Semantics I Lecture 8

María Biezma

Carleton University

February 26th, 2014

Back to "the"

Quantified DPs

- What we know so far
- Quantifiers
- other examples

2/30

Back to "the"

"The

[the] = $\lambda P_{\text{predicate}}$. the unique entity x salient in c such that P(x) = 1 (undefined if there is no such entity or if there is more than one)

[the rabbit] = [the]([rabbit]) = [the]($\lambda x.x$ is a rabbit) = (λP . the unique entity x salient in c such that P(x) = 1)($\lambda x.x$ is a rabbit) = (the unique entity x salient in x such that [$\lambda x.x$ is a rabbit](x) = 1) = (the unique entity x salient in x such that x is a rabbit) =

Back to "th

more about mechanics

[woman] = $\lambda y.y$ is a woman **[the]** ($\lambda y.y$ is a woman) = $(\lambda P.$ the unique entity x salient in c such that P(x) = 1)($\lambda y.y$ is a woman) = the unique entity x salient in x such that [xy.y] is a rabbit [xy.y] is a rabbit [xy.y] the unique entity x salient in x such that x is a rabbit

4/30 5/30

ck to "the" Back

A full example

 $[\![\mathbf{Alice}]\!] = \mathsf{Alice}$

 $[saw] = \lambda x. \lambda y. y saw x$

 $[the] = \lambda P$. the unique entity x salient in c such that P(x) = 1

 $[rabbit] = \lambda z.z$ is a rabbit

6/30 7/30

Back to "the"

 $[\![\mathbf{VP}]\!]$

 λP . the unique entity \times [...] P(x) = 1

 λP . the unique entity \times [...] P(x) = 1

 $\llbracket \mathbf{DP}
rbracket$

 $\lambda z.z$ is a rabbit

 $\lambda z.z$ is a rabbit

 $[\![\mathbf{S}]\!]$

 $\lambda x. \lambda y. y$ saw x

 $\lambda x.\lambda y.y$ saw x

Alice

Alice

Alice

Alice

Back to "the"

8/30 9/30

 $[\lambda z.z \text{ is a rabbit}](x) = x \text{ is a rabbit}$

10/30

Back to "the"

Back to "

1 iff Alice saw the unique entity x [...] x is a rabbit

Alice $\lambda y.y$ saw the unique entity x[...]x is a rabbit

Alice $\lambda x.\lambda y.y$ saw x [the unique entity $x[...] \times is$ a rabbit]

Alice $\lambda x.\lambda y.y$ saw x λP . the unique entity x[...] P(x) = 1 $\lambda z.z$ is a rabbit λP . the unique entity x[...] P(x) = 1 $\lambda z.z$ is a rabbit $\lambda z.z$ is a rabbit

• we saw that our definition blocks the Maria

• how do we block the sneeze?

14/30

Quantified DPs What we know so far

... but we also know that not all DPs are referential expressions.

- some men
- many letters
- no rabbit

All of DPs above are quantified DPs

so far...

• So far we have seen the meanings of some DPs

Maria

• The man

[proper names] [some pronouns] [definite descriptions]

17/30

19/30

We know that all those DPs are referential expressions...

Quantified DPs What we know so far

today's goal

- What is the denotation of non referential DPs?
 - more precisely, what is the denotation of quantified DPs?
- We will start by looking at quantified DPs like
 - everybody
 - nobody
 - somebody
- we will then look at more complicated ones (but maybe not today...)

18/30

everybody

Everybody slept

What does it mean?

- In this case, it is not that we predicate anything of anyone..., i.e. it is not that "sleep" is predicated of an entity.
 - the utterance everybody slept tells us that no matter what argument we feed into $[slept]^c$, the output will be truth.
 - If the sentence above is true, $[slept]^c$ will return truth for all its inputs

1 iff for all x in the set of entities in c, x slept

21/30

22 / 30

Quantified DPs Quantifiers

adding more pieces

1 iff for all x in the set of entities in c, x slept

is everybody a referential expression?

- 1 am over 30 years old or I am under 40 years old
- 2 Everybody is over 30 years old or everybody is under 40 years old

Quantified DPs Quantifiers

- (1) is trivially true
- (2) is not true in all situations (imagine a situation in which we have someone who is 29 and someone who is 41)
- We know that I is a referential expression. If everybody were a referential expression, then it would behave "always" like a referential expression. However, the contrast between (1) and (2) explained above shows that with respect to that particular test, everybody does not behave like a referential expressions. Hence, everybody is not a referential expression.

23 / 30 24 / 30

what are the consequences of what we discovered?

1 iff for all x in the set of entities in c. x slept

$\llbracket \mathbf{DP} rbracket^c$	$[\lambda x.x \text{ slept}]$
$\llbracket \mathbf{NP} rbracket^c$	$[\lambda x.x \text{ slept}]$
$\llbracket \mathbf{N} rbracket^c$	$[\lambda x.x \text{ slept}]$
$\llbracket ext{everybody} Vert^c$	

- $[slept]^c$ is a function, $[\lambda x.x \text{ slept}]$
- We further know that there are restrictions regarding what kind of argument, the one occupying x in $[\lambda x.x \text{ slept}]$, this function takes

Quantified DPs Quantifiers

- $[slept]^c$ only takes entities (i.e. referential expressions)
- Hence $\| \operatorname{slept} \|^c (\| \operatorname{everybody} \|^c) \|$

25 / 30

Quantified DPs Quantifiers

What is the intension of everybody?

now what?

We need to find a denotation for everybody that allows us to compose it like

$$[[everybody]^c([[slept]]^c)]$$

- This agrees with our intuitions: in everybody slept, $[slept]^c$ does not predicate a property of anyone in the context of utterance
 - Slept is a property that everybody in the context of utterance has. $\llbracket \text{everybody slept}
 Vert^c$ defines $\llbracket \text{slept}
 Vert^c$ (i.e. how $\llbracket \text{slept}
 Vert^c$ behaves and thus something is predicated of $[slept]^c$

1 iff for all x in the set of entities in c, x slept

$$\bullet \ [\![\mathbf{everybody}]\!]^c ([\![\mathbf{slept}]\!]^c) = 1 \ \mathsf{iff} \ \mathsf{for} \ \mathsf{all} \ \mathsf{x} \ \mathsf{in} \ \mathsf{the} \ \mathsf{set} \ \mathsf{of} \ \mathsf{entities} \ \mathsf{in} \ \mathsf{c}, \ \mathsf{x} \ \mathsf{slept} \\$$

- $[slept]^c$ is a predicate $([slept]^c = [\lambda x.x \text{ slept}])$
- if $[everybody]^c$ composes with $[slept]^c$, its argument should be a predicate
 - $[everybody]^c = \lambda P_{predicate} \dots$
 - $[everybody]^c =$

 $\lambda P_{\text{predicate}}$ for all x in the set of entities in c, P(x) = 1

alternatively:

 $[evervbodv]^c =$

 $\lambda P_{\text{predicate}}$ for all x in the set of entities in c, P is true of x

27 / 30

28 / 30

26 / 30

- What is the denotation of
 - nobody
 - somebody