CS 383C

CAM 383C/M 383E Numerical Analysis: Linear Algebra Fall 2008

Solutions to Homework 5

Lecturer: Inderjit Dhillon Date Due: Oct 22, 2008

Keywords: Conditioning, Stability, Error Analysis, Gaussian Elimination

- 1. U = A, L = Ifor k = 1 : m - 1 do $\boldsymbol{l}_{k+1:m,k} = \boldsymbol{u}_{k+1:m,k}/u_{kk}$ $U_{k+1:m,k:m} = U_{k+1:m,k:m} - \boldsymbol{l}_{k+1:m,k}U_{k,k:m}$ end for
- 2. (a) Elimination by columns from left to right is equivalent to post-multiplication by an upper-triangular matrix. m-1 such operations will make A a lower-triangular matrix, thus:

$$AU_1U_2...U_{m-1} = L \Rightarrow A = LU_{m-1}^{-1}U_{m-2}^{-1}...U_1^{-1}.$$

Now the inverse of a upper triangular matrix is upper-triangular and multiplication of two upper-triangular matrices is also an upper-triangular matrix. Hence, A = LU.

- (b) Gaussian Elimination is equivalent to pre-multiplication with lower-triangular matrices. Thus after rescaling of columns, Gaussian Elimination is equivalent to: $L_{m-1}L_{m-2}...L_1AD = U \Rightarrow A = LUD^{-1}$. Thus, unknowns are rescaled by D^{-1} .
- (c) Elimination by columns from left to right is equivalent to post-multiplication by an upper-triangular matrix. Thus, using part (a), $U = D\tilde{U}$. Thus, $A = LD\tilde{U}$, where \tilde{U} incorporates the additional column operations.
- 3. (a) We prove the claim using induction. Base case follows directly from the fact that $x_1 \otimes a_1 = x_1a_1(1 + \epsilon), |\epsilon| \leq \epsilon_{machine}$. Now, $fl(\boldsymbol{x}^T\boldsymbol{a}) = x_1 \otimes a_1 \oplus x_2 \otimes a_2 \oplus \dots x_n \otimes a_n$. Using induction hypothesis, $fl(\boldsymbol{x}^T\boldsymbol{a}) = (\sum_{i=1}^{n-1} x_ia_i + e_{n-1}) \oplus x_n \otimes a_n, |e_{n-1}| \leq (n-1)\epsilon_{machine} \sum_{i=1}^{n-1} |x_i||a_i| + O(\epsilon_{machine}^2)$. Thus, $fl(\boldsymbol{x}^T\boldsymbol{a}) = (\sum_{i=1}^{n-1} x_ia_i + e_{n-1} + x_na_n(1+\epsilon_1))(1+\epsilon_2) = \boldsymbol{x}^T\boldsymbol{a} + e_{n-1} + x_na_n\epsilon_1 + \boldsymbol{x}^T\boldsymbol{a}\epsilon_2 + e_{n-1}\epsilon_2 + x_na_n\epsilon_1\epsilon_2$, where $|\epsilon_1| \leq \epsilon_{machine}, |\epsilon_2| \leq \epsilon_{machine}$. Thus, $fl(\boldsymbol{x}^T\boldsymbol{a}) = \boldsymbol{x}^T\boldsymbol{a} + e_n$, where $e_n = e_{n-1} + x_na_n\epsilon_1 + \boldsymbol{x}^T\boldsymbol{a}\epsilon_2 + e_{n-1}\epsilon_2 + x_na_n\epsilon_1\epsilon_2$. Hence, $|e_n| \leq |e_{n-1}| + |x_n||a_n|\epsilon_{machine} + |\boldsymbol{x}|^T|\boldsymbol{a}|\epsilon_{machine} + O(\epsilon_{machine}^2) = (n-1)\sum_{i=1}^{n-1} |x_i||a_i|\epsilon_{machine} + |x_n||a_n|\epsilon_{machine} + |\boldsymbol{x}|^T|\boldsymbol{a}|\epsilon_{machine}$. Hence proved.
 - (b) $(XA)_{ij} = \boldsymbol{x}_i^T \boldsymbol{a}_j$, where \boldsymbol{x}_i^T represents *i*-th row of X and \boldsymbol{a}_j represents *j*-th column of A. Using part (a), $fl((XA)_{ij}) = (XA)_{ij} + e_{ij}$, where $|e_{ij}| \leq n|\boldsymbol{x}_i|^T |\boldsymbol{a}_j| \epsilon_{machine} + O(\epsilon_{machine}^2)$. Thus $||fl(XA) XA||_F \leq \sqrt{\sum_{ij} n^2 \epsilon_{machine}^2 (|X||A|)_{ij}^2} + O(\epsilon_{machine}^2) = n\epsilon_{machine} ||X|| ||A||_F + O(\epsilon_{machine}^2) \leq n\epsilon_{machine} ||X||_F ||A||_F + O(\epsilon_{machine}^2)$, as $||AB||_F \leq ||A||_F ||B||_F$ and $||A||_F = ||A||_F$.
 - (c) Using part (b), fl(XA) = XA + E, where $||E||_F \le n||X||_F ||A||_F O(\epsilon_{machine})$. Now $fl(XA) = X(A + X^{-1}E) = X(A + \delta A)$, where $\delta A = X^{-1}E$. Thus, $||\delta A||_F \le ||X^{-1}||_F ||E||_F \le n||X^{-1}||_F ||X||_F ||A||_F O(\epsilon_{machine})$. Thus, $\frac{||\delta A||_F}{||A||_F} \le n\kappa(X)O(\epsilon_{machine})$.
- 4. $(A + \delta A)(\boldsymbol{x} + \delta \boldsymbol{x}) = A\boldsymbol{x} + A\delta\boldsymbol{x} + \delta A\boldsymbol{x} + \delta A\delta\boldsymbol{x} = \boldsymbol{b} + \delta \boldsymbol{b}$. Now $A\boldsymbol{x} = \boldsymbol{b}$, hence $(A + \delta A)\delta\boldsymbol{x} = \delta \boldsymbol{b} \delta A\boldsymbol{x}$. Thus, $\|\delta \boldsymbol{x}\| = \|(A + \delta A)^{-1}(\delta \boldsymbol{b} \delta A\boldsymbol{x})\| \le \|(A + \delta A)^{-1}\|(\|\delta \boldsymbol{b}\| + \|\delta A\boldsymbol{x}\|) \le \|(I + A^{-1}\delta A)^{-1}\|\|A^{-1}\|(\|\delta \boldsymbol{b}\| + \|\delta A\boldsymbol{x}\|)$.

Using Homework 2, Problem 2(c): if $||A^{-1}\delta A|| \le 1$, then $||(I + A^{-1}\delta A)^{-1}|| \le \frac{1}{1 - ||A^{-1}\delta A||} \le \frac{1}{1 - ||A^{-1}|| ||\delta A||}$. Thus, $||\delta \boldsymbol{x}|| \le \frac{||A^{-1}||}{1 - ||A^{-1}|| ||\delta A||} (||\delta \boldsymbol{b}|| + ||\delta A \boldsymbol{x}||)$. Now $\boldsymbol{b} = A \boldsymbol{x}$, thus $||\boldsymbol{b}|| \le ||A|| ||\boldsymbol{x}||$. Hence,

$$\|\delta \boldsymbol{x}\| \leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|} \left(\frac{\|\delta \boldsymbol{b}\| \|A\| \|\boldsymbol{x}\|}{\|\boldsymbol{b}\|} + \frac{\|\delta A\| \|\boldsymbol{x}\| \|A\|}{\|A\|} \right),$$

i.e.,

$$\frac{\|\delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \frac{\kappa(A)}{1 - \kappa(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|}\right).$$