

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID
20V	7.5mΩ	20A

DFN3030-8L Pin Configurations

FEATURE

- TrenchFET Power MOSFET
- Excellent R_{DS(on)}
- Low Gate Charge
- High Power and Current Handing Capability
- Surface Mount Package
- ESD Rating:2000V HBM

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	20	V	
V _{GS}	Gate-Source Voltage	±12	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	20	Α	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	10	А	
I _{DM}	Pulsed Drain Current ²	80	Α	
EAS	Single Pulse Avalanche Energy ³		mJ	
las	Avalanche Current		Α	
P _D @T _C =25°C	Total Power Dissipation⁴		W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol Parameter		Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹		38	°C/W
ReJC	Thermal Resistance Junction-Case ¹			°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	20			V	
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C	
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =6.5A		7.5	9.5	mΩ	
TVDS(ON)	Static Dialii-Source Off-Nesistance	V_{GS} =2.5 V , I_D =4.8 A		10.5	13		
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . I _D =250uA	0.5	0.7	1.1	V	
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID-230UA				mV/°C	
I _{DSS}	Drain-Source Leakage Current	V_{DS} =20V , V_{GS} =0V , T_J =25°C			1	- uA	
IDSS	Diam-Source Leakage Current	V _{DS} =20V, V _{GS} =0V , T _J =100°C			100	uA	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 12V$, $V_{DS} = 0V$			±100	nA	
gfs	Forward Transconductance	V_{DS} =5 V , I_D =3.2 A		10		S	
Rg	Gate Resistance	V_{DS} =0V , V_{GS} =0V , f=1MHz		1.2		Ω	
Q_g	Total Gate Charge			25.2			
Q_{gs}	Gate-Source Charge	V_{DS} =10V , V_{GS} =4.5V , I_{D} =4.8A		2.24		nC	
Q_{gd}	Gate-Drain Charge			9.1			
T _{d(on)}	Turn-On Delay Time			5.2			
Tr	Rise Time	VGS=4.5V,		19.7			
T _{d(off)}	Turn-Off Delay Time	VDD=10V, RG=3Ω,		208.4		ns	
T _f	Fall Time	ID=4.8A		114.3			
C _{iss}	Input Capacitance			1461			
Coss	Output Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		193.5		pF	
C _{rss}	Reverse Transfer Capacitance			180			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			20	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1.2A , T _J =250			1.0	V
t _{rr}	Reverse Recovery Time	IF=10A , di/dt=100A/μs ,				nS
Q _{rr}	Reverse Recovery Charge	T _J =250				nC

Notes:

- 1.Repetitive rating: Pluse width limited by maximum junction temperature
- 2.Surface Mounted on FR4 board, $t \le 10$ sec.
- 3. Pulse test : Pulse width≤300µs, duty cycle≤2%.
- 4. Guaranteed by design, not subject to production.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTIC

Figure 1: On-Regions Characteristi CS

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction
Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTIC

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe
Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-

Figure 11: Normalized Maximum Transient Thermal Impedance

DFN3030-8L Package Outline Data

Dimension	mm				mm			
	Min.	Тур.	Max.	Dimension	Min.	Тур.	Max.	
Α	0.7		0.8	1		0.203		
В	0.25		0.35	J	2.2		2.4	
С	0.2			K	1.4		1.6	
D	2.924		3.076					
E	2.924		3.076					
F	0.324		0.476					
G		0.65						
н	0		0.05					