K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC Biasing Circuits

Numerical 1:

Determine I_{D_Q} , V_{GS_Q} , V_{DS} for the network given in figure 1.

Figure 1: Circuit 1

Solution:

Figure 1 is a voltage divider E-MOSFET network

By using voltage divider rule:

$$V_G = \frac{R_2}{R_1 + R_2} \times 40 = \frac{18M\Omega}{18M\Omega + 22M\Omega} \times 40 = 18V$$

$$V_G = 18V$$

For E-NMOS transistor,

$$k_n = \frac{I_{D_{on}}}{[V_{GS_{on}} - V_{GS_{th}}]^2}$$
$$k_n = \frac{3mA}{[10 - 5]^2} = 0.12 \frac{mA}{V^2}$$

 $V_{GS} = 18 - I_D \times (820)$

$$k_n=0.12rac{mA}{V^2}$$

$$V_{GS} = V_G - V_S = V_G - I_D R_S = 18 - I_D(820)$$

....(1)

....(2)

Assuming that given NMOS-E transistor is working in saturation region,

$$I_D = k_n \times (V_{GS} - V_{GS_{th}})^2$$

$$I_D = 0.12 \times 10^{-3} \times (V_{GS} - 5)^2$$

Put (2) in (1), we get
$$V_{GS} = 18 - 820 \times 0.12 \times 10^{-3} \times (V_{GS} - 5)^{2}$$

$$= 18 - 0.0984 \times (V_{GS} - 5)^{2}$$

$$V_{GS} = 18 - 0.0984V_{GS}^{2} + 0.984V_{GS} - 2.46$$

$$0.0984V_{GS}^{2} + 0.016V_{GS} - 15.54 = 0$$
Solving above equation we get,
$$V_{GS} = 12.48V$$
or
$$V_{GS} = -12.64V, \text{ We reject this value, as } (V_{GS} > V_{GS_{th}})$$

$$\therefore V_{GS} = 12.48V$$

$$I_{D} = k_{n} \times (V_{GS} - 5)^{2}$$

$$= 0.12 \times 10^{-3} \times (12.48 - 5)^{2}$$

$$I_{D} = 6.72mA$$

Now, Applying KVL in Drain-Source loop,

$$V_{DS} = V_{DD} - I_D \times (R_D + R_S)$$

= 40 - 6.72 \times (3k + 820)

$$V_{DS}=14.32V$$

SIMULATED RESULTS:

Figure 2: Circuit Schematic 1: Results

${\bf Comparison\ between\ theoretical\ and\ simulated\ result:}$

Parameters	Theoretical	Simulated
V_{GS}	12.48V	12.48V
I_D	$6.72 \mathrm{mA}$	$6.724 \mathrm{mA}$
V_{DS}	14.32V	14.31V

Table 1: Question 1

Numerical 2:

Determine I_D , V_{GS} , V_{DS} for the network given in figure 3.

Figure 3: Circuit 2

Solution:

$$k_n = \frac{I_{D_{on}}}{\left[V_{GS_{on}} - V_{GS_{th}}\right]^2}$$
$$k_n = \frac{6mA}{[8-3]^2} = 0.24 \frac{mA}{V^2}$$

$$k_n=0.24rac{mA}{V^2}$$

$$V_{GS} = V_{DD} - I_D R_D = 12 - I_D(2000)$$

$$V_{GS} = 12 - I_D \times (2000)$$

Assuming that given NMOS-E transistor is working in saturation region,

$$I_D = k_n \times (V_{GS} - V_{GS_{th}})^2$$

$$I_D = 0.24 \times 10^{-3} \times (V_{GS} - 3)^2$$
(2)

....(1)

Put (2) in (1), we get

$$V_{GS} = 12 - 0.48 \times (V_{GS} - 3)^{2}$$
$$= 12 - 0.48 \times (V_{GS}^{2} - 6V_{GS} + 9)$$

$$V_{GS} = 12 - 0.48V_{GS}^2 + 2.88V_{GS} - 4.32$$

$$0.48V_{GS}^2 - 1.88V_{GS} - 7.68 = 0$$

Solving above equation we get,

$$V_{GS} = 6.41$$

or

 $V_{GS} = -2.49V$, We reject this value, as $(V_{GS} > V_{GS_{th}})$

$$\therefore V_{GS} = 6.41V$$

$$\therefore V_{DS} = V_{GS} = 6.41V$$

$$I_D = k_n \times (V_{GS} - 3)^2$$

= $0.24 \times 10^{-3} \times (6.41 - 3)^2$

$$I_D = 2.79mA$$

Numerical 3:

Determine I_D , V_{GS} , V_{DS} for the network given in figure 4.

Figure 4: Circuit 3

Solution:

Above circuit 3 is self-biased N-Channel JFET

Applying KVL in gate-source loop:

$$-V_{GS} - I_D R_S = 0$$
$$V_G = -I_D R_S = -680 \times I_D$$

For JFET, we assume it in saturation region

$$I_D = I_{DSS} \times \left(1 - \frac{V_{GS}}{V_P}\right)^2$$

$$I_D = 12 \times 10^{-3} \times \left(1 - \frac{V_{GS}}{V_P}\right)^2$$

$$-\frac{V_{GS}}{680} = \frac{12}{1000} \times \left(1 + \frac{V_{GS}}{6}\right)^2$$

$$-0.122V_{GS} = 1 + 0.027V_{GS}^2 + 0.33V_{GS}$$

$$0.027V_{GS}^2 + 0.455V_{GS} + 1 = 0$$

Solving above equation we get,

$$V_{GS} = -2.598V$$
 or $V_{GS} = -14.25V$, We reject this value, as $(V_{GS} > V_P)$ $\therefore V_{GS} = -2.598V$ $I_D = 12 \times 10^{-3} \times \left(1 - \frac{2.598}{6}\right)^2$

$$I_D=3.87mA$$

Applying KVL in Drain-Source loop:

 $= 12 \times 10^{-3} \times (0.568)^2 = 3.87 mA$

$$V_{DD} - I_D R_D - V_{DS} - I_D R_S = 0$$

$$V_{DS} = V_{DD} - I_D (R_D + R_S)$$

$$V_{DS} = 12 - 3.84 \times 10^{-3} (1.5 + 0.68) \times 10^3$$

$$V_{DS}=3.63V$$

SIMULATED RESULTS:

Figure 5: Circuit Schematic 3: Results

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
V_{GS}	3.63V	3.67V
V_{DS}	2.59V	2.597V
I_D	$3.87 \mathrm{mA}$	3.82mA

Table 2: Question 3

Numerical 4:

Determine I_D , V_{GS} , V_{DS} and g_m for the network given in figure 6.

Figure 6: Circuit 4

Solution:

Above circuit 4 is voltage divider biased N-Channel JFET

$$V_G = \left(\frac{1M\Omega}{1M\Omega + 3.3M\Omega}\right) \times 15 = 3.48V$$

$$V_G=3.48V$$

Now,

$$V_{GS} = V_G - V_S = V_G - I_D R_S = 3.488 - 1200 I_D$$

For JFET, we assume it in saturation region

$$I_D = I_{DSS} \times \left(1 - \frac{V_{GS}}{V_P}\right)^2$$
$$-\frac{3.488 - V_{GS}}{1200} = \frac{8}{1000} \times \left(1 + \frac{V_{GS}}{4}\right)^2$$
$$3.488 - V_{GS} = 9.6 + \frac{9.6}{16}V_{GS}^2 + \frac{9.6}{2}V_{GS}$$

$$V_{GS} = -1.2V$$
 or $V_{GS} = -8.46V$, We reject this value, as $(V_{GS} > V_P)$ $\therefore V_{GS} = -1.2V$ $I_D = 8 \times 10^{-3} \times \left(1 - \frac{1.2}{4}\right)^2$ $= 8 \times 10^{-3} \times (0.7)^2 = 3.92mA$

$I_D=3.92mA$

Applying KVL in Drain-Source loop:

$$V_{DD} - I_D R_D - V_{DS} - I_D R_S = 0$$

$$V_{DS} = V_{DD} - I_D \times (R_D + R_S)$$

$$V_{DS} = 15 - 3.91 \times 10^{-3} \times (1 + 1.2) \times 10^3$$

$$egin{aligned} V_{DS} &= \mathbf{6.398V} \ g_m &= -rac{2I_{DSS}}{V_P} \left(1 - rac{V_{GS}}{V_P}
ight) = -rac{2 imes 8 imes 10^{-3}}{4} \left(1 + rac{1.2}{4}
ight) \ g_m &= \mathbf{2.8} rac{mA}{V} \end{aligned}$$

SIMULATED RESULTS:

Figure 7: Circuit Schematic 4: Results

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
V_{GS}	1.2V	1.2V
V_{DS}	6.398V	6.398V
I_D	3.91mA	$3.909 \mathrm{mA}$

Table 3: Question 4

Numerical 5:

Determine I_{D_Q} , V_{GS_Q} , V_{DS_Q} , V_D , V_S for the network given in figure 8.

Figure 8: Circuit 5

Solution:

Above circuit 5 is a drain-feedback biased E-NMOS

Applying KVL in gate-source loop:

$$V_{DD} - (I_D + I_G)R_D - I_GR_G - V_{GS} - I_DR_S = 0$$

For MOSFET, $I_G \approx 0$

$$V_{GS} = V_{DD} - I_D(R_D + R_S)$$

$$V_{GS} = 22 - I_D(1710)$$

For E-NMOS transistor,

$$k_n = \frac{I_{D_{on}}}{\left[V_{GS_{on}} - V_{GS_{th}}\right]^2} = \frac{5 \times 10^{-3}}{9} = 0.55 \frac{mA}{V^2}$$

$$k_n=0.55rac{mA}{V^2}$$

Assuming that given NMOS-E transistor is working in saturation region,

$$I_D = k_n \times (V_{GS} - V_{GS_{th}})^2$$

$$I_D = 0.55 \times 10^{-3} \times (V_{GS} - 4)^2$$
.....(2)

....(1)

Put (2) in (1), we get

$$V_{GS} = 22 - 0.55 \times 1.71 \times (V_{GS} - 4)^{2}$$
$$= 22 - 0.94 \times (V_{GS} - 4)^{2}$$

$$V_{GS} = 22 - 0.94(V_{GS}^2 - 8V_{GS} + 16)$$

$$0.94V_{GS}^2 - 6.52V_{GS} - 6.96 = 0$$

Solving the above quadratic equation we get,

$$V_{GS} = 7.87V$$
 or $V_{GS} = -0.94V$, We reject this value, as $(V_{GS} > V_{GS_{th}})$ $\therefore V_{GS} = 7.87V$ $I_D = k_n \times (V_{GS} - 4)^2$ $= 0.55 \times 10^{-3} \times (7.87 - 4)^2$

 $I_D = 8.23mA$

Applying KVL to the drain-source loop,

$$V_{DS} = V_{DD} - I_D \times (R_D + R_S)$$

= 22 - 8.23 \times 10^{-3} (1200 + 510)

$$V_{DS} = 7.87V$$

$$V_S = I_D R_S = 510 \times 8.23 \times 10^{-3} = 4.197V$$

$$V_S = 6.197V$$

$$V_D = V_{DD} + V_S = 7.87 + 4.197 = 12.067V$$

$$V_D=12.067V$$

SIMULATED RESULTS:

Figure 9: Circuit Schematic 5: Results

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
I_D	8.23mA	$8.26 \mathrm{mA}$
V_D	12.067V	12.088V
V_S	4.197V	4.216V
V_{DS}	7.87V	7.87V
V_{GS}	7.87V	7.87V

Table 4: Question 5

Numerical 6:

Determine $I_{D_Q},\,V_{GS_Q},\,V_D,\,V_S$ for the network given in figure 10.

Figure 10: Circuit 6

Solution:

Above circuit 6 is a voltage divider biased E-NMOS

Applying the venin's equivalent circuit at the gate terminal:

$$R_G=R_1||R_2=rac{10M\Omega imes 68M\Omega}{16.8M\Omega}={f 4.04M\Omega}$$
 $V_G=rac{R_2}{R_1+R_2} imes V_{DD}=rac{10M\Omega}{16.8M\Omega} imes 24V={f 9.714V}$

Figure 11: Thevenin's Equivalent Circuit

Applying KVL to the gate-source loop:

$$V_G - I_G R_G - V_{GS} - I_D R_S = 0$$

For MOSFET, $I_G \approx 0$

$$V_{GS} = V_G - I_D R_S$$

$$V_{GS} = 9.714 - I_D(750)$$

For E-NMOS transistor,

$$k_n = \frac{I_{D_{on}}}{\left[V_{GS_{on}} - V_{GS_{th}}\right]^2} = \frac{5 \times 10^{-3}}{9} = 0.55 \frac{mA}{V^2}$$

$$k_n=0.55rac{mA}{V^2}$$

Assuming that given NMOS-E transistor is working in saturation region,

.....(1)

....(2)

$$I_D = k_n \times (V_{GS} - V_{GS_{th}})^2$$

$$I_D = 0.55 \times 10^{-3} \times (V_{GS} - 3)^2$$

Put (2) in (1), we get

$$V_{GS} = 9.714 - 0.55 \times 0.74 \times (V_{GS} - 3)^2$$

$$=9.714-0.4125\times(V_{GS}-3)^2$$

$$V_{GS} = 9.714 - 0.4125(V_{GS}^2 - 6V_{GS} + 9)$$

$$0.4125V_{GS}^2 - 1.475V_{GS} - 6 = 0$$

Solving the above quadratic equation we get,

$$V_{GS} = 6V$$

or

 $V_{GS} = -2.4V$, We reject this value, as $(V_{GS} > V_{GS_{th}})$

$$V_{GS} = 6V$$

$$I_D = k_n \times (V_{GS} - 3)^2$$

= $0.55 \times 10^{-3} \times (6 - 3)^2$

$$I_D = 4.95mA$$

Applying KVL to the drain-source loop,

$$V_{DS} = V_{DD} - I_D \times (R_D + R_S)$$

= 24 - 4.95 \times 10^{-3}(2.2k + 0.75k)

$$\overline{V_{DS}}=9.3975V$$

$$V_S = I_D R_S = 4.95 \times 10^{-3} \times 750 = 3.7125V$$

$$V_S=3.7125V$$

$$V_D = V_{DS} + V_S = 9.3975 + 3.7125 = 13.11V$$

$$V_D = 13.11V$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 12: Circuit Schematic 6: Results

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
I_D	$4.95 \mathrm{mA}$	$4.95 \mathrm{mA}$
V_{GS}	6V	6V
V_D	13.110V	13.106V
V_S	3.7125V	3.7137V

Table 5: Question 6

Numerical 7:

Determine I_{B_Q} , V_{CE_Q} , I_{C_Q} for $\beta=80$, also find % change in V_{CE_Q} and I_{C_Q} if β is changed to $\beta=120$ for the network given in figure 13.

Figure 13: Circuit 7

Solution:

Above circuit 7 is a voltage divider biased employing npn-BJT Applying thevenin's equivalent circuit at the base terminal:

Figure 14: Thevenin's Equivalent Circuit

$$R_{TH}=R_1||R_2=rac{24k\Omega imes96k\Omega}{120k\Omega}=\mathbf{19.2}k\mathbf{\Omega}$$

$$V_{TH} = \frac{R_2}{R_1 + R_2} \times V_{CC} = \frac{24k\Omega}{120k\Omega} \times 9V = \mathbf{1.8V}$$

Applying KVL to the base-emitter loop:

$$V_{TH} - I_B R_B - V_{BE} - I_E R_E = 0$$

$$I_E = I_B + I_C = I_B + \beta I_B = (\beta + 1)I_B$$

$$V_{TH} - I_B R_B - V_{BE} - (\beta + 1)I_B R_E = 0$$

$$I_B = \frac{V_{TH} - V_{BE}}{R_B + (\beta + 1)R_E}$$
(1)

 $\dots (2)$

$$I_B = \frac{1.8 - 0.7}{19.2k\Omega + 81 \times 1k\Omega} = 10.978\mu A$$

 $I_B=10.978 \mu A$

$$I_C = \beta I_B = 80 \times 10.978 \mu A = 0.878 mA$$

 $I_C = 0.878mA$

Applying KVL to the collector-emitter loop:

$$V_{CE} = V_{CC} - R_E \times (I_B + I_C) - I_C R_C$$

= 9 - 1k\Omega \times (10.97\mu A + 0.878mA) - (5.25k\Omega \times 0.878mA)

 $V_{CE}=3.501V$

For $\beta = 120$

Using equation (1),

Using equation (1),
$$I_B = \frac{V_{TH} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{1.8 - 0.7}{19.2k\Omega + (121 \times 1k\Omega)} = 7.845\mu A$$

 $I_B=7.845\mu A$

$$I_C = \beta I_B = 120 \times 7.845 \mu A = 0.949 mA$$

 $I_C = 0.949mA$

Using equation (2),

$$V_{CE} = V_{CC} - R_E \times (I_B + I_C) - I_C R_C$$

= 9 - 1k\Omega \times (7.84\mu A + 0.949mA) - (5.25k\Omega \times 0.949mA)

 $V_{CE}=3.0612V$

% Change in
$$I_C = \frac{0.949 - 0.878}{0.878} \times 100\% = 8.08\%$$

% Change in
$$V_{CE} = \frac{3.501 - 3.061}{3.501} \times 100\% = 12.56\%$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 15: Circuit Schematic 7: Results

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
I_B	$10.97\mu A$	$10.28\mu A$
I_C	0.878mA	0.823mA
V_{CE}	3.501V	3.845V

Table 6: Question 7

Numerical 8:

Determine $R_{TH},\,V_{TH},\,V_{CE_Q}$ and I_{C_Q} for the network given in figure 16. Given: $\beta=100$

Figure 16: Circuit 8

Solution:

Above circuit 8 is a voltage divider biased employing npn-BJT For DC analysis, f = 0,

$$X_C = \frac{1}{2\pi f C} = \infty$$

.: Capacitors act as open circuits

Applying thevenin's equivalent circuit at the base terminal:

Figure 17: Thevenin's Equivalent Circuit

$$R_{TH} = R_1 || R_2 = \frac{24k\Omega}{14k\Omega} = \mathbf{1.714k\Omega}$$

$$V_{TH} = \frac{R_2(V_{CC} - V_{EE})}{R_1 + R_2} + V_{EE} = \frac{2k\Omega(5+5)}{14k\Omega} - 5V = -3.5714V$$
Applying KVL to the base-emitter loop:
$$V_{TH} - I_B R_B - V_{BE} - I_E R_E = V_{EE}$$

$$I_E = I_B + I_C = I_B + \beta I_B = (\beta + 1)I_B$$

$$V_{TH} - I_B R_B - V_{BE} - (\beta + 1)I_B R_E - V_{EE} = 0$$

$$I_B = \frac{V_{TH} - V_{BE} - V_{EE}}{R_B + (\beta + 1)R_E}$$
......(1)
$$I_B = \frac{-3.571 - 0.7 + 5}{1.7142k\Omega + (101 \times 500\Omega)} = 13.96\mu A$$

 $I_B=13.96 \mu A$

$$I_C = \beta I_B = 100 \times 13.96 \mu A = 1.396 mA$$

$$I_C = 1.396mA$$

Applying KVL to the collector-emitter loop:

$$V_{CE} = V_{CC} - I_C \times (R_C + R_E) - I_B R_E - V_{EE}$$

$$= 5 + 5 - 1.396 mA \times (5k\Omega + 0.5k\Omega) - (0.5k\Omega \times 13.96 mA)$$

$$V_{CE} = 2.313 V$$
......(2)

SIMULATED RESULTS:

Figure 18: Circuit Schematic 8: Results

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
I_B	$13.96 \mu A$	$13.23\mu A$
I_C	1.396mA	1.354mA
V_{CE}	2.31V	2.54V

Table 7: Question 8

Numerical 9:

Determine a) I_B , I_C , I_E , V_{CE} , for $\beta = 50$, b) repeat part a) if $R_E = 0$ for the network given in figure 19.

Figure 19: Circuit 9

Solution:

Above circuit 9 is a fixed emitter biased employing npn-BJT

Applying KVL to the base-emitter loop:

 $I_C = \beta I_B = 50 \times 102.5 \mu A = 5.125 mA$

$$V_{CC} - I_B R_1 - V_{BE} - I_E R_E = 0$$

$$I_E = I_B + I_C = I_B + \beta I_B = (\beta + 1)I_B$$

$$V_{CC} - I_B R_1 - V_{BE} - (\beta + 1)I_B R_E = 0$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_1 + (\beta + 1)R_E}$$
.....(1)
$$I_B = \frac{12 - 0.7}{100k\Omega + (51 \times 200\Omega)} = 102.5\mu A$$

$$I_B = \mathbf{102.5}\mu A$$

$$I_C=5.125mA$$

Applying KVL to the collector-emitter loop:

$$V_{CE} = V_{CC} - R_E I_B \times (\beta + 1) - I_C R_C$$

$$= 12 - (200\Omega \times 102.5\mu A \times 51) - (1k\Omega \times 5.125mA)$$
.....(2)

 $V_{CE}=5.8295V$

 $\underline{\text{For } R_E} = 0$

Using equation (1),

$$I_B = \frac{V_{CC} - V_{BE}}{R_1 + (\beta + 1)R_E} = \frac{12 - 0.7}{100k\Omega} = 113\mu A$$

 $I_B=113\mu A$

$$I_C = \beta I_B = 50 \times 113 \mu A = 5.65 mA$$

 $I_C = 5.65mA$

Using equation (2),

$$V_{CE} = V_{CC} - R_E I_B \times (\beta + 1) - I_C R_C$$
$$= 12 - (5.65mA \times 1k\Omega)$$

$$V_{CE} = 6.35V$$

SIMULATED RESULTS:

Figure 20: Circuit Schematic 9: Results

Figure 21: Circuit Schematic 9: Results when $R_E = 0$

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
I_B	$102\mu A$	$101\mu A$
I_C	5.125mA	5.324mA
V_{CE}	5.8295V	5.602V

Table 8: Question 9

When $R_E = 0$

Parameters	Theoretical	Simulated
I_B	$113\mu A$	$111.814\mu A$
I_C	5.65mA	5.59mA
V_{CE}	6.35V	6.409V

Table 9: Question 9

Numerical 10:

Determine a) I_B , I_C , I_E , V_{CE} , for $\beta = 50$ and $\beta = 250$, b) repeat part a) if $R_E = 0$ for the network given in figure 22.

Figure 22: Circuit 10

Solution:

Above circuit 10 is a collector to base biased employing npn-BJT

Applying KVL to the base-emitter loop:

$$V_{CC} - (I_B + I_C)R_C - I_BR_1 - V_{BE} - I_ER_E = 0$$

$$V_{CC} - I_BR_1 - V_{BE} - (I_B + I_B\beta)R_C - (\beta + 1)I_BR_E = 0$$

$$V_{CC} - V_{BE} = I_B[R_1 + (\beta + 1)R_C + (\beta + 1)R_E]$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_1 + (\beta + 1)(R_C + R_E)} \qquad(1)$$

$$I_B = \frac{12 - 0.7}{10k\Omega + (51 \times 1.2k\Omega)} = 158\mu A$$

$$I_B=158\mu A$$

$$I_C = \beta I_B = 50 \times 158 \mu A = 7.9 mA$$

$$I_C = 7.9 mA$$

$$I_E = I_B + I_C = 158\mu A + 7.9mA = 8.058mA$$

$$I_E=8.058mA$$

Applying KVL to the collector-emitter loop:

$$V_{CE} = V_{CC} - R_E I_B \times (\beta + 1) - (I_B + I_C) R_C$$

= 12 - 51(200\Omega \times 158\mu A) - (8.058mA \times 1k\Omega)

....(2)

 $V_{CE}=\mathbf{2.3304}V$

For $\beta = 250$

Using equation (1).

$$I_B = \frac{V_{CC} - V_{BE}}{R_1 + (\beta + 1)(R_C + R_E)}$$

$$I_B = \frac{12 - 0.7}{10k\Omega + (251 \times 1.2k\Omega)} = 36.31\mu A$$

$$I_B = \frac{12 - 0.7}{10k\Omega + (251 \times 1.2k\Omega)} = 36.31\mu A$$

 $I_B=36.31 \mu A$

$$I_C = \beta I_B = 250 \times 36.31 \mu A = 9.077 mA$$

 $I_C = 9.077 mA$

$$I_E = I_B + I_C = 36.31\mu A + 9.077mA = 9.113mA$$

 $I_E = 9.113mA$

Using equation (2),

$$V_{CE} = V_{CC} - R_E I_B \times (\beta + 1) - (I_B + I_C) R_C$$

= 12 - 251(200\Omega \times 36.31\mu A) - (9.113mA \times 1k\Omega)

 $V_{CE}=1.065V$

For
$$R_E = 0 \& \beta = 50$$

Using equation (1),

$$I_B = \frac{V_{CC} - V_{BE}}{R_1 + (\beta + 1)(R_C + R_E)}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{1} + (\beta + 1)(R_{C} + R_{E})}$$

$$I_{B} = \frac{12 - 0.7}{10k\Omega + (51 \times 1k\Omega)} = 185\mu A$$

 $I_B = 185 \mu A$

$$I_C = \beta I_B = 50 \times 185 \mu A = 9.25 mA$$

 $I_C = 9.25mA$

Using equation (2),

$$V_{CE} = V_{CC} - R_E I_B \times (\beta + 1) - (I_B + I_C) R_C$$

= 12 - (9.435mA × 1k\O)

 $V_{CE} = 2.565V$

For
$$R_E = 0 \& \beta = 250$$

Using equation (1),

$$I_B = \frac{V_{CC} - V_{BE}}{R_1 + (\beta + 1)(R_C + R_E)}$$

$$I_B = \frac{12 - 0.7}{10k\Omega + (251 \times 1k\Omega)} = 43.29\mu A$$

$$I_B = 43.29\mu A$$

$$I_C = \beta I_B = 250 \times 43.29\mu A = 10.822mA$$

$$I_C = 10.822mA$$
Using equation (2),

$$V_{CE} = V_{CC} - R_E I_B \times (\beta + 1) - (I_B + I_C)R_C$$

$$= 12 - ((10.822mA + 43.29\mu A) \times 1k\Omega))$$

$$V_{CE} = 1.134V$$

SIMULATED RESULTS:

Figure 23: Circuit Schematic 10: Results when $\beta = 50$

Figure 24: Circuit Schematic 10: Results when $\beta = 250$

Figure 25: Circuit Schematic 10: Results when $\beta=50$ & $R_E=0$

Figure 26: Circuit Schematic 10: Results when $\beta = 250 \& R_E = 0$

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
I_B	$158\mu A$	$156\mu A$
I_C	7.9mA	7.84mA
V_{CE}	2.3304V	2.396V

Table 10: Question 10

When $\beta = 250$

Parameters	Theoretical	Simulated
I_B	$36.31\mu A$	$35.89\mu A$
I_C	9.077mA	8.97mA
V_{CE}	1.065V	1.18V

Table 11: Question 10

When $\beta = 50 \ \& \ R_E = 0$

Parameters	Theoretical	Simulated
I_B	$185\mu A$	$183.09 \mu A$
I_C	9.25mA	9.15mA
V_{CE}	2.565V	2.66V

Table 12: Question 10

When $\beta=250$ & $R_E=0$

Parameters	Theoretical	Simulated
I_B	$43.29 \mu A$	$42.77\mu A$
I_C	10.822mA	10.69mA
V_{CE}	1.134V	1.263V

Table 13: Question 10

