SPRING TERM PRESENTATION

2025-05-15

ELIAS ALBAG
HANNA BEATTY
THEO BYSTRÖM
MARKO GVERO
VICTORIA HELLSTRÖM
CHRISTIAN HJERPE
MARKUS LINDGREN HARDELL
NIKLAS NYBERG
HANNA SENNERÖ

THE TASK

- A lot of the work being done on construction sites is grading (*flattening of ground*)
- Making excavator operating easier
- Allows less experienced operators to do difficult tasks

KICK-OFF

- Operated excavators ourselves
- Together with the Volvo engineers, concluded a shared understanding of the problem
- Initial part of a larger, long-term development also tasked with defining the initial framework and system architecture.

DESIGN BRIEF

Generation shift.

Project Description:

- From: Two-lever manual control
- To: Single-input bucket tip control

Includes:

- Simulation environment selection
- Control method
- Sensor selection & system design

Goal:

Enable smooth bucket motion for **grading** and **lifting**, without requiring expert operator skills.

Picture: bigrentz.com

PROJECT SPECIFICATION

REQUIREMENTS - STAKEHOLDERS

From a flat, level surface, should be able to perform movements in the X and Y directions:

• *X-direction:* Grading

• *Y-direction:* Lifting

Accuracy requirements

• ±5 mm (in 2 dimensions)

Code reqirement:

- Well-commented
- Well-structured

Achieve reliable results consistently:

- During continuous operation
- While being subjected to disturbances

ORGANIZATION

- Modelling
- Control
- Implementation

MODELLING

Two approaches

- Simulink
- Machine Learning Approach

MODELLING

Multidomain implementation in Simscape

MODELLING

- Machine Learning Approach
 - Simscape (physics-based) vs. Machine learning (sensor data-based)

- Accounts for system imperfections
- 3-layer Neural Network with backpropagation
- Future potential / hybrid approach

CONTROL

Automatic

Semi automatic

- Operator controls bucket reference velocity
 - System controls **bucket** for angle
 - System controls **boom** for height/speed
 - System controls **arm** for height/speed

- Operator controls arm movement
 - System controls **bucket** for angle
 - System controls **boom** for height

CONTROL

- Start with PID and feed forward control of angular velocities
- Velocity control → Bucket will drift → Additional feedback is needed
- Hydraulics and linkages → Non linear → PID might be insufficient
- SOTA → Neural networks based controller gives best performance

SENSORS

Goal:

- System accuracy of ±5 mm
- Withstand harsh environment

- Inertial sensors: accelerometers, gyros, and IMUs.
- Inclinometers
- Rotary encoders

SENSORS

VOLVO

SYSTEM ARCHITECTURE

AUTUMN TERM

Test control methods Tune controller in simulation Excavator to KTH on real machine Implement hardware

Sensor fusion