Feuille d'exercices nº 1

Espaces de Lebesgue

Dans tout ce qui suit, $N \in \mathbf{N}^*$, 0_N note l'origine de \mathbf{R}^N , et les normes sur \mathbf{R}^N sont les normes euclidiennes canoniques.

Exercise 1. Monômes.

Soit $\sigma \in \mathbf{R}$ et $1 \leq p \leq \infty$. Considérons

$$f: B(0_N, 1) \setminus \{0_N\} \to \mathbf{R}, \quad x \mapsto \|x\|^{\sigma}, \quad \text{et} \quad g: \mathbf{R}^N \setminus \overline{B}(0_N, 1) \to \mathbf{R}, \quad x \mapsto \|x\|^{\sigma}.$$

- 1. À quelle condition a-t-on $f \in L^p(B(0_N, 1) \setminus \{0_N\})$?
- 2. À quelle condition a-t-on $g \in L^p(\mathbf{R}^N \setminus \overline{B}(0_N, 1))$?

Exercise 2. Opérateur de multiplication.

Soit (E, μ) un espace mesuré σ -fini, $m: E \to \mathbf{R}$ mesurable et $1 \le p \le \infty$.

Pour tout $u: E \to \mathbf{R}$ mesurable, on note $T_m(u) := m u$.

- 1. À quelle condition sur m a-t-on $T_m(u) \in L^p(E)$ pour tout $u \in L^p(E)$?
- 2. Dans ce cas, que vaut la norme d'opérateur $||T_m||_{L^p(E)\to L^p(E)}$?

Exercise 3. Interpolation complexe.

Pour on pose

$$\Delta_{a,b} := \{ z \in \mathbf{C} ; a < \operatorname{Re}(z) < b \}, \qquad \mathcal{D}_{\alpha} := \{ z \in \mathbf{C} ; \operatorname{Re}(z) = \alpha \},$$

où $(a,b) \in \mathbf{R}^2$ et $\alpha \in \mathbf{R}$.

- 1. Donner un exemple de fonction complexe f non bornée, continue sur $\overline{\Delta}_{0,1}$, holomorphe sur $\Delta_{0,1}$ telle que $f_{|\mathcal{D}_0}$ et $f_{|\mathcal{D}_1}$ soient bornés.
- 2. Montrer que si f est une fonction complexe continue et bornée sur $\overline{\Delta}_{0,1}$, holomorphe sur $\Delta_{0,1}$, alors pour tout $0 \le \theta \le 1$

$$\sup_{\mathcal{D}_{\theta}} |f| \leq \left(\sup_{\mathcal{D}_{0}} |f| \right)^{1-\theta} \left(\sup_{\mathcal{D}_{1}} |f| \right)^{\theta}.$$

3. Soit (E, μ) et (F, ν) deux espaces mesurés σ -finis. Soit $1 \leq p_0, p_1 \leq \infty$ et $1 \leq q_0, q_1 \leq \infty$ et une application linéaire

$$T: L^{p_0}(E) + L^{p_1}(E) \to L^{q_0}(F) + L^{q_1}(F)$$

telle que $T(L^{p_0}(E)) \subset L^{q_0}(F)$ et $T(L^{p_1}(E)) \subset L^{q_1}(F)$.

Soit $0 \le \theta \le 1$. On définit $1 \le p_{\theta} \le \infty$ et $1 \le q_{\theta} \le \infty$ par

$$\frac{1}{p_\theta} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \,, \qquad \qquad \frac{1}{q_\theta} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1} \,. \label{eq:ptheta}$$

- (a) Rappeler pourquoi $L^{p_{\theta}}(E) \subset L^{p_0}(E) + L^{p_1}(E)$.
- (b) Soit g une fonction simple mesurable sur E de support de mesure finie et h une fonction simple mesurable sur F de support de mesure finie. Montrer qu'il existe f une fonction complexe continue et bornée sur $\overline{\Delta_{0,1}}$, holomorphe sur $\Delta_{0,1}$, telle que

$$f(\theta) = \int_F T(g) h \, \mathrm{d}\nu,$$

 et

$$\sup_{\mathcal{D}_0} |f| \leq \|T\|_{L^{p_0} \to L^{q_0}} \|g\|_{L^{p_\theta}}^{\frac{p_\theta}{p_0}} \|h\|_{L^{q_\theta'}}^{\frac{q_\theta'}{q_0'}}, \qquad \sup_{\mathcal{D}_1} |f| \leq \|T\|_{L^{p_1} \to L^{q_1}} \|g\|_{L^{p_\theta}}^{\frac{p_\theta}{p_1}} \|h\|_{L^{q_\theta'}}^{\frac{q_\theta'}{q_1'}},$$

où, pour $r \in [1, \infty]$, r' est l'indice de Lebesgue dual de r.

(c) En déduire que $T(L^{p_{\theta}}(E)) \subset L^{q_{\theta}}(F)$ et que

$$||T||_{L^{p_{\theta}} \to L^{q_{\theta}}} \le (||T||_{L^{p_{0}} \to L^{q_{0}}})^{1-\theta} (||T||_{L^{p_{1}} \to L^{q_{1}}})^{\theta}.$$

- 4. Redémontrer les inégalités de Young sur les produits de convolution à partir du résultat de la question précédente.
- 5. Soit (E, μ) et (F, ν) deux espaces mesurés σ -finis et $K : E \times F \to \mathbf{R}$ telle que pour presque tout $x \in E, K(x, \cdot) \in L^1(F)$ et pour presque tout $y \in F, K(\cdot, y) \in L^1(E)$ avec

$$||K||_{L^{\infty}(E;L^{1}(F))} := \operatorname{esssup}_{x \in E} ||K(x,\cdot)||_{L^{1}(F)} < +\infty$$

 et

$$||K||_{L^{\infty}(F;L^{1}(E))} := \text{esssup}_{y \in F} ||K(\cdot,y)||_{L^{1}(E)} < +\infty.$$

Montrer que l'application

$$(L^1 \cap L^\infty)(F) \to (L^1 \cap L^\infty)(E), \qquad f \mapsto \int_F K(\cdot, y) f(y) d\nu(y)$$

est bien définie et peut être étendue en une application $T: L^2(F) \to L^2(E)$ avec

$$||T||_{L^2(F)\to L^2(E)} \le (||K||_{L^\infty(E;L^1(F))})^{\frac{1}{2}} (||K||_{L^\infty(F;L^1(E))})^{\frac{1}{2}}.$$