

 $\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$

 $\exists_{x \in \Re} \exists_{y \in \Re} (x = y)$

 $\forall_x (\Re/x)$

The Foundations: Logic and Proofs

RIZOAN TOUFIQ

ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
RAJSHAHI UNIVERSITY OF ENGINEERING & TECHNOLOGY

Section Summary

- Valid Arguments
- Inference Rules for Propositional Logic
- Using Rules of Inference to Build Arguments
 - Resolution
 - Fallacies
- Rules of Inference for Quantified Statements
- Combining Rules of Inference for Propositions and Quantified Statements

- We have the two premises:
 - "If you have a current password, then you can log onto the network."
 - "You have a current password."
- And the conclusion:
 - "You can log onto the network."
- How do we get the conclusion from the premises?

• Use p to represent "You have a current password" and q to represent "You can log onto the network." Then, the argument has the form

p	q	$p \rightarrow q$	$(p \rightarrow q) \land p$	$((p \to q) \land p) \to q$		
0	0	1	0	1		
0	1	1	0	1	Paux	
1	0	0	0	1	Tautology	
1	1	1	1	1		
PROVED						
					V LID	7

We say this form of argument is **valid** because Whenever all its **premises** are true, The **conclusion** must also be true.

• p is true, but $p \rightarrow q$ is false

"If you have access to the network, then you can change your grade."
"You have access to the network."

.: "You can change your grade."

• The argument we obtained is a valid argument, but because one of the premises, namely the first premise, is **false**, we cannot conclude that the conclusion is true.

- A argument in propositional logic is a sequence of propositions.
- All but the final proposition are called premises.
- The last statement is the **conclusion**.
- The argument is **valid** if the premises imply the conclusion.
- An **argument form** is an argument that is valid no matter what propositions are substituted into its propositional variables.
- If the **premises** are $p_1, p_2, ..., p_n$ and the **conclusion** is q then $(p_1 \land p_2 \land ... \land p_n) \rightarrow q$ is a tautology.
- Inference rules are all simple argument forms that will be used to construct more complex argument forms.

Modus Ponens

$$\begin{array}{c}
p \\
p \to q \\
\therefore \overline{q}
\end{array}$$

Corresponding Tautology:

$$(p \land (p \rightarrow q)) \rightarrow q$$

Example:

Let *p* be "It is snowing." Let *q* be "I will study discrete math."

"It is snowing."

"If it is snowing, then I will study discrete math."

Therefore, "I will study discrete math."

Modus Tollens

Corresponding Tautology: $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$

Example:

Let *p* be "it is snowing." Let *q* be "I will study discrete math."

"I will not study discrete math."

"If it is snowing, then I will study discrete math."

Therefore, "it is not snowing."

Hypothetical Syllogism

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Corresponding Tautology:

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Example:

Let *p* be "it snows."

Let q be "I will study discrete math."

Let *r* be "I will get an A."

"If it snows, then I will study discrete math."

"If I study discrete math, I will get an A."

"Therefore, If it snows, I will get an A."

Disjunctive Syllogism

$$\begin{array}{c}
p \lor q \\
\neg p \\
\hline
\therefore q
\end{array}$$

Corresponding Tautology: $(\neg p \land (p \lor q)) \rightarrow q$

Example:

Let *p* be "I will study discrete math." Let *q* be "I will study English literature."

"I will study discrete math or I will study English literature." "I will not study discrete math."

"Therefore, I will study English literature."

Addition

$$\frac{p}{\therefore p \vee q}$$

Corresponding Tautology: $p \rightarrow (p \lor q)$

Example:

Let p be "I will study discrete math."

Let q be "I will visit Las Vegas."

"I will study discrete math."

"Therefore, I will study discrete math or I will visit Las Vegas."

\bigcirc

Simplification

$$\frac{p \wedge q}{\therefore q}$$

Corresponding Tautology:
$$(p \land q) \rightarrow p$$

Example:

Let *p* be "I will study discrete math." Let *q* be "I will study English literature."

"I will study discrete math and English literature"

"Therefore, I will study discrete math."

Conjunction

$$\frac{p}{q}$$

$$\therefore p \wedge q$$

Corresponding Tautology:
$$((p) \land (q)) \rightarrow (p \land q)$$

Example:

Let *p* be "I will study discrete math." Let *q* be "I will study English literature."

"I will study discrete math."

"I will study English literature."

"Therefore, I will study discrete math and I will study English literature."

TABLE 1 Rules of Inference.		
Rule of Inference	Tautology	Name
$ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition

TABLE 1 Rules of Inference.		
Rule of Inference	Tautology	Name
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification
$ \begin{array}{c} p \\ q \\ \therefore \overline{p \wedge q} \end{array} $	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

- A **valid argument** is a sequence of statements.
- Each statement is either a **premise** or follows from **previous statements** by rules of inference.
- The last statement is called **conclusion**.
- A **valid argument** takes the following form:

```
egin{array}{c} \mathbf{S}_1 \\ \mathbf{S}_2 \\ & \cdot \\ & \cdot \\ & \mathbf{S}_n \end{array}
```

Example 1: From the single proposition

$$p \land (p \rightarrow q)$$

Show that q is a conclusion.

Solution:

${f Step}$	Reason
1. $p \wedge (p \rightarrow q)$	Premise
2. p	Simplification using (1)
3. $p \rightarrow q$	Simplification using (1)
4. q	Modus Ponens using (2) and (3)

Example 2:

• With these hypotheses/premises:

"It is not sunny this afternoon and it is colder than yesterday."

"We will go swimming only if it is sunny."

"If we do not go swimming, then we will take a canoe trip."

"If we take a canoe trip, then we will be home by sunset."

Using the inference rules, construct a valid argument for the conclusion:

"We will be home by sunset."

Solution:

1. Choose propositional variables:

p: "It is sunny this afternoon."

q: "It is colder than yesterday."

r: "We will go swimming."

s: "We will take a canoe trip."

t: "We will be home by sunset."

Example 2:

• With these hypotheses/premises:

"It is not sunny this afternoon and it is colder than yesterday."

"We will go swimming only if it is sunny."

"If we do not go swimming, then we will take a canoe trip."

"If we take a canoe trip, then we will be home by sunset."

• Using the inference rules, construct a valid argument for the **conclusion**: "We will be home by sunset."

2. Translation into propositional logic:

Hypotheses: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$

Conclusion: t

Example 2:

With these hypotheses/premises:

"It is not sunny this afternoon and it is colder than yesterday."

"We will go swimming only if it is sunny."

"If we do not go swimming, then we will take a canoe trip."

"If we take a canoe trip, then we will be home by sunset."

- Using the inference rules, construct a valid argument for the **conclusion**: "We will be home by sunset."
- 3. Construct the Valid Argument

\mathbf{Step}	Reason
1. $\neg p \land q$	Premise
$2. \neg p$	Simplification using (1)
3. $r \to p$	Premise
$4. \ \neg r$	Modus tollens using (2) and (3)
5. $\neg r \rightarrow s$	Premise
6. s	Modus ponens using (4) and (5)
7. $s \to t$	Premise
8. <i>t</i>	Modus ponens using (6) and (7)

Resolution

Resolution

$$\begin{array}{c}
\neg p \lor r \\
p \lor q \\
\hline
\therefore q \lor r
\end{array}$$

Corresponding Tautology: $((\neg p \lor r) \land (p \lor q)) \rightarrow (q \lor r)$

*Resolution plays an important role in AI and is used in Prolog.

Example:

Let *p* be "I will study discrete math." Let *r* be "I will study English literature." Let q be "I will study databases."

"I will not study discrete math or I will study English literature."
"I will study discrete math or I will study databases."

"Therefore, I will study databases or I will study English literature."

Fallacies

- Several common fallacies arise in incorrect arguments.
- The proposition $((p \rightarrow q) \land q) \rightarrow p$ is **not** a **tautology**, because it is **false** when p is **false** and q is **true**.
- **Example**: Is the following argument valid?
 - If you do every problem in this book, then you will learn discrete mathematics.
 - You learned discrete mathematics.
 - Therefore, you did every problem in this book.
- p: you do every problem in this book
- q: you will learn discrete mathematics
- r: you did every problem in this book.(conclusion)

$$\begin{array}{c}
p \to q \\
\hline
q \\
\hline
\vdots p
\end{array}$$

• This type of incorrect reasoning is called **the fallacy of affirming the conclusion**.

Fallacies

- The proposition $((p \rightarrow q) \land \neg p) \rightarrow \neg q$ is not a tautology, because it is **false** when **p** is **false** and **q** is true.
- Example: Is the following argument valid?
 - If you do every problem in this book, then you will learn discrete mathematics.
 - you did not do every problem in this book.
 - Therefore, You did not learned discrete mathematics.

$$\begin{array}{c}
p \to q \\
\neg p \\
\hline
\vdots \neg q
\end{array}$$

This type of incorrect reasoning is called the fallacy of denying the hypothesis.

Rules of Inference for Quantified Statements

TABLE 2 Rules of Inference for Quantified Statements.		
Rule of Inference	Name	
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation	
$P(c) \text{ for an arbitrary } c$ $\therefore \forall x P(x)$	Universal generalization	
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation	
$\therefore \frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization	

Universal Instantiation (UI)

$$\frac{\forall x P(x)}{\therefore P(c)}$$

Example:

Our domain consists of all dogs and Fido is a dog.

"All dogs are cuddly."

"Therefore, Fido is cuddly."

Universal Generalization (UG)

$$P(c)$$
 for an arbitrary c
 $\therefore \forall x P(x)$

Used often implicitly in Mathematical Proofs.

Existential Instantiation (EI)

$$\exists x P(x)$$

 $\exists x P(x)$ $\therefore P(c)$ for some element c

Example:

"There is someone who got an A in the course."

"Let's call her a and say that a got an A"

Existential Generalization (EG)

$$P(c)$$
 for some element c
 $\therefore \exists x P(x)$

Example:

"Michelle got an A in the class."

"Therefore, someone got an A in the class."

Rules of Inference for Quantified Statements

Example 1: Given premises:

"Every man has two legs."

"John Smith is a man."

Using the rules of inference, construct a **valid argument** to show that "John Smith has two legs"

Solution: Let

M(x) denote "x is a man"

L(*x*) " *x* has two legs"

John Smith be a member of the domain.

Valid Argument:

Step	Reason
1. $\forall x (M(x) \to L(x))$	Premise
$2. M(J) \rightarrow L(J)$	UI from (1)
3. M(J)	Premise
4. L(J)	Modus Ponens using
	(2) and (3)

Rules of Inference for Quantified Statements

Example 2: Use the rules of inference to construct a valid argument showing that the **conclusion**

"Someone who passed the first exam has not read the book."

follows from the **premises**

"A student in this class has not read the book."

"Everyone in this class passed the first exam."

Universal Modus Ponens

Universal Modus Ponens combines universal instantiation and modus ponens into one rule.

$$\forall x (P(x) \rightarrow Q(x))$$

P(a), where a is a particular element in the domain

$$\therefore Q(a)$$

Universal Modus Tollens

Universal Modus Ponens combines universal instantiation and modus tollens into one rule.

$$\forall x (P(x) \to Q(x))$$
 $\neg Q(a)$, where a is a particular element in the domain
 $\therefore \neg P(a)$

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} x = ?$$

$$\forall_{\mathbf{x}} (\Re / \mathbf{x}) = ?$$

 $\sum_{x=1}^{\infty} \frac{1}{x} = ?$

$$\exists_{x \in \mathfrak{R}} \exists_{y \in \mathfrak{R}} (x = y) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}} = ?$$

$$1 - 1 + 1 - 1 + 1 \dots = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$