Definition Leibnizregel

Definition 1. [Kapitel 16 David Eisenbud 1994] Sei S ein Ring und M ein S-Modul

Ein Homomoprphismus abelscher Gruppen $d: S \longrightarrow M$ ist eine <u>Ableitung,</u> falls gilt:

$$\forall s_1, s_2 \in S : d(s_1 \cdot s_2) = s_1 d(s_2) + s_2 d(s_1)$$
 (Leibnitzregel)

Sei S eine R-Algebra, dann nennen wir eine $\underline{Ableitung}$ $d: S \longrightarrow M$ \underline{R} -linear, falls sie zusätzlich ein R-Modulhomomorphismus ist, also falls gilt:

$$\forall r_1, r_2 \in R \, \forall s_1, s_2 \in S : d(r_1 s_1 + r_2 s_2) = r_1 d(s_1) + r_2 d(s_2)$$

Differenzial indempotenter Elemente

Lemma 2. [Aufgabe 16.1 David Eisenbud 1994]

Sei S ein Ring, M ein S-Modul und $d: S \longrightarrow M$ eine Ableitung. Sei weiter $a \in S$ ein indempotentes Element $(a^2 = a)$.

Dann gilt
$$d(a) = 0$$
.

Insbesondere gilt somit auch d(1) = 0.

Beweis. Nutze hierfür allein die Leibnizregel (crefDefinition Leibnizregel)

Schritt 1:
$$d_S(a) = d_S(a^2) = ad_S(a) + ad_S(a)$$

Schritt 2: $ad_S(a) = ad_S(a^2) = a^2d_S(a) + a^2d_S(a) = ad_S(a) + ad_S(a)$
 $\Rightarrow d_S(a) = ad_S(a) = 0$

Definition 3. Sei S eine R-Algebra.

Das S-Modul $\Omega_{S/R}$ der Kähler-Differenziale von S über R und die dazugehörige universelle R-lineare Ableitung $d_S: S \longrightarrow \Omega_{S/R}$ mit $im(d_S) = \Omega_{S/R}$ sind durch die folgende universelle Eigenschaft definiert:

Für alle R-linearen Ableitungen $e: S \longrightarrow M$ von S in ein S-Modul M existiert genau ein S-Modulhomomorphismus $e': \Omega_{S/R} \longrightarrow M$, sodass folgendes Diagramm kommutiert:

Eindeutigkeit des Kaehler-Differentials

Lemma 4. (Das Kähler-Differentials ist eindeutig)

 $Sei\ S\ eine\ R ext{-}Algebra.$

Dann ist das S-Modul $\Omega_{S/R}$ der Kähler-Differenziale von S über R und die dazugehörige universelle R-lineare Ableitung d_S bis auf eine eindeutige Isomorphie eindeutig bestimmt.

Beweis. Seien $d_S: S \longrightarrow \Omega_{S/R} und d_S': S \longrightarrow \Omega_{S/R}'$ beide eine universelle R-lineare Ableitung.

Durch die universelle Eigenschaft der universellen Ableitung erhalten wir eindeutig bestimmte Funktionen $\varphi: \Omega_{S/R} \longrightarrow \Omega'_{S/R}$ und $\varphi': \Omega'_{S/R} \longrightarrow \Omega_{S/R}$, für welche die folgenden Diagramme kommutieren:

$$S \xrightarrow{d_S} \Omega_{S/R} \qquad \qquad S \xrightarrow{d'_S} \Omega'_{S/R}$$

$$Q'_{S/R} \qquad \qquad Q'_{S/R}$$

$$Q'_{S/R} \qquad \qquad Q'_{S/R}$$

Wende nun die Universelle Eingenschaft von d_S auf d_S selbst an und erhalte $id_{\Omega_{S/R}} = \varphi' \circ \varphi$.

$$S \xrightarrow{d_S} \Omega_{S/R}$$

$$\downarrow \exists ! id_{\Omega_{S/R}} = \varphi' \circ \varphi$$

$$\Omega_{S/R}$$

Analog erhalte auch $id_{\Omega'_{S/R}} = \varphi \circ \varphi'$. Damit existiert genau ein Isomorphismus $\varphi' \circ \varphi : \Omega_{R/S} \longrightarrow \Omega'_{R/S}$ mit $d'_S = d_S \circ (\varphi' \circ \varphi)$.

Propositon 11 delta

Lemma 5. [Lemma 16.11 David Eisenbud 1994]

Seien S, S' zwei R-Algebren. Sei weiter $f: S \longrightarrow S'$ ein R-Algebrenhomomorphismus und $\delta: S \longrightarrow S'$ ein Homomorphismus abelscher Gruppen mit $\delta(S)^2 = 0$. Dann gilt:

$$f + \delta$$
 ist ein R-Algebrenhomomorphismus

$$\Leftrightarrow$$

 δ ist eine R-linear und $\forall s_1, s_2 \in S$: $\delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1)$.

Beweis.

<u>"⇒ ":</u> Da f und $f + \delta$ R-linear sind, ist auch $\delta = (f + \delta) - f$ R-linear. Seien nun $s_1, s_2 \in S$ beliebig, somit gilt:

$$(f + \delta)(s_1 \cdot s_2) = (f + \delta)(s_1) \cdot (f + \delta)(s_2)$$

$$\Rightarrow f(s_1 \cdot s_2) + \delta(s_1 \cdot s_2) = f(s_1)f(s_2) + f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$$

$$\Rightarrow \delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2) \text{ mit } \delta(s_1)\delta(s_2) \in \delta(S)^2 = 0$$

$$\Rightarrow \delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$$

<u>"</u> \Leftarrow ": Da f und δ beide R-lineare Homomorphismen abelscher Gruppen sind, trifft die auch für $f+\delta$ zu.

Wähle nun also $s_1, s_2 \in S$ beliebig, somit gilt:

$$(f+\delta)(s_1) \cdot (f+\delta)(s_2)$$
= $f(s_1)f(s_2) + f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$
= $f(s_1 \cdot s_2) + \delta(s_1 \cdot s_2)$
= $(f+\delta)(s_1 \cdot s_2)$

Damit haben wir gezeigt, dass $f + \delta$ ein R-Algebrenhomomorphismus ist.

Kontruktion Kaehler-Differential

Theorem 6. (Konstruktion des Kähler-Differentials[Theorem 16.21 David Eisenbud 1994]

 $Sei\ S\ ein\ R ext{-}Algebra.$

Betrachte die Multiplikationsabbildung $\mu: S \otimes_R S \longrightarrow S$, $s_1 \otimes s_2 \longmapsto s_1 \cdot s_2$ mit $I := kern(\mu)$.

Definiere durch $S \oplus (S \otimes_R S) \longrightarrow S \otimes_R S, (s, s_1 \otimes s_2) \longmapsto ss_1 \otimes s_2$ eine S-Modulstruktur auf $S \otimes_R S$.

Dann ist durch $e: S \longrightarrow I/I^2$, $s \longmapsto [s \otimes 1 - 1 \otimes s]$ die universelle R-lineare Ableitung auf S definiert.

Beweis. Zeige zunächst, dass e eine Abbildung ist. Betrachte dazu:

$$f_1: S \longrightarrow S \otimes_R S$$
, $s \longmapsto s \otimes 1$, $f_2: S \longrightarrow S \otimes_R S$, $s \longmapsto 1 \otimes s$
Damit ist die Wirkung von S auf $S \otimes_R S$ durch
 $S \oplus (S \otimes_R S) \longrightarrow S \otimes_R S$, $(s, s_1 \otimes s_2) \longmapsto f_1(s)(s_1 \otimes s_2)$ gegeben.

Setze nun in der Notation von lemma 5 $f=f_1$ und $\delta=e.$

Damit ist $f + \delta = f_1 + \delta = f_2$ ein R-Algebrenhomomorphismus und es folgt aus lemma 5 und unserer Definition der Wirkung von S auf $S \otimes_R S$, dass e eine R-lineare Ableitung ist.

Durch die Universelle Eigenschaft von d_S existiert also genau ein R-Algebrenhomomorphismus

 $e': \Omega_{S/\longrightarrow} I/I^2 \text{ mit } e = d_S \circ e'.$

Betrachte nun folgende Umkehrabbildung ϕ zu e':

$$\phi: I/I^2 \longrightarrow \Omega_{S/R}, [s_1 \otimes s_2] \longmapsto s_1 d_S(s_2)$$

Um zu prüfen, dass ϕ die Umkehrabbildung von e ist, wähle $s, s_1, s_2 \in S$ beliebig, somit gilt:

$$(\phi \circ e')(d_S(s)) = (\phi \circ e)(s) = \phi([s \otimes 1 - 1 \otimes s]) = sd_S(1) + 1d_S(b) = d_S(b)$$
$$(e' \circ \phi)([s_1 \otimes s_2]) = e'(s_1d_{s_2}) = s_1e(s_2) = [s_11 \otimes s_2 - s_1s_2 \otimes 1] = [s_1 \otimes s_2 - s_1s_2 \otimes 1] = [s_1 \otimes s_2]$$

Differenzial des Produktes von Algebren [Proposition 16.10 David Eisenbud 1994]

Proposition 7. Seien S_1, \ldots, S_n R-Algebran. Sei dazu $S := \prod_{i \in \{1, \ldots, n\}} S_i$ deren direktes Produkt. Dann gilt:

$$\Omega_{S/R} = \prod_{i \in \{1, \dots, n\}} \Omega_{S_i/R}$$

Beweis. Sei für $i \in \{1, ..., n\}$ jeweils $e_i \in S$ die Einbettung es Einselement's von S_i in S, somit ist $p_i : e_i S \longrightarrow S_i$ ein Isomorphismus.

Nutze weiter, dass e_i jeweils ein indempotentes Element von $(e_i^2 = e_i)$ von S ist:

Nach lemma 2 gilt
$$d_S(e_i) = 0$$

$$\Rightarrow \forall s \in s : d_S(e_i s) = d_S(e_i ^2 s) = e_i d_S(e_i s) + e_i s d_S(e_i) = e_i d_S(e_i s)$$

Mit diesem Wissen können wir einen Isomorphismus $\Phi: \Omega_{S/R} \longrightarrow \prod_{i \in \{1,...,n\}} \Omega_{S_i/R}$ definieren:

$$\Omega_{S/R} \qquad \qquad d_S(s) = \sum_{i \in \{1, \dots, n\}} d_S(e_i s)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\prod_{i \in \{1, \dots, n\}} e_i d_S(e_i S) \qquad \qquad (e_1 d_S(e_1 s), \dots, e_n d_S(e_n s))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\prod_{i \in \{1, \dots, n\}} \Omega_{S_i/R} \qquad ((d_{S_1} \circ p_1)(s), \dots, (d_{S_n} \circ p_n)(s))$$

Da der Differenzialraum $\Omega_{S/R}$ bis auf eine eindeutige Isomophie eindeutig ist (lemma 4), definiere diesen ab jetzt als $\prod_{i \in \{1,...,n\}} \Omega_{S_i/R}$.

Cotangent Sequenz

Proposition 8. (Relativ Cotangent Sequenz) [vgl. Proposition 16.2 David Eisenbud 1994]

Seien $\alpha: R \longrightarrow S$ und $\beta: S \longrightarrow T$ zwei Ringhomomorphismen. Dann existiert folgende exakte Sequenz:

$$T \otimes_S \Omega_{S/R} \xrightarrow{\quad t \otimes d_S(s) \mapsto t(d_{T_R} \circ \beta)(s) \quad} \Omega_{T/R} \xrightarrow{\quad d_{T_R}(t) \mapsto d_{T_S}(t) \quad} \Omega_{T/S} \xrightarrow{\quad } 0$$

Im Besonderen gilt für die Differenzialräume von T über R und S:

$$\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle$$

Beweis. Durch $st:=\beta(S)\cdot t$ und $rt:=(\beta\circ\alpha)(r)\cdot t$ können wir T als S- bzw. R-Algebra betrachten.

Zeige zunächst, dass $g:\Omega_{T/R}\longrightarrow\Omega_{T/S}\,,\,d_{T_R}(t)\longmapsto d_{T_S}(t)$ surjektiv ist:

 d_{T_S} ist R - Linear, da R durch $(\beta \circ \alpha)$ auf T wirkt, es lässt sich also die universelle Eigenschaft von d_{T_R} auf d_{T_S} anwenden:

$$T \xrightarrow[d_{T_S}]{d_{T_R}} \Omega_{T/R}$$

$$\Omega_{T/S}$$

Dies zeigt, dass $g:\Omega_{T/R}\longrightarrow\Omega_{T/S}$, $d_{T_R}(t)\longmapsto d_{T_S}(t)$ surjektiv ist.

Zeige nun, dass $\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle$ gilt:

Definiere zunächst folgende T-lineare Ableitung:

$$e: T \longrightarrow \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle, t \longmapsto [d_{T_R}(t)]_{T\langle (d_{T_R} \circ \beta)(S) \rangle}$$

Wir sehen, dass e auch S-linear ist:

Seien dazu $s \in S$ und $t \in T$ beliebig, somit gilt:

$$e(st) = [d_{T_R}(st)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle}$$

$$= [\beta(s)d_{T_R}(t)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle} + [td_T(\beta(s))]_{T\langle (d_T \circ \beta)(S)\rangle}$$

$$= [\beta(s)d_T(t)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle} + 0 = se(t)$$

Dies bedeutet, dass wir die universelle Eigenschaft von d_{T_S} anwenden können:

$$T \xrightarrow{d_{T_S}} \Omega_{T/S}$$

$$\downarrow \exists ! \varphi$$

$$\Omega_{T/R} / T \Omega_{S/R}$$

Dadurch erhalten wir $\varphi: \Omega_{T/S} \longrightarrow \Omega_{T/R}/T\Omega_{S/R}$. Für die Umkehrfunktion ϕ nutze $g: \Omega_{T/R} \longrightarrow \Omega_{T/S}$, $d_{T_R}(t) \longmapsto d_{T_S}(t)$ von Beginn des Beweises:

Für alle
$$s \in S$$
 gilt $d_{T_S}(s) = 0$.
Somit gilt $T\langle (d_{T_R} \circ \beta)(S) \rangle \subseteq kern(g)$.

Also ist die Umkehrfunktion ϕ von φ wohldefiniert:

$$\phi: \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S)\rangle \longrightarrow \Omega_{T/S} \,,\, [d_{T_R}(t)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle} \longmapsto d_{T_S}(t).$$

Damit gilt $\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S)\rangle$. Auf unsere Sequenz bezogen bedeutet dies:

Es gilt
$$im(\Omega_{T/R} \to \Omega_{T/S}) \simeq \Omega_{T/R}/im(T \otimes_S \Omega_{S/R} \to \Omega_{T/R}).$$

Somit gilt auch $im(T \otimes_S \Omega_{S/R} \to \Omega_{T/R}) = kern(\Omega_{T/R} \to \Omega_{T/S}).$

Damit haben wir gezeigt, dass die **Relative Cotangent Sequenz** exakt ist.

Konormale Sequenz [vlg. Proposition 16.3 David Eisenbud 1994]

Satz 9. Sei $\pi: S \longrightarrow T$ ein R-Algebrenephimorphismus mit $Kern(\pi) := I$ Dann ist folgende Sequenz rechtsexakt:

$$I/I^2 \stackrel{f}{\longrightarrow} T \otimes_S \Omega_{S/R} \stackrel{g}{\longrightarrow} \Omega_{T/R} \longrightarrow 0$$

mit:
$$f: I/I^2 \longrightarrow T \otimes_S \Omega_{S/R}$$
, $[a]_{I^2} \longmapsto 1 \otimes d_S(a)$
 $g: T \otimes_S \Omega_{S/R} \longrightarrow \Omega_{T/R}$, $b \otimes d_S(c) \longmapsto b \cdot (d_S \circ \pi)(c)$

Beweis.

f ist wohldefiniert: Seien $a, b \in I^2$. Zeige $f(a \cdot b) = 0$:

$$f(a \cdot b) = 1 \otimes (d_S \circ \pi)(a \cdot b) = 1 \otimes \pi(a) \cdot (d_S \circ \pi)(b) + \pi(b) \cdot (d_S \circ \pi)(a) = 0$$

 $D\pi$ ist surjektiv:

$$\Omega_{S/R} \xrightarrow{D\pi} \Omega_{T/R}$$

$$d_{S} \uparrow \qquad \qquad d_{T} \uparrow$$

$$S \xrightarrow{\pi} T$$

Da $\Omega_{S/R}$ und $\Omega_{T/S}$ jeweils von d_S und d_T erzeugt werden, vererbt sich die Surjektivität von π auf $D\pi$. Somit ist auch $1 \otimes_S D\pi$ surjektiv.

im(f) = kern(g):

Dies folgt direkt aus der Isomorphie $(T \otimes_S \Omega_{S/R})/Im(f) \simeq \Omega_{T/R}$:

$$(T \otimes_S \Omega_{S/R})/Im(f)$$

$$= (T \otimes_S \Omega_{S/R})/(T \otimes_S d_S(I))$$

$$= T \otimes_S (\Omega_{S/R}/d_S(I))$$

$$= T \otimes_S (d_S(S)/d_S(I))$$

$$\simeq T \otimes_S d_S(S/I)$$

$$\simeq T \otimes_S d_T(T)$$

Differenzial ist Ableitung [Eigene Überlegung (Wichtig für Körpererweiterungen)]

Beispiel 10. Sei k ein Körper, somit entspricht $d_{k[x]}: k[x] \longrightarrow \Omega_{k[x]/k}$, $f \longmapsto f'd_{k[x]}(x)$ der analytischen Ableitung.

Teste dies an $f(x) = ax^2 + bx + c$:

$$d(f(x)) = a \cdot d(x^2) + b \cdot d(x) = (2ax + b)d(x) = f'(x)d(x)$$