Phương pháp lai ghép đường dốc nhất giải bài toán bất đẳng thức biến phân

GV hướng dẫn: PGS.TS. Nguyễn Thị Thu Thủy

SVTH: Vũ Thị Tâm

Viện Toán ứng dụng và Tin học Trường Đại học Bách khoa Hà Nội

Ngày 5 tháng 3 năm 2022

Nội dung chính

- 1 Tóm tắt
- 2 Một số khái niệm về toán tử chiếu trong không gian Hilbert
 - Ánh xạ không giãn
 - Toán tử chiếu
 - Toán tử đơn điệu
- 3 Bài toán bất đẳng thức biến phân (VIP) và các bài toán liên quan
 - Bài toán bất đẳng thức biến phân
 - Bài toán giải phương trình toán tử
 - Bài toán điểm bất động
- 4 Phương pháp lai ghép đường dốc nhất
- 5 Ví dụ số minh họa

Nội dung

Tóm tắt nội dung chính

- 1) Giới thiệu bài toán bất đẳng thức biến phân (VIP); bài toán giải phương trình toán tử và bài toán điểm bất động
- 2) Trình bày phương pháp lai ghép đường dốc nhất xấp xỉ nghiệm bài toán bất đẳng thức biến phân VIP
- 3) Đưa ra ví dụ số minh họa

Ánh xạ không giãn

Dinh nghĩa

Cho C là một tập con khác rỗng của không gian Hilbert thực H. Ánh xạ $T:C\to H$ được gọi là

(i) Ánh xạ L-liên tục Lipschitz trên C nếu tồn tại hằng số $L \geq 0$ sao cho

$$||T(x) - T(y)|| \le L||x - y|| \quad \forall x, y \in C.$$
 (1)

(ii) Trong (1), nếu $L \in [0,1)$ thì T được gọi là ánh xạ co; nếu L=1 thì T được gọi là ánh xạ không giãn.

Toán tử chiếu trong không gian Hilbert

Cho C là một tập con lồi đóng khác rỗng trong không gian Hilbert thực H. Phép chiếu mêtric chiếu H lên C được định nghĩa như sau: với mỗi $x \in H$ tồn tại duy nhất một phần tử $P_C x \in C$ thỏa mãn

$$||x - P_C x|| \le ||x - y|| \quad \forall y \in C.$$
 (2)

Hình: Minh họa về phép chiếu metric

Bổ đề

 ${\it Giả}$ sử P_C là phép chiếu mêtric chiếu không gian Hilbert thực H lên một tập con lồi, đóng, khác rỗng C của H. Khi đó các kết luận sau là đúng:

ullet $z=P_Cx$ nếu và chỉ nếu bất đẳng thức sau thỏa mãn

$$\langle x - z, y - z \rangle \le 0, \quad x \in H, \ y \in C$$
 (3)

• Với mọi $x,y \in H$,

$$||P_C x - P_C y||^2 \le \langle P_C x - P_C y, x - y \rangle. \tag{4}$$

Đặc biệt P_C là ánh xạ không giãn, nghĩa là

$$||P_C x - P_C y|| \le ||x - y|| \quad \forall x, y \in H$$
 (5)

• Với mọi $x,y \in H$ ta có

$$\|(I - P_C x) x - (I - P_C y) y\|^2 \le \langle (I - P_C) x - (I - P_C) y, x - y \rangle.$$

Toán tử đơn điệu

Cho C là một tập con lồi đóng khác rỗng trong không gian Hilbert thực H, $T:C\to H$ là một toán tử từ C vào H. Toán tử A được gọi là:

(i) Toán tử đơn điệu nếu

$$\langle Tx - Ty, x - y \rangle \ge 0 \quad \forall x, y \in C$$
 (8)

(ii) Toán tử $\eta\text{-dơn}$ điệu mạnh, nếu tồn tại một hằng số $\eta>0$ sao cho

$$\langle Tx - Ty, x - y \rangle \ge \eta ||x - y||^2 \quad \forall x, y \in C$$
 (9)

(iii) Toán tử đơn điệu mạnh ngược trên C với hệ số $\beta>0$ (hay β -đơn điệu mạnh ngược trên C) nếu

$$\langle Tx - Ty, x - y \rangle \ge \beta ||Tx - Ty||^2 \quad \forall x, y \in C.$$

Bài toán bất đẳng thức biến phân

Cho C là một tập con lồi đóng khác rỗng trong không gian Hilbert thực H và ánh xạ $F:C\to H$. Bài toán bất đẳng thức biến phân xác định bởi miền ràng buộc C và ánh xạ F (thường gọi là ánh xạ giá hay ánh xạ mục tiêu), ký hiệu $\operatorname{VI}(F,C)$, là bài toán:

Tim
$$x^* \in C$$
 sao cho $\langle F(x^*), x - x^* \rangle \ge 0 \quad \forall x \in C.$ (10)

Tập nghiệm của bài toán bất đẳng thức biến phân (10) với ánh xạ giá F và tập ràng buộc C được ký hiệu là $\Omega_{(F,C)}$.

Bài toán giải phương trình toán tử

Mênh đề

Nếu $H=\mathbb{R}^n$, $C=\mathbb{R}^n$ và ánh xạ $F:\mathbb{R}^n\to\mathbb{R}^n$ thì $x^*\in\mathbb{R}^n$ là nghiệm của bài toán bất đẳng thức biến phân $\mathrm{VI}(F,C)$ khi và chỉ khi x^* là nghiệm của phương trình toán tử $F(x^*)=0$.

Bài toán điểm bất động

Cho C là tập con khác rỗng của không gian Hilbert thực H và ánh xạ $T:C\to C$. Điểm $x\in C$ được gọi là điểm bất động của ánh xạ T nếu T(x)=x.

Ký hiệu tập điểm bất động của ánh xạ T là $\mathrm{Fix}(T)$, nghĩa là

$$\mathsf{Fix}(T) := \big\{ x \in C : \quad T(x) = x \big\}.$$

Bổ đề

Cho C là một tập con lồi đóng khác rỗng của không gian Hilbert thực H và ánh xạ $T:C\to C$. Cho $x^*\in C$ và $\lambda>0$. Khi đó, $x^*\in\Omega_{FC}$ khi và chỉ khi $x^*\in\operatorname{Fix}(T)$, ở đây $T(x)=P_C(x-\lambda F(x))$.

Điều kiện tồn tại duy nhất nghiệm

Điều kiện tồn tại duy nhất nghiệm

Nếu F là ánh xạ η -đơn điệu mạnh và L-liên tục Lipschitz ánh xạ vào C thì $\mathrm{VI}(F,C)$ có nghiệm duy nhất.

Phương pháp lai ghép đường dốc nhất

Điều kiện ban đầu

Giả sử C là tập điểm bất động của ánh xạ không giãn $T:H\to H.$ Giả sử F là ánh xạ η -đơn điệu mạnh và L-liên tục Lipschitz trên C thỏa mãn:

$$||Fx - Fy|| \le L||x - y||, \quad x, y \in C,$$
 (11)

$$\langle Fx - Fy, x - y \rangle \ge \eta \|x - y\|^2, \quad x, y \in C.$$
 (12)

Lấy một số cố định $\mu\in \left(0,2\eta/L^2\right)$ và một dãy số thực $\{\lambda_n\}$ trong khoảng (0,1) thỏa mãn các điều kiện dưới đây:

- **(L1)** $\lim_{n\to\infty} \lambda_n = 0$;
- **(L2)** $\sum_{n\to\infty} \lambda_n = \infty$;
- (L3) $\lim_{n\to\infty} (\lambda_n \lambda_{n+1})/\lambda_{n+1}^2 = 0.$

Để giảm phức tạp, ta thay điều kiện (L3) và (L4) bởi:

(L3)'
$$\lim_{n \to \infty} \frac{\lambda_n}{\lambda_{n+1}} = 1$$
 hoặc tương đương $\lim_{n \to \infty} \frac{\lambda_n - \lambda_{n+1}}{\lambda_{n+1}} = 0$

(L4)'
$$\lim_{n\to\infty}\frac{\lambda_n}{\lambda_{n+N}}=1$$
 hoặc tương đương $\lim_{n\to\infty}\frac{\lambda_n-\lambda_{n+N}}{\lambda_{n+N}}=0.$

Công thức lặp xấp xỉ nghiệm

Giả sử rằng C là tập điểm bất động của ánh xạ không giãn $T:H\to H.$ Cho $u_0\in H$ tùy ý và gọi $\{\lambda_n\}$ là một dãy trong [0,1]. Phương pháp lai ghép đường dốc nhất được Yamada giới thiệu là công thức

$$u_{n+1} := T^{\lambda_{n+1}} u_n = T u_n - \lambda_{n+1} \mu F(T u_n), \quad n \ge 0$$
 (13)

Trong trường hợp C là giao của các tập hợp điểm bất động của N ánh xạ không giãn $T_i \colon H \to H$

$$C = \bigcap_{i=1}^{N} \operatorname{Fix} (T_i),$$

với $N \geq 1$ nguyên, dãy $\{u_n\}$ có thể được viết lại ở dạng

$$u_{n+1} = T_{[n+1]}^{\lambda_{n+1}} u_n = T_{[n+1]} u_n - \lambda_{n+1} \mu F\left(T_{[n+1]} u_n\right), \quad n \ge 0.$$
 (14)

trong đó $T_{[k]}:=T_{k\mod N}$, trong đó số nguyên $k\ge 1$, với hàm mod nhận các giá trị trong tập $\{1,2,...,N\}$

Sự hội tụ nghiệm của phương pháp

Định lý hội tụ

Giả sử rằng $0<\mu<2\eta/L^2$ và các điều kiện (L1), (L2), (L3)' đặt lên dãy tham số $\{\lambda_n\}$ được thỏa mãn. Khi đó, dãy $\{u_n\}$ sinh ra bởi thuật toán (13) hội tụ mạnh về nghiệm duy nhất u^* của bài toán $\mathrm{VI}(F,C)$.

Sự hội tụ nghiệm của phương pháp

Sự hội tụ mạnh của dãy lặp (14) được nêu trong định lý sau.

Định lý

Cho $\mu\in \left(0,2\eta/L^2\right)$ và các điều kiện $(L1),\,(L2),\,(L4)'$ thỏa mãn. Giả sử thêm rằng

$$C = \bigcap_{n=1}^{N} \operatorname{Fix}(T_{i}) = \operatorname{Fix}(T_{1}T_{2}\cdots T_{N})$$

$$= \operatorname{Fix}(T_{N}T_{1}\cdots T_{N-1})$$

$$= \cdots = \operatorname{Fix}(T_{2}T_{3}\cdots T_{N}T_{1}). \tag{15}$$

Khi đó, dãy $\{u_n\}$ được tạo bởi thuật toán (14) hội tụ mạnh (hội tụ theo chuẩn) tới nghiệm duy nhất u^* của bài toán VI(F,C).

Ví dụ số minh họa

Ví du

Xét $H=\mathbb{R}^3$, ánh xạ giá F, ánh xạ không giãn T và tập ràng buộc C được cho như sau:

- $\bullet \ F: \mathbb{R}^3 \to \mathbb{R}^3 \ \text{xác định bởi} \ Fx = \frac{2}{5} Mx \ \text{với} \ M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$
- $T: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi $Tx = P_C x$;
- $C = \{x \in \mathbb{R}^3 \mid 2x_1 3x_2 x_3 \le 5\} \subset \mathbb{R}^3$.

Giải

Trước hết ta tìm nghiệm của bài toán bất đẳng thức biến phân ${\sf VI}(F,C)$. Gọi x^* là nghiệm của bài toán ${\sf VI}(F,C)$,

$$\begin{split} \langle Fx^*, x - x^* \rangle &\geq 0 \quad \forall x \in C \\ \Leftrightarrow \quad \left\langle \frac{2}{5}x^*, x - x^* \right\rangle &\geq 0 \quad \forall x \in C \\ \Leftrightarrow \quad \left\langle x^*, x - x^* \right\rangle &\geq 0 \quad \forall x \in C \\ \Leftrightarrow \quad \left\langle x^*, x^* \right\rangle &\leq \left\langle x^*, x \right\rangle \quad \forall x \in C \\ \Leftrightarrow \quad \left\| x^* \right\|^2 &\leq \left\langle x^*, \ x \right\rangle &\leq \left\| x^* \right\| . \left\| x \right\| \text{ (BDT Cauchy - Schwart)} \quad \forall x \in C \\ \Leftrightarrow \quad \left\| x^* \right\| &\leq \left\| x \right\| \quad \forall x \in C. \end{split}$$

Vậy nghiệm của bài toán $\mathrm{VI}(F,C)$ trong trường hợp này là điểm x^* có chuẩn nhỏ nhất trong C.

Hình: Hình ảnh siêu phẳng $2x_1 - 3x_2 - x_3 = 5$ trong không gian ba chiều

Tập C là nửa không gian chứa điểm gốc tọa độ (0,0,0) có mặt phẳng tựa là mặt phẳng $2x_1-3x_2-x_3=5$ như trên hình. Do C chứa điểm x=(0,0,0) nên hiển nhiên $x^*=(0,0,0)$ là nghiệm của bài toán $\mathrm{VI}(F,C)$.

Giải nghiệm xấp xỉ bằng phương pháp HSDM

Kiểm tra điều kiên

Trước hết, ta kiểm tra các điều kiện đặt lên ánh xạ giá F và ánh xạ không giãn T:

- F là ánh xạ η -đơn điệu mạnh trên C và L-liên tục Lipschitz C với $\eta=\frac{2}{5}$ và L=0.692820323027551 (sử dụng Python với hàm np.linalg.norm());
- Vì $Tx = P_C x$ nên T là ánh xạ không giãn trên C.

Chọn $\lambda_n=\frac{1}{n}$, dễ thấy dãy $\{1/n\}$ thỏa mãn các điều kiện (L1), (L2) và (L3)'; với η và L đã được xác định, ta chọn $\mu\in(0,2\eta/L^2)$ tùy ý.

Thực hiện lặp xấp xỉ nghiệm

Ta tính toán dãy lặp (13) với tiêu chuẩn dừng là sai số giữa nghiệm xấp xỉ và nghiệm đúng nhở hơn $\varepsilon>0$ cho trước với $\varepsilon=10^{-6}$.

Lần lặp k	x_1^k	x_2^k	x_3^k	$ x^k - x^* $
1	0.2448	0.4896	0.7344	0.9159577282822605
2	0.06932736	0.13865472	0.20798208	0.25939922864953613
3	0.02096459	0.04192919	0.06289378	0.07844232674361971
4	0.00658121	0.01316241	0.01974362	0.024624615211357097
5	0.00211652	0.00423303	0.00634955	0.00791927625197244
13	$3.51031183 \times 10^{-7}$	$7.02062366 \times 10^{-7}$	$1.05309355 \times 10^{-6}$	$1.3134384181531868 \times 10^{-6}$
14	$1.20979387 \times 10^{-7}$	$2.41958774 \times 10^{-7}$	$3.62938161 \times 10^{-7}$	$4.526634164323142 \times 10^{-7}$

Hình: Kết quả tính toán dãy lặp (13) với $x^0 = (1,2,3)^{\mathsf{T}}$, $\lambda = 1/n$, $\mu = 1.6$.

Kết quả các lần lặp

Lần lặp k	x_1^k	x_2^k	x_3^k	$ x^{k} - x^{*} $
1	0.48	0.96	1.44	1.7959955456514918
2	0.2496	0.4992	0.7488	0.9339176837387758
3	0.134784	0.269568	0.404352	0.5043155492189388
4	0.07440077	0.14880154	0.2232023	0.27838218316885427
5	0.04166443	0.08332886	0.12499329	0.15589402257455837
27	$3.00787358 \times 10^{-7}$	$6.01574715 \times 10^{-7}$	$9.02362073 \times 10^{-7}$	$1.1254432386003892 \times 10^{-6}$
28	1.7798314×10^{-7}	3.5596628×10^{-7}	5.3394942×10^{-7}	$6.65951930151127 \times 10^{-7}$

Hình: Kết quả tính toán dãy lặp (13) với $x^0=(1,2,3)^{\top}$, $\lambda=1/n$, $\mu=1$.

Kết quả các lần lặp

Lần lặp k	x_1^k	x_2^k	x_3^k	$ x^k - x^* $
1	0.72	1.44	2.16	2.6939933184772378
2	0.5376	1.0752	1.6128	2.011515011129671
3	0.408576	0.817152	1.225728	1.5287514084585498
4	0.31378637	0.62757274	0.9413591	1.1740810816961662
5	0.24266146	0.48532292	0.72798437	0.9079560365117019
64	$2.92088285 \times 10^{-7}$	$5.84176571 \times 10^{-7}$	$8.76264856 \times 10^{-7}$	$1.092894290551161 \times 10^{-6}$
65	$2.32962535 \times 10^{-7}$	$4.65925071 \times 10^{-7}$	$6.98887606 \times 10^{-7}$	$8.716659917365623 \times 10^{-7}$

Hình: Kết quả tính toán dãy lặp (13) với $x^0=(1,2,3)^{\top}$, $\lambda=1/n$, $\mu=0.5$.

Sự hội tụ nghiệm của phương pháp

Hình: Đồ thị tốc độ hội tụ của HSDM với lần lượt $\mu=1.6, \mu=1, \mu=0.5$

Nhận xét

Với những giá trị μ khác nhau thì số lần lặp thực hiện thuật toán cũng khác nhau. Cụ thể là với μ càng lớn, càng gần giá trị $2\eta/L^2$ thì số lần lặp càng nhỏ và ngược lại μ càng tiến về 0 thì số lần lặp càng lớn. Mà μ được tính dựa vào hai hệ số là η và L. Do vậy tính chất của ánh xạ F ảnh hưởng lớn đến tốc độ hội tụ của thuật toán.

Cảm ơn thầy cô và các bạn đã lắng nghe!

