• HW#2 - Q1: mixture - stip until we cover Ex 3.4.1

- δ 10: $t(x=\theta-1|\theta) = t(x=\theta+1|\theta) = \frac{5}{1}$

χι, χε π(Θ): consider an arbitrary distribution over integers.

· lecture corpture - as soon as possible

JB Example 4(p10) Assume $X \mid \theta \sim N(\theta, 1)$. The goal is estimating θ under squared-error loss, $L(\theta, d) = (\theta - d)^2$. Consider the decision rule $\delta_c(x) = cx$.

• Find $R(\theta, \delta_c)$.

$$\begin{aligned}
&\{ \Theta, \delta_{\mathcal{C}} \} = \mathbb{E}_{\Theta} \left(L(\Theta, \delta_{\mathcal{C}}) \right) \\
&= \mathbb{E}_{\Theta} \left((\Theta - \mathcal{E}_{\mathcal{C}}(x))^{2} \right) \\
&= \mathbb{E}_{\Theta} \left[\{ \Theta + \mathbb{E}_{\Theta} (\mathcal{E}_{\mathcal{C}}(x)) - \mathcal{E}_{\mathcal{C}}(x) \}^{2} \right] \\
&+ 2 \{ \Theta - \mathbb{E}_{\Theta} (\mathcal{E}_{\mathcal{C}}(x)) \} \left\{ \mathbb{E}_{\Theta} (\mathcal{E}_{\mathcal{C}}(x)) - \mathcal{E}_{\mathcal{C}}(x) \right\} \\
&+ \{ \mathbb{E}_{\Theta} (\mathcal{E}_{\mathcal{C}}(x)) - \mathcal{E}_{\mathcal{C}}(x) \}^{2} \right]
\end{aligned}$$

$$\frac{\delta_{c}(x)}{\delta_{c}(x)} = \begin{cases} \theta - E_{\theta}(\delta_{c}(x))^{2} + E_{\theta} \\ \theta - E_{\theta}(\delta_{c}(x)) \end{cases} + V_{\alpha_{f}}(\delta_{c}(x))$$

Estimator (decision rule)
$$\delta_c(x) = c x$$

$$E_{\theta}(S_{c}(x)) = E_{\theta}(cx) = c\theta$$

$$\Rightarrow \qquad R(\Theta, \delta_C) = (\Theta - C\Theta)^2 + Var(CX)$$

$$= ((-C)^2 \Theta^2 + C^2 \sqrt{\alpha r(x)} = 1$$

$$= ((-c)^2 \theta^2 + c^2$$

eg)
$$C=1/2$$
 \Rightarrow $R(\theta, \delta_{\gamma_2}) = \frac{1}{4}\theta^2 + \frac{1}{4} \leftarrow$

$$\xi_{1}(x) = x$$
 $C = 1$ \Rightarrow $R(0, \delta_{1}) = 1$

$$E_{\Theta}(\delta_{2}(K)) = E_{\Theta}(K)$$

$$= \Theta \qquad c = 2 \qquad \Rightarrow \qquad R(\Theta, \delta_{2}) = \Theta^{2} + 4 \in$$

eq)
$$\times 10 \sim N(0, 1)$$
, assume $\theta \sim N(0, \tau^2)$

$$\Rightarrow \theta \times \sim N\left(\frac{1}{1 + \frac{1}{\tau^2}}\right)^{-1}\left(\frac{x}{1 + \frac{0}{\tau^2}}\right), \left(\frac{1}{1 + \frac{1}{\tau^2}}\right)^{-1}\right)$$

$$= \left(\frac{\tau^2}{1 + \tau^2}\right) \times$$

Under the squared error loss function,

$$d = E^{\theta}(\theta | Y) = \underbrace{\left(\frac{\tau^2}{1+\tau^2}\right)}_{\frac{1}{2}} \times$$

$$E_{\Theta}\left[\left\{\Theta-E_{\Theta}\left(\mathcal{S}^{G}\left(\mathcal{X}\right)\right)\right\}\left\{E_{\Theta}\left(\mathcal{S}^{G}\left(\mathcal{X}\right)\right)-\mathcal{S}^{G}\left(\mathcal{X}\right)\right\}\right]$$

$$= \left\{ \theta - E^{\theta} \left(g^{c}(x) \right) \right\} \times E^{\theta} \left\{ E^{\theta} \left(g^{c}(x) \right) - g^{c}(x) \right\}$$

$$(1) \qquad \times \left(E_{\theta}(S_{c}(x)) - E_{\theta}(S_{c}(x)) \right) = 0$$

JB Example 4(p10) (contd) Plot of $R(\theta, \delta_c)$

- Difficulties associated with using $R(\theta, \delta)$.
 - For each $\theta \in \Theta$, $R(\theta, \delta)$ is the expected loss based on an average over the random $X \in \mathcal{X}$.
 - \Rightarrow long-run performance of $\delta(x)$ and **not** directly for the given observation x.
 - ** A function of $\theta \in \Theta \& \theta$ is unknown.
 - \Rightarrow The frequentist approach $R(\theta, \delta)$ does not induce a total ordering on the set of procedures.

- † How can Frequentists choose δ ?
 - An additional principle must be introduced to select a specific rule for use.
 - e.g. δ_1 is preferred to δ_3 under some concept of optimalty.
 - ullet Some important frequentist decision principles (CR 2.4 + a lot in JB)
 - ** Bayes risk principle
 - ** minimax
 - ** admissibility
 - ** restricted classes: e.g. we only consider unbiased estimators.
 - Bayes estimators are often optimal for the frequentist concepts of optimality.

- † The Bayes Risk Principle
 - The frequentist risk of a decision rule $\delta(x)$ is a function of θ .

$$R(\theta, \delta) = \int_{\mathcal{X}} L(\theta, \delta(x)) f(x \mid \theta) dx.$$

• The *integrated risk* (also called Bayes Risk) is the frequentist risk averaged over Θ according to their prior $\pi(\theta)$.

$$\underline{\underline{r}(\pi, \delta)} = E^{\pi} [R(\theta, \delta)]$$

$$= \int_{\Theta} \int_{\mathcal{X}} L(\theta, d) f(x \mid \theta) dx \underline{\pi(\theta)} d\theta.$$

- $r(\pi, \delta)$ is a real number associated with estimator $\underline{\delta}$.
 - → Induces a total ordering on the set of estimators, so allows for the direct comparison of estimators.

- † Any connection between $r(\pi, \delta)$ and $\rho(\pi, \delta \mid x)$?
 - ⇒ They lead to the same decision.
 - Th 2.3.2 An estimator minimizing the integrated risk $r(\pi, \delta)$ can be obtained by selecting, for every $x \in \mathcal{X}$, the value $\delta(x)$ which minimizes the posterior expected loss, $\rho(\pi, \delta \mid x)$, since

$$r(\pi, \delta) = \int_{\mathcal{X}} \rho(\theta, \delta(x) \mid x) m(x) dx.$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} L(0,\delta) \pi(0) d0$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} L(0,\delta) \frac{f(x|0)\pi(0)}{f(x|0)\pi(0)} dx d0$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} L(0,\delta) \frac{f(x|0)\pi(0)}{f(x|0)\pi(0)} dx d0$$

• Def 2.3.3

- ** A Bayes estimator associated with a prior distribution π and a loss function L is any estimator δ^{π} , which minimizes $r(\pi, \delta)$.
- ** For every $x \in \mathcal{X}$, it is given by $\delta^{\pi}(x)$ (a Bayes action), argument of $\min_{d} \rho(\pi, d \mid x)$.
- ** The value $r(\pi) = r(\pi, \delta^{\pi})$ is then called **the Bayes risk**.
- JB Def 9, p160 If π is an improper prior, but $\delta^{\pi}(x)$ is an action which minimizes $\rho(\pi, d \mid x)$ for each x with m(x) > 0, then δ^{π} is called a generalized Bayes rule.

- † Minimaxity: Minimize the expected loss in the least favorable case (\Leftrightarrow protect against the worst possible state of nature, conservative!)
 - The Minimax Principle. JB p18 δ_1 is preferred to δ_2 if

$$\sup_{\theta} R(\theta, \delta_1) < \sup_{\theta} R(\theta, \delta_2).$$

Def 2.4.3 The minimax risk associated with a loss function L
is the value

$$\bar{R} = \inf_{\delta \in \mathcal{D}} \sup_{\theta} R(\theta, \delta) = \inf_{\delta \in \mathcal{D}} \sup_{\theta} \mathsf{E}_{\theta} \left\{ L(\theta, \delta(x)) \right\},$$

and a **minimax estimator** is any (possibly randomized) estimator δ_0 such that

$$\sup_{\theta} R(\theta, \delta_0) = \bar{R}$$

JB Example 4 (contd) Assume $X \mid \theta \sim N(\theta, 1)$. The goal is estimating θ under squared-error loss, $L(\theta, a) = (\theta - a)^2$. Consider the decision rule $\delta_c(x) = cx$. Find the minimax rule.

† Admissibility

• **Def 2.4.19** An estimator δ_0 is inadmissible if there eixsts an estimator δ_1 which dominates δ_0 , that is, such that, for every θ

$$R(\theta, \delta_0) \geq R(\theta, \underline{\delta})$$

and, for at least one value θ_0 of the parameter,

$$R(\theta_0, \delta_0) > R(\theta_0, \delta).$$

Otherwise, δ_0 is said to be admissible.

What is the underlying idea as a criterion?
 Inadmissible estimators should not be considered at all since they can be uniformly improved!

JB Example 4 (contd) Assume $X \mid \theta \sim N(\theta, 1)$. The goal is estimating θ under squared-error loss, $L(\theta, a) = (\theta - a)^2$. Consider the decision rule $\delta_c(x) = cx$ with c > 1. Is the rule admissible?

- * Admissibility is related (stronger than minmax) to the Bayesian paradigm.
 - Admissibility is <u>automatically satisfied by most Bayes estimators</u>.
 - **Prop 2.4.22** If a prior distribution π is strictly positive on Θ , with finite Bayes risk and the risk function, $R(\theta, \delta)$, is a continuous function of θ for every δ , the Bayes estimator δ^{π} is admissible.
 - Want to learn more? Read CR 2 and JB 4.8

Example 2.4.6 (Stein Phenomenon) Suppose a p-dimensional vector, $\mathbf{X} \sim N_p(\boldsymbol{\theta}, I_p)$ and consider the problem of estimating $\boldsymbol{\theta}$ (a p-dim vector). Assume the quadratic loss function

$$L(\theta,\delta) = (\theta-\delta)'(\theta-\delta) = ||\theta-\delta||^2$$
. $\frac{p}{2} (\theta; -\delta;)^2$

- The maximum likelihood estimator $\delta_1(X) = X$
 - ** The least squares estimator in standard regression setting
 - For p = 1 or 2, it is admissible and the unique minimax estimator.

& CE) = X

Example 2.4.6 (contd)

• Consider the positive part James-Stein estimator,

$$\boldsymbol{\delta}_2(\boldsymbol{X}) = egin{cases} \left(1 - rac{2p-1}{||\boldsymbol{X}||^2}
ight) \boldsymbol{X} & ext{if } ||\boldsymbol{X}||^2 \geq 2p-1, \\ \boldsymbol{0} & ext{ow.} \end{cases}$$

 \clubsuit Figure 2.4.1 Comparison of the risks of $oldsymbol{\delta}_1$ and $oldsymbol{\delta}_2$ for p=10

Example 2.4.6 (contd)

- $\star\star$ δ_2 cannot be minimax.
- ** δ_2 is definitely superior on some (the most interesting) part of the parameter space.
- ** "The Stein effect": allows to borrow information from the other components, even when they are independent and deal with totally different estimation problems.
- Sometimes the minimax rule is not useful! (or sometimes may not exist)
- ** Following James and Stein, extensive research on this has been done Shrinkage estimators

- † Usual loss functions (CR Section 2.5)
 - Quadratic loss
 - Absolute loss ← posterior median
 - 0-1 loss + posterior mode
 - Intrinsic loss entropy distance (Kullback-Leibler divergence),
 Hellinger loss...

** What are the Bayesian estimators $\delta^{\pi}(x)$ under the classical loss functions?

† The quadratic loss

$$L(\theta,d)=(\theta-d)^2$$

- most common evaluation criterion simplicity
- penalize large deviations too heavily

• **Prop 2.5.1** The Bayes estimator δ^{π} associated with the prior distribution π and with the quadratic loss $L(\theta, d) = (\theta - d)^2$, is the posterior expectation,

$$\delta^{\pi}(x) = \mathsf{E}^{\pi}(\theta \mid x) = \frac{\int_{\Theta} \theta f(x \mid \theta) \pi(\theta) d\theta}{\int_{\Theta} f(x \mid \theta) \pi(\theta) d\theta}.$$

• **Cor 2.5.2** The Bayes estimator δ^{π} associated with π and with the weighted quadratic loss $L(\theta, d) = w(\theta)(\theta - d)^2$, where $w(\theta)$ is a nonnegative function, is

$$\delta^{\pi}(x) = \frac{\mathsf{E}^{\pi}(w(\theta) \cdot \theta \mid x)}{\mathsf{E}^{\pi}(w(\theta) \mid x)}$$

• **Cor 2.5.3** When $\Theta \in \mathbb{R}^p$, the Bayes estimator δ^{π} associated with the prior distribution π and with the quadratic loss $L(\theta, \mathbf{d}) = (\theta - \mathbf{d})^t \mathbf{Q}(\theta - \mathbf{d})$, is the posterior mean $\delta^{\pi}(x) = \mathbf{Q}(\theta + \mathbf{x})$, for every positive -definite symmetric $\mathbf{p} \times \mathbf{p}$ matrix $\mathbf{Q}(\theta, \mathbf{x})$

† The absolute error loss

$$L(\theta, d) = |\theta - d|$$

Or multilinear function (more general)

$$L(\theta,d) = \begin{cases} k_1(\theta-d) & \text{if } \theta-d \geq 0, \\ k_2(d-\theta) & \text{if } \theta-d < 0, \end{cases}$$

- slow down the progression of the quadratic loss for large errors and has a robustifying effect.
- k_1 and k_2 reflect the relative importance of underestimation or overestimation.
- $k_1 = k_2 \Rightarrow$ the absolute error loss

squared error loss vs absolute error loss

• **Prop 2.5.5** A Bayes estimator associated with the prior distribution π and the multilinear loss is a $k_1/(k_1+k_2)$ fractile of $\pi(\theta \mid x)$.

• If $k_1 = k_2$, the Bayes estimator is the posterior median.

[†] The 0-1 loss: the penalty associated with an estimator δ is 0 if the answer is correct and 1 otherwise.

Example 2.5.6 Consider the test of $H0: \theta \in \Theta_0$ vs $H1: \theta \notin \Theta_0$. Then $\mathcal{D} = \{0,1\}$, where 1 stands for acceptance of H0 and 0 for rejection. For the 0-1 loss,

posterior expected loss
$$\cos 2: \quad d=1$$

$$\rho(\pi, 1 \mid x) = E^{\pi} \Big(L(\theta, 1) \mid x \Big)$$

$$= \int_{\mathbb{R}^{3}} L(\theta, 1) \pi(\theta \mid x) \ d\theta$$

• **Prop 2.5.7** The Bayes estimator associated with the prior distribution π and with the 0-1 loss is

$$\delta^{\pi}(x) = \begin{cases} 1 & \text{if } \Pr(\theta \in \Theta_0 \mid x) > \Pr(\theta \notin \Theta_0 \mid x), \\ 0 & \text{otherwise,} \end{cases}$$

i.e., $\delta^{\pi}(x)$ is equal to 1 if and only if $\Pr(\theta \in \Theta \mid x) > 1/2$.

