LOAD DATA

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

Start coding or generate with AI.

Double-click (or enter) to edit

Start coding or generate with AI.

url = 'https://raw.githubusercontent.com/nitindig/datascience/master/reg

Importing the dataset
df = pd.read_csv(url)

DATA PREPERATION Data separation

y=df["Salary"]
x=df.drop("Salary",axis=1)

Data Splitting

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_

Model Building Linear Regression

from sklearn.linear_model import LinearRegression

LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Applying the model to make prediction

```
y_train_lr_pred=lr.predict(x_train)
y_test_lr_pred=lr.predict(x_test)
y_train_lr_pred
→ array([116180.82036723,
                              64030.39965754,
                                               76136.74732229,
    100349.44265179,
             53786.56701814,
                              74274.23229695,
                                               56580.33955616,
    68686.68722091,
                              90105.61001239,
            103143.21518981,
                                               38886.44681538,
    124562.13798128,
             54717.82453082,
                              47267.76442943,
                                               81724.29239833,
    82655.549911
             61236.62711953,
                              56580.33955616, 110593.27529119,
    45405.24940409,
             37023.93179003.
                              92899.38255041,
                                               72411.7172716 ,
    64030.39965754])
```

from sklearn.metrics import mean_squared_error,r2_score

lr_train_mse=mean_squared_error(y_train,y_train_lr_pred)
lr_train_r2=r2_score(y_train,y_train_lr_pred)

lr_test_mse=mean_squared_error(y_test,y_test_lr_pred)
lr_test_r2=r2_score(y_test,y_test_lr_pred)

lr_result=pd.DataFrame(["linear Regression",lr_train_mse,lr_train_r2,lr_
lr_result.columns=["method","training Mse","training r2","test Mse","test
lr_result

Data Visualization

```
plt.scatter(x_train, y_train, color = 'red')
plt.plot(x_train,y_train_lr_pred,color = 'blue')
plt.title('Salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()

#test set result

plt.scatter(x_test, y_test, color = 'red')
plt.plot(x_test,y_test_lr_pred,color = 'blue')
plt.title('Salary vs Experience (Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()
```


Random Forest

from sklearn.ensemble import RandomForestRegressor
rf=RandomForestRegressor(random_state=0)
rf.fit(x_train,y_train)

RandomForestRegressor
RandomForestRegressor(random_state=0)

RandomForestRegressor(random_state=0) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Applying the model to make prediction

Double-click (or enter) to edit

```
y_train_rf_pred=rf.predict(x_train)
y_test_rf_pred=rf.predict(x_test)
```

Evaluate Model Performence

```
from sklearn.metrics import mean_squared_error,r2_score

rf_train_mse=mean_squared_error(y_train,y_train_rf_pred)

rf_train_r2=r2_score(y_train,y_train_rf_pred)

rf_test_mse=mean_squared_error(y_test,y_test_rf_pred)

rf_test_r2=r2_score(y_test,y_test_rf_pred)

rf_result=pd.DataFrame(["RandomForest",rf_train_mse,rf_train_r2,rf_test_rf_result.columns=["method","training Mse","training r2","test Mse","test_df=pd.concat([lr_result,rf_result]).reset_index(drop=True)

df
```

\Rightarrow		method	training Mse	training r2	test Mse	test r2
	0	linear Regression	36149670.118161	0.941195	12823412.298127	0.98817
	1	RandomForest	8281022.529747	0.986529	22223542.924426	0.979497

Data Visuliztion