Exercise 1

1. Find out every subgroup of $\langle \mathbf{Z}_6, +_6 \rangle$, then find out every left coset of each subgroup.

2. Let $\prec H$, *> be a subgroup of $\prec G$, *>, if $A = \{x | x \in G, x *H * x^{-1} = H\}$, prove that $\prec A$, *> is a subgroup of $\prec G$, *>.

Hint:

Theorem 7

● A necessary and sufficient condition for a nonempty subset H of a group < G, *> to be a subgroup is that for $\forall a, b \in H \rightarrow a * b^{-1} \in H$.

3. Let $\langle G, * \rangle$ be a group, R is a relation on G such that $R = \{(a, b) | \text{there exists } x \in G \text{ such that } b = x * a * x^{-1} \}$ Show that R is an equivalence relation on G.

4. Let <*H*, *> be a subgroup of <*G*, *>, show that among all cosets of *H*, there is only one coset *A* such that <*A*, *> is a subgroup of <*G*, *>.