Отчет о выполнении лабораторной работы 1.3.1

Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

Костылев Влад, Б01-208

13 октября 2022 г.

Аннотация

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

В работе используются: в первой части - прибор Лермантова, проволока из исследуемого материала, зрительная труба со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

1 Теоретическая справка

I. Определение модуля Юнга по измерениям растяжения проволоки Для определения модуля Юнга используется прибор Лермантова:

Верхний конец проволоки Π , изготовленной из исследуемого материала, прикреплен к консоли \mathbf{K} , а нижний - к цилиндру, которым оканчивается шарнирный кронштейн \mathbf{H} . На этот же цилиндр опирается рычаг \mathbf{r} , связанный с зеркальцем $\mathbf{3}$. Таким образом, удлинение проволоки можно измерить по углу поворота зеркальца.

Натяжение проволоки можно менять, перекладывая грузы с площадки М на площадку О и наоборот. Такая система позволяет исключить влияние деформации кронштейна К на точность измерений, так как нагрузка на нем все время остается постоянной. При проведении эксперимента следует иметь в виду, что проволока П при отсутствии нагрузки всегда несколько изогнута, что не может не сказаться на результатах, особенно при небольших нагрузках. Проволока вначале не столько растягивается, сколько распрямляется.

II. Определение модуля Юнга по измерениям изгиба балки

Экспериментальная установка состоит из стойки с опорными призмами А и Б:

На ребра призм опирается исследуемый стержень (балка) В. В середине стержня на призме Д подвешена площадка П с грузами.

Измерять стрелу прогиба можно с помощью индикатора И, укрепляемого на отдельной штанге. Полный оборот большой стрелки индикатора соответствует 1 мм и одному делению малого циферблата.

Модуль Юнга E материала стержня связан со стрелой прогиба Y_{max} (то есть с перемещением середины стержня) следующим соотношением:

$$E = \frac{Pl^3}{4ab^3 y_{max}} \tag{1}$$

Здесь P - нагрузка, вызывающая прогиб стержня, l - расстояние между призмами A и Б, а и - ширина и высота сечения стержня.

Формула (1) была выведена при условиях, что, во-первых, ребра опорных призм A и B находятся на одной горизонтали (высоте) и, во-вторых, сила P приложена точно посередине балки.

2 Используемое оборудование

В работе используются: в первой части - прибор Лермантова, проволока из исследуемого материала, зрительная труба со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

3 Методика измерений

Измерение растяжения проволоки:

- 1. Измерить длину проволоки.
- 2. Направить зрительную трубу на зеркальце З. При этом в трубу должно быть четко видно отражение шкалы в зеркальце. Формулу, связывающую число делений по шкале п, расстояние h от шкалы до зеркальца, длину рычага r и удлинение проволоки Al, выведите самостоятельно. Длина рычага r указана на приборе, а расстояние h следует измерить.
- 3. Снять зависимость удлинения проволоки
- 4. По полученным результатам постройте график зависимости удлинения проволоки Δl от нагрузки Р. На начальном участке зависимости $\Delta l(P)$ (при малых Р) удлинение растёт довольно быстро, и только затем точки начинают ложиться на прямую, не проходящую, однако, через начало координат. По наклону этой прямой можно определить жёсткость проволоки к, а по ней модуль Юнга. Начальный участок зависимости bigtriangleup(P) из обработки следует исключить.

Измерение растяжения проволоки:

- 1. Измерение расстояния между ребрами призм А и Б.
- 2. Определение ширины и толщины балки (стержня).
- 3. Исследование, насколько существенна зависимость результата от положения точки приложения изгибающей силы Р. Для этого сместите призму Д на 2-3 мм от точки, принятой за середину балки, и вновь измерьте стрелу прогиба. Эту величину сравните с результатом, полученным при положении призмы Д посередине балки.
- 4. Переворот балки таким образом, чтобы при нагружении она изгибалась в противоположную сторону, и повторите измерения. Сравните результаты с предыдущими.
- 5. Аналогичные измерения проводятся балок, изготовленных из дерева, и одной металлической.
- 6. Построение графика «нагрузка прогиб» при увеличении и уменьшении нагрузки. По наклону графиков определите средние значения модулей Юнга.
- 7. Оцените погрешности результатов измерений и сравните полученные модули Юнга с соответствующими табличными значениями.

4 Результаты измерений и обработка данных

r (см)	h (см)	l (cm)	d (cm)
1,3	139,5	176,6	0.073

Измеряем площадь поперечного сечения проволоки:

$$S = \frac{\pi d^2}{4} = 0,418 \text{mm}^2$$

$$\sigma_S = S\sqrt{2\left(\frac{\sigma_d}{d}\right)^2} = 0,005\text{mm}^2$$

$$S = (0,418 \pm 0,005) \text{mm}^2$$

Направляем зрительную трубу на зеркальце так, чтобы мы четко видели шкалу, тогда свет от шкалы будет падать примерно перпендикулярно шкале на зеркало, поэтому

$$\Delta l = \frac{nr}{2h}$$

Снимаем данные и получаем следующую таблицу:

				n, mm						
Nº	т, г	Р, Н	V	Λ	V	Λ	V	Λ	dl sred, mm	
1	723,9	7,10	12	12,3	12,3	12,2	12,2	12,2	//	
2	970	9,52	13,3	13,7	13,6	13,6	13,8	13,5	0,006057	
3	1216,1	11,93	14,5	14,7	15,2	14,8	14,9	14,6	0,005591	
4	1462,2	14,34	15,9	15,8	16,2	15,9	16	15,7	0,006523	
5	1708,3	16,76	16,9	16,9	17,1	17,3	17,1	17,1	0,004659	
6	1954,4	19,17	18,2	18,2	18,1	18,4	18,6	18,3	0,006057	
7	2200,5	21,59	19,5	19,3	19,3	19,5	19,5	19,5	0,006057	
8	2446,6	24,00	20,8	20,4	20,5	20,5	20,5	20,3	0,006057	
9	2692,7	26,42	21,9	21,6	21,7	21,7	22,1	21,6	0,005125	
10	2938,8	28,83	22,6	22,6	22,9	22,9	22,9	22,9	0,003262	

Построим диаграмму зависимости удлинения от прикладываемой силы и получим к:

Тогда Модуль Юнга будет равен:

$$\sigma_E = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2 + \left(\frac{\sigma_{l_0}}{l_0}\right)^2}$$

$$E = \frac{kl_0}{S} = 18, 3 \cdot 10^{10} \pm 0, 7 \cdot 10^{10} \Pi a$$

Теперь произведем ряд измерений для латунного, деревянного и стального брусков:

Стальной брусок:

Длина	65,1 см
Ширина	2 см
Высота	0,4 см

Латунная	Латунная палка (не перевернутая)							
					n,	MM		
Nº	т, г	Р, Н	V	Λ	V	\land	V	\land
1	0	0,00	0	0,05	0	-0,04	0	0
2	503,1	4,94	1,16	1,23	1,14	1,16	1,13	1,18
3	1004,4	9,85	2,39	2,42	2,34	2,38	2,39	2,4
4	1505,7	14,77	3,55	3,56	3,48	3,51	3,45	3,54
5	2007	19,69	4,68	4,72	4,67	4,67	4,67	4,67
6	2508,3	24,61	5,92	6,02	5,88	5,9	5,92	5,97
7	3009,6	29,52	7,1	7,11	7,01	7,05	7,09	7,1
8	3510,9	34,44	8,26	8,28	8,28	8,22	8,21	8,26
9	4012,2	39,36	9,34	9,34	9,33	9,33	9,44	9,44

Латунная	палка (пере	евернутая)							
				n, mm					
Nº	т, г	Р, Н	V	\land	V	\land	V	\land	
1	0	0,00	0	-0,01	0	0,01	0	0,01	
2	503,1	4,94	1,16	1,2	1,19	1,21	1,18	1,19	
3	1004,4	9,85	2,35	2,38	2,44	2,4	2,39	2,41	
4	1505,7	14,77	3,53	3,52	3,54	3,55	3,5	3,54	
5	2007	19,69	4,67	4,67	4,72	4,7	4,71	4,67	
6	2508,3	24,61	5,9	5,92	5,87	5,95	5,92	5,95	
7	3009,6	29,52	6,97	7,05	7,04	7,06	7,05	7,07	
8	3510,9	34,44	8,03	8,17	8,08	8,18	8,12	8,14	
9	4012,2	39,36	9,2	9,2	9,31	9,31	9,25	9,25	

$$\sigma_E = \sqrt{3\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_{P/y_{max}}}{P/y_{max}}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + 3\left(\frac{\sigma_b}{b}\right)^2}$$

Тогда по формуле (1) находим модуль Юнга для латунного бруска:

$$E=9,72\cdot 10^{10}\pm 0,46\cdot 10^{10}$$

Деревянный брусок:

Длина	60 см
Ширина	2 см
Высота	0,93 см

Деревянная палка (не перевернутая			3,4 см от центра По центру						
					n, mm				
Nº	т, г	Р, Н	V	\land	V	\land	V	\land	
1	0	0,00	0	0	0	0	0	0	
2	503,1	4,94	0	0	0	0,01	0	0	
3	1004,4	9,85	0,34	0,42	0,45	0,59	0,47	0,44	
4	1482,6	14,54	1,24	1, 45	1,41	1,53	1,49	1,47	
5	1960,8	19,24	2,2	2,36	2,36	2,46	2,43	2,49	
6	2439	23,93	3,18	3,38	3,29	3,45	3,4	3,41	
7	2917,2	28,62	3,94	4,11	4,2	4,36	4,32	4,38	
8	3395,4	33,31	4,87	4,99	5,18	5,28	5,26	5,28	
9	3873,6	38,00	5,81	5,81	6,06	6,06	5,97	5,97	

Деревянна :	я палка (пер	ревернутая						
					r	n, MM		
Nº	т, г	Р, Н	V	Λ	V	Λ	V	Λ
1	0	0,00	0	0,06	0	0,01	0	0,02
2	503,1	4,94	0,91	1,1	1,05	1,07	0,98	1,02
3	1004,4	9,85	1,86	2,03	1,95	1,97	1,9	1,92
4	1482,6	14,54	2,87	3	2,91	2,92	2,91	2,95
5	1960,8	19,24	3,82	3,96	3,91	3,92	3,95	3,04
6	2439	23,93	4,8	4,95	4,92	4,87	4,91	4,89
7	2917,2	28,62	5,75	5,86	5,8	5,9	5,85	5,92
8	3395,4	33,31	6,7	6,77	6,75	6,7	6,72	6,78
9	3873,6	38,00	7,67	7,67	7,59	7,59	7,65	7,65

По формуле (1) находим модуль Юнга для деревянного бруска:

$$E=1,31\cdot 10^{10}\pm 0,02\cdot 10^{10}$$

Стальной брусок:

Длина	62,1 см
Ширина	2,23 см
Высота	0,4 см

Стальная	Стальная палка (не перевернутая)							
					n,	MM		
Nº	т, г	Р, Н	V	\land	V	\land	V	\land
1	0	0,00	0	-0,03	0	0,02	0	0,01
2	503,1	4,94	0,63	0,67	0,69	0,64	0,63	0,67
3	1004,4	9,85	1,3	1,32	1,41	1,35	1,29	1,31
4	1505,7	14,77	1,95	2,01	2,06	2,04	1,98	2,03
5	2007	19,69	2,59	2,65	2,64	2,62	2,61	2,58
6	2508,3	24,61	3,26	3,32	3,34	3,39	3,34	3,37
7	3009,6	29,52	3,9	3,94	4,01	4,05	3,95	4,01
8	3510,9	34,44	4,51	4,57	4,59	4,63	4,57	4,63
9	4012,2	39,36	5,17	5,17	5,24	5,24	5,21	5,21

Стальная палка (перевернутая)									
						Н			
Nº	т, г	Р, Н	V	Λ	V	\land	V	/\	
1	0	0,00	0	0	0	0	0	0	
2	503,1	4,94	0,68	0,83	0,71	0,7	0,68	0,67	
3	1004,4	9,85	1,31	1,49	1,29	1,36	1,38	1,32	
4	1505,7	14,77	2	2,15	1,97	1,96	2,19	2,1	
5	2007	19,69	2,68	2,82	2,67	2,68	2,72	2,68	
6	2508,3	24,61	3,49	3,5	3,39	3,39	3,43	3,41	
7	3009,6	29,52	4,1	4,15	4,3	4,31	4,24	4,21	
8	3510,9	34,44	4,76	4,78	4,64	4,67	4,65	4,64	
9	4012,2	39,36	5,41	5,41	5,31	5,31	5,29	5,29	

По формуле (1) находим модуль Юнга для стального бруска:

$$E=20,05\cdot 10^{10}\pm 0,03\cdot 10^{10}$$

5 Обсуждение результатов

После построения таблиц, диаграмм, большого количества расчетов, мы получили модули Юнга для тел различных материалов, которые максимально приближены к табличным данным.

Табличные значе	Табличные значения модуля юнга (ГПА)					
Дерево	12					
Латунь	95					
Сталь	210					

6 Заключение

Мы произвели массовое количество измерений, и можно сделать вывод, чтобы свести случайную погрешность к минимуму, мы должны произвести как можно больше измерений, что мы собственно и сделали при измерении модуля Юнга для различных материалов - различными способами.