ЛЕКЦІЯ 6

Функції

ФУНКЦІЇ

Функція — математичне поняття, що відображає зв'язок між елементами множин. Можна сказати, що функція — це «закон», за яким кожному елементу однієї множини ставиться у відповідність деякий елемент іншої множини.

$$f = \{(x_1, y_1), (x_2, y_2), ..., (x_i, y_i), ..., (x_n, y_n), \}$$

Значення y_i в кожній з пар $\left(x_i,y_i\right)\in f$ називається функцією від x_i , що у загальному випадку записується у вигляді:

$$y = f(x)$$
.

Отже, функція – це множина, представлена у вигляді:

$$f = \{(x,y) \in X \times Y | y = f(x)\}.$$

Формальне визначення функції.

Відношення f на $X \times Y$ називають функцією з X в Y і позначають через $f: X \to Y$, якщо для кожного $x \in X$ існує єдиний елемент $y \in Y$ такий, що $(x,y) \in f$.

Якщо
$$f:X \to Y$$
 — функція, і $\left(x,y\right) \in f$, то говорять, що $y=f\left(x\right)$.

Як видно з визначення, символ f використовується у двох змістах:

- 1. f це множина, елементами якої є пари, які беруть участь у відношенні.
- 2. $f\left(x\right)$ це позначення для $y\in Y$, яке відповідає даному $x\in X$.

Область визначення й область значень. Образ

Якщо задана функція $f: X \to Y$, то множину X називають областю визначення функції f, а множину Y називають областю потенційних значень.

Образ множини.

Нехай дана множина $E\subseteq X$. Образом множини E називають множину всіх значень функції f на всіх елементах множини E. Така множина позначається f(E):

$$f\left(E\right) = \left\{f\left(x\right)\middle|x\in E\right\}$$
 або рівнозначно: $f\left(E\right) = \left\{y\in Y\middle|\left(x,y\right)\in f\ \partial$ ля деякого $x\in E\right\}$

Образ елемента.

Елемент f(x) називають **образом** елемента x.

Визначення області значень через образ

Областю значень функції f називають образ f(X) усієї множини X.

Прообраз. Відображення

Прообраз множини. Прообразом підмножини $F \subseteq Y$ називають множину всіх елементів $x \in X$, для яких $f(x) \in F$. Прообраз позначається: $f^{-1}(F)$:

$$f^{-1}(F) = \{x | f(x) \in F\}$$

Елемент-прообраз

Елемент x називають **прообразом** $f\left(x\right)$

Визначення відображення

Функцію $f: X \to Y$ називають також **відображенням**; при цьому говорять, що f відображає X в Y.

Отже, функція та відображення – синоніми.

Однак термін «функція» частіше використовується для того, щоб вказати на відношення між елементами множин, а відображення — для визначення відношення між множинами.

Властивості відображень множини

Властивість 1. Якщо A_1 й A_2 – підмножини X, то образ об'єднання дорівнює об'єднанню образів:

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2).$$

Властивість 2. Для взаємо-однозначного відображення образ перетину дорівнює перетину образів:

$$f(A_1 \cap A_2) = f(A_1) \cap f(A_2).$$

Властивість 3. Для довільного образа відображення перетину входить у перетин образів:

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

Узагальнення властивостей 1 і 3:

$$f\left(\bigcup_{i=1}^{n}A_{i}\right)=\bigcup_{i=1}^{n}f\left(A_{i}\right),\quad f\left(\bigcap_{i=1}^{n}A_{i}\right)\subseteq\bigcap_{i=1}^{n}f\left(A_{i}\right).$$

Композиція функцій

Композицією двох функцій $f:A\to B$ і $g:B\to C$ називають функцію $h:A\to C$, яка задана співвідношенням $h(x)=g\big(f(x)\big)$

Інакше кажучи, h являє собою множину пар

$$h = \{(a,c) | (a,b) \in f \ u \ (b,c) \in g \ \partial n g \ \partial e g \kappa o c o b \in B\}$$

Композиція функцій позначається: $f \circ g$.

Нехай $f: A \to B$, $g: B \to C$ і $k: C \to D$

Композиція (як операція над функціями) асоціативна, тобто $f\circ \big(g\circ k\big) = \big(f\circ g\big)\circ k\,.$

Тому в композиції декількох функцій, які ідуть підряд, можна опускати дужки.

Композиція відображень

Нехай дані відображення $Q:X\to X$ і $G:X\to X$.

Композицією цих відображень називають відображення $Q \circ G$, обумовлене співвідношенням:

$$Q(G) = Q \circ G.$$

Дане співвідношення виражає відображення Q відображення G.

У випадку, коли Q = G можливо одержати відображення:

$$Q^{2} = Q(Q), Q^{3} = Q(Q^{2}), ..., Q_{X}^{m} = Q(Q_{X}^{m-1}).$$

Якщо
$$Q^0=X$$
 то $Q^0=Qig(Q^{-1}ig)=X$.

Оскільки Q^{-1} – зворотне відображення, то

$$Q^{-1} = Q(Q^{-2}), Q^{-2} = Q(Q^{-3}),$$
i T.iH.

Приклад. Нехай X— множина людей.

Для кожної людини x із множини $x \in X$ множину його дітей визначимо як $Q_X = Q \left(X \right)$.

Тоді $Q_X^2 = Qig(Qig(Xig)ig)$ буде представляти множину його онуків,

$$Q_X^3 = Qig(Qig(Qig(Xig)ig)$$
 - множина його правнуків, $Q_X^{-1} = Q^{-1}ig(Xig)$ - множина батьків.

Зобразимо множину людей точками, а стрілками представимо відповідності між X,Q_X , Q_X^2 і т.ін. Тоді одержуємо родовід або генеалогічне дерево для даної множини людей.

Ін'єктивні відображення й функції

Визначення 1.Відображення множини X в множину Y називають **ін'єктивним**, якщо образ $f\left(x\right)$ може мати лише один прообраз x.

Отже, має місце *одно-однозначна* відповідність.

$$f: X \to Y$$
 $f = \{(1,D), (2,B), (3,A)\}$

При цьому, не всі елементи Y - образи

Наприклад: Елемент С не має прообразу

Визначення 2.

Функцію $f:X \to Y$ називають **ін'єктивною**, або **ін'єкцією**, якщо з $f\left(x\right) = f\left(x'\right)$ випливає x = x'.

Визначення 3. Ін'єкція (ін'єктивне відображення, ін'єктивна функція) — таке співвідношення між елементами двох множин, в якому двом різним елементам області визначення X ніколи не співставляється один і той самий елемент області значень Y.

Приклади ін'єктивних функцій

$$f: N \to N, y = x^2 -$$
iн'єктивне $f(1)=1, f(2)=4, f(3)=9, f(4)=16,...$

Але для елементів множини $N = \{3, 5, 6, 7, 8, 10, 11, ...\}$ немає прообразів

$$f:R \to R, y=x^2$$
 — не ін'єктивне, оскільки $f(-2)=f(2)=4, \ f(-3)=f(3)=9,...$ Образи $Y=\{4,9,16,25,...\}$ мають по два прообрази

Сюр'єктивні відображення й функції

Визначення 1. Відображення множини X в множину Y називають **сюр'єктивним,** якщо кожний елемент з Y має принаймні один прообраз із X.

Отже, має місце багато-однозначна відповідність.

Визначення 2. Функцію $f: X \to Y$ називають **сюр'єктивною функцією**, або **сюр'єкцією**, якщо кожний елемент множини Y є образом хоча б одного елемента множини X, тобто

$$\forall y \in Y \exists x \in X : y = f(x)$$

Визначення 3. Сюр'єкція (сюр'єктивне відображення, сюр'єктивна функція) — співвідношення між двома множинами, в якій з кожним елементом множини Y асоціюється щонайменше один (або більше) елементів множини X.

Приклади сюр'єктивних функцій

1. Трансцендентні функції

$$f: R \to [-1;1], \ y = \sin(x)$$
 – сюр'єктивна функція

2. Округлення до цілого

$$f: R \to Z, y = \lfloor x \rfloor, y = \lceil x \rceil$$
 – сюр'єктивні функції

Приклад функції, яка не є сюр'єктивною

$$f:R o R,\ y=\left\lfloor x^2 \right
floor-$$
 не сюр'єктивна, оскільки не існує такого $x\in R,\$ що $y<0.$

Бієкція

Визначення 1. Функцію, яка є одночасно ін'єктивною, і сюр'єктивною, називають взаємно однозначною відповідність, або бієкцією.

$$f: X \to Y$$

 $f = \{(1,B), (2,C), (3,D), (4,G)\}$

Якщо X = Y і $f: X \to X$ є взаємно однозначною відповідністю, то f називається перестановкою множини X.

Визначення 2. Бієкція- відповідність, яка асоціює один елемент множини X з одним і тільки одним елементом множини Y і навпаки, одному елементу множини Y співставляється один і лише один елемент множини X.

Приклади бієктивних функцій

1. f: $\mathbf{R} \to \mathbf{R}$ має вигляд: f(x) = 2x + 1.

Ця функція є бієктивною, тому що для будь-якого у $\in R$, існує єдиний розв'язок рівняння у = 2x + 1 відносно х:

$$x = (y - 1)/2$$
.

2. f:
$$\mathbf{R} \to \mathbf{R}$$
 $y = x, y = x^3$

Ці функції також бієктивні, оскілки

$$\forall y \in Y \ \exists x = y, \ \forall y \in Y \ \exists \ x = \sqrt[3]{y}$$
.

Способи задавання функцій.

1. Табличний спосіб задавання функції.

x						6			
f(x)	1	4	9	16	25	36	49	64	81

У даній таблиці стовпці являють собою множину впорядкованих пар:

$$y = f(x) = \{(1,1),(2,4),(3,9),(4,16),(5,25),(6,36),(7,49),(8,64),(9,81)\},$$

що відповідає визначенню функції, представленому раніше.

2. Аналітичний спосіб задавання функції

При аналітичному задаванні функція представлена у вигляді формули, тобто математичного виразу, що включає математичні операції, які необхідно виконати над $x \in X$, щоб одержати $y \in Y$:

$$y = f(x) = x^2$$

$$y = \left\{ \left(x, y \right) \in R^2 \middle| y = x^2 \right\}$$

3. Графічний спосіб задавання функції.

Якщо $X \subseteq R$ і $Y \subseteq R$, тобто X і Y є підмножинами множини дійсних чисел, то пари $(x,y) \in R^2$ можливо представити у вигляді точок на площині. Повна сукупність точок буде являти собою графік функції.

Питання: Як задати функцію в R^3 ?

Спеціальні функції

1. Тотожна функція.

Нехай $I:X\to X$ визначене співвідношенням $f\left(x\right)=x$ для всіх $x\in X$. Функцію I називають **тотожною функцією** на X.

2. Округлення до нижнього цілого

Функцію $f: X \to Y$, де X — множина дійсних чисел, а Y — множина цілих чисел, називають **округленням до нижнього цілого** й позначають $f(x) = \lfloor x \rfloor$, якщо вона кожному $x \in X$ ставить у відповідність найбільше з цілих чисел, яке є меншим або дорівнює x.

Приклад:

Для додатних чисел:
$$[2,3] = 2; [3,899] = 3; [10] = 10;$$

Для від'ємних чисел:
$$[-11,1] = -12; [-10,99] = -11;$$

3. Округлення до верхнього цілого

Функцію $f: F \to B$ називають **округленням до верхнього цілого** й позначаютьf(x) = [x], якщо вона кожному $x \in X$ ставить у відповідність найменше з цілих чисел, яке більше або дорівнює x.

Приклад:

4. Факторіал

Нехай X і Y збігаються із множиною невід'ємних цілих чисел. **Факторіалом** назвемо функцію $f:X\to Y$, позначувану через $f\left(n\right)=n!$ і обумовлену наступними співвідношеннями:

$$0!=1$$
 $1!=1$
 $2! = 1 \cdot 2 = 2$
 $k! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot k$

5. Бінарна (двомісна) операція

Нехай X,Y,Z — трійка непустих множин. **Бінарною операцією** або **двомісною операцією** у парі(x,y), $x \in X$ і $y \in Y$ зі значенням в $z \in Z$ називають функцію $b: P \to Z$, де $P \subset X \times Y$.

Бінарну операцію позначають знаком дії, який ставиться зазвичай між операндами.

Нехай • – довільна операція. Тоді існують види записів:

- 1. Інфіксна форма запису: $x \bullet y$. *Наприклад*: x + y
- 2. Префіксна форма запису: •ху. Наприклад: +ху
- 3. Постфіксна форма запису: $xy \bullet$. Наприклад: xy +

Приклад: «+», «-», «×» — бінарні операції на множині раціональних чисел.

Послідовність

Визначення. Нехай дана множина $X = \{x_1, ..., x_i, ..., x_n\}$ довільної природи. Усяке відображення $f: N \to X$ множини натуральних чисел N у множину X називають **послідовністю** (елементів множини X).

Образ натурального числа i, а саме, елемент $x_i = f(i)$, називають i-м членом або елементом послідовності, а порядковий номер члена послідовності — її індексом.

Позначення

Послідовність $x_1, x_2, ..., x_i, ...$ записують у вигляді

$$\left\{ x_{i} \right\}_{i=1}^{\infty}$$
 якщо нестрогий порядок, $\left(x_{i} \right)_{i=1}^{\infty}$ якщо строгий.

Для скінченних послідовностей: $(x_i)_{i=1}^n$ або $\{x_i\}_{i=1}^n$

Сума елементів послідовності:
$$S = \sum_{i=1}^{n} x_i$$

Приклади послідовностей

1. Послідовність $\{x_i\}_{i=1}^8 = \{x_i | x_i = i+1, i=\overline{1,8}\}$

$i \in N$	1	2	3	4	5	6	7	8
x = i + 1	2	3	4	5	6	7	8	9

2. Послідовність $\{x_i\}_{i=1}^8 = \{x_i | x_i = i^2, i = \overline{1,8}\}$

$i \in N$	1	2	3	4	5	6	7	8
$x = i^2$	1	4	9	16	25	36	49	64

3. Послідовність
$$\{x_i\}_{i=1}^8 = \left\{x_i \middle| x_i = \frac{i+2i}{2i-i}, i = \overline{1,8}\right\}$$

$i \in N$	1	2	3	4	5	6	7	8
$x = i^2$	3	3	3	3	3	3	3	3

Функція двох змінних

Визначення. Якщо кожній парі (x,y) елементів деякої множини $D = X \times Y$ відповідає єдиний елемент $z \in Z$, а кожному елементу z відповідає хоча б одна пара (x,y), то ми говоримо, що z є функція двох незалежних змінних x і y, визначена в D.

Функція двох змінних $f:D\to Z$ є відображенням декартового добутку $D=X\times Y$ в множину Z.

Формальне визначення функції двох змінних має такий вид:

$$f = \{(x, y, z) \in X \times Y \times Z | z = f(x, y)\}.$$

Матриця

Нехай є дві скінченні множини:

$$M = \{1, 2, ..., m\} \text{ i } N = \{1, 2, ..., n\},$$

де m і n — натуральні числа. Функція

$$A: M \times N \rightarrow D$$

представляє матрицю розміру $m \times n$, або масив $m \times n$ (m на n)

Множина D — це, як правило, множина дійсних, комплексних, раціональних або цілих чисел.

Елементи D називають **скалярами.**

Таким чином, для кожного $i,\,1 < i < m$, і кожного $j,\,1 < j < n$, є елемент $A\big(i,j\big) \in D$, який перебуває в i-му рядку і j-му стовпці відповідної прямокутної таблиці.

Елемент матриці A(i,j) представляє собою образ елемента області визначення (i,j) і скорочено позначається через $A_{i,j}$. Отже, $m \times n$ матриця A зображується прямокутною таблицею, де образи впорядкованих пар $(i,j) \in \left\{1,2,...,m\right\} \times \left\{1,2,...,n\right\}$ можуть бути представлені в такому виді:

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mn} \end{bmatrix}$$

Матриця A містить m рядків і n стовпців і є матрицею розміру $m \times n$. Скорочено матрицю записують $A = \left[A_{ij} \right]$ або $A = \left[a_{ij} \right]$.

Значення a_{ij} називають **компонентом**, або **елементом** матриці A.

Види матриць

1. *Матриця-стовпець.* Матрицю розміру $m \times 1$ називають матрицею-*стовпцем або вектором-стовпцем*

$$A = egin{bmatrix} a_{11} \\ a_{2,1} \\ \vdots \\ a_{m1} \end{bmatrix} = egin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$

2. *Матриця-рядок*. Матрицю розміру $1 \times n$ називають матрицею-рядком або *вектором-рядком*.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

Якщо A — матриця-рядок або матриця-стовпець, то індекс рядка або, відповідно, стовпця, звичайно опускають.

3. **Квадратична матриця.** Якщо в матриці кількість рядків і кількість стовпців збігається: m = n = k, то її називають **квадратною матрицею.**

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1k} \\ A_{12} & A_{22} & \dots & A_{2k} \\ \dots & \dots & \dots & \dots \\ A_{k1} & A_{k2} & \dots & A_{kk} \end{bmatrix}$$

4. *Діагональна матриця*. Це квадратична матриця, усі елементи якої, крім діагональних, нульові.

$$\forall (i \neq j) \Rightarrow A_{ij} = 0.$$
 $A = diag(A_1, A_2, ..., A_k).$

5. *Одинична матриця*. Це діагональна матриця з одиничними елементами на діагоналі.

$$\begin{cases} \forall (i \neq j) \Rightarrow A_{ij} = 0, \\ \forall (i = j) \Rightarrow A_{ij} = 1 \end{cases} A = diag(1, 1, ..., 1)$$

Операції над матрицями

Рівність матриць

Дві матриці $A = \begin{bmatrix} A_{ij} \end{bmatrix}$ і $B = \begin{bmatrix} B_{ij} \end{bmatrix}$ розміру $m \times n$ *рівні*, якщо рівні їхні відповідні елементи; тобто A = B тоді й тільки тоді, коли $A_{ij} = B_{ij}$ для всіх i, 1 < j < m, і всіх j, 1 < j < n.

Множення матриці на скаляр

Якщо d — скаляр, а $A = \begin{bmatrix} A_{ij} \end{bmatrix}$ — матриця $m \times n$, то dA- це матриця $D = \begin{bmatrix} D_{ij} \end{bmatrix}$ розміром $m \times n$, де $D_{ij} = dA_{ij}$, тобто кожний компонент є добуток відповідного компонента A на d . Добуток числа d й матриці A називають **множенням матриці на скаляр.**

Сума і різниця матриць

Додавати і віднімати можна тільки матриці одного розміру !!

Сума

Якщо $A=\begin{bmatrix}A_{ij}\end{bmatrix}$ і $B=\begin{bmatrix}B_{ij}\end{bmatrix}$ — $m\times n$ -матриці, тоді A+B є $m\times n$ матрицею $C=\begin{bmatrix}C_{ij}\end{bmatrix}$, де $C_{ij}=A_{ij}+B_{ij}$, інакше кажучи, матриці додаються **покомпонентно**. Матрицю C називають **сумою матриць** A і B.

Різниця

Різницю двох матриць визначимо через їх суму.

Запис
$$A-B$$
 означає $A+\left(-1\right)\cdot B$.

Отже, якщо
$$A=\left[A_{ij}\right]$$
 й $B=\left[B_{ij}\right]$ — $m\times n$ -матриці, тоді $A-B$ є $m\times n$ -матриця $C=\left[C_{ij}\right]$, де $C_{ij}=A_{ij}-B_{ij}$.

Добуток матриць

Добуток матриць $A \cdot B$ - це операція обчислення такої матриці C, кожний елемент якої дорівнює сумі добутків у відповідному рядку першого співмножника та стовпці другого:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22}$$
$$c_{33} = a_{31}b_{13} + a_{32}b_{23}$$

1. Множення матриці на матрицю-стовпець

Матриця повинна бути ліворуч, а матриця-стовпець – праворуч:

$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m1} & \dots & A_{mn} \end{bmatrix} \times \begin{bmatrix} B_1 \\ B_2 \\ \dots \\ B_n \end{bmatrix} = \begin{bmatrix} A_{11}B_1 + A_{12}B_2 + \dots A_{1n}B_n \\ A_{21}B_1 + A_{22}B_2 + \dots A_{2n}B_n \\ \dots & \dots \\ A_{m1}B_1 + A_{m2}B_2 + \dots A_{mn}B_n \end{bmatrix}$$

2. Множення матриці-рядка на матрицю

Матриця-рядок повинна бути ліворуч, а матриця-праворуч:

$$\begin{bmatrix} A_1 & A_2 \dots A_m \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} & \dots & B_{1n} \\ B_{21} & B_{22} & \dots & B_{2n} \\ \dots & \dots & \dots & \dots \\ B_{m1} & B_{m1} & \dots & B_{mn} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^m A_k B_{k1} & \sum_{k=1}^m A_k B_{k2} & \dots & \sum_{k=1}^m A_k B_{kn} \\ \vdots & \vdots & \vdots & \vdots \\ B_{mn} & B_{mn} & \dots & B_{mn} \end{bmatrix}$$

Б) Нехай
$$A$$
 матриця $m \times p$:
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1p} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mp} \end{bmatrix}$$
 Нехай B матриця $p \times n$:
$$B = \begin{bmatrix} B_{11} & B_{12} & B_{13} & \cdots & B_{1n} \\ B_{21} & B_{22} & B_{23} & \cdots & B_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ B_{p1} & B_{p2} & B_{p3} & \cdots & B_{pn} \end{bmatrix}$$

Тоді добутком матриць A і B називається матриця $C = \begin{bmatrix} C_{ij} \end{bmatrix}$ розміром $m \times n$, де C_{ij} - це скалярний добуток i-го рядка матриці A на j-й стовпець матриці B . C = AB

$$C_{i,j} = \begin{bmatrix} A_{i1} & A_{i2} & A_{i3} & \cdots & A_{ip} \end{bmatrix} \bullet \begin{bmatrix} B_{1j} \\ B_{2j} \\ B_{3j} \\ \vdots \\ B_{pj} \end{bmatrix} = \sum_{k=1}^p A_{ik} B_{kj}$$

Транспонована матриця

Нехай A — матриця $m \times n$.

Її $\pmb{mранспонованою}$ матрицею називають матриця $\pmb{A^t}$ розміром $n \times m$ таку, що $A_{ij}^t = A_{ji}$, де A_{ij} — елемент i-го рядка і j-го стовпця матриці A.

$$\begin{pmatrix} a & 1 \\ b & 2 \\ c & 3 \end{pmatrix}^t = \begin{pmatrix} a & b & c \\ 1 & 2 & 3 \end{pmatrix}$$

Симетрична матриця

Якщо A — матриця $n \times n$ і $A_{ij} = A_{ji}$ для всіх $1 \leq i$, $j \leq n$, то матрицю A називають **симетричною.** Іншими словами, матриця A симетрична тоді й тільки тоді, коли $A = A^t$.

Матричне представлення відношень

Нехай $A=\left\{a_1,a_2,a_3,...,a_m\right\}$ і $B=\left\{b_1,b_2,b_3,...,b_n\right\}$, і нехай R — відношення на $A \times B$.

Матричним представленням R називають матрицю $M = \left[M_{ii} \right]$ розміром m imes n, елементи якої визначають із співвідношення

$$M_{ij} = \begin{cases} 1, & \left(a_i, b_j\right) \in R, \\ 0, & \left(a_i, b_j\right) \not \in R. \end{cases}$$

Приклад. Нехай $A = \{a_1, a_2, a_3, a_4\}; B = (b_1, b_2, b_3, b_4),$

$$m = 4, n = 4$$

Тоді матриця відношення,

Тоді матриця відношення , якщо
$$R = \left\{ (a_1, b_1), (a_2, b_1), (a_2, b_3), (a_3, b_2), (a_4, b_4) \right\} M = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ a_1 & 1 & 0 & 0 & 0 \\ a_2 & 1 & 0 & 1 & 0 \\ a_3 & 0 & 1 & 0 & 0 \\ a_4 & 0 & 0 & 0 & 1_{35} \end{bmatrix}$$

Матриця перестановок

Нехай M — матриця розміром $n \times n$, у кожному рядку і у кожному стовпці якої тільки один елемент, який дорівнює 1, а всі інші дорівнюють 0. Таку матрицю M називають матрицею перестановок.

Приклад. Нехай дана перестановка 4-го порядку

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \ 4 & 2 & 1 & 3 \end{pmatrix}$$
 Відповідна матриця перестановок:
$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}$$

Множення перестановочної матриці на довільну міняє місцями рядки в довільній матриці Множення довільної матриці на перестановочну міняє місцями стовбці в довільній матриці

Поняття функціонала

Поняття функціонала є більш широким, ніж поняття функції.

Функція

Функція у загальному випадку : $f: X \to Y$, де

X – множина дійсних чисел.

Y – множина

дійсних чисел.

Кожна пара $(x,y) \in f$ ставить у відповідність одному дійсному числу x інше дійсне число y.

Функціонал

Функція у загальному випадку : $F : \{f(x)\} \to Y$, де

 $\{f(x)\}$ – множина функцій.

Y – множина дійсних чисел

Розглянемо деякий набір кривих (траєкторій) $y = f_i(x)$, що з'єднують фіксовані точки A и B, як показано на рисунку.

Нехай по кожній із цих траєкторій може відбуватися вільне переміщення точки. Позначимо через t час, який потрібно на переміщення із точки A в точку B. Цей час очевидний залежить від характеру траєкторії AB, тобто від виду функції $f_i\left(x\right)$.

Позначимо через $F\left(x\right)$ множину з n різних функцій, що зображують траєкторію AB,

$$F(x) = \{f_1(x), f_2(x), \dots, f_i(x), \dots, f_n(x)\}$$

а через T множину дійсних чисел $t \in T$, що визначають час переміщення точки, то залежність часу руху від виду функції може бути записана як відображення.

Функціонал — це відображення J, що має таке формальне представлення:

$$J:Fig(xig) o T$$
 , або $J=ig\{ig(fig(xig),tig)ig|fig(xig)\in Fig(xig),t\in T,t=Jig[fig(xig)ig\}$.

Оператор

Поняття оператора. Оператор представляє більш загальне поняття в порівнянні з функціоналом. Оператор у загальному випадку: $L: X \to Y$, де $X = \{x(t)|t$ – аргемент функції $\}$ -множина функцій, $Y = \{y(t)|t$ – аргемент функції $\}$ - множина функцій. $x(t) \in X$ і $y(t) \in Y$ - функції, що є елементами множин. Отже елементами множини L є пари(x(t),y(t)), а

оператор L перетворить функцію

$$y(t) = L[x(t)],$$

Таким чином, оператор встановлює відповідність між двома множинами функцій, так, що кожній функції з одного множини відповідає функція з іншої множини.

Приклад. Позначимо через p оператор диференціювання.

Тоді зв'язок між похідною $f'(x) = \frac{df(x)}{dx}$ і функцією f(x) може бути представлений в операторному вигляді:

$$f'(x) = p[f(x)].$$