

1. Verilog HDL originated at

A. AT&T Bell Laboratories

Name:

TEST 2 (QUEST SEASON 3)

NEGATIVE MARKING IS THERE

class

B. Defence Advanced Research Projects Agency (DARPA)

Total questions: 25

Time: 40min

	Institute of Electrical and Electronics Engineers (IEEE)	
2. Verilog is an IEEE standard		
A.	IEEE 1346	
В.	IEEE 1364	
C.	IEEE 1394	
D.	IEEE 1349	
3. Which level of abstraction level is available in Verilog but not in VHDL?		
A.	Behavioral level	
B.	Dataflow level	
C.	Gate level	
D.	Switch level	
4. In verilog `h1234 is a		
A.	16 bit hexadecimal number	
В.	32 bit hexadecimal number	
	32 bit hexadecimal number 4 bit hexadecimal number	
C.		
C. D.	4 bit hexadecimal number	
C. D.	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog?	
C. D. 5. Whice	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog? U	
C. D. 5. Which	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog? U X	
C. D. 5. Which A. B. C.	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog? U X	
C. D. 5. Which A. B. C. D.	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog? U X Z	
C. D. 5. Which A. B. C. D.	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog? U X Z None of the above net has no driver, it gets the value	
C. D. 5. Which A. B. C. D. 6. If a	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog? U X Z None of the above net has no driver, it gets the value 0	
C. D. 5. Which A. B. C. D. 6. If a	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog? U X Z None of the above net has no driver, it gets the value 0 X	
C. D. 5. Which A. B. C. D. 6. If a A. B.	4 bit hexadecimal number It is invalid notation th logic level is not supported by verilog? U X Z None of the above net has no driver, it gets the value 0 X Z	

7. Default value of <i>reg</i> is				
A.	0			
В.	X			
C.	Z			
D.	U			
8. The task <i>\$stop</i> is provided to				
A.	End simulation			
В.	Suspend simulation			
C.	Exit simulator			
D.	None of the above			
9. Externally, a output port must always connected to a				
A.	net only			
B.	a reg only			
C.	either net or reg			
D.	None of the above			
10. If	A=4'b011 and $B=4$ b'0011, then the result of $A**B$ will be			
A.	6			
B.	9			
C.	27			
D.	Invalid expression			
11. If $A=4b$ `001x and $B=4b$ `1011, then result of $A+B$ will be				
A.	110x			
B.	1100			
C.	xxxx			
D.	None of the above			
12. If A	A = 4`1xxz and $B = 4$ `b1xxx, then $A = = B$ will return			
A.	1			
B.	X			
C.	Z			
D.	0			

- 13. Result of 9% -2 will be
 - A. 4
 - B. 4.5
 - C. -1
 - D. +1
- 14. Initial value of a=1 and b=2, then what will be final value if

```
always @ (posedge clock)
```

a=b;

always @ (posedge clock)

b=a;

- A. a=2, b=1
- B. a=1, b=2
- C. Both a and b will have same value either 0 or 1
- D. None of the above
- 15. Initial value of a=1 and b=2, then what will be final value if

```
always @ (posedge clock)
```

a<=b;

always @ (posedge clock)

b<=a;

- A. a=2, b=1
- B. a=1, b=2
- C. Both a and b will have same value either 0 or 1
- D. None of the above
- 16. Given the following Verilog code, what value of "a" is displayed?

```
always @ (clock) begin
```

a = 0;

 $a \le 1$;

\$display(a);

end

- A. 0
- B. 1
- C. either 0 or 1 depending on depending on simulator implementation
- D. None of the above

17.	In	a pure combinational circuit is it necessary to mention all the inputs in sensitivity list
	A.	No
	B.	Yes
	C.	It depends on the coding style
	D.	None of these
18.	Hov	w many flops will be synthesized by the given code?
		always @ (posedge clock) begin
		Q1<=d;
		Q2<=q1;
		Q3<=q2;
		end
	A.	1
	B.	2
	C.	3
	D.	None of the above
19.	Wh	ich is not a correct method of specifying time scale in verilog?
	A.	1ns/1ps
	B.	10ns/1ps
	C.	100ns/100ps
	D.	100ns/110ps
20.	If ti	me scale is defined as `timescale $10 \text{ns}/1 \text{ns}$ and $\#1.55 \text{ a} = \text{b}$; then 'a' gets 'b' after
	A.	10ns
	B.	11 ns
	C.	15.5ns
	D.	16ns
21.	A t	ask can have arguments of type
	A.	Input only
	B.	Output only
	C.	Both input and output
	D.	All input, output and inout

- 22. If a recursive function is called concurrently from two locations, then
 - A. Recursive function can have multiple calls concurrently
 - B. It will result give ambiguous results
 - C. It will result in an error
 - D. Simulation will hang up
- 23. Which operators has highest precedence in verilog
 - A. Unary
 - B. Multiplication
 - C. Addition
 - D. Conditional
- 24. In the given code snippet, statement 2 will executed at

initial

begin

#5
$$x= 1'b0;$$
 // statement 1

15 y= 1b'1; //statement 2

End

- A. 15
- B. 20
- C. 5
- D. Current simulation time
- 25. Variable and signal which will be updated first?
 - A. Variable
 - B. Signal
 - C. Can't say
 - D. None of the above