TYPES OF DATA SETS

[Record data; Graphs and networks; Ordered data {sequential}; Spatial, image and multimedia data]

STRUCTURED DATA CHARACTERISTICS

[Dimensionality; Resolution (分解); Sparsity; Distribution (e.g centrality)]

Attributes -> Data Objects -> Data Sets

Boxplot [$Q_1 = 25^{th}$ percentile; <u>Inter Quartile</u> Range = Q_3 - Q_1 ; Outlier > 1.5 * IQR];

Histogram; Quantile plot; Quantile-Quantile (q-q) plot; Scatter plot

VISUALIZATION

1. Pixel-oriented; 2. Geometric projection {direct; scatterplot; landscape; parallel}; 3. Icon-based {Chernoff Faces; stick figures, shape coding; color icons; tile bars}; 4. Hierarchical {dimensional stacking; Worlds-within-worlds; TreeMap; 3D Cone trees, InfoCube); 5. Complex {Tag Cloud; social network}

PROXIMITY (SIMILARITY) (dissimilarity = distance)

1. Nominal [m: matches, p: total variables] $d(i,j) = \frac{p-m}{p}$

1. Nominal [m: matches, p: total variables] $d(i,j) = \frac{p-m}{p}$ 2. Binary {Jaccard / coherence} $1 \quad 0 \quad \text{sum}$ $1 \quad q \quad r \quad q+r$ $0 \quad s \quad t \quad s+t$ $um \quad q+s \quad r+t \quad p$ 3. Numeric Standardizing: $sim(i,j) = \frac{q}{q+r+s}$ $z=\frac{x-\mu}{\sigma} \quad m_f = \frac{1}{n}(x_{1f}+x_{2f}+...+x_{nf}) \quad z_{if} = \frac{x_{if}-m_f}{s_f}$

Numeric Standardizing:
$$setim(t, f) = \frac{1}{q + r + s}$$
 $sore$ or Mean Absolute Deviation $setim(t, f) = \frac{1}{q + r + s}$
 $setim(t, f) = \frac{1}{q + r + s}$
 $setim(t, f) = \frac{1}{q + r + s}$

$$\frac{\sigma}{s_f} = \frac{1}{h}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

Minkowski distance [h = {1: Manhattan; 2: Euclidean; inf: supremum

$$d(i, j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$
Cosine
Ordinal

 $sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$

4. Mixed Type: f is binary or nominal:

 $d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$

 $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ otherwise

f is numeric: use the normalized distance

f is ordinal

☐ Compute ranks r_{if} and

 \Box Treat z_{if} as interval-scaled

$$Z_{if} = \frac{r_{if} - 1}{M_{J} - 1}$$

MEASUREMENT FOR DATA QUALITY

[Accurate, Complete, Consistent, Timely, Believable, Interpretable]

DATA CLEANING

- 1. Incomplete/Missing {global constant; attr mean (global/sameclass); most probable} 2. Noisy {Binning (smooth by bin means / median / boundaries);
- regression; clustering (rm outliers); semi-supervised}
- 3. Discrepancy detection {metadata; overload; uniqueness / consecutive / null rule}

consecutive r name. **DATA INTEGRATION**1. Data integration; 2. Schema integration (metadata);
3. Entity identification; 4. Data conflicts; $\chi^2 = \sum_i^n \frac{(O_i - E_i)^2}{E_i}$

 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$

Correlation analysis X2(chi-square) test: Covariance analysis

Single variable: **sample:
$$\sigma^2 = \text{var}(X) = E[(X - \mu)^2] = E[X^2] - \mu^2 = E[X^2] - [E(x)]$$
The variables are the expectation
$$\hat{\sigma} = \frac{1}{2} \sum_{n=1}^{\infty} (x_n - \hat{\mu}_n)(x_n - \hat{\mu}_n)$$

Covariance analysis

Single variable: *sample: $\sigma^2 = \text{var}(X) = E[(X - \mu)^2] = E[X^2] - \mu^2 = E[X^2] - [E(x)]^2$ Two variables: *sample: $\hat{\sigma}_{12} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_{1})(x_{i2} - \hat{\mu}_{2})$ $\sigma_{12} = E[(X_1 - \mu_{1})(X_2 - \mu_{2})] = E[X_1 - \mu_{1}] = E[$

DATA REDUCTION

1. Regression & Log-linear models [最小二乘; Parametric: 假设符合 模型, 估算参数, 只存储参数, 舍弃除 outlier 的数据; Y: dependent / response / measurement, X: independent / explanatory / predictors] {Linear reg.; Nonlinear reg.; Multiple reg.; Log-linear reg.}

2. Histograms {Equal-width; Equal-freq/depth}, Clustering, Sampling {Simple random ~; ~ w/o or w/ replacement; stratified ~}

4. Data cube aggregation

5. Data compression {String ~ (lossless); Audio/Video ~ (lossy)}

e.g. Wavelet transform [O(N); length 必须二次方]

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2, 1, 4, 4]	[0, -1, -1, 0]
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$\left[\tilde{2}\frac{3}{4}\right]$	$[-1\frac{1}{4}]$
	Given a	database of Tituples, Didim

DATA TRANSFORMATION

shell fragment size, the fragment cubes' space 1. Smoothing [Rm noise from data]; requirement is:

Attr/feature construction (new from old);

2. Attr feature construction (new from old);
3. Aggregation {Summarization; Data cube};
4. Normalization { $v = \min_{v = minL} (new _max_v - new _minL) + new _minL}$ Min-max \sim ;
2-score \sim ;
Decimal scaling \sim [j: smallest integer such that Max(|v'|) < 1]};
5. Discretization {Binning [Equal-width (distance), Equal-depth (first) | Spreathers | New more Decimal (stance) | Equal-depth (first) | Spreathers | New more Decimal (stance) | New more Deci

(freq.); Smoothing: by bin mean/boundary}; Histogram; Clustering; DT; Correlation {Chi-merge (χ^2 -based discretization): [Bottom-up merge] {Find best neighboring intervals (those having similar distributions of classes, i.e., low χ2 values) to merge}}

Concept Hierarchy [Organizes concepts (i.e. attr. val.) hierarchically; usually associated with each dim. in a data warehouse] {Recursively reduce the data by collecting and replacing low level concepts (e.g. age numeric val.) by higher level concepts (e.g. youth, adult, or senior)}

DIMENSIONALITY REDUCTION

(Reduce the number of random variables under consideration, via obtaining a set of principal variables) [Avoid the curse of dim.; Eliminate irrelevant features, reduce noise; Reduce time & space required; Allow easier visualization]

1. Feature selection (find a subset):

Attribute Subset Selection {Redundant, Irrelevant};

Heuristic Search in Attribute Selection {Best single attribute under the attribute independence assumption (choose by significance tests); Best step-wise feature selection (best); Step-wise attribute elimination (worse); Best combined attribute selection and elimination}; Optimal branch and bound (Use attribute elimination and backtracking);}

2. Feature extraction (transform the space);

Principal Component Analysis [*covariance matrix 的特征向量]

DATA WAREHOUSE

[A Subject-oriented, Integrated {multiple, heterogeneous}, Timevariant (t > operational system), Non-volatile: [independent; static (initial loading, access of data)] collection of data in support of management's decision-making process]

Models: {Enterprise warehouse; Data mart; Virtual warehouse} (Extraction Transform Loading)

Conceptual Model {Star schema (1-N); Snow-flake schema (1-N-Ms); Fact constellations (1-N-1s)}

Design Process {Top-down / bottom-up / combination; Software Engineering (waterfall; spiral)} 模型

Usage {Info processing; Analytical processing; DM}

OLTP (OnLine Transactional Processing) [smaller DB size; smaller #records accessed; more users] VS OLAP (OnLine Analytical Processing) {extraction, cleaning, transformation, load}

 ${\bf OLAP\ Server\ Architecture}\ \{\underline{\it Relational\ \underline{\it OLAP}}\ [{\bf Greater\ scalability}];$ <u>Multidimensional OLAP</u> [Sparse array-based multi-dim. storage engine; Fast indexing to pre-computed summarized data]; <u>Hybrid</u> OLAP [Flexibility (low-level: relational, high-level: array)] {e.g. SQLServer}; Specialized SQL servers (e.g., Redbricks)}

Indexing OLAP Data {Bitmap Index} {Each value in the column has a bit vector: bit-op is fast; The length of the bit vector: # of records in the base table; The i-th bit is set if the i-th row of the base table has the value for the indexed column; not suitable for high cardinality domains}

			index on region						inuex on Typ			
ust	Region	Type		RecID	Asia	Europe	America		RecID	Retail	De	
1	Asia	Retail		1	-1	0	0		1	1		
2	Europe	Dealer		2	0	1	0		2	0		
3	Asia	Dealer		3	-1	0	0		3	0		
24	America	Retail		4	0	0	1		4	1		
5	Europe	Dealer		5	0	1	0		5	0		

(A lattice of cuboids (0-D: apex cuboid (parent); n-D: base cuboid))

Measure {Distributive (若应用到 aggregate value 与应用到全部数 $T = \prod_{i=1}^{n} (L_i + 1)$ 据的的结果相同 $(\pi \oplus \pi)$ 到 aggregate value 与应用到全部 π 证明 π 证明 π 是一个 π 是一个 (描述子集所需内存没有常数上限) {median, mode, rank)} OLAP Operation {Roll/Drill-up/down (summarize / detailize); Slice(去掉整个维度); Dice (只取一部分); Pivot (旋转)}

E.g. "SELECT item, city, year, SUM (amount) FROM SALES CUBE product, customer), (date, product),(date, customer), (product, customer), (date), (product), (customer), ()}

<u>Close cube</u> (if there exists no cell d, such that d is a descendant of c, and d has the same measure value as c)

3. BUC (Bottom-Up Computation) [apex-base (Top-Down)]

[PRO: 适合 large-dim.(与 16Fall-Mid-Sol 矛盾?); Iceberg pruning {If a partition < minsup, its descendants pruned}]

4. Semi-Online Computational Model

[Tradeoff: amount of pre-computation VS speed of online computation] [PRO: Offline + online OLAP; High-dim.; Lossless reduction] {将 dimension 分成 shell fragment (不必 disjoint); Compute data cubes

for each shell fragment while retaining inverted indices or value-list indices; Given the pre-computed fragment cubes, dynamically compute cube cells of the high-dimensional data cube online;}

tid	Α	В	С	D	E		Attribute	TID List	List
1	a1	b1	c1	d1	e1		Value		Size
2	a1	b2	c1	d2	e1 🛕	1	a1	123	3
3	a1	b2	c1	d1	e2		a2	45	2
4	a2	b1	c1	d1	e2	۲	b1	145	3
5	a2	b1	c1	d1	e3		b2	2 3	2
_	1 1-					,	c1	12345	5
Cell	Inte	rsectio	n TID	List	List Size		d1	1345	4
a1 b1	123	3 ∩ 1 4	5 :	1	1		d2	2	1
a1 b2	123	3 ∩ 2 3	2	3	2	/	e1	12	2
a2 b1	4.5	∩145	4	5	2	_	e2	3 4	2
a2 b2	4.5	45∩23		Þ	0		e3	5	1

Online Query Computation with Shell-Fragments

[Query form: <a1, a2, ..., an: M>, each a_i has 3 possible values: {Instantiated value; Aggregate * function; Inquire ? Function}] {(e.g., <3, ?, ?, *, 1: count> 返回 a 2-D data cube)}

FREQUENT ITEMSETS / PATTERNS (support ≥ 大于等于!)

Association Rule $(X \rightarrow Y)$ [support = sup $(X \cup Y)$, confidence = $\sup(X \cup Y) / \sup(X)$]; *Closed Pattern* [If X is *frequent*, AND there exists no super-pattern $Y \supset X$, with the same support as X; Lossless compression]; **Max Pattern** [if X is frequent AND there exists no frequent super-pattern Y 5 X; Lossy compression]

PATTERN MINING METHODS

1. Downward Closure / Apriori

{Reduce passes of transaction database scans: { Partitioning [任何可能频繁 @TDB的 itemset 必然在至少一个 TDB's partition 里频繁] {Scan DB only twice; Consolidate global FP); <u>Dynamic itemset counting</u>}; Shrink the number of candidates. Candidates a, b, c, d, e temsets count

number of candidates | Direct Hashing and Pruning | Hash entries | Ab. ad. ae|

threshold 的 k-itemset 必不 Frequent 1-itemset: a, b, d, e

频繁]; <u>Pruning by support</u> ___ ab is not a candidate 2-itemset if the sum of count <u>lower bounding; Sampling</u>}; of {ab, ad, ae} is below support threshold Exploring special data structures {<u>Tree rojection</u>; Atmasaction DB in H

H-miner; Hypecube decomposition}}

*ECLAT (Equivalent CLAss Transformation) (DFS using set intersection) [Tid-List:包含一个 itemset 的 transac.-ids 列表] [t(X) = t(Y): X and Y 总是一起发生); t(X) ⊂ t(Y): 包含 X 的交易 总是包含 Y] {(e.g., Vertical format: t(e) = $\{T_{10},\,T_{20},\,T_{30}\};\,t(a)=\{T_{10},\,T_{20}\};\,t(ae)=\{T_{10},\,T_{20}\};\,t(a$ T_{20} ; $t(ac) = t(d), t(ac) \subset t(ce)$ } *使用 diffset 加速 [Only keep track of diff. of

tids] $\{t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow$

a, b, e b, c, e 10, 20 20, 30 10, 30 10 10, 20, 30

{bd, be, de}

 $Diffset(ce, e) = \{T_{20}\}\}$

2	2. FPGre	owth		
TID		ems in the ansaction	Ordered, frequent items	{扫描 DB 一 次, 找到 single
100	{f, a,	c, d, g, i, m, p	item FP; 按	
200	$\{a, b,$	c, f, l, m, o	$\{f, c, a, b, m\}$	freq 降序排列
300	{b	$,f,h,j,o,w\}$	{f, b}	伊到 f-list; 再
400	{	b, c, k, s, p	$\{c, b, p\}$	- 担 DB 一遍.
500	$\{a, f, c, e, l, p, m, n\}$		$\{a, f, c, e, l, p, m, n\}$ $\{f, c, a, m, p\}$	
	f	4	c:3	构建 FP-tree}
	С	4		T H
	a	3	→ a:3	p:1
	b	3	b:1	ν' /
	m	3		
	р	3	p:2 m:1]
				_

For each conditional pattern-base Mine single-item patterns Construct its FP-tree & mine it p-conditional PB: fcam:2, cb:1 \rightarrow c: 3 m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: fca:1, f:1, c:1 $\rightarrow \phi$

Conditional pattern bases Item Conditional pattern base

f 3 min_support = 3 fc:3 fca:10 f.10 c11 fca:2, fcab:1

8 = 1 (m) + 2^3 (fca), i.e.

fcam:2, cb:1

DB Projection (若 FPTree 放不下内存, scale FPGrowth) {Parallel projection (proj. DB on each freq. item) [Space costly, 所有 partitions 可以并行处理]; Partition projection (partition DB in order) [Passing the unprocessed parts to subsequent partitions]}

CLOSET+ (Efficient, direct mining closed patterns by Pattern-Growth) [Itemset merging: 若 X 出现的地方 Y 也都出现,那么 merge Y with X]

其他: {Hybrid tree projection {Bottom-up physical ~; Top-down pseudo ~} Sub-itemset pruning; Item skipping; Efficient subset checking}

PATTERN EVALUATION

[Interestingness Measure: {Objective (sup., conf., corr.); Subjective [Query-based; Knowledge-base; Visualization]

1. Lift [=1: 独立; >1: lift $(B, C) = \frac{c(B \to C)}{c(B)} = \frac{s(B \cup C)}{c(B)}$ 正相关; <1: 负相关]; s(C) $s(B) \times s(C)$

2. CNI-Square [=0: 独立; \neq 0: 正或负相关]} $\chi^2 = \sum \frac{(Observed - Expected)^2}{\pi}$

Null invariance (Value does not change with the # of null-

transact	tions)							
Meas	sure		Definit	ion	Range	Null-Inva	ıriant	
$\chi^2(A$, B)	$\sum_{i,j}$	$\sum_{i,j=0,1} \frac{(e(a_ib_j) - o(a_ib_j))^2}{e(a_ib_j)}$] No		
Lift(A	A, B)		$\frac{s(A \cup B)}{s(A) \times s(B)}$			No		
AllConf	f(A,B)		$\frac{s(A \cup E)}{max\{s(A),$		[0, 1]	Yes		
Jaccare	l(A, B)	-8	$s(A \cup E \cap A) + s(B) -$		[0, 1]	0, 1] Yes		
Cosine	(A, B)		$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$			Yes		
Kulczyns	ski(A,B)	$\frac{1}{2}$ ($\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$			Yes		
MaxCon	f(A, B)	ma	$x\{\frac{s(A)}{s(A \cup B)},$	$\frac{s(B)}{s(A \cup B)}$ }	[0, 1]	Yes		
Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosi	
D_1	10,000	1.000	1.000	100,000	0.91	0.83	0.91	

Oata set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConj
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99

D_6	1,000	10	100,	000 10	4000		0.0	1	0.	01	().10
3. IR (I				mil	k: ¬:	nilk	Σ_{ro}	w				
R(A,	D) _		s(A)-	s(B)		co;	ffee	me	-	me	с	
n(A,	D) =	s(A)	+s(B)	$-s(A \cup)$	$\overline{B)}$	¬coffee m¬			c -	$\neg m \neg c$:
							col	777		vm.	Σ	
Data set	mc	$\neg mc$	$m\neg c$	$\neg m \neg c$	Jac	card	Cos	ine	Kulc	II.	i	
D_1	10,000	1,000	1,000	100,000	0.	83	0.9	91	0.91	0		
D_2	10,000	1,000	1,000	100	0.	83	0.9	91	0.91	0		
D_3	100	1,000	1,000	100,000	0.	05	0.0	9	0.09	0		
D_4	1,000	1,000	1,000	100,000	0.	33	0.	5	0.5	0		
D_5	1,000	100	10,000	100,000	0.	09	0.5	29	0.5	0.8	9	
D_6	1,000	10	100,000	100,000	0.	01	0.3	10	0.5	0.9	9	
						_						

MINING MULTI-LEVEL ASSOCIATIONS

1. Shared Multi-level Mining [用最低的 min-sup.来 pass down 候选 项集]; 2. Redundancy Filtering [Redundant rule: sup≈祖先的期望 值 AND conf≈祖先;] 3. Use group-based "individualized" minsup

MINING MULTI-DIMENSIONAL ASSOCIATIONS

Multi-dimensional Rules (Items in ≥ 2 dimensions OR predicates) [Inter-dimension association rules (no repeated predicates) $(e.g.~age(``18\text{-}25") \land job(``student") \Rightarrow buys(``coke"));\\$ Hybrid-dimension association rules (repeated predicates) (e.g. age("18-25") ∧ buys("popcorn") ⇒ buys("coke"))]

MINING QUANTITATIVE ASSOCIATIONS

(Mining associations with num. attrs.) 1. Static discretization based on predefined concept hierarchies {Data cube-based aggregation};2. Dynamic discretization based on data distribution;3. Clustering {First one-dimensional clustering, then association}; 4. Deviation analysis (e.g. Gender = F \Rightarrow Wage: mean=\$7/hr (overall mean = \$9))}

* Mining Extraordinary Phenomena in Quantitative Associations [Rule: accepted ONLY IF a stat. test confirms the inference with high conf.; Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule]

MINING NEGATIVE CORRELATIONS

[Rare patterns (sup.很低但有趣); Negative Patterns (负相关: 很少一 起发生); Negatively Correlated (A&B 频繁 AND sup(A∪B) << $sup(A) \times sup(B)$] {Kulczynski measure-based [(P(A|B)+P(B|A))/2 < ϵ , e: negative pattern threshold]};

MINING COMPRESSED PATTERNS [Pattern dist. $Dist(P_1,P_2)=1-\frac{|T(P_1)\cap T(P_2)|}{|T(P_1)\cup T(P_2)|}$ δ -clustering [对每个 pattern P: 找到所有可以用 P 表达 AND 距离 P 在 δ 之内 (δ-cover)}

MINING REDUNDANCY-AWARE PATTERNS

(High significance AND low redundancy) { Maximal Marginal Significance: measure combined significance of a pattern set}

MINING CONSTRAINT-BASED FP

Constraints [Knowledge type ~ (classification; association; clustering; outlier); Data ~ (SQL-like query); Dimension / level ~ (region, price,

brand, cat.); Rule / Pattern ~ (\mbox{m} price < $10 \Rightarrow \mbox{sum} > 200$); Interestingness ~]

META-RULE GUIDED MINING

[Meta rules: 总体上可以用 "P₁ ^ P₂ ^ ... ^ P₁ ⇒ Q₁ ^ Q₂ ^ ... ^ Q_r"的形 式表示] {Find frequent (l + r) predicates (based on *min-support*); Push constants deeply when possible into the mining process (Using constraint-push techniques introduced in this lecture); Also, push min_conf, min_correlation, and other measures as early as possible (measures acting as constraints)}

[设定:在C的限定条件下,从交易T里挖掘当前的FP/P]

PATTERN SPACE PRUNING (Prune 掉整 pattern)

[Anti-monotonic (c 被违反则可以停止深入: Itemset S 违反 C. 则 S 超集均违反): Monotonic (Itemset S 符合 C. S 超集也均符合): Succinct (c can be enforced by directly manipulating the data); Convertible (通过排列 transaction 里的 item 顺序,可转化成其他种 类的条件, 如 avg()-释序)]

DATA SPACE PRUNING (Prune 掉整个 transaction)

[Data succinct (Can be pruned at the initial process): Data anti-一个 data entry 不能满足 pattern P, 它也不能满足 P 的所有超集, 因此可以被 prune)] [应当被 explored recursively]

* <u>Succinctness</u> (Pruning both Data and Pattern Spaces) {Ex. 1: To find patterns without item *i*: {Remove *i* from DB and then mine (pattern space pruning)}; Ex. 2: To find patterns containing item i: {Mine only i-projected DB (data space pruning)}; Ex. 3: c_3 : $min(S.Price) \le v$ is succinct {Start with only items whose price $\le v$ and remove transactions with high-price items only (pattern + data space pruning)}; Ex. 4: c_4 : $sum(S.Price) \ge v$ is not succinct {It cannot be determined beforehand since sum of the price of itemset S keeps increasing);}

* Multiple Constraints: Ex. c_1 : avg(S.profit) > 20, and c_2 : avg(S.price) < 50

Sorted in profit descending order and use c_1 first (assuming c_1 has more pruning power)

For each project DB, sort trans. in price ascending order and use c, at mining

MINING LONG PATTERNS

[挑战: Curse of "downward closure" property of frequent patterns (FP's children 也是 FP, 于是 len 大的会衍生太多子孙)]

Pattern Fusion

[Fuse small patterns together in one step ("short-cuts") to generate new pattern candidates of significant sizes ("leaps")] [PRO: Strive for mining almost complete and representative colossal patterns] [CON: Not strive for completeness] [Core patterns of a colossal pattern α : a set of subpatterns of α that cluster around α by

sharing a similar support; Core patterns: 给定 FP α , 其 subpattern β 是 τ-core pattern of α , 若 β shares a similar support set with α (见右边条件, τ : core ratio, $|D_{\alpha}|$: 数据库 D $\frac{\mid D_{\alpha}\mid}{\mid} \geq \tau$ $0 < \tau \le 1$ 里包含α的 pattern 数量)]

(d, τ)-robustness: 若最多可以去掉 d 个 item, 且剩下的 pattern 是其 τ -core; 一个(d, τ)-robust pattern α 含有 $\Omega(2^d)$ core patterns; Colossol pattern 倾向于含有比 small patterns 多得多的 core patterns]

{在每次迭代中: 从当前 pattern pool 里随机选 K 个 seed patterns; 对 于每个 seed pattern: 找到所有以其为中心的 bounding ball 内的 patterns; 将所有这些找到的 patterns 融合(fuse)到一起来生成 a set of super-patterns; 所有生成的 super-patterns 形成一个新的 pool 用 于下次迭代; 在迭代开始时, 若当前 pool 包含小于等于 K patterns

SEQUENTIAL PATTERN MINING

SI

10

20

(Given a set of sequences, find the complete set of frequent

A <u>se</u>	guence database_	A <u>sequence:</u> < (ef) (ab) (df) c b >
ID	Sequence	
.0	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	☐ An <u>element</u> may contain a set of items (also contain a set of items (a
0	<(ad)c(bc)(ae)>	events)
0	<(ef)(ab)(df)cb>	 Items within an element are unordered and w them alphabetically

☐ Given <u>support threshold</u> <u>min_sup</u> = 2, <(ab)c> is a <u>sequential pattern</u>

1. GSP (Generalized Sequential Patterns) [Apriori based] {Initial candidates: All singleton sequences; Scan DB once, count support for each candidate; Generate length-2 candidate sequences}

5th scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> 4th scan: 8 cand. 7 length-4 seq. pat. 2nd scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> 10 cand, not in DB at all 1st scan: 8 cand. 6 length-1 seq. pat. SID EID Items

2. SPADE (Sequential PAttern <u>Discovery using Equivalent Class</u>)
[Vertical format-based] {A sequence database is mapped to: <SeqID, EleID> (用以判断 candidate 是否存在及其顺序); Grow the subsequences (patterns) one item at a time by Apriori candidate generation)

<a(bc)dc> is a <u>subsequence</u> of <a(abc)(ac)d(cf)>

SID EID a abc ac d cf

ad ae ef ab df SID EID (a) EID(b) SID EID (b) EID(a)

3. PrefixSpan (<u>Prefix</u>-projected <u>S</u>equential <u>PA</u>ttern Mining)

[Given <a(abc)(ac)d(cf)>: Prefixes: <a>, <aa>, <a(ab)>, <a(abc)>, ... Suffix: Prefixes-based projection] [PRO: No candidate subseqs. to be generated; Projected DBs keep shrinking] [CON: Major cost of constructing projected DBs]

{Find length-1 sequential patterns; Divide search space and mine each projected DB}

<(abc)(ac)d(cf)> <a> <aa> <(_bc)(ac)d(cf)> <ab> <(c)(ac)d(cf)>

SID Sequence 10 <a(abc)(ac)d(cf)>Length-1 sequential patterns 20 <(ad)c(bc)(ae)> <a>, , <c>, <d>, <e>, <f> 30 <(ef)(ab)(df)cb> <eg(af)cbc>

prefix prefix <a> <(abc)(ac)d(cf)> Length-2 sequential <(_d)c(bc)(ae)> patterns <(_b)(df)cb> <aa>, <ab>, <(ab)>, <ac>, <ad>, <af> <(_f)cbc> prefix <aa> prefix <af>

Pseudo-Projection [If DB does not fit in memory]

* Physical-Projection [Used when DB can be held in main memory] (No physically copying suffixes; Pointer to the sequence; Offset of the

4. CLOSPAN (Mining Closed Sequential Patterns)

[PRO: Efficienty!; Reduce # of (redundant) patterns; Attain the same expressive powerl

[closed sequential pattern: There exists no super-pattern s' s.t. s' > s AND s' and s have same sup.; If $s \supset s_I$, s is closed iff. two project DBs have the same size] {Explore *Backward Subpattern* and Backward Superpattern pruning to prune redundant search space}

CONSTRAINT-BASED SEQUENTIAL-PATTERN MINING

[Anti-monotonic (If S violates c, the super-sequences of S also violate c); Monotonic (If S satisfies c, the super-sequences of S also do so); <u>Data anti-monotonic</u> (If a sequence s1 with respect to S violates c3, s1 can be removed); <u>Succinct</u> (Enforce constraint c by explicitly manipulating data); Convertible (Projection based on the sorted value not

TIMING-BASED CONSTRAINTS IN SEQ.-PATTERN MINING

[Order constraint (Some items must happen before the other); Anti-monotonic (Constraint-violating sub-patterns pruned); Min-gap/max-gap constraint (Confines two elements in a pattern); Succinct (Enforced directly during pattern growth); <u>Max-span constraint</u> (Maximum allowed time difference between the 1st and the last elements in the pattern); Window size constraint (Events in an element don't have to occur at the same time: Enforce max allowed time difference)]

GRAPH PATTERN MINING

Given a labeled graph dataset $D = \{G_1, G_2, ..., G_n\}$, the supporting graph set of a subgraph g is $D_g = \{G_i \mid g \subseteq G_i, G_i \in D\}$ [support $(g) = |D_g|/|D|$] {Generation of candidate subgraphs: {Apriori vs. pattern growth (e.g., FSG vs. gSpan)}; Search order: {Breadth vs. depth}; Elimination of duplicate subgraphs: {Passive vs. active (e.g., gSpan (Yan&Han'02))}; Support calculation: {Store embeddings (e.g., GASTON, FFSM, MoFa)}; Order of pattern discovery {Path → tree → graph (e.g., GASTON}}

1. gSPAN (Graph Pattern Growth in Order) [Completeness: The enumeration of graphs using right-most path extension is complete; DFS Code: Flatten a graph into a sequence using depth-first search] {Right-most path extension in subgraph pattern growth {Right-most path: The path from root to the right-most leaf (choose the vertex w. the smallest index at each step); Reduce generation of duplicate subgraphs;}}

2. CloseGraph (Mines closed graph patterns directly) [PRO: Lossless compression; Extension of gSpan] {Suppose G and G_{1} are frequent, and G is a subgraph of G1; If in any part of the graph in the dataset (also called where G occurs, G₁ also occurs, then we need not grow G, since none of G's children will be closed except those of G1;}

ed and we list 3. SpiderMine (Mining Top-K Large Structural Patterns in a Massive Network) [Large patterns are composed of a number of small components ("spiders") which will eventually connect together after some rounds of pattern growth] [r-Spider: An r-spider is a frequent graph pattern P such that there exists a vertex u of P, and all other vertices of P are within distance r from u

[PRO: Good for mining large patterns: {Small patterns are much less likely to be hit in the random draw; Even if a small pattern is hit, it is Candidates cannot pass min_sup even less likely to be hit multiple times; The larger the pattern, the threshold greater the chance it is hit and eaved11

> {Graph indexing: } {\it gIndex} (Indexing Frequent and Discriminative Substructures)): Support substructure similarity search {Keep the graph index structure, but select features in the query space}}