Projet Optimisation

Vasavan & Wesley January 8, 2019

Sommaire

1	Obj	Objectif		
2	Alg	orithme et logiciel	4	
	2.1	Optimisateur SQP	4	
	2.2	Calcul du gradient	4	
	2.3		4	
	2.4		4	
	2.5			
3	Tes	t de validation de l'optimiseur SQP	5	
	3.1	Cas test: MHW4D	5	
	3.2	Cas test: Ariane	6	
4	Lan	aceur spatial	6	
	4.1	Problème d'étagement	7	
	4.2	Problème de trajectoire		
	4.3			
5	Sim	ulation du lanceur	8	
		Visualisation		
6	Pro	blèmes et limites rencontrés	8	

1 Objectif

La mission d'un lanceur spatial est d'amener un satellite en orbite. Le problème est divisé en deux parties l'implémentation de l'algorithme SQP (Sequential Quadratic Programming) et l'implémentation d'un simulateur, le tout en Matlab.

2 Algorithme et logiciel

2.1 Optimisateur SQP

L'algorithme SQP permet de résoudre des problèmes non linéaires sous contraintes.

Figure 1: Organigramme

2.2 Calcul du gradient

Le calcul du gradient de la fonction coût f et de la fonction contrainte est fait par la méthode des différences finies.

2.3 Calcul du hessien

Le calcul du hessien est fait par une méthode de Quasi-Newton. Les itérations sur le hessien sont faites soit par la méthode BFGS ou soit par la méthode SR1.

2.4 Problème quadratique

Cette partie résolve le problème quadratique en prenant en argument la matrice hesienne définie positive, les gradients des fontcions coût f et de la fonction contrainte.

2.5 Globalisation

Cette partie est composé de plusieurs étapes. On vérifie tout d'abord que la fonction de mérite est décroissante, si elle ne l'est pas on réinitialise le Hessien, puis on recherche une direction de déscente en augmentant ρ .

3 Test de validation de l'optimiseur SQP

Plusieurs cas test sont effectués pour valider l'optimiseur SQP. Les cas test sont : MHW4D et Ariane.

3.1 Cas test: MHW4D

Le problème:

$$\begin{cases} \min_{x \in \mathbb{R}^3} (x_1 - 1)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^3 + (x_3 - x_4)^4 + (x_4 - x_5)^4 \\ x_1 + x_2^2 + x_3^2 - 3\sqrt{2} - 2 = 0 \\ x_2 + x_3^2 + x_4 - 2\sqrt{2} + 2 = 0 \\ x_1 x_5 - 2 = 0 \end{cases}$$

Tableau des valeurs

Itération	Coordonnées	Lambda	Norme du langrandien
1	(-0.723, 1.285, 2.000, 0.000, -2.000)	(-12.190, 51.195, -8.876)	61.721
2	(-0.842, 1.287, 2.000, 0.000, -1.670)	(-5.306, 6.281, -10.883)	131.292
3	(-2.000, 2.275, 2.000, 0.000, 0.000)	(-1.264, -8.265, -9.463)	65.269
4	(-0.448, 2.778, 1.397, 0.000, -0.297)	(-1.918, -3.192, -11.931)	41.471
5	(-0.998, 3.000, 1.026, -0.644, -1.049)	(-0.747, -9.768, -28.724)	99.513
6	(-1.373, 2.854, 1.544, 0.000, -0.771)	(-0.009, -30.961, -21.523)	102.976
7	(-0.429, 2.007, 1.895, 0.000, -1.996)	(-3.435, 8.585, -12.720)	25.048
8	(-0.742, 1.817, 1.794, -0.016, -1.637)	(-2.443, 5.326, -12.092)	23.410
9	(-1.793, 2.054, 1.583, 0.000, -0.860)	(-2.926, 5.236, -11.216)	31.276
10	(-1.785, 2.302, 1.405, 0.000, -1.302)	(-2.576, 1.435, -12.541)	16.402
11	(-1.486, 2.528, 1.163, -0.267, -1.649)	(-1.974, -3.787, -6.715)	30.376
12	(-1.486, 2.528, 1.163, -0.267, -1.649)	(-2.716, -1.325, -8.624)	10.802
13	(-1.200, 2.476, 1.147, -0.332, -1.663)	(-2.768, 0.273, -8.584)	3.024
14	(-1.200, 2.476, 1.147, -0.332, -1.663)	(-2.711, 1.012, -8.597)	3.830
15	(-1.206, 2.464, 1.174, -0.258, -1.659)	(-2.695, 0.686, -8.607)	2.961
16	(-1.206, 2.464, 1.174, -0.257, -1.658)	(-2.542, 0.113, -8.886)	3.959
17	(-1.221, 2.463, 1.183, -0.237, -1.638)	(-2.512, 0.125, -8.893)	1.018
18	(-1.237, 2.462, 1.191, -0.216, -1.617)	(-2.512, 0.122, -8.896)	1.008
19	(-1.237, 2.462, 1.191, -0.216, -1.617)	(-2.512, 0.122, -8.896)	0.506
20	(-1.237, 2.462, 1.191, -0.216, -1.617)	(-2.512, 0.124, -8.896)	0.005
21	(-1.237, 2.462, 1.191, -0.216, -1.617)	(-2.512, 0.126, -8.896)	0.005
22	(-1.237, 2.462, 1.191, -0.216, -1.617)	(-2.512, 0.125, -8.896)	0.001
23	(-1.237, 2.462, 1.191, -0.216, -1.617)	(-2.512, 0.125, -8.896)	0.001
24	(-1.237, 2.462, 1.191, -0.216, -1.617)	(-2.512, 0.125, -8.896)	0.000
25	(-1.237, 2.462, 1.191, -0.216, -1.617)	(-2.512, 0.125, -8.896)	0.000

3.2 Cas test: Ariane

Les masses:

$$m_u = 1700$$

$$K = (0.1101, 0.1532, 0.2154)$$

$$V_e = (2647.2, 2922.4, 4344.3)$$

$$M_s = (K_1 M_{e,1}, K_2 M_{e,2}, K_3 M_{e,3})$$

Le problème:

$$\begin{cases} \min_{m_e \in \mathbb{R}^3} m_{e,1} + m_{s,1} + m_{e,2} + m_{s,2} + m_{e,3} + m_{s,3} + m_u \\ V_{e,1} \ln \left(\frac{M_{i,1}}{M_{f,1}} \right) + V_{e,2} \ln \left(\frac{M_{i,2}}{M_{f,2}} \right) + V_{e,3} \ln \left(\frac{M_{i,3}}{M_{f,3}} \right) - 11527 = 0 \end{cases}$$

Tableau des valeurs:

Itération	Masses	Lambda	Norme du lagrangien
1	(177362.639639, 47615.194077, 10000.00000)	346820.596063	10745.501622
2	(148052.357121, 29654.350488, 10000.00000)	3786571979.219226	117330866.704092
2	(148052.357121, 29654.350488, 10000.00000)	798735300.897798	7499814.214797
3	(148088.338651, 29703.590875, 9946.238284)	-3666278.867516	81537.247633
4	(148088.625409, 29703.982835, 9945.812910)	-60590.677561	1347.261577
5	(148088.634574, 29703.995365, 9945.799295)	-26.034761	2.006907
6	(148088.634574, 29703.995365, 9945.799295)	-17.909327	1.990368
7	(148088.631890, 29703.991781, 9945.802594)	-17.908987	1.990366
8	(148088.631890, 29703.991781, 9945.802594)	238.639221	5.860333
9	(148088.630906, 29703.990798, 9945.801174)	-13.499187	1.988031
10	(148088.630905, 29703.990798, 9945.801173)	417.741349	9.636206
11	(148088.630905, 29703.990798, 9945.801173)	-16.561310	1.989155
12	(148088.630905, 29703.990798, 9945.801173)	-16.561310	1.989154

4 Lanceur spatial

La simulation du lanceur spatial est divisé en deux parties majeures : le problème d'étagement et le problème de trajectoire.

4.1 Problème d'étagement

Le problème d'étagement est un problème d'optimisation des masses d'érgols de la fusée. Il est résolu par l'optimiseur SQP.

1.4.1) On reformule le problème. Avec $x_j = \frac{M_{i,j}}{M_{f,j}}$

$$J = \frac{M_{i,4}}{M_{i,3}} \cdot \frac{M_{i,3}}{M_{i,2}} \cdot \frac{M_{i,2}}{M_{i,1}} = \prod_{j=1}^{3} \frac{M_{i,j+1}}{M_{i,j}}$$
$$\frac{M_{i,j+1}}{M_{i,j}} = 1 - (k_j + 1)(1 - x_j^{-1})$$
$$= \frac{-x_j k_j + k_j + 1}{x_j}$$
$$= -\left[\frac{1 + k_j}{x_i} - k_j\right]$$

Ainsi:

$$f(x) = -\prod_{j=1}^{3} \left(\frac{1+k_j}{x_j} - k_j \right)$$

La condition KKT est en $x = (x_1, x_2, x_3)$:

$$\nabla f + \nabla c\lambda = 0$$

Soit pour $j \in \{1, 2, 3\}$:

$$\frac{\partial f}{\partial x_j} + \lambda \frac{\partial c}{\partial x_j} = 0$$

$$\left(\frac{1+k_j}{x_j^2}\right) \prod_{i=1, i\neq j}^3 \left(\frac{1+k_i}{x_i} - k_i\right) + \lambda \frac{v_j}{x_j} = 0$$

$$\lambda = \frac{-1}{v_j} \cdot \frac{1+k_j}{k_j x_j} \cdot \prod_{i=1, i\neq j}^3 \left(\frac{1+k_j}{k_j x_j} - 1\right)$$

On obtient finalement:

$$\begin{cases} v_2(1 - \Omega_2 x_2) &= v_1(1 - \Omega_1 x_1) \\ v_2(1 - \Omega_2 x_2) &= v_3(3 - \Omega_3 x_3) \end{cases}$$

4.2 Problème de trajectoire

La trajectoire du lanceur est découpée en trois séquences correspondant au fonctionnement successif des trois étages propulsifs. La simulation de la trajectoire est modélisée par des équations de Mouvements que l'on résout par intégration numérique, en utilisant la fonction ODE45 de Matlab.

4.3 Optimisation des angles

Pour avoir une trajectoire optimisée, on résout finalement le problème suivant sur les angles, en utilisant l'algorithme SQP :

5 Simulation du lanceur

5.1 Visualisation

Figure 2: Trajectoire

6 Problèmes et limites rencontrés

Nous avons rencontrés des difficultés dans l'optimisation des thétas. Ce qui nous a pas permis d'aboutir le projet correctement.