1、如图 20.9 所示,输入电压 $u_i = 10\sin 314t$ (mV)。求输出电压 u_o 。

图 20.9 反相放大器

图
$$= -100 \sin 314t \ (mV)$$

3、如图 20.11 所示电路,求输出电压 uo。

图 20.11

5、图 20.13 所示电路中,用 I_1 , U_1 , U_2 表示 u_0 。设运算放大器有理想特性。

11、求图 20.19 所示线性网络中,用电压u表示的电流i。设运算放大器是理想的。

- 13、如图 20.21 所示电路。
 - (1) 当 ω =0时,放大器的增益是多少?
 - (2) 求表达式 $\dot{U}_{o}(j\omega)/\dot{U}_{i}(j\omega)$ 。
- (3)在什么频率下, $\left|\dot{U}_{o}\right|$ 降到其低频时的 0.707 倍。

图 20.21
(1) 当
$$w = 0$$
 时,该种路,A = $-\frac{100}{500} = -10$
(2) $\frac{\dot{U}_0(\hat{j}w)}{\dot{U}_1(\hat{j}w)} = \frac{R_2 II}{5wc}$
(3) $\frac{\dot{J}_0(\hat{j}w)}{\dot{U}_1(\hat{j}w)} = \frac{1}{R_1}$
(4) $\frac{\dot{J}_0(\hat{j}w)}{\dot{J}_0(\hat{j}w)} = \frac{1}{R_1}$
(5) $\frac{\dot{J}_0(\hat{j}w)}{\dot{J}_0(\hat{j}w)} = \frac{1}{R_1}$
(6) $\frac{\dot{J}_0(\hat{j}w)}{\dot{J}_0(\hat{j}w)} = \frac{1}{R_1}$