

は未知のホルモンや神経伝達物質その他の生理活性物質も多く、それらのレセプター蛋白質の構造に関しても、これまで報告されていないものが多い。さらに、既知のレセプター蛋白質においてもサブタイプが存在するかどうかについても分かっていないものが多い。

5 生体における複雑な機能を調節する物質と、その特異的レセプター蛋白質との関係を明らかにすることは、医薬品開発に非常に重要な手段である。また、レセプター蛋白質に対するアゴニスト、アンタゴニストを効率よくスクリーニングし、医薬品を開発するためには、生体内で発現しているレセプター蛋白質の遺伝子の機能を解明し、それらを適当な発現系で発現させることが必要である。

10

近年、生体内で発現している遺伝子を解析する手段として、cDNAの配列をランダムに解析する研究が活発に行なわれており、このようにして得られたcDNAの断片配列がExpressed Sequence Tag (EST)としてデータベースに登録され、公開されている。しかし、多くのESTは配列情報のみであり、その機能を推定することは困難である。

15

オーファンG蛋白質共役型レセプター蛋白質の1つとして、ヒトFPR L1が知られている (J. Biol. Chem. 267(11), 7637-7643 (1992))。FPR L1のアゴニストとしては、これまでにパクテリア由来のfMLF、HIV由来のgp 41あるいはgp 120の部分ペプチド、ブリオンの部分ペプチド、内因性の物質としてはA β 42、Annexin Iの部分ペプチド、Acute phase protein、hCAP18、NADH dehydrogenaseなどの部分ペプチド、脂質であるリボキシンA4などが報告されている (Immunopharmacol. 2巻, 1-13頁, 2002年)。

20 アルツハイマー病 (Alzheimer's disease) は進行性痴呆および認知能力の失調を伴う神経変性疾患の代表的なものであるが、これまでに効果的な治療法は見出されていない。アルツハイマー病は高齢化社会を迎える現在において最も重要な疾患の一つであることは言うまでもなくその治療薬の開発は医療経済的にも極めて大きな意義を有する。

最近、橋本らは、アルツハイマー病患者の後頭葉に病変が少ないことに着目

して「デス・トラップ」法 (L. D' Adamioら, Semin. Immunol., 9巻, 17-23頁、1997年)により家族性アルツハイマー病の原因遺伝子を導入した神経細胞の細胞死を抑制する遺伝子を後頭葉よりクローニングした (Proc. Natl. Acad. Sci. USA, 98巻, 6336-6341頁, 2001年)。この遺伝子は、human nin (WO 01/21787) と名付けられた24残基からなるペプチドをコードしており、合成humaninペプチドは、家族性アルツハイマー病遺伝子を導入した神経細胞死を抑制したのみならず、アルツハイマー病の原因である可能性があると考えられているβアミロイド添加によって誘導される神経細胞死をも抑制した。humaninは細胞外に分泌され、神経細胞に作用して細胞死を抑制するものと考えられているが、その受容体は明らかにされていなかった。

A β 42がFPR L1のアゴニストであり、FPR L1を介して走化性を示すこと、および、アルツハイマー病の特徴病変である老人斑にFPR L1が集積していることが報告されている。これらのことより、FPR L1とアルツハイマー病で見られる炎症反応との関連性が示唆されている (The Journal of Neuroscience, 2001, Vol. 21 RC123)。

25 A β 42がFPR L1を介してマクロファージ細胞内に取り込まれることにより、織維芽凝集 (アミロイド様沈着) を形成することも報告されている (The FASEB Journal, Vol. 15 November 2001, 2454-2462)。

さらに、オーファンG蛋白質共役型レセプター蛋白質の1つとして、マウスFPR L2が知られている (Genomics 13 (2), 437-440 (1992))。

ヒトFPR L2とfMLF (formyl 1-Met-Leu-Phe) のレセプターであるFPR 1との相同性が大きいが、ヒトFPR L2はfMLFと反応しないことが報告されている。また、FPR L2は単球に発現が認められたが、FPR 1およびFPR L1の発現が認められた好中球には発現が認められなかつたことが報告されている (Biochem. Biophys. Res. Commun., 1994 May 30; 201(1): 174-9)。

W-Peptide (Tri-Lys-Tyr-Met-Val-NH₂) がFPR L1およびFPR L2のアゴニストであり、FPR L2が単球で高発現していることが報告

されている (J. Biol. Chem. 276(24), 21585-21593(2001))。

～リコバクターピロリ由来ペプチドH_p (2-20) がF P R L 2のアゴニストであり、F P R L 1/F P R L 2を介して単球を活性化することが報告されている (J. Clin. Invest., 2001 Oct;108(8):1221-8)。

F P R L 2が発現しており、樹状細胞の trafficking (輸送) を制御しているのではないかと報告されている。 (J. Leukoc. Biol., 2002 Sep;72(3):598-607)。

ラット型 h u m a n i n が神経保護活性を有することが記載されている (The FASEB Journal, Vol. 16, August 2002, 1331-1333)。

従来、G 蛋白質共役型レセプターと生理活性物質 (すなわち、リガンド) の結合を阻害する物質や、結合して生理活性物質 (すなわち、リガンド) と横なシグナル伝達を引き起こす物質は、これらレセプターの特異的なアンタゴニストまたはアゴニストとして、生体機能を調節する医薬品として活用されてきた。従って、G 蛋白質共役型レセプター蛋白質の特異的リガンドを決定することは、医薬品開発の標的ともなりうるアゴニスト、アンタゴニストを見出す際に、非常に重要な手段となる。

しかし、現時点でもなお、機能未知の G 蛋白質共役型レセプター、また対応するリガンドが同定されていない、いわゆるオーファンレセプターが多数存在しており、G 蛋白質共役型レセプターのリガンド探索および機能解明が切望されている。

G 蛋白質共役型レセプターは、そのシグナル伝達作用を指標とする、新たな生理活性物質 (すなわち、リガンド) の探索、また、該レセプターに対するアゴニストまたはアンタゴニストの探索に有用である。これら該レセプターに対するリガンド、アゴニストまたはアンタゴニストなどは、G 蛋白質共役型レセプターの機能不全や機能亢進に関連する疾患の予防・治療薬や診断薬として活用することが期待できる。

さらにまた、G 蛋白質共役型レセプターの遺伝子変異に基づく、生体での該レセプターの機能の低下または昂進が、何らかの疾患の原因となっている場合

も多い。この場合には、該レセプターに対するアンタゴニストやアゴニストの投与だけでなく、該レセプター遺伝子に対するアンチセンス核酸の導入による、遺伝子導入や、該レセプター遺伝子に対するアンチセンス核酸の導入による、遺伝子治療に応用することもできる。この場合には該レセプターの塩基配列は遺伝子上の欠失や変異の有無を調べるために必要不可欠な情報であり、該レセプターの遺伝子は、該レセプターの機能不全に關与する疾患の予防・治療薬や診断薬に応用することもできる。

本発明は、オーファンG 蛋白質共役型レセプター蛋白質である F P R L 1 または F P R L 2 に対するリガンドの決定、および F P R L 1 または F P R L 2 とリガンドである h u m a n i n の用途に関する。すなわち、本発明は、h u m a n i n と F P R L 1 または F P R L 2 との結合性を変化させる化合物 (アンタゴニスト、アゴニスト) またはその塩のスクリーニング方法、該スクリーニング用キット、該スクリーニング方法もしくはスクリーニングキットを用いて得られる h u m a n i n と F P R L 1 または F P R L 2 との結合性を変化させる化合物 (アンタゴニスト、アゴニスト) またはその塩、および h u m a n i n と F P R L 1 または F P R L 2 との結合性を変化させる化合物 (アンタゴニスト、アゴニスト) もしくは F P R L 1 または F P R L 2 の発現量を変化させる化合物またはその塩を含有してなる医薬などを提供することを目的とする。

20 発明の開示

本発明者らは、上記の課題を解決するために、鋭意研究を重ねた結果、F P R L 1 および F P R L 2 のリガンドが h u m a n i n またはその塩であることを見出した。本発明者らは、これらの知見に基づいて、さらに研究を重ねた結果、本発明を完成するに至った。

すなわち、本発明は、

(1) (1) 配列番号：1 (ヒト F P R L 1)、配列番号：10 (ラット F P R L 1)、配列番号：12 (マウス F P R L 2) または配列番号：14 (ヒト F P R L 2) で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ

酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2) humainまたはその塩を用いることを特徴とする該レセプター蛋白質またはその塩とhumainまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法。

(2) humainが、

(1) 配列番号：3で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するポリペプチドまたはその塩、

(2) 配列番号：3で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列中の連続する6～20個のアミノ酸からなるペプチドまたはその塩、

または

(3) 配列番号：7で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するポリペプチドまたはその塩である上記(1)記載のスクリーニング方法、

(3) humainが、

(1) a) 配列番号：3で表されるアミノ酸配列、b) 配列番号：3で表されるアミノ酸配列中の1～10個のアミノ酸が欠失したアミノ酸配列、c) 配列番号：3で表されるアミノ酸配列に1～10個のアミノ酸が付加したアミノ酸配列、d) 配列番号：3で表されるアミノ酸配列中の1～5個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩、

(2) a) 配列番号：4で表されるアミノ酸配列、b) 配列番号：4で表されるアミノ酸配列中の1～10個のアミノ酸が欠失したアミノ酸配列、c) 配列番号：4で表されるアミノ酸配列に1～10個のアミノ酸が付加したアミノ酸配列、d) 配列番号：4で表されるアミノ酸配列中の1～10個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩である上記(1)記載のスクリーニング方法、

(4) humainが、

(1) 配列番号：3で表されるアミノ酸配列からなるポリペプチドまたはその塩、

(2) 配列番号：4で表されるアミノ酸配列からなるポリペプチドまたはその塩、

(3) a) 配列番号：8で表されるアミノ酸配列、b) 配列番号：8で表されるアミノ酸配列中の1～10個のアミノ酸が欠失したアミノ酸配列、c) 配列番号：8で表されるアミノ酸配列からなるポリペプチドまたはその

配列、d) 配列番号：8で表されるアミノ酸配列中の1～5個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩、

(4) a) 配列番号：3、配列番号：4または配列番号：8で表されるアミノ酸配列中の1～6個のアミノ酸が欠失したアミノ酸配列、c) 該アミノ酸配列に1～6個のアミノ酸が付加したアミノ酸配列、d) 該アミノ酸配列中の1～6個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、e) またはこれらの欠失・付加・置換を組み合わせたアミノ酸配列からなり、アミノ酸の数が6～20個であるペプチド(ただし、配列番号：5で表されるアミノ酸配列の第19番目～24番目、第5番目～24番目、第1番目～20番目、第5番目～20番目または第5番目～21番目のアミノ酸配列からなるペプチドを除く)またはその塩、または

(5) a) 配列番号：7で表されるアミノ酸配列、b) 配列番号：7で表されるアミノ酸配列中の1～10個のアミノ酸が欠失したアミノ酸配列、c) 配列番号：7で表されるアミノ酸配列に1～10個のアミノ酸が付加したアミノ酸配列、d) 配列番号：7で表されるアミノ酸配列中の1～10個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩である上記(1)記載のスクリーニング方法、

(4) humainが、

(1) 配列番号：3で表されるアミノ酸配列からなるポリペプチドまたはその塩、

(2) 配列番号：4で表されるアミノ酸配列からなるポリペプチドまたはその塩、

(3) a) 配列番号：6で表されるアミノ酸配列からなるポリペプチドまたはその

(4) 配列番号：7で表されるアミノ酸配列からなるポリペプチドまたはその

配列、d) 配列番号：8で表されるアミノ酸配列中の1～5個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩、

(4) a) 配列番号：3、配列番号：4または配列番号：8で表されるアミノ酸配列中の1～6個のアミノ酸が欠失したアミノ酸配列、c) 該アミノ酸配列に1～6個のアミノ酸が付加したアミノ酸配列、d) 該アミノ酸配列中の1～6個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、e) またはこれらの欠失・付加・置換を組み合わせたアミノ酸配列からなり、アミノ酸の数が6～20個であるペプチド(ただし、配列番号：5で表されるアミノ酸配列の第19番目～24番目、第5番目～24番目、第1番目～20番目、第5番目～20番目または第5番目～21番目のアミノ酸配列からなるペプチドを除く)またはその塩、または

(5) a) 配列番号：7で表されるアミノ酸配列、b) 配列番号：7で表されるアミノ酸配列中の1～10個のアミノ酸が欠失したアミノ酸配列、c) 配列番号：7で表されるアミノ酸配列に1～10個のアミノ酸が付加したアミノ酸配列、d) 配列番号：7で表されるアミノ酸配列中の1～10個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩である上記(1)記載のスクリーニング方法、

(4) humainが、

(1) 配列番号：3で表されるアミノ酸配列からなるポリペプチドまたはその塩、

(2) 配列番号：4で表されるアミノ酸配列からなるポリペプチドまたはその塩、

(3) a) 配列番号：6で表されるアミノ酸配列からなるポリペプチドまたはその

(4) 配列番号：7で表されるアミノ酸配列からなるポリペプチドまたはその

塩、

(5) 配列番号：8で表されるアミノ酸配列からなるポリペプチドまたはその

塩、
(6) 配列番号：9で表されるアミノ酸配列からなるポリペプチドまたはその

塩、または

(7) 配列番号：3、配列番号：4または配列番号：8で表されるアミノ酸配

列の第19番目～24番目、第5番目～24番目、第1番目～20番目、第5

番目～20番目もしくは第5番目～21番目のアミノ酸配列からなるペプチド

またはその塩、

である上記〔1〕記載のスクリーニング方法、

(5) *humain*のN末端メチオニン残基のアミノ基がカルミル化されて

いる上記〔1〕記載のスクリーニング方法、

(6) *humain*が、N末端メチオニン残基のアミノ基がカルミル化され

ている配列番号：3、配列番号：4、配列番号：6、配列番号：7、配列番号

：8または配列番号：9で表されるアミノ酸配列からなるポリペプチドまたは

その塩である上記〔1〕記載のスクリーニング方法、

(7) (1) 配列番号：1、配列番号：10、配列番号：12または配列番号：

14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含

む14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列

を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩

および(2) *humain*またはその塩を含有することを特徴とする該レセ

プター蛋白質またはその塩と*humain*またはその塩との結合性またはシ

グナル伝達を変化させる化合物またはその塩のスクリーニング用キット、

(8) 上記〔1〕記載のスクリーニング方法または上記〔7〕記載のスクリー-

ニング用キットを用いて得られる、*humain*またはその塩と配列番号

：1、配列番号：10、配列番号：12または配列番号：14で表わされるア

ミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共

役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させ

る化合物またはその塩、

(9) アゴニストである上記〔8〕記載の化合物、

[10] アンタゴニストである上記〔8〕記載の化合物、
[11] *humain*またはその塩と配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩を含有してなる医薬、

[12] 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩に対するアゴニストを含

有してなる神経変性疾患もしくは脳機能障害の予防・治療剤、

[13] アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、

ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性二

ユーロバチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳梗塞、

硬膜外血腫または硬膜下血腫の予防・治療剤である上記〔12〕記載の予防・

治療剤、

[14] 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含

有するG蛋白質共役型レセプター蛋白質またはその塩に対するアゴニストを含

有してなる細胞死抑制剤、

[15] 配列番号：1、配列番号：10または配列番号：14で表わされるアミ

ノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役

型レセプター蛋白質もしくはその部分ペプチドまたはその塩を含有してなる神

経変性疾患もしくは脳機能障害の予防・治療剤、

[16] アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、

ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性二

ユーロバチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳梗塞、

硬膜外血腫または硬膜下血腫の予防・治療剤である上記〔15〕記載の予防・

治療剤、

[17] 配列番号：1、配列番号：10、配列番号：12または配列番号：14

10

WO 03/106683

PCT/JP03/07500

4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩を含有してなる細胞死抑制剤、

[18] 配列番号：1、配列番号：10、配列番号：12または配列番号：1

4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするボリヌクレオチドを含有するボリヌクレオチドを含有してなる神經変性疾患もしくは脳機能障害の予防・治療剤、

[19] アルツハイマー病、バーキンソン病、ダウン症、筋萎縮性側索硬化症、

ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性二

ユーロパシー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、

硬膜外血腫または硬膜下血腫の診断剤である上記〔23〕記載の診断剤、

〔25〕配列番号：1、配列番号：10、配列番号：12または配列番号：1

4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするボ

リヌクレオチドを含有するボリヌクレオチドを用いることを特徴とする当該G

蛋白質共役型レセプター蛋白質の発現量を増加し、神經変性疾患もしくは脳機能障害を予防・治療する化合物またはその塩のスクリーニング方法、

〔26〕配列番号：1、配列番号：10、配列番号：12または配列番号：1

4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするボ

リヌクレオチドを含有するボリヌクレオチドを含有してなる当該G蛋白質共役

型レセプター蛋白質の発現量を増加し、神經変性疾患もしくは脳機能障害を予

防・治療する化合物またはその塩のスクリーニング方法、

〔27〕上記〔25〕記載のスクリーニング方法または上記〔26〕記載のス

クリーニング用キットを用いて得られる配列番号：1で表されるアミノ酸配

列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセ

ブター蛋白質またはその部分ペプチドの発現量を増加し、神經変性疾患もしく

ボリヌクレオチドを含有するボリヌクレオチドを含有してなる神經変性疾患もしくは脳機能障害の予

防・治療する化合物またはその塩、

〔28〕配列番号：1、配列番号：10、配列番号：12または配列番号：1

4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を増加

する化合物またはその塩を含有してなる神經変性疾患もしくは脳機能障害の予

防・治療剤、

〔29〕アルツハイマー病、バーキンソン病、ダウン症、筋萎縮性側索硬化症、

ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性二

ユーロパシー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、

硬膜外血腫または硬膜下血腫の診断剤である上記〔21〕記載の診断剤、

〔23〕配列番号：1、配列番号：10、配列番号：12または配列番号：1

4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩

ユーロパチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療剤である上記(2.8)記載の予防・治療剤。

[3.0] 配列番号：1、配列番号：10、配列番号：12または配列番号：1

4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするボリヌクレオチドを用いることを特徴とする当該G

蛋白質共役型レセプター蛋白質の発現量を増加し、細胞死を抑制する化合物またはその塩のスクリーニング方法、

[3.1] 配列番号：1、配列番号：10、配列番号：12または配列番号：1

4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするボリヌクレオチドを含有してなる当該G蛋白質共役型レセプター蛋白質の発現量を増加し、細胞死を抑制する化合物またはその塩

またはその塩のスクリーニング方法、

[3.2] 上記(3.0)記載のスクリーニング方法または上記(3.1)記載のス

クリーニング用キットを用いて得られる配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするボリヌクレオチドを含有してなる当該G蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を増加し、細胞死を抑制する化合物またはその塩、

20 4で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型

レセプター蛋白質またはその塩を含有してなる細胞死抑制剤、

[3.4] (1) 配列番号：1、配列番号：10、配列番号：12または配列番

号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2) humaninまたはその塩と該レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩を用いるこ

とを特徴とする該レセプター蛋白質またはその塩に対するアゴニストまたはアンタゴニストのスクリーニング方法、

[3.5] 試験化合物を配列番号：1、配列番号：10または配列番号：12で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する細胞内cAMP生成抑制活性を測定することを特徴とする該レセプター蛋白質またはその塩に対するアゴニストのスクリーニング方法、

[3.6] 哺乳動物に対して、①配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩、②配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするボリヌクレオチド、または③配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ

酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩に対するアゴニストの有効量を投与することを特徴とする(i)神經変性疾患もしくは脳機能障害の予防・治療方法、(ii)アルツハイマー病、ペーキンソン病、ダウン症、筋萎縮性側索硬化症、アリオ

ン病、クロイツフェルト-ヤコブ病、ハンチントン舞踏病、糖尿病性ニューロパチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療方法または(iii)細胞死抑制方法、

[3.7] (i) 神經変性疾患もしくは脳機能障害の予防・治療剤、(ii)アルツハイマー病、ペーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞踏病、糖尿病性ニューロパチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療剤または(iii)細胞死抑制剤を製造するための①配列番号：1、配列番号：10、配列番号：12または配列番号：14で表さ

れるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含むするG蛋白共役型レセプター蛋白質、その部分ペプチドまたはその塩、②配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含む。

ことを特徴とする（i）神経変性疾患もしくは脳機能障害の予防・治療方法、
(ii) アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、
ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性二
ューロバチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、
硬膜外血腫または硬膜下血腫の予防・治療方法または(iii) 細胞死抑制方法、
および

10 : 12または配列番号：14で表されるアミノ酸配列と同一もしくは異質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質に対するアゴニストの使用、
〔38〕N末端メチオニン残基のアミノ基がホルミル化されているhumani
nまたはその類。

[38] 配載の humanin またはその塩、
[40] 配列番号：6（ヒト humanin (1-21)）または配列番号：
9（ラクタヒューマニン (1-21)）で表されるアミノ酸配列からなるが
リペプチドまたはその塩、
[41] 上記 [38] 配載の humanin もしくはその塩または上記 [40]
] 配載のポリリペプチドもしくはその塩を含有してなる医薬、

記載の医薬、

[43] アルツハイマー病、バーキンソン病、ダウン症、筋萎縮性側索硬化症、アリオニ病、クロイツフェルト-ヤコブ病、ハンチントン舞踏病、糖尿病性：ユーロバチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療剤である上記[41]記載の医薬、
〔44〕細胞死抑制剤である上記〔41〕記載の医薬、
〔45〕哺乳動物に対して、上記〔38〕記載のhumaninもしくはその塩または上記〔40〕記載のボリペプチドもしくはその塩の有効量を投与す、

[48] (i) 標識した humanin またはその塩を FPR L1 / FPR L2、その部分ペプチドまたはその塩に接触させた場合と、(ii) 標識した humanin またはその塩および試験化合物を FPR L1 / FPR L2、その部分ペプチドまたはその塩に接触させた場合における、標識した humanin またはその塩の FPR L1 / FPR L2、その部分ペプチドまたはその塩に対する結合量を測定し、比較することを特徴とする上記〔1〕記載のスクリーニング方法。

- [49] (i) 標識した humanin またはその塩を FPR L1/FPR L2 を含有する細胞に接觸させた場合と、(ii) 標識した humanin またはその塩および試験化合物を FPR L1/FPR L2 に接觸させた場合における、FPR L1/FPR L2 を介する細胞刺激活性を測定し、比較することを特徴とする場合における、標識した humanin またはその塩の該細胞に対する結合量を測定し、比較することを特徴とする上記〔1〕記載のスクリーニング方法、
- [50] (i) 標識した humanin またはその塩を FPR L1/FPR L2 を含有する細胞に接觸させた場合と、(ii) 標識した humanin またはその塩および試験化合物を FPR L1/FPR L2 を含有する細胞の膜画分に接觸させた場合における、標識した humanin またはその塩の該膜画分に対する結合量を測定し、比較することを特徴とする上記〔1〕記載のスクリーニング方法、
- [51] (i) 標識した humanin またはその塩を、FPR L1/FPR L2 をコードするDNAを含有するDNAを含有する粗換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現した
- 16 FPR L1/FPR L2 に接觸させた場合と、(ii) 標識した humanin またはその塩および試験化合物を当該質転換体の細胞膜に発現した FPR L1 / FPR L2 に接觸させた場合における、標識した humanin またはその塩の FPR L1 / FPR L2 に対する結合量を測定し、比較することを特徴とする上記〔1〕記載のスクリーニング方法、
- [52] (i) FPR L1/FPR L2 を活性化する化合物またはその塩を FPR L1/FPR L2 を含有する細胞に接觸させた場合と、(ii) FPR L1 / FPR L2 を活性化する化合物またはその塩および試験化合物を FPR L1 / FPR L2 を含有する細胞に接觸させた場合における、FPR L1/FPR L2 を介した細胞刺激活性を測定し、比較することを特徴とする上記〔1〕記載のスクリーニング方法、
- [53] FPR L1/FPR L2 を活性化する化合物またはその塩を、FPR L1/FPR L2 をコードするDNAを含有するDNAを含有する粗換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現した FPR L1/FPR L2 に接觸させた場合と、FPR L1/FPR L2 を介する細胞刺激活性を測定し、比較することを特徴とする上記〔1〕記載のスクリーニング方法、

図面の簡単な説明

- 16 図1は細胞内cAMP量によるFPR L1-GFP受容体発現させたCHO細胞に特異的なリガンド活性の用濃依存性を示す。ホルスコリンで刺激しない状態(Basa 1)に対し、ホルスコリンを1μM添加、および図中に表示の濃度(M)のtMLF、humaninおよび[Gly¹⁴]humaninをホルスコリンと同時に添加してインキュベーションし、細胞内cAMP量を比較した結果を示す。白カラムはtMLFを添加した場合を示す。斜線カラムは配列番号：3で表わされるアミノ酸配列からなるヒト型humanin(1-244)を添加した場合を示す。黒カラムは配列番号：4で表わされるアミノ酸配列からなる[Gly¹⁴]ヒト型humanin(1-24)を添加した場合を示す。Basa 1はホルスコリン(FSK)およびリガンドを添加していない場合を示す。FSKはホルスコリンを添加した場合を示す。横軸の数値(μM)+FSKは各リガンドとホルスコリンを添加した場合を示す。縦軸のcAMP(pmol/we11)は細胞内cAMP量(pmol/we11)を示す。
- 17 図2は細胞内cAMP量によるFPR L1-GFP受容体を発現させていない

CHO細胞(mock)に特異的なリガンド活性の用濃度依存性を示す。ホルスコリンで刺激しない状態(Basa1)に対し、ホルスコリンを $1\mu M$ 添加、および図中に表示の濃度(M)のfMLF、humanin、および[Gly⁴]humaninをホルスコリンと同時に添加してインキュベーションし、細胞内cAMP量を比較した結果を示す。白カラムはfMLFを添加した場合を示す。斜線カラムは配列番号：3で表わされるアミノ酸配列からなるヒト型humanin(1-24)を添加した場合を示す。黒カラムは配列番号：4で表わされるアミノ酸配列からなる[Gly⁴]ヒト型humanin(1-24)を添加した場合を示す。Basa1はホルスコリン(FSK)およびリガンドを添加していない場合を示す。FSKはホルスコリンを添加した場合を示す。Ligand(μM)+FSKは各リガンドとホルスコリンを添加した場合を示す。横軸の数字は添加した各リガンドの濃度(μM)を示す。

縦軸のcAMP(pmol/weil)は細胞内cAMP量(pmol/weil)

を示す。 β -Amyloid(1-42)は β -アミロイド(1-42)を示す。hFPRL1はヒト由来FPRLを示す。hFPRL1はヒト由来FPRL1を示す。hFPRL2はヒト由来FPRL2を示す。mFPRL2はマウス由来FPRL2(FPRL1)を示す。rFPRL1はラット由来FPRL1を示す。>10000は10000nm以上を示す。

発明を実施するための最良の形態

本発明で使用されるFPRL1は、配列番号：1、配列番号：10または配列番号：12で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するレセプター蛋白質である。

本発明で使用されるFPRL2は、配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するレセプター蛋白質である。

FPRL1またはFPRL2は、例えば、ヒトや哺乳動物(例えば、モルモット、ラット、マウス、ウサギ、ブタ、ヒツジ、ウシ、サルなど)のあらゆる細胞(例えば、脾細胞、神経細胞、グリア細胞、臍臍母細胞、骨髓細胞、メサンギウム細胞、ラングルハンス細胞、表皮細胞、上皮細胞、内皮細胞、樹枝芽細胞、成骨細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥溝細胞、好中球、好塩基球、好酸球、單核細胞)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞など)や血球系の細胞、またはそれらの細胞が存在するあらゆる組織、例えば、脳、胎、胎の各部位(例、嗅球、扁頭核、大脳基底核、海馬、視床、視床下部、視床下核、大脳皮質、延髓、小脳、後頭葉、前頭葉、側頭葉、被殼、尾状核、脳染、黒質)、脊髓、下垂体、胃、胰臟、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髓、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、腸管、血管、心臓、胸膜、脾臓、頸下腺、末梢血、末梢血、前立腺、睪丸、精巢、卵巢、胎盤、子宮、骨、関節、骨格筋など、特に、肺臓、骨髓、腸管、单球、マクロファージなどの免疫担当細胞と免疫担当細胞に由来する蛋白質であっても

示す。hFPRL1はヒト由来FPRLを示す。hFPRL1はヒト由来FPRL1を示す。hFPRL2はヒト由来FPRL2を示す。mFPRL2はマウス由来FPRL2(FPRL1)を示す。rFPRL1はラット由来FPRL1を示す。>10000は10000nm以上を示す。

FPRL1またはFPRL2は、例えれば、モルモット、ラット、マウス、ウサギ、ブタ、ヒツジ、ウシ、サルなど)のあらゆる細胞(例えは、脾細胞、神経細胞、グリア細胞、臍臍母細胞、骨髓細胞、メサンギウム細胞、ラングルハンス細胞、表皮細胞、上皮細胞、内皮細胞、樹枝芽細胞、成骨細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥溝細胞、好中球、好塩基球、好酸球、單核細胞)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞など)や血球系の細胞、またはそれらの細胞が存在するあらゆる組織、例えは、脳、胎、胎の各部位(例、嗅球、扁頭核、大脳基底核、海馬、視床、視床下部、視床下核、大脳皮質、延髓、小脳、後頭葉、前頭葉、側頭葉、被殼、尾状核、脳染、黒質)、脊髓、下垂体、胃、胰臟、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髓、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、腸管、血管、心臓、胸膜、脾臓、頸下腺、末梢血、末梢血、前立腺、睪丸、精巢、卵巢、胎盤、子宮、骨、関節、骨格筋など、特に、肺臓、骨髓、腸管、单球、マクロファージなどの免疫担当細胞と免疫担当細胞に由来する蛋白質であっても

よく、また合成蛋白質であってもよい。

配列番号：1、配列番号：1 0または配列番号：1 2で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号：1、配列番号：1 0または配列番号：1 2で表わされるアミノ酸配列と約85%以上、好ましくは90%以上、より好ましくは約95%以上の相同性を有するアミノ酸配列などが挙げられる。

本発明の配列番号：1、配列番号：1 0または配列番号：1 2で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を含有する蛋白質としては、例えば、配列番号：1 2で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号：1、配列番号：1 0または配列番号：1 2で表わされるアミノ酸配列からなるF P R L 1と実質的に同質の活性を有する蛋白質などが好ましい。

配列番号：1 4で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号：1 4で表わされるアミノ酸配列と約85%以上、好ましくは90%以上、より好ましくは約95%以上の相同性を有するアミノ酸配列などが挙げられる。

本発明の配列番号：1 4で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を含有する蛋白質としては、例えば、配列番号：1 4で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号：1 4で表わされるアミノ酸配列からなるF P R L 2と実質的に同質の活性を有する蛋白質などが好ましい。

アミノ酸配列の相同性は、相同性計算アルゴリズムN C B I BLAST(National Center for Biotechnology Information Basic Local Alignment Sea-

rch Tool)を用い、以下の条件(期待値=1.0; ギャップを許す:マトリクス=BLOSUM62; フィルタリング=OFF)にて計算することができる。

実質的に同質の活性としては、例えは、リガンド結合活性、シグナル情報伝達作用などが挙げられる。実質的に同質とは、それらの活性が性質的に同質である。

あることを示す。したがって、リガンド結合活性やシグナル情報伝達作用など、活性が同等(例、約0.01~1.00倍、好ましくは約0.5~2.0倍、より好ましくは約0.5~2倍)であることが好ましいが、これらの活性の程度や蛋白質の分子量などの量的要素は異なっていてもよい。

リガンド結合活性やシグナル情報伝達作用などの活性の測定は、自体公知の方法に準じて行なうことができるが、例えは、後に記載するスクリーニング方法に従って測定ができる。

また、F P R L 1としては、a) 配列番号：1、配列番号：1 0または配列番号：1 2で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~3個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が欠失したアミノ酸配列、b) 配列番号：1、配列番号：1 0または配列番号：1 2で表わされるアミノ酸配列に1または2個以上(好ましくは、1~3個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が付加したアミノ酸配列、c) 配列番号：1、配列番号：1 0または配列番号：1 2で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはd) それらを組み合わせたアミノ酸配列を含有する蛋白質なども用いられる。

F P R L 2としては、a) 配列番号：1 4で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が欠失したアミノ酸配列、b) 配列番号：1 4で表わされるアミノ酸配列に1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が付加したアミノ酸配列、c) 配列番号：1 4で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1~5個))のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはd) それらを組み合わせたアミノ酸配列を含有する蛋白質なども用いられる。

本明細書におけるF P R L 1またはF P R L 2は、ペプチド標記の慣例に従って、左端がN末端（アミノ末端）、右端がC末端（カルボキシル末端）である。配列番号：1で表わされるアミノ酸配列を含有するF P R L 1をはじめとするF P R L 1は、C末端がカルボキシル基（-COOH）、カルボキシレート（-COO⁻）、アミド（-CONH₂）またはエステル（-COOR）の何れであつてもよい。

ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソブロピルもしくはn-ブチルなどのC₁-nアルキル基、例えば、シクロベンチル、シクロヘキシルなどのC₃-nシクロアルキル基、例えば、フェニル、α-ナフチルなどのC₆-nアリール基、例えば、ベンジル、フェネチルなどのフェニル-C₁-nアルキル基もしくはα-ナフチルメチルなどのα-ナフチル-C₁-nアルキル基などのC₁-nアラキル基のほか、経口用エステルとして汎用されるビペロイルオキシメチル基などが用いられる。

F P R L 1またはF P R L 2がC末端以外にカルボキシル基（またはカルボキシレート）を有している場合、カルボキシル基がアミド化またはエステル化されているものも本発明のF P R L 1またはF P R L 2に含まれる。この場合のエステルとしては、例えば上記したC末端のエステルなどが用いられる。

さらに、F P R L 1またはF P R L 2には、上記した蛋白質において、N末端のメチオニン残基のアミノ基が保護基（例えば、ホルミル基、アセチルなど）で保護されているもの、N端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基（例えば、-OH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など）が適当な保護基（例えば、ホルミル基、アセチルなどのC₁-nアルカノイル基などのC₁-nアシル基など）で保護されているもの、あるいは側鎖が結合したいわゆる糖蛋白質などの複合蛋白質なども含まれる。

本発明のF P R L 1の具体例としては、例えば、配列番号：1で表わされるアミノ酸配列からなるヒト由来F P R L 1、配列番号：10で表わされるアミノ酸配列からなるヒト由来F P R L 1、配列番号：12で表わされるアミノ酸配列からなるラット由来F P R L 1、配列番号：14で表わされるアミ

酸配列からなるマウス由来F P R L 2などが用いられる。このヒト由来F P R L 1は、J. Biol. Chem. 267(11), 7637-7643(1992)に記載されている公知の蛋白質である。マウス由来F P R L 2は、J. Immunol. 169, 3363-3369 (2002)に記載されている公知の蛋白質である。

本発明のF P R L 2の具体例としては、例えば、配列番号：14で表わされるアミノ酸配列からなるヒト由来F P R L 2などが用いられる。このヒト由来F P R L 2は、Genomics 13 (2), 437-440 (1992)に記載されている公知の蛋白質である。

F P R L 1またはF P R L 2の部分ペプチド（以下、本発明の部分ペプチドと略記する場合がある）としては、上記したF P R L 1またはF P R L 2の部分ペプチドであれば何れのものであつてもよいが、例えば、F P R L 1またはF P R L 2の蛋白質分子のうち、細胞膜の外に露出している部位であつて、実質的に同質のレセプター結合活性を有するものなどが用いられる。

具体的には、配列番号：1、配列番号：10または配列番号：12で表わされるアミノ酸配列を有するF P R L 1の部分ペプチドまたは配列番号：14で表わされるアミノ酸配列を有するF P R L 2の部分ペプチドとしては、疎水性プロット解析において細胞外領域（親水性（Hydrophilic）部位）であると分析された部分を含むペプチドである。また、疎水性（Hydrophobic）部位を一部に含むペプチドも同様に用いることができる。個々のドメインを個別に含むペプチドも用い得るが、複数のドメインを同時に含む部分のペプチドでも良い。

本発明の部分ペプチドのアミノ酸の数は、上記した本発明のレセプター蛋白質の構成アミノ酸配列のうち少なくとも20個以上、好ましくは50個以上、より好ましくは100個以上のアミノ酸配列を有するペプチドなどが好ましい。実質的に同一のアミノ酸配列とは、これらアミノ酸配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有するアミノ酸配列を示す。

アミノ酸配列の相同性は、相同性計算アルゴリズムNCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Se

a r c h T 0 0 1) を用い、以下の条件 (期待値 = 1.0 ; ギャップを許す ; マトリクス = BLOSUM 62 ; フィルタリング = OFF) にて計算することができる。

ここで、「実質的に同質のレセプター活性」とは、上記と同意義を示す。「実質的に同質のレセプター活性」の測定は上記と同様に行なうことができる。

また、本発明の部分ペプチドは、上記アミノ酸配列中の 1 または 2 個以上 (好ましくは、1 ~ 10 個程度、さらに好ましくは数個 (1 ~ 5 個)) のアミノ酸が欠失し、または、そのアミノ酸配列に 1 または 2 個以上 (好ましくは、1 ~ 20 個程度、より好ましくは 1 ~ 10 個程度、さらに好ましくは数個 (1 ~ 5 個)) のアミノ酸が付加し、または、そのアミノ酸配列中の 1 または 2 個以上 (好ましくは、1 ~ 10 個程度、より好ましくは数個、さらに好ましくは 1 ~ 5 個程度) のアミノ酸が他のアミノ酸で置換されていてもよい。

また、本発明の部分ペプチドは C 末端がカルボキシル基 (-COOH) 、カルボキシレート (-COO-) 、アミド (-CONH₂) またはエステル (-C OOR) の何れであってもよい。本発明の部分ペプチドが C 末端以外にカルボキシル基 (またはカルボキシレート) を有している場合、カルボキシル基がアミド化またはエステル化されているものも本発明の部分ペプチドに含まれる。

この場合のエステルとしては、例えば上記した C 末端のエステルなどが用いられる。

また、本発明の部分ペプチドはその塩またはその塩またはそのアミド体の合成には、通常市販の蛋白質合成用樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンゼヒドリルアミン樹脂、アミノメチル樹脂、4-ベンジルオキシベンジルアルコール樹脂、4-メチルベンズヒドリルアミン樹脂、PAM 樹脂、4-ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2', 4'-ジメトキシフェニルヒドロキシメチル) フェノキシ樹脂、

さらに、本発明の部分ペプチドには、上記した F P R L 1 または F P R L 2 と同様に、N 末端のメチオニン残基のアミノ基が保護基で保護されているもの、N 端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは側鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。

本発明の F P R L 1 、F P R L 2 またはその部分ペプチドの塩としては、酸または塩基との生理学的に許容される塩が挙げられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸 (例えば、塩酸、リン酸、堿化水素酸、硫酸) との塩、あるいは有機酸 (例えば、酢酸、

ギ酸、プロピオン酸、マル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、檸檬酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸) との塩などが用いられる。

本発明の F P R L 1 またはその塩は、上記したヒトや哺乳動物の細胞または組織から自体公知のレセプター蛋白質の精製方法によつて製造することもできるし、後に記載する本発明の F P R L 1 をコードする DNA を含有する形質転換体を培養することによつても製造することができる。また、後に記載する蛋白質合成法またはこれに準じて製造することもできる。

ヒトや哺乳動物の組織または細胞から製造する場合、ヒトや哺乳動物の組織または細胞をホモジナイズした後、酸などで抽出を行ない、該抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。

本発明の F P R L 1 もしくはその部分ペプチドまたはその塩またはそのアミド体の合成には、通常市販の蛋白質合成用樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンゼヒドリルアミン樹脂、アミノメチル樹脂、4-ベンジルオキシベンジルアルコール樹脂、4-メチルベンズヒドリルアミン樹脂、PAM 樹脂、4-ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2', 4'-ジメトキシフェニルヒドロキシメチル) フェノキシ樹脂、4-(2', 4'-ジメトキシフェニル-F m o c アミノエチル) フェノキシ樹脂などを挙げることができる。このような樹脂を用い、α-アミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とする蛋白質の配列通りに、自体公知の各種縮合方法に従い、樹脂上で結合させる。反応の最後に樹脂から蛋白質を切り出すと同時に各側保護基を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的の蛋白質またはそのアミド体を取得する。

上記した保護アミノ酸の結合に関しては、蛋白質合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としては、DCC、N, N'-ジシソプロピルカルボジイミド、N-エチル-N'-(3-ジメチルアミノブロリル)カルボジイミドなどが用いられる。

る。これらによる活性化にはラセミ化抑制添加剤（例えば、HOBt、HOOBt）とともに保護アミノ酸を直接樹脂に添加するか、または、対称酸無水物またはHOOBtエステルあるいはHOOBtエステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することができる。

5 保護アミノ酸の活性化や触媒との結合に用いられる溶媒としては、蛋白質結合反応に使用しが知られている溶媒から適宜選択されうる。例えば、N, N-ジメチルホルムアミド、N, N-ジメチルアルセトアミド、N-メチルピロリドンなどの酸アミド類、塩化メチレン、クロロホルムなどのハログン化炭化水素類、トリフルオロエタノールなどのアルコール類、ジメチルスルホキ

10 シドなどのスルホキシド類、ビリジン、ジオキサン、テトラヒドロフランなどのエーテル類、アセトニトリル、プロピオニトリルなどのニトリル類、酢酸メチル、酢酸エチルなどのエステル類あるいはこれらの適宜の混合物などが用いられる。反応温度は蛋白質結合形成反応に使用されることが知られている範囲から適宜選択され、通常約-20～50℃の範囲から適宜選択される。活性化されたアミノ酸導体は通常1.5～4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、結合が不十分な場合には保護基の脱離を行うことなく結合反応を繰り返すことにより十分な結合を行なうことができる。反応を繰り返しても十分な結合が得られないときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をアセチル化することができる。

15 原料のアミノ基の保護基としては、例えば、Z、Boc、Troc、Fmocなどが用いられる。ビスチジンのイミダゾールの保護基としては、例えば、Tos、4-メトキシ-2, 3, 6-トリメチルベンゼンスルホニル、DNP、ベンジルオキシメ

20 チル、Bum、Boc、Troc、Fmocなどが用いられる。

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル（アルコール（例えば、ベンタクロロフェノール、2, 4, 5-トリクロロフェノール、2, 4-ジニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、N-ヒドロキシスクシミド、N-ヒドロキシタルイミド、HOBT）とのエステル）などが用いられる。

原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミドが用いられる。

25 保護基の除去（脱離）方法としては、例えば、Pd-黒あるいはPd-炭素などの触媒の存在下での水蒸気流中での接触還元や、また、無水フッ化水素、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合液などによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ビペリジン、ビペラジンなどによる塩基処理、また液体アンモニア中ナトリウムによる還元なども用いられる。上記酸処理による脱離反応は、一般に約-20～40℃の温度で行なわれるが、酸処理においては、例えば、

エステル、4-ニトロベンジルエステル、4-メトキシベンジルエステル、4-25 プロピル、ブチル、ターシャリーブチル、シクロヘンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、2-アダマンチルなどの直鎖状、分枝状もしくは環状アルキルエステル化）、アラルキルエステル化（例えば、ベンジル

アニソール、フェノール、チオアニソール、メタクリソール、パラクリソール、ジメチルスルフィド、1, 4-ブタンジオール、1, 2-エタンジオールなどのようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2, 4-ジニトロフェニル基はチオフェノール

6 处理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1, 2-エタンジオール、1, 4-ブタンジオールなどの存在下の酸処理による脱保護以外に、希硫酸化ナトリウム溶液、希アンモニアなどによるアルカリ処理によつても除去される。

7 原料の反応に關すべきでない官能基の保護などは公知の基または公知の手段

10 脱基の脱離、反応に關する官能基の活性化などは公知の手段から適宜選択しうる。

蛋白質のアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸のα-カルボキシル基をアミド化して保護した後、アミノ基側にペプチド(蛋白質)鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端のα-

15 アミノ基の保護基のみを除いた蛋白質とC末端のカルボキシル基の保護基のみを除去した蛋白質とを製造し、この両蛋白質を上記したような混合溶媒中で結合させる。縮合反応の詳細については上記と同様である。結合により得られた

保護蛋白質を精製した後、上記方法によりすべての保護基を除去し、所望の粗蛋白質を得ることができる。この粗蛋白質は既知の各種精製手段を駆使して精

20 製し、主要画分を凍結乾燥することで所望の蛋白質のアミド体を得ることができ。蛋白質のエ斯特ル体を得るには、例えば、カルボキシ末端アミノ酸のα-カルボキシル基を所望のアルコール類と縮合しアミノ酸エ斯特ルとした後、蛋白質のアミド体と同様にして、所望の蛋白質のエ斯特ル体を得ることができる。

25 本発明のF P R L 1の部分ペプチドまたはその塩は、自体公知のペプチドの合成法に従つて、あるいは本発明のF P R L 1を適當なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれによつても良い。すなわち、本発明のF P R L 1を構成し得る部分ペプチドもしくはアミノ酸と残余部分ヒを縮合させ、生

成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合法や保護基の脱離としては、例えば、以下のa)～e)に記載された方法が挙げられる。

a) M. Bodanszky および M. A. Ondetti、ペプチドシンセシス (Peptide

5 Synthesis), Interscience Publishers, New York (1966年)

b) SchroederおよびKuehne、ザ ペプチド(The Peptide), Academic Press, New

York (1965年)

c) 泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)

d) 矢島治明 および柳原俊平、生化学実験講座 1、蛋白質の化学IV、205、

10 (1977年)

e) 矢島治明監修、統医薬品の開発 第14巻 ペプチド合成 広川書店

また、反応後は通常の精製法、例えば、溶媒抽出・蒸留・カラムクロマト/

20 ラフィー・液体クロマトグラフィー・再結晶などを組み合わせて本発明の部分ペプチドを精製単離することができる。上記方法で得られる部分ペプチドが遺伝子である場合は、公知の方法によつて適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法によつて遊離体に変換することができる。

本発明のF P R L 2、その部分ペプチドまたはその塩も上記と同様の方法で製造することができる。

本発明のF P R L 1またはF P R L 2をコードするポリタクレオチドとしては、上記した本発明のF P R L 1またはF P R L 2をコードする塩基配列(DNAまたはRNA、好ましくはDNA)を含有するものであればいかなるものであつてもよい。該ポリヌクレオチドとしては、本発明のF P R L 1またはF P R L 2をコードするDNA、mRNA等のRNAであり、二本鎖であつても、一本鎖であつてもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNA: RNAのハイブリッドでもよい。一本鎖の場合は、センス鎖(すなわち、コード鎖)であつても、アンチセンス鎖(すなわち、非コード鎖)であつてもよい。

25 本発明のF P R L 1またはF P R L 2をコードするポリヌクレオチドを用いて、例えば、公知の実験医学雑誌「新PCRとその応用」15(7)、1997記載の方

注またはそれに準じた方法により、本発明のF P R L 1 またはF P R L 2 のmRNAを定量することができる。

本発明のF P R L 1 またはF P R L 2 をコードするDNAとしては、ゲノムDNA、ゲノムDNAライブラリー、上記した細胞・組織由来のcDNA、上記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。

ライブラリーを使用するペクターは、パクテリオファージ、プラスミド、コスミド、ファージミドなどいすれであってもよい。また、上記した細胞・組織によるtotal RNAまたはmRNA画分を調製したもの用いて直接Reverse Transcriptase Polymerase Chain Reaction (以下、R T - P C R 法と略称する

Transcriptase Polymerase Chain Reaction (以下、R T - P C R 法と略称する)によって増幅することもできる。

具体的には、本発明のF P R L 1 をコードするDNAとしては、例えば、配列番号：2、配列番号：1 1 または配列番号：1 3 で表わされる塩基配列を含むDNA、または配列番号：2、配列番号：1 1 または配列番号：1 3 で表わされる塩基配列とハイストリングジェントな条件下でハイブリダイズする塩基配列を有し、配列番号：1、配列番号：1 0 または配列番号：1 2 で表わされるアミノ酸配列からなるF P R L 1 と実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有するレセプター蛋白質をコードするDNAであれば何れのものでもよい。

配列番号：2、配列番号：1 1 または配列番号：1 3 で表わされる塩基配列

ヒハイブリダイズできるDNAとしては、例えば、配列番号：2、配列番号：1 1 または配列番号：1 3 で表わされる塩基配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を含むDNAなどが用いられる。

本発明のF P R L 2 をコードするDNAとしては、例えば、配列番号：1 5 で表わされる塩基配列を有するDNA、または配列番号：1 5 で表わされる塩基配列とハイストリングジェントな条件下でハイブリダイズする塩基配列を有し、配列番号：1 4 で表わされるアミノ酸配列からなるF P R L 2 と実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有するレセプター蛋白質をコードするDNAであれば何れのものでもよい。

配列番号：1 5 で表わされる塩基配列とハイブリダイズできるDNAとしては、例えば、配列番号：1 5 で表わされる塩基配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

塩基配列の相同性は、相同性計算アルゴリズムN C B I B L A S T (National Center for Biotechnology Information Basic Local Alignment Search ch Tool) を用い、以下の条件(期待値=10; ギャップを許す; フィルタリング=ON; マッチスコア=1; ミスマッチスコア=-3)にて計算することができる。

ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング(Molecular Cloning) 2nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。より好ましくは、ハイストリングジェントな条件下に従って行なうことができる。

該ハイストリングジェントな条件とは、例えば、ナトリウム濃度が約1.9~4.0 mM、好ましくは約1.9~2.0 mMで、温度が約50~70°C、好ましくは約6.0~6.5 °Cの条件を示す。特に、ナトリウム濃度が約1.9 mMで温度が約6.5 °Cの場合が最も好ましい。

より具体的には、配列番号：1 で表わされるアミノ酸配列からなるヒトF P R L 1 をコードするDNAとしては、配列番号：2 で表わされる塩基配列からなるDNAなどが用いられる。配列番号：1 0 で表わされるアミノ酸配列からなるラットF P R L 1 をコードするDNAとしては、配列番号：1 1 で表わされる塩基配列からなるDNAなどが用いられる。配列番号：1 2 で表わされるアミノ酸配列からなるマウスF P R L 2 をコードするDNAとしては、配列番号：1 3 で表わされる塩基配列からなるDNAなどが用いられる。配列番号：1 4 で表わされるアミノ酸配列からなるヒトF P R L 2 をコードするDNAとしては、配列番号：1 5 で表わされる塩基配列からなるDNAなどが用いられ

る。

本発明のF P R L 1またはF P R L 2をコードするDNAの塩基配列の一節、または該DNAと相補的な塩基配列の一節を含有してなるポリヌクレオチドとは、下記の本発明の部分ペプチドをコードするDNAを包含するだけではなく、RNAをも包含する意味で用いられる。

本発明に従えば、F P R L 1遺伝子またはF P R L 2遺伝子の複製または発現を阻害することのできるアンチセンス・ポリヌクレオチド(核酸)を、クローニングした、あるいは決定されたF P R L 1またはF P R L 2をコードするDNAの塩基配列領域に基づき設計し、合成しうる。そうしたポリヌクレオチド(核酸)は、F P R L 1遺伝子またはF P R L 2遺伝子のRNAとハイブリダイズすることができ、該RNAの合成または機能を阻害することができるか、あるいはF P R L 1関連RNAまたはF P R L 2関連RNAまたはF P R L 1遺伝子またはF P R L 2遺伝子の発現を調節・制御することができる。F P R L 1関連RNAまたはF P R L 2関連RNAの選択された配列に相補的なポリヌクレオチド、およびF P R L 1関連RNAまたはF P R L 2関連RNAと特異的にハイブリダイズすることができるポリヌクレオチドは、生体内および生体外でF P R L 1遺伝子またはF P R L 2遺伝子の発現を調節・制御するのに有用であり、また病気などの治療または診断に有用である。用語「対応する」とは、遺伝子を含めたヌクレオチド、塩基配列または核酸の特定の配列に相同性を有するあるいは相補的であることを意味する。ヌクレオチド配列または核酸とペプチド(蛋白質)との間で「対応する」とは、又クレオチド(核酸)の配列またはその相補体から誘導される指令にあるペプチド(蛋白質)のアミノ酸を通常指している。F P R L 1遺伝子またはF P R L 2遺伝子の5'端ヘアピンループ、5'端6-ベースペア・リピート、5'端非翻訳領域、ポリペプチド翻訳開始コドン、蛋白質コード領域、ORF翻訳開始コドン、3'端非翻訳領域、3'端ハリンドローム領域、および3'端ヘアピンループは好ましい対象領域として選択しうるが、F P R L 1遺伝子またはF P R L 2遺伝子内の如何なる領域も対象として選択しうる。目的核酸と、対象領域の少なくとも一部に相補的でハイブリダイズすること

ができるポリヌクレオチドとの関係は、対象物と「アンチセンス」であるとい

うことができる。アンチセンス・ポリヌクレオチドは、2-デオキシ-D-リボースを含有しているポリデオキシリボヌクレオチド、D-リボースを含有しているポリリボヌクレオチド、プリンまたはビリミジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、あるいは非ヌクレオチド骨格を有するその他のポリマー(例えば、市販の蛋白質核酸および合成配列特異的な核酸ポリマー)または特殊な結合を含有するその他のポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げられる。それらは、2本鎖DNA、1本鎖DNA、2本鎖RNA、1本鎖RNA、さらにDNA:RNAハイブリッドであることができ、さらに非修飾ポリヌクレオチド(または非修飾オリゴヌクレオチド)、さらには公知の修飾の付加されたもの、例えは当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたものの、1個以上の天然のヌクレオチドを標識物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えは非荷電結合(例えは、メチルホスホネット、ホスホトリエステル、ホスホルアミド、カルバメートなど)を持つもの、電荷を有する結合または硫黄含有結合(例えは、ホスホロチオエート、ホスホジチオエートなど)を持つもの、例えは蛋白質(ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリ-L-リジンなど)や糖(例えは、モノサッカライドなど)などの側鎖基を有しているもの、インターカレント化合物(例えは、アクリジン、ブソラレンなど)を持つもの、キレート化合物(例えは、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えは、 α -アノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」とは、プリンおよびビリミジン塩基を含有するのみでなく、修飾されたその他の複数環型塩基をもつようなものを含んでいて良い。こうした修飾物は、メチル化されたプリンおよびビリミジン、アルキル化されたプリンおよびビリミジン、あるいはその他の複数環を含むものであってよい。修飾されたヌクレオチドおよび修飾されたヌクレオチドはまた

部位が修飾されていてよく、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されたり、あるいはエーテル、アミンなどの官能基に変換されていてよい。

本発明のアンチセンス・ポリヌクレオチド(核酸)は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。修飾された核酸の具体例としては核糖の硫黄導体やチオホスフェート導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。本発明のアンチセンス核酸は次のように方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸をより安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし活性があるならアンチセンス核酸の選択性をより小さなものにする。

こうして修飾は当該分野で数多く知られており、例えば J. Kawakami et al., Pharm Tech Japan, Vol. 8, pp. 247, 1992; Vol. 8, pp. 395, 1992; S. T. Crooke et al. ed., Antisense Research and Applications, CRC Press, 1993 などに開示がある。

本発明のアンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、結合を含有していて良く、リボソーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子治療により適用されたり、付加された形態で与えられることができる。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例えば、ホスホリビド、コレステロールなど)といった粗水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例えば、コレステリルクロロホルムート、コール酸など)が挙げられる。こうしたものは、核酸

の3'端あるいは5'端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させができる。その他の基としては、核酸の3'端あるいは5'端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げ

られる。こうしたキャップ用の基としては、ポリエチレンギリコール、テトラエチレンギリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。

アンチセンス核酸の阻害活性は、本発明の形質転換体、本発明の生体内や生体外の遺伝子発現系、あるいはG蛋白質共役型レセプター蛋白質の生体内や生体外の翻訳系を用いて調べることができる。核酸その自体公知の各種の方法で細胞に適用できる。

本発明のF P R L 1 の部分ペプチドをコードするDNAとしては、上記した本発明のF P R L 1 の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブライマー、上記した細胞・組織由来のcDNA、上記した細胞・組織由来のcDNAライマー、合成DNAのいずれでもよい。ライブライマーに使用するペクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなど、ザれであってもよい。また、上記した細胞・組織よりmRNA画分を調製したもの用いて直接Reverse Transcriptase Polymerase Chain Reaction(以下、R T - P C R法と略称する)によって増幅することもできる。

具体的には、本発明のF P R L 1 の部分ペプチドをコードするDNAとしては、例えは、(1) 配列番号：2、配列番号：1 1または配列番号：1 3で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または(2))配列番号：2、配列番号：1 1または配列番号：1 3で表わされる塩基配列とハイストリンジェント条件下でハイブリダイズする塩基配列を有し、配列番号：1、配列番号：1 0または配列番号：1 2で表わされるアミノ酸配列からなるF P R L 1 と実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有するレセプター蛋白質をコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号：2、配列番号：1 1または配列番号：1 3で表わされる塩基配列ハイブリダイズできるDNAとしては、例えは、配列番号：2、配列番号：1 1または配列番号：1 3で表わされる塩基配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を含有す

るDNAなどが用いられる。

本発明のF P R L 2の部分ペプチドをコードするDNAとしては、例えば、(1) 配列番号：1 5で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または(2) 配列番号：1 5で表わされる塩基配列とハイスト

5 リンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号：1 4で表わされるアミノ酸配列からなるF P R L 2と実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有するレセプター-蛋白質をコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号：1 5で表わされる塩基配列ハイブリダイズできるDNAとしては、10 例えは、配列番号：1 5で表わされる塩基配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

塩基配列の相同性は、相同性計算アルゴリズムNCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) を用い、以下の条件(期待値=10; ギャップを許す: フィルタリング=ON; マッチスコア=1; ミスマッチスコア=-3) にて計算することができる。

ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えは、モレキュラー・クローニング(Molecular Cloning) 2nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブライバーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。

25 既ハイストリンジェントな条件とは、例えは、ナトリウム濃度が約1.9~4.0 mM、好ましくは約1.9~2.0 mMで、温度が約5.0~7.0°C、好ましくは約6.0~6.5°Cの条件を示す。特に、ナトリウム濃度が約1.9 mMで温度が約6.5°Cの場合が最も好ましい。

本発明のF P R L 1またはその部分ペプチド(以下、F P

場合がある) または本発明のF P R L 2またはその部分ペプチド(以下、F P R L 2と略記する場合がある) を完全にコードするDNAのクローニングの手段としては、本発明のF P R L 1またはF P R L 2の部分塩基配列を有する合成DNAプライマーを用いてPCR法によって増幅するか、または適当なベクターに組み込んだDNAを本発明のF P R L 1またはF P R L 2の一部あるいは全領域をコードするDNA断片もしくは合成DNAを用いて標識したものとのハイブリダイゼーションによって選別することができる。ハイブリダイゼーションの方法は、例えは、モレキュラー・クローニング(Molecular Cloning) 2nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブライバーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。

10 DNAの塩基配列の変換は、PCRや公知のキット、例えは、Mutant™—super Express Km (宝酒造(株))、Mutant™—K (宝酒造(株))などを用いて、ODA-LA PCR法、Gapped duplex method、Kunkel法などの自体公知の方法あるいはそれらに準じる方法に従って行なうことができる。

15 クローン化されたF P R L 1またはF P R L 2をコードするDNAは目的によりそのまま、または所望により制限酵素で消化したり、リンクーを付加したりして使用することができる。該DNAはその5'末端側には翻訳終止コドンとしてのTAA、T

20 GAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することもできる。本発明のF P R L 1またはF P R L 2の発現ベクターは、例えは、(イ) 本発明のF P R L 1またはF P R L 2をコードするDNAから目的とするDNA断片を切り出し、(ロ) 該DNA断片を適当な発現ベクター中のプロモーター

25 の下流に連結することにより製造することができる。

ベクターとしては、大腸菌由来のプラスミド(例、pBR322、pBR3

25、pUC12、pUC13)、枯草菌由来のプラスミド(例、pUB11、pTP5、pC194)、酵母由来プラスミド(例、pSH19、pSH

15)、 λ ファージなどのバクテリオファージ、レトロウイルス、ワクシニアウイルス、パキュロウイルスなどの動物ウイルスなどの他、pA1-11、pXT1、pRC/CMV、pRC/RSV、pCDNA1/Neoなどが用いられる。

本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対して適切なプロモーターであればいかなるものでもよい。例えば、動物細胞を宿主として用いる場合は、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMVプロモーター、HSV-TKプロモーターなどが挙げられる。

これらのうち、CMVプロモーター、SRαプロモーターなどを用いるのが好ましい。宿主がエシェリヒア属菌である場合は、trpプロモーター、la_cプロモーター、r_{eo}C Aプロモーター、l_PLプロモーター、l_PPプロモーターなどが、宿主がバチルス属菌である場合は、SPO1プロモーター、SP02プロモーター、penPプロモーターなど、宿主が酵母である場合は、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーターなどが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。

発現ベクターには、以上のために、所望によりエンハンサー、スプライシングシグナル、ポリア付加シグナル、選択マーカー、SV40複製オリジン(以下、シグナル、ポリア付加シグナル、選択マーカー、SV40複製オリジン(以下、シグナル、ポリア付加シグナル、選択マーカー)と略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えは、ジヒドロ葉酸還元酵素(以下、dhfrと略称する場合がある)遺伝子(メソトレキセート(MTX)耐性)、

アンピシン耐性遺伝子(以下、Amp^rと略称する場合がある)、ネオマイシン耐性遺伝子(以下、Neo^rと略称する場合がある、G418耐性)等が挙げられる。特に、CHO(dhfr⁻)細胞を用いてdhfr遺伝子を選択マーカーとして使用する場合、目的遺伝子をチミジンを含まない培地によっても選択できる。

また、必要に応じて、宿主に合ったシグナル配列を、本発明のレセプター蛋白質のN端末側に付加する。宿主がエシェリヒア属菌である場合は、PhoA

・シグナル配列、ompA・シグナル配列などが、宿主がバチルス属菌である場合は、 α -アミラーゼ・シグナル配列、サブカリシン・シグナル配列などが、宿主が酵母である場合は、MFG・シグナル配列、SUC2・シグナル配列などと、宿主が動物細胞である場合には、インシュリン・シグナル配列、 α -インターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ利用できる。

このようにして構築された本発明のFPR L1またはFPR L2をコードするDNAを含有するベクターを用いて、形質転換体を製造することができる。

宿主としては、例えは、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫、動物細胞などが用いられる。

エシェリヒア属菌の具体例としては、エシェリヒア・コリ(Escherichia coli)K12・DH1(プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユースニー(Proc. Natl. Acad. Sci. U.S.A.)、60巻、160(1968))、JM103(ヌクライレック・アッシュ・リサーチ(Nucleic Acids Research)、9巻、309(1981))、JA221(ジャーナル・オブ・モレキュラー・バイオロジー(Journal of Molecular Biology)、120巻、517(1978))、HB101(ジャーナル・オブ・モレキュラー・バイオロジー、41巻、459(1969))、C600(ジェネティックス(Genetics)、39巻、440(1954))などが用いられる。バチルス属菌としては、例えは、バチルス・ズブチルス(Bacillus subtilis)M1114(ジーン、24巻、255(1983))、207-21(ジャーナル・オブ・バイオケミストリー(Journal of Biochemistry)、95巻、87(1984))などが用いられる。

酵母としては、例えは、サツカロマイセス・セレビシエ(Saccharomyces cerevisiae)AH22、AH22R⁻、NA87-11A、DKD-5D、20B-12、シノサッカロマイセス・ボンベ(Schizosaccharomyces pombe)NCYC1913、NCYC2036、ピキア・バストリス(Pichia pastoris)などが用いられる。

昆虫細胞としては、例えは、ウイルスがAcNPVの場合は、夜蛾幼虫

由来株化細胞 (*Spodoptera frugiperda* cell; Sf細胞)、*Trichoplusia ni* の中胚由来のMG-1細胞、*Trichoplusia ni* の卵由来のHigh Five™ 細胞、*Mamestra brassicae* 由来の細胞または*Estigmene acrea* 由来の細胞などが用いられる。ウイルスがBmNPVの場合は、蚕由来株化細胞 (*Bombyx mori* N; BmN細胞)などが用いられる。該Sf細胞としては、例えば、Sf9細胞 (ATCC CRL1711)、Sf21細胞 (以上、Vaughn, J. L. ら、イン・ダイボ (In Vivo), 13, 213-217, (1977) などが用いられる。

昆虫としては、例えば、カイコの幼虫などが用いられる [前田ら、ネイチャーナチュラル (Nature), 315巻, 592 (1985)]。動物細胞としては、例えば、サル細胞COS-7、Vero、チャイニーズハムスター細胞CHO (以下、CHO細胞と略記)、dhfr遺伝子欠損チャイニーズハムスター細胞CHO (以下、CHO (dhfr-) 細胞と略記)、マウスL細胞、マウスAtT-20、マウスマエローマ細胞、ラットGH3、ヒトF細胞などが用いられる。

15 エシェリヒア属菌を形質転換するには、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユーニティード・ナショナル・アカデミー・オブ・サイエンシズ (Proc. Natl. Acad. Sci. USA), 69巻, 2110 (1972) やジーン(Gene), 17巻, 107 (1982) などに記載の方法に従って行なうことができる。

20 パチルス属菌を形質転換するには、例えば、モレキュラー・アンド・ジェネラル・ジェネティックス (Molecular & General Genetics), 168巻, 11 (1979) などに記載の方法に従って行なうことができる。

酵母を形質転換するには、例えば、メソス・イン・エンザイモロジー (Methods in Enzymology), 194巻, 182-187 (1991)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユーニティード・ナショナル・アカデミー (Proc. Natl. Acad. Sci. USA), 75巻, 1929 (1978) などに記載の方法に従って行なうことができる。

昆蟲細胞または昆蟲を形質転換するには、例えば、バイオ/テクノロジー (Bio/Technology), 6, 47-55 (1988) などに記載の方法に従って行

なうことができる。

動物細胞を形質転換するには、例えば、細胞工学別冊8新細胞工学実験プロトコール, 263-267 (1995) (秀潤社発行)、バイロロジー (Virology), 52巻, 456 (1973) に記載の方法に従って行なうことができる。

5 このようにして、FPLR1またはFPLR2をコードするDNAを含有する発現ベクターで形質転換された形質転換体を得られる。

宿主がエシェリヒア属菌、パチルス属菌である形質転換体を培養する際、培養に使用される培地としては液体培地が適であり、その中には該形質転換体の生育に必要な炭素源、窒素源、無機物その他が含有せられる。炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖など、窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスターブ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質、無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどが挙げられる。また、酵母エキス、ビタミン類、生ム、長促進因子などを添加してもよい。培地のpHは約5~8が望ましい。

10 エシェリヒア属菌を培養する際の培地としては、例えば、グルコース、カゼインを含むM9培地 (ミラー (Miller), ジャーナル・オブ・エクスペリメンツ・イン・イン・モレキュラー・ジェネティックス (Journal of Experiments in Molecular Genetics), 431-433, Cold Spring Harbor Laboratory, New York 1972) が好ましい。ここに必要によりプロモーターを効率よく働かせるために、例えば、3β-インドリル アクリル酸のような薬剤を加えることができる。

宿主がエシェリヒア属菌の場合、培養は通常約1.5~4.3°Cで約3~2.4時間行ない、必要により、通気や搅拌を加えることもできる。

25 宿主がパチルス属菌の場合、培養は通常約3.0~4.0°Cで約6~2.4時間行ない、必要により通気や搅拌を加えることもできる。

宿主が酵母である形質転換体を培養する際、培地としては、例えば、バーカー・ホールダー (Burkholder) 最小培地 (Iostian, K. L. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユーニ

- エスエー (Proc. Natl. Acad. Sci. USA), 77巻, 4505(1980)】や
0.5%カザミノ酸を含有するSD培地 [Bitter, G. A. ら、プロシージングズ
・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユ
ーエスエー (Proc. Natl. Acad. Sci. USA), 81巻, 5330 (1984)
] が挙げられる。培地のpHは約5~8に調整するのが好ましい。培養は通常
約2.0~3.5°Cで約2.4~7.2時間行ない、必要に応じて通気や搅拌を加える。
宿主が昆虫細胞または昆虫である形質転換体を培養する際、培地としては、
Grace's Insect Medium (Grace, T.C.C., ネイチャー (Nature), 195, 788(1962)
) に非動化した10%ウシ血清等の添加物を適宜加えたものなどが用いられる。
10 培地のpHは約6.2~6.4に調整するのが好ましい。培養は通常約2.7°C
で約3~5日間行ない、必要に応じて通気や搅拌を加える。
宿主が動物細胞である形質転換体を培養する際、培地としては、例えば、約
5~20%の胎児牛血清を含むMEM培地 (サイエンス (Science), 122巻
, 501(1952)), DMEM培地 (ヴィロロジー (Virology), 8巻, 3
15 96(1959)), RPMI 1640培地 (ジャーナル・オブ・ザ・アメリカ
ン・メディカル・アソシエーション (The Journal of the American Medical
Association) 199巻, 519(1967)], 199培地 (Proceeding
of the Society for the Biological Medicine), 73巻, 1(1950)] な
どが用いられる。pHは約6~8であるのが好ましい。培養は通常約3.0~4
0°Cで約1.5~6時間行ない、必要に応じて通気や搅拌を加える。
以上のようにして、形質転換体の細胞内、細胞膜または細胞外に本発明のF
PRL 1またはFPRL 2を生成せしめることができる。
上記培養物から本発明のFPRL 1またはFPRL 2を分離精製するには、
25 例え、下記の方法により行なうことができる。
本発明のFPRL 1またはFPRL 2を培養菌体あるいは細胞から抽出する
に際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩
衝液に懸濁し、超音波、リゾームおよび/または凍結融解などによって菌体
あるいは細胞を破壊したのち、遠心分離やろ過によりFPRL 1またはFPRL 2
5 上清を集める。
このようにして得られた培養上清、あるいは抽出液中に含まれるFPRL 1
またはFPRL 2の精製は、自体公知の分離・精製法を適切に組み合わせて行
なうことができる。これらの公知の分離・精製法としては、塩析や溶媒沈澱法
などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSD
10 S-ポリアクリラミドゲル電気泳動法などの主として分子量の差を利用する方法、
アフィニティークロマトグラフィーなどの特異的新和性を利用する方法、逆相高速液
体クロマトグラフィーなどの疏水性の差を利用する方法、等電点電気泳動法な
ど等電点の差を利用する方法などが用いられる。
かくして得られるFPRL 1またはFPRL 2が遊離体で得られた場合には、
20 自体公知の方法あるいはそれに準じる方法によって塩に変換することができ、
逆に塩で得られた場合には自体公知の方法あるいはそれに準じる方法により、
遊離体または他の塩に変換することができる。
なお、組換え体が產生するFPRL 1またはFPRL 2を、精製前または精
製後に適当な蛋白質修飾酵素を使用させることにより、任意に修飾を加えたり、
ポリペプチドを部分的に除去することもできる。蛋白質修飾酵素としては、例
えば、トリプシン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテ
インキナーゼ、グリコシダーゼなどが用いられる。
かくして生成する本発明のFPRL 1またはFPRL 2の活性は、標識した
25 リガンド (humanin) との結合実験および特異抗体を用いたエンザイム
イムノアッセイなどにより測定することができる。
本発明のFPRL 1またはFPRL 2に対する抗体は、本発明のFPRL 1
またはFPRL 2を認識し得る抗体であれば、ポリクローン抗体、モノクロ
ーナル抗体の何れであってもよい。

本発明のF P R L 1またはF P R L 2に対する抗体は、本発明のF P R L 1またはF P R L 2を抗原として用い、自体公知の抗体または抗血清の製造法に従つて製造することができる。

[モノクローナル抗体の作製]

(a) モノクローナル抗体産生細胞の作製

本発明のF P R L 1またはF P R L 2は、哺乳動物に対して投与により抗体産生が可能な部位にそれ自身あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュvantや不完全フロイントアジュvantを投与してもよい。投与は通常2～6週毎に1回ずつ、計2～10回程度行なわれる。用いられる哺乳動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギが挙げられるが、マウスおよびラットが好ましく用いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原を免疫された温血動物、例えば、マウスから抗体価の認められた個体を選択し最終免疫の2～5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を骨髄腫細胞と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗体産生の測定は、例えば、後記の標識化レセプター蛋白質と抗血清との反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーヒミルスティンの方法（ネイチャ—（Nature）、256巻、495頁（1975年））に従い実施することができる。融合促進剤としては、例えば、ポリエチレンガリコール（PEG）やセンダイウイルスなどが挙げられるが、好ましくはPEGが用いられる。

骨髓腫細胞としては、例えば、N S -1、P 3 U 1、S P 2 /0などが挙げられるが、P 3 U 1が好ましく用いられる。用いられる抗体産生細胞（脾臓細胞）数と骨髓腫細胞数との好ましい比率は1：1～20：1程度であり、PEG（好ましくは、PEG 1 0 0 ～PEG 6 0 0 0）が10～80%程度の濃度で添加され、約20～40℃、好ましくは約30～37℃で約1～10分間インキュベートすることにより効率よく細胞融合を実施できる。

5

(b) モノクローナル抗体の精製

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、レセプター蛋白質の抗原を直接あるいは担体とともに吸着させた固相（例、マイクロプレート）にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体（細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる）またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したレセプター蛋白質を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに適じる方法に従って行なうことができるが、通常はH A T（ヒポキサンチン、アミノブテリン、チミジン）を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1～20%、好ましくは10～20%の牛胎児血清を含むG I T培地（和光純薬工業（株））またはハイブリドーマ培養用無血清培地（S FM-1 0 1、日本血清選（株））などを用いることができる。培養温度は、通常20～40℃、好ましくは約37℃である。培養時間は、通常5日～3週間、好ましくは1週間～2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法（例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換法（例、D E A E）による吸脱離法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法）に従つて行なうことができる。

（b）モノクローナル抗体の精製

同様に免疫グロブリンの分離精製法（例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換法（例、D E A E）による吸脱離法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法）に従つて行なうことができる。

（ポリクローナル抗体の作製）

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、レセプター蛋白質の抗原を直接あるいは担体とともに吸着させた固相（例、マイクロプレート）にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体（細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる）またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したレセプター蛋白質を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに適じる方法に従つて行なうことができるが、通常はH A T（ヒポキサンチン、アミノブテリン、チミジン）を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1～20%、好ましくは10～20%の牛胎児血清を含むG I T培地（和光純薬工業（株））またはハイブリドーマ培養用無血清培地（S FM-1 0 1、日本血清選（株））などを用いることができる。培養温度は、通常20～40℃、好ましくは約37℃である。培養時間は、通常5日～3週間、好ましくは1週間～2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法（例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換法（例、D E A E）による吸脱離法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法）に従つて行なうことができる。

（ポリクローナル抗体の作製）

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、レセプター蛋白質の抗原を直接あるいは担体とともに吸着させた固相（例、マイクロプレート）にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体（細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる）またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したレセプター蛋白質を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに適じる方法に従つて行なうことができるが、通常はH A T（ヒポキサンチン、アミノブテリン、チミジン）を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1～20%、好ましくは10～20%の牛胎児血清を含むG I T培地（和光純薬工業（株））またはハイブリドーマ培養用無血清培地（S FM-1 0 1、日本血清選（株））などを用いることができる。培養温度は、通常20～40℃、好ましくは約37℃である。培養時間は、通常5日～3週間、好ましくは1週間～2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法（例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換法（例、D E A E）による吸脱離法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法）に従つて行なうことができる。

（ポリクローナル抗体の作製）

- 本発明のポリクローナル抗体は、それ自体公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原(F P R L 1 抗原またはF P R L 2 抗原)とキャリアー蛋白質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に哺乳動物に免疫を行ない、該免疫動物から本発明のF P R L 1 またはF P R L 2 に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。
- 哺乳動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に關し、キャリアー蛋白質の種類およびキャリアーとハブタンとの混合比は、キャリアーに架橋させて免疫したハブタンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミン、ウシサイログロブリン、キーホール・リンベット・ヘモシアニン等を重量比でハブタン1に対し、約0.1～2.0、好ましくは約1～5の割合でカプルさせる方法が用いられる。
- また、ハブタンとキャリアーのかプリングには、種々の結合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジオキシリル基を含有する活性エステル試薬等が用いられる。
- 結合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自身あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は、通常約2～6週毎に1回ずつ、計約3～10回程度行なうことができる。
- ポリクローナル抗体は、上記の方法で免疫された哺乳動物の血液、腹水など、好ましくは血液から採取することができる。
- 抗血清中のポリクローナル抗体の測定は、上記の血清中の抗体価の測定と同様にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。
- 本発明のF P R L 1 またはF P R L 2 のリガンドはhumaninまたはその様である。
- humaninとしては、(1)配列番号：3で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するポリペプチド、(2)配列番号：7で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するポリペプチドなどが用いられる。
- humaninは、ヒトや非ヒト温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、ブタ、ヒツジ、ウシ、サル等)の細胞(例えば、肝細胞、脾細胞、神経細胞、グリア細胞、臍臍細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、織維芽細胞、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、单球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞等)もしくはそれらの細胞が存在するあらゆる組織、例えは、脳、脛の各部位(例、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部、大脳皮質、延髄、小脳)、脊髓、下垂体、胃、胰臍、腎臍、肝臍、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、血管、心臓、胸膜、脾臍、唾液腺、末梢血、前立腺、睾丸、卵巢、胎盤、子宮、骨、軟骨、靭帯、骨骼筋等に由来するポリペプチドであってもよく、組換ポリペプチドであってもよく、合成ポリペプチドであってもよい。
- 「実質的に同一」とはhumaninの活性、例えは、細胞死抑制作用(例、各種疾患に伴う細胞死に対する抑制作用)、細胞生存維持作用、または神経変性疾患、癌、免疫疾患、感染症、消化管疾患、循環器疾患、内分泌疾患等の予防・治療活性(作用)など、生理的な特性などが、実質的に同じことを意味する。アミノ酸の置換、欠失、付加あるいは挿入が、ポリペプチドの生理的な特性や化学的な特性に大きな変化をもたらさない限り、当該置換、欠失、付加あるいは挿入を施されたポリペプチドは、当該置換、欠失、付加あるいは挿入のされていないものと実質的に同一である。該アミノ酸配列中のアミノ酸の実質的に同一な置換物としては、たとえばそのアミノ酸が属するところのクラスのうち他のアミノ酸頭から選ぶことができる。

非極性(疎水性)アミノ酸としては、アラニン、ロイシン、イソロイシン、バリン、プロリン、フェニルアラニン、トリプトファン、メチオニンなどがあげられる。極性(中性)アミノ酸としてはグリシン、セリン、スレオニン、システイン、チロシン、アスパラギン、グルタミンなどがあげられる。陽電荷をもつ(塩基性)アミノ酸としてはアルギニン、リジン、ヒスチジンなどがあげられる。負電荷をもつ(酸性)アミノ酸としては、アスパラギン酸、グルタミン酸などが挙げられる。

配列番号：3で表されるアミノ酸配列と実質的に同一のアミノ酸配列としては、該アミノ酸配列を含有するボリペプチドが、配列番号：3で表されるアミノ酸配列からなるhumaninと実質的に同一の活性(性質)を有する限り、特に限定されるものではなく、例えば配列番号：3で表されるアミノ酸配列と約60%以上、好ましくは約80%以上、より好ましくは約85%以上、さらには約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列等が挙げられる。

配列番号：3で表されるアミノ酸配列と実質的に同一のアミノ酸配列としては、該アミノ酸配列を含有するボリペプチドが、配列番号：7で表されるアミノ酸配列からなるhumaninと実質的に同一の活性(性質)を有する限り、特に限定されるものではなく、例えば配列番号：7で表されるアミノ酸配列と約60%以上、好ましくは約80%以上、より好ましくは約85%以上、さらには約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列等が挙げられる。

アミノ酸配列の相同性は、相同性計算アルゴリズムNCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) を用い、以下の条件(期待値=1.0; ギャップを許すマトリクス=BLOSUM62; フィルタリング=OFF)にて計算することができます。

上記の実質的に同質の活性(性質)としては、例えば、配列番号：3または配列番号：7で表されるアミノ酸配列を含有するhumaninの有する細胞

死抑制作用(例、各種疾患に伴う細胞死に対する抑制作用)、細胞生存維持作用、または神経変性疾患、癌、免疫疾患、感染症、消化管疾患、循環器疾患、内分泌疾患等の予防・治療活性(作用)などが定性的に同質であることを示す。

また、配列番号：3で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含有するhumaninとしてより具体的には、例えば、a)配列番号：3、b)配列番号：4または配列番号：8で表されるアミノ酸配列に1または2個以上(例えは1～10個程度、好ましくは1～3個程度、さらに好ましくは1または2個)のアミノ酸が欠失したアミノ酸配列、c)配列番号：3、d)配列番号：4または配列番号：8で表されたアミノ酸配列、e)配列番号：3、f)配列番号：4または配列番号：8で表されるアミノ酸配列中の1または2個以上(例えは1～5個程度、好ましくは1～3個程度、さらに好ましくは1または2個)のアミノ酸が付加されたアミノ酸配列、g)それらの欠失・付加・置換を組み合わせたアミノ酸配列からなるボリペプチドなども含まれるが、配列番号：5で表されるアミノ酸配列からなるボリペプチドおよび配列番号：5で表されるアミノ酸配列の第1番目～21番目のアミノ酸配列からなるボチペプチドは含まれない。

配列番号：7で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含有するhumaninとしてより具体的には、例えは、a)配列番号：7で表されるアミノ酸配列中の1または2個以上(例えは1～10個程度、好ましくは1～6個程度、より好ましくは1～3個程度、さらに好ましくは1または2個)のアミノ酸が欠失したアミノ酸配列、b)配列番号：7で表されるアミノ酸配列に1または2個以上(例えは1～10個程度、好ましくは1～6個程度、より好ましくは1～3個程度、さらに好ましくは1または2個)のアミノ酸が付加したアミノ酸配列、c)配列番号：7で表されるアミノ酸配列中の1または2個以上(例えは1～10個程度、好ましくは1～6個程度、より好ましくは1～3個程度、さらに好ましくは1または2個)のアミノ酸が他のアミノ酸

- または2個以上(例、1～6個程度、好ましくは1～3個程度、より好ましくは1または2個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または(例)それらの欠失・付加・置換を組み合わせたアミノ酸配列からなり、アミノ酸の数が6～20個程度、好ましくは6～15個程度、より好ましくは6～10個程度である部分ペプチドなどが挙げられる。ただし、上記の置換に関しては、配列番号：3または配列番号：4で表されるアミノ酸配列の第3、12、14、15、16または24番目のアミノ酸の置換は含まれない。
- また、humaninの部分ペプチドには、配列番号：5で表されるアミノ酸配列の第19番目～24番目、第5番目～24番目、第1番目～20番目、
- 10 第5番目～20番目または第5番目～21番目のアミノ酸配列からなるペプチドは含まれない。
- humaninの部分ペプチドのより好ましい具体例として、配列番号：3、配列番号：4または配列番号：8で表されるアミノ酸配列の第19番目～24番目、第5番目～24番目、第1番目～20番目、第5番目～20番目または第5番目～21番目のアミノ酸配列からなるペプチドが挙げられる。
- また、humaninまたはその部分ペプチドには、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。
- さらに、humaninは、それぞれ单量体の他に、2量体、3量体、4量体などとして存在していてもよく、具体的には、humanin同士で2量体を形成する場合、本発明の部分ペプチド同士で2量体を形成する場合、humaninと本発明の部分ペプチドとで2量体を形成する場合などが挙げられる。
- さらに、humaninまたはその部分ペプチド(以下、humaninと略記する)には、おのおののN末端またはC末端などにエピトープ(抗体認識部位)となりうる任意の外来ペプチド配列(例えば、FLAG、Histag、HAタグ、HSVタグなど)を有しているものも含まれる。
- humaninは、ペプチド標配の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)である。配列番号：3または配列番号：4で表されるアミノ酸配列からなるポリペプチドなどが好ましく用

- 5 nintは、C末端がカルボキシル基($-COOH$)、カルボキシレート($-COO^-$)、アミド($-CONH_2$)またはエステル($-COOR$)であってもよいかが、特にアミド($-CONH_2$)が好ましい。
- ここでエステルにおけるhumaninとしては、例えば、メチル、エチル、n-ブロピル、イソブロピルもしくはn-ブチル等の C_{1-6} アルキル基、例えば、シクロヘンチル、シクロヘキシル等の C_{3-8} シクロアルキル基、例えば、フェニル、 α -ナフチル等の C_{6-12} アリール基、例えば、ベンジル、フェニチル等のフェニル- C_{1-2} アルキル基もしくは α -ナフチルメチル等の α -ナフチル-C $_{1-2}$ アルキル基等の C_{7-14} アラルキル基のほか、経口用エステルとして汎用されるビラコイルオキシメチル基等が用いられる。
- humaninがC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、カルボキシル基がアミドまたはエステル化されているのも本願明細書におけるhumaninに含まれる。この場合のエステルとしては、例えば上記したC末端のエステル等が用いられる。
- さらに、humaninには、N末端のアミノ酸残基(例、メチオニン残基)のアミノ基が保護基(例えば、ホルミル基、アセチル基等の C_{1-6} アルカノイル等の C_{1-6} アシル基等)で保護されているもの、生体内で切断されて生成するN末端のグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えは-OH、-SH、アミノ基、イミダゾール基、インドール基、シアニジン基等)が適当な保護基(例えは、ホルミル基、アセチル基等の C_{1-6} アルカノイル基等の C_{1-6} アシル基等)で保護されているもの、あるいは糖鎖が結合したいわゆる糖ポリペプチド等の複合ポリペプチド等も含まれる。
- humaninとしては、N末端のアミノ酸残基のアミノ基がホルミル化されているものが好ましく、特にN末端にメチオニン残基を有し、そのN末端メチオニン残基のアミノ基がホルミル化されているものが好ましい。
- 具体的には、N末端メチオニン残基のアミノ基がホルミル化されている配列番号：3、配列番号：4、配列番号：6、配列番号：7、配列番号：8または配列番号：9で表されるアミノ酸配列からなるポリペプチドなどが好ましく用いられる。

*humanin*の塩としては、生理学的に許容される酸（例、無機酸、有機酸）や塩基（例、アルカリ金属塩）等との塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸（例えれば、塩酸、リン酸、臭化水素酸、硫酸）との塩、あるいは有機酸（例えれば、酢酸、ギ酸、プロピオノン酸、マル酸、マレイン酸、コハク酸、酒石酸、ケエン酸、リンゴ酸、檸檬酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸）との塩等が用いられる。

以下、男細胞では、*humanin*またはその塩を*humanin*と略記する。

10 *humanin*は、前述したヒトや非ヒト温血動物の細胞または組織から公知のポリペプチドの精製方法によって製造することもできるし、後述のペプチド合成法に準じて製造することもできる。

ヒトや非ヒト哺乳動物の組織または細胞から製造する場合、ヒトや非ヒト哺乳動物の組織または細胞をホモジナイズした後、酸等で抽出を行ない、得られた抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィー等のクロマトグラフィーを組み合わせることにより精製単離することができる。

15 *humanin*またはそのアミド体の合成には、通常市販のポリペプチド合成樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリル樹脂、4-メチルベンズヒドリル樹脂、4-ベンジルオキシベンジルアルコール樹脂、4-メチルベンズヒドリルアミニン樹脂、PAM樹脂、4-ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2', 4'-ジメトキシフェニル-4-ベンジルオキシベンジルアルコール樹脂、4-メチルベンズヒドリルアミニン樹脂、PAM樹脂、4-ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2', 4'-ジメトキシフェニル-4-ヒドロキシメチル)フェノキシ樹脂等をあげることができる。こ

20 のような樹脂を用い、 α -アミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とするポリペプチドの配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂からポリペプチドを切り出すと同時に各種保護基を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的のポリペプチドまたはそれらのアミド体を取得する。

上記した保護アミノ酸の縮合に関しては、ポリペプチド合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としては、DCC、N,N'-ジイソプロピルカルボジイミド、N-エチル-N'-(3-ジメチルアミノプロリル)カルボジイミド等が用いられる。これらによる活性化にはラセミ化抑制添加剤（例えば、HOBt、HOObt）とともに保護アミノ酸を直接樹脂に添加するかまたは、対応する酸無水物またはHOObtエステルあるいはHOObtエステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することができる。

保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、ポリペプチド縮合反応に使用しうることが知られている溶媒から適宜選択されうる。例えれば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルビロリドン等の酸アミド類、塩化メチレン、クロロホルム等のハログン化炭化水素類、トリフルオロエタノール等のアルコール類、ジメチルスルホキシド等のスルホキシド類、ビリジン、ジオキサン、テトラヒドロフラン等のエーテル類、アセトニトリル、プロピオニトリル等のニトリル類、酢酸メチル、酢酸エチル等のエステル類あるいはこれらの適宜の混合物等が用いられる。反応温度はポリペプチド結合形成反応に使用され得ることが知られている範囲から適宜選択され、通常約-20~50°Cの範囲から適宜選択される。活性化されたアミノ酸導体は通常1.5~4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場合には保護基の脱離を行なうことなく縮合反応を繰り返すことにより十分な縮合を行なうことができる。反応を繰り返しても十分な縮合が得られないときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をアセチル化することによって、後の反応に影響を与えないようにすることができる。

25 原料のアミノ基の保護基としては、例えば、Z、Boc、t-ベンチルオキシカルボニル、イソボルニルオキシカルボニル、4-メトキシベンジルオキシカルボニル、C1-Z、Bt-Z、アダマンチルオキシカルボニル、トリフルオロアセチル、フタロイル、ホルミル、2-ニトロフェニルスルfonyl、ジフェニルホスフィノチオイル、Fmoc等が用いられる。

カルボキシル基は、例えば、アルキルエステル化(例えば、メチル、エチル、プロピル、ブチル、シクロヘキシル、シクロヘキシル、シクロヘキシルエステル化)、アラキルエステル化(例えば、ベンジルエステル、シングルエステル、ベンズヒドリルエステル化)、フェナシンエステル、ジメチルオキシカルボニルヒドリジ化、t-ブリトキシカルボニルヒドリジ化、トリチルヒドリジ化等によって保護することができる。

セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基等の低級(C₁₋₆)アルカノイル基、ベンゾイル基等のアロイル基、ベンジルオキカルボニル基、エトキシカルボニル基等の炭酸から導かれる基等が用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、t-ブチル基等である。

チロシンのフェノール性水酸基の保護基としては、例えば、BzI、C1₁-BzI、2-ニトロベンジル、Br-Z、t-ブチル等が用いられる。

ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4-メトキシ-2、3、6-トリメチルベンゼンスルホニル、DNP、ベンジルオキシメチル、Bum、Boc、Trt、Fmoc等が用いられる。

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル(アルコール(例えば、ベンタクロロフェノール、2、4、5-トリクロロフェノール、2、4-ジニトロフェノール、ジアノメチルアルコール、パラニトロフェノール、HONB、N-ヒドロキシスクシミド、N-ヒドロキシフルタリミド、HOBut)とのエステル)等が用いられる。原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミドが用いられる。

保護基の除去(脱離)方法としては、例えば、Pd-黒あるいはPd-炭素等の触媒の存在下での水素気流中の接触還元や、また、無水フッ化水素、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいは

これらの混合液等による酸処理や、シソプロピルエチルアミン、トリエチルアミン、ビペリシン、ビペラジン等による塩基処理、また液体アンモニア中ナトリウムによる還元等も用いられる。上記酸処理による脱離反応は、一般に約-20~40°Cの温度で行なわれるが、酸処理においては、例えば、アニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1、4-ブantanジチオール、1、2-エタンジチオール等のようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2、4-ジニトロフェニル基はチオフェノール処理により除去され、トリブチファンのインドール保護基として用いられるホルミル基は上記の1、2-エタンジチオール、1、4-ブantanジチオール等の存在下の酸処理による脱保護以外に、希水酸化ナトリウム溶液、希アンモニア等によるアルカリ処理によつても除去される。

原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその保護基の脱離、反応に関与する官能基の活性化等は公知の基または公知の手段から適宜選択しうる。

humaninのアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸のα-カルボキシル基をアミド化して保護した後、アミノ基側にペブチド(ポリペプチド)鎖を所望の鎖長まで延ばした後、該ペブチド鎖のN末端のα-アミノ基の保護基のみを除いたポリペブチドとC末端のカルボキシル基の保護基のみを除去了したポリペブチドとを製造し、この両ポリペブチドを上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護ポリペブチドを精製した後、上配方法によりすべての保護基を除去し、所望の粗ポリペブチドを得ることができる。この粗ポリペブチドは既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望のhumaninのアミド体を得ることができる。

humaninのエステル体を得るには、例えば、カルボキシ末端アミノ酸のα-カルボキシル基を所望のアルコール類と結合しアミノ酸エステルとした後、humaninのアミド体と同様にして、所望のポリペブチドのエステル体を得ることができる。

*humain*は、公知のペプチドの合成法に従っても製造することができ
る。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれに
よっても良い。すなわち、*humain*を構成し得る部分ペプチドもしくは
アミノ酸と残余部分とを総合させ、生成物が保護基を有する場合は保護基を脱
離することにより目的のペプチドを製造することができる。公知の縮合方法や
保護基の脱離としては、例えば、以下の①～⑤に記載された方法などが挙げら
れる。

① M. Bodanszky および M. A. Ondetti、ペプチド・シンセシス (Peptide
Synthesis), Interscience Publishers, New York (1966年)、

② Schroeder らおよび Kuebke、ザ・ペプチド(The Peptide), Academic Press, New
York (1965年)、

③ 泉屋清夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)、

④ 矢島治明 および 横原俊平、生化学実験講座 1、タンパク質の化学IV、205、
(1977年)、および

⑤ 矢島治明監修、統医薬品の開発、第14巻、ペプチド合成、広川書店。

15

また、反応後は通常の精製法、例えば、溶媒抽出・蒸留・カラムクロマトグラ
フィー・液体クロマトグラフィー・再結晶等を組み合わせて本発明のボリペ
プチド、本発明の部分ペプチドを精製単離することができる。上記方法で得ら
れるボリペプチドが遊離体である場合は、公知の方法あるいはそれに準じる方
法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公
知の方法あるいはそれに準じる方法によって遊離体または他の塩に変換するこ
とができる。

*humain*は細胞死抑制作用、細胞生存維持作用などを有しているので、

20 F P R L 1 または F P R L 2 をコードする DNA (以下、本発明のDNAと略
記する場合がある)、F P R L 1 または F P R L 2 に対する抗体 (以下、本発
明の抗体と略記する場合がある)、本発明のDNAに対するアンチセンスDN
A (以下、本発明のアンチセンスDNAと略記する場合がある) は、以下の用
途を有している。

(1) 本発明のF P R L 1 または F P R L 2 の機能不全に関連する疾患の予防
および/または治療剤

*humain*は生体内に存在し、細胞死抑制作用、細胞生存維持作用など
を有することが知られているので、本発明のF P R L 1 もしくは F P R L 2、
またはそれをコードするボリヌクレオチド (例、DNA等) などに異常があつ
たり、欠損している場合あるいは発現量が異常に減少または亢進している場合、
例えば、神経変性を伴う疾患など、例えば、神経変性疾患 (例、アルツハイマー
病 (家族性アルツハイマー病、若年性アルツハイマー病、認知性アルツハイ
マー病など)、バーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、
クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、
多発性硬化症など)、脳膜炎症害 (例、脛梗塞、脳出血、クモ膜下出血、虚血
性脳疾患、硬膜外血腫、硬膜下血腫など)、癌 (例、星状細胞腫、乏枝神経膠
腫など)、免疫疾患、感染症 (例、結膜炎、原虫感染症、リケッチャ感染症、
後生動物感染症、B orn a 病などの細菌性またはウイルス性歯膜炎、ワクチ
ン接種後脳炎、A IDS脳症など)、消化管疾患、循環器疾患、内分泌疾患な
ど)の種々の疾患が発症する。

15

したがって、生体内において本発明のF P R L 1 または F P R L 2 が減少し
ているために、リガンドである*humain*の生理作用が期待できない (F
P R L 1 または F P R L 2 の欠乏症) 患者がいる場合に、a) 本発明のF P
R L 1 または F P R L 2 を移植患者に投与し該 F P R L 1 または F P R L 2 の量を
補充したり、b) (イ) 本発明のF P R L 1 または F P R L 2 をコードするD
NAを該患者に投与し発現させることによって、あるいは (ロ) 対象となる細
胞に本発明のF P R L 1 または F P R L 2 をコードするDNAを導入し発現さ
せた後に、該細胞を該患者に移植することなどによって、患者の体内における

20 F P R L 1 または F P R L 2 の量を増加させ、リガンドの作用を充分に発揮さ
せることができる。

25

したがって、a) 本発明のF P R L 1 または F P R L 2 または b) F P R L
1 または F P R L 2 をコードするDNAを、本発明のF P R L 1 の機能不全に
関連する疾患の予防・治療剤などの医薬として使用することができる。
途を有している。

具体的には、本発明のF P R L 1またはF P R L 2、または本発明のDNAは、例えは、細胞死抑制剤として、さらには、例えは神経変性を伴う疾患など、年性アルツハイマー病、孤発性アルツハイマー病、若

ウン症、筋萎縮側索硬化症、アリオン病、クロイツフェルト-ヤコブ病、ハ

ンチントン舞蹈病、糖尿病性ニューロパシー、多発性硬化症など)、バーキンソン病、ダ

妄(例、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫、硬膜下血腫など)、癌(例、星状細胞腫、乏枝神経膠腫など)、免疫疾患、感染症(

例、結膜炎、原虫感染症、リケツチア感染症、後生動物感染症、B orn a病などの細菌性またはウイルス性結膜炎、ワクチン接種後脳炎、A I D S脳症など)、消化管疾患、循環器疾患、内分泌疾患等の種々の疾患の予防・治療剤、

好ましくは神經変性疾患、脳機能障害の予防・治療剤として、さらに好ましくはアルツハイマー病の予防・治療剤として、低毒性で安全な医薬として使用することができる。

15 本発明のF P R L 1またはF P R L 2を上記予防・治療剤として使用する場合は、常套手段に従って製剤化することができる。

一方、本発明のDNAを上記予防・治療剤として使用する場合は、本発明のDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、ア

20 ノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。本発明のDNAは、そのままでも、あるいは摂取促進のための補助剤とともに、遺伝子錠やハイドロゲルカ

テークルのようなカテーテルによって投与できる。

例えは、a) 本発明のF P R L 1もしくはF P R L 2またはb) 本発明のD

N Aは、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして墨口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非墨口的に使用できる。例えは、a) 本発明のF P R L 1もしくはF P R L 2またはb) 本

25 発明のDNAを生理学的に認められる公知の担体、香料剤、賦形剤、ペニクリルなどと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えは、ヒトや哺乳動物(例えは、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。

単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

6 リン酸カリウムなどに混和することができる添加剤としては、例えは、ゼラチン、コーンスターク、トランガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターク、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサツカリンのような甘味剤、ベーミント、アカモノ油またはチャーリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タブレットの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えは、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えは、D -ソルビトール、D

15 -マンニトール、塩化ナトリウムなど)などが用いられ、適当な溶解補助剤、例えは、アルコール(例、エタノール)、ポリアルコール(例、ブロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50)などと併用してもよい。油性液としては、例えは、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベ

20 シジアルコールなどと併用してもよい。

また、上記予防・治療剤は、例えは、緩衝剤(例えは、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えは、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えは、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えは、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えは、ヒトや哺乳動物(例えは、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。

本発明のF P R L 1またはF P R L 2の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、アルツハイマー病患者（体重60kgとして）においては、一日につき約0.1～1.0m g、好ましくは約1.0～50m g、より好ましくは約1.0～20m gである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例え、アルツハイマー病患者（体重60kgとして）においては、一日につき約0.1～30m g程度、好ましくは約0.1～10m g程度、好ましくは約0.1～20m g程度、より好ましくは約0.1～50m g程度、好ましくは約1.0～20m gである。非経口的動物の場合も、体重60kg当たりに換算した量を投与することができる。

本発明のDNAの投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、アルツハイマー病患者（体重60kgとして）においては、一日につき約0.1～100m g、好ましくは約1.0～50m g、より好ましくは約1.0～20m gである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例え、アルツハイマー病患者（体重60kgとして）においては、一日につき約0.1～100m g、好ましくは約1.0～50m g、より好ましくは約1.0～20m gである。非経口的動物の場合も、体重60kg当たりに換算した量を投与することができる。

(2) 遺伝子診断剤

本発明のDNAおよびアンチセンスDNAは、プローブとして使用することにより、ヒトまたは哺乳動物（例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど）における本発明のF P R L 1またはその部分ペプチドをコードするDNAまたはmRNAの異常（遺伝子異常）を検出することができる。例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断剤として有用である。

本発明のDNAまたはアンチセンスDNAを用いる上記の遺伝子診断は、例え、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法（ゲノミクス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ユースエー（Proceedings of the National Academy of Sciences of the United States of America），第86巻，2766～2770頁（1989年5月））などにより実施することができる。

例えば、ノーザンハイブリダイゼーションによりF P R L 1またはF P R L 2の発現低下が検出された場合やPCR-SSCP法によりDNAの突然変異が検出された場合は、例えば、神経変性を伴う疾病など、例えば、神経変性疾患〔例、アルツハイマー病（家族性アルツハイマー病、若年性アルツハイマー病、孤発性アルツハイマー病など）、バーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパチー、多発性硬化症など〕、脳機能障害（例、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫、硬膜下血腫など）、癌（例、星状細胞腫、乏枝神経膠腫など）、免疫疾患、感染症（例、結膜炎、原虫感染症、リケッチア感染症、後生動物感染症、Born病などの細菌性またはウイルス性膿膜炎、ワクチン接種後脳炎、AIDS脳症など）、消化管疾患、循環器疾患、内分泌疾患等の疾病である可能性が高いと診断することができる。

(3) 本発明のF P R L 1またはF P R L 2の発現量を変化させる化合物またはその塩を含有する医薬

本発明のDNAは、プローブとして用いることにより、本発明のF P R L 1またはF P R L 2の発現量を変化させる化合物またはその塩のスクリーニングに用いることができる。

すなわち、本発明は、例えば、(i) 非ヒト哺乳動物のa) 血液、b) 特定の臓器、c) 臓器から単離した組織もしくは細胞、または(ii) 形質転換体等に含まれる本発明のF P R L 1またはF P R L 2のmRNA量を測定することによる、本発明のF P R L 1またはF P R L 2の発現量を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明のF P R L 1またはF P R L 2のmRNA量の測定は具体的には以下

のようにして行なう。

(i) 正常あるいは疾患モデル非ヒト哺乳動物（例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的にはアルツハイマー病モデルラット、マウス、ウサギなど）に対して、薬剤（例えば、免

5 振調節薬など）あるいは物理的ストレス（例えば、冷水ストレス、電気ショック、明暗、低温など）などを与え、一定時間経過した後に、血液、あるいは特定の臓器（例えば、脳、肝臓、腎臓など）、または臓器から単離した組織、あるいは細胞を得る。

得られた細胞に含まれる本発明のF P R L 1 またはF P R L 2 のmRNAは、
10 例えは、通常の方法により細胞等からmRNAを抽出し、例えは、Taq Ma n PCRなどの手法を用いることにより定量することができ、自体公知の手段によりノーザンプロットを行うことにより解析することもできる。

(ii) 本発明のF P R L 1 またはF P R L 2 を発現する形質転換体を上記の方法に従い作製し、該形質転換体に含まれる本発明のF P R L 1 またはF P R
15 L 2 のmRNAを同様にして定量、解析することができる。

本発明のF P R L 1 またはF P R L 2 の発現量を変化させる化合物またはそ
の塩のスクリーニングは、

(i) 正常あるいは疾患モデル非ヒト哺乳動物に対して、薬剤あるいは物理的ストレスなどを与える一定時間前（30分前～24時間前、好ましくは30
20 分前～12時間前、より好ましくは1時間前～6時間前）もしくは一定時間後（30分後～3日後、好ましくは1時間後～2日後、より好ましくは1時間後～24時間後）、または薬剤あるいは物理的ストレスと同時に試験化合物を投与し、投与後一定時間経過後（30分後～3日後、好ましくは1時間後～2日後、より好ましくは1時間後～24時間後）、細胞に含まれる本発明のF P R
25 L 1 またはF P R L 2 のmRNA量を定量、解析することにより行なうことができる。

(ii) 形質転換体を常法に従い培養する際に試験化合物を培地中に混合させ、一定時間培養後（1日後～7日後、好ましくは1日後～3日後、より好ましくは2日後～3日後）、該形質転換体に含まれる本発明のF P R L 1 またはF P
26 L 1 またはF P R L 2 のmRNA量を定量、解析することにより行なうことができる。

R L 2 のmRNA量を定量、解析することにより行なうことができる。
試験化合物としては、例えは、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが用いられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

もよい。

試験化合物は塩を形成していてもよく、試験化合物の塩としては、生理学的に併容される酸（例、無機酸など）や塩基（例、有機酸など）などの塩が用いられ、とりわけ生理学的に併容される酸付加塩が好ましい。この様な塩としては、例えは、無機酸（例、無機酸など）や塩基（例、有機酸など）との塩、あるいは有機酸（例えは、酢酸、ギ酸、プロピオノ酸、フマル酸、マレイン酸、ユハク酸、酒石酸、クエン酸、リノゴ酸、檸檬酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など）との塩などが用いられる。

本発明のスクリーニング方法を用いて得られる化合物またはその塩は、本発明のF P R L 1 またはF P R L 2 の発現量を変化させる作用を有する化合物またはその塩であり、具体的には、(イ) 本発明のF P R L 1 またはF P R L 2 の発現量を増加させることにより、F P R L 1 またはF P R L 2 を介する細胞刺激活性を增强させる化合物またはその塩、(ロ) 本発明のF P R L 1 またはF P R L 2 の発現量を減少させることにより、該細胞刺激活性を减弱させる化合物またはその塩である。

細胞刺激活性としては、例えは、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリノ酸产生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性などが挙げられるが、なかでも細胞内cAMP生成抑制活性が好ましい。

本発明のスクリーニング方法を用いて得られる化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

本発明のスクリーニング方法を用いて得られる化合物の塩としては、生理学的に併容される酸（例、無機酸など）や塩基（例、有機酸など）などとの塩が

用いられ、とりわけ生理学的に興味があるが好ましい。この様な塩としては、例えば、無機酸（例えば、塩酸、リン酸、臭化水素酸、硫酸など）との塩、あるいは有機酸（例えば、酢酸、ギ酸、プロピオン酸、マル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、檸檬酸、安息香酸、メタンス

一方、上記スクリーニング方法で得られる本発明のF P R L 1またはF P R L 2の発現量を減少させる化合物またはその塩は、本発明のF P R L 1またはF P R L 2の発現過多に起因する疾患の予防・治療剤などの医薬として使用することができる。

ルホン臓、ヘンゼンスルホン臓など)との異なが用いられる。本発明のF P R L 1またはF P R L 2のリガンドは、上記のとおり huma

本品のソルベント、ニンジンガムを用いて作成した日焼け止めの塗料医薬品として使用する場合、常套手段に従って剝離化ができる。

(1) 本発明のF P R L 1またはF P R L 2の発現量を増加し、本発明のF P R L 1またはF P R L 2の機能不全に関する疾患を予防・治療する化合物またはその塩、具体的には、神経変性疾患もしくは脳機能障害を予防・治療する化合物またはその塩、または細胞死を抑制する化合物またはその塩、または(2) 本発明のF P R L 1またはF P R L 2の発現量を減少させ、本発明のF P R L 1またはF P R L 2の発現過多に起因する疾患を予防・治療する化合物またはその塩などである。

しくはそれ以外の薬理学的に評定し得る波との無菌性溶液、または懸濁液剤など
の注射剤の形で非経口的に使用できる。例えは、核酸化合物またはその塩を生理
学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、
結合剤などとともに一般に認めたされた製剤実施に要求される単位用量形態で混
和することによって製造することができる。これら製剤における有効成分量は
指示された範囲の適当な容量が得られるようにするものである。
錠剤、カプセル剤などに混和することができる添加剤としては、例えは、ゼ

F P R L 2 の発現量を増加する化合物またはその塩は、例えば、細胞死抑制剤として、さらには、例えば神経変性を伴う疾病など、例えば、神経変性疾患（例、アルツハイマー病（家族性アルツハイマー病、若年性アルツハイマー病、孤発性アルツハイマー病など）、パーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロバチー、多発性硬化症など）、脳機能障害（例、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫、硬膜下血腫など）、癌（例、星状細胞腫、乏枝神経膠腫など）、免疫疾患、感染症（例、結膜炎、原虫感染症、リケッチャ感染症、後生動物感染症、Born病など）の細菌性またはウイルス性髓炎、ワクチン接種後脳炎、A I D S脳症など）、消化管疾患、循環器疾患、内分泌疾患等の種々の疾病的予防・治療剤、好ましくは神経変性疾患、脳機能障害の予防・治療剤として、さらに好ましくはアルツハイマー病の予防・治療剤として、低毒性で安全な医薬として使用することができる。

セルロースのような纖維形剤、コーンスターク、ゼラチン、アルギン酸などのような膨脹剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサツカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タブレットの材料にさらにお脂のような液状担体を含有することができる。注射のために無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性波としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液（例えば、D-ソルビトール、D-マニシトール、塩化ナトリウムなど）などが用いられ、適當な溶解補助剤、例えば、アルコール（例、エタノール）、ポリアルコール（例、プロピレンガリコール、ポリエチレンガリコール）、非イオン性界面活性剤（例、ポリソルベート80TM、HCO-50）などと併用してもよい。油性波としては、例え

ば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

また、上記予防・治療剤は、例えば、緩衝剤（例えは、リン酸塩緩衝液、酢酸ナトリウム緩衝液）、無痛化剤（例えは、塩化ベンツルコニウム、塩酸プロカインなど）、安定剤（例えは、ヒト血清アルブミン、ポリエチレングリコールなど）、保存剤（例えは、ベンジルアルコール、フェノールなど）、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えは、ヒトや哺乳動物（例えは、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど）に対して投与することができる。

該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えは、アルツハイマー病患者（体重60kgとして）においては、一日につき本発明のF P R L 1またはF P R L 2の発現量を増加する化合物またはその塩を約0.1～100mg、

好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。

非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えは、注射剤の形では通常例えは、アルツハイマー病患者（体重60kgとして）においては、一日につき本発明のF P R L 1またはF P R L 2の発現量を増加する化合物またはその塩を約0.01

R.L.1またはF P R L 2の発現量を約0.1～20mg程度、より好ましくは約0.

1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

(4) 本発明の抗体を用いる診断方法

本発明の抗体は、本発明のF P R L 1またはF P R L 2を特異的に認識することができる、被検液中のF P R L 1またはF P R L 2の検出や中和に使用することができる。

すなわち、本発明は、

- 本発明の抗体と、被検液および標識化されたF P R L 1またはF P R L

2とを競合的に反応させ、該抗体に結合した標識化されたF P R L 1またはF P R L 2の割合を測定することを特徴とする被検液中のF P R L 1またはF P R L 2の定量法、および

(ii) 被検液と抗体上に不溶化した本発明の抗体および標識化された本発明の別抗体と同時に運動的に反応させたのち、不溶化抗体上の標識剤の活性を測定することを特徴とする被検液中のF P R L 1またはF P R L 2の定量法を提供する。

上記(ii)の定量法においては、一方の抗体がF P R L 1またはF P R L 2のN端部を認識する抗体で、他方の抗体がF P R L 1またはF P R L 2のC端部に反応する抗体であることが望ましい。

また、F P R L 1またはF P R L 2に対するモノクローナル抗体を用いてF P R L 1またはF P R L 2の定量を行うことができるほか、組織染色等による検出を行なうこともできる。これらの目的には、抗体分子そのものを用いてよく、また、抗体分子のF(ab')₂、F(ab')、あるいはF(ab)画分を用いてもよい。

本発明の抗体を用いるF P R L 1またはF P R L 2の定量法は、特に制限されねばならない。被検液中の抗原量（例えは、F P R L 1量またはF P R L 2量）に対応した抗体、抗原もしくは抗体-抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えは、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられるが、感度、特異性の点で、後述するサンドイッチ法を用いるのが特に好ましい。

標識物質を用いる測定法に用いられる標識剤としては、例えは、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えは、[¹²⁵I]、[¹³¹I]、[³H]、[¹⁴C]などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えは、β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリオフスファターゼ、バーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えは、フル

オレスカミン、フルオレッセンイソシアネートなどが用いられる。発光物質としては、例えば、ルミニール、ルミニール試験体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチンーアビジン系を用いることもできる。

抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常

F P R L 1、F P R L 2あるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方法でもよい。粗体としては、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコーン等の合成樹脂、あるいはガラス等が用いられる。

サンドイッチ法においては不溶化した本発明のモノクローナル抗体に被検波を反応させ(1次反応)、さらに標識化した別の本発明のモノクローナル抗体

を反応させ(2次反応)たのち、不溶化粗体上の標識剤の活性を測定することにより被検波中の本発明のF P R L 1量またはF P R L 2量を定量することができる。1次反応と2次反応は逆の順序に行っても、また、同時になっても

よいし時間をずらして行なってもよい。標識化剤および不溶化の方法は前記のそれに準じることができる。また、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用抗体に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる等の目的で2種類以上の抗体の混合物を用いてもよい。

本発明のサンドイッチ法によるF P R L 1またはF P R L 2の測定法においては、1次反応と2次反応に用いられる本発明のモノクローナル抗体は、F P R L 1またはF P R L 2の結合する部位が異なる抗体が好ましく用いられる。

すなわち、1次反応および2次反応に用いられる抗体は、例え、2次反応で用いられる抗体が、F P R L 1またはF P R L 2のC端部を認識する場合、1

次反応で用いられる抗体は、好ましくはC端部以外、例えN端部を認識する抗体が用いられる。

本発明のモノクローナル抗体をサンドイッチ法以外の測定システム、例え、競合法、イムノメトリック法あるいはネフロメトリーなどに用いることができ。る。

競合法では、被検波中の抗原と標識抗原とを抗体に対して競合的に反応させたのち、未反応の標識抗原(F)と、抗体と結合した標識抗原(B)とを分離し(B/F分離)、B、Fいずれかの標識量を測定し、被検波中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B/F分離をポリエチレングリコール、前記抗体に対する第2抗体などを用いる液相法、および、第1

抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。

イムノメトリック法では、被検波中の抗原と固相化抗原とを一定量の標識化抗体に対する後回相と液相を分離するか、あるいは、被検波中

の抗原と過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反応の標識化抗体を固相に結合させたのち、固相と液相を分離する。次に、いずれかの相の標識量を測定し被検波中の抗原量を定量する。

また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果生じた不溶性の沈降物の量を測定する。被検波中の抗原量が豊かであり、少量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフロメトリーなどが好適に用いられる。

これら個々の免疫学的測定法を本発明の定量方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的知識を加えて本発明のF P R L 1の測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参照することができる。

例え、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、入江 寛編「競ラジオイムノアッセイ」(講談社、昭和54年発行)、石川栄治ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編「酵素免疫測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら編「酵素免疫測定法」(第3版)(医学書院、昭和62年発行)、「Methods in ENZYMOLOGY」Vol. 70(Immunochemical Techniques(Part A))、同書 Vol. 73(Immunochemical Techniques(Part B))、同書 Vol. 74(Immunochemical Techniques(Part C))、同書 Vol. 84(Immunochemical Techniques(Part D)):

Selected Immunoassays)、同書 Vol. 92(Immunochemical Techniques(Part E : Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 121(Immunochemical Techniques(Part I : Hybridoma Technology and Monoclonal Antibodies)) (以上、アカデミックプレス社発行)などを参照することができる。

5 以上のようにして、本発明の抗体を用いることによって、本発明のF P R L 1を適度良く定量することができる。

さらには、本発明の抗体を用いてF P R L 1またはF P R L 2の濃度を定量することによって、F P R L 1またはF P R L 2の濃度の減少が検出された場合、例えは、神経変性を伴う疾病など、例えは、神経変性疾患(例、アルツハイマー病(家族性アルツハイマー病、若年性アルツハイマー病、孤児性アルツハイマー病など)、バーキンソン病、ダウン症、筋萎縮性側索硬化症、

10 ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性二頭炎、四肢神經脱腫など)、免疫疾患、感染症(例、脳膜炎、原虫感染症、リケ

15 ッチア感染症、後生動物感染症、B orn a病などの細菌性またはウイルス性細膜炎、ワクチン接種後脳炎、A I D S脳症など)、消化管疾患、循環器疾患、内分泌疾患等の疾病である可能性が高いと診断することができる。

また、F P R L 1またはF P R L 2の濃度の増加が検出された場合には、例えは、F P R L 1またはF P R L 2の過剰発現に起因する疾患である、または

20 将来罹患する可能性が高いと診断することができる。

(5) F P R L 1またはF P R L 2に対するアゴニストのスクリーニング方法

humaninがF P R L 1またはF P R L 2に結合することによって、細

25 胞内c A M Pの生成抑制が見られる。したがって、F P R L 1またはF P R L 2は、細胞内c A M Pの生成活性を指標としてF P R L 1またはF P R L 2に対するhumanin以外のアゴニスト(天然リガンドを含む)を探査し、または決定するための試薬として有用である。

すなわち、本発明は、試験化合物をF P R L 1またはF P R L 2を含有する細胞に接触させた場合における、F P R L 1またはF P R L 2を介した細胞内

c A M P生成抑制活性を測定することを特徴とするF P R L 1またはF P R L 2に対するアゴニストの決定方法を提供する。

*試験化合物としては、公知のリガンド(例えは、アンギオテンシン、ボンペシジン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、ブリン、バソプレッシン、オキシトシン、PACAP(例、PACAP27, PACAP38)、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、スマトスタチン、GHRH, C

10 RF、ACTH、GRP、PTH、VIP(パシアクティブインテスティナル アンド リレイテッド ポリペプチド)、スマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシトニンシージーリーティッドペプチド)、ロイコトリエン、バンクレアスタン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、ケモカインスーパーファミリー(例、IL-8, GRO α , GRO β , GRO γ , NAP-2, ENA-

15 7-8, GCP-2, PF4, IP-10, MIG, PBSF/SDF-1など

のCX3Cケモカインサブファミリー; MCAF/MCP-1, MCP-2, MCP-3, MCP-4, eotaxin, RANTES, MIP-1 α , MIP-1 β , HCC-1, MIP-3 α /LARC, MIP-3 β /ELC, I

-309, TARC, MIPF-1, MIPF-2/eotaxin-2, MDC, DC-CK1/PARC, SLCAなどのCCケモカインサブファミリー

20 ; lymphotactinなどのCケモカインサブファミリー; fractalkineなどのCX3Cケモカインサブファミリー等)、エンドセリン、エンドロガストリン、ヒスタミン、ニューロテンシン、TRH、バンクレアティックポリペプチド、ガラニン、リソホスファチジン酸(LPA)、スフィンゴシン1-リシン酸など)の他に、例えは、ヒトまたは哺乳動物(例えは、マウス、ラット、ブタ、ウシ、ヒツジ、サルなど)の組織抽出物、細胞培养上清、低分子合成化合物などが用いられる。例えは、核組織抽出物、細胞培養上清などをF P R L 1またはF P R L 2に添加し、細胞刺激活性などを測定しながら分画し、最終的に単一のリガンドを得ることができる。

- 試験化合物は塩を形成していてもよく、試験化合物の塩としては、生理学的に許容される酸（例、無機酸など）や塩基（例、有機酸など）などの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸（例えば、塩酸、リン酸、臭化水素酸、硫酸など）との塩、あるいは有機酸（例えば、酢酸、ギ酸、リノ酸、リンゴ酸、草酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など）との塩などが用いられる。
- 具体的には、F PRL 1またはF PRL 2に対するアゴニスト決定方法は、本発明の組換え型 F PRL 1またはF PRL 2の発現系を構築し、該発現系を用いたレセプター結合アッセイ系を用いることによって、F PRL 1またはF PRL 2を介する細胞内 c AMP生成抑制活性を有する化合物またはその塩を決定する方法である。
- より具体的には、本発明は、次のような決定方法を提供する。
- (1) 試験化合物をF PRL 1またはF PRL 2を含有する細胞に接觸させた場合における細胞内 c AMP生成抑制活性を測定することを特徴とするF PRL 1またはF PRL 2に対するアゴニストの決定方法、および
 - (2) 試験化合物をF PRL 1 DNAまたはF PRL 2 DNAを含有する形質転換体を培養することによって細胞膜上に発現したF PRL 1またはF PRL 2に接觸させた場合におけるF PRL 1またはF PRL 2を介する細胞内 c AMP生成抑制活性を測定することを特徴とするF PRL 1またはF PRL 2に対するアゴニストの決定方法を提供する。
- 特に、試験化合物がF PRL 1またはF PRL 2に結合することを確認した後に、上記の試験を行なうことが好ましい。
- 本発明のアゴニスト決定方法において、F PRL 1またはF PRL 2を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法は公知の方法に従って行なうことができる。
- F PRL 1またはF PRL 2を含有する細胞の膜画分としては、細胞を破碎した後、公知の方法で得られる細胞膜が多く含まれる画分のことという。細胞

の破碎方法としては、Potter-Elephant型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダー やポリトロン (Kinematica社製) による破碎、超音波による破碎、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破碎などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破碎液を低速（500～3000 rpm）で短時間（通常、約1～10分）遠心し、上清をさらに高速（15000～30000 rpm）で通常30分～2時間遠心し、得られる沈殿を膜画分とする。膜画分中には、発現したF PRL 1またはF PRL 2と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

F PRL 1またはF PRL 2を含有する細胞やその細胞膜画分中のF PRL 1またはF PRL 2の量は、1細胞当たり 10^3 ～ 10^6 分子であるのが好ましく、 10^5 ～ 10^6 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性（比活性）が高くなり、高濃度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

本発明のアゴニスト決定方法を実施するためには、F PRL 1またはF PRL 2を介する細胞内 c AMP生成抑制活性を公知の方法または市販の測定用キットを用いて測定することができる。具体的には、まず、F PRL 1またはF PRL 2を含有する細胞をマルチウェルプレート等に培養する。アゴニスト決定を行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方に従って定量する。細胞刺激活性の指標とする物質（例えは、cAMPなど）の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。

本発明のアゴニスト決定用キットは、F PRL 1またはF PRL 2を含有する細胞またはその細胞膜画分を含有するものである。

本発明のアゴニスト決定方法を用いることによって、細胞内cAMP生成抑制活性を示す化合物をF P R L 1またはF P R L 2に対するアゴニストとして選択することができる。

このようにして決定されるF P R L 1またはF P R L 2に対するアゴニストとし

ては、例えば、細胞死抑制剤として、さらには、例えば神經変性を伴う疾病など、年性アルツハイマー病、孤癡性アルツハイマー病など)、パーキンソン病、ダ

ウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルトヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、多発性硬化症など)、脳梗塞、血管狭窄症、糖尿病性ニューロパシー、多発性硬化症など)、脳梗塞、血管狭窄症、糖尿病性ニューロパシー、多発性硬化症など)、脳梗塞、血管狭窄症、糖尿病性ニューロパシー、多発性硬化症など)、免疫疾患、感染症(

例、結膜炎、原虫感染症、リケッチア感染症、後生動物感染症、Born病などの細菌性またはウイルス性結膜炎、ワクチン接種後結膜炎、AIDS脳症など)、消化管疾患、循環器疾患、内分泌疾患等の種々の疾病的予防・治療剤として、さらに好ましく

はシグナル伝達を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明のスクリーニング方法においては、(i) と (ii) の場合における、例えば、F P R L 1またはF P R L 2に対するhumaninの結合量、細胞刺激活性などを測定して、比較することを特徴とする。

細胞刺激活性としては、例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリシン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性などが挙げられるが、なかでも細胞内cAMP生成抑制活性が好ましい。

より具体的には、本発明は、

a) 標識したhumaninを、本発明のF P R L 1またはF P R L 2に接

触させた場合と、標識したhumaninおよび試験化合物を本発明のF P R L 1またはF P R L 2に接触させた場合における、標識したhumaninのセイ系を用いることによって、リガンドであるhumaninと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物(例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など)またはその塩を効率よくスクリーニングができる。

このような化合物には、(i) F P R L 1またはF P R L 2を介して細胞刺

激活性を有する化合物(いわゆる、本発明のF P R L 1またはF P R L 2に対するアゴニスト)、(ii) F P R L 1またはF P R L 2を介する細胞刺激活性を阻害する化合物(いわゆる、本発明のF P R L 1またはF P R L 2に対するアントゴニスト)、(iii) humaninと本発明のF P R L 1またはF P R L 2との結合力を増強する化合物、または(iv) humaninと本発明のF P R L 1またはF P R L 2との結合力を減少させる化合物などが含まれる。

すなわち、本発明は、(i) 本発明のF P R L 1またはF P R L 2とhumaninと接触させた場合と(ii) 本発明のF P R L 1またはF P R L 2とhumaninおよび試験化合物と接触させた場合との比較を行なうことを利用とする。humaninと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法を

本発明のスクリーニング方法においては、(i) と (ii) の場合における、例えば、F P R L 1またはF P R L 2に対するhumaninの結合量、細胞刺激活性などを測定して、比較することを特徴とする。

細胞刺激活性としては、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリシン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性などが挙げられるが、なかでも細胞内cAMP生成抑制活性が好ましい。

より具体的には、本発明は、

a) 標識したhumaninを、本発明のF P R L 1またはF P R L 2に接

触させた場合と、標識したhumaninおよび試験化合物を本発明のF P R L 1またはF P R L 2に接触させた場合における、標識したhumaninのセイ系を用いることによって、リガンドであるhumaninと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物(例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など)またはその塩を効率よくスクリーニングができる。

このような化合物には、(i) F P R L 1またはF P R L 2を介して細胞刺

nおよび試験化合物を本発明のF P R L 1またはF P R L 2を含有する細胞または該細胞の膜画分に接触させた場合における、標識したh u m a n i nの該細胞または該膜画分に対する結合量を測定し、比較することを特徴とするh u m a n i nと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法、

c) 標識したh u m a n i nを、本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現したF P R L 1またはF P R L 2に接触させた場合と、標識したh u m a n i nおよび試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明のF P R L 1またはF P R L 2に接触させた場合における、標識したh u m a n i nの該F P R L 1またはF P R L 2に対する結合量を測定し、比較することを特徴とするh u m a n i nと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法、

d) 本発明のF P R L 1またはF P R L 2を活性化する化合物またはその塩（例えば、h u m a n i nなど）を本発明のF P R L 1またはF P R L 2を含むする細胞に接触させた場合と、本発明のF P R L 1またはF P R L 2を活性化する化合物および試験化合物を本発明のF P R L 1またはF P R L 2を介した細胞刺激活性を測定し、比較することを特徴とするh u m a n i nと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法、および

e) 本発明のF P R L 1またはF P R L 2を活性化する化合物またはその塩（例えば、h u m a n i nなど）を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明のF P R L 1またはF P R L 2に接触させた場合と、本発明のF P R L 1またはF P R L 2を活性化する化合物および試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明のF P R L 1またはF P R L 2に接触させた場合における、F P R L 1またはF P R L 2を介する細胞刺激活性を測定し、比較することを特徴とするh u m a n i nと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法を提供する。

L 2との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法を提供する。

さらに、リガンドとしては、h u m a n i nに代えて、h u m a n i nとF P R L 1またはF P R L 2との結合性を変化させる化合物またはその塩を用い、nを用いて、後述する本発明のスクリーニング方法を実施することによって得ることもできる。このh u m a n i nとF P R L 1またはF P R L 2との結合性を変化させる化合物またはその塩は、例えば、リガンドとしてh u m a n i nを用いて、後述する本発明のスクリーニング方法を実施することによって得ることができる。以下のスクリーニング方法においては、h u m a n i nとF P R L 1またはF P R L 2との結合性を変化させる化合物またはその塩を含めて、單にh u m a n i nと表記する。

本発明のスクリーニング方法の具体的な説明を以下にする。

まず、本発明のスクリーニング方法に用いる本発明のF P R L 1またはF P R L 2としては、上記した本発明のF P R L 1またはF P R L 2を含有するものであれば何れのものであってもよいが、本発明のF P R L 1またはF P R L 2を含有する哺乳動物の臍器の細胞膜画分が好適である。しかし、特にヒト由來の臍器は入手が極めて困難なことから、スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたヒト由来のF P R L 1またはF P R L 2などが適している。

本発明のF P R L 1またはF P R L 2を製造するには、上記の方法が用いられるが、本発明のDNAを哺乳細胞や昆虫細胞で発現することにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片には相補DNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。本発明のF P R L 1またはF P R L 2をコードするDNA断片を宿主動物細胞に導入し、それらを効率よく発現させるためには、該DNA断片を昆虫を宿主とするバキュロウイルスに属する核多角体病

ウイルス (nuclear polyhedrosis virus; NPV) のポリヘドリンプロモーター、SV 40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SR αプロモーターなどの下流に組み込むのが好ましい。

発現したレセプターの量と質の検査はそれ自体公知の方法で行うことができる。

例えば、文献 [Nambi, P. ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (J. Biol. Chem.) , 267巻, 1955～19559頁, 1992年] に記載の方法に従って行なうことができる。

したがって、本発明のスクリーニング方法において、本発明のF P R L 1またはF P R L 2を含有するものとしては、それ自体公知の方法に従って精製したF P R L 1またはF P R L 2であってもよいし、該F P R L 1またはF P R L 2を含有する細胞を用いてもよく、また該F P R L 1またはF P R L 2を含有する細胞の膜画分を用いてもよい。

本発明のスクリーニング方法において、本発明のF P R L 1またはF P R L 2を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法はそれ自体公知の方法に従って行なうことができる。

本発明のF P R L 1またはF P R L 2を含有する細胞としては、該F P R L 1またはF P R L 2を発現した宿主細胞をいうが、該宿主細胞としては、大腸

菌、枯草菌、酵母、昆虫細胞、動物細胞などが好ましい。

細胞膜画分としては、細胞を破壊した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破壊方法としては、Potter-Elevanjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやボ

リトロン (Kinematica社製) のよる破碎、超音波による破碎、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破碎などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破碎液を低速 (500 ~ 3000 rpm) で短時間 (通常、約1~10分) 遠心し、上清をさらに高速 (15000 ~ 30000 rpm) で通常30分~2時間遠心し、得られる沈没を膜画分とする。膜画分中には、発現したF P R L 1と細胞由来のリン

脂質や膜蛋白質などの膜成分が多く含まれる。

該F P R L 1またはF P R L 2を含有する細胞や膜画分中のF P R L 1の量は、1細胞当たり 10^3 ~ 10^6 分子であるのが好ましく、 10^5 ~ 10^7 分子で

あるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性 (比活性) が高くなり、高濃度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

humaninと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物またはその塩をスクリーニングする上記の a) ～c) を実施するためには、例えば、適當なF P R L 1画分またはF P R L 2画分と、標識したhumaninが必要である。

F P R L 1画分またはF P R L 2画分としては、天然型のF P R L 1画分またはF P R L 2画分か、またはそれと同等の活性を有する組換え型F P R L 1画分またはF P R L 2画分などが望ましい。ここで、同等の活性とは、同等の標識したhumaninとしては、例えば [3 H]、 [125 I]、 [14 C]、 [35 S] などで標識されたhumaninなどが用いられる。

具体的には、humaninと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる化合物のスクリーニングを行なうには、

まず本発明のF P R L 1またはF P R L 2を含有する細胞または細胞の膜画分を、スクリーニングに適したバッファーに懸濁することによりF P R L 1標品またはF P R L 2標品を調製する。バッファーには、pH 4~10 (望ましく pH 6~8) のリン酸バッファー、トリス-塩酸バッファーなどのhumaninとF P R L 1またはF P R L 2との結合を阻害しないバッファーであればよい。また、非特異的結合を低減させる目的で、CHAPS、Tween-80TM (花王アトラス社)、ジギトニン、デオキシコレートなど界面活性剤をバッファーに加えることもできる。さらに、プロテアーゼによるレセプターやhumaninの分解を抑える目的でPMSF、ロイペプチド、E-64 (ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.011~1.0mMの該レセプター溶液に、一定量 (5000~500000 cpm) の標識したhumaninを添加し、同時に $10^{-4}M$ ~ $10^{-10}M$ の試験化合物を共存させる。非特異的結合量 (NSB) を知るために大過剎の未標識のhumaninを加えた反応チューブも用意する。

反応は約0～5°C、望ましくは約4～37°Cで、約20分～24時間、望ましくは約30分～3時間行う。反応後、ガラス纖維濾紙に残存する放射活性を液体シンチレッシャーで洗浄した後、ガラス纖維濾紙等で滤過し、適量の同

5 パッファーで洗浄した後、ガラス纖維濾紙に残存する放射活性を液体シンチレーションカウンターまたはリーカウンターで計測する。拮抗する物質がない場合のカウント(B₀)から非特異的結合量(NSB)を引いたカウント(B₀-NSB)を100%とした時、特異的結合量(B-NSB)が、例えば、50%

以下になる試験化合物を拮抗阻害能力のある候補物質として選択することができる。

humaninと本発明のFPR1またはFPR2との結合性またはシグナル伝達を変化させる化合物をスクリーニングする上記のd)～e)の方法

10 を実施するためには、例えば、FPR1またはFPR2を介する細胞刺激活性を公知の方法または市販の測定用キットを用いて測定することができる。

具体的には、まず、本発明のFPR1またはFPR2を含有する細胞をマルチウェルプレート等に培養する。スクリーニングを行なうにあたっては前

15 もつて新鮮な培地あるいは細胞に毒性を示さない適当なパッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した蛋白質をそれとの方法に従って定量する。細胞

刺激活性の指標とする物質(例えは、cAMP、アラキドン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、cAMP産生抑制などの活性

20 については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。

細胞刺激活性を測定してスクリーニングを行なうには、適当なFPR1またはFPR2を発現した細胞が必要である。本発明のFPR1またはFPR2を発現した細

25 胞株などが多い。

試験化合物としては、例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、发酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが用い

られ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

試験化合物は塩を形成していてもよく、試験化合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、有機酸など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えは、無機酸(例えは、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えは、酢酸、ギ酸、プロピオン酸、フマル酸、マレイ酸、コハク酸、酒石酸、クエン酸、リンゴ酸、亜酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

また、試験化合物としては、FPR1またはFPR2の活性部位の原子座標およびリガンド結合ポケットの位置に基づいて、リガンド結合ポケットに結合するよう設計された化合物が好ましく用いられる。FPR1またはFPR2の活性部位の原子座標およびリガンド結合ポケットの位置の測定は、公知の方法あるいはそれに準じる方法を用いて行なうことができる。

15 humaninとFPR1またはFPR2との結合性を変化させる化合物またはその塩がアゴニストかアンダゴニストであるかは、上記したFPR1またはFPR2に対するアゴニストのスクリーニング方法を用いて確認することができる。

humaninと本発明のFPR1またはFPR2との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング用キットは、本発明のFPR1またはFPR2、本発明のFPR1またはFPR2を含有する細胞、または本発明のFPR1またはFPR2を含有する細胞の膜画分を含有するものなどである。

本発明のスクリーニング用キットの例としては、次のものが挙げられる。

20 1. スクリーニング用試薬
a) 測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution(ギブコ社製)に、0.05%のウシ血清アルブミン(シグマ社製)を加えたもの。
孔径0.45μmのフィルターで滤過滅菌し、4°Cで保存するか、あるいは用

時融解しても良い。

b) F P R L 1 標品またはF P R L 2 標品

本発明のF P R L 1またはF P R L 2を発現させたC H O細胞を、12穴プレートに 5×10^4 個／穴で離代し、37°C、5%CO₂、95%airで2日間培養したもの。

c) 標識h u m a n i n

市販の[³H]、[¹²⁵I]、[¹⁴C]、[³⁵S]などで標識したh u m a n i nを溶媒のH₂O、DMSOなどと本発明のF P R L 1またはF P R L 2に対するアゴニスト、(ロ)該細胞刺激活性を有しない化合物またはその塩(いわゆる、本発明のF P R L 1またはF P R L 2に対するアンタゴニスト)、(ハ)h u m a n i nと本発明のF P R L 1またはF P R L 2との結合力を増強する化合物またはその塩、あるいは(二)h u m a n i nと本発明のF P R L 1またはF P R L 2との結合力を減少させる化合物またはその塩にて1μMに希釈する。

d) h u m a n i n標準液

h u m a n i nを0.1%ウシ血清アルブミン(シグマ社製)を含むP B Sで1mMとなるよう溶解し、-20°Cで保存する。

2. 測定法

15 a) 12穴組培養用プレートにて培養した本発明のF P R L 1またはF P R L 2発現C H O細胞を、測定用緩衝液1mlで2回洗浄した後、490μl

の測定用緩衝液を各穴に加える。

b) 10⁻⁹~10⁻¹Mの試験化合物溶液を5μl加えた後、標識h u m a n i nを5μl加え、室温にて1時間反応させる。非特異的結合量を知るために

20 c) 反応液を除去し、1mlの洗浄用緩衝液で3回洗浄する。細胞に結合した標識h u m a n i nを0.2N NaOH-1%SDSで溶解し、4mlの液体シンチレーターA(和光純薬製)と混合する。

d) 液体シンチレーションカウンター(ベックマン社製)を用いて放射活性を測定し、Percent Maximum Binding (PMB) を次の式で求める。

$$P M B = [(B - N S B) / (B_0 - N S B)] \times 100$$

P M B : Percent Maximum Binding

B : 検体を加えた時の値

N S B : Non-specific Binding (非特異的結合量)

B₀ : 最大結合量

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、h u m a n i nと本発明のF P R L 1またはF P R L 2との結合性またはシグナル伝達を変化させる作用を有する化合物またはその塩であり、具体的には、(イ) 本発明のF P R L 1またはF P R L 2を介して細胞刺激活性化、p Hの低下などを促進する活性または抑制する活性など)を有する化合物またはその塩(いわゆる、本発明のF P R L 1またはF P R L 2に対するアゴニスト)、(ロ)該細胞刺激活性を有しない化合物またはその塩(いわゆる、本発明のF P R L 1またはF P R L 2に対するアンタゴニスト)、(ハ)h u m a n i nと本発明のF P R L 1またはF P R L 2との結合力を増強する化合物またはその塩、あるいは(二)h u m a n i nと本発明のF P R L 1またはF P R L 2との結合力を減少させる化合物またはその塩である。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、培養細胞などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

該化合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、有機酸など)などの塩が用いられ、とりわけ生理学的に許容される酸(例、有機酸など)などの塩が用いられ、この様な塩としては、例えば、無機酸(例えは、塩酸、リン酸、硫酸など)との塩、あるいは有機酸(例えは、酢酸、ギ酸、リボビオン酸、フマル酸、マレイイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、檸檬酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

本発明のF P R L 1またはF P R L 2に対するアゴニストは、h u m a n i nが有する生理活性と同様の作用を有しているので、h u m a n i nが有する生理活性に応じて安全で低毒性な医薬として有用である。

本発明のF P R L 1またはF P R L 2に対するアンタゴニストは、h u m a n i nが有する生理活性を抑制することができるので、h u m a n i nの生理

活性を抑制するための安全で低毒性な医薬として有用である。

*humanin*と本説明のFPRLL1またはFPRLL2との結合力を増強する化合物またはその塩は、*humanin*が有する生理活性を增强するための

安全で低毒性な医薬として有用である。

せる化合物またはその塩は、humaninが有する生理活性を減少させるためのhumaninの生理活性を抑制するための安全で低毒性な医薬として有用である。

具体的には、本発明のスクリーニング方法またはスクリーニング用キットを用いて得られるアゴニストまたはhumaninと本発明のFPR1または

F P R L 2との結合力を増強する化合物またはその塩は、例えは、細胞死抑制剤として、さらには、例えは神経変性を伴う疾患など、例えは、神経変性疾病患者 [例 アルツハイマー病 (空虚性アルツハイマー病, 老年性アルツハイマー病

孤発性アルツハイマー病など)、バーキンソン病、ダウン症、筋弛緩性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病

病性ニューロパチー、多発性硬化症など)、脳機能障害(例、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫、硬膜下血腫など)、癌(例、星状細胞腫、乏枝神経膠腫など)、免疫疾患、感染症(例、結核炎、原虫感染症、リケンチャア感染症、後生動物感染症、Borrelia病などの細菌性またはウイルス性髄膜炎、ワクチン接種後脳炎、AIDS脳症など)、消化管疾患、循環器疾患、内分泌疾患等の種々の疾病的予防・治療剤、好ましくは神經変性疾患、脳機能障害の予防・治療剤として、さらに好ましくはアルツハイマー病の予防・治療剤として、低毒性で安全な医薬として使用することができる。

一方、上記スクリーニング方法で得られるアンタゴニストまたはhuman F P R L 1 またはF P R L 2との結合力を減少させる化合物またはその塩は、本発明のF P R L 1 またはF P R L 2の発現過多に起因する疾患の予防・治療剤などの医薬として使用することができる。

さらに、上記スクリーニング方法で得られるアンタゴニストのうち、 β -アミロイド(1-42)とFPRL1との結合を阻害するものは、例えば、細胞

86

18

死抑制剤として、さらには、例えば神經変性を伴う疾病など、例えば、神經變

脳出血、ナセード出血、虚血性脳梗塞、硬膜外血腫、硬膜下血腫など)、幼例、星状細胞腫、乏枝神経膠腫など)、免疫疾患、感染症(例、齶膜炎、原虫症、感染症、リッジチア感染症、後生動物感染症、Bornia病などの細菌性疾患)

はウイルス性結膜炎、ワクチン接種後脳炎、AIDS脳症など)、消化管疾患(循環器疾患、内分泌疾患等の種々の疾病的予防・治療薬)、好ましくは神経薬(抗

疾患、脳機能障害の予防・治療剤として、さらに軽くはアルツハイマー病の予防・治療剤として、低毒性で安全な医薬として使用することができる。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩を上記の医薬組成物として使用する場合、常套手段に行

って製剤化することができる。

ル剤、エリキシル剤、マイクロカプセル剤などとして臨口的に、あるいは水でしくはそれ以外の薬理学的に許容し得る波との無菌性溶液、または懸濁液剤なくなく

の注射剤の形で非経口的に使用できる。例えば、該化合物またはその塩を生成する物質に認められる公知の坦体、香味剤、減形剤、ペヒクリ、防腐剤、安定剤、

結合剤などとともに一般に認められた製剤実施に要求される単位用錠形態で溶和することによって製造することができる。これら製剤における有効成分量は

指示された範囲の適當な容量が得られるようにするものである。
錠剤、カプセル剤などに混和することができる添加剤としては、例えば、+

ラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶糊、セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などの。

うな膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またにサツカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのよ

(7) 各種薬物の作用メカニズムの解説方法
5 F P R L 1またはF P R L 2を用いることによって、各種薬物がF P R L 1
水、ブドウ糖やその他の補助薬を含む等張液（例えば、D-ソルビール、D
マントール、塩化ナトリウムなど）などが用いられ、適当な溶解補助剤、
10 例え、アルコール（例、エタノール）、ポリアルコール（例、プロピレンギ
リコール、ポリエチレングリコール）、非イオン性界面活性剤（例、ポリソル
ベート80™、HCO-50）などと併用してもよい。油性液としては、例え
ば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベ
ンジルアルコールなどと併用してもよい。

また、上記予防・治療剤は、例え、緩衝剤（例え、リン酸緩衝液、酢
酸ナトリウム緩衝液）、無痛化剤（例え、塩化ベンゼンコニウム、塩酸プロ
カインなど）、安定剤（例え、ヒト血清アルブミン、ポリエチレングリコー
ルなど）、保存剤（例え、ベンジルアルコール、フェノールなど）、酸化防
止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填
される。

このようにして得られる製剤は安全で低毒性であるので、例え、ヒトや哺
乳動物（例え、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、
20 サルなど）に対して投与することができる。

該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例え、アルツハイマー病
患者（体重60kgとして）においては、一日につきF P R L 1またはF P R
L 2に対するアゴニストを約0.1~1.00mg、好ましくは約1.0~5.0mg
25 より好ましくは約1.0~2.0mgである。非経口的に投与する場合は、
その1回投与量は投与対象、対象臓器、症状、投与方法などによって異なる
が、例え、注射剤の形では通常例え、アルツハイマー病患者（体重60kg
として）においては、一日につきF P R L 1またはF P R L 2に対するアゴ
ニストを約0.01~3.0mg程度、好ましくは約0.1~2.0mg程度、よ

り好ましくは約0.1~1.0mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

(7) 各種薬物の作用メカニズムの解説方法

5 F P R L 1またはF P R L 2を介して薬理効果を発揮しているか否かを確認することができる。

すなわち、本発明は、

(1) F P R L 1またはF P R L 2を用いることを特徴とする、(i) 細胞
死抑制薬、(ii) 神經変性を伴う疾病など、例え、神經変性疾患（例、アル
ツハイマー病（家族性アルツハイマー病、若年性アルツハイマー病、孤癡性ア
ルツハイマー病など）、バーキンソン病、ダウン症、筋萎縮性側索硬化症、ア
リオニ病、クロイツフェルト-ヤコブ病、ハンチントン舞踏病、糖尿病性ニュ
ーロパチー、多発性硬化症など）、脳膜能障害（例、脳梗塞、脳出血、クモ膜
下出血、虚血性脳疾患、硬膜外血腫、硬膜下血腫など）、癌（例、星状細胞腫、
20 脊髄腫瘍など）、免疫疾患、感染症（例、結膜炎、原虫感染症、リケッタ
ア感染症、後生動物感染症、Borna病などの細菌性またはウイルス性結膜
炎、ワクチン接種後脳炎、AIDS脳症など）、消化管疾患、循環器疾患、内
分泌疾患等の予防・治療薬または(iii) 本発明のF P R L 1またはF P R L 2
の発現過多に起因する疾患の予防・治療薬がF P R L 1またはF P R L 2に結
合することを確認する方法。

(2) F P R L 1またはF P R L 2を用いることを特徴とする、(i) 細胞
死抑制薬または(ii) 神經変性を伴う疾患など、例え、神經変性疾患（例、
アルツハイマー病（家族性アルツハイマー病、若年性アルツハイマー病、孤癡
性アルツハイマー病など）、バーキンソン病、ダウン症、筋萎縮性側索硬化症、
25 アリオニ病、クロイツフェルト-ヤコブ病、ハンチントン舞踏病、糖尿病性ニ
ューロパチー、多発性硬化症など）、脳膜能障害（例、脳梗塞、脳出血、クモ
膜下出血、虚血性脳疾患、硬膜外血腫、硬膜下血腫など）、癌（例、星状細胞
腫瘍、脊髄腫瘍など）、免疫疾患、感染症（例、結膜炎、原虫感染症、リケ

ンチア感染症、後生動物感染症、Borrelia病などの細菌性またはウイルス性

髓膜炎、ワクチン接種後脳炎、AIDS脳症など)、消化管疾患、循環器疾患、内分泌疾患等の予防・治療薬がF P R L 1またはF P R L 2に対するアゴニストであることを確認する方法、

5 (3) F P R L 1またはF P R L 2を用いることを特徴とする、本発明のF P R L 1またはF P R L 2の発現過多に起因する疾患の予防・治療薬がF P R L 1またはF P R L 2に対するアンタゴニストであることを確認する方法、

(4) 各薬をF P R L 1またはF P R L 2に接触させた場合における、各薬とF P R L 1またはF P R L 2との結合量を測定することを特徴とする上記(1)～(3)記載のスクリーニング方法を提供する。

6 この確認方法は、前記したhumaninとF P R L 1またはF P R L 2との結合性を変化させる化合物のスクリーニング方法において、試験化合物に代えて、上記の薬物を使用することによって実施することができる。

また、本発明の確認方法用キットは、前記したhumaninとF P R L 1～(3)記載のスクリーニング方法を提供する。

7 1 またはF P R L 2との結合性を変化させる化合物のスクリーニング用キットにおいて、試験化合物に代えて、上記の薬物を含有するものである。

8 2 このように、本発明の確認方法を用いることによって、市販または開発途中的各種薬物がF P R L 1またはF P R L 2を介して薬理効果を發揮していることを確認することができる。

9 (8) 細胞膜における本発明のF P R L 1またはF P R L 2の量を変化させる化合物またはその塩を含有する医薬

10 本発明の抗体は、本発明のF P R L 1またはF P R L 2を特異的に認識することができる。細胞膜における本発明のF P R L 1またはF P R L 2の量を変化させる化合物またはその塩のスクリーニングに用いることができる。

11 すなわち本発明は、例えば、

(i) 非ヒト哺乳動物のa) 血液、b) 特定の臓器、c) 臓器から単離した組織もしくは細胞等を破壊した後、細胞膜画分を単離し、細胞膜画分に含まれる本発明のF P R L 1またはF P R L 2を定量することによる、細胞膜における本発明のF P R L 1またはF P R L 2の量を変化させる化合物またはその塩のスクリーニング方法、

12 (ii) 本発明のF P R L 1またはF P R L 2を発現する形質転換体等を破壊した後、細胞膜画分を単離し、細胞膜画分に含まれる本発明のF P R L 1またはF P R L 2を定量することによる、細胞膜における本発明のF P R L 1またはF P R L 2の量を変化させる化合物またはその塩のスクリーニング方法、

13 (iii) 非ヒト哺乳動物のa) 血液、b) 特定の臓器、c) 臓器から単離した組織もしくは細胞等を切片とした後、免疫染色法を用いることにより、細胞表面での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することによる、細胞膜における本発明のF P R L 1またはF P R L 2の量を変化させる化合物またはその塩のスクリーニング方法を提供する。

14 (iv) 本発明のF P R L 1またはF P R L 2を発現する形質転換体等を切片とした後、免疫染色法を用いることにより、細胞表面での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することによる、細胞膜における本発明のF P R L 1またはF P R L 2の量を変化させる化合物またはその塩のスクリーニング方法を提供する。

15 細胞膜画分に含まれる本発明のF P R L 1またはF P R L 2の量は具体的には以下のようにして行なう。

(i) 正常あるいは疾患モデル非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的にはアルツハイマー病モデルラット、マウス、ウサギなど)に対して、薬剤(例えば、免疫調節薬など)あるいは物理的ストレス(例えば、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えば、脳、肝臓、腎臓など)、または臓器から単離した組織あるいは細胞を得る。得られた臓器、組織または細胞等を、例えば、適当な緩衝液(例えは、トリス塩酸緩衝液、リン酸緩衝液、ヘペス緩衝液など)等に懸濁し、臓器、組織あるいは細胞を破壊し、界面活性剤(例えは、トリトンX-100TM、ツイーン20TMなど)などを用い、さらに遠心分離や漏過、カラム分画などの手法を用いて細胞膜画分を得る。

16 細胞膜画分としては、細胞を破碎した後、それ自体公知の方法で得られる細

細胞膜画分に含まれる本発明のF P R L 1またはF P R L 2は、例えは、本発明の抗体を用いたサンドイッチ免疫測定法、ウェスタンプロット解析などにより定量することができる。

(ii) 本発明のF P R L 1またはF P R L 2を発現する形質転換体を上記の方法に従い作製し、細胞膜画分に含まれる本発明のF P R L 1またはF P R L 2を定量することができる。

15 ウェスタンプロットは自体公知の手段により行なうことができる。

(iii) 本発明のF P R L 1またはF P R L 2を発現する形質転換体を上記の方法に従い作製し、細胞膜画分に含まれる本発明のF P R L 1またはF P R L 2を定量することができる。

16 ハイマー病モデルラット、マウス、ウサギなど)に対して、薬剤(例えは、免疫調節薬など)あるいは物理的ストレス(例えは、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えは、脳、肝臓、腎臓など)、または臓器から単離した組織、あるいは細胞を得る。得られた臓器、組織または細胞等を、常法に従い組織切片とし、本発明の抗体を用いて免疫染色を行う。細胞表面での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することにより、定量的または定性的に、細胞膜における本発明のF P R L 1またはF P R L 2の量を確認することができる。

17 (iv) 本発明のF P R L 1またはF P R L 2を発現する形質転換体等を用いて同様の手段をとることにより確認することもできる。

試験化合物としては、例えは、ペプチド、蛋白質、非ペプチド性化合物、合物またはその塩のスクリーニングは、

18 (i) 正常あるいは疾患モデル非ヒト哺乳動物に対して、薬剤あるいは物理的ストレスなどを与える一定時間前(30分前～24時間前、好ましくは30分前～12時間前、より好ましくは1時間後～2日後、より好ましくは1時間後～24時間後)、または薬剤あるいは物理的ストレスと同時に試験化合物を投与し、投与後一定時間経過後(30分後～3日後、好ましくは1時間後～2日後、より好ましくは1時間後～24時間後)、細胞膜における本発明のF P R L 1またはF P R L 2の量を定量することにより行なうことができ、

(ii) 形質転換体を常法に従い培養する際に試験化合物を培地中に混合させ、

一定時間培養後(1日後～7日後、好ましくは1日後～3日後、より好ましくは2日後～3日後)、細胞膜における本発明のF P R L 1またはF P R L 2のは量を定量することにより行なうことができる。

細胞膜画分に含まれる本発明のF P R L 1またはF P R L 2の確認は具体的には以下のようにして行なう。

(iii) 正常あるいは疾患モデル非ヒト哺乳動物(例えは、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イス、サルなど、より具体的にはアルツハイマー病モデルラット、マウス、ウサギなど)に対して、薬剤(例えは、免疫調節薬など)あるいは物理的ストレス(例えは、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えは、脳、肝臓、腎臓など)、または臓器から単離した組織、あるいは細胞を得る。得られた臓器、組織または細胞等を、常法に従い組織切片とし、本発明の抗体を用いて免疫染色を行う。細胞表面での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することにより、定量的または定性的に、細胞膜における本発明のF P R L 1またはF P R L 2の量を確認することができる。

(iv) 本発明のF P R L 1またはF P R L 2を発現する形質転換体等を用いて同様の手段をとることにより確認することもできる。

試験化合物としては、例えは、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが用いられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

試験化合物は塩を形成していてもよく、試験化合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、有機酸など)などの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えは、無機酸(例えは、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えは、酢酸、ギ酸、プロピオン酸、マル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リノゴ酸、藤酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

本発明のスクリーニング方法を用いて得られる化合物またはその塩は、細胞膜における本発明のF P R L 1またはF P R L 2の量を変化させる作用を有する化合物であり、具体的には、(イ) 細胞膜における本発明のF P R L 1またはF P R L 2の量を増加させることにより、F P R L 1またはF P R L 2を介する細胞刺激活性を増強させる化合物またはその塩、(ロ) 細胞膜における本発明のF P R L 1またはF P R L 2の量を減少させることにより、該細胞刺激活性を減弱させる化合物またはその塩である。

本発明のスクリーニング方法を用いて得られる化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

本発明のスクリーニング方法を用いて得られる化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、有機酸など)などの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えは、塩酸、リン酸、奥化水素酸、硫酸など)との塩、あるいは有機酸(例えは、酢酸、ギ酸、プロピオン酸、マル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リソゴ酸、蘇酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

細胞膜における本発明のF P R L 1またはF P R L 2の量を減少させることにより、細胞刺激活性を減弱させる化合物またはその塩は、本発明のF P R L 1またはF P R L 2の発現過多に起因する疾患に対する安全で低毒性な予防・治療剤として有用である。

本発明のスクリーニング方法を用いて得られる化合物またはその塩を医薬組成物として使用する場合、常法手段に従って製剤化することができる。例えば、該化合物またはその塩は、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る油との無菌性溶液、または懸濁液などとの注射剤の形で非経口的に使用できる。例えば、該化合物またはその塩を生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

1またはF P R L 2の機能不全に関連する疾患の予防・治療剤などの医薬として使用することができる。具体的には、該化合物またはその塩は、例えは、細胞死抑制剤として、さらには、例えは神經変性を伴う疾病など、例えは、神經変性疾患(例、アルツハイマー病(家族性アルツハイマー病、若年性アルツハイマー病、孤児性アルツハイマー病など)、パーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオントン病、クロイツフェルド-ヤコブ病、ハンチントン病、脚病、糖尿病性ニューロパチー、多発性硬化症など)、脳膜炎障害(例、脳梗塞、脳出血、クモ膜下出血、越血性脳炎、硬膜外血腫、硬膜下血腫など)、癌(例、星状細胞腫、乏粒細胞腫など)、免疫疾患、感染症(例、結膜炎、

二二九

に従って処方することができる。注射用の水性液としては、例えは、生理食塩水、アドrenalineやその他の神経毒を含む等温液(例えは、D-ソルビトール、D-

ーマンニートール、塩化ナトリウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレンジコール、ポリエチレンジコール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

また、上記予防・治療剤は、例えは、緩衝剤（例えは、リン酸緩衝液、酢酸ナトリウム緩衝液）、無痛化剤（例えは、塩化ベンザルコニウム、塩酸プロカインなど）、安定剤（例えは、ヒト血清アルブミン、ポリエチレンジリコールなど）、保存剤（例えは、ベンジルアルコール、フェノールなど）、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる薬剤は安全で低毒性であるので、例えば、ヒトや哺乳類動物（例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど）に対して投与することができる。

上記予防・治療剤は、前記した本発明のF P R L 1またはF P R L 2を含有する医薬と同様にして製造し、使用することができる。

該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、アルツハイマー病患者(体重60kgとして)においては、一日につき細胞膜における本発明のFPR L1またはFPR L2の量を増加させる化合物またはその塩を約0.1～1.00mg、好ましくは約1.0～5.0mg、より好ましくは約1.0～2.0mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによって異なるが、例えば、注射剤の形では通常例え、アルツハイマー病患者(体重60kgとして)においては、一日につき細胞膜における本発明のFPR L1またはFPR L2の量を増加させる化合物またはその塩を約0.01～3.0mg程度、好ましくは約0.1～2.0mg程度、より好ましくは約0.1～1.0mg程度を静脈注射により投与するのが適

本発明のアンチセンスDNAは、FPR L 1またはFPR L 2の過剰発現やhumanin過多などに起因する疾患の予防・治療剤として用いることができる。

例えば、該アンチセンスDNAを用いる場合、該アンチセンスDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアンシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。該アンチセンスDNAは、そのままで、あるいは採取促進のために補助剤などの生理学的に認められる担体とともに製剤化し、遺伝子統やハイドロゲルカテーテルのようなカテーテルによって投与できる。

さらに、該アンチセンスDNAは、組織や細胞における本発明のDNAの存在やその発現状況を調べるための診断用オリゴヌクレオチドプローブとして使用

用することもできる。

(1.1) 本発明のDNAへ導入動物の作製
本発明は、外来性の本発明のDNA（以下、本発明の外来性DNAと略記す
る）またはその変異DNA（本発明の外来性変異DNAと略記する場合がある
）を有する非ヒト哺乳動物を提供する。

すなわち、本発明は、
〔1〕本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物、
〔2〕非ヒト哺乳動物がゲッパ動物である第〔1〕記載の動物、
〔3〕ゲッパ動物がマウスまたはラットである第〔2〕記載の動物、および
〔4〕本発明の外来性DNAまたはその変異DNAを含有し、哺乳動物において
て発現しうる組換えベクターを提供するものである。

本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物（以下、
本発明のDNA転移動物と略記する）は、未受精卵、受精卵、精子およびその
始原細胞を含む胚芽細胞などに対して、好ましくは、非ヒト哺乳動物の発生に
おける胚発生の段階（さらに好ましくは、単細胞または受精卵細胞の段階でか
つ一般に8細胞期以前）に、リン酸カルシウム法、電気バルス法、リポフェク
ション法、凝集法、マイクロインジェクション法、ペーティカルガソ法、DE
Aエーデキストラン法などにより目的とするDNAを転移することによって作
出することができる。また、該DNA転移方法により、体細胞、生体の臓器、
組織細胞などに目的とする本発明の外来性DNAを転移し、細胞培養、組織培
養などに利用することもでき、さらに、これら細胞を上述の胚芽細胞と自体公
知の細胞融合法により融合させることにより本発明のDNA転移動物を作出す
ることもできる。

非ヒト哺乳動物としては、例えば、ウシ、ブタ、ヒツジ、ヤギ、ウサギ、イ
ヌ、ネコ、モルモット、ハムスター、マウス、ラットなどが用いられる。なか
でも、病体動物モデル系の作成の面から個体発生および生物サイクルが比較的
短く、また、繁殖が容易なゲッパ動物、とりわけマウス（例えば、純系として、
C 57 BL/6 系統、DBA 2 系統など、交雑系として、B6C3F1 系統、B
DF₁ 系統、B6D2F₁ 系統、BALB/c 系統、ICR 系統など）またはラ

ット（例えば、Wistar, SDなど）などが好ましい。

哺乳動物において発現しうる組換えベクターにおける「哺乳動物」としては、
上記の非ヒト哺乳動物の他にヒトなどがあげられる。

本発明の外来性DNAとは、非ヒト哺乳動物が本来有している本発明のDN
Aではなく、いったん哺乳動物から単離・抽出された本発明のDNAをいう。

本発明の変異DNAとしては、元の本発明のDNAの塩基配列に変異（例え
ば、突然変異など）が生じたもの、具体的には、塩基の付加、欠損、他の塩基
への置換などが生じたDNAなどが用いられ、また、異常DNAも含まれる。
該異常DNAとしては、異常な本発明のF P R L 1 またはF P R L 2 を発現
させるDNAを意味し、例えば、正常な本発明のF P R L 1 またはF P R L 2
の機能を抑制するF P R L 1 またはF P R L 2 を発現させるDNAなどが用い、
られる。

本発明の外来性DNAは、対象とする動物と同種あるいは異種のどちらの哺
乳動物由来のものであってもよい。本発明のDNAを対象動物に転移させるに
あたっては、該DNAを動物細胞で発現させるプロモーターの下流に結合し
たDNAコンストラクトとして用いるのが一般に有利である。例えば、本発明
のヒトDNAを転移させる場合、これと相容性が高い本発明のDNAを有する
各種哺乳動物（例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラッ
ト、マウスなど）由来のDNAを発現させる各種プロモーターの下流に、本
発明のヒトDNAを結合したDNAコンストラクト（例、ベクターなど）を対
象哺乳動物の受精卵、例えば、マウス受精卵へマイクロインジェクションする
ことによって本発明のDNAを高発現するDNA転移哺乳動物を作出するこ
とができる。

本発明のF P R L 1 またはF P R L 2 の発現ベクターとしては、大腸菌由来
のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミド、λファージ
などのバックテリオファージ、モロニー白血病ウイルスなどのレトロウイルス、
ワクシニアウイルスまたはパキュロウイルスなどの動物ウイルスなどが用いら
れる。なかでも、大腸菌由来のプラスミド、枯草菌由来のプラスミドまたは酵
母由来のプラスミドなどが好ましく用いられる。

上記のDNA発現調節を行なうプロモーターとしては、例えば、①ウイルス(例、シミアンウイルス、サイトメガロウイルス、モロニー白血病ウイルス、JCウイルス、乳癌ウイルス、ポリオウイルスなど)に由来するDNAのプロモーター、②各種哺乳動物(ヒト、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来のプロモーター、例えば、アルブミン、インスリン、筋クレアチシンキナーゼ、グリア線維性酸性蛋白質、グルタチオンS-トランスフェラーゼ、血小板由来成長因子β、ケラチンK1、K10およびK14、コラーゲンI型およびII型、サイクリックAMP依存蛋白質キナーゼβ、Iサブユニット、ジストロフィン、硝石酸抵抗性アルカリファストファーティング、心房ナトリウム利尿性因子、内皮レセプター-チロシンキナーゼ(一般にTie-2と略される)、ナトリウムカリウムアーノン3リン酸化酵素(Na,K-ATPase)、ニューロフィラメント軽鎖、メタロチオネインおよびII-1α、メタロプロテイナーゼ1組織インヒビター、MHCクラスI抗原(H-2L)、H-ras、レニン、ドーパミンβ-水酸化酵素、甲状腺ペルオキシダーゼ(TPO)、ペプチド鎖延長因子1α(EF-1α)、βアクチン、α上皮ミオシン重鎖、ミオシン軽鎖1および2、ミエリノ基礎蛋白質、チログロブリン、Thy-1、免疫グロブリン、H鎖可変部(VNP)、血管アミロイドPコンポーネント、ミオグロビン、トロボニンC、平滑筋αアクチン、フレプロエンケファリンA、バソプレシンなどのプロモーターなどが用いられる。なかでも、全身で高発現することが可能なサイトメガロウイルスプロモーター、ヒトペプチド鎖延長因子1α(EF-1α)のプロモーター、ヒトおよびニトリβアクチンプロモーターなどが好適である。

上記ベクターは、DNA転写哺乳動物において目的とするメッセンジャーRNAの転写を終結する配列(一般にターミネーターと呼ばれる)を有していることが好ましく、例えば、ウイルス由来および各種哺乳動物由来の各DNAの配列を用いることができ、好ましくは、シミアンウイルスのSV40ターミネーターなどが用いられる。

その他、目的とする外来性DNAをさらに高発現させる目的で各DNAのス

プライシングシグナル、エンハンサー領域、真核DNAのイントロンの一部などをプロモーター領域の5'上流、プロモーター領域と翻訳領域あるいは翻訳領域の3'下流に連結することも目的により可能である。

正常な本発明のF P R L 1またはF P R L 2の翻訳領域は、ヒトまたは各種哺乳動物(例えは、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来の肝臓、腎臓、甲状腺細胞、胰臓細胞由来DNAおよび市販の各種ゲノムDNAライブラリーよりゲノムDNAの全てあるいは一部として、または肝臓、腎臓、甲状腺細胞、線維芽細胞由来RNAより公知の方法により調製された粗補DNAを原料として取得することが出来る。また、外来性の異常DNAは、上記の細胞または組織より得られた正常なF P R L 1またはF P R L 2の翻訳領域を点突然変異誘発法により変異した翻訳領域を作製することができる。

該翻訳領域は転移動物において発現しうるDNAコンストラクトとして、前述のプロモーターの下流および所望により転写終結部位の上流に連結させる通常のDNA工学的手法により作製することができる。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞のすべてに存在するよう確保される。DNA転移後の作出動物の胚芽細胞において、本発明の外来性DNAが存在することは、作出動物の後代がすべて、その胚芽細胞および体細胞のすべてに本発明の外来性DNAを保持することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞のすべてに本発明の外来性DNAを有する。

本発明の外来性正常DNAを転移させた非ヒト哺乳動物は、交配により外来性DNAを安定に保持することを確認して、該DNA保有動物として通常の育成環境で継代飼育することが出来る。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに過剰に存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の外来性DNAが過剰に存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の外来性DN

Aを過剰に有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有する。

導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌

雄の動物を交配することによりすべての子孫が該DNAを過剰に有するようになり雌代することができる。

現させられており、内在性の正常DNAの機能を促進することにより最終的に本発明のF P R L 1 またはF P R L 2 の機能亢進症を発症することがあり、その病態モデル動物として利用することができる。例えば、本発明の正常DNA

転移動物を用いて、本発明のF P R L 1またはF P R L 2の機能亢進症や、本発明のF P R L 1またはF P R L 2が関連する疾患の病態機序の解明およびこれらの疾患の治療方法の検討を行なうことが可能である。

また、本発明の外來性正常DNAを転写させた哺乳動物は、本発明のF P R L 1またはF P R L 2の増加症状を有することから、本発明のF P R L 1または

はF P R L 2に関連する疾患に対する治療薬のスクリーニング試験にも利用可能である。

一方、本発明の外來性異常DNAを有する非ヒト哺乳動物は、交配により外來性DNAを安定に保持することを確認して該DNA保有動物として通常の飼育

育環境で現代飼育することが出来る。さらに、目的とする外来DNAを前述の

NA-コンストラクトは、通常のDNA工学的手法によって作製することができ、ノンスマートに組み込んで原形として用いることができる。ノロモードーとの連携により、細胞内での構造の変化を可視化する技術が開発される。

。受精卵細胞段階における本発明の異常DNAの転移は、対象哺乳動物の胚

動物の胚芽細胞において本発明の異常DNAが存在することは、作出動物の子孫が全てその胚芽細胞より得体細胞の全てに本発明の異常DNAを有すること。

を意味する。本発明の外來性DNAを受け難いばこの種の動物の子孫は、その胚茎細胞および体細胞の全でに本発明の異質DNAを有する。遺伝DNAを相

同染色体の両方に持つモザイゴート動物を取得し、この雌雄の動物を交配す

ことによりすべての子孫が該DNAを有するように繁殖継代することができる。

現させられており、内在性の正常DNAの機能を阻害することにより最終的に本器用のFDP-11またはFDP-12の機能不活性化不純症となることがあります。

その病態モデル動物として利用することができる。例えば、本発明の異常DN A転移動物を用いて、本発明のF P R L 1またはF P R L 2の機能不活性型不

応症の病態機序の解明およびこの疾患を治療方法の検討を行なうことが可能である。

また、具体的な利用可能性としては、本発明の異常DNA高発現動物は、本発明のF P R L 1またはF P R L 2の機能不活性型不応症における本発明の異常F P R L 1またはF P R L 2による正常F P R L 1またはF P R L 2の機能阻害(dominant negative作用)を解明するモデルとなる。

ドドK-2の機能不古往空不外飛行して、この仕組みへシテ、一ノノ動機にてドドK-2

また、上記2種類の本発明のDNA転移動物のその他の利用可能性として、例えば、

①組織培養のための細胞源としての使用、
②本系団のDNA転写物の粗抽出中のDNAをしくはRNAを直接分析するため

またはDNAにより発現されたF P R L 1 組織またはF P R L 2 組織を分析す

ことによる、本発明のFPRL1またはFPRL2により特異的に発現あるいは活性化するFPRL1またはFPRL2との関連性についての解析、

③DNAを有する組織の細胞を標準組織培養技術により培養し、これらを使用して、一般に培養困難な組織からの細胞の機能の研究、

④上記③記載の細胞を用いることによる細胞の機能を高めるような薬剤のスクリーニング、および

⑤本発明の変異F P R L 1 またはF P R L 2 を単離精製およびその抗体作型な

どが考えられる。

さらに、本発明のDNA転移動物を用いて、本発明のF PRL 1またはF PRL 2の機能不活性型不応症などを含む、本発明のF PRL 1またはF PRL 2に関連する疾患の臨床症状を調べることができ、また、本発明のF PRL 1またはF PRL 2に関連する疾患モデルの各臓器におけるより詳細な病理学的所見が得られ、新しい治療方法の開発、さらには、該疾患による二次的疾患の研究および治療に貢献することができる。

また、本発明のDNA転移動物から各臓器を取り出し、細切後、トリプシンなどの蛋白質分解酵素により、遊離したDNA転移細胞の取得、その培養またはその培養細胞の系統化を行なうことが可能である。さらに、本発明のF PRL 1またはF PRL 2産生細胞の特定化、アボトーシス、分化あるいは増殖との関連性、またはそれらにおけるシグナル伝達機構を調べ、それらの異常を調べることなどができる、本発明のF PRL 1またはF PRL 2およびその作用解明のための有効な研究材料となる。

さらに、本発明のDNA転移動物を用いて、本発明のF PRL 1またはF PRL 2の機能不活性型不応症を含む、本発明のF PRL 1またはF PRL 2に関連する疾患の治療薬の開発を行なうために、上述の検査法および定量法などを用いて、有効で迅速な該疾患治療薬のスクリーニング法を提供することが可能となる。また、本発明のDNA転移動物または本発明の外來性DNA発現ベクターを用いて、本発明のF PRL 1またはF PRL 2が関連する疾患のDNA治療法を検討、開発することが可能である。

(12) ノックアウト動物

本発明は、本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞およびサナウチ、本発明は、

- [1] 本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞、
- [2] 該DNAがレポーター遺伝子（例、大腸菌由来のβ-ガラクトシダーゼ遺伝子）を導入することにより不活性化された第〔1〕項記載の胚幹細胞、
- [3] ネオマイシン耐性である第〔1〕項記載の胚幹細胞、

- 性遺伝子を代表とする薬剤耐性遺伝子、あるいは lac Z (β -ガラクトシダーゼ遺伝子)、cat (クロラムフェニコールアセチルトランスフェラーゼ遺伝子) を代表とするレポーター遺伝子等を挿入することによりエキソンの機能を破壊するか、あるいはエキソン間のインtron部分に遺伝子の転写を終結させるDNA配列 (例えば、polyA付加シグナルなど) を挿入し、完全なメッセンジャーRNAを合成できなくすることによって、結果的に遺伝子を破壊するよう構築したDNA配列を有するDNA鎖 (以下、ターゲットティングベクターと略記する) を、例えは相同組換え法により該動物の染色体に導入し、得られたES細胞について本発明のDNA上あるいはその近傍のDNA配列をプローブとしたササンハイブリダイゼーション解析あるいはターゲッティングベクター上のDNA配列ヒターゲッティングベクター作製に使用した本発明のDNA以外の近傍領域のDNA配列をプライマーとしたPCR法により解析し、本発明のノックアウトES細胞を識別することにより得ることができる。
- また、相同組換え法等により本発明のDNAを不活性化させる元のES細胞としては、例えは、前述のような既に樹立されたものを用いてもよく、また公知EvansとKaufmanの方法に準じて新しく樹立したものでもよい。例えは、マウスのES細胞の場合、現在、一般的にはC57BL系のES細胞が使用されているが、免疫学的背景がはっきりしていないので、これに代わる純系で免疫学的に遺伝的背景が明らかなES細胞を取得するなどの目的で例えは、C57BL/6マウスやC57BL/6の探卵数の少なさをDBA/2との交雑により改善したBDF₁マウス (C57BL/6とDBA/2とのF₁) を用いて樹立したものなども良好に用いうる。BDF₁マウスは、探卵数が多く、かつ、卵が丈夫であるという利点に加えて、C57BL/6マウスを背景に持つので、これを用いて得られたES細胞は病態モデルマウスを作出したとき、C57BL/6マウスとバッククロスすることでその遺伝的背景をC57BL/6マウスに代えることが可能である点で有利に用い得る。
- また、ES細胞を樹立する場合、一般には受精後3.5日目の胚盤胞を使用するが、これ以外に8細胞期胚を採卵し胚盤胞まで培養して用いることにより効率よく多数の初期胚を取得することができる。
- また、雌雄いずれのES細胞を用いてもよいが、通常雄のES細胞の方が生産系列キメラを作出するのに都合が良い。また、煩雑な培養の手間を削減するためにもできるだけ早く雌雄の判別を行なうことが望ましい。
- ES細胞の雌雄の判定方法としては、例えは、PCR法によりY染色体上の性決定領域の遺伝子を増幅、検出する方法が、その1例としてあげることができる。この方法を使用すれば、従来、核型分析をするのに約10⁶個の細胞数を要していたのに対し、1コロニー程度のES細胞数 (約50個) で済むので、培養初期におけるES細胞の第一次セレクションを雌雄の判別で行なうことが可能であり、早期に雌細胞の選定を可能にしたことにより培養初期の手間は大幅に削減できる。
- また、第二次セレクションとしては、例えは、G-バーンディング法による染色体数の確認等により行なうことができる。得られるES細胞の染色体数は正常数の100%が望ましいが、樹立の際の物理的操作等の関係上困難な場合は、ES細胞の遺伝子をノックアウトした後、正常細胞 (例えは、マウスでは染色体数が2n=40である細胞) に再びクローニングすることが望ましい。
- このようにして得られた胚幹細胞株は、通常その繁殖性は大変良いが、個体発生できる能力を失いやすいので、注意深く維代培養することが必要である。例えは、STO成織芽細胞のような適当なファイダーカー細胞上でLIF (1~10000U/ml) 存在下に炭酸ガス培養器内 (好ましくは、5%炭酸ガス、95%空気または5%酸素、5%炭酸ガス、90%空気) で約37°Cで培養するなどの方法で培養し、維代時には、例えは、トリプシン/EDTA溶液 (通常0.001~0.5%トリプシン/0.1~5mM EDTA、好ましくは約0.1%トリプシン/1mM EDTA) 处理により単細胞化し、新たに用意したファーダー細胞上に播種する方法などがとられる。このような維代は、通常1~3日毎に行なうが、この際に細胞の観察を行い、形態的に異常な細胞が見受けられた場合はその培養細胞は拡張することが望まれる。
- ES細胞は、適当な条件により、高密度に至るまで単層培養するか、または細胞集塊を形成するまで浮遊培養することにより、頭頂筋、内臓筋、心筋など種々のタイプの細胞に分化させることができ (M. J. Evans及びM. H.

108

1

Kaufman, ネイチャー (Nature) 第292巻、154頁、1981年; G. R. Martin プロ
シードイングス・オブ・ナショナル・アカデミー・オブ・サイエンス・ユーニ
スエー (Proc. Natl. Acad. Sci. U.S.A.) 第78巻、7634頁、1981年; T. C.
Doetschman ら、ジャーナル・オブ・エンブリオロジー・アンド・エクスペリメ
ンタル・モルフォロジー、第87巻、27頁、1985年]、本発明のES細胞を分化
させて得られる本発明のDNA発現不全細胞は、インビトロにおける本発明の
F P R L 1またはF P R L 2、または本発明のF P R L 1またはF P R L 2の
細胞生物学的検討において有用である。

本発明のDNA発現不全非ヒト哺乳動物は、該動物のmRNA量を公知方法を用いて測定して間接的にその発現量を比較することにより、正常動物と区別

被非ヒト哺乳動物としては、前記と同様のものが用いられる。

本発明のDNA発現不全非ヒト哺乳動物は、例えは、前述のようにして作製したターゲットティングベクターをマウス胚幹細胞またはマウス卵細胞に導入し導入によりターゲットティングベクターの本発明のDNAが不活性化されたDNA配列が遺伝子相同組換えにより、マウス胚幹細胞またはマウス卵細胞の染色体上の本発明のDNAを入れ換わる相同組換えをさせることにより、本発明のDNAをノックアウトさせることができる。

本発明のDNAがノックアウトされた細胞は、本発明のDNA上またはその近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析またはターゲッティングベクター上のDNA配列と、ターゲッティングベクターに使用したマウス由来の本発明のDNA以外の近傍領域のDNA配列とをプライマーとしたPCR法による解析で判定することができる。非ヒト哺乳動物胚幹細胞を用いた場合は、遺伝子相互通換により、本発明のDNAが不活性化された細胞株をクローニングし、その細胞を適当な時期、例えば、8細胞期の非ヒト哺乳動物胚または胚盤腔に注入し、作製したキメラ胚を偽妊娠させた雌非ヒト哺乳動物の子宮に移植する。作出された動物は正常な本発明のDNA座をもつ細胞と人為的に変異した本発明のDNA座をもつ細胞との両者から構成されるキメラ動物である。

卵細胞を使用する場合は、例えば、卵細胞核内にマイクロインジェクション法でDNA溶液を注入することによりターゲッティングベクターを染色体内に導入したトラノブ・ジマーク非レトロウイルスベクターがマキ-ケーラーのトラノブ・ジマーク非レトロウイルスベクターと競合して機能を阻害する。

ンスジェニック非ヒト哺乳動物に比べて、遺伝子相同組換えにより本器明のDNA座に変異のあるものを選択することにより得られる。

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞は、本発明のDNA A発現不全非ヒト哺乳動物を作出する上で、非常に有用である。
また、本発明のDNA発現不全非ヒト哺乳動物は、本発明のF P R L 1またはF P R L 2により誘導され得る種々の生物活性を欠失するため、本発明のF P R L 1またはF P R L 2の生物活性の不活性化を原因とする疾患のモデルとなり得るので、これらの疾患の原因究明及び治療法の検討に有用である。

本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAの欠損や損傷などに起因する疾患に対して治療・予防効果を有する化合物またはその塩のスクリーニング用いることができる。

すなわち、本発明のDNA発現不全非ヒト哺乳動物に試験化合物を投与し、該動物の変化を観察・測定することを特徴とする、本発明のDNAの欠損や損傷などに起因する疾患に対して治療・予防効果を有する化合物またはその塩のスクリーニング方法を提供する。

該スクリーニング方法において用いられる本発明のDNA発現不全非ヒト哺乳動物としては、前記と同様のものが用いられる。試験化合物としては、例えば、ペプチド、蛋白質、非ペプチド性化合物、合成功物、堿群生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などがあげられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

試験化合物は塩を形成していてもよく、試験化合物の塩としては、生理学的に許容される酸（例、無機酸など）や塩基（例、有機酸など）などの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えは、無機酸（例えは、塩酸、リン酸、臭化水素酸、硫酸など）との塩、あるいは有機酸（例えは、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リノゴ酸、檸檬酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など）との塩などが用いられる。

具体的には、本発明のDNA発現不全非ヒト哺乳動物を、試験化合物で処理し、無処理の対照動物と比較し、該動物の各器官、組織、疾患の症状などの変化を指標として試験化合物の治療・予防効果を試験することができる。

試験動物を試験化合物で処理する方法としては、例えは、経口投与、静脈注射などが用いられ、試験動物の症状、試験化合物の性質などにあわせて適宜選択することができる。また、試験化合物の投与量は、投与方法、試験化合物の性質などにあわせて適宜選択することができる。

該スクリーニング方法において、試験動物に試験化合物を投与した場合、例えは、該試験動物のアルツハイマー病症状が約10%以上、好ましくは約30%以上、より好ましくは約50%以上改善した場合、該試験化合物を上記の疾患に対して治療・予防効果を有する化合物またはその塩として選択することができる。

該スクリーニング方法を用いて得られる化合物またはその塩は、上記した試験化合物から選ばれた化合物またはその塩であり、本発明のF P R L 1またはF P R L 2の欠損や損傷などによって引き起こされる疾患（例えは、神經変性を伴う疾病など、例えは、神經変性疾患（例、アルツハイマー病（家族性アルツハイマー病、若年性アルツハイマー病、孤発性アルツハイマー病など）、ペルキシンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパチー、多発性硬化症など）、脳膜炎障害（例、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫、硬膜下血腫など）、癌（例、星状細胞腫、乏枝神経膠腫など）、免疫疾患、感染症（例、結膜炎、原虫感染症、リケッチャ感染症、後生動物感染症、B orn a 病などの細菌性またはウイルス性結膜炎、ワクチン接種後脳炎、A I D S 脳症など）、消化管疾患、循環器疾患、内分泌疾患など）に対する完全で低毒性な治療・予防剤などの医薬として使用することができる。さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。

該スクリーニング方法で得られた化合物の塩としては、生理学的に許容される酸（例、無機酸、有機酸など）や塩基（例、アルカリ金属など）などの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えは、無機酸（例えは、塩酸、リン酸、臭化水素酸、硫酸など）との塩、あるいは有機酸（例えは、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リノゴ酸、檸檬酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など）との塩などが用いられる。

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記した本発明のF P R L 1またはF P R L 2とhumaninとの結合性または

はシングナル伝達を変化させる化合物またはその塩を含有する医薬と同様にして製造することができる。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物（例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど）に対して投与することができる。

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより豈異はあるが、例えば、該化合物またはその塩を経口投与する場合、一般的にアルツハイマー病患者（体重6.0kgとして）においては、一日につき該化合物またはその塩を約0.1～1.00mg、好ましくは約1.0～5.0mg、より好ましくは約1.0～2.0mg投与する。非経口的に投与する場合は、該化合物またはその塩の1回投与量は投与対象、対象疾患などによつても異なるが、例えは、該化合物またはその塩を注射剤の形で通常、アルツハイマー病患者（体重6.0kgとして）に投与する場合、一日につき該化合物またはその塩を約0.01～3.0mg程度、好ましくは約0.1～2.0mg程度、より好ましくは約0.1～1.0mg程度を静脈注射により投与するのが好都合である。

他の動物の場合も、体重6.0kg当たりに換算した量を投与することができる。（1.2.b）本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩をスクリーニング方法

本発明は、本発明のDNA発現不全非ヒト哺乳動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対する

プロモーターの活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。

上記スクリーニング方法において、本発明のDNA発現不全非ヒト哺乳動物としては、前記した本発明のDNA発現不全非ヒト哺乳動物の中でも、本発明のDNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうるものが用いられる。

試験化合物としては、前記と同様のものが用いられる。レポーター遺伝子としては、前記と同様のものが用いられ、β-ガラクトシ

ダーゼ遺伝子（*lacZ*）、可溶性アルカリフオスマーカー遺伝子またはルシフェラーゼ遺伝子などが好適である。

本発明のDNAをレポーター遺伝子で置換された本発明のDNA発現不全非ヒト哺乳動物では、レポーター遺伝子が本発明のDNAに対するプロモーターの支配下に存在するので、レポーター遺伝子がコードする物質の発現をトレースすることにより、プロモーターの活性を検出することができる。

例えは、本発明のF P R L 1またはF P R L 2をコードするDNA領域の一部を大腸菌由來のβ-ガラクトシダーゼ遺伝子（*lacZ*）で置換している場合、本来、本発明のF P R L 1またはF P R L 2の発現する組織で、本発明のF P R L 1またはF P R L 2の代わりにβ-ガラクトシダーゼが発現する。從つて、例えは、5-プロモ-4-クロロ-3-インドリル-β-ガラクトビラノシド（X-gal）のようないβ-ガラクトシダーゼの基質となる試薬を用いて染色することにより、簡便に本発明のF P R L 1またはF P R L 2の動物体内における発現状態を観察することができる。具体的には、本発明のF P R L 1欠損マウス、F P R L 2欠損マウスまたはその組織切片をグルタルアルデヒドなどで固定し、リン酸緩衝生理食塩液（PBS）で洗浄後、X-galを含む染色液で、室温または37℃で付近で、約30分ないし1時間反応させた後、組織標本を1mM EDTA／PBS浴液で洗浄することによって、β-ガラクトシダーゼ反応を停止させ、呈色を観察すればよい。また、常法に従い、*lacZ*をコードするmRNAを検出してもよい。

上記スクリーニング方法を用いて得られた化合物またはその塩は、上記した試験化合物から選ばれた化合物または阻害する化合物またはその塩である。プロモーター活性を促進または阻害する化合物またはその塩である。

該スクリーニング方法で得られた化合物の塩としては、生理学的に許容される酸（例、無機酸など）や塩基（例、有機酸など）などの塩が用いられ、とりわけ生理学的に許容される酸性加塩が好ましい。この様な塩としては、例えは、無機酸（例えは、塩酸、リン酸、臭化水素酸、硫酸など）との塩、あるいは有機酸（例えは、酢酸、キ酸、プロピオン酸、マル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リソゴ酸、檸檬酸、安息香酸、メタンスルホン酸、ベ

ンゼンスルホン酸など)との塩などが用いられる。

本発明のDNAに対するプロモーター活性を促進する化合物またはその塩は、本発明のF P R L 1またはF P R L 2の発現を促進し、該F P R L 1またはF P R L 2の機能を促進することができるので、例えば、本発明のF P R L 1またはF P R L 2の機能不全に関連する疾患の予防・治療剤などの医薬として使用することができる。具体的には、該化合物は、例えば、細胞死抑制剤として、さらには、例えは神経変性を伴う疾病など、例えは、神経変性疾患(例、アルツハイマー病(家族性アルツハイマー病、若年性アルツハイマー病、孤癡性アルツハイマー病など)、パーキンソン病、ダウン症、筋萎縮性側索硬化症、アルオラン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、多癡性硬化症など)、脳膜炎障害(例、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫、硬膜下血腫など)、癌(例、星状細胞腫、乏枝神經膠腫など)、免疫疾患、感染症(例、結膜炎、原虫感染症、リケッチア感染症、後生動物感染症、B orn a病などの細菌性またはウイルス性膀胱炎、ワクチン接種後炎、A I D S脳症など)、消化管疾患、循環器疾患、内分泌疾患等の種々の疾病的予防・治療剤、好ましくは神経変性疾患、脳膜能障害の予防・治療剤として、さらに好ましくはアルツハイマー病の予防・治療剤として、低毒性で安全な医薬として使用することができる。

本発明のDNAに対するプロモーター活性を阻害する化合物またはその塩は、本発明のF P R L 1またはF P R L 2の発現を阻害し、該F P R L 1またはF P R L 2の機能を阻害することができるので、例えは、本発明のF P R L 1またはF P R L 2の発現過多に関連する疾患などの予防・治療剤などの医薬として有用である。

さらに、上記スクリーニングで得られた化合物から筛选される化合物も同様に用いることができる。

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記した本発明のF P R L 1またはF P R L 2とhumaninとの結合性を変化させる化合物またはその塩を含有する医薬と同様にして製造することができる。

このようにして得られる製剤は、安全で低毒性であるので、例えは、ヒトまたは哺乳動物(例えは、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど)に対して投与することができる。

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えは、本発明のDNAに対するプロモーター活性を促進する化合物またはその塩を経口投与する場合、一般的にアルツハイマー病患者(体重60kgとして)においては、一日につき該化合物またはその塩を約0.1～1.0mg投与する。非経口的に投与する場合は、該化合物またはその塩の1回投与量は投与対象、対象疾患などによっても異なるが、例えは、本発明のDNAに対するプロモーター活性を促進する化合物またはその塩を注射剤の形で通常、アルツハイマー病患者(体重60kgとして)に投与する場合、一日につき該化合物またはその塩を約0.01～3.0mg程度、好ましくは約0.1～2.0mg程度、より好ましくは約0.1～1.0mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、体重60kg当たりに換算した量を投与することができる。

このように、本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩をスクリーニングする上で極めて有用であり、本発明のDNA発現不全に起因する各種疾患の原因究明またはその予防・治療薬の開発に大きく貢献することができる。

また、本発明のF P R L 1またはF P R L 2のプロモーター領域を含有するDNAを使って、その下流に種々の蛋白質をコードする遺伝子を連結し、これを動物の卵細胞に注入していわゆるトランスジェニック動物(遺伝子移入動物)を作成すれば、特異的にそのF P R L 1またはF P R L 2を合成させ、その生体での作用を検討することも可能となる。さらに上記プロモーター部分に適当なレポーター遺伝子を結合させ、これが発現するような細胞株を樹立すれば、本発明のF P R L 1またはF P R L 2そのものの体内での產生能力を特異的に促進もしくは抑制する作用を持つ低分子化合物の探索系として使用できる。

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、

IUPAC-IUB Commission on Biochemical Nomenclatureによる略号ある場合は当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

5	DNA	: デオキシリボ核酸
cDNA	: 相補的デオキシリボ核酸	
A	: アデニン	
T	: チミン	
G	: グアニン	
C	: シトシン	
RNA	: リボ核酸	
mRNA	: メッセンジャーRNA	
dATP	: デオキシアデノシン三リボ核酸	
dTTP	: デオキシチミジン三リボ核酸	
dGTP	: デオキシシチジン三リボ核酸	
dCTP	: デオキシシジン三リボ核酸	
ATP	: アデノシン三リボ核酸	
EDTA	: エチレンジアミン四酢酸	
SDS	: ドデシル硫酸ナトリウム	
Gly	: グリシン	
20	Ala	: アラニン
Val	: バリン	
Leu	: ロイシン	
Ile	: イソロイシン	
Ser	: セリン	
Thr	: スレオニン	
Cys	: システイン	
Met	: メチオニン	
Glu	: グルタミン酸	
Asp	: アスパラギン酸	
Lys	: リジン	
Arg	: アルギニン	
His	: ヒスチジン	
5	Phe	: フェニルアラニン
Tyr	: チロシン	
Trp	: トリプトファン	
Pro	: プロリン	
Asn	: アスパラギン	
10	Gln	: グルタミン
pGlu	: ピログルタミン酸	
*		: 終止コドンに対応する
Me	: メチル基	
Et	: エチル基	
15	Bu	: プチル基
Ph	: フェニル基	
Tc	: チアゾリジン-4 (R) -カルボキサミド基	
20	To s	: p-トルエンスルフオニル
CHO	: ホルミル	
Bz l	: ベンジル	
Cl ₂ Bz l	: 2, 6-ジクロロベンジル	
Bom	: ベンジルオキシメチル	
Z	: ベンジルオキシカルボニル	
25	C1-Z	: 2-クロロベンジルオキシカルボニル
Br-Z	: 2-ブロモベンジルオキシカルボニル	
Bo c	: t-ブロキシカルボニル	
DNP	: ジニトロフェノール	

また、本明細書中で繰用される置換基、保護基および試薬を下記の記号で表記する。

118

119

T r t : トリチル

B u m : t-ブトキシメチル

F m o c : N-9-フルオレニルメトキシカルボニル

H O B t : 1-ヒドロキシベンズトリアゾール

H O O B t : 3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-

1,2,3-ベンゾトリアシン

H O N B : 1-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド

D C C : N,N'-ジシクロヘキシルカルボジイミド

本明細書の配列表の配列番号は、以下の配列を示す。

配列番号：1

ヒト由来F P R L 1のアミノ酸配列を示す。

配列番号：2

ヒト由来F P R L 1をコードするc D N Aの塩基配列を示す。

配列番号：3

ヒト型h u m a n i n (1-24)のアミノ酸配列を示す。

配列番号：4

[G I y 1] -ヒト型h u m a n i n (1-24)のアミノ酸配列を示す。

配列番号：5

h u m a n i n類似ペプチドのアミノ酸配列を示す。

配列番号：6

ヒト型h u m a n i n (1-21)のアミノ酸配列を示す。

配列番号：7

ラット型h u m a n i n (1-38)のアミノ酸配列を示す。

配列番号：8

ラット型h u m a n i n (1-24)のアミノ酸配列を示す。

配列番号：9

ラット型h u m a n i n (1-21)のアミノ酸配列を示す。

配列番号：10

ラット由来F P R L 1のアミノ酸配列を示す。

配列番号：11

ラット由来F P R L 1をコードするc D N Aの塩基配列を示す。

配列番号：12

マウス由来F P R L 2 (F P R L 1)のアミノ酸配列を示す。

配列番号：13

マウス由来F P R L 2 (F P R L 1)をコードするc D N Aの塩基配列を示す。

配列番号：14

ヒト由来F P R L 2のアミノ酸配列を示す。

配列番号：15

ヒト由来F P R L 2をコードするc D N Aの塩基配列を示す。

配列番号：16

参考例1で用いたプライマー1の塩基配列を示す。

配列番号：17

参考例1で用いたプライマー2の塩基配列を示す。

配列番号：18

参考例2で用いたプライマー3の塩基配列を示す。

配列番号：19

参考例2で用いたプライマー4の塩基配列を示す。

配列番号：20

参考例2で用いたプライマー5の塩基配列を示す。

配列番号：21

参考例2で用いたプライマー6の塩基配列を示す。

配列番号：22

参考例2で用いたプライマー7の塩基配列を示す。

配列番号：23

参考例2で用いたプライマー8の塩基配列を示す。

配列番号：24

W-P e p t i d eのアミノ酸配列を示す。

後述の参考例2で得られた形質転換体 *E. scherichia coli JM109/pUC18-rFPR1* は 2003 年 1 月 10 日から茨城県つくば市東 1 丁目 1 番地 1 中央第 6 (郵便番号 305-8566) の独立行政法人産業技術総合研究所 特許生物寄託センターに寄託番号 FERM BP-8

5 2.7.4 として寄託されている。

実施例

以下に参考例および実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。なお、大腸菌を用いての遺伝子は、モレキュラー・クローニング (Molecular cloning) に記載されている方法に従つた。

参考例 1 マウス脾臓由来 F P R L 2 をコードする c DNA のクローニングと発現ベクターの構築

マウス脾臓 c DNA (Marathon™ Ready cDNA; Clontech 社) を試型として、マウス F P R L 2 の配列情報 (Accession # 071180; NCB1) をもとに設計した 2 個のプライマー、プライマー 1 (配列番号: 16) 及びプライマー 2 (配列番号: 17) を用いて PCR を行なった。PCR には Pyrobest DNA polymerases (宝酒造) を用い、① 98°C・1 分の後、② 98°C・10 秒、55°C・30 秒、72°C・60 秒を 35 回の後、③ 72°C・2 分の伸長反応を行なった。反応後、増幅産物を制限酵素 *Sa* I 及 *UXba* I で切断した後、プラスミドベクター pAKKO-111H に挿入して発現ベクターを構築した。その塩基配列を解析した結果、配列番号: 12 で表されるアミノ酸配列からなるマウス F P R L 2 をコードする c DNA 配列 (配列番号: 13) を得た。

参考例 2 ラット脾臓由来 F P R L 1 をコードする c DNA のクローニングとその塩基配列の決定及び発現ベクターの構築

ラット脾臓 mRNA から Marathon™ cDNA Amplification Kit (Clontech 社) を用いて c DNA を合成し、その末端にアダプターを付加した。これを試型として、2 個のプライマー、プライマー 3 (配列番号: 18) 及びプライマー 4 (配列番号: 19) を用いて PC

R を行なった。PCR には Advantage 2 Polymerase mix (Clontech 社) を用い、① 96°C・1 分、② 96°C・10 秒、72°C・2 分を 5 回、③ 96°C・10 秒、70°C・2 分を 5 回、④ 96°C・10 秒、68°C・2 分を 25 回の後、⑤ 72°C・5 分の伸長反応を行なった。反応後、増幅産物を TOPO TA Cloning Kit (Invitrogen 社) の処方にしたがってプラスミドベクター pCR 2.1 TOPO (Invitrogen 社) に挿入し、これを大腸菌 JM109 (宝酒造) に導入してクローニングした。個々のクローンの塩基配列を解析した結果、新規 G 蛋白共役型レセプター蛋白質の一部をコードする c DNA 配列を得た。この配列情報をもとに 2 個のプライマー、プライマー 5 (配列番号: 20) 及びプライマー 6 (配列番号: 21) を設計し、上述のラット脾臓 mRNA から合成した c DNA を試型として Marathon™ cDNA Amplification Kit (Clontech 社) の処方に従ってそれぞれ 5'-RACE 及び 3'-RACE を行なった。PCR は上述のものと同様に行ない、反応後増幅産物を TOPO TA Cloning Kit (Invitrogen 社) の処方にしたがってプラスミドベクター pCR 2.1 TOPO (Invitrogen 社) に挿入し、これを大腸菌 JM109 (宝酒造) に導入してクローニングした。個々のクローンの塩基配列を解析した結果、新規 G 蛋白共役型レセプター蛋白質の一部をコードする c DNA 配列を得た。これらの配列情報をからさらに 2 個のプライマー、プライマー 7 (配列番号: 22) 及びプライマー 8 (配列番号: 23) を設計し、上述のラット脾臓 mRNA から合成した c DNA を試型として PCR を行なった。PCR には Pyrobest DNA polymerase (宝酒造) を用い、① 98°C・1 分の後、② 98°C・10 秒、55°C・30 秒、72°C・60 秒を 35 回の後、③ 72°C・2 分の伸長反応を行なった。反応後、増幅産物を制限酵素 *Sa* I 及 *UXba* I で切断した後、プラスミドベクター pAKKO-111H に挿入して発現ベクターを構築した。これを制限酵素 *Sa* I 及び *Nhe* I で切断して挿入断片を切り出し、プラスミドベクター pUC119 に挿入してこれらの塩基配列を解析した結果、配列番号: 10 で表されるアミノ酸配列からなるラットの新規

G蛋白質共役型レセプター蛋白質をコードするcDNA配列(配列番号:11)を得た。このcDNAより導き出されるアミノ酸配列(配列番号:10)を含有する新規蛋白質をラットFPR1と命名した。また、このプラスミドを保持する形質転換体を、大腸菌(*Escherichia coli*)JM109/pUC119-rFPR1と命名した。

参考例3 ラット肺臓由来FPR1をコードするcDNAを含有するプラスミドの作製

参考例2で得られた発現ベクターを制限酵素SaiI及びNheIで切断して挿入断片を切出し、プラスミドベクターpUC18に挿入してこれらの塩基配列を解析した結果、参考例2と同様に配列番号:10で表されるアミノ酸配列からなるラットの新規G蛋白質共役型レセプター蛋白質をコードするcDNA配列(配列番号:11)であることが確認できた。また、このプラスミドを保持する形質転換体を、大腸菌(*Escherichia coli*)JM109/pUC118-rFPR1と命名した。

実施例1 FPR1-GFPを発現させたCHO細胞における、ホルスコリン添加によって増加させた細胞内cAMP量のhumaninによる抑制

FPR1-GFPを発現させたCHO細胞をアッセイ用培地(HBSS(GibcoBRL)に0.1%ウシ血清アルブミン、および、0.2mM IBMXを添加したもの)にて洗浄した後、37℃、5%CO₂条件下で30分培養した。アッセイ用培地にて希釈した各濃度のhumanin(ペプチド研)または開連物質を添加し、その後フォルスコリン1μMとなるように添加した。37℃、5%CO₂条件下で30分培養した。培養上清を捨てて、cAMP screeen kit(アフライドバイオシステムズ社)のプロトコールに従い、細胞内のcAMP量をプレートリーダー(ARVO sxマルチラベルカウンター、Wallac社)を用いて測定した。

humaninおよびまたは開連物質として、次の化合物を用いた。

- ① rMLF
- ② Humanin:配列番号:3で表わされるアミノ酸配列からなるヒト型humanin(1-24)

③ [Gly¹]Humanin:配列番号:4で表わされるアミノ酸配列からなる[Gly¹]-ヒト型humanin(1-24)

その結果、ベクターのみを導入したCHO細胞(mock)に比べ(図2)、FPR1-GFP遺伝子を導入したCHO細胞特異的に、ホルスコリン添加によって増加させた細胞内cAMP量のhumaninによる用量依存的かつ特異的な減少が検出された(図1)。

実施例2 ホルミル化humaninの合成

前記した公知のペプチド合成で得られた保護ペプチドを J.C.Seehan and D.H. YoungによるJ.Amer.Chem.Soc., 80, 1154(1958)に記載の方法に従って、

N末端をホルミル化した後、脱保護を行ない、次の化合物を合成した。

① formyl-Humanin:N末端のMetがホルミル化された、配列番号:3で表わされるアミノ酸配列からなるヒト型humanin(1-24)

② mtfomyl-Humanin:N末端のMetがホルミル化された、配列番号:6で表わされるアミノ酸配列からなるヒト型humanin(1-21)

③ mt-formyl-Humanin:N末端のMetがホルミル化された、配列番号:9で表わされるアミノ酸配列からなるラット型humanin(1-21)

実施例3 ヒトFPR1発現CHO細胞(No.14)、ヒトFPR1発現CHO細胞(No.8)、ヒトFPR2発現CHO細胞(No.17)、マウスFPR2(No.15)およびラットFPR1発現CHO細胞(No.15)における、ホルスコリン添加によって増加させた細胞内cAMP量の各アゴニストによる抑制

上記の受容体を発現させたCHO細胞をアッセイ用培地(HBSS(GibcoBRL)に0.1%ウシ血清アルブミン、および、0.2mM IBMXを添加したもの)にて洗浄した後、37℃、5%CO₂条件下で30分培養した。アッセイ用培地にて希釈した各濃度のHumanin(ペプチド研)または開連物質を添加し、その後フォルスコリン1μMとなるように添加した。37

請求の範囲

- ℃、5%CO₂条件下で30分培養した。培養上清を捨てて、cAMP scrc en kit (アブライドバイオシステムズ社) のプロトコールに従い、細胞内のcAMP産生量をプレートリーダー (ARVO 8 x マルチラベルカウンター、Wallac社) を用いて測定した。フォルスコリン1 μM添加した細胞におけるcAMPの産生量を100%とし、フォルスコリンを添加していない、細胞のcAMP産生量を0%として、各アゴニストを添加したときのcAMP量を%表示した。cAMP産生量を50%阻害する濃度 (EC₅₀) を、10⁻¹⁰ M-HumaninはFPR1に対してのみでなく、hFPR2に対しても反応することが分った。さらに、ホルミル化されたHumanin、m⁻formyl-Humanin、m⁻formyl-rattinはFPR1に対して強く反応すること、また、mFPR1.2およびrFPR1に対しても反応することが分かった(図3)。
- 産業上の利用可能性
- 本発明のFPR1.1、FPR1.2、その部分ペプチドまたはその塩、または本発明のFPR1.1、FPR1.2もしくはその部分ペプチドをコードするDNAは、例えは、細胞死抑制剤として、さらには、例えは神經変性を伴う疾患など、例えは、神經変性疾患(例、アルツハイマー病)、脳機能障害、癌、免疫疾患、感染症、消化管疾患、循環器疾患、内分泌疾患等の種々の疾患の予防・治療剤として、低毒性で安全な医薬として使用することができる。
- 本発明のFPR1.1、FPR1.2、その部分ペプチドまたはその塩とhumaninとを用いることによって、humaninと本発明のFPR1.1、FPR1.2またはその塩との結合性を変化させる化合物を効率良くスクリーニングすることができる。

℃、5%CO₂条件下で30分培養した。培養上清を捨てて、cAMP scrc en kit (アブライドバイオシステムズ社) のプロトコールに従い、細胞内のcAMP産生量をプレートリーダー (ARVO 8 x マルチラベルカウンターワークス社) を用いて測定した。フォルスコリン1 μM添加した細胞におけるcAMPの産生量を100%とし、フォルスコリンを添加していない、細胞のcAMP産生量を0%として、各アゴニストを添加したときのcAMP量を%表示した。cAMP産生量を50%阻害する濃度 (EC₅₀) を、10⁻¹⁰ M-HumaninはFPR1に対してのみでなく、hFPR2に対しても反応することが分った。さらに、ホルミル化されたHumanin、m⁻formyl-Humanin、m⁻formyl-rattinはFPR1に対して強く反応すること、また、mFPR1.2およびrFPR1に対しても反応することが分かった(図3)。

産業上の利用可能性

本発明のFPR1.1、FPR1.2、その部分ペプチドまたはその塩、または本発明のFPR1.1、FPR1.2もしくはその部分ペプチドをコードするDNAは、例えは、細胞死抑制剤として、さらには、例えは神經変性を伴う疾患など、例えは、神經変性疾患(例、アルツハイマー病)、脳機能障害、癌、免疫疾患、感染症、消化管疾患、循環器疾患、内分泌疾患等の種々の疾患の予防・治療剤として、低毒性で安全な医薬として使用することができる。

本発明のFPR1.1、FPR1.2、その部分ペプチドまたはその塩とhumaninとを用いることによって、humaninと本発明のFPR1.1、FPR1.2またはその塩との結合性を変化させる化合物を効率良くスクリーニングすることができる。

1. (1) 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2) humaninまたはその塩を用いることを特徴とする該レセプター蛋白質またはその塩とhumaninまたはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング方法。

2. humaninが、

(1) 配列番号：3で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するポリペプチドまたはその塩、

(2) 配列番号：3で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列中の連続する6～20個のアミノ酸からなるペプチドまたはその塩、または

(3) 配列番号：7で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するポリペプチドまたはその塩である請求項1記載のスクリーニング方法。

3. humaninが、

(1) a) 配列番号：3で表されるアミノ酸配列、b) 配列番号：3で表されるアミノ酸配列中の1～10個のアミノ酸が欠失したアミノ酸配列、c) 配列番号：3で表されるアミノ酸配列に1～10個のアミノ酸が付加したアミノ酸配列、d) 配列番号：3で表されるアミノ酸配列中の1～5個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩、

(2) a) 配列番号：4で表されるアミノ酸配列、b) 配列番号：4で表されるアミノ酸配列中の1～10個のアミノ酸が欠失したアミノ酸配列、c) 配列番号：4で表されるアミノ酸配列に1～10個のアミノ酸が付加したアミノ酸配列、d) 配列番号：4で表されるアミノ酸配列中の1～5個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換

を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩、

(3) a) 配列番号：8で表されるアミノ酸配列、b) 配列番号：8で表されるアミノ酸配列中の1～10個のアミノ酸が欠失したアミノ酸配列、c) 配列番号：8で表されるアミノ酸配列に1～10個のアミノ酸が付加したアミノ酸配列、d) 配列番号：8で表されるアミノ酸配列中の1～5個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはe) これらの欠失・付加・置換を組み合わせたアミノ酸配列からなるポリペプチドまたはその塩、

(4) a) 配列番号：3、配列番号：4または配列番号：8で表されるアミノ酸配列の第1～9番目～24番目、第5番目～24番目、第1番目～20番目、

第5番目～20番目もしくは第5番目～21番目のアミノ酸配列、b) 該アミノ酸配列中の1～6個のアミノ酸が欠失したアミノ酸配列、c) 該アミノ酸配列に1～6個のアミノ酸が付加したアミノ酸配列、d) 该アミノ酸配列中の1～6個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、e) またはこれら

の欠失・付加・置換を組み合わせたアミノ酸配列からなり、アミノ酸の数が6～20個であるペプチド(ただし、配列番号：5で表されるアミノ酸配列の第1～9番目～24番目、第5番目～24番目、第1番目～20番目、第5番目～20番目もしくは第5番目～21番目のアミノ酸配列からなるペプチドまたはその塩、または

(5) 配列番号：9で表されるアミノ酸配列からなるポリペプチドまたはその塩、または

(6) 配列番号：9で表されるアミノ酸配列からなるポリペプチドまたはその塩、または

(7) 配列番号：3、配列番号：4または配列番号：8で表されるアミノ酸配列の第1～9番目～24番目、第5番目～24番目、第1番目～20番目、第5番目～20番目もしくは第5番目～21番目のアミノ酸配列からなるペプチドまたはその塩、または

である請求項1記載のスクリーニング方法。

5. *humanin*のN末端メチオニン残基のアミノ基がホルミル化されている請求項1記載のスクリーニング方法。

6. *humanin*が、N末端メチオニン残基のアミノ基がホルミル化されている配列番号：3、配列番号：4、配列番号：6、配列番号：7、配列番号：

8または配列番号：9で表されるアミノ酸配列からなるポリペプチドまたはその塩である配列番号：9で表されるアミノ酸配列からなるポリペプチドまたは

その塩である請求項1記載のスクリーニング方法。

7. (1) 配列番号：1、配列番号：10、配列番号：12または配列番号：

14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2) *humanin*またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩と*humanin*またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩のスクリーニング用キット。

8. 請求項1記載のスクリーニング方法または請求項7記載のスクリーニング用キットを用いて得られる、*humanin*またはその塩と配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸

(1) 配列番号：3で表されるアミノ酸配列からなるポリペプチドまたはその塩、

(2) 配列番号：4で表されるアミノ酸配列からなるポリペプチドまたはその

配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩。

9. アゴニストである請求項8記載の化合物。

5 10. アンタゴニストである請求項8記載の化合物。

11. humaninまたはその塩と配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩を含有してなる医薬。

12. 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩に対するアゴニストを含有してなる神経変性疾患もしくは脳梗塞の予防・治療剤。

15 13. アルツハイマー病、ペーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療剤である請求項1-2記載の予防・治療剤。

20 14. 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩に対するアゴニストを含有してなる細胞死抑制剤。

15 16. 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩を含有してなる神経変性疾患もしくはその塩。

20 17. 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩を含有してなる細胞死抑制剤。

18. 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列をコードするポリヌクレオチドを含有するポリヌクレオチドを含有してなる神経変性疾患もしくは脳機能障害の予防・治療剤。

19. アルツハイマー病、ペーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療剤である請求項1-8記載の予防・治療剤。

20 20. 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドを含有してなる細胞死抑制剤。

21. 配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドを含有してなる神経変性を伴う疾病の診断剤。

22. アルツハイマー病、ペーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、

硬膜外血腫または硬膜下血腫の診断剤である請求項2 1記載の診断剤。

2 3 . 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号 : 1 4

で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩に対する抗体を含有してなる神経変性を伴う疾病的診断剤。

2 4 . アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、

ブリオン病、クロイツフェルトーヤコブ病、ハンチントン舞蹈病、糖尿病性二

ユーロパチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、

硬膜外血腫または硬膜下血腫の診断剤。

2 5 . 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号 : 1 4

で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有す

るG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリ

ヌクレオチドを含有するポリヌクレオチドを用いることを特徴とする当該G蛋

白質共役型レセプター蛋白質の発現量を増加し、神経変性疾患もしくは脳機能

障害を予防・治療する化合物またはその塩のスクリーニング方法。

2 6 . 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号 : 1 4

で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有す

るG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリ

ヌクレオチドを含有するポリヌクレオチドを用いて得られるアミノ酸配列と同

一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター

蛋白質またはその部分ペプチドの発現量を増加し、神経変性疾患もしくは脳機

能障害を予防・治療する化合物またはその塩のスクリーニング用キット。

2 7 . 請求項2 5記載のスクリーニング方法または請求項2 6記載のスクリー

ニング用キットを用いて得られるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター

蛋白質またはその部分ペプチドの発現量を増加し、神経変性疾患もしくは脳機

能障害を予防・治療する化合物またはその塩。

2 8 . 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号 : 1 4

で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有す

るG蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を増加す

る化合物またはその塩を含有してなる細胞死抑制剤。

3 4 . (1) 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号

る化合物またはその塩を含有してなる神経変性疾患もしくは脳機能障害の予防

・治療剤。

2 9 . アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、

ブリオン病、クロイツフェルトーヤコブ病、ハンチントン舞蹈病、糖尿病性二

ユーロパチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、

硬膜外血腫または硬膜下血腫の予防・治療剤である請求項2 8記載の予防・治

療剤。

3 0 . 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号 : 1 4

で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有す

るG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリ

ヌクレオチドを含有するポリヌクレオチドを用いることを特徴とする当該G蛋

白質共役型レセプター蛋白質の発現量を増加し、細胞死を抑制する化合物またはその塩のスクリーニング方法。

3 1 . 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号 : 1 4

で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有す

るG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリ

ヌクレオチドを含有するポリヌクレオチドを用いて得られるアミノ酸配列と同

一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター

蛋白質またはその部分ペプチドの発現量を増加し、細胞死を抑制する化合物またはその塩。

3 2 . 請求項3 1記載のスクリーニング方法または請求項3 1記載のスクリー

ニング用キットを用いて得られるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部

分ペプチドの発現量を増加し、細胞死を抑制する化合物またはその塩。

3 3 . 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号 : 1 4

で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有す

るG蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を増加す

る化合物またはその塩を含有してなる細胞死抑制剤。

3 4 . (1) 配列番号 : 1 、配列番号 : 1 0 、配列番号 : 1 2 または配列番号

: 14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2) *humanin*またはその塩と該レセプター蛋白質またはその塩との結合性またはシグナル伝達を変化させる化合物またはその塩を用いること5を特徴とする該レセプター蛋白質またはその塩に対するアゴニストまたはアンタゴニストのスクリーニング方法。

3 5. 試験化合物を配列番号：1、配列番号：10または配列番号：12で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質を含有する細胞に接触させた場合における細胞内cAMP生成抑制活性を測定することを特徴とする該レセプター蛋白質またはその塩に対するアゴニストのスクリーニング方法。

3 6. 哺乳動物に対して、①配列番号：1、配列番号：10、配列番号：12または配列番号：1、配列番号：10、配列番号：12または配列番号：12で表されるアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチド

15または配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチド、または③配列番号：1、配列番号：10、配列番号：10または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に

同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質に対するアゴニストの使用。

3 8. N末端メチオニン残基のアミノ基がホルミル化されている*humanin*またはその塩。

3 9. N末端メチオニン残基のアミノ基がホルミル化されている配列番号：3、配列番号：4、配列番号：6、配列番号：7、配列番号：8または配列番号：9で表されるアミノ酸配列からなるポリペプチドまたはその塩である請求項38記載の*humanin*またはその塩。

20 40. 配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセ

プター蛋白質またはその塩に対するアゴニストの有効量を投与することを特徴とする(i) 神経変性疾患もしくは脳機能障害の予防・治療方法、(ii) アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療方法。

25 3 7. (i) 神經変性疾患もしくは脳機能障害の予防・治療剤、(ii) アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、

クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療剤または(iii) 細胞死抑制剤を製造するための①配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドまたはその塩、②配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチド、または③配列番号：1、配列番号：10、配列番号：12または配列番号：14で表されるアミノ酸配列と同一もしくは実質的に

同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質の医薬。

4 1. 請求項3-8記載の*humanin*もしくはその塩または請求項4-0記載のポリペプチドもしくはその塩を含有してなる医薬。

4 2. 神經変性疾患もしくは脳機能障害の予防・治療剤である請求項4-1記載の医薬。

4 3. アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオン病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパシー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療剤である請求項4-1記載の医薬。

134

1/3

[図] 1

- 4.4. 細胞死抑制剤である請求項4.1記載の医薬。
- 4.5. 哺乳動物に対して、請求項3.8記載のhumaninもしくはその塩または請求項1.0記載のボリペプチドもしくはその塩の有効量を投与することを特徴とする (i) 神経変性疾患もしくは脳機能障害の予防・治療方法、(ii) アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオニ病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療方法または (iii) 細胞死抑制方法。
- 4.6. (i) 神經変性疾患もしくは脳機能障害の予防・治療剤、(ii) アルツハイマー病、パーキンソン病、ダウン症、筋萎縮性側索硬化症、ブリオニ病、クロイツフェルト-ヤコブ病、ハンチントン舞蹈病、糖尿病性ニューロパチー、多発性硬化症、脳梗塞、脳出血、クモ膜下出血、虚血性脳疾患、硬膜外血腫または硬膜下血腫の予防・治療剤または (iii) 細胞死抑制剤を製造するための請求項3.8記載のhumaninもしくはその塩または請求項4.0記載のボリペプチドもしくはその塩の使用。

FIG 2

23

FIG 3

33

Sample	EC ₅₀ Values (nM)		
	hFPR1 (No.14)	hFPRL1 (No.8)	hFPRL2 (No.17)
formyl-Humanin	580	0.012	4.3
mt-formyl-Humanin	160	0.96	21
mt-formyl-rattin	180	0.030	160
Humanin	1600	3.6	3.0
[Gly ¹⁴]Humanin	>10000	4.6	3.9
W-Peptide	0.14	0.027	>10000
β-Amyloid(1-42)	>10000	1200	>10000

Sample	EC ₅₀ Values (nM)	
	mFPRL2 (No.15)	rFPRL1 (No.15)
formyl-Humanin	0.17	0.19
mt-formyl-Humanin	1.1	12
mt-formyl-rattin	0.60	1.1
Humanin	52	25
[Gly ¹⁴]Humanin	67	43
W-Peptide	0.063	0.12
β-Amyloid(1-42)	170	>10000

116

2/16

SEQUENCE LISTING

Val Phe Leu Ile Gly Phe Ile Ala Leu Asp Arg Cys Ile Cys Val Leu
 115 120 125

His Pro Val Trp Ala Gin Asn His Arg Thr Val Ser Leu Ala Met Lys
 130 135 140

Val Ile Val Gly Pro Trp Ile leu Ala Leu Val Leu Thr Leu Pro Val
 145 150 155

Phe Leu Phe Leu Thr Thr Val Thr Ile Pro Asn Gly Asp Thr Tyr Cys
 160 165 170

Thr Phe Asn Phe Ala Ser Trp Gly Gly Thr Pro Glu Glu Arg Leu Lys
 175 180 185

Val Ala Ile Thr Met Leu Thr Ala Arg Gly Ile Ile Arg Phe Val Ile
 190 195 200

Gly Phe Ser Leu Pro Met Ser Ile Val Ala Ile Cys Tyr Gly Leu Ile
 205 210 215

Ala Ala Lys Ile His Lys Lys Gly Met Ile Lys Ser Ser Arg Pro Leu
 220 225 230

Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro
 235 240 245

Phe Gin Leu Val Ala Leu Leu Gly Thr Val Trp Leu Lys Glu Met Leu
 250 255 260

Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro
 265 270 275

Phe Tyr Gly Lys Tyr Lys Ile Ile Asp Ile Leu Val Asn Pro Thr Ser
 280 285 290

Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Ala Thr Leu Pro Phe
 295 300 305

Leu Ile Val Ser Met Ala Met Gly Glu Lys Trp Pro Phe Gly Trp Phe
 310 315 320

Val Gly Gin Asp Phe Arg Glu Arg Leu Ile His Ser Leu Pro Thr Ser
 325 330 335

Leu Glu Arg Ala Leu Ser Glu Asp Ser Ala Pro Thr Asn Asp Thr Ala
 340 345 350

Met Glu Thr Asn Phe Ser Thr Pro Leu Asn Glu Tyr Glu Glu Val Ser
 5 10 15

Tyr Glu Ser Ala Gly Tyr Thr Val Leu Arg Ile Leu Pro Leu Val Val
 20 25 30

Ile Gly Val Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile
 35 40 45

Trp Val Ala Gly Phe Arg Met Thr Arg Thr Val Thr Thr Ile Cys Tyr
 50 55 60

Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Ala Thr Leu Pro Phe
 65 70 75

Leu Ile Val Ser Met Ala Met Gly Glu Lys Trp Pro Phe Gly Trp Phe
 80 85 90

Leu Cys Lys Leu Ile His Ile Val Val Asp Ile Asn Leu Phe Gly Ser
 100 105 110

Ala Asn Ser Ala Ser Pro Pro Ala Glu Thr Glu Leu Gln Ala Met

340	345	350
-----	-----	-----

<213> Human
<400> 3

<210> 2

<211> 1053

<212> DNA

<213> Human

<400> 2

atggaaacca acttctccac tctctgaat gatatgaag aagtgccta ttagtcgtct

ggctacactg ttctggat ctcocatg gggcgctg ggteacctt tgctcgg 60

ggctctggca atgggtgt gatctgggtg gatggatcc gatgacacg cacaggcacc 180

accatcggtt accgtggacct ggccctggct gatctttctt tacggccac attaccattc 240

ctcatgtctt ccatggccat ggagaaaa tgccctttg gtgggtctt ggttaagtta 300

atcacatcg tggtggatc caaccctttt gaaagggtctt ttcatatgg 360

cggaccgct gatttgtgt ctgcgcattca gtcgtggccc agaacccacg cactgtgt 420

ctggccatga agggtgtatcg ctggatcttggg attcttgctc tagctttac ctggccatgt 480

tccctttt tgactacagt aactatcca aatggatca catactgtac ttcaactt 540

gatccctggg stggcacccc tggaggagg ctggaaatgg ccatthacat gttgacagcc 600

ataggattt tccgggtgtt catggccattt aacttgcgca tggccatgt tgccatctgc 660

tatggctca ttccagccaa gatcccaaa aatggatga taaaatccgg cggcccttta 720

cggttctca ctgtgtgtt ggtttccctt tcaactgttt 780

ggccctctgg gcacccgtcg gtcacaagag aatgtttctt atggccatgt caaatccatt 840

gacatctcg tttacccaaac gacgtccctg gtccttca aacatgtccat caaccatcg 900

cttttaactgtt ttggggcca agacttcgaa gagaggtgtgatccacttccctt gcccacatgt 960

ctggaggggg ccgtgtgtgaa gacatcgcc caactaataatg acacggctgc caattctgt 1020

ttacccttcg cagacatcg gttacaggca atg 1083

<210> 3

<211> 24

<212> PRT

<213> Human

<213> Human
<400> 4

Met Ala Pro Arg Gly Phe Ser Cys Leu Leu Leu Leu Thr Ser Glu Ile

1 5 10 15

Asp Leu Pro Val Lys Arg Arg Ala

20 24

<211> 24

<212> PRT

<213> Human

<400> 5

Met Ala Arg Arg Gly Phe Ser Cys Leu Leu Leu Ser Thr Thr Ala Thr

1 5 10 15

Asp Leu Pro Val Lys Arg Arg Thr

20

<210> 6

<211> 21

<212> PRT

<213> Human

<400> 6

Met Ala Pro Arg Gly Phe Ser Cys Leu Leu Leu Thr Ser Glu Ile

1

5

10

15

Asp Leu Pro Val Lys

20

21

Asp Leu Pro Val Lys

20

21

<210> 7

<211> 38

<212> PRT

<213> Rat

<400> 7

Met Ala Lys Arg Gly Phe Asn Cys Leu Leu Leu Ser Ile Ser Glu Ile

5

10

15

Asp Leu Pro Val Lys Arg Leu Ser Pro Asn Lys Thr Arg Arg Pro

20

25

30

Tyr Gly Ala Ser Ile Tyr

35

38

<210> 8

<211> 24

<212> PRT

<213> Rat

<400> 8

Met Ala Lys Arg Gly Phe Asn Cys Leu Leu Leu Ser Ile Ser Glu Ile

5

10

15

Asp Leu Pro Val Lys Arg Gly Phe Asn Cys Leu Leu Leu Ser Ile Ser Glu Ile

20

25

30

Tyr Gly Ala Ser Ile Tyr

35

38

<210> 9

<211> 21

<212> PRT

<213> Rat

<400> 9

Met Ala Lys Arg Gly Phe Asn Cys Leu Leu Leu Ser Ile Ser Glu Ile

5

10

15

Asp Leu Pro Val Lys Arg Gly Phe Asn Cys Leu Leu Leu Ser Ile Ser Glu Ile

20

21

<210> 10

<211> 351

<212> PRT

<213> Rat

<400> 10

Met Glu Ala Asn Tyr Ser Ile Pro Leu Asn Val Ser Glu Val Val

25

30

Tyr Asp Ser Thr Ile Ser Arg Val Leu Trp Ile Leu Thr Met Val Val

35

40

45

Leu Ser Ile Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile

50

55

60

Trp Val Ala Gly Phe Arg Met Val His Thr Val Thr Thr Cys Phe

65

70

75

80

Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Val Thr Leu Pro Phe

85

90

95

Phe Val Ile Ser Ile Ala Met Lys Glu Iys Trp Pro Phe Gly Trp Phe

100

105

110

Leu Cys Lys Leu Val His Ile Val Val Asp Ile Asn Leu Phe Gly Ser

115

120

125

Val Phe Leu Ile Ala Leu Ile Ala Leu Asp Arg Cys Ile Cys Val Leu

His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Arg Lys

91/9

676

176

1216

100 105 110

ggatccctgg ctcacactga tgaagaanag ttggacacag ctatcacttt tgtaacaact 600
aaaaatatac ttagttttt acatgtcca tttttttt tttttttt 660

Trp Ala Gln Asn His Arg Thr Met Ser Ieu Ala Lys Arg
120
125

135 140

Cy Léo IIP IIe RME IIIe Ile Val Léo IIIe Léo P10 ASH

Trp Thr Thr Ile Ser Thr Thr Asn Gly Asp Thr Tyr Cys

Phe Ala Phe Trp Gly Asp Thr Ala Val Glu Arg Leu Asn
165 170 175

180 185 190

Thr Met Ala Lys Val Phe Leu Ile Leu His Phe Ile Ile

200 205

Val Pro Met Ser Ile Ile Thr Val Cys Tyr Gly Ile Ile
215 220

Ile His Arg Asn His Met Ile Lys Ser Ser Arg Pro Leu

230 235 . 240

Ala Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro

245
250
255

Ile Gly Ile L^{eu} Met Ala Val Trp Leu Lys Glu Met Leu

260 265 270

Lys Tyr Lys Ile Ile Leu Val Leu Ile Asn Pro Thr Ser

280
285

Phe Phe Asn Ser Cys Leu Asn Pro Ile Leu Tyr Val Phe

295 . 300

Asn Phe Gln Glu Arg Leu Ile Arg Ser Leu Pro Thr Ser

318 . 315 320

Ala Leu Thr Glu Val Pro Asp Ser Ala Gln Thr Ser Asn

13/16

14/16

	325	330	335	
Thr His Thr Thr Ser Ala Ser Pro Pro Glu Glu Thr Glu Leu Gln Ala				
340	345	350		
Met				
<210> 15				<211> 42
<211> 1059				<212> DNA
<212> DNA				<213> Artificial Sequence
<213> Human				<220>
<400> 15				<221> Primer
atggaaaccca acttctccat tcctctgaat gaaactgagg aggtgcctcc ttagccctgt	60			<222>
ggccacacccg ttctgtggat cttoctcatcg ctatgcacccg gaggcacctt tgcttcggg	120			<223> DNA
gttcgtggaca atggctgtgt gatgtggatgg gctggattcc ggtggacacg cacaggcaac	180			<224>
accatcgttt accttgacact ggccctttagct gacttctttt tcgtggccat cttacccatc	240			<225> Primer
cgaatggctt cagtcggccat gagagaaaaa tggcccttgg cgccatctt atgtaaatgtt	300			<226>
gttcatgtta tataagacat caacctgttt gtccatgtct acctgtatcc catatgttt	360			<227> DNA
ctggacccgt tttatgtgt ctgtccatcca ggctggggcc agaaccatcg caccatggat	420			<213> Artificial Sequence
ctggccaaaga gggtgtatgc ggggtctgg attttccacca tagtccatcc ttaccaat	480			<228>
tcaatctttt gggactacaat aagtactacg aatggggaca catactgtat ttcaacttt	540			<229> Primer
ccatccgtgg gtggacactgc tggtagagagg tggacatgt tccatccat ggccagggtc	600			<210> 18
tttcgtgttcc tccacttcat tattggcttc acgggtccca tggtccatcat cacagtctgc	660			<211> 24
tatggatca tggcgccaa aaticacaga aaccatgta taaaatccag cccgtccat	720			<212> DNA
cgtgttcccg ctgtgttgtt ggcttttttcc ttatccgttttttttggccactgt	780			<213> Artificial Sequence
ggccatcttca tggcgatctg gctcaaaagg atgtgtttaa atggcaata caaatatt	840			<220>
cttgcgtccgt ttaaccccac aaggcccttg ggcccttttttta acagctgtccat ccacccatt	900			<221> 19
cttgcgtccgt ttaatgggtcg taatcccaaa gaaagaciga ttcgtttttt ggccactgt	960			<211> 27
tggaggggg ccctgactgta ggtccctgtac tcggccaga ccaacacac acacaccact	1020			<212> DNA
tctgttttac ctccgtggaa gacgggtta caaataat	1080			<213> Artificial Sequence
<210> 16				<220>

<223> Primer	<211> 37
<400> 19	<212> DNA
tctttcatga aagtccgtgc ccatgaa	<213> Artificial Sequence
<210> 20	<220>
<211> 24	<223> Primer
<212> DNA	<400> 23
<213> Artificial Sequence	aatcttagat catattgctt ttataatcaa gtttaca
<220>	<210> 24
<223> Primer	<211> 6
<400> 20	<212> PRT
aggatctta ctgttagtca tggaa	<213> Artificial Sequence
<210> 21	<220>
<211> 24	<400> 24
<212> DNA	Trp Lys Tyr Met Val Met
<213> Artificial Sequence	1 5
<220>	
<223> Primer	
<400> 21	
acatgttagatggagcatcgtttc	<213> Artificial Sequence
<210> 22	<211> 43
<211> 43	<212> DNA
<212> DNA	<213> Artificial Sequence
<213> Artificial Sequence	<220>
<220>	<223> Primer
<400> 22	<210> 23
ataaagtctga ccaccatggaa agccaaactat tcccatccctc tga	43
<210> 23	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/07500

		International application No. PCT/JP03/07500
A. CLASSIFICATION OF SUBJECT MATTER		
Int.C1, C12N15/12, A61K38/17, A61K45/00, A61P9/00, A61P25/00, A61P25/14, A61P25/28, A61P43/00, G01N33/50, G01N33/15, G01N33/566		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols)		
Int.C1', C12N15/12, A61K38/17, A61K45/00, A61P9/00, A61P25/00, A61P25/14, A61P25/16, A61P25/28, A61P43/00, G01N33/50, G01N33/15, G01N33/566		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (names of data bases and, where practicable, search terms used)		
SwissProt, PIR/GeneSeq, GenBank/EMBL/DDBJ/GeneSeq, BIOSIS, MEDLINE, WPIIDS		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	YING G.G. et al., Humanin, a newly identified neuroprotective factor uses the G-protein coupled receptor FPR1 as a functional receptor., J. Interferon and Cytokine Research 2002, Vol.22, (suppl.1), p.S-180	1-7, 34
A	WO 00/31261 A (Cadus Pharmaceutical Corp.), 02 June, 2000 (02.06.00), & US 2000020300 A & US 2003/54402 A	1-7, 34
A	MURPHY P.M. et al., A structural homologue of the N-formyl peptide receptor., Characterization and chromosome mapping of a peptide chemoattractant receptor family., J.Biol.Chem., 15 April, 1992 (15.04.92), Vol.267(11), pages 7637 to 7643	1-7, 34
[X] Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.		
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DURSTIN M. et al., Differential expression of members of the N-formylpeptide receptor gene cluster in human phagocytes., Biochem.Biophys.Res.Commun., 30 May, 1994 (30.05.94), Vol.201(1), pages 174 to 179	1-7, 34
A	KLEIN C. et al., Identification of surrogate agonists for the human FPR1 receptor by autoclone selection in yeast., Nat.Biootechnol., 1998 December, Vol.16(13), pages 1334 to 1347	1-7, 34
A	LE Y. et al., The neurotoxic prion peptide fragment PrP ¹⁰⁶⁻¹²⁶ is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1., J.Immunol., 01 February, 2001 (01.02.01), Vol.166(3), pages 1448 to 1451	1-7, 34
A	YANG D. et al., IL-37, the neutrophil granule and epithelial cell-derived cathelecidin, utilizes formyl peptide receptor-like 1 (FPR1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells., J.Exp.Med., 02 October, 2000 (02.10.00), Vol.192(7), pages 1069 to 1074	1-7, 34
A	IE Y. et al., Receptors for chemotactic formyl peptides as pharmacological targets., Int.Immunopharmacol., 2002 January, Vol.2(1), pages 1 to 13	1-7, 34
A	CHRISTOPHE T. et al., The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH ₂ specifically activates neutrophils through FPR1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPR2., J.Biol.Chem., 15 June, 2001 (15.06.01), Vol.276(24), Pages 21585 to 21593	1-7, 34
A	VAUGHN M.W. et al., Identification, cloning, and functional characterization of a murine lipoxin A4 receptor homologue gene., J.Immunol., 15 September, 2002 (15.09.02), Vol.169(6), pages 3363 to 3369	1-7, 34
A	RASHIMOTO, Y. et al., A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta., Proc.Natl.Acad.Sci.U.S.A., 22 May, 2001 (22.05.01), Vol.98(11), pages 6336 to 6341	1-7, 34
Date of the actual completion of the international search	Date of mailing of the international search report	
18 September, 2003 (18.09.03)	07 October, 2003 (07.10.03)	
Name and mailing address of the I.S.U. Japanese Patent Office Fax No.	Authorized officer Telephone No.	

		International application No. PCT/JP03/07500
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DURSTIN M. et al., Differential expression of members of the N-formylpeptide receptor gene cluster in human phagocytes., Biochem.Biophys.Res.Commun., 30 May, 1994 (30.05.94), Vol.201(1), pages 174 to 179	1-7, 34
A	KLEIN C. et al., Identification of surrogate agonists for the human FPR1 receptor by autoclone selection in yeast., Nat.Biootechnol., 1998 December, Vol.16(13), pages 1334 to 1347	1-7, 34
A	LE Y. et al., The neurotoxic prion peptide fragment PrP ¹⁰⁶⁻¹²⁶ is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1., J.Immunol., 01 February, 2001 (01.02.01), Vol.166(3), pages 1448 to 1451	1-7, 34
A	YANG D. et al., IL-37, the neutrophil granule and epithelial cell-derived cathelecidin, utilizes formyl peptide receptor-like 1 (FPR1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells., J.Exp.Med., 02 October, 2000 (02.10.00), Vol.192(7), pages 1069 to 1074	1-7, 34
A	IE Y. et al., Receptors for chemotactic formyl peptides as pharmacological targets., Int.Immunopharmacol., 2002 January, Vol.2(1), pages 1 to 13	1-7, 34
A	CHRISTOPHE T. et al., The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH ₂ specifically activates neutrophils through FPR1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPR2., J.Biol.Chem., 15 June, 2001 (15.06.01), Vol.276(24), Pages 21585 to 21593	1-7, 34
A	VAUGHN M.W. et al., Identification, cloning, and functional characterization of a murine lipoxin A4 receptor homologue gene., J.Immunol., 15 September, 2002 (15.09.02), Vol.169(6), pages 3363 to 3369	1-7, 34
A	RASHIMOTO, Y. et al., A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta., Proc.Natl.Acad.Sci.U.S.A., 22 May, 2001 (22.05.01), Vol.98(11), pages 6336 to 6341	1-7, 34
Date of the actual completion of the international search	Date of mailing of the international search report	
18 September, 2003 (18.09.03)	07 October, 2003 (07.10.03)	
Name and mailing address of the I.S.U. Japanese Patent Office Fax No.	Authorized officer Telephone No.	

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/JP03/07500

Box I Observations where certain claims were found unsearchable (Continuation of item 3 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(g) for the following reasons:

- Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

- Claims Nos.: 8-14, 27-29, 32, 33
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Although the inventions as set forth in claims 8 to 14, 27 to 29, 32 and 33 relate to compounds specified by a screening method, no specific compound is presented in the description. Thus, they are neither supported by the description nor disclosed therein.
- Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6(4).

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- It has the following 5 groups of inventions as set forth in:
claims 1 to 7 and 34;
claims 15, 16, 18, 19, 21 to 26, 36 and 37;
claims 17, 20, 30, 31, 36 and 37;
claim 35; and
claims 38 to 46.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only three claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1 to 7 and 34Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

国際検索報告

国際出願番号 PCT/JP03/07500

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int.Cl. 1 C12M 15/12, A61K 39/17, A61K 45/00, A61P 9/00, A61P 25/00, A61P 25/14, A61P 25/16, A61P 25/28
A61P 43/00, G01N 33/50, G01N 33/15, G01N 33/566

B. 調査を行った分野

調査を行った他の機関等 (国際特許分類 (IPC))
Int.Cl. 1 C12M 15/12, A61K 39/17, A61K 45/00, A61P 9/00, A61P 25/00, A61P 25/14, A61P 25/16, A61P 25/28
A61P 43/00, G01N 33/50, G01N 33/15, G01N 33/566

最も優秀料以外の機関で調査を行った分野に含まれるもの

国際検索で使用した電子データベース (データベースの名前、該機関で使用した用語)
Swiss-Prot/PIR/GenBank/EMBL/DDbj/GeneSeq
BIOSIS, MEDLINE, WPI-IDS

C. 取扱すると思われる文献

引用文献のカテゴリ	引用文献名 及び一部の箇所が適切となるときは、その記載する筋肉の表示	該する筋肉の名
PX	YING, G. G. et al., Humanin, a newly identified neuroprotective factor, uses the G-protein coupled receptor FPRL1 as a functional receptor. J Interferon and Cytokine Research 2002, vol.22(suppl. 1), p. S-180	1-7, 34

A
WO 00/31261 A (Cedus Pharmaceutical Corporation) 2000.06.02
& AU 2000020300 A & US 2003/166143 A

1-7, 34

C. 細かい書きにも文獻が引かれている。

バテンツアミリーに関する別紙を参照。

* 引用文献のカテゴリ 「AJ」等に記述のある文獻ではなく、一般的技術雑誌を示す 「EJ」国際出版物の出典または特許であるが、国際出版物 以後に公表されたもの 「L」優先権主張文獻を述ける文獻又は他の文獻の発行 日(年)による理由で選択する文獻 「O」ローマによる脚注、使用、展示等に及ぶる文獻 「P」国際出願日前で、かつ優先権の主張となる出典	の日の後に公表された文獻 出典とされるものではなく、明確の原理又は理論 の理解のために引用するもの 「X」特に問題のある文獻であるが、当該文獻のみで発明 の筋道又は進歩性がないと考えられるもの 「Y」特に問題のある文獻であって、当該文獻と他の1以上 の文獻との、当業者にとって自明である組合せによつて進歩性がないとされるもの 「&」同一バテンツアミリー文獻
国際調査を完了した日 18. 09. 03	国際検査報告の発送日 07.10.03

国際調査機関の名稱及び住所
日本特許庁 (ISA/JP)
郵便番号 10-8915
東京都千代田区麹町三丁目4番3号

郵便番号 10-8915
郵便番号 03-3581-1101 内線 3448

国際特許報告		国際出願番号 PCT/JP03/07500	国際特許報告	国際出願番号 PCT/JP03/07500
C (抜き)	提出すると認められる文献		請求の範囲	
引用文献一覧	引用文献名 及び一部の断片が記載するときは、その記述する箇所の表示		請求の範囲の番号	
A	MURPHY P. M. et al., A structural homologue of the N-formyl peptide receptor. Characterization and chromosomal mapping of a peptide chemotactant receptor family. J Biol Chem. 1992 Apr 15, vol. 267(11), pp. 7637-7643	1-7, 34	第1回 請求の範囲の一節の記載ができないときの意見 (第1ページの2の続き)	第3回 請求の範囲の一節の記載ができないときの意見 (第1ページの2の続き) が第3条第3項 (PCT17条(2)(a)) の規定により、この国際特許報告は次の理由により請求の範囲の一節について作成しなかった。
A	DURSTIN M. et al., Differential expression of members of the N-formyl peptide receptor gene cluster in human phagocytes. Biochem Biophys Res Commun. 1994 May 30, vol. 201(1), pp. 174-179	1-7, 34	1. □ 請求の範囲 _____ は、この国際特許報告が調査をすることを要しない対象に限るものである。	1. □ 請求の範囲 _____ は、この国際特許報告が調査をすることを要しない対象に限るものである。
A	KLEIN C. et al., Identification of surrogate agonists for the human FPR-L1 receptor by autocrine selection in yeast. Nat Biotechnol. 1998 Dec, vol. 16(13), pp. 1334-1347	1-7, 34	つまり、	つまり、
A	LE Y. et al., The neurotoxic prion peptide fragment PrP(106-126) is a chemoattractive agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J Immunol. 2001 Feb 1 vol. 166(3), pp. 1448-1451	1-7, 34	2. □ 請求の範囲 8-14, 27-29, 32-33 は、有機酸な異常酵素をすることができる程度まで所定の要件を満たしていないため国際出願の範囲に該するのである。つまり、	2. □ 請求の範囲 8-14, 27-29, 32-33 は、有機酸な異常酵素をすることができる程度まで所定の要件を満たしていないため国際出願の範囲に該するのである。つまり、
A	WANG D. et al., IL-37, the neutrophil granule- and epithelia l cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPR-L1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000 Oct 2, vol. 192(7), pp. 1069-1074	1-7, 34	請求の範囲 8-14, 27-29, 32-33 は、有機酸な異常酵素をすることができる程度まで所定の要件を満たしていないため国際出願の範囲に該するのである。つまり、	請求の範囲 8-14, 27-29, 32-33 は、有機酸な異常酵素をすることができる程度まで所定の要件を満たしていないため国際出願の範囲に該するのである。つまり、
A	LE Y. et al., Receptors for chemoattractive formyl peptides as pharmacological targets. Int Immunopharmacol. 2002 Jan, vol. 12 (1), pp. 1-13	1-7, 34	3. □ 請求の範囲 _____ は、従属請求の範囲であってPCT規則6, 4(a)の第2文及び第3文の規定に従って記載されていない。	3. □ 請求の範囲 _____ は、従属請求の範囲であってPCT規則6, 4(a)の第2文及び第3文の規定に従って記載されていない。
A	CHRISTOPHE T. et al., The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH2 specifically activates neutrophils through FPR-L1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPR-L2. J Biol Chem. 2001 Jun 15, vol. 276(24), pp. 21585-21593	1-7, 34	第1回 発明の性-性が欠如しているときの意見 (第1ページの3の続き)	第1回 発明の性-性が欠如しているときの意見 (第1ページの3の続き)
A	VAUGHN M. W. et al., Identification, cloning, and functional characterization of a murine lipoxin A4 receptor homologue gene. J Immunol. 2002 Sep 15, vol. 169(6), pp. 3363-3369	1-7, 34	次に述べるようにこの国際特許に二以上の発明があるとこの国際特許は拒絶された。	次に述べるようにこの国際特許に二以上の発明があるとこの国際特許は拒絶された。
A	HASHIMOTO Y. et al., A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A. 2001 May 22, vol. 98(11), pp. 6336-6341	1-7, 34	1. □ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際特許報告は、すべての誕生日が記載の範囲について作成した。	1. □ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際特許報告は、すべての誕生日が記載の範囲について作成した。
			2. □ 追加調査手数料を請求するまでもなく、すべての誕生日が記載の範囲について調査することができたので、追加調査手数料の納付を認めなかった。	2. □ 追加調査手数料を請求するまでもなく、すべての誕生日が記載の範囲について調査することができたので、追加調査手数料の納付を認めなかった。
			3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかつたので、この国際特許報告は、手数料の納付のあった次の請求の範囲のみについて作成した。	3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかつたので、この国際特許報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
			4. □ 山個人が必要な追加調査手数料を期間内に納付しなかつたので、この国際特許報告は、請求の範囲の最初に記載されている発明に関する次の請求の範囲について作成した。	4. □ 山個人が必要な追加調査手数料を期間内に納付しなかつたので、この国際特許報告は、請求の範囲の最初に記載されている発明に関する次の請求の範囲について作成した。
			請求の範囲 1 - 7, 34	請求の範囲 1 - 7, 34
			追加調査手数料の納付の申立てに因する注意	追加調査手数料の納付の申立てに因する注意
			□ 追加調査手数料の納付と共に出願人から異議申立てがなかつた。	□ 追加調査手数料の納付と共に出願人から異議申立てがなかつた。

国際特許報告	国際出願番号 PCT/JP03/07500	国際特許報告	国際出願番号 PCT/JP03/07500
第1回 請求の範囲の一節の記載ができないときの意見 (第1ページの2の続き)			
第3回 請求の範囲の一節の記載ができないときの意見 (第1ページの2の続き)			
第3回 請求の範囲の一節の記載ができないときの意見 (第1ページの3の続き)			
第1回 発明の性-性が欠如しているときの意見 (第1ページの3の続き)			
次に述べるようにこの国際特許に二以上の発明があるとこの国際特許は拒絶された。			
1. □ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際特許報告は、すべての誕生日が記載の範囲について作成した。			
2. □ 追加調査手数料を請求するまでもなく、すべての誕生日が記載の範囲について調査することができたので、追加調査手数料の納付を認めなかった。			
3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかつたので、この国際特許報告は、手数料の納付のあった次の請求の範囲のみについて作成した。			
4. □ 山個人が必要な追加調査手数料を期間内に納付しなかつたので、この国際特許報告は、請求の範囲の最初に記載されている発明に関する次の請求の範囲について作成した。			
請求の範囲 1 - 7, 34			
追加調査手数料の納付の申立てに因する注意			
□ 追加調査手数料の納付と共に出願人から異議申立てがなかつた。			