

HKUST CSE FYP 2021-22

AR3: Steel Of Stalin

(A Turn Based Strategy Game Focusing on Management of Army Logistics)

Presenters:

LEUNG Ho Man Max

LO Yuk Fai (Marcus)

HUI Nathan

KONSTANTINO Hubert Aditya

Advisor:

Prof. Sunil ARYA

OVERVIEW

O2Implementation

03

Live Demo

OVERVIEW

Introduction

Why a strategy game?

Objectives

- 1. To create an attractive strategy game
- 2. To develop multiplayer features
- 3. To implement the above goals into a smooth game experience

Sources of Inspiration

Advanced Daisenryaku

Diplomacy

Starcraft 2

Hearts Of Iron IV

Implementation

Project Overview

Project Overview

Mechanisms

User Interface

Models

Multiplayer

Definitions of in-game terms

Map

Where the battle takes place, contains hexagonal tiles with different terrains

Terrain

An abstraction of real-world terrains represented by 3D models

Prop

Anything on the battle scene (units, buildings, tiles...)

Unit

Like a chess piece, but can be trained each round by consuming resources

Round

Where players make decisions by assigning commands to their units

Command

An action which the player can do, or can assign to his unit

Game Flow

Backend

Frontend

Unit Lifecycle

Random map generation

Cities generation

Streams generation

Terrain generation

STEP 3

STEP 2

STEP 1

Random map generation

Terrain generation

• 2 Perlin noise maps: "Height" and "Humidity"

Parameters	Controls	
Frequency	Density of the patterns	
Octaves	Details of the patterns	
Persistence	Attenuation of octaves	
Exponent	Flatness of the patterns	
Warp Strength	Degree of distortion of the patterns	
Offset	Origin of the sampled area	

Random map generation

Terrain generation

Warp Strength 1.0

Random map generation

Streams generation

Random map generation

Cities generation

Poisson Disk algorithm

Bot Algorithm

Training

Construction

STEP 1

STEP 2

Check Missing type of building

Construct the building

Outpost

STEP 1

of 2 cities

Get the middle point

Construct outpost

STEP 2

Movement

Capture Neutral City

Movement

Capture Enemy City

Combat

Camera Controlling System

Controlling the View of Player in the Game World

Focus on an Area during Rotation

Point to the Game Board Only Smooth Movement

Camera Controlling System

Variables that control the camera

- Position of Target -> middle of the camera view
- Length from camera to target -> zoom in/out
- Angle of Depression -> rotates up/down
- Horizontal Rotation -> rotates left/right

Camera Controlling System

Variables that control the camera

- Position of Target -> middle of the camera view
 - x:0-MAP WIDTH × CONSTANT
 - y:0-MAP_HEIGHT × CONSTANT
 - z:0
- Length from camera to target -> zoom in/out
 - 40 400
- Angle of Depression -> rotates up/down
 - 10° 90°
- Horizontal Rotation -> rotates left/right
 - No limitation

Camera Controlling System

1st Attempt: Linear Interpolation on

- Position of Target
- Local Position of Camera
- Local Rotation of Camera

PROBLEM

The camera zoom in and zoom out during rotation

Camera Controlling System

Aware of the zoom distance

Perform Smoothening on

Variables that control the camera

- Position of Target
- Length from camera to target
- Angle of Depression
- Horizontal Rotation

Separately

UI Animation - Tweening

Key Frame

Frames Generated in Between

Key Frame

PropEventTrigger

 Custom Event Trigger that supports Toggle On/Off

Subscribe/Unsubscribe
To event trigger

Menu Navigation

Main Menu: Stack Approach

The GameObject of pages are stored in a stack for navigation purposes

Menu Navigation

In Battle: Event-Driven Approach

Panels are opened or closed independently according to Pointer OnClick events

Resources Panel

120399

Texture

Define the appearances of surfaces of 3D objects

Types of maps	What is stored	Usage	
Bump Map	Height details	Create illusions of "bumps" on	
Normal Map	Surface normals	surfaces	
Roughness Map	Degree of light scattering	Emulate roughness of real-life objects	
Cube Map Reflections on environments		Skybox	

Optimization

Object details ↑ ⇒ Polygon count

GPU load 🕇

- ⇒ Framerate 👃
- ⇒ Player experience ↓

SOLUTION

- Decimate
- Level of Details

Optimization

Decimate

- Reduce polygon count
- Does not have great difference in appearance

3072 polygons

306 polygons

Optimization

Level of Details (LOD)

- Reduce polygon count only when the camera is far away
- Does not have great difference in appearance in camera perspective

Multiplayer

Multiplayer

Our project's needs:

- Simultaneous turns
 - End-of-turn communication

- Fog of War
 - Filtered communication

Netcode for GameObjects

- Mid-level networking library for Unity
- Players are either Hosts or Clients

- Communication via Remote Procedure Call (RPCs) or Named

Messages

Client-Server Communication

Client

Issues and Difficulties

- Not the best documentation
- Synchronization issues
 - Order of initialization important
- Named Message length constraint
 - Solution: Make use of multiple RPCs to shoulder the workload

Live Demo

Н

Demo Session!

Thanks for listening!

Credits: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**