E.T.S. D'ENGINYERIA DE TELECOMUNICACIÓ DE BARCELONA

Enginyeria de Telecomunicació EMISSORS I RECEPTORS Quatrimestre de primavera Examen final 26 de juny de 2003

Data de publicació de notes provisionals: 2 de juliol de 2003 a les 12 hores

Data límit per al·legacions: 3 de juliol de 2003 a les 12 hores

Data de publicació de notes definitives: 4 de juliol de 2003 a les 12 hores

Problema 1 (3.5 puntos)

Considérese el receptor de comunicaciones de la siguiente figura:

Los parámetros característicos son:

- Temperatura equivalente de ruido de antena: T_A = 5000 $^{\rm o}$ K
- Amplificador de RF: G_{RF}= 17 dB, IP_{i,RF}= 10 dBm (productos de 3r orden)
- Mezclador: G_m= 7 dB, NF_m= 10dB, IP_{i,m}= 11 dBm (productos de 3r orden)
- Filtro Paso Banda: B_f = 50 kHz, L_f = 5dB, ? = 11 dB
- Amplificador de FI: B_{FI} = 50 kHz, NF_{FI} = 14dB, G_{FI} = 15 dB, $IP_{i,FI}$ = 15 dBm (productos de 3r orden)
- K= $1.38 \ 10^{-23} \ \text{J/K}$ Temperatura física del receptor: $T_0 = 290 \ ^{\circ}\text{K}$
- Frecuencia de la señal recibida: $f_S = 91 \text{ MHz}$

Se pide:

- a) Calcular la temperatura equivalente de ruido del amplificador de RF si se desea que la relación señal/ruido a la salida del receptor sea 3 dB menor que a su entrada.
- b) Considerando las interferencias de los canales adyacentes a f₁=f_S+50 kHz, y f₂=f_S+100 kHz, calcular el margen dinámico libre de espúreos (SFDR) que garantiza que el producto de intermodulación de tercer orden está por debajo del nivel de ruido a la salida.
- c) A la entrada del receptor existe, conjuntamente con la señal útil, una señal interferente a la frecuencia de 90 MHz con un nivel de -15 dBm. Suponiendo ley de distorsión cúbica para la relación entrada/salida del receptor y despreciando la compresión de ganancia, determinar la pérdida de sensibilidad que dicha señal origina sobre el receptor.

Problema 2 (3.5 puntos)

Un receptor superheterodino para FM comercial debe sintonizar portadoras entre f_S =88.1 MHz y f_S =107.9 MHz en pasos de 200 kHz. La frecuencia intermedia vale 10.7 MHz. Como oscilador local se utiliza el sintetizador indirecto de frecuencias mostrado en la figura:

Donde los divisores por M y por P son fijos (no programables) y f_{OL}>f_S.

- a) Se desea que cualquier espúreo en la señal sintetizada esté separado de f_{OL} exactamente 25 kHz. Diseñar el sintetizador encontrando los valores de M, P y el rango de valores de N.
- **b**) Suponiendo que F(s) corresponde a un filtro activo de primer orden, calcular el producto AK necesario para garantizar que cualquier salto de frecuencia está dentro del margen de "lock-in" del sintetizador.
- c) Teniendo en cuenta que, por razones de implementación práctica, $|e(t)| \le 5 \text{ V}$, y que la estabilidad del VCO es 10^{-2} , calcular la sensibilidad del VCO (K_2) mínima necesaria para que se pueda sintetizar el rango de frecuencias deseado.
- d) Suponiendo que K_2 = 20 [MHz/V] y que la señal que da lugar a los espúreos tiene una amplitud de 10 μ V de pico a la salida del mezclador, calcular el rechazo de espúreos a la salida del sintetizador.

Datos:

-
$$\zeta \approx 0.707$$

$$F(s) = \frac{1 + \boldsymbol{t}_2 s}{\boldsymbol{t}_1 s}$$

$$- \lim_{s \to \infty} F(s) = 3.2 \cdot 10^{-3}$$

- frecuencia de reposo del VCO=
$$\frac{f_{OL, \max} + f_{OL, \min}}{2}$$