The Coalgebraic Interretation of Brzozowski's Automata Minimisation Algorithm

Natalie Ravenhill

University of Birmingham

24th March 2015

Introduction

Automata minimisation = Giving the smallest possible automaton that accepts a given language

The two main different types of algorithms to do this:

- Partition Based (Hopcroft, Moore, ...)
- Powerset Construction Based (Brozozowski)

We will study Brzozowski's Algorithm

How does it work?

First we take a finite state automaton that accepts a language L. Then we:

- Reverse the automaton
- 2 Determinise the result by Powerset Construction
- 3 Take the reachable part
- 4 Repeat Steps 1 and 2

Now we have the minimal automaton that accepts L

Given an automaton M

which accepts the language $a(a)^*b$

Reverse it:

Transitions

state	а	b
1	-	{3}
2	-	{4}
3	{5}	-
4	{3,4}	_
5	-	-

Take reachable part:

This will be the minimal automaton recognising the reverse language $ba(a)^*$

Reverse the new automaton:

Give transitions for powerset construction

state	a	b
1	{1,3}	-
2	{1,3} {2,4}	{1,2,3}
3	-	{4}
4	_	_

Construct reachable part:

Now we have the minimal automaton that accepts a(a)*b

How do we prove its correctness?

Simple proof of correctness given by [Sakarovitch,2009]

Coalgebraic proof given by [Bonchi. et al, 2012]

Benefits:

- helps with understanding of algorithm
- used to generalise Brzozowski to other types of Automaton (Weighted Automata, Kleene Algebra with Tests...)

Structure

To explain the coalgebraic proof of Brzozowski's algorithm, we must first understand some of the concepts behind it, including:

- Category Theory (categories, functors, homomorphisms)
- Universal Algebra and Coalgebra
- Reachability and Observability of Automata

Reachability

Definition

For any $x_i \in X$, there exists a word $w \in A^*$ such that applying that word to the initial state, we get x:

Example:

Observability

Definition

Each state in an a given automaton recognises a unique lanaguage (so has a unique behaviour).

Example:

Automata as a Coalgebra

Rewrite transition function:

$$X \times A \longrightarrow X$$

As the coalgebra:

$$X \longrightarrow X^A$$

Automata

We represent an automaton as an algebra and a coalgebra

 $\mathsf{Algebra} = \mathsf{initial} \ \mathsf{state} \ \mathsf{function} + \mathsf{transition} \ \mathsf{structure}$

F-algebra

$$F$$
-algebra where $F(X) = 1 + (A \times X)$

Reachability Algebraically

We can define the following automaton to represent reachability:

$$1 \xrightarrow{\epsilon} A^* \xrightarrow{\alpha} (A^*)^A$$

where:

$$\epsilon: 1 \to A^*$$

$$\epsilon(^*) = x_0$$

$$\alpha: A^* \to (A^*)^A$$

 $\alpha(w)(a) = w \cdot a$

Reachability Algebra

which is the F-algebra $F(A^*) = 1 + (A \times A^*)$

Reachability Example

Original Example:

Reachability automaton:

Reachability Homomorphism

$$r: A^* \to X$$
 $r(w) = i_w$

Automata

We represent an automaton as an algebra and a coalgebra

Coalgebra = transition structure and final state function

Observability Coalgebraically

$$o: X \to 2^{A^*}$$

 $o = \{ w \in A^* | f(x_w) = 1 \}$

Applying both homomorphisms to the automaton

r and o both apply to this automaton, so it is **minimal**.

Creating the Duality

Theorem

Let $\mathcal{X} = (X, t, i, f)$ be a deterministic automaton and $\mathcal{R} = (2^X, 2^t, f, 2^i)$ be the reverse deterministic automaton of that automaton. If \mathcal{X} is reachable, then \mathcal{R} is observable and if \mathcal{X} accepts a language L, then \mathcal{R} accepts the reverse language rev(L).

To prove this, we must construct the reverse language.

Contravariant Powerset Functor

Given sets A and B and a morphism $f: A \rightarrow B$

$$A \xrightarrow{f} B$$

applying the contravariant powerset functor $2^{(-)}: Set \to Set$ gives us

$$2^B \xrightarrow{2^f} 2^A$$

Reversed Automaton

With reachability and observability

Getting Brzozowski from this

- 1 Do reverse construction of M
- **2** Take reachable part of rev(M)
- **3** Apply reverse construction to rev(M)
- 4 Take reachable part

Proving the theorem

We need to prove two lemmas:

Lemma

If a function $f:A\to B$ is surjective, then applying the contravariant poweset functor to it will give the injective function $2^f:2^B\to 2^A$

Lemma

The function rev that maps a language to its reverse language is bijective.

If \mathcal{X} is reachable, \mathcal{R} is observable

- \mathcal{X} is reachable, so r is surjective
- by Lemma 1, 2^r is injective
- by Lemma 2, rev is bijective
- $O = 2^r \circ rev$, so is injective overall
- O must be injective for $\mathcal R$ to be observable

If \mathcal{X} accepts L, \mathcal{R} accepts rev(L)

- In \mathcal{X} , observability is $o(i) = \{w \in A^* | f(i_w) = 1\}$
- Observability in \mathcal{R} is $O(f) = \{ w \in A^* | 2^i(f_w) = 1 \}$
- Equivalently this is $\{w^R \in A^* | i_w \in f\}$
- We can get the reverse language of this using rev: rev({w ∈ A*|i_w ∈ f}
- Which we can rewrite as $rev(\{w \in A^* | f(i_w) = 1\})$
- This is the same as observability in the original automaton: rev(o(i))

Conclusion

Now we have discussed:

- the stages of Brzozowski's algorithm
- reachability and observability of automata and the duality between these properties
- · Representing an automaton as both an algebra and coalgebra
- Reversing this representation of an automaton using the contravariant powerset functor
- How this can be used to prove the correctness of Brzozowski's Algorithm