Automatentheorie

Eigenschaften endlicher Automaten

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 2.Aufl. Springer Vieweg 2014;
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.; Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006

- Eigenschaften endlicher Automaten
- Produktautomat
- Pumping-Lemma
- Entscheidungsprobleme
- Reguläre Ausdrücke und Sprache
- Äquivalenz der regulären Sprachen mit den regulären Ausdrücken.

- Seien L_1 und L_2 reguläre Sprachen über das Alphabet Σ . Dann sind auch die Sprachen L mit folgenden Eigenschaften regulär:
 - $\blacksquare L = L_1 \cup L_2, L_1 \cap L_2, L^c$
 - \blacksquare L = L₁•L₂ und
 - \blacksquare L = L₁*

Die Klasse der regulären Sprachen ist abgeschlossen unter den Mengenoperationen Vereinigung, Durchschnitt, Komplement, Konkatenation und Kleene-Stern.

Vereinigung

Automaten

- Für die Vereinigung nehmen wir 2 NDA (Nicht deterministische Automaten) mit
 - ightharpoonup NDA₁ = (Σ, S₁, δ₁, s₀₁, F₁) und
 - \rightarrow NDA₂ = (Σ, S₂, δ₂, s₀₂, F₂) und
 - $ightharpoonup S_1 = \emptyset$, D.h. die Zustände S sind verschieden.
- Die Idee ist für ein eingegebenes Wort w nicht deterministisch zu entscheiden, mit welchem Automaten man die Worterkennung durchführt.
- Def Automat ist dann:
 - NDA = $(\Sigma, S_1 \cup S_2 \cup S, \delta_1 \cup \delta_2, S, F_1 \cup F_2)$ und die beiden Startzustände s_{01} und s_{02} werden von einem neuen Startzustand S bedient.
 - die zugehörige Überführungsfunktion δ ist dann, die Vereinigung der beiden Überführungsfunktionen δ₁ und δ₂ :
 - δ von neuen Startzustand ergibt sich zu:
 - $\delta(S,a) = \{s_{01}\}\$ falls $\delta_1(s_{01},a) = \{s_{01}\}\$ und $\delta(S,a) = \{s\}\$ für alle $\delta_1(s_{01},a) = \{s\}\$
 - \bullet $\delta(S,a) = \{s_{02}\}\$ falls $\delta_1(s_{02},a) = \{s_{02}\}\$ und $\delta(S,a) = \{s\}\$ für alle $\delta_1(s_{02},a) = \{s\}\$

Aufgabe Vereinigung

- Das Alphabet sein {a,b,c}. Geben Sie den Graphen und die Überführungsfunktion für folgende Automaten an.
 - Erstellen Sie einen optimalen Automaten, der sowohl die Zeichenfolge "ab" als auch die Zeichenfolge "abb" am Schluss akzeptiert
 - Erstellen Sie einen optimalen Automaten, der die Zeichenfolge "cc" im Wort als auch die Zeichenfolge "acb" am Schluss akzeptiert

Komplement

Automaten

- Für das Komplement nehmen wir einen DEA (deterministischer endlicher Automaten) mit DEA = $(\Sigma, S, \delta, s_0, F)$ und vollständiger Übergangsfunktion.
- Die Idee ist, alle Zustände, die bisher keine Endzustände waren, werden Endzustände, und die Endzustände werden normale Zustände.

Aufgabe Komplement

- Das Alphabet sein {a,b,c}. Geben Sie den Graphen und die Überführungsfunktion für folgende Automaten an.
 - Erstellen Sie einen Automaten, der die Zeichenfolge "abb" am Schluss nicht akzeptiert
 - Erstellen Sie einen Automaten, der die Zeichenfolge "cc" im Wort nicht akzeptiert

Durchschnitt

Automaten

- Der Durchschnitt zweier DEA zu dem gleichen Alphabet Σ mit
 - DEA₁ = (Σ, Q₁, δ₁, q₀₁, F₁) und
 - ightharpoonup DEA₂ = (Σ, Q₂, δ₂, q₀₂, F₂)
- Die Idee ist, die beiden Automaten parallel laufen lassen. Nur solche Wørte akzeptieren, die in beiden Automaten zu Endzustände führen.
- Mathematisch ist das durch ein Kreuzprodukt zu erreichen: DEA₁ X DEA₂
- \rightarrow Der Automat DEA = DEA₁ X DEA₂ ist dann:
 - **DEA**= (Σ, $q_1 X q_2$, δ, $s_{01} X s_{02}$, $F_1 X F_2$) mit
 - \bullet $\delta(\langle q_1, q_2 \rangle, a) = \{\langle s_1, s_2 \rangle \mid \text{falls } s_1 \in \delta_1(q_1, a) \text{ und } s_2 \in \delta_2(q_2, a)\}$

Durchschnitt

Automaten: Beispiel

- Automat DEA₁ (alle Worte enden auf 1)
- Automat DEA₂ (Im Wort kommt 00 vor)

- Summenautomat DEA
- Endzustände sind alle Zustände bei denen beide Automaten zuvor Endzustände hatten.

Durchschnitt

Automaten: Beispiel

- Automat DEA₁
- Automat DEA₂

Summenautomat DEA

- Summenautomat DEA
- Endzustände sind alle Zustände bei denen beide Automaten zuvor Endzustände hatten.

Aufgabe Produktautomat einzelnen Automaten

Aufgabe:

Ein DEA soll Worte über dem Alphabet $\Sigma = \{a,b,c\}$ Worte erkennen, die sowohl die Teilstrings $s_1 = cc$ als auch die Teilstrings $s_2 = ac$ enthalten.

Zuerst die beiden Teilautomaten erstellen:

Aufgabe Produktautomat einzelnen Automaten

Aufgabe:

Ein DEA soll Worte über dem Alphabet $\Sigma = \{a,b,c\}$ Worte erkennen, die sowohl die Teilstrings $s_1 = cc$ als auch die Teilstrings $s_2 = ac$ enthalten.

Zuerst die beiden Teilautomaten erstellen:

Produktautomaten Produktzustände

- Aufstellen des Produktautomaten. Mit den Produktzuständen (s_i,s_j) mit s_i von dem Automaten DEA1 und s_j von dem Automaten s_i.
- Nächster Schritt: Eintragen der Übergänge in dem Produkt-Automat.
- Der Endzustand (s₂,s₂) ist schon bestimmt. Denn es sollen ja beiden Teilstrings erkannt werden.

Produktautomat Übergangszustände

- Eintragen der Übergänge in dem Produktautomaten.
- \blacksquare Starten mit (s_0, s_0) .
 - Lesen a: $(s_0,s_0) \rightarrow (s_0,s_1)$
 - Lesen b: $(s_0, s_0) \rightarrow (s_0, s_0)$
 - Lesen c: $(s_0, s_0) \rightarrow (s_1, s_0)$
- \rightarrow Dann (s_0,s_1) .
 - Lesen a: $(s_0,s_1) \rightarrow (s_0,s_1)$
 - ► Lesen b: $(s_0, s_1) \rightarrow (s_0, s_0)$
 - Lesen c: $(s_0,s_1) \rightarrow (s_1,s_2)$
- usw. bis alle Übergänge eingezeichnet sind.

Produktautomat Übergangszustände

- Eintragen der Übergänge in dem Produktautomaten.
- \blacksquare Starten mit (s_0, s_0) .
 - ► Lesen a: $(s_0,s_0) \rightarrow (s_0,s_1)$
 - ► Lesen b: $(s_0,s_0) \rightarrow (s_0,s_0)$
 - Lesen c: $(s_0,s_0) \rightarrow (s_1,s_0)$
- \rightarrow Dann (s_0,s_1) .
 - Lesen a: $(s_0,s_1) \rightarrow (s_0,s_1)$
 - ► Lesen b: $(s_0,s_1) \rightarrow (s_0,s_0)$
 - ► Lesen c: $(s_0,s_1) \rightarrow (s_1,s_2)$
- usw. bis alle Übergänge eingezeichnet sind.
- Von (s₁,s₁) gehen nur Zustände weg, daher kann man diesen Zustand entfernen, denn (s₁,s₁) wird nie vom Startzustand aus erreicht.

Fertiger Produktautomat

Pumping-Lemma Einführung

- Es gibt recht einfach gebaute Sprachen, die nicht regulär sind.
 - L = { 1^k | mit k = 2^n und n ≥ 0 } = { 1, 11, 1111, 1^8 , 1^{16} ,}
 - $L = {0ⁿ1ⁿ | n ≥ 0} = {ε, 01, 0011, 000111, ...}$
- Wie erkennt man das?
- Ein endlicher Automat hat nur endliche viele Zustände N
- Éin Wort w mit | w | > N muss mindestens einen Zustand 2 mal erreichen. Sei z_i dieser Zustand.
- Wir zerlegen das Wort in 3 Teile u, v, w mit
 - Das Teilwort u führt vom Startzustand s₀ zu s_i
 - Das Teilwort v führt von si zu si
 - Das Teilwort w führt von si zu Endzustand se
 - $(s_0, \cup \vee w) \rightarrow^* (s_i, \vee w) \rightarrow^* (s_i, w) \rightarrow^* (s_F, \varepsilon)$
 - Da das Teilwort v immer von s_i zu s_i führt, müssen in dieser Sprache auch alle Worte mit uv^mw mit $m \ge 0$ vorkommen.

Pumping-Lemma Definition

Pumping-Lemma für reguläre Sprachen

Sei L eine reguläre Sprache. Dann existiert eine Zahl $N \ge 0$, so dass sich jedes Wort $x \in L$ mit $|x| \ge N$ in der folgenden Form schreiben lässt.

 $x = uvw mit |v| \ge 1 und |uv| \le N$,

für alle i \geq 0 gilt, dass $uv^iw \in L$ ist.

Pumping-Lemma Beispiel

- L = { 0^n1^n | $n \ge 0$ } ist nicht regulär
- Annahme L wäre regulär und $x = 0^n1^n$ mit n > N, dann muss eine Aufspaltung von x in x = uvw geben und xv^kw mit $k \ge 0$ wäre auch ein erlaubtes Wort.
 - Sei v ganz in der ersten Hälfte d.h v = 0^j mit einem j > 0 dann müssten auch die Wörter w = 0^{n-j+kj}1ⁿ ∈ L sein ⇒ Widerspruch!
 - Sei v ganz in der zweiten Hälfte d.h v = 1^j mit einem j > 0 dann müssten auch die Wörter w = 0ⁿ1^{n-j+kj} ∈ L sein ⇒ Widerspruch!
 - Sei v dazwischen mit $v=0^{l}1^{m}$ mit l,m>0, dann müssten auch die Wörter mit $w=0^{n-l}(0^{l}1^{m})^{k}1^{n-m}\in L$ mit $k\geq 0$ sein. \Rightarrow Widerspruch!
- → L ist nicht regulär.

Entscheidungsprobleme für reguläre Sprachen

- Der Zweck eines endlichen Automaten ist die Pr
 üfung, ob ein gegebenes Wort zu seiner Sprache geh
 ört. (Wortproblem)
- Auch andere Entscheidungsprobleme sind hier relevant.
- Für reguläre Sprachen können diese alle mit ja beantwortet werden.

Problem	Gegeben	Gefragt	Entscheidbar
Wortproblem	L und $w \in \Sigma^*$	Gilt w ∈ L?	Ja
Leerheitsproblem	L	Gilt L = ∅?	Ja
Endlichkeitsproble m	L	Gilt L < ∞?	Ja
Äquivalenzproblem	L ₁ und L ₂	$L_1 = L_2$?	Ja

Grenzen endlicher Automaten

- Endliche Automaten akzeptieren nur reguläre Sprachen
- Sprache wie:
 - L(P) = {vv^r | , für alle v ∈ E* } (Palindrome) mit v^r gespiegelte Version von v
 - **L**(P) = $\{a^nb^n \mid n \ge 0\}$
 - ightharpoonup L(P) = {ap | mit p eine Primzahl }
- sind nicht regulär und können von einem endlichen Automaten nicht erkannt werden.
- Erweitern der reguläre Sprache und endliche Automaten
 - kontextfreie Sprachen Typ-2-Grammatiken
 - Automaten mit einem unendlichen Speicher, der aber nur das oberste Elemente verändern kann (Stack)
 - Diese beiden Konzepte sind äquivalent

Aufgabe

Grenzen der endlichen Automaten

Zeigen Sie, dass folgende Sprachen nicht regulär sind:

- 1. $L = \{0^n \mid n \text{ ist eine Quadratzahl}\}\$
- 2. $L = \{0^n \mid n \text{ ist eine Potenz von } 2\}$
- 3. $L = \{ww \mid mit \ w \in \Sigma^* \ und \ \Sigma = \{0,1\}\}\$

Reguläre Ausdrücke

- Reguläre Ausdrücke sind beschreibende Konzepte für reguläre Sprachen.
- Die Menge der reguläre Ausdrücke über E ist die Menge der Wörter über E \cup { Λ , E, •, |, *, [,] }, die nach folgender Regeln gebildet werden.
 - Der Nulloperator Λ ist ein regulärer Ausdruck
 - Der Einsoperator E ist ein regulärer Ausdruck
 - Jedes Zeichen e ∈ E ist ein regulärer Ausdruck
 - Sind v und w reguläre Ausrücke, dann auch
 - V•W = VW
 - [v | w] (v oder w)
 - v * = vvvvv (beliebig viele v verknüpft)
- Reguläre Ausdrücke und endliche Automaten sind äquivalent

Reguläre Ausdrücke

Beispiele

- $\gamma = [0 \cdot [0 \mid 1]^*] \quad w = \{00,01,000,001,010,011,....\}$

Reguläre Sprache

- Die von einem regulären Ausdruck erzeugte Sprache ist:
 - ▶ $L(\Lambda) = \emptyset$; Λ definiert die leere Sprache
 - ▶ L(E) = $\{\epsilon\}$: L legt die Sprache fest, die nur das leere Wort enthält
 - L(a) = {a} für alle a ∈ Σ; Sprache die nur die nur das einzige Zeichen a enthält.
 - Sind v und w reguläre Ausrücke, dann auch
 - \blacksquare $L(\lor \bullet \lor\lor) = L(\lor) \bullet L(\lor\lor)$
 - \blacksquare L([\lor | \lor]) = L(\lor) \cup L(\lor)
 - **►** L(∨ ⊗) = (L(∨))*
- Beispiel: regulärer Ausdruck: γ = 0 (0+1)*
 - $L(Y) = L(O) \cdot L((O+1)^*) = L(O) \cdot (L(O+1))^* =$
 - ► L(0) (L(0) \cup L(1))*= {0}({0} \cup {1})*= {0}({0,1})* = 0(0+1)* (Notation)

Reguläre Sprachen Rechenregeln 1

Algebraische Regeln. Seien L,M,N reguläre Sprachen dann gilt:

- 1. Kommutativität und Assoziativität
 - L+M = M+L (Kommutativgesetz für die Vereinigung)
 - L•M ≠ M•L (Kommutativgesetz für die Konkatination gilt i.a nicht)
 - (L+M)+N = L+(M+N) (Assoziativgesetz für die Vereinigung)
 - (L•M) •N = L• (M•N) (Assoziativgesetz für die Vereinigung)
- 2. Identität und Vernichtung

$$\bigcirc$$
 + L= L + \emptyset = L

_ = 3_ = _3 **■**

 \blacksquare \varnothing L= L \varnothing = \varnothing

(Identität für die Vereinigung)

(Identität für die Konkatination)

(Vernichtung für die Konkatination)

- 3. Distributivgesetze
 - \blacktriangleright L•(M+N) = L•M + L•N

 $(M+N) \cdot L = M \cdot L + N \cdot L$

(Links Distributivtät der Konkatination)

(rechts Distributivtät der Konkatination)

- 4. Idempotenz
 - L+L = L

(Idempotenz der Vereinigung)

Reguläre Sprachen Rechenregeln 2

- 5. Gesetze mit dem Kleeneschen Sternoperator
 - $(L^*)^* = L^*$
 - **→** Ø* = ε
 - **3** = *3 **←**
 - **■**/ L+ = LL*
 - L* = L+ + ε
 - _ L3 = 5 + F
- 6. Weitere Folgerungen mit dem Kleeneschen Sternoperator
 - **►** (L+M)*= (L*M*)*
 - $(L^*+M)^* = (L+M)^*$
 - $(L+M)^* = L(L+M)^* + M(L+M)^* + \varepsilon$
 - $(L+M)^* = (L+M)^*LM(L+M)^* + M^*L^*$

Aufgabe

Umformen von regulären Ausdrücken

Zeigen Sie die Äquivalenz der folgenden regulären Ausdrücke:

1.
$$(0*1)*0* = 0*(10*)*$$

2.
$$(0*111)*0* = 0*(1110*)*$$

3.
$$(00)^*(\epsilon + 0) = 0^*$$

4.
$$(0+1)*0(0+1)*1(0+1)* = (0+1)*01(0+1)*$$

5.
$$(0+1)*01(0+1)* + 1*0* = (0+1)*$$

Lösung Aufgabe Umformen von regulären Ausdrücken

Zeigen Sie die Äquivalenz der folgenden regulären Ausdrücke:

1.
$$(0*1)*0* = (\epsilon + (0*1) + (0*1)(0*1) + \dots)0* = (0* + (0*1) 0* + (0*1)(0*1)0* + \dots) = 0* (\epsilon + (10*) + (10*)(10*) + \dots) = 0*(10*)*$$

- 1. (0*1)1)*0* = 0*(1110*)* wie oben vorgehen.
- 2. $(00)*(\epsilon+0) = (00)*+0(00)*=0*$ (gerade + ungerade Anzahl von 0)
- 3. (0+1)*0(0+1)*1(0+1)* = (0+1)*01(0+1)* (klar)
- 4. (0+1)*01(0+1)* +1*0* = (0+1)*

Der erste Term (0+1)*01 (0+1)* enthält alle Worte, die den String "01" enthalten. Der zweite Term 1*0* liefert die Werte, die den Substring "10" nicht enthalten, d.h. 0 ,1, ε oder eine beliebige Anzahl von 1 gefolgt von einer beliebigen Anzahl von 0. Beide Termen zusammen produzieren, daher alle möglichen Kombinationen.

Äquivalenz endliche Automaten ⇔ reguläre Ausdrücke

- Die Klasse der Sprachen, welche durch reguläre Ausdrücke erzeugt werden, sind äquivalent zu den Klassen von Sprachen, die durch endliche Automaten erzeugt werden.
- Zu zeigen:
 - J. Jede Sprache L(A) eines endlichen Automaten A kann durch die Sprache L(R) eines regulären Ausdruck R erzeugt werden.
 - 2. Jede Sprache L(R) eines regulären Ausdrucks R kann auch durch die Sprache L(A) einen endlichen Automaten A erzeugt werden.

Äquivalenz endliche Automaten ⇒ reguläre Ausdrücke

Beweisidee:

- Elimination aller Zustände bis nur noch der Start- und ein Endzustand übrig bleiben.
 - Statt einzelne Zeichen aus dem Alphabet ∑ als Übergänge zwischen 2 Zustände werden nun reguläre Ausdrücke als Übergänge zugelassen.
 - Dies erlaubt Schritt für Schritt alle innere Zustände zu entfernen.
 - Endzustände werden am Schluss entfernt.
 - Technisch führt man einen neuen Startzustand S und einen neuen Endzustand S_E ein, welche mit ε-Übergänge mit den entsprechenden Startzustand bzw. mit den entsprechenden Endzuständen verbunden sind.

endliche Automaten ⇒ reguläre Ausdrücke Beispiel

■ Beispiel: $A = (\{s_0, s_1, s_2, s_3\}, \{0, 1\}, \delta, \{s_0\}, \{s_2, s_3\})$

0,1			
	1	0,1	0,1
50	51	52	53

δ	0	1
S ₀	{s ₀ }	{s ₀ ,s ₁ }
S ₁	{S ₂ }	{s ₂ }
S ₂	{s ₃ }	{s ₃ }
s_3	Ø	Ø

Einführen eines neuen Startzustands S und eines neuen Endzustands S_F

endliche Automaten ⇒ reguläre Ausdrücke Beispiel

Übergänge in reguläre Ausdrücke umformulieren

endliche Automaten ⇒ reguläre Ausdrücke Beispiel

- Der reguläre Ausdruck R = (0+1)*1(0+1)(0+1)+ (0+1)*1(0+1) definiert alle Worte, die die Maschine akzeptiert, d.h L(R) = L(A)
- L= $(0+1)*1(0+1)((0+1+\epsilon)$ (vereinfacht)

endliche Automaten ⇒ reguläre Ausdrücke Allgemein: Elimination eines Zustandes

Eliminieren von S

ergibt:

$$S_i \xrightarrow{R_4 + R_1 (R_2)^* R_3} S_k$$

Aufgabe

Umwandeln in einen regulären Ausdruck

Wandeln Sie die Sprache des folgenden DEA in einen äquivalenten regulären Ausdruck um.

endliche Automaten ⇒ reguläre Ausdrücke weiteres Beispiel:

endliche Automaten ⇒ reguläre Ausdrücke weiteres Beispiel

Äquivalenz reguläre Ausdrücke ⇒ endliche Automaten

- Automat der
 - die leere Sprache akzeptiert

die Sprache (ε) akzeptiert

→ die Sprache {a} akzeptiert

- Sei $\alpha = \beta \gamma$
- Hintereinanderschalten von Automat B und C

- Sei $\alpha = \beta \mid \gamma$
- Parallelschalten von Automat B

Äquivalenz

Beispiel: reguläre Ausdrücke ⇒ endliche Automaten

- Sei R = (ab+a)*
- ► Formale Konstruktion

Äquivalenz

Beispiel: reguläre Ausdrücke ⇒ endliche Automaten

- Sei R = (ab+a)*
- Vereinfachte konstruktion

Aufgabe reguläre Ausdrücke

Konstruieren Sie einen deterministischen endlichen Automat der folgende Sprachen über dem Alphabet $\Sigma = \{a,b\}$ akzeptiert:

1.
$$L = (ab)^*$$

2.
$$L = (a+b)(aa)^*$$

3.
$$L = b*a(a+b)$$

Lösung

Lösung

$$L = (a+b)(aa)^*$$

Lösung

