U 8941-5490

Ans to the Que No 1(a)

9 Again, -1 (x-4) (x-4) Accordingly we can rewrite + so we can rewrite the ex of the Pravious page an: $\frac{1}{2} \left\{ \begin{array}{c} T \\ X \end{array} \right\} \left(\begin{array}{c} Z \\ Z \end{array} \right) \left($

A	
FITA PRODUCTS Evil file Insensis	Date :
	So, A = (\(\frac{1}{2}\) - \(\frac{1}{2}\)
	b= (\(\frac{1}{2}\mu_1\) - \(\frac{1}{2}\mu_1\)
tint	$t = \frac{P(e_2)}{P(e_1)}$
two.	* we can ignore the constous it is
A S	name for every data instance Xn.
tue-	ratares variance. The contours of
	space has the partie whaper
F3-	-34(1/2) + = (1/2) + = 1
	So tra star IQDA brown!
	THE THE CONT

Ans to the Que No 1(b)

And to the One
$$I(b)$$

LDA from QDA;

Assuming, $Z_2 = Z_2 = Z$ that

is the covariance matrix of the two
elasts are same which means the

Bel two curves have the same
variance the contours of the
4 two gaussian curve on Z_0

space has the same shape.

Then, $A = (Z_2 - Z_1)(Z_1 - Z_1)$

So the chase QDA browns.

 $f(n) = b^T X - = (X^T b)$

Ans to the Que No 1(c)

ETRA PRODUCTS Ening the Emeryon	Date :
	Ans to the Que 1 (c)
	If it is assumed that the covariance
	matrix is diagonal then GDA . we
	can obfain Gaussian Naive Bayens
	Classifien. That means, Every the
	teatures are independent of eachother.
	In that case we can assume a
	Univariate model.
	Xnd V N (hd, od)
	$P(x_n c_n) = \frac{d}{11} P(x_ni c_n)$
	d= dimensionality of the features.
	Xni - Referen to the 1°th feature of
	the n'th data instance.

$$\sum_{i=1}^{\infty} \log N(x_{ni}|^{2}h_{i}, \sigma^{2}) - \sum_{i=1}^{\infty} \log N(x_{ni}|^{2}h_{i}, \sigma^{2})$$

$$\sum_{i=1}^{\infty} \log N(x_{ni}|^{2}h_{i}, \sigma^{2}) = C_{1},$$

$$N(x_{ni}|^{2}h_{i}, \sigma^{2}) = C_{2},$$

$$N(x_{n$$

Ans to the Que No 2

ion
no
ce the.
no !
יו בי
b)
n.
V1017

	ALIKA) LEIJ
ETRA PRODUCTS	Date :
	tremel trick of long
	$\Rightarrow f(n) = \omega(n) + b =) it is a linear$
no	function. But in order to solve the
	non-linear problems we have 4 (2).
90	Which is a non-linear feature
	extranction. function. That means
	O we are transforming/mapping data
	from low to high dimension. On
	that higher dimensional teature stack
الدو	the data become problem becomes linear.
	- We don't need to know the exact
	D. Using kennel titick we can
	achieve this non-linearity
	- Uning the kennel trick SVM avoids
	nolving loptimizing for learning the best & function:
	& function:

PETRA PRODUCTS	Date:
pur Co	Training with at air bymak must be
rot	
1	Duning training SVM procedure SVM -
10	consideres a pareticular P choice.
1	> So at the beginning QVm is rentricted
4 0	to a prehoice.
	-> We want to minimize elansification
	ennon. =) manimize # of connectly
los nix	clanni filo Politico.
FF	+ max + + + + (xn) = max + (wp(xn)+b)
	IIWII = marc
no i	
	$[f(n_n) = \omega^T \varphi(x_n) + b]$
	Laified points.
- 61	ton connectif classified points.
	1 +n y (xn) >0
Jung 1	or in the Mussely fums &
	white, the
	7 Croquelano S. Tonas Company

	AURA) AURA
FETRA PRODUCE	Date :
	> so our target is to find the wand
M	6 that manimizes the bour margin for
	the support vector. As our target
67.5	in to find a unil sol for (w)
	we trave norm (w) => 11 wil in
	the denomination.
	man In of (xn) max of max
C	Man Jan J (xn) max minimum is limited in is
6	→ So, we now fix thoy (nn) ≥ 1
	and will use lagrange multiplier
	to optimize for (w) and (b). So
	minimize the denominator which is
	11 w 11).
	- uning lagrange multiplier we constitut
	this constrained problem to an
	une onstrained problèm.

-> If X and Xn are similar we count that label to in decision making \Rightarrow if $(x_n x \rightarrow 0)$ then to has no contribution \rightarrow if $|X_n|_{x} = -2$ then to contribute negatively in decision making. Lonn function: $\Rightarrow E(y_n, +_n) = man \left\{ 1 - \frac{1}{2}n +_n, 0 \right\}$ Intr >1 for every super training point other than the support vectors no. the ennor ton turm in O But the error for support vectors would be non-zerro an total

Ans to the Que No 3

Boosting:

- Instead of using only one model. Data is trained on multiple models.
- Each new model is trained to emphasize the data that was incorrectly classified by the previous model.
- Uses some loss functions to measure the performance of a model.
- Size of trees is a parameter that needs to be tuned.

Bagging:

- Each model has equal weight in voting.
- But each model is trained on a randomly sampled subset of the original train data. This is done to avoid overfitting to train data and to promote model variance. <u>Example:</u> Random Forest => Feature Bagging as RF selects a random subset of features within the random subset of the dataset.
- Number of trees to be built is a parameter that needs tuning.
 Normally uses out of bag error or any loss function to measure the optimal value of number of trees to be built.
- Requires mechanism to de-correlate the trees that are built => bootstrap sampling is one such mechanism.