MULTIPLE LINEAR REGRESSION

```
fit<- lm(rating~bpm+nrgy+dnce+dB+val+dur+acous+spch,data = data clea
n)
summary(fit)
## Call:
## lm(formula = rating ~ bpm + nrgy + dnce + dB + val + dur + acous
+
      spch, data = data clean)
##
##
## Residuals:
##
      Min
              1Q Median
                            30
                                  Max
## -3.0684 -0.1588 0.1418 0.2854 1.4438
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.0729840 0.4549944 11.150 < 2e-16 ***
             0.0006058 0.0012819 0.473 0.636706
## bpm
## nrgy
            0.0035088 0.0028024 1.252 0.211032
## dnce
## dB
            -0.0003163 0.0017381 -0.182 0.855654
## val
## dur
             -0.0003267 0.0018587 -0.176 0.860553
## acous
## spch
            -0.0009379 0.0041604 -0.225 0.821725
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7446 on 593 degrees of freedom
## Multiple R-squared: 0.059, Adjusted R-squared: 0.0463
## F-statistic: 4.647 on 8 and 593 DF, p-value: 1.587e-05
coefficients(fit)
##
    (Intercept)
                       bpm
                                               dnce
                                   nrgy
dB
   5.0729840484 0.0006057746 -0.0099611954 0.0035088480 0.060183
8831
##
           val
                       dur
                                  acous
                                               spch
## -0.0003163147 -0.0021126753 -0.0003266664 -0.0009378581
library(GGally)
confint(fit,level=0.95)
```

```
##
                      2.5 % 97.5 %
## (Intercept) 4.179387646
                              5.9665804510
## bpm
               -0.001911876
                             0.0031234256
               -0.015524755 -0.0043976362
## nrgy
               -0.001994987
                             0.0090126835
## dnce
## dB
                0.033424245
                             0.0869435216
## val
               -0.003729900
                              0.0030972710
               -0.003936471 -0.0002888796
## dur
## acous
               -0.003977183
                             0.0033238503
               -0.009108726 0.0072330102
## spch
# Predicted Values
fitted(fit)
##
           1
                     2
                                3
                                                    5
                                                               6
7
          8
## 3.7458413 3.5562510 3.9336673 3.5840761 3.7410124 3.7272929 3.927
8802 3.7335346
##
           9
                    10
                               11
                                         12
                                                   13
                                                              14
15
          16
## 3.9599573 3.9447971 3.7455732 3.7350415 3.8236817 3.7568027 3.459
2303 3.7291370
          17
                    18
                               19
                                         20
                                                   21
                                                              22
##
23
          24
## 4.0930899 3.4764473 3.5405644 4.1597275 3.7643827 3.8629393 3.946
1250 3.7900417
##
          25
                    26
                               27
                                         28
                                                   29
                                                              30
          32
31
## 3.6237872 3.6681350 3.7081134 3.7420871 3.7957417 3.9242591 4.091
4590 3.8281834
##
          33
                    34
                               35
                                         36
                                                   37
                                                              38
          40
39
## 3.9978524 3.8013570 3.6389334 4.0607846 3.9748719 3.7158894 3.528
8588 3.6793646
##
                    42
                               43
                                         44
                                                   45
                                                              46
          41
47
          48
## 3.8010693 3.9713729 3.7581985 3.8667744 3.8534561 3.8907832 3.674
2832 3.8412884
          49
                    50
                               51
                                         52
                                                   53
                                                              54
##
55
          56
## 3.3694824 3.7688554 3.8079718 3.8547484 3.8982124 3.6989465 3.741
0124 3.8295675
##
                               59
                                                              62
          57
                    58
                                         60
                                                   61
          64
63
## 3.7330589 3.9560987 3.7142941 3.9207044 3.8357552 3.7008105 3.647
6228 3.4987133
                    66
                               67
                                                   69
                                                              70
##
          65
                                         68
          72
71
## 3.7350415 3.8842333 3.8567833 3.8298573 3.8255487 3.6204266 3.698
3124 3.7015630
```

## 73	74	75	76	77	78	
79 80 ## 3.8201277 3.	.8065652	4.0537785	3.8244589	3.5326135	3.6875769	3.802
4394 3.9557991 ## 81	82	83	84	85	86	
87 88	02	6.5	04	7.0	80	
## 3.9467763 3.5535 3.8142766	.6615055	3.6674119	3.7441728	3.8340883	3.9209860	3.671
## 89 95 96	90	91	92	93	94	
## 3.8632847 3.	.8846055	3.7778766	3.5967382	3.8734081	3.6742832	3.980
1438 3.3694824 ## 97	98	99	100	101	102	
103 104	96	99	100	101	102	
## 3.8166924 3.4547 3.8493477	.7948420	3.8582821	3.8362624	3.5603378	3.8152403	3.733
## 105	106	107	108	109	110	
111 112 ## 3.7934124 3.	95318//8	3 706/1833	3 8/1/3/19	1 0399708	3 95766/15	3 987
6294 4.0939373	. 2221040	3.700-033	3.0414343	4.0333700	3.2370043	3.507
## 113	114	115	116	117	118	
119 120 ## 3.9054028 3.	867/362	3 6658156	3 7780806	A 092721A	3 895/11/8	3 767
9437 3.8759663	.0074302	3.0036130	3.7760600	4.0327214	3.0334140	3.707
## 121	122	123	124	125	126	
127 128 ## 3.7193125 3.	0204017	2 (121040	4 0077104	2 (005415	4 0400512	2 (50
## 3.7193123 3. 6167 3.8796093	.030401/	3.0121949	4.09//104	3.0003413	4.0496515	3.039
## 129	130	131	132	133	134	
135 136	7207502	2 6406004	2 7544042	2 7572400	2 0246600	2 724
## 3.8474728 3. 5158 3.9075884	./39/592	3.6496004	3./511013	3./5/3180	3.8246690	3./31
## 137	138	139	140	141	142	
143 144						
## 3.8966934 3.6493 3.7077722	.5332865	3.6872717	3.7286527	3.6492283	3.7992903	3.891
## 145	146	147	148	149	150	
151 152						
## 3.8155375 3.	.8504370	3.8756763	3.5157365	4.0579933	3.8470462	3.957
2698 3.7927219 ## 153	154	155	156	157	158	
159 160	154	133	150	137	150	
## 3.8674362 3. 8049 3.8720266	.9235667	3.7858492	3.7173707	3.8251940	3.7719678	4.073
## 161	162	163	164	165	166	
167 168						
## 3.8199337 3.3671 3.8480915	.6982050	3.5085653	3.5624128	3.8046059	3.6339691	3.873
## 169	170	171	172	173	174	

175 176						
175 176 ## 3.7294212 3	0062662	2 7520470	2 7670257	2 0520546	2 0526660	2 050
	.9003002	3./5204/8	3./6/025/	3.8530540	3.8320000	3.950
6514 3.8890795	170	170	100	101	100	
## 177	178	179	180	181	182	
183 184						
## 3.9190723 3	.7396361	3.8968986	3.9004508	3.9021217	3.7415003	3.805
8848 3.7493327						
## 185	186	187	188	189	190	
191 192						
## 3.8338509 3	.7953029	4.0910731	3.5390443	3.3378632	3.7732598	3.812
2235 3.6864398						
## 193	194	195	196	197	198	
199 200						
## 3.7984279 3	.7148772	3,6139405	3.8985291	3.7301841	3.6930839	3.847
1700 3.8684394						
## 201	202	203	204	205	206	
207 208	202	203	204	203	200	
## 3.6843343 3	0106596	2 0525250	2 7016640	2 0/10000	2 0205207	2 902
	.9100300	3.9323330	3.7010040	3.0410033	3.020320/	3.003
4022 3.7904843	24.0	24.4	242	242	24.4	
## 209	210	211	212	213	214	
215 216						
## 3.8359441 3	.6831861	3.9990428	4.0975560	3.7656550	3.7335580	3.862
5993 3.7898550						
## 217	218	219	220	221	222	
223 224						
## 3.9601094 3	.7057857	3.9042727	4.0473212	3.7777111	3.8146785	3.833
7025 3.9416099						
## 225	226	227	228	229	230	
231 232						
## 3.6198521 3	.7203541	3.7886623	3.7896717	3.7319448	3.7019220	4.047
8362 3.9088222						
## 233	234	235	236	237	238	
239 240						
## 3.8970495 3	9192156	3 7803395	3 8728149	3 7212476	3 9129956	3 716
3834 3.8968986	. 3132130	3.7003333	3.0,20113	3.,212.,0	3.3123330	3.710
## 241	242	243	244	245	246	
247 248	242	243	244	243	240	
## 3.8973584 3	461E220	2 0422206	2 7/502/0	2 0620202	2 02/15000	2 725
2349 3.8773525	.4013230	3.9433200	3.7430240	3.9030202	3.0243000	3./33
	250	254	252	252	254	
## 249	250	251	252	253	254	
255 256						
## 3.8929193 4	.1055232	3.7288297	3.8424493	3.8394528	3.5193741	3.689
1726 4.1016995						
## 257	258	259	260	261	262	
263 264						
## 3.6258706 3	.9407850	3.9345245	3.8662573	4.0912938	3.9184495	3.878
6008 3.9886115						
## 265	266	267	268	269	270	
271 272						

## 3.8502434 3.7683629 1639 3.7877169	3.7924462	3.6528629	3.9525694	3.9705638	3.843
## 273 274 279 280	275	276	277	278	
## 3.8078198 3.8423205	3.6715310	3.9189310	4.3295413	3.6941716	4.075
7667 3.9088469 ## 281 282	283	284	285	286	
287 288 ## 3.7900550 3.9110009	3 9394507	3 9294868	3 8581909	3 8305576	3 813
1238 3.8405680					3.013
## 289 290 295 296	291	292	293	294	
## 3.6811901 3.7274339	3.9301773	3.9275442	3.8872622	3.6474633	3.909
9275 3.8814315 ## 297 298	299	300	301	302	
303 304 ## 3.8293126 3.9280237	3 7/1838/15	3 9212899	3 6712614	3 7768278	3 08/1
5654 3.9288647					3.704
## 305 306 311 312	307	308	309	310	
## 3.9615003 3.9315080	3.6278194	3.8569254	3.7401873	3.8260153	3.601
3051 4.0378093 ## 313 314	315	316	317	318	
319 320	2 0506127	2 7796070	2 6019865	2 6222004	2 601
## 3.8032951 3.8801861 6309 3.6354377	3.6300137	3.7760070	3.0310003	3.0222904	3.091
## 321 322 327 328	323	324	325	326	
## 3.8005055 3.8567342	3.6715310	3.6288739	3.8850693	3.7973767	4.050
4516 3.7678750 ## 329 330	331	332	333	334	
335 336	4 1426255	2 6704250	2 4475722	2.0642702	2 050
## 3.7522044 3.9136777 9009 3.7302063	4.1436255	3.6/94350	3.44/5/33	3.9643/92	3.858
## 337 338 343 344	339	340	341	342	
## 3.7651226 3.8081710	3.7992659	3.8895864	3.8822799	3.7399900	3.735
8684 3.8050913 ## 345 346	347	348	349	350	
351 352					
## 3.8060340 3.6739291 1484 3.7029429	3.8099737	4.0866493	3.8768868	3.6666133	3.918
## 353 354	355	356	357	358	
359 360 ## 3.6392233 3.8071149	3.7275938	3.8427557	3.8356079	3.7354687	3.964
7426 3.8514848 ## 361 362	363	364	365	366	
367 368					
## 3.7130535 4.0619651	4.0684367	3.8431639	3.7877169	3.8665100	3.714

4416 4.0237083 ## 369	370	371	372	373	374	
375 376						
## 3.7295195 3 6912 3.7201951	.7689871	4.0293851	4.1438247	4.0609575	3.6610218	3.990
## 377	378	379	380	381	382	
383 384	0042740	2 7000550	2.7664026	2 7060664	2 0740014	4 442
## 3.9047793 4 6983 3.8775504	.0043/10	3.7900550	3./664826	3.7860664	3.9/40014	4.112
## 385	386	387	388	389	390	
391 392	7000330	2 7427220	2 6672444	2 0220470	4 0043073	2 001
## 3.5993225 3 9512 3.8641798	. 7980330	3./13/339	3.66/2411	3.8328470	4.00438/3	3.901
## 393	394	395	396	397	398	
399 400	54034 0 7	2 0040026	2 2442552	2 7760070	4 0520002	4 4 6 0
## 3.9349736 3 2306 3.8499603	.6493487	3.8042936	3.8440669	3.7768278	4.0539993	4.169
## 401	402	403	404	405	406	
407 408						
## 3.7939471 3 1654 3.5505769	.7575509	3.8140644	3.6013051	3.7786070	3.7960283	3.965
## 409	410	411	412	413	414	
415 416						
## 3.8794206 3 8455 3.7200520	.9012051	3.8868614	4.1558967	3.7261709	3.7156750	3.736
## 417	418	419	420	421	422	
423 424						
## 3.7291097 3 3253 3.7097445	.9154629	4.029/59/	3.8560028	3.7052864	3.803/26/	3.449
## 425	426	427	428	429	430	
431 432						
## 4.0100855 3 5198 3.6802314		3.8134097	3.8741604	3.9062042	3.8764783	3.682
## 434	435	436	437	438	439	
440 441						
## 3.6883364 3 2589 3.9371863	.7630008	3.9687045	3.8211138	3.7806848	3.9010605	3.737
## 442	443	444	445	446	447	
448 449						
## 3.8276090 0 0586 3.8974854	.9823738	4.0441106	3.9599217	3.8830140	3.7637120	4.125
## 450	451	452	453	454	455	
456 457	026000	2 7704047	2 0020224	2 0450626	2 7405044	2 725
## 3.6093079 3 8467 3.8178523		3.//91817	3.9838334	3.9150626	3./105844	3./35
## 458	459	460	461	462	463	
464 465	0500330	2 7060500	2 0000074	2 0404264	2 0427424	2 740
## 3.9463559 3 5752 3.8224442	. 8599338	3./860598	3.99608/4	3.8181361	3.843/134	3./49
J. J. J. J. J. J. T.						

## 466		468	469	470	471	
472 47 ## 3.7398342	3.9541891	3.8930094	3.8964411	3.7119239	3.7751380	3.685
4819 3.79662 ## 474		476	477	478	479	
480 48 ## 4.1692306		4 1025907	3 7367166	3 8963265	3 6954433	3 844
8230 3.89427	793					3.011
## 482 488 48		484	485	486	487	
## 3.8820210 0693 3.85827		3.8388052	3.7798145	3.7618541	3.7433108	3.768
## 496 496 49		492	493	494	495	
## 4.1159924	3.6302101	3.8450604	3.9892586	4.1115490	3.9142533	3.743
0476 3.86412 ## 498		500	501	502	503	
504 50 ## 3.8817317		3.5125971	3.6283829	3.7234760	4.0068274	3.759
7828 3.55396 ## 506		508	509	510	511	
512 51	13					
## 3.8800269 1300 3.93542		3.5285808	3.9035738	4.1685736	3.9046660	3.884
## 514 520 52	↓ 515 21	516	517	518	519	
## 3.8709438 0194 3.9254	3 4.0410369	3.7770101	3.8677410	3.8985631	4.0235624	3.799
## 522	2 523	524	525	526	527	
528 52 ## 4.0201876		3.8691783	4.0972952	3.8351303	4.0776752	3.726
7278 4.02845 ## 536		532	533	534	535	
536 53	37					2 960
## 3.9887789 6042 3.90748	390					3.809
## 538 544 54	3 539 I5	540	541	542	543	
## 3.8705495 5711 3.76952		4.2270409	3.8499471	3.7201203	3.9004886	3.728
## 546	5 547	548	549	550	551	
552 55 ## 3.9978856		4.0240549	3.8913453	3.9202595	3.8582687	3.825
3366 3.71055 ## 554		556	557	558	559	
560 56 ## 3.8686009	51) 3 8443541	4 0556555	3 7428088	3 8582783	3 875993/	3 540
1175 3.96529	925					J. J40
## 562	2 563	564	565	566	567	

568 569					
## 3.9724857 3.	9016947	4.0344900	3.7999315	3.9435816 4	1.0171492 3.963
9673 3.6172819					
## 570	571	572	573	574	575
576 577					
## 3.7936578 3.	.8306070	3.8526718	4.2052817	3.9726327	1.1194947 4.080
1595 3.8791969			504	500	500
## 578	579	580	581	582	583
584 585 ## 3.9908318 4.	122/1928	3 0230844	/ 2308162	3 9326076	2 7816372 / 127
1743 3.7674923	1224720	J. J2JJ044	4.2300102	3.3320070	0.7010372 4.127
## 586	587	588	589	590	591
592 593					
## 4.0038596 3.	9037124	3.9391498	4.0878567	3.7963207	3.8682454 3.899
6517 3.9516314					
## 594	595	596	597	598	599
600 601	0215740	2 0400074	2 0040447	2 0204720	0012661 2 772
## 3.7982612 3. 0379 3.6793382	.9315/49	3.91998/4	3.8918417	3.9304/39	3.8912661 3.773
## 602	603				
## 3.7316017 3.					
residuals(fit)					
## 1	L	2	3	2	1 5
6					
## 1.254158731	L 1.4437	749024 1.	066332694	0.415923913	0.258987616
0.272707106	_		_		
## 7	7	8	9	16) 11
12 ## 0.072119785	0 266/	165362 0.	040042660	0.055202947	7 0.254426819
0.264958539	0.2002	+03302 0.	040042000	0.033202347	0.234420019
## 13	3	14	15	16	5 17
18					
## 0.176318345	0.2431	197265 0.	540769662	0.270863006	-0.093089945
0.523552670					
## 19	9	20	21	22	2 23
24 ## 0.459435624	1 _0 150	727/100 0	225617295	0.137060678	3 0.053874975
0.209958320	+ -0.1357	121430 0.	233017283	0.137000076	0.000074970
## 25	5	26	27	28	3 29
30					
	0.3318	365007 0.	291886605	0.257912948	0.204258291
0.075740896					
## 31	L	32	33	34	1 35
36	0 1710	216622 0	002147606	0 10064303	7 0 261066570
## -0.091459019 -0.060784556	0.1/18	010023 0.	002147606	0.198643027	0.361066570
## 37	7	38	39	46	9 41
42			55		

## 0.025128118 -0.971372878	-0.715889393	-0.528858846	-0.679364639	-0.801069269
## 43	44	45	46	47
## -0.758198483 -0.841288380	-0.866774363	-0.853456110	-0.890783175	-0.674283204
## 49 54	50	51	52	53
## -0.369482396 0.301053475	-1.768855359	-2.807971830	1.145251587	1.101787558
## 55 60	56	57	58	59
## 0.258987616 0.079295636	0.170432550	0.266941093	0.043901332	0.285705904
## 61 66	62	63	64	65
## 0.164244814 0.115766731	0.299189506	0.352377232	0.501286735	0.264958539
## 67 72	68	69	70	71
## 0.143216652 0.298437025	0.170142676	0.174451311	0.379573416	0.301687610
## 73 78	74	75	76	77
## 0.179872255 0.312423066	0.193434773	-0.053778523	0.175541065	0.467386498
## 79 84	80	81	82	83
## 0.197560586 0.255827186	0.044200926	0.053223683	0.338494545	0.332588052
## 85 90	86	87	88	89
## 0.165911745 -0.884605524 ## 91	0.079013979 92		94	
96 ## -0.777876556		93		95
-0.369482396 ## 97	-0.390/38219	99	100	101
102 ## -0.816692429				
-1.815240324 ## 103	104	105	106	107
108 ## -1.733454694			0.046815201	
0.158565131 ## 109	110	111	112	113
114 ## -0.039970836			-0.093937258	
11 0.03070000	0.072333433	0.012370370	0.000001200	0.00707/1/4

0 400=40004				
0.132563821 ## 115	116	117	118	119
120	110	117	110	113
## 0.334184449 0.124033681	0.221919426	-0.092721356	0.104585179	0.232056254
## 121	122	123	124	125
126 ## 0.280687548	0.161598342	0.387805076	-0.097710379	0.311458510
-0.049851254				
## 127	128	129	130	131
132 ## 0.340383322	0.120390745	0.152527225	0.260240759	0.350399624
0.248898731				
## 133 138	134	135	136	137
## 0.242681990	0.175330996	-0.731515792	-0.907588426	-0.896693357
-1.533286547				
## 139 144	140	141	142	143
## -2.687271695	1.271347334	1.350771727	1.200709732	1.108350706
1.292227753	116	4.47	1.10	140
## 145 150	146	147	148	149
## 0.184462520	0.149563010	0.124323670	0.484263516	-0.057993289
0.152953770 ## 151	152	153	154	155
156	132	133	134	133
## 0.042730203	0.207278092	0.132563821	0.076433316	0.214150791
0.282629276 ## 157	158	159	160	161
162				
## 0.174806019 0.301795030	0.228032191	-0.073804936	0.127973377	0.180066333
## 163	164	165	166	167
168	0 437507400	0.405304070	0.266020005	0.405533000
## 0.491434689 0.151908536	0.43/58/198	0.195394070	0.366030925	0.126632880
## 169	170	171	172	173
174 ## 0.270578763	0 093633782	0.247952194	0 232974279	0 146945379
0.147334001	0.055055702	0.24/332134	0.23237 4273	0.140545575
## 175 180	176	177	178	179
	0.110920481	0.080927699	0.260363878	0.103101442
0.099549240				
## 181 186	182	183	184	185
	0.258499670	0.194115239	0.250667279	0.166149075
0.204697073				

## 107	100	100	100	101
## 187 192	188	189	190	191
## -0.091073131 -0.686439789	-0.539044293	-0.337863191	-0.773259808	-0.812223547
## 193 198	194	195	196	197
## -0.798427891 -0.693083904	-0.714877179	-0.613940487	-0.898529110	-0.730184095
## 199 204	200	201	202	203
## -0.847170020 -0.701664028	-0.868439351	-0.684334333	-0.910658590	-0.952535009
## 205 210	206	207	208	209
## -0.841889857 -1.683186064	-0.828528733	-0.803402246	-1.790484257	-1.835944105
## 211 216	212	213	214	215
## 1.000957241 0.210144999	0.902444014	1.234345046	0.266441994	0.137400684
## 217 222	218	219	220	221
## 0.039890581 0.185321481	0.294214253	0.095727324	-0.047321225	0.222288884
## 223 228	224	225	226	227
## 0.166297495 0.210328333	0.058390095	0.380147873	0.279645893	0.211337736
## 229 234	230	231	232	233
## 0.268055201 0.080784434		-0.047836180	0.091177781	0.102950515
## 235 240	236	237	238	239
0.103101442	0.127185145			
## 241 246	242	243	244	245
## 0.102641581 0.175411220			0.254175178	
## 247 252	248	249	250	251
## 0.264765099 -0.842449347			-0.105523201	
## 253 258	254	255	256	257
## -0.839452815 -0.940784990				
## 259	260	261	262	263

264				
## -0.934524537	-0.866257267	-1.091293773	-0.918449549	-1.878600819
-1.988611544 ## 265	266	267	268	269
270 ## -1.850243376	-1.768362927	-1.792446218	-2.652862886	1.047430600
1.029436209 ## 271	272	273	274	275
276 ## 1.156836146	1.212283135	1.192180172	1.157679545	1.328468977
1.081069014 ## 277	278	279	280	281
282 ## 0.670458672	0.305828444	-0.075766661	0.091153115	0.209945040
0.088999135 ## 283	284	285	286	287
288 ## 0.060549288	0.070513250	0.141809085	0.169442442	0.186876180
0.159431982 ## 289	290	291	292	293
294 ## 0.318809895	0.272566091	0.069822676	0.072455793	0.112737764
0.352536735 ## 295	296	297	298	299
300 ## 0.090072465 0.078710129	0.118568523	0.170687447	0.071976253	0.251615505
## 301 306	302	303	304	305
## 0.328738586 0.068492023	0.223172187	0.015434643	0.071135265	0.038499691
## 307 312	308	309	310	311
## 0.372180564 -0.037809317	0.143074596	0.259812700	0.173984696	0.398694944
## 313 318	314	315	316	317
## 0.196704860 0.377701649	0.119813868	0.149386293	0.221393014	0.308193486
## 319 324	320	321	322	323
## 0.308369055 0.371126105	0.364562298	0.199494534	0.143265763	0.328468977
## 325 330	326	327	328	329
## 0.114930657 0.086322328	0.202623324	-0.050451642	0.232125042	0.247795608
## 331 336	332	333	334	335

## -0.143625483 0.269793703	0.320564986	0.552426674	0.035620811	0.141099145
## 337 342	338	339	340	341
## 0.234877354 -0.739989991	0.191828996	-0.799265883	-0.889586434	-0.882279914
## 343 348	344	345	346	347
	-0.805091348	-0.806033956	-0.673929080	-0.809973735
## 349 354	350	351	352	353
	-0.666613309	-0.918148416	-0.702942901	-0.639223281
## 355 360	356	357	358	359
## -0.727593777 -1.851484841	-0.842755740	-0.835607908	-0.735468656	-1.964742577
## 361 366	362	363	364	365
## -1.713053505 1.133490046	-3.061965083	-3.068436652	1.156836146	1.212283135
## 367 372	368	369	370	371
## 1.285558417 0.856175299	0.976291686	1.270480472	1.231012908	0.970614950
## 373 378	374	375	376	377
## 0.939042546 -0.004370994	0.338978195	0.009308781	0.279804874	0.095220655
## 379 384	380	381	382	383
## 0.209945040 0.122449597	0.233517395	0.213933557	0.025998588	-0.112698342
## 385 390	386	387	388	389
## 0.400677505 -0.004387276	0.201966994	0.286266113	0.332758905	0.167152996
## 391 396	392	393	394	395
## 0.098048795 0.155933129	0.135820225	0.065026443	0.350651340	0.195706433
## 397 402	398	399	400	401
	-0.053999277	-0.169230593	0.150039706	0.206052880
## 403 408	404	405	406	407
	0.398694944	0.221393014	0.203971725	0.034834552

0.449423149 ## 409	410	411	412	413
414	410	711	712	713
## 0.120579436 0.284325045	0.098794878	0.113138636	-0.155896743	0.273829120
## 415	416	417	418	419
420 ## 0.263154470	0.279947980	0.270890264	0.084537090	-1.029759743
-0.856002834 ## 421	422	423	424	425
426	422	423	424	423
## -0.705286364 -0.753563336	-0.803726720	-0.449325322	-0.709744475	-1.010085539
## 427 432	428	429	430	431
## -0.813409679	-0.874160448	-0.906204244	-0.876478324	-0.682519753
-0.680231396 ## 434	435	436	437	438
439 ## -0.688336375	-0.763000762	-0.968704460	-1.821113801	-1.780684788
-1.901060479 ## 440	441	442	443	444
445				
## -1.737258932 1.040078336	-1.937186348	-2.827609013	0.017626234	0.955889355
## 446 451	447	448	449	450
## 1.116986016	1.236287968	0.874941379	1.102514576	1.390692113
1.063910129 ## 452	453	454	455	456
457 ## 1.220818310	1.016166574	0.084937365	0.289415561	0.264153278
0.182147668	450	460	4.54	462
## 458 463	459	460	461	462
## 0.053644082 0.156286595	0.140066208	0.213940188	0.003912639	0.181863869
## 464 469	465	466	467	468
## 0.250424840 0.103558856	0.177555751	0.260165886	0.045810898	0.106990575
## 470	471	472	473	474
475 ## 0.288076096	0.224862039	0.314518088	0.203372488	-0.169230593
0.108654697 ## 476	477	478	479	480
481				
## -0.102590731 0.105720742	0.263283428	0.103673476	0.304556689	0.155177009

## 482 487	483	484	485	486
## 0.117979005	-0.188106412	0.161194828	0.220185485	0.238145883
0.256689166 ## 488	489	490	491	492
493 ## 0.231930663 -0.989258627	0.141721698	-0.115992368	0.369789911	0.154939586
## 494 499	495	496	497	498
## -1.111549041	-0.914253273	-0.743047600	-0.864122607	-0.881731716
-0.966129989 ## 500	501	502	503	504
	-0.628382869	-0.723476037	-1.006827388	-0.759782768
-0.553908717 ## 506 511	507	508	509	510
## -0.880026852 1.095333991	-0.824549583	-0.528580805	1.096426224	0.831426397
## 512 517	513	514	515	516
## 1.115869966 1.132259012	1.064579412	1.129056203	0.958963086	1.222989900
## 518 523	519	520	521	522
## 1.101436895 1.004639766	0.976437614	1.200980635	1.074542574	0.979812359
## 524 529	525	526	527	528
## 1.130821725 -0.028455167	0.902704796	1.164869676	-0.077675199	0.273272198
## 530 535	531	532	533	534
## 0.011221069 0.288523881	0.339350010	0.054500120	-0.061032442	0.014472266
## 536 541	537	538	539	540
	0.092510974	0.129450516	0.142619120	-0.227040895
## 542 547	543	544	545	546
## 0.279879681 -0.073091300	0.099511367	0.271428918	0.230473206	0.002114440
## 548 553	549	550	551	552
## -0.024054921 0.289441349	0.108654697	0.079740482	0.141731339	0.174663378
## 554	555	556	557	558

```
559
## 0.131399114 0.155645888 -0.055655522 0.257191213 0.141721698
0.124006628
##
          560
                      561
                           562
                                             563
                                                         564
565
## 0.459882532 0.034707467 0.027514332 0.098305312 -0.034490039
0.200068519
##
          566
                      567
                                  568
                                             569
                                                         570
571
## -0.943581609 -1.017149236 -0.963967251 -0.617281922 -0.793657756
-0.830606990
##
                573
                                574
          572
                                             575
                                                         576
577
## -0.852671763 0.794718281 1.027367312 0.880505272 0.919840547
1.120803114
                      579
                                  580
##
          578
                                             581
                                                         582
583
## 1.009168230 0.877507167 1.076015615 0.769183770 1.067392432
1.218362814
                      585
##
          584
                                586
                                             587
                                                         588
589
## 0.872825660 1.232507726 0.996140441 1.096287600 1.060850233
0.912143259
                      591
##
          590
                                592
                                             593
                                                         594
595
## 1.203679290 1.131754642 1.100348310 1.048368584 1.201738819
1.068425056
          596
                 597
                                598
                                             599
##
                                                         600
601
## 0.080012581 0.108158270 0.069526080 0.108733873 0.226962099
0.320661802
          602
                      603
## 0.268398270 0.035340170
#Anova Table
anova(fit)
## Analysis of Variance Table
## Response: rating
##
            Df Sum Sq Mean Sq F value Pr(>F)
            1 0.28 0.2844 0.5130
                                     0.47413
## bpm
                 1.82
                      1.8160 3.2756
## nrgy
            1
                                     0.07082 .
            1 4.17 4.1702 7.5218
                                     0.00628 **
## dnce
            1 11.34 11.3374 20.4495 7.396e-06 ***
## dB
## val
            1 0.01
                      0.0142 0.0256 0.87293
                                     0.02163 *
            1 2.94 2.9404 5.3036
## dur
            1 0.02 0.0210 0.0379
## acous
                                     0.84562
## spch 1 0.03
                      0.0282 0.0508
                                     0.82173
## Residuals 593 328.77 0.5544
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
vcov(fit)
##
                (Intercept)
                                                                 dn
                                      bpm
                                                   nrgy
ce
## (Intercept) 2.070199e-01 -2.796029e-04 -7.902573e-04 -6.939011e-
04
## bpm
              -2.796029e-04 1.643313e-06 1.875027e-07 7.121814e-
07
              -7.902573e-04 1.875027e-07 8.024808e-06 1.721499e-
## nrgy
06
## dnce
              -6.939011e-04 7.121814e-07 1.721499e-06 7.853443e-
96
## dB
               3.404769e-03 -3.422102e-06 -1.979914e-05 -8.137665e-
06
## val
               4.754108e-05 -7.671228e-08 -1.434999e-06 -2.276277e-
96
## dur
              -2.287651e-04 3.983176e-08 1.130329e-07 1.475965e-
07
              -3.905811e-04 2.999826e-07 2.927088e-06 1.230435e-
## acous
06
               1.095720e-04 -3.185587e-07 -1.350512e-06 6.577942e-
## spch
07
                         dB
##
                                      val
                                                    dur
                                                                aco
us
## (Intercept) 3.404769e-03 4.754108e-05 -2.287651e-04 -3.905811e-
04
              -3.422102e-06 -7.671228e-08 3.983176e-08 2.999826e-
## bpm
07
              -1.979914e-05 -1.434999e-06 1.130329e-07 2.927088e-
## nrgy
06
## dnce
              -8.137665e-06 -2.276277e-06 1.475965e-07 1.230435e-
06
## dB
               1.856477e-04 3.019156e-07 -8.925313e-08 -5.609375e-
96
## val
               3.019156e-07 3.021001e-06 2.852947e-07 -2.179137e-
07
## dur
              -8.925313e-08 2.852947e-07 8.623461e-07 2.393589e-
80
              -5.609375e-06 -2.179137e-07 2.393589e-08 3.454919e-
## acous
06
               4.936074e-06 -9.525799e-07 -3.433234e-07 -6.311856e-
## spch
07
##
                       spch
               1.095720e-04
## (Intercept)
## bpm
               -3.185587e-07
               -1.350512e-06
## nrgy
## dnce
               6.577942e-07
```


Fitted values lm(rating ~ bpm + nrgy + dnce + dB + val + dur + acous + spch)

 $\label{eq:continuous} Theoretical Quantiles $$ Im(rating \sim bpm + nrgy + dnce + dB + val + dur + acous + spch)$$

Fitted values lm(rating ~ bpm + nrgy + dnce + dB + val + dur + acous + spch)

Im(rating ~ bpm + nrgy + dnce + dB + val + dur + acous + spch)

```
# Assessing Outliers
outlierTest(fit)

## rstudent unadjusted p-value Bonferroni p
## 363 -4.265552 2.3211e-05 0.013973
## 362 -4.205441 3.0092e-05 0.018115
```


[1] 362 363

leveragePlots(fit) # leverage plots

Influential Observations

added variable plots avPlots(fit)

Normality of Residuals
qq plot for studentized resid
qqPlot(fit, main="QQ Plot")

QQ Plot

Distribution of Studentized Residuals


```
#Non-constant Error Variance
# Evaluate homoscedasticity
# non-constant error variance test
ncvTest(fit)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 1.648805, Df = 1, p = 0.19912

# plot studentized residuals vs. fitted values
spreadLevelPlot(fit)
```

Spread-Level Plot for fit


```
##
## Suggested power transformation: 5.341688
#Multi-collinearity
# Evaluate Collinearity
vif(fit) # variance inflation factors
##
       bpm
               nrgy
                        dnce
                                  dB
                                          val
                                                   dur
                                                         acous
spch
## 1.094630 2.317866 1.521431 1.577344 1.660351 1.088451 1.617399 1.
052035
sqrt(vif(fit)) > 2 # problem? ##tells disp and wt are correlated a
nd one can be dropped
    bpm nrgy dnce
                       dΒ
                           val
                                 dur acous
## FALSE FALSE FALSE FALSE FALSE FALSE
#Nonlinearity
# component + residual plot
crPlots(fit)
```



```
library(gvlma)
gvmodel <- gvlma(fit)</pre>
summary(gvmodel)
##
## Call:
## lm(formula = rating ~ bpm + nrgy + dnce + dB + val + dur + acous
##
       spch, data = data clean)
##
## Residuals:
       Min
                    Median
##
                1Q
                                3Q
                                       Max
## -3.0684 -0.1588
                    0.1418
                            0.2854
                                   1.4438
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                5.0729840
                           0.4549944
                                      11.150 < 2e-16 ***
## bpm
                0.0006058 0.0012819
                                       0.473 0.636706
               -0.0099612 0.0028328
                                       -3.516 0.000471 ***
## nrgy
## dnce
                0.0035088 0.0028024
                                       1.252 0.211032
## dB
                0.0601839 0.0136253
                                       4.417 1.19e-05 ***
## val
               -0.0003163 0.0017381
                                     -0.182 0.855654
## dur
               -0.0021127
                           0.0009286
                                      -2.275 0.023259 *
## acous
               -0.0003267 0.0018587 -0.176 0.860553
               -0.0009379 0.0041604
                                      -0.225 0.821725
## spch
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 0.7446 on 593 degrees of freedom
## Multiple R-squared: 0.059, Adjusted R-squared: 0.0463
## F-statistic: 4.647 on 8 and 593 DF, p-value: 1.587e-05
##
##
## ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
## USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
## Level of Significance = 0.05
##
## Call:
##
   gvlma(x = fit)
##
##
                          Value p-value
                                                          Decision
                      216.11503 0.0000 Assumptions NOT satisfied!
## Global Stat
                      105.55254 0.0000 Assumptions NOT satisfied!
## Skewness
## Kurtosis
                      109.48132 0.0000 Assumptions NOT satisfied!
## Link Function
                        0.04449 0.8329
                                           Assumptions acceptable.
## Heteroscedasticity 1.03668 0.3086
                                           Assumptions acceptable.
fit
##
## Call:
## lm(formula = rating ~ bpm + nrgy + dnce + dB + val + dur + acous
       spch, data = data clean)
##
##
## Coefficients:
## (Intercept)
                        bpm
                                                 dnce
                                                                dB
                                    nrgy
val
##
     5.0729840
                  0.0006058
                              -0.0099612
                                            0.0035088
                                                         0.0601839
-0.0003163
##
           dur
                      acous
                                    spch
## -0.0021127
               -0.0003267
                              -0.0009379
summary(fit)
##
## Call:
## lm(formula = rating ~ bpm + nrgy + dnce + dB + val + dur + acous
+
##
       spch, data = data_clean)
##
## Residuals:
##
       Min
                10 Median
                                3Q
                                       Max
## -3.0684 -0.1588 0.1418 0.2854 1.4438
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.0729840 0.4549944 11.150 < 2e-16 ***
```

```
0.0006058 0.0012819 0.473 0.636706
## bpm
            ## nrgy
             0.0035088 0.0028024 1.252 0.211032
## dnce
## dB
             ## val
            -0.0003163 0.0017381 -0.182 0.855654
## dur
            ## acous
## spch
           -0.0009379 0.0041604 -0.225 0.821725
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7446 on 593 degrees of freedom
## Multiple R-squared: 0.059, Adjusted R-squared: 0.0463
## F-statistic: 4.647 on 8 and 593 DF, p-value: 1.587e-05
fit1 <- fit
fit2 <- lm(rating~bpm+nrgy+dnce+dB+val+dur+spch,data = data clean)</pre>
summary(fit2)
##
## Call:
## lm(formula = rating ~ bpm + nrgy + dnce + dB + val + dur + spch,
##
     data = data clean)
##
## Residuals:
##
     Min
             10 Median
                          30
                                Max
## -3.0579 -0.1595 0.1426 0.2875 1.4353
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.0360542 0.4032353 12.489 < 2e-16 ***
## bpm
             0.0006341 0.0012707 0.499
                                       0.6179
           ## nrgy
## dnce
             0.0036252 0.0027209 1.332
                                       0.1833
            ## dB
## val
           -0.0003369 0.0017327 -0.194 0.8459
## dur
            -0.0021104 0.0009278 -2.275
                                       0.0233 *
## spch
            -0.0009975 0.0041431 -0.241
                                       0.8098
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.744 on 594 degrees of freedom
## Multiple R-squared: 0.05895, Adjusted R-squared: 0.04786
## F-statistic: 5.315 on 7 and 594 DF, p-value: 6.532e-06
fit3 <- lm(rating~bpm+nrgy+dnce+dB+dur+spch,data = data clean)</pre>
summary(fit3)
##
## Call:
```

```
## lm(formula = rating ~ bpm + nrgy + dnce + dB + dur + spch, data =
data clean)
##
## Residuals:
      Min
              1Q Median
                            3Q
                                  Max
## -3.0567 -0.1639 0.1426 0.2873 1.4374
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.0386204 0.4026932 12.512 < 2e-16 ***
## bpm
              0.0006277 0.0012692 0.495
                                          0.6211
## nrgy
             ## dnce
              0.0033789 0.0024060 1.404
                                          0.1607
## dB
              -0.0020783 0.0009122 -2.278
## dur
                                          0.0231 *
## spch
            -0.0011087 0.0041001 -0.270
                                          0.7869
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7434 on 595 degrees of freedom
## Multiple R-squared: 0.05889,
                               Adjusted R-squared: 0.0494
## F-statistic: 6.205 on 6 and 595 DF, p-value: 2.484e-06
fit4 <- lm(rating~bpm+nrgy+dnce+dB+dur,data = data_clean)</pre>
summary(fit4)
##
## Call:
## lm(formula = rating ~ bpm + nrgy + dnce + dB + dur, data = data c
lean)
##
## Residuals:
##
      Min
              10 Median
                            30
                                  Max
## -3.0576 -0.1620 0.1412
                         0.2872 1.4227
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
              5.0416295 0.4022263 12.534 < 2e-16 ***
## (Intercept)
## bpm
              0.0006091 0.0012664 0.481
                                          0.6307
             ## nrgy
## dnce
              0.0033892 0.0024038
                                  1.410
                                          0.1591
## dB
              0.0599037 0.0132211 4.531 7.10e-06 ***
## dur
             -0.0020943 0.0009096 -2.303 0.0216 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7428 on 596 degrees of freedom
## Multiple R-squared: 0.05877,
                               Adjusted R-squared: 0.05088
## F-statistic: 7.443 on 5 and 596 DF, p-value: 8.704e-07
```

```
fit5 <- lm(rating~nrgy+dnce+dB+dur,data = data clean)</pre>
summary(fit5)
##
## Call:
## lm(formula = rating ~ nrgy + dnce + dB + dur, data = data clean)
##
## Residuals:
##
      Min
              10 Median
                            3Q
                                  Max
## -3.0543 -0.1643 0.1431 0.2912 1.4047
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1340372 0.3531439 14.538 < 2e-16 ***
            ## nrgy
             0.0031754 0.0023608
                                         0.1791
## dnce
                                  1.345
## dB
             0.0609888 0.0130188 4.685 3.48e-06 ***
             -0.0021091 0.0009085 -2.322 0.0206 *
## dur
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7423 on 597 degrees of freedom
## Multiple R-squared: 0.05841, Adjusted R-squared: 0.0521
## F-statistic: 9.258 on 4 and 597 DF, p-value: 2.91e-07
fit6 <- lm(rating~nrgy+dB+dur,data = data clean)</pre>
summary(fit6)
##
## Call:
## lm(formula = rating ~ nrgy + dB + dur, data = data clean)
## Residuals:
              1Q Median
      Min
                            3Q
                                  Max
## -3.0543 -0.1450 0.1479 0.2858 1.4418
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.3903496 0.2975144 18.118 < 2e-16 ***
           ## nrgy
              ## dB
## dur
             -0.0023001 0.0008979 -2.562 0.0107 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7428 on 598 degrees of freedom
## Multiple R-squared: 0.05555, Adjusted R-squared: 0.05081
## F-statistic: 11.72 on 3 and 598 DF, p-value: 1.791e-07
```

```
# compare models
anova(fit1, fit6)
## Analysis of Variance Table
##
## Model 1: rating ~ bpm + nrgy + dnce + dB + val + dur + acous + sp
ch
## Model 2: rating ~ nrgy + dB + dur
     Res.Df
               RSS Df Sum of Sq F Pr(>F)
##
## 1
        593 328.77
## 2
        598 329.97 -5
                        -1.2029 0.434 0.825
step <- stepAIC(fit1, direction="both")</pre>
## Start: AIC=-346.16
## rating ~ bpm + nrgy + dnce + dB + val + dur + acous + spch
##
##
           Df Sum of Sq
                           RSS
                                   AIC
                 0.0171 328.78 -348.13
## - acous 1
                 0.0184 328.78 -348.12
## - val
            1
## - spch
                 0.0282 328.79 -348.11
            1
## - bpm
                 0.1238 328.89 -347.93
            1
## - dnce
           1
                 0.8692 329.63 -346.57
                        328.77 -346.16
## <none>
## - dur
           1
                 2.8696 331.63 -342.93
## - nrgy
            1
                 6.8552 335.62 -335.73
## - dB
            1
                10.8169 339.58 -328.67
##
## Step: AIC=-348.13
## rating ~ bpm + nrgy + dnce + dB + val + dur + spch
##
##
           Df Sum of Sq
                           RSS
                                   AIC
## - val
            1
                 0.0209 328.80 -350.09
## - spch
            1
                 0.0321 328.81 -350.07
## - bpm
            1
                 0.1379 328.92 -349.87
## - dnce
                 0.9826 329.76 -348.33
## <none>
                        328.78 -348.13
## + acous 1
                 0.0171 328.77 -346.16
## - dur
           1
                 2.8640 331.65 -344.91
                 9.3775 338.16 -333.20
## - nrgy
            1
## - dB
                11.1753 339.96 -330.00
            1
##
## Step: AIC=-350.09
## rating ~ bpm + nrgy + dnce + dB + dur + spch
##
##
           Df Sum of Sq
                           RSS
                 0.0404 328.84 -352.01
## - spch
            1
                 0.1351 328.94 -351.84
## - bpm
            1
            1 1.0898 329.89 -350.10
## - dnce
```

```
## <none>
                        328.80 - 350.09
## + val
            1
                 0.0209 328.78 -348.13
## + acous 1
                 0.0197 328.78 -348.12
## - dur
            1
                 2.8684 331.67 -346.86
## - nrgy
            1
                10.6492 339.45 -332.90
## - dB
            1
                11.1732 339.98 -331.97
##
## Step: AIC=-352.01
## rating ~ bpm + nrgy + dnce + dB + dur
##
           Df Sum of Sq
                                   AIC
##
                           RSS
## - bpm
            1
                 0.1276 328.97 -353.78
## <none>
                        328.84 - 352.01
## - dnce
            1
                 1.0968 329.94 -352.01
## + spch
                 0.0404 328.80 -350.09
            1
## + val
                 0.0292 328.81 -350.07
           1
## + acous 1
                 0.0250 328.82 -350.06
## - dur
            1
                 2.9253 331.77 -348.68
## - nrgy
            1
                11.0212 339.86 -334.17
## - dB
            1
                11.3270 340.17 -333.63
##
## Step: AIC=-353.78
## rating ~ nrgy + dnce + dB + dur
##
##
           Df Sum of Sq
                           RSS
                                   AIC
## - dnce
            1
                 0.9969 329.97 -353.96
## <none>
                        328.97 - 353.78
## + bpm
            1
                 0.1276 328.84 -352.01
                 0.0398 328.93 -351.85
## + acous 1
## + spch
                 0.0329 328.94 -351.84
           1
## + val
                 0.0253 328.95 -351.83
            1
## - dur
                 2.9702 331.94 -350.37
            1
                10.9448 339.92 -336.08
## - nrgy
            1
## - dB
            1
                12.0932 341.06 -334.05
##
## Step: AIC=-353.96
## rating ~ nrgy + dB + dur
##
##
           Df Sum of Sq
                           RSS
                                   AIC
## <none>
                        329.97 -353.96
## + dnce
                 0.9969 328.97 -353.78
            1
## + acous
                 0.1669 329.80 -352.26
            1
                 0.1028 329.87 -352.15
## + val
            1
## + spch
                 0.0431 329.93 -352.04
            1
## + bpm
            1
                 0.0277 329.94 -352.01
## - dur
            1
                3.6210 333.59 -349.39
                10.7273 340.70 -336.70
## - nrgy
            1
## - dB
            1
                13.6782 343.65 -331.51
```

```
step$anova # display results
## Stepwise Model Path
## Analysis of Deviance Table
##
## Initial Model:
## rating ~ bpm + nrgy + dnce + dB + val + dur + acous + spch
## Final Model:
## rating ~ nrgy + dB + dur
##
##
        Step Df
                  Deviance Resid. Df Resid. Dev
                                 593
                                       328.7652 -346.1579
## 1
## 2 - acous 1 0.01712388
                                 594
                                       328.7824 -348.1266
      - val 1 0.02092719
## 3
                                       328.8033 -350.0882
                                 595
## 4 - spch 1 0.04040772
                                 596
                                       328.8437 -352.0143
                                 597
## 5
      - bpm 1 0.12763240
                                       328.9713 -353.7807
## 6 - dnce 1 0.99685615
                                 598
                                       329.9682 -353.9592
attach(data clean)
predict.lm(fit6,data.frame(nrgy=86, dB = -3,dur=120))
##
## 4.083278
#As we can observe that the multiple regression model gives best val
ue for f-stat when we take
# independent variables as energy, dB as in Loudness and duration, t
he p-value obtained for these
# independent variables is also less than the significant level of a
lso the standard error values
# are nearer to 0 which is good as we can see in summary of fit6 mod
el
# Though the value of adjusted R-squared value is less 0.05 the f-st
at value is higher than rest of
# the models that is 11.72.
# furthermore when we observe the QQ plot for residuals they don't f
orm any pattern
# model fit6 is the best fit model for multiple regression analysis
on our data, It can be
# further proved by doing stepAIC on the fit1 model having all indep
endent variables which
# gives lease AIC value for variables with fit6 model
# If we predict the value of rating using energy= 86, dB = -3 and du
ration =120 then we get
# predicted value of rating as 4
# adjusted r square value can be improved by doing logistic analysis
further
```