

Układy sekwencyjne – przerzutniki, zatrzaski, rejestry

1. Cel éwiczenia

Zapoznanie się z budową i działaniem podstawowych układów sekwencyjnych – przerzutników (*flip-flop*), zatrzasków (*latch*) oraz prostych układów sekwencyjnych rejestrów. Zapoznanie się z metodami projektowania układów rejestrów.

- 2. Elementy sekwencyjne przerzutniki i zatrzaski
 - **2.1.** Konwencja dot. nazewnictwa sygnałów
 - a) wejścia informacyjne (**D**, **T**, **J-K**)
 - b) wejścia sterujące (CE, C, CLR, PRE, R, S, E)
 - \circ **C** *clock* wejście zegarowe
 - o CLR clear asynchroniczne wejście resetujące
 - o CE clock enable odblokowanie sygnału zegarowego
 - o **PRE** *preset* asynchroniczne wejście ustawiające
 - o **R** reset synchroniczne wejście resetujące
 - \circ S set synchroniczne wejście ustawiające
 - **G** *gate* wejście zezwalające
 - o **GE** gate enable blokowanie wejścia zezwalającego
 - c) wyjście danych (**Q**)
 - 2.2. Przerzutniki
 - **2.2.1.** Typy przerzutników
 - a) typu **D**

C	D	Q'
1	0	0
1	1	1
pp	X	Q

Tabela 1. Tabela prawdy. Oznaczenia: 'pp' - pozostałe przypadki, X - dowolna wartość

b) typu T

C	T	Q'
↑	0	Q
1	1	/Q
pp	X	Q

Tabela 2. Tabela prawdy. Oznaczenia: 'pp' - pozostałe przypadki, X - dowolna wartość

c) typu J-K

C	J	K	Q'
↑	0	0	Q
↑	0	1	0
1	1	0	1
1	1	1	/Q
pp	X	X	Q

Tabela 3. Tabela prawdy. Oznaczenia: 'pp' - pozostałe przypadki, X - dowolna wartość

2.2.2. Konwencja nazewnictwa przerzutników

2.3. Zatrzaski

2.3.1. Konwencja nazewnictwa zatrzasków

2.3.2. Przykład zatrzasku

Rysunek 1. Przykładowy symbol zatrzasku – zatrzask z asynchronicznymi sygnałami CLR, PRE, GE oraz G.

2.4. Porównanie przerzutników i zatrzasków

Rysunek 2. Przebiegi ilustrujące porównanie przerzutnika typu D i zatrzasku.

- 3. Elementy sekwencyjne rejestry
 - 3.1. Podział rejestrów

Rejestry są układami sekwencyjnymi umożliwiąjącymi przechowywanie informacji cyfrowej. Ze względu na sposób wprowadzania i wyprowadzania danych rejestry dzielimy na:

- a) szeregowe umożliwiają szeregowe wprowadzanie i wyprowadzanie danych
- b) równoległe umożliwiają równoległe wprowadzanie i wyprowadzanie danych
- c) **szeregowo-równolegle** umożliwiają szeregowe wprowadzanie i równoległe wyprowadzanie danych
- d) **równoległo-szeregowe** umożliwiają równoległe wprowadzanie i szeregowe wyprowadzanie danych
- **3.2.** Inna klasyfikacja rejestrów, oparta jest na realizowanych przez nich funkcjach. Wybrane klasy rejestrów, wg. tej systematyki, to:
 - a) rejestry przesuwające (przesunięcie arytmetyczne, cykliczne, typu barrel-shifter)
 - b) rejestry liczące
 - c) rejestry realizujące przekształcenia sygnału szeregowegona równoległy i równoległego na szeregowy
- **3.3.** Przykłady rejestrów wykorzystywanych w Laboratorium
 - **3.3.1.** Konwencja nazw rejestrów zbudowanych z przerzutników typu D o różnej długości

3.3.2. Konwencja nazewnictwa rejestrów przesuwnych

3.3.3. Przykłady

a) oznaczenia

Rysunek 3. Przykłady rejestrów. **a**) rejestr zbudowany w oparciu o przerzutniki D 8-bitowy z synchronicznym zerowaniem i sygnałem odblokowania sygnału zegarowego; **b**) rejestr zbudowany w oparciu o przerzutniki D 16-bitowy z asynchronicznym zerowaniem i sygnałem odblokowania sygnału zegarowego; **c**) 16-bitowy ładowalny rejestr przesuwny z asynchronicznym zerowaniem i sygnałem odblokowania sygnału zegarowego oraz sygnałem wyboru kierunku przesuwania (lewo lub prawo) **d**) 8-bitowy rejestr typu barrel-shifter

b) tabele prawdy

	wejścia							wyjścia			
CLR	L	CE	LEFT	SLI	SRI	D15-D0	C	Q15'	Q14'-Q1'	Q0'	
1	X	X	X	X	X	X	X	0	0	0	
0	1	X	X	X	X	D15-D0	1	D15	D14-D1	D0	
0	0	0	X	X	X	X	X	Q15	Q14-Q0	Q0	
0	0	1	1	SLI	X	X	1	Q14	Q13-Q0	SLI	
0	0	1	0	X	SRI	X	↑	SRI	Q15-Q2	Q1	

Tabela prawdy - rejestr SR16CLED.

	wejścia					wyjścia												
S2	S1	S0	10	I1	I2	13	I4	I 5	I6	I 7	O0'	01'	O2'	O3'	O4'	O5'	O6'	O7 '
0	0	0	a	b	c	d	e	f	g	h	a	b	c	d	e	f	g	h
0	0	1	a	b	c	d	e	f	g	h	ь	c	d	e	f	g	h	a
0	1	0	a	b	С	d	e	f	g	h	c	d	e	f	g	h	a	b
0	1	1	a	b	С	d	e	f	g	h	d	e	f	g	h	a	b	С
1	0	0	a	b	c	d	e	f	g	h	e	f	g	h	a	b	С	d
1	0	1	a	b	c	d	e	f	g	h	f	g	h	a	b	c	d	e
1	1	0	a	b	c	d	e	f	g	h	g	h	a	b	c	d	e	f
1	1	1	a	b	c	d	e	f	g	h	h	a	b	c	d	e	f	g

Tabela prawdy - rejestr BRLSHFT8.

3.4. Projektowanie układów rejestrów – przykłady.

3.4.1. Rejestr przesuwający

$Q_AQ_BQ_C$	0	1
000	000	001
001	010	011
010	100	101
011	110	111
100	000	001
101	010	011
110	100	101
111	110	111

 $Q'_AQ'_BQ'_C$

Tabela 4. Rejestr przesuwający – tabela przejść.

$Q_{A}Q_{B}$ $Q_{C}D$	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

Q'c

Tabela prawdy – sygnał Q'_C . $Q'_C = D$

$Q_{c}D$	00	01	11	10	
00	0	0	1	1	
01	0	0	1	1	
11	0	0	1	1	
10	0	0	1	1	
					Ç

Tabela prawdy – sygnał Q'_B . $Q'_B = Q_C$

$Q_{c}D$	00	01	11	10	
00	0	0	0	0	
01	1	1	1	1	
11	1	1	1	1	
10	0	0	0	0	
					$\mathbf{Q'}_{A}$

Tabela prawdy – sygnał Q'_A . $Q'_A = Q_B$

Rysunek 4. Implementacja rejestru przesuwnego 3-bitowego z wykorzystaniem przerzutników typu D oraz przebiegi odpowiednich sygnałów.

4. Rejestry liczące – kody wagowe i niewagowe

Stany *rejestrów liczących* oraz *przesuwających* (będących realizacjami pewnych automatów skończonych) mogą być kodowane w postaci określonych sekwencji bitowych. Sekwencje bitowe, cyklicznie się powtarzające, dzieli się na dwie zasadnicze grupy – *kody wagowe* oraz *kody niewagowe*. Rejestry te konstruuje się w taki sposób, aby sekwencje kodów powtarzały się, tzn. po ostatnim kodzie z danej sekwencji następuje "powrót" rejestru do pierwszego kodu.

- **4.1. Kody wagowe** każda pozycja ma określoną **wagę;** ciąg wag kodu jest zwykle używany jako nazwakodu, np.:
 - a) NKB
 - b) U1

- c) U2
- d) BCD
- e) kod Aikena (kod wagowy; BCD o wagach: 2,4,2,1)
- **4.2.** Kody niewagowe wagi pozycji nie mają znaczenia, np.:
 - a) kod BCD z nadmiarem 3 tzw. kod +3 (otrzymuje się dodając 3 do cyfry dziesiętnej i zapisując ją w kodzie BCD)
 - b) kod Gray'a
 - c) kod Johnsona
- **4.3.** Przykłady

$Kody \rightarrow$	Kod	y wagow	e	Ko	dy niewa	gowe
Cyfry ↓ wagi →	Kod Aikena 2 4 2 1	BCD 8 4 2 1	NKB 8 4 2 1	Kod +3	Gray'a	Johnsona -
0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1	0 0 0 0	0 0 0 0 0
1	0 0 0 1	0001	0 0 0 1	0100	0001	00001
2	0010	0 0 1 0	0 0 1 0	0101	0 0 1 1	00011
3	0 0 1 1	0 0 1 1	0 0 1 1	0110	0010	0 0 1 1 1
4	0100	0100	0100	0111	0110	01111
5	1011	0 1 0 1	0 1 0 1	1000	0111	11111
6	1100	0 1 1 0	0 1 1 0	1001	0101	11110
7	1101	0 1 1 1	0 1 1 1	1010	0100	11100
8	1110	1000	1000	1011	1100	11000
9	1111	1001	1001	1100	1101	10000
10	-	-	1010	-	1 1 1 1	-
11	-	-	1 0 1 1	-	1110	-
12	-	-	1100	-	1010	-
13	-	-	1 1 0 1	-	1011	-
14	-	-	1110	-	1001	-
15	-	-	1111	-	1000	-

Tabela 5. Przykłady kodów wagowych i niewagowych

5. Zadania

Wykonaj projekt rejestru cyklicznego z transkoderem wg podanych poniżej wymagań. Konstrukcja modułowa urządzenia powinna umożliwiać pomiar sygnałów na wyjściach kolejnych bloków przetwarzania.

A) Wymagania projektowe:

- rejestr cykliczny realizujący na wyjściu 4-bitowy kod Johnsona
- transkoder kodu Johnsona na kod kolumny 'wyj' tablicy dekodowania D3 (kolumna 'we' tablicy D3 zastąpiona kolejnymi symbolami kodu Johnsona)

B) Wymagania projektowe:

- rejestr cykliczny realizujący na wyjściu 6-bitowy kod 1zN
- transkoder kodu 1zN na kod kolumny 'wyj' tablicy dekodowania D3 (kolumna 'we' tablicy D3 zastąpiona kolejnymi symbolami kodu 1zN)

Przygotuj schemat do testowania układów z wykorzystaniem dzielnika częstotliwości clk_gen_50 i analizatora stanów logicznych.

Dokonaj pomiarów układu wybranego przez prowadzącego przy pomocy analizatora stanów logicznych. Wyniki pomiarów (w postaci elektronicznej) wraz z kartą projektu przedstaw prowadzącemu zajęcia.