Álgebra Lineal y Geometría I – Grado en Física. 2020-21

Ejercicios del Tema 2 - Aplicaciones lineales

- 1. Decidir si son aplicaciones lineales las siguientes aplicaciones:
 - a) $f: \mathbb{R} \to \mathbb{R}$, f(t) = |t|
 - b) $g: \mathbb{R}^2 \to \mathbb{R}$, $g(x,y) = \frac{x-y}{3}$
 - c) $h: \mathbb{R}^2 \to \mathcal{M}_2(\mathbb{R}), \quad h(s,t) = \begin{pmatrix} s+2t & s-t \\ -t & s+t \end{pmatrix}$
 - d) $l: \mathbb{R}^2 \to \mathcal{P}_2(\mathbb{R}), \quad l(s,t) = x^2 + (2s-t)x + (s-2t)$
- 2. Hallar el núcleo y la imagen de cada una de las aplicaciones lineales de \mathbb{R}^2 en \mathbb{R}^2 , definidas por las siguientes expresiones:
 - a) f(x,y) = (3x 2y, x + 4y)
 - b) g(x,y) = (x y, 0)
 - c) h(x,y) = (x+2y, 3x+6y)
 - $d) f_0(x,y) = (0,0)$
- 3. Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$ una aplicación lineal definida por

$$f(1,0,0) = (2,1), \quad f(0,1,0) = (3,2), \quad f(0,0,1) = (-1,1).$$

Llamando (x', y') = f(x, y, z), escribir las ecuaciones de f, que relacionan las x', y' con las x, y, z. Escribir la matriz asociada a f y la ecuación matricial correspondiente. Hallar una base de $\ker(f)$. ¿Es $B_u = \{(1, 0), (0, 1)\}$ una base de $\operatorname{im}(f)$?

4. Sean f y g dos aplicaciones lineales de \mathbb{R}^2 en \mathbb{R}^3 que verifican

$$f(1,0) = (2,2,0),$$
 $f(0,1) = (-1,1,1)$
 $g(1,1) = (1,3,1),$ $g(1,-1) = (3,1,-1).$

Probar que $f(x,y) = g(x,y), \quad \forall (x,y) \in \mathbb{R}^2.$

- 5. Hallar la matriz asociada y el rango de la aplicación lineal $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ dada por f(x, y, z, t) = (2x 2y 2z + 2t, x y z + t, x + y + 2z t). Discutir si f es inyectiva o sobreyectiva.
- 6. Dar un endomorfismo de \mathbb{R}^3 cuya imagen sea el plano dado por la ecuación 2x + 2y z = 0 y cuyo núcleo contenga al vector (0,0,1).
- 7. Dar una aplicación lineal de \mathbb{R}^3 en \mathbb{R}^2 , cuyo núcleo sea el plano $\{(x,y,z)\in\mathbb{R}^3\colon z=0\}$ y cuya imagen sea la recta $\{(x,y)\in\mathbb{R}^2\colon x-2y=0\}$.
- 8. Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$ la aplicación lineal definida por

$$f(1,0,1) = (1,1), \quad f(1,0-1) = (0,1), \quad f(1,1,1) = (1,0)$$

Hallar la matriz de f respecto a las bases usuales. Encontrar unas bases del núcleo y de la imagen de f.

- 9. Sea f un endomorfismo de \mathbb{R}^3 , con f(x,y,z)=(x-z,y-x,z-y). Hallar una base de f(W), siendo W el subespacio definido por la ecuación y+z=0.
- 10. Sean $f: U \to V$ y $g: V \to W$ dos aplicaciones lineales. Probar que $\operatorname{im}(f) \subset \ker(g)$ si y sólo si $g \circ f$ es igual a la aplicación nula.
- 11. Probar que la aplicación $g \colon \mathbb{R}^2 \to \mathbb{R}^2$, g(x,y) = (2x-y,x-2y) es un isomorfismo. Hallar g^{-1} .
- 12. Para cada $a \in \mathbb{R}$, sea la aplicación lineal $f_a : \mathbb{R}^2 \to \mathbb{R}^3$ dada por $f_a(x,y) = (ax + y, x + ay, ax + ay)$. Hallar los valores de a para los que f_a es inyectiva.
- 13. Encontrar un automorfismo f de \mathbb{R}^3 de manera que f(U)=W, siendo U y W los subespacios definidos por

$$U = \{(x, y, z) \in \mathbb{R}^3 \colon z = 0\}, \qquad W = \{(x, y, z) \in \mathbb{R}^3 \colon x = 0\}.$$

- 14. Sean U y V dos espacios vectoriales y $f:U\to V$ una aplicación lineal. Razonar si es verdadera o falsa cada una de las siguientes afirmaciones:
 - a) Si rango $(f) \ge \dim(V)$ entonces rango $(f) = \dim(V)$.
 - b) Si rango $(f) = \dim(\ker(f))$ entonces $\dim(U)$ es par.
 - c) Si rango $(f) \ge \dim(U)$ entonces f es inyectiva.
- 15. Sean U, V y W espacios vectoriales sobre \mathbb{R} . Probar que si $f: U \to V$ y $g: V \to W$ son dos aplicaciones lineales entonces la composición

$$g \circ f \colon U \to W$$

es una aplicación lineal.

16. Sean $B = \{b_1, b_2\}$ y $C = \{c_1, c_2\}$ dos bases de un espacio vectorial U, tales que

$$c_1 = 2b_1, \qquad c_2 = b_1 - b_2.$$

Si un endomorfismo f de U tiene por matriz asociada $A = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$ respecto a la base B, ¿cuál es la matriz asociada a f respecto a la base C?

17. Sea f el endomorfismo de \mathbb{R}^3 dado por f(x, y, z) = (2x + y - z, -x - 2y + z, x - 5y - 2z). Hallar la matriz asociada a f respecto a la base

$$B = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}.$$

- 18. Deducir razonadamente si son verdaderas las siguientes afirmaciones:
 - a) Todo endomorfismo inyectivo es sobreyectivo.
 - b) La composición de monomorfismos es un monomorfismo.
 - c) La imagen de un subespacio de dimensión 1 es un subespacio de la misma dimensión.
- 19. Sea $f: \mathbf{V} \longrightarrow \mathbf{V}'$ una aplicación lineal con $\ker(f) = \{\bar{0}\}$. Probar que si $f(\bar{u}), f(\bar{v})$ y $f(\bar{w})$ son linealmente dependientes entonces también \bar{u}, \bar{v} y \bar{w} son linealmente dependientes.

20. Sabemos que $\mathcal{B} = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$ es una base del espacio vectorial $\mathbf{S}_2(\mathbb{R})$ de las matrices simétricas reales de orden 2. Justificar que existe una y solo una aplicación $f : \mathbf{S}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ que es lineal y verifica:

$$f(\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}) = (2, 0, 1), \quad f(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) = (1, 1, 1) \quad \text{y} \quad f(\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}) = (1, 0, 2).$$

Hallar $M(f, \mathcal{B}, \mathcal{B}_{\circ})$, es decir, la matriz de f respecto de la base \mathcal{B} de $\mathbf{S}_{2}(\mathbb{R})$ y de la base estándar \mathcal{B}_{\circ} de \mathbb{R}^{3} .

- 21. Responde razonadamente si es cierto o no que para cualquier endomorfismo f de \mathbb{R}^3 se verifica que $\mathbb{R}^3 = \ker(f) \oplus \operatorname{im}(f)$.
- 22. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, dada por f(x, y, z) = (2x y z, -x + y + 2z, x y 2z). Hallar una base del núcleo de f y una base de la imagen de f. Comprobar si $\mathbb{R}^3 = \ker(f) \oplus \operatorname{im}(f)$.
- 23. Sea $\mathbf{V} = \mathbf{V}_n(\mathbb{R})$ un espacio vectorial real de dimensión n. Supongamos que existe un endomorfismo, $f \in \text{End}(\mathbf{V})$, que verifica: $f^2 = f \circ f = -\mathbf{I}_{\mathbf{V}}$ ($\mathbf{I}_{\mathbf{V}}$ es la identidad en \mathbf{V}). Comprueba entonces que f es un isomorfismo y que la dimensión n debe ser par.
- 24. Sea $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$, dada por

$$f(x, y, z, t) = (2x - y - 2z + t, x - y - z + t, x - 2y - z + 2t).$$

- a) Halla, si existen, unas bases \mathcal{B} de \mathbb{R}^4 y \mathcal{C} de \mathbb{R}^3 tales que $M(f, \mathcal{B}, \mathcal{C}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.
- b) Sea **U** el subespacio vectorial de \mathbb{R}^4 cuya ecuación implícita es x-z+t=0. Determina $\mathbf{U} + \ker(f)$ y $\mathbf{U} \cap \ker(f)$.
- c) Encuentra un subespacio vectorial, \mathbf{W} , de \mathbb{R}^3 tal que $\mathbf{W} \oplus \mathrm{im}(f) = \mathbb{R}^3$.
- 25. Consideremos el espacio vectorial \mathbf{S}_2 de las matrices reales simétricas de orden 2. Dado $\alpha \in \mathbb{R}$, sea $f : \mathbb{R}^3 \to \mathbf{S}_2$ la aplicación lineal dada por:

$$f(x,y,z) = \begin{pmatrix} -2x + y + \alpha z & y - z \\ y - z & x - y + 2z \end{pmatrix}.$$

- a) Calcular la imagen y el núcleo de f según los valores de α y discute en cada caso si la aplicación f es un isomorfismo.
- b) Hallar una base \mathcal{B} de \mathbf{S}_2 cuyos dos primeros vectores sean f(1,0,0) y f(0,1,0) y calcula la matriz $M(f,\mathcal{B}_{\circ},\mathcal{B})$, siendo \mathcal{B}_{\circ} la base canónica de \mathbb{R}^3 .
- 26. En el espacio vectorial $\mathbf{A}_3(\mathbb{R})$ de las matrices reales y antisimétricas de orden 3, demuestra que existe una y sólo una aplicación lineal $f: \mathbf{A}_3(\mathbb{R}) \longrightarrow \mathbb{R}^3$ que verifica:

$$f\left(\left(\begin{smallmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{smallmatrix}\right)\right) = (2,0,-1), \quad f\left(\left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{smallmatrix}\right)\right) = (0,-2,1) \quad \text{y} \quad f\left(\left(\begin{smallmatrix} 0 & -2 & 1 \\ 2 & 0 & 0 \\ -1 & 0 & 0 \end{smallmatrix}\right)\right) = (1,1,-1).$$

Calcula el núcleo y la imagen de f. Halla $M(f, B_u, B_\circ)$, es decir, la matriz de f respecto de la base $B_u = \left\{ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \right\}$ de $\mathbf{A}_3(\mathbb{R})$ y la base canónica B_\circ de \mathbb{R}^3 .

27. Sea V el conjunto de matrices de $\mathcal{M}_2(\mathbb{C})$ que coinciden con la traspuesta de su conjugada y además tienen traza cero, es decir

$$V = \{ A \in \mathcal{M}_2(\mathbb{C}) : A = \bar{A}^t, \operatorname{traza}(A) = 0 \}.$$

- a) Prueba que V es un espacio vectorial real y calcula su correspondiente dimensión.
- b) Construye un epimorfismo de V en $\mathbf{S}_2(\mathbb{R})$ (matrices simétricas reales de orden dos). Calcula también el núcleo del mismo.
- 28. Sea M una matriz fija en $\mathcal{M}_2(\mathbb{R})$. Se define la aplicación $f_M:\mathcal{M}_2(\mathbb{R})\to\mathcal{M}_2(\mathbb{R})$ por

$$f_M(A) = M \cdot A, \quad \forall A \in \mathcal{M}_2(\mathbb{R}).$$

- a) Comprueba que f_M es lineal cualquiera que sea M.
- b) Calcula el núcleo y la imagen de f_M en los casos siguientes:

$$M = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \qquad y \qquad M = \begin{pmatrix} -1 & 4 \\ 2 & -8 \end{pmatrix}.$$

- c) ¿Cómo tiene que ser M para que f_M no sea un automorfismo?
- 29. Sea $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}^3$ la aplicación lineal definida por

$$f\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right)=(2a-b-2c+d,\,a-b-c+d,\,a-2b-c+2d).$$

- a) Calcula el núcleo y la imagen de dicha aplicación lineal
- b) Calcula complementarios de dichos subespacios vectoriales en $\mathcal{M}_2(\mathbb{R})$ y \mathbb{R}^3 , respectivamente.
- 30. Sean $\mathbf{A}_3(\mathbb{R})$, el espacio vectorial de las matrices reales antisimétricas de orden 3, y $\mathbb{R}_2[x]$, los polinomios de grado menor o igual que dos, con coeficientes reales. Calcular un isomorfismo $f: \mathbf{A}_3(\mathbb{R}) \to \mathbb{R}_2[x]$ tal que

$$f\left(\begin{array}{ccc} 0 & 2 & 0 \\ -2 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right) = 1 - x^2.$$

- 31. Hallar la base dual \mathcal{B}^* de la base $\mathcal{B} = \{(1,2), (-2,1)\}$ de \mathbb{R}^2 .
- 32. Se tienen las tres formas lineales de \mathbb{R}^3 definidas por:

$$\psi_1(x, y, z) = x - y$$

$$\psi_2(x, y, z) = y - z$$

$$\psi_3(x, y, z) = 2x - z$$

- a) Expresar cada forma lineal como combinación lineal de la base dual de la base canónica de \mathbb{R}^3 .
- b) Comprobar que $\{\psi_1, \psi_2, \psi_3\}$ es una base de \mathbb{R}^{3*} .
- c) Hallar la base de \mathbb{R}^3 cuya base dual es la base que se ha dado.
- d) Hallar las coordenadas, en la base dual canónica y en la base dada, de la forma lineal α definida por $\alpha(x,y,z)=x-y-z$.

- 33. En \mathbb{R}^3 se considera la base $\mathcal{B} = \{(1,1,0), (1,1,-2), (1,0,1)\}$. Sin calcular su base dual, calcula las coordenadas en ella de la forma lineal $\phi \in \mathbb{R}^{3*}$, definida por $\phi(x,y,z) = 2x + y + z$.
- 34. En $\mathcal{P}_2(\mathbb{R})$, el espacio vectorial de los polinomios reales de grado menor o igual que 2, se consideran los polinomios $p_1(t) = 1 + t$, $p_2(t) = t + t^2$ y $p_3(t) = 2 + 2t + t^2$.
 - a) Sabemos que $\mathcal{B} = \{p_1(t), p_2(t), p_3(t)\}$ es una base de $\mathcal{P}_2(\mathbb{R})$. Calcular su base dual \mathcal{B}^* .
 - b) Calcular las coordenadas en \mathcal{B}^* de las formas lineales ω , ϕ , ψ dadas por:

$$\omega(a+bt+ct^2) = 3a-c, \quad \phi(p(t)) = \int_0^1 6 p(t) dt, \quad \psi(p(t)) = p(-1).$$

35. En el espacio vectorial $\mathcal{P}_2(\mathbb{R})$ (polinomios con grado menor o igual a dos y coeficientes reales) se considera la siguiente base

$$\mathcal{B} = \{ P_1(t) = 1 - t^2; P_2(t) = 2 + t^2; P_3(t) = t - 2t^2 \}.$$

- a) Calcula la base dual de \mathcal{B}
- b) Calcula las coordenadas, en dicha base dual, de la forma lineal, ψ , en $\mathcal{P}_2(\mathbb{R})$ definida por

$$\psi(P(t)) = \int_0^2 P(t) dt.$$

- 36. Considera los vectores $v_1=(0,1,2)$ y $v_2=(2,1,0)$ de \mathbb{R}^3 . Calcula una forma lineal, no nula, $\varphi_3\in\mathbb{R}^{3*}$ tal que $\varphi_3(v_1)=\varphi_3(v_2)=0$. Encuentra un vector v_3 y dos formas lineales φ_1 y φ_2 , de tal manera que $\{v_1,\,v_2,\,v_3\}$ sea una base de \mathbb{R}^3 cuya base dual sea $\{\varphi_1,\,\varphi_2,\,\varphi_3\}$.
- 37. Sobre el espacio vectorial $\mathcal{M}_2(\mathbb{R})$ de las matrices reales cuadradas de orden dos, se definen las formas lineales φ y ψ por:

$$\varphi \begin{pmatrix} x & y \\ z & t \end{pmatrix} = x + t$$
 $y \qquad \psi \begin{pmatrix} x & y \\ z & t \end{pmatrix} = x + y + z + t.$

- a) Ampliar $\{\varphi, \psi\}$ a una base del espacio dual de $\mathcal{M}_2(\mathbb{R})$.
- b) Hallar la matriz de cambio de base entre la base obtenida en el apartado anterior y la base dual de la base usual de $\mathcal{M}_2(\mathbb{R})$.
- 38. Sabemos que $\mathcal{B} = \{\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}\}$ es una base del espacio vectorial $\mathbf{S}_2(\mathbb{R})$ de las matrices simétricas reales de orden 2.
 - a) Hallar su base dual $\mathcal{B}^* = \{\omega_1, \omega_2, \omega_3\}$ (Nota: Expresar cada $\omega_i \colon \mathbf{S}_2(\mathbb{R}) \to \mathbb{R}$ como aplicación que actúa sobre $\begin{pmatrix} x & y \\ y & z \end{pmatrix}$).
 - b) Hallar la forma lineal $\psi \in \mathbf{S}_2(\mathbb{R})^*$ cuyas coordenadas en la base \mathcal{B}^* son (2,1,3).
- 39. En el espacio vectorial $\mathbf{S}_2(\mathbb{R})$ (matrices reales y simétricas de orden dos) se considera la base siguiente:

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

Calcula su base dual, \mathcal{B}^* . Halla (respecto a la base \mathcal{B}^*) las coordenadas de la forma lineal, $\psi \colon \mathbf{S}_2 \longrightarrow \mathbb{R}$, que lleva cada matriz simétrica en su traza.

40. En $\mathcal{P}_1(\mathbb{R})$, el espacio vectorial de los polinomios reales de grado menor o igual que uno. se considera, para cada número real a, la forma lineal:

$$\phi_a \colon \mathcal{P}_1(\mathbb{R}) \to \mathbb{R}, \qquad \phi_a(p(t)) = p(a).$$

Probar que ϕ_a y ϕ_b forman una base del espacio dual $\mathcal{P}_1(\mathbb{R})^*$ si y sólo si $a \neq b$.

- 41. Sea $\mathcal{P}_2(\mathbb{R})$ el espacio vectorial real de los polinomios con grado menor o igual que dos. Se pide:
 - a) Calcula una base \mathcal{B} de $\mathcal{P}_2(\mathbb{R})$ en la que los polinomios $P_1(t) = 1 + t^2$ y $P_2(t) = 1 + t t^2$ tengan coordenadas (1,0,0) y (0,1,0), respectivamente.
 - b) Sin calcular la base dual \mathcal{B}^* , de la base anterior, calcula las coordenadas en ella de las formas lineales $\varphi, \psi \in (\mathcal{P}_2(\mathbb{R}))^*$ definidas por

$$\varphi(P(t)) = \int_0^1 P(t) dt \qquad \psi(P(t)) = P(3)$$

42. En \mathbb{R}^3 se consideran las 2 formas lineales:

$$\varphi(\vec{v}) = \varphi(x, y, z) = 2x - y, \qquad \psi(\vec{v}) = \psi(x, y, z) = y - 3z.$$

a) Calcula la matriz que representa, en la base canónica, al endomorfismo $f\in \operatorname{End}(\mathbb{R}^3)$ definido por

$$f(\vec{v}) = (\varphi(\vec{v}) - \psi(\vec{v}), \, \varphi(\vec{v}) + \psi(\vec{v}), \, 2\varphi(\vec{v}) - \psi(\vec{v})).$$

- b) Calcula también el núcleo, la imagen, el determinante y la traza de dicho endomorfismo.
- 43. En \mathbb{R}^3 se consideran las formas lineales $\varphi_1, \varphi_2, \varphi_3 : \mathbb{R}^3 \to \mathbb{R}$ dadas por:

$$\varphi_1(x, y, z) = x + y,$$
 $\varphi_2(x, y, z) = x + z,$ $\varphi_3(x, y, z) = x + 2z.$

- a) Comprueba que $\{\varphi_1, \varphi_2, \varphi_3\}$ forman una base de $(\mathbb{R}^3)^*$.
- b) Calcula la base B de \mathbb{R}^3 cuya base dual es $B^* = \{\varphi_1, \varphi_2, \varphi_3\}$.
- c) Sea $\psi = \varphi_1 \varphi_2 + \varphi_3$. Calcula la matriz de la aplicación traspuesta de ψ en las bases B^* y la base dual de la base $\{1\}$ de \mathbb{R} (considerando \mathbb{R} como espacio vectorial de dimensión 1).
- d) Obtener también la imagen de g por la traspuesta de ψ , siendo $g: \mathbb{R} \to \mathbb{R}$, g(t) = 3t (considerando g como forma lineal sobre el espacio vectorial \mathbb{R}).
- 44. En \mathbb{R}^4 se consideran las cuatro formas lineales $\varphi_i : \mathbb{R}^4 \to \mathbb{R}, i \in \{1, 2, 3, 4\},$ dadas por

$$\varphi_1(x, y, z, t) = -y - t, \ \varphi_2(x, y, z, t) = x + z, \ \varphi_3(x, y, z, t) = 2x + t, \ \varphi_4(x, y, z, t) = 2y - z.$$

- a) Probar que $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ forman base de $(\mathbb{R}^4)^*$.
- b) Calcular la base B cuya base dual es $B^* = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$.
- c) Dada $\psi = \varphi_1 + \varphi_2 + 2\varphi_3 \varphi_4$, calcular la matriz de la aplicación traspuesta de ψ con respecto a la base B^* y también con respecto a la base dual de la base usual de \mathbb{R}^4 .