座位号	
	※
考场教室	夏······无
壬课教师	答
任课	······································
争	
	······································
4名	·····································
死	掛
揪	:

电子科技大学 2020-2021 学年第 2 学期期 末 考试 A 卷

考试科目: 微处理器与嵌入式系统设计 考试形式: 一本书开卷 考试日期: 2021年6月16日 成绩构成比例: 研讨班: 平时 30 %, 实验 20 %, 期末 50 %

普通班: 平时<u>20</u>%, 实验<u>20</u>%, 期末<u>60</u>%

本试卷由<u>三</u>部分构成,共<u>8</u>页。考试时长: <u>120</u>分钟 注: <u>只允许带一本教材,不能夹带习题集</u>

题号	-	 三(1)	三(2)	三(3)	三(4)	三(5)	三(6)	三(7)	合计
得分									

注意:请将第一、二题答案填入指定位置。

得 分

一、选择题答案(共25分,共25题,每题1分,注意部分为多选题。)

1	2	3	4	5	6	7	8	9	10	11	12	13
CD	D	В	A	В	ABCD	ACD	В	A	D	C	C	С

14	15	16	17	18	19	20	21	22	23	24	25
A	AB	В	A	В	D	С	В	D	D	A	C

得 分

二、填空题答案(共20分,共20空,每空1分)

- 1. ① 下一条待取指令的地址
- 2. ① 运算器 , ② 控制器 (可不按顺序)
- 3. ① 指令周期
- 4. ① 立即数寻址
- 5. ① 1100
- 6. ① 总线冲突
- 7. ① 系统/片间
- 8. ① 中断设备与 CPU 不同步 , ② 可能有多个中断同时发生
- 10. ① 立即数方式 ,② 寄存器方式 ,③ 寄存器移位方式 (可不按顺序)
- 11. <u>① 32</u> 程序计数器 (PC)
- 12. ① ENTRY
- 13. ① 接口初始化 ,② 数据收发

٠,	Ì	选择题(共 25 分,共 25 题	,每题1分,注:	意部分为多	5选题。) (答约	案请填入第1页选	怿题答案处。)
	1.	【多选题】下面()	不属于 计算机体系	《结构设计	需要考虑的范	〕 畴。	
		A.指令集内容 B	.存储器编址方式	(C. CPU 主频	D.CPU 是否采	用 5nm 工艺
	2.	微处理器系统的"字长"边	通常是指 ()。	0			
		A. CPU 外部数据总线的最	大位数	B. CPU 外	部控制总线的]最大位数	
		C. CPU 外部地址总线的最					的最大位数
	3.	微处理器设计时,采用指令	令流水线技术的主	三要目的是	()。		
		A. 提高 DMA 的传递速度		B.提高指令	◇处理的吞吐 ³	率	
		C. 提高存储器的存取速度		D.提高每多	条指令的处理法	速度	
	4.	指令流水线存在的相关性		战的停顿,	从而影响流水	、线的性能和效率。	其中可以采用
		分支预测方法来缓解的是				- / I. II. I = N	
		A.控制相关 B			2. 名字相关	D.结构相关	
	5.	关于随机逻辑控制器,说法					
		A. 每个指令都需要一组逻					
		C. 微指令的形成需要考虑				上件在控制器中占 较	交大比重
	6.	【多选题】影响 CPU 执行					
		A.主机频率 B			C.Cache 大小	D.总线架构	
	7.	【多选题】以下符合 RISC					
		C.运算类指令不能访问存储					元
	8.	Cache 进行页替换时,利用	月程序局部性原理				
		A.先进先出 B			2.随机法		
	9.	某 32 位微处理器系统中,			居存储地址的特	特点是最低两位为	()。
					C. 10	D. 11	
	10	.微处理器系统响应中断后,	保护断点的目的	 力是()。		
		A.查找识别中断源		B.使 CPU	能跳转到中断	服务程序开始的地	方
		C.获取中断向量		D.完成中國	所服务程序后,	,能正确返回被中	断的程序
	11	.采用程序控制方式的 I/O 括					
		A.状态总线 B	.地址总线	C.数i	居总线	D.控制总线	
	12	.某外设接口中含有两个数据	居端口,意味着(()。			
		A.这两个端口必须分配不同					
		C.该接口中一般至少需要两	两个寄存器	D.系统	充必须采用统-	一编址方式	
	13	.在多任务系统中,为提高 换。完成这种数据传输最好			及应该在准备如	好数据后才通知 Cl	PU 进行数据交
			.查询		折	D.DMA	
	14	.下面二进制数的最低位是-	一个比特的校验位	ž,则采用	了奇校验的编	福码是 ().	
						D. 111111110	
	15	.【多选题】以下 不属于 片[
		A. AMBA B			C.USB	D.SPI	
	16	.某微处理器系统中, 64 位.					为 ()。
		A. 25.6GB/s B					
	17	.PCIE *16 总线中的 "16" ³				z 	
		A.16 个总线通道 B		B C. 总	线速率 16GB	/s D. 总线速率 1	6Gb/s
			, 7 , 7 , 7 , 7	_		- · · · - ·	

第 3 页

18. 下列关于 AHB 总线的说法,**不正确**的是 ()。

三、综合题(共7题,共55分)

得 分

1. (8分) 冯•诺伊曼计算机的基本设计思想是什么? ARM 芯片早期采用冯•诺伊曼架构,后来为改进性能采用了哈佛架构,试简述其改进思路。

【参考答案】

- 1) 冯•诺伊曼计算机的基本设计思想主要包括以下几点:
 - 采用二进制表达数据和指令信息: (2分)
 - 将数据和指令事先保存在存储器中; (2分)
 - 控制器自动按顺序取指、执行。 (2分)
- 2)指令和数据分开存储,并采用分离总线,有利于并行处理提高存储器的吞吐率。 (2分)

得 分

2. (8分)某 CPU 采用 m 级流水线,其各级时长(即拍长)均为 Δt 。则该 CPU 连续处理 n 条指令时的加速比 Sp 为可表达为:

$$S_p = \frac{T_{\# \uparrow \uparrow}}{T_{\text{Mick}}} = \frac{n \cdot m \Delta t}{m \Delta t + (n-1) \Delta t} = \frac{nm}{m+n-1} = \frac{m}{1 + (m-1)/n}$$

从该公式可以看出,当指令条数 n 趋近无穷大时,加速比 $S_n=m$ 。

试分析: 我们是否可以由此得到结论,即通过不断增加流水线级数就可以提高 CPU 的性能? 为什么?

【参考答案】

CPU 性能并不能单纯通过不断增加指令流水线级数来持续提高; (2分) 主要原因包括:

- 1)上述理想加速比公式并未考虑流水线效率问题:流水线本身也会带来读写延迟,制约了流水线的吞吐量,即流水线段数增加,会导致流水线效率下降。 (2分)
- 2)增加流水线级数会导致各种相关性问题更加严重。 (2分)
- 3) 增加流水线级数会导致 CPU 硬件复杂度上升,从而带来其它问题,如可靠性、测试复杂度等等。 (2分)

得 分

3. (6 分) ARM 指令可以使用立即数,但某些立即数(如 0x01、0xF000000F 等)合法, 某些立即数(如 0x101、0xF000001F 等)则不合法,试解释为什么。

【参考答案】

从下面 ARM 的机器指令编码格式可以看出,立即数只能用最低 12 位表示。 (2 分) 其中 Immed_8 表示 8 位无符号常量,Rotate_imm 表示将该 8 位数循环右移 2*Rotate_imm 次后恢复出 32 位数值常量。 (2 分)

3	1 2	8 27	26	25	24 21	1 20	19 16	15 12	11 8	7 0
[cond	0	0	1	opcode	S	Rn	Rd	Rotate_imm	Immed_8

只有能用上述方法恢复的立即数才是合法的,而无法用上述方法恢复的立即数即为不合法数据。 究其根本,是机器指令编码长度有限造成的。 (2分) 得 分

4. (8分)请从硬件设计开销和性能方面比较微码结构与随机逻辑结构

【参考答案】

- 1. 硬件设计开销方面:
- 随机逻辑 CPU 的硬件和指令集必须同步进行设计和优化,因此比较复杂。(2分)
- 微码 CPU 的指令集并不直接影响现有硬件,修改指令集并不需要重新设计新的硬件。(2分)
- 2. 性能方面:
- 如果采用相同指令集,则随机逻辑 CPU 操作会更快。

(2分)

● 如果执行相同的计算任务,微码 CPU 能够通过使用更少的指令达到更高性能。当系统整体 受限于存储器的速度时,微码 CPU 对性能提高的优势更加明显。 (2分)

得 分

5. (6分)简述总线仲裁的两种方式及其特点。

【参考答案】

1. 分布式(对等式)仲裁

(3分)

控制逻辑分散在连接于总线上的各个部件或设备中,协议复杂且昂贵,效率高;

2. 集中式(主从式)仲裁

(3分)

采用专门的控制器或仲裁器;总线控制器或仲裁器可以是独立的模块或集成在 CPU 中;协议 简单而有效,但总体系统性能较低

得 分

- 6. (12 分) 某微处理器系统地址总线宽度为 16bit, 字长为 8bit, 请问:
- 1) (2分)该系统的最大寻址空间是多少?

【参考答案】 最大寻址空间为 216=64KB

2)(2分)用 SRAM2114(1K×4bits)芯片组成存储系统,若采用线选法,最大可扩充多少存储容量?

【参考答案】 可扩充存储容量为(16-10)*1KB=6KB

3)(8分)绘出相应的存储系统连接图,并写出每组的地址范围。

【参考答案】 参考原理图(低位地址线1分、数据线1分), 地址范围(每行1分);

存储组号	首地址	末地址
1	0xF800	0xFBFF
2	0xF400	0xF7FF
3	0xEC00	0xEFFF
4	0xDC00	0xDFFF
5	0xBC00	0xBFFF
6	0x7C00	0x7FFF

得 分

- 7. $(7 \, \beta)$ 下面图 $(a) \sim (b)$ 给出了在 Zynq 7020 FPGA 芯片上搭建 SoC 系统、实现流水灯显示控制实验的几个关键步骤,请据此完成下面几个问题。
 - 1) (2分) 图 (c) 中 offset address 和 high address 分别代表什么含义?

【参考答案】

这两个地址确定了各模块占用的系统地址空间, offset address 指低端地址(1分), high address 确定了高端地址(1分):

- ✓ LED 接口模块占用的系统地址空间为 0x41200000 到 0x4120FFFF
- ✓ SW 接口模块占用的系统地址空间为 0x41210000 到 0x4121FFFF
- ✓ 这两个模块均分别占用了 64k 个地址。
- 2)(4分)为图(d)中的代码①~④添加注释。
- 【参考答案】① 对 LED 口外接的 8 个 LED 灯轮流做如下处理 (1 分)
- 【参考答案】② 控制指定引脚的输出,点亮对应的 LED 灯(1分)
- 【参考答案】③ 延迟至指定时间(LED_DELAY)(1分)
- 【参考答案】④ 从 SW 口读入外接拨码开关的状态 (1分)
- 3)(1分)如想调整流水灯的闪烁速度,可修改哪一个"#define"语句?如何修改?

【参考答案】 可修改语句: #define LED DELAY 10000000

- ✓ 如想闪烁的更快,则将 LED_DELAY 的值减小;
- ✓ 如想闪烁的更慢,则将 LED_DELAY 的值加大。

惨

图 (a)

图(b)

图 (c)

```
/*流水灯功能:拨动任意一个拨码开关时,8个LED灯轮流点亮一次*/
#include"xparameters.h"
#include"xgpio.h"
#include"xil_printf.h
#include"xil_cache.h"
#define GPIO_BITWIDTH 8
#define GPIO_LED_DEVICE_ID 0
#define GPIO_SW_DEVICE_ID 1
#define LED_DELAY 10000000
#define LED_MAX_BLINK 1
#define LED_CHANNEL 1
#define printf xil_printf
XGpio GpioOutput;
XGpio GpioInput;
u32 flag=0;
u32 DataRead;
int Gpio_led(u16 Deviceid,u32 Gpio_Width)
   volatile int delay;
   u32 Ledbit;
   u32 Ledloop;
   int status;
   status = XGpio_Initialize(&GpioOutput,Deviceid);
   if(status !=XST_SUCCESS)
        return XST_FAILURE;
   XGpio_SetDataDirection(&GpioOutput,LED_CHANNEL,0x0);
                                                                            for(Ledbit =0x0;Ledbit < Gpio_Width;Ledbit++)</pre>
        for(Ledloop=0x0;Ledloop<LED_MAX_BLINK;Ledloop++)
             XGpio_DiscreteWrite(&GpioOutput,LED_CHANNEL,1<<Ledbit);
             for(delay=0;delay<LED_DELAY;delay++);</pre>
             XGpio_DiscreteClear(&GpioOutput,LED_CHANNEL,0x00);
             for(delay=0;delay<LED_DELAY;delay++); }</pre>
   return XST_SUCCESS; }
u32 Gpio_sw(u16 Deviceid,u32 *DataRead)
  int Status;
  Status = XGpio_Initialize(&GpioInput, Deviceid);
   if (Status != XST_SUCCESS)
        return XST_FAILURE;
   XGpio_SetDataDirection(&GpioInput, LED_CHANNEL, 0xFFFFFFF);
                                                                           *DataRead = XGpio_DiscreteRead(&GpioInput, LED_CHANNEL);
   u32 data;
   data=*DataRead;
  return data;
int main()
  while(1)
       flag =Gpio_sw(GPIO_SW_DEVICE_ID, &DataRead);
       if(flag == 0)
           u32 status;
            status = Gpio_led(GPIO_LED_DEVICE_ID,GPIO_BITWIDTH);
            if(status==0)
                  printf("SUCCESS.\r\n");
                 printf("FAIL.\r\n");
            else
       else
             u32 Ledbit;
            for(Ledbit =0x0;Ledbit < GPIO_BITWIDTH;Ledbit++)
               XGpio_DiscreteClear(&GpioOutput,LED_CHANNEL,0x00); }
}
```