Consider the following points in the 6-dimensional space and the corresponding pairwise distance between these points.



|    |      | -    | -    |      |       | -    |
|----|------|------|------|------|-------|------|
|    | p1   | p2   | p3   | p4   | $p_5$ | p6   |
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34  | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14  | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28  | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29  | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00  | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39  | 0.00 |

Apply agglomerative hierarchical clustering on this example using the min distance as a cluster similarity. Compute the proximity matrix over each iteration.