1

1.1

X を集合とする. \leq が同値関係かつ順序関係であるとき, 任意の $x,y \in X$ に対して

 $x \lesssim y$

が成り立つ. 以下に証明を述べる. 任意に $x,y\in X$ をとる. 順序関係であるので, 全順序律より $x\lesssim y$ または, $y\lesssim X$ である. $y\lesssim x$ であるならば, 同値関係の対称律から $x\lesssim y$ である. 従って, 主張が成り立つ.

2

2.1

 $p\in P$ を U(A) の下限とする. U(A) の下界を D(U(A)) で表すことにする. p が U(A) の最小元でないとする (背理法). 「 $p\in U(A)$ かつ $q\in U(A)$ ⇒ $p\leq q$ 」 が成り立たないので、「 $p\notin U(A)$ または $x\in U(A)$ de $p\leq x$ でないものが存在する」が成り立つ. $p\notin U(A)$ とすると、 $a\in A$ で $a\leq p$ でないものがとれる. a は任意の $q\in U(A)$ に対して $a\leq q$ をみたすので、 $a\in D(U(A))$ である. p は D(U(A)) の最大元なので、 $a\leq p$ が成り立つ. よって矛盾する. $x\in U(A)$ で $p\leq x$ でないものが存在すると、 $p\in D(U(A))$ であるので、 $p\leq x$ が成り立つ. よって矛盾する. いずれにせよ矛盾するので、主張が従う.

2.2

任意に部分集合 A をとる. A の上界は P の部分集合なので、下限が存在する. A の上界の下限は A の上限であるので、 A は上限をもつ.

3

 $f:\mathcal{P}_2(\mathbb{N}) \to \mathbb{N} \times \mathbb{N}; \{n,m\} \mapsto (\min\{n,m\},\max\{n,m\})$ と定めると、 $A,B \in P_2(\mathbb{N})$ が $A \neq B$ であるならば、 $\max A = \max B$ と $\min A = \min B$ がともに成り立つことはないので(ともに成り立つならば、A = B となるから)、f(A),f(B) は第一成分か第二成分のいずれかが異なる.従って f は単射である.

$$1 \mapsto (1,1), \ 2 \mapsto (1,2), \ 3 \mapsto (2,1), \ 4 \mapsto (1,3), \ 5 \mapsto (2,2), \ 6 \mapsto (3,1), 7 \mapsto (1,4), \dots$$

と定める写像が $\mathbb N$ から $\mathbb N \times \mathbb N$ への全単射であるので, $\mathbb N \times \mathbb N$ は可算集合である. $P_2(\mathbb N)$ から可算集合への単射が存在するので, $P_2(\mathbb N)$ は可算集合である.