

计算机组成原理

第三章 运算方法与运算器

3.6 定点数除法

1

手工除法运算方法

0.1101

0.1011 0.10010 - 0.01011	不够减,商上零, 除数右移1位,够减,减除数,商上1
0.001110 - 0.001011	除数右移2位,够减,减除数,商上1
0.0000110 0.0001011	除数右移3位,不够减,不减除数,商上零
0.00001100 - 0.00001011	除数右移4位,够减,减除数,商上1
0.0000001	 启示:除法可通过减法实现

需要长度为2n位的余数寄存器 如何判断每步是否够减

问题:除数移位次数不固定且多

2 原码恢复余数除法

- 如何判断是否够减
 - ◆利用减法,通过余数符号判断

 $\begin{array}{c} 00.10010 \\ -00.01011 \\ \hline 00.00111 \\ \end{array} \begin{array}{c} 00.10010 \\ -00.11011 \\ \hline 11.10111 \\ +00.11011 \end{array}$

■余数为正数时,够减,商上1,将余数<u>左移一位</u>,再与除数做减法比较

00.10010

- ■余数为负数时,不够减,商上0,?
 - ◆加除数恢复成原来的值 ,将余数左移一位 ,再与除数做减法比较
- ■重复上述过程直到商达到所需要的位数为止。

2 原码恢复余数除法

已知 X = 0.1001, Y = - 0.1011, 用原码一位除法求X/Y

解: [X]_原= 0.1001 [|X|]_补=0.1001

 $[Y]_{\bar{\mathbb{R}}} = 1.1011$ $[|Y|]_{\frac{1}{2}} = 0.1011$ $[-|Y|]_{\frac{1}{2}} = 1.0101$

2

原码除法运算方法

被除	数/余数	商	上商位
	00.1001		K
$+[-Y]_{\dot{\gamma}\dot{\gamma}}$	11.0101		
	11.1110		
+	00.1011		
	00.1001		
-	01 .0010	0	, ,
$+[-Y]_{\dot{\uparrow}\dot{\uparrow}}$	11.0101		,
	00.0111		1 7
-	00.1110	0.1	7
$+[-Y]_{\dot{\gamma}\dot{ }}$	11.0101		1 2
	00.0011		_
-	00.0110	0.11	
$+[-Y]_{\dot{k}\dot{l}}$	11.0101		
	11.1011		0
+	00.1011		1
	00.0110		
⊥[V].	00.1100	0.110	<u>2</u> 》
+[-Y] _{*h}	11.0101	0.4404	
	00.0001	0.1101	1 3

最后结果:

说明

减Y比较

左移一位

减Y比较

左移一位

减Y比较

左移一位

减Y比较

左移一位

减Y比较

余数<0, 商=0

加Y恢复余数

余数>0,商上1

余数>0, 商上1

余数<0, 商上0

余数>0,商上1,移商

加Y恢复余数

商Q = $(X_0 \oplus Y_0).1101=1.1101$

余数 R = 0.0001 * 2 -4

该方法存在的不足:

运算步数不确定

3 原码加/减交替除法运算方法(不恢复余数法)

- 设某次余数为R_i,将R_i左移一位减除数进行比较并上商,即: 2R_i-Y
- 当上述结果小于0时,商上0,恢复余数,然后左移一位,减除数比较,即:

$$(2R_i-Y) + Y = 2R_i$$

 $2*2R_i - Y = 4R_i - Y$

■ 若当结果小于0时,商上0,不恢复余数而直接将余数左移一位,加Y:

$$2(2R_i-Y) + Y$$

= $2*2R_i - 2Y + Y = 4R_i - Y$

3 原码加/减交替除法运算方法(不恢复余数法)

已知 X = 0.1001, Y = - 0.1011, 用原码一位除法求X/Y

被除数/余数	商	上商位	说明
$+[-Y]_{\dot{\imath}\dot{\uparrow}}$ 00.1001 11.0101			减Y比较
$ \begin{array}{c c} \hline 0 & 11.1110 \\ \hline & 11.1100 \\ +[Y]_{\dot{\uparrow} } & 00.1011 \end{array} $	0	0	余数 <0 商上零 左移一位 加Y比较
1 00.0111 - 00.1110 +[-Y] _{ネ↑} 11.0101	0.1	1	余数>0,商上1 左移一位 减Y比较
1 00.0011 - 00.0110 +[-Y] ↑ 11.0101	0.11	1	- 余数>0,商上1 左移一位 减Y比较
0 11.1011 → 11.0110 +[Y] _* 00.1011	0.110	0	余数<0 商上零 左移一位 加Y比较
1 00. 0001	0.1101	1	 余数>0,商上1,移商

最后结果:

商Q = $X_0 \oplus Y_0.1101 = 1.1101$

余数 R = 0.0001 * 2 -4

被除数/余数	商	上商	i位 说明	
00.1001			减Y比较	
+[−Y] _* 11.0101				
11.1110		0	余数<0, 商=0	
+ 00.1011			加Y恢复余数	
00.1001			左移一位	
- 01 .0010	0		减Y比较	
+[-Y] _{*↑} 11.0101				
00.0111		1	余数>0,商上1	
~ 00.1110	0.1		左移一位	
+[−Y] _{ネト} 11.0101			减Y比较	
00.0011		1	余数>0,商上1	
- 00.0110	0.11		左移一位	
+[-Y]*\ 11.0101			减Y比较	
11.1011		0	余数<0,商上0	
+ 00.1011			加Y恢复余数	
00.0110				
- 00.1100	0.110		左移一位	
+[-Y]*\\ 11.0101	0.1105		减Y比较	
00.0001	0.1101	1	余数>0,商上1,移 商	訶

3.6 定点数除法

4

原码加/减交替除法实现逻辑

被除数/余数	商	上商位	说明
$+[-Y]_{-1}$ 00.1001 11.0101			减Y比较
0 11.1110		0	余数 <0 商上零
- 11.1100	0		左移一位
+[Y] _{*h} 00.1011			加Y比较
1 00.0111		1	余数>0,商上1
- 00.1110	0.1		左移一位
+[-Y] _{*\} 11.0101			减Y比较
1 00.0011		1	余数>0,商上1
00.0110	0.11		左移一位
+[-Y] _{*\ 11.0101}			减Y比较
<mark>0</mark> 11.1011		0	余数<0 商上零
- 11.0110	0.110		左移一位
+[Y] _* 00.1011			加Y比较
1 00. 0001	0.1101	1	

5 阵列除法

1)可控制加/减法(CAS)单元

逻辑功能为:

$$S_{i} = A_{i} \oplus (B_{i} \oplus P) \oplus C_{i}$$

$$C_{i+1} = (A_{i} + C_{i}) (B_{i} \oplus P) + A_{i} C_{i}$$

P=0时实现加法功能

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = (A_i + C_i) B_i + A_i C_i$$

P=1时实现减法功能(全减)

$$S_{i} = A_{i} \oplus \overline{B}_{i} \oplus C_{i}$$

$$C_{i+1} = (A_{i} + C_{i}) \overline{B}_{i} + A_{i} C_{i}$$

5

阵列除法

2)基于CAS的阵列除法

- •注意连接、输入输出关系
- •使用原码不恢复余数法。 第一步一定是减法,故P=1, 以后各步做加还是减取决于 前一步的商
- •最左边CAS的进位输出是商,且本位商决定下一步是执行加操作还是减操作
- •每执行完一步除法,就将 除数右移一位(同手工除法)