Equivalence in Sets

ZPRAC-16-17-Lab5

[30 Points]

Consider an array A of size N containing the first N whole numbers (0, 1, 2, ... N-1) as its elements (in some order). Notice that any element A[i] of this array will also be a whole number from 0 to N-1. Given a particular array A of size N, we define a subset $S \subseteq \{0, 1, ... N-1\}$ to be an equivalence set if for every $i \in S$, A[i] $\in S$. Given a number k in S, find the size of the smallest equivalence set containing k.

Input Format:

First line contains N and k, where N is the size of array A.

Second line contains N space separated integers, which are a permutation of $S = \{0, 1, ..., N-1\}$.

Constraints:

1 < N < 1000

Output Format:

Print the size (number of elements) in the smallest equivalence set containing k.

Examples:

Input:

4 1

1203

Output:

3

Explanation:

The smallest equivalence set is $E = \{0, 1, 2\}$ because:

A[1] = 2 belongs to E

A[2] = 0 belongs to E

A[0] = 1 belongs to E

Adding A[3] = 3 to this set will also make it an equivalence set, but it will not be the smallest such set.