Estructuras Algebraicas - Entrega 1

Irene García, Andrés Segarra, Victoria Eugenia Torroja

22/9/2025

Ejercicio 1

Sea G un grupo y $\{H_i\}_{i\in I}$ una familia de subgrupos de G. Demostrar que $\bigcap_{i\in I} H_i$ es un subgrupo de G.

Solución

Veamos que $H = \bigcap_{i \in I} H_i$ cumple los tres requisitos para ser un grupo, esto es, vamos a ver que $H \neq \emptyset$, que la operación restringida a H es interna y que $\forall h \in H$ se tiene que $h^{-1} \in H$.

- (i) En primer lugar, si $H_i \leq G$, está claro que el elemento neutro $e \in H_i$. Así, tenemos que $e \in H_i$, $\forall i \in I$, por lo que $e \in \bigcap_{i \in I} H_i = H$. Así, tenemos que $H \neq \emptyset$.
- (ii) Veamos ahora que la operación es interna en H. Si $a,b \in H$, tenemos que $\forall i \in I, a,b \in H_i$. Como cada H_i es subgrupo, se tiene que $ab \in H_i$, $\forall i \in I$, por lo que $ab \in H$. Así, hemos visto que la operación es interna en H.
- (iii) Finalmente, si $a \in H_i \leq G$, tenemos que $a^{-1} \in H_i$. Así, tenemos que si $a \in H_i$, $\forall i \in I$, entonces $a^{-1} \in H_i$, $\forall i \in I$, es decir, $a^{-1} \in H = \bigcap_{i \in I}$.

Dado que se cumplen las tres características definitorias de un subgrupo, debe ser que $H \leq G$.

Ejercicio 2

Determinar si la operación $x \cdot y = (x + y) / (1 + xy)$ define una estructura de grupo sobre los números reales mayores que -1 y menores que 1.

Solución

Vamos a ver que $((-1,1), \cdot, 0)$ es un grupo.

Operación bien definida. En primer lugar, vamos a ver que la operación está bien definida. Si x,y=0, tenemos que $1+xy=1\neq 0$, por lo que no se anula el denominador. Ahora, si $x,y\neq 0$ tenemos que

$$1 + xy = 0 \iff xy = -1 \iff x = -\frac{1}{y}.$$

Como |y| < 1, tendríamos que

$$|x| = \left| -\frac{1}{y} \right| = \frac{1}{|y|} > 1.$$

Esto no es posible, puesto que $x \in (-1,1)$. Así, hemos visto que el denominador nunca se anula, por lo que la operación está bien definida.

Operación interna. Ahora vamos a ver que la operación \cdot es interna en el intervalo (-1,1). Deseamos ver que $\forall x,y \in (-1,1)$,

$$-1 < \frac{x+y}{1+xy} < 1.$$

Tenemos que si $x, y \in (-1, 1)$, entonces (1 - y) > 0 y (x - 1) < 0, por lo que

$$(1-y)(x-1) = x - xy - 1 + y < 0.$$

Así, tenemos que x + y < 1 + xy, por lo que

$$\frac{x+y}{1+xy} < 1.$$

Por otro lado, tenemos que (y+1), (x+1) > 0, por lo que

$$(y+1)(x+1) = xy + x + y + 1 > 0.$$

Así, tenemos que x+y>-1-xy=-(1+xy). Dado que 1+xy>0, obtenemos el resultado deseado:

$$\frac{x+y}{1+xy} > -1.$$

Así, hemos visto que se trata de una operación interna.

Asociatividad. Vamos a ver que la operación \cdot es asociativa. Sean $a, b, c \in (-1, 1)$,

$$\begin{split} (a \cdot b) \cdot c &= \frac{a+b}{1+ab} \cdot c = \frac{\frac{a+b}{1+ab} + c}{1 + \left(\frac{a+b}{1+ab}\right)c} = \frac{\frac{a+b+c+abc}{1+ab}}{\frac{1+ab+ac+bc}{1+ab}} \\ &= \frac{a+b+c+abc}{1+ab+ac+bc} = \frac{\frac{a+b+c+abc}{1+bc}}{\frac{1+bc}{1+bc}} = \frac{\frac{(1+bc)a+b+c}{1+bc}}{\frac{(1+bc)+a(b+c)}{1+bc}} \\ &= \frac{a+\frac{b+c}{1+bc}}{1+a\left(\frac{b+c}{1+bc}\right)} = a \cdot \left(\frac{b+c}{1+bc}\right) = a \cdot (b \cdot c) \,. \end{split}$$

Así, hemos visto que la operación cumple la propiedad asociativa.

Elemento neutro. Vamos a ver ahora que existe el elemento neutro, es decir, existe $e \in (-1,1)$ tal que $\forall x \in (-1,1), x \cdot e = e \cdot x = x$. Sea $x \in (-1,1)$,

$$x \cdot e = x \iff \frac{x+e}{1+xe} = x \iff x+e = x+x^2e \iff x^2e = e \iff (x^2-1)e = 0.$$

Dado que $x \neq \pm 1$, debe ser que e = 0. Veamos que efectivamente el elemento neutro es 0 1:

$$x \cdot 0 = \frac{x+0}{1+x \cdot 0} = \frac{x}{1} = x.$$

$$0 \cdot x = \frac{0+x}{1+0 \cdot x} = \frac{x}{1} = x.$$

Así, tenemos que e = 0 es el elemento neutro.

Inverso. Para ver que se trata de un grupo nos falta ver que si $x \in (-1,1)$, entonces existe $y \in (-1,1)$ tal que $x \cdot y = y \cdot x = e$. Intentamos calcular el inverso: si $x, y \in (-1,1)$

$$x \cdot y = \frac{x+y}{1+xy} = 0 \iff x+y=0 \iff y = -x.$$

Está claro que si $x \in (-1,1)$, entonces $-x \in (-1,1)$. Veamos que efectivamente $y=x^{-1}$:

$$x \cdot (-x) = \frac{x + (-x)}{1 + x(-x)} = 0.$$

$$(-x) \cdot x = \frac{-x+x}{1+(-x)x} = 0.$$

Así, está claro que $x^{-1} = -x$.

Efectivamente, se cumplen las propiedades de los grupos, por tanto $((-1,1),\cdot,0)$ es un grupo donde \cdot está definido como viene en el enunciado.

Ejercicio 3

Sea G un grupo conmutativo. Si H_1 y H_2 son subgrupos de G, probar que

$$H_1H_2 = \{h_1h_2 : h_1 \in H_1, h_2 \in H_2\}$$

es un subgrupo de G, y que es el menor subgrupo de G que contiene a H_1 y H_2 . ¿Es cierto este resultado si se elimina la hipótesis de que G sea abeliano?

Solución

En primer lugar, veamos que $H = H_1 H_2 \le G$. Para ello, vamos a ver que $e \in H$ y que $\forall a, b \in H$ se tiene que $ab^{-1} \in H$.

En efecto, tenemos que $e \in H$, puesto que al darse que $H_1, H_2 \leq G$, debe ser que $e \in H_1 \cap H_2$, por lo que

$$e = \underbrace{e}_{\in H_1} \cdot \underbrace{e}_{\in H_2} \in H.$$

Ahora, supongamos que $a, b \in H$. Entonces, existen $x_1, y_1 \in H_1$ y $x_2, y_2 \in H_2$ tales que

$$a = x_1 x_2, \quad b = y_1 y_2.$$

 $^{^1}$ En las siguientes ecuaciones hemos usado \cdot como el producto usual en $\mathbb R$ en casos en los que resulta trivial la interpretación.

Tenemos que $b^{-1} = (y_1y_2)^{-1} = y_2^{-1}y_1^{-1}$. Si aplicamos que G es un grupo abeliano, obtenemos

$$ab^{-1} = x_1x_2y_2^{-1}y_1^{-1} = \underbrace{x_1y_1^{-1}}_{\in H_1}\underbrace{x_2y_2^{-1}}_{\in H_2} \in H.$$

Así, hemos visto que $H = H_1 H_2 \le G$.

Ahora vamos a ver que si $C \leq G$ con $H_1, H_2 \subset C$, entonces $H \subset C$. En efecto, si $x \in H$, tenemos que existen $h_1 \in H_1$ y $h_2 \in H_2$ tales que $x = h_1 h_2$. Así, como $C \leq G$ y $H_1, H_2 \subset C$, la operación está cerrada en C, por lo que $x = h_1 h_2 \in C$. Así, hemos visto que $H = H_1 H_2 \subset C$.

Si eliminamos la hipótesis de que G sea abeliano no se cumple que $H_1H_2 \leq G$. En efecto, dado un conjunto X con |X| = 3, en clase hemos visto que Biy (X) es un grupo con la composición de funciones. Si $X = \{a, b, c\}$, podemos considerar sus biyecciones:

	a	b	c
$\overline{f_1}$	a	b	c
f_2	b	a	c
f_3	c	b	a
f_4	a	c	b
f_5	b	c	a
f_6	c	a	b

Es fácil comprobar que este grupo no es abeliano puesto que $f_2 \circ f_3 = f_5 \neq f_6 = f_3 \circ f_2$. Consideremos los subgrupos

$$H_1 = \langle f_2 \rangle = \{ f_1, f_2 \}, \quad H_2 = \langle f_3 \rangle = \{ f_1, f_3 \}.$$

Por construcción, tenemos que $H_1H_2 = \{f_1, f_2, f_3, f_2 \circ f_3 = f_5\}$. Sin embargo, tenemos que H_1H_2 no es subgrupo de Biy (X), puesto que $f_3 \circ f_2 = f_6 \notin H_1H_2$, es decir, la operación no es interna.

Ejercicio 4

Determina los números complejos a, b tales que la operación $x \cdot y = ax + by$ define una estructura de grupo en \mathbb{C} .

Solución

Para encontrar los valores de a y b, obtengamos primero información sobre estos a partir de las propiedades de los grupos. Es evidente que se trata de una operación interna. Estudiamos primero la propiedad asociativa. Si $x, y, z \in \mathbb{C}$:

$$\begin{cases} (x \cdot y) \cdot z = (ax + by) \cdot z = a(ax + by) + bz = a^2x + aby + bz \\ x \cdot (y \cdot z) = x \cdot (ay + bz) = ax + b(ay + bz) = ax + aby + b^2z \end{cases}$$

Como tiene que darse que $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, debe ser que $a^2 = a$ y $b^2 = b$, por lo que $a, b \in \{0, 1\}$. Veamos ahora lo que tiene que suceder para que haya un elemento neutro. Si existe $e \in \mathbb{C}$ tal que $\forall x \in \mathbb{C}, \ e \cdot x = x \cdot e = x$, tenemos que

$$x \cdot e = ax + be = x \iff (a-1)x + be = 0.$$

Como el elemento neutro no depende de x, debe ser que (a-1)x=0, por lo que a=1. De forma análoga, se demuestra que b=a=1. Así, nos queda que \cdot en verdad es la suma usual en \mathbb{C} , por lo que el grupo que nos queda es $(\mathbb{C},+,0)$. Para ver que se trata de un grupo basta comprobar que existen inversos. Si $z \in \mathbb{C}$, tenemos que $-z \in \mathbb{C}$ y z+(-z)=(-z)+z=0. En conclusión, para que \mathbb{C} forme un grupo con la operación \cdot , debe ser que a=b=1.

Otra forma de obtener este resultado es, sabiendo que $a, b \in \{0, 1\}$, estudiar los distintos casos:

- Si a=b=0, está claro que $x\cdot y=0, \forall x,y\in\mathbb{C}$ no define una operación de grupo puesto que no hay inversos.
- Si a=1 y b=0, tenemos que $\forall x,y\in\mathbb{Z},\ x\cdot y=x$. Esta operación tampoco puede dar lugar a un grupo puesto que no existe un elemento neutro. En efecto, $x\cdot e=x$ para cualquier $e\in\mathbb{C}$, pero $e\cdot x=e$, por lo que el único elemento neutro podría ser x y no es único para todo \mathbb{C} .
- Si a = 0 y b = 1 se razona de forma análoga al caso anterior.
- \bullet Si a=b=1 obtenemos una estructura de grupo, como hemos visto anteriormente.

Ejercicio 5

Sea H un subconjunto no vacío de un grupo G. Probar que H es subgrupo de G si y solo si xH=H para todo $x\in H$.

Solución

Recordamos que si $x \in H$, entonces $xH = \{xh : h \in H\}$.

(⇒) Supongamos que $H \leq G$ y $x \in H$. Vamos a ver que xH = H. Si $y \in xH$, tenemos que existe $h \in H$ tal que y = xh. Como $H \leq G$, la operación es interna en H, por lo que $y \in H$. Así, hemos visto que $xH \subset H$. Recíprocamente, si $y \in H$, tenemos que

$$y = x (x^{-1}y) \in xH$$
.

Está claro que $x^{-1}y \in H$, puesto que $x^{-1} \in H$ por ser H subgrupo, y $x^{-1}y \in H$ por tratarse de una operación interna. Así, hemos visto que $H \subset xH$, por lo que debe ser que xH = H.

(\Leftarrow) Supongamos que $\forall x \in H$ se tiene que xH = H. Vamos a ver que $H \leq G$. Para ello vamos a ver que $e \in H$ y que $\forall a, b \in H$ se tiene que $ab^{-1} \in H$.

Por hipótesis, tenemos que $H \neq \emptyset$, por lo que existe $x \in H$. Como xH = H, existe $h \in H$ tal que xh = x, por lo que debe ser que $h = e \in H$.

Veamos que si $h \in H$, entonces $h^{-1} \in H$. En efecto, si $h \in H$ tenemos que hH = H, por lo que $\exists z \in H$ tal que e = hz, por lo que $z = h^{-1} \in H$.

Así, si $a, b \in H$ tenemos que $a^{-1}, b^{-1} \in H$, por lo que $a^{-1}H = H$ y existe $h \in H$ tal que $b^{-1} = a^{-1}h$, es decir, $h = ab^{-1} \in H$. Por tanto, hemos comprobado que $H \leq G$.