Assignment Project Exam Help Computer Graphics

WeChat? 3 fait of 4 5 2021 Term 3 Lecture 8

What did we learn last lecture?

Scene Graphs

Organisation for complicated Project Fxam Helpiects

Depth Testing https://tutorcs.com

- Rendering things in the right order Seeing only what's in the right order cstutorcs

Blending

Also seeing what's behind something if it's transparent!

What are we covering today?

Parametric Equations

- Linear Interpolation Project Exam Help
- Using parameters to control movement and curves Also using time as the triver tutorcs.com

WeChat: cstutorcs

Linear Interpolation

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Maths inside Fragment Shaders

How do we choose a texture coordinate or colour in between two vartiges ment Project Exam Help

- Vertices A and B have texture coordinates A https://tutorcs.com and B_m
- What's the texture coord of my fragment F?

 If it's halfway between them: cstutorcs

$$o F_{_{T}} = A_{_{T}} * 0.5 + B_{_{T}} * 0.5$$

This means both A and B have 50% influence over the texture coordinate

Linear Interpolation

This works for all points between the two vertices

- Not just the halfway point Project Exam Help
- If F is at A:

• Or at B:

• You can see a pattern forming:

$$\circ$$
 $F_{_{T}} = A_{_{T}} * (1.0 - t) + B_{_{T}} * t$

• If we use a parameter, t, we can represent all the possible values between the two points

What can we do with this technique?

Finding points between two points

- Moving t between gand Pangreiect Exam Help A and B
- This gives us a very simple way of moving between vertices We can describe a line path by only using the end points
- We can also do a smooth transition between properties like colours or texture coordinates WeChat: cstutorcs

Using Time as a Parameter

Moving in time

• If we change our transment Project Exam Help between positions

We can apply an interpolation to a coordinate or vector, so we could do something like a smooth delta time based pan of a camera WeChat: cstutorcs

t = elapsed time/5sec

Change the camera's "target" by linear interpolation and recalculate lookAt each frame. In 5 seconds we'll pan from A to B.

Parametric Equations

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Straight Lines Only?

Let's add more interesting paths

- Linear Interpolations straight Project Exam Help or values
- But the idea of parametric equations can do way more than that https://tutorcs.com

Try this one:

- x = cos(t), y = sin(t)
- This one even works wre what: ocstutorcs

Control Points

Points that influence a line based on a parameter

We've seen a single and With two points Exam Help

- What about more points?
 Let's look at Bezier curves://tutorcs.com
- They're parametric And use multiple points Chat: cstutors

Bezier Curves/Splines

Makes use of Linear Interpolation

- If we have multiple solnts, we'll linearly interpolate at multiple levels
- Each line we draw is a tangent to the curve https://tutorcs.com

Different types of Bezier Curves/Splines

Each curve has a parametric formula

Two points (Linear Igrepolation) Project Exam Help

$$O P = (1-t)P_1 + tP_2$$

• Three points (Quad https://tytorcs.com

o
$$P = (1-t)^2 P_1 + 2(1-t) t P_2 + t^2 P_3$$

• Four points (most come of hates estimates)

o
$$P = (1-t)^{3}P_{1} + 3(1-t)^{2}tP_{2} + 3(1-t)t^{2}P_{3} + t^{3}P_{4}$$

Useful Properties

Bezier curves...

- Tangents based on gentrol Project Exam Help
 - At either end, the two closest control points form a tangent
- Join multiple curves https://tutorcsycomg colinear control points

More Advanced Curves and Splines

We can join them together, but . . .

- While the gradient ignment Project Exam Help
- No guarantees about the second derivative https://tutorcs.com

Why is that an issue?

- If we're using this cute same at the join
- Check out B-Splines if you want to know more about possible solutions

Splines in Graphics

- Polygon Rendering works in straight lines
 - Want a lot of points spaced out along a curve? Exam Help A parametric curve shows us to create an arbitrary number of points

 - We can draw our lines between those points to approximate the curve
- If we are moving an hottips: A tous orcs veom
 - We can reach arbitrary positions using our parameter (link delta time to the parameter)
 - If we need a tangent, we can do a simple approximation by creating another nearby point to modify WeChat: cstutorcs
- Easy to modify
 - Just move control points around to change the nature of the curve
- A downside: Can't quite control size and speed
 - You can't necessarily move along a spline at a fixed speed
 - Parameter based movement is based on how far apart control points are

Break Time

Ed Catmull's interesting career

- Invented Text Assignments Project Exam Help
- Invented the Catmull Rom Spline (1974)
- Used this and similar tteps in a tue to tree when the Animation (1970s)
- Ended up at Industrial eighand eighand eighand of the Ended up at Industrial eighand eighand
- Steve Jobs buys Lucasfilm digital division and creates Pixar (1986)
- Ed Catmull was at one point President of Disney and Pixar

Image credit: Jeff Heusser (VES Awards 2010)

Using Splines

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Hello Teapot our old friend

How would we create this object?

• Several tricks Assignment Project Exam Hel

We have curves, but how are we creating https://tutorcs.com

 We can create something like the teapot with just some simple equations and transform matrices

Image credit: School of Computing, University of Utah

Surfaces of Revolution

The body of the teapot

- We can create a signment Project Exam Help
- Translate that curve away from (0,0,0)

 Create a series of points along that curve (using values of t)
- Then we can rotate the curve and its points around the Y axis

 At different rotation angles (the Ctan teapor has about 30) we can create vertices
- Make triangles from those vertices and build up buffers

A Surface of Revolution

In Images

A Surface of Revolution

In Images (continued)

Rotate the curve to different orientations around the y axis

Between two of the close curves, create vertices and triangles

Extrusion

Dragging a shape through space, the handle of the teapot

- We can create Assignment Project Exam Help
- Translate that curve into the correct position at the back of the teapot Create a series of points along that curve (using values of t)

- Create a circle (the thickness of the handle)
 Place the circle at each chose points
- Use the circle to create vertices

Extrusion

In Images

Create a curve

Translate the handle into position

Extrusion

In Images (continued)

Create a circle and place it at different points along the curve

Create vertices around the circles and create triangles between them

Other parts

The lid

 Another surface of Evolution, Project Exam Help Land Business Significant Project Exam Help Land

The spout

https://tutorcs.com

- This gets harder
- An extrusion that is scaled based on distance from the pot?

Techniques for 3D Object Creation

Digital Artists might use a lot of these

- Rotation and extrusorment Project Exam Help
- And simple things like scale, rotate and translate!

 Artists will not usually be expected to be computer scientists and mathematicians
 - So there are tools like the catutorese details
- There's also raw sculpting though
 - Digital Clay! (Zbrush uses this kind of technique)

Let's guess how some things were made

Toy Story is a classic that's historically very important! Assignment Project Exam

- Potato heads
 - Obvious separate object with stutors.com attachments
 - Some simple rotation with at: cstutorcs
- Buzz Lightyear
 - Transparency nightmare!
 - Very simple scene graph with rigid components
- Woody
 - Squishy bits . . . we'll talk about these later!

Images credit: Disney Pixar

What did we learn today?

Parametric Maths and its applications

- Linear Interpolatisignment Project Exam Help
- Parametric Curves/Splines
- Using Bezier Curveshttps://tutorcs.com
- A small look at how 3D Artists create some game/film assets

Homework

WeChat: cstutorcs

- Watch Toy Story and Monsters, Inc. (Two Pixar films 6 years apart)
- See if you can guess how some things were made and also the technical advancements between the two movies