

UED SIM - SysIn

Programmation Orientée Objet : Manipulation de tableaux et d'images matricielles La classe 'ndarray' de numpy Exemple d'environnement fenêtré (GUI Qt)

> Jean-luc Charles (jean-luc.charles@ensam.eu) Éric Ducasse (eric.ducasse@ensam.eu)

Préambule

- L'archive TD-00-2.zip est disponible sur SAVOIR (plate forme E-Learning de Arts & Métiers ParisTech)
- L'extraction du contenu de l'archive place tous les fichiers extraits dans le répertoire TD-00-2.
- Tout le travail qui suit doit être fait dans votre répertoire de travail TD-00-2.

- Ouvrir le fichier TraiterImage.py dans l'éditeur Python IDLE .
- Faire exécuter le fichier par F5. Une fenêtre doit apparaître en haut à droite de l'écran...

Introduction

L'objectif de cette séance est de manipuler des tableaux représentant une image matricielle, en complétant une application encapsulée dans une interface graphique.

La partie " interface graphique " est déjà écrite : on obtient un fenêtre avec à gauche l'image originale, que l'on va charger de manière interactive, et à droite l'image transformée par un traitement spécifié par le programmeur.

Une image matricielle comporte des pixels. Chaque pixel est codé au format ARGB (Alpha, Red, Green, Blue) sur 4 octets, soit 32 bits. Chaque octet représente un niveau entier de 0 à 255, pour l'opacité (" le niveau α ", valant 1 par défaut) puis les trois couleurs primaires (rouge, vert et bleu).

Après un exposé succinct de la structure du programme et de l'architecture des classes utilisées, le travail à réaliser par l'étudiant est spécifié à la fin du présent document.

Présentation de la bibliothèque Qt

Bibliothèque libre (en partie), complète, multilangage (C++, Python...) et multiplateforme. Deux modules principaux :

- QtCore : objets ne concernant pas l'interface graphique (classes QPoint, QLine, QRect...)
- QtGui : tout ce qui concerne le "Graphical User Interface"

Aperçu de l'architecture de classes du module QtGui

Pour en savoir plus sur les classes Qt : http://pyqt.sourceforge.net/Docs/PyQt4/classes.html

Architecture de l'application

La classe FenetrePrincipale contient :

- deux instances de la classe Zonelmage pour afficher l'image initiale et l'image traitée,
- une instance de la classe ARGBArray, qui stocke les pixels de l'image traitée dans des tableaux de type ndarray (classe importée du module numpy).

Diagramme UML détaillé

Organisation du programme pour le traitement d'une image

Les méthodes de traitement HReverse(), VReverse(), ... de la classe ARGBArray sont appelées par la méthode TraiterImage de la classe FenetrePrincipale.

```
class FenetrePrincipale(QWidget):
    def __creerMenuTraiter(self):
    # Menu 'traiter' avec ses item
    m = (Wenu()
    m.addAction('Reinit', self.__Reinit)
    m.addAction('Reverse', self.__Reverse)
    m.addAction('Reverse', self.__YReverse)
    ...
    return m
...
    def __HReverse(self):
    self.__TraiterImage(self.__argbTab.HReverse)
    def __VReverse(self):
    self.__TraiterImage(self.__argbTab.VReverse)
    def __TraiterImage(self.__argbTab.VReverse)
    ...
    # offectuer le traitement,*args):
    ...
# offectuer le traitement choisi
    traitement(*args)
```

```
def HReverse(self):
    u'renversement gauche/droite'
    print u"Methode ARGBArray.HReverse() à compléter"

def VReverse(self):
    u'renversement haut/bas'
    print u"Méthode ARGBArray.VReverse() à compléter"

def Transpose(self):
    u'permutation des axes x et y'
    print u"Méthode ARGBArray.Transpose() à compléter"
    ...
```

Attributs de la classe ARGBArray

- _nbL : nombre de lignes de pixels
- nbC : nombre de colonnes

- _rouges : tableau ndarray de float entre 0 et 1. à deux dimensions
 - _verts : idem
 - _bleus : idem
 - _opacites : idem

La classe ndarray de la bibliothèque numpy

scipy est une bibliothèque de calcul scientifique qui utilise numpy pour le calcul numérique. La classe ndarray permet de définir un tableau à n dimensions (matrices, hypermatrices) contenant des coefficients qui sont tous de même type (tableau homogène).

Méthodes de la classe ndarray pour un tableau à deux dimensions

Constructeur d'un tableau à deux dimensions (matrice) :

• tableau = ndarray((nbLignes, nbColonnes), type)

Extraction du coefficient de la *i*-ème ligne et de la *j*-ème colonne :

• tableau[i,j]

Extraction de la i-ème ligne :

• tableau[i]

Copie de(s) valeur(s) et pas simplement d'une référence :

- tableau entier : newtab = tableau.copy()
- ligne entière : newligne = tableau[i].copy()
- coefficient : newcoef = tableau[i,j]

Permutation des lignes et des colonnes (attention : transpose ne modifie pas l'objet) :

• tableau = tableau.transpose()

Remplissage:

tableau.fill(valeur)

Pour en savoir plus sur numpy .ndarray : http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html

Question 1 : retournements

Écrire les méthodes **HReverse** et **VReverse** qui font subir à chaque tableau __rouges, __verts, __bleus, et __opacites, un renversement respectivement de chaque ligne et de chaque colonne. Les tester.

Question 2: rotations

En utilisant la méthode **transpose** de **ndarray**, créer la méthode **Transpose** qui fait une symétrie de l'image par rapport à l'axe x=y. Penser à mettre à jour tous les attributs de la classe **ARGBArray**. Tester la méthode sur une image rectangulaire.

En combinant les méthodes **VReverse** et **Transpose**, écrire deux nouvelles méthodes **TournerD** et **TournerG** qui font tourner l'image de 90 degrés respectivement dans le sens horaire et dans le sens trigonométrique. Les tester.

Question 3: encadrement

On veut pouvoir entourer une image d'une bande de couleur (cadre).

Écrire la méthode **TracerCadre** dont les arguments sont un quadruplet [a, r, g, b] représentant la couleur du cadre, nbx, sa largeur en pixels, et nby, sa hauteur en pixels.

Le même tableau intermédiaire sera utilisé plusieurs fois, en prenant garde à bien faire des recopies par valeurs et non pas de simples *alias*.

Question 4 : autre transformation

Écrire une autre méthode qui opère une transformation de son choix.

Propositions:

- création d'un quadrillage de couleur, de pas selon x et selon y que l'on peut régler
- effets de transparence
- modifier la balance des couleurs, convertir en noir et blanc, obtenir un négatif
- déformer l'image (multiplier sa largeur par deux, ou sa hauteur, ou les deux)
- etc.