Modelingwith

Navigate to the **04-Model** folder.

Open **04-Model-Exercises.Rmd**

The basics

A low dimensional description of a higher dimensional data set.

Data

Model Function

What is the model function?

Data

Model Function

What uncertainty is associated with it?

Data

How "good" is the model?

Data

What are the residuals?

Data

Model Function

What are the predictions?

Data

Model Function

		Algorithm	Alg									
hm	Algorithm		Algorithm		Alge							
hm	Algorithm	Algorithm	Algorithm					Algorithm	Algorithm	Algorithm	Algorithm	Algo
hm	Algorithm	Algorithm	Algorithm	Algorithm	Algorithm		m	Algorithm		Algorithm	Algorithm	Algo
hm	Algorithm	Algorithm	Algorithm	Algorithm				Algorithm	Algorithm	Algorithm	Algorithm	Algo
hm	Algorithm	Algo										

(Popular) modeling functions in R

function	package	fits			
lm()	stats	linear models			
glm()	stats	generalized linear models			
gam()	mgcv	generalized additive models			
glmnet()	glmnet	penalized linear models			
rlm()	MASS	robust linear models			
rpart()	rpart	trees			
randomForest()	randomForest	random forests			
xgboost()	xgboost	gradient boosting machines			

(Popular) modeling functions in R

function	package	fits			
lm()	stats	linear models			
glm()	stats	generalized linear models			
gam()	mgcv	generalized additive models			
glmnet()	glmnet	penalized linear models			
rlm()	MASS	robust linear models			
rpart()	rpart	trees			
randomForest()	randomForest	random forests			
xgboost()	xgboost	gradient boosting machines			

modelr

Tidy functions that make it easier to work with models in R

```
# install.packages("tidyverse")
library(modelr)
wages <- heights %>% filter(income > 0)
```


wages

							21. A X
income <int></int>	eight <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>
19000	60	155	53	married	female	13	6.841
35000	70	156	51	married	female	10	49.444
105000	65	195	52	married	male	16	99.393
40000	63	197	54	married	female	14	44.022
75000	66	190	49	married	male	14	59.683
102000	68	200	49	divorced	female	18	98.798
0	74	225	48	married	male	16	82.260
70000	64	160	54	divorced	female	12	50.283
60000	69	162	55	divorced	male	12	89.669
150000	69	194	54	divorced	male	13	95.977

wages %>%
ggplot(aes(log(income))) + geom_histogram(binwidth = 0.25)

lm()

Fit a linear model to data

```
lm(log(income) \sim education, data = wages)
```

A formula that describes the model equation

The data set

formulas

Formula only needs to include the response and predictors

Your Turn 1

Fit the model below and then examine the output. What does it look like?

mod_e <- lm(log(income) ~ education, data = wages)</pre>


```
mod_e < -lm(log(income) ~ education, data = wages)
mod_e
## Call:
   lm(formula = log(income) \sim education, data = wages)
##
##
## Coefficients:
## (Intercept) education
       8.5577
##
                    0.1418
class(mod_e)
## "lm"
```

1. Not pipe friendly to have data as second argument:(

2. Output is not tidy, or even a data frame

Use "." to pipe input to somewhere other than the first argument

```
mod_e <- wages %>%
lm(log(income) ~ education, data = .)
```

wages will be passed to here

orom orom

broom

Turns model output into data frames

```
# install.packages("tidyverse")
library(broom)
```


broom

Broom includes three functions which work for most types of models (and can be extended to more):

- 1. tidy() returns model coefficients, stats
- 2. glance() returns model diagnostics
- 3. **augment()** returns predictions, residuals, and other raw values

tidy()

Returns useful model output as a data frame

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	8.5576906	0.073259622	116.81320	0.00000e+00
education	0.1418404	0.005304577	26.73924	8.408952e-148

2 rows

glance

Returns common model diagnostics as a data frame

p.valı	statistic	sigma	adj.r.squared	r.squared
<db< td=""><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td></db<>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
8.408952e-14	714.987	0.9923358	0.119456	0.1196233

1 row | 1–10 of 11 columns

augment()

Returns data frame of model output related to original data points

mod_e %>% augment()

.rownames <chr></chr>	log.income. <dbl></dbl>	education <int></int>	.fitted <dbl></dbl>	.se.fit <dbl></dbl>	.resid <dbl></dbl>	.hat <dbl></dbl>	.sigma <dbl></dbl>	•
1	9.852194	13	10.401615	0.01400504	-0.549421141	0.0001991827	0.9924012	3.0541
2	10.463103	10	9.976094	0.02335067	0.487009048	0.0005537086	0.9924074	6.6755
3	11.561716	16	10.827137	0.01880219	0.734579123	0.0003590043	0.9923784	9.8433
4	10.596635	14	10.543456	0.01386811	0.053178965	0.0001953068	0.9924299	2.8055
5	11.225243	14	10.543456	0.01386811	0.681787624	0.0001953068	0.9923856	4.6114
6	11.532728	18	11.110817	0.02719979	0.421910848	0.0007513008	0.9924131	6.8008
7	11.156251	12	10.259775	0.01600734	0.896475490	0.0002602083	0.9923532	1.0623
8	11.002100	12	10.259775	0.01600734	0.742324811	0.0002602083	0.9923774	7.2842
9	11.918391	13	10.401615	0.01400504	1.516775174	0.0001991827	0.9922098	2.3276
10	11.652687	16	10.827137	0.01880219	0.825550901	0.0003590043	0.9923648	1.2432

augment()

Returns data frame of model output related to original data points

```
mod_e %>% augment(data = wages)
```

Adds the original wages data set to the output

Your Turn 2

Use a pipe to model **log(income)** against **height**. Then use broom and dplyr functions to extract:

- 1. The coefficient estimates and their related statistics
- 2. The adj.r.squared and p.value for the overall model


```
mod_h <- wages %>% lm(log(income) ~ height, data = .)
mod_h %>%
 tidy()
          term estimate std.error statistic
                                                  p.value
##
## 1 (Intercept) 6.98342583 0.237484827 29.40578 4.129821e-176
        height 0.05197888 0.003521666 14.75974 2.436945e-48
## 2
mod_h %>%
 glance() %>%
 select(adj.r.squared, p.value)
## adj.r.squared p.value
      0.03955779 2.436945e-48
```

```
mod_h %>%
  tidy() %>% filter(p.value < 0.05)
##
           term estimate std.error statistic
                                                      p.value
## 1 (Intercept) 6.98342583 0.237484827 29.40578 4.129821e-176
         height 0.05197888 0.003521666 14.75974 2.436945e-48
## 2
mod_e %>%
                                          so which determines
                                               income?
  tidy() %>% filter(p.value < 0.05)
##
           term estimate std.error statistic
                                                     p.value
## 1 (Intercept) 8.5576906 0.073259622 116.81320 0.000000e+00
## 2 education 0.1418404 0.005304577 26.73924 8.408952e-148
```

multivariate regression

To fit multiple predictors, add multiple variables to the formula:

```
log(income) ~ education + height
```



```
mod_eh <- wages %>%
  lm(log(income) \sim education + height, data = .)
mod_eh %>%
  tidy()
           term estimate std.error statistic
##
                                                     p.value
## 1 (Intercept) 5.34837618 0.231320415 23.12107 1.002503e-112
      education 0.13871285 0.005205245 26.64867 7.120134e-147
## 2
         height 0.04830864 0.003309870 14.59533 2.504935e-47
## 3
```


Your Turn 3

Model log(income) against education and height and sex. Can you interpret the coefficients?


```
mod_ehs <- wages %>%
  lm(log(income) \sim education + height + sex, data = .)
                  Where is sexmale?
                                      What does this mean?
mod_ehs %>%
  tidy()
                    estimate std.error statistic p.value
##
           term
                 8.250422260 0.334703051 24.649976 4.681336e-127
## 1 (Intercept)
## 2 education 0.147983063 0.005196676 28.476486 5.164290e-166
         height 0.006726614 0.004792698 1.403513 1.605229e-01
## 3
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```


wages

income <int></int>	height <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>
19000	60	155	53	married	female	13	6.841
35000	70	156	51	married	female	10	49.444
105000	65	195	52	married	male	16	99.393
40000	63	197	54	married	female	14	44.022
75000	66	190	49	married	male	14	59.683
102000	68	200	49	divorced	female	18	98.798
0	74	225	48	married	male	16	82.260
70000	64	160	54	divorced	female	12	50.283
60000	69	162	55	divorced	male	12	89.669
150000	69	194	54	divorced	male	13	95.977

FACTOR)

factors

R's representation of categorical data. Consists of:

- 1. A set of values
- 2. An ordered set of valid levels

factors

Stored as an integer vector with a levels attribute

```
unclass(sexes)
## 1 2 1
## attr(,"levels")
## "male" "female" "other"
```



```
## term estimate std.error statistic p.value
## 1 (Intercept) 8.250422260 0.334703051 24.649976 4.681336e-127
## 2 education 0.147983063 0.005196676 28.476486 5.164290e-166
## 3 height 0.006726614 0.004792698 1.403513 1.605229e-01
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```

For factors, R treats the first level as the baseline level, e.g. the mean log(income) for a male is:

log(income) = 8.25 + 0.15 * education + 0 * height

Each additional level gets a coefficient that acts as an *adjustment* between the baseline level and the additional level, e.g. the mean income for a female is:

log(income) = 8.25 + 0.15 * education + 0 * height - 0.46

To change the levels, refactor.

```
sexes <- factor(sexes, levels = c("female", "male", "other"))</pre>
sexes
                                     NEW LEVEL ORDER
## male female male
Levels: female male other
unclass(sexes)
## 2 1 2
## attr(,"levels")
## "female" "male" "other"
```

To change the levels, refactor.

```
sexes <- factor(sexes, levels = c("female", "male", "other"))
wages <-
wages %>%
mutate(sex = factor(sex, levels = c("female", "male"))
```

```
## term estimate std.error statistic p.value
## 1 (Intercept) 8.250422260 0.334703051 24.649976 4.681336e-127
## 2 education 0.147983063 0.005196676 28.476486 5.164290e-166
## 3 height 0.006726614 0.004792698 1.403513 1.605229e-01
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```

But what does all of this look like?

model visualization

Your Turn 4

```
Add + geom_smooth(model = lm) to the code below.
What happens?
wages %>%
ggplot(aes(x = height, y = log(income))) +
geom_point(alpha = 0.1)
```



```
wages %>%

ggplot(aes(x = height, y = log(income))) +
   geom_point(alpha = 0.1) +
   geom_smooth(method = lm)
```


geom_smooth()

Adds model line for predicting y ~ x (default).

```
p + geom_smooth(method = lm, se = TRUE, ...)
```

An R modeling function to use to generate the line

Include standard error bars?

Other args to pass to modeling function

What about rest

modelr

Tidy functions that make it easier to work with models in R

```
# install.packages("tidyverse")
library(modelr)
```


add_predictions()

Uses the values in a data frame to generate a prediction for each case. Overlaps with augment()*

wages %>% add_predictions(mod_h)

•	height <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>	pred <dbl></dbl>
	60	155	53	married	female	13	6.841	10.102158
	70	156	51	married	female	10	49.444	10.621947
	65	195	52	married	male	16	99.393	10.362053
	63	197	54	married	female	14	44.022	10.258095
	66	190	49	married	male	14	59.683	10.414032
	68	200	49	divorced	female	18	98.798	10.517989
	64	160	54	divorced	female	12	50.283	10.310074
	69	162	55	divorced	male	12	89.669	10.569968
	69	194	54	divorced	male	13	95.977	10.569968
	64	145	53	married	female	16	67.021	10.310074

add_residuals()

Uses the values in a data frame to generate a residual for each case. Overlaps with augment()*

wages %>% add_residuals(mod_h)

income <int></int>	height <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>	resid <dbl></dbl>
19000	60	155	53	married	female	13	6.841	-0.2499641042
35000	70	156	51	married	female	10	49.444	-0.1588437767
105000	65	195	52	married	male	16	99.393	1.1996628894
40000	63	197	54	married	female	14	44.022	0.3385397443
75000	66	190	49	married	male	14	59.683	0.8112117773
102000	68	200	49	divorced	female	18	98.798	1.0147387260
70000	64	160	54	divorced	female	12	50.283	0.8461766568
60000	69	162	55	divorced	male	12	89.669	0.4321315995
150000	69	194	54	divorced	male	13	95.977	1.3484223314
115000	64	145	53	married	female	16	67.021	1.3426135431

1–10 of 5,266 rows

Help Me

How can we use add_predictions to visualize the predictions of model_ehs?

```
wages %>%
  add_predictions(mod_ehs) %>%
  ggplot(mapping = aes(x = height, y = pred, color = sex)) +
    geom_line() +
    facet_wrap(~ education)
```


Your Turn 5

Use add_residuals to make this histogram of the residuals of mod_ehs.


```
wages %>%
  add_residuals(mod_ehs) %>%
  ggplot() +
   geom_histogram(aes(resid))
```


To compare models,

1. Use add_residuals repeatedly to add residuals from each model

wages %>% add_residual(mod_h, var = "mod_h")

income <int></int>	height <dbl></dbl>	sex <fctr></fctr>	education <int></int>	mod_h <dbl></dbl>
19000	60	female	13	-0.2499641042
35000	70	female	10	-0.1588437767
105000	65	male	16	1.1996628894
40000	63	female	14	0.3385397443
75000	66	male	14	0.8112117773
102000	68	female	18	1.0147387260
70000	64	female	12	0.8461766568
60000	69	male	12	0.4321315995
150000	69	male	13	1.3484223314
115000	64	female	16	1.3426135431

To compare models,

1. Use add_residuals repeatedly to add residuals from each model

... %>% add_residual(mod_eh, var = "mod_eh")

income <int></int>	height <dbl></dbl>	sex <fctr></fctr>	education <int></int>	mod_h <dbl></dbl>	mod_eh <dbl></dbl>
19000	60	female	13	-0.2499641042	-0.197967581
35000	70	female	10	-0.1588437767	0.345993609
105000	65	male	16	1.1996628894	0.853872025
40000	63	female	14	0.3385397443	0.262834114
75000	66	male	14	0.8112117773	0.746516842
102000	68	female	18	1.0147387260	0.402532860
70000	64	female	12	0.8461766568	1.051566955
60000	69	male	12	0.4321315995	0.655873056
150000	69	male	13	1.3484223314	1.433450940
115000	64	female	16	1.3426135431	0.993152447

To compare models,

1. Use add_residuals repeatedly to add residuals from each model

... %>% add_residual(mod_ehs, var = "mod_ehs")

income <int></int>	height <dbl></dbl>	sex <fctr></fctr>	education <int></int>	mod_h <dbl></dbl>	mod_eh <dbl></dbl>	mod_ehs <dbl></dbl>
19000	60	female	13	-0.2499641042	-0.197967581	-0.2638576582
35000	70	female	10	-0.1588437767	0.345993609	0.7237344726
105000	65	male	16	1.1996628894	0.853872025	0.5063344524
40000	63	female	14	0.3385397443	0.262834114	0.3124199119
75000	66	male	14	0.8112117773	0.746516842	0.4591017275
102000	68	female	18	1.0147387260	0.402532860	0.6229479494
70000	64	female	12	0.8461766568	1.051566955	1.1612752115
60000	69	male	12	0.4321315995	0.655873056	0.5117444599
150000	69	male	13	1.3484223314	1.433450940	1.2800521289
115000	64	female	16	1.3426135431	0.993152447	1.0657798463

To compare models,

- 1. Use add_residuals repeatedly to add residuals from each model
- 2. Gather the residuals into model and resid columns

income <int></int>	height <dbl></dbl>	sex <fctr></fctr>	education <int></int>	model <chr></chr>	resid <dbl></dbl>
19000	60	female	13	mod_h	-0.2499641042
19000	60	female	13	mod_eh	-0.1979675815
19000	60	female	13	mod_ehs	-0.2638576582
115000	64	female	16	mod_h	1.3426135431
115000	64	female	16	mod_eh	0.9931524472
115000	64	female	16	mod_ehs	1.0657798463

To compare models,

- 1. Use add_residuals repeatedly to add residuals from each model
- 2. Gather the residuals into model and resid columns
- 3. Plot resid and facet by model

```
... %>%
    ggplot() +
        geom_histogram(aes(resid)) +
        facet_grid(model ~ .)
```


Your Turn 6

Work together to complete the code and make a plot that compares the residuals of all three models.


```
wages %>%
 add_residuals(mod_h, var = "mod_h") %>%
  add_residuals(mod_eh, var = "mod_eh") %>%
  add_residuals(mod_ehs, var = "mod_ehs") %>%
  gather(key = "model", value = "resid",
   mod_h, mod_eh, mod_ehs) %>%
  ggplot() +
    geom_histogram(aes(resid)) +
    facet_grid(model ~ .)
```


spread_residuals()

Adds residuals for multiple models, each in their own column.

spread_residuals(data, ...)

Adds residuals from each of these models

To the cases in this data frame

wages %>%

spread_residuals(mod_h, mod_eh, mod_ehs)

income <int></int>	height <dbl></dbl>	sex <fctr></fctr>	education <int></int>	mod_h <dbl></dbl>	mod_eh <dbl></dbl>	mod_ehs <dbl></dbl>
19000	60	female	13	-0.2499641042	-0.197967581	-0.2638576582
35000	70	female	10	-0.1588437767	0.345993609	0.7237344726
105000	65	male	16	1.1996628894	0.853872025	0.5063344524
40000	63	female	14	0.3385397443	0.262834114	0.3124199119
75000	66	male	14	0.8112117773	0.746516842	0.4591017275
102000	68	female	18	1.0147387260	0.402532860	0.6229479494
70000	64	female	12	0.8461766568	1.051566955	1.1612752115
60000	69	male	12	0.4321315995	0.655873056	0.5117444599
150000	69	male	13	1.3484223314	1.433450940	1.2800521289
115000	64	female	16	1.3426135431	0.993152447	1.0657798463

gather_residuals()

Adds residuals for multiple models as a pair of key:value columns (model:resid)

gather_residuals(data, ...)

Adds residuals from each of these models

To the cases in this data frame (duplicating rows as necessary)

wages %>%

gather_predictions(mod_h, mod_eh, mod_ehs)

income <int></int>	height <dbl></dbl>	sex <fctr></fctr>	education <int></int>	model <chr></chr>	resid <dbl></dbl>
19000	60	female	13	mod_h	-0.2499641042
19000	60	female	13	mod_eh	-0.1979675815
19000	60	female	13	mod_ehs	-0.2638576582
115000	64	female	16	mod_h	1.3426135431
115000	64	female	16	mod_eh	0.9931524472
115000	64	female	16	mod_ehs	1.0657798463
41000	65	female	16	mod_h	0.2592746059
41000	65	female	16	mod_eh	-0.0865162582
41000	65	female	16	mod_ehs	0.0276931707
19000	63	female	12	mod h	-0.4059007306


```
wages %>%
 add_residuals(mod_h, var = "mod_h") %>%
  add_residuals(mod_eh, var = "mod_eh") %>%
  add_residuals(mod_ehs, var = "mod_ehs") %>%
  gather(key = "model", value = "resid",
   mod_h, mod_eh, mod_ehs) %>%
  ggplot() +
    geom_histogram(aes(resid)) +
    facet_grid(model ~ .)
```



```
wages %>%
  spread_residuals(mod_h, mod_eh, mod_ehs) %>%
  gather(key = "model", value = "resid",
   mod_h, mod_eh, mod_ehs) %>%
  ggplot() +
   geom_histogram(aes(resid)) +
    facet_grid(model ~ .)
```



```
wages %>%
  spread_residuals(mod_h, mod_eh, mod_ehs) %>%
  gather(key = "model", value = "resid",
   mod_h, mod_eh, mod_ehs) %>%
  ggplot() +
   geom_histogram(aes(resid)) +
    facet_grid(model ~ .)
```



```
wages %>%
  gather_residuals(mod_h, mod_eh, mod_ehs) %>%
  ggplot() +
    geom_histogram(aes(resid)) +
    facet_grid(model ~ .)
```


Residuals

Modelr provides the equivalent functions for residuals

Recap

Use glance(), tidy(), and augment() to return model values in a data frame.

Use add_predictions() or gather_predictions() or spread_predictions() to visualize predictions.

Use add_residuals() or gather_residuals() or spread_residuals() to visualize residuals.

Modelingwith

