Hierarchical forecasts: a case study from pricing in e-commerce

IIF Workshop on Forecast Reconciliation

Stefan Birr, Adele Gouttes Zalando SE

- 1. Introduction to our use case
- 2. Why hierarchical forecast?
- 3. How to reconcile our forecast?
- 4. Experiment: Middle out with forecast proportions
- 5. Experiment: Adapting MinT for our use
- 6. Challenge: Reconcile a forecast grid
- 7. Conclusion

- 1. Introduction to our use case
- 2. Why hierarchical forecast?
- 3. How to reconcile our forecast?
- 4. Experiment: Middle out with forecast proportions
- 5. Experiment: Adapting MinT for our use
- 6. Challenge: Reconcile a forecast grid
- 7. Conclusion

Intro: Zalando

Fashion e-commerce in Europe

Algorithmic Pricing

Algorithmic Pricing @ Zalando

Our Sales Forecast:

"How many items of article X would be bought in country Y in the next Z days
if we would give D% discount?"

For simplicity assume:

- One country only
- Forecast 2 time steps, daily resolution
- Discounts can be [0, 10, 20, 30, 40]

Output of our forecaster: Demand Curves

We predict the demand for each day and each article in dependence of the discount

Predicted demand for an article on two different days

- 1. Introduction to our use case
- 2. Why hierarchical forecast?
- 3. How to reconcile our forecast?
- 4. Experiment: Middle out with forecast proportions
- 5. Experiment: Adapting MinT for our use
- 6. Challenge: Reconcile a forecast grid
- 7. Conclusion

How we measure forecast performance

Metric: weighted and scaled RMSE on Sales

Model is used for pricing decisions at **two levels**:

- **Item:** Forecast for different prices, choose the best price
- Country: Need to match the expected sales targets

How our data looks like

- Items appear and disappear (~2% new items every week)
- ~350K time series per day
- Very different nature of time series:
 - High-sellers: Nice seasonality (for some of them)
 - Low-sellers: Very noisy

Two high-selling items

800 600 200 Jul 2021 Oct 2021 Jan 2022 Apr 2022 Jul 2022 Oct 2022 date

Our two forecast models

- Weekly frequency, 26 weeks forecast horizon: Transformer-based¹
- Daily frequency, 7 days forecast horizon: LightGBM-based

About the daily forecast (LightGBM):

Good

- Accurate at item-level
- Quick to train and iterate
- Easy to add/remove features

Bad

- Very inaccurate when aggregating bottom-up
- Biased forecast: can't predict less than 0 on low-sellers
- Statistical models are better at catching aggregated seasonality
- Trained on short history ~ 2 years

¹ Kunz et al. (2022) Deep Learning based Forecasting: a case study from the online fashion industry

While we are doing good on article level, the aggregated forecast is lacking signal.

- 1. Introduction to our use case
- 2. Why hierarchical forecast?
- 3. How to reconcile our forecast?
- 4. Experiment: Middle out with forecast proportions
- 5. Experiment: Adapting MinT for our use
- 6. Challenge: Reconcile a forecast grid
- 7. Conclusion

How we approached hierarchical forecasting

- Methods we are testing:
 - Baseline: Bottom-up
 - Basic: Top down approaches, middle out
 - o MinT¹
 - RNN based end2end method²
- Use Python: nixtla/hierarchicalforecast or GluonTS
- Success: we improve one of our three metrics and keep the rest stable
 - Item-level accuracy
 - Country-level bias
 - Country-level accuracy

¹Wickramasuriya et al. "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization"

How to reconcile: The hierarchy

- Focus is on top- and bottom-level: country and item
- But we still want to use some middle hierarchy because:
 - Items are very heterogeneous
 - From country to item, there is a 1/350K ratio...
- Choosing the structure:
 - quality of the seasonality patterns
 - not too sparse (avoid series with many 0s)
 - reasonable ratio between parent/child levels

How to reconcile: The hierarchy

Mix of hierarchical/group structure:

- 0 clothing, shoes, beauty items...
- 1 season: autumn, summer, winter...
- 2 details: coats, trousers...
- 3 more details: winter coat, legging...

Category

Shoes

Clothes

Clothing

Season

Winter

Summer

Summer

Detail 1

Boots

T-shirt

Swimwear

Detail 2

Winter boots

Polo shirt

Swimsuits

- 1. Introduction to our use case
- 2. Why hierarchical forecast?
- 3. How to reconcile our forecast?
- 4. Experiment: Middle out with forecast proportions
- 5. Experiment: Adapting MinT for our use
- 6. Challenge: Reconcile a forecast grid
- 7. Conclusion

Experiment: Middle-out with forecast proportions

- First approach Middle-out from categories (Shoes, Accessoires, ...)
 - Easy to scale to a large dataset
 - No problem with unbalanced data
- Some features we have are defined on an aggregated level:
 - Sales event that is happening on specific days in one or more countries
 - Promotion/vouchers that target a subgroup of our assortment

Idea: Create a forecast on aggregated level that utilises these features and use hierarchical forecasting to bring it down to the article level

Experiment with Middle-Out

On aggregate level the MSTL forecast clearly models the dynamics of the time series better, but the bottom up forecast is 'randomly' better on some dates

- Daily Forecast
- Model at article level uses lightgbm
- Model at aggregated level uses MSTL (yearly + weekly seasonality)

Middle-out: Results at country level

- Middle-out (forecast proportion + MSTL) clearly outperforms bottom-up
- The choice of the upper model matters

Scaled RMSE on total sales level (Top Level)

grid_date	2023-06-22	2023-06-29	2023-07-06	2023-07-13
middle-out arima	0.44	0.17	0.31	0.33
middle-out mstl	0.27	0.12	0.30	0.21
tree	0.29	0.24	0.28	0.73

Middle-out: Results at Article-level

- Performance of reconciled forecast similar to baseline
- Clear improvement on the last week

Scaled RMSE on article level (Bottom Level)

grid_date	2023-06-22	2023-06-29	2023-07-06	2023-07-13
middle-out arima	0.56	0.57	0.6	0.56
middle-out mstl	0.57	0.61	0.6	0.56
tree	0.53	0.57	0.6	0.65

- Introduction to our use case
- 2. Why hierarchical forecast?
- 3. How to reconcile our forecast?
- 4. Experiment: Middle out with forecast proportions
- 5. Experiment: Adapting MinT for our use
- 6. Challenge: Reconcile a forecast grid
- 7. Conclusion

Experiment: Using MinT for reconciliation

Why?

- Use forecasts at all levels
- Learns from the forecast errors -> should get more improvement

Problems

- Unbalanced: what to do with series of different lengths?
- Our forecast is biased on low-sellers
- 350K series:
 - MUCH MORE than what the original implementation could handle
 - Will the covariance matrix of the error be informative?

Experiment: MinT - Unbalanced set

- Focus on upper levels (0-1-2): unbiased, balanced, small number of series.
- Backtesting over 1 year, 5 week rolling window.

Level	Baseline	MinT - OLS	MinT - WLS	MinT - Shrink
0	12.31	12.16	10.10	9.66
1	13.74	13.92	11.80	11.50
2	15.73	16.66	15.32	15.18
3	20.06	20.86	20.23	20.26

Experiment: MinT - Handling 350K time series

- Optimise for memory usage:
 - Unless you have a very big machine, you SHOULDN'T load the full covariance matrix in memory
 - We use sparse matrix computation: works for methods without shrinkage
- → Big thanks to *Mateusz Koren*:

Work in collaboration with *Nixtla*, changes are already available

- 1. Introduction to our use case
- 2. Why hierarchical forecast?
- 3. How to reconcile our forecast?
- 4. Experiment: Middle out with forecast proportions
- 5. Experiment: Adapting MinT for our use
- 6. Challenge: Reconcile a forecast grid
- 7. Conclusion

Functional reconciliation

Problem:

Article level: depends on the price

Aggregated forecasts: depend on the overall discount level (we use a sales weighted average to measure this)

For future values this is unknown¹

Potential strategies:

- Create a separate forecast for the discount level for each hierarchy
- 2) Scaling the grid
- 3) Iterative Reconciliation

¹In our experiments and backtesting we know the materialized discounts and can use them

Functional reconciliation: Scaling grids

Functional reconciliation: Iterative

Repeat n times

Open question:

- Does it converge?
- How long does it need?

- 1. Introduction to our use case
- 2. Why hierarchical forecast?
- 3. How to reconcile our forecast?
- 4. Experiment: Middle out with forecast proportions
- 5. Experiment: Adapting MinT for our use
- 6. Challenge: Reconcile a forecast grid

7. Conclusion

Conclusion

- Very low-level forecasts perform poorly on aggregated level: forecast reconciliation can help a lot here
- Basic methods like Middle-out with forecast proportion shows promising results

Practical challenges:

- High turnover in the product catalog: the number of products over which we aggregate varies over time.
- For multi-level methods (MinT, Rangapur et al), the scale of our data is a challenge

Challenges

Hierarchical pricing: The forecast is a function of price

- We might need to predict the future price, so a bi-variate forecasts (price & demand) may be ideal. What's the best way to aggregate price across a hierarchy? Or promotional data?
- Pricing effects might be different at country- and item-level: The sales of one item might be influenced by the sales of other items. How do we best reconcile them in a forecast setting?