The Dimension of a Subspace

- The dimension of a nonzero subspace H, denoted by dimH, is the number of vectors in any basis for H. The dimension of the zero subspace {0} is defined to be zero.
- The space \mathbb{R}^n has dimension n. Every basis for \mathbb{R}^n consists of n vectors. A plane through $\mathbf{0}$ in \mathbb{R}^2 is two-dimensional, and a line through $\mathbf{0}$ is one-dimensional.

The Dimension of a Subspace

Example Find the dimension of the matrix

• The null space of the matrix A has a basis of 3 vectors. So the dimension of Nul A in this case is 3. Observe how each basis vector corresponds to a free variable in the equation $A\mathbf{x} = \mathbf{0}$. Our construction always produces a basis in this way. So, to find the dimension of Nul A, simply identify and count the number of free variables in $A\mathbf{x} = \mathbf{0}$.

Rank of a matrix

- The **rank** of a matrix A, denoted by rank A, is the dimension of the column space of A.
- Since the pivot columns of A form a basis for Col A, the rank of A is just the number of pivot columns in A.

Rank of a matrix

EXAMPLE 3 Determine the rank of the matrix

$$A = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix}$$

Solution Reduce A to echelon form:

$$A \sim \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & -7 \\ 0 & -6 & 4 & 14 & -20 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & -7 \\ 0 & 0 & 0 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
Pivot columns

The matrix A has 3 pivot columns, so rank A = 3.

The Invertible Matrix Theorem (continued)

Let A be an n×n matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

- m. The columns of A form a basis of \mathbb{R}^n .
- n. Col A = R^n
- o. Dim Col A = n
- p. Rank A=n
- q. Nul $A = \{0\}$
- r. Dim Nul A = 0

Length or Norm of a vector

• The length or norm of v is the nonnegative scalar ||v|| defined by

$$||v|| = \sqrt{v.v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 and $||v||^2 = v.v$

FIGURE 1 Interpretation of $\|\mathbf{v}\|$ as length.

Norm of a matrix

• For the rectangular n × d matrix A with $(i,j)^{th}$ entry denoted by a_{ij} , its Frobenius norm is defined as follows:

•
$$||A||_F = ||A^T||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^d a_{ij}^2}$$

• Note the use of $\|\cdot\|$ F to denote the Frobenius norm. The squared Frobenius norm is the sum of squares of the norms of the row-vectors (or, alternatively, column vectors) in the matrix.

Norm of a matrix

- The energy of a matrix A is an alternative term used in machine learning community for the squared Frobenius norm.
- The energy of a rectangular matrix A is equal to the trace of either AA^T or A^TA
- $||A||_F^2 = Energy(A) = tr(AA^T) = tr(A^TA)$

Orthonormal Vectors

• Let q_1 , q_2 ,, q_n be vectors, they are said to be orthonormal

if
$$q_i^T q_j = \begin{cases} 0 & if \ i \neq j \\ 1 & if \ i = j \end{cases}$$

In other words, the length of each vector is 1

Orthogonal Matrix

An orthogonal matrix is a square matrix with orthonormal columns

$$\begin{bmatrix} - & q_1^T & - \\ - & q_i^T & - \\ - & q_n^T & - \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ q_1 & q_j & q_n \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

When row i of Q^T multiplies column j of Q, the result is

$$q_j^T q_j = 0$$

On the diagonals where i =j, we have $q_j^T q_j = 1$, ie. The normalization to unit vector of length i

Orthogonal Matrix

An orthonormal matrix is a type of square matrix whose columns and rows are orthonormal unit vector, eg. Perpendicular and have a length or magnitude of 1.

Then Q^T is Q^{-1} ie. $Q^T Q = Q Q^T = I$

Computing of Q^T is more time efficient as compared to computing Q⁻¹

• Eg

•
$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

•
$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

• $Q^T = Q^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$

Linear Transformations

Transformation

- A transformation (or function or mapping) T from R^n to R^m is a rule that assigns to each vector x in R^n a vector T(x) in R^m . The set R^n is called the domain of T, and R^m is called the codomain of T.
- The notation $T: R^n \to R^m$ indicates that the domain of T is R^n and the codomain is R^m . For x in R^n , the vector T(x) in R^m is called the image of x (under the action of T). The set of all images T (x) is called the range of T.

FIGURE 2 Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$.

• Example Let $A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, and define a transformation $T: R^2 \to R^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

•
$$T(x) = Ax = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$
. - (1)

- a. Find T(u), the image of u under the transformation T.
- b. Find an **x** in \mathbb{R}^2 whose image under T is **b**.
- c. Is there more than one x whose image under T is b?
- d. Determine if **c** is in the range of the transformation T.

• a. Compute
$$T(u) = Au$$

$$\bullet = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}$$

• b. Solve T(x) = b for x. That is, solve Ax = b,

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$$

Row reduced augmented matrix:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence x1 = 1.5, x2 = -0.5, and $\mathbf{x} = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix}$. The image of this \mathbf{x} under T is the given vector \mathbf{b} .

c. Any \mathbf{x} whose image under T is \mathbf{b} must satisfy (1). From \mathbf{b} . it is clear that equation (1) has a unique solution. So there is exactly one \mathbf{x} whose image is \mathbf{b} .

d. The vector \mathbf{c} is in the range of T if \mathbf{c} is the image of some \mathbf{x} in R^2 , that is, if $\mathbf{c} = T(\mathbf{x})$ for some \mathbf{x} . This is just another way of asking if the system $A\mathbf{x} = \mathbf{c}$ is consistent. To find the answer, row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 14 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix}$$

The third equation, 0 = -35, shows that the system is inconsistent. So **c** is *not* in the range of T .

Let
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, and define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.

Find the images under
$$T$$
 of $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$.

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ -6 \end{bmatrix}$$

$$T(\mathbf{v}) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2a \\ 2b \end{bmatrix}$$

Let
$$A = \begin{bmatrix} .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

Define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$ Find $T(\mathbf{u})$, $T(\mathbf{v})$

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix} = \begin{bmatrix} .5 \\ 0 \\ -2 \end{bmatrix}$$

$$T(\mathbf{v}) = \begin{bmatrix} .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} .5a \\ .5b \\ .5c \end{bmatrix}$$

Example 4a

With T defined by T $(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b} , and determine whether \mathbf{x} is unique.

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 \\ 7 \\ -3 \end{bmatrix}$$

Example 4a

$$[A \quad \mathbf{b}] = \begin{bmatrix} 1 & 0 & -2 & -1 \\ -2 & 1 & 6 & 7 \\ 3 & -2 & -5 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 5 \\ 0 & -2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & 5 & 10 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \text{ unique solution}$$

Example 4b

With T defined by T $(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b} , and determine whether \mathbf{x} is unique.

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & -4 \\ 3 & -5 & -9 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 6 \\ -7 \\ -9 \end{bmatrix}$$

Example 4b

$$\begin{bmatrix} A & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & -3 & 2 & 6 \\ 0 & 1 & -4 & -7 \\ 3 & -5 & -9 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 2 & 6 \\ 0 & 1 & -4 & -7 \\ 0 & 4 & -15 & -27 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 2 & 6 \\ 0 & 1 & -4 & -7 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -3 & 0 & 4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} -5 \\ -3 \\ 1 \end{bmatrix}, \text{ unique solution}$$

With T defined by T(x) = Ax, find a vector x whose image under T is b, and determine whether x is unique.

$$A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$