Transformation of Two or More Random Variables

CDF

Transformations of Random Variable Techniques

Transformation

MGF

Review

1. CDF Technique

The CDF technique is used to find the distribution of a new random variable by deriving the CDF from another random variable.

2. Transformation technique

The transformation technique to find the distribution of a new random variable that can be divided into two: the one-to-one transformation and the non one-to-one transformation.

3. MGF Technique

The MGF technique uses a moment generating function to find the distribution of a new random variable.

CDF Method

Given a random variable X with density f_X , and a measurable function g, we are often interested in the distribution (CDF, PDF, or PMF) of the random variable Y = g(X).

For the case of a discrete random variable X, this is straightforward:

$$P_Y(y) = P\{Y = y\} = \sum_{x|g(x)=y} P_X(x)$$

CDF Method

• In general, we have

$$P\{Y = y\} = P\{g(X) = y\} = P\{x : g(x) = y\} = \sum_{x : g(x) = y} P\{X = x\}$$

• An analogous formula can be used for functions of two variables, that is, random variables of the form Z = g(X,Y), where the distribution of Z is expressed in terms of the distribution of X and Y.

CDF Method Continues case

Theorem:

Let $X = X_1, X_2, \dots, X_k$ is a vector k-dimensionality of continuous random variable with joint pdf $f(x_1, x_2, \dots, x_k)$. If Y is a function from X, so Y = g(X), then

$$F_Y(y) = P[g(X) \le y]$$

$$F_Y(y) = \int \cdots \int_{\substack{x:g(x) \le y}} f(x_1, x_2, \cdots, x_k) dx_1 \cdots dx_k$$

Transformation One to One Method (Discrete case)

Theorem

Suppose X is a discrete random variable with density $f_X(x)$. If Y = g(X) is an one on one transformation, then the PDF of Y is:

$$f_Y(y) = f_X(g^{-1}(y))$$

Note:

The transformation of discrete random variables is carried out as in continuous random variables, but for discrete Jacobian variables it is always equal to one (J = 1).

Transformation One to One Method (Continuous case)

Theorem

If g is a continuous differentiable function with inverse g^{-1} and X is a continuous random variable with density f_X , then the density of Y = g(X) is

$$f_Y(y) = f_X(g^{-1}(y))|g^{-1}(y)|$$

Transformation One to One Method (Continuous case)

We begin with the simplest case, when g is a strictly monotone function.

• If g is *increasing*, we write for the CDF of Y:

$$F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \le g^{-1}(y)\} = F_X(g^{-1}(y))$$

The density is obtained by differentiating CDF, and consequently

$$f_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y))g^{-1}(y)$$

• If g is monotonically **decreasing**, g^{-1} must be a decreasing function too:

$$F_Y(y) = P\{g(X) \le y\} = P\{X \ge g^{-1}(y)\} = 1 - F_X(g^{-1}(y))$$

Therefore,

$$f_Y(y) = -f_X(g^{-1}(y))g^{-1'}(y)$$

monotone increasing function

monotone decreasing function

Sums of Random Variables

Theorem

Suppose X and Y are independent r.v. Let W = X + Y. Then,

- $f_W(w) = \int_{-\infty}^{\infty} f_X(x) f_Y(w-x) dx$ if continuous $p_W(w) = \sum_{all \ x} p_X(x) p_Y(w-x)$ if discrete

Moment Generating Function (MGF) Technique

• Theorem 1:

If x is a random variable whose moment generating function (MGF) is $M_X(t)$ and Y is a function of X, Y = g(X) then the moment generation function (MGF) of the random variable Y can be expressed as:

$$M_Y(t) = E(e^{tY})$$

• Theorem 2:

If X_1, X_2, \dots, X_n is an independent random variable with moment generating function (MGF) is $M_{X_i}(t)$, then the moment generating function (MGF) of $Y = \sum_{i=1}^n X_i$ can be determined as follows:

$$M_Y(t) = M_{X_1}(t)M_{X_2}(t)\cdots M_{X_n}(t)$$

• Theorem 3:

If X_1, X_2, \dots, X_n is a sample that comes from a population with the same probability density function (pdf) and moment generating function (MGF), f(x) with $M_X(t)$, then:

$$M_Y(t) = [M(t)]^n$$

Transformation of Two or More Random Variables

Suppose we know the joint probability density function for random variable X_1 and X_2 is $f_{X_1,X_2}(x_1,x_2)$.

If other random variables are defined, Y_1 and Y_2 , where $Y_1 = g_1(x_1, x_2)$ and $Y_2 = g_2(x_1, x_2)$, then we want to know the joint probability density function for the random variables Y_1 and Y_2 , $f_{Y_1,Y_2}(y_1, y_2)$.

Theorem

Suppose we know the joint probability density function for the random variable X_1 and X_2 is $f_{X_1,X_2}(x_1,x_2)$ which is positive and continuous on the group $S \subseteq R^2$, and defined function $g_1,g_2:S \to R$ and T is an image of S as a one-to-one transformation of (g_1,g_2) .

Therefore, if $y_1 = g_1(x_1, x_2)$ and $y_2 = g_2(x_1, x_2)$ then the inverse, $x_1 = g_1^{-1}(y_1, y_2)$ and $x_2 = g_2^{-1}(y_1, y_2) \in T$.

Assume that for $(y_1, y_2) \in T$, dx_1/dy_1 and dx_2/dy_2 exist, continue, and not equal to 0.

Then the joint probability density function for the random variables Y_1 and Y_2 is:

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}\{g_1^{-1}(y_1,y_2), g_2^{-1}(y_1,y_2)\} \cdot |J|, \quad (y_1,y_2) \in T$$

Joint probability density function for the random variables Y_1 and Y_2

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}\{g_1^{-1}(y_1,y_2), g_2^{-1}(y_1,y_2)\} \cdot |J|, \qquad (y_1,y_2) \in T$$

$$J = Jacobian = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

Example 1

Suppose the continuous random variable X has a distribution U(0,1), while X_1 and X_2 are independent random variable examples of this distribution. If $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$ are defined, determine:

- a) Joint density function for random variables Y_1 and Y_2 , $f_{Y_1,Y_2}(y_1,y_2)$.
- b) Marginal density function for random variables Y_1 and Y_2 , $f_{Y_1}\left(y_1\right)$ and $f_{Y_2}\left(y_2\right)$.

 $X \sim U(0,1)$ and X_1, X_2 are independent and identical random sample of this distribution. Then the joint probability density function for X_1 and X_2 is:

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) = 1; 0 < x_1 < 1 \text{ and } 0 < x_2 < 1$$

then it is defined that:

$$y_1 = g_1(x_1, x_2) = x_1 + x_2$$

 $y_2 = g_2(x_1, x_2) = x_1 - x_2$

Through the substitution or elimination method from the above equation, the following equation will be obtained:

$$x_1 = g_1^{-1}(y_1, y_2) = (y_1 + y_2)/2$$

$$x_2 = g_2^{-1}(y_1, y_2) = (y_1 - y_2)/2$$

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix}$$

So, the common density for the random variables Y_1 and Y_2 is $f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}\{g_1^{-1}(y_1,y_2),g_2^{-1}(y_1,y_2)\} \cdot |J|$ $f_{Y_1,Y_2}(y_1,y_2) = \{(y_1+y_2)/2,(y_1-y_2)/2\} \cdot \left|-\frac{1}{2}\right|$ $f_{Y_1,Y_2}(y_1,y_2) = (1) \cdot \frac{1}{2}$ $f_{Y_1,Y_2}(y_1,y_2) = \frac{1}{2},(y_1,y_2) \in T$

determine the limit value for y_1 and y_2 that is T,

For
$$0 < x_1 < 1$$

 $0 < x_1 < 1 \rightarrow 0 < (y_1 + y_2)/2 < 1 \rightarrow 0 < y_1 + y_2 < 2$
 $0 < y_1 + y_2 \text{ and } y_1 + y_2 < 2$
 $y_2 > y_1 \text{ and } y_2 < 2 - y_1$

For
$$0 < x_2 < 1$$

 $0 < x_2 < 1 \rightarrow 0 < (y_1 - y_2)/2 < 1 \rightarrow 0 < y_1 - y_2 < 2$
 $0 < y_1 - y_2 \text{ and } y_1 - y_2 < 2$
 $y_2 < y_1 \text{ and } y_2 > y_1 - 2$

The marginal distribution for y_1 is

For
$$0 < y_1 \le 1$$

$$f_{Y_1}(y_1) = \int_{-y_1}^{y_1} f_{Y_1Y_2}(y_1, y_2) dy_2 = \int_{-y_1}^{y_1} \frac{1}{2} dy_2 = y_1$$

For
$$1 < y_1 < 2$$

$$f_{Y_1}(y_1) = \int_{y_1-2}^{2-y_1} f_{Y_1Y_2}(y_1, y_2) dy_2 = \int_{y_1-2}^{2-y_1} \frac{1}{2} dy_2 = 2 - y_1$$

Therefore,

$$f_{Y_1}(y_1) = \begin{cases} y_1 & ; & 0 < y_1 \le 1 \\ 2 - y_1 & ; & 1 < y_1 < 2 \\ 0 & ; & otherwise \end{cases}$$

The marginal distribution for y_2 is

For
$$-1 < y_2 \le 0$$

$$f_{Y_2}(y_2) = \int_{-v_2}^{y_2+2} f_{Y_1Y_2}(y_1, y_2) dy_1 = \int_{-v_2}^{y_2+2} \frac{1}{2} dy_1 = y_2 + 1$$

For
$$0 < y_2 < 1$$

$$f_{Y_2}(y_2) = \int_{y_2}^{2-y_2} f_{Y_1Y_2}(y_1, y_2) dy_1 = \int_{y_2}^{2-y_2} \frac{1}{2} dy_1 = 1 - y_2$$

Therefore,

$$f_{Y_2}(y_2) = \begin{cases} y_2 + 1 & ; & -1 < y_2 \le 0 \\ 1 - y_2 & ; & 0 < y_2 < 1 \\ 0 & ; & otherwise \end{cases}$$

Example 2

Suppose the continuous random variable X has the following probability density function

$$f_X(x) = e^{-x}, x \ge 0$$

 X_1 and X_2 is an independent and identic random variable of this probability density function. Determine the probability density function of random variable $Y = X_1/(X_1 + X_2)$.

 X_1 and X_2 is an independent and identic random variable for this probability density function (pdf), then the joint pdf for X_1 and X_2 :

$$f_{X_1,X_2}(x_1,x_2) = e^{-x_1}e^{-x_2} = e^{-(x_1+x_2)}; x_1 \ge 0 \text{ and } x_2 \ge 0$$

It is necessary to define another random variable for the transformation. occurs from two-dimensional space to two-dimensional space. Suppose $Z = X_1 + X_2$, so that we get a pair of transformations i.e. $y = x_1/(x_1 + x_2)$ and $z = x_1 + x_2$. This transformation is one-to-one for all functional areas.

Through the substitution or elimination method from the above equation, the following equation will be obtained:

$$x_1 = yz$$
$$x_2 = (1 - y)z$$

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y} & \frac{\partial x_1}{\partial z} \\ \frac{\partial x_2}{\partial y} & \frac{\partial x_2}{\partial z} \end{vmatrix} = \begin{vmatrix} z & y \\ -z & 1-y \end{vmatrix} = z$$

So, the joint density for the random variables Y and Z is

$$f_{Y,Z}(y,z) = f_{X_1,X_2}(x_1,x_2) \cdot |J|$$

= $e^{-(yz+(1-y)z)} \cdot |J|$
= ze^{-z} , $(y,z) \in T$

Next determine the limit value for y and z, namely T.

Pay attention, because $x_1 \ge 0$ and $x_2 \ge 0$, then

$$0 \le y = x_1/(x_1 + x_2) \le 1 \rightarrow 0 \le y \le 1$$

 $z = x_1 + x_2 \ge 0 \rightarrow z \ge 0$

Therefore,

$$f_{Y,Z}(y,z) = ze^{-z}$$
 , $0 \le y \le 1$ and $z \ge 0$

Marginal distribution for random variables $Y = X_1/(X_1 + X_2)$:

$$\int_{0}^{\infty} ze^{-z}dz = 1$$

Hence, the pdf for random variable $Y = X_1/(X_1 + X_2)$:

$$f_Y(y) = \begin{cases} 1 & \text{; } 0 \le y \le 1 \\ 0 & \text{; } otherwise \end{cases}$$

Exercise 1

Suppose the random variables X and Y are independent and have a Negative Exponential probability density function with $\lambda = 1$, and it is defined that the random variable U = (X + Y)/2 and V = (X - Y)/2. Determine:

- a) Joint pdf $f_{U,V}(u,v)$.
- b) Marginal pdf $f_U(u)$ and $f_V(v)$.

Note:

$$f_X(x) = \lambda e^{-\lambda x}, x > 0, \lambda > 0$$

Exercise 2

Suppose the random variables X and Y are independent and have pdf Normal(0,1) and defined U=(X+Y) and V=(X-Y). Determine:

- a) Joint pdf $f_{U,V}(u,v)$.
- b) Marginal pdf $f_U(u)$ and $f_V(v)$.

Thank you