Homework 5 sample solution

Due 09/13/16

September 8, 2016

1. Use the formal definition of Big-Oh to prove the extension of the Envelopment Property of Addition to more than two functions; that is, if $f_1(n), f_2(n), \ldots, f_x(n)$, and $g_1(n), \ldots, g_x(n)$ are functions of n such that $g_1(n) = O(f_1(n)), g_2(n) = O(f_2(n))$, etc., then

$$\sum_{i=1}^{x} g_i(n) = O\left(\sum_{i=1}^{x} f_i(n)\right),\,$$

for all $x \geq 2$.

Answer:

Proof. We prove the claim directly, by using an arbitrary value of $x \geq 2$. Note that the claim could also be proven by induction, using a similar argument.

Suppose that $f_1(n), \ldots, f_x(n)$ and $g_1(n), \ldots, g_x(n)$ are functions such that $g_i(n) = O(f_i(n))$, for all $g_i(n)$. By the definition of Big-Oh, there exist positive constants $c_1, n_1, c_2, n_2, \ldots, c_x$, and n_x such that $g_1(n) \le c_1 f_1(n)$ for all $n \ge n_1, g_2(n) \le c_2 f_2(n)$ for all $n \ge n_2, \ldots$, and $g_x(n) \le c_x f_x(n)$ for all $n \ge n_x$. If we let $c_0 = \max\{c_1, c_2, \ldots, c_x\}$ and $n_0 = \max\{n_1, n_2, \ldots, n_x\}$, we see that $g_1(n) \le c_1 f_1(n), g_2(n) \le c_2 f_2(n), \ldots, g_x(n) \le c_x f_x(n)$ for all $n \ge n_0$. Hence:

$$\sum_{i=1}^{x} g_i(n) = g_1(n) + g_2(n) + \dots + g_x(n)$$

$$\leq c_1 f_1(n) + c_2 f_2(n) + \dots + c_x f_x(n) \qquad \forall n \geq n_0$$

$$\leq c_0 f_1(n) + c_0 f_2(n) + \dots + c_0 f_x(n) \qquad \forall n \geq n_0$$

$$= c_0 (f_1(n) + f_2(n) + \dots + f_x(n)) \qquad \forall n \geq n_0$$

$$= c_0 \left(\sum_{i=1}^{x} f_i(n)\right) \qquad \forall n \geq n_0$$

Since c_0 and n_0 are the maxima of positive values, they must themselves be positive, so there exist positive constants 0 and n_0 such that $\sum_{i=1}^x g_i(n) \le 1$

 $c_0(\sum_{i=1}^x f_i(n))$ for all $n \ge n_0$. Thus, $\sum_{i=1}^x g_i(n) = O(\sum_{i=1}^x f_i(n))$ by the formal definition of Big-Oh.

2. Use the properties of Big-Theta presented in class (not the formal definition) to prove that if $f(n) = 561n \lg(n) + 17.9n\sqrt{n} + 1024$, $g(n) = \Theta(f(n))$, and h(n) = O(f(n)), then $g(n)h(n) = O(n^3)$. You may assume that $\ln n = O(\sqrt{n})$ and $n\sqrt{n} = \Omega(1)$. Hint: start by proving that $f(n) = \Theta(n\sqrt{n})$.

Answer:

Proof. First, note that since $\lg n = O(\sqrt{n})$ and n = O(n) (by the Reflexive Property), $n \lg n = O(n\sqrt{n})$. Also, since $n\sqrt{n} = \Omega(1)$, $1 = O(n\sqrt{n})$. Thus:

$$f(n) = 561n \lg(n) + 17.9n\sqrt{n} + 1024$$

$$= \Theta(561n \lg(n)) + \Theta(17.9n\sqrt{n}) + \Theta(1024)$$
Reflexive
$$= \Theta(n \lg(n)) + \Theta(n\sqrt{n}) + \Theta(1)$$
Constant coefficients
$$= \Theta(n \lg(n)) + \Theta(n\sqrt{n} + 1)$$
Envelopment (addition)
$$= \Theta(n \lg(n)) + \Theta(n\sqrt{n})$$
Greatest term: $1 = O(n\sqrt{n})$

$$= \Theta(n \lg(n) + n\sqrt{n})$$
Envelopment (addition)
$$= \Theta(n\sqrt{n})$$
Greatest term: $n \lg(n) = O(n\sqrt{n})$

As such, $f(n) = \Theta(n\sqrt{n})$. So, $g(n) = \Theta(n\sqrt{n})$ by Transitivity. Since f(n) and g(n) are $\Theta(n\sqrt{n})$, they are both $O(n\sqrt{n})$. Hence, $h(n) = O(n\sqrt{n})$, by Transitivity. Thus:

$$g(n)h(n) = O(n\sqrt{n})O(n\sqrt{n})$$

$$= O(n\sqrt{n}(n\sqrt{n}))$$
 Envelopment (multiplication)
$$= O(n^3)$$