Homework 2 for AMAT840: Multiparameter Persistent Homology

Jingyi Li *

Institut Polytechnique de Paris , Palaiseau, France jingyi.li@ip-paris.fr

October 4, 2022

1 Review of Abstract Algebra and Homology Coefficients

Exercise 1.1 (2.39). (i) Consider R-modules $M' \subset M$ and $N' \subset N$. Given a homomorphism $f: M \to N$ such that $f(M') \subset N'$, show that f induces a homomorphism $f: M/M' \to N/N'$, given by f[m] = [f(m)]. (In particular, check that this definition does not depend on the choice of representative of the equivalence class [m], hence is well defined.) (ii) Show that for any chain map $f: C \to D$ and $i \in \mathbb{N}$, the map f_i induces a homomorphism

 $H(f_i): H_i(C) \to H_i(D)$, given by $H(f_i)[x] = [f_i[x]]$.

Proof. (i) Assume $m, m' \in M'$ and $m \circ_i m'$. Then we have $m = m' \in M'$ so f(m = m') = m'.

Proof. (i) Assume $m, m' \in M'$ and $m \sim m'$. Then we have $m - m' \in M'$, so $f(m - m') = f(m) - f(m') \in N'$ according to the definition of modules homomorphism and the known conditions. So $f(m) \sim f(m')$ and the induced homomorphism is well defined.

From the definition of homology group, $H_i(C) = ker(\alpha_i)/im(\alpha_{i+1})$ and $H_i(D) = ker(\beta_i)/im(\beta_{i+1})$. It's obvious that $im(\alpha_{i+1}) \subset ker(\alpha_i)$ and $im(\beta_{i+1}) \subset ker(\beta_i)$ since $\alpha_i \circ \alpha_{i+1} = 0$ and $\beta_i \circ \beta_{i+1} = 0$.

For $\forall x \in im(\alpha_{i+1})$, $\exists y \in C_{i+1}$ such that $\alpha_{i+1}(y) = x$, so $f_i \circ \alpha_i(y) = f_i(x)$. Since the commutativity of the diagram, we have $\beta_{i+1} \circ f_{i+1} = f_i \circ \alpha_i$. Then $\beta_{i+1} \circ f_{i+1}(y) = f_i \circ \alpha_i(y) = f_i(x)$, so $f_i(x) \in im(\beta_{i+1})$, which means $f_i(im(\alpha_{i+1})) \subset im(\beta_{i+1})$. For the same reason (the commutativity of the diagram), we know that $f_i(ker(\alpha_i)) \subset ker(\beta_i)$. Now the homomorphism f_i satisfies all the conditions of (i), so $H(f_i)$ is well defined. \square

^{*}This is a course taught by Michael Lesnick from SUNY Albany.

2 1-Parameter Persistent Homology

Exercise 2.1 (4.10). Show that the intervals in the barcode of an essentially discrete persistence module have one for the following two forms:

1.
$$[a, b)$$
 for $a < b \in \mathbb{R} \cup \{\infty\}$.

2.
$$(-\infty, b)$$
, for $b \in \mathbb{R} \cup \{\infty\}$.

Proof. Given an essentially discrete persistence module $M : \mathbb{R} \to \mathbf{Vec}$, $M \circ j$ is a \mathbb{Z} -indexed module. We apply the structure theorem to $M \circ j$ and get $M \circ j \cong \bigoplus_{I \in \mathcal{B}_{M \circ i}} K^I$

where each $I \subset \mathbb{Z}$, so each I has one of the following forms: $[a,b], (a,b], [a,b), (a,b), (-\infty,b], (-\infty,b), (-\infty,+\infty), [a,+\infty)$

Since I is the subset of \mathbb{Z} , we know that

- 1. $[a, b] \cong [a, b + 1)$
- 2. $(a,b] \cong [a+1,b+1)$
- 3. $[a,b] \cong [a,b]$
- 4. $(a, b) \cong [a + 1, b)$
- 5. $(-\infty, b] \cong (-\infty, b+1)$
- 6. $(-\infty, b) \cong (-\infty, b)$
- 7. $(-\infty, +\infty) \cong (-\infty, +\infty)$
- 8. $[a, +\infty) \cong [a, +\infty)$
- 9. $(a, +\infty) \cong [a+1, +\infty)$

All the right parts have one for the two forms given in the exercise. If the left part is \overline{I} , we denote the right part is \overline{I} , and $K^{\overline{I}} \cong K^{\overline{I}}$.

From Prop 4.5, we can deduce that $M \circ j \cong \bigoplus_{I \in \mathcal{B}} K^{\overline{I}}$.

Exercise 2.2 (4.14). Explicitly describe the equivalence classes of \sim for the compatible set of bases given in Examples 4.12 and 4.13.

Solution. In Exercise 4.12, the first equivalence class is $\{1 \in B_0, (1,0) \in B_1, 1 \in B_2\}$ and the second quivalence class is $\{(0,1)\}$.

In Exercise 4.13, the first equivalence class is $\{1, (1, 1)\}$. The second equivalence class is $\{(-1, 1), (2, 2), 2\}$. The third equivalence class is $\{(1, 0)\}$.

Exercise 2.3 (4.16). Consider the filtration $F: \{0,1\} \rightarrow Simp$ where

$$F_0 = \{[a], [b], [c], [d], [a,b], [b,c], [c,d], [a,d], [a,c]\},$$
$$F_1 = F_0 \cup \{[a,b,c], [e], [a,e], [b,e]\}.$$

- (i) Sketch F.
- (ii) Explicitly compute a set of compatible bases for H_1F .
- (iii) What is $\mathcal{B}(H_1F)$?

Solution. (i)

Figure 2.1: Geometry realization of *F*

(ii) H_1F is the functor: $\{0,1\} \rightarrow \mathbf{Vec}$. Let $K = \mathbb{R}$, the functor is:

$$\mathbb{R}^2 \xrightarrow{\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}} \mathbb{R}^2$$

and the set of compatible bases for H_1F is $B_0 = \{(1,1), (-1,1)\}$ and $B_1 = \{(1,0), (2,2)\}$.

(iii)
$$\mathcal{B}(H_1F) = \{[0,1], \{0\}, \{1\}\}.$$

3 Filtrations in Topological Data Analysis

Exercise 3.1 (5.14). Prove that if F and G are weakly equivalent, then $H_iF \cong H_iG$ for all $i \geq 0$.

Proof. For the objectwise homotopy equivalence $\mathcal{N}:W_1\to F$, each $x\in Ob(\mathcal{C})$ we have $\mathcal{N}_x:W_1(x)\to F(x)$ is a homotopy equivalence. Then \mathcal{N}_x can induce a homomorphism $\eta_x:Hi(W_1(x))\to Hi(F(x))$ because homology is invariant under homotopy equivalence. So $Hi(W_1(x))\cong Hi(F(x))$ for each $x\in Ob((C))$, which means the natural transformation η is a natural isomorphism. So $HiW_1\cong HiF$, and with the same reason we have $HiF\cong HiW_1\cong \cdots\cong HiW_n\cong H_iG$. Finally we have $HiF\cong HiG$ because of the transitivity.

Exercise 3.2 (5.16). *Consider the following diagrams* F, G : $\{0,1\} \rightarrow Top$:

$$F: \{0,1\} \hookrightarrow [0,1] \qquad G: \{0,1\} \xrightarrow{0} \{0\}$$

- (i) Give an objectwise homotopy equivalence $F \to G$.
- (ii) Show that there is no objectwise homotopy equivalence $G \to F$, and hence no homotopy equivalence between F and G.

Proof. (i) Let N be the natural transformation: $F \to G$. Define $N_0 = Id_{\{0,1\}}$ and $N_1 = 0$. Now N_x for each $x \in \{0,1\}$ is a homotopy equivalence, so N is an objectwise homotopy equivalence.

(ii) Let $\gamma \in hom(0,1)$ and consider the following diagram

$$G_0 \xrightarrow{G_{\gamma}} G_1$$

$$\downarrow N_0 \qquad \downarrow N_1$$

$$F_0 \xrightarrow{F_{\gamma}} F_1$$

which is equal to

$$\{0,1\} \xrightarrow{0} \{0\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{0,1\} \xrightarrow{i} [0,1]$$

If we want N_0 to be homotopy equivalence, N_0 should be at least a bijection (otherwise two separate 2 points is impossible to deform continuously into one point). Without loss of generality, let $N_0(0) = 0$ and $N_0(1) = 1$. Then we find that $F_\gamma \circ N_0(0) = 0 \neq F_\gamma \circ N_0(1) = 1$ but $N_1 \circ G_\gamma(0) = N_1 \circ G_\gamma(1)$, so the diagram is not commutative and hence there is no objectwise homotopy equivalence $G \to F$.

Exercise 3.3 (5.23). Check that $N(U)_{\gamma}$ is indeed a simplicial map.

Proof. Let $x, y \in Ob\mathcal{C}$ and $\gamma \in hom(x, y)$.

 $U_x = \{G_x \mid G \in U\} \text{ and } N(U)_x = N(U_x) = \{\sigma \subset U_x \text{ finite } | \cap_{S \in \sigma} \neq \emptyset\}.$

We define $N(U)_{\gamma}$ as $N(U)_{\gamma}(G_x) = G_y$. We have to prove that G_y is not empty if G_x is not empty.

Let $z \in G_x$. Since $\gamma \in hom(x,y)$, we have $G(\gamma) \in hom(G_x,G_y)$, so for $z \in G_x$, $G(\gamma)(z) \in G_y$, which means $G_y \neq \emptyset$. Then let $\sigma = [G_x^1, G_x^2, ..., G_x^n]$, we define $N(U)\gamma(\sigma) = [G_y^1, G_y^2, ..., G_y^n]$ where each $G^i \in U$ for $i \in \{1, 2, ..., n\}$.

Then we need to prove that $\bigcap_{i=1}^n G_x^i \neq \emptyset$ implies $\bigcap_{i=1}^n G_y^i \neq \emptyset$. Let $z \in \bigcap_{i=1}^n G_x^i$, for each $i \in \{1,2,...,n\}$ we have $G_\gamma^i(z) = F_\gamma|_{G_x}(z) = F_\gamma(z) \in G_y^i$ because G^i is the subfunctor of F. $F_\gamma(z) \in G_y^i$ for all i, so $F_\gamma(z) \in \bigcap_{i=1}^n G_y^i \neq \emptyset$.

(The injectivity is because of the definition of the subfunctor.)

Exercise 3.4 (5.27). Show that for $X = \{0,1\} \subset \mathbb{R}$ there is not objectwise homotopy equivalence $O(X) \to \check{\mathsf{C}}\mathsf{ech}(X)$.

Proof. Let $\gamma \in hom(\frac{1}{3}, \frac{1}{2})$ and consider the following diagram:

$$O(X)_{1/3} \xrightarrow{O(X)_{\gamma}} O(X)_{1/2}$$

$$\downarrow^{N_{1/3}} \qquad \qquad \downarrow^{N_{1/2}}$$

$$\check{\mathsf{C}ech}(X)_{1/3} \xrightarrow{\check{\mathsf{C}ech}(X)_{\gamma}} \check{\mathsf{C}ech}(X)_{1/2}$$

which is equal to

Figure 3.1: Geometry realization of *F*

If $N_{1/3}$ is homotopy equivalence, [-1/3,1/3] and [2/3,4/3] should be mapped to different points (otherwise these two separate intervals is impossible to deform continuously into two points). Without the loss of generality, let $N_{1/3}([-1/3,1/3])=0$ and $N_{1/3}([2/3,4/3])=1$. Then we have $\check{C}ech(X)_{\gamma}\circ N_{1/3}([-1/3,1/3])=0$ and $\check{C}ech(X)_{\gamma}\circ N_{1/3}([2/3,4/3])=1$. If this diagram is commutative, it must satisfy that $N_{1/2}\circ O(X)_{\gamma}([-1/3,1/3])=N_{1/2}([-1/3,1/3])=0$ and $N_{1/2}\circ O(X)_{\gamma}([1/3,4/3])=0$ and $N_{1/2}([2/3,4/3])=1$. Actually it should satisfy that $N_{1/2}((-1/2,1/2))=0$ and $N_{1/2}((1/2,3/2))=1$ because for $\forall r<1/2$ and $\gamma\in hom(r,1/2)$, the diagram should be commutative. But in this way $N_{1/2}$ is impossible to be a homotopy equivalence because an interval is impossible to deform continuously into two points. Hence there is not objectwise homotopy equivalence $O(X)\to \check{C}ech(X)$.

Exercise 3.5 (5.28). By adapting Exercise 5.27, give an example of a pair of filtrations X, Y which are weakly equivalent, but for which there exists no objectwise homotopy equivalence from one to the other.

Solution. For $X = \{(-1,0), (1,0), (0,\sqrt{3})\} \subset \mathbb{R}^2$. $O(X) \simeq \check{C}ech(X)$ because of the Nerve theorem, but there exists no objectwise homotopy equivalence from one to the other.

Exercise 3.6 (5.29). Let $X = \{(0,0), (2,0), (0,1)\}$. Give an explicit expression for $\check{C}ech(X)$, i.e. specify $\check{C}ech(X)_r$ for each $r \ge 0$.

Solution. $0 \le r < 1/2$

$$1 \le r < \sqrt{5}/2$$

 $1/2 \le r < 1$

$$r \geq \sqrt{5}/2$$

Exercise 3.7 (5.30). *Using Corollary 5.26, prove that O(X) is essentially discrete for any finite* $X \subset \mathbb{R}^n$.

Proof. Well...I don't know how to prove it using Corollary 5.26, but it seems that we can indeed construct a monotonic injection $j: \mathbb{Z} \to \mathbb{R}$ such that $\lim_{z \to \pm \infty} j(z) = \pm \infty$ and for all $z \in \mathbb{Z}$ and $r \leq s \in [j(z), j(z+1))$, $M_{r,s}$ is an isomorphism.

Here is the map j:

When $z \leq 0$, j(z) = z;

When z > 0, let z = 1 and we increase r from 0 to $+\infty$. Each time when one or some new simplices are created, let j(z) = r and z = z + 1. Then continue to increase r until no more new simplices will be created. Now r = r', and let j(z) = z when z > r'. It's obvious that $\lim_{z \to +\infty} j(z) = \pm \infty$.

For all $z \in \mathbb{Z}$, and $r \leq s \in [j(z), j(z+1))$, $M_{r,s}$ is the identity map, so it's also an isomorphism.

Exercise 3.8 (5.39). Show that for $P \subset \mathbb{R}^n$, not necessarily generic, D(P) can have as many as $2^{|P|} - 1$ simplices.(HINT: assume that $P \subset S^{n-1}$.)

Proof. Assume that $P \subset S^{n-1}$ and $p \in P$, then $V(p) = \{y \in \mathbb{R}^n \mid \|y-p\| \le \|y-x\|, \forall x \in P\}$. For $\forall p \in P$, we have $0 \in V(p)$ because $1 = \|0-p\| \le \|0-x\| = 1$ for $\forall x \in P$. Then we $\forall \sigma \subset V(P)$ and $\sigma \neq \emptyset$, $0 \in \cap_{V(p) \in \sigma} V(p) \neq \emptyset$, so $\sigma \in D(P)$. The number of nonempty subsets of V(P) is $2^{|P|} - 1$, so D(P) has $2^{|P|} - 1$ simplies.

Then we prove that it's impossible for D(P) to have more simplices than $2^{|P|}-1$. $|2^{V(P)}|=|2^P|=2^{|P|}$, so V(P) has at most $2^{|P|}-1$ non-empty subsets. Since $D(P)=\mathcal{N}(V(P))$ is the subset of power set of V(P) and each element is non-empty, so D(P) can have no more than $2^{|P|}-1$ elements in it.

Exercise 3.9 (5.42). For each of the following sets $X \subset \mathbb{R}^2$, sketch Vor(X) and give explicit expressions for Del(X).

a.
$$X = \{(0,0), (2,0), (0,1)\},\$$

b. $X = \{(0,0), (1,0), (2,0), (1,1)\}.$

Solution. a. The blue part is Vol(X). The red part is Del(x), which is a filled right triangle.

b. The blue part is Vol(X). The red part is Del(x), which is a filled triangle with a segment in it.

Exercise 3.10 (5.44). For $P \subset \mathbb{R}^n$, clearly $\check{C}ech(P)_r \subset Rips(P)_r$ for all $r \in [0, \infty)$. Perform the easy check that conversely, $Rips(P)_r \subset \check{C}ech(P)_{2r}$.

Proof. For $[x_1, x_2, ..., x_m] \in Rips(P)_r$, we have $|x_i - x_j| \le 2r$ for $\forall i, j \in \{1, 2, ..., m\}$. So $|x_1 - x_i| \le 2r$ for each i. Then $x_1 \in \bigcap_{i=1}^m B(x_i, 2r) \ne \emptyset$, so $[x_1, x_2, ..., x_m] \in \check{C}ech(P)_{2r}$. □

Exercise 3.11 (5.46). Give explicit expressions for the Vietoris-Rips filtrations of the following sets $X \subset \mathbb{R}^2$:

a.
$$X = \{(0,0), (2,0), (0,1)\},$$

b. $X = \{(0,0), (2,0), (0,2), (2,2)\}.$

Solution. a. $0 \le r < 1/2$

•

 $1/2 \le r < 1$

.

 $1 \le r < \sqrt{5}/2$

$$r \geq \sqrt{5}/2$$

b. r < 1

$$1 < r < \sqrt{2}$$

$$r \geq \sqrt{2}$$
.

For $r \ge \sqrt{2}$, let a = (0,0), b = (2,0), c = (2,2), d = (0,2). $Rips(X)_r = \{[a], [b], [c], [d], [a,b], [a,c], [a,d], [b,c], [b,d], [c,d], [a,b,c], [a,c,d], [a,b,d], [b,c,d], [a,b,c,d]\}$

Exercise 3.12 (5.47). *Consider* $P = \{(-3,0), (3,0), (0,1)\}.$

(i) What is the radius at which the edge [(-3,0),(3,0)] appears in $\check{C}ech(P)$? (ii) What is the radius at which the edge [(-3,0),(3,0)] appears in Del(P)?

Solution. (i) When the radius is 3 the edge [(-3,0),(3,0)] appears in $\check{C}ech(P)$.

(ii) When the radius is 5 the edge [(-3,0),(3,0)] appears in Del(P).