СЕМИНАР 1

Пусть $I \subset \mathbb{R}$ – некий отрезок или интервал.

Определение. Кривая-график: $\gamma = \{(x, f(x)) : x \in I, f \in C^{\infty}(I)\}.$

Определение. Неявно заданная кривая:

$$\gamma = \{(x,y) \in \mathbb{R}^2 : F(x,y) = 0, \left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 \neq 0, \quad F \in C^{\infty}(\mathbb{R}^2)\}.$$

Определение. Регулярная кривая, заданная параметрически: $\gamma = \{(x(t), y(t)) \mid t \in I, \ x(t), y(t) \in C^{\infty}(I), \ (x'(t))^2 + (y'(t))^2 \neq 0\}.$

Предложение. Все три выше указанных способа задания кривых локально эквивалентны

Определение. Длиной дуги кривой $\gamma = \gamma(t)$ между точками, заданными значениями $t_1 < t_2$, называется число

$$L(\gamma) = \int_{t_1}^{t_2} |\gamma'(t)| dt = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

Пример. Для кривой-графика $L(\gamma) = \int_a^b \sqrt{(1+(f'(x))^2} \ dx$.

Определение. Зафиксируем точку t_0 и будем задавать точку, отвечающую параметру $t > t_0$, новым **натуральным** параметром s:

$$s(t) = \int_{t_0}^t \left| \frac{d\gamma}{dt} \right| dt,$$

для $t < t_0$ параметр s задается так же, то есть это будет длина дуги со знаком «минус». В этом случае $\gamma = \gamma(s)$ — натуральная параметризация.

Замечание. Производная по натуральному параметру обозначается точкой: $\dot{\gamma} = d\gamma/ds$. Ясно, что $|\dot{\gamma}| = 1$.

Пример. Натуральная параметризация окружности: $\gamma(s) = (x(s), y(s)) = (\cos s, \sin s)$.

Определение. Касательной к кривой $\gamma = \gamma(t)$ в точке t_0 называется предельное положение секущей, проходящей через точки t_0 и $t_0 + \Delta$ при $\Delta \to 0$.

Предложение. Направляющим вектором касательной к кривой $\gamma = \gamma(t)$ в точке t_0 является ее вектор скорости $\gamma'(t_0)$, а уравнение касательной имеет вид

$$\ell(\tau) = \gamma'(t_0)\tau + \gamma(t_0),$$

где τ — параметр на ней.

Определение. Нормалью к кривой в точке t_0 называется прямая, проходящая через эту точку перпендикулярно касательной в ней.

Направляющий вектор нормали: $(-y'(t_0), x'(t_0))$, уравнение нормали: $\frac{x-x(t_0)}{y'(t_0)} + \frac{y-y(t_0)}{x'(t_0)} = 0$.

Определение. Две гладкие регулярные кривые касаются в точке P, если они обе проходят через эту точку и имеют в ней общую касательную.

Определение. Две гладкие регулярные натурально параметризованные кривые $r_1(s)$ и $r_2(s)$ имеют в точке s=0 касание порядка k, если выполнены равенства:

$$r_1(0) = r_2(0), \quad \dot{r}_1(0) = \dot{r}_2(0), \quad \dots, \quad r_1^{(k)}(0) = r_2^{(k)}(0).$$

Теорема. Пусть $\gamma(s)$ – регулярная кривая с натуральным параметром, причем в точке $s = s_0$ вектор $\ddot{\gamma}(s_0) \neq 0$. Тогда существует единственная окружность, имеющая в точке s_0 касание второго порядка с кривой γ . Более того, ее центр лежит на нормали к кривой в направлении вектора ускорения, а ее радиус равен $|\ddot{\gamma}(s_0)|^{-1}$.

Определение. Эта окружность называется соприкасающейся окружностью к кривой $\gamma(s)$ в точке s_0 , а ее радиус R – радиусом кривизны.

Величина $k(s_0) = R^{-1} = |\ddot{\gamma}(s_0)|$ называется кривизной кривой в точке s_0 .

Пусть $\ddot{\gamma}(s_0) \neq 0$.

Определение. Вектор нормали: $n(s_0) = \frac{\ddot{\gamma}(s_0)}{|\ddot{\gamma}(s_0)|} = \frac{\ddot{\gamma}(s_0)}{k(s_0)}$.

Для производных репера (v(s), n(s)) во всех точках s ненулевой кривизны известны формулы Френе:

$$\dot{v}(s) = k(s)n(s), \quad \dot{n}(s) = -k(s)v(s).$$