Sistemas Robóticos Autônomos

Geração de Caminhos

Geração de Caminhos

- Controladores de seguidores de caminhos requerem que caminho de referência seja especificado.
- Caminho: curva geométrica contínua, parametrizada, entre a configuração inicial e final.
- Um caminho é percorrido sem levar em conta restrições temporais.
- Seguir um caminho envolve apenas a progressão monotônica, desde seu início até o seu fim

Problema:

 Planejadores de caminhos geralmente não produzem caminhos que satisfaçam restrições do robô e que possam ser executados pelo mesmo.

Possíveis soluções:

- Planejar levando em conta as restrições do robô (cinemáticas, mecânicas, etc.)
 - ⇒ Aumenta a complexidade do planejamento.
- Adaptar o caminho, suavizando-o para atender às restrições.
 - ⇒ Possibilidade de não encontrar o caminho. A adaptação pode resultar em colisão com obstáculos.

Adaptação do Caminho Geométrico

- Subdivisão do caminho em segmentos delimitados por vértices.
- ii. Cálculo de caminhos executáveis entre vértices de um mesmo segmento (ponto a ponto).
- iii. Verificação de colisões.
- iv. Se necessário, subdivisão em maior número de segmentos e reinício da etapa i.

Exemplo de adaptação

Subdivisão

Caminhos ponto a ponto

Teste de colisões

Subdivisão

Caminhos ponto a ponto

Caminhos ponto a ponto

Teste de Colisão - Caminho executável

Métodos de Subdivisão

- Bisseção
 - Maior tempo médio
 - Garantia de convergência em tempo finito
- Aleatório
 - Menor tempo médio
 - Risco de não convergência
- Heurístico
 - Dependente do tipo de trajetória e dos obstáculos

- Caminho de fácil determinação (baixa complexidade) entre um ponto inicial e um ponto final bem determinados
- Diretamente executável pelo robô
- Não leva em conta a presença de obstáculos

- Principais restrições cinemáticas:
 - Restrições não-holonômicas
 - Raio mínimo de giro

- Métodos de determinação:
 - Caminhos Dubins
 - Caminhos de Reeds e Shepp
 - Clotóides
 - Polinômios cúbicos

Caminhos de Dubins (1957)

- Trabalho pioneiro no planejamento de caminhos ponto a ponto para veículos com restrições no movimento.
- Caminhos são concatenações de arcos de circunferência de raio mínimo e segmentos de reta.
- Aplicado a veículos com restrições no raio de curvatura, como, por exemplo, um carro.
- Considera-se que o veículo se movimenta sempre para frente, como no caso de submarinos, aviões e veículos que não podem se deslocar para trás.
- Um total de seis caminhos possíveis podem ser encontrados entre duas configurações distintas.
 Geralmente, escolhe-se o de menor comprimento.

Dubins

Caminhos de Reeds & Shepp (1990)

- Os caminhos de Reeds & Shepp consistem em concatenações de até arcos de circunferência de raio mínimo e/ou segmentos de reta.
- Aplicado a veículos com restrições no raio de curvatura, como, por exemplo, um carro.
- Movimentos de ré são permitidos.
- Um total de quarenta e oito caminhos possíveis podem ser encontrados entre duas configurações distintas.
- Um deles possui comprimento mínimo. Geralmente, este é o escolhido.

- Vantagens:
 - Caminho de comprimento mínimo.
 - Incorpora facilmente restrições quanto ao raio de giro.
 - Trajetória composta por encadeamento de segmentos padronizados, o que facilita o cálculo de velocidade e o teste de colisões.

- Desvantagens:
 - Exige o teste de 48 combinações
 - As descontinuidades obrigam o robô a ter velocidade nula em ao menos uma das rodas ao mudar de tipo de movimento
 - Se o raio mínimo de rotação é nulo, sempre degenera em trajetórias do tipo "gire – ande – gire"

Clotóides

- Caminhos de Dubins ou de Reeds & Shepp apresentam o problema da descontinuidade na velocidade angular na concatenação de segmento de reta e arco de circunferência.
- Clotóide é uma curvatura cujo raio de curvatura varia linearmente com o seu comprimento.
- Possibilitam concatenar segmentos de reta e arcos de circunferência através de uma transição suave, sem descontinuidade na curvatura ou na velocidade angular.

Descontinuidade na velocidade angular

Clotóide

Sistemas Robóticos Autônomos

Geração de Caminhos