EIA STANDARD

Ceramic Dielectric Capacitors

RS-198-B

Classes 1, 2 and 3

(Revision of RS-108-A)

October 1971

Engineering Department

ELECTRONIC INDUSTRIES ASSOCIATION

NOTICE

EIA engineering standards are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such standards shall not in any respect preclude any member or non-member of EIA from manufacturing or selling products not conforming to such standards, nor shall the existence of such standards preclude their voluntary use by those other than EIA members whether the standard is to be used either domenstically or internationally.

Recommended standards are adopted by EIA without regard to whether or not their adoption may involve patents on articles, materials, or processes. By such action, EIA does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the recommended standards.

Published by

ELECTRONIC INDUSTRIES ASSOCIATION

Engineering Department

2001 Eye Street, N.W., Washington, D.C. 20006

Electronic Industries Association 1971
All rights reserved

PRICE: \$8.00

Printed in U.S.A.

CERAMIC DIELECTRIC CAPACITORS

CLASSES 1, 2 and 3

(From EIA Standard RC-198-A and Standards Proposal No.1061, formulated under the cognizance of EIA Working Group P-2.1 on Ceramic Capacitors.)

FOREWORD

This standard is a revision and up-dating of RS-198-A covering ceramic dielectric capacitors, to provide information and rating data in accordance with the current state of the art, for several mechanical styles and three major classifications.

INDEX

Ceramic Dielectric	Capacitors	PAGE
Class 1		110
Class 3		

1.1 Scope

Components of this classification are temperature compensating ceramic dielectric, fixed capacitors of a type suited for resonant circuit application or other applications where high Q and stability of capacitance characteristics are required.

1.2 Classification

1.2.1 Type Designation

The type designation shall be in the following form, and as defined in Table 1 for Temperature Compensating and General Purpose capacitors:

1.2.2 Style

The style is identified by the two letter symbol "CC" followed by a two, three or four digit number; the letters identify the item as an ETA RS-198 part and the number identifies the shape and dimensions of the capacitors (see individual specification sheets).

1.2.3 Characteristic

The characteristic is identified by a letter-digit-letter symbol in accordance with Table I. The first letter identifies the nominal temperature coefficient, the digit identifies the multiplier and the final letter identifies the tolerance of the temperature coefficient. The temperature coefficient is expressed in parts per million per °C(ppm/°C).

1.2.4 Capacitance and Tolerance

The capacitance and tolerance are identified by 3 digits and a letter symbol in accordance with Table 1. The first and second digits identify the

first and second significant figures of the capacitance, the third digit identifies the multiplier and the letter identifies the capacitance tolerance.

1.2.4.1 Preferred Number System

Nominal capacitance and tolerances shall be chosen from the Preferred Number system by the single decade values:

<u>5%</u>	<u>10%</u> <u>20%</u>	<u>5%</u> <u>10%</u> <u>20%</u>	<u>5%</u> <u>10%</u>	20%
10	10 10	22 22 22	47 47	47
11		24	51	
12	12	27 27	56 56	
13		30	62	
15	15 15	33 33 33	68 68	68
16		36	75	
18	18	39 39	82 82	e jed
20		43	91	

1.2.5 Voltage

The voltage is identified by three digits in accordance with Table I. The first and second digits identify the first and second significant figures of the voltage and the third digit identifies the multiplier.

1.2.6 Marking

The capacitors may be marked either by typographical marking or by code, at the option of the manufacturer.

1.2.6.1 Typographical Marking

To the extent that size permits each capacitor shall show:

a) Capacitance in pF or μF and tolerance in percent or by letter designation per Table I. Through 999 will be identified in pF, above 999 in μF .

or

Type Designation in accordance with specification sheet and Table I.

	Symbol	3510
	Multi- fr fr fr fr fr fr fr fr fr fr fr fr fr	000 000 H H H H
	Voltage 1st & 2nd Significant Fig.	
	Tolerance of Capacitance Nominal 20 Nominal 10 pF 20 Nominal or Less 日の PF	# # # # # # # # # # # # # # # # # # #
950	Letter o lodmys	жорыожья
٥		年 100 100 100 100 100 100 100 10
dard.	Numerical Symbol	O4444 80
are stan	Multiplier Mote E	1 10 100 1000 10000 100000
Values shown are standard U CHARACTERISTIC	1st 2nd Significant Figure of Capacitance (pF)	
· · · · · · · · · · · · · · · · · · ·	Гетсет Зушрој	оярмахи
cc xxxx See 1.2.2. ←	Tolerance of Temp. Coeff. (See Note D) (ppm/°C)	±30 ±60 ±120 ±250 ±500(Note A) ±1000(Note B) ±2500(Note C)
	Mumerical Symbol	0400400000
Style Designation -	Multiplier to Apply to Significant Figure of Temp. Coeff.	1.10 1.100 1.10000 1.100000 1.10 1.100 1.1000 1.10000
Styl	Letter Symbol	сножаво
	nificantigure igure Temp. eff. of acitance	0.11.9.8.4.2 0.00.9.8.2.2

Use with Characteristic symbol S2 to indicate General Purpose capacitors with any nominal temp. coeff. between +100 and -750 parts per million per degree C., coefficient used to be at option of capacitor manufacturer. Note A:

Use with Characteristic symbol U2 to indicate General Purpose capacitors with any nominal temp. coeff. between +150 and -1500 parts per million per degree C. coefficient used to be at option of capacitor manufacturer. Note B:

Use with Characteristic symbol S3 to indicate General Purpose capacitors having any nominal temp. coeff. between -1000 and -5200 parts per million per degree C. coefficient used to be at option of capacitor manufacturer. Note C:

These symmetrical tolerances apply to 2 point measurement of temperature coefficient one at 25°C and one at 85°C. For tolerance including curvature see paragraphs 1.4 and 1.4.1. Note D:

Use lowest decimal multiplier to avoid alternate coding; for example, 2.0pF should be 209, NOT 020. Note E:

Tolerance of Capacitance Nominal. 10 PF Over 12% 12% 12% 13% 13% +1 5% ±10% 2.0 PF 0.1 PF Nominal 10 pF or Less # 0.5 pF ± 1.0 pF ± 0.25pF Multiplier of Capacitance 10000 0.01 Decimal 0.1 (Nee lowest possible) TYEP DESIGNATION CODE (Color Marking) 5 DOT SYSTEM 6 DOT SYSTEM lst and 2nd Significant Figure of Capacitance shown are standard. TABLE II Orange Yellow Green Violet Black Brown Red White Blue Gray Values Multiplier to Apply to Significant Figure of Temperature Co-efficient (6 Dot System) INNER ELECTRODE TERMINATION DO NOT USE FOR I.C. VALUES SHOWN IN 5 DOT SYSTEM +1000 +100001+ Significant Figure (6 Dot System) of Temperature Coefficient of Capacitance Note C General Coefficient of Capacitance (5 Dot System) -750ppm/°C General Purpose Note A General Purpose -75ppm/°C -150ppm/°C -220ppm/°C emperature -33ppm/°C Oppm/%c -330ppm/°C -470ppm/°c Note B

This is a General Purpose capacitor having any nominal temperature coefficient between +150 and -1500 parts per million per degree Centigrade, coefficient used to be at option of capacitor manufacturer. Note A:

This is a General Purpose capacitor having any nominal temperature coefficient between +100 and -750 parts per million per degree Centigrade, coefficient used to be at option of capacitor manufacturer. Note B:

This is a General Purpose capacitor having any nominal temperature coefficient between -1000 and -5200 parts per million per degree Centigrade, coefficient used to be at option of capacitor manufacturer. Use with multiplier color of black. Note C:

- b) Temperature Coefficient in parts per million per degree Centigrade or letter designation in accordance with Table I.
- c) Manufacturer's name or symbol, or EIA Code number.
- d) Indicator of inner electrode terminal (tubular styles only), comprising an easily discernible dot or depression.

or

Inner-electrode terminal shall be located to the left of marking parallel to body of capacitor, or above circumferential marking.

1.2.6.2 Color Marking

The color marking of fixed Ceramic Dielectric Capacitors Class I shall be the 5 dot system for temperature characteristics of NPO thru N750 and General Purpose as shown in Table II, Column 1. The 6 dot system in Table II shall be used for all other temperature characteristics.

Table II illustrates application to tubular style. For disc or plate styles, color code shall read from left to right as observed with lead wires downward, and, of course, no inner electrode identification is applicable. Inner electrode terminal on tubular styles shall be indicated by an easily discernible dot or depression.

or

By locating end color adjacent to inner electrode terminal as shown in Table Π .

1.3 Standard Temperature Coefficients and associated tolerances are as indicated in Table III below, in terms of Temperature Characteristic symbols in Table I.

TABLE III

Temperature Coefficient (1st and 2nd Symbols of "Characteristic")

	r				
-4700	æ	×	×	∑	Σ
-3300	LN	Z.	3	3	Ľ
-2200	u	μÌ	H	H	H
-1500	×	×	×	₩.	×
-750	₹	JRK	JKM	HJKM	HJKM
-470	×	JK	JK	HJK	HJK
-330	¥	JKL	HJKL	HJKL	HJKL
-220	X	JK	нлк	SHJK	GHJK
-150	K	JK	нЈК	CHJK	СнЛК
-75	×	JK	нлк	GHJK	СНЭК
-33	×	JK	HJK	GHJK	GHJK
0	×	J. J.K.	нлк	CHUK	СНЭК
+33	×	JR	HJK	GHJK	GHJK
+100	×	JK	HJK		GHJK
+150	×	JK	HJK	GHJK	GHJK
E E	to 2.0	m.	to 9	to 91	100 and above GHJK GHJK GHJK
	0.5		4	10	100
	-33 -75 -150 -220 -330 -470 -750 -1500 -2200 -3300 -	+33 0 -33 -75 -150 -220 -330 -470 -750 -1500 -2200 -3300 -	+150 +100 +33 0 -33 -75 -150 -220 -330 -470 -750 -1500 -2200 -3300 -	+150 +100 +33 0 -33 -75 -150 -220 -330 -470 -750 -1500 -2200 -3300 - K K K K K K K K K K K L L LN JK J	+150 +100 +33 0 -33 -75 -150 -220 -330 -470 -750 -1500 -2200 -3300 -3300 -3

1.4 Calculation of Temperature Coefficient Limits

The symmetrical tolerances apply to 2 point measurement of temperature coefficient, one at +25°C and the other at +85°C. To establish tolerances at -55°C requires a calculation which allows for curvature:

- 1. The positive tolerance from +25°C to -55°C is the same as that used for +85°C.
- 2. The negative tolerance from $+25^{\circ}$ C to -55° C (ppm/°C) = -36 -1.22 × specified positive tolerance + 0.22 × nominal temperature coefficient.

```
Example 1 -- P7H(+150 ± 60ppm/°C at +85°C)

Negative to1. = -36 -1.22(pos. to1) + 0.22(nominal T.C.)

= -36 -1.22(+60) + 0.22(+150)

= -36 -73.2 + 33

= -76.2ppm/°C

Neg. Limit at -55°C = 150 -76.2 = 73.8ppm/°C

Pos. Limit at -55°C = 150 +60.0 =210.0ppm/°C

Example 2 -- U2J(-750 ± 120ppm/°C at +85°C)

Negative to1. = -36 -1.22(Pos.Tol.) +0.22(nominal T.C.)

= -36 -1.22(+1.20) +0.22(-750)

= -36 -146.4 - 165

= -347.4ppm/°C

Neg. Limit at 55°C = -750 -347.4 = 1097.4ppm/°C

Pos. Limit at 55°C = -750 +120 = -630ppm/°C
```

1.4.1 Table of Temperature Coefficient Limits

TABLE IV

Permissible Capacitance Change from

25°C (ppm/°C)

Chanatan	At -	-55°C	At +	At +85°C			
Characteristic	Most Neg.	Most Pos.	Most Neg.	Most Pos.			
+ 150 P7k	- 158	+ 400	- 100	+ 400			
P 7 J	+ 0	+ 270	+ 30	+ 270			
Р7Н	+ 73	+ 210	+ 90	+ 210			
P7G	+ 110	+ 180	+ 120	+ 180			
+ 100 M7K	- 219	+ 350	- 1 50	+ 350			
M7J	- 60	+ 220	- 20	+ 220			
м7н	+ 12	+ 160	+ 40	+ 160			
M7G	+ 49	+ 130	+ 70	+ 130			
+ 33 S6K	200						
S6J	- 300 1/2	+ 283	- 217	+ 283			
303	- 142	+ 153	- 87	+ 153			
S6H	- 68	+ 93	- 27	+ 93			
S6G	- 32	+ 63	+ 3	+ 63			
0 C0k	- 341	+ 250	- 250	+ 250			
COJ	- 182	+ 120	- 120	+ 120			
СОН	- 109	+ 60	- 60	+ 60			
COG	- 72	+ 30	- 30	+ 30			
- 33 S1K	201						
	- 381	+ 217	- 283	+ 217			
\$1J	- 222	+ 87	- 153	+ 87			
S1H	- 149	+ 27	- 93	+ 27			
S1G	- 112	- 3	- 63	, - 3 · ·			
- 75 U1K	- 432	+ 175	- 325	+ 175			
U1.J	- 273	+ 45	- 195	+ 45			
U1H	- 200	- 15	- 135	- 15			
U1G	- 164	- 45	- 105	- 45			

					RS-198-B Page 7
		Table	IV - cont'd		
		At	55°C	At +8	35°C
Characte	ristic		Most Pos.	Most Neg.	Most Pos.
- 150	P2K	- 524	+ 100	- 400	+ 100
	P2J	- 365	- 30	- 270	- 30
	P2H	- 292	- 90	- 210	- 90
	P2G	- 255	- 120	- 180	- 120
- 220	R2K	- 609	+ 30	- 470	+ 30
	R2J	- 450	- 100	- 340	- 100
	R2H	- 377	- 160	- 280	- 160
	R2G	- 341	- 190	- 250	- 190
- 330	S2L	-1048	+ 170	- 830	+ 170
	S2K	- 743	- 80	- 580	- 80
	S2J	- 585	- 210	- 450	- 210
	S2H	- 511	- 270	- 390	- 270
- 470	Т2К	- 914	- 220	- 720	- 220
	T2J	- 755	- 350	- 590	- 350
	т2н	- 682	- 410	- 530	- 410
- 750	U2M	-2171	+ 250	- 1750	+ 250
	U2K	-1256	- 500	-1000	- 500
	U2J	-1097	- 630	- 870	- 630
	U2H	-1024	- 690	- 810	- 690
-1500	РЗК	-2171	-1250	-1750	-1250
-2200	R3L	-3330	-1700	-2700	-1700
-3300	S3N	-7112	- 800	-5800	- 800
	S3L	-4672	-2800	-3800	-2800
-4700	тзм	-6990	-3700	-5700	-3700

1.5 Requirements

1.5.1 Detail requirements for individual styles. Detail requirements or exceptions applicable to individual styles of capacitors shall be as specified in the individual detail specifications. In the event of any conflict between requirements of this specification and the individual specifications, the later shall govern.

1.5.2 Capacitance

When measured as specified in 1.6.1, the capacitance shall be within the tolerance shown by the type designation.

1.5.3 Quality factor (Q)

1.5.3.1 For capacitance values 1000pF or less at 1MHz. When determined as specified in 1.6.2, the Q shall not be less than the value shown in Figure 1.

FIGURE 1

- Curve 1 -- Initial Q for Temperature Coefficient values -1500ppm/°C and under.
- Curve 2 -- Initial Q for Temperature Coefficient values above -1500ppm/°C and General Purpose.
- Curve 3 -- Q after Life or Seal test, -1500ppm/°C and under.

Curve 4 -- Q after Life or Seal test, above -1500ppm/°C and General Purpose units.

1.5.3.2 For capacitance values above 1000pF at 1 kHz

Initial, 0.2% Max. D.F.

After Life and Seal test, 0.4% Max. D.F.

1.5.4 Insulation Resistance

When measured as specified in 1.6.3, the insulation resistance shall exceed 7500 megohms or an RC product of $75\Omega F$, whichever is less.

1.5.5 Dielectric Withstanding Voltage

When tested as specified in 1.6.4, capacitors shall withstand the DC potential without damage or breakdown.

1.5.6 Temperature Coefficient and Capacitance Drift

1.5.6.1 Temperature Coefficient

When tested as specified in 1.6.5.1, capacitors shall not exceed the limits as defined by Table IV.

1.5.6.2 Capacitance Drift

When tested as specified in 1.6.5.3, capacitance drift shall not exceed:

Through N750: 0.3% max. or 0.25 pF, whichever is greater

Through N2200: 1.0% max.

Through N5600: 3.0% max.

1.5.7 Seal Test

When tested as specified in 1.6.6, capacitors shall meet the following requirements:

Capacitancechange not more than 1% or 0.5pF, whichever is greater.

1.5.8 Life Test

When tested as specified in 1.6.7, capacitors shall meet the following requirements:

Capacitancechange not more than 1% or 0.5pF, whichever is greater.

Qnot less than that given in Figure 1.

Insulation Resistance not less than 1,000 megohms.

1.6 Method of Test

1.6.1 Capacitance (see paragraph 1.5.2)

Capacitance shall be measured in accordance with Method 305 of MIL-STD-202. The following details and exceptions shall apply:

- (1) Test Frequency -- 1 MHz ± 100kHz when the capacitance is 1000pF and smaller; and 1kHz ± 100Hz when the capacitance is greater than 1000pF. Test voltage shall not exceed 2 Vrms.
- 1.6.2 Quality Factor (Q) (see paragraph 1.5.3)

The Q of the capacitor shall be determined in accordance with Method 306 of MIL-STD-202. The following detail shall apply:

- (1) Test Frequency -- as specified in paragraph 1.6.1.
- 1.6.3 Insulation Resistance (see paragraph 1.5.4)

Capacitors shall be measured 1 minute after application of D.C. test voltage of 100 to 500 volts but not to exceed rated voltage. Capacitors rated at less than 100V shall be measured at rated voltage. Voltage to be applied through a resistor which will limit charging current to 50

miliamperes maximum.

- 1.6.4 Dielectric Withstanding Voltage (see paragraph 1.5.5)
- (1) Capacitors shall withstand, for not less than 1 second, a D.C. test voltage of 2.5 times rated working voltage at nominal atmospheric pressure and a temperature of 25 ± 5°C. Voltage to be applied through a resistor which will limit charging current to 50 milliamperes maximum.
- (2) Capacitors shall withstand, for not less than 1 second, a DC voltage of 1300 volts between both leads connected together and metal foil wrapped closely around body of capacitor to within no less than 1/16" of lead wires. Voltage to be applied through a resistor which will limit charging current to 50 milliamperes maximum.
- 1.6.5 Temperature Coefficient and Capacitance (see paragraph 1.5.6)
 - 1.6.5.1 Capacitance measurements shall be made as specified:

1.6.5.2 The temperature coefficient shall be computed as follows:

$$TC = \frac{(C_2 - C_1) \cdot 10^6}{(T_2 - T_1) \cdot C_1}$$

where

TC = Temperature Coefficient in parts per million per degree C.

 C_1 = Capacitance at 25°C (reference, step c)

 C_2 = Capacitance at test temperature

 $T_1 = 25$ °C, reference

1.6.5.3 Capacitance Drift -

Capacitance drift in percent shall be computed by dividing the greatest single difference between any two of the three values recorded at 25°C by the second value recorded at 25°C, multiplying this ratio by 100. Capacitance drift in pF shall be computed by subtracting the smallest capacitance value recorded from the largest of the three values recorded at 25°C.

1.6.6 Seal Test (see paragraph 1.5.7)

Capacitors shall be subjected to 5 cycles of temperature variations from 25°C to 15 minutes at -20°C, to 15 minutes at 25°C to 15 minutes at 85°C and back to 25°C at rate of temperature change not to exceed 2°C per minute. Subsequently the capacitor shall be subjected to a temperature of 40°C and relative humidity between 90% and 95% for 100 hours. Final measurements to be made not more than 30 minutes after completion of this conditioning and in an atmosphere of 10% to 50% relative humidity.

1.6.7 Life (see paragraph 1.5.8)

Capacitors shall be subjected to application of a D.C. voltage equal to 2 times rated working voltage for 250 hours at $85^{\circ}\text{C} \pm 3^{\circ}\text{C}$. The surge current shall not exceed 50 milliamperers. Final measurements to be made after this conditioning.

2. CERAMIC DIELECTRIC CAPACITORS, CLASS 2

2.1 Scope

Components of this classification are fixed, ceramic dielectric capacitors of a type suited for by-pass and coupling application or for frequency discriminating circuits where Q and stability of capacitance characteristic are not of major importance.

Class 2 ceramic dielectric exhibit a predictable capacitance change with time and voltage. Compensation for the aging effect is made by referencing capacitance limits to a future time deemed to be most useful to the buyer; 1000 hours is normally chosen, but other arrangements may be negotiated between buyer and seller. Voltage will also cause a temporary capacitance change and test sequence should be such that capacitance measurements are not affected by previous voltage tests.

The aging rate of a dielectric is essentially constant over many decades of time, i.e. 10 to 100, 100 to 1000, 1000 to 10,000, etc. hours when measured from the time of the last heat of depolarization or manufacture. Restoration of the original capacitance at time of manufacture will occur on heating to 150°C for one hour; after which normal aging will again commence. Capacitors measured prior to 1000 hours may exhibit temporarily high capacitance values which will age downward.

2.2 Classification

2.2.1 Type Designation

The type designation shall be in the following form, and as defined in Table V:

Listing of complete range of characteristics does not necessarily imply commercial availability of all values, but is for the purpose of providing a standard identification code for future development. Use lowest decimal multiplier to avoid alternate coding; for example, 2.0pF should be 209, not 020. Note 1: Note 2:

2.2.2 Style

The style is identified by the two letter symbol "CC" followed by a two; three, or four digit number; the letters identify the item as an EIA RS-198 part and the number identifies the shape and dimensions of the capacitor (see individual detail specifications).

2.2.3 Characteristic

The characteristic is identified by a letter, digit, letter symbol in accordance with Table V. The letter and digit identify the Temperature Range and the second letter identifies the maximum capacitance change over the temperature range.

2.2.4 Capacitance and Tolerance

The capacitance and tolerance are identified by three digits and a letter symbol in accordance with Table V. The first and second digits identify the first and second significant figures of the capacitance, the third digit identifies the multiplier and the fourth letter identifies the capacitance tolerance.

2.2.5 Voltage

The voltage is identified by three digits in accordance with Table V.

The first and second digits identify the first and second significant
figures of the voltage and the third digit identifies the multiplier.

2.3 Marking

The color marking of fixed tubular ceramic dielectric capacitors -- Class II shall consist of 6 colors in accordance with Table VI. Dots or bands may be used providing first color position is easily recognizable by being distinctly different from the other. Table VI illustrates application to tubular styles. For disc and plate styles, color code shall read from left to right as observed with the lead wires downward, and, of course, no inner electrode identification is applicable.

Inner electrode terminal on tubular styles shall be indicated by easily discernible dot or depression OR by locating end color adjacent to inner electrode

TABLE VI Values shown are standard.

- Note 1: Use lowest decimal multipler to avoid alternate coding; for example, 2.0pF should be red, black, white; not black, red, black.
- Note 2: Listening of complete range of characteristics does not necessarily imply commercial availability of all values, but is for the purpose of providing a standard identification code for future development.

2.4 Requirements

and the same of the same of

metholika voltaki

2.4.1 Detail Requirements for Individual Styles

国际的基础设施 人名英

Detail requirements or exceptions applicable to individual styles of capacitors shall be as specified in the individual specification sheets. In the event of any conflict between requirements of this specification and the individual specification sheets, the latter shall govern.

2.4.2 Capacitance

When measured as specified in 2.5.1, the capacitance shall be within the tolerance shown by the type designation.

2.4.3 Dissipation Factor (D.F.)

When measured as specified in 2.5.2, the D.F. shall not be greater than 2.5%.

2.4.4 Insulation Resistance

When measured as specified in 2.5.3, the insulation resistance shall exceed 7500 megohms or an RC product of $75\Omega F$, whichever is less.

2.4.5 Dielectric Withstanding Voltage

When tested as specified in 2.5.4, capacitors shall withstand the DC potential without damage or breakdown.

2.4.6 Temperature Characteristic

When tested as specified in 2.5.5, capacitors shall not exceed the limits as defined by Table V.

2.4.7 Seal Test

Dielectric Strength

When tested as specified in 2.5.6, capacitors shall meet the following requirements:

......... 2.5 times rated working voltage.

2.4.8 Life

When tested as specified in 2.5.7, capacitors shall meet the following requirements:

Capacitance..... change not to exceed ±20%.

Dissipation Factor 5% maximum.

Insulation Resistance not less than 500 megohms.

2.5 Methods of Test

2.5.1 Capacitance (see paragraph 2.4.2)

Capacitance shall meet the requirements of 2.4.2 when measured at, or referred to, a frequency of lkHz with an applied voltage of $1\pm$.2Vrms.

2.5.2 Dissipation Factor (see paragraph 2.4.3)

Dissipation factor shall meet the requirements of 2.4.3 when measured as in 2.5.1.

2.5.3 Insulation Resistance (see paragraph 2.4.4)

Insulation resistance between terminals of the capacitor shall meet the requirements of 2.4.4 when measured 1 minute after application of DC test voltage of 100 to 500V, but not to exceed rated voltage. Capacitors rated at less than 100V shall be measured at rated voltage. Charging current shall be limited to 50 milliamperes maximum.

2.5.4 Dielectric Withstanding Voltage (see paragraph 2.4.5)

2.5.4.1 Capacitors shall withstand, for not less than 1 second, a D.C. test voltage of 2.5 times rated working voltage at nominal atmospheric pressure and a temperature of 25±5°C. Voltage to be applied through a resistor which will limit charging current to 50 milliamperes maximum.

2.5.4.2 Capacitors shall withstand, for not less than 1 second, a D.C. voltage of 1300 volts between both leads connected together and metal foil wrapped closely around body of capacitor to within no less than 1/16" of lead wires. Voltage to be applied through a resistor which will limit charging current to 50 milliamperes maximum.

2.5.5 Temperature Characteristic

Capacitance measurements shall be made as specified:

(a) 25,±2

(b) Applicable low temperature, ±2

(c) reference 25,±2

(d) Applicable high temperature, ±2

2.5.6 Seal Test

After measuring capacitance as specified in 2.4.2, capacitors shall be subjected to 5 cycles of temperature variation from 25°C to 15 minutes at -20°C, to 15 minutes at 25°C to 15 minute at 85°C, and back to 25°C, rate of temperature change not to exceed 2°C per minute. Subsequently, capacitors shall be subjected to a temperature of 40°C and relative humidity between 90% and 95% for 100 hours. Final measurements to be made not more than 30 minutes after completion of this conditioning, and in an atmosphere of 10% to 50% relative humidity.

2.5.7 Life Test

Capacitors shall be tested for a period of 250 hours at maximum rated temperature at 200% rated voltage. The surge current shall not exceed 50 milliamperes. Final measurements to be made after this conditioning.

3. CERAMIC DIELECTRIC CAPACITORS, CLASS 3

3.1 Scope

Components herein standardized are fixed ceramic dielectric capacitors of a type specifically suited for use in transistorized or other low voltage electronic circuits for by-pass, coupling or frequency determination, in which dielectric losses, high insulation resistance and capacitance stability are not of major consideration.

3.2 Object

The object of this specification is to establish uniform requirements for judging the mechanical, electrical and environmental characteristics of the class of capacitors herein standardized.

3.3 Terminology

A Class 3 ceramic capacitor is one which has been formed on a semi-conducting or reduced titanate substate in which a barrier layer or diffusion zone has become the effective dielectric material.

3.4 Rated Characteristics

3.4.1 Rated Capacitance value of a component is that nominal value which is specified on the

FOR

CERAMIC DISC CAPACITORS STYLE CC044

The complete requirements for procuring the capacitors described herein shall consist of this document and the issue in effect of E.I.A. Standard RS-198.

<u>Style</u>	Max. Diameter (inches)	Max. Thickness (inches)	Lead Spacing (inches)	Resin Extension
CC044	.440	.156	.250 ± .230 in at egress	and the second s

	08/81	: B		·	1 .		÷															
Page	N330 (S2)			CC0441S2H430J501 CC0441S2H470J501	CC0441S2H510J501 CC0441S2H560J501	N4700(T3)		1 1					1 1	1	1 1 1	1 i		CC0441T3M361J501	CC0441T3M391J501	CC0441T3M431J501	CC0441T3M4/1J501	イン)フェインスフィイナナンシン
	N220 (R2)		 CC0441R2G390.1501	CCO441R2G430J501 CCO441R2G470J501	CCO441R2G510J501 	N3300(S3)	1 1	1 1 1 1 1 1	1	1 1 1					1 1		1 1	l 	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
4700	N150 (P2)		CC0441P2G330J501 CC0441P2G360J501 CC0441P2G390J501	CC0441P2G430J501 CC0441P2G470J501		N2200(R3)	1	1.1		1 1 1					CC0441R3L131J501	CC0441R3L151J501 CC0441R3L161.I501	CC0441R3L18LJ501		1	 	1 1 1 1	
CLASS I-NPO-N4700	NO75 (UI)	CCO441U1G270J501 CCO441U1G300J501	CC0441U1G330J501 CC0441U1G360J501 CC0441U1G390J501	CC0441U1G430J501		N1500(P3)		1 1 1 1 1 1 1 1 1 1	.	CC0441P3K750J501	CC0441P3K820J501	CC0441P3K101J501	CC0441P3K111J501	CC0441P3K121J501	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1	1 1	F !	1 1 1 1	
	NO33 (SI)	 CCO441S1G270J501 CCO441S1G300J501	CC0441S1G330J501 CC0441S1G360J501		# 1 1 # 1 1	N750 (U2)			CC0441U2J620J501	CC0441U2J680J501 CC0441U2J750J501	CC0441U2J820J501					l J	! !	1	 		l . l	
	NPO (CO)	CC0441C0G240J501 CC0441C0G270J501 CC0441C0G300J501	CCO441COG330J501 	† 	1 1 1 1 1 1	N470(T2)	CC0441T2H470J501	CC0441T2H510J501 CC0441T2H560J501	CC0441T2H620J501	CCC44112A68UJSU1			1				1	1 1	1			
	Cap.	24pF 27 30	ო		50 FJ		47pF	51 56	62	75	82	100	110	120	150	160	180	360	390 200	450 470	510	

	7001 1000	
	Z5P 200V	CCC441Z5P332M201 CCC441Z5P332M201 CCC441Z5P392M201
CLASS II	250 500v	CC0441Z5U332M501 CC0441Z5U472M501
	Z5P 500V	21K501
	XSF 500V	CCO441X5F821K501 CCO441X5F102K501 CCO441X5F122K501
	CAP.	820pF 001uF 0012 0033 0047 0068

FOR

CERAMIC DISC CAPACITORS STYLE CC049

The complete requirements for procuring the capacitors described herein shall consist of this document and the issue in effect of E.I.A. Standard RS-198.

	Max.	Max.	Lead	
Style	Diameter (inches)	Thickness (inches)	Spacing (inches)	Resin Extension
4 74 7				
CC049	.490	.156	.250 ± .30 in.	.125 in.
			at egress	

RS-198/9B Page 2 (7S) 0EEN		N4700 (T3)	
N220 (R2)		N3300 (S3)	
N4700 N150 (P2)		N2200 (R3)	
CLASS I-NPO-N4700 500V NO75 (UI)	CC049IVIG470J501 CC049IVIG510J501 CC049IVIG560J501	N1500 (P3)	CC0491P3K131J501 CC0491P3K151J501 CC0491P3K161J501 CC0491P3K161J501
NO33 (S1)	CC0491S1G390J501 CC0491S1G470J501 CC0491S1G470J501 CC0491S1G510J501	N750 (U2)	CC0391U2J101J501 CC0491U2J11J501 CC0491U2J12JJ501 CC0491U2J13JJ501 CC0491U2J13JJ501
NPO (CO)	CC0491C0G360J501 CC0491C0G430J501 CC0491C0G470J501 CC0491C0G510J501	N470 (T2)	、 1888年1971 - 111 - 111 - 111 - 111
Cap	3.00 mg		75pF 82 82 100 110 110 120 120 220 220 240 330 330 430 620 620 620

25P	7000	CC0491Z5P472M201	CC0491Z5P562M201	
Z5U))))))		CC0491Z5U682M501	
CLASS II Z5P	CC049125P152K501	CC0491Z5P182K501		
Cap.	.0015uF	.0018	.0056	

FOR

CERAMIC DISC CAPACITORS STYLE CC059

The complete requirements for procuring the capacitors described herein shall consist of this document and the issue in effect of E.I.A. Standard RS-198.

Style	Max. Diameter (inches)	Max. Thickness (inches)	Lead Spacing (inches)	Resin Extension
CC059	•590	.156	.375 ±	.125 in.
00037			.030 in. at egress	max.

RS-19 Page	N330(S2) 8/108 2 (S3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N4700(I3)	
	N220 (R2)		N3300(S3)	
. 200	N150(P2)	CC0591P2G680J501 CC0591P2G750J501 CC0591P2G820J501 CC0591P2G910J501	N2200(R3)	CCO591R31221J501 CCO591R31221J501 CCO591R31221J501 CCO591R31271J501 CCO591R31271J501 CCO591R31271J501 CCO591R31331J501 CCO591R31331J501
CLASS I-NPO-N4700 500V	N075(UL)	CC0591U CC0591U CC0591U CC0591U	N1500(P3)	CC0591P3K181J501 CC0591P3K201J501 CC0591P3K201J501
	NO33(S1)	CC0591S1G6203501 CC0591S1G680J501 CC0591S1G750J501	N750(U2)	CC0591U2J151J501 CC0591U2J161J501 CC0591U2J161J501
	NPO(CO) CCO591COG510J501	CC0591C0G620J501 CC0591C0G680J501 CC0591C0G750J501	N470(T2)	CC0591T2H11J501 CC0591T2H13LJ501 CC0591T2H13LJ501
	Cap. 51pF	62 68 75 82 100 110		110pF 120 130 150 160 160 220 220 240 270 330 340 470 510 820 910 1000
				-147-

FOR

CERAMIC DISC CAPACITORS

STYLE CC068

The complete requirements for procuring the capacitors described herein shall consist of this document and the issue in effect of E.I.A. Standard RS-198.

Style	Max. Max. Diameter Thickness (inches) (inches)	Lead Spacing (inches)	Resin Extension
CC068	.156	.375 ±	.125 in.
		.030 in. at egress	max.

RS-198/11B Page 2 (78) 000 200 200 200 200 200 200 200 200 20		N4700(T3)	
N220(R2)	 CC0681R2G111J501 CC0681R2G121J501 CC0681R2G131J501 CC0681R2G151J501 CC0681R2G151J501	N3300(S3)	
NPO – N4700 500V N150(P2)	CC0681P2G101J501 CC0681P2G11JJ501 CC0681P2G121J501 CC0681P2G131J501	N2200 (R3)	CC0681R3L391J501 CC0681R3L431J501 CC0681R3L471J501 CC0681R3L471J501
CLASS I - NPO 500V NO75(UL)	CC0681U1G910J501 CC0681U1G101J501 CC0681U1G11JJ501 CC0681U1G11JJ501	N1500(P3)	
N033(SI)	CC0681S1G820J501 CC0681S1G910J501 CC0681S1G101J501 CC0681S1G111J501	N750(U2)	CC06817271817501 CC06817272013501 CC06817272213501 CC06817272413501 CC06817272713501 CC06817272713501 CC06817272713501
NP (CO)	CC0681C0G820J501 CC0681C0G10J501 CC0681C0G10JJ501 	N470(T2)	CC0681T2H151J501 CC0681T2H161J501 CC0681T2H181J501
Cap	82pF 91 100 110 120 130 150		150pt 160 160 160 160 160 160 160 160 160 160

	Z5U 100V	
	Z5P 200V	CC0681Z5P103M201 CC0681Z5P123M201 CC0681Z5P123M201
CLASS II	Z5U 500V	cco68125u153M501
	Z5P 500V	CC0681Z5P332K501 CC0681Z5P392K501
	X5F 500V	CC0681X5F272K501 CC0681X5F332K501
	Cap.	.0027µF .0033 .0039 .012 .012

E.I.A. STANDARD SPECIFICATION SHEET

FOR

CERAMIC DISC CAPACITORS STYLE CC076

The complete requirements for procuring the capacitors described herein shall consist of this document and the issue in effect of E.I.A. Standard RS-198.

	Max.	Max.	Lead	
	Diameter	Thickness	Spacing	Resin
Style -	(inches)	(inches)	(inches)	Extension
CC076	.760	.156	.375	.125 in.
			± .030 in.	max.
			at egress	

EIA NUMBERING SYSTEM

\circ	
Ō	
1	
4	
×	
٠.	
0	
Z	
z	
1	
H	
S	
š	
CLAS	
ы	
$\dot{\mathbf{c}}$	
_	

	N330(S2)		N4700 (T3)	
	M220(R2)		N3300 (S3)	CC0761S31821J501 CC0761S31821J501 CC0761S31821J501 CC0761S31102J501 CC0761S31102J501
700	N150(P2)	CC0761P2G151J501 CC0761P2G161J501	N2220(R3)	CC0761R3L51J501 CC0761R3L51J501 CC0761R3L561J501 CC0761R3L621J501
CLASS I-NPO-N4700	NO75(U1)	cc0761U1G131J501 cc0761U1G151J501 	N1500(Pa)	CC0761P3K361J501 CC0761P3K391J501 CC0761P3K431J501
	NO33(S1)	CC076180G121J501 CC076181G131J501 CC076181G151J501 	N750(U2)	CC0761U2J301J501 CC0761U2J331J501 CC0761U2J331J501
	NPO(CO)	CC0761C0G111J501 CC0761C0G131J501 CC0761C0G131J501	N470(T2)	CCO76112H201J501 CCO76112H241J501 CCO76112H271J501 CCO761T2H271J501
	Cap.	110pF 120 150 150 200 200		200pF 220 240 270 330 380 430 560 560 620 820 910 1800 2000

	Z5U 100V	 CC076125U473M101 CC076125U683M101 CC076125U104M101			
CLASS II	Z5U 500V	CC0761Z5U223M501			
CLAS	Z5P 500V	CCO76125P472K501 CCO76125P562K501			
	XSF 500V	CC0761X5F392K501			
	Cap.	.0039(µF) .0047 .0056 .022 .047 .068			
			L54÷		

E.I.A. STANDARD SPECIFICATION SHEET

FOR

CERAMIC DISC CAPACITORS

STYLE CC089

The complete requirements for procuring the capacitors described herein shall consist of this document and the issue in effect of E.I.A. Standard RS-198.

Style	Max. Diameter (inches)	Max. Thickness (inches)	Lead Spacing (inches)	Durez Extension
CC089	.890	.156	•375	,125 in.
			± .030 in. at egress	max.

EIA NUMBERING SYSTEM

RS-198/13B Page 2	 52H221J501 \$2H241J501 \$2H27JJ501 \$2H301J501	M2223501
N330 (S2	CC0891 CC0891 CC0891 CC0891	
M220 (R2)	CC0891R2G221J501 CC0891R2G241J501 CC0891R2G271J501 CC0891R2G301J501 N3300(S3)	
700 N150(P2)	CC0891P2G181J501 CC0891P2G201J501 CC0891P2G221J501 CC0891P2G241J501 CC0891P2G271J501 CC0891P2G301J501	CC0891R3L911J501 CC0891R3L821J501 CC0891R3L911J501 CC0891R3L911J501
CLASS I-NPO-N4700 5000 N075(UI)		N1500(P3)
	8 8 8 600 000 000 000	N750 (U2) CC0891U2J361J501 CC0891U2J431J501 CC0891U2J47JJ501 CC0891U2J51JJ501 CC0891U2J51JJ501
NPO(CO)	CC0891C0G181J501 CC0891C0G181J501 CC0891C0G201J501 	CC089112H301J501 CC089112H301J501 CC0891T2H361J501 CC0891T2H391J501
Cap.	180 220 270 300 300	300pF 330 330 330 470 470 620 620 1200 1500 2200
		-156-

	N4700(I3)	CC0891T3M242J50 CC0891T3M272J50 CC0891T3M302J50 CC0891T3M332J50 CC0891T3M362J50			
	N3300(S3)				
00	N2200(R3)			25P 500V	CC0891Z5P682K501
CLASS I-N470-N4700	N1500(P3)		CLASS II	XSF 500V	CC0891X5F472K501 CC0891X5F562K501
	N750 (U2)			Cap.	.0047µF .0056 .0068
	N470(T2)				
	Cap.	2400pF 2700 3000 3300 3600			

E.I.A. STANDARD SPECIFICATION SHEET

FOR

CERAMIC DISC CAPACITORS STYLE CC111

The complete requirements for procuring the capacitors described herein shall consist of this document and the issue in effect of E.I.A. Standard RS-198.

Style	Max. Diameter (inches)	Max. Thickness (inches)	Lead Spacing (inches)	Resin Extension
 CC111	1.110	.156	.375	.125 in.
			\pm .030 in. at egress	max.

EIA NUMBERING SYSTEM

	N4700(T3)		
	N3300(S3)	Z5U 1.00V	
	N2200(R3)	Z5P 200V	
2000	N1500(P3) CC1101P3K821J501 CC1101P3K911J501 CC1101P3K11ZJ501 CC1101P3K11ZJ501	Z5U 500V	 ccilolz5u333M501 ccilolz5u473M501
	M250 (U2)	Z5P 500V	CC110125P822K501 CC110125P103K501 CC110125P123K501
	N470 (T2)	X5F 500V	CC1101X5F682K501 CC1101X5F822K501
	Cap. 820pF 910 1000 1200 1200 3900 4300 4706	Cap	.0068µR .0082 .01 .012 .033

3.9 C. T. R. L 試作品の電気的一般特性データ

A Comment	≥ 16-4-1		CER CER	AMIC CAPACIT	'OR 'T	YPE <u>25</u> V	7 0.01µf Z 500W.V
No.	C (pF)	tan 8	IR (50V) (MΩ)	Test V DC (Volts)	Break d DC (KV)	own V AC (KV)	Size of Fired Body
1	12300	0.011	1.8 × 10 ⁵	1250 V	2.8		Thickness
2	12500	0.009	1.5×10^{5}	0К	2.6		0.43 mm∳
3	12700	0.009	1.8×10^{5}	u	3.0		
4	12300	0.010	1.8×10^5	n .	3.0		Diameter
5	12900	0.011	1.8×10^{5}	н	2.9		8.3 mm
6	12300	0.009	1.8×10^{5}	11		1.4	
7	12500	0.009	1.6×10^{5}	n i		1.3	Silver Dia
8	12800	0.0085	1.8×10^{5}	u		1.3	7.2 mm ф
9	12100	0.009	1.6×10^{5}	Tin 1		1.5	
10	12600	0.009	1.8×10^{5}	n		1.3	
11	12600	0.009	1.5×10^{5}	u			
12	13000	0.010	1.8×10^{5}	п			
13	12500	0.009	1.8×10^{5}	11			
14	12900	0.009	1.8×10^{5}	u			
15	12200	0.009	1.8×10^{5}	n			
MAX	13000	0.011	1.8×10^{5}		3.0 ^{KV}	1.5 ^{KV}	
MIN	12100	0.0085	1.5×10^5		2.6 ^{KV}	1.3 ^{KV}	
		1		<u> </u>		1	
	Samp	<u>le</u>					
			* Measur	ed by YHP 42	60A Univ	ersal B	ridge (C & tanδ)
		7	* Insula	tion Resista	nce by T	ua mode	T 9M-TDE.
			* Withst	anding Volta	ge teste	r Kikus	ui Model 875Z.
			Break	Down Voltage	test.	na n	

Z5V 0,0047 Z 1kWV

L	· · · · · · · · · · · · · · · · · · ·			<u> </u>	and the state of the state of		· OTOGTI ZI TKWV
No.	C (pF)	tan 6	IR (50V) (MΩ)	Test V DC (Volts)	Break o	lown V AC (KV)	Size of Fired Body
1	5350	0.007	2.8×10^{5}	2500 V	4.5	, , , , , , , , , , , , , , , , , , ,	Thickness
2 、	5780	0.008	2.6×10^{5}	0κ	4.2		1.03 mm
3	5500	0.008	2.2×10^{5}	u	4.2	ra a for a	
4	5630	0.0075	2.6×10^{5}		3.9		Diameter
5	5900	0.007	2.8×10^5	11	4.0	i di di	8.3 mm
6	5110	0.006	2.3×10^{5}	n	A. Marine	2.0	
7	6020	0.006	2.2×10^{5}	n i		2.3	Silver Dia
8	5280	0.006	3.2×10^{5}	n		2.3	7.0 mmφ
9	5550	0.006	2.9×10^{5}	1 (1 to 1		2.4	
10	5400	0.008	2.6×10^{5}	n		2.3	
11	5050	0.0065	2.2×10^5	n			
12	5880	0.0065	2.5×10^{5}	n			
13	5350	0.006	2.5×10^{5}	$\mathbf{n} = n_{ij}$			
14	5700	0.006	2.5×10^{5}	n			
15	5290	0.006	2.6×10^5	u .			
MAX	6020	0.008	2.9 × 10 ⁵		4.5 ^{kV}	2.4 ^{kV}	
MIN	5050	0.006	2.2×10^5		3.9 ^{kV}	2.0 ^{kV}	
	Samp1	.e					
	* Measured by YHP 4260A Universal Bridge (C & tanδ)						
	•		* Insulat	ion Resista	nce by	TOA Mod	el SM-15E.
				the state of the s	* *	er Kiku	sui Model 875Z.
			Break I	own Voltage	test.	1	

CERAMIC CAPACITOR

TYPE

<u>Date 16-4-1981</u>

Z5V0.0022Z 2KWV

No.	C (pF)	tan δ	IR (50V) (MΩ)	Test V DC (Volts)	Break do DC (KV)	own V AC (KV)	Size of Fired Body	
1	2810	0.006	3.0×10^{5}	5000 V	5.0 up		Thickness	
2	2750	0.006	3.0×10^{5}	0 K	5.0 "		1.85 mm.	
3	2500	0.0065	2.8×10^{5}	n	5.0 "			
4	2700	0.006	2.9×10^{5}	H	5.0 "		Diameter	
5	2750	0.005	3.0×10^{5}	11	5.0 "		<u>8.3 mm</u> Ф	
6	2630	0.007	2.5×10^{5}	in in		3.9	Silver Dia	
7	2790	0.006	2.8×10^{5}	H. H.		4.0	<u>7.0 mmφ</u>	
8	2530	0.006	2.8×10^{5}	u		4.1		
9	2800	0.006	3.1×10^{5}	11		4.0		
10	2700	0.006	2.5×10^5	i, u		4.3		
11	2680	0.006	2.5×10^{5}	11		1.634		
12	2410	0.006	2.9×10^{5}	ir				
13	2850	0.005	2.7×10^{5}	n .				
14	2730	0.006	2.3×10^{5}	11				
15	2500	0.006	2.6×10^{5}	31				
					v	₽.V		
MAX	2850	0.007	3.1×10^{5}		5000 ^V up	4.3 ^{kV}		
MIN	2410	0.005	2.3×10^{5}			3.9 ^{kV}		
	Sample * Measured by YHP 4260A Universal Bridge (C & tanδ) * Insulation Resistance by TOA Model SM-15E.							
	* Withstanding Voltage tester Kikusui Model 875Z. Break Down Voltage test.							

NPO 75pF±10% 500W.V

			<u> </u>		<u> </u>		1110 /3	brz10% 200M*A
	No.	C (pF)	tan δ Q	IR (50V) (MΩ)	Test V DC (Volts)	Break DC (KV)	down V AC (KV)	Size of Fired Body
	1	74.0	0.001	5.6×10^5	1250 V	5.0		Thickness
	2	75.4	0.001	5.3×10^{5}	0 K "	4.8		0.42 m/m
	3	74.8	0.0011	5.3×10^{5}	n	5.0		
	4	75.4	0.0013	5.8×10^{5}	11	4.5		Diameter
	5	75.2	0.001	5.5×10^5	0	4.5		<u>1</u> 2.2mmφ
	6.	74.9	0.001	5.0×10^{5}	n		3.5	
	7	75.2	0.001	5.0×10^{5}	u		3.6	Silver Dia
	8	75.4	0.001	5.0×10^5	11		3.3	11.0mm
	9	75.6	0.0012	5.6×10^{5}	.11		3.5	
	10	74.0	0.001	5.3×10^{5}	, i n		3.5	
	11	75.4	0.001	5.4×10^{5}	11	3.		
	12	74.7	0.001	5.0×10^{5}	n			
	13	74,8	0.001	5.0×10^{5}	Ħ			
	14	75.0	0.001	5.2×10^{5}	11			
	15	75.2	0.001	5.0×10^{5}	11			
	MAX	75.6pF	0.0013	$5.8 \times 10^5 M\Omega$		5.0 ^{kV}	3.6 ^{kV}	
	MIN	74.0pF	0.001	$5.0 \times 10^5 \mathrm{M}\Omega$		4.5 ^{kV}	3.3 ^{kV}	
+	-							

Sample

- * Measured by YHP 4260A Universal Bridge (C & tanô)
- * Insulation Resistance by TOA Model SM-15E.
- * Withstanding Voltage tester Kikusui Model 8752. Break Down Voltage test.

N750 150 pF ±10% 500WV

	Date	10-4-1301	<u>¥</u>					
	No.	C (pF)	tan Ó	IR(50V) (ΜΩ)	Test V DC (Volts)	Break DC (KV)	down V AC (KV)	Size of Fired Body
	1	154	0.0015	5.5 × 10 ⁵	1250 V	4.8		Thickness
	2	155	0.0016	5.3×10^{5}	0 K	4.0		0.48 m/mφ
	3	153	0.0013	5.5×10^{5}		4.5		
	4	156	0.0013	6.0×10^{5}	tı	4.8		Diameter
. :	5	152	0.0017	4.8×10^{5}		4.8		<u>12.2 mmφ</u>
	6	155	0.0013	5.6×10^{5}	1		3.1	
	7	155	0.0013	5.3×10^{5}			3.0	Silver Dia
	8	153	0.0014	6.1×10^{5}			3.6	11.0 mm
	9	153	0.0013	5.8×10^{5}			3.1	
	10	154	0.0015	5.5×10^{5}	The second secon		3.2	
	11	156	0.0015	5.5×10^{5}				
Ì	12	153	0.0016	5.5×10^{5}	The second secon			
	13	152	0.0013	5.7×10^{5}				
	14	155	0.0014	5.5×10^5				
	15	155	0.0013	5.3×10^{5}	11			
	MAX	156pF	0.0017	6.1 × 10 ⁵	MΩ	4.8 ^{kV}	3.6 ^{kV}	
	MIN	152pF	0.0013	5.3×10^{5}	² ΜΩ	4.0 ^{kV}	3.1 ^{kV}	

- * Measured by YHP 4260A Universal Bridge (C & tanδ)
- * Insulation Resistance by TOA Model SM-15E.
- * Withstanding Voltage tester Kikusui Model 8752.

 Break Down Voltage test.

医前头科 正定的 医皮质静脉性衰弱 医二

TYPE

Date 16-4-1981

Z5U0.015µf Z 500WV

Security Section		Toward Control	<u> Parit Parit da </u>	<u> </u>	<u> 2550.01</u>	JAT Z JOOMA
No.	C (pF)	tan δ Q	IR (50V) (MΩ)	Test V DC (Volts)	Break down V DC AC (KV) (KV)	Size of Fired Body
1	15200	0.0085	1.5×10^{5}	1250 V	3.3	Thickness
2	14700	0.0087	2.0×10^{5}	0 K	2.8	0.42 m/m
3	15300	0.0085	2.5×10^{5}	n,	3.2	
4	14700	0.0064	2.5×10^{5}	n	3.2	Diameter
5	14800	0.007	2.5×10^{5}	n.	3.8	12.4mmф
6	14800	0.007	2.0×10^{5}	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.5	
7	14300	0.008	1.5×10^{5}	•	1.5	Silver Dia
8	15300	0.0075	1.2×10^{5}	n	1.4	11.0mm
9	13700	0.009	1.2×10^{5}	i v	1.5	
10	14900	0.008	1.2×10^{5}	11	1.4	
11	15500	0.0083	1.5×10^{5}	ti .		
12	15900	0.008	1.2×10^{5}	11		
13	14700	0.008	1.2×10^{5}	п		
14	16000	0.008	1.5×10^{5}	11		
15	13800	0.008	2.0×10^{5}	n		
MAX	16000	0.009	2.0×10^{5}		3.8 ^{kV} 1.5 ^{kV}	
MIN	13700	0.0064	1.2×10^5		2.8 ^{kV} 1.4 ^{kV}	
-	Sample					

Sample

- * Measured by YHP 4260A Universal Bridge (C & tan δ).
- * Insulation Resistance by TOA Model SM-15E.
- * Withstanding Voltage tester Kikusui Model 875Z.

 Break Down Voltage test.

TYPE

Z5V 0.022µF Z 500W.V

No.	C (pF)	tan δ Q	IR (50V) (MΩ)	Test V DC (Volts)	Break down V DC AC (KV) (KV)	Size of Fired Body
1	23500	0.0095	2.2 × 10 ⁵	1250 V	3.9	Thickness
2	23000	0.008	2.2×10^{5}	0 K	3.8	0.52 m/m
3	22800	0.009	2.0×10^{5}	11	3.8	
4	24200	0.0095	2.5×10^{5}	Hr.	4.1	Diameter
- 5	23900	0.0085	1.8×10^{5}	Para Harris	4.2	12.5 mmф
6	22500	0.008	1.8×10^{5}	11	1.9	
7	23700	0.008	2.2×10^{5}	n	2.0	Silver Dia
8	23500	0.008	$2.5 \times 10^{\frac{5}{2}}$	11	2.0	11.0 mmф
9	24100	0.0085	1.5×10^5	11	1.9	
10	23300	0.007	1.6×10^{5}	11	1.9	
11	22600	0.007	2.0×10^{5}	, II		
12	22500	0.007	2.2×10^{5}	11	1 .	
13	23800	0.0075	2.2×10^{5}	11		
14	23500	0.008	1.7×10^{5}	n		
15	24000	0.008	2.0×10^{5}	n		
MAX MIN		0.0095 0.007	2.5×10^{5} 1.5×10^{5}		4.2 ^{kV} 2.0 ^{kV} 3.8 ^{kV} 1.9 ^{kV}	

- * Measured by YHP 4260A Universal Bridge (C & tan δ).
- * Insulation Resistance by TOA Model SM-15E.
- * Withstanding Voltage tester Kikusui Model 875Z. Break Down Voltage test.

4. 回路部品 (CERAMIC) 研究員に望むこと

FOR COMPONENT RESEARCH WORKERS

- 1) Immediately after the experiment, you have to write down the test result in detail every day.
- 2) You are required to make an experiment with various kinds of combination and condition.
- 3) For component Research Workers, accademic philosophy is necessary, while it's more important to get a lot of idea by testing with various kinds of methods and means.

Then it will lead you to success in discovery of new products.

- 4) As vital points of ceramic capacitor are compounding ratio of compositions and sintering technology, the intention in which you confront electric furnace without theory and a lot of experiment will surely lead you to success in understanding of porcelain.
- 5) When singular value is found in test process, you have to think it as an important point and to pursue it without over-looking.
- 6) I hope you will make an experiment with sensitive attitude, because discovery of new ceramic is left in the delicate point where crystal and boundary create.

Thank you very much for your cooperation during my stay in your laboratory.

Mikio Naisei

- (1) パキスタン電信電話総局中央電気通信研究所に対する技術協力に対し、実施期間の国際協力 事業団ならびに郵政省から幣社に指導依頼を受けて約1ヶ月間の短期指導員としてCERAMIC OAPACITOR の技術指導を行い前記報告の通り指導を行った。
- (2) C.T.R.L. で試作方法を習得し作成した CERAMIC CAPACITORの試料について電気的性能の測定結果、一応の成果を得た。JIS規格およびEIA規格を充分満足出来るデータを得て、研究に従事されたカウンターパート諸氏の自信を深めた。
- (3) CERAMIC CAPACITOR は窯業製品であって焼成技法の熟達とテクニックを習得する必要がある特殊な分野である。

窯業と化学、機械装置、電気等の広範囲におよぶ幅の広い分野の知識と非常に地味な実験の 積重ねによって成り立つ部品であることを理解してもらった。

- (4) 電子部品として誠に広範囲に利用される基礎技術でもあり工業生産品として多方面に活用される例を紹介した。
 - 1) 薄膜ICの基板、ICバッケージケース。
 - 2) 絶縁碍子の利用。耐電、耐熱材料としてカラス、ベーク板およびフィルム基板の代替としての応用。
 - 3) 熱交換器の耐熱部所の材料。
 - 4) フェライト材料の製造技術と類似する製法。
 - 5) サーミスタ、およびバリスターの製造法の近似性。

上記は何れも焼結技術を基本とする製品であることを説明し粉体成型と高温焼結の理念を凡 そ理解してもらった。

- (5) 電子部品の研究に従事するカウンターパートの各位は実習による技術習得する訓練が必要で、例えば試作試料製作のテクニックを取得する必要性を説明し特異な電気的あるいは物理的現象を注意深く観察することで新製品の開発のきっかけをつかむ具体的例を上げて理解してもらった。
- (6) 日本国に於ける CERAMIC CAPACITOR の量産方式および回路部品としての利用されている現状を話し、現在の国際レベルを認識するために、日本国の工場見学を積極的に推進されることを希望した。

短期の指導で充分な実験と試料作成が果せなかったが一応初期の段階としての結果は得られたと思う。今後は更に努力して多種類の調合原料を駆使されて、C.T.R.L で回路部品として試料サンブルの供給が可能ならしめる様期待する。幾度となく表現したがCERAMIC CAPACITORなどの焼結物(高熱化学)の研究を手掛けるに当たって良く心すべきことは、窯業一電気一物理一化学一機械など多くの分野が関連しているテーマが多いために仕事の取りかかりは、困難かも知れないが、要点を会得すれば、未知の領域に接する範囲が大きいので、たゆまぬ努力さえ惜しまなければ新製品発見の余地が充分ある。従って根気良く焼成実験の繰り返し作業など手を抜いてはならないしデータの積み重ねを希望する。

時間の関係で CERAMIC CAPACITOR の温度依存性の測定確認が出来なかったが、参考文献、EIA 規格か、キャパシタハンドブックを参照されて独自にテストして頂きたい。

近年急惨に発展して来た半導体OERAMIC CAPACITORおよび積層 CERAMIC CAPACITOR 或は "PIEZO" CERAMICなど今後に取り上げられる研究テーマであろうが、いずれを取組むにせよ、先づ一般用CERAMIC CAPACITORの製造技法の積み重ねにより改善工夫され生み出されたものであるから、基礎を良く理解して将来のテーマをみつけ出してほしい。

次にC.T.R. Lの回路部品研究所で取り上げられている各種類の電子部品は、その何れのものも素材も膜構成が基本となっている。

従って向後基礎知識として結晶粒界、或は境界層および元素配列などの"ミクロ"の勉強が是非 とも必要と考える。

何れの研究テーマにおいても関連付けて注意深い視野を望む次第である。

現在のパキスタンを直感時視野でみさせてもらえば、十の力を持つ者をただ十人集めただけでは百の力にしかならないが、これに「いきおい」をつければ二百にも三百にもなる。「 静 」を 「 動 」に 「 形 」を 「 勢 」に転化させることが重要ではないだろうか?

つまりひとつの目標に向って全員が総力でとり組み達成させる協力心こそ必要な時と感じる。孫 子の兵法をあてはめて………。

終わり。

