(1) Short-answer questions

[2pts. each]

(a) Define sets A and B to be:

$$A = \{ n \in \mathbb{Z} : -3 < n^2 < 3 \} \ \text{ and } \ B = \{ m \in \mathbb{N} : 10 < 24 - 5m \}.$$

<u>List</u> all the elements in the following sets:

•
$$A \times B = \{(0,1), (0,2), (1,1), (1,2), (-1,1), (-1,2)\}$$

(b) Let $f:A\to B$ be a function. Is the following statement True or False? Justify.

$$f(C) \cap f(D) \subseteq f(C \cap D)$$
 for any $C, D \subseteq A$.

$$(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})(\underline{y+x=2} \Rightarrow \underline{x<0})$$
 Thue .

(2) Let X and Y be sets in some universe U. Prove:

[4 pts.]

If $X \subseteq Y$, then $X \cup (Y \setminus X) = Y$.

See Gla solutions.

(3) Let x and y be real numbers. Prove the statement

[4 pts.]

If $x^2 + 2y^2 > 1$, then $x \neq 1$ or $y \neq 0$.

using its contrapositive.

Proof. Let $p: x^2+2y^2>1$, $6: x \neq 1$ or $y \neq 0$.

then $7p: x^2+2y^2 \leq 1$, 76: x = 1 and y = 0.

We need to prove $p \Rightarrow 6$, using its contrapositive, we'll prove $76 \Rightarrow 7p$ instead.

Let $x \neq 1$ and $y \neq 0: x^2+2y^2=1^2+2\cdot0^2=1 \leq 1$.

So $762 \Rightarrow 7p$, As a result, $p \Rightarrow 6$, in other words.

If $x^2+2y^2>1$, then $x \neq 1$ or $y \neq 0$.

(4) Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ be defined by

[4 pts.]

$$f(a,b) = a(a+1)b.$$

Let $E = \{2k : k \in \mathbb{N}\}$ be the set of even natural numbers. Prove that $f(\mathbb{N} \times \mathbb{N}) = E$.

See 01a, 14).