Answers prepared by Leong Yee Pak

Forces

5.1 Types of force

- **1 June 02 P1 Q12 D Weight = upthrust + viscous drag
- **2 June 02 P1 Q14 C Uptrhurst = resultant force due to liquid. Force on top surface downwards= p_t A. Force on bottom surface upwards = p_b A. Find resultant
- *3 June 04 P1 Q12 C
- *4 Nov 06 P1 Q13 B
- **5 June 08 Q12 A
- *6 June 08 Q15 D
- *7 June 09 P2 Q11 B

5.2 Equilibrium of forces

- ***1 June 02 P1Q15 D Find the resultant of the 2 perpendicular forces. Then find the resultant of the 3 forces.
- ***2 Nov 02 P1 Q15 D Find the resultant of any 2 forces using parallelogram method. Compare it with the third force.
- **3 June 03 P1 Q14 B Resultant force vertically = 10000 9000 N
- **4 June 03 P1 Q15 A Air resistance increases with velocity until it is equal to mg. Resultant force decreases until it is 0.
- **5 Nov 03 P1 Q15 B From Newton's 2nd law, F = ma
- ***6 Nov 03 P1 Q16 D Sketch the triangle of forces reasonably accurately and compare their length.
- *7 June 04 P1 Q14 B For equilibrium, tip-to-tail rule applies. The forces must follow one after another and must closed.
- ***8 June 05 P1Q12** C same as in Q12
- ***9 June 05 P1 Q14 D Resultant of the two perpendicular forces 3 N and 4 N = 5 N upwards and to the right. Then combined with the 4 N force.
- *10 June 06 P1 Q13 D

**11 Nov 06 P1 Q15 C resultant of the 3 forces.

Find the resultant of the two 10 N upwards and then find the

*12 June 07 P1 Q13 C

***13 June 08 P1 Q13 A Force in ZX is tension, force in YZ is compressive.

**14 June 09 P2 Q12 D

Section B

June 06 P2 Q2

0 411			A 4 4	
2	(a)	(i) point at which whole weight of body may be considered to act	M1 A1	[2]
		(ii) sum of forces in any direction is zero sum of moments about any point is zero	B1 B1	[2]
	(b)	either: T and W have zero moment about P so F must have zero moment, i.e. pass through P	M1 A1	[2]
	(c)	or: if all pass through P, distance from P is zero for all forces (M1) so sum of moments about P is zero (A1) (i) $F\cos\alpha = T\cos\beta$	B1	[1]
		(ii) $W = F\sin\alpha + T\sin\beta$	B1	[1]
		(iii) $2W = 3T\sin\beta$	B1	[1]

5.3 Centre of gravity

5.4 Turning effects of forces

Section A

**1 June 02 P1 Q13

C Perpendicular distance between forces = $0.30 \text{ x} \sin 50^{\circ}$. Torque = magnitude of one force x perpendicular distance between forces. Or Resolve force perpendicular to rod and parallel to rod, and calculate torque.

*2 Nov 02 P1 Q13 A Couple = 2 parallel forces, opposite in direction and equal in magnitude whose lines of action do not coincide

***3 Nov 02 P1 Q14 C Taking moment about the pivot, resultant moment = $20 \times 60 - 100 \times 10$ = 200 g cm anticlockwise. For equilibrium, a clockwise moment of 200 g cm has to apply. Hence, $200 = 50 \times x = 4 \text{ cm}$. Hence mark = 40 + 4 = 44 cm

**4 June 03 P1 Q13 D

**5 Nov 03 P1 Q14 B Torque due to a couple = magnitude of one force x perpendicular distance between forces.

***6 June 04 P1 Q13 A Uniform rod: C.G. is at the mid-point. Taking moment about the pivot, W $\times 1.0 = 50 \times 0.5$

**7 June 05 P1 Q13 B Uniform rod: C.G. is at the mid-point. Taking moment about the pivot, W x $1.25 = 300 \times 2.5$

*8 June 05 P1 Q14 C

**9 Nov 05 P1 Q13 A

***10 June 06 P1 Q14 B moment = $(F \cos \theta) d$

***11 June 06 P1 Q15 B Resultant moment = $200 \times 0.8 - 300 \times 0.4 = 40$ Nm clockwise

**12 Nov 06 P1 Q14 B torque due to couple = $F \times (2r)$

**13 June 07 P1 Q14 C moment = $F \times d$. For F minimum, d is maximum = 0.80 m. $12 = F \times 0.8$

***14 June 08 P1 Q14 A Taking moment about the top of ladder, Wa + Fh = W (2a)

*15 Nov 08 P2 O14 A

***16 June 09 P2 Q13 B For equilibrium, clockwise torque = anti-clockwise torque.

 $F \times 1.20 = 900 \times 0.20$

Section B

June 02 P2 Q3

3	(a)	ma	y be g		Ml Al	[2]
	(b)	(i) (ii) (iii)	posi clea e.g.	tion nearer A than B or indication about which point moments are taken $950 \times x = 380 \times 1.7$ x = 68 cm	B1 B1 B1 C1 C1 A1	[6]
No	v 0	3 P2	Q3			
3	(a)		force x perpendicular distance		[2]
	(b)		no resultant force (in any direction)		[2]
	(c) ((i)	correct direction in both	I	[1]
		((ii)1	moment = 150 x 0.3 = 45 N m (1 sig. fig1)	1	
		((ii)2	torque = 45 N m i.e. same is (i)A1	1	
_	,		(ii)3	45 = 0.12 x T		[4]
Ju	ne ()4 P2				
5	(a)		(i) (ii)	distance = $2\pi nr$ work done = $F \times 2 \pi nr$ (accept e.c.f.)	B1 B1	[2]
	(b)		total work done = $2 \times F \times 2\pi nr$ but torque $T = 2Fr$ hence work done = $T \times 2\pi n$	B1 B1 A0	[2]

(c) power = work done/time (=
$$470 \times 2\pi \times 2400$$
)/60)
= 1.2×10^5 W A1 [2]
Total

Nov 05 P2 Q2 (a) The point at which the whole weight of the body is considered to act.

(b) There is a perpendiular distance from the pivot to the C.G. Hence the weight creates an anticlockwise moment about the pivot, and the carboard wil move down in anticlockwise direction. A and will oscillates. After the oscillation stops, the C.G is vertically below the pivot and the perpendicular distance from the pivot to the weight = 0. Moment about pivot = 0.

Nov 08 P2 Q3

			Anothering	THE STATE OF THE S	ABOURD VERNERAL VERNERAL	
3	(a)	moment:	force × perpendicular distance		M1	
			of force from pivot / axis / point		A1	
		couple:	(magnitude of) one force × perpendicular distance		M1	
			between the two forces		A1	[4]
		(penalise t	the 'perpendicular' omission once only)			
				40000		

(b) (i)
$$W \times 4.8 = (12 \times 84) + (2.5 \times 72)$$
 C1
 $W = 250 \text{ N} (248 \text{ N})$ A1 [2]

(ii) either friction at the pivot or small movement of weights B1 [1]

June 09 P2 Q3