

PSC 40A

Zecture 04

Zearning via Optimization, pt II

Announcements

Remember: homework due tomorrow @ 5 pm.

Last Time: Empirical Risk Minimization

► To learn, pick a loss function L and minimize the empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- Absolute loss: $L_{ahs}(h, y) = |h y|$ (gives the median)
- Square loss: $L_{sq}(h, y) = (h y)^2$ (gives the mean)
- Key Point: Tradeoffs to each loss function.

Today

- We'll design our own loss function.
- We'll get stuck when trying to minimize.
- We'll invent gradient descent as a general approach to minimizing functions.

Loss Functions

- ightharpoonup A loss function L(h, y) quantifies how "bad" a prediction is.
- Example: take h = 4 and y = 6.
- ► Absolute loss: $L_{abs}(h, y) = |4 6| = 2$
- Square loss: $L_{sq}(h, y) = (4 6)^2 = 4$

Plotting a Loss Function

- ► The plot of a loss function tells us how it treats outliers.
- ► Consider y fixed. Plot $L_{abs}(h, y) = |h y|$:

Plotting a Loss Function

- The plot of a loss function tells us how it treats outliers.
- ► Consider y fixed. Plot $L_{sq}(h, y) = (h y)^2$:

Discussion Question

Suppose L considers all outliers to be equally as bad. What would it look like far away from y?

- a) flat
- b) rapidly decreasing
- c) rapidly increasing

A very insensitive loss

ightharpoonup We'll call this loss L_{ucsd} because it doesn't have a name.

Discussion Question

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(h-y)^2}$$

b) $1 - e^{-(h-y)^2}$
c) $1 - (h-y)^2$
d) $1 - e^{-|h-y|}$

d)
$$1 - e^{-1/1-y}$$

Adding a scale parameter

- Problem: L_{ucsd} has a fixed scale.
- Won't work for all data sets (e.g., salaries).
- Fix: add a scale parameter, σ :

$$L_{\text{ucsd}}(h, y) = 1 - e^{-(h-y)^2/\sigma^2}$$

Empirical Risk Minimization

- ▶ We have salaries $y_1, ..., y_n$.
- ► To find prediction, ERM says to minimize the mean loss:

$$R_{\text{ucsd}}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{ucsd}}(h, y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(h - y_i)^2 / \sigma^2} \right]$$

Let's plot R_{ucsd}

Recall:

$$R_{\text{ucsd}}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(h-y_i)^2/\sigma^2} \right]$$

- Once we have data $y_1, ..., y_n$ and a scale σ , we can plot $R_{\text{ucsd}}(h)$
- We'll use full StackOverflow data (n = 1121)
- Let's try several scales, σ.

Minimizing R_{ucsd}

- ► To make prediction, we find h^* minimizing $R_{\text{ucsd}}(h)$.
- $ightharpoonup R_{ucsd}$ is differentiable (no cusps).
- ► To minimize: take derivative, set to zero, solve.

Step 1) Taking the derivative

$$\frac{dR_{\text{ucsd}}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(h-y_i)^2/\sigma^2} \right] \right)$$

Step 2) Setting to zero and solving

We found (hopefully):

$$\frac{dR_{\text{ucsd}}}{dh}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

Now we just set to zero and solve for h:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

We can calculate derivative, but we can't solve for h; we're stuck again.

Meaning of the Derivative

- ► We have the derivative; can we use it?
- $ightharpoonup \frac{dR}{dh}(h)$ is a function; it gives the slope at h.

Key Idea Behind Gradient Descent

- If the slope of *R* at *h* is **positive** then moving to the **left** decreases the value of *R*.
- ▶ i.e., we should **decrease** h

Key Idea Behind Gradient Descent

- If the slope of *R* at *h* is **negative** then moving to the **right** decreases the value of *R*.
- ▶ i.e., we should **increase** *h*

Key Idea Behind Gradient Descent

- \triangleright Pick a starting place, h_0 . Where do we go next?
- ► Slope at h_0 negative? Then increase h_0 .
- ▶ Slope at h_0 positive? Then decrease h_0 .
- This will work:

$$h_1 = h_0 - \frac{dR}{dh}(h_0)$$

Gradient Descent

- ightharpoonup Pick α to be a positive number. It is the **learning rate**.
- Pick a starting prediction, h_0 .
- ► On step i, perform update $h_i = h_{i-1} \alpha \cdot \frac{dR}{dh}(h_{i-1})$
- Repeat until convergence (when h doesn't change much).


```
def gradient_descent(derivative, h, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
        h_next = h - alpha * derivative(h)
        if abs(h next - h) < tol:</pre>
```

break
h = h next

return h

Example: Minimizing Mean Squared Error

Recall the mean squared error and its derivative:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2$$
 $\frac{dR_{\text{sq}}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

Discussion Question

Let
$$y_1 = -4$$
, $y_2 = -2$, $y_3 = 2$, $y_4 = 4$.
Pick $h_0 = 4$ and $\alpha = 1/4$. What is h_1 ?

Example

Status Update

- ► We introduced the UCSD loss and got stuck trying to minimize.
- In response, we invented gradient descent.

What's Left?

- When does gradient descent work?
- ► When does it fail?