

Pilani Campus

Artificial & Computational Intelligence DSE CLZG557

M2: Problem Solving Agent using Search

Raja vadhana P Assistant Professor, BITS - CSIS

Course Plan

M1	Introduction to AI
M2	Problem Solving Agent using Search
M3	Game Playing, Constraint Satisfaction Problem
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time, Reinforcement Learning
M7	AI Trends and Applications, Philosophical foundations

Module 2: Problem Solving Agent using Search

- A. Uninformed Search
- B. Informed Search
- C. Heuristic Functions
- D. Local Search Algorithms & Optimization Problems

Local Search & Optimization

Terminology

Local Search: Search in the state-space in the neighbourhood of current position until an optimal solution is found

Feasible State/Solution

Neighboring States

Optimal Solution

Fitness Value:

$$h(n) = 4$$

$$h(n) = 4$$

$$h(n) = 4$$
 $h(n) = 2$

$$h(n) = 0$$

Above is an example of h(n) = No.of.Conflicting pairs of queens

$$h(n) = 0$$

$$h(n) = 0 \qquad \qquad h(n) = 1$$

$$h(n) = 1$$

$$h(n) = 0$$

Above is an example of h(n) = No.of.Non-Conflicting Single queens with other queens inthe board.

Local Search

Terminology

Local Search: Search in the state-space in the neighbourhood of current position until an optimal solution is found

Algorithms:

- Choice of Neighbor
- Looping Condition
- Termination Condition

2	5	3	2
¥	6		W
3	5	4	2
4	W	4	2

Hill Climbing

2	5	3	2
W	6		
3	5	4	2
4		4	2

Hill Climbing

- 1. Select a random state
- 2. Evaluate the fitness scores for all the successors of the state
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. Repeat from Step 2

h(n) = No.of non-conflicting pairs of queens in the board.

Q1-Q2

Q1-Q3

Q1-Q4

Q2-Q3

Q2-Q4

Q3-Q4

Stochastic Hill Climbing

- 1. Select a random state
- 2. Evaluate the fitness scores for all the successors of the state
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. Repeat from Step 2

1 4 2 2	4
---------	---

Stochastic Hill Climbing

Stochastic Hill Climbing

- Select a random state
- 2. Evaluate the fitness scores for all the successors of the state
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. Repeat from Step 2

$$12 N = \{4,2,2,3,3,2,2,0,2,1,3,0\}$$

 $\begin{array}{l} next \leftarrow \text{a randomly selected successor of } current \\ \Delta E \leftarrow next. \text{VALUE} - current. \text{VALUE} \\ \text{if } \Delta E > 0 \text{ then } current \leftarrow next \\ \text{else } current \leftarrow next \text{ only with probability } e^{\Delta E/T} \end{array}$

Simulated Annealing

Simulated Annealing

- 1. Select a random state
- 2. Evaluate the fitness scores for all the successors of the state

- 4. Select the next state based on the highest probability
- 5. Repeat from Step 2

lead

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

 $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$

for t = 1 to ∞ do

 $T \leftarrow schedule(t)$

if T = 0 then return current

 $next \leftarrow$ a randomly selected successor of current

 $\Delta E \leftarrow next. Value - current. Value$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Next Value	ΔΕ	ΔE/t	$e^{\Delta E/t}$	$\frac{1}{1 + e^{\Delta E/t}}$
1	-1	-0.1	0.904	0.525
2	0	0	1	0.5
3	1	0.1	1.105	0.47
4	2	0.2	1.221	0.45

Simulated Annealing

Current Value = 4 (Local Maxima)

Global Maxima = 6

Next Value	ΔΕ	ΔE/t	$e^{\Delta E/t}$	$\frac{1}{1 + e^{\Delta E/t}}$	ΔE/t	$e^{\Delta E/t}$	$\frac{1}{1+e^{\Delta E/t}}$
2	2	0.1	1.12	0.47	0.4	1.49	0.40
3	1	0.05	1.05	0.49	0.2	1.22	0.45
5	-1	-0.05	0.95	0.51	-0.2	0.82	0.55

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

 $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$

for t = 1 to ∞ do

 $T \leftarrow schedule(t)$

if T = 0 then return current

 $next \leftarrow$ a randomly selected successor of current

 $\Delta E \leftarrow next. Value - current. Value$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

1 4	2 2	4
-----	-----	---

2	4	2	2
---	---	---	---

4	4	2	

)	Next Value	ΔΕ	ΔE/t	$e^{\Delta E/t}$	$\frac{1}{1 + e^{\Delta E/t}}$	$e^{-\Delta E/t}$	$\frac{1}{1 + e^{-\Delta E/t}}$
	1	-1	-0.1	0.904	0.525	1.105	0.47
	2	0	0	1	0.5	0	0.5
	3	1	0.1	1.105	0.47	0.904	0.525
	4	2	0.2	1.221	0.45	0.819	0.55

Maximization problem design to achieve global minima

```
Set Temp to very high temp t
Set n as number of iteration to be performed at a particular t
L1: Randomly select a random neighbour
Calculate Energy barrier E = f(N)-f(C)
If E > 0 then its a good move
    Move ahead for next tree search level
Else
    Create a random number r:[0-1]
    If r < e^{-E/t}
           Choose this bad state & move downhill
    Else
           Go to L1.
If Goal is reached or {acceptable goal(set criteria to check )node is reached & t is small END}
Else
    If no.of.neighbors explored has reached a threshold >=n
           then Lower t and go to L1.
```

Machine Learning

Examples

Local Beam Search

Beam Search

- 1. Initialize k random state
- 2. Evaluate the fitness scores for all the successors of the k states
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. If the goal is not found, Select the next 'k' states randomly based on the probability
- 6. Repeat from Step 2

3	4	4	2	3

Beam Search

1st State

- 1. Initialize k random state
- 2. Evaluate the fitness scores for all the successors of the k states
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. If the goal is not found, Select the next 'k' states randomly based on the probability
- 6. Repeat from Step 2

Beam Search

2nd State

- 1. Initialize k random state
- 2. Evaluate the fitness scores for all the successors of the k states
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. If the goal is not found, Select the next 'k' states randomly based on the probability

Stochastic Beam Search

Sample from 1st State

- 1. Initialize k random state
- 2. Evaluate the fitness scores for all the successors of the k states
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. If the goal is not found, Select the next 'k' states randomly based on the probability
- 6. Repeat from Step 2

- 1. Select 'k' random states Initialization: k=4
- 2. Evaluate the fitness value all states: Maximizing function: No.of.Non-attacking pairs Queens \rightarrow Threshold = 6

2 1 3 4 4

1 4 3 2 2

2 1 4 1 3

Eg., use roulette wheel mechanism to select pair/s

Proportion

B1 B2 B3 B4

Sample winners of game -1,2,3,4: B4, B1, B1, B3

- 1. Select 'k' random states Initialization : k=4
- 2. Evaluate the fitness value all states: Maximizing function: No.of.Non-attacking pairs Queens \rightarrow Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

Sample winners of game -1 ,2,3,4 : B4, B1, B1, B3

- 1. Select 'k' random states Initialization : k=4
- 2. Evaluate the fitness value all states: Maximizing function: No.of.Non-attacking pairs Queens \rightarrow Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

http://ictactjournals.in/paper/IJSC V6 I1 paper 4 pp 1083 1092.pdf

- 1. Select 'k' random states **Initialization**: k=4
- 2. Evaluate the fitness value all states : Maximizing function : No.of.Non-attacking pairs Queens → Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

- 1. Select 'k' random states Initialization : k=4
- 2. Evaluate the fitness value all states: Maximizing function: No.of.Non-attacking pairs Queens \rightarrow Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

- 1. Select 'k' random states Initialization : k=4
- 2. Evaluate the fitness value all states: Maximizing function: No.of.Non-attacking pairs Queens \rightarrow Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

- 1. Select 'k' random states Initialization : k=4
- 2. Evaluate the fitness value all states : Maximizing function : No.of.Non-attacking pairs Queens → Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

Techniques:

- 1. Design of the fitness function
- 2. Diversity in the population to be accounted
- 3. Randomization

Application:

- Creative tasks
- > Exploratory in nature
- Planning problem
- Static Applications

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
           FITNESS-FN, a function that measures the fitness of an individual
  repeat
      new\_population \leftarrow empty set
      for i = 1 to SIZE(population) do
          x \leftarrow \text{RANDOM-SELECTION}(population, FITNESS-FN)
          y \leftarrow RANDOM-SELECTION(population, FITNESS-FN)
          child \leftarrow REPRODUCE(x, y)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
function REPRODUCE(x, y) returns an individual
  inputs: x, y, parent individuals
  n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n
  return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

Hyper Parameter Optimization

Examples

- Parameter
- Hyper Parameter
- HP Optimization or Tuning
- K = No.of.Clusters
- C = Regularization , in LR
- Penalty {L1, L2} & class_weight in LogR
- Loss in SGD
- Learning Rate in GD
- > Maximum Depth, No.of.Instances at Leaf , No.of.Trees in DT & RF
- No.of.Neurons, No.of.Layers in NN

Source Credit:

https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html https://eng.uber.com/deep-neuroevolution/

Task Environment

Goal Formulation **Problem** Formulation Search Phase Execution Phase

Phases of Solution Search by PSA

Assumptions – Environment :
Static (4.5)
Observable
Discrete (4.4)
Deterministic (MDP)

Learning Outcome

- 1. Differentiate which local search is best suitable for given problem
- 2. Design fitness function for a problem
- 3. Construct a search tree for finite successors & evaluate the goodness
- 4. Apply appropriate local search and show the working of algorithm at least for first 2 iterations with at least four next level successor generation(if search tree is large)
- 5. Design and show Genetic Algorithm steps for a given problem

Note:

In your upcoming webinar 2 Genetic algorithm implementation in python will be demonstrated. Next module game will also be demo'd. We shall try to provide sufficient introduction for the same during the webinar.

Detailed Min-Max algorithm for games will be covered in next Saturday class

Required Reading: AIMA - Chapter #4.2, #4.3

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials