Aula 25 – Casamento

Notas de Aula de Teoria dos Grafos

Profa: Patrícia D. L. Machado

UFCG – Unidade Acadêmica de Sistemas e Computação

Sumário

Casamento Maximal, Máximo e Perfeito	1
Caminho de Aumento e Teorema de Berge	3
Casamento em Grafos Bipartidos	5
Casamento e Cobertura de Vértices	7
Algoritmos	9
Exercícios Propostos	9
Referências	11

Nesta aula, apresentamos o conceito de casamento e problema do casamento máximo.

Casamento Maximal, Máximo e Perfeito

Um casamento (matching/emparelhamento) em um grafo é um conjunto de links não adjacentes. Duas arestas em um grafo são <u>adjacentes</u> se têm um terminal comum.

Se M é um casamento, os dois terminais de cada aresta de M estão <u>casados</u> segundo M e cada vértice incidente com uma aresta de M é dito estar <u>coberto</u> por M.

Na Figura 1, vemos 3 exemplos de casamento considerando as arestas hachuradas e marcadas em vermelho. Como o casamento só pode conter arestas não adjacentes, isto implica que um mesmo vértice só pode ser casado uma vez. É possível definir diferentes casamentos para um mesmo grafo.

¹ Imagem: http://en.wikipedia.org/wiki/Matching_(graph_theory)

Um casamento é **perfeito** quando cobre todos os vértices de um grafo. Na Figura 1(b), temos um exemplo de um casamento perfeito. Um grafo é **casável** se possui um casamento perfeito.

Um casamento é **máximo** quando cobre tantos vértices quando possível. Na Figura 1, todos os casamentos são máximos.

Um casamento é **maximal** quando não pode ser estendido. Na Figura 2, todos os casamentos são maximais, mas não são máximos, exceto o da direita.

Note que todo casamento máximo é maximal, mas não o contrário.

O número de arestas em um casamento máximo $-\alpha'(G)$ – é o **número de casamento** de G.

Figura 2

A Figura 3 apresenta um exemplo de dois casamentos em um grafo de Petersen, sendo o casamento da esquerda maximal, mas não máximo, nem perfeito. O casamento da direita é maximal, máximo e perfeito.

Figura 3

O **problema do casamento máximo** consiste em, dado um grafo G, encontrar um casamento máximo em G. Para grafos bipartidos, este problema está na classe P e é conhecido como problema da atribuição. Vejamos um exemplo de instância deste problema.

Um certo número de empregos está disponível. Dado um grupo de candidatos inscritos para estes empregos, distribua o maior número possível destes empregos, atribuindo empregos apenas para os candidatos que possuem a qualificação necessária.

Para tal, modelamos a relação entre candidato emprego para o qual possui qualificação através de um grafo bipartido. Depois encontramos um casamento máximo para o grafo.

Exercício 1: Considere o grafo abaixo. Encontre um casamento máximo. Encontre um casamento maximal que não é máximo.

Caminho de Aumento e Teorema de Berge

É possível determinar se um casamento é máximo, usando o conceito de caminho de aumento.

Seja *M* um casamento. Um *M*-caminho alternado ou M-ciclo alternado em G é um <u>caminho</u> ou <u>ciclo simples</u> cujas arestas do casamento *M* e fora do casamento estão alternadas. Um *M*-caminho alternado pode ou não iniciar ou terminar com arestas de *M*.

A Figura 4 apresenta um exemplo de um M-caminho alternado e M-ciclo alternado, marcado por setas.

Figura 4²

Seja G um grafo e M um casamento em G. Se nem o vértice de origem nem o vértice de destino de um M-caminho alternado é coberto por *M*, o caminho alternado é chamado de *M*-caminho de aumento.

Quando é possível definir um caminho de aumento para um dado grafo e um casamento M, então este casamento não é máximo.

Teorema 1. (Teorema de Berge) Um casamento M em um grafo G é máximo S e somente S não contém um S-caminho de aumento.

A Figura 5 ilustra dois casamentos onde para o da esquerda é possível definir um caminho de aumento (marcado por setas tracejadas em verde). Assim, o casamento da esquerda não é máximo.

Figura 5

² Imagem: J. A. Bondy and U. S. R. Murty.Graph Theory. Springer, 2008,2010

A Figura 6 mostra outros exemplos de caminhos de aumento para casamentos que não são máximos.

Figura 6

Revisitando o Exercício 1, o casamento (A) não é máximo, visto que, para este casamento, podemos definir o seguinte caminho de aumento: (3-1,1-2,2-4,4-6,6-8,8-9,9-10). Observe que, neste caminho, os vértices de origem e destino, 3 e 10, não estão casados.

Casamento em Grafos Bipartidos

Vamos agora considerar o problema mais específico de determinar, em grafos bipartidos, se existe um casamento que cobre todos os vértices de uma dada partição. Por exemplo, considere o grafo na Figura 7. Este grafo é bipartido. Considere que X = {B1, B2, B3, B4} e Y = {R1, R2, R3, R4, R5}. Existe um casamento que cobre todos os vértices de X? Existe um casamento que cobre todos os vértices de Y?

Figura 7

Note que podemos cobrir todos os vértices de X. Um exemplo de casamento seria: $C = \{B1R2, B2R3, B3R1, B4R5\}$. No entanto, não é possível cobrir todos os vértices de Y, especialmente porque Y tem mais vértices do que X. Havendo uma quantidade suficiente de vértices na outra partição, é necessário observarmos as adjacências para então determinar se a cobertura de todos os vértices será possível.

Teorema 2. Um grafo bipartido G = G[X,Y] possui um casamento que cobre todos os vértices em X se e somente se $|N(S)| \ge |S|$, para todo $S \subseteq X$.

Em outras palavras, o Teorema de Hall diz que se considerarmos qualquer subconjunto S de vértices de X de tamanho n, e a quantidade de vizinhos deste conjunto for menor que n, isto significa que pelo menos um dos vértices de S não poderá ser casado.

Retomando o grafo da Figura 7, considere a partição X e um subconjunto $S = \{B2, B4\}$ de X. Neste caso, $N(S) = \{R3, R5\}$ e $|N(S)| \ge |S|$. Para X, esta inequação será válida para qualquer $S \subseteq X$. Assim concluímos que todos os vértices em X podem ser cobertos. No entanto, quando consideramos a partição Y, basta considerar $S = \{R1, R2, R4\}$. Neste caso, $N(S) = \{B1, B3\}$. Assim, $|N(S)| \le |S|$ e, com isso, mostramos que nem todos os vértices de Y podem ser cobertos.

Corolário 1. Um grafo bipartido G[X,Y] possui um casamento perfeito se e somente se |X| = |Y| e $|N(S)| \ge |S|$ para todo $S \subseteq X$.

Considere os grafos da Figura 8. O grafo (a) possui um casamento perfeito, mas o grafo (b), apesar de ter partições do mesmo tamanho, não possui um casamento perfeito. Para tal, basta observar $S = \{1,3\}$. Neste caso, $N(S) = \{4\}$.

Exercício 2: Para o grafo abaixo, existe um casamento perfeito?

Sim, mas, para encontrar este casamento, é necessário observar que a alocação do vértice 1 é crítica. Este é o único vizinho de b. O casamento $C = \{a1, c4, d2\}$ é um exemplo de um casamento maximal que não é máximo nem perfeito. Mas, se aplicarmos o Corolário 1, vemos que para todo S subconjunto de $X = \{a, b, c, d\}$, a quantidade de vizinhos é sempre maior ou

igual a cardinalidade de S. Assim, como as partições têm o mesmo tamanho, é possível encontrar um casamento perfeito. Um exemplo de casamento perfeito é $C_P = \{a3, b1, c4, d2\}$.

Exercício 3: Para o grafo abaixo, determine se é possível realizar um casamento perfeito usando o teorema de Hall e seu corolário.

Não é possível definir um casamento perfeito. Apesar das partições do grafo terem o mesmo tamanho, a condição de que "o conjunto N(S) de vizinhos, de um subconjunto de vértices S, de uma partição X do grafo, tem sempre mais elementos que S" não pode ser satisfeita para todo S. Por exemplo, para o conjunto $S = \{c, b\}$, o conjunto $N(S) = \{d\}$.

Casamento e Cobertura de Vértices

Existe uma relação entre os conceitos de casamento e cobertura. Lembrando que uma **cobertura de vértices** em um grafo G é um subconjunto K de V tal que toda aresta de G tem pelo menos um terminal em K. Uma cobertura K^* é **mínima** se não existe outra K tal que $|K| < |K^*|$.

A Figura 9 ilustras duas coberturas de vértices no grafo de Petersen (vértices em destaque representam a cobertura), onde a cobertura C_1 , de tamanho 6, é mínima.

Se M é um casamento de G e K é uma cobertura de G, então pelo um dos terminais de cada aresta de M pertence a K. Isto ocorre porque toda aresta de G tem um terminal em K.

Desta forma, podemos concluir que $|M| \leq |K|$ (tamanho de M é sempre menor o igual ao tamanho de K).

Se por acaso |M| = |K|, então M é um casamento máximo e K é uma cobertura mínima. Neste caso, K cobre exatamente um vértice de cada aresta em M e M inclui todos os vértices casáveis do grafo, caso contrário K não seria uma cobertura.

Note que **esta igualdade não é encontrada em todos os grafos**. Para o grafo de Petersen da Figura 9, temos um casamento máximo de tamanho 5: $M = \{ag, ef, dj, ic, hb\}$ e a cobertura mínima, onde temos um exemplo ilustrado na Figura 9, é de tamanho 6.

Já para o grafo $K_{3,4}$, ilustrado na Figura 10, temos um casamento de tamanho igual ao de uma cobertura. Sempre que isto acontecer, temos certeza de que o casamento é máximo e a cobertura é mínima.

Teorema 3. (*Teorema de König*). Seja G um grafo bipartido. O tamanho de um casamento máximo em G é igual ao tamanho de uma cobertura mínima em G, ou seja, $\alpha'(G) = \beta(G)$.

Casamento: $M = \{14, 25, 36\}$

Cobertura: $C = \{1,2,3\}$

Figura 10

Exercício 4: Para o grafo e o casamento apresentado abaixo, mostre que este casamento é máximo usando o conceito de cobertura mínima.

Como o casamento $M = \{ad, bf, ce\}$ tem tamanho 3 e, para este grafo, é possível definir uma cobertura $C = \{d, e, f\}$ de tamanho 3, então concluímos que M é um casamento máximo e C é uma cobertura mínima.

Exercício 5: Para o grafo e o casamento apresentado abaixo, mostre que este casamento é máximo usando o conceito de cobertura mínima.

Como o casamento $M = \{ad, gh, ln\}$ tem tamanho 3 e, para este grafo, é possível definir uma cobertura $C = \{d, g, l\}$ de tamanho 3, então concluímos que M é um casamento máximo e C é uma cobertura mínima.

Algoritmos

A **JGraphT** disponibiliza no pacote <u>org.jgrapht.alg.matching</u> algoritmos que determinam um casamento máximo em grafos quaisquer e em grafos bipartidos.

Exercícios Propostos

1. Seja G o grafo abaixo ilustrado e seja M = {ab,eg,cf} um casamento. Mostre que M é máximo usando o conceito de cobertura mínima.

2. Para o grafo abaixo, encontre um casamento máximo. Justifique usando o teorema de Hall.

3. Para o grafo abaixo, encontre um casamento máximo.

4. Considere o grafo abaixo. Mostre que o casamento M = {a-c,d-f,g-h} não é máximo usando o conceito de caminho de aumento. Apresente um casamento máximo para este grafo.

5. Seja M um conjunto de arestas de um grafo G. Seja H o grafo (V, M). Mostre que M é um casamento em G se e somente se $d_H(v) \le 1$ para todo vértice v de H (onde $d_H(v)$ é o grau de v em H).

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

6. Quantas arestas tem um casamento máximo num grafo completo com n vértices?

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

7. Quantas arestas tem um casamento máximo em um grafo bipartido completo?

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

8. Calcule um casamento máximo em um caminho. Calcule um casamento máximo em um circuito.

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

9. Suponha que um grafo G tem um casamento perfeito. Mostre que n(G) é par (onde n(G) é a quantidade de vértices do grafo).

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

10. É verdade que todo grafo regular tem um casamento perfeito?

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

11. Seja G um K_6 e M um casamento perfeito em G. Mostre que G – M é planar. Mostre que G – M tem um casamento perfeito, digamos M' . Mostre que o complemento de (G – M) – M' é um circuito de comprimento 6.

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

12. É verdade que em qualquer árvore todo casamento maximal é máximo?

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

13. Prove que toda floresta tem no máximo um emparelhamento perfeito.

(Questão adaptada de: https://www.ime.usp.br/~pf/grafos-exercicios/texto/ETG.pdf)

Referências

- J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008, 2010.
 - 16.1
 - 16.2