DATA.STAT.840 Statistical Methods for Text Data Analysis Exercises for Lecture 4: Vector spaces and document clustering Answered to problems 4.1(a,b only), 4.3

4.3

EM is supposed to optimize log(p(X10))
EM updates parameters & such that?
$P(X \underline{\Theta}_{t},n) \geq P(X \underline{\Theta}_{t})$
$Q_3 \log(P(X \mid \Theta_{t+1})) = \log(P(X \mid \Theta_t)) = 0 - b$
b) $E_{z xe}[a-b] = a-b$, Since z dosen't appear in subtraction
$Colog(P(X \underline{6}_{+1})) - log(P(X \underline{6}_{+}))$
$= \log \left(\frac{P(X \mid \Theta t + 1) P(Z \mid X, \Theta t + 1)}{P(Z \mid X, \Theta t + 1)} - \log \left(\frac{P(X \mid \Theta t) P(Z \mid X, \Theta t)}{P(Z \mid X, \Theta t)} \right)$
$= \frac{1}{2} \left[\log \frac{P(X \mid \underline{\theta} t+1) Q(Z \mid X, \underline{\theta} t+1)}{P(Z \mid X, \underline{\theta} t+1)} - \log \frac{P(X \mid \underline{\theta} t) P(Z \mid X, \underline{\theta} t)}{P(Z \mid X, \underline{\theta} t+1)} \right]$
$= \frac{\sum \left(\alpha \frac{\rho(Z(X,\theta t+1))}{\rho(Z(X,\theta t+1))} - \alpha \frac{\rho(Z(X,\theta t))}{\rho(Z(X,\theta t))} \right) \rho(Z(X,\theta t))}{\rho(Z(X,\theta t))}$
$= \sum_{P(Z X,Gt)} O_{Q} \frac{P(X G_{th})P(Z X,G_{th})}{P(Z X,G_{th})} - \sum_{P(Z X,G_{t})} O_{Q} \frac{P(X G_{t})P(Z X,G_{t})}{P(Z X,G_{t})} = 0$
$\int \rho(z x,\theta_t) \alpha \frac{\rho(x \theta_{t+1})\rho(z x,\theta_{t+1})}{\rho(z x,\theta_{t+1})} = \int \rho(z x,\theta_t) \alpha \frac{\rho(z,x \theta_{t+1})}{\rho(z x,\theta_{t+1})}$
=) o(z x,0+) logp(z,x,6+1) - > p(z x,0+) logp(z x,0+1)
$= Q(\Theta_{\xi+1} \Theta_{\xi}) - Z_{\rho}(Z X,\Theta_{\xi}) \log \rho(Z X,\Theta_{\xi+1})$
$ = Q(\theta_{t+1} \theta_{t}) - \sum_{Q(Z X,\theta_{t})} Q(Z X,\theta_{t}) - (Q(\theta_{t} \theta_{t}) - \sum_{Q(Z X,\theta_{t})} Q(Z X,\theta_{t})) $
$= Q(\theta_{t_{11}} \theta_{t}) - Q(\theta_{t} \theta_{t}) - \sum_{\rho}(Z X,\theta_{t}) o_{S}\rho(Z X,\theta_{t_{11}}) + \sum_{\rho}(Z X,\theta_{t}) o_{S}\rho(Z X,\theta_{t})$
$C = \sum_{i} \rho(z x,\theta_{i}) \left[\log \rho(z x,\theta_{i}) - \log(z x,\theta_{i}) \right]$
$= \sum_{i} O(Z[X_i, \theta_i]) O(Z[X_i, \theta_{i+1}))$

 $\begin{array}{c} \text{Col} \ \text{V:} \ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Ze}(\text{Z}|\text{X}, \theta \epsilon) | \text{Ge}(\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{X}, \theta \epsilon) | \text{Ge}(\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{X}, \theta \epsilon h),} - \text{Igg}(\text{X}|\theta \epsilon) \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{Z}|\text{X}, \theta \epsilon h),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{Z}|\text{Z}) + \text{Qe}(\text{Z}|\text{Z}) + \text{Qe}(\text{Z}|\text{Z}) + \text{Qe}(\text{Z}|\text{Z}),} \\ \text{Q}(\theta + 1 | \theta \epsilon) - \text{Q}(\theta \epsilon | \theta \epsilon) + \text{Qe}(\text{Z}|\text{Z}) + \text{Qe}$