

CLAIMS

What is claimed is:

1. A field effect transistor (FET) comprising:
 - 2 a fin formed on a dielectric surface;
 - 3 a device gate along one side of said fin;
 - 4 a back bias gate along an opposite side of said fin;
 - 5 device gate dielectric along one first side between said device gate and said fin;
 - 6 and
 - 7 back bias gate dielectric along said opposite side between said back bias gate and
 - 8 said fin; wherein said back bias gate dielectric differs from said device gate dielectric in
 - 9 at least one of material and thickness.
- 1 2. A FET as in claim 1, wherein said fin is a semiconductor fin selected from a
2 group of materials consisting of silicon, germanium and silicon-germanium.
- 1 3. A FET as in claim 2, wherein said fin is a silicon fin.
- 1 4. A FET as in claim 1, wherein one of said device gate dielectric and said back bias
2 gate dielectric are a layered dielectric comprising at least 2 dielectric material layers.
- 1 5. A FET as in claim 1, wherein said back bias gate dielectric is thicker than said
2 gate dielectric.
- 1 6. A FET as in claim 1, wherein each of said back bias gate dielectric and said gate
2 dielectric is selected from a group of materials consisting of an oxide, an oxynitride and a
3 high K dielectric.

YOR920030479US1

1 7. A FET as in claim 1, wherein said gate and said back bias gate are a conductive
2 material selected from a group of materials consisting of a metal, doped silicon, doped
3 germanium, doped silicon germanium and a metal silicide.

1 8. A FET as in claim 3, wherein said dielectric surface is an oxide layer.

1 9. A FET as in claim 8, wherein said oxide layer is a buried oxide layer.

1 10. A FET as in claim 8, wherein said oxide layer is disposed on a nitride layer.

1 11. A FET as in claim 3, further comprising a dielectric pillar above said silicon fin.

1 12. A FET as in claim 11, wherein said dielectric pillar is a nitride pillar.

1 13. A FET as in claim 12, wherein said nitride pillar forms a cap between said device
2 gate and said back bias gate.

1 14. An integrated circuit (IC) on a semiconductor on insulator (SOI) chip, said IC
2 including a plurality of field effect transistors (FETs) disposed on an insulating layer,
3 each of said FETs comprising:

4 a semiconductor fin formed on an insulating layer;

5 device gate dielectric along a first side of said semiconductor fin;

6 a device gate along said device gate dielectric;

7 back bias gate dielectric along an opposite of said semiconductor fin;

8 a back bias gate along said back bias gate dielectric; wherein said back bias gate
9 dielectric differs from said device gate dielectric in at least one of material and thickness.

1 15. An IC as in claim 14, wherein said back bias gate dielectric is five times (5X)
2 thicker than said gate dielectric.

YOR920030479US1

1 16. An IC as in claim 14, wherein each of said back bias gate dielectric and said gate
2 dielectric is selected from a group of materials consisting of an oxide, an oxynitride and a
3 high K dielectric.

1 17. An IC as in claim 14, wherein one of said device gate dielectric and said back bias
2 gate dielectric are a layered dielectric comprising at least 2 dielectric material layers.

1 18. An IC as in claim 14, wherein said gate and said back bias gate are a conductive
2 material selected from a group of materials consisting of a metal, doped silicon, doped
3 germanium, doped silicon germanium and a metal silicide.

1 19. An IC as in claim 14, wherein said dielectric surface is an oxide layer.

1 20. An IC as in claim 19, wherein said oxide layer is a buried oxide layer.

1 21. An IC as in claim 19, wherein said oxide layer is disposed on a nitride layer.

1 22. An IC as in claim 14, each said FET further comprising a dielectric pillar above
2 said semiconductor fin.

1 23. An IC as in claim 22, wherein said dielectric pillar is a nitride pillar.

1 24. An IC as in claim 23, wherein said nitride pillar forms a cap between said device
2 gate and said back bias gate.

1 25. An IC as in claim 22, wherein said semiconductor is silicon.

YOR920030479US1

1 26. A method of forming an integrated circuit (IC), said method comprising the steps
2 of:

3 a) forming semiconductor fins on a silicon on insulator (SOI) wafer;
4 b) forming back bias gates along one side of each of said semiconductor fins,
5 said back bias gates comprising back bias gate dielectric; and
6 c) forming device gates along an opposite side of each of said semiconductor
7 fins; said device gates comprising gate dielectric with at least one of material and
8 thickness being different from said back bias gate dielectric.

1 27. A method of forming an IC as in claim 26, wherein the semiconductor fin is a
2 silicon fin and the step (a) of forming silicon fins comprises the steps of:

3 i) forming a pillar on a silicon layer;
4 ii) etching a portion of said silicon layer, a first side of said silicon fins being
5 defined by removal of said portion;
6 iii) protecting said first side; and
7 iv) etching remaining portions of said silicon layer, a second side of said
8 silicon fins being defined by removal of said portions, silicon fins
9 remaining at said pillars a second.

1 28. A method of forming an IC as in claim 27, wherein the semiconductor fin is a
2 silicon fin and the step (i) of forming pillars comprises the steps of:

3 A) forming a dielectric layer on said silicon layer;
4 B) forming a sacrificial layer on said dielectric layer;
5 C) removing portions of said dielectric layer and said sacrificial layer; and
6 D) forming said pillars alongside remaining portions of said dielectric layer
7 and said sacrificial layer.

29. A method of forming an IC as in claim 28, wherein forming pillars in step (D) comprises the steps of:

- I) depositing a conformal layer on said SOI wafer; and
- II) isotropically etching said conformal layer.

30. A method of forming an IC as in claim 29, wherein said conformal layer is a nitride layer.

31. A method of forming an IC as in claim 30, wherein said sacrificial layer is a layer comprising germanium (Ge).

32. A method of forming an IC as in claim 31, wherein said sacrificial layer is a polysilicon germanium (SiGe) layer.

33. A method of forming an IC as in claim 32, wherein the step (ii) of protecting the first side comprises depositing a second SiGe layer.

34. A method of forming an IC as in claim 27, wherein said silicon layer is on a layered dielectric and the step (iv) of etching remaining portions etches through upper layers of said layer dielectric to a buried oxide layer.

35. A method of forming an IC as in claim 34, wherein said upper layers comprise an oxide layer on a nitride layer and said nitride layer is on said buried oxide layer.

36. A method of forming an IC as in claim 27, wherein the step (b) of forming back bias gates comprises:

- i) forming a back bias gate dielectric layer;
- ii) forming a back bias gate layer on said back bias gate dielectric layer;
- iii) depositing a fill material;

6 iv) planarizing an upper surface of said SOI wafer; and
7 v) removing portions of said back bias gate layer and said back bias gate
8 dielectric layer such that each of said pillars are exposed.

1 37. A method of forming an IC as in claim 36, wherein planarizing the upper surface
2 in step (b)(iv) comprises depositing fill material and polishing with a chemical
3 mechanical polish (CMP) to planarized said wafer.

1 38. A method of forming an IC as in claim 37, wherein removing portions in step
2 (b)(v) comprises continuing CMP and stopping on said pillar.

1 39. A method of forming an IC as in claim 37, wherein the step (b) of forming back
2 bias gates further comprises:

3 vi) forming voids between said pillars and remaining said portions of said
4 back bias gate layer;
5 vii) filling said voids.

1 40. A method of forming an IC as in claim 36, wherein the step (c) of forming device
2 gates comprises:

3 i) re-exposing said first side;
4 ii) forming a gate dielectric layer;
5 iii) forming a gate layer on said wafer;
6 iv) removing portions of said gate layer, device gates being separated from
7 back bias gates and each of said pillars being exposed.

1 41. A method of forming an IC as in claim 40, wherein said gate dielectric layer is
2 one fifth as thick as said back bias dielectric layer.

1 42. A method of forming an IC as in claim 41, wherein said gate dielectric layer is
2 selected from a group of materials consisting of an oxide, an oxynitride and a high K
3 dielectric.

1 43. A method of forming an IC as in claim 40, wherein said gate layer is the same
2 material as said back bias gate layer.

1 44. A method of forming an IC as in claim 43, wherein said gate layer and said back
2 bias gate layer are polysilicon layers.

1 45. A method of forming an IC as in claim 44, wherein the step (c)(ii) of forming the
2 gate layer comprises the steps of:

- 3 A) forming polysilicon spacers on both sides of said fins, said polysilicon
4 spacers being separated from said fins on said opposite side by said gate dielectric layer;
- 5 B) removing horizontal portions of said gate dielectric layer; and
- 6 C) depositing a polysilicon layer.

1 46. A method of forming an IC as in claim 45, wherein the step (c)(iv) of removing
2 portions of the gate layer comprises the steps of:

- 3 A) directionally depositing a dielectric layer; and
- 4 B) selectively removing horizontal portions of the directionally deposited said
5 dielectric layer, portions of said polysilicon gate layer above said pillars being exposed;
6 and
- 7 C) isotropically etching said polysilicon gate layer.

1 47. A method of forming an IC as in claim 46, wherein the step (c)(iv) of forming
2 back bias gates further comprises:

3 D) forming voids between said pillars and remaining said portions of said
4 gate layer;
5 E) filling said voids.