Practical session 2

Exercise 1 An *n*-vertex graph G is generated as follows: every pair of vertices of G is connected by an edge with probability $p = n^{-2/5}$, independently of all other pairs. Prove that the probability that the maximum degree of G is at least $n^{2/3}$ tends to 0 as n tends to infinity.

Solution

Consider an arbitrary fixed vertex $v \in V(G)$. Observe that $\deg_G(v) \sim \text{Bin}(n-1,p)$. Therefore

$$\mathbb{E}\left(\deg_G(v)\right) = p(n-1) \le n^{3/5} \le \frac{1}{2}n^{2/3},\tag{1}$$

where the last inequality holds for sufficiently large n (since we only care about the limit of some probability when n tends to infinity, we can assume that n is as large as we want it to be).

Let $t = \frac{1}{2}n^{2/3}$. Then

$$\Pr\left(\deg_{G}(v) \ge n^{2/3}\right) \le \Pr\left(\deg(v) \ge p(n-1) + t\right)$$

$$\le e^{-\frac{2t^{2}}{n-1}}$$

$$= e^{-\frac{n^{4/3}}{2(n-1)}}$$

$$\le e^{-n^{1/3}/2},$$

where the first inequality is due to (1) and the second inequality holds by Chernoff's bound. Applying a union bound, we conclude that the probability that there exists a vertex whose degree in G is at least $n^{2/3}$ is at most $n \cdot e^{-n^{1/3}/2}$. Clearly this probability tends to 0 as n tends to infinity.

Exercise 2 Let $X_1, X_2, ...$ be an infinite sequence of mutually independent and identically distributed discrete random variables, with probability mass function $p(\cdot)$ (that is, $\Pr(X_i = x) = p(x)$ for every $i \in \mathbb{N}$ and every x in the support of X_i). Let $\mu = \mathbb{E}(X_1)$, let $H = \mathbb{E}(-\log_2 p(X_1))$, and let $\varepsilon > 0$ be a real number. For every $n \in \mathbb{N}$, let $X^n = (X_1, ..., X_n)$ and let $p_n(\cdot)$ be the probability mass function of X^n . Define the following sets

$$A^{n} = \left\{ x^{n} : \left| \frac{1}{n} \log_{2} p_{n} (x^{n}) + H \right| < \varepsilon \right\},$$

$$B^{n} = \left\{ (x_{1}, \dots, x_{n}) : \left| \frac{1}{n} \sum_{i=1}^{n} x_{i} - \mu \right| < \varepsilon \right\}.$$

Prove that

- 1. $\lim_{n\to\infty} \Pr(X^n \in A^n) = 1$.
- 2. $\lim_{n\to\infty} \Pr\left(X^n \in A^n \cap B^n\right) = 1$.
- 3. $|A^n \cap B^n| < 2^{n(H+\varepsilon)}$.
- 4. $|A^n \cap B^n| \ge (1 \varepsilon)2^{n(H \varepsilon)}$.

Solution

1. Note that

$$\mathbb{E}(-\log_2 p_n\left(X^n\right)) = \mathbb{E}(-\log_2\left(p\left(X_1\right)\cdot\ldots\cdot p\left(X_n\right)\right)) = \mathbb{E}\left(-\sum_{i=1}^n\log_2 p(X_i)\right) = nH,$$

where the first equality holds since the random variables X_1, \ldots, X_n are mutually independent and the last equality holds by the linearity of expectation and by the definition of H. It thus follows by the weak law of large numbers that

$$\lim_{n \to \infty} \Pr\left(\left| -\frac{1}{n} \log_2 p_n(X^n) - H \right| < \varepsilon\right) = \lim_{n \to \infty} \Pr\left(\left| -\frac{1}{n} \sum_{i=1}^n \log_2 p(X_i) - H \right| < \varepsilon\right) = 1.$$

This concludes the proof of 1. as

$$\Pr\left(\left|\frac{1}{n}\log_2 p_n(X^n) + H\right| < \varepsilon\right) = \Pr\left(X^n \in A^n\right).$$

2. Fix some $\varepsilon' > 0$. By part 1 of this exercise, there exists an N_1 such that for every integer $n > N_1$ it holds that $\Pr(X^n \in A^n) > 1 - \varepsilon'/2$. Similarly, by the weak law of large numbers, it holds that

$$\lim_{n \to \infty} \Pr\left(X^n \in B^n\right) = \lim_{n \to \infty} \Pr\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right) = 1.$$

Therefore, there exists an N_2 such that for every integer $n > N_2$ it holds that $\Pr(X^n \in B^n) > 1 - \varepsilon'/2$. Thus, for every integer $n > \max\{N_1, N_2\}$, it holds that

$$\Pr(X^n \in A^n \cap B^n) = \Pr(X^n \in A^n) + \Pr(X^n \in B^n) - \Pr(X^n \in A^n \cup B^n)$$
$$> (1 - \varepsilon'/2) + (1 - \varepsilon'/2) - 1$$
$$= 1 - \varepsilon'.$$

We conclude that $\lim_{n\to\infty} \Pr(X^n \in A^n \cap B^n) = 1$ as claimed.

3. Observe that

$$A^{n} = \left\{ x^{n} : \left| \frac{1}{n} \log_{2} p_{n}(x^{n}) + H \right| < \varepsilon \right\} = \left\{ x^{n} : 2^{-n(H+\varepsilon)} < p_{n}(x^{n}) < 2^{-n(H-\varepsilon)} \right\}.$$

Therefore

$$1 = \sum_{x^n} p_n(x^n)$$

$$\geq \sum_{x^n \in A^n \cap B^n} p_n(x^n)$$

$$\geq \sum_{x^n \in A^n \cap B^n} 2^{-n(H+\varepsilon)}$$

$$= |A^n \cap B^n| 2^{-n(H+\varepsilon)},$$

implying that $|A^n \cap B^n| \leq 2^{n(H+\varepsilon)}$.

4. By part 2 of this exercise, there exists an N such that for every integer n > N, it holds that

$$\Pr\left(X^n \in A^n \cap B^n\right) \ge 1 - \varepsilon.$$

Therefore

$$1 - \varepsilon \le \Pr(X^n \in A^n \cap B^n)$$

$$= \sum_{x^n \in A^n \cap B^n} p_n(x^n)$$

$$\le \sum_{x^n \in A^n \cap B^n} 2^{-n(H-\varepsilon)}$$

$$= |A^n \cap B^n| 2^{-n(H-\varepsilon)},$$

implying that $|A^n \cap B^n| \ge (1 - \varepsilon)2^{n(H - \varepsilon)}$.