Calculus II

Assignment 5

20180629

Name :	
Student ID :	
1 Find $\frac{dy}{dy}$	

1. Find $\frac{dy}{dx}$. $y \cos x = x^2 + y^2$

ът

- 2. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. $yz + x \ln y = z^2$
- 3. Find the directional derivative of f at the given point in the direction indicated by the angle θ .

$$f(x,y) = x^3y^4 + x^4y^3$$
, $(1,1)$, $\theta = \frac{\pi}{6}$

- 4. (a) Find the gradient of f.
 - (b) Evaluate the gradient at the point P.
 - (c) Find the rate of change of f at P in the direction of the vector \mathbf{u} .

$$f(x,y) = \sin(2x+3y), P(-6,4), \mathbf{u} = \frac{1}{2} (\sqrt{3}\mathbf{i} - \mathbf{j})$$

5. Find the directional derivative of the function at the given point in the direction of the vector \mathbf{v} .

$$g(x,y) = \tan^{-1}(xy), \ (1,2), \ \mathbf{v} = 5\mathbf{i} + 10\mathbf{j}$$

Hint: \mathbf{v} is not a unit vector.

- 6. Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z) = 5x^2 3xy + xyz$.
 - (a) Find the rate of change of the potential at P(3,4,5) in the direction of the vector $\mathbf{v} = \mathbf{i} + \mathbf{j} \mathbf{k}$.
 - (b) In which direction does change most rapidly at P?
 - (c) What is the maximum rate of change at P?

Note:

Section 15.5, Equation 6 : $\frac{dy}{dx} = -\frac{F_x}{F_y}$.

Section 15.5, Equation 7: $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$.

Reading materials: Textbook Section 15.5 and 15.6.