LA FONCTION LOGARITHME DÉCIMAL E04

EXERCICE N°1

L'échelle de Richter, basée sur les mesures faites par les sismographes, exprime la magnitude M d'un séisme. Cette magnitude se calcule selon la formule :

$$M = \log\left(\frac{A}{A_0}\right)$$

où A représente l'amplitude maximale relevée par le sismographe et A_0 une amplitude de référence.

1) Que vaut la magnitude M lorsque

1.a)
$$A = A_0$$
? **1.b)** $A = 10 \times A_0$? **1.c)** $A = 10000 \times A_0$?

2) Un séisme est dit « léger », provoquant des secousses d'objet à l'intérieur des maisons et quelques faibles dommages, lorsque sa magnitude est comprise entre 4 et 5.

Montrer qu'alors son amplitude est telle que : $10^4 \times A_0 \le A \le 10^5 \times A_0$.

3) La magnitude connue la plus importante est de 9,5. Elle a été enregistrée au Chili en mai 1960. Exprimer son amplitude A en fonction de A_0 .

(On donnera une valeur approchée de l'amplitude sous la forme $a \times 10^b \times A_0$, a < 10 et b entier naturel).

4) Un pays vient de connaître un séisme de magnitude 8 suivi d'une réplique de magnitude 4. Un journaliste écrit alors que la réplique a été deux fois moins puissante que le premier séisme. Que pensez-vous de cette affirmation du journaliste ? Argumentez votre réponse.

EXERCICE N°2

Dans une grande salle de concert, pendant huit soirées différentes, on a relevé la pression acoustique ambiante (en Pascal : Pa) ainsi que le niveau d'intensité sonore (en décibel : dB) du bruit responsable de cette pression. Les résultats obtenus sont présentés dans le tableau cidessous :

<u> </u>								
Pression acoustique : p_i	0,5	1	3	5	7	10	13	15
Intensité sonore : y_i	88	94	103	108	111	114	116	117

Voici le nuage de points de cette série statistique.

- 1) Un ajustement affine du nuage de points semble-t-il pertinent ? Justifier.
- 2) On pose $x = \log(p)$. Reproduire et compléter te tableau suivant en arrondissant les valeurs de x à 10^{-2} près.

x_i								
\mathcal{Y}_{i}	88	94	103	108	111	114	116	117

- 3) Dans un repère orthogonal (unités graphiques : 1 cm pour 1 sur l'axe des abscisses et 1 cm pour 5 dB sur l'axe des ordonnées en prenant 80 pour origine), représenter le nuage de points $M(x_i; y_i)$. Un ajustement affine du nuage de points semble-t-il pertinent ? Justifier.
- 4) Calculer les coordonnées du point moyen $G(x_G; y_G)$ du nuage et placer ce point sur le graphique.
- 5) Donner une équation de la droite d'ajustement de y en x par la méthode des moindres carrés (coefficients arrondis à 10^{-2} près). Tracer cette droite dans le repère.
- 6) Lors d'un concert de hard rock, l'oreille des spectateurs peut être soumise à la pression de 20 Pa. Estimer par le calcul l'intensité sonore atteinte lors d'un tel concert (résultat arrondi au décibel près).

LA FONCTION LOGARITHME DÉCIMAL E04

EXERCICE N°1

L'échelle de Richter, basée sur les mesures faites par les sismographes, exprime la magnitude M d'un séisme. Cette magnitude se calcule selon la formule :

$$M = \log\left(\frac{A}{A_0}\right)$$

où A représente l'amplitude maximale relevée par le sismographe et A_0 une amplitude de référence.

1) Que vaut la magnitude M lorsque

1.a)
$$A = A_0$$
? **1.b)** $A = 10 \times A_0$? **1.c)** $A = 10000 \times A_0$?

2) Un séisme est dit « léger », provoquant des secousses d'objet à l'intérieur des maisons et quelques faibles dommages, lorsque sa magnitude est comprise entre 4 et 5.

Montrer qu'alors son amplitude est telle que : $10^4 \times A_0 \le A \le 10^5 \times A_0$.

3) La magnitude connue la plus importante est de 9,5. Elle a été enregistrée au Chili en mai 1960. Exprimer son amplitude A en fonction de A_0 .

(On donnera une valeur approchée de l'amplitude sous la forme $a\times 10^b\times A_0$, a<10 et b entier naturel).

4) Un pays vient de connaître un séisme de magnitude 8 suivi d'une réplique de magnitude 4. Un journaliste écrit alors que la réplique a été deux fois moins puissante que le premier séisme. Que pensez-vous de cette affirmation du journaliste ? Argumentez votre réponse.

EXERCICE N°2

Dans une grande salle de concert, pendant huit soirées différentes, on a relevé la pression acoustique ambiante (en Pascal : Pa) ainsi que le niveau d'intensité sonore (en décibel : dB) du bruit responsable de cette pression. Les résultats obtenus sont présentés dans le tableau cidessous :

								
Pression acoustique : p_i	0,5	1	3	5	7	10	13	15
Intensité sonore : y_i	88	94	103	108	111	114	116	117

Voici le nuage de points de cette série statistique.

1) Un ajustement affine du nuage de points semble-t-il pertinent ? Justifier.

2) On pose $x = \log(p)$. Reproduire et compléter te tableau suivant en arrondissant les valeurs de x à 10^{-2} près.

\boldsymbol{x}_{i}								
\mathcal{Y}_{i}	88	94	103	108	111	114	116	117

- 3) Dans un repère orthogonal (unités graphiques : 1 cm pour 1 sur l'axe des abscisses et 1 cm pour 5 dB sur l'axe des ordonnées en prenant 80 pour origine), représenter le nuage de points $M(x_i; y_i)$. Un ajustement affine du nuage de points semble-t-il pertinent ? Justifier.
- 4) Calculer les coordonnées du point moyen $G(x_G; y_G)$ du nuage et placer ce point sur le graphique.
- 5) Donner une équation de la droite d'ajustement de y en x par la méthode des moindres carrés (coefficients arrondis à 10^{-2} près). Tracer cette droite dans le repère.
- 6) Lors d'un concert de hard rock, l'oreille des spectateurs peut être soumise à la pression de 20 Pa. Estimer par le calcul l'intensité sonore atteinte lors d'un tel concert (résultat arrondi au décibel près).