Improvable Equilibria

Kirill Rudov - UC Berkeley Fedor Sandomirskiy - Princeton Leeat Yariv - Princeton

Columbia Conference in Economic Theory, September 13, 2024

Introduction

Correlated equilibrium (Aumann, 1974) generalizes Nash equilibrium to allow correlation

• Implementable via mediation, communication, joint randomization, etc.

Introduction

Correlated equilibrium (Aumann, 1974) generalizes Nash equilibrium to allow correlation

• Implementable via mediation, communication, joint randomization, etc.

This project: When is there potential value in correlation?

Games on a Shoestring

Normal-form game

$$\Gamma = \left(N, \ (A_i)_{i \in N}, \ (u_i \colon A \to \mathbb{R})_{i \in N}\right)$$

- $N = \{1, ..., n\}$ is finite set of players
- A_i is a finite set of actions of player i
- $A = \prod_{i \in N} A_i$ is the set of action profiles
- $u_i : A \to \mathbb{R}$ is utility of player i

Correlated Equilibria (CE)

Definition

A distribution $\mu \in \Delta(A)$ is a correlated equilibrium if

$$\sum_{\boldsymbol{\alpha}_{-i} \in A_{-i}} \mu(\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_{-i}) \, u_i(\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_{-i}) \geq \sum_{\boldsymbol{\alpha}_{-i} \in A_{-i}} \mu(\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_{-i}) \, u_i(\boldsymbol{\alpha}_i', \boldsymbol{\alpha}_{-i})$$

for all $i \in N$ and all $a_i, a_i' \in A_i$

Interpretation: μ generated by a mediator and players best respond by adhering

Remark: Nash Equilibria (NE) are CE of the form $\mu = \mu_1 \times ... \times \mu_n$

Approach

- The set of correlated equilibria is a convex polytope
- A polytope is a convex hull of its vertices, aka extreme points

Approach

- The set of correlated equilibria is a convex polytope
- A polytope is a convex hull of its vertices, aka extreme points

Definition

A Nash equilibrium is **extreme** if it is an extreme point of the set of CE

Approach

- The set of correlated equilibria is a convex polytope
- A polytope is a convex hull of its vertices, aka extreme points

Definition

A Nash equilibrium is **extreme** if it is an extreme point of the set of CE

Our Question: When is a Nash equilibrium extreme?

Improvability of non-extreme equilibria

Maximization of a linear objective—e.g., utilitarian welfare—over a polytope P:

Two cases:

- If the optimum is unique, it is an extreme point
 - We call objectives with a unique optimum non-degenerate
 - Utilitarian welfare is non-degenerate, as we will see
- In knife-edge cases, the whole face of P can be optimal

Improvability of non-extreme equilibria

Maximization of a linear objective—e.g., utilitarian welfare—over a polytope P:

Two cases:

- If the optimum is unique, it is an extreme point
 - We call objectives with a unique optimum non-degenerate
 - Utilitarian welfare is non-degenerate, as we will see
- ullet In knife-edge cases, the whole face of P can be optimal

Observation

NE is non-extreme \iff any non-degenerate linear objective can be improved

Improvability of non-extreme equilibria 2

Bauer's Maximum Principle

Any non-degenerate linear or (quasi-)convex objective attains its maximum at an extreme point

- ⇒ Non-extreme equilibria are improvable no matter the objective
- A conservative notion, agnostic to the designer's objective

Summary

- Extreme Nash equilibria = vertices of the set of CE
- Non-extreme Nash are improvable for any non-degenerate linear or convex objective
- This improvability notion seems very demanding
- Are NE often extreme?

Conditions for Extremality

Theorem 1

In a generic *n*-player game, a mixed NE is extreme \iff \leq 2 players randomize

Theorem 1

In a generic *n*-player game, a mixed NE is extreme \iff \leq 2 players randomize

Theorem 1

In a generic *n*-player game, a mixed NE is extreme \iff \leq 2 players randomize

Complete detail-free characterization of extreme Nash equilibria

Pure equilibria are extreme (trivial)

Theorem 1

In a generic *n*-player game, a mixed NE is extreme \iff \leq 2 players randomize

- Pure equilibria are extreme (trivial)
- Equilibria with exactly 2 randomizing players are extreme (Cripps, 1995)

Theorem 1

In a generic *n*-player game, a mixed NE is extreme \iff \leq 2 players randomize

- Pure equilibria are extreme (trivial)
- Equilibria with exactly 2 randomizing players are extreme (Cripps, 1995)
- If 3 or more players randomize, *any* non-degenerate objective can be improved, either by introducing correlation, or by reducing randomness

Theorem 1

In a generic *n*-player game, a mixed NE is extreme \iff \leq 2 players randomize

- Pure equilibria are extreme (trivial)
- Equilibria with exactly 2 randomizing players are extreme (Cripps, 1995)
- If 3 or more players randomize, *any* non-degenerate objective can be improved, either by introducing correlation, or by reducing randomness
 - ⇒ 2-player games not representative

Genericity can be dropped in any game, by considering regular NE only

Definition (informal): a NE is regular if it is stable under small payoff perturbations

Genericity can be dropped in any game, by considering regular NE only

Definition (informal): a NE is regular if it is stable under small payoff perturbations

Theorem 1'

In any game, a regular mixed NE is extreme \iff \leq 2 players randomize

Genericity can be dropped in any game, by considering regular NE only

Definition (informal): a NE is regular if it is stable under small payoff perturbations

Theorem 1'

In any game, a regular mixed NE is extreme \iff \leq 2 players randomize

In a generic game, any NE is regular (Harsanyi, 1973)

Genericity can be dropped in any game, by considering regular NE only

Definition (informal): a NE is regular if it is stable under small payoff perturbations

Theorem 1'

In any game, a regular mixed NE is extreme \iff \leq 2 players randomize

- In a generic game, any NE is regular (Harsanyi, 1973)
- Hence, Theorem 1' ⇒ Theorem 1

Example: 2 Players vs 3 Players

A version of the Game of Chicken by Aumann (1974):

Γ	Risky	Safe	
Risky	6,6	10,7	
Safe	7, 10	9,9	

	Risky	Safe	
Risky	6,6	10, 7	
Safe	7, 10	9,9	
	р	1 – p	

• Mixed NE: (1/2, 1/2) for both players Solves linear equation: $6p + 10(1-p) = 7p + 9(1-p) \implies p = 1/2$

- Mixed NE: (1/2, 1/2) for both players Solves linear equation: $6p + 10(1-p) = 7p + 9(1-p) \implies p = 1/2$
- Aumann (1974): CE can increase utilitarian welfare by shifting weight from (6,6)

- Mixed NE: (1/2, 1/2) for both players Solves linear equation: $6p + 10(1-p) = 7p + 9(1-p) \implies p = 1/2$
- Aumann (1974): CE can increase utilitarian welfare by shifting weight from (6,6)
- However, the mixed NE is an extreme point

- Mixed NE: (1/2, 1/2) for both players Solves linear equation: $6p + 10(1-p) = 7p + 9(1-p) \implies p = 1/2$
- Aumann (1974): CE can increase utilitarian welfare by shifting weight from (6,6)
- However, the mixed NE is an extreme point
- Indeed, it is the optimum for a non-degenerate objective

weight of (Risky, Risky) & (Safe, Safe) \rightarrow max

Safe

	Safe	Risky	
Risky	Safe	Risky	Safe
6,6	10, 7. 7	0, 0, 0	6, 5, 6
7, 10 7	9,9	5, 6, 6	7, 7, 10

Risky

Safe

 Safe
 Risky

 Risky
 Safe
 Risky
 Safe

 6, 6, 5
 10, 7, 7
 7
 7, 10, 7
 9, 9, 9

Safe

	Safe	Risky	
Risky	Safe	Risky	Safe
6, 6, 5	10,7,7	0, 0, 0	6, 5, 6
7, 10, 7	9,9,9	5, 6, 6	7, 7, 10

	Safe	Risky	
Risky	Safe	Risky	Safe
6, 6, 5	10,7,7	0,0,0	6, 5, 6
7, 10, 7	9,9,9	5, 6, 6	7, 7, 10

• Symmetric Mixed NE: $(\sqrt{3/2} - 1, 2 - \sqrt{3/2})$ for each player

- Symmetric Mixed NE: $(\sqrt{3/2} 1, 2 \sqrt{3/2})$ for each player
- Non-linear equation on $p \Rightarrow$ irrational weights (Nash, 1950)

- Symmetric Mixed NE: $(\sqrt{3/2} 1, 2 \sqrt{3/2})$ for each player
- Non-linear equation on $p \Rightarrow$ irrational weights (Nash, 1950)
- However, extreme CE solve a linear system ⇒ have rational coordinates

Example: 3-Player Games

- Symmetric Mixed NE: $(\sqrt{3/2} 1, 2 \sqrt{3/2})$ for each player
- Non-linear equation on $p \Rightarrow$ irrational weights (Nash, 1950)
- However, extreme CE solve a linear system ⇒ have rational coordinates
- The mixed NE is **not extreme**

Example: 3-Player Games

- Symmetric Mixed NE: $(\sqrt{3/2} 1, 2 \sqrt{3/2})$ for each player
- Non-linear equation on $p \Rightarrow$ irrational weights (Nash, 1950)
- However, extreme CE solve a linear system ⇒ have rational coordinates
- The mixed NE is not extreme

More than 2 players mixing makes a difference...

General Proof Intuition

Idea: When many players randomize, there are too many ways to correlate their actions, one must be beneficial

Focus on a particular example to illustrate

• Game with *n* players, each with 2 actions

- Game with *n* players, each with 2 actions
- If μ is a CE, must satisfy incentive constraints

$$\sum_{\alpha_{-i} \in A_{-i}} \mu(\alpha_i, \alpha_{-i}) u_i(\alpha_i, \alpha_{-i}) \geq \sum_{\alpha_{-i} \in A_{-i}} \mu(\alpha_i, \alpha_{-i}) u_i(\alpha_i', \alpha_{-i})$$

- Game with *n* players, each with 2 actions
- If μ is a CE, must satisfy incentive constraints

$$\sum_{\alpha_{-i} \in A_{-i}} \mu(\alpha_i, \alpha_{-i}) u_i(\alpha_i, \alpha_{-i}) \geq \sum_{\alpha_{-i} \in A_{-i}} \mu(\alpha_i, \alpha_{-i}) u_i(\alpha_i', \alpha_{-i})$$

• 2*n* constraints

- Game with *n* players, each with 2 actions
- If μ is a CE, must satisfy incentive constraints

$$\sum_{\alpha_{-i} \in A_{-i}} \mu(\alpha_i, \alpha_{-i}) u_i(\alpha_i, \alpha_{-i}) \geq \sum_{\alpha_{-i} \in A_{-i}} \mu(\alpha_i, \alpha_{-i}) u_i(\alpha_i', \alpha_{-i})$$

- 2n constraints
- Winkler (1988): if k linear constraints are imposed on the set of all distributions $\Delta(A)$, extreme distributions have support $\leq k+1$

- Game with *n* players, each with 2 actions
- If μ is a CE, must satisfy incentive constraints

$$\sum_{\alpha_{-i} \in A_{-i}} \mu(\alpha_i, \alpha_{-i}) u_i(\alpha_i, \alpha_{-i}) \geq \sum_{\alpha_{-i} \in A_{-i}} \mu(\alpha_i, \alpha_{-i}) u_i(\alpha_i', \alpha_{-i})$$

- 2n constraints
- Winkler (1988): if k linear constraints are imposed on the set of all distributions $\Delta(A)$, extreme distributions have support $\leq k+1$
- \Rightarrow support of an extreme CE μ is bounded by 2n+1

ullet Suppose u is a Nash equilibrium with the k players mixing

- ullet Suppose u is a Nash equilibrium with the k players mixing
- The support of ν contains 2^k action profiles

- Suppose ν is a Nash equilibrium with the k players mixing
- The support of ν contains 2^k action profiles
- \Rightarrow For ν to be extreme,

$$2^k \le 2n + 1$$

- Suppose ν is a Nash equilibrium with the k players mixing
- The support of ν contains 2^k action profiles
- \Rightarrow For ν to be extreme,

$$2^k \leq 2n+1$$

• At most $log_2(2n+1)$ out of n players can randomize

- Suppose ν is a Nash equilibrium with the k players mixing
- The support of ν contains 2^k action profiles
- \Rightarrow For ν to be extreme,

$$2^k \le 2n + 1$$

• At most $log_2(2n + 1)$ out of n players can randomize

Conclusion: NE with too much randomness cannot be extreme

• In fact, 3 mixing agents is already too much Patrolls

Extreme Points in Payoff Space

- The set of CE $\subset \Delta(A)$ subset of a space of dimension $|A_1| \cdot \ldots \cdot |A_n|$
- Equilibria are often represented via payoffs in \mathbb{R}^n

Definition

A Nash equilibrium is **payoff-extreme** if its payoff vector is an extreme point of the set of CE payoffs

- The set of CE $\subset \Delta(A)$ subset of a space of dimension $|A_1| \cdot \ldots \cdot |A_n|$
- Equilibria are often represented via payoffs in \mathbb{R}^n

Definition

A Nash equilibrium is **payoff-extreme** if its payoff vector is an extreme point of the set of CE payoffs

Question: What can we say about payoff-extreme equilibria?

Observations:

- CE payoffs = projection of CE to a lower-dimensional space
- Extreme points of a projection \subset projection of extreme points

Observations:

- CE payoffs = projection of CE to a lower-dimensional space
- Extreme points of a projection ⊂ projection of extreme points

Corollary

In a generic game, a Nash equilibrium with ≥ 3 players randomizing is ${f not}$ payoff-extreme

Observations:

- CE payoffs = projection of CE to a lower-dimensional space
- Extreme points of a projection ⊂ projection of extreme points

Corollary

In a generic game, a Nash equilibrium with ≥ 3 players randomizing is **not** payoff-extreme

Projection of an extreme point need not be an extreme point of a projection

Observations:

- CE payoffs = projection of CE to a lower-dimensional space
- Extreme points of a projection ⊂ projection of extreme points

Corollary

In a generic game, a Nash equilibrium with ≥ 3 players randomizing is **not** payoff-extreme

- Projection of an extreme point need not be an extreme point of a projection
- \Rightarrow pure NE and NE with 2 mixers *need not* be payoff-extreme
 - e.g., the mixed NE in the Game of Chicken

 NE is not payoff-extreme ⇒ any non-degenerate linear objective in the space of payoffs can be improved

- NE is not payoff-extreme

 any non-degenerate linear objective in the space
 of payoffs can be improved
- Linear objective in payoffs = weighted welfare

$$W(\mu) = \sum_{i \in N} \alpha_i \sum_{s \in S} U_i(s) \mu(s) o \max$$

- NE is not payoff-extreme

 any non-degenerate linear objective in the space
 of payoffs can be improved
- Linear objective in payoffs = weighted welfare

$$W(\mu) = \sum_{i \in N} \alpha_i \sum_{s \in S} u_i(s) \mu(s) \to \max$$

• The case $\alpha_1 = \ldots = \alpha_n = 1$ corresponds to the **utilitarian welfare**

- NE is not payoff-extreme

 any non-degenerate linear objective in the space
 of payoffs can be improved
- Linear objective in payoffs = weighted welfare

$$W(\mu) = \sum_{i \in N} \alpha_i \sum_{s \in S} U_i(s) \mu(s) \to \max$$

- The case $\alpha_1 = \ldots = \alpha_n = 1$ corresponds to the **utilitarian welfare**
- Non-degeneracy means unique optimum

- NE is not payoff-extreme

 any non-degenerate linear objective in the space
 of payoffs can be improved
- Linear objective in payoffs = weighted welfare

$$W(\mu) = \sum_{i \in N} \alpha_i \sum_{s \in S} U_i(s) \mu(s) \to \max$$

- The case $\alpha_1 = \ldots = \alpha_n = 1$ corresponds to the **utilitarian welfare**
- Non-degeneracy means unique optimum

Proposition

In a generic game, utilitarian welfare is non-degenerate

Applications to Particular

Classes of Games

Costly voting model of Palfrey and Rosenthal (1983):

- Two finite groups of voters: D and R, |R| > |D|
- Voters in D get utility of 1 if d-candidate wins and 0 otherwise
- Voters in R get utility of 1 if r-candidate wins and 0 otherwise
- Majority voting (among those who participate), ties broken randomly
- Costly participation: c > 0

Costly voting model of Palfrey and Rosenthal (1983):

- Two finite groups of voters: D and R, |R| > |D|
- Voters in D get utility of 1 if d-candidate wins and 0 otherwise
- Voters in R get utility of 1 if r-candidate wins and 0 otherwise
- Majority voting (among those who participate), ties broken randomly
- Costly participation: c > 0

Palfrey and Rosenthal (1983): For intermediate values of c, all equilibria involve at least one group all mixing

Costly voting model of Palfrey and Rosenthal (1983):

- Two finite groups of voters: D and R, |R| > |D|
- Voters in D get utility of 1 if d-candidate wins and 0 otherwise
- Voters in R get utility of 1 if r-candidate wins and 0 otherwise
- Majority voting (among those who participate), ties broken randomly
- Costly participation: c > 0

Palfrey and Rosenthal (1983): For intermediate values of c, all equilibria involve at least one group all mixing

⇒ These equilibria are not extreme

Costly voting model of Palfrey and Rosenthal (1983):

- Two finite groups of voters: D and R, |R| > |D|
- Voters in D get utility of 1 if d-candidate wins and 0 otherwise
- Voters in R get utility of 1 if r-candidate wins and 0 otherwise
- Majority voting (among those who participate), ties broken randomly
- Costly participation: c > 0

Palfrey and Rosenthal (1983): For intermediate values of c, all equilibria involve at least one group all mixing

⇒ These equilibria are not extreme

Other Applications: games where players want to mismatch actions of others

Costly voting model of Palfrey and Rosenthal (1983):

- Two finite groups of voters: D and R, |R| > |D|
- Voters in D get utility of 1 if d-candidate wins and 0 otherwise
- Voters in R get utility of 1 if r-candidate wins and 0 otherwise
- Majority voting (among those who participate), ties broken randomly
- Costly participation: c > 0

Palfrey and Rosenthal (1983): For intermediate values of c, all equilibria involve at least one group all mixing

⇒ These equilibria are not extreme

Other Applications: games where players want to mismatch actions of others

 e.g., network games (with substitutes), congestion games, all-pay auctions, Boston matching mechanism

- In many applications, strategic interactions are symmetric
- When are symmetric equilibria extreme?

- In many applications, strategic interactions are symmetric
- When are symmetric equilibria extreme?

Theorem 2

In any symmetric game with $n \ge 3$ players, a completely mixed symmetric NE is not extreme in the (smaller!) set of symmetric CE

- In many applications, strategic interactions are symmetric
- When are symmetric equilibria extreme?

Theorem 2

In any symmetric game with $n \ge 3$ players, a completely mixed symmetric NE is not extreme in the (smaller!) set of symmetric CE

- No genericity or regularity assumptions
- Any pure strategy must be played with a positive probability

- In many applications, strategic interactions are symmetric
- When are symmetric equilibria extreme?

Theorem 2

In any symmetric game with $n \ge 3$ players, a completely mixed symmetric NE is not extreme in the (smaller!) set of symmetric CE

- No genericity or regularity assumptions
- Any pure strategy must be played with a positive probability

Take-away: caution when focusing on symmetric mixed equilibria in symmetric games

Games with Unique Correlated Equilibrium

- Games with a unique CE form an open set (Viossat, 2010)
- NE=CE ⇒ robustness to incomplete information about payoffs (Einy et al., 2022)

Games with Unique Correlated Equilibrium

- Games with a unique CE form an open set (Viossat, 2010)
- NE=CE ⇒ robustness to incomplete information about payoffs (Einy et al., 2022)

Corollary

If a game has a unique correlated equilibrium ν , then ν is either:

- A pure Nash equilibrium, or
- A Nash equilibrium where exactly two players randomize

Games with Unique Correlated Equilibrium

- Games with a unique CE form an open set (Viossat, 2010)
- NE=CE ⇒ robustness to incomplete information about payoffs (Einy et al., 2022)

Corollary

If a game has a unique correlated equilibrium ν , then ν is either:

- A pure Nash equilibrium, or
- A Nash equilibrium where exactly two players randomize
- No genericity assumption needed thanks to the open-set property

What Extreme CE Look Like

For a non-extreme NE, any non-degenerate objective can be strictly improved by switching to an extreme CE

Question: What is the structure of extreme CE?

What Extreme CE Look Like

For a non-extreme NE, any non-degenerate objective can be strictly improved by switching to an extreme CE

Question: What is the structure of extreme CE?

- For general games, we only know that extreme CE have small support
- For symmetric games and symmetric CE, we can say more

Symmetric CE and Exchangability

Observation:

• For a symmetric CE, the random variables a_1, \ldots, a_n are exchangeable

Symmetric CE and Exchangability

Observation:

- For a symmetric CE, the random variables a_1, \ldots, a_n are exchangeable
- If $n \to \infty$, the structure of exchangeable distributions is well-known

Symmetric CE and Exchangability

Observation:

- For a symmetric CE, the random variables a_1, \ldots, a_n are exchangeable
- If $n \to \infty$, the structure of exchangeable distributions is well-known

Theorem (de Finetti)

Any infinite exchangeable sequence $a_1, a_2, a_3 \dots$ is a mixture of i.i.d. distributions

- Consider a symmetric game with *m* actions per player
- Assume the number of players *n* is large

- Consider a symmetric game with m actions per player
- Assume the number of players *n* is large

Proposition 2

Any extreme symmetric CE can be approximated by a mixture of m(m-1)+1 i.i.d. distributions

- Consider a symmetric game with m actions per player
- Assume the number of players *n* is large

Proposition 2

Any extreme symmetric CE can be approximated by a mixture of m(m-1)+1 i.i.d. distributions

• For m=2, a mixture of 3 i.i.d. distributions \Rightarrow 5-parameter family of extreme CE

- Consider a symmetric game with m actions per player
- Assume the number of players *n* is large

Proposition 2

Any extreme symmetric CE can be approximated by a mixture of m(m-1)+1 i.i.d. distributions

- For m=2, a mixture of 3 i.i.d. distributions \Rightarrow 5-parameter family of extreme CE
- A radical dimension reduction

- Consider a symmetric game with m actions per player
- Assume the number of players *n* is large

Proposition 2

Any extreme symmetric CE can be approximated by a mixture of m(m-1)+1 i.i.d. distributions

- For m=2, a mixture of 3 i.i.d. distributions \Rightarrow 5-parameter family of extreme CE
- A radical dimension reduction

Question: What if we want the exact result, not an approximation?

- Consider a symmetric game with m actions per player
- Assume the number of players n is large

Proposition 2

Any extreme symmetric CE can be approximated by a mixture of m(m-1)+1 i.i.d. distributions

- For m=2, a mixture of 3 i.i.d. distributions \Rightarrow 5-parameter family of extreme CE
- A radical dimension reduction

Question: What if we want the exact result, not an approximation?

• A version of Proposition 2 holds: sampling without replacement instead of i.i.d.

Several papers effectively show extremality of NE in specific contexts:

- Tullock contests, Cournot and Bertrand, patent races, location games (Einy, Haimanko, and Lagziel, 2022)
- First-price auctions (Feldman, Lucier, and Nisan, 2016)
- Convex potential games (Neyman, 1997; Ui, 2008)
- Two-player normal-form games (Cripps, 1995)

Several papers effectively show extremality of NE in specific contexts:

- Tullock contests, Cournot and Bertrand, patent races, location games (Einy, Haimanko, and Lagziel, 2022)
- First-price auctions (Feldman, Lucier, and Nisan, 2016)
- Convex potential games (Neyman, 1997; Ui, 2008)
- Two-player normal-form games (Cripps, 1995)

Our paper:

- a tension between equilibrium randomness and extremality
- detail-free criterion for extremality in various settings

Several papers effectively show extremality of NE in specific contexts:

- Tullock contests, Cournot and Bertrand, patent races, location games (Einy, Haimanko, and Lagziel, 2022)
- First-price auctions (Feldman, Lucier, and Nisan, 2016)
- Convex potential games (Neyman, 1997; Ui, 2008)
- Two-player normal-form games (Cripps, 1995)

Our paper:

- a tension between equilibrium randomness and extremality
- detail-free criterion for extremality in various settings

Ongoing:

- Incomplete information
- "Correlated implementation" in mechanism design

Several papers effectively show extremality of NE in specific contexts:

- Tullock contests, Cournot and Bertrand, patent races, location games (Einy, Haimanko, and Lagziel, 2022)
- First-price auctions (Feldman, Lucier, and Nisan, 2016)
- Convex potential games (Neyman, 1997; Ui, 2008)
- Two-player normal-form games (Cripps, 1995)

Our paper:

- a tension between equilibrium randomness and extremality
- detail-free criterion for extremality in various settings

Ongoing:

- Incomplete information
- "Correlated implementation" in mechanism design

Thank you!

Simulations

Key Lemmas

Support Size of Extreme Correlated Equilibria (follows from Winkler (1988))

If μ is an extreme correlated equilibrium, then

$$\operatorname{supp}(\mu) \le 1 + \sum_{i \in N} |S_i| \cdot (|S_i| - 1)$$

Support Size of Regular Nash Equilibria (McKelvey and McLennan, 1997)

For a regular Nash equilibrium, $\nu = (\nu_1, \nu_2, \dots, \nu_n)$:

$$supp(\nu_i) - 1 \le \sum_{j \ne i} (supp(\nu_j) - 1),$$
 for any player i

Regularity of Generic games (Harsanyi, 1973)

In a generic game, any Nash equilibrium is regular

General linear objectives

- \bullet Consider a NE ν
- \bullet For simplicity, ν has full support
- By Farkas lemma, a linear objective L can be improved for $\nu \Longleftrightarrow L$ cannot be expressed as

$$L(\mu) = C + \sum_{i,\alpha_i,\alpha_i',\alpha_{-i}} \mu(\alpha) \cdot \lambda_i(\alpha_i,\alpha_i') \cdot \left(u_i(\alpha_i,\alpha_{-i}) - u_i(\alpha_i',\alpha_{-i}) \right)$$

for some $\lambda_i(a_i, a_i') \geq 0$.

• For non-extreme NE ν , "bad" L form a lower-dimensional subspace

Extreme Symmetric CE with Any Number of Players

Consider *n* players with *m* actions each

Proposition

Any extreme symmetric CE can be obtained as follows:

• there are M urns, each with n balls labeled by actions

$$1 \leq M \leq m(m-1)+1$$

- an urn is selected at random according to $p \in \Delta_M$, secretly from players
- players draw balls sequentially without replacement
- i's action = her ball's label, no incentive to deviate

Remark: If *n* is large, sampling without replacement can be approximated by i.i.d.

Bayesian games

Bayesian Games

Bayesian game

$$\mathcal{B} = \left(N, \ (A_i)_{i \in N}, \ (T_i)_{i \in N}, \ \tau \in \Delta(T), \ (u_i \colon A \times T_i \to \mathbb{R})_{i \in N}\right)$$

- Each player $i \in N$ has a type $t_i \in T_i$
- Profile of types $(t_1, \ldots, t_n) \in T$ sampled from τ
- Each player i observes her realized type
- Utility $u_i: A \times T_i \to \mathbb{R}$ depends on the action profile and i's type

Technical assumption: sets of types T_i are finite

Bayesian Correlated Equilibria (BCE)

Definition

A joint distribution $\mu \in \Delta(A \times I)$ is a Bayesian correlated equilibrium if

- ullet The marginal on ${\it T}$ coincides with ${\it au}$
- For each player i, type t_i , recommended action a_i , and deviation a'_i ,

$$\sum_{(\alpha_{-i},t_{-i})} \mu \big((\alpha_i,t_i), (\alpha_{-i},t_{-i}) \big) \, u_i(\textbf{a}_i,t_i,\alpha_{-i}) \geq \sum_{(\alpha_{-i},t_{-i})} \mu \big((\alpha_i,t_i), (\alpha_{-i},t_{-i}) \big) \, u_i(\textbf{a}_i',t_i,\alpha_{-i})$$

Interpretation: a mediator having access to realized types recommends actions to each player. Two aspects:

- 1. Ex-ante coordination: a source of correlated randomness (as in CE)
- 2. Information sharing: providing i more info about t_{-i} than contained in t_i

Remark: Bergemann and Morris (2016) allow for a broader class of BCE, where player *i* observes a noisy signal about her type

Induced Complete Information Game

We can associate a complete information normal form game $\Gamma_{\mathcal{B}}$ with \mathcal{B} :

- Replace A_i with set of functions $\sigma_i: T_i \to A_i$
- Σ_i is the set of all such σ_i
- Utility $v_i : \Sigma \to \mathbb{R}$ is given by

$$V_i(\sigma) = \sum_{t \in T} \tau(t) \cdot u_i((\sigma_1(t_1), \dots, \sigma_n(t_n)), \ t_i)$$

Induced Complete Information Game

$$\Gamma_{\mathcal{B}} = (N, (\Sigma_i)_{i \in N}, (V_i)_{i \in N})$$

Question: What is a relation between CE of Γ_B and BCE of B?

Induced complete information game

Relationship between equilibria in $\Gamma_{\mathcal{B}}$ and \mathcal{B}

CE in $\Gamma_{\mathcal{B}} \Leftrightarrow \text{ex-ante}$ coordination in \mathcal{B} with no information sharing

• i.e., BCE such that a_i is independent of t_{-i} conditionally on t_i

Nash in $\Gamma_{\mathcal{B}} \Leftrightarrow \mathsf{Bayes}\text{-Nash}$ in \mathcal{B}

Observation: Generic $\mathcal B$ leads to generic $\Gamma_{\mathcal B}$

 $\bullet \ \Rightarrow$ we can apply our theorem to $\Gamma_{\mathcal{B}}$ to learn about generic ${\mathcal{B}}$

Corollary

For a generic Bayesian game, a Bayes-Nash equilibrium is improvable via ex-ante coordination \iff at least 3 players randomize

Applies to Bayesian games where players randomize in equilibrium, e.g., costly voting with private types (Feddersen and Pesendorfer, 1997) and contests (Baranski and Goel, 2024)

References

- Aumann, R. J. (1974). Subjectivity and correlation in randomized strategies. *Journal of mathematical Economics* 1(1), 67–96.

 Baranski, A. and S. Goel (2024). Contest design with a finite type-space. *to appear*.
- Bergemann, D. and S. Morris (2016). Bayes correlated equilibrium and the comparison of information structures in games. *Theoretical Economics* 11(2), 487–522.
 Cripps, M. (1995). Extreme correlated and nash equilibria in two-person games.
- Einy, E., O. Haimanko, and D. Lagziel (2022). Strong robustness to incomplete information and the uniqueness of a correlated equilibrium. *Economic Theory* 73(1), 91–119.

Feddersen, T. and W. Pesendorfer (1997). Voting behavior and information

- aggregation in elections with private information. *Econometrica: Journal of the Econometric Society*, 1029–1058.

 Feldman, M., B. Lucier, and N. Nisan (2016). Correlated and coarse equilibria of single-item auctions. In *Web and Internet Economics: 12th International Conference, WINE 2016, Montreal, Canada, December 11-14, 2016, Proceedings*
- 12, pp. 131–144. Springer.Harsanyi, J. C. (1973). Oddness of the number of equilibrium points: a new proof.International Journal of Game Theory 2, 235–250.
- McKelvey, R. D. and A. McLennan (1997). The maximal number of regular totally mixed nash equilibria. *Journal of Economic Theory* 72(2), 411–425.

- Nash, J. F. (1950). Non-cooperative games. Neyman, A. (1997). Correlated equilibrium and potential games. *International*
- Journal of Game Theory 26, 223–227.
- Palfrey, T. R. and H. Rosenthal (1983). A strategic calculus of voting. *Public Choice* 41(1), 7–53.
- Ui, T. (2008). Correlated equilibrium and concave games. *International Journal of*
- Game Theory 37, 1–13.
- Viossat, Y. (2010). Properties and applications of dual reduction. *Economic theory 44*, 53–68.
- Winkler, G. (1988). Extreme points of moment sets. *Mathematics of Operations Research* 13(4), 581–587.