第13章 量子物理学基础

经典物理(17-19世纪)

牛顿力学 热力学 经典统计力学 经典电磁理论.

开尔文

物理学的大厦已经完 成, 今后物理学家的 任务就是修饰完善这 座大厦了。

十九世纪末 二十世纪初的一些新的 实验对经典物理学产生了强有力的冲击。

开尔文:然而,在物理学晴朗的天空上还漂浮着两朵令人不安的鸟云。

第十三章 量子物理学基础

- 13.1 黑体辐射普朗克量子化基础
- 13.2 光的波粒二象性
- 13.3 量子力学引论
- 13.4 薛定谔方程

量子力学的发展

A、 旧量子论的形成 (冲破经典→量子假说)

1900年 普朗克 能量子

1905年 爱因斯坦 光量子假说

1910年 卢瑟福 原子有核模型

1913年 波尔 氢原子光谱规律

原子及量子概念

(旧量子论)

量子力学理论

B、量子力学的建立(崭新概念)

1924年 德布罗意 物质波,波粒二象性

1925年 海森伯 矩阵力学

1926年 薛定谔 波动力学

量子力学理论

1927年 海森伯 测不准关系

波恩 波函数的统计诠释

狄拉克 相对论量子力学

C、量子力学的进一步发展(应用、发展)

1927年第五届索尔维会议合影

1911年第一届索尔维(Solva)会议合影

量子力学的诞生

三个实验

三个飞跃

- (1) 黑体辐射
- (1) 普朗克能量子假说
- (2) 光电效应
- (2) 德布罗意物质波假设
- (3) 原子光谱
- (3) 薛定谔方程与玻恩概率波解释

§1 黑体热辐射 普朗克量子假说

一、热辐射及其定量描述

1. 热辐射: 任何物体在不同温度下都向外辐射电磁波, 实质是热能转化为电磁能的过程。

2. 热辐射特点:

- (1) 任何物体任何温度均存在热辐射;
- (2) 辐射电磁波的能量按频率(波长)连续分布——热辐射谱;

(3) 热辐射谱随温度不同而不同;

描述热辐射的基本物理量

1. 辐射能量 *Q* (J)

1. 辐射能量
$$Q$$
 (J)
2. 辐射功率 P : $P = \frac{\partial Q}{\partial t}$ (W)

3. (总) 辐射出射度 E(T): E(T) = $(W \cdot m^{-2})$

4. 单色辐射出射度 $e(\lambda, T)$:

$$e(\lambda,T) = \frac{dE(T)}{d\lambda}$$
 (W·m⁻³)

$$E(T) = \int dE(T) = \int_{0}^{\infty} e(\lambda, T) d\lambda$$

三、单色吸收比 和单色反射比

物体在温度T,单位波长 $\lambda - \lambda + d\lambda$ 范围内:

1. 单色吸收比
$$\alpha(\lambda, T)$$
: $\alpha(\lambda, T) = \frac{dE_{\lambda(\text{吸收})}}{dE_{\lambda(\lambda \text{fl})}}$

2. 单色反射比
$$\rho(\lambda, T)$$
:
$$\rho(\lambda, T) = \frac{\mathrm{d}E_{\lambda(\mathrm{Ch})}}{\mathrm{d}E_{\lambda(\mathrm{Ch})}}$$

对于不透明物体: $\alpha(\lambda, T) + \rho(\lambda, T) = 1$

四、平衡热辐射

- 1. 平衡热辐射: 相同时间内辐射和吸收的能量恰相等时, 物体 达到了热平衡, 此时物体温度恒定不变,
- 2. 基尔霍夫定律(Kirchhoff's Law)(1859年)

任何物体的单色辐出度与单色吸收比的比值,是一个与 物体性质无关而只与温度和辐射波长有关的普适函数。

$$e_0(\lambda, T) = \frac{e_1(\lambda, T)}{\alpha_1(\lambda, T)} = \frac{e_i(\lambda, T)}{\alpha_i(\lambda, T)} = \cdots$$

五、(绝对)黑体

是否存在理想物体,在任何温度下,对于任何波长入射: $e(\lambda,T)=1$ $\alpha(\lambda,T)=1$

$$e(\lambda,T)=1$$
 $\alpha(\lambda,T)=1$

五、(绝对)黑体

1. 黑体的人工构造 — 带有小孔的空腔

2. 黑体热辐射规律

黑体的单色辐出度

(1) 实验规律之一——斯特藩——玻尔兹曼定律

$$E(T) = \int_0^\infty e(\lambda, T) d\lambda = \sigma T^4$$

斯特藩常数:

$$\sigma = 5.67051 \times 10^{-8} \,\text{W/m}^2\text{K}^4$$

例1 若在加热黑体过程中,其最大单色辐射度对应的波长由 0.8 μm变到 0.4 μm,则其辐射度增大为原来的几倍? 16倍!

(2) 实验规律之二——维恩位移定律

$$\lambda_m T = b$$

维恩常数: b = 2.898×10⁻³ m⋅K

例2 若视太阳为黑体,测得 $\lambda_{\rm m}$ =550nm,估算出太阳表面温度约:

3. 应用:

$$E(T) = \sigma T^4, \qquad \lambda_m T = b$$

(1) 宇宙大爆炸理论预言的2.7 K微波背景辐射 1965年 美国科学家 彭齐亚斯 威尔逊 测得宇宙微波背景辐射的能谱分布,发现宇宙微波背景辐射的峰值波长为 $\lambda_{m} \approx 1.1 \text{mm}$: $T = \frac{b}{\lambda_{m}} = \frac{2.89 \times 10^{-3}}{10^{-3}} = 2.89(\text{K})$

由于发现微波背景辐射两人共获1978年诺贝尔物理学奖。

1989—1994年 美国科学家约翰·马瑟和乔治·斯穆特借助1989年发射的微波背景探测卫星(COBE) 首次完成了对宇宙微波背景辐射的太空观测研究

并精确地测量了宇宙微波背景辐射的黑体谱,

两人共获 2006年诺贝尔物理学奖

- (2) 地球表面温度300 K, $\lambda_m=10\mu$ m在红外波段(电磁波的窗 口)。卫星利用红外遥感技术对地球进行资源、地质考察。
- (3) 高温测量(如冶炼炉、钢水,等离子体及受控热核反应温 度)及远距离测温(如太阳表面的温度)。

如何从理论上建立符合黑体辐射实验规律的函数式?

六、经典物理学遇到的困难

1. 维恩公式 1896年维恩从经典热力学及统计理论及实验数据 的分析得出

 c_1,c_2 为常数

2. 瑞利-金斯公式

1900年从经典电动力学和统计物理学

理论 推导而得

$$e(\lambda, T) = \frac{2\pi ckT}{\lambda^4}$$

$$k = 1.380658 \times 10^{-23} \,\mathrm{J \cdot K}^{-1}$$

c为真空中的光速

长波方向与实验符合较好

短波方向得出灾难性的结论

3. 普朗克黑体辐射公式

$$e(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

普朗克常量 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$

3. 普朗克黑体辐射公式

$$e(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

$$e(\lambda, T) = \frac{c_1}{\lambda^5} e^{\frac{c_2}{\lambda T}}$$

瑞利-金斯公式(长波): $e(\lambda,T)=\frac{2\pi ckT}{\lambda_{\frac{-c_2}{\lambda T}}^4}$ 维恩公式(短波): $e(\lambda,T)=\frac{c_1}{\lambda^5}e^{\frac{-c_2}{\lambda T}}$ 斯特藩公式(积分): $E(T)=\int\limits_0^\infty e(\lambda,T)\mathrm{d}\lambda=\sigma T^4$

维恩位移公式(求导): $\lambda_{
m m}T=b$

六、普朗克能量子假说

- ❖ 组成辐射黑体中的分子、原子可看作简谐振动的线性谐振子;
- ❖ 谐振子振动时不断的吸收和发射电磁波, 与外界交换辐射能量;
- * 谐振子只能处于某些分立的状态,能量E是最小能量的整数倍:

 $E=n\varepsilon$ 。n=1, 2, 3称为量子数。

能量子: $\varepsilon = hv$ 。

* 当物体发射或吸收,与周围电磁场交换能量时,只能从这些分立状态之一跃迁到另一个分立态;对于一定频率v的电磁辐射,物体只能以hv为单位发射或吸收它。 $\Delta E = (\Delta n)hv$

1900.12.14. Planck把 "关于正常谱中能量分布的理论" 的论交到了德国自然科学会,后来,这一天被定为"量子论的诞生日"。

M.Planck 德国人 (1858-1947) 获1918年诺贝尔奖

第十三章 量子物理学基础

- 13.1 黑体辐射普朗克量子化基础
- 13.2 光的波粒二象性
- 13.3 量子力学引论

一、光电效应的实验规律

光电效应——光照射某些金属时能从表面释放出电子的效应。 产生的电子称为光电子。

- 1. 实验装置
- 2. 实验规律
- (1) 存在红限频率 ν_0

与阴极金属材料有关。

(2) 瞬时发生

光电转换时间极短 <10⁻⁹s (即使光非常非常弱)。

(3) 光电流和入射光强度关系

① 饱和光电流

入射光频率一定时,饱和光电流 强度 I_s 与入射光强度成正比。

设n: 单位时间内从金属表面逸出的

电子数 于是: $I_s=ne$

因而有 $n \propto I$

② 截止电压 U_c

$$eU_c = \frac{1}{2}m v_m^2$$

$$v\uparrow$$
, $U_c\uparrow \Longrightarrow U_c = K(v-v_0) = Kv-U_0$

K是常数, U_0 由阴极金属材料决定

$$\boldsymbol{\nu}_0 = \frac{\boldsymbol{U}_0}{\boldsymbol{K}}$$

二、经典理论解释的困难

实验规律

经典电磁理论

红限频率

瞬时性

截止电压 与光强无关 饱和电流

光电子获得的能量与入射光振幅、 照射时间有关,与入射光频率无关。

光电子逸出需要获得足够能量,需要足够时间积累,强度越弱,积累时间越长。

光电子的最大初动能与光强有关。

光强越强电流越大。

三、爱因斯坦的光量子理论

- 1. 光量子理论
- (1) 光辐射是真空中以光速 c 运动的粒子流,称为光子。
- (2) 粒子性体现在光能量在空间分布不连续。
- (3) 一个光子只能整个的被吸收或者产生辐射出来。
- (4) 每个光量子的能量与辐射频率 ν 的关系为: $\varepsilon = h\nu$

每个光量子的能量不可再分。

辐射光的光强: $I_{\text{光强}} = Nhv$

N为单位时间垂直通过单位面积的光子数

2. 爱因斯坦光电效应方程
$$hv = A_0 + \frac{1}{2}mv_m^2$$
 A_0 为电子逸出功, $\frac{1}{2}mv_m^2$ 为光电子的最大初动能。

- 3. 爱因斯坦光量子论解释光电效应
- (1) 瞬时性 一个光子被金属中的一个自由电子整体吸收.
- (2) 饱和电流随入射光强增加

$$I^{\uparrow} \rightarrow$$
 光子数 $N^{\uparrow} \rightarrow$ 打出光电子多 $\rightarrow i_s^{\uparrow}$

在确定的光强下 $I = N h \nu$ 打出的最多电子数就是 $N \rightarrow$ 饱和电流

(3) 存在截止频率

入射光子能量必须大于逸出功 A

$$hv = A + \frac{1}{2}mv_m^2 \Longrightarrow hv_0 = A \Longrightarrow \frac{1}{2}mv_m^2 = hv - hv_0$$

(4) 存在遏止电压(光电子最大初动能与入射光频率有关)

四、光的波粒二象性

- 一些情况下 突出显示波动性, 如光的干涉和衍射
- 一些情况下 突出显示粒子性,如光电效应等

能量
$$\varepsilon = h \nu$$

质量
$$E = mc^2$$
 $m = \frac{h\nu}{c^2}$ 动量 $P = mc = \frac{h}{\lambda}$

动量
$$P = mc = \frac{n}{\lambda}$$

基本关系式:

 $\varepsilon = h\nu$ 粒子性:能量 ε 动量P

 $p = \frac{h}{\lambda}$ 波动性: 波长 λ 频率 ν

光在某些条件下表现出<mark>粒子性,</mark> 在另一些条件下表现出波动性。

例如:

少女?

老妇?

两种图象寓于 同一幅画中 例1:以一定频率的单色光照射在某种金属上,光电流曲线在图中用实线表示,然后保持光的频率不变增大照射光的强度,测出其光电流曲线在图中用虚线表示,下图那个正确。

例2: 钾的光电效应红限为 $\lambda_0 = 6.2 \times 10^{-7}$ m, 求(1)电子的逸出功; (2)在的紫外线照射下,截止电压为多少? (3)电子的初速度为多少? (紫外线 $\lambda_0 = 3.0 \times 10^{-7}$ m)

M:
$$A_0 = h v_0 = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6.2 \times 10^{-7}} = 3.21 \times 10^{-19} \text{ J}$$

$$h v = \frac{1}{2} m v^2 + A_0 \qquad \frac{1}{2} m v_m^2 = e U_a$$

$$U_a = \frac{h v - A_0}{e} = \frac{hc}{e \lambda} - \frac{A_0}{e} = 2.14 \text{ V}$$

$$v = \sqrt{\frac{2eU_a}{m}} = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 2.14}{9.1 \times 10^{-31}}} = 8.67 \times 10^5 \text{ m/s}$$

康普顿散射

1922-1923年, 康普顿研究X射线的散射

1. 实验装置

入射X光:

钼的 K_{α} 线 $\lambda = 7.126 \,\mathrm{nm}$

利用X射线谱仪测量不同散射角 θ 上的散射波长

2. 实验结果

康普顿散射谱线的几个特点:

- 1. 除原波长 λ_0 外,出现了移向长波 方向的新的散射波长 λ 。
- 2.新波长 礼随散射角的增大而增大。
- 3. 偏移量与散射物质无关, 仅与散射角有关:

対象的人。

$$\Delta \lambda = \lambda - \lambda_0 = \lambda_c (1 - \cos \theta) = 2\lambda_c \sin^2 \frac{\theta}{2}$$

实验测得 $\lambda_c = 2.41 \times 10^{-3} \text{nm}$

称为电子的Compton波长

4. 当散射角增大时,原波长的谱线强度降低,而新波长的谱线强度升高。

1924年,吴有训对不同物质的康普顿效应的进行了仔细研究 $\lambda_0 = 5.62 \, \mathrm{nm} \ \boldsymbol{\theta} = 120^0$

5. 相对原子量小的轻 元素散射物质康普顿 效应明显,且轻元素:

$$I_{\lambda_0} < I_{\lambda}$$

重元素 $I_{\lambda_0} > I_{\lambda}$

3.经典电磁理论解释的困难

光与物质 相互作用 ^{物质内带电粒子作同频受迫振动} 辐射同频光波(散射光),波长不变

* 康普顿采用了爱因斯坦的光量子假说

《X-ray受轻元素散射的量子理论》(1923年5月): "单个光子"和"单个电子"发生弹性碰撞 成功地解释了实验现象 进一步证明了光量子假说的正确性

4. 光量子理论解释康普顿散射

(1) 光量子理论定性分析

- ❖ 同一散射角,所有物质的散射波长改变都相同; 光子与原子中的共同成分—电子作用的结果
- * 光子与电子碰撞,光子损失能量,波长变长;
- ❖ 原子量小的原子对电子束缚能力较弱,康普顿散射较强;
- ❖ 光子若与束缚很紧的电子碰撞,光子能量损失小,散射 光中有与入射光波长相同的成分;
- * X 射线光子与 "静止"的"自由电子"弹性碰撞;波长0.1nm 的X 射线,其光子能量 $\varepsilon \sim 10^4 \,\mathrm{eV}$,石墨中的外层电子束缚能 $\sim \mathrm{eV}$,室温下热运动能量 $\sim 10^{-2} \,\mathrm{eV}$,相当于没受束缚的自由电子。
- ❖ 碰撞过程中能量守恒,动量守恒; 光子损失能量, X射线波长变长,频率降低。

(2) 光量子理论定量计算 ——光子与电子弹性碰撞

能量守恒:

$$h v_0 + m_0 c^2 = h v + m c^2$$
 ①

$$\frac{h\nu_0}{c}\vec{n}_0 = \frac{h\nu}{c}\vec{n} + m\vec{\upsilon}$$

お量守恒:

$$\frac{hv_0}{c} \vec{n}_0 = \frac{hv}{c} \vec{n} + m\vec{v}$$

な声向:
$$\frac{h}{\lambda_0} = \frac{h}{\lambda} \cos \theta + \frac{m_0 v}{\sqrt{1 - (\frac{v}{c})^2}} \cos \varphi$$

v 方向:
$$0 = \frac{h\sin \theta + \frac{m_0 v}{\sqrt{1 - (\frac{v}{c})^2}} \sin \varphi$$

y方向:
$$0 = \frac{h}{\lambda} \sin \theta + \frac{m_0 v}{\sqrt{1 - (\frac{v}{\lambda})^2}} \sin \varphi$$

解得:

$$\Delta \lambda = \lambda - \lambda_0 = \frac{c}{v} - \frac{c}{v_0} = \frac{h}{m_0 c} (1 - \cos \theta) = \lambda_c (1 - \cos \theta)$$

$$\Delta \lambda = 2\lambda \sin^2 \frac{\theta}{2}$$

电子的康普顿波长:
$$\lambda_c = \frac{h}{m_0 c} = 2.43 \times 10^{-3} \text{nm} = 0.0243$$
 Å

5. 讨论

(1) 散射波的波长 λ 及波长偏移 $\Delta\lambda$,

决定于散射角 θ ,与散射物质及入射波长 λ_0 无关。

原因在于散射机制:

光子与自由电子(外层电子)的弹性碰撞,各种散射物质自由电子的性质相同。

(2) 光子与电子碰撞,光子损失能量,波长变长;

(3) 散射线中原波长 ₄ 成分出现的原因:

光子还可与被原子核束缚很紧的内层电子碰撞, 内层电子束缚能103~104eV,不能视为自由电子, 应看做是光子和整个原子的碰撞。: $m_{原子} >> m_{光子}$

- : 弹性碰撞中,入射光子几乎不损失能量, 即散射光子波长不变。
 - (4) 为何康普顿效应中的自由电子不能像光电效应那样吸收光子? 若静止的自由电子吸收光子,

能量守恒:
$$h v_0 + m_0 c^2 = m c^2$$
动量守恒: $\frac{h v_0}{c} \hat{n}_0 = m v \hat{n}_0$
 $m = m_0 / \sqrt{1 - v^2 / c^2}$
⇒ $1 - \frac{v}{c} = \sqrt{1 - \frac{v^2}{c^2}} \rightarrow v = c$
违反相对论!

::自由电子不可能吸收光子, 只能散射光子。

(5) 康普顿散射实验的意义: 在实验上证实了光的粒子性; 微观粒子的相互作用中,能量动量仍守恒。

- (6) 康普顿效应和光电效应比较
- ② 康普顿效应所用 *X* 射线或y射线, 光子能量较大,要考虑相对论效应。

电子动能:
$$E_k = mc^2 - m_0c^2$$

光电效应中采用可见光或紫外光,光子能量较小,为非相对论效应。

电子动能
$$E_k = \frac{1}{2}mv^2$$

③ 康普顿效应中散射光中最大波长改变量为

$$\Delta \lambda_{\text{max}} = 2\lambda_c = 0.0048 \text{ nm}$$

可见光范围内, $\Delta \lambda / \lambda$ 太小,康普顿效应不明显,只对<mark>波长小的 X</mark> 射线或 γ 射线表现明显。 光电效应则可出现在可见光范围。

康普顿 (A. H.Compton) 美国人(1892-1962)

康普顿正在测定晶体对 X 射线的散射

例: 光电效应和康普顿效应都包含有电子与光子的相互作用过程。对此,在以下几种理解中,正确的是

- (A) 两种效应中电子与光子两者组成的系统都服从动量守恒定律。
- (B) 两种效应都相当于电子和光子的弹性碰撞过程。
- (C) 两种效应都属于电子吸收光子的过程。
- (D) 光电效应是吸收光子的过程,而康普顿效应则相 当于光子和电子的弹性碰撞。

答案 (D)

例: 康普顿效应的主要特点是:

- (A) 散射光的波长均比入射光的波长短,且随散射角的增大而减小,但与散射体的性质无关。
- (B) 散射光的波长均与入射光的波长相同,与散射角, 散射体性质无关。
- (C) 散射光中既有与入射光波长相等的,也有比入射光波长长的和比入射光波长短的,这与散射体性质有关。
- (D) 散射光中有些波长比入射光的波长长,且随散射 角增大而增大,有些散射光波长与入射光波长相同, 这些都与散射体的性质无关。

答案 (D)