Problems: Convolutional Codes

Prof. Sundeep Rangan

1. Convolutional Encoder. Consider a rate 1/2 convolutional encoder with polynomials:

$$c_1[t] = b[t] + b[t-1] + b[t-3],$$

 $c_2[t] = b[t] + b[t-1] + b[t-2].$

- (a) What is the constraint length K?
- (b) What are the generator polynomials, g_1 and g_2 , in binary and octal?
- (c) Suppose we wish to encode b = [1, 0, 1, 1]. How many tail bits do you add?
- (d) Write the output $c_1[t]$ and $c_2[t]$ for the input bits in part (c).
- (e) For this input, what is rate of the code including the tail bits?

Solution:

- (a) K = 4 since the outputs depend on the last four samples.
- (b) The polynomials in binary and octal are:

$$g_1 = [1, 1, 0, 1]_b = [1, 5]$$

 $g_2 = [1, 1, 1, 0]_b = [1, 6]$

(c) You add K-1=3 tail bits. So, the input would be:

$$\tilde{b} = [1, 0, 1, 1, 0, 0, 0].$$

(d) Running the convolution the two outputs are:

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

- (e) There are 7 outputs in each stream for a total of 14 output bits. Since there are 4 input bits, the rate is R = 4/14 = 2/7.
- 2. FSM representation of convolutional encoders. Consider a convolutional encoder

$$c_1[t] = b[t] + b[t - 1],$$

 $c_2[t] = b[t] + b[t - 2].$

1

We will use the state x[t] = (b[t-1], b[t-2]).

x[t]	x[t+1]		$c[t] = (c_1[t], c_2[t])$	
	b[t] = 0	b[t] = 1	b[t] = 0	b[t] = 1
(0,0)				
(0,1)				
(1,0)				
(1,1)				

Table 1: Problem 2: State transition and output table to be completed.

x[t]	x[t+1]		$c[t] = (c_1[t], c_2[t])$	
	b[t] = 0	b[t] = 1	b[t] = 0	b[t] = 1
(0,0)	(0,0)	(1,0)	(0,0)	(1,1)
(0,1)	(0,0)	(1,0)	(1,1)	(1,0)
(1,0)	(0,1)	(1,1)	(1,0)	(0,1)
(1,1)	(0,1)	(1,1)	(1,1)	(0,0)

Table 2: Problem 2 Solution: State transition and output table

- (a) Complete Table 1 to indicate the next state x[t+1] and output c[t] for each current state x[t] and input b[t].
- (b) Given the table in part (a), draw a state diagram:
 - Draw one node for each state.
 - Draw arrows indicating the transitions. Use a different line type (e.g., solid and dashed) for transitions for b[t] = 0 and b[t] = 1.
 - Draw the output bits c[t] above each transition.

Solution:

- (a) See Table 2.
- (b) See Fig. 1.

Figure 1: Problem 2 solution. Representation of the convolutional encoder as a state machine. The solid blue lines are the transitions for b[t] = 1, and the dashed teal lines are the transitions for b[t] = 0. The labels on the lines are the output bits $c[t] = (c_1[t], c_2[t])$

- 3. Viterbi decoding. Consider a encoder described by the FSM in Fig. 2. This FSM is not from a real convolutional encoder it is completely made up to make the problem simple. At each time step, the FSM takes a binary input $b[t] \in \{0,1\}$. There are three states, $x[t] \in \{0,1,2\}$. There are two outputs $c[t] = (c_1[t], c_2[t])$. The initial state is x[0] = 0.
 - (a) Suppose that the information bits are

$$\mathbf{b} = (b[0], b[1], b[2]) = (1, 0, 1).$$

What is the state sequence x[t] and output sequence c[t]?

- (b) Draw the trellis diagram for the states x[t], t = 0, 1, 2, 3. On each branch of the trellis:
 - Use a different line type (e.g., solid and dashed) for transitions for b[t] = 0 and b[t] = 1.
 - Draw the output bits c[t] above each transition.
- (c) Now suppose that the input bits (b[0], b[1], b[2]) are not known. To estimate the bits, we maximize the value function:

$$J(c) = \sum_{i=1}^{6} c_i L_i,$$

for the LLRs:

$$L = (L_1, \dots, L_6) = (-1.5, 1, 0.3, -2, 1.8, 0.5).$$

On the trellis diagram from part (b), draw the branch metrics above each branch.

Figure 2: Problem 3. FSM representation of an encoder with three states $x[t] \in \{0, 1, 2\}$. The solid blue lines are the transitions for b[t] = 1, and the dashed teal lines are the transitions for b[t] = 0.

(d) Use the Viterbi algorithm to compute the partial value function at each node. Write the values in the node. Find the sequence $\mathbf{b} = (b[0], b[1], b[2])$ that results in the highest value.

Solution:

(a) Following the FSM in Fig. 2, we get

$$x = (x[0], x[1], x[2], x[3]) = (0, 1, 1, 2).$$

The output sequence is:

$$c = (c[0], c[1], c[2]) = (00, 10, 10).$$

- (b) The trellis diagram for t = 0, 1, 2, 3 is shown in Fig. 3.
- (c) The branch metrics are shown on the branches in Fig. 3.
- (d) The value function is shown in each node in Fig. 3. We see that at the final node, the highest value function is at x[3] = 2. Tracing back from this node the optimal sequence is:

$$x[3] = 2 \Rightarrow x[2] = 2 \Rightarrow x[1] = 1 \Rightarrow x[0] = 0.$$

The sequence that results in the highest value is:

$$b = (1, 1, 0).$$

Figure 3: Problem 3 solution. Trellis diagram where the solid blue lines are the transitions for b[t] = 1, and the dashed teal lines are the transitions for b[t] = 0. The branches are labeled with (output bits, branch metric). The nodes are labeled with the partial value function from the Viterbi algorithm.