Math 485 HW 3 due Monday, March 5

- 1. Problem 4.1 of the textbook
- 2. Problem 4.2 of the textbook
- 3. Problem 4.4 of the textbook
- 4. Problem 4.11 of the textbook
- 5. For the Horseshoe Crab data discussed in class, the following table shows SAS output for a Poisson loglinear model fit using X = weight and Y = number of satellites.
 - (a) Estimate E(Y) for female crabs of average weight, 2.44 kg.
 - (b) Use $\hat{\beta}$ to describe the weight effect. Show how to construct the reported confidence interval.
 - (c) Construct a Wald's test that Y is independent of X. Interpret.
 - (d) Can you conduct a likelihood-ratio test of this hypothesis? If not, what else do you need?

Criterion		DF	Value Value/DF					
Deviance 1		171	560.8664	3.2799				
Pearson Chi-Square			171	535.8957	3.1339	3.1339		
Log Likelihood				71.9524				
				Standard	Wald 95%	Confidence	Chi-	
Parameter	DF	Estimate		Error	Limits		Square	Pr>ChiSq
Intercept	1	-0.42	284	0.1789	-0.7791	-0.0777	5.73	0.0167
weight	1	0.58	393	0.0650	0.4619	0.7167	82.15	< .0001

6. A group of children five years of age and younger who were free of respiratory problems were enrolled in a cohort study examining the relationship between parental smoking and the subsequent development of asthma. The association between maternal cigarette smoking status and a diagnosis of asthma before the age of twelve was examined separately for boys and for girls.

		Ast Diag		
Gender	Smoking Status	Yes	No	Total
Boys	≥ 1/2 Pack/Day < 1/2 Pack/Day	17 41	63 274	80 315
Girls	$\geq 1/2$ Pack/Day $< 1/2$ Pack/Day	8 20	55 261	63 281

- (a) Estimate the odds ratio of developing asthma for boys whose mothers smoke at least one-half pack of cigarettes per day versus those whose mothers smoke less than this.
- (b) Estimate the corresponding odds ratio for girls.
- (c) Conduct a test of homogeneity to determine whether it is appropriate to have a common odds ratio. What do you conclude?
- (d) If it makes sense to do so, find an estimate for the common odds ratio and construct a 95% confidence interval.
- (e) Is asthma diagnosis conditionally independent of smoking status given the gender?
- 7. For the 23 space shuttle flights that occurred before Challenger mission disaster in 1986, the following table shows the temperature (°F) at the time of the flight and whether at least one primary O-ring suffered thermal distress.

Ft	Temp	TD	Ft	Temp	TD	Ft	Temp	TD
1	66	0	9	57	1	17	70	0
2	70	1	10	63	1	18	81	0
3	69	0	11	70	1	19	76	0
4	68	0	12	78	0	20	79	0
5	67	0	13	67	0	21	75	1
6	72	0	14	53	1	22	76	0
7	73	0	15	67	0	23	58	1
8	70	0	16	75	0			

- (a) Use logistic regression to model the effect of temperature on the probability of the thermal distress. Interpret the model fit.
- (b) Calculate the predicted probability of thermal distress at 31°, the temperature at the time of the Challenger flight. At what temperature does the predicted probability equal 0.5? At that temperature, give a linear approximation for the change in the predicted probability per degree increase in temperature.
- (c) Interpret the effect of temperature on the odds of thermal distress. Test the hypothesis that temperature has no effect, using (i) the Wald test, (ii) the likelihood-ratio test.