Contents

§ 1	Measures
	§1.1 Algebras and Sigma-Algebras
	§1.2 Measures
	§1.3 Outer Measures
	§1.4 Lebesgue Measure
	§1.5 Completeness and Regularity
	§1.6 Dynkin Classes
§ 2	2 Functions and Integrals
	§2.1 Measurable Functions
	§2.1.1 Question 1
	§2.1.2 Question 2
	§2.1.3 Question 3
	§2.1.4 Question 4
	§2.1.5 Question 5
	\$2.1.6 Ouestion 6

- **§1** Measures
- **§1.1** Algebras and Sigma-Algebras
- **§1.2** Measures
- **§1.3** Outer Measures
- **§1.4** Lebesgue Measure
- **§1.5** Completeness and Regularity
- **§1.6 Dynkin Classes**

§2 Functions and Integrals

§2.1 Measurable Functions

§2.1.1 Question 1

Observe that all this question wants us to prove is that

$$\chi_{\limsup A_n} = \limsup \chi_{A_n}$$

This is easy and simply follows from the definition.

§2.1.2 Question 2

Let Y be a subset of $\mathbb R$ which is not Borel measurable. Then χ_Y cannot be Borel measurable (See Example 2.1.2 (b) in the book). Observe that Y cannot be countable for otherwise we could write Y as union of its singleton members of Y and hence Y would be Borel set. Thus, Y is uncountable. Now, consider the set of functions $J := \left\{ \chi_{\{y\}} : y \in Y \right\}$. It is easy to see that $\chi_Y = \sup \left\{ \chi_{\{y\}} : y \in Y \right\}$. Clearly, J is set of Borel measurable functions whose supremum is not Borel measurable.

§2.1.3 Question 3

Let $f: \mathbb{R} \to \mathbb{R}$ be a function which is differentiable everywhere. Consider the sequence of function $\{f_n\}_{n\in\mathbb{N}}$ which is given by $f_n(x) = \frac{f(x+\frac{1}{n})-f(x)}{1/n}$ for every $x\in\mathbb{R}$. Clearly, $f_n\to f$ pointwise on \mathbb{R} and each f_n is measurable. Since limit of Borel measurable functions is measurable, we have that f is Borel measurable.

§2.1.4 Question 4

Let $A := \{x \in X : \lim_n f_n(x) \text{ exists and finite}\}$. Let $B := \{x \in X : \lim\sup_n f_n(x) = \liminf_n f_n(x)\}$. Then B is measurable by virtue of Proposition 2.1.5 and 2.1.3. Note that B is the set of all points X in X where $\lim_n f_n(x)$ exists. Now |f| is a measurable function. So the set $C := \bigcap_n \{x \in X : |f|(x) \le n\}$ is measurable. Notice that set $A = B \cap C$ and this completes the proof.

§2.1.5 Question 5

Let (X, \mathscr{A}) be a measurable space and let $f, g: X \to \mathbb{R}$ be simple, measurable functions. We first show the following statement is true: A measurable function $f: X \to \mathbb{R}$ is simple iff there exists $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $A_1, \ldots, A_n \in \mathscr{A}$ such that $f = \sum_{i=1}^n a_i \chi_{A_i}$.

Let $f: X \to \mathbb{R}$ be measurable. We start the proof of the above statement. (\Longrightarrow) Suppose that f is simple. Then, by definition, f takes only finitely many values, say, $\alpha_1, \ldots, \alpha_n$. Since f is measurable, the set $A_i := \{x \in X : f(x) = \alpha_i\}$ is measurable. Then it is easy to check that $f = \sum_{i=1}^n a_i \chi_{A_i}$. (\iff) Suppose that there exists $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $A_1, \ldots, A_n \in \mathscr{A}$ such that $f = \sum_{i=1}^n a_i \chi_{A_i}$. Suppose that $\alpha_1 < \alpha_2 < \ldots < \alpha_n$. It is fairly easy to check by cases that f is measurable (Just see what happens when $\alpha_i < t$ for each i).

- 1. Let $f,g:X\to\mathbb{R}$ be simple measurable functions. Then there exists $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ and $A_1,\ldots,A_n\in\mathcal{A}$ such that $f=\sum_{i=1}^n a_i\chi_{A_i}$ and there exists β_1,\ldots,β_m and measurable sets B_1,B_2,\ldots,B_m such that $g=\sum_{j=1}^m b_j\chi_{B_j}$. It is then easy to see that $f+g=\sum_i\sum_j\left(a_i+b_j\right)\chi_{A_i\cap B_j}$ and $fg=\sum_i\sum_ja_ib_j\chi_{A_i\cap B_j}$. By equivalent statement that we proved above, we are done.
- 2. Let $f,g:X\to\mathbb{R}$ be measurable functions. Then by Proposition 2.1.8, there exist a nondecreasing sequences of real valued measurable simple functions $\{f_n\}$ and $\{g_n\}$ converging pointwise to f and g respectively. By part (1) of this problem $\{f_n+g_n\}$ is a nondecressing sequence of real valued measurable simple functions converging pointwise to f+g. By Proposition 2.1.5, we have that limits of measurable functions are measurable and we are done.

§2.1.6 Question 6

Let $f: X \to \mathbb{R}$ be measurable function. We first show that $x \mapsto t - f(x)$ is a measurable function for every $t \in \mathbb{R}$. Let $t \in \mathbb{R}$ be fixed, let $s \in \mathbb{R}$ be some arbitrary real number. Then $\{x \in X : t - f(x) < s\} = \{x \in X : f(x) > t - s\}$. Since the set on the right hand side of the previous inequality is measurable as f is measurable, we are done.

Now, let $f, g: X \to \mathbb{R}$ be measurable functions. To show that f + g is measurable, let $t \in \mathbb{R}$. Then the set $\{x \in X: f(x) + g(x) < t\} = \{x \in X: g(x) < t - f(x)\}$. Since g is measurable and the function $x \mapsto t - f(x)$ is measurable by the previous paragraph, Proposition 2.1.6 implies that f + g is measurable.