IPv4 адресация <u>с</u> класове (classful addressing): <u>Подмрежи и супермрежи</u>

1

5

2

4

IPv4: Използване на подмрежи

- Позволява разделяне на IPv4 мрежа на няколко части за вътрешна употреба
 - Делението не се вижда извън мрежата
 - Мрежата съществува като едно единно цяло за външния свят (Интернет)
- Локален проблем

9

11

- Формирането на нова подмрежа не изисква разрешение от ICANN
 Internet Corporation for Assigned Names and Numbers
- Не изисква промяната на външни бази данни
 - Само локалните маршрутизатори (на организацията) трябва да бъдат правилно конфигурирани
- Позволява произволна комплексност на взаимносвързани локални мрежи в рамките на организацията
- Скрива за останалия Интернет нарастването на броя на IP мрежите в него и съпътстващите усложнения по маршрутизацията.
- Намаляване размера на маршрутизиращите таблици на локалните маршрутизатори
- Улеснява мрежовото администриране
 - Например, добавяне, разместване, премахване на хостове и др.

Позволява лесно филтриране на ІР пакети

IPv4 подмрежи: Пример

Мрежа, използваща IPv4 адресен блок от клас C, трябва да се раздели на 6 подмрежи с еднакъв размер.

Да се намери **подмрежовата маска** и **адресният диапазон** на всяка подмрежа.

Решение: $2^2 < 6 < 2^3$

=> Необходими са **3** бита за адресиране на подмрежите.

10

	Special addresses hostid all 0s	Прим използн	Special addresses hostid all 1s		
0 subnet	X.Y.Z.0	X.Y.Z.1	•••	X.Y.Z.30	X.Y.Z.31
st subnet	X.Y.Z.32	X.Y.Z.33	• • •	X.Y.Z.62	X.Y.Z.63
2nd subnet	X.Y.Z.64	X.Y.Z.65	•••	X.Y.Z.94	X.Y.Z.95
	:				:
oth subnet	X.Y.Z.192	X.Y.Z.193	•••	X.Y.Z.222	X.Y.Z.223
7th subnet	X.Y.Z.224	X.Y.Z.225		X.Y.Z.254	X.Y.Z.255

Using all-zeros subnet (subnet 0) and all-ones subnet (subnet 7):
RFC1878 states: "The practice of excluding all-zeros and all-ones subnets is obsolete. Modern software will be able to utilize all definable networks." Today, the use of subnet zero and the all-ones subnet is generally accepted and most vendors support their use. However, on certain networks, particularly the ones using legacy software, the use of subnet zero and the all-ones subnet can lead to problems.

14

Default mask	Network address	Next hop address
255.255.255.0 255.255.255.0	X.Y.32.0 X.Y.33.0	
255.255.255.0 255.255.255.0	X.Y.34.0 X.Y.35.0	
:	:	:
Default mask	Network address	Next hop address
255.255.252.0	X.Y.32.0	:
	255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 . Routing table	255.255.255.0 X.Y.32.0 255.255.255.0 X.Y.33.0 255.255.255.0 X.Y.34.0 255.255.255.0 X.Y.35.0 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴

Супермрежова маска <u>срещу</u> подмрежова Netid маска 11111111 11111111 11111111 00000000 Netid Subnetid Hostid 11000000 11111111 11111111 11111111 a. Subnetting 4 subnets out of подмрежова маска: 255.255.255.192 Netid 11111111 11111111 11111111 00000000 Supernetid Hostid 11111111 11111111 00000000 11111100 b. Supernetting I supernet out супермрежова маска: 255.255.252.0

ф. Иван

16

IPv4 супермрежа: Пример 1

- Каква супермрежова маска е необходима за формирането на супермрежа, състояща се от 16 блока от клас С?
- Решение:

15

- $-3a16=2^4$ блока, **4** единици в маската по подразбиране трябва да се променят на нули.
- T.e. 11111111 11111111 1111<mark>0000</mark> 000000000
- =>супермрежова маска е: 255.255.240.0
- Задаване/определяне на супермрежата:
 - Начален адрес (1. адрес в блока): X.Y.32.0
 - Супермрежова маска: 255.255.240.0

IPv4 супермрежа: Пример 2

- Супермрежа има начален адрес X.Y.32.0 и супермрежова маска 255.255.252.0. Маршрутизатор получава 2 пакета с адрес на получателя X.Y.33.4 и X.Y.39.12 съответно. Кой пакет е предназначен за супермрежата?
- Решение: За всеки от адресите се прилага логическо И (AND) със супермрежовата маска, за да се определи началният адрес:
 X.Y.33.4 AND 255.255.252.0 → X.Y.32.0 (начален адрес на супермрежата)

 $X.Y.39.12 \text{ AND } 255.255.252.0 \rightarrow X.Y.36.0$

xxxxxxx	ууууууу	00100001	00000100	XXXXXXXX	ууууууу	00100111	00001100
шшш	пппп	111111100	00000000	ШШП	шшш	11111100	00000000
xxxxxxxx	ууууууу	00100000	00000000	xxxxxxxx	ууууууу	00100100	00000000

17 18

IPv4

адресация <u>без</u> класове
(classless addressing):
Подмрежи и супермрежи

IPv4 адресация без класове

- Разделяне на IPv4 адресното пространство на класове е негъвкаво решение
 - За повечето корпоративни мрежи: блок от клас А е твърде голям, а блок от клас С е твърде малък.
 - Проблем известен като "Златокоска и трите мечета"
 - Някои мрежи от клас В имат значително по-малко на брой хостове, отколкото максималния размер на блока!
 - Милиони адреси се прахосват по цял свят!
- Решение:
 - Използване на *адресиране без класове*
 - Т.е. блокове с променлива дължина, непринадлежащи към никакъв клас.

19 20

IPv4 адресация без класове (прод.)

- На всяка корпорация/организация се предоставя блок, съответстващ на размера на мрежата ѝ.
- Броят на адресите в блока (N) трябва да бъде степен на двойката, т.е. $N=2^x$
- Началният адрес трябва да се дели на N без остатък!
 - Ако № < 256 адреса, 4. байт на началния адрес трябва да се дели без остатък на №, защото № 28 < 28 = 256 ⇒ x < 8.
 - Например, 205.16.37.32 може да бъде начален адрес на блок, състоящ се от 2, 4, 8, 16 или 32 адреса.

 - Ако 2^{24} > $N(=2^x)$ > 2^{16} адреса, $\frac{2.$ байт на началния адрес трябва да се дели без остатък на 2^{x-16}
- Ако 2^{32} > $(N=2^x)$ > 2^{24} адреса, $\frac{1}{1}$. байт на началния адрес трябва да се дели без остатък на 2^{x-24}
- На всяка организация се предоставя начален адрес и префикс

Нотация с наклонена черта (slash notation) Network Host • A.B.C.D/n n bits /n Броят на битовете, които са едни и същи във всеки адрес на даден блок. Префикс, което показва дължината (в битове) на NetID. Диапазон: от 1 до 31 Използва се в CIDR Classless Inter-Domain Routing Маршрутизиращите таблици се претърсват до намирането на *най-дълъг съвпадащ префикс* Необходимост от бързи алгоритми за претърсване! Възможни начини за миграция към адресиране без класове за организация, която вече е получила блок от клас $A,\,B,\,C$: Ако иска да си задържи блока, организацията може да използва нотация с наклонена черта (/ 8, /16, /24). Ако не иска повече този блок, организацията може да поиска рециклирането му и получаването на нов блок с подходящ размер

IPv4 адресация без класове: Пример 1

- На организация/корпорация е даден блок с начален адрес 205.16.37.24/29. Кой е диапазонът от адреси?
- <u>Решение 1</u>:

21

- **Началният адрес** e 205.16.37.24/29 = 11001111 00010000 00100101 00011000
- За да се определи последният адрес в блока, трябва да се запази значението на първите 29 бита, а последните 3 бита да се заменят с двоични единици.
- *Последният адрес* е:
- 11001111 00010000 00100101 00011111 или 205.16.37.31/29
- Т.е. блокът се състои от 8 адреса
- Решение 2:
 - − Определя се суфиксът: 32-29=3
 - ⇒ блокът се състои от 2³=8 адреса
 - Ако началният адрес е 205.16.37.24/29, тогава последният адрес е 205.16.37.31/29
 (тъй като диапазонът 24-31 обхваща 8 адреса).

IPv4 адресация без класове: Пример 2

- На организация/корпорация ѝ е нужен блок, състоящ се от 1000 адреса. Какви са оптималният размер на блока и възможният диапазон от адреси?
- Оптималният размер на блока е равен на наймалкото число, представляващо степен на двойката, което е по-голямо или равно на 1000, т.е. $1000 \le 1024 \ (=2^{10})$.
- => префикс n = 32 10 = 22
- Например на организацията/корпорацията може да бъде предоставен блок с начален адрес 18.14.12.0/22

(00010010.00001110.00001100.000000000)

- ✓ 3. байт трябва да се дели без остатък на 2¹⁰⁻⁸ = 4
- Последният адрес в блока е 18.14.15.255/22 (00010010.00001110.00001111.11111111)

þ. Иван

4

Формиране на подмрежи при IPv4 адресация без класове

- Когато на дадена организация/корпорация е предоставен блок от IP адреси, тя може да си създаде подмрежи за удовлетворяване на собствените нужди.
- Префиксът (*n*) се увеличава със съответна степен на двойката, която формира наймалкото число, което е по-голямо или равно на броя на подмрежите.
- Пример:
 - Ако n=26 и организацията/корпорацията се нуждае от 4 подмрежи, то:
 - $-4 \le 2^2$ => префиксът за подмрежите ще е 26+2=28

Подмрежи при IPv4 адресация без класове: Пример Дадена организация разполага с блок адреси 130.34.12.64/26. Организацията се нуждае от 4 130.34.12.96/28 130.34.12.97/28 подмрежи с еднакъв размер. Да се определи префиксът на подмрежите и диапазонът на адресите им. 130.34.12.113/2 130.34.12.81/28 на аоресите ты... Решение:
Тъй като организацията се нуждае от 4≤2² subnets, префиксът на подмрежите е 28=2+26. Суфиксът на подмрежите е 4=32-28. Следователно всяка подмрежа има 16=2⁴ адреса:

"Поммежа 0: от 130.34.12.64/28 130.34.12.80/28 130,34,12,64/28 Подмрежа 0: от 130.34.12.64/28 до 130.34.12.79/28 Подмрежа 1: от 130.34.12.80/28 до 130.34.12.95/28 Site: 130,34,12,64/2 <u>Подмрежа 2:</u> от 130.34.12.96/28 до 130.34.12.111/28 To and from the Подмрежа 3: от 130.34.12.112/28 до 130.34.12.12/28 rest of the Internet

26

25

Разпределяне на ІР адреси

ICANN

- Internet Corporation for Assigned Names and Numbers
- Носи отговорност за разпределяне на адресите
- Обикновено не разпределя адреси директно към отделните организации
- Раздава големи блокове от адреси на Интернет доставчиците (ISP)
- Т.е. използва принципа на обединение на адреси (address aggregation)
- Интернет доставчици
 - Разделят по подходящ начин предоставените им блокове на по-малки блокове
 - Раздават малките блокове на своите клиенти / организации

30

Разпределяне на IP адреси: Пример

- На ISP е предоставен блок, започващ с 190.100.0.0/16, който трябва да се раздели за използване между 3 групи клиенти:
 - 1. група: 64 клиента, всеки имащ нужда от <u>256=28</u> адреса
 - <u>2. група</u>: 128 клиента, всеки имащ нужда от <u>128=2</u>7 адреса
 - <u>3. група</u>: 128 клиента, всеки имащ нужда от <u>64=2</u>⁶ адреса
- Да се определи диапазонът на блоковете и дали ще останат свободни адреси за бъдещо използване (и колко точно)!

Решение: Група 1

- Всеки от 64-те клиента в тази група се нуждае от 256 адреса
- Това означава, че log₂256=8 бита са необходими за адресиране на хостовете
- => Префикс n = 32-8 = 24
- Адресите се разпределят по следния начин:

1st Customer: 190.100.0.0/24 190.100.0.255/24
2nd Customer: 190.100.1.0/24 190.100.1.255/24
...
64th Customer: 190.100.63.0/24 190.100.63.255/24
Total = 64 × 256 = 16,384

ф. Иван

5

Решение: Група 2

- Всеки от 128-те клиента в тази група се нуждае от 128 адреса
- Това означава, че log₂128=7 бита са необходими за адресиране на хостовете
- => Префикс n = 32-7 = 25
- Адресите се разпределят по следния начин:

1st Customer: 190.100.64.0/25 190.100.64.127/25 2nd Customer: 190.100.64.128/25 190.100.64.255/25 ...

128th Customer: 190.100.127.128/25 190.100.127.255/25 Total = 128 × 128 = 16,384

33

Бо and from the Internet Брой на адресите, предоставени на ISP от ICANN: 2¹⁶ = 65536 Брой на адресите, предоставени на Клиентите от ISP: 16384+16384+8192 = 40960 Брой на свободните адреси: 65536 − 40960 = 24576 Figure 3.9 Брой на свободните адреси: 65536 − 40960 = 24576 Figure 3.9 Сиstomer 001: 190.100.02.02.25 Сизтомег 128: 190.100.128.0/26 Сизтомег 128: 190.100.159.192/26

35

Решение: Група 3

- Всеки от 128-те клиента в тази група се нуждае от 64 адреса
- Това означава, че $\log_2 64=6$ бита са необходими за адресиране на хостовете
- => Префикс n = 32-6 = 26
- Адресите се разпределят по следния начин:

 1st Customer:
 190.100.128.0/26
 190.100.128.63/26

 2nd Customer:
 190.100.128.64/26
 190.100.128.127/26

 ...
 128th Customer:
 190.100.159.192/26
 190.100.159.255/26

 Total = 128 × 64 = 8192