

A Level · OCR · Physics

10 mins

? 10 questions

Multiple Choice Questions

Linear & Projectile Motion

SUVAT Equations / Investigating Motion & Collisions / Acceleration & Free Fall / Braking & Reaction Times / Projectile Motion

Medium (5 questions) /5 Hard (5 questions) /5 **Total Marks** /10

Scan here to return to the course

or visit savemyexams.com

Medium Questions

1 The braking distance of a car is directly proportional to its initial kinetic energy.

The braking distance of a car is 18 m when its initial speed is 10 m s⁻¹.

What is the braking distance of the car, under the same conditions, when its initial speed is 25 m s^{-1} ?

- **A.** 7.2 m
- **B.** 45 m
- **C.** 113 m
- **D.** 222 m

(1 mark)

2 An object above the ground is released from rest at time t = 0.

Air resistance is negligible.

What is the distance travelled by the object between t = 0.20 s and t = 0.30 s?

- **A.** 0.20 m
- **B.** 0.25 m
- **C.** 0.44 m
- **D.** 0.49 m

3 A projectile is launched 35° to the horizontal with an initial velocity of 6.5 m s⁻¹.

Air resistance is negligible.

How long does it take for the projectile to reach its highest point?

- **A.** 0.38 s
- **B.** 1.3 s
- **C.** 1.1 s
- **D.** 0.76 s

(1 mark)

4 A stone is launched horizontally from the top of a cliff above the sea. It lands 45 m away from its starting position, and has an initial horizontal velocity of 11.25 m s⁻¹.

What is the height of the cliff?

- **A.** 78 m
- **B.** 20 m
- **C.** 123 m
- **D.** 65 m

(1 mark)

5 A cricket ball with a mass of 1 kg, and a bowling ball with a mass of 5 kg are dropped from a height of 120 cm.

Air resistance is negligible.

Which of the following statements is true?

- **A.** The force of the bowling ball hitting the ground is equal to the force of the cricket ball hitting the ground
- **B.** The bowling ball will hit the ground before the cricket ball does
- **C.** The speed of the bowling ball hitting the ground will be greater than the speed of the cricket ball
- **D.** The time it takes for the bowling ball to hit the ground is 0.49 s

Hard Questions

1 The table shows some data for a car travelling on a straight road with an initial speed of 13 m s^{-1} .

Thinking distance / m	9.0
Braking distance / m	14
Stopping distance / m	23

The car has a constant deceleration when the brakes are applied.

What is the magnitude of the deceleration of the car during braking?

- **A.** 0.46 m s^{-2}
- **B.** 3.7 m s^{-2}
- **C.** 6.0 m s^{-2}
- **D.** 9.4 m s^{-2}

(1 mark)

2 A ball is dropped from rest above the ground. Air resistance has negligible effect on the motion of the ball.

The speed of the ball is *v* after it has fallen a distance *h* from its point of release.

Which graph is correct for this falling ball?

(1 mark)

3 Two particles, **P** and **Q**, have constant accelerations 0.7 m s^{-2} and 0.4 m s^{-2} respectively. At t = 0 s Particle **P** is at rest and Particle **Q** has an initial velocity of 5 m s⁻¹.

What is the value of *t* when the velocities of the particles are equal?

- **A.** 16.7 s
- **B.** 12.5 s
- **C.** 4.55 s
- **D.** 0.06 s

4 Two identical cannonballs, **W** and **Z**, are fired. Cannonball **W** is fired at 13° to the horizontal and has an initial velocity of 24 m s⁻¹. Cannonball **Z** is fired at 29° and has an initial velocity of 9 m s⁻¹.

Air resistance is negligible.

Which of the following statements is **true**?

- **A.** Cannonball **Z** reaches a height of 3.2 m
- **B.** Cannonball **W** will hit the ground first
- **C.** Cannonball **W** reaches the greatest height
- **D.** The cannonballs will hit the ground at the same time

(1 mark)

5 A particle is fired with an initial velocity of 8.5 m s⁻¹ at an angle of 55° to the horizontal.

Air resistance is negligible.

Which statement best describes the vertical velocity-time graph of the particle?

- **A.** A straight line starting from the origin, with a gradient of 10, and a final velocity of 5 m s⁻¹
- **B.** A curved line starting from the origin, with a varying gradient, and a final velocity of 7 m s^{-1}
- **C.** A curved line starting from 5 m s⁻¹, with an initial gradient of 10, and a final velocity of - 5 m s⁻¹
- **D.** A straight line starting from 7 m s⁻¹, with a gradient of 10, and a final velocity of 7 $m s^{-1}$