

Sommaire

Ι	Alg	Algèbre								
1	Groupes et groupes symétriques									
	1	Introduction	3							
	2	Sous-groupe	5							
	3	Morphisme de groupes								
	4	Groupe symétrique	8							
2	Déterminants et réduction									
	1	Déterminants	12							
	2	Déterminant d'un endomorphisme	17							
	3	Diagonalisation	19							
	4	Polynômes en un endomorphisme de E	23							
	5	Applications	28							
II	Aı	nalyse	31							
3	Développements limités 3									
	1	Fonctions négligeables et équivalentes	32							
	2	Dérivées successives et formules de TAYLOR	35							
	3	Développement limité à l'ordre n d'une fonction de classe C^n	38							
	4	Calculs avec les développements limités	44							
	5	Applications	48							

Première partie

Algèbre

Table des matières

1	\mathbf{Gr}	Groupes et groupes symétriques									
	1	Introd	luction								
		1.1	Groupe abstrait								
		1.2	Groupe commutatif								
		1.3	Exemples								
	2	Sous-g	groupe								
		2.1	Sous-groupe								
		2.2	Ordre d'un groupe et d'un élément								
	3	Morpl	hisme de groupes								
		3.1	Morphisme de groupes								
		3.2	Image et noyau								
	4	Group	pe symétrique								
		4.1	Groupe de permutations								
		4.2	Transpositions et cycles								
		4.3	Décomposition des cycles								
2	Dé	termin	ants et réduction 12								
	1	Déter	minants								
		1.1	Différentes définitions								
		1.2	Formes n -linéaires alternées								
	2	Déter	minant d'un endomorphisme								
		2.1	Invariance par changement de base								
	3	Diago	nalisation								
		3.1	Valeur propre et vecteur propre								
		3.2	Sous-espaces propres								
		3.3	Conditions de diagonalisabilité								
	4	Polyn	ômes en un endomorphisme de E								
		4.1	Polynômes évalué en un endomorphisme								
		4.2	Lemme des noyaux								
		4.3	Trigonalisation								
		4.4	Comment calculer m_f ? (Cayley-Hamilton)								
	5		cations								
		5.1	Calculs de puissances								

5.2	Systèmes différentiels	28
5.3	Application aux suites récurrentes	29

Chapitre 1

Groupes et groupes symétriques

1 INTRODUCTION

1.1 Groupe abstrait

Définition 1.1.0.1. —

Un groupe est la donnée d'un couple (G,\cdot) où G est un ensemble et $\cdot:G\times G\to G$ une loi de composition interne, telle que :

1. associativité:

$$\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c);$$

2. existence de l'élément neutre $e \in G$:

$$\forall g \in G, \ g \cdot e = e \cdot g = g;$$

3. existence de l'inverse :

$$\forall x \in G, \exists y \in G, \ x \cdot y = y \cdot x = e.$$

NOTATIONS. Pour un groupe multiplicatif on note ab l'élément $a \cdot b$, l'élément neutre est noté 1 et l'inverse de a est noté de a^{-1} .

DÉMONSTRATION 1.1.0.1 (Unicité de l'élément neutre et de l'inverse). — Soient e, e' deux éléments neutres. Alors

$$e' = e \cdot e' = e$$
.

Soient b, c inverses de a. Alors :

$$b = b \cdot a \cdot c = c.$$

1.2 Groupe commutatif

DÉFINITION 1.2.0.2 (Groupe commutatif (ou Abélien)). — Un groupe G est commutatif si la loi de composition l'est :

$$\forall x, y \in G, \ xy = yx.$$

NOTATIONS. En général la loi de composition d'un tel groupe est notée comme un groupe additif (G, +). Le neutre est alors 0 et l'inverse de x est -x.

1.3 Exemples

- Le couple $(\mathbf{Z}, +)$ est un groupe abélien où + est l'addition usuelle des entiers.
- -- $(\mathbf{R},+)$ et $(\mathbf{Q},+)$ sont également des groupes abéliens.
- $(\mathbf{R} \setminus \{0\}, \times)$ et $(\mathbf{Q} \setminus \{0\}, \times)$ sont des groupes abéliens.
- $GL(n, \mathbf{R})$ est un groupe pour la composition de matrices en tant que loi de composition. Ce n'est pas un groupe commutatif.

2. SOUS-GROUPE 5

2 SOUS-GROUPE

2.1 Sous-groupe

DÉFINITION 2.1.0.3 (Sous-groupe). —

Soit G un groupe (multiplicatif) et $H \subset G$ un sous-ensemble de G. H est un sous-groupe de G si c'est un groupe avec la loi de composition et d'inverse astreintes à $H^{\frac{1}{9}}$.

Proposition 2.1.0.1. —

Soit G un groupe.

Si $(H_i)_{i\in I}$ est une famille de sous-groupes de G alors $\bigcap_{i\in I} H_i$ est un sous-groupe de G.

Définition 2.1.0.4. —

Pour tout $i \in I$, H_i vérifie la propriété de sous-groupe et donc l'intersection aussi.

REMARQUE. Généralement la réunion de sous-groupes n'est pas un sous-groupe. En effet si $x \in H_1$ et $y \in H_2$ alors il n'y a aucune raison que $xy \in \bigcup H_i$.

Pour une équivalence il faut rajouter une hypothèse. Si H, K sont deux sous-groupes de G alors $H \cup K$ est un sous-groupe si, et seulement si, $H \subset K$ ou $K \subset H$.

En effet supposons $H \not\subset K$ et que $H \cup K$ est un sous-groupe. Si $K \not\subset H$ alors on peut choisir $x \in K - K \cap H$ et $y \in H - K \cap H$. On a $x, y \in K \cup H$ et donc par hypothèse $xy \in H \cup K$ et donc il existe des inverses respectifs x^{-1}, y^{-1} . Supposons $xy \in H : H \ni (xy)y^{-1} = xe = x \in H$ absurde.

DÉFINITION 2.1.0.5 (Groupe engendré). —

Si G est un groupe et X une partie de G alors on appelle sous-groupe de G engendré par X le plus petit sous-groupe de G contenant X. On le notera ici $\langle X \rangle$.

On a de plus si on note \mathbb{G} l'ensemble des sous-groupes de G:

$$\langle X \rangle = \bigcap_{H \in \mathbb{G} \text{ et } H \supset X} H.$$

EXEMPLE. Soit G un groupe et $x \in G$. Alors:

$$\langle x \rangle = \left\{ x^k \,\middle|\, k \in \mathbf{Z} \right\}.$$

En effet c'est un sous-groupe de $\langle x \rangle$ et le plus petit.

2.2 Ordre d'un groupe et d'un élément

DÉFINITION 2.2.0.6 (Ordre d'un groupe). —

Si G est un groupe fini, on appelle $ordre\ de\ G$ son cardinal, on le note généralement |G| ou $\sharp G$.

Si G est un groupe et $x \in G$ alors on appelle ordre de x le cardinal de son sous-groupe engendré (s'il est fini).

Dans le cas où le groupe en question ne serait pas fini, on dit que l'ordre est infini.

EXEMPLES.

— Dans **Z**, tous les éléments non nuls sont d'ordre infini.

^{1§.} C'est-à-dire si H est stable par l'application $(x,y) \mapsto xy^{-1}$.

- Dans $\mathbf{Z}/n\mathbf{Z}$ pour $n \in \mathbf{N}^*$, $\mathbf{Z}/n\mathbf{Z}$ est d'ordre n puisque toute classe admet un représentant dans $\{0, \dots, n-1\}$.
- Ordre des éléments de $\mathbb{Z}/4\mathbb{Z}$:

Théorème de Lagrange). —

Pour tout groupe G et tout sous-groupe H de G, l'ordre (i.e. le cardinal) de H divise l'ordre de G :

$$\sharp H \mid \sharp G.$$

DÉMONSTRATION 2.2.0.2 (Théorème de LAGRANGE). —

Le cardinal de l'ensemble G/H est appelé indice de H dans G et est noté [G:H]. De plus, ses classes forment une partition de G et chacune d'entre elles a le même cardinal que H. On a alors :

$$\sharp G = \sharp H \times [G:H].$$

MORPHISME DE GROUPES 3

3.1Morphisme de groupes

Définition 3.1.0.7. —

Soient G, H deux groupes. Une application $f: G \to H$ est un morphisme de groupes si:

$$\forall x, y \in G, \ f(x \cdot y) = f(x) \cdot f(y).$$

Proposition 3.1.0.2. —

Soient $f: G \to H$ un morphisme de groupes. Alors :

- 1. $f(e_G) = e_H$; 2. $\forall x \in G, \ f(x^{-1}) = f(x)^{-1}$

3.2Image et noyau

Définition 3.2.0.8. —

Soit $f:G\to H$ un morphisme de groupes. On définit :

- 1. $Ker(f) = \{x \in G \mid f(x) = e\};$
- 2. $Im(f) = \{f(x) \mid x \in G\}.$

Proposition 3.2.0.3. —

Soit $f: G \to H$ un morphisme de groupes.

- 1. Ker(f) et Im(f) sont des sous-groupes de G et H respectivement;
- 2. f est injective si, et seulement si, $Ker(f) = \{e\}$;
- 3. f est surjective si, et seulement si, Im(f) = H.

Démonstration 3.2.0.3. —

Point par point:

1. On a bien entendu f(e) = e et $f(x)^{-1} = f(x^{-1})$ pour tout $x \in G$. Ainsi Im(f) = f(G) est un sous-groupe

Soient $x, y \in G$, alors $f(xy^{-1}) = f(x)f(y^{-1}) = ee^{-1} = e$ donc $xy^{-1} \in G$. De plus f(e) = e donc Ker(f)est un sous-groupe de G.

2. Soient $x, y \in G$:

$$(f(x) = f(y) \iff x = y) \iff (f(xy^{-1}) = e \iff xy^{-1} = e).$$

3. Par définition, si Im(f) = H alors f est surjective et réciproquement.

4 GROUPE SYMÉTRIQUE

4.1 Groupe de permutations

Définition 4.1.0.9. —

Soit E un ensemble. On définit :

$$S_E = \{ \text{bijections } E \to E \}$$
.

La loi étant la composition des applications. Elle est associative, admet un élément neutre (application identité) et toute application admet une application inverse par définition.

Proposition 4.1.0.4. —

Si $\sharp E=n$ alors S_E est isomorphe (au sens de groupes) à $S_{\{1,2,\ldots,n\}}:=S_n$.

DÉMONSTRATION 4.1.0.4. —

Puisque $\sharp E=n$ il existe une bijection $\phi=E\to\{1,2,\ldots,n\}$. On considère alors l'application de $\theta:S_E\to S_n$ définie par : $\omega\mapsto\phi\circ\omega\circ\phi^{-1}$. Comme ω,ϕ sont des bijections, l'application $\phi\circ\omega\circ\phi^{-1}$ est une bijection. L'application θ est bien définie. On a :

$$\theta(\omega' \circ \omega) = \phi \circ (\omega' \circ \omega) \circ \phi^{-1}$$

$$\theta(\omega' \circ \omega) = \phi \circ \omega' \circ \mathrm{id} \circ \omega \circ \phi^{-1}$$

$$\theta(\omega' \circ \omega) = \theta(\omega') \circ \theta(\omega).$$

 θ est bien un morphisme de groupes. On a $\theta^{-1}(\omega) = \phi^{-1} \circ \omega \circ \phi$ qui fait de θ une bijection.

DÉFINITION 4.1.0.10 (Groupe symétrique). — On appelle S_n le groupe symétrique.

REMARQUE. On omet la notation \circ . Si $\omega \in S_n$ on décrit son action sur $\{1, 2, \ldots, n\}$ par :

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \omega(1) & \omega(2) & \dots & \omega(n) \end{pmatrix}.$$

Exemple de composition. Dans S_4 :

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}.$$

4.2 Transpositions et cycles

Définition 4.2.0.11 (Transposition). —

Une transposition de S_n est une permutation qui échange deux éléments et laisse invariants les n-2 autres.

NOTATION. Pour tous $i, j \in \{1, 2, ..., n\}$ avec $i \neq j$ on note (ij) la transposition :

$$(ij): \left\{ \begin{array}{l} i \mapsto j \\ j \mapsto i \\ k \mapsto k, \ \forall k \neq i, j \end{array} \right..$$

Remarque. Une transposition est une involution. C'est à dire que l'ordre d'une transposition est 2.

Proposition 4.2.0.5. — $\sharp S_n = n!$.

DÉFINITION 4.2.0.12 (Cycle). —

On appelle cycle de longueur r > 1 (noté r-cycle) (dans S_n) une permutation ω telle qu'il existe $x_1, x_2, ..., x_r \in \{1, 2, ..., n\}$ vérifiant :

1. $\omega(x_1) = x_2, \omega^n(x_1) = x_{1+n}$ avec n < r;

2. $\omega(x_r) = x_1$;

3. $\omega(x) = x$ si $x \notin \{x_1, x_2, ..., x_r\}$.

NOTATION. On note un tel cycle : $(x_1 \ x_2 \ \dots \ x_r)$.

Remarque. Les 2-cycles sont exactement les transpositions.

Exemple. Dans S_3 :

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{cases}$$

4.3Décomposition des cycles

DÉFINITION 4.3.0.13 (Support). —

On appelle support du cycle ω le sous-ensemble :

$$\{x_1, x_2, \dots, x_r\} \subset \{1, 2, \dots, n\}$$
.

Lemme 4.3.0.1. —

Deux cycles de supports disjoints commutent.

DÉMONSTRATION 4.3.0.5. — Soient:

$$\begin{cases} v = (x_1, x_2, \dots, x_r) \\ w = (y_1, y_2, \dots, y_s) \end{cases}$$

avec $\{x_1, x_2, \dots, x_r\} \cap \{y_1, y_2, \dots, y_s\} = \emptyset$.

Sur un élément extérieur du support la permutation agit comme l'identité donc deux supports disjoints impliquent que les permutations associées permutent (puisque que l'identité permute).

Lemme 4.3.0.2. —

Un r-cycle est d'ordre r.

DÉMONSTRATION 4.3.0.6. —

Soit $w = \begin{pmatrix} x_1 & x_2 & \dots & x_r \end{pmatrix}$ un r-cycle. Il est clair qu'un élément du support est d'ordre r. Les autres restent fixés par w et donc w est d'ordre r.

Proposition 4.3.0.6. —

Toute permutation de S_n est décomposable en produit de cycles de supports disjoints. Cette décomposition est unique à l'ordre des facteurs près.

Exemples. Soit:

$$S_5 \ni \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix} = w.$$

On peut décomposer w:

Théorème 4.3.0.2. —

Le groupe symétrique est engendré par les transpositions.

DÉMONSTRATION 4.3.0.7.

On procède par récurrence sur n.

- 1. $S_2 = \{1, (1 \quad 2)\}$ est engendré par $(1 \quad 2)$.
- 2. Soit n>2, supposons que S_{n-1} est engendré par les transpositions de S_{n-1} . Soit $w\in S_n$:
 - (a) Soit w(n) = n et alors on décompose w en cycles de tailles inférieures ou égales à S_{n-1} et c'est démontré.
 - (b) Soit $w(n) \neq n$. On pose m = w(n) et soit t = (n m). On pose v = tw et alors v(n) = n et on lui applique le cas précédent. On a alors par unicité de la décomposition que w est elle-même engendrée par des transpositions et c'est démontré.

Тне́опѐме 4.3.0.3. —

On a les propositions suivantes :

1. Si $w \in S_n$ est une permutation qui s'écrit de deux façons différentes comme produit de transpositions :

$$w = \tau_1 \tau_2 \dots \tau_r = \tau_1' \tau_2' \dots \tau_{r'}',$$

alors
$$(-1)^r = (-1)^{r'}$$
.

On appelle $(-1)^r$ la signature de w.

2. La signature est un morphisme de groupes de $S_n \to \{1, -1\} \cong \mathbf{Z}/2\mathbf{Z}$.

DÉMONSTRATION 4.3.0.8. — Soit $w \in S_n$. On pose :

$$\varepsilon(w) = \prod_{1 \le i < j \le n} \frac{w(i) - w(j)}{i - j}$$

$$\varepsilon(w) = \frac{\prod_{1 \le i < j \le n} (w(i) - w(j))}{\prod_{1 \le i < j \le n} (i - j)}$$

$$\varepsilon(w) = \frac{N}{D}.$$

Avec

$$N = \prod_{1 \le i, j \le n \ ; \ w^{-1}(i) < w^{-1}(j)} (i - j) = \pm D.$$

D'où:

$$\varepsilon(w) = \pm 1.$$

Exemple. $w = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$. On a:

$$\varepsilon(w) = \frac{(w(1) - w(2))(w(1) - w(3))(w(2) - w(3))}{(1 - 2)(1 - 3)(2 - 3)} = \frac{(2 - 3)(2 - 1)(3 - 1)}{(1 - 2)(1 - 3)(2 - 3)} = 1.$$

Lemme 4.3.0.3. —

On a :

1. $\varepsilon: S_n \to \{\pm 1\}$ est un morphisme de groupes;

2. $\varepsilon(ij) = -1$ pour tout $i \neq j$.

DÉMONSTRATION 4.3.0.9 (Théorème). —

Si

$$w = \tau_1 \tau_2 \dots \tau_r = \tau_1' \tau_2' \dots \tau_{r'}'$$

alors par le lemme :

$$\varepsilon(w) = (-1)^r = (-1)^{r'}.$$

DÉMONSTRATION 4.3.0.10 (Lemme). —

Soit $E = \{(ij) | 1 \le i < j \le n\}$. On pose :

$$f_w : \begin{cases} E \to E \\ \left(i \quad j\right) \mapsto \left(w(i) \quad w(j)\right) \text{ si } w(i) < w(j) \\ \left(i \quad j\right) \mapsto \left(w(j) \quad w(i)\right) \text{ si } w(i) > w(j) \end{cases}$$

f est une bijection car elle est injective et l'ensemble de départ et d'arrivée ont le même cardinal qui est fini. Donc on a :

$$\varepsilon(w) = \frac{\prod_{1 \le i < j \le n} (w(i) - w(j))}{\prod_{(i,j) \in E} (w(i) - w(j))}$$
$$\varepsilon(w) = \pm 1.$$

Pour vérifier que ε est un morphisme, on calcul $\varepsilon(wv)$:

$$\varepsilon(wv) = \prod_{(i,j) \in E} \frac{wv(i) - wv(j)}{i - j}$$

$$\varepsilon(wv) = \prod_{(i,j) \in E} \frac{wv(i) - wv(j)}{v(i) - v(j)} \prod_{(i,j) \in E} \frac{v(i) - v(j)}{i - j}$$

$$\varepsilon(wv) = \prod_{(i,j) \in E} \frac{wv(i) - wv(j)}{v(i) - v(j)} \varepsilon(v).$$

On calcule :

$$\begin{split} \varepsilon(w) &\stackrel{?}{=} \prod_{(i,j) \in E} \frac{wv(i) - wv(j)}{v(i) - v(j)} \\ \varepsilon(w) &= \prod_{(i,j) \in E_1} \frac{wv(i) - wv(j)}{v(i) - v(j)} \prod_{(i,j) \in E_2} \frac{wv(i) - wv(j)}{v(i) - v(j)} \end{split}$$

Où $E_1 = \{(i, j) \in E \mid v(i) < v(j)\}\$ et $E_2 = \{(i, j) \in E \mid v(j) < v(i)\}\$; $E = E_1 \coprod E_2$.

$$\begin{split} \varepsilon(w) &= \prod_{(i,j) \in E_2} \frac{wv(j) - wv(i)}{v(j) - v(i)} \prod_{(i,j) \in E_1} \frac{wv(i) - wv(j)}{v(i) - v(j)} \\ \varepsilon(w) &= \prod_{i < j \ ; \ v^{-1}(j) < v^{-1}(i)} \frac{w(i) - w(j)}{i - j} \prod_{i < j \ ; \ v^{-1}(i) < v^{-1}(j)} \frac{w(i) - w(j)}{i - j} \\ \varepsilon(w) &= \prod_{i < j} \frac{w(i) - w(j)}{i - j} \end{split}$$

Chapitre 2

Déterminants et réduction

1 DÉTERMINANTS

1.1 Différentes définitions

Soit
$$A \in M_n(\mathbf{R})$$
 avec $A = (a_{i,j})_{1 \le i,j \le n}$

DÉFINITION 1.1.0.14 (Déterminant). —

On définit en premier lieu :

$$\det A = \sum_{w \in S_n} \varepsilon(w) a_{w(i),1} \cdot a_{w(2),2} \cdot \dots \cdot a_{w(n),n}.$$

C'est la formule de CRAMER.

Définition 1.1.0.15. —

Une seconde définition possible :

Pour tous $i, j \in \{1, ..., n\}$, soit $A_{i,j} \in M_{n-1}(\mathbf{R})$ la matrice (extraite) obtenue en enlevant la i-ième ligne et la j-ième colonne de A.

On a alors:

$$\det' A = a_{1,1} \cdot \det'(A_{1,1}) - a_{1,2} \cdot \det'(A_{1,2}) + \ldots + (-1)^{n-1} a_{1,n} \cdot \det'(A_{1,n}) = \sum_{i=1}^{n} (-1)^{i+1} a_{1,i} \cdot \det'(A_{1,i})$$

Exemple. Prenons:

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 4 & -1 & 0 \end{pmatrix}.$$

On a:

$$A_{1,1} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \; ; \; A_{1,2} = \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix} .$$

Ce qui donne avec la seconde définition :

$$\det A = 2\det \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} - \det \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix} - \det \begin{pmatrix} 0 & 2 \\ 4 & -1 \end{pmatrix}.$$

Exemple 2. On vérifie que les deux définitions coïncident :

$$\det \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = a_{1,1}a_{2,2} - a_{2,1}a_{1,2}.$$

1. DÉTERMINANTS 13

$$\det \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = a_{1,1} \det(a_{2,2}) - a_{1,2} \det(a_{2,1}) = a_{1,1} a_{2,2} - a_{2,1} a_{1,2}.$$

REMARQUE. Soient E un **R**-espace vectoriel de dimension n et $B = (e_1, \ldots, e_n)$ une base de E. Soit $(u_1, u_2, \dots, u_n) \in E^n$ un n-uplet de vecteurs de E. Pour tout j, on pose :

$$u_j = \sum_{i=1}^n a_{i,j} \cdot e_i \ a_{i,j} \in \mathbf{R}.$$

On appelle déterminant dans la base B de (u_1, \ldots, u_n) le réel :

$$\det_B(u_1, u_2, \dots, u_n) = \det(a_{i,j}).$$

Exemple. Pour n=2. On prend:

$$u_1 = 2e_1 + 3e_2,$$

 $u_2 = -e_1 + 6e_2.$

On a alors:

$$\det_B(u_1, u_2) = \det \begin{pmatrix} 2 & -1 \\ 3 & 6 \end{pmatrix} = 15.$$

Si $u_j = e_j$ pour tout $j \in \{1, \dots, n\}$ alors $\det_B(e_1, \dots, e_n) = \det(I_d) = 1$.

Proposition 1.1.0.7. —

On a les énoncés :

1. pour tout $w \in S_n$:

$$\det_B(u_{w(1)}, u_{w(2)}, \dots, u_{w(n)}) = \varepsilon(w) \det_B(u_1, u_2, \dots, u_n);$$

- 2. on en déduit que le déterminant change de signe si on échange deux colonnes;
- 3. si pour $i \neq j$ on a $u_i = u_j$ alors le déterminant est nul (puisque négatif et positif simultanément).

Démonstration 1.1.0.11. —

Il suffit de montrer le premier point.

On sait que S_n est engendré par les transpositions. On suppose donc que $w \in S_n$ est une transposition. En fait, S_n est engendré par les transpositions simples, i.e. les transpositions de la forme (k, k+1) avec $1 \le k < 1$

On suppose donc que w est de la forme (k, k+1). Soit A la matrice (u_1, u_2, \ldots, u_n) de ces n vecteurs dans les coordonnées de la base B. Soit A' la matrice obtenue en permutant les colonnes k et k+1 de A. Il faut donc vérifier que :

$$\det A' = \varepsilon(w) \det A = -\det A.$$

On calcule à gauche et à droite :

$$\det A = \sum_{j=1}^{n} (-1)^{j+1} a_{1,j} \det(A_{1,j}),$$
$$\det A' = \sum_{j=1}^{n} (-1)^{j+1} a'_{1,j} \det(A'_{1,j}).$$

- $\begin{array}{lll} & & \text{Pour } j \neq k, k+1 \text{ on a } a'_{1,j} = a_{1,j} \text{ et } A'_{1,j} \text{ est obtenue en échangeant les colonnes } k \text{ et } k+1 \text{ de } A_{1,j} \\ & & \text{Pour } j = k \text{ on a } a'_{1,k} = a_{1,k+1} \text{ et donc } A'_{1,k} = A_{1,k+1}. \\ & & \text{Pour } j = k+1 \text{ on a } a'_{1,k+1} = a_{1,k} \text{ et donc } A'_{1,k+1} = A_{1,k}. \end{array}$

On en déduit :

$$\det A' = \sum_{j \neq k, k+1} (-1)^{j+1} \det(A'_{i,j})^{\frac{2\$}{\$}} + (-1)^{k+1} a'_{1,k} \det(A'_{1,k}) + (-1)^k a'_{1,k+1} \det(A'_{1,k+1}),$$

$$\det A' = \sum_{j \neq k, k+1} (-1)^{j+1} (-\det(A_{i,j})) + (-1)^{k+1} a_{1,k+1} (-\det(A_{1,k+1})) + (-1)^k a_{1,k} (-\det(A_{1,k})),$$

$$\det A' = -\det A.$$

1.2 Formes *n*-linéaires alternées

DÉFINITION 1.2.0.16 (Forme *n*-linéaire). —

Soit E un \mathbf{R} -espace vectoriel de dimension $n \geq 1$. Une forme n-linéaire sur E est une application $\varphi: E^n \to \mathbf{R}$ qui est linéaire sur chaque composante.

Proposition 1.2.0.8. —

Soit B une base de E avec dim E = n.

$$\det_B : \begin{cases} E^n \to \mathbf{R} \\ (u_1, \dots, u_n) \mapsto \det_B(u_1, \dots, u_n) \end{cases}$$

est une forme n-linéaire.

DÉMONSTRATION 1.2.0.12. —

On pose:

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,k-1} & aa'_{1,k} + ba''_{1,k} & a_{1,k+1} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,k-1} & aa'_{2,k} + ba''_{2,k} & a_{2,k+1} & \dots & a_{2,n} \\ \vdots & & \vdots & & \vdots & & \vdots \end{pmatrix}$$

$$A' = \begin{pmatrix} a_{1,1} & \dots & a_{1,k-1} & a'_{1,k} & a_{1,k+1} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,k-1} & a'_{2,k} & a_{2,k+1} & \dots & a_{2,n} \\ \vdots & & \vdots & & \vdots & & \vdots \end{pmatrix}$$

$$A'' = \begin{pmatrix} a_{1,1} & \dots & a_{1,k-1} & a''_{1,k} & a_{1,k+1} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,k-1} & a''_{2,k} & a_{2,k+1} & \dots & a_{2,n} \\ \vdots & & \vdots & & \vdots & & \vdots \end{pmatrix}$$

On veut montrer:

$$\det A = a \det A' + b \det A''.$$

On calcule:

$$\begin{split} \det &A = \sum_{j \neq k} (-1)^{j+1} a_{1,j} \det(A_{i,j}) + (-1)^{k+1} (aa_{1,k}' + ba_{1,k}'') \det(A_{1,k}), \\ \det &A' = \sum_{j \neq k} (-1)^{j+1} a_{1,j} \det(A_{i,j}') + (-1)^{k+1} a_{1,k}' \det(A_{1,k}), \\ \det &A'' = \sum_{j \neq k} (-1)^{j+1} a_{1,j} \det(A_{i,j}'') + (-1)^{k+1} a_{1,k}' \det(A_{1,k}) \end{split}$$

On doit alors montrer :

$$\forall j \neq k, \ \det A_{i,j} = a \det(A'_{i,j}) + b \det(A''_{i,j})$$

ce qui est démontré par hypothèse de récurrence.

¹§. En effet, toute transposition est un produit de transpositions simples par une conjugaison adaptée : on « renomme » les éléments.

^{2§.} Par récurrence sur n on a $det(A'_{i,j}) = -det(A_{i,j})$.

1. DÉTERMINANTS 15

Définition 1.2.0.17 (Forme n-linéaire alternée). —

Soit $\varphi: E^n \to \mathbf{R}$ une forme *n*-linéaire alternée avec E un **R**-espace vectoriel. φ est une forme n-linéaire alternée si on a :

$$\varphi(u_1, u_2, \dots, u_n) = 0$$

dès que deux composantes u_i, u_j avec $i \neq j$ coïncident.

REMARQUE. On en déduit que le déterminant dans une base donnée est une forme nlinéaire alternée.

Proposition 1.2.0.9. —

Soit φ une forme *n*-linéaire alternée. Alors pour tout $w \in S_n$, $\varphi(u_{w(1)}, \ldots, u_{w(n)}) =$

Démonstration 1.2.0.13. –

On peut supposer que w est une transposition simple : w = (k, k+1) avec $1 \le k < n$.

On veut montrer:

$$\varphi(u_1, \dots, u_{k-1}, u_{k+1}, u_k, u_{k+2}, \dots, u_n) = -\varphi(u_1, \dots, u_n).$$

Pour simplifier les notations, on oublie les indices u_i avec $i \neq k, k+1$. On a :

$$\varphi(u_k + u_{k+1}, u_k + u_{k+1}) = 0$$

et donc par linéarité :

$$\varphi(u_k, u_k) + \varphi(u_k, u_{k+1}) + \varphi(u_{k+1}, u_k) + \varphi(u_{k+1}, u_{k+1}) = 0 \iff \varphi(u_k, u_{k+1}) = -\varphi(u_{k+1}, u_k).$$

Proposition 1.2.0.10. —

Soient E un **R**-espace vectoriel de dimension n et $B = (e_1, \ldots, e_n)$ une base de E. Soit $\varphi:E^n\to\mathbf{R}$ une forme n-linéaire alternée. Alors :

$$\varphi(u_1,\ldots,u_n)=\det_B(u_1,\ldots,u_n)\varphi(e_1,\ldots,e_n)$$

où les u_i sont exprimés dans la base B.

Toutes les formes n-linéaires alternées sont proportionnelles au déterminant.

DÉMONSTRATION 1.2.0.14. — Soit
$$u_j = \sum_{i=1}^n a_{i,j} e_i$$
, les $a_{i,j}$ sont les coordonnées des u_j dans la base B . On a :
$$\varphi(u_1,\dots,u_n) = \varphi\left(\sum_{i=1}^n a_{i,1} e_i,\dots,\sum_{i=1}^n a_{i,n} e_i\right).$$

Comme φ est n-linéaire alternée :

$$\varphi(u_1, \dots, u_n) = \sum_{w \in S_n} a_{w(1), 1} a_{w(2), 2} \dots a_{w(n), n} \varphi(e_{w(1)}, \dots, e_{w(n)})$$

$$\varphi(u_1, \dots, u_n) = \sum_{w \in S_n} a_{w(1), 1} a_{w(2), 2} \dots a_{w(n), n} \varepsilon(w) \varphi(e_1, \dots, e_n)$$

$$\varphi(u_1, \dots, u_n) = \det_B(u_1, \dots, u_n) \varphi(e_1, \dots, e_n)$$

Remarques. On a démontré:

- 1. Pour une base B choisie, le déterminant \det_B est une forme n-linéaire alternée;
- 2. pour toute forme *n*-linéaire alternée, φ , on a : $\varphi(\cdot) = \det_B(\cdot)\varphi(B)$;

3. en particulier, les deux déterminants coïncident.

Proposition 1.2.0.11. —

Pour tout $A \in M_n(\mathbf{R})$ on a:

$$\det(A) = \det(A^t).$$

DÉMONSTRATION 1.2.0.15. —

$$A = (a_{i,j})$$

 $A^t = (b_{i,j}), b_{i,j} = a_{j,i}$

On calcule par la formule de CRAMER :

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{i=1}^n b_{w(i),i},$$

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{i=1}^n a_{i,w(i)}.$$

Pour w fixé, dans i décrit 1 à n alors w(i) décrit également 1 à n. On effectue un changement de variable j=w(i)et alors $i = w^{-1}(j)$ et on a :

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{j=1}^n a_{w^{-1}(j),j}$$

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{j=1}^n a_{w^{-1}(j),j},$$

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w^{-1}) \prod_{j=1}^n a_{w(j),j},$$

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{j=1}^n a_{w(j),j},$$

$$\det(A^t) = \det(A)$$

Remarque. On peut calculer det(A) en développant par rapport à la première ligne ou la première colonne (au choix). On a alors :

$$\det(A) = \sum_{i=1}^{n} (-1)^n a_{i,1} \det(A_{i,1}).$$

Proposition 1.2.0.12. -

Si $A \in M_n(\mathbf{R})$ est triangulaire alors :

$$\det A = \prod_{i=1}^{n} a_{i,i}.$$

Démonstration 1.2.0.16. —

Supposons A triangulaire supérieure, c'est-à-dire $a_{i,j} = 0$ si i > j. Par la formule de CRAMER:

$$\det(A) = \sum_{w \in S_n} \varepsilon(w) \prod_{i=1}^n a_{i,w(i)}.$$

Or les seuls w qui contribuent à cette somme sont ceux tels que :

$$\forall i \in \{1, \ldots, n\}, i \leq w(i),$$

c'est-à-dire : $w = id^{3\S}$.

En développant par rapport à une ligne (ou une colonne quelconque) :

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{j,i} \det(A_{j,i}).$$

Si A' désigne la matrice obtenue en permutant les lignes de A par $w = \begin{pmatrix} 1 & 2 & \dots & j \end{pmatrix}$:

$$\det(A') = \varepsilon(w)\det(A) = (-1)^{j+1}\det(A).$$

On note $A' = (a'_{k,l})_{k,l \in \{1,...,n\}}$. En choisissant j > 1:

$$\det(A') \stackrel{4\S}{=} \sum_{i=1}^{n} (-1)^{i+1} a'_{1,i} \det(A'_{1,i}),$$

$$\det(A') = \sum_{i=1}^{n} (-1)^{i+1} a_{j,i} \det(A_{j,i});$$

$$\det(A) = (-1)^{j+1} \det(A'),$$

$$\det(A) = \sum_{i=1}^{n} (-1)^{j+i} a_{j,i} \det(A_{j,i}).$$

2 DÉTERMINANT D'UN ENDOMORPHISME

2.1 Invariance par changement de base

Proposition 2.1.0.13. —

Soient E un \mathbf{R} -espace vectoriel de dimension $n, B = (e_1, e_2, \dots, e_n)$ une base de E et $C = (u_1, \dots, u_n)$ un système de n vecteurs de E. Alors C est une base de E si, et seulement si :

$$\det_B(C) \neq 0.$$

DÉMONSTRATION 2.1.0.17. —

Supposons que C est une base de E.

On a vu que si $\varphi:E^n\to \mathbf{K}$ est une forme n-linéaire alternée alors :

$$\forall (u_1, u_2, \dots, u_n) \in E^n, \ \varphi(u_1, u_2, \dots, u_n) = \det_B(u_1, u_2, \dots, u_n) \cdot \varphi(e_1, e_2, \dots, e_n).$$

On applique cette formule avec $\varphi = \det_C$ et on a :

$$\det_C(u_1, u_2, \dots, u_n) = \det_B(C)\det_C(B),$$

$$1 = \det_C(C) = \det_B(C)\det_C(B),$$

et donc $\det_B(C) \neq 0$.

Supposons maintenant que C est liée. Il existe alors i tel que u_i est combinaison linéaire des u_j avec $j \neq i$. Par

- 3§. Soit $w \in S_n$, $w : \{1, 2, ..., n\} \stackrel{\sim}{\to} \{1, 2, ..., n\}$.
 - Si $i \leq w(i)$ pour tout i alors w(k) = k pour tout k par récurrence descendante sur k :
 - $-n \le w(n)$ et donc w(n) = n;
 - $k-1 \le w(k-1)$ et donc w(k-1) = w(k).
- 4§. En développant par rapport à la première ligne.

exemple:

$$u_{i} = \sum_{j \neq i} a_{j} \cdot u_{j}, \ (a_{j} \in \mathbf{R})$$

$$\det_{B}(C) = \det_{B}(u_{1}, u_{2}, \dots, u_{i-1}, \sum_{j \neq i} a_{j} \cdot u_{j}, u_{i+1}, \dots, u_{n}),$$

$$\det_{B}(C) = \sum_{j \neq i} a_{j} \det_{B}(u_{1}, u_{2}, \dots, u_{i-1}, u_{j}, u_{i+1}, \dots, u_{n}),$$

$$i \neq i$$

or \det_B est alternée et comme u_i apparaît deux fois dans la dernière expression, on a

$$\det_B(C) = 0.$$

Proposition 2.1.0.14. —

Soient E un \mathbf{R} -espace vectoriel de dimension n, $B = (e_1, \ldots, e_n)$, $C = (u_1, \ldots, u_n)$ deux bases de E et f un endomorphisme de E. Alors :

$$\det_B(f(e_1),\ldots,f(e_n))=\det_C(f(u_1),\ldots,f(u_n)).$$

REMARQUE. En d'autres termes, $\det_B(f(B))$ ne dépend pas du choix de la base B. On l'appelle $\det(f)$.

DÉMONSTRATION 2.1.0.18. —

On utilise la formule :

$$\forall (u_1, u_2, \dots, u_n) \in E^n, \ \varphi(u_1, u_2, \dots, u_n) = \det_B(u_1, u_2, \dots, u_n) \cdot \varphi(e_1, e_2, \dots, e_n),$$

où φ est une forme n-linéaire alternée.

On pose:

$$\varphi(u_1,\ldots,u_n) = \det_B(f(u_1),f(u_2),\ldots,f(u_n))$$

et on a alors :

$$\varphi(u_1,\ldots,u_n)=\det_B(f(u_1),\ldots,f(u_n))=\det_C(f(u_1),\ldots,f(u_n))\det_B(C).$$

De même :

$$\det_B(f(u_1),\ldots,f(u_n)) = \det_B(C)\det_B(f(e_1),\ldots,f(e_n)).$$

Et donc :

$$\det_B(f(u_1),\ldots,f(u_n))\det_B(C) = \det_B(f(e_1),\ldots,f(e_n))\det_B(C)$$

et $\det_B(C) \neq 0$. Donc l'égalité voulue est obtenue.

Proposition 2.1.0.15. —

Soient E un ${\bf R}$ -espace vectoriel de dimension n, f et g deux endomorphismes de E. Alors :

$$\det(fg) = \det(f)\det(g).$$

Démonstration 2.1.0.19. —

Soit $B = (e_1, \ldots, e_n)$ une base de E,

$$\det(fg) = \det_B(fg(e_1), \dots, fg(e_n)).$$

Considérons la forme n-linéaire alternée φ telle que :

$$\varphi(u_1,\ldots,u_n)=\det_B(g(u_1),\ldots,g(u_n)),$$

alors on a :

$$\varphi(f(u_1), \dots, f(u_n)) = \det_B(f(u_1), \dots, f(u_n))\varphi(e_1, \dots, e_n),$$

$$\det_B(gf(e_1), \dots, gf(e_n)) = \det_B(f(e_1), \dots, f(e_n))\det_B(g(e_1), \dots, g(e_n)),$$

$$\det(gf) = \det(g)\det(f).$$

Remarque. Si $A, B \in M_n(\mathbf{R})$ alors

$$\det(AB) = \det(A)\det(B).$$

3 DIAGONALISATION

DÉFINITION 3.0.0.18. —

Une matrice A est diagonalisable si elle est conjugué par un isomorphisme à une matrice diagonale.

3.1 Valeur propre et vecteur propre

Soit E un \mathbf{R} -espace vectoriel de dimension n. Soit f un endomorphisme de E.

DÉFINITION 3.1.0.19. —

On appelle valeur propre de f un réel λ tel qu'il existe un $v \in E - \{0\}$ tel que $f(v) = \lambda \cdot v$. On dit que v est un vecteur propre de valeur propre λ .

Quitte à prendre la matrice A de f dans une base (e_1, \ldots, e_n) fixée de E, λ est une valeur de f (ou de A) si, et seulement si

$$\det(A - \lambda I_d) = 0.$$

REMARQUE. Soient $A \in M_n(\mathbf{R})$, B la base canonique et C = AB. $\det(A)$ est non nul si, et seulement si, A est inversible. D'autre part s'il existe un vecteur propre v de valeur propre λ alors

$$\ker(f - \lambda I_d) \neq \{0\}.$$

Or $f - \lambda I_d$ est un endomorphisme de E et E est de dimension finie. Donc il y a équivalence :

$$\ker(f - \lambda I_d) \neq \{0\} \iff \det(A - \lambda I_d) = 0.$$

Définition 3.1.0.20. —

On appelle polynôme caractéristique de f (ou de A) le polynôme :

$$\chi_f(t) = \chi_A(t) = \det(A - tI_d).$$

Exemple. En dimension $2: A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a

$$\chi_A(t) = t^2 - (a+d)t + ad - bc = t^2 - \text{tr}(A)t + \text{det}(A).$$

REMARQUE. $\chi_A(t)$ est un polynôme de degré n de coefficient dominant $(-1)^n$ et de terme constant $\chi_A(0) = \det(A)$.

3.2 Sous-espaces propres

Définition 3.2.0.21. —

Soit f un endomorphisme de E et de matrice A. Soit $\lambda \in \mathbf{R}$. On appelle sous-espace propre de f (ou de A) de valeur propre λ le sous-espace vectoriel $\ker(f - \lambda I_d)$.

Proposition 3.2.0.16. —

Soient $\lambda, \mu \in \mathbf{R}$. Alors si $\lambda \neq \mu$ on a

$$\ker(f - \lambda I_d) \ker(f - \mu I_d) = \{0\}.$$

Plus généralement si, $\lambda_1,\dots,\lambda_k\in\mathbf{R}$ distincts alors on a :

$$\sum_{i=1}^{k} \ker(f - \lambda_i I_d) = \bigoplus_{i=1}^{k} \ker(f - \lambda_i I_d)$$

DÉMONSTRATION 3.2.0.20. —

Il s'agit de vérifier que pour tout $i \neq j$ on a :

$$\ker(f - \lambda_i I_d) \cap \ker(f - \lambda_j I_d) = \{0\}.$$

Si $v \in \ker(f - \lambda_i I_d) \cap \ker(f - \lambda_j I_d)$ alors :

$$f(v) = \lambda_i v = \lambda_j v \implies v = 0.$$

Corollaire 3.2.0.1. —

Soient dim E=n, f est un endomorphisme de $E, \lambda_1, \lambda_2, \dots, \lambda_k$ valeurs propres de f et E_i le sous-espace associé à la valeur propre λ_i . Alors si

$$E = \bigoplus_{i=1}^{k} E_i,$$

l'endomorphisme f est diagonalisable.

DÉMONSTRATION 3.2.0.21. —

Si on fait la réunion :

$$B = \bigcup_{i=1}^{k} B_i,$$

où B_i est une base de E_i on obtient une base de E. Dans cette base la matrice de f est diagonale où l'élément diagonal λ_i est la valeur propre correspondante. La matrice de passage de la base canonique à la base B donne la diagonalisablisation.

Donc pour diagonaliser A il faut vérifier si $E = \bigoplus_{i=1}^k E_i$ où les E_i sous les sous-espaces propres.

EXEMPLE. Soit:

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 4 & -5 \\ 0 & 2 & -2 \end{pmatrix}.$$

$$\chi_A(\lambda) = \det \begin{pmatrix} 1 - \lambda & 2 & -3 \\ 1 & 4 - \lambda & -5 \\ 0 & 2 & -2 - \lambda \end{pmatrix},$$

$$\chi_A(\lambda) = (1 - \lambda)((4 - \lambda)(-2 - \lambda) + 10) - (2(-2 - \lambda) + 6),$$

$$\chi_A(t) = -\lambda(\lambda - 1)(\lambda - 2).$$

Les trois valeurs propres sont 0, 1, 2 et sont de multiplicité 1.

$$E_{0} = \ker(A) = \left\{ x \in \mathbf{R}^{3} \mid Ax = 0 \right\} = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle,$$

$$E_{1} = \ker(A - I_{d}) = \left\{ x \in \mathbf{R}^{3} \mid \begin{pmatrix} 0 & 2 & -3 \\ 1 & 3 & -5 \\ 0 & 2 & -1 \end{pmatrix} x = 0 \right\} = \left\langle \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \right\rangle,$$

$$E_{2} = \ker(A - 2I_{d}) = \left\{ x \in \mathbf{R}^{3} \mid \begin{pmatrix} -1 & 2 & -3 \\ 1 & 2 & -5 \\ 0 & 2 & -4 \end{pmatrix} x = 0 \right\} = \left\langle \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\rangle.$$

On a l'égalité :

$$E_0 \oplus E_1 \oplus E_2 = \mathbf{R}^3.$$

On en déduit les matrices de passage :

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix},$$

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

3.3 Conditions de diagonalisabilité

Proposition 3.3.0.17. —

Soient E un \mathbf{R} -espace vectoriel de dimension n, f un endomorphisme de E, $\chi_f(t) \in \mathbf{R}[t]$, deg $\chi_f = n$.

Si χ_f admet n racines distinctes alors f est diagonalisable.

DÉMONSTRATION 3.3.0.22. —

Si:

$$\chi_f(t) = \prod_{i=1}^n (\lambda_i - t)$$

avec $\lambda_1, \lambda_2, \dots, \lambda_n$ racines distinctes. On a alors que pour tout i:

$$E_i = \ker(f - \lambda_i \mathrm{id}) \neq \{0\}$$

et donc dim $E_i \geq 1$. On a alors que

$$\sum_{i=1}^{n} E_i = \bigoplus_{i=1}^{n} E_i$$

est de dimension supérieure à n ce qui implique $\bigoplus E_i = \mathbf{R}^n$

REMARQUE. La condition donnée est nécessaire mais non suffisante. On cherche donc une condition nécessaire et suffisante.

Proposition 3.3.0.18. —

Soient E un \mathbf{R} -espace vectoriel de dimension n, f un endomorphisme de E, λ une valeur propre de f, m_{λ} la multiplicité de λ en tant que racine de $\chi_f(t)$ et E_{λ} le sous-espace propre associé à λ .

Alors dim $E_{\lambda} \leq m_{\lambda}$.

DÉMONSTRATION 3.3.0.23.

Soit $k = \dim E_{\lambda}$ et (e_1, e_2, \dots, e_k) une base de E_{λ} . On peut compléter (e_1, \dots, e_k) en une base $(e_1, \dots, e_n) = B$

$$\operatorname{Mat}_B(f) = \begin{pmatrix} \lambda I_d & X \\ 0 & A \end{pmatrix}.$$

Or le déterminant d'une matrice triangulaire par blocs est le produit des déterminants des matrices diagonales. 58

$$\chi_f(t) = \det \frac{\left((\lambda - t) I_d \quad \middle| \quad X \right)}{0 \quad \middle| \quad A - t I_d} = (\lambda - t)^k \chi_A(t)$$

et donc $m_{\lambda} \geq k$.

Corollaire 3.3.0.2. —

On a les propositions suivantes :

- 1. Si $\chi_f(t)$ n'est pas scindé sur ${\bf R}$ alors f n'est pas diagonalisable.
- 2. S'il existe une valeur propre λ de f telle que dim $E_{\lambda} < m_{\lambda}$ alors f n'est pas diagonalisable.

Démonstration 3.3.0.24. —

On démontre :

2. Soient $\lambda_1,\dots,\lambda_k$ les valeurs propres de $\chi_f(t),\,m_i$ la multiplicité de λ_i et E_i l'espace propre associé à λ_i . Alors la proposition nous dit que dim $E_i \leq m_i$.

Or $\deg \chi_f(t) = n$ et donc

$$\sum_{i=1}^{k} m_i \le n$$

$$\sum_{i=1}^{k} \dim E_i \le \sum_{i=1}^{k} m_i \le n$$

S'il existe i_0 tel que dim $E_{i_0} < m_{i_0}$ alors cela implique

$$\sum_{i=1}^k \dim E_i < \sum_{i=1}^k m_i \le n.$$

Et donc

$$\bigoplus_{i=1}^{n} E_i < n.$$

1. Idem.

Тне́опѐме 3.3.0.4. —

Soient E un \mathbf{R} -espace vectoriel de dimension n, f un endomorphisme de E. f est diagonalisable si, et seulement si, on a les conditions suivantes :

- 1. $\chi_f(t)$ est scindé sur ${\bf R}$;
- 2. pour tout $\lambda \in \chi_f^{-1}(0)$, la dimension du $\ker(f \lambda id)$ est égal à la multiplicité de

DÉMONSTRATION 3.3.0.25. —

Le corollaire nous dit que ces conditions sont nécessaires.

Remarquons que :

$$\sum_{i=1}^{r} E_i = \bigoplus_{i=1}^{r} E_i$$

5§. En effet, en utilisant la règle de CRAMER la preuve est assez aisée.

où E_i est le sous-espace propre de λ_i et r le nombre de racines deux à deux distinctes. Or la dimension de la somme est la somme des dimensions, c'est-à-dire la somme des multiplicité qui est égale à n. Donc f est diagonalisable.

Exemple. On prend

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}.$$

$$\chi_A(t) = \det \begin{pmatrix} -t & 1 & -1 \\ -1 & 2 - t & -1 \\ -1 & 1 & -t \end{pmatrix},$$

$$\chi_A(t) = -t(t-1)^2.$$

Les racines sont 0,1 de multiplicités respectives 1 et 2. On a :

$$E_0 = \ker A = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle,$$

$$E_1 = \ker A - \mathrm{id} \qquad \qquad = \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle.$$

On a

$$\dim E_0 = 1 \text{ et } \dim E_1 = 2$$

et donc f est diagonalisable.

Contre-exemple de minimalité. On a que

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

n'a comme valeurs propres que 0, elle n'est pas diagonalisable parce que si elle est nulle dans une base elle l'est dans toutes.

4 POLYNÔMES EN UN ENDOMORPHISME DE E

4.1 Polynômes évalué en un endomorphisme

Définition 4.1.0.22. —

Soit $P \in \mathbf{R}[t]$ un polynôme :

$$P(t) = \sum_{k=0}^{d} a_k t^k.$$

On note pour f un endomorphisme de ${\cal E}$:

$$P(f) = \sum_{k=0}^{d} a_k f^k \in \operatorname{End}_{\mathbf{R}}(E).$$

Avec la convention $f^0 = \text{id}$ et la notation $f^{k+1} = f \circ f^k$.

DÉFINITION 4.1.0.23. —

On dit qu'un polynôme $P \in \mathbf{R}[t]$ annule f si $P(f) = 0_{\mathrm{End}_{\mathbf{R}}}$.

Proposition 4.1.0.19. —

On a que:

$$\phi \colon \begin{cases} \mathbf{R}[t] \to \operatorname{End}_{\mathbf{R}}(E) \\ P(t) \mapsto P(f) \end{cases}$$

est un morphisme d'anneaux.

C'est-à-dire :

$$\forall P, Q \in \mathbf{R}[t], \ \phi(P+Q) = \phi(P) + \phi(Q) \ ; \ \phi(PQ) = \phi(P)\phi(Q).$$

REMARQUE. Ainsi l'ensemble des polynômes annulateurs de f est un idéal de $\mathbf{R}[t]$. Or $\mathbf{R}[t]$ est un anneau principal donc l'ensemble des polynômes annulateurs de f est principal. Il existe donc un polynôme $Q \in \mathbf{R}[t]$ tel que tout polynôme annulateur de f s'écrit RQ avec $R \in \mathbf{R}[t]$.

DÉFINITION 4.1.0.24. —

On appelle polynôme minimal de f le polynôme unitaire de plus petit degré, m_f annulant f.

On a évidemment que tout polynôme annulateur de f est de la forme $P \cdot m_f, P \in \mathbf{R}[t]$.

Exemple. Avec

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

qui est une matrice nilpotente, c'est-à-dire $A^3 = 0$. On a

$$m_A(t) \mid t^3 \implies m_A = 1, t, t^2 \text{ ou } t^3.$$

Or
$$(t \mapsto 1)(A) = \text{id} \neq 0$$
, $(t \mapsto t)(A) = A \neq 0$ et $(t \mapsto t^2)(A) = A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$ et donc $m_A(t) = t^3$.

Proposition 4.1.0.20. —

Soit $f \in \text{End}_{\mathbf{R}}(E)$. Alors :

- 1. si f est diagonalisable, alors il existe un polynôme scindé $P \in \mathbf{R}[t]$ annulant f ayant que des racines simples;
- 2. si $P \in \mathbf{R}[t]$ annule f alors toute valeur propre de f est racine de P.

DÉMONSTRATION 4.1.0.26. —

 $Dans\ l'ordre:$

1. Soit $B=(e_1,\ldots,e_n)$ une base de vecteurs propres. Soient μ_1,\ldots,μ_r des scalaires deux à deux distinctes tels que

$$\{\mu_1, \mu_2, \dots, \mu_r\} = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$$

avec $r \leq n$. On pose:

$$P(t) = \prod_{i=1}^{r} (t - \mu_i).$$

On cherche à savoir si P(f) = 0.

$$P(f) = 0 \iff P(f)(e_j) = 0, \ \forall j,$$

$$P(f)(e_j) = \left(\prod_{i=1}^r (f - \mu_i \mathrm{id})\right) (e_j),$$

$$f(e_j) = \lambda_j e_j \implies \exists i, \mu_i = \lambda_i.$$

Or pour tous k, l:

$$(f - \mu_k \mathrm{id})(f - \mu_l \mathrm{id}) = (f - \mu_l \mathrm{id})(f - \mu_k \mathrm{id})$$

et donc :

$$P(f)(e_j) = \left(\prod_{k \neq i} (f - \mu_k id)\right) (f - \mu_i id)(e_j),$$

$$P(f)(e_j) = \left(\prod_{k \neq i} (f - \mu_k id)\right) (f(e_j) - \mu_i e_j) = 0.$$

2. On suppose que P(f)=0 et $\chi_f(\lambda)=0$ avec $P\in\mathbf{R}[t]$ et $\lambda\in\mathbf{R}$. Soit $v\in\ker(f-\lambda\mathrm{id}),v\neq0$, alors :

$$P(f)(v) = \sum_{k=1}^{d} a_k f^k(v),$$

$$P(f)(v) = \sum_{k=1}^{d} a_k \lambda^k v.$$

Donc $P(\lambda) \cdot v = 0$ et comme $v \neq 0 : P(\lambda) = 0$.

4.2 Lemme des noyaux

PROPOSITION 4.2.0.21 (Théorème des noyaux). — Soit $f \in \text{End}_{\mathbf{R}}(E)$.

1. Soit $P \in \mathbf{R}[t]$ de la forme P = ST avec $S, T \in \mathbf{R}[t]$ avec S et T premiers entre eux.

Alors si P(f) = 0 alors

$$E = \ker(S(f)) \oplus \ker(T(f)).$$

2. Soit $P \in \mathbf{R}[t]$, $P = P_1 P_2 \dots P_k$ avec $P_i \in \mathbf{R}[t]$ premiers entre eux deux à deux. Alors si P(f) = 0 alors

$$E = \bigoplus_{i=1}^{k} \ker P_i(f).$$

Théorème 4.2.0.5. —

 $f \in \operatorname{End}_{\mathbf{R}}(E)$ avec dim E = n.

Supposons qu'il existe $P \in \mathbf{R}[X]$ est un polynôme scindé avec des racines simples. Alors P(f) = 0 implique que f est diagonalisable.

REMARQUE. C'est équivalent à $m_f(t)$ scindé avec des racines simples. En effet si P est scindé avec des racines simples et qui annulent f alors m_f divise P et donc m_f est scindé avec des racines simples.

DÉMONSTRATION 4.2.0.27. —

$$P(X) = (X - \lambda_1) \dots (X - \lambda_k)$$

avec $\lambda_1, \lambda_2, \dots, \lambda_k$ réels distincts. Ainsi $X - \lambda_i$ et $X - \lambda_j$ sont premiers entre eux pour tous $i \neq j$. Ainsi d'après le théorème des noyaux :

$$E = \bigoplus_{i=1}^{k} \ker(f - \lambda_i \mathrm{id}).$$

Donc f est diagonalisable.

COROLLAIRE 4.2.0.3. —

Soit $f \in \text{End}(E)$. f est diagonalisable si, et seulement si, son polynôme minimal m_f est scindé avec des racines simples.

DÉMONSTRATION 4.2.0.28. —

Le sens d'implication a déjà été fait, l'autre sens est donné par le théorème précédent.

4.3 Trigonalisation

DÉFINITION 4.3.0.25. —

On dit que $f \in \text{End}(E)$ est trigonalisable s'il existe une base B de E telle que la matrice en base B de f est triangulaire supérieure.

De même, une matrice $A \in M_n(\mathbf{R})$ est trigonalisable si elle est conjuguée à une matrice triangulaire supérieure, i.e. s'il existe $P \in GL_n(\mathbf{R})$ telle que $P^{-1}AP$ est trigonalisable.

Proposition 4.3.0.22. —

Soit $f \in \text{End}(E)$.

 χ_f est scindé dans $\mathbf{R}[X]$ si, et seulement si, ftrigonalisable.

REMARQUE. On peut remplacer partout \mathbf{R} par $\mathbf{K} = \mathbf{C}, \mathbf{R}, \mathbf{Q}$ et E par un \mathbf{K} -espace vectoriel. Si E est un \mathbf{C} -espace vectoriel de dimension finie et si $f \in \operatorname{End}_{\mathbf{C}}(E)$ alors la proposition assure la trigonalisation de f (et ainsi de tout endomorphisme).

DÉMONSTRATION 4.3.0.29.

Si f est trigonalisable, alors il existe une base B telle que la matrice, $(a_{i,j})$ de f soit trigonale supérieure dans cette base. Alors le polynôme caractéristique (qui est indépendant de la base) est exactement : $\chi_f(t) = \prod_{i=1}^n (a_{ii} - t)$. Ce polynôme est bien scindé.

Pour la réciproque on effectue une récurrence sur $n = \dim E$. On suppose que c'est vrai pour tout espace vectoriel de dimension strictement inférieure à n:

$$\chi_f(t) = (\lambda_1 - t)(\lambda_2 - t)\dots(\lambda_n - t)$$

avec $\lambda_1, \ldots, \lambda_n \in \mathbf{R}$.

 λ_1 est une valeur propre. Il existe par hypothèse $v_1 \in E$ un vecteur propre tel que $v_1 \neq 0$ et $f(v_1) = \lambda_1 v_1$. Par le théorème de la base incomplète, il existe une base B de la forme $B = (v_1, e_2, e_3, \dots, e_n)$. Soit A la matrice de f dans la base B. On a :

$$A = \begin{pmatrix} \lambda_1 & \star & \star & \star & \dots \\ 0 & & & & \\ 0 & & & B & \\ 0 & & & & \end{pmatrix}$$

Avec $B \in M_{n-1}(\mathbf{R})$ qui peut être la matrice d'un endomorphisme de \mathbf{R}^{n-1} .

$$\chi_A(t) = \det \frac{\lambda_1 - t}{0} \times \frac{\star}{B - tI_d},$$

$$\chi_A(t) = (\lambda_1 - t)\chi_B(t),$$

$$\chi_A(t) = (\lambda_1 - t)(\lambda_2 - t) \dots (\lambda_n - t).$$

et donc $\chi_B(t) = (\lambda_2 - t) \dots (\lambda_n - t)$ est scindé.

Par récurrence, il existe $Q \in GL_{n-1}(\mathbf{R})$ tel que $Q^{-1}BQ$ soit triangulaire supérieure. Posons :

$$P = \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix}, \ P^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & Q^{-1} \end{pmatrix}.$$

On a alors que $P^{-1}AP$ est triangulaire.

4.4 Comment calculer m_f ? (Cayley-Hamilton)

THÉORÈME 4.4.0.6 (CAYLEY-HAMILTON). — Soit $f \in \text{End}_{\mathbf{R}}(E)$. On a que m_f divise χ_f , c'est-à-dire : $\chi_f(f) = 0$.

DÉMONSTRATION 4.4.0.30. —

On veut montrer que $\chi_A(A) = 0$ où $A \in M_n(\mathbf{R})$. Puisque $M_n(\mathbf{R}) \subset M_n(\mathbf{C})$ on peut se placer dans se dernier. On sait alors que A est trigonalisable dans $M_n(\mathbf{C})$, c'est-à-dire qu'il existe $P \in GL_n(\mathbf{C})$ tel que $P^{-1}AP$ est triangulaire supérieure.

Or pour tout $k: (P^{-1}AP)^k = P^{-1}A^kP$. Donc:

$$\chi_A(P^{-1}AP) = P^{-1}\chi_A(A)P.$$

Comme P est inversible, $\chi_A(0)$ si, et seulement si, $\chi_A(P^{-1}AP)=0$. Posons $A'=P^{-1}AP$. On a $\chi_{A'}=\chi_A$.

$$T = (\lambda_n I_d - A')(\lambda_{n-1} I_d - A') \dots (\lambda_1 I_d - A')$$

$$T(v_1) = \left(\prod_{i=2}^n (\lambda_i I_d - A')\right) (\lambda_1 I_d - A')(v_1) = 0$$

$$T(v_2) = \left(\prod_{i=3}^n (\lambda_i I_d - A')\right) (\lambda_2 I_d - A')(\lambda_1 I_d - A')(v_2)$$

$$(\lambda_2 I_d - A')(\lambda_1 I_d - A')(v_2) = (\lambda_1 I_d - A')(\lambda_2 I_d - A')(v_2)$$

$$(\lambda_1 I_d - A')(\lambda_2 I_d - A')(v_2) = (\lambda_1 I_d - A')(-a'_{1,2}v_1)$$

$$(\lambda_1 I_d - A')(\lambda_2 I_d - A')(v_2) = -a'_{1,2}(\lambda_1 I_d - A')(v_1)$$

$$(\lambda_1 I_d - A')(\lambda_2 I_d - A')(v_2) = -a'_{1,2}(\lambda_1 V_1 - \lambda_1 V_1) = 0$$

Par récurrence on trouve $T(v_i) = 0$ pour tout i.

EXERCICE. Calculer $T(v_3)$.

REMARQUE. À noter :

- 1. Étant donné $f \in \text{End}(E)$, pour calculer m_f on cherche le plus petit diviseur de χ_f qui annule f.
- 2. Soit $f \in \text{End}(E)$. Supposons que f est inversible, alors $\det(f) \neq 0$, i.e. $\chi_f(0) \neq 0$. Soit $\chi_f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \ldots + a_1 t + a_0$, a_0 est donc non nul. On a :

$$0 = a_0^{-1} \chi_f(f) = (-1)^n a_0^{-1} f^n + \dots + a_1 a_0^{-1} f + I_d$$

ce qui donne :

$$I_d = f\left((-1)^{n+1}a_0^{-1}f^{n-1} + \ldots + (-1)a_1a_0^{-1}I_d\right).$$

Exemple. Soit:

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}.$$

On a:

$$\chi_A(t) = -t(t-1)^2$$

on en déduit :

$$t(t-1) \mid m_A(t) \mid t(t-1)^2$$
.

Donc soit $m_A(t) = t(t-1)$ soit $m_A(t) = t(t-1)^2$. Dans le premier cas si $m_A(A) = 0$ alors A est diagonalisable. Dans le second, A est non diagonalisable.

$$A(A - I_d) = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 & -1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

5 APPLICATIONS

5.1 Calculs de puissances

Soit $A \in M_n(\mathbf{R})$, si A est diagonalisable alors :

$$A = PA'P^{-1}$$

où P est inversible et A' diagonale. Et donc pour tout k:

$$A^k = P \begin{pmatrix} \lambda_1^k & & \\ & \lambda_2^k & \\ & & \ddots & \\ & & & \lambda_n^k \end{pmatrix} P^{-1}.$$

De même, si

$$\exp(A) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

alors

$$\exp(A) = P \begin{pmatrix} e^{\lambda_1} & & & \\ & e\lambda_2 & & \\ & & \ddots & \\ & & & e\lambda_n \end{pmatrix} P^{-1}.$$

5.2 Systèmes différentiels

Soient $x_1, x_2, x_3 : \mathbf{R} \to \mathbf{R}$ et le système différentiel :

$$\begin{cases} x_1' = x_1 + 2x_2 - 3x_3 \\ x_2' = x_1 + 4x_2 - 5x_3 \\ x_3' = 2x_2 - 2x_3 \end{cases}$$

On pose
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
: $\mathbf{R} \to \mathbf{R}^3$ et $A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 4 & -5 \\ 0 & 2 & -2 \end{pmatrix}$. On a: $X' = AX$.

A a pour vecteurs propres :

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \ v_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

5. APPLICATIONS 29

de valeurs propres respectives :

$$\lambda_1 = 0, \ \lambda_2 = 1, \ \lambda_3 = 2.$$

De matrice de passage :

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix}.$$

$$A' = P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

On pose
$$Y = P^{-1}X = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
. Ainsi :

$$X' = AX \iff P^{-1}X' = P^{-1}APP^{-1}X \iff Y' = BY$$

$$Y' = BY \iff \begin{cases} y_1' = 0 \\ y_2' = y_2 \\ y_3' = 2y_3 \end{cases} \iff \begin{cases} y_1 = c_1 \\ y_2 = c_2 e^t \\ y_3 = c_3 e^{2t} \end{cases}, c_1, c_2, c_3 \in \mathbf{R}.$$

On a alors:

$$X = PY,$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = X = PY = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 e^t \\ c_3 e^{2t} \end{pmatrix},$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} c_1 + c_2 e^t + c_3 e^{2t} \\ c_1 + 3c_2 e^t + 2c_3 e^{2t} \\ c_1 + 2c_2 e^t + c_3 e^{2t} \end{pmatrix}.$$

5.3 Application aux suites récurrentes

Soit $(u_n)_{n \in \mathbb{N}}$ une suite de réels telle que

$$\forall n \in \mathbf{N}, \ u_{n+2} = u_{n+1} + u_n.$$

On introduit une seconde suite v_n telle que $v_n = u_{n+1}$ pour tout n. La relation de récurrence s'écrit alors :

$$\begin{cases} u_{n+1} = v_n \\ v_{n+1} = u_n + v_n \end{cases}$$

si on pose $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ et $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ on a alors que la relation de récurrence est

$$X_{n+1} = AX_n$$
.

On diagonalise A:

$$\chi_A(t) = t^2 - t - 1 \iff t \in \left\{ r_1 = \frac{1 + \sqrt{5}}{2}, r_2 = \frac{1 - \sqrt{5}}{2} \right\}.$$

On a:

$$A' = P^{-1}AP = \begin{pmatrix} r_1 & 0\\ 0 & r_2 \end{pmatrix}$$

avec
$$P = \begin{pmatrix} 1 & 1 \\ r_1 & r_2 \end{pmatrix}$$
. On pose $Y_n = P_1 X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$:

$$X_{n+1} = AX_n \iff Y_{n+1} = A'Y_n.$$

On en déduit :

$$Y_n = \begin{pmatrix} c_1 r_1^n \\ c_2 r_2^n \end{pmatrix} \implies \begin{pmatrix} u_n \\ v_n \end{pmatrix} = P \begin{pmatrix} c_1 r_1^n \\ c_2 r_2^n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ r_1 & r_2 \end{pmatrix} \begin{pmatrix} c_1 r_1^n \\ c_2 r_2^n \end{pmatrix} = \begin{pmatrix} c_1 r_1^n + c_2 r_2^n \\ c_1 r_1^{n+1} + c_2 r_2^{n+1} \end{pmatrix}.$$

Ainsi u_n est de la forme :

$$u_n = c_1 r_1^n + c_2 r_2^n, \ c_1, c_2 \in \mathbf{R}.$$

Deuxième partie

Analyse

Table des matières

Dé	velopp	pements limités	32
1	Fonct	cions négligeables et équivalentes	32
	1.1	Négligeable	32
	1.2	Équivalence	33
2	Dériv	rées successives et formules de TAYLOR	35
	2.1	Formules de Taylor	36
	2.2	Fonctions usuelles	37
3	Dével	loppement limité à l'ordre n d'une fonction de classe C^n	38
	3.1	Développements limités	38
	3.2	Développements limités et primitives	40
	3.3	Développement limités usuels	42
4	Calcu	ıls avec les développements limités	44
	4.1	Règles de calcul des développements limités	44
	4.2	Développement limité d'une fonction composée	46
5	Appli	ications	48
	5.1	Calculs de limites	48
	5.2	Courbes paramétrées	50
	5.3	Étude de fonctions	54
		5.3.1 Étude locale	
		5.3.2 Branches infinies	57
		5.3.3 Étude de fonction	

Chapitre 3

Développements limités

1 FONCTIONS NÉGLIGEABLES ET ÉQUIVALENTES

On considère des fonctions f,g de V dans \mathbf{R} où V est un voisinage épointé dans $\overline{\mathbf{R}} = \mathbf{R} \cup \{\infty\}$. C'est-à-dire que V est de la forme $U - \{a\}$ où U est un voisinage de a dans $\overline{\mathbf{R}}$ et $a \in \overline{\mathbf{R}}$.

- si $a = \infty$ alors $V \supset \{k, \infty\}$;
- si $a \in \mathbf{R}$ alors $V \supset]k, a[\cup]a, l[$ avec $k < a < l \text{ et } k, l \in \mathbf{R}.$

f, g sont définies au voisinage de $a \in \overline{\mathbf{R}}$.

1.1 Négligeable

DÉFINITION 1.1.0.26. —

On dit que f est n'egligeable devant g au voisinage de a s'il existe un voisinage V tel qu'il existe une fonction $\varepsilon:V\to\mathbf{R}$ telle que :

$$-f = \varepsilon \cdot g$$

$$-\lim_{a} \varepsilon = 0$$

On note f = o(g).

REMARQUE. On note:

$$\varepsilon f \colon \left\{ egin{aligned} V & \to \mathbf{R} \\ t & \mapsto \varepsilon(t) f(t) \end{aligned} \right.$$

Exemples. Par exemple:

- 1. Si g = 1 alors f = o(1) si, et seulement si, $\lim_a f = 0$.
- 2. Si f = 0 au voisinage de a alors pour toute fonction g : f = o(g).
- 3. Si f est bornée et $\lim_{a}(g) = \infty$ alors f = o(g) (on prend alors $\varepsilon = f/g$).
- 4. On a $x^m = o(x^n)$ si, et seulement si, m < n.
- 5. Pour tous $\alpha, \beta > 0$:

$$\begin{cases} x^{\alpha} \underset{\infty}{=} o(e^{\beta x}) \\ (\ln x)^{\alpha} \underset{(\infty)}{=} o(x^{\beta}) \end{cases},$$

 $\operatorname{car} \lim_{\infty} x^{\alpha} e^{-\beta x} = 0.$

Proposition 1.1.0.23. —

Si f/g est définie dans un voisinage de a, alors :

$$f \underset{(a)}{=} o(g) \iff \lim_{a} (f/g) = 0.$$

Démonstration 1.1.0.31. —

On prend $\varepsilon = f/g$.

REMARQUE. Il peut arriver que f/g n'est pas défini dans aucun voisinage de a.

Exemples:

- 1. Avec $g(t) = \sin(1/[t-a])$, pour tout voisinage de V de a, g(t) s'annule en un point de V.
- 2. Même si le quotient n'est pas définit : $t = o(\sin(1/t))$.

Proposition 1.1.0.24. —

On a au voisinage de a:

- 1. la propriété o est transitive;
- 2. la propriété o est compatible avec la multiplication, i.e. : si $f=\mathrm{o}(g)$ alors $fh=\mathrm{o}(gh)$;
- 3. si f = o(g) et si h = o(k) alors fh = o(gk).

DÉMONSTRATION 1.1.0.32. —

Dans l'ordre :

- 1. Pour $f = \varepsilon_1 g$ et $g = \varepsilon_2 h$ avec $\lim_a \varepsilon_i = 0$ alors : $f = \varepsilon_1 \varepsilon_2 h$ et $\lim_a \varepsilon_1 \varepsilon_2 = 0$.
- 2. Si $f = \varepsilon g$, $\lim_a \varepsilon = 0$, alors $fh = \varepsilon gh$.
- 3. De même.

Contre-exemple: $x = o(x^3)$ et $x^2 = o(-x^3)$ n'entraine pas $x + x^2 = o(0)$.

1.2 Équivalence

DÉFINITION 1 2 0 27 —

On dit que f est équivalence à g au voisinage de a si : f - g = o(g). On note $f \sim g$.

Proposition 1.2.0.25. —

Si f/g est définie dans un voisinage de a alors :

$$f \underset{(a)}{\sim} g \iff \lim_{a} f/g = 1.$$

Proposition 1.2.0.26. —

 $\underset{(a)}{\sim}$ est une relation d'équivalence.

Démonstration 1.2.0.33. —

Par définition :

- 1. elle est réflexive : $f \underset{(a)}{\sim} f$ puisque $0 \underset{(a)}{=} o(f)$;
- 2. elle est symétrique si $f \sim g$ alors il existe ε telle que $\lim_a \varepsilon = 0$ et $f = (1 + \varepsilon)g$, or $1/(1 + \varepsilon)$ est aussi définie au voisinage de a et puisque $g=(1/[1+\varepsilon])f$ on a

$$g = (1 + (1/[1 + \varepsilon] - 1))f$$

or en posant $\varepsilon' = [1 + \varepsilon] - 1$ on a $\lim_a \varepsilon' = 0$;

3. elle est transitive : $f \sim g$ et $g \sim h$ implique qu'il existe $\varepsilon_1, \varepsilon_2$ telles que $f = (1 + \varepsilon_1)g$, $g = (1 + \varepsilon_2)h$ et donc $f = (1 + \varepsilon)h$ avec $\varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_1\varepsilon_2$ et $\lim_a \varepsilon = 0$.

Proposition 1.2.0.27. —

Si $f \underset{(a)}{\sim} g$ et si $\lim_a f$ existe alors $\lim_a g$ existe et $\lim_a g = \lim_a f$.

Démonstration 1.2.0.34. —

Soit ε telle que $\lim_a \varepsilon = 0$ alors puisque $f = (1 + \varepsilon)g$ on a

$$\lim_{a} f = \lim_{a} (1 + \varepsilon)g = \lim_{a} g.$$

Proposition 1.2.0.28. —

Le produit et le quotient (quand il est défini) d'équivalences est une équivalence. Une puissance entière d'équivalences est une équivalence.

Démonstration 1.2.0.35. —

Si
$$f = (1 + \varepsilon_1)get \ h = (1 + \varepsilon_2)k$$
 alors $fh = (1 + \varepsilon)gk$ avec $\varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_1\varepsilon_2$.

Proposition 1.2.0.29. —

Si $f \underset{(a)}{\sim} g$ et si $\varphi : I \to \mathbf{R}$ telle que $\lim_b \varphi = a, b \in I$. Alors

$$f \circ \varphi \sim_{(a)} g \circ \varphi.$$

DÉMONSTRATION 1.2.0.36. — Si $f = (1 + \varepsilon)g$ avec $\lim_a \varepsilon = 0$. Alors

$$f \circ \varphi = (1 + \varepsilon') \cdot g \circ \varphi$$

avec $\varepsilon' = \varepsilon \circ \varphi$ et $\lim_a \varepsilon' = 0$.

Proposition 1.2.0.30. —

- 1. Si f est dérivable en a alors si $f'(a) \neq 0$ on a $f(x) f(a) \sim f'(a)(x a)$.
- 2. Si g est continue dans un voisinage épointé de a, alors si $f \sim g > 0$ alors

$$\int_{a}^{x} f(t) dt \sim \int_{a}^{x} g(t) dt.$$

DÉMONSTRATION 1.2.0.37. — Dans l'ordre:

1. Si f est dérivable en a alors :

$$\frac{f(x) - f(a)}{x - a} \underset{(a)}{\sim} f'(a)$$

puisque si $\lim_a g = b \in \mathbf{R}^*$ alors $g \underset{(a)}{\sim} b$.

2. On sait que f - g = o(g) et on veut :

$$\int_x^a (f-g)(t) dt = o\left(\int_x^a g(t) dt\right).$$

En posant h = f - g on se ramène au problème :

$$h = o(g) \implies \int_{a}^{x} h = o \int_{a}^{x} g.$$

Si $h = \varepsilon q$ et $\lim_a \varepsilon = 0$ alors

$$\int_{a}^{x} g = \int_{a}^{x} \varepsilon g$$

Or

$$\frac{\left|\int_{x}^{a} \varepsilon g\right|}{\int_{a}^{x} g} \leq \max_{[a,x]} |\varepsilon| \frac{\int_{a}^{x} g}{\int_{a}^{x} g} \xrightarrow[x \to a]{} 0.$$

Donc

$$\frac{\left|\int_{a}^{x} \varepsilon g = h\right|}{\left|\int_{a}^{x} g\right|} \xrightarrow[x \to a]{} 0.$$

2 DÉRIVÉES SUCCESSIVES ET FORMULES DE TAY-LOR

Soit $p \ge 0$ un entier.

Définition 2.0.0.28. —

Soit I un intervalle de \mathbf{R} et $f:I\to\mathbf{R}$.

- 1. $f \in C^0$ si f est continue;
- 2. $f \in C^p \ (p \ge 1)$ si f est dérivable et $f' \in C^{p-1}$.

REMARQUE. Si $f \in C^p$ alors les p-ièmes dérivées successives et f sont toutes continues sur I. $f \in C^{\infty}$ si $f^{(p)}$ existe et est continue pour tout $p \ge 1$.

Proposition 2.0.0.31. —

Si $f, g \in C^p$ alors f + g, fg, f/g et $f \circ g$ (si définie) sont C^p .

Démonstration 2.0.0.38. —

Dans l'ordre :

- 1. $(f+g)^{(p)} = f^{(p)} + g^{(p)}$ par récurrence sur p;
- 2. $(fg)^{(p)} = \sum_{k=0}^{p} {p \choose k} f^{(k)} g^{(p-k)};$
- 3. par récurrence sur p pour $(f\circ g)^{(p)}$ en utilisant : $(f\circ g)'=(f'\circ g)g'.$

RAPPELS SUR LES PRIMITIVES. Si $f: I \to \mathbf{R}$ est de classe C^1 avec $I \subset \mathbf{R}$ un intervalle ouvert. Alors si f' est continue $f(x) - f(a) = \int_a^x f'(t) dt$.

2.1 Formules de Taylor

Soit $I \subset \mathbf{R}$ un intervalle ouvert.

Théorème 2.1.0.7 (Formule de Taylor avec reste intégral). — Soit $f: I \to \mathbf{R}$ de classe C^k . Alors pour tous $a, b \in I$ on a :

$$f(b) = \sum_{i=0}^{n-1} \frac{(b-a)^i}{i!} f^{(i)}(a) + \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt.$$

DÉMONSTRATION 2.1.0.39. — Par récurrence sur n, on note

$$(T_n): f(b) = \sum_{i=0}^{n-1} \frac{(b-a)^i}{i!} f^{(i)}(a) + \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt.$$

Supposons que (T_k) soit vraie pour tout k < n. Alors par intégration par parties :

$$u(t) = -\frac{(b-t)^k}{k!},$$

$$v(t) = f^{(k)}(t),$$

$$R_k = \int_a^b \frac{(b-s)^{k-1}}{(k-1)!} f^{(k)}(s) ds,$$

on a:

$$R_k = \int_a^b u'(s)v(s) \, \mathrm{d}s$$

$$R_k = [u(s)v(s)]_a^b - \int_a^b u(s)v'(s) \, \mathrm{d}s$$

$$R_k = u(b)v(b) - u(a)v(a) + \int_a^b \frac{(b-s)^k}{k!} f^{(k+1)}(s) \, \mathrm{d}s$$

$$R_k = \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^b \frac{(b-s)^k}{k!} f^{(k+1)}(s) \, \mathrm{d}s$$

On applique (T_{n-1}) :

$$f(b) = f(a) + \sum_{i=0}^{n-2} \frac{(b-a)^i}{i!} f^{(i)}(a) + R_{n-1}$$
$$f(b) = f(a) + \sum_{i=1}^{n-2} \frac{(b-a)^i}{i!} + \frac{(b-a)^{n-1}}{(n-1)!} f^{(n-1)}(a) + R_n$$

donc (T_n) vraie.

Théorème 2.1.0.8 (Formule de Taylor avec reste en $f^{(n+1)}(\theta)$). — Soit $n>0,\ f:I\to {\bf R}$ de classe C^{n+1} . Pour tous $a,b\in I$ avec $a\neq b$, il existe θ strictement compris en a et b tel que :

$$f(b) = \sum_{i=0}^{n} \frac{(b-a)^{i}}{i!} f^{(i)}(a) + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(\theta).$$

DÉMONSTRATION 2.1.0.40. —

On pose A telle que

$$\frac{(b-a)^{n+1}}{(n+1)!} \cdot A = \int_a^b \frac{(b-s)^{n+1}}{(n+1)!} f^{(n)}(s) \, \mathrm{d}s - \frac{(b-a)^n}{n!} f^{(n)}(a).$$

Soit $F: I \to \mathbf{R}$ telle que :

$$F(x) = \int_{x}^{b} \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt - \frac{(b-x)^{n}}{n!} f^{(n)}(x) - \frac{(b-x)^{n+1}}{(n+1)!} A.$$

On calcule F'(x):

$$F'(x) = -\frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) - \frac{(b-x)^n}{n!} f^{(n+1)}(x) + \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) + \frac{(b-x)^n}{n!} A$$

$$F'(x) = \frac{(b-x)^n}{n!} \left(A - f^{(n+1)}(x) \right).$$

 ${\cal F}$ est dérivable donc continue sur ${\cal I}$:

$$F(a) = \int_{a}^{b} \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt - \frac{(b-a)^{n}}{n!} f^{(n)}(a) - \frac{(b-a)^{n+1}}{(n+1)!} A = 0,$$

$$F(b) = 0.$$

Par le théorème de Rolle, il existe θ strictement entre a et b tel que $F'(\theta) = 0$. C'est-à-dire :

$$\frac{(b-\theta)^n}{n!} \left(A - f^{(n+1)}(\theta) \right) = 0$$
$$A = f^{(n+1)}(\theta).$$

On en déduit :

$$\frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(\theta) = \int_a^b \frac{(b-s)^{n-1}}{(n-1)!}f^{(n)}(s)\,\mathrm{d}s - \frac{(b-a)^n}{n!}f^{(n)}(a).$$

On a alors le résultat en remplaçant dans (T_n) .

Remarque. Si $|f^{(n+1)}(s)| \leq M$ pour tout $s \in I$ alors

$$\left| f(b) - \sum_{i=0}^{n} \frac{(b-a)^{i}}{i!} f^{(i)}(a) \right| \le M \frac{|b-a|^{n+1}}{(n+1)!}.$$

2.2 Fonctions usuelles

PROPOSITION 2.2.0.32 (Exponentielle). — Soit $n \in \mathbb{N}$, on regarde le développement de Taylor en 0 à l'ordre n+1, $\forall i$, $\exp^{(i)}(0) = 1$. On prend b = x, a = 0:

$$\exp(x) = \sum_{i=0}^{n} \frac{x^{n}}{n!} + \frac{x^{n+1}}{(n+1)!} \exp(\theta)$$
$$\theta \in]0, x[.$$

PROPOSITION 2.2.0.33 (Cosinus, sinus). — La dérivée n-ième de $\cos(t)$ est $\cos(t + n\pi/2)$.

$$\left|\cos(x) - \sum_{i=0}^{n} (-1)^{i+1} \frac{x^{2i}}{(2i)!}\right| \le \frac{x^{2n+2}}{(2n+2)!}$$

 $|\cos \theta| \le 1$.

3 DÉVELOPPEMENT LIMITÉ À L'ORDRE N D'UNE FONCTION DE CLASSE C^N

3.1 Développements limités

Définition 3.1.0.29. —

Soit $I \subset \mathbf{R}$ un intervalle ouvert tel que $0 \in I, n \in \mathbf{N}$. On dit qu'une fonction $f: I \to \mathbf{R}$ admet un développement limité à l'ordre n en 0 si, et seulement s'il existe un polynôme P de degré n à coefficients réels tel que

$$\lim_{x \to 0} \frac{f(x) - P(x)}{x^n} = 0.$$

Notons

$$\varepsilon(x) = \frac{f(x) - P(x)}{x^n}$$

alors

$$\begin{cases} f(x) = P(x) + x^n \varepsilon(x)^{\frac{1}{9}}, \\ \lim_{x \to 0} \varepsilon(x) = 0. \end{cases}$$

Définition 3.1.0.30. —

Soit $I \subset \mathbf{R}$ un intervalle ouvert et soit $n \in \mathbf{N}$. On dit qu'une fonction $f: I \to \mathbf{R}$ admet un développement limité à l'ordre n en a si, et seulement si, la fonction $t \mapsto f(t+a)$ admet un développement limité à l'ordre n en 0. C'est-à-dire si, et seulement s'il existe un polynôme de degré n, P à coefficients réels tel que :

$$f(x) = P(x - a) + o((x - a)^n)$$

au voisinage de a.

Тне́опѐме 3.1.0.9. —

Si f admet un développement limité à l'ordre n en un point a, alors ce développement limité est unique.

Démonstration 3.1.0.41. —

On peut supposer a=0. Supposons que

$$f(x) = P_1(x) + x^n \varepsilon_1(x) = P_2(x) + x^n \varepsilon_2(x)$$

où $\lim_0 \varepsilon_i = 0$ pour $i \in \{1, 2\}$. On a que

$$(P_1 - P_2)(x) = x^n(\varepsilon_1 - \varepsilon_2)(x)$$

et $(P_1-P_2)(x)$ est de la forme $r_0+r_1x+\ldots+r_nx^n$ avec $r_0,r_1,\ldots,r_n\in\mathbf{R}$. On montre par récurrence que les r_k sont tous nuls. Quand $x\to 0$ on trouve :

$$r_0 = 0$$

et donc

$$r_1x + \ldots + r_nx^n = x^n(\varepsilon_1 - \varepsilon_2)(x).$$

Supposons que $r_0 = r_1 = r_{k-1} = 0, k > 0$. Alors

$$r_k x^k + \ldots + r_n x^n = x^n (\varepsilon_1 - \varepsilon_2)(x),$$

$$r_k + r_{k+1} x + \ldots + r_n x^{n-k} = x^{n-k} (\varepsilon_1 - \varepsilon_2)(x),$$

 $n-k \geq 0$ et donc $r_k = 0$ en passant à la limite.

1§. C'est-à-dire, $f(x) - P(x) = o(x^n)$.

Corollaire 3.1.0.4. —

Soit $f(x) = P(x) + x^n \varepsilon(x)$ le développement limité d'une fonction f à l'ordre n en 0. Alors :

- 1. si f est paire alors P est paire;
- 2. si f est impaire alors P est impaire.

DÉMONSTRATION 3.1.0.42. —

$$f(x) = P(x) + x^n \varepsilon(x),$$

$$f(-x) = P(-x) + x^n (-1)^n \varepsilon(-x) = P(-x) + x^n \varepsilon_1(x),$$

Or comme $\varepsilon(x) \to 0$ quand $x \to 0$ alors $\varepsilon_1 \to 0$ aussi.

1. si f est impaire alors on a:

$$f(x) = -P(-x) - x^n \varepsilon_1(x)$$

et comme la première et cette expression sont des développements limits de f à l'ordre n en 0, par unicité on a -P(-x) = P(x), c'est-à-dire P impaire;

2. si f est paire, on a :

$$f(x) = P(-x) + x^n \varepsilon_1(x)$$

alors de même, l'unicité nous dit que P est alors paire.

Proposition 3.1.0.34. —

Soit $f: I \to \mathbf{R}$ une fonction continue en $a \in I$.

1. le développement limité de f en a à l'ordre 0 est

$$f(x) = f(a) + \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0;$$

2. la fonction f est dérivable en a si, et seulement si, elle possède un développement limité à l'ordre 1 en a, alors dans ce cas le développement limité est donné par :

$$f(x) = f(a) + f'(a)(x - a) + \varepsilon(x)(x - a), \lim_{x \to a} \varepsilon(x) = 0.$$

Démonstration 3.1.0.43. —

Dans l'ordre :

- 1. On pose $\varepsilon(x) = f(x) f(a)$. Comme f est continue en $0, \varepsilon(x)$ aussi et $\lim_{x \to a} \varepsilon(x) = 0$.
- 2. Supposons que f soit dérivable en a, c'est-à-dire :

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

On pose

$$\varepsilon(x) = \frac{f(x) - f(a)}{x - a} - f'(a).$$

On a bien $\lim_{x\to a} \varepsilon(x) = 0$ et

$$f(x) = f(a) + (x - a)f'(a) + (x - a)\varepsilon(x).$$

Réciproquement, supposons que f admette un développement limité :

$$f(x) = a_0 + (x - a)a_1 + (x - a)\varepsilon(x),$$

avec $\lim_{x\to a}\varepsilon(x)=0.$ Alors, par continuité $a_0=f(a)$ et

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} a_1 + \varepsilon(x) = a_1 = f'(a).$$

Développements limités et primitives

Тне́опѐме 3.2.0.10. —

Soit $f:I\to \mathbf{R}$ une application continue. Soit F une primitive de f. Soit $a\in I$ et supposons que f admette un développement limité en a à l'ordre n:

$$f(x) = a_0 + a_1(x - a) + \frac{a_2}{2}(x - a)^2 + \dots + \frac{a_n}{n!}(x - a)^n + (x - a)^n \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0.$$

Alors
$$F$$
 admet le développement limité suivant à l'ordre $n+1$ en a :
$$F(x)=F(a)+a_0(x-a)+\frac{a_1}{2}(x-a)^2+\ldots+\frac{a_n}{(n+1)!}x^{n+1}+(x-a)^{n+1}\varepsilon_1(x),\ \lim_{x\to a}\varepsilon_1(x)=0.$$

DÉMONSTRATION 3.2.0.44. —

$$P(t) = \sum_{k=0}^{n} \frac{a_k}{k!} (t - a)^k.$$

$$\varepsilon(x) = \frac{f(x) - P(x)}{(x - a)^n}.$$

Par hypothèse, $\lim_{x\to a} \varepsilon(x) = 0$. En posant $\varepsilon(a) = 0$, on obtient que ε est continue sur I. Donc ε admet une primitive et dans l'identité

$$f(x) = a_0 + a_1(x-a) + \frac{a_2}{2}(x-a)^2 + \ldots + \frac{a_n}{n!}(x-a)^n + (x-a)^n \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0$$

tous les termes admettent des primitives. Donc

$$F(x) - F(a) = \int_{a}^{x} f(t) dt$$

$$F(x) - F(a) = \int_{a}^{x} \left(\sum_{k=0}^{n} \frac{a_{k}}{k!} (t - a)^{k} + (t - a)^{n} \varepsilon(t) \right) dt$$

$$F(x) - F(a) = \sum_{k=0}^{n} \frac{a_{k}}{(k+1)!} (x - a)^{k+1} + u(x),$$

$$u(x) = \int_{a}^{x} (t - a)^{n} \varepsilon(t) dt.$$

Par le théorème de ROLLE :

$$u(x) = (x - a)(\theta - a)^n \varepsilon(\theta)$$

pour un θ compris entre a et x. Donc

$$|u(x)| = |x - a| |\theta - a|^n |\varepsilon(\theta)| \le |x - a|^{n+1} |\varepsilon(\theta)|$$

et $\varepsilon(\theta)$ tend vers 0 quand x tend vers a puisque θ est compris entre a et x. Donc :

$$F(x) = \sum_{k=0}^{n} \frac{a_k}{(k+1)!} (x-a)^{k+1} + (x-a)^{n+1} \varepsilon_1(x)$$

οù

$$\varepsilon_1(x) = \frac{u(x)}{(x-a)^{n+1}} \to 0.$$

Théorème 3.2.0.11. —

Soit $f:I\to {\bf R}$ de classe $C^n,\,a\in I.$ Alors f admet pour développement limité à l'ordre

$$f(x) + \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + (x-a)^n \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0.$$

DÉMONSTRATION 3.2.0.45.

Pour n=0,1 ça a été déjà vu. Supposons alors $n\geq 2$. Soit $f\in C^n$, posons g=f' avec $g\in C^{n-1}(I)$.

$$g(x) = \sum_{k=0}^{n-1} \frac{g^{(k)}(a)}{k!} (x-a)^k + (x-a)^{n-1} \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0.$$

f est une primitive de g:

$$f(x) = f(a) + \sum_{k=0}^{n-1} \frac{g^{(k)}(a)}{(k+1)!} (x-a)^{k+1} + (x-a)^n \varepsilon_1(x), \lim_{x \to a} \varepsilon_1(x) = 0$$

$$f(x) = f(a) + \sum_{k=0}^{n-1} \frac{f^{(k+1)}(a)}{(k+1)!} (x-a)^{k+1} + (x-a)^n \varepsilon_1(x)$$

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + (x-a)^n \varepsilon_1(x).$$

EXEMPLE. Soit:

$$f(x) = \begin{cases} \exp(-1/x^2), & \text{si } x > 0 \\ 0, & \text{si } x \le 0 \end{cases}$$

son développement limité en 0 d'ordre n est :

$$f(x) = x^n \varepsilon(x), \lim_{x \to 0} \varepsilon(x) = 0.$$

3.3 Développement limités usuels

Développements limités en 0 :

$$\exp(x) = \sum_{i=0}^{n} \frac{x^{i}}{i!} + x^{n} \varepsilon(x)$$

$$\operatorname{ch}(x) = \sum_{i=0}^{n} \frac{x^{2i}}{(2i)!} + x^{2n+1} \varepsilon(x)$$

$$\operatorname{sh}(x) = \sum_{i=0}^{n} \frac{x^{2i+1}}{(2i+1)!} + x^{2n+2} \varepsilon(x)$$

$$\operatorname{cos}(x) = \sum_{i=0}^{n} (-1)^{i} \frac{x^{2i}}{(2i)!} + x^{2n+1} \varepsilon(x)$$

$$\sin(x) = \sum_{i=0}^{n} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!} + x^{2n+2} \varepsilon(x)$$

$$\alpha \in \mathbf{R} : (1+x)^{\alpha} = 1 + \sum_{i=0}^{n} \frac{\alpha(\alpha-1) \dots (\alpha-i)}{(i+1)!} x^{i+1} + x^{n+1} \varepsilon(x)$$

$$\frac{1}{1-x} = \sum_{i=0}^{n} x^{i} + x^{n+1} \varepsilon(x)$$

$$\frac{1}{1+x} = \sum_{i=0}^{n} (-1)^{i} x^{i} + x^{n+1} \varepsilon(x)$$

$$\log(1-x) = -\sum_{i=1}^{n} \frac{x^{i}}{i!} + x^{n} \varepsilon(x)$$

$$\log(1+x) = \sum_{i=1}^{n} (-1)^{i+1} \frac{x^{i}}{i} x^{n} \varepsilon(x)$$

$$\operatorname{Arctan}(x) = \sum_{i=1}^{n} (-1)^{i+1} \frac{x^{2i-1}}{2i-1} + x^{2n} \varepsilon(x)$$

DÉMONSTRATION 3.3.0.46 (ch). —

$$ch(x) = \frac{e^x + e^{-x}}{2}$$

$$ch'(x) = \frac{e^x - e^{-x}}{2} (= sh(x))$$

$$ch''(x) = ch(x)$$

$$ch^{(2i)}(0) = 1$$

$$sh^{(2i)}(0) = 0$$

DÉMONSTRATION 3.3.0.47 (cos). —

$$\cos^{(k)}(x) = \cos(x + k\pi/2)$$
$$\cos^{(k)}(0) = \cos(k\pi/2)$$
$$\cos^{(2k)}(0) = (-1)^k$$
$$\cos^{(2k+1)}(0) = 0$$

DÉMONSTRATION 3.3.0.48 (sin). —

$$\sin^{(k)}(x) = \sin(x + k\pi/2)$$
$$\sin^{(2k)}(0) = 0$$
$$\sin^{(2k+1)}(0) = (-1)^k$$

DÉMONSTRATION 3.3.0.49 $((1+x)^{\alpha} = f(x))$. —Par récurrence :

$$f^{(k)}(x) = \alpha(\alpha - 1) \dots (\alpha - k + 1)(1 + x)^{\alpha - k}$$

$$f^{(k)}(0) = \alpha(\alpha - 1) \dots (\alpha - k + 1)$$

DÉMONSTRATION 3.3.0.50 (1/1 - x). —

$$\begin{aligned} \frac{1-x^n}{1-x} &= 1+x+x^2+\ldots+x^n\\ \frac{1}{1-x} &= 1+x+\ldots+x^n+x^n\cdot\frac{x}{1-x} \end{aligned}$$

DÉMONSTRATION 3.3.0.51 $(\log(1-x))$. —

Utiliser le théorème sur le développement limité d'une primitive avec le développement limité de 1/1-x.

DÉMONSTRATION 3.3.0.52 (Arctan(x)). —

$$Arctan'(x) = \frac{1}{1+x^2}$$
$$\frac{1}{1+x^2} = \sum_{i=1}^{n} (-1)^i x^{2i} + x^{2n} \varepsilon(x)$$

et on conclut avec le théorème du développement limité d'une primitive.

REMARQUE. On a vu que si

$$f(x) = \begin{cases} \exp(-1/x^2), & \text{si } x > 0 \\ 0, & \text{si } x \le 0 \end{cases}$$

alors le développement limité de f(x) en 0 à l'ordre n est

$$f(x) = x^n \varepsilon(x).$$

Or le développement limité de 0 en 0 à l'ordre n est identique.

EXEMPLE. Soit:

$$f \colon \begin{cases} \mathbf{R} \to \mathbf{R} \\ x \mapsto \begin{cases} 0 \text{ si } x = 0 \\ x^3 \sin(1/x) \text{ si } x \neq 0 \end{cases}$$

La fonction f est continue en 0.

On regarde le développement limité à l'ordre 2 en 0 :

$$f(x) = x^2 \varepsilon(x), \ \varepsilon(x) = \begin{cases} 0 \text{ si } x = 0\\ x \sin(1/x) \text{ sinon} \end{cases}, \lim_{x \to 0} \varepsilon(x)0.$$

Donc le développement limité de f(x) en 0 à l'ordre 2 est :

$$f(x) = x^2 \varepsilon(x).$$

Dérivabilité de f en 0 (puisqu'elle est lisse sur \mathbf{R}^*):

$$\frac{f(x) - f(0)}{x - 0} = x^2 \sin(1/x) \underset{x \to 0}{\longrightarrow} 0$$

donc f est dérivable et f'(0) = 0.

$$\frac{f'(x) - f'(0)}{x - 0} = \frac{3x^2 \sin(1/x) - x \cos(1/x)}{x} = 3x \sin(1/x) - \cos(1/x)$$

donc f n'est pas dérivable à l'ordre 2 en 0 (même si elle a un développement limité à l'ordre 2).

4 CALCULS AVEC LES DÉVELOPPEMENTS LIMITÉS

4.1 Règles de calcul des développements limités

Proposition 4.1.0.35. —

Soit f, g ayant des développements limités à l'ordre n en 0:

$$f(x) = P(x) + x^n \varepsilon(x), \ g(x) = Q(x) + x^n \varepsilon(x)$$

avec P,Q des polynômes de degré au plus n et $\lim_{x\to 0} \varepsilon(x)=0$ (non forcément identiques). Alors

1. le développement limité à l'ordre n en 0 de f+g est

$$(f+g)(x) = (P+Q)(x) + x^n \varepsilon(x);$$

2. pour tout $\lambda \in \mathbf{R}$, le développement λf à l'ordre n en 0 est :

$$(\lambda f)(x) = \lambda P(x) + x^n \varepsilon(x).$$

Démonstration 4.1.0.53. —

Écrivons $f(x) = P(x) + x^n \varepsilon_f(x)$ et $g(x) = Q(x) + x^n \varepsilon_g(x)$.

- 1. $(f+g)(x) = P(x) + Q(x) + x^n(\varepsilon_f + \varepsilon_g)(x)$ et on note $\varepsilon = \varepsilon_f + \varepsilon_g$ qui tend bien en 0.
- 2. De même.

Proposition 4.1.0.36. —

Soit f qui admet le développement limité en 0 à l'ordre n:

$$f(x) = P(x) + x^n \varepsilon(x), \lim_{x \to 0} \varepsilon(x) = 0.$$

Alors pour tout $p \in \{0, ..., n\}$, f admet le développement limité en 0 à l'ordre p:

$$f(x) = T_p(P)(x) + x^p \varepsilon(x)$$

avec $T_p(P)$ le polynôme tronqué de P:

$$T_p(P) = \sum_{k=0}^{p} a_k x^k, \ P = \sum_{k=0}^{n} a_k x^k.$$

DÉMONSTRATION 4.1.0.54. —

$$f(x) = T_p(P)(x) + x^p \left(\sum_{k=p+1}^n a_k x^{k-p} + x^{n-p} \varepsilon(x) \right).$$

Et on pose

$$\varepsilon_1(x) = \sum_{k=p+1}^n a_k x^{k-p} + x^{n-p} \varepsilon(x).$$

On a bien $\varepsilon_1(x) \to 0$ quand $x \to 0$.

Proposition 4.1.0.37. —

Soient f, g admettant les développements limités :

$$f(x) = P(x) + x^n \varepsilon_1(x), \ g(x) = Q(x) + x^n \varepsilon_2(x).$$

Alors fg admet le développement limité à l'ordre n en 0 suivant :

$$(fg)(x) = T_n(PQ)(x) + x^n \varepsilon(x).$$

Remarque. Si f, g admettent les développements limités à l'ordre n en a:

$$f(x) = P(x-a) + (x-a)^n \varepsilon_1(x), \ g(x) = Q(x-a) + (x-a)^n \varepsilon_2(x)$$

alors le développement limité:

$$(fg)(x) = T_n(PQ)(x-a)^{2\S} + (x-a)^n \varepsilon(x).$$

DÉMONSTRATION 4.1.0.55. —

$$(fg)(x) = (PQ)(x) + x^{n}(Q\varepsilon_{1}(x) + P\varepsilon_{2}(x))$$

$$PQ(x) = T_{n}(PQ)(x) + x^{n+1}R(x), R \in \mathbf{R}[x]$$

$$(fg)(x) = T_{n}(PQ)(x) + x^{n}(xR(x) + Q\varepsilon_{1}(x) + P\varepsilon_{2}(x))$$

On pose:

$$\begin{split} \varepsilon(x) &= xR(x) + Q\varepsilon_1(x) + P\varepsilon_2(x) \\ \lim_{x \to 0} xR(x) &= 0 \\ \lim_{x \to 0} Q\varepsilon_1(x) &= 0 \\ \lim_{x \to 0} P\varepsilon_2(x) &= 0 \\ \lim_{x \to 0} \varepsilon(x) &= 0 \end{split}$$

Exemple. On veut le développement limité de :

$$Arctan(x-1) \exp(x)$$

^{2§.} On tronque avant d'évaluer en x-a.

en 1 d'ordre 3.

$$Arctan(y) = y - \frac{y^3}{3} + y^3 \varepsilon(y)$$

$$Arctan(x-1) = (x-1) - \frac{(x-1)^3}{3} + (x-1)^3 \varepsilon(x)$$

$$\exp(x) = \exp(x-1+1) = e \exp(x-1)$$

$$\exp(x) = e \left(1 + (x-1) + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + (x-1)^3 \varepsilon(x)\right)$$

Et donc

$$f(x) = e\left((x-1) - \frac{(x-1)^3}{3} + (x-1)^3 \varepsilon(x)\right) \times \left(1 + (x-1) + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + (x-1)^3 \varepsilon(x)\right)$$
$$f(x) = e\left((x-1) + (x-1)^2 + \frac{(x-1)^3}{2} - \frac{(x-1)^3}{3}\right) + (x-1)^3 \varepsilon(x)$$

Développement limité d'une fonction composée

Puisque la composition de deux fonctions polynômiales est encore un polynôme :

Proposition 4.2.0.38. —

Soient f, g admettant un développement limité en 0 à l'ordre n:

$$f(x) = P(x) + x^n \varepsilon(x), \ g(x) = Q(x) + x^n \varepsilon(x)$$

avec P, Q deux polynômes de degré inférieur à n.

Supposons que g(0) = 0 alors $f \circ g$ admet le développement limité suivant à l'ordre n

$$(f \circ g)(x) = T_n(P \circ Q)(x) + x^n \varepsilon(x).$$

Démonstration 4.2.0.56. –

Supposons n=0, alors P et Q sont deux polynômes constants donc $f(x)=P(0)+\varepsilon(x)$ et $g(x)=Q(0)+\varepsilon(x)$. Comme Q(0) = 0 on a bien $f(g(x)) = (P \circ Q)(x) + \varepsilon(x)$ par continuité. Supposons que $n \ge 1$. On note $f(x) = P(x) + x^n \varepsilon_1(x)$ et $g(x) = Q(x) + x^n \varepsilon_2(x)$. Posons $P(x) = a_0 + a_1 x + \ldots + a_n x + a_n$

$$(f \circ g)(x) = P(g(x)) + g(x)^n \varepsilon_1(g(x))$$

$$P(g(x)) = \sum_{i=0}^n a_i g(x)^i$$

$$P(g(x)) = {}^{3\S}T_n \left(\sum_{i=0}^n a_i Q(x)^i\right) + x^n \varepsilon_3(x)$$

Puisque Q(0) = 0, on a $Q(x) = b_1 x + ... + b_n x^n$ et donc

$$g(x) = b_1 x + \dots + b_n x^n + x^n \varepsilon_2(x)$$

$$g(x) = x(b_1 + \dots + b_n x^{n-1} + x^{n-1} \varepsilon_2(x))$$

$$g(x) = xh(x)$$

$$(f \circ g)(x) = P(xh(x)) + x^n h(x)^n \varepsilon_1(xh(x))$$

$$(f \circ g)(x) = T_n(P \circ Q)(x) + x^n (h(x)^n \varepsilon_1(xh(x)) + \varepsilon_3(x))$$

On pose $\varepsilon_4(x) = h(x)^n \varepsilon_1(xh(x)) + \varepsilon_3(x)$ et:

$$\lim_{x \to 0} xh(x) = 0$$
$$\lim_{x \to 0} \varepsilon_3(x) = 0$$
$$\lim_{x \to 0} h(x)^n = b_1^n$$
$$\lim_{x \to 0} \varepsilon_4(x) = 0.$$

Exemple. Développement limité de cos(sin(x)) à l'ordre 5 en 0 :

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^6 \varepsilon(x)$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \varepsilon(x)$$

$$\cos(\sin(x)) = T_5 \left(1 - \frac{\left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right)^2}{2!} + \frac{\left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right)^4}{4!} \right) + x^5 \varepsilon(x)$$

$$\cos(\sin(x)) = 1 - \frac{x^2}{2} + \frac{x^4}{3!} + \frac{x^4}{4!} + x^5 \varepsilon(x)$$

$$\cos(\sin(x)) = 1 - \frac{x^2}{2} + \frac{5x^4}{24} + x^5 \varepsilon(x)$$

Proposition 4.2.0.39. —

Soient f, g admettant des développements limités à l'ordre n en 0. Alors si $g(0) \neq 0$ alors la fonction f/g admet un développement limité à l'ordre n en 0.

DÉMONSTRATION 4.2.0.57. —

Puisque $g(0) \neq 0$, f/g est définie et continue en 0. Comme $f/g = f \times 1/g$, il suffit de vérifier que 1/g admet un développement limité en 0 (puis on applique la règle de produit).

Posons $a = g(0) \neq 0$. On a:

$$\frac{1}{g(x)} = \frac{1}{a + (g(x) - a)} = \frac{1}{a} \cdot \frac{1}{1 + \left(\frac{g(x)}{a} - 1\right)}$$

Il suffit de vérifier que :

$$\frac{1}{1 + \left(\frac{g(x)}{a} - 1\right)}$$

admet un développement limité à l'ordre n en 0. Posons

$$h(x) = \frac{1}{1+x}$$

on a alors

$$\frac{1}{1+\left(\frac{g(x)}{a}-1\right)}=h\left(\frac{g(x)}{a}-1\right)=(h\circ k)(x)$$

où k(x) = g(x)/a - 1. Or k(x) admet un développement limité à l'ordre n en 0 et h(x) admet également un développement limité à l'ordre ∞ en 0. Enfin, k(0) = 0 et donc on conclut avec le résultat précédent.

Exemple. Développement limité de f: f(x) = 1/(a-x) en 0 à l'ordre n.

$$f(x) = \frac{1}{a} \frac{1}{1 - x/a}$$

$$\frac{1}{1 - t} = 1 + t + t^2 + \dots + t^n + t^n \varepsilon(t)$$

$$f(x) = \frac{1}{a} \left(1 + \frac{x}{a} + \frac{x^2}{a^2} + \dots + \frac{x^n}{a^n} \right) + x^n \varepsilon(x)$$

$$\frac{1}{a - x} = \frac{1}{a} + \frac{x}{a^2} + \dots + \frac{x^n}{a^{n+1}} + x^n \varepsilon(x).$$

La méthode précédente ne donne pas de formule générale pour le développement limité de f/g.

^{3§.} D'après les formules de développements limités d'une somme et d'un produit.

RAPPEL. Si $P, Q \in \mathbf{R}[x]$, $n \in \mathbf{N}$ et si $Q(0) \neq 0$. Alors la division de P par Q suivant les puissances croissantes à l'ordre n est l'unique polynôme A tel que :

- P AQ est divisible par X^{n+1} ;
- soit A = 0, soit $\deg A \le n$.

Proposition 4.2.0.40. —

Soient f,g avec les développements limités suivants à l'ordre n en 0 :

$$f(x) = A(x) + x^n \varepsilon_1(x),$$

$$g(x) = B(x) + x^n \varepsilon_2(x).$$

Supposons que $g(0)=B(0)\neq 0.$ Le développement limité à l'ordre n de f/g en 0 est :

$$\frac{f}{g}(x) = Q(x) + x^n \varepsilon(x)$$

où Q est la division de A par B à l'ordre n suivant les puissances croissantes.

DÉMONSTRATION 4.2.0.58. —

On a $A(x)=Q(x)B(x)+x^{n+1}R(x)$ où R est un polynôme et Q=0 ou $\deg Q\leq n.$ Ainsi

$$\begin{split} f(x) &= Q(x)B(x) + x^{n+1}R(x) + x^n\varepsilon_1(x) \\ f(x) &- Q(x)g(x) = x^{n+1}R(x) + x^n\varepsilon_1(x) - Q(x)x^n\varepsilon_2(x) \\ f(x) &- Q(x)g(x) = x^n(\varepsilon_1(x) - Q(x)\varepsilon_2(x) + xR(x)) \\ &\frac{f}{g}(x) = Q(x) + x^n\varepsilon_3(x) \\ &\varepsilon_3(x) = \frac{1}{g(x)}(\varepsilon_1(x) - Q(x)\cdot\varepsilon_2(x) + xR(x)) \underset{x\to 0}{\longrightarrow} 0 \end{split}$$

Exemple. Développement limité de tan(x) à l'ordre 5 en 0.

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \varepsilon(x)$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \varepsilon(x)$$

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) \left(x + \frac{x^3}{3} + \frac{2x^5}{15}\right) + x^6 R(x)$$

$$\frac{f(x)}{g(x)} = x + \frac{x^3}{3} + \frac{2}{15}x^5 + x^5 \varepsilon(x)$$

5 APPLICATIONS

APPLICATIONS. Les développements limités peuvent être utiles pour :

- 1. les calculs de limites (pour des « formes indéterminées »);
- 2. études de fonctions ou courbes paramétrées.

5.1 Calculs de limites

Exemple. On veut calculer:

$$\lim_{x \to 0} \frac{x \log \operatorname{ch} x}{1 + x\sqrt{1 + x} - \exp(\sin x)}.$$

$$\operatorname{ch}(x) = 1 + \frac{x^2}{2!} + x^2 \varepsilon(x)$$

$$\log(1+x) = x - \frac{x^2}{2} + x^2 \varepsilon(x),$$

$$\log \operatorname{ch} x = \log(1 + (\operatorname{ch} x - 1))$$

$$\log \operatorname{ch} x = T_2 \left(\frac{x^2}{2} - \frac{\left(\frac{x^2}{2}\right)^2}{2}\right) + x^2 \varepsilon(x)$$

$$\log \operatorname{ch} x = \frac{x^2}{2} + x^2 \varepsilon(x)$$

$$x \log \operatorname{ch} x = \frac{x^3}{2} + x^3 \varepsilon(x);$$

$$\sqrt{1+x} = 1 + \frac{x}{2} + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)x^2}{2!} + x^2 \varepsilon(x)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + x^2 \varepsilon(x)$$

$$x\sqrt{1+x} = x + \frac{x^2}{2} - \frac{x^3}{8} + x^3 \varepsilon(x)$$

$$\sin(x) = x - \frac{x^3}{6} + x^3 \varepsilon(x)$$

$$\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \varepsilon(x),$$

$$\exp(\sin x) = T_3 \left(\left(x \mapsto 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \varepsilon(x) + x^3 \varepsilon(x)\right)\right)$$

$$\exp(\sin x) = 1 + x - \frac{x^3}{6} + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \varepsilon(x)$$

$$\exp(\sin x) = 1 + x + \frac{x^2}{2} + x^3 \varepsilon(x);$$

Ainsi

$$\frac{x \log \operatorname{ch} x}{1 + x\sqrt{1 + x} - \exp(\sin x)} = \frac{\frac{x^3}{2} + x^3 \varepsilon(x)}{1 + x + \frac{x^2}{2} - \frac{x^3}{8} - 1 - x - \frac{x^2}{2} + x^3 \varepsilon(x)}$$
$$\frac{x \log \operatorname{ch} x}{1 + x\sqrt{1 + x} - \exp(\sin x)} = \frac{\frac{x^3}{2} + x^3 \varepsilon(x)}{-\frac{x^3}{8} + x^3 \varepsilon(x)}$$
$$\lim_{x \to 0} \frac{x \log \operatorname{ch} x}{1 + x\sqrt{1 + x} - \exp(\sin x)} = \lim_{x \to 0} \frac{1/2 + \varepsilon(x)}{-1/8 + \varepsilon(x)} = -4.$$

REMARQUE. Un calcul de dérivée s'obtient par un calcul de limite et donc parfois par développements limités.

Exemple. On prend

$$f(x) = \frac{\cos x}{1 + x + x^2}$$

et on cherche $f^{(i)}(0)$ pour $i \in \{0, ..., 4\}$, c'est-à-dire que l'on cherche le développement limité de f en 0 à l'ordre 4.

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + x^4 \varepsilon(x).$$

On cherche le développement limité de

$$g(x) = \frac{1}{1+x+x^2}$$

que l'on peut voir comme

$$g(x) = (a \circ b)(x) \; ; \; a(x) = \frac{1}{1+x} \; ; \; b(x) = x+x^2.$$

$$a(x) = 1 - x + x^{2} - x^{3} + x^{4} + x^{4} \varepsilon(x)$$

$$g(x) = T_{4}((x \mapsto 1 - x + x^{2} - x^{3} + x^{4})(x + x^{2})) + x^{4} \varepsilon(x)$$

$$g(x) = 1 - x - x^{2} + x^{2} + x^{4} + 2x^{3} + x^{4} - x^{3} - 3x^{4} + x^{4} + x^{4} \varepsilon(x)$$

$$g(x) = 1 - x + x^{3} - x^{4} + x^{4} \varepsilon(x)$$

$$f(x) = T_{4} \left((1 - x + x^{3} - x^{4}) \left(1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} \right) \right) + x^{4} \varepsilon(x)$$

$$f(x) = 1 - x - \frac{x^{2}}{2} + \frac{3x^{3}}{2} - \frac{23x^{4}}{24} + x^{4} \varepsilon(x)$$

Comme f admet un développement limité à l'ordre 4 en 0, elle est dérivable quatre fois. De plus

$$f(0) = 1$$

$$f'(0) = -1$$

$$f^{(2)}(0) = -1$$

$$f^{(3)}(0) = 9$$

$$f^{(4)}(0) = -23$$

5.2 Courbes paramétrées

RAPPELS SUR LES FONCTIONS CLASSIQUES. Quelques rappels:

— on définit le logarithme népérien par :

$$\log(x) = \int_{1}^{x} \frac{\mathrm{d}t}{t}.$$

Ainsi $\log : \mathbf{R}_{+}^{*} \to \mathbf{R}$ est croissante, C^{∞} ,

$$\frac{\mathrm{d}}{\mathrm{d}x}\log x = \frac{1}{x}$$

$$\lim_{x \to 0, x > 0} \log x = -\infty$$

$$\lim_{x \to \infty} \log x = +\infty$$

$$\log(ab) = \log a + \log b.$$

— on définit l'exponentielle, exp : $\mathbf{R} \to \mathbf{R}$, qui est croissante, lisse et stable par dérivation.

$$\lim_{x \to -\infty} \exp(x) = 0$$
$$\lim_{x \to +\infty} \exp(x) = \infty$$
$$\exp(a+b) = \exp(a) \exp(b).$$

— soient $a \in \mathbf{R}_{+}^{*}, b \in \mathbf{R}$ alors on définit :

$$a^{b} = \exp(b \log a).$$

$$a^{b+b'} = a^{b}a^{b'}$$

$$(aa')^{b} = a^{b}(a')^{b}$$

$$\left(a^{b}\right)^{c} = a^{bc}$$

$$a^{0} = 1 = 1^{b}$$

$$\frac{d}{dx}x^{b} = bx^{b-1}$$

$$\frac{d}{dx}a^{x} = \log(a)a^{x}$$

$$\lim_{x \to 0, x > 0} x^{a}(\log x)^{n} = 0 , a > 0 \text{ et } n \in \mathbf{Z}$$

$$\lim_{x \to +\infty} x^{a}e^{x} = +\infty$$

$$\lim_{x \to -\infty} x^{a}e^{x} = 0.$$

— trigonométrie :

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\sin(x+t) = \cos(t)\sin(x) + \cos(x)\sin(t)$$

$$\cos(x+t) = \cos(x)\cos(t) - \sin(x)\sin(t)$$

$$\tan(x+t) = \frac{\tan(t) + \tan(x)}{1 - \tan(x)\tan(t)}.$$

— Arcsin : $[-1,1] \rightarrow [-\pi/2,\pi/2]$ est lisse sur] -1,1[et :

$$Arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}.$$

 $Arccos: [-1,1] \to [0,\pi]$ est la réciproque de cos et on a la relation :

$$\operatorname{Arccos}(x) + \operatorname{Arcsin}(x) = \frac{\pi}{2}.$$

 $Arctan : \mathbf{R} \rightarrow]-\pi/2, \pi/2[$ est lisse et :

$$Arctan'(x) = \frac{1}{x^2 + 1}.$$

— trigonométrie hyperbolique :

$$sh(x) = \frac{e^x - e^{-x}}{2}$$
$$ch(x) = \frac{e^x + e^{-x}}{2}$$
$$th(x) = \frac{sh(x)}{ch(x)}$$

leurs réciproques $\operatorname{Arcsh}: \mathbf{R} \to \mathbf{R}$, $\operatorname{Arcch}: [-1, \infty] \to \mathbf{R}_+$ et $\operatorname{Arcth}:]-1, +1[\to \mathbf{R}$ sont lisses sur l'intérieur de leur domaine de définition.

$$Arcsh'(t) = \frac{1}{\sqrt{1+t^2}}$$

$$Arcch'(t) = \frac{1}{\sqrt{t^2 - 1}}$$

$$Arcsh(t) = \log(t + \sqrt{t^2 + 1})$$

$$Arcch(t) = \log(t + \sqrt{t^2 - 1})$$

Définition 5.2.0.31. —

Soit $f: I \to \mathbb{R}^2$ avec I un intervalle ou une union finie d'intervalles dans **R**. Soient u, v telles que

$$\forall t, f(t) = (u(t), v(t)).$$

- 1. On dit que $\lim_{t\to t_0} f(t) = l$ où $l = (l_1, l_2)$ si $\lim_{t\to t_0} u(t) = l_1$ et $\lim_{t\to t_0} v(t) = l_2$.
- 2. On dit que f est continue en t_0 si les fonctions u et v sont continues en 0. f est continue sur I si elle est continue en tout point de I.
- 3. On dit que f est dérivable en t_0 si u et v le sont et on note $f'(t_0) = (u'(t_0), v'(t_0))$.

Proposition 5.2.0.41. —

Si $f, g: I \to \mathbf{R}^2$ et si $t_0 \in I$ alors :

- 1. si $\lim_{t\to t_0} f(t) = l$ et $\lim_{t\to t_0} g(t) = m$ alors $\lim_{t\to t_0} (f+g)(t) = l+m$;
- 2. si f, g sont dérivables en t_0 alors f+g aussi et on a $(f+\lambda g)'(t_0)=f'(t_0)+\lambda g'(t_0)$.

Proposition 5.2.0.42. —

Soit (r, s) une base de \mathbb{R}^2 et soit $f: I \to \mathbb{R}^2$ telle que f(t) = (u(t), v(t)). Soit (a(t), b(t)) les coordonnées de f(t) dans la base (r, s).

1. On a:

$$\lim_{t \to t_0} f(t) = l \iff \begin{cases} \lim_{t \to t_0} a(t) = \alpha \\ \lim_{t \to t_0} b(t) = \beta \end{cases}$$

où (α, β) sont les coordonnées de l dans la base (r, s).

2. Idem pour la dérivée.

DÉMONSTRATION 5.2.0.59. —

Soient $\alpha, \beta \in \mathbf{R}$ et $r, s \in \mathbf{R}^2$. On a $l = \alpha \cdot r + \beta \cdot s$,

$$f(t) = (u(t), v(t)) = a(t) \cdot r + b(t) \cdot s$$

avec $a(t), b(t) \in \mathbf{R}$.

1. On a que $\lim_{t\to t_0} f(t) = l$ c'est par définition :

$$\begin{cases} \lim_{t \to t_0} u(t) = l_1 \\ \lim_{t \to t_0} v(t) = l_2 \end{cases}.$$

$$\begin{cases} \lim_{t \to t_0} a(t) = \alpha \\ \lim_{t \to t_0} b(t) = \beta \end{cases} \iff \begin{cases} \lim_{t \to t_0} (a(t)r_1 + b(t)s_1) = \alpha r_1 + \beta s_1 \\ \lim_{t \to t_0} (a(t)r_2 + b(t)s_2) = \alpha r_2 + \beta s_2 \end{cases}$$
$$\iff \begin{cases} \lim_{t \to t_0} a(t)r_1 + b(t)s_1 = l_1 \\ \lim_{t \to t_0} a(t)r_2 + b(t)s_2 = l_2 \end{cases}$$

2. De même ...

DÉFINITION 5.2.0.32. —

On dit que $f: I \to \mathbf{R}^2$, f(t) = (u(t), v(t)) admet un développement limité à l'ordre n en t_0 si u(t) et v(t) admettent un développement limité à l'ordre n en t_0 .

Si
$$u(t) = u_0 + u_1(t - t_0) + \dots + u_n(t - t_0)^n + (t - t_0)^n \varepsilon_1(t)$$
 et $v(t) = v_0 + v_1(t - t_0) + \dots + v_n(t - t_0)^n \varepsilon_1(t)$

... +
$$v_n(t - t_0)^n + (t - t_0)^n \varepsilon_2(t)$$
 alors on appelle
$$f(t) = (u_0, v_0) + (t - t_0)(u_1, v_1) + \dots + (t - t_0)^n (u_n, v_n) + (t - t_0)^n \varepsilon(t)$$

le développement limité de f à l'ordre n en t_0 avec $\lim_{t\to t_0}\varepsilon(t)=(0,0).$

EXEMPLE. Le développement limité de $f: t \mapsto (2t^3 - t \sin t, t^3 + \cos t)$ à l'ordre 4 en 0 :

$$2t^{3} - t\sin t = -t^{2} + 2t^{3} + \frac{t^{4}}{6} + t^{4}\varepsilon(t)$$

$$t^{3} + \cos t = 1 - \frac{t^{2}}{2} + t^{3} + \frac{t^{4}}{24} + t^{4}\varepsilon(t)$$

$$f(t) = (0, 1) - t^{2}(1, 1/2) + t^{3}(2, 1) + t^{4}(1/6, 1/24) + t^{4}\varepsilon(t).$$

Définition 5.2.0.33. —

On appelle courbe paramétrée de \mathbf{R}^2 une fonction $f: I \to \mathbf{R}^2$.

EXEMPLE. $f: R \to \mathbb{R}^2, t \mapsto (\cos t, \sin t).$

REMARQUE. Supposons que f soit dérivable en $t \in I$. Alors u(t), v(t) admettent des développements limités à l'ordre 1 en t_0 et donc f admet aussi un développement limité à l'ordre 1 en t_0 . Or si

$$f(t) = f(t_0) + (t - t_0)f'(t_0) + (t - t_0)\varepsilon(t)$$

alors

$$\lim_{t \to t_0} \frac{1}{t - t_0} (f(t) - f(t_0)) = f'(t_0).$$

Définition 5.2.0.34. —

On appelle $f'(t_0)$ vecteur tangent de f en t_0 . La droite affine passant par $f(t_0)$ et de vecteur directeur $f'(t_0)$ s'appelle la tangente à f en t_0 .

REMARQUE. Le vecteur tangent dépend du paramétrage de la courbe et non seulement de sa représentation.

EXEMPLE. Soit $f: \mathbf{R} \to \mathbf{R}^2, t \mapsto (\cos(t), \sin(t))$ et soit $g: \mathbf{R} \to \mathbf{R}^2, t \mapsto (\cos(2t), \sin(2t))$. Remarquons que f et q on même représentation graphique. Cependant les vecteurs tangents en 0 à f et g sont :

$$f'(0) = (0,1)$$

 $g'(0) = (0,2).$

La tangente à f en t_0 est la droite d'équation :

$$\det\begin{pmatrix} y - v(t_0) & v'(t_0) \\ x - u(t_0) & u'(t_0) \end{pmatrix} = 0$$

c'est-à-dire :

$$(y - v(t_0))u'(t_0) - (x - u(t_0))v'(t_0) = 0.$$

Étude de fonctions

Soit $f: I \to \mathbf{R}$, où I est un intervalle de \mathbf{R} . On procède à l'étude de f au voisinage de $x_0 \in \overline{\mathbf{R}}$. En particulier, on s'intéresse notamment au graphe de f.

5.3.1 Étude locale

Proposition 5.3.1.1. —

Soit $x_0 \in I, f: I \to \mathbf{R}$. On suppose que f admet un développement limité à l'ordre n

$$f(x) = P(x - x_0) + (x - x_0)^n \varepsilon(x), \lim_{x \to x_0} \varepsilon(x) = 0$$

où $P \in \mathbf{R}[x], P(x) = a_p x^p + \ldots + a_n x^n$ avec $0 \le p \le n$ et $a_p \ne 0$. Alors il existe $\alpha \in \mathbf{R}_+^*$ tel que pour tout $x \in]x_0 - \alpha, x_0 + \alpha[$ et $x \ne x_0, f(x)$ est non nul et a le signe de $a_p(x-x_0)^p$.

Démonstration 5.3.1.1. –

Puisque $p \leq n,$ le développement limité de f en x_0 à l'ordre p est :

$$f(x) = (T_p(P))(x - x_0) + (x - x_0)^p \varepsilon(x).$$

C'est-à-dire :

$$f(x) = a_p(x - x_0)^p + (x - x_0)^p \varepsilon(x).$$

Pour tout $x \neq x_0$, on a:

$$\frac{f(x)}{(x-x_0)^p} = a_p + \varepsilon(x)$$

et $a_p \neq 0$, $\lim_{x \to x_0} \varepsilon(x) = 0$. Ainsi il existe α tel que pour tout $x \in]x_0 - \alpha, x_0 + \alpha[$ et $x \neq x_0, |\varepsilon(x)| < \frac{1}{2}(a_p)$. C'est-à-dire que pour un tel $x, f(x) \neq 0$ et est du même signe que $a_p(x-x_0)$.

Définition 5.3.1.1. —

Si $I \subset \mathbf{R}$ est un intervalle et $f: I \to \mathbf{R}$ est une fonction numérique et si $x_0 \in \overline{I}^{4\S}$, on dit que f est positive au voisinage de x_0 s'il existe un voisinage $J\subset I$ de x_0 tel que pour tout $x \in J$ et $x \neq x_0$, f(x) > 0.

Exemple. Prenons:

$$f(x) = e \cdot \sqrt{x} - e^x.$$

⁴§. Dans I ou l'une de ses bornes.

On cherche le signe de f quand x tend vers 1.

$$f(x) = e\left[(1 + (x - 1))^{1/2} - e^{x - 1} \right]$$

$$\begin{cases} (1 + (x - 1))^{1/2} = 1 + \frac{1}{2}(x - 1) + (x - 1)\varepsilon(x) \\ e^{x - 1} = 1 + (x - 1) + (x - 1)\varepsilon(x) \end{cases}$$

$$f(x) = e\left(-\frac{1}{2}(x - 1) + (x - 1)\varepsilon(x) \right)$$

$$f(x) = \frac{-e}{2}(x - 1) + (x - 1)\varepsilon(x).$$

Ainsi au voisinage de 1, le signe de f est le même que celui de 1-x.

DÉFINITION 5.3.1.2. —

Soit $f: I \to \mathbf{R}$ une fonction dérivable en $x_0 \in I$. La tangente en $(x_0, f(x_0))$ au graphe de f est la droite affine d'équation :

$$y = f'(x_0) \cdot (x - x_0) + f(x_0).$$

Définition 5.3.1.3. —

Soit $f: I \to \mathbf{R}$ une fonction dérivable en $x_0 \in I$.

On dit que f admet une inflexion au point $(x_0, f(x_0))$ si la fonction

$$x \mapsto f(x) - (f'(x_0) \cdot (x - x_0) + f(x_0))$$

s'annule en x_0 en changeant de signe.

Proposition 5.3.1.2. —

Soit $f: I \to \mathbf{R}$ une fonction dérivable en $x_0 \in I$. On a :

1. si $f(x) = a_0 + a_1(x - x_0) + (x - x_0)\varepsilon(x)$ est le développement limité de f à l'ordre 1 en x_0 , alors la tangente au graphe de f en $(x_0, f(x_0))$ est donnée par :

$$y = a_0 + a_1(x - x_0)$$
;

2. si $f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + (x - x_0)^2 \varepsilon(x)$ est le développement limité de f à l'ordre 2 en x_0 , alors

- si $a_2 > 0$ alors pour tout $x \neq x_0$ dans un voisinage suffisamment petit de x_0 , le point (x, f(x)) est au-dessus de la tangente;
- si $a_2 < 0$ alors pour tout $x \neq x_0$ dans un voisinage suffisamment petit de x_0 , le point (x, f(x)) est en-dessous de la tangente;
- 3. si $f(x) = a_0 + a_1(x x_0) + a_3(x x_0)^3 + (x x_0)^3 \varepsilon(x)$ est le développement limité de f à l'ordre 3 en x_0 , alors si $a_3 \neq 0$, f admet un point d'inflexion en $(x_0, f(x_0))$.

DÉMONSTRATION 5.3.1.2. —

Dans l'ordre :

1. Comme f est dérivable en x_0 , on a $a_1 = f'(x_0)$ et $a_0 = f(x_0)$, l'équation de la tangente est

$$y = a_1(x - x_0) + a_0.$$

2. Posons

$$u(x) = f(x) - (f'(x_0)(x - x_0) + f(x_0)).$$

On a alors:

$$u(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 - a_1(x - x_0) - a_0 + (x - x_0)^2 \varepsilon(x) = a_2(x - x_0)^2 + (x - x_0)^2 \varepsilon(x).$$

Comme $a_2 \neq 0$ (par hypothèse) alors la proposition précédente entraine que le signe de u(x) au voisinage de 0 est celui de $a_2(x-x_0)^2$, c'est-à-dire le signe de a_2 .

3. Posons de même

$$u(x) = a_3(x - x_0)^3 + (x - x_0)^3 \varepsilon(x).$$

D'après la proposition précédente, le signe de u(x) au voisinage de x_0 est celui de $a_3(x-x_0)$ puisque $a_3 \neq 0$. Comme $(x-x_0)^3$ n'est pas de signe constant, c'est un point d'inflexion.

Remarque. Si $a_2 \neq 0$, alors:

- si $a_2 > 0$, f(x) admet un minimum local en x_0 ;
- sinon, f(x) admet un maximum local en x_0 .

REMARQUE, GÉNÉRALISATION DU RÉSULTAT. Supposons que le développement limité de f en x_0 est de la forme

$$f(x) = a_0 + a_1(x - x_0) + a_p(x - x_0)^p + (x - x_0)^p \varepsilon(x),$$

avec $p \geq 2$. De plus on suppose $a_p \neq 0$. Alors en posant

$$u(x) = f(x) - (f'(x_0) \cdot (x - x_0) + f(x_0))$$

est du signe de $a_p(x-x_0)^p$ au voisinage de x_0 .

- Si p est pair alors $a_p > 0$ implique que x_0 est un minimum local, $a_p < 0$ implique que x_0 est un maximum local.
- Si p est impair alors x_0 est un point d'inflexion.

Exemple. Prenons:

$$f(x) = \sqrt[3]{x^3 + 6x^2 - 5}$$

définie sur \mathbf{R} et étudions f au voisinage de $x_0 = 2$. On a :

$$f(x+2) = \left((x+2)^3 + 6x^2 - 5\right)^{1/3}$$

$$f(x+2) = \left(27 + 36x + 12x^2 + x^3\right)^{1/3}$$

$$f(x+2) = 3 \cdot \left(1 + \frac{4}{3}x + \frac{4}{9}x^2 + \frac{1}{27}x^3\right)^{1/3}$$

$$f(x+2) = 3 \cdot \left(1 + \frac{1}{3}\left(\frac{4}{3}x + \frac{4}{9}x^2\right) + \frac{\frac{1}{3}\left(\frac{-2}{3}\right)}{2}\left(\frac{16}{9}x^2\right)\right) + x^2\varepsilon(x)$$

$$f(x+2) = 3 + \frac{4}{3}x - \frac{4}{27}x^2 + x^2\varepsilon(x).$$

L'équation de la tangente est :

$$y = 3 + \frac{4}{3}(x - 2).$$

Comme le terme en x^2 est non nul et négatif, la courbe est en-dessous de la tangente.

5.3.2 Branches infinies

Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction numérique.

Définition 5.3.2.1.

Si $\lim_{x\to a} f(x) = \pm \infty$, avec $a \in \mathbf{R}$ alors la droite x = a est une asymptote verticale de f.

Si $\lim_{x\to+\infty} f(x) = +\infty$ ou si $\lim_{x\to+\infty} f(x) = -\infty$ alors f admet une branche infinie en $+\infty$.

Si $\lim_{x\to-\infty} f(x) = +\infty$ ou si $\lim_{x\to-\infty} f(x) = -\infty$ alors f admet une branche infinie en $-\infty$.

Soit $a, b \in \mathbf{R}$. La droite y = ax + b est asymptote à f quand x tend vers $\pm \infty$ si :

$$\lim_{x \to \pm \infty} f(x) - ax - b = 0.$$

Si a = 0 on dit que l'asymptote est horizontale.

Soit $a \in \mathbf{R}$, si

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = a$$

alors on dit que f a une direction asymptotique de pente a en $\pm \infty$.

 Si

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \pm \infty$$

alors on dit que f a une direction asymptotique verticale en $\pm \infty$.

Proposition 5.3.2.1. —

Soient $a, b \in \mathbf{R}$. La droite y = ax + b est asymptote à f quand x tend vers $+\infty$ (resp. en $-\infty$) si, et seulement si :

— on a

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a ;$$

— et de plus

$$\lim_{x \to \infty} f(x) - ax = b.$$

Exemple. Soit $f: \mathbf{R} \to \mathbf{R}$ définie par :

$$f(x) = 1 + \frac{\sin x}{x^2 + 1}.$$

On a

$$\lim_{x \to +\infty} |f(x) - 1| = 0$$

et donc y=1 est asymptote à f en $+\infty$. La différence

$$f(x) - 1 = \frac{\sin x}{x^2 + 1}$$

est du signe de $\sin x$ qui oscille.

Exemple. Avec

$$f(x) = \sqrt[3]{x^3 + 6x^2 - 5}$$

on regarde s'il y a une asymptote quand x tend vers $\pm \infty$ et la position par rapport à la possible asymptote. On écrit f sous la forme :

$$f(x) = xu(1/x)$$

avec

$$u(x) = \sqrt[3]{1 + 6x - 5x^3}.$$

Le développement limité de u en 0 à l'ordre 2 est :

$$u(x) = (1 + 6x - 5x^3)^{1/3}$$

$$u(x) = 1 + \frac{1}{3}(6x) + \frac{1}{3}\left(\frac{-2}{3}\right)\frac{1}{2}(36x^2) + x^2\varepsilon(x)$$

$$u(x) = 1 + 2x - 4x^2 + x^2\varepsilon(x).$$

Ainsi pour x au voisinage de ∞ en valeur absolue :

$$f(x) = x\left(1 + \frac{2}{x} - \frac{4}{x^2} + \frac{\varepsilon(1/x)}{x^2}\right) = x + 2 - \frac{4}{x} + \frac{1}{x}\varepsilon(1/x),$$

c'est-à-dire que

$$\lim_{|x| \to \infty} f(x) - (x+2) = 0.$$

On regarde maintenant la position de f par rapport à y = x + 2. On a

$$f(x) - (x+2) = \frac{-4}{x} + \frac{1}{x}\varepsilon(1/x).$$

Ainsi quand $x \to +\infty$, f est en-dessous de l'asymptote, quand $x \to -\infty$, f est au-dessus de l'asymptote.

5.3.3 Étude de fonction

Par exemple avec

$$f(x) = x \log \left| 2 + \frac{1}{x} \right|$$

de domaine de définition $\mathbf{R} \setminus \{0, -1/2\}$.

DÉRIVÉE. On calcule la dérivée de f:

$$f(x) = x(\log|2x+1| - \log|x|)$$

$$f'(x) = \log\left|2 + \frac{1}{x}\right| + x\left(\frac{2}{2x+1} - \frac{1}{x}\right)$$

$$f'(x) = \log\left|2 + \frac{1}{x}\right| - \frac{1}{2x+1}$$

$$f''(x) = \frac{2}{2x+1} - \frac{1}{x} - \frac{2}{(2x+1)^2}$$

$$f''(x) = \frac{-1}{x(2x+1)^2}$$

Une étude des signes montre qu'il existe un unique α entre -1/2 et 0 (strictement) tel que $f'(\alpha) = 0$. En conclusion, f est croissante partout sauf sur $]-1/2, \alpha[$ où elle est décroissante.

$$\lim_{x \to +\infty} f(x) = +\infty$$
$$\lim_{x \to -\infty} f(x) = -\infty$$

ce qui nous donne deux branches infinies.

$$\lim_{x \to -1/2} f(x) = +\infty$$

et donc il y a une asymptote verticale en x = -1/2.

$$\lim_{x \to 0} f(x) = ?$$

$$f(x) = x \log \left| 2 + \frac{1}{x} \right|$$

$$f(x) = x \log |2x + 1| - x \log x$$

or les deux termes tendent vers 0 en 0 et donc

$$\lim_{x \to 0} f(x) = 0$$

et donc f admet un prolongement par continuité à 0 en 0.

Il reste à regarder les branches infinies :

— Quand $x \to \infty$, on cherche un développement limité de f en $+\infty$.

$$f(x) = x \log(2 + 1/x)$$

$$f(x) = x \log 2 + x \log\left(1 + \frac{1}{2x}\right)$$

$$f(x) = x \log 2 + x \left(\frac{1}{2x} - \frac{1}{8x^2} + o(1/x^2)\right)$$

$$f(x) = (\log 2)x + \frac{1}{2} - \frac{1}{8x} + o(1/x)$$

On en déduit que la droite d'équation

$$y = (\log 2)x + \frac{1}{2}$$

est asymptote oblique à f en $+\infty$ et la courbe est en-dessous de l'asymptote.

— En $-\infty$ la droite d'équation

$$y = (\log 2)x + \frac{1}{2}$$

est également asymptote oblique à f en $-\infty$ et la courbe est au-dessus de l'asymptote.

— Pour ce qui est de la tangente en 0 :

$$f'(x) = \log\left|2 + \frac{1}{x}\right| - \frac{1}{2x+1}$$

et alors

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \log \left| 2 + \frac{1}{x} \right| = +\infty.$$

5.4 Courbes paramétrées

Soit $I \subset \mathbf{R}$ un intervalle et $f: I \to \mathbf{R}^2$ telle que f(t) = (u(t), v(t)).

Définition 5.4.0.1. —

Supposons que u, v sont continues.

Si u et v admettent un développement limité à l'ordre n au point t_0 :

$$u(t) = u_0 + u_1(t - t_0) + \dots + u_n(t - t_0)^n + (t - t_0)^n \varepsilon(t)$$

$$v(t) = v_0 + v_1(t - t_0) + \dots + v_n(t - t_0)^n + (t - t_0)^n \varepsilon(t)$$

alors f admet un développement limité à l'ordre n en t_0 :

$$f(t) = f_0 + (t - t_0)f_1 + \dots + (t - t_0)^n f_n + (t - t_0)^n \varepsilon(t)$$

$$\forall i \in \{0, \dots, n\}, \ f_i = (u_i, v_i).$$

L'égalité précédente s'appelle le développement limité de f en t_0 à l'ordre n.

REMARQUE. On a bien

$$\lim_{t \to t_0} \varepsilon(t) = (0, 0).$$

Définition 5.4.0.2. —

Une fonction $f: I \to \mathbf{R}^2$ s'appelle courbe paramétrée de \mathbf{R}^2 .

Supposons que f est dérivable en $t_0 \in I$. f admet le développement limité en t_0 à l'ordre 1 suivant :

$$f(t) = f(t_0) + (t - t_0)f'(t_0) + (t - t_0)\varepsilon(t).$$

Définition 5.4.0.3. —

Si $f'(t_0) \neq 0$ alors la tangente à la courbe au point $f(t_0)$ est la droite affine passant par $f(t_0)$ et de vecteur directeur $f'(t_0)$. L'équation est

$$\det \begin{pmatrix} x - u(t_0) & u'(t_0) \\ y - v(t_0) & v'(t_0) \end{pmatrix} = 0.$$

En d'autres termes, c'est l'équation :

$$(y - v(t_0)) \cdot u'(t_0) - (x - u(t_0)) \cdot v'(t_0) = 0.$$

On se demande quelles sont les conditions à l'existence de la tangente en un point ainsi que la position de la tangente par rapport à la courbe.

Remarque. On retrouve l'étude des fonctions à valeurs dans ${\bf R}$ si on a

$$f(t) = (t, v(t)).$$

Supposons que u, v admettent des développements limités en t_0 à l'ordre $n \geq 2$. On a

$$f(t) = f(t_0) + (t - t_0)f'(t_0) + (t - t_0)^2 w_2 + \dots + (t - t_0)^n w_n + (t - t_0)^n \varepsilon(t)$$

où $w_2, \ldots, w_n \in \mathbf{R}^2$ et $\lim_{t \to t_0} \varepsilon(t) = 0_{\mathbf{R}^2}$.

1. Supposons que $f'(t_0) \neq 0$ et $f'(t_0)$ est non colinéaire à w_2 . On tronque le développement limité à l'ordre 2 :

$$f(t) = f(t_0) + (t - t_0)f'(t_0) + (t - t_0)^2 w_2 + (t - t_0)^2 \varepsilon(t).$$

Soient (a(t),b(t)) les coordonnées de $\varepsilon(t)$ dans la base $(f'(t_0),w_2)$. Ainsi :

$$f(t) - f(t_0) = \left(t - t_0 + (t - t_0)^2 a(t)\right) f'(t_0) + (t - t_0)^2 (b(t) + 1) w_2$$
$$\lim_{t \to t_0} a(t) = \lim_{t \to t_0} b(t) = 0.$$

Selon la coordonnée de $f'(t_0)$ on a que $(t-t_0)^2 a(t)$ tend vers 0 et alors $t-t_0$ détermine le signe. Selon la coordonnée w_2 , dans un voisinage suffisamment petit de t_0 on a que la coordonnée est de signe positif.

2. Supposons que $f'(t_0) \neq 0$, $w_2 = \lambda f'(t_0)$ et enfin w_3 et $f'(t_0)$ non colinéaires. On a alors dans la base $(f'(t_0), w_3)$:

$$f(t) - f(t_0) = \left(t - t_0 + \lambda(t - t_0)^2\right) f'(t_0) + (t - t_0)^3 w_3 + (t - t_0)^3 \varepsilon(t).$$

On décompose $\varepsilon(t)$ dans cette base :

$$\varepsilon(t) = a(t)f'(t_0) + b(t)w_3.$$

On sait que

$$\lim_{t \to t_0} a(t) = \lim_{t \to t_0} b(t) = 0.$$

Dans cette base, on a:

$$f(t) - f(t_0) = \begin{pmatrix} t - t_0 + \lambda(t - t_0)^2 + (t - t_0)^3 a(t) \\ (t - t_0)^3 + (t - t_0)^3 b(t) \end{pmatrix}$$

Sur chaque coordonnée, le signe est celui de $t-t_0$.

REMARQUE. Supposons $f'(t_0) \neq 0, n \geq 3$ et il existe un entier $p \in \{3, \ldots, n\}$ tel que les vecteurs $w_2, w_3, \ldots, w_{p-1}$ sont colinéaires à $f'(t_0)$ et tel que w_p n'est pas colinéaire à $f'(t_0)$. Ainsi, $(f'(t_0), w_p)$ est une base de \mathbb{R}^2 .

On écrit le développement limité de $f(t) - f(t_0)$ dans cette base. On étudie le signe des coordonnées de $f(t) - f(t_0)$ quand $t \to t_0$. Si p est pair alors la courbe est comme dans le cas p = 2 (la courbe est du côté de w_p par rapport à la tangente), sinon comme dans le cas p = 3 (elle traverse la tangente).

3. Supposons que $f'(t_0) = 0$ et que w_2, w_3 forme une base de \mathbb{R}^2 . On a

$$f(t) - f(t_0) = (t - t_0)^2 w_2 + (t - t_0)^3 w_3 + (t - t_0)^3 \varepsilon(t).$$

On décompose $\varepsilon(t)$ dans la base (w_2, w_3) : $\varepsilon(t) = a(t)w_2 + b(t)w_3$ avec $\lim_{t\to t_0} a(t) = \lim_{t\to t_0} b(t) = 0$. Les coordonnées dans cette base de $f(t) - f(t_0)$ sont alors :

$$f(t) - f(t_0) = \begin{pmatrix} (t - t_0)^2 + (t - t_0)^3 a(t) \\ (t - t_0)^3 + (t - t_0)^3 b(t) \end{pmatrix}.$$

Ainsi, la première coordonnée est positive et la seconde est du signe de $t - t_0$. Une telle situation est un point de rebroussement.

4. Supposons que $f'(t_0) = 0$, $w_3 = \lambda w_2$ et w_2, w_4 forme une base. On pose $\varepsilon(t) = a(t)w_2 + b(t)w_4$. Dans ces coordonnées :

$$f(t) - f(t_0) = \begin{pmatrix} (t - t_0)^2 + \lambda (t - t_0)^3 + (t - t_0)^4 a(t) \\ (t - t_0)^4 (1 + b(t)) \end{pmatrix}.$$

Les deux coordonnées sont positives quand $t \to t_0$. C'est aussi un point de rebroussement