

11th meeting of the BRICS Astronomy Working Group

13 to 17 October 2025

Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, São Paulo, Brasil

A protocluster in formation traced by LAEs at $z \sim 4.5$ in the COSMOS field

Mariana Rubet

First Name:	Mariana
Last Name:	Rubet
Institution/Affiliation:	Universidade Federal do Rio de Janeiro
Country of Residence:	Brasil
Preferred type of presentation	Poster
Will you attend in person or online?	_
Email	rubetmariana@gmail.com

Abstract

The densest structures of the Universe formed at the knots of the cosmic web at high redshifts and constitute the present-day clusters of galaxies. The early stages of these structures are called protoclusters. In this work, we use the submm source [1000+0234, representative of a population of dusty and distant starburst galaxies expected to inhabit peaks of matter density, as a target for a potential protocluster region. We use combined wide-band and narrow-band optical photometry to identify Lya emitters (LAEs) within a 21cMpc radius from the submm source 11000+0234, at $z = 4.54 \pm 0.03$, to identify typical star- forming galaxies that may trace the underlying structure containing our target source. Our approach selects line emitters as narrow-band excess objects and we use the COSMOS2020 photometric redshift catalog to eliminate potential low-redshift interlopers whose line emission (e.g. [OIII] at $z \sim 0.3$) might be responsible for the observed excess in the narrow band. In comparison with the LAE density in the field, our results point to a mean LAE number overdensity of $\delta = 3$, spanning a region of 27 x 20 x 36 cMpc3, probably evolving into a moderate-mass cluster (3 - 10 \times 1014 M \odot) at z \sim 0. This structure likely forms an extension at $z \sim 4.5$, a few comoving Mpc away from the recently identi- fied Taralay protocluster. This work supports the idea that submm sources, although offset from the major overdensity peaks, serve as traces of moderately massive, potentially infalling structures.