CS422 Database systems

Today: Data streams & AQP

Data-Intensive Applications and Systems (DIAS) Laboratory École Polytechnique Fédérale de Lausanne

Slides adapted from presentations of the Berkeley/MIT team

Overview

Previous weeks

Big Data infrastructures & architectural choices

This week

- Data stream processing
- Approximate query processing

Data streams management

- Traditional DBMS data stored in finite, persistent data sets
- Data Streams distributed, continuous, unbounded, rapid, time varying, noisy, ...
- Data-Stream Management variety of applications
 - Real-time network analytics
 - Network security
 - Traffic engineering
 - Sensor networks
 - Financial applications

- Telecom call-detail records
- Web logs and clickstreams
- Manufacturing processes
- -

Example: stock monitoring

- Notify me when some stock price increases by at least 5% in two seconds.
- Find the top (mostfrequent) 10 traded stocks in the last 10 minutes
- Notify me when correlation of two stocks over the last
 10 minutes exceeds 0.6

Time (sec)	MSFT	APPL	WMT
0	65.06	121.35	66.74
1	65.06	121.36	66.75
2	65.06	121.36	66.73
3	65.07	121.36	66.72
4	65.08	121.36	66.72
5	65.07	121.35	66.71

Example: Real-time netw. analytics

- Which are the top (most frequent) 1000 (source, dest) ip pairs seen by R1 over the last month
- How many distinct (source, dest) pairs have been seen by R1 and R2 but not R3
- Which IP addresses receive a lot of data but send only very few messages

Example: Real-time netw. analytics (2)

Where is the challenge -- assume packet-level statistics

- Single 2Gb/sec link; say avg packet size is 50 bytes
- Number of packets/sec = 5 million
- If we only capture header information per packet: src/dest IP, time, no. of bytes, etc. at least 10 bytes.
 - Space per second is 50MB
 - Space per day is 4.5TB per link
 - ISPs typically have hundreds of links!

Deep packet analysis – whole new ballgame!!

Databases Vs Data Streams

A relation is a set of tuples	A stream is a bag of tuples with partial order		
Relations are persistent	Streams need to be processed in real time as tuples arrive		
Interactive queries	Continuous queries		
Random access to data, queries need to be processed as they arrive	Sequential access to data, random access to continuous queries		
Physical database design does not change during query, queries can be unpredictable	Queries do not change, stream can be very unpredictable		

Slide based on material from Jennifer Widom.

Overview

- Introduction & motivation
- Data Stream Model
- The data facet
- The time facet

The Data Stream Model

- Underlying signal: One-dimensional array
 A[1...N] with values A[i] all initially zero
 - Multi-dimensional arrays also possible
- Signal implicitly represented via a stream of updates
 - j-th update is <k, c[j]> implying
 - A[k]=A[k]+c[j] (count c[j] can be >0 or <0)
- Goal: Compute functions on A[] subject to
 - Small space
 - Fast processing of updates
 - Fast function computation

The Data Stream Model – example

 Underlying signal: Onedimensional array A[1...N]

Signal A

Position #packets Signal implicitly represented via • • • a stream of updates 2159214850 13 (corresponds to 128.179.1.2) 2159214851 5442 2159214852 0 2159214850 • • • • • • Map IP to integer Stream of updates | <128.179.1.2,+1>

The Data Stream Model – special cases

- Cash-register model
 - c[j] is always >=0 (increment-only)
 - In many cases, c[j]=1
- Turnstile model
 - Most general streaming model
 - c[j] can be positive or negative (increment or decrement)
- Time-series model
 - j-th update updates A[j] (i.e., A[j]=c[j])

The Data Stream Model – special cases

- Cash-register model
- Turnstile model
- Time-series model

- Difficulty varies depending on the model & problem
 - E.g., min/max in time-series Vs turnstile

The two facets of the problem

DATA

TIME

- Too much data
 - Velocity
 - Dimensions

- Interested only for parts of the stream
- Need to expire old data

Solutions of small space/small computational complexity

The facet of data

Stream of items:

Source	Destination	Time	Protocol	Data
10.1.0.2	16.2.3.7	1992191	http	• • • • •

IP network signals

- Number of active flows per source-IP address
 - 2³² sized array: increment & decrement (~16 GB)
- Number of packets exchanged between any two IP addresses during the day
 - 2⁶⁴ sized array: increment only (64 EB!)
- Number of packets sent by each IP in the last hour (???)
 - 2³² sized array, sliding window

The facet of time

Queries: Continuous

Defining the query range

- Decay model

The facet of time (2)

Measuring time

- Wall-clock time (time-based definition)
 - All updates since 13:32:00
 - [current time 100 seconds, current time]
 - Event time vs processing time

- Number of updates (event-based definition)
 - Last 1000 updates
 - Also called count-based, arrival-based

Two choices to handle streams

- Scale-out to handle real-time requirements
 - Add more machines
 - Programming model to ease
 - Expressing user requirements
 - Distributing the stream and computations
- The poor man's approach*
 - Summarize the stream
 - Annrovimato ucar requirements

Sometimes, combination of both!

Scaling-out platforms

- Necessary when exact results are needed
 - Banks, medical sensors, Industry 4.0
- Typically comes with a hefty price tag
- Several platforms
 - Spark Streaming
 - Twitter: Storm → Heron
 - Apache Flink
 - Apache Kafka

The Spark <u>Unified</u> Stack

Spark Streaming

- Up to now
 - Data pre-existed in DFS
 - Analyzed in batch

One-shot queries over stored data

- Real-time analysis of big data
 - Process data as soon as it arrives, take action immediately
 - Continuous queries

Expectations from the platform

- Programming model
 - Utilize commodity clusters for scalable processing
- Fault tolerance
 - Must recover from failures and stragglers quickly and efficiently
 - Imagine the VISA fraud detection system is down!
- It was *almost easy* in MapReduce and Spark! Why is it so difficult for streams?

Fault tolerance for SP systems

Replication

- Replicate processing of each input to two or more nodes
- When a node fails, the backup node takes over

Fast recovery Very expensive!

Fault tolerance for SP systems

- Upstream backup
 - Nodes maintain checkpoints (safely) and backups of updates forwarded after the checkpoints
 - When a node fails, the backup node takes over
 - Replay input stream after last surviving checkpoint

Fairly cheap – minimal additional hw Slow recovery

Fault tolerance for SP systems

- Replication
 - Fast recovery
 - Expensive on resources at least x2 nodes
- Upstream backup
 - Cheap only a few additional nodes
 - Time-consuming recovery

A new fault tolerance technique for SP

- State: mutable → immutable
- Partition continuous computation into small, deterministic, stateless tasks

We have decoupled computation from state!

Does this ring a bell?

- Stateless operators

 static batch model
 - MapReduce, Spark, ...
 - Already advanced in fault tolerance!

Discretized stream processing

- Consider stream in SMALL input batches
 - Micro-batches
- Streaming computation is a series of very small deterministic batch jobs
- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches

Discretized stream processing

- Consider stream in SMALL input batches
 - Micro-batches
- Streaming computation is a series of very small deterministic batch jobs
- Batch sizes as low as ½ second, latency of about 1 second
- Potential for combining batch processing and streaming processing in the same system

DStreams

- Discretized stream (DStream) is a sequence of immutable, partitioned datasets
 - a sequence of RDDs!
- Can be created from live data streams (e.g., twitter, network sockets, ...) or by applying bulk parallel transformations on other DStreams

```
val tweets = ssc.twitterStream()
```

Twitter Streaming API

batch @ t

batch @ t+1

batch @ t+2

tweets DStream

stored in memory as an RDD (immutable, distributed)

Example – streaming word count

Example – streaming word count

Example – streaming word count

```
val ssc = new StreamingContext(..., Seconds(5))
 val lines = ssc.socketTextStream(url,port)
 val words = lines.flatMap( .split(" "))
     wordC = words.map(x => (x, 1)).reduceByKey(_ + _)
 val
                    transformation: modify data in one DStream to create
    DStreams
                                    another DStream
                                         batch @ t+2
                              batch @ t+1
Twitter Streaming API
                    batch @ t
  tweets DStream
```


Example – SW streaming word count

```
operate on sliding
 val ssc = new StreamingContext(..., Seconds(5)
                                                        window of 10
 val lines = ssc.socketTextStream(url,port)
                                                       seconds \rightarrow last 2
 val words = lines.window(Seconds(10))
                                                           batches
                     .flatMap( .split(" "))
                     .map(x => (x, 1)).reduceByKey( + )
 words.print()
 ssc.start()
 ssc.awaitTermination()
                     DS1
                                DS2
                                           DS3
                                         batch @ t+2
                              batch @ t+1
                    batch @ t
Twitter Streaming API
```

Spark Streaming *magically* maintains sliding window operations

Example – SW streaming word count

Defining the sliding window

Using window

Using reduceByKeyAndWindow

```
lines.flatMap(_.split(" ")).map(x => (x,1))
    .reduceByKeyAndWindow( (a,b) => (a + b), Seconds(10) )
```

... and teaching Spark how to expire batches

```
lines.flatMap( .split(" ")).map(x => (x,1))
```

What is the benefit of the last approach?

Arbitrary Combinations of Batch and Streaming Computations

Inter-mix RDD and DStream operations!

Example: Join incoming tweets with a spam filter for data cleaning

```
tweets.transform(tweetsRDD => {
    tweetsRDD.join(spamHDFSFile).filter(...)
})
```

Fault-tolerance

- RDD Lineage: RDDs remember the operations that created them
- Batches of input data are replicated in memory for faulttolerance
- Data lost due to worker failure, can be recomputed from replicated input data
- Fault-tolerance and exactlyonce transformations

Fast Fault Recovery

Recovers from faults/stragglers within 1 sec

Unifying Batch and Stream Processing Models

Spark program on Twitter log file using RDDs

```
val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFile('hdfs://...")
```

ONLY NEED TO CHANGE THE INPUT!

Spark Streaming program on Twitter stream using DStreams

```
val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags saveAsHadoopFiles("hdfs://...")
```

Vision - one stack to rule them all

30189110 RED HOT CHILI PEPPERS

Our progress up to now!

100 TB on 1000 machines

½ - 1 Hour

1 - 5 Minutes

1-5 seconds

Hard Disks

Memory

Approximate Query Processing

Exact

Approximate

Offline

Real-time

Synopses & approx. alg.

An example...

Server log files of several TB

```
64.242.88.10 - - [07/Mar/2004:16:05:49 -0800] "GET /twiki/bin/edit/Main/Double_...
142.22.55.12 - - [07/Mar/2004:16:06:51 -0800] "GET /twiki/bin/rdiff/TWiki/NewUs...
142.242.63.63 - - [07/Mar/2004:16:10:02 -0800] "GET /mailman/listinfo/hsdivision...
142.22.55.12 - - [07/Mar/2004:16:11:58 -0800] "GET /twiki/bin/view/TWiki/WikiSy...
111.11.32.65 - - [07/Mar/2004:16:20:55 -0800] "GET /twiki/bin/view/Main/DCCAndP...
112.13.45.99 - - [07/Mar/2004:16:23:12 -0800] "GET /twiki/bin/oops/TWiki/Append...
62.11.1.123 - - [07/Mar/2004:16:24:16 -0800] "GET /twiki/bin/view/Main/PeterTh...
```

- How to query these files
 - using good old SQL
 - and get near-interactive responses?
 - -approximate results acceptable!!!

BlinkDB: Blink and it's done

- Target: Support interactive SQL-like aggregate queries over massive sets of data by approximation
- Interactive: ~ 1-2 seconds
- Strategy: Approximate answers via sampling
- Supports
 - Aggregates & group-by [Paper 1, in exam]
 - Filters [Paper 1, in exam]
 - Joins [Paper 2, not in exam material]
 - User-defined functions (UDFs)! [Paper 2, not in exam material]

Paper 1 (in exam): https://sameeragarwal.github.io/blinkdb eurosys13.pdf
Paper 2 (optional, will not be examined in midterm or final):
https://sameeragarwal.github.io/mod282-agarwal.pdf

Supports

Aggregates

•blinkdb> SELECT AVG(jobtime)
FROM very_big_log

AVG, COUNT, SUM, STDEV, PERCENTILE etc.

Supports

Aggregates

Filters

```
•blinkdb> SELECT AVG(jobtime)

FROM very_big_log

WHERE src = 'hadoop'

FILTERS, GROUP BY clauses
```

Supports Aggregates

Joins

Filters

```
•blinkdb> SELECT AVG(jobtime)

FROM very_big_log

WHERE src = 'hadoop'

LEFT OUTER JOIN logs2

ON very_big_log.id = logs.id
```

JOINS, Nested Queries etc.

```
Supports
```

```
Aggregates
Joins
```

Filters UDFs

```
•blinkdb> SELECT my_function(jobtime)

FROM very_big_log
WHERE src = 'hadoop'
LEFT OUTER JOIN logs2

ON very_big_log.id = logs.id
```

Supports

Aggregates
Joins

Filters UDFs

Accuracy reqs

•blinkdb> SELECT AVG(jobtime)

FROM very_big_log

WHERE src = 'hadoop'

LEFT OUTER JOIN logs2

ON very_big_log.id = logs.id

ERROR WITHIN 10% AT CONFIDENCE 95%

Desired accuracy

Supports

Aggregates

Joins

Accuracy reqs

Filters

UDFs

Performance reqs

•blinkdb>

SELECT AVG(jobtime)

FROM very_big_log

WHERE src = 'hadoop'

LEFT OUTER JOIN logs2

ON very_big_log.id = logs.id

WITHIN 5 SECONDS

Desired performance

Workflow of BlinkDB

ID	City	Buff Ratio
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

Query log analysis:

Q1: SELECT count(*) FROM log WHERE city=NYC

Q2: SELECT AVG(bradio) FROM log WHERE city=NYC

O3: SELECT AVG(bradio) FROM log GROUP BY city

...

ID	City		Buff Ratio			
1	City		Buf	f Rati	o	
3	NY(City			3	
4	NYO	NYO		ff R	atio	
9	NYO	Ber				
10	Ber	Ber				
12	Ber	Ber				
	Ber	rkele 0.0)9		

Query Execution on Samples

ID	City	Buff Ratio
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

What is the average <u>buffering</u> ratio in the table?

0.2325

Query Execution on Samples

ID	City	Buff Ratio
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

What is the average <u>buffering</u> ratio in the table?

ID	City	Buff Ratio	Sampling Rate
2	NYC	0.13	1/4
6	Berkeley	0.25	1/4
8	NYC	0.19	1/4

Query Execution on Samples

ID	City	Buff Ratio
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

What is the average <u>buffering</u> ratio in the table?

ID	City	Buff Ratio	Sampling Rate
2	NYC	0.13	1/2
3	Berkeley	0.25	1/2
5	NYC	0.19	1/2
6	Berkeley	0.09	1/2
8	NYC	0.18	1/2
12	Berkeley	0.49	1/2

Speed/Accuracy Trade-off

Execution Time (Sample Size)

Speed/Accuracy Trade-off

Sampling Vs. No Sampling

Sampling Vs. No Sampling

What is BlinkDB?

- A framework that ...
- creates and maintains a variety of uniform and stratified samples from underlying data
- returns fast, approximate answers with error bars by executing queries on samples of data
- verifies the correctness of the error bars that it returns at runtime

What is BlinkDB?

- A framework that ...
- creates and maintains a variety of uniform and stratified samples from underlying data
- returns fast, approximate answers with error bars by executing queries on samples of data
- verifies the correctness of the error bars that it returns at runtime

Learning to sample!

- Which types of sample to create?
 - On which columns
 - How many samples
- Typical assumption
 - Interests don't change → let the past queries guide you!

```
SELECT AVG(salary)
FROM tbl1
```

```
SELECT AVG(salary)
FROM tbl1
WHERE city="London"
```

SELECT
AVG(salary)
FROM tbl1
GROUP BY city,
profession

Uniform sample

Uniform sample for city="London"

Learning to sample (2)

Predictable queries

Can only answer this exact query!

Learning to sample (3)

Predictable predicates

Can only answer this query, for different \$X

Learning to sample (4)

- Key notion: QCS Query Column Sets
 - All columns contained in the query that affect sampling
 - GROUP BY, HAVING, WHERE

```
SELECT AVG($X)FROM tbl1
WHERE $Y1=$val1 AND $Y2=$val2 ... GROUP BY $Z
```

Construct samples for each QCS

Learning to sample (5)

- Unpredictable queries
- Fully flexible, but cannot sample efficiently!
 - Best effort approach

Query column sets

- BlinkDB uses QCS to sample
 - Over 90% of queries covered by 10% 20% of QCS \rightarrow
 - Keeping samples for the most frequently used 10%-20% of QCS can help in 90% of the queries!
 - Use query logs to find the most frequent QCS
- Maintain a different sample for each frequent QCS!
 - For each query q with QCS_q
 - if there exists already a suitable sample S with QCS_S, use it
 - Suitable: QCS_q is a subset of QCS_S
 - If there is no suitable sample, trial-and-error!

Maintain a different sample for each frequent QCS!

Pair the queries with the samples

- Samples on the following QCS
 - <city>
 - <city, profession>
 - <city, age>
 - <city, profession, age>
 - <city, profession, education>
 - <education>

Queries SELECT avg(salary) FROM tbl1 GROUP BY city, profession

Maintain a different sample for each frequent QCS!

Pair the queries with the samples

- Samples on the following QCS
 - <city>
 - <city, profession>
 - <city, age>
 - <city, profession, age>
 - <city, profession, education>
 - <education>

Queries SELECT avg(salary) FROM tbl1 WHERE age=20 GROUP BY

city

Maintain a different sample for each frequent QCS!

Pair the queries with the samples

- Samples on the following QCS
 - <city>
 - <city, profession>
 - <city, age>
 - <city, profession, age>
 - <city, profession, education>
 - <education>

Queries

SELECT avg(salary)

FROM tbl1

WHERE city=London

GROUP BY

education

Maintain a different sample for each frequent QCS!

Pair the queries with the samples

- Samples on the following QCS
 - <city>
 - <city, profession>
 - <city, age>
 - <city, profession, age>
 - <city, profession, education>
 - <education>

Queries SELECT avg(salary) FROM tbl1 GROUP BY city, education

Maintain a different sample for each frequent QCS!

Pair the queries with the samples

- Samples on the following QCS
 - <city>
 - <city, profession>
 - <city, age>
 - <city, profession, age>
 - <city, profession, education>
 - <education>

Queries

SELECT avg(salary)

FROM tbl1

GROUP BY

name

Uniform samples

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

Simplification

SELECT AVG(data)
FROM tbl
GROUP BY city

SELECT AVG(data)
FROM tbl1, tbl2
WHERE tbl1.x=tbl2.y
GROUP BY city

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

SELECT AVG(data)
FROM tbl
GROUP BY city

 $\cdot \cdot \cdot$ FILTER rand() < 1/3

. Adds per-row sampling rates

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

ID	City	Data	Rate
2	NYC	0.13	1/3
8	NYC	0.25	1/3
6	Berkeley	0.09	1/3
11	NYC	0.19	1/3

Does not change query semantics

ID	City	Data
1	Lausanne	0.91
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

ID	City	Data	Rate
2	NYC	0.13	1/3
8	NYC	0.25	1/3
6	Berkeley	0.09	1/3
11	NYC	0.19	1/3

Uniform samples fail to include rare values

Stratified samples

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

Stratified samples

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

City	Count
NYC	7
Berkeley	5

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

				4
City	Count	Rate		
NYC	7	2/7	S ₂	↑
Berkeley	5	2/5		
			GROUP	S_1
				3
			1	
				'

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

\uparrow
4

City	Count	Rate
NYC	7	2/7
Berkeley	5	2/5

ID	City	Data
1	NYC	0.78
2	NYC	0.13
3	Berkeley	0.25
4	NYC	0.19
5	NYC	0.11
6	Berkeley	0.09
7	NYC	0.18
8	NYC	0.15
9	Berkeley	0.13
10	Berkeley	0.49
11	NYC	0.19
12	Berkeley	0.10

Stratified samples

SELECT AVG(data)
FROM tbl
GROUP BY city

ID	City	Data	Rate
2	NYC	0.13	2/7
8	NYC	0.25	2/7
6	Berkeley	0.09	2/5
12	Berkeley	0.49	2/5

Does not change query semantics

Are rare values represented in the sample now?

Sampling for rare QCS values

 When a QCS value is very rare, all records end up in the sample

Figure 4. Example of a stratified sample associated with a set of columns, ϕ .

What is BlinkDB?

- A framework that ...
- creates and maintains a variety of uniform and stratified samples from underlying data
- returns fast, approximate answers with error bars by executing queries on samples of data
- verifies the correctness of the error bars that it returns at runtime

Error Estimation

Closed Form Aggregate Functions

- Central Limit Theorem: When adding independent random variables, their sum tends towards a normal distribution, even if the original variables themselves are not normally distributed
- Applicable to AVG, COUNT, SUM,
 VARIANCE and STDEV

Error estimation

Closed Form Aggregate Functions

Error estimation

- Generalized Aggregate Functions
 - Statistical Bootstrap
 - Applicable to complex and nested queries,
 UDFs, joins etc.
- Main idea
 - Execute the query on x sub-samples
 - Variance of answers: indicator of accuracy

Error estimation

Generalized Aggregate Functions

What is BlinkDB?

- A framework that ...
- creates and maintains a variety of random and stratified samples from underlying data
- returns fast, approximate answers with error bars by executing queries on samples of data
- verifies the correctness of the error bars that it returns at runtime

Kleiner's Diagnostics

What is BlinkDB?

- A framework that ...
- creates and maintains a variety of random and stratified samples from underlying data
- returns fast, approximate answers with error bars by executing queries on samples of data
- verifies the correctness of the error bars that it returns at runtime

Readings

BlinkDB

- Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, Ion Stoica: BlinkDB: queries with bounded errors and bounded response times on very large data. EuroSys 2013: 29-42 https://sameeragarwal.github.io/blinkdb eurosys13.pdf
- Paper 2 (optional, will not be examined): https://sameeragarwal.github.io/mod282-agarwal.pdf

Streams

- Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica:
 Discretized streams: fault-tolerant streaming computation at scale. SOSP 2013: 423-438 http://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf
- Introduction & time models
 - Section 4 from http://users.monash.edu/~mgaber/Muthu-Survey.pdf
 - Section II.A from http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf for decay models
 - Section 3 from http://dl.acm.org/citation.cfm?id=1060753 covers sliding windows, jumping windows, landmark windows
- Technical/How-to/API/dev...
 - http://spark.apache.org/sql/
 http://spark.apache.org/streaming/
 http://spark.apache.org/sql/