

Technische Grundlagen der Informatik 2 Rechnerorganisation

Prof. Dr. Ben Juurlink

Fachgebiet: Architektur eingebetteter Systeme
Institut für Technische Informatik und Mikroelektronik
Fak. IV – Elektrotechnik und Informatik

Zielgruppen

TechGI2: 2 VL + 2 UE (6 LP)

Informatik, Wirtschaftsingenieurwesen

TechGI2TI: 2 VL + 2 UE + 2 Praktikum "Digitale Systeme" (8LP)

Technische Informatik

Prüfung

- VL: Klausur mit Zugangsvorraussetzung (01.08. + 22.09.)
 - 4 Hausaufgaben, pro HA 33% der Punkte, insg. 50%
 - Muss in dem Semester erbracht werden, in dem die Klausur geschrieben werden soll
- PR: Unbenotetes Testat
 - Protokollierte Leistungen + wöchentliche Rücksprachen
 - Muss einmalig erbracht werden
- Anmeldung über QISPOS oder Prüfungsamt (siehe geltende Studien- und Prüfungsordnung) nach Vorlesungsende Mitte Juli
- Modulnote = Note der Abschlussklausur

- Papier- und Rechnerübungen in Kleingruppen
- Anmeldung über MOSES (<u>www.moses.tu-berlin.de</u>)
 - Frist endet morgen, 16.04.2014, 18.00 Uhr
 - Auch fürs Praktikum erforderlich!
- Beginn in der 2. Vorlesungswoche (ab 22.04.), Praktikum ab 3. (28.04.)
- Abgabe + Benotung der Hausaufgaben durch zugeteilten Tutor
- Tutor 1. Ansprechpartner für alle Fragen + Probleme

Weitere Infos?

- Aktuelles und Organisation des Übungsbetriebs via ISIS (http://www.isis.tu-berlin.de/2.0/)
 - Übungsblätter und Hausaufgaben
 - Angaben zu Räumlichkeiten (Tutorien, Übungen am Rechner, Klausur)
 - Sprechstunden der Tutoren
 - Angaben zur Klausur
- Direkter Kontakt:
 - Tutorienbetrieb, Hausaufgaben, Klausur: techgi2@aes.tu-berlin.de
 - Praktikum: techgi2pr@aes.tu-berlin.de

Fragen, Probleme?

Tutor

- 2h Sprechstunde pro Woche in Raum E-N 630
- Sprechzeiten auf ISIS-Seite

Foren

- Über ISIS-Seite
- Moderierte peer-to-peer Diskussionen

Sprechstunde

- Di, 8.00-10.00 Uhr
- Termin vereinbaren via techgi2@aes.tu-berlin.de

Wer bin ich, who am I?

Prof. Dr. B.H.H. (Ben) Juurlink

- 1968: geboren in Nieuw Schoonebeek,
 Niederlande
- 1987-1992: MSc Computer Science, Utrecht University (NL)
- 1992-1996: PhD Computer Science, Leiden University (NL)
- 1997-1998: Postdoctoral fellow, Heinz Nixdorf Institute, Paderborn University (DE)
- 1998-2009: Assistant/associate professor,
 Delft University of Technology (NL)
- Seit 2010: Professor für Architektur eingebetter Systeme, TU Berlin

Werdegang

Hauptziele

- Verstehen, wie ein Programm geschrieben in einer höheren Programmiersprache (z. B. C oder Java) in eine Maschinensprache übersetzt und von einem digitalen System ausgeführt wird
- Die mit der Bearbeitung der Maschinenbefehle einhergehenden logischen Abläufe in einem digitalen System auf der Registertransferebene verstehen und ggfs. erweitern
- Fähigkeit, die Systemfunktionalität in konstruktiver Weise mittels eines endlichen Automaten oder mittels Mikroprogrammierung festzulegen
- Kenntnisse in Zahlendarstellungen und in den für die arithmetischen Operationen zugrundeliegenden Mikroalgorithmen
- Kompetenzen im Aufbau digitaler Systeme, einschließlich Ein-/Ausgabe-organisation, und in den Strukturprinzipien von Rechnern

Themen

- Grundlegende Technologien und Komponenten einer Rechnerarchitektur
- Assemblerprogrammierung: Assemblersprache, Steuerkonstrukte, Adressierungsarten.
- Rechnerarithmetik: Zahlendarstellungen (Stellenwertsysteme, Fest- und Gleitpunktzahlen), Mikroalgorithmen für arithmetische Operationen.
- Codes (Ziffern- und Zeichencodes, Codesicherung)
- Rechenleistung verstehen und beurteilen (SPEC benchmarks, Amdahl's Law).
- Aufbau und Funktionsweise eines einfachen Von-Neumann-Rechners.
- Aufbau und Funktionsweise einer Mehrzyklenimplementierung.
- Fliessbandverarbeitung (Pipelining), Pipelinekonflikte und ihre Lösungen.
- Speicherhierarchie, Caches, virtueller Speicher.
- Ein-/Ausgabetechniken (Adressierung, Synchronisation, Direktspeicherzugriff).
- Merkmale moderner Prozessoren (Superskalarität, VLIW, Multi-Core).

Thema 1: Übersetzung


```
High-level
language
program
(in C)
```


Assembly language program (for MIPS)

Binary machine language program (for MIPS)

Thema 2: Rechnerarithmetik

$$b_{31}b_{30}...b_1b_0 = -b_{31}2^{31} + b_{30}2^{30} + ... + b_12^1 + b_02^0$$

Thema 3: Leistung

$$T = N_{instr} \cdot CPI \cdot t_{cycle} = \frac{N_{instr} \cdot CPI}{f}$$

If 50% is sequential, the maximum speedup is 2, no matter how many cores you use

Thema 4: Der Eintaktprozessor

Thema 5: Mehrzyklenimplementierung

Thema 6: Pipelining

Thema 7: Speicherhierarchie

Thema 8: Peripherie

Thema 9: Moderne (Mehrkern)Prozessoren

Buch

- Rechnerorganisation und entwurf – Die Hardware/ Software-Schnittstelle
- David A. Patterson and John L. Hennessy
- Übersetzt von Arndt Bode,
 Wolfgang Karl und Theo Ungerer
- 3. Auflage im UB
 - 4. Auflage auch i. O. und jetzt auch auf Deutsch

Viel Spaß und frohes Schaffen!