1992	0.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG	TRG	LM27	1.000
	ss-19	16- jul - 1992		4CANIL	4-CHLOROANILINE	LT	1.600		UGG	TRG	LM27	1.000
	SS-19	16- jul - 1992		4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	TRG	LM27	1.000
	ss-19	16- jul - 1992		4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG	TRG	LM27	1.000
	ss-19	16-jul-1992		4MP	4-METHYLPHENOL	LT	0.300		UGG	TRG	LM27	1.000
	SS-19	16-jul-1992				LT	1.200		UGG	TRG	LM27	1.000
	ss-19	16-jul-1992		4NP	4-NITROPHENOL		0.860		UGG	TRG	LM27	1.000
	SS-19	16-jul-1992		AG	SILVER		0.598		UGG	TWA	JS13	1.000
	ss-19	16-jul-1992		AL	ALUMINUM		5500.000		UGG	TWA	JS13	2.000
	SS-19	16-jul-1992				LT	0.033		UGG	TRG	LM27	1.000
		16-jul-1992			ACENAPHTHYLENE	LT	0.033		UGG	TRG	LM27	1.000
	SS-19	16-jul-1992		ANTRC			0.033		UGG	TRG	LM27	1.000
	SS-19	16-jul-1992		AS	ARSENIC		5.200		UGG	ACB	JD19	1.000
	SS-19	16-jul-1992		B2CEXM	BIS (2-CHLOROETHOXY)	LT	0.033		UGG		LM27	1.000
	SS-19	16-jul-1992		B2CIPE			0.033		UGG		LM27	1.000
	SS-19	16-jul-1992			BIS (2-CHLOROETHYL) ETHER				UGG			1.000
	SS-19	16-jul-1992		B2EHP			0.390		UGG		LM27	1.000
	SS-19 SS-19	16-jul-1992		BA	BARIUM		66.600		UGG		JS13	1.000
	SS-19 SS-19	16-jul-1992		BAANTR		1 T	0.033		UGG			1.000
	55-19 SS-19	16-jul-1992		BAPYR	BENZO [A] PYRENE		0.033		UGG		LM27	1.000
		16-jul-1992 16-jul-1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG		LM27	1.000
	SS-19	16- jul - 1992		BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
	SS-19	-		BE	BERYLLIUM		0.575		UGG	TWA	JS13	1.000
	SS-19	16-jul-1992					0.250		UGG		LM27	1.000
	SS-19	16-jul-1992			- • • -		0.033		UGG			1.000
	SS-19	16-jul-1992		BKFANT	BENZO [K] FLUORANTHENE	LI	60000.000		UGG	TWA	JS13	20.000
	SS-19	16-jul-1992		CA	CALCIUM	ND		n	UGG		LM27	1.000
	SS-19	16-jul-1992		CARBAZ	9H-CARBAZOLE		0.170	R		TWA	JS13	1.000
	SS-19	16-jul-1992		CD	CADMIUM		0.515		UGG		LM27	
	SS-19	16- jul - 1992		CHRY	CHRYSENE		0.220		UGG			1.000
	SS-19	16- jul - 1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
	SS-19	16-jul-1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG		LM27	1.000
	SS-19	16- jul - 1992		CL6ET	HEXACHLOROETHANE	LI	0.067		UGG		LM27	1.000
	SS-19	16- jul - 1992		СО	COBALT		11.600		UGG	TWA	JS13	1.000
	SS-19	16- jul -1992		CR	CHROMIUM		21.300		UGG	TWA	JS13	1.000
	ss-19	16-jul-1992		CU	COPPER		29.100 ·		UGG	TWA	JS13	1.000
	SS-19	16- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE				UGG		LM27	1.000
	SS-19	16- jul - 1992		DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
	SS-19	16- jul - 1992		DEP	DIETHYL PHTHALATE		0.190		UGG		LM27	1.000
		16- jul - 1992		DMP	DIMETHYL PHTHALATE		0.130		UGG		LM27	1.000
	SS-19	16- jul - 1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG		LM27	1.000
	SS-19	16-jul-1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	TRG	LM27	1.000
	SS-19	16- jul - 1992		FANT	FLUORANTHENE	LT	0.085		UGG		LM27	1.000
	SS-19	16- jul - 1992		FE	IRON		8300.000		UGG	TWA	JS13	2.000
	SS-19	16-jul-1992	0.000	FLRENE	FLUORENE		0.033		UGG		LM27	1.000
	SS-19	16- jul - 1992		HCBD	HEXACHLOROBUTADIENE		0.180		UGG		LM27	1.000
	SS-19	16- jul - 1992	0.000	HG	MERCURY		0.027		UGG	THN	HG9	1.000
	SS-19	16- jul - 1992	0.000	ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG		LM27	1.000
	SS-19	16- jul - 1992	0.000	ISOPHR	ISOPHORONE	LT	0.033		UGG		LM27	1.000
	SS-19	16- jul - 1992	0.000	K	POTASSIUM		1410.000		UGG	TWA	JS13	1.000
	SS-19	16- jul - 1992	0.000	MG	MAGNESIUM		9400.000		UGG	TWA	JS13	2.000
	SS-19	16- jul <del>-</del> 1992	0.000	MN	MANGANESE		227.000		UGG	TWA	JS13	1.000
	SS-19	16-jul-1992	0.000	NA	SODIUM		51.500		UGG	TWA	JS13	1.000
	SS-19	16- jul - 1992		NAP	NAPHTHALENE	LT	0.033		UGG	TRG	LM27	1.000
	SS-19	16- jul - 1992		NB	NITROBENZENE	LT	0.071		UGG	TRG	LM27	1.000
	SS-19	16-jul-1992		NI	NICKEL		15.100		UGG	TWA	JS13	1.000
		-										

Soil

							-Flag				
Site ID	Sample Date	Depth	Paramet	er	Va	lue	Code	Units	Lot	Method	Dilution
ss-19	16- jul - 1992	0.000	NNDNPA	N-NITROSO	1 T	0.071		UGG	TRG	LM27	1.000
SS-19	16- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG	TRG	LM27	1.000
SS-19	16- jul - 1992		PB	LEAD		10.000		UGG	ZXL	JD17	5.000
SS-19	16- jul - 1992		PCP	PENTACHLOROPHENOL	ΙT	0.200		UGG		LM27	1.000
SS-19	16- jul - 1992		PHANTR	PHENANTHRENE		0.033		UGG	TRG	LM27	1.000
SS-19	16- jul - 1992		PHENOL	PHENOL		0.110		UGG		LM27	1.000
SS-19	16-jul-1992		PYR	PYRENE		0.033		UGG	TRG	LM27	1.000
SS-19	16-jul-1992		SB	ANTIMONY		41.300		UGG	TWA	JS13	1.000
SS-19	16-jul-1992		SE	SELENIUM		0.250		UGG	ZSR	JD15	1.000
SS-19	16-jul-1992		TL	THALLIUM		39.400		UGG	TWA	JS13	1.000
SS-19	16-jul-1992		TPHC	TOTAL PETROLEUM	ΙT	10.000		UGG	UBL	00	1.000
SS-19	16-jul-1992	0.000	v	VANADIUM		12.600		UGG	TWA	JS13	1.000
SS-19	16- jul - 1992		ZN	ZINC		31.000		UGG	TWA	JS13	1.000
SS-20	16- jul - 1992		124TCB	1,2,4-TRICHLOROBENZENE	ı T	0.033		UGG	TRG	LM27	1.000
SS-20	16- jul-1992		12DCLB	1,2-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
SS-20	16- jul-1992		13DCLB	1,3-DICHLOROBENZENE		0.120		UGG		LM27	1.000
SS-20	16- jul-1992 16- jul-1992		14DCLB	•		0.033		UGG		LM27	1.000
\$\$-20 \$\$-20	-		245TCP	1,4-DICHLOROBENZENE 2,4,5-TRICHLOROPHENOL		0.086		UGG		LM27	1.000
	16- jul -1992			• •						LM27	
SS-20	16- jul -1992		246TCP	2,4,6-TRICHLOROPHENOL		0.082 0.141		UGG		LM27	1.000
SS-20	16- jul - 1992		24DCLP	2,4-DICHLOROPHENOL				UGG			1.000
SS-20	16-jul-1992		24DMPN	2,4-DIMETHYLPHENOL		2.600		UGG		LM27 LM27	1.000
SS-20 SS-20	16- jul - 1992		24DNP	2,4-DINITROPHENOL 2,4-DINITROTOLUENE		0.700 0.370		UGG UGG		LM27	1.000 1.000
SS-20	16- jul - 1992		24DNT	_ •		0.066		UGG		LM27	1.000
\$\$-20 \$\$-20	16- jul - 1992		26DNT	2,6-DINITROTOLUENE				UGG		LM27	
	16- jul -1992		2CLP	2-CHLOROPHENOL		0.110				LM27	1.000
SS-20	16-jul-1992		2CNAP	2-CHLORONAPHTHALENE		0.140		UGG		LM27	1.000
SS-20 SS-20	16-jul-1992 16-jul-1992		2MNAP	2-METHYLNAPHTHALENE		0.033 0.350		UGG UGG		LM27	1.000
	-		2MP	2-METHYLPHENOL							1.000
ss-20 ss-20	16- jul - 1992		2NANIL	2-NITROANILINE		0.079		UGG		LM27 LM27	1.000
SS-20	16- jul - 1992		2NP	2-NITROPHENOL		0.069		UGG		LM27	1.000
	16-jul-1992		33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG			1.000
SS-20 SS-20	16-jul-1992			3-NITROANILINE		0.950		UGG		LM27	1.000
	16- jul - 1992			4,6-DINITRO-2-METHYLPHENO				UGG	TRG	LM27	1.000
SS-20 SS-20	16- jul - 1992			4-BROMOPHENYLPHENYL ETHER				UGG		LM27	1.000
	16-jul-1992			4-CHLOROANILINE		1.600		UGG		LM27	1.000
SS-20	16-jul-1992		4CL3C	4-CHLORO-3-CRESOL		0.073		UGG		LM27	1.000
ss-20 ss-20	16- jul - 1992 16- jul - 1992			4-CHLOROPHENYLPHENYL		0.044		UGG		LM27	1.000
	•		4MP	4-METHYLPHENOL		0.300		UGG	TRG	LM27	1.000
SS-20 SS-20	16- jul <b>-</b> 1992 16- jul - 1992		4NANTE	4-NITROANILINE		1.200 0.860		UGG		LM27 LM27	1.000 1.000
SS-20	16-jul-1992		AG	4-NITROPHENOL SILVER	LI	0.672		UGG UGG	TWA	JS13	1.000
SS-20	16- jul - 1992					5700.000					
			AL	ALUMINUM	, -			UGG	TWA	JS13	2.000
ss-20 ss-20	16- jul - 1992		ANAPNE	ACENAPHTHENE		0.033		UGG		LM27	1.000
	16- jul - 1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG		LM27	1.000
SS-20	16-jul-1992		ANTRC	ANTHRACENE	LI	0.033		UGG		LM27	1.000
SS-20	16- jul -1992		AS	ARSENIC		3.150		UGG	ACB	JD19	1.000
SS-20	16-jul-1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG		LM27	1.000
SS-20	16-jul-1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG		LM27	1.000
SS-20	16-jul-1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG		LM27	1.000
SS-20	16- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)	L,T	0.390		UGG		LM27	1.000
SS-20	16-jul-1992		BA	BARIUM		77.900		UGG		JS13	1.000
SS-20	16-jul-1992		BAANTR	BENZO [A] ANTHRACENE		0.161		UGG		LM27	1.000
SS-20	16-jul-1992		BAPYR	BENZO [A] PYRENE		0.145		UGG		LM27	1.000
SS-20	16-jul-1992		BBFANT	BENZO [B] FLUORANTHENE		0.190		UGG		LM27	1.000
<b>\$</b> S-20	16- jul - 1992	0.000	BBZP	BUTYLBENZYL PHTHALATE	Li	0.033		UGG	IKG	LM27	1.000

Soil

Level	17	Data.

							Flag				
Site ID	Sample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
ss-20	16- jul - 1992	0.000	BE	BERYLLIUM		0.575		UGG	TWA	JS13	1.000
ss-20	16- jul - 1992		BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG	TRG	LM27	1.000
SS-20	16-jul-1992		BKFANT	BENZO [K] FLUORANTHENE		0.107		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992		CA	CALCIUM		58000.000		UGG	TWA	JS13	20.000
ss-20	16- jul - 1992			9H-CARBAZOLE	ND	0.170	R	UGG	TRG	LM27	1.000
ss-20	16- jul - 1992		CD	CADMIUM		1.240		UGG	TWA	JS13	1.000
ss-20	16- jul - 1992		CHRY	CHRYSENE	LT	0.220		UGG	TRG	LM27	1.000
SS-20	16- jul - 1992		CL6BZ	HEXACHLOROBENZENE	LT	0.046		UGG	TRG	LM27	1.000
ss-20	16- jul-1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE	LT	1.700		UGG	TRG	LM27	1.000
\$S-20	16- jul - 1992		CL6ET	HEXACHLOROETHANE		0.067		UGG	TRG	LM27 .	1.000
ss-20	16- jul - 1992	0.000	CO	COBALT		10.100		UGG	TWA	JS13	1.000
ss-20	16-jul-1992		CR	CHROMIUM		22.000		UGG	TWA	JS13	1.000
ss-20	16- jul - 1992		CU	COPPER		16.400		UGG	TWA	JS13	1.000
ss-20	16- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG		LM27	1.000
ss-20	16-jul-1992		DBZFUR	DIBENZOFURAN	LT	0.033		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992		DEP	DIETHYL PHTHALATE	LT	0.190		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992	0.000	DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992		DNBP	DI-N-BUTYL PHTHALATE	LT	0.920		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992		FANT	FLUORANTHENE		0.373		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992		FE	IRON '		7000.000		UGG	TWA	JS13	2.000
ss-20	16- jul - 1992		FLRENE	FLUORENE		0.033		UGG	TRG	LM27	1.000
ss-20	16-jul-1992		HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992	0.000	HG	MERCURY	LT	0.027		UGG	THN	HG9	1.000
ss-20	16-jul-1992	0.000	ICDPYR	INDENO [1,2,3-C,D] PYRENE		0.049		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992	0.000	ISOPHR	ISOPHORONE	LT	0.033		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992	0.000	K	POTASSIUM		1270.000		UGG	TWA	JS13	1.000
ss-20	16- jul - 1992	0.000	MG	MAGNESIUM		7200.000		UGG	TWA	JS13	2.000
ss-20	16- jul - 1992	0.000	MN	MANGANESE		268.000		UGG	TWA	JS13	1.000
ss-20	16- jul <b>-</b> 1992	0.000	NA	SODIUM		99.300		UGG	TWA	JS13	1.000
ss-20	16- jul - 1992	0.000	NAP	NAPHTHALENE		0.033		UGG	TRG	LM27	1.000
<b>\$\$-20</b>	16- jul - 1992	0.000	NB	NITROBENZENE	LT	0.071		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992	0.000	NI	NICKEL		13.900		UGG	TWA	JS13	1.000
ss-20	16- jul <b>-</b> 1992	0.000	NNDNPA	N-NITROSO		0.071		UGG	TRG	LM27	1.000
ss-20	16- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	TRG	LM27	1.000 10.000
ss-20	16- jul - 1992		PB	LEAD		45.000		UGG	ZXL	JD17	1.000
ss-20	16- jul - 1992		PCP	PENTACHLOROPHENOL	LT	0.200		UGG	TRG	LM27	1.000
SS-20	16- jul - 1992		PHANTR	PHENANTHRENE		0.171		UGG	TRG	LM27 LM27	1.000
ss-20	16- jul - 1992		PHENOL	PHENOL	L1	0.110		UGG		LM27	1.000
ss-20	16- jul - 1992		PYR	PYRENE		0.295		UGG			1.000
ss-20	16- jul - 1992		SB	ANTIMONY		41.300		UGG	ZSR	JS <u>1</u> 3 JD15	1.000
ss-20	16- jul - 1992		SE	SELENIUM	LI	0.250		UGG		JS13	1.000
ss-20	16- jul - 1992		TL	THALLIUM		39.900		UGG	TWA UBL		1.000
ss-20	16- jul - 1992		TPHC	TOTAL PETROLEUM		91.300		UGG	TWA	JS13	1.000
ss-20	16- jul - 1992		V	VANADIUM		12.800		UGG		JS13	1.000
ss-20	16- jul - 1992		ZN	ZINC		57.600	•	UGG	TWA		1.000
SS-21	16- jul - 1992		124TCB	1,2,4-TRICHLOROBENZENE		0.033		UGG	TRG TRG		1.000
SS-21	16- jul - 1992		12DCLB	1,2-DICHLOROBENZENE		0.033		ugg ugg	TRG		1.000
ss-21	16- jul - 1992		13DCLB	1,3-DICHLOROBENZENE		0.120		UGG	TRG		1.000
ss-21	16- jul - 1992		14DCLB	1,4-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
ss-21	16- jul - 1992		245TCP	2,4,5-TRICHLOROPHENOL		7 0.086 7 0.082		UGG	TRG		1.000
ss-21	16- jul - 1992		246TCP	2,4,6-TRICHLOROPHENOL		T 0.082		UGG	TRG		1.000
ss-21	16- jul - 1992		24DCLP			т <b>0.141</b> т <b>2.6</b> 00		UGG	TRG		1.000
ss-21	16- jul - 1992		24DMPN	-		T 0.700		UGG		LM27	1.000
ss-21	16- jul <del>-</del> 1992	0.000	24DNP	2,4-DINITROPHENOL	L	1 0.100					

Soil

					Level 3 Data			Class				
	ite ID	Comple Date	Donth	Paramete	0.0	Val	110	Flag Code	Unite	Lot	Method	Dilution
3	orte iv	Sample Date	Deptil	raiamet	ει	. vai	ue	Code	Oilites	LUC	rictiou	Ditution
S	S-21	16- jul - 1992	0.000	24DNT	2,4-DINITROTOLUENE	LT	0.370		UGG	TRG	LM27	1.000
	s-21	16-jul-1992	0.000	26DNT	2,6-DINITROTOLUENE		0.066		UGG	TRG	LM27	1.000
	S-21	16- jul - 1992	0.000	2CLP	2-CHLOROPHENOL		0.110		UGG	TRG	LM27	1.000
	S-21	16-jul-1992	0.000	2CNAP	2-CHLORONAPHTHALENE		0.140		UGG	TRG	LM27	1.000
	s-21	16- jul - 1992		2MNAP	2-METHYLNAPHTHALENE		0.156		UGG	TRG	LM27	1.000
	s-21	16-jul-1992		2MP	2-METHYLPHENOL	LT	0.350		UGG		LM27	1.000
	s-21	16- jul - 1992		2NANIL	2-NITROANILINE		0.079		UGG	TRG	LM27	1.000
	s-21	16-jul-1992		2NP	2-NITROPHENOL		0.069		UGG		LM27	1.000
	s-21	16-jul-1992		33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG	TRG	LM27	1.000
	s-21	16-jul-1992			*		0.950		UGG	TRG	LM27	1.000
	s-21	16-jul-1992		46DNTC	4,6-DINITRO-2-METHYLPHENO				UGG	TRG	LM27	1.000
	s-21	16-jul-1992		4BRPPE	4-BROMOPHENYLPHENYL ETHER				UGG		LM27	1.000
	s-21	16- jul - 1992			4-CHLOROANILINE		1.600		UGG		LM27	1.000
	s-21	16-jul-1992		4CL3C	4-CHLORO-3-CRESOL		0.073		UGG		LM27	1.000
	S-21	16-jul-1992		4CLPPE	4-CHLOROPHENYLPHENYL		0.044		UGG	TRG	LM27	1.000
	S-21	16-jul-1992		4MP	4-METHYLPHENOL		0.300		UGG		LM27	1.000
	S-21	16-jul-1992		4NANIL	4-NITROANILINE		1.200		UGG		LM27	1.000
	S-21	16-jul-1992		4NP	4-NITROPHENOL		0.860		UGG		LM27	1.000
	S-21	16-jul-1992		AG	SILVER		0.521		UGG	TWA	JS13	1.000
	s-21	16-jul-1992		AL	ALUMINUM		8200.000		UGG	TWA	JS13	2.000
	s-21	16- jul - 1992		ANAPNE	ACENAPHTHENE		0.033		UGG		LM27	1.000
	s-21	16-jul-1992		ANAPYL	ACENAPHTHYLENE		0.033		UGG		LM27	1.000
	s-21	16- jul - 1992		ANTRC	ANTHRACENE		0.033		UGG		LM27	1.000
	s-21	16-jul-1992		AS	ARSENIC		3.860		UGG	ACB	JD19	1.000
	s-21	16-jul-1992		B2CEXM	BIS (2-CHLOROETHOXY)		0.033		UGG	TRG	LM27	1.000
	s-21	16- jul - 1992		B2CIPE	BIS (2-CHLOROISOPROPYL)		0.033		UGG		LM27	1.000
	s-21	16- jul - 1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG		LM27	1.000
	s-21	16- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG		LM27	1.000
	s-21	16- jul - 1992		BA	BARIUM		141.000		UGG	TWA	JS13	1.000
	s-21	16-jul-1992		BAANTR	BENZO [A] ANTHRACENE	LT	0.033		UGG		LM27	1.000
	s-21	16- jul-1992		BAPYR	BENZO [A] PYRENE		0.033		UGG	TRG	LM27	1.000
	s-21	16- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE		0.033		UGG		LM27	1.000
	s-21	16- jul - 1992		BBZP	BUTYLBENZYL PHTHALATE		0.033		UGG		LM27	1.000
	s-21	16- jul-1992		BE	BERYLLIUM		0.907		UGG	TWA		1.000
	s-21	16-jul-1992		BGHIPY	BENZO [G,H,I] PERYLENE		0.250		UGG			1.000
	s-21	16- jul - 1992		BKFANT	BENZO [K] FLUORANTHENE		0.033		UGG			1.000
	s-21	16-jul-1992		CA	CALCIUM		42000.000		UGG	TWA	JS13	10.000
	s-21	16- jul - 1992					0.170	R	UGG	TRG		1.000
	s-21	16- jul - 1992		CD	CADMIUM		0.902		UGG	TWA	JS13	1.000
	s-21	16- jul - 1992	0.000	CHRY	CHRYSENE		0.220		UGG	TRG	LM27	1.000
	s-21	16- jul - 1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
	s-21	16- jul - 1992		CL6CP	HEXACHLOROCYCLOPENTAD I ENE				UGG	TRG	LM27	1.000
	s-21	16- jul - 1992	0.000	CL6ET	HEXACHLOROETHANE	LT	0.067		UGG	TRG	LM27	1.000
	s-21	16- jul - 1992		СО	COBALT		11.800		UGG	TWA	JS13	1.000
	s-21	16- jul - 1992	0.000	CR -	CHROMIUM		19.900		UGG	TWA	JS13	1.000
	s-21	16- jul - 1992		CU	COPPER		23.400		UGG	TWA	JS13	1.000
	s-21	16- jul - 1992		DBAHA	DIBENZ [A,H] ANTHRACENE	LT	0.033		UGG	TRG	LM27	1.000
	s-21	16- jul - 1992		DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
	s-21	16- jul - 1992		DEP	DIETHYL PHTHALATE		0.190		UGG	TRG		1.000
	s-21	16- jul - 1992		DMP	DIMETHYL PHTHALATE		0.130		UGG	TRG		1.000
	s-21	16-jul-1992		DNBP	DI-N-BUTYL PHTHALATE		0.920		UGG		LM27	1.000
	s-21	16- jul - 1992		DNOP	DI-N-OCTYL PHTHALATE		0.260		UGG	TRG		1.000
	s-21	16- jul - 1992		FANT	FLUORANTHENE		0.085		UGG		LM27	1.000
	s-21	16- jul - 1992		FE	IRON		9300.000		UGG		JS13	2.000
	s-21	16- jul - 1992					0.033		UGG		LM27	1.000
_	<del>-</del> -				•							

Soil

					Level 5 bala			Flag				
Site	ID Sa	ample Date	Depth	Paramete	er	Val	lue	Code	Units	Lot	Method	Dilution
ss-21	16	6- jul - 1992	0.000	HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRG	LM27	1.000
SS-21		6- jul-1992		HG	MERCURY		0.151		UGG	THN	HG9	1.000
SS-21		6- jul - 1992		ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	TRG	LM27	1.000
SS-21		6- jul - 1992		ISOPHR	ISOPHORONE		0.033		UGG	TRG	LM27	1.000
SS-21		6- jul - 1992		K	POTASSIUM		2280.000		UGG	TWA	JS13	1.000
SS-21		6-ijul - 1992		MG	MAGNESIUM		6200.000		UGG	TWA	JS13	2.000
SS-21		6- jul - 1992		MN	MANGANESE		435.000		UGG	TWA	JS13	1.000
SS-21		6- jul - 1992		NA	SODIUM		172.000		UGG	TWA	JS13	1.000
SS-21		6- jul - 1992		NAP	NAPHTHALENE		0.095		UGG	TRG	LM27	1.000
SS-21		6- jul - 1992		NB	NITROBENZENE	LT	0.071		UGG	TRG	LM27	1.000
SS-21		6- jul - 1992		NI	NICKEL		13.600		UGG	TWA	JS13	1.000
SS-21		6- jul - 1992		NNDNPA	N-NITROSO	LT	0.071		UGG	TRG	LM27	1.000
SS-21		6- jul - 1992		NNDPA	N-NITROSO DIPHENYLAMINE		0.038		UGG		LM27	1.000
SS-21		6- jul - 1992		PB	LEAD		61.000		UGG	ZXL	JD17	10.000
SS-21		6- jul - 1992		PCP	PENTACHLOROPHENOL	ΙT	0.200		UGG		LM27	1.000
		-		PHANTR	PHENANTHRENE		0.048		UGG		LM27	1.000
SS-21		6- jul - 1992		PHENOL	PHENOL	ıT	0.110		UGG		LM27	1.000
SS-21		6- jul - 1992			PYRENE		0.033		UGG		LM27	1.000
SS-21		6-jul-1992		PYR	ANTIMONY		41.300		UGG	TWA	JS13	1.000
SS-21		6- jul -1992		SB			0.250		UGG	ZSR	JD15	1.000
SS-21		6- jul - 1992		SE	SELENIUM		42.800		UGG	TWA	JS13	1.000
SS-21		6-jul-1992		TL	THALLIUM		14.100		UGG	UBL	00	1.000
SS-21		6- jul - 1992		TPHC	TOTAL PETROLEUM		16.100		UGG	TWA	JS13	1.000
SS-21		6- jul - 1992		V	VANADIUM		66.200		UGG	TWA	JS13	1.000
SS-21		6- jul -1992		ZN 13/TCD	ZINC	1 T	0.033		UGG	TRG	LM27	1.000
ss-22		6- jul - 1992			1,2,4-TRICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
SS-22		6-jul-1992			1,2-DICHLOROBENZENE		0.120		UGG	TRG	LM27	1.000
SS-22		6- jul - 1992			1,3-DICHLOROBENZENE		0.033		UGG	TRG	LM27	1.000
SS-22		6- jul - 1992			1,4-DICHLOROBENZENE				UGG	TRG	LM27	1.000
ss-22		6- jul - 1992			2,4,5-TRICHLOROPHENOL		0.086		UGG	TRG	LM27	1.000
ss-22		6-jul-1992			2,4,6-TRICHLOROPHENOL		0.082				LM27	1.000
ss-22		6- jul - 1992		24DCLP	2,4-DICHLOROPHENOL		0.141		UGG		LM27	1.000
SS-22		6- jul - 1992			2,4-DIMETHYLPHENOL		2.600		UGG			
SS-22		6- jul - 1992		24DNP	2,4-DINITROPHENOL		0.700		UGG		LM27	1.000
SS-22		6- jul -1992		24DNT	2,4-DINITROTOLUENE		0.370		UGG		LM27	1.000
SS-22		6- jul <b>- 199</b> 2		26DNT	2,6-DINITROTOLUENE		0.066		UGG		LM27	1.000
SS-22		6- jul - 1992		2CLP	2-CHLOROPHENOL		0.110		UGG		LM27	1.000
SS-22		6- jul - 1992		2CNAP	2-CHLORONAPHTHALENE		0.140		UGG		LM27	1.000
SS-22		6- jul - 1992		2MNAP	2-METHYLNAPHTHALENE		0.033		UGG		LM27	1.000
SS-22		6- jul - 1992		2MP	2-METHYLPHENOL		0.350		UGG		LM27	1.000
SS-22	! 10	6- jul - 1992	0.000	2NANIL	2-NITROANILINE		0.079		UGG		LM27	1.000
SS-22	10	6- jul <b>-</b> 1992	0.000	2NP	2-NITROPHENOL		0.069		UGG		LM27	1.000
\$\$-22	1 1	6- jul - 1992	0.000	33DCBD	3,3'-DICHLOROBENZIDINE		3.400		UGG		LM27	1.000
SS-22	1	6- jul - 1992	0.000	3NAN1L	3-NITROANILINE		0.950		UGG		LM27	1.000
SS-22	1	6- jul <b>- 19</b> 92	0.000		4,6-DINITRO-2-METHYLPHENO				UGG		LM27	1.000
SS-22	1	6- jul - 1992	0.000	4BRPPE	4-BROMOPHENYLPHENYL ETHER	LT	0.033		UGG		LM27	1.000
SS-22	. 1	6- jul - 1992	0.000	4CANIL	4-CHLOROANILINE	LT	1.600		UGG		LM27	1.000
\$\$-22	1	6- jul - 1992	0.000	4CL3C	4-CHLORO-3-CRESOL	LT	0.073		UGG	TRG	LM27	1.000
SS-22	2 1	6- jul - 1992	0.000	4CLPPE	4-CHLOROPHENYLPHENYL	LT	0.044		UGG		LM27	1.000
ss-22		6- jul - 1992	0.000	4MP	4-METHYLPHENOL	LT	0.300		UGG		LM27	1.000
ss-22		6- jul - 1992	0.000	4NANIL	4-NITROANILINE	LT	1.200		UGG ,	TRG	LM27	1.000
SS-22		6- jul - 1992		4NP	4-NITROPHENOL	LT	0.860		UGG	TRG	LM27	1.000
SS-22		6-jul-1992		AG	SILVER		0.851	•	UGG	TWA	JS13	1.000
SS-22		6- jul - 1992		AL	ALUMINUM		8600.000		UGG	TWA	JS13	3.000
\$\$-22		6- jul - 1992			ACENAPHTHENE	LT	0.033		UGG	TRG	LM27	1.000
SS-22		6- jul - 1992			ACENAPHTHYLENE	LT	0.033		UGG	TRG	LM27	1.000
33 20	• '	,			****		•					

# Soil

Level 3 Data												
	Site ID	Sample Date	Donth	Danamat	on.	Val	Luo	Flag Code	linite	Lot	Method	Dilinit
	Site ID	Sample Date	veptn	Paramet	er	vai	lue	code	Units	LOT	method	Dilution
	ss-22	16- jul - 1992	0.000	ANTRC	ANTHRACENE	1 T	0.033		UGG	TRG	LM27	1.000
	SS-22	16- jul - 1992		AS	ARSENIC		6.700		UGG	ACB	JD19	1.000
	ss-22	16- jul - 1992		B2CEXM	BIS (2-CHLOROETHOXY)	ιT	0.033		UGG		LM27	1.000
	SS-22	16- jul - 1992			BIS (2-CHLOROISOPROPYL)		0.033		UGG		LM27	1.000
	SS-22	16- jul - 1992		B2CLEE	BIS (2-CHLOROETHYL) ETHER				UGG		LM27	1.000
	SS-22	16- jul - 1992		B2EHP	BIS (2-ETHYLHEXYL)		0.390		UGG		LM27	1.000
	SS-22	16- jul - 1992		BA	BARIUM		138.000		UGG	TWA	JS13	1.000
	SS-22	16- jul - 1992		BAANTR	BENZO [A] ANTHRACENE		0.071		UGG		LM27	1.000
	SS-22	16-jul-1992		BAPYR	BENZO [A] PYRENE		0.069		UGG		LM27	1.000
	SS-22	16- jul - 1992		BBFANT	BENZO [B] FLUORANTHENE		0.122		UGG		LM27	1.000
	SS-22	16-jul-1992		BBZP	BUTYLBENZYL PHTHALATE	LT	0.033		UGG		LM27	1.000
	SS-22	16-jul-1992		BE	BERYLLIUM		0.902		UGG		JS13	1.000
	SS-22	16-jul-1992		BGHIPY	BENZO [G,H,I] PERYLENE	LT	0.250		UGG		LM27	1.000
	SS-22	16- jul - 1992			BENZO [K] FLUORANTHENE		0.053		UGG		LM27	1.000
	SS-22	16- jul - 1992		CA	CALCIUM		71000.000		UGG		JS13	20.000
	SS-22	16- jul - 1992			9H-CARBAZOLE	ND	0.170	R	UGG		LM27	1.000
	ss-22	16- jul - 1992		CD	CADMIUM		1.770		UGG		JS13	1.000
	SS-22	16- jul - 1992		CHRY	CHRYSENE	LT	0.220		UGG		LM27	1.000
	ss-22	16-jul-1992		CL6BZ	HEXACHLOROBENZENE		0.046		UGG		LM27	1.000
	SS-22	16-jul-1992		CL6CP	HEXACHLOROCYCLOPENTADIENE				UGG		LM27	1.000
	ss-22	16- jul-1992		CL6ET	HEXACHLOROETHANE		0.067		UGG		LM27	1.000
	ss-22	16- jul - 1992		CO	COBALT		15.700		UGG		JS13	1.000
	ss-22	16- jul - 1992		CR	CHROMIUM		29.600		UGG		JS13	1.000
	ss-22	16- jul - 1992		CU	COPPER		42.100		UGG		JS13	1.000
	ss-22	16- jul-1992		DBAHA	DIBENZ [A,H] ANTHRACENE		0.033		UGG		LM27	1.000
	ss-22	16- jul - 1992		DBZFUR	DIBENZOFURAN		0.033		UGG		LM27	1.000
	ss-22	16- jul - 1992		DEP	DIETHYL PHTHALATE	LT	0.190		UGG	TRG	LM27	1.000
	ss-22	16-jul-1992		DMP	DIMETHYL PHTHALATE	LT	0.130		UGG	TRG	LM27	1.000
	ss-22	16- jul-1992	0.000	DNBP	DI-N-BUTYL PHTHALATE	LT	0.920		UGG	TRG	LM27	1.000
	ss-22	16- jul - 1992	0.000	DNOP	DI-N-OCTYL PHTHALATE	LT	0.260		UGG	TRG	LM27	1.000
	ss-22	16-jul-1992	0.000	FANT	FLUORANTHENE		0.112		UGG	TRG	LM27	1.000
	ss-22	16- jul - 1992	0.000	FE	IRON		12000.000		UGG		JS13	3.000
	ss-22	16- jul -1992	0.000	FLRENE	FLUORENE	LT	0.033		UGG	TRG	LM27	1.000
	ss-22	16- jul - 1992	0.000	HCBD	HEXACHLOROBUTAD I ENE	LT	0.180		UGG	TRG	LM27	1.000
	ss-22	16-jul-1992	0.000	HG	MERCURY .		0.072		UGG	THN	HG9	1.000
	<b>SS-22</b>	16- jul - 1992	0.000	ICDPYR	INDENO [1,2,3-C,D] PYRENE	LT	0.033		UGG	TRG	LM27	1.000
	SS-22	16-jul-1992	0.000	ISOPHR	ISOPHORONE	LT	0.033		UGG	TRG	LM27	1.000
	\$S-22	16-jul-1992	0.000	K	POTASSIUM		2130.000		UGG	TWA	JS13	1.000
	ss-22	16-jul-1992	0.000	MG	MAGNESIUM		8900.000		UGG	TWA	JS13	3.000
	ss-22	16- jul - 1992	0.000	MN	MANGANESE		512.000		UGG	TWA	JS13	1.000
	SS-22	16- jul - 1992	0.000	NA	SODIUM		123.000		UGG	TWA	JS13	1.000
	SS-22	16- jul - 1992	0.000	NAP	NAPHTHALENE	LT	0.033		UGG	TRG	LM27	1.000
	SS-22	16- jul - 1992	0.000	NB	NITROBENZENE	LT	0.071		UGG	TRG	LM27	1.000
	SS-22	16- jul - 1992	0.000	NI	NICKEL		20.800		UGG	TWA	JS13	1.000
	ss-22	16- jul - 1992	0.000	NNDNPA	N-NITROSO	LT	0.071		UGG	TRG	LM27	1.000
	SS-22	16- jul - 1992	0.000	NNDPA	N-NITROSO DIPHENYLAMINE	LT	0.038		UGG	TRG	LM27	1.000
	SS-22	16- jul - 1992	0.000	PB	LEAD		130.000		UGG	ZXL	JD17	20.000
	SS-22	16- jul - 1992	0.000	PCP	PENTACHLOROPHENOL	LT	0.200		UGG	TRG	LM27	1.000
	ss-22	16- jul - 1992	0.000	PHANTR	PHENANTHRENE	LT	0.033		UGG	TRG	LM27	1.000
	ss-22	16- jul - 1992	0.000	PHENOL	PHENOL	LT	0.110		UGG	TRG	LM27	1.000
	ss-22	16- jul - 1992	0.000	PYR	PYRENE		0.099		UGG	TRG	LM27	1.000
	ss-22	16- jul - 1992	0.000	SB	ANTIMONY	LT	41.300		UGG	TWA	JS13	1.000
	ss-22	16- jul - 1992	0.000	SE	SELENIUM	LT	0.250		UGG	ZSR	JD15	1.000
	ss-22 .	16- jul - 1992	0.000	TL	THALLIUM		54.000		UGG	TWA	JS13	1.000
	ss-22	16- jul - 1992	0.000	TPHC	TOTAL PETROLEUM		176.000		UGG	UBL	00	1.000

# Soil

Site ID	Sample Date Depth	Parameter '		Flag Code	Units	Lot	Method	Dilution
SS-22 SS-22	16-jul-1992 0.000 16-jul-1992 0.000	V VANADIUM ZN ZINC	20.200 133.000		UGG UGG		JS13 JS13	1.000 1.000

G-4 Soil Organic Unknowns

# FORT DOUGLAS - SOIL ORGANIC UNKNOWNS INITIAL EI PROGRAM

SITE ID	DEPTH	QC	LOT	METHOD	TEST	NAME	CONC
	FT				NAME		(UGG)
							0.4
BKG-SB-01	19.0-21.8	-		LM27	UNK539	2-ethyl-1-hexanol	0.4
BKG-SB-01	19.0-21.8			LM27	UNK571	Unknown Hydrocarbon	1
BKG-SB-01	19.0-21.8			LM27	UNK605	Unknown Phthalate	1.6
BKG-SB-01	19.0-21.8			LM27	UNK607	Unknown Hydrocarbon	5
BKG-SB-01	19.0-21.8		SHB	LM27	UNK612	Unknown Hydrocarbon	16
BKG-SB-01	19.0-21.8	-		LM27	UNK616	Unknown Hydrocarbon	1.2
BKG-SB-01	19.0-21.8			LM27	UNK623	Unknown Hydrocarbon	0.6
BKG-SB-01	19.0-21.8		SHB	LM27	UNK626	dioctyl ester hexanedioic acid	0.7
SB-24	0.5-1.0		SFB	LM28	UNK249	Unknown	0.43
SB-24	0.5-1.0	-	SHA	LM27	UNK539	Unknown	0.7
SB-24	0.5-1.0		SHA	LM27	UNK551	2-ethyl-Hexanoic acid	8.0
SB-24	0.5-1.0	_	SHA	LM27	UNK571	Unknown Hydrocarbon	0.3
SB-24	0.5-1.0	_	SHA	LM27	UNK605	Unknown Phthalate	1.2
SB-24	0.5-1.0		SHA	LM27	UNK623	Unknown Hydrocarbon	0.2
SB-24	0.5-1.0	-	SHA	LM27	UNK626	Unknown	2.3
SB-24	0.5-1.0		SHA	LM27	UNK649	Unknown Hydrocarbon	0.3
SB-24	0.5-1.0			LM27	UNK650	Unknown Hydrocarbon	10.8
SB-25	0.5-4.0		SFD	LM28	UNK281	Unknown Hydrocarbon	0.45
SB-25	0.5-4.0		SHA	LM27	UNK539	Unknown	0.2
SB-25	0.5-4.0		SHA		UNK550	2-ethyl-Hexanoic acid	0.6
SB-25	0.5-4.0			LM27	UNK569	Unknown	0.5
SB-25	0.5-4.0	-	SHA		UNK571	Unknown Hydrocarbon	0.3
SB-25	0.5-4.0			LM27	UNK605	Unknown Phthalate	0.5
SB-25	0.5-4.0			LM27	UNK607	Unknown Hydrocarbon	0.4
SB-25	0.5-4.0		SHA		UNK623	Unknown Hydrocarbon	1.2
SB-25	0.5-4.0	_	SHA		UNK626	Unknown	7.3
SB-25	0.5-4.0	_	SHA		UNK649	Unknowń Hydrocarbon	0.3
SB-25	0.5-4.0		SHA		UNK650	Unknown Hydrocarbon	0.2
SB-26	0.5-3.4		SFD		UNK201	Unknown	0.26
SB-26	0.5-3.4	_	SFD		UNK274	Unknown	0.15
SB-26	0.5-3.4		SFD		UNK280	Unknown Hydrocarbon	0.26
SB-26	0.5-3.4	_	SFD		UNK54	Unknown	0.15
	0.5-3.4		SHJ		UNK524	2-butoxy-ethanol	0.7
SB-26	•	-	SHJ		UNK539	Unknown	0.4
SB-26	0.5-3.5	_	SHJ		UNK545	Unknown	0.2
SB-26	0.5-3.5		SHJ		UNK571	Unknown	3.7
SB-26	0.5-3.5	-	SHJ		UNK575	Unknown	0.3
SB-26	0.5-3.5		SHJ		UNK578	Unknown	0.4
SB-26	0.5-3.5				UNK595	Unknown	0.3
SB-26	0.5-3.5		SHJ		UNK625	Unknown	0.4
SB-26	0.5-3.5	<del></del> .	SHJ		UNK272		2
SB-27	0.5-3.0		SFD			Unknown Unknown	0.4
SB-27	0.5-3.0	_	SFD		UNK273		0.3
SB-27	0.5-3.0	-	SHJ		UNK511	Unknown	0.4
SB-27	0.5-3.0	- '	SHJ		UNK524	2-butoxy-ethanol	7.3
SB-27	0.5-3.0		SHJ		UNK539	Unknown	0.3
SB-27	0.5-3.0	-	SFC		UNK54	Unknown	0.52
SB-27	0.5-3.0		SH	J LM27	UNK545	Unknown	0.7

# FORT DOUGLAS - SOIL ORGANIC UNKNOWNS INITIAL EI PROGRAM

SB-27	0.2 1 0.2 0.5 0.2 0.2 3 3 3 4 18
SB-27   0.5-3.0   -	1 0.2 0.5 0.2 0.2 3 3 3 4 18 9
SB-27   0.5-3.0   -	0.2 0.5 0.2 0.2 3 3 4 18
SB-27   0.5-3.0   -	0.5 0.2 0.2 3 3 3 4 18
SB-27         0.5-3.0         -         SHJ         LM27         UNK611         Unknown           SB-27         0.5-3.0         -         SHJ         LM27         UNK626         mono (2-ethylhexyl) ester hexanedioic acid           SB-28         -         TRIP         RFC         UM27         UNK266         Unknown hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK269         Unknown           SB-28         -         TRIP         RFC         UM27         UNK269         Unknown           SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK274         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK540         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SFB         LM28         UNK279         Unknown           SB-28 </td <td>0.2 0.2 3 3 4 18 9</td>	0.2 0.2 3 3 4 18 9
SB-27         0.5-3.0         -         SHJ         LM27         UNK626         mono (2-ethylhexyl) ester hexanedioic acid           SB-28         -         TRIP         RFC         UM27         UNK256         Unknown hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK264         Unknown           SB-28         -         TRIP         RFC         UM27         UNK267         Unknown           SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK276         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SFB         LM28         UNK278         Unknown hydrocarbon           SB-28         0.5-5.0         -         SFB         LM27         UNK534         Unknown hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK539         Unknown           SB-	0.2 3 3 3 4 18 9
SB-28         -         TRIP         RFC         UM27         UNK256         Unknown hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK264         Unknown           SB-28         -         TRIP         RFC         UM27         UNK267         Unknown hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK274         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK276         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SFB         LM28         UNK278         Unknown           SB-28         0.5-5.0         -         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK639         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK612         Unknown           SB-28	3 3 3 4 18 9
SB-28         -         TRIP         RFC         UM27         UNK264         Unknown           SB-28         -         TRIP         RFC         UM27         UNK267         Unknown hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK269         Unknown           SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK276         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK276         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown hydrocarbon           SB-28         0.5-5.0         -         SFB         LM28         UNK278         Unknown           SB-28         0.5-5.0         -         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK639         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK660         Unknown Phthalate           SB-28	3 3 4 18 9
SB-28         -         TRIP         RFC         UM27         UNK267         Unknown hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK269         Unknown           SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK274         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown hydrocarbon           SB-28         0.5-5.0         -         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         -         SFB         LM27         UNK639         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0         -         SHB         LM27         UNK666         Unknown           SB-28	3 4 18 9
SB-28         —         TRIP         RFC         UM27         UNK269         Unknown           SB-28         —         TRIP         RFC         UM27         UNK270         Unknown           SB-28         —         TRIP         RFC         UM27         UNK274         Unknown Hydrocarbon           SB-28         —         TRIP         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-28         —         TRIP         RFC         UM27         UNK54         Unknown hydrocarbon           SB-28         —         SFB         LM28         UNK278         Unknown           SB-28         —         SFB         LM28         UNK279         Unknown           SB-28         —         SFB         LM28         UNK539         Unknown           SB-28         —         SFB         LM27         UNK539         Unknown           SB-28         —         SFB         LM27         UNK651         2-ethyl-Hexanoic acid           SB-28         —         —         SHB         LM27         UNK600         Unknown Phthalate           SB-28         —         —         SHB         LM27         UNK626         Unknown	4 18 9
SB-28         -         TRIP         RFC         UM27         UNK270         Unknown           SB-28         -         TRIP         RFC         UM27         UNK274         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         -         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK539         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK660         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK6612         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK6626         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28	18 9
SB-28         -         TRIP         RFC         UM27         UNK274         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-28         -         TRIP         RFC         UM27         UNK54         Unknown hydrocarbon           SB-28         0.5-5.0         -         SFB         LM28         UNK278         Unknown           SB-28         0.5-5.0         -         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK539         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK606         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0         -         SHB         LM27         UNK606         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK626         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28<	9
SB-28         —         TRIP         RFC         UM27         UNK276         Unknown Hydrocarbon           SB-28         —         TRIP         RFC         UM27         UNK54         Unknown hydrocarbon           SB-28         0.5-5.0         —         SFB         LM28         UNK278         Unknown           SB-28         0.5-5.0         —         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK539         Unknown Hydrocarbon           SB-28         0.5-5.0         —         SHB         LM27         UNK551         2-ethyl-Hexanoic acid           SB-28         0.5-5.0         —         SHB         LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0         —         SHB         LM27         UNK612         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK626         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK646         Unknown           SB-28	
SB-28         —         TRIP         RFC         UM27         UNK54         Unknown hydrocarbon           SB-28         0.5-5.0         —         SFB         LM28         UNK278         Unknown           SB-28         0.5-5.0         —         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK539         Unknown Hydrocarbon           SB-28         0.5-5.0         —         SHB         LM27         UNK651         2-ethyl-Hexanoic acid           SB-28         0.5-5.0         —         SHB         LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0         —         SHB         LM27         UNK612         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK626         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK646         Unknown           SB-28         0.5-5.0         —         SHB         LM27         UNK649         Unknown Hydrocarbon           SB-29 <td></td>	
SB-28         0.5-5.0          SFB LM28         UNK278         Unknown           SB-28         0.5-5.0          SFB LM28         UNK279         Unknown           SB-28         0.5-5.0          SHB LM27         UNK539         Unknown Hydrocarbon           SB-28         0.5-5.0          SHB LM27         UNK551         2-ethyl-Hexanoic acid           SB-28         0.5-5.0          SHB LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0          SHB LM27         UNK612         Unknown           SB-28         0.5-5.0          SHB LM27         UNK626         Unknown           SB-28         0.5-5.0          SHB LM27         UNK640         Unknown           SB-28         0.5-5.0          SHB LM27         UNK640         Unknown           SB-28         0.5-5.0          SHB LM27         UNK646         Unknown           SB-28         0.5-5.0          SHB LM27         UNK649         Unknown Hydrocarbon           SB-29          SHB LM27         UNK274         Unknown         Unknown           SB-29	6
SB-28         0.5-5.0         -         SFB         LM28         UNK279         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK539         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0         -         SHB         LM27         UNK612         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK626         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK646         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK649         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK278         Unknown Hydrocarbon           SB-29 <td< td=""><td>11</td></td<>	11
SB-28         0.5-5.0         -         SHB LM27         UNK539         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB LM27         UNK6551         2-ethyl-Hexanoic acid           SB-28         0.5-5.0         -         SHB LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0         -         SHB LM27         UNK612         Unknown           SB-28         0.5-5.0         -         SHB LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB LM27         UNK646         Unknown           SB-28         0.5-5.0         -         SHB LM27         UNK646         Unknown           SB-28         0.5-5.0         -         SHB LM27         UNK649         Unknown Hydrocarbon           SB-29         -         SHB LM27         UNK650         Unknown Hydrocarbon           SB-29         -         RNSW         RFC UM27         UNK274         Unknown Hydrocarbon           SB-29         -         RNSW         RFC UM27         UNK54         Unknown Hydrocarbon           SB-29         -	0.28
SB-28         0.5-5.0         -         SHB         LM27         UNK551         2-ethyl-Hexanoic acid           SB-28         0.5-5.0         -         SHB         LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0         -         SHB         LM27         UNK612         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK646         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK649         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK649         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK650         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK278         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon	0.16
SB-28         0.5-5.0         -         SHB         LM27         UNK606         Unknown Phthalate           SB-28         0.5-5.0         -         SHB         LM27         UNK612         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK646         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK649         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK650         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK274         Unknown           SB-29         -         RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK626         mono (2-ethylhexyl) ester Hexanedioic acid <tr< td=""><td>0.2</td></tr<>	0.2
\$B-28	0.2
SB-28         0.5-5.0          SHB         LM27         UNK626         Unknown           SB-28         0.5-5.0          SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0          SHB         LM27         UNK646         Unknown           SB-28         0.5-5.0          SHB         LM27         UNK649         Unknown Hydrocarbon           SB-28         0.5-5.0          SHB         LM27         UNK650         Unknown Hydrocarbon           SB-29          RNSW         RFC         UM27         UNK274         Unknown           SB-29          RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29          RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29          RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29          RNSW         RXE         UM28         UNK626         mono (2-ethylhexyl) ester Hexanedioic acid           SB-29          RNSW         RXE         UM28         UNK639         Unknown  <	0.3
SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK649         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK650         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK274         Unknown           SB-29         -         RNSW         RFC         UM27         UNK278         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29         -         RNSW         RXE         UM28         UNK626         mono (2-ethylhexyl) ester Hexanedioic acid           SB-29         -         RNSW         RXE         UM28         UNK639         Unknown <td>1.2</td>	1.2
SB-28         0.5-5.0         -         SHB         LM27         UNK640         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK646         Unknown           SB-28         0.5-5.0         -         SHB         LM27         UNK649         Unknown Hydrocarbon           SB-28         0.5-5.0         -         SHB         LM27         UNK650         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK274         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29         -         RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29         -         RNSW         RXE         UM28         UNK626         mono (2-ethylhexyl) ester Hexanedioic acid           SB-29         -         RNSW         RXE         UM28         UNK639         Unknown	0.2
SB-28         0.5-5.0          SHB         LM27         UNK646         Unknown           SB-28         0.5-5.0          SHB         LM27         UNK649         Unknown Hydrocarbon           SB-28         0.5-5.0          SHB         LM27         UNK650         Unknown Hydrocarbon           SB-29          RNSW         RFC         UM27         UNK274         Unknown           SB-29          RNSW         RFC         UM27         UNK278         Unknown Hydrocarbon           SB-29          RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29          RNSW         RXE         UM28         UNK626         mono (2-ethylhexyl) ester Hexanedioic acid           SB-29          RNSW         RXE         UM28         UNK639         Unknown	0.2
SB-28         0.5-5.0          SHB         LM27         UNK649         Unknown Hydrocarbon           SB-28         0.5-5.0          SHB         LM27         UNK650         Unknown Hydrocarbon           SB-29          RNSW         RFC         UM27         UNK274         Unknown           SB-29          RNSW         RFC         UM27         UNK278         Unknown Hydrocarbon           SB-29          RNSW         RFC         UM27         UNK54         Unknown Hydrocarbon           SB-29          RNSW         RXE         UM28         UNK626         mono (2-ethylhexyl) ester Hexanedioic acid           SB-29          RNSW         RXE         UM28         UNK639         Unknown	3.4
SB-28 0.5-5.0 SHB LM27 UNK650 Unknown Hydrocarbon SB-29 RNSW RFC UM27 UNK274 Unknown SB-29 RNSW RFC UM27 UNK278 Unknown Hydrocarbon SB-29 RNSW RFC UM27 UNK54 Unknown Hydrocarbon SB-29 RNSW RFC UM27 UNK54 Unknown Hydrocarbon SB-29 RNSW RXE UM28 UNK626 mono (2-ethylhexyl) ester Hexanedioic acid SB-29 RNSW RXE UM28 UNK639 Unknown	0.6
SB-29 RNSW RFC UM27 UNK274 Unknown SB-29 RNSW RFC UM27 UNK278 Unknown Hydrocarbon SB-29 RNSW RFC UM27 UNK54 Unknown Hydrocarbon SB-29 RNSW RXE UM28 UNK626 mono (2-ethylhexyl) ester Hexanedioic acid SB-29 RNSW RXE UM28 UNK639 Unknown	0.2
SB-29 - RNSW RFC UM27 UNK278 Unknown Hydrocarbon SB-29 - RNSW RFC UM27 UNK54 Unknown Hydrocarbon SB-29 - RNSW RXE UM28 UNK626 mono (2-ethylhexyl) ester Hexanedioic acid SB-29 - RNSW RXE UM28 UNK639 Unknown	0.8
SB-29 - RNSW RFC UM27 UNK54 Unknown Hydrocarbon SB-29 - RNSW RXE UM28 UNK626 mono (2-ethylhexyl) ester Hexanedioic acid SB-29 - RNSW RXE UM28 UNK639 Unknown	6
SB-29 RNSW RXE UM28 UNK626 mono (2-ethylhexyl) ester Hexanedioic acid SB-29 RNSW RXE UM28 UNK639 Unknown	3
SB-29 RNSW RXE UM28 UNK639 Unknown	10
	36
THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	0
SB-29 RNSW RXE UM28 UNK640 Unknown	0
SB-29 TRIP RFC UM27 UNK275 Unknown	5
SB-29 TRIP RFC UM27 UNK54 Unknown Hydrocarbon	11
SB-29 14.0-18.7 SHB LM27 UNK524 Unknown	0.2
SB-29 14.0-18.7 - SHB LM27 UNK539 Unknown Hydrocarbon	2
SB-29 14.0-18.7 SHB LM27 UNK569 Unknown Hydrocarbon	0.2
SB-29 14.0-18.7 SHB LM27 UNK571 Unknown Hydrocarbon	0.3
SB-29 14.0-18.7 - SHB LM27 UNK606 Unknown Phthalate	0.2
SB-29 14.0-18.7 - SHB LM27 UNK616 Unknown Hydrocarbon	0.2
SB-29 14.0-18.7 SHB LM27 UNK623 Unknown Hydrocarbon	0.2
SB-29 14.0-18.7 - SHB LM27 UNK626 dioctyl ester hexanedioic acid	0.2
SB-29 19.0-21.1 - SHB LM27 UNK539 2-ethyl-1-hexanol	2.5
SB-29 19.0-21.1 - SHB LM27 UNK601 Unknown Hydrocarbon	0.2
SB-29 19.0-21.1 - SHB LM27 UNK605 Unknown Phthalate	0.2
SB-29 19.0-21.1 - SHB LM27 UNK607 Unknown Hydrocarbon	
SB-29 19.0-21.1 - SHB LM27 UNK626 mono (2-ethylhexyl) ester hexanedioic acid	0.5

# FORT DOUGLAS - SOIL ORGANIC UNKNOWNS INITIAL EI PROGRAM

					,		*
SITE ID	DEPTH	QC	LOT	METHOD	TEST	NAME	CONC
	FT				NAME		(UGG)
							0.07
SB-29	24.0-26.6	-	SFB	LM28	UNK249	Unknown	0.37
SB-29	24.0-26.6			LM27	UNK524	2-butoxy ethanol	0.4
SB-29	24.0-26.6	-		LM27	UNK539	Unknown Hydrocarbon	0.7
SB-29	24.0-26.6	-		LM27	UNK545	Unknown Hydrocarbon	0.2
SB-29	24.0-26.6	<b>-</b> ,		LM27	UNK601	Unknown Hydrocarbon	1.1
SB-29	24.0-26.6			LM27	UNK605	Unknown Phthalate	0.2
SB-29	24.0-26.6	-		LM27	UNK612	Unknown Hydrocarbon	3.3
SB-29	24.0-26.6			LM27	UNK626	mono (2-ethylhexyl) ester hexanedioic acid	0.2
SB-29	24.0-26.6			LM27	UNK629	Unknown	0.2
SB-29	24.0-26.6	-	SHB	LM27	UNK650	Unknown	0.5
SB-29	24.0-26.6	-	SHB	LM27	UNK650	Unknown	0.5
SB-29	9.7-9.9		SHB	LM27	UNK539	Unknown Hyrdocarbon	0.2
SB-29	9.7-9.9	-	SHB	LM27	UNK545	Unknown	0.2
SB-29	9.7-9.9		SHB	LM27	UNK601	Unknown Hyrdocarbon	1.4
\$B-29	9.7-9.9		SHB	LM27	UNK605	Unknown Phthalate	0.2
SB-29	9.7-9.9		SHB	LM27	UNK607	Unknown Phthalate	0.2
SB-29	9.7-9.9		SHB	LM27	UNK612	Unknown	1.8
SB-29	9.7-9.9	-	SHB	LM27	UNK626	mono (2-ethylhexyl) ester hexanedioic acid	0.2
SB-29	9.7-9.9		SHB	LM27	UNK650	Unknown	0.3
SB-29D	14.0-18.7	DUPLICATE	SHA	LM27	UNK571	Unknown	0.3
SB-29D	14.0-18.7	DUPLICATE	SHA	LM27	UNK595	Unknown	0.4
SB-29D		DUPLICATE	SHA	LM27	UNK598	Unknown	0.9
SB-29D	14.0-18.7	DUPLICATE	SHA	LM27	UNK606	Unknown Phthalate	0.7
SB-29D		DUPLICATE	SHA	LM27	UNK612	Unknown	0.3
SB-29D	14.0-18.7	DUPLICATE	SHA	LM27	UNK616	3-methyl-5-propyl-Nonane	0.4
SB-29D	14.0-18.7	DUPLICATE	SHA	LM27	UNK623	Unknown Hydrocarbon	0.6
SB-29D	14.0-18.7	DUPLICATE	SHA	LM27	UNK626	Unknown	0.3
SB-29D	14.0-18.7	DUPLICATE	SHA	LM27	UNK640	Unknown	0.9
SB-29D	14.0-18.7	DUPLICATE	SHA	LM27	UNK650	Unknown Hydrocarbon	1.3
SB-30	0.5-5.0		SFB	LM28	UNK281	Unknown Hydrocarbon	2.12
SB-30	0.5-5.0		SHB	LM27	UNK511	Unknown	4.5
SB-30	0.5-5.0		SHB	LM27	UNK528	Unknown	4.1
SB-30	0.5-5.0	-	SHB	LM27	UNK539	Unknown Hydrocarbon	2
SB-30	0.5-5.0	-	SHB		UNK605	Unknown Phthalate	3.4
SB-30	0.5-5.0			LM27	UNK612	Unknown	2.2
SB-30	0.5-5.0	-		LM27	UNK626	Unknown	1.5
SB-30	0.5-5.0	`	SHB		UNK639	Unknown	4.1
00.00	15.0-20.0		SFB		UNK249	Unknown	0.34
∜ SB-30 SB-30	15.0-20.0		SHB		UNK510	Unknown	0.8
SB-30	15.0-20.0		SHB		UNK539	Unknown Hydrocarbon	0.6
SB-30	15.0-20.0			LM27	UNK569	Unknown Hydrocarbon	0.5
SB-30	15.0-20.0			LM27	UNK571	Unknown Hydrocarbon	0.5
SB-30	15.0-20.0			LM27	UNK601	Pentacosane	0.4
	15.0-20.0			LM27	UNK605	Unknown Phthalate	0.8
SB-30	15.0-20.0			LM27	UNK612	Unknown	0.3
SB-30				LM27	UNK623	Unknown Hydrocarbon	0.6
SB-30	15.0-20.0			LIVI27	UNK626	dioctyl ester hexanedioic acid	0.0
SB-30	15.0-20.0	_	SHE	LIVICI	0141/020	Closel Color Holarisation and	J

# FORT DOUGLAS - SOIL ORGANIC UNKNOWNS INITIAL EI PROGRAM

SB-30         25.0-25.8         —         SFB         LM28         UNIX280         Unknown         0.04           SB-30         25.0-25.8         —         SFB         LM27         UNK510         Unknown         0.01           SB-30         25.0-25.8         —         SHB         LM27         UNK539         Unknown         0           SB-30         25.0-25.8         —         SHB         LM27         UNK650         Unknown Hydrocarbon         0           SB-30         25.0-25.8         —         SHB         LM27         UNK660         Unknown Hydrocarbon         0           SB-30         25.0-25.8         —         SHB         LM27         UNK660         Unknown Pythocarbon         0           SB-30         25.0-25.8         —         SHB         LM27         UNK660         Unknown Pythocarbon         0           SB-30         25.0-25.8         —         SHB         LM27         UNK660         Unknown Pythocarbon         0           SB-30         25.0-25.8         —         SHB         LM27         UNK620         Unknown Pythocarbon         0           SB-30         5.0-9.5         —         SFB         LM28         UNK220         Unknown		SITE ID	DEPTH FT	QC	LOT	METHOD	TEST NAME	NAME		CONC (UGG)
SB-30         25,0-25,8         -         SFB         LM28         UNK280         Unknown         0.01           SB-30         25,0-25,8         -         SHB         LM27         UNK510         Unknown         0           SB-30         25,0-25,8         -         SHB         LM27         UNK599         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LM27         UNK691         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LM27         UNK691         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LM27         UNK621         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LM27         UNK622         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LM27         UNK620         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LM27         UNK620         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SFB         LM28         UNK271         Unknown Hyd	-									0.04
SB-30										
SB-30         25,0-25,8         -         SHB         LMZ7         UNKS59         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LMZ7         UNK569         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LMZ7         UNK606         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LMZ7         UNK612         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LMZ7         UNK622         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LMZ7         UNK620         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB         LMZ7         UNK626         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SFB         LM28         UNK271         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SFB         LM28         UNK271         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SHB         LM27         UNK623										
SB-30								=		
SB-30         25.0-25.8         -         SHB LMZ7         UNK6571         Unknown Hydrocarbon         0           SB-30         25.0-25.8         -         SHB LMZ7         UNK606         Unknown Hydrocarbon         0           SB-30         25.0-25.8         -         SHB LMZ7         UNK616         Unknown Hydrocarbon         0           SB-30         25.0-25.8         -         SHB LMZ7         UNK620         Unknown Hydrocarbon         0           SB-30         25.0-25.8         -         SHB LMZ7         UNK650         Unknown Hydrocarbon         0           SB-30         25.0-25.8         -         SHB LMZ7         UNK650         Unknown Hydrocarbon         0           SB-30         25.0-25.8         -         SHB LMZ7         UNK650         Unknown Hydrocarbon         0           SB-30         25.0-9.5         -         SFB LM28         UNK271         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SFB LM28         UNK277         Unknown         0.01           SB-30         5.0-9.5         -         SHB LM27         UNK6031         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB LM27         UN										
SB-30         25,0-25,8         -         SHB LMZ7         UNK660         Unknown Phthalate         0           SB-30         25,0-25,8         -         SHB LMZ7         UNK612         Unknown         0           SB-30         25,0-25,8         -         SHB LMZ7         UNK622         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB LMZ7         UNK626         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB LM27         UNK626         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB LM27         UNK626         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5,0-9,5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5,0-9,5         -         SHB LM27         UNK6731         Unknown Hydrocarbon         0.01           SB-30         5,0-9,5         -         SHB LM27         UNK671         Unknown Hydrocarbon         0.01           SB-30         5,0-9,5         -         SHB LM27         UNK605 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
SB-30         25.02.5.8         -         SHB LMZ7         UNK612         Unknown         0           SB-30         25.02.5.8         -         SHB LMZ7         UNK620         Unknown Hydrocarbon         0           SB-30         25.02.5.8         -         SHB LMZ7         UNK620         Unknown Hydrocarbon         0           SB-30         25.02.5.8         -         SHB LMZ7         UNK620         Unknown Hydrocarbon         0           SB-30         25.02.5.8         -         SHB LMZ7         UNK620         Unknown         0.01           SB-30         5.09.5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5.09.5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5.09.5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5.09.5         -         SFB LM28         UNK671         Unknown Hydrocarbon         0           SB-30         5.09.5         -         SHB LM27         UNK605         Unknown Hydrocarbon         0           SB-30         5.09.5         -         SHB LM27         UNK612         Unknown         0 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-						
SB-30         25,0-25,8         -         SHB LM27         UNK616         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB LM27         UNK622         Unknown Hydrocarbon         0           SB-30         25,0-25,8         -         SHB LM27         UNK626         Unknown         0           SB-30         25,0-25,8         -         SHB LM27         UNK690         Unknown         0           SB-30         5,0-9,5         -         SFB LM28         UNK249         Unknown         0.01           SB-30         5,0-9,5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5,0-9,5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5,0-9,5         -         SHB LM27         UNK639         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SHB LM27         UNK605         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SHB LM27         UNK605         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SHB LM27         UNK605         Unknown Hydrocarbon										
SB-30         25,0-25,8         -         SHB         LM27         UNK662         Unknown         0           SB-30         25,0-25,8         -         SHB         LM27         UNK626         Unknown         0           SB-30         25,0-25,8         -         SHB         LM27         UNK650         Unknown         0           SB-30         5,0-9,5         -         SFB         LM28         UNK271         Unknown         0.01           SB-30         5,0-9,5         -         SFB         LM28         UNK271         Unknown         0.01           SB-30         5,0-9,5         -         SFB         LM28         UNK271         Unknown         0.01           SB-30         5,0-9,5         -         SHB         LM27         UNK533         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SHB         LM27         UNK605         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SHB         LM27         UNK605         Unknown Hydrocarbon         0           SB-30         5,0-9,5         -         SHB         LM27         UNK620         Unknown         0           SB										
SB-30         25.0-25.8         -         SHB LM27         UNK626         Unknown         0           SB-30         25.0-25.8         -         SHB LM27         UNK626         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SFB LM28         UNK249         Unknown         0.01           SB-30         5.0-9.5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5.0-9.5         -         SFB LM28         UNK277         Unknown         0.01           SB-30         5.0-9.5         -         SHB LM27         UNK631         Unknown         0.01           SB-30         5.0-9.5         -         SHB LM27         UNK691         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB LM27         UNK605         Unknown Pydrocarbon         0           SB-30         5.0-9.5         -         SHB LM27         UNK605         Unknown Pydrocarbon         0           SB-30         5.0-9.5         -         SHB LM27         UNK621         Unknown         0           SB-30         5.0-9.5         -         SHB LM27         UNK622         Unknown         0				-				•		
SB-30         25.0-25.8         -         SHB LM27         UNK650         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SFB LM28         UNK249         Unknown         0.01           SB-30         5.0-9.5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5.0-9.5         -         SFB LM28         UNK271         Unknown         0.01           SB-30         5.0-9.5         -         SHB LM27         UNK639         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB LM27         UNK605         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB LM27         UNK605         Unknown Phthalate         0           SB-30         5.0-9.5         -         SHB LM27         UNK620         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB LM27         UNK621         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB LM27         UNK623         Unknown         0           SB-30         5.0-9.5         -         SHB LM27         UNK639         Unknown										
SB-30         25,0-25,8         -         SFB         LMZ8         UNK2249         Unknown         0.01           SB-30         5,0-9.5         -         SFB         LM28         UNK271         Unknown         0.01           SB-30         5,0-9.5         -         SFB         LM28         UNK271         Unknown         0.01           SB-30         5,0-9.5         -         SHB         LM27         UNK639         Unknown Hydrocarbon         0           SB-30         5,0-9.5         -         SHB         LM27         UNK605         Unknown Hydrocarbon         0           SB-30         5,0-9.5         -         SHB         LM27         UNK607         Unknown Hydrocarbon         0           SB-30         5,0-9.5         -         SHB         LM27         UNK607         Unknown         0           SB-30         5,0-9.5         -         SHB         LM27         UNK620         Unknown         0           SB-30         5,0-9.5         -         SHB         LM27         UNK626         Unknown         0           SB-31         -         SHB         LM27         UNK626         Unknown         0           SB-31         -										
SB-30   5.0-9.5   -     SFB   LM28   UNK271   Unknown   0.01										
SB-30   S.0-9.5   -   SFB   LM28   UNK277   Unknown Hydrocarbon   0.01										
\$B-30										
SB-30   5.0-9.5     SHB   LM27   UNK607   Unknown Hydrocarbon   0										
SB-30   5.0-9.5   -   SHB   LM27   UNK607   Unknown Phthalate   0								· ·		
SB-30         5.0-9.5         -         SHB         LM27         UNK607         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB         LM27         UNK621         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK622         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK629         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK639         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK650         Unknown         0           SB-31         -         RNSW         RFD         UM27         UNK650         Unknown Hydrocarbon         0           SB-31         -         RNSW         RFD         UM27         UNK625         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         0           SB-31         - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>								•		
SB-30         5.0-9.5         -         SHB         LM27         UNK612         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK623         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB         LM27         UNK639         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK646         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK646         Unknown         0           SB-31         -         RNSW         RFD         UM27         UNK54.1         Unknown Hydrocarbon         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK198         2,6-dimethyl-octane         7           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         9           SB-31         -										0
SB-30         5.0-9.5         -         SHB         LM27         UNK623         Unknown Hydrocarbon         0           SB-30         5.0-9.5         -         SHB         LM27         UNK626         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK639         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK660         Unknown         0           SB-31         -         RNSW         RFD         UM27         UNK55.1         Unknown Hydrocarbon         0           SB-31         -         RNSW         RFD         UM27         UNK54.1         Unknown Hydrocarbon         5           SB-31         -         RNSW         RFD         UM27         UNK55.1         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         9           SB-31         -         TRIP         RFD         UM27         UNK520         Unknown         6           SB-31         -								<del>-</del>		0
SB-30         5.0-9.5         -         SHB         LM27         UNK626         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK639         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK646         Unknown         Hydrocarbon         0           SB-31         -         RNSW         RFD         UM27         UNK54.1         Unknown Hydrocarbon         5           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK29         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK299         Unknown         6           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         6           SB-31         -										0
SB-30         5.0-9.5         -         SHB         LM27         UNK639         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK650         Unknown         0           SB-31         -         RNSW         RFD         UM27         UNK54.1         Unknown Hydrocarbon         5           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK299         Unknown         9           SB-31         -         TRIP         RFD         UM27         UNK219         Unknown         6           SB-31         -         TRIP         RFD         UM27         UNK232         4-methyl-decane         6           SB-31         0.5-3.2         -         SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2         - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>0</td>								•		0
SB-30         5.0-9.5         -         SHB         LM27         UNK646         Unknown         0           SB-30         5.0-9.5         -         SHB         LM27         UNK650         Unknown Hydrocarbon         0           SB-31         -         RNSW         RFD         UM27         UNK54.1         Unknown Hydrocarbon         5           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK198         2,6-dimethyl-octane         7           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         9           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         6           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         6           SB-31         -         TRIP         RFD         UM27         UNK524         Unknown         6           SB-31         0.5-3.2										0
SB-30         5.0-9.5         -         SHB         LM27         UNK650         Unknown Hydrocarbon         0           SB-31         -         RNSW         RFD         UM27         UNK54.1         Unknown Hydrocarbon         5           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK29         Unknown         9           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         6           SB-31         -         TRIP         RFD         UM27         UNK219         Unknown         6           SB-31         -         TRIP         RFD         UM27         UNK232         4-methyl-decane         6           SB-31         -         TRIP         RFD         UM27         UNK54         Unknown         5           SB-31         0.5-3.2         -         SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Unknown</td><td></td><td>0</td></t<>								Unknown		0
SB-31         —         RNSW         RFD         UM27         UNK54.1         Unknown Hydrocarbon         5           SB-31         —         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         —         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         —         TRIP         RFD         UM27         UNK209         Unknown         9           SB-31         —         TRIP         RFD         UM27         UNK209         Unknown         6           SB-31         —         TRIP         RFD         UM27         UNK219         Unknown         6           SB-31         —         TRIP         RFD         UM27         UNK232         4-methyl-decane         6           SB-31         —         TRIP         RFD         UM27         UNK544         Unknown Hydrocarbon         5           SB-31         0.5-3.2         —         SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2         —         SFD         LM28         UNK524         2-butoxy-ethanol         0           SB-31         0.5-3.2							UNK650	Unknown Hydrocarbon		0
SB-31          RNSW         RXD         UM28         UNK625         Unknown         0           SB-31          RNSW         RXD         UM28         UNK625         Unknown         0           SB-31          TRIP         RFD         UM27         UNK198         2,6-dimethyl-octane         7           SB-31          TRIP         RFD         UM27         UNK209         Unknown         9           SB-31          TRIP         RFD         UM27         UNK219         Unknown         6           SB-31          TRIP         RFD         UM27         UNK232         4-methyl-decane         6           SB-31          TRIP         RFD         UM27         UNK54         Unknown         5           SB-31         0.5-3.2          SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2          SFD         LM28         UNK277         Unknown         0           SB-31         0.5-3.2          SFD         LM27         UNK524         2-butoxy-ethanol         0           SB-31         0.5-3.2			-	RNSW			UNK54.1	Unknown Hydrocarbon		5
SB-31         -         RNSW         RXD         UM28         UNK625         Unknown         0           SB-31         -         TRIP         RFD         UM27         UNK198         2,6-dimethyl-octane         7           SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         9           SB-31         -         TRIP         RFD         UM27         UNK219         Unknown         6           SB-31         -         TRIP         RFD         UM27         UNK232         4-methyl-decane         6           SB-31         -         TRIP         RFD         UM27         UNK54         Unknown         5           SB-31         0.5-3.2         -         SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2         -         SFD         LM28         UNK277         Unknown         0           SB-31         0.5-3.2         -         SFD         LM28         UNK53.8         Unknown         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK53.8         Unknown         0           SB-31         0.5-3.2         -<						UM28	UNK625	Unknown		Q
SB-31          TRIP         RFD         UM27         UNK198         2,6-dimethyl-octane         7           SB-31          TRIP         RFD         UM27         UNK209         Unknown         9           SB-31          TRIP         RFD         UM27         UNK219         Unknown         6           SB-31          TRIP         RFD         UM27         UNK232         4-methyl-decane         6           SB-31          TRIP         RFD         UM27         UNK54         Unknown Hydrocarbon         5           SB-31         0.5-3.2          SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2          SFD         LM28         UNK277         Unknown         0           SB-31         0.5-3.2          SFD         LM28         UNK524         2-butoxy-ethanol         0           SB-31         0.5-3.2          SFD         LM27         UNK538         Unknown         0           SB-31         0.5-3.2          SHJ         LM27         UNK539         Unknown         0           SB-31					RXD	UM28	UNK625	Unknown		0
SB-31         -         TRIP         RFD         UM27         UNK209         Unknown         9           SB-31         -         TRIP         RFD         UM27         UNK219         Unknown         6           SB-31         -         TRIP         RFD         UM27         UNK232         4-methyl-decane         6           SB-31         -         TRIP         RFD         UM27         UNK54         Unknown Hydrocarbon         5           SB-31         0.5-3.2         -         SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2         -         SFD         LM28         UNK277         Unknown         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK524         2-butoxy-ethanol         0           SB-31         0.5-3.2         -         SFD         LM28         UNK53.8         Unknown         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK539         Unknown         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK551         2-ethyl-hexanoic acid         0           SB-31 <td< td=""><td></td><td></td><td></td><td>TRIP</td><td>RFD</td><td>UM27</td><td>UNK198</td><td>2,6-dimethyl-octane</td><td></td><td>7</td></td<>				TRIP	RFD	UM27	UNK198	2,6-dimethyl-octane		7
SB-31        TRIP       RFD       UM27       UNK219       Unknown       6         SB-31        TRIP       RFD       UM27       UNK232       4-methyl-decane       6         SB-31        TRIP       RFD       UM27       UNK54       Unknown Hydrocarbon       5         SB-31       0.5-3.2        SFD       LM28       UNK263       Unknown       0         SB-31       0.5-3.2        SFD       LM28       UNK277       Unknown       0         SB-31       0.5-3.2        SHJ       LM27       UNK524       2-butoxy-ethanol       0         SB-31       0.5-3.2        SFD       LM28       UNK53.8       Unknown       0         SB-31       0.5-3.2        SHJ       LM27       UNK539       Unknown       0         SB-31       0.5-3.2        SHJ       LM27       UNK551       2-ethyl-hexanoic acid       0         SB-31       0.5-3.2        SHJ       LM27       UNK571       Unknown       18         SB-31       0.5-3.2        SHJ       LM27       UNK605       Unknown       5 <td></td> <td></td> <td>_</td> <td>TRIP</td> <td>RFD</td> <td>UM27</td> <td>UNK209</td> <td>Unknown</td> <td></td> <td>9</td>			_	TRIP	RFD	UM27	UNK209	Unknown		9
SB-31          TRIP         RFD         UM27         UNK232         4-methyl-decane         6           SB-31          TRIP         RFD         UM27         UNK54         Unknown Hydrocarbon         5           SB-31         0.5-3.2          SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2          SFD         LM28         UNK277         Unknown         0           SB-31         0.5-3.2          SHJ         LM27         UNK524         2-butoxy-ethanol         0           SB-31         0.5-3.2          SFD         LM28         UNK53.8         Unknown         0           SB-31         0.5-3.2          SHJ         LM27         UNK539         Unknown         0           SB-31         0.5-3.2          SHJ         LM27         UNK551         2-ethyl-hexanoic acid         0           SB-31         0.5-3.2          SHJ         LM27         UNK595         Unknown         18           SB-31         0.5-3.2          SHJ         LM27         UNK595         Unknown         5           SB-31					RFD	UM27	UNK219	Unknown		6
SB-31         -         TRIP         RFD         UM27         UNK54         Unknown Hydrocarbon         5           SB-31         0.5-3.2         -         SFD         LM28         UNK263         Unknown         0           SB-31         0.5-3.2         -         SFD         LM28         UNK277         Unknown         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK524         2-butoxy-ethanol         0           SB-31         0.5-3.2         -         SFD         LM28         UNK53.8         Unknown         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK539         Unknown         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK545         Unknown         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK551         2-ethyl-hexanoic acid         0           SB-31         0.5-3.2         -         SHJ         LM27         UNK595         Unknown         18           SB-31         0.5-3.2         -         SHJ         LM27         UNK605         Unknown Phthalate         8           SB-31				TRIP	RFD	UM27	UNK232	4-methyl-decane		6
SB-31       0.5-3.2        SFD       LM28       UNK263       Unknown       0         SB-31       0.5-3.2        SFD       LM28       UNK277       Unknown       0         SB-31       0.5-3.2        SHJ       LM27       UNK524       2-butoxy-ethanol       0         SB-31       0.5-3.2        SFD       LM28       UNK53.8       Unknown       0         SB-31       0.5-3.2        SHJ       LM27       UNK539       Unknown       0         SB-31       0.5-3.2        SHJ       LM27       UNK545       Unknown       0         SB-31       0.5-3.2        SHJ       LM27       UNK551       2-ethyl-hexanoic acid       0         SB-31       0.5-3.2        SHJ       LM27       UNK595       Unknown       18         SB-31       0.5-3.2        SHJ       LM27       UNK595       Unknown       5         SB-31       0.5-3.2        SHJ       LM27       UNK605       Unknown       18         SB-31       0.5-3.2        SHJ       LM27       UNK605       Unknown       5 <td></td> <td></td> <td>_</td> <td>TRIP</td> <td>RFD</td> <td>UM27</td> <td>UNK54</td> <td>Unknown Hydrocarbon</td> <td></td> <td>5</td>			_	TRIP	RFD	UM27	UNK54	Unknown Hydrocarbon		5
SB-31       0.5-3.2       -       SHJ       LM27       UNK524       2-butoxy-ethanol       0         SB-31       0.5-3.2       -       SFD       LM28       UNK53.8       Unknown       0         SB-31       0.5-3.2       -       SHJ       LM27       UNK539       Unknown       0         SB-31       0.5-3.2       -       SHJ       LM27       UNK545       Unknown       0         SB-31       0.5-3.2       -       SHJ       LM27       UNK551       2-ethyl-hexanoic acid       0         SB-31       0.5-3.2       -       SHJ       LM27       UNK595       Unknown       18         SB-31       0.5-3.2       -       SHJ       LM27       UNK595       Unknown       5         SB-31       0.5-3.2       -       SHJ       LM27       UNK605       Unknown Phthalate       8         SB-31       0.5-3.2       -       SHJ       LM27       UNK606       Unknown       5			0.5-3.2		SFD	LM28	UNK263	Unknown		0
SB-31       0.5-3.2       -       SFD LM28       UNK53.8       Unknown       0         SB-31       0.5-3.2       -       SHJ LM27       UNK539       Unknown       0         SB-31       0.5-3.2       -       SHJ LM27       UNK545       Unknown       0         SB-31       0.5-3.2       -       SHJ LM27       UNK551       2-ethyl-hexanoic acid       0         SB-31       0.5-3.2       -       SHJ LM27       UNK571       Unknown       18         SB-31       0.5-3.2       -       SHJ LM27       UNK595       Unknown       5         SB-31       0.5-3.2       -       SHJ LM27       UNK605       Unknown Phthalate       8         SB-31       0.5-3.2       -       SHJ LM27       UNK606       Unknown       5		SB-31	0.5-3.2		SFD	LM28	UNK277	Unknown		0
SB-31 0.5-3.2 SHJ LM27 UNK539 Unknown 0 SB-31 0.5-3.2 SHJ LM27 UNK545 Unknown 0 SB-31 0.5-3.2 SHJ LM27 UNK551 2-ethyl-hexanoic acid 0 SB-31 0.5-3.2 SHJ LM27 UNK571 Unknown 18 SB-31 0.5-3.2 SHJ LM27 UNK595 Unknown 5 SB-31 0.5-3.2 SHJ LM27 UNK605 Unknown Phthalate 8 SB-31 0.5-3.2 SHJ LM27 UNK606 Unknown 5 SB-31 0.5-3.2 SHJ LM27 UNK606 Unknown 5		SB-31	0.5-3.2		SHJ	LM27	UNK524	2-butoxy-ethanol		
SB-31 0.5-3.2 SHJ LM27 UNK545 Unknown 0 SB-31 0.5-3.2 SHJ LM27 UNK551 2-ethyl-hexanoic acid 0 SB-31 0.5-3.2 SHJ LM27 UNK571 Unknown 18 SB-31 0.5-3.2 SHJ LM27 UNK595 Unknown 5 SB-31 0.5-3.2 SHJ LM27 UNK605 Unknown Phthalate 8 SB-31 0.5-3.2 SHJ LM27 UNK606 Unknown 5		SB-31	0.5-3.2		SFD	LM28	UNK53.8	Unknown		Ó
SB-31 0.5-3.2 SHJ LM27 UNK551 2-ethyl-hexanoic acid 0 SB-31 0.5-3.2 SHJ LM27 UNK571 Unknown 18 SB-31 0.5-3.2 SHJ LM27 UNK595 Unknown 5 SB-31 0.5-3.2 SHJ LM27 UNK605 Unknown Phthalate 8 SB-31 0.5-3.2 SHJ LM27 UNK606 Unknown 5		SB-31	0.5-3.2		SHJ	LM27	UNK539	Unknown		
SB-31 0.5-3.2 SHJ LM27 UNK571 Unknown 18 SB-31 0.5-3.2 SHJ LM27 UNK595 Unknown 5 SB-31 0.5-3.2 SHJ LM27 UNK605 Unknown Phthalate 8 SB-31 0.5-3.2 SHJ LM27 UNK606 Unknown 5		SB-31	0.5-3.2		SHJ	LM27	UNK545	Unknown		0
SB-31     0.5-3.2      SHJ     LM27     UNK571     Unknown     18       SB-31     0.5-3.2      SHJ     LM27     UNK595     Unknown     5       SB-31     0.5-3.2      SHJ     LM27     UNK605     Unknown Phthalate     8       SB-31     0.5-3.2      SHJ     LM27     UNK606     Unknown     5			0.5-3.2		SHJ	LM27	UNK551	2-ethyl-hexanoic acid		
SB-31       0.5-3.2        SHJ       LM27       UNK595       Unknown       5         SB-31       0.5-3.2        SHJ       LM27       UNK605       Unknown Phthalate       8         SB-31       0.5-3.2        SHJ       LM27       UNK606       Unknown       5			0.5-3.2		SHJ	LM27	UNK571	Unknown	•	
SB-31 0.5-3.2 - SHJ LM27 UNK606 Unknown 5		SB-31	0.5-3.2		SHJ	LM27	UNK595			
3531 0.30.2		SB-31	0.5-3.2		SHJ	LM27	UNK605			
7		SB-31	0.5-3.2	-	SHJ	LM27	UNK606	Unknown		
			0.5-3.2		SHJ	LM27	UNK610	Unknown		7

#### Soil Organic Unknowns

			Level 3 Data						
				Malaa	Flag Code	11-1-6-		44.45.4	D. L
Site ID	Sample Date	υерτη	Parameter	Value	Lode	Units	LOC	Method	Dilution
BKG-SS-01	15-jul-1992	0.000	UNK523	0.221	s	UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	UNK550	0.331	S	UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	UNK611	0.773	S	UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	UNK619	0.331	S	UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		UNK627	1.100	s	UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	UNK635	0.331	s	UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992		UNK641	0.552	s	UGG	TRH	LM27	1.000
BKG-SS-01	15-jul-1992	0.000	UNK648	0.883	S	UGG	TRH	LM27	1.000
BKG-\$\$-01	15-jul-1992		UNK649	0.331	S	UGG	TRH	LM27	1.000
BKG-\$\$-01	15-jul-1992		UNK659	0.442	S	UGG	TRH	LM27	1.000
SS-03	15-jul-1992	0.000	UNK611	0.745	S	UGG	TRH	LM27	1.000
SS-03	15-jul-1992		UNK612	0.497	s	UGG	TRH	LM27	1.000
SS-03	15-jul-1992 15-jul-1992	0.000	UNK613	1.240	S	UGG	TRH	LM27	1.000
		0.000	UNK619	0.497	S	UGG	TRH	LM27	1.000
SS-03 SS-03	15- jul - 1992 15- jul - 1992		UNK627	0.621	S	UGG	TRH	LM27	1.000
	-	0.000	UNK630	0.870	S	UGG	TRH	LM27	1.000
SS-03	15-jul-1992 15-jul-1992		UNK639	1.240	S	UGG	TRH	LM27	1.000
SS-03	•			0.373	S	UGG	TRH	LM27	1.000
SS-03	15-jul-1992	0.000	UNK641 UNK648	0.621	S	UGG	TRH	LM27	1.000
SS-03	15-jul-1992			0.373	S	UGG	TRH	LM27	1.000
SS-03	15-jul-1992	0.000	UNK660	0.902	S	UGG	TRH	LM27	1.000
SS-04	15-jul-1992	0.000	UNK604	0.902	S	UGG	TRH	LM27	1.000
SS-04	15-jul-1992	0.000	UNK611		S			LM27	
SS-04	15-jul-1992	0.000	UNK613	1.290		UGG	TRH		1.000
SS-04	15-jul-1992		UNK621	0.773	S	UGG	TRH	LM27	1.000
SS-04	15-jul-1992	0.000	UNK630	1.290	S	UGG	TRH	LM27	1.000
SS-04	15-jul-1992		UNK638	0.644	S	UGG	TRH	LM27	1.000
SS-04	15-jul-1992	0.000	UNK642	2.580	S	UGG	TRH	LM27 LM27	1.000
SS-04	15-jul-1992		UNK643	0.902	S	UGG	TRH		1.000
SS-04	15-jul-1992		UNK648	0.515	S	UGG	TRH	LM27	1.000
SS-04	15-jul-1992	0.000	UNK650	1.030	S	UGG	TRH	LM27	1.000
ss-05	-	0.000	UNK611	1.150	S	UGG	TRH	LM27	1.000
ss-05	15-jul-1992		UNK612	0.769	S	UGG	TRH	LM27	1.000
ss-05	15-jul-1992		UNK627	2.560	S	UGG	TRH	LM27	1.000
ss-05	15-jul-1992		UNK630	0.641	S	UGG	TRH	LM27	1.000
SS-05	15-jul-1992		UNK634	0.385	S	UGG	TRH	LM27	1.000
SS-05	15-jul-1992		UNK635	0.256	S		TRH	LM27	1.000
SS-05	15-jul-1992		UNK639	0.513	S	UGG	TRH	LM27	1.000
ss-05	15-jul-1992		UNK640	0.513	S	UGG		LM27	1.000 1.000
SS-05	15- jul - 1992	0.000	UNK648	0.897	S	UGG	TRH	LM27	
SS-05	15-jul-1992		UNK659	0.385	S	UGG	TRH	LM27	1.000
\$\$-06	15- jul - 1992		UNK621	0.616	S	UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		UNK622	0.616	S	UGG	TRH	LM27	1.000
ss-06	15-jul-1992		UNK630	2.460	S	UGG	TRH	LM27	1.000
ss-06	15- jul-1992		UNK633	2.460	S	UGG	TRH	LM27	1.000
ss-06	15-jul-1992		UNK638	0.616	S	UGG	TRH	LM27	1.000
SS-06	15-jul-1992		UNK642	1.230	S	UGG	TRH	LM27	1.000
SS-06	15-jul-1992		UNK650	0.985	S	UGG	TRH	LM27	1.000
SS-06	15- jul - 1992		UNK651	1.230	S	UGG	TRH	LM27	1.000
ss-06	15- jul - 1992		UNK660	0.616	S	UGG	TRH	LM27	1.000
ss-07	15-jul-1992		UNK611	0.526	S	UGG	TRH	LM27	1.000
ss-07	15-jul-1992		UNK613	1.320	S	UGG	TRH	LM27	1.000
ss-07	15-jul-1992		UNK621	0.658	S	UGG	TRH	LM27	1.000
ss-07	15-jul-1992		UNK630	1.320	S	UGG	TRH	LM27	1.000
ss-07	15-jul-1992		UNK633	2.630	S	UGG	TRH	LM27	1.000
SS-07	15 - jul - 1992	0.000	UNK638	0.658	S	UGG	TRH	LM27	1.000

# Soil Organic Unknowns

			Le	vel 3 Data					
					Flag				
Site ID	Sample Date	Depth	Parameter	Value	Code	Units	Lot	Method	Dilution
				0.705	•	UGG	TRH	LM27	1.000
ss-07	15 - jul - 1992		UNK642	0.395	S				
ss-07	15 - jul - 1992		UNK650	0.789	S	UGG	TRH	LM27	1.000
ss-07	15- jul - 1992	0.000	UNK651	1.320	S	UGG		LM27	1.000
ss-07	15- jul - 1992	0.000	UNK655	0.658	S	UGG	TRH	LM27	1.000
ss-08	15- jul - 1992	0.000	UNK520	0.231	S	UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		UNK543	0.231	S	UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		UNK595	0.231	S	UGG	TRH	LM27	1.000
ss-08	15- jul-1992	0.000	UNK613	1.160	S	UGG	TRH	LM27	1.000
SS-08	15-jul-1992		UNK621	0.231	S	UGG	TRH	LM27	1.000
	15-jul-1992		UNK622	0.347	s	UGG	TRH	LM27	1.000
ss-08	15-jul-1992		UNK630	0.347	s	UGG	TRH	LM27	1.000
ss-08		0.000	UNK633	0.462	S	UGG	TRH	LM27	1.000
\$5-08	15-jul-1992		UNK638	0.347	S	UGG	TRH	LM27	1.000
ss-08	15-jul-1992			0.347	S	UGG	TRH	LM27	1.000
ss-08	15- jul - 1992		UNK650	0.516	s	UGG	TRH	LM27	1.000
ss-09	15-jul-1992		UNK543	0.516	S	UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		UNK585				TRH	LM27	1.000
ss-09	15- jul <b>-</b> 1992		UNK593	1.030	S	UGG			1.000
ss-09	15-jul-1992		UNK595	0.619	S	UGG	TRH	LM27	
ss-09	15- jul <del>-</del> 1992	0.000	UNK611	1.030	S	UGG	TRH	LM27	1.000
SS-09	15-jul-1992	0.000	UNK627	2.060	S	UGG	TRH	LM27	1.000
SS-09	15-jul-1992	0.000	UNK635	0.722	S	UGG	TRH	LM27	1.000
ss-09	15-jul-1992	0.000	UNK641	0.929	S	UGG	TRH	LM27	1.000
ss-09	15- jul - 1992		UNK649	0.929	S	UGG	TRH	LM27	1.000
SS-09	15-jul-1992		UNK670	0.516	S	UGG	TRH	LM27	1.000
SS-10	15-jul-1992		UNK551	0.309	S	UGG	TRH	LM27	1.000
SS-10	15-jul-1992		UNK611	0.206	S	UGG	TRH	LM27	1.000
SS-10	15-jul-1992		UNK612	0.721	S	UGG	TRH	LM27	1.000
SS-10	15- jul-1992		UNK627	1.030	S	UGG	TRH	LM27	1.000
	15 - jul - 1992		UNK630	0.824	S	UGG	TRH	LM27	1.000
SS-10			UNK635	0.309	s	UGG	TRH	LM27	1.000
SS-10	15- jul-1992		UNK640	0.618	S	UGG	TRH	LM27	1.000
ss-10	15-jul-1992			0.824	S	UGG	TRH	LM27	1.000
ss-10	15- jul - 1992		UNK648	0.412	s	UGG	TRH	LM27	1.000
SS-10	15- jul - 1992		UNK660	0.206	S	UGG	TRH	LM27	1.000
SS-10	15-jul-1992		UNK664		S	UGG	TRH	LM27	1.000
ss-11	15- jul <del>-</del> 1992		UNK593	0.212			TRH	LM27	1.000
SS-11	15- jul - 1992	0.000	UNK595	0.318	S	UGG			1.000
ss-11	15- jul <i>-</i> 1992	0.000	UNK611	0.530	S	UGG	TRH	LM27	
SS-11	15- jul <i>-</i> 1992	0.000	UNK627	0.318	S	UGG		LM27	1.000
ss-11	15-jul-1992	0.000	UNK632	0.212	S	UGG	TRH	LM27	1.000
ss-11	15- jul-1992	0.000	UNK635	0.530	S	UGG	TRH	LM27	1.000
SS-11	15- jul - 1992	0.000	UNK639	0.636	S	UGG `	TRH	LM27	1.000
ss-11	15- jul - 1992	0.000	UNK641	0.953	S	UGG	TRH	LM27	1.000
SS-11	15-jul-1992		UNK646	0.318	S	UGG	TRH	LM27	1.000
SS-11	15-jul-1992		UNK648	0.742	S	UGG	TRH	LM27	1.000
ss-12	15- jul - 1992		UNK520	0.213	S	UGG	TRH	LM27	1.000
SS-12	15-jul-1992		UNK520	0.318	S	UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		UNK523	0.213	S	UGG	TRH	LM27	1.000
SS-12	15 jul 1992 15- jul - 1992		UNK523	0.318	s	UGG	TRH	LM27	1.000
	-		UNK524	0.319	S	UGG	TRH		1.000
SS-12	15- jul - 1992			0.213	Š	UGG	TRH	LM27	1.000
SS-12	15- jul-1992		UNK526	0.213	S	UGG	TRH	LM27	1.000
<b>\$</b> S-12	15- jul - 1992		UNK529			UGG	TRH		1.000
ss-12	15- jul - 1992		UNK543	0.213	S				1.000
ss-12	15 - jul - 1992		UNK544	0.212	\$	UGG	TRH		
SS-12'	15 - jul - 1992		UNK569	0.213	S	UGG	TRH		1.000
ss-12	15 - jul - 1992	0.000	UNK572	0.319	S	UGG	TRH	LM27	1.000

#### Soil Organic Unknowns

			LC	vet 5 bata	Flag				
Cita ID	Cample Date	Donth	Parameter	Value	Code	Units	Lot	Method	Dilution
Site ID	Sample Date	оерин	r ai ailie t ei	vacac	5545	0			Dittation
ss-12	15- jul - 1992	0.000	UNK573	0.212	S	UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		UNK581	0.212	S	UGG	TRH	LM27	1.000
SS-12	15- jul - 1992		UNK584	0.319	S	UGG	TRH	LM27	1.000
SS-12	15 - jul - 1992	0.000	UNK593	0.426	S	UGG	TRH	LM27	1.000
SS-12	15 - jul - 1992	0.000	UNK593	0.212	S	UGG	TRH	LM27	1.000
SS-12	15-jul-1992	0.000	UNK595	0.532	S	UGG	TRH	LM27	1.000
SS-12	15- jul -1992	0.000	UNK595	0.212	S	UGG	TRH	LM27	1.000
ss-12	15- jul - 1992	0.000	UNK602	0.212	S	UGG	TRH	LM27	1.000
SS-12	15- jul - 1992	0.000	UNK612	0.318	S	UGG	TRH	LM27	1.000
SS-13	15- jul-1992	0.000	UNK551	3.150	S	UGG	TRH	LM27	1.000
SS-13	15-jul-1992	0.000	UNK5 <b>7</b> 5	1.050	S	UGG	TRH	LM27	1.000
SS-13	15-jul-1992	0.000	UNK613	2.100	S	UGG	TRH	LM27	1.000
SS-13	15-jul-1992	0.000	UNK622	0.525	S	UGG	TRH	LM27	1.000
SS-13	15- jul - 1992		UNK630	2.100	S	UGG	TRH	LM27	1.000
SS-13	15-jul-1992		UNK638	0.735	S	UGG	TRH	LM27	1.000
SS-13	15-jul-1992	0.000	UNK642	0.735	S	UGG	TRH	LM27	1.000
SS-13	15- jul - 1992	0.000	UNK643	2.100	S	UGG	TRH	LM27	1.000
SS-13	15- jul <b>-</b> 1992	0.000	UNK650	2.100	S	UGG	TRH	LM27	1.000
ss-13	15-jul-1992	0.000	UNK651	0.735	S	UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	UNK595	0.631	S	UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	UNK611	0.946	S	UGG	TRH	LM27	1.000
SS-14	15- jul <b>-</b> 1992	0.000	UNK627	1.050	S	UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	UNK632	0.421	S	UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	UNK635	0.841	S	UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	UNK638	0.421	S	UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	UNK641	1.050	S	UGG	TRH	LM27	1.000
SS-14	15 - jul - 1992	0.000	UNK649	1.050	S	UGG	TRH	LM27	1.000
SS-14	15 - jul - 1992		UNK668	0.526	S	UGG	TRH	LM27	1.000
SS-14	15- jul - 1992	0.000	UNK669	0.421	s	UGG	TRH	LM27	1.000
SS-15	15-jul-1992		UNK523	0.213	S	UGG	TRH	LM27	1.000
SS-15	15- jul - 1992		UNK570	0.213	S	UGG	TRH	LM27	1.000
SS-15	15-jul-1992		UNK593	0.213	S	UGG	TRH	LM27	1.000
SS-15	15-jul-1992		UNK595	0.320	S	UGG	TRH	LM27	1.000
ss-15	15- jul - 1992		UNK627	1.070	S	UGG	TRH	LM27	1.000
SS-15	15- jul - 1992		UNK632	0.213	S	UGG	TRH	LM27	1.000
ss-15	15- jul - 1992		UNK635	0.534	S	UGG	TRH	LM27	1.000
ss-15	15- jul - 1992		UNK640	0.854	S	UGG	TRH	LM27	1.000
SS-15	15- jul - 1992		UNK646	0.320	S	UGG	TRH		1.000
SS-15	15- jul - 1992		UNK648	0.534	S	UGG		LM27	1.000
ss-16	15 - jul - 1992		UNK550	1.060	S	UGG		LM27	1.000
ss-16	15- jul - 1992		UNK595	0.318	S	UGG	TRH		1.000
ss-16	15- jul <i>-</i> 1992		UNK630	0.849	S	UGG	TRH	LM27	1.000
ss-16	15 - jul - 1992		UNK633	1.060	S	UGG	TRH	LM27	1.000
ss-16	15 - jul - 1992		UNK635	0.318	S	UGG	TRH	LM27	1.000
ss-16	15 - jul - 1992		UNK638	0.637	S	UGG	TRH	LM27	1.000
ss-16	15- jul - 1992		UNK650	1.060	S	UGG	TRH	LM27	1.000
ss-16	15- jul - 1992		UNK651	2.120	S	UGG	TRH	LM27	1.000
ss-16	15- jul - 1992	0.000	UNK660	0.531	S	UGG	TRH	LM27	1.000

#### Soil Organic Unknowns

					Flag				
Site ID	Sample Date Dept	h	Parameter	Value	_	Units	Lot	Method	Dilution
Site ID	sample bate bept	''	rai dilecei	vatue	Code -	0111 03		rictiloa	·
BKG-SS-02	07/16/92 0	.0	UNK538	0.838	s	UGG	TRG	LM27	
BKG-SS-02			UNK549	0.314	S	UGG		LM27	
BKG-SS-02		.0	UNK611	0.524	s	UGG	TRG	LM27	
BKG-SS-02			UNK626	1.047	S	UGG		LM27	
BKG-SS-02			UNK641	0.524	s	UGG		LM27	
BKG-SS-02		.0	UNK642	0.314	S	UGG	TRG	LM27	
BKG-SS-02		.0	UNK649	0.628	s	UGG		LM27	
BKG-SS-02		.0	UNK650	0.628	s	UGG	TRG	LM27	
BKG-SS-02	* *	.0	UNK664	0.419	S	UGG		LM27	
BKG-SS-02		.0	UNK667	0.419	S	UGG		LM27	
BKG-SS-03		.0	UNK538	0.318	S	UGG		LM27	
BKG-SS-03		.0	UNK552	2.121	S	UGG		LM27	
BKG-SS-03		.0	UNK594	0.212	S	UGG		LM27	
BKG-SS-03			UNK611	0.742	s	UGG		LM27	
BKG-SS-03		.0	UNK618	0.212	s	UGG		LM27	
BKG-SS-03		.0	UNK626	1.060	S	UGG		LM27	
BKG-SS-03			UNK640	0.318	S	UGG	TRG	LM27	
BKG-SS-03		.0	UNK641	0.212	S	UGG	TRG	LM27	
BKG-SS-03	· ·		UNK649	0.212	s	UGG	TRG	LM27	
BKG-SS-03		.0	UNK650	0.318	s	UGG		LM27	
BKG-SS-04			UNK611	0.524	S	UGG		LM27	
BKG-SS-04		.0	UNK629	0.419	s	UGG		LM27	
BKG-SS-04		.0	UNK634	0.314	S	UGG		LM27	
BKG-SS-04		.0	UNK641	0.629	S	UGG		LM27	
BKG-SS-04		.0	UNK649	0.314	S	UGG		LM27	
BKG-SS-04	•	.0	UNK650	1.048	s	UGG		LM27	
BKG-SS-04		.0	UNK651	0.314	S	UGG	TRG	LM27	
BKG-SS-04			UNK659	0.314	S	UGG	TRG	LM27	
BKG-SS-04			UNK662	0.839	S	UGG		LM27	
BKG-SS-04				0.314	S	UGG		LM27	
SS-04			UNK603	0.639	s	UGG		LM27	
SS-04			UNK610	0.384	s	UGG	TRG	LM27	
SS-04 SS-04			UNK611	0.512	S	UGG	TRG	LM27	
SS-04			UNK612	0.384	s	UGG	TRG		
SS-04 SS-04		1.0		1.023	S	UGG	TRG		
SS-04		1.0	UNK638	1.279	S	UGG	TRG		•
SS-04 SS-04		1.0	UNK640	0.384	S	UGG	TRG	LM27	
SS-04		.0	UNK641	1.023	s	UGG		LM27	
SS-04		0.0	UNK649	0.639	s	UGG	TRG	LM27	
SS-04		0.0	UNK650	0.384	s	UGG		LM27	•
SS-17		0.0	UNK611	2.075	s	UGG	TRG		
SS-17		0.0	UNK619	7.261	s	UGG		LM27	
SS-17		0.0	UNK630	2.075	S	UGG		LM27	
SS-17		).0	UNK631	2.075	S	UGG	TRG	LM27	
SS-17		).0	UNK632	1.037	S	UGG		LM27	
			UNK633	2.075	S	UGG		LM27	
SS-17		).0 ).0	UNK634	1.037	s S	UGG		LM27	
SS-17 SS-17		).0		1.037	S	UGG		LM27	
SS-17 SS-17	, ,	0.0	UNK640	2.075	S	UGG	TRG	LM27	•
SS-17 SS-17		0.0	UNK649	2.075	S	UGG		LM27	
		).0	UNK551	2.075	S	UGG		LM27	
ss-18 ss-18		).0	UNK605	0.622	S	UGG		LM27	
		).0	UNK611	0.415	S	UGG		LM27	
SS-18		).0		3.112	S	UGG		LM27	
ss-18	07/16/92	,.U	UNK626	3.114	3	Juu	IKG	LM21	

# Soil Organic Unknowns

					Flag				
Site ID	Sample Date De	pth	Parameter	Value		Units	Lot	Method	Dilution
SS-18	07/16/92	0.0	UNK636	0.519	S	UGG	TRG	LM27	
ss-18	07/16/92	0.0	UNK640	0.415	S	UGG	TRG	LM27	
SS-18	07/16/92	0.0	UNK649	0.519	S	UGG	TRG	LM27	
ss-18	07/16/92	0.0	UNK650	0.519	S	UGG	TRG	LM27	
ss-18	07/16/92	0.0	UNK662	0.311	S	UGG	TRG	LM27	
SS-18	07/16/92	0.0	UNK667	0.415	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK538	0.309	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK550	2.062	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK611	0.825	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK626	1.031	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK629	1.031	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK649	0.206	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK650	0.928	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK655	0.309	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK664	0.206	S	UGG	TRG	LM27	
SS-19	07/16/92	0.0	UNK667	0.412	s	UGG	TRG	LM27	
ss-20	07/16/92	0.0	UNK522	0.103	s	UGG	TRG	LM27	•
ss-20	07/16/92	0.0	UNK537	0.309	S	UGG	TRG	LM27	
ss-20	07/16/92	0.0	UNK551	2.062	s	UGG	TRG	LM27	
ss-20	07/16/92	0.0	UNK611	0.206	S	UGG	TRG	LM27	
SS-20	07/16/92	0.0	UNK634	0.206	S	UGG	TRG	LM27	
ss-20	07/16/92	0.0	UNK639	0.206	s	UGG	TRG	LM27	
SS-20	07/16/92	0.0	UNK641	0.515	S	UGG	TRG	LM27	
ss-20	07/16/92	0.0	UNK649	0.206	s	UGG	TRG	LM27	
ss-20	07/16/92	0.0	UNK650	0.722	s	UGG	TRG	LM27	
SS-20	07/16/92	0.0	UNK662	0.206	s	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK593	0.626	s	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK595	1.043	s	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK611	0.521	S	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK626	1.043	S	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK634	0.938	S	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK640	1.043	S	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK641	0.521	S	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK649	2.086	S	UGG	TRG	LM27	
SS-21	07/16/92	0.0	UNK650	0.834	s	UGG	TRG.	LM27	
SS-21	07/16/92	0.0	UNK662	1.043	s	UGG			
SS-22	07/16/92	0.0	UNK526	0.309	s	UGG	TRG	LM27	
SS-22	07/16/92	0.0	UNK538	0.721	S	UGG	TRG	LM27	
ss-22	07/16/92	0.0	UNK551	0.721	s	UGG		LM27	
ss-22	07/16/92		UNK606	0.309	s	UGG		LM27	
ss-22	07/16/92	0.0	UNK611	0.309	S	UGG	TRG	LM27	
\$\$-22	07/16/92	0.0	UNK626	1.030	S	UGG	TRG	LM27	
ss-22	07/16/92	0.0	UNK634	0.309	S	UGG		LM27	
ss-22	07/16/92		UNK641	0.618	S	UGG		LM27	
ss-22	07/16/92	0.0	UNK649	0.721	S	UGG		LM27	
ss-22	07/16/92	0.0	UNK662	0.412	S	UGG		LM27	
								-	

# Soil Organic Unknowns

			Level 3 Data						
					Flag				
Site ID	Sample Date	Depth	Parameter	Value	Code	Units	Lot	Method	Dilution
BKG-SS-01	15- jul-1992	0.000.	UNK523	0.220	s	UGG	TRH	LM27	
BKG-SS-01	15- jul - 1992		UNK550	0.330	S	UGG	TRH		
BKG-SS-01	15- jul-1992		UNK611	0.770	S	UGG	TRH	LM27	
BKG-SS-01	15- jul - 1992		UNK619	0.330	S	UGG		LM27	
BKG-SS-01	15- jul - 1992		UNK627	1.100	S	UGG		LM27	
BKG-\$\$-01	15- jul-1992		UNK635	0.330	s	UGG		LM27	
BKG-SS-01	15-jul-1992 15-jul-1992		UNK641	0.550	S	UGG	TRH		
BKG-SS-01	15- jul-1992		UNK648	0.880	S	UGG	TRH	LM27	
BKG-SS-01	15- jul-1992		UNK649	0.330	s	UGG	TRH	LM27	
BKG-SS-01	15- jul - 1992		UNK659	0.440	S	UGG	TRH	LM27	
BKG-\$\$-02	16- jul - 1992		UNK538	0.838	S	UGG		LM27	
BKG-SS-02	16- jul - 1992		UNK549	0.314	S	UGG		LM27	
BKG-SS-02	16-jul-1992		UNK611	0.524	S	UGG		LM27	
BKG-SS-02	16-jul-1992		UNK626	1.050	S	UGG		LM27	
BKG-\$S-02	16- jul - 1992		UNK641	0.524	S	UGG		LM27	
BKG-SS-02	16- jul - 1992		UNK642	0.314	S	UGG		LM27	
BKG-SS-02	16- jul - 1992		UNK649	0.628	S	UGG		LM27	
BKG-SS-02	16- jul - 1992		UNK650	0.628	S	UGG		LM27	
BKG-SS-02	16- jul - 1992		UNK664	0.419	S	UGG		LM27	
BKG-\$\$-02	16- jul-1992 16- jul-1992		UNK667	0.419	S	UGG		LM27	
BKG-SS-02 BKG-SS-03	16-jul-1992		UNK538	0.318	s	UGG		LM27	
BKG-SS-03	16-jul-1992		UNK552	2.120	S	UGG		LM27	
BKG-SS-03	16- jul - 1992		UNK594	0.212	S	UGG		LM27	
BKG-\$\$-03	16- jul - 1992		UNK611	0.742	S	UGG		LM27	
BKG-SS-03	16- jul - 1992		UNK618	0.212	s	UGG		LM27	
BKG-SS-03	16-jul-1992		UNK626	1.060	S	UGG		LM27	
BKG-SS-03	16- jul - 1992		UNK640	0.318	S	UGG		LM27	
BKG-\$S-03	16- jul - 1992		UNK641	0.212	S	UGG		LM27	
BKG-SS-03	16- jul - 1992		UNK649	0.212	S	UGG		LM27	
BKG-SS-03	16- jul - 1992		UNK650	0.318	S	UGG			
BKG-SS-04	16- jul - 1992		UNK611	0.524	S	UGG		LM27	
BKG-SS-04	16- jul - 1992		UNK629	0.419	S	UGG		LM27	
BKG-SS-04	16- jul - 1992		UNK634	0.314	S	UGG		LM27	
BKG-SS-04	16- jul - 1992		UNK641	0.629	S	UGG		LM27	
BKG-SS-04	16- jul - 1992		UNK649	0.314	S	UGG		LM27	
BKG-SS-04	16- jul - 1992		UNK650	1.050	S	UGG	TRG	LM27	
BKG-SS-04	16- jul - 1992		UNK651	0.314	S	UGG		LM27	
BKG-SS-04	16- jul - 1992		UNK659	0.314	S	UGG	TRG	LM27	
BKG-SS-04	16- jul - 1992		UNK662	0.839	S	UGG	TRG	LM27	
BKG-SS-04	16- jul - 1992		UNK664	0.314	S	UGG	TRG	LM27	
ss-03	15- jul - 1992		UNK611	0.750	s	UGG			
ss-03	15- jul - 1992		UNK612	0.500	S	UGG	TRH	LM27	
ss-03	15- jul - 1992		UNK613	1.200	S	UGG	TRH	LM27	
ss-03	15- jul - 1992		UNK619	0.500	S	UGG	TRH	LM27	
ss-03	15- jul - 1992		UNK627	0.620	S	UGG	TRH	LM27	
ss-03	15- jul - 1992		UNK630	0.870	S	UGG	TRH	LM27	
ss-03	15- jul - 1992		UNK639	1.200	S	UGG	TRH	LM27	
ss-03	15- jul - 1992		UNK641	0.370	S	UGG	TRH	LM27	
ss-03	15- jul - 1992		UNK648	0.620	s	UGG		LM27	
ss-03	15- jul - 1992		UNK660	0.370	s	UGG		LM27	
ss-04	15- jul - 1992		UNK603	0.639	s	UGG		LM27	
ss-04	15-jul-1992		UNK604	0.900	s	UGG		LM27	
ss-04	15- jul - 1992		UNK610	0.384	s	UGG	TRG	LM27	
ss-04	15- jul - 1992		UNK611	0.512	s	UGG		LM27	
SS-04	15- jul - 1992		UNK611	0.900	s	UGG		LM27	
• •	,	=							

#### Soil Organic Unknowns

					Flag				
Site ID	Sample Date	Depth	Parameter	Value	Code	Units	Lot	Method	Dilution
	·								
ss-04	15 - jul - 1992		UNK612	0.384	S	UGG		LM27	
SS-04	15 - jul <b>-</b> 1992		UNK613	1.300	S	UGG	TRH	LM27	
ss-04	15- jul -1992		UNK621	0.770	S	UGG	TRH	LM27	
SS-04	15 - jul - 1992	0.000	UNK626	1.020	S	UGG	TRG	LM27	
ss-04	15- jul - 1992		UNK630	1.300	S	UGG	TRH	LM27	
ss-04	15- jul - 1992		UNK638	1.280	S	UGG	TRG	LM27	
ss-04	15 - jul - 1992		UNK638	0.640	S	UGG	TRH	LM27	
ss-04	15 - jul - 1992	0.000	UNK640	0.384	S	UGG		LM27	
ss-04	15- jul <b>- 19</b> 92	0.000	UNK641	1.020	S	UGG	TRG	LM27	
<b>\$\$-04</b>	15 - jul - 1992	0.000	UNK642	2.600	S	UGG	TRH	LM27	
SS-04	15 - jul - 1992	0.000	UNK643	0.900	S	UGG	TRH	LM27	
ss-04	15- jul - 1992	0.000	UNK648	0.520	S	UGG	TRH	LM27	
ss-04	15- jul - 1992	0.000	UNK649	0.639	S	UGG	TRG	LM27	
SS-04	15- jul - 1992	0.000	UNK650	0.384	S	UGG	TRG	LM27	
SS-04	15 - jul - 1992	0.000	UNK650	1.000	S	UGG	TRH	LM27	
ss-05	15 - jul - 1992	0.000	UNK611	1.200	· <b>S</b> -	UGG	TRH	LM27	
SS-05	15- jul - 1992	0.000	UNK612	0.770	S	UGG	TRH	LM27	
SS-05	15 - jul - 1992	0.000	UNK627	2.600	S	UGG	TRH	LM27	
SS-05	15 - jul - 1992	0.000	UNK630	0.640	S	UGG	TRH	LM27	
ss-05	15 - jul - 1992		UNK634	0.380	S	UGG	TRH	LM27	
ss-05	15- jul - 1992		UNK635	0.260	S	UGG	TRH	LM27	
ss-05	15- jul - 1992		UNK639	0.510	S	UGG	TRH	LM27	
ss-05	15- jul - 1992		UNK640	0.510	S	UGG	TRH	LM27	
ss-05	15- jul - 1992		UNK648	0.900	<b>S</b> .	UGG	TRH	LM27	
ss-05	15- jul - 1992		UNK659	0.380	S	UGG	TRH	LM27	
ss-06	15- jul <i>-</i> 1992		C16A	2.500	S	UGG	TRH	LM27	•
ss-06	15- jul-1992		UNK621	0.620	S	UGG	TRH	LM27	
ss-06	15- jul - 1992		UNK622	0.620	S	UGG	TRH	LM27	
ss-06	15- jul - 1992		UNK630	2.500	S	UGG	TRH	LM27	•
ss-06	15- jul - 1992		UNK633	2.500	S	UGG	TRH	LM27	
ss-06	15- jul - 1992		UNK638	0.620	S	UGG	TRH	LM27	
ss-rá	15- jul - 1992		UNK642	1.200	S	UGG	TRH	LM27	
ss-06	15- jul - 1992		UNK650	0.990	S	UGG	TRH	LM27	
ss-06	15- jul - 1992		UNK651	1.200	S	UGG	TRH	LM27	
SS-06	15- jul - 1992		UNK660	0.620	S	UGG	TRH	LM27	
SS-07	15- jul - 1992		UNK611	0.530	S	UGG	TRH	LM27	
SS-07	15- jul - 1992		UNK613	1.300	S	UGG	TRH	LM27	
SS-07	15 - iul - 1992		UNK621	0.660	S	UGG	TRH	LM27	
SS-07	15 - jul - 1992		UNK630	1.300	S	UGG	TRH	LM27 .	
SS-07	15- jul - 1992		UNK633	2.600	S	UGG	TRH	LM27	
ss-07	15- jul - 1992		UNK638	0.660	s	UGG	TRH	LM27	
SS-07	15 - jul - 1992		UNK642	0.390	S	UGG	TRH	LM27	
SS-07	15 - jul - 1992		UNK650	0.790	S	UGG	TRH	LM27	
SS-07	15 - jul - 1992		UNK651	1.300	S	UGG	TRH	LM27	
SS-07	15-jul-1992		UNK655	0.660	S	UGG	TRH	LM27	
SS-07	15-jul-1992		UNK520	0.230	S	UGG	TRH	LM27	
ss-08	15- jul - 1992		UNK543	0.230	S	UGG	TRH	LM27	
\$\$-08	15- jul - 1992		UNK595	0.230	s	UGG	TRH	LM27	
ss-08	15- jul - 1992		UNK613	1.200	S	UGG	TRH	LM27	
SS-08	15-jul-1992		UNK621	0.230	S	UGG	TRH	LM27	
ss-08	15-jul-1992 15-jul-1992		UNK622	0.350	S	UGG		LM27	
			UNK630	0.350	S	UGG		LM27	
SS-08	15-jul-1992			0.460	S	UGG	TRH	LM27	
ss-08	15- jul -1992		UNK633	0.350	S	UGG	TRH	LM27	
ss-08	15- jul - 1992		UNK638	0.350	S	UGG		LM27	
ss-08	15- jul - 1992	0.000	UNK650	0.65.0	3	odd	ı IVII	L1141	

#### Soil Organic Unknowns

Level 3 Data									
					Flag				
Site ID	Sample Date	Depth	Parameter	Value	Code	Units	Lot	Method	Dilution
				0.530	s	UGG	TRH	LM27	
ss-09	15- jul - 1992		UNK543	0.520			TRH	LM27	
ss-09	15- jul - 1992		UNK585	0.520	S	UGG			
ss-09	15 - jul - 1992	0.000	UNK593	1.000	S	UGG	TRH		
ss-09	15- jul - 1992	0.000	UNK595	0.620	S	UGG	TRH	LM27	
ss-09	15 - jul - 1992	0.000	UNK611	1.000	s	UGG	TRH	LM27	
ss-09	15 - jul - 1992	0.000	UNK627	2.100	S	UGG	TRH	LM27	
ss-09	15 - jul - 1992		UNK635	0.720	S	UGG	TRH	LM27	
ss-09	15- jul - 1992		UNK641	0.930	S	UGG	TRH	LM27	
ss-09	15-jul-1992		UNK649	0.930	S	UGG	TRH	LM27	
ss-09	15- jul - 1992		UNK670	0.520	S	UGG	TRH	LM27	
ss-10	15- jul - 1992		UNK551	0.310	\$	UGG	TRH	LM27	
SS-10	15 - jul - 1992		UNK611	0.210	s	UGG	TRH	LM27	
	15- jul - 1992		UNK612	0.720	s	UGG	TRH	LM27	
SS-10			UNK627	1.000	s	UGG	TRH	LM27	
ss-10	15-jul-1992			0.820	s	UGG	TRH	LM27	
ss-10	15-jul-1992		UNK630	0.310	S	UGG	TRH	LM27	
ss-10	15- jul -1992		UNK635	0.620	s	UGG	TRH	LM27	
ss-10	15- jul - 1992		UNK640		S	UGG	TRH	LM27	
SS-10	15- jul - 1992		UNK648	0.820			TRH	LM27	
SS-10	15- jul - 1992		UNK660	0.410	S	UGG			
SS-10	15- jul - 1992	0.000	UNK664	0.210	S	UGG	TRH	LM27	
ss-11	15- jul - 1992	0.000	UNK593	0.210	s	UGG	TRH		
ss-11	15- jul - 1992	0.000	UNK595	0.320	s	UGG	TRH		
SS-11	15- jul - 1992	0.000	UNK611	0.530	s	UGG	TRH		
ss-11	15-jul-1992	0.000	UNK627	0.320	S	UGG	TRH		
\$S-11	15 - jul - 1992		UNK632	0.210	S	UGG	TRH	LM27	
ss-11	15- jul - 1992		UNK635	0.530	S	UGG	TRH	LM27	
ss-11	15- jul - 1992		UNK639	0.640	S	UGG	TRH	LM27	
ss-11	15-jul-1992		UNK641	0.950	S	UGG	TRH	LM27	
ss-11	15- jul - 1992		UNK646	0.320	S	UGG	TRH	LM27	
SS-11	15- jul - 1992		UNK648	0.740	S	UGG	TRH	LM27	
ss-12	15- jul - 1992		UNK520	0.320	S	UGG	TRH	LM27	
SS-12	15- jul - 1992		UNK520	0.210	、 S	UGG	TRH	LM27	
SS-12	15 - jul - 1992		UNK523	0.320	s	UGG	TRH	LM27	
SS-12	15 - jul - 1992		UNK523	0.210	s	UGG	TRH	LM27	
\$5-12	15- jul-1992		UNK524	0.320	s	UGG	TRH	LM27	
	15- jul-1992		UNK526	0.210	s	UGG	TRH	LM27	
SS-12			UNK529	0.210	s	UGG	TRH	LM27	
SS-12	15- jul - 1992			0.210	S	UGG		LM27	
SS-12	15- jul - 1992		UNK543 UNK544	0.210	S	UGG	TRH	LM27	
ss-12	15- jul - 1992			0.210	S	UGG	TRH	LM27	
ss-12	15- jul - 1992	A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR	UNK569		S	UGG	TRH	LM27	
ss-12	15 - jul - 1992		UNK572	0.320			TRH	LM27	
ss-12	15 - jul - 1992		UNK573	0.210	S	UGG			
\$S-12	15 - jul - 1992		UNK581	0.210	S	UGG	TRH	LM27	
ss-12	15 - jul - 1992	0.000	UNK584	0.320	S	UGG	TRH	LM27	
ss-12	15 - jul - 1992	0.000	UNK593	0.210	S	UGG	TRH	LM27	
ss-12	15- jul - 1992	0.000	UNK593	0.430	S	UGG	TRH	LM27	
ss-12	15 - jul - 1992	0.000	UNK595	0.210	S	UGG	TRH	LM27	
ss-12	15- jul - 1992	0.000	UNK595	0.530	S	UGG	TRH	LM27	
SS-12	15- jul - 1992		UNK602	0.210	S	UGG	TRH	LM27	
ss-12	15- jul - 1992		UNK612	0.320	s	UGG	TRH	LM27	
SS-13	15- jul - 1992		UNK551	3.200	s	UGG	TRH	LM27	
SS-13	15- jul - 1992		UNK575	1.000	s	UGG	TRH	LM27	
SS-13	15- jul - 1992		UNK613	2.100	s	UGG	TRH		
	15- jul - 1992		UNK622	0.530	S	UGG	TRH		
SS-13			UNK630	2.100	S	UGG		LM27	
SS-13	15- jul - 1992	0.000	OLOJO	2.100	-				

#### Soil Organic Unknowns

			۲,	evet J bata	Class				
Cita ID	Sample Date	Donth	Parameter	Value	Flag Code	Units	Lot	Method	Dilution
Site ID	Sample vale	рерии	rai allietei	Vatue	0000				
ss-13	15- jul <b>- 199</b> 2	0.000	UNK638	0.740	s	UGG	TRH	LM27	
SS-13	15- jul - 1992		UNK642	. 0.740	<b>S</b> .	UGG	TRH	LM27	
ss-13	15- jul - 1992		UNK643	2.100	S	UGG	TRH	LM27	
SS-13	15- jul - 1992		UNK650	2.100	S	UGG	TRH	LM27	
SS-13	15- jul - 1992		UNK651	0.740	S	UGG	TRH	LM27	
SS-14	15- jul - 1992		UNK595	0.630	S	UGG	TRH	LM27	
SS-14	15- jul - 1992		UNK611	0.950	S	UGG	TRH	LM27	
SS-14	15- jul - 1992		UNK627	1.100	S	UGG	TRH	LM27	
SS-14 SS-14	15- jul - 1992		UNK632	0.420	S	UGG	TRH	LM27	
SS-14 SS-14	15- jul - 1992		UNK635	0.840	S	UGG	TRH	LM27	
SS-14 SS-14	15- jul - 1992		UNK638	0.420	S	UGG	TRH	LM27	
SS-14 SS-14	15- jul-1992		UNK641	1.100	S	UGG	TRH	LM27	
	15- jul - 1992		UNK649	1.100	S	UGG	TRH	LM27	
SS-14	15- jul - 1992		UNK668	0.530	S	UGG	TRH	LM27	
SS-14	15- jul - 1992 15- jul - 1992		UNK669	0.420	S	UGG	TRH	LM27	
SS-14	•		UNK523	0.210	s	UGG	TRH	LM27	
SS-15	15- jul-1992			0.210	S	UGG	TRH	LM27	
SS-15	15- jul - 1992		UNK570	0.210	S	UGG	TRH	LM27	
SS-15	15- jul - 1992		UNK593	0.320	S	UGG	TRH	LM27	
ss-15	15- jul - 1992		UNK595	1.100	S	UGG	TRH	LM27	
SS-15	15-jul-1992		UNK627	0.210	S	UGG	TRH	LM27	
SS-15	15- jul -1992		UNK632	0.530	S	UGG	TRH	LM27	
SS-15	15- jul - 1992		UNK635		S	UGG	TRH	LM27	
SS-15	15- jul - 1992		UNK640	0.850 0.320	S	UGG	TRH	LM27	
SS-15	15- jul - 1992		UNK646	0.530	S	UGG	TRH	LM27	-
SS-15	15- jul -1992		UNK648			UGG	TRH	LM27	
ss-16	15- jul -1992		C16A	0.850	s s	UGG	TRH	LM27	
ss-16	15- jul - 1992		UNK550	1.100		UGG		LM27	
ss-16	15- jul -1992		UNK595	0.320	S		TRH	LM27	
ss-16	15- jul -1992		UNK630	0.850	S	UGG		LM27	
ss-16	15- jul - 1992		UNK633	1.100	S	UGG	TRH		
SS-16	15- jul <b>-</b> 1992		UNK635	0.320	S	UGG	TRH	LM27	
ss-16	15 - jul - 1992		UNK638	0.640	S	UGG	TRH	LM27	
SS-16	15 - jul - 1992		UNK650	1.100	S	UGG	TRH	LM27	
ss-16	15- jul <b>- 199</b> 2		UNK651	2.100	S	UGG	TRH	LM27	
ss-16	15 - jul - 1992		UNK660	0.530	S	UGG	TRH	LM27	
SS-17	16- jul <b>-</b> 1992		UNK611	2.070	S	UGG	TRG	LM27	
SS-17	16- jul - 1992	0.000	UNK619	7.260	S	UGG	TRG	LM27	
SS-17	16- jul <b>-</b> 1992	0.000	UNK630	2.070	S	UGG		LM27	
ss-17	16- jul - 1992		UNK631	2.070	S	UGG	TRG	LM27	
SS-17	16- jul <i>-</i> 1992		UNK632	1.040	S	UGG	TRG	LM27	
ss-17	16- jul - 1992		UNK633	2.070	S	UGG	TRG	LM27	
ss-17	16- jul - 1992		UNK634	1.040	S	UGG	TRG	LM27	
SS-17	16- jul - 1992		UNK635	1.040	S	UGG	TRG	LM27	
ss-17	16- jul <b>- 199</b> 2	0.000	UNK640	2.070	S	UGG		LM27	
ss-17	16- jul - 1992	0.000	UNK649	2.070	S	UGG		LM27	
ss-18	16- jul - 1992	0.000	UNK551	2.070	S	UGG		LM27	
SS-18	16- jul <b>- 199</b> 2	0.000	UNK605	0.622	S	UGG	TRG	LM27	
ss-18	16- jul - 1992		UNK611	0.415	S	UGG	TRG	LM27	
ss-18	16- jul - 1992		UNK626	3.110	S	UGG	TRG	LM27	
SS-18	16- jul - 1992		UNK636	0.519	s	UGG	TRG	LM27	
SS-18	16- jul - 1992		UNK640	0.415	S	UGG	TRG	LM27	
ss-18	16- jul - 1992		UNK649	0.519	S	UGG	TRG	LM27	
ss-18	16- jul - 1992		UNK650	0.519	S .	UGG		LM27	
SS-18	16- jul - 1992		UNK662	0.311	S	UGG	TRG	LM27	
SS-18	16- jul - 1992		UNK667	0.415	s	UGG	TRG	LM27	
30 10	,								

#### Soil Organic Unknowns

					Flag				
Site ID	Sample Date	Depth	Parameter	Value	Code	Units	Lot	Method	Dilution
SS-19.	16- jul - 1992	0.000	UNK538	0.309	s	UGG	TRG	LM27	
ss-19	16- jul - 1992	0.000	UNK550	2.060	S	UGG	TRG	LM27	
SS-19	-	0.000	UNK611	0.825	S	UGG	TRG	LM27	
SS-19	16- jul - 1992	0.000	UNK626	1.030	S	UGG		LM27	
SS-19	16- jul - 1992	0.000	UNK629	1.030	S	UGG		LM27	
SS-19	16- jul - 1992	0.000	UNK649	0.206	S	UGG		LM27	
SS-19	16- jul - 1992	0.000	UNK650	0.928	S	UGG	TRG	LM27	
SS-19	16- jul - 1992	0.000	UNK655	0.309	S	UGG	TRG		
SS-19	16-jul-1992	0.000	UNK664	0.206	S	UGG	TRG		
ss-19	16- jul - 1992	0.000	UNK667	0.412	S	UGG	TRG	LM27	
ss-20	16- jul - 1992	0.000	UNK522	0.103	S	UGG	TRG		
ss-20	16- jul - 1992	0.000	UNK537	0.309	S	UGG	TRG	LM27	
ss-20	16- jul - 1992	0.000	UNK551	2.060	S	UGG	TRG	LM27	
ss-20	16-jul-1992	0.000	UNK611	0.206	S	UGG	TRG	LM27	
ss-20	16- jul - 1992	0.000	UNK634	0.206	S	UGG	TRG	LM27	
ss-20	16- jul - 1992	0.000	UNK639	0.206	S	UGG	TRG	LM27	
ss-20	16- jul - 1992	0.000	UNK641	0.515	S	UGG	TRG	LM27	
ss-20	16- jul - 1992	0.000	UNK649	0.206	S	UGG	TRG	LM27	
ss-20	16- jul - 1992	0.000	UNK650	0.722	S	UGG	TRG	LM27	•
ss-20	16- jul - 1992	0.000	UNK662	0.206	S	UGG	TRG	LM27	
SS-21	16- jul - 1992	0.000	UNK593	0.626	S	UGG	TRG	LM27	
SS-21	16- jul - 1992	0.000	UNK595	1.040	S	UGG	TRG	LM27	
ss-21	16- jul - 1992	0.000	UNK611	0.521	S	UGG	TRG	LM27	
ss-21	16- jul - 1992	0.000	UNK626	1.040	S	UGG	TRG	LM27	
SS-21	16- jul - 1992	0.000	UNK634	0.938	S	UGG	TRG	LM27	
ss-21	16- jul - 1992	0.000	UNK640	1.040	S	UGG		LM27	
ss-21	16- jul - 1992	0.000	UNK641	0.521	S	UGG	TRG	LM27	
SS-21	16- jul - 1992	0.000	UNK649	2.090	S	UGG	TRG	LM27	
ss-21	16- jul - 1992	0.000	UNK650	0.834	S	UGG	TRG	LM27	
ss-21	16- jul - 1992	0.000	UNK662	1.040	S	UGG	TRG	LM27	
ss-22	16- jul - 1992	0.000	UNK526	0.309	S	UGG	TRG	LM27	
ss-22	16- jul - 1992	0.000	UNK538	0.721	S	UGG	TRG	LM27	
ss-22	16-jul-1 <b>99</b> 2	0.000	UNK551	0.721	S	UGG	TRG	LM27	
\$\$-22	16- jul <b>- 199</b> 2	0.000	UNK606	0.309	S	UGG	TRG	LM27	
ss-22	16- jul - 1992	0.000	UNK611	0.309	S	UGG	TRG	LM27	
ss-22	16- jul - 1992	0.000	UNK626	1.030	S	UGG	TRG	LM27	
ss-22	16- jul - 1992		UNK634	0.309	S	UGG	TRG	LM27	
ss-22	16-jul-1992	0.000	UNK641	0.618	S	UGG	TRG	LM27	
ss-22	16- jul -1992		UNK649	0.721	S	UGG	TRG	LM27	
ss-22	16- jul - 1992	0.000	UNK662	0.412	S	UGG	TRG	LM27	

G-5 Transformer Oil Data

# Transformer Oil

						evel 3 Data			Flag				
Site ID	Sample Date	Depth	Paramet	er		· v	al	ue	Code	Units	Lot	Method	Dilution
	<b>-</b>												
01-01	08-oct-1991	0.000	PCB016		1016			5.000	R	UGG		99	1.000
01-01	08-oct-1991	0.000	PCB221		1221			5.000	R	UGG		99	1.000
01-01	08-oct-1991	0.000	PCB232		1232			5.000	R	UGG	RTZ		1.000
01-01	08-oct-1991	0.000	PCB242		1242			5.000	R	UGG	RTZ	99	1.000
01-01	08-oct-1991	0.000	PCB248		1248			5.000	R	UGG	RTZ	99	1.000
01-01	08-oct-1991	0.000	PCB254		1254			5.000	R	UGG	RTZ		1.000
01-01	08-oct-1991	0.000	PCB260		1260			5.000	R	UGG	RTZ	99	1.000
02-01	08-oct-1991	0.000	PCB016		1016			5.000	R	UGG	RTZ		1.000
02-01	08-oct-1991	0.000	PCB016		1016			5.000	R	UGG	RTZ RTZ	99 99	1.000
02-01	08-oct-1991	0.000	PCB221		1221			5.000	R	UGG	RTZ		1.000 1.000
02-01	08-oct-1991	0.000	PCB221		1221			5.000	R	UGG		99	
02-01	08-oct-1991	0.000	PCB232		1232			5.000	R	UGG	RTZ RTZ	99	1.000 1.000
02-01	08-oct-1991	0.000	PCB232		1232			5.000	R	UGG	RTZ	99	1.000
02-01	08-oct-1991	0.000	PCB242		1242			5.000	R	UGG	RTZ	99	1.000
02-01	08-oct-1991	0.000	PCB242		1242			5.000	R	UGG	RTZ	99	1.000
02-01	08-oct-1991	0.000	PCB248		1248			5.000	R	UGG		99	
02-01	08-oct-1991	0.000	PCB248		1248			5.000	R	UGG	RTZ	99	1.000 1.000
02-01	08-oct-1991	0.000	PCB254		1254			5.000	R	UGG	RTZ	<b>3</b> 3.	
02-01	08-oct-1991	0.000	PCB254		1254			5.000	R	UGG	RTZ RTZ	99	1.000 1.000
02-01	08-oct-1991	0.000	PCB260		1260			5.000	R	UGG	RTZ	99	1.000
02-01	08-oct-1991	0.000	PCB260		1260			5.000	R	UGG	RTY	99	1.000
03-01	08-oct-1991	0.000	PCB016		1016			5.000	R	UGG	RTY	99	1.000
03-01	08-oct-1991	0.000	PCB221		1221			5.000	R	UGG UGG	RTY	99	1.000
03-01	08-oct-1991	0.000	PCB232		1232			5.000	R R	UGG	RTY	99	1.000
03-01	08-oct-1991	0.000	PCB242		1242			5.000 5.000	R	UGG	RTY	99	1.000
03-01	08-oct-1991	0.000	PCB248		1248			5.000	R	UGG	RTY	99	1.000
03-01	08-oct-1991	0.000	PCB254		1254					UGG	RTY	99	1.000
03-01	08-oct-1991	0.000	PCB260		1260			5.000 5.000	R R	UGG	RTY	99	1.000
03-02	08-oct-1991	0.000	PCB016		1016			5.000	R	UGG	RTY	99	1.000
03-02	08-oct-1991		PCB221		1221 1232			5.000	R	UGG	RTY	99	1.000
03-02	08-oct-1991	0.000	PCB232		1242			5.000	R	UGG	RTY	99	1.000
03-02	08-oct-1991	0.000	PCB242		1242			5.000	R	UGG	RTY	99	1.000
03-02	08-oct-1991	0.000	PCB248 PCB254		1254			5.000	R	UGG	RTY	99	1.000
03-02	08-oct-1991	0.000			1260			5.000	R	UGG	RTY	99	1.000
03-02	08-oct-1991	0.000	PCB260 PCB016		1016			5.000	R	UGG	RTY	99	1.000
03-03	08-oct-1991	0.000	PCB010		1221			5.000	R	UGG	RTY	99	1.000
03-03	08-oct-1991	0.000 0.000	PCB231		1232			5.000	R	UGG	RTY		1.000
03-03 03-03	08-oct-1991 08-oct-1991	0.000	PCB232		1242			5.000	R	UGG	RTY	99	1.000
03-03	08-oct-1991		PCB248		1248			5.000	R	UGG	RTY	99	1.000
03-03	08-oct-1991		PCB254		1254			5.000	R	UGG	RTY	99	1.000
03-03	08-oct-1991		PCB260		1260			5.000	R	UGG	RTY	99	1.000
04-01	07-oct-1991		PCB016		1016			5.100	R	UGG	RTY	99 .	1.000
04-01	07-oct-1991		PCB221		1221			5.100	R	UGG	RTY	99	1.000
04-01	07-oct-1991		PCB232		1232			5.100	R	UGG -	RTY	99	1.000
04-01	07-oct-1991		PCB242		1242			5.100	R	UGG	RTY	99	1.000
04-01	07-oct-1991		PCB248		1248			5.100	R	UGG	RTY	99	1.000
04-01	07-oct-1991	0.000	PCB254		1254			5.100	R	UGG	RTY	99	1.000
04-01	07-oct-1991		PCB254		1260			5.100	R	UGG	RTY	99	1.000
06-01	07-oct-1991		PCB200		1016			5.000	R	UGG	RTY	99	1.000
06-01	07-oct-1991		PCB010		1221			5.000	R	UGG	RTY	99	1.000
06-01	07-oct-1991		PCB232		1232			5.000	R	UGG	RTY	99	1.000
06-01	07-oct-1991		PCB242		1242			5.000	R	UGG	RTY	99	1.000
06-01	07-oct-1991		PCB248		1248			5.000	R	UGG	RTY	99	1.000
06-01	07-oct-1991		PCB254		1254			5.000	R	UGG	RTY		1.000
00-01	01-061-1991	3.000	F 60634	1 60	12.54	,	-	2.000	.,	544			

# Transformer Oil

									Eloa				
	Site ID	Sample Date	Depth	Paramet	er		Va	lue	Flag Code	Units	Lot	Method	Dilution
	06-01	07-oct-1991	0.000	PCB260	РСВ	1260	ND	5.000	R	UGG	RTY	99	1.000
1	06-02	07-oct-1991	0.000	PCB016	PCB	1016	ND	5.000	R	UGG	RTY	99	1.000
	06-02	07-oct-1991	0.000	PCB221		1221		5.000	R	UGG	RTY	99	1.000
1	06-02	07-oct-1991	0.000	PCB232		1232	ND	5.000	R	UGG	RTY	99	1.000
	06-02	07-oct-1991	0.000	PCB242		1242		5.000	R	UGG	RTY	99	1.000
	06-02	07-oct-1991	0.000	PCB248		1248		5.000	R	UGG	RTY	99	1.000
i	06-02	07-oct-1991	0.000	PCB254		1254		5.000	R	UGG	RTY	99	1.000
,	06-02	07-oct-1991	0.000	PCB260		1260		5.000	R	UGG	RTY	99	1.000
	06-03	07-oct-1991	0.000	PCB016	PCB	1016	ND	5.150	R	UGG	RTY	99	1.000
}	06-03	07-oct-1991	0.000	PCB221		1221	ND	5.150	R	UGG	RTY	99	1.000
1	06-03	07-oct-1991	0.000	PCB232		1232	ND	5.150	R	UGG	RTY	99	1.000
	06-03	07-oct-1991	0.000	PCB242	РСВ	1242		5.150	R	UGG	RTY	99	1.000
	06-03	07-oct-1991	0.000	PCB248	PCB	1248	ND	5.150	R	UGG	RTY	99	1.000
,	06-03	07-oct-1991	0.000	PCB254	PCB	1254	ND	5.150	R	UGG	RTY	99	1.000
	06-03	07-oct-1991	0.000	PCB260	PCB	1260	ND	5.150	R	UGG	RTY	99	1.000
	07-01	07-oct-1991	0.000	PCB016	PCB	1016	ND	5.000	R	UGG	RTY	99	1.000
)	07-01	07-oct-1991	0.000	PCB221	PCB	1221	ND	5.000	R	UGG	RTY	99	1.000
	07-01	07-oct-1991	0.000	PCB232	PCB	1232	ND	5.000	R	UGG	RTY	99	1.000
	07-01	07-oct-1991	0.000	PCB242	PCB	1242	ND	5.000	R	UGG	RTY	99	1.000
	07-01	07-oct-1991	0.000	PCB248	PCB	1248	ND	5.000	R	UGG	RTY	99	1.000
1	07-01	07-oct-1991	0.000	PCB254	PCB	1254	ND	5.000	R	UGG	RTY	99	1.000
	07-01	07-oct-1991	0.000	PCB260	PCB	1260	ND	5.000	R	UGG	RTY	99	1.000
	08-01	07-oct-1991	0.000	PCB016	PCB	1016	ND	5.000	R	UGG	RTX	99	1.000
,	08-01	07-oct-1991	0.000	PCB221	PCB	1221	ND	5.000	R	UGG	RTX	99	1.000
	08-01	07-oct-1991	0.000	PCB232	PCB	1232	ND	5.000	R	UGG	RTX	99	1.000
	08-01	07-oct-1991	0.000	PCB242	PCB	1242		5.000	R _.	UGG	RTX	99	1.000
	08-01	07-oct-1991	0.000	PCB248	PCB	1248		5.000	R	UGG	RTX	99	1.000
	08-01	07-oct-1991	0.000	PCB254	PCB	1254		5.000	R	UGG	RTX	99	1.000
	08-01	07-oct-1991	0.000	PCB260		1260		5.000	R	UGG	RTX	99	1.000
	09-01	07-oct-1991	0.000	PCB016		1016		5.000	R	UGG	RTX	99	1.000
	09-01	07-oct-1991	0.000	PCB221		1221		5.000	R	UGG	RTX	99	1.000
1	09-01	07-oct-1991	0.000	PCB232		1232		5.000	R	UGG	RTX	99	1.000
	09-01	07-oct-1991	0.000	PCB242		1242		5.000	R	UGG	RTX	99	1.000
	09-01	07-oct-1991	0.000	PCB248		1248		5.000	R	UGG	RTX	99	1.000
	09-01	07-oct-1991	0.000	PCB254		1254		5.000	R	UGG	RTX	99	1.000
	09-01	07-oct-1991	0.000	PCB260		1260		5.000	R	UGG	RTX	99	1.000
	19-01	07-oct-1991	0.000	PCB016		1016		5.050	R	UGG	RTX	99	1.000
	10-01	07-oct-1991	0.000	PCB016		1016		5.000	R	UGG	RTX		1.000
	10-01	07-oct-1991	0.000	PCB221		1221		5.050	R	UGG		99	1.000
!	10-01	07-oct-1991	0.000	PCB221		1221		5.000	R	UGG	RTX		1.000
	10-01	07-oct-1991	0.000	PCB232		1232		5.050	R	UGG	RTX		1.000
	10-01	07-oct-1991	0.000	PCB232 PCB242		1232		5.000	R	UGG	RTX RTX		1.000 1.000
	10-01	07-oct-1991	0.000			1242		5.050	R	UGG	RTX		1.000
	10-01	07-oct-1991		PCB242		1242		5.000 5.050	R	UGG UGG	RTX		1.000
	10-01	07-oct-1991	0.000	PCB248 PCB248		1248 1248		5.000	R R	UGG	RTX		1.000
	10-01	07-oct-1991	0.000	PCB254		1254		5.050	R	UGG	RTX		1.000
	10-01	07-oct-1991	0.000	PCB254		1254		5.000	R	UGG	RTX		1.000
	10-01 10-01	07-oct-1991 07-oct-1991	0.000 0.000	PCB254		1260		5.050	R	UGG	RTX		1.000
	10-01	07-0ct-1991 07-oct-1991	0.000	PCB260		1260		5.000	R	UGG	RTX		1.000
	10-01	07-0ct-1991 07-oct-1991	0.000	PCB200		1016		5.000	R	UGG	RTX		1.000
	10-02	07-0ct-1991 07-oct-1991	0.000	PCB221		1221		5.000	R	UGG	RTX		1.000
	10-02	07-oct-1991	0.000	PCB232		1232		5.000	R	UGG	RTX		1.000
	10-02	07-0ct-1991 07-oct-1991		PCB232		1242		5.000	R	UGG	RTX		1.000
	10-02	07-oct-1991		PCB242		1248		5.000	R	UGG	RTX		1.000
	10-02	01-061-1331	0.000	FU0240	rub	1240	NU	, ,.000	N.	Juu	K I A	17	1.000

#### Transformer Oil

						Level 3 Data							
	Site ID	Sample Date	Depth	Paramet	er		Va	lue	Flag Code	Units	Lot	Method	Dilution
	10-02	07-oct-1991	0.000	PCB254	PCB	1254	ND	5.000	R	UGG	RTX	99	1.000
)	10-02	07-oct-1991	0.000	PCB260	PCB	1260	ND	5.000	R	UGG	RTX	99	1.000
	10-03	07-oct-1991	0.000	PCB016	PCB	1016	ND	5.050	Ŕ	UGG	RTY	99	1.000
)	10-03	07-oct-1991	0.000	PCB221	PCB	1221	ND	5.050	R	UGG	RTY	99	1.000
	10-03	07-oct-1991	0.000	PCB232	PCB	1232	ND	5.050	R	UGG	RTY	99	1.000
í	10-03	07-oct-1991	0.000	PCB242	PCB	1242	ND	5.050	R	UGG	RTY	99	1.000
	10-03	07-oct-1991	0.000	PCB248	PCB	1248	ND	5.050	R	UGG	RTY	99	1.000
	10-03	07-oct-1991	0.000	PCB254	PCB	1254	ND	5.050	R	UGG	RTY	99	1.000
ı	10-03	07-oct-1991	0.000	PCB260	PCB	1260	ND	5.050	R	UGG	RTY	99	1.000
1	11-01	07-oct-1991	0.000	PCB016	PCB	1016		5.000	R	UGG	RTX	99	1.000
	11-01	07-oct-1991	0.000	PCB221	PCB	1221	ND	5.000	R	UGG	RTX	99	1.000
	11-01	07-oct-1991	0.000	PCB232	PCB	1232	ND	5.000	R	UGG	RTX	99	1.000
	11-01	07-oct-1991	0.000	PCB242	PCB	1242	ND	5.000	R	UGG	RTX	99	1.000
1	11-01	07-oct-1991	0.000	PCB248	PCB	1248	ND	5.000	R	UGG	RTX	99	1.000
	11-01	07-oct-1991	0.000	PCB254	PCB	1254	ND	5.000	R	UGG	RTX	99	1.000
	11-01	07-oct-1991	0.000	PCB260	PCB	1260	ND	5.000	R	UGG	RTX	99	1.000
	12-01	07-oct-1991	0.000	PCB016	PCB	1016		5.000	R	UGG	RTX	99	1.000
	12-01	07-oct-1991	0.000	PCB221	PCB	1221		5.000	R	UGG	RTX	99	1.000
	12-01	07-oct-1991	0.000	PCB232	PCB	1232	ND	5.000	R	UGG	RTX	99	1.000
	12-01	07-oct-1991	0.000	PCB242	PCB	1242		5.000	R	UGG	RTX	99	1.000
	12-01	07-oct-1991	0.000	PCB248	PCB	1248			R	UGG	RTX	99	1.000
}	12-01	07-oct-1991	0.000	PCB254	PCB	1254		5.000	R	UGG	RTX	99	1.000
	12-01	07-oct-1991	0.000	PCB260		1260		5.000	R	UGG	RTX	99	1.000
,	13-01	08-oct-1991	0.000	PCB016	PCB	1016		5.000	R	UGG	RTZ	99	1.000
	13-01	08-oct-1991	0.000	PCB221	PCB	1221		5.000	R	UGG	RTZ	99	1.000
	13-01	08-oct-1991	0.000	PCB232	PCB	1232		5.000	R	UGG	RTZ	99	1.000
	13-01	08-oct-1991	0.000	PCB242		1242		5.000	R	UGG	RTZ	99	1.000
	13-01	08-oct-1991	0.000	PCB248		1248		5.000	R	UGG	RTZ	99	1.000
	13-01	08-oct-1991	0.000	PCB254		1254		5.000	R	UGG	RTZ	99	1.000
	13-01	08-oct-1991	0.000	PCB260		1260		5.000	R	UGG	RTZ	99	1.000
1	13-02	08-oct-1991	0.000	PCB016		1016		5.000	R	UGG	RTZ	99	1.000
	13-02	08-oct-1991	0.000	PCB221		1221		5.000	R	UGG	RTZ	99	1.000
,	13-02	08-oct-1991	0.000	PCB232		1232		5.000	R	UGG	RTZ	99	1.000
	13-02	08-oct-1991	0.000	PCB242		1242		5.000	R	UGG	RTZ	99	1.000
	13-02	08-oct-1991	0.000	PCB248		1248		5.000	R	UGG	RTZ	99	1.000
}	13-02	08-oct-1991	0.000	PCB254		1254		5.000	R	UGG	RTZ	99 99	1.000 1.000
	13-02	08-oct-1991	0.000	PCB260		1260		5.000	R	UGG	RTZ RTZ		1.000
	13-03	08-oct-1991	0.000	PCB016		1016		5.000 5.000	R	UGG UGG	RTZ.		1.000
ı,	13-03	08-oct-1991	0.000	PCB221		1221			R ·	UGG		99	1.000
	13-03	08-oct-1991	0.000	PCB232		1232		5.000	R R	UGG	RTZ		1.000
	13-03	08-oct-1991	0.000	PCB242		1242		5.000 5.000	R	UGG		99	1.000
	13-03	08-oct-1991	0.000	PCB248		1248		5.000	R	UGG	RTZ		1.000
	13-03	08-oct-1991	0.000	PCB254		1254 1260		5.000	R	UGG	RTZ		1.000
	13-03	08-oct-1991	0.000	PCB260				5.000	R	UGG	RTX		1.000
	14-01	07-oct-1991	0.000	PCB016		1016		5.000	R	UGG	RTX		1.000
	14-01 14-01	07-oct-1991	0.000 0.000	PCB016 PCB221		1016 1221		5.000	R R	UGG	RTX		1.000
	14-01 14-01	07-oct-1991 07-oct-1991	0.000	PCB221		1221		5.000	R	UGG	RTX		1.000
	14-01 14-01	07-oct-1991 07-oct-1991	0.000	PCB232		1232		5.000	R	UGG	RTX		1.000
		07-oct-1991 07-oct-1991		PCB232		1232		5.000	R	UGG	RTX		1.000
	14-01 14-01	07-0ct-1991 07-oct-1991		PCB232		1242		5.000	R	UGG	RTX		1.000
	14-01 14-01	07-0ct-1991 07-oct-1991	0.000	PCB242		1242		5.000	R	UGG		99	1.000
	14-01 14-01			PCB242		1248		5.000	R	UGG	RTX		1.000
	14-01 14-01	07-oct-1991	0.000	PCB248		1248		5.000	R	UGG	RTX		1.000
ı	14-01 14-01	07-oct-1991		PCB254		1254		5.000	R	UGG	RTX		1.000
	14-01	07-oct-1991	0.000	FUD234	rub	1634	NU		"	044		••	

#### Transformer Oil

Level 3 Data											
							Flag				
Sample Date	Depth	Paramet	er	* .	Va	lue	Code	Units	Lot	Method	Dilution
07-oct-1991	0.000	PCB254	PCB 1254		ND	5.000	R	UGG	RTX	99	1.000
07-oct-1991	0.000	PCB260	PCB 1260		ND	5.000	-R	UGG	RTX	99	1.000
07-oct-1991	0.000	PCB260	PCB 1260		ND	5.000	R	UGG	RTX	99	1.000
08-oct-1991	0.000	PCB016	PCB 1016		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB221	PCB 1221		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB232	PCB 1232		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB242	PCB 1242		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB248	PCB 1248		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB254	PCB 1254		ND	5.000	R ·	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB260	PCB 1260		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB016	PCB 1016	•	ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB221	PCB 1221		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB232	PCB 1232		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB242	PCB 1242		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PC8248	PCB 1248		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB254	PCB 1254		ND	5.000	R	UGG	RTZ	<b>9</b> 9	1.000
08-oct-1991	0.000	PCB260	PCB 1260			210.000	С	UGG	RTZ	99	5.000
08-oct-1991	0.000	PCB016	PCB 1016		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB221	PCB 1221		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB232	PCB 1232		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB242	PCB 1242		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB248	PCB 1248		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB254	PCB 1254		ND	5.000	R	UGG	RTZ	99	1.000
08-oct-1991	0.000	PCB260	PCB 1260			245.000	Ċ	UGG	RTZ	99	5.000
	07-oct-1991 07-oct-1991 07-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991 08-oct-1991	07-oct-1991 0.000 07-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000 08-oct-1991 0.000	07-oct-1991         0.000         PCB254           07-oct-1991         0.000         PCB260           07-oct-1991         0.000         PCB260           08-oct-1991         0.000         PCB016           08-oct-1991         0.000         PCB221           08-oct-1991         0.000         PCB232           08-oct-1991         0.000         PCB242           08-oct-1991         0.000         PCB248           08-oct-1991         0.000         PCB254           08-oct-1991         0.000         PCB260           08-oct-1991         0.000         PCB260           08-oct-1991         0.000         PCB221           08-oct-1991         0.000         PCB221           08-oct-1991         0.000         PCB232           08-oct-1991         0.000         PCB242           08-oct-1991         0.000         PCB254           08-oct-1991         0.000         PCB254           08-oct-1991         0.000         PCB254           08-oct-1991         0.000         PCB254           08-oct-1991         0.000         PCB232           08-oct-1991         0.000         PCB232           08-oct-1991 <td< td=""><td>Sample Date         Depth         Parameter           07-oct-1991         0.000         PCB254         PCB 1254           07-oct-1991         0.000         PCB260         PCB 1260           07-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB016         PCB 1016           08-oct-1991         0.000         PCB221         PCB 1221           08-oct-1991         0.000         PCB232         PCB 1232           08-oct-1991         0.000         PCB242         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1248           08-oct-1991         0.000         PCB254         PCB 1254           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB221         PCB 1221           08-oct-1991         0.000         PCB232         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1248</td><td>Sample Date         Depth         Parameter           07-oct-1991         0.000         PCB254         PCB 1254           07-oct-1991         0.000         PCB260         PCB 1260           07-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB216         PCB 1016           08-oct-1991         0.000         PCB232         PCB 1221           08-oct-1991         0.000         PCB242         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1248           08-oct-1991         0.000         PCB248         PCB 1254           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB232         PCB 1221           08-oct-1991         0.000         PCB232         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1248           08-oct-1991         0.000         PCB248         PCB 1254</td><td>07-oct-1991         0.000         PCB254         PCB 1254         ND           07-oct-1991         0.000         PCB260         PCB 1260         ND           07-oct-1991         0.000         PCB260         PCB 1260         ND           08-oct-1991         0.000         PCB016         PCB 1016         ND           08-oct-1991         0.000         PCB221         PCB 1221         ND           08-oct-1991         0.000         PCB232         PCB 1232         ND           08-oct-1991         0.000         PCB242         PCB 1242         ND           08-oct-1991         0.000         PCB248         PCB 1248         ND           08-oct-1991         0.000         PCB254         PCB 1254         ND           08-oct-1991         0.000         PCB260         PCB 1260         ND           08-oct-1991         0.000         PCB260         PCB 1260         ND           08-oct-1991         0.000         PCB232         PCB 1221         ND           08-oct-1991         0.000         PCB232         PCB 1232         ND           08-oct-1991         0.000         PCB248         PCB 1242         ND           08-oct-1991         0.000         &lt;</td><td>Sample Date         Depth         Parameter         Value           07-oct-1991         0.000         PCB254         PCB 1254         ND 5.000           07-oct-1991         0.000         PCB260         PCB 1260         ND 5.000           07-oct-1991         0.000         PCB260         PCB 1260         ND 5.000           08-oct-1991         0.000         PCB260         PCB 1016         ND 5.000           08-oct-1991         0.000         PCB221         PCB 1221         ND 5.000           08-oct-1991         0.000         PCB232         PCB 1232         ND 5.000           08-oct-1991         0.000         PCB242         PCB 1242         ND 5.000           08-oct-1991         0.000         PCB248         PCB 1248         ND 5.000           08-oct-1991         0.000         PCB248         PCB 1254         ND 5.000           08-oct-1991         0.000         PCB264         PCB 1254         ND 5.000           08-oct-1991         0.000         PCB264         PCB 1260         ND 5.000           08-oct-1991         0.000         PCB254         PCB 1254         ND 5.000           08-oct-1991         0.000         PCB232         PCB 1221         ND 5.000</td><td>  Sample Date   Depth   Parameter   Value   Code    </td><td>  Sample Date   Depth   Parameter   Value   Code   Units    </td><td>  Sample Date   Depth   Parameter   Value   Code   Units   Lot    </td><td>  Sample Date   Depth   Parameter   Value   Code   Units   Lot   Method    </td></td<>	Sample Date         Depth         Parameter           07-oct-1991         0.000         PCB254         PCB 1254           07-oct-1991         0.000         PCB260         PCB 1260           07-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB016         PCB 1016           08-oct-1991         0.000         PCB221         PCB 1221           08-oct-1991         0.000         PCB232         PCB 1232           08-oct-1991         0.000         PCB242         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1248           08-oct-1991         0.000         PCB254         PCB 1254           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB221         PCB 1221           08-oct-1991         0.000         PCB232         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1248	Sample Date         Depth         Parameter           07-oct-1991         0.000         PCB254         PCB 1254           07-oct-1991         0.000         PCB260         PCB 1260           07-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB216         PCB 1016           08-oct-1991         0.000         PCB232         PCB 1221           08-oct-1991         0.000         PCB242         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1248           08-oct-1991         0.000         PCB248         PCB 1254           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB260         PCB 1260           08-oct-1991         0.000         PCB232         PCB 1221           08-oct-1991         0.000         PCB232         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1242           08-oct-1991         0.000         PCB248         PCB 1248           08-oct-1991         0.000         PCB248         PCB 1254	07-oct-1991         0.000         PCB254         PCB 1254         ND           07-oct-1991         0.000         PCB260         PCB 1260         ND           07-oct-1991         0.000         PCB260         PCB 1260         ND           08-oct-1991         0.000         PCB016         PCB 1016         ND           08-oct-1991         0.000         PCB221         PCB 1221         ND           08-oct-1991         0.000         PCB232         PCB 1232         ND           08-oct-1991         0.000         PCB242         PCB 1242         ND           08-oct-1991         0.000         PCB248         PCB 1248         ND           08-oct-1991         0.000         PCB254         PCB 1254         ND           08-oct-1991         0.000         PCB260         PCB 1260         ND           08-oct-1991         0.000         PCB260         PCB 1260         ND           08-oct-1991         0.000         PCB232         PCB 1221         ND           08-oct-1991         0.000         PCB232         PCB 1232         ND           08-oct-1991         0.000         PCB248         PCB 1242         ND           08-oct-1991         0.000         <	Sample Date         Depth         Parameter         Value           07-oct-1991         0.000         PCB254         PCB 1254         ND 5.000           07-oct-1991         0.000         PCB260         PCB 1260         ND 5.000           07-oct-1991         0.000         PCB260         PCB 1260         ND 5.000           08-oct-1991         0.000         PCB260         PCB 1016         ND 5.000           08-oct-1991         0.000         PCB221         PCB 1221         ND 5.000           08-oct-1991         0.000         PCB232         PCB 1232         ND 5.000           08-oct-1991         0.000         PCB242         PCB 1242         ND 5.000           08-oct-1991         0.000         PCB248         PCB 1248         ND 5.000           08-oct-1991         0.000         PCB248         PCB 1254         ND 5.000           08-oct-1991         0.000         PCB264         PCB 1254         ND 5.000           08-oct-1991         0.000         PCB264         PCB 1260         ND 5.000           08-oct-1991         0.000         PCB254         PCB 1254         ND 5.000           08-oct-1991         0.000         PCB232         PCB 1221         ND 5.000	Sample Date   Depth   Parameter   Value   Code	Sample Date   Depth   Parameter   Value   Code   Units	Sample Date   Depth   Parameter   Value   Code   Units   Lot	Sample Date   Depth   Parameter   Value   Code   Units   Lot   Method

G-6 Paint Wipe and Chip Data

Paint Wipe

						Flag				
Site ID	Sample Date	Depth	Paramet	er	Value	Code	Units	Lot	Method	Dilution
11A-001	01-oct-1991	0.000	РВ	LEAD	0.106		UGC2	RTH	99	1.000
12A-001	01-oct-1991	0.000	PB	LEAD	0.086		UGC2	RTH	99	1.000
13A-001	01-oct-1991	0.000	PB	LEAD	0.081		UGC2	RTH	99	1.000
148-001	02-oct-1991	0.000	PB	LEAD	0.014		UGC2	RTH	99	1.000
15A-001	01-oct-1991	0.000	PB	LEAD	0.071		UGC2	RTH	99	1.000
16A-001	02-oct-1991	0.000	PB	LEAD	0.027		UGC2	RTH	99	1.000
17B-001	03-oct-1991	0.000	PB	LEAD	0.056		UGC2	RTH	99	1.000
18C-001	03-oct-1991	0.000	PB	LEAD	0.211		UGC2	RTH	99	1.000
21-001	03-oct-1991	0.000	PB	LEAD	0.018		UGC2	RTH	99	1.000
22-001	03-oct-1991	0.000	₽B	LEAD	0.017		UGC2	RTH	99	1.000
24-001	01-oct-1991	0.000	PB	LEAD	0.037		UGC2	RTH	99	1.000
25-001	01-oct-1991	0.000	PB	LEAD	0.054		UGC2	RTH	99 -	1.000
2B-001	04-oct-1991	0.000	PB	LEAD	0.160		UGC2	RTH	99	1.000
3-001	03-oct-1991	0.000	₽B	LEAD	0.060		UGC2	RTH	99	1.000
31-001	03-oct-1991	0.000	PB	LEAD	0.049		UGC2	RTH	99	1.000
351-001	04-oct-1991	0.000	PB	LEAD	0.004		UGC2	RTH	99	1.000
4-001	04-oct-1991	0.000	PB	LEAD	0.354		UGC2	RTH	99	1.000
49-001	04-oct-1991	0.000	PB	LEAD	0.017		UGC2	RTH	99	1.000
52-001	01-oct-1991	0.000	PB	LEAD	0.020		UGC2	RTH	99	1.000
53-001	05-oct-1991	0.000	PB	LEAD	0.195		UGC2	RTH	99	1.000
56A-001	01-oct-1991	0.000	PB	LEAD	0.017		UGC2	RTH	99	1.000
578-001	02-oct-1991	0.000	PB	LEAD	0.011		UGC2	RTH	99	1.000
59-001	02-oct-1991	0.000	PB	LEAD	0.006		UGC2	RTH	99	1.000
60A-001	05-oct-1991	0.000	₽B	LEAD	0.460		UGC2	RTH	99	1.000
62-001	02-oct-1991	0.000	PB	LEAD	0.020		UGC2	RTH	99	1.000
63-001	02-oct-1991	0.000	PB	LEAD	0.026		UGC2	RTH	99	1.000
658-001	05-oct-1991	0.000	PB	LEAD	0.055		UGC2	RTH	99	1.000
6B-001	02-oct-1991	0.000	PB	LEAD	0.070		UGC2	RTH	99	1.000
7B-001	02-oct-1991	0.000	PB	LEAD	0.006		UGC2	RTH	99	1.000
8A-001	01-oct-1991	0.000	PB	LEAD	0.071		UGC2	RTH	99	1.000
8A-001	01-oct-1991	0.000	PB	LEAD	0.065	D	UGC2	RTH	99	1.000
9A-001	02-oct-1991	0.000	PB	LEAD	0.002		UGC2	RTH	99	1.000

09/18/92

Fort Douglas

Paint Chips

						Flag				
Site ID	Sample Date	Depth	Parame	ter	Value	Code	Units	Lot	Method	Dilution
108-001	01-oct-1991	0.000	РВ	LEAD	360000.000		UGG	RTG	99	100.000
10B-001	01-oct-1991	0.000	PB	LEAD	360000.000	D	UGG	RTG	99	100.000
10B-002	01-oct-1991	0.000	PB	LEAD	520.000		UGG	RTG	99	2.000
19B-001	01-oct-1991	0.000	PB	LEAD	30.000		UGG	RTG	99	2.000
1B-001	03-oct-1991	0.000	PB	LEAD	1320.000		UGG	RTG	99	2.000
20-001	04-oct-1991	0.000	PB	LEAD	82000.000		UGG	RTG	99	2.000
23-001	03-oct-1991	0.000	PB	LEAD	24.000		UGG	RTG	99	2.000
32-001	02-oct-1991	0.000	₽B	LEAD	295000.000		UGG	RTG	99	50.000
350-001	04-oct-1991	0.000	PB	LEAD	150.000		UGG	RTG	99	2.000
37-001	04-oct-1991	0.000	PB	LEAD	90000.000		UGG	RTG	99	2.000
39-004	03-oct-1991	0.000	PB	LEAD	26.000		UGG	RTG	99	2.000
41-001	03-oct-1991	0.000	PB	LEAD	11000.000		UGG	RTG	99	2.000
5-001	04-oct-1991	0.000	PB	LEAD	7000.000		UGG	RTG	99	200.000
54-001	04-oct-1991	0.000	₽B	LEAD	76000.000		UGG	RTG	99	2.000
55-001	04-oct-1991	0.000	PB	LEAD	6800.000		UGG	RTG	99	2.000
56A-002	01-oct-1991	0.000	PB	LEAD	48000.000		UGG	RTG	99	2.000
58A-001	02-oct-1991	0.000	PB ·	LEAD	440.000		UGG	RTG	99	2.000
61-001	03-oct-1991	0.000	PB	LEAD	30000.000		UGG	RTG	99	2.000
64A-001	02-oct-1991	0.000	PB	LEAD	t 400.000		UGG	RTG	99	200.000
66B-001	02-oct-1991	0.000	PB	LEAD	44000.000		UGG	RTG	99	2.000
\$48-001	04-oct-1991	0.000	PB	LEAD	170000.000		UGG	RTG	99	50.000

G-7 Radon Data

#### RADON DATABASE CODES

#### 1. FIELDS:

- a. BLDNUM: Building number (location)
- b. CAN ID: Radon Monitor serial number
- c. DEPL DAT: Deployment (Placement) date
- d. RETR DAT: Retrieval (Removal) date
- e. SB NUMB: Substitution Number; signifies the serial number of a radon monitor which was deployed in order to "substitute" or "replace" a monitor discovered missing at the time of retrieval.
- f. RN PCI L: The dose in picocuries/liter of the Radon monitor in CAN ID.
- g. TOHI: Too High; Yes or No as to whether the dose was 4.0 picocuries/liter or higher.
- h. QATP: QA Sample Type.
- i. DUPESER: Serial number of adjacently placed duplicate.
- j. BCAT: Building category code.
- k. FLNUM: Floor number
- 1. ROOMNUMBR: Room Number and any further location ID or remarks.
- n. USID: User ID Codes (local)

#### 2. Special Codes:

- a. RETR DAT code of 11/11/11 signifies a monitor discovered missing at the time of retrieval.
- b. TOHI: Y(es) or N(o); Code of "X" signifies monitors which were shipped to Terradex and were identified by Terradex as being damaged or having a processing irregularity.
- c. QATP: S SPIKE
  - F FIELD BLANK
  - D DUPLICATE
  - R REPLACEMENT DEPLOYED FOR MISSING MONITOR
  - RD REPLACEMENT & DUPLICATE DEPLOYED FOR MISSING MONITOR & DUPLICATE
  - M MISSING MONITOR
  - DM MISSING MONITOR & DUPLICATE (In a few cases, the Duplicate of the missing monitor was not missing).
  - L LOST DURING PROCESSING; one of 18 monitors which were shipped to Terradex and were not included on any monitoring report (see attached memorandum for record).
- d. BCAT: The Building Category Code differs on the database from the Detector Deployment Data Sheets in order to achieve finer division of

# specific areas:

- 03 WORKPLACE
- 04 OTHER
- 06 DINING FACILITY
- 07 FAMILY HOUSING
- 08 BILLETS
- 09 DAYCARE CENTER
- 10 SCHOOL
- 11 HOSPITAL
- 12 CLINICS (DENTAL, MEDICAL, AND VET)
- 13 BRANCH EXCHANGE (AAFES)
- 14 WAREHOUSE
- 15 SHOPS
- 16 FIRE STATION
- 17 GYM

# . RADON RESULTS

111111111111111111111111111111111111111	<u> </u>	UUU	2,11111
	MAR 1	1 1991	
E	lin		

									۱			-
BLDGNUMB	CAN_ID	DEPL_DAT	RETR_DAT	RN_PCI_L	TOHIGH	QATYPE	DUPESERL	BLDUSECAT	FLOORNUMB	ROOMNUMBR	MONITTYPE	USERID
1	1000050	05/15/00	11/11/11	0.0	м	ş				-	A	
00	1377757	05/15/89 05/15/89	05/16/90	0.2	••	F					A	
0000	1377780	05/15/89	11/11/11		М	s					A	
0000	1377841 1377851	05/15/89	05/15/90	0.2		F		•			A	
	1385967	05/15/09	11/11/11	0.0	М	s					A	
<b>-</b> 000	1385984	05/15/89	11/11/11	0.0	М	s					A	
0000	1385985	05/15/89	05/09/90	0.3		F					A	
000	1385992	05/15/05	05/09/90	0.2		F					A	
000	1386003	05/16/89	11/11/11	0.0	М	S					A	
0000 _0000	1413623	05/16/89	05/15/90	0.2		F					A	
000	1413636	05/16/89	05/14/90	0.2		F					A	
	1413637	05/17/89	11/11/11	0.0	м	s					A	
0000	1413654	05/16/89	11/11/11	0.0	м	s					A	•
0000	1413690	05/17/89	11/11/11	0.0	м	s		•			A	
004	1413611	05/17/89	05/14/90	1.1				07	0	BASEMENT	A	
0004	1413649	05/17/89	05/14/90	1.1				07	0	BASEMENT	A	
±005	1377801	05/15/89	05/14/90	1.3		D	1377816	03	0		A	
005	1377816	05/15/89	05/14/90	1.4		D	1377801	04	0		A	
0005	1377830	05/15/89	11/11/11	0.0	М			03	0		A	
0005	1377833	05/15/89		0.9				03	0 .		A	
005	1377837	05/15/89		1.0				03	0		<b>A</b>	
01A	1413494	05/17/89		2.1		D	1413693	07	0	BASEMENT	A	
001A	1413693			2.0		D	1413494	07	0		A	
001R	1413669			3.6				07	0 .	BASEMENT	A	
01B	G084	06/09/89		4.0	Y			07	0	BASEMENT	С	
0020	1413488			3.5				03	0		A	
_0020	1413662			3.5				03	0		A	
020	1413664		05/30/90	3.2				03	0		A	
021	1383594		05/14/90	0.9				07	0	TOPOF BEAM	A	
0022	1413668		05/30/90	0.7				07	0	BASEMENT	A	
0023	1383602	05/24/89	05/23/90	0.6	;			07	0	STAIRS	A	
0024	1413673	05/22/89	05/30/90	0.8				07	0	BASEMENT	A	
0025	1413660		05/14/90	1.0	1			07	0	BASEMENT	A	
0028	1377813	05/15/89	05/15/90	2.0	)			03	0		A	
002A	1413661	05/18/89	05/30/90	1.1				07	0	BASEMENT	A	
002B	1413663	05/22/89	05/14/90	1.6	5	-		07	0	BASEMENT	A	
002B	G086	06/09/89	06/12/89	1.6	5			07	0	BASEMENT	С	
0031	1413495	05/18/89	05/15/90	2.0	)			03	0		A	
0031	1413501	05/18/89	05/15/90	2.1	L			03	0		A	
0031	1413657	05/18/89	05/15/90	2.4	1			03	0		Α	
0032	1413624	05/16/89	05/15/90	4.5	5 Y			03	0		A	
0032	1413626	05/16/89	05/15/90	4.3	3 Y			03	0		A	
0032	1413627	7 05/16/89	05/15/90	) <b>1.</b> 3	3	D	1413631	03	0		A	
0032	141363	1 05/16/89	9 05/15/90	0 0.9	9	D	1413627	03	0		A	
0032	141364	7 05/16/89	9 05/15/9	0 1.	4			03	0		A	
0032	141365	2 05/16/8	9 05/15/9	0 4.	7 Y			03	0		A	
0035	137784	6 05/15/8	9 05/15/9	0 0.	4			03	1		A	
0035	137785	4 05/15/8	9 05/15/9	0 0.	5			03	1		A	
0039	137775	5 05/15/8	9 11/11/1	1 0.	0 M			04	1		A	
003A	141349	7 05/16/8	9 05/14/9	0 0.	9			07	0	BASEMENT	A	
0048	141362		9 05/15/9	0 0.	8			03	1		A	
0048	141364		9 05/15/9	0 2.	7			03	1		A	
0049	137779		9 11/11/1	.1 0.	0 M	D	1377835		0		A	
0049	137781	.8 05/15/8	9 05/15/9	90 2.	. 4			04	0		A	

age No. 2 3/06/91

5,00,52					moutcu	ONTVDE	DUPESERL	BLDUSECAT	FLOORNUMB	ROOMNUMBR	MONITTYPE	USERID
BLDGNUMB	CAN_ID	DEPL_DAT	RETR_DAT	RN_PCI_L	TORIGR	QAIIFD	DOI DODING					
049	1377835	05/15/89	11/11/11	0.0	M	D	1377791	04	0		A A	
0049	1377843	05/15/89	05/15/90	0.2				04	0		c	
049	G379	06/09/89	06/12/89	0.4				03	0		c	
049	G396	06/09/89	06/12/89	0.5				03	0	BASEMENT	A	
0052	1413499	05/18/89	05/21/90	1.6		D	1413635	07	0	BASEMENT	A	
0052	1413635	05/18/89	05/21/90	1.6		D	1413499	07	0		A	
054	1413616	05/16/89	05/21/90	1.8				03	0		A	
054	1413639	05/16/89	05/21/90	0.9				03 03	0		A	
0054	1413642	05/16/89	05/21/90	0.9				03	0		A	
054	1413650	05/16/89	05/21/90	0.9			1413678	07	1	BASEMENT	A	•
0055	1413498	05/19/89		1.3		D	1413498	03	1		A	
0055	1413678	05/19/89				D	1412430	07	1		A	
0059	1378417	06/02/89						07	0	BASEMENT	A	
0061	1413680	05/18/89				ē		07	0	TOPOFBEAM	A	
0062	1383603	06/01/89					1413689	07	0	BASEMENT	A	
0063	1413615					D	1413615	07	0	BASEMENT	A	
0063	1413689	05/18/89				D	1412012	07	0	BASEMENT	A	
006A	1413692							07	0	BASEMENT	Α .	
006B	1413674					D	1413633	07	0	BASEMENT	A	
007A	1413613			_		D	1413613	07	0	BASEMENT	A	
007A	1413633			_		D	1110010	07	0	BASEMENT	A	
007B	1413622							07	0	BASEMENT	A	
A800	1413651							07	0	BASEMENT	A	
008B	1413675							07	0	BASEMENT	A	
009A	1413666					D	1383649	07	0	BASEMENT	A	
009B	1383621			_		D	1383621	07	0	BASEMENT	, A	
009B	1383649					D	1385971	03	0		A	
0100	1385931			_				03	0		A	
0100	1385936							03	0		A	
0100	138594			_				03	0		A	
0100	138595							03	0		A	
0100 0100	138595			_	6 Y			03	0	800	A	
0100	138596			_				03	0		A	
0100	138597			_	3	D	1385931	03	0		A	
0100	G373	06/09/8		9 - 0.	4			03	0		C	
0100	G384	06/09/8			4			03	0		C	
0101	138177			0 1.	2			03	1		A	
0101	138593		9 05/14/9	0 1.	3	D	1385942		1		A	
0101	138593		9 11/11/1	11 0.	0 M			03	1		A	
0101	138594	05/16/8	9 05/14/9	90 0.	. 9			03	1		A A	
0101	138594	1 05/16/8	39 05/14/9	90 1.	. 0			03	1		A	
0101	138594	12 05/16/8	89 05/14/9	90 1	.0	D	1385938		1	•	A	
0101	138595	52 05/16/	89 05/09/	90 0	. 6	D	1385959		1		A	
0101	138595	54 05/16/	89 05/14/	90 0	.7			03	1		A	
0101	13859	59 05/16/	89 05/14/	90 0	.5	D	1385952		1		A	
0101	13859	63 05/16/	89 05/14/		.0			03	1		Ā	
0101	13859	65 05/16/	89 05/14/		.1			03	1		A.	
0101	13859	66 05/16/	89 05/09/	90 0	.9			03	1		A	
0101	13859	86 05/16/	89 05/14/	1	.9			03	1		A	
0102	13859	33 05/15/	89 05/09/	'90 C	.9			03	0	MENS BATH		
0102	13859	35 05/16/	189 05/09/		. 4			03	0	PLIND DATE	A A	
0102	13859	43 05/15/	/89 05/09/		.9			03	0		A	
0102	13859	946 05/16/	/89 05/09/	/90	8.0			03	U			

3/06/91										•		
BLDGNUMB	CAN_ID	DEPL_DAT	RETR_DAT	RN_PCI_L	TOHIGH	QATYPE	DUPESERL	BLDUSECAT	FLOORNUMB	ROOMNUMBR	MONITTYPE	USERID
102	1385957	05/16/89	05/09/90	1.6				03	0		A	
0102	1385960	05/15/89	05/09/90	1.0				03	0		A	
<b>-6103</b>	1377785	05/15/89	05/09/90	1.3				03	0		A	
103	1377798	05/15/89	05/09/90	1.3				03	0		A	
0103	1377806	05/15/89	05/09/90	2.3				03	0		A	
0103	1377829	05/15/89	05/09/90	1.6				03	0		A	
103	1377845	05/15/89	05/09/90	3.1				03	0		A	
103	1377853	05/15/89	05/09/90	1.9				03	0		A	
0103	G088	06/02/89	06/05/89	1.2				03	0		C	
103	G397	06/02/89	06/05/89	1.0				03	0		C	
104	1385968	05/16/89	05/09/90	1.7		D	1386012	03	0		A A	
0104	1386012	05/16/89	05/09/90	1.9		D	1385968	03	0		A	
_0104	1386018	05/16/89	05/09/90	1.7				03	0		A	
104	1386030	05/16/89	05/09/90	1.5				03	0	LUNCH RM	C	
104	G376	06/02/89	06/05/89	1.2				03	0	LONCH KM	A	
0105	1377758	05/15/89		1.8				03	0		A	
0105	1377790	05/15/89	05/09/90	1.7				03	0		a.	
105	1377808	05/15/89	05/09/90	3.1				03	0		a.	
0105	1377826			1.9				03 03	0		A	
0105	1377840			2.1				03	0		c	
)105	G372	06/02/89		1.1				03	0		C	
0105	G393	06/02/89		_		-	1377800	03	0		A	
0106	1377770					D	1377600	03	0		A	
0106	1377797					ъ.	1377770	03	0		A	
0106	1377800				v	D	13////0	03	0		Α .	
0106	1377819							03	0		A	
0106	1377828							03	0		A	
0106	1377848							03	0		A	
<b>—</b> 0106	1377849							03	0	OUTSIDELOU	c	
0106	G395	06/02/89						03	0		С	
0106	G398	06/02/89 05/15/89						03	0		A	
0107	1377803 1377834							03	0		A	
0107 0107	1377836							03	0		A	
0107	1377838							03	0		A	
0107	1377842							03	0		A	
0107	G394	06/02/89						03	0		С	
0108	1377812					D	1377821	03	0		A	
0108	1377821				5	D	1377812	03	0		A	
0108	1377823			0.9	)			03	0		A	
0108	1377824		9 05/09/90	0.1	3			03	0		A	
0108	1377839	05/15/89	9 11/11/13	0.0	M (			03	0		A	
0108	G089	06/02/89	9 06/05/89	9 0.	4			03	0	MENS RM	С	
0108	G090	06/02/8	9 06/05/8	9 1.	5			03	0		С	
010A	138361	6 06/01/8	9 05/25/9	0 3.	6	D	1383643	07	0	BASEMENT	A	
010A	138364	3 06/01/8	9 05/25/9	0 3.	7	D	1363616	07	0	BASEMENT	A	
010B	141368	3 05/22/8	9 05/14/9	0 4.	2 Y			. 07	0	BASEMENT	A	
0110	138601	9 05/16/8	9 05/15/9	0 0.	4			03	1		A	~
0111	138601	4 05/16/8	9 05/15/9	0 0.	2			03	1		A	
0111	138602	5 05/16/8	9 05/15/9	0 0.	2			03	1		A	
<b>0114</b>	138601	0 05/16/8	9 05/10/9	0 1.	1			03	1	NAVY	A	
0116	G390	06/09/8	9 06/12/8	39 0.	4			03	0	MARINE	C	
0116	G392	06/09/8	39 06/12/8	39 0.	. 4			03	1	Da em em em	C	
011A	141361	2 05/17/8	39 05/14/9	90 7.	2 Y			07	0	BASEMENT	A	

DI DONUMB	CAN_ID	NEDI. NAT	RETR DAT	RN PCI L	TOHIGH	QATYPE	DUPESERL	BLDUSECAT	FLOORNUMB	ROOMNUMBR	MONITTYPE	USERID
BLDGNUMB	CAN_ID	ספים "ספיז				-			0	BASEMENT	A	
11B <	1413614	05/17/89	05/25/90	3.2				07	0 1	BASEMENT	Α .	
0127	1381776	05/16/89	05/14/90	2.3				03 03	1		A	
0127	1386002	05/16/89	05/14/90	2.4				03	1		A	
127	1386024	05/16/89	05/14/90	2.3				03	1		A	
<del>0</del> 128	1385937	05/16/89	05/14/90	0.3				03	1		A	
0128	1386021	05/16/89	05/14/90	0.2				03	1		A	
128	1386028	05/16/89	05/14/90	4.4	v			07	0	BASEMENT	A	
12A	1413620	05/17/89	05/14/90 05/20/90	3.6	•			07	0	BASEMENT	A	
012B	1413489	05/19/89	05/20/90	0.2		·		03	1	MENS RM	A	
2131	1381777	05/16/89	05/14/90	0.8		D	1386007	03	1		A	
131	1385961	05/16/89	05/14/90	0.6				03	1	s-3	A	
<b>V</b> 131	1385976	05/16/89	05/14/90	1.1				03	1 .	121	A	
0131	1385983	05/16/89	05/14/90	1.3				03	1	130	A	
131	1385995	05/16/89 05/16/89	05/14/90	0.4				03	1		A	
131	1386005	05/16/89	05/14/90	1.1		D	1385961	03	1	KITCHEN	A	
0131	1386007		05/14/90	0.6		-		03	1		Α .	
131	1386022 G369	06/09/89	06/12/89	0.5				03	1		С	
131	G399	06/09/89	06/12/89	0.5				03	1		С	
0131 0132	1385951		05/14/90	0.4				03	1		A	
132	1385990	05/16/89	05/14/90	0.2				03	1		A	
132	G091	06/09/89		0.5				03	1		С	
0134	1385970			0.3				03	1	WASH RM	A	
134	1385974			0.9				03	1		A	
134	1385980			1.9				03	1	18	A	
0134	1385988			2.6				03	1	ELECTRIC	A	
_0134	1386017			0.2				03	1		A	
0134	G377	06/09/89		0.4				03	1		Ç	
013A	1413655	05/17/89	05/22/90	2.3				07	0	BASEMENT	A	
013B	1413486	05/17/89	05/22/90	3.8		D	1413634	07	0	BASEMENT	A	
13B	1413634	05/17/89	05/22/90	3.4		D	1413486	07	0	BASEMENT	A	
014A	1413487	05/17/89	05/14/90	0.7				07	0	BASEMENT	A	
014B	1413618	05/17/89	05/14/90	3.4				07	0	BASEMENT	A	
-015A	1383614	06/05/89	05/25/90	1.6	;			07	0	BASEMENT	A	
015B	1413658	05/17/89	05/14/90	3.1				07	0	BASEMENT	A	
016A	1383608	05/25/89	05/14/90	2.7	•			07	0	BEAM	A	
016B	1383619	05/31/89	05/24/90	3.5	i			07	0	BASEMENT	A	
017A	1413673	. 05/22/89	05/14/90	1.4	l			07	0	TOP BEAM	A	
017B	1413670	05/22/89	11/11/11	0.0	) M			07	0	TOP BEAM	A	
018A	1413493	05/17/89	05/14/90	2.2	2			07	0	BASEMENT	A	
018B	1383617	7 06/05/89	05/14/90	1.8	3			07	0	BASEMENT	A	
018C	141365	5 05/17/89	05/14/90	4.0	Y			07	0	BASEMENT	A	
018C	G378	06/09/89	06/12/89	2.	4			07	0	BASEMENT	C	
019A	141369	6 05/17/89	9 05/25/90	2.:	2			07	0	BASEMENT	A	
019B	141349	2 05/17/89	9 05/30/90			D	1413632	07	0	BASEMENT	A	
019B	141363	2 05/17/8	9 05/30/90	3.	1.	D	1413492	07	0,	BASEMENT	A	
019C	141368							07	0	BASEMENT	A C	
019C	G371	06/09/8						07	0	BASEMENT	C A	
0200	138597	2 05/16/8				_		03	0	BX	A	
0200	138598					D	1385991		0	BX	A	
0200	138598	9 05/16/8				_		03	0	BX	A	
0200	138599					D	1385982		0	BX HO	A	
0200	138599							03	0 0	HQ HQ	A	
0200	138599	8 05/16/8	9 05/15/9	0 0.	6			03	U	11.77	••	

BLDGNUMB	CAN_ID	DEAT_DAT	VETY_DWI	rc1_n	202011	¥		BLDUSECAT			_	
00	1386013	05/16/89	05/15/90	1.1				03	0	BX	A	
200	1386020	05/16/89	05/15/90	0.7				03	0	HQ	A	
206	1413617	05/16/89	05/15/90	0.7				03	0		A	
206	1413629	05/16/89	05/15/90	0.7				03	0		A	
206	1413644	05/16/89	05/15/90	0.9				03	0		A	
207	1385993	05/16/89	05/15/90	0.7				03	0		A	
207	1386001	05/16/89	05/15/90	0.8				03	0		A	
207	1386008	05/16/89	05/15/90	1.1				03	0		Α.	
210	1413619	05/16/89	05/15/90	0.7				03	0		A A	
210	1413638	05/16/89	05/15/90	1.0				03	0		A	
210	1413640	05/16/89	05/15/90	0.8				03	0			
214	1381778	05/16/89	05/15/90	0.8		D	1386000	03	0 .		A	
214	1386000	05/16/89	05/15/90	0.8		D	1381778	03	0		A	
214	1386009	05/16/89	05/15/90	0.7				03	0		A	
214	1386027	05/16/89	05/15/90	1.0				03	0		A	
0216	1385969	05/16/89	05/15/90	0.3		D	1386011	03	1		A	
216	1386011	05/16/89	05/15/90	0.4		D	1385969	03	1		A	
217	1385955	05/16/89	05/15/90	0.9				03	1		A	
217	1385964	05/16/89	05/15/90	0.7		D	1385979	03	1		A	
<u>0</u> 217	1385979	05/16/89	05/15/90	0.9		D	1385964	03	1		A	
217	1385999	05/16/89	05/15/90	0.2				03	1		A	•
217	1386016	05/16/80	05/15/90	0.5				03	1		A	
217	1386023	05/16/89	05/15/90	0.8				03	1		A .	A
217	1386026	05/16/89	05/15/90	1.1				03	1		A	
217	1386031	05/16/89	05/15/90	0.5				03	1		A	
223	1413621	05/16/89	05/16/90	0.5				03	1		A	
0223	1413687	05/16/89	05/16/90	0.6				03	1		A	
232	1377793	05/15/89	05/09/90	0.3		D	1377795	03	1		A	
232	1377795	05/15/89	05/09/90	0.3		D	1377793	03	1		A	
0232	1377802	05/15/89	05/09/90	0.4				03	1		A	
233	1413653	05/19/89	05/18/90	0.3				03	1		A	
0234	1413682	05/19/89	05/18/90	0.8				03	1		A	
0235	1413500	05/19/89	05/18/90	0.5				03	1		A	
0350	1413496		05/18/90	0.2				04	1	BATHHOUSE	A	
351	1413685	05/19/89	05/18/90	1.6				04	1	CHLORINATO	A	
0402	1385981		05/15/90	0.7				03	1		A	
056A	1413677			0.0	M			07	0	BASEMENT	A	
056B	1413485		05/19/90	1.4				07	0	BASEMENT	A	
057A	1413686			1.7	•			07	0	BASEMENT	A	
057B	1413490		05/15/90	2.7	1	D	1413628	07	. 0	BASEMENT	A	
057B	1413628			2.7	!	D	1413490	07	0	BASEMENT	A	
058A	1413695							. 07	0	BASEMENT	A	
058B	1413665							07	0	BASEMENT	A	
060A	1413694							07	0	BASEMENT	A	
060B	1413679							07	0	BASEMENT	A	
064A	1413691							07	0	BASEMENT	A	
064B	141349						•	07	0	BASEMENT	A	
064B	141367							07	0	BASEMENT	A	
	141367							07	0	BASEMENT	A	
065B	G385	06/09/8						07	0	BASEMENT	С	
065B								07	0	BASEMENT	A	
066A	141366					D	1413688		0	BASEMENT	A	
066B	141364					D.	1413645		0	BASEMENT	A	
CHAPE	141368					-	1.10010	04	1	ANTERM	A	
CHAPE	141364	1 05/16/8	9 05/15/9	0.	-							

BLDGNUMB	CAN_ID	DEPL_DAT	RETR_DAT	RN_PCI_L	TOHIGH	QATYPE	DUPESERL	BLDUSECAT	FLOORNUMB	ROOMNUMBR	MONITTYPE	USERID
IAPE 448	1413646	05/16/89	05/15/90	0.7				04	1	ANTERM	A	
MARIN	1385932	05/16/89	05/10/90	0.2		D	1386004	03	1	126	A	
MARIN	1385934	05/16/89	05/10/90	0.4				03	1	151	A	
RIN	1385945	05/16/89	05/10/90	0.6			•	03	1		A	
RIN	1385947	05/16/89	05/10/90	0.5				03	0		A	
MARIN )	1385950	05/16/89	05/10/90	0.4				03	1	146	A	
MARIN BET	1385973	05/16/89	05/10/90	0.9	,	*		03	1	MENS RM	A	
ARIN NO	1385975	05/16/89	11/11/11	0.0	М			03	0		A	
MARIN	1385977	05/16/89	05/10/90	0.4				03	1	135	A	
MARIN	1385987	05/16/89	11/11/11	0.0	M			03	0		A	
RIN	1385994	05/16/89	05/10/90	0.4				03	1	121	A	
ARIN	1385996	05/16/89	05/10/90	0.4				03	1	139	A	
MARIN	1386004	05/16/89	05/10/90	0.2		D	1385932	03	1	126	A	
ARIN	1386006	05/16/89	05/09/90	0.7				03	0		A	
HEAT - BICL	31413648	05/16/89	05/15/90	2.7				04	1	LOBBY	A	
36				356.7								

Appendix H

Data Summary Tables for the Risk Assessment

Table H-1 Exposure Assessment Results for the Building 39 Area: Residential Scenario - Ingestion of Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.039	6.1E-8	1.4E-7
Benzo(a)pyrene	0.052	8.1E-8	1.9E-7
Benzo(b)fluoranthene	0.046	7.2E-8	1.7E-7
Benzo(k)fluoranthene	0.072	1.1E-7	2.6E-7
Phenanthrene	0.037	5.8E-8	1.4E-7
Pyrene	0.081	1.3E-7	3.0E-7
Total Petroleum Hydrocarbons	40	6.3E-5	1.5E-4
Lead	60	9.4E-5	2.2E-4

Table H-2 Exposure Assessment Results for the Building 39 Area: Industrial Scenario - Ingestion of Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.039	6.8E-9	1.9E-8
Benzo(a)pyrene	0.052	9.1E-9	2.5E-8
Benzo(b)fluoranthene	0.046	8.0E-9	2.3E-8
Benzo(k)fluoranthene	0.072	1.3E-8	3.5E-8
Phenanthrene	0.037	6.5E-9	1.8E-8
Pyrene	0.081	1.4E-8	4.0E-8
Total Petroleum Hydrocarbons	40	7.0E-6	2.0E-5
Lead	60	1.1E-5	2.9E-5

Table H-3 Exposure Assessment Results for the Building 39 Area: Recreational Scenario - Ingestion of Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.039	9.1E-9	2.1E-8
Benzo(a)pyrene	0.052	1.2E-8	2.8E-8
Benzo(b)fluoranthene	0.046	1.1E-8	2.5E-8
Benzo(k)fluoranthene	0.072	1.7E-8	3.9E-8
Phenanthrene	0.037	8.6E-9	2.0E-8
Pyrene	0.081	1.9E-8	4.4E-8
Total Petroleum Hydrocarbons	40	9.3E-6	2.2E-5
Lead	60	1.4E-5	3.3E-5

Table H-4 Exposure Assessment Results for the Southeast Fence Line Area: Residential Scenario - Ingestion of Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.072	1.1E-7	2.6E-7
Benzo(a)pyrene	0.068	1.1E-7	2.5E-7
Benzo(b)fluoranthene	0.086	1.4E-7	3.1E-7
Benzo(k)fluoranthene	0.058	9.1E-8	2.1E-7
Fluoranthene	0.14	2.2E-7	5.1E-7
Indeno[1,2,3(c,d)]pyrene	0.040	6.3E-8	1.5E-7
Methylnaphthalene ¹	0.094	1.5E-7	3.4E-7
Naphthalene	0.070	1.1E-7	2.6E-7
Phenanthrene	0.073	1.1E-7	2.7E-7
Pyrene	0.12	1.9E-7	4.4E-7
Total Petroleum Hydrocarbons	1,000	1.6E-3	3.7E-3
Lead	180	2.8E-4	6.6E-4

¹ = includes 1-methylnaphthalene and 2-methylnaphthalene

Table H-5 Exposure Assessment Results for the Southeast Fence Line Area: Industrial Scenario - Ingestion of Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.072	1.3E-8	3.5E-8
Benzo(a)pyrene	0.068	1.2E-8	3.3E-8
Benzo(b)fluoranthene	0.086	1.5E-8	4.2E-8
Benzo(k)fluoranthene	0.058	1.0E-8	2.8E-8
Fluoranthene	0.14	2.5E-8	6.9E-8
Indeno[1,2,3(c,d)]pyrene	0.040	7.0E-9	2.0E-8
Methylnaphthalene ¹	0.094	1.6E-8	4.6E-8
Naphthalene	0.070	1.2E-8	3.4E-8
Phenanthrene	0.073	1.3E-8	3.6E-8
Pyrene	0.12	2.1E-8	5.9E-8
Total Petroleum Hydrocarbons	1,000	1.8E-4	4.9E-4
Lead	180	3.2E-5	8.8E-5

¹ = includes 1-methylnaphthalene and 2-methylnaphthalene

Table H-6 Exposure Assessment Results for the Southeast Fence Line Area: Recreational Scenario - Ingestion of Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.072	1.7E-8	3.9E-8
Benzo(a)pyrene	0.068	1.6E-8	3.7E-8
Benzo(b)fluoranthene	0.086	2.0E-8	4.7E-8
Benzo(k)fluoranthene	0.058	1.4E-8	3.2E-8
Fluoranthene	0.14	3.3E-8	7.6E-8
Indeno[1,2,3(c,d)]pyrene	0.040	9.3E-9	2.2E-8
Methylnaphthalene ¹	0.094	2.2E-8	5.1E-8
Naphthalene	0.070	1.6E-8	3.8E-8
Phenanthrene	0.073	1.7E-8	4.0E-8
Pyrene	0.12	2.8E-8	6.5E-8
Total Petroleum Hydrocarbons	1,000	2.3E-4	5.4E-4
Lead	180	4.2E-5	9.8E-5

¹ = includes 1-methylnaphthalene and 2-methylnaphthalene

Table H-7 Exposure Assessment Results for the Building 39 Area: Residential Scenario - Dermal Contact with Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.039	3.2E-8	7.6E-8
Benzo(a)pyrene	0.052	4.3E-8	1. <b>0</b> E-7
Benzo(b)fluoranthene	0.046	3.8E-8	8.9E-8
Benzo(k)fluoranthene	0.072	6.0E-8	1.4E-7
Phenanthrene	0.037	3.1E-8	7.2E-8
Pyrene	0.081	6.7E-8	1.6E-7
Total Petroleum Hydrocarbons	40	NA	NA
Lead	60	NA	NA

Table H-8 Exposure Assessment Results for the Building 39 Area: Industrial Scenario - Dermal Contact with Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.039	1.9E-8	5.2E-8
Benzo(a)pyrene	0.052	2.5E-8	6.9E-8
Benzo(b)fluoranthene	0.046	2.2E-8	6.1E-8
Benzo(k)fluoranthene	0.072	3.4E-8	9.6E-8
Phenanthrene	0.037	1.8E-8	4.9E-8
Pyrene	0.081	3.8E-8	1.1E-7
Total Petroleum Hydrocarbons	40	NA	NA
Lead	60	NA	NA

Table H-9 Exposure Assessment Results for the Building 39 Area: Recreational Scenario - Dermal Contact with Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.039	8.1E-9	1.9E-8
Benzo(a)pyrene	0.052	1.1E-8	2.5E-8
Benzo(b)fluoranthene	0.046	9.5E-9	2.2E-8
Benzo(k)fluoranthene	0.072	1.5E-8	3.5E-8
Phenanthrene	0.037	7.6E-9	1.8E-8
Pyrene	0.081	1.7E-8	3.9E-8
Total Petroleum Hydrocarbons	40	NA	NA
Lead	60	NA	NA

Exposure Assessment Results for the Southeast Fence Line Area: Residential Scenario - Dermal Table H-10 Contact with Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.072	6.0E-8	1.4E-7
Benzo(a)pyrene	0.068	5.7E-8	1.3E-7
Benzo(b)fluoranthene	0.086	7.2E-8	1.7E-7
Benzo(k)fluoranthene	0.058	4.8E-8	1.1E-7
Fluoranthene	0.14	1.2E-7	2.7E-7
Indeno[1,2,3(c,d)]pyrene	0.040	3.3E-8	7.8E-8
Methylnaphthalene ¹	0.094	7.8E-8	1.8E-7
Naphthalene	0.070	5.8E-8	1.4E-7
Phenanthrene	0.073	6.1E-8	1.4E-7
Pyrene	0.12	1.0E-7	2.3E-7
Total Petroleum Hydrocarbons	1,000	NA	NA
Lead	180	NA	NA

NA = not applicable  $^1 = includes 1-methylnaphthalene and 2-methylnaphthalene$ 

Exposure Assessment Results for the Southeast Fence Line Area: Industrial Scenario - Dermal Table H-11 Contact with Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.072	3.4E-8	9.6E-8
Benzo(a)pyrene	0.068	3.2E-8	9.0E-8
Benzo(b)fluoranthene	0.086	4.1E-8	1.1E-7
Benzo(k)fluoranthene	0.058	2.8E-8	7.7E-8
Fluoranthene	0.14	6.6E-8	1.9E-7
Indeno[1,2,3(c,d)]pyrene	0.040	1.9E-8	5.3E-8
Methylnaphthalene ¹	0.094	4.5E-8	1.3E-7
Naphthalene	0.070	3.3E-8	9.3E-8
Phenanthrene	0.073	3.5E-8	9.7E-8
Pyrene	0.12	5.7E-8	1.6E-7
Total Petroleum Hydrocarbons	1,000	NA	NA
Lead	180	NA	NA

NA = not applicable  $^{1} = includes 1-methylnaphthalene and 2-methylnaphthalene$ 

Exposure Assessment Results for the Southeast Fence Line Area: Recreational Scenario - Dermal Table H-12 Contact with Soil

CHEMICAL	Exposure Point Concentration (mg/kg)	Carcinogenic Average Daily Dose (mg/kg-d)	Noncarcinogenic Average Daily Dose (mg/kg-d)
Benzo(a)anthracene	0.072	1.5E-8	3.5E-8
Benzo(a)pyrene	0.068	1.4E-8	3.3E-8
Benzo(b)fluoranthene	0.086	1.8E-8	4.2E-8
Benzo(k)fluoranthene	0.058	1.2E-8	2.8E-8
Fluoranthene	0.14	2.9E-8	6.8E-8
Indeno[1,2,3(c,d)]pyrene	0.040	8.3E-9	1.9E-8
Methylnaphthalene ¹	0.094	1.9E-8	4.5E-8
Naphthalene	0.070	1.5E-8	3.4E-8
Phenanthrene	0.073	1.5E-8	3.5E-8
Pyrene	0.12	2.5E-8	5.8E-8
Total Petroleum Hydrocarbons	1,000	NA	NA
Lead	180	NA	NA

NA = not applicable  $^1 = includes 1-methylnaphthalene and 2-methylnaphthalene$ 

Table H-13 Risk Characterization Results for the Building 39 Area: Residential Scenario - Ingestion of Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Oral Slope Factor (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	6.1E-8	1.1	6.7E-8
Benzo(a)pyrene	8.1E-8	7.3	5.9E-7
Benzo(b)fluoranthene	7.2E-8	1.0	7.2E-8
Benzo(k)fluoranthene	1.1E-7	0.51	5.8E-8
Phenanthrene	5.8E-8	NA	_
Pyrene	1.3E-7	0.58	7.4E-8
ТРН	6.3E-5	NA	-
Lead	9.4E-5	NA	-
Total pathway risk			8.7E-7

Table H-14 Risk Characterization Results for the Building 39 Area: Industrial Scenario - Ingestion of Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Oral Slope Factor (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	6.8E-9	1.1	7.5E-9
Benzo(a)pyrene	9.1E-9	7.3	6.6E-8
Benzo(b)fluoranthene	8.0E-9	1.0	8.0E-9
Benzo(k)fluoranthene	1.3E-8	0.51	6.4E-9
Phenanthrene	6.5E-9	NA	- `
Pyrene	1.4E-8	0.58	8.2E-9
ТРН	7.0E-6	NA	-
Lead	1.1E-5	NA	-
Total pathway risk			9.7E-8

Table H-15 Risk Characterization Results for the Building 39 Area: Recreational Scenario - Ingestion of Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Oral Slope Factor (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	9.1E-9	1.1	1.0E-8
Benzo(a)pyrene	1.2E-8	7.3	8.8E-8
Benzo(b)fluoranthene	1.1E-8	1.0	1.1E-8
Benzo(k)fluoranthene	1.7E-8	0.51	8.5E-9
Phenanthrene	8.6E-9	NA	-
Pyrene	1.9E-8	0.58	1.1E-8
ТРН	9.3E-6	NA	<u>-</u>
Lead	1.4E-5	NA	-
Total pathway risk			1.3E-7

Table H-16 Risk Characterization Results for the Southeast Fence Line Area: Residential Scenario - Ingestion of Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Oral Slope Factor (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	1.1E-7	1.1	1.2E-7
Benzo(a)pyrene	1.1E-7	7.3	7.8E-7
Benzo(b)fluoranthene	1.4E-7	1.0	1.4E-7
Benzo(k)fluoranthene	9.1E-8	0.51	4.6E-8
Fluoranthene	2.2E-7	NA	-
Indeno[1,2,3(C,D)] pyrene	6.3E-8	1.5	9.4E-8
Methylnaphthalene	1.5E-7	NA	<u>-</u>
Naphthalene	1.1E-7	NA	. <u>-</u>
Phenanthrene	1.1E-7	NA	-
Pyrene	1.9E-7	0.58	1.1E-7
ТРН	1.6E-3	NA	-
Lead	2.8E-4	NA	_
Total pathway risk			1.3E-6

NA = Not Available

Table H-17 Risk Characterization Results for the Southeast Fence Line Area: Industrial Scenario - Ingestion of Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Oral Slope Factor (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	1.3E-8	1.1	1.4E-8
Benzo(a)pyrene	1.2E-8	7.3	8.7E-8
Benzo(b)fluoranthene	1.5E-8	1.0	1.5E-8
Benzo(k)fluoranthene	1.0E-8	0.51	5.2E-9
Fluoranthene	2.5E-8	NA	-
Indeno[1,2,3(C,D)] pyrene	7.0E-9	1.5	1.1E-8
Methylnaphthalene	1.6E-8	NA	-
Naphthalene	1.2E-8	NA	_
Phenanthrene	1.3E-8	NA	-
Pyrene	2.1E-8	0.58	1.2E-8
ТРН	1.8E-4	NA	-
Lead	3.2E-5	NA	-
Total pathway risk			1.4E-7

Table H-18 Risk Characterization Results for the Southeast Fence Line Area: Recreational Scenario - Ingestion of Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Oral Slope Factor (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	1.7E-8	1.1	1.8E-8
Benzo(a)pyrene	1.6E-8	7.3	1.2E-7
Benzo(b)fluoranthene	2.0E-8	1.0	2.0E-8
Benzo(k)fluoranthene	1.4E-8	0.51	6.9E-9
Fluoranthene	3.3E-8	NA	, <u> </u>
Indeno[1,2,3(C,D)] pyrene	9.3E-9	1.5	1.4E-8
Methylnaphthalene	2.2E-8	NA	-
Naphthalene	1.6E-8	NA	-
Phenanthrene	1.7E-8	NA	-
Pyrene	2.8E-8	0.58	1.6E-8
ТРН	2.3E-4	NA	-
Lead	4.2E-5	NA	-
Total pathway risk			1.9E-7

Table H-19 Risk Characterization Results for the Building 39 Area: Residential Scenario - Ingestion of Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Oral RfD (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	1.4E-7	7.9E-2ª	1.8E-6
Benzo(a)pyrene	1.9E-7	7.9E-2ª	2.4E-6
Benzo(b)fluoranthene	1.7E-7	7.9E-2ª	2.1E-6
Benzo(k)fluoranthene	2.6E-7	7.9E-2ª	3.3E-6
Phenanthrene	1.4E-7	7.9E-2ª	1.7E-6
Pyrene	3.0E-7	3E-2	9.9E-6
ТРН	1.5E-4	NA	-
Lead	2.2E-4	NA	-

Compound-specific RfDs for these PAHs are not available from USEPA. However, based on the structural similarity of PAHs as a class, RfDs for these compounds have been derived for this risk assessment based on the average of six RfD values which are available for other PAHs (e.g., anthracene 3E-1 mg/kg-d; acenaphthene 6E-2 mg/kg-d; fluorene 4E-2 mg/kg-d; fluoranthene 4E-2 mg/kg-d; pyrene 3E-2 mg/kg-d; and naphthalene 4E-3 mg/kg-d).

Table H-20 Risk Characterization Results for the Building 39 Area: Industrial Scenario - Ingestion of Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Oral RfD (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	1.9E-8	7.9E-2*	2.4E-7
Benzo(a)pyrene	2.5E-8	7.9E-2ª	3.2E-7
Benzo(b)fluoranthene	2.3E-8	7.9E-2ª	2.9E-7
Benzo(k)fluoranthene	3.5E-8	7.9E-2ª	4.5E-7
Phenanthrene	1.8E-8	7.9E-2ª	2.3E-7
Pyrene	4.0E-8	3E-2	1.3E-6
ТРН	2.0E-5	NA	-
Lead	2.9E-5	NA	-

Compound-specific RfDs for these PAHs are not available from USEPA. However, based on the structural similarity of PAHs as a class, RfDs for these compounds have been derived for this risk assessment based on the average of six RfD values which are available for other PAHs (e.g., anthracene 3E-1 mg/kg-d; acenaphthene 6E-2 mg/kg-d; fluorene 4E-2 mg/kg-d; fluoranthene 4E-2 mg/kg-d; pyrene 3E-2 mg/kg-d; and naphthalene 4E-3 mg/kg-d).

Table H-21 Risk Characterization Results for the Building 39 Area: Recreational Scenario - Ingestion of Soil-Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Oral RfD (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	2.1E-8	7.9E-2ª	2.7E-7
Benzo(a)pyrene	2.8E-8	7.9E-2ª	3.6E-7
Benzo(b)fluoranthene	2.5E-8	7.9E-2ª	3.2E-7
Benzo(k)fluoranthene	3.9E-8	7.9E-2ª	5.0E-7
Phenanthrene	2.0E-8	7.9E-2ª	2.5E-7
Pyrene	4.4E-8	3E-2ª	1.5E-6
ТРН	2.2E-5	NA	-
Lead	3.3E-5	NA	-

Compound-specific RfDs for these PAHs are not available from USEPA. However, based on the structural similarity of PAHs as a class, RfDs for these compounds have been derived for this risk assessment based on the average of six RfD values which are available for other PAHs (e.g., anthracene 3E-1 mg/kg-d; acenaphthene 6E-2 mg/kg-d; fluorene 4E-2 mg/kg-d; fluoranthene 4E-2 mg/kg-d; pyrene 3E-2 mg/kg-d; and naphthalene 4E-3 mg/kg-d).

Table H-22 Risk Characterization Results for the Southeast Fence Line Area: Residential Scenario - Ingestion of Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Oral RfD (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	2.6E-7	7.9E-2ª	3.3E-6
Benzo(a)pyrene	2.5E-7	7.9E-2ª	3.1E-6
Benzo(b)fluoranthene	3.1E-7	7.9E-2ª	4.0E-6
Benzo(k)fluoranthene	2.1E-7	7.9E-2ª	2.7E-6
Fluoranthene	5.1E-7	4E-2	1.3E-5
Indeno[1,2,3(C,D)] pyrene	1.5E-7	7.9E-2ª	1.9E-6
Methylnaphthalene	3.4E-7	4E-3 ^b	8.6E-5
Naphthalene	2.6E-7	4E-3	6.4E-5
Phenanthrene	2.7E-7	7.9E-2ª	3.4E-6
Pyrene	4.4E-7	3E-2	1.5E-5
ТРН	3.7E-3	NA	-
Lead	6.6E-4	NA	-

- Compound-specific RfDs for these PAHs are not available from USEPA. However, based on the structural similarity of PAHs as a class, RfDs for these compounds have been derived for this risk assessment based on the average of six RfD values which are available for other PAHs (e.g., anthracene 3E-1 mg/kg-d; acenaphthene 6E-2 mg/kg-d; fluorene 4E-2 mg/kg-d; fluoranthene 4E-2 mg/kg-d; pyrene 3E-2 mg/kg-d; and naphthalene 4E-3 mg/kg-d).
- The oral RfD of naphthalene is used here to represent the toxicity of methylnaphthalene based on their close structural similarity.

Table H-23 Risk Characterization Results for the Southeast Fence Line Area: Industrial Scenario - Ingestion of Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Oral RfD (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	3.5E-8	7.9E-2ª	4.5E-7
Benzo(a)pyrene	3.3E-8	7.9E-2ª	4.2E-7
Benzo(b)fluoranthene	4.2E-8	7.9E-2ª	5.3E-7
Benzo(k)fluoranthene	2.8E-8	7.9E-2ª	3.6E-7
Fluoranthene	6.9E-8	4E-2	1.7E-6
Indeno[1,2,3(C,D)] pyrene	2.0E-8	7.9E-2ª	2.5E-7
Methylnaphthalene	4.6E-8	4E-3 ^b	1.2E-5
Naphthalene	3.4E-8	4E-3	8.6E-6
Phenanthrene	3.6E-8	7.9E-2ª	4.5E-7
Pyrene	5.9E-8	3E-2	2.0E-6
ТРН	4.9E-4	NA	-
Lead	8.8E-5	NA	_

- Compound-specific RfDs for these PAHs are not available from USEPA. However, based on the structural similarity of PAHs as a class, RfDs for these compounds have been derived for this risk assessment based on the average of six RfD values which are available for other PAHs (e.g., anthracene 3E-1 mg/kg-d; acenaphthene 6E-2 mg/kg-d; fluorene 4E-2 mg/kg-d; fluoranthene 4E-2 mg/kg-d; pyrene 3E-2 mg/kg-d; and naphthalene 4E-3 mg/kg-d).
- The oral RfD of naphthalene is used here to represent the toxicity of methylnaphthalene based on their close structural similarity.

Table H-24 Risk Characterization Results for the Southeast Fence Line Area: Recreational Scenario - Ingestion of Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Oral RfD (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	3.9E-8	7.9E-2ª	5.0E-7
Benzo(a)pyrene	3.7E-8	7.9E-2ª	4.7E-7
Benzo(b)fluoranthene	4.7E-8	7.9E-2ª	5.9E-7
Benzo(k)fluoranthene	3.2E-8	7.9E-2ª	4.0E-7
Fluoranthene	7.6E-8	4E-2	1.9E-6
Indeno[1,2,3(C,D)] pyrene	2.2E-8	7.9E-2ª	2.8E-7
Methylnaphthalene	5.1E-8	4E-3 ^b	1.3E-5
Naphthalene	3.8E-8	4E-3	9.5E-6
Phenanthrene	4.0E-8	7.9E-2ª	5.0E-7
Pyrene	6.5E-8	3E-2	2.2E-6
ТРН	5.4E-4	NA	-
Lead	9.8E-5	NA	-

- Compound-specific RfDs for these PAHs are not available from USEPA. However, based on the structural similarity of PAHs as a class, RfDs for these compounds have been derived for this risk assessment based on the average of six RfD values which are available for other PAHs (e.g., anthracene 3E-1 mg/kg-d; acenaphthene 6E-2 mg/kg-d; fluorene 4E-2 mg/kg-d; fluoranthene 4E-2 mg/kg-d; pyrene 3E-2 mg/kg-d; and naphthalene 4E-3 mg/kg-d).
- The oral RfD of naphthalene is used here to represent the toxicity of methylnaphthalene based on their close structural similarity.

Table H-25 Risk Characterization Results for the Building 39 Area: Residential Scenario - Dermal Contact with Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Dermal Slope Factor ^a (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	3.2E-8	1.2	3.9E-8
Benzo(a)pyrene	4.3E-8	8.1	3.5E-7
Benzo(b)fluoranthene	3.8E-8	1.1	4.2E-8
Benzo(k)fluoranthene	6.0E-8	0.57	3.4E-8
Phenanthrene	3.1E-8	NA	-
Pyrene	6.7E-8	0.64	4.3E-8
ТРН	NA	NA	-
Lead	NA	NA	-
Total pathway risk			5.1E-7

Table H-26 Risk Characterization Results for the Building 39 Area: Industrial Scenario - Dermal Contact with Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Dermal Slope Factor ^a (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	1.9E-8	1.2	2.2E-8
Benzo(a)pyrene	2.5E-8	8.1	2.0E-7
Benzo(b)fluoranthene	2.2E-8	1.1	2.4E-8
Benzo(k)fluoranthene	3.4E-8	0.57	2.0E-8
Phenanthrene	1.8E-8	NA	-
Pyrene	3.8E-8	0.64	2.5E-8
ТРН	NA	NA	-
Lead	NA	NA	-
Total pathway risk			2.9E-7

Table H-27 Risk Characterization Results for the Building 39 Area: Recreational Scenario - Dermal Contact with Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Dermal Slope Factor ^a (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	8.1E-9	1.2	9.7E-9
Benzo(a)pyrene	1.1E-8	8.1	8.7E-8
Benzo(b)fluoranthene	9.5E-9	1.1	1.1E-8
Benzo(k)fluoranthene	1.5E-8	0.57	8.5E-9
Phenanthrene	7.6E-9	NA	-
Pyrene	1.7E-8	0.64	1.1E-8
ТРН	NA	NA	-
Lead	NA	NA	-
Total pathway risk			1.3E-7

Table H-28 Risk Characterization Results for the Southeast Fence Line Area: Residential Scenario - Dermal Contact with Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Dermal Slope Factor ^a (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	6.0E-8	1.2	7.2E-8
Benzo(a)pyrene	5.7E-8	8.1	4.6E-7
Benzo(b)fluoranthene	7.2E-8	1.1	7.9E-8
Benzo(k)fluoranthene	4.8E-8	0.57	2.8E-8
Fluoranthene	1.2E-7	NA	-
Indeno[1,2,3(C,D)] pyrene	3.3E-8	1.7	5.7E-8
Methylnaphthalene	7.8E-8	NA	<del>-</del>
Naphthalene	5.8E-8	NA	-
Phenanthrene	6.1E-8	NA	-
Pyrene	1.0E-7	0.64	6.4E-8
ТРН	NA	NA	
Lead	NA	NA	-
Total pathway risk			7.6E-7

Table H-29 Risk Characterization Results for the Southeast Fence Line Area: Industrial Scenario - Dermal Contact with Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Dermal Slope Factor ^a (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	3.4E-8	1.2	4.1E-8
Benzo(a)pyrene	3.2E-8	8.1	2.6E-7
Benzo(b)fluoranthene	4.1E-8	1.1	4.5E-8
Benzo(k)fluoranthene	2.8E-8	0.57	1.6E-8
Fluoranthene	6.6E-8	NA	
Indeno[1,2,3(C,D)] pyrene	1.9E-8	1.7	3.2E-8
Methylnaphthalene	4.5E-8	NA	-
Naphthalene	3.3E-8	NA	-
Phenanthrene	3.5E-8	NA	-
Pyrene	5.7E-8	0.64	3.6E-8
ТРН	NA	NA	-
Lead	NA	NA	-
Total pathway risk			4.3E-7

Table H-30 Risk Characterization Results for the Southeast Fence Line Area: Recreational Scenario - Dermal Contact with Soil - Carcinogenic Risk

Chemical	Average Daily Dose (mg/kg-day)	Dermal Slope Factor ^a (mg/kg-day) ⁻¹	Cancer Risk
Benzo(a)anthracene	1.5E-8	1.2	1.8E-8
Benzo(a)pyrene	1.4E-8	8.1	1.1E-7
Benzo(b)fluoranthene	1.8E-8	1.1	2.0E-8
Benzo(k)fluoranthene	1.2E-8	0.57	6.8E-9
Fluoranthene	2.9E-8	NA	
Indeno[1,2,3(C,D)] pyrene	8.3E-9	1.7	1.4E-8
Methylnaphthalene	1.9E-8	NA	<u>-</u>
Naphthalene	1.5E-8	NA	<u>-</u>
Phenanthrene	1.5E-8	NA	-
Pyrene	2.5E-8	0.64	1.6E-8
ТРН	NA	NA	· <b>-</b>
Lead	NA	NA	<del>-</del> .
Total pathway risk			1.9E-7

Table H-31 Risk Characterization Results for the Building 39 Area: Residential Scenario - Dermal Contact with Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Dermal RfD ^a (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	7.6E-8	7.1E-2	1.1E-6
Benzo(a)pyrene	1.0E-7	7.1E-2	1.4E-6
Benzo(b)fluoranthene	8.9E-8	7.1E-2	1.3E-6
Benzo(k)fluoranthene	1.4E-7	7.1E-2	2.0E-6
Phenanthrene	7.2E-8	7.1E-2	1.0E-6
Pyrene	1.6E-7	2.7E-2	5.8E-6
ТРН	NA	NA	-
Lead	NA	NA	-

Dermal RfDs are not available from USEPA but were derived for the purposes of this risk assessment. The dermal RfDs were derived by adjusting downward the oral RfDs shown in Table H-19 to account for an oral bioavailability of approximately 90 percent (Hecht et al., 1979).

Table H-32 Risk Characterization Results for the Building 39 Area: Industrial Scenario - Dermal Contact with Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Dermal RfD ^a (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	5.2E-8	7.1E-2	7.2E-7
Benzo(a)pyrene	6.9E-8	7.1E-2	9.7E-7
Benzo(b)fluoranthene	6.1E-8	7.1E-2	8.6E-7
Benzo(k)fluoranthene	9.6E-8	7.1E-2	1.4E-6
Phenanthrene	4.9E-8	7.1E-2	6.9E-7
Pyrene	1.1E-7	2.7E-2	4.0E-6
ТРН	NA	NA	<del>-</del>
Lead	NA	NA	-

Dermal RfDs are not available from USEPA but were derived for the purposes of this risk assessment. The dermal RfDs were derived by adjusting downward the oral RfDs shown in Table H-19 to account for an oral bioavailability of approximately 90 percent (Hecht et al., 1979).

Table H-33 Risk Characterization Results for the Building 39 Area: Recreational Scenario - Dermal Contact with Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Dermal RfD* (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	1.9E-8	7.1E-2	2.7E-7
Benzo(a)pyrene	2.5E-8	7.1E-2	3.5E-7
Benzo(b)fluoranthene	2.2E-8	7.1E-2	3.1E-7
Benzo(k)fluoranthene	3.5E-8	7.1E-2	4.9E-7
Phenanthrene	1.8E-8	7.1E-2	2.5E-7
Pyrene	3.9E-8	2.7E-2	1.5E-6
ТРН	NA	NA	-
Lead	NA	NA ·	-

^a Dermal RfDs are not available from USEPA but were derived for the purposes of this risk assessment. The dermal RfDs were derived by adjusting downward the oral RfDs shown in Table H-19 to account for an oral bioavailability of approximately 90 percent (Hecht et al., 1979).

Table H-34 Risk Characterization Results for the Southeast Fence Line Area: Residential Scenario - Dermal Contact with Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Dermal RfD ^a (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	1.4E-7	7.1E-2	2.0E-6
Benzo(a)pyrene	1.3E-7	7.1E-2	1.9E-6
Benzo(b)fluoranthene	1.7E-7	7.1E-2	2.4E-6
Benzo(k)fluoranthene	1.1E-7	7.1E-2	1.6E-6
Fluoranthene	2.7E-7	3.6E-2	7.6E-6
Indeno[1,2,3(C,D)] pyrene	7.8E-8	7.1E-2	1.1E-6
Methylnaphthalene	1.8E-7	3.6E-3	5.1E-5
Naphthalene	1.4E-7	3.6E-3	3.8E-5
Phenanthrene	1.4E-7	7.1E-2	2.0E-6
Pyrene	2.3E-7	2.7E-2	8.6E-6
ТРН	NA NA	NA	-
Lead	NA	NA	<del>-</del>

Dermal RfDs are not available from USEPA but were derived for the purposes of this risk assessment. The dermal RfDs were derived by adjusting downward the oral RfDs shown in Table H-22 to account for an oral bioavailability of approximately 90 percent (Hecht et al., 1979).

Table H-35 Risk Characterization Results for the Southeast Fence Line Area: Industrial Scenario - Dermal Contact with Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Dermal RfD ^a (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	9.6E-8	7.1E-2	1.4E-6
Benzo(a)pyrene	9.0E-8	7.1E-2	1.3E-6
Benzo(b)fluoranthene	1.1E-7	7.1E-2	1.6E-6
Benzo(k)fluoranthene	7.7E-8	7.1E-2	1.1E-6
Fluoranthene	1.9E-7	3.6E-2	5.2E-6
Indeno[1,2,3(C,D)] pyrene	5.3E-8	7.1E-2	7.5E-7
Methylnaphthalene	1.3E-7	3.6E-3	3.5E-5
Naphthalene	9.3E-8	3.6E-3	2.6E-5
Phenanthrene	9.7E-8	7.1E-2	1.4E-6
Pyrene	1.6E-7	2.7E-2	5.9E-6
ТРН	NA	NA	
Lead	NA	NA	-

^a Dermal RfDs are not available from USEPA but were derived for the purposes of this risk assessment. The dermal RfDs were derived by adjusting downward the oral RfDs shown in Table H-22 to account for an oral bioavailability of approximately 90 percent (Hecht et al., 1979).

Table H-36 Risk Characterization Results for the Southeast Fence Line Area: Recreational Scenario - Dermal Contact with Soil - Noncarcinogenic Effects

Chemical	Average Daily Dose (mg/kg-day)	Dermal RfD ^a (mg/kg-day)	Hazard Quotient
Benzo(a)anthracene	3.5E-8	7.1E-2	4.9E-7
Benzo(a)pyrene	3.3E-8	7.1E-2	4.6E-7
Benzo(b)fluoranthene	4.2E-8	7.1E-2	5.8E-7
Benzo(k)fluoranthene	2.8E-8	7.1E-2	3.9E-7
Fluoranthene	6.8E-8	3.6E-2	1.9E-6
Indeno[1,2,3(C,D)] pyrene	1.9E-8	7.1E-2	2.7E-7
Methylnaphthalene	4.5E-8	3.6E-3	1.3E-5
Naphthalene	3.4E-8	3.6E-3	9.4E-6
Phenanthrene	3.5E-8	7.1E-2	5.0E-7
Pyrene	5.8E-8	2.7E-2	2.1E-6
ТРН	NA .	NA	-
Lead	NA	NA	-

Dermal RfDs are not available from USEPA but were derived for the purposes of this risk assessment. The dermal RfDs were derived by adjusting downward the oral RfDs shown in Table H-22 to account for an oral bioavailability of approximately 90 percent (Hecht et al., 1979).