Robótica e Automação Projeto N°3

Modelagem Dinâmica de Sistemas Robóticos

1. Utilizando a formulação de Lagrange, calcular o modelo dinâmico $M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + G(\theta) = \tau$, do pêndulo invertido rotativo da Quanser Inc. (www.quanser.com) mostrado na foto abaixo.

Este pêndulo invertido rotativo pode ser considerado como um manipulador 2R:

onde o elo 1 é um paralelepípedo retangular e o elo 2 é um cilindro circular. Considere que os centros de massa dos elos encontram-se no centro dos mesmos. Os parâmetros dos elos são apresentados na seguinte tabela:

	Elo 1	Elo 2
Comprimento (l)	$0.187 \ m$	$0.34 \ m$
Largura (b) / Radio (r)	$38.0 \ mm$	$6.5 \ mm$
Massa (m)	0.25~kg	0.15~kg

Outros parâmetros do sistemas podem ser encontrados em tabelas anexas.

2. Calcule o modelo dinâmico do sistema, agora considerando que no manipulador do item anterior a junta 1 é atuada por um motor DC. Desta forma dinâmica do motor que atua a junta 1 deve ser adicionada na dinâmica do manipulador calculada no item anterior, considerando a tensão de entrada do motor com sinal de controle. O motor DC que atua a junta 1 tem as seguintes características:

	Motor DC	
Tensão Nominal	12 V	
Constante de Torque	$0.00767 \ Nm/A$	
Constante de Back EMF	$0.00767 \ V/(rad/s)$	
Resistência de Armadura	2.6 Ω	
Indutância de Armadura	0.18~mH	
Inêrcia de Armadura	$3.86 \ 10^{-7} \ Kgm^2$	
Redução Total	70	
Inércia das engrenagens no eixo da junta	$2.8 \ 10^{-6} + 2.27 \ 10^{-5} + 5 \ 10^{-7} \ Kgm^2$	

3. Simular numéricamente o comportamento do modelo obtido no item anteriro, e comparar com o comportamento real (utilize os dados experimentais do AVA) em diversas condições de excitação ou de condições iniciais (por exemplo soltando o pêndulo de uma dada condição inicial perto do topo).

Comentar as semelhanças e discrepâncias avaliando o realismo do modelo dinâmico obtido. Se for necessário, ajuste o modelo obtido para que a sua resposta seja comparável com os resultados experimentais.