MetaL — A Library for Formalised Metatheory in Agda

Robin Adams¹

University of Bergen r.adams@ii.uib.no

Abstract. There are now many techniques for formalising metatheory (nominal sets, higher-order abstract syntax, etc.) but, in general, each requires the syntax and rules of deduction for a system to be defined afresh, and so all the proofs of basic lemmas must be written anew when we work with a new system, and modified every time we modify the system.

In this rough diamond, we present an early version of MetaL ("Metatheory Library"), a library for formalised metatheory in Agda. There is a type Grammar of grammars with binding, and types Red G of reduction relations and Rule G of sets of rules of deduction over G: Grammar. A grammar is given by a set of constructors, whose type specifies how many arguments it takes, and how many variables are bound in each argument. Reduction relations and rules of deduction are given by patterns, or expressions involving second-order variables.

The library includes a general proof of the substitution lemma. The final version is planned to include proofs of Church-Rosser for reductions with no critical pairs, and Weakening and Substitution lemmas for appropriate sets of rules of deduction.

MetaL has been designed with the following criteria in mind. It is easy to specify a grammar, reduction rule or set of rules of deduction: the Agda definition is the same length as the definition on paper. The general results are immediately applicable. When working within a grammar G, it should be possible to define functions by induction on expressions, and prove results by induction on expressions or induction on derivations, using only Agda's built-in pattern matching.

1 Introduction

1.1 Design Criteria

This library was produced with the following design goals.

 The library should be modular. There should be a type Grammar, and results such as the Substitution Lemma should be provable 'once and for all' for all grammars.¹

¹ For future versions of the library, we wish to have a type of reduction rules over a grammar, and a type of theories (sets of rules of deduction) over a grammar.

- It should be possible for the user to define their own operations, such as path substitution
- Operations which are defined by induction on expressions should be definable
 by induction in Agda. Results which are proved by induction on expressions
 should be proved by induction in Agda.

2 Grammar

Example 1 (Simply Typed Lambda Calculus). For a running example, we will construct the grammar of the simply-typed lambda-calculus, with Church-typing and one constant ground type \perp . On paper, in BNF-style, we write the grammar as follows:

Type
$$A := \bot \mid A \to A$$

Term $M := x \mid MM \mid \lambda x : A.M$

2.1 Taxonomy

A taxonomy is a set of expression kinds, divided into variable kinds and non-variable kinds. The intention is that the expressions of the grammar are divided into expression kinds. Every variable ranges over the expressions of one (and only one) variable kind.

```
record Taxonomy : \mathsf{Set}_1 where field \mathsf{VariableKind} : \mathsf{Set} \mathsf{NonVariableKind} : \mathsf{Set} \mathsf{data} \mathsf{ExpressionKind} : \mathsf{Set} where \mathsf{varKind} : \mathsf{VariableKind} \to \mathsf{ExpressionKind} \mathsf{nonVariableKind} \to \mathsf{ExpressionKind}
```

An *alphabet* is a finite set of *variables*, to each of which is associated a variable kind. We write $\mathsf{Var} \ \mathsf{V} \ \mathsf{K}$ for the set of all variables in the alphabet V of kind K .

2.2 Grammar

Definition 2. An abstraction kind has the form $K_1 \to \cdots \to K_n \to L$, where each K_i is an abstraction kind, and L is an expression kind.

A constructor kind has the form $A_1 \to \cdots \to A_n \to K$, where each A_i is an abstraction kind, and K is an expression kind.

A grammar over a taxonomy consists of:

- a set of *constructors*, each with an associated constructor kind;
- a function assigning, to each variable kind, an expression kind, called its *parent*. (The intention is that, when a declaration x : A occurs in a context, if x has kind K, then the kind of A is the parent of K.)

```
record IsGrammar ( T: Taxonomy) : Set_1 where open Taxonomy T field

Con : ConstructorKind \rightarrow Set parent : VariableKind \rightarrow ExpressionKind

record Grammar : Set_1 where field taxonomy : Taxonomy isGrammar : IsGrammar taxonomy open Taxonomy taxonomy public open IsGrammar isGrammar public
```

Definition 3. We define simultaneously the set of expressions of kind K over V for every expression kind K and alphabet V; and the set of abstractions of kind A over V for every abstraction kind A and alphabet V.

- Every variable of kind K in V is an expression of kind K over V.
- If c is a constructor of kind $A_1 \to \cdots \to A_n \to K$, and M_1 is an abstraction of kind A_1, \ldots, M_n is an abstraction of kind A_n (all over V), then

$$cM_1\cdots M_n$$

is an expression of kind K over V.

- An abstraction of kind $K_1 \to \cdots \to K_n \to L$ over V is an expression of the form

$$[x_1,\ldots,x_n]M$$

where each x_i is a variable of kind K_i , and M is an expression of kind L over $V \cup \{x_1, \ldots, x_n\}$.

In the Agda code, we define simultaneously the following four types:

- Expression VK =Subexp V-Expression K, the type of expressions of kind K;

```
- VExpression VK = \text{Expression } V(\text{varKind } K), a convenient shorthand when K
    is a variable kind;
 - Abstraction VA, the type of abstractions of kind A over V
 - ListAbstraction VAA: if AA \equiv [A_1, \dots, A_n], then ListAbstraction VAA is the
    type of lists of abstractions [M_1, \ldots, M_n] such that each M_i is of kind A_i.
      data Subexp (V: Alphabet): \forall C \rightarrow \mathsf{Kind}\ C \rightarrow \mathsf{Set}
      Expression : Alphabet \rightarrow ExpressionKind \rightarrow Set
      VExpression : Alphabet \rightarrow VariableKind \rightarrow Set
      Abstraction : Alphabet \rightarrow AbstractionKind \rightarrow Set
      ListAbstraction : Alphabet \rightarrow List AbstractionKind \rightarrow Set
      Expression V K = Subexp V - Expression K
      VExpression V K = Expression V (varKind K)
      Abstraction V(SK KK L) = Expression (extend V KK) L
      ListAbstraction VAA = Subexp V-ListAbstraction AA
      infixr 5 ::
      data Subexp V where
      \operatorname{var}: \forall \{K\} \to \operatorname{Var}\ V\ K \to \operatorname{VExpression}\ V\ K
      \mathsf{app}: \forall \{AA\} \{K\} \to \mathsf{Con} (\mathsf{SK} \ AA \ K) \to \mathsf{ListAbstraction} \ V \ AA \to \mathsf{Expression} \ V \ K
      []: ListAbstraction V[]
      :: \forall \{A\} \{AA\} \rightarrow \mathsf{Abstraction} \ V A \rightarrow \mathsf{ListAbstraction} \ V (A :: AA)
Example 4. The grammar given in Example 1 has four constructors:
 -\perp, of kind type;
 -\rightarrow, of kind type \longrightarrow type \longrightarrow type
 - appl, of kind term \longrightarrow term \longrightarrow term
 -\lambda, of kind type \longrightarrow (term \longrightarrow term) \longrightarrow term
The kind of the final constructor \lambda should be read like this: \lambda takes a type A
and a term M, binds a term variable x within M, and returns a term \lambda x : A.M
      type: ExpressionKind
      type = nonVariableKind -type
```

term : ExpressionKind term = varKind -term

-bot : stlcCon (type ♦)

data stlcCon : ConstructorKind \rightarrow Set where

-arrow : stlcCon (type $\lozenge \longrightarrow$ type $\lozenge \longrightarrow$ type \lozenge)
-app : stlcCon (term $\lozenge \longrightarrow$ term $\lozenge \longrightarrow$ term \lozenge)

-lam : stlcCon (type $\Diamond \longrightarrow$ (-term \longrightarrow term \Diamond) \longrightarrow term \Diamond)

Families of Operations 2.3

Our next aim is to define replacement and substitution.

Definition 5 (Replacement).

- A replacement from U to V, $\rho: U \to_R V$, is a family of functions $\rho_K:$ $VarUK \rightarrow VarVK$ for every variable kind K.
- For x: VarU K, define $\rho(x) \stackrel{\text{def}}{=} \rho_K(x)$. Define $\uparrow: V \to_R V, K \ by \uparrow_L (x) \equiv x$.
- Define $(1_V)_K(x) \equiv x$
- Define $(\sigma \circ \rho)_K(x) \equiv \sigma_K(\rho_K(x))$ Define $\sigma_K^{\uparrow}(x_0) \equiv x_0$, and $\sigma_L^{\uparrow}(\uparrow x) \equiv \uparrow \sigma_L(x)$.

We write $E(\rho)$ for the action of a replacement ρ on a subexpression E.

Definition 6 (Substitution).

- A substitution from U to V, $\sigma: U \Rightarrow V$, is a family of functions $\sigma_K:$ $VarUK \rightarrow ExpressionVK$ for every variable kind K.
- For x: VarU K, define $\sigma(x) \stackrel{\text{def}}{=} \sigma_K(x)$
- Define $\uparrow: V \to_R V, K \ by \uparrow_L (x) \equiv x$.
- Define $(1_V)_K(x) \equiv x$
- Define $(\sigma \circ \rho)_K(x) \equiv \rho_K(x)[\sigma]$
- Define $\sigma_K^{\uparrow}(x_0) \equiv x_0$ and $\sigma_L^{\uparrow}(\uparrow x) \equiv \sigma_L(x)\langle \uparrow \rangle$.

We write $E[\sigma]$ for the action of a substitution σ on a subexpression E.

We can prove the following results about substitution, and analogous results about replacement.

Lemma 7. 1. If $\rho \sim \sigma$ then $E[\rho] \equiv E[\sigma]$.

- 2. $1_V^{\uparrow} = 1_{V,K}$ 3. $E[1_V] \equiv E$
- 4. $E[\sigma \circ \rho] \equiv E[\rho][\sigma]$
- 5. $\tau \circ (\sigma \circ \rho) \sim (\tau \circ \sigma) \circ \rho$ 6. If $\sigma : U \Rightarrow V$ then $1_V \circ \sigma \sim \sigma \sim \sigma \circ 1_U$

Limitations

There is no way to express that an expression depends on some variable kinds but not others. (E.g. in our simply-typed lambda calculus example: the types do not depend on the term variables.) This leads to some boilerplate that is needed, proving lemmas of the form

$$(\perp U)[\sigma] \equiv \perp V \tag{1}$$

There is a workaround for this special case. We can declare all the types as constants: This is what we used for the project PHOML.

For a general solution, we would need to parametrise alphabets by the set of variable kinds that may occur in them, and then prove results about mappings from one type of alphabet to another. We could then prove onceand-for-all versions of the lemmas like (1). It remains to be seen whether this would still be unwieldy in practice.

- 4 Related Work
- 5 Conclusion

References