TEXTURE RECONSTRUCTION FROM MULTIPLE VIEWS

BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Author: *Bc. David Kedra (xkedra00@vutbr.cz)* Supervisor: *Ing. Michal Hradiš, Ph.D.*

A deep learning model for high-resolution texture reconstruction and image enhancement of flat surfaces using images captured from multiple viewpoints under varying lighting conditions. The views are aligned to a reference image (which contains the required texture colors) using homography and SEA-RAFT optical flow. The reconstruction is performed by CNNs, mainly based on U-Net architectures, and the models are trained primarily on synthetic data generated in Blender.

Splitting images into patches (512×512 pixels)

Each training sample consists of 1 GT texture patch, 1 reference view patch, and other N view patches selected from a set of Q aligned input images (views) at the specific position (for the project N was set as 5).

Texture reconstruction

(reference image enhancement)

Table 1: The models are named by encoder-decoder types. MV_EDSR denotes a multi-view variant of EDSR.

	Scei	Scene A		Scene B	
	PSNR	SSIM	PSNR	SSIM	
MV_EDSR	21.44	0.58	22.06	0.74	
ResNet34_U-Net	21.83	0.60	22.02	0.74	
MiT_U-Net	22.31	0.61	22.47	0.74	
ResNet101_UNet++	22.01	0.61	22.76	0.75	
				Table 1	

Figure 4