

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -2550000 Nmm
Ν
           = 98000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 50400 N
                                                                                   = 200000 \text{ N/mm}^2
           = 219000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 106000 N	M _t	= 159000 Nmm		= 230 N/mm ²	G	= 77000 N/mm ²
T_y	= 55300 N	M_x	= -2760000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A,	=	$\tau(M_t)_d$	_I =	σ_{ls}	=	r_u	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
_		•					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -3210000 Nmm
Ν
           = 116000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 40500 N
                                                                                   = 200000 \text{ N/mm}^2
           = 176000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                 = -3400000 Nmm
Ν
           = 84000 N
                                                                      M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 230 \text{ N/mm}^2
           = 45300 N
                                                                                 = 200000 \text{ N/mm}^2
           = 191000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -6590000 Nmm
Ν
           = 123000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 90600 N
                                                                                   = 200000 \text{ N/mm}^2
           = 290000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 134000 N
                                                                        M_{\star}
                                                                                    = -7260000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 230 \text{ N/mm}^2
           = 99300 N
                                                                                   = 200000 \text{ N/mm}^2
           = 211000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -8010000 Nmm
Ν
           = 146000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 72300 N
                                                                                   = 200000 \text{ N/mm}^2
           = 234000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 106000 N
                                                                        M_{\star}
                                                                                    = -8630000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 230 \text{ N/mm}^2
           = 80900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 254000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                  = -13700000 Nmm
Ν
           = 174000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 142000 N
                                                                                  = 200000 \text{ N/mm}^2
           = 446000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 191000 N	M _t	= 328000 Nmm	σ_{a}	= 230 N/mm ²	G	$= 77000 \text{ N/mm}^2$
T_y	= 156000 N	M_x	= -15300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	₁ =	$\sigma_{ ext{tresca}}$	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                  = -16600000 Nmm
Ν
           = 206000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 114000 N
                                                                                  = 200000 \text{ N/mm}^2
           = 359000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                  = -18100000 Nmm
Ν
           = 151000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 127000 N
                                                                                  = 200000 \text{ N/mm}^2
           = 395000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                 = -2670000 Nmm
Ν
           = 98200 N
                                                                      M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 230 \text{ N/mm}^2
           = 57300 N
                                                                                 = 200000 \text{ N/mm}^2
           = 279000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

G :	= 77000 N/mm ²
σ_{mises} :	=
$\sigma_{st.ven}$:	=
θ_{t} :	=
r _u :	=
r _v :	=
r _o :	=
J _p :	=
•	
σ	mises st.ven t

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                 = -3310000 Nmm
Ν
           = 116000 N
                                                                     M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 230 \text{ N/mm}^2
           = 45700 N
                                                                                 = 200000 \text{ N/mm}^2
           = 225000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                    = -3490000 Nmm
Ν
           = 83200 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 230 \text{ N/mm}^2
           = 51200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 240000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 101000 N	M _t	= 226000 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$
T_y	= 54400 N	M_x	= -2900000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 109000 N	М.	= 164000 Nmm	σ_a	$= 230 \text{ N/mm}^2$	G	= 77000 N/mm ²
T_v	= 59700 N	M _x	= -3150000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$		σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -3640000 Nmm
Ν
           = 120000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 43800 N
                                                                                   = 200000 \text{ N/mm}^2
           = 182000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -3870000 Nmm
Ν
           = 87000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
           = 49000 N
                                                                                   = 230 \text{ N/mm}^2
                                                                                   = 200000 \text{ N/mm}^2
           = 197000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 127000 N	M _t	= 299000 Nmm	σ_{a}	= 230 N/mm ²	G	$= 77000 \text{ N/mm}^2$
T_y	= 94700 N	M_x	= -7130000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 138000 N
                                                                        M_{\star}
                                                                                   = -7860000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 103000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 218000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 150000 N
                                                                       M_{\star}
                                                                                   = -8660000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 75600 N
                                                                                   = 200000 \text{ N/mm}^2
           = 241000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                    = -9340000 Nmm
Ν
           = 109000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 230 \text{ N/mm}^2
           = 84500 N
                                                                                   = 200000 \text{ N/mm}^2
           = 262000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -21000000 Nmm
Ν
           = 211000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 177000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 539000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 232000 N	M,	= 397000 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$
T_{y}	= 194000 N	M_x	= -23300000 Nmm		$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 251000 N
                                                                       M_{\star}
                                                                                   = -25300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 141000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 436000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 184000 N
                                                                        M_{\star}
                                                                                   = -27600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 158000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 479000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
                                                                                                                                                \sigma_{tresca} =
                                                                        \tau(T_{yb})_d =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 119000 N
                                                                        M_{\star}
                                                                                   = -6070000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 230 \text{ N/mm}^2
           = 86500 N
                                                                                   = 200000 \text{ N/mm}^2
           = 281000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 129000 N
                                                                        M_{\star}
                                                                                   = -6680000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 94800 N
                                                                                   = 200000 \text{ N/mm}^2
           = 205000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 141000 N
                                                                        M_{\star}
                                                                                   = -7380000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 230 \text{ N/mm}^2
           = 69000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 226000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -7940000 Nmm
Ν
           = 102000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 77200 N
                                                                                   = 200000 \text{ N/mm}^2
           = 246000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -1660000 Nmm
Ν
           = 83100 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 37600 N
                                                                                   = 200000 \text{ N/mm}^2
           = 185000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 88800 N	M,	= 132000 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$
T_y	= 41300 N	M_x	= -1770000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)$	-	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_{\xi}$	_s =	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_{\alpha}$	_i =	σ_{tresca}	, =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                    = -2110000 Nmm
Ν
           = 99100 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 30100 N
                                                                                   = 200000 \text{ N/mm}^2
           = 149000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
                                                                                   = -2210000 Nmm
           = 70700 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 33800 N
                                                                                   = 200000 \text{ N/mm}^2
           = 159000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 214000 N
                                                                       M_{\star}
                                                                                   = -23400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 170000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 458000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 236000 N
                                                                       M_{\star}
                                                                                   = -26100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 186000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 337000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                        \tau(T_{yb})_d =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
Ν
           = 255000 N
                                                                       M_{\star}
                                                                                   = -28500000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 136000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 371000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 77000 \text{ N/mm}^2
                                                                                   = -31100000 Nmm
Ν
           = 188000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 230 \text{ N/mm}^2
           = 152000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 409000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                        \tau(T_{yb})_d =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```