# Datathon '24 Team:CodeBytes

**Problem Statement 1 - Fraud Detection** 

TY IT CCOEW Gauri Joshi Kritika Dubey Avani Ausekar Akanksha Kale

## Objective

03

04

Ol Performing EDA on the dataset, gaining insights on trends, & finding patterns.

O2 Pre-processing data, and performing feature engineering.

Developing an ensemble of ML models with high accuracy

Evaluating performance features using metrics such as precision, recall,

F1 score, and AUC-ROC

Providing insights, and recommendations on integration of the fraud detection

system into the Bank's exisiting infrastructure and process

## Our Approach





**Model Building** 



Integration Research



Feature Engineering



**Model Evaluation** 



## Data Pre-Processing

- Original dataset contained 32 columns
- Validated the range and inputs for all attributes.
- Data trends observation done using **Data Visualisation**
- Found 3 almost unrelated columns to fraudulent transactions
- Total 29 columns considered for processing by the model
- Missing values handled using MODE
- MODE used for handling missing values because as there are high variations in banking data MODE is more suitable
- OneHotEncoder used for encoding textual data into numeric data

#### Feature Selection

We utilized scatter plots, kernel density estimation (KDE) plots, and other graphical tools on Tableau platform to explore factors associated with fraud. For Example:



The fraudulent ratio increases with an increase in age. This suggests that age is a relevant factor and attackers have a tendency to target older customers.



A surge in fraudulent transactions occurred between 15 and 20 months, suggesting potential targeting by attackers during this timeframe.

#### Feature Selection

We initially attempted to perform visualizations using a simple count of fraud transactions but this produced visualizations that were difficult to interpret and evaluate. So we instead used a **ratio of fraud/total transactions** for each attribute to help distinguish between an increase in the number of fraud transactions for a category to just an increase in the number of transactions.

Fraud ratio = Fraudulent Transactions of category 'X' in feature 'A' / All Transactions containing category 'X'

#### Some of Our Insights:

- Income: Higher income correlates with increased fraudulent transaction ratios.
- Device OS: Fraud ratio highest with Windows OS
- Housing Status: Category BA exhibits the highest fraudulent ratio.
- Employment Status: Observed higher fraud for CG and CA. Highest for CC.
- Payment Type: The fraud ratio higher for A B and AD and peaks at payment type AC.

- Payment Type: The fraud ratio higher for A B and AD and peaks at payment type AC.
- Bank Months Count: A spike in fraudulent transactions between 15-20 months indicates potential targeting during this period.
- Customer Age: The fraudulent transaction ratio increases with age.
- Credit Risk Score: Fraud ratio escalates with higher credit risk scores.
- Device Distinct Emails: A higher fraud ratio was observed for accounts with 2 distinct device emails.
- Foreign Request: Higher likelihood of fraud in foreign requests.
- Has Other Cards: A higher fraud ratio is observed when the user lacks other cards.
- Visualization was done for all other features, however, they didn't show much variability.
- Due to their minimal variation compared to other features, "email\_is\_free", "month", and "device\_fraud\_count" were deemed less informative for fraud detection and were consequently omitted from the model.

### **Model Building**



#### **Research Done**

Researched about classification and anomaly detection algorithms that can be used for highly imbalanced dataset.

#### **Models Tried**

- LightGBM
- XGBoost
- Neural Network
- Bagging Classifier
- IsolationForest
- Random Forest (Too Slow thus dropped)
- KNN (Too slow thus dropped)

#### Model Evaluation



PS D:\datathon> & C:/Python312/python.ex
Accuracy: 0.988905
Precision: 0.3717948717948718
Recall: 0.01318781264211005
F1 Score: 0.025472112428634164
AUC-ROC Score: 0.6887925464447034
PS D:\datathon>

**Isolation Forest** 

**Neural Network** 

Bagging Classifier

### Model Evaluation (continued)

XG Boost

```
In [50]: runfile('C:/Users/avani/Desktop/Datathon/lgb.py', wdir='C:/Users/avani/Desktop/Datathon')
[LightGBM] [Info] Number of positive: 9898, number of negative: 890102
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.049321
seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 3202
[LightGBM] [Info] Number of data points in the train set: 900000, number of used features: 28
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.010998 -> initscore=-4.499003
[LightGBM] [Info] Start training from score -4.499003
LightGBM Accuracy: 0.98872
AUC-ROC Score: 0.5091927900845029
Precision: 0.5384615384615384
Recall: 0.01856763925729443
F1 Score: 0.035897435897435895
```

Light Gradient Boosting Machine

## Model Evaluation (continued)

Final Model Chosen- **Neural Networks** for Classification of a transaction as fraudulent or non-fraudulent due to high AUC-ROC score.

Other Model that can be preferred- **LightGBM** due to it's comparatively better performance metrics.

#### Tech Stack

- Python TensorFlow, Scikit-learn (or Sklearn), Pandas, NumPy, Flask,
   Matplotlib Data
- Visualization Tableau, Power BI
- UI HTML, CSS, JavaScript













#### DEMO Video

https://drive.google.com/file/d/12ZA7JKyLVdiBqiJhCFXfJbgenJnK2I2P/view?usp=sharing

## Future Scope of our model

#### **Continuous and Self-Learning Models:**

- Real-Time Adaptation: Models adjust in real-time to new data, ensuring effectiveness against evolving fraud.
- Dynamic Updates: Automatic parameter updates based on incoming data streams.
- Anomaly Detection: Identify anomalies in data distributions for early fraud detection.
- Scalability: Handle large data volumes efficiently.
- Adaptive Thresholds: Adjust detection thresholds based on changing data.

Big Data Integration: Incorporate big data tools like Hadoop and Spark for efficient handling of time processing.

#### **User Behavior Analysis:**

- Pattern Recognition: Identify deviations from normal behavior.
- Profile Creation: Build user profiles for anomaly detection.
- Contextual Understanding: Consider transaction history and context for accurate detection.
- Risk Scoring: Assign risk scores to prioritize interventions.
- Behavioral Biometrics: Utilize unique user characteristics for authentication.
- Segmentation Analysis: Tailor detection strategies to different user groups.

#### **Deep Learning Architectures:**

- Feature Extraction: Automatically learn relevant features from raw data.
- Temporal Dependencies: Capture complex fraud patterns over time.
- Spatial Patterns: Detect spatial relationships in structured data.





# Recommendations to integrate model in existing Banking infrastructure

- 1. API Integration: Develop an API for seamless integration of the fraud detection model with the bank's existing systems, allowing real-time fraud detection during transactions.
- 2. Alert Mechanism: Implement an alert mechanism to notify relevant stakeholders, such as risk managers or fraud analysts, in real-time when fraudulent activity is detected.
- 3. **Dashboard Integration:** Integrate the fraud detection results into existing dashboards used by bank employees for monitoring and decision-making, providing easy access to insights and trends.
- 4. **Model Monitoring:** Set up continuous monitoring of the deployed model's performance metrics and retrain the model periodically to adapt to changing fraud patterns.
- 5. Compliance Considerations: Ensure that the deployed model complies with regulatory requirements such as GDPR and financial regulations governing data privacy and security.
- 6. User Training: Provide training sessions for bank staff involved in fraud detection and prevention to familiarize them with the capabilities and limitations of the new model.
- 7. Feedback Loop: Establish a feedback loop to collect input from users and stakeholders, allowing continuous improvement of the model's accuracy and effectiveness.
- 8. Evaluation and Optimization: Regularly evaluate the performance of the integrated model and optimize its parameters based on feedback and evolving fraud patterns.

## Thank You!