HW 11 2.7.2,6,10,14 2.8.2,4,11

2.7.2. Let X and Y be normed spaces. Assume that a linear operator $T\colon X\to Y$ is bounded. Let $A\subseteq X$ be a set that is bounded. So for all $a\in A$, $\|a\|\le M$ for some $M\in\mathbb{R}$ (or \mathbb{C} . The same proof follow either way). Let $b\in B$ such that T(A)=B. Thus, there exists an $a\in A$ such that T(a)=b. We know that $\|T(a)\|\le c\|a\|$ for some c. Thus, $\|b\|\le c\|a\|$. Since A is bounded, then $\|b\|\le c\|a\|\le cM$. Since $cM\in\mathbb{R}$ and is constant, then $\|b\|$ is bounded. Since b was arbitrary, b must be bounded. So b maps bounded sets into bounded sets.

Now assume that $T \colon X \to Y$ maps bounded sets in X to bounded sets in Y. Let $x \in X$. Then ||Tx|| = ||y|| where $y \in Y$. If x is in some bounded set of X, then $||Tx|| \le c$ for some c since y must be in a bounded set. Let $d = \frac{c}{||x||}$. Then $||Tx|| \le d||x||$.

Now assume that x is not in some bounded set of X. So $\{x\}$ is unbounded. This means that $||x|| = \infty$. This is a contradiction. So all x are in some bounded set. Thus by the first part of the proof, T is a bounded operator.

- **2.7.6.** Let $T: l^{\infty} \to l^{\infty}$ defined on $y = (y_i) = Tx$, $y_i = \frac{x_i}{i}$ and $x = (x_i)$. We first show that T is linear and bounded.
 - 1. (Linear): Let $a, b \in l^{\infty}$ be denoted $a = (a_i), b = (b_i)$. Let $\alpha, \beta \in \mathbb{R}$. Then

$$T(\alpha a + \beta b) = T((\alpha a_i) + (\beta b_i)) \tag{1}$$

$$=T((\alpha a_i + \beta b_i)) \tag{2}$$

$$= \left(\frac{\alpha a_i + \beta b_i}{i}\right) \tag{3}$$

$$= \left(\frac{\alpha a_i}{i}\right) + \left(\frac{\beta b_i}{i}\right) \tag{4}$$

$$=\alpha(\frac{a_i}{i}) + \beta(\frac{b_i}{i}) \tag{5}$$

$$= \alpha T(a) + \beta T(b). \tag{6}$$

So T is linear.

2. (Bounded): Note that $||Tx|| = ||(\frac{x_i}{i})||$ Since $(\frac{x_i}{i}) \in l^{\infty}$, each $\frac{x_i}{i}$ is bounded by some M. Thus, $||(\frac{x_i}{i})|| = \sup_i ||\frac{x_i}{i}|| \le M$. Let $c = \frac{M}{||x||}$. Then $||Tx|| = ||(\frac{x_i}{i})|| = \sup_i |\frac{x_i}{i}| \le M = c||x||$. So $||Tx|| \le c||x||$. So T is bounded.

Thus we know that T is a bounded linear operator. We now consider R(T). We know every sequence in R(T) is of the form $(\frac{x_i}{i})$. Consider the sequence of sequences (x_i) where $(x_n) = (1, 2, 3, ..., n, 0, 0, ...)$. Then $Tx_n = (1, 1, ..., 1, 0, ...)$. Note that as $n \to \infty$, $Tx_n \to (1, 1, ...)$. Since (1, 1, 1, ...) is bounded by 1, $(1, 1, 1, ...) \in l^{\infty}$. However $T^{-1}(1, 1, 1, ...) = (1, 2, 3,) \notin X$. So $(1, 1, 1, ...) \notin R(T)$. Thus, R(T) is not closed

2.7.10. Let X be C[0,1] and define $S: = y(s) = s \int_0^1 x(t) dt$ and T: = y(s) = sx(s). First note that

$$TSx(s) = T(s \int_0^1 x(t)dt) = s^2 \int_0^1 x(t)dt$$
 (7)

$$STx(s) = S(sx(s)) = s \int_0^1 tx(t)dt.$$
 (8)

So $ST \neq TS$.

Then we see that

$$||S|| = \sup_{x \in \mathscr{D}, ||x|| = 1} ||Sx|| \tag{9}$$

$$= \sup_{x \in \mathcal{D}, \|x\| = 1} \|s \int_0^1 x(t)dt\|$$
 (10)

$$= \max_{s \in [0,1]} |s \int_0^1 x(t)dt| \tag{11}$$

$$= \left| \int_0^1 x(t) | dt \right| \tag{12}$$

$$= ||x||. \tag{13}$$

$$||T|| = \sup_{x \in \mathscr{D}(T), ||x|| = 1} ||Tx||$$
(13)

$$= \max_{s \in [0,1]} |sx(s)|. \tag{15}$$

$$||ST|| = \max_{s \in [0,1]} |s \int_0^1 tx(t)dt|$$
 (16)

$$= \left| \int_0^1 tx(t)dt \right| \tag{17}$$

$$= ||tx(t)|| \tag{18}$$

$$||TS|| = \max_{s \in [0,1]} |s^2 \int_0^1 x(t)dt|$$
 (19)

$$= \left| \int_0^1 x(t)dt \right| \tag{20}$$

$$= ||x||. \tag{21}$$

2.7.14. Let $||x||_1 = \sum_{k=1}^n |x_k|$ and $||y||_2 = \sum_{j=1}^r |y_j|$. Let A be a $r \times n$ matrix $A = (\alpha_{jk})$ which defines a linear operator from the vector space X of all ordered n-tuples of numbers into the vector space Y of all ordered r-tuples of numbers. Then we see that

$$||Ax||_2 = \sum_{i=1}^r |\sum_{j=1}^n \alpha_{ij} x_j|$$
 (22)

$$\leq \sum_{i=1}^{r} \sum_{j=1}^{n} |\alpha_{ij} x_j| \tag{23}$$

$$\leq \max_{k} \sum_{i=1}^{r} \sum_{j=1}^{n} |\alpha_{ik} x_j| \tag{24}$$

$$\leq \max_{k} \sum_{i=1}^{r} |\alpha_{ik}| \sum_{j=1}^{n} |x_j| \tag{25}$$

$$= ||A|| ||x||_1. \tag{26}$$

So ||A|| is compatible.

2.8.2. Let $y_0 \in C[a, b]$. Then we see that for $\alpha, \beta \in \mathbb{R}$ (or \mathbb{C}), that

$$f_1(\alpha x + \beta y) = \int_a^b (\alpha x + \beta y)(t)y_0(t)dt$$
 (27)

$$= \int_{a}^{b} ((\alpha x)(t) + \beta y(t))y_0(t)dt \tag{28}$$

$$= \int_{a}^{b} (\alpha x(t) + \beta y(t)) y_0(t) dt \tag{29}$$

$$= \int_{a}^{b} \alpha x(t)y_0(t) + \beta y(t)y_0(t)dt \tag{30}$$

$$= \int_{a}^{b} \alpha x(t) y_0(t) dt + \int_{a}^{b} \beta y(t) y_0(t) dt$$
(31)

$$= \alpha \int_a^b x(t)y_0(t) + \beta \int_a^b y(t)y_0(t)dt \tag{32}$$

$$= \alpha f_1(x) + \beta f_2(y). \tag{33}$$

So f_1 is linear. We now note that the continuity of $y_0(t)$ on a closed square implies that y_0 is bounded, say $|y_0(t)| \le c$. So,

$$|f_1(x)| = |\int_a^b x(t)y_0(t)dt|$$
 (34)

$$\leq c |\int_{a}^{b} x(t)| \tag{35}$$

$$\leq c(b-a) \max_{t \in [a,b]} |x(t)| \tag{36}$$

$$=c(b-a)\|x\|. (37)$$

Thus, $||f_1(x)|| \le c||x||$. So f_1 is bounded.

Now consider $f_2(x) = \alpha x(a) + \beta x(b)$ for some fixed α, β . Let r, s be scalars. Then we see that

$$f_2(rx+sy) = \alpha((rx+sy)(a)) + \beta((rx+sy)(b))$$
(38)

$$= \alpha((rx)(a) + (sy)(a)) + \beta((rx)(b) + (sy)(b))$$
(39)

$$= \alpha(rx)(a) + \alpha(sy)(a) + \beta(rx)(b) + \beta(sy)(b)$$
(40)

$$= r\alpha x(a) + r\beta x(b) + s\alpha y(a) + s\beta y(b) \tag{41}$$

$$= r(\alpha x(a) + \beta x(b)) + s(\alpha y(a) + \beta y(b)) \tag{42}$$

$$= rf_2(x) + sf_2(y). (43)$$

So f_2 is linear.

We now show that f_2 is bounded.

$$|f_2(x)| = |\alpha x(a) + \beta x(b)| \tag{44}$$

$$\leq |\alpha||x(a)| + |\beta||x(b)|| \tag{45}$$

$$\leq |\alpha| \|x\| + |\beta| \|x\| \tag{46}$$

$$= (|\alpha| + |\beta|)||x|| \tag{47}$$

Since these values are all constant, then f_2 is bounded.

2.8.4. First consider $f_1(x) = \max_{t \in J} x(t)$ where $x \in C[a, b]$. Assume that x(t) = y(t). Then $f_1(x) = \max_{t \in J} x(t) = \max_{t \in J} y(t) = f_1(y)$. So f_1 is well-defined. Further, since x is a function, we see that

 $f_1(x) \in \mathbb{R}$ or \mathbb{C} . So f_1 is a functional. However, consider $x(t) = t^2$ and $y(t) = -t^2$ on the interval $[-1, \frac{1}{2}]$. Then $f_1(x) = 1$ and $f_1(y) = 0$. However $f_1(x+y) = \max_{t \in [-1, \frac{1/2}{2}]} 0 = 0$, which is not $f_1(x) + f_1(y) = 1$. So f_1 is not linear on every interval [a, b]. Yet, we do see that

$$f_1(x) = \max_{t \in J} x(t) \tag{48}$$

$$\leq |\int_{a}^{b} x(t)dt| \tag{49}$$

$$= ||x||. \tag{50}$$

So f_1 is bounded.

Now consider $f_2(x) \min_{t \in J} \text{ where } x \in C[a,b]$. Assume that x(t) = y(t). Then $f_2(x) = \min_{t \in J} x(t) = \sum_{t \in J} x(t)$ $\min_{t\in J} y(t) = f_2(y)$. So f_2 is well-defined. Further, since x is a function, we see that $f_2(x) \in \mathbb{R}$ or \mathbb{C} . So f_2 is a functional. However, consider $x(t) = t^2$ and $y(t) = -t^2$ on the interval $[-1, \frac{1}{2}]$. So $f_2(x) = 0$ and $f_2(y) = 1$. However, $f_2(x+y) = \min_{t \in [-1, \frac{1}{2}]} 0 = 0$, which is not $f_2(x) + f_2(y) = 1$. So f_2 is not linear. Yet, we do see that

$$f_2(x) = \min_{t \in I} x(t) \tag{51}$$

$$f_2(x) = \min_{t \in J} x(t)$$

$$\leq \left| \int_a^b x(t)dt \right|$$
(51)

$$= ||x||. \tag{53}$$

So f_2 is bounded.

2.8.11. Let $f_1 \neq 0$ and $f_2 \neq 0$ be two linear functionals defined on the same vector space X. Assume that they have the same null space. Define a map $T: \mathcal{R}(f_1) \to \mathcal{R}(f_2)$ such that $Tf_1(x) = f_2(x)$. Given that the function is based on x, we can clearly see that T is well-defined. We show that T is injective. Assume that $Tf_1(x) = Tf_1(y)$. Then, $T(f_1(x) - f_1(y)) = 0$ so $T(f_1(x - y)) = 0$. So $f_2(x - y) = 0$. Since f_2 and f_1 have the same null space, then $f_1(x-y)=0$. So $f_1(x)=f_1(y)$. Hence, T is injective. Now let $f_2(x)\in \mathcal{R}(f_2)$. Then $f_1(x) \in \mathcal{R}(f_2)$ maps to $Tf_1(x) = f_2(x)$. So T is bijective. Hence, $\mathcal{R}(f_1) \cong \mathcal{R}(f_2)$.

Now since $\mathcal{R}(f_1) \subseteq \mathbb{R}$, we know that T can be represented by a 1x1 matrix (since T is a linear operator and bijective) which is just some scalar α . This means that $Tf_1(x) = \alpha f_1(x) = f_2(x)$.