

- Komponenty systemu
- Uslugi systemu operacyjnego
- Wywolania systemowe (ang. system calls)
- Programy systemowe
- Struktura systemu
- Maszyny wirtualne
- Projektowanie i implementacja systemu
- Generowanie systemu

Podstawowe komponenty systemu

- Zarzadzanie procesami
- Zarzadzanie pamiecia glówna
- Zarzadzanie plikami
- System zarzadzania operacjami wejscia/wyjscia
- Zarzadzanie drugoplanowe
- Praca sieciowa
- System ochrony
- System interpretacji polecen

Zarzadzanie procesami

- Proces jest to wykonujacy sie program. Procesowi do zrealizowania jego zadan niezbedne sa pewne zasoby, wlaczajac w to czas CPU, pamiec, pliki i urzadzenia I/O.
- System operacyjny jest odpowiedzialny jest za nastepujace czynnosci zwiazane z zarzadzaniem procesami:
 - Tworzenie i usuwanie procesów
 - Zawieszanie i wznawianie procesów
 - Dostarcza mechanizmów do:
 - Synchronizacji procesów
 - Komunikacji pomiedzy procesami (miedzyprocesowej)

Zarzadzanie pamiecia glówna

- Pamiec jest duza tablica slów lub bajtów; kazdy element tablicy posiada dokladnie okreslony adres. Jest to repozytorium z szybo dostepnymi danymi, wspóldzielonymi przez CPU i urzadzenia I/O.
- Pamiec glówna jest ulotnym nosnikiem danych. W momencie wystapienia awarii, wylaczenia systemu dane sa tracone.
- System operacyjny jest odpowiedzialny nastepujace czynnosci zwiazane z zarzadzaniem pamiecia:
 - Przechowuje informacje o tym, któa czesc pamieci jest aktualnie zajeta i przez kogo.
 - Decyduje, który z procesów zaladowac w momencie, gdy pewien obszar pamieci staje sie dostepny.
 - W razie potrzeby, przydziela i zwalnia okreslony obszar pamieci.

Zarzadzanie plikami

- Plik jest zbiorem powiazanych ze soba informacji, definiowanej przez twórce. Pliki zawieraja zwykle programy (zarówno ich postac zródlowa, jak tez postac skompilowana) oraz dane.
- System operacyjny jest odpowiedzialny nastepujace czynnosci zwiazane z zarzadzaniem plikami:
 - Tworzenie i usuwanie plików.
 - Tworzenie i usuwanie katalogów.
 - Dostarcza podstawowych operacji wykonywanych na plikach i katalogach.
 - Odwzorowuje pliki w drugorzedne nosniki danych.
 - Kopie plików na stabilnych (nieulotnych) nosnikach danych.

System zarzadzania I/O

- System I/O sklada sie z:
 - Systemowego, szybkiego bufora przechowywania informacji (ang. ang. buffer-caching system)
 - Ogólnego interfejsu do sterownika urzadzenia
 - Sterownika okreslonego urzadzenia.

Zarzadzanie pamiecia drugorzedna (podrzedna)

- Poniewaz pamiec glówna (pamiec nadrzedna) jest ulotna i zbyt mala do ciaglego przechowywania wszystkich danych i programów, stad system komputerowy musi dostarczyc pamiec drugorzedna (podrzedna), umozliwiajaca tworzenie kopii pamieci glównej.
- Współczesne systemy komputerowe uzywaja dysków jako głównego medium do przechowywania zarówno danych, jak tez programów w trybie on-line.
- System operacyjny jest odpowiedzialny nastepujace czynnosci zwiazane z zarzadzaniem dyskiem:
 - Zarzadzanie wolnymi obszarami
 - Przydzielanie obszaru do przechowywania informacji
 - Planowanie dostepu do dysku.

Praca sieciowa (systemy rozproszone)

- System rozproszony jest zbiorem procesorów, które nie wspóldziela pamieci lub zegara. Kazdy procesor ma wlasna lokalna pamiec lub zegar.
- Procesory w systemie polaczone sa poprzez siec komunikacyjna.
- Komunikacja realizowana jest w oparciu o protokól komunikacyjny.
- System rozproszony zapewnia uzytkownikowi mozliwosc dostepu do róznych zasobów systemu.
- Dostep do wspólnych zasobów pozwala na:
 - Przyspieszenie obliczen
 - Zwiekszenie dostepnosci danych
 - Podniesienie poziomu niezawodnosci

Ochrona systemu

- Ochrona odnosi sie do mechanizmu kontrolowania dostepu programów, procesów, lub uzytkowników zarówno do zasobów systemu, jak tez uzytkownika.
- Mechanizm ochrony musi:
 - Rozrózniac pomiedzy autoryzowanym i nieautoryzowanym uzyciem zasobu.
 - Okreslic jakiego typu kontrola powinna byc zastosowana
 - Dostarczyc srodków wymuszenia kontroli.

System interpretacji polecen

- Wiele polecen jest przekazywanych do systemu operacyjnego za pomoca instrukcji sterujacych, które dotycza:
 - Tworzenia i zarzadzania procesami
 - Operacji I/O
 - Zarzadzania drugorzednymi nosnikami danych
 - Zarzadzaniu pamiecia glówna
 - Dostepu do systemu plików
 - Ochrony
 - Pracy w sieci

System interpretacji polecen - c.d.

- Program, który czyta i interpretuje instrukcje sterujace nazywany jest róznie, np:
 - Interpreter wierszy polecen
 - shell (w UNIX)
- Jego zadanie jest proste ma pobrac i wykonac kolejna instrukcje polecenia..

Uslugi systemu operacyjnego

- Wykonanie programu zdolnosc systemu do zaladowania programu do pamieci i uruchomienia go.
- Operacje I/O poniewaz program uzytkownika nie moze wykonywac operacji I/O bezposrednio, to srodki do realizacji tych czynności musi miec system operacyjny.
- Manipulowanie systemem plików zdolnosc programu do czytania, zapisywania, tworzenia i usuwania plików.
- Komunikacja wymiana informacji pomiedzy procesami wykonujacymi sie albo na tym samym komputerze albo na róznych systemach, polaczonych ze soba w siec. Implementowana za pomoca pamieci dzielonej lub przy uzyciu przekazywania komunikatów.
- Wykrywanie bledów umozliwia reliacje poprawnych obliczen poprzez wykrywanie bledów w CPU i sprzecie pamieci, w urzadzeniach I/O lub w programach uzytkownika.

Dodatkowe funkcje systemu operacyjnego

- Dodatkowe funkcje nie istnieja po to, aby sluzyc pomoca uzytkownikowi, ale raczej w celu zwiekszenia efektywnosci i pewnosci operacji realizowanych przez system.
 - Alokacja zasobów przydzielanie zasobów wielu uzytkownikom lub wielu zadaniom pracujacym w tym samym czasie..
 - Rozliczanie przechowywanie informacji o tym, którzy uzytkownicy i w jakim stopniu korzystaja z poszczególnych zasobów w celu wystawienia rachunku lub po prostu w celu gromadzenia informacji w celach statystycznych.
 - Ochrona stworzenie pewnosci, ze wszystkie dostepy do zasobów systemu sa kontrolowane.

Funkcje systemowe (wywolania systemowe)

- Funkcje systemowe dostarczaja interfejsu miedzy wykonywanym programem a systemem operacyjnym.
 - Zwykle dostepne w postaci instrukcji jezyka asembler.
 - Definiowane sa jezyki zastepujace asembler dla potrzeb tzw. programowania, pozwalajace na bezposrednie wywolania funkcji systemowych np.. Z poziomu jezyka C, C++.
- Istnieja trzy podstawowe metody przekazywania parametrów pomiedzy wykonywanym programem a systemem operacyjnym.
 - Umieszczanie parametrów w rejestrach procesora.
 - Przechowywanie parametrów w tabeli w pamieci; adres tej tabeli jest przekazywany jako parametr w rejestrze procesora..
 - Wlozenie (przechowywanie) parametrów na stosie przez programu i zdejmowanie ich przez system operacyjny.

Przekazywanie parametrów za pomoca tabeli

- Kontrolowanie procesów
- Zarzadzanie plikami
- Zarzadzanie urzadzeniami
- Utrzymywanie informacji
- Komunikacja

Wykonanie programu w MS-DOS

free memory

command interpreter

kernel

(a)

W momencie startu systemu

free memory

process

command interpreter

kernel

(b)

Uruchomienie programu

Wykonywanie wielu programów w systemie UNIX

process D

free memory

process C

interpreter

process B

kernel

 Komunikacja moze byc realizowana za posrednictwem przesylania komunikatów lub pamieci dzielonej.

Przesylanie komunikatów

Pamiec dzielona

Programy systemowe

- Programy systemowe tworza wygodne srodowisko rozwijania i wykonywania programów. Mozna je podzielic na programy:
 - Manipulowania plikami
 - Informowanie o statusie
 - Modyfikacja pliku
 - Wpierajace jezyki programowania
 - Ladowanie i wykonywanie programów
 - Komunikacja
 - Programy uzytkowe
- Wiekszosc uzytkowników postrzega systemy operacyjne poprzez programy systemowe, nie zas poprzez funkcje systemowe.

Typy struktur systemów operacyjnych

- **Prosta struktura** (system monolityczny) program zlozony z wielu procedur, kazda moze wolac kazda, ograniczona strukturalizacja (np. OS/360, MS-DOS, Unix).
 - makrojadro wszystkie funkcje SO umieszczone w jadrze i wykonywane w trybie uprzywilejowanym (np. OS/360)
 - mikrojadro czesc funkcji przeniesiona z jadra na poziom uzytkownika (np. Unix: jadro i programy systemowe)
- Struktura warstwowa kazda warstwa spelnia funkcje zalezne tylko od warstwy ponizej (T.H.E., RC-4000, VMS); w Multicsie odmiana struktury warstwowej zespól koncentrycznych pierscieni. Makrojadro wszystkie warstwy sa uprzywilejowane.
- Struktura mikrojadra mikrojadro obejmuje jedynie tworzenie procesów, komunikacje miedzyprocesowa, mechanizmy (ale nie strategie), zarzadzanie pamiecia, procesorem i urzadzeniami (na najnizszym poziomie), np. Mach.

Struktura systemu MS-DOS

- MS-DOS system operacyjny pisany z mysla o zapewnieniu jak najwiekszej funkcjonalnosci przy jak najmniejszej wielkosci (przy oszczednosci miejsca).
 - Brak podzialu na moduly
 - Mimo, ze w systemie MS-DOS mozna wyodrebnic pewna strukture, to jego jego interfejsy i poziomy funkcjonalne nie sa wyraznie wydzielone.

Warstwowa struktura MS-DOS

Struktura systemu UNIX

- UNIX ograniczony przez funkcjonalnosc sprzetu oryginalny system system operacyjny UNIX byl przykladem ograniczonej strukturalizacji. System operacyjny UNIX sklada sie z dwóch oddzielnych czesci:
 - Programów systemowych
 - Jadra
 - Zawiera wszystko ponizej interfejsu do funkcji systemowych i powyzej sprzetu.
 - Zarzadza systemem plików, planuje przydział CPU, zarzadza pamiecia i wykonuje inne czynnosci systemu operacyjnego; wiele funkcji zebranych na jednym poziomie.

(the users)

shells and commands compilers and interpreters system libraries

system-call interface to the kernel

signals terminal handling character I/O system terminal drivers file system swapping block I/O system disk and tape drivers CPU scheduling page replacement demand paging virtual memory

kernel interface to the hardware

terminal controllers terminals

device controllers disks and tapes

memory controllers physical memory

Podejscie warstwowe

- System operacyjny jest dzielony na warstwy (poziomy), przy czym kazda nastepna warstwa jest zbudowana na szczycie nizszych warstw. Najnizsza warstwe (warstwe 0) stanowi sprzet, najwyzsza (warstwa N) jest interfejs z uzytkownikiem.
- Przy zachowaniu modularności warstwy sa wybrane w ten sposób, ze kazda z nich uzywa funkcji (operacji) i korzysta z uslug tylko nizej polozonych warstw.

Warstwy systemu operacyjnego

Warstwowa struktura OS/2

application

application

application

Systemowa struktura mikrojadra

- Przemieszcza sie tak jak to tylko jest mozliwe z przestrzeni jadra do przestrzeni *uzytkownika*.
- Komunikacja odbywa sie pomiedzy modulami uzytkownika przy zastosowaniu przesylania wiadomości.
- Korzysci:
 - prosciej mozna rozbudowywac mikrojadro
 - prosciej mozna przeniesc system operacyjny do nowej architektury
 - Wieksza niezawodność (mniej kodu wykonywane jest w trybie jadra)
 - Wieksze bezpieczenstwo.

Struktura klient-serwer sysetmu Windows NT

- Logicznym rezultatem podejscia warstwowego jest maszyna wirtualna. Maszyna wirtualna traktuje sprzet i jadro systemu operacyjnego tak, jak gdyby stanowily one wszystkie wylacznie sprzet.
- Maszyna wirtualna dostarcza interfejs identyczny z podstawowym (bazowym) sprzetem.
- System operacyjny tworzy iluzje obecnosci wielu procesów, z których kazdy wykonywany jest na wlasnym procesorze z wlasna (wirtualna) pamiecia.

- Zasoby fizyczne komputera sa dzielone tak, aby tworzyc wirtualna maszyne.
 - Planowanie przydzialu CPU morze tworzyc wrazenie, ze uzytkownicy posiadaja wlasne procesory.
 - Spooling i system plikowy pozwalaja utworzyc wirtualne dyski (minidyski) i wirtualne drukarki.
 - Zwykly terminal z podzialem czasu zachowuje sie jak wirtualna maszyna konsoli operatora.

Zalety/wady maszyn wirtualnych

- Maszyna wirtualna zapewnia pelna ochrone zasobów systemu poniewaz kazda maszyna wirtualna ijest odizolowana od innej maszyny wirtualnej. Jednak izolacja nie zezwala na bezposrednie wspóldzielenie zasobów.
- System maszyny wirtualnej stanowi wspaniala platforme do badan nad systemami operacyjnymi i ich rozwojem. Rozwój systemu realizowany jest na bazie maszyny wirtualnej, zamiast na bazie maszyny rzeczywistej i nie zaklóca normalnych operacji systemu.
- Koncepcja maszyny wirtualnej jest trudna do zaimplementowania. Zrealizowanie dokladnej kopii maszyny bazowej wymaga wielkiego wysilku.

Maszyna wirtualna Java

- Skompilowane programy napisane w jezyku Java zawieraja kod bajtowy niezalezny od platformy sprzetowej, wykonywany w srodowisku Java Virtual Machine (JVM).
- JVM sklada sie z:
- Programu ladowania klas
- Weryfikatora klas
- Interpreter w czasie wykonywania
- Kompilator typu *w odpowiednim momencie* (ang. Just-In-Time (JIT)) zwieksza wydajnosc maszyny.

Maszyna wirtualna Java

Zalozenia projetowe systemu operacyjnego

- Cele uzytkownika system opeacyjny powinien byc wygodny w uzyciu, latwy do nauki, niezawodny, bezpieczny i szybki.
- Cele systemu system operacyjny powinien byc latwy do zaprojektowania, zaimplementowania i utrzymania, a takze byc elestyczny, niezawodny, pozbawiony bledów i wydajny.

Mechanizmy a polityka

- Mechanizmy okreslaja jak czegos dokonac, natomiast polityka decyduje o tym, co ma byc zrobione.
- Oddzielenie polityki od mechanizmu jest bardzo wazna zasada. Pozwala to na uzyskanie maksymalnej eleastyczności w sytuacji, gdy decyzje polityczne zostana pózniej zmienione.

Implementacja systemu

- Tradycyjnie pisane w jezyku asembler obecnie systemy operacyjne moga byc pisane w jezykach wysokiego poziomu.
- Kod pisany w jezyku wysokiego poziomu:
 - Moze byc pisany szybciej.
 - Jest bardziej zwarty.
 - Jest prostszy do zrozumienia i uzdatniania (ang. debugg).
- System operacyjny jest znacznie latwiejszy do *przenoszenia* (instalowania na innym sprzecie) jesli jest napisany w jezyku wysokiego poziomu. Na przyklad system MS-DOS napisano tylko w jezyku asembler mikroprocesora Intel, natomiast system Unix prawie w calosci zostal napisany w jezyku C.

Generowanie systemu (SYSGEN)

- Systemy operacyjne projektowane sa tak, aby dzialaly na pewnej klasie maszyn w rozmaitych instalacjach ze zmienna konfiguracja urzadzen zewnetrznych..
- System operacyjny musi podlegac konfigurowaniu lub generowaniu dla kazdej specyficznej instalcji komputerowej. Proces ten nazywa sie **generowaniem systemu**.
- Program SYSGEN gromadzi informacje dotyczace okreslonej konfiguracji systemu sprzetowego.
- Booting (wprowadzenie programu do pamieci komputera przy uzyciu kilku instrukcji inicjujacych) – uruchomienie komputera poprzez zaladowanie jadra.
- Program ladujacy (ang. bootstrap program) kod przechowywany w pamieci ROM zdolny do zlokalizowania jadra, zaladowania go do pamieci i uruchomienia go.

DZIEKUJE PANSTWU

