WH[®]

CH32V007/M007 数据手册

V1.6

概述

CH32V007 是基于青稞 RISC-V 内核设计的工业级通用微控制器,支持 48MHz 系统主频,单线调试。CH32V007 内置 12 位模数转换 ADC,采样率高达 3Msps;内置高压摆率运放 0PA,支持 3 通道轮询,支持单电阻或双电阻电流采样方案;内置 2 组电压比较器 CMP,支持过流保护和 3 通道轮询比较器定位;提供了 7 路 DMA 控制器、8 路 TouchKey、多组定时器、2 组 USART 串口、I2C、SPI 等外设资源;可用于有感定位、ADC 采样或比较器无感定位、单电阻或双电阻采样的电机方案。

CH32M007G8R6 等效于 CH32V007 加 CH283, 内置 48V 三相双 N 预驱和自举二极管及高压 LD0。 CH32M007E8 等效于 CH32V007 加 CH282, 内置 24V 三相 P+N 预驱和高压 LD0。

产品特性

● 内核 Core:

- 青稞 32 位 RISC-V2C 内核, RV32EmC 指令集
- 快速可编程中断控制器+硬件中断堆栈
- 支持2级中断嵌套
- 支持系统主频 48MHz

● 存储器:

- 8KB 易失数据存储区 SRAM
- 62KB 程序存储区 CodeFlash
- 3328B 系统引导程序存储区 BootLoader
- 256B 用户自定义信息存储区

● 电源管理和低功耗:

- CH32V007 支持额定 2.5~5V 供电
- CH32M007G8R6 支持额定 6~48V 供电
- CH32M007E8 支持额定 6~24V 供电
- 低功耗模式: 睡眠、待机

3 相半桥驱动器:

- CH32M007G8R6 内置 48V 双 N 预驱和二极管
- CH32M007E8 内置 24V 三相 P+N 预驱
- 内置死区控制。防止高侧低侧功率管直通
- 内置欠压保护

● 系统时钟和复位:

- 内置出厂调校的 24MHz 的 RC 振荡器
- 内置约 128KHz 的 RC 振荡器
- 外部支持 3~25MHz 高速振荡器
- 内置系统时钟监控(SCM)模块
- 上/下电复位、可编程电压监测器
- 安全特性:芯片唯一 ID
- 7路通用 DMA 控制器:
- 7个通道,支持环形缓冲区管理
- 支持 TIMx/ADC/USART/I2C/SPI

● 运放 OPA/PGA/电压比较器:

- 多路输入通道, 可选多档增益
- 2 路输出通道, 可选 ADC 引脚
- 支持3通道轮询,支持单或双电阻方案
- 支持高速模式以提高压摆率

● 2组模拟电压比较器 CMP:

- 1 个通用比较器, 3 路输入通道, 支持 3 路比较器轮询检测定位, 输出到外设或者 1/0
- 1 个精简比较器, 在内部级联到 OPA 输出端

● 12 位模数转换 ADC:

- 模拟输入范围: Vss~VDD
- 8 路外部信号+3 路内部信号通道
- 支持 3M 采样率

● 8路 TouchKey 通道检测

● 多组定时器:

- 1 个 16 位高级定时器,提供死区控制和紧急 刹车,提供用于电机控制的 PWM 互补输出
- 1 个 16 位通用定时器,提供输入捕获、输出 比较、PWM、脉冲计数及增量编码器输入
- 1 个 16 位精简定时器, 用于辅助电机应用
- 2 个看门狗定时器: 独立和窗口型
- 系统时基定时器: 32 位计数器
- 2组USART 串口: 支持 LIN
- 12C 接口
- SPI 接口
- 快速 GPI0 端口:
- 4组 GPIO 端口, 31 个 I/O 口
- 映射 1 个外部中断
- 单线或双线两种调试模式
- 封装形式: QFN、QSOP

	Code		通	高级	通 用	精简	看	三相	预驱		电容	OPA	OPA		串			封装
<u> </u>	Flash	RAM	用 I/0	定时器	定时器	定时器	门狗	电压 结构		軸 描			CMP	П	120	SPI	形式	
CH32M007E8R6	62K	8K	15	1	1	1	2	24V	P+N	7+3	7路	1	3 路	2	2	1	1	QS0P24
CH32M007E8U6	62K	8K	16	1	1	1	2	24V	P+N	7+3	7路	1	3 路	2	2	1	1	QFN26C3
CH32M007G8R6	62K	8K	12	1	1	1	2	48V	N+N	7+3	7路	1	3 路	2	2	1	1	QSOP28
CH32V007E8R6	62K	8K	22	1	1	1	2	_	_	8+3	8路	1	3 路	2	2	1	1	QS0P24
CH32V007K8U6	62K	8K	31	1	1	1	2	-	_	8+3	8路	1	3 路	2	2	1	1	QFN32

第1章 规格信息

1.1 系统架构

微控制器基于 RISC-V 指令集设计,其架构中将青稞微处理器内核、仲裁单元、DMA 模块、SRAM 存储等部件通过多组总线实现交互。集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,应用多级时钟管理机制降低了外设的运行功耗,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。下图是系列芯片内部总体架构框图。

图 1-1-1 CH32V007 系统框图

图 1-1-2 CH32M007G8R6 系统框图

图 1-1-3 CH32M007E8U6 系统框图

图 1-1-4 CH32M007E8R6 系统框图

1.2 存储器映射表

图 1-2 存储器地址映射

1.3 时钟树

系统中引入 3 组时钟源: 内部高频 RC 振荡器 (HSI)、内部低频 RC 振荡器 (LSI)、外接高频振荡器 (HSE)。其中,低频时钟源为独立看门狗提供了时钟基准。高频时钟源直接或者间接通过 2 倍频后输出为系统总线时钟(SYSCLK),系统时钟再由各预分频器提供了 HB 域外设控制时钟及采样或接口输出时钟,部分模块工作需要由 PLL 时钟直接提供。

图 1-3 时钟树框图

1.4 功能概述

1.4.1 RISC-V2C 处理器

RISC-V2C 支持 RISC-V 指令集 EmC (1) 子集。处理器内部以模块化管理,包含快速可编程中断控制器 (PFIC)、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。

处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微控制器 设计,例如小面积低功耗嵌入式场景。

- 支持机器模式
- 快速可编程中断控制器 (PFIC)
- 2级硬件中断堆栈
- 支持串行单/双线调试接口
- 自定义扩展指令

注: 1. EmC中的"m"代表指令集中的乘法。

1.4.2 片上存储器

内置 8K 字节 SRAM 区,用于存放数据,掉电后数据丢失。

内置 62K 字节程序闪存存储区(Code FLASH),即用户区,用于用户的应用程序和常量数据存储。 内置 3328 字节系统存储区(System FLASH),即 B00T 区,用于系统引导程序存储,内置自举加载程序。

内置 256 字节系统非易失配置信息存储区,用于厂商配置字存储,出厂前固化,用户不可修改。 内置 256 字节用户自定义信息存储区,用于用户选择字存储。

1.4.3 供电方案

(1) CH32V007

V₁₀ = 2.0~5.5V: 为 1/0 引脚以及内部调压器供电, 当使用 ADC 时, V₁₀ 应该不低于 2.4V。

(2) CH32M007G8R6

CH32M007G8R6 内置三相双 N 预驱,支持 48V 以下三相无刷直流电机中 6 只 N 型 MOSFET 功率管的栅极驱动。

 V_{HV} : 为内部高压调节器供电,内部高压调节器在 V_{CC12V} 引脚产生栅极驱动电源(此电压误差较大)。对于低于 16V 的应用, V_{HV} 应该短接 V_{CC12V} ,相当于关闭内部的高压调节器。对于 V_{HV} 电压较高的应用,建议根据负载电流在 V_{HV} 引脚串联电阻进行分压以减少芯片发热,满载时与 V_{CC12} 压差 8V 以上即可,压差小则发热少但带载能力弱。

 V_{col2V} : 为内部高压调节器输出端和低侧驱动器供电端以及内部低压调节器供电端,内部低压调节器在 V_{10} 引脚产生额定电压 5V,需外接至少 4. 7uF 容量的 MLCC 电容,建议 10uF。对于 V_{col2} 低于 7V 的应用,建议另加外置的高速低压降肖特基二极管以提高 V_{10} 电压。

V∞: 为内部低压调节器输出端和 I/O 引脚供电端, 需外接至少 4. 7uF 容量的 MLCC 电容, 建议 10uF。

(3) CH32M007E8

CH32M007E8 内置三相 P+N 预驱,支持 24V 以下三相无刷直流电机中 3 对 N 型和 P 型 MOSFET 功率 管的栅极驱动。

对于 CH32M007E8U6 芯片:

V_w: 为栅极驱动器供电端,需外接至少 3.3uF 电容,建议 10uF。

V_{HREG}: 为内部电压调节器供电端,必须供电,可选直连 V_{HV},建议根据负载电流在 V_{HV}与 V_{HREG}之间串 联电阻进行分压以减少芯片发热,满载时与 V_{DD}压差 2V 以上即可。

V∞: 为内部电压调节器输出端和 I/O 引脚供电端, 需外接至少 4. 7uF 容量的 MLCC 电容, 建议 10uF。

对于 CH32M007E8R6 芯片:

V_w: 为栅极驱动器供电端和内部电压调节器供电端, 需外接至少 3.3uF 电容, 建议 10uF。

V_∞: 为内部电压调节器输出端和 I/O 引脚供电端, 需外接至少 4. 7uF 容量的 MLCC 电容, 建议 10uF。

1.4.4 供电监控器

芯片内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电不低于 2.0V 时工作;当 V₁₀低于设定的阈值(V_{POR/POR})时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{10} 供电与设定的阈值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{10} 下降到 PVD 阈值或上升到 PVD 阈值时,收到中断通知。关于 $V_{POR/PDR}$ 和 V_{PVD} 的值参考第 3 章。

1.4.5 系统电压调节器 LDO

复位后,系统电压调节器自动开启,根据应用方式有两种操作模式。

- 开启模式:正常的运行操作,提供稳定的内核电源。
- 低功耗模式: 当 CPU 进入待机模式后,调节器低功耗运行。

1.4.6 低功耗模式

系统支持两种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳的平衡。

● 睡眠模式(SLEEP)

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 待机模式(STANDBY)

在内核的深睡眠模式(SLEEPDEEP)基础上结合了外设的时钟控制机制,并让电压调节器的运行处于更低功耗的状态。高频时钟(HSI/HSE/PLL)域被关闭,SRAM 和寄存器内容保持,I/O 引脚状态保持。该模式唤醒后系统可以继续运行,HSI 作为默认系统时钟。

退出条件:任意外部中断或唤醒事件(EXTI信号)、RST上的外部复位信号、IWDG复位,其中EXTI信号包括 31 个外部 I/O 口之一、AWU自动唤醒等。

1.4.7 快速可编程中断控制器(PFIC)

芯片内置快速可编程中断控制器 (PFIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。当前芯片管理了 4 个内核私有中断和 25 个外设中断管理,其他中断源保留。PFIC的寄存器均可以在用户和机器特权模式下访问。

- 2个可单独屏蔽中断
- 提供一个不可屏蔽中断 NMI
- 支持硬件中断堆栈(HPE), 无需指令开销
- 提供 2 路免表中断 (VTF)
- 向量表支持地址或指令模式
- 支持2级中断嵌套
- 支持中断尾部链接功能

1.4.8 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 10 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请

求状态。EXTI 可以检测到脉冲宽度小于内部 HB 的时钟周期。多达 31 个通用 I/0 口都可选择连接到同一个外部中断线。

1.4.9 通用 DMA 控制器

系统内置了通用 DMA 控制器,管理 7 个通道,灵活处理存储器到存储器、外设到存储器和存储器 到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个 或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括:通用/高级定时器 TIMx、ADC、USART、12C、SPI。

注: DMA 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

1.4.10 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 24MHz 的 RC 振荡器作为默认的 CPU 时钟,随后可以另外选择外部 3~25MHz 时钟或 PLL 时钟。当打开时钟安全模式后,如果 HSE 用作系统时钟(直接或间接),此时检测到外部时钟失效,系统时钟将自动切换到内部 RC 振荡器,同时 HSE 和 PLL 自动关闭;对于关闭时钟的低功耗模式,唤醒后系统也将自动地切换到内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

此外,为了提高系统的可靠性,还增加了系统时钟监控(System Clock Monitor, SCM)模块。当 其使能位开启后,如果系统时钟失效,就会产生刹车信号给高级定时器 TIM1,同时会置位系统时钟失 效中断标志。若提前使能相应中断使能,则会进入中断。

1.4.11 ADC(模拟/数字转换器)和触摸按键电容检测(TouchKey)

芯片内置 12 位的模拟/数字转换器 (ADC),提供多达 8 个外部通道和 3 个内部通道采样,采样速率可高达 3Msps,提供可编程的通道采样时间,可以实现单次、连续、扫描或间断转换。提供模拟看门狗功能允许非常精准地监控一路或多路选中的通道,用于监测通道信号电压,监测到电压超过设定的阈值时,可配置产生复位,保护系统。

ADC 内部通道分别是 ADC_IN8~ADC_IN10。内部参考电压 V_{RF} 被连接到 IN8 输入通道上; OPA 内部输出通道被连接到 IN9 输入通道上,用于将 OPA 的输出转换为数字数值。

触摸按键电容检测单元,提供了多达 8 个检测通道,复用 ADC 模块的外部通道。检测结果通过 ADC 模块转换输出结果,通过触摸检测算法子程序库或用户软件识别触摸按键状态。

1.4.12 定时器及看门狗

● 高级定时器(TIM1)

高级定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外,可以被看成是分配到 6 个通道的三相 PWM 发生器, 具有带死区插入的互补 PWM 输出功能,允许在指定数目的计数器周期之后更新定时器进行重复计数周期,刹车功能等。高级定时器的很多功能都与通用定时器相同,内部结构也相同,因此高级定时器可以通过定时器链接功能与其他TIM 定时器协同操作,提供同步或事件链接功能。

● 通用定时器(TIM2)

通用定时器是一个 16 位的自动装载递加/递减计数器,具有一个可编程的 16 位预分频器以及 4 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。通过复用通道 3 和 4,通道 1 和 2 还具有带死区插入的互补 PWM 输出功能。此外,还能通过定时器链接功能与高级定时器 TIM1 共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结,任意通用定时器都能用于产生 PWM 输出。

精简定时器是一个 16 位的自动装载递加/递减计数器,支持四路独立的比较通道,并支持输出比较。通过在芯片内部产生信号来配合其他功能使用,主要用于辅助电机应用。能通过定时器链接功能与高级定时器 TIM1 共同工作,可产生特定频率的脉冲配合 TIM1,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。

● 独立看门狗(IWDG)

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由一个内部独立的约 128KHz 的 RC 振荡器(LSI)提供时钟; LSI 独立于主时钟,可运行于待机模式。IWDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

● 窗口看门狗(WWDG)

窗口看门狗是一个7位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器(SvsTick)

青稞微处理器内核自带一个 32 位递增的计数器,用于产生 SYSTICK 异常,可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 32 位计数器。具有自动重加载功能及可编程的时钟源。

1.4.13 通用异步收发器(USART)

芯片提供了2组通用异步收发器(USART)。支持全双工异步串口通信以及半双工单线通信,也支持LIN(局部互连网),兼容IrDA SIR ENDEC 传输编解码规范,以及调制解调器(CTS/RTS 硬件流控)操作,还支持多处理器通信。其采用分数波特率发生器系统,支持DMA 操作连续通讯。

1.4.14 串行外设接口(SPI)

芯片提供 1 个串行外设 SPI 接口,支持主或从操作,动态切换。支持多主模式,全双工或半双工 同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

1.4.15 I2C 总线

芯片提供 1 个 I 2C 总线接口,能够工作于多主机模式或从模式,完成所有 I 2C 总线特定的时序、协议、仲裁等。支持标准和快速两种通讯速度。

I2C 接口提供 7 位或 10 位寻址, 并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器 /校验器。

1.4.16 通用输入输出接口(GPIO)

系统提供了 4 组 GP10 端口(PA0~PA7、PB0~PB6、PC0~PC7、PD0~PD7), 共 31 个 GP10 引脚。 多数引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。 当 PA1 和 PA2 为晶振引脚,即 PA1PA2_RM = 1 时,PA1 和 PA2 不能做 GP10 功能使用。

所有 GP10 引脚支持可控上拉和下拉电阻。PC5 作为复位引脚时,默认开启上拉电阻并关闭下拉电阻。

所有 GP10 引脚都与数字或模拟的复用外设共用。所有 GP10 引脚都有较大电流驱动能力。提供锁定机制冻结 1/0 配置,以避免意外的写入 1/0 寄存器。

系统中所有 I/0 引脚的电源由 V_{10} 提供,通过改变 V_{10} 供电将改变 I/0 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

1.4.17 运放/比较器(OPA)

芯片内置 1 组运放(OPA),也可用作电压比较器,其输入可通过更改配置对多个通道进行选择,包括可编程增益运放(PGA)的放大倍数选择,P 端支持 3 通道轮询,支持单电阻或双电阻电流采样方案;其输出则可通过更改配置对 2 个输出引脚进行选择,额外还有一个内部输出通道直连到 ADC 内部通道 IN9,支持将外部模拟小信号放大送入 ADC 以实现小信号 ADC 转换。OPA 支持高速模式,可通过设置高速模式提高压摆率。

1.4.18 电压比较器(CMP)

● 通用电压比较器(CMP1)

轨到轨通用电压比较器支持可选迟滞特性,支持 P 端 3 通道定时轮询输入,支持 3 路比较器轮询检测无感定位,其电压比较结果 0UT0 由 GPI0 输出,而其他电压比较结果 (0UT1 \sim 0UT4) 是从内部直接送到外设,释放了 I/0 的控制用作其他用途;其中,0UT1 和 0UT2 在芯片内部直接分别接入 TIM1 和 TIM2 的 CH4 的输入通道实现触发; 0UT3 在内部接入 TIM1 的 BKIN 通道,作为 TIM1 的刹车源,可以应用于双电阻方案的过流保护; 0UT4 在内部输出高电平时将复位系统。

● 精简电压比较器(CMP2)

专用精简电压比较器的 P 端与 OPA 的输出通道直接在芯片内部级联,可以应用于单电阻方案的过流保护;其 N 端在芯片内部直接与 CMP2 的参考电压 $V_{\text{CMP2_REF}}$ 相连, $V_{\text{CMP2_REF}}$ 可选多档值;其电压比较结果 OUTO 在芯片内部直接接入 TIM1 的 BKIN 通道,作为 TIM1 的刹车源; OUT1 在内部输出高电平时将复位系统。

1.4.19 栅极驱动器

CH32M007 为电机专用 MCU,集成了 3 个独立半桥驱动器,每个半桥均包含高侧和低侧电平移位电路、高侧和低侧输出驱动电路。其中,CH32M007G8R6 芯片的每个半桥还包含自举二极管,支持 6 只 N型 MOSFET 功率管的栅极驱动,外部仅需一个电容保存自举电源,栅极驱动电压取决于 Vcc12V; CH32M007E8 芯片支持 3 对 P+N 型 MOSFET 功率管的栅极驱动。

CH32M007 集成的 3 个独立半桥可组成三相半桥,用于三相无刷直流电机的栅极驱动。其中,CH32M007G8R6 芯片主要用于 48V 以下三相电机中 6 只 N 沟道 MOSFET 功率管的栅极驱动;而 CH32M007E8 芯片主要用于 24V 以下三相电机中 3 对 N 沟道和 P 沟道 MOSFET 功率管的栅极驱动。

CH32M007 的三相半桥由高级定时器 TIM1 产生 6 路 PWM 信号控制, PWM 死区时间可调, 支持过流保护直接刹车控制。使用时应设置 TIM1_RM = 0100 将 TIM1 进行引脚映射, 低侧栅极驱动 L01/L02/L03 分别由 CH32V007 的 PA0、PA2、PD0 控制, 高侧栅极驱动 H01/H02/H03 分别由 CH32V007 的 PA3、PB0、PB1 控制。

1.4.20 调试接口(SDI Serial Debug Interface)

内核自带一个串行单线调试接口(1-wire SDI Serial Debug Interface)和一个串行 2 线调试接口(2-wire SDI Serial Debug Interface)。系统支持单双线两种调试模式;其中,单线调试为默认调试模式,对应 SWIO 引脚(Single Wire Input Output),而双线调试对应 SWDIO 和 SWCLK 引脚,应用于下载时可以提高速度。系统上电或复位后默认调试接口引脚功能开启,主程序运行后可以根据需要关闭 SDI。在使用单线仿真调试接口时必须开启 HSI 时钟。

第2章 引脚信息

2.1 引脚排列

2.1.1 CH32V007 引脚排列

2.1.2 CH32M007 引脚排列

注: 引脚图中复用功能均为缩写。

T2:TIM2_ (T2C1:TIM2_CH1_ETR, T2C2:TIM2_CH2)

RX:USART1_RX
TX:USART1_TX

U2:USART2_ (U2RX:USART2_RX, U2TX:USART2_TX)

0:0PA_ (0PP3 或 0P3:0PA_P3、0PN0 或 0N0:0PA_N0、0P01 或 001:0PA_0UT1)

C:CMP1_ (CP2:CMP1_P2, CN2:CMP1_N2, CP0:CMP1_OUTO)

SDA: 12C_SDA SCL: 12C_SCL SCK: SPI_SCK NSS: SPI_NSS MISO: SPI_MISO

MOSI:SPI_MOSI
SWIO:SWIO/SWDIO

SWCK: SWCLK

2.2 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

表 2-1 CH32V007 引脚定义

	编号							
V007E8R6	V007K8U6	引脚 名称	引脚 类型 ⑴	主功能 (复位 后)	默认复用功能	重映射功能 ^②		
5	0	V_{ss}	Р	V _{ss}				
24	1	PB3	I/0/A	PB3	USART2_RX/SWCLK/ CMP1_P1	TIM1_BKIN_4/TIM1_BKIN_5/ TIM2_CH2_2/USART1_TX_5/ USART1_RX_4/USART2_RTS_1/ USART2_RTS_6/I2C_SCL_4/ SPI_MISO_2		
16	2	PA5	1/0/A	PA5	USART2_RTS/OPA_OUT1	USART1_RTS_4/USART1_RTS_5/ USART2_RX_1/USART2_RX_6		
17	3	PA6 ⁽³⁾	1/0/A	PA6	CMP1_N2	USART2_TX_6		
_	4	PA7	1/0	PA7	USART2_TX	TIM1_BKIN_6/USART2_CTS_1/ USART2_CTS_6		
18	5	PAO	1/0	PAO		TIM1_CH1_9/TIM1_CH1N_4/ TIM1_CH1N_5/TIM1_CH1N_6/ TIM2_CH1_ETR_5/USART1_TX_8/ USART1_TX_9/USART2_CTS_2/ USART2_CTS_3		
17	6	PA1 ⁽³⁾	1/0/A	PA1	ADC_IN1/TIM1_CH2/ OPA_NO	XI/TIM1_CH2_1/TIM1_CH2_9/ TIM2_CH2_5/TIM2_CH2_6/ USART1_RX_8/USART2_RTS_2/ USART2_RTS_3/USART2_RTS_4/ USART2_RTS_5/SPI_SCK_5		
19	7	PA2	I/0/A	PA2	ADC_INO/TIM1_CH2N/ OPA_PO	XO/TIM1_CH3_9/TIM1_CH2N_1/ TIM1_CH2N_4/TIM1_CH2N_5/ TIM1_CH2N_6/TIM2_CH3_5/ TIM2_CH3_6/TIM2_CH3_7/ USART2_TX_2/SPI_MOSI_5/ ADC_IETR_1		
20	8	PD0	I/0/A	PD0	TIM1_CH1N/OPA_N1	TIM1_CH1N_1/TIM1_CH3N_4/ TIM1_CH3N_5/TIM1_CH3N_6/ USART1_TX_2/I2C_SDA_1		
21	9	PA3	1/0	PA3		TIM1_CH1_4/TIM1_CH1_5/ TIM1_CH1_6/TIM1_CH4_9/ TIM1_CH1N_8/TIM2_CH4_5/ TIM2_CH4_6/TIM2_CH4_7/ USART2_RX_2		
22	10	PB0	1/0	PB0		TIM1_CH2_4/TIM1_CH2_5/		

引脚	编号								
V007E8R6	V007K8U6	引脚 名称	引脚 类型 (1)	主功能 (复位 后)	默认复用功能	重映射功能②			
						TIM1_CH2_6/TIM1_CH2N_8/			
						USART2_TX_4/SPI_NSS_3/			
23	11	PB1	1/0	PB1		TIM1_CH3_4/TIM1_CH3_6/ TIM1_CH3N_8/TIM2_CH1_ETR_6/ USART2_RX_4/SPI_SCK_3			
-	12	PB2	1/0	PB2		TIM1_CH4_6/TIM1_BKIN_7/ TIM1_BKIN_8/TIM1_BKIN_9/ SPI_MISO_3			
2	13	PC0	1/0/A	PCO	TIM2_CH3/CMP1_OUTO	TIM1_CH3_2/TIM1_CH1N_7/ TIM1_CH1N_9/TIM2_CH1_ETR_4/ TIM2_CH3_1/USART1_TX_3/ SPI_NSS_1/SPI_MOSI_3			
3	14	PC1	1/0	PC1	I2C_SDA/SPI_NSS	TIM1_CH2N_7/TIM1_CH2N_9/ TIM1_BKIN_2/TIM1_BKIN_3/ TIM2_CH1_ETR_1/ TIM2_CH1_ETR_3/TIM2_CH2_4/ TIM2_CH4_2/USART1_RX_3/ SPI_NSS_5			
4	15	PC2	1/0/A	PC2	TIM1_BKIN/USART1_RTS/ I2C_SCL/CMP1_NO	TIM1_CH3N_7/TIM1_CH3N_9/ USART1_RTS_2/TIM1_BKIN_1/ TIM1_ETR_3/ADC_RETR_1			
-	16	PC3	1/0	PC3	TIM1_CH3	TIM1_CH3_1/TIM1_CH3_5/ TIM1_CH1N_2/TIM1_CH1N_3/ TIM2_CH3_4/USART1_CTS_2			
6	17	$V_{ exttt{DD}}$	Р						
8	18	PC4	I/0/A	PC4	ADC_IN2/TIM1_CH4/MCO	TIM1_CH1_3/TIM1_CH1_7 TIM1_CH1_8/TIM1_CH4_1 TIM1_CH2N_2/USART1_RX_9 USART2_TX_5/I2C_SDA_2 SPI_NSS_2/SPI_NSS_6			
7	19	PC5	1/0/A	PC5	TIM1_ETR/SPI_SCK/ CMP1_PO/RST	TIM1_CH2_7/TIM1_CH2_8/ TIM1_CH3_3/TIM1_ETR_2/ TIM2_CH1_ETR_2/USART1_TX_6/ I2C_SCL_2/SPI_SCK_1			
_	20	PC6	1/0	PC6	SPI_MOSI	TIM1_CH1_2/TIM1_CH3_7/ TIM1_CH3_8/TIM1_CH3N_3/ USART1_RX_6/USART1_CTS_1/ USART1_CTS_3/SPI_MOSI_1			
_	21	PC7	1/0	PC7	SPI_MISO	TIM1_CH2_2/TIM1_CH2_3/ TIM1_CH4_7/TIM1_CH4_8/			

引脚 0007E8R6	编 908XC00V	引脚 名称	引脚 类型	主功能(复位后)	默认复用功能	重映射功能②
						TIM2_CH2_3/USART1_CTS_6/ USART1_CTS_7/USART1_RTS_1/ USART1_RTS_3/SPI_MISO_1/ SPI_MISO_6
-	22	PB4	1/0	PB4		TIM1_ETR_7/TIM1_ETR_8/ TIM1_ETR_9/USART1_RTS_6/ USART1_RTS_7/SPI_MOSI_6
1	23	PD1	I/0/A	PD1	TIM1_CH3N/SWIO/ SWDIO/OPA_P3/ ADC_IETR	TIM1_CH4_4/TIM1_CH4_5/ TIM1_CH3N_1/TIM1_CH3N_2/ USART1_TX_4/USART1_RX_2/ USART1_RX_5/USART2_RX_5/ I2C_SCL_1/I2C_SDA_4
9	24	PD2	1/0/A	PD2	ADC_IN3/TIM1_CH1/ CMP1_P2	TIM1_CH1_1/TIM1_CH2N_3/ TIM2_CH3_2/USART1_CTS_8/ USART2_TX_3/SPI_SCK_2
10	25	PD3	1/0/A	PD3	ADC_IN4/TIM2_CH2/ USART1_CTS/OPA_P2/ ADC_RETR	TIM1_CH4_2/TIM2_CH1_ETR_7/ TIM2_CH2_1/USART1_RTS_8/ USART2_RX_3/SPI_NSS_4/ SPI_MOSI_2
11	26	PD4	1/0/A	PD4	ADC_IN7/TIM2_CH1_ETR/ OPA_OUTO	TIM1_CH4_3/TIM1_ETR_1/ TIM1_ETR_4/TIM1_ETR_5/ TIM1_ETR_6/TIM2_CH2_7/ USART1_RTS_9/SPI_SCK_4
12	27	PD5	1/0/A	PD5	ADC_IN5/USART1_TX/ CMP1_N1	TIM2_CH4_3/USART1_RX_1/ USART1_CTS_9/SPI_MISO_4
13	28	PD6	1/0/A	PD6	ADC_IN6/USART1_RX	TIM2_CH3_3/USART1_TX_1/ SPI_MOSI_4
-	29	PB5	1/0	PB5		USART1_TX_7/I2C_SCL_3/ SPI_SCK_6/SPI_MISO_5
-	30	PB6	1/0	PB6		TIM2_CH4_4/USART1_RX_7/ USART2_CTS_4/I2C_SDA_3
14	31	PD7	1/0/A	PD7	TIM2_CH4/OPA_P1	TIM2_CH4_1/USART1_CTS_4/ USART1_CTS_5
15	32	PA4	1/0/A	PA4	USART2_CTS/OPA_N2	USART2_TX_1/USART2_CTS_5

表 2-2 CH32M007 引脚定义

	脚编号	<u> </u>					
M007E8R6	M007E8U6	M007G8R6	引脚 名称	引脚 类型 ^⑴	主功能 (复位 后)	默认复用功能	重映射功能 ^②
-	0	_	Vss	Р	Vss		
7	10	1	PD7 ^{(4) (5)}	1/0/A	PD7 ^{(4) (5)}	TIM2_CH4/OPA_P1	TIM2_CH4_1/USART1_CTS_4/ USART1_CTS_5
2	4	2	PD2	1/0/A	PD2	ADC_IN3/TIM1_CH1/ CMP1_P2	TIM1_CH1_1/TIM1_CH2N_3/ TIM2_CH3_2/USART1_CTS_8/ USART2_TX_3/SPI_SCK_2
3	6	3	PD3	1/0/A	PD3	ADC_IN4/TIM2_CH2/ USART1_CTS/OPA_P2/ ADC_RETR	TIM1_CH4_2/TIM2_CH2_1/ TIM2_CH1_ETR_7/ USART1_RTS_8/USART2_RX_3/ SPI_NSS_4/SPI_MOSI_2
4	7	4	PD4 ⁽⁴⁾	I/0/A	PD4 ⁽⁴⁾	ADC_IN7/TIM2_CH1_ETR/ OPA_OUTO	TIM1_CH4_3/TIM1_ETR_1/ TIM1_ETR_4/TIM1_ETR_5/ TIM1_ETR_6/TIM2_CH2_7/ USART1_RTS_9/SPI_SCK_4
5	8	5	PD5	1/0/A	PD5	ADC_IN5/USART1_TX/ CMP1_N1	TIM2_CH4_3/USART1_RX_1/ USART1_CTS_9/SPI_MISO_4
6	9	6	PD6	1/0/A	PD6	ADC_IN6/USART1_RX	TIM2_CH3_3/USART1_TX_1/ SPI_MOSI_4
10	13	7	V_{DD}	Р	V_{DD}		
-	14	-	V_{HREG}	Р	V_{HREG}		
12	15	8	V _{HV}	Р	V _{HV}		
_	_	9	V _{CC12V}	Р	V _{CC12V}		
14	17	10	L01 (PA0)	0	L01		
16	19	11	L02 (PA2)	0	L02		
18	21	12	L03 (PD0)	0	L03		
_	_	13	V _{s1}	Р	V _{s1}		
_	_	14	V _{B1}	Р	V _{B1}		
13	16	15	H01 (PA3)	0	H01		
_	-	16	V _{S2}	Р	V _{s2}		
_	_	17	V_{B2}	Р	V_{B2}		
15	18	18	H02 (PB0)	0	H02		
_	_	19	V _{S3}	Р	V _{S3}		
_	_	20	V _{B3}	Р	V_{B3}		

引脚编号										
M007E8R6	M007E8U6	M007G8R6	引脚 名称	引脚 类型 ^⑴	主功能 (复位 后)	默认复用功能	重映射功能 ^②			
17	20	21	H03 (PB1)	0	H03					
19	22	22	PB3	1/0/A	PB3	USART2_RX/SWCLK/ CMP1_P1	TIM1_BKIN_4/TIM1_BKIN_5/ TIM2_CH2_2/USART1_TX_5/ USART1_RX_4/USART2_RTS_1/ USART2_RTS_6/I2C_SCL_4/ SPI_MISO_2			
21	25		PC2 ⁽⁶⁾	1/0/A	PC2 ⁽⁶⁾	TIM1_BKIN/USART1_RTS/ I2C_SCL/CMP1_NO	TIM1_CH3N_7/TIM1_CH3N_9/ USART1_RTS_2/TIM1_BKIN_1/ TIM1_ETR_3/ADC_RETR_1			
1	5	23	PD1 ⁽⁶⁾	1/0/A	PD1 ⁽⁶⁾	TIM1_CH3N/SWIO/ SWDIO/OPA_P3/ ADC_IETR	TIM1_CH4_4/TIM1_CH4_5/ TIM1_CH3N_1/TIM1_CH3N_2/ USART1_TX_4/USART1_RX_2/ USART1_RX_5/USART2_RX_5/ I2C_SCL_1/I2C_SDA_4			
24	26	24	PA1	1/0/A	PA1	ADC_IN1/TIM1_CH2/ OPA_NO	XI/TIM1_CH2_1/TIM1_CH2_9/ TIM2_CH2_5/TIM2_CH2_6/ USART1_RX_8/USART2_RTS_2/ USART2_RTS_3/USART2_RTS_4/ USART2_RTS_5/SPI_SCK_5			
11	3	25	Vss	Р	Vss					
22	1	26	PC4	1/0/A	PC4	MCO/ADC_IN2/TIM1_CH4	TIM1_CH1_3/TIM1_CH1_7/ TIM1_CH1_8/TIM1_CH4_1/ TIM1_CH2N_2/USART1_RX_9/ USART2_TX_5/I2C_SDA_2/ SPI_NSS_2/SPI_NSS_6/			
23	2	27	PC5	I/0/A	PC5	TIM1_ETR/SPI_SCK/ CMP1_PO/RST	TIM1_CH2_7/TIM1_CH2_8/ TIM1_CH3_3/TIM1_ETR_2/ TIM2_CH1_ETR_2/USART1_TX_6 / I2C_SCL_2/SPI_SCK_1			
8	11	28	PA4 ^{(4) (5)}	1/0/A	PA4 ^{(4) (5)}	USART2_CTS/OPA_N2	USART2_TX_1/USART2_CTS_5			
9	12	_	PA5 (5)	1/0/A	PA5 ⁽⁵⁾	USART2_RTS/0PA_0UT1	USART1_RTS_4/USART1_RTS_5/ USART2_RX_1/USART2_RX_6			
_	23	-	PC0	I/0/A	PC0	TIM2_CH3/CMP1_OUTO	TIM1_CH3_2/TIM1_CH1N_7/			
20	24	_	PC1	1/0	PC1	I2C_SDA/SPI_NSS	TIM1_CH2N_7/TIM1_CH2N_9/			

弓	引脚编号								
M007E8R6	M007E8U6	M007G8R6	引脚 名称	引脚 类型 ^⑴	主功能 (复位 后)	默认复用功能	重映射功能 ^②		
							TIM1_BKIN_2/TIM1_BKIN_3/		
							TIM2_CH1_ETR_1/		
							TIM2_CH1_ETR_3/TIM2_CH2_4/		
							TIM2_CH4_2/USART1_RX_3/		
							SPI_NSS_5		

注1: 表格缩写解释:

- I = TTL/CMOS 电平斯密特输入; 0 = CMOS 电平三态输出;
- A = 模拟信号输入或输出; P = 电源。
- 注2: 重映射功能下划线后的数值表示AFIO寄存器中相对应位的配置值。例如: TIM1_BKIN_4表示AFIO 寄存器相应位配置为100b。
- 注3:对于CH32V007E8R6芯片,PA1与PA6引脚在芯片内部短接合封,禁止两个I0均配置为输出功能。
- 注4: 对于CH32M007G8R6芯片,通常选择PD7引脚作为运放的正端输入,PA4引脚作为运放的负端输入,PD4引脚作为运放的输出。
- 注5: 对于CH32M007E8芯片,通常选择PD7引脚作为运放的正端输入,PA4引脚作为运放的负端输入,PA5引脚作为运放的输出。
- 注6:对于CH32M007G8R6芯片,PC2与PD1引脚在芯片内部短接合封,禁止两个10均配置为输出功能。

表 2-3 CH32M007G8R6 专有引脚说明

引脚名称	引脚说明
V _{CC12V}	内部低侧驱动器的电源输入及高压调节器的输出,需外接至少 4.7uF 容量
V CC12V	的 MLCC 电容, 建议 10uF。
$V_{\scriptscriptstyle HV}$	内部高压调节器的电源输入。
$V_{ exttt{DD}}$	内部低压调节器的输出,需外接至少 4. 7uF 容量的 MLCC 电容, 建议 10uF。
L01, L02, L03	内部低侧栅极驱动器的输出,用于驱动 N 型 MOSFET 栅极。
H01, H02, H03	内部高侧栅极驱动器的输出,用于驱动 N 型 MOSFET 栅极。
V_{S1} , V_{S2} , V_{S3}	内部高侧栅极驱动器的悬浮地。
V. V. V.	内部高侧栅极驱动器的自举电源,建议外接 1uF~4.7uF 容量电容到各自的
V_{B1} , V_{B2} , V_{B3}	悬浮地 Vs。

表 2-4 CH32M007E8U6 专有引脚说明

引脚名称	引脚说明
$V_{\scriptscriptstyle HV}$	主电源输入和栅极驱动器的电源输入, 需外接至少 3.3uF 电容, 建议 10uF。
V_{HREG}	内部电压调节器的电源输入,必须供电,一般通过电阻或直连 V _{HV} 。
$V_{ exttt{DD}}$	内部电压调节器的输出,需外接至少 4. 7uF 容量的 MLCC 电容, 建议 10uF。
L01, L02, L03	内部低侧栅极驱动器的输出,用于驱动 N 型 MOSFET 栅极。
H01, H02, H03	内部高侧栅极驱动器的输出,用于驱动 P 型 MOSFET 栅极。

表 2-5 CH32M007E8R6 专有引脚说明

71 plp 4 44	71862788
引脚名称	5.1脚说用

$V_{\scriptscriptstyle HV}$	主电源输入和栅极驱动器的电源输入, 需外接至少 3.3uF 电容, 建议 10uF。
$V_{ extsf{DD}}$	内部电压调节器的输出,需外接至少 4. 7uF 容量的 MLCC 电容,建议 10uF。
L01, L02, L03	内部低侧栅极驱动器的输出,用于驱动 N 型 MOSFET 栅极。
H01, H02, H03	内部高侧栅极驱动器的输出,用于驱动 P 型 MOSFET 栅极。

2.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

表 2-6 引脚复用和重映射功能

复用引脚	ADC	TIM1	TIM2	USART	SYS	120	SPI	OPA	CMP
PAO		TIM1_CH1_9 TIM1_CH1N_4 TIM1_CH1N_5 TIM1_CH1N_6	TIM2_CH1_ETR_5	USART1_TX_8 USART1_TX_9 USART2_CTS_2 USART2_CTS_3					
PA1	ADC_IN1	TIM1_CH2 TIM1_CH2_1 TIM1_CH2_9	TIM2_CH2_5 TIM2_CH2_6	USART1_RX_8 USART2_RTS_2 USART2_RTS_3 USART2_RTS_4 USART2_RTS_5	ΧI		SPI_SCK_5	OPA_NO	
PA2	ADC_INO ADC_IETR_1	TIM1_CH3_9 TIM1_CH2N TIM1_CH2N_1 TIM1_CH2N_4 TIM1_CH2N_5 TIM1_CH2N_6	TIM2_CH3_5 TIM2_CH3_6 TIM2_CH3_7	USART2_TX_2	ХО		SPI_MOSI_5	OPA_PO	
PA3		TIM1_CH1_4 TIM1_CH1_5 TIM1_CH1_6 TIM1_CH4_9 TIM1_CH1N_8	TIM2_CH4_5 TIM2_CH4_6 TIM2_CH4_7	USART2_RX_2					
PA4				USART2_TX_1 USART2_CTS USART2_CTS_5				OPA_N2	
PA5				USART1_RTS_4 USART1_RTS_5 USART2_RX_1 USART2_RX_6 USART2_RTS				OPA_OUT1	
PA6				USART2_TX_6					CMP1_N2
PA7		TIM1_BKIN_6		USART2_TX USART2_CTS_1 USART2_CTS_6					
PB0		TIM1_CH2_4 TIM1_CH2_5 TIM1_CH2_6 TIM1_CH2N_8		USART2_TX_4			SPI_NSS_3		
PB1		TIM1_CH3_4 TIM1_CH3_6 TIM1_CH3N_8	TIM2_CH1_ETR_6	USART2_RX_4			SPI_SCK_3		
PB2		TIM1_CH4_6 TIM1_BKIN_7 TIM1_BKIN_8 TIM1_BKIN_9					SPI_MISO_3		
PB3		TIM1_BKIN_4 TIM1_BKIN_5	T1M2_CH2_2	USART1_TX_5 USART1_RX_4 USART2_RX USART2_RTS_1 USART2_RTS_6	SWCLK	12C_SCL_4	SPI_MISO_2		CMP1_P1
PB4		TIM1_ETR_7 TIM1_ETR_8 TIM1_ETR_9		USART1_RTS_6 USART1_RTS_7			SPI_MOSI_6		
PB5				USART1_TX_7		12C_SCL_3	SPI_SCK_6 SPI_MISO_5		
PB6			T1M2_CH4_4	USART1_RX_7 USART2_CTS_4		12C_SDA_3			
PC0		TIM1_CH3_2 TIM1_CH1N_7 TIM1_CH1N_9	TIM2_CH1_ETR_4 TIM2_CH3 TIM2_CH3_1	USART1_TX_3			SPI_NSS_1 SPI_MOSI_3		CMP1_OUTO

复用引脚	ADC	TIM1	TIM2	USART	SYS	120	SPI	OPA	CMP
PC1		TIM1_CH2N_7 TIM1_CH2N_9 TIM1_BKIN_2 TIM1_BKIN_3	TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 TIM2_CH2_4 TIM2_CH4_2	USART1_RX_3		12C_SDA	SPI_NSS SPI_NSS_5		
PC2	ADC_RETR_1	TIM1_CH3N_7 TIM1_CH3N_9 TIM1_BKIN TIM1_BKIN_1 TIM1_ETR_3		USART1_RTS USART1_RTS_2		12C_SCL			CMP1_NO
PC3		TIM1_CH3 TIM1_CH3_1 TIM1_CH3_5 TIM1_CH1N_2 TIM1_CH1N_3	T1M2_CH3_4	USART1_CTS_2					
PC4	ADC_IN2	TIM1_CH1_3 TIM1_CH1_7 TIM1_CH1_8 TIM1_CH4 TIM1_CH4_1 TIM1_CH2N_2		USART1_RX_9 USART2_TX_5	MCO	12C_SDA_2	SPI_NSS_2 SPI_NSS_6		
PC5		TIM1_CH2_7 TIM1_CH2_8 TIM1_CH3_3 TIM1_ETR TIM1_ETR_2	TIM2_CH1_ETR_2	USART1_TX_6	RST	12C_SCL_2	SPI_SCK SPI_SCK_1		CMP1_P0
PC6		TIM1_CH1_2 TIM1_CH3_7 TIM1_CH3_8 TIM1_CH3N_3		USART1_RX_6 USART1_CTS_1 USART1_CTS_3			SPI_MOSI SPI_MOSI_1		
PC7		TIM1_CH2_2 TIM1_CH2_3 TIM1_CH4_7 TIM1_CH4_8	TIM2_CH2_3	USART1_CTS_6 USART1_CTS_7 USART1_RTS_1 USART1_RTS_3			SPI_MISO SPI_MISO_1 SPI_MISO_6		
PD0		TIM1_CH1N TIM1_CH1N_1 TIM1_CH3N_4 TIM1_CH3N_5 TIM1_CH3N_6		USART1_TX_2		12C_SDA_1		OPA_N1	
PD1	ADC_IETR	TIM1_CH4_4 TIM1_CH4_5 TIM1_CH3N TIM1_CH3N_1 TIM1_CH3N_1		USART1_TX_4 USART1_RX_2 USART1_RX_5 USART2_RX_5	SWIO SWDIO	120_SCL_1 120_SDA_4		0PA_P3	
PD2	ADC_IN3	TIM1_CH1 TIM1_CH1_1 TIM1_CH2N_3	T1M2_CH3_2	USART1_CTS_8 USART2_TX_3			SPI_SCK_2		CMP1_P2
PD3	ADC_IN4 ADC_RETR	TIM1_CH4_2	TIM2_CH1_ETR_7 TIM2_CH2 TIM2_CH2_1	USART1_CTS USART1_RTS_8 USART2_RX_3			SPI_NSS_4 SPI_MOSI_2	OPA_P2	
PD4	ADC_IN7	TIM1_CH4_3 TIM1_ETR_1 TIM1_ETR_4 TIM1_ETR_5 TIM1_ETR_6	TIM2_CH1_ETR TIM2_CH2_7	USART1_RTS_9			SPI_SCK_4	OPA_OUTO	
PD5	ADC_IN5		T1M2_CH4_3	USART1_TX USART1_RX_1 USART1_CTS_9			SPI_MISO_4		CMP1_N1
PD6	ADC_IN6		T1M2_CH3_3	USART1_TX_1 USART1_RX			SPI_MOSI_4		
PD7			TIM2_CH4 TIM2_CH4_1	USART1_CTS_4 USART1_CTS_5				OPA_P1	

第3章 电气特性

3.1 测试条件

除非特殊说明和标注,所有电压都以Vss为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

CH32V007 的典型数值是基于常温 25℃和 V_D = 3.3V 或 5V 的环境。

CH32M007G8R6 的典型数值是基于常温 25℃、供电 V_{HV} = 24V、产生 V_{CC12V} = 12V 和 V_{DD} = 5V 的环境。

CH32M007E8U6 的典型数值是基于常温 25℃、供电 V_{HV} = 15V 和 V_{HREG} = 7V、产生 V_{DD} = 5V 的环境。

CH32M007E8R6 的典型数值是基于常温 25℃、供电 V_{IV} = 15V、产生 V_{ID} = 5V 的环境。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案(图中电阻均可选,用于分摊压降减少芯片发热):

图 3-1-1 CH32V007 常规供电典型电路

图 3-1-2 CH32M007G8R6 常规供电典型电路

图 3-1-3 CH32M007E8U6 常规供电典型电路

图 3-1-4 CH32M007E8R6 常规供电典型电路

3.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 3-1 绝对最大值参数表

符号	描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	°C

				,——	
外部主供电引脚 V∞上的电压	CH32V007	-0. 3	5. 5	V	
内部低压调节器的输出电压	CH32M007G8R6	-0. 3	5. 5	V	
内部电压调节器的输出电压	CH32M007E8	-0. 3	5. 5	V	
内部高压调节器的输入电源电压	CH32M007G8R6	-0.4	56	٧	
高压电源和栅极驱动器的电源电压	CH32M007E8	-0. 4	28	٧	
低侧驱动器和低压调节器的电源电压	CH32M007G8R6	-0.4	18	٧	
内部电压调节器的输入电源电压	CH32M007E8U6	-0.4	28	٧	
I/0 引脚上的电压	压			٧	
高侧自举电源电压	压 CH32M007G8R6		63	٧	
高侧自举 1%占空比脉冲电压	CH32M007G8R6		67	٧	
高侧悬浮地电压	CH32M007G8R6		52	٧	
高侧悬浮地 1%占空比脉冲电压	CH32M007G8R6	-4. 0	56	٧	
高侧自举电源相对悬浮地的压差	CH32M007G8R6	-0. 4	17	٧	
克侧亚马思格伦山 由厅	CH32M007G8R6	V₃-0. 4	V _B +0. 4	٧	
高侧驱动器的制工电压	CH32M007E8	-0.4	V _{HV} +0. 4	٧	
化侧原共聚药检贝内 丁	CH32M007G8R6	-0. 4	V _{CC12V} +0. 4	٧	
15.侧驱动器的制工电压	CH32M007E8	-0. 4	V _{HV} +0. 4	٧	
悬浮地电压 V _s 的压摆率	CH32M007G8R6		20	V/nS	
主供电引脚各 V∞之间的电压差	CH32V007		50	mV	
公共地引脚各 Vss 之间的电压差			50	mV	
普通 I/O 引脚的 ESD 静电放电电压(HB	M)	4	ŀK	٧	
专用引脚的 ESD 静电放电电压(HBM)	0112214007	2	2K	٧	
V _m 引脚连续输入电流	GH32MUU7		50	mA	
Vcc12v 引脚连续输入电流			50	mA	
V _B 内置二极管 1%占空比脉冲输出电流	CH32M007G8R6		100	mA	
V₃内置二极管连续输出电流			10	mA	
所有 V∞主供电引脚的合计总电流	CH32V007		100	mA	
所有 Vss 公共地引脚的合计总电流			200	mA	
任意 1/0 和控制引脚上的灌电流			30		
任意 1/0 和控制引脚上的源电流			-30	1	
HSE 的 XI 引脚			+/-4	mA	
其他引脚的注入电流			+/-4	i	
所有 I/0 和控制引脚的总注入电流			+/-20		
	内部低压调节器的输出电压 内部电压调节器的输出电压 内部电压调节器的输入电源电压 高压电源和栅极驱动器的电源电压 低侧驱动器和低压调节器的输入电源电压 1/0 引脚上的电压 高侧自举电源电压 高侧自举1%占空比脉冲电压 高侧悬浮地1%占空比脉冲电压 高侧悬浮地1%占空比脉冲电压 高侧悬浮地1%占空比脉冲电压 高侧驱动器的输出电压 低侧驱动器的输出电压 低侧驱动器的输出电压 悬浮地电压以影冲电压差 由明阳各 Vss 的压摆率 主供电引脚各 Vss 之间的电压差 ض共地引脚的 ESD 静电放电电压(HBM) V+v 引脚连续输入电流 Vcctzv 引脚连续输入电流 Vsctzv 引脚连续输入电流 Vsctzv 引脚连续输入电流 F有 Vss 公共地引脚的合计总电流 所有 Vss 公共地引脚的合计总电流 所有 Vss 公共地引脚的合计总电流 所有 Vss 公共地引脚的合计总电流 所有 Vss 公共地引脚的合计总电流 任意 I/O 和控制引脚上的源电流 任意 I/O 和控制引脚上的源电流 任意 I/O 和控制引脚上的源电流	内部低压调节器的输出电压	内部低压调节器的输出电压 CH32M00768R6 -0.3 内部电压调节器的输出电压 CH32M007E8 -0.3 内部高压调节器的输入电源电压 CH32M007E8 -0.4 高压电源和栅极驱动器的电源电压 CH32M007E8 -0.4 低侧驱动器和低压调节器的输入电源电压 CH32M007G8R6 -0.4 内部电压调节器的输入电源电压 CH32M007E8U6 -0.4 1/0 引脚上的电压 CH32M007G8R6 -0.4 高侧自举电源电压 CH32M007G8R6 -0.4 高侧自举电源电压 CH32M007G8R6 -0.4 高侧悬浮地电压 CH32M007G8R6 -0.4 高侧悬浮地电压 CH32M007G8R6 -0.4 高侧量率源相对悬浮地的压差 CH32M007G8R6 -0.4 高侧整浮地电漏相对悬浮地的压差 CH32M007G8R6 -0.4 低侧驱动器的输出电压 CH32M007G8R6 -0.4 -0.4 低侧驱动器的输出电压 CH32M007G8R6 -0.4 CH32M007E8 -0.4 CH32M007G8R6 -0.4 CH32M007G8R6 -0.4 CH32M007G8R6 -0.4 CH32M007G8R6 -0.4 CH32M007G8R6 -0.4 CH32M007G8R6 -0.4 </td <td>内部低圧调节器的输出电压 CH32M007G8R6 -0.3 5.5 内部电圧调节器的输出电压 CH32M007E8 -0.3 5.5 内部高压调节器的输入电源电压 CH32M007G8R6 -0.4 56 高压电源和栅极驱动器的电源电压 CH32M007E8 -0.4 28 低侧驱动器和低压调节器的电源电压 CH32M007G8R6 -0.4 18 内部电压调节器的输入电源电压 CH32M007E8U6 -0.4 28 I/O 引脚上的电压 CH32M007G8R6 -0.4 63 高侧自举电源电压 CH32M007G8R6 -0.4 63 高侧自举电源电压 CH32M007G8R6 -0.4 67 高侧悬浮地电压 CH32M007G8R6 -0.4 67 高侧悬浮地电压 CH32M007G8R6 -0.4 17 高侧驱动器的输出电压 CH32M007G8R6 -0.4 Vs-0.4 CH32M007G8R6 Vs-0.4 Vs+0.4 CH32M007G8R6 Vs-0.4 Vs+0.4 CH32M007G8R6 -0.4 Vs-0.4 CH32M007G8R6 -0.4 Vs-0.4 CH32M007G8R6 -0.4 Vs-0.4 CH32M007G8R6 -0.4 Vs-0.4 CH</td>	内部低圧调节器的输出电压 CH32M007G8R6 -0.3 5.5 内部电圧调节器的输出电压 CH32M007E8 -0.3 5.5 内部高压调节器的输入电源电压 CH32M007G8R6 -0.4 56 高压电源和栅极驱动器的电源电压 CH32M007E8 -0.4 28 低侧驱动器和低压调节器的电源电压 CH32M007G8R6 -0.4 18 内部电压调节器的输入电源电压 CH32M007E8U6 -0.4 28 I/O 引脚上的电压 CH32M007G8R6 -0.4 63 高侧自举电源电压 CH32M007G8R6 -0.4 63 高侧自举电源电压 CH32M007G8R6 -0.4 67 高侧悬浮地电压 CH32M007G8R6 -0.4 67 高侧悬浮地电压 CH32M007G8R6 -0.4 17 高侧驱动器的输出电压 CH32M007G8R6 -0.4 Vs-0.4 CH32M007G8R6 Vs-0.4 Vs+0.4 CH32M007G8R6 Vs-0.4 Vs+0.4 CH32M007G8R6 -0.4 Vs-0.4 CH32M007G8R6 -0.4 Vs-0.4 CH32M007G8R6 -0.4 Vs-0.4 CH32M007G8R6 -0.4 Vs-0.4 CH	

3.3 电气参数

3.3.1 工作条件

表 3-2-1 通用工作条件

符号	参数	条件	最小值	典型值	最大值	单位
F _{HCLK} 或	内部系统总线频率或微处理器主频				48	MHz
F _{sys}						
V _{DD}	 · 标准工作电压	未使用 ADC	2. 0		5. 5	V
V DD	MVE工1F电压 	使用 ADC	2. 4		5. 5	V
T _A	环境温度		-40		85	°C

١	T_J	结温度范围	-40	105	°C

表 3-2-2 其它电源工作条件(仅针对 CH32M007G8R6 芯片)

符号	参	数	条件	最小值	典型值	最大值	单位
V _{HV}	内部高压调节器的	启用高压调节器		18	20~48	50	٧
V _{HV}	输入电源电压	V _{HV} 短接 Vcc12V		6		17	٧
V_{HVREG}	内部高压调节器 Vcc12v	引脚输出电压		10	12	13	٧
I HVREG	内部高压调节器的负	内部高压调节器的负载电流(含内部自举)				30	mA
V _{CC12V}	低侧驱动器和内部低压调节器的输入电源			6	12	17	٧
V CC12V	电压			0	12	17	V
$V_{ exttt{DD}}$	内部低压调节器的输出	出电压		4. 9	5	5. 1	٧
l l _{DD}	内部低压调压器的负	载电流(含普通 I/0) 注意散热			20	mA
I DD	和 MCU 内核等所有负	载)	江思取然			20	ША
Vs	高侧悬浮地电压			-1. 2		50	٧
V_{B}	高侧自举电源电压			V _{cc12V} -1. 2	V _{CC12V} +V _S	62	٧
V_{B_S}	高侧自举电源 V _B 相对	悬浮地 Vs 的压差		5. 5	V _{cc12V} -1	16	٧

表 3-2-3 其它电源工作条件(仅针对 CH32M007E8U6 芯片)

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle HV}$	栅极驱动器的电源电压		6	6~24	26	٧
V_{HREG}	内部电压调节器的输入电源电压		6	7	26	٧
V _{DD}	内部电压调节器的输出电压		4. 9	5	5. 1	٧
I DD	内部电压调节器的负载电流(含普通 I/0 和 MCU 内核等所有负载)	注意散热			30	mA

表 3-2-4 其它电源工作条件(仅针对 CH32M007E8R6 芯片)

符号	参数	条件	最小值	典型值	最大值	单位
V _{HV}	内部电压调节器和栅极驱动器的电源电压		6	6~24	26	٧
V_{DD}	内部电压调节器的输出电压		4. 9	5	5. 1	٧
I _{DD}	内部电压调节器的负载电流(含普通 I/0 和 MCU 内核等所有负载)	注意散热			30	mA

表 3-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
t _{VDD}	V∞上升速率		0. 1	∞	us/V
	V∞下降速率		40	∞	us/v
	V₩上升速率		0. 2	∞	us/V
t _{vhv}	V _{HV} 下降速率	20	∞	us/V	
_	V _{CC12V} 上升速率		0. 2	∞	us/V
t _{VCC12V}	V _{CC12V} 下降速率		20	∞	us/V

3.3.2 内置复位和电源控制模块特性

表 3-4 复位及电压监测

符号	参数	条件	最小值	典型值	最大值	单位	
		PLS[1:0] = 00 上升沿		1. 86		V	
	可编程电压检测器的电平选择	PLS[1:0] = 00 下降沿		1. 85] '	
${f V}_{ t PVD}$		PLS[1:0] = 01 上升沿		2. 22		V	
		PLS[1:0] = 01 下降沿		2. 21		\ \ \ \ \ \	
		PLS[1:0] = 10 上升沿		2. 42		V	
		PLS[1:0] = 10 下降沿		2. 4		v	
		PLS[1:0] = 11 上升沿		2. 64		V	
		PLS[1:0] = 11 下降沿		2. 59		_	
$V_{PVDhyst}$	PVD 迟滞		5	20	60	mV	
V _{POR/PDR}	上电/掉电复位阈值	上升沿	1. 7	1. 85	2. 0	V	
V POR/PDR	工化/挥电发型网围	下降沿	1. 6	1. 75	1. 9	V	
$V_{PDRhyst}$	PDR 迟滞		60	100	150	mV	
	上电复位	RST_MODE[1:0] = 11		2		ms	
t _{rsttempo}	其他复位			300		us	

注: 1. 常温测试值。

2. CH32M007 内置的栅极驱动器支持欠压保护, 具体电压参考表 3-28。

3.3.3 内置的参考电压

表 3-5 内置参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V_{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 18	1. 2	1. 22	V
$T_{S_vrefint}$	当读出内部参考电压时, ADC 的采样时间	建议慢速采样	3		240	1/f _{ADC}

3.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、产品的软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 3-2-1 CH32V007 电流消耗测量

图 3-2-2 CH32M007G8R6 电流消耗测量

图 3-2-3 CH32M007E8U6 电流消耗测量

图 3-2-4 CH32M007E8R6 电流消耗测量

CH32V007 处于下列条件:

常温 V_{10} = 3. 3V 或 5V 情况下,测试时:所有 I/O 端口配置下拉输入,HSI = 24MHz(已校准),寄存器 PWR_CTLR 的位 LDO_MODE = 10。使能或关闭所有外设时钟的功耗。

CH32M007 处于下列条件:

CH32M007G8R6: 常温 V_{HV} = 24V、V_{CC12V} = 12V、V_{DD} = 5V 情况下,测试时: 所有 I/O 端口配置上拉输入, HSI=24M(已校准),寄存器 PWR_CTLR 的位 LDO_MODE = 10。使能或关闭所有外设时钟的功耗。CH32M007E8U6: 常温 V_{HV} = 15V、V_{HREG} = 7V、V_{DD} = 5V 情况下,测试时: 所有 I/O 端口配置上拉输入,HSI=24M(已校准),寄存器 PWR_CTLR 的位 LDO_MODE = 10。使能或关闭所有外设时钟的功耗。CH32M007E8R6:常温 V_{HV} = 15V、V_{DD} = 5V 情况下,测试时: 所有 I/O 端口配置上拉输入,HSI=24M

(已校准),寄存器 PWR_CTLR 的位 LDO_MODE = 10。使能或关闭所有外设时钟的功耗。

表 3-6 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行

符号	\$ *\h		条件		典型	<u>!</u> 值	单位
付写	参数	HSI/HSE	HSI_LP	F _{HCLK}	使能所有外设	关闭所有外设	半世
		运行于高速外部 时钟(HSE)		$F_{HCLK} = 48MHz$	4. 4	3. 5	
				$F_{HCLK} = 24MHz$	3. 3	2. 8	
	(HSE SI = 00,	Х	F _{HCLK} = 16MHz	2. 8	2. 5		
		HSE LP = 1)		$F_{HCLK} = 8MHz$	2. 5	2. 4	
	运行模式	IIOL_LF - 17		F _{HCLK} = 750KHz	1. 7	1. 7	
I _{DD} (1)	下的供应	的供应		$F_{HCLK} = 48MHz$	3. 7	2. 8	mA
	电流			$F_{HCLK} = 24MHz$	2. 5	2. 0	
		运行于高速内部	0	$F_{HCLK} = 16MHz$	2. 1	1. 7	
		RC振荡器(HSI)		F _{HCLK} = 8MHz	1.8	1. 6	
				F _{HCLK} = 750KHz	0. 9	0. 9	
			1	F _{HCLK} = 40KHz	0. 6	0.6	

注:以上为 CH32V007 实测参数。

表 3-7 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行

符号	参数		条件		典型	!值	单位
付写	罗奴	HSI/HSE	HSI_LP	F _{HCLK}	使能所有外设	关闭所有外设	里12
		· 运行于高速外	X	F _{HCLK} = 48MHz	3. 0	2. 1	
		ングログ (HSE)		F _{HCLK} = 24MHz	2. 3	1.8	
	SLEEP睡眠 模式下的供			F _{HCLK} = 16MHz	2. 1	1.8	
		HSE_LP = 1)		$F_{HCLK} = 8MHz$	1.8	1. 7	
				F _{HCLK} = 750KHz	1. 6	1. 6	
I _{DD} (1)	应电流(此 时外设供电			$F_{HCLK} = 48MHz$	2. 2	1. 3	mΑ
	和时钟保	, 一 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二		$F_{HCLK} = 24MHz$	1. 5	1. 0	
	持)	运行于高速内	0	$F_{HCLK} = 16MHz$	1. 3	1. 0	
	1417	部 RC 振 荡 器 (HSI)		$F_{HCLK} = 8MHz$	1. 1	0. 9	
		(451)		F _{HCLK} = 750KHz	0. 9	0. 9	
			1	F _{HCLK} = 40KHz	0. 6	0.6	

注:以上为 CH32V007 实测参数。

表 3-8 待机模式下典型的电流消耗

符号	参数			典型值	单位		
1975		独立看门狗	LSI	$V_{ extsf{DD}}$	一种空间	半江	
	0.T.A.N.D.D.V. 6.† ±17	т ф		3. 3V	10. 7		
		开启	开启	5V	11. 6		
Ι,	STANDBY 待机	大下的供 关闭	关闭	3. 3V	10. 2] , 	
l _{DD}	使 式 下 的 供			5 V	11. 1	uA	
	应 电流	关闭	开启	πь	3. 3V	10. 7	
		大的	7 / / / /	5 V	11. 6		

注:以上为 CH32V007 实测参数。

表 3-9-1 其他典型电流消耗(相比 CH32V007, CH32M007G8R6 增加的电流消耗)

符号	参数	条件	最小值	典型值	最大值	单位
		$V_{CC12V} = V_{HV} = 6V$		105		uA
		$V_{CC12V} = V_{HV} = 15V$		115		uA
10		V _{HV} = 24V, V _{CC12V} 接电容		135		uA
		V _{HV} = 48 V, V _{CC12V} 接电容		185		uA

注: 1. 以上为实测参数。

- 2. 此时需设置 CH32M007G8R6 中预驱信号处于低电平状态。
- 3. 如需更低功耗,可用独立 CH283 芯片且仅给 V_{cc12} 供电,V_{HV}/V_{ccREG} 悬空,不用其内部的高压和低压调节器,则可再节省 30uA。

表 3-9-2 其他典型电流消耗(相比 CH32V007, CH32M007E8U6 增加的电流消耗)

符号	参数	条件	最小值	典型值	最大值	单位
	V _{HV} 和 V _{HREG} 合计静态电流	$V_{HV} = V_{HREG} = 6V$		41		uA
(2)		$V_{HV} = V_{HREG} = 11.5V$		52		uA
I Q		$V_{HV} = V_{HREG} = 12.5V$		97		uA
		$V_{HV} = V_{HREG} = 24V$		130		uA

注: 1. 以上为实测参数。

2. 此时需设置 CH32M007E8U6 中预驱信号处于低电平状态。

表 3-9-3 其他典型电流消耗(相比 CH32V007, CH32M007E8R6 增加的电流消耗)

符号	参数	条件	最小值	典型值	最大值	单位
	·V₩的静态电流	V _{HV} = 6V		41		uA
(1) (2)		V _{HV} = 11.5V		52		uA
I Q		V _{HV} = 12.5V		97		uA
		V _{HV} = 24V		130		uA

注: 1. 以上为实测参数。

2. 此时需设置 CH32M007E8R6 中预驱信号处于低电平状态。

3.3.5 外部时钟源特性

表 3-10 来自外部高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F_{HSE_ext}	外部时钟频率		3	24	32	MHz
V _{HSEH} ⁽¹⁾	XI 输入引脚高电平电压		0. 8V _{DD}		V _{DD}	٧
$V_{HSEL}^{(1)}$	XI 输入引脚低电平电压		0		0. 2V _{DD}	٧
$C_{in(ext{HSE})}$	XI 输入电容			5		pF
DuCy (HSE)	占空比(Duty cycle)		40	50	60	%
Iι	XI 输入漏电流				±1	uA

注: 1. 不满足此条件可能会引起电平识别错误。

图 3-3 外部提供高频时钟源电路

表 3-11 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号	参数	条件	最小值	典型值	最大值	单位
Fxı	谐振器频率		3	24	32	MHz
R_{\scriptscriptstyleF}	反馈电阻 (无需外置)			250		kΩ
C _{LOAD}	建议的负载电容与对应晶体 串行阻抗 R _s	$R_{s} = 60 \Omega^{(1)}$		20		pF
	HSE 驱动电流	HSE_LP = 0, 20p 负载		1. 6		mA
l HSE		HSE_LP = 1, 20p 负载		0.8		
g _m	振荡器的跨导	启动		21		mA/V
t _{SU (HSE)}	启动时间	V∞是稳定		1. 5 (2)		ms

- 注: 1.25M 晶体 ESR 建议不超过 80 欧, 低于 25M 可适当放宽。
 - 2. 启动时间指从 HSEON 开启到 HSERDY 被置位的时间差。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CL1 = CL2。

图 3-4 外接 24M 晶体典型电路

3.3.6 内部时钟源特性

表 3-12 内部高速(HSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
_	频率(校准后)	HSI_LP = 0		24		MHz
F _{HS1}		HSI_LP = 1	30	42	58	KHz
DuCy _{HS1}	占空比(Duty cycle)		45	50	55	%
	HSI 振荡器的精度(校准后)	HSI_LP = 0,	-2. 0		2. 0	%
400		$T_A = -10^{\circ}C \sim 70^{\circ}C$			2.0	70
ACC _{HS1}		$HSI_{LP} = 0,$	-3. 0		2.0	0/
		$T_A = -40^{\circ}C \sim 85^{\circ}C$			3. 0	%
t _{SU(HSI)} (1)	HSI 振荡器启动稳定时间			3	8	us

Ϊ		HSI 振荡器功耗	HSI_LP = 0	200	
١	DD (HSI)	「 NO I 1版)为 台台 上月 本七	HSI_LP = 1	8. 5	uA

注: 1. 寄存器 RCC_CTLR HSION 置 1, 等待 HSIRDY 置 1。

表 3-13 内部低速(LSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{LS1}	频率		90	128	172	KHz
DuCy _{LS1}	占空比(Duty cycle)		45	50	55	%
t _{SU(LSI)} (1)	LSI 振荡器启动稳定时间			30	100	us
DD (LSI) (1)	LSI 振荡器功耗			550		nA

注: 1. 寄存器 RCC_CTLR LSION 置 1, 等待 LSIRDY 置 1。

3.3.7 从低功耗模式唤醒的时间

表 3-14 低功耗模式唤醒的时间

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	10	us
twustdby	从待机模式唤醒	LDO 稳定时间+使用 HSI RC 时钟唤醒	250	us

注: 以上为实测参数。

3.3.8 存储器特性

表 3-15 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{prog_page}	页(256 字节)编程时间			1. 5	2. 0	ms
t _{erase_page}	页(256 字节)擦除时间			2. 5	3. 1	ms
t _{erase_sec}	扇区(1K 字节)擦除时间			2. 7	3. 3	ms

表 3-16 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N_{END}	擦写次数	$T_A = 25^{\circ}C$	300K			次
		$T_A = 70^{\circ}C$	100K			次
t _{ret}	数据保存期限	$T_A = 25^{\circ}C$	20			年
		$T_A = 70^{\circ}C$	10			年

3.3.9 I/O 端口特性

表 3-17 通用 1/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	标准 I/0 引脚,输入高电平电压		0. 3*V _{DD} +0. 7		V _{DD}	٧
VIL	标准 1/0 引脚,输入低电平电压		0		0. 15*V _{DD} +0. 3	٧
V_{hys}	标准 1/0 施密特触发器电压迟滞		150			mV
l _{Ikg}	标准 1/0 引脚输入漏电流				1	uA
R_{PU}	上拉等效电阻		35	45	55	kΩ
R_{PD}	下拉等效电组		35	45	55	kΩ
C ₁₀	1/0 引脚电容			5		рF

输出驱动电流特性

GP10 (通用输入/输出端口) 可以吸收或输出多达 \pm 8mA 电流,并且吸收或输出 \pm 20mA 电流 (不严格达到 $V_{0.}/V_{0.}$)。在用户应用中,所有 \pm 1/0 引脚驱动总电流不能超过 3.2 节给出的绝对最大额定值。

表 3-18 输出电压特性

符号	参数	条件	最小值	最大值	单位
V _{oL}	输出低电平,8个引脚吸收电流	TTL端口, I₁₀ = +8mA		0. 4	v
V _{oH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	V _{DD} -0. 4		v
V_{oL}	输出低电平,8个引脚吸收电流	CMOS端口, I₁₀ = +8mA		0. 4	V
V _{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	2. 3		V
V_{OL}	输出低电平,8个引脚吸收电流	I ₁₀ = +20mA		1. 3	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	V _{DD} -1.3		٧

注:以上条件中如果多个 I/0 引脚同时驱动,电流总和不能超过表 3.2 节给出的绝对最大额定值。另外多个 I/0 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 I/0 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-19 输入输出交流特性

符号	参数	条件	最小值	最大值	单位
F _{max(10)out}	最大频率	$CL = 50pF, V_{DD} = 2.7-5.5V$		30	MHz
t _{f(I0)out}	输出高至低电平的下降时间	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns
t _{r (10) out}	输出低至高电平的上升时间	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns
t _{EXTIpw}	EXTI 控制器检测到外部信号的脉冲宽度		10		ns

注: 以上均为设计参数保证。

3.3.10 RST 引脚特性

电路参考设计及要求:

图 3-5 外部复位引脚典型电路

注: 图中的电容是可选的,可以用于滤除按键抖动。

表 3-20 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH(RST)}	RST 输入高电平电压		0. 3*V _{DD} +0. 7		$V_{ exttt{DD}}$	٧
V _{IL (RST)}	RST 输入低电平电压		0		0. 15*V _{DD} +0. 3	٧
V _{hys (RST)}	RST 施密特触发器电压迟滞		150			mV

R_{PU}	上拉等效电阻	35	45	55	kΩ
$V_{F(RST)}$	RST 输入可被滤波脉宽			100	ns
V _{NF (RST)}	RST 输入无法滤波脉宽	300			ns

3.3.11 TIM 定时器特性

表 3-21 TIMx 特性

符号	参数	条件	最小值	最大值	单位
+	定时器基准时钟		1		t _{TIMxCLK}
t _{res(TIM)}		$f_{TIMxCLK} = 48MHz$	20.8		ns
F _{EXT}	│ │ CH1 至 CH4 的定时器外部时钟频率		0	f _{TIMxCLK} /2	MHz
Гехт	601 至 604 的延时箭外部时钟频率	$f_{TIMxCLK} = 48MHz$	0	24	MHz
R _{esTIM}	定时器分辨率			16	位
_	当选择了内部时钟时, 16 位计数		1	65536	t _{TIM×CLK}
t _{counter}	器时钟周期	$f_{TIMxCLK} = 48MHz$	0. 0208	1363	us
t _{MAX_COUNT}	 最大可能的计数			65535	t _{TIM×CLK}
	取入可能的// 数	$f_{TIMxCLK} = 48MHz$		1363	us

3.3.12 I2C 接口特性

图 3-6 12C 总线时序图

表 3-22 120 接口特性

符号	参数	标准	120	快速	12C	单位
付写		最小值	最大值	最小值	最大值	半江
t _{w(SCKL)}	SCL 时钟低电平时间	4. 7		1. 2		us
t _{w (SCKH)}	SCL 时钟高电平时间	4. 0		0. 6		us
t _{SU(SDA)}	SDA 数据建立时间	250		100		ns
t _{h (SDA)}	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间		300			ns
t _{h(STA)}	开始条件保持时间	4. 0		0. 6		us
t _{SU(STA)}	重复的开始条件建立时间	4. 7		0. 6		us
t _{SU(STO)}	停止条件建立时间	4. 0		0. 6		us
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	рF

3.3.13 SPI 接口特性

图 3-7 SPI 主模式时序图

图 3-8-1 SPI 从模式时序图(CPHA=0, CPOL=0)

图 3-8-2 SPI 从模式时序图 (CPHA=0, CPOL=1)

图 3-9-1 SPI 从模式时序图 (CPHA=1, CPOL=0)

图 3-9-2 SPI 从模式时序图 (CPHA=1, CPOL=1)

表 3-23 SPI 接口特性

符号	参数		条件	最小值	最大值	单位
£ /+	SPI 时钟频率	主模式	主模式		24	MHz
f _{sck} /t _{sck}	CSCK OI I H 7 5千少火+				24	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容	字: C = 30pF		10	ns
t _{su(NSS)}	NSS 建立时间	从模式		2t _{HCLK}		ns
t _{h (NSS)}	NSS 保持时间	从模式		2t _{HCLK}		ns
tw(SCKH)/tw(SCKL)	SCK 高电平和低电平时间	主模式, 分频系数	f _{HCLK} = 24MHz,预 数=4	70	97	ns
		<u>~ 1# - </u>	HSRXEN = 0	15		
t _{su(MI)}	数据输入建立时间	主模式	HSRXEN = 1	15-0. 5t _{sck}		ns
t _{su(si)}		从模式		4		ns
		→ + # →	HSRXEN = 0	-4		
t _{h(MI)}	数据输入保持时间	主模式	HSRXEN = 1	0.5t _{sck} -4		ns
t _{h(SI)}		从模式		4		ns
t _{a (SO)}	数据输出访问时间	从模式,	$f_{HCLK} = 20MHz$	0	1t _{HCLK}	ns
t _{dis(SO)}	数据输出禁止时间	从模式		0	10	ns
t _{V(S0)}	数据检查方数时间	从模式	(使能边沿之后)		15	ns
t _{V (MO)}	数据输出有效时间	主模式	(使能边沿之后)		5	ns
t _{h (S0)}	数据检集保持时间	从模式	(使能边沿之后)	6		ns
t _{h (MO)}	· 数据输出保持时间 · · · · · · · · · · · · · · · · · · ·	主模式	(使能边沿之后)	0		ns

3. 3. 14 12 位 ADC 特性

表 3-24 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V	供中中厅	$f_{\text{S}} \leqslant 1 \text{MHz}$	2. 4		5. 5	٧
$V_{ extsf{DD}}$	供电电压	f _s > 1MHz	4. 5		5. 5	٧
,	ADC 供电电流	f _s = 3MHz		1. 34		mA
I _{DDA}	(不含 buffer)	$f_s = 1MHz$		0. 42		mA
	ADC houses 白息中运	ADC_LP = 0		0. 68		mA
l _{BUF}	ADC buffer 自身电流	ADC_LP = 1		0. 13		mA
f _{ADC}	ADC 时钟频率			16	48	MHz
fs	采样速率		0. 06		3	MHz
	外部触发频率	$f_{ADC} = 16MHz$			900	KHz
$f_{ exttt{TRIG}}$		$f_{ADC} = 48MHz$			2. 7	MHz
					18	1/f _{ADC}
VAIN	转换电压范围		0		V _{DD}	٧
R _{AIN}	外部输入阻抗				50	kΩ
R _{ADC}	采样开关电阻			0. 6	1.5	kΩ
C _{ADC}	内部采样和保持电容			4		рF
_	松准时间	$f_{ADC} = 16MHz$			6. 25	us
t _{CAL}	校准时间 				100	1/f _{ADC}
t _{lat}	注入触发转换时延	f _{ADC} = 16MHz			0. 125	us

		$f_{ADC} = 48MHz$		0. 042	us
				2	1/f _{ADC}
		f _{ADC} = 16MHz		0. 125	us
t_{latr}	常规触发转换时延	f _{ADC} = 48MHz		0. 042	us
				2	1/f _{ADC}
	采样时间	f _{ADC} = 16MHz	0. 218	14. 97	us
_			3. 5	239. 5	1/f _{ADC}
$t_{\mathfrak{s}}$		f _{ADC} = 48MHz	0. 073	0. 739	us
			3. 5	35. 5	1/f _{ADC}
t _{STAB}	上电时间			1	us
		f _{ADC} = 16MHz	1	15. 75	us
_	总的转换时间(包括采样时间)		16	252	1/f _{ADC}
t _{conv}		f _{ADC} = 48MHz	0. 33	1	us
			16	48	1/f _{ADC}

注: 以上均为设计参数保证。

公式:最大 RAIN

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

上述公式用于决定最大的外部阻抗, 使得误差可以小于 1/4 LSB。其中 N=12(表示 12 位分辨率)。

表 3-25-1 f_{ADC} = 16MHz 时的最大 R_{AIN}

T _s (周期)	ts(us)	最大 R _{AIN} (kΩ)
3. 5	0. 22	4
7. 5	0. 47	10
13. 5	0. 84	20
28. 5	1. 78	45
41. 5	2. 59	65
55. 5	3. 47	/
71. 5	4. 47	/
239. 5	14. 97	/

表 3-25-2 f_{ADC} = 48MHz 时的最大 R_{AIN}(高速模式)

T _s (周期)	t _s (us)	最大 R _{AIN} (kΩ)
3. 5	0. 073	1.5
7. 5	0. 16	3
11. 5	0. 24	5
19. 5	0. 41	9
35. 5	0. 74	17
55. 5	1. 16	28
71. 5	1. 49	37
239. 5	4. 99	/

表 3-26	ADC 误差	$(f_{ADC} =$	16MHz	ADC LP = 1 .	RAIN <	10k O	V _{DD} =	= 5V)
120 20	1100 KZ/T	■ ADG	I OMILIZ.	//DO LI I	I VAIN \	101/32	▼ DD	O V /

符号	参数	条件	典型值	最大值	单位
FT 数/大记 关	$0 \leqslant V_{AIN} < V_{DD}/2$	±3.5			
	ET 整体误差	$0 \leqslant V_{AIN} < V_{DD}$	±6		
ED	 微分非线性误差	$0 \leqslant V_{AIN} < V_{DD}/2$	±3.5		LSB
		$0 \leqslant V_{AIN} < V_{DD}$	±6		LSB
EL	ᄗᅠᄭᄼᆉᄽᄴᄓᆇ	$0 \leqslant V_{AIN} < V_{DD}/2$	±2.5		
	积分非线性误差 	$0 \leqslant V_{AIN} < V_{DD}$	±5		

注: 以上均为设计参数保证。

 C_p 表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p 数值将降低转换精度,解决办法是降低 f_{ADC} 值。

图 3-10 ADC 典型连接图

图 3-11 模拟电源及退耦电路参考

3.3.15 OPA 特性

表 3-27-1 OPA 运放特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DD}}$	供电电压	建议不低于 2. 5V	2. 0	5	5. 5	٧
V _{CMIR}	共模输入电压		0		$V_{ exttt{DD}}$	٧
VIOFFSET	输入失调电压			±3	±12	mV
LOAD	驱动电流	$R_{LOAD} = 4k \Omega$			1. 4	mA
I LOAD_PGA	PGA 模式驱动电流				500	uA
I DDOPAMP	消耗电流	无负载,静态模式		420		uA
CMRR ⁽¹⁾	共模抑制比	@1kHz		96		dB

D 0 D D (1)						
PSRR ⁽¹⁾	电源抑制比	@1kHz		82		dB
Av ⁽¹⁾	开环增益	$C_{LOAD} = 5pF$		110		dB
G _{BW} (1)	单位增益带宽	$C_{LOAD} = 5pF$		12		MHz
P _M ⁽¹⁾	相位裕度	C _{LOAD} = 5pF		75		٥
S _R ⁽¹⁾	压摆率	$C_{LOAD} = 5pF$		10		V/us
twakup (1)	关闭到唤醒时间 0.1%	输入 $V_{DD}/2$, $C_{LOAD} = 50 \text{pF}$, $R_{LOAD} = 4 \text{k} \Omega$			1	us
RLOAD	阻性负载		4			kΩ
CLOAD	容性负载				50	pF
V _{OHSAT} (2)	高饱和输出电压	$R_{LOAD} = 4k \Omega$	V _{DD} -160			\/
V OHSAT	VOHSAT 同化和制山电压	$R_{LOAD} = 20k \Omega$	V _{DD} -35			mV
V _{OLSAT} (2)	低始和松山由 IT	$R_{LOAD} = 4k \Omega$			25	\/
V OLSAT	olsat ^② 【低饱和输出电压	$R_{LOAD} = 20k \Omega$			5	mV
, I	PGA 模式输出直流偏置			V _{DD} /2		٧
V _B	电压			V _{DD} /2		٧
I	PGADIF = 1 模式同相	Gain = 4/8/16	-3		3	%
PGA		$Gain = 4, V_{INP} < (V_{DD}/3)$	-1		1	%
(4)	中郊目#B DCA	$Gain = 8, V_{INP} < (V_{DD}/7)$	-1		1	%
dain	内部同相 PGA	Gain = 16, $V_{INP} < (V_{DD}/15)$	-1		1	%
		Gain = 32, $V_{INP} < (V_{DD}/31)$	-1		1	%
V _B	PGA 模式输出直流偏置			V _{DD} /2		V
V B	电压			V DD/ Z		V
Delta R	电阻绝对值变化		-15		15	%
eN ⁽¹⁾	等效输入噪声	$R_{LOAD} = 4k \Omega@1kHz$		100		nV/
EIN 3	サメ州ハ・木戸	$R_{LOAD} = 20k \Omega@1KHz$		60		sqrt(Hz)

注: 1. 设计参数保证。

2. 负载电流会限制饱和输出电压。

表 3-27-2 OPA 运放特性(高速模式)

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ exttt{DD}}$	供电电压		2. 7	5	5. 5	V
V _{CMIR}	共模输入电压		0		V _{DD}	٧
V _{IOFFSET}	输入失调电压			±3	±12	mV
LOAD	驱动电流	$R_{LOAD} = 4k \Omega$			1.4	mA
LOAD_PGA	PGA 模式驱动电流				500	uA
DDOPAMP	消耗电流	无负载,静态模式		1. 6		mA
CMRR ⁽¹⁾	共模抑制比	@1kHz		96		dB
PSRR ⁽¹⁾	电源抑制比	@1kHz		82		dB
Av ⁽¹⁾	开环增益	$C_{LOAD} = 5pF$		115		dB
G _{BW} ⁽¹⁾	单位增益带宽	$C_{LOAD} = 5pF$		64		MHz
P _M ⁽¹⁾	相位裕度	$C_{LOAD} = 5pF$		72		0
S _R ⁽¹⁾	压摆率	$C_{LOAD} = 5pF$		36		V/us
twakup (1)	关闭到唤醒时间 0.1%	输入 $V_{DD}/2$, $C_{LOAD} = 50$ pF, $R_{LOAD} = 4$ k Ω			1	us

R _{LOAD}	阻性负载		4			kΩ
C _{LOAD}	容性负载				20	pF
V _{OHSAT} (2)	高饱和输出电压	$R_{LOAD} = 4k \Omega$	V _{DD} -160			\/
V OHSAT	一向地州湖山电压	$R_{LOAD} = 20k \Omega$	V _{DD} -35			mV
V _{OLSAT} (2)	在始和绘山 由区	$R_{LOAD} = 4k \Omega$			25	\/
V OLSAT	低饱和输出电压	$R_{LOAD} = 20k \Omega$			5	mV
	PGADIF = 1 模式同相	Gain = 4/8/16	-3		3	%
DCA	内部同相 PGA	Gain = 4, $V_{INP} < (V_{DD}/3)$	-1		1	%
PGA Gain ⁽¹⁾		Gain = 8, V _{INP} < (V _{DD} /7)	-1		1	%
Gain		Gain = 16, V _{INP} < (V _{DD} /15)	-1		1	%
		Gain = 32, V _{INP} < (V _{DD} /31)	-1		1	%
V	PGA 模式输出直流偏	OPA_VBSEL = 0		$V_{\text{DD}}/2$		٧
$V_{\scriptscriptstyle B}$	置电压	OPA_VBSEL = 1		$V_{DD}/4$		٧
eN ⁽¹⁾	空	$R_{LOAD} = 4k \Omega@1kHz$		100		nV/
eiv	等效输入噪声	$R_{LOAD} = 20k \Omega@1KHz$		60		sqrt(Hz)

注: 1. 设计参数保证。

3.3.16 CMP 特性

表 3-28-1 CMP1 电压比较器特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle DD}$	供电电压	建议不低于 2.5V	2. 0	5	5. 5	٧
V _{CMIR}	共模输入电压		0		V _{DD}	V
V _{IOFFSET} (1)	输入失调电压			±3	±15	mV
DDOPAMP	消耗电流			80		uA
V _{hys}	迟滞电压			±24		mV
	比较器延时,					
t _D (1)	V _{INP} 从(V _{INN} -100mV)	$0 \leqslant V_{INN} \leqslant V_{DD}$		16	50	ns
	到(V _{INN} +100mV)变化					

注: 1. 设计参数保证。

表 3-28-2 CMP2 电压比较器特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle DD}$	供电电压	建议不低于 2.5V	2. 0	5	5. 5	٧
V _{CMIR}	共模输入电压		0. 9		V _{DD}	V
V _{IOFFSET} (1)	输入失调电压			±3.3	±16	mV
I DDOPAMP	消耗电流			35		uA
t _D ⁽¹⁾	比较器延时, V _{INP} 从(V _{INN} -100mV) 到(V _{INN} +100mV)变化	$0 \leqslant V_{INN} \leqslant V_{DD}$		20	60	ns

注: 1. 设计参数保证。

^{2.} 负载电流会限制饱和输出电压。

3.3.17 内部栅极驱动器特性(仅针对 CH32M007 芯片)

表 3-29-1 内部栅极驱动器特性(仅针对 CH32M007G8R6 芯片)

符号	参数	条件	最小值	典型值	最大值	单位
V _{CC12UV}	栅极驱动器 Vcc12v 欠压保护电压		5. 1	5. 8	6. 4	٧
V _{OH (LO)}	LO 高电平输出电压(相对 Vcc12v)	I SOURCE = 20mA		-250	-400	mV
V _{OH (H0)}	HO 高电平输出电压(相对 V₃)	I SOURCE = 20mA		-250	-400	mV
V _{OL (LO)}	L0 低电平输出电压	I _{SINK} = 20mA		70	120	mV
V _{OL (HO)}	HO 低电平输出电压(相对 V _s)	I _{SINK} = 20mA		70	120	mV
[L0/H0 高电平输出短路脉冲电流	V _{CC12V} = 15V	320	530		m A
OH (LO/HO)	LU/NU 同电干制山短姆脉冲电流	$V_{CC12V} = 12V$	230	400		mA
	I о. (1.0/но) L0/Н0 低电平输出短路脉冲电流	V _{CC12V} = 15V	650	1000		mA
0L (L0/H0)		V _{CC12V} = 12V	480	770		IIIA

表 3-29-2 内部栅极驱动器特性(仅针对 CH32M007E8 芯片)

符号	参数	条件	最小值	典型值	最大值	单位
V_{HVUVR}	栅极驱动器 V₩ 欠压保护开启电压		4. 8	5. 2	5. 7	٧
V_{HVUVF}	栅极驱动器 V₩ 欠压保护关断电压		4. 4	4. 9	5. 3	٧
V _{HVUVS}	栅极驱动器 V™ 欠压保护迟滞电压		0. 1	0. 3	0. 6	٧
Vohl	L0 高电平输出电压	I source = 20mA	9. 5	11. 5	14	٧
V _{онн}	HO 高电平输出电压(相对 V™)	I source = 20mA		-170	-280	mV
Voll	L0 低电平输出电压	I _{SINK} = 20mA		105	180	mV
V_{OLH}	H0 低电平输出电压(相对 V₩)	I _{SINK} = 20mA	-14	-11. 5	-9. 5	٧
	L0驱动高电平时短路脉冲电流	V _{HV} = 15V	100	140		A
l ,	(用于开启 N 型功率管)	V _{HV} = 7V	80	115		mA
ОН	HO驱动高电平时短路脉冲电流	V _{HV} = 15V	500	720		A
	(用于快速关闭 P 型功率管)	V _{HV} = 7V	160	230		mA
	L0驱动低电平时短路脉冲电流	V _{HV} = 15V	420	600		A
	(用于快速关闭 N 型功率管)	V _{HV} = 7V	140	200		mA
OL	H0驱动低电平时短路脉冲电流	V _{HV} = 15V	105	150		A
	(用于开启 P 型功率管)	V _{HV} = 7V	85	120		mA

第4章 封装及订货信息

芯片封装

封装形式	塑体尺寸	引脚节距		引脚节距		封装说明	订货型号
QS0P24	3. 9*8. 7mm	0. 635mm	25. Omil	1/4 尺寸 24 脚贴片	CH32M007E8R6		
QFN26C3	3*3mm	0. 4mm	15.7mil	WCH 四边无引线 26 脚	CH32M007E8U6		
QS0P28	3. 9*9. 9mm	0. 635mm	25. Omil	1/4 尺寸 28 脚贴片	CH32M007G8R6		
QS0P24	3. 9*8. 7mm	0. 635mm	25. Omil	1/4 尺寸 24 脚贴片	CH32V007E8R6		
QFN32	4*4mm	0. 4mm	15.7mil	四边无引线 32 脚	CH32V007K8U6		

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm或者±10%两者中的较大值。

图 4-1 QSOP24 封装

图 4-2 QFN26C3 封装

图 4-3 QSOP28 封装

图 4-4 QFN32 封装

系列产品命名规则

303

R

举例: CH32 V 产品系列

F = Arm 内核, 通用 MCU

V = 青稞 RISC-V 内核, 通用 MCU

L = 青稞 RISC-V 内核, 低功耗 MCU

X = 青稞 RISC-V 内核, 专用或特殊外设 MCU

M = 青稞 RISC-V 内核, 内置预驱的电机 MCU

产品类型(*)+产品子系列(**)

产品类型	产品子系列
0 = 青稞 V2/V4 内核,	02 = 16K 闪存超值通用型
超值版,主频<=48M	03 = 16K 闪存基础通用型, OPA
	05 = 32K 闪存增强通用型,OPA、双串口
	06 = 64K 闪存多能通用型,OPA、双串口、TKey
	07 = 基础电机应用型, OPA+CMP
	35 = 连接型, USB、USB PD/Type-C
	33 = 连接型, USB
1 = M3/青稞 V3/V4 内核,	03 = 连接型, USB
基本版,主频<=96M	05 = 连接型, USB HS、SDIO、CAN
2 = M3/青稞 V4 非浮点内核,	07 = 互联型, USB HS、CAN、以太网、SDIO、FSMC
增强版,主频<=144M	08 = 无线型, BLE5.x、CAN、USB、以太网
3 = 青稞 V4F 浮点内核,	17 = 互联型, USB HS、CAN、以太网(内置 PHY)、
增强版,主频<=144M	SDIO, FSMC

引脚数目

 J = 8 脚
 D = 12 脚
 A = 16 脚
 F = 20 脚
 E = 24 脚

 G = 28 脚
 K = 32 脚
 T = 36 脚
 C = 48 脚
 R = 64 脚

W = 68 脚 V = 100 脚 Z = 144 脚

闪存存储容量

4 = 16K 闪存存储器 6 = 32K 闪存存储器 7 = 48K 闪存存储器 8 = 64K 闪存存储器 B = 128K 闪存存储器 C = 256K 闪存存储器

封装

T = LQFP U = QFN R = QSOP P = TSSOP M = SOP

温度范围

6 = -40°C~85°C (工业级) 7 = -40°C~105°C (汽车 2 级) 3 = -40°C~125°C (汽车 1 级) D = -40°C~150°C (汽车 0 级)