## Лабораторная работа 2.1.4 Определение теплоёмкости твёрдых тел

Вячеслав Ждановский, студент 611 группы ФРКТ Шамиль Вагабов, студент 611 группы ФРКТ Станислав Токарев, студент 611 группы ФРКТ

02 мая 2017 г.

**Цель работы:** 1) измерение кол-ва подведённого тепла и вызванного им нагрева твёрдого тела. 2) определение теплоёмкости поо экстраполяции отношения  $\frac{\Delta Q}{\Delta T}$  к нулевым потерям теплам.

**В работе используются:** калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36V.



Рис. 1: Схема устройства калориметра



Рис. 2: Схема включения нагревателя

Схема установки: Установка состоит из калориметра с пенопластовой изоляцией, помещённого в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполнены из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют вид усечённых конусов и плотно прилегают друг к другу. Для выталкивания образца служит винт в донышке внутренней стенки калориметра. В стенку калориметра вмонтирован электронагреватель и термомтер сопротивления. Схема включения нагревателя изображена на рисунке 2.

Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтмерту определяется мощность, выделяемая током в нагревателе. Величина сопртивления термометра измеряется мостом постоянного тока.

**Необходимая теория** В предлагаемой работе измерение теплоёмкости твердых тел производится по обычной схеме. Исследуемое тело помещается в калориметр. Измеряется  $\Delta Q$  количество тепла, подведённого к телу и  $\Delta T$  - изменение температуры тела, произошедшее в результате подвода тепла. Теплоёмкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T} \tag{1}$$

Температура исследуемого тела надёжно измеряется термометром (в нашем случае - термометром сопротивления), а определение кол-ва тепла, поглощённого телом, вызывает затруднение. В реальных условиях не вся энергия  $P\Delta t$ , выделенная нагревателем на нагревание исследуемого тела и калориметра, часть её уходит из калориметра благодаря теплопроводности его стенок. Оставшиеся в калориметре кол-во тепла  $\Delta Q$  равно:

$$\Delta Q = P\Delta t - \lambda (T - T_k)\Delta t \tag{2}$$

где P - мощность нагревателя,  $\lambda$  - коэффициент теплоотдачи стенок калориметра, T - темпераутра тела,  $T_k$  - темпераутра окружающего калориметр воздуха (комнатная),  $\Delta t$  - время, в течение которого идет нагревание. Из уравнений (1) и (2) получаем

$$C = \frac{P - \lambda(T - T_k)}{\Delta T / \Delta t} \tag{3}$$

Формула (3) является основной расчётной формулой работы. Она определяет теплоёмкость тела вместе с калориметром. Теплоёмкость калориметра должна быть измерена отдельно и вычтена из результата. С увеличением температуры исследуемого тела растёт утечка энергии, связанная с теплопроводностью стенок калориметра. Погрешности, связанные с утечкой тепла, оказываются небольшими, если не давать телу заметных перегревов и по-изводить все измерения при температурах, мало отличающихся от комнатной  $(T \to T_k)$ . Однако при небольших перегревах возникает большая ошибка в измерении  $\Delta T = T - T_k$ . Чтобы избежать этого, зависимость скорости нагревания  $\Delta/\Delta t$  от температуры измеряется в широком интервале изменения температур. По полученным данным страится график:

$$\frac{\Delta T}{\Delta t} = f(T) \tag{4}$$

который экстраполируется к температуре  $T=T_k$ , и, таким образом, определяется скорость нагревания при комнатной температуре. Подставляя полученное выражение в формулу (3) и, замечая что при  $T=T_k$ , член  $\lambda(T-T_k)=0 \implies$ 

$$C = \frac{P}{(\Delta T/\Delta t)T_k} \tag{5}$$

Температура измеряется термометром сопротивления, представляющим собой медную проволоку, намотанную на теплопроводящий каркас внутренней стенки калориметра (рис 1). Сопротивление проводника изменяется с температурой по закону:

$$R_t = R_0(1 + \alpha \Delta T) \tag{6}$$

где  $R_t$  - сопротивление термометра при  $T^oC$ ,  $R_0$  - его сопротивление при  $0^oC$ ,  $\alpha$  - температурный коэффициент сопротивления. Дифференцируем (6) по времени:

$$\frac{dR}{dt} = R_0 \alpha \frac{dT}{dt} \tag{7}$$

Выразим сопротивление  $R_0$  из (6).

$$R_0 = \frac{R_k}{1 + \alpha \Delta T_k} \tag{8}$$

Подставляя (7) и (8) в (4), найдем:

$$C = \frac{PR\alpha}{(\frac{dR}{dt})_{T_k}(1 + \alpha\Delta T_k)}$$
(9)

Входящий в формулу температурный к-т  $\alpha = 4.28 \cdot 10^{-3} K^{-1}$ , остальные величины определяются экспериментально.



Рис. 3: График зависимости сопротивления от времени

**Ход работы:** По графику при 
$$R_k$$
: Калориметр:  $\frac{dR}{dt}=10*10^{-4}$   $\frac{\Omega}{c}\Rightarrow C_K'=759,32$   $\frac{\Pi_{\rm JK}}{K}$  Железо:  $\frac{dR}{dt}=6,67*10^{-4}$   $\frac{\Omega}{c}\Rightarrow C_{Fe}'=1139,66$   $\frac{\Pi_{\rm JK}}{K}$  Латунь:  $\frac{dR}{dt}=6,94*10^{-4}$   $\frac{\Omega}{c}\Rightarrow C_{Cu-Zn}'=1095,32$   $\frac{\Pi_{\rm JK}}{K}$  Алюминий:  $\frac{dR}{dt}=7,48*10^{-4}$   $\frac{\Omega}{c}\Rightarrow C_{Al}'=1025,85$   $\frac{\Pi_{\rm JK}}{K}$ 

Теплоёмкость тел 
$$(C=C'-C'_k)$$
:  $C_{Fe}=379,7~\frac{\underline{\Lambda}_{\mathcal{K}}}{K}$   $C_{Cu-Zn}=336,0~\frac{\underline{\Lambda}_{\mathcal{K}}}{K}$   $C_{Al}=226,5~\frac{\underline{\Lambda}_{\mathcal{K}}}{K}$ 

$$C_{Cu-Zn} = 336, 0 \frac{\Pi_{JM}}{K}$$
 $C_{Al} = 226, 5 \frac{\Pi_{JM}}{K}$ 

Погрешности:

Погрешности: 
$$\sigma_t = 1c, \ \sigma_R = 1.10^{-3} \Omega, \ \sigma_U = 0, 1V, \ \sigma_I = 0.01A$$
 
$$\frac{\sigma_K}{K} = 0, 02$$
 
$$\frac{\sigma_C}{C} = 0,041$$

| $C_{Fe}$ уд., $\frac{Дж}{K \cdot kg}$                       | $C_{Fe}$ мол., $\frac{Дж}{K \cdot mol}$                       | $C_{Cu-Zn}$ уд., $\frac{Дж}{K \cdot kg}$ | $C_{Cu-Zn}$ мол., $\frac{\mathcal{I}_{\mathcal{K}}}{K \cdot mol}$ |
|-------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|
| $466 \pm 19$                                                | $26 \pm 1$                                                    | $386 \pm 16$                             | $24 \pm 1$                                                        |
| $C_{Al}$ уд., $\frac{\mathcal{L}_{\mathbf{K}}}{K \cdot kg}$ | $C_{Al}$ мол., $\frac{\mathcal{L}_{\mathbf{x}}}{K \cdot mol}$ |                                          |                                                                   |
| $930 \pm 30$                                                | $24,8 \pm 0.8$                                                |                                          |                                                                   |

Таблица 1: Полученные результаты

**Вывод:** В ходе работы по опредлению теплоемкости твердых тел были опредлены теплоемкости по экстраполяции отношения  $\frac{\Delta Q}{\Delta T}$  к нулевым потерям тепла. В эксперименте были определены удельные и молярные теплоемкости. В пределах погреш-

ности результаты совпадают с табличными.