#### LAB REPORT FOR EXPERIMENT 1.1

**Date: August 10, 2021** 

Name: Rita Abani

**Roll No: 19244** 

Title of Experiment: Experiment 1- IV characteristics of Ohm's Law (DC

Input)

### **Brief Description:**

This lab session involved the use of LTspice which is an analog electronic circuit simulator computer software, to perform some basic simulations namely first drawing the circuit that involved a resistor of **1K ohms resistance in series with a DC voltage source of 1V** (I also tried doing it with 12 V to note the change) in the graph. The direction of slopes obtained were noted in different plot panes. In the event that the curve corresponding to the current obtained had a negative slope, the direction of the resistor was flipped (so as to change the terminals) using Ctrl + R.

The simulation was done using a DC sweep with a start voltage of 1V, max voltage of 10V in steps of 1 and 3 (I tried out different values to test the circuit).

### **Schematic diagram**

The following is a screenshot of our DC circuit



# **Results:**



Since one of the slopes obtained above showed a negative value of current, the circuit was modified and the graph obtained was as follows:



Plots obtained without segregating the V and I panes :



### **Table:**

| Sl.no. | Voltage (V) | Current (mA) |
|--------|-------------|--------------|
| 1      | 0.9         | 1.8          |
| 2      | 6.3         | 9.9          |
| 3      | 7           | 10           |
| 4      | 10.8        | 12           |
| 5      | 12          | 14           |

## **Discussion:**

We know that Ohm's Law is extensively used to calculate the relationship between voltage, current and resistance in an electric circuit.

V = IR.

According to this law, if we consider the Resistance to be constant, we should observe that the voltage of the DC source should be directly proportional to the current.

## In LTspice, the graphs that we obtained in this experiment do follow Ohm's Law.

However, in reality, due to the following factors, Ohm's law curves might show certain deviations:

- Dissipation of heat (due to excess heating of one or more components)
- Thermal resistivity of the connecting wires
- Least count or human errors while taking readings owing to improper device calibration.