Amplificateur alimenté avec une seule source de tension

Objectif:

• Étudier un montage amplificateur à base d'un amplificateur opérationnel alimenté en 0 V et 15 V.

• Savoir choisir correctement le point de repos.

Préparation: Obligatoire.

Compte rendu papier : À remettre à la fin de la séance de TP.

1 Préparation (6 points)

On étudie le montage suivant :

Avec Vcc=15 V, $P=R_1=10$ k Ω , $R=R_2=22$ k Ω et C=1 μF non polarisé. L'AOP est supposé parfait.

- 1. Entre quelles valeurs la tension de sortie v_{out} peut-elle évoluer?
- 2. On pose $\alpha = -\frac{R_2}{R_1}$. Exprimer v_{out} en fonction de v_{in} , v_+ et α .
- 3. On impose sur v_+ une tension U à l'aide du curseur du potentiomètre. Représenter la caractéristique de transfert $v_{out} = f(v_{in})$ pour $U = U_1 = 3$ V, $U = U_2 = 2$ V et $U = U_3 = 4$ V avec $-Vcc \le v_{in} \le Vcc$.

2 Manipulations (14 points)

2.1 Relevé de la caractéristique de transfert

Réaliser le montage. Régler la tension $U=U_1=3$ V. Appliquer à l'entrée du montage un signal sinusoïdal $v_{in}(t)$ d'amplitude A=8 V et de fréquence f=1 kHz.

- 1. Relever en mode XY la caractéristique de transfert $v_{out} = f(v_{in})$. Penser à bien préciser la méthode permettant ce relevé. Faire également le relevé de cette caractéristique de transfert pour $U = U_2 = 2$ V et $U = U_3 = 4$ V.
- 2. On appelle point de repos le point de fonctionnement obtenu sur la caractéristique en l'absence de signal d'entrée $v_{in}=0$. Déterminer sur les trois caractéristiques :
 - (a) les coordonnées V_{out1} , V_{out2} et V_{out3} de la tension de sortie pour ces points de repos,
 - (b) la pente a des droites qui montrent que l'on est bien en fonctionnement linéaire,
 - (c) les valeurs V_{sat}^+ et V_{sat}^- de la tension v_{out} pour les paliers de saturation.
 - (d) Calculer les rapports : $\frac{V_{out1}}{U_1}$, $\frac{V_{out2}}{U_2}$ et $\frac{V_{out3}}{U_3}$ et comparer ces résultats à la valeur $1-\alpha$.

2.2 Choix du point de repos

- 1. Régler la tension $U=U_1=3$ V et $v_{in}=2$ V. Observer en faisant varier l'amplitude v_{in} , l'évolution du signal de sortie $v_{out}(t)$ puis celle de la caractéristique de transfert $v_{out}=f(v_{in})$. Mesurer les amplitudes maximales V_{in1Max} et $V_{out1Max}$ de $v_{in}(t)$ et $v_{out}(t)$ à la limite de l'écrêtage. Reprendre ce travail pour les tensions pour $U=U_2=2$ V et $U=U_3=4$ V.
- 2. Les valeurs maximales V_{inNMax} et $V_{outNMax}$ (avec N = 1, 2 et 3) auraient pu être déterminées graphiquement en utilisant les caractéristiques $v_{out} = f(v_{in})$. Indiquer clairement comment retrouver ces valeurs sur les trois caractéristiques.

- 3. Quelle serait la caractéristique $v_{out} = f(v_{in})$ optimale, c'est à dire celle permettant d'obtenir la plus grande dynamique (amplitude maximale) en entrée sans distorsion en sortie?
 - (a) Tracer cette caractéristique.
 - (b) Déterminer l'ordonnée V_{out0} du point de repos.
 - (c) En déduire la valeur de la tension U_0 de polarisation à utiliser.
 - (d) Déterminer U_0 expérimentalement (expliquer la procédure) et comparer les résultats obtenus.

2.3 Étude dynamique

- 1. Pour $U = U_0$ et $v_{in} = 2$ V, relever en concordance des temps $v_{in}(t)$, $v_{out}(t)$ et v'_{out} .
 - (a) Quel est le rôle du condensateur C? (L'oscilloscope sera considéré comme une charge résistive de 1 M Ω).
 - (b) Mesurer l'amplitude V'_{out} et de v'_{out} . En déduire l'amplification du montage $A=\frac{v'_{out1}}{v_{in}}$.
 - (c) Comparer les amplifications A et α . Énoncer la propriété ainsi mise en évidence.
- 2. Mesurer l'impédance d'entrée du montage (Z_{in}) ainsi que son impédance de sortie (Z_{out}) . Exposer dans chaque cas la méthode utilisée.