

Presentación #3 Análisis geoespacial

Mateo López Mogollón Ing. Civil Programa: Esp. R.H.

Contextualización E2

Problema:

Evolución de coberturas y su efecto en aportes de caudal durante eventos extremos.

Caso de estudio:

Fuente: portal área metropolitana

Motivación:

Comprender desde una perspectiva geoespacial, las causas de inundación en entornos urbanos en escala de microcuenca.

Fuente: infobae, 29/04/2025

Contextualización E2

Discretización de eventos: cuando el sensor registre

nivel de emergencia en estación de nivel fija

Fuentes de información:

SIATA (estaciones de nivel y precipitación),

ALOS PALSAR (MDT, 12.5m)

IDEAM (coberturas)

IGAC (capas vectoriales diversas)

Estaciones meteorológicas AMVA Fuente: portal SIATA

Serie de niveles (abril, 2025), en 87 estaciones red SIATA

Umbral de riesgo, descripción SIATA.

Contextualización E2

20 estaciones (amarillo) de 68 con reporte de riesgo y sus cuencas (rojo). AMVA

- ID: código estación
- ESTACION: Drenaje al que pertenece
- DESBORDE: Si presento crecientes en el mes (1), sino (0)

0.591719081 10.42586376000... 5.502340950000... 460.2601318359... 1761,000000000.

- AREA: área de la cuenca aportante [km2]
- TIA: área impermeable / área total [%]
- PPT: precipitación promedio diaria [mm/día]
- COTA: elevación de terreno [m.s.n.m.]

AREA IMP

Dataframe de puntos

AREA

Matriz de vecindad

Matriz de vecindad por distancias, D = 5 km

Inverso de la distancia. Punto 4

		4	12	16	17	19	22	31	37	50	51	52	55	56	57	58	59	61	62	64	65	66
£	4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00024	NaN	NaN	NaN	NaN	NaN	NaN	0.00021	0.00023	0.00037	NaN	NaN	NaN
	12	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00023	NaN										
	16	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00044	NaN	NaN	NaN	NaN	NaN	NaN	0.00042	0.00042
	17	NaN	NaN	NaN	NaN	NaN	NaN	0.00023	NaN													
	19	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00046	NaN								
	22	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	31	NaN	NaN	NaN	0.00023	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00030	0.00029	NaN	NaN	NaN	NaN
	37	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00037	NaN										
	50	0.00024	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00057	0.00063	0.00020	NaN	NaN	NaN
	51	NaN	0.00023	NaN	NaN	NaN	NaN	NaN	0.00037	NaN												
	52	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00022	NaN						
	55	NaN	NaN	NaN	NaN	0.00046	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	56	NaN	NaN	0.00044	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00029	NaN	NaN	NaN	NaN	0.00030	0.00026
	57	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00022	NaN									
	58	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00029	NaN	NaN	NaN	NaN	NaN	0.00024	NaN	NaN
	59	0.00021	NaN	NaN	NaN	NaN	NaN	0.00030	NaN	0.00057	NaN	0.00296	NaN	NaN	NaN	NaN						
		0.00023	NaN	NaN	NaN			0.00029		0.00063	NaN	NaN	NaN	NaN	NaN		0.00296	NaN	NaN	NaN	NaN	NaN
		0.00037	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00020	NaN											
	64	NaN	NaN	NaN	NaN	NaN		NaN		0.00024	NaN	NaN	NaN	NaN	NaN	NaN						
	65	NaN		0.00042	NaN	NaN		NaN	NaN	NaN	NaN	NaN		0.00030	NaN	NaN	NaN	NaN	NaN	NaN		0.00135
	66	NaN	NaN	0.00042	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.00026	NaN	NaN	NaN	NaN	NaN	NaN	0.00135	NaN

Matriz de pesos 66 x 66 1/distancia

Rezago espacial (área)

Comparación rezago área de cuenca km^2

Rezago espacial (TIA)

Comparación rezago % TIA de cuenca (total impervious area)

Índice de MORAN

Referencias:

- Han Chen, Yizhao Wei, Jinhui Jeanne Huang. (2023). Altered landscape pattern dominates the declined urban evapotranspiration trend.
- Guzman G. (2018). Análisis de la influencia del diseño urbano en la meteorología del Valle de Aburra
- Osorio D. (2019). Vulnerabilidad de la disponibilidad actual y futura del recurso hídrico en el valle de Aburra y sus cuencas abastecedoras.

