

TECHNICAL REPORT

Aluno: Matheus Feitosa de Oliveira Rabelo

1. Introdução

Os datasets utilizados para as resoluções das questões foram: train.csv e train_ajustado.csv para classificação e bodyfat.csv para regressão. Para as questões de classificação (1-4), foram utilizadas técnicas de pré-processamento, onde se foi possível tratar os dados inconsistentes, valores nulos e analisar colunas importantes, para posteriormente fazermos o treinamento do modelo e verificarmos acurácias, também normalizamos dados, visando assim ter os melhores resultados. Para as questões de regressão (5-7), foram utilizadas técnicas de análise de dados, regressão linear para predição do atributo, determinamos os valores de RSS, MSE, RMSE e R Square, e por último Cross-validation. O objetivo central é apresentar resultados concretos por meio de uma análise detalhada das métricas e visualizações pertinentes.

Classificação: A característica mais relevante para se analisar é a coluna price_range, já que nosso modelo de classificação tem o intuito de classificar preços de mobiles, baseados em suas características importantes como:

- battery_power
- clock_speed
- fc,four g
- int memory
- mobile_wt
- n_cores
- pc
- px_height
- px width
- ram
- sc h
- sc_w
- three g
- touch_screen

Regressão: Já no dataset de regressão, analisamos as estimativas da porcentagem de gordura corporal determinada por pesagem e diversas medidas de circunferência corporal, então treinamos o modelo para fazer uma predição disso, fazendo as análises das seguintes características:

- Density
- BodyFat
- Age
- Weight
- Height
- Neck
- Chest
- Abdomen
- Hip
- Thigh
- Knee
- Ankle
- Biceps
- Forearm
- Wrist

2. Observações

Durante as análises de classificação, foi possível observar que em um dataset chamado test.csv, não possuía a característica mais importante, price_range, inicialmente para solucionar o problema, foi feito uma concatenação dos datasets test.csv e train.csv, preenchendo os campos que seriam nulos pela mediana da coluna, porém essa solução trazia outros problemas posteriormente, então foi utilizado somente o dataset train.csv, já que ele continha essa característica principal sem valor nulo. Também é importante ressaltar que o dataset mesmo com o pré-processamento dos dados, ambos dataset de classificação e regressão não possuíam valores nulos em suas colunas, podendo assim trabalhar com 100% dos dados dos datasets

3. Resultados e discussão

Questão 1

Objetivo:

- Identificar se havia valores nulos no dataset.
- Ajustar o conjunto de dados removendo colunas irrelevantes que foram: dual sim, m dep, blue, wifi e talk time

Fluxograma:

Carregamento do dataset. -> Identificação e remoção de valores ausentes. -> Ajuste do dataset com seleção de colunas relevantes.

Discussão:

Nessa questão além do problema com o dataset test.csv não houve nenhum problema, e a solução do enunciado trouxe os resultados esperados

Questão 2

Objetivo:

• Implementação manual de KNN utilizando quatro métricas de distância: Euclidiana, Manhattan, Chebyshev e Mahalanobis, sem haver a normalização.

Fluxograma:

Implementação de funções para cálculo de distâncias. -> Divisão dos dados em treino e teste. -> Predição utilizando diferentes métricas.

Discussão:

Nessa questão foi possível observar que a distância que melhor teve acurácia foi a de Manhattan, apesar da de Euclidiana e Chebyshev estarem muito distantes, elas tiveram uma acurácia menor que a de Manhattan, e a Mahalanobis apontou a pior acurácia, tendo uma porcentagem muito abaixo do ideal. Essa questão também trouxe os resultados esperados em nos dizer qual distância é a melhor que vamos ver abaixo, juntamente com um report criado pela função *classification report*.

Relatório de classificação com distância Manhattan				
	precision	recall	f1-score	Support
0	0.98	0.98	0.98	125
1	0.94	0.94	0.94	125
2	0.90	0.91	0.90	125
3	0.95	0.94	0.94	125
Acccuracy			0.94	500
Macro avg	0.94	0.94	0.94	500
weighted avg	0.94	0.94	0.94	500

Relatório de classificação com distância Euclidiana				
	precision	recall	f1-score	Support
0	0.98	0.98	0.98	125
1	0.93	0.95	0.94	125
2	0.91	0.89	0.90	125
3	0.94	0.94	0.94	125
Acccuracy			0.94	500
Macro avg	0.94	0.94	0.94	500
weighted avg	0.94	0.94	0.94	500

Relatório de classificação com distância Chebyshev				
	precision	recall	f1-score	Support
0	0.98	0.98	0.98	125
1	0.92	0.95	0.93	125
2	0.92	0.86	0.89	125
3	0.94	0.96	0.95	125
Acccuracy			0.94	500
Macro avg	0.94	0.94	0.94	500
weighted avg	0.94	0.94	0.94	500

Relatório de classificação com distância Mahalanobis				
	precision	recall	f1-score	Support
0	0.67	0.75	0.71	125
1	0.42	0.42	0.42	125
2	0.44	0.46	0.45	125
3	0.76	0.62	0.68	125
Acccuracy			0.56	500
Macro avg	0.57	0.56	0.57	500
weighted avg	0.57	0.56	0.57	500

Resumo das acurácias: Euclidiana: 94.20%

Manhattan: 94.40% Chebyshev: 94.0% Mahalanobis: 56.40%

Objetivo:

 Avaliar o impacto da normalização logarítmica e da normalização de média zero e variância unitária no KNN

Fluxograma:

Avaliação sem normalização -> Normalização Logarítmica -> Normalização de Média Zero e Variância Unitária -> Avaliação com ambas as normalizações.

Discussão:

Sem Normalização: A acurácia está alta, indicando que os dados no formato original podem estar bem distribuídos para a distância Manhattan, sem necessidade de transformação.

Com Normalização Logarítmica: A acurácia caiu significativamente. Isso pode ser devido à forma como a transformação logarítmica reduz a escala de atributos com valores altos, prejudicando o desempenho do modelo.

Com Normalização de Média Zero e Variância Unitária: A acurácia melhorou em relação à normalização logarítmica, mas ainda está inferior à dos dados originais.

Possíveis Motivos

- Os dados originais já estão distribuídos em uma escala apropriada para o uso da distância Manhattan.
- A normalização pode estar eliminando variações importantes entre as características que o modelo utiliza para classificar.

Comparação de Acurácias		
Sem normalização	94.40%	
Com Normalização Logarítmica	62.80%	

Com Normalização (Média Zero e Variância Unitária)	64.60%
, ,	

Objetivo:

• Determinar o melhor valor de para o KNN com distância Manhattan.

Fluxograma:

Avaliação iterativa para valores de entre 1 e 20. -> Identificação do melhor K.

Discussão:

Para essa questão não houve problemas e dificuldades, já que seu intuito era avaliarmos qual o melhor K para analisarmos a acurácia, onde o melhor K seria 11, nos retornando uma acurácia de 95.40%, que é 1% a mais em relação a quantidade de vizinhos (K) padrão, que nos retornou 94.40%.

Objetivo:

• Identificar o atributo mais correlacionado com BodyFat e realizar uma análise exploratória.

Fluxograma:

Cálculo de correlação entre atributos. -> Geração de gráficos para os atributos mais relevantes.

Discussão:

Nesse enunciado, procuramos verificar qual atributo mais se relaciona com BodyFat, após analisar os dados dessa questão e o gráfico, é possível ver que o atributo que mais se relaciona com BodyFat é Abdomen. Na análise dos gráficos, vemos essa informação pela dispersão dos pontos, quanto menos dispersos, melhor

Atributos mais correlacionados com BodyFat		
Abdomen	0.813432	
Chest	0.702620	
Hip	0.625201	
Weight	0.612414	
Thign	0.559608	

Objetivo:

 Realizar regressão linear utilizando o atributo abdomen e analisar o modelo KNN para predizer BodyFat

Fluxograma:

Aplicar normalização logarítmica. \rightarrow Implementar regressão linear e KNN. \rightarrow Avaliar métricas.

Discussão:

Nessa questão, buscamos avaliar a performance da regressão linear em relação ao KNN utilizando o atributo abdomen. A regressão linear apresentou um de 0.5356, indicando que 53.56% da variação de BodyFat pode ser explicada por este atributo. Por outro lado, o KNN com alcançou um superior de 0.6113, demonstrando uma maior capacidade preditiva. O gráfico da reta de regressão reforça que a relação entre abdomen e BodyFat é significativa, mas não perfeitamente linear.

Regressão Linear com Normalização Logarítmica		
RSS 1101.69		
MSE	21.60	
RMSE	4.65	
R ²	0.5356	

Objetivo:

Implementar manualmente K-Fold Cross-Validation para regressão linear.

Fluxograma:

Implementar K-Fold manualmente. \to Dividir dados em 11 folds. \to Calcular métricas para cada fold e obter médias.

Discussão:

Por último nessa questão, ao implementar o K-Fold Cross-Validation com 11 divisões, foi possível obter um R² médio de 0.6396, superior ao alcançado em uma divisão de treino e teste. Além disso, o RSS médio de 533.41 reflete um bom ajuste aos dados, e o RMSE médio de 4.79 nos ajuda a ver que o modelo conseguiu generalizar até que bem, mesmo em um cenário de validação cruzada mais rígida.

Resultados:

Resultados de Regressão Linear com K-Fold Cross-Validation (n_splits = 10)		
RSS Médio 587.26		
MSE Médio	23.32	
RMSE Médio 4.80		
R² Médio	0.6290	

4. Conclusões

Os resultados esperados das análises foram satisfatórios. A maior parte das técnicas implementadas confirmou a validade dos métodos aplicados, com bons desempenhos do KNN e regressão linear para os dados analisados. Algumas normalizações mostraram limitações em não nos trazer bons resultados, porém nos ensinando que alguns datasets podem estar bem estruturados, não havendo a necessidade da normalização, destacando a importância de entender o comportamento dos dados, na hora de analisá-los.

5. Próximos passos

Procurar entender melhor os casos da baixa acurácia com as normalizações, e analisar cada vez mais as características dos datasets, para assim aplicar outros tipos de análise em cima deles