СОЗДАНИЕ ТРЁХМЕРНОЙ МОДЕЛИ ЗЕМЛИ С ВИЗУАЛИЗАЦИЕЙ ПОЛЁТОВ САМОЛЕТОВ

Исполнитель: Сусликов Д.В.

Научный руководитель: Кузнецова О.В.

Цель и задачи работы

Цель данной работы - создать трёхмерную модель Земли с визуализацией полётов самолетов

Задачи:

- проанализировать существующие программные решения
- разработать математическую модель и алгоритм для формирования модели
 Земли и для построения траекторий полетов самолетов
- разработать программное обеспечение для визуализацией полётов самолетов на трехмерной модели Земли

Предметная область

Предметной областью данного проекта является геодезическое представление Земли для реалистичного построения траекторий движения воздушных объектов.

Это может быть использовано в ознакомительных целях для общего представления о Земли и воздушных перемещениях.

Или для оценки частоты и кол-ва перемещений граждан по всей Земле, что может пригодится для прогнозирования мест большого скопления людей и борьбы с возможной эпидемиологической ситуацией

Модель сущность-связь

Перевод координат из геодезической системы координат в прямоугольную

$$X = (N(B) + H)cos(B)cos(L)$$
(1)

$$Y = (N(B) + H)cos(B)cos(L)$$
(2)

$$Z = \left(\frac{b^2}{a^2}N(B) + H\right)\sin(B) \tag{3}$$

где

$$N(B) = \frac{a^2}{\sqrt{a^2 \cos^2((B) + b^2 \sin^2(B))}} = \frac{a}{\sqrt{1 - e^2 \sin^2(B)}},$$
 (4)

где а и b — экваториальный (большая полуось) и полярный радиусы (малая полуось), соответственно. $e^2=\frac{a^2-b^2}{a^2}$ — квадрат первого эксцентриситета эллипсоида.

Алгоритм получения точек широт и меридианов Земли

- 1) Получения точек меридианов
 - 1.1) Разбиение меридианов на части
 - 1.2) Получение координат точек частей меридианов
 - 1.3) Перевод этих точек из геодезической с.к. в прямоугольную
 - 1.4) Сохранение точек в массиве
- 2) Получения точек широт
 - 2.1) Разбиение широт на части
 - 2.2) Получение координат точек частей широт
 - 2.3) Перевод этих точек из геодезической с.к. в прямоугольную
 - 2.4) Сохранение точек в массиве

Алгоритм получения точек траектории

- 1) Вычисление шага разбиения по х, по у
- 2) Получение данных для построения параболы движения
- 3) Получение точек траектории
 - 3.1) Разбиение траектории на части
 - 3.2) Получение координат точек траектории
 - 3.3) Перевод этих точек из геодезической с.к. в прямоугольную
 - 3.4) Сохранение точек в массиве

Структура и состав классов (без OpenGL)

Point

Struct

■ Поля

€ Z

Структура и состав классов cOpenGL)

Примеры работы

Сравнение скорости работы программы с OpenGL и без

Заключение

В результате проделанной работы была создана трёхмерная модель Земли с визуализацией полётов самолетов с различными возможностями:

- поворот модели в любом направлении;
- масштабирование модели;
- список доступных для выбора траекторий;
- отображение траектории полетов;
- отображение передвижений самолетов по данным траекториям.

Была разработана версия программы использующая библиотеку OpenGL.

Спасибо за внимание