يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۲۱

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

- در ابتدا نوار خالی است و تنها ورودی روی آن نوشته میشود.
 - o دو حالت متفاوت برای accept و reject دارد.

ماشین تورینگ (تعریف فرمال)

DEFINITION 3.3

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

○ تغییر حالات در ماشین تورینگ:

o اگر a را خواندی b را بنویس و به چپ برو.

○ مثال:

داشتیم:

 $ua q_i bv$ yields $uac q_j v$

if
$$\delta(q_i, b) = (q_j, c, R)$$
.

• به طور معادل:

A move from one configuration to another will be denoted by \vdash . Thus, if

$$\delta\left(q_{1},c\right)=\left(q_{2},e,R\right),$$

then the move

 $abq_1cd \vdash abeq_2d$

○ مثال:

EXAMPLE 9.2

Consider the Turing machine defined by

$$Q = \{q_o, q_1\},\$$

 $\Sigma = \{a, b\},\$
 $\Gamma = \{a, b, \Box\},\$
 $F = \{q_1\},\$

and

$$\delta(q_0, a) = (q_0, b, R),$$

$$\delta(q_0, b) = (q_0, b, R),$$

$$\delta(q_0, \square) = (q_1, \square, L).$$

EXAMPLE 9.5

The action of the Turing machine in Figure 9.3 can be represented by

$$q_0aa \vdash bq_0a \vdash bbq_0\Box \vdash bq_1b$$

or

$$q_0aa \stackrel{*}{\vdash} bq_1b.$$

تشخيص پذيرى

DEFINITION 3.5

Call a language *Turing-recognizable* if some Turing machine recognizes it.¹

¹It is called a *recursively enumerable language* in some other textbooks.

○ ماشین تورینگ زیر چه رشتههایی را میپذیرد؟

وجود حلقه

When we start a Turing machine on an input, three outcomes are possible. The machine may *accept*, *reject*, or *loop*. By *loop* we mean that the machine simply does not halt. Looping may entail any simple or complex behavior that never leads to a halting state.

وجود حلقه

○ ماشین تورینگ زیر چه میکند؟

تصميم پذيرى

تحت یک ورودی W، تفاوت است بین زمانی که ماشین وارد reject میشود و زمانی که در حلقه می
 افتد.

○ ترجیح میدهیم ماشینمان روی همه ورودیهای متوقف شود (halt). یعنی وارد حلقه نشود.

○ چنین ماشینی را تصمیم گیرنده گوییم (یا accept).

تصميم پذيري

DEFINITION 3.6

Call a language *Turing-decidable* or simply *decidable* if some Turing machine decides it.²

²It is called a *recursive language* in some other textbooks.

هر زبان تصمیمپذیری یک زبان تشخیصپذیر نیز هست.

تصميمپذيري

مثال

○ زبان شامل همه رشتههای باینری شامل زیر رشته 101. یک TM که درباره این زبان تصمیم بگیرد.

