Chapter 8: Project Quality Management

Information Technology Project Management, Seventh Edition

ĐẶNG THỊ THU HÀ – SE dtthuha79@gmail.com https://lms.iuh.edu.vn

Learning Objectives

- Define project quality management and understand how quality relates to various aspects of IT projects
- Describe quality management planning and how quality and scope management are related
- Explain the main outputs of the quality control process
- Understand the tools and techniques for quality control, such as the Seven Basic Tools of Quality, statistical sampling, Six Sigma, and testing

What Is Project Quality?

- The International Organization for Standardization (ISO) defines quality as "the degree to which a set of inherent characteristics fulfils requirements" (ISO9000:2000)
- Other experts define quality based on:
 - Conformance to requirements: The project's processes and products meet written specifications
 - Fitness for use: A product can be used as it was intended

What Is Project Quality Management?

- Project quality management ensures that the project will satisfy the needs for which it was undertaken
- Processes include:
 - 8.1.Planning quality management: Identifying which quality standards are relevant to the project and how to satisfy them;
 a metric is a standard of measurement
 - 8.2.Performing quality assurance: Periodically evaluating overall project performance to ensure the project will satisfy the relevant quality standards
 - 8.3.Performing quality control: Monitoring specific project results to ensure that they comply with the relevant quality standards

Figure 8-1. Project Quality Management Summary

Planning Process: Plan quality management Outputs: Quality management plan, process improvement plan, quality metrics, quality checklists, and project documents updates Executing Process: Perform quality assurance

Outputs: Change requests, project management plan updates, project documents updates, and organizational process

asset updates

Monitoring and Controlling

Process: Perform quality control

Outputs: Quality control measurements, validated changes, validated deliverables, work performance information, change requests, project management plan updates,

project documents updates, and organizational

process asset updates

Project Start

Project Finish

8.1. Planning Quality

- Implies the ability to anticipate situations and prepare actions to bring about the desired outcome
- Important to prevent defects by:
 - Selecting proper materials
 - Training and indoctrinating people in quality
 - Planning a process that ensures the appropriate outcome

Scope Aspects of IT Projects

- Functionality is the degree to which a system performs its intended function
- Features are the system's special characteristics that appeal to users
- System outputs are the screens and reports the system generates
- Performance addresses how well a product or service performs the customer's intended use
- Reliability is the ability of a product or service to perform as expected under normal conditions
- Maintainability addresses the ease of performing maintenance on a product

Who's Responsible for the Quality of Projects?

- Project managers are ultimately responsible for quality management on their projects
- Several organizations and references can help project managers and their teams understand quality
 - International Organization for Standardization (www.iso.org)

8.2. Performing Quality Assurance

- Quality assurance includes all the activities related to satisfying the relevant quality standards for a project
- Another goal of quality assurance is continuous quality improvement
- Benchmarking generates ideas for quality improvements by comparing specific project practices or product characteristics to those of other projects or products within or outside the performing organization
- A quality audit is a structured review of specific quality management activities that help identify lessons learned that could improve performance on current or future projects

8.3. Controlling Quality

- The main outputs of quality control are:
 - Acceptance decisions
 - Rework
 - Process adjustments
- There are Seven Basic Tools of Quality that help in performing quality control

- 8.3.1 Cause-and-effect diagrams
- 8.3.2 A control chart
- 8.3.3 A check-sheet
- 8.3.4 A scatter diagram
- 8.3.5. A histogram
- ▶ 8.3.6. A Pareto chart
- ▶ 8.3.7 Flowcharts

- 8.3.1 Cause-and-effect diagrams
- 8.3.2 A control chart
- 8.3.3 A check-sheet
- 8.3.4 A scatter diagram
- 8.3.5. A histogram
- ▶ 8.3.6. A Pareto chart
- 8.3.7 Flowcharts

Cause-and-Effect Diagrams

- Cause-and-effect diagrams trace complaints about quality problems back to the responsible production operations
- They help you find the root cause of a problem
- Also known as fishbone or Ishikawa diagrams
- Can also use the 5 whys technique where you repeated ask the question "Why" (five is a good rule of thumb) to peel away the layers of symptoms that can lead to the root cause

Figure 8-2. Sample Cause-and-Effect Diagram

How to Create a Cause and Effect Diagram

- A cause and effect diagram can be created in six steps:
 - 1. Draw Problem Statement
 - Draw Major Cause Categories
 - Brainstorm Causes
 - 4. Categorize Causes
 - 5. Determine Deeper Causes
 - 6. Identify Root Causes

1. DRAW PROBLEM STATEMENT

Fishbone Diagram - Problem Statement

2. DRAW MAJOR CAUSE CATEGORIES

- In a manufacturing environment, the traditional categories are...
 - Machines/Equipment
 - Methods
 - Materials
 - People

- In a service organization, the traditional categories are...
 - Policies
 - Procedures
 - Plant
 - People

Cause and Effect Diagram - Major Cause Categories

3. BRAINSTORM CAUSES

- Brainstorming the causes of the problem is where most of the effort in creating your Ishikawa diagram takes place.
- Some people prefer to generate a list of causes before the previous steps in order to allow ideas to flow without being constrained by the major cause categories.

4. CATEGORIZE CAUSES

Ishikawa Diagram - Categorize Causes

5. DETERMINE DEEPER CAUSES

Fishbone Chart - Deeper Causes

6. IDENTIFY ROOT CAUSES

- The final step for creating a fishbone diagram is to identify the root causes of the problem. This can be done in several ways...
 - Look for causes that appear repeatedly
 - Select using group consensus methods
 - Select based on frequency of occurrence

- 8.3.1 Cause-and-effect diagrams
- 8.3.2 A control chart
- 8.3.3 A check-sheet
- 8.3.4 A scatter diagram
- 8.3.5. A histogram
- ▶ 8.3.6. A Pareto chart
- 8.3.7 Flowcharts

Control Charts

- A control chart is a graphic display of data that illustrates the results of a process over time
- The main use of control charts is to prevent defects, rather than to detect or reject them
- Quality control charts allow you to determine whether a process is in control or out of control
 - When a process is in control, any variations in the results of the process are created by random events; processes that are in control do not need to be adjusted
 - When a process is out of control, variations in the results of the process are caused by non-random events; you need to identify the causes of those non-random events and adjust the process to correct or eliminate them

Figure 8-3. Sample Quality Control Chart

- 8.3.1 Cause-and-effect diagrams
- 8.3.2 A control chart
- 8.3.3 A check-sheet
- 8.3.4 A scatter diagram
- ▶ 8.3.5. A histogram
- ▶ 8.3.6. A Pareto chart
- 8.3.7 Flowcharts

Checksheet

- A checksheet is used to collect and analyze data
- It is sometimes called a tally sheet or checklist, depending on its format
- In the example in Figure 8-4, most complaints arrive via text message, and there are more complaints on Monday and Tuesday than on other days of the week
- This information might be useful in improving the process for handling complaints

Figure 8-4. Sample Checksheet

System Complaints

	Day							
Source	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total
Email			1					12
Text	#		#1		III			29
Phone call								8
Total	11	10	8	6	7	3	4	49

- 8.3.1 Cause-and-effect diagrams
- 8.3.2 A control chart
- 8.3.3 A check-sheet
- 8.3.4 A scatter diagram
- ▶ 8.3.5. A histogram
- ▶ 8.3.6. A Pareto chart
- ▶ 8.3.7 Flowcharts

Scatter diagram

- A scatter diagram helps to show if there is a relationship between two variables
- The closer data points are to a diagonal line, the more closely the two variables are related

Figure 8-5. Sample Scatter Diagram

- 8.3.1 Cause-and-effect diagrams
- 8.3.2 A control chart
- 8.3.3 A check-sheet
- 8.3.4 A scatter diagram
- 8.3.5. A histogram
- 8.3.6. A Pareto chart
- 8.3.7 Flowcharts

Histograms

- A histogram is a bar graph of a distribution of variables
- Each bar represents an attribute or characteristic of a problem or situation, and the height of the bar represents its frequency

Figure 8-6. Sample Histogram

- 8.3.1 Cause-and-effect diagrams
- 8.3.2 A control chart
- 8.3.3 A check-sheet
- 8.3.4 A scatter diagram
- 8.3.5. A histogram
- 8.3.6. A Pareto chart
- 8.3.7 Flowcharts

Pareto Charts

- A Pareto chart is a histogram that can help you identify and prioritize problem areas
- Pareto analysis is also called the 80-20 rule, meaning that 80 percent of problems are often due to 20 percent of the causes

Figure 8-7. Sample Pareto Chart

Quanlity Controlling Tools

- 8.3.1 Cause-and-effect diagrams
- 8.3.2 A control chart
- 8.3.3 A check-sheet
- 8.3.4 A scatter diagram
- 8.3.5. A histogram
- ▶ 8.3.6. A Pareto chart
- ▶ 8.3.7 Flowcharts

Flowcharts

- Flowcharts are graphic displays of the logic and flow of processes that help you analyze how problems occur and how processes can be improved
- They show activities, decision points, and the order of how information is processed

Figure 8-8. Sample Flowchart

Testing

- Many IT professionals think of testing as a stage that comes near the end of IT product development
- Testing should be done during almost every phase of the IT product development life cycle

Figure 8-11. Testing Tasks in the Software Development Life Cycle

Types of Tests

- Unit testing tests each individual component (often a program) to ensure it is as defect-free as possible
- Integration testing occurs between unit and system testing to test functionally grouped components
- System testing tests the entire system as one entity
- User acceptance testing is an independent test performed by end users prior to accepting the delivered system

ISO Standards

- ▶ **ISO 9000** is a quality system standard that:
 - Is a three-part, continuous cycle of planning, controlling, and documenting quality in an organization
 - Provides minimum requirements needed for an organization to meet its quality certification standards
 - Helps organizations around the world reduce costs and improve customer satisfaction
- See www.iso.org for more information

Improving Information Technology Project Quality

- Several suggestions for improving quality for IT projects include:
 - Establish leadership that promotes quality
 - Understand the cost of quality
 - Focus on organizational influences and workplace factors that affect quality
 - Follow maturity models

Leadership

- As Joseph M. Juran said in 1945, "It is most important that top management be quality-minded. In the absence of sincere manifestation of interest at the top, little will happen below"*
- A large percentage of quality problems are associated with management, not technical issues.

^{*}American Society for Quality (ASQ), (www.asqc.org/about/history/juran.html).

Five Cost Categories Related to Quality

- Prevention cost: Cost of planning and executing a project so it is error-free or within an acceptable error range
- Appraisal cost: Cost of evaluating processes and their outputs to ensure quality
- Internal failure cost: Cost incurred to correct an identified defect before the customer receives the product
- External failure cost: Cost that relates to all errors not detected and corrected before delivery to the customer
- Measurement and test equipment costs: Capital cost of equipment used to perform prevention and appraisal activities

Expectations and Cultural Differences in Quality

- Project managers must understand and manage stakeholder expectations.
- Expectations also vary by:
 - Organization's culture
 - Geographic regions

Chapter Summary

- Project quality management ensures that the project will satisfy the needs for which it was undertaken
- Main processes include:
 - Plan quality
 - Perform quality assurance
 - Perform quality control