Constraint-Aware Importance Estimation for Global Filter Pruning under Multiple Resource Constraints

Yu-Cheng Wu, Chih-Ting Liu, Bo-Ying Chen, Shao-Yi Chien NTU loX Center, National Taiwan University Graduate Institute of Electronic Engineering, National Taiwan University

Github: https://github.com/mediaic/CAIE-Filter-Pruning

Preliminary -- Filter Pruning

Proposed Method -- CAIE

- Problem in previous methods
 - Information of the constraint is not considered during importance estimation
 - Under multiple constraints, they can only keep pruning until the network separately matching all constraints.
- Solution: our Constraint-Aware Importance Estimation (CAIE)
 - Integrating constraint information in the phase of importance estimation
 - Can be generalized to the problem of multiple-constraint pruning

Keywords and Notation

- Loss impact $\ell(f)$
 - The change in the <u>loss</u> induced by removing the filter *f*
- Resource impact r(f)
 - The proportion of reduction in the <u>concerned resource</u> induced by removing the filter f
- Pruning objective R
 - The minimum proportion of total reduction in the resource

CAIE in Single-constraint Pruning

Problem formulation:

$$\underset{F}{\operatorname{argmin}} \sum_{f \in F} \ell(f) \quad s.t. \ \sum_{f \in F} r(f) \ge R$$

CAIE:

$$\mathcal{I}_{sing}(f) = \frac{\ell(f)}{r(f)}$$

CAIE in Multiple-constraint Pruning

Problem formulation:

$$\underset{F}{\operatorname{argmin}} \sum_{f \in F} \ell(f) \quad s.t. \ \sum_{f \in F} r_i(f) \ge R_i, \ \forall i \le k$$

Vector form:

$$\vec{r}(f) = \langle r_1(f), r_2(f), ..., r_k(f) \rangle$$
 $\vec{R} = \langle R_1, R_2, ..., R_k \rangle$

Effective resource impact:

$$r_e(f) = \vec{r}(f) \cdot \frac{\vec{R}}{|\vec{R}|} = \frac{\sum_i r_i(f)R_i}{\sqrt{\sum_i R_i^2}}$$

CAIE:

$$\mathcal{I}_{mul}(f) = \frac{\ell(f)}{r_e(f)}$$

Effectiveness of CAIE

Model	Constraints	w/ CAIE	FLOPs left	Param. left	P. Top-1	Top-1↓	w/ – w/o				
			(%)	(%)	(%)	(%)	CAIE (%)				
ImageNet [19]											
ResNet-50 (orig. top-1 : 76.13%)	$f_{.33},\ p_{.31}$	Х	32.83	25.94	71.57	4.56	-				
	$f_{.33}$	✓	32.95	49.40	73.90	2.23	2.33				
	$p_{.26}$	✓	46.64	25.80	71.96	4.17	0.39				
	$f_{.33},\ p_{.31}$	✓	32.90	30.76	72.39	3.74	0.82				
	$f_{.33},\ p_{.26}$	✓	32.47	25.89	71.92	4.22	0.34				
ResNet-50 (orig. top-1 : 76.13%)	$f_{.65},\ p_{.70}$	X	64.83	64.27	75.59	0.54	-				
	$f_{.65}$	✓	64.58	85.72	76.02	0.11	0.43				
	$p_{.65}$	✓	79.80	64.70	75.80	0.33	0.21				
	$f_{.65},\ p_{.70}$	✓	64.95	69.88	75.83	0.30	0.24				
	$f_{.65},\ p_{.65}$	✓	64.81	64.61	75.69	0.44	0.10				
ResNet-34 (orig. top-1 : 73.31%)	$f_{.78}, p_{.79}$	X	77.55	71.43	72.67	0.64	-				
	$f_{.78}$	✓	77.47	90.43	73.15	0.16	0.48				
	$p_{.72}$	✓	85.89	71.29	72.72	0.59	0.05				
	$f_{.78},\ p_{.79}$	✓	77.43	78.94	72.91	0.40	0.24				
	$f_{.78},\ p_{.72}$	✓	77.72	71.32	72.73	0.58	0.06				
CIFAR-10 [11]											
VGG16-BN (orig. top-1 : 93.34%)	$f_{.44},\ p_{.20}$	Х	43.32	9.93	92.94	0.40	-				
	$f_{.44}$	✓	44.00	12.55	93.06	0.28	0.12				
	$p_{.10}$	✓	42.90	9.69	93.02	0.32	0.08				
	$f_{.44},\;p_{.20}$	✓	43.07	12.19	93.11	0.23	0.17				
	$f_{.44},\ p_{.10}$	✓	42.43	9.89	92.98	0.36	0.04				
ResNet-34 (orig. top-1 : 94.13%)	$f_{.40},\ p_{.15}$	X	29.90	14.48	93.34	0.79	-				
	$f_{.30}$	✓	29.82	19.95	93.48	0.65	0.14				
	$p_{.15}$	✓	35.69	14.79	93.46	0.67	0.12				
	$f_{.40},\ p_{.15}$	✓	35.10	14.88	93.50	0.63	0.16				
	$f_{.30},\ p_{.15}$	✓	29.64	14.79	93.40	0.73	0.06				

Comparison to state-of-the-arts (ImageNet)

		Ι				
Model	Orig. Top-1	Method	FLOPs left	Param. left	P. Top-1	Top-1↓
	(%)	1,10,110,0	(%)	(%)	(%)	(%)
ResNet-50	76.18	Taylor-FO-BN-56% [16]	32.76	30.86	71.69	4.49
	76.13	Ours $(f_{.33}, p_{.31})$	32.90	30.76	72.39	3.74
ResNet-50	72.88	Thinet-30 [15]	34.66	28.49	68.42	4.46
	76.13	Ours $(f_{.33}, p_{.26})$	32.47	25.89	71.92	4.22
ResNet-50	76.15	FPGM-only 30% [8]	58.80	-	75.59	0.56
	76.13	Ours $(f_{.55})$	54.77	77.35	75.62	0.53
ResNet-50	76.18	Taylor-FO-BN-81% [16]	65.03	69.92	75.48	0.70
	76.13	Ours $(f_{.65}, p_{.70})$	64.95	69.88	75.83	0.30
ResNet-50	-	NISP-50-B [24]	55.99	56.18	-	0.89
	76.13	Ours $(f_{.56}, f_{.56})$	55.89	55.84	75.25	0.88
ResNet-34	73.31	Taylor-FO-BN-82% [16]	77.74	78.90	72.83	0.48
	73.23	Li et al. [12]	75.80	89.20	72.17	1.04
	73.31	Ours $(f_{.78}, p_{.79})$	77.43	78.94	72.91	0.40