STAT 435 HW1

Peiran Chen

3/31/2022

1.

a)

Taking a parametric approach will have following pros:

- Does not need a lot of data
- Simplifies the problem because it is generally much easier to estimate a set of parameters and cons:
- The model we choose will usually not match the true unknown form of f, and if the chosen model is too far from the true f, then our estimate will be poor.

Taking a nonparametric approach will have following pros:

- Avoid unnecessary assumptions about the functional form of f will have the potential to accurately fit a wider range of possible shapes for f.
- A very large number of observations is required in order to obtain an accurate estimate for f.

b)

For parametric approach, I would say when we have a small number of observations to work with, such as getting survey on people's blood pressure and hours of physical exercises they do each week. And we know that having more time to exercises will result in a lower blood pressure as a matter of fact. Hence we can make assumptions to f in this case to be a linear model:

blood pressure $\approx \beta_0 + \beta_1 \times physical\ exercises$

c)

For non-parametric approach, I would say when we have a lot of data to work with, we can use this method to do the same prediction as part b).

2.

a)

In this case, I would expect the inflexible methods to perform better. Since sample size is small, there won't be enough data for flexible methods such as deep learning and etc. Also, the number of predictors are large, hence it would be a good practice to use OLS so that we have more interpretability. Hence inflexible methods tends to perform better.

b)

In this case, I would expect the flexible method to perform better. Because we have a larger sample, a flexible method can take advantage of that and get more information out of it. The large n also greatly reduces the risk of over-fitting with flexible method.

c)

Inflexible methods have a lot of trouble picking up non-linear relationships, so we should prefer a flexible method.

d)

In this case, I would expect inflexible method to perform better. Higher variance will tend to introduce noise. The high variance of error terms means that the sample will have a lot of noise in the relationship. Therefore we should prefer an inflexible method that is less likely to put more weight on the noise hence gave us more accurate result.

3.

a)

It is a regression problem. And the goal is prediction, where n = 50, p = 8.

b)

It is a classification problem. And the goal is inference, where n = 50, p = 6.

4.

a) and b)

Figure 1: a) & b)

c)

 \hat{f} that has a smallest Bias and extremely high Variance would be when the true f is linear, but \hat{f} is derived with a very flexible approach, which will result in over-fitting, and \hat{f} put too much weight on the irreducible error hence introduce high Variance despite having smallest Bias.

d)

 \hat{f} in this case would be a linear fit (least squares). And the true f is not so linear, hence it will introduce high bias since we assume the data is a linear fit. And It tends to have low Variance since the result from a linear fit is consistent.

5.

a)


```
# Generating test set
test_red <- rnorm(n, 0, 1)
test_blue <- rnorm(n, 0, 1.5)
df_test <- data.frame("test_red" = test_red, "test_blue" = test_blue)</pre>
```

plot(df_test)

6.

a)

7.

library(ISLR2)

a)

```
data <- Boston
head(data)</pre>
```

```
##
       crim zn indus chas
                                             dis rad tax ptratio lstat medv
                            nox
                                  rm age
## 1 0.00632 18 2.31
                        0 0.538 6.575 65.2 4.0900
                                                  1 296
                                                            15.3 4.98 24.0
                                                            17.8 9.14 21.6
## 2 0.02731 0 7.07
                        0 0.469 6.421 78.9 4.9671
                                                   2 242
## 3 0.02729 0 7.07
                        0 0.469 7.185 61.1 4.9671
                                                  2 242
                                                            17.8 4.03 34.7
## 4 0.03237 0 2.18
                        0 0.458 6.998 45.8 6.0622
                                                            18.7 2.94 33.4
                                                   3 222
## 5 0.06905 0 2.18
                        0 0.458 7.147 54.2 6.0622
                                                   3 222
                                                            18.7 5.33 36.2
## 6 0.02985 0 2.18
                        0 0.458 6.430 58.7 6.0622
                                                            18.7 5.21 28.7
                                                   3 222
```

```
# Get number of rows
row_number <- nrow(data)</pre>
```

```
# Get number of columns
col_number <- ncol(data)</pre>
```

And there are 13 columns, and 506 rows. Number of rows represent the number of observations in our dataset. And number of columns represent the number of features/predictors each observations have we have.

b)

par(mfrow =c(2,2))

plot(data\$age, data\$crim) # check and see if crime rate is related to age of the units build prior to 1 plot(data\$age, data\$rm) # check if number of rooms is related to age of the units build prior to 1940 plot(data\$ptratio, data\$medv) # check if the number of students per teacher has an effect on median val plot(data\$dis, data\$medv) # check if the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect on median value of the distance to employment centers has an effect of the distance to employment centers has an effect of the distance to employment centers has an effect of the distance to employment centers has an effect of the distance to employment centers has an effect of the distance to employment centers has an effect of the distance to employment centers has an effect of the distance to employment centers have the distance to employment centers have the distance to employ the distance to employment centers have the distance to employ the distance to employ the distance to employment centers have the distance to employ the distance

findings are:

- newily built units tends to have lower per captia crime rate by town
- newlly build units tend to have more rooms compare to old units
- the higher student per teacher ratio, the lower their median house prices tend to bee
- People lives close to the business center of Boston tend to have lower median house prices

c.

From my finding in part b. I believe that there's relationship between proportion of owner-occupied units built prior to 1940 and per capita crime rate.

And the relationship is exponential, as the proportion of old houses grow, the number of per capita crime rate grows exponentially.

d.

e.

```
sum(data$chas)
```

[1] 35

35 suburbs in this data set bound the Charles river

f.

```
mean(data$ptratio)
```

[1] 18.45553

sd(data\$ptratio)

[1] 2.164946

Mean of pupil-teacher ratio is 18.45553 and standard deviation of pupil-teacher ratio is 2.164946.

g.

```
##
         crim zn indus chas
                                                    dis rad tax ptratio lstat medv
                                nox
                                       rm
                                             age
## 1
      1.46336
               0 19.58
                           0 0.6050 7.489
                                            90.8 1.9709
                                                          5 403
                                                                    14.7
                                                                          1.73
## 2
      1.83377
               0 19.58
                           1 0.6050 7.802
                                           98.2 2.0407
                                                          5 403
                                                                    14.7
                                                                          1.92
                                                                                 50
                                                                          3.32
## 3
     1.51902
               0 19.58
                           1 0.6050 8.375
                                           93.9 2.1620
                                                          5 403
                                                                    14.7
                                                                                 50
## 4
      2.01019
               0 19.58
                           0 0.6050 7.929
                                           96.2 2.0459
                                                          5 403
                                                                    14.7
                                                                          3.70
                                                                                 50
## 5
      0.05602
               0
                  2.46
                           0 0.4880 7.831
                                            53.6 3.1992
                                                          3 193
                                                                    17.8
                                                                          4.45
                                                                                 50
## 6
     0.01381 80
                  0.46
                           0 0.4220 7.875
                                            32.0 5.6484
                                                          4 255
                                                                    14.4
                                                                          2.97
                                                                                 50
## 7
      0.02009 95
                  2.68
                           0 0.4161 8.034
                                            31.9 5.1180
                                                          4 224
                                                                    14.7
                                                                          2.88
                                                                                 50
     0.52693
                           0 0.5040 8.725
                                            83.0 2.8944
                                                          8 307
                                                                          4.63
## 8
                  6.20
                                                                    17.4
                                                                                 50
              0
## 9
      0.61154 20
                  3.97
                           0 0.6470 8.704
                                           86.9 1.8010
                                                          5 264
                                                                    13.0
                                                                          5.12
                                                                                 50
## 10 0.57834 20
                  3.97
                           0 0.5750 8.297
                                            67.0 2.4216
                                                          5 264
                                                                    13.0
                                                                         7.44
                                                                                 50
## 11 0.01501 90
                  1.21
                           1 0.4010 7.923
                                           24.8 5.8850
                                                          1 198
                                                                    13.6
                                                                          3.16
                                                                                 50
## 12 4.89822
                           0 0.6310 4.970 100.0 1.3325
               0 18.10
                                                         24 666
                                                                    20.2
                                                                          3.26
                                                                                 50
## 13 5.66998
               0 18.10
                           1 0.6310 6.683
                                           96.8 1.3567
                                                         24 666
                                                                    20.2
                                                                          3.73
                                                                                 50
## 14 6.53876
                           1 0.6310 7.016
                                          97.5 1.2024
                                                                    20.2
                                                                          2.96
               0 18.10
                                                         24 666
                                                                                 50
## 15 9.23230
               0 18.10
                           0 0.6310 6.216 100.0 1.1691
                                                         24 666
                                                                    20.2
                                                                          9.53
                                                                                 50
                           1 0.6680 5.875 89.6 1.1296
## 16 8.26725 0 18.10
                                                         24 666
                                                                    20.2 8.88
                                                                                 50
```

```
n <- row_number
par(mfrow = c(2,2))
plot(sort(data\$crim),(1:n-1)/(n-1), type="l",
xlab = "Per capita crime rate by town",
ylab = "Quantile")
abline(v=mean(highest_medv$crim), col="blue")
plot(sort(data\$zn), (1:n-1)/(n-1), type="l",
xlab = "proportion of residential land zoned for lots over 25,000 sq.ft",
ylab = "Quantile")
abline(v=mean(highest_medv$zn), col="blue")
plot(sort(data\$indus), (1:n - 1)/(n - 1), type="l",
xlab = "proportion of non-retail business acres per town",
ylab = "Quantile")
abline(v=mean(highest_medv$indus), col="blue")
plot(sort(data\$chas), (1:n-1)/(n-1), type="l",
xlab = "Charles River dummy variable",
ylab = "Quantile")
abline(v=mean(highest_medv$chas), col="blue")
```


Quantile

9.0

0.0

Per capita crime rate by town

40

60

80

100

Charles River dummy variable

```
par(mfrow = c(2,2))

plot(sort(data$nox),(1:n - 1)/(n - 1), type="l",
    xlab = "nitrogen oxides concentration",
    ylab = "Quantile")
```

```
abline(v=mean(highest_medv$nox), col="blue")

plot(sort(data$rm), (1:n - 1)/(n - 1), type="l",
    xlab = "average number of rooms per dwelling",
    ylab = "Quantile")
abline(v=mean(highest_medv$rm), col="blue")

plot(sort(data$age), (1:n - 1)/(n - 1), type="l",
    xlab = "proportion of owner-occupied units built prior to 1940",
    ylab = "Quantile")
abline(v=mean(highest_medv$age), col="blue")

plot(sort(data$dis), (1:n - 1)/(n - 1), type="l",
    xlab = "weighted mean of distances to five Boston employment centres",
    ylab = "Quantile")
abline(v=mean(highest_medv$dis), col="blue")
```


nitrogen oxides concentration

proportion of owner-occupied units built prior to 19ighted mean of distances to five Boston employment

```
par(mfrow = c(2,2))

plot(sort(data$rad), (1:n - 1)/(n - 1), type="l",
    xlab = "index of accessibility to radial highways",
    ylab = "Quantile")
abline(v=mean(highest_medv$rad), col="blue")

plot(sort(data$tax), (1:n - 1)/(n - 1), type="l",
    xlab = "full-value property-tax rate per $10,000",
```

```
ylab = "Quantile")
abline(v=mean(highest_medv$tax), col="blue")

plot(sort(data$ptratio), (1:n - 1)/(n - 1), type="l",
xlab = "pupil-teacher ratio by town",
ylab = "Quantile")
abline(v=mean(highest_medv$ptratio), col="blue")

plot(sort(data$lstat), (1:n - 1)/(n - 1), type="l",
xlab = "lower status of the population",
ylab = "Quantile")
abline(v=mean(highest_medv$lstat), col="blue")
```


index of accessibility to radial highways

full-value property-tax rate per \$10,000

lower status of the population

summary(Boston)

```
##
         crim
                               zn
                                               indus
                                                                 chas
                                                                   :0.0000
##
           : 0.00632
                                :
                                   0.00
                                                  : 0.46
                                                            Min.
    Min.
                        Min.
                                          Min.
    1st Qu.: 0.08205
                        1st Qu.:
                                           1st Qu.: 5.19
                                                            1st Qu.:0.00000
##
                                   0.00
##
    Median: 0.25651
                        Median: 0.00
                                          Median: 9.69
                                                            Median :0.00000
##
            : 3.61352
                        Mean
                               : 11.36
                                           Mean
                                                  :11.14
                                                            Mean
                                                                   :0.06917
                        3rd Qu.: 12.50
                                          3rd Qu.:18.10
                                                            3rd Qu.:0.00000
##
    3rd Qu.: 3.67708
##
    Max.
            :88.97620
                        Max.
                                :100.00
                                          Max.
                                                  :27.74
                                                            Max.
                                                                   :1.00000
##
                                                               dis
         nox
                                             age
                            rm
##
            :0.3850
                              :3.561
    Min.
                      Min.
                                       Min.
                                               : 2.90
                                                          Min.
                                                                 : 1.130
                                       1st Qu.: 45.02
                                                          1st Qu.: 2.100
##
    1st Qu.:0.4490
                      1st Qu.:5.886
##
    Median :0.5380
                      Median :6.208
                                       Median : 77.50
                                                         Median : 3.207
##
    Mean
            :0.5547
                      Mean
                              :6.285
                                       Mean
                                               : 68.57
                                                         Mean
                                                                : 3.795
    3rd Qu.:0.6240
                      3rd Qu.:6.623
                                       3rd Qu.: 94.08
                                                          3rd Qu.: 5.188
##
                                       Max.
                                               :100.00
##
    Max.
            :0.8710
                      Max.
                              :8.780
                                                         Max.
                                                                 :12.127
```

```
##
                                           ptratio
         rad
                            tax
                                                              lstat
           : 1.000
                              :187.0
                                        Min.
##
    Min.
                                                :12.60
                                                          Min.
                                                                 : 1.73
                      Min.
                                                          1st Qu.: 6.95
##
    1st Qu.: 4.000
                       1st Qu.:279.0
                                        1st Qu.:17.40
    Median : 5.000
                      Median :330.0
                                        Median :19.05
                                                          Median :11.36
##
##
    Mean
            : 9.549
                      Mean
                              :408.2
                                        Mean
                                                :18.46
                                                          Mean
                                                                  :12.65
                       3rd Qu.:666.0
##
    3rd Qu.:24.000
                                        3rd Qu.:20.20
                                                          3rd Qu.:16.95
##
    Max.
            :24.000
                      Max.
                              :711.0
                                        Max.
                                                :22.00
                                                          Max.
                                                                 :37.97
##
         medv
##
    Min.
           : 5.00
##
    1st Qu.:17.02
    Median :21.20
##
    Mean
            :22.53
##
    3rd Qu.:25.00
            :50.00
##
    Max.
```

As we can see from above quantile graphs, we can see that suburbs with highest median value of owner-occupied homes(in blue line) tends to:

- have low per capita crime rate by town
- have smaller proportion of residential land
- at 50th percentile for proportion of non-retail business acres per town
- at around 50th percentile for nitrogen oxides concentration
- have more rooms
- at around 50th percentile for proportion of owner-occupied units built prior to 1940
- closer to five Boston employment centers
- between median and 3rd quantile in terms of accessibility to radial highways
- at around 50th percentile for full-value property-tax rate per \$10,000.

0 0.4310 8.259

- have smaller pupil-teacher ratio by town
- have smaller percent of lower status of the population

h.

9

0.36894 22

5.86

```
sqldf("SELECT COUNT(*) AS more_than_six FROM Boston
      WHERE rm > 6")
##
     more than six
## 1
               333
sqldf("SELECT * FROM Boston
      WHERE rm > 8")
##
         crim zn indus chas
                                                    dis rad tax ptratio 1stat medv
                                nox
                                        rm
                                            age
      0.12083
                  2.89
                                                          2 276
## 1
               0
                           0 0.4450 8.069 76.0 3.4952
                                                                   18.0
                                                                          4.21 38.7
##
      1.51902
               0
                 19.58
                           1 0.6050 8.375 93.9 2.1620
                                                          5 403
                                                                   14.7
                                                                          3.32 50.0
## 3
      0.02009 95
                  2.68
                           0 0.4161 8.034 31.9 5.1180
                                                          4 224
                                                                   14.7
                                                                         2.88 50.0
                  6.20
                           0 0.5040 8.266 78.3 2.8944
                                                          8 307
                                                                   17.4
                                                                         4.14 44.8
      0.31533
               0
## 5
      0.52693
               0
                  6.20
                           0 0.5040 8.725 83.0 2.8944
                                                          8 307
                                                                   17.4
                                                                         4.63 50.0
## 6
      0.38214
               0
                  6.20
                           0 0.5040 8.040 86.5 3.2157
                                                          8 307
                                                                   17.4
                                                                         3.13 37.6
## 7
      0.57529
               0
                  6.20
                           0 0.5070 8.337 73.3 3.8384
                                                          8 307
                                                                   17.4
                                                                         2.47 41.7
                  6.20
                           0 0.5070 8.247 70.4 3.6519
                                                          8 307
                                                                         3.95 48.3
## 8
      0.33147
               0
                                                                   17.4
```

8.4 8.9067

7 330

19.1 3.54 42.8

```
## 10 0.61154 20 3.97 0 0.6470 8.704 86.9 1.8010 5 264 13.0 5.12 50.0 ## 11 0.52014 20 3.97 0 0.6470 8.398 91.5 2.2885 5 264 13.0 5.91 48.8 ## 12 0.57834 20 3.97 0 0.5750 8.297 67.0 2.4216 5 264 13.0 7.44 50.0 ## 13 3.47428 0 18.10 1 0.7180 8.780 82.9 1.9047 24 666 20.2 5.29 21.9
```

It tends to have lower crime rate.