PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-337236

(43) Date of publication of application: 07.12.2001

(51)Int.Cl.

G02B 6/12

(21)Application number: 2000-

(71)Applicant: NIPPON TELEGR & TELEPH

159811

CORP (NTT)

(22)Date of filing:

30.05.2000

(72)Inventor: YOKOHAMA ITARU **NOTOMI MASAYA**

ARAYA AKIHIKO

TAMAMURA TOSHIAKI

TOMARU AKIRA

TAKAHASHI CHIHARU

SUGITA AKIO

(54) PHOTONIC CRYSTAL

(57) Abstract:

PROBLEM TO BE SOLVED: To solve such problems that propagation loss in the light propagating a conventional two-dimensional photonic crystal or in the light propagating a defective part of a conventional two-dimensional photonic crystal is high.

SOLUTION: The photonic crystal has a substrate 1, lower clad layer 2, light guide layer (3, 4) and upper clad layer 5. The light guide layer (3, 4) consists of a plurality of columnar parts (4) having a refractive index n1 arranged in the direction perpendicular to the substrate 1 and in a specified period between the lower clad layer 2 and the upper clad layer 5, and a part (3) having a refractive index n2 (n1≠n2) possessing the space between the lower clad layer 2 and

the upper clad layer 5 except the columnar part (4). The refractive index of the lower clad layer 2 is lower than both of the refractive indices n1 and n2, and the refractive index of the upper clad layer 5 is lower than both of the refractive indices n1 and n2.

LEGAL STATUS

[Date of request for examination]

19.12.2001

[Date of sending the examiner's decision 27.09.2005 of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

3 4 噩 (S) (A) (18) 日本国格許庁 (JP)

特開2001-337236 (11) 特許出國公開番号

(P2001-337236A)

平成13年12月7日(2001.12.7) Ш (43)公园

デーマコート"(参考) 2H047 NZ 6/12 G02B **数**则配争 6/12 (51) Int CI. G02B

(全12頁) 010 未離次 離水頃の数7 客空路水

(41) 出版人 000004226	-, -			本電信電話株式会社内 (74)代理人 100064621 弁理士 山川 政教	現典質に絞く
(41) 田賦入	李田城(04)	#44.72.)	(72) 発明者	(74) 代理人	
棒版 2000—159811(P2000—159811)	平成12年5月30日(2000.5.30)				
(21) 出資条号	(22) 出軍日				

フォトニック結晶 (54) [発明の名称]

(61) [取約]

従来の2次元フォトニック結晶中を伝搬する 光、ならびに従来の2次元フォトニック結晶中の欠陥部 分を伝搬する光の伝搬損失が大きいという問題を解決す

故する婦(3,4)と、上部クラッド母5とを悩え、光 を導放する屋(3, 4) は、下部クラッド層2とを上部 クラッド層 5 との間に基板 1 と直交する向きでかつ所定 **茲板1と、下部クラッド層2と、光を導** と、下部クラッド層2と上部クラッド層5との間のうち 折ゆがniおよびniの何れよりも低く、上部クラッド 住状部分(4)以外を占める風折率n; (n, + n;)の **層5は、その屈折率がn,およびn,の何れよりも低い** の周期で配設された屈折率 ローの複数の柱状部分(4) 部分(3)とで構成され、下部クラッド層2は、 [解决平限]

ものである。

THE PARTY OF THE P Φ 3 對 3

[特許額水の範囲]

ラッド層と、この下部クラッド層上に形成され光を導波 この基板上に形成された下部ク する層と、この光を導波する層上に形成された上部クラ 基板と、 [開水項1]

配下部クラッド層と前記上部クラッド層との間のうち前 前記光を導波する層は、前記下部クラッド層と前記上部 クラッド層との間に前記基板と直交する向きでかつ所定 の周期で配設された屈折率 n,の複数の柱状部分と、前 記柱状部分以外を占める屈折率n²(n'≠n²)の部分 ッド層とを備え、 とで構成され、

前記下部クラッド層は、その屈折率が前記 n. および前 記n,の何れよりも低く、 **前記上部クラッド層は、その屈折率が前記n:およびn** の何れよりも低いことを特徴とするフォトニック結

前記上部クラッド層は、前記複数の柱状部分の直上領域 関水項1に記載のフォトニック結晶にお

開水項1または開水項2に記載のフォト と前記屈折率n:の領域の直上領域とで屈折率が異なる ことを特徴とするフォトニック結晶。 [锦水瓜3]

前記下部クラッド層は、前記複数の柱状部分のជ下領域 と前記屈折率n:の領域の直下領域とで屈折率が異なる ことを特徴とするフォトニック結晶。 ニック結晶において、

的水項1万至的水項3の何れか一項に配 娘のフォトニック結晶において、 [請求項4]

部に周期性の欠陥部分を有することを特徴とするフォト 前記光を導波する層は、柱状物または空孔が基板上に周 期的に形成された構造を有するとともに、この構造の ニック結品。 間水項1万至請水項4の何れか一項に配 級のフォトニック結晶において、 [部水項5]

崩水項1乃至請水項5の何れか一項に記 のうち、屈折卒の低い何れか一つの切壊は、エポキシ系 ポリマーからなることを特徴とするフォトニック結晶。 前記屈折率n,の柱状部分または前記屈折率n;の領域 載のフォトニック結晶において、 [開水項6]

前記上部クラッド層は、エポキシ系ポリマーからなるこ とを特徴とするフォトニック結晶

載のフォトニック結晶において、

団城の直下の<u>関</u>域がエボキツ来ボリャーからなることを 前記下部クラッド層は、前記屈折率n,の柱状部分と前

特徴とするフォトニック結晶。 【発明の詳細な説明】

[0001]

[発明の属する技術分野] 本発明は、フォトニック結晶

佐国2001-33

3

Θ

72

ザ、光導波路、光集積回路等の様々な光デバイス等を構 成するためのフォトニック結晶に関するものである。 に因し、特に光信徴処型、光伝送符に用いられるレ

[0002]

フォトニ ること、作製工程が3次元フォトニック結品に比べて比 2次元フォトニック結晶と呼ばれる。ほとんどの光デバ ンド構造をとることが知られており、このような既徂体 め、結品構造や周期的摂動の大きさを制御することによ に形成される構造は、2次元的周期構造をもつことから 較的容易であることから、作製および検討がなされてい [従来の技術] 誘電体周期構造中の光は周期的摂動を受 け、因故数の分散関係が結晶中のパンド構造と同様なパ **周期構造はフォトニック結晶と呼ばれている。フォトニ** ック結品中の光の伝搬はパンド構造により決定されるた ック結晶の中で、柱状物あるいは空孔が基板上に周期的 イスが2次元フォトニック結晶で実現できる可能性があ り、その光学的性質を設計することができる。

物あるいは空孔の投存部分を形成する媒質よりも低い値 無限大の構造であるが、現実的には有限厚さの構造を取 方向の光の閉じ込めが現実的には爪奴となる。 張紅方向 空孔が周期的に形成されている構造を有する層を、柱状 造)、または柱状物もしくは空孔の投存部分に、屈折中 る構造(後述の従来の第二の構造)の主に2つが従来提 り扱わなければならないため、周期方向に対して垂直な 折率を有する層で挟み込む構造(後述の従来の第一の構 [0003] 理想的な2次元フォトニック結晶は、尽き の光の閉じ込めを実現する方法として、柱状物あるいは の高い材料を屈折率の低い材料で挟み込む構造を形成す 築され、作製が行われている。

で挟み込んでおり、垂直方向の光の閉じ込めを図ってい さらにその上に上部SiM93が形成されたSOI (Si ライエッチングにより、周期的に空孔94が形成されて いる。この構造では、2次元の周期構造を有する上部S **局92 (風折率約1.5) と空気屋 (風折率1.0) と** 【0004】従来の第一の構造のうち、空孔を形成する i 図93 (屈折率約3.5)を、屈折率の低いSiO, 構造の上面図とそのH—H′ 数断面図を模式的iQ3に 示す。 基板Si91上に、SiO゚ 桁92が形成され、

である水平偏光は、フォトニックパンドギャップのため 94の直径が0.3μm、3角格子を形成している空孔 故長1.5μmの低界の板動方向が基板91面内に垂直 **隔93を透過し、電界の板動方向が基板91面内に水平** である垂直偏光は、2次元の周期構造を有する上部Si 2 μm, SiO₁ № 9 2 の以さが3.0 μm, また空孔 【0005】この例では、上部SiM93の以きが0. 94の周期が0.4μmとなっている。この政科では、 2次元の周期構造を有する上部Si 図93を透過しな

基板を用い、上部SiMにドライエッチングにより、周 と空気層(屈折率1.0)とで挟み込んでおり、垂直方 成され、さらにその上に上部5 1 陥が形成された501 【0006】従来の第一の構造のうち、住状物を形成す 次元の周期構造を有する円柱103(組折率約3.5) る構造の上面図とその1-1、教所面図を核式的は21 Oに示す。 茲板Si101上に、SiO:層102が形 を、U近中の近いSiOiM102 (風折率約1.5) 期的に円柱103が形成されている。この構造では、 向の光の閉じ込めを図っている。

03の直径が0、16μm、3角格子を形成している円 は、故及1、5μmの租界の扱動方向が基板101面内 性103を透過し、電界の駆動方向が基板101面内に 木平でもる木平偏光は、フォトニックバンドギャップの **15103の周期が0.4ヵmとなっている。この政粋で** に垂直である垂直編光は、2次元の周期構造を有する円 い。しかし、原ជ偏光に対する透過損失を測定したとこ ろ40dB/mmとなり、比較的大きな損失値となって おり、mmオーダーでの光の伝搬を行うことが難しいも SiOn層102の母さが3.0μm、また円柱1 ため2次元の周期構造を有する円柱103を透過しな [0007] この例では、円柱103の厚きが0. のである。

打するGaAs図112 (風折率約3.5)を、風折率 改元周期構造を有する下部AIGaAs図114 (屈折 **中約3.0) とで挟み込んでおり、垂直方向の光の閉じ** 【0008】 従来の第二の構造のうち、空孔を形成する 2μm) が形成され、さらにその上に上師AIGaAs **頃(耳さ 0.4 μm)が形成された抵板に、ドライエッ** が形成されている。この構造では、2次元の周期構造を が低く同じく 2 次元の周期構造を有する上部A1GaA s 18113(国折草的3.0)と阻折率が低く一部が2 に示す。下部AIGaAs層上にGaAs層 (厚き0. チングにより、周期的に空孔111 (深さ1、0μm) 構造の上面図とそのリーリ、検摩面図を核式的に図11 込めを図っている。

界の板動方向がGaAs図112の面内に垂直である垂 直偏光は、2次元の周期構造を有するGBAs図112 を透過し、電界の観動方向がGaAs 図112の面内に 木平でもる木平国光は、フォトロックバンドギャップの ため2次元の同期構造を有するG a A s 函112を透過 しない。しかし、垂直偏光に対する透過損失を測定した μπとなっている。この政格では、波及1.5μmの印 ところ30dB/mmとなり、比較的大きな損失値とな m, 3角格子を形成している空孔111の周期が0.4 [0009] この例では、翌孔111の直径が0.

o たおり、mmオーダーでの光の伝搬を行うことが難し いものである。

を形成する構造に直線の欠陥部分を導入した構造の上面 たSO1基板を用い、上部Si쪙123にドライエッチ の構造では、2次元の周期構造を有する上部S1 図12 2 (屈折率約1.5) と空気層 (屈折率1.0) とで挟 直径が0.3μm、3角格子を形成している空孔124 【0010】また、従来構造を使って、2次元周期構造 の一部に欠陥を導入し、その欠陥部分に光を導波させる ことも検討されている。従来の第一の構造のうち、空孔 形成され、さらにその上に上部S;쪔123が形成され 1.2に示す。基板Si121上に、Si0,層122が 3 (屈折率約3.5)を、屈折率の低いSiO.層12 み込んでおり、垂直方向の光の閉じ込めを図っている。 i Oi 図122の耳さが3.0μm、また空孔124の 図とそのK一K、およびL一L、緑断面図を模式的図 ングにより、周期的に空孔124が形成されている。 この例では、上部Si㎏123の厚きが0.2μm、 の周期が0.4μmとなっている。

近偏光は、2次元の周期構造を有する上部S;图123 μ mの電界の振動方向が基板121面内に垂直である垂 の欠陥導波路125が形成されている。欠陥導波路12 方向に関しては空孔124の周期構造がフォトニックバ での光の伝搬を行うことが難しく、光虹積回路を作製す を透過し、田界の版動方向が基板121面内に水平であ る水平偏光は、フォトニックパンドギャップのため2次 本試料では、周期構造の一部に空孔が1列抜けた直線状 5に入射された水平偏光の故及1.5μmの光は、水平 ンドギャップとなっているため欠陥導波路 125部分に 閉じ込められ、垂直方向に関しては上下の屈折卒差によ り欠陥導波路125部分に閉じ込められて、欠陥導波路 25を伝搬する。しかし、水平偏光に対する欠陥導波 路125の透過損失を測定したところ20dB/mmと [0011] この試料では、前述したように被投1.5 元の周期構造を有する上部Si图123を透過しない。 なり、比較的大きな損失値となっており、mmオーダ ることができなかった。

[0012]

2次元フォトニック結晶の構成では、光伝散媒体として の2次元フォトニック結晶の伝搬損失が大きく、フォト ニック結晶の有する種々の特徴を活かしたデバイスへの [発明が解決しようとする課題] 以上のように、従来の 応用が困難という問題点があった。

【0013】本発明は、このような課題を解決するため のものであり、従来の2次元フォトニック結晶中を伝搬 する光、ならびに従来の2次元フォトニック結晶中の欠 陥部分を伝搬する光の伝搬損失が大きいという問題を容 **易に解決することができるフォトニック結晶を提供する** ことを目的とする。

[0014]

 $\overline{\mathfrak{T}}$

9

 $^{\circ}$

37

梅丽2001-3

の結果、従来は、周期構造が光の破長以下の微小構造で あるため、各層の平均屈折率の空により光は垂直方向に に、空孔部あるいは柱状物以外の部分において、垂直方 た。そして、問題点を解決する手段として、本発明の基 本的な考え方は、従来垂直方向の光の閉じ込め構造が微 は、従来構成を模式的に表した上述の図9、図10、図 向の光の閉じ込め構造が微視的になされていないことに **扱的になされていなかった空孔部あるいは柱状物以外の** 【即盟を解決するための手段】上記問題点を解決するた 十分閉じ込められると考えられていたが、主な損失要因 起因する上下方向への散乱損失にあることを見いだし 11、図12の断面図中に模式的に矢印で示したよう め、本願発明者らは従来構成の祖失要因を検討した。

【0015】このような目的を遠成するために、本発明 前記下部クラッド層とを前記上部クラッド層との間に前 配上部クラッド層との間のうち前配柱状部分以外を占め の何れよりも低く、前記上部クラッド層は、その屈折卒 この基板上に形成 された下部クラッド囚と、この下部クラッド層上に形成 され光を導波する層と、この光を導波する層上に形成さ れた上部クラッド層とを備え、前記光を導波する層は、 折率 n i の複数の柱状部分と、前記下部クラッド層と前 る屈折率n1 (n1≠n1)の部分とで構成され、前記下 部クラッド層は、その風折率が前記niおよび前記ni が前記n,およびn,の何れよりも低いものである。 に係るフォトニック結晶は、基板と、

す構成を含むものである。すなわち、前記上部クラッド の領域の直上領域とで屈折率が異なる。また、前配下部 【0016】また、本発明はその他の植様として次に示 クラッド層は、前配複数の柱状部分の位下領域と前配組 前記光を導波する層は、柱状物または空孔が基板上に周 期的に形成された構造を有するとともに、この構造の一 闷は、前配複数の柱状部分の正上領域と前記屈折率 n: 折率 n:の の 域の の 正下 の 域と で 屈折率 が 異なる。 また、 前に周期性の欠陥部分を有する。

匈域は、エポキシ系ポリマーからなる。また、前記上部 【0017】また、前記屈折率n,の柱状部分または前 前記下部クラッド層は、前記屈折率n,の柱状部分と前 クラッド的は、エボキシ系ポリマーからなる。さらに、 記屈折率n:の領域のうち、屈折率の低い何れかーつの 倒域の直下の倒域がエボキシ系ポリマーからなる。 記屈折率n:の領域のうち、屈折率の低い何れかー

2 次元フォトニック結晶あるいは2 次元フォトニック結 し、低損失2次元フォトニック結晶および低損失2次元 フォトニック結晶欠陥導被路を実現することができ、極 [0018] このように構成することにより本発明は、 晶欠陥導波路の伝搬損失が大きいという問題点を解決 4のデバイスへの応用が可能となる。

[0019]

【発明の実施の形位】次に、本発明の実施の形位につい ト図を用いた説明する。 【0020】 [第一の決断の形態] 本発明の第一の決略 図)。 基板1上に下部クラッド的2が形成され、さらに その上に周期的に形成された空孔以外の部分3と周期的 に形成された空孔を充填した即分4が形成され、さらに その上に上部クラッド層5が形成された構造となってい は5 i (屈折母約3.5、耳さ0.2μm) であり、囚 期的に形成された空孔を充填した部分4はエポキシ系ポ リマー (屈折草1.6、耳さ0.2μm) であり、上師 の形態の構造を模式的に図」に示す(上面図(上部クラ 3 μ円)であり、四期的に形成された空孔以外の部分3 る。この第一の実施の形倣では、基板1はSiであり、 下部クラッド悩2は5;0,悩(風折草約1.5、以さ クラッド回5はフッ森化エポキシ系ポリマー (屈折草 ッド俗5の一部は除去) およびそのA-A' 級所面 1. 5、厚き3μm) である。

部分についても微視的に屈折率並による垂直方向閉じ込

め構造を形成することにある。

おける屈折母の高い部分になっており、周期的に形成さ 3μm、3角格子を形成し充填された周期的空孔の周期 が0. 4μmとなっている。本格道においては、囚期的 に形成された翌孔以外の部分3のSiが、四期的構造に れた空孔を充填した部分4のエポキシ系ポリマーが屈折 母の低い部分となっている。その結果、周期的に変化す の断面図に模式的に矢印で示したように、周期的構造の 屈折率の低い部分の微視的保造においても屈折率並によ る構造の屈折母の訊い部分の屈折卑をn1、屈折母の医 い部分の屈折率をn2とし、下部クラッド層の配折率を [0021]また、空孔を充填した部分4の直径が0. る垂直方向の光の閉じ込めがなされる構造となってい がつniくniの条件を溢れしている。このため、図1 くいがついくいかついくいてあり、かつ、いくり ns、上部クラッド屋の屈折率をn.としたとき、ns

【0022】 第一の実施の形態の作製工程を以2に示

にその上にトップSiM23が形成されたSO1 基板上 (a) Si 園21上にSi O 層22が形成され、さら に、周期的構造を転写したNiマスク24を落着する。

(b) ドライエッチングにより、Niマスク24の滋治 されていないトップS;約23に垂直孔を開け、空孔の (c) Niマスク24をエッチングにより除去する。 投存部分のSi25を形成する。

ティングにより資布し、その後硬化させ、登孔を埋め込 [0023] (d) SiOn 例22ならびに空孔の投行 **8分のS:25上に、エポキツ緊ボリャーをスピンコ** んだエポキシ茶ポリマー的26を形成する。

キシ系ポリマー層26を空孔の残存部分のSi25の先 (c) ドライエッチングにより、空孔を埋め込んだエポ 蟷部分がほぼ鴎出するまでエッチングし、空孔を充填し

(1) さらにその上に、フッ塔化エポキシ系ポリャーを **スピンコーティングにより盗在し、吸化させ、上部クラ** ッド婦となるフッ森化エポキシ系ポリマー層28を形成

したがって、本状語の形態の試料は、mmオーダーでの [0024] この試料では、波及1.5μmの電界の版 動方向が基板1面内に頭直である頭直偏光は、2次元の た何分々を透過しない。垂直偏光に対する透過損失を測 因期構造を有する空孔以外の部分3と空孔を充填した部 分4を透過し、19年の複動方向が基板1面内に水平であ 1 mmあたりで20dB以上の極めて大きな損失改遊が た、本実施の形態では上部クラッド悩および下部クラッ ド層に固体材料を用いたが、騒折率の条件を消たせば気 フォトニックパンドギャップのため2次 元の周期構造を有する空孔以外の部分3と空孔を充填し 体材料または液体材料であっても同様の効果を得ること 近したところ5dB/mmとなり、従来構造に比べて、 **得られ、本発明の効果が極めて大きいことが示された。** 光の伝観を十分に行うことができる媒質といえる。 る水平偏光は、

上に下部クラッド層2が形成され、さらにその上に周期 [0025] [第二の実施の形態] 本発明の第二の実施 的に形成された空孔以外の部分3と周期的に形成された 空孔を充填した部分4が形成され、さらにその上に上部 クラッド層5が形成された構造となっている。第二の契 囚期的に形成された空孔以外の部分3はSi (屈折率約 の形態を説明するが、精造は当1年示す第一の攻縮の形 施の形態では、基板1は51であり、下部クラッド的2 56、耳さ0.2μm)であり、上部クラッドM5はS 他と同一であり、一部材料が異なるものである。基板1 3. 5、 耳さ0. 2 mm) であり、 周期的に形成された はSiOi船 (風折率約1.5、厚き3μm) であり、 空孔を充填した部分4はGe添加SiO, (風折率1. i Os 図 (組折却1. 5、厚き3μm) である。

が0、4 μ 田となっている。本構造においては、周期的 3 μm、3角格子を形成し充填された周期的空孔の周期 に形成された空孔以外の部分3のSiが、周期的構造に たように、同期的構造の組が率の低い部分の徴税的構造 おける屈折率の高い部分になっており、囚期的に形成さ の低い部分となっている。その結果、因甚的に変化する 箱の形態と回接に、図1の断面図に核式的に矢印で示し れた空孔を充填した部分4のG。添加SiO;が屈折率 [0026] また、空孔を充填した即分4の直径が0. Oniくniの条件を潜たしている。このため、第一の実 **節分の屈折串をn:とし、下部クラッド層の屈折串をn** 構造の屈折卑の高い部分の屈折率をn.、 屈折率の低い 1、上師クラッド園の鼠折率をn.としたとき、n.< niかつniくniかつniくniであり、かつniくniか

においても屈が卑迫による張位方向の光の閉じ込めがな

される構造となっている。

[0027]次に、第二の実施の形態の作製工程を図3 に氷す。

- にその上にトップSi 図33が形成されたSOI 基板上 (b) ドライエッチングにより、Niマスク34の蒸剤 されていないトップSi層33に垂直孔を開け、空孔の に、周期的構造を転写したNiマスク34を蒸着する。 (a) Si 図31上にSiO: 图32が形成され、 残存部分のSi35を形成する。
- [0028] (d) SiOn 図32ならびに空孔の投存 部分のSi35上に、Ge添加SiO,をスパッタリン グにより堆積し、空孔を埋め込んだGe 統加SiO: 闷 (c) Niマスク34をエッチングにより除去する。 36を形成する。
- (e) ドライエッチングにより、空孔を埋め込んだGe 部分がほぼ腐出するまでエッチングし、空孔を充填した 添加SiO, 图36を空孔の残存部分のSi35の先端 Ge 添加SiO,37を形成する。
- (f) さらにその上に、SiO.をスパッタリングによ り堆積し、上部クラッド陌となるSiO2 唇38を形成

に、波及1. 5 mmの電界の板動方向が基板1面内に張 外の部分3と空孔を充填した部分4を透過し、電界の版 ックバンドギャップのため2次元の周期構造を有する空 垂直偏光に対する透過損失を測定したところ 6 d B/m mとなり、従来構造に比べて、1mmあたりで20dB 以上の極めて大きな損失改善が得られ、第一の実施の形 た。本実施の形態の試料は、mmオーダーでの光の伝数 **立てある垂直偏光は、2次元の周期構造を有する空孔以** レオトに 孔以外の部分3と空孔を充填した部分4を透過しない。 【0029】この資料では、第一の実施の形態と同様 低と同様に本発明の効果が極めて大きいことが示され 助方向が基板1面内に水平である水平偏光は、 を十分に行うことができる媒質である。

5が形成された構造となっている。 第三の実施の形態で 師分を充填した部分44はエポキシ系ポリマー (屈折率 【0030】 [第三の実施の形態] 本発明の第三の実施 図)。 第三の実施の形態では国期的に柱状物を形成した 構造となっている。基板41上に、下部クラッド層42 が形成され、さらにその上に周期的に形成された円柱部 分43と周期的に形成された円柱以外の部分を充填した は、基板41はSiであり、下部クラッド層42はSi に形成された円柱部分43は81(屈折率約3.5、耳 さ0.2μm)であり、周期的に形成された円柱以外の はフッ群化エポキシ系ポリマー (屈折率1. 5、厚さ3 の形態の構造を模式的に図ュに示す(上面図(上部クラ 部分44が形成され、さらにその上に上部クラッド層4 On 図 (屈折率約1.5、 耳さ3 mm) であり、周期的 ッド的45の一部は除去)およびそのB—B′級断面

m、3角格子を形成し周期的構造の円柱の周期が0.4 μm) である。また、円柱部分44の直径が0. μmとなっている。

を充填した部分44のエポキシ系ポリマーが屈折率の低 い部分となっている。その結果、周期的に変化する構造 低い部分の微視的構造においても屈折率差による垂直方 [0031]本構造においては、周期的に形成された円 **柱部分43のSiが、周期的構造における屈折率の高い** 部分になっており、周期的に形成された円柱以外の部分 に模式的に矢印で示したように、周期的構造の屈折率の の屈折率の高い部分の屈折率をn١、阻折率の低い部分 < n.の条件を徴たしている。このため、図4の断面図</p> 上部クラッド層の屈折率をn,としたとき、n,<n,か の阻折率をn1とし、下部クラッド層の阻折率をn1、 ついくいかついくいであり、かついくいかつい 向の光の閉じ込めがなされる構造となっている。

直偏光に対する透過損失を測定したところ7 d B/mm 【0032】第三の実施の形態の作製工程は、第一の実 異なるのみである。この試料では、被長1.5μmの低 2次元の周期構造を有する円柱部分43と円柱以外の部 分を充填した部分44を透過し、電界の振動方向が基板 41面内に水平である水平偏光は、フォトニックバンド と円柱以外の部分を充填した部分44を透過しない。 垂 上の極めて大きな損失改善が得られ、本発明の効果が極 mオーダーでの光の伝搬を十分に行うことができる媒質 街の形倣と同一であり、Ni マスクのパターソーングが となり、従来構造に比べて、1mmあたりで20dB以 めて大きいことが示された。本実施の形態の試料は、m ギャップのため2次元の周期構造を有する円柱部分43 界の板動方向が基板41面内に垂直である垂直偏光は、

[0033] [第四の実施の形態] 本発明の第四の実施 ッド層53と第一の下部クラッド層54に挟まれる構造 であって、空孔部分が、第二のコア層55と第二の上部 第二のコア閥55が第二の上部クラッド閥56と第二の 下部クラッド層57に挟まれる構造により充填されてお の形態の構造を棋式的に図5に示す。 基板51上に空孔 **悩52と筑一の上部クラッド熘53と筑一の下部クラッ** ド層 5 4からなり、第一のコア層 5 2が第一の上部クラ り、第一のコア層52と第二のコア層55がほぼ同一の が周期的に形成され、空孔の残りの部分が、第一のコア クラッド 個56と第二の下部クラッド 個57からなり、 平面内に存在している構造となっている。

a A s (屈折率3, 0、 以さ0, 4 mm) および第一の F酌クラッド隔54はA1GaAs (紐折率3.0、 4 さ0. 4m) であり、第一のコア殴ち2はGaAs (屈 折率3.5、厚さ0.2 mm)である。また、第二のコ 1 GaAsであり、第一の上部クラッド殴ち3はA1G ア쪔55はエポキシ系ポリマー(屈折率1.6、厚さ

m)であり、第二の下部クラッド屋57はフッ装化エボ キシ発ポリマー (屈折率1. 5、JJさ0. 4 mm) であ ※化エポキン※ポリマー(風折容1.5、厚さ0.4μ 2 mm)であり、第二の上部クラッド図56はフ

特阻2001—337

9

期的構造の風折率の低い部分の数視的構造においても組 折率笠による垂直方向の光の閉じ込めがなされる構造と ため、区5の断面図に核式的に矢印で示したように、四 第二の上部クラッド屋の屈折草をn:、第二の下部クラ 第一の上部クラッド園の風折草をn1、第一の下部クラ [0035] その結果、第一のコア屋の屈折母をn.、 ッド窗の風折母をい、としたとき、いくいがつい ッド闷の屈折宰をn1、第二のコア闷の屈折宰をn1、 くいがついくいてもり、かついくいかついくい からロバーにからロバーにの条件を溢れしている。 なっている。

[0036] 第四の実施の形態の作製工程を図6に示

- (a) AIGaAs屋の1上にGaAs園の2が形成さ れ、さらにその上にトップAIGaAsM63が形成さ れた基板上に、周期的構造を転写したNiマスク64を 蒸むする。
- (b) ドライエッチングにより、Niマスク64の揺芯 悩62を貫通してAⅠGαAβ⋈6Ⅰの一部までに張ជ 孔を開け、空孔の残存部分を形成する。これにより、第 一のコア悩らち、筑一の上師クラッド悩らら、坑一の下 されていないトップAIGaAsM63およびGaAs 的クラッド 図67が形成される。
- [0037] (d) 空孔を形成したAIGaAs 的なら びに空孔の投存部分上に、筑一の下部クラッド局の以き **出度の厚さの堆積では空孔は埋め込まれることなく堆積** である0. 4μmLLだけスパッタリングによりSiO₁ (c) Niマスク84をエッチングにより除去する。 を堆積し、第二の下部クラッド屋68を形成する。
- (e) さらに、第一のコア局の吐きである0.2μm以 だけスパッタリングによりG。 絃加SiO. を堆積し、 第二のコア層69を形成する。
 - (1) さらに、第一の上部クラッドMの厚さであるの。 4 μ m 位だけスパッタリングによりSiO;を堆積し、 第二の上部クラッド図610を形成する。
- (g) 空孔の投存部分上の堆積物をエッチングにより除

[0038] この政粋では、故及1.5μmの徂界の版 動方向が基板51面内に垂ជである垂ជ偏光は、第一の コア層52と第二のコア層55を透過し、電界の擬動方 **闷55を透過しない。 垂直偏光に対する透過損失を測定** 向が基板51面内に水平である水平偏光は、フォトニッ クバンドギャップのため第一のコア的52と第二のコア したところ5dB/mmとなり、捻米棒道に比べて、1

9

高い部分が空孔の投作部分であったが、屈折率の高い部 分が住状や(例えば円柱)であっても同様に扣失低域が [0039] 本文施の形態では、周期的構造の組折中の なされることはもちろんである。

一日、段断面図)。 筑玉の状態の形態は、筑一の尖筋の [0040] [第五の実施の形態] 次に、2 次元四期権 る均合の次筋の形態について説明する。本発明の京五の **契施の形態の構造を核式的に図って示す(上面図(上部** 形態の周期的構造の一部に直線状の欠陥を設け、空孔が らにその上に囚城的に形成された翌孔以外の部分73と 辺の一部に欠陥を導入し、その欠陥部分に光を導致させ 1列抜けた構成となっており欠陥導放路76を形成して れ、さらにその上に上部クラッド個75が形成された構 **沿となっており、さらに上面図に示すように直接状の久** 周期的に形成された空孔を充填した部分74が形成さ クラッドM75の一部は除む)およびそのローロ', いる。提位フェ上に下部クラッドM72が形成され、 **始導波路76が形成されている。**

折中約3、5、14さ0.2μm)であり、AU期的に形成 り、周期的に形成された空孔以外の部分73は5i(6) [0041] この項目の実施の形態では、、年一の共権の (紐折年1、6、厚さ0.2 mm) であり、上部クラッ 5、厚さ3 mm)である。また、久陥導波路7614周期 形曲と同様、基板71は81であり、下部クラッド図7 的に形成された翌孔以外の部分73と同じSiである。 2は5:0.松 (風折草約1.5、瓜さ3μm)であ ド層フラはフッ球化エポキシ系ポリマー (風折率1. された空孔を充填した部分74はエポキシ系ポリマー また、翌孔を充填した師分74の直径が0.3μm、

角格子を形成し充填された周期的空孔の周期が0.4μ

mとなっている。

[0042] 本構造においては、周切的に形成された空 孔以外の部分73のSiが、周期的構造における組折率 の条件を済たしている。このため、147の断面図に核式 の高い部分になっており、周期的に形成された登孔を充 拉した信分フィのエポキツ沿ボリャーが記が中の低い部 分となっている。その結果、周期的に変化する構造の風 折車の高い部分の組折率をn1、組折車の低い部分の組 析母をn:とし、下師クラッドの風折中をn:、上部ク ワッド屋の国が中をn.としたとき、n.<n.かつn. くぃかつぃくぃてあり、かつぃくぃかつぃくぃ

[0043] 第五の実施の形態の作製工程は、第一の実 的に矢印で示したように、囚煩的構造の屈折草の低い部 分の類似的構造においても屈折率並による垂直方向の光 の阳じ込めがなされる構造となっている。

筋の形態と回一であり、マスクパターン形状が異なるの

方向が基板71面内に垂直である垂直偏光は、2次元の 部分74を透過し、電界の板動方向が基板71面内に水 みである。この試料では、波及1.5ヵmの電界の板壁 周期構造を有する空孔以外の部分73と空孔を充填した 平である水平値光は、フォトニックバンドギャップのた め2 改元の周期構造を有する空孔以外の部分73と空孔 を充填した部分7.4を透過しない。

【0044】本政料では、周期構造の一部に空孔が1列 オトニックパンドギャップとなっているため周期的構造 に光が最人することができず反射されることにより欠陥 抜けた直線状の欠陥導波路76が形成されている。 欠陥 下の阻折率並により欠陥導波路76部分に閉じ込められ は、水平方向に関しては充填された空孔の囚期構造がフ **導波路76部分に閉じ込められ、垂直方向に関しては上** を有する空孔以外の部分73と空孔を充填した部分74 導波路76に入射された水平偏光の波投1、 て、欠陥導波路76を伝搬する。

被略76内のみ伝搬するのではなく、 厳密には光の若干 欠陥導波路外側の周期構造を有する空孔以外の 卸分73と空孔を充填した部分74の伝搬において垂直 15 d B 以上の極めて大きな扣失改造が得られ、本発明 [0045] しかしながら、伝散する光は完全に欠陥算 光の伝敬招失も大きくなる。本実施の形態で、水平偏光 の効果が恒めて大きいことが示された。本実施の形倣の 汉やは、センチメートル(c E)メーダーでの光の位数 即分が欠陥導波路外ににじみだした状態で伝数する。こ 方向への散乱扣失が大きければ、欠陥導波路を伝搬する に対する欠陥導波路76の透過損失を測定したところ2 dB/EEとなり、従来は沿に比べた、1mmもたりた を十分に行うことができる導液路媒質である。

的に図8に示す(上面図(上部クラッドM85の一部は [0046] [第六の実施の形態] 次に、2 次元周期構 造の一部に欠陥を導入し、その欠陥部分に光を導放させ いて説明する。本発明の第六の実施の形態の構造を模式 除去) およびそのドード', G-G' 執断面図)。 筑六 欠陥導波路であったものが、角度60度まげの曲り欠陥 る均合で、欠陥部分が曲り導破路である実施の形態につ の文施の形態は、第五の支施の形態において、直線状の 導波路となっている。 抗仮81上に下部クラッド図82 外の部分83と周期的に形成された空孔を充筑した部分 84が形成され、さらにその上に上部クラッド層85が が形成され、さらにその上に周期的に形成された空孔以 形成された構造となっており、さらに上面図に示すよう に曲り欠陥導波路86が形成されている。

[0047] 筑六の実施の形態では、 第一の実施の形態 と同僚、基板81はSiであり、下部クラッド層82は 期的に形成された空孔以外の部分83は51(屈折率約 空孔を充填した部分84はエポキシ系ポリマー(随折草 SiOn 個 (屈折率約1. 5、 耳さ3 mm) であり、 周

れた空孔以外の部分83と同じS;である。また、空孔 を充填した部分84の直径が0.3μm、3角格子を形 2 mm) であり、上部クラッド図85 はフッ弦化エポキツ発ポリャー(屈折母1. 5、 耳さ3 um)である。また、欠陥導政路86は周期的に形成さ **改し充填された囚煩的空孔の囚期が0.4μmとなって**

墳した町分84のエポキシ系ポリマーが屈折印の低い部 の条件を溢たしている。このため、図8の断面図に核式 的に矢印で示したように、周期的構造の屈折率の低い部 分の微視的構造においても屈折卑益による垂直方向の光 [0048] 本構造においては、周期的に形成された空 孔以外の部分83のSiが、周期的構造における組折率 の高い部分になっており、周期的に形成された空孔を充 分となっている。その結果、周期的に変化する構造の風 折草の高い部分の風折草をn1、風折草の低い部分の屈 折印をniとし、下部クラッド層の屈折草をni、上部 ラッド層の風折草をn.としたとき、n:<niかつn いくいかついくいであり、かついくいかついくい の閉じ込めがなされる構造となっている。

[0049] 第六の実施の形態の作製工程は、第一の実 **插の形態と向一であり、マスクパターン形状が異なるの** みである。この試料では、波及1、5μmの電界の板動 方向が基板81面内に垂直である垂直偏光は、2次元の 部分84を透過し、電界の複動方向が基板81面内に水 め2次元の周期構造を有する空孔以外の部分83と空孔 周期構造を有する空孔以外の部分83と空孔を充填した Preをる木平 協光は、フォトニックバンドキャップのた を充填した部分84を透過しない。

[0050]本政料では、周期構造の一部に空孔が1列 抜けた曲り欠陥導波路86が形成されている。曲り欠陥 導故路76に入針された水平個光の故及1.5μmの光 ャトルック バンド サナップ フなって こる ため 回避 色 辞過 欠陥導波路86部分に閉じ込められ、垂直方向に関して を有する空孔以外の部分83と空孔を充填した部分84 は上下の屈折尋拉により曲り欠陥導波路86部分に閉じ は、水平方向に関しては充填された空孔の周期構造がフ に光が位入することができず反射されることにより曲り 込められて、曲り欠陥導液路86を伝放する。

【0051】しかしながら、伝敬する光は完全に欠陥導 政路86内のみ伝放するのではなく、厳密には光の若干 欠陥導波路外側の周期構造を有する空孔以外の 部分83と翌孔を充填した部分84の伝搬において垂直 光の伝版損失も大きくなる。従来は欠陥導波路自体の損 の曲げ損失が精確に測定できなかったが、本実施の形態 失値が20dB/mm以上と大きかったため、由げ部分 方向への散乱扣失が大きければ、欠陥導波路を伝放する で、水平偏光に対する曲り欠陥導波路86 (全長1m 部分が欠陥導被略外ににじみだした状態で伝版する。 m、曲り協所1協所)の透過損失を測定したところ、

曲り導波路外回への光のにじみだしはより大きくな があると考えられる。本発明の効果により、曲り導波路 5dBとなり、本実施の形団での曲り部分の初失は 5 d B と兄債もることができた。 曲り部分において るため、本実施の形態の構造は、曲り損失低級にも効果 においても低損失な欠陥均波路が次現できることが示さ

က 0

特開2001-337

8

[0052]以上の第一の実施の形態から辞六の状態の 形態により本発明を説明したが、本発明は上記実施の形 節の構造および材料に販定されるものでないことは明ら かたある。

[0053]

め構造が微視的になされていなかった空孔部あるいは柱 [発明の効果] 以上説明したとおり本発明によれば、屈 ッド頃とで挟むことにより、従来廃血方向の光の閉じ込 状物以外の部分についても、類似的に屈折中部による馬 近年n.の複数の社状物を屈近中n.の回域中に周期的 に配配することで屈折中を周期的に変化させた何を、 記n.および前記n.よりも屈折草の低い下部クラッド 悩と、前記n:およびn:よりも屈折中の低い上部ク **血方向用じ込め構造を形成している。**

[0054] その結果、2次元フォトニック結晶あるい いという問題点を解決し、低損失2次元フォトニック結 は2次元フォトニック結晶欠陥尊波路の伝版机失が大き 品および低損失2次元フォトニック結晶欠陥導波路を決 **現することができ、何々の光デバイス(例えば光信位処 型や光伝送符に用いられるレーザ、光芽設路、光集程**回 路等)への応用が可能となる。

[0055] また、光を導放する別における住状物また り、例えば直像上の欠陥尊波路または角度60度の曲り 欠陥導波路等を容易に作成することができる。本発明條 造では、これら欠陥は故路における曲り相失の既成に効 果的である。また、下部クラッド屋、上部クラッド屋に **エポキン茶ポリケーやフッ選化エポキツ茶ポリケーを用** は空孔の一部に、周期性の欠陥部分を導入することによ いることにより、Siよりも低値折草を容易に次現する

ことができる。 【図面の簡単な説明】

[四1] 本発列の第一および第二の実施の形質の構造 (周期的に空孔を配配)を示す模式図である。

[日2] 本発明の第一の実施の形態(周期的に登孔を 配配)の作製工程を示す核式図である。 本発明の第二の実施の形態(周別的に登孔を 配配)の作製工程を示す模式図である。 [<u>[</u>]

[四4] 本発明の第三の実施の形態の構造(周期的に 円柱を配置)を示す模式図である。

[図5] 本発明の第四の実施の形面の構造 (周期的に 空孔を配置、かつ、上部クラッド悩および下部クラッド 同にも空孔を形成)を示す棋式図である。

本発明の抗阻の状態の形態(因別的に登孔を [X 6]

栋2001—33723

9

配置、かつ、上部クラッド局および下部クラッド局にも 空孔を形成)の作製工程を示す模式図である。

[図2] 本発明の第五の実施の形態の構造 (直線状の欠陥) を示す慎式図である。

外の部分、44…周期的に形成された空孔を充填した部

2…下部クラッド層、43…周期的に形成された空孔以

41…基板、

8…上部クラッド囚となるSi〇, 園、

コア松、53…第一の上部クラッド점、54…第一の下 部クラッドM、55…第二のコア烃、56…第二の上部

分、45…上部クラッド層、51…基板、

GaAs脳、62…GaAs脳、63…トップAIGa

クラッド層、57…第二の下部クラッド層、

6 1 ··· A 1

As松、64…Niマスク、65…第一のコア屋、66

…第一の上部クラッド的、67…第一の下部クラッド

園、68…第二の下部クラッド園、69…第二のコア

610…第二の上部クラッド码、71…基板、

É

[図8] 本発明の第六の実施の形態の構造(角度60度の由り欠陥)を示す模式図である。

【囚犯】 従来の2次元フォトニック結晶の一構造(周期的に空孔を配配)を示す模式図である。

[図10] 従来の2次元フォトニック結晶の一構造 (周期的に円柱を配置)を示す核式図である。 [図11] 法むのシャニュニーの結果の一個語

[国11] 従来の2次元フォトニック結晶の一構造 (周期的に空孔を配配、かつ、上部クラッド紛および下部クラッド別にも空孔を形成)を示す核式図である。 [四12] 従来の2次元フォトニック結晶欠陥導設路の一構造(直線状欠陥)を示す核式図である。

…下部クラッド園、73…周期的に形成された空孔以外

の部分、74…囚期的に形成された空孔を充填した部

分、7 5 …上部クラッド層、7 6 …直線欠陥導旋路、8 1 … 基板、8 2 …下部クラッド層、8 3 …周期的に形成

[[日]]

3

4

上部S:層、94…空孔、101…基板S;、102… S;〇2層、103…円柱、111…空孔、112…2 改元の周期構造を有するGaAs層、113…2改元の 周期構造を有する上部AIGaAs層、114…2次元 の周期構造を有する下部AIGaAs層、121…基板 の周期構造を有する下部AIGaAs層、121…基板 S;、122…SiO5層、123…上部S:層、12 4…空孔。

された空孔以外の部分、84…周期的に形成された空孔 を充填した部分、85…上部クラッド屋、86…曲り欠

陷填波路、91…基板Si、92…SiO:图、

[34]

3

掌

特開2001

9

9

က်

3

[[4]7]

[五5]

置 **** ₹122 122 ~121 亞 \equiv 124 123 25 **東京都千代田区大平町二丁目3番1号 東京都千代四区大平町二丁目3番1号** 本创信和品株式会社内 本配品電話株式会社內 杉田 松沢 柘梅 千恭 都丸 晓 一些保保保保保 (72) 発明者 (72) 発明者 (72) 発明者 æ Ш Щ **東京都千代田区大手町二丁目3番1号 東京都千代田区大手町二丁目3番1号** 本⑪伯矶餂株式会社内 本瓜佔瓜陆株式会社内 玉村 敏昭 新家 昭彦 ロントページの窓が (72) 発明者 X X X (72) 発明者

EII.

東京都千代田区大平町二丁日3番1号

ム(杏类) 2HO47 KA04 KA11 QA05 QA07

F A

比何時

AMARKER FERFERE

對

94 93

 $\widehat{\boldsymbol{\varepsilon}}$

本们们们钻株式会社内

特別2001-33723

(12)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
T OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.