

Vitis Accelerated Libraries

Introduction to Vitis

Software-Defined Application Acceleration

Build: Extensive, Open Source Libraries

Domain-Specific Libraries

Vision & Image

Finance

Data Analytics & Database

Data Compression

Data Security

Common Libraries

Math

Linear Algebra

Statistics

DSP

Data Management

https://github.com/Xilinx/Vitis_Libraries

Scalable and Flexible

Choose the Level of Abstraction You Need

- Vitis library API (L3)
 - API directly callable in host application
 - Precompiled accelerators
- Vitis library kernels (L2)
 - Optimized functions with required interfaces
 - Requires host code and build with Vitis tools
- Vitis library primitives (L1)
 - Basic algorithmic building blocks
 - Designed to be called within kernels

Abstraction

Vitis Vision Library

- Performance-optimized kernel and primitive functions for
 - Color and bit-depth conversion, channel extractions, pixel-wise arithmetic ops.
 - Geometric transforms, image statistics, image filters
 - Feature detection and classifiers
 - 3D reconstructions
 - Motion Analysis and Tracking
- Support for color image processing and multi-channel support
- Multiple pixel/clock processing to meet through requirements
- Familiar OpenCV API interface

Vitis Database Library

- Accelerate both data-intensive and compute-intensive applications common in Relation Database Management
- Optimized implementation of execution plan steps, like hash-join and aggregation
- The kernels can be used to map a sequence of execution plan steps, without having to compile different binaries for each query.

Vitis BLAS Library

- Performance-optimized implementation of Basic Linear Algebra Subroutines (BLAS)
- General Matrix Multiply (GEMM) and General Matrix-Vector (GEMV) APIs available as pre-compiled accelerators with C, C++, and Python interfaces
- Drop-in and replace CPU and GPU-based BLAS operations for rapid prototyping and evaluation
- Leverage library primitives and kernels to design unique accelerated algorithms

Vitis Data Compression Library

- ▶ Performance optimized library to accelerate the Lempel-Ziv (LZ) data compression and decompression algorithms.
- Scalable compression engine can be instantiated multiple times and run concurrently to meet high-throughput demands.
- Off-the-Shelf LZA and Snappy compression/decompression available.
- ▶ Use the low-level primitives as components to design your own.

Vitis Data Security Library

- Brings real-time performance to security applications
- Block ciphers like Advanced Encryption Standard (AES), and Data Encryption Standards (DES)
- Streaming ciphers like ChaCha20 and Rivest Cipher 4(RC4)
- ▶ Hashing methods like Message-Digest (MD) algorithms
- ▶ Secure Hash Algorithms (SHA-1, SHA-2, SHA-3) BLAKE2, and SHAKE

Vitis Quantitative Finance Library

- Optimized functions allows user to build accelerated computational solutions for financial workloads.
 - Options-pricing
 - Modeling
 - Trading
 - Evaluation and risk management
- Library APIs can be called directly in your C, C++, and Python host applications.
- Multiple examples available
 - Heston Finite Difference
 - Monte Carlo Black Scholes American and European models

Vitis Solver Library

- Performance-optimized standard matrix decomposition, linear solvers, and eigen value solvers
- Accelerate applications across multiple domains
 - Computational Finance
 - RADAR, LiDAR
 - Computer Vision
 - DSP, Controls
- Combine the library kernels to accelerate end-to-end processing pipelines

License

- Licensed under Apache 2.0 license, which is quite permissive.
 - Users don't need to pay Xilinx for the code.
 - Users can charge their customers for products built with our libraries.
 - Users can modify the code, or give it to anyone without telling Xilinx.
 - Commercial use permitted

Thank You

