9 класс

Первый день

9.1. Для действительных положительных чисел x, y, z докажите неравенство

$$x^{2}z(4x - 3y) + y^{2}x(4y - 3z) + z^{2}y(4z - 3x) > 0$$

9.2. Найдите все возможные значения цифр a и b, при которых верно равенство

$$(\overline{ab})^3 = \overline{(a-3)(b-3)(b+2)(a+2)ab}.$$

(Как обычно, запись $\overline{xy...z}$ означает число, десятичная запись которого состоит из цифр x, y, ..., z в указаном порядке; например, $\overline{136} = 136$.)

- **9.3.** Медианы AA_1 и BB_1 треугольника ABC пересекаются в точке G. Точки M и N середины отрезков GA и GB, а K и L середины отрезков CB_1 и CA_1 , соответственно. Отрезки KN и LM пересекаются в точке S. Найдите отношение длин CS:SG.
- **9.4.** Упорядоченные наборы $x_1 \leqslant x_2 \leqslant ... \leqslant x_n$ и $y_1 \geqslant y_2 \geqslant ... \geqslant y_n$ натуральных чисел записали в два ряда один над другим:

$$\begin{array}{ccccc} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{array}$$

Вычислили $M = \max(x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ — наибольшую сумму чисел в столбцах. Могло ли оказаться так, что, после того как числа во второй строке переставили между собой, наибольшая сумма чисел в столбцах стала меньше M?

9 класс

Второй день

- **9.5.** Последовательность a_1, a_2, a_3, \ldots натуральных чисел определена по следующим правилам: число $a_1 = 63$, а для каждого натурального $n \geqslant 2$ число a_n это наименьшее натуральное число, делящееся на n и не меньшее a_{n-1} . (Например, $a_2 = 64, a_3 = 66, a_4 = 68, a_5 = 70$.)
 - Докажите, что каждое натуральное число встречается в этой последовательности не более одного раза.
- **9.6.** Существует ли функция f(x), заданная на всей числовой прямой и принимающая действительные значения, такая, что для любого действительного x выполнено равенство

$$f(|x|) + |f(x)| = x$$

- 9.7. Окружности ω_1 и ω_2 с центрами O_1 и O_2 соответственно пересекаются в двух различных точках E и F. Прямая O_1E пересекает во второй раз ω_1 в точке A, а ω_2 в точке C. Прямая O_2E пересекает во второй раз ω_2 в точке B, а ω_1 в точке D. Докажите, что перпендикуляры, проведённые к прямым AC, BD и DC через точки O_1 , O_2 и E соответственно, пересекаются в одной точке.
- **9.8.** В клетки таблицы $n \times n$ расставлены плюсы и минусы, в каждой клетке стоит какой-то один знак. Для каждого k от 1 до n включительно количество плюсов, стоящих в первых k строках, больше количества минусов, стоящих в первых k столбцах. Найдите наибольшее возможное количество минусов во всей таблице.