第22回 平均と分散の検定(12.2, 12.4)

村澤 康友

2024年12月17日

今日のポイント

- 1. 正規母集団の母平均・母分散, 正規母集団 の2標本問題の母平均の差・母分散の比, ベルヌーイ母集団の母比率の検定の棄却 域を求める.
- 2. H_0 の下で t 分布・ χ^2 分布・F 分布にした がう検定統計量を、それぞれ t 統計量・ χ^2 統計量・F 統計量という. それらを用いる 検定を t 検定・ χ^2 検定・F 検定という.
- 3. H₀ の下で検定統計量が実現値以上になる 確率を p 値(有意確率)という. p 値≦有 意水準なら H_0 を棄却する.

目次

L	止規母集団	1	Z := X - c
1.1	母平均の検定(p. 240)	1	$Z:=\frac{X-c}{\sqrt{\sigma^2/n}}$
1.2	母分散の検定(p. 242)	2	H_0 の下で
1.3	母平均の差の検定(p. 242)	2	$Z \sim \mathrm{N}(0,1)$
1.4	母分散の比の検定(p. 244)	3	標準正規分布表より H_0 の下で
<u>)</u>	ベルヌーイ母集団 (p. 250)	4	$\Pr[Z \ge 1.65] = 0.05$
			したがって棄却域は $[1.65,\infty)$.
3	p 値	5	注 1. 棄却域は H_1 に依存する.
1	今日のキーワード	5	・ $H_1: \mu > c$ なら棄却域は $[1.65,\infty)$ ・ $H_1: \mu < c$ なら棄却域は $(-\infty,-1.65]$
5	次回までの準備	5	• H_1 : $\mu \neq c$ なら棄却域は $(-\infty, -1.96]$ $[1.96, \infty)$

1.1 母平均の検定 (p. 240)

1.1.1 母分散が既知

母集団分布を N $\left(\mu,\sigma^2\right)$ とする. ただし σ^2 は既 知とする. 次の片側検定問題を考える.

$$H_0: \mu = c \quad \text{vs} \quad H_1: \mu > c$$

有意水準を5%とする. 大きさ n の無作為標本の 標本平均を $ar{X}$ とすると

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

標準化すると

$$\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

検定統計量は

$$Z := \frac{\bar{X} - c}{\sqrt{\sigma^2/n}}$$

例えば Z=1.8 なら $H_0: \mu=c$ は $H_1: \mu>c$ に対しては棄却されるが $H_1: \mu\neq c$ に対しては棄却されない. 図 1 を参照.

1.1.2 母分散が未知

標本分散を s^2 とする. σ^2 を s^2 に置き換えると

$$\frac{\bar{X} - \mu}{\sqrt{s^2/n}} \sim t(n-1)$$

検定統計量は

$$t := \frac{\bar{X} - c}{\sqrt{s^2/n}}$$

 H_0 の下で

$$t \sim t(n-1)$$

t 分布表より H_0 の下で、例えば n=10 なら

$$\Pr[t \ge 1.833] = 0.05$$

したがって棄却域は $[1.833, \infty)$.

定義 1. H_0 の下で t 分布にしたがう検定統計量を t 統計量という.

定義 2. t 統計量を用いる検定を *t* **検定**という.

1.2 母分散の検定 (p. 242)

1.2.1 母平均が既知

母集団分布を N $\left(\mu,\sigma^2\right)$ とする. ただし μ は既知 とする. 次の片側検定問題を考える.

$$H_0: \sigma^2 = c$$
 vs $H_1: \sigma^2 > c$

有意水準を 5 %とする.無作為標本 (X_1,\ldots,X_n) の標本分散は

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

このとき

$$\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n)$$

検定統計量は

$$\chi^2 := \frac{n\hat{\sigma}^2}{c}$$

 H_0 の下で

$$\chi^2 \sim \chi^2(n)$$

 χ^2 分布表より H_0 の下で、例えば n=10 なら

$$\Pr\left[\chi^2 \ge 18.3070\right] = 0.05$$

したがって棄却域は $[18.3070, \infty)$.

定義 3. H_0 の下で χ^2 分布にしたがう検定統計量 を χ^2 統計量という.

定義 4. χ^2 統計量を用いる検定を χ^2 検定という.

1.2.2 母平均が未知

μが未知なら標本分散は

$$s^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

このとき

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

検定統計量は

$$\chi^2 := \frac{(n-1)s^2}{c}$$

 H_0 の下で

$$\chi^2 \sim \chi^2(n-1)$$

 χ^2 分布表より H_0 の下で、例えば n=10 なら

$$\Pr\left[\chi^2 \ge 16.9190\right] = 0.05$$

したがって棄却域は $[16.9190, \infty)$.

1.3 母平均の差の検定 (p. 242)

1.3.1 母分散が既知

母集団分布を $N(\mu_X, \sigma_X^2)$, $N(\mu_Y, \sigma_Y^2)$ とする. ただし σ_X^2, σ_Y^2 は既知とする. 次の片側検定問題を考える.

$$H_0: \mu_X = \mu_Y \text{ vs } H_1: \mu_X > \mu_Y$$

有意水準を $5\,\%$ とする.各母集団から独立に抽出した大きさ m,n の無作為標本の標本平均を $ar{X},ar{Y}$ とすると

$$\bar{X} \sim N\left(\mu_X, \frac{\sigma_X^2}{m}\right)$$
 $\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$

図1 片側検定と両側検定の棄却域

両者は独立だから

$$\bar{X} - \bar{Y} \sim N\left(\mu_X - \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}\right)$$

標準化すると

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{\sigma_X^2/m + \sigma_Y^2/n}} \sim N(0, 1)$$

検定統計量は

$$Z := \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_Y^2 / m + \sigma_Y^2 / n}}$$

 H_0 の下で

$$Z \sim N(0, 1)$$

標準正規分布表より H_0 の下で

$$\Pr[Z \ge 1.65] = 0.05$$

したがって棄却域は $[1.65, \infty)$.

1.3.2 母分散が未知

$$\sigma_X^2 = \sigma_Y^2 = \sigma^2$$
 なら

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{\sigma^2(1/m + 1/n)}} \sim N(0, 1)$$

プールした標本分散を s^2 とする. σ^2 を s^2 に置き換えると

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{s^2(1/m + 1/n)}} \sim t(m + n - 2)$$

検定統計量は

$$t := \frac{\bar{X} - \bar{Y}}{\sqrt{s^2(1/m + 1/n)}}$$

 H_0 の下で

$$t \sim t(m+n-2)$$

t 分布表より H_0 の下で、例えば m=4、n=6 なら

$$Pr[t > 1.860] = 0.05$$

したがって棄却域は $[1.860, \infty)$.

注 2. $\sigma_X^2 \neq \sigma_Y^2$ なら近似的な検定を用いる.

1.4 母分散の比の検定 (p. 244)

1.4.1 母平均が既知

母集団分布を $\mathrm{N}\left(\mu_X,\sigma_X^2\right),\mathrm{N}\left(\mu_Y,\sigma_Y^2\right)$ とする. ただし μ_X,μ_Y は既知とする.次の片側検定問題を考える.

$$H_0: \sigma_X^2 = \sigma_Y^2$$
 vs $H_1: \sigma_X^2 > \sigma_Y^2$

有意水準を 5 %とする.各母集団から独立に抽出した大きさ m,n の無作為標本の標本分散を $\hat{\sigma}_X^2,\hat{\sigma}_Y^2$ とすると

$$\frac{m\hat{\sigma}_X^2}{\sigma_X^2} \sim \chi^2(m)$$
$$\frac{n\hat{\sigma}_Y^2}{\sigma_X^2} \sim \chi^2(n)$$

両者は独立だから

$$\frac{\hat{\sigma}_X^2/\sigma_X^2}{\hat{\sigma}_Y^2/\sigma_Y^2} \sim F(m,n)$$

すなわち

$$\frac{\hat{\sigma}_X^2/\hat{\sigma}_Y^2}{\sigma_X^2/\sigma_Y^2} \sim F(m,n)$$

検定統計量は

$$F := \frac{\hat{\sigma}_X^2}{\hat{\sigma}_Y^2}$$

 H_0 の下で

$$F \sim F(m, n)$$

 ${
m F}$ 分布表より H_0 の下で、例えば $m=4,\ n=6$ なら

$$\Pr[F \ge 4.534] = 0.05$$

したがって棄却域は $[4.534, \infty)$.

定義 5. H_0 の下で F 分布にしたがう検定統計量を F 統計量という.

定義 6. F 統計量を用いる検定を *F* 検定という.

1.4.2 母平均が未知

標本分散を s_X^2, s_Y^2 とすると

$$\frac{(m-1)s_X^2}{\sigma_X^2} \sim \chi^2(m-1)$$
$$\frac{(n-1)s_Y^2}{\sigma_Y^2} \sim \chi^2(n-1)$$

両者は独立だから

$$\frac{s_X^2/\sigma_X^2}{s_V^2/\sigma_V^2} \sim F(m-1, n-1)$$

すなわち

$$\frac{s_X^2/s_Y^2}{\sigma_X^2/\sigma_Y^2} \sim \mathcal{F}(m-1, n-1)$$

検定統計量は

$$F := \frac{s_X^2}{s_Y^2}$$

 H_0 の下で

$$F \sim F(m-1, n-1)$$

 ${
m F}$ 分布表より H_0 の下で、例えば $m=4,\ n=6$ なら

$$Pr[F > 5.409] = 0.05$$

したがって棄却域は $[5.409, \infty)$.

2 ベルヌーイ母集団 (p. 250)

母集団分布を $\mathrm{Bin}(1,p)$ とする. 次の片側検定問題を考える.

$$H_0: p = p_0 \text{ vs } H_1: p > p_0$$

有意水準を 5 %とする. Bin(1,p) の平均は p, 分散は p(1-p). 大きさ n の無作為標本の標本平均(=標本比率)を \hat{p} とすると,中心極限定理より

$$\hat{p} \stackrel{a}{\sim} N\left(p, \frac{p(1-p)}{n}\right)$$

標準化すると

$$\frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \stackrel{a}{\sim} N(0,1)$$

検定統計量は

$$Z := \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

 H_0 の下で

$$Z \stackrel{a}{\sim} N(0,1)$$

標準正規分布表より H_0 の下で

$$Pr[Z > 1.65] \approx 0.05$$

したがって近似的な棄却域は $[1.65,\infty)$.

例 1. ある番組の視聴率について有意水準 5 %で次の片側検定を行う.

$$H_0: p \le 0.1$$
 vs $H_1: p > 0.1$

100 世帯を対象に視聴率を調査したら 13 %の視聴率であった. 検定統計量の値は

$$Z := \frac{0.13 - 0.1}{\sqrt{0.1(1 - 0.1)/100}}$$
$$= \frac{0.03}{\sqrt{0.09/100}}$$
$$= 1 < 1.65$$

したがって H_0 は棄却されない.

3 p **値**

定義 7. H_0 の下で検定統計量が実現値以上になる 確率を p 値(有意確率)という.

注 3. p 値が有意水準以下なら H_0 を棄却する.

例 2. 有意水準 α の検定を考える. 検定統計量を T, 棄却域を $[t_{\alpha},\infty)$, T の実現値を t とすると,

$$t \ge t_{\alpha} \iff \Pr[T \ge t | H_0] \le \Pr[T \ge t_{\alpha} | H_0]$$

 $\iff p \le \alpha$

したがって $p \le \alpha$ なら H_0 は棄却 (図 2).

4 今日のキーワード

母平均の検定(母分散が既知・未知)、t 統計量、t 検定、母分散の検定(母平均が既知・未知)、 χ^2 統計量、 χ^2 検定、母平均の差の検定(母分散が既知・未知)、母分散の比の検定(母平均が既知・未知)、F 統計量、F 検定、母比率の検定、p 値(有意確率)

5 次回までの準備

提出 宿題 6

復習 教科書第12章2,4節,復習テスト22

予習 教科書第 12 章 3 節

図2 検定統計量とp値