Estimativa de similaridade em imagens usando Python

Wesin Ribeiro Alves

Agenda

- Introdução
- Few shot learning
- Redes convolucionais
- Redes siamesas
- Constrative loss
- Triplet loss
- Implementação (tensorflow/keras)
- Considerações finais

Parte I (teoria – 50 min)

Few shot learning, redes siamesas

Parte II (prática – 50 min)

Contrastive loss

Parte III (prática – 50 min)

Triplet loss

Few shot learning

Support Set

Armadillo

Pangolin

Query

Armadillo or Pangolin?

Conjunto de treinamento

São animais da mesma espécie?

São animais da mesma espécie?

Few shot learning

Query:

Support Set:

Meta learning (aprender a aprender)

Qual espécie de animal é mais semelhante?

Give him the cards:

Em termos técnicos

Support set:

Aprendizado supervisionado tradicional

- Amostra de teste nunca vista anteriormente
- Amostra de teste pertence a uma classe

Test Sample

Few shot learning

- Amostra de consulta nunca vista anteriormente
- Amostra de consulta pertence a classe desconhecida

Training Set

Query Sample

Conjunto de treino, conjunto de suporte, e consulta

Support Set:

Training Set

Query Sample

K-way n-shot support set

Support Set:

Ideia básica do few-shot learning

- Primeiro, aprende uma função de similaridade em um conjunto de treinamento
- Então, aplica a função aprendida para fazer a predição
 - Compara a consulta com cada amostra no conjunto suporte
 - Encontra a amostra com o grau de similaridade mais alta.

Que animal é esse?

What is in the image?

Query:

sim = 0.2

sim = 0.1

sim = 0.03

sim = 0.05

sim = 0.7

sim = 0.5

Greyhound

Bulldog

Armadillo Pangolin

Otter

Beaver

Redes neurais siamesas

- Duas ou mais redes neurais
- Compartilham o mesmo peso
- Extrai o vetor de características
- Calcula a similaridade entre esses vetores
- Propabilidade de pertencer a mesma classe

Conjunto de treinamento

Preparação dos dados de treinamento

Positive Samples

Negative Samples

0)

1)

0)

1

0

1

CNN para extrair o vetor de características

Contrastive loss

Retropropagação do gradiente de erros (descida do gradiente)

One-shot prediction

Query:

Triplet loss

• Outra maneira de treinar a rede siamesa

Amostra âncora

Selecionada aleatóriamente

Training Set

Amostra positiva

Mesma classe da âncora

Training Set

Amostra negativa

classe diferente

Training Set

Função similaridade

d+ deve ser menor que d-

Por baixo dos panos

$$\mathbf{x}^{a}$$
anchor)

- Encourage $d^+ = ||\mathbf{f}(\mathbf{x}^+) \mathbf{f}(\mathbf{x}^a)||_2^2$ to be small.
- Encourage $d^- = ||\mathbf{f}(\mathbf{x}^a) \mathbf{f}(\mathbf{x}^-)||_2^2$ to be big.
- If $d^- \ge d^+ + \alpha$, then no loss. ($\alpha > 0$ is margin.)
- Otherwise, the loss is $d^+ + \alpha d^-$.
- Loss($\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{+}, \mathbf{x}^{-}$) = max{0, $d^{+} + \alpha d^{-}$ }.
- Update the CNN (function f) to decrease the loss.

One-shot prediction

One-Shot Prediction

Query:

Aplicações com redes siamesas

Field	Application	Method
	Visual tracking	SiamFC [129], Cen and Jung [130], Dong and Shen [131], SiamRPN++ [132], SiamBAN-ACM [133], HP-siam [134], DP-Siam [135], HASiam [136], Qi et al. [137], CLNet [138]
	Reidentification	Wu et al. [139], CASN [140], Lin et al. [141], Chung et al. [142], Mai et al. [69]
Classification	NLP	Bhati et al. [143], SDCM [144], HM-LGSN [145], ISA-SNN [146], SS-CNN [147]
	Image retrieval	Qi et al. [148], Khokhlova et al. [149], Shimoda and Yanai [150], DLRTN [151]
	Image matching	sHybridNet [152], Melekhov et al. [153], Kertesz et al. [154], Joshi et al. [155]
	Beauty prediction	Gattupalli et al. [156], R ² -ResNeXt [157], R ³ CNN [30]
	Time series analysis	SmLSTM [158]
	Quality assessment	Annaland et al. [159], Prabhudesai and Duong [160], RGR [161]
	Pose estimation	PSGMN [57], Gao and Wang [162], Basaru et al. [163], Yu et al. [164]

Quadro geral de redes siamesas

Referências

- Koch et al Siamese neural networks for one-shot image recognition (2015)
- Schroff et al FaceNet: A unified embedding for face recognition and clustering (2015)
- Rosenfeld et al Totally looks like how humans compare, compared to machines (2018)
- Li et al A survey on siamese network: methodologies, applications, and opportunities (2022)
- https://youtu.be/dG8le1YWUI8?si=KXrt3SXgwpS4w5mw
- https://youtu.be/4S-XDefSjTM?si=gDXJZJGdtPZtOPau

Obrigado por sua atenção!

@engmoderno engmoderno.com.br