全国青少年信息学联赛 CCF NOIP 2018

题目名称	图的遍历	EASY	字符串匹配
题目类型	传统型	传统型	传统型
目录	dfs	easy	string
可执行文件名	dfs	easy	string
输入文件名	dfs.in	easy.in	string.in
输出文件名	dfs.out	easy. out	string.out
每个测试点时限	1.0秒	3.0秒	1.0秒
内存限制	512MB	512MB	512MB
测试点(包)数目	10	20	20
测试点(包)分值	10	5	5

提交源程序文件名

对于 C++语言	dfs.cpp	easy.cpp	string.cpp
对于 C 语言	dfs.c	easy.c	string.c
对于 Pascal 语言	dfs.pas	easy.pas	string.pas

编译选项

对于 C++语言	-1m -02	-1m -02	-1m -02
对于C语言	-1m -02	-1m -02	- 1m -02
对于 Pascal 语言	无	无	无

图的遍历(dfs)

【题目描述】

对于一个有向图G来说,我们存在一个经典的遍历算法,就是DFS (深度优先搜索遍历)。将G以1号点为起点进行DFS后,我们可以得到G的一棵DFS遍历树T。就此,我们可以把G中的所有边分成4种类型,如下:

- 树边:边(u,v)满足是T上的边。
- 返祖边: 边(u, v)满足在T上v是u的祖先。
- 前向边:边(u,v)满足在T上u是v的祖先,但不是父亲(即不是树边)。
- 横叉边:除去以上所有情况的边就是横叉边。

现在我们给出四个整数A, B, C, D, 要求构造图G, 使得对G以1号点开始进行DFS后, 树边个数为A, 返祖边个数为B, 前向边个数为C, 横叉边个数为D。要求构造的G满足, 联通(可以从1号点出发到达其他所有点)、无重边、无自环, 否则视为不合法。你只需要输出其中任意一个解即可, 我们会用sp i判断你的解是否合法。

【输入格式】

仅一行,四个整数,表示A,B,C,D。

第 2/10 页

【输出格式】

如果不存在解,输出-1。

如果有解,请现在第一行输出一个整数N,表示G的点数。

接下来N行,第i行先输出一个数Degreei,表示第i个点的出度;

接下来输出Degreei个数,描述i的所有出边。

注意不能存在重边和自环。

请注意,对于点i,在DFS过程中,我们会根据你输出的边的顺序,依次进行拓展。

【样例输入】

3 1 1 1

【样例输出】

4

3 2 4 3

1 3

1 1

1 2

【样例说明】

如图所示,黑色的边为树边,红边是返祖边,蓝边是前向边,绿边是横叉边。

【数据范围】

本题一共 10 个测试点,每个测试点分值为 10 分。测试数据可分为 6 个部分,具体分值和说明如下:

- 10% 的数据满足: 0≤A,B,C,D≤5。
- 10% 的数据满足: D=0
- 10% 的数据满足: B=C=0。
- 20% 的数据满足: A≤100。
- 20% 的数据满足: A≤1000。
- 30% 的数据满足: A≤100000。

对于 100%的数据, 满足 0≤A,B,C,D≤100000。

注意

由于本题的输出量过大,建议选手使用**输出优化**来加速输出。出题人 所使用的的输出优化如下:

```
void Out(int x) {
    if (x < 10) {
        putchar('0' + x); return;
    }
    Out(x/10);
    putchar('0' + x%10);
}</pre>
```

EASY (easy)

【题目描述】

由于出题人很懒,就没有背景了。

有 n 个数ai, 现在有两个操作:

0 I val: 把ai的值换成 val。

 $1 \ 1 \ r \ k$: 选出最多 k (可以不选) 个 $l \le x1 \le y1 < x2 \le y2 < \dots < xk \le yk \le r$, 求 Max $\{\Sigma \ \Sigma \ aj \ yi \ j=xi \ k \ i=1 \}$

简化题意: 在[L...R]中选不超过 k 段不相交的子段, 使这些子段内值 总和最大

【输入格式】

第一行一个数 n, 为数字个数。

第二行 n 个整数,为ai。

第三行一个数 m, 为操作个数。 第四行到第 m+3 行,每行第一个数 op 为操作编号,接下来若干个数对应该操作。

【输出格式】

若干行,对每个操作输出对应的答案。

【样例输入1】

9

9 -8 9 -1 -1 -1 9 -8 9

3

- 1 1 9 1
- 1 1 9 2
- 1 4 6 3

【样例输出1】

- 17
- 25
- 0

【样例输入2】

- 15
- -4 8 -3 -10 10 4 -7 -7 0 -6 3 8 -10 7 2
- 15
- 1 3 9 2
- 1 6 12 1
- 0 6 5
- 0 10 -7
- 1 4 9 1
- 1 7 9 1
- 0 10 -3
- 1 4 10 2
- 1 3 13 2
- 1 4 11 2

- 0 15 -9
- 0 13 -9
- 0 11 -10
- 1 5 14 2
- 1 6 12 1

【样例输出2】

- 14
- 11
- 15
- 0
- 15
- 26
- 18
- 23
- 8

【数据范围】

15%: n, m<=50

另 15%: Σ k * (r - l + 1) ≤ 100000

100%: n, m<=100000, |ai| \leq 1000, 0<=k<=20, 1 操作数量<=10000

字符串匹配(string)

【题目描述】

HZY 看到了一个 2×N 的矩阵 A,矩阵中每个格子都是一个小写字母。同时,你得到了长度为 M 一个字符串 S,你需要在矩阵中找到一条不重复路径(起点和终点任意),使得依次经过的字母连起来恰好是 S,求这样的路径有多少种。

你只能向上、向下、向左或向右走,不能斜着走或跳着走,也不能走出矩阵外或重复经过同一个格子。两种路径不同,当且仅当至少有一个时刻所在的位置不同。

由于答案可能很大, 你只要输出答案对 1e9+7 取模的值即可。

【输入格式】

第一行和第二行两行长度相同的字符串描述 2×N 的矩阵 A。 第三行一个空行。

第四行一个字符串,表示 S。

【输出格式】

一个正整数表示答案对 1e9+7 取模后的值若干行,表示操作 2 和操作 3 的答案。

【样例输入1】

第 8 / 10 页

code	
edoc	
code	
【样例输出1】	
4	
【样例输入2】	
aaa	
aaa	
aa	
【样例输出1】	对于第一个样例,字符串 S 为 code。
14	矩阵 A 为: c o d e e d o c

4 种路径如下:

【数据范围】

【样例说明】

对于测试点 1, 保证 $N \le 5$ 。 对于测试点 $2^{\sim}3$, 保证 $N \le 10$ 。

第 9/10 页

c⇔o⇔d⇔e

对于测试点 4, 保证 N≤20。

对于测试点 5~6, 保证 N≤50。

对于测试点 7~8, 保证 N≤300。

对于测试点 9~10, 保证 N≤1,000。

对于测试点 $11^{\sim}12$,保证 S 是一个全 a 字符串,且 A 也是全 a 的矩阵。

对于测试点 13~14, 保证 S 是一个全 a 字符串。

对于测试点 $15^{\sim}16$,保证 S 是一个形如 abbbb···的仅由一个字符 a 和若干字符 b 组成

的字符串。

对于 100%的数据, 保证 1≤N, M≤2×10³。