

Université Internationale de Casablanca

AUREATE INTERNATIONAL UNIVERSITIES

Exposé

ELECTRONIQUE NUMERIQUE

email: nasser_baghdad @ yahoo.fr

ELECTRONIQUE NUMERIQUE

Sommaire

Chapitre I: Technologies des circuits logiques: TTL et CMOS

Chapitre II : Les bases de numération

Chapitre III: Les portes logiques

Chapitre IV: Les fonctions binaires

Chapitre V : Les circuits combinatoires

Chapitre VI: Les circuits séquentiels

ELECTRONIQUE NUMERIQUE

Chapitre. III

Les portes logiques

- I. Les portes logiques de base
- II. Théorèmes de DE Morgan
- III. Les portes logiques dérivées
- IV. Conséquences des théorèmes de DE Morgan
- V. Les identités Booléennes

I. Les portes logiques de base

- 1°) Porte ET (AND)
- 2°) Porte OU_{inclusif} (OR)
- 3°) Porte NON (NOT)
- 4°) Porte OUI (YES)

1°) Porte ET (AND)

Deux entrées au minimum

Table de vérité			
En	Entrée sortie		
A	A B		
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Interrupteur normalement ouvert

Synoptique du CI « AND »

Circuit intégré logique

brochage TTL

Propriétés de AND

$(A \cdot B) \cdot C = A \cdot (B \cdot C) = A \cdot B \cdot C$	Associativité
$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$	Commutativité
$\mathbf{A} \cdot \mathbf{A} = \mathbf{A}$	Idempotence
$\mathbf{A} \cdot 1 = \mathbf{A}$	Élément neutre
$\mathbf{A} \cdot 0 = 0$	

brochage CMOS

Illustration logique:

La fonction ET

$$S = A ET B$$

Je vais au cinéma ce soir si Ali et Samir viennent avec moi.

Variable logique

Une variable logique peut prendre deux états.

Ali ne vient pas : A = 0Ali vient : A = 1

Samir ne vient pas : B = 0Samir vient : B = 1

Pas de sortie cinéma : S = 0Sortie cinéma : S = 1

Table de vérité

Entrée		sortie
A B		A ET B
ne vient pas	ne vient pas	pas de cinéma
ne vient pas	vient	pas de cinéma
vient	ne vient pas	pas de cinéma
vient	vient	cinéma

2°) Porte OU_{inclusif} (OR)

Deux entrées au minimum

Représentation d'Euler

Table de vérité

Entrée		sortie
A	A B	
0	0	0
0	1	1
1	0	1
1	1	1

Interrupteur normalement ouvert

Synoptique du CI « OU »

Circuit intégré logique

brochage TTL

brochage CMOS

Propriétés de OU

(A+B)+C = A+(B+C) = A+B+C	Associativité
$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$	Commutativité
$\mathbf{A} + \mathbf{A} = \mathbf{A}$	Idempotence
$\mathbf{A} + 0 = \mathbf{A}$	Élément neutre
$\mathbf{A} + 1 = 1$	

Illustration logique:

La fonction OU

$$S = A OU B$$

Je vais au cinéma ce soir si Ali ou Samir viennent avec moi.

Variable logique

Une variable logique peut prendre deux états.

Ali ne vient pas : A = 0Ali vient : A = 1

Samir ne vient pas : B = 0Samir vient : B = 1

Pas de sortie cinéma : S = 0Sortie cinéma : S = 1

Table de vérité

Entrée		sortie
A B		A ET B
ne vient pas	ne vient pas	pas de cinéma
ne vient pas	vient	cinéma
vient	ne vient pas	cinéma
vient	vient	cinéma

3°) Porte NON (NOT)

Une seule entrée

Interrupteur normalement ouvert

Négation de A

Synoptique du CI « NOT »

Circuit intégré logique

brochage TTL

brochage CMOS

Propriétés de NOT

Circuit électrique

Table de vérité de la fonction NOT

Illustration logique:

La fonction NON
$$S = \overline{A}$$

$$S = \overline{A}$$

Je ne vais pas au cinéma ce soir Amina vient.

Variable logique

Une variable logique peut prendre deux états.

Amina ne vient pas: A = 0

Amina vient: A = 1

Pas de sortie cinéma: S = 0

Sortie cinéma: S = 1

Table de vérité

Entrée	Sortie
A	$S = \overline{A}$
ne vient pas	cinéma
vient	pas de cinéma

4°) Porte OUI (YES)

« Buffer ou Tampon »

Dispositif d'adaptation

Table de vérité				
	Entrée Sortie			
	Α	S = A		
	0	0		
	1	1		
·				

Représentation d'Euler

 $\frac{\text{Équation logique}}{S = A}$ S se lit A

Synoptique du CI « YES »

Circuit intégré logique

brochage TTL

Circuit électrique

Propriétés de YES

$$A = A$$

$$A + A = A$$

$$A \cdot A = A$$

brochage CMOS

Montage fonction YES

Table de vérité de la fonction YES

Illustration de l'état logique

Illustration logique:

La fonction YES

$$S = A$$

Je ne vais au cinéma ce soir que si Amina vient.

Variable logique

Une variable logique peut prendre deux états.

Amina ne vient pas : A = 0

Amina vient : A = 1

Pas de sortie cinéma : S = 0

Sortie cinéma : S = 1

Table de vérité

Entrée	Sortie
Α	S = A
ne vient pas	pas de cinéma
vient	cinéma

Remarque:

► Les opérateurs AND et OR sont distributives

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

Distribution

Propriétés d'absorption

$$\mathbf{A} + (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A}$$

$$\mathbf{A} \cdot (\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

$$(\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

Conséquence de la distribution

$$\mathbf{A} + \underline{\mathbf{A}} \cdot \mathbf{B} = \mathbf{A} + \mathbf{B}$$

$$\underline{\mathbf{A}} + \mathbf{A} \cdot \underline{\mathbf{B}} = \underline{\mathbf{A}} + \underline{\mathbf{B}}$$

II. Théorèmes de De Morgan

- 1°) Théorèmes de De Morgan
- 2°) Notions sur les ensembles (algèbre logique)
- 3°) Représentation d'Euler

1°) Théorèmes de De Morgan

De Morgan a exprimé deux théorèmes qui peuvent s'énoncer comme suit :

Théorèmes:

$$\underline{1^{er} Th\acute{e}r\grave{e}me}: \qquad \overline{A+B} = \overline{A} \bullet \overline{B}$$

$$2^{\grave{e}^{me}} Th\acute{e}or\grave{e}me$$
: $\overline{A \bullet B} = \overline{A} + \overline{B}$

► Ils expriment la règle d'inversion de la logique positive vers la logique négative et vice versa.

Généralisation à n entrées :

$$\underline{1^{er} Th\acute{e}r\grave{e}me}: \qquad \overline{A+B+C+...} = \overline{A} \bullet \overline{B} \bullet \overline{C} \bullet$$

 $2^{\grave{e}me}$ Théorème: $\overline{A \bullet B \bullet C \bullet ...} = \overline{A} + \overline{B} + \overline{C} + ...$

Double négation (ou double complémentation) :

$$A \bullet B = \overline{A \bullet B} = \overline{A} + \overline{B} = A \bullet B$$

$$A + B = \overline{\overline{A + B}} = \overline{\overline{A} \bullet \overline{B}} = A + B$$

2°) Notions sur les ensembles (algèbre logique)

deux variables égales A = B

 $\begin{array}{c} \textbf{Intersection} \\ \textbf{de deux ensembles} \\ \textbf{A} \ \cap \textbf{B} \end{array}$

Ensembles Disjoints $A \neq B$

Réunion de deux ensembles A u B

Ensemble inclus dan un autre ensemble A c B

Illustration $A \cdot F = A$

Illustration A + F = F

Complément d'un ensemble \overline{A}

3°) Représentation d'Euler

<u>1^{er} Théorème de DE Morgan</u>

$$\overline{A+B} = \overline{A} \bullet \overline{B} \quad \Leftrightarrow \quad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

2ème Théorème de DE Morgan

$$\overline{A \bullet B} = \overline{A} + \overline{B} \quad \Leftrightarrow \quad \overline{A \cap B} = \overline{A} \cup \overline{B}$$

 $\overline{A} \cup \overline{B}$ partie hachurée en noir

III. Les portes logiques dérivées

- 1°) Porte NON ET (NAND)
- 2°) Porte NON Ou_{inclusif} (NOR)
- 3°) Porte OU_{exclusif} (XOR)
- 4°) Porte NON OU_{exclusif} (XNOR)

Deux entrées au minimum

Équation logique

$$S = \overline{A \cdot B}$$

S se lit A fois B le tout barre

De Morgan

$$S = \overline{A \cdot B} = \overline{A} + \overline{B}$$

Représentation d'Euler

Table de vérité

Entrée		sortie
A	В	NAND
0	0	1
0	1	1
1	0	1
1	1	0

Circuit électrique

Interrupteur normalement fermé

Universalité de la porte NON-ET (NAND)

Fonction NON

Fonction ET

Fonction OU

L'opérateur logique NAND est universel car on peut réaliser avec n'importe quel circuit logique.

Deux entrées au minimum

Équation logique

$$S = \overline{A + B}$$

S se lit A plus B le tout barre

De Morgan

$$S = \overline{A + B} = \overline{A} \cdot \overline{B}$$

Surface hachurée en rouge

Représentation d'Euler

Table de vérité

Entrée		sortie
Α	A B	
0	0	1
0	1	0
1	0	0
1	1	0

Circuit électrique

Interrupteur normalement fermé

Universalité de la porte NON-OU (NOR)

Fonction NON

Fonction ET

Fonction OU

L'opérateur logique NOR est universel car on peut réaliser avec n'importe quel circuit logique.

3°) Porte OU_{exclusif} (XOR)

composite

Deux entrées au maximum

Équation logique

$$S = A \oplus B$$
$$= \overline{A} \cdot B + A \cdot \overline{B}$$

S se lit A barre fois B plus A fois B barre

Surface hachurée en rouge

Représentation d'Euler

Codage ou cryptographie

Table de vérité

Entrée		sortie
A	A B	
0	0	0
0	1	1
1	0	1
1	1	0

Circuit électrique

Représentation d'Euler

 $a \oplus b = c$

alors

 $(a \oplus b) \oplus b = a$

 $(a \oplus b) \oplus a = b$

 $b \oplus c = a$

et

 $c \oplus a = b$

absorption

absorption

Rotation

Différentes expressions de XOR

$$s = a \oplus b$$

$$s = \overline{a \cdot b} + a \cdot \overline{b}$$

$$s = \overline{a \cdot b} + \overline{a \cdot b}$$

$$s = (\overline{a \cdot b}) \cdot (a + b)$$

$$s = (\overline{a + b}) \cdot (a + b)$$

Quelques propriétés mathématiques supplémentaires de XOR

$$a \oplus a = 0$$

$$a \oplus 0 = a$$

$$\begin{bmatrix} a \\ 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} a \\ \end{bmatrix}$$

$$= \begin{bmatrix} a \\ \end{bmatrix}$$

$$a \oplus 1 = \overline{a}$$

$$\begin{array}{c|c} a & & \\ \hline 1 & = 1 \\ \end{array} = \begin{array}{c|c} \overline{a} & = \end{array} = \begin{array}{c|c} \overline{a} & \\ \hline \end{array}$$

$$a \oplus \overline{a} = 1$$

Quelques propriétés mathématiques supplémentaires de XOR

$$\overline{a} \oplus \overline{a} = 0$$

$$\overline{a} \oplus 0 = \overline{a}$$

$$\begin{bmatrix} \overline{a} \\ 0 \end{bmatrix} = 1$$

$$= 1$$

$$\overline{a}$$

$$= \overline{a}$$

$$\overline{a} \oplus 1 = a$$

$$\begin{array}{c|c} \overline{a} \\ 1 \end{array} = \begin{array}{c|c} a \end{array} \equiv \begin{array}{c|c} \overline{a} \end{array}$$

$$a \oplus a = 1$$

Exemple n°1 : Réalisation de XOR à partir des portes logiques de base NOT, AND et OR

Exemple n°2 : Réalisation de XOR à l'aide uniquement des portes universelles NOR

Exemple n°3 : Réalisation de XOR à l'aide uniquement des portes universelles NAND

PR. A. BAGHDAD

4°) Porte NON OU_{exclusif} (XNOR)

composite

 $A \oplus B$

 $\Re = 1$

Codage ou cryptographie

Deux entrées au maximum

Représentation d'Euler

Table de vérité **Entrée** sortie **XNOR** A B 0 0 0 0 0 0

Surface Circuit électrique colorée en blanc B

Équation logique

$$S = \overline{A \oplus B}$$
$$= A \cdot B + \overline{A} \cdot \overline{B}$$

S se lit A fois B plus A barre fois B barre

Notation 0

$$S = A \odot B$$

Synoptique du CI « XNOR »

Circuit électrique

Circuit intégré logique

brochage TTL ou CMOS

Différentes expressions de XNOR

$$s = \overline{a \oplus b}$$

$$s = a \cdot b + \overline{a} \cdot \overline{b}$$

$$S = \left(\overline{a \cdot b}\right) \cdot \left(\overline{a} + b\right)$$

$$s = \overline{a} \cdot b + a \cdot \overline{b}$$

$$s = (a + \overline{b}) \cdot (\overline{a} + b)$$

$$S = a \odot b$$

Quelques propriétés mathématiques supplémentaires de XNOR

$$\overline{a \oplus 0} = \overline{a}$$

$$\begin{bmatrix} a \\ 0 \end{bmatrix} = 1$$

$$\equiv \begin{bmatrix} a \\ - \end{bmatrix}$$

$$\equiv \begin{bmatrix} a \\ - \end{bmatrix}$$

$$|\overline{a \oplus 1} = a|$$

$$\begin{array}{c|c} a & & \\ \hline & & \\ 1 & & \end{array} \equiv \begin{array}{c} a & \\ \end{array}$$

$$a \oplus a = 0$$

$$\frac{a}{a}$$
 =1 0

Quelques propriétés mathématiques supplémentaires de XNOR

$$a \oplus 0 = a$$

$$\begin{bmatrix} \overline{a} \\ 0 \end{bmatrix} = 1 \qquad = \begin{bmatrix} \overline{a} \\ - \end{bmatrix} \qquad = a$$

$$a \oplus 1 = a$$

$$\frac{\overline{a}}{1} = 1 \qquad = \overline{a} \qquad = \overline{a}$$

$$a \oplus a = 0$$

Exemple n°1 : Réalisation de XNOR à partir des portes logiques de base NOT, AND et OR

Exemple n°2 : Réalisation de XNOR à l'aide uniquement des portes universelles NOR

Exemple n°3 : Réalisation de XNOR à l'aide uniquement des portes universelles NAND

SYMBOLES GRAPHIQUES: Résumé

FONCTION	EQUATION	SYMBOLES		SYMBOLES		TAB	LES	DE
FONCTION	EQUATION	International	Français	Allemand	VERITE			
иои	s = ā	3— S	1 0-		0 1		1 0	
ET	S = a.b	a		D -	0 0 1 1	0 1 0	0 0 0 1	
NAND	S = <u>a.b</u>	a	- & -	□	0 0 1 1	0 1 0 1	1 1 1 0	
ou	S = a + b	as	≥ 1	—	0 0 1 1	0 1 0	0 1 1	
NOR	S = a + b	<u>a</u> s		→-	0 0 1 1	0 1 0	1 0 0	
OU Exclusif	S = a ⊕ b	* S	= 1		0 0 1 1	0 1 0	0 1 1 0	
NOR Exclusif	S = a	3 b	= 1		0 0 1 1	0 1 0 1	1 0 0	

différentes représentations graphiques utilisées pour les fonctions logiques

II. Conséquences des théorèmes de DE Morgan

- 1°) Logique positive et logique négative
- 2°) Conséquences des Théorèmes de DE Morgan

1°) Logique positive et logique négative

■ Logique positive :

Convention logique positive

■ Logique négative:

Convention logique négative

■ Principe de dualité

Entrée		Sortie
Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Entrée		Sortie
Α	В	A.B
1	1	1
1	0	1
0	1	1
0	0	0

convention logique positive

Entrée : L = 0, H = 1Sortie : L = 0, H = 1 convention logique négative Entrée : L = 1, H = 0

Sortie: L = 1, H = 0

Ent	rée	Sortie
A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Entrée		Sortie
Α	В	A.B
0	0	0
0	1	1
1	0	1
1	1	1

Mise en ordre

Conclusion: ET de la LP se comporte comme un OU de la LN

■ Table de dualité :

Un circuit se comportant en logique positive comme un ;	Se comporte en logique négative comme un ;
ET	OU
NAND	NOR
OU	ET
NOR	NAND
OU Exclusif	NOR Exclusif
NOR Exclusif	OU Exclusif

Table de dualité des fonctions logiques

2°) Conséquences des Théorèmes de DE Morgan

- Conséquence n°1:
- ► Le théorème n°1 de De Morgan montre qu'une fonction NOR peut être fabriquée à partir des fonctions AND et NOT.

$$\overline{A+B} = \overline{A} \bullet \overline{B}$$

De même :

► Le théorème n°1 de De Morgan montre qu'une fonction OR peut être fabriquée à partir des fonctions AND et NOT.

$$OR = \underbrace{A + B}_{d \in finition} = \underbrace{\overline{A + B}}_{d o ublen \in gation} = \underbrace{\overline{A \bullet B}}_{D \in Morgan}$$

■ Conséquence n°2 :

► Le théorème n°2 de De Morgan montre qu'une fonction NAND peut être fabriquée à partir des fonctions OR et NOT.

De même :

► Le théorème n°2 de De Morgan montre qu'une fonction AND peut être fabriquée à partir des fonctions OR et NOT.

■ Conséquence n°3 : Principe de dualité

▶ De même, à partir des deux théorèmes de De Morgan nous pouvons montrer qu'une porte AND en <u>logique positive</u> se comporte comme une porte OR en <u>logique négative</u> et <u>vice versa</u>.

$$OR = A + B =$$

▶ De même, à partir des deux théorèmes de De Morgan nous pouvons montrer qu'une porte AND en <u>logique positive</u> se comporte comme une porte OR en <u>logique négative</u> et vice versa.

$$\underbrace{AND}_{LP} = \underbrace{A \cdot B}_{d \text{\'e} finition} = \underbrace{\overline{A} \cdot \overline{B}}_{d \text{oublen\'egation}} = \overline{\overline{A} + \overline{B}} = \underbrace{OR}_{LN}$$

- Conséquence n°4 : simplification des circuits électriques
- **Exemple de NAND**

Circuit NAND

Fonctionnement de NAND simplifié

$$\bar{a} = 1 \longrightarrow a = 0$$

 $\bar{b} = 1 \longrightarrow b = 0$ $S = 1$

$$\begin{bmatrix} \overline{a}=1 \longrightarrow a=0 \\ \overline{b}=0 \longrightarrow b=1 \end{bmatrix}$$
 S=

$$\overline{a}=0 \rightarrow a=1$$

 $\overline{b}=0 \rightarrow b=1$ S=0

- Conséquence n°4 : simplification des circuits électriques
- **▶** Exemple de NOR

Circuit NOR

Circuit NOR simplifié

IV. Identités Booléennes

- 1°) Propriétés des fonctions logiques : Identités Booléennes
- 2°) Matérialisation par des circuits électriques
- 3°) Simplification algébrique

1°) Propriétés des fonctions logiques : Identités Booléennes

Propriétés		Théorèmes
Commutativité	a+b=b+a	
	$a \cdot b = b \cdot a$	
Associativité	(a+b)+c=a+(b+c)=a+b+c	
	$(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c$	
Distributivité	$a \cdot (b + c) = (a \cdot b) + (a \cdot c) = a \cdot b + a \cdot c$	
	$a + (b \cdot c) = (a + b) \cdot (a + c)$	
Eléments neutres	a+0=a	Des bornes universelles
	$a \cdot 1 = a$	
Complémentation	$a + \overline{a} = 1$	De non contradiction
	$\mathbf{a} \cdot \overline{\mathbf{a}} = 0$	
		D'idempotence
	a + a = a	1 + 1 = 1
	$a \cdot a = a$	$1 \cdot 1 = 1$
Eléments absorbants	$a \cdot 0 = 0$	Du tiers exclus
	a + 1 = 1	$1 \cdot 0 = 0$
		0 + 1 = 1
	$a + (a \cdot b) = a + a \cdot b = a$	D'absorption
	$a \cdot (a+b)=a$	
	a = a	D'involution
	$a \cdot b + a \cdot \overline{b} = a$	D'inclusion
	$\frac{\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \overline{\mathbf{b}} = \mathbf{a}}{\overline{\mathbf{a} + \mathbf{b} + \mathbf{c}} = \overline{\mathbf{a}} \cdot \overline{\mathbf{b}} \cdot \overline{\mathbf{c}}}$	De de Morgan
	$\overline{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}} = \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}$	
	$a \oplus (b \oplus c) = (a \oplus b) \oplus c = a \oplus b \oplus c$	
	$a \oplus a = 0$	
	$a \oplus \overline{a} = 1$	
	$a \oplus 0 = a$	
	$a \oplus 1 = \overline{a}$	

2°) Matérialisation par des circuits électriques

Sommes logiques	Produits logiques
$ \begin{array}{c c} & L \\ & \otimes \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 3 \\$	
$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	a.1=a L a.0=0
a + a = a	L a = a a : a = a
$ \begin{array}{c c} & L \\ & \otimes \\ & & \\$	a. a = 0

Travaux Dirigés

Travaux dirigés

3°) Simplification algébrique

$$x = A \cdot B \cdot \left(\overline{\overline{A} + B \cdot C} \right)$$

$$x = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C$$

$$x = \left(\overline{A} + B\right) \cdot \left(A + \overline{B}\right)$$

$$x = A \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot D + \overline{C} \cdot \overline{D}$$

$$x = \overline{\overline{A} \cdot \overline{B} \cdot \overline{C}} + \overline{A \cdot B} \cdot C + \overline{A} \cdot B \cdot C$$

$$x = A \cdot B \cdot C + A \cdot \overline{B} \cdot \left(\overline{\overline{A} \cdot \overline{C}} \right)$$

$$x = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$x = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C}$$

$$x = \overline{A} \cdot C \left(\overline{\overline{A} \cdot B \cdot D} \right) + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot C$$

$$x = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A \cdot B} \cdot \overline{C} + \overline{A \cdot B} \cdot \overline{C}$$

$$x = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C}$$

$$x = \overline{A \cdot B \cdot C} + \overline{A \cdot B} \cdot \overline{C} + A \cdot \overline{B} \cdot C$$

$$x = (\overline{A} + B) \cdot (A + B + D) \cdot \overline{D}$$