INFORMATION THEORY & CODING

Week 5 : Source Coding 1

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

October 17, 2023

Review Summary

Theorem (AEP)

"Almost all events are almost equally surprising." Specifically, if X_1, X_2, \ldots are i.i.d. $\sim p(x)$, then

$$-rac{1}{n}\log p(X_1,X_2,\ldots,X_n)
ightarrow H(X)$$
in probability.

Definition

The *typical set* $A_{\epsilon}^{(n)}$ is the set of sequences x_1, x_2, \ldots, x_n satisfying

$$2^{-n(H(X)+\epsilon)} \le p(x_1, x_2, \dots, x_n) \le 2^{-n(H(X)-\epsilon)}.$$

Review Summary

Properties of the typical set

- If $(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$, then $H(X) \epsilon \le -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \le H(X) + \epsilon$.
- $\Pr[A_{\epsilon}^{(n)}] > 1 \epsilon$ for *n* sufficiently large.
- **1** $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the cardinality of the set A.
- **⑤** $|A_{\epsilon}^{(n)}| \ge (1 \epsilon)2^{n(H(X) \epsilon)}$ for *n* sufficiently large.

Theorem

Let X^n be i.i.d. $\sim p(x)$. There exists a code that one-to-one maps sequences x^n of length n into binary strings with

$$E[\frac{1}{n}\ell(X^n)] \le H(X) + \epsilon$$

for *n* sufficiently large.

Source Coding

Which horse won in the horse racing?

Source Coding

Which horse won in the horse racing?

Χ	Pr	Code I	Code II
0	1/2	000	0
1	1/4	001	10
2	1/8	010	110
3	1/16	011	1110
4	1/64	100	111100
5	1/64	101	111101
6	1/64	110	111110
7	1/64	111	111111

$$H(X) = -\sum p_i \log p_i = 2$$
bits

Which code is better?

Source Coding (Data Compression)

• We interpret that H(X) is the best achievable data compression.

• We want to develop practical lossless coding algorithms that approach, or achieve the entropy limit H(X).

Terminology

X	Pr	Code I	Code II
0	1/2	000	0
1	1/4	001	10
2	1/8	010	110
3	1/16	011	1110
4	1/64	100	111100
5	1/64	101	111101
6	1/64	110	111110
7	1/64	111	111111

- Source alphabet $\mathcal{X} = \{0, 1, 2, 3, 4, 5, 6, 7\}.$
- Code alphabet $\mathcal{D} = \{0, 1\}$.
- Codeword, e.g., 010 for X = 2 in Code 1.
- Codeword length, e.g., codeword length for Code 1 is 3.
- Codebook: all the codewords.

Source Coding

Notation (Alphabet Extension)

The set of all possible sequences based on a finite alphabet \mathcal{D} is denoted by \mathcal{D}^* . E.g.,

$$\mathcal{D} = \{0,1\} \rightarrowtail \mathcal{D}^* = \{0,1,00,01,10,11,000,...\}.$$

Definition (Source Code)

Let $\mathcal X$ be the alphabet of a random variable X, and $\mathcal D$ be the alphabet of code. A *source code* C for the random variable X is a map

$$C: \mathcal{X} \to \mathcal{D}^*$$

 $x \mapsto C(x)$

where C(x) is the codeword associated with x. Let $\ell(x)$ denote the length of C(x).

Source Coding

Definition

The expected length L(X) of a source code C for a random variable X with probability mass function p(x) is

$$L(X) = E\ell(X) = \sum_{x \in \mathcal{X}} p(x)\ell(x).$$

INFORMATION THEORY & CODING

X	Pr	Code I	Code II
0	1/2	000	0
1	1/4	001	10
2	1/8	010	110
3	1/16	011	1110
4	1/64	100	111100
5	1/64	101	111101
6	1/64	110	111110
7	1/64	111	111111

$$L_1(X) = 3$$

$$L_2(X) = 2$$

Source Coding Applications

- Magnetic recording: cassette, hard drive ...
- Speech compression
- Compact disk (CD)
- Image compression: JPEG

For $\mathcal{X} = \{1, 2, 3, 4\}$ and $\mathcal{D} = \{0, 1\}$, consider

X	p(x)	C_{I}	C_{II}	CIII	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

- Code efficiency = $H(X)/E[\ell(X)]$
- Which code is best? Would we prefer C_I or C_{II} ? Consider C_I and decode string: 00001. It would come from 1, 2, 1, 2, 3 or 2, 1, 2, 1, 3 or 1, 1, 1, 1, 3, or etc.

For $\mathcal{X} = \{1, 2, 3, 4\}$ and $\mathcal{D} = \{0, 1\}$, consider

X	p(x)	C_I	C_{II}	CIII	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

- Code efficiency = $H(X)/E[\ell(X)]$
- Which code is best? Would we prefer C_I or C_{II} ? Consider C_{II} and decode string: 0011. It could be either 1, 1, 2, 2 or 3, 4.

For
$$\mathcal{X} = \{1, 2, 3, 4\}$$
 and $\mathcal{D} = \{0, 1\}$, consider

X	p(x)	C_I	C_{II}	C_{III}	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

• Consider C_{III} . Can we decode 1100000000?

Yes. But if we only see a prefix, such as 11, we don't know until we see more bits to the end.

$$1100000000 = 3, 2, 2, 2, 2$$

$$11000000000 = 4, 2, 2, 2, 2$$

For
$$\mathcal{X} = \{1, 2, 3, 4\}$$
 and $\mathcal{D} = \{0, 1\}$, consider

X	p(x)	C_I	C_{II}	CIII	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

• Consider C_{IV} . This code seems at least feasible (since $E[\ell] \ge H$). Decoding seems easy: (e.g., 111110100 = 111, 110, 10, 0 = 4, 3, 2, 1).

Definition (Nonsingular Code)

A code C is called *nonsingular* if every realization of \mathcal{X} maps onto a difference codeword in \mathcal{D}^* , i.e.,

$$x \neq x' \Rightarrow C(x) \neq C(x')$$
.

Definition (Nonsingular Code)

A code C is called *nonsingular* if every element of $\mathcal X$ maps onto a difference string in $\mathcal D^*$, i.e.,

$$x \neq x' \Rightarrow C(x) \neq C(x')$$
.

X	p(x)	C_{I}	C_{II}	C_{III}	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

 C_l is singular.

Definition (Code Extension)

The *extension* of a code $C: \mathcal{X} \to \mathcal{D}^*$ is defined by

$$C(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n).$$

Definition (Unique Decodable Code)

A code is called *uniquely decodable* if its extension is nonsingular.

$$x_1x_2 \dots x_m \neq x_1'x_2' \dots x_n' \Rightarrow C(x_1x_2 \dots x_m) \neq C(x_1'x_2' \dots x_n')$$

Definition (Unique Decodable Code)

A code is called *uniquely decodable* if its extension is nonsingular.

$$C_{II}^*$$
 is singular. $(C(1,1) = C(3) = 00)$

X	p(x)	C_I	C_{II}	C_{III}	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

C_I is singular.C_{II} is NOT u.d..

Definition (Unique Decodable Code)

A code is called *uniquely decodable* if its extension is nonsingular.

C_{III} is uniquely decodable.

X	p(x)	C_I	C_{II}	C_{III}	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

 C_I is singular. C_{II} is **NOT** u.d..

Definition (Unique Decodable Code)

A code is called *uniquely decodable* if its extension is nonsingular.

$$1100000000 = 3, 2, 2, 2, 2$$

 $11000000000 = 4, 2, 2, 2, 2$

To know the source, we have to wait until the end!

	X	p(x)	C_{I}	C_{II}	C_{III}	C_{IV}
	1	1/2	0	0	10	0
	2	1/4	0	1	00	10
	3	1/8	1	00	11	110
	4	1/8	10	11	110	111
	H(X)	1.75	_	_	_	_
E	$\ell(X)$	_	1.125	1.25	2.125	1.75

 C_I is singular. C_{II} is **NOT** u.d..

Definition (Prefix Code)

A code C is called a *prefix code* (a.k.a. *instantaneous*) iff no codeword of C is a prefix of any other codeword of C.

X	p(x)	C_I	C_{II}	CIII	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

 C_I is singular. C_{II} is NOT u.d.. C_{III} is NOT prefix. C_{IV} is prefix.

For $\mathcal{X} = \{1, 2, 3, 4\}$ and binary code, consider

X	p(x)	C_I	C_{II}	CIII	C_{IV}
1	1/2	0	0	10	0
2	1/4	0	1	00	10
3	1/8	1	00	11	110
4	1/8	10	11	110	111
H(X)	1.75	_	_	_	_
$E\ell(X)$	_	1.125	1.25	2.125	1.75

- C_I is singular.
- C_{II} is non-singular, but not uniquely decodable.
- C_{III} is non-singular, uniquely decodable, but NOT prefix.
- \bullet C_{IV} is non-singular, uniquely decodable, and prefix.

Source Coding: Classes of codes

• Goal: to find a prefix code with minimum expected length.

Theorem 5.2.1 (Kraft Inequality)

For any prefix code over an alphabet of size D, the codeword lengths $\ell_1, \ell_2, \dots, \ell_m$ must satisfy the inequality

$$\sum_{i} D^{-\ell_i} \le 1.$$

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a prefix code with these codeword lengths.

Proof Idea. (A small example) To prove: A prefix code with lengths $\ell_1, \ell_2, \dots, \ell_m$, the inequality

$$\sum_i D^{-\ell_i} \leq 1 \qquad \text{holds}.$$

Depth: 0 1 2 3

Proof. (in general)

• Represent the set of prefix codes on a *D*-ary tree:

- Codewords correspond to leaves
- Path from root to each leaf determines a codeword
- Prefix condition: won't get to a codeword until we get to a leaf (no descendants of codewords are codewords)

Proof. (in general)

- $\ell_{\max} = \max_i(\ell_i)$ is the length of the longest codeword.
- We can expand the full-tree down to depth ℓ_{max} :

The nodes at the level ℓ_{max} are either

- codewords
- descendants of codewords
- neither
- Consider a codeword i at depth ℓ_i in tree
- ullet There are $D^{\ell_{\mathsf{max}}-\ell_i}$ descendants in the tree at depth ℓ_{max}
- Descendants of code i are disjoint from decedents of code j (prefix free condition)

Proof. (in general)

• All the above implies:

$$\sum_{i} D^{\ell_{\mathsf{max}} - \ell_{i}} \le D^{\ell_{\mathsf{max}}} \quad \Rightarrow \sum_{i} D^{-\ell_{i}} \le 1$$

• Conversely: given codewords lengths $\ell_1, \ell_2, \dots, \ell_m$ satisfying Kraft inequality, try to construct a prefix code.

Proof. (in general)

• Conversely: given codewords lengths $\ell_1, \ell_2, \dots, \ell_m$ satisfying Kraft inequality, try to construct a prefix code.

Proof. (in general)

• Conversely: given codewords lengths $\ell_1, \ell_2, \dots, \ell_m$ satisfying Kraft inequality, try to construct a prefix code.

Left as an Exercise.

Reading & Homework

Reading: 5.1, 5.2

Homework: Problems 5.1, 5.3

