lipid nanoparticles

	NCT Number	Title	Authors	Description	Identifier	Dates
1	pubmed:36076468	Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers	Fernanda Luisa Lüdtke Marcella Aparecida Stahl Renato Grimaldi Marcus Bruno Soares Forte Mirna Lúcia Gigante Ana Paula Badan Ribeiro	Lipid-based nanoparticles are one of the most promising encapsulation technologies in the field of nanotechnology, and solid lipid nanoparticles were the first generation of such structures. The second generation of lipid nanostructures is the nanostructured lipid carriers (NLC), which are composed of lipid materials with different melting points (MP). High pressure homogenization (HPH) is one of the main methods used on an industrial scale to produce NLC, and the process conditions affect the	pmid:36076468 doi:10.1016/j.foodres.2022.111746	Fri, 09 Sep 2022 06:00:00 -0400
2	pubmed:36077466	Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy	Aiswarya Chaudhuri Dulla Naveen Kumar Rasheed A Shaik Basma G Eid Ashraf B Abdel-Naim Shadab Md Aftab Ahmad Ashish Kumar Agrawal	Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid	pmid:36077466 doi:10.3390/ijms231710068	Fri, 09 Sep 2022 06:00:00 -0400
3	pubmed:36080373	Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy	Hong-Li Wang Zhi-Gang Wang Shu-Lin Liu	Messenger RNA (mRNA) is being developed by researchers as a novel drug for the treatment or prevention of many diseases. However, to enable mRNA to fully exploit its effects in vivo, researchers need to develop safer and more effective mRNA delivery systems that improve mRNA stability and enhance the ability of cells to take up and release mRNA. To date, lipid nanoparticles are promising nanodrug carriers for tumor therapy, which can significantly improve the immunotherapeutic effects of	pmid:36080373 doi:10.3390/molecules27175607	Fri, 09 Sep 2022 06:00:00 -0400
4	pubmed:36083788	Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy	Aisha Aziz Urushi Rehman Afsana Sheikh Mohammed A S Abourehab Prashant Kesharwani	CRISPR/Cas mediated gene-editing has opened new avenues for therapies that show great potential for treating or curing cancers, genetic disorders, and microbial infections such as HIV. CRISPR/Cas9 tool is highly efficacious in revolutionizing the advent of genome editing; however, its efficient and safe delivery is a major hurdle due to its cellular impermeability and instability. Nano vectors could be explored to scale up the safe and effective delivery of CRISPR/Cas9. This review highlights	pmid:36083788 doi:10.1080/09205063.2022.2121592	Fri, 09 Sep 2022 06:00:00 -0400