2. Grad-div-curl recap

M. Ravasi ERSE 210 Seismology

Wave propagation

Key component of seismology, this is how we learn about the subsurface

Wave propagation

Key component of seismology, this is how we learn about the subsurface

Wave equation(s)

- Principle of Inertia (aka Equation of motion)

Links variations in time and space of deformations with stresses → generates movement in first place

- Hooke's law (aka Deformation equation)

Links stresses and deformations → acts as contrasting force to initial movement, leading to oscillations

- Principle of Inertia (2nd Newton's law): $F_i = ma = m\ddot{x}$
- Elastic reaction (Hooke's law): $F_r = -kx$

- Principle of Inertia (2nd Newton's law): $F_i = ma = m\ddot{x}$
- Elastic reaction (Hooke's law): $F_r = -kx$

At equilibrium $(F_r = F_r)$:

$$m\ddot{x} = -kx \to \ddot{x} + \frac{k}{m}x = 0$$

Simple armonic motion (2nd order ODE)

$$m\ddot{x} = -kx \rightarrow \ddot{x} + \frac{k}{m}x = 0$$

Analytical solution: $x(t) = Acos(\omega t - \phi)$

Simple armonic motion (2nd order ODE)

$$m\ddot{x} = -kx \to \ddot{x} + \frac{k}{m}x = 0$$

Analytical solution: $x(t) = Acos(\omega t - \phi)$

$$\omega = \sqrt{\frac{k}{m}}$$
 Resonant frequency
 A Amplitude
 ϕ Initial phase

Gradient - definition

Given a generic scalar function f, we define the gradient as:

$$\mathbf{g} = \nabla f = \begin{bmatrix} \partial f / \partial x \\ \partial f / \partial y \\ \partial f / \partial z \end{bmatrix} \quad \mathbb{R} \rightarrow \mathbb{R}^3 \quad \text{Fundamental in differentiation and integration of N-dimensional functions}$$

Gradient - derivation

Gradient - derivation

$$f_A = f(x, y)$$

$$f_B = f(x + \delta x, y)$$

$$f_B = f(x + \delta x, y + \delta y)$$

Starting from:

$$\delta f = f_C - f_A = f_C - f_B + f_B - f_A$$

and using the definition of partial derivatives:

$$f_{B} - f_{A} = f(x + \delta x, y) - f(x, y)$$

$$= \delta x \frac{\partial f}{\partial x}(x, y)$$

$$f_{C} - f_{B} = f(x + \delta x, y + \delta y) - f(x + \delta x, y)$$

$$= \delta y \frac{\partial f}{\partial y}(x + \delta x, y) = \text{Taylor expansion}$$

$$\delta y \frac{\partial f}{\partial y}(x, y) + \delta y \delta x \frac{\partial^{2} f}{\partial x \partial y}(x, y)$$

$$= 0 \text{ (higher order)}$$

Gradient - derivation

$$f_A = f(x, y)$$

$$f_B = f(x + \delta x, y)$$

$$f_B = f(x + \delta x, y + \delta y)$$

Starting from:

$$\delta f = f_C - f_A = f_C - f_B + f_B - f_A$$

we get:

$$\delta f = \delta x \frac{\partial f}{\partial x}(x, y) + \delta y \frac{\partial f}{\partial y}(x, y)$$

Gradient - interpretation

The gradient is a vector with magnitude and direction:

- **Magnitude**: $|\nabla f| = \delta f/|\delta \mathbf{r}|$ (change of f in the direction of largest increase divided by the distance in that direction)
- Direction: points in the direction of max change of function (perpendicular to contours):

$$\delta \mathbf{r}$$
 random: $\delta f = |\nabla f| |\delta \mathbf{r}| \cos \theta$
 $\delta \mathbf{r} // f_{const} (\theta = 90)$: $\delta \mathbf{r} \perp \nabla f \rightarrow \delta f = 0$
 $\delta \mathbf{r} \perp f_{const} (\theta = 0)$: $\delta f = |\nabla f| |\delta \mathbf{r}|$

Gradient - interpretation

We can use the concept of gradient to integrate lines

$$\delta f = f_B - f_A = (f_B - f_{P_n}) + \dots + (f_{P_1} - f_A) =$$

$$\sum \nabla f \cdot \delta \mathbf{r} = \int_A^B \nabla f \cdot d\mathbf{r}$$

$$\xrightarrow{n \to \infty}$$

Gradient - interpretation

We can use the concept of gradient to integrate lines

$$\delta f = f_B - f_A = (f_B - f_{P_n}) + \dots + (f_{P_1} - f_A) =$$

$$\sum \nabla f \cdot \delta \mathbf{r} = \int_A^B \nabla f \cdot d\mathbf{r}$$

$$\xrightarrow{n \to \infty}$$

! Can compute the change of a function between two points provided you know the gradient all along!

Generalization of the concept of integration in 1D: $d\mathbf{r} = d\mathbf{x}\mathbf{i}_x \rightarrow f_B - f_A = \int_A^B \frac{\partial f}{\partial x} dx$

Pressure force – definition

The gradient of the pressure field is:

$$\vec{F}_p = -\nabla p$$

This means that given a pressure field p(x,y) that is non-constant, there is always a force that pushes in the direction of low pressure (i.e., high to low)

Pressure force – derivation

In the x-direction, the net force is:

$$\mathbf{F}_{x} = \mathbf{F}_{left} + \mathbf{F}_{right}$$

$$\mathbf{F}_{left} = p(x, y, z) \delta y \delta z \mathbf{i}_{x}$$

$$\mathbf{F}_{right} = -p(x + \delta x, y, z) \delta y \delta z \mathbf{i}_{x}$$

So:

$$\mathbf{F}_{\mathbf{x}} = -[\mathbf{p}(x + \delta x, y, z) - \mathbf{p}(x, y, z)] \delta y \delta z \mathbf{i}_{x}$$
$$= -\frac{\partial p}{\partial x} \delta x \delta y \delta z \mathbf{i}_{x} = -\frac{\partial p}{\partial x} \delta V \mathbf{i}_{x}$$

Repeating for y and z:

$$\mathbf{F} = -\frac{\partial p}{\partial x} \delta V \mathbf{i}_x - \frac{\partial p}{\partial y} \delta V \mathbf{i}_y - \frac{\partial p}{\partial z} \delta V \mathbf{i}_z$$

Pressure force – derivation

Repeating for y and z:

$$\mathbf{F} = -\frac{\partial p}{\partial x} \delta V \mathbf{i}_{x} - \frac{\partial p}{\partial y} \delta V \mathbf{i}_{y} - \frac{\partial p}{\partial z} \delta V \mathbf{i}_{z}$$

Which gives:

$$\mathbf{F}_{p} = \frac{\mathbf{F}}{\delta V} = -\frac{\partial p}{\partial x}\mathbf{i}_{x} - \frac{\partial p}{\partial y}\mathbf{i}_{y} + \frac{\partial p}{\partial z}\mathbf{i}_{z} = -\nabla p$$

Total and partial derivatives - definition

Principle of of temporal changes caused by motion in a system

Given a temperature field $T(\mathbf{r}, t)$, we have 2 situations:

1. Temperature field moves right to left and observer is fixed; the observer perceives a change through time

$$\frac{\partial T(\mathbf{r}, t)}{\partial t} = \lim_{\partial t \to 0} \frac{T(\mathbf{r}, t + \delta t) - T(\mathbf{r}, t)}{\delta t}$$
 Partial derivative

Total and partial derivatives - definition

Principle of of temporal changes caused by motion in a system

Given a temperature field $T(\mathbf{r}, t)$, we have 2 situations:

1. Temperature field moves right to left and observer is fixed; the observer perceives a change through time

$$\frac{\partial T(\mathbf{r}, t)}{\partial t} = \lim_{\partial t \to 0} \frac{T(\mathbf{r}, t + \delta t) - T(\mathbf{r}, t)}{\delta t}$$
 Partial derivative

2. Temperature field is fixed $(\partial T/\partial t=0)$, but observer moves and still experiences an increase in temperature over time

$$\frac{dT(\mathbf{r}, t)}{dt} = \lim_{\partial t \to 0} \frac{T(\mathbf{r}(t + \delta t), t + \delta t) - T(\mathbf{r}, t)}{\delta t}$$
 Total derivative
$$= \lim_{\partial t \to 0} \frac{\nabla T \cdot \delta \mathbf{r}}{\delta t}$$
 $\delta \mathbf{r} = \mathbf{r}(t + \delta t) - \mathbf{r}(t)$

Total and partial derivatives - definition

In general, the two effects could be interwined:

$$\frac{dT(\mathbf{r},t)}{dt} = \lim_{\delta t \to 0} \frac{T(x(t+\delta t), y(t+\delta t), z(t+\delta t), t+\delta t) - T(\mathbf{r},t)}{\delta t}$$

which becomes:

Lagrangian view
$$\delta x = x(t + \delta t) - x(t) \approx \frac{\partial x}{\partial t} \delta t = v_x \delta t$$

$$\delta y = y(t + \delta t) - y(t) \approx \frac{\partial y}{\partial t} \delta t = v_y \delta t \qquad \qquad \frac{dT}{dt} = \frac{\partial T}{\partial x} v_x + \frac{\partial T}{\partial y} v_y + \frac{\partial T}{\partial z} v_z + \frac{\partial T}{\partial t} = (\vec{v} \cdot \nabla f) + \frac{\partial T}{\partial t}$$

$$\delta z = \cdots$$

Eulerian view

Divergence - definition

Given a generic vectorial function f, we define the divergence as:

$$\nabla \cdot \boldsymbol{f} = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z} \quad \mathbb{R}^3 \to \mathbb{R}$$

Divergence - definition

To provide a physical interpretation of the divergence, we need to introduce the flux of a vectorial field:

e.g., fluid with constant density

The volume of the fluid that flows in the surface S per unit of time is called flux Φ :

$$\Phi = \iint \mathbf{f} \cdot \mathbf{n} \, dS = \iint \mathbf{f} \cdot d\mathbf{S}$$

where
$$dS = dSn$$

Divergence - derivation

Outward flux on the right surface

$$d\Phi_{\text{right}} = f_x(x + \delta x, y, z)\delta y\delta z$$

Outward flux on the left surface

$$d\Phi_{\text{left}} = -f_x(x, y, z)\delta y \delta z$$

Total on the side surfaces

$$d\Phi_{x} = [f_{x}(x + \delta x, y, z) - f_{x}(x, y, z)]\delta y \delta z$$
$$= \frac{\partial f_{x}}{\partial x} \delta x \delta y \delta z = \frac{\partial f_{x}}{\partial x} \delta V$$

Divergence - derivation

Repeating for y and z:

$$d\Phi_{f} = \left(\frac{\partial f_{x}}{\partial x} + \frac{\partial f_{y}}{\partial y} + \frac{\partial f_{z}}{\partial z}\right) \delta V = \nabla \cdot f \delta V$$

$$\nabla \cdot f = \frac{d\Phi_{f}}{\delta V}$$

The divergence of a vector field is equivalent to the outward flux of the vector field per unit of volume

Curl - definition

Given a generic vectorial function f, we define the curl as:

$$\nabla \times \boldsymbol{f} = \begin{vmatrix} \boldsymbol{i}_{\chi} & \boldsymbol{i}_{y} & \boldsymbol{i}_{z} \\ \partial x & \partial y & \partial z \\ f_{\chi} & f_{y} & f_{z} \end{vmatrix} \qquad \mathbb{R}^{3} \to \mathbb{R}^{3}$$
Determinant

Curl - definition

To provide a physical interpretation of the curl, we need to introduce the infinitesimal circulation of a vectorial field:

Assuming that the curl is aligned with i_z :

$$\nabla \times \boldsymbol{f} = (\partial_{x} f_{y} - \partial_{y} f_{x}) \boldsymbol{i}_{z}$$

Let's now consider the circulation defined as:

$$\oint_{C} \mathbf{f} \cdot d\mathbf{r} = \sum_{i=1}^{4} \int_{\ell_{i}} \mathbf{f} \cdot d\mathbf{r} =$$

$$= f_{x}(x, y) dx + f_{y}(x + \delta x, y) dy - f_{x}(x + \delta x, y + \delta y) dx - f_{y}(x, y + \delta y) dy$$

$$= (-\partial_{y} f_{x}(x, y) - \partial_{x} f_{y}(x, y)) dx dy$$
Taylor expansion and higher order

Curl - definition

To provide a physical interpretation of the curl, we need to introduce the infinitesimal circulation of a vectorial field:

We get:

$$(\nabla \times \mathbf{f})_{z} = -\frac{\oint_{\mathbf{C}} \mathbf{f} \cdot d\mathbf{r}}{dxdy}$$

Any component of the curl $\nabla \times f$ in a given direction is equivalent to the closed line integral of the function f itself along a closed path perpendicular to such direction divided by the unit surface area.

Curl - interpretation

The curl has usually 2 components:

rigid rotation: fluid moves in (x,y)

 $\boldsymbol{v} = \Omega \mathbf{r}$

velocity increases linearly with distance

 $\omega = \nabla \times v = 2\Omega i_z$ vorticity is twice the rotational rate

Ω: angular velocity

 $T = 2\pi/\Omega$: period

Curl - interpretation

The curl has usually 2 components:

shearing: flow only in x but depends only by y

$$v_x = f(x), v_y = v_z = 0$$

$$\nabla \times \boldsymbol{v} = -\partial_{y} f_{x} \boldsymbol{i}_{z}$$