Europäisches Patentamt

European Patent Office

Office européen des brevets

PCT/EPO4/08624

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten internationalen Patentanmeldung überein.

The attached documents are exact copies of the international patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet international spécifiée à la page suivante.

Den Haag, den The Hague, La Haye, le

-3 SEP 2004

Der Präsident des Europäischen Patentamts Im Auftrag For the President of the European Patent Office Le Président de l'Office européen des brevets p.o.

M. de Jong-de Koster

Patentanmeldung Natent application no.
Demande de brevet nº

PCT/EP 03/09109

BEST AVAILABLE COPY

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation -

Anmeldung Nr.:

Application no.: Demande nº:

PCT/EP 03/09109

Anmelder:

Applicant(s): Demandeur(s):

1. SUNGENE GMBH & CO. KGAA - Gatersleben, Deutschland

. . :·.

2. BASF AKTIENGESELLSCHAFT - Ludwigshafen, Deutschland

3. BASF PLANT SCIENCE GMBH - Ludwigshafen, Deutschland

Title of the invention:

Titre de l'invention:

Verfahren von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung

Tagetes als Futtermittel

Anmeldetag:

Date of filing:

Date de dépôt:

18. August 2003 (18.08.2003)

In Anspruch genommene Priorität(en)

Priority(ies) claimed Priorité(s) revendiquée(s)

Staat: State: Pays:

Deutschland

Tag:

Aktenzeichen:

Date:

File no. Date:13. November 2002 Numéro de dépo 253112.9

Benennung von Vertragsstaaten : Siehe Formblatt PCT/RO 101 (beigefügt) Designation of contracting states: See Form PCT/RO/101 (enclosed)
Désignation d'états contractants: Voir Formulaire PCT/RO/101 (ci-joint)

Bemerkungen:

Remarks:

Remarques:

Weitere Anmelder:

4. FLACHMAN, Ralf - Quedlinburg, Deutschland (nur US)

5. SAUER, Matt - Quedlinburg, Deutschland (nur US)

6. SCHOPFER, Christel Renate - Quedlinburg, Deutschland (nur US)

7. KLEBSATTEL, Martin - Quedlinburg, Deutschland (nur US)

8. KLEBSATTEL, Nartin - Quedlinburg, Deutschland (nur US)

9. PFEIFFER, Angelika-Maria - Mannhaim, Deutschland (nur US)

10. LUCK, Thomas - Neustadt, Deutschland (nur (US)

11. VOESTE, Dirk - Schifferstadt, Deutschland (nur US)

Weitere Prioritätsanspruche:

Deutschland	16. Dezember 2002 (16.12.2002)	10258971.2
Deutschland	20. August 2002 (20.08.2002)	10238980.2
Deutschland	20. August 2002 (20.08.2002)	10238978.0
Deutschland	20. August 2002 (20.08.2002)	10238979.9

Original (für EINREICHUNG) - gedruckt am 06.08.2003 01:54:59 PM

V-1	Anwalt oder gemeinsamer Vertreter;			
	oder besondere Zustellanschrift Die unten bezeichnete Person ist/wird	gemeinsamer Vertreter		
	hiermit bestellt, um den (die) Anmelder vor den internationalen Behörden zu			
	vertreten, und zwar als:			
V-1-1	Name	BASF AKTIENGESELLSCHAFT		
V-1-2	Anschrift:	•		
		D-67056 Ludwigshafen		
		Deutschland		
IV-1-3	Telefonnr.	(0621) 60-94182		
IV-1-4	Telefaxnr.	(0621) 60-52538		
V	Bestimmung von Staaten			
•	Regionales Patent	AP: GH GM KE LS MW MZ SD SL SZ TZ UG ZM		
V-1 Regionales Patent (andere Schutzrechtsarten oder Verfahren sind ggf. in Klammern nac der (den) betreffenden Bestimmung(angegeben)	Landere Schutzrechtsarten oder	W und jeder weitere Staat, der		
	Verfahren sind ggf. in Klammern nach	Mitgliedstaat des Harare-Protokolls und		
	angegeben)	Wortragsstaat des PCT ist		
		EA: AM AZ BY KG KZ MD RU TJ TM und jeder		
		Eurasischen Patentübereinkommens und		
		Vertragsstaat des PCT ist		
	1	EP: AT BE BG CH&LI CY CZ DE DK EE ES FI		
	·	FR GB GR HU IE IT LU MC NL PT RO SE SI		
		SK TR und jeder weitere Staat, der		
		Mitgliedsstaat des Europäischen		
	1	Patentübereinkommens und Vertragsstaat		
	des PCT ist OA: BF BJ CF CG CI CM GA GN GQ GW ML MR			
	NE SN TD TG und jeder weitere Staat, der			
		Mitgliedstaat der OAPI und Vertragsstaat		
		des PCT ist		
	S.AA	AE AG AL AM AT AU AZ BA BB BG BR BY BZ		
V-2	Nationales Patent (andere Schutzrechtsarten oder Verfahren sind ggf. in Klammern nach der (den) betreffenden Bestimmung(en angegeben)	CR CHELT CM CO CR CH CZ DE DK DM DZ EC		
		n) RE ES FI GB GD GE GH GM HR HU ID IL IN		
		IS JP KE KG KP KR KZ LC LK LR LS LT LU		
		TAY MA MD MG MK MN MW MX MZ NI NO NZ OM		
	\	PG PH PL PT RO RU SC SD SE SG SK SL SY		
		TJ TM TN TR TT TZ UA UG US UZ VC VN YU		
		ZA ZM ZW		

PF 54148

Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes als Futtermittel

Beschreibung

5

10

Die vorliegende Erfindung betrifft die Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes zur oralen Verabreichung an Tiere, Verfahren zur Herstellung von Tierfutterzubereitungen, die Tierfutterzubereitungen selbst, ein Verfahren zum Pigmentieren von Tieren oder Tierprodukten sowie ein Verfahren zur Herstellung pigmentierter Tiere und Tierprodukte.

Aufgrund seiner farbgebenden Eigenschaften wird Astaxanthin als Pigmentierstoff in der Tierernährung, insbesondere in der Forellen-, Lachs- und Shrimpzucht verwendet.

15

20

Die Herstellung von Astaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren. Natürliches Astaxanthin, wird heutzutage in biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Algen, beispielsweise *Haematococcus pluvialis* oder durch Fermentation von gentechnologisch optimierten Mikroorganismen und anschließender Isolierung gewonnen.

Synthetisches oder durch Isolierung gewonnenes natürliches Astaxanthin wird durch spezielle Formulierungstechniken zur Erhöhung der Lagerfähigkeit chemisch und/oder physikalisch stabilisiert und für den jeweiligen Verwendungszweck entsprechend der gewünschten Applikationsbereiche und Bioverfügbarkeiten aufbereitet.

25

30

WO 9201754 beschreibt eine astaxanthinhaltige Wildtyppflanze der Spezies Adonis aestivalis. Ferner offenbart das Dokument die Verwendung der astaxanthinhaltigen Petalen von Adonis aestivalis sowie deren Extrakte als Fischfutter oder als Zusatz in Fischfutter zur Pigmentierung von Fischen.

35

Die Verwendung von Adonis aestivalis als pflanzliche Quelle für Astaxanthin zur Pigmentierung von Fischen im Stand der Technik weist jedoch den Nachteil auf, dass der Ertrag an astaxanthinhaltiger Biomasse und damit an astaxanthinhaltigem Pflanzenmaterial pro Anbaufläche sehr gering ist, und somit nur doch kostenintensiven Anbau großer Flächen eine befriedigende Menge an astaxanthinhaltigem Pflanzenmaterial erhal-

15

20

25

30

35

ten werden kann. Dies führt zu hohen Kosten bei der Herstellung entsprechender Pigmentiermittel.

Der Erfindung lag daher die Aufgabe zugrunde, Pigmentiermittel zur Verfügung zu stellen, die den Nachteil des Standes der Technik nicht mehr aufweisen.

Demgemäss wurde gefunden, dass astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes zur oralen Verabreichung an Tiere verwendet werden können.

In einer bevorzugten Ausführungsform werden die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes zur Pigmentierung von Tieren und der entsprechenden Tierprodukte verwendet.

Unter astaxanthinhaltigen Pflanzen der Gattung Tagetes werden bevorzugt Pflanzen der Gattung Tagetes verstanden, die in mindestens einem Teil der Pflanze einen Gehalt an Astaxanthin aufweisen. Das Astaxanthin kann in freier Form in Form von Fettsäure-Di- oder Monoester vorliegen. Bevorzugte Pflanzen der Gattung Tagetes sind Pflanzen ausgewählt aus den Spezies Tagetes erecta, Tagetes patula, die auch als Marigold bezeichnet werden, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta, Tagetes lemmonii, Tagetes tenuifolia, oder Tagetes campanulata, besonders bevorzugt Tagetes erecta oder Tagetes patula.

Unter astaxanthinhaltigen Pflanzenteilen von Pflanzen der Gattung Tagetes werden vorzugsweise Teile von Pflanzen verstanden, die in mindestens einem Teil des Pflanzenteils einen Gehalt an Astaxanthin aufweisen. Bevorzugte Pflanzenteile sind beispielsweise Blüten, Blütenköpfe oder besonders bevorzugt Blütenblätter, die auch als

Petalen bezeichnet werden.

Wildtyppflanzen der Gattung Tagetes weisen kein Astaxanthin jedoch Carotinoide wie Lutein und Zeaxanthin in Blüten auf. Es wurde jedoch erfindungsgemäß gefunden, dass die Pflanzen der Gattung Tagetes beispielsweise durch genetische Veränderung in die Lage versetzt werden können, Astaxanthin herzustellen.

In einer bevorzugten Ausführungsform werden die Pflanzen der Gattung Tagetes beispielsweise dadurch in die Lage versetzt Astaxanthin herzustellen, indem in den genetisch veränderten Pflanzen der Gattung Tagetes im Vergleich zum Wildtyp eine Ketolase-Aktivität verursacht wird.

5

10

Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.

Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -lonon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Canthaxanthin umzuwandeln.

Dementsprechend wird unter Ketolase–Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge β-Carotin bzw. gebildete Menge Canthaxanthin verstanden.

Unter dem Begriff "Wildtyp" wird erfindungsgemäß die entsprechende nicht genetisch veränderte Ausgangspflanze der Gattung Tagetes verstanden.

Je nach Zusammenhang kann unter dem Begriff "Pflanze" die Ausgangspflanze (Wildtyp) der Gattung Tagetes oder eine erfindungsgemäße, genetisch veränderte Pflanze der Gattung Tagetes oder beides verstanden werden.

25

30

35

Vorzugsweise wird unter "Wildtyp" für die Verursachung der Ketolase-Aktivität, für die nachstehend beschriebene Erhöhung der Hydroxylase-Aktivität, für die nachstehend beschriebene Erhöhung der β-Cyclase-Aktivität, und für die nachstehend beschriebene Reduzierung der ε-Cyclase-Aktivität und die Erhöhung des Gehalts an Astaxanthin jeweils eine Referenzpflanze verstanden.

Diese Referenzpflanze der Gattung Tagetes ist Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta oder Tagetes campanulata, besonders bevorzugt *Tagetes erecta*, ganz besonders bevorzugt Tagetes erecta L., Accession number: TAG 72, Sorte Orangenprinz, erhältlich aus der Genbank des IPK, Corrensstr. 3, D-06466 Gatersleben.

Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen der Gattung Tagetes und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

5

Die Bestimmung der Ketolase-Aktivität in Pflanzenmaterial erfolgt in Anlehnung an die Methode von Frazer et al., (J. Biol. Chem. 272(10): 6128-6135, 1997). Die Ketolase-Aktivität in pflanzlichen Extrakten wird mit den Substraten beta-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

10

Die erfindungsgemäße genetisch veränderte Pflanze der Gattung Tagetes weist in dieser, bevorzugten Ausführungsform im Vergleich zum genetisch nicht veränderten Wildtyp eine Ketolase-Aktivität, vorzugsweise in Blütenblättern, auf und ist somit vorzugsweise in der Lage, transgen eine Ketolase zu exprimieren.

15

In einer weiter bevorzugten Ausführungsform erfolgt die Verursachung der Ketolase-Aktivität in den Pflanzen der Gattung Tagetes durch Verursachung der Genexpression einer Nukleinsäure kodierend eine Ketolase.

20

In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression einer Nukleinsäure kodierend eine Ketolase vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren in die Ausgangspflanze der Gattung Tagetes.

25

Dazu kann prinzipiell jedes Ketolase-Gen, also jede Nukleinsäuren die eine Ketolase codiert verwendet werden.

Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.

30

Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das die Wirtspflanze der Gattung Tagetes nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

Beispiele für Nukleinsäuren, kodierend eine Ketolase und die entsprechenden Ketolasen, die im erfindungsgemäßen Verfahren verwendet werden können sind beispielsweise Sequenzen aus

Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Accession NO: X86782; Nukleinsäure: SEQ ID NO: 1, Protein SEQ ID NO: 2),

Haematoccus pluvialis, NIES-144 (Accession NO: D45881; Nukleinsäure: SEQ ID NO: 3, Protein SEQ ID NO: 4),

Agrobacterium aurantiacum (Accession NO: D58420; Nukleinsäure: SEQ ID NO: 5, Protein SEQ ID NO: 6),

Alicaligenes spec. (Accession NO: D58422; Nukleinsäure: SEQ ID NO: 7, Protein SEQ ID NO: 8),

Paracoccus marcusii (Accession NO: Y15112; Nukleinsäure: SEQ ID NO: 9, Protein SEQ ID NO: 10).

20 Synechocystis sp. Strain PC6803 (Accession NO: NP442491; Nukleinsäure: SEQ ID NO: 11, Protein SEQ ID NO: 12).

Bradyrhizobium sp. (Accession NO: AF218415; Nukleinsäure: SEQ ID NO: 13, Protein SEQ ID NO: 14).

25

Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; Nukleinsäure: SEQ ID NO: 15, Protein SEQ ID NO: 16),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No. NZ_AABC01000195, Basenpaar 55,604 bis 55,392 (SEQ ID NO: 81); Protein: Acc.-No. ZP_00111258 (SEQ ID NO: 82) (als putatives Protein annotiert),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No. NZ_AABC01000196, Basenpaar 140,571 bis 139,810 (SEQ ID NO: 83), Protein: (SEQ ID NO: 84) (nicht annotiert),

15

Synechococcus sp. WH 8102, Nukleinsäure: Acc.-No. NZ_AABD01000001, Basenpaar 1,354,725-1,355,528 (SEQ ID NO: 85), Protein: Acc.-No. ZP_00115639 (SEQ ID NO: 86) (als putatives Protein annotiert),

5 Haematococcus pluvialis (Accession NO: AF534876, AAN03484; Nukleinsäure: SEQ ID NO: 97, Protein : SEQ ID NO: 98),

Paracoccus sp. MBIC1143, (Accession NO: D58420, P54972; Nukleinsäure: SEQ ID NO: 99, Protein : SEQ ID NO: 100),

Brevundimonas aurantiaca (Accession NO: AY166610, AAN86030; Nukleinsäure: SEQ ID NO: 101, Protein : SEQ ID NO: 102,)

Nodularia spumigena NSOR10 (Accession NO: AY210783, AAO64399; Nukleinsäure: SEQ ID NO: 103, Protein : SEQ ID NO: 104) und

Deinococcus radiodurans R1(Accession NO: E75561, AE001872; Nukleinsäure: SEQ ID NO: 105, Protein : SEQ ID NO: 106).

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen und insbesondere mit den Sequenzen SEQ ID NO: 2 und/oder 16 leicht auffinden.

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 2 und/oder 16 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.

Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.

Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.

5

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50_C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50_C, bevorzugt bei 65_C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

10

Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22_C, bis zu stringenten Bedingungen bei 65_C angehoben werden.

Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42_C ausgeführt.

20

Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

(1) Hybridiserungsbedingungen mit zum Beispiel

- (i) 4X SSC bei 65_C, oder
- (ii) 6X SSC bei 45_C, oder
- 30 (iii) 6X SSC bei 68_C, 100 mg/ml denaturierter Fischsperma-DNA, oder
 - (iv) 6X SSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68_C, oder
- 35 (v) 6XSSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42_C, oder

- (vi) 50 % Formamid, 4X SSC bei 42_C, oder
- (vii) 50 % (vol/vol) Formamid, 0.1 % Rinderserumalbumin, 0.1 % Ficoll, 0.1 % Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6.5, 750 mM NaCl, 75 mM Natriumcitrat bei 42_C, oder
 - (viii) 2X oder 4X SSC bei 50_C (moderate Bedingungen), oder
- 10 (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42_ (moderate Bedingungen).
 - (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
 - (i) 0.015 M NaCl/0.0015 M Natriumcitrat/0.1 % SDS bei 50_C, oder
- 15
- (ii) 0.1X SSC bei 65_C, oder
- (iii) 0.1X SSC, 0.5 % SDS bei 68_C, oder
- 20 (iv) 0.1X SSC, 0.5 % SDS, 50 % Formamid bei 42_C, oder
 - (v) 0.2X SSC, 0.1 % SDS bei 42_C, oder
 - (vi) 2X SSC bei 65_C (moderate Bedingungen).

In einer bevorzugten Ausführungsform der erfindungsgemäßen genetisch veränderten Planzen der Gattung Tagetes bringt man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 und die enzymatische Eigenschaft einer Ketolase aufweist.

10

15

20

25

35

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 2 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 70 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 16 und die enzymatische Eigenschaft einer Ketolase aufweist.

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 16 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gln durch Asn, Val durch Ile, Leu durch Ile, Ser durch Thr.

Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.

Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.

Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, inc. Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:

Multiple alignment parameter:

Gap penalty

10

10 Gap length penalty

10

Pairwise alignment parameter:

K-tuple

5

1

Gap penalty

3

Window

5

15 Diagonals saved

5

Unter einem Protein, das eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 oder 16 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 2 oder 16, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 20 % aufweist.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

25

20

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der tagetesspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene von Pflanzen der Gattung Tagetes leicht ermitteln.

30

35

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 1 in die Pflanze der Gattung ein.

In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 15 in die Pflanze der Gattung ein.

10

15

20

25

30

oder Tagetes patula.

Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

In einer besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen der Gattung Tagetes, die in Blüten die höchste Expressionsrate einer Ketolase aufweisen.

Vorzugsweise wird dies dadurch erreicht, daß die Genexpression der Ketolase unter Kontrolle eines blütenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt, funktionell verknüpft mit einem blütenspezifischen Promotor in die Pflanze der Gattung Tagetes eingebracht.

Besonders bevorzugte Pflanzen der Gattung Tagetes als Ausgangspflanzen oder erfindungsgemäße genetisch veränderte Pflanzen sind Pflanzen ausgewählt aus den Spezies Tagetes erecta, Tagetes patula, die auch als Marigold bezeichnet werden, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta, Tagetes lemmonii, Tagetes tenuifolia, oder Tagetes campanulata, besonders bevorzugt *Tagetes erecta*

In einer bevorzugten Ausführungsform werden genetisch veränderte Pflanzen der Gattung Tagetes verwendet, die gegenüber dem Wildtyp zusätzlich eine erhöhte Hydroxylase-Aktivität und/oder β-Cyclase-Aktivität aufweisen.

Unter Hydroxylase-Aktivität die Enzymaktivität einer Hydroxylase verstanden.

Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β-Ionon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

5 Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Zeaxanthin oder Cantaxanthin in Astaxanthin umzuwandeln.

Dementsprechend wird unter Hydroxyase–Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge β-Carotin oder Cantaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.

Bei einer erhöhten Hydroxylase–Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Hydroxylase die umgesetzte Menge β -Carotin oder Cantaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.

Vorzugsweise beträgt diese Erhöhung der Hydroxylase–Aktivität mindestens 5 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Hydroxylase–Aktivität des Wildtyps.

Unter β -Cyclase-Aktivität wird die Enzymaktivität einer β -Cyclase verstanden.

Unter einer β-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen β-Ionon-Ring zu überführen.

Insbesondere wird unter einer β -Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, γ -Carotin in β -Carotin umzuwandeln.

Dementsprechend wird unter β -Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein β -Cyclase umgesetzte Menge γ -Carotin bzw. gebildete Menge β -Carotin verstanden.

15

Bei einer erhöhten β -Cyclase –Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein β -Cyclase die umgesetzte Menge γ -Carotin bzw. die gebildete Menge β -Carotin erhöht.

- Vorzugsweise beträgt diese Erhöhung der β-Cyclase–Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 500 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der β-Cyclase–Aktivität des Wildtyps.
- Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:
- Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) *in vitro* bestimmt. Es wird zu einer bestimmten Menge an Pflanzenextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie beta-Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.
 - Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase—Aktivität unter folgenden Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.; Biochim. Biophys. Acta 1391 (1998), 320-328):
- Der in-vitro Assay wird in einem Volumen von 0.250 ml Volumen durchgeführt. Der
 Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), 0.025 mg Ferredoxin von Spinat, 0.5
 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg
 beta-Carotin (in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Mono- und
 Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 200 Mono- und Digalaktosylglyzeriden,
 (1:1), 0.2 mg Rinderserumalbumin und Pflanzenextrakt in unterschiedlichem Volumen.
 Die Reaktionsmischung wird 2 Stunden bei 30C inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie Aceton oder Chloroform/Methanol (2:1) extrahiert und mittels HPLC bestimmt.

30

35

Die Bestimmung der β -Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

- Die Aktivität der β-Cyclase wird nach Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15) in vitro bestimmt. Es werden zu einer bestimmten Menge an Pflanzenextrakt Kaliumphosphat als Puffer (ph 7.6), Lycopin als Substrat, Stromaprotein von Paprika, NADP+, NADPH und ATP zugegeben.
- Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):
- Der in-vitro Assay wird in einem Volumen von 250 ∞I Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Pflanzenextrakt, 20 nM Lycopin, 250 ∞g an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.

Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15).

Die Erhöhung der Hydroxylase-Aktivität und/oder β -Cyclase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren kodierend eine Hydroxylase und/oder von Nukleinsäuren kodierend eine β -Cyclase gegenüber dem Wildtyp.

Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine Hydroxylase und/oder die Erhöhung der Genexpression der Nukleinsäure kodierend eine β -Cyclase gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens und/oder β -Cyclase-Gens durch Akti-

vatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien und/oder β-Cyclase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure kodierend eine Hydroxylase und/oder mindestens einer Nukleinsäure kodierend eine ε-Cyclase in die Pflanze der Gattung Tagetes.

5

Unter Erhöhung der Genexpression einer Nukleinsäure codierend eine Hydroxylase und/oder β -Cyclase wird erfindungsgemäß auch die Manipulation der Expression der Pflanzen der Gattung Tagetes eigenen, endogenen Hydroxylase und/oder β -Cyclase verstanden.

10

Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Hydroxylasen und/oder β-Cyclasen kodierende Gene erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.

15

Es ist, wie vorstehend beschrieben, möglich, die Expression der endogenen Hydroxylase und/oder β-Cyclase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.

20

Des weiteren kann eine veränderte bzw. erhöhte Expression eines endogenen Hydroxylase- und/oder β -Cyclase-Gens dadurch erzielt werden, dass ein in der nicht transformierten Pflanze nicht vorkommendes Regulator-Protein mit dem Promotor dieses Gens in Wechselwirkung tritt.

25

Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA-Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.

30

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Hydroxylase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine β -Cyclase durch Einbringen von mindestens einer Nukleinsäure kodierend eine Hydroxylase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine β -Cyclase in die Pflanze der Gattung Tagetes.

Dazu kann prinzipiell jedes Hydroxylase-Gen bzw. jedes β -Cyclase-Gen, also jede Nukleinsäure, die eine Hydroxylase und jede Nukleinsäure, die eine β -Cyclase codiert, verwendet werden.

Bei genomischen Hydroxylase-bzw. β-Cyclase-Nukleinsäure-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das die Wirtspflanze nicht in
der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase bzw. β-Cyclase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

10

Ein Beispiel für ein Hydroxylase-Gen ist eine Nukleinsäure, kodierend eine Hydroxylase aus Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nukleinsäure: SEQ ID NO: 17, Protein: SEQ ID NO: 18).

15 sowie Hydroxylasen der folgenden Accession Nummern:

lemblCAB55626.1, CAA70427.1, CAA70888.1, CAB55625.1, AF499108_1, AF315289_1, AF296158_1, AAC49443.1, NP_194300.1, NP_200070.1, AAG10430.1, CAC06712.1, AAM88619.1, CAC95130.1, AAL80006.1, AF162276_1, AAO53295.1, AAN85601.1, CRTZ_ERWHE, CRTZ_PANAN, BAB79605.1, CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1, ZP_00094836.1, AAC44852.1, BAC77670.1, NP_745389.1, NP_344225.1, NP_849490.1, ZP_00087019.1, NP_503072.1, NP_852012.1, NP_115929.1, ZP_00013255.1

25

30

Eine besonders bevorzugte Hydroxylase ist weiterhin die Hydroxylase aus Tomate (Accession Y14809) (Nukleinsäure: SEQ ID NO: 107; Protein: SEQ ID NO. 108).

Beispiele für β -Cyclase-Gene sind: eine Nukleinsäure, codierend eine β -Cyclase aus Tomate (Accession X86452).(Nukleinsäure: SEQ ID NO: 19, Protein: SEQ ID NO: 20),.

Sowie β-Cyclasen der folgenden Accesion Nummern:

S66350 lycopene beta-cyclase (EC 5.5.1.-) - tomato
35 CAA60119 lycopene synthase [Capsicum annuum]

S66349 lycopene beta-cyclase (EC 5.5.1.-) - common tobacco CAA57386 lycopene cyclase [Nicotiana tabacum] AAM21152 lycopene beta-cyclase [Citrus sinensis] AAD38049 lycopene cyclase [Citrus x paradisi] 5 AAN86060 lycopene cyclase [Citrus unshiu] AAF44700 lycopene beta-cyclase [Citrus sinensis] AAK07430 lycopene beta-cyclase [Adonis palaestina] AAG10429 beta cyclase [Tagetes erecta] AAA81880 lycopene cyclase AAB53337 Lycopene beta cyclase 10 AAL92175 beta-lycopene cyclase [Sandersonia aurantiaca] CAA67331 lycopene cyclase [Narcissus pseudonarcissus] AAM45381 beta cyclase [Tagetes erecta] AAO18661 lycopene beta-cyclase [Zea mays] 15 AAG21133 chromoplast-specific lycopene beta-cyclase [Lycopersicon esculentum] AAF18989 lycopene beta-cyclase [Daucus carota] ZP 001140 hypothetical protein [Prochlorococcus marinus str. MIT9313] ZP_001050 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378] 20 ZP_001046 hypothetical protein [Prochlorococcus marinus subsp. pastoris str. CCMP1378] ZP 001134 hypothetical protein [Prochlorococcus marinus str. MIT9313] ZP_001150 hypothetical protein [Synechococcus sp. WH 8102] AAF10377 lycopene cyclase [Deinococcus radiodurans] 25 BAA29250 393aa long hypothetical protein [Pyrococcus horikoshii] BAC77673 lycopene beta-monocyclase [marine bacterium P99-3] AAL01999 lycopene cyclase [Xanthobacter sp. Py2] ZP_000190 hypothetical protein [Chloroflexus aurantiacus] ZP_000941 hypothetical protein [Novosphingobium aromaticivorans] 30 AAF78200 lycopene cyclase [Bradyrhizobium sp. ORS278] BAB79602 crtY [Pantoea agglomerans pv. milletiae] CAA64855 lycopene cyclase [Streptomyces griseus] AAA21262 dycopene cyclase [Pantoea agglomerans] C37802 crtY protein - Erwinia uredovora BAB79602 crtY [Pantoea agglomerans pv. milletiae] 35

AAA64980 lycopene cyclase [Pantoea agglomerans]

AAC44851 lycopene cyclase

BAA09593 Lycopene cyclase [Paracoccus sp. MBIC1143]

ZP_000941 hypothetical protein [Novosphingobium aromaticivorans]

5 CAB56061 lycopene beta-cyclase [Paracoccus marcusii]

BAA20275 lycopene cyclase [Erythrobacter longus]

ZP_000570

hypothetical protein [Thermobifida fusca]

ZP_000190

20

25

30

35

hypothetical protein [Chloroflexus aurantiacus]

AAK07430 lycopene beta-cyclase [Adonis palaestina]

10 CAA67331 lycopene cyclase [Narcissus pseudonarcissus]

AAB53337 Lycopene beta cyclase

BAC77673 lycopene beta-monocyclase [marine bacterium P99-3]

Eine besonders bevorzugte β-Cyclase ist weiterhin die chromoplastenspezifische β-15 Cyclase aus Tomate (AAG21133) (Nukleinsäure: SEQ ID No. 109; Protein: SEQ ID No. 110)

In den erfindungsgemäßen bevorzugten transgenen Pflanzen der gattung Tagetes liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase–Gen und/oder β-Cyclase-Gen vor.

In dieser bevorzugten Ausführungsform weist die genetisch veränderte Pflanze beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase und/oder mindestens eine exogene Nukleinsäure, kodierend eine β-Cyclase oder mindestens zwei endogene Nukleinsäuren, kodierend eine β-Cyclase auf.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 18 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO: 18, und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.

10

15

25

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID. NO: 18 leicht auffinden.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 17 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 18.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 17 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als β -Cyclase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 20 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 20, und die die enzymatische Eigenschaft einer β -Cyclase aufweisen.

10

15

20

30

Weitere Beispiele für β -Cyclasen und β -Cyclase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO: 20 leicht auffinden.

Weitere Beispiele für β -Cyclasen und β -Cyclase—Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 19 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs— und PCR—Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der β -Cyclase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der β -Cyclase der Sequenz SEQ. ID. NO: 20.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 19 in den Organismus ein.

Alle vorstehend erwähnten Hydroxylase-Gene oder β-Cyclase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klo-

nierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

In einer weiter bevorzugten Ausführungsform des Verfahrens weisen die Pflanzen der Gattung Tagetes gegenüber dem Wildtyp zusätzlich eine reduzierte ε-Cyclase-Aktivität auf.

Unter ε-Cyclase-Aktivität wird die Enzymaktivität einer ε-Cyclase verstanden.

10 Unter einer ε-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen ε-Ionon-Ring zu überführen.

Unter einer ε-Cyclase wird daher insbesondere ein Protein verstanden, das die enzymatische Aktivität aufweist, Lycopin in δ-Carotin umzuwandeln.

Dementsprechend wird unter ϵ -Cyclase–Aktivität die in einer bestimmten Zeit durch das Protein ϵ -Cyclase umgesetzte Menge Lycopin bzw. gebildete Menge δ -Carotin verstanden.

20

Bei einer reduzierten ϵ -Cyclase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein ϵ -Cyclase die umgesetzte Menge Lycopin bzw. die gebildete Menge δ -Carotin reduziert.

Unter einer reduzierten ε-Cyclase-Aktivität wird vorzugsweise die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische Mechanismen beruhende Unterbindung oder Blockierung der Funktionalität einer ε-Cyclase in einer pflanzlichen Zelle, Pflanze oder einem davon abgeleiteten Teil, Gewebe, Organ, Zellen oder Samen verstanden.

30

Die Reduzierung der ε-Cyclase-Aktivität in Pflanzen gegenüber dem Wildtyp kann beispielsweise durch Reduzierung der ε-Cyclase-Proteinmenge, oder der ε-Cyclase-mRNA-Menge in der Pflanze erfolgen. Dementsprechend kann eine gegenüber dem Wildtyp reduzierte ε-Cyclase-Aktivität direkt bestimmt werden oder über die Bestim-

10

20

25

30

35

mung der ε-Cyclase-Proteinmenge oder der ε-Cyclase-mRNA-Menge der erfindungsgemäßen Pflanze im Vergleich zum Wildtyp erfolgen.

Eine Reduzierung der ϵ -Cyclase-Aktivität umfasst eine mengenmäßige Verringerung einer ϵ -Cyclase bis hin zu einem im wesentlichen vollständigen Fehlen der ϵ -Cyclase (d.h. fehlende Nachweisbarkeit von ϵ -Cyclase-Aktivität oder fehlende immunologische Nachweisbarkeit der ϵ -Cyclase). Vorzugsweise wird die ϵ -Cyclase-Aktivität (bzw. die ϵ -Cyclase-Proteinmenge oder die ϵ -Cyclase-mRNA-Menge) in der Pflanze, besonders bevorzugt in Blüten im Vergleich zum Wildtyp um mindestens 5 %, weiter bevorzugt um mindestens 20 %, weiter bevorzugt um mindestens 50 %, weiter bevorzugt um 100 % reduziert. Insbesondere meint "Reduzierung" auch das vollständigen Fehlen der ϵ -Cyclase-Aktivität (bzw. des ϵ -Cyclase-Proteins oder der ϵ -Cyclase-mRNA).

Die Bestimmung der ε-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten
15 Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden
Bedingungen:

Die ε-Cyclase-Aktivität kann nach Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15) in vitro bestimmt werden, wenn zu einer bestimmten Menge an Pflanzenextrakt Kaliumphosphat als Puffer (ph 7.6), Lycopin als Substrat, Stromaprotein von Paprika, NADP+, NADPH und ATP zugegeben werden.

Die Bestimmung der ε-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt besonders bevorzugt nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclase inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):

Der in-vitro Assay wird in einem Volumen von 0.25 ml durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Pflanzenextrakt, 20 nM Lycopin, 0.25 mg an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 0.01 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.

Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15). Eine weitere analytische Methode ist beschrieben in Beyer, Kröncke und Nievelstein (On the mechanism of the lycopene isomerase/cyclase reaction in Narcissus pseudonarcissus L. chromopast,; J. Biol. Chem. 266(26) (1991) 17072-17078).

Vorzugsweise erfolgt die Reduzierung der ε-Cyclase-Aktivität in Pflanzen durch mindestens eines der nachfolgenden Verfahren:

10

15

5

- a) Einbringen mindestens einer doppelsträngigen ϵ -Cyclase Ribonukleinsäuresequenz, nachstehend auch ϵ -Cyclase-dsRNA genannt, oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten. Umfasst sind solche Verfahren, bei denen die ϵ -Cyclase-dsRNA gegen ein ϵ -Cyclase-Gen (also genomische DNA-Sequenzen wie die Promotorsequenz) oder ein ϵ -Cyclase-Transkript (also mRNA-Sequenzen) gerichtet ist,
- b) Einbringen mindestens einer ε-Cyclase antisense-Ribonukleinsäuresequenz, nachstehend auch ε-Cyclase-antisenseRNA genannt, oder einer deren Expression gewährleistenden Expressionskassette. Umfasst sind solche Verfahren, bei denen die ε-Cyclase-antisenseRNA gegen ein ε-Cyclase-Gen (also genomische DNA-Sequenzen) oder ein ε-Cyclase-Gentranskript (also RNA-Sequenzen) gerichtet ist. Umfasst sind auch α-anomere Nukleinsäuresequenzen,

25

- c) Einbringen mindestens einer ε-Cyclase-antisenseRNA kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden Expressionskassette
- d) Einbringen mindestens einer ε-Cyclase sense-Ribonukleinsäuresequenz,

 nachstehend auch ε-Cyclase-senseRNA genannt, zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette
 - e) Einbringen mindestens eines DNA- oder Protein-bindenden Faktors gegen ein ε-Cyclase-Gen, -RNA oder -Protein oder einer dessen Expression gewährleistenden Expressionskassette

Einbringen mindestens einer den E-Cyclase RNA-Abbau bewirkenden viralen f) Nukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette

5

10

15

20

35

- Einbringen mindestens eines Konstruktes zur Erzeugung eines Funktionsverlusg) tes, wie beispielsweise die Generierung von Stopp-Kodons oder eine Verschiebungen im Leseraster, an einem ε-Cyclase-Gen beispielsweise durch Erzeugung einer Insertion, Deletion, Inversion oder Mutation in einem ε-Cyclase-Gen. Bevorzugt können Knockout-Mutanten mittels gezielter Insertion in besagtes ε-Cyclase-Gen durch homologe Rekombination oder Einbringen von sequenzspezifischen Nukleasen gegen E-Cyclase-Gensequenzen generiert werden.
- Dem Fachmann ist bekannt, dass auch weitere Verfahren im Rahmen der vorliegenden Erfindung zur Verminderung einer ε-Cyclase bzw. seiner Aktivität oder Funktion eingesetzt werden können. Beispielsweise kann auch das Einbringen einer dominantnegativen Variante einer ε-Cyclase oder einer deren Expression gewährleistenden Expressionskassette vorteilhaft sein. Dabei kann jedes einzelne dieser Verfahren eine Verminderung der Proteinmenge, mRNA-Menge und/oder Aktivität einer ε-Cyclase bewirken. Auch eine kombinierte Anwendung ist denkbar. Weitere Methoden sind dem Fachmann bekannt und können die Behinderung oder Unterbindung der Prozessierung der ϵ -Cyclase, des Transports der ϵ -Cyclase oder dessen mRNA, Hemmung der Ribosomenanlagerung, Hemmung des RNA-Spleißens, Induktion eines E-Cyclase-RNA abbauenden Enzyms und/oder Hemmung der Translationselongation oder -termination umfassen. 25

Die einzelnen bevorzugten Verfahren seien infolge durch beispielhafte Ausführungsformen beschrieben:

Einbringen einer doppelsträngigen ε-Cyclase-Ribonukleinsäuresequenz 30 a) (E-Cyclase-dsRNA)

Das Verfahren der Genregulation mittels doppelsträngiger RNA ("double-stranded RNA interference"; dsRNAi) ist bekannt und beispielsweise in Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391:806-811; WO 99/32619;

WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035 oder WO 00/63364 beschrieben. Auf die in den angegebenen Zitaten beschriebenen Verfahren und Methoden wird hiermit ausdrücklich Bezug genommen.

Unter "Doppelsträngiger Ribonukleinsäuresequenz" wird erfindungsgemäß eine oder mehr Ribonukleinsäuresequenzen, die aufgrund komplementärer Sequenzen theoretisch, beispielsweise gemäß den Basenpaarregeln von Waston und Crick und/oder faktisch, beispielsweise aufgrund von Hybridisierungsexperimenten, in vitro und/oder in vivo in der Lage sind, doppelsträngige RNA-Strukturen auszubilden.

10

Dem Fachmann ist bewusst, dass die Ausbildung von doppelsträngigen RNA-Strukturen, einen Gleichgewichtszustand darstellt. Bevorzugt ist das Verhältnis von doppelsträngigen Molekülen zu entsprechenden dissozierten Formen mindestens 1 zu 10, bevorzugt 1:1, besonders bevorzugt 5:1, am meisten bevorzugt 10:1.

15

Unter einer doppelsträngigen ϵ -Cyclase-Ribonukleinsäuresequenz oder auch ϵ -Cyclase-dsRNA wird vorzugsweise ein RNA-Molekül verstanden, das einen Bereich mit Doppel-Strang-Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die

20

 a) mit mindestens einem Teil des Pflanze eigenen ε-Cyclase-Transkripts identisch ist und/oder

25

b) mit mindestens einem Teil der Pflanze eigenen ε-Cyclase-Promotor-Sequenz identisch ist.

Im erfindungsgemäßen Verfahren bringt man daher zur Reduzierung der ε-Cyclase-Aktivität bevorzugt in die Pflanze eine RNA ein, die einen Bereich mit Doppel-Strang-Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die

- a) mit mindestens einem Teil des Pflanze eigenen ε-Cyclase-Transkripts identisch ist und/oder
- 35
- b) mit mindestens einem Teil der Pflanze eigenen ϵ -Cyclase-Promotor-Sequenz identisch ist.

Unter dem Begriff " ϵ -Cyclase-Transkript" wird der transkripierte Teil eines ϵ -Cyclase-Gens verstanden, der neben der ϵ -Cyclase kodierenden Sequenz beispielsweise auch nichtkodierende Sequenzen, wie beispielsweise auch UTRs enthält.

5

Unter einer RNA, die "mit mindestens einem Teil der Pflanze eigenen ε-Cyclase-Promotor-Sequenz identisch ist", ist vorzugsweise gemeint, dass die RNA-Sequenz mit mindestens einem Teil des theoretischen Transkriptes der ε-Cyclase-Promotor-Sequenz, also der entsprechenden RNA-Sequenz, identisch ist.

10

15

20

25

30

Unter "einem Teil" des Pflanze eigenen ε-Cyclase-Transkripts bzw. der Pflanze eigenen ε-Cyclase-Promotor-Sequenz werden Teilsequenzen verstanden, die von wenigen Basenpaaren bis hin zu vollständigen Sequenzen des Transkripts bzw. der Promotorssequenz reichen können. Die optimale Länger der Teilsequenzen kann der Fachmann durch Routineversuche leicht ermitteln.

In der Regel beträgt die Länge der Teilsequenzen mindestens 10 Basen und höchstens 2 kb, bevorzugt mindestens 25 Basen und höchstens 1,5 kb, besonders bevorzugt mindestens 50 Basen und höchstens 600 Basen, ganz besonders bevorzugt mindestens 100 Basen und höchstens 500, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen und höchstens 400 Basen.

Vorzugsweise werden die Teilsequenzen so ausgesucht, dass eine möglichst hohe Spezifität erreicht wird und nicht Aktivitäten anderer Enzyme reduziert werden, deren Verminderung nicht erwünscht ist. Es ist daher vorteilhaft für die Teilsequenzen der ϵ -Cyclase-dsRNA Teile des ϵ -Cyclase Transkripts und/oder Teilsequenzen der ϵ -Cyclase-Promotor-Sequenzen zu wählen, die nicht in anderen Aktivitäten auftreten.

In einer besonders bevorzugten Ausführungsform enthält daher die ϵ -Cyclase-dsRNA eine Sequenz, die mit einem Teil der Pflanze eigenen ϵ -Cyclase-Transkripts identisch ist und das 5'-Ende oder das 3'-Ende der Pflanze eigenen Nukleinsäure, codierend eine ϵ -Cyclase enthält. Insbesondere sind nichttranslatierte Bereiche im 5' oder 3' des Transkriptes geeignet, selektive Doppel-Strang-Strukturen herzustellen.

Ein weiterer Gegenstand der Erfindung bezieht sich auf doppelsträngige RNA-Moleküle (dsRNA-Moleküle), die bei Einbringen in einen pflanzlichen Organismus (oder eine davon abgeleitete Zelle, Gewebe, Organ oder Vermehrungsmaterial) die Verminderung einer ε-Cyclase bewirken.

5

Ein doppelsträngige RNA-Molekül zur Reduzierung der Expression einer ϵ -Cyclase (ϵ -Cyclase-dsRNA) umfasst dabei bevorzugt

- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz,
 10 die im wesentlichen identisch ist zu mindestens einem Teil eines "sense"-RNA-ε-Cyclase Transkriptes, und
 - b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen, bevorzugt vollständig, komplementären ist.

15

Zur Transformation der Pflanze mit einer ϵ –Cyclase-dsRNA wird bevorzugt ein Nukleinsäurekonstrukt verwendet, das in die Pflanze eingebracht wird und das in der Pflanze in die ϵ –Cyclase-dsRNA transkripiert wird.

- 20 Daher betrifft die vorliegende Erfindung auch ein Nukleinsäurekonstrukt, transkripierbar in
 - a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-ε-Cyclase Transkriptes, und
 - b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen bevorzugt vollständig komplementär ist.

30

25

Diese Nukleinsäurekonstrukte werden im folgenden auch Expressionskassetten oder Expressionsvektoren genannt.

20

In Bezug auf die dsRNA-Moleküle wird unter ε-Cyclase-Nukleinsäuresequenz, bzw. das entsprechende Transkript bevorzugt die Sequenz gemäß SEQ ID NO: 38 oder ein Tel derselben verstanden.

"Im wesentlichen identisch" meint, dass die dsRNA Sequenz auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu der ε-Cyclase Zielsequenz aufweisen kann und dennoch eine effizient Verminderung der Expression bewirkt. Bevorzugt beträgt die Homologie mindestens 75 %, bevorzugt mindestens 80 %, ganz besonders bevorzugt mindestens 90 % am meisten bevorzugt 100 % zwischen dem
 "sense"-Strang einer inhibitorischen dsRNA und mindestens einem Teil des "sense"-RNA-Transkriptes eines ε-Cyclase-Gens, bzw. zwischen dem "antisense"-Strang dem komplementären Strang eines ε-Cyclase-Gens.

Eine 100%ige Sequenzidentität zwischen dsRNA und einem ϵ -Cyclase Gentranskript ist nicht zwingend erforderlich, um eine effiziente Verminderung der ϵ -Cyclase Expression zu bewirken. Demzufolge besteht der Vorteil, dass das Verfahren tolerant ist gegenüber Sequenzabweichungen, wie sie infolge genetischer Mutationen, Polymorphismen oder evolutionärer Divergenzen vorliegen können. So ist es beispielsweise möglich mit der dsRNA, die ausgehend von der ϵ -Cyclase Sequenz des einen Organismus generiert wurde, die ϵ -Cyclase Expression in einem anderen Organismus zu unterdrücken. Zu diesem Zweck umfasst die dsRNA bevorzugt Sequenzbereiche von ϵ -Cyclase-Gentranskripten, die konservierten Bereichen entsprechen. Besagte konservierte Bereiche können aus Sequenzvergleichen leicht abgeleitet werden.

Alternativ, kann eine "im wesentlichen identische" dsRNA auch als Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil eines ε-Cyclase Gentranskriptes zu hybridisieren (z.B. in 400 mM NaCl, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h).

30 "Im wesentlichen komplementär" meint, dass der "antisense"-RNA-Strang auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu dem Komplement des "sense"-RNA-Stranges aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 100 % zwischen dem "antisense"-RNA-Strang und dem Komplement des "sense"-RNA-Stranges.

30

In einer weiteren Ausführungsform umfasst die ε-Cyclase-dsRNA

- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz,
 5 die im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes des Promotorbereichs eines ε-Cyclase-Gens, und
 - b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen bevorzugt vollständig komplementären ist.

Das entsprechende, bevorzugt zur Transformation der Pflanzen zu verwendende, Nukleinsäurekonstrukt, umfasst

- a) einen "sense"-DNA-Strang der im wesentlichen identisch ist zu mindestens ei nem Teil des Promotorbereichs eines ε-Cyclase-Gens, und
 - b) einen "antisense"-DNA-Strang, der zu dem DNA-"sense"-Strang unter a) im wesentlichen bevorzugt vollständig komplementär ist.
- Vorzugsweise wird unter dem Promotorbereich einer ε-Cyclase eine Sequenz gemäß SEQ ID NO: 47 oder ein Teil der selben verstanden.

Zur Herstellung der ϵ -Cyclase-dsRNA-Sequenzen zur Reduzierung der ϵ -Cyclase-Aktivität werden, insbesondere für *Tagetes erecta*, besonders bevorzugt die folgenden Teil-Sequenzen verwendet:

SEQ ID NO: 40: Sense-Fragment der 5'terminalen Region der ϵ -Cyclase

SEQ ID NO: 41: Antisense-Fragment der 5'terminalen Region der ε-Cyclase

SEQ ID NO: 42: Sense-Fragment der 3'terminalen Region der E-Cyclase

SEQ ID NO: 43: Antisense-Fragment der 3'terminalen Region der ε-Cyclase

35 SEQ ID NO: 47: Sense-Fragment des ε-Cyclase-Promotors

10

SEQ ID NO: 48: Antisense-Fragment des ε-Cyclase-Promotors

Die dsRNA kann aus einem oder mehr Strängen von Polyribonukleotiden bestehen. Natürlich können, um den gleichen Zweck zu erreichen, auch mehrere individuelle dsRNA Moleküle, die jeweils einen der oben definierten Ribonukleotidsequenzabschnitte umfassen, in die Zelle oder den Organismus eingebracht werden.

Die doppelsträngige dsRNA-Struktur kann ausgehend von zwei komplementären, separaten RNA-Strängen oder - bevorzugt - ausgehend von einem einzelnen, selbstkomplementären RNA-Strang gebildet werden. In diesem Fall sind "sense"-RNA-Strang und "antisense"-RNA-Strang bevorzugt kovalent in Form eines invertierten "Repeats" miteinander verbunden.

Wie z.B. in WO 99/53050 beschrieben, kann die dsRNA auch eine Haarnadelstruktur umfassen, indem "sense"- und "antisense"-Strang durch eine verbindende Sequenz ("Linker"; beispielsweise ein Intron) verbunden werden. Die selbstkomplementären dsRNA-Strukturen sind bevorzugt, da sie lediglich die Expression einer RNA-Sequenz erfordern und die komplementären RNA-Stränge stets in einem äquimolaren Verhältnis umfassen. Bevorzugt ist die verbindende Sequenz ein Intron (z.B. ein Intron des ST-LS1 Gens aus Kartoffel; Vancanneyt GF et al. (1990) Mol Gen Genet 220(2):245-250).

Die Nukleinsäuresequenz kodierend für eine dsRNA kann weitere Elemente beinhalten, wie beispielsweise Transkriptionsterminationssignale oder Polyadenylierungssignale.

25

Ist die dsRNA jedoch gegen die Promotorsequenz einer ε-Cyclase gerichtet, so umfasst sie bevorzugt keine Transkriptionsterminationssignale oder Polyadenylierungssignale. Dies ermöglicht eine Retention der dsRNA im Nukleus der Zelle und verhindert eine Verteilung der dsRNA in der gesamten Pflanze "Spreadinng").

30

35

Sollen die zwei Stränge der dsRNA in einer Zelle oder Pflanze zusammengebracht werden, so kann dies beispielhaft auf folgende Art geschehen:

 Transformation der Zelle oder Pflanze mit einem Vektor, der beide Expressionskassetten umfasst,

30

- b) Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei der eine die Expressionskassetten mit dem "sense"-Strang, der andere die Expressionskassetten mit dem "antisense"-Strang umfasst.
- 5 c) Kreuzung von zwei individuellen Pflanzenlinien, wobei die eine die Expressionskassetten mit dem "sense"-Strang, die andere die Expressionskassetten mit dem "antisense"-Strang umfasst.

Die Bildung der RNA Duplex kann entweder außerhalb der Zelle oder innerhalb dersel-10 ben initiiert werden.

Die dsRNA kann entweder in vivo oder in vitro synthetisiert werden. Dazu kann eine DNA-Sequenz kodierend für eine dsRNA in eine Expressionskassette unter Kontrolle mindestens eines genetischen Kontrollelementes (wie beispielsweise einem Promotor) gebracht werden. Eine Polyadenylierung ist nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation vorhanden sein. Bevorzugt ist die Expressionskassette für die MP-dsRNA auf dem Transformationskonstrukt oder dem Transformationsvektor enthalten.

- In einer besonders bevorzugten Auführungsform erfolgt die Expression der dsRNA ausgehend von einem Expressionskonstrukt unter funktioneller Kontrolle eines blütenspezifischen Promotors, besonders bevorzugt unter der Kontrolle des Promotors beschrieben durch SEQ ID NO: 28 oder eines funktionell äquivalenten Teils desselben.
- Die Expressionskassetten kodierend für den "antisense"- und/oder den "sense"-Strang einer ε-Cyclase -dsRNA oder für den selbstkomplementären-Strang der dsRNA, werden dazu bevorzugt in einen Transformationsvektor insertiert und mit den unten beschriebenen Verfahren in die pflanzliche Zelle eingebracht. Für das erfindungsgemäße Verfahren ist eine stabile Insertion in das Genom vorteilhaft.

Die dsRNA kann in einer Menge eingeführt werden, die zumindest eine Kopie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10, 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter Verminderung bewirken.

35 b) Einbringen einer antisense-Ribonukleinsäuresequenz einer ε-Cyclase (ε-Cyclase-antisenseRNA)

10

15

Verfahren zur Verminderung eines bestimmten Proteins durch die "antisense"Technologie sind vielfach - auch in Pflanzen - beschrieben (Sheehy et al. (1988) Proc
Natl Acad Sci USA 85: 8805-8809; US 4,801,340; Mol JN et al. (1990) FEBS Lett
268(2):427-430). Das antisense Nukleinsäuremolekül hybridisiert bzw. bindet mit der
zellulären mRNA und/oder genomischen DNA kodierend für das zu vermindernde
ε-Cyclase. Dadurch wird die Transkription und/oder Translation der ε-Cyclase unterdrückt. Die Hybridisierung kann auf konventionelle Art über die Bildung einer stabilen
Duplex oder - im Fall von genomischer DNA - durch Bindung des antisense Nukleinsäuremoleküls mit der Duplex der genomischen DNA durch spezifische Wechselwirkung in der großen Furche der DNA-Helix entstehen.

Eine ε-Cyclase-antisenseRNA kann unter Verwendung der für diese ε-Cyclase kodierenden Nukleinsäuresequenz, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 38 nach den Basenpaarregeln von Watson und Crick abgeleitet werden. Die ε-Cyclase-antisenseRNA kann zu der gesamten transkribierten mRNA der ε-Cyclase komplementär sein, sich auf die kodierende Region beschränken oder nur aus einem Oligonukleotid bestehen, das zu einem Teil der kodierenden oder nicht-kodierenden Sequenz der mRNA komplementär ist. So kann das Oligonukleotid beispielsweise komplementär zu der Region sein, die den Translationsstart für die ε-Cyclase umfasst. Die ε-Cyclase-antisenseRNA kann eine Länge von zum Beispiel 5, 10, 15, 20, 25, 30, 35, 40, 45 oder 50 Nukleotide haben, kann aber auch länger sein und mindestens 100, 200, 500, 1000, 2000 oder 5000 Nukleotide umfassen. ε-Cyclase-antisenseRNAs werden im Rahmen des erfindungsgemäßen Verfahrens bevorzugt rekombinant in der Zielzelle exprimiert..

25

20

In einer besonders bevorzugten Ausführungsform erfolgt die Expression der antisenseRNA ausgehend von einem Expressionskonstrukt unter funktioneller Kontrolle eines blütenspezifischen Promotors, besonders bevorzugt unter der Kontrolle des Promotors beschrieben durch SEQ ID NO: 28 oder eines funktionell äquivalenten Teils desselben.

30

Besagte Expressionskassetten können Teil eines Transformationskonstruktes oder Transformationsvektors sein, oder aber auch im Rahmen einer Kotransformation eingeführt werden.

10

15

20

25

30

35

In einer weiteren bevorzugten Ausführungsform kann die Expression einer ε-Cyclase durch Nukleotidsequenzen inhibiert werden, die komplementär zu der regulatorischen Region eines ε-Cyclase-Gens (z.B. einem ε-Cyclase Promoter und/oder Enhancer) sind und triple-helikale Strukturen mit der dortigen DNA-Doppelhelix ausbilden, so dass die Transkription des ε-Cyclase-Gens reduziert wird. Entsprechende Verfahren sind beschrieben (Helene C (1991) Anticancer Drug Res 6(6):569-84; Helene C et al. (1992) Ann NY Acad Sci 660:27-36; Maher LJ (1992) Bioassays 14(12):807-815).

In einer weiteren Ausführungsform kann die ϵ -Cyclase-antisenseRNA eine α -anomere Nukleinsäure sein. Derartige α -anomere Nukleinsäuremoleküle bilden spezifische doppelsträngige Hybride mit komplementärer RNA in denen, - im Unterschied zu den konventionellen β -Nukleinsäuren - die beiden Stränge parallel zueinander verlaufen (Gautier C et al. (1987) Nucleic Acids Res 15:6625-6641).

c) Einbringen einer ε-Cyclase-antisenseRNA kombiniert mit einem Ribozym

Vorteilhaft kann die oben beschriebene antisense-Strategie mit einem Ribozym-Verfahren gekoppelt werden. Katalytische RNA-Moleküle oder Ribozyme können an jede beliebige Ziel-RNA angepasst werden und spalten das Phosphodiester-Gerüst an spezifischen Positionen, wodurch die Ziel-RNA funktionell deaktiviert wird (Tanner NK (1999) FEMS Microbiol Rev 23(3):257-275). Das Ribozym wird dadurch nicht selber modifiziert, sondern ist in der Lage, weitere Ziel-RNA-Moleküle analog zu spalten, wodurch es die Eigenschaften eines Enzyms erhält. Der Einbau von Ribozymsequenzen in "antisense"-RNAs verleiht eben diesen "antisense"-RNAs diese enzymähnliche, RNA-spaltende Eigenschaft und steigert so deren Effizienz bei der Inaktivierung der Ziel-RNA. Die Herstellung und Verwendung entsprechender Ribozym-"antisense"-RNA-Moleküle ist beschrieben (u.a. bei Haseloff et al. (1988) Nature 334: 585-591); Haselhoff und Gerlach (1988) Nature 334:585-591; Steinecke P et al. (1992) EMBO J 11(4):1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338).

Auf diese Art können Ribozyme (z.B. "Hammerhead"-Ribozyme; Haselhoff und Gerlach (1988) Nature 334:585-591) verwendet werden, um die mRNA eines zu vermindernden ε-Cyclases katalytisch zu spalten und so die Translation zu verhindern. Die Ribozym-Technologie kann die Effizienz einer antisense-Strategie erhöhen. Verfahren zur Expression von Ribozymen zur Verminderung bestimmter Proteine sind beschrieben in

10

30

35

(EP 0 291 533, EP 0 321 201, EP 0 360 257). In pflanzlichen Zellen ist eine Ribozym-Expression ebenfalls beschrieben (Steinecke P et al. (1992) EMBO J 11(4):1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338). Geeignete Zielsequenzen und Ribozyme können zum Beispiel wie bei "Steinecke P, Ribozymes, Methods in Cell Biology 50, Galbraith et al. eds, Academic Press, Inc. (1995), S. 449-460" beschrieben, durch Sekundärstrukturberechnungen von Ribozym- und Ziel-RNA sowie durch deren Interaktion bestimmt werden (Bayley CC et al. (1992) Plant Mol Biol. 18(2):353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 242(6):653-657). Beispielsweise können Derivate der Tetrahymena L-19 IVS RNA konstruiert werden, die komplementäre Bereiche zu der mRNA des zu supprimierenden ε-Cyclases aufweisen (siehe auch US 4,987,071 und US 5,116,742). Alternativ können solche Ribozyme auch über einen Selektionsprozess aus einer Bibliothek diverser Ribozyme identifiziert werden (Bartel D und Szostak JW (1993) Science 261:1411-1418).

d) Einbringen einer sense-Ribonukleinsäuresequenz einer ε-Cyclase (ε-Cyclase-senseRNA) zur Induktion einer Kosuppression

Die Expression einer ε-Cyclase Ribonukleinsäuresequenz (oder eines Teils derselben) in sense-Orientierung kann zu einer Kosuppression des entsprechenden ε-Cyclase-Gens führen. Die Expression von sense-RNA mit Homologie zu einem endogenen ε-Cyclasegen kann die Expression desselben vermindern oder ausschalten, ähnlich wie es für antisense Ansätze beschrieben wurde (Jorgensen et al. (1996) Plant Mol Biol 31(5):957-973; Goring et al. (1991) Proc Natl Acad Sci USA 88:1770-1774; Smith et al. (1990) Mol Gen Genet 224:447-481; Napoli et al. (1990) Plant Cell 2:279-289; Van der Krol et al. (1990) Plant Cell 2:291-99). Dabei kann das eingeführte Konstrukt das zu vermindernde, homologe Gen ganz oder nur teilweise repräsentieren. Die Möglichkeit zur Translation ist nicht erforderlich. Die Anwendung dieser Technologie auf Pflanzen ist beschrieben (z.B. Napoli et al. (1990) Plant Cell 2:279-289; in US 5,034,323.

Bevorzugt wird die Kosuppression unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für eine ε-Cyclase, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 38. Bevorzugt ist die ε-Cyclase-senseRNA so gewählt, dass es nicht zu einer Translation

der ε-Cyclase oder eines Teils desselben kommen kann. Dazu kann beispielsweise

der 5'-untranslatierte oder 3'-untranslatierte Bereich gewählt oder aber das ATG-Startkodon deletiert oder mutiert werden.

e) Einbringen von DNA-oder Protein-bindende Faktoren gegen ε-Cyclase Gene, - RNAs oder Proteine

Eine Verminderung einer ε-Cyclase Expression ist auch mit spezifischen DNAbindenden Faktoren z.B. mit Faktoren vom Typ der Zinkfingertranskriptionsfaktoren möglich. Diese Faktoren lagern sich an die genomische Sequenz des endogenen Zielgens, bevorzugt in den regulatorischen Bereichen, an und bewirken eine Ver-10 minderung der Expression. Entsprechende Verfahren zur Herstellung entsprechender Faktoren sind beschrieben (Dreier B et al. (2001) J Biol Chem 276(31):29466-78; Dreier B et al. (2000) J Mol Biol 303(4):489-502; Beerli RR et al. (2000) Proc Natl Acad Sci USA 97 (4):1495-1500; Beerli RR et al. (2000) J Biol Chem 275(42):32617-32627; 15 Segal DJ and Barbas CF 3rd. (2000) Curr Opin Chem Biol 4(1):34-39; Kang JS and Kim JS (2000) J Biol Chem 275(12):8742-8748; Beerli RR et al. (1998) Proc Natl Acad Sci USA 95(25):14628- 14633; Kim JS et al. (1997) Proc Natl Acad Sci USA 94(8):3616 -3620; Klug A (1999) J Mol Biol 293(2):215-218; Tsai SY et al. (1998) Adv Drug Deliv Rev 30(1-3):23-31; Mapp AK et al. (2000) Proc Natl Acad Sci USA 97(8):3930-3935; Sharrocks AD et al. (1997) Int J Biochem Cell Biol 29(12):1371-1387; 20 Zhang L et al. (2000) J Biol Chem 275(43):33850-33860).

Die Selektion dieser Faktoren kann unter Verwendung eines beliebigen Stückes eines ϵ -Cyclase-Gens erfolgen. Bevorzugt liegt dieser Abschnitt im Bereich der Promotorregion. Für eine Genunterdrückung kann er aber auch im Bereich der kodierenden Exons oder Introns liegen.

Ferner können Faktoren in eine Zelle eingebracht werden, die die ε-Cyclase selber inhibieren. Diese proteinbindenden Faktoren können z.B. Aptamere (Famulok M und Mayer G (1999) Curr Top Microbiol Immunol 243:123-36) oder Antikörper bzw. Antikörperfragmente oder einzelkettige Antikörper sein. Die Gewinnung dieser Faktoren ist beschrieben (Owen M et al. (1992) Biotechnology (N Y) 10(7):790-794; Franken E et al. (1997) Curr Opin Biotechnol 8(4):411-416; Whitelam (1996) Trend Plant Sci 1:286-272).

30

25

Einbringen von den ε-Cyclase RNA-Abbau bewirkenden viralen Nukleinsäuref) sequenzen und Expressionskonstrukten

Die ε-Cyclase Expression kann effektiv auch durch Induktion des spezifischen ϵ –Cyclase RNA-Abbaus durch die Pflanze mit Hilfe eines viralen Expressionssystems (Amplikon; Angell SM et al. (1999) Plant J 20(3):357-362) realisiert werden. Diese Systeme - auch als "VIGS" (viral induced gene silencing) bezeichnet - bringen Nukleinsäuresequenzen mit Homologie zu dem Transkript einer zu vermindernden ε-Cyclase mittels viraler Vektoren in die Pflanze ein. Die Transkription wird sodann - vermutlich mediiert durch pflanzliche Abwehrmechanismen gegen Viren - abgeschaltet. Entsprechende Techniken und Verfahren sind beschrieben (Ratcliff F et al. (2001) Plant J 25(2):237-45; Fagard M und Vaucheret H (2000) Plant Mol Biol 43(2-3):285-93; Anandalakshmi R et al. (1998) Proc Natl Acad Sci USA 95(22):13079-84; Ruiz MT (1998) Plant Cell 10(6):937-46).

15

10

5

Bevorzugt wird die VIGS-vermittelte Verminderung unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für ein ε-Cyclase, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 1.

20

25

35

Einbringen von Konstrukten zur Erzeugung eines Funktionsverlustes oder einer g) Funktionsminderung an E-Cyclase-Genen

Dem Fachmann sind zahlreiche Verfahren bekannt, wie genomische Sequenzen gezielt modifiziert werden können. Dazu zählen insbesondere Verfahren wie die Erzeugung von Knockout-Mutanten mittels gezielter homologen Rekombination z.B. durch Generierung von Stopp-Kodons, Verschiebungen im Leseraster etc. (Hohn B und Puchta H (1999) Proc Natl Acad Sci USA 96:8321-8323) oder die gezielte Deletion oder Inversion von Sequenzen mittels z.B. sequenzspezifischer Rekombinasen oder Nukleasen (s.u.) 30

Die Verminderung der ε-Cyclase-Menge, -Funktion und/oder -Aktivität kann auch durch eine gezielte Insertion von Nukleinsäuresequenzen (z.B. der im Rahmen der erfindungsgemäßen Verfahrens zu insertierenden Nukleinsäuresequenz) in die Sequenz kodierend für eine ε-Cyclase (z.B. mittels intermolekularer homologer Rekombination) realisiert werden. Im Rahmen dieser Ausführungsform verwendet man bevorzugt ein DNA-Konstrukt, das zumindest einen Teil der Sequenz eines $\,\epsilon$ -Cyclasegens oder benachbarter Sequenzen umfasst, und so mit diesen in der Zielzelle gezielt rekombinieren kann, so dass durch eine Deletion, Addition oder Substitution mindestens eines Nukleotids das ε-Cyclase-Gen so verändert wird, dass die Funktionalität des ε-Cyclase-Gens reduziert oder gänzlich aufgehoben wird. Die Veränderung kann auch die regulativen Elemente (z.B. den Promotor) des ϵ -Cyclase-Gens betreffen, so dass die kodierende Sequenz unverändert bleibt, eine Expression (Transkription und/oder Translation) jedoch unterbleibt und reduziert wird. Bei der konventionellen homologen Rekombination ist die zu insertierende Sequenz an ihrem 5'- und/oder 3'-Ende von weiteren Nukleinsäuresequenzen (A' bzw. B') flankiert, die eine ausreichende Länge und Homologie zu entsprechenden Sequenzen des ε-Cyclase-Gens (A bzw. B) für die Ermöglichung der homologen Rekombination aufweisen. Die Länge liegt in der Regel in einem Bereich von mehreren hundert Basen bis zu mehreren Kilobasen (Thomas KR und Capecchi MR (1987) Cell 51:503; Strepp et al. (1998) Proc Natl Acad Sci USA 95(8):4368-4373). Für die homologe Rekombination wird die pflanzliche Zelle mit dem Rekombinationskonstrukt unter Verwendung der unten beschriebenen Verfahren transformiert und erfolgreich rekombinierte Klone basierend auf der infolge inaktivierten ε-Cyclase selektioniert.

20

25

30

15

5

10

In einer weiteren bevorzugten Ausführungsform wird die Effizienz der Rekombination gesteigert durch Kombination mit Verfahren, die die homologe Rekombination fördern. Solche Verfahren sind beschrieben und umfassen beispielhaft die Expression von Proteinen wie RecA oder die Behandlung mit PARP-Inhibitoren. Es konnte gezeigt werden, dass die intrachromosomale homologe Rekombination in Tabakpflanzen durch die Verwendung von PARP-Inhibitoren erhöht werden kann (Puchta H et al. (1995) Plant J 7:203-210). Durch den Einsatz dieser Inhibitoren kann die Rate der homologen Rekombination in den Rekombinationskonstrukten nach Induktion des sequenzspezifischen DNA-Doppelstrangbruches und damit die Effizienz der Deletion der Transgensequenzen weiter erhöht werden. Verschiedene PARP Inhibitoren können dabei zum Einsatz kommen. Bevorzugt umfasst sind Inhibitoren wie 3-Aminobenzamid, 8-Hydroxy-2-methylquinazolin-4-on (NU1025), 1,11b-Dihydro-[2H]benzopyrano-[4,3,2-de]isoquinolin-3-on (GPI 6150), 5-Aminoisoquinolinon, 3,4-Dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinon oder die in WO 00/26192, WO 00/29384,

WO 00/32579, WO 00/64878, WO 00/68206, WO 00/67734, WO 01/23386 und WO 01/23390 beschriebenen Substanzen.

Weitere geeignete Methoden sind die Einführung von Nonsense-Mutationen in endogene Markerprotein Gene zum Beispiel mittels Einführung von RNA/DNA-Oligonukleotiden in die Pflanze (Zhu et al. (2000) Nat Biotechnol 18(5):555-558) oder die Generierung von Knockout-Mutanten mit Hilfe von z.B. T-DNA-Mutagenese (Koncz et al., Plant Mol. Biol. 1992, 20(5):963-976). Punktmutationen können auch mittels DNA-RNA Hybriden erzeugt werden, die auch als "chimeraplasty" bekannt sind (Cole-Strauss et al. (1999) Nucl Acids Res 27(5):1323-1330; Kmiec (1999) Gene therapy American Scientist 87(3):240-247).

Die Methoden der dsRNAi, der Kosuppression mittels sense-RNA und der "VIGS" ("virus induced gene silencing") werden auch als "post-transcriptional gene silencing"

(PTGS) oder transcriptional gene silencing" (TGS) bezeichnet. PTGS/TGS-Verfahren sind besonders vorteilhaft, weil die Anforderungen an die Homologie zwischen dem zu vermindernden Markerprotein-Gen und der transgen exprimierten sense- oder dsRNA-Nukleinsäuresequenz geringer sind als beispielsweise bei einem klassischen antisense-Ansatz. So kann man unter Verwendung der Markerprotein-

Nukleinsäuresequenzen aus einer Art auch die Expression von homologen Markerprotein-Proteinen in anderen Arten effektiv vermindern, ohne, dass die Isolierung und Strukturaufklärung der dort vorkommenden Markerprotein-Homologen zwingend erforderlich wäre. Dies erleichtert erheblich den Arbeitsaufwand.

25 In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Reduzierung der ε-Cyclase-Aktivität gegenüber dem Wildtyp durch:

- a) Einbringen mindestens einer doppelsträngigen ε-Cyclase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen und/oder
 - b) Einbringen mindestens einer ε-Cyclase antisense-Ribonukleinsäuresequenzen oder einer deren Expression gewährleistenden Expressionskassette in Pflanzen.

In einer ganz besonders bevorzugten Ausführungsform erfolgt die Reduzierung der ϵ -Cyclase-Aktivität gegenüber dem Wildtyp durch Einbringen mindestens einer doppelsträngigen ϵ -Cyclase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten in Pflanzen.

5

15

20

25

In einer bevorzugten Ausführungsform werden genetisch veränderte Pflanzen verwendet, die in Blüten die geringste Expressionsrate einer ε-Cyclase aufweisen.

Dies wird bevorzugt dadurch erreicht, dass die Reduzierung der ε-Cyclase-Aktivität blütenspezifisch, besonders bevorzugt blütenblattspezifisch erfolgt.

In der vorstehend beschriebenen, besonders bevorzugten Ausführungsform wird dies dadurch erreicht, dass die Transkription der ε-Cyclase-dsRNA-Sequenzen unter Kontrolle eines blütenspezifischen Promotors oder noch bevorzugter unter Kontrolle eines blütenblattspezifischen Promotors erfolgt.

In einer weiter bevorzugten Ausführungsform werden Pflanzen kultiviert, die zusätzlich gegenüber dem Wildtyp eine erhöhte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen.

Unter HMG-CoA-Reduktase-Aktivität wird die Enzymaktivität einer HMG-CoA-Reduktase (3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase) verstanden.

30 Unter einer HMG-CoA-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A in Mevalonat umzuwandeln.

Dementsprechend wird unter HMG-CoA-Reduktase-Aktivität die in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. gebildete Menge Mevalonat verstanden.

- Bei einer erhöhten HMG-CoA-Reduktase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase die umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. die gebildete Menge Mevalonat erhöht.
- Vorzusgweise beträgt diese Erhöhung der HMG-CoA-Reduktase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der HMG-CoA-Reduktase-Aktivität des Wildtyps.Unter HMG-CoA-Reduktase-Aktivität wird die Enzymaktivität einer HMG-CoA-Reduktase verstanden.

Die Bestimmung der HMG-CoA-Reduktase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

20

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1% (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10% Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0.5 mM PMSF zugegeben.

30

35

25

Die Aktivität der HMG-CoA-Reduktase kann nach veröffentlichen Beschreibungen gemessen werden (z.B. Schaller, Grausem, Benveniste, Chye, Tan, Song und Chua, Plant Physiol. 109 (1995), 761-770; Chappell, Wolf, Proulx, Cuellar und Saunders, Plant Physiol. 109 (1995) 1337-1343). Pflanzengewebe kann in kaltem Puffer (100 mM Kaliumphosphat (pH 7.0), 4 mM MgCl₂, 5 mM DTT) homogenisiert und extrahiert werden. Das Homogenisat wird 15 Minuten lang bei 10.000g bei 4C zentrifugiert. Der Ü-

30

berstand wird danach bei 100.000g für 45-60 Minuten nochmals zentrifugiert. Die Aktivität der HMG-CoA-Reduktase wird im Überstand und im Pellet der mikrosomalen Fraktion (nach dem Resuspendieren in 100 mM Kaliumphosphat (pH 7.0) und 50 mM DTT) bestimmt. Aliquots der Lösung und der Suspension (der Proteingehalt der Suspension entspricht etwa 1-10 ∞g) werden in 100 mM Kaliumphosphat-Puffer (pH 7,0 mit 3 mM NADPH und 20 ∞M (¹⁴C)HMG-CoA (58 ∞Ci/∞M) idealerweise in einem Volumen von 26 ∞l für 15-60 Minuten bei 30C inkubiert. Die Reaktion wird terminiert durch die Zugabe von 5 ∞l Mevalonatlacton (1 mg/ml) und 6 N HCl. Nach Zugabe wird die Mischung bei Raumtemperatur 15 Minuten inkubiert. Das in der Reaktion gebildete (¹⁴C)-Mevalonat wird quantifiziert, indem 125 ∞l einer gesättigten Kaliumphosphat-Lösung (pH 6.0) und 300 ∞l Ethylacetat zugegeben werden. Die Mischung wird gut vermischt und zentrifugiert. Mittels Szintillationsmessung kann die Radioaktivität bestimmt werden.

Unter (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, auch lytB oder IspH bezeichnet, wird die Enzymaktivität einer (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase verstanden.

Unter einer (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat in Isopentenyldiphosphat und Dimethylallyldiphosphate umzuwandeln.

Dementsprechend wird unter (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase—Aktivität die in einer bestimmten Zeit durch das Protein (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase umgesetzte Menge (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat bzw. gebildete Menge Isopentenyldiphosphat und/oder Dimethylallyldiphosphat verstanden.

Bei einer erhöhten (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase –Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase die umgesetzte Menge (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat bzw. die gebildete Menge Isopentenyldiphosphat und/oder Dimethylallyldiphosphat erhöht.

10

25

30

Vorzugsweise beträgt diese Erhöhung der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase –Aktivität des Wildtyps.

Die Bestimmung der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase— Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0.1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

Die Bestimmung der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase—Aktivität kann über einen immunologischen Nachweis erbracht werden. Die Herstellung spezifischer Antikörper ist durch Rohdich und Kollegen (Rohdich, Hecht, Gärtner, Adam, Krieger, Amslinger, Arigoni, Bacher und Eisenreich: Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein, Natl. Acad. Natl. Sci. USA 99 (2002), 1158-1163) beschrieben worden. Zur Bestimmung der katalytischen Aktivität bschreiben Altincicek und Kollegen (Altincicek, Duin, Reichenberg, Hedderich, Kollas, Hintz, Wagner, Wiesner, Beck und Jomaa: LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis; FEBS Letters 532 (2002,) 437-440) ein in vitro-System, welches die Reduktion von (E)-4-hydroxy-3-methyl-but-2-enyl diphosphat in die Isopentenyl-diphosphat und Dimethylallyldiphosphat verfolgt.

Unter 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität wird die Enzymaktivität einer 1-Deoxy-D-Xylose-5-Phosphat-Synthase verstanden.

Unter einer 1-Deoxy-D-Xylose-5-Phosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Hydroxyethyl-ThPP und Glycerinaldehyd-3-Phosphat in 1-Deoxy-D-Xylose-5-Phosphat umzuwandeln.

Dementsprechend wird unter 1-Deoxy-D-Xylose-5-Phosphat-Synthase —Aktivität die in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Synthase umgesetzte Menge Hydroxyethyl-ThPP und/oder Glycerinaldehyd-3-Phosphat bzw. gebildete Menge -Deoxy-D-Xylose-5-Phosphat verstanden.

Bei einer erhöhten 1-Deoxy-D-Xylose-5-Phosphat-Synthase –Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Synthase die umgesetzte Menge Hydroxyethyl-ThPP und/oder Glycerinaldehyd-3-Phosphat bzw. die gebildete Menge -Deoxy-D-Xylose-5-Phosphat erhöht.

Vorzugsweise beträgt diese Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat-Synthase –
20 Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität des Wildtyps.

Die Bestimmung der 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff
homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert.
Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren
Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten
innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl2, 10 mM KCl, 1
mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 %

30

Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

Die Reaktionslösung (50-200 ul) für die Bestimmung der D-1-Deoxyxylulose-5-Phosphat-Synthase-Aktivität (DXS) besteht aus 100 mM Tris-HCl (pH 8.0), 3 mM 5 MgCl₂, 3 mM MnCl₂, 3 mM ATP, 1 mM Thiamindiphosphat, 0.1% Tween-60, 1 mM Kaliumfluorid, 30 ∝M (2-14C)-Pyruvat (0.5 ∝Ci), 0.6 mM DL-Glyerinaldehyd-3-phosphat. Der Pflanzenextrakt wird 1 bis 2 Stunden in der Reaktionslösung bei 37C inkubiert. Danach wird die Reaktion durch Erhitzen auf 80C für 3 Minuten gestoppt. Nach Zentrifugation bei 13.000 Umdrehungen/Minute für 5 Minuten wird der Überstand evaporiert, 10 der Rest in 50 ∞l Methanol resuspendiert, auf eine TLC-Platte für Dünnschichtchromatographie (Silica-Gel 60, Merck, Darmstadt) aufgetragen und in N-Propylalkohol-/Ethylacetat/Wasser (6:1:3; v/v/v) aufgetrennt. Dabei trennt sich radioaktiv markiertes D-1-deoxyxylulose-5-phosphat (oder D-1-deoxyxylulose) von (2-14C)-Pyruvat. Die Quantifizierung erfolgt mittels Scintillationszähler. Die Methode wurde beschrieben in 15 Harker und Bramley (FEBS Letters 448 (1999) 115-119). Alternativ wurde ein fluorometrischer Assay zur Bestimmung der DXS-Synthaseaktivität von Querol und Kollegen beschrieben (Analytical Biochemistry 296 (2001) 101-105).

20 Unter 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase -Aktivität wird die Enzymaktivität einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase verstanden.

Unter einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 1-Deoxy-D-Xylose-5-Phosphat in β -Carotin umzuwandeln.

Dementsprechend wird unter 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase — Aktivität die in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase umgesetzte Menge 1-Deoxy-D-Xylose-5-Phosphat bzw. gebildete Menge Isopenetenyl-Diphosphat verstanden.

Bei einer erhöhten 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase –Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase die umgesetzte Menge 1-Deoxy-D-Xylose-5-Phosphat bzw. die gebildete Menge Isopenetenyl-Diphosphat erhöht.

Vorzugsweise beträgt diese Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase –Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase –Aktivität des Wildtyps.

Die Bestimmung der 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase --Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

Die Aktivität der D-1-Deoxyxylulose-5-Phosphat-Reduktoisomerase (DXR) wird gemessen in einem Puffer aus 100 mM Tris-HCl (pH 7,5), 1 mM MnCl₂, 0,3 mM NADPH und 0,3 mM 1-Deoxy-D-Xylulose-4-Phosphat, welches z.B. enzymatisch synthetisiert werden kann (Kuzuyama, Takahashi, Watanabe und Seto: Tetrahedon letters 39 (1998) 4509-4512). Die Reaktion wird durch Zugabe des Pflanzenextraktes gestartet. Das Reaktionsvolumen kann typischerweis 0,2 bis 0,5 mL betragen; die Inkubation erfolgt bei 37C über 30-60 Minuten. Während dieser Zeit wird die Oxidation von NADPH photometrisch bei 340 nm verfolgt.

Unter Isopentenyl-Diphosphat-∆-Isomerase -Aktivität wird die Enzymaktivität einer Isopentenyl-Diphosphat-∆-Isomerase verstanden.

30

15

20

25

Unter einer Isopentenyl-Diphosphat-D-Isomerase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Isopenetenyl-Diphosphat in Dimethylallylphosphat umzuwandeln.

- Dementsprechend wird unter Isopentenyl-Diphosphat-D-Isomerase—Aktivität die in einer bestimmten Zeit durch das Protein Isopentenyl-Diphosphat-D-Isomerase umgesetzte Menge Isopenetenyl-Diphosphat bzw. gebildete Menge Dimethylallylphosphat verstanden.
- 10 Bei einer erhöhten Isopentenyl-Diphosphat-D-Isomerase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Isopentenyl-Diphosphat-D-Isomerase die umgesetzte Menge Isopenetenyl-Diphosphat bzw. die gebildete Menge Dimethylallylphosphat erhöht.
- Vorzugsweise beträgt diese Erhöhung der Isopentenyl-Diphosphat-Δ-Isomerase Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Isopentenyl-Diphosphat-Δ-Isomerase Aktivität des Wildtyps.

Die Bestimmung der Isopentenyl-Diphosphat-Δ-Isomerase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

35

Aktivitätsbestimmungen der Isopentenyl-Diphosphat-Isomerase (IPP-Isomerase) können nach der von Fraser und Kollegen vorgestellten Methode (Fraser, Römer, Shipton, Mills, Kiano, Misawa, Drake, Schuch und Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Sci. USA 99 (2002), 1092-1097, basierend auf Fraser, Pinto, Holloway und 5 Bramley, Plant Journal 24 (2000), 551-558) durchgeführt werden. Für Enzymmessungen werden Inkubationen mit 0,5 ∝ Ci (1-14C)IPP (Isopentenylpyrophosphat) (56 mCi/mmol, Amersham plc) als Substrat in 0,4 M Tris-HCl (pH 8,0) mit 1 mM DTT, 4 mM MgCl₂, 6 mM Mn Cl₂, 3 mM ATP, 0,1 % Tween 60, 1 mM Kaliunfluorid in einem Volumen von etwa 150-500 ∝l durchgeführt. Extrakte werden mit Puffer gemischt (z.B. 10 im Verhältnis 1:1) und für wenigstens 5 Stunden bei 28°C inkubiert. Danach wird etwa 200 ∝l Methanol zugegeben und durch Zugabe von konzentrierter Salzsäure (Endkonzentration 25 %) eine Säurehydrolyse für etwa 1 Stunde bei 37C durchgeführt. Anschließend erfolgt eine zweimalige Extraktion (jeweils 500 ∞l) mit Petrolether (versetzt mit 10% Diethylether). Die Radioaktivität in einem Aliquot der Hyperphase wird mittels 15 Szintillationszähler bestimmt. Die spezifische Enzymaktivität kann bei kurzer Inkubation von 5 Minuten bestimmt werden, da kurze Reaktionszeiten die Bildung von Reaktionsnebenprodukten unterdrückt (siehe Lützow und Beyer: The isopentenyl-diphosphate Δ isomerase and its relation to the phytoene synthase complex in daffodil chromoplasts; Biochim. Biophys. Acta 959 (1988), 118-126) 20

Unter Geranyl-Diphosphat-Synthase -Aktivität wird die Enzymaktivität einer Geranyl-Diphosphat-Synthase verstanden.

Unter einer Geranyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Isopentenyl-Diphosphat und Dimethylallylphosphat in Geranyl-Diphosphat umzuwandeln.

Dementsprechend wird unter Geranyl-Diphosphat-Synthase—Aktivität die in einer bestimmten Zeit durch das Protein Geranyl-Diphosphat-Synthase umgesetzte Menge Isopentenyl-Diphosphat und/oder Dimethylallylphosphat bzw. gebildete Menge Geranyl-Diphosphat verstanden.

Bei einer erhöhten Geranyl-Diphosphat-Synthase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Gera-

25

30

35

nyl-Diphosphat-Synthase die umgesetzte Menge Isopentenyl-Diphosphat und/oder Dimethylallylphosphat bzw. die gebildete Menge Geranyl-Diphosphat erhöht.

Vorzugsweise beträgt diese Erhöhung der Geranyl-Diphosphat-Synthase –Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Geranyl-Diphosphat-Synthase–Aktivität des Wildtyps.

Die Bestimmung der Geranyl-Diphosphat-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff
homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert.
Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren
Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten
innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl2, 10 mM KCl, 1
mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 %
Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF
zugegeben.

Die Aktivität der Geranyl-Diphosphat-Synthase (GPP-Synthase) kann in 50 mM Tris-HCl (pH 7.6), 10 mM MgCl₂, 5 mM MnCl₂, 2 mM DTT, 1 mM ATP, 0.2 % Tween-20, 5 ∞M (14C)IPP und 50 ∞M DMAPP (Dimethylallylpyrophosphat) nach Zugabe von Pflanzenextrakt bestimmt werden (nach Bouvier, Suire, d'Harlingue, Backhaus und Camara: Meolcular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, Plant Journal 24 (2000,) 241-252). Nach der Inkubation von z.B. 2 Stunden bei 37C werden die Reaktionsprodukte dephosphyryliert (nach Koyama, Fuji und Ogura: Enzymatic hydrolysis of polyprenyl pyrophosphats, Methods Enzymol. 110 (1985), 153-155) und mittels Dünnschichtchromatographie und Messung der inkorporierten Radioaktivität analysiert (Dogbo, Bardat, Quennemet und Camara: Metabolism of plastid terpenoids: In vitrp inhibition of phytoene synthesis by phenethyl pyrophosphate derivates, FEBS Letters 219 (1987) 211-215).

15

20

Unter Farnesyl-Diphosphat-Synthase -Aktivität wird die Enzymaktivität einer Farnesyl-Diphosphat-Synthase verstanden.

Unter einer Farnesyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Geranyl-Diphosphate und Isopentenyl-Diphosphat in Farnesyl-Diphosphat umzuwandeln.

Dementsprechend wird unter Farnesyl-Diphosphat-Synthase—Aktivität die in einer bestimmten Zeit durch das Protein Farnesyl-Diphosphat-Synthase umgesetzte Menge Geranyl-Diphosphate und/oder Isopentenyl-Diphosphat bzw. gebildete Menge Farnesyl-Diphosphat verstanden.

Bei einer erhöhten Farnesyl-Diphosphat-Synthase –Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Farnesyl-Diphosphat-Synthase die umgesetzte Menge Geranyl-Diphosphate und/oder Isopentenyl-Diphosphat bzw. die gebildete Menge Farnesyl-Diphosphat erhöht.

Vorzugsweise beträgt diese Erhöhung der Farnesyl-Diphosphat-Synthase –Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Farnesyl-Diphosphat-Synthase–Aktivität des Wildtyps.

Die Bestimmung der Farnesyl-Diphosphat-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert.

30 Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7.4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

10

15

25

30

Die Aktivität der Franesylpyrophosphat-Snthase (FPP-Synthase) kann nach einer Vorschrift von Joly und Edwards (Journal of Biological Chemistry 268 (1993), 26983-26989) bestimmt werden. Danach wird die Enzymaktivität in einem Puffer aus 10 mM HEPES (pH 7,2), 1 mM MgCl₂, 1 mM Dithiothreitol, 20 ∞M Geranylpyrophosphat und 40 ∞M (1-¹⁴C) Isopentenylpyrophosphat (4 Ci/mmol) gemessen. Die Reaktionsmischung wird bei 37°C inkubiert; die Reaktion wird durch Zugabe von 2,5 N HCl (in 70 % Ethanol mit 19 ∞g/ml Farnesol) gestoppt. Die Reaktionsproduckte werden somit durch Säurehydrolyse bei 37C innerhalb von 30 Minuten hydrolysiert. Durch Zugabe von 10% NaOH wird die Mischung neutralisiert und mit Hexan ausgeschüttelt. Ein Aliquot der Hexanphase kann zur Bestimmung der eingebauten Radioaktivität mittels Szintillationszähler gemessen werden.

Alternativ können nach Inkubation von Pflanzenextrakt und radioaktiv markierten IPP die Reaktionsprodukte mittels Dünnschichtchromatographie (Silica-Gel SE60, Merck) in Benzol/Methanol (9:1) getrennt werden. Radioaktiv markierte Produkte werden eluiert und die Radioaktivität bestimmt (nach Gaffe, Bru, Causse, Vidal, Stamitti-Bert, Carde und Gallusci: LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development; Plant Physiology 123 (2000) 1351-1362).

20 Unter Geranyl-Geranyl-Diphosphat-Synthase -Aktivität wird die Enzymaktivität einer Geranyl-Geranyl-Diphosphat-Synthase verstanden.

Unter einer Geranyl-Geranyl-Diphosphat-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, Farnesyl-Diphosphat und Isopentenyl-Diphosphat in Geranyl-Geranyl-Diphosphat umzuwandeln.

Dementsprechend wird unter Geranyl-Geranyl-Diphosphat-Synthase—Aktivität die in einer bestimmten Zeit durch das Protein Geranyl-Geranyl-Diphosphat-Synthase umgesetzte Menge Farnesyl-Diphosphat und/oder Isopentenyl-Diphosphat bzw. gebildete Menge Geranyl-Geranyl-Diphosphat verstanden.

Bei einer erhöhten Geranyl-Geranyl-Diphosphat-Synthase –Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Geranyl-Geranyl-Diphosphat-Synthase die umgesetzte Menge Farnesyl-Diphosphat

und/oder Isopentenyl-Diphosphat bzw. die gebildete Menge Geranyl-Geranyl-Diphosphat erhöht.

Vorzugsweise beträgt diese Erhöhung der Geranyl-Geranyl-Diphosphat-Synthase –

5 Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der β-Cyclase–Aktivität des Wildtyps.

Die Bestimmung der Geranyl-Geranyl-Diphosphat-Synthase –Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff
homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert.
Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren
Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten
innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCl2, 10 mM KCl, 1
mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 %
Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF
zugegeben.

Aktivitätsmessungen der Geranylgeranypyrophosphat-Synthase (GGPP-Synthase)
können nach der von Dogbo und Camara beschriebenen Methode (in Biochim. Biophys. Acta 920 (1987), 140-148: Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography) bestimmt werden. Dazu wird einem Puffer (50 mM Tris-HCl (pH 7,6), 2 mM MgCl₂, 1 mM MnCl₂, 2 mM Dithiothreitol, (1-¹⁴C)IPP (0,1 ∝Ci, 10 ∝M), 15 ∝M

DMAPP, GPP oder FPP) mit einem Gesamtvolumen von etwa 200 ∝I Pflanzenextrakt zugesetzt. Die Inkubation kann für 1-2 Stunden (oder länger) bei 30C erfolgen. Die Reaktion wird durch Zugabe von 0,5 ml Ethanol und 0,1 ml 6N HCl. Nach 10minütiger Inkubation bei 37°C wird die Reaktionsmischung mit 6N NaOH neutralisiert, mit 1 ml Wasser vermischt und mit 4 ml Diethylether ausgeschüttelt. In einem Aliquot (z.B. 0,2 mL) der Etherphase wird mittels Szintillationszählung die Menge an Radioaktivität

bestimmt. Alternativ können nach Säurehydrolyse die radioaktiv markierten Prenylalkohole in Ether ausgeschüttelt werden und mit HPLC (25 cm-Säule Spherisorb ODS-1, 5∞m; Elution mit Methanol/Wasser (90:10; v/v) bei einer Flussrate von 1 ml/min) getrennt und mittels Radioaktivitätsmonitor quantifiziert werden (nach Wiedemann, Misawa und Sandmann: Purification and enzymatic characterization of the geranylgeranyl pyrophosphate synthase from Erwinia uredovora after expression in Escherichia coli;

Unter Phytoen-Synthase -Aktivität wird die Enzymaktivität einer Phytoen-Synthase verstanden.

10

20

25

30

35

5

Unter einer Phytoen-Synthase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen β -lonon-Ring zu überführen.

15 Insbesondere wird unter einer Phytoen-Synthase ein Protein verstanden, das die enzymatische Aktivität aufweist, Geranyl-Geranyl-Diphosphat in Phytoen umzuwandeln.

Dementsprechend wird unter Phytoen-Synthase –Aktivität die in einer bestimmten Zeit durch das Protein Phytoen-Synthase umgesetzte Menge Geranyl-Geranyl-Diphosphat bzw. gebildete Menge Phytoen verstanden.

Bei einer erhöhten Phytoen-Synthase –Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Phytoen-Synthase die umgesetzte Menge Geranyl-Geranyl-Diphosphat bzw. die gebildete Menge Phytoen erhöht.

Vorzugsweise beträgt diese Erhöhung der Phytoen-Synthase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Phytoen-Synthase-Aktivität des Wildtyps.

Die Bestimmung der Phytoen-Synthase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

10

15

20

25

30

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

Aktivitästbestimmungen der Phytoenesynthase (PSY) können nach der von Fraser und Kollegen vorgestellten Methode (Fraser, Romer, Shipton, Mills, Kiano, Misawa, Drake. Schuch und Bramley: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner; Proc. Natl. Acad. Sci. USA 99 (2002), 1092-1097, basierend auf Fraser, Pinto, Holloway und Bramley, Plant Journal 24 (2000) 551-558) durchgeführt werden. Für Enzymmessungen werden Inkubationen mit (3H)Geranylgeranyl-pyrophosphat (15 mCi/mM, American Radiolabeled Chemicals, St. Louis) als Substrat in 0.4 M Tris-HCl (pH 8,0) mit 1 mM DTT, 4 mM MgCl₂, 6 mM Mn Cl₂, 3 mM ATP, 0,1 % Tween 60, 1 mM Kaliunfluorid durchgeführt. Pflanzenextrakte werden mit Puffer gemischt, z B. 295 ∞l Puffer mit Extrakt in einem Gesamtvolumen von 500 ∝I. Inkubiert wird für wenigstens 5 Stunden bei 28C. Anschließend wird Phytoene durch zweimaliges Ausschütteln (jeweils 500 ∞l) mit Chloroform extrahiert. Das während der Reaktion gebildete radioaktiv markierte Phytoene wird mittels Dünnschichtchromatographie auf Silicaplatten in Methanol/Wasser (95:5; v/v) getrennt. Phytoene kann in einer Jod-angereicherten Atmosphäre (durch Erhitzen weniger Iodkristalle) auf den Silicaplatten identifiziert werden. Ein Phytoene-Standard dient als Referenz. Die Menge an radioaktiv markiertem Produckt wird mittels Messung im Szintillationszähler bestimmt. Alternativ kann Phytoene auch mittels HPLC, die mit einem Radioaktivitätsdetektor versehen ist, quantifiziert werden (Fraser, Albrecht und Sandmann: Development of high performance liquid chromatographic systems for the separation of radiolabeled carotenes and precursors formed in specific enzymatic reactions; J. Chromatogr. 645 (1993) 265-272).

20

25

30

35

Unter Phytoen-Desaturase-Aktivität wird die Enzymaktivität einer Phytoen-Desaturase verstanden.

Unter einer Phytoen-Desaturase wird ein Protein verstanden, das die enzymatische

Aktivität aufweist, Phytoen in Phytofluen und/oder Phytofluen in ζ-Carotin (Zetacarotin)
umzuwandeln.

Dementsprechend wird unter Phytoen-Desaturase—Aktivität die in einer bestimmten Zeit durch das Protein Phytoen-Desaturase umgesetzte Menge Phytoen bzw. Phytofluen bzw. gebildete Menge Phytofluen bzw. ζ-Carotin verstanden.

Bei einer erhöhten Phytoen-Desaturase–Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Phytoen-Desaturase die umgesetzte Menge Phytoen bzw. Phytofluen bzw. die gebildete Menge Phytofluen bzw. ζ-Carotin erhöht.

Vorzugsweise beträgt diese Erhöhung der Phytoen-Desaturase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Phytoen-Desaturase-Aktivität des Wildtyps.

Die Bestimmung der Phytoen-Desaturase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

Die Aktivität der Phytoendesaturase (PDS) kann durch die Inkorporation von radioaktiv markiertem (1⁴C)-Phytoen in ungesättigte Carotine gemessen werden (nach Römer, Fraser, Kiano, Shipton, Misawa, Schuch und Bramley: Elevation of the provitamin A content of transgenic tomato plants; Nature Biotechnology 18 (2000) 666-669). Radioaktiv markiertes Phytoene kann synthetisiert werden nach Fraser (Fraser, De la Rivas, Mackenzie, Bramley: Phycomyces blakesleanus CarB mutants: their use in assays of phytoene desaturase; Phytochemistry 30 (1991), 3971-3976). Membranen von Plastiden des Zielgewebes können mit 100 mM MES-Puffer (pH 6,0) mit 10 mM MgCl₂ und 1 mM Dithiothreitol in einem Gesamtvolumen von 1 mL inkubiert werden. In Aceton gelöstes (1⁴C)-Phytoen (etwa 100.000 Zerfälle/Minute für jeweils eine Inkubation) wird zugegeben, wobei die Acetonkonzentration 5 % (v/v) nicht übersteigen sollte. Diese Mischung wird bei 28C für etwa 6 bis 7 Stunden im Dunklen unter Schütteln inkubiert. Danach werden Pigmente dreimal mit etwa 5 mL Petrolether (mit 10 % Diethylether versetzt) extrahiert und mittels HPLC getrennt und quantifiziert.

15

5

10

Alternativ kann die Aktivität der Phytoenedesaturase nach Fraser et al. (Fraser, Misawa, Linden, Yamano, Kobayashi und Sandmann: Expression in Escherichia coli, purification, and reactivation of the recombinant Erwinia uredovora phytoene desaturase, Journal of Biological Chemistry 267 (1992), 19891-9895) gemessen werden.

20

Unter Zeta-Carotin-Desaturase-Aktivität wird die Enzymaktivität einer Zeta-Carotin-Desaturase verstanden.

25

Unter einer Zeta-Carotin-Desaturase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, ζ -Carotin in Neurosporin und/oder Neurosporin in Lycopin umzuwandeln.

30

Dementsprechend wird unter Zeta-Carotin-Desaturase–Aktivität die in einer bestimmten Zeit durch das Protein Zeta-Carotin-Desaturase umgesetzte Menge ζ -Carotin oder Neurosporin bzw. gebildete Menge Neurosporin oder Lycopin verstanden.

Bei einer erhöhten Zeta-Carotin-Desaturase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Zeta-Carotin-Desaturase die umgesetzte Menge ζ-Carotin oder Neurosporin bzw. die gebildete Menge Neurosporin oder Lycopin erhöht.

35

Vorzugsweise beträgt diese Erhöhung der Zeta-Carotin-Desaturase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 500 %, hevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Zeta-Carotin-Desaturase – Aktivität des Wildtyps.

Die Bestimmung der Zeta-Carotin-Desaturase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

Analysen zur Bestimmung der ξ-Carotin-Desaturase (ZDS-Desaturase) können in 0.2 M Kaliumphosphat (pH 7.8, Puffervolumen von etwa 1 ml) durchgeführt werden. Die Anlysemethode dazu wurde von Breitenbach und Kollegen (Breitenbach, Kuntz, Takaichi und Sandmann: Catalytic properties of an expressed and purified higher plant type ξ-carotene desaturase from Capsicum annuum; European Journal of Biochemistry. 265(1):376-383, 1999 Oct) publiziert. Jeder Analyseansatz enthält 3 mg Phosphytidylcholin, das in 0,4 M Kaliumphosphatpuffer (pH 7,8) suspendiert ist, 5 ∝g ξ-Carotin oder Neurosporene, 0,02 % Butylhydroxytoluol, 10 ∞l Decyl-Plastochinon (1 mM methanolische Stammlösung) und Pflanzenextrakt. Das Volumen des Pflanzenextraktes muß der Menge an vorhandener ZDS-Desaturase-Aktivität angepasst werden, um Quantifizierungen in einem linearen Messbereich zu ermöglichen. Inkubationen erfolgen typischerweise für etwa 17 Stunden bei kräftigem Schütteln (200 Umdrehungen/Minute) bei etwa 28°C im Dunklen. Carotinoide werden durch Zugabe von 4 ml Aceton bei 50°C für 10 Minuten unter Schütteln extrahiert. Aus dieser Mischung werden die Carotinoide in eine Petroletherpahse (mit 10 % Diethylether) überführt. Die Dethy-

lether/Petroletherphase wird unter Stickstoff evaporiert, die Carotinoide wieder in 20 ∞l gelöst und mittels HPLC getrennt und quantifiziert.

Unter crtISO -Aktivität wird die Enzymaktivität eines crtISO-Proteins verstanden.

5

15

Unter einem crtISO-Proteins wird ein Protein verstanden, das die enzymatische Aktivität aufweist, 7,9,7',9'-tetra-cis-Lycopin in all-trans-Lycopin umzuwandeln.

Dementsprechend wird unter crtISO-Aktivität die in einer bestimmten Zeit durch das
Protein b-Cyclase umgesetzte Menge 7,9,7',9'-tetra-cis-Lycopin bzw. gebildete Menge all-trans-Lycopin verstanden.

Bei einer erhöhten crtISO-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das crtISO-Proteins die umgesetzte Menge 7,9,7',9'-tetra-cis-Lycopin bzw. die gebildete Menge all-trans-Lycopin erhöht.

Vorzugsweise beträgt diese Erhöhung der crtISO-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der crtISO-Aktivität des Wildtyps.

Die Bestimmung der crtlSO-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

25

20

Eingefrorenes Pflanzenmaterial wird durch intensives Mösern in flüssigem Stickstoff homogenisiert und mit Extraktionspuffer in einem Verhältnis von 1:1 bis 1:20 extrahiert. Das jeweilige Verhältnis richtet sich nach den Enzymaktivitäten in dem verfügbaren Pflanzenmaterial, sodaß eine Bestimmung und Quantifizierung der Enzymaktivitäten innerhalb des linearen Messbereiches möglicht ist. Typischerweise kann der Extraktionspuffer bestehen aus 50 mM HEPES-KOH (pH 7,4), 10 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 0,1 % (v/v) Triton X-100, 2 mM ε-Aminocapronsäure, 10 % Glyzerin, 5 mM KHCO3. Kurz vor der Extraktion wird 2 mM DTT und 0,5 mM PMSF zugegeben.

35

30

Unter FtsZ-Aktivität wird die physiologische Aktivität eines FtsZ-Proteins verstanden.

Unter einem FtsZ-Protein wird ein Protein verstanden, das an der Zellteilungs und Plastidenteilungs fördernde Wirkung hat und Homologien zu Tubulinproteinen aufweist.

Unter MinD -Aktivität wird die physiologische Aktivität eines MinD -Proteins verstanden. 5

Unter einem MinD -Protein wird ein Protein verstanden, das eine multifunktionele Rolle bei der Zellteilung aufweist. Es ist eine Membran-assoziierte ATPase und kann innerhalb der Zelle eine oszillierende Bewegung von Pol zu Pol zeigen.

10

15

20

25

Weiterhin kann die Erhöhung der Aktivität von Enzymen des Nicht-Mevalonatweges zu einer weiteren Erhöhung des gewünschten Ketocarotenoid-Endproduktes führen. Beipiele hierfür sind die 4-Diphosphocytidyl-2-C-Methyl-D-Erythritol-Synthase, die 4-Diphosphocytidyl-2-C-Methyl-D-Erythritol-Kinase und die 2-C-Methyl-D-Erythritol-2,4cyclodiphoshat-Synthase. Durch Änderungen der Genexpression der entsprechenden Gene kann die Aktivität der genannten Enzyme erhöht werden. Die veränderten Konzentrationen der relavanten Proteine können standardgemäß mittels Antikörpern und entsprechenden Blotting-techniken nachgewiesen werden. Die Erhöhung der HMG-CoA-Reduktase-Aktivität und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität und/oder 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität und/oder Isopentenyl-Diphosphat-∆-Isomerase-Aktivität und/oder Geranyl-Diphosphat-Synthase-Aktivität und/oder Farnesyl-Diphosphat-Synthase-Aktivität und/oder Geranyl-geranyl-Diphosphat-Synthase-Aktivität und/oder Phytoen-Synthase-Aktivität und/oder Phytoen-Desaturase-Aktivität und/oder Zeta-Carotin-Desaturase-Aktivität und/oder crtlSO-Aktivität und/oder FtsZ-Aktivität und/oder MinD-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren kodierend eine HMG-CoA-Reduktase und/oder Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder Nuk-30 leinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-∆-Isomerase und/oder Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Ge-35

ranyl-geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Desaturase und/oder Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase und/oder Nukleinsäuren kodierend ein crtlSO-Protein und/oder Nukleinsäuren kodierend ein FtsZ-Protein und/oder Nukleinsäuren kodierend ein MinD-Protein gegenüber dem Wildtyp.

Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine HMG-CoA-Reduktase und/oder Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-10 Phosphat-Synthase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Nukleinsäuren kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Synthase und/oder Nukleinsäuren 15 kodierend eine Phytoen-Desaturase und/oder Nukleinsäuren kodierend eine Zeta-Carotin-Desaturase und/oder Nukleinsäuren kodierend ein crtlSO-Protein und/oder Nukleinsäuren kodierend ein FtsZ-Protein und/oder Nukleinsäuren kodierend ein MinD-Protein gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des HMG-CoA-Reduktase-Gens und/oder (E)-4-20 Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gens und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gens und/oder 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gens und/oder Isopentenyl-Diphosphat-Δ-Isomerase-Gens und/oder Geranyl-Diphosphat-Synthase-Gens und/oder Farnesyl-Diphosphat-Synthase-Gens und/oder Geranyl-geranyl-Diphosphat-Synthase-Gens und/oder Phy-25 toen-Synthase-Gens und/oder Phytoen-Desaturase-Gens und/oder Zeta-Carotin-Desaturase-Gens und/oder crtlSO-Gens und/oder FtsZ-Gens und/oder MinD-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Kopien des HMG-CoA-Reduktase-Gens und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-30 Reduktase-Gens und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gens und/oder 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gens und/oder Isopentenyl-Diphosphat-Δ-Isomerase-Gens und/oder Geranyl-Diphosphat-Synthase-Gens und/oder Farnesyl-Diphosphat-Synthase-Gens und/oder Geranyl-geranyl-Diphosphat-Synthase-Gens und/oder Phytoen-Synthase-Gens und/oder Phytoen-Desaturase-Gens und/oder 35 Zeta-Carotin-Desaturase-Gens und/oder crtISO-Gens und/oder FtsZ-Gens und/oder

10

15

20

25

30

35

MinD-Gens, also durch Einbringen mindestens einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder mindestens einer Nukleinsäure kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder mindestens einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder mindestens einer Nukleinsäure kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase und/oder mindestens einer Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder mindestens einer Nukleinsäure kodierend eine Phytoen-Desaturase und/oder mindestens einer Nukleinsäure kodierend eine Zeta-Carotin-Desaturase und/oder mindestens einer Nukleinsäure kodierend ein crtISO-Protein und/oder mindestens einer Nukleinsäure kodierend ein FtsZ-Protein und/oder mindestens einer N

Unter Erhöhung der Genexpression einer Nukleinsäure codierend eine HMG-CoA-Reduktase und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Isopentenyl-Diphosphat-∆-Isomerase und/oder Geranyl-Diphosphat-Synthase und/oder Farnesyl-Diphosphat-Synthase und/oder Geranyl-geranyl-Diphosphat-Synthase und/oder Phytoen-Synthase und/oder Phytoen-Desaturase und/oder Zeta-Carotin-Desaturase und/oder ein crtISO-Protein und/oder FtsZ-Protein und/oder MinD-Protein wird erfindungsgemäß auch die Manipulation der Expression der Pflanzen eigenen, endogenen HMG-CoA-Reduktase und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Isopentenyl-Diphosphat-Δ-Isomerase und/oder Geranyl-Diphosphat-Synthase und/oder Farnesyl-Diphosphat-Synthase und/oder Geranyl-geranyl-Diphosphat-Synthase und/oder Phytoen-Synthase und/oder Phytoen-Desaturase und/oder Zeta-Carotin-Desaturase und/oder des Pflanzen eigenen crtlSO-Proteins und/oder FtsZ-Proteins und/oder MinD-Proteins verstanden.

Dies kann beispielsweise durch Veränderung der entsprechenden Promotor DNA-Sequenz erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder die Erhöhung der Ge-5 nexpression einer Nukleinsäure kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder die Erhöhung der Genexpression einer Nukleinsäure ko-10 dierend eine Isopentenyl-Diphosphat-A-Isomerase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder die Erhöhung der 15 Genexpression einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Phytoen-Desaturase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Zeta-Carotin-Desaturase und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend ein crtISO-Protein und/oder die Erhöhung der Genexpression einer Nuklein-20 säure kodierend ein FtsZ-Protein und/oder die Erhöhung der Genexpression einer Nukleinsäure kodierend ein MinD-Protein durch Einbringen von mindestens einer Nukleinsäure kodierend eine HMG-CoA-Reduktase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend 25 eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Isopentenyl-Diphosphat-∆-Isomerase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Geranyl-Diphosphat-Synthase und/oder durch Ein-30 bringen von mindestens einer Nukleinsäure kodierend eine Farnesyl-Diphosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Phytoen-Synthase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend eine Phytoen-Desaturase und/oder durch 35

10

Einbringen von mindestens einer Nukleinsäure kodierend eine Zeta-Carotin-Desaturase und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend ein crtlSO-Protein und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend ein FtsZ-Protein und/oder durch Einbringen von mindestens einer Nukleinsäure kodierend ein MinD-Protein in die Pflanze.

Dazu kann prinzipiell jedes HMG-CoA-Reduktase-Gen bzw. (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gen bzw. 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gen bzw. 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gen bzw. Isopentenyl-Diphosphat-Δ-Isomerase-Gen bzw. Geranyl-Diphosphat-Synthase-Gen bzw. Farnesyl-Diphosphat-Synthase-Gen bzw. Geranyl-geranyl-Diphosphat-Synthase-Gen bzw. Phytoen-Synthase-Gen bzw. Phytoen-Desaturase-Gen bzw. Zeta-Carotin-Desaturase-Gen bzw. crtISO-Gen bzw. FtsZ-Gen bzw. MinD-Gen verwendet werden.

Bei genomischen HMG-CoA-Reduktase-Sequenzen bzw. (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Sequenzen bzw. 1-Deoxy-D-Xylose-5-Phosphat-Redukto-isomerase-Sequenzen bzw. 1-Deoxy-D-Xylose-5-Phosphat-Redukto-isomerase-Sequenzen bzw. Isopentenyl-Diphosphat-Δ-Isomerase-Sequenzen bzw. Geranyl-Diphosphat-Synthase-Sequenzen bzw. Farnesyl-Diphosphat-Synthase-Sequenzen bzw. Phytoen-Synthase-Sequenzen bzw. Phytoen-Synthase-Sequenzen bzw. Phytoen-Desaturase-Sequenzen bzw. Zeta-Carotin-Desaturase-Sequenzen bzw. crtISO-Sequenzen bzw. FtsZ-Sequenzen bzw. MinD-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden kann,
 die entsprechenden Proteine zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

In den erfindungsgemäßen bevorzugten transgenen Pflanzen liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres HMG-CoA-Reduktase-Gen und/oder (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gen und/oder 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gen und/oder 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gen und/oder Isopentenyl-Diphosphat-Δ-Isomerase-Gen und/oder Geranyl-Diphosphat-Synthase-Gen und/oder Farnesyl-Diphosphat-Synthase-Gen und/oder Geranyl-Diphosphat-Synthase-Gen und/oder Gen und/oder Phytoen-Synthase-Gen und/oder Phytoen-Desaturase-Gen und/oder

Zeta-Carotin-Desaturase-Gen und/oder crtISO-Gen und/oder FtsZ-Gen und/oder MinD-Gen vor.

In dieser bevorzugten Ausführungsform weist die genetisch veränderte Pflanze beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine HMG-CoA-5 Reduktase oder mindestens zwei endogene Nukleinsäuren, kodierend eine HMG-CoA-Reduktase und/oder mindestens eine exogene Nukleinsäure, kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase oder mindestens zwei endogene Nukleinsäuren, kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder mindestens eine exogene Nukleinsäure, kodierend eine 1-Deoxy-10 D-Xylose-5-Phosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase oder mindestens zwei endogene Nukleinsäuren, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder mindestens eine exogene Nukleinsäure, ko-15 dierend eine Isopentenyl-Diphosphat-∆-Isomerase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Isopentenyl-Diphosphat-∆-Isomerase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Geranyl-Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Geranyl-Diphosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Farnesyl-20 Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Farnesyl-Diphosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Geranyl-geranyl-Diphosphat-Synthase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Geranyl-geranyl-Diphosphat-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Phytoen-Synthase oder mindes-25 tens zwei endogene Nukleinsäuren, kodierend eine Phytoen-Synthase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Phytoen-Desaturase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Phytoen-Desaturase und/oder mindestens eine exogene Nukleinsäure, kodierend eine Zeta-Carotin-Desaturase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Zeta-Carotin-Desaturase 30 und/oder mindestens eine exogene Nukleinsäure, kodierend ein crtlSO-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend ein crtISO-Protein und/oder mindestens eine exogene Nukleinsäure, kodierend ein FtsZ-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend eine FtsZ-Protein und/oder mindestens eine exogene Nukleinsäure, kodierend ein MinD-Protein oder mindestens zwei endogene Nukleinsäuren, kodierend ein MinD-Protein auf.

Beispiele für HMG-CoA-Reduktase-Gene sind:

5

Eine Nukleinsäure, kodierend eine HMG-CoA-Reduktase aus Arabidopsis thaliana, Accession NM_106299; (Nukleinsäure: SEQ ID NO: 111, Protein: SEQ ID NO: 112),

sowie weitere HMG-CoA-Reduktase -Gene aus anderen Organismen mit den folgenden Accession Nummern:

P54961, P54870, P54868, P54869, O02734, P22791, P54873, P54871, P23228, P13704, P54872, Q01581, P17425, P54874, P54839, P14891, P34135, O64966, P29057, P48019, P48020, P12683, P43256, Q9XEL8, P34136, O64967, P29058, P48022, Q41437, P12684, Q00583, Q9XHL5, Q41438, Q9YAS4, O76819, O28538, Q9Y7D2, P54960, O51628, P48021, Q03163, P00347, P14773, Q12577, Q59468, P04035, O24594, P09610, Q58116, O26662, Q01237, Q01559, Q12649, O74164, O59469, P51639, Q10283, O08424, P20715, P13703, P13702, Q96UG4, Q8SQZ9, O15888, Q9TUM4, P93514, Q39628, P93081, P93080, Q944T9, Q40148, Q84MM0,

20 Q84LS3, Q9Z9N4, Q9KLM0

Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene sind:

Eine Nukleinsäure, kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-25 Reduktase aus Arabidopsis thaliana (lytB/ISPH), ACCESSION AY168881, (Nukleinsäure: SEQ ID NO: 113, Protein: SEQ ID NO:114),

sowie weitere (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase --Gene aus anderen Organismen mit den folgenden Accession Nummern:

30

35

T04781, AF270978_1, NP_485028.1, NP_442089.1, NP_681832.1, ZP_00110421.1, ZP_00071594.1, ZP_00114706.1, ISPH_SYNY3, ZP_00114087.1, ZP_00104269.1, AF398145_1, AF398146_1, AAD55762.1, AF514843_1, NP_622970.1, NP_348471.1, NP_562001.1, NP_223698.1, NP_781941.1, ZP_00080042.1, NP_859669.1, NP_214191.1, ZP_00086191.1, ISPH_VIBCH, NP_230334.1, NP_742768.1,

NP_302306.1, ISPH_MYCLE, NP_602581.1, ZP_00026966.1, NP_520563.1,

NP_253247.1, NP_282047.1, ZP_00038210.1, ZP_00064913.1, CAA61555.1, ZP_00125365.1, ISPH_ACICA, EAA24703.1, ZP_00013067.1, ZP_00029164.1, NP_790656.1, NP_217899.1, NP_641592.1, NP_636532.1, NP_719076.1, NP_660497.1, NP_422155.1, NP_715446.1, ZP_00090692.1, NP_759496.1, ISPH_BURPS, ZP_00129657.1, NP_215626.1, NP_335584.1, ZP_00135016.1, NP_789585.1, NP_787770.1, NP_769647.1, ZP_00043336.1, NP_242248.1, ZP_00008555.1, NP_246603.1, ZP_00030951.1, NP_670994.1, NP_404120.1, NP_540376.1, NP_733653.1, NP_697503.1, NP_840730.1, NP_274828.1, NP_796916.1, ZP_00123390.1, NP_824386.1, NP_737689.1, ZP_00021222.1, NP_757521.1, NP_390395.1, ZP_00133322.1, CAD76178.1, NP_600249.1, NP_454660.1, NP_712601.1, NP_385018.1, NP_751989.1

Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Synthase -Gene sind:

- Eine Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase aus Lycopersicon esculentum, ACCESSION #AF143812 (Nukleinsäure: SEQ ID NO:115, Protein: SEQ ID NO: 116),
- sowie weitere 1-Deoxy-D-Xylose-5-Phosphat-Synthase –Gene aus anderen Organismen mit den folgenden Accession Nummern:
 AF143812_1, DXS_CAPAN, CAD22530.1, AF182286_1, NP_193291.1, T52289,
 AAC49368.1, AAP14353.1, D71420, DXS_ORYSA, AF443590_1, BAB02345.1,
 CAA09804.2, NP_850620.1, CAD22155.2, AAM65798.1, NP_566686.1, CAD22531.1,
 AAC33513.1, CAC08458.1, AAG10432.1, T08140, AAP14354.1, AF428463_1,
- ZP_00010537.1, NP_769291.1, AAK59424.1, NP_107784.1, NP_697464.1, NP_540415.1, NP_196699.1, NP_384986.1, ZP_00096461.1, ZP_00013656.1, NP_353769.1, BAA83576.1, ZP_00005919.1, ZP_00006273.1, NP_420871.1, AAM48660.1, DXS_RHOCA, ZP_00045608.1, ZP_00031686.1, NP_841218.1, ZP_00022174.1, ZP_00086851.1, NP_742690.1, NP_520342.1, ZP_00082120.1,
- 30 NP_790545.1, ZP_00125266.1, CAC17468.1, NP_252733.1, ZP_00092466.1, NP_439591.1, NP_414954.1, NP_752465.1, NP_622918.1, NP_286162.1, NP_836085.1, NP_706308.1, ZP_00081148.1, NP_797065.1, NP_213598.1, NP_245469.1, ZP_00075029.1, NP_455016.1, NP_230536.1, NP_459417.1, NP_274863.1, NP_283402.1, NP_759318.1, NP_406652.1, DXS_SYNLE,
- 35 DXS_SYNP7, NP_440409.1, ZP_00067331.1, ZP_00122853.1, NP_717142.1,

ZP_00104889.1, NP_243645.1, NP_681412.1, DXS_SYNEL, NP_637787.1, DXS_CHLTE, ZP_00129863.1, NP_661241.1, DXS_XANCP, NP_470738.1, NP_484643.1, ZP_00108360.1, NP_833890.1, NP_846629.1, NP_658213.1, NP_642879.1, ZP_00039479.1, ZP_00060584.1, ZP_00041364.1, ZP_00117779.1, NP_299528.1

Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene sind:

Eine Nukleinsäure, kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase aus Arabidopsis thaliana, ACCESSION #AF148852, (Nukleinsäure: SEQ ID NO: 137, Protein: SEQ ID NO: 138),

sowie weitere 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene aus anderen Organismen mit den folgenden Accession Nummern:

15

5

AF148852, AY084775, AY054682, AY050802, AY045634, AY081453, AY091405, AY098952, AJ242588, AB009053, AY202991, NP_201085.1, T52570, AF331705_1, BAB16915.1, AF367205_1, AF250235_1, CAC03581.1, CAD22156.1, AF182287_1, DXR_MENPI, ZP_00071219.1, NP_488391.1, ZP_00111307.1, DXR_SYNLE,

20 AAP56260.1, NP_681831.1, NP_442113.1, ZP_00115071.1, ZP_00105106.1, ZP_00113484.1, NP_833540.1, NP_657789.1, NP_661031.1, DXR_BACHD, NP_833080.1, NP_845693.1, NP_562610.1, NP_623020.1, NP_810915.1, NP_243287.1, ZP_00118743.1, NP_464842.1, NP_470690.1, ZP_00082201.1, NP_781898.1, ZP_00123667.1, NP_348420.1, NP_604221.1, ZP_00053349.1,

ZP_00064941.1, NP_246927.1, NP_389537.1, ZP_00102576.1, NP_519531.1, AF124757_19, DXR_ZYMMO, NP_713472.1, NP_459225.1, NP_454827.1, ZP_00045738.1, NP_743754.1, DXR_PSEPK, ZP_00130352.1, NP_702530.1, NP_841744.1, NP_438967.1, AF514841_1, NP_706118.1, ZP_00125845.1, NP_404661.1, NP_285867.1, NP_240064.1, NP_414715.1, ZP_00094058.1,

30 NP_791365.1, ZP_00012448.1, ZP_00015132.1, ZP_00091545.1, NP_629822.1, NP_771495.1, NP_798691.1, NP_231885.1, NP_252340.1, ZP_00022353.1, NP_355549.1, NP_420724.1, ZP_00085169.1, EAA17616.1, NP_273242.1, NP_219574.1, NP_387094.1, NP_296721.1, ZP_00004209.1, NP_823739.1, NP_282934.1, BAA77848.1, NP_660577.1, NP_760741.1, NP_641750.1,

NP_636741.1, NP_829309.1, NP_298338.1, NP_444964.1, NP_717246.1, NP_224545.1, ZP_00038451.1, DXR_KITGR, NP_778563.1.

Beispiele für Isopentenyl-Diphosphat-\(\Delta\)-Isomerase-Gene sind:

5

10

Eine Nukleinsäure, kodierend eine Isopentenyl-Diphosphat-Δ-Isomerase aus Adonis palaestina clone ApIPI28, (ipiAa1), ACCESSION #AF188060, veröffentlicht durch Cunningham,F.X. Jr. and Gantt,E.: Identification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli, Plant Cell Physiol. 41 (1), 119-123 (2000) (Nukleinsäure: SEQ ID NO: 117, Protein: SEQ ID NO: 118),

sowie weitere Isopentenyl-Diphosphat- Δ -Isomerase-Gene aus anderen Organismen mit den folgenden Accession Nummern:

15

30

Q38929, O48964, Q39472, Q13907, O35586, P58044, O42641, O35760, Q10132, P15496, Q9YB30, Q8YNH4, Q42553, O27997, P50740, O51627, O48965, Q8KFR5, Q39471, Q39664, Q9RVE2, Q01335, Q9HHE4, Q9BXS1, Q9KWF6, Q9CIF5, Q88WB6, Q92BX2, Q8Y7A5, Q8TT35 Q9KK75, Q8NN99, Q8XD58, Q8FE75, Q46822, Q9HP40, P72002, P26173, Q9Z5D3, Q8Z3X9, Q8ZM82, Q9X7Q6, O13504, Q9HFW8, Q8NJL9, Q9UUQ1, Q9NH02, Q9M6K9, Q9M6K5, Q9FXR6, O81691, Q9S7C4, Q8S3L8, Q9M592, Q9M6K3, Q9M6K7, Q9FV48, Q9LLB6, Q9AVJ1, Q9AVG8, Q9M6K6, Q9AVJ5, Q9M6K2, Q9AYS5, Q9M6K8, Q9AVG7, Q8S3L7, Q8W250, Q94IE1, Q9AVI8, Q9AYS6, Q9SAY0, Q9M6K4, Q8GVZ0, Q84RZ8, Q8KZ12, Q8KZ66, Q8FND7, Q88QC9, Q8BFZ6, BAC26382, CAD94476.

Beispiele für Geranyl-Diphosphat-Synthase -Gene sind:

Eine Nukleinsäure, kodierend eine Geranyl-Diphosphat-Synthase aus Arabidopsis thaliana, ACCESSION #Y17376, Bouvier,F., Suire,C., d'Harlingue,A., Backhaus,R.A. and Camara,B.; Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, Plant J. 24 (2), 241-252 (2000) (Nukleinsäure: SEQ ID NO: 119, Protein: SEQ ID NO: 120),

sowie weitere Geranyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:

Q9FT89, Q8LKJ2, Q9FSW8, Q8LKJ3, Q9SBR3, Q9SBR4, Q9FET8, Q8LKJ1, Q84LG1, Q9JK86

Beispiele für Farnesyl-Diphosphat-Synthase-Gene sind:

5

Eine Nukleinsäure, kodierend eine Farnesyl-Diphosphat-Synthase aus Arabidopsis thaliana (FPS1), ACCESSION #U80605, veröffentlicht durch Cunillera,N., Arro,M., Delourme,D., Karst,F., Boronat,A. und Ferrer,A.: Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes, J. Biol. Chem. 271 (13),

10 7774-7780 (1996), (Nukleinsäure: SEQ ID NO: 121, Protein: SEQ ID NO:122),

sowie weitere Farnesyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:

P53799, P37268, Q02769, Q09152, P49351, O24241, Q43315, P49352, O24242, P49350, P08836, P14324, P49349, P08524, O66952, Q08291, P54383, Q45220, P57537, Q8K9A0, P22939, P45204, O66126, P55539, Q9SWH9, Q9AVI7, Q9FRX2, Q9AYS7, Q94IE8, Q9FXR9, Q9ZWF6, Q9FXR8, Q9AR37, O50009, Q94IE9, Q8RVK7, Q8RVQ7, O04882, Q93RA8, Q93RB0, Q93RB4, Q93RB5, Q93RB3, Q93RB1,
Q93RB2, Q920E5.

Beispiele für Geranyl-geranyl-Diphosphat-Synthase -Gene sind:

Eine Nukleinsäure, kodierend eine Geranyl-geranyl-Diphosphat-Synthase aus Sinaps alba, ACCESSION #X98795, veröffentlicht durch Bonk,M., Hoffmann,B., Von Lintig,J., Schledz,M., Al-Babili,S., Hobeika,E., Kleinig,H. and Beyer,P.: Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly, Eur. J. Biochem. 247 (3), 942-950 (1997), (Nukleinsäure: SEQ ID NO: 123, Protein: SEQ ID NO:124),

30

sowie weitere Geranyl-geranyl-Diphosphat-Synthase-Gene aus anderen Organismen mit den folgenden Accession Nummern:

P22873, P34802, P56966, P80042, Q42698, Q92236, O95749, Q9WTN0, Q50727, 35 P24322, P39464, Q9FXR3, Q9AYN2, Q9FXR2, Q9AVG6, Q9FRW4, Q9SXZ5, Q9AVJ7, Q9AYN1, Q9AVJ4, Q9FXR7, Q8LSC5, Q9AVJ6, Q8LSC4, Q9AVJ3, Q9SSU0, Q9SXZ6, Q9SST9, Q9AVJ0, Q9AVI9, Q9FRW3, Q9FXR5, Q94IF0, Q9FRX1, Q9K567, Q93RA9, Q93QX8, CAD95619, EAA31459

Beispiele für Phytoen-Synthase -Gene sind:

5

10

Eine Nukleinsäure, kodierend eine Phytoen-Synthase aus Erwinia uredovora, ACCES-SION # D90087; veröffentlicht durch Misawa,N., Nakagawa,M., Kobayashi,K., Yamano,S., Izawa,Y.,Nakamura,K. und Harashima,K.: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli; J. Bacteriol. 172 (12), 6704-6712 (1990), (Nukleinsäure: SEQ ID NO: 125, Protein: SEQ ID NO: 126),

sowie weitere Phytoen-Synthase -Gene aus anderen Organismen mit den folgenden Accession Nummern:

15

20

30

CAB39693, BAC69364, AAF10440, CAA45350, BAA20384, AAM72615, BAC09112, CAA48922, P_001091, CAB84588, AAF41518, CAA48155, AAD38051, AAF33237, AAG10427, AAA34187, BAB73532, CAC19567, AAM62787, CAA55391, AAB65697, AAM45379, CAC27383, AAA32836, AAK07735, BAA84763, P_000205, AAB60314, P_001163, P_000718, AAB71428, AAA34153, AAK07734, CAA42969, CAD76176, CAA68575, P_000130, P_001142, CAA47625, CAA85775, BAC14416, CAA79957, BAC76563, P_000242, P_000551, AAL02001, AAK15621, CAB94795, AAA91951, P_000448

25 Beispiele für Phytoen-Desaturase-Gene sind:

Eine Nukleinsäure, kodierend eine Phytoen-Desaturase aus Erwinia uredovora, AC-CESSION # D90087; veröffentlicht durch Misawa,N., Nakagawa,M., Kobayashi,K., Yamano,S., Izawa,Y.,Nakamura,K. und Harashima,K.: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli; J. Bacteriol. 172 (12), 6704-6712 (1990), (Nukleinsäure: SEQ ID NO: 127, Protein: SEQ ID NO: 128),

sowie weitere Phytoen-Desaturase –Gene aus anderen Organismen mit den folgenden Accession Nummern:

AAL15300, A39597, CAA42573, AAK51545, BAB08179, CAA48195, BAB82461, AAK92625, CAA55392, AAG10426, AAD02489, AAO24235, AAC12846, AAA99519, AAL38046, CAA60479, CAA75094, ZP_001041, ZP_001163, CAA39004, CAA44452, ZP_001142, ZP_000718, BAB82462, AAM45380, CAB56040, ZP_001091, BAC09113, AAP79175, AAL80005, AAM72642, AAM72043, ZP_000745, ZP_001141, BAC07889, 5 CAD55814, ZP_001041, CAD27442, CAE00192, ZP_001163, ZP_000197, BAA18400, AAG10425, ZP_001119, AAF13698, 2121278A, AAB35386, AAD02462, BAB68552, CAC85667, AAK51557, CAA12062, AAG51402, AAM63349, AAF85796, BAB74081, AAA91161, CAB56041, AAC48983, AAG14399, CAB65434, BAB73487, ZP_001117, ZP_000448, CAB39695, CAD76175, BAC69363, BAA17934, ZP_000171, AAF65586, 10 ZP_000748, BAC07074, ZP_001133, CAA64853, BAB74484, ZP_001156, AAF23289, AAG28703, AAP09348, AAM71569, BAB69140, ZP_000130, AAF41516, AAG18866, CAD95940, NP_656310, AAG10645, ZP_000276, ZP_000192, ZP_000186, AAM94364, EAA31371, ZP_000612, BAC75676, AAF65582

15

20

25

Beispiele für Zeta-Carotin-Desaturase-Gene sind:

Eine Nukleinsäure, kodierend eine Zeta-Carotin-Desaturase aus Narcissus pseudonarcissus, ACCESSION #AJ224683, veröffentlicht durch Al-Babili,S., Oelschlegel,J. and Beyer,P.: A cDNA encoding for beta carotene desaturase (Accession No.AJ224683) from Narcissus pseudonarcissus L.. (PGR98-103), Plant Physiol. 117, 719-719 (1998), (Nukleinsäure: SEQ ID NO: 129, Protein: SEQ ID NO: 130),

sowie weitere Zeta-Carotin-Desaturase-Gene aus anderen Organismen mit den folgenden Accession Nummern:

Q9R6X4, Q38893, Q9SMJ3, Q9SE20, Q9ZTP4, O49901, P74306, Q9FV46, Q9RCT2, ZDS_NARPS, BAB68552.1, CAC85667.1, AF372617_1, ZDS_TARER, CAD55814.1, CAD27442.1, 2121278A, ZDS_CAPAN, ZDS_LYCES, NP_187138.1, AAM63349.1, ZDS_ARATH, AAA91161.1, ZDS_MAIZE, AAG14399.1, NP_441720.1, NP_486422.1, ZP_00111920.1, CAB56041.1, ZP_00074512.1, ZP_00116357.1, NP_681127.1, ZP_00114185.1, ZP_00104126.1, CAB65434.1, NP_662300.1

Beispiele für crtlSO-Gene sind:

30

Eine Nukleinsäure, kodierend eine crtISO aus Lycopersicon esculentum; ACCESSION #AF416727, veröffentlicht durch Isaacson, T., Ronen, G., Zamir, D. and Hirschberg, J.: Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants; Plant Cell 14 (2), 333-342 (2002), (Nukleinsäure: SEQ ID NO: 131, Protein: SEQ ID NO:132),

sowie weitere crtISO -Gene aus anderen Organismen mit den folgenden Accession Nummern:

10 AAM53952

5

Beispiele für FtsZ-Gene sind:

Eine Nukleinsäure, kodierend eine FtsZ aus Tagetes erecta, ACCESSION #AF251346, veröffentlicht durch Moehs,C.P., Tian,L., Osteryoung,K.W. and Dellapenna,D.: Analysis of carotenoid biosynthetic gene expression during marigold petal development Plant Mol. Biol. 45 (3), 281-293 (2001), (Nukleinsäure: SEQ ID NO: 133, Protein: SEQ ID NO: 134),

20 sowie weitere FtsZ –Gene aus anderen Organismen mit den folgenden Accession Nummern:

CAB89286.1, AF205858_1, NP_200339.1, CAB89287.1, CAB41987.1, AAA82068.1, T06774,AF383876_1, BAC57986.1, CAD22047.1, BAB91150.1, ZP_00072546.1, 25 NP_440816.1, T51092, NP_683172.1, BAA85116.1, NP_487898.1, JC4289, BAA82871.1, NP_781763.1, BAC57987.1, ZP_00111461.1, T51088, NP_190843.1, ZP_00060035.1, NP_846285.1, AAL07180.1, NP_243424.1, NP_833626.1, AAN04561.1, AAN04557.1, CAD22048.1, T51089, NP_692394.1, NP_623237.1, NP_565839.1, T51090, CAA07676.1, NP_113397.1, T51087, CAC44257.1, E84778, 30 ZP_00105267.1, BAA82091.1, ZP_00112790.1, BAA96782.1, NP_348319.1, NP_471472.1, ZP_00115870.1, NP_465556.1, NP_389412.1, BAA82090.1, NP_562681.1, AAM22891.1, NP_371710.1, NP_764416.1, CAB95028.1, FTSZ_STRGR, AF120117_1, NP_827300.1, JE0282, NP_626341.1, AAC45639.1, NP_785689.1, NP_336679.1, NP_738660.1, ZP_00057764.1, AAC32265.1, NP_814733.1, FTSZ_MYCKA, NP_216666.1, CAA75616.1, NP_301700.1, 35 NP_601357.1, ZP_00046269.1, CAA70158.1, ZP_00037834.1, NP_268026.1,

FTSZ_ENTHR, NP_787643.1, NP_346105.1, AAC32264.1, JC5548, AAC95440.1, NP_710793.1, NP_687509.1, NP_269594.1, AAC32266.1, NP_720988.1, NP_657875.1, ZP_00094865.1, ZP_00080499.1, ZP_00043589.1, JC7087, NP_660559.1, AAC46069.1, AF179611_14, AAC44223.1, NP_404201.1.

5

Beispiele für MinD -Gene sind:

Eine Nukleinsäure, kodierend eine MinD aus Tagetes erecta, ACCESSION #AF251019, veröffentlicht durch Moehs, C.P., Tian, L., Osteryoung, K.W. und Dellapenna, D.: Analysis of carotenoid biosynthetic gene expression during marigold petal development; Plant Mol. Biol. 45 (3), 281-293 (2001), (Nukleinsäure: SEQ ID NO: 135, Protein: SEQ ID NO: 136),

sowie weitere MinD -Gene mit den folgenden Accession Nummern:

15

```
NP_197790.1, BAA90628.1, NP_038435.1, NP_045875.1, AAN33031.1,
     NP_050910.1, CAB53105.1, NP_050687.1, NP_682807.1, NP_487496.1,
     ZP_00111708.1, ZP_00071109.1, NP_442592.1, NP_603083.1, NP_782631.1.
     ZP_00097367.1, ZP_00104319.1, NP_294476.1, NP_622555.1, NP_563054.1,
20
     NP_347881.1, ZP_00113908.1, NP_834154.1, NP_658480.1, ZP_00059858.1,
     NP_470915.1, NP_243893.1, NP_465069.1, ZP_00116155.1, NP_390677.1,
     NP_692970.1, NP_298610.1, NP_207129.1, ZP_00038874.1, NP_778791.1,
     NP_223033.1, NP_641561.1, NP_636499.1, ZP_00088714.1, NP_213595.1,
     NP_743889.1, NP_231594.1, ZP_00085067.1, NP_797252.1, ZP_00136593.1,
25
     NP_251934.1, NP_405629.1, NP_759144.1, ZP_00102939.1, NP_793645.1,
     NP_699517.1, NP_460771.1, NP_860754.1, NP_456322.1, NP_718163.1,
     NP_229666.1, NP_357356.1, NP_541904.1, NP_287414.1, NP_660660.1,
     ZP_00128273.1, NP_103411.1, NP_785789.1, NP_715361.1, AF149810_1,
     NP_841854.1, NP_437893.1, ZP_00022726.1, EAA24844.1, ZP_00029547.1,
30
     NP_521484.1, NP_240148.1, NP_770852.1, AF345908_2, NP_777923.1,
     ZP_00048879.1, NP_579340.1, NP_143455.1, NP_126254.1, NP_142573.1,
     NP_613505.1, NP_127112.1, NP_712786.1, NP_578214.1, NP_069530.1,
     NP_247526.1, AAA85593.1, NP_212403.1, NP_782258.1, ZP_00058694.1.
     NP_247137.1, NP_219149.1, NP_276946.1, NP_614522.1, ZP_00019288.1.
35
     CAD78330.1
```

20

25

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als HMG-CoA-Reduktase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 112 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 112, und die die enzymatische Eigenschaft einer HMG-CoA-Reduktase aufweisen.

10 Weitere Beispiele für HMG-CoA-Reduktasen und HMG-CoA-Reduktase—Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 112 leicht auffinden.

Weitere Beispiele für HMG-CoA-Reduktasen und HMG-CoA-Reduktase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 111 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der HMG-CoA-Reduktase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der HMG-CoA-Reduktase der Sequenz SEQ ID NO: 112.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

- 30 Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
- In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 111 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 114 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 114, und die die enzymatische Eigenschaft einer (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-

10 Reduktase aufweisen.

Weitere Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktasen und (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase—Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 114 leicht auffinden.

Weitere Beispiele für (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktasen und (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase—Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 113 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs— und PCR—Techniken in an sich bekannter Weise leicht auffinden.

25

15

20

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase der Sequenz SEQ ID NO: 114.

30

35

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand

von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 113 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als (1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 116 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 116, und die die enzymatische Eigenschaft einer (1-Deoxy-D-Xylose-5-Phosphat-Synthase aufweisen.

15

20

25

30

35

5

10

Weitere Beispiele für (1-Deoxy-D-Xylose-5-Phosphat-Synthasen und (1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rück-übersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 116 leicht auffinden.

Weitere Beispiele für (1-Deoxy-D-Xylose-5-Phosphat-Synthasen und (1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 115 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der (1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der (1-Deoxy-D-Xylose-5-Phosphat-Synthase der Sequenz SEQ ID NO: 116.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

5

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 115 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 138 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 138, und die die enzymatische Eigenschaft einer 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase aufweisen.

Weitere Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerasen und 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 138 leicht auffinden.

25

30

35

20

Weitere Beispiele für 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerasen und 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 137 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase der Sequenz SEQ ID NO: 138.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent-10 haltend die Sequenz SEQ ID NO: 137 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Isopentenyl-D-Isomerase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 118 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 118, und die die enzymatische Eigenschaft einer Isopentenyl-D-Isomerase aufweisen.

20

15

5

Weitere Beispiele für Isopentenyl-D-Isomerasen und Isopentenyl-D-Isomerase—Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 118 leicht auffinden.

25

30

35

Weitere Beispiele für Isopentenyl-D-Isomerasen und Isopentenyl-D-Isomerase—Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 117 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs— und PCR—Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Isopentenyl-D-Isomerase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Isopentenyl-D-Isomerase der Sequenz SEQ ID NO: 118.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 117 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Geranyl-Diphosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 120 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 120, und die die enzymatische Eigenschaft einer Geranyl-Diphosphat-Synthase aufweisen.

20

25

30

35

15

Weitere Beispiele für Geranyl-Diphosphat-Synthasen und Geranyl-Diphosphat-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 120 leicht auffinden.

Weitere Beispiele für Geranyl-Diphosphat-Synthasen und Geranyl-Diphosphat-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 119 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Geranyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Geranyl-Diphosphat-Synthase der Sequenz SEQ ID NO: 120.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, ent-10 haltend die Sequenz SEQ ID NO: 119 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Farnesyl-Diphosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 122 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 122, und die die enzymatische Eigenschaft einer Farnesyl-Diphosphat-Synthase aufweisen.

20

25

30

35

15

Weitere Beispiele für Farnesyl-Diphosphat-Synthasen und Farnesyl-Diphosphat-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 122 leicht auffinden.

Weitere Beispiele für Farnesyl-Diphosphat-Synthasen und Farnesyl-Diphosphat-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 121 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Farnesyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Farnesyl-Diphosphat-Synthase der Sequenz SEQ ID NO: 122.

15

20

25

30

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 121 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Geranyl-geranyl-Diphosphat-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 124 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 124, und die die enzymatische Eigenschaft einer Geranyl-geranyl-Diphosphat-Synthase aufweisen.

Weitere Beispiele für Geranyl-geranyl-Diphosphat-Synthasen und Geranyl-geranyl-Diphosphat-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 124 leicht auffinden.

Weitere Beispiele für Geranyl-geranyl-Diphosphat-Synthasen und Geranyl-geranyl-Diphosphat-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 123 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Geranyl-geranyl-Diphosphat-Synthase-Aktivität Nukleinsäuren in Organismen einge-

bracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Geranyl-geranyl-Diphosphat-Synthase der Sequenz SEQ ID NO: 124.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 123 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Phytoen-Synthase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 126 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 126, und die die enzymatische Eigenschaft einer Phytoen-Synthase aufweisen.

Weitere Beispiele für Phytoen-Synthasen und Phytoen-Synthase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 126 leicht auffinden.

Weitere Beispiele für Phytoen-Synthasen und Phytoen-Synthase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 125 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

25

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Phytoen-Synthase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Phytoen-Synthase der Sequenz SEQ ID NO: 126.

5

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 125 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Phytoen-Desaturase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 128 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 128, und die die enzymatische Eigenschaft einer Phytoen-Desaturase aufweisen.

25

30

35

20

Weitere Beispiele für Phytoen-Desaturasen und Phytoen-Desaturase—Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 128 leicht auffinden.

Weitere Beispiele für Phytoen-Desaturasen und Phytoen-Desaturase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 127 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Phytoen-Desaturase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Phytoen-Desaturase der Sequenz SEQ ID NO: 128.

5

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand
von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen
leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 127 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Zeta-Carotin-Desaturase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 130 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 130, und die die enzymatische Eigenschaft einer Zeta-Carotin-Desaturase aufweisen.

25

30

35

20

Weitere Beispiele für Zeta-Carotin-Desaturasen und Zeta-Carotin-Desaturase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO: 130 leicht auffinden.

Weitere Beispiele für Zeta-Carotin-Desaturasen und Zeta-Carotin-Desaturase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 129 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Zeta-Carotin-Desaturase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Zeta-Carotin-Desaturase der Sequenz SEQ ID NO: 130.

5

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand
von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen
leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 129 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Crtlso-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 132 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 132, und die die enzymatische Eigenschaft einer Crtlso aufweisen.

25

30

35

20

Weitere Beispiele für Crtlson und Crtlso-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 132 leicht auffinden.

Weitere Beispiele für Crtlson und Crtlso-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 131 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Crtlso-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Crtlso der Sequenz SEQ ID NO: 132.

5 Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 131 in den Organismus ein.

15

20

10

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als FtsZ-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 134 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 134, und die die enzymatische Eigenschaft einer FtsZ aufweisen.

25

Weitere Beispiele für FtsZn und FtsZ-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 134 leicht auffinden.

30

Weitere Beispiele für FtsZn und FtsZ-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 133 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

15

20

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der FtsZ-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der FtsZ der Sequenz SEQ ID NO: 134

5 Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 133 in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als MinD-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 136 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 136, und die die enzymatische Eigenschaft einer MinD aufweisen.

Weitere Beispiele für MinDn und MinD-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID NO: 136 leicht auffinden.

Weitere Beispiele für MinDn und MinD-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 135 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

30

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der MinD-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der MinD der Sequenz SEQ ID NO: 136.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der 5 Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 135 in den Organismus ein.

15

10

Alle vorstehend erwähnten HMG-CoA-Reduktase-Gene, (E)-4-Hydroxy-3-Methylbut-2enyl-Diphosphat-Reduktase-Gene, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Gene, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Gene, Isopentenyl-Diphosphat-Δ-Isomerase-Gene, Geranyl-Diphosphat-Synthase-Gene, Farnesyl-Diphosphat-Synthase-Gene, Geranyl-geranyl-Diphosphat-Synthase-Gene, Phytoen-Synthase-20 Gene, Phytoen-Desaturase-Gene, Zeta-Carotin-Desaturase-Gene, crtlSO-Gene, FtsZ-Gene oder MinD-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in 25 bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory 30 Press, beschrieben.

In einer weiter bevorzugten Ausführungsform des Verfahrens weisen die Pflanzen gegenüber dem Wildtyp zusätzlich eine reduzierte endogene β-Hydroxylase Aktivität auf. Unter einer reduzierten Aktivität wird, wie vorstehend erwähnt, vorzugsweise die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische Mechanismen beruhende Unterbindung oder Blockierung der Funktionalität eines Enzyms in einer pflanzlichen Zelle, Pflanze oder einem davon abgeleiteten Teil, Gewebe, Organ, Zellen oder Samen verstanden.

Die Reduzierung einer Aktivität in Pflanzen gegenüber dem Wildtyp kann beispielsweise durch Reduzierung der Proteinmenge, oder der mRNA-Menge in der Pflanze erfolgen. Dementsprechend kann eine gegenüber dem Wildtyp reduzierte Aktivität direkt bestimmt werden oder über die Bestimmung der Proteinmenge oder der mRNA-Menge der erfindungsgemäßen Pflanze im Vergleich zum Wildtyp erfolgen.

Eine Reduzierung einer Aktivität umfasst eine mengenmäßige Verringerung eines Proteins bis hin zu einem im wesentlichen vollständigen Fehlen des Proteins (d.h. fehlende Nachweisbarkeit der entsprechenden Aktivität oder fehlende immunologische Nachweisbarkeit des entsprechenden Proteins).

Unter endogener β -Hydroxylase –Aktivität wird die Enzymaktivität der endogenen, pflanzeneigenen β -Hydroxylase verstanden.

20

15

5

10

Unter einer endogenen β -Hydroxylase wird eine endogene, pflanzeneigene Hxdroxylase wie vorstehend beschrieben, verstanden. Ist beispielsweise Tagetes errecta die genetisch zu verändernde Zielpflanze, so wird unter der endogenen β -Hydroxylase die β -Hydoxylase von Tagetes errecta verstanden.

25

35

Unter einer endogenen β -Hydroxylase wird demnach insbesondere ein pflanzeneigenes Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Zeaxanthin umzuwandeln.

Dementsprechend wird unter endogener β-Hydroxylase –Aktivität die in einer bestimmten Zeit durch das Protein endogene β-Hydroxylase umgesetzte Menge β-Carotin bzw. gebildete Menge Zeaxanthin verstanden.

Bei einer reduzierten endogenen β-Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit die durch das Protein endo-

30

35

gene β -Hydroxylase umgesetzte Menge β -Carotin bzw. die gebildete Menge Zeaxanthin reduziert.

Vorzugsweise beträgt diese Reduzierung der endogenen β-Hydroxylase–Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt 100 %. Besonders bevorzugt ist die endogenen β-Hydroxylase– Aktivität komplett ausgeschaltet.

Es wurde überraschenderweise gefunden, dass es bei Pflanzen die mehrheitlich Carotinoide des α-Carotin-Weges, wie beispielsweise Lutein, herstellen, wie beispielsweise Pflanzen der Gattung Tagetes, vorteilhaft ist, die Aktivität der endogenen β-Hydroxylase zu reduzieren und gegebenenfalls die Aktivität einer heterologen Hydroxylase zu erhöhen. Besonders bevorzugt werden dabei Hydroxylasen oder funktionelle Äquivalente davon verwendet, die aus Pflanzen stammen, die mehrheitlich Carotinoide des β-Carotin-Weges herstellen, wie beispielsweiese die vorstehend beschriebene β-Hydroxylase aus Tomate (Nukleinsäure: SEQ ID No. 107, Protein: SEQ ID No. 108).

Die Bestimmung der endogenen β -Hydroxylase Aktivtät erfolgt wie vorstehend beschrieben analog zur Bestimmung der Hydroxylase-Aktivität.

Vorzugsweise erfolgt die Reduzierung der endogenen β -Hydroxylase-Aktivität in Pflanzen durch mindestens eines der nachfolgenden Verfahren:

a) Einbringen mindestens einer doppelsträngigen endogenen β-Hydroxylase Ribonukleinsäuresequenz, nachstehend auch endogene β-Hydroxylase-dsRNA genannt, oder einer deren Expression gewährleistenden Expressionskassette oder
Expressionskassetten.

Umfasst sind solche Verfahren, bei denen die endogene β -Hydroxylase-dsRNA gegen ein endogenes β -Hydroxylase-Gen (also genomische DNA-Sequenzen wie die Promotorsequenz) oder ein endogenes β -Hydroxylase-Transkript (also mRNA-Sequenzen) gerichtet ist,

b) Einbringen mindestens einer endogenen β-Hydroxylase antisense Ribonukleinsäuresequenz, nachstehend auch endogene β-Hydroxylase-

20

35

antisenseRNA genannt, oder einer deren Expression gewährleistenden Expressionskassette. Umfasst sind solche Verfahren, bei denen die endogene β -Hydroxylase-antisenseRNA gegen ein endogenes β -Hydroxylase-Gen (also genomische DNA-Sequenzen) oder ein endogenes β -Hydroxylase-Gentranskript (also RNA-Sequenzen) gerichtet ist. Umfasst sind auch α -anomere Nukleinsäuresequenzen,

- c) Einbringen mindestens einer endogenen β–Hydroxylase-antisenseRNA kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden Expression sionskassette
- d) Einbringen mindestens einer endogenen β-Hydroxylase senseRibonukleinsäuresequenz, nachstehend auch endogene β-HydroxylasesenseRNA genannt, zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette
 - e) Einbringen mindestens eines DNA- oder Protein-bindenden Faktors gegen ein endogenes β-Hydroxylase-Gen, -RNA oder -Protein oder einer dessen Expression gewährleistenden Expressionskassette

f) Einbringen mindestens einer, den endogenen β-Hydroxylase RNA-Abbau bewirkenden viralen Nukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette

g) Einbringen mindestens eines Konstruktes zur Erzeugung eines Funktionsverlustes, wie beispielsweise die Generierung von Stopp-Kodons oder eine Verschiebungen im Leseraster, an einem endogenen β-Hydroxylase-Gen beispielsweise durch Erzeugung einer Insertion, Deletion, Inversion oder Mutation in einem endogenen β-Hydroxylase-Gen. Bevorzugt können Knockout-Mutanten mittels gezielter Insertion in besagtes endogenes β-Hydroxylase-Gen durch homologe Rekombination oder Einbringen von sequenzspezifischen Nukleasen gegen endogene β-Hydroxylase-Gensequenzen generiert werden.

Dem Fachmann ist bekannt, dass auch weitere Verfahren im Rahmen der vorliegenden Erfindung zur Verminderung einer endogenen β-Hydroxylase bzw. seiner Aktivität oder

Funktion eingesetzt werden können. Beispielsweise kann auch das Einbringen einer dominant-negativen Variante einer endogenen β –Hydroxylase oder einer deren Expression gewährleistenden Expressionskassette vorteilhaft sein. Dabei kann jedes einzelne dieser Verfahren eine Verminderung der Proteinmenge, mRNA-Menge und/oder Aktivität einer endogenen β –Hydroxylase bewirken. Auch eine kombinierte Anwendung ist denkbar. Weitere Methoden sind dem Fachmann bekannt und können die Behinderung oder Unterbindung der Prozessierung der endogenen β –Hydroxylase, des Transports der Zeaxanthin-Epoxidase und/oder endogenen β –Hydroxylase oder dessen mRNA, Hemmung der Ribosomenanlagerung, Hemmung des RNA-Spleißens, Induktion eines endogenen β –Hydroxylase-RNA abbauenden Enzyms und/oder Hemmung der Translationselongation oder -termination umfassen.

Die einzelnen bevorzugten Verfahren seien infolge durch beispielhafte Ausführungsformen beschrieben:

15

20

25

30

10

5

 a) Einbringen einer doppelsträngigen, endogenen β-Hydroxylase-Ribonukleinsäuresequenz (endogene β-Hydroxylase-dsRNA)

Das Verfahren der Genregulation mittels doppelsträngiger RNA wurde vorstehend für die Reduzierung der ϵ -Cyclase-Aktivität ausführlich beschrieben. Analog lässt sich dieses Verfahren für die Reduzierung der endogenen β -Hydroxylase-Aktivität durchführen.

Unter einer doppelsträngigen endogenen β -Hydroxylase-Ribonukleinsäuresequenz oder auch endogenen β -Hydroxylase-dsRNA wird vorzugsweise ein RNA-Molekül verstanden, das einen Bereich mit Doppel-Strang-Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die

- a) mit mindestens einem Teil des Pflanze eigenen endogenen β -Hydroxylase-Transkripts identisch ist und/oder
 - b) mit mindestens einem Teil der Pflanze eigenen endogenen β -Hydroxylase-Promotor-Sequenz identisch ist.

Im erfindungsgemäßen Verfahren bringt man daher zur Reduzierung der endogenen β -Hydroxylase-Aktivität bevorzugt in die Pflanze eine RNA ein, die einen Bereich mit Doppel-Strang-Struktur aufweist und in diesem Bereich eine Nukleinsäuresequenz enthält, die

5

15

20

25

- a) mit mindestens einem Teil des Pflanze eigenen endogenen β-Hydroxylase-Transkripts identisch ist und/oder
- b) mit mindestens einem Teil der Pflanze eigenen endogenen β-Hydroxylase 10 Promotor-Sequenz identisch ist.

Unter dem Begriff "endogenes β –Hydroxylase-Transkript" wird der transkripierte Teil eines eines endogenen β –Hydroxylase-Gens verstanden, der neben der endogenen β –Hydroxylase kodierenden Sequenz beispielsweise auch nichtkodierende Sequenzen, wie beispielsweise auch UTRs enthält.

Unter einer RNA, die "mit mindestens einem Teil der Pflanze eigenen endogenen β -Hydroxylase-Promotor-Sequenz identisch ist", ist vorzugsweise gemeint, dass die RNA-Sequenz mit mindestens einem Teil des theoretischen Transkriptes der endogenen β -Hydroxylase-Promotor-Sequenz, also der entsprechenden RNA-Sequenz, identisch ist.

Unter "einem Teil" des Pflanze eigenen endogenen β –Hydroxylase-Transkripts bzw. der Pflanze eigenen endogenen β –Hydroxylase-Promotor-Sequenz werden Teilsequenzen verstanden, die von wenigen Basenpaaren bis hin zu vollständigen Sequenzen des Transkripts bzw. der Promotorssequenz reichen können. Die optimale Länge der Teilsequenzen kann der Fachmann durch Routineversuche leicht ermitteln.

In der Regel beträgt die Länge der Teilsequenzen mindestens 10 Basen und höchstens 2 kb, bevorzugt mindestens 25 Basen und höchstens 1,5 kb, besonders bevorzugt
mindestens 50 Basen und höchstens 600 Basen, ganz besonders bevorzugt mindestens 100 Basen und höchstens 500, am meisten bevorzugt mindestens 200 Basen
oder mindestens 300 Basen und höchstens 400 Basen.

10

25

30

Vorzugsweise werden die Teilsequenzen so ausgesucht, dass eine möglichst hohe Spezifität erreicht wird und nicht Aktivitäten anderer Enzyme reduziert werden, deren Verminderung nicht erwünscht ist. Es ist daher vorteilhaft für die Teilsequenzen der der endogenen β -Hydroxylase-dsRNA Teile des endogenen β -Hydroxylase Transkripts und/oder Teilsequenzen der endogenen β -Hydroxylase-Promotor-Sequenzen zu wählen, die nicht in anderen Aktivitäten auftreten.

In einer besonders bevorzugten Ausführungsform enthält daher die endogene β-Hydroxylase-dsRNA eine Sequenz, die mit einem Teil des Pflanze eigenen endogenen β-Hydroxylase-Transkripts identisch ist und das 5'-Ende oder das 3'-Ende der Pflanze eigenen Nukleinsäure, codierend eine endogene β-Hydroxylase enthält. Insbesondere sind nichttranslatierte Bereiche im 5' oder 3' des Transkriptes geeignet, selektive Doppel-Strang-Strukturen herzustellen.

- Ein weiterer Gegenstand der Erfindung bezieht sich auf doppelsträngige RNA-Moleküle (dsRNA-Moleküle), die bei Einbringen in einen pflanzlichen Organismus (oder eine davon abgeleitete Zelle, Gewebe, Organ oder Vermehrungsmaterial) die Verminderung einer endogenen β-Hydroxylase bewirken.
- 20 Ferner betrifft die Erfindung ein doppelsträngiges RNA-Molekül zur Reduzierung der Expression einer endogenen β-Hydroxylase (endogene β-Hydroxylase-dsRNA) umfassend dabei bevorzugt
 - einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil eines "sense"-RNAendogene β--Hydroxylase-Transkriptes, und
 - b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen, bevorzugt vollständig, komplementären ist.

Zur Transformation der Pflanze mit einer endogenen β-Hydroxylase-dsRNA wird bevorzugt ein Nukleinsäurekonstrukt verwendet, das in die Pflanze eingebracht wird und das in der Pflanze in die endogene β-Hydroxylase-dsRNA transkripiert wird.

20

25

30

35

Ferner betrifft die vorliegende Erfindung auch ein Nukleinsäurekonstrukt, transkripierbar in

- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz,
 5 die im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNAendogene β-Hydroxylase Transkriptes, und
 - b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen bevorzugt vollständig komplementär ist.

Diese Nukleinsäurekonstrukte werden im folgenden auch Expressionskassetten oder Expressionsvektoren genannt.

In Bezug auf die dsRNA-Moleküle wird unter der endogenen β-Hydroxylase Nukleinsäuresequenz, bzw. das entsprechende Transkript bevorzugt die Sequenz gemäß SEQ ID NO: 139 oder ein Teil derselben verstanden.

"Im wesentlichen identisch" meint, dass die dsRNA Sequenz auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu der endogenen β –Hydroxylase Zielsequenz aufweisen kann und dennoch eine effizient Verminderung der Expression bewirkt. Bevorzugt beträgt die Homologie mindestens 75 %, bevorzugt mindestens 80 %, ganz besonders bevorzugt mindestens 90 % am meisten bevorzugt 100 % zwischen dem "sense"-Strang einer inhibitorischen dsRNA und mindestens einem Teil des "sense"-RNA-Transkriptes eines endogenen β –Hydroxylase-Gens, bzw. zwischen dem "antisense"-Strang dem komplementären Strang eines endogenen β –Hydroxylase-Gens.

Eine 100%ige Sequenzidentität zwischen dsRNA und einem endogenen β -Hydroxylase Gentranskript ist nicht zwingend erforderlich, um eine effiziente Verminderung der endogenen β -Hydroxylase Expression zu bewirken. Demzufolge besteht der Vorteil, dass das Verfahren tolerant ist gegenüber Sequenzabweichungen, wie sie infolge genetischer Mutationen, Polymorphismen oder evolutionärer Divergenzen vorliegen können. So ist es beispielsweise möglich mit der dsRNA, die ausgehend von der endogenen β -Hydroxylase Sequenz des einen Organismus generiert wurde, die endogene β -Hydroxylase Expression in einem anderen Organismus zu unterdrü-

cken. Zu diesem Zweck umfasst die dsRNA bevorzugt Sequenzbereiche von endogenen β -Hydroxylase-Gentranskripten, die konservierten Bereichen entsprechen. Besagte konservierte Bereiche können aus Sequenzvergleichen leicht abgeleitet werden.

- Alternativ, kann eine "im wesentlichen identische" dsRNA auch als Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil eines endogenen β-Hydroxylase Gentranskriptes zu hybridisieren (z.B. in 400 mM NaCl, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h).
- "Im wesentlichen komplementär" meint, dass der "antisense"-RNA-Strang auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu dem Komplement des "sense"-RNA-Stranges aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 100 % zwischen dem "antisense"-RNA-Strang und dem Komplement des "sense"-RNA-Stranges.

In einer weiteren Ausführungsform umfasst die endogene β -Hydroxylase-dsRNA

- einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz,
 die im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes des Promotorbereichs eines endogenen β-Hydroxylase-Gens, und
 - b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen bevorzugt vollständig komplementären ist.

Das entsprechende, bevorzugt zur Transformation der Pflanzen zu verwendende, Nukleinsäurekonstrukt, umfasst

- a) einen "sense"-DNA-Strang der im wesentlichen identisch ist zu mindestens ei nem Teil des Promotorbereichs eines endogenen β-Hydroxylase-Gens, und
 - b) einen "antisense"-DNA-Strang, der zu dem DNA-"sense"-Strang unter a) im wesentlichen bevorzugt vollständig komplementär ist.

Zur Herstellung der endogenen β -Hydroxylase-Sequenzen zur Reduzierung der endogenen β -Hydroxylase-Aktivität werden, insbesondere für *Tagetes erecta*, besonders bevorzugt die folgenden Teil-Sequenzen verwendet:

5 SEQ ID NO: 141:Sense-Fragment der 5'terminalen Region der endogenen β-Hydroxylase

SEQ ID NO: 142:Antisense-Fragment der 5'terminalen Region der endogenen β-Hydroxylase

10

Die dsRNA kann aus einem oder mehr Strängen von Polyribonukleotiden bestehen. Natürlich können, um den gleichen Zweck zu erreichen, auch mehrere individuelle dsRNA Moleküle, die jeweils einen der oben definierten Ribonukleotidsequenzabschnitte umfassen, in die Zelle oder den Organismus eingebracht werden.

15

20

Die doppelsträngige dsRNA-Struktur kann ausgehend von zwei komplementären, separaten RNA-Strängen oder - bevorzugt - ausgehend von einem einzelnen, selbstkomplementären RNA-Strang gebildet werden. In diesem Fall sind "sense"-RNA-Strang und "antisense"-RNA-Strang bevorzugt kovalent in Form eines invertierten "Repeats" miteinander verbunden.

25

Wie z.B. in WO 99/53050 beschrieben, kann die dsRNA auch eine Haarnadelstruktur umfassen, indem "sense"- und "antisense"-Strang durch eine verbindende Sequenz ("Linker"; beispielsweise ein Intron) verbunden werden. Die selbstkomplementären dsRNA-Strukturen sind bevorzugt, da sie lediglich die Expression einer RNA-Sequenz erfordern und die komplementären RNA-Stränge stets in einem äquimolaren Verhältnis umfassen. Bevorzugt ist die verbindende Sequenz ein Intron (z.B. ein Intron des ST-LS1 Gens aus Kartoffel; Vancanneyt GF et al. (1990) Mol Gen Genet 220(2):245-250).

30

Die Nukleinsäuresequenz kodierend für eine dsRNA kann weitere Elemente beinhalten, wie beispielsweise Transkriptionsterminationssignale oder Polyadenylierungssignale.

35

Weitere bevorzugte Ausführungsformen für die Reduzierung der endogenen β-Hydroxylase Aktivität ergeben sich analog der vorstehend beschriebenen, bevorzugten

25

30

Ausführungsformen der Reduzierung der ϵ -Cyclase-Aktivität unter Austausch der e-Cyclase durch endogene β -Hydroxylase.

Besonders bevorzugt werden im erfindungsgemäßen Verfahren genetisch veränderte Pflanzen mit folgende Kombinationen genetischer Veränderungen verwendet:

Genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern und eine erhöhte Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern und eine erhöhte β -Cyclase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern und eine reduzierte ε-Cyclase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verur-20 sachte Ketolase-Aktivität in Blütenblättern und eine erhöhte Hydroxylase-Aktivität und eine erhöhte β-Cyclase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern und eine erhöhte Hydroxylase-Aktivität und eine reduzierte ε-Cyclase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern und eine erhöhte β -Cyclase-Aktivität und eine reduzierte ϵ -Cyclase-Aktivität aufweisen, sowie

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern und eine erhöhte Hydroxylase-Aktivität und eine erhöhte β -Cyclase-Aktivität und eine reduzierte ϵ -Cyclase-Aktivität aufweisen.

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ϵ -Cyclase-Aktivität und eine erhöhte β -Cyclase-Aktivität aufweisen,

5 genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ε-Cyclase-Aktivität und eine reduzierte endogene β-Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ε-Cyclase-Aktivität und eine erhöhte Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine erhöhte β-Cyclase-Aktivität und eine erhöhte Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine erhöhte β-Cyclase-Aktivität und eine reduzierte endogene β-Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern und eine erhöhte β -Cyclase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte e-Cyclase-Aktivität und mindestens eine weitere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-D-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen.

15

20

25

30

35

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ε-Cyclase-Aktivität, eine erhöhte β-Cyclase-Aktivität und eine erhöhte Hydroxylase-Aktivität aufweisen,

- 5 genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ε-Cyclase-Aktivität, eine erhöhte β-Cyclase-Aktivität und eine reduzierte endogene β-Hydroxylase-Aktivität aufweisen,
- 10 genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ε-Cyclase-Aktivität und eine erhöhte β-Cyclase-Aktivität aufweisen,
- genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ε-Cyclase-Aktivität und eine erhöhte Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ϵ -Cyclase-Aktivität und eine reduzierte endogene β -Hydroxylase-Aktivität aufweisen.

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ϵ -Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und eine reduzierte endogene β -Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine erhöhte β -Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und eine reduzierte endogene β -Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte e-Cyclase-Aktivität, eine erhöhte b-Cyclase-Aktivität und mindestens eine weitere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-

10

15

20

25

30

35

Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-D-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtlSO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen.

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ϵ -Cyclase-Aktivität, eine erhöhte β -Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und eine reduzierte endogene β -Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ϵ -Cyclase-Aktivität, eine erhöhte β -Cyclase-Aktivität und eine erhöhte Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ϵ -Cyclase-Aktivität, eine erhöhte β -Cyclase-Aktivität und eine reduzierte endogene β -Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte e-Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und mindestens eine weitere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-D-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtISO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte e-Cyclase-Aktivität, eine reduzierte endogene b-Hydroxylase-Aktivität und mindestens eine weitere erhöhte Ak-

20

25

30

tivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-D-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtISO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine erhöhte b-Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und mindestens eine weitere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtISO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine erhöhte b-Cyclase-Aktivität, eine reduzierte endogene b-Hydroxylase-Aktivität und mindestens eine weitere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-D-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtISO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ϵ -Cyclase-Aktivität, eine erhöhte β -Cyclase-Aktivität und eine erhöhte Hydroxylase-Aktivität und eine reduzierte b-Hydroxylase-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte e-Cyclase-Aktivität, eine erhöhte b-Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und mindestens eine weitere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-D-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtISO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen,

genetisch veränderte Pflanzen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte e-Cyclase-Aktivität, eine erhöhte b-Cyclase-Aktivität, eine reduzierte endogene b-Hydroxylase-Aktivität und mindestens eine weitere erhöhte Aktivität, ausgewählt aus der Gruppe HMG-CoA-Reduktase-Aktivität, (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität, 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität, Isopentenyl-Diphosphat-D-Isomerase-Aktivität, Geranyl-Diphosphat-Synthase-Aktivität, Farnesyl-Diphosphat-Synthase-Aktivität, Geranyl-Geranyl-Diphosphat-Synthase-Aktivität, Phytoen-Synthase-Aktivität, Phytoen-Desaturase-Aktivität, Zeta-Carotin-Desaturase-Aktivität, crtISO-Aktivität, FtsZ-Aktivität und MinD-Aktivität aufweisen.

Besonders bevorzugte, genetisch veränderte Pflanzen, weisen im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine erhöhte β-Cyclase-Aktivität und eine erhöhte Hydroxylase-Aktivität auf, wobei

die erhöhte Ketolase Aktivität dadurch verursacht wird, dass man Nukleinsäuren einbringt, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 und die enzymatische Eigenschaft einer Ketolase aufweist,

10

15

20

25

die erhöhte β-Cyclase-Aktivität dadurch verursacht wird, dass man Nukleinsäure einbringt, kodierend eine β-Cyclase, enthaltend die Aminosäuresequenz SEQ ID NO: 110 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 110 aufweist

und die erhöhte Hydroxylase-Aktivität dadurch verursacht wird, dass man Nukleinsäuren einbringt, kodierend eine Hydroxylase, enthaltend die Aminosäuresequenz SEQ ID NO: 108 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 108 aufweist.

Besonders bevorzugte, genetisch veränderte Pflanzen, weisen im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität in Blütenblättern, eine reduzierte ε-Cyclase-Aktivität, eine erhöhte β-Cyclase-Aktivität, eine erhöhte Hydroxylase-Aktivität und eine reduzierte endogene β-Hydroxylase-Aktivität auf, wobei

die erhöhte Ketolase Aktivität dadurch verursacht wird, dass man Nukleinsäuren einbringt, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 und die enzymatische Eigenschaft einer Ketolase aufweist,

die erhöhte β-Cyclase-Aktivität dadurch verursacht wird, dass man Nukleinsäure einbringt, kodierend eine β-Cyclase, enthaltend die Aminosäuresequenz SEQ ID NO: 110 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 100 aufweist,

die erhöhte Hydroxylase-Aktivität dadurch verursacht wird, dass man Nukleinsäuren einbringt, kodierend eine Hydroxylase, enthaltend die Aminosäuresequenz SEQ ID NO: 108 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 108 aufweist, und die reduzierte ε-Cyclase-

Aktivität und eine reduzierte endogene β -Hydroxylase-Aktivität gemäß den vorstehend beschriebenen, bevorzugten Ausführungsformen verursacht wird.

Die Herstellung dieser genetisch veränderten Pflanzen der Gattung Tagetes kann, wie nachstehend beschrieben, beispielsweise durch Einbringen einzelner Nukleinsäure-konstrukte (Expressionskassetten) oder durch Einbringen von Mehrfachkonstrukten erfolgen, die bis zu zwei, drei oder vier der beschriebenen Aktivitäten enthalten.

Im folgenden wird exemplarisch die Herstellung genetisch veränderter Pflanzen mit erhöhter oder verursachter Ketolase-Aktivität in Blütenblättern beschrieben. Die Erhö-10 hung weiterer Aktivitäten, wie beispielsweise der Hydroxylase-Aktivität und/oder der β-Cyclase-Aktivität und/oder der HMG-CoA-Reduktase-Aktivität und/oder der (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase-Aktivität und/oder der 1-Deoxy-D-Xylose-5-Phosphat-Synthase-Aktivität und/oder der 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase-Aktivität und/oder der Isopentenyl-Diphosphat-D-Isomerase-15 Aktivität und/oder der Granyl-Diphosphat-Synthase-Aktivität und/oder der Farnesyl-Diphospaht-Synthase-Aktivität und/oder der Geranyl-geranyl-Diphosphat-Synthase-Aktivität und/oder der Phytoen-Synthase-Aktivität und/oder der Phytoen-Desaturase-Aktivität und/oder der Zeta-Carotin-Desaturase-Aktivität und/oder der crtISO-Aktivität und/oder der FtsZ-Aktivität und/oder der MinD-Aktivität kann analog unter Verwendung 20 von Nukleinsäuresequenzen kodierend eine Hydroxylase bzw. β-Cyclase bzw. Nukleinsäuren kodierend eine HMG-CoA-Reduktase und/oder Nukleinsäuren kodierend eine (E)-4-Hydroxy-3-Methylbut-2-enyl-Diphosphat-Reduktase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Synthase und/oder Nukleinsäuren kodierend eine 1-Deoxy-D-Xylose-5-Phosphat-Reduktoisomerase und/oder Nukleinsäu-25 ren kodierend eine Isopentenyl-Diphosphat-D-Isomerase und/oder Nukleinsäuren kodierend eine Geranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Farnesyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Geranylgeranyl-Diphosphat-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Synthase und/oder Nukleinsäuren kodierend eine Phytoen-Desaturase und/oder Nuk-30 leinsäuren kodierend eine Zeta-Carotin-Desaturase und/oder Nukleinsäuren kodierend ein crtlso-Protein und/oder Nukleinsäuren kodierend ein FtsZ-Protein und/oder Nukleinsäuren kodierend ein MinD-Protein anstelle von Nukleinsäuresequenzen kodierend eine Ketolase erfolgen. Die Reduzierung weiterer Aktivitäten, wie beispielsweise die Reduzierung der ε-Cyclase-Aktivität bzw. der endogenen b-Hydroxylase-Aktivität kann 35

10

15

25

30

35

analog unter Verwendung von anti-ɛ-Cyclase-Nukleinsäuresequenzen oder ɛ-Cyclase-Inverted-Repaet-Nukleinsäuresequenz bzw. unter Verwendung von anti-endogenen b-Hydroxylase-Nukleinsäuresequenzen oder endogenen b-Hydroxylase-Inverted-Repeat-Nukleinsäuresequenzen anstelle von Nukleinsäuresequenzen kodierend eine Ketolase erfolgen. Die Transformation kann bei den Kombinationen von genetischen Veränderungen einzeln oder durch Mehrfachkonstrukte erfolgen.

Die Herstellung der transgenen Pflanzen der Gattung Tagetes erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das die vorstehend beschriebenen Nukleinsäuren codierend eine Ketolase enthält, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.

Diese Nukleinsäurekonstrukte, in denen die kodierende Nukleinsäuresequenz mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.

Vorzugsweise enthalten die Regulationssignale einen oder mehrere Promotoren, die 20 die Transkription und Translation in Pflanzen gewährleisten.

Die Expressionskassetten beinhalten Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, das jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.

Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten und Vektoren für Pflanzen der Gattung Tagetes und Verfahren zur Her-

stellung von transgenen Pflanzen der Gattung Tagetes, sowie die transgenen Pflanzen der Gattung Tagetes selbst beschrieben.

Die zur operativen Verknüpfung bevorzugten aber nicht darauf beschränkten Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).

10

20

5

Als Promotoren der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann.

"Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen,
bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung,
bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.

Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202).

Ein weiterer geeigneter konstitutiver Promotor ist der pds Promoter (Pecker et al. (1992) Proc. Natl. Acad. Sci USA 89: 4962-4966) oder der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), den Ubiquitin 1
Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), den Smas Promotor, den Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), der Pnit-Promoter (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89-99, Hille-

brand et al. (1996), Gene, 170, 197-200) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.

Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des Ketolase-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.

Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierbare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinll-Promoter (EP375091).

Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR-Proteinen, b-1,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes, et al. (1992) The Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sci USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968(1989).

Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinII Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wun1 und wun2-Gens (US 5,428,148), des win1- und win2-Gens (Stanford et al.

(1989) Mol Gen Genet 215:200-208), des Systemin (McGurl et al. (1992) Science 225:1570-1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Ekelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141-150) und dergleichen.

5

10

Weitere geeignete Promotoren sind beispielsweise fruchtreifung-spezifische Promotoren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.

Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Ketocarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel und Wurzeln und Kombinationen hieraus.

Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren sind beispielsweise der Patatin Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kartoffel.

Blattspezifische Promotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).

Blütenspezifische Promotoren sind beispielsweise der Phytoen Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593) oder der AP3 Promoter aus Arabidopsis thaliana (siehe Beispiel 1).

30

35

20

25

Antheren-spezifische Promotoren sind beispielsweise der 5126-Promotor (US 5,689,049, US 5,689,051), den glob-l Promotor oder der g-Zein Promotor.

Weitere zur Expression in Pflanzen geeignete Promotoren sind beschrieben in Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61:1-11 und Berger et al. (1989) Proc Natl Acad Sci USA 86:8402-8406).

10

15

20

25

30

35

Alle in der vorliegenden Anmeldung beschriebenen Promotoren ermöglichen in der Regel die Expression der Ketolase in Blütenblättern der erfindungsgemäßen Pflanzen.

Besonders bevorzugt im erfindungsgemäßen Verfahren sind konstitutive, blütenspezifische und insbesondere blütenblattspezifische Promotoren.

Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit einer vorstehend beschriebenen Nukleinsäure kodierend eine Ketolase und vorzugsweise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.

Die vorzugsweise insertierte Nukleinsäuren kodierend ein plastidäres Transitpeptid, gewährleisten die Lokalisation in Plastiden und insbesondere in Chromoplasten.

Es können auch Expressionskassetten verwendet werden, deren Nukleinsäure—Sequenz für ein Ketolase-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Ketolase in die Chromoplasten vom Ketolase-Teil enzymatisch abgespalten werden.

Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären *Nicotiana taba-cum* Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat Isomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.

Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als Kpnl/BamHI Fragmente mit einem ATG-Codon in der Ncol Schnittstelle: pTP09

Kpnl_GGTACCATGGCGTCTTCTTCTTCTCACTCTCTCAAGCTATCCTCTCTC

5 GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCTCACTTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCGTACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGGATCC_BamHI

10

pTP10

Kpnl_GGTACCATGGCGTCTTCTTCTCTCACTCTCTCAAGCTATCCTCTCTC
GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT
15 CACTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCGTACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTGGATCC_BamHI

20 pTP11

25

30

Kpnl_GGTACCATGGCGTCTTCTTCTCTCACTCTCTCAAGCTATCCTCTCTC
GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCTCACTTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCGTACTCCTTCCTCCGCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGGGATCC_BamHI

Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat Isomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der kleinen Untereinheit der Ribulosebisphosphat Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cassette for targeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).

Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure-

30

Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.

Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen der Gattung Tagetes bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.

Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.

Beispiele für einen Terminator sind der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet. 1982;1(6):561-73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J. 3: 835-846).

Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt wer-

25

30

35

den. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können *in vitro*-Mutagenese, "primer-repair", Restriktion oder Ligation verwendet werden.

- Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.
- Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente.
- Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.

Dazu können an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.

Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone – die sogenannte particle bombardment Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben.

Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900).

Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

5

10

Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette, die eine Ketolase exprimiert, in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN2 kloniert, der geeignet ist, in *Agrobacterium tumefaciens transformiert zu werden* Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

15

20

Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein in die Expressionskassette integriertes Gen für die Expression einer Nukleinsäure codierend eine Ketolase enthalten.

25

Zur Transformation einer Wirtspflanze der Gattung Tagetes mit einer für eine Ketolase kodierenden Nukleinsäure wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.

30

35

Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in *E. coli*, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16:11380), pBR332, pUC-Serien, M13mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in *E. coli* als auch in Agrobakterien replizieren können.

15

20

25

30

Dabei kann je nach Wahl des Promotors die Expression konstitutiv oder vorzugsweise spezifisch in den Blütenblättern erfolgen.

Die erfindungsgemäßen genetisch veränderten Pflanzen der Gattung Tagetes weisen im Vergleich zum Wildtyp einen Gehalt an Astaxanthin, insbesondere in Petalen auf.

Wie vorstehend erwähnt, betrifft die Erfindung die Verwendung astaxanthinhaltiger Pflanzen oder Pflanzenteile der Gattung Tagetes oder astaxanthinhaltiger Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes zur oralen Verabreichung an Tiere.

In einer bevorzugten Ausführungsform werden die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes zur Pigmentierung von Tieren und der entsprechenden Tierprodukte verwendet.

Unter astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen werden bevorzugt Lösungen, enthaltend Astaxanthin verstanden, die durch Extraktion aus astaxanthinhaltigen Pflanzen oder Pflanzenteilen mit mindestens einem geeigneten Lösungsmittel hergestellt wurden. Je nach verwendetem Lösungsmittel und verwendeten weiteren chemischen und physikalischen Reinigungsverfahren kann das Astaxanthin in beliebigen Reinheitsgraden im Extrakt vorliegen. Es ist vorteilhaft, die astaxanthinhaltigen Pflanzen oder Pflanzenteile vor Extraktion entsprechend aufzubereiten, beispielsweise die Pflanzen oder Pflanzenteile zu trocknen und zu zerkleinern, wobei die Reihenfolge beliebig ist.

Astaxanthin kann aus den astaxanthinhaltigen Pflanzen oder Pflanzenteilen, die gegebenenfalls vorher getrocknet und/oder zerkleinert wurden durch organische Lösungsmittel extrahiert werden, wie beispielsweise durch Aceton, Hexan, Methylenchlorid, Methyl-tertiär-Butyl-ether oder durch Lösungsmittelgemische wie Ethanol/Hexan oder Aceton/Hexan. Durch unterschiedliche Mischungsverhältnisse der Lösungsmittel kann aufgrund der verschiedenen Polarität die Extraktionswirkung variiert werden. Durch eine solche Extraktion lässt sich Astaxanthin mit hoher Konzentration anreichern.

35 Anschließend kann durch Ausschütteln von Astaxanthin und chromatografische Auftrennung des Gemisches die Reinheit von Astaxanthin weiter erhöht werden. Asta-

25

30

xanthin liegt in der Regel als Gemisch aus Mono- und Diestern vor, meist als Ester der Palmitinsäure.

- Unter "Pigmentierung" wird erfindungsgemäß vorzugsweise die Intensivierung oder

 Verursachung einer Farbe zumindest eines Teils eines Tieres oder Tierproduktes des
 pigmentierten Tieres im Vergleich zum nicht pigmentierten Tier verstanden. Astaxanthinhaltige Pigmentierstoffe pigmentieren und verursachen oder intensivieren in der
 Regel einen rosa bis rosa-roten Farbton.
- Bevorzugte Tiere die durch die erfindungsgemäße orale Verabreichung pigmentiert werden können sind Tiere, ausgewählt aus der Gruppe Fische, Crustaceae oder Vögel, insbesondere Galliformes und Anatridae.

Bevorzugte Fische sind Salmoniden, insbesondere Lachs oder Forelle.

Bevorzugte Crustaceae sind Shrimps oder Krebse.

Bevorzugte Galliformes sind Hühner, Enten oder Gänse.

20 Bevorzugter Anatridae ist Flamingo.

Je nach pigmentiertem Tier werden vorzugsweise unter pigmentierten Tierprodukten insbesondere Fleisch für Lachs oder Forelle, Haut für Hühner, Enten oder Gänse, Feder für Hühner, Enten, Gänse oder Flamingo und Ei bzw. Eidotter für Hühner, Enten oder Gänse verstanden.

Die orale Verabreichung der astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes an Tiere kann direkt erfolgen oder über orale Verabreichung von Tierfutterzubereitungen, denen zuvor die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes beigemischt wurden.

In einer bevorzugten Ausführungsform werden die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von asta-

xanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes Tierfutterzubereitungen beigemischt und die Tierfutterzubereitung an Tiere oral verabreicht.

Dabei ist es vorteilhaft, die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes vor der Beimischung zu Tierfutterzubereitungen in eine Form zu prozessieren, die eine Beimischung zu entsprechenden Tierfutterzubereitung ermöglicht und vorzugsweise zu einer hohen Stabilität und Bioverfügbarkeit von Astaxanthin im jeweiligen Anwendungsbereich führt.

10

5

Je nach Tier, an das die orale Verabreichung erfolgen soll und damit je nach Tierfutterzubereitung können dazu verschiedene Prozessierungsschritte vorteilhaft sein.

15

Für astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes, ist es in dieser Ausführungsform vorteilhaft, die astaxanthinhaltigen Pflanzen oder Pflanzenteile, insbesondere Blütenköpfe und Petalen zu trocknen und/oder zu zerkleinern. Besonders bevorzugt liegen die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes in Pulverform vor.

20

Jede wie auch immer gestaltete Ausführungsform der astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes, ob prozessiert oder nicht prozessiert, kann in an sich bekannter Weise Tierfutterzubereitungen beigemischt werden.

25

Für astaxanthinhaltigen Extrakte astaxanthinhaltiger Pflanzen oder Pflanzenteile der Gattung Tagetes, sind in dieser Ausführungsform verschiedene Prozessierungsschritte vorteilhaft.

_ _

Die astaxanthinhaltigen Extrakte können, soweit die noch enthaltenen Lösungsmittel für die entsprechenden Tiere physiologisch unbedenklich sind, direkt der Tierfutterzubereitung beigemischt werden.

30

Die Extrakte können nach Abdampfen der noch enthaltenen Lösungsmittel in Form von astaxanthinhaltigen Pulver oder Ölen eingesetzt werden.

35

Die erhaltenen astaxanthinhaltigen Pulver oder Öle können beispielsweise in Fischöl eingearbeitet werden, auf pulverige Trägermaterialien, wie beispielsweise Weizenmehl

15

20

25

30

oder geriebene Tagetespetalen, aufgebracht werden, oder in Alginate, Gelatine oder Lipide eingeschlossen werden.

Die astaxanthinhaltigen Extrakte oder prozessierten Extrakte liegen somit bevorzugt in flüssiger oder pulverisierter Form vor.

Jede wie auch immer gestaltete Ausführungsform der astaxanthinhaltigen Extrakte astaxanthinhaltiger Pflanzen oder Pflanzenteile der Gattung Tagetes, ob prozessiert oder nicht prozessiert, kann in an sich bekannter Weise Tierfutterzubereitungen beigemischt werden.

Der Erfindung betrifft daher auch Tierfutterzubereitungen, enthaltend astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung von Tierfutterzubereitungen durch Zusammenfügen von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes und üblichen Tierfuttermitteln.

Eine bevorzugte Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes vor dem Zusammenfügen mit Tierfuttermitteln in eine Form prozessiert werden, die ein Zusammenfügen mit Tierfuttermitteln ermöglicht.

Beispielsweise für Fische können die Fischfutterzubereitungen weitere übliche Fischfutterkomponenten enthalten, wie beispielsweise Fischmehl und/oder andere Proteine, Öle, wie beispielsweise Fischöle, Getreide, Vitamine, Mineralien, Konservierungsstoffe und gegebenenfalls Medikamente in üblichen Mengen.

Eine typische Fischfutterrezeptur für Forellen setzt sich beispielsweise aus folgenden Komponenten zusammen:

		Einwaage f. 500 kg
Komponenten	Gew%	kg
Fischmehl	30,00	150,00
Sojavollfettbohnen	20,00	100,00
Weizenquellstärke	18,00	90,00
Vitamin-Prämix	08,0	4,00
Cholinchlorid (50%)	0,20	1,00
Weizenkleber	20,00	100,00
Sipernat 50S	3,00	15,00
Fischöl	8,00	40,00

Eine typische Fischfutterrezeptur für Lachse setzt sich beispielsweise aus folgenden Komponenten zusammen:

Komponenten	Gew%
Fischmehl	75,00
Pflanzliches Protein	5,00
Getreide	7,80
Vitamine/Mineralien	1,00
Antioxidan-	0,20
tien/Konservierungsstoffe	
Fischöl	11,00

5

In einer Ausführungsform werden die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte den Tierfutterzubereitungen vorzugsweise in getrockneter und zerkleinerter Pulverform beigemischt.

Die so erhaltenen Tierfutterzubereitungen, enthaltend astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder astaxanthinhaltige Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes, können bei Fischfutter bei-

20

25

35

spielsweise in an sich bekannter Weise pelletiert oder besonders vorteilhaft extrudiert werden.

In einer bevorzugten Ausführungsform werden die astaxanthinhaltigen Extrakte den
Tierfutterzubereitungen vorzugsweise in flüssiger Form beigemischt. Dies ist insbesondere vorteilhaft bei der Herstellung von extrudierten Fischfutterzubereitungen. Der Extrusionsprozess führt zu Extrusionsstress auf die empfindliche Stoffe, wie beispielsweise Astaxanthin, der zu einem Astaxanthinverlust führen kann. Bei Extrusionsstress handelt es sich primär um die Einwirkung mechanische Kräfte (Kneten, Scherung,
Druck, etc.) jedoch auch um hydrothermischen Stress, verursacht durch Wasser- und Wasserdampfzugaben, auch oxidativer Stress ist zu beobachten.

Um die durch den oben beschriebenen Extrusionsprozess auftretenden Astaxanthinverluste zu vermeiden, können flüssige astaxanthinhaltige Extrakte durch die sogenannte PPA-Technik nach dem Extrusions - und Trocknungsprozess unter Vakuum appliziert werden (post pelleting application).

In einer weiteren, bevorzugten Ausführungsform werden die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes direkt an Tiere oral verabreicht.

Dabei ist es vorteilhaft, die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes vor der Verabreichung in eine Form zu prozessieren, die eine direkte orale Verabreichung an Tiere ermöglicht und vorzugsweise zu einer hohen Stabilität und Bioverfügbarkeit von Astaxanthin im jeweiligen Anwendungsbereich führt.

30 Je nach Tier, an das die orale Verabreichung erfolgen soll und damit je nach Tierfutterzubereitung k\u00f6nnen dazu verschiedene Prozessierungsschritte vorteilhaft sein.

Für astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes, ist es in dieser Ausführungsform vorteilhaft, die astaxanthinhaltigen Pflanzen oder Pflanzenteile, insbesondere Blütenköpfe und Petalen zu trocknen und/oder zu zerkleinern. Beson-

ders bevorzugt liegen die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes in Pulverform vor.

Jede wie auch immer gestaltete Ausführungsform der astaxanthinhaltigen Pflanzen

oder Pflanzenteile der Gattung Tagetes, ob prozessiert oder nicht prozessiert, kann in
an sich bekannter Weise oral an Tiere verabreicht werden.

Für astaxanthinhaltigen Extrakte astaxanthinhaltiger Pflanzen oder Pflanzenteile der Gattung Tagetes, sind in dieser Ausführungsform verschiedene Prozessierungsschritte vorteilhaft.

Die astaxanthinhaltigen Extrakte können, soweit die noch enthaltenen Lösungsmittel für die entsprechenden Tiere physiologisch unbedenklich sind, direkt oral an Tiere verabreicht werden.

15

30

35

10

Die Extrakte können nach Abdampfen der noch enthaltenen Lösungsmittel in Form von astaxanthinhaltigen Pulver oder Ölen verabreicht werden.

Die erhaltenen astaxanthinhaltigen Pulver oder Öle können beispielsweise in Fischöl eingearbeitet werden, auf pulverige Trägermaterialien, wie beispielsweise Weizenmehl oder geriebene Tagetespetalen, aufgebracht werden, oder in Alginate, Gelatine oder Lipide eingeschlossen werden.

Die astaxanthinhaltigen Extrakte oder prozessierten Extrakte liegen somit bevorzugt in flüssiger oder pulverisierter Form vor.

Jede wie auch immer gestaltete Ausführungsform der astaxanthinhaltigen Extrakte astaxanthinhaltiger Pflanzen oder Pflanzenteile der Gattung Tagetes, ob prozessiert oder nicht prozessiert, kann in an sich bekannter Weise oral an Tiere verabreicht werden.

Der Erfindung betrifft daher auch Pigmentiermittel, enthaltend astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes, wobei die astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthin-

10

haltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes gegebenenfalls wie vorstehend beschrieben prozessiert sein können.

In einer bevorzugten Ausführungsform bestehen die Pigmentiermittel aus astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder aus astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes, wobei die astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes gegebenenfalls wie vorstehend beschrieben prozessiert sein können.

Bei besonders bevorzugten Pigmentiermitteln verwendet man als Pflanzenteile Blütenköpfe oder Petalen.

- Die Erfindung betrifft ferner eine Verfahren zur Pigmentierung von Tieren oder Tierprodukten durch orale Verabreichung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes an Tiere.
- 20 Ferner betrifft die Erfindung ein Verfahren zur Herstellung von pigmentierten Tieren oder Tierprodukten durch oralen Verabreichung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes an Tiere.
- Die Erfindung betrifft ferner die Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes als Tierfutter oder Tierfutterzusatz.
- Die Pigmentiermittel, enthaltend astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder astaxanthinhaltige Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes bzw. Tierfuttermittel enthaltend diese Pigmentiermittel weisen weiterhin den Vorteil einer hohen Lagerstabilität und Bioverfügbarkeit des Pigments Astaxanthin auf.

Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:

Beispiel I

5 Herstellung astaxanthinhaltiger, genetisch veränderter Pflanzen der Gattung Tagetes

Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-10 DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).

Beispiel I.1:

20

25

15 Amplifikation einer cDNA, die die gesamte Primärsequenz der Ketolase aus Haematococcus pluvialis Flotow em. Wille codiert

Die cDNA, die für die Ketolase aus Haematococcus pluvialis codiert, wurde mittels PCR aus Haematococcus pluvialis (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen")Suspensionskultur amplifiziert.

Für die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus

pluvialis (Stamm 192.80), die 2 Wochen mit indirektem Tageslicht bei Raumtemperatur in Haematococcus-Medium (1.2 g/l Natriumacetat, 2 g/l Hefeextrakt, 0.2 g/l MgCl2x6H2O, 0.02 CaCl2x2H2O; pH 6.8; nach Autoklavieren Zugabe von 400 mg/l L-Asparagin, 10 mg/l FeSO4xH2O) gewachsen war, wurden die Zellen geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend wurden 100 mg der gefrorenen, pulverisierten Algenzellen in ein Reaktionsgefäß überführt und in 0.8 ml Trizol-Puffer (LifeTechnologies) aufgenommen. Die Suspension wurde mit 0.2 ml 30 Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12 000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75% Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschlie-35 Bend autoklaviert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt.

Für die cDNA-Synthese wurden 2.5 ug Gesamt-RNA für 10 min bei 60_C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-primebeads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PR1 SEQ ID NO: 29) in cDNA umgeschrieben.

5

Die Nukleinsäure codierend eine Ketolase aus *Haematococcus pluvialis* (Stamm 192.80) wurde mittels polymerase chain reaction (PCR) aus *Haematococcus pluvialis* unter Verwendung eines sense spezifischen Primers (PR2 SEQ ID NO: 30) und eines antisense spezifischen Primers (PR1 SEQ ID NO: 29) amplifiziert.

10

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz codiert, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 4 ml einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM PR1 (SEQ ID NO: 29)
- 20 0.2 mM PR2 (SEQ ID NO: 30)
 - 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Taq Polymerase (TAKARA)
 - 25.8 ml Aq. Dest.
- 25 Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
 - 1X 94_C 2 Minuten

35X 94_C 1 Minute

53_C 2 Minuten

30 72_C 3 Minuten

35

1X 72_C 10 Minuten

Die PCR-Amplifikation mit SEQ ID NO: 29 und SEQ ID NO: 30 resultierte in einem 1155 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz codiert (SEQ ID NO: 22). Unter Verwendung von Standardmethoden wurde das Ampli-

fikat in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO2 erhalten.

Sequenzierung des Klons pGKETO2 mit dem T7- und dem SP6-Primer bestätigte eine Sequenz, die sich lediglich in den drei Codons 73, 114 und 119 in je einer Base von der publizierten Sequenz X86782 unterscheidet. Diese Nukleotidaustausche wurden in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz im verwendeten *Haematococcus pluvialis* Stamm 192.80 (Abbildung 1 und 2, Sequenzvergleiche).

10

15

25

35

5

Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet. Die Klonierung erfolgte durch Isolierung des 1027 Bp SpHI-Fragmentes aus pGEM-Teasy und Ligierung in den SpHI geschnittenen Vektor pJIT117. Der Klon, der die *Haematococcus pluvialis* Ketolase in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcs Transit-peptid enthält, heißt pJKETO2.

Beispiel 1.2:

Amplifikation einer cDNA, die die Ketolase aus Haematococcus pluvialis Flotow em.

20 Wille mit einem um 14 Aminosäuren verkürztem N-terminus codiert

Die cDNA, die für die Ketolase aus *Haematococcus pluvialis* (Stamm 192.80) mit einem um 14 Aminosäuren verkürztem N-Terminus codiert, wurde mittels PCR aus *Haematococcus pluvialis* Suspensionskultur (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") amplifiziert.

Die Präparation von Total-RNA aus einer Suspensionskultur von *Haematococcus plu*vialis (Stamm 192.80) erfolgte wie in Beispiel 1 beschrieben.

30 Die cDNA-Synthese erfolgte wie unter Beispiel 1 beschrieben.

Die Nukleinsäure kodierend eine Ketolase aus *Haematococcus pluvialis* (Stamm 192.80) mit einem um 14 Aminosäuren verkürztem N-Terminus wurde mittels polymerase chain reaction (PCR) aus *Haematococcus pluvialis* unter Verwendung eines sense spezifischen Primers (PR3 SEQ ID NO: 31) und eines antisense spezifischen Primers (PR1 SEQ ID NO: 29) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein mit um 14 Aminosäuren verkürztem N-Terminus codiert, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 4 ml einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM PR1 (SEQ ID NO: 29)
- 10 0.2 mM PR3 (SEQ ID NO: 31)
 - 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Tag Polymerase (TAKARA)
 - 25.8 ml Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

15

5

Die PCR-Amplifikation mit SEQ ID NO: 29 und SEQ ID NO: 31 resultierte in einem 1111 Bp Fragment, das für ein Ketolase Protein codiert, bei dem N-terminalen Aminosäuren (Position 2-16) durch eine einzige Aminosäure (Leucin) ersetzt sind.

25

30

20

Das Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert. Sequenzierungen mit mit den Primern T7- und SP6 bestätigten eine zur Sequenz SEQ ID NO: 22 identische Sequenz, wobei die 5'Region (Position 1-53) der SEQ ID NO: 22 im Amplifikat SEQ ID NO: 24 durch eine in der Sequenz abweichende Nonamersequenz ersetzt wurde. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 985 Bp SpHI Fragmentes aus pGEMTeasy und Ligierung mit dem SpHI geschnittenen Vektor pJIT117. Der Klon, der die Haematococcus pluvialis Ketolase mit einem um 14 Aminosäuren verkürztem N-

Terminus in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcs Transitpeptid enthält, heisst pJKETO3.

Beispiel I.3:

- Amplifikation einer cDNA, die die Ketolase aus *Haematococcus pluvialis* Flotow em. Wille (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag codiert.
- Die cDNA, die für die Ketolase aus *Haematococcus pluvialis* (Stamm 192.80) bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag codiert, wurde mittels PCR unter Verwendung des Plasmids pGKETO2 (in Beispiel 1 beschrieben) und des Primers PR15 (SEQ ID NO: 32) hergestellt. Der Primer PR15 setzt sich zusammen aus einer antisense spezifischen 3'Region (Nucleotide 40 bis 59) und einer myc-Tag codierenden 5'Region (Nucleotide 1 bis 39).

Die Denaturierung (5 min bei 95_C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40_C) von pGKETO2 und PR15 erfolgte in einem 11.5 ml Reaktionsansatz, in dem enthalten war:

20

35

- 1 mg pGKETO2 PlasmidDNA
- 0.1 mg PR15 (SEQ ID NO: 32)

Das Auffüllen der 3'Enden (30 min bei 30_C) erfolgte in einem 20 ml Reaktionsansatz, 25 in dem enthalten war:

- 11.5 ml pGKETO2/PR15-Annealingsreaktion (hergestellt wie oben beschrieben)
- 50 mM dNTPs
- 2 ml 1X Klenow Puffer
- 30 2U Klenow Enzym

Die Nukleinsäure kodierend eine Ketolase aus *Haematococcus pluvialis* (Stamm 192.80) bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag wurde mittels polymerase chain reaction (PCR) aus *Haematococcus pluvialis* unter Verwendung eines sense spezifischen Primers (PR2 SEQ ID NO: 30) und eines antisense spezifischen Primers (PR15 SEQ ID NO: 32) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein mit fusioniertem Cterminalem myc-Tag codiert, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 1 ml einer Annealingsreaktion (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 10 0.2 mM PR15 (SEQ ID NO: 32)
 - 0.2 mM PR2 (SEQ ID NO: 30)
 - 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Tag Polymerase (TAKARA)
 - 28.8 ml Aq. Dest.

15

25

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

Die PCR-Amplifikation mit SEQ ID NO:32 und SEQ ID NO:30 resultierte in einem 1032 Bp-Fragment, das für ein Protein codiert, bestehend aus der gesamten Primärsequenz der Ketolase aus *Haematococcus pluvialis* als zweifache translationale Fusion mit dem rbcS Transitpeptide am N-Terminus und dem myc-Tag am C-Terminus.

Das Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert. Sequenzierungen mit mit den Primern T7- und SP6 bestätigten eine zur Sequenz SEQ ID NO: 22 identische Sequenz, wobei die 3'Region (Position 993 bis 1155) der SEQ ID NO: 22 im Amplifikat SEQ ID NO: 26 durch eine in der abweichende Sequenz aus 39 Bp ersetzt wurde. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al.

35 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 1038 Bp EcoRI-SpHI Fragmentes aus pGEM-Teasy und Ligierung mit dem EcoRI-SpHI geschnittenen Vektor pJIT117. Durch die Ligation entsteht eine translationale Fusion zwischen dem C-Terminus der rbcS Transitpeptidsequenz und dem N-Terminus der Ketolase Sequenz. Der Klon, der die Haematococcus pluvialis Ketolase mit fusioniertem C-terminalem myc-Tag in der korrekten Orientierung als translationale N-terminale Fusion mit dem rbcs Transitpeptid enthält, heisst pJKETO4.

Beispiel I.4:

5

15

20

25

30

10 Amplifikation einer DNA, die die gesamte Primärsequenz der Ketolase aus *Nostoc sp. PCC 7120* codiert

Die DNA, die für die Ketolase aus *Nostoc PCC 7120* kodiert, wurde mittels PCR aus *Nostoc PCC 7120* (Stamm der "Pasteur Culture Collection of Cyanobacterium") amplifiziert.

Für die Präparation von genomischer DNA aus einer Suspensionskultur von *Nostoc PCC 7120*, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in *BG 11*-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4x3H2O, 0.075 g/l MgSO4xH2O, 0.036 g/l CaCl2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l ED-TA disodium magnesium, 0.04 g/l Na2CO3, 1ml trace metal mix A5+Co (2.86 g/l H3BO3, 1.81 g/l MnCl2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l NaMoO4X2H2o, 0.079 g/l CuSO4x5H2O, 0.0494 g/l Co(NO3)2x6H2O) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.

Protokoll für DNA Isolation aus Nostoc PCC7120:

Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10minütige Zentrifugation bei

8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris HCI (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von

100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach 5minütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.

- Die Nukleinsäure, kodierend eine Ketolase aus *Nostoc PCC 7120*, wurde mittels "polymerase chain reaction" (PCR) aus *Nostoc PCC 7120* unter Verwendung eines sensespezifischen Primers (NOSTF, SEQ ID No. 87) und eines antisense-spezifischen Primers (NOSTG, SEQ ID NO. 88) amplifiziert.
- 15 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

20

5

- 1 ul einer Nostoc PCC 7120 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM NOSTF (SEQ ID No. 87)
- 0.2 mM NOSTG (SEQ ID No. 88)
- 25 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

30

	1X	94°C	2 Minuten
	35X	94°C	1 Minute
		55°C	1 Minuten
		72°C	3 Minuten
35	1X	72°C	10 Minuten

10

25

35

Die PCR-Amplifikation mit SEQ ID No. 87 und SEQ ID No. 88 resultierte in einem 805 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 89). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-T (Promega) kloniert und der Klon pNOSTF-G erhalten.

Sequenzierung des Klons pNOSTF-G mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz des Datenbankeintrages AP003592 identisch ist. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten *Nostoc PCC 7120.*

Dieser Klon pNOSTF-G wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet. Die Klonierung erfolgte durch Isolierung des 1027 Bp SphI-Fragmentes aus pGEM-T und Ligierung in den SphI geschnittenen Vektor pJIT117. Der Klon, der die Ketolase von *Nostoc* in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJNOST.

20 Beispiel I.5:

Herstellung von Expressionsvektoren zur konstitutiven Expression der *Haematococcus* pluvialis Ketolase in *Tagetes erecta*.

Die Expression der Ketolase aus *Haematococcus pluvialis* in *Tagetes erecta* erfolgte unter Kontrolle des konstitutiven Promoters d35S aus CaMV (Franck et al. 1980, Cell 21: 285-294). Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).

Die Herstellung einer Expressionskassette für die Agrobacterium-vermittelte Transfor-30 mation der Ketolase aus *Haematococcus pluvialis* in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

Zur Herstellung des Tagetes-Expressionsvektors pS5KETO2 wurde das 2.8 Kb Sacl-Xhol Fragment aus pJKETO2 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 3, Konstruktkarte). In der Abbildung 3 beinhaltet Fragment *d35S* den duplizierten 35S Promoter (747 bp), Fragment *rbcS* das rbcS Transitpeptid aus Erbse (204 bp), Fragment *KETO2* (1027 bp) die gesamte Primärsequenz codierend für die *Haematococcus pluvialis* Ketolase, Fragment *term* (761 bp) das Polyadenylierungssignal von CaMV.

5 Beispiel I.5A:

Herstellung von Expressionsvektoren zur blütenspezifischen Expression der *Haemato-coccus pluvialis* Ketolase in *Tagetes erecta*.

Die Expression der Ketolase aus *Haematococcus pluvialis* in *Tagetes erecta* erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle einer modifizierten Version AP3P des blütenspezifischen Promoters AP3 aus *Arabidopsis thaliana* (AL132971: Nukleotidregion 9298 bis 10200; Hill et al. (1998) Development 125: 1711-1721).

- Das DNA Fragment, das die AP3 Promoterregion -902 bis +15 aus *Arabidopsis thalia-*na beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus *Arabidopsis thaliana* isoliert) sowie der Primer PR7 (SEQ ID NO:
 33) und PR10 (SEQ ID NO: 36) hergestellt.
- 20 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (-902 bis +15) beinhaltet, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 25 100 ng genomischer DNA aus A.thaliana
 - 0.25 mM dNTPs
 - 0.2 mM PR7 (SEQ ID NO: 33)
 - 0.2 mM PR10 (SEQ ID NO: 36)
 - 5 ml 10X PCR-Puffer (Stratagene)
- 30 0.25 ml Pfu Polymerase (Stratagene)
 - 28.8 ml Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

35 1X 94_C 2 Minuten 35X 94_C 1 Minute

50_C 1 Minute 72_C 1 Minute 1X 72_C 10 Minuten

Das 922 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pTAP3 erhalten.

Sequenzierung des Klons pTAP3 bestätigte eine Sequenz, die sich lediglich in durch eine Insertion (ein G in Position 9765 der Sequenz AL132971) und einen Basenaustausch (ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3 Sequenz (AL132971, Nukleotidregion 9298 bis 10200) unterscheidet. Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Arabidopsis thaliana Pflanzen.

15

20

10

Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids pTAP3 hergestellt. Die Region 10200 bis 9771 wurde mit den Primern PR7 (SEQ ID NO: 33) und Primern PR9 (SEQ ID NO: 35) amplifiziert (Amplifikat A7/9), die Region 9526 bis 9285 wurde mit den PR8 (SEQ ID NO: 34) und PR10 (SEQ ID NO: 36) amplifiziert (Amplifikat A8/10).

Die PCR-Bedingungen waren die folgenden:

Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die die Regionen Region
10200-9771 und Region 9526 bis 9285 des AP3 Promoters beinhalten, erfolgte in 50 al
Reaktionsansätzen, in denen enthalten war:

- 100 ng AP3 Amplifikat (oben beschrieben)
- 0.25 mM dNTPs
- 30 0.2 mM sense Primer (PR7 SEQ ID NO: 33 bzw. PR8 SEQ ID NO: 34)
 - 0.2 mM antisense Primer (PR9 SEQ ID NO: 35 bzw. PR10 SEQ ID NO: 36)
 - 5 ml 10X PCR-Puffer (Stratagene)
 - 0.25 ml Pfu Taq Polymerase (Stratagene)
 - 28.8 ml Aq. Dest.

35

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X	94_C	2 Minuten
	35X	94_C	1 Minute
		50_C	1 Minute
5		72_C	1 Minute
	1X	72_C	10 Minuten

Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A7/9 und A8/10, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des AP3 Promoters, AP3P, in dem die Positionen 9670 bis 9526 deletiert sind. Die Denaturierung (5 min bei 95_C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40_C) beider Amplifikate A7/9 und A8/10 erfolgte in einem 17.6 ml Reaktionsansatz, in dem enthalten war:

15

10

- 0.5 mg A7/9 Amplifikat
- 0.25 mg A8/10 Amplifikat

Das Auffüllen der 3'Enden (30 min bei 30_C) erfolgte in einem 20 ml Reaktionsansatz, in dem enthalten war:

- 17.6 m gA7/9 und A8/10-Annealingsreaktion (hergestellt wie oben beschrieben)
- 50 mM dNTPs
- 2 ml 1X Klenow Puffer
- 25 2U Klenow Enzym

Die Nukleinsäure codierend für die modifizierte Promoterversion AP3P wurde mittels PCR unter Verwendung eines sense spezifischen Primers (PR7 SEQ ID NO: 33) und eines antisense spezifischen Primers (PR10 SEQ ID NO: 36) amplifiziert.

30

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

35

- 1 ml Annealingsreaktion (hergestellt wie oben beschrieben)

- 0.25 mM dNTPs
- 0.2 mM PR7 (SEQ ID NO: 33)
- 0.2 mM PR10 (SEQ ID NO: 36)
- 5 ml 10X PCR-Puffer (Stratagene)
- 5 0.25 ml Pfu Taq Polymerase (Stratagene)
 - 28.8 ml Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

15

20

25

30

Die PCR-Amplifikation mit SEQ ID NO: 33 und SEQ ID NO: 36 resultierte in einem 778 Bp Fragment das für die modifizierte Promoterversion AP3P codiert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971, Region 10200 bis 9298 identische Sequenz, wobei die interne Region 9285 bis 9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 771 Bp SacI-HindIII Fragmentes aus pTAP3P und Ligierung in den SacI-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heisst pJAP3P.

Zur Herstellung einer Expressionskassette pJAP3PKETO2 wurde das 1027 Bp SpHl-Fragment KETO2 in den SpHl geschnittenen Vektor pJAP3P kloniert. Der Klon, der das Fragment KETO2 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJAP3PKETO2.

Zur Herstellung einer Expressionskassetten pJAP3PKETO4 wurde das 1032 Bp SpHI-35 EcoRI Fragment KETO4 (in Beispiel 3 beschrieben) in den SpHI-EcoRI geschnittenen Vektor pJAP3P kloniert. Der Klon, der das Fragment KETO4 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJAP3PKETO4.

Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der AP3P-kontrollierten Ketolase aus *Haematococcus pluvialis* in *Tagetes erecta* erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

Zur Herstellung des Expressionsvektors pS5AP3PKETO2 wurde das 2.8 KB bp Sacl-Xhol Fragment aus pJAP3PKETO2 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 4, Konstruktkarte). In der Abbildung 4 beinhaltet Fragment *AP3P* den modifizierten AP3P Promoter (771 bp), Fragment *rbcS* das rbcS Transitpeptid aus Erbse (204 bp), Fragment *KETO2* (1027 bp) die gesamte Primärsequenz codierend für die *Haematococcus pluvialis* Ketolase, Fragment *term* (761 Bp) das Polyadenylierungssignal von CaMV

15

10

5

Beispiel I.5.B:

Herstellung von Expressionsvektoren zur konstitutiven Expression der *Nostoc sp. PCC* 7120 Ketolase in *Tagetes erecta*.

- Die Expression der Ketolase aus *Nostoc* in *Tagetes erecta* erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin NADPH Oxidoreductase) aus *Arabidopsis thaliana*. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).
- Das DNA Fragment, das die FNR Promotorregion -635 bis –1 aus *Arabidopsis thaliana* beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus *Arabidopsis thaliana* isoliert) sowie der Primer FNR-1 (SEQ ID No.90) und FNR-2 (SEQ ID No. 91) hergestellt.
- 30 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das FNR-Promotorfragment FNR1-2 (-635 bis -1) beinhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 35 100 ng genomischer DNA aus A.thaliana
 - 0.25 mM dNTPs

- 0.2 mM FNR-1 (SEQ ID No. 90)
- 0.2 mM FNR-2 (SEQ ID No. 91)
- 5 ul 10X PCR-Puffer (Stratagene)
- 0.25 ul Pfu Polymerase (Stratagene)
- 5 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

10 35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

Das 653 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pFNR erhalten.

Sequenzierung des Klons pFNR bestätigte eine Sequenz, die mit einem Sequenzabschnitt auf Chromosom 5 von Arabidopsis thaliana (Datenbankeintrag AB011474) von Position 70127 bis 69493 übereinstimmt. Das Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert.

Dieser Klon heisst pFNR und wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 635 bp SacI-HindIII Fragmentes aus pFNR und Ligierung in den SacI-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter FNR anstelle des ursprünglichen Promoters d35S enthält, heisst pJITFNR.

Zur Herstellung einer Expressionskassette pJFNRNOST wurde das 805 bp SpHI-Fragment NOSTF-G (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor pJITFNR kloniert. Der Klon, der das Fragment NOSTF-G in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJFNRNOST.

30

20

25

Die Herstellung einer Expressionskassette für die *Agrobacterium*-vermittelte Transformation des Expressionsvektor mit der Ketolase aus *Nostoc* in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

Zur Herstellung des Tagetes-Expressionsvektors pS5FNRNOST wurde das 2.4 Kb Sacl-Xhol Fragment (partielle Sacl Hydrolyse) aus pJFNRNOST mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 5, Konstruktkarte). In der Abbildung 5 beinhaltet Fragment FNR Promotor den duplizierten FNR Promotor (655 bp), Fragment rbcS Transit Peptid das rbcS Transitpeptid aus Erbse (204 bp), Fragment Nost Ketolase (799 bp) die gesamte Primärsequenz, kodierend für die Nostoc Ketolase, Fragment 35S Terminator (761 bp) das Polyadenylierungssignal von CaMV.

Beispiel I.5C:

20

25

Herstellung von Expressionsvektoren zur blütenspezifischen Expression der *Nostoc sp.*15 *PCC 7120* Ketolase in *Tagetes erecta*.

Die Expression der Ketolase aus *Nostoc* in Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle einer modifizierten Version AP3P des blütenspezifischen Promoters AP3 aus Arabidopsis thaliana (AL132971: Nukleotidregion 9298-10200; Hill et al. (1998) Development 125: 1711-1721).

Das DNA Fragment, das die AP3 Promoterregion -902 bis +15 aus Arabidopsis thaliana beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis thaliana isoliert) sowie der Primer AP3-1 (SEQ ID No.93) und AP3-2 (SEQ ID No. 94) hergestellt.

Die PCR-Bedingungen waren die folgenden:

- Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (-902 bis +15) beinhaltet, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:
 - 100 ng genomischer DNA aus A.thaliana
 - 0.25 mM dNTPs
- 35 0.2 mM AP3-1 (SEQ ID No. 93)
 - 0.2 mM AP3-2 (SEQ ID No. 94)

- 5 ul 10X PCR-Puffer (Stratagene)
- 0.25 ul Pfu Polymerase (Stratagene)
- 28.8 ul Aq. Dest.
- 5 Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
 - 1X 94°C 2 Minuten
 - 35X 94°C 1 Minute

50°C 1 Minute

10 72°C 1 Minute

1X 72°C 10 Minuten

Das 929 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pAP3 erhalten.

Sequenzierung des Klons pAP3 bestätigte eine Sequenz, die sich lediglich in durch eine Insertion (ein G in Position 9765 der Sequenz AL132971) und einen Basenaustausch (ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3 Sequenz (AL132971, Nukleotidregion 9298-10200) unterscheidet. Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Arabidopsis thaliana Pflanzen.

Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids pAP3 hergestellt. Die Region 10200 - 9771 wurde mit den Primern AP3-1 (SEQ ID No. 93) und Primern AP3-4 (SEQ ID No. 96) amplifiziert (Amplifikat A1/4), die Region 9526-9285 wurde mit den AP3-3 (SEQ ID No. 95) und AP3-2 (SEQ ID No. 94) amplifiziert (Amplifikat A2/3).

30 Die PCR-Bedingungen waren die folgenden:

Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die die Regionen Region 10200 - 9771 und Region 9526-9285 des AP3 Promoters beinhalten, erfolgte in 50 ul Reaktionsansätzen, in denen enthalten war:

15

20

25

- 100 ng AP3 Amplifikat (oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM sense Primer (AP3-1 SEQ ID No. 93 bzw. AP3-3 SEQ ID No. 95)
- 0.2 mM antisense Primer (AP3-4 SEQ ID No. 96 bzw. AP3-2 SEQ ID No. 94)
- 5 5 ul 10X PCR-Puffer (Stratagene)
 - 0.25 ul Pfu Taq Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

10

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

15 1X 72°C 10 Minuten

Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A1/4 und A2/3, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des AP3 Promoters, AP3P, in dem die Positionen 9670 - 9526 deletiert sind. Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) beider Amplifikate A1/4 und A2/3 erfolgte in einem 17.6 ul Reaktionsansatz, in dem enthalten war:

25

20

- 0.5 ug A1/4 Amplifikat
- 0.25 ug A2/3 Amplifikat

Das Auffüllen der 3'-Enden (30 min bei 30°C) erfolgte in einem 20 ul Reaktionsansatz, in dem enthalten war:

30

- 17.6 ul A1/4 und A2/3-Annealingsreaktion (hergestellt wie oben beschrieben)
- 50 uM dNTPs
- 2 ul 1X Klenow Puffer
- 2U Klenow Enzym

35

Die Nukleinsäure kodierend für die modifizierte Promoterversion AP3P wurde mittels PCR unter Verwendung eines sense spezifischen Primers (AP3-1 SEQ ID No. 93) und eines antisense spezifischen Primers (AP3-2 SEQ ID No. 94) amplifiziert.

5 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 10 1 ul Annealingsreaktion (hergestellt wie oben beschrieben)
 - 0.25 mM dNTPs
 - 0.2 mM AP3-1(SEQ ID No. 93)
 - 0.2 mM AP3-2 (SEQ ID No. 94)
 - 5 ul 10X PCR-Puffer (Stratagene)
- 15 0.25 ul Pfu Taq Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

20 1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

25

30

Die PCR-Amplifikation mit SEQ ID No. 93 (AP3-1) und SEQ ID No. 94 (AP3-2) resultierte in einem 783 Bp Fragment, das für die modifizierte Promoterversion AP3P kodiert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert und das Plasmid pAP3P erhalten. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971, Region 10200-9298 identische Sequenz, wobei die interne Region 9285 - 9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 783 Bp SacI-HindIII Fragmentes aus pAP3P und Ligierung in den SacI-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heisst pJI-TAP3P.Zur Herstellung einer Expressionskassette pJAP3NOST wurde das 805 Bp SpHI-Fragment NOSTF-G (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor pJITAP3P kloniert. Der Klon, der das Fragment NOSTF-G in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJAP3PNOST.

Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der AP3P-kontrollierten Ketolase aus Nostoc in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

Zur Herstellung des Expressionsvektors pS5AP3PNOST wurde das 2.6 KB bp Sacl-Xhol (partielle Sacl Hydrolyse) Fragment aus pS5AP3PNOST mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 6, Konstruktkarte). In der Abbildung 6 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (783 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (207 bp), Fragment NOSTF-G (792 bp) die gesamte Primärsequenz codierend für die Nostoc Ketolase, Fragment term (795 bp) das Polyadenylierungssignal von CaMV.

- 20

25

30

35

15

5

Beispiel I.6:

Herstellung transgener Tagetes Pflanzen

Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige and Skoog, Physiol. Plant. 15(1962), 473-497) pH 5,8, 2 % Saccharose) aufgelegt. Die Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18 bis 28_C/20-200 mE/3 bis 16 Wochen, bevorzugt jedoch bei 21_C, 20 bis 70 mE, für 4 bis 8 Wochen.

Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10 bis 60 mm² werden im Verlaufe der Präparation in flüssigem MS-Medium bei Raumtemperatur für maximal 2 h aufbewahrt.

Ein beliebiger Agrobakterium tumefaciens Stamm, bevorzugt aber ein supervirulenter Stamm, wie z.B. EHA105 mit einem entsprechenden Binärplasmid, das ein Selektionsmarkergen (bevorzugt bar oder pat) sowie ein oder mehrere Trait- oder Reporter-

gene tragen kann wird (beispielsweise pS5KETO2 und pS5AP3PKETO2), über Nacht angezogen und für die Co-Kultivierung mit dem Blattmaterial verwendet. Die Anzucht des Bakterienstammes kann wie folgt erfolgen: Eine Einzelkolonie des entsprechenden Stammes wird in YEB (0,1 % Hefeextrakt, 0,5 % Rindfleischextrakt, 0,5 % Pepton, 0,5 % Saccharose, 0,5 % Magnesiumsulfat x 7 H₂0) mit 25 mg/l Kanamycin angeimpft und bei 28_C für 16 bis 20 h angezogen. Anschließend wird die Bakteriensuspension durch Zentrifugation bei 6000 g für 10 min geerntet und derart in flüssigem MS Medium resuspendiert, dass eine OD₆₀₀ von ca. 0,1 bis 0,8 entstand. Diese Suspension wird für die C-Kultivierung mit dem Blattmaterial verwendet.

10

15

20

25

5

Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbewahrt worden sind, durch die Bakteriensuspension ersetzt. Die Inkubation der Blättchen in der Agrobakteriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur. Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8 % Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/l Benzylaminopurin (BAP) sowie 1 mg/l Indolylessigsäure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos. Die Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, dabei können folgende Bedingungen angewendet werden: Lichtintensität: 30 bis 80 mMol/m² x sec, Temperatur: 22 bis 24°C, hell/dunkel Wechsel von 16/8 Stunden. Anschließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zusätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/l ist für diesen Zweck sehr geeignet. Als zweite selektive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/l selektiert sehr effizient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfahrens sind denkbar.

30

35

Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medium bis sich Sprossknospen und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/l Indolylbuttersäure (IBA) und 0,5 mg/l Gibberillinsäure GA₃, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.

Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:

- Bevor die Explantate mit den Bakterien infiziert werden, können sie für 1 bis 12
 Tage, bevorzugt 3 bis 4, auf das oben beschriebene Medium für die Co-Kultur vorinkubiert werden. Anschließend erfolgt die Infektion, Co-Kultur und selektive Regeneration wie oben beschrieben.
- Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenkt
 werden. Dadurch wird die Kontrolle des Agrobakterienwachstums verbessert.
 - Die Zugabe von AgNO₃ (3 10 mg/l) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.
- Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a.m., wirken sich positiv auf die Kultur aus.
- Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung fin den. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positioniert werden inkubiert werden.

Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Expressionskonstrukten folgende Linien erhalten:

Mit pS5KETO2 wurde beispielsweise erhalten: cs18-1 und cs18-2, mit pS5AP3PKETO2 wurde beispielsweise erhalten: cs19-1, cs19-2 und cs19-3. Mit pS5FNRNOST wurde beispielsweise erhalten: ms 103-1, ms103-2, ms103-3, mit pS5AP3NOST wurde beispielsweise erhalten: ms 104-1, ms104-2, ms104-3.

Beispiel I.8

25

30

Charakterisierung der transgenen Pflanzenblüten

Beispiel 1.8.1

35 Trennung von Carotinoidestern in Blütenblättern transgener Pflanzen

10

20

30

35

Allgemeine Arbeitsvorschrift:

Die Blütenblätter der transgenen Pflanzen werden in flüssigem Stickstoff gemörsert und das Petalenpulver (etwa 40 mg) mit 100 % Aceton extrahiert (dreimal je 500 ml). Das Lösungsmittel wird evaporiert und die Carotinoide in 100 bis 200 ml Petrolether/Aceton (5:1, v/v) resuspendiert.

Die Carotinoide werden in konzentrierter Form mittels Dünnschicht-Chromatographie (TLC) auf Silica60 F254- Platten (Merck) in einem organischen Laufmittel (Petrolether/Aceton; 5:1) entsprechend ihrer Phobizität aufgetrennt. Gelbe (Xanthophyllester), rote (Ketocarotinoidester) und orange Banden (Mischung aus Xanthophyll- und Ketocarotinoidestern) auf der TLC werden ausgekratzt.

Die an Silica gebundenen Carotinoide werden dreimal mit 500 ml Aceton eluiert, das

Lösungsmittel evaporiert und die Carotinoide mittels HPLC aufgetrennt und identifiziert.

Mittels einer C30-reverse phase-Säule kann zwischen Mono- und Diestern der Carotinoide unterschieden werden. HPLC-Laufbedingungen waren nahezu identisch mit einer publizierten Methode (Frazer et al.(2000), Plant Journal 24(4): 551-558). Eine Identifizierung der Carotinoide ist aufgrund der UV-VIS-Spektren möglich.

Beispiel I.9

Enzymatische Hydrolyse von Carotinoidestern und Identifizierung der Carotinoide

25 Allgemeine Arbeitsvorschrift

Gemörsertes Petalenmaterial (50 bis 100 mg Frischgewicht) wird mit 100 % Aceton (dreimal 500 ml; jeweils etwa 15 Minuten schütteln) extrahiert. Das Lösungsmittel wird evaporiert. Carotinoide werden anschließend in 400 ml Aceton aufgenommen (Absorption bei 475 nm zwischen 0.75 und 1,25) und 5 min im Ultraschall-Bad behandelt. Der Carotinoid-Extrakt wird mit 300 ml 50 mM Tris-HCl-Puffer (pH 7,0) gemischt und 5 bis 10 Minuten bei 37C inkubiert. Danach erfolgt die Zugabe von 100 bis 200 ml Cholesterol-Esterase (Stammlösung: 6,8 units/ml einer Cholesterol-Esterase von Pseudomonas spec.). Nach 8 bis 12 Stunden wird nochmals 100 bis 200 ml Enzym zugegeben; Hydrolyse der Ester erfolgt innerhalb von 24 Stunden bei Inkubation bei 37C. Nach Zugabe 0.35 g Na2S04x10H20 und 500 ml Petrolether wird gut gemischt und zentrifugiert

(3 Minuten; 4500 g). Petrolether-Phase wird abgezogen und nochmals mit 0,35 g Na2S04x10H20 (anhydrous) gemischt. Zentrifugation für 1 Minute bei 10000 g. Petrolether wird evaporiert und freie Carotinoide werden in 100 bis 120 ml Aceton aufgenommen. Mittels HPLC und C30-reverse phase-Säule können freie Carotinoide aufgrund von Retentionszeit und UV-VIS-Spektren identifiziert werden.

Beispiel I.10:

5

15

20

25

Herstellung eines Klonierungsvektors zur Herstellung von Inverted-Repeat-Expressionskassetten für die blütenspezifischen Expression von Epsilon-cyclase 10 dsRNAs in *Tagetes erecta*

Die Expression von Inverted-Repeat Transkripten bestehend aus Fragmenten der Epsilon-Cyclase in *Tagetes erecta* erfolgte unter Kontrolle einer modifizierten Version AP3P des blütenspezifischen Promoters AP3 aus *Arabidopsis thaliana* (AL132971: Nukleotidregion 9298 bis 10200; Hill et al. (1998) Development 125: 1711 bis 1721).

Das Inverted-Repeat Transkript enthält jeweils ein Fragment in korrekter Orientierung (Sense-Fragment) und ein sequenzidentisches Fragment in entgegengesetzter Orientierung (Antisense-Fragment), die durch ein funktionelles Intron, das PIV2 Intron des ST-LH1 Genes aus Kartoffel (Vancanneyt G. et al.(1990) Mol Gen Genet 220: 245-50) mit einander verbunden sind.

Die cDNA, die für den AP3 Promoter (-902 bis +15) aus *Arabidopsis thaliana* codiert, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethode aus *Arabidopsis thaliana* isoliert) und der Primer PR7 (SEQ ID NO: 49) und PR10 (SEQ ID NO: 52) hergestellt.

Die PCR-Bedingungen waren die folgenden:

- Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (-902 bis +15) codiert, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:
 - 1 ml genomischer DNA aus A.thaliana (1:100 verd hergestellt wie oben beschrieben)
- 35 0.25 mM dNTPs
 - 0.2 mM PR7 (SEQ ID NO: 49)

- 0.2 mM PR10 (SEQ ID NO: 52)
- 5 ml 10X PCR-Puffer (Stratagene)
- 0.25 ml Pfu Polymerase (Stratagene)
- 28.8 ml Aq. Dest.

5

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X	94_C	2 Minuten
	35X	94_C	1 Minute
10		50_C	1 Minute
		72_C	1 Minute
	1X	72_C	10 Minuten

Das 922 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCRKlonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pTAP3 erhalten. Sequenzierung des Klons pTAP3 bestätigte eine Sequenz, die sich lediglich in durch eine
Insertion (ein G in Position 9765 der Sequenz AL132971) und einen Basenaustausch
(ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3
Sequenz (AL132971, Nukleotidregion 9298 bis 10200) unterscheidet (Position 33: T
statt G, Position 55: T statt G). Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz in der verwendeten Arabidopsis thaliana Pflanze.

Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids pTAP3 hergestellt. Die Region 10200 bis 9771 wurde mit den Primern PR7 (SEQ ID NO: 49) und Primern PR9 (SEQ ID NO: 51) amplifiziert (Amplifikat A7/9), die Region 9526 bis 9285 wurde mit den PR8 (SEQ ID NO: 50) und PR10 (SEQ ID NO: 52) amplifiziert (Amplifikat A8/10).

30 Die PCR-Bedingungen waren die folgenden:

Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die für die Regionen Region 10200 bis 9771 und 9526 bis 9285 des AP3 Promoters codieren, erfolgte in 50 ml Reaktionsansätzen, in denen enthalten war:

35

25

. 100 ng AP3 Amplifikat (oben beschrieben)

- 0.25 mM dNTPs
- 0.2 mM PR7 (SEQ ID NO: 49) bzw. PR8 (SEQ ID NO: 50)
- 0.2 mM PR9 (SEQ ID NO: 51) bzw. PR10 (SEQ ID NO: 52)
- 5 ml 10X PCR-Puffer (Stratagene)
- 5 0.25 ml Pfu Taq Polymerase (Stratagene)
 - 28.8 ml Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

15

20

Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A7/9 und A8/10, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des AP3 Promoters, AP3P, in dem die Positionen 9670 bis 9526 deletiert sind. Die Denaturierung (5 min bei 95_C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40_C) beider Amplifikate A7/9 und A8/10 erfolgte in einem 17.6 ml Reaktionsansatz, in dem enthalten war:

- 0.5 mg A7/9
- 25 0.25 mg A8/10

Das Auffüllen der 3'Enden (30 min bei 30_C) erfolgte in einem 20 ml Reaktionsansatz, in dem enthalten war:

- 30 17.6 ml A7/9 und A8/10-Annealingsreaktion (hergestellt wie oben beschrieben)
 - 50 mM dNTPs
 - 2 ml 1X Klenow Puffer
 - 2U Klenow Enzym

Die Nukleinsäure codierend für die modifizierte Promoterversion AP3P wurde mittels PCR unter Verwendung eines sense spezifischen Primers (PR7 SEQ ID NO: 49) und eines antisense spezifischen Primers (PR10 SEQ ID NO: 52) amplifiziert.

5 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 10 1 ml Annealingsreaktion (hergestellt wie oben beschrieben)
 - 0.25 mM dNTPs
 - 0.2 mM PR7 (SEQ ID NO: 49)
 - 0.2 mM PR10 (SEQ ID NO: 52)
 - 5 ml 10X PCR-Puffer (Stratagene)
- 15 0.25 ml Pfu Taq Polymerase (Stratagene)
 - 28.8 ml Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

20 1X 94_C 2 Minuten

35X 94_C 1 Minute

50_C 1 Minuten

72_C 1 Minuten

1X 72_C 10 Minuten

25

30

Die PCR-Amplifikation mit PR7, SEQ ID NO: 49 und PR10 SEQ ID NO: 52 resultierte in einem 778 Bp Fragment das für die modifizierte Promoterversion AP3P codiert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971, Region 10200 bis 9298 identische Sequenz, wobei die interne Region 9285 bis 9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 771 Bp Sacl-HindIII Fragmentes aus pTAP3P und Ligierung in den Sacl-HindIII geschnittenen Vektor pJIT117. Der Klon, der

den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heisst pJAP3P.

Ein DNA-Fragment, das das PIV2 Intron des Gens ST-LS1 enthält wurde mittels PCR unter Verwendung von Plasmid-DNA p35SGUS INT (Vancanneyt G. et al.(1990) Mol Gen Genet 220: 245-50)sowie der Primer PR40 (Seq ID NO: 54) und Primer PR41 (Seq ID NO: 55) hergestellt.

Die PCR-Bedingungen waren die folgenden:

10

Die PCR zur Amplifikation der Sequenz des Intron PIV2 des Gens ST-LS1, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 1 ml p35SGUS INT
- 15 0.25 mM dNTPs
 - 0.2 mM PR40 (SEQ ID NO: 54)
 - 0.2 mM PR41 (SEQ ID NO: 55)
 - 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Taq Polymerase (TAKARA)
- 20 28.8 ml Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94_C2 Minuten

25 35X 94_C 1 Minute

53_C 1 Minuten

72_C 1 Minuten

1X 72_C 10 Minuten

Die PCR-Amplifikation mit PR40 und PR41 resultierte in einem 206 Bp-Fragment. Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pBluntll (Invitrogen) kloniert und der Klon pBluntll-40-41 erhalten. Sequenzierungen dieses Klons mit dem Primer SP6 bestätigte eine Sequenz, die identisch ist mit der entsprechenden Sequenz aus dem Vektor p35SGUS INT.

35

Dieser Klon wurde daher für die Klonierung in den Vektor pJAP3P (oben beschrieben).

20

25

30

35

Die Klonierung erfolgte durch Isolierung des 206 Bp Sall-BamHI Fragmentes aus pBluntII-40-41 und Ligierung mit dem Sall-BamHI geschnittenen Vektor pJAP3P. Der Klon, der das Intron PIV2 des Gens ST-LS1 in der korrekten Orientierung anschließend an das 3'Ende des rbcs Transitpeptides enthält, heisst pJAI1 und ist geeignet, Expressionskassetten für die blütenspezifische Expression von Inverted-Repeat Transkripten herzustellen.

In der Abbildung 7 beinhaltet Fragment *AP3P* den modifizierten AP3P Promoter (771 bp), Fragment *rbcs* das rbcS Transitpeptid aus Erbse (204 bp), Fragment *intron* das Intron PIV2 des Kartoffel-Gens ST-LS1, und Fragment *term* (761 Bp) das Polyadenylierungssignal von CaMV.

Beispiel I.11

Herstellung von Inverted-Repeat-Expressionskassetten für die blütenspezifische Expression von Epsilon-cyclase dsRNAs in *Tagetes erecta* (gerichtet gegen die 5'Region der Epsilon-Cyclase cDNA)

Die Nukleinsäure, die die 5'terminale 435bp Region der Epsilon-Cyclase cDNA (Genbank accession NO: AF251016) enthält, wurde mittels polymerase chain reaction (PCR) aus *Tagetes erecta* cDNA unter Verwendung eines sense spezifischen Primers (PR42 SEQ ID NO: 56) und eines antisense spezifischen Primers (PR43 SEQ ID NO: 57) amplifiziert. Die 5'terminale 435 bp Region der Epsilon-Cyclase cDNA aus *Tagetes erecta* setzt sich zusammen aus 138 bp 5'Nicht-translatierter Sequenz (5'UTR) und 297 bp der dem N-Terminus entsprechenden kodierenden Region.

Für die Präparation von Total-RNA aus Blüten von Tagetes wurden 100mg der gefrorenen, pulverisierten Blüten in ein Reaktionsgefäß überführt und in 0.8 ml Trizol-Puffer (LifeTechnologies) aufgenommen. Die Suspension wurde mit 0.2 ml Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75% Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt. Für die cDNA-Synthese wurden 2.5 ug Gesamt-RNA für 10 min bei 60_C denaturiert, für 2 min auf Eis abge-

kühlt und mittels eines cDNA-Kits (Ready-to-go-you-prime-beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PR17 SEQ ID NO: 53) in cDNA umgeschrieben.

5 Die Bedingungen der anschließenden PCR-Reaktionen waren die folgenden:

Die PCR zur Amplifikation des PR42-PR43 DNA-Fragmentes, das die 5'terminale 435bp Region der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

10

- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM PR42 (SEQ ID NO: 56)
- 0.2 mM PR43 (SEQ ID NO: 57)
- 15 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Taq Polymerase (TAKARA)
 - 28.8 ml Aq. Dest.

Die PCR zur Amplifikation des PR44-PR45 DNA-Fragmentes, das die 5'terminale 435 bp Region der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 25 0.2 mM PR44 (SEQ ID NO: 58)
 - 0.2 mM PR45 (SEQ ID NO: 59)
 - 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Taq Polymerase (TAKARA)
 - 28.8 ml Aq. Dest.

30

Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:

10

25

30

35

1X 72_C 10 Minuten

Die PCR-Amplifikation mit Primer PR42 und PR43 resultierte in einem 443 Bp-Fragment, die PCR-Amplifikation mit Primer PR44 und PR45 resultierte in einem 444 Bp-Fragment.

Die beiden Amplifikate, das PR42-PR43 (HindIII-Sall sense) Fragment und das PR44-PR45 (EcoRI-BamHI antisense) Fragment, wurden unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR-BluntII (Invitrogen) kloniert. Sequenzierungen mit dem Primer SP6 bestätigten jeweils eine zur publizierten Sequenz AF251016 (SEQ ID NO: 38) identische Sequenz abgesehen von den eingeführten Restriktionsstellen. Diese Klone wurde daher für die Herstellung eines Inverted-Repeat Konstrukts in dem Klonierungsvektor pJAI1 (siehe Beispiel I.10) verwendet.

Der erste Klonierungsschritt erfolgte durch Isolierung des 444 Bp PR44-PR45 BamHl-EcoRI Fragmentes aus dem Klonierungsvektor pCR-BluntII (Invitrogen) und Ligierung mit dem BamHl-EcoRI geschnittenen Vektor pJAI1. Der Klon, der 5'terminale Region der Epsilon-Cyclase in der antisense Orientierung enthält, heisst pJAI2. Durch die Ligation entsteht eine transkriptionelle Fusion zwischen dem antisense Fragment der 5'terminalen Region der Epsilon-Cyclase und dem Polyadenylierungssignal aus CaMV.

Der zweite Klonierungsschritt erfolgte durch Isolierung des 443 Bp PR42-PR43 HindIII-Sall Fragmentes aus dem Klonierungsvektor pCR-BluntII (Invitrogen) und Ligierung mit dem HindIII-Sall geschnittenen Vektor pJAI2. Der Klon, der 435 bp 5'terminale Region der Epsilon-Cyclase cDNA in der sense Orientierung enthält, heisst pJAI3. Durch die Ligation entsteht eine transkriptionelle Fusion zwischen dem AP3P und dem sense Fragment der 5'terminalen Region der Epsilon-Cyclase.

Für die Herstellung einer Inverted-Repeat Expressionskassette unter Kontrolle des CHRC-Promoters wurde ein CHRC-Promoterfragment unter Verwendung genomischer DNA aus Petunie (nach Standardmethoden hergestellt) sowie der Primer PRCHRC5 (SEQ ID NO: 76) und PRCHRC3 (SEQ ID NO: 77) amplifiziert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen des resultierenden Klons pCR2.1-CHRC mit den Primern M13 und T7 bestätigten eine zur Sequenz AF099501 identische Sequenz. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJAI3 verwendet.

Die Klonierung erfolgte durch Isolierung des 1537 bp SacI-HindIII Fragments aus pCR2.1-CHRC und Ligierung in den SacI-HindIII geschnittenen Vektor pJAI3. Der Klon, der den Promoter CHRC anstelle des ursprünglichen Promoters AP3P enthält heisst pJCI3.

5

Die Herstellung der Expressionsvektoren für die Agrobacterium-vermittelte Transformation der AP3P- bzw. CHRC-kontrollierten Inverted-Repeat Transkripts in *Tagetes erecta* erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

Zur Herstellung des Expressionsvektors pS5Al3 wurde das 2622 bp SacI-Xhol Fragment aus pJAl3 mit dem SacI-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 8, Konstruktkarte).

In der Abbildung 8 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment 5sense die 5'Region der Epsilon-Cyclase aus Tagetes erecta (435 bp) in Sense-Orientierung, Fragment intron das Intron PIV2 des Kartoffel-Gens ST-LS1, Fragment 5anti die 5'Region der Epsilon- cyclase aus Tagetes erecta (435 bp) in antisense Orientierung, und Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.

20

Zur Herstellung des Expressionsvektors pS5Cl3 wurde das 3394 bp Sacl-Xhol Fragment aus pJCl3 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 9, Konstruktkarte).

25

In der Abbildung 9 beinhaltet Fragment *CHRC* den Promoter (1537 bp), Fragment *5sense* die 5'Region der Epsilon-Cyclase aus *Tagetes erecta* (435 bp) in Sense-Orientierung, Fragment *intron* das Intron PIV2 des Kartoffel-Gens ST-LS1, Fragment *5anti* die 5'Region der Epsilon-Cyclase aus *Tagetes erecta* (435 bp) in Antisense-Orientierung, und Fragment *term* (761 Bp) das Polyadenylierungssignal von CaMV.

30

Beispiel I.12

Herstellung einer Inverted-Repeat-Expressionskassette für die blütenspezifische Expression von Epsilon-cyclase dsRNAs in *Tagetes erecta* (gerichtet gegen die 3'Region der Epsilon-Cyclase cDNA)

35

Die Nukleinsäure, die die 3'terminale Region (384 bp) der Epsilon-Cyclase cDNA (Genbank accession NO: AF251016) enthält wurde mittels polymerase chain reaction (PCR) aus *Tagetes erecta* cDNA unter Verwendung eines sense spezifischen Primers (PR46 SEQ ID NO: 60) und eines antisense spezifischen Primers (PR47 SEQ ID NO: 61) amplifiziert. Die 3'terminale Region (384 bp) der Epsilon-Cyclase cDNA aus *Tagetes erecta* setzt sich zusammen aus 140 bp 3'-Nicht-translatierter Sequenz (3'UTR) und 244 bp der dem C-Terminus entsprechenden kodierenden Region.

Die Präparation von Total-RNA aus Blüten von Tagetes erfolgte wie unter Beispiel I.11 beschrieben.

Die cDNA Synthese erfolgte wie unter Beispiel I.11 unter Verwendung des antisense spezifischen Primers PR17 (SEQ ID NO: 53) beschrieben.

15 Die Bedingungen der anschließenden PCR-Reaktionen waren die folgenden:

Die PCR zur Amplifikation des PR46-PR457 DNA-Fragmentes, das die 3'terminale 384 bp Region der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

20

5

- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM PR46 (SEQ ID NO: 60)
- 0.2 mM PR47 (SEQ ID NO: 61)
- 25 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Taq Polymerase (TAKARA)
 - 28.8 ml Aq. Dest.

Die PCR zur Amplifikation des PR48-PR49 DNA-Fragmentes, das die 5'terminale 384 bp Region der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 35 0.2 mM PR48 (SEQ ID NO: 62)
 - 0.2 mM PR49 (SEQ ID NO: 63)

- 5 ml 10X PCR-Puffer (TAKARA)
- 0.25 ml R Taq Polymerase (TAKARA)
- 28.8 ml Aq. Dest.
- 5 Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:

1X 94_C 2 Minuten

35X 94_C 1 Minute

58_C 1 Minuten

10 72_C 1 Minuten

15

20

35

1X 72_C 10 Minuten

Die PCR-Amplifikation mit SEQ ID NO: 60 und SEQ ID NO: 61 resultierte in einem 392 Bp-Fragment, die PCR-Amplifikation mit SEQ ID NO: 62 und SEQ ID NO: 63 resultierte in einem 396 Bp-Fragment.

Die beiden Amplifikate, das PR46-PR47 Fragment und das PR48-PR49 Fragment, wurden unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR-BluntII (Invitrogen) kloniert. Sequenzierungen mit dem Primer SP6 bestätigten jeweils eine zur publizierten Sequenz AF251016 (SEQ ID NO: 38) identische Sequenz abgesehen von den eingeführten Restriktionsstellen. Diese Klone wurde daher für die Herstellung eines Inverted-Repeat Konstrukts in dem Klonierungsvektor pJAI1 (siehe Beispiel I.10) verwendet.

Der erste Klonierungsschritt erfolgte durch Isolierung des 396 Bp PR48-PR49 BamHlEcoRI Fragmentes aus dem Klonierungsvektor pCR-BluntII (Invitrogen) und Ligierung
mit dem BamHI-EcoRI geschnittenen Vektor pJAI1. Der Klon, der 3'terminale Region
der Epsilon-Cyclase in der antisense Orientierung enthält, heisst pJAI4. Durch die Ligation entsteht eine transkriptionelle Fusion zwischen dem Antisense-Fragment der
3'terminale Region der Epsilon-Cyclase und dem Polyadenylierungssignal aus CaMV.

Der zweite Klonierungsschritt erfolgte durch Isolierung des 392 Bp PR46-PR47 HindIII-Sall Fragmentes aus dem Klonierungsvektor pCR-BluntII (Invitrogen) und Ligierung mit dem HindIII-Sall geschnittenen Vektor pJAI4. Der Klon, der 392 bp 3'terminale Region der Epsilon-Cyclase cDNA in der sense Orientierung enthält, heisst pJAI5. Durch die

Ligation entsteht eine transkriptionelle Fusion zwischen dem AP3P und dem Sense-Fragment 3'terminale Region der Epsilon-Cyclase.

Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation des AP3P-kontrollierten Inverted-Repeat Transkripts in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900). Zur Herstellung des Expressionsvektors pS5AI5 wurde das 2523 bp SacI-Xhol Fragment aus pJAI5 mit dem SacI-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 10, Konstruktkarte).

In der Abbildung 10 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment 3sense die 3'region der Epsilon cyclase aus Tagetes erecta (435 bp) in sense Orientierung, Fragment intron das Intron IV2 des Kartoffel-Gens ST-LS1, Fragment 3anti die 3'region der Epsilon cyclase aus Tagetes erecta (435 bp) in antisense Orientierung, und Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.

15

5

Beispiel I.13

Klonierung des Epsilon-Cyclase Promoters

Ein 199 bp Fragment bzw. das 312 bp Fragment des Epsilon-Cyclase Promoters wurde durch zwei unabhängige Klonierungsstrategien, Inverse PCR (adaptiert Long et al.
Proc. Natl. Acad. Sci USA 90: 10370) und TAIL-PCR (Liu Y-G. et al. (1995) Plant J. 8:
457-463) unter Verwendung genomischer DNA (nach Standardmethode aus *Tagetes erecta*, Linie Orangenprinz, isoliert) isoliert.

Für den Inverse PCR-Ansatz wurden 2 ug genomische DNA in einem 25 ul Reaktionsansatz mit EcoRV und Rsal verdaut, anschließend auf 300 ml verdünnt und über Nacht
bei 16_C mit 3U Ligase religiert. Unter Verwendung der Primer PR50 (SEQ ID NO: 64)
und PR51 (SEQ ID NO: 65) wurde durch PCR Amplifikation ein Fragment hergestellt,
das, jeweils in Sense-Orientierung, 354 bp der Epsilon-Cyclase cDNA (Genbank Accession AF251016), ligiert an 300 bp des Epsilon-Cyclase Promoters sowie 70 bp des
5'terminalen Bereichs der cDNA Epsilon-Cyclase enthält (siehe Abbildung 11).

Die Bedingungen der PCR-Reaktionen waren die folgenden:

Die PCR zur Amplifikation des PR50-PR51 DNA-Fragmentes, das unter anderem das 312 bp Promoterfragment der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 5 1 ml Ligationsansatz (hergestellt wie oben beschrieben)
 - 0.25 mM dNTPs
 - 0.2 mM PR50 (SEQ ID NO: 64)
 - 0.2 mM PR51 (SEQ ID NO: 65)
 - 5 ml 10X PCR-Puffer (TAKARA)
- 10 0.25 ml R Taq Polymerase (TAKARA)
 - 28.8 ml Aq. Dest.

Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:

15 1X 94_C2 Minuten

35X 94_C 1 Minute

53_C 1 Minute

72_C 1 Minute

1X 72_C 10 Minuten

20

Die PCR-Amplifikation mit Primer PR50 und PR51 resultierte in einem 734 Bp-Fragment, das unter anderem das 312 bp Promoterfragment der Epsilon-Cyclase enthält (Abbildung 11).

Das Amplifikat, wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen mit den Primern M13 und T7 ergaben die Sequenz SEQ ID NO: 45. Diese Sequenz wurde in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz in der verwendeten *Tagetes erecta* Linie Orangenprinz.

30

Für den TAIL-PCR Ansatz wurden drei sukzessive PCR-Reaktionen mit jeweils unterschiedlichen gen-spezifischen Primern (nested primers) durchgeführt.

Die TAIL1-PCR erfolgte in einem 20 ml Reaktionsansatz, in dem enthalten war:

35

1 ng genomische DNA (hergestellt wie oben beschrieben)

- 0.2 mM jedes dNTPs
- 0.2 mM PR60 (SEQ ID NO: 66)
- 0.2 mM AD1 (SEQ ID NO: 69)
- 2 ml 10X PCR-Puffer (TAKARA)
- 5 0.5 U R Taq Polymerase (TAKARA)
 - mit Aq. Dest. auf 20 ml aufgefüllt
 - AD1 stellte dabei zunächst eine Mischung aus Primern der Sequenzen (a/c/g/t)tcga(g/c)t(a/t)t(g/c)g(a/t)gtt dar.

25

Die PCR-Reaktion TAIL1 wurden unter folgenden Zyklusbedingungen durchgeführt:

1X 93_C: 1 Minute, 95_C: 1 Minute

5X 94_C: 30 Sekunden, 62_C: 1 Minute, 72_C: 2.5 Minuten

15 1X 94_C: 30 Sekunden, 25_C: 3 Minuten, ramp to 72_C in 3 Minuten,

72_C: 2.5 Minuten

15X 94_C: 10 Sekunden, 68_C: 1 Minute, 72_C: 2.5 Minuten;

94_C: 10 Sekunden, 68_C: 1 Minute, 72_C: 2.5 Minuten;

94_C: 10 Sekunden, 29_C: 1 Minute, 72_C: 2.5 Minuten

20 1X 72_C: 5 Minuten

Die TAIL2-PCR erfolgte in einem 21 ml Reaktionsansatz, in dem enthalten war:

- 1 ml einer 1:50 Verdünnung des TAIL1-Reaktionsansatzes (hergestellt wie oben beschrieben)
 - 0.8 mM dNTP
 - 0.2 mM PR61 (SEQ ID NO: 67)
- 0.2 mM AD1 (SEQ ID NO: 69)
- 2 ml 10X PCR-Puffer (TAKARA)
- 30 0.5 U R Taq Polymerase (TAKARA)
 - mit Aq. Dest. auf 21 ml aufgefüllt

Die PCR-Reaktion TAIL2 wurde unter folgenden Zyklusbedingungen durchgeführt:

35 12X 94_C: 10 Sekunden, 64_C: 1 Minute, 72_C: 2.5 Minuten; 94_C: 10 Sekunden, 64_C: 1 Minute, 72_C: 2.5 Minuten;

94_C: 10 Sekunden, 29_C: 1 Minute, 72_C: 2.5 Minuten

1X 72_C: 5 Minuten

Die TAIL3-PCR erfolgte in einem 100 ml Reaktionsansatz, in dem enthalten war:

5

- 1 ml einer 1:10 Verdünnung des TAIL2-Reaktionsansatzes (hergestellt wie oben beschrieben)
- 0.8 mM dNTP
- 10 0.2 mM PR63 (SEQ ID NO: 68)
 - 0.2 mM AD1 (SEQ ID NO: 69)
 - 10 ml 10X PCR-Puffer (TAKARA)
 - 0.5 U R Taq Polymerase (TAKARA)
 - mit Aq. Dest. auf 100 ml aufgefüllt

15

Die PCR-Reaktion TAIL3 wurde unter folgenden Zyklusbedingungen durchgeführt:

20X 94_C: 15 Sekunden, 29_C: 30 Sekunden, 72_C: 2 Minuten 1X 72_C: 5 Minuten

20

Die PCR-Amplifikation mit Primer PR63 und AD1 resultierte in einem 280 Bp-Fragment, das unter anderem das 199 bp Promoterfragment der Epsilon-Cyclase enthält (Abbildung 12).

25

Das Amplifikat, wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen mit den Primern M13 und T7 ergaben die Sequenz SEQ ID NO: 46. Diese Sequenz ist identisch mit der Sequenz SEQ ID NO: 45, die mit der IPCR Strategie isoliert wurde und repräsentiert somit die Nukleotidsequenz in der verwendeten *Tagetes erecta* Linie Orangenprinz.

30

Der pCR2.1-Klon, der das 312 bp Fragment (SEQ ID NO: 45) des Epsilon-Cyclase Promoters, das durch die IPCR-Strategie isoliert wurde, enthält, heisst pTA-ecycP und wurde für die Herstellung der IR Konstrukte verwendet.

Beispiel I.14

Herstellung einer Inverted-Repeat-Expressionskassette für die blütenspezifische Expression von Epsilon-cyclase dsRNAs in *Tagetes erecta* (gerichtet gegen die Promoterregion der Epsilon-Cyclase cDNA).

5

Die Expression von Inverted-Repeat Transkripten bestehend aus Promoterfragmenten der Epsilon-cyclase in *Tagetes erecta* erfolgte unter Kontrolle einer modifizierten Version AP3P des blütenspezifischen Promoters AP3 aus *Arabidopsis* (siehe Beispiel I.10) oder des blütenspezifischen Promoters CHRC (Genbank accession NO: AF099501).

- Das Inverted-Repeat Transkript enthält jeweils ein Epsilon-Cyclase-Promoterfragment in korrekter Orientierung (Sense-Fragment) und ein sequenzidentisches Epsilon-Cyclase-Promoterfragment in entgegengesetzter Orientierung (Antisense-Fragment), die durch ein funktionelles Intron (siehe Beispiel I.10) mit einander verbunden sind.
- Die Promoterfragmente wurde mittels PCR unter Verwendung von Plasmid-DNA (Klon pTA-ecycP, siehe Beispiel I.13) und der Primer PR124 (SEQ ID NO: 70) und PR126 (SEQ ID NO: 72) bzw. der Primer PR125 (SEQ ID NO: 71) und PR127 (SEQ ID NO: 73) hergestellt.
- 20 Die Bedingungen der PCR-Reaktionen waren die folgenden:

Die PCR zur Amplifikation des PR124-PR126 DNA-Fragmentes, das das Promoter-fragment der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

25

- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM PR124 (SEQ ID NO: 70)
- 0.2 mM PR126 (SEQ ID NO: 72)
- 30 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Taq Polymerase (TAKARA)
 - 28.8 uml Aq. Dest.

Die PCR zur Amplifikation des PR125-PR127 DNA-Fragmentes, das das 312bp Promoterfragment der Epsilon-Cyclase enthält, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 1 ml cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM PR125 (SEQ ID NO: 71)
- 5 0.2 mM PR127 (SEQ ID NO: 73)
 - 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Taq Polymerase (TAKARA)
 - 28.8 ml Aq. Dest.
- 10 Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:

1X 94_C 2 Minuten
35X 94_C 1 Minute
53_C 1 Minuten
15 72_C 1 Minuten
1X 72_C 10 Minuten

25

Die PCR-Amplifikation mit Primer PR124 und PR126 resultierte in einem 358 Bp-Fragment, die PCR-Amplifikation mit Primer PR125 und PR127 resultierte in einem 20 361 Bp-Fragment.

Die beiden Amplifikate, das PR124-PR126 (HindIII-Sall sense) Fragment und das PR125-PR127 (EcoRI-BamHI antisense) Fragment, wurden unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR-BluntII (Invitrogen) kloniert. Sequenzierungen mit dem Primer SP6 bestätigten jeweils eine Sequenz, die abgesehen von den eingeführten Restriktionsstellen identisch ist zu SEQ ID NO: 45. Diese Klone wurden daher für die Herstellung eines Inverted-Repeat Konstrukts in dem Klonierungsvektor pJAI1 (siehe Beispiel I.10) verwendet.

Der erste Klonierungsschritt erfolgte durch Isolierung des 358 Bp PR124-PR126 HindlII-Sall Fragmentes aus dem Klonierungsvektor pCR-BluntII (Invitrogen) und Ligierung
mit dem BamHI-EcoRI geschnittenen Vektor pJAI1. Der Klon, das Epsilon-Cyclase
Promoterfragment in der sense Orientierung enthält, heisst cs43. Durch die Ligation
wird das Sense-Fragment des Epsilon-Cyclase Promoters zwischen den AP3P Promoter und das Intron eingefügt.

10

15

20

25

30

35

Der zweite Klonierungsschritt erfolgte durch Isolierung des 361Bp PR125-PR127 BamHI-EcoRI Fragmentes aus dem Klonierungsvektor pCR-BluntII (Invitrogen) und Ligierung mit BamHI-EcoRI geschnittenen Vektor cs43. Der Klon, der das Epsilon-Cyclase Promoterfragment in der antisense Orientierung enthält, heisst cs44. Durch die Ligation entsteht eine transkriptionelle Fusion zwischen dem Intron und dem Antisense-Fragment des Epsilon-Cyclase Promoters.

Für die Herstellung einer Inverted-Repeat Expressionskassette unter Kontrolle des CHRC-Promoters wurde ein CHRC-Promoterfragment unter Verwendung genomischer DNA aus Petunie (nach Standardmethoden hergestellt) sowie der Primer PRCHRC3' (SEQ ID NO: 77) und PRCHRC5' (SEQ ID NO: 76) amplifiziert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen des resultierenden Klons pCR2.1-CHRC mit den Primern M13 und T7 bestätigten eine zur Sequenz AF099501 identische Sequenz. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor cs44 verwendet.

Die Klonierung erfolgte durch Isolierung des 1537 bp SacI-HindIII Fragments aus pCR2.1-CHRC und Ligierung in den SacI-HindIII geschnittenen Vektor cs44. Der Klon, der den Promoter CHRC anstelle des ursprünglichen Promoters AP3P enthält heisst cs45.

Für die Herstellung einer Inverted-Repeat Expressionskassette unter Kontrolle zweier Promotoren, des CHRC-Promoter und des AP3P-Promoters, wurde der AP3P-Promoter in antisense Orientierung an den 3'Terminus des Epsilon-Cyclase antisense Fragmentes in cs45 kloniert. Das AP3P-Promoterfragments aus pJAI1 wurde unter Verwendung der Primer PR128 und PR129 amplifiziert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Die Sequenzierung mit den Primern M13 und T7 bestätigten eine zur Sequenz SEQ ID NO: 28 (AL132971) identische Sequenz. Dieser Klon pCR2.1-AP3PSX wurde für Herstellung einer Inverted-Repeat Expressionskassette unter Kontrolle zweier Promotoren verwendet.

Die Klonierung erfolgte durch Isolierung des 771 bp Sall-Xhol Fragments aus pCR2.1-AP3PSX und Ligierung in den Xhol geschnittenen Vektor cs45. Der Klon, der 3'seitig des Inverted Repeats, den Promoter AP3P in antisense Orientierung enthält heisst cs46.

Die Herstellung der Expressionsvektoren für die Agrobacterium-vermittelte Transformation des AP3P-kontrollierten Inverted-Repeat Transkripts in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO 02/00900).

Zur Herstellung des Expressionsvektors pS5Al7 wurde das 1685bp Sacl-Xhol Fragment aus cs44 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 13, Konstruktkarte). In der Abbildung 13 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment P-sense das 312 bp Promoterfragment der Epsilon-Cyclase in sense Orientierung, Fragment intron das Intron IV2 des Kartoffel-Gens ST-LS1), und Fragment P-anti das 312 bp Promoterfragment der Epsilon-Cyclase in antisense Orientierung.

Zur Herstellung des Expressionsvektors pS5CI7 wurde das 2445bp SacI-XhoI Fragment aus cs45 mit dem SacI-XhoI geschnittenen Vektor pSUN5 ligiert (Abbildung 14, Konstruktkarte).

In der Abbildung 14 beinhaltet Fragment *CHRC* den CHRC-Promoter (1537 bp), Fragment *P-sense* das 312 bp Promoterfragment der Epsilon-Cyclase in sense Orientierung, Fragment *intron* das Intron IV2 des Kartoffel-Gens ST-LS1), und Fragment *P-anti* das 312 bp Promoterfragment der Epsilon-Cyclase in antisense Orientierung.

Zur Herstellung des Expressionsvektors pS5CAI7 wurde das 3219bp SacI-XhoI Fragment aus cs46 mit dem SacI-XhoI geschnittenen Vektor pSUN5 ligiert (Abbildung 15, Konstruktkarte)

25

30

20

15

In der Abbildung 15 beinhaltet Fragment *CHRC* den CHRC-Promoter (1537 bp), Fragment *P-sense* das 312 bp Promoterfragment der Epsilon-Cyclase in sense Orientierung, Fragment *intron* das Intron IV2 des Kartoffel-Gens ST-LS1), Fragment *P-anti* das 312 bp Promoterfragment der Epsilon-Cyclase in antisense Orientierung und das Fragment *AP3P* das 771 bp AP3P-Promoterfragment in antisense Orientierung.

Beispiel 1.15

Herstellung transgener Tagetes Pflanzen mit reduzierter ε-Cyclase-Aktivität

Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige and Skoog, Physiol. Plant. 15(1962), 473-497) pH 5,8, 2 % Saccharose) aufgelegt. Die

10

15

20

25

30

Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18 bis 28_C / 20 bis 200 mE / 3 bis 16 Wochen, bevorzugt jedoch bei 21_C, 20 bis 70 mE, für 4 bis 8 Wochen.

Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10 bis 60 mm² werden im Verlaufe der Präparation in flüssigem MS-Medium bei Raumtemperatur für maximal 2 h aufbewahrt.

Der Agrobakterium tumefaciens Stamm EHA105 wurde mit dem Binärplasmid pS5AI3 transformiert. Die Anzucht des transformierten A. tumefaciens Stammes EHA105 erfolgte über Nacht unter folgenden Bedingungen: Eine Einzelkolonie wurde in YEB (0,1 % Hefeextrakt, 0,5 % Rindfleischextrakt, 0,5 % Pepton, 0,5 % Saccharose, 0,5 % Magnesiumsulfat x 7 H₂0) mit 25 mg/l Kanamycin angeimpft und bei 28_C für 16 bis 20 h angezogen. Anschließend wurde die Bakteriensuspension durch Zentrifugation bei 6000 g für 10 min geerntet und derart in flüssigem MS Medium resuspendiert, das eine OD₆₀₀ von ca. 0,1 bis 0,8 entstand. Diese Suspension wurde für die Co-Kultivierung mit dem Blattmaterial verwendet.

Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbewahrt worden sind, durch die Bakteriensuspension ersetzt. Die Inkubation der Blättchen in der Agrobakteriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur. Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8 % Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/l Benzylaminopurin (BAP) sowie 1 mg/l Indolylessigsäure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos. Die Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, dabei können folgende Bedingungen angewendet werden: Lichtintensität: 30 bis 80 mMol/m² x sec, Temperatur: 22 bis 24°C, hell/dunkel Wechsel von 16/8 Stunden. Anschließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zusätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/l ist für diesen Zweck sehr geeignet. Als zweite selektive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/l selektiert sehr effizient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfahrens sind denkbar.

Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medium bis sich Sprossknospen und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/l Indolylbuttersäure (IBA) und 0,5 mg/l Gibberillinsäure GA₃, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.

10

30

5

Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:

- Bevor die Explantate mit den Bakterien infiziert werden, k\u00f6nnen sie f\u00fcr 1 bis 12
 Tage, bevorzugt 3 bis 4, auf das oben beschriebene Medium f\u00fcr die Co-Kultur vorinkubiert werden. Anschlie\u00dfend erfolgt die Infektion, Co-Kultur und selektive Regeneration wie oben beschrieben.
- Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenkt
 werden. Dadurch wird die Kontrolle des Agrobakterienwachstums verbessert.
 - Die Zugabe von AgNO₃ (3 10 mg/l) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.
- Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a.m., wirken sich positiv auf die Kultur aus.
 - Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung finden. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positioniert werden inkubiert werden.

Gemäß der oben beschriebenen Transformationsmethode wurden mit dem Expressionskonstrukt pS5Al3 folgende Linien erhalten:

CS30-1, CS30-3 und CS30-4

Beispiel I.16:

5

10

15

20

Charakterisierung der transgenen Tagetes Pflanzen mit reduzierter ε-Cyclase-Aktivität

Das Blütenmaterial der transgenen Tagetes erecta Pflanzen aus Beispiel I.15 wurde in flüssigem Stickstoff gemörsert und das Pulver (etwa 250 bis 500 mg) mit 100 % Aceton extrahiert (dreimal je 500 ml). Das Lösungsmittel wurde evaporiert und die Carotinoide in 100 ml Aceton resuspendiert.

Mittels einer C30-reverse phase-Säule konnten die individuellen Carotinoide quantifiziert werden. Die HPLC-Laufbedingungen waren nahezu identisch mit einer publizierten Methode (Frazer et al. (2000), Plant Journal 24(4): 551-558). Eine Identifizierung der Carotinoide war aufgrund der UV-VIS-Spektren möglich.

Tabelle 2 zeigt das Carotinoidprofil in Tagetespetalen der gemäß der vorstehend beschriebenen Beispiele hergestellten transgenen Tagetes- und Kontrolltagetespflanzen. Alle Carotinoidmengen sind in [ug/g] Frischgewicht angegeben, prozentuale Veränderungen gegenüber der Kontrollpflanze sind in Klammern angegeben.

Im Vergleich zur genetisch nicht veränderten Kontrollpflanze, weisen die genetisch veränderten Pflanzen mit reduzierter epsilon-Cyclase-Aktivität einen deutlich erhöhten Gehalt an Carotinoiden des " β -Carotin-Weges", wie beispielsweise β -Carotin und Zeaxanthin und einen deutlich reduzierten Gehalt an Carotinoiden des " α -Carotin-Weges", wie beispielsweise Lutein auf.

25 Tabelle 2

Pflanze	Lutein	b-Carotin	Zeaxanthin	Violaxanthin	Gesamt-
					Carotinoide
Kontrolle	260	4,8	2,7	36	304
CS 30-1	35 (-86%)	13 (+170%)	4,4 (+62%)	59 (+63%)	111 (-63%)
Kontrolle	456	6,4	6,9	58	527
CS 30-3	62 (-86%)	13 (+103%)	8,9 (+29%)	75 (+29%)	159 (-70%)
CS 30-4	68 (-85%)	9,1 (+42%)	5,7 (-17%)	61 (+5%)	144 (-73%)

Beispiel II

5

15

Herstellung astaxanthinhaltiger Pflanzenteile der Gattung Tagetes

Die Blütenkopfe oder die Petalen der gemäß Beispiel I.6 hergestellten astaxanthinhaltigen Pflanzen der Gattung Tagetes werden abgetrennt und getrocknet. Anschließend werden die getrockneten Blütenköpfe oder Petalen durch Zerkleinerung in Pulverform überführt.

Beispiel III

10 Herstellung von astaxanthinhaltigen Extrakten und weitere Aufreinigung

Getrocknete Blütenblätter oder getrocknete Blütenköpfe von Tagetes erecta, hergestellt nach Beispiel I.6 werden in einem Homogenisator mit einem Überschuß (etwa 10 Teile Lösungsmittel mit einem Teil Pflanzenmaterial) an Lösungsmittel (wie z.B. Aceton, Hexan, Methylenchlorid, Methyl-tertiär-Butyl-Ether, Tetrahydrofuran, Ethanol, Heptan, Cycloheptan oder Petrolether, aber nicht ausschließlich beschränkt auf diese) oder mit einem Lösungsmittelgesmisch (wie z.B. Aceton/Hexan, Ethanol/Hexan (50:50, v/v) oder Aceton/Methanol (7:3, v/v) homogenisiert und im Dunkeln und in der Kühle unter Schütteln extrahiert. Der Rückstand kann bis zu dreimal mit dem verwendeten Lösungsmittel/ Lösungsmittelgemisch re-extrahiert werden. Das gesammelte organische Lösungsmittel oder Lösungsmittelgemisch wird mittels Evaporator evaporiert, bis ein eingeengtes Konzentrat erhalten wird. Zusätzlich kann nochmals mit Hexan extrahiert werden. Das verwendete Hexan wird (wiederum im Dunklen und in der Kühle) evaporiert.

25

20

Das solchermaßen hergestellte Konzentrat wird in Hexan gelöst und mittels Säulenchromatographie mit Silica-Material chromatografiert. Ein Teil Silicamaterial wird dazu mit 1-2 Teilen Carotinoidlösung vermischt und in eine Säule gepackt. Die Säule wird ausgiebig mit Hexan im Dunklen und in der Kühle gewaschen. Das Eluat wird verworfen. Ketocarotinoide, besonders Astaxanthin, wird durch eine Mischung von Hexan und Ethanol (2-5% Ethanol in Hexan) eluiert, bis eine orange-rötliche Fraktion eluiert. Dieses orange-rötliche Eluat wird gesammelt, bis die Farbe sich ändert. Das orange-rötlich gefärbte Eluat enthält Astaxanthin als Gemisch aus Mono-und Diestern.

30

Beispiel IV

Herstellung von extrudiertem Forellenfutter, enthaltend astaxanthinhaltige Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltige Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes

5

Die folgenden Komponenten werden in einem Doppelschneckenextruder extrudiert.

		Einwaage f. 500 kg	
Komponenten	(%)	Kg	
Fischmehl	30,00	150,00	
Sojavollfettbohnen	20,00	100,00	
Weizenquellstärke	18,00	90,00	
Vitamin-Prämix	0,80	4,00	
Cholinchlorid (50%)	0,20	1,00	
Weizenkleber	20,00	100,00	
Sipernat 50S	3,00	15,00	
Fischöl	8,00	40,00	

Die pulverförmigen, prozessierten astaxanthinhaltige Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltige Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes, beispielsweise hergestellt nach Beispiel II, werden vor der Extrusion als Komponente zugegeben.

Die astaxanthinhaltigen Extrakte oder prozessierten Extrakte von astaxanthinhaltigen
Pflanzen oder Pflanzenteilen der Gattung Tagetes in flüssiger Form, beispielsweise hergestellt nach Beispiel III, werden nach der Extrusion auf das Extrudat aufgesprüht (Applikation durch PPA-Methode).

Die Astaxanthin-Wirkstoff-Dosierung liegt bei 10, 20 und 40 mg Astaxanthin pro kg
20 Diät.

Nach Beendigung des Extrusionsprozesses wird das Extrudat getrocknet und gekühlt.

Beispiel V

5

10

25

30

Orale Verabreichung astaxanthinhaltiger Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes an Forellen in einem Forellenstandardfutter – Prüfung der Bioverfügbarkeit.

Das Forellenfutter, enthaltend die erfindungsgemäßen Astaxanthinpigmentierstoffe, wird gemäß Beispiel IV hergestellt und an Forellen (durchschnittliche Lebendmasse von 180 g) oral verabreicht. Es werden 3 Konzentrationen getestet: 10, 20 und 40 mg Astaxanthin aus der erfindungsgemäßen Astaxanthinpigmentierung pro kg Diät.

Die Haltung der Forellen erfolgt wie nachstehend beschrieben:

- Die Forellen erhalten standardmäßig eine Adaptationsphase von 14 Tagen.
- Während des Fütterungsversuches werden 10 Forellen pro Becken in 80 I Wasser fassenden Durchfluß-Kunstofftanks gehalten. Die Wassertemperatur liegt bei 15°C. Das Wasser wird biologisch gereinigt und es werden täglich mindestens 10% der Gesamtwassermenge durch Frischwasser ersetzt.
- Die Beleuchtungsdauer liegt bei 12 Stunden pro Tag, um eine vorzeitige Geschlechtsreife der Tier zu vermeiden.
 - Die Anzahl Becken pro Behandlung liegt bei 3. Dies ist äquivalent zu 30 Forellen pro Dosisstufe.
 - Aufbewahrung der Diäten erfolgt bei -20°C, um Astaxanthinverluste zu ermeiden. Das Futter wird portionsweise (wochenweise) aufgetaut und verabreicht.
 - Die Versuchsdauer beträgt 8 Wochen.

Die Fütterung der Forellen erfolgt wie nachstehend beschrieben:

Bei den verabreichten Versuchsdiäten handelt es sich um das gemäß Beispiel
 IV hergestellte extrudierte Forellenfutter, das zusätzlich noch öl-gecoated wird.

20

25

30

35

- Während der Adaptationsphase wird extrudiertes mit Öl gecoatetes astaxanthin-freies Forellenstandardfutter gemäß Beispiel IV ohne Astaxanthin verabreicht.
- Als Negativkontrolle wird extrudiertes mit Öl gecoatetes astaxanthin-freies Forellenstandardfutter gemäß Beispiel IV ohne Astaxanthin während des gesamten Versuchszeitraumes verabreicht.
 - Die Fütterung erfolgt 2x täglich von Hand bis zur Sättigung der Tiere.

Untersucht wird der Einfluß der erfindunggemäßen Astaxanthinpigmentierung sowohl auf Leistungsparameter der Fische, wie Futteraufnahme, Futterverwertung und Lebendmassezuwachs als auch auf die Bioeffizienz der Pigmentierung.

15 Statisch ausgewertet werden durchschnittlicher Futterverbrauch pro Fisch, Futteraufwand und Lebendmassezuwachs.

Die Pigmentierung der Fische wird durch remissionspektrophotometrische Messungen (Minolta-a-Wert = Rotwert am Filetanschnitt) und durch Bestimmung des Astaxanthingehalts (mg/kg) im Filet jeweils im Vergleich zur Negativkontrolle gemessen.

Die Minoltawerte a-Werte, welche den Rotanteil des Farbtons repräsentieren, nehmen mit kleiner werdender Steigung der Funktion dosisabhängig zu. Die Minolta b- Werte, die den Gelbanteil widerspiegeln liegen im negativen Bereich oder bewegen sich um Null. Dies bedeutet der Rotton der Forellenfilets weist eine Abhängigkeit zu der aufgenommenen Astaxanthinmenge auf.

Während des Versuches werden für die beobachteten Leistungsparameter sowohl zwischen als auch innerhalb der Behandlungen (Astaxanthinhaltiges Pulver, astaxanthinhaltiger Extrakt in flüssiger Form, synthetisches Astaxanthin, Negativkontrolle) keine statistisch gerichteten Unterschiede beobachtet.

Es zeigt sich, dass astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder astaxanthinhaltige Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes bei der Pigmentierung von Forellen als Vertreter der Salmoniden

bioverfügbar sind und zudem zu keinen adversen Effekten auf die biologische Leistung der Forelle führen.

10

Patentansprüche

- Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes zur oralen Verabreichung an Tiere.
- Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes zur Pigmentierung von Tieren und der entsprechenden Tierprodukte verwendet werden.
- Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen
 der Gattung Tagetes Tierfutterzubereitungen beigemischt werden und die Tierfutterzubereitung an Tiere oral verabreicht werden.
- Verwendung nach Anspruch 3, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes vor der Beimischung zu Tierfutterzubereitungen in eine Form prozessiert werden, die eine Beimischung zu Tierfutterzubereitungen ermöglicht.
- Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes direkt an Tiere oral verabreicht werden.
- Verwendung nach Anspruch 5, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes vor der Verabreichung in eine Form prozessiert werden, die eine direkte orale Verabreichung an Tiere ermöglicht.

- Verwendung nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen der Gattung Tagetes durch genetische Veränderung in die Lage versetzt wurden, Astaxanthin herzustellen.
- 5 8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Tiere ausgewählt sind aus der Gruppe Fische, Crustaceae, Galliformes und Anatridae.
- 9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass die Tiere ausgewählt sind aus der Gruppe Salmoniden, Shrimps, Krebs, Hühner, Enten, Gänse und Flamingo.
 - 10. Verwendung nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die Tierprodukte ausgewählt sind aus der Gruppe Fleisch, Haut, Feder und Eidotter.
 - 11. Verwendung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man als Pflanzenteile Blütenköpfe oder Petalen verwendet.
- 20 12. Verfahren zur Herstellung von Tierfutterzubereitungen durch Zusammenfügen von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes und üblichen Tierfutterkomponenten.
- Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes vor dem Zusammenfügen mit Tierfuttermitteln in eine Form prozessiert werden, die ein Zusammenfügen mit Tierfuttermitteln ermöglicht.
 - 14. Verfahren zur Pigmentierung von Tieren oder Tierprodukten durch orale Verabreichung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes an Tiere.

15

15. Verfahren zur Herstellung von pigmentierten Tieren oder Tierprodukten durch orale Verabreichung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes an Tiere.

5

16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen
der Gattung Tagetes Tierfutterzubereitungen beigemischt werden und die Tierfutterzubereitung an Tiere oral verabreicht werden.

10

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes vor der Beimischung zu Tierfutterzubereitungen in eine Form prozessiert werden, die eine Beimischung zu Tierfutterzubereitungen ermöglicht.

15

18. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes direkt an Tiere oral verabreicht werden.

20

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die astaxanthinhaltigen Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes vor der Verabreichung in eine Form prozessiert werden, die eine direkte orale Verabreichung an Tiere ermöglicht.

25

Verfahren nach einem der Ansprüche 14 bis 19 dadurch gekennzeichnet, dass
 die astaxanthinhaltigen Pflanzen der Gattung Tagetes durch genetische
 Veränderung in die Lage versetzt wurden, Astaxanthin herzustellen.

30

- 21. Verfahren nach einem der Ansprüche 14 bis 20, dadurch gekennzeichnet, dass die Tiere ausgewählt sind aus der Gruppe Fische, Crustaceae, Galliformes und Anatridae.
- Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass die Tiere ausgewählt sind aus der Gruppe Salmoniden, Shrimps, Krebs, Hühner, Enten, Gänse und Flamingo.
- Verfahren nach einem der Ansprüche 14 bis 22, dadurch gekennzeichnet, dass
 die Tierprodukte ausgewählt sind aus der Gruppe Fleisch, Haut, Feder und Ei.
 - 24. Verfahren nach einem der Ansprüche 14 bis 23, dadurch gekennzeichnet, dass man als Pflanzenteile Blütenköpfe oder Petalen verwendet.
- 15 25. Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes als Tierfutter oder Tierfutterzusatz.
- Tierfutterzubereitung, enthaltend astaxanthinhaltige Pflanzen oder Pflanzenteile
 der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes.
 - 27. Pigmentiermittel, enthaltend astaxanthinhaltige Pflanzen oder Pflanzenteile der Gattung Tagetes oder die astaxanthinhaltigen Extrakte von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes.
 - 28. Pigmentiermittel nach Anspruch 27, bestehend aus astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder aus astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes.
 - 29. Pigmentiermittel nach Anspruch 27 oder 28, dadurch gekennzeichnet, dass man als Pflanzenteile Blütenköpfe oder Petalen verwendet.

Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes als Futtermittel

Zusammenfassung

5

10

Die vorliegende Erfindung betrifft die Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes oder astaxanthinhaltigen Extrakten von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der Gattung Tagetes zur oralen Verabreichung an Tiere, Verfahren zur Herstellung von Tierfutterzubereitungen, die Tierfutterzubereitungen selbst, ein Verfahren zum Pigmentieren von Tieren oder Tierprodukten sowie ein Verfahren zur Herstellung pigmentierter Tiere und Tierprodukte.

Abbildung 1: Nukleotidsequenzvergleich

KETO2.seq X86782.seq	ATGCAGCTAGCAGCGACAGTAATGTTGGAGCAGCTTACCGGAAGCGCTGAGGCACTCAAGGAGAAGGAGGAGGTTGCAGGCAG	100
KETO2.seq X86782.seq	GTACATGGGCGACCCAGTACTCGCTTCCGTCAGAGGAGTCAGACGGCGCCCGCC	20C
KETO2.seq X86782.seq	CATCACAATGGCCCTAGCTGTCATCGGCCTCCTGGGCCGCTGTTCCTCCACGCCATTTTTCAAATCAAGCTTCCTACCTCCTTGGACCACTGCACTGG	30C 30C
KETO2.seq X86782.seq	CTGCCCGTGTCAGATGCCACAGCTCAGCTGGTTAGCGGCAGCAGCAGCAGCCTGCTGCACATCGTGGTAGTATTCTTTGTCCTGGAGTTCCTGTACACAGGCC	40C 40C
KETO2.seq X86782.seq	TTTTTATCACCACGCATGATGCTATGCATGGCACCATCGCCATGAGAAACAGGCAGCTTAATGACTTCTTGGGCAGAGTATGCATCTCCTTGTACGCCTG TTTTTATCACCACGCATGATGCTATGCATGGCACCATCGCCATGAGAAACAGGCAGCTTAATGACTTCTTGGGCAGAGTATGCATCTCCTTGTACGCCTG	50C
KETO2.seq X86782.seq	GITTGATTACAACATGCTGCACCGCAAGCATTGGGAGCACCACAACCACACAGCGGGGGGGG	60C
KETO2.seq X86782.seq	GIGCCCTGGTTTGCCAGCTTCATGTCCAGCTACATGTCGATGTGGCAGTTTGCGCGCCTCGCATGGTGGACGGTGGTCATGCAGCTGCTGGGTGCGCCAA	70C 70C
KETO2.seq X86782.seq	TGGCGAACCTGCTGTGTTCATGGCGGCCGCCCATCCTGTCCGCTTCGCCTTGTTCTACTTTGGCACGTACATGCCCACAAGCCTGAGCCTGAGCCTGCCGC TGGCGAACCTGCTGTGTTCATGGCGGCCGCCCACACATGTCCTGTCCGCTTGTTCTACTTTGGCACGTACATGCCCACAAGCCTGAGCCTGAGCCTGCCGC	80C
KETO2.seq X86782.seq	EFOCASDITYNACOATOSTODADTTTGASTEGASTEGEGGGGGGGGGGGGGGGGGGGGGGGGG	90C
KETO2.seq		99C 99C

Abbildung 2: Proteinsequenzvergleich

KETO2.pro X86782.pro	M O I	ъ А	А'	r v	т м	L	ĸ	UI		J	9.		•	_	••	_	••	-	•• •			-																						
KETO2.pro	RPO	3 L	K	N A	Y	K K	P P	P I) S	D D	T T	K G	I	T T	M M	A A	L L	A R	V I	C G	S	W	A A	A A	V V	F	ւ I	H A	I	F	Q Q	I	K	L 1	P '	T S	; I	, E	9 0	L	Н	W	100	o
KETO2.pro	LPI	V S	D.	A 1	A 1	Q	L L	v :	5 G	S T	s	S I	. L	, н , р	I	v v	v v	V V	F I	F V	, L	E	F F	L L	Y Y	T T	G I	L E	, I	T	T T	H	D	A I	M	H C	3 7	ני	I A	M	R	N	15	Ö
KETO2.pro	R Q	L N L N	D D	F I	ւ G ւ G	R	v v	C :	s s	L L	Y Y	A V	V F	ם סי	Y	N N	M M	L L	н I н I	R F	K H	W	E	H H	H H	N	H '	T	3 E	v	G	K	D	P i	D	P I	1 1	2 (3 N	Į P	G	I	20	0
KETO2.pro	V P	W F	A A	S	P M	ı s	S	Y	M S M S	M	W W	Q I	? ?	A R	L	A	W	W W	T T	v v	V M	ı Q	L	L L	G G	A A	P P	M A	1 4	L	L	V	F	M M	A	A .	A I	P :	I 1	. 5	A	F	25 25	50
KETO2.pro X86782.pro																			_						~	-	m	•	~ :		ח	т.	W	S	F	L	T	c.	Y 1	1	, D	L	30	00
		. u	u	ъ,	w 1	5 17		P	wv	ΙE	L	P	N (C F	R	L	s	G	R	G	r 1	J F	A																				32 32	29 29

Abbildung 3:

Konstrukt zur Überexpression des Ketolase (b-C-4-Oxygenase) Proteins aus *H. pluvialis* mit rbcS Transitpeptid aus Erbse unter Kontrolle des d35S-Promoters (Tagetestransformationskonstrukt)

5

10

15

20

25

Abbildung 4:

Konstrukt pS5AP3PKETO2 zur Überexpression der Ketolase (b-C-4-Oxygenase) Proteins aus H. pluvialis mit rbcS Transitpeptide aus Erbse unter Kontrolle des AP3P-Promoters (Tagetestransformationskonstrukt).

5

10

15

20

25

Abbildung 5

Abbildung 6

Abbildung 7:

Klonierungskassette zur Herstellung von Inverted-

Repeat-Expressionskassetten für die blüten-

spezifische Expression von Epsilon-Cyclase dsRNAs

in Tagetes erecta

5

10

15

20

20

Abbildung 8: Expressionsvektor zur blütenspezifischen
Produktion von dsRNA-Transkripten enthaltend
5'terminale Fragmente der Epsilon-Cyclase cDNA
(AF251016) unter Kontrolle des AP3P-Promoters

9/15

Abbildung 9: Expressionsvektor zur blütenspezifischen
Produktion von dsRNA-Transkripten enthaltend
5'terminalen Fragmente der Epsilon-Cyclase cDNA
(AF251016) unter Kontrolle des CHRC-PRomoters

Abbildung 10: Expressionsvektor zur blütenspezifischen
Produktion von dsRNA-Transkripten enthaltend
3'terminalen Fragmente der Epsilon-Cyclase cDNA
(AF251016) unter Kontrolle des AP3P-Promoters

Abbildung 11: Inverse PCR-Amplifikat, das das 312 bp Fragment des Epsilon-Cyclase Promoters enthält

20

Abbildung 12: TAIL PCR-Amplifikat, das das 199 bp Fragment des Epsilon-Cyclase Promoters enthält

EcoO109I EcoO109I

ecycP AF251016

10 AD1 PR63

ecycP-TAIL (280 bps)

20

Abbildung 13: Expressionsvektor zur blütenspezifischen Produktion von dsRNA-Transkripten enthaltend das 312 bp5
Promoterfragment der Epsilon-Cyclase unter
Kontrolle des AP3P-Promoters

Abbildung 14: Expressionsvektor zur blütenspezifischen Produktion von dsRNA-Transkripten enthaltend das 312 bp
Promoterfragment der Epsilon-Cyclase unter
Kontrolle des CHRC-Promoters

5

10

15

20

25

BamHI
Sall Xhol
Hindlil Sall
P-antimtron
P-sense

CHRC

P722 bps

BamHI

Sall
Hindlil
EcoRI

P-antimtron
P-sense

BamHI

BamHI

BamHI

BamHI

BamHI

BamHI

BamHI

Abbildung 15: Expressionsvektor zur blütenspezifischen Produktion von dsRNA-Transkripten enthaltend das 312 bp5
Promoterfragment der Epsilon-Cyclase unter
Kontrolle sowohl des AP3P-Promoters als auch des CHRC-Promoters

PF 54148

SEQUENCE LISTING

5	<110>	SunGene GmbH Co. KGaA
10		Verwendung von astaxanthinhaltigen Pflanzen oder Pflanzenteilen der g Tagetes als Futtermittel
15	<130>	PF 54148
20	<160>	142
	<170>	PatentIn version 3.1
25	<210>	1
	<211>	1771
30	<212>	DNA
	<213>	Haematococcus pluvialis
35	<220>	
	<221>	CDS
40	<222>	(166)(1155)
	<223>	
45		·
	<400> ggcac	1 gaget tgeaegeaag teagegegeg caagteaaea eetgeeggte caeageetea 60
	aataa	taaag agctcaagcg tttgtgcgcc tcgacgtggc cagtctgcac tgccttgaac 120
50	ccgcg	agtot coogcogoac tgaetgooat agoacagota gaoga atg cag ota goa 177 Met Gln Leu Ala

	gcg a Ala ' 5																225
5	gag Glu	aag Lys	gag Glu	aag Lys	gag Glu 25	gtt Val	gca Ala	Gly ggc	agc Ser	tct Ser 30	gac Asp	gtg Val	ttg Leu	cgt Arg	aca Thr 35	tgg Trp	273
10															cgc Arg		321
15															Gly		369
20	aca Thr	atg Met 70	gcg Ala	cta Leu	cgt Arg	gtc Val	atc Ile 75	ggc	tcc Ser	tgg Trp	gcc Ala	gca Ala 80	gtg Val	ttc Phe	ctc Leu	cac His	417
20															cac His		465
25	ctg Leu	ccc Pro	gtg Val	tca Ser	gat Asp 105	Ala	aca Thr	gct Ala	cag Gln	ctg Leu 110	Val	agc Ser	ggc	acg Thr	agc Ser 115	Ser	513
30	ctg Leu	cto	gac Asp	atc 110	val	gta Val	gta Val	ttc Phe	ttt Phe 125	val	cto Lev	g gag 1 Glu	tto Phe	ctg Lev 130	Tyr	aca Thr	561
35	ggc Gly	ctt Lev	ttt Phe 135	e Il€	acc Thi	c acc	g cat	gat Asp 140	Ala	atg Met	cat His	ggc	acc Thr	: Ile	gcc Ala	atg Met	609
40	aga Arg	aac Asr 150	ı Arg	g caq g Gli	g cti n Lei	t aat u Asi	gad n Asy 15	Phe	tto E Lei	r GJ/ A aad	aga Y Arg	a gta g Vai 160	L Cys	ato s Ile	tcc Ser	ttg Leu	657
40	tac Tyr 165	Ala	c tg: a Tr:	g tt p Ph	t ga e As	t tac p Ty: 17	r Ası	c ato n Met	g cto	g cad	c cgo s Aro	g Ly:	g cat	t tgg	g gag o Glu	g cac His 180	705
45	cac His	c aa s As:	c ca n Hi	c ac s Th	t gg r Gl 18	y Gl	g gt u Va	g gg 1 Gl	c aa y Ly	g gad s Asj 19	p Pr	t ga o As;	c tto p Pho	c ca e Hi	c agg s Arg 19!	g gga Gly	753
50	aa Asi	c cc n Pr	t gg o Gl	c at y Il 20	e Va	g cc .1 Pr	c tg o Tr	g tt p Ph	t gc e Al 20	a Se	c tt r Ph	c at e Me	g tc t Se	c ag r Se 21	r Ty:	c atg r Met	801
	to															g cag t Gln	849

ctg Leu	ctg Leu 230	ggt Gly	gcg Ala	cca Pro	atg Met	gcg Ala 235	aac Asn	ctg Leu	ctg Leu	gtg Val	ttc Phe 240	atg Met	gcg Ala	gcc Ala	gcg Ala	897
																945
cac His	aag Lys	cct Pro	gag Glu	cct Pro 265	Gly ggc	gcc Ala	gcg Ala	tca Ser	ggc Gly 270	tct Ser	tca Ser	cca Pro	gcc Ala	gtc Val 275	atg Met	993
aac Asn	tgg Trp	tgg Trp	aag Lys 280	tcg Ser	cgc Arg	act Thr	agc Ser	Gln	Ala	tcc Ser	gac Asp	ctg Leu	Val	Ser	ttt Phe	1041
ctg Leu	acc Thr	Cys	Tyr	cac His	ttc Phe	gac Asp	ctg Leu 300	cac His	tgg Trp	gag Glu	cac	His	Arg	tgg Trp	ccc Pro	1089
ttc Phe	Ala	Pro	tgg Trp	tgg Trp	gag Glu	Leu	Pro	aac Asn	tgc Cys	cgc Arg	Arg	Leu	tct Ser	ggc Gly	cga Arg	1137
Gly	Lev					r ctg	gaca	cac	tgca	igtgg	igc c	ctgc	tgcc:	a		1185
gct	ggg	atg	cago	gttgi	gg (cagga	actgg	ıg tç	gaggt	gaaa	a ago	tgca	ggc	gctg	ctgccg	1245
•																
ag	agct	gcgt	gat	taac	tgg	gcta	.tgga	tt g	tttg	agca	g tc	tcac	ttat	tct	ttgatat	: 1665
ag	atac	tggt	. cag	gcag	gtc	agga	gagt	ga g	tatg	aaca	a gt	tgag	aggt	ggt	gcgctgo	1725
cc	ctgc	gctt	atg	aago	tgt	aaca	ataa	ag t	ggtt	caaa	a aa	aaaa				1771
	Leu ccc Pro 245 cac His aac Asn ctg Leu ttc Phe ggt 325 gct tat aac gga ag ag	Leu Leu 230 CCC atc Pro Ile 245 Cac aag His Lys aac tgg Asn Trp Ctg acc Leu Thr ttc gcc Phe Ala 310 ggt ctg Gly Leu 325 gctgggc gacacgc tcgagct tcgagct tcgagct tatcttc aaggtg ggaggg agagct agatac	Leu Leu Gly 230 ccc atc ctg Pro Ile Leu 245 cac aag cct His Lys Pro aac tgg tgg Asn Trp Trp ctg acc tgc Leu Thr Cys 295 ttc gcc ccc Phe Ala Pro 310 ggt ctg gtt Gly Leu Val 325 gctgggcatg gacacgctgc tcgagcttgc tcgagcttgc acccttgcag tatcttaatg aaggtgcagg ggagggtggt agagctgct agatactggt	Leu Leu Gly Ala 230 ccc atc ctg tcc Pro Ile Leu Ser 245 cac aag cct gag His Lys Pro Glu aac tgg tgg aag Asn Trp Trp Lys 280 ctg acc tgc tac Leu Thr Cys Tyr 295 ttc gcc ccc tgg Phe Ala Pro Trp 310 ggt ctg gtt cct Gly Leu Val Pro 325 gctgggcatg cagg gacacgctgc atgg tcgagcttgc ccca acccttgcag gagg tatcttaatg ctg aaggtgcagg cac ggagggtggt gcc aggaggtggt gcc aggaggtggt gcc aggaggtggt gcc aggaggtggt gat agatactggt cagg	Leu Leu Gly Ala Pro 230 CCC atc ctg tcc gcc Pro Ile Leu Ser Ala 245 Cac aag cct gag cct His Lys Pro Glu Pro 265 aac tgg tgg aag tcg Asn Trp Trp Lys Ser 280 Ctg acc tgc tac cac Leu Thr Cys Tyr His 295 ttc gcc ccc tgg tgg Phe Ala Pro Trp Trp 310 ggt ctg gtt cct gcc Gly Leu Val Pro Ala 325 gctgggcatg caggttgt gacacgctgc atgggcta tcgagcttgc cccatgga acccttgcag gagatgtc tatcttaatg ctgaagc aaggtgcagg cacaagc ggagggtggt gccacac agagctgcgt gattaac agatactggt caggcag	Leu Leu Gly Ala Pro Met 230 CCC atc ctg tcc gcc ttc Pro Ile Leu Ser Ala Phe 245 250 Cac aag cct gag cct ggc His Lys Pro Glu Pro Gly 265 aac tgg tgg aag tcg cgc Asn Trp Trp Lys Ser Arg 280 Ctg acc tgc tac cac ttc Leu Thr Cys Tyr His Phe 295 ttc gcc ccc tgg tgg gag Phe Ala Pro Trp Trp Glu 310 ggt ctg gtt cct gcc tac Gly Leu Val Pro Ala 325 gctgggcatg caggttgtgg c gacacgctgc atgggctacc c tcgagctgc accettgcag gagatgtctt accettgcag gagatgtctt aaggtgcagg cacaagctag ggagggtggt gccacaccca agagctgct gattaactgg agatactgc caggatgcagg cacacgctag agatactgc caggcaggtc agatactgg caggatgtct caggatgct gattaactgg agatactgc caggcaggtc caggcaggtc caggcaggtc caggatgcagg cacaaccca agagctgct caggcaggtc caggcaggtc	Leu Leu Gly Ala Pro Met Ala 230 ccc atc ctg tcc gcc ttc cgc Pro Ile Leu Ser Ala Phe Arg 250 cac aag cct gag cct ggc gcc His Lys Pro Glu Pro Gly Ala 265 aac tgg tgg aag tcg cgc act Asn Trp Trp Lys Ser Arg Thr 280 ctg acc tgc tac cac ttc gac Leu Thr Cys Tyr His Phe Asp 295 ttc gcc ccc tgg tgg gag ctg Phe Ala Pro Trp Trp Glu Leu 310 ggt ctg gtt cct gcc tag ctg Gly Leu Val Pro Ala 325 gctgggcatg caggttgtgg cagga gacacgctgc atgggtatc ctg tcgagcttgc cccatggatg aagct tcgagcttgc cccatggatg aagct tatcttaatg ctgaagcett tagg gagggtggt gccacaccca ctgg agaggtggt gccacaccca ctgg agagatgctgc gattaactgg gctaaccgctgc atggcaggtcacc ctgg agagatgctgc gattaactgg gctaaccgctgc agagatgcagg cacacacca ctgg agagatgctgcg gattaactgg gctaaccacca ctgg agagatgctgcg gattaactgg gctaaccacca agagatactgcg caggacaccacca ctgg agagatgctgcg gattaactgg gctaaccacca agagatactgcg caggacaggtc aggataactgg caggacaccacca ctgg agagatactgcg gattaactgg gctaacaccaca agagatactgg caggacaggtc aggacaccacca agagatactgg caggacaggtc aggacaccacca aggataactgg caggacaggtc aggacacacca aggacaccacacacacacacacacac	Leu Leu Gly Ala Pro Met Ala Asn 230 CCC atc ctg tcc gcc ttc cgc ttg Pro Ile Leu Ser Ala Phe Arg Leu 245 Cac aag cct gag cct ggc gcc gcg His Lys Pro Glu Pro Gly Ala Ala 265 aac tgg tgg aag tcg cgc act agc Asn Trp Trp Lys Ser Arg Thr Ser 280 Ctg acc tgc tac cac ttc gac ctg Leu Thr Cys Tyr His Phe Asp Leu 295 ttc gcc ccc tgg tgg gag ctg ccc Phe Ala Pro Trp Trp Glu Leu Pro 310 ggt ctg gtt cct gcc tag ctggaca Gly Leu Val Pro Ala 325 gctgggcatg caggttgtgg caggactgg gacacgctgc atgggctacc ctgtgtagc acccttgcag gagatgtct gcgtcggac aaggtgtgt gccacaccca ctgggcaa aaggtgcag cacaagctag gctggacg gagaggtggt gccacaccca ctgggcaa aggatgtgt gccacaccca ctgggcaa aggatgtgt gccacaccca ctgggcaa aggatgtgt gattaactgg gctatgga aagatactggt caggacggtc aggaaggt aagatactgg gattaactgg gctatgga aagatactggt caggacggt aagatactgg gctatagga aagatactggt caggacggt aagatactgg gattaactgg gctatgga aagatactggt caggacggt aagaagatactgg aagatactgg aagaagatactgg aagaagaagatactgg aagaagaagatactgg aagaagaagatactgg aagaagaagatactgg aagaagaagatactga aagaagaagaagaagaagaagaagaagaagaagaaga	Leu Leu Gly Ala Pro Met Ala Asn Leu 230 CCC atc ctg tcc gcc ttc cgc ttg ttc Pro Ile Leu Ser Ala Phe Arg Leu Phe 245 Cac aag cct gag cct ggc gcc gcg tca His Lys Pro Glu Pro Gly Ala Ala Ser 265 aac tgg tgg aag tcg cgc act agc cag Asn Trp Trp Lys Ser Arg Thr Ser Gln 280 Ctg acc tgc tac cac ttc gac ctg cac Leu Thr Cys Tyr His Phe Asp Leu His 295 ttc gcc ccc tgg tgg gag ctg ccc aac Phe Ala Pro Trp Trp Glu Leu Pro Asn 310 ggt ctg gtt cct gcc tag ctggacacac Gly Leu Val Pro Ala 325 gctgggcatg caggttgtgg caggactggg tg gacacacgctgc atgggctace ctgtgtagct gc accettgag gagattett gcgtcggag gagaggtggt gcacacaccac ctgggcaaga caaggaggtggt gccacaccca ctgggcaaga gagaggtggt gataactggt aggagagtga gagagaggtggt gataactggt aggagagtga gagagaggtga gagagaggtggt gataactggt aggagagtga gagagaggtg gataactggt caggaaggtg gctaggaggtg gagagagaggt aggagagaggt aggagagagggt aggagagaggt aggagagagggt aggagagaggagagaga	Leu Leu Gly Ala Pro Met Ala Asn Leu Leu 230 CCC atc ctg tcc gcc ttc cgc ttg ttc tac Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr 250 Cac aag cct gag cct ggc gcc gcg tca ggc His Lys Pro Glu Pro Gly Ala Ala Ser Gly 265 aac tgg tgg aag tcg cgc act agc cag gcg Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala 280 Ctg acc tgc tac cac ttc gac ctg cac tgg Leu Thr Cys Tyr His Phe Asp Leu His Trp 295 ttc gcc ccc tgg tgg gag ctg ccc aac tgg Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys 310 ggt ctg gtt cct gcc tag ctggacacac tgcs Gly Leu Val Pro Ala 325 gctgggcatg caggttgtgg caggactggg tgaggt gacacgctgc atgggctac ctgtgtagct gccgc tcgaggttg cacactgg gaggtgtt tatcttaatg ctgaagctt taggggagg gagtgt tatcttaatg ctgaagctt taggggaaga ccatgagagggggggggg	Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val 230 ccc atc ctg tcc gcc ttc cgc ttg ttc tac ttt Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe 250 cac aag cct gag cct ggc gcc gcg tca ggc tct Ris Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser 265 aac tgg tgg aag tcg cgc act agc cag gcg tcc Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser 280 ctg acc tgc tac cac ttc gac ctg cac tgg gag tcc Tyr Ris Phe Asp Leu His Trp Glu 295 ttc gcc ccc tgg tgg gag ctg cce aac tgc gag tcc Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg 310 ggt ctg gtt cct gcc tag ctggacacac tgcagtgg Gly Leu Val Pro Ala 325 gctgggcatg caggttgtgg caggactggg tgaggtgaaa gacacgctgc atgggttat cctggtgag gagtgttat tcgagcttgc cccatggatg aagctgtgt gccacaccac taggggaggtggt gccacaccac ctggggaagagaggagggagggaggaggaggaggaggagga	Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe 230 235 240 CCC atc ctg tcc gcc ttc cgc ttg ttc tac ttt ggc Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly 245 250 255 Cac aag cct gag cct ggc gcc gcg tca ggc tct tca His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser 265 270 aac tgg tgg aag tcg cgc act agc cag gcg tcc gac Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp 280 285 ctg acc tgc tac cac ttc gac ctg cac tgg gag cac Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His 295 300 ttc gcc ccc tgg tgg gag ctg ccc aac tgc cgc cgc Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg 310 315 320 ggt ctg gtt cct gcc tag ctggacacac tgcagtggc cag cgcgcacta gaggacacgctgc atgggctac ctggtagct gccgcacta ggc tcgaggacacac ctgcagtggc cag acccttgcag gagatgtct gcggcagag gagtgttggg cag acccttcaag gagatgtct gcgagagag gactcggtg cag gaggggtgg gccacaccc ctgggaagag gactcggtg cag acccttgcag gagatgtct taccttaatg ctgaagccg gctggaaga gactcggtg cag agagggggg gacacacac ctgaagcag gagaggggg cacacaccc accacacac ctgaagcag gagaggggg cacacacac ctgaagcaga gactcggtg cag agaggggggg gccacacacca ctgaagcaga gactcggtg cag agaggggggg gacacacacac ctgaagcaga gactcggtg cag agagggggggggg	Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe Met 230 235	Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe Met Ala 230 ccc atc ctg tcc gcc ttc cgc ttg ttc tac ttt ggc acg tac Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly Thr Tyr 255 cac aag cct gag cct ggc gcc gcg tca ggc tct tca cca gcc His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser Pro Ala 265 aac tgg tgg aag tcg cgc act agc cag gcg tcc gac ctg gtc Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp Leu Val 285 ctg acc tgc tac cac ttc gac ctg cac tgg gag cac cac cgc Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His His Arg 300 ttc gcc ccc tgg tgg gag ctg ccc aac tgc cgc cgc cgc ctg tcc Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg Leu Ser 310 ggt ctg gtt cct gcc tag ctggacacac tgcagtggc cctgctgcc gacacacacacacacacacacacacacacacacaca	Leu Clu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe Met Ala Ala 235 ccc atc ctg tcc gcc ttc cgc ttg ttc tac ttt ggc acg tac atg Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly Thr Tyr Met 245 cac aag cct gag cct ggc gcc gcg tca ggc tct tca cca gcc gtc His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser Pro Ala Val 265 aac tgg tgg aag tcg cgc act agc cag gcg tcc gac ctg gtc agc Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp Leu Val 290 ctg acc tgc tac cac ttc gac ctg cac tgg gag cac cac cac cgc tgg Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His His Arg Trp 295 ttc gcc ccc tgg tgg gag ctg ccc aac tgc cgc cgc ctg tct gcc ccc tgg tgg gag ctg ccc act ggc act gcc ccc tgg tgg aga ctg ccc aac tgc cgc ctg ctc gac ctg gtc aga ctg ccc act ggc tcc gac ctg tct ggc tcc gac ctg tcc gac ctg cac tgc cac tgc cac tgc act gcc cac tgc gag cac cac cac cgc tgg tcc gcc ccc tgg tgg gag ctg ccc aac tgc cgc cgc ctg tct ggc tcc gcc ccc tgg tgg	ccc atc ctg tcc gcc ttc cgc ttg ttc tac ttt ggc acg tac atg ccc Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly Thr Tyr Met Pro 245

<210> 2

										4						
	<211>	329)													
	<212>	PRT	?													
5	<213>	Hae	emat	ococ	cus	pluv	iali	.s								
	<400>	2														
10	Met Gl 1	n L	eu A		Ala 1 5	Thr V	al M	Met 1	Leu (Glu 10	Gln I	eu 1	Thr (Gly (Ser 1 15	Ala
15	Glu Al	a L		50 Pa	Glu :	Lys (3lu :	Lys (Glu 25	Val	Ala (3ly :	Ser	Ser. 30	Asp '	Val
20	Leu Ar		hr '	Trp	Ala	Thr (Gln	Tyr 40	ser	Leu	Pro	Ser	Glu 45	Glu	Ser	Asp
25	Ala A		Arg	Pro	Gly	Leu	Lys 55	Asn	Ala	Tyr	Lys	Pro 60	Pro	Pro	Ser	Asp
	Thr L	ys (Gly	Ile	Thr	Met 70	Ala	Leu	Arg	Val	Ile 75	Gly	Ser	Trp	Ala	Ala 80
30	Val P	he :	Leu	His	Ala 85	Ile	Phe	Gln	Ile	L ys 90	Leu	Pro	Thr	Ser	Leu 95	Asp
35	Gln I	ieu	His	Trp		Pro	Val	Ser	Asp 105	Ala	Thr	Ala	Gln	Leu 110	Val	Ser
40	Gly :	Thr	Ser 115		Leu	Leu	Asp	120		. Val	. Val	Phe	Phe 125	val	Leu	Glu
45		Leu 130	Tyr	Thi	c Gly	, Leu	Phe 135		e Thi	c Thi	r His	Asp 140	Ala	. Met	His	Gly
	Thr 145	Ile	Ala	Me	t Arg	y Asr 150		g Glı	n Le	u As	n Asp 155	Ph∈	Lev	ı Gly	y Arg	160

Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys 165 170 175

										J						
	His	Trp	Glu	His 180	His	Asn	His	Thr	Gly 185	Glu	Val	Gly	Lys	Asp 190	Pro	Asp
5	Phe	His	Arg 195	Gly	Asņ	Pro	Gly	Ile 200	Val	Pro	Trp	Phe	Ala 205	Ser	Phe	Met
10	Ser	Ser 210	Tyr	Met	Ser	Met	Trp 215	Gln	Phe	Ala	Arg	Leu 220	Ala	Trp	Trp	Thr
15	Val 225	Val	Met	Gln	Leu	Leu 230	Gly	Ala	Pro	Met	Ala 235	Asn	Leu	Leu	Val	Phe 240
	Met	Ala	Ala	Ala	Pro 245	Ile	Leu	Ser	Ala	Phe 250	Arg	Leu	Phe	Туr	Phe 255	Gly
20	Thr	туг	Met	Pro 260	His	Lys	Pro	Glu	Pro 265	Gly	Ala	Ala	Ser	Gly 270	Ser	Ser
25	Pro	Ala	Val 275	Met	Asn	Trp	Trp	Lys 280	Ser	Arg	Thr	Ser	Gln 285	Ala	Ser	Asp
30	Leu	Val 290		Phe	Leu	Thr	Cys 295		His	Phe	a Asp	Leu 300		Trp	Glu	His
35	His 305	_	Tr	Pro	Phe	310		Trp	Trp	Glu	1 Leu 315		Asn	Cys	Arg	Arg 320
	Leu	ı Sei	c Gly	y Arg	Gly 325		ı Val	. Pro	Ala	L						
40	<21	L0>	3													
	<2	11>	166	2												
45	<2	12>	DNA													
	<2	13>	нае	mato	cocci	ıs p	luvia	alis								
50	<2	20>														
	<2	21>	CDS													

<222> (168)..(1130) <223×

	< 2237																	
5																		
	<400> cggggc	3 aact	. caa	agaa	attc	aac	agct	gca	agcg	geged	ecc a	agcct	caca	ıg cç	gccaa	agtga		60
10	gctato	gacg	r tgg	gttg	tgag	cgc	tcga	.cgt	ggt	ccact	ga (gggg	ctgt	g ag	gcct	ctgcg	1	20
	ctccgt	ccto	tg:	ccaa	atct	. cgc	gtcg	iggg	cct	gccta	aag 1	tcgaa		Met I			1	76
15	gca to Ala Se 5	g go er Al	ca c	ta a eu M	itg g Iet V	/al (gag o Blu o	ag a	aaa (Lys	Gly :	Ser	gag g Glu i 15	gca g Ala <i>i</i>	get (Ala /	gct Ala	tcc Ser	2	24
20	agc co Ser Pr 20	a ga co A	ac g sp V	tc t	beu 1	aga q Arg 2	gcg t Ala '	tgg :	gcg Ala	Thr	cag Gln 30	tat (Tyr :	cac a	atg Met	cca Pro	tcc Ser 35	2	72
25	gag to Glu Se	eg t er S	ca g er A	sp A	gca q Ala 2 40	gct Ala	cgt Arg	cct Pro	gcg Ala	cta Leu 45	aag Lys	cac His	gcc Ala	tac Tyr	aaa Lys 50	cct Pro	3	20
30	cca ge	ca t la S	er A	gac Asp 55	gcc Ala	aag Lys	ggc . Gly	atc Ile	acg Thr 60	atg Met	gcg Ala	ctg Leu	acc Thr	atc Ile 65	att Ile	Gly	3	368
25	acc to	rp 1	icc g Thr 1	gca Ala	gtg Val	ttt Phe	tta Leu	cac His 75	gca Ala	ata Ile	ttt Phe	caa Gln	atc Ile 80	agg Arg	cta Leu	ccg Pro	4	116
35	aca t Thr S	cc a Ser 1	atg (Met)	gac Asp	cag Gln	ctt Leu	cac His 90	tgg Trp	ttg Leu	cct Pro	gtg Val	tcc Ser 95	gaa Glu	gcc Ala	aca Thr	gcc Ala		464
40	cag c Gln I 100	ett (Leu)	ttg Leu	ggc Gly	gga Gly	agc Ser 105	agc Ser	agc Ser	cta Leu	ctg Leu	cac His 110	Ile	gct Ala	gca Ala	gtc Val	ttc Phe 115		512
45	att q Ile V	gta /al	ctt Leu	gag Glu	ttc Phe 120	Leu	tac Tyr	act Thr	ggt Gly	cta Leu 125	Phe	atc Ile	acc Thr	aca Thr	cat His 130	Asp		560
50	gca a	atg Met	cat His	ggc Gly 135	Thr	ata Ile	gct Ala	ttg Leu	agg Arg 140	, His	agg Arg	g Cag g Gln	ctc Leu	aat Asn 145	Asp	ctc Leu		608
	ctt Leu	ggc	aac Asn 150	atc Ile	tgc Cys	ata Ile	tca Ser	cto Lev 155	тут	gcc Ala	tgg Trp	ttt Phe	gac Asp 160	ТУĽ	ago Ser	atg Met		656

5	ctg cat cgc aag cac tgg gag cac cac aac cat act ggc gaa gtg ggg Leu His Arg Lys His Trp Glu His His Asn His Thr Gly Glu Val Gly 165 170 175	704
J	aaa gac cct gac ttc cac aag gga aat ccc ggc ctt gtc ccc tgg ttc Lys Asp Pro Asp Phe His Lys Gly Asn Pro Gly Leu Val Pro Trp Phe 180 185 190 195	752
10	gcc agc ttc atg tcc agc tac atg tcc ctg tgg cag ttt gcc cgg ctg Ala Ser Phe Met Ser Ser Tyr Met Ser Leu Trp Gln Phe Ala Arg Leu 200 205 210	800
15	gca tgg tgg gca gtg gtg atg caa atg ctg ggg gcg ccc atg gca aat . Ala Trp Trp Ala Val Val Met Gln Met Leu Gly Ala Pro Met Ala Asn 215 220 225	848
20	ctc cta gtc ttc atg gct gca gcc cca atc ttg tca gca ttc cgc ctc Leu Leu Val Phe Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu 230 235 240	896
25	ttc tac ttc ggc act tac ctg cca cac aag cct gag cca ggc cct gca Phe Tyr Phe Gly Thr Tyr Leu Pro His Lys Pro Glu Pro Gly Pro Ala 245 250 255	944
	gca ggc tct cag gtg atg gcc tgg ttc agg gcc aag aca agt gag gca Ala Gly Ser Gln Val Met Ala Trp Phe Arg Ala Lys Thr Ser Glu Ala 260 265 270 275	992
30	tct gat gtg atg agt ttc ctg aca tgc tac cac ttt gac ctg cac tgg Ser Asp Val Met Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp 280 285 290	1040
35	gag cac cac agg tgg ccc ttt gcc ccc tgg tgg cag ctg ccc cac tgc Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Gln Leu Pro His Cys 295 300 305	1088
40	cgc cgc ctg tcc ggg cgt ggc ctg gtg cct gcc ttg gca tga Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Leu Ala 310 315 320	1130
	cetggteeet eegetggtga eeeagegtet geacaagagt gteatgetae agggtgetge	1190
45	ggccagtggc agcgcagtgc actctcagcc tgtatggggc taccgctgtg ccactgagca	1250 1310
	ctgggcatgc cactgagcac tgggcgtgct actgagcaat gggcgtgcta ctgagcaatg	1370
50	the track and th	1430
	gccggcattt gagagggcta agttataaat cgcatgctgc tcatgcgcac atatctgcac	1490
	acagccaggg aaatcccttc gagagtgatt atgggacact tgtattggtt tcgtgctatt	1550

	gtttt	attc	a gc	agca	gtac	tta	gtga	ggg	tgag	gagca	agg g	rtggt	gaga	g to	ggagt	tgagt	1610
5	gagta	ıtgaa	c ct	.ggtc	agcg	agg	rtgaa	cag	cctg	gtaat	ga a	tgad	etetg	gt c	t		1662
	<210>	- 4															
10	<211>	32	0														
10	<212>	> PR	T														
	<213	> Ha	emat	.oco	ccus	plu	vial:	is									
15																	
	<400	> 4															
20	Met 1	His \	Val i		Ser 5	Ala	Leu :	Met		Glu 10	Gln :	Lys	Gly	Ser	Glu 15	Ala	
25	Ala	Ala S		Ser 20	Pro	Asp	Val	Leu	Arg 25	Ala	Trp	Ala	Thr	Gln 30	Tyr	His	
	Met	Pro	Ser 35	Glu	Ser	Ser	Asp	Ala 40	Ala	Arg	Pro	Ala	Leu 45	Lys	His	Ala	
30	Tyr	Lys 50	Pro	Pro	Ala	Ser	Asp 55	Ala	Lys	Gly	Ile	Thr 60	Met	Ala	Leu	Thr	
35	Ile 65	Ile	Gly	Thr	Trp	Thr 70	Ala	Val	Phe	Leu	His 75	Ala	Ile	Phe	Gln	Ile 80	
40	Arg	Leu	Pro	Thr	Ser 85	Met	Asp	Gln	Leu	His 90	Trp	Leu	Pro	Val	Ser 95	Glu	
45	Ala	Thr	Ala	Gln 100		Leu	Gly	Gly	Ser 105		Ser	Leu	Leu	His 110		Ala	
	Ala	Val	Phe 115		val	Leu	Glu	Phe 120		тух	Thr	Gly	Leu 125	Phe	Ile	Thr	
50	Thr	His		Ala	ı Met	: His	: Gly		c Ile	e Ala	. Leu	Arg 140		Arg	Gln	Leu	

	Asn 145	Asp	Leu	Leu	Gly	Asn 150	Ile	Cys	Ile	Ser	Leu 155	Tyr	Ala	Trp	Phe	Asp 160
5	Tyr	Ser	Met	Leu	His 165	Arg	Lys	His	Trp	Glu 170	His	His	Asn	His	Thr 175	Gly
10	Glu	Val	Gly	Lys 180	Asp	Pro	Asp	Phe	His 185	Lys	Gly	Asn	Pro	Gly 190	Leu	Val
15	Pro	Trp	Phe 195	Ala	Ser	Phe	Met	Ser 200	Ser	Tyr	Met	Ser	Leu 205	Trp	Gln	Phe
,	Ala	Arg 210		Ala	Trp	Trp	Ala 215		Val	Met	Gln	Met 220	Leu	Gly	Ala	Pro
20	Met 225		Asn	Leu	. Lev	Val 230		Met	Ala	Ala	Ala 235		Ile	Leu	Ser	Ala 240
25	Ph∈	e Arg	, Leu	Phe	245		e Gly	Thr	тут	250		His	Lys	Pro	Glu 255	Pro
30	Gl _y	y Pro	o Ala	a Ala 260		y Sei	Glr	ı Val	265		ı Trp	Phe	e Arg	Ala 270	Lys	Thr
35	Sei	r Gli	u Ala 27!		r As	o Vai	l Me	28°		e Lei	ı Thi	c Cys	285	His	Phe	g Asp
	Le		s Tr		u Hi	s Hi	s Ar		p Pr	o Ph	e Ala	a Pro 300		Tr	Glr	n Leu
40	Pr 30		s Cy	s Ar	g Ar	g Le 31		r Gl	y Ar	g Gl	y Le		l Pro	o Ala	a Le	u Ala 320
45	<2	10>	5													
		11>	729													
50		212> 213>	DNA Agı		cter:	ium a	aurar	ntiad	cum							

<220>
<221> CDS

5 <222> (1)..(729)
<223>

<400> 5 atg agc gca cat gcc ctg ccc aag gca gat ctg acc gcc acc agc ctg Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu atc gtc tcg ggc ggc atc atc gcc gct tgg ctg gcc ctg cat gtg cat Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His gcg ctg tgg ttt ctg gac gca gcg gcg cat ccc atc ctg gcg atc gca Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc acc gcg Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala cat gac gcg atg cac ggg tcg gtg gtg ccg ggg cgt ccg cgc gcc aat His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn gcg gcg atg ggc cag ctt gtc ctg tgg ctg tat gcc gga ttt tcg tgg Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp cgc aag atg atc gtc aag cac atg gcc cat cac cgc cat gcc gga acc Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr gac gac gac ccc gat ttc gac cat ggc ggc ccg gtc cgc tgg tac gcc Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala cgc ttc atc ggc acc tat ttc ggc tgg cgc gag ggg ctg ctg ctc Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Leu Pro gtc atc gtg acg gtc tat gcg ctg atc ctt ggg gat cgc tgg atg tac Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr gtg gtc ttc tgg ccg ctg ccg tcg atc ctg gcg tcg atc cag ctg ttc

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe

5			ggc Gly														5	76
3			cac His 195														6	24
10			tgc Cys														6	72
15			gtg Val														7	20
20	acc Thr	-	tga									Í					7	29
	<210	0>	6															
25	<21	1>	242															
	<21	2>	PRT															
30	<21	3>	Agro	bact	eriw	m au	rant	iacu	m									
	<40	0>	6			,												
35	Met 1	Ser	: Ala	. His	Ala 5	Leu	Pro	Lys	Ala	Asp 10	Leu	Thr	Ala	Thr	Ser 15	Leu		
40	Ile	Val	. Ser	Gly 20	Gly	Ile	: Ile	Ala	Ala 25	Trp	Leu	Ala	Leu	His 30	Val	His		
45	Ala	. Lev	ı Trp 35) Phe	. Leu	Asp) Ala	Ala 40	Ala	. His	Pro	Ile	Leu 45	Ala	Ile	Ala		
	Asn	Phe 50	e Lev	ı Gly	, Leu	Thr	Trp 55	Let	ı Ser	r Val	. Gly	Leu 60	. Phe	Ile	Ile	Ala		
50	His	s As <u>ı</u>	o Ala	a Met	: His	Gl ₃	y Ser	· Val	. Val	l Pro	Gly 75	' Arg	Pro	Arg	Ala	Asn 80		

	Ala	Ala	Met	Gly	Gln 85	Leu	Val	Leu	Trp	Leu 90	Tyr	Ala	Gly	Phe	Ser 95	Trp
5	Arg	Lys	Met	Ile 100	Val	Lys	His	Met	Ala 105	His	His	Arg	His	Ala 110	Gly	Thr
10	qzA	Asp	Asp 115	Pro	Asp	Phe	Asp	His 120	Gly	Gly	Pro	Val	Arg 125	Trp	Tyr	Ala
15	Arg	Phe 130		Gly	Thr	Тут	Phe 135	Gly	Trp	Arg	Glu	Gly 140	Leu	Leu	Leu	Pro
	Val 145		Val	Thr	Val	туг 150	Ala	Leu	Ile	Leu	Gly 155	Asp	Arg	Trp	Met	туr 160
20	Val	Val	Phe	Trp	Pro 165	Leu	Pro	Ser	Ile	Leu 170		Ser	Ile	Gln	Leu 175	Phe
25	Val	. Phe	e Gly	Thr 180		Leu	. Pro	His	Arg 185		Gly	His	Asp	Ala 190	Phe	Pro
30	Asr	Arç	у Ніз 195		ı Ala	. Arg	ser Ser	Ser 200		, Il∈	e Ser	Asp	Pro 205		Ser	Leu
35	Lev	210		s Phe	His	Ph∈	e Gly 219	y Gly 5	· TYI	His	His	220		His	Leu	His
	Pro 22		r Val	l Pro	o Trp	230		g Lev	ı Pro	Se:	r Thi 239		y Thr	. Lys	Gly	240
40	Th	r Al	a													
45	<2	10>	7													
	<2	11>	163	1												
50	<2	12>	DNA	,												
50	<2	13>	Alc	alig	enes	sp.										

									•	13							
	<220>																
	<221>	CD	s														
5	<222>	(9	9)	(827	7)												
	<223>																
10	<400> ctgca		sa ad	decei	ggtgg	g cca	aatgç	gtcg	caa	ccgg	cag	gact	ggaa	ca g	gacg	geggg	60
15	ccggt	ctag	gg ct	tgtc	gece	t ac	gcag	cagg	agt	ttcg						g cct s Pro	116
20	ggc a	aca a Thr '	Thr (ggc Gly 10	gac Asp	acg Thr	atc Ile	gtc Val	aat Asn 15	ctc Leu	ggt Gly	ctg Leu	acc Thr	gcc Ala 20	gcg Ala	atc Ile	164
25	ctg (Leu	tgc Cys 25	tgg Trp	ctg Leu	gtc Val	ctg Leu	cac His 30	gcc Ala	ttt Phe	acg Thr	cta Leu	tgg Trp 35	ttg Leu	cta Leu	gat Asp	212
25	gcg (gcc Ala 40	gcg Ala	cat His	ccg Pro	ctg Leu	ctt Leu 45	gcc Ala	gtg Val	ctg Leu	tgc Cys	ctg Leu 50	gct Ala	GJÀ āāā	ctg Leu	acc Thr	260
30	tgg Trp 55	ctg Leu	tcg Ser	gtc Val	GJA āāā	ctg Leu 60	ttc Phe	atc Ile	atc Ile	gcg Ala	cat His 65	gac Asp	gca Ala	atg Met	cac His	ggg 70	308
35	tcc Ser	gtg Val	gtg Val	ccg Pro	ggg Gly 75	cgg Arg	ccg Pro	cgc Arg	gcc Ala	aat Asn 80	gcg Ala	gcg Ala	atc Ile	GJÅ aaa	caa Gln 85	ctg Leu	356
40	gcg Ala	ctg Leu	tgg Trp	ctc Leu 90	tat Tyr	gcg Ala	Gly	ttc Phe	tcg Ser 95	tgg Trp	ccc Pro	aag Lys	ctg Leu	atc Ile 100	gcc Ala	aag Lys	404
45	cac His	atg Met	acg Thr 105	His	cac His	cgg Arg	cac His	gcc Ala 110	Gly	acc Thr	gac	aac Asn	gat Asp 115	Pro	gat Asp	ttc Phe	452
45	ggt Gly	cac His 120	Gly	. GJA aaa	r ccc	gtg Val	cgc Arg 125	Tr	tac Tyr	ggc Gly	ago Ser	ttc Phe 130	Val	tcc Ser	acc Thr	tat Tyr	500
50	ttc	ggc	tgg	cga	a gag	r gga	ctg	r ctg	g cta	ccg	gtg	g ato	gto	acc	acc	tat	548

Phe Gly Trp Arg Glu Gly Leu Leu Pro Val Ile Val Thr Thr Tyr

gcg ctg atc ctg ggc gat cgc tgg atg tat gtc atc ttc tgg ccg gtc

	• •	
	Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr Val Ile Phe Trp Pro Val 155 160 165	
5	ccg gcc gtt ctg gcg tcg atc cag att ttc gtc ttc gga act tgg ctg Pro Ala Val Leu Ala Ser Ile Gln Ile Phe Val Phe Gly Thr Trp Leu 170 175 180	644
10	ccc cac cgc ccg gga cat gac gat ttt ccc gac cgg cac aac gcg agg Pro His Arg Pro Gly His Asp Asp Phe Pro Asp Arg His Asn Ala Arg 185 190 195	692
45	tcg acc ggc atc ggc gac ccg ttg tca cta ctg acc tgc ttc cat ttc Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu Leu Thr Cys Phe His Phe 200 . 205 210	740
15	ggc ggc tat cac cac gaa cat cac ctg cat ccg cat gtg ccg tgg tgg Gly Gly Tyr His His Glu His His Leu His Pro His Val Pro Trp 215 220 225 230	788
20	cgc ctg cct cgt aca cgc aag acc gga ggc cgc gca tga cgcaattcct Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly Arg Ala 235 240	837
	cattgtcgtg gcgacagtcc tcgtgatgga gctgaccgcc tattccgtcc accgctggat	897
25	tatgcacggc cccctaggct ggggctggca caagtcccat cacgaagagc acgaccacgc	957
	gttggagaag aacgacctct acggcgtcgt cttcgcggtg ctggcgacga tcctcttcac	1017
30	cgtgggcgcc tattggtggc cggtgctgtg gtggatcgcc ctgggcatga cggtctatgg	1077
	gttgatctat ttcatcctgc acgacgggct tgtgcatcaa cgctggccgt ttcggtatat	1137
35	tccgcggcgg ggctatttcc gcaggctcta ccaagctcat cgcctgcacc acgcggtcga	1197
00	ggggcgggac cactgcgtca gcttcggctt catctatgcc ccacccgtgg acaagctgaa	1257
	gcaggatctg aagcggtcgg gtgtcctgcg cccccaggac gagcgtccgt cgtgatctct	1317
40	gateceggeg tggeegeatg aaateegaeg tgetgetgge aggggeegge ettgeeaaeg	1377
	gactgatege getggegate egeaaggege ggeeegaeet tegegtgetg etgetggaee	1437
45	gtgcggcggg cgcctcggac gggcatactt ggtcctgcca cgacaccgat ttggcgccgc	1497
45	actggctgga ccgcctgaag ccgatcaggc gtggcgactg gcccgatcag gaggtgcggt	1557
	tcccagacca ttcgcgaagg ctccgggccg gatatggctc gatcgacggg cgggggctga	1617
50	tgcgtgcggt gacc	1631

									•	15							
	<211>	24	12														
	<212>	PI	RT														
5	<213>	· A	lcal	igen	es s	ρ.											
10	<400>	8															
10	Met S	Ser	Gly	Arg	Lys 5	Pro	Gly '	Thr '	Thr	Gly 10	Asp '	Thr :	Ile	Val i	Asn 1 15	Leu	
15	Gly 1	Сеи	Thr	Ala 20	Ala	Ile	Leu	Leu	Cys 25	Trp	Leu '	Val	Leu	His 30	Ala	Phe	
20	Thr	Leu	Trp 35	Leu	Leu	Asp	Ala	Ala 40	Ala	His	Pro	Leu	Leu 45	Ala	Val ·	Leu	
25	Cys	Leu 50	Ala	Gly	Leu	Thr	Trp 55	Leu	Ser	Val	Gly	Leu 60	Phe	Ile	Ile	Ala	
	His 65	Asp	Ala	Met	His	Gly 70	Ser	Val	Val	Pro	Gly 75	Arg	Pro	Arg	Ala	Asn 80	
30	Ala	Ala	Ile	e Gly	61n 85	. Leu	Ala	. Leu	Trp	Leu 90	Tyr	Ala	Gly	Phe	Ser 95	Trp	
35	Pro	Lys	s Lev	1 Ile 100		a Lys	: His	s Met	Thr 105	His	: His	Arg	His	Ala 110	Gly	Thr	
40	Asp	Ası	n Ası 11		o Ası	o Phe	e Gly	y His 120	s Gly	/ Gl3	/ Pro	Val	Arg 125	Trp	Tyr	Gly	
45	Ser	Pho 13		l Se	r Th	т Ту:	r Pho		y Tr	p Ar	g Glu	140	, Leu	ı Lev	. Leu	ı Pro	
	Va]	L I1	e Va	.1 Th	r Th	r Ty	r Al	a Le	u Il	e Le	u Gly	y Ası	o Arg	g Trp) Met	Tyr	

Val Ile Phe Trp Pro Val Pro Ala Val Leu Ala Ser Ile Gln Ile Phe

PF 54148

										.11	0									
	Val	Phe	Gly	Thr 180	Trp	Leu	Pro	His	18	g Pr 5	ro C	31y	His	Asp	Asp 190	Phe	Pr	0		
5	Asp	Arg	His 195	Asn	Ala	Arg	Ser	Thr 200	: Gl	y II	le (Gly	Ąsp	Pro 205	Leu	Ser	L€	eu		
10	Leu	Thr 210		Phe	His	Phe	Gly 215	Gl	у Ту	т H:	is 1	His	Glu 220	His	His	Leu	Н:	is		
15	Pro 225		Val	Pro	Trp	Trp 230		Le	ı Pı	co A	rg	Thr 235	Arg	Lys	Thr	Gly	7 G	ly 40		
	Arg	Ala	L																	
20	<21	.0>	9.																	
	<21	.1>	729																	
25	<21	2~	DNA																	
23	\ 2.	.27																		
	<23	L3>	Para	acoc	cus 1	marc	usii													
30	<2	20>										•								
	<2	21>	CDS																	
35	<2	22>	(1)	(7	29)															
	<2	23>																		
40	<4	.00>	9																	
	at Me 1	g ag et Se	gc gc	a ca la Hi	at go is Al	cc ct la Le	g co eu Pr	cc a	ag ys	gca Ala	gat Asp 10	ct Le	g ac u Th	c go r Al	c ac a Th	a aç r Se 19	er	ctg Leu		48
45	at I]	c gt Le Va	c to	eg gg er G: 2	gc gg ly Gi	gc at	tc a [.]	tc g le A	la	gca Ala 25	tgg Tr <u>p</u>	g ct o Le	g gc	c ct a Le	g ca u Hi 30	s Va	g al	cat His		96
50	g(A:	eg ci la Le	tg tg eu T: 3	rp P	tt c	tg g eu A	ac g sp A	la A	icg Ala 10	gcc Ala	cat His	t cc s Pr	c at	c ct Le Le 45	eu Al	g gt .a Va	tc al	gcg Ala	1	44
	a	at t	tc c	tg g	gg c	tg a	cc t	gg (ctg	tcg	gt	c gg	ga ti	tg t	c at	c a	tc	gcg	-	L92

										• •							
	Asn	Phe 50	Leu	Gly	Leu	Thr	Trp 55	Leu	Ser	Val	Gly	Leu 60	Phe	Ile	Ile	Ala	
5	cat His 65	gac Asp	gcg Ala	atg Met	cac His	ggg 70	tcg Ser	gtc Val	gtg Val	ccg Pro	ggg Gly 75	cgt Arg	ccg Pro	cgc Arg	gcc Ala	aat Asn 80	240
10	gcg Ala	gcg Ala	atg Met	ggc	cag Gln 85	ctt Leu	gtc Val	ctg Leu	tgg Trp	ctg Leu 90	tat Tyr	gcc Ala	gga Gly	ttt Phe	tcg Ser 95	tgg Trp	288
45	cgc Arg	aag Lys	atg Met	atc Ile 100	gtc Val	aag Lys	cac His	atg Met	gcc Ala 105	cat His	cac His	cgc Arg	cat His	gcc Ala 110	gga Gly	acc Thr	336
15	gac Asp	gac Asp	gac Asp 115	Pro	gat Asp	ttc Phe	gac Asp	cat His 120	Gly	ggc	ccg Pro	gtc Val	cgc Arg 125	tgg Trp	tac Tyr	gcc Ala	384
20	cgc Arg	tto Phe 130	: Ile	ggc Gly	acc Thr	tat	tto Phe 135	Gly	tgg Trp	cgc Arg	gag Glu	ggg Gly 140	Leu	ctg Leu	ctg Leu	ccc Pro	432
25	gto Val	. Ile	gtg Val	acg LThr	gtc Val	tat Tyr 150	Ala	g cto	g ato	cto Lev	ggg Gly 155	/ Ast	cgc Arg	tgg Trp	n atg Met	tac Tyr 160	480
-30	gtç Va:	g gte L Va	c tto l Pho	c tgg e Try	g ccg Pro 165	Le	g cc	g tog o Sei	g ato	c cto E Leo 17	ı Ala	g tcg a Sei	ato	c cag	t cto Lev 175	ttc Phe	528
	gt: Va	g tt l Ph	c gg e Gl	c act y Thi	r Trp	g cto	g cc: u Pr	g ca o Hi	c cg s Ar 18	g Pr	c ggo	c cae	c gad s Asp	gcg Ala 190	a Phe	c ccg e Pro	576
35	ga As	c cg p Ar	с са g Ні .19	s As	t gcg	g cg a Ar	g tc g Se	g tc r Se 20	r Ar	g at g Il	c ag e Se	c ga r As	c cci p Pro 20	o Va	g tc:	g ctg r Leu	624
40	ct Le	g ac u Th	ır Cy	c tt	t ca e Hi	t tt s Ph	t gg le Gl 21	y G1	t ta Y Ty	t ca r Hi	t ca s Hi	c ga .s Gl 22	u Hi	c ca s Hi	c ct s Le	g cac u His	672
45	co Pr 22	o Tì	eg gt nr Va	g co al Pr	g tg o Tr	g to p Tr 23	rA qr	gc ct	g co eu Pr	c ag	c ac r Th	ır Ar	c ac	c aa r Ly	g gg s Gl	g gac y Asp 240	
50		ec go	ca to la	ga													729

										18						
	<211	> 2	42													
	<212	> P	RT													
5	<213	> Pa	arac	occu	s ma	rcus:	ii									
0	<400	> 1	0													
	Met 1	Ser	Ala	His	Ala 5	Leu	Pro	Lys	Ala	Asp 10	Leu	Thr	Ala	Thr	Ser 15	Leu
15	Ile	Val	Ser	Gly 20	Gly	Ile	Ile	Ala	Ala 25	Trp	Leu	Ala	Leu	His 30	Val	His
20	Ala	Leu	Trp 35	Phe	Leu	Asp	Ala	Ala 40	Ala	His	Pro	Ile	Leu 45	Ala	Val	Ala
25	Asn	Phe 50	Leu	Gly	Leu	Thr	Trp 55	Leu	Ser	Val	Gly	Leu 60	Phe	Ile	Ile	Ala
	His 65	Asp	Ala	Met	His	Gly 70	Ser	Val	Val	Pro	Gly 75	Arg	Pro	Arg	Ala	Asn 80
30	Ala	Ala	Met	Gly	Gln 85	Leu	Val	Leu	Trp	Leu 90	Tyr	Ala	Gly	Phe	Ser 95	Trp
35	Arg	Lys	Met	Ile 100		Lys	His	Met	Ala 105		His	Arg	His	Ala 110	Gly	Thr
40	Asp	Asp	Asp 115		Asp	Phe	Asp	His 120		Gly	Pro	Val	Arg 125		Tyr	Ala
45	Arg	Phe 130		Gly	, Thr	Tyr	Phe 135		Trp	Arg	Glu	Gly 140		. Leu	Leu	Pro
	Val 145		val	. Thi	r Val	150		Lev	ı Ile	e Leu	Gly 155		Arg	Trp	Met	туr 160

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe

										19								
	Val	Phe	Gly	Thr 180	Trp	Leu	Pro	His	185	Pro	Gly	y His	s Asp	Ala 190	. Ph∈	e Pr	o	
5	Asp	Arg	ніs 195	Asn	Ala	Arg	Ser	Ser 200	r Arg	g Il	e Se	r As	205	Val	. Sei	c Le	eu	
10	Leu	Thr 210		Phe	His	s Phe	Gly 215	Gly	у Ту:	r Hi	s Hi	s Gl 22	u His O	s His	s Le	u H	is	
15	225			Pro	Tr	o Trg 230	Arg	ı Le	u Pr	o Se	er Th	ar Ar 35	g Th	r Ly:	s Gl	у А 2	sp 40	
20	<21	L 0 >	11															
	<23	L1>	1629	9														
25	<2	12>	DNA															
	<2	13>	Syn	echo	coco	cus s	sp.											
30	<2	20>																
	<2	21>	CDS	5														
35	<2	22>	(1)	(1629)												
	<2	23>																
40																		
	a ^r M	tg a et I	11 tc a le T	aa a	hr A	gat g Asp V	gtt <u>c</u> /al \	gtc (/al	att (Ile	ggg Gly 10	gcg Ala	Gly i	cac a His A	isii '	ggc Gly 15	tta Leu	48
45		tc tal C	gt g Ys A	la A	icc Ala ' 20	tat i	ttg (Leu 1	ctc Leu	caa Gln	cgg Arg 25	ggc	ttg Leu	GJÀ , āāā ;	vaı :	acg Thr 30	tta Leu	cta Leu	96
50) g	aa a lu I	Lys I	egg 9 Arg 9 35	gaa Slu	gta Val	cca Pro	GJA aaa	ggg Gly 40	gcg Ala	gcc Ala	acc Thr	aca Thr	gaa g Glu 7 45	gct Ala	ctc Leu	atg Met	144
	c	ccg (gag (cta	tcc	ccc	cag	ttt	cgc	ttt	aac	cgc	tgt	gcc	att	gac	cac	192

										2	20									
	Pro	Glu 50	Leu	Ser	Pro	Gln	Phe 55	Arg	Ph	ne A	sn .	Arg	60	Ala	Ile	Asp	н	is		
5	gaa Glu 65	ttt Phe	atc Ile	ttt Phe	ctg Leu	ggg Gly 70	ccg Pro	gtg Val	r tt	eu (3ln	gag Glu 75	cta Leu	aat Asn	tta Leu	gcc Ala	G	ag In 0	24	0
10	tat Tyr	ggt Gly	ttg Leu	gaa Glu	tat Tyr 85	tta Leu	ttt Phe	tgt Cys	⊊ ga	sp 1	ecc Pro 90	agt Ser	gtt Val	ttt Phe	tgt Cys	ecg Pro 95	g G	3JÀ Iàa	28	88
	ctg Leu	gat Asp	ggc	caa Glr 100	gct Ala	ttt Phe	atg Met	age Se:	r T	ac yr 05	cgt Arg	tcc Ser	cta Leu	gaa Glu	aaa Lys 110	Thr	: t	gt Ys	33	36
15	gcc Ala	cac	att Ile 115	. Ala	acc Thr	tat Tyr	ago Sei	cc Pr 12	o A	ga rg	gat Asp	gcg Ala	gaa Glu	aaa Lys 125	Tyr	cgg Arg	g (caa Gln	31	34
20	ttt Phe	gto Val 130	. Ası	ta 1 Ty	t tgg r Trp	acq Th:	g gat r Asj 13	b re	g c	etc eu	aac Asn	gct Ala	gto Val 140	Glr	cct Pro	gc Ala	t i	ttt Phe	4	32
25	aat Asn 145	Ala	ccg a Pro	g cc o Pr	c cag o Gli	g gc n Al 15	a Le	a ct u Le	a g	gat Asp	tta Leu	gcc Ala 155	Le:	g aad 1 Asi	tat 1 Tyl	gg Gl	Y '	tgg Trp 160	4	80
30	gaa Glu	aad Asi	c tt n Le	a aa u Ly	a tce s Se 16	r Va	g ct l Le	g go u A:	eg a la :	atc Ile	gcc Ala 170	Gl	y tc Y Se	g aaa r Ly:	a aco	c aa r Ly 17	s	gcg Ala	5	28
35	tt <u>o</u> Lev	gga 1 As	t tt p Ph	t at e II	c cg e Ar	c ac g Th	t at r Me	g a	le	ggc Gly 185	Ser	e cc	g ga o Gl	a ga u As	t gt p Va 19	l Le	c eu	aat Asn	5	76
	gaa Glu	a tg u Tr	g tt p Ph 19	e As	ic ag sp Se	c ga r G	a co lu A	g V	tt al 00	aaa Lys	gct Ala	cc a Pr	t tt o Le	a gc u Al 20	a Ar	a ct g Le	a eu	tgt Cys	6	524
40	tc: Se	g ga r Gl 21	u II	t g	ly Al	t co La Pi	ro P	ca t ro S 15	.cc Ser	caa Gln	Laaq	g gg s Gl	t ag y Se 22	r Se	c to r Se	c gg r G]C	atg Met	(572
45	at Me 22	t Me	g g¹ et Va	tg g al A	cc at la Me	et A	gg c rg H 30	at t is I	tg Leu	gag	g gg	a at y Il 23	.e A	ec aç la Ai	ga co	a a	aa ys	gga Gly 240	•	720
50	gg G1	rc ac	ct g nr G	ga g ly A		tc a eu 1 45	ca g hr G	aa q	gcc Ala	tt:	ggt uVa 25	l ry	ag t /s L	ta gi eu Va	ig ca	ln A	cc 1a 55	Gln		768
	G]	ra g	ga a ly L	ys]	tc c le L	tc a eu 1	ct g	zsp (caa Gln	ac Th	r Va	c aa il L	aa c ys A	rg V	al Le	tg g eu V 70	tg al	gaa Glu		816

5	aac Asn	aac Asn	cag Gln 275	gcg Ala	atc Ile	G1y ggg	gtg Val	ga . G1 28	lu V	ta q	gct Ala	aac Asn	gga Gly	gaa Glu 285	cag Gln	tac Tyr	cgg Arg		864
J	gcc Ala	aaa Lys 290	aaa Lys	ggc	gtg Val	att Ile	tct Ser 295	: As	ac a sn I	tc (gat Asp	gcc Ala	cgc Arg 300	cgt Arg	tta Leu	ttt Phe	ttg Leu		912
10	caa Gln 305	ttg Leu	gtg Val	gaa Glu	ccg Pro	310 310	, Ala	e ci	ta g eu <i>P</i>	jcc Ala	aag Lys	gtg Val 315	aat Asn	caa Gln	aac Asn	cta Leu	350 GJÀ GGG		960
15	gaa Glu	cga Arg	ctg	gaa Gli	a cgg 1 Arg 32!	, Ar	e ac	t g r V	tg a	aac Asn	aat Asn 330	aac Asn	gaa Glu	gcc Ala	att Ile	tta Leu 335	aaa Lys		1008
20	atc Ile	gat Asp	tgt Cys	gc Al	a Le	c tc ı Se	c gg r Gl	t t y L	eu	ccc Pro 345	cac His	ttc Phe	act Thr	gcc Ala	atg Met 350	Ala	GJÀ aaa		1056
25	Pro	Glv	35!	o Le 5	u Th	r Gl	y Tì	r I	11e 360	Leu	Ile	Ala	. Asr	365	· Val	Arg	cat His		1104
	Val	Gl1 37	ı Gl	u Al	a Hi	s Al	a Le 3'	eu : 75	Ile	Ala	Leu	Gly	7 Gli 38	n Ile	e Pro) Asp	gct Ala		1152
30	Asr 385	n Pr	o Se	r Le	eu Ty	r Le 39	eu As 90	ge	Ile	Pro	Thr	7 Va 39	l Le	u Ası	o Pro	Thi	atg Met 400		1200
35	Ala	a Pr	o Pr	o G	Ly G: 40	Ln H	is T	hr	Leu	Trp	410	e Gl	u Ph	e Ph	e Ala	41!		•	1248
40	Ar	g Il	e Al	la G 4	lу L	eu G	lu G	ly	Thr	G13 425	, Le	u Me	t Gl	y Th	r G1; 43	y Tr _] 0	g acc	•	1296
45	As	p Gl	Lu Le 4:	eu L 35	ys G	lu I	ys V	al	Ala 440	Ası	Ar	g Va	1 II	.e As 44	р Ly 5	s Le	a acq u Thi	r	1344
.0	ga As	r T	at g yr A 50	cc c la F	ct a	ac c sn I	eu I	aaa Lys 155	tct Ser	ct: Le	g at u Il	c at e Il	t gg Le Gl 46	y Ar	g Ar	a gt g Va	g gaa 1 Gl	a. u	1392
50	ag Se	r P	cc g ro A	cc g la G	gaa c Blu I	eu 1	gcc o Ala (170	caa Gln	cgg	r ct	g gg u Gl	y Se	gt ta er Ty 75	ac aa yr As	ac gg sn Gl	c aa .y As	t gten n Va 48	1	1440
	ta	at c	at c	tg 9	gat a	itg a	agt	ttg	gad	c ca	a at	g a	tg t	tc c	בכ ככ	g co	t ct	a	1488

										22									
	Tyr H	lis I	Leu i		Met 485	Ser	Leu	Asp	Gln	Met 490	Met	Phe	Leu	Ar	g F 4	Pro 195	Leu	1	
5	ccg g	gaa a Blu :	Ile .	gcc Ala 500	aac Asn	tac Tyr	caa Gln	acc Thr	ccc Pro 505	atc Ile	aaa Lys	aat Asn	ctt Leu	ta Ty: 51	r I	ta Leu	aca Thi	a C	1536
10	ggg g	Ala (ggt Gly 515	acc Thr	cat His	ccc Pro	ggt Gly	ggc Gly 520	tcc Ser	ata Ile	tca Ser	ggt Gly	ato Met 525	Pr	c (ggt 3ly	aga Arg	a g	1584
15	aat (tgc Cys 530	gct Ala	Arg Cgg	gtc Val	ttt Phe	tta Leu 535	aaa Lys	caa Gln	caa Glr	cgt Arg	cgt Arg 540	Phe	tg Tr	g t	taa			1629
	<210	_ 1	.2																
	<211		42																
20	<212	> F	PRT																
	<213	> 8	Syne	choc	occu	ga a.).												
25																			
	<400)> :	12																
30	Met 1	Ile	Thr	Thr	As <u>r</u> 5	va!	L Vai	ı Il	e Il	e Gl 10		a Gl	у Ні	s A	sn	Gly 15	r L€	eu	
25	Val	Cys	Ala	Ala 20	а Ту	r Le	u Le	u Gl	n Ar 25		.у Ь€	eu Gl	y Va	.1 T	hr 0	Lev	ı Le	eu	
35	Glu	Lys	Arg	, Gl	u Va	l Pr	o Gl	y Gl 40	y Al	a Al	la Th	ır Tî	ır G:	u A	.la	Leu	ı Mo	et	
40	Pro	Glu 50	ı Leı	ı Se	r Pr	o Gl	n Ph 55		rg Ph	ie A	sn A:	cg C3	ys A:)	la I	:le	Ası	р Н	is	
45	Glu 65	. Phe	e Ile	e Ph	e Le	nu G1 70		o Va	al Le	eu G	ln G 7	lu L	eu A	sn I	ieu	Ala	a. G 8	ln 0	
50	Туг	Gly	y Le	u Gl	.u Ty 85		eu Pl	ne C	ys A:	p P 9	ro S O	er V	al P	he (Суѕ	Pr 95	o G	ly	
	Let	ı As	p Gl		ln Al	la Pl	ne M	et S	er T	yr A 05	rg S	er L	eu G	lu 1	Նys 110	Th	rC	'ys	

5	Ala	His	Ile 115	Ala	Thr	Tyr	Ser	Pro 120	Arg	Asp	Ala	Glu	Lys 125	Tyr	Arg	Gln
	Phe	Val 130	Asn	Tyr	Trp	Thr	Asp 135	Leu	Leu	Asn	Ala	Val 140	Gln	Pro	Ala	Phe
10	Asn 145	Ala	Pro	Pro	Gln	Ala 150	Leu	Leu	Asp	Leu	Ala 155	Leu	Asn	Tyr	Gly	Trp 160
15	Glu	Asn	Leu	Lys	Ser 165	Val	Leu	Ala	Ile	Ala 170	Gly	Ser	Lys	Thr	Lys 175	Ala
20	Leu	Asp	Phe	Ile 180		Thr	Met	Ile	Gly 185	Ser	Pro	Glu	Asp	Val 190	Leu	Asn
25	Glu	Trp	Phe 195		Ser	Glu	. Arg	y Val 200		Ala	Pro	Leu	Ala 205	Arg	Leu	Cys
	Ser	Glu 210		e Gly	r Ala	Pro	21:		Gln	Lys	Gly	Ser 220		Ser	Gly	Met
30	Met 225		t Vai	l Alá	a Met	230		s Lei	ı Glu	ı Gly	/ Ile 235		Arg	Pro	Lys	Gly 240
35	G13	y Th:	r Gl	y Ala	a Lei 24!		r Gl	u Ala	a Lev	ı Vai		: Lev	ı Val	. Gln	Ala 255	Gln
40	Gl	y Gl	у Гу	s Il 26		u Th	r As	p Gl	n Thi	r Va	l Ly:	s Arg	y Val	Leu 270	ı Val	. Glu
45	As	n As	n Gl 27		a Il	e Gl	y Va	1 G1 28		l Al	a Ası	n Gly	y Glu 289		1 Туі	Arg
	Al	a Ly 29		rs Gl	y Va.	1 11	e Se 29		n Il	e As	p Al	a Ar		g Lev	ı Phe	e Leu
50	G1		eu Va	al Gl	lu Pr	o G1		la L∈	eu Al	a Ly	rs Va 31		n Gl:	n Ası	n Le	u Gly 320

Glu Arg Leu Glu Arg Arg Thr Val Asn Asn Glu Ala Ile Leu Lys

Ile Asp Cys Ala Leu Ser Gly Leu Pro His Phe Thr Ala Met Ala Gly

Pro Glu Asp Leu Thr Gly Thr Ile Leu Ile Ala Asp Ser Val Arg His

Gly Ala Gly Thr His Pro Gly Gly Ser Ile Ser Gly Met Pro Gly Arg

Asn Cys Ala Arg Val Phe Leu Lys Gln Gln Arg Arg Phe Trp

```
<210> 13
    <211> 776
    <212> DNA
    <213> Bradyrhizobium sp.
10
    <220>
15
    <221> CDS
    <222>
          (1)...(774)
    <223>
20
     <400> 13
     atg cat gca gca acc gcc aag gct act gag ttc ggg gcc tct cgg cgc
                                                                        48
25
    Met His Ala Ala Thr Ala Lys Ala Thr Glu Phe Gly Ala Ser Arg Arg
     gae gat gcg agg cag cgc cgc gtc ggt ctc acg ctg gcc gcg gtc atc
                                                                        96
     Asp Asp Ala Arg Gln Arg Val Gly Leu Thr Leu Ala Ala Val Ile
30
                20
                                   25
     ate gee gee tgg ctg gtg ctg cat gtc ggt ctg atg ttc ttc tgg ccg
                                                                       144
     Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro
            35
35
     192
     Leu Thr Leu His Ser Leu Leu Pro Ala Leu Pro Leu Val Val Leu Gln
         50
                            55
40
     ace tgg ctc tat gta ggc ctg ttc atc ace geg cat gac tgc atg cac
                                                                       240
     Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His
                        70
     ggc tcg ctg gtg ccg ttc aag ccg cag gtc aac cgc cgt atc gga cag
                                                                       288
     Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln
45
                                       90
     ctc tgc ctg ttc ctc tat gcc ggg ttc tcc ttc gac gct ctc aat gtc
                                                                       336
     Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val
50
                 100
                                    105
```

gag cac cac aag cat cac cgc cat ccc ggc acg gcc gag gat ccc gat

Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp

120

115

384

. . emi n .

Althor to televie

5						ccg Pro											432
		_				ggc Gly 150											480
10	_	_	_		_	ctc Leu											528
15					_	ccc Pro		_	_	Ser		_		_			576
20					_	ccg Pro										_	624
0.5	_		Asn			acg Thr											672
25		Cys				ggc Gly 230							_			•	720
30		_				ctg Leu					Arg		_	_	_		768
35	_	gac Asp															776
40	<21		14														
	<21 <21		258 PRT														
45	<21			lyrhi	izobi	ium s	sp.										
50	<40	00>	14														
50	Met	. His	s Ala	a Ala	a Thi	a Ala	Lys	a Ala	a Thr	Glu	. Phe	gly	Ala	Ser	Arg	Arg	

	Asp	Asp	Ala	Arg 20	Gln	Arg	Arg	Val	Gly 25	Leu	Thr	Leu	Ala	Ala 30	Val	Ile
5	Ile	Ala	Ala 35	Trp	Leu	Val	Leu	His 40	Val	Gly	Leu	Met	Phe 45	Phe	Trp	Pro
10	Leu	Thr 50	Leu	His	Ser	Leu	Leu 55	Pro	Ala	Leu	Pro	Leu 60	Val	Val∵	Leu	Gln
15	Thr 65	Trp	Leu	Tyr	Val	Gly 70	Leu	Phe	Ile	Ile	Ala 75	His	Asp	Cys	Met	His 80
	Gly	Ser	Leu	Val	Pro 85	Phe	Lys	Pro	Gln	Val 90	Asn	Arg	Arg	Ile	Gly 95	Gln
20	Leu	Cys	Leu	Phe 100		Tyr	Ala	Gly	Phe 105	Ser	Phe	Asp	Ala	Leu 110	Asn	Val
25	Glu	His	His 115	Lys	His	His	Arg	ніs 120	Pro	GJĀ	Thr	Ala	Glu 125	Asp	Pro	Asp
30	Phe	Asp 130		val	. Pro	Pro	Ніs 135		Phe	Trp	His	Trp 140	Phe	Ala	Ser	Phe
35 .	Phe 145		ı His	. Туг	Phe	: Gly 150		Lys	Gln	Val	Ala 155		Ile	Ala	Ala	Val 160
	Ser	Lev	ı Val	l Tyi	Glr 165		ı Val	. Phe	. Ala	Val) Leu	. Gln	. Asn	11e	
40	Lev	ı Phe	e Trj	p Ala 180		ı Pro	Gl3	, Pen	ı Leu 185		Ala	. Leu	Gln	Leu 190		. Thr
45	Ph€	e G1;	y Th: 19	r Ty: 5	r Le	u Pro	o His	5 Lys 200) Ala	t Thi	Glr.	205	_	e Ala	Asp
50	Arg	g Hi 21	_	n Al	a Ar	g Th:	r Se: 21:		u Phe	e Pro	o Ala	220		ı Ser	Lev	ı Lev
	Th:	_	s Ph	e Hi	s Ph	e Gl; 23		e Hi	s His	s Glu	ы Ніз 23		s Lev	ı His	Fro	240

5	Ala Pro Trp Trp Arg Leu Pro Glu Ile Lys Arg Arg Ala Leu Glu Arg 245 250 255
	Arg Asp .
10	<210> 15
	<211> 777
15	<212> DNA
	<213> Nostoc sp.
20	<220>
	<221> CDS
25	<222> (1)(777)
	<223>
30	
30	<400> 15
	atg gtt cag tgt caa cca tca tct ctg cat tca gaa aaa ctg gtg tta 48 Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu
35	1 5 10 15
	ttg tca tcg aca atc aga gat gat aaa aat att aat aag ggt ata ttt 96 Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe
	20 25 30
40	att gcc tgc ttt atc tta ttt tta tgg gca att agt tta atc tta tta 144 Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser Leu Ile Leu Leu
	35 40 . 45
	ctc tca ata gat aca tcc ata att cat aag agc tta tta ggt ata gcc 192
45	Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala 50 55 60
	atg ctt tgg cag acc ttc tta tat aca ggt tta ttt att act gct cat 240
50	Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His 65 70 75 80
	gat gcc atg cac ggc gta gtt tat ccc aaa aat ccc aga ata aat aat 288
	Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn 85 90 95

5					ctc Leu											336
Ü					aaa Lys											384
10					tat Tyr											432
15					atg Met											480
20					ttt Phe 165										,	528
25					ata Ile											576
20				Tyr	ttt Phe				Leu				Leu			624
30			Thr		ccc Pro			Ala				Leu		ttt Phe		672
35		Ser			act Thr		Тут				His					720
40						Pró				Pro				ata Ile		768
		tta Lei	a taa	ı												777
45	<21	L0>	16													
		11>														
50	<23	1.2>	PRT													
	<2	13>	Nos	toc :	sp.											

<400> 16

15

- 5 Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu
 1 5 10 15
- Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe
 10 25 30
 - Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser Leu Ile Leu Leu
 35 40 45

Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala
50 60

- 20
 Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His
 65
 70
 75
 80
- 25 Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn 85 90 95
- Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys

 100 105 110
- Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp 115 120 125

Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn Phe Phe Leu Trp
130 135 140

- 40

 Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr Gln Ile Phe Gly
 145

 150

 160
- 45 Leu Val Met Ile Phe His Gly Leu Lys Asn Leu Val His Ile Pro Glu 165 170 175
- Asn Asn Leu Ile Ile Phe Trp Met Ile Pro Ser Ile Leu Ser Ser Val
 50 180 185 190
 - Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Lys Lys Leu Glu Gly
 195 200 205

5	Gly	Туг 210	Thr	Asn	Pro	His	Cys 215	Ala	Arg	Ser	lle	Pro 220	Leu	Pro	Leu	Phe			
	Trp 225	Ser	Phe	Val	Thi	230	Tyr	His	: Phe	e Gly	7 Tyr 235	His	Lys	Glu	His	His 240	;)		
10	Glu	Tyr	Pro	Glı	1 Le 24		Trp	Tr	o Ly:	s Let 25	u Pro	Glu	Ala	His	Lys 255	: Il∈	2 .		
15	Ser	Leu	L.																
20	<21	.0>	17																
	<21 <21		1608 DNA																
25	<2	13>	Hae	mato	coc	cus p	luvi	alis	5										
	<2	20>																	
30	<2	21>	CDS																
35		22>	(3)	(971)							ŕ							
40	<4 ct		17 a tt r Ph	_ ~-	ac a: is L	ag co ys Pr 5	c gt	g ag 1 Se	gc gg er Gi	gt go ly A	ca ag la Se 10		t ct: a Le	g cc u Pr	c ca o Hi	c at s Il 15	_		47
45	g G	gc c ly F	ca c	ct	cct Pro	cat o His 1 20	ctc c Leu I	at d His A	cgg Arg	ser	ttt g Phe <i>l</i> 25	yct g Ala A	ct a la T	cc a hr T	111 14	tg d let I 0	etg Leu		95
50	S	.cg a	ag c Ys I	tg Leu	cag Gln 35	tca Ser	atc a	agc Ser	gtc Val	aag Lys 40	gcc (Ala i	ege o	gc g	ar c	gaa c Blu I 15	ta g Leu A	gcc Ala	:	143
	7	egc (Asp :	atc Ile 50	acg Thr	cgg Arg	ccc Pro	aaa Lys	gtc Val 55	tgc Cys	ctg Leu	cat (Ala (eag o Sln 1	egg t Arg (gc Cys	tcg Ser		191

	tta gtt cgg ctg cga gtg gca gca cca cag aca gag gag gcg ctg gga Leu Val Arg Leu Arg Val Ala Ala Pro Gln Thr Glu Glu Ala Leu Gly 65 70 75	239
5	acc gtg cag gct gcc ggc gcg ggc gat gag cac agc gcc gat gta gca Thr Val Gln Ala Ala Gly Ala Gly Asp Glu His Ser Ala Asp Val Ala 80 85 90 95	287
10	ctc cag cag ctt gac cgg gct atc gca gag cgt cgt gcc cgg cgc aaa Leu Gln Gln Leu Asp Arg Ala Ile Ala Glu Arg Arg Ala Arg Arg Lys 100 105 110	335
15	115 120 123	383
20		431
	atg acc gtg ggc gca gtg cca tgg ggt gaa gtg gct ggc act ctc Met Thr Val Gly Gly Ala Val Pro Trp Gly Glu Val Ala Gly Thr Leu 145 150 155	479
25	ctc ttg gtg gtt ggt ggc gcg ctc ggc atg gag atg tat gcc cgc tat Leu Leu Val Val Gly Gly Ala Leu Gly Met Glu Met Tyr Ala Arg Tyr 160 165 170 175	527
3	gca cac aaa gcc atc tgg cat gag tcg cct ctg ggc tgg ctg ctg cac Ala His Lys Ala Ile Trp His Glu Ser Pro Leu Gly Trp Leu Leu His 180 185 190	575
3	aag agc cac cac aca cct cgc act gga ccc ttt gaa gcc aac gac ttg 195 Lys Ser His His Thr Pro Arg Thr Gly Pro Phe Glu Ala Asn Asp Leu 200 205	623
. 2	ttt gca atc atc aat gga ctg ccc gcc atg ctc ctg tgt acc ttt ggc Phe Ala Ile Ile Asn Gly Leu Pro Ala Met Leu Leu Cys Thr Phe Gly 210 215 220	671
	ttc tgg ctg ccc aac gtc ctg ggg gcg gcc tgc ttt gga gcg ggg ctg Phe Trp Leu Pro Asn Val Leu Gly Ala Ala Cys Phe Gly Ala Gly Leu 235 230 235	719
•	ggc atc acg cta tac ggc atg gca tat atg ttt gta cac gat ggc ctg Gly Ile Thr Leu Tyr Gly Met Ala Tyr Met Phe Val His Asp Gly Leu 245 250 255	767
	gtg cac agg cgc ttt ccc acc ggg ccc atc gct ggc ctg ccc tac atg Val His Arg Arg Phe Pro Thr Gly Pro Ile Ala Gly Leu Pro Tyr Met 260 265 270	815
	aag cgc ctg aca gtg gcc cac cag cta cac cac agc ggc aag tac ggt	863

	Lys Arg Leu Thr Val Ala His Gln Leu His His Ser Gly Lys Tyr Gly 275 280 285	
5	ggc gcg ccc tgg ggt atg ttc ttg ggt cca cag gag ctg cag cac att Gly Ala Pro Trp Gly Met Phe Leu Gly Pro Gln Glu Leu Gln His Ile 290 295 300	911
10	<pre>cca ggt gcg gcg gag gag gtg gag cga ctg gtc ctg gaa ctg gac tgg Pro Gly Ala Ala Glu Glu Val Glu Arg Leu Val Leu Glu Leu Asp Trp 305</pre> 310	959
	tcc aag cgg tag ggtgcggaac caggcacgct ggtttcacac ctcatgcctg Ser Lys Arg 320	1011
15	tgataaggtg tggctagagc gatgcgtgtg agacgggtat gtcacggtcg actggtctga	1071
	tggccaatgg catcggccat gtctggtcat cacgggctgg ttgcctgggt gaaggtgatg	1131
20	cacatcatca tgtgcggttg gaggggctgg cacagtgtgg gctgaactgg agcagttgtc	1191
	caggctggcg ttgaatcagt gagggtttgt gattggcggt tgtgaagcaa tgactccgcc	1251
	catattctat ttgtgggagc tgagatgatg gcatgcttgg gatgtgcatg gatcatggta	1311
25	gtgcagcaaa ctatattcac ctagggctgt tggtaggatc aggtgaggcc ttgcacattg	1371
	catgatgtac tegteatggt gtgttggtga gaggatggat gtggatggat gtgtattete	143
30	agacgtagac cttgactgga ggcttgatcg agagagtggg ccgtattctt tgagagggga	149
	ggctcgtgcc agaaatggtg agtggatgac tgtgacgctg tacattgcag gcaggtgaga	155
35	tgcactgtct cgattgtaaa atacattcag atgcaaaaaa aaaaaaaaa aaaaaaa	160
	<210> 18	
	<211> 322	
40	<212> PRT	
	<213> Haematococcus pluvialis	
45		
	<400> 18	
50	Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile Gly 1 1 15	
	The Wie Lev His Arg Ser Phe Ala Ala Thr Thr Met Leu Ser	

Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu Ser 20 25 30

5	Lys Leu	Gln 35	Ser	Ile	Ser	Val	Lys 40	Ala	Arg	g Ar	g Va	1 G] 45	lu L	eu A	la.	Arg
	Asp Ile 50	Thr	Arg	Pro	Lys	Val 55	Cys	Lev	ı Hi:	s Al	a G1 60	n A	rg C	ys :	Ser	Leu
10	Val Arg 65	Leu	Arg	Val	Ala 70	Ala	Pro	Gli	n Th	r G1 75	u G]	u A	la I	.eu (Gly	Thr 80
15	Val Glr	ı Ala	Ala	Gly 85	Ala	GJA	Ası	Gl	u Ні 90	.s Se	er A	la A	. qa	V al	Ala 95	Leu
20	Gln Glı	n Lev	Asp 100		Ala	ıle	al.	a Gl	.u Ai 15	rg A:	rg A	la <i>F</i>	Arg A	Arg 110	Lys	Arg
25	Glu Gl	n Let		Туг	· Glr	a Ala	a Al 12	a A] 0	la I	le A	la A	la s	ser 125	Ile	ĠĮĀ	Val
	Ser Gl	_	e Ala	a Ile	e Pho	e Al 13	a Tì	ır T	yr L	eu A	rg I	he L40	Ala	Met	His	. Met
30	Thr Va	ıl Gl	y Gl	y Ala	a Va 15		o T	cp G	ly G	lu V	/al /	Ala	Gly	Thr	Leu	160
35	Leu Va	al Va	ıl Gl	y Gl 16		.a Le	eu G	ly M	iet (3lu 1 170	Met	Tyr	Ala	Arg	17:	r Ala 5
40	His L	ys A:		e Tr 30			lu S	er 1	?ro :	Leu	Gly	Trp	Leu	Le:	ı Hi	s Lys
45	Ser H		is Tl 95	ar Pi	co A	rg T	hr C	800 81y	Pro	Phe	Glu	Ala	Asn 205	AS]	o Le	u Phe
. •	Ala I	lle I 210	le A	sn G	ly L	eu P 2	ro 2 15	Ala	Met	Leu	Leu	Cys 220	Thr	e Ph	e G]	y Phe
50) Trp 1 225	Leu F	Pro A	.sn V	al I	eu (€ly	Ala	Ala	Суз	Phe 235	Gly	/ Ala	a Gl	у Ь	eu Gly 240

																	_	
	Ile	Thr	Leu	Tyr	Gly 245	Met	Ala	Tyr	Met	Phe 250	Val	His	Asp	Gly	y Le 25	u V 5	al	
5	His	Arg	Arg	Phe 260	Pro	Thr	Gly	Pro	Ile 265	Ala	. Gly	Leu	Pro	27	r Me	et L	уѕ	
10	Arg	Leu	Thr 275		Ala	His	Gln	Leu 280	His	His	s Ser	Gly	Ly:	з Ту 5	r G	ly G	sly	
15	Ala	Pro 290		Gly	Met	Phe	Leu 295	Gly	y Pro	o Glr	ı Glı	1 Leu 300	. Gl:	n Hi	s I	le I	Pro	
	Gly 305		ı Ala	Glu	ı Glu	. Val	. Glu	Arg	g Le	u Va	l Le	u Glu 5	ı Le	u As	p T	rp :	Ser 320	
20	Lуs	s Arg	ā															
25		10>	19	-														
30		11> 12>	DNA															
	<2	13>	Tom	ate														
35		20>	CDS	3		,												
40		222> 223>	(1)	(1	L503)	•												
45	a M	et A	at a	ct t hr L	tg t eu L 5	eu L	aa a ys T	cc c	ca a Pro A	Asn A	ac c Asn I	:tt g :eu G	aa t lu I	tt he	ctg Leu	aac Asn 15	cca Pro	48
50	1 c H	5 t 6	at g Iis G	ly P	tt a	ct o	rtt a Val L	aa q ys <i>l</i>	Ala :	agt a Ser '	acc t Thr I	tt a Phe A	ga (ser	gag Glu 30	aag Lys	cat His	96
			_ 4_ 4	^	rat t	·c+ =	900 =	acr '	hh.t.	tat (gaa a	act t	ta '	ggt	aga	agt	gtt	144

											90									
	His ?	Asn	Phe 35	Gly	Ser	Arg	ГÀЗ	Phe 40	e C7	rs G	3lu '	Thr	Leu	Gly 45	Arg	S	er '	Val		
5	tgt g Cys '	gtt Val 50	aag Lys	ggt	agt Ser	agt Ser	agt Ser 55	gct Ala	ct a Le	et t	ta Seu	gag Glu	ctt Leu 60	gta Val	Pro	e g	ag Slu	acc Thr		192
10	aaa Lys 65	aag Lys	gag Glu	aat Asn	ctt Leu	gat Asp 70	ttt Phe	gaç Glı	g ci	tt d eu 1	ect Pro	atg Met 75	tat Tyr	gac Asp	cci Pro	t t	Ser	aaa Lys 80		240
45	GJÀ aaa	gtt Val	gtt Val	gtg Val	gat Asp 85	ctt Leu	gct Ala	gt. Va	g g 1 V	al (ggt Gly 90	ggt Gly	ggc	e cct	gc.	a (gga 31y 95	ctt Leu		288
15	gct Ala	gtt Val	gca Ala	caç Gli 100	ı Glı	a gti 1 Va:	tct L Sei	ga Gl	u A	ca la .05	gga Gly	ctc Leu	tct Sex	gtt Val	tg L Cy 11	s	tca Ser	att Ile		336
20	gat Asp	ccg Pro	aat Asr 115	Pr	t aaa	a tt s Le	g ata u Il	a tg E Tr 12	p I	ct Pro	aat Asn	aac Asr	tat Ty:	t ggt r Gly 12!	y Va	t 1	tgg Trp	gtg Val		384
25	gat Asp	gaa Glu 130	ı Phe	z ga e Gl	g gc u Al	t at a Me	g ga t As 13	p Le	eu 1	cta Leu	gat Asp	tgt Cys	cto Le 14	a ga u As; 0	t go p Al	t La	acc Thr	tgg Trp		432
30	tct Ser 145	G1	t gc	a go a Al	a gt .a Va	g ta 1 Ty 15	r Il	t ga e A	at (gat Asp	aat Asn	ace Th:	r Al	t aa a Ly	a ga	at sp	ctt Leu	cat His 160		480
35	aga Arg	. cc	t ta o Ty	t gg r Gl	y Ar	rg gt rg Va 55	t aa al As	ic c	gg rg	aaa Lys	caç Glr 170	ı Le	g aa u Ly	a to rs Se	g a	aa ys	atg Met 175	Met	:	528
33	cag Glr	į aa Ly	s Cy	rt at rs II	le Me	et A	at gg sn G	gt g Ly V	al	aaa Lys 185	Phe	c ca e Hi	c ca s Gl	a go ln Al	a L	aa ys 90	gtt Val	ata . Ile	.	576
40	aaq Lys	g gt s Va	1 1	t c Le H 95	at g	ag g lu G	aa t	er I	oo Soo Soo	tcc Ser	ate Me	g tt t Le	gat eu I	ta to le Cy 20	gc a ys A 05	at .sn	gat As <u>r</u>	ggt Gly	= 7	624
45	at [.]	e Th	et at nr II	tt c le G	ag g ln A	ca a la T	hr V	tg q al N 15	gtg Val	cto Let	e ga ı As	t go p Al	la T	ct g hr G 20	gc t ly F	tc	tc! Se:	t aga r Ar	a. g	672
50	Se	r L	tt g eu V	tt c al G	ag t In T	yr A	at a sp I	ag (cct Pro	ta Ty:	t aa r As	n P	cc g ro G 35	gg t ly T	at d yr C	aa 31n	gt Va	t gc 1 Al 24	a	720
	ta Ty	t g r G	gc a ly I	tt t le I	ieu 1	yct g Ala (245	gaa g Slu V	rtg Val	gaa Glu	ga Gl	g ca u Hi 25	s P	cc t ro P	tt g he A	at g sp 7	gta /al	aa . As 25	n Ly	g s	768

	atg (Met ¹	gtt Val	ttc Phe	atg Met 260	: As	at t sp T	gg 'rp	cga Arg	gat Asp	26	er H	at Iis	ttg Leu	aag Lys	aac Asn	: aa 1 As 27	n T	ct Thr	ga As	t p	8:	16
5	ctc i	aag Lys	gag Glu 275	Arg	a aa g As	at a sn S	igt Ser	aga Arg	ata I16 28	e P	ca a	ct	ttt Phe	ctt Leu	tat Tyr 285	: A.	ca a la N	atg Met	Pr	a o	8	64
10	ttt Phe	tca Ser 290	tcc	aa As:	ca; nA:	gg a	ata Ile	ttt Phe 295	ct Le	t g u G	aa g lu G	gaa Glu	aca Thr	tca Ser	Le	e gi	ta q	gct Ala	Αì	gt cg	9	12
15	cct Pro 305	ggc Gly	tto	g cg 1 Ar	t a g I	le.	gat Asp 310	gat Asp	at Il	t c	aa In	gaa Glu	cga Arg 315	Met	gt Va	g g 1 A	ct la	cgt Arg	L	ta eu 20		60
20	aac Asn	cat	tt:	g gg	y I	ita [le 325	aaa Lys	gtg Val	r aa L Ly	ig a	igc Ser	att Ile 330	gaa Glu	a gaa 1 Glu	a ga 1 As	t g	aa lu	cat His 335	C	gt Ys	. 10	800
05	cta Leu	ata Ile	a cc e Pr	o Me	g g et (ggt 3ly	ggt Gly	CC	a ci	eu 1	cca Pro 345	gta Val	tta Le	a cc	t ca o Gl	.n. F	aga Arg 350	gtc Val	g V	tt al	10	056
25	gga Gly	ato	e Gl	t g y G	gt i	aca Thr	gct	gg Gl	y M	tg et 60	gtt Val	cat His	cc Pr	a tc o Se	r T	ec g ar (ggt 31y	tat	: 8 : 1\	itg Iet	1	104
30	gtg Val	gc Al 37	a Aı	g a g T	ca hr	cta Leu	gci Ala	z gc a Al 37	a A	ct la	cct Pro	gti Va:	c gt l Va	t go 1 Al 38	a A	at (gcc Ala	ata Ile	a a	att Ile	1	152
35	caa Gl: 38!	а Ту	c ct	cc g eu G	gt	tct Ser	ga: G1: 39	u Ar	ga a	igt Ser	cat	tc: Se	g gg r Gl	rt aa Ly As 95	at g sn G	aa lu	tta Leu	tc: Se:	r '	aca Thr 400	1	200
40	gc:	t gt a Va	t t	gg a	aaa Lys	gat Asp 405	Le	g to u T	rp 1	cct Pro	ata Ile	ga Gl 41	u Ai	gg ag	ga c rg A	gt xg	caa Glr	ag Ar 41	g	gag Glu	-1	.248
4.5	Ph	c ti	tc t he C	ys :	ttc Phe 420	Gl3	at Y Me	g g et A	at sp	att Ile	cti Lei 42	ı Le	g a eu L	ag c ys L	tt g eu <i>l</i>	at Asp	tta Lev 430	i bx	t o	gct Ala	1	L296
45	3.0	ea a ar A	rg A	agg Argʻ 135	ttc Phe	tt Ph	t ga	at g sp A	ca la	ttc Phe 440	Ph	t ga e As	ac t Sp L	ta g eu G	ilu :	cct Pro 445	Ar:	t ta g Ty	at /r	tgg Trp	:	1344
50	Ca H:	is G	gc 31y 3	ttc Phe	tta Leu	tc Se	g to	er A	ga Arg 155	ttg Lev	r tt L Ph	t ci	ta c eu F	ct g ro G	raa Slu 160	ctc Leu	at Il	a gt e Vá	al	ttt Phe		1392
	g	gg d	tg	tct	cta	a tt	c t	ct (cat	gct	t to	a a	at a	act t	ct	aga	. tt	t ga	ag	ata		1440

	Gly L 465	eu S	Ser L	eu F		Ser 470	His	Ala	Ser	Asn	Thr 475	- s	er A	Arg I	?he	Glu	Ile 480	
5	atg a Met T	ca a hr I	ag g Lys C	ly 7	act (Thr 185	gtt Val	cca Pro	tta Leu	gta Val	aat Asn 490	Met	a : I	tc a	aac a Asn 2	aat Asn	ttg Leu 495	tta Leu	1488
10	cag g Gln A		ys C		tga													1503
	<210>	. 2	0							•								
15	<211>	- 5	00															
	<212	P	RT			•					٠							
20	<213	> T	omat	e														
	<400	> 2	0				•											
25	Met .	Asp	Thr	Leu	Leu 5	Lys	Thr	Pro) Ası	AS 10	n Le	u (Glu	Phe	Leu	Asn 15	Pro	
30	His	His	Gly	Phe 20	Ala	Val	Lys	s Ala	a Sei 25	r Th	r Ph	ıe	Arg	Ser	Glu 30	Lys	His	·
35	His	Asn	Phe 35	Gly	Ser	Arg	Lys	s Ph		s Gl	u Tl	ır	Leu	Gly 45	Arg	ser	Val	
•	Cys	Val 50	Lys	Gly	Ser	Ser	55	r Al	a Le	u Le	eu Ġ	lu	Leu 60	Val	Pro	Glu	Thr	
40	Lys 65	Lys	Glu	Asn	. Lev	ı Ası 70	Ph	e Gl	u Le	u Pi	го М 7	et 5	Tyr	Asp	Pro	ser	E Lys	
45	Gly	Val	. Val	Val	Ası 85	o Le	u Al	a Va	al Va	il G:	ly G	ly	Gly	Pro	Ala	a Gly 95	/ Leu	
50	Ala	Va]	Ala	Glr 100		n Va	l Se	er Gi		la G)5	ly I	eu	Ser	· Val	. Cy:	s Se: O	r Ile	
	Asp	Pro	Asr 115		o Ly	s Le	u Il		rp P: 20	ro A	sn A	Asn	туг	Gly 125	v Va	l Tr	p Val	

5	Asp	Glu 130	Phe	Glu	Ala	Met	Asp 135	Leu	Leu	Asp	Cys	Leu 140	Asp	Ala	Thr	Trp	
	Ser 145	Gly	Ala	Ala	Val	туr 150	Ile	Asp	qsA	Asn	Thr 155	Ala	Lys	Asp	Leu	His 160	
10	Arg	Pro	Туr	Gly	Arg 165		Asn	Arg	Lys	Gln 170	Leu	Lys	Ser	Lys	Met 175	Met	
15	Gln	. Lys	Cys	ile 180		. Asn	Gly	Val	. Lys 185	Phe	His	Gln	Ala	Lys 190	Val	Ile	
20	Lys	; Val	195		s Glu	ı Glu	Ser	Ly:	s Ser	. Met	: Leu	Ile	Суs 205	Asn	Asp	GJA	
25	Ile	e Thi		e Glr	n Ala	a Thi	7 Val		l Le	Asp	Ala	220	Gly	Phe	e Ser	Arg	
	Se:		u Va	1 Gl:	n Ty	r Ası 23		s Pr	о Ту	r Ası	n Pro 23	o Gly 5	тух	Gl:	n Val	Ala 240	
30	ту	r Gl	y Il	e Le	u Al 24		u Va	1 G1	u Gl	u Hi 25	s Pr 0	o Phe	e Ası	o Va	l Ası 25	n Lys 5	
35	ме	t Va	il Př	ne Me 26		sp Tr	p Ar	g As	sp Se		s Le	u Ly:	s As	n As 27	n Th 0	r Asp	
40	L€	eu Ly		lu A1 75	rg As	sn Se	er Ar		le Pi 80	co Th	ir Ph	e Le	u Ty 28	r Al 5	a Me	t Pro	
45	PÌ		er S 90	er A	sn A	rg I		ne L 95	eu G	lu G	lu Tì	ar Se 30	r Le	eu Va	al Al	a Arg	
		ro G 05	ly L	eu A	rg I		sp A 10	I qa	le G	ln G	lu A: 3:	rg M∈ 15	et Va	al Ai	la Ai	g Leu 320	
50	A	sn P	is I	eu G		le L 25	ys V	al I	ys S	er I 3	le G 30	lu G	lu As	sp G	lu H: 3:	is Cys 35	;

	Leu	Ile	Pro	Met 340	Gly	Gly	Pro	Leu	Pro 345	Val	Leu	Pro	Gln	Arg 350	Val	Val
5	Gly	Ile	Gly 355	Gly	Thr	Ala	Gly	Met 360	Val	His	Pro	Ser	Thr 365		Tyr	Met
10	Val	Ala 370	Arg	Thr	Leu	Ala	Ala 375	Ala	Pro	Val	Val	Ala 380	Asn	Ala	Ile	Ile
15	Gln 385	Tyr	Leu	Gly	Ser	Glu 390	Arg	Ser	His	Ser	Gly 395	Asn	Glu	Leu	Ser	Thr 400
•	Ala	Val	Trp	Lys	Asp 405	Leu	Trp	Pro	Ile	Glu 410	Arg	Arg	Arg	Gln	Arg 415	Glu
20	Phe	Phe	Cys	Phe 420		Met	Asp	Ile	Leu 425		Lys	Leu	Asp	Leu 430	Pro	Ala
25	Thr	Arg	Arg 435		Phe	Asp	Ala	Phe 440		Asp	Leu	Glu	Pro 445	Arg	Tyr	Trp
30	His	Gly 450		. Leu	. Ser	Ser	Arg 455		ı Phe	. Leu	. Pro	Glu 460		Ile	Va:1	. Phe
35	Gly 465		ı Ser	. Lev	n Ph∈	e Ser 470		Ala	a Ser	: Asn	Thr 475		Arg	Phe	Glu	11e 480
	Met	Th:	r Lys	Gly	7 Thi 485		l Pro	Lei	ı Val	1 Asr 490		: Ile	e Asr	a Asn	1 Leu 495	ı Leu
40	Glı	n As	p Ly:	s Gl:		٠										
45	<2	10>	21													
	<2	11>	195													
50	<2	12>	DNA													
55	<2	13>	Kar	toff	el											

	<220>	
	<221> Intron	
5	<222> (1)(195)	
	<223>	
10	<400> 21 tacgtaagtt tctgcttcta cctttgatat atatataata attatcatta attagtagta	60
	atataatatt tcaaatattt ttttcaaaat aaaagaatgt agtatatagc aattgctttt	120
15	ctgtagttta taagtgtgta tattttaatt tataactttt ctaatatatg accaaaattt	180
	gttgatgtgc agctg	195
20	•	
	<210> 22	
	<211> 1155	
25	<212> DNA	
	<213> Haematococcus pluvialis	
30		
30	<220>	
	<221> CDS	•
35	<222> (6)(995)	
	<223>	
40		
	<400> 22 gaage atg cag eta gea geg aca gta atg ttg gag cag ett ace gga age	50
	Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser 1 5 10 15	
45	gct gag gca ctc aag gag aag gag aag gag gtt gca ggc agc tct gac Ala Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp 20 25 30	98
50	gtg ttg cgt aca tgg gcg acc cag tac tcg ctt ccg tca gag gag tca Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser 35 40 45	146
	gac gcg gcc cgc ccg gga ctg aag aat gcc tac aag cca cca cct tcc	194

										42								
	Asp	Ala	Ala 50	Arg	Pro	Gly	Leu	Lys 55	Asn	Ala	Tyr	Lys	Pro 60	Pro	Pr	o s	Ser	
5	gac Asp	aca Thr 65	aag Lys	ggc Gly	atc Ile	aca Thr	atg Met 70	gcg Ala	cta Leu	gct Ala	gtc Val	ato Ile 75	: ggc	tcc Ser	tg	ig 9	gcc Ala	242
10	gca Ala 80	gtg Val	ttc Phe	ctc Leu	cac His	gcc Ala 85	att Ile	ttt Phe	caa Gln	atc	aag Lys 90	ctt Leu	ccg Pro	acc Thr	to Se	er	ttg Leu 95	290
15	gac Asp	cag Gln	ctg Leu	cac His	tgg Trp 100	Leu	ccc Pro	gtg Val	tca Ser	gat Asp 105	Ala	aca Th	a gct r Ala	cag Glr	Le	eu 10	gtt Val	 338
15	agc Ser	Gly	agc	agc Ser 115	Ser	ctg Leu	ctg Leu	cac His	ato Ile 120	· Val	gta Vai	a gti L Va	a tto l Phe	tti Pho 12	⊋ Va	tc al	ctg Leu	386
20	gag Glu	ttc Phe	ctg Lev 130	тух	aca Thr	ggc Gly	ctt Leu	ttt Phe 135	: Ile	aco Thi	c ac	g ca r Hi	t ga s As 14	o Al	t a a M	tg et	cat His	434
25	Gly	acc Thr 145	rle	gco Ala	a to	g aga : Arg	a aad y Asi 150	ı Arç	g Gli	g ct [*]	t aa u As	t ga n As 15	c tt p Ph	c tt e Le	g g u G	ly gc	aga Arg	482
30	gta Val 160	Cys	ato	e Se:	c tto	tad 1 Ty: 16	r Ala	c tgg a Tr]	g tt o Ph	t ga e As	t ta p Ty 17	r As	nc at sn Me	g ct t Le	g c u H	ac Iis	cgc Arg 175	 530
35	aag Lys	g cat	t tg	g ga p Gl	g cae u Hi: 18	s Hi	c aa s As	c ca n Hi	c ac s Th	t gg r Gl 18	у Gl	ggt uVá	:g gg	c aa .y Ly	s Z	jac Asp L90	cct Pro	57 8
33	gac As <u>r</u>	e tt p Ph	c ca e Hi	s Ar	g gg 5	y As	n Pr	o Gl	y Il	e Va	g co	c to	gg tt rp Pl	t go le Al 20	.a s	agc Ser	ttc Phe	626
40	at: Me	g tc t Se	c ag r Se 21	r Ty	ıc at vr Me	g to et Se	g at	g tg et Tr 21	7p G1	ıg tt .n Pl	t go	eg c	gc ct rg Le 22	eu Al	ca i	tgg Trp	tgg Trp	674
45	ac Th	g gt r Va 22	1 Va	c at	g ca et Gl	ag ct in Le	eu Le 23	eu Gl	t go	eg co la Pi	ca a co M	et A	cg aa la Aa 35	ac ci sn Le	tg (ctg Leu	gtg Val	722
50	tt Ph 24	e Me	g go	eg ge la A	ec go la A	la P	cc at ro I: 45	tc ct le Le	tg to eu So	cc g er A	la P	tc c he A 50	gc t rg L	tg t eu P	tc he	tac Tyr	Phe 255	770
	G1 gg	rc ad	eg to nr T	ac a yr M	et P	cc c ro H 60	ac a is L	ag co ys P	ct g ro G	lu P	ct g ro G 65	gc g	scc g Ma A	cg t la S	er	gg(Gl ₃ 27(c tct / Ser	818

c	tca Ser	cca Pro	gcc Ala	gtc Val 275	atg Met	aac Asn	tgg Trp	tgg Trp	aag Lys 280	tcg Ser	cgc Arg	act Thr	agc Ser	cag Gln 285	gcg Ala	Se	ec er	866
5	gac Asp	ctg Leu	gtc Val 290	agc Ser	ttt Phe	ctg Leu	acc Thr	tgc Cys 295	tac Tyr	cac His	ttc Phe	gac Asp	ctg Leu 300	cac His	tgg Trp	ga Gi	ag lu	914
10	cac His	cac His 305	cgc Arg	tgg Trp	ccc Pro	ttt Phe	gcc Ala 310	ccc Pro	tgg Trp	tgg Trp	gag Glu	ctg Leu 315	ccc Pro	aac Asn	tgc Cys	C A	gc rg	962
15	cgc Arg 320	ctg Leu	tct Ser	ggc	cga Arg	ggt Gly 325	ctg Leu	gtt Val	cct Pro	gcc Ala	tag	ctg	gacac	cac	tgca	gt:	gggc	1015
	cct	gctg	cca	gctg	ggca	tg c	aggt	tgtg	ıg ca	ggac	tggg	tga	ggtga	aaa	agct	.gc	aggc	1075
20	gct	gctg	ccg	gaca	cgct	gc a	tggg	ctac	c ct	gtgt	agct	gcc	gcca	cta	gggg	jag	gggg	1135
	ttt	gtag	ctg	tcga	gctt	gc												1155
25	<21	.0>	23				•											
	<21	.1>	329															
20	<21	.2>	PRT															
30	<21	L3>	Haer	natoc	coccu	ıs pl	Luvia	alis										
35	<40	00>	23				,											
	Me¹	t Gl	n Le	u Ala	a Ala 5	a Th	r Va	l Me	t Le	u Gl 10		n Le	u Thr	Gl	y Se 15		Ala	
40	Gl	u Al	a Le	u Ly: 20	s Gl	u Ly	s Gl	u Ly	rs G1 25		1 A1	a Gl	y Sei	se: 30	r As	' q	Val	
45	Le	u Ar	g Th 35		p Al	a Th	r Gl	n T3 4(_	er L∈	u Pr	o Se	r Gla 45	ı Gl	u Se	r.	Asp	
50	Al	.a Al 50		g Pr	o Gl	y L∈	u Ly 55		sn Al	la Ty	r Ly	s Pr 60	o Pro	o Pr	o Se	er	Asp	
	Th 65	_	/s Gl	Ly Il	.e Th	nr Me		la L	eu A	la Va	al II 75		y Se	r Tr	p Al	la	Ala 80	

5	Val	Phe	Leu	His	Ala 85	Ile	Phe	Gln	Ile	Lys 90	Leu	Pro '	Thr	Ser	Leu 95	Asp
·	Gln	Leu	His	Trp 100	Leu	Pro	Val	Ser	Asp 105	Ala	Thr	Ala	Gln	Leu 110	Val	Ser
10	Gly	Ser	Ser 115	Ser	Leu	Leu	His	Ile 120	Val	Val	Val	Phe	Phe 125	Val	Leu	Glu
15	Phe	Leu 130		Thr	Gly	Leu	Phe 135	Ile	Thr	Thr	His	Asp 140	Ala	Met	His	Gly
20	Thr 145		e Ala	. Met	Arg	Asn 150		Gln	Leu	Asn	Asp 155	Phe	Leu	Gly	Arg	Val 160
25	Cys	Ile	e Ser	. Lev	1 Tyr 165		Trp	Phe	. Asp	Tyr 170	Asn	Met	Leu	His	Arg 175	Lys
	His	Tr	o Glu	1 His		s Asr	ı His	Thr	Gly 185		ı Val	Gly	Lys	Asp 190		Asp
30	Phe	e Hi	s Arg		y Ası	n Pro	o Gl <u>y</u>	7 Ile 200		l Pro	o Trp	Phe	Ala 205		Phe	Met
35	Se	r Se 21		r Me	t Se:	r Me	t Try 21		n Pho	e Ala	a Arç	1 Leu 220		Trp	Trp	Thr
40	Va 22		l Me	t Gl	n Le	u Le 23		y Al	a Pr	o Me	t Ala 23!		ı Leı	ı Leı	ı Val	Phe 240
45	Me	t Al	La Al	a Al	a Pr 24		e Le	u Se	r Al	a Ph 25		g Let	ı Phe	е Ту	r Phe 255	e Gly
40	Th	ır Ty	yr Me		co Hi 60	s Ly	rs Pr	:o G]	.u Pr 26		y Al	a Ala	a Se	r Gl _: 27		c Ser
50	Pr	co A		al Me	et As	n Tı	ap Ti		/s Se	er Ar	g Th	r Se	r Gl: 28		a Se:	r Asp

	eu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His 290 295 300	
5	Ais Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg 310 315 320	
10	Leu Ser Gly Arg Gly Leu Val Pro Ala 325	
	<210> 24	
15	<211> 1111	
	<212> DNA	
20	<213> Haematococcus pluvialis	
	<220>	
25	<221> CDS	
	<222> (4)(951)	
30	<223>	
35	<pre><400> 24 tgc atg cta gag gca ctc aag gag aag gag aag gag gtt gca ggc agc Met Leu Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser 1</pre>	48
40	tct gac gtg ttg cgt aca tgg gcg acc cag tac tcg ctt ccg tca gaa Ser Asp Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu 20 25 30	96
45	gag tca gac gcg gcc cgc ccg gga ctg aag aat gcc tac aag cca cca Glu Ser Asp Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro 35 40 45	144
- 40	cct tcc gac aca aag ggc atc aca atg gcg cta gct gtc atc ggc tcc Pro Ser Asp Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser 50 55 60	192
50	tgg gcc gca gtg ttc ctc cac gcc att ttt caa atc aag ctt ccg acc Trp Ala Ala Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr 65 70 75	240
	tee ttg gae cag etg cae tgg etg eec gtg tea gat gee aca get eag	288

										70							
	ser 80	Leu	Asp	Gln	Leu	His 85	Trp	Leu	Pro	Val	Ser 90	Asp	Ala	Thr	Ala	Gln 95	
5	ctg Leu	gtt Val	agc Ser	ggc Gly	agc Ser 100	agc Ser	agc Ser	ctg Leu	Leu	cac His 105	atc Ile	gtc Val	gta Val	gta Val	ttc Phe 110	ttt Phe	336
10	gtc Val	ctg Leu	gag Glu	ttc Phe 115	ctg Leu	tac Tyr	aca Thr	ggc Gly	ctt Leu 120	ttt Phe	atc Ile	acc Thr	acg Thr	cat His 125	gat Asp	gct Ala	384
15	atg Met	cat His	ggc Gly 130	acc Thr	atc Ile	gcc Ala	atg Met	aga Arg 135	aac Asn	agg Arg	cag Gln	ctt Leu	aat Asn 140	gac Asp	ttc Phe	ttg Leu	432
13	ggc Gly	aga Arg 145	gta Val	tgc Cys	atc Ile	tcc Ser	ttg Leu 150	tac Tyr	gcc Ala	tgg Trp	ttt Phe	gat Asp 155	tac Tyr	aac Asn	atg Met	ctg Leu	480
20	cac His 160	Arg	aag Lys	cat His	tgg Trp	gag Glu 165	cac	cac His	aac Asn	cac His	act Thr 170	Gly	gag Glu	gtg Val	Gly	aag Lys 175	528
25	gac Asp	cct	gac Asp	ttc Phe	cac His	Arg	gga Gly	aac Asn	cct Pro	ggc Gly 185	Ile	gtg Val	ccc Pro	tgg Trp	ttt Phe 190	Ala	576
30					Ser					Trp			gcg Ala		Leu	gca Ala	624
35	tgg Trp	tgg Tr	g acg Thi	r Val	gto Val	ato L Met	cag Glr	cto Let 215	ı Lev	ggt Gly	gcg Ala	g cca	a atg Met 220	. Ala	aac Asn	ctg Leu	672
33	cto Lev	g gtg 1 Va: 22:	l Ph	c ato	g gcg	g gco a Ala	gcg a Ala 230	a Pro	ato	cto E Lev	g tco 1 Sei	gce Ala 23	a Phe	cgc Arg	ttg Lev	ttc Phe	720
40		r Ph					t Pro					u Pr				g tca a Ser 255	768
45						a Va					ь гл					c cag r Gln O	816
50	gc Al	g to a Se	c ga r As	c ct p Le 27	u Va	c ag 1 Se	c tt	t ct e Le	g ac u Th 28	r Cy	c ta s Ty	c ca	c tto	c gad e Ası 28!	p Le	g cac u His	864
	tg Tr	g ga	ıg ca .u Hi 29	s Hi	c cg s Ar	gc tg gg Tr	g co p Pr	c tt o Ph 29	e Al	c cc a Pr	c tg	g tg p Tr	g ga p Gl 30	u Le	g cc	c aac o Asn	912

	tgc cgc cgc ctg tct ggc cga ggt ctg gtt cct gcc tag ctggacacac Cys Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala 305 310 315	961
5	tgcagtgggc cctgctgcca gctgggcatg caggttgtgg caggactggg tgaggtgaaa	1021
	agetgeagge getgetgeeg gacacgttge atgggetace etgtgtaget geegecaeta	1081
10	ggggaggggg tttgtagctg tcgagcttgc	1111
	<210> 25	
15	<211> 315	
	<212> PRT	
20	<213> Haematococcus pluvialis	
	<400> 25	
25	Met Leu Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser 1 5 10 15	
30	Asp Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu 20 25 30	
35	Ser Asp Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro 35 40 45	
•	Ser Asp Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser Trp 50 55 60	
40	Ala Ala Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser 65 70 75 80	
45	Leu Asp Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu 85 90 95	
50	Val Ser Gly Ser Ser Leu Leu His Ile Val Val Phe Phe Val 100 105 110	
	Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met	

5	His	Gly 130	Thr	Ile	Ala	Met	Arg 135	Asn	Arg	Gln	Leu	Asn 140	Asp	Phe	Leu	Gly
	Arg 145	v al	Cys	Ile	Ser	Leu 150	Tyr	Ala	Trp	Phe	Asr 155	Tyr	Asn	Met	Leu	His 160
10	Arg	Lys	His	Trp	Glu 165		His	Asr	n His	3 Th:	c Gly	y Glu	. Val	Gly	Lys 175	Asp
15	Pro	Asp) Phe	His 180		Gly	Asn	Pro	G1; 18	y Il 5	e Va	l Pro	Trp	Phe 190	Ala	Ser
20	Phe	. Met	: Ser 195		туг	. Met	: Sei	20		p Gl	n Ph	e Ala	a Arg 205	Leu i	Ala	Trp
25	Trg	21		l Val	L Met	t Gli	n Len 21		u Gl	.y A]	a Pr	o Me 22	t Ala	a Asn	Lev	Leu
	Va:		e Me	t Ala	a Al	a Al. 23		o Il	.e Le	eu Se	er Al 23	la Ph 35	e Ar	g Leu	n Phe	240
30	Ph	e Gl	y Th	х Ту	r Me 24	t Pr 5	о ні	s Ly	ys P:	ro G 2	lu P: 50	ro Gl	y Al	a Ala	a Ser 25!	c Gly
35	Se	r S∈	er Pr	o Al 26		al Me	et As	n T	rp T 2	rp L 65	ys S	er Ar	g Th	r Se: 27	r Gl	n Ala
40	Se	er As		eu Va 75	al Se	er Ph	ie Le	eu T 2	hr C 80	ys I	yr H	is Pl	ne As 28		u Hi	s Trp
45	G]		is H 90	is A:	rg T	rp P		he A 95	la E	ro S	r qr9	irp G	lu L∈ 00	eu Pr	o As	n Cys
		rg A 05	rg L	eu S	er G		rg G 10	ly I	Leu '	/al	Pro 1	Ala 315				
50		210>	26	;									•			
	<	211>	> 10	31												

	40	
	<212> DNA	
	<213> Haematococcus pluvialis	
5		
	<220>	
	<221> CDS	
10	<222> (6)(1031)	
	<223>	
15		
20	<pre><400> 26 gaagc atg cag cta gca gcg aca gta atg ttg gag cag ctt acc gga agc Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser 1</pre>	50
	gct gag gca ctc aag gag aag gag aag gag gtt gca ggc agc tct gac Ala Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp 20 25 30	98
25	gtg ttg cgt aca tgg gcg acc cag tac tcg ctt ccg tca gag gag tca Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser 35 40 45	146
30	gac gcg gcc cgc ccg gga ctg aag aat gcc tac aag cca cca cct tcc Asp Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser 50 55 60	194
35	gac aca aag ggc atc aca atg gcg cta gct gtc atc ggc tcc tgg gct Asp Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser Trp Ala 65 70 75	242
40	gca gtg ttc ctc cac gcc att ttt caa atc aag ctt ccg acc tcc ttg Ala Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu 80 85 90 95	290
	gac cag ctg cac tgg ctg ccc gtg tca gat gcc aca gct cag ctg gtt Asp Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val 100 105 110	338
45	agc ggc agc agc ctg ctg cac atc gtc gta gta ttc ttt gtc ctg Ser Gly Ser Ser Ser Leu Leu His Ile Val Val Val Phe Phe Val Leu 115 120 125	386
50	gag ttc ctg tac aca ggc ctt ttt atc acc acg cat gat gct atg cat Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His 130 135 140	434
	ggc acc atc gcc atg aga aac agg cag ctt aat gac ttc ttg ggc aga	482

	Gly	Thr 145	Ile	Ala	Met		Asn 150	Arg	Gln	Leu	Asn	Asp 155	Phe	Leu	Gly	Arg		
5	gta Val 160											aac Asn					!	530
10	aag Lys	cat His	tgg Trp	gag Glu	cac His 180	cac His	aac Asn	cac His	act Thr	ggc Gly 185	gag Glu	gtg Val	ggc	aag Lys	gac Asp 190	cct Pro	!	578
45	gac Asp	ttc Phe	cac His	agg Arg 195	gga Gly	aac Asn	cct Pro	ggc	att Ile 200	Val	ccc Pro	tgg Trp	ttt Phe	gcc Ala 205	agc Ser	ttc Phe		626
15	atg Met	tcc Ser	agc Ser 210	tac Tyr	atg Met	tcg Ser	atg Met	tgg Trp 215	Gln	ttt Phe	gcg Ala	cgc Arg	ctc Leu 220	gca Ala	tgg Trp	tgg Trp		674
20	acg Thr	gtg Val 225	Val	atg Met	cag Gln	ctg Leu	ctg Leu 230	Gly	gcg Ala	cca Pro	atg Met	gcg Ala 235	Asn	ctg Leu	ctg Leu	gtg Val		722
25	ttc Phe 240	Met	gcg Ala	gcc Ala	gcg Ala	ccc Pro 245	Ile	cto Lev	tco Sei	gcc Ala	tto Phe 250	Arg	ttg Leu	ttc Phe	tac Tyr	ttt Phe 255		770
30	ggc Gly	acg Thr	tac Tyr	atg Met	r ccc Pro 260	His	aag Lys	g cc	t gag	g cct u Pro 26!	o Gly	gco Ala	gcg Ala	tca Ser	ggc Gly 270	tct Ser		818
	tca Ser	cca Pro	gco Ala	gto Val 275	L Met	g aac : Asi	tgg Tr	g tg	g aa p Ly 28	s Se	g cgo	c act	ago Ser	cag Glr 285	ı Ala	tcc Ser		866
35	gac Asp	c cto	g gto 1 Va: 29	l Se	c tti	t cto	g ac	c tg r Cy 29	з Ту	c ca r Hi	c tto s Pho	c gad e Ası	c cto Dei 300	ı His	tgg Tr	g gag o Glu		914
40	cac Hi:	c ca s Hi 30	s Ar	c tg g Tr	g cc p Pr	c tt o Ph	t gc e Al 31	a Pr	c tg	g tg p Tr	g ga p Gl	g ctg u Lei 31:	u Pro	c aad Asi	c tgo	c cgc s Arg		962
45	cgo Arc	g Le	g tc u Se	t gg r Gl	c cg y Ar	a gg g Gl 32	λ re	g gt u Va	t co	et go	c ga .a G1 33	u Gl	a aaa n Ly	a cto s Le	c ato	c tca e Ser 335		1010
50			g ga u As			n Se		ıg							,			1031

									51						
	<211>	341													
	<212> PRT														
5	<213> Haematococcus pluvialis														
10	<400>	27													
	Met Gln	Leu	Ala	Ala 5	Thr	Val	Met	Leu	Glu 10	Gln	Leu	Thr	Gly	Ser 15	Ala
15	Glu Ala	. Leu		Glu	Lys	Glu	Lys		Val	Ala	Gly	Ser		Asp	Val
			20					25					30		
20	Leu Arg		Trp	Ala	Thr	Gln	Tyr 40	Ser	Leu	Pro	Ser		Glu	Ser	Asp
20		35					40					45			
	Ala Ala	Arg	Pro	Gly	Leu	Lys 55	Asn	Ala	Tyr	Lys	Pro 60	Pro	Pro	Ser	Asp
25															
	Thr Lys	Gly	Ile	Thr	Met 70	Ala	Leu	Ala	Val	Ile 75	Gly	Ser	Trp	Ala	Ala 80
30															
	Val Phe	e Leu	His	85 85	Ile	Phe	Gin	Ile	Lys 90	Leu	Pro	Thr	Ser	Leu 95	Asp
35	Gln Le	. uic	- Maria	T.013	Pro	t e tr	Ser	A en	פות	mb ≈	ת ה	Cln	τ ου	77 - 7	C
55	GIU LE	ı nıs	100		FIO	Val	Der	105	NIG	1111	AIG	GIII	110	Val	ser
	Gly Sea	. Ser	Ser	Leu	Leu	His	Ile	Val	Val	Val	Phe	Phe	Val	Leu	Glu
40	-	115					120					125			
	Phe Let	ı Tyr	Thr	Gly	Leu	Phe	Ile	Thr	Thr	His	qzA	Ala	Met	His	Gly
45	13	ס				135					140				
	Thr I1	e Ala	Met	Arg	Asn 150		Gln	Leu	Asn	Asp 155	Phe	Leu	Gly	Arg	Val 160

Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys

170

	His	Trp	Glu	His 180	His	Asn	His	Thr	Gly 185	Glu	Val	Gly	Lys	Asp 190	Pro	Asp
5	Phe	His	Arg 195	Gly	Asn	Pro	Gly	Ile 200	Val	Pro	Trp	Phe	Ala 205	Ser	Phe	Met
10	Ser	Ser 210	Tyr	Met	Ser	Met	Trp 215	Gln	Phe	Ala	Arg	Leu 220	Ala	Trp	Trp	Thr
15	Val 225	Val	Met	Gln	Leu	Leu 230	Gly	Ala	Pro	Met	Ala 235	Asn	Leu	Leu	Val	Phe 240
,,,	Met	Ala	Ala	Ala	Pro 245		Leu	Ser	Ala	Phe 250		Leu	Phe	Tyr	Phe 255	Gly
20	Thr	Тут	Met	: Pro		Lys	Pro	Glu	Pro 265		· Ala	Ala	Ser	Gly 270	Ser	Ser
25	Pro) Ala	a Vai 27!		t Ası	ı Trp	Trp	Lys 280		. Arg	Thr	Ser	Gln 285	a Ala	Ser	Asp
30	Lev	ı Va 29		r Ph	e Lei	ı Thi	c Cys 295		r His	s Phe	e Asp	300	His	s Trp	Glu	His
35	Hi:		g Tr	p Pr	o Ph	e Ala 31		Tr	p Tr	o Gli	ı Let 319) Ası	n Cys	arg	Arg 320
	Le	u Se	r Gl	y Ar	g Gl 32		u Va	l Pr	o Al	a Gl [.] 33	u Gli 0	ı Ly:	s Le	u Ile	33!	c Glu 5
40	G1	u As	sp L∈	eu As 34	sn Se 10	er										
45	<2	10>	28					•								
	<2	211>	77	7												
50	<2	212>	DN	Α.												
50	<2	213>	Ar	abid	opsi	s tha	aliar	ıa								

<220>

<221> promoter

5 <222> (1)..(777)

<223>

10 <400> 28 gageteacte aetgatttee attgettgaa aattgatgat gaactaagat caatecatgt 60 tagtttcaaa acaacagtaa ctgtggccaa cttagttttg aaacaacact aactggtcga 120 15 agcaaaaaga aaaaagagtt tcatcatata tctgatttga tggactgttt ggagttagga 180 ccaaacatta tctacaaaca aagacttttc tcctaacttg tgattccttc ttaaacccta 240 ggggtaatat totattttcc aaggatottt agttaaaggo aaatccggga aattattgta 300 20 atcatttggg gaaacatata aaagatttga gttagatgga agtgacgatt aatccaaaca 360 tatatatete tttettetta ttteecaaat taacagacaa aagtagaata ttggetttta 420 25 acaccaatat aaaaacttgc ttcacaccta aacacttttg tttactttag ggtaagtgca 480 aaaagccaac caaatccacc tgcactgatt tgacgtttac aaacgccgtt aagtcgatgt 540 ccgttgattt aaacagtgtc ttgtaattaa aaaaatcagt ttacataaat ggaaaattta 600 30 tcacttagtt ttcatcaact tctgaactta cctttcatgg attaggcaat actttccatt 660 tttagtaact caagtggacc ctttacttct tcaactccat ctctcttt ctatttcact 720 35 tetttettet cattatatet ettgteetet ceaccaaate tetteaacaa aaagett 777

<210> 29

40

<211> 22

<212> DNA

45 <213> kuenstlich

<220>

50

<221> primer_bind

<222> (1)..(22)

<223>

5 <400> 29 gcaagctcga cagctacaaa cc

22

<210> 30

10

<211> 24

<212> DNA

15 <213> kuenstlich

<220>

20

<221> primer_bind

<222> (1)..(24)

25 <223>

<400> 30

30 gaagcatgca gctagcagcg acag

24

<210> 31

35 <211> 30

<212> DNA

<213> kuenstlich

40

<220>

45 <221> primer_bind

<222> (1)..(30)

<223>

50

<400> 31 tgcatgctag aggcactcaa ggagaaggag

<211> 37

```
<210> 32
5
    <211> 59
    <212> DNA
    <213> kuenstlich
10
     <220>
15
    <221> primer_bind
     <222> (1)..(59)
     <223>
20
     ctagctattc agatcctctt ctgagatgag tttttgctcg gcaggaacca gacctcggc 59
25
     <210> 33
     <211> 28
30
     <212> DNA
     <213> kuenstlich
 35
      <220>
      <221> primer_bind
 40
      <222> (1)..(28)
      <223>
 45
      <400> 33
                                                                         28
      gageteacte actgatttee attgettg
 50
      <210> 34
```

```
<212> DNA
    <213> kuenstlich
5
    <220>
    <221> primer_bind
10
    <222> (1)..(37)
    <223>
15
     <400> 34
                                                                         37
     cgccgttaag tcgatgtccg ttgatttaaa cagtgtc
20
     <210> 35
     <211> 34
25
     <212> DNA
     <213> kuenstlich
30
     <220>
     <221> primer_bind
     <222> (1)..(34)
35
     <223>
 40
      atcaacggac atcgacttaa cggcgtttgt aaac
                                                                         34
      <210> 36
 45
      <211> 25
      <212> DNA
 50
      <213> kuenstlich
```

	<220>	
	<221> primer_bind	
5	<222> (1)(25)	
	<223>	
10	<400> 36 taagcttttt gttgaagaga tttgg	25
15	<210> 37	
	<211> 212	•
00	<212> DNA	
20	<213> Kuenstliche Sequenz	
25	<220>	
	<221> Intron	
00	<222> (1)(212)	
30	<223>	
35	<400> 37 gtcgactacg taagtttctg cttctacctt tgatatatat ataataatta tcattaatta	60
	gtagtaatat aatatttcaa atatttttt caaaataaaa gaatgtagta tatagcaatt	120
40	gcttttctgt agtttataag tgtgtatatt ttaatttata acttttctaa tatatgacca	180
40	aaatttgttg atgtgcaggt atcaccggat cc	212
	adattigtig atgegedgge deedeeggare ee	
45	<210> 38	
	<211> 1830	
	<212> DNA	
50	.212> magates erecta	

- ~	\sim	\sim	•
~ ,	2	.,	-

<221> CDS

5 <222> (141)..(1691)

									•								
10	<4002 ggcad	> 3	8 gc aa	aagca	aaagg	g ttg	gttt⊆	gttg	ttgi	ctgtt	ga g	gaga	cact	cc a	atcca	aaca	60
	gata	caag	gc g	tgact	tggat	t att	ttctc	ctct	cgt	tccta	aac a	aaca	gcaa	cg a	agaa	gaaaa	120
15	agaa	tcat	ta c	taac	aatca	a atq Me	g agt t Se	t at	g ag	a gct g Ala 5	t gga	a ca y Hi	c at s Me	g ac	g gc r Al 10	a aca a Thr	173
20	atg Met	gcg Ala	gct Ala	ttt Phe 15	aca Thr	tgc Cys	cct Pro	agg Arg	ttt Phe 20	atg : Met :	act Thr	agc Ser	atc Ile	aga Arg 25	tac Tyr	acg Thr	221
25	aag Lys	caa Gln	att Ile 30	aag Lys	tgc Cys	aac Asn	gct Ala	gct Ala 35	aaa Lys	agc Ser	cag Gln	cta Leu	gtc Val 40	gtt Val	aaa Lys	caa Gln	269
30	gag Glu	att Ile 45	gag Glu	gag Glu	gaa Glu	gaa Glu	gat Asp 50	tat Tyr	gtg Val	aaa Lys	gcc Ala	ggt Gly 55	gga Gly	tcg Ser	gag Glu	ctg Leu	317
05	ctt Leu 60	ttt Phe	gtt Val	caa Gln	atg Met	caa Gln 65	cag Gln	aat Asn	aag Lys	tcc Ser	atg Met 70	gat Asp	gca Ala	cag Gln	tct Ser	agc Ser 75	365
_. 35	cta Leu	tcc Ser	caa Gln	aag Lys	ctc Leu 80	cca Pro	agg Arg	gta Val	cca Pro	ata Ile 85	gga Gly	gga Gly	gga Gly	gga Gly	gac Asp 90	agt Ser	413
40	aac Asn	tgt Cys	ata : Ile	ctg Leu 95	gat Asp	ttg Leu	gtt Val	gta Val	att Ile 100	Gly	tgt Cys	ggt Gly	cct Pro	gct Ala 105	Gly	ctt Leu	461
45	gct Ala	: ctt	gct Ala 110	gga Gly	gaa Glu	tca Ser	gcc Ala	aag Lys 115	Leu	ggc Gly	ttg Leu	aat Asr	gtc Val 120	Ala	ctt Leu	atc Ile	509
50	G17	e cci y Pro 12	o Ası	t ctt p Lev	cct Pro	ttt Phe	aca Thr	Ası	aac n Asr	tat Tyr	ggt Gly	gtt Val 135	l Trr	gag Glu	gat Asp	gaa Glu	557
	tt: Pho	e Il	a gg e Gl	t cti y Lei	r gga	a cti Y Lei 14!	u Gli	g ggo ı Gl	c tgt y Cy:	att	gaa Glu 150	ı His	t gtt s Val	tgg L Trp	g cga o Arg	gat Asp 155	605

.	act o	gta Val	gta Val	tat Tyr	ctt Leu 160	gat Asp	gao Asj	e aa o As	ac g sn A	.ge	ccc Pro 165	att Ile	ctc Leu	ata Ile	ggt Gly	r A	gt g rg 1	gcc Ala		653
5	tat (gga Gly	cga Arg	gtt Val 175	Ser	cgt Arg	ga g As	t ti p L	eu L	ett eu .80	cac His	gag Glu	gag Glu	ttg Leu	Let 185	1 T	hr .	agg Arg		701
10	tgc Cys	Met	gag Glu 190	Ser	Gly	gt Va	t tc l Se	r T	at o yr I 95	etg Seu	agc Ser	tcc	aaa Lys	gtg Val 200	. Gl	a c	rg Jrg	att Ile		749
15	Thr	Glu 205	Ala	Pro) Asi	ı Gl	y Le 21	eu S .0	er 1	Leu	Ile	Glu	21:		ı Gl	y 2	Asn	Ile		797
20	Thr 220	Ile	Pro	су Су	s Ar	g Le 22	u A.	la T	hr '	Val	Ala	230	c G1;	a gca y Ala	a Al	a i	Ser	Gly 235		845
25	aaa Lys	ctt	tt: Le	g ca u Gl	g ta n Ty 24	r G	ia c	tt (ggc 31y	ggt Gly	Pro 245	Ar	t gt g Va	t tg 1 Cy	c gt s Va	ıl	caa Gln 250	aca Thr		893
20	gct Ala	tai Ty:	t gg r Gl	t at y Il 25	.e Gl	gg	t g al G	ag lu	gtt Val	gaa Glu 260	Sei	at Il	a co e Pr	c ta	r As	at sp 55	cca Pro	agc Ser		941
30	cta Leu	at Me	g gt t Va 27	1 Pi	c at	g g et A	at t sp 1	at Yr	aga Arg 275	gac	ta: Ty:	c ac	c aa r Ly	aa ca ys Hi 28	s Ly	aa Ys	tct Ser	caa Gln		989
35	Ser	28	u G] 5	lu A	la G	ln I	yr I	290	Thr	Phe	e Le	u Ty	rr Va 25	tc at al Me 95	et P	ro	Met	Ser	•	1037
40	9r0	o Tì O	r L	ys V	al P	he I	he (31u	Glu	Th:	r Cy	s Le	eu A 10	ct to la So	er L	ys	GLu	315	i 5	1085
45	Me	t Pi	ro P	he G	lu I	eu 1 20	Leu	Lys	Thr	. Ly	s Le 32	eu M	et S	ca a	rg I	eu	33(s Thi	.	1133
40	at Me	g g t G	gg a ly I	le A	ega a Arg : 835	ta Ile	acc Thr	aaa Lys	act Thi	ta Ty 34	r G	aa g lu G	ag g lu G	gaa t Blu T	rp S	ca Ser 345	Ty:	t ati	t e	1181
50	Pr	a g o V	al G	gt (Bly (850	gga Gly	cc Ser	tta Leu	cca	aat Asi 35	n Tì	c g	ag c lu G	aa a ln I	aag a Lys A	ac o sn 1 60	ctt Leu	gc.	a tt a Ph	t e	1229
	gg	gt g	rct (gct	gct	agc	atg	gto	, ca	t co	ca g	cc a	ca g	gga t	at	tcg	gt	t gt	a	1277

										60							
	Gly	Ala 365	Ala	Ala	Ser	Met	Val 370	His	Pro	Ala	Thr	Gly 375	Tyr	Ser	Val	Val	
5	aga Arg 380	tca Ser	ctg Leu	tca Ser	gaa Glu	gct Ala 385	cct Pro	aat Asn	tat Tyr	gca Ala	gca Ala 390	gta Val	att Ile	gca Ala	aag Lys	att Ile 395	1325
10	tta Leu	Gly	aaa Lys	gga Gly	aat Asn 400	tca Ser	aaa Lys	cag Gln	atg Met	ctt Leu 405	gat Asp	cat His	gga Gly	aga Arg	tac Tyr 410	aca Thr	1373
15	acc Thr	aac Asn	atc Ile	tca Ser 415	aag Lys	caa Gln	gct Ala	tgg Trp	gaa Glu 420	aca Thr	ctt Leu	tgg Trp	ccc Pro	ctt Leu 425	gaa Glu	agg Arg	1421
15	aaa Lys	aga Arg	cag Gln 430	Arg	gca Ala	ttc Phe	ttt Phe	ctc Leu 435	Phe	gga Gly	tta Leu	gca Ala	ctg Leu 440	Ile	gtc Val	cag Gln	1469
20	at <u>c</u> Met	gat : Asp : 445	o Il∈	gag Glu	r Gly	acc Thr	arg Arg 450	Thr	tto Phe	tto Phe	cgg Arg	act Thr 455	. Phe	tto Phe	cgc Arg	ttg Leu	1517
25	Pro	Th:	a tgg	g ato Met	g tgg Trg	g tgg Try 46!	Gl3	y ttt / Phe	ctt Lev	gga Gly	tct Sei 470	: Sei	g tta c Lev	tca Sei	a tca : Sei	act Thr 475	1565
30	ga Asj	c tt: p Le	g ata u Ile	a ata	a tt e Pho 48	e Al	g tti a Pho	t tad	c ato	t Phe	e Il	e Il	a gca e Ala	a cco	g cat o Hi: 49	agc s Ser O	1613
	ct Le	g ag u Ar	a at g Me	g gg t Gl 49	у Ге	g gt u Va	t ag 1 Ar	a ca g Hi	t tt s Le 50	u Le	t tc u Se	t ga r As	c cc p Pr	g ac o Th	r Gl	a gga y Gly	1661
35	ac Th	a at	g tt t Le 51	u Ly	a go s Al	g ta .a Ty	t ct T Le	c ac u Th 51	r Il	a ta e	a at	aact	ctag	tcg	cgat	cag	1711
40	tt	taga	ttat	agg	gcaca	atct	tgca	ıtata	ıta t	atgt	ataa	a co	ttat	gtgt	gct	gtatcct	1771
	ta	acato	caaca	a caç	gtcat	taa	ttgt	attt	ct t	:gggç	rtaat	g ct	gatg	aagt	att	ttctgg	1830
45	<:	210>	39														
	<:	211>	51	6													
50		212>															
	<	213>	Та	gete	s er	ecta											

	<400)>	39													
5	Met 1	Ser	Met	Arg	Ala 5	Gly	His	Met	Thr	Ala 10	Thr	Met	Ala	Ala	Phe 15	Thr
	Cys	pro	Arg	Phe 20	Met	Thr	Ser	Ile	Arg 25	Tyr	Thr	Lys	Gln	Ile 30	Lys	Cys
10	Asn	Ala	a Ala 35	Lys	Ser	Gln	Leu	Val	Val	Lys	Gln	Glu	Ile 45	Glu	Glu	Glu
15	Glu	As) 50	o Tyr	· Val	Lys	Ala	Gly 55	Gly	Ser	Glu	Leu	Leu 60	Phe	Val	Gln	Met
20	Gln 65	Gl:	n Asr	ı Lys	Ser	Met	. Ası	Ala	a Glr	. Ser	Ser 75	Leu	Ser	Gln	Lys	Leu 80
25	Pro	ar	g Vai	l Pro	0 Il€ 85	e Gly	y Gl	y Gl	y Gl	Ası 90	Ser	. Asn	Cys	Ile	Leu 95	Asp
20	Lev	ı Va	ıl Va	1 Ile 10		y Cy:	s Gl	y Pr	o Ala 10		y Lei	ı Ala	. Leu	Ala 110	Gly	Glu
30	Se	r Al	la Ly 11		u Gl	y Le	u As	n Va 12		a Le	u Il	e Gly	7 Pro	Asp	Lev	ı Pro
35	Ph		nr As 30	n As	n Ty	r Gl	y Va 13		p Gl	u As	p Gl	u Phe	e Il∈ O	e Gly	, Let	ı Gly
40	Le 14		lu G	Ly Cy	rs Il	.e Gl 15		is Va	al Tr	p Ar	g As 15	p Th	r Vai	l Vai	l Ty:	r Leu 160
45	As	A q	.sp A:	sn As		ro II	le L	eu I	le Gl		g Al 70	а Ту	r Gl	y Ar	g Va 17	l Sei 5
	Aı	cg A	rsb r		eu Hi 80	is G	lu G	lu L		eu Tl 85	nr Ar	rg Cy	rs Me	t Gl 19	u Se O	r Gl

Val Ser Tyr Leu Ser Ser Lys Val Glu Arg Ile Thr Glu Ala Pro Asn

	Gly Leu Ser Leu Ile Glu Cys Glu Gly Asn Ile Thr Ile Pro Cys Arg 210 215 220
5	Leu Ala Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Gln Tyr 235 230 235 240
10	Glu Leu Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Ile Glu 245 250 255
15	Val Glu Val Glu Ser Ile Pro Tyr Asp Pro Ser Leu Met Val Phe Met 260 265 270
	Asp Tyr Arg Asp Tyr Thr Lys His Lys Ser Gln Ser Leu Glu Ala Gln 275 280 285
20	Tyr Pro Thr Phe Leu Tyr Val Met Pro Met Ser Pro Thr Lys Val Phe 290 295 300
25	Phe Glu Glu Thr Cys Leu Ala Ser Lys Glu Ala Met Pro Phe Glu Leu 305 310 315 320
30	Leu Lys Thr Lys Leu Met Ser Arg Leu Lys Thr Met Gly Ile Arg Ile 325 330 335
35	
	Leu Pro Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser 355 360 365
40	Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu 370 375 380
45	Ala Pro Asn Tyr Ala Ala Val Ile Ala Lys Ile Leu Gly Lys Gly Asn 385 390 395 400
5	Ser Lys Gln Met Leu Asp His Gly Arg Tyr Thr Thr Asn Ile Ser Lys 405 410 415
	Gln Ala Trp Glu Thr Leu Trp Pro Leu Glu Arg Lys Arg Gln Arg Ala 420 425 430

5	Phe	Phe	Leu 435	Phe	Gly	Leu	Ala	Leu 440	Ile	Val	Gln	Met	445	ire	GIU	GIY	
	Thr	Arg 450	Thr	Phe	Phe	Arg	Thr 455	Phe	Phe	Arg	Leu	Pro 460	Thr	Trp	Met	Trp	
10	Trp 465		Phe	Leu	Gly	Ser 470	Ser	Leu	Ser	Ser	Thr 475	Asp	Leu	Ile	Ile	Phe 480	
·15	Ala	Phe		Met	Phe 485	: Ile	Ile	Ala	Pro	His 490	Ser	Leu	Arg	Met	Gly 495	Leu	
20	Val	Arg	y His	500		ı Ser	: Asr	Pro	505	Gly	g Gly	y Thr	Met	: Leu 510	Lys	Ala	
25	ТУ 1	: Le	u Thi	r Ilo	e												
•	<2	10>	40														
	<2	11>	445														,
30	<2	12>	DNA							•			•				
	<2	13>	Таç	getes	ere	ecta						•					
35	,																
	<2	20>															
40		221>			Fragi	menc											
	<2	222>	(1) (445)												
45	· <	223>															
45			4.0														
	< a	400> .agct	tgca	, ac ga	ıggca	aago	aaa	ıggtt	gtt	tgtt	gttg	rtt g	ttga	gaga	c ac	tccaatcc	60
50	a	aaca	agata	ac aa	ggcg	gtgac	tgg	gatat	ttc	tctc	tcgt	tc c	taac	aaca	g ca	acgaagaa	120
	ç	raaaa	aagaa	at ca	attac	ctaac	aat	caat	gag	tato	gagag	get g	gaca	catg	a cg	gcaacaat	180
	ç	gcg:	gctti	tt a	catgo	cccta	a ggʻ	ttta	tgac	tago	catca	aga t	acac	gaag	rc aa	attaagtg	240

	caacgctgct aaaagccagc tagtcgttaa acaagagatt gaggaggaag aagattatgt	300
_	gaaagccggt ggatcggagc tgctttttgt tcaaatgcaa cagaataagt ccatggatgc	360
5	acagtetage etateceaaa ageteecaag ggtaceaata ggaggaggag gagacagtaa	420
	ctgtatactg gatttggttg tcgac	445
10		
	<210> 41	
	<211> 446	
15	<212> DNA	
	<213> Tagetes erecta	
20	<220>	
	<221> Antisense Fragment	
25	<222> (1)(446)	
	<223>	
30	<400> 41 gaattcgcac gaggcaaagc aaaggttgtt tgttgttgtt gttgagagac actccaatcc	60
	aaacagatac aaggcgtgac tggatatttc tctctcgttc ctaacaacag caacgaagaa	120
35	gaaaaagaat cattactaac aatcaatgag tatgagagct ggacacatga cggcaacaat	180
	ggcggctttt acatgcccta ggtttatgac tagcatcaga tacacgaagc aaattaagtg	240
40	caacgctgct aaaagccagc tagtcgttaa acaagagatt gaggaggaag aagattatgt	300
	gaaagccggt ggatcggagc tgctttttgt tcaaatgcaa cagaataagt ccatggatgc	360
	acagtctagc ctatcccaaa agctcccaag ggtaccaata ggaggaggag gagacagtaa	420
45	ctgtatactg gatttggttg gatcct	446
50	<210> 42	
50	<211> 393	
	<212> DNA	

PF 54148

				65			
	<213>	Tagetes erecta					
5	<220>						
	<221>	Sense Fragment					
10	<222>	(1)(393)					
10	<223>						
15	<400>	42					
		tgga ttagcactga					. 60
	gacttt	cttc cgcttgccca	catggatgtg	gtgggggttt	cttggatctt	cgttatcatc	120
20	aactga	cttg ataatatttg	cgttttacat	gtttatcata	gcaccgcata	gcctgagaat	180
	gggtct	ggtt agacatttgc	tttctgaccc	gacaggagga	acaatgttaa	aagcgtatct	240
25	cacgat	ataa ataactctag	tegegateag	tttagattat	aggcacatct	tgcatatata	300
25	tatgta	taaa ccttatgtgt	gctgtatcct	tacatcaaca	cagtcattaa	ttgtatttct	360
	tggggt	aatg ctgatgaagt	attttctgtc	gac			393
30							
	<210>	43					
	<211>	397					
35	<212>	DNA					
	<213>	Tagetes erecta					
40							
-	<220>						
	<221>	Antisense Frag	ment				
45	<222>	(1)(397)		·			
	<223>						
50	<400>	43					

<400> 43
gaattctctt tggattagca ctgattgtcc agatggatat tgaggggacc cgcacattct 60
tccggacttt cttccgcttg cccacatgga tgtggtgggg gtttcttgga tcttcgttat 120

	catcaactga cttgataata tttgcgtttt acatgtttat catagcaccg catagcctga	180
_	gaatgggtct ggttagacat ttgctttctg acccgacagg aggaacaatg ttaaaagcgt	240
5	atctcacgat ataaataact ctagtcgcga tcagtttaga ttataggcac atcttgcata	300
	tatatatgta taaaccttat gtgtgctgta tccttacatc aacacagtca ttaattgtat	360
10	ttcttggggt aatgctgatg aagtattttc tggatcc	397
	<210> 44	
15	•	
15		•
	<212> DNA <213> -	
20	<213> -	
	<220>	
25	<221> promoter	
20	<222> (1)(1537)	
	<223>	
30		
	<400> 44	
35.	gagetetaca aattagggtt actttattea tttteateea ttetetttat tgttaaattt	60
00.	tgtacattta ttcaataata ttatatgttt attacaaatt ctcactttct tattcatacc	120
	tattcactca agcetttace atetteettt tetattteaa taetatttet aetteatttt	180
40	tcacgttttt aacatctttc tttatttctt gtccacttcg tttagggatg cctaatgtcc	240
	caaatttcat ctctcgtagt aacacaaaac caatgtaatg ctacttctct ctacattttt	300
45	aatacaaata aagtgaaaca aaatatctat aaataaacaa atatatatat tttgttagac	360
70	gctgtctcaa cccatcaatt aaaaaatttt gttatatttc tactttacct actaaatttg	420
	tttctcatat ttacctttta acccccacaa aaaaaaatta taaaaaagaa agaaaaaagc	480
50	taaaccctat ttaaatagct aactataaga tcttaaaatt atcctcatca gtgtatagtt	540
	taattggtta ttaacttata acattatata tctatgacat atactctctc ctagctattt	600
	ctcacatttt ttaacttaag aaaatagtca taacatagtc taaaattcaa acatccacat	660

	gctctaattt gattaacaaa aagttagaaa tatttattta aataaaaaag actaataaat	720
	atataaaatg aatgttcata cgcagaccca tttagagatg agtatgcttt cacatgctga	780
5	gattattttc aaaactaagg ttgtagcaat attaaatcaa taaaattatt ataaataaca	840
	aaattaacct gctcgtgttt gctgtatatg ggaggctaca aaataaatta aactaaagat	900
10	gattatgttt tagacatttt ttctatctgt attagtttat acatattaat tcaggagctg	960
	cacaacccaa ttctattttc gttccttggt ggctgggttt ctcacaaggt tcaatagtca	1020
	atattaggtt ttattggact tttaatagta tcaaacaaat ctatgtgtga acttaaaaat	1080
15	tgtattaaat atttagggta acctgttgcc gtttttagaa taatgtttct tcttaataca	1140
	cgaaagcgta ttgtgtattc attcatttgg cgcctcacat gcttcggttg gctcgcttta	1200
20	gtototgoot totttgtata ttgtactooc cotottoota tgccacgtgt totgagotta	1260
	acaagccacg ttgcgtgcca ttgccaaaca agtcatttta acttcacaag gtccgatttg	1320
	acctccaaaa caacgacaag tttccgaaca gtcgcgaaga tcaagggtat aatcgtcttt	1380
25.	ttgaatteta tttetettta tttaatagte eetetegtgt gatagttttt aaaagatttt	1440
	taaaacgtag ctgctgttta agtaaatccc agtccttcag tttgtgcttt tgtgtgtttt	1500
30	gtttctctga tttacggaat ttggaaataa taagctt	1537
	<210> 45	
35	<211> 734	
	<212> DNA	,
40	<213> kuenstliche Sequenz	
40		
	<220>	
45	<221> variation	
	<222> (1)(734)	
	<223>	
50		

	cctaggttta tgactagcat cagatacacg aagcaaatta agtgcaacgc tgctaaaagc	120
	cagctagtcg ttaaacaaga gattgaggag gaagaagatt atgtgaaagc cggtggatcg	180
5	gagetgettt ttgttcaaat geaacagaat aagteeatgg atgeacagte tageetatee	240
	caaaaggtca ctccagactt aattgcttat aaataaataa atatgttttt taggaataat	300
10	gatatttaga tagattagct atcacctgtg ctgtggtgtg cagctcccaa gggtcttacc	360
	gatagtaaaa tcgttagtta tgattaatac ttgggaggtg ggggattata ggctttgttg	420
	tgagaatgtt gagaaagagg tttgacaaat cggtgtttga atgaggttaa atggagttta	480
15	attaaaataa agagaagaga aagattaaga gggtgatggg gatattaaag acggscaata	540
	tagtgatgcc acgtagaaaa aggtaagtga aaacatacaa cgtggcttta aaagatggct	600
20	tggctgctaa tcaactcaac tcaactcata tcctatccat tcaaattcaa ttcaattcta	660
	ttgaatgcaa agcaaagcaa aggttgtttg ttgttgttgt tgagagacac tccaatccaa	720 ·
25	acagatacaa ggcg	734
	<210> 46	
	<211> 280	
30	, <212> DNA	
	<213> kuenstliche Sequenz	
35		
	<220>	
	<221> variation	
40	<222> (1)(280)	
	<223>	
45		
	<400> 46 gtcgagtatg gagttcaatt aaaataaaga gaagaraaag attaagaggg tgatggggat	60
50		120
	tggctttaaa agatggcttg gctgctaatc aactcaactc	180
	aaattcaatt caattctatt gaatgcaaag caaagcaaag	240

	tgttgagaga cactccaatc caaacagata caaggcgtga	280
5	<210> 47	
	<211> 358	
	<212> DNA	
10	<213> Tagetes erecta	
15	<220>	
	<221> Sense Promotor	
20	<222> (1)(358)	
20	<223>	
25	<400> 47 aagettaceg atagtaaaat egttagttat gattaataet tgggaggtgg gggattatag	60
	gctttgttgt gagaatgttg agaaagaggt ttgacaaatc ggtgtttgaa tgaggttaaa	120
30	tggagtttaa ttaaaataaa gagaagagaa agattaagag ggtgatgggg atattaaaga	180
	cggccaatat agtgatgcca cgtagaaaaa ggtaagtgaa aacatacaac gtggctttaa	240
25	aagatggett ggetgetaat caacteaact caacteatat eetateeatt caaatteaat	30
35	tcaattctat tgaatgcaaa gcaaagcaaa gcaaaggttg tttgttgttg ttgtcgac	35
	<210> 48	
40	<211> 361	
	<212> DNA	
45	<213> Tagetes erecta	
	<220>	
50) <221> Antisense Promotor	
	<2225 (1) (361)	

_								
5	<400> ctcgago	48 ctta	ccgatagtaa	aatcgttagt	tatgattaat	acttgggagg	tgggggatta	60
	taggctt	ttgt	tgtgagaatg	ttgagaaaga	ggtttgacaa	atcggtgttt	gaatgaggtt	120
10	aaatgga	agtt	taattaaaat	aaagagaaga	gaaagattaa	gagggtgatg	gggatattaa	180
	agacggo	ccaa	tatagtgatg	ccacgtagaa	aaaggtaagt	gaaaacatac	aacgtggctt	240
45	taaaaga	atgg	cttggctgct	aatcaactca	actcaactca	tatcctatcc	attcaaattc	.300
15	aattca	attc	tattgaatgc	aaagcaaagc	aaagcaaagg	ttgtttgttg	ttgttggatc	360
	С							361
20	<210>	49						
	<211>	28				·		
25	<212>	DNA						
20			nstliche Se					
	<213>	Kue	nstiithe se	quenz .			•	
30	-222							
	<220>							
25	<221>	Pri						
35	<222>	(1)	(28)					
	<223>							
40								
	<400> gagcto	49 actc	: actgatttcc	: attgcttg			·	28
45								
45	<210>	50						
	<211>							
50	<212>	DNA		,				
	<213>	kue	enstliche Se	equenz				

```
<220>
```

<221> Primer

<223>

10

<400> 50

cgccgttaag tcgatgtccg ttgatttaaa cagtgtc 37

34

15 <210> 51

<211> 34

<212> DNA

20

<213> kuenstliche Sequenz

25 <220>

<221> Primer

<222> (1)..(34)

30

<223>

35 <400> 51

atcaacggac atcgacttaa cggcgtttgt aaac

atcaacggac atcgacttaa cggcgcocgi acco

<210> 52 40

<211> 25

<212> DNA

45 <213> kuenstliche Sequenz

<220>

50 <221> Primer

<222> (1)..(25)

<400> 54

gtcgactacg taagtttctg cttctacc

5	<400> 52 taagcttttt gttgaagaga tttgg	25
10	<210> 53 <211> 23	
15	<212> DNA <213> kuenstliche Sequenz	
. 20	<220> <221> Primer	
25	<222> (1)(23) <223>	
30	<400> 53 gaaaatactt catcagcatt acc	23
35	<210> 54 <211> 28 <212> DNA	
40	<213> kuenstliche Sequenz	
45	<220> <221> Primer <222> (1)(28)	
50	<223>	

<211> 29

```
<210> 55
5 <211> 26
    <212> DNA
   <213> kuenstliche Sequenz
10
    <220>
15
   <221> Primer
    <222> (1)..(26)
    <223>
20
    <400> 55
                                                                   26
   ggatccggtg atacctgcac atcaac
25
    <210> 56
     <211> 28
30
     <212> DNA
     <213> kuenstliche Sequenz
35
     <220>
     <221> Primer
 40
     <222> (1)..(28)
     <223>
45
     <400> 56
                                                                    28
     aagcttgcac gaggcaaagc aaaggttg
 50
      <210> 57
```

<211> 28

<212> DNA

<213> kuenstliche Sequenz

```
74
     <212> DNA
     <213> kuenstliche Sequenz
 5
     <220>
     <221> Primer
10
     <222> (1)..(29)
     <223>
15
     <400> 57
     gtcgacaacc aaatccagta tacagttac
                                                                           29
20
     <210> 58
     <211> 30
25
     <212> DNA
     <213> kuenstliche Sequenz
30
     <220>
     <221> Primer
35
     <222> (1)..(30)
     <223>
40
     <400> 58
     aggatecaac caaatecagt atacagttac
                                                                          30
45
     <210> 59
```

28

25

<220>

<221> Primer

5 <222> (1)..(28)

<223>

10 <400> 59

gaattcgcac gaggcaaagc aaaggttg

15 <210> 60

<211> 25

<212> DNA

20
<213> kuenstliche Sequenz

25 <220>

<221> Primer

<222> (1)..(25) 30

<223>

35 <400> 60

aagctttgga ttagcactga ttgtc

<210> 61

<211> 29

40

50

<212> DNA

45 <213> kuenstliche Sequenz

<220>

<221> Primer

<222> (1)..(29)

5	<400> gtcgaca	61 gaa aatacttcat cagcattac	29
10	<210>	62	
10	<211>	29	
	<212>	DNA	
15	<213>	kuenstliche Sequenz	
20	<220>		
	<221>	Primer	
	<222>	(1)(29)	
25	<223>		
30	<400> ggatcc	62 agaa aatacttcat cagcattac	29
	<210>	63	
35	<211>	27	
	<212>	DNA	
40	<213>	kuenstliche Sequenz	
	<220>		
45	<221>	Primer	
	<222>	(1)(27)	
50	<223>		
	<400> gaatte	63 ctctt tggattagca ctgattg	27

<211> 26

```
<210> 64
5
    <211> 23
    <212> DNA
    <213> kuenstliche Sequenz
10
    <220>
15 <221> Primer
          (1)..(23)
    <222>
    <223>
20
     <400> 64
                                                                       23
     cgccttgtat ctgtttggat tgg
25
     <210> 65
     <211> 24
30
     <212> DNA
     <213> kuenstliche Sequenz
35
     <220>
     <221> Primer
40
     <222> (1)..(24)
     <223>
 45
      <400> 65
                                                                        24
      ctaacaatca atgagtatga gagc
 50
      <210> 66
```

```
<212> DNA
    <213> kuenstliche Sequenz
5
    <220>
    <221> Primer
10
    <222> (1) .. (26)
     <223>
15
     <400> 66
     agagcaaggc cagcaggacc acaacc
20
     <210> 67
     <211> 26
25 <212> DNA
     <213> kuenstliche Sequenz
 30
 . <220>
 <221> Primer
    <222> (1)..(26)
 35
      <223>
 40
      <400> 67
      ccttgggagc ttttgggata ggctag
       <210> 68
  45
       <211> 26
       <212> DNA
  50
       <213> kuenstliche Sequenz
```

26

15

```
<220>
<221> Primer

5 <222> (1)..(26)
<223>

10
<400> 68
```

tcacgccttg tatctgtttg gattgg

15 <210> 69
<211> 15

<212> DNA

<213> kuenstliche Sequenz

35 <400> 69 gtcgagtatg gagtt

40

<211> 28

<210> 70

<212> DNA

45 <213> kuenstliche Sequenz

5	<400> 70 aagcttaccg atagtaaaat cgttagtt	28
10	<210> 71	
10	<211> 31	
	<212> DNA	
15	<213> kuenstliche Sequenz	
20	<220>	
	<221> Primer	
	<222> (1)(31)	
25	<223>	
30	<400> 71 ctcgagctta ccgatagtaa aatcgttagt t	31
	<210> 72	
35	<211> 28	
	<212> DNA	
40	<213> kuenstliche Sequenz	
45	<400> 72 gtcgacaaca acaacaaaca acctttgc	28
	<210> 73	
50	<211> 28	
00	<212> DNA	
	<213> kuenstliche Sequenz	

```
<220>
  <221> Primer
    <222> (1)..(28)
    <223>
10
    <400> 73
                                                                       28
    ggatccaaca acaacaaca acctttgc
15
    <210> 74
    <211> 28
20
     <212> DNA
     <213> kuenstliche Sequenz
25
     <220>
  ' <221> Primer
30
     <222> (1)..(28)
     <223>
35
     <400> 74
                                                                        28
     gtcgactttt tgttgaagag atttggtg
 40
     <210> 75
     <211> 28
 45
     <212> DNA
      <213> kuenstliche Sequenz
 50
      <220>
      <221> Primer
```

```
<222> (1)..(28)
    <223>
5
    <400> 75
    ctcgagactc actgatttcc attgcttg
10
     <210> 76
     <211> 22
     <212> DNA
15
     <213> kuenstliche Sequenz
20
      <220>
      <221> Primer
     <222> (1)..(22)
 25
      <223>
 30
      <400> 76
      gagctctaca aattagggtt ac
       <210> 77
  35
       <211> 23
       <212> DNA
  40
       <213> kuenstliche Sequenz
  45
       <220>
        <221> Primer
```

<222> (1)..(23)

<223>

50

```
<400> 77
                                                                         23
    aagcttatta tttccaaatt ccg
5
    <210> 78
    <211> 50
    <212> DNA
10
     <213> kuenstliche Sequenz
15 <220>
     <221> Primer .
     <222>
           (1)..(50)
20
     <223>
25
     <400> 78
     aagctttgca attcatacag aagtgagaaa aatgcagcta gcagcgacag
                                                                         50
     <210> 79
30
     <211> 1062
     <212> DNA
35
     <213> Haematococcus pluvialis
     <220>
40
     <221> CDS
     <222> (32)..(1021)
45 <223>
50
     aagctttgca attcatacag aagtgagaaa a atg cag cta gca gcg aca gta
                                                                          52
                                       Met Gln Leu Ala Ala Thr Val
     atg ttg gag cag ctt acc gga agc gct gag gca ctc aag gag aag gag
                                                                         100
```

										V-T							
	Met	Leu	Glu 10	Gln	Leu	Thr	Gly	Ser 15	Ala	Glu	Ala	Leu	Ъу в 20	Glu	Lys	Glu	
5	-	_	gtt Val	_		_										-	148
10		_	ctt Leu													-	196
15		_	tac Tyr												_		244
		_	gtc Val					-						_			292
20			aag Lys 90														340
25		_	gcc Ala			_						-	Ser				388
30		Val	gta Val				-	-	-		-	Туг				Phe 135	436
35			_		_	_	-					_	_	_		agg Arg	484
					Phe		_			Cys	_				Ala	tgg Trp	532
40		-		Asn	_			_	Lys					His		cac His	580
45			Glu					Pro					g Gly			Gly	628
50		. Val					Ser				-	Ty:				tgg Trp 215	676
	-		_			. Ala	-		_		. Val					ggt Gly	724

5	gcg cca Ala Pro	Met A													772
J	tcc gcc Ser Ala		-					-		_			_		820
10	gag cct Glu Pro 265									_	_				868
15	aag tcg Lys Ser 280	-	_	_			-	_		_		_		_	916
20	tac cac Tyr His	_	_						_				_		964
25	tgg tgg Trp Trp	Glu L	_		_	_	_	_			_		_	_	1012
	cct gcc Pro Ala	tag c	ctggaca	cac t	gcag	gtgg	gc c	ctgci	gcca	a gct	- අපු අප	catg	С		1062
30	<210> {	30													
	<211>	329													
35	<212>	PRT													
	<213> 1	Haemat	tococcy	ıs plı	ıvia	lis									
40	<400>	80									•				
45	Met Gln 1	Leu l	Ala Ala 5	Thr	Val	Met	Leu	Glu 10	Gln	Leu	Thr	Gly	Ser 15	Ala	
	Glu Ala		Lys Glı 20	ı Lys	Glu	Lys	Glu 25	Val	Ala	Gly	Ser	Ser 30	Asp	Val	
50															

										00						
	Ala	Ala 50	Arg	Pro	Gly	Leu	Lys 55	Asn	Ala	Тут	Lys	Pro 60	Pro	Pro	Ser	Asp
5	Thr 65	Lys ·	Gly	Ile	Thr	Met 70	Ala	Leu	Ala	Val	Ile 75	Gly	Ser	Trp	Ala	Ala 80
10	Val	Phe	Leu	His	Ala 85	Ile	Phe	Gln	Ile	Lys 90	Leu	Pro	Thr	Ser	Leu 95	Asp
15	Gln	Leu	His	Trp 100	Leu	Pro	Va1	Ser	Asp 105	Ala	Thr	Ala	Gln	Leu 110	Val	Ser
20	Gly	Ser	Ser 115	Ser	Leu	Leu	His	11e 120	Val	Val	Val	Phe	Phe 125	Val	Leu	Glu
20	Phe	Leu 130	Тут	Thr	Gly	Leu	Phe 135	Ile	Thr	Thr	His	Asp 140	Ala	Met	His	Gly
25	Thr 145	Ile	Ala	Met	Arg	Asn 150	Arg	Gln	Leu	Asn	Asp 155	Phe	Leu	Gly	Arg	Val 160
30	Cys	Ile	Ser	Leu	Туr 165	Ala	Trp	Phe	Asp	Tyr 170	Asn	Met	Leu	His	Arg 175	Lys
35	His	Trp	Glu	Ніs 180	His	Asn	His	Thr	Gly 185		Val	Gly	Lys	Asp 190	Pro	Asp
	Phe	His	Arg 195	Gly	Asn	Pro	Gly	200		Pro	Trp	Phe	Ala 205		Phe	Met
40	Ser	Ser 210		Met	Ser	Met	Trp 215		Phe	Ala	Arg	Leu 220		Trp	Trp	Thr
45	Val 225		Met	Gln	Leu	Leu 230		, Ala	. Pro	Met	Ala 235		. Leu	Leu	. Val	Phe 240
50	Met	Ala	Ala	Ala	Pro 245		e Lev	Ser	· Ala	250		Leu	Phe	: Туг	Phe 255	Gly
	Thr	Туг	Met	Pro 260		Lys	Pro	Glu	265		Ala	Ala	Ser	Gly 270		Ser

5	Pro	Ala	Val 275	Met	Asn	Trp	Trp	Lys 280	Ser	Arg	Thr	Ser	Gln 285	Ala	Ser	Asp	
	Leu	Val 290	Ser	Phe	Leu	Thr	Cys 295	туг	His	Phe	Asp	Leu 300	His	Trp	Glu	His	
10	His 305	Arg	Trp	Pro	Phe	Ala 310	Pro	Trp	Trp	Glu	Leu 315	Pro		Cys	Arg	Arg 320	
15	Leu	Ser	Gly	Arg	Gly 325	Leu	Val	Pro	Ala								
20	<21	0>	81			,	•										
	<21 <21		789 DNA		•					,							
25	<21		Nosto	ාල වා	unct	ifor	me										
30	<22																
	<22 <22	1> 2>	(1).	. (78	9)												
35	<22	3> ੵ														•	
40		aat														, caa	48
	1				5					10					15	Gln	
45	tta Lev	agt Sei	gct Ala	aaa Lys 20	gaa Glu	gat Asp	act Thi	gtt Val	tgg L Tr 25	Gl ^y Gl ^y	g ct <u>c</u> / Lev	g gtg ı Val	att . Ile	gto Val	ata i Ile	a gta e Val	96
50																aat Asn	144
																g caa o Gln	192

5	_										_		-	_	atg Met			240
	_		_		_										ggt Gly 95			288
10		_	_				_						-	_	tta Leu			336
15			_				_			-	_	_	-	_	cca Pro	_		384
20			_		_	_									cat His			432
25		•													atc Ile		•	480
				_			_	_			His				ctc Leu 175			528
30				_						Ser				_	ttt Phe			576
35				Phe	_			_	Glu		_			Tyr	gtt Val			624
40			Cys	_		Thr		Lys	_				Leu			atc Ile		672
45	_	Cys					Тут		_	_		His				cat His 240		720
10						Leu					Lys	_	_	-		aac		768
50			gta Val		Asn			L										789

										89						
	<210	> {	32													
	<211	> 2	262													
5	<212	> 1	PRT													
	<213	> 1	Nosto	oc pu	ncti	form	e									
10																
10	<400	> 8	82													
15	Leu 1	Asn	Phe	Cys	Asp 5	Lys	Pro	Val	Ser	Tyr 10	Туг	Val	Ala	Ile	Glu 15	Gln
	Leu	Ser	Ala	Lys 20	Glu	Asp	Thr	Val	Trp 25	Gly	Leu	Val	Ile	Val 30	Ile	Val
20	Ile	Ile	Ser 35	Leu	Trp	Val	Ala	Ser 40	Leu	Ala	Phe	Leu	Leu 45	Ala	Ile	Asn
25	Tyr	Ala 50	Lys	Val	Pro	Ile	Trp 55	Leu	Ile	Pro	Ile	Ala 60	Ile	Val	Trp	Gln
30	Met 65	Phe	. Leu	Tyr	Thr	Gly 70	Leu	Phe	Ile	Thr	Ala 75	His	Asp	Ala	Met	His 80
35	Gly	Ser	· Val	Туг	Arg 85	Lys	Asn	Pro	Ъуs	Ile 90	Asn	Asn	Phe	Ile	Gly 95	Ser
	Leu	Ala	ı Val	Ala 100		Tyr	Ala	Val	Phe 105		Tyr	Gln	Gln	Met 110	Leu	Lys
40	Asn	His	Cys 115		His	His	Arg	His 120		Ala	Ser	Glu	Val 125		Pro	Asp
45	Phe	His	-	Gly	· Lys	Arg	Thr 135		Ala	lle	Phe	Trp 140		· Leu	His	Phe
50	Met		e Glu	Tyr	Ser	Ser 150		Gln	Gln	Leu	. Ile 155		Leu	Thr	Ile	Leu 160

Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile

165

5	Leu	Phe	Trp	ser 180	Ile	Pro	Pro	Ile	Leu 185	Ser	Ser	Ile	Gln	Leu 190	Phe	Tyr		
	Phe	Gly	Thr 195	Phe	Leu	Pro	His	Arg 200	Glu	Pro	Lys	Lys	Gly 205	Туг	Val	Tyr		
10	Pro	His 210	Cys	Ser	Gln	Thr	Ile 215	Lys	Leu	Pro	Thr	Phe 220	Leu	Ser	Phe	Ile		
15	Ala 225	Суѕ	Tyr	His	Phe	Gly 230	Tyr	Hìs	Glu	Glu	His 235	His	Glu	туг	Pro	His 240		
20	Val	Pro	Trp	Trp	Gln 245	Leu	Pro	Ser	Val	Tyr 250	Lys	Gln	Arg	Val	Phe 255	Asn		•
25	Asn	Ser	Val	Thr 260	Asn	Ser												
	<21	0>	83															
20	<21	1>	762															
30	<21	2>	DNA															
	<21	3>	Nost	oc pi	unct	ifor	me											
35																		
	<22	0>																
	<22	1>	CDS					٠										
40	<22	2>	(1).	. (76	2)													
	<22	3>													٠			
45																		
50	gtg		83 : cag : Gln															48
			g aga 1 Arg														·	96

	att	att	age	gca	tgg	gtc	att	agc	cta	agt	tta	tta	ctt	tcc	ctt	gac	144
		_	_	_	_	_		_	_	_		Leu					
5																	
			_					_		-		gtt Val 60					192
10					_							cat His	_	_	_		240
15		_										cat His					288
20	_											caa Gln			_		336
25									Pro	-	_	tca Ser		_	_	-	384
			Asn					Ser				tgg Trp 140					432
30		Lys				-						Ala				att Ile 160	480
35				_		Tyr					Pro	_	_			act	528
40					Leu					Ser					Phe	tat Tyr	576
45				Ph∈				-	Glu					Tyr	_	cag Gln	624
			Cys					e Sei					Trr			atc lle	672
50		Суз					туз					s His				cat His 240	720
	att	tct	tgg	g tgg	g cag	, tta	a cca	a gaa	a ati	tac	c aaa	a gca	a aaa	a tag	ı		762

Ile Ser Trp Trp Gln Leu Pro Glu Ile Tyr Lys Ala Lys 245 250

5	<210	> 8	4													
	<211	> 2	53													
10	<212> PRT															
	<213> Nostoc punctiforme															
15	<400	> 8	4	•						•						
	Val 1	Ile	Gln	Leu	Glu 5	Gln	Pro	Leu	Ser	His 10	Gln	Ala	Lys	Leu	Thr 15	Pro
20	17-1	Ton	7 ~~~	802	Tiro	50×		Pho	Tare	Gly	Toù	Pho	Tlo	77 a	Tlo	77a 1
	vai	Heu	ALG	20	шys	per	GIII	FILE	25 ⁻		Deu.	FIIG	116	30	116	Val
25	Ile	Val		Ala	Trp	Val	Ile		Leu	Ser	Leu	Leu		Ser	Leu	Asp
			35					40				•	45			
30	Ile	Ser 50	Lys	Leu	Lys	Phe	Trp 55	Met	Leu	Leu	Pro	Val 60	Ile	Leu	Trp	Gln
										,						
	Thr 65	Phe	Leu	Tyr	Thr	Gly 70	Leu	Phe	Ile	Thr	Ser 75	His	Asp	Ala	Met	His 80
35			•													
	Gly	Val	Val	Phe	Pro 85	Gln	Asn	Thr	Гуs	Ile 90	Asn	His	Leu	Ile	Gly 95	Thr
.40	Leu	Thr	Leu	Ser	Leu	Tvr	Glv	Leu	Leu	Pro	Tvr	Gln	Lvs	Leu	Leu	Lvs
				100		-4-			105		-4			110		
45	Lys	His		Leu	His	His	His			Ala	Ser	Ser			Pro	Ası
			115					120			•		125			
50	Phe	His 130	Asn	Gly	Lys	His	Gln 135		Phe	Phe	Ala	Trp		Phe	His	Phe

Met Lys Gly Tyr Trp Ser Trp Gly Gln Ile Ile Ala Leu Thr Ile Ile

155

150

5	Tyr Ası	ı Phe	Ala	Lys 165	Tyr	Ile	Leu	His	Ile 170	Pro	Ser	Asp	Asn	Leu 175	Thr		
	Tyr Phe	e Trp	Val 180	Leu	Pro	Ser	Leu	Leu 185	Ser	Ser	Leu	Gln	Leu 190	Phe	Tyr		
10	Phe Gly	7 Thr 195	Phe	Leu	Pro	His	Ser 200	Glu	Pro	Ile	Gly	Gly 205	Tyr	Val	Gln		
15	Pro His		Ala	Gln	Thr	Ile 215	Ser	Arg	Pro	Ile	Trp 220	Trp	Ser	Phe	Ile		
20	Thr Cyr 225	s Tyr	His	Phe	Gly 230	Tyr	His	Glu	Glu	His 235	His	Glu	Tyr	Pro	His 240		
25	ile Se	r Trp	Trp	Gln 245	Leu	Pro	Glu	Ile	Тут 250	Lys	Ala	Lys			•		
	<210>	85															
	<211>	804		•													
30	<212>	DNA															
	<213>	Syne	choc	occu	s WH	8102					,						
35												•					
	<220>		•												•		
40	<221> CDS																
. •	<222> (1)(804)																
	<223>																
45																	
	<400> atg aa	a acc					_										48
50	Met Ly 1	s Thr	Thr	Arg 5	Ser	lle	: Ser	Trp	Pro 10	Ser	Thr	Cys	Trp	His 15	His		
,	cag co Gln Pr	-															96

5												tca Ser					144
J												cag Gln 60					192
10												ctg Leu					240
15						-		_		-	_	ctg Leu _.		_			288
20												ttg Leu	_			_	336
25	Gly	Leu	Ser 115	Tyr	Glu	Arg	Cys	Ser 120	Arg	Asn	His	aga Arg	Arg 125	His	His	Leu	384
	Ala	Pro 130	Glu	Thr	Phe	Gln	Asp 135	Pro	Asp	Tyr	Gln	cgt Arg 140	Cys	Thr	Asn	Asn	432
30	Asn 145	Ile	Leu	Asp	Trp	Туr 150	Val	His	Phe	Met	Gly 155	aac Asn	Tyr	Leu	Gly	Met 160	480
35	Arg	Gln	Leu	Leu	Asn 165	Leu	Ser	Сув	Leu	Trp 170	Leu		Leu	Ile	Ile 175	Leu	528
40	Asn	Gly	Ser	Asp 180	Leu	Pro	Ala	Gln	185	Met	His	Leu	Leu	Leu 190	Phe	Ser	576
45	Val	Leu	Pro 195	Leu	Ile	Ile	Ser	Ser 200	Cys	Gln	Leu	Phe	Leu 205	Val	Gly	acc Thr	624
50	Trp	Leu 210	Pro	His	Arg	Arg	Gly 215	Ala	Thr	Thr	Arg	220	Gly	Val	Thr	acg Thr	672
50	Arg 225	Ser	Leu	Ala	Leu	His 230	Pro	Ala	Lev	. Ser	Phe 235	Ala	Ala	. Cys	Tyr	aac Asn 240	720
	ttt	ggc	tat	cat	cgt	gaa	. cat	cat	gaa	tcg	cct	tcc	aca	ccc	tgg	ttt	768

										90							
	Phe	Gly	Tyr	His	Arg 245	Glu	His	His	Glu	Ser 250	Pro	Ser	Thr	Pro	Trp 255	Phe	
5			cca Pro									tga					804
10	<210	> 8	86														
	<211	.> :	267				·.										
	<212	> :	PRT	•						,							
15	<213	> :	Syneo	choco	occu	s WH	3102			•							
20	<400)>	86					•			,						
20	Met 1	Lys	Thr	Thr	Arg 5	Ser	Ile	Ser	Trp	Pro 10	Ser	Thr	Суз	Trp	His 15	His	
05		_	_		_	_	_			_		_,	_	_		_ •	
25	Gln	Pro	Ser	Суs 20	Ser	Ser	Trp	Val	A1a 25	Asn	Glu	Phe	Ser	30	Gin	Ala	
30	Leu	Lys	Gly 35	Leu	Ala	Leu	Ala	Gly 40	Leu	Ile	Gly	Ser	Ala 45	Trp	Leu	Leu	
35	Ser	Leu 50	Gly	Leu	Ser	Туг	Thr 55	Leu	Pro	Leu	Asp	Gln 60	Thr	Pro	Gly	Leu	
	Leu 65	Ile	: Gly	Ser	Leu	11e 70		Leu	Arg	Ala	Phe		His	Thr	Gly	Leu 80	
40	Phe	Ile	e Val	Ala	His 85	qaA i	Ser	Met	His	Ala 90	. Ser	Leu	. Val	Pro	95	His	·
45	Pro	Gly	, Leu	Asn 100		Trp	Ile	Gly	Lys 105		. Tyr	Leu	Leu	Val		Ala	
50	Gly	Leu	ser 115		Glu	l Arg	Cys	Ser 120		Asn	. His	Arg	Arg 125		His	Leu	
	Ala	Pro	Glu	Thr	Phe	e Gln	Asp 135		Asp	туг	Gln	Arg		Thr	. Asn	. Asn	

5	Asn 145	Ile	Leu	Asp	Trp	Tyr 150	Val	His	Phe	Met	Gly 155	Asn	Tyr	Leu	Gly	Met 160
	Arg	Gln	Leu	Leu	Asn 165	Leu	Ser	Cys	Leu	ттр 170	Leu	Ala	Leu	Ile	Ile 175	Leu
10	Asn	Gly	Ser	Asp 180	Leu	Pro	Ala	Gln	Ile 185	Met	His	Leu	Leu	Leu 190	Phe	Ser
15	Val	Leu	Pro 195	Leu	Ile	Ile	Ser	Ser 200	Cys	Gln	Leu	Phe	Leu 205	Val	Gly	Thr
20	Trp	Leu 210		His	Arg	Arg	Gly 215	Ala	Thr	Thr	Arg	Pro 220	Gly	Val	Thr	Thr
25	Arg 225	Ser	Leu	Ala	Leu	His 230	Pro	Ala	Leu	Ser	Phe 235	Ala	Ala	Cys	Tyr	Asn 240
	Phe	Gly	Tyr	His	Arg 245	Glu	His	His	Glu	Ser 250		Ser	Thr	Pro	Trp 255	Phe
30	Gln	Leu	Pro	Gln 260		Arg	Asn	Glu	Ser 265		Thr					
35	<21	0>	87													
	<21	1>	żз											•		
40	<21	2>	DNA													
	<21	3>	Küns	tlic	he S	edre	nz									
45	<22	0>														
	<22	1>	prim	er_b	ind											
50	<22	2>	(1).	. (33	1)											
	<22	3>														

	<400> gcatgc	87 teta gacettataa agatattttg tga	33
5	<210>	88	
	<211>	33	
10	<212>	DNA	
10	<213>	Künstliche Sequenz	
		, , , , , , , , , , , , , , , , , , ,	
15 .	<220>		
	<221>	primer_bind	
20	<222>	(1)(33)	
	<223>		
25	•	88 atct agaaatggtt cagtgtcaac cat	33
30	<210>	89	
	<211> <212>	805 DNA	
35	<213>		
	12137	Nobeloe op. bolden 100/120	
	<220>		
40	<221>	variation	
·	<222>	(1)(805)	
45	<223>		
50 _.	<400> gcatgo	89 catct agaaatggtt cagtgtcaac catcatctct gcattcagaa aaactggtgt	60
	tattg	tcatc gacaatcaga gatgataaaa atattaataa gggtatattt attgcctgct	120
	++-+a	rtart trratogoca attaotttaa tottattaot otoaatagat acatocataa	180

	ttcataagag cttattaggt atagccatgc tttggcagac cttcttatat acaggtttat	240
5	ttattactgc tcatgatgcc atgcacggcg tagtttatcc caaaaatccc agaataaata	300
3	attttatagg taagctcact ctaatcttgt atggactact cccttataaa gatttattga	360
	aaaaacattg gttacaccac ggacatcctg gtactgattt agaccctgat tattacaatg	420
10	gtcatcccca aaacttcttt ctttggtatc tacattttat gaagtcttat tggcgatgga	480
	cgcaaatttt cggattagtg atgatttttc atggacttaa aaatctggtg catataccag	540
15	aaaataattt aattatattt tggatgatac cttctatttt aagttcagta caactatttt	600
,0	attttggtac atttttgcct cataaaaagc tagaaggtgg ttatactaac ccccattgtg	660
	cgcgcagtat cccattacct cttttttggt cttttgttac ttgttatcac ttcggctacc	720
20	acaaggaaca tcacgaatac cctcaacttc cttggtggaa attacctgaa gctcacaaaa	780
	tatctttata aggtctagag catgc	805
25	<210> 90	
	<211> 35	
30	<212> DNA	
30	<213> Künstliche Sequenz	
		٠
35	<220>	
	<221> primer_bind	
40	<222> (1)(35)	
	<223>	
45	<400> 90 gagetettea ttatttegat tttgattteg tgace	35
	<210> 91	
50	<211> 44	
	<212> DNA	

<213> Künstliche Sequenz

5	<220>		
	<221>	primer_bind	
10	<222>	(1)(44)	
10	<223>		

15 <400> 91 aagcttgagc tcggttgatc agaagaagaa gaagaagatg aact 44

35 <223>

<400> 92 gagctettea ttatttegat tttgattteg tgaccagega acgeagaata cettgttgtg 60 40 taatacttta cccgtgtaaa tcaaaaacaa aaaggetttt gagetttttg tagttgaatt 120 tetetggetg atetttetg tacagattea tatatetgea gagacgatat cattgattat 180 45 ttgagcttct tttgaactat ttcgtgtaat ttgggatgag agctctatgt atgtgtgtaa 240 actttgaaga caacaagaaa ggtaacaagt gagggaggga tgactccatg tcaaaataga 300 tgtcataaga ggcccatcaa taagtgcttg agcccattag ctagcccagt aactaccaga 360 50 ttgtgagatg gatgtgtgaa cagtttttt tttgatgtag gactgaaatg tgaacaacag 420 gcgcatgaaa ggctaaatta ggacaatgat aagcagaaat aacttatcct ctctaacact 480

	tggcctc	aca t	ttgcccttca	cacaatccac	acacatccaa	tcacaacctc	atcatatatc	540
_	teceget	aat o	ctttttttct	ttgatctttt	tttttttgct	tattatttt	ttgactttga	600
5	tctccca	ıtca ç	gttcatcttc	ttcttcttct	tctgatcaac	cgagctcaag	ctt	653
10	<210>							
	<211>	28						
	<212>	DNA						
15	<213>	Küns	tliche Seq	uenz				
					•			
20	<220>							
20	<221>	prim	mer_bind					
	<222>	(1).	(28)					
25	<223>							
30	<400>	93	actgatttc	c attoctto				28
30	gagett	accc	actgattee	c accepting				
	<210>	94					,	
35	<211>	30			•			
	<212>	DNA						
40	<213>	Kün	stliche Se	quenz				
40							•	
	<220>			•				
45	<221>	pri	mer_bind					
	<222>	(1)	(30)					
	<223>							
50								
	~400s	. 94						

aagcttgagc tctttgttga agagatttgg

<211> 831

```
<210> 95
5
    <211> 37
    <212> DNA
    <213> Künstliche Sequenz
10
    <220>
15 <221> primer_bind
     <222> (1)..(37)
     <223>
20
     <400> 95
                                                                         37
    cgccgttaag tcgatgtccg ttgatttaaa cagtgtc
25
     <210> 96
     <211> 34
30
     <212> DNA
     <213> Künstliche Sequenz
 35
      <220>
      <221> primer_bind
 40
      <222> (1)..(34)
      <223>
 45
      <400> 96
                                                                          34
      atcaacggac atcgacttaa cggcgtttgt aaac
 50
      <210> 97
```

<212> DNA <213> Haematococcus pluvialis 5 <220> <221> CDS 10 (1)..(831)<222> <223> 15 <400> 97 atg cca tcc gag tcg tca gac gca gct cgt cct gtg ttg aag cac gcc 48 Met Pro Ser Glu Ser Ser Asp Ala Ala Arg Pro Val Leu Lys His Ala 10 20 5 tat aaa cct cca gca tct gac gcc aag ggc atc act atg gcg ctg acc 96 Tyr Lys Pro Pro Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr 25 atc att ggc acc tgg acc gca gtg ttt tta cac gca ata ttc caa atc 144 Ile Ile Gly Thr Trp Thr Ala Val Phe Leu His Ala Ile Phe Gln Ile 40 35 agg cta ccg aca tcc atg gac cag ctt cac tgg ttg cct gtg tcc gaa 192 30 Arg Leu Pro Thr Ser Met Asp Gln Leu His Trp Leu Pro Val Ser Glu 55 50 gcc aca gcc cag ctg ttg ggc gga agc agc agc cta ttg cac atc gcc 240 Ala Thr Ala Gln Leu Leu Gly Gly Ser Ser Ser Leu Leu His Ile Ala 35 65 gca gtc ttc att gta ctt gag ttt ctg tac act ggt cta ttc atc acc 288 Ala Val Phe Ile Val Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr 85 40 acg cat gat gca atg cat ggc acc ata gct ttg agg aac agg cag ctc 336 Thr His Asp Ala Met His Gly Thr Ile Ala Leu Arg Asn Arg Gln Leu 105 100 45 aat gat ctc ctt ggc aac atc tgc ata tca ctg tac gcc tgg ttt gac 384 Asn Asp Leu Leu Gly Asn Ile Cys Ile Ser Leu Tyr Ala Trp Phe Asp 120 115 tac agc atg cac tgg gag cac cac aac cat act ggc gaa gtg ggg aaa 432 50 Tyr Ser Met His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys

135

gac cct gac ttc cac aaa gga aat cct ggc ctt gtc ccc tgg ttc gcc

130

140

										103							
	Asp 145	Pro	Asp	Phe	His	Lys 150	Gly	Asn	Pro	Gly	Leu 155	Val	Pro	Trp	Phe	Ala 160	
5	agc Ser	ttc Phe	atg Met	tcc Ser	agc Ser 165	tac Tyr	atg Met	tcc Ser	ctg Leu	tgg Trp 170	cag Gln	ttt Phe	gcc Ala	cgg Arg	ctg Leu 175	gca Ala	528
10	tgg Trp	tgg Trp	gca Ala	gtg Val 180	gtg Val	atg Met	caa Gln	acg Thr	ttg Leu 185	GJA aaa	gcc Ala	ccc Pro	atg Met	gcg Ala 190	aat Asn	ctc Leu	576
45	cta Leu	gtc Val	ttc Phe 195	atg Met	gct Ala	gca Ala	gcc Ala	cca Pro 200	atc Ile	ttg Leu	tca Ser	gca Ala	ttc Phe 205	cgc Arg	ctc Leu	ttc Phe	624
15	tac Tyr	ttc Phe 210	Gly	act Thr	tac Tyr	ctg Leu	cca Pro 215	His	aag Lys	cct Pro	gag Glu	cca Pro 220	GJA	cct Pro	gca Ala	gca Ala	672
20	ggc Gly 225	Ser	cag Gln	gtc Val	atg Met	tct Ser 230	Trp	tto Phe	agg Arg	gcc Ala	aag Lys 235	Thr	. agt Ser	gag Glu	gca Ala	ser 240	720
25	. gat Asp	gtg Val	g atg Met	ago Ser	tto Phe 245	e Lev	aca Thr	tgo Cys	tac Tyr	cac His 250	Phe	gac Asp	ctg Lev	ttt Phe	gco Ala 255	e ccc a Pro	768
30	tgg Trp	g tgg o Trp	g cag o Glr	cto Lev 260	ı Pro	c cac	tgo Gy:	c cgo	c cgc g Arg 269	g Lev	g tct 1 Sei	ggg Gly	g egt y Arg	gg G1 G1 27	y Lei	g gtg ı Val	816
35		_	e tte a Lei 275	ı Ala		a	,					•					831
	<2	10>	98														•
40		11> 12>	276 PRT														
	<2	13>	Hae	mato	cocc	us p	luvi	alis.	,								
45																•	
	<4	<00>	98									•					
50	Мє 1	et Pr	o Se	r Gl	.u Se 5	er Se	er As	A q	la Al	la Ar 10		o Va	al Le	eu Ly	/s Hi 15	is Ala	
	T	r Ly	/s Pr	o Pi 20		la Se	er As	sp A	la Ly 2!	ys G: 5	ly II	le Tì	nr Me	et A:	la Le O	eu Thr	

5	Ile	Ile	Gly 35	Thr	Trp	Thr	Ala	Val 40	Phe	Leu	His	Ala	Ile 45	Phe	e G	ln I	(le
	Arg	Leu 50	Pro	Thr	Ser	Met	Asp 55	Gln	Leu	His	Trp	Leu 60	Pro	V a∶	l s	er (3lu
10	Ala 65	Thr	Ala	Gln	Leu	Leu 70	Gly	Gly	Ser	Ser	: Ser 75	: Leu	Leu	Hi	s I	le	Ala 80
15	Ala	Val	Phe	Tle	Val 85	Leu	Glu	. Phe	. Leu	ч Туз 90	Th:	c Gly	· Leu	ı Ph	e I	1e 95	Thr
20	Thr	His	. Asp	Ala 100		His	GlΣ	Thi	109		a Le	u Arg	, Ası	n Ar 11	g (31n	Leu
25	Asn	Asp	115		Gly	/ Asn	lle	e Cy:		e Se	r Le	u Ty	c Al 12	а Ти 5	g q	Phe	Asp
	Туг	: Se:		: His	Tr	Glu	ні 13		s As	n Hi	s Th	ar Gl	o Y Gl	u Va	al	Gly	Lys
30	Ası 145		o Asj	p Phe	e Hi:	s Ly: 15		y As	n Pr	o Gl	ly Le 15	eu Va 55	l Pr	o T	rp	Phe	Ala 160
35	Sei	r Ph	e Me	t Se	r Se 16		r M∈	:t S∈	er Le	eu Ti 1'	срG: 70	ln Ph	ie Al	la A	rg	Leu 175	Ala
40	Tr	p Tr	p Al	a Va 18		l Me	t G	n Th		eu G 35	ly A	la Pr	o Me	et A	1a .90	Asr	Leu
45	Le	u Va	al Ph 19		et Al	a Al	.a A		ro I	le L	eu S	er A	la P	he <i>F</i> 05	Arg	Lev	ı Phe
	ту		ne Gi 10	ly Tì	ır Ty	Yr Le		ro H 15	is L	ys F	ro G	lu P	ro G 20	1 y 1	Pro	Ala	a Ala
50	G1 22	_	er G	ln Va	al Me		er T	rp P	he A	rg /		ys T 235	hr S	Ser (Glu	Al	a Ser 240

	The Ala Pro	
	Asp Val Met Ser Phe Leu Thr Cys Tyr His Phe Asp Leu Phe Ala Pro 245 250 255	
5	Trp Trp Gln Leu Pro His Cys Arg Arg Leu Ser Gly Arg Gly Leu Val 260 265 270	
10	Pro Ala Leu Ala 275	
	<210> 99	
15	<211> 729	,
	<212> DNA	
20	<213> Paracoccus sp. MBIC1143	
	<220>	
25	<221> CDS	
	<222> (1)(729)	
30	<223>	
35	<pre><400> 99 atg agc gca cat gcc ctg ccc aag gca gat ctg acc gcc acc agc ctg Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 15</pre>	48
40	atc gtc tcg ggc ggc atc atc gcc gct tgg ctg gcc ctg cat gtg cat Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 25 30	96
	gcg ctg tgg ttt ctg gac gca gcg gcg cat ccc atc ctg gcg atc gca Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala 35 40 45	144
4!	5 aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc atc gcg Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55	192
5	cat gac gcg atg cac ggg tcg gtg gtg ccg ggg cgt ccg cgc gcc aat His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 75 80	240
	gcg gcg atg ggc cag ctt gtc ctg tgg ctg tat gcc gga ttt tcg tgg	288

										100							
	Ala	Ala	Met	Gly	Gln 85	Leu	Val	Leu	Trp	Leu 90	Tyr	Ala	Gly	Phe	Ser 95	Trp	
5	cgc Arg	aag Lys	atg Met	atc Ile 100	gtc Val	aag Lys	cac His	atg Met	gcc Ala 105	cat His	cac His	cgc Arg	cat His	gcc Ala 110	gga Gly	acc Thr	336
10	gac Asp	gac Asp	gac Asp 115	ccc Pro	gat Asp	ttc Phe	gac Asp	cat His 120	ggc	ggc Gly	ccg Pro	gtc Val	cgc Arg 125	tgg Trp	tac Tyr	gcc Ala	384
15	cgc Arg	ttc Phe 130	atc Ile	ggc	acc Thr	tat Tyr	ttc Phe 135	ggc Gly	tgg Trp	cgc Arg	gag Glu	ggg Gly 140	ctg Leu	ctg Leu	ctg Leu	ccc Pro	432
13	gtc Val 145	atc Ile	gtg Val	acg Thr	gtc Val	tat Tyr 150	gcg Ala	ctg Leu	atc Ile	ctt Leu	ggg Gly 155	gat Asp	cgc Arg	tgg Trp	atg Met	tac Tyr 160	480
20	gtg Val	gtc Val	ttc Phe	tgg Trp	ccg Pro 165	Leu	ccg Pro	tcg Ser	atc Ile	ctg Leu 170	Ala	tcg Ser	atc Ile	cag Gln	ctg Leu 175	Phe	528
25	gtg Val	ttc Phe	ggc Gly	acc Thr	Trp	ctg Leu	ccg Pro	cac His	cgc Arg 185	Pro	ggc Gly	cac His	gac Asp	gcg Ala 190	Phe	ccg Pro	576
30	gac Asp	cgc Arg	cac His 195	a Ası	gcg Ala	g cgg Arg	r tcg Ser	tcg Ser 200	Arg	g ato	ago Sei	gac Ası	Pro 205	Va]	tcg Ser	ctg Leu	624
25	ct <u>o</u> Lev	aco Thi	Cys	e tti	cac e His	ttt Phe	gg(Gl)	/ G13	tai	t cat	cac His	gaa Glu 220	ı His	cac His	cto Lev	g cac 1 His	672
35	ece Pro 225	Th:	g gtq r Vai	g cc	o Tr	g tgg p Trj 230	o Arg	g Le	ı Pr	o Se	c acc r Th: 23	r Ar	c acc	aaq Ly:	g ggg	g gac y Asp 240	720
40		c gc	a tga	a													729
45		10> 11>	100 242														
		12>	PRT														
50		13>	Par	acoc	cus	sp.	MBIC	1143									

	< 4	00>	1	00)
--	-----	-----	---	----	---

45

50

	Met 1	Ser	Ala	His	Ala 5	Leu	Pro	Ļys	Ala	Asp 10	Leu	Thr	Ala	Thr	Ser 15	Leu
5																

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30

10
Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala
35
40
45.

15 Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 20 65 70 75 80

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr 100 105 110

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala
115 120 125

35 Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 40 145 150 155 160

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu
195 200 205

	Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220	
5	Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235 240	
10	Thr Ala	
	<210> 101	
15	<211> 735	
· _	<212> DNA	
20	<213> Brevundimonas aurantiaca	
	<220>	
25	<221> CDS	
	<222> (1)(735)	
30	<223>	
35	<pre><400> 101 atg acc gcc gtc gcc gag cca cgc acc gtc ccg cgc cag acc tgg Met Thr Ala Ala Val Ala Glu Pro Arg Thr Val Pro Arg Gln Thr Trp 1 5 10 15</pre>	48
	atc ggt ctg acc ctg gcg gga atg atc gtg gcg gga tgg gcg gtt ctg Ile Gly Leu Thr Leu Ala Gly Met Ile Val Ala Gly Trp Ala Val Leu	96
40	20 25 30	
4	cat gtc tac ggc gtc tat ttt cac cga tgg ggg ccg ttg acc ctg gtg His Val Tyr Gly Val Tyr Phe His Arg Trp Gly Pro Leu Thr Leu Val 35 40 45	44
45	atc gcc ccg gcg atc gtg gcg gtc cag acc tgg ttg tcg gtc ggc ctt Ile Ala Pro Ala Ile Val Ala Val Gln Thr Trp Leu Ser Val Gly Leu	92
	50 55 60	
50	ttc atc gtc gcc cat gac gcc atg tac ggc tcc ctg gcg ccg gga cgg Phe Ile Val Ala His Asp Ala Met Tyr Gly Ser Leu Ala Pro Gly Arg	40
	65 70 .75 80	
	ccg cgg ctg aac gcc gca gtc ggc cgg ctg acc ctg ggg ctc tat gcg 2	88

	Pro Arg Leu Asn Ala Ala Val Gly Arg Leu Thr Leu Gly Leu Tyr Ala 85 90 95	
5	ggc ttc cgc ttc gat cgg ctg aag acg gcg cac cac gcc cac cac gcc Gly Phe Arg Phe Asp Arg Leu Lys Thr Ala His His Ala His His Ala 100 105 110	336
10	gcg ccc ggc acg gcc gac gac ccg gat ttt cac gcc ccg gcg ccc cgc Ala Pro Gly Thr Ala Asp Asp Pro Asp Phe His Ala Pro Ala Pro Arg 115 120 125	384
	gcc ttc ctt ccc tgg ttc ctg aac ttc ttt cgc acc tat ttc ggc tgg Ala Phe Leu Pro Trp Phe Leu Asn Phe Phe Arg Thr Tyr Phe Gly Trp 130 135	432
15	cgc gag atg gcg gtc ctg acc gcc ctg gtc ctg atc gcc ctc ttc ggc Arg Glu Met Ala Val Leu Thr Ala Leu Val Leu Ile Ala Leu Phe Gly 145 150 155 160	480
20	ctg ggg gcg cgg ccg gcc aat ctc ctg acc ttc tgg gcc gcg ccg gcc Leu Gly Ala Arg Pro Ala Asn Leu Leu Thr Phe Trp Ala Ala Pro Ala 165 170 175	528
25 .	ctg ctt tca gcg ctt cag ctc ttc acc ttc ggc acc tgg ctg ccg cac Leu Leu Ser Ala Leu Gln Leu Phe Thr Phe Gly Thr Trp Leu Pro His 180 185 190	576
30	cgc cac acc gac cag ccg ttc gcc gac gcg cac cac gcc cgc agc agc Arg His Thr Asp Gln Pro Phe Ala Asp Ala His His Ala Arg Ser Ser 195 200 205	624
	ggc tac ggc ccc gtg ctt tcc ctg ctc acc tgt ttc cac ttc ggc cgc Gly Tyr Gly Pro Val Leu Ser Leu Leu Thr Cys Phe His Phe Gly Arg 210 215 220	672
35	cac cac gaa cac cat ctg agc ccc tgg cgg ccc tgg tgg cgt ctg tgg His His Glu His His Leu Ser Pro Trp Arg Pro Trp Trp Arg Leu Trp 225 230 235 240	720
40	cgc ggc gag tct tga Arg Gly Glu Ser	735
45		
	<211> 244	
50	<212> PRT)	
	<213> Brevundimonas aurantiaca	

	<400> 102
5	Met Thr Ala Ala Val Ala Glu Pro Arg Thr Val Pro Arg Gln Thr Trp 1 10 15
	Ile Gly Leu Thr Leu Ala Gly Met Ile Val Ala Gly Trp Ala Val Leu 20 25 30
10	His Val Tyr Gly Val Tyr Phe His Arg Trp Gly Pro Leu Thr Leu Val 35 40 45
15	Ile Ala Pro Ala Ile Val Ala Val Gln Thr Trp Leu Ser Val Gly Leu 50 55 60
20	Phe Ile Val Ala His Asp Ala Met Tyr Gly Ser Leu Ala Pro Gly Arg 65 70 75 80
25	Pro Arg Leu Asn Ala Ala Val Gly Arg Leu Thr Leu Gly Leu Tyr Ala 85 90 95
	Gly Phe Arg Phe Asp Arg Leu Lys Thr Ala His His Ala His His Ala 100 105 110
30	Ala Pro Gly Thr Ala Asp Asp Pro Asp Phe His Ala Pro Ala Pro Arg 115 120 125
35	Ala Phe Leu Pro Trp Phe Leu Asn Phe Phe Arg Thr Tyr Phe Gly Trp 130 135 140
40	Arg Glu Met Ala Val Leu Thr Ala Leu Val Leu Ile Ala Leu Phe Gly 145 150 155 160
45	Leu Gly Ala Arg Pro Ala Asn Leu Leu Thr Phe Trp Ala Ala Pro Ala 165 170 175
	Leu Leu Ser Ala Leu Gln Leu Phe Thr Phe Gly Thr Trp Leu Pro His 180 185 190
50	Arg His Thr Asp Gln Pro Phe Ala Asp Ala His His Ala Arg Ser Ser 195 200 205

	111	
	Gly Tyr Gly Pro Val Leu Ser Leu Leu Thr Cys Phe His Phe Gly Arg 210 215 220	
5	His His Glu His His Leu Ser Pro Trp Arg Pro Trp Trp Arg Leu Trp 225 230 235 240	
10	Arg Gly Glu Ser	
	<210> 103	
15	<211> 690	
	<212> DNA	
20	<213> Nodularia spumigena NSOR10	
	<220>	
25	<221> CDS	
	<222> (1)(690)	
30	<223>	
35	Met Ala Ile Ala Ile Ser Ile Trp Ala Ile Ser Leu Gly Leu Leu	48
	1 5 10 15	
40	ctt tat att gat ata tcc caa ttc aag ttt tgg atg ttg tta ccg ctc Leu Tyr Ile Asp Ile Ser Gln Phe Lys Phe Trp Met Leu Leu Pro Leu 20 25 30	96
45	ata ttt tgg caa aca ttt tta tat acg gga tta ttt att aca gct cat Ile Phe Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His 35 40 45	.44
40	gat gcc atg cat ggg gta gtt ttt ccc aaa aat ccc aaa atc aac cat Asp Ala Met His Gly Val Val Phe Pro Lys Asn Pro Lys Ile Asn His 50 55 60	L92
50	ttc att ggc tca ttg tgc ctg ttt ctt tat ggt ctt tta cct tat caa Phe Ile Gly Ser Leu Cys Leu Phe Leu Tyr Gly Leu Leu Pro Tyr Gln 65 70 75 80	240
	aaa ctt tta aaa aag cat tgg cta cat cac cat aat cca gcc agt gaa	288

	ГЛS	Leu	Leu	Lys	Lys 85	His	Trp	Leu	His	His 90	His	Asn	Pro	Ala	Ser 95	Glu	
5	aca Thr	gat Asp	cca Pro	gat Asp 100	ttt Phe	cac His	aac Asn	GJA GGA	aag Lys 105	cag Gln	aaa Lys	aac Asn	ttt Phe	ttt Phe 110	gct Ala	tgg Trp	336
10	tat Tyr	tta Leu	tat Tyr 115	ttt Phe	atg Met	aag Lys	cgt Arg	tac Tyr 120	tgg Trp	agt Ser	tgg Trp	tta Leu	caa Gln 125	att Ile	atc Ile	aca Thr	384
	tta Leu	atg Met 130	Ile	att lle	tat Tyr	aac Asn	tta Leu 135	Leu	aaa Lys	tat Tyr	ata Ile	tgg Trp 140	nis	ttt Phe	cca Pro	gag Glu	432
15	gat Asp 145	Asr	ato Mei	g act	tat Tyr	ttt Phe 150	Trp	gta Val	gtt Val	ccc Pro	tca Ser 155	Tre	tta Lev	agt Sei	tct Ser	tta Leu 160	480
20	caa Gl:	a tta n Lev	a tt	t tat e Ty	ttt Phe	e GJ7	act Thi	ttt Phe	cta e Le	a ccc a Pro 170	o HI	s Sei	t gaq r Glı	g cc	t gta o Val 17!	a gaa 1 Glu 5	528
25	G1;	t ta y Ty	t aa r Ly	a ga s Gl	u Pr	t cat	t cg	t tc g Se	c ca r Gl 18	n Tn	t at r Il	t ag e Se	c cg r Ar	t cc g Pr 19	- 24	t tgg e Trp	576
30	tg Tr	g to p Se	r Ph	t at ne Il 95	a ac e Th	t tg r Cy	t ta s Ty	с са т Ні 20	s Pr	t gg æ Gl	t ta y Ty	t ca r Hi	t ta s Ty 20	1 61	a ca u Hi	t cat s His	624
	ga G1	lu Ti	ic co yr Pi 10	cc ca ro Hi	at gt is Va	t co il Pr	t to o Tr 21	T q	g ca	aa tt ln Le	a co eu Pi	CO G	aa at Lu II 20	it ta le Ti	at aa yr Ly	a atg ys Met	672
35	s			ca aa er A			ja										690
40	<	210>	10	4													
	<	211>	22	29													
45	<	212>		RT													
	<	<213>	- No	odula	ria	spun	iger	a NS	SOR1)							
50	•	<400		04													
		Met 2 1	Ala	Ile		Ile : 5	Ile :	Ser :	Ile	Trp .	Ala 10	Ile	Ser	Leu	Gly 1	Leu Le 15	eu

5	Leu Tyr Ile Asp Ile Ser Gln Phe Lys Phe Trp Met Leu Pro Leu 20 25 30
	Ile Phe Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His 35 40 45
10	Asp Ala Met His Gly Val Val Phe Pro Lys Asn Pro Lys Ile Asn His 50 55 60
15	Phe Ile Gly Ser Leu Cys Leu Phe Leu Tyr Gly Leu Leu Pro Tyr Gln 65 70 75 80
20	Lys Leu Leu Lys Lys His Trp Leu His His Asn Pro Ala Ser Glu 85 90 95
25	Thr Asp Pro Asp Phe His Asn Gly Lys Gln Lys Asn Phe Phe Ala Trp 100 105 110
	Tyr Leu Tyr Phe Met Lys Arg Tyr Trp Ser Trp Leu Gln Ile Ile Thr 115 120 125
30	Leu Met Ile Ile Tyr Asn Leu Leu Lys Tyr Ile Trp His Phe Pro Glu 130 135 140
35	Asp Asn Met Thr Tyr Phe Trp Val Val Pro Ser Ile Leu Ser Ser Leu 145 150 155 160
40	Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Ser Glu Pro Val Glu 165 170 175
45	Gly Tyr Lys Glu Pro His Arg Ser Gln Thr Ile Ser Arg Pro Ile Trp 180 185 190
	Trp Ser Phe Ile Thr Cys Tyr His Phe Gly Tyr His Tyr Glu His His 195 200 205
50	Glu Tyr Pro His Val Pro Trp Trp Gln Leu Pro Glu Ile Tyr Lys Met 210 215 220

114 Ser Lys Ser Asn Leu 225 5 <210> 105 <211> 1536 <212> DNA 10 <213> Deinococcus radiodurans R1 15 <220> <221> CDS <222> (1)..(1536) <223> 25 <400> 105 atg ccg gat tac gac ctg atc gtc atg ggc gcg ggc cac aac gcg ctg Met Pro Asp Tyr Asp Leu Ile Val Met Gly Ala Gly His Asn Ala Leu 10 5 tac gcc gcc cgg gcg ggc ctg aaa gtc ggc gtg ttc

30	gtg Val	act Thr	gct Ala	gcc Ala 20	tac Tyr	gcc Ala	gcc Ala	arg Arg	gcg Ala 25	ggc	Leu	aaa Lys	Val	Gly 30	Val	Phe	
35	gag Glu	cgg Arg	cgg Arg 35	cac His	ctc Leu	gtc Val	ggc Gly	ggg Gly 40	gcg Ala	gtc Val	agc Ser	acc Thr	gag Glu 45	gag Glu	gtc Val	gtg Val	144
40	ccc Pro	ggt Gly 50	tac Tyr	cgc Arg	ttc Phe	gac Asp	tac Tyr 55	ggc Gly	ggc	agc Ser	gcc Ala	cac His 60	atc Ile	ctg Leu	att Ile	cgg Arg	192
	atg Met 65	acg Thr	ccc	atc Ile	gtg Val	cgc Arg 70	gaa Glu	ctc Leu	gaa Glu	ctc Leu	acg Thr 75	cgg Arg	cac His	ggg Gly	ctg Leu	cat His 80	240
45	tac Tyr	cto	gaa Glu	ıgtg ıVal	gac Asp 85	cct Pro	atg Met	ttt Phe	cac His	gct Ala 90	tcc Ser	gac Ası	ggt Gly	gaa Glu	a acc ı Thr 95	r ccc	288
50	tgg Trp	tto Phe	att	cac His	arç	gac g Asp	gcc Ala	. Gl ⁷	g cgg Y Arg 10	l am	ator Ile	e Ar	c gaa	a cto u Leo 11	u Ası	gaa Glu	336
	aag	g tti	t cc	c ggg	g ca	g ggd	gad	gc:	c ta	c gg	g cg	c tt	t ct	c ga	c ga	t tgg	384

48

	110	
	Lys Phe Pro Gly Gln Gly Asp Ala Tyr Gly Arg Phe Leu Asp Asp Trp 115 120 125	
5	aca ccc ttc gcg cgc gcc gtg gcc gac ctg ttc aac tcg gcg ccg ggg Thr Pro Phe Ala Arg Ala Val Ala Asp Leu Phe Asn Ser Ala Pro Gly 130 135 140	432
10	ccg ctc gac ctg ggc aaa atg gtg atg cgc agc ggc cag ggc aag gac Pro Leu Asp Leu Gly Lys Met Val Met Arg Ser Gly Gln Gly Lys Asp 145 150 155 160	480
	tgg aac gag cag ctc ccg cgc atc ctg cgg ccc tac ggc gac gtg gcg Trp Asn Glu Gln Leu Pro Arg Ile Leu Arg Pro Tyr Gly Asp Val Ala 165 170 175	528
15	cgc gag tac ttc agc gag gag cgc gtg cgg gct ccc ctg acc tgg atg Arg Glu Tyr Phe Ser Glu Glu Arg Val Arg Ala Pro Leu Thr Trp Met 180 185 190	576
20	gcg gcc cag agc ggc ccc cca ccc tcg gac ccg ctg agc gcg ccc ttt Ala Ala Gln Ser Gly Pro Pro Pro Ser Asp Pro Leu Ser Ala Pro Phe 195 200 205	624
25	ttg ctg tgg cac ccg ctc tac cac gaa ggc ggc gtg gcg cgg ccc aaa Leu Leu Trp His Pro Leu Tyr His Glu Gly Gly Val Ala Arg Pro Lys 210 215 220	672
30	ggc ggc agc ggc ctg acc aaa gcc ctg cgc cgg gcc acc gag gcc Gly Gly Ser Gly Gly Leu Thr Lys Ala Leu Arg Arg Ala Thr Glu Ala 225 230 235 240	720
	gaa ggc ggc gag gtc ttc acc gac gcg ccg gtc aag gaa att ctg gtc Glu Gly Gly Glu Val Phe Thr Asp Ala Pro Val Lys Glu Ile Leu Val 245 250 255	768
35	aag gac ggc aag gcg cag ggc atc cgg ctg gaa agc ggc gag acg tac Lys Asp Gly Lys Ala Gln Gly Ile Arg Leu Glu Ser Gly Glu Thr Tyr 260 265 270	816
. 40	acc gcc cgc gcc gtc gtg tcg ggc gtc cac atc ctg acc act gcg aat Thr Ala Arg Ala Val Val Ser Gly Val His Ile Leu Thr Thr Ala Asn 275 280 285	864
45	gcc ctg ccc gcc gaa tat gtc cct agc gcc gcc agg aat gtg cgc gtg Ala Leu Pro Ala Glu Tyr Val Pro Ser Ala Ala Arg Asn Val Arg Val 290 295 300	912
5(ggc aac ggc ttc ggc atg att ttg cgc ctc gcc ctc agt gaa aaa gtc Gly Asn Gly Phe Gly Met Ile Leu Arg Leu Ala Leu Ser Glu Lys Val 305 310 315 320	960
	aaa tac cgt cac cac acc gag ccc gac tca cgc atc ggc ctg gga ttg Lys Tyr Arg His His Thr Glu Pro Asp Ser Arg Ile Gly Leu Gly Leu 325 330 335	1008

e	ctg atc aaa aac gag cgg caa atc atg cag ggc tac ggc gaa tac ctc Leu Ile Lys Asn Glu Arg Gln Ile Met Gln Gly Tyr Gly Glu Tyr Leu 340 345 350	1056
5	gcc ggg cag ccc acc acc gac ccg ccc ctc gtc gcc atg agc ttc agc Ala Gly Gln Pro Thr Thr Asp Pro Pro Leu Val Ala Met Ser Phe Ser 355 360 365	1104
10	gcg gtg gac gac tcg ctc gcc cca ccg aac ggc gac gtg ttg tgg ctg Ala Val Asp Asp Ser Leu Ala Pro Pro Asn Gly Asp Val Leu Trp Leu 370 375 380	1152
15	tgg gcg cag tac tac ccc ttc gag ctc gcc acc ggg agc tgg gaa acg Trp Ala Gln Tyr Tyr Pro Phe Glu Leu Ala Thr Gly Ser Trp Glu Thr 385 390 395 400	1200
20	cgc acc gcc gaa gcg cgg gag aac atc ctg cgg gcc ttt gag cac tac Arg Thr Ala Glu Ala Arg Glu Asn Ile Leu Arg Ala Phe Glu His Tyr 405 410 415	1248
05	gcg ccg ggc acc cgc gac acg att gtg ggc gaa ctc gtg cag acg ccg Ala Pro Gly Thr Arg Asp Thr Ile Val Gly Glu Leu Val Gln Thr Pro 420 425 430	1296
25	cag tgg ctg gaa acc aac ctc ggc ctg cac cgg ggc aac gtg atg cac Gln Trp Leu Glu Thr Asn Leu Gly Leu His Arg Gly Asn Val Met His 435 440 445	1344
30	ctg gaa atg tcc ttc gac cag atg ttc tcc ttc cgc ccc tgg ctg aaa Leu Glu Met Ser Phe Asp Gln Met Phe Ser Phe Arg Pro Trp Leu Lys 450 455 460	1392
35	gcg agc cag tac cgc tgg ccg ggc gtg cag ggg ctg tac ctc acc ggc Ala Ser Gln Tyr Arg Trp Pro Gly Val Gln Gly Leu Tyr Leu Thr Gly 465 470 475 480	1440
40		
45	gcg gcg cgg gtc atc gtg aag gac ctg acg cgg agg cgc tgg aaa tga Ala Ala Arg Val Ile Val Lys Asp Leu Thr Arg Arg Arg Trp Lys 500 505 510	1536
,,	<210> 106	
	<211> 511	
50) <212> PRT	
	<213> Deinococcus radiodurans R1	

	<400> 106
5	Met Pro Asp Tyr Asp Leu Ile Val Met Gly Ala Gly His Asn Ala Leu 10 15
10	Val Thr Ala Ala Tyr Ala Ala Arg Ala Gly Leu Lys Val Gly Val Phe 20 25 30
15	Glu Arg Arg His Leu Val Gly Gly Ala Val Ser Thr Glu Glu Val Val 35 40 45
	Pro Gly Tyr Arg Phe Asp Tyr Gly Gly Ser Ala His Ile Leu Ile Arg 50 55 60
20	Met Thr Pro Ile Val Arg Glu Leu Glu Leu Thr Arg His Gly Leu His 65 70 75 80
25	Tyr Leu Glu Val Asp Pro Met Phe His Ala Ser Asp Gly Glu Thr Pro 85 90 95
30	Trp Phe Ile His Arg Asp Ala Gly Arg Thr Ile Arg Glu Leu Asp Glu 100 105 110
35	Lys Phe Pro Gly Gln Gly Asp Ala Tyr Gly Arg Phe Leu Asp Asp Trp 115 120 125
	Thr Pro Phe Ala Arg Ala Val Ala Asp Leu Phe Asn Ser Ala Pro Gly 130 135 140
40	Pro Leu Asp Leu Gly Lys Met Val Met Arg Ser Gly Gln Gly Lys Asp 145 150 155 160
45	Trp Asn Glu Gln Leu Pro Arg Ile Leu Arg Pro Tyr Gly Asp Val Ala 165 170 175
50	Arg Glu Tyr Phe Ser Glu Glu Arg Val Arg Ala Pro Leu Thr Trp Met 180 185 190
	Ala Ala Gln Ser Gly Pro Pro Pro Ser Asp Pro Leu Ser Ala Pro Phe

5	Leu Leu Trp His Pro Leu Tyr His Glu Gly Gly Val Ala Arg Pro Lys 210 220
	Gly Gly Ser Gly Gly Leu Thr Lys Ala Leu Arg Arg Ala Thr Glu Ala 225 230 235 240
10	Glu Gly Gly Glu Val Phe Thr Asp Ala Pro Val Lys Glu Ile Leu Val 245 250 255
15	Lys Asp Gly Lys Ala Gln Gly Ile Arg Leu Glu Ser Gly Glu Thr Tyr 260 265 270
20	Thr Ala Arg Ala Val Val Ser Gly Val His Ile Leu Thr Thr Ala Asn 275 280 285
25	Ala Leu Pro Ala Glu Tyr Val Pro Ser Ala Ala Arg Asn Val Arg Val 290 295 300
	Gly Asn Gly Phe Gly Met Ile Leu Arg Leu Ala Leu Ser Glu Lys Val 305 310 315 320
30	Lys Tyr Arg His His Thr Glu Pro Asp Ser Arg Ile Gly Leu Gly Leu 325 330 335
35	Leu Ile Lys Asn Glu Arg Gln Ile Met Gln Gly Tyr Gly Glu Tyr Leu 340 345 350
40	Ala Gly Gln Pro Thr Thr Asp Pro Pro Leu Val Ala Met Ser Phe Ser 355 360 365
45	Ala Val Asp Asp Ser Leu Ala Pro Pro Asn Gly Asp Val Leu Trp Leu 370 375 380
	Trp Ala Gln Tyr Tyr Pro Phe Glu Leu Ala Thr Gly Ser Trp Glu Thr 385 390 395 400
50	Arg Thr Ala Glu Ala Arg Glu Asn Ile Leu Arg Ala Phe Glu His Tyr 405 410 415

	Ala	Pro	Gly	Thr 420	Arg	Asp .	Thr	Ile	Val 425	Gly	Glu	Leu	Val	Gln 430	Thr	Pro	
5	Gln	Trp	Leu 435	Glu	Thr	Asn	Leu	Gly 440	Leu	His	Arg	Gly	Asn 445	Val	Met	His	
10	Leu	Glu 450	Met	Ser	Phe	Asp	Gln 455	Met	Phe	Ser	Phe	Arg 460	Pro	Trp	Leu	Lys	
15	Ala 465		Gln	Tyr	Arg	Trp 470	Pro	G1y	Val	Gln	Gly 475	Leu	Tyr	Leu	Thr	Gly 480	
	Ala	Ser	Thr	His	Pro 485		Gly	· Gly	7 Il∈	Met 490	: Gly	Ala	Ser	. GJĀ	495	Asn	
20	Ala	Ala	Arg	y Val 500		e Val	. Lys	a Ası	50!	ı Thi	c Arg	g Arg	g Arg	7 Trg 510	D Lys	5	'
25	<21	0>	107		,												
	<23	11>	166	б													
30		12> 13>	DNA		sico	n es	cule	ntum	l								
	<2.	13/	пус	oper	5100									,			
35	<2	20>												•			
	<2	21>	CDS	}													
40	<2	22>	(1)	(1	.494)	•											
,,	<2	23>									•						
45	<4	100>	10	7		.		a - -	++ <i>c</i>	ca t	ct c	++ t:	ta c	tt t	cc t	ct cct	48
	at Me 1	et G	aa go Lu A	ct c la L	eu L 5	eu L	ys P	ro P	he P	ro S	er L O	eu L	eu L	eu S	er S	er Pro	
50	a Tì	ca co hr P:	cc c ro H	at a is A 2	rg S	ct a er I	tt t le P	tc c he G	ln G	aa a ln A	at c sn P	cc t ro S	ct t er P	he L	ta a eu S O	gt ccc er Pro	96
	a	cc a	cc a	aa a	aa a	aa t	ca a	ga a	ıaa t	gt o	tt c	tt a	.ga a	ac a	aa a	gt agt	144

	Thr	Thr	Lys 35	Lys	Lys	Ser .		Lys 40	Cys	Leu	Leu	Arg	Asn 45	Lys	Se	r S	Ser		
5	Lys	ctt Leu 50	ttt Phe	tgt Cys	agc Ser	ttt Phe	ctt Leu 55	gat Asp	tta Leu	gca Ala	ccc Pro	aca Thr 60	tca Ser	aag Lys	cc Pr	a g	gag Slu	192	
10	tct Ser 65	tta Leu	gat Asp	gtt Val	aac Asn	atc Ile 70	tca Ser	tgg Trp	gtt Val	gat Asp	cct Pro 75	aat Asn	tcg Ser	aat Asn	cg Ar	g I	gct Ala 80	240	
45	caa Gln	ttc Phe	gac Asp	gtg Val	atc Ile 85	att Ile	atc Ile	gga Gly	gct Ala	ggc 90	cct Pro	gct Ala	Gly ggg	cto Lev	: ag 1 Ar 95	g	cta Leu	288	
15	gct Ala	gaa Glu	caa Gln	gtt Val 100	tct Ser	aaa Lys	tat Tyr	ggt Gly	att Ile 105	Lys	gta Val	tgt Cys	tgt Cys	gti Va:	L As	ac sp	cct Pro	336	
20	tca Ser	cca Pro	ctc Leu 115	Ser	atg Met	tgg Trp	cca Pro	aat Asn 120	Asn	tat Tyr	Gl ⁷	gtt Val	tgg L Try 12	y Va	t ga	at sp	gag Glu	384	
25	ttt Phe	gag Glu 130	a Asn	tta Leu	gga Gly	ctg Leu	gaa Glu 135	Asn	tgt Cys	tta Lev	gat L Asp	cat His	s Ly	a tg s Tr	g c	ct ro	atg Met	432	
30	act Thr 145	CA	gtg Val	r cat His	ata Ile	aat Asn 150	Asp	aac Asr	aaa Lys	a act	aaq Ly: 15	з Ту	t tt r Le	g gg u Gl	a a y A	ga rg	cca Pro 160	480	
35	tat Tyr	ggt Gly	z aga y Arg	a gtt g Val	agt L Ser 165	. Arg	aac Lys	aag Lys	g cto	g aaq u Ly: 17	s Le	g aa u Ly	a tt s Le	g tt	u A	at sn .75	agt Ser	528	
•	tgt Cys	gt:	t gag l Gli	g aad u Asi 18	n Arg	gtg y Val	, aag Lys	y tt	t ta e Ty 18	r Ly	a gc s Al	t aa a Ly	g gt s Va	l Ti	o O O	aaa Lys	gtg Val	576	;
40	gaá Glì	a ca ı Hi	t gaa s Gl	u Gl	a tti u Phe	gaq Glu	j tci 1 Se:	t tc r Se 20	r Il	t gt e Va	t tg l Cy	t ga 's As	eA q	at gg sp G: 05	gt a Ly 1	aag Lys	aag Lys	624	1
45	ata Ile	a ag e Ar 21	g Gl	t ag y Se	t tt: ŗ Le	g gti u Vai	t gt l Va 21	l As	t go p Al	a ag .a Se	t gg r Gl	y Pl	et go ne Ai 20	ct a la S	gt (er .	gat Asp	ttt Phe	67:	2
50	at: 11: 22	e Gl	g ta u Ty	t ga r As	c ag p Ar	g cc g Pr 23	o Ar	a aa g As	c ca	at gg Ls Gl	Y T	at ca yr G: 35	aa a ln I	tt g le A	ct la	cat His	ggg Gly 240	72	0
	gt Va	t tt l Le	a gt eu Va	a ga ll Gl	a gt u Va 24	1 As	t aa p As	t ca n Hi	it co .s Pi	ro Pl	t ga ne Aa	at t sp L	tg g eu A	at a sp L	aa Ys	ato Met 25	g gtg E Val	76	8

_	ctt Leu	atg Met	gat Asp	tgg Trp 260	agg Arg	gat Asp	tct o	His :	ttg Leu 265	ggt Gly	aat Asn	gag Glu	cca Pro	tat Tyr 270	tta Leu	agg Arg	816
5	gtg Val	aat Asn	aat Asn 275	gct Ala	aaa Lys	gaa Glu	Pro	aca Thr 280	ttc Phe	ttg Leu	tat Tyr	gca Ala	atg Met 285	cca Pro	ttt Phe	gat Asp	864
10	aga Arg	gat Asp 290	ttg Leu	gtt Val	ttc Phe	ttg Leu	gaa Glu 295	gag Glu	act Thr	tct Ser	ttg Leu	gtg Val 300	agt Ser	cgt Arg	cct Pro	gtt Val	912
15	tta Leu 305	tcg Ser	tat Tyr	atg Met	gaa Glu	gta Val 310	aaa Lys	aga Arg	agg Arg	atg Met	gtg Val 315	gca Ala	aga Arg	tta Leu	agg Arg	cat His 320	960
20	ttg Leu	GJA aaa	atc Ile	aaa Lys	gtg Val 325	aaa Lys	agt Ser	gtt Val	att Ile	gag Glu 330	Glu	gag Glu	aaa Lys	tgt Cys	gtg Val 335	Ile	1008
25	cct Pro	atg Met	gga Gly	gga Gly 340	Pro	ctt Leu	ccg Pro	cgg Arg	att Ile 345	Pro	caa Gln	aat Asn	gtt Val	atg Met 350	Ala	att Ile	1056
23	ggt Gly	G17 ggg	y aat y Asr 355	Ser	. Glå . aaa	ata Ile	gtt Val	cat His 360	Pro	tca Ser	aca Thi	Gl7	tac Tyr 365	Met	gtg :Val	gct L Ala	1104
30	agg Arg	ago Se:	c Met	g gct L Ala	tta Leu	gca Ala	cca Pro 375	Val	cta Lev	a gct 1 Ala	z gaa a Gli	a gco 1 Ala 380	a Ile	e gto	gaq l Gli	r GJÀ A AAA	1152
35	ctt Let 385	ı Gl	c tc: y Se:	a aca	a aga	ato Met 390	: Ile	aga Arg	g Gl	y tc	t car r Gl: 39	n Le	t tad u Ty:	c cat	t ag	a gtt g Val 400	1200
40	tg <u>c</u> Tr <u>r</u>	aa As	t gg n Gl	t tt: y Le:	g tgg u Trj 40!	Pro	ttg Lev	gat 1 Asp	age p Are	a ag g Ar 41	g Cy	t gt s Va	t aga	a ga g Gl	a tg u Cy 41	t tat s Tyr 5	1248
45	tc: Se:	a tt r Ph	t gg .e Gl	g at y Me 42	t Gl	g aca	a tto r Leo	g ttg ı Le	g aa u Ly 42	s Le	t ga u As	t tt p Le	g aa u Ly	a gg s Gl 43	уTh	t agg r Arg	1296
70	ag Ar	a tt g Le	g tt u Ph 43	e As	c gc p Al	t tt a Ph	c tt e Ph	t ga e As 44	p Le	t ga u As	it co sp Pr	t as	a ta /s Ty 44	r Tr	g ca	a ggg n Gly	1344
50	tt Ph	c ct e Le 45	eu Se	t to er Se	a ag er Ar	a tt g Le	g tc u Se 45	r Va	c aa 1 Ly	a ga /s G]	ia ct lu Le	eu Gl	gt tt Ly Le 50	a ct eu Le	c ag eu Se	gc ttg er Lev	1392 1
	tg	t ct	t tt	c gg	ja ca	it gg	c to	a aa	c at	g a	ct as	gg ti	tg ga	at at	t gi	tt aca	a 1440

	Cys Leu Phe Gly His Gly Ser Asn Met Thr Arg Leu Asp Ile Val Thr 465 470 475 480	
5	aaa tgt cct ctt cct ttg gtt aga ctg att ggc aat cta gca ata gag Lys Cys Pro Leu Pro Leu Val Arg Leu Ile Gly Asn Leu Ala Ile Glu 485 490 495	1488
10	agc ctt tgaatgtgaa aagtttgaat cattttcttc attttaattt ctttgattat Ser Leu	1544
	tttcatattt tctcaattgc aaaagtgaga taagagctac atactgtcaa caaataaact	1604
15	actattggaa agttaaaata tgtgtttgtt gtatgttatt ctaatggaat ggattttgta aa	1664 1666
20	<210> 108 <211> 498	
	<212> PRT	
25	<213> Lycopersicon esculentum	
30	<pre><400> 108 Met Glu Ala Leu Leu Lys Pro Phe Pro Ser Leu Leu Leu Ser Ser Pro 1</pre>	
35	Thr Pro His Arg Ser Ile Phe Gln Gln Asn Pro Ser Phe Leu Ser Pro 20 25 30	
40	Thr Thr Lys Lys Lys Ser Arg Lys Cys Leu Leu Arg Asn Lys Ser Ser 35 40 45	
45	Lys Leu Phe Cys Ser Phe Leu Asp Leu Ala Pro Thr Ser Lys Pro Glu 50 55 60	
	Ser Leu Asp Val Asn Ile Ser Trp Val Asp Pro Asn Ser Asn Arg Ala 65 70 75 80	
50	Gln Phe Asp Val Ile Ile Ile Gly Ala Gly Pro Ala Gly Leu Arg Leu 85 90 95	

	Ala Glu Gln Val Ser Lys Tyr Gly Ile Lys Val Cys Cys Val Asp Pro 100 105 110
5	Ser Pro Leu Ser Met Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu 115 120 125
10	Phe Glu Asn Leu Gly Leu Glu Asn Cys Leu Asp His Lys Trp Pro Met 130 135 140
15	Thr Cys Val His Ile Asn Asp Asn Lys Thr Lys Tyr Leu Gly Arg Pro 145 150 155 160
	Tyr Gly Arg Val Ser Arg Lys Leu Lys Leu Lys Leu Leu Asn Ser 165 170 175
20	Cys Val Glu Asn Arg Val Lys Phe Tyr Lys Ala Lys Val Trp Lys Val 180 185 190
25	Glu His Glu Glu Phe Glu Ser Ser Ile Val Cys Asp Asp Gly Lys Lys 195 200 205
30	Ile Arg Gly Ser Leu Val Val Asp Ala Ser Gly Phe Ala Ser Asp Phe 210 215 220
35	Ile Glu Tyr Asp Arg Pro Arg Asn His Gly Tyr Gln Ile Ala His Gly 225 230 235 240
•	Val Leu Val Glu Val Asp Asn His Pro Phe Asp Leu Asp Lys Met Val 245 250 255
40	Leu Met Asp Trp Arg Asp Ser His Leu Gly Asn Glu Pro Tyr Leu Arg 260 265 270
4	Val Asn Asn Ala Lys Glu Pro Thr Phe Leu Tyr Ala Met Pro Phe Asp 275 280 285
5	Arg Asp Leu Val Phe Leu Glu Glu Thr Ser Leu Val Ser Arg Pro Val 295 300
	Leu Ser Tyr Met Glu Val Lys Arg Arg Met Val Ala Arg Leu Arg His 305 310 315 320

5	Leu Gly Ile Lys Val Lys Ser Val Ile Glu Glu Glu Lys Cys Val Ile 325 330 335
	Pro Met Gly Gly Pro Leu Pro Arg Ile Pro Gln Asn Val Met Ala Ile 340 345 350
10	Gly Gly Asn Ser Gly Ile Val His Pro Ser Thr Gly Tyr Met Val Ala 355 360 365
15	Arg Ser Met Ala Leu Ala Pro Val Leu Ala Glu Ala Ile Val Glu Gly 370 375 380
20	Leu Gly Ser Thr Arg Met Ile Arg Gly Ser Gln Leu Tyr His Arg Val 385 390 395 400
25	Trp Asn Gly Leu Trp Pro Leu Asp Arg Arg Cys Val Arg Glu Cys Tyr 405 410 415
	Ser Phe Gly Met Glu Thr Leu Leu Lys Leu Asp Leu Lys Gly Thr Arg 420 425 430
30	Arg Leu Phe Asp Ala Phe Phe Asp Leu Asp Pro Lys Tyr Trp Gln Gly 435 440 445
35	Phe Leu Ser Ser Arg Leu Ser Val Lys Glu Leu Gly Leu Leu Ser Leu 450 455 460
40	Cys Leu Phe Gly His Gly Ser Asn Met Thr Arg Leu Asp Ile Val Thr 465 470 475 480
45	Lys Cys Pro Leu Pro Leu Val Arg Leu Ile Gly Asn Leu Ala Ile Glo 495 490 495
	Ser Leu
50) <210> 109
	<211> 1125

	<212> DNA	
	<213> Lycopersicon esculentum	
5		
	<220>	
	<221> CDS	
10	<222> (20)(946)	
	<223>	
15		
20	<pre><400> 109 ttggtcatct ccacaatca atg gct gcc gcc gcc aga atc tcc gcc tcc tct</pre>	52
	acc tca cga act ttt tat ttc cgt cat tca ccg ttt ctt ggc cca aaa Thr Ser Arg Thr Phe Tyr Phe Arg His Ser Pro Phe Leu Gly Pro Lys 15 20 25	100
25	cct act tcg aca acc tca cat gtt tct cca atc tct cct ttt tct ctt Pro Thr Ser Thr Thr Ser His Val Ser Pro Ile Ser Pro Phe Ser Leu 30 35 40	148
30	aat cta ggc cca att ttg agg tct aga aga aaa ccc agt ttc act gtt Asn Leu Gly Pro Ile Leu Arg Ser Arg Arg Lys Pro Ser Phe Thr Val 45 50 55	196
35	tgc ttt gtt ctc gag gat gag aag ctg aaa cct caa ttt gac gat gag Cys Phe Val Leu Glu Asp Glu Lys Leu Lys Pro Gln Phe Asp Asp Glu 60 65 70 75	244
40		292
	ttg gcg gag aaa ctg gct agg aag aaa tcg gag agg ttt act tat ctt Leu Ala Glu Lys Leu Ala Arg Lys Lys Ser Glu Arg Phe Thr Tyr Leu 95 100 105	340
45	gtg gct gct ata atg tct agt ttt ggg att act tct atg gct gtt atg Val Ala Ala Ile Met Ser Ser Phe Gly Ile Thr Ser Met Ala Val Met 110 115 120	388
5	O gct gtt tat tac aga ttt tcg tgg caa atg gag gga gga gaa gtt cct Ala Val Tyr Tyr Arg Phe Ser Trp Gln Met Glu Gly Gly Glu Val Pro 135	436
	gta acc gaa atg ttg ggt aca ttt gct ctc tct gtt ggt gct gct gta	484

										126							
	Val 140	Thr	Glu	Met	Leu	Gly 145	Thr	Phe	Ala	Leu	Ser 150	Val	Gly	Ala	Ala	Val 155	
5			gag Glu														532
10			tgg Trp	•	_								_				580
15			ctg Leu 190		-	_		_					-		-		628
•	_		ctc Leu											_			676
20	_		ggt Gly	-									_	_		_	724
25		_	cac His	_		_	_		_	_			_			_	772
30	_		gta Val					-			-			_			820
35			gag Glu 270	Lys							_			Phe			868
	_	_	ctg Leu	_	-	_		Gly	_	_		_	Glu	_	-		916
40		Arg	agg Arg	_	_		Ser				_	acga	ttg	ttca	taaa	ca	966
45	tag	raatg	rtca	tttt	acac	tt c	ttat	caat	g ag	gaag	ggtg	att	tttg	atg	tatt	tgatag	1026
			aaa									tta	tgta	rggc	tctt	cttatt	1086 1125
50	<21	_	110						-3 -G	,							3. 4. El J

<211> 309

	127
	<212> PRT
	<213> Lycopersicon esculentum
5	
	<400> 110
10	Met Ala Ala Ala Arg Ile Ser Ala Ser Ser Thr Ser Arg Thr Phe 1 5 10 15
15	Tyr Phe Arg His Ser Pro Phe Leu Gly Pro Lys Pro Thr Ser Thr Thr 20 25 30
15	Ser His Val Ser Pro Ile Ser Pro Phe Ser Leu Asn Leu Gly Pro Ile 35 40 45
20	Leu Arg Ser Arg Arg Lys Pro Ser Phe Thr Val Cys Phe Val Leu Glu 50 55 60
25	Asp Glu Lys Leu Lys Pro Gln Phe Asp Asp Glu Ala Glu Asp Phe Glu 65 70 75 80
30	Lys Lys Ile Glu Glu Gln Ile Leu Ala Thr Arg Leu Ala Glu Lys Leu 85 90 95
35	Ala Arg Lys Lys Ser Glu Arg Phe Thr Tyr Leu Val Ala Ala Ile Met 100 105 110
•	Ser Ser Phe Gly Ile Thr Ser Met Ala Val Met Ala Val Tyr Tyr Arg 115 120 125
40	Phe Ser Trp Gln Met Glu Gly Gly Glu Val Pro Val Thr Glu Met Leu 130 135 140
45	Gly Thr Phe Ala Leu Ser Val Gly Ala Ala Val Gly Met Glu Phe Trp 145 150 155 160

His Glu Ser His His Lys Pro Arg Glu Gly Pro Phe Glu Leu Asn Asp

Ala Arg Trp Ala His Lys Ala Leu Trp His Ala Ser Leu Trp His Met

5	Val	Phe	Ala 195	Ile	Thr	Asn	Ala	Val 200	Pro	Ala	Ile	Ala	Leu 205	Leu	Asn	Tyr
	Gly	Phe 210	Phe	His	Lys	Gly	Leu 215	Ile	Ala	Gly	Leu	Cys 220	Phe	Gly	Ala	Gly
10	Leu 225	Gly	Ile	Thr	Val	Phe 230	Gly	Met	Ala	Туr	Met 235	Phe	Val	His	Asp	Gly 240
15	Leu	Val	His	Lys	Arg 245		Pro	val	Gly	Pro 250	Val	Ala	Asn	Val	Pro 255	Tyr
20	Leu	Arg	Lys	val 260		Ala	a Ala	a His	s Ser 265	Lev	. His	. His	s Ser	Glu 270	Lys	Phe
25	Asr	ı Gly	y Vai 27!		о Туі	Gl ₃	y Le	u Pho 28	e Phe	e Gly	y Pro	o Lys	s Glu 289	ı Lev	ı Glu	ı Glu
	Va:	1 G1; 29		y Th	r Gl	u Gl	u Le 29	u Gl 5	u Ly	s Gl	u Va	1 Il 30	e Ar	g Arg	Th:	r Arg
30	Le 30		r Ly	s Gl	y Se	r										
35	<2	10>	. 111	-												
	<2	211>	177	79												
40	<2	212>	DNZ													
	<:	213>	Ara	abide	opsi	s th	alia	na							·	
45	<	220>													•	
	<	221>	CD	S												
50		:222>	. (1	.) (1779)										
50		:223>	•													

	<400	> :	111														
5	atg Met 1	gat Asp	ctc Leu	cgt Arg	cgg Arg 5	agg Arg	cct Pro	cct Pro	aaa Lys	cca Pro 10	ccg Pro	gtt Val	acc Thr	aac Asn	aac Asn 15	aac Asn	48
5	aac Asn	tcc Ser	aac Asn	gga Gly 20	tct Ser	ttc Phe	cgt Arg	tct Ser	tat Tyr 25	cag Gln	cct Pro	cgc Arg	act Thr	tcc Ser 30	gat Asp	gac Asp	96
10	gat Asp	cat His	cgt Arg 35	cgc Arg	cgg Arg	gct Ala	aca Thr	aca Thr 40	att Ile	gct Ala	cct Pro	cca Pro	ccg Pro 45	aaa Lys	gca Ala	tcc Ser	144
15	gac Asp	gcg Ala 50	ctt Leu	cct Pro	ctt Leu	ccg Pro	tta Leu 55	tat Tyr	ctc Leu	aca Thr	aac Asn	gcc Ala 60	gtt Val	ttc Phe	ttc Phe	acg Thr	192
20	ctc Leu 65	ttc Phe	ttc Phe	tcc Ser	gtc Val	gcg Ala 70	tat Tyr	tac Tyr	ctc Leu	ctc Leu	cac His 75	cgg Arg	tgg Trp	cgt Arg	gac Asp	aag Lys 80	240
	atc Ile	cgt Arg	tac Tyr	aat Asn	acg Thr 85	cct Pro	ctt Leu	cac His	gtc Val	gtc Val 90	act Thr	atc Ile	aca Thr	gaa Glu	ctc Leu 95	ggc Gly	288
25	gcc Ala	ati	t att e Ile	gct Ala 100	Leu	atc Ile	gct Ala	tcg Ser	ttt Phe 105	Ile	tat Tyr	ctc Leu	cta Leu	ggg Gly 110	Phe	ttt Phe	336
30	ggt Gly	at / Il	t gad e Ası 11!	o Phe	t gtt e Val	cag Gln	tca Ser	ttt Phe 120	e Ile	tca Ser	cgt Arg	gcc Ala	tct Ser 125	Gly	gat Asp	gct Ala	384
35	tg: Tr]	g ga o As 13	p Le	c gco u Ala	c gat a Asp	acg Thr	135	a Ası	gat Asp	gat Asp	gac As <u>r</u>	cac His	s Arg	ctt Lev	gto Val	acg Thr	432
40	tg Cy 14	s Se	t cc r Pr	a cc o Pr	g act o Thi	e eeg Pro	o Ile	gt Va	t tco l Se	gtt Val	gci l Ala 15	a Ly:	a tta s Lei	a cct	c aat o Asi	ccg n Pro 160	480
4.00	ga Gl	a co u Pi	t at	t gt e Va	t acc 1 Th: 16	r Gl	a tc u Se	g ct r Le	t cc	t gag o Gli 17	u Gl	a ga u As	c ga	g gaq u Gl	g ati u Ile 17	t gtg e Val 5	528
45	aa Ly	a to	eg gt er Va	t at 11 I1	e As	c gg	a gt y Va	t at 1 Il	t cc e Pr 18	o Se	g ta r Ty	c tc r Se	g ct r Le	t ga u Gl 19	u Se	t cgt r Arg	576
50	ct Le	c g	gt ga ly As 19	72 q	ıc aa /s Ly	a ag s Ar	a go g Al	g gc a Al 20	a Se	g at r Il	t cg e Ar	t cg g Ar	t ga g Gl 20	u Al	g tt a Le	g cag u Gln	624
	aç	ga g	tc ac	cc gg	gg ag	a to	g at	t ga	ıa gg	ıg tt	a co	g tt	g ga	ıt gg	a tt	t gat	672

		Val 210	Thr	Gly	Arg		Ile 215	Glu	Gly	Leu	Pro	Leu 220	Asp	Gly	Phe	Asp	
5	tat Tyr 225	gaa Glu	tcg Ser	att Ile	ttg Leu	ggg Gly 230	caa Gln	tgc Cys	tgt Cys	gag Glu	atg Met 235	cct Pro	gtt Val	gga Gly	tac Tyr	att Ile 240	720
10	cag Gln	att Ile	cct Pro	gtt Val	ggg Gly 245	att Ile	gct Ala	ggt Gly	cca Pro	ttg Leu 250	ttg Leu	ctt Leu	gat Asp	ggt Gly	tat Tyr 255	gag Glu	768
15	tac Tyr	tct Ser	gtt Val	cct Pro 260	atg Met	gct Ala	aca Thr	acc Thr	gaa Glu 265	ggt Gly	tgt Cys	ttg Leu	gtt Val	gct Ala 270	agc Ser	act Thr	816
15	aac Asn	aga Arg	ggc Gly 275	tgc Cys	aag Lys	gct Ala	atg Met	ttt Phe 280	atc Ile	tct Ser	ggt Gly	ggc	gcc Ala 285	acc Thr	agt Ser	acc Thr	864
20	gtt Val	ctt Leu 290	Lys	gac Asp	ggt Gly	atg Met	acc Thr 295	cga Arg	gca Ala	cct Pro	gtt Val	gtt Val 300	cgg Arg	ttc Phe	gct Ala	tcg Ser	912
25	gcg Ala 305	Arg	cga Arg	gct Ala	tcg Ser	gag Glu 310	ctt Leu	aag Lys	ttt Phe	ttc Phe	ttg Leu 315	Glu	aat Asn	cca Pro	gag Glu	aac Asn 320	960
30	ttt Phe	gat Asp	act Thr	ttg Leu	gca Ala 325	gta Val	gtc Val	ttc Phe	aac Asn	agg Arg 330	Ser	agt Ser	aga Arg	ttt Phe	gca Ala 335	Arg	1008
35	Leu	Glr	ı Ser	Val 340	Lys	Cys	Thr	: Ile	345	Gly S	Lys	. Asr	a Ala	350	Val	agg Arg	1056
•	Ph∈	e Cys	355	s Ser	Thr	Gly	r Asp	360	a Met)	: Gly	y Met	Asr	1 Met 365	: Val	. Ser	: aaa : Lys	1104
40	Gly	y Va:	l Glr O	n Asr	n Val	Lev	375	ı Тут Б	r Lei	a Thi	r As <u>ı</u>	raa c 186	Phe D	e Pro	o Asg	e atg Met	
45	As;	p Va 5	l Il	e Gl	y Ile	390	r Gl	y Asi	n Ph	e Cy	s Se: 39	r As) 5	o PA:	s Ly:	s Pro	t get o Ala 400	1200
50	Al	a Va	l As	n Tr	p Ile 40!	e Gl	u Gl	y Ar	g Gl	y Ly 41	s Se O	r Va	l Va	1 Cy:	s Gl [.] 41		1248
	gt Va	a at	c ag e Ar	a gg g Gl 42	y Gl	g at	c gt e Va	g aa l As	c aa n Ly 42	s Va	c tt l Le	g aa u Ly	a ac s Th	g ag r Se 43	r Va	g gct l Ala	1296

5			gtc Val 435														1344
			tct Ser														1392
10			ttc Phe														1440
15			tgc Cys														1488
• 0			tca Ser	_		. —											1536
25	Gly	Thr	cag Gln 515	Leu	Ala	Ser	Gln	Ser 520	Ala	Сув	Leu	Asn	Leu 525	Leu	Gly	Val	1584
-			gca Ala										Arg				1632
30	Thr 545	Ile	gta Val	Ala	Gly	Ala 550	Val	Leu	Ala	Gly	Glu 555	Leu	Ser	Leu	Met	Ser 560	1680
35						Gln					His					aga Arg	1728
4 0					Ile					Thr					Thr	aca Thr	1776
45	tga <21		112						•								1779
40	<21		592			•										,	
50	<21 <21		PRT Aral	oidop	osis	thal	liana	ı									

<4	$^{\circ}$	n	_	1	1	2

5	Met 1	Asp	Leu	Arg	Arg 5	Arg	Pro	Pro	Гўз	Pro 10	Pro	Val	Thr	Asn	Asn 15	Asn
	Asn	Ser	Asn	Gly 20	Ser	Phe	Arg	Ser	Tyr 25	Gln	Pro	Arg	Thr	ser 30	Asp	Asp
10	Asp	His	Arg 35	Arg	Arg	Ala	Thr	Thr 40	Ile	Ala	Pro	Pro	Pro 45	Lys	Ala	Ser
15	Asp	Ala 50	Leu	Pro	Leu	Pro	Leu 55	Tyr	Leu	Thr	Asn	Ala 60	Val	Phe	Phe	Thr
30	Leu 65	Phe	Phe	Ser	Val	Ala 70	Tyr	Tyr	Leu	Leu	His 75	Arg	Trp	Arg	Asp	Lys 80
25	Ile	Arg	Tyr	Asn	Thr 85	Pro	Leu	His	Val	Val 90	Thr	Ile	Thr	Glu	Leu 95	Gly
	Ala	Iļe	Ile	Ala 100	Leu	Ile	Ala	Ser	Phe 105	Ile	Тух	Leu	Leu	Gly 110	Phe	Ph€
30	Gly	·Ile	Asp 115		Val	Gln	Ser	Phe 120	Ile	Ser	Arg	Ala	Ser 125	Gly	Asp	Ala
35	Trp	130	Leu	Ala	Asp	Thr	Ile 135		Asp	Asp	Asp	His 140	Arg	Leu	Val	Th
40	Cys 145		Pro	Pro	Thr	Pro 150		Val	Ser	· Val	Ala 155		Leu	Pro	Asn	Pro
45	Glı	ı Pro) Ile	val	. Thr 165		. Ser	Leu	Pro	Glu 170		. Asp	Glu	. Glu	11e 175	
	ГУ	s Sei	c Val	180		Gly	v Val	Ile	Pro 185		туг	: Ser	Lev	190		Ar
50	Lei	u Gly	y Asr 195		5 Lys	s Arg	y Ala	Ala 200		r Ile	e Arg	g Arg	r Glu 205		. Leu	ı Gl

	Arg	Val 210	Thr	Gly	Arg	Ser	Ile 215		.u G	ly :	Leu	Pro	220	Asp	GIÀ	Pne	ASP
5	Туг 225	Glu	Ser	Ile	Leu	Gly 230	Gln	C.7	ys C	Ys	Glu	Met 235	Pro	Val	Gly	Tyr	Ile 240
10	Gln	Ile	Pro	Val	Gly 245	Ile	Ala	a G	Ly 1	?ro	Leu 250	Leu	Leu	Asp	Gly	Туг 255	Glu
15	Tyr	Ser	· Val	Pro 260		Ala	Thi	r T		31u 265	GJĀ	Cys	Leu	Val	Ala 270	Ser	Thr
	Asn	Arg	g Gly 275		. Lys	Ala	Me		he 80	Ile	Ser	Gly	Gly	Ala 285	Thr	Ser	Thr
B 0	Va]	L Let		s As <u>r</u>	Gly	r Met	: Th 29		rg	Ala	Pro	Val	Val	Arg	, Phe	e Ala	a Ser
25	Ala 30!		g Ar	g Ala	a Sei	Gl: 31		eu I	ys	Phe	Phe	. Lev 315	ı Glu	ı Asr	ı Pro	Glı	1 Asn 320
30	Ph	e As	p Th	r Le	u Ala 32		l Va	al 1	Phe	Asn	330		s Sei	c Arg	g Phe	a Al	a Arg 5
35	Le	u Gl	n Se	r Va 34		s Cy	s Tì	hr :	Ile	Ala 345		y Ly:	s Asi	n Ala	а Ту: 35	r Va O	1 Arg
	Ph	e Cy	rs Cy 35		er Th	r Gl	.y A:		Ala 360		Gl;	y Me	t As	n Me 36	t Va 5	l Se	r Lys
40	G]		al G1 70	ln As	sn Va	il Le		lu 75	Туг	Lei	u Th	r As	2 As 38	p Ph	e Pr	o As	p Met
45		≅p Va 35	al I	le G	ly.Il		er G 90	Зly	Asr	ı Ph	е Су	rs Se 39	er As	p Ly	ys Ly	rs Pi	co Ala 400
50	A	la V	al A	sn T		le G 05	lu G	3ly	Arg	g Gl	y Ly 41		er Va	al Va	al Cy	7s G: 4:	lu Ala 15
	V	al I	le A		ly G 20	lu I	le V	Val	Ası	n Ly 42		al Le	eu L	ys Tì	hr Se	er V 30	al Al

5	Ala	Leu	Val 435	Glu	Leu	Asn	Met	Leu 440	Lys	Asn	Leu	Ala	Gly 445	Ser	Ala	Val
	Ala	Gly 450	Ser	Leu	Gly	Gly	Phe 455	Asn	Ala	His	Ala	Ser 460	Asn	Ile	Val	Ser
10	Ala 465	Val	Phe	Ile	Ala	Thr 470	Gly	Gln	Asp	Pro	Ala 475	Gln	Asn	Val	Glu	Ser 480
15	Ser	Gln	Cys	Ile	Thr 485	Met	Met	Glu	Ala	Ile 490	Asn	Asp	Gly	Lys	Asp 495	Ile
20	His	Ile	Ser	Val 500	Thr	Met	Pro	Ser	Ile 505		Val	Gly	Thr	Val 510	Gly	Gly
25	Gly	Thr	Gln 515		Ala	Ser	Gln	Ser 520		Cys	Leu	Asn	Leu 525	Leu	Gly	Val
	Lys	Gly 530	•	Ser	Thr	Glu	Ser 535		Gly	Met	Asn	Ala 540	Arg	Arg	Leu	Ala
30	Thr 545		val	Ala	Gly	Ala 550		Leu	Ala	Gly	Glu 555		. Ser	Leu	Met	Ser 560
35	Ala	Ile	e Ala	. Ala	Gly 565		ı Lev	Val	. Arg	570		Met	. Lys	Tyr	Asn 575	
40	Ser	: Ser	Arg	580		e Ser	Gly	/ Ala	585		Thr	Thr	Thr	Thr 590		Thi
	<21	L0>	113													
45	<21	l1>	140	L												
	<23	L2>	DNA													
50	<23	13>	Aral	bido	psis	tha	lian	a IS	PH					٠		

<220>

<221> CDS

<222> (1)..(1401)

5 <223>

	-400	1~ 1	13														
10		gct	gtt		ctc Leu												48
	1				5	-		501	9	10	Cys	V	nrg	110	15	1111	
15					aat Asn									_	_		96
				20					25		•			30			
20			Leu		gtc Val			Ser					Asn				144
20	003	taa	35	a+a	2 t ~	~~~		40		~~~			45				100
					atg Met												192
25	aac		aco	aga	agc	σat		tac	aat	cat.	aaa		ttc	aat.	cat	αασ	240
					Ser											-	240
30	gag	gag	aca	ctc	aag	ctc	atg	aat	cga	gag	tac	acc	agt	gat	ata		288
	Glu	Glu	Thr	Leu	Lys 85	Leu	Met	Asn	Arg	Glu 90	Tyr	Thr	Ser	Asp	Ile 95	Leu	
25					aca									_	_		336
35	GIU	TNI	ьеи	100	Thr	Asn	GTĀ	Tyr	105	Tyr	ser	Trp	GTĀ	Asp 110	Val	Thr	
	_				aaa Lys	_				_			_		_	_	384
40		_10	115		-1-		-1-	120		-75		رين	125	Olu	9	riza -	
					tat Tyr												432
45		130					135					140					
					gaa Glu												480
	145					150					155					160	
50					gtt Val					Val					Lys		528
					165					170					175		
	ttt	gat	gta	gta	gag	aaa	gat	gat	gtg	gtt	atc	ctt	cct	gcg	ttt	gga	576

	Phe	Asp	Val	Val 180	Glu	Lys	Asp	Asp	Val 185	Val	Ile	Leu	Pro	Ala 190	Phe	Gly	
5				_		_					_	aaa Lys	_				624
10		_	_		_					_	_	tgg Trp 220		_	_		672
15												cat His					720
											-	gga Gly	_				768
20	_	_		_			_			_	_	gat Asp					816
25												gag Glu			. –		864
30				_		_	_			_		gac Asp 300		-		_	912
35												aag Lys					960
	_					Leu					Met	cgc Arg	_				1008
40	_		_	_	Gly				_	Phe		aca Thr		_	_	_	1056
45				Arg					Tyr			gtg Val		Glu	_		1104
50	_		Met					Gly				agt Ser 380	Asn				1152
		Gln	_				Ala					tct Ser				_	1200

5			aaa Lys														1248
3			gaa Glu														1296
10	aca Thr	atc Ile	ggt Gly 435	gtg Val	aca Thr	tca Ser	ggt Gly	gca Ala 440	tca Ser	acc Thr	ccg Pro	gat Asp	aag Lys 445	gtc Val	gtg Val	gaa Glu	1344
15			ttg Leu														1392
20	_	Ala	tga												-		1401
	<21	0>	114														
25	<21	1>	466														
	<21	.2>	PRT														
30	<21	.3>	Arab	idop	sis	thal	iana	ISE	н								
	<40	00>	114														
35	Met 1	. Ala	a Val	. Ala	Leu 5	Glr	Phe	e Ser	Arg	Lev 10	ı Cys	val	Arg	Pro	Asp 15	Thr	
40	Phe	⊇ Vai	l Arg	g Glu 20	ı Asr	n His	s Lev	ı Séz	c Gly 25	y Sei	Gly	, Ser	· Leu	Arg	Arc	g Arg	
45	Ly	s Ala	a Lev 35	ı Sei	c Val	l Arg	g Cy	s Se: 40	r Sei	r Gly	Y Ast	Glu	Asr 45	Ala	Pro	Ser	
	Pr	o Se: 50		l Vai	l Me	t Asj	5 Se:	r As	p Ph	e As	o Ala	a Lys 60	s Val	. Phe	e Arg	g Lys	
50	As 65		u Th	r Ar	g Se	r As; 70	p As	n Ty	r As	n Ar	g Ly: 75	s Gly	y Phe	e Gly	, Hi:	s Lys 80	

		Glu	Glu	Thr	Leu	Lys 85	Leu	Met	Asn	Arg	Glu 90	Tyr	Thr	Ser	Asp	Ile 95	Leu
	5	Glu	Thr	Leu	Lys 100	Thr	Asn	Gly	Tyr	Thr 105	Tyr	Ser	Trp	Gly	Asp 110	Val	Thr
	10	Val	Lys	Leu 115	Ala	Lys	Ala	Tyr	Gly 120	Phe	Суѕ	Trp	Gly	Val 125	Glu	Arg	Ala
	15	Val	Gln 130	Ile	Ala	Tyr	Glu	Ala 135	Arg	Lys	Gln	Phe	Pro 140	Glu	Glu	Arg	Leu
:	20	145	,	Thr			150					155					160
	05			Met		165					170					175	
•	25 _.			Val	180		•	,		185					190		
:	30			Val 195 Thr		•			200					205			
,	35		210	Lys				215					220				•
	40	225		Glu			230					235					240
	45			Asn		245					250					255	
				Tyr	260					265					270		
	50			275					280					285			-
		1116	290	***	eria.		501	295	CLY	- 140	ap	110	300	nali	nsp	neu	vaı

5	Lys Val 305	Gly	Ile		Asn 310	Gln	Thr	Thr	Met	Leu 315	Lys	Gly	Glu	Thr	Glu 320
	Glu Ile	Gly	Arg	Leu. 325	Leu	Glu	Thr	Thr	Met 330	Met	Arg	Lys	Tyr	Gly 335	Val
10	Glu Asn	Val	Ser 340	Gly	His	Phe	Ile	Ser 345	Phe	Asn	Thr	Ile	Cys 350	Asp	Ala
15	Thr Gln	Glu 355	Arg	Gln	Asp	Ala	Ile 360	туг	Glu	Leu	Val	Glu 365	Glu	Lys	Ile
20	Asp Leu 370		Leu	Val	Val	Gly 375	Gly	Trp	Asn	Ser	Ser 380		Thr	Ser	His
25	Leu Gln 385	Glu	Ile	Ser	Glu 390		Arg	Gly	Ile	Pro 395	Ser	Tyr	Trp	Ile	Asp 400
	Ser Glu	Lys	Arg	Ile 405		Pro	Gly	Asn	. Lys 410		Ala	Tyr	Lys	Leu 415	
30	Tyr Gly	, Glu	Leu 420		Glu	Lys	Glu	Asn 425		. Leu	Pro	Lys	Gly 430		Ile
35	Thr Ile	e Gly 435		. Thr	: Ser	: Gly	Ala 440		Thr	Pro	Asp	Lys 445		. Val	Glu
40	Asp Ala		ı Val	. Lys	val	Phe 455		. Il∈	e Lys	arg	Glu 460		. Leu	ı Lev	. Gln
45	Leu Ala 465	a													,
	<210>	115													
50	<211>	216	0												
50	<212>	DNA													
	<213>	Lyc	oper	sico	n es	cule	ntum								

<220> 5 <221> CDS <222> (1)..(2160) <223> 10 <400> 115 atg gct ttg tgt gct tat gca ttt cct ggg att ttg aac agg act ggt 48 15 Met Ala Leu Cys Ala Tyr Ala Phe Pro Gly Ile Leu Asn Arg Thr Gly gtg gtt tca gat tct tct aag gca acc cct ttg ttc tct gga tgg att 96 Val Val Ser Asp Ser Ser Lys Ala Thr Pro Leu Phe Ser Gly Trp Ile 20 20 25 cat gga aca gat ctg cag ttt ttg ttc caa cac aag ctt act cat gag His Gly Thr Asp Leu Gln Phe Leu Phe Gln His Lys Leu Thr His Glu 35 40 25 gtc aag aaa agg tca cgt gtg gtt cag gct tcc tta tca gaa tct gga 192 Val Lys Lys Arg Ser Arg Val Val Gln Ala Ser Leu Ser Glu Ser Gly 50 55 30 gaa tac tac aca cag aga ccg cca acg cct att ttg gac act gtg aac 240 Glu Tyr Tyr Thr Gln Arg Pro Pro Thr Pro Ile Leu Asp Thr Val Asn 70 65 tat ccc att cat atg aaa aat ctg tct ctg aag gaa ctt aaa caa cta 288 35 Tyr Pro Ile His Met Lys Asn Leu Ser Leu Lys Glu Leu Lys Gln Leu 85 90 gca gat gaa cta agg tca gat aca att ttc aat gta tca aag act ggg 336 Ala Asp Glu Leu Arg Ser Asp Thr Ile Phe Asn Val Ser Lys Thr Gly 40 100 105 ggt cac ctt ggc tca agt ctt ggt gtt gtt gag ctg act gtt gct ctt 384 Gly His Leu Gly Ser Ser Leu Gly Val Val Glu Leu Thr Val Ala Leu 115 120 45 cat tat gtc ttc aat gca ccg caa gat agg att ctc tgg gat gtt ggt 432 His Tyr Val Phe Asn Ala Pro Gln Asp Arg Ile Leu Trp Asp Val Gly 130 135 50 cat cag tot tat cot cac aaa ato ttg act ggt aga agg gac aag atg 480 His Gln Ser Tyr Pro His Lys Ile Leu Thr Gly Arg Arg Asp Lys Met 150 155

tcg aca tta agg cag aca gat ggt ctt gca gga ttt act aag cga tcg

	Ser	Thr	Leu	Arg	Gln 165	Thr	Asp	Gly	Leu	Ala 170	Gly	Phe	Thr	Lys	Arg 175	Ser	
5			gaa Glu														576
10			ggc Gly 195														624
15			gtt Val														672
	_		gaa Glu		-												720
20			tta Leu														768
25			cca Pro							Leu					Ser		816
30		_	ser 275	Asn					Glu								864
35	Val	Thr 290		Gln	Ile	Gly	G1y 295	Pro	Met	: His	Glu	300	Ala	Ala	Lys	Val	912
	_	Glu	tat Tyr				Met					Gly					960
40	Glu	Glu		Gly	7 Lev 325	ı Tyr	Тут	: Ile	e Gly	330	Va]	l Asp	Gly	His	335	Ile	1008
45	Asp	a As <u>r</u>) Lev	. 340	Ala	a Ile	. Leu	Ly:	34:	ı Val	L Arg	g Sex	Thr	350	Thr	aca Thr	1056
50	Gly	y Pro	355	L Lei	ı Ile	e His	val	36	l Th:	r Glu	т Г.	s Gly	7 Arg 365	g Gly	у Туг	cca Pro	1104
			a Glu					ь Гу					l Ala			gat Asp	1152

5				gga Gly													1200
5				ttt Phe													1248
10	_			gca Ala 420													1296
15				cgt Arg													1344
20				gca Ala													1392
25		Pro		tgt Cys													1440
	_	_	_	cat His							Leu						1488
30	_	_	_	gca Ala 500	Gly					Asp					Cys	ggt Gly	1536
35	_		_	Val					Суз					. Val		atg Met	1584
40			Sei	c Asr		Ala	Glu	ı Lev			Met		. Ala			gcc Ala	1632
. 45		a Ile					Sex					r Pro				560 560 560	1680
						ı Pro					s Gly					gtt val	1728
50					g Ile					y Gl					ı Let	g gga 1 Gly	1776
	ta	t gg	c tc	a gc	a gt	g cag	g aa	c tg	t tt	g ga	t gc	t gc	t at	t gtg	g cta	a gaa	1824

	Tyr Gly Ser Ala Val Gln Asn Cys Leu Asp Ala Ala Ile Val Leu Glu 595 600 605	
5	tcc cgc ggc tta caa gta aca gtt gca gat gca cgt ttc tgc aaa cca Ser Arg Gly Leu Gln Val Thr Val Ala Asp Ala Arg Phe Cys Lys Pro 610 615 620	1872
10	ctg gac cat gcc ctc ata agg agc ctt gca aaa tca cat gaa gtg cta Leu Asp His Ala Leu Ile Arg Ser Leu Ala Lys Ser His Glu Val Leu 625 630 635 640	1920
	atc act gtc gaa gaa gga tca att gga ggt ttt gga tct cat gtt gtt Ile Thr Val Glu Glu Gly Ser Ile Gly Gly Phe Gly Ser His Val Val 645 650 655	1968
15	cag ttc atg gcc tta gat ggg ctt ctt gat ggc aag ttg aag tgg aga Gln Phe Met Ala Leu Asp Gly Leu Leu Asp Gly Lys Leu Lys Trp Arg 660 665 670	2016
•	cca ata gtt ctt cct gat cga tac att gac cat gga tct cct gtt gat Pro Ile Val Leu Pro Asp Arg Tyr Ile Asp His Gly Ser Pro Val Asp 675 680 685	2064
25	cag ttg gcg gaa gct ggc cta aca cca tct cac att gca gca aca gta Gln Leu Ala Glu Ala Gly Leu Thr Pro Ser His Ile Ala Ala Thr Val 690 695 700	2112
30	ttt aac ata ctt gga caa acc aga gag gct cta gag gtc atg aca taa Phe Asn Ile Leu Gly Gln Thr Arg Glu Ala Leu Glu Val Met Thr 705 710 715	2160
,	<210> 116	
35	<211> 719	•
	<212> PRT	
40	<213> Lycopersicon esculentum	
	<400> 116	
45	Met Ala Leu Cys Ala Tyr Ala Phe Pro Gly Ile Leu Asn Arg Thr Gly 1 5 10 15	
50	Val Val Ser Asp Ser Ser Lys Ala Thr Pro Leu Phe Ser Gly Trp Ile 25 30	
	His Gly Thr Asp Leu Gln Phe Leu Phe Gln His Lys Leu Thr His Glu 35 40 45	

5	Val	Lys 50	Lys	Arg	Ser	Arg	Val 55	Val	Gln	Ala	Ser	Leu 60	Ser	Glu	Ser	
	Glu 65	Туг	Tyr	Thr	Gln	Arg 70	Pro	Pro	Thr	Pro	Ile 75	Leu	Ąsp	Thr	Val	Asn 80
10	Tyr	Pro	Ile	His	Met 85	Lys ,	Asn	Leu	Ser	Leu 90	Lys	Glu	Leu	Lys	Gln 95	Leu
15	Ala	Asp	Glu	Leu 100	Arg	Ser	Asp	Thr	Ile 105	Phe	Asn	Val	Ser	Lys 110	Thr	Gly
20	Gly	His	Leu 115	Gly	Ser	Ser	Leu	Glý 120	Val	Val	Glu	Leu	Thr 125	Val	Ala	Leu
25	His	тут 130		Phe	Asn	Ala	Pro 135		Asp	Arg	Ile	Leu 140	Trp	Asp	Val	Gly
	His 145		. Ser	Tyr	Pro	Ніs 150		Ile	Leu	Thr	Gly 155		Arg	Asp	Lys	Met 160
30	Ser	Thr	Leu	a Arg	Gln 165		: Asp	Gly	· Leu	Ala 170		Phe	Thr	Lys	Arg 175	Ser
35	Glu	ı Sei	c Glu	1 Tyr 180		Cys	s Phe	e Gly	Thr 185		, His	s Ser	Ser	Thr 190		Ile
40	Ser	c Ala	a Gly 19!		ı Gly	Met	: Ala	a Val 200		Arg	j As <u>r</u>	Leu	Lys 205		Arg	Asn
45	Ası	n As: 21	_	l Ile	e Ala	a Va	1 Il 21		y Asr	Gly	y Ala	220		c Ala	a Gly	Gln
	A1:	_	r Gl	u Al	a Met	23		n Ala	a Gly		r Let 23!		Se:	c Asp	o Met	240
50	Va	1 11	e Le	u As	n Ası 24		n Ar	g Gl	n Val	1 Se: 25		u Pro	Th:	r Ala	a Thi 255	c Leu

	Asp	Gly	Pro	Val 260	Ala	Pro	Val	Gly	Ala 265	Leu	Ser	Ser	Ala	Leu 270	Ser	Arg
5	Leu	Gln	Ser 275	Asn	Arg	Pro	Leu	Arg 280	Glu	Leu	Arg	Glu	Val 285	Ala	Lys	Gly
10	Val	Thr 290	Lys	Gln	Ile	Gly	Gly 295	Pro	Met	His	Glu	Leu 300	Ala	Ala	Lys	Val
15	305	Glu				310					315					320
20		Glu			325	_			_	330		_			335	
25	-	Asp Pro		340					345					350		
20		Ala	355					360					365			
30	_	370 Ala					375					380				
35	385 Thr	Thr	Tyr	Phe		390 Glu	Ala	Leu	Ile		395 Glu	Ala	Glu	Ala		400 Lys
40	Asp	Ile	Val	Ala 420		His	Ala	Ala	Met 425	_	Gly	Gly	Thr	Gly 430	415 Met	Asn
45	Leu	. Phe	His 435	_	Arg	Phe	Pro	Thr 440	_	Cys	Phe	Asp	Val 445		Ile	Ala
50	Glu	450		Ala	. Val	Thr	Phe 455		. Ala	Gly	Leu	Ala 460	Сув	Glu	Gly	Ile
	Lys 465	Pro	Phe	: Cys	Ala	11e		Ser	Ser	Phe	Met 475		Arg	Ala	Tyr	Asp 480

5	Gln '	Val	Val	His	Asp 485	Val	Asp	Leu	Gln	Lys 490	Leu	Pro	Val	Arg	Phe 495	Ala
	Met	Asp	Arg	Ala 500	Gly	Leu	Val	Gly	Ala 505	Asp	Gly	Pro	Thr	His 510	Cys	Gly
10	Ala	Phe	Asp 515	Val	Thr	Tyr	Met	Ala 520	Cys	Leu	Pro	Asn	Met 525	Val	Val	Met
15		Pro 530	Ser	Asp	Glu	Ala	Glu 535	Leu	Phe	His	Met	Val 540	Ala	Thr	Ala	Ala
20	Ala 545	Ile	Asp	Asp	Arg	Pro 550	Ser	Cys	Phe	Arg	Тут 555	Pro	Arg	Gly	Asn [.]	Gly 560
25	Ile	Gly	Val	Glu	Leu 565	Pro	Ala	Gly	Asn	Lys 570	Gly	Ile	Pro	Leu	Glu 575	Val
	Gly	Lys	Gly	Arg 580		Leu	Ile	Glu	Gly 585		Arg	Val	Ala	Leu 590	Leu	Gly
30	Tyr	Gly	Ser 595	Ala	Val	Gln	Asn	Cys 600		Asp	Ala	Ala	Ile 605	Val	Leu	Glu
35	Ser	Arg 610	_	Leu	Gĺn	Val	Thr 615		Ala	Asp	Ala	Arg 620		Cys	Lys	Pro
40	Leu 625	Asp	His	Ala	Leu	Ile 630		ser,	· Leu	Ala	Lys 635		His	Glu	Val	Leu 640
45	Ile	Thr	val	Glu	645		Ser	: Ile	e Gly	650		Gly	Ser	His	Val 655	Val
	Gln	Phe	e Met	Ala 660		. Asp	Gly	, Let	Lev 665		Gly	' Lys	. Leu	Lys 670		Arg
50	Pro	Ile	e Val 675		ı Pro	ası) Ar	TY 680		e Asp	o His	Gly	Ser 685		Vaļ	. Asp

	Gln Leu Ala Glu Ala Gly Leu Thr Pro Ser His Ile Ala Ala Thr Val 690 695 700	
5	Phe Asn Ile Leu Gly Gln Thr Arg Glu Ala Leu Glu Val Met Thr 705 710 715	
10	<210> 117	
	<211> 1434	
	<212> DNA	
15	<213> Arabidopsis thaliana	
20	<220>	
	<221> CDS	
•	<222> (1)(1434)	
25	<223>	
30	<pre><400> 117 atg atg aca tta aac tca cta tct cca gct gaa tcc aaa gct att tct Met Met Thr Leu Asn Ser Leu Ser Pro Ala Glu Ser Lys Ala Ile Ser 1 5 10 15</pre>	48
35	ttc ttg gat acc tcc agg ttc aat cca atc cct aaa ctc tca ggt ggg Phe Leu Asp Thr Ser Arg Phe Asn Pro Ile Pro Lys Leu Ser Gly Gly 20 25 30	96
40	ttt agt ttg agg agg agg aat caa ggg aga ggt ttt gga aaa ggt gtt Phe Ser Leu Arg Arg Arg Asn Gln Gly Arg Gly Phe Gly Lys Gly Val 35 40 45	144
45	aag tgt tca gtg aaa gtg cag cag caa caa cat cct cct cca gca tgg Lys Cys Ser Val Lys Val Gln Gln Gln Gln Pro Pro Pro Ala Trp 50 55 60	192
. •	cct ggg aga gct gtc cct gag gcg cct cgt caa tct tgg gat gga cca Pro Gly Arg Ala Val Pro Glu Ala Pro Arg Gln Ser Trp Asp Gly Pro 65 70 75 80	240
50	aaa ccc atc tct atc gtt gga tct act ggt tct att ggc act cag aca Lys Pro Ile Ser Ile Val Gly Ser Thr Gly Ser Ile Gly Thr Gln Thr 85 90 95	288
	ttg gat att gtg gct gag aat cct gac aaa ttc aga gtt gtg gct cta	336

	Leu l	Asp	Ile	Val 100	Ala	Glu	Asn	Pro	Asp 105		s Pl	he i	Arg	Val	Val 110	Ala	Le	eu	
5	gct (gct Ala	ggt Gly 115	tcg Ser	aat Asn	gtt Val	act Thr	cta Leu 120	Leu	gc Al	t g a A	at (cag Gln	gta Val 125	agg Arg	aga Arg	, t	tt he	384
10	aag Lys	cct Pro 130	gca Ala	ttg Leu	gtt Val	gct Ala	gtt Val 135	aga Arg	aac Asr	ga Gl	ıg t .u S	er	ctg Leu 140	att Ile	aat Asn	gaç Glu	, C	tt eu	432
	aaa Lys 145	gag Glu	gct Ala	tta Leu	gct Ala	gat Asp 150	Leu	gac	tai	t aa	ys I	etc Leu 155	gag Glu	att Ile	att	. cca) G	ga 31y -60	480
15	gag Glu	caa Gln	gga Gly	gtg Val	att Ile	gag Glu	gtt Val	gco Ala	e eg	g H	at d is I 70	ect Pro	gaa Glu	gct	gta Val	ac L Th 17	r \	gtt /al	528
•	gtt Val	acc Thr	: Gl7	ata 7 Ile 180	e Val	ı ggt L Gly	tgt Cys	gc; s Ala	g gg a Gl 18	УΓ	ta a eu :	aag Lys	cct	ace Thi	g gti Vai	I AI	t g a i	gca Ala	576
25	att Ile	gaa Glu	a gca 1 Ala 19	a Gl	a aaq y Ly:	g gad s Asj	e at	t gc e Al 20	a Le	t g	ca la	aac Asn	aaa Lys	a gag s Gl	u Th	a tt r Le	a	atc Ile	624
30	gca Ala	gg Gl	y Gl	t cc y Pr	t tt o Ph	c gt e Va	g ct l Le 21	u Pr	g ci	eu A	rcc Ala	aac Asn	aaa Ly: 22	s Hi	t aa s As	t gi	al	aag Lys	672
or	att 11e 225	e Le	t cc u Pr	g gc	a ga .a As	t to p Se 23	r Gl	a ca .u Hi	it t is S	ct (gcc Ala	ata I16 235	Ph	t ca e Gl	g tç n Cy	gt a ys I	tt le	caa Gln 240	720
35	gg! Gl:	t tt y Le	g cc u Pr	t ga o Gl	lu G	rc go Ly Al 15	t ct a Le	eu A	gc a rg L	ys	ata Ile 250	ato Ile	e tt	g ac u Th	t go nr Al	la S	ct er 55	ggt Gly	768
40	G1;	a go y Al	t ti la Pl	ne A	rg A: gg ga	at to	gg co	ct g ro V	al G	raa 31u 265	aag Lys	ct: Le	a aa u Ly	ng ga	lu V	tt a al I 70	.aa .ys	gta Val	816
45	gc	g ga .a As	sp A	cg t la L 75	tg a eu L	ag c ys H	at c is P	ro A	ac t sn 1	gg Crp	aac	at Me	g gg	ГА Г	ag a ys L 85	aa a ys :	tc [le	act Thr	864
50	Vē	al A	ac t sp S 90	ct g er A	ct a la T	.cg c	eu F	tc a he A	aac Asn	aag Lys	Gj7 ggt	ct Le	u G	ag g lu V 00	tc a al I	itt (gaa 3lu	gcg Ala	912
	H:	at t is T 05	at t yr I	tg t eu E	tt g	ly P	ct g la 0 110	gag (Slu (tat Tyr	gac Asp	gat Ası	t at p II 31	Le G	ag a	itt g :le \	gtc Val	att Ile	c.cat His 320	960

5	ccg Pro	caa Gln	agt Ser	atc Ile	ata 11e 325	cat His	tcc Ser	atg Met	att Ile	gaa Glu 330	aca Thr	cag Gln	gat Asp	tca Ser	tct Ser 335	gtg Val	1008
J	ctt Leu	gct Ala	caa Gln	ttg Leu 340	ggt Gly	tgg Trp	cct Pro	gat Asp	atg Met 345	cgt Arg	tta Leu	ccg Pro	att Ile	ctc Leu 350	tac Tyr	acc Thr	1056
10	atg Met	tca Ser	tgg Trp 355	ccc Pro	gat Asp	aga Arg	gtt Val	cct Pro 360	tgt Cys	tct Ser	gaa Glu	gta Val	act Thr 365	tgg Trp	cca Pro	aga Arg	1104
15	ctt Leu	gac Asp 370	ctt Leu	tgc Cys	aaa Lys	ctc Leu	ggt Gly 375	tca Ser	ttg Leu	act Thr	ttc Phe	aag Lys 380	aaa Lys	cca Pro	gac Asp	aat Asn	1152
	Val 385	Lys	tac Tyr	Pro	Ser	Met 390	Asp	Leu	Ala	Tyr	Ala 395	Ala	Gly	Arg	Ala	Gly 400	1200
25	Gly	Thr		Thr	Gly 405	Val	Leu	Ser	Ala	Ala 410	Asn	Glu	Lys	Ala	415	Glu	1248
	Met	Phe	e Ile	Asp 420	Glu	Lys	Ile	. Ser	425	Leu i	. Asp) Ile	. Phe	Lys 43(s Val	gtg Val	1296
30	Glu	ı Leı	1 Tha 435	. Сув	asp	Lys	His	440) (Asi	ı Glu	ı Lev	ı Val	445	Sei	r Pro	f tct Ser	1344
35	Lev	1 Gl	u Gli O	ı Ile	e Val	. His	45:	Ası) Le	u Try	o Ala	460	g Glu D	ту:	r Ala	gcg A Ala	1392
40	Ası 46	n Va	g caq 1 Gl:	g cti n Le	t tct ı Sei	2 tc1	c G1	t gc	t ag a Ar	g cc	a gti o Vai 47	l Hi	t gca s Ala	atg	a		1434
	<2	10>	118														
45	<2	11>	477														
		12>	PRT		psis	+h=	lian	a									
50	< 2	:13>	WIG	C		<u> </u>											

<400> 118

	Met 1	Me	t T	hr :	Leu	Asn 5	Ser	Le	u S	er :	Pro	Ala 10	G:	lu s	Ser	ГÀЗ	Ala	11 15	e s	Ser
5	Phe	Гe	u A	vsb	Thr 20	Ser	Arg	Ph	e A		Pro 25	Ile	: P	ro 1	Ľуs	Leu	Ser 30	G]	У (Gly
10	Phe	Se	_	Leu 35	Arg	Arg	Arg	As		Gln 40	Gly	Arg	J G	ly	Phe ·	Gly 45	Lys	; G]	Ly	Val
15	Lys	Су 50		Ser	Val	Lys	Val	. G1 55		3ln	Gln	Glı	n G	ln	Pro 60	Pro	Pro	A.	la	Trp
	Pro 65	G]	Ly .	Arg	Ala	Val	Pro	G]	Lu .	Ala	Pro	Ar	gr G	Sln 75	Ser	Trp	Ası	o G	ly	Pro 80
	Lys	. P:	ro	Ile	Ser	11e	e Vai	l G	ly	Ser	Thi	g Gl 90	y :	Ser	Ile	G13	Th:	r G	ln 5	Thr
25	Lev	ı A	sp	Ile	Va]		a Gl	u A	sn	Pro	As]		rs :	Phe	Arg	va:	l Va 11	1 P 0	la	Leu
30	Ala	a A	la	Gly 115		r As:	n Va	1 т	hr	Leu 120		u Al	La	Asp	Glr	1 Va 12	1 Ar	g I	Arg	Phe
35	Ly		ro L30	Ala	a Le	u Va	1 A3		7al 135	Arg	g As	n G	lu	Ser	Le:	ı Il O	e As	sn (Glu	Leu
	Ly 14		3lu	Ala	a Le	u Al		sp 1 50	Leu	As	p Ty	rr L	ys	Lev 155	ı Gl	u Il	e I	le	Pro	Gly 160
40	Gl	.u (Gln	Gl;	y Va	1 II		lu '	Val	. Al	a Ai	rg H 1	is 70	Pro	o Gl	u Al	a V	al	Th:	val
45	Va	a1	Thr	gl		Le Va	al G	ly	Суз	s A1	.a G	ly I 85	en	Ly	s Pr	o Tì	ır V 1	al 90	Ala	a Ala
50	I.	le	Glı	1 Al	_	ly L	ys A	sp	Ile	e Al 20		eu A	Ala	As	n Ly	rs G 2	lu T 05	hr	Le [.]	u Ile
	A	la	Gl:		Ly P	ro P	he V	al	Le:		ro L	eu i	Ala	. As	n Ly 2:	/s H 20	is A	sn	۷a	l Ly:

5	Ile I 225					230					2.	35				•	. 40	
	Gly :	Leu	Pro	Glu	Gly 245	Ala	Leu	Arg	g Ly	rs II 25	le I: 50	le L	eu T	hr A	1a S 2	er (3ly	
10	Gly	Ala	Phe	Arg 260	Asp	Trp	Pro	Va:	1 G] 20	lu L;	ys L	eu L	ys G	lu V 2	al I 70	ys '	Val	
15	Ala	Asp	Ala 275		Lys	His	Pro	As 28	n T: 0	cp A	sn M	iet G	ly I 2	ys I 185	ys :	[le	Thr	
	Val	Asp 290		: Ala	Thi	. Le	29!	e As	n L	ys G	· Bly I	Leu G	31u \ 300	/al :	Ile (Glu	Ala	
25	305					y Ala 31	0					313					320	
	Pro	Gl	n Se	r Il	e Il 32	е Ні 5	s Se	r M	et 1	(le (Glu 330	Thr	Gln	Asp	Ser	Ser 335	Val	
30	Leu	ı Al	a Gl	n Le 34		y Tr	p Pr	то А	sp 1	Met 345	Arg	Leu	Pro	Ile	Leu 350	Tyr	Thr	
35	Met	. Se	er Tr 35		o As	sp Ai	g Va	al F	Pro 160	Cys	Ser	Glu	Val	Thr 365	Trp	Pro	Arg	
40		3	70				3	75					380) Asn	
45	38		ys T	yr P	ro S		et A 90	sp :	Leu	Ala	Tyr	Ala 395	Ala	. Gly	Arg	Al	a Gly 400)
	G1	Y T	hr M	et T		31y V 105	al I	ien	Ser	Ala	Ala 410	a Asn	ı Glu	Lys	s Ala	41	1 Glu 5	1
50	M∈	et F	he I		sp (3lu I	ys :	lle	Ser	Туг 425	Let	ı Ası	o Ile	e Phe	2 Ly:	s Va O	l Va	1

	Glu Leu	Thr C	Cys Asp	Lys His	Arg As 440	n Glu Le		hr Ser P 45	ro Ser	
5	Leu Glu 450	Glu I	le Val	His Tyr 455	Asp Le	u Trp Al	la Arg G 460	lu Tyr A	la Ala	
10	Asn Val 465	Gln I	<i>eu</i> Ser	Ser Gly 470	Ala Ar	g Pro Va 47		la		
	<210>	119								
15	<211>	884								
	<212>	DNA								
D 0	<213>	Adonis	s palaes	stina cl	one Apl	PI28				
	<220>									
25	<221>	CDS								
	<222>	(180)	(884)						,	
30	<223>									
35	<400> cgtcgat	119 cag g	attaatc	ct ttata	tagta	tettetee	ac cacca	actaaa ad	cattatcag	60
	cttcgtg	gttc t	tctcccg	ct gttca	tette	agcagcgt	tg tcgta	actett to	ctatttctt	120
	cttccat	tcac t	aacagtc	ct cgccg	agggt	tgaatcgg	ct gttcg	geetea a	cgtcgact	179
40								cag aag o		227
45						al Asp G		gac aag q Asp Lys '		275
50							iet Glu i	aag ata q Lys Ile (45		323
		n Leu						ttc aac Phe Asn		371

5	tac Tyr 65	gag Glu	ttg Leu	ctt Leu	ctt Leu	cag Gln 70	caa Gln	cga Arg	tct Ser,	gca Ala	acg Thr 75	aag Lys	gta Val	aca Thr	ttc Phe	ccg Pro 80	419
J	ctc Leu	gta Val	tgg Trp	aca Thr	aac Asn 85	acc Thr	tgt Cys	tgc Cys	agc Ser	cat His 90	ccc Pro	ctc Leu	ttc Phe	cgt Arg	gat Asp 95	tcc Ser	467
10	gaa Glu	ctc Leu	ata Ile	gaa Glu 100	gaa Glu	aat Asn	ttt Phe	ctc Leu	ggg Gly 105	gta Val	cga Arg	aac Asn	gct Ala	gca Ala 110	caa Gln	agg Arg	515
15	aag Lys	ctt Leu	tta Leu 115		gag Glu	cta Leu	ggc	att Ile 120	cca Pro	gct Ala	gaa Glu	gac Asp	gta Val 125	Pro	gtt Val	gat Asp	563
•	gaa Glu	ttc Phe 130	Thr	cct	ctt Leu	ggt	cgc Arg 135	Ile	ctt Leu	tac Tyr	aaa Lys	gct Ala 140	Pro	tct Ser	gac Asp	gga	611
	aaa Lys 145	Tr	o Gly	gag Glu	cac His	gaa Glu 150	Leu	gac Asp	tat Tyr	ctt Lev	ctg Lev 155	ı Phe	att	gto Val	cga L Arg	gat Asp 160	. 659
25	gtg Val	g aaa L Lys	a tao	gat Asy	cca Pro 165	Asr	c cca	gat Asp	gaa Glu	a gtt ı Val	l Ala	t gad a Asj	c gct o Ala	a Ly:	tac Tyr 179	gtt Val	707
30	aat Asi	cgo n Ar	c gaq g Gli	g gaq u Gli 18	ı Lei	g aaa 1 Ly:	a gaq s Glu	g ata ı Ile	e Le 18	u Ar	a aaa g Ly	a gc s Al	t ga a As	t gca p Ala 19	a GI	t gaa y Glu	755
35	ga Gl	u Gl	a at y Il 19	e Ly	g tt s Le	g tc u Se	t cc	t tgg o Tr 20	p Ph	t ag e Ar	a tt g Le	g gt u Va	t gt 1 Va 20	l As	t aa p As	c ttt n Phe	803
40	tt Le	g tt u Ph 21	е Гу	g tg s Tr	g tg p Tr	g ga p As	t ca p Hi 21	s Va	a ga 1 Gl	g ga u Gl	g gg u Gl	g aa y Ly 22	rs Il	t aa .e Ly	.g ga rs As	c gtc p Val	851
45	gc Al 22	a As	ic at	g aa et Ly	a ac	t at ir Il 23	e Hi	c aa s Ly	g tt s Le	g ac	et ta ir	ıa					
	<2	210>	120)													
50	<2	211>	23	4													
ວບ	<2	212>	PR'	r													
	<:	213>	Αđ	onis	pal	aest	ina (clone	qA s	IPI2	8						

<400> 120

	(400) 120
5	Met Gly Glu Val Ala Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu 10 15
10	Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val 20 25 30
15	Gly His Asp Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala 35 40 45
	Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys 50 55 60
	Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro 65 70 75 80
25	Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser 85 90 95
30	Glu Leu Ile Glu Glu Asn Phe Leu Gly Val Arg Asn Ala Ala Gln Arg 100 105 110
35	Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp 115 120 125
	Glu Phe Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly 130 135 140
40	Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp 145 150 155 160
45	Val Lys Tyr Asp Pro Asn Pro Asp Glu Val Ala Asp Ala Lys Tyr Val 165 170 175
	Asn Arg Glu Glu Leu Lys Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu

Glu Gly Ile Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe

5	Leu Phe Lys Trp Trp Asp His Val Glu Glu Gly Lys Ile Lys Asp Val 210 215 220	
	Ala Asp Met Lys Thr Ile His Lys Leu Thr 225 230	
10	<210> 121	
	<211> 1402	
15	<212> DNA	
	<213> Arabidopsis thaliana	
	<220>	
	<221> CDS	
25	<222> (52)(1317)	
	<223>	
30		
	<400> 121 aagtetttge etetttggtt taettteete tgttttegat eeatttagaa a atg tta Met Leu 1	57
35	ttc acg agg agt gtt gct cgg att tct tct aag ttt ctg aga aac cgt Phe Thr Arg Ser Val Ala Arg Ile Ser Ser Lys Phe Leu Arg Asn Arg 5 10 15	105
40	agc ttc tat ggc tcc tct caa tct ctc gcc tct cat cgg ttc gca atc Ser Phe Tyr Gly Ser Ser Gln Ser Leu Ala Ser His Arg Phe Ala Ile 20 25 30	153
45	att ccc gat cag ggt cac tct tgt tct gac tct cca cac aag ggt tac Ile Pro Asp Gln Gly His Ser Cys Ser Asp Ser Pro His Lys Gly Tyr 35 40 45 50	201
50	gtt tgc aga aca act tat tca ttg aaa tct ccg gtt ttt ggt gga ttt Val Cys Arg Thr Thr Tyr Ser Leu Lys Ser Pro Val Phe Gly Gly Phe 55 60 65	249
	agt cat caa ctc tat cac cag agt agc tcc ttg gtt gag gag gag ctt Ser His Gln Leu Tyr His Gln Ser Ser Ser Leu Val Glu Glu Glu Leu 70 75 80	297

	gac cca ttt tcg ctt gtt gcc gat gag ctg tca ctt ctt agt aat aag Asp Pro Phe Ser Leu Val Ala Asp Glu Leu Ser Leu Leu Ser Asn Lys 85 90 95	345
5	ttg aga gag atg gta ctt gcc gag gtt cca aag ctt gcc tct gct gct Leu Arg Glu Met Val Leu Ala Glu Val Pro Lys Leu Ala Ser Ala Ala 100 105 110	393
10	gag tac ttc ttc aaa agg ggt gtg caa gga aaa cag ttt cgt tca act Glu Tyr Phe Phe Lys Arg Gly Val Gln Gly Lys Gln Phe Arg Ser Thr 115 120 130	441
15	att ttg ctg ctg atg gcg aca gct ctg gat gta cga gtt cca gaa gca Ile Leu Leu Met Ala Thr Ala Leu Asp Val Arg Val Pro Glu Ala 135 140 145	489
O ·	ttg att ggg gaa tca aca gat ata gtc aca tca gaa tta cgc gta agg Leu Ile Gly Glu Ser Thr Asp Ile Val Thr Ser Glu Leu Arg Val Arg 150 155 160	537
	caa cgg ggt att gct gaa atc act gaa atg ata cac gtc gca agt cta Gln Arg Gly Ile Ala Glu Ile Thr Glu Met Ile His Val Ala Ser Leu 165 170 175	585
25	ctg cac gat gat gtc ttg gat gat gcc gat aca agg cgt ggt gtt ggt Leu His Asp Asp Val Leu Asp Asp Ala Asp Thr Arg Arg Gly Val Gly 180 185 190	633
30	tcc tta aat gtt gta atg ggt aac aag atg tcg gta tta gca gga gac Ser Leu Asn Val Val Met Gly Asn Lys Met Ser Val Leu Ala Gly Asp 195 200 205 210	681
35	ttc ttg ctc tcc cgg gct tgt ggg gct ctc gct gct	729
4 0	gag gtt gta gca tta ctt gca act gct gta gaa cat ctt gtt acc ggt Glu Val Val Ala Leu Leu Ala Thr Ala Val Glu His Leu Val Thr Gly 230 235 240	777
4 ==	gaa acc atg gag ata act agt tca acc gag cag cgt tat agt atg gac Glu Thr Met Glu Ile Thr Ser Ser Thr Glu Gln Arg Tyr Ser Met Asp 245 250 255	825
45	tac tac atg cag aag aca tat tat aag aca gca tcg cta atc tct aac Tyr Tyr Met Gln Lys Thr Tyr Tyr Lys Thr Ala Ser Leu Ile Ser Asn 260 265 270	873
50	agc tgc aaa gct gtt gcc gtt ctc act gga caa aca gca gaa gtt gcc Ser Cys Lys Ala Val Ala Val Leu Thr Gly Gln Thr Ala Glu Val Ala 285 290	921
	gtg tta gct ttt gag tat ggg agg aat ctg ggt tta gca ttc caa tta	969

	Val Leu Ala Phe Glu Tyr Gly Arg Asn Leu Gly Leu Ala Phe Gln Leu 295 300 305									
5	ata gac gac att ctt gat ttc acg ggc aca tct gcc tct ctc gga aag Ile Asp Asp Ile Leu Asp Phe Thr Gly Thr Ser Ala Ser Leu Gly Lys 310 315 320	1017								
10	gga tcg ttg tca gat att cgc cat gga gtc ata aca gcc cca atc ctc Gly Ser Leu Ser Asp Ile Arg His Gly Val Ile Thr Ala Pro Ile Leu 325 330 335	1065								
	ttt gcc atg gaa gag ttt cct caa cta cgc gaa gtt gtt gat caa gtt Phe Ala Met Glu Glu Phe Pro Gln Leu Arg Glu Val Val Asp Gln Val 340 345 350	1113								
15	gaa aaa gat cct agg aat gtt gac att gct tta gag tat ctt ggg aag Glu Lys Asp Pro Arg Asn Val Asp Ile Ala Leu Glu Tyr Leu Gly Lys 355 360 365 370	1161								
	agc aag gga ata cag agg gca aga gaa tta gcc atg gaa cat gcg aat Ser Lys Gly Ile Gln Arg Ala Arg Glu Leu Ala Met Glu His Ala Asn 375 380 385	1209								
25	cta gca gca gct gca atc ggg tct cta cct gaa aca gac aat gaa gat Leu Ala Ala Ala Ile Gly Ser Leu Pro Glu Thr Asp Asn Glu Asp 390 395 400	1257								
30	gtc aaa aga tcg agg cgg gca ctt att gac ttg acc cat aga gtc atc Val Lys Arg Ser Arg Arg Ala Leu Ile Asp Leu Thr His Arg Val Ile 405 410 415	1305								
	acc aga aac aag tgagattaag taatgtttct ctctatacac caaaacattc Thr Arg Asn Lys 420	1357								
35	ctcatttcat ttgtaggatt ttgttggtcc aattcgtttc acgaa	1402								
40	<210> 122									
,-	<211> 422									
	<212> PRT									
45	<213> Arabidopsis thaliana									
50	<400> 122									
50	Met Leu Phe Thr Arg Ser Val Ala Arg Ile Ser Ser Lys Phe Leu Arg 1 10 15									

	Asn	Arg	Ser	Phe 20	Tyr	Gly	Ser	Ser	Gln 25	Ser	Leu	Ala	Ser	His 30	Arg	Phe
5	Ala	Ile	Ile 35	Pro	Asp	Gln	Gly	His 40	Ser	Cys	Ser	Asp	Ser 45	Pro	His	Lys
10	Gly	туг 50	Val	Cys	Arg	Thr	Thr 55	Tyr	Ser	Leu	Lys	Ser 60	Pro	Val	Phe	Gly
15	Gly 65	Phe	Ser	His	Gln	Leu 70	Tyr	His	Gln	Ser	Ser 75	Ser	Leu	Val	Glu	Glu 80
_	Glu	Leu	Asp	Pro	Phe 85	Ser	Leu	Val	Ala	Ası 90	Glu	ı Leu	Ser	Leu	Leu 95	ser
•	Asn	Lys	Leu	Arg 100		. Met	Val	. Leu	Ala 105		ı Va	l Pro	. Lys	Leu 110	Ala	Ser
25	Ala	Ala	115		Phe	e Ph∈	. Lys	120		y Va	l Gl	n Gly	7 Lys 125	s Glr	n Phe	a Arg
30	Ser	Th:		e Lev	ı Leı	ı Le	1 Met		a Th	r Al	a Le	u Ası 14	o Vai	l Arg	y Val	Pro
35	Gl:		a Le	u Ile	e Gl	y Gli 15		r Th	r As	p Il	.e Va 15	1 Th	r Se	r Gli	ı Leı	Arg 160
•	Va	l Ar	g Gl	n Ar	g Gl; 16		e Al	a Gl	u Il	e Th		u Me	t Il	e Hi	s Va 17	l Ala 5
40	Se	r Le	u Le	ы Ні 18		p As	p Va	.1 Le	eu As 18	ip A: 35	spAl	la As	p Th	r Ar 19	g Ar	g Gly
45	Va	1 GI	y S∈ 19		eu As	sn Va	ıl Va		et Gi	ly A	sn Ly	ys Me	et Se 20	er Va)5	ıl Le	u Ala
50	GJ		sp Pi LO	ne Le	eu Le	eu Se	er Ai 2:		la C	ys G	ly A	la Le 2:	eu A: 20	la A]	a Le	u Lys
		sn T	nr G	lu Va	al Va		la Lo	eu L	eu A	la T	hr A 2	la V	al G	lu Hi	is Le	u Val 240

5	Thr Gly Glu Thr Met Glu Ile Thr Ser Ser Thr Glu Gln Arg Tyr Ser 245 250 255
	Met Asp Tyr Tyr Met Gln Lys Thr Tyr Tyr Lys Thr Ala Ser Leu Ile 260 265 270
10	Ser Asn Ser Cys Lys Ala Val Ala Val Leu Thr Gly Gln Thr Ala Glu 275 280 285
15	Val Ala Val Leu Ala Phe Glu Tyr Gly Arg Asn Leu Gly Leu Ala Phe 290 295 300
•	Gln Leu Ile Asp Asp Ile Leu Asp Phe Thr Gly Thr Ser Ala Ser Leu 305 310 315 320
25	Gly Lys Gly Ser Leu Ser Asp Ile Arg His Gly Val Ile Thr Ala Pro 325 330 335
25	Ile Leu Phe Ala Met Glu Glu Phe Pro Gln Leu Arg Glu Val Val Asp 340 345 350
30	Gln Val Glu Lys Asp Pro Arg Asn Val Asp Ile Ala Leu Glu Tyr Leu 355 360 .365
35	Gly Lys Ser Lys Gly Ile Gln Arg Ala Arg Glu Leu Ala Met Glu His 370 375 380
40	Ala Asn Leu Ala Ala Ala Ile Gly Ser Leu Pro Glu Thr Asp Asn 395 400
4!	Glu Asp Val Lys Arg Ser Arg Arg Ala Leu Ile Asp Leu Thr His Arg 405 410 415
	Val Ile Thr Arg Asn Lys 420
5	0 <210> 123
	<211> 1155

160 <212> DNA <213> Arabidopsis thaliana 5 <220> <221> CDS 10 <222> (1)..(1155) <223> 15 <400> 123 atg agt gtg agt tgt tgt tgt agg aat ctg ggc aag aca ata aaa aag 48 Met Ser Val Ser Cys Cys Cys Arg Asn Leu Gly Lys Thr Ile Lys Lys gca ata cct tca cat cat ttg cat ctg aga agt ctt ggt ggg agt ctc Ala Ile Pro Ser His His Leu His Leu Arg Ser Leu Gly Gly Ser Leu 25 20 25 tat cgt cgt cgt atc caa agc tct tca atg gag acc gat ctc aag tca 144 Tyr Arg Arg Arg Ile Gln Ser Ser Ser Met Glu Thr Asp Leu Lys Ser 35 acc ttt ctc aac gtt tat tct gtt ctc aag tct gac ctt ctt cat gac 192 30 Thr Phe Leu Asn Val Tyr Ser Val Leu Lys Ser Asp Leu Leu His Asp 55 cet tee tte gaa tte ace aat gaa tet egt ete tgg gtt gat egg atg 240 Pro Ser Phe Glu Phe Thr Asn Glu Ser Arg Leu Trp Val Asp Arg Met 35 75 70 ctg gac tac aat gta cgt gga ggg aaa ctc aat cgg ggt ctc tct gtt 288 Leu Asp Tyr Asn Val Arg Gly Gly Lys Leu Asn Arg Gly Leu Ser Val 90 40 gtt gac agt ttc aaa ctt ttg aag caa ggc aat gat ttg act gag caa 336 Val Asp Ser Phe Lys Leu Leu Lys Gln Gly Asn Asp Leu Thr Glu Gln 105 100 45 gag gtt ttc ctc tct tgt gct ctc ggt tgg tgc att gaa tgg ctc caa 384 Glu Val Phe Leu Ser Cys Ala Leu Gly Trp Cys Ile Glu Trp Leu Gln 120 115 get tat tte ett gtg ett gat gat att atg gat aac tet gte act ege 432 50

Ala Tyr Phe Leu Val Leu Asp Asp Ile Met Asp Asn Ser Val Thr Arg

cgt ggt caa cct tgc tgg ttc aga gtt cct cag gtt ggt atg gtt gcc

	Arg Gly Gln Pro Cys Trp Phe Arg Val Pro Gln Val Gly Met Val Ala 145 150 155 160	
5	atc aat gat ggg att cta ctt cgc aat cac atc cac agg att ctc aaa Ile Asn Asp Gly Ile Leu Leu Arg Asn His Ile His Arg Ile Leu Lys 165 170 175	528
10	aag cat ttc cgt gat aag cct tac tat gtt gac ctt gtt gat ttg ttt Lys His Phe Arg Asp Lys Pro Tyr Tyr Val Asp Leu Val Asp Leu Phe 180 185 190	576
	aat gag gtt gag ttg caa aca gct tgt ggc cag atg ata gat ttg atc Asn Glu Val Glu Leu Gln Thr Ala Cys Gly Gln Met Ile Asp Leu Ile 195 200 205	624
15	acc acc ttt gaa gga gaa aag gat ttg gcc aag tac tca ttg tca atc Thr Thr Phe Glu Gly Glu Lys Asp Leu Ala Lys Tyr Ser Leu Ser Ile 210 215 220	672
	cac cgt cgt att gtc cag tac aaa acg gct tat tac tca ttt tat ctc His Arg Arg Ile Val Gln Tyr Lys Thr Ala Tyr Tyr Ser Phe Tyr Leu 225 230 235 240	720
25	cct gtt gct tgt gcg ttg ctt atg gcg ggc gaa aat ttg gaa aac cat Pro Val Ala Cys Ala Leu Leu Met Ala Gly Glu Asn Leu Glu Asn His	768
20	245 250 255	٠.
30	att gac gtg aaa aat gtt ctt gtt gac atg gga atc tac ttc caa gtg Ile Asp Val Lys Asn Val Leu Val Asp Met Gly Ile Tyr Phe Gln Val 260 265 . 270	816
	cag gat gat tat ctg gat tgt ttt gct gat ccc gag acg ctt ggc aag Gln Asp Asp Tyr Leu Asp Cys Phe Ala Asp Pro Glu Thr Leu Gly Lys 275 280 285	864
35	ata gga aca gat ata gaa gat ttc aaa tgc tcg tgg ttg gtg gtt aag Ile Gly Thr Asp Ile Glu Asp Phe Lys Cys Ser Trp Leu Val Val Lys 290 295 300	912
40	gca tta gag cgc tgc agc gaa gaa caa act aag ata tta tat gag aac Ala Leu Glu Arg Cys Ser Glu Glu Gln Thr Lys Ile Leu Tyr Glu Asn 305 310 315 320	960
45	tat ggt aaa ccc gac cca tcg aac gtt gct aaa gtg aag gat ctc tac Tyr Gly Lys Pro Asp Pro Ser Asn Val Ala Lys Val Lys Asp Leu Tyr 325 330 335	1008
50	aaa gag ctg gat ctt gag gga gtt ttc atg gag tat gag agc aaa agc Lys Glu Leu Asp Leu Glu Gly Val Phe Met Glu Tyr Glu Ser Lys Ser 340 345 350	1056
	tac gag aag ctg act gga gcg att gag gga cac caa agt aaa gca atc Tyr Glu Lys Leu Thr Gly Ala Ile Glu Gly His Gln Ser Lys Ala Ile 355 360 365	1104

	Caa gca gtg cta aaa tcc ttc ttg gct aag atc tac aag agg cag aag Gln Ala Val Leu Lys Ser Phe Leu Ala Lys Ile Tyr Lys Arg Gln Lys 370 375 380	1152
5	tag	1155
10	<210> 124	
	<211> 384	
	<212> PRT	
15	<213> Arabidopsis thaliana	
	,	
	<400> 124	
	Met Ser Val Ser Cys Cys Cys Arg Asn Leu Gly Lys Thr Ile Lys Lys	
	1 5 10 25	
25	Ala Ile Pro Ser His His Leu His Leu Arg Ser Leu Gly Gly Ser Leu 20 25 30	
30	Tyr Arg Arg Ile Gln Ser Ser Met Glu Thr Asp Leu Lys Ser 35 40 45	
35	Thr Phe Leu Asn Val Tyr Ser Val Leu Lys Ser Asp Leu Leu His Asp 50 55 60	
	Pro Ser Phe Glu Phe Thr Asn Glu Ser Arg Leu Trp Val Asp Arg Met 65 70 75 80	
40	Leu Asp Tyr Asn Val Arg Gly Gly Lys Leu Asn Arg Gly Leu Ser Val 85 90 95	
45	Val Asp Ser Phe Lys Leu Leu Lys Gln Gly Asn Asp Leu Thr Glu Gln 100 105 110	
50	Glu Val Phe Leu Ser Cys Ala Leu Gly Trp Cys Ile Glu Trp Leu Gln 115 120 125	
	Ala Tyr Phe Leu Val Leu Asp Asp Ile Met Asp Asn Ser Val Thr Arg 130 135 140	

5	Arg 145	Gly	Gln	Pro	Cys	Trp 150	Phe	Ar	g Va	al F	Pro	Gln 155	Val	GT?	<i>у</i> ме	ic v	al i	160)
	Ile	Asn	Ąsp	Gly	Ile 165		Leu	Ar	g A	sn I	His 170	Ile	His	Ar	g Il	le L 1	eu .75	Lys	3
10	Lys	His	Phe	Arg 180		Lys	Pro	о Ту	т Т 1	yr ' 85	Val	Asp	Leu	. Va	1 As 19	sp I 90	eu	Phe	2
15	Asn	Glu	val 195		Lev	ı Glr	ı Th	r A:	la C	:ys	Gly	Glņ	Met	2 I I	.e A 15	sp 1	Leu	11	e
	Thr	Th:	r Ph∈	e Gl	ı Gl	y Gl	ı Ly 21	s A .5	sp I	Leu	Ala	Lys	22	r Se O	er L	eu	Ser	Il	.e
25	ні: 22!		g Ar	g Il	e Va	1 G1 23		r I	ys '	Thr	Ala	23	r Ту 5	r S	er I	?he	Tyr	Le 24	eu 40
	Pr	o Va	l Al	а Су	rs Al 24		u Le	eu N	let	Ala	. Gl 25	y Gl O	u As	n L	eu (Glu	Asn 255	1 H:	is
30	I 1.	e As	sp Va	.l L <u>y</u> 26		sn Va	al L	eu '	Val	Asp 265	o Me	t Gl	y I	le T	yr	Phe 270	Glr	n V	al
35	G1	ln As	sp As		yr L	eu A	sp C	:ys	Phe 280	Ala	a As	p Pi	co G	lu S	rhr 285	Leu	G1;	уL	'ns
40	· 1:		ly T) 90	nr A	sp I	le G	lu A	Asp 295	Phe	Ьy	s C	ys S	er T	rp 00	Leu	Val	. Va	.1 1	'nΣε
45	3	la I 05	eu G	1u A	rg C		er (3lu	Glu	Gl	n T	hr L 3	ys 1 15	:le	Leu	ТУ	Gl	.u i	Ası 32
	Т	yr (Sly I	ys I		Asp 1 325	Pro	Ser	Ası	ı Va	al A 3	la I 30	ys 7	/al	Lys	As	р Le 3:	eu 35	ТУ
50)	ys (Glu I		Asp 340	Leu '	Glu	Gly	Va.	1 Pl 3	he N 45	Met (3lu '	Tyr	Glu	1 Se 35	r L; 0	ys	Se

	Tyr Glu Lys Leu Thr Gly Ala Ile Glu Gly His Gln Ser Lys Ala Ile 355 360 365	
5	Gln Ala Val Leu Lys Ser Phe Leu Ala Lys Ile Tyr Lys Arg Gln Lys 370 375 380	
10	<210> 125 <211> 1101 <212> DNA	
15	<213> Sinabs alba	
•	<220> <221> CDS	
25	<222> (1)(1101) <223>	
30	<pre><400> 125 atg gct tct tca gtg act cct cta ggt tca tgg gtt ctt ctt cac cat Met Ala Ser Ser Val Thr Pro Leu Gly Ser Trp Val Leu Leu His His 1 5</pre>	48
35	cat cct tca act atc tta acc caa tcc aga tcc aga tct cct cct tct His Pro Ser Thr Ile Leu Thr Gln Ser Arg Ser Arg Ser Pro Pro Ser 20 25 30	96
40	ctc atc acc ctt aaa ccc atc tcc ctc act cca aaa cgc acc gtt tcg Leu Ile Thr Leu Lys Pro Ile Ser Leu Thr Pro Lys Arg Thr Val Ser 40 45	144
	the sto atc acc aga gad gac agc ctc aga	192
	tot tot too too tot too out ato doo and Son Asn Asn Leu Lys Ser Ser Ser Ser Ser Leu Ile Thr Lys Glu Asp Asn Asn Leu Lys 50 50	
4	Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion of the Ser Ser Ser Ser Ser Ser Ser Ser Ser Se	240
	Ser Ser Ser Ser Ser Leu IIe Thr Lys Git Asp tion 55 50 50 55 60 15 15 15 15 16 170 18 18 18 18 19 19 10 10 11 11 11 12 13 14 15 15 16 17 17 18 18 18 18 18 18 18 18	240

	Leu Lys Ile His Glu Ala Met Arg Tyr Ser Leu Leu Ala Gly Gly Lys 100 105 110	
5	cgc gtc aga cca gtt ctc tgc atc gcc gcg tgc gag cta gtc gga gga Arg Val Arg Pro Val Leu Cys Ile Ala Ala Cys Glu Leu Val Gly Gly 115 120 125	384
10	gaa gag tct tta gct atg ccg gcg cgt tgc gcc gtg gaa atg atc cac Glu Glu Ser Leu Ala Met Pro Ala Arg Cys Ala Val Glu Met Ile His 130	432
	acc atg tcg ttg atc cac gac gac ttg cct tgt atg gat aac gac gat Thr Met Ser Leu Ile His Asp Asp Leu Pro Cys Met Asp Asn Asp Asp 145 150 155 160	480
15	ctc cgc cgc gga aag ccc acg aat cac aaa gtt tac ggc gaa gac gtg Leu Arg Arg Gly Lys Pro Thr Asn His Lys Val Tyr Gly Glu Asp Val 165 170 175	528
	gcg gtt tta gcc gga gac gcg ctt ctt tcg ttc gcc ttc gag cat tta Ala Val Leu Ala Gly Asp Ala Leu Leu Ser Phe Ala Phe Glu His Leu 180 185 190	576
25	gcg tcg gct acg agc tcg gag gtt tct ccg gcg aga gtg gtt aga gct Ala Ser Ala Thr Ser Ser Glu Val Ser Pro Ala Arg Val Val Arg Ala 195 200 205	624
30	gtg gga gag ttg gct aaa gcc atc ggc acc gaa ggg ctc gtg gcg gga Val Gly Glu Leu Ala Lys Ala Ile Gly Thr Glu Gly Leu Val Ala Gly 210 215 220	672
	caa gtg gtg gat ata agc agt gaa ggg ttg gac tta aac aac gtc gga Gln Val Val Asp Ile Ser Ser Glu Gly Leu Asp Leu Asn Asn Val Gly 225 230 235 240	720
35	ttg gag cat ttg aag ttt ata cat ttg cat aaa acg gcg gcg ttg ctt Leu Glu His Leu Lys Phe Ile His Leu His Lys Thr Ala Ala Leu Leu 255 255	7.68
40	gaa gct tca gcg gtt ttg ggt ggg atc atc ggt gga ggg agt gat gaa Glu Ala Ser Ala Val Leu Gly Gly Ile Ile Gly Gly Gly Ser Asp Glu 260 265 270	816
45	gag atc gag agg ctg agg aag ttc gcg agg tgt att ggg ttg ttt ttt Glu Ile Glu Arg Leu Arg Lys Phe Ala Arg Cys Ile Gly Leu Leu Phe 275 280 285	864
5	cag gtg gtt gat gat atc ttg gac gtg acg aaa tcg tct caa gaa ctg Gln Val Val Asp Asp Ile Leu Asp Val Thr Lys Ser Ser Gln Glu Leu 290 295 300	912
	ggg aaa acc gct ggg aaa gat ttg att gct gat aag ttg act tat ccg Gly Lys Thr Ala Gly Lys Asp Leu Ile Ala Asp Lys Leu Thr Tyr Pro 305 310 315	960

	aag ctc atg ggt ttg gag aaa tcg aga gag ttc gct gag aag ttg aat Lys Leu Met Gly Leu Glu Lys Ser Arg Glu Phe Ala Glu Lys Leu Asn 325 330 335	1008
5	aca gag gca cgt gat cag ctt tta ggg ttt gat tcc gac aag gtt gct Thr Glu Ala Arg Asp Gln Leu Leu Gly Phe Asp Ser Asp Lys Val Ala 340 . 345 . 350	1056
10	cct ttg ttg gct ttg gct aat tac att gcc aat aga cag aac tga Pro Leu Leu Ala Leu Ala Asn Tyr Ile Ala Asn Arg Gln Asn 355 360 365	1101
15	<210> 126	
	<211> 366	
	<212> PRT	
=0	<213> Sinabs alba	
25	<400> 126	
	Met Ala Ser Ser Val Thr Pro Leu Gly Ser Trp Val Leu Leu His His 1 15	
30	His Pro Ser Thr Ile Leu Thr Gln Ser Arg Ser Arg Ser Pro Pro Ser 20 25 30	
35	Leu Ile Thr Leu Lys Pro Ile Ser Leu Thr Pro Lys Arg Thr Val Ser 35 40 45	
40	Ser Ser Ser Ser Ser Leu Ile Thr Lys Glu Asp Asn Asn Leu Lys 50 55 60	
45	Ser Ser Ser Ser Phe Asp Phe Met Ser Tyr Ile Ile Arg Lys Ala 65 70 75 80	
	Asp Ser Val Asn Lys Ala Leu Asp Ser Ala Val Pro Leu Arg Glu Pro 85 90 95	
5	O Leu Lys Ile His Glu Ala Met Arg Tyr Ser Leu Leu Ala Gly Gly Lys 100 105 110	

	Arg Val Arg Pro Val Leu Cys Ile Ala Ala Cys Glu Leu Val Gly Gly 115 120 125
5	Glu Glu Ser Leu Ala Met Pro Ala Arg Cys Ala Val Glu Met Ile His 130 135 140
10	Thr Met Ser Leu Ile His Asp Asp Leu Pro Cys Met Asp Asn Asp Asp 160
15	Leu Arg Arg Gly Lys Pro Thr Asn His Lys Val Tyr Gly Glu Asp Val 165 170 175
_	Ala Val Leu Ala Gly Asp Ala Leu Leu Ser Phe Ala Phe Glu His Leu 180 185 190
	Ala Ser Ala Thr Ser Ser Glu Val Ser Pro Ala Arg Val Val Arg Ala 195 200 205
25	Val Gly Glu Leu Ala Lys Ala Ile Gly Thr Glu Gly Leu Val Ala Gly 210 215 220
30	Gln Val Val Asp Ile Ser Ser Glu Gly Leu Asp Leu Asn Asn Val Gly 225 230 235 240
35	Leu Glu His Leu Lys Phe Ile His Leu His Lys Thr Ala Ala Leu Leu 255 255
	Glu Ala Ser Ala Val Leu Gly Gly Ile Ile Gly Gly Gly Ser Asp Glu 260 265 270
40	Glu Ile Glu Arg Leu Arg Lys Phe Ala Arg Cys Ile Gly Leu Leu Phe 275 280 285
4	5 Gln Val Val Asp Asp Ile Leu Asp Val Thr Lys Ser Ser Gln Glu Leu 290 295 300
5	Gly Lys Thr Ala Gly Lys Asp Leu Ile Ala Asp Lys Leu Thr Tyr Pro 320
	Lys Leu Met Gly Leu Glu Lys Ser Arg Glu Phe Ala Glu Lys Leu Asn 325 330 335

5	Thr Glu	. Ala	Arg		Glr	ı Lev	. Lev	345	y Phe	e Asr	Ser	As <u>r</u>	35)	s Vai	l Ala	a	
	Pro Lev	1 Lev 355		a Le	u Ala	a Ası	л Ту: 36	r Il 0	e Ala	a Ası	n Arg	361 361	n As: 5	n			
10	<210>	127															
	<211>	930															
15	<212>	DNA															•
	<213>	Erw	inia	ure	edovo	ora									•		
	<220>																
	<221>	CD	5														
25	<222>	(1) (930)													
	<223>			•	•											•	
30																	
30	<400> atg a Met <i>I</i> 1			Pro	tcg (Ser 1	tta (Leu I	etc : Leu :	aat (Asn)	nis A	gcg q Ala '	gtc g Val (gaa a Glu '	acg Thr		gca Ala 15	gtt Val	48
35	ggc (tcg (Ser	Lys	agt Ser 20	ttt Phe	gcg Ala	aca Thr	gcc Ala	tca Ser 25	aag Lys	tta Leu	ttt Phe	gat Asp	gca Ala 30	aaa Lys	acc Thr	96
40	Arg	Arg	Ser 35	Val	Leu	atg Met	Leu	40	Ala	111	CJD	•	45		_		144
45	5 Val	11e 50	Asp	Asp	Gln	acg Thr	Leu 55	GTĀ	Pne	GIII	AIG	60	0.2.3.				192
5	Gln 0 65	Thr	Pro	gaa Glu	caa Gln	cgt Arg 70	Leu	. Met	. GIII	пеа	75	1100	~, -		_	80	240
					tcg												288

	gaa gtg gct atg gct cat gat atc gcc ccg gct tac gcg ttt gat cat Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala Phe Asp His 100 105 110	336
5	ctg gaa ggc ttc gcc atg gat gta cgc gaa gcg caa tac agc caa ctg Leu Glu Gly Phe Ala Met Asp Val Arg Glu Ala Gln Tyr Ser Gln Leu 115 120 125	384
10	gat gat acg ctg cgc tat tgc tat cac gtt gca ggc gtt gtc ggc ttg Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val Val Gly Leu 130 135	432
15	atg atg gcg caa atc atg ggc gtg cgg gat aac gcc acg ctg gac cgc Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr Leu Asp Arg 150 155 160	480
	gcc tgt gac ctt ggg ctg gca ttt cag ttg acc aat att gct cgc gat Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile Ala Arg Asp 165 170 175	528
	att gtg gac gat gcg cat gcg ggc cgc tgt tat ctg ccg gca agc tgg Ile Val Asp Asp Ala His Ala Gly Arg Cys Tyr Leu Pro Ala Ser Trp 180 185 190	576
25	ctg gag cat gaa ggt ctg aac aaa gag aat tat gcg gca cct gaa aac Leu Glu His Glu Gly Leu Asn Lys Glu Asn Tyr Ala Ala Pro Glu Asn 195 200 205	624
30	cgt cag gcg ctg agc cgt atc gcc cgt cgt ttg gtg cag gaa gca gaa Arg Gln Ala Leu Ser Arg Ile Ala Arg Arg Leu Val Gln Glu Ala Glu 210 215 220	672
35	225 230 235 235	720
40	·	768
	gtc aaa gtt gaa cag gcc ggt cag caa gcc tgg gat cag cgg cag tca Val Lys Val Glu Gln Ala Gly Gln Gln Ala Trp Asp Gln Arg Gln Ser 260 265 270	816
45	acg acc acg ccc gaa aaa tta acg ctg ctg ctg gcc gcc tct ggt cag Thr Thr Thr Pro Glu Lys Leu Thr Leu Leu Leu Ala Ala Ser Gly Gln 280 285	864
5	O gcc ctt act tcc cgg atg cgg gct cat cct ccc cgc cct gcg cat ctc Ala Leu Thr Ser Arg Met Arg Ala His Pro Pro Arg Pro Ala His Leu 290 295 300	912
	tgg cag cgc ccg ctc tag	930

Trp Gln Arg Pro Leu 305

- 5 <210> 128
 - <211> 309
- <212> PRT
- <213> Erwinia uredovora
- 15 <400> 128

- Met Asn Asn Pro Ser Leu Leu Asn His Ala Val Glu Thr Met Ala Val 1 5 10 15
- Gly Ser Lys Ser Phe Ala Thr Ala Ser Lys Leu Phe Asp Ala Lys Thr 20 25 30
- 25 Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His Cys Asp Asp 35 40 45
- Val Ile Asp Asp Gln Thr Leu Gly Phe Gln Ala Arg Gln Pro Ala Leu 30 50 55 60
- Gln Thr Pro Glu Gln Arg Leu Met Gln Leu Glu Met Lys Thr Arg Gln 65 70 75 80
 - Ala Tyr Ala Gly Ser Gln Met His Glu Pro Ala Phe Ala Ala Phe Gln 85 90 95
- Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala Phe Asp His

 100 105 110
- 45 Leu Glu Gly Phe Ala Met Asp Val Arg Glu Ala Gln Tyr Ser Gln Leu 115 120 125
- Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val Val Gly Leu 130 135 140
 - Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr Leu Asp Arg 145 150 155 160

5	Ala Cy	s Asp	Leu	Gly 165	Leu	Ala	Phe	Gln	Leu 170	Thr	Asn	Ile	Ala	Arg 175	Asp
	Ile Va	1 Asp	Asp 180	Ala	His	Ala	Gly	Arg 185	Cys	Tyr	Leu	Pro	Ala 190	Ser	Trp
10	Leu Gl	u His 195		Gly	Leu	Asn	Lys 200	Glu	Asn	Tyr	Ala	Ala 205	Pro	Glu	Asn
15	Arg Gl 21		Leu	Ser	Arg	Ile 215	Ala	Arg	Arg	Leu	Val 220	Gln	Glu	Ala	Glu
20	Pro T) 225	yr Tyr	Leu	Ser	Ala 230		Ala	Gly	Leu	Ala 235	Gly	Leu	Pro	Leu	Arg 240
25	Ser A	la Trp	Ala	Ile 245		Thr	Ala	Lys	Gln 250	Val	Tyr	Arg	Lys	Ile 255	Gly
	Val L	ys Val	. Glu 260		Ala	Gly	Gln	Gln 265		Trp	Asp	Gln	Arg 270		Ser
30	Thr T	hr Thi		Glu	Lys	: Leu	Thr 280		. Leu	. Leu	. Ala	Ala 285		Gly	Gln
35		eu Thi 90	c Ser	. Arg	, Met	295		His	s Pro	Pro	300		Ala	His	Leu
40	Trp G	ln Arg	g Pro	o Lev	1										
	<210>	129													
45	<211>	147	9												
	<212>	> DNA											,		
50	<213>	> Erw	inia	ure	dovo:	ra									

<220>

<221> CDS

<222> (1)..(1479)

5 <223>

	<400	_ 1	.29														
10	atg	aaa Lys	cca														48
	nec 1	гуз	PIO	1111	5	VAI	116	GIY	nia	10	1110	O _T	CLJ	200	15	204	
4-		att															96
15	Ala	Ile	Arg	20	GIN	Ala	Ата	GTĀ	25	PIO	vai	rea	ьeu	30	GIU	GIII	•
		gat															144
20	Arg	qzA	Lys 35	Pro	Gly	GΤĀ	Arg	A1a 40	Tyr	Val	'l'yr	GIU	45	GIN	GTĀ	rne	
		ttt															192
25	Thr	Phe 50	Asp	Ala	GIÀ	Pro	55	Val	IIe	Tnr	Asp	60	ser	Ala	TTE	GIU	
25		ctg															240
	Glu 65	Leu	Phe	Ala	Leu	Ala 70	Gly	Lys	Gln	Leu	Lys 75	Glu	Tyr	Val	Glu	Leu 80	
30		ccg															288
	Leu	Pro	Val	Thr	Pro 85	Phe	Tyr	Arg	Leu	90	Trp	Glu	Ser	GIÀ	Lys 95	Val	
0.5																cag	336
35	Phe	Asn	Tyr	100		Asp	GIN	rnr	105		. GIU	. Ата	GIN	110		Gln	
																tca	384
40	Phe	Asn	115		qaA 1	Val	. Glu	120		arg	Gli	. Pne	: Leu 125		туг	Ser	
																ttt	432
	Arg	, Ala 130		. Phe	F LYS	GIU	135		Lec	г гу	, nec	140		vaı	PIO	Phe	
45	 -		. ++	. a.c.s	a man	· atc	r ctt	- cac	e acc	: acs	ı cct	. caa	a cto	r aca	r aaa	ctg	480
						Met	Lev				a Pro	Glr				Leu	
	145	5				150)				155	5				160	
50	cag	gca	tgg	g aga	a ago	gtt	tac	agt	aag	g gtt	gco	agt	tac	ato	gaa	gat Asp	528
	GII	т АТ	i III	νι.	165		r TA	. 561	. wy:	170		- 261	- TAT		175		
	gaa	a cai	t ct	g cgo	c cag	g gcg	g tt	t tc	t tt	c cac	e te	gcto	g ttg	gtg	ggc	ggc	576

	Glu	His	Leu	Arg 180	Gln	Ala	Phe	Ser	Phe 185	His	Ser	Leu	Leu	Val 190	Gly	Gly	
5				_						_	_	ata Ile					624
10	_				_				-			acc Thr 220					672
15												ggc Gly					720
	aac Asn	_	_	_	_		_		-			aac Asn			-		768
20					_		_			_	_	caa Gln	_	_			816
25		_			_					-	_	tta Leu	_				864
30	-		Val					Lys				aag Lys 300					912
35		_										cat His			_		960
,				_		Cys					Туг	cgc					1008
40	_				His					Glu		ttc Phe			Tyr		1056
45				Cys	_	_	_	_	Ser	_		g cct A Pro	_	Gly	_		1104
50			туг					val				a ggc 1 Gly 380	Thr				1152
	_	Tr					Pro					c cgt o Arg					1200

5	ctt Leu	gag Glu	cag Gln	cat His	tac Tyr 405	atg Met	cct Pro	ggc	tta Leu	cgg Arg 410	agt Ser	cag Gln	ctg Leu	gtc Val	acg Thr 415	cac His	1248
J	cgg Arg	atg Met	ttt Phe	acg Thr 420	ccg Pro	ttt Phe	gat Asp	ttt Phe	cgc Arg 425	gac Asp	cag Gln	ctt Leu	aat Asn	gcc Ala 430	tat Tyr	cat His	1296
10			gcc Ala 435														1344
15			cat His														1392
20		Gly	acg Thr														1440
25			aca Thr			Leu							tga				1479
	<21	.0>	130														
	<21	1>	492														
30	<21	.2>	PRT						•								
	<21	.3>	Erwi	nia	ured	lovor	a										
35									•								
	<40	00>	130														
40	Met 1	Ly:	s Pro	Thr	Thi	val	Ile	e Gly	/ Ala	Gly 10	Phe	: Gly	Gly	Leu	Ala 15	Leu	
45	Ala	a Il	e Arg	g Lev 20	ı Glı	n Ala	Ala	a Gly	y Ile 25	e Pro	Val	. Leu	. Leu	Leu 30	Glu	Gln	
45	Ar	g As	р Ly: 35	s Pro	o G1	A GJ	y Ar	g Ala 40	а Ту:	r Val	L Tyr	Glu	Asp 45	Gln	Gly	Phe	
50	Th	r Ph 50	e As	p Ala	a G1	y Pro	o Th	r Va	1 11	e Thi	c Asy	Pro 60	Ser	Ala	Ile	Glu	

	Glu 65	Leu	Phe	Ala	Leu	Ala 70	Gly	Lys	Gln	Leu	Lys 75	Glu	Tyr	Val	Glu	Leu 80
5	Leu	Pro	Val	Thr	Pro 85	Phe	Tyr	Arg	Leu	Суs 90	Trp	Glu	Ser	Gly	Lys 95	Va1
10	Phe	Asn	Tyr	Asp 100	Asn	Asp	Gln	Thr	Arg 105	Leu	Glu	Ala	Gln	Ile 110	Gln	Gln
15	Phe	Asn	Pro 115	Arg	Asp	Val	Glu	Gly 120	Tyr	Arg	Gln	Phe	Leu 125	Asp	Tyr	Ser
	Arg	Ala 130	Val	Phe	Lys	Glu	Gly 135	Tyr	Leu	Lys	Leu	Gly 140	Thr	Val	Pro	Phe
20	Leu 145	Ser	Phe	Arg	Asp	Met 150	Leu	Arg	Ala	Ala	Pro 155		Leu	Ala	Lys	Leu 160
25	Gln	Ala	Trp	Arg	Ser 165	Val	Tyr	Ser	Lys	Val 170	Ala	Ser	Tyr	Ile	Glu 175	Asp
30	Glu	His	Leu	Arg 180		Ala	Phe	Ser	Phe 185	His	Ser	Leu	Leu	Val 190	Gly	Gly
35	Asn	Pro	Phe 195		Thr	Ser	Ser	Ile 200		Thx	Leu	Ile	His 205	Ala	Leu	Glu
	Arg	Glu 210		Gly	Val	Trp	Phe 215		Arg	Gly	Gly	Thr 220	Gly	Ala	Leu	Val
40	Gln 225	_	Met	. Ile	. Lys	Lev 230		e Gln	Asp	Leu	Gly 235		Glu	'Val	Val	Leu 240
45	Asn	ı Ala	a Arg	_[Val	Ser 245		s Met	: Glu	Thr	Thr 250		Asn	Lys	Ile	Glu 255	Ala
50	Val	. His	s Lev	1 Glu 260		Gl3	y Arg	g Arg	7 Phe 265		Thr	· Gln	Ala	Val 270		Ser
	Asr	ı Ala	a Asp 279		l Val	l His	s Thi	тул 280		J Asp	Leu	. Leu	Ser 285		His	Pro

5	Ala	Ala 290	Val	Lys	Gln	Ser	Asn 295	Lys	Leu	Gln	Thr	100	Arg	Met	Ser	Asn
	Ser 305	Leu	Phe	Val	Leu	Туr 310	Phe	Gly	Leu	Asn	His 315	His	His	Asp	Gln	Leu 320
10	Ala	His	His	Thr	Val 325	Cys	Phe	Gly	Pro	Arg 330	Tyr	Arg	Glu	Leu	Ile 335	Asp
15	Glu	Ile	Phe	Asn 340	His	Asp	Gly	Leu	Ala 345	Glu	Asp	Phe	Ser	Leu 350	тут	Leu
20	His	Ala	Pro 355	Cys	Val	Thr	Asp	Ser 360	Ser	Leu	Ala	Pro	Glu 365	Gly	Cys	G1y
25	Ser	туr 370	Tyr	Val	Leu	Ala	Pro 375		Pro	His	Leu	380 GJA	Thr	Ala	Asn	Leu
	Asp 385	_	Thr	Val	Glu	Gly 390	Pro	Lys	Leu	Arg	Asp 395	Arg	Ile	Phe	Ala	ТУ2 400
30	Leu	Glu	Gln	His	Tyr 405	Met	Pro	Gly	Leu	Arg 410	Ser	Gln	Leu	Val	Thr 415	His
35	Arg	Met	Phe	Thr 420	Pro	Phe	Asp	Phe	Arg 425		Gln	Leu	Asn	Ala 430		His
40	Gly	ser,	Ala 435		ser	Val	Glu	440		Leu	Thr	Gln	Ser 445		Trp	Phe
45	Arg	9 Pro 450		s Asn	a Arg	Asp	455		: Ile	Thr	Asn	Leu 460		Leu	Val	Gly
	Ala 469		Thi	: His	s Pro	Gl ₃		a Gly	, Ile	Pro	Gly 475		. Ile	Gly	Ser	Ala 48
50	ЬУ	s Ala	a Thi	r Ala	a Gly		ı Me	t Lev	ı Glu	Asp 490		Ile	:			

	<210>	- 13	31															
	<211>	- 17	725															
5	<212>	> DI	JA															
	<213>	> Na	arcis	ssus	pset	ıdona	arci	ssus										
10	<220	>																
	<221	> C1	os															
15	<222	> (:	1)	(172	5)													
	<223	>													•			
														•				
20	<400		31														•	
	atg Met	gct Ala	tct Ser	tcc Ser	act Thr	tgt Cys	tta Leu	att Ile	cat His	tct Ser	tcc Ser	tct Ser	ttt Phe	GJÀ aaa	gtt Val	gga Gly		48
25	1				5					10					15		•	
	gga Gly	aag Lys	aaa Lys	gtg Val	aag Lys	atg Met	aac Asn	acg Thr	atg Met	att Ile	cga Arg	tcg Ser	aag Lys	ttg Leu	ttt Phe	tca Ser		96
	-			20				٠	25					30				
30	att Ile	cgg Arg	tcg Ser	gct Ala	ttg Leu	gac Asp	act Thr	aag Lys	gtg Val	tct Ser	gat Asp	atg Met	agc Ser	gtc Val	aat Asn	gct Ala	1	L44
			35					40					45					
35	cca Pro	aaa Lys	gga Gly	ttg Leu	ttt Phe	cca Pro	cca Pro	gag Glu	cct Pro	gag Glu	cac His	tac Tyr	agg Arg	GJÀ aaa	cca Pro	aag Lys	1	192
		50					55 .					60						
	ctt Leu	aaa Lvs	gtg Val	gct Ala	atc Ile	att Ile	gga Gly	gct Ala	GJÀ aaa	ctc Leu	gct Ala	ggc Gly	atg Met	tca Ser	act Thr	gca Ala	2	240
40	65	-				70					75					80		
	gtg Val	gag Glu	ctt Leu	ttg Leu	gat Asp	caa Gln	ggg ggg	cat His	gag Glu	gtt Val	gac Asp	ata Ile	tat Tyr	gaa Glu	tcc Ser	aga Arg	2	288
45	•				85					90					95			
	caa	ttt Phe	att Tle	ggt Glv	ggt Gly	aaa Lys	gtc Val	ggt Gly	tct Ser	ttt Phe	gta Val	gat Asp	aag Lys	cgt Arg	gga Gly	aac Asn	:	336
	Cin			100		-			105					110				
50	cat	att	gaa	atg	gga	ctc Lev	cat His	gtg Val	ttt Phe	ttt Phe	ggt Glv	tgc Cys	tat Tvr	aac Asn	aat Asn	ctt Leu	:	384
	HlS	тте	115		. Gry			120		,	3	- 2 - 2	125			_		
	tto	aga	ctt	atg	, aaa	aag	gta	ggt	gca	gat	gaa	aat	tta	ctg	gtg	aag		432

	Phe	Arg 130	Leu	Met	Lys		Val 135	Gly	Ala	Asp	Glu	Asn 140	Leu	Leu	Val	Lys		
5	gat Asp 145	cat His	act Thr	cat His	acc Thr	ttt Phe 150	gta Val	aac Asn	cga Arg	ggt Gly	gga Gly 155	gaa Glu	att Ile	ggt Gly	gaa Glu	ctt Leu 160	480)
10	gat Asp	ttc Phe	cga Arg	ctt Leu	ccg Pro 165	atg Met	ggt Gly	gca Ala	cca Pro	tta Leu 170	cat Kis	ggt Gly	att Ile	cgt Arg	gca Ala 175	ttt Phe	528	3
15				aat Asn 180													576	5
15	gct Ala	ctt Leu	gcc Ala 195	ctt Leu	agc Ser	cca Pro	gtt Val	gta Val 200	cgť Arg	gct Ala	ctt Leu	att Ile	gat Asp 205	cca Pro	aat Asn	ggt Gly	624	1
20	gca Ala	atg Met 210	Gln	gat Asp	ata Ile	agg Arg	aac Asn 215	tta Leu	gat Asp	aat Asn	att Ile	agc Ser 220	ttt Phe	tct Ser	gat Asp	tgg Trp	672	2
25	ttc Phe 225	Leu	tcc Ser	aaa Lys	ggc	ggt Gly 230	acc Thr	egc Arg	atg Met	agc Ser	atc Ile 235	Gln	agg Arg	atg Met	tgg Trp	gat Asp 240	72	0
30	cca Pro	gtt Val	gct Ala	tat Tyr	gcc Ala 245	Leu	gga Gly	ttt Phe	att Ile	gac Asp 250	Cys	gat Asp	aat Asn	atc Ile	agt Ser 255	Ala	76	8
25	cgt Arg	tgt Cys	ato Met	ctt Lev 260	Thr	ata Ile	ttt Phe	tct Ser	cta Leu 265	Phe	gct Ala	act Thr	aag Lys	aca Thr 270	Glu	gct Ala	. 81	6
35	tct Ser	cto	g ttg ı Lev 27	ı Arg	: atg g Met	ttg Lev	raag Lys	ggt Gly 280	Ser	r cct	gat Asr	gtt Val	tac Tyr 285	Lev	ago Ser	ggt Gly	86	4
40	cct Pro	29	e Ar	a aaq g Ly:	g tat s Tyr	att	aca Thr	Asp	aaa Lys	ggt Gly	gga Gly	a agg Arg 300	J Ph∈	cac His	cta Lev	agg Arg	91	.2
45	tg: Tr:	p Gl	g tg Y Cy	t ag	a gaq g Glı	g ata 1 Ile 31	e Lei	tat 1 Tyl	gat Asp	gaa g Gli	a cta 1 Lem 31	ı Se:	a aat c Asi	ggo	gaq Y Ası	aca Thr 320	96	0
50	ta Ty	t at r Il	c ac	a gg ir Gl	c at y Il 32	e Al	a atq a Me	g tcg t Se	g aag	g gc s Ala 33	a Th	c aa r Ası	t aaa n Lys	a aaa s Ly:	a cti s Lei 33!	t gtg ı Val	100	8
	aa Ly	a go s Al	t ga La As	ic gt sp Va 34	1 Ty	t gt r Va	t gc l Al	a gc	a tg a Cy 34	s As	t gt p Va	t cc 1 Pr	t gg: o Gl:	a ata y Il 35	e Ly:	a agg s Arg	105	66

_	ttg Leu	atc Ile	cca Pro 355	tcg Ser	gag Glu	tgg Trp	aga Arg	gaa Glu 360	tgg Trp	gat Asp	cta Leu	Phe	gac Asp 365	aat Asn	atc Ile	tat Tyr	1104
5	aaa Lys	cta Leu 370	gtt Val	gga Gly	gtt Val	cca Pro	gtt Val 375	gtc Val	act Thr	gtt Val	cag Gln	ctt Leu 380	agg Arg	tac Tyr	aat Asn	ggt Gly	1152
10	tgg Trp 385	gtg Val	aca Thr	gag Glu	atg Met	caa Gln 390	gat Asp	ctg Leu	gaa Glu	aaa Lys	tca Ser 395	agg Arg	cag Gln	ttg Leu	aga Arg	gct Ala 400	1200
15	gca Ala	gta Val	gga Gly	ttg Lev	gat Asp 405	Asn	ctt Leu	ctt Leu	tat Tyr	act Thr 410	cca Pro	gat Asp	gca Ala	gac Asp	ttt Phe 415	tct Ser	1248
20	tgt Cys	ttt Phe	tct Se	gat Ası 420	ctt Leu)	gca Ala	ctc Leu	tcg Ser	tcg Ser 425	Pro	gaa Glu	gat Asp	tat Tyr	tat Tyr 430	att Ile	gaa Glu	1296
25	gga	caa Gli	a gg a Gl; 43	y Se	c cta r Lev	ata 11e	cag Glr	gct Ala 440	val	ctc Leu	acg Thr	cca Pro	ggg Gly 445	gat Asp	cca Pro	tac Tyr	1344
23	atg Met	r cc : Pr 45	o Le	a cc u Pr	t aat o Ası	c gat n Asp	gca Ala 45!	Ile	ata E Ile	gaa Glu	aga Arg	gtt Val 460	Arg	aaa Lys	cag Gln	gtt Val	1392
30	tto Lei 469	ı As	t tt p Le	a tt	c cc e Pr	a tco o Se: 47	r Se	c caa	a ggo n Gl <u>r</u>	c cto Y Lev	g gaa a Glu 475	. Val	cta Leu	tgg Trp	tct Ser	tcg Ser 480	1440
35	gt: Va	g gt l Va	t aa 1 Ly	a at	c gg e Gl 48	y Gl	a tc n Se	c ct r Le	a ta u Ty:	t cgg r Arg 49	g Glı	r GJA 1 aaa	r Cct	gga Gly	aag Lys 495	gac Asp	1488
40	cc Pr	a tt o Ph	c ag ne A	cg Pi	et ga co As 00	t ca sp Gl	g aa n Ly	g ac	a cc r Pr 50	o Va	a aaa 1 Ly:	a aat s Asr	tto n Phe	tto Phe 510	e Lev	gca Ala	1536
45	G1 gg	t to y Se	er T	ac ac yr Ti 15	cc aa hr Ly	aa ca 7s Gl	g ga .n As	t ta p Ty 52	r Il	t ga e As	c ag p Se	t ato	g gaa t Glu 529	ı Gly	a gcg	acc Thr	1584
40	ct Le	eu S	cg g er G 30	gg a ly A	ga ca rg G	aa go ln Ai	La A	et go la Ai 85	ca ta la Ty	t at	c tg .e Cy	c ag s Se 54	r Ala	c ggt a Gly	t gaa y Glu	a gat 1 Asp	1632
50	Le	eu A 45	ca g la <i>P</i>	ca c	tt c	rg L	ag a ys L 50	ag a ys I	tc go le Al	et go la Al	et ga la As 55	p Hi	t cc s Pr	a gag o Gl	g caa u Gl	a ctg n Leu 560	1680
	a	tc a	ac a	aa g	gat t	ct a	ac g	tg t	cg g	at ga	aa ct	g ag	rt ct	c gt	a ta	a	1725

Ile Asn Lys Asp Ser Asn Val Ser Asp Glu Leu Ser Leu Val 565 570

- 5 <210> 132
 - <211> 574
- <212> PRT
- 10 <213> Narcissus pseudonarcissus
- 15 <400> 132

35

Met Ala Ser Ser Thr Cys Leu Ile His Ser Ser Ser Phe Gly Val Gly
1 5 10 15

- 20
 Gly Lys Lys Val Lys Met Asn Thr Met Ile Arg Ser Lys Leu Phe Ser
 20
 25
 30
- 25 Ile Arg Ser Ala Leu Asp Thr Lys Val Ser Asp Met Ser Val Asn Ala 35 40 45
- Pro Lys Gly Leu Phe Pro Pro Glu Pro Glu His Tyr Arg Gly Pro Lys 30 50 55 60
- Leu Lys Val Ala Ile Ile Gly Ala Gly Leu Ala Gly Met Ser Thr Ala 65 70 75 80
 - Val Glu Leu Leu Asp Gln Gly His Glu Val Asp Ile Tyr Glu Ser Arg
- Gln Phe Ile Gly Gly Lys Val Gly Ser Phe Val Asp Lys Arg Gly Asn 100 105 110
- 45 His Ile Glu Met Gly Leu His Val Phe Phe Gly Cys Tyr Asn Asn Leu 115 120 125
- Phe Arg Leu Met Lys Lys Val Gly Ala Asp Glu Asn Leu Leu Val Lys
 50 130 135 140
 - Asp His Thr His Thr Phe Val Asn Arg Gly Glu Ile Gly Glu Leu 145 150 155 160

5	Asp	Phe	Arg	Leu	Pro 165	Met	Gly	Ala	Pro	Leu 170	His	Gly :	Ile	Arg	Ala 175	Phe
	Leu	Thr	Thr	Asn 180	Gln	Leu	Lys	Pro	Туг 185	Asp	Lys	Ala /		Asn 190	Ala	Val
10	Ala	Leu	Ala 195	Leu	Ser	Pro	Val	Val 200	Arg	Ala	Leu		Asp 205	Pro	Asn ·	Gly
15	Ala	Met 210		Asp	Ile	Arg	Asn 215	Leu	Asp	Asn	Ile	Ser 220	Phe	Ser	Asp	Trp
20	Phe 225		Ser	Lys	Gly	Gly 230	Thr	Arg	Met	Ser	Ile 235	Gln	Arg	Met	Trp	Asp 240
25	Pro	Val	. Ala	Tyr	Ala 245	Leu	Gly	Phe	Ile	Asp 250		Asp	Asn	Ile	Ser 255	Ala
	Arg	Cys	s Met	Leu 260		·Ile	Phe	Ser	Leu 265		Ala	Thr	Lys	Thr 270	Glu	Ala
30	Ser	: Le	ı Let 275		, Met	. Leu	Lys	Gly 280		Pro	Asp	Val	туr 285	Leu	Ser	Gly
35	Pro	29		J LYS	. Туз	c Ile	295) Lys	: Gly	gly	Arg 300	Phe	His	Leu	Arg
40	Tr]		у Су	s Ar	g Gli	u Ile 310		тут	c As <u>r</u>	Glu	ı Lev 315		Asn	Gly	Asp	Thr 320
. 45	Ту	r Il	e Th	r Gl	y Il 32		a Me	t Se:	r Ly:	s Ala 33		: Asn	Lys	. Lys	335	Val
	Ŀу	s Al	.a As	p Va 34		r Va	l Al	a Al	a Cy 34		p Va	l Pro	Gly	7 Ile 350		arg
50	Le	eu I	le Pr 35		r Gl	u Tr	p Ar	g Gl 36		p As	p Le	u Ph∈	Ası 36		ı Ile	• Tyr

	Lys	Lev 370	_	al	Gly	Val	Pro	Val 375		1 7	hr '	Val	Gln	Leu 380	Arg	TYY	Asn	Gly
5	Trp 385	Va]	l I	hr	Glu	Met	Gln 390	Asp	L€	eu (3lu	Lys	Ser 395	Arg	Gln	Leu	Arg	Ala 400
0	Ala	Va:	1 (Ely	Leu	Asp 405	Asn	Leu	ı L∈	eu ′	Tyr	Thr 410	Pro	Asp	Ala	Asp	Phe 415	Ser
15	Cys	Ph	e :	Ser	Asp 420	Leu	Ala	Lev	ı S		Ser 425	Pro	Glu	Asp	Tyr	Tyr 430	Ile	Glu
,,,	Gly	Gl		Gly 435	Ser		. Ile	Gl:		1a 40	Val	Leu	Thr	Pro	Gly 445	Asp	Pro	Tyr
20	Met	. Pr 45		Leu	Pro	Asr	a As <u>r</u>	A1 45		le	Ile	Glu	. Arg	Val 460	Arg	Lys	Gln	Val
25	Lev 469		sp	Leu	. Phe	e Pro	Se:		r G	ln	Gly	Lev	475	val	. Leu	Trp	Ser	Ser 480
30	Va:	L V	al	Lys	; Ile	e Gl; 48		n Se	er I	Leu	тух	Arç 490	g Glu)	ı Gly	y Pro	Gly	Lys 495	asp
35	Pr	o P	he	Arg	g Pr		p Gl	n Ly	/s '	Thr	Pro 505	va:	l Ly:	s Ası	n Phe	Phe 510	e Leu	ı Ala
	G1.	у S	Ser	Ту: 51		r Ly	s Gl	n A	sp	туr 520	Ile	a As	p Se	r Me	t Gli 525	ı Gly	/ Ala	a Thr
40	L€		ser 530		y Ar	g G]	ln Al		1a 35	Ala	TY:	r Il	е Су	s Se 54	r Ala	a Gl	y Gl	u Asp
45		eu 2 15	Ala	a Al	a Le	eu Ai		ys I 50	ys	Ile	a Al	a Al	.a As 55	р Ні 5	s Pr	o Gl	u Gl	n Leu 560
50		le	Ası	n Lj	ys A		er A 65	sn V	/al	Se	r As	p G] 57	Lu Le 70	eu Se	er Le	u Va	1	

	<211>	1848	
	<212>	DNA	
5	<213>	Lycopersicon esculentum	
40	<220>	•	
10	<221>	> CDS	
	<222>	> (1)(1848)	
15	<223	>	
	•		
20	<400 atg Met 1	tgt acc ttg agt ttt atg tat cct aat tca ctt ctt gat ggt acc tgt acc ttg agt ttt atg tat cct aat tca ctt ctt gat ggt acc Cys Thr Leu Ser Phe Met Tyr Pro Asn Ser Leu Leu Asp Gly Thr 5 10 15	48
25		aag act gta gct ttg ggt gat agc aaa cca aga tac aat aaa cag Lys Thr Val Ala Leu Gly Asp Ser Lys Pro Arg Tyr Asn Lys Gln 20 25 30	96
30	Arg	agt tot tgt ttt gac cot ttg ata att gga aat tgt act gat cag Ser Ser Cys Phe Asp Pro Leu Ile Ile Gly Asn Cys Thr Asp Gln 35 40 45	144
	Gln	g cag ctt tgt ggc ttg agt tgg ggg gtg gac aag gct aag gga aga n Gln Leu Cys Gly Leu Ser Trp Gly Val Asp Lys Ala Lys Gly Arg 50 55	192
35		a ggg ggt act gtt tcc aat ttg aaa gca gtt gta gat gta gac aaa g Gly Gly Thr Val Ser Asn Leu Lys Ala Val Val Asp Val Asp Lys 70 75 80	240
. 40	0 ag Ar	a gtg gag agc tat ggc agt agt gat gta gaa gga aat gag agt ggc g Val Glu Ser Tyr Gly Ser Ser Asp Val Glu Gly Asn Glu Ser Gly 85 90 95	288
4	ag 5 Se	gc tat gat gcc att gtt ata ggt tca gga ata ggt gga ttg gtg gca er Tyr Asp Ala Ile Val Ile Gly Ser Gly Ile Gly Gly Leu Val Ala 100 105 110	336
<u>!</u>	gc A: 50	cg acg cag ctg gcg gtt aag gga gct aag gtt tta gtt ctg gag aag la Thr Gln Leu Ala Val Lys Gly Ala Lys Val Leu Val Leu Glu Lys 115 120 125	384
·		at gtt att cct ggt gga agc tct ggc ttt tac gag agg gat ggt tat Tyr Val Ile Pro Gly Gly Ser Ser Gly Phe Tyr Glu Arg Asp Gly Tyr 130 135 140	432

5	aag Lys 145	ttt Phe	ga As	at g sp V	tt g	ly :	tca Ser 150	tca Ser	gtg Val	at Me	g ti t Pi	he (gga 31y 155	ttc Phe	agt Ser	gat Asp	aaq Ly:	5 G	ga Sly .60	480
3	aac Asn	ctc Leu	aa . As	at t sn L	eu :	le 165	act Thr	caa Gln	gca Ala	tt Le	u A	ca 9 1a 7	gca Ala	gta Val	gga Gly	cgt Arg	аа Lу 17	S I	ta Leu	528
10	gaa Glu	gtt Val	: a!	le E	ct (Pro 2	gac Asp	cca Pro	aca Thr	act	gt Va 18	.1 H	at	ttc Phe	cac His	ctg Leu	cca Pro 190	aa As	t s	jac Asp	576
15	ctt Leu	tct Ser	r V	tt d al i	egt Arg	ata Ile	cac His	cga Arg	gag Glu 200	ı Tz	it g	jat Asp	gac Asp	ttc Phe	att Ile 205	gaa Glu	ga Gl	g (u)	ctt Leu	624
20	gtg Val	ag Se: 21	r L	aa ys	ttt Phe	cca Pro	cat His	gaa Glu 215	Ly	g ga	aa g lu (31À aaa	att Ile	atc Ile 220	aaa Lys	ttt Phe	ta Ty	C T	agt Ser	672
25	Glu 225	ı Cy	s T	(rp	Lys	Ile	Phe 230	Asr	. Se	r L	eu :	Asn	235	Leu	gaa Glu	. Lev	ı Ly	/S	Ser 240	720
23	Lev	ı Gl	u (Glu	Pro	11e 245	тут	. Le	ı Ph	ie G	ly.	Gln 250	Phe	Ph∈	aag Lys	s Ly:	3 P:	55	Leu	768
30	Gli	u C3	/S	Leu	Thr 260	Leu	ı Ala	а Ту	r Ty	r I 2	ieu 265	Pro	Glı	n Ası	t gc	a G1; 27	y s 0	er	IIe	816
35	Al	a A	rg	Lys 275	Tyr	Ile	e Ar	g As	p P: 21	ro (80	3ly	Leu	ı Le	u Se	t tt r Ph 28	e II 5	e A	sp	Ala	86 <u>4</u>
40	G1	u C 2	ys 90	Phe	Ile	e Va	l Se	r Th	ι τ V	al i	Asn	Ala	a Le	u G1 30	U	r Pr	o M	let	Ile	912
45	As 30	sn A	la	Ser	: Me	t Va	.1 L∈ 31	eu Cy .0	ys A	.sp	Arg	Hi	s Ph 31	ie G1 .5	.У G1	y I	.e <i>P</i>	sn	tac Tyr 320	960
40	P:	ro V	/al	Gl	y Gl	y Va 32	al G: 25	Ly G	lu I	le	Ala	33	s Se 0	er Le	eu Al	a Ly	ys (31.y 33.5		1008
50	g A	at q	gat Asp	ca Hi	c gg s Gl 34	y Se	gt ca er G	ag a ln I	ta d le I	ett Seu	tat Tyr 345	Ar	g g	ca aa la A:	at gi sn Va	al T	ca d hr 50	agt Ser	atc : Ile	1056
	а	tt	ttg	g ga	c aa	it g	gc a	aa g	ct i	gtg	gga	a gt	g a	ag c	tt t	ct g	ac	ggg	g agg	1104

	185	
	Ile Leu Asp Asn Gly Lys Ala Val Gly Val Lys Leu Ser Asp Gly Arg 355 360 365	
5	aag ttt tat gct aaa acc ata gta tcg aat gct acc aga tgg gat act Lys Phe Tyr Ala Lys Thr Ile Val Ser Asn Ala Thr Arg Trp Asp Thr 370 380	1152
10	ttt gga aag ctt tta aaa gct gag aat ctg cca aaa gaa gaa gaa aat Phe Gly Lys Leu Leu Lys Ala Glu Asn Leu Pro Lys Glu Glu Glu Asn 390 395 400	1200
	ttc cag aaa gct tat gta aaa gca cct tct ttt ctt tct att cat atg Phe Gln Lys Ala Tyr Val Lys Ala Pro Ser Phe Leu Ser Ile His Met 405 410 415	1248
15	gga gtt aaa gca gat gta ctc cca cca gac aca gat tgt cac cat ttt Gly Val Lys Ala Asp Val Leu Pro Pro Asp Thr Asp Cys His His Phe 420 425 430	1296
20	gtc ctc gag gat gat tgg aca aat ttg gag aaa cca tat gga agt ata Val Leu Glu Asp Asp Trp Thr Asn Leu Glu Lys Pro Tyr Gly Ser Ile 435 440 445	1344
25	ttc ttg agt att cca aca gtt ctt gat tcc tca ttg gcc cca gaa gga Phe Leu Ser Ile Pro Thr Val Leu Asp Ser Ser Leu Ala Pro Glu Gly 450 455 460	1392
30	cac cat att ctt cac att ttt dca aca tcg agc att gaa gat tgg gag His His Ile Leu His Ile Phe Thr Thr Ser Ser Ile Glu Asp Trp Glu 465 470 475 480	1440
	gga ctc tct ccg aaa gac tat gaa gcg aag aaa gag gtt gtt gct gaa Gly Leu Ser Pro Lys Asp Tyr Glu Ala Lys Lys Glu Val Val Ala Glu 485 490 495	1488
35	agg att ata agc aga ctt gaa aaa aca ctc ttc cca ggg ctt aag tca Arg Ile Ile Ser Arg Leu Glu Lys Thr Leu Phe Pro Gly Leu Lys Ser 500 505 510	1536
40	tct att ctc ttt aag gag gtg gga act cca aag acc cac aga cga tac Ser Ile Leu Phe Lys Glu Val Gly Thr Pro Lys Thr His Arg Arg Tyr 515 520 525	1584
45	ctt gct cgt gat agt ggt acc tat gga cca atg cca cgc gga aca cct Leu Ala Arg Asp Ser Gly Thr Tyr Gly Pro Met Pro Arg Gly Thr Pro 530 535	1632
50	aag gga ctc ctg gga atg cct ttc aat acc act gct ata gat ggt cta Lys Gly Leu Leu Gly Met Pro Phe Asn Thr Thr Ala Ile Asp Gly Leu 550 555 560	1680
	tat tgt gtt ggc gat agt tgc ttc cca gga caa ggt gtt ata gct gta Tyr Cys Val Gly Asp Ser Cys Phe Pro Gly Gln Gly Val Ile Ala Val 565 570 575	1728

5	gcc ttt Ala Phe	Ser					Ala					Ala				1776
3	ttt gaa Phe Glu					Val										1824
10	ggt tgg Gly Trp 610	Leu .			Leu .		tga									1848
15	<210>	134														
	<211>	615														
00	<212>	PRT														
20	<213>	Lycop	ersi	con	escu	lent	um									
25	<400>	134														
	Met Cy:	s Thr		Ser 5	Phe	Met	Tyr	Pro	Asn 10	Ser	Leu	Leu	Asp	Gly 15	Thr	
30	Cys Ly	s Thr	Val 20	Ala	Leu	Gly	Asp	Ser 25	Lys	Pro	Arg	Tyr	Asn 30	Lys	Gln	
35	Arg Se	r Ser 35	Cys	Phe	Asp	Pro	Leu 40	Ile	Ile	Gly	Asn	Cys 45	Thr	Asp	Gln	
40	Gln Gl 50		Суз	Gly	Leu	ser 55	Trp	Gly	Val	Asp	Lys 60	Ala	Lys	Gly	Arg	
45	Arg Gl 65	y Gly	Thr	Val	Ser 70	Asn	Leu	Lys	Ala	Val	Val	Asp	Val	Asp	Lys 80	
	Arg Va	ıl Glu	Ser	Туг 85	Gly	Ser	Ser	Asp	Val 90	Glu	Gly	Asn	Glu	Ser 95	Gly	
50	Ser Ty	vr Asp	Ala 100	Ile	Val	Ile	Gly	Ser		' Ile	Gly	Gly	Leu 110	Val	Ala	

	Ala	Thr	Gln 115	Leu	. Al	a V	al 1	Lys	Gly 120	Ala	Lys	Val	Leu	Val 125	Leu	Glu	Lys
5	Tyr	Val 130		Pro	Gl	y G		Ser 135	Ser	Gly	Phe	туr	Glu 140	Arg	Asp	Gly	Tyr
10	Lys 145	Phe	Asp	val	r G]		Ser L50	Ser	val	Met	Phe	Gly 155	Phe	Ser	Asp	Lys	Gly 160
15	Asn	Lev	ı Asr	ı Le		le 1	Thr	Gln	Ala	Leu	Ala 170	Ala	. Val	Gly	Arg	Lys 175	Leu
	Glu	Va]	L Ile	e Pr 18		sp :	Pro	Thr	Thr	Val 185	His	: Phe	e His	Leu	Pro 190	Asn	Asp
20	Leu	. Se	r Va. 19		g I	le	His	Arg	Glu 200		: As) Ası	p Phe	: Ile 205	Glu	Glu	Leu
25	Val	. Se 21		s Pł	ne P	ro	His	Glu 215		s Glv	ı Gl	y Il	e Ile 220	e Lys)	. Phe	Tyr	Ser
30	Glu 225		s Tr	p Ly	ys 1	[le	Phe 230		ı Sei	r Le	u As	n Se 23	r Lei 5	ı Glı	ı Lev	. Lys	Ser 240
35	Le	ı Gl	.u G]	iu P		Ile 245	Тут	· Le	ı Ph	e Gl	y Gl 25		e Ph	e Ly:	s Lys	Pro 255	Leu
33	G1	u Cy	ys L		hr :	Leu	Ala	ту	т Ту	r Le 26	u Pi 5	o Gl	n As	n Al	a Gly 270	y Ser	·Ile
40	Al	a A:		ys 1 75	Àï	Ile	Arq	J As	p Pr 28	o G]	L y Le	eu Le	eu Se	r Ph 28	e Ile 5	e Asr) Ala
45	G1		ys F 90	he l	[le	Val	. Se	r Th 29	ır Va 95	al A:	sn A	la L	eu G] 30	.n Th	r Pr	o Met	: Ile
50		sn A	la S	Ser 1	Met	Val	l Le 31		ys A:	sp A	rg H	is P	he GI 15	Ly G]	y Il	e Ası	n Tyr 320
	P	ro V	7al (3ly ·	Gly	Va:		у G	lu I	le A	la I	ys S 30	er L	eu Al	la Ly	s Gl;	y Leu 5

5	Asp	Asp	His	Gly 340	Ser	Gln	Ile	Leu	Туг 345	Arg	, Ala	Asn	Val	Th:	rS∈ O	er I	le
5	Ile	Leu	Asp 355	Asn	Gly	Lys ·	Ala	Val	Gly	√ Va∃	L Lys	. Leu	Ser 365	As;	p G]	Ly A	rg
10	Lys	Phe 370		Ala	Lys	Thr	Ile 375	va]	. Sei	Asi	n Ala	a Thr 380	· Arç	j Tr	p A:	sp T	hr
15	Phe 385		Lys	Leu	Leu	Lys 390		a Gli	ı As	n Le	u Pr 39	o Lys 5	Gl:	u Gl	u G	lù A 4	sn 100
20	Ph∈	Gln	Lys	ala	1 Tyr 405		L Ly :	s Al	a Pr	o Se 41	er Ph	e Let	ı Se	r II	le H 4	is N 15	let
25	Gl	y Val	L Ly:	s Ala 42		o Vai	l Le	u Pr	o Pr 42	o As	ap Tì	r As	р Су	rs H:	is F 30	lis 1	Phe
20	۷a	l Le	u Gl 43		p As	p Tr	p Th	ır As 44	sn Le 10	eu G	lu L	ys Pr	°O T3	/r G 15	ly s	Ser	Ile
30	Ph	e Le 45		r Il	e Pr	o Th	r Va 45	al Lo	eu A	sp S	er S	er Le 40	eu A	la F	ro (Glu	Gly
35	ні 46		.s .I]	le Le	eu Hi	is II	le P 70	he T	hr I	hr S	Ser S	er I.	le G	1u <i>F</i>	Asp	Trp	Glu 480
40	G.	ly Le	eu S	er P		ys A: 85	sp T	yr G	lu <i>F</i>	la i	Lys I 490	ys G	lu V	al v	Val	Ala 495	Glu
45		rg I	le I		er A 00	rg L	eu G	ilu I	'ys '	rhr 505	Leu 1	Phe P	ro C	3ly	Leu 510	Lys	Ser
		er I		eu F 515	he I	ys G	3lu V	√al (Gly 520	Thr	Pro	Lys T	hr i	His 525	Arg	Arg	Tyr
50)		Ala 2	Arg i	Asp (Ser (3ly	Thr 535	Tyr	Gly	Pro	Met 1	Pro .	Arg	Gly	Thr	Pro

	Lys 545	Gly	Leu	Leu	Gly	Met 550	Pro	Phe	e Asi	n Th	x T) 5!	hr 55	Ala	Ile	e As	p G	ly	Le:	1)	
5	Туг	Cys	Val	Gly	Asp 565	Ser	Cys	Phe	e Pr	o G1 57	.у G	ln	Gly	Va:	1 11	.e A 5	1a 75	Val	L	
10	Ala	Phe	Ser	Gly 580		. Met	Cys	Ala	а Ні 58	s Ar 5	g V	al	Ala	Al	a As 59	sp L 90	eu	Gly	¥.	
15	Phe	Glu	. Lys 595		s Sei	r Asp	val	Le 60	u As	sp Se	er A	la	Leu	Ье 60	u A:	rg I	ieu	Le	u.	
	Gly	Trp 610		a Arg	y Th	r Le	1 Ala 615	a 5												
20	<21	L0>	135																	
			123	3									•							
25		12>	DNA					•												
20		13>		etes	ere	ecta														
30	. <2	20>																		
	<2	21>	CDS	5																
35	<2	22>	(1)	(:	1233)														
	<2	23>																		
40		400>	~~ =	~ ~ ~	ac a	ıaa c	tc c	tt (caa	ttc	acc	ac	c aa	at o	etc	cca	CC	a t	ct	48
	M 1	et A	la T	hr H	is I	Lys L	eu L	eu (Gln	Phe	Thr 10	Th	r As	sn I	Leu	Pro	Pr 15	0 5	er	
45	_	ct t er S	ct ter S	er I	itc i	tct a Ser 1	ict g hr G	gc	tgt Cys	tca Ser 25	ctc	to Se	ec co er P:	cc ro	ttc Phe	ttc Phe 30	ct Le	c a	iaa .ys	96
50) t	ca t Ser S	Ser S	ct o Ser 1	cat His	tcc (Ser 1	ect a Pro A	ac Asn	cct Pro 40	cgc Arg	cga Arg	Ca TH:	ac c	rg	cgc Arg 45	tcc	gc Al	ec ç La V	gta /al	144
	t	gc t	tgc 1	tct	ttc	gcc	tca (ctc	gac	tct	gca	a a	aa a	tc	aaa	gto	gt:	t q	ggc	192

	Cys	Cys 50	Ser	Phe	Ala	Ser	Leu 55	Asp	Sei	: A	ala :	Lys	Ile 60	Lys	Val	V	al (Gly	
5	gtc Val 65	ggt Gly	ggt Gly	ggt Gly	ggc	aac Asn 70	aat Asn	gcc Ala	gt(t a	lsn	cgc Arg 75	atg Met	att Ile	ggt Gly	a ₉	er	80 GJA āāc	240
10	tta Leu	cag Gln	ggt Gly	gtt Val	gat Asp 85	ttt Phe	tac Tyr	gcc Ala	at Il	e A	aac Asn 90	acg Thr	gac Asp	tca Ser	caa Gln	A	cg la 5	ctt Leu	288
45	ctg Leu	caa Gln	tct Ser	gtt Val 100	gca Ala	cat His	aac Asn	cct Pro	at Il 10	e (caa Gln	att Ile	GJÀ aaa	gag Glu	ctt Lev 110	L	tg Leu	act Thr	336
15	cgt Arg	gga Gly	tta Leu 115	Gly	act Thr	ggt Gly	Gly	aac Asn 120	Pr	g (ctt Leu	ttg Leú	gga Gly	gaa Glu 125	Glr	y 9	gct Ala	gcg Ala	384
20	gag Glu	gag Glu 130	Ser	aag Lys	gaa Glu	gcg Ala	att Ile 135	Gly	jaa / As	nt (gcg Ala	ctt Leu	aaa Lys 140	Gl3	tc Se:	g 9	gat Asp	ctt Leu	432
25	gtg Val 145	Ph€	ata Ile	aca Thr	gca Ala	. ggt . Gl ₃ 150	Met	: Gly	y G	gt Ly	GJÀ āāā	acg Thr 155	G17	tcg Sei	Gl;	t g	gct Ala	gct Ala 160	480
30	cca	gt! Vai	gta l Va:	a gcg L Ala	g cag a Glr 165	ı Il	a gco	g aa a Ly	aga sG	aa lu	gca Ala 170	Gl	f tat	tta Lei	a ac ı Th	r '	gtt Val 175	ggt Gly	528
35	gtt Va:	gt: L Va	a ac	y tac r Ty: 18	r Pro	a tte	c age	c tt r Ph	e G	aa lu 85	ggc	cgt Arg	aaa g Ly:	a aga	a tc g Se 19	r	gta Val	cag Gln	576
33	gc; Ala	g tt a Le	a ga u Gl 19	u Al	t at a Il	t ga e Gl	g aa u Ly	g ct s Le 20	u G	aa In	aag Lys	g aad S Asi	c gt n Va	t ga 1 As 20	p Th	a	ctt	ata Ile	624
40	Va	1 I1 21	e Pr .0	o As	n As	p Ar	g L∈ 21	u Le .5	eu A	qa/	Ile	e Al	a As 22	p Gl O	u As	sn	Thr	cct Pro	672
45	L∈ 22	u GI 5	ln As	[A q	la Ph	e Le 23	eu Le 30	eu A	la 1	Asp) As	p Va 23	.l L∈ 5	u Ar	g G	ln	G17	y Val 240	720
50	ca Gl	ia gg .n G	ga at Ly I:	tc to le Se	ca ga er As 24	p I	ta at le I	t a	ca a	ata Il∈	a cc Pr 25	o Gl	g ct y Le	ggt euVa	ıl A	at sn	gtg Val 255	g gac L Asp	768
	t t Pl	it g ne A	ca g	V qz	tt aa al Ly 60	aa g ys A	ca g la V	tc a al M	et	aaa Lys 269	s As	t to p Se	et ge er Gi	ga ad Ly T)	ır A	ca 1a 70	Me	g ctt t Leu	816

_	ggt Gly	gtc Val	ggt Gly 275	gtt Val	tcc Ser	tca Ser	agt Ser	aaa Lys 280	aac Asn	cga Arg	gct Ala	gaa Glu	gaa Glu 285	gca Ala	gct Ala	gaa Glu	864
5	caa Gln	gca Ala 290	act Thr	ctt Leu	gct Ala	cct Pro	ttg Leu 295	att Ile	gga Gly	tca Ser	tca Ser	att Ile 300	caa Gln	tct Ser	gct Ala	aca Thr	912
10	ggt Gly 305	gtt Val	gtt Val	tat Tyr	aat Asn	att Ile 310	acc Thr	gga Gly	GJÀ āāā	aag Lys	gac Asp 315	ata Ile	act Thr	cta Leu	caa Gln	gaa Glu 320	960
15	gtc Val	aac Asn	agg Arg	gtt Val	tct Ser 325	cag Gln	gtg Val	gta Val	aca Thr	agt Ser 330	ttg Leu	gca Ala	gat Asp	cca Pro	tca Ser 335	gca Ala	1008
20	Asn	Ile	ata Ile	Phe 340	Gly	Ala	Val	Val	Asp 345	Glu	Arg	Tyr	Asn	Gly 350	Glu	Ile	1056
25	His	val	355	Ile	Val	Ala	Thx	360 360	Phe	e Ala	Gln	. Ser	9he 365	Gln	. Lys	ser	1104
	Lev	1 Let 370	ı Ala	Asp) Pro	Lys	375	r Ala	. Lys	. Leu	ı Val	. Asr	Arg	Asn	. Gln	gaa Glu	1152
30	pro 38	o Thi	a caa r Glr	a cct n Pro	ttg Lev	act Thi 390	: Se:	gcç Ala	g aga	a tct g Ser	tto Lev	ı Thi	a aca	Pro	tct Ser	Pro 400	1200
35	gc Al	t cc	g tc o Se:	t cgg	g tot g Sea 40!	c Arg	g aaa	a cto s Le	e tto u Pho	e ttt e Phe 410	=	a					1233
40		10>	136 410														
		12>	PRT														
45	<2	213>	Tag	retes	ere	cta						,					
50			136 la Tì			/s Le	eu Le	eu G	Ln Pì	ne Th	ir Th	ır As	sn Le	u Pr	o Pr 15	o Ser	
	1				5					7.0	•						

	Ser	Ser	Ser	Ile 20	Ser	Thr	Gly		Ser 25	Leu	Ser	Pro	Phe	Pne . 30	Leu	гÀг
5	Ser	Ser	Ser 35	His	Ser	Pro	Asn	Pro 40	Arg	Arg	His	Arg	Arg 45	Ser .	Ala	Val
10	Cys	Суs 50	Ser	Phe	Ala	Ser	Leu 55	Asp	Ser	Ala	Lys	Ile 60	Lys	Val	Val	Gly
15	Val 65	Gly	Gly	Gly	Gly	Asn 70	Asn	Ala	Val	Asn	Arg 75,	Met	Ile	Gly	Ser	Gly 80
	Leu	Gln	Gly	Val	Asp 85	Phe	Tyr	Ala	Ile	Asn 90	Thr	Asp	Ser	Gln	Ala 95	Leu
20	Leu	Gln	. Ser	Val 100		His	Asn	Pro	Ile 105	Gln	Ile	Gly	Glu	Leu 110	Leu	Thr
25	Arg	Gly	Leu 115		Thr	Gly	Gly	Asn 120	Pro	Leu	Leu	Gly	Glu 125	Gln	Ala	Ala
30	Glu	Glu 130		. Lys	s Glu	Ala	Ile 135		Asn	Ala	Leu	Lys 140	Gly	Ser	Asp	Leu
35	Val 145		e Ile	e Thi	: Ala	150		: Gly	Gly	Gly	Thr 155		Ser	Gly	Ala	Ala 160
	Pro	va:	l Va	l Ala	a Glr 16	n Ile	e Ala	. Lys	Glu	170		Tyr	Leu	Thr	Val 175	Gly
40	Va:	l Va	l Th	r Ty 18	_	o Phe	e Sei	c Phe	e Glu 185		y Ar <u>c</u>	, Lys	arg	Ser 190	Val	Gln
45	Ala	a Le	u Gl 19	_	a Il	e Glı	ı Ly:	s Let 200		n Ly:	s Ası	n Val	L Asp 205		Leu	Ile
50	Va	1 I1 21	_	o As	n As	p Ar	g Le [.] 21		u Asj	p Il	e Ala	a As ₁	o Glu	ı Asn	. Thr	Pro
	Le 22		.n As	sp Al	.a Ph	ie Le 23	_	u Al	a As	p As	p Va 23	l Len 5	u Arg	g Gln	Gly	Val

5	Gln Gly	y Il	e S		Asp 245	Ile	Ile	Thr	Ile	Pro 250	Gly	Leu	Val	Asn	Val 255	Asp
	Phe Ala	a As		7al :	Lys	Ala	Val	Met	Lys 265	Asp	Ser	Gly	Thr	Ala 270	Met	Leu
10	Gly Va	1 G1 27		/al	Ser	ser	Ser	Lys 280	Asn	Arg	Ala	Glu	Glu 285	Ala	Ala	Glu
15	Gln Al 29		ır I	Leu	Ala	Pro	Leu 295	Ile	Gly	Ser	Ser	Ile 300	Gln _.	Ser	Ala	Thr
20	Gly Va	ıl Va	al '	ĹΆτ	Asn	Ile 310	Thr	Gly	Gly	Lys	Asp 315	Ile	Thr	Leu	Gln	Glu 320
25	Val As	n A	rg '	Val	Ser 325		Val	Val	Thr	ser 330	Leu	Ala	Asp	Pro	Ser 335	Ala
	Asn I	le I	le	Phe 340		Ala	. Va]	. Val	Asp 345		a Arg	Tyr	Asn	Gly 350	Glu	·Ile
30	His V		hr 55	Ile	. Val	. Ala	Thi	61y 360		e Ala	a Gln	Ser	Phe 365	Gln	. Lys	Ser
35	Leu L	eu <i>P</i> 70	la	Asp	Pro) Lys	37		a Lys	s Lei	ı Val	. Asp 380	Arg	Asn	Gln	Glu
40	Pro T 385	hr (ln	Pro) Le	1 Th:		r Ala	a Arg	g Se	r Let 395	ı Thr	Thr	. Pro	Ser	Pro 400
45	Ala I	Pro	ser	Arç	g Se: 40		g Ly	s Le	u Ph	e Ph 41	e 0					
	<210	> 1	37													
	<211:	> 8	91													
50	<212	> E	NA													
	<213	r <	age	etes	ere	cta										

	<220>																
5	<221>	CD	S														
	<222>	(1) (891)													
10	<223>																
15	<400> atg ad Met Tl	13 ca t hr S	cc c	beu A	agg (Arg)	ttt (Phe l	cta a Leu 1	aca Thr	Glu	ccc Pro	tca (Ser :	ctt Leu	gta Val	tgc Cys	tca Ser 15	tcc Ser	48
20	act t Thr P	tc c he F	ero i	aca i Thr 1 20	ttc : Phe .	aat (Asn :	ccc (Pro :	cta Leu	cac His 25	aaa Lys	acc Thr	cta Leu	act Thr	aaa Lys 30	cca Pro	aca Thr	96
	cca a Pro L	ys 1	ccc Pro '	tac Tyr	cca Pro	aag Lys	cca Pro	cca Pro 40	cca Pro	att Ile	cgc Arg	tcc Ser	gtc Val 45	ctt Leu	caa Gln	tac Tyr	144
25	aat o Asn A	gc (aaa Lys	cca Pro	gag Glu	ctc Leu	gcc Ala 55	gga Gly	gac Asp	act Thr	cca Pro	cga Arg 60	gtc Val	gtc Val	gca Ala	atc Ile	192 ,
30	gac g Asp 1	gcc Ala	gac Asp	gtt Val	ggt Gly	cta Leu 70	cgt Arg	aac Asn	ctc Leu	gat Asp	ctt Leu 75	ctt Leu	ctc Leu	ggt Gly	ctc Leu	gaa Glu 80	240
35	aac (Asn)	cgc Arg	gtc Val	aat Asn	tac Tyr 85	acc Thr	gtc Val	gtt Val	gaa Glu	gtt Val 90	ctc Leu	aac Asn	ggc	gat Asp	tgc Cys 95	aga Arg	. 288
40	ctc Leu	gac Asp	caa Gln	gcc Ala 100	cta Leu	gtt Val	cgt Arg	gat Asp	aaa Lys 105	Arg	tgg Trp	tca Ser	aat Asn	ttc Phe 110	Glu	ttg Leu	336
	ctt Leu	tgt Cys	att Ile 115	Ser	aaa Lys	cct Pro	agg Arg	tca Ser 120	Lys	ttg Leu	cct Pro	tta Leu	gga Gly 125	Phe	Gly ggg	gga Gly	384
45	aaa Lys	gct Ala 130	Leu	gtt Val	tgg Trr	g ctt b Leu	gat Asp 135	Ala	a tta a Lei	a aas 1 Lys	gat Asp	agg Arg 140	g Gln	gaa Glu	ı ggt ı Gly	tgc Cys	432
50	ccg Pro 145	gat Asp	ttt Phe	ata Ile	a ctt e Lei	ata 110 150	a Asr	tg:	t cct s Pro	t gca	a ggt a Gly 15:	/ Ile	z gat e Asr	gco Ala	a Gly	ttc Phe 160	480
	ata	acc	gc:	c ati	t ac	a cc	g gc	t aa	c ga	a gc	c gta	a tta	a gtt	ac	a aca	a cct	528

	195	
	Ile Thr Ala Ile Thr Pro Ala Asn Glu Ala Val Leu Val Thr Thr Pro 165 170 175	
5	gat att act gca ttg aga gat gca gat aga gtt aca ggc ttg ctt gaa Asp Ile Thr Ala Leu Arg Asp Ala Asp Arg Val Thr Gly Leu Leu Glu 180 185 190	576
10	tgt gat gga att agg gat att aaa atg att gtg aac aga gtt aga act Cys Asp Gly Ile Arg Asp Ile Lys Met Ile Val Asn Arg Val Arg Thr 195 200 205	624
	gat ttg ata agg ggt gaa gat atg atg tca gtt ctt gat gtt caa gag Asp Leu Ile Arg Gly Glu Asp Met Met Ser Val Leu Asp Val Gln Glu 210 215 220	672
15	atg ttg gga ttg tca ttg ttg agt gat acc cga gga ttc gaa gtg att Met Leu Gly Leu Ser Leu Leu Ser Asp Thr Arg Gly Phe Glu Val Ile 230 235 240	720
20	cgg agt acg aat aga ggg ttt ccg ctt gtg ttg aac aag cct ccg act Arg Ser Thr Asn Arg Gly Phe Pro Leu Val Leu Asn Lys Pro Pro Thr 245 250 255	768
25	tta gca gga ttg gca ttt gag cag gct gct tgg aga ttg gtt gag caa Leu Ala Gly Leu Ala Phe Glu Gln Ala Ala Trp Arg Leu Val Glu Gln 260 265 270	816
30	gat agc atg aag gct gtg atg gtg gag gaa gaa cct aaa aag agg gga Asp Ser Met Lys Ala Val Met Val Glu Glu Glu Pro Lys Lys Arg Gly 275 280 285	864
35	ttt ttc tcg ttt ttt gga ggt tag tga Phe Phe Ser Phe Phe Gly Gly 290 295	891
	<210> 138	
40	<211> 295	
	<212> PRT	
45	<213> Tagetes erecta	
43	•	
	<400> 138	
50	Met Thr Ser Leu Arg Phe Leu Thr Glu Pro Ser Leu Val Cys Ser Ser 10 15	
	Thr Phe Pro Thr Phe Asn Pro Leu His Lys Thr Leu Thr Lys Pro Thr 20 25 30	

5	Pro	Lys	Pro 35	Tyr	Pro	Lys	Pro	Pro 40	P	ro :	Ile	Arg	Ser	Val 45	Leu	Gln	Tyr
•	Asn	Arg 50	Lys	Pro	Glu	Leu	Ala 55	Gly	γA	sp '	Thr	Pro	Arg 60	Va1	Va1	Ala	Ile
10	Asp	Ala	Asp	Val	Gly	Leu 70	Arg	Ası	n I	eu	Asp	Leu 75	Leu	Leu	Gly	Leu	Glu 80
15	Asn	Arg	Val	. Asn	Tyr 85	Thr	Val	. Va	1 0	lu	Val 90	Leu	Asn	Gly	Asp	Cys 95	Arg
20	Leu	Asp	Glr	n Ala 100		. Val	Arg	j As		.уs 105	Arg	Trp	Ser	Asn	. Phe 110	Glu	Leu
25	Lev	ı Cys	3 Ile 119		c Lys	s Pro	Ar	g Se 12		Lys	Leu	Pro	Leu	Gly 125	r Phe	Gly	Gly
	Lys	s Ala 13		u Vai	l Tr	o Lev	1 As 13		la	Leu	Lys	: Asp	140	Glr	ı Ğlu	ı Gly	y Cys
30	Pro		p Ph	e Il	e Le	u Ile 15		ap C	λs	Pro	Ala	Gl ₃ 155	y Ile	e Asj	o Alá	a Gly	y Phe 160
35	Il	e Th	r Al	a Il.	e Th 16		o Al	a A	sn	Glu	170	a Vai	l Le	ı Va	l Th	ć Th:	r Pro 5
40	As	p Il	.e Tł	nr Al 18		eu Ar	g A	A qa	la	Asp 185	o Arg	g Va	l Th	r Gl	у Le [.] 19	u Le	u Glu
45	C.7	yś As		ly II 95	le Ai	g As	p I		300 PAS	Me	t Il	e Va	l As	n Ar 20	g Va 5	l Ar	g Thr
70	As	-	eu I 10	le A	rg G	ly G		.sp 1	Met	Me	t Se	r Va	l Le 22	u As	sp Va	.1 G1	n Glu
50	M	et L 25	eu G	ly r	eu S		eu I 30	eu .	Ser	As	p Th	nr Ar 23	rg G]	.y Pì	ne Gl	.u Va	l Ile 240

										197								
	Arg Se	r T	hr A		Arg 245	Gly	Phe	Pro	Leu	Val 250	Leu	Asn	Lys	Pro	Pro 255	Thr		
5	Leu Al	a G		Leu 260	Ala	Phe	Glu	Gln	Ala 265	Ala	Trp	Arg	Leu	Val 270	Glu	Gln		
10	Asp Se		et 1 75	Гуs	Ala	Val	Met	Val 280		Glu	Glu	Pro	Lys 285	Lys	Arg	Gly		
15	Phe Ph 29		er :	Phe	Phe	Gly	Gly 295											
	<210>	13	39															
	<211>	33	32															
20	<212>	DI	JA.															
	<213>	Ta	aget	es e	erec	ta												
25																		
	<220>																	
	<221>	С	DS															
30	<222>	(1).	. (33	0)						•							
	<223>																	
35																		
40	<400> aag c Lys I 1	:tt	σca	cga Arg	a gco g Ala 5	c tc a Se	t cto	c ta u Ty	t tt r Ph	t ta e Ty 10	r Th	t tca r Se:	a atg r Met	gcg : Ala	gca Ala 15	a gca a Ala	48	1
	att g	gct Ala	gtc Val	cct Pro	t tg o Cy	t ag s Se	c tc r Se	a ag r Ar	a cc g Pr 25	o Ph	t gg e Gl	c tt y Le	a ggt u Gly	cga Arg 30	a ato g Met	g cgg : Arg	96	;
45	tta (Leu 1	ctt Leu	ggt Gly 35	cat	t aa s Ly	a cc s Pr	c ac	a ac r Th 40	r Il	a ac .e Th	t tg r Cy	t ca s Hi	c tto s Pho 45	c cco	e tti	t tct e Ser	144	Ŀ
50	ttt	tct	ato	aa	a to	a tt	t ac	:c	a at	t gt	t ag	ia aa	c aga	a aga	a tg	t act	: 192	?

Phe Ser Ile Lys Ser Phe Thr Pro Ile Val Arg Gly Arg Arg Cys Thr

gtt tgt ttt gtt gcc ggt ggc gac agt aat agt aac agt aat aat

	Val (Cys	Phe	Val	Ala	Gly 70	Gly	qaA	Ser	Asn	Ser 75	Asn	Ser	Asn	Asn	Asn 80		
5	agt Ser	gac Asp	agt Ser	Asn	agt Ser 85	aat Asn	aat Asn	ccg Pro	ggt Gly	ctg Leu 90	gat Asp	tta Leu	aac Asn	ccg Pro	gcg Ala 95	gtt Val		288
10	atg Met	aac Asn	cgt Arg	aac Asn 100	cgt Arg	ttg Leu	gtt Val	gaa Glu	gaa Glu 105	aaa Lys	atg Met	gag Glu	agg Arg	tcg Ser 110	ac			332
	<210	> :	L40				*					٠		•				
15	<211	.> :	110															
	<212	!> !	PRT												•			
20	<213	}> !	rage:	tes (erect	ca ,												
	<400)>	140															
25	Lys 1	Leu	Ala	Arg	Ala 5	Ser	Leu	тут	Phe	туr 10	Thr	. Ser	Met	Ala	Ala 15	Ala		
30	Ile	Ala	Val	Pro 20	Cys	Ser	Ser	Arg	Pro 25	Phe	: Gly	Leu	Gly	Arg	Met	Arg		
35	Leu	Leu	Gly 35	His	Lys	Pro	Thr	Thr 40	· Ile	. Thr	Cys	His	Phe 45	Pro	Phe	. Ser	٠.	
	Phe	Ser 50	Ile	. Lys	s Ser	Phe	Thr 55	Pro	ıle	e Val	L Arg	60 Gly	' Arg	Arg	Cys	Thr		
40	Val 65	Cys	s Phe	e Val	l Ala	Gly 70	gly	/ Ası) Sei	c · Ası	n Sei 75	c Asr	ı Ser	Asn	a Asr	a Asn 80		
45	Ser	As _]	o Se:	r Ası	n Sei 85	c Ası	n Ası	ı Pr	o Gl	90 90	u Asj	p Lev	ı Asr	ı Pro	Ala 95	a Val		
50	Met	: As:	n Ar	g Asi		g Le	u Va	l Gl	u Gl [.] 10		s Me	t Glı	ı Arç	g Sei 110				

```
<211> 332
     <212> DNA
 5
     <213>
            Tagetes erceta
     <220>
10
     <221> misc_feature
     <222> (1)..(332)
15
     <223> b-Hydroxylase Sense-Fragment
     <400> 141
20
     aagettgeae gageetetet etattttae aetteaatgg eggeageaat tgetgteeet
                                                                          60
     tgtagctcaa gaccatttgg cttaggtcga atgcggttac ttggtcataa acccacaacc
                                                                         120
     ataacttgtc acttcccctt ttcttttct atcaaatcat ttaccccaat tgttaggggc
                                                                         180
25
     agaagatgta ctgtttgttt tgttgccggt ggcgacagta atagtaacag taataataat
                                                                         240
     agtgacagta atagtaataa tccgggtctg gatttaaacc cggcggttat gaaccgtaac
                                                                         300
30
     cgtttggttg aagaaaaat ggagaggtcg ac
                                                                         332
     <210> 142
35 <211> 332
     <212> DNA
     <213> Tagetes erecta
40
     <220>
45
    <221> misc_feature
     <222> (1)..(332)
    <223> b-Hydroxylase Antisense-Fragment
50
     <400>
           142
```

gaatteggea egageetete tetatttta eaetteaatg geggeageaa ttgetgteee

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP04/008624

International filing date: 31 July 2004 (31.07.2004)

Document type: Certified copy of priority document

Document details: Country/Office: EP

Number: PCT/EP/03/09109

Filing date: 18 August 2003 (18.08.2003)

Date of receipt at the International Bureau: 24 January 2005 (24.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.