PageRank: The Google Formulation

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d_i}}$$
 or equivalently $r = Mr$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

The "Spider trap" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

Example:

Does it converge to what we want?

The "Dead end" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

Example:

RageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"

- (2) Spider traps
 (all out-links are within the group)
 - Eventually spider traps absorb all importance

Problem: Spider Traps

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

Example:

Solution: Random Teleports

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

Iteration 0, 1, 2,

Solution: Always Teleport

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

