	Prime Numbers	20 = 4-x5 24= 4x6	Topics -Caunt Factors PI-Sieve P2-Factors 1-n
10 × 1	int count Factors (int n);		Ps. Small out acima
	for (int i=1; 1 = \frac{1}{n}; 1	++)\$	P4-# Factors n pc open doors.
Q1	if(n 1.1==0){	(V USIT V U	
TC:0(1n) SC: 0(1)	if(1=21/1)	a number t	hat is only
	In else	divisable b	y 1 and itself
$n \rightarrow (n)$	else ouns+=2		5 , 6, 7 , 8, 9, 10
factorst			
ove even	rot ans	2 3 4	5678910
except perfect	ret count Factors(n)==	2 2	3 4 5
59 noure			
PL PL	Given an integer i		
	if it is a prime n	umber - output	is an array
ex	n=10 1 2 3 4	5678910	l
	FF	5 6 7 8 9 10	e output
idea1	output[n+1] winit to folse	To	$80(n \times \sqrt{n})$
	for i=1 to n if(count Factors(i)==2)		30(1)
	outrut(i) = true else outrut(i) = false		
idea 2	1,2,3,4,5,6,	7,8,9,10,11,12,	13, 14, 15, 16, 17, 18
sieve of	bool R	3x3	
Erotosthen			OPT
Whento	40	mportants strant fr	com 1×2 not (*i
use sieve	?	optimized & smaller che	multiples afreedy
	1 5 0 7 9		
	3, 4, 5, 6, 7, 8,	, 7, 10, 11, 12, 13	, 14, 15, 16, 17, 18

```
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
                                                          bool[] is Prime N (int n){
    SC3
                                                                              bool wp[n+1]; // all true
   0(N) <
                                                                             int (wp, tine); 10(n)
    or if
                                                                               wp[0] = wp[1] = false,
 ret isp
    0(1)
                                                                              for ( 1 = 2; 1x i ( = n; i++) {
                                                                                                         if (wPCi) == true) fin w prime
J& 2 optional
                                                                                                                                    for (J=1x1; J(=n, J+=1) }
WP(J)= false
      assignment
                                                                                                                                                                  j (=ixi -> n) # iteration
                                                                                                                                                                   4, 6, 8, 10, ..., n N/2
9, 12, 15, ... N/3+
                                                                                                                                                                                                                                                                                                                                                                 bound
                                                                                                                                                                9,12,15,...
                                                                                                                                                             0
25,30,36,...
                                                                                                                                                                                                                                       do not warry about this detail remember TC
                                                  = n \left( \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{1} + \frac{1}{7} + \frac{1}{7}
                #iter8 12 + 13 + 13 + 13 + 13 + 11 + ...
                                                                                                                                                                                                                                                      TC<=
                      TC <2 n (lag (lag (n))) + N
```



```
P3 Given an integer n, Find the smallest prime
          factor for all numbers
           1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
SPF
          int[] smallest-actors (int n)
TC80(nlag(log(n)))
            spffn+1]; // init to 0
80(1)
            for (1=2, 1*1(=1,1++))
               if (SPf[i] = = 0) { 1 is Prime }
                    spf[1] = 1
                    for ( J= 1*1; J<2N, J=1) {
    if (sPf(j)==0) {
                             sef[j]zi
            for (122;1(=n;1++){
                  if (spf[i) = = only for prime
                        spf[i] = i numbers assign the number itself.
```

is array of ints. P4 Count the number factors of n, given the spfli) 1<=1<= n (3,15) $(9,5) \rightarrow ans=6$ ans 45= 32x5 Q5 32 -(1,32) (2,16) (4,8) -ous=6 32=25 N = P, x P2 x ... x Pm # of factor= (n,+1)(n2+1) ... (nx+1) ex **6X** 600 490 0 0 0 2x5x7 5 005 150 49 7 75 3 (O+1)(O+1)(OH) 25 5 12 -ans

```
int count Of Factors (n) {
         ans =1
         spfzsmallestfactors(n) -> 500(n)
                               >TC8 O(n log(log(n))
            POWER 1
            while (temp!=1 && temp/d==0){
HW
            ans = ans * (power+1
                                      1+1
         ret ans
                                5x2
```

open doors problem

ret floor(sqrt(n))

Number Of Open Doors

Problem Description

Given an integer A, which denotes the number of doors in a row numbered 1 to A. All the doors are closed initially.

A person moves to and fro, changing the states of the doors as follows: the person opens a door that is already closed and closes a door that is already opened.

In the first go, he/she alters the states of doors numbered 1, 2, 3, \dots , A.

In the second go, he/she alters the states of doors numbered 2, 4, 6

In the third go, he/she alters the states of doors numbered 3, 6, 9 ...

This continues till the A'th go in, which you alter the state of the door numbered A.

Find and return the **number of open doors** at the end of the procedure.

Problem Constraints

1 <= A <= 10⁹

- close - close - close - open Tound 1 2 3 4 5 6 7 8 9 - open 1 2 3 4 5 6 7 8 9 - open 2	
10	
①	
①	
3 ans=3 4	
(4) — — K	
(4) — — K	
5 - 19-	
	<i></i>
8	
<u> </u>	