УДК 621.311.25

РЕЗУЛЬТАТЫ ПРЕДЭКСПЛУАТАЦИОННОГО КОНТРОЛЯ НА ЭНЕРГОБЛОКЕ № І НОВОВОРОНЕЖСКОЙ АЭС-2

О.В. Уразов

Филиал АО «Концерн Росэнергоатом» «Нововоронежская атомная станция» 1396071, Воронежская обл., г. Нововоронеж. НВАЭС, промышленная зона Южная, 1

Обсуждается проведение предэксплуатационного контроля состояния основного металла и сварных соединений оборудования и трубопроводов энергоблока № 1 Нововоронежской АЭС-2. Рассмотрены особенности проведения контроля сварных соединений корпуса реактора со стороны антикоррозионной наплавки и теплообменных труб парогенераторов с применением инновационных систем и методик контроля. Для проведения контроля корпуса реактора специально разработано расчетно-техническое обоснование РТО-КР-УЗК-15 [1], на основании которого был выполнен ручной ультразвуковой контроль сварных соединений корпуса реактора ВВЭР-1200 изнутри через антикоррозионную наплавку.

По методике [2], разработанной специалистами 000 «Центр вихретокового контроля «Политест» совместно с филиалом А0 «Концерн Росэнергоатом» «Научно-технический центр по аварийно-техническим работам на АЭС» и впервые примененной на АЭС России на этапе предэксплуатационного входного контроля состояния основного металла и сварных соединений оборудования и трубопроводов энергоблока № 1 Нововоронежской АЭС-2 с помощью инновационной системы автоматизированного вихретокового контроля теплообменных труб парогенераторов АЭС с РУ ВВЭР «Политест-ПГ», был выполнен контроль теплообменных труб всех парогенераторов. В результате контроля труб парогенераторов были обнаружены несплошности с максимальной глубиной до 10% от номинальной толщины стенки, что является допустимым. Результаты контроля подтвердили возможность допуска блока к промышленной эксплуатации.

Ключевые слова: предэксплуатационный контроль, ультразвуковой контроль, технология ультразвукового контроля, вихретоковый контроль, корпус реактора, парогенератор.

ВВЕДЕНИЕ

Обязательному контролю подлежат сварные соединения и антикоррозионные наплавки, основной металл в зонах концентрации напряжений и зонах, расположенных напротив активной зоны, сварные соединения и радиусные переходы патрубков присоединения трубопроводов к оборудованию, уплотнительные поверхности разъемных соединений корпусов и крышек сосудов, внутренняя поверхность корпусов в зоне пар-вода и другие элементы оборудования и трубопроводов.

Предэксплуатационный контроль оборудования и трубопроводов проводят неразрушающими методами до пуска в эксплуатацию и выполняют для фиксации начального состояния основного металла, сварных соединений и антикоррозионных наплавок. Результаты последующего эксплуатационного контроля должны сравниваться с результатами предэксплуатационного контроля.

ПРЕДЭКСПЛУАТАЦИОННЫЙ КОНТРОЛЬ СОСТОЯНИЯ ОСНОВНОГО МЕТАЛЛА И СВАРНЫХ СОЕДИНЕНИЙ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ ЭНЕРГОБЛОКА № 1 НВ АЭС-2

В период с 05.05.2015 г. по 02.03.2016 г. на энергоблоке № 1 НВ АЭС-2 был выполнен предэксплуатационный контроль состояния основного металла и сварных соединений оборудования и трубопроводов.

Целью проведения предэксплуатационного контроля состояния металла оборудования и трубопроводов является

- контроль состояния оборудования и трубопроводов после окончания этапов, предшествующих физическому пуску: транспортирования на площадку АЭС и временного хранения, монтажа, гидравлических испытаний, циркуляционной промывки и «горячей» обкатки;
- получение методами и средствами, которые будут применены при эксплуатационном контроле, исходных данных о состоянии основного металла, металла наплавленных покрытий и сварных соединений контролируемых объектов.

Согласно требованиям «Типовой программы предэксплуатационного контроля основного металла и сварных соединений оборудования и трубопроводов систем, важных для безопасности АЭС с РУ ВВЭР-1200» АТПП-15-2011 [2], оборудование и трубопроводы должны быть проконтролированы неразрушающими методами [2 – 7] на следующих этапах:

- этап входного контроля;
- подэтап А-3 холодно-горячая обкатка реакторной установки (первая ревизия);
- подэтап А-4 ревизия основного оборудования РУ (вторая ревизия).

Предэксплуатационный контроль проводится следующими методами неразрушающего контроля:

- визуальный контроль (ВК);
- капиллярный контроль (КК);
- ультразвуковой контроль (УЗК);
- вихретоковый контроль (ВТК);
- телевизионный контроль (ТВК);
- магнитопорошковый контроль (МПК);
- радиографический контроль (РГК).

Согласно требованиям АТПП-15-2011 (с изменениями №1) [2], оборудование и трубопроводы должны быть проконтролированы неразрушающими методами, в том числе с использованием средств автоматизированного дистанционного контроля РУ, разработанных в соответствии с техническими требованиями проекта РУ.

На основании Решения №НВОАЭС-21Р-368К(04-03)-2015 от 25.06.2015г. [10] в связи с незавершенностью аттестационных процедур контроль проектными средствами автоматизированного дистанционного контроля был заменён на другие автоматизированные и ручные методы контроля, допущенные к применению на объектах использования атомной энергии [3 – 14]. При этом для обеспечения максимального соответствия требованиям типовой программы АТПП-15-2011 [2] при проведении предэксплуатационного контроля были использованы имеющиеся средства автоматизации для записи референтных данных состояния сварных соединений.

Предэксплуатационный контроль показал качественное выполнение работ по монтажу блока.

ОСОБЕННОСТИ ПРОВЕДЕНИЯ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ СВАРНЫХ СОЕДИНЕНИЙ КОРПУСА РЕАКТОРА СО СТОРОНЫ АНТИКОРРОЗИОННОЙ НАПЛАВКИ

Как правило, предэксплуатационный контроль корпуса реактора проводят автоматизированными системами отечественного и зарубежного производства. Эти системы разработаны для контроля как с наружной поверхности при наличии доступа, так и изнутри, через аустенитную наплавку. Одним из основных методов неразрушающего контроля корпуса реактора является ультразвуковой контроль (УЗК). Автоматизированный ультразвуковой контроль сварных соединений с наружной стороны проводят по ПНАЭ Г-7-030-91 [13]. На заводе-изготовителе также проводят ручной ультразвуковой контроль сварных соединений с наружной поверхности. На результаты контроля со стороны основного металла антикоррозионная наплавка не влияет. УЗК корпуса реактора с внутренней стороны (через наплавку) применяется для регистрации начального состояния корпуса реактора и дальнейшего наблюдения за динамикой выявленных индикаций в процессе эксплуатации блока АЭС [15 – 19].

Рис. 1. Схема расположения сварных соединений на корпусе ВВЭР-1200

Материал корпуса реактора — 15X2НМФА, 15X2НМФА-А. Внутренняя поверхность корпуса покрыта антикоррозионной наплавкой толщиной 9 мм, которая выполнена в два слоя. Для нанесения первого слоя применялись сварочные материалы марки св.07X25H13, флюс марки 0Ф-10, второго слоя — сварочные материалы марки св.04X20H10Г2Б, флюс 0Ф-10. На рисунке 1 представлена схема расположения сварных соединений на корпуса реактора.

При ультразвуковом контроле через антикоррозионную наплавку корень сварного соединения будет располагаться на глубине 1/3 толщины сечения сварного соединения. Из-за неоднородности наплавки чувствительность УЗК начинает уменьшается. На уменьшение чувствительности УЗК через антикоррозионную наплавку влияют следующие факторы [4-8]:

- коэффициент затухания в основном металле и наплавке;
- квазиискривление луча;
- волнистость границы сплавления антикоррозионной наплавки с основным металлом.

В целях выполнения УЗК сварных соединений корпуса реактора ВВЭР-1200 энергоблока № 1 Нововоронежской АЭС-2 с учетом вышеизложенных факторов головной материаловедческой организацией АО «НИКМТ-Атомстрой» было разработано расчетнотехническое обоснование РТО-КР-УЗК-15 [1], на основании которого был проведен ручной ультразвуковой контроль сварных соединений корпуса реактора ВВЭР-1200 изнутри через антикоррозионную наплавку.

По результатам выполненного контроля несплошностей с амплитудой эхо-сигнала равной или выше уровня фиксации не обнаружено. Результаты контроля положительные.

ОСОБЕННОСТИ ВЫПОЛНЕНИЯ ВИХРЕТОКОВОГО КОНТРОЛЯ ТЕПЛООБМЕННЫХ ТРУБ ПАРОГЕНЕРАТОРОВ

Вихретоковый метод контроля позволяет выявить на теплообменных трубах ПГ несплошности типа наружное и внутреннее утонение стенки глубиной 20% и более от номинальной толщины стенки трубы.

На этапе предэксплуатационного входного контроля состояния основного металла и сварных соединений оборудования и трубопроводов энергоблока № 1 Нововоронежской АЭС-2 с реакторной установкой ВВЭР-1200 с помощью инновационной системы автоматизированного вихретокового контроля теплообменных труб парогенераторов АЭС с РУ ВВЭР «Политест-ПГ» на основании МТ 1.2.1.15.001.0206-2014 «Система автоматизированного вихретокового контроля» теплообменных труб парогенераторов атомных станций с реакторными установками типа ВВЭР «Политест-ПГ. Методика контроля» [16] был выполнен 100%-ый контроль теплообменных труб всех парогенераторов.

Данная методика была разработана специалистами 000 «Центр вихретокового контроля «Политест» и филиала АО «Концерн Росэнергоатом» «Научно-технический центр по аварийно-техническим работам на АЭС» в 2014 г. Опыт специалистов и вовлеченность персонала позволила выполнить контроль при безусловном приоритете обеспечения безопасности и соблюдения всех действующих норм и правил.

Проведение вихретокового контроля (ВТК) по данной методике обеспечивает обнаружение несплошностей и аномалий, возникающих в процессе изготовления, монтажа и эксплуатации парогенератора. ВТК теплообменных труб парогенераторов производится с использованием многочастотного вихретокового метода. В соответствии с методикой, контроль проводился по всей длине теплообменной трубы. При этом теплообменная труба была проконтролирована при вводе вихретокового преобразователя (зонда) (ВТП) из различных коллекторов («холодного», «горячего») с перекрытием участков контроля в зоне гиба согласно схеме проведения контроля (рис. 2).

Рис. 2. Схема проведения ВТК с перекрытием участков контроля

Использование многоэлементного вихретокового преобразователя (зонда) позволило уточнить глубину несплошности, ее тип (язва, трещина), морфологию (внутренняя, наружная), ориентацию (продольная, поперечная, разнонаправленная) и линейные характеристики на участках теплообменной трубы, имеющих индикации, обнаруженные ранее одноэлементным ВТП.

Рис. 3. Устройство многоэлементного вихретокового преобразователя

Датчик многоэлементного ВТП (рис. 3) состоит из 16-ти индуктивных катушек, расположенных в два ряда и соединенных по трансформаторной схеме. Центраторы служат для центрирования датчика ВТП в контролируемой теплообменной трубе.

Анализ данных ВТК производится аналитиком с помощью программы «Pegas» [17] после сбора данных [16 - 19] по всему объекту контроля или какой-то его части посредством изучения массива записанных данных, выявления сигналов от несплошностей (в том числе на фоне различных мешающих факторов), измерения глубины, определения типа, морфологии, протяженности и места расположения несплошностей.

По результатам контроля зафиксированы следующие результаты:

- на ПГ № 1 на 10-ти трубках обнаружено 10 несплошностей с максимальной глубиной до 10% от номинальной толщины стенки теплообменной трубы;
- на ПГ № 2 на 12-ти трубках обнаружено 15 несплошностей с максимальной глубиной до 10% от номинальной толщины стенки теплообменной трубы;
- на ПГ№ 3 на 15-ти трубках обнаружено 18 несплошностей с максимальной глубиной до 10% от номинальной толщины стенки теплообменной трубы;
- на ПГ № 4 на 11-ти трубках обнаружено 16 несплошностей с максимальной глубиной до 10% от номинальной толщины стенки теплообменной трубы.

По результатам вихретокового контроля на ПГ № 1 – 4 несплошностей с глубиной, равной или превышающей браковочный уровень, не обнаружено технологичес-

ких нарушений в изготовлении труб.

Состояние теплообменных труб в объеме выполненного контроля соответствует требованиям норм оценки качества.

выводы

Предэксплуатационный контроль состояния основного металла и сварных соединений оборудования и трубопроводов на энергоблоке №1 Нововоронежской АЭС-2 был выполнен в установленные сроки. В соответствии с требованиями «Типовой программы предэксплуатационного контроля основного металла и сварных соединений оборудования и трубопроводов систем, важных для безопасности АЭС с РУ ВВЭР-1200» АТПП-15-2011, были разработаны и утверждены рабочие программы предэксплуатационного контроля.

Для проведения контроля корпуса реактора специально разработано расчетно-техническое обоснование РТО-КР-УЗК-15, на основании которого был выполнен ручной ультразвуковой контроль сварных соединений корпуса реактора ВВЭР-1200 изнутри через антикоррозионную наплавку. Результаты контроля положительные, несплошностей с амплитудой эхо-сигнала равной или выше уровня фиксации не обнаружено.

На этапе предэксплуатационного входного контроля состояния основного металла и сварных соединений оборудования и трубопроводов энергоблока № 1 Нововоронежской АЭС-2 с помощью инновационной системы автоматизированного вихретокового контроля теплообменных труб парогенераторов АЭС с РУ ВВЭР «Политест-ПГ» выполнен контроль теплообменных труб всех парогенераторов. Результаты контроля показали, что несплошностей с глубиной, равной или превышающей браковочный уровень, не обнаружено.

Литература

- 1. Расчетно-техническое обоснование РТО-КР-УЗК-15 от 02.11.2015 г. М.: $A0 \times HUKUMT$ -Атомстрой», $2015 \, \text{г.} 50 \, \text{c.}$
- 2. АТПП-15-2011. Типовая программа предэксплуатационного контроля основного металла и сварных соединений оборудования и трубопроводов систем, важных для безопасности АЭС с РУ ВВЭР-1200. М.: ОАО «Концерн Росэнергоатом», 2011 г. 102 с.
- 3. Γ 0CT 27.002-2015. Надежность в технике. Термины и определения. М.: Стандартинформ, 2016 г. 28 с.
- 4. Ультразвук. Маленькая энциклопедия. / Под ред. И.П. Голяниной. М.: Советская энциклопедия, 1979. 400 с.
- 5. Статников Е.Ш., Муктепавел В.О. Технология ультразвуковой ударной обработки как средство повышенной надежности и долговечности сварных металлоконструкций. // Сварочное производство. -2003. -№4. -C. 25-29.
- 6. Marushchak P.O., Salo U.V., Bishchak R.T., Poberezhnyi L.Ya. Study of Main Gas Pipeline Steel Strain Hardening After Prolonged Operation. // Chemical and Petroleum Engineering. May 2014. Vol. 50. Iss. 1-2. PP. 58-61.
- 7. *Pleshanov V.S., Kibitkin V.V., Panin V.E.* Mesomechanics and Fatigue Fracture for polycrystals with macroconcentratrs. // Theoretical and Applied Fracture Mechanics. 1998. Vol. 30. No. 1. PP. 13-18.
- 8. Blaha F., Langenecker B. Plastitatsuntersuchungen von Menallkristallen in Ultraschallfeld.//Naturwis.-1955.-Vol.20.-No.9.-P.556.
- 9. Решение № НВОАЭС-21Р-368К(04-03)-2015 от 25.06.2015 г. М.: ОАО «Концерн Росэнергоатом», 2015. 8с.
- 10. *Минин С.И., Трофимов А.И., Трофимов М.А.* Технология термической сварки циркуляционных трубопроводов АЭС с воздействием ультразвука. // Известия вузов. Ядерная энергетика. 2016. №4. С. 5-11.

- 11. *Абрамов О.В.* Кристаллизация металлов в ультразвуковом поле. М.: Металлургия. 1972. 256 с.
- 12. Кулемин А.В. Ультразвук и диффузия в металлах. М.: Машиностроение, 1978. 200 с.
- 13. ПНАЭГ-7-030-91. Унифицированные методики неразрушающего контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Ультразвуковой контроль. Часть II. Контроль сварных соединений и наплавки. М.: ЦНИИАтоминформ, 1992. 157 с.
- 14. $\it Caгалевич B.M.$ Методы устранения сварочных деформаций и напряжений. $\it M.: Ma-$ шиностроение. 1974. 248 с.
- 15. *Минин С.И., Трофимов А.И., Трофимов М.А.* Автоматизированная ультразвуковая система снятия остаточных напряжений в сварных соединениях циркуляционных трубопроводов АЭС. // Известия вузов. Ядерная энергетика. 2016. № 3. С. 13-19.
- 16. МТ 1.2.1.15.001.0206-2014. Система автоматизированного вихретокового контроля теплообменных труб парогенераторов атомных станций с реакторными установками типа ВВЭР «Политест-ПГ». Методика контроля. М.: ОАО «Концерн Росэнергоатом», 2014. 77 с.
- 17. ПТ 61.00.00.00.00.00.PO2. Программа анализа данных вихретокового контроля «PEGAS». Руководство оператора. M:000 «Центр вихретокового контроля «ПОЛИТЕСТ», 2012.-110 с.
- 18. Антонов А.В., Чепурко В.А. Статистический анализ данных об отказах оборудования атомных станций в условиях неоднородного потока событий. // Известия вузов. Ядерная энергетика. -2016. -№3. -C. 20-27.
- 19. Finkelstein M. Failure rate modeling for reliability and risk. Verlag. London Limited: Springer, 2008. 290 p.

Поступила в редакцию 26.06.2017 г.

Автор

<u>Уразов</u> Олег Владимирович, начальник отдела дефектоскопии металлов и технического контроля

E-mail: UrazovOV@nvnpp1.rosenergoatom.ru

UDC 621.311.25

RESULTS OF A PREOPERATIONAL INSPECTION AT UNIT №1 OF NOVOVORONEZH NPP II

Urazov 0.V.

Branch of JSC «Concern Rosenergoatom» «Novovoronezh Nuclear Power Plant» 1 Promyshlennaya zona Yuzhnaya, Novovoronezh, Voronezh reg., 396072 Russia

ABSTRACT

A preoperational inspection for the state of the parent metal and welded joints in components and pipelines at unit Nº 1 of Novovoronezh NPP II is discussed. Peculiarities involved in the inspection of the reactor vessel welded joints facing the anticorrosive plating and the steam generator heat-exchange tubes using innovative test systems and techniques are considered.

To inspect the reactor vessel, «Computational and Engineering Case Study RTO-KR-UZA-15» [1] was developed specifically, based on which the VVER-1200 reactor vessel welded joints were inspected, using a manual ultrasonic technique, through the anticorrosive plating.

A technology [2], developed by JSC «Center for Eddy-Current Testing «Politest» and by the Scientific and Technical Center for Emergency Engineering Operations at Nuclear Power Plants, a branch of JSC «Concern Rosenergoatom», and used for the first time at a Russian NPPs at the stage of preoperational incoming inspection for the state of the parent metal and welded joints in components and pipelines at unit № 1 of Novovoronezh NPP II using «Politest-PG», an innovative system for the automated eddy-current testing of the steam generator heat-exchange tubes at nuclear power plants with VVER reactors, was used to inspect the heat-exchange tubes in all of the steam generators. As a result of the test, the steam generator tubes were found to have discontinuities with the maximum depth of up to 10% of the nominal wall thickness which is tolerable. The inspection results have confirmed the unit to be fit for commercial operation.

Key words: preoperational inspection, ultrasonic testing, ultrasonic testing technology, eddy-current testing, reactor vessel, steam generator.

REFERENCES

- 1. Technical Basis RTO-KR-UZK-15, issued 02.11.2015. Moscow. JSC «NIKIMT-Atomstroy» Publ., 2015. 50 p. (in Russian).
- 2. ATPP-15-2011. Standard Program for Preoperational Inspection of Base Metal and Welded Connections in Components and Pipelines of Security-Related Systems at NPPs with VVER-1200 Reactors. Moscow. JSC «Concern Rosenergoatom» Publ., 2011. 102 p. (in Russian).
- 3. GOST 27.002-2015. Industrial product dependability. Terms and definitions. Moscow. Standartinform Publ., 2016. 28 p. (in Russian).
- 4. Ul'trazvuk. Malen'kaya entsiklopediya. [Ultrasound. A small encyclopaedia.] Moscow. Sovetskaya entsiklopediya Publ., 1979. 400 p. (in Russian).
- 5. Statnikov E.Sh., Muktepavel V.O. Tekhnologiya ultrazvukovoi udarnoi obrabotki kak sredstvo povyshennoi nadezhnosti i dolgovechnosti svarnykh metallokonstruktsij. [Ultrasonic impact treatment as a method for improving reliability and durability of welded metal structures]. Svarochnoe proizvodstvo. 2003, iss. 4, pp. 25-29 (in Russian).
- 6. Marushchak P.O., Salo U.V., Bishchak R.T., Poberezhnyi L.Ya. Study of Main Gas Pipeline Steel Strain Hardening After Prolonged Operation. *Chemical and Petroleum Engineering*. 2014, v. 50, iss. 1-2, pp. 58-61.
- 7. Pleshanov V.S., Kibitkin V.V., Panin V.E. Mesomechanics and Fatigue Fracture for polycrystals with macroconcentratrs. *Theoretical and Applied Fracture Mechanics*. 1998, v. 30, no. 1, pp. 13-18.

- 8. Blaha F., Langenecker B. Plastitatsuntersuchungen von Menallkristallen in Ultraschallfeld. *Naturwis*. 1955, v. 20, no. 9, p. 556 (in German).
- 9. Resolution No. NVOAES-21R-368K(04-03)-2015, issued 25.06.2015 Moscow. JSC «Concern Rosenergoatom» Publ., 2015. 8 p. (in Russian).
- 10. Minin S.I., Trofimov A.I., Trofimov M.A. Tekhnologiya termicheskoj svarki tsirkulyatsionnykh truboprovodov AES s vozdeistviem ul'trazvuka. [Heat welding of NPP circulation pipelines with ultrasonification]. *Izvestiya vuzov. Yadernaya energetika*. 2016, no. 4, pp. 5-11 (in Russian).
- 11. Abramov O.V. Kristallizatsiya metallov v ul'trazvukovom pole [Crystallisation of metals in ultrasonic field]. Moscow. Metallurgiya Publ., 1972. 256 p. (in Russian).
- 12. Kulemin A.V. Ul'trazvuk i diffuziya v metallakh [Ultrasound and diffusion in metals]. Moscow. Mashinostroenie Publ., 1978. 200 p. (in Russian).
- 13. PNAE G-7-030-91. Unifitsirovannye metodiki nerazrushaiushchego kontrolia osnovnykh materialov (polufabrikatov), svarnykh soedinenij i naplavki oborudovaniya i truboprovodov AEU. Ultrazvukovoj control'. Chast' 2. Kontrol' svarnykh soedinenij i naplavki [Unified methods of non-destructive examination of the main materials (semi-finished items), weld joints and seams of nuclear power unit equipment and pipelines. Ultrasonic examination. Part 2. Examination of weld joints and seams.] Moscow. TsNIIAtominform, 1992. 157 p. (in Russian).
- 14. Sagalevich V.M. Metody ustraneniya svarochnykh deformatsij i napryazhenij [Methods for correcting welding deformations and stress]. Moscow. Mashinostroenie Publ., 1974. 248 p. (in Russian).
- 15. Minin S.I., Trofimov A.I., Trofimov M.A. Avtomatizirovannaya ul'trazvukovaya sistema snyatiya ostatochnykh napryazhenij v svarnykh soedineniyakh tsirkuliatsionnykh truboprovodov AES [The automatic ultrasonic system for residual stress removal in NPP circulation pipeline weld joints]. *Izvestiya vuzov. Yadernaya energetika*. 2016, no. 3, pp. 13-19 (in Russian).
- 16. MT 1.2.1.15.001.0206-2014. Sistema avtomatizirovannogo vikhretokovogo kontrolya teploobmennykh trub parogeneratorov atomnykh stantsij s reaktornymi ustanovkami tipa VVER «Politest-PG». Metodika kontrolya [Automated eddy current testing system for steam generator heat-exchange pipes at nuclear power plants with VVER-type reactors «Polytest-PG». Testing procedure.] Moscow. JSC «Concern Rosenergoatom» Publ., 2014. 77 p. (in Russian).
- 17. PT 61.00.00.00.00.00.RO2. Programma analiza dannykh vikhretokovogo kontrolya «PEGAS». Rukovodstvo operatora [«PEGAS» code for eddy current testing data analysis. The operator's manual.] Moscow. LLC «Center for eddy current control' POLITEST» Publ., 2012. 110 p. (in Russian).
- 18. Antonov A.V., Chepurko V.A. Statisticheskij analiz dannykh ob otkazakh oborudovaniya atomnykh stantsij vusloviyakh neodnorodnogo potoka sobytij [Statistical analysis of data on nuclear power plant equipment failures in the context of non-uniform event stream]. *Izvestiya vuzov. Yadernaya energetika*. 2016, no. 3. pp. 20-27 (in Russian).
- 19. Finkelstein M. Failure rate modeling for reliability and risk. Verlag. London Limited: Springer, 2008. 290 p.

Author

<u>Urazov</u> Oleg Vladimirovich, Head of the Metal Test and Technical Inspection Department, E-mail: UrazovOV@nvnpp1.rosenergoatom.ru