

FEH2G3 Elektromagnetika I

Diferensial Vektor

Program Studi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom 2014

Tujuan Pembelajaran

- 1. Mahasiswa memahami makna fisis divergensi dan curl
- 2. Mahasiswa mampu menghitung divergensi dan curl

Organisasi Materi

- o Divergensi Medan Vektor
- Curl Medan Vektor

Divergensi Medan Vektor

Fluks masuk = fluks keluar

$$\oint_{S} \vec{F} \bullet d\vec{S} = 0$$

Tidak ada sumber atau pun sink

Fluks keluar > fluks masuk

$$\oint_{S} \vec{F} \bullet d\vec{s} > 0$$

sumber

Fluks keluar < fluks masuk

$$\oint_{s} \vec{F} \bullet d\vec{s} < 0$$

sink

 Divergensi dari sebuah vektor adalah ukuran aliran fluks dari sebuah permukaan tertutup yang sangat kecil per satuan volume jika volume tersebut mendekati nol.

Div
$$\vec{F} = \lim_{\Delta v \to 0} \frac{\oint_{s} \vec{F} \cdot d\vec{s}}{\Delta v}$$

Fluks masuk

Divergensi Medan Vektor

O Divergensi suatu vektor \vec{F} jika diuraikan dalam berbagai koordinat, sbb:

Div
$$\vec{F} = \nabla \bullet \vec{F} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial (F_1 h_2 h_3)}{\partial u_1} + \frac{\partial (F_2 h_1 h_3)}{\partial u_2} + \frac{\partial (F_3 h_1 h_2)}{\partial u_3} \right)$$

Koordinat	u ₁ , u ₂ , u ₃	h ₁ , h ₂ , h ₃
Kartesian	x, y, z	1, 1, 1
Silinder	ρ, φ, z	1, ρ, 1
Bola	r, θ, φ	$1, r, r \sin \theta$

Teorema Divergensi Menghubungkan integrasi permukaan tertutup dengan integrasi volume permukaan tertutup tersebut.

$$\oint_{S} \vec{F} \cdot d\vec{S} = \int_{V} (\vec{\nabla} \cdot \vec{F}) dV$$

Curl Medan Vektor

$$\oint_c \vec{F} \cdot d\vec{l}$$

- Bentuk integral garis ini mengintegrasikan komponen tangensial sepanjang kontur c.
 - Jika \vec{F} mewakili sebuah medan gaya \rightarrow integral garis secara fisis merupakan usaha yang dilakukan oleh vektor \vec{F} .
 - $\oint_{c} \vec{F} \cdot d\vec{l} = 0 \rightarrow \vec{F}$ konservatif atau tidak berotasi.
 - $\oint_{c} \vec{F} \cdot d\vec{l} \neq 0 \rightarrow \vec{F} \text{ disebut}$ memiliki sifat rotasi

Penjelasan rotasi

Curl Medan Vektor

 Rotasi curl meter menunjukkan adanya ketidakseragaman kecepatan arus aliran air dekat permukaan sungai

- Dari analogi curl meter didapat kesimpulan:
 - Rotasi terjadi jika adanya ketidakseragaman medan vektor
 - Jumlah rotasinya bergantung secara proporsional pada derajat ketidakseragaman medan vektor
 - Rotasi tidak dapat digambarkan hanya dengan jumlah rotasi tapi juga dengan arah rotasinya.
- Jadi pusaran vektor \vec{F} didefinisikan sbb:

$$\operatorname{curl} \vec{F} = \lim_{\Delta s \to 0} \frac{\oint_{c} \vec{F} \cdot d\vec{l}}{\Delta s} \vec{a}_{F}$$

Curl Medan Vektor

O Pusaran suatu vektor \vec{F} jika diuraikan dalam berbagai koordinat, sbb:

$$\operatorname{Curl} \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\ h_2 h_3 & h_1 h_3 & h_1 h_2 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 F_1 & h_2 F_2 & h_3 F_3 \end{vmatrix}$$

Koordinat	u ₁ , u ₂ , u ₃	h ₁ , h ₂ , h ₃
Kartesian	x, y, z	1, 1, 1
Silinder	ρ, φ, z	1, ρ, 1
Bola	r, θ, φ	$1, r, r \sin \theta$

Teorema Stoke

Menghubungkan integral garis pada kontur tertutup dengan integral permukaan yang dibentuk oleh kontur tertutup tersebut.

$$\oint_{c} \vec{F} \bullet d\vec{l} = \int_{s} (\nabla \times \vec{F}) \bullet d\vec{s}$$

