P11 - 1.1 - $v_f^2 = v_i^2 + 2ad\ Notes$

What is the final velocity of a boat if it accelerates at $4\frac{m}{s^2}$ from $25\frac{m}{s}$ in 125 m?

$$v_{f}^{2} = v_{i}^{2} + 2ad$$

$$v_{f}^{2} = 25^{2} + 2(4)(125)$$

$$v_{f}^{2} = 1625$$

$$\sqrt{v_{f}^{2}} = \sqrt{1625}$$

$$v_{f} = 40.3 m$$

$$v_{f}^{2} = v_{i}^{2} + 2ad$$

$$v_{f}^{2} = v_{i}^{2} + 2ad$$

$$v_{f} = \sqrt{v_{i}^{2} + 2ad}$$

$$v_{f} = \sqrt{25^{2} + 2(4)(125)}$$

$$v_{f} = 40.3 m$$

$$v_f^2 = v_i^2 + 2ad$$
 $v_f = \sqrt{v_i^2 + 2ad}$
 $v_f = \sqrt{25^2 + 2(4)(125)}$
 $v_f = 40.3 m$

What is the initial velocity of a whale if it accelerates at $5\frac{m}{s^2}$ to $75\frac{m}{s}$ in 60 m?

$$v_f^2 = v_i^2 + 2ad$$

$$48^2 = v_i^2 + 2(5)(60)$$

$$2304 = v_i^2 + 600$$

$$\sqrt{1704} = \sqrt{v_i^2}$$

$$v_i = 41.3 \frac{m}{s}$$

$$v_f^2 = v_i^2 + 2ad$$

$$v_i = \sqrt{v_f^2 - 2ad}$$

$$v_i = \sqrt{75^2 - 2(5)(60)}$$

$$v_i = 70.9 \frac{m}{s}$$

How far does a plane travel if it accelerates at $4\frac{m}{s^2}$ from $25\frac{m}{s}$ to $45\frac{m}{s}$.

$$v_f^2 = v_i^2 + 2ad$$

$$45^2 = 25^2 + 2(4)d$$

$$2025 = 625 + 8d$$

$$1400 = 8d$$

$$d = 175 m$$

$$v_f^2 = v_i^2 + 2ad$$

$$d = \frac{v_f^2 - v_i^2}{2a}$$

$$d = \frac{45^2 - 25^2}{2(4)}$$

$$d = 175m$$

P11 - 1.1 - $v_f = v_i + at_i v_f^2 = v_i^2 + 2ad\ Notes$

What is the acceleration of an object which accelerates from $2\frac{m}{c}$ to $8\frac{m}{c}$ in 12 m?

$$v_f^2 = v_i^2 + 2ad$$

$$8^2 = 2^2 + 2(a)(12)$$

$$64 = 4 + 24a$$

$$60 = 24a$$

$$a = 2.5 \frac{m}{s^2}$$

$$v_f^2 = v_i^2 + 2ad$$

$$a = \frac{v_f^2 - v_i^2}{2d}$$

$$a = \frac{8^2 - 2^2}{2(12)}$$

$$a = 2.5 \frac{m}{s^2}$$

How far does a plane travel if it deccelerates at $6\frac{m}{s^2}$ from $72\frac{m}{s}$ to $48\frac{m}{s}$.

$$v_f^2 = v_i^2 + 2ad$$

$$48^2 = 72^2 + 2(-6)d$$

$$2304 = 5184 - 12d$$

$$-2880 = -12d$$

$$d = 240m$$

$$v_f^2 = v_i^2 + 2ad$$

$$d = \frac{v_f^2 - v_i^2}{2a}$$

$$d = \frac{48^2 - 72^2}{2(-6)}$$

$$d = 240m$$

What is the Acceleration of a Bear reaching a Velocity of $15\frac{m}{s}$ from Rest in 5s?

$$v_f = v_i + at$$

$$v_f = at$$

$$a = \frac{v_f}{t}$$

$$a = \frac{15}{5}$$

$$a = 3\frac{m}{s^2}$$

$$v_f^2 = v_i^2 + 2ad$$

$$d = \frac{v_f^2}{2a}$$

How Far did the Bear get in that time?

$$d = \frac{v_f^2}{2a}$$
$$d = \frac{15^2}{2(3)}$$

$$d = 37.5 \, m$$

How far does a cheetah running at $6\frac{m}{s}$ accelerates at $3\frac{m}{s^2}$ for 4 seconds. What is her Final Velocity?

$$v_i = 6$$
 $a = 2$ $t = 4$

$$v_f^2 = v_i^2 + 2ad$$

$$d = \frac{v_f^2 - v_i^2}{2a}$$

$$d = \frac{18^2 - 6^2}{2(3)}$$

$$d = 48 m$$

$$v_f = v_i + at$$

$$v_f = 6 + 3(4)$$

$$v_f = 18 \frac{m}{s}$$

Notes

August 11, 2015 12:23 AM

P11 - 1.2 - Ball Drop Lab

Trial times 0.59s 0.64s 0.65s

$$\Delta d = v_i t + \frac{1}{2} a t^2 \qquad ; v_i = 0$$

$$d = \frac{1}{2} a t^2$$

$$d = \frac{1}{2}at^2$$

$$\Delta d = d_f - d_i$$

$$\Delta d = 0 - 2$$

$$\Delta d = -2$$

$$a = g = -9.8 \frac{m}{s^2}$$

$$d = \frac{1}{2}at^{2}$$

$$-2 = \frac{1}{2}(-9.8)(0.59)^{2}$$

$$-2 = -1.71$$

$$d = \frac{1}{2}at^{2}$$

$$-2 = \frac{1}{2}(-9.8)(0.64)^{2}$$

$$-2 = -2.01$$

$$d = \frac{1}{2}at^{2}$$

$$-2 = \frac{1}{2}(-9.8)(0.64)^{2}$$

$$-2 = -2.01$$

$$d = \frac{1}{2}at^{2}$$

$$-2 = \frac{1}{2}(-9.8)(0.65)^{2}$$

$$-2 = -2.07$$

$$d = \frac{1}{2}at^{2}$$

$$-2 = \frac{1}{2}(-9.8)t^{2}$$

$$t = 0.6389$$

$$t = \sqrt{\frac{2d}{a}} \qquad ; v_i = 0$$

$$d = \frac{1}{2}at^2$$

$$d = \frac{1}{2}(-9.8)t^2$$

$$d = -4.9t^2$$

P11 - 1.2 - Ball Drop Notes

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

 $v_i = 0$

$$d_i = 10$$

 $t_{total} = ?$

$$v_i = 0$$

 $v_{before\ impact} = ?$

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$-10.1 = 0 \times t + \frac{1}{2} (-9.8) t^2$$

$$-10.1 = \frac{1}{2} (-9.8) t^2$$

$$-10.1 = -4.9 t^2$$

$$2.06 = t^2$$

$$\Delta d = d_f - d_i$$

$$\Delta d = 0 - 10.1$$

$$\Delta d = -10.1m$$

$$a = g = -9.8 \frac{m}{s^2}$$

 $Time\ to\ Fall=1.44s$

Velocity before impact

Or

$$; v_b = -ve *$$

Velocity Before Impact = $-14.07 \frac{m}{s}$

P11 - 1.3 - Ball Throw Up from Ground

To find Max Height, $v_f = 0$

$$v_f^2 = v_i^2 + 2ad$$

$$0^2 = 10^2 + 2(-9.8)d$$

$$0 = 100 - 19.6d$$

$$19.6d = 100$$

Max Height = 5.1m

To find time, Drop it from Max Height, $v_i = 0$

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$-5.1 = 0 \times t + \frac{1}{2} (-9.8) t^2$$

$$-5.1 = -4.9 t^2$$

$$1.04 = t^2$$

$$\Delta d = d_f - d_i$$

$$\Delta d = 0 - 5.1$$

$$\Delta d = -5.1m$$

 $Time\ to\ Max\ Height=1.02s$

$$t = 1.02 \times 2$$

$$t = 2.04s$$

Double Time

 $Total\ Time = 2.04s$

P11 - 1.3 - Alt Ball Throw Up from Ground

$$v_b = v_i v_b = 10 \frac{m}{s}$$

$$v_i = 10$$
 $h = ?$ $t_{max} = ?$ $t_{total} = ?$

(0,0)

(1.02, 5.1)

(2.04, 0)

t

 $v_i = 0 \frac{m}{s}$

To find Max Height, $v_f = 0$

$$v_f = v_i + at$$

$$0 = 10 + (-9.8)t$$

$$t = 1.02s$$

 $v_f = 0$

 $Time\ to\ Max\ Height=1.02s$

To find max height

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

Sub t into d = equation

$$d = 10(1.02) + \frac{1}{2}(-9.8)(1.02)^{2}$$

$$d = 5.1m$$

$$M$$

Max Height = 5.1m

Solve for time

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$0 = 10t + \frac{1}{2}(-9.8)t^2$$

$$0 = -4.9t^2 + 10t$$

$$0 = -4.9t(t - 2.04)$$

$$\Delta d = 0$$

$$-4.9t = 0$$

$$t = 0s$$

$$t - 2.04 = 0$$

$$t = 2.04s$$

Or use Quadform/Square Root Method

$$\boxed{ t = 2.04s}$$

 $Total\ Time = 2.04s$

P11 - 1.3 - Ball Drop Throw Up from Building

To find Max Height, $v_f = 0$

$$v_f^2 = v_i^2 + 2ad$$

$$0^2 = 10^2 + 2(-9.8)d$$

$$0 = 100 - 19.6d$$

$$19.6d = 100$$

$$d = 5.1m$$

$$d_i = 5$$

$$t_{max} = ?$$

$$v_i = 10$$

$$t_{total} = ?$$

$$d = 5 + 5.1$$

Add original height to rise

$$\boxed{d = 10.1m}$$

Max Height = 10.1m

To find time down, Drop it from Max Height to building height, $v_i = 0$

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$-5.1 = 0 + \frac{1}{2} (-9.8) t^2$$

$$-5.1 = -4.9 t^2$$

$$1.04 = t^2$$

$$\Delta d = d_f - d_i$$

$$\Delta d = 0 - 5.1$$

$$\Delta d = -5.1m$$

$$t = 1.02s$$

 $Time\ to\ Max\ Height=1.02s$

To find time up, Drop it from Max Height, $v_i = 0$

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$-10.1 = 0 \times t + \frac{1}{2} (-9.8) t^2$$

$$-10.1 = -4.9 t^2$$

$$2.06 = t^2$$

$$\Delta d = d_f - d_i$$

$$\Delta d = 0 - 10.1$$

$$\Delta d = -10.1m$$

$$\boxed{t = 1.44s}$$

 $Time\ to\ Fall=1.44s$

To find Total Time:

$$t = 1.02 + 1.44$$

Total Time=Time Up+Time Down

 $Total\ Time = 2.46s$

We could have doubled time to max height, then found the time to fall thrown down at

$$v_i = -10 \frac{m}{s}$$
. See next page.

$$t = 1.02 \times 2 + 0.42 = 2.46s$$

P11 - 1.3 - Alt Ball Drop Throw Up from Building

To find time to Max Height, $v_f = 0$

$$v_f = v_i + at$$

$$0 = 10 + (-9.8)t$$

$$t = 1.02s$$

To find max height

Time to Max Height = 1.02s

$$\Delta d = v_i t + \frac{1}{2} a t^2$$
 Sub t into d = equation
$$\Delta d = (10)(1.02) + \frac{1}{2}(-9.8)(1.02)^2$$

$$\Delta d = 5.1m$$

Add original height to rise

Max Height = 10.1m

Solve Total Time

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$-5.1 = 10t + \frac{1}{2} (-9.8) t^2 \qquad \Delta d = d_f - d_i$$

$$0 = -4.9t^2 + 10t + 5.1 \qquad \Delta d = 0 - 5.1$$

$$\Delta d = -5.1m$$

$$t = ve \qquad t = 2.46s$$

Or use Quadform/Square Root Method

 $Total\ Time = 2.46s$

We could have completed the square to find (time, max height)

P11 - 1.3 - Ball Drop Throw Down from Building

To find time down:

$$d_i = 5$$
 $t_{total} = ?$ $v_{before\ impact} = ?$

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$-5 = (-10) \times t + \frac{1}{2} (-9.8) t^2$$

$$-5 = -10t - 4.9t^2$$

$$0 = -4.9t^2 - 10t + 5$$

Time to Fall = 0.42

Or use Quadform/Square Root Method

$$v_f^2 = v_i^2 + 2ad$$

$$v_f^2 = (-10)^2 + 2(-9.8)(-5)$$

$$v_f^2 = 198$$

$$v_f = -14.07 \frac{m}{s}$$

$$v_f = -ve *$$

Or

Velocity Before Impact = $-14.07 \frac{m}{s}$

$$v_f = v_i + at$$

-14.1 = -10 + (-9.8)t
 $t = 0.42s$

P11 - 1.3 - Ball shot straight off cliff Notes

$$\Delta d = v_{iy}t + \frac{1}{2}at^{2}$$

$$-5 = 0 + \frac{1}{2}(-9.8)t^{2}$$

$$-5 = \frac{1}{2}(-9.8)t^{2}$$

$$-5 = -4.9t^{2}$$

$$1.02 = t^{2}$$

$$t = 1.01s$$

Time is the Link Between x and y, Galileo

$$d = 10.1m$$

$$v_{by} = v_i + at$$

$$v_{by} = at$$

$$v_{by} = (-9.8)(1.01)$$

$$v_{by} = -9.9 \frac{m}{s}$$

$$a^{2}+b^{2} = c^{2}$$

$$10^{2} + 9.9^{2} = c^{2}$$

$$198 = c^{2}$$

$$c = 14.1 \frac{m}{s}$$

$$tan\theta = \frac{o}{a}$$

$$tan\theta = \frac{9.9}{10}$$

$$\theta = tan^{-1} \left(\frac{9.9}{10}\right)$$

$$\theta = 44.7^{\circ}$$

P12 - 1.1 - Ball shot Down Angle Notes

$$v_{by} = v_i + at$$

$$v_{by} = -2.59 + (-9.8)(0.78)$$

$$v_{by} = -2.59 - 7.6$$

$$v_{by} = -10.2 \frac{m}{s}$$

$$a^{2}+b^{2} = c^{2}$$

$$10.2^{2} + 9.66^{2} = c^{2}$$

$$197.3 = c^{2}$$

$$c = 14.05 \frac{m}{s}$$

$$tan\theta = \frac{o}{a}$$

$$tan\theta = \frac{10.2}{9.66}$$

 $\theta = 46.6$

P12 - 1.1 - Projectile Motion Ground

A ball is shot at $50\frac{m}{s}$ at an angle of 40° above the horizontal. What is its max height? What is its time in flight? What is the distance the ball travels?

Kin Page 15

P12 - 1.1 - Projectile Motion Cliff

P12-Projectile Motion

A ball is shot off a 60m cliff at $40\frac{m}{s}$ at an angle of 50° from the horizontal. What is its max height? What is its time in flight? What is the horizontal distance the ball travels? What is the velocity and angle at impact?

P12 - 1.1 - Projectile Motion Cliff Work

$$\Delta d = v_i t + \frac{1}{2} a t^2$$
$$-47.8 = 0 + \frac{1}{2} (-9.8) t^2$$

This step is unnecessary

$$t = 3.1s$$

$$t = 3.1s$$

$$v_f^2 = v_i^2 + 2a\Delta d$$

$$v_f^2 = 0 + 2(-9.8)(-47.8)$$

$$v_f^2 = 936.9$$

$$v_f = 30.6 \frac{m}{s}$$

 $v_f = 30.6$

Time up and down to 6.2s top of cliff

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$-60 = -30.6t + \frac{1}{2} (-9.8) t^2$$

$$0 = -4.9t^2 - 30.6t + 60$$

$$t = 1.6s$$

Total time in flight: t = 6.2 + 1.6

Distance in flight = 200.5m

$$v_f^2 = (-30.6)^2 + 2a\Delta d$$

$$v_f^2 = 936.36 + 2(-9.8)(-60)$$

$$v_f^2 = 2112.4$$

$$v_f = 45.96 \frac{m}{s}$$

Total time in flight: t = 4.69 + 3.1 7.8s

$$v_x = 25.7$$
 00.8°
 $v_y = 45.96$
 $v_r = 52.3$

$$a^{2} + b^{2} = c^{2}$$

$$45.6^{2} + 25.7^{2} = c^{2}$$

$$c = 52.3 \frac{m}{s}$$

$$\theta = \tan^{-1}(\frac{45.96}{25.7})$$

$$\theta = 60.8^{\circ}$$

Max height = 107.8m. Time in flight = 7.8s. Horizontal distance traveled = 200.5m. The final velocity = $52.3\frac{m}{c}$ 60.8°S of E.

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$-60 = 30.6 t + \frac{1}{2} (-9.8) t^2$$

$$0 = -4.9 t^2 + 30.6 t + 60$$

$$t = 7.8 s$$

$$v_f = v_i + a t$$

$$v_f = (30.6) + (-9.8)(7.8)$$

$$v_f = -45.84 \frac{m}{s}$$

Or you can just do this!

How do we know time/and max height?

P12 - 1.2 - River Boat Current $\begin{pmatrix} a^2 + b^2 = c^2 \\ c = \sqrt{a^2 - b^2} \end{pmatrix}$ $\begin{pmatrix} c^2 - b^2 = a^2 \\ a = \sqrt{c^2 - b^2} \end{pmatrix}$

$$a^2 + b^2 = c^2$$
 $c = \sqrt{a^2 - b^2}$

$$c^2 - b^2 = a^2$$
$$a = \sqrt{c^2 - b^2}$$

Nick swims North across a 30 m river. Nick swims at $4\frac{m}{s}$ in still water. The river flows West at $3\frac{m}{s}$.

What is Nick's Resultant Velocity?

How long does it take to cross?

$$v_{y} = \frac{d_{y}}{t}$$

$$t = \frac{d_{y}}{v_{y}}$$

$$t = \frac{30}{4}$$

$$t = 7.5 \text{ s}$$

How far down river does Nick land?

$$v_x = \frac{d_x}{t}$$

$$d_x = v_x t$$

$$d_x = 3(7.5)$$

$$d_x = 22.5 m$$

What is Nick's Displacement?

$$d_r^2 = d_x^2 + d_y^2$$

$$d_r = \sqrt{22.5^2 + 30^2}$$

$$d_r = 37.5 \, m$$

At what heading should Nick head to arrive directly across the river?

What is Nick's Resultant Velocity?

At this heading how long will it take to cross?

$$v_{y} = \frac{d_{y}}{t}$$

$$t = \frac{d_{y}}{v_{y}}$$

$$t = \frac{30}{2.65}$$

$$t = 11.32 s$$

What is Nick's Displacement?

