Tópicos de Matemática Discreta

______ 2.º teste — 13 de janeiro de 2017 — _____ duração: 2 horas ______

1. Sejam $A=\{x\in\mathbb{N}\,|\,x\geq 8\ \mathrm{e}\ x\ \mathrm{\acute{e}}\ \mathrm{par}\},\ f:\mathbb{N}\to A,\ h:\mathbb{N}\to\mathbb{N}\ \mathrm{e}\ g:\mathbb{N}\to A\ \mathrm{as}\ \mathrm{funç\~oes}\ \mathrm{definidas}$ por

$$f(m) = \begin{cases} m+7 & \text{se} & m \text{ \'e impar} \\ 2m+4 & \text{se} & m \text{ \'e par} \end{cases}, \qquad h(m) = 2m-1 \quad \text{e} \quad g(m) = 2m+6.$$

- (a) Determine $f(\{3,4,5\})$ e $f^{\leftarrow}(\{12,18\})$. Apresente os cálculos que efetuar.
- (b) Diga, justificando, se f é injetiva e se f é sobrejetiva.
- (c) Verifique que $f \circ h = g$.
- (d) Justifique que a função g é invertível e determine a sua inversa.
- (e) Conclua que a afirmação seguinte nem sempre é verdadeira: Se $f_1: B \to C$ e $f_2: C \to D$ são funções tais que $f_2 \circ f_1$ é uma função bijetiva, então f_1 e f_2 são funções bijetivas.
- 2. Sejam $A = \{1, 2, 3, 4, 5\}$ e S a relação binária em A definida por

$$S = \{(1,3), (2,4), (3,1), (4,5), (5,3)\}.$$

- (a) Sem justificar, dê exemplo de uma relação binária $T \neq \emptyset$ em A tal que $T \subseteq S$ e $T \subseteq S^{-1}$.
- (b) Diga, justificando, se $\operatorname{Im}(S \circ S) = \operatorname{Im}(S)$.
- 3. Seja R a relação binária definida em \mathbb{R} por

$$mRn$$
 se e só se $|m-n| \le 1$.

Diga, justificando, se a relação R é:

- (a) reflexiva.
- (b) simétrica.
- (c) antissimétrica.
- (d) transitiva.
- 4. Sejam $A = \{1, 2, 7, 15, 20, 30, 32\}$ e R a relação de equivalência definida em A por

 $x\,R\,y$ sse x e y têm o mesmo número de divisores naturais primos.

- (a) Mostre que a relação binária R é, efetivamente, transitiva.
- (b) Determine $[1]_R$. Justifique a sua resposta.
- (c) Determine A/R. Justifique a sua resposta.

5. Considere o c.p.o. (A, \leq) com o seguinte diagrama de Hasse associado:

Indique, sem justificar,

- (a) os elementos maximais e os elementos minimais de A.
- (b) o conjunto dos majorantes de $\{c, d\}$.
- (c) um subconjunto de A com elemento minimal mas sem elemento mínimo.
- (d) um subconjunto de A de cardinal 2 que não tenha supremo.
- 6. Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:
 - (a) Existem funções $f:A\longrightarrow B$ e $g:B\longrightarrow C$ tais que f não é injetiva e $g\circ f$ é uma função injetiva.
 - (b) Existe uma relação de equivalência R em \mathbb{N} tal que $\mathbb{N}/R = {\mathbb{N}, \mathbb{N} \setminus \{1\}}$.
 - (c) Se R e S são relações binárias num conjunto A tais que $R \cap S$ é antissimétrica, então R e S são antissimétricas.
 - (d) $U = \{(1,1), (2,2), (3,2), (3,3), (3,5), (4,1), (4,2), (4,3), (4,4), (4,5), (5,5)\}$ é uma relação de ordem parcial no conjunto $A = \{1,2,3,4,5\}$.

Cotações	1.	2.	3.	4.	5.	6.
	1+1+1+1+0.5	0.5+1	0.75+0.75+0.75+0.75	1+1+1	1+1+1+1	1+1+1+1