Reinforcement learning: an overview

The big picture

value of (state, action) Model based

reward

$$Q(s,a) = \sum p(s'|s,a)r(s')$$

probability of next states

Model free example: learning the mean with prediction errors

new learning prediction rate

$$Q_n = Q_{n-1} + \frac{1}{n}(r_n - Q_{n-1})$$

old prediction prediction error

Want to make it Bayesian and talk precision?

$$Q_n = Q_{n-1} + \frac{\sigma_Q}{\sigma_Q + \sigma_r} (r_n - Q_{n-1})$$

Do dopamine neurons report errors in the prediction of reward?

No prediction Reward occurs

Reward predicted Reward occurs

Reward predicted No reward occurs

Multistep decisions and temporal difference learning

 $Q^{\pi}(s,a) = \sum_{s'} p(s'|s,a)r(s') + \gamma Q^{\pi}(s',\pi(s'))$

Multistep decisions and temporal difference learning

Model free
$$Q^{\pi}(s, a) = \sum_{s'} p(s'|s, a)r(s') + \gamma Q^{\pi}(s', \pi(s'))$$

$$(r(s') + \gamma \max_{a} Q(s', a') - Q(s, a))$$

prediction error

Multistep decisions and temporal difference learning

Model free
$$Q^{\pi}(s, a) = \sum_{s'} p(s'|s, a)r(s') + \gamma Q^{\pi}(s', \pi(s'))$$

new prediction learning rate

$$Q(s, a) = Q(s, a) + \alpha(r(s') + \gamma \max_{a} Q(s', a') - Q(s, a))$$

old prediction prediction error

Multistep decisions and thinking the future through

$$Q^{\pi}(s,a) = \sum_{s'} p(s'|s,a)r(s') + \gamma Q^{\pi}(s',\pi(s'))$$
 Model based

The lunch problem

Mensa

Bistro

Let's define a state as how many times we had (success, failure)

(5,5)

How would beliefs change

Where to go for lunch?

$$Q^{\pi}(s,a) = \sum_{s'} p(s'|s,a)r(s') + \gamma Q^{\pi}(s',\pi(s'))$$

Bonus: restaurant choice table

	α	1	2	3	4	5	6	7	8	9	10
β											
1		.7029	.8001	.8452	.8723	.8905	.9039	.9141	.9221	.9287	.9342
2		.5001	.6346	.7072	.7539	.7869	.8115	.8307	.8461	.8588	.8695
3		.3796	.5163	.6010	.6579	.6996	.7318	.7573	.7782	.7956	.8103
4		.3021	.4342	.5184	.5809	.6276	.6642	.6940	.7187	.7396	.7573
5		.2488	.3720	.4561	.5179	.5676	.6071	.6395	.6666	.6899	.7101
6		.2103	.3245	.4058	.4677	.5168	.5581	.5923	.6212	.6461	.6677
7		.1815	.2871	.3647	.4257	.4748	.5156	.5510	.5811	.6071	.6300
8		.1591	.2569	.3308	.3900	.4387	.4795	.5144	.5454	.5723	.5960
9		.1413	.2323	.3025	.3595	.4073	.4479	.4828	.5134	.5409	.5652
10		.1269	.2116	.2784	.3332	.3799	.4200	.4548	.4853	.5125	.5373

Does our behaviour correspond to reinforcement learning predictions?

rewarded

unrewarded

So far we have always computed values:

Compute policy from action-values:
$$\pi(a) = \frac{e^{\beta \cdot Q(a)}}{\sum_{\hat{a} \in A} e^{\beta \cdot Q(\hat{a})}}$$

Update action-values:
$$\Delta Q(a) = \alpha \left(r_t - Q(a) \right)$$

Another way: policy based reinforcement learning

o.solopchuk@uke.de