# Chapter 4 Local Area Networks

## Contents

LOCAL Area Network

× CSMA/CD or ETHERNET

× Token Ring Network

# Local Area Network

## LAN

- □ LAN is to interconnect computers, printers, terminals(building or small set of buildings)
- LAN designers usually lay their own highbandwidth cables.
  - ☐ While long-haul networks use the public telephone network for economic reasons.
- LAN can use simple access algorithms, not being forced to optimize bandwidth.

## ETHERNET

# CARRIER-SENSE MULTIPLE ACCESS NETWORKS (ETHERNET)

- Ethernet is a LAN access scheme developed by the Xerox Corporation.
- □ Based on assumption that each local machine can sense the state of a common broadcast channel before attempting to use it.
- □ The technique is known as carrier-sense multiple access with collision detection (CSMA/CD).

#### **Ethernet Bit Field Specification**

#### • Preamble

- Contains 64-bit synchronization pattern of alternating 1's and 0's ending with two consecutive ones.
- (i.e., 1,0,1,0,1,0,1,0,...,1,0,1,0,1,0,1,1).

#### • Header:

- Receiving station examines a destination address field in the header to see if it should accept a particular packet.
- Source address is the address of the transmitting machine.
- Type field determines how the data field is to be interpreted (e.g., data encoding, encryption, message priority, and so).
- <u>Data field</u> is an integer number of bytes from a minimum of 46 to a maximum of 1500.
  - Minimum spacing between packets is 9.6  $\mu$ s.
- Parity check field is added for error detection.

#### ETHERNET BIT FIELD SPECIFICATION

| Preamble | Destination | Source      | Type field | Data field | Check field 32 |
|----------|-------------|-------------|------------|------------|----------------|
| 64 bits  | Address, 48 | Address, 48 | 16         | 8n         |                |
| Header   |             |             |            |            |                |

#### Data field

- Maximum packet size is 1526 byte consists of:
  - o 8-byte preamble
  - o 14-byte header
  - o 1500-byte data
  - 4-byte parity
- Minimum packet size is 72 bytes consisting of:
  - o 8-byte preamble
  - o 14-byte header
  - 46-byte data
  - 4-byte parity
- Minimum spacing between packets is 9.6  $\mu$ s.

#### 10 Mbps data stream with Manchester PCM



- Each bit position contains a transition.
- Presence of data transitions denotes to all listeners that carrier is present.
- If transition is not seen between 0.75 and 1.25 bit times since last transition,
  - o Carrier has been lost, indicating end of a packet.

#### CSMA/CD, USER ACTION OR RESPONSE

- Defer: User must not transmit when the carrier is present or within the minimum packet spacing time.
- Transmit: User may transmit if not deferring (when carrier is not present until the end of packet) or if a collision is detected. If transition is not seen between 0.75 and 1.25 bit times since the last transition, carrier has been lost, indicating the end of packet.
- Abort: If collision is detected, user terminates packet transmission and transmits short jamming signal to ensure that all collision participants are aware of collision
- Retransmit: User must wait a random delay and then attempt retransmission.
- <u>Backoff:</u> Delay before n<sup>th</sup> attempt is uniformly distributed random number from 0 to  $2^{n-1}$  for 0 < n < 10 of unit-time equivalent to 512 bits (51. 2  $\mu s = \frac{1}{10 \, Mbit/sec} * 512 \, bit$ ).

## Token Ring

## Token-Ring Networks



## Token Ring and CSMA/CD

## Comparison

- CSMA/CD is a cable onto which all stations are passively connected.
- Token Ring is a series of point-to-point cables between consecutive stations.
- Interfaces between the Token Ring and stations are active rather than passive.

#### Interface Modes

#### • Listen mode:

Input bits are copied to the output with a delay of one bit time

- Transmit mode:
- Connection is broken so that the station can enter its own data onto the ring.

#### LISTEN AND TRANSMIT MODES





(b) Interface transmit

Fig. 3.15 Listen and Transmit Modes

## The Token

- Token is a special bit pattern.
- For example:
  - 8-bit token is: 1 1 1 1 1 1 1 1
  - It circulates on the ring when all stations are idle

## **Bit Stuffing**

- Used to prevent token pattern from occurring in the data.
- Bit stuffing algorithm:
  - Insert zero into data stream after each sequence of seven ones.
  - Receiver would use a similar algorithm to ignore it

## Token Ring Operation

- ☐ Station monitors token appearing at interface.
- □ When the last bit of the taken appears, the station invert it (e.g., 1 1 1 1 1 1 0).
- ☐ Station then breaks the interface connection and enters its own data onto the ring.
  - ✓ There is no limit on the size of the packets.
  - As bits come back around the ring, they are removed by the sender.
- ☐ After transmitting the last bit of message, the station must regenerate the token.
  - ✓ After last data bit has circled the ring and being removed.
  - ✓ The interface is switched back to listen mode.

## Contention

- □ Contention is not possible with a Token-ring system since there is only one token.
- During heavy traffic, the next station requiring service will see the token and remove it.
- ☐ So, permission to transmit rotates smoothly around the ring without contention.

## **Propagation Length**

A major design parameter in ring network is the propagation length of a bit.

- ☐ If the data rate is R Mbps,
- $\square$  A bit is emitted every  $1/R \mu s$ .

Since the propagation rate along a typical coaxial cable is 200 meter l  $\mu$ s,

☐ Each bit occupies 200/R meters on ring

$$200 \left(\frac{m}{\mu \, s}\right) * \frac{1}{R} \frac{1}{\left(\frac{M \, b}{s}\right)} = \frac{200}{R} \left(\frac{m}{b}\right)$$

## Example

If 8-bit token is used on 5 Mbps token-ring, calculate min propagation distance  $d_p$  needed for ring circumference. Assume the propagation velocity  $v_p$  is 200  $m/\mu s$ .

#### **Answer**

Time to emit one bit is given by:

$$t_b = \frac{1}{R} = \frac{1}{5 M b/s} = \frac{1}{5} \left( \frac{\mu s}{b} \right)$$

Time to emit the full 8-bit Token ring:

$$t_{8 \, bit-Token} = 8 * \frac{1}{5} \left( \frac{\mu \, s}{b} \right)$$

Propagation distance of Token through ring:

$$d_P = t_{8 \ bit-Token} * v_P = 8 * \frac{1}{5} \left(\frac{\mu \ s}{b}\right) * 200 \left(\frac{m}{\mu \ s}\right)$$
$$\therefore d_P = \frac{8}{5} \left(\frac{\mu \ s}{b}\right) * 200 \left(\frac{m}{\mu \ s}\right) = 320 \left(\frac{m}{b}\right)$$

# CSMA/CD & TOKEN-RING COMPARISON

Delay-throughput characteristics of a CSMA/CD and Token-Ring. Comparison is made for:

- □ 50 stations,
- □ 1000 bits average packets,
- □ 2km cable length, and
- ☐ The header length is 24 bits.

#### Delay-throughput Characteristics

