

Don Bosco School, Liluah 2018-2019

Computer Science Project

NILAVA METYA

CLASS: XII C ROLL NO.: 23 REG. NO.: 2006/040

January 14, 2019

Contents

1	Euler's Method	2
2	Fibonacci Numbers	3
3	Angle	5
4	Unique Number	7
5	Partition	11
6	Disarium Number	13
7	Anagrams	15
8	Telephone Directory	17
9	String using Scanner	23
10	Bitwise Sieve	24
11	Hotel Management	26
12	Histogram for frequency of characters	29
13	Employ Salary with interface	31
14	Admission as per Date of birth	33
15	ArrayList demonstration	36
16	StringTokenizer demonstration	37
17	Merge Sort	38
18	Quick Sort	41
19	Traversal in Binary Search Tree	43

1 Euler's Method

Source Code

```
// Program to implement Euler's method for solving differential equations
class Euler
   //method to calculate
   float func(float x,float y)
       return (x + y + x*y);
   }
   //method to print solution
   void euler(float x0, float y, float h, float x)
       float temp = 0;
       while(x0 < x)
       {
           temp = y;
           y = y + h*func(x0,y); //approximate solution
           x0 = x0 + h;
       System.out.println("Approximate solution at x = " + x + " is " + y);
   }
   public static void main(String args[])
       Euler obj = new Euler();
       float x0 = 0f;
       float y0 = 1f;
       float h = 0.025f;
       float x = 0.1f;
       obj.euler(x0,y0,h,x); //calling object
   }
}
```


2 Fibonacci Numbers

```
// Program to print the Fibonacci numbers backwards starting from the nth term
import java.util.*;
class Fibonacci
   private long[] f; //array to store the fibonacci numbers
   //method to accept index of last fibonacci number
   public void accept()
       Scanner s = new Scanner(System.in); //Scanner object
       System.out.print("Enter the index of the fibonacci number, indexed at 1: ");
       do
          n = s.nextInt();
          if(n < 1) System.out.print("Invalid Input! Please re-enter:");</pre>
       } while(n < 1);
       f = new long[n]; //initializing array
       Arrays.fill(f,0); //initializing values of array elements
       f[0] = 0; //base case of Fibonacci sequence
       if(n > 1) f[1] = 1; //base case of Fibonacci sequence
   }
   //recursive function to find Fibonacci numbers
   public long fib(int n)
   {
       if(n == 1) return 1;
       else if(n == 0) return 0;
       else
          if(f[n] == 0) f[n] = fib(n-1) + fib(n-2);
          return f[n];
   //method to print sequence in reverse order
   public void printrev()
       for(int i = f.length-1; i \ge 0; i--)
          System.out.println(fib(i));
   public static void main(String[] args)
       Fibonacci f = new Fibonacci();
       f.accept();
       f.printrev();
   }
}
```

```
1
                    BlueJ: Terminal Window - Comp_prj
                                                            _ 🗆
 Options
Enter the index of the fibonacci number, indexed at 1: 20
4181
2584
1597
987
610
377
233
144
89
55
34
21
13
8
5
2
1
0
```

3 Angle

```
// Program to implement angle summation
import java.util.*;
class Angle
{
   private int degrees, minutes; //data members
   //method to find sum of two angles
   public static Angle sumangle(Angle a, Angle b)
       Angle ob = new Angle();
       ob.degrees = a.degrees + b.degrees;
       ob.minutes = a.minutes + b.minutes;
       if(ob.minutes >= 60) //degree is always less than 60
           ob.minutes = ob.minutes - 60;
           ob.degrees++;
       return ob;
   //non-parameterized constructor
   public Angle()
       this.degrees = 0;
       this.minutes = 0;
   }
   //parameterized constructor
   public Angle(int x,int y)
   {
       this.degrees = x;
       this.minutes = y;
       while(this.minutes >= 60)
           this.minutes = this.minutes - 60;
           this.degrees++;
   public static void main(String[] args)
       Scanner sc = new Scanner(System.in);
       Angle a = new Angle();
       Angle b = new Angle();
       System.out.print("Enter first angle degrees : ");
       a.degrees = sc.nextInt();
       System.out.print("Enter first angle minutes : ");
       a.minutes = sc.nextInt();
       System.out.print("\nEnter second angle degrees : ");
       b.degrees = sc.nextInt();
       System.out.print("Enter second angle minutes : ");
       b.minutes = sc.nextInt();
       Angle c = sumangle(a,b);
```


4 Unique Number

4.1 Using String

```
// Program to print all Unique numbers within a given range
import java.util.*;
class UniqueNumber
   private int m, n;
   //non-parameterized constructor
   public UniqueNumber()
       m = n = 0;
   //function to accept upper and lower limits
   public void accept()
       Scanner sc = new Scanner(System.in);
       System.out.print("Enter lower bound: ");
       m = sc.nextInt();
       System.out.print("Enter upper bound: ");
       n = sc.nextInt();
   //function to check if n has all unique digits
   public boolean check(int n)
   {
       int[] d = new int[10]; //array to store frequency of digits
       Arrays.fill(d,0);
       String s = Integer.toString(n); //converting the number into String
       int l=s.length();
       for(int i=0;i<1;i++) //loop to check for repeated digits</pre>
           int dig = Integer.parseInt(s.charAt(i) + "");
           if(d[dig] == 1) return false;
           else d[dig]++;
       return true;
   public static void main(String[] args)
       UniqueNumber u = new UniqueNumber();
       u.accept();
       System.out.print("The unique numbers are: ");
       for(int i= u.m ; i <= u.n ; i++) System.out.print((u.check(i))? (i+" "): "");</pre>
   }
}
```


4.2 Using boolean

```
//Program to check if all digits are unique unsing Boolean values
import java.util.Scanner;
class UniqueNumBool
   public static boolean checkUnique(int n)
   {
       boolean check[] = new boolean[10];
       while(n != 0)
           int d = n % 10; //last digit
           if(check[d]) return false; //repeated presence
           else check[d]=true;
          n = n/10; //remove last digit
       return true;
   }
   public static void main(String[] args)
       int m, n, count = 0;
       Scanner s = new Scanner(System.in);
       System.out.print("\nEnter lower bound: ");
       m = s.nextInt();
       System.out.print("Enter upper bound: ");
       n = s.nextInt();
       System.out.println();
       for(int i = m ; i <= n ; i++) //check in given range</pre>
           if(checkUnique(i))
              System.out.print(i + " ");
              count++; //count number of such numbers
       System.out.println("\nNo of unique digit integers = " + count);
   }
}
```


5 Partition

```
// Program to find partitions of a given number
* Use dynamic programming approach:
* If p(n,k) is the number of partitions of n with highest part at most k,
* then, p(n,k) = p(n,k-1) + p(n-k,k)
\ast The above formula also helps in establishing a bijection:
* > If 'k' is present, then partition the remainder of 'n-k'
* > If 'k', not present, then highest part is atmost 'k-1' (recursive step)
*/
import java.util.*;
class Part
   private static int count;
   //recursive function to generate partitions
   public static void partition(int n, int max, String part)
       if(n==0)
                 //base case
          System.out.println(part);
          count++;
          return;
       for(int i = Math.min(max,n); i >= 1; i--)
          partition(n-i , i , part + (i + " ")); //recursive step
   }
   public static void main(String[] args)
       Scanner sc = new Scanner(System.in);
       System.out.print("Enter number to find partitions: ");
       int n = sc.nextInt();
       count = 0;
       partition(n,n,"");
       System.out.println("Number of partition: "+count);
   }
}
```

```
Options

Enter number to find partitions: 5
5
4 1
3 2
3 1 1
2 2 1
2 1 1 1
1 1 1 1 1
Number of partition: 7

Can only enter input while your programming is run
```

6 Disarium Number

```
// Program to find al Disarium numbers in a given range
import java.util.Scanner;
class Disarium
   //function to check Disarium number
   public boolean checkDisarium(int num)
       int copy = num, d = 0, sum = 0;
       String s = num + "";
       int len = s.length();
       while(copy > 0)
           d = copy % 10; //last digit
           sum = sum + (int)Math.pow(d,len); //raise to position power
           copy = copy / 10; //remove last digit
       if(sum == num) return true;
       else return false;
   public static void main(String[] args)
       Scanner sc = new Scanner(System.in); //Scanner object
       System.out.print("Enter lower bound: ");
       int m=sc.nextInt();
       System.out.print("Enter upper bound: ");
       int n=sc.nextInt();
       Disarium d = new Disarium();
       System.out.print("Disarium numbers:");
       for(int i=m;i<=n;i++)System.out.print(d.checkDisarium(i)? i+" ":"");</pre>
   }
}
```


7 Anagrams

```
// Program to find all possible anagrams of a given word
import java.util.*;
class Anagram
{
   private String s;
   //Non-parameterized constructor
   public Anagram()
       s = "";
       accept();
   //method to accept word from user
   public void accept()
   {
       Scanner sc = new Scanner (System.in);
       System.out.print("Enter a string:");
       char[] c = sc.next().toCharArray(); //sorting charactrers of word
       for(int i = 0; i < c.length; i++) s += c[i];
       sc.close();
   }
   //recursive function to find all anagrams
   public void permute(String s, ArrayList<String> a)
       byte[] mark = new byte[256];
       Arrays.fill(mark, (byte)0);
       if(s.length() == 0) a.add(""); //base case
       for(int i = 0; i < s.length(); i++)
       {
          char c = s.charAt(i);
          if(mark[(int) c] == 1) continue; //avoiding repetition
          mark[(int) c] = (byte) 1;
          String r = ""; //string to be permuted
          for(int j = 0; j < s.length(); j++)
              if(j == i) continue; //permute all except curent character
              r += s.charAt(j);
          ArrayList<String> temp = new ArrayList<String>();
          permute(r, temp); //recursive step
          for(int j = 0; j < temp.size(); j++) a.add(c + temp.get(j));
       }
   }
   public static void main(String[] args)
       Anagram p = new Anagram(); //Anagram object
       ArrayList<String> a = new ArrayList<String>();
       p.permute(p.s,a);
       System.out.println("\nAnagrams are:");
       for(int i = 0 ; i < a.size() ; i++)</pre>
```

```
System.out.println(a.get(i));
}
```


8 Telephone Directory

```
//Program to maintain a telephone directory
import java.util.*;
import java.io.*;
class TelDirectory
   private ArrayList<Data> dir = new ArrayList<Data>(); //stores all data
   //non-parameterized constructor
   public TelDirectory()throws IOException
   {
       BufferedReader br = new BufferedReader(new FileReader("Directory.txt"));
       String id = "";
       while(id != null)
          id = br.readLine();
          if(id == null) break;
          int Id = Integer.parseInt(id);
          Data d = new Data(Id,br.readLine(),Long.parseLong(br.readLine()));
          dir.add(d);
       br.close();
   }
   //method to add data
   public void append()throws IOException
   {
       System.out.println("Adding");
       int id = dir.size() + 1;
       PrintWriter p = new PrintWriter(new BufferedWriter(new
          FileWriter("Directory.txt",true)));
       BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
       System.out.print("Enter name: ");
       String name = br.readLine();
       System.out.print("Enter phone : ");
       long phone = Long.parseLong(br.readLine());
       dir.add(new Data(id,name,phone));
       p.println(id); //writing in file
       p.println(name);
       p.println(phone);
       p.close();
   //method to delete data
   public void remove()throws IOException
   {
       System.out.println("Deleting");
       System.out.print("Delete by:\n1.Name\t2.Phone\nEnter choice: ");
       BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
       char choice = br.readLine().charAt(0);
       if(choice == '1') //search by name
       {
          System.out.print("Enter name: ");
```

```
String name = br.readLine();
       Data d = search(name);
       if(d != null) dir.remove(d.id);
       else System.out.println("Name not found.");
   else if(choice == '2') //seaerch by phone
       System.out.print("Enter phone: ");
       long phone = Long.parseLong(br.readLine());
       Data d = search(phone);
       if(d!=null) dir.remove(d.id);
       else System.out.println("Phone not found.");
   PrintWriter p = new PrintWriter(new BufferedWriter(new
       FileWriter("Directory.txt")));
   for(int i = 0 ; i < dir.size() ; i++)
       p.println(i+"\n"+dir.get(i).name+"\n"+dir.get(i).phone);
   p.close();
//method to edit contents of directory
public void edit() throws IOException
{
   System.out.println("Updating");
   System.out.println("Search by:\n1.Name\t2.Phone\n Enter choice: ");
   BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
   char choice = br.readLine().charAt(0);
   if(choice == '1') //search by name
       System.out.print("Enter name: ");
       String name = br.readLine();
       Data d = search(name);
       if(d!=null)
       {
           System.out.print("New Name: ");
           d.name = br.readLine();
           System.out.print("New Phone: ");
          d.phone = Long.parseLong(br.readLine());
           dir.set(d.id,d);
       else System.out.println("Name not found.");
   }
   else if(choice == '2') //search by phone
       System.out.print("Enter phone: ");
       long phone = Long.parseLong(br.readLine());
       Data d = search(phone);
       if(d!=null)
       {
           System.out.print("New Name: ");
           d.name = br.readLine();
           System.out.print("New Phone: ");
           d.phone = Long.parseLong(br.readLine());
           dir.set(d.id,d);
       }
```

```
else System.out.println("Phone not found.");
   }
   PrintWriter p = new PrintWriter(new BufferedWriter(new
       FileWriter("Directory.txt")));
   for(int i = 0 ; i < dir.size() ; i++) //update file</pre>
       Data d = dir.get(i);
       p.println(i+"\n"+d.name+"\n"+d.phone);
   p.close();
}
//method to search and show results
public void search() throws IOException
   System.out.println("Searching");
   System.out.println("Search by:\n1.Name\t2.Phone");
   BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
   char choice = br.readLine().charAt(0);
   if(choice == '1') //search by name
   {
       System.out.print("Enter name: ");
       String name = br.readLine();
       Data d = search(name);
       if(d!=null) System.out.println("Id: " + d.id+"\nName: " +
           d.name+"\nPhone: " + d.phone);
       else System.out.println("Name not found.");
   }
   else if(choice == '2') //search ny hpone
       System.out.print("Enter phone: ");
       long phone = Long.parseLong(br.readLine());
       Data d = search(phone);
       if(d!=null) System.out.println("Id: " + d.id+"\nName: " +
           d.name+"\nPhone: " + d.phone);
       else System.out.println("Phone not found.");
   }
//method to search by name
private Data search(String name)
{
   for(int i = 0 ; i < dir.size() ; i++)</pre>
       Data d = dir.get(i);
       if(d.name.equals(name)) return d;
   return null;
//method to search by phone
private Data search(long phone)
   for(int i = 0 ; i < dir.size() ; i++)</pre>
       Data d = dir.get(i);
       if(d.phone==phone) return d;
```

```
}
      return null;
   //method to print entire list
   public void displayWholeList()
   {
      System.out.println("Id\tPhone\t\tName");
      System.out.println(".....\n");
      for(int i = 0 ; i < dir.size() ; i++)</pre>
          Data d = new Data();
          d = dir.get(i);
          System.out.println(" " + d.id + "\t" + d.phone + "\t" + d.name);
   }
}
//user-defined data type
class Data
   private int id;
   private String name;
   private long phone;
   //non-parameterized constructor
   public Data()
   {
      id = 0;
      name = "";
      phone = 0;
   //parameterized constructor
   public Data(int x, String y, long z)
      id = x;
      name = y;
      phone = z;
   }
}
```


9 String using Scanner

Source Code

```
// Program to find tokens from a stirng using Scanner
import java.util.*;
import java.io.*;
class StringScanner
   public static void main(String args[])
   {
       String s = "";
       System.out.print("Enter a sentence : ");
       try
       {
          BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
          s = br.readLine(); //input string from user
       catch(Exception e) //Excdption handling
          System.out.println(e.getMessage());
       System.out.println();
       Scanner sc = new Scanner(s);
       while(sc.hasNext()) //check for more tokens
          System.out.println(sc.next()); //extract tokens
       }
   }
}
```

```
Options

Enter a sentence : JAVA is a programming language

JAVA is a programming language

a programming language

Can only enter input while your programming is runn
```

10 Bitwise Sieve

```
// Program to implement Bitwise Sieve of Eratosthenes
import java.util.*;
class BitwiseSieve
   //method to check whether x is prime or composite
   public static int isComposite(int prime[], int x)
       // checking whether the value of element is set or not
       // Using prime [x/64], find the slot in prime array
       // To find the bit number, divide x by 2 and take its mod with 32
       return (prime[x/64] & (1 << ((x >> 1) & 31)));
   }
   //marks x composite in prime[]
   public static void makeComposite(int prime[], int a)
   {
       // Set a bit corresponding to given element
       // To find the bit number divide a by 2 and take it mod 32
       prime[a / 64] |= (1 << ((a >> 1) & 31));
   //method to print all primes smaller than n
   public static void bitWiseSieve(int n)
   {
       // Assuming that n takes 32 bits, reduce size to n/64 from n/2
       int prime[] = new int[n/64 + 1];
       // 2 is the only even prime so check only odd primes
       for (int i = 3; i * i <= n; i += 2)
          // If i is prime, mark all its multiples as composite
          if (isComposite(prime, i) == 0)
              for (int j = i * i, k = i << 1; j < n; j += k)
                  makeComposite(prime, j);
       System.out.print("Primes upto " + n + " : 2 "); //print 2 separately
       //print other primes
       for (int i = 3; i \le n; i += 2)
          if (isComposite(prime, i) == 0)
              System.out.print(i+" ");
   public static void main(String[] args)
   {
       Scanner sc = new Scanner(System.in);
       System.out.print("Enter upper limit to find primes upto that number: ");
       do
          n = sc.nextInt();
           if(n < 1) System.out.print("Invalid input! Re-enter: ");</pre>
       } while(n < 1);
       if(n == 1) System.out.print("No primes upto 1!");
```

```
else bitWiseSieve(n);
}
```


11 Hotel Management

```
// Program for Hotel management
import java.util.Scanner;
class HotelExe
   public static void main(String args[])
       HotelManagement hm = new HotelManagement();
       hm.getDetails();
       hm.bookRoom();
   }
}
class HotelManagement
   private Scanner sc = new Scanner(System.in);
   private int month, year, roomCount, dayCount, currId;
   private int rooms[][];
   private Details ids[];
   //non-parameterized constructor
   public HotelManagement()
   {
       System.out.print("Enter number of rooms: ");
       roomCount = sc.nextInt();
       System.out.print("Enter month number (1 for January,etc): ");
       month = sc.nextInt();
       if(month < 1 || month > 12) System.out.print("Invalid input.");
       else
       {
          if(month == 2) //need year for leap year check
              System.out.print("Enter year: ");
              year = sc.nextInt();
           if (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 ||
              month == 10 || month == 12)
              dayCount = 31;
          else if (month == 4 || month == 6 || month == 9 || month == 11)
              dayCount = 30;
                //leap year check
          else
           {
              if(year % 400 == 0 || (year % 100 != 0 && year % 4 == 0)) dayCount =
              else dayCount = 28;
          rooms = new int[roomCount][dayCount];
          ids = new Details[(roomCount * dayCount)];
       currId = 1;
   //method to book a room
```

```
void bookRoom()
{
   System.out.print("Enter date: ");
   int date;
   do //check valid date
       date = sc.nextInt();
       if(date < 1 || date > dayCount) System.out.println("Invalid input! Please
          re-enter: ");
   }while(date < 1 || date > dayCount);
   System.out.print("Enter room no: ");
   int roomno = sc.nextInt() - 1; //-1 for array numbering
   int id = rooms[roomno][date];
   if (id == 0) //if id=0, then room is empty
       rooms[roomno][date] = currId;
       Details x = new Details(); //Details object
       System.out.print("Enter Customer name: ");
       x.name = sc.next();
       System.out.print("Enter Phone number: ");
       x.phone = sc.nextLong();
       System.out.print("Enter Email: ");
       x.email = sc.next();
       System.out.print("Enter Address: ");
       x.address = sc.next();
       ids[currId] = x;
       currId++;
   }
   else System.out.println("Room not empty. Try another one.");
//method to get detils of a customer
void getDetails()
{
   System.out.print("Enter date: ");
   int date;
   do //check valid date
       date = sc.nextInt();
       if(date < 1 || date > dayCount) System.out.println("Invalid input! Please
          re-enter: ");
   } while(date < 1 || date > dayCount);
   System.out.print("Enter room no: ");
   int roomno = sc.nextInt();
   roomno--;
   int id = rooms[roomno][date];
   if(id == 0) System.out.println("Room is empty.");
   else
   {
       Details a = ids[id];
       System.out.println("Customer name: " + a.name + "\nPhone number: " +
          a.phone + "\nEmail: " + a.email + "\nAddress: " + a.address);
   }
}
```

}

```
//user defined data type for details
class Details
{
    String name;
    long phone;
    String address;
    String email;
}
```


12 Histogram for frequency of characters

```
// Program to print vertical histogram of frequency of characters
import java.util.*;
class Histogram
   private static String s;
   private static int[] a; //array to store frequency of characters
   public static void print()
       System.out.println();
       for(int i = 0 ; i < s.length() ; i++)</pre>
           int pos = s.charAt(i)-'a';
           a[pos]++; //calculating character frequency
       int var = 0, max = 0;
       max = a[0];
       for(int i = 0; i < a.length; i++)
           if(a[i] > max) max = a[i];
       var = max;
       for(int i = 0; i < var; i++)
           for(int j = 0; j < a.length; j++)
              if(a[j] < max) System.out.print(" ");</pre>
              else System.out.print("* "); //print when character has count at
                  least this level
           max--;
                     //changing level
           System.out.println();
       for(int i = 0; i < 26; i++)
           System.out.print((char)(i + 'a') + " ");
   }
   public static void main(String[] args)
       Scanner sc = new Scanner(System.in);
       System.out.print("Enter a word: ");
       s = sc.nextLine().toLowerCase();
       a = new int[26];
       Arrays.fill(a,0); //inititalizing character frequencies
       print();
   }
}
```

13 Employ Salary with interface

```
//Program to implement Employ class using interface
class Salary extends Employee implements gross
   private float hra;
   public Salary(String n,float b,float h)
       super(n,b);
       hra = h;
   public void display()
       super.display(); //calling display() from Employee class
       System.out.print("HRA of employee : "+hra);
   public void gross_sal()
       double gross_sal = basic_sal + ta + da + hra; //calculate gross salary
       System.out.println("TA of employee: " + ta);
       System.out.println("DA of Emp: " + da);
       System.out.println("Gross salary: "+ gross_sal);
   }
//iser defined data type
class EmpDetails
   public static void main(String args[])
       Salary s = new Salary("Anirban",8000,8000);
       s.display();
       s.gross_sal();
   }
}
interface gross
   double ta = 800.00;
   double da = 1500.00;
   void gross_sal();
//user-defined data type
class Employee
   protected String name;
   protected float basic_sal;
   //parameterized constructor
   public Employee(String n, float b)
       name = n;
       basic_sal = b;
   }
```

```
//method to display details
void display() //default access modifier
{
    System.out.println("Name of Employee : " + name);
    System.out.println("Employee's Basic pay : " + basic_sal);
}
```


14 Admission as per Date of birth

```
//Program to check admission criteria
import java.util.*;
class Admission
   private Scanner sc=new Scanner(System.in);
   private int month[]={0,31,28,31,30,31,30,31,30,31,30,31};
   //function for checking for Leap Year
   public int isLeap(int y)
   {
       if((y\%400==0) || ((y\%100!=0)\&\&(y\%4==0))) return 29;
   }
   //function for checking date validation
   public boolean dateValid(int d, int m, int y)
   {
      month[2] = isLeap(y);
       if(m < 0 \mid | m > 12 \mid | d < 0 \mid | d > month[m] \mid | y < 0 \mid | y > 9999)
          return false;
      return true;
   }
   //function for finding day number from year = 1 till the input year
   public int dayno(int d, int m, int y)
       int dn = 0;
      month[2] = isLeap(y);
       for(int i = 1 ; i < m ; i++) dn=dn+month[i];</pre>
       dn = dn + d;
       for(int i = 1 ; i < y ; i++)
          if(isLeap(i) == 29) dn = dn + 366;
          else dn = dn + 365;
       }
      return dn;
   }
   public static void main(String[] args)
       Admission aa = new Admission();
       System.out.println("-----");
       System.out.println("\t\t\t\tDON BOSCO SCHOOL, LILUAH");
       System.out.println("\t\t\t\t\t----");
       System.out.println("CHECK FOR ADMISSION: ");
       System.out.println("_____");
       System.out.println("\t1.Class KG");
       System.out.println("\t2.Class 1");
       System.out.println("\t3.Class 2");
       System.out.println("\t4.Class 3");
       System.out.println("\t5.Class 4");
       System.out.println("\t6.Class 7");
       System.out.println("\t7.Class 11");
```

```
System.out.print("Please choose a class for your ward's admission from
          above:- ");
       int choice = aa.sc.nextInt();
       System.out.print("Enter your ward's Date of Birth(dd/mm/yyyy): ");
       String date1 = aa.sc.next();
       int a, b;
       a = date1.indexOf("/"); //Extracting the day
       int d1 = Integer.parseInt(date1.substring(0,a));
       b = date1.lastIndexOf("/"); //Extracting the month
       int m1 = Integer.parseInt(date1.substring(a+1,b));
       //Extracting the year
       int y1 = Integer.parseInt(date1.substring(b+1));
       String date2="31/03/2018";
       a = date2.indexOf("/"); //taking '/' for separation
       int d2 = Integer.parseInt(date2.substring(0,a));
       b = date2.lastIndexOf("/"); //taking '/' for separation
       int m2 = Integer.parseInt(date2.substring(a+1,b));
       int y2 = Integer.parseInt(date2.substring(b+1));
       //Validating both dates
       if(aa.dateValid(d1,m1,y1) && aa.dateValid(d2,m2,y2))
       {
           int p = aa.dayno(d1,m1,y1);
           int q = aa.dayno(d2,m2,y2);
          double r = Math.abs(p-q);
          boolean flag = false;
          if(choice == 1 && r/365 >= 3 && r/365 < 4) flag=true;
          else if(choice == 2 \&\& r/365 >= 4 \&\& r/365 < 5) flag=true;
           else if(choice == 3 && r/365 >= 5 && r/365 < 6) flag=true;
          else if(choice == 4 \&\& r/365 >= 6 \&\& r/365 < 7) flag=true;
          else if(choice == 5 && r/365 >= 7 && r/365 < 8) flag=true;
          else if(choice == 6 && r/365 >= 9 && r/365 < 10) flag=true;
          else if(choice == 7 && r/365 >= 16 && r/365 < 17) flag=true;
           if(flag) System.out.println("\nCongratulations!\nYour ward is eligible to
              be admitted\nPlease download the form from school website and submit
              at the school reception by 20th April, 2018\n");
          else System.out.println("\nWe are Sorry!\nYour ward is not eligible to be
              admitted. Try another class or come back next year");
       }
   }
}
```


15 ArrayList demonstration

Source code

```
import java.util.*;
class ArrayListDemo
   public static void main(String[] args)
       //creates an empty ArrayList
       ArrayList<Integer> arrlist = new ArrayList<Integer>(8);
       arrlist.add(20);
       arrlist.add(25);
       arrlist.add(10);
       arrlist.add(15);
       for(Integer num : arrlist) //extracting elements as Integer
          System.out.println("Number = " + num);
       boolean retval = arrlist.contains(10); //check for number '10'
       if(retval) System.out.println("Element=" + 10 + " : present");
       else System.out.println("Element not found");
       Object[] ob = arrlist.toArray(); //converting to array
       System.out.println("Printing the elements:");
       for(Object val : ob) //extractiong elements as Object
          System.out.println("Number = " + val);
   }
}
```


16 StringTokenizer demonstration

Source Code

```
// Program to demonstrate StringTokenizer
import java.util.*;
class StringTokenizerDemo
   public static void main(String[] args)
       Scanner sc = new Scanner(System.in);
       System.out.print("Enter any sentence : ");
       String str = sc.nextLine();
       StringTokenizer s = new StringTokenizer(str); //StringTokenizer object
       int l = s.countTokens(); //Counts number of tokens with separator = " "
       String longest = "";
       int longestLength = 0;
       for(int i = 0; i < 1; i++) //loop to check for longest word
       {
          String t = s.nextToken();
          if(t.length() > longestLength)
              longest = t;
              longestLength = t.length();
          }
       System.out.println("Longest word is \'" + longest+"\'");
   }
}
```


17 Merge Sort

```
// Java program for Merge Sort
import java.io.*;
class MergeSort
   // Merges two subarrays of arr[] - conquer
   // First subarray is arr[l..m]
   // Second subarray is arr[m+1..r]
   void merge(int arr[], int 1, int m, int r)
   {
       // Find sizes of two subarrays to be merged
       int n1 = m - 1 + 1;
       int n2 = r - m;
       // Create temporary arrays
       int L[] = new int [n1];
       int R[] = new int [n2];
       //Copy data to temp arrays
       for (int i=0; i<n1; ++i) L[i] = arr[l + i];</pre>
       for (int j=0; j<n2; ++j) R[j] = arr[m + 1+ j];
       // Initial indices of first and second subarrays
       int i = 0, j = 0;
       // Initial index of merged subarry array
       int k = 1;
       while (i < n1 && j < n2)
       {
           if (L[i] \leftarrow R[j])
              arr[k] = L[i];
               i++;
           }
           else
              arr[k] = R[j];
               j++;
           k++;
       }
       // Copy remaining elements of L[]
       while (i < n1)
       {
           arr[k] = L[i];
           i++;
           k++;
       // Copy remaining elements of R[]
       while (j < n2)
           arr[k] = R[j];
           j++;
           k++;
```

```
}
}
// function that sorts arr[l..r] using merge()
void sort(int arr[], int l, int r)
   if (1 < r)
   {
       int m = (1+r)/2;
       //divide into halves and sort each
       sort(arr, 1, m);
       sort(arr , m+1, r);
       // Merge the sorted halves
       merge(arr, 1, m, r);
   }
}
//method to print all elements of array
static void printArray(int a[])
   int len = a.length;
   for (int i = 0; i < len; i++)
       System.out.print(a[i] + " ");
   System.out.println();
}
// Driver method
public static void main(String args[]) throws IOException
{
   BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
   System.out.print("\nEnter size of array: ");
   int n = Integer.parseInt(br.readLine());
   int[] a = new int[n];
   for(int i = 0; i < n; i++)
       System.out.print("\nEnter a["+i+"]: ");
       a[i] = Integer.parseInt(br.readLine());
   System.out.println("Unsorted Array: ");
   printArray(a);
   MergeSort ob = new MergeSort();
   ob.sort(a, 0, a.length-1);
   System.out.println("\nSorted array: ");
   printArray(a);
}
```

}

18 Quick Sort

```
// Java program for implementation of QuickSort
import java.io.*;
class QuickSort
   //funcition to partition array
   int partition(int arr[], int low, int high)
       int pivot = arr[high];
       int i = (low-1); // index of smaller element
       for (int j=low; j<high; j++)</pre>
           // If current element is smaller than or equal to pivot
           if (arr[j] <= pivot)</pre>
           {
              i++;
              // swap arr[i] and arr[j]
              int temp = arr[i];
              arr[i] = arr[j];
              arr[j] = temp;
           }
       }
       // swap arr[i+1] and arr[high] (or pivot)
       int temp = arr[i+1];
       arr[i+1] = arr[high];
       arr[high] = temp;
       return i+1;
   }
   //function to implement quicksort
   void sort(int arr[], int low, int high)
   {
       if (low < high)
       {
           int pi = partition(arr, low, high);
           // Recursively sort elements before partition and after partition
           sort(arr, low, pi-1);
           sort(arr, pi+1, high);
       }
   //method to print all elements of array
   static void printArray(int a[])
       int len = a.length;
       for (int i = 0; i < len; i++)
           System.out.print(a[i] + " ");
       System.out.println();
   // Driver program
   public static void main(String args[]) throws IOException
   {
```

```
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
       System.out.print("\nEnter size of array: ");
       int n = Integer.parseInt(br.readLine());
       int[] a = new int[n];
       for(int i = 0; i < n; i++)
       {
          System.out.print("\nEnter a["+i+"]: ");
          a[i] = Integer.parseInt(br.readLine());
       System.out.println("Unsorted Array: ");
       printArray(a);
       QuickSort ob = new QuickSort();
       ob.sort(a, 0, n-1);
       System.out.println("\nSorted array: ");
       printArray(a);
   }
}
```

```
Options

Enter size of array: 5

Enter a[0]: 1

Enter a[1]: 6

Enter a[2]: 9

Enter a[4]: 13

Unsorted Array: 1 6 9 2 13

Sorted array: 1 2 6 9 13

Can only enter input while your programming i
```

19 Traversal in Binary Search Tree

```
// Java program to print Postorder traversal from given Preorder traversal
// Binary Search Tree
import java.io.*;
import java.util.*;
public class PrintPost
   static int preIndex = 0;
   void printPost(int[] in, int[] pre, int inStart, int inEnd)
   {
       if (inStart > inEnd) return;
       // Find index of next item in preorder traversal in inorder.
       int inIndex = search(in, inStart, inEnd, pre[preIndex++]);
       // traverse left tree
       printPost(in, pre, inStart, inIndex - 1);
       // traverse right tree
       printPost(in, pre, inIndex + 1, inEnd);
       // print root node at the end of traversal
       System.out.print(in[inIndex] + " ");
   int search(int[] in, int startIn, int endIn, int data)
       int i = 0;
       for (i = startIn ; i < endIn ; i++)</pre>
           if (in[i] == data) return i;
       return i;
   }
   // Driver method
   public static void main(String ars[]) throws IOException
   {
       BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
       System.out.print("\nEnter number of nodes in tree: ");
       int n = Integer.parseInt(br.readLine());
       int[] pre = new int[n];
       int [] in = new int[n];
       System.out.print("\nEnter elements in pre-order: ");
       StringTokenizer st = new StringTokenizer(br.readLine());
       for(int i = 0 ; i < n ; i++)
           pre[i] = Integer.parseInt(st.nextToken());
           in[i] = pre[i];
       Arrays.sort(in);
       System.out.print("\nIn-order traversal: ");
       for(int i = 0 ; i < n ; i++) System.out.print(in[i]+" ");</pre>
       PrintPost tree = new PrintPost();
       System.out.print("\nPost-order traversal: ");
       tree.printPost(in, pre, 0, n - 1);
   }
}
```

