

University of Tehran School of Electrical and Computer Engineering

Pattern Recognition

Assignment 2

Due Date: 18th Aban

Corresponding TA:

Mehdi Bashiri – mehdi.bashiri.b@gmail.com

PROBLEM 1

- Briefly describe on which condition: I.
 - a. MAP and ML are exactly the same.
 - b. Naive Bayes and MAP are equivalent.
- II. Let $\{x_k\}, k=1, 2, \dots, N$ denote independent training samples from one of the following densities. Obtain the Maximum Likelihood estimate of θ in each case.

a.
$$f(x_k; \theta) = \theta \exp(-\theta xk)$$
 $x_k \ge 0$, $\theta > 0$ Exponential Density

a.
$$f(x_k; \theta) = \theta \exp(-\theta xk)$$
 $x_k \ge 0$, $\theta > 0$ Exponential Density
b. $f(x_k; \theta) = \frac{x_k}{\theta^2} \exp\left(-\frac{x_k^2}{2\theta^2}\right)$ $x_k \ge 0$, $\theta > 0$ Rayleigh Density

c.
$$f(x_k; \theta) = \sqrt{\theta} x_k^{\sqrt{\theta}-1}$$
 $0 \le x_k \le 1$, $\theta > 0$ Beta Density

PROBLEM 2

Let x have a uniform density

$$f_{\mathbf{x}}(x|\theta) \sim \mathbf{U}(0,\theta) = \begin{cases} \frac{1}{\theta} & 0 \le x \le \theta \\ 0 & \text{Otherwise} \end{cases}$$
 (1)

- a. Suppose that n samples $D = \{x_1, x_2, \dots, x_n\}$ are drawn independently according to $f_{x}(x|\theta)$. Show that the maximum likelihood estimate for θ is max[D], i.e., the value of the maximum element in D.
- b. Suppose that n = 5 points are drawn from the distribution and the maximum value of which happens to be $\max_{k} x_k = 0.6$. Plot the likelihood $f_x(D|\theta)$ in the range $0 \le \theta \le 1$.

Explain in words why you do not need to know the values of the other four points.

PROBLEM 3

Consider a D-dimensional Gaussian random variable x with distribution $N(x/\mu, \Sigma)$ in which, the covariance Σ is known and for which we wish to infer the mean μ

from a set of observations $X = \{x_1, \dots, x_N\}$. Given a prior distribution $p(\mu) = N(\mu | \mu_0, \Sigma_0)$, find the corresponding posterior distribution $p(\mu | X)$.

PROBLEM 4

Consider four Gaussian pdf's N_1 (1.0, 0.01), N_2 (1.4, 0.13), N_3 (2.0, 0.05) and N_4 (3.3, 0.02), where two numbers indicate mean (μ_i) and variance (σ_i^2), respectively. Generate 4000 samples according to the following rule. The first sample comes from the first Gaussian pdf (N_1), the second one from N_2 , the third one from N_3 , and the last one from N_4 . This rule repeats until all 4000 samples have been generated. The pdf underlying the random sample is modeled as the following mixture density

$$\sum_{i=1}^{I} p_i N(\mu_i . \sigma_i^2)$$
 (2)

- a. Consider I = 4. Use the EM algorithm and the generated samples to estimate the unknown parameters, (μi , σ_i^2 , and p_i , i = 1, 2, ..., I)
- b. Repeat (a) for I = 2. Compare the result.
- c. Repeat (a) for I = 3. Compare the result.
- d. Repeat (a), using only 1600 generated samples. Compare the result.

PROBLEM 5

The figure below illustrates two-dimensional training samples from two classes; where, \times and \bullet represent classes 1 and 2, respectively. Classify the test sample $(0.5, 0)^t$ using:

a. Parzen window approximation using the uniform window function

$$\varphi(u_1, u_2) = \begin{cases} 1 & |u_i| \le 0.5, i = 1,2 \\ 0 & \text{Otherwise} \end{cases}$$
 (3)

i. v_n is a square with a side of $h_N = 2$

- ii. v_n is a circle with a radius of $r_N = 1$
- b. Unbiased K Nearest Neighbor approximation with k = 3, and
 - i. Euclidean distance: $d(x,y) = \sqrt{\Sigma_i(x_i y_i)^2}$
 - ii. City Block distance: $d(x,y) = \max_{i} |x_i y_i|$

Hint: Any point on the border of the volume is considered an inside point.

PROBLEM 6 - HMM (25% Bonus)

Compute the probability of the observation sequences 3213 and 3212 using Forward algorithm in the following HMM (fig.2). Which one is more likely?

Figure 2 A hidden Markov model for relating numbers of ice creams eaten (the observations) to the weather (H or C, the hidden variables).

** Figure 2 shows a sample HMM for the ice cream task. The two hidden states (H and C) correspond to hot and cold weather, and the observations (drawn from the alphabet $O = \{1,2,3\}$) correspond to the number of ice creams eaten by Jason on a given day.

PROBLEM 7 – HMM (25% Bonus)

- I. Show that for a Markov Chain: $P(q_t|q_{t+1},...,q_T) = P(q_t|q_{t+1})$.
- II. Consider the following 2-state Hidden Markov Models where both states have two possible output symbols A and B.

Model 1:

Transition probabilities: a_{11} =0.7, a_{12} =0.3, a_{21} =0.0, a_{22} =1.0 (a_{ij} is the probability of going from state i to state j) Output probabilities: $b_1(A) = 0.8$, $b_1(B) = 0.2$, $b_2(A) = 0.4$, $b_2(B) = 0.6$. Initial probabilities: π_1 =0.5, π_2 =0.5.

Model 2:

Transition probabilities: a_{11} =0.6, a_{12} =0.4, a_{21} =0.0, a_{22} =1.0 . Output probabilities: $b_1(A)=0.9$, $b_1(B)=0.1$, $b_2(A)=0.3$, $b_2(B)=0.7$. Initial probabilities: π_1 =0.4, π_2 =0.6 .

- a. Sketch the state diagram for two models.
- b. Which model is more likely to produce the observation sequence {A, B, B}?

Hint: Information you need for solving the last two problems can be found here:

https://web.stanford.edu/~jurafsky/slp3/9.pdf