Теория конечных графов

Поток минимальной стоимости

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Харари Ф. «Теория графов», М.: КомКнига, 2006. 296 с.
- 3. Судоплатов С.В., Овчинникова Е.В. «Элементы дискретной математики». Учебник. М.: Инфра-М; Новосибирск: НГТУ, 2003. 280 с.
- 4. Шапорев С.Д. «Дискретная математика. Курс лекций и практических занятий». СПб.: БХВ-Петербург, 2007. 400 с.: ил.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Поиск потока минимальной стоимости

Обозначения:

k — число единиц потока из источника $V_{\scriptscriptstyle S}$ в сток $V_{\scriptscriptstyle T}$ с минимальной стоимостью.

 $a(V_{i},V_{j})$ — стоимость прохождения единицы потока по дуге $< V_{i},V_{i}>$.

В задаче о потоке минимальной стоимости требуется переслать фиксированное число k единиц потока из V_s в сток $V_{\scriptscriptstyle T}$ с минимальной стоимостью, то есть найти значение $\min\left\{\sum_{\scriptscriptstyle \langle V_i,V_j\rangle\in E} a(V_i,V_j)\times f(V_i,V_j)\right\}$ при условиях существования

потока.

Поиск потока минимальной стоимости

$$\underbrace{V_i} f(V_i, V_j), \ a(V_i, V_j), \ c(V_i, V_j) \\ \longleftarrow \underbrace{V_j}$$

Начальный поток – $f(V_i, V_j)$,

стоимость – $a(V_i, V_j)$,

пропускная способность – $c(V_i, V_j)$.

Для дуги $\langle V_i, V_i \rangle$ значения $f, a, c \in \mathbf{Z}$.

Идея упрощенного алгоритма поиска потока минимальной стоимости

<u>Дано.</u> В графе $G = \langle \mathbf{V}, \mathbf{E} \rangle$ задан нулевой поток, то есть $f(V_i, V_j) = 0, \ \forall \ \langle V_i, V_j \rangle \in \mathbf{E}$.

Шаг 1. Из вершины V_s в вершину $V_{\scriptscriptstyle T}$ пересылается как можно больше единиц потока, полная стоимость прохождения по графу каждой из которых равна нулю.

<u>Шаг 2.</u> На следующем шаге из вершины V_s в вершину V_T пересылается как можно больше единиц потока, полная стоимость прохождения по графу каждой из которых равна единице и так далее.

Полная стоимость каждой единицы потока равна разности суммы стоимостей прямых дуг и суммы стоимостей обратных дуг.

Идея упрощенного алгоритма поиска потока минимальной стоимости

<u>Шаг 3.</u> В алгоритме поиска потока минимальной стоимости используется в качестве подалгоритма «Алгоритм поиска увеличивающей цепи», где цепь увеличивается на нужное количество единиц потока. В конце алгоритма можно подсчитать минимальную общую стоимость для k единиц потока:

$$P(k) = \min \left\{ \sum_{\langle V_i, V_j \rangle \in E} a(V_i, V_j) \times f(V_i, V_j) \right\}.$$

Конец алгоритма.

Для графа $G=<\mathbf{V},\mathbf{E}>$ передать k единиц потока с минимальной стоимостью. Рассмотреть случаи $k=\overline{1;4}$. Найти минимальную стоимость для каждого случая. Начальная вершина $V_s=V_1$ и конечная вершина $V_{\scriptscriptstyle T}=V_{\scriptscriptstyle A}$.

1. Так как не может быть передана ни одна единица потока с нулевой стоимостью, а также со стоимостью 1 и 2, то, по цепи $E_1 = \left\{ < V_1, V_2 >, < V_2, V_3 >, < V_3, V_4 > \right\}$ можно передать с минимальной стоимостью 2 единицы, каждая из которых будет иметь стоимость $P_1 = P_2 = 1 + 1 + 1 = 3$, где P_1 — стоимость первой единицы. Тогда стоимость передачи первой единице потока из источника в сток равна P(1) = 3.

После передачи первой единицы потока по графу получаем следующий граф с выделением на нем первой увеличивающей цепи E_1 . Если k=1, то ответом является значение P(1)=3.

2) При k=2 передаем вторую единицу потока из источника в сток, причем минимальное значение можно получить по той же самой увеличивающей цепи. Тогда $E_2 = \left\{ < V_1, V_2 >, < V_2, V_3 >, < V_3, V_4 > \right\}$, передаем вторую единицу потока , для которой $P_2 = 1 + 1 + 1 = 3$. В случае k=2 общая стоимость будет составлять $P(2) = P_1 + P_2 = 3 + 3 = 6$ — общая минимальная стоимость за две единицы потока.

10

На рисунке изображен граф после передачи двух единиц потока из источника в сток с минимальной стоимостью, указана последняя увеличивающая цепь. При k=2 ответом является значение P(2)=6.

3) Для случая k=3, можно использовать все предыдущие вычисления и добавить еще одну единицу потока с минимальной стоимостью. Из вершины $V_s=V_1$ уже нельзя перейти в вершину V_2 , следовательно, путь проходит через в вершину V_3 . Из вершины V_3 нельзя попасть сразу в вершину $V_T=V_4$, значит необходимо переходить по обратной дуге $<V_2,V_3>$, уменьшая её поток на единицу, и из вершины V_2 в вершину $V_T=V_4$. Увеличивающая цепь для третьей единицы $E_3=\{<V_1,V_3>,<V_2,V_3>,<V_2,V_4>\}$.

На рисунке изображен граф после передачи трех единиц потока. $P_3 = 3 - 1 + 3 = 5$ - стоимость только третьей единицы потока, $P(3) = P_1 + P_2 + P_3 = 6 + 5 = 11$ - общая стоимость трех единиц потока минимальной стоимости.

С другой стороны, можно посчитать по общей формуле $P(k) = \min \sum \left\{ a(V_i, V_j) \times f(V_i, V_j) \right\}, \text{ т.e.}$

$$P(3) = 2 \times 1 + 1 \times 3 + 1 \times 1 + 1 \times 3 + 2 \times 1 = 2 + 3 + 1 + 3 + 2 = 11.$$

4. После передачи трех единиц потока получен следующий граф. Определите, можно ли передать четвертую единицу потока?

При передаче трех единиц потока дуги графа, выходящие из источника, насыщаются. Дуга $<\!V_{_1},\!V_{_2}\!>$ может передать только 2 единицы потока, а дуга $<\!V_{_1},\!V_{_3}\!>$ только 1 единицу, то есть $K_{_{\max}} = \sum_{V_j \in \mathbb{V}} c(V_{_1},\!V_{_j}) = 3,\; 3 < 4 \quad \Rightarrow \quad 4 \quad$ единицы потока передать

невозможно.

<u>Ответ.</u> P(1)=3, P(2)=6, P(3)=11; нельзя передать 4 единицы потока.

15

Тема следующей лекции:

«Алгоритм почтальона»