Gestion de flux dans le réseau

TD n $^{\circ}$ 5

Modélisation mathématique

Q4

Sibylle Roux

Juliette Arazo Tanguy Thomas Nicolas Le Gallo

21 novembre 2017

Table des matières

	de mathématique de la loi tente
2.1	Densité
	2.1.1 Fonction
	2.1.2 Représentation graphique
2.2	Fonction de répartition
	2.2.1 Fonction
	2.2.2 Représentation graphique
2.3	Inverse
	onclusion

- 1 Essaies randoms
- 1.1
- 2 Etude mathématique de la loi tente
- 2.1 Densité
- 2.1.1 Fonction

$$f(x) = \begin{cases} 1 - |x| & \text{si } -1 \le x \le 1\\ 0 & \text{sinon} \end{cases}$$

2.1.2 Représentation graphique

2.2 Fonction de répartition

2.2.1 Fonction

$$f(x) = \begin{cases} f(x) = 0 & \text{pour } x < -1\\ f(x) = 1 + x & \text{pour } -1 < x < 0\\ f(x) = 1 - x & \text{pour } 0 < x < 1\\ f(x) = 0 & \text{pour } x > 1 \end{cases}$$
 (1)

$$<=> F(x) = \begin{cases}
\int_{-\infty}^{x} 0 \, dx & \text{pour } x < -1 \\
\int_{-\infty}^{\infty} 0 \, dx + \int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
\int_{-\infty}^{0} 1 + x \, dx + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
\int_{-\infty}^{0} 1 + x \, dx + \int_{0}^{1} 1 - x \, dx + \int_{1}^{x} 0 \, dx & \text{pour } x > 1
\end{cases}$$
(2)

$$<=> F(x) = \begin{cases}
0 & \text{pour } x < -1 \\
0 + \int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
0 + \frac{1}{2} + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
0 + \frac{1}{2} + \frac{1}{2} + \int_{1}^{x} 0 \, dx & \text{pour } x > 1
\end{cases} \tag{3}$$

$$<=> F(x) = \begin{cases}
0 & \text{pour } x < -1 \\
\int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
\frac{1}{2} + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
1 & \text{pour } x > 1
\end{cases} \tag{4}$$

$$<=> F(x) = \begin{cases} 0 & \text{pour } x < -1\\ \frac{1}{2} + x + \frac{x^2}{2} \\ \frac{1}{2} + x - \frac{x^2}{2} \\ 1 & \text{pour } x > 1 \end{cases}$$
 (5)

2.2.2 Représentation graphique

2.3 Inverse

Première partie

Conclusion

A Etude mathématique de la loi tente

A.1 Représentation graphique de la densité

```
t = linspace(-1, 1, 301);
T = t;
i1 = (t>=-1) & (t<=1);
i2 = t>1 & t<-1;
T(i1)=1-abs(T(i1));
T(i2)=0
plot2d(t,T,style=2)
legend("Fonction de densité de la loi tente")</pre>
```

A.2 Représentation graphique de la fonction de répartition

```
t = linspace(-1, 1, 301);
R=t;
i1 = t<-1;
i2 = (t>=-1) & (t<=0);
i3 = (t>0) & (t<=1);
i4 = t>1;
R(i1) = 0;
R(i2) = 0.5 + R(i2) + ((R(i2)^2)/2)
R(i3) = 0.5 + R(i3) - ((R(i3)^2)/2)
R(i4) = 1;
plot2d(t,R,style=2)
legend("Fonction de répartition de la loi tente")
```