

INFS 4203 / 7203 Data Mining Tutorial 1: Classification

Doris He d.he@uq.edu.au

Accuracy, Precision, Recall, F-measure

- Q: Assume a test dataset contains 1% catfish and 99% other types of fish. For a classifier that always makes prediction that a fish is not a catfish, what's the accuracy, precision and recall?
- A:

		Predicted class	
		Yes	No
Actual Class	Yes	0 (TP)	1% (FN)
	No	0 (FP)	99% (TN)

$$Accuracy = rac{TP + TN}{TP + TN + FN + FP}$$
 $Precision = rac{TP}{TP + FP}$
 $Recall = rac{TP}{TP + FN}$

Accuracy, Precision, Recall, F-measure

- Q: Assume a test dataset contains 1% catfish and 99% other types of fish. For a classifier that always makes prediction that a fish is not a catfish, what's the accuracy, precision and recall?
- A:

		Predicted class	
		Yes	No
Actual Class	Yes	0 (TP)	1% (FN)
	No	0 (FP)	99% (TN)

$$Accuracy = rac{TP + TN}{TP + TN + FN + FP} = 99\%$$
 $Precision = rac{TP}{TP + FP} = 0$ $Recall = rac{TP}{TP + FN} = 0$

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

M2

M1

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

	Red
	Not Red
	Not Red
	Red
	Not Red
	Red
	Not Red
•	Not Red
	Not Red
	Not Red

		Predicted class	
M1		Red	Not Red
Actual Class	Red	(TP)	(FN)
	Not Red	(FP)	(TN)

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

		Predicted class	
M1		Red	Not Red
Actual Class	Red	4 (TP)	(FN)
	Not Red	(FP)	(TN)

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

	Red
	Not Red
	Not Red
	Red
	Red
	Red
•	Not Red
	Red
	Not Red
	Not Red

		Predicted class	
M1		Red	Not Red
Actual	Red	4 (TP)	2(FN)
Class	Not Red	(FP)	(TN)

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

		Predicted class	
M1		Red	Not Red
Actual	Red	4 (TP)	2(FN)
Class	Not Red	1 (FP)	(TN)

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

		Predicted class	
M1		Red	Not Red
Actual	Red	4 (TP)	2(FN)
Class	Not Red	1 (FP)	3(TN)

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

		Predicted class	
M1		Red	Not Red
Actual	Red	4 (TP)	2(FN)
Class	Not Red	1 (FP)	3(TN)

$$Precision = \frac{IP}{TP + FP} = \frac{4}{5}$$

$$Recall = \frac{TP}{TP + FN} = \frac{4}{6}$$

M1

M2

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

		Predicted class	
M1		Red	Not Red
Actual Class	Red	4 (TP)	2(FN)
	Not Red	1 (FP)	3(TN)

Precision =	$\frac{TP}{TP+FP}$	$=\frac{\tau}{5}$
Dogall —	TP _	4
$Recall = \frac{1}{7}$	$\overline{P + FN} =$	6

		Predicted class	
M2		Red	Not Red
Actual Class	Red	3 (TP)	3 (FN)
	Not Red	0 (FP)	4 (TN)

M1 M2

Accuracy, Precision, Recall, F-measure

Q: Calculate the precision and recall for the following two binary classifiers M1 and M2, and discuss which one is better.

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

		Predicted class	
M1		Red	Not Red
Actual Class	Red	4 (TP)	2(FN)
	Not Red	1 (FP)	3(TN)

Precision =	TP	_ 4
Precision =	$= {TP + FP}$	=
Recall =	TP _	4
necuii –	$\overline{TP + FN}$ -	<u></u>

		Predicted class	
M2		Red	Not Red
Actual Class	Red	3 (TP)	3 (FN)
	Not Red	0 (FP)	4 (TN)

$$Precision = rac{TP}{TP + FP} = rac{3}{3}$$
 $Recall = rac{TP}{TP + FN} = rac{3}{6}$

$$Recall = \frac{TP}{TP + FN} = \frac{3}{6}$$

M1

M2

Accuracy, Precision, Recall, F-measure

A : Calculate the precision and recall

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

M1:

• Precision: 80%

• Recall: 67%

M2:

• Precision: 100%

• Recall: 50%

Accuracy, Precision, Recall, F-measure

A : Calculate the precision and recall

•	Red
	Not Red
	Not Red
	Red
	Red
	Red
	Not Red
	Red
	Not Red
	Not Red

	Red
	Not Red
•	Not Red
•	Red
	Not Red
	Red
•	Not Red
•	Not Red
	Not Red
	Not Red

M1:

• Precision: 80%

• Recall: 67%

M2:

• Precision: 100%

• Recall: 50%

Accuracy, Precision, Recall, F-measure

- Precision
 - the percentage of relevant items in the retrieved items
- Recall
 - the percentage of retrieved item in the relevant items

Accuracy, Precision, Recall, F-measure

- Precision
 - the percentage of relevant items in the retrieved items
- Recall
 - the percentage of retrieved item in the relevant items

sometimes high precision but low recall

sometimes high recall but low precision

Accuracy, Precision, Recall, F-measure

- Precision
 - the percentage of relevant items in the retrieved items
- Recall
 - the percentage of retrieved item in the relevant items

sometimes high precision but low recall

sometimes high recall but low precision

- F-measure
 - harmonic mean of precision and recall

Accuracy, Precision, Recall, F-measure

- Precision
 - the percentage of relevant items in the retrieved items
- Recall
 - the percentage of retrieved item in the relevant items

sometimes high precision but low recall

sometimes high recall but low precision

- F-measure a single measure that trades off precision versus recall
 - harmonic mean of precision and recall

Accuracy, Precision, Recall, F-measure

- Precision
 - the percentage of relevant items in the retrieved items
- Recall
 - the percentage of retrieved item in the relevant items

sometimes high precision but low recall sometimes high recall but low precision

- F-measure a single measure that trades off precision versus recall
 - harmonic mean of precision and recall

$$F - measure = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

Accuracy, Precision, Recall, F-measure

■ A : Calculate the precision, recall and F-measure and discuss

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

Red
Not Red
Not Red
Red
Not Red
Red
Not Red
Not Red
Not Red
Not Red

M1:

• F-measure =
$$\frac{2 \times 80\% \times 67\%}{80\% + 67\%} = 73\%$$

M2:

• F-measure =
$$\frac{2 \times 100\% \times 50\%}{100\% + 50\%} = 67\%$$

M1

M2

Accuracy, Precision, Recall, F-measure

■ A : Calculate the precision, recall and F-measure and discuss

	Red
•	Not Red
•	Not Red
	Red
	Red
	Red
	Not Red
	Red
	Not Red
	Not Red

	Red	
	Not Red	
	Not Red	
	Red	
	Not Red	
	Red	
•	Not Red	
•	Not Red	
	Not Red	
	Not Red	

M1:

• Precision: 80%

• Recall: 67%

• F-measure: 73%

M1:

• F-measure =
$$\frac{2 \times 80\% \times 67\%}{80\% + 67\%} = 73\%$$

M2:

• F-measure =
$$\frac{2 \times 100\% \times 50\%}{100\% + 50\%} = 67\%$$

M2:

• Precision: 100%

• Recall: 50%

• F-measure: 67%

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

RID	AGE	INCOME	STUDENT	RATING	CLASS	
1	Youth	High	No	Fair	No	
2	Youth	High	No	Excellent	No	
3	Middle-aged	High	No	Fair	Yes	
4	Senior	Medium	No	Fair	Yes	
5	Senior	Low	Yes	Fair	Yes	
6	Senior	Low	Yes	Excellent	No	
7	Middle-aged	Low	Yes	Excellent	Yes	
8	Youth	Medium	No	Fair	No	
9	Youth	Low	Yes	Fair	Yes	
10	Senior	Medium	Yes	Fair	Yes	
11	Youth	Medium	Yes	Excellent	Yes	
12	Middle-aged	Medium	No	Excellent	Yes	
13	Middle-aged	High	Yes	Fair	Yes	
14	Senior	Medium	No	Excellent	No	
X	Youth	Medium	Yes	Fair	?	

- Input :X: $(x_1 = youth, x_2 = medium, x_3 = yes, x_4 = fair)$
- Output: *C* (*yes/no*)

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

- Input :X: $(x_1 = youth, x_2 = medium, x_3 = yes, x_4 = fair)$
- Output: *C* (yes/no)
- Maximize $P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

- Input :X: ($x_1 = youth$, $x_2 = medium$, $x_3 = yes$, $x_4 = fair$)
- Output: C (yes/no)
- Maximize $P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$

$$P(C = yes) = \frac{9}{14} = 0.643$$

$$P(C = no) = \frac{5}{14} = 0.357$$

	THE UNIVERSITY OF QUEENSLAND
Cr	eate change

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

- Input :X: $(x_1 = youth, x_2 = medium, x_3 = yes, x_4 = fair)$
- \blacksquare Output: C (yes/no)

■ Maximize
$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$$

■
$$P(C = yes) = \frac{9}{14} = 0.643$$

■ $P(C = no) = \frac{5}{14} = 0.357$

$$P(C = no) = \frac{5}{14} = 0.357$$

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

- Input :X: $(x_1 = youth, x_2 = medium, x_3 = yes, x_4 = fair)$
- Output: *C* (*yes/no*)
- Maximize $P(C_i|X) = P(X|C_i)$
- $P(C = yes) = \frac{9}{14} = 0.643$ $P(C = no) = \frac{5}{14} = 0.357$

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

T1-Q2

■
$$P(x_1 = youth | C = yes) = \frac{2}{9} = 0.222$$

■
$$P(x_1 = youth | C = no) = \frac{3}{5} = 0.600$$

■
$$P(x_2 = medium | C = yes) = \frac{4}{9} = 0.444$$

$$P(x_2 = medium | C = no) = \frac{2}{5} = 0.400$$

$$P(x_3 = yes | C = yes) = \frac{6}{9} = 0.667$$

$$P(x_3 = yes | C = no) = \frac{1}{5} = 0.2$$

$$P(x_4 = fair | C = yes) = \frac{6}{9} = 0.667$$

$$P(x_4 = fair|C = no) = \frac{2}{5} = 0.400$$

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

T1-Q2

■
$$P(x_1 = youth | C = yes) = \frac{2}{9} = 0.222$$
 ◆

$$P(x_1 = youth | C = no) = \frac{3}{5} = 0.600$$

■
$$P(x_2 = medium | C = yes) = \frac{4}{9} = 0.444$$

$$P(x_2 = medium | C = no) = \frac{2}{5} = 0.400$$

$$P(x_3 = yes | C = yes) = \frac{6}{9} = 0.667$$

$$P(x_3 = yes | C = no) = \frac{1}{5} = 0.2$$

$$P(x_4 = fair | C = yes) = \frac{6}{9} = 0.667$$

$$P(x_4 = fair | C = no) = \frac{2}{5} = 0.400$$

P	$(\boldsymbol{X} $	\boldsymbol{C}	=	v	es`)
٠,	(_		J	-	,

$$= P(x_1 = youth | C = yes) * P(x_2 = medium | C = yes)$$

$$*P(x_3 = yes|C = yes) *P(x_4 = fair|C = yes)$$

$$= 0.222 * 0.444 * 0.667 * 0.667$$

$$= 0.044$$

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

T1-Q2

■
$$P(x_1 = youth | C = yes) = \frac{2}{9} = 0.222$$

$$P(x_1 = youth | C = no) = \frac{3}{5} = 0.600$$

■
$$P(x_2 = medium | C = yes) = \frac{4}{9} = 0.444$$

$$P(x_2 = medium | C = no) = \frac{2}{5} = 0.400$$

$$P(x_3 = yes | C = yes) = \frac{6}{9} = 0.667$$

$$P(x_3 = yes | C = no) = \frac{1}{5} = 0.200$$

$$P(x_4 = fair | C = yes) = \frac{6}{9} = 0.667$$

$$P(x_4 = fair | C = no) = \frac{2}{5} = 0.400$$

$$P(X|C = no)$$

= $P(x_1 = youth|C = no) * P(x_2 = medium|C = no)$
 $* P(x_3 = yes|C = no) * P(x_4 = fair|C = no)$
= $0.600 * 0.400 * 0.200 * 0.400$
= 0.019

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

- To find the class, C_i , that maximizes $P(X|C_i)P(C_i)$, we compute
 - P(X|C = yes)P(C = yes) = 0.044 * 0.643 = 0.028
 - P(X|C = no)P(C = no) = 0.019 * 0.357 = 0.007
- Therefore, the naïve Bayesian classifier predicts yes for tuple X

Naïve Bayesian Classifier

Summary

- If we have an n-D attribute vector $X = (x_1, x_2, ..., x_n)$ and there are m classes $C_1, ..., C_m$
- Bayesian theorem:

$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$$

■ A simplified assumption: attributes are conditionally independent, then

$$P(X|C_i) = \prod_{k=1}^n P(x_k|C_i) = P(x_1|C_i) * P(x_2|C_i) * ... * P(x_n|C_i)$$

Naïve Bayesian Classifier

Summary

- If we have an n-D attribute vector $X = (x_1, x_2, ..., x_n)$ and there are m classes $C_1, ..., C_m$
- Bayesian theorem:

$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$$

■ A simplified assumption: attributes are conditionally independent, then

$$P(X|C_i) = \prod_{k=1}^n P(x_k|C_i) = P(x_1|C_i) * P(x_2|C_i) * ... * P(x_n|C_i)$$

- Advantages:
 - Easy to implement
 - Effective and easy to understand
 - Good results obtained in most of the case, even with small dataset
- Disadvantages:

Thanks for your attention

