Fonctions convexes

Exercice 1. Déterminant

Soit
$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
 convexe et $x < y < z$. Montrer que $\begin{vmatrix} 1 & x & f(x) \\ 1 & y & f(y) \\ 1 & z & f(z) \end{vmatrix} > 0$.

Exercice 2. Somme de fractions

Soient
$$x_1, x_2, ..., x_n > 0$$
. Montrer que $\frac{x_1}{x_2} + \frac{x_2}{x_3} + ... + \frac{x_n}{x_1} \ge n$.

Exercice 3. Monotonie

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ convexe. Montrer que l'on a :

- soit f est croissante sur \mathbb{R} .
- soit f est décroissante sur \mathbb{R} .
- soit il existe $a \in \mathbb{R}$ tel que f est décroissante sur $]-\infty,a]$, puis croissante sur $[a,+\infty[$.

Exercice 4. Fonction convexe bornée

- 1) Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ convexe et bornée. Montrer que f est décroissante.
- 2) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ convexe et bornée. Montrer que f est constante.

Exercice 5. f convexe majorée par g affine

Soit
$$f: \mathbb{R}^{+*} \longrightarrow \mathbb{R}$$
 convexe et $g: \mathbb{R}^{+*} \longrightarrow \mathbb{R}$ affine. On suppose :
$$\begin{cases} \forall \ x > 0, \ f(x) \leqslant g(x), \\ f(1) = g(1). \end{cases}$$
 Montrer que $f = g$.

Exercice 6. Position par rapport à une asymptote

Soit
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 convexe telle que C_f admet une asymptote d'équation $y = mx + p$ en $+\infty$.
Montrer que C_f est au dessus de cette asymptote.

Exercice 7. Fonction convexe dérivable

Soit
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 convexe dérivable. Montrer que f' est continue.

Exercice 8. Étude à l'infini

Soit
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 deux fois dérivable telle que : $f \ge 0$, $f' \ge 0$, $f'' \ge 0$.

- 1) Étudier l'existence des limites (dans $\overline{\mathbb{R}}$) en $+\infty$ de f(x), f'(x), $\frac{f(x)}{x}$.
- 2) Même question pour les limites en $-\infty$ de f(x), f'(x), et xf'(x).

Exercice 9. Zéro de f''

Soit
$$f:[0,+\infty[$$
 $\longrightarrow \mathbb{R}$ deux fois dérivable telle que $f(x)$ $\xrightarrow[x\to+\infty]{} f(0)$.
Montrer qu'il existe $c\in]0,+\infty[$ tel que $f''(c)=0$.

Exercice 10.
$$f((x+y)/2) \le (f(x) + f(y))/2$$

Soit
$$f:[a,b] \longrightarrow \mathbb{R}$$
 continue telle que : $\forall x,y \in [a,b], \ f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}$. Montrer que f est convexe.

Exercice 11. Suites adjacentes

Soit
$$f:[a,b] \longrightarrow [c,d]$$
 convexe, bijective, croissante. On définit les suites (u_n) et (v_n) par :

$$a \le u_0 \le v_0 \le b$$
, $u_{n+1} = \frac{u_n + v_n}{2}$, $v_{n+1} = f^{-1} \left(\frac{f(u_n) + f(v_n)}{2} \right)$.

Montrer que (u_n) et (v_n) convergent vers une même limite.

Exercice 12. Polygone inscrit dans un cercle de périmètre maximum

Soit
$$n \ge 3$$
 et $A_1 A_2 \dots A_n$ un polygone convexe à n côtés inscrit dans un cercle fixé.

Exercice 13. Fonctions logarithmiquement convexe

Soit
$$f: \mathbb{R} \longrightarrow \mathbb{R}^{+*}$$
. Montrer que: $(\ln f \text{ est convexe}) \iff (\forall \alpha > 0, f^{\alpha} \text{ est convexe}).$

Exercice 14. Limite de f(x) - x f'(x)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ convexe dérivable.

- 1) Montrer que $p = \lim_{x \to +\infty} (f(x) xf'(x))$ existe.
- 2) On suppose p fini. En utilisant le fait que f(x) xf'(x) est bornée au voisinage de $+\infty$, montrer que $\frac{f(x)}{x}$ et f'(x) admettent une même limite m finie en $+\infty$.
- 3) Montrer alors que $f(x) mx p \xrightarrow[x \to +\infty]{} 0$.

Exercice 15. Fonction positive concave

Soit $f: [0, +\infty[\longrightarrow [0, +\infty[$ concave.

- 1) Montrer que la fonction $x \longmapsto \frac{f(x)}{x}$ est décroissante sur $]0, +\infty[$. 2) Montrer que : $\forall x, y \ge 0, \ f(x+y) \le f(x) + f(y)$.

Exercice 16. Constante d'Euler

Soit $f:[0,+\infty[\longrightarrow \mathbb{R}]$ concave, dérivable, croissante.

- Montrer que: ∀ x ≥ 1, f(x+1) f(x) ≤ f'(x) ≤ f(x) f(x-1).
 On pose: {u_n = f'(1) + f'(2) + ... + f'(n) f(n) v_n = f'(1) + f'(2) + ... + f'(n) f(n+1). Montrer que ces suites convergent.
 On prend f(x) = ln x. Soit γ = lim _{n→∞} u_n (constante d'Euler). Calculer γ à 10⁻² près.

Exercice 17. Tangentes passant par un point

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ convexe dérivable, et $A = (a, b) \in \mathbb{R}^2$. Étudier le nombre maximal de tangentes à \mathcal{C}_f passant par

Exercice 18. Caractérisation des fonctions convexes ou concaves par le TAF

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivable telle que : $\forall \ a, b \in \mathbb{R}$ tq $a < b, \ \exists! \ c \in]a, b[$ tq f(b) - f(a) = (b - a)f'(c).

- 1) Montrer que pour tout $a \in \mathbb{R}$, la fonction $b \mapsto \frac{f(b) f(a)}{b a}$ est monotone sur $]-\infty, a[$ et sur $]a, +\infty[$.
- 2) En déduire que f est strictement convexe ou strictement concave.

Exercice 19. Pseudo-dérivée seconde

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue. On suppose que : $\forall x \in \mathbb{R}, \ D^2 f(x) = \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$ existe.

- 1) Si f est de classe C^2 , calculer $D^2 f(x)$.
- 2) Soit f quelconque et a < b < c tels que f(a) = f(b) = f(c). Montrer qu'il existe $x \in [a, c]$ tq $D^2 f(x) \leq 0$.

On suppose à présent que : $\forall x \in \mathbb{R}, D^2 f(x) \ge 0$.

- 3) Soient a < b < c et P le polynôme de degré inférieur ou égal à 2 coïncidant avec f aux points a, b, c. Montrer que $P'' \geqslant 0$.
- 4) Calculer P'' en fonction de a, b, c et f(a), f(b), f(c). En déduire que f est convexe.

Exercice 20. Fonction convexe non dérivable sur un sous ensemble dénombrable

Soit
$$(a_n)$$
 une suite bornée de réels. On pose $f(x) = \sum_{n=0}^{\infty} \frac{|x - a_n|}{3^n}$.

Montrer que f est convexe, et n'est pas dérivable aux points a_n .

Exercice 21. Convergence simple + convexité => convergence uniforme sur un compact

Soit (f_n) une suite de fonctions convexes sur [a,b] convergeant simplement vers une fonction f supposée continue.

1) Montrer qu'il existe $p \in \mathbb{N}^*$ tel que : $\forall x, y \in [a, b], |x - y| \leq \frac{b - a}{p} \Longrightarrow |f(x) - f(y)| \leq \varepsilon$.

On choisit un tel p, et on fixe une subdivision (a_k) de [a,b] telle que $a_k = a + k \frac{b-a}{p}$.

- 2) Soit $t \in [0,1]$. Encadrer $f_n(ta_k + (1-t)a_{k+1})$ par deux fonctions affines de t en utilisant la convexité de f_n .
- 3) Montrer que la suite (f_n) converge uniformément vers f.

Exercice 22. DL d'une fonction convexe

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ convexe dérivable telle que $f(x) = a + bx + \frac{cx^2}{2} + \underset{x \to 0}{\circ}(x^2)$. Montrer que f est deux fois dérivable en 0 et f''(0) = c (encadrer f'(x) par les taux d'accroissements de f entre $x - \varepsilon x$, x et $x + \varepsilon x$).

Exercice 23. DL d'une fonction convexe

Soit f continue et croissante sur \mathbb{R}^+ . On pose $F(x) = \int_0^x f$, et l'on suppose que $F(x) = x^2 + o(x)$. Montrer que $f(x) = 2x + o(\sqrt{x}).$

Solutions

Exercise 2.
$$y_i = \frac{x_i}{x_{i+1}} \implies \sqrt[n]{y_1 \cdots y_n} \leqslant \frac{y_1 + \ldots + y_n}{n}.$$

Exercice 8.

2)
$$f(x) \longrightarrow \ell \in \mathbb{R}$$
, $f'(x) \longrightarrow 0$.
TAF entre x et $x/2 \Longrightarrow 2\left(f(x) - f\left(\frac{x}{2}\right)\right) \leqslant xf'(x) \leqslant 0 \Longrightarrow xf'(x) \longrightarrow 0$.

Exercice 14.

1) Fonction décroissante sur \mathbb{R}^+ .

2)
$$f(x) - xf'(x) = -x^2 \frac{d}{dx} \left(\frac{f(x)}{x} \right)$$
. Donc, $x \longmapsto \frac{f(x) - p}{x} \setminus \text{et } x \longmapsto \frac{f(x) - f(0)}{x} \nearrow$.
3) $p \leqslant f(x) - mx \leqslant f(x) - xf'(x)$.

3)
$$p \leqslant f(x) - mx \leqslant f(x) - xf'(x)$$

Exercice 15.

1) Soient
$$x < y : \frac{f(x) - f(0)}{x - 0} \ge \frac{f(y) - f(0)}{y - 0} \Longrightarrow \frac{f(x)}{x} \ge \frac{f(y)}{y} + f(0) \left(\frac{1}{x} - \frac{1}{y}\right)$$
.
2) Pour $x < y : f(x + y) \le tf(x) + (1 - t)f(y)$ avec $t = \frac{x}{x - y} < 0$,

2) Pour
$$x < y : f(x+y) \le tf(x) + (1-t)f(y)$$
 avec $t = \frac{x}{x-y} <$ donc $f(x+y) - f(x) - f(y) \le \frac{xy}{x-y} \left(\frac{f(x)}{x} - \frac{f(y)}{y}\right) \le 0.$

Exercice 19.

2) Prendre x tel que f(x) soit maximal.

Exercice 20.

Pour
$$a_0: |f(a_0+h)-f(a_0)-|h|| \leq \frac{|h|}{2}$$
.

Exercice 23.

Soit
$$F(x) = x^2 + xG(x)$$
. On a pour $h > 0$: $f(x) \le \frac{F(x+xh) - F(x)}{xh} = 2x + xh + \frac{G(x+xh) - G(x)}{h} + G(x+xh)$. Soit $\varepsilon > 0$ et A tel que $y \ge A \Longrightarrow |G(y)| \le \varepsilon^2$. On prend $h = \varepsilon/\sqrt{x}$ et on obtient $f(x) - 2x - \varepsilon\sqrt{x} \le \varepsilon\sqrt{x} + \varepsilon^2$ d'où $f(x) \le 2x + o(\sqrt{x})$. L'inégalité inverse se montre de même.