

String	
	mass
Massiess	
2 3	2 73
(M. so)	M # 0
	DIK. Points have dill
each and Every Point	Diff. Points have diff.
have same Tension	Tensions
	T, # T2 # T3
T, = 5 = 5	

i)
$$q = \frac{F_{net}}{M_{\tilde{f}}} = \frac{F}{M_{\tilde{q}} + M_{\tilde{g}}}$$

(ii)
$$F \cdot B \cdot D \cdot D \cdot A$$

$$M_{qq}$$

$$T = M_{qq}$$

F.B.D of B

$$M_{a}$$
 M_{b}
 M_{b}

$$U_1$$
 $a = \frac{F_{neb}}{M_{Total}} = \frac{21-7}{2+5}$

$$\alpha = \frac{14}{7} \Rightarrow 9 = 2m_{1}s^{2}$$

F. B. D O A

$$T - 7 = 2 \times a$$

$$T - 7 = 2 \times a$$

$$T - 7 = 11 N$$

$$2 \times 10$$

$$21 - T = 5 \times A$$
 $21 - T = 5 \times 2$
 $21 - 10 = T$

$$=1kg = 2kg = gkg$$

$$\alpha = \frac{15}{6} = \frac{3m}{52}$$

D 15 N

20 N

$$G(x) = \frac{18}{M_T} = \frac{18}{5+4}$$

$$G(x) = \frac{18}{M_T} = \frac{18}{M_T} = \frac{18}{M_T}$$

$$G(x) = \frac{18}{M_T} = \frac{18}{M_T} = \frac{18}{M_T}$$

$$G(x) = \frac{18}{M_T} = \frac{18}{M_T} = \frac{18}{M_T} = \frac{18}{M_T}$$

$$G(x) = \frac{18}{M_T} = \frac{18$$

$$0 = \frac{34}{241+3} = \frac{24}{6} = \frac{4m}{5}$$

$$T_{e} = 2 \times \alpha$$

$$T_{e} = 8 \times \alpha$$

$$T_{e} = 12 \times \alpha$$

$$T_{c} = 2.5 \times \alpha$$

$$T_{c} = 10 \times \alpha$$

Find
$$O$$
 Acc. of each block

 O $T_A = ?$
 $T_B = ?$
 $T_C = ?$

String of mass (m) and (l)
 $T_C = ?$

Tension at point P
 $T_C = P_C$
 $T_$

$$a = \frac{m_1 g - m_1 g}{m_1 + m_2}$$

$$0 = \frac{m_2 - 0}{m_1 + m_2}$$

$$Q = \frac{m_2}{m_{1+m_2}}.$$

As

For
$$-A$$

$$T = M_1 A$$

$$T = M_1 M_2$$

1 Tension in String

$$FOR - A$$

$$F - \Gamma = ma$$

$$3my - T = mg$$

魁

9 = 10 m/s²