Algebra I, egzamin 1.02. 2023

Wszystkie rozwiązania powinny być dokładnie uzasadnione!

- 1. Niech G będzie grupą rzędu 175. Udowodnij, że:
 - a) grupa G nie jest prosta,
 - b) istnieje homomorfizm grupy G na grupe cykliczną C_5 .
- 2. W pierścieniu $\mathbb{Z}[i]$ rozważmy elementy a=3+i oraz b=5-i. Niech I będzie ideałem głównym generowanym przez element a, a J ideałem głównym generowanym przez b.
 - a) Wyznacz generatory ideałów I + J i $I \cap J$.
- b) Czy któryś z pierścieni $\mathbb{Z}[i]/I$, $\mathbb{Z}[i]/(I+J)$ jest izomorficzny z ciałem \mathbb{Z}_p dla pewnej liczby pierwszej p?
- 3. Które z następujących pierścieni są izomorficzne? Uzasadnij dokładnie każdą z odpowiedzi.
 - a) $\mathbb{R}[x]/(x-1)^2\mathbb{R}[x]$,
 - b) $\mathbb{R}[x]/(x^2-1)\mathbb{R}[x]$,
 - c) $\mathbb{R}[x]/(x^2+3)\mathbb{R}[x]$,
 - d) C.
- 4. a) Uzasadnij, że ideał $I = (x^3 + 3x^2 + 6) \mathbb{Z}[\bar{x}]$ pierścienia $\mathbb{Z}[x]$ jest ideałem pierwszym ale nie jest ideałem maksymalnym.
 - b) Które z powyższych własności ma ideał $J=(x^3+3x^2+6)\,\mathbb{Q}[x]$ pierścienia $\mathbb{Q}[x]$?
 - 5. a) Udowodnij, że ideał I=(y) w pierścieniu $R=\mathbb{Q}[x,y]$ jest zawarty w nieskończenie wielu ideałach maksymalnych.
 - o b) Niech I będzie ideałem w dziedzinie ideałów głównych R takim, że $I \neq R, I \neq \{0\}$. Udowodnij, że I jest zawarty w skończenie wielu ideałach maksymalnych.

Egzamin Algebra 1; Teoria

- 1. Niech H będzie podgrupą grupy G.
 - a) Sformuluj twierdzenie Lagrange'a.
 - b) Wykaż, że liczba warstw lewostronnych grupy G względem podgrupy H jest równa liczbie warstw prawostronnych (bez założenia o skończoności grupy G).
- 2. a) Podaj dwie różne (oczywiście równoważne) definicje rzędu o(a) elementu a grupy G.
 - b) Wykaż, że jeśli $a \in G$ ma rząd skończony oraz $\phi : G \longrightarrow H$ jest homomorfizmem grup, to $o(\phi(a))$ dzieli o(a).
- 3. a) Podaj definicję elementu nierozkładalnego i definicję elementu pierwszego dziedziny R.
 - b) Udowodnij, że jeżeli $p \in R$ jest elementem pierwszym, to p jest nierozkładalny w R.
- 4. a) Podaj definicję największego wspólnego dzielnika elementów a,b dziedziny R.
 - b) Niech R bedzie dziedziną ideałów głównych. Udowodnij, że aR + bR = dR, gdzie $d \sim \text{NWD}(a, b)$.
- 5. Niech $K\subseteq L$ będzie rozszerzeniem ciał oraz niech $a\in L$.
 - a) Wyjaśnij co oznacza, że a jest elementem algebraicznym nad K. Podaj definicję wielomianu minimalnego elementu a nad ciałem K.
 - b) Wyjaśnij, dlaczego K[a] = K(a), jeśli a jest elementem algebraicznym nad K. Uwaga: K[a] oznacza podpierścień w L generowany przez zbiór $K \cup \{a\}$, a K(a) oznacza podciało w L generowane przez zbiór $K \cup \{a\}$.