〈글로벌 기후변화와 에너지 문제〉 강의자료

6. 온실가스 배출현황

제6주차 강의 (비대면)

담당교수 강승진

강의 순서

가. 온실가스의 종류

나. 온실가스 배출통계

지난시간 학습내용 요약

- 에너지 사용 영향
 - 에너지의 사용은 인류에게 물질적 풍요와 편리한 생활을 가능하게 함
 - 하지만 국지적인 대기환경 문제와 전지구적인 기후변화 문제 유발함
- 기후변화 현상과 영향
 - 현상: 평균기온 이미 1℃ 상승, 2100년에는 2.6 ~ 4.8℃ 상승 전망
 - 영향: 해수면 상승, 기상이변과 재해 증가, 생태계 파괴
- 기후변화 대응 국제적 노력
 - 기후변화협약 채택(1992년)
 - 전 세계가 기후변화 문제에 대응하기 위한 체제 마련
 - 교토의정서 채택(1997년) → 선진국의 온실가스 감축의무
 - 파리협정 채택(2015년)
 - 지구기온 상승 2℃ 이내 억제 목표, 선진국과 개도국 모두 온실가스 감축

가. 온실가스의 종류

• 온실가스의 종류와 특징

구 분	이산화탄소	메탄	아산화질소	F 가스
	(CO ₂)	(CH ₄)	(N₂O)	(HFCs, PFCs, SF ₆)
대기체류기간	5-200년	12년	114년	45-260년
배출원	화석연료 연소,	쌀경작, 가축사육,	질소비료 사용,	냉매, 반도체,
	산림벌채, 시멘트	폐기물 매립	화학공정	디스플레이, 절연제
산업혁명 이전 농도	275 ppm	722 ppb	270 ppb	0
2011년 농도	391 ppm	1,803 ppb	324 ppb	-
(증가율)	(40%)	(150%)	(20%)	
지구온난화지수* (GWP, 100년간)	1	21	310	140-23,900

^{*}주) 지구온난화지수는 IPCC 1996 가이드라인에 따름(현재 우리나라의 온실가스 통계 작성기준) 자료: IPCC, Climate Change 2013, WG-1 Technical Summary

- 전세계적으로 볼 때, 이산화탄소(CO₂)가 전체 온실가스의 약 2/3를 차지, 메탄 가스(CH₄)가 15-20%, 아산화질소 및 기타 F 가스가 나머지 15% 내외를 차지함.
- 교토의정서에서는 위 6가지 온실가스를 규제하고 있으나,
 - 삼불화질소(NF₃): 디스플레이 산업에서 사용, 교토의정서 2차 공약기간에 추가 규제
 - 염소불화탄소(CFCs): 일명 프레온가스, 과거에 에어컨, 냉장고 등의 냉매로 사용
 → 강력한 온실가스이나, 오존층 파괴 물질이므로 '오존층 파괴 방지협약'(비엔나협약)과 '몬트리올의정서'에 의해 사용이 규제되고 있으므로 기후협약에서는 규제하지 않음

가. 온실가스의 종류

- 주요 온실가스 배출 과정
 - 이산화탄소(CO₂): 가장 많은 온실가스(전체의 약 65%)
 - 석유, 석탄, 천연가스 등 화석연료 연소과정에서 발생 > 연료속의 탄소 연소
 - 산림벌채: 광합성으로 이산화탄소를 흡수하여 저장하는 나무를 베어 버림
 - 시멘트 생산: 석회석을 가열하여 분해하는 과정에서 이산화탄소 발생
 - * CaCO₃(석회석) → 가열 분해 → CaO(시멘트 원료) + CO₂(이산화탄소)
 - 메탄(CH₄): 두번째로 많은 온실가스(전체의 약 15%)
 - 논농사: 논바닥이 물에 잠기면, 흙 속의 유기물이 공기(산소)가 없는 상태에서 분해되면서(혐기성 발효) 메탄이 발생
 - 소 되새김질: 소가 먹은 풀이 소화되기 쉽게 하려고 첫째 위에서 메탄발효가 일어남. 이를 되새김질 하려고 입으로 토해낼 때 대량의 메탄 배출
 - 쓰레기 매립: 땅속에서 공기(산소)가 없는 상태에서 유기물이 분해될 때 메탄 발생

가. 온실가스의 종류

- 주요 온실가스 배출 과정(계속)
 - 아산화질소(N₂O)
 - 질소비료 사용: 질소비료의 암모니아 성분이 분해되면서 발생
 - 화학공정: 암모니아, 질산 생산 공정 등에서 발생
 - 수소불화탄소(HFCs)
 - 에어컨, 냉장고의 냉매로 사용됨 > 냉매가 대기중에 누출될 때 발생
 - 과불화탄소(PFCs)
 - 반도체 정밀가공을 위한 웨이퍼 식각공정에서 사용됨
 - 육불화황(SF₆)
 - 고압전기를 다룰 때 자기장을 약화시키므로 내부에 육불화황 가스로 채운 고 압전기 차단기를 사용함. 최근 반도체 제조공정에서도 사용됨
 - * 우리나라는 교토의정서에서 규정한 6가지 온실가스에 대해서 통계를 작성함

세계 이산화탄소 배출량 추이

자료: 관계부처 합동, "제2차 기후변화 대응 기본계획", 2019.10 에서 인용함.

• 국가별 온실가스 총배출량 현황

(단위: 백만톤 CO₂eq.)

국가	1990	2010	2017	2018	1990-2017 년 증감률(%)	2016-2017 년 증감률(%)	출처 ¹⁾
중국	-	10,543	12,476 ²⁾	_	_	2%	UNFCCC,IEA
미국 ³⁾	6,437	6,982	6,488	6,677	1%	-1%	UNFCCC
인도	-	2,137	2,7932)	-	_	5%	UNFCCC,IEA
러시아	3,188	2,058	2,155	2,220	-32%	3%	UNFCCC
일본 ³⁾	1,270	1,303	1,289	1,238	2%	-1%	UNFCCC
브라질	550	917	968 ²⁾	_	76%	2%	UNFCCC, IEA
이란	-	810	922 ²⁾	_	_	2%	UNFCCC, IEA
인도네시아	267	682	899 ²⁾	-	237%	9%	UNFCCC, IEA
독일 ³⁾	1,249	942	894	858	-28%	-2%	UNFCCC
캐나다 ³⁾	603	691	714	729	18%	1%	UNFCCC
대한민국 ³⁾	292	656	710	728	143%	2%	_
멕시코 ³⁾	445	669	705 ²⁾	_	59%	-0.04%	UNFCCC, OECD, IEA
사우디아라비아	165	525	630 ²⁾	_	281%	1%	UNFCCC, IEA
호주 ³⁾	425	541	557	558	31%	1%	UNFCCC
남아프리카공화국	347	539	545 ²⁾	-	57%	1%	UNFCCC, IEA

^{1.} UNFCCC: 유엔기후변화협약 제출 국가별 온실가스 배출량(부속서 국가: 1990-2018년 배출량, 비부속서 국가: 최신 국가보고서), IEA: 국제에너지기구(International Energy Agency) 국가별 연료연소 CO_2 배출량(1990-2017년), OECD: 경제협력개발기구 온실가스 배출량(UN 통계와 대부분 동일, 멕시코는 UN보다 최신 자료인 stats.oecd.org 자료 활용)

^{2.} 최신 국가보고서에 제공된 온실가스 총배출량에 IEA의 연료연소 ${
m CO}_2$ 비중을 적용하여 계산한 추정치

^{3.} 경제협력개발기구(OECD) 회원국

• 한국의 온실가스 배출 추이

※ 자료: 온실가스종합정보센터, "2020 국가 온실가스 인벤토리 보고서", 2021.1.

나. 온실가스 배출통계 (Inventories)

• 분야별 온실가스 배출량 (단위: CO₂환산 백만톤(million ton CO₂ eq.))

분야	1990	2000	2010	2015	2016	2017	2018	90년대비 증감률	전년대비 증감률
에너지	240.4	411.8	566.1	600.7	602.7	615.7	632.4 (86.9%)	163.1%	2.7%
산업공정	20.4	50.9	53.0	54.3	53.2	55.9	57.0 (7.8%)	178.7%	1.9%
농업	21.0	21.4	22.1	21.0	20.8	21.0	21.2 (2.9%)	1.0%	1.1%
토지이용변화 및산림(LULUCF)	-37.8	-58.4	-53.8	-44.4	-45.6	-41.5	-41.3 (-5.7%)	9.3%	-0.5%
폐기물	10.4	18.8	15.2	16.6	16.8	17.2	17.1 (2.3%)	64.7%	-0.7%
총배출량	292.2	502.9	656.3	692.5	693.5	709.7	727.6 (100%)	149.0%	2.5%
순배출량	254.4	444.5	602.5	648.2	648.0	668.3	686.3 (94.3)	169.8%	2.7%

[※] LULUCF: Land Use, Land-Use Change & Forestry (토지이용, 토지이용 변화 및 산림)

[※] 자료: 온실가스 종합정보센터, "2020 국가 온실가스 인벤토리 보고서", 2021.1.

나. 온실가스 배출통계 (Inventories)

• 온실가스별 배출량 (단위: CO₂환산 백만톤(million ton CO₂ eq.))

^{3 Γ 6} 총배출량	292.2	502.9	656.3	692.5	693.5	709.7	727.6 (100%)	149.0%	2.5%
육불화황 SF ₆	0.2	2.8	10.1	8.3	6.8	6.5	8.4 (1.2%)	300.0% (00년대비)	28.1%
과불화탄소 PFCs	-	2.2	2.3	1.5	1.5	2.1	3.2 (0.4%)	145.4% (00년대비)	49.8%
수소불화탄소 HFCs	1.0	8.4	8.1	7.9	7.4	9.6	9.3 (1.3%)	846.7%	-3.6%
아산화질소 N₂O	8.8	17.9	13.0	13.5	13.5	13.9	14.4 (2.0%)	62.9%	3.5%
메탄가스 CH ₄	30.2	27.8	27.6	26.9	27.0	27.4	27.7 (3.8%)	-8.4%	1.0%
이산화탄소 CO ₂	252.0	443.7	595.3	634.3	637.4	650.2	664.7 (91.4%)	163.8%	2.2%
온실가스	1990	2000	2010	2015	2016	2017	2018	90년대비 증감률	전년대비 증감률

[※] 자료: 온실가스 종합정보센터, "2020 국가 온실가스 인벤토리 보고서", 2021.1.

• 에너지부문 온실가스 배출 세부내역

(단위: 백만톤 CO₂eq.)

부문	1990	2000	2010	2015	2016	2017	2018	1990년 대비 증감률(%)	전년 대비 증감률(%)
1A 연료연소	235.3	409.1	562.3	596.9	598.7	611.6	627.9	166.9	2.7
1A1 에너지산업	48.4	136.3	256.1	261.8	263.7	271.0	287.6	493.7	6.1
1A2 제조업 및 건설업	76.6	130.6	162.0	187.6	181.4	186.5	186.6	143.7	0.03
1A3 수송	35.5	69.9	85.4	94.2	98.8	98.3	98.1	176.3	-0.2
1A4 기타	74.6	69.8	55.8	50.2	51.8	52.6	52.5	-29.7	-0.2
1A5 미분류	0.2	2.4	2.9	3.1	3.1	3.2	3.1	1,616.6	-2.3
1B 탈루	5.1	2.7	3.8	3.8	3.9	4.0	4.5	-12.6	11.2
1B1 고체연료	4.8	1.2	0.6	0.5	0.5	0.4	0.3	-93.0	-19.2
1B2 석유 및 천연가스	0.3	1.5	3.2	3.3	3.4	3.6	4.1	1,377.6	14.7
합계	240.4	411.8	566.1	600.7	602.7	615.7	632.4	163.1	2.7

※ 자료: 온실가스 종합정보센터, "2020 국가 온실가스 인벤토리 보고서", 2021.1.

• 에너지부문 온실가스별 배출량

(단위: 백만톤 CO₂eq.)

온실가스	1990	1995	2000	2005	2010	2015	2016	2017	2018
CO ₂	231.7	347.3	406.4	462.4	558.1	592.1	593.9	606.6	622.8
CH ₄	7.8	3.5	3.7	4.4	5.3	5.5	5.7	5.8	6.3
N ₂ O	0.9	1.4	1.7	2.1	2.7	3.1	3.1	3.3	3.4
합계	240.4	352.2	411.8	468.9	566.1	600.7	602.7	615.7	632.4

[※] 자료: 온실가스 종합정보센터, "2020 국가 온실가스 인벤토리 보고서", 2021.1.

|그림 1-1 | 국가 온실가스 인벤토리 작성 조직도

※ 자료: 온실가스 종합정보센터, "2020 국가 온실가스 인벤토리 보고서", 2021.1.

- 에너지연소부문 온실가스 배출량 계산방법
 - 기본 공식: 온실가스 배출량(톤) = 에너지사용량(톤) × 발열량(MJ/kg) ×
 온실가스 배출계수(kg/MJ) × GWP
 - 온실가스 배출량(톤) = $\Sigma_i \Sigma_j$ 에너지사용량(톤) $_i \times$ 발열량(MJ/kg) $_i \times$ 온실 가스 배출계수 $(kg/MJ)_{ij} \times GWP_j$

단, i = 에너지원 종류, j = 온실가스 종류 (CO₂, CH₄, N₂O)

- 에너지사용량: 석탄, 석유제품, 천연가스 등 화석에너지 사용량
- 발열량: 에너지원 종류별로 다름. 정부에서 주기적으로 조사하여 고시함
- 온실가스 배출계수:
 - IPCC 기본값: IPCC에서 세계적으로 적용하는 배출계수 발표
 - 국가 고유 배출계수: 정부에서 주기적으로 조사하여 고시함
- GWP: Global Warming Potential(지구온난화 지수)
 - 현재 국내 적용 GWP: CO₂: 1, CH₄: 21, N₂O: 310

- 에너지 발열량에 대한 이해
 - 에너지를 사용하는 목적은 에너지원으로부터 열량을 얻으려는 것임
 - 석유, 석탄, 가스, 전기 등으로부터 동력(힘), 열(빛) 에너지를 얻음
 - 에너지원별로화학적 성분 및 물리적 성질이 다르므로 발열량도 다름
 - 석유, 석탄, 천연가스 등 화석에너지는 탄소(C)와 수소(H)의 화합물임
 - 전기에너지는 1 kWh 당 860 kcal의 열량 또는 이에 상당하는 힘을 냄
 - 화석에너지는 분자구조가 다양하므로 성상에 따라 발열량의 차이 발생
 - 원유는 매우 다양한 분자구조를 가진 물질의 혼합물이므로, 휘발유, 등유, 경유, 항공유, 납사 등 비슷한 성질을 가진 성분으로 구분하여 석유제품을 제조
 - 이러한 각 석유제품도 구성 성분이 다양하므로 발열량이나 온실가스 배출계수가 다양하게 나타남. > 따라서 정부에서 표본조사를 통해 평균값을 적용
 - 석탄의 경우도 종류 및 건조 정도(수분함량 상태) 따라 발열량의 차이가 남
 - 우리나라 정부에서는 매5년마다 에너지원별 뱔열량을 조사하여 공표함

• 연료별 에너지열량 환산기준(1)

2017년 12월 28일 개정(에너지 시행규칙 제5조 제1항)

					/단 12월 20월	- 11 0(11 1-		1102 1110)
				총발열량			순발열량	
구 분	에너지원	단위	MJ	kcal	석유환산톤 (10-3toe)	MJ	kcal	석유환산톤 (10-3toe)
	원유	kg	45.0	10,750	1.075	42.2	10,080	1.008
	휘발유	ł	32.7	7,810	0.781	30.4	7,260	0.726
	등유	ł	36.7	8,770	0.877	34.2	8,170	0.817
	경유	ł	37.8	9,030	0.903	35.2	8,410	0.841
	B-A유	ł	39.0	9,310	0.931	36.4	8,690	0.869
	B-B유	ł	40.5	9,670	0.967	38.0	9,080	0.908
	B-C유	ł	41.7	9,960	0.996	39.2	9,360	0.936
НΟ	프로판(LPG1호)	kg	50.4	12,040	1.204	46.3	11,060	1.106
석유 (17종)	부탄(LPG3호)	kg	49.5	11,820	1.182	45.7	10,920	1.092
(170)	나프타	ł	32.3	7,710	0.771	29.9	7,140	0.714
	용제	ł	32.8	7,830	0.783	30.3	7,240	0.724
	항공유	ł	36.5	8,720	0.872	33.9	8,100	0.810
	아스팔트	kg	41.4	9,890	0.989	39.2	9,360	0.936
	윤활유	ł	40.0	9,550	0.955	37.3	8,910	0.891
	석유코크스	kg	35.0	8,360	0.836	34.2	8,170	0.817
	부생연료유1호	ł	37.1	8,860	0.886	34.6	8,260	0.826
	부생연료유2호	ł	39.9	9,530	0.953	37.7	9,000	0.900

• 자료: 산업통상자원부, 에너지경제연구원, "2020 에너지통계연보", 2021.1.

• 연료별 에너지열량 환산기준(2)

71.	천연가스(LNG)	kg	54.7	13,060	1.306	49.4	11,800	1.180
가스 (3종)	도시가스(LNG)	Nm³	43.1	10,290	1.029	38.9	9,290	0.929
(30)	도시가스(LPG)	Nm³	63.6	15,190	1.519	58.4	13,950	1.395
	국내무연탄	kg	19.8	4,730	0.473	19.4	4,630	0.463
	연료용 수입무연탄	kg	21.2	5,060	0.506	20.5	4,900	0.490
석탄	원료용 수입무연탄	kg	25.2	6,020	0.602	24.7	5,900	0.590
^{격단} (7종)	연료용 유연탄(역청탄)	kg	24.8	5,920	0.592	23.7	5,660	0.566
(10)	원료용 유연탄(역청탄)	kg	29.2	6,970	0.697	28.0	6,690	0.669
	아역청탄	kg	21.4	5,110	0.511	19.9	4,750	0.475
	코크스	kg	29.0	6,930	0.693	28.9	6,900	0.690
TI-1 -	전기(발전기준)	kWh	8.9	2,130	0.213	8.9	2,130	0.213
전기 등 (3종)	전기(소비기준)	kWh	9.6	2,290	0.229	9.6	2,290	0.229
(50)	신탄	kg	18.8	4,500	0.450	-	-	-

- 주 1) "총발열량"이란 연료의 연소과정에서 발생하는 수증기의 잠열을 포함한 발열량을 말한다.
 - 2) "순발열량"이란 연료의 연소과정에서 발생하는 수증기의 잠열을 제외한 발열량을 말한다.
 - 3) "석유환산톤"(toe: ton of oil equivalent)이란 원유 1톤이 갖는 열량으로 10⁷kcal를 말한다.
 - 4) 석탄의 발열량은 인수식을 기준으로 한다.
 - 5) 최종에너지사용자가 사용하는 전기에너지를 열에너지로 환산할 경우에는 1kWh=860kcal를 적용한다.
 - 6) 1cal=4.1868J, Nm³은 0°C 1기압 상태의 단위체적(세제곱미터)을 말한다.
 - 7) 에너지원별 발열량(MJ)은 소수점 아래 둘째 자리에서 반올림한 값이며, 발열량(kcal)은 발열량(MJ)으로부터 환산한 후 1의 자리에서 반올림한 값이다. 두 단위 간 상충될 경우 발열량(MJ)이 우선한다.
- 자료: 산업통상자원부, 에너지경제연구원, "2020 에너지통계연보", 2021.1.

- 탄소배출계수에 대한 이해
 - 탄소배출계수도 에너지원별로 화학적 성분 및 물리적 성질이 다르므로
 다양하게 나타남
 - 석유, 석탄, 천연가스 등 화석에너지는 탄소(C)와 수소(H)의 화합물임
 - C와 H 모두 연소시 열량을 내므로, C의 비중이 높을수록 단위 열량당 이산화 탄소 배출 비율, 즉 탄소배출계수(t C/TJ)가 높아짐
 - 화석연료에서 탄소배출계수(t C/TJ)는 석탄, 석유, 천연가스 순임
 - 평균적으로 석탄: 26, 석유: 20, 천연가스: 15.3 정도임 (1: 0.77: 0.59)
 - 화석에너지 이외의 에너지는 탄소 배출이 없음: Carbon Free
 - 재생에너지: 수력발전, 풍력발전, 태양광발전 등
 - 바이오매스(biomass; 나무, 풀 등의 에너지원): 연소시에는 CO_2 를 배출하나, 이는 광합성시 흡수된 CO_2 임. Carbon Neutral(탄소중립) \rightarrow 온실가스 배출 0
 - 원자력발전도 직접적인 탄소배출이 없음

• 연료별 탄소배출계수(1)

(단위: t C/TJ)

	연료	1996 IPCC 기본값		국가고유 배출계수			연료	1996 IPCC 기본값	국가고유 배출계수		
		'90–'06	'07–'11	'12–'16	'17–'18			'90–'06	'07–'11	'12–'16	'17–'18
	원유	20.0	_	_	_	석	정제 가스 ⁷⁾	15.7	_	_	_
	오리멀젼	22.0	_	_	_	유	기타 석유	20.0	_	_	_
	액상천연가스(N GL)	17.2	_	_	_		국내 무연탄	26.8	29.7	30.5	30.185
	휘발유	18.9	19.7	20.0	19.548		수입무연탄 (연료탄) ⁸⁾	26.8	_	28.6	27.404
	제트용 등유 ¹⁾	19.5	19.6	19.8	19.931		수입무연탄 (원료탄) ⁸⁾	26.8	_	29.2	29.909
	보일러 등유 ²⁾	19.6	19.5	_	_		유연탄(원료탄) ⁸⁾	25.8	_	26.2	25.963
	실내 등유	19.6	19.5	19.6	19.969	석	유연탄(연료탄)	25.8	25.9	26.0	25.951
	Shale Oil	20.0	_	_	_	탄	아역청탄	26.2	29.3	26.2	26.468
	경유	20.2	20.0	20.2	20.111		갈탄	27.6	_	_	_
석	경질중유(B-A)	20.5 ³⁾	20.2	20.4	20.657		Oil shale	29.1	_	_	_
유	중유(B-B)	20.8 ³⁾	20.6	20.5	21.384		토탄	28.9	_	_	_
	중질중유(B−C)	21.1	20.8	20.6	21.929		BKE & Paten Fuel	25.8	_	_	_
	부생연료 1 호 ⁴⁾	_	_	19.7	20.067		Coke Oven/Gas Coke	29.5	_	_	_
	부생연료 2 호 ⁴⁾	_	-	21.0	21.729		Coke Oven Gas	13.0	_	_	_

※ 자료: 온실가스 종합정보센터, "2020 국가 온실가스 인벤토리 보고서", 2021.1.

• 연료별 탄소배출계수(2)

프로판	17.2	17.6	17.6	17.641		Blast Furnace Gas	66.0	_	_	-
부탄	17.2	18.1	18.1	18.107	 大	천연가스(LNG)	15.3	15.4	15.3	15.312
에탄올	16.8	_	_	_	_	도시가스(LNG)	15.3	15.4	15.3	15.272
납사 ⁵⁾	20.0	18.6	19.2	19.157		도시가스(LPG)	17.2	17.6	17.6	17.454
용제	20.0	19.4	19.3	19.172	바이	고체바이오매스	29.9	-	_	-
아스팔트	22.0	21.5	21.6	21.544	오매	액체바이오매스	20.0	_	_	_
윤활유	20.0	19.7	19.9	19.979	쓰	기체바이오매스	30.6	_	_	_
석유 코크 ⁶⁾	27.5	27.2	_	26.086						

주: 국가고유 배출계수는 2007년 이후 배출량부터 사용 가능하며 그 이전에는 1996 IPCC GL 기본 배출계수를 적용한다.

- 1) 제트용 등유는 Jet A-1, JP-4, JP-8 등을 포함하며, 항공용 휘발유(AVI-G)는 휘발유의 값을 준용한다.
- 2) 보일러 등유는 2011년 7월부터 판매가 폐지되어 2012년 이후는 실내 등유의 국가고유 배출계수를 준용한다.
- 3) 경질중유(B-A)는 경유유분 70%와 B-C유분 30% 혼합유이고, 중유(B-B)는 경유유분 30%와 B-C유분 70% 혼합유이므로 이를 고려하여 기본 배출계수 보정한다.
- 4) 부생연료 1호, 2호는 1990년부터 2011년까지 기타 석유의 기본 배출계수를 준용한다.
- 5) 국내에서 생산되는 컨덴세이트는 납사의 값을 준용한다.
- 6) 석유코크는 2011년 고시 발열량 기준의 국가고유 배출계수가 없으므로 2012-2016년은 2006년 고시 발열량 기준의 국가고유 배출계수 준용한다.
- 7) 정제가스는 2006 IPCC GL 기본 배출계수를 준용한다.
- 8) 수입무연탄, 유연탄(원료탄)은 2007년부터 2011년까지 해당 연료의 기본 배출계수를 준용한다.
- 9) 액체바이오매스(바이오디젤), 기타 석유 등 국가고유 배출계수가 제시되지 않은 연료는 해당 연료의 기본 배출계수를 준용한다.
- 10) 국가고유 및 기본 배출계수가 제시되지 않은 석유류(정제원료 등)의 배출계수는 기타 석유의 값을 준용한다.
- 11) 기타 석유는 1990년부터 2011년까지 기본 배출계수를 준용하고, 2012년부터는 부생연료 1호의 국가고유 배출계수를 준용한다.

자료: 1996 IPCC GL, 2006 IPCC GL, 2020년 국가 온실가스 통계 산정·보고·검증 지침(온실가스종합정보센터, 2020)

※ 자료: 온실가스 종합정보센터, "2020 국가 온실가스 인벤토리 보고서", 2021.1.

- GWP: Global Warming Potential(지구온난화 지수)
 - GWP: 각 온실가스가 지구온난화에 영향을 미치는 정도를 수치로 표현
 - 적용기준: CO₂ 1톤이 100년 동안 지구온난화 기여도 = 1
 - 즉, CO₂의 GWP(100) =1 로 정의 (COP 에서 100년간 기여도로 하기로 정함)
 - 다른 온실가스는 CO₂에 비해서 같은 중량당 상대적인 기여도로 정함
 - CO₂: 1
 - CH₄: 21
 - N₂O: 310
 - HFCs: 140 11,700
 - PFCs: 6,500 9,200
 - SF₆: 23,900
 - * 이 GWP 값은 IPCC 2차평가보고서(1995년) 및 1996 온실가스 Guidelines에서 제시한 것임
 - * IPCC 제5차 평가보고서(2014년)에서 새로운 연구결과는 위와 다른 GWP 값을 제시함

- 에너지연소 부문 온실가스 감축방법
 - 온실가스 배출량(톤) = $\Sigma_i \Sigma_j$ 에너지사용량(톤) $_i \times$ 발열량(MJ/kg) $_i \times$ 온실가스 배출계수 $(kg/MJ)_{ij} \times GWP_j$ 단, I = 에너지원 종류, j = 온실가스 종류 (CO₂, CH₄, N₂O)
 - * 에너지사용자가 선택하여 조정할 수 있는 항목을 감소시킴
 - 에너지사용량: 감축 가능
 - 에너지효율 개선을 통한 에너지 사용량 감축
 - 발열량: 에너지원별로 고정되어 있음
 - 온실가스 배출계수: 에너지원별로는 고정되어 있음
 - 그러나 온실가스 배출계수가 낮은 에너지원을 선택하여 사용 가능
 - → 저탄소 에너지, 무탄소 에너지(온실가스 배출이 없음) 사용
 - GWP: 에너지연소 부문에서는 고정되어 있음 (단, GWP가 낮은 F가스 사용가능)

수고하셨습니다.