Силы, действующие на сплошную среду, тензор напряжений

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики

2 сентября 2020 г.

Аннотация

Объемные и массовые силы. Поверхностные силы. Тензор напряжения Коши. Разложение напряжения на составляющие. Главные напряжения и оси тензора напряжения.

Объемные и массовые силы

Определение

Силы, действующие на каждый элемент объема $d\omega$ независимо от того, существуют ли рядом с объемом $d\omega$ другие частицы или нет, называются объемными. Если такие силы отнесены к единице массы, то они называются массовыми.

Объемные и массовые силы

Определение

Силы, действующие на каждый элемент объема $d\omega$ независимо от того, существуют ли рядом с объемом $d\omega$ другие частицы или нет, называются объемными. Если такие силы отнесены к единице массы, то они называются массовыми.

Пример

Объемная сила, действующая на частицу среды в поле силы тяжести, определяется соотношением

$$d\vec{F} = \rho \vec{g} d\omega,$$

где ρ – плотность жидкой частицы, \vec{g} – вектор ускорения свободного падения.

Поверхностные силы

Выделенный объем сплошной среды ω , с фиксированной точкой \vec{x} внутри него и элементарной площадкой dS с единичной нормалью \vec{n}

Определение

Напряжением поверхностной силы \vec{f} называется величина силы, отнесенная к элементарной площадке dS с единичной нормалью \vec{n} , возникающая в результате взаимодействия частей среды с разных сторон от элементарной площадки в малой окрестности точки \vec{x}

Поверхностные силы

Выделенный объем сплошной среды ω , с фиксированной точкой \vec{x} внутри него и элементарной площадкой dS с единичной нормалью \vec{n}

Замечания

- Поверхностная сила существует в каждой точке среды (как на поверхности, так и на границе).
- Поверхностная сила является функцией точки среды \vec{x} и ориентации площадки \vec{n} :

$$\vec{f} = \vec{f}(\vec{x}, \vec{n}).$$

• Считаем, что \vec{n} — вектор внешней единичной нормали.

Поверхностные силы

Выделенный объем сплошной среды ω , с фиксированной точкой \vec{x} внутри него и элементарной площадкой dS с единичной нормалью \vec{n}

Замечания

• Для определения суммарной силы, действующей на объем ω , ограниченного поверхностью S, необходимо проинтегрировать $\vec{f}(\vec{x}, \vec{n}(\vec{x}))$ по этой поверхности:

$$\vec{F} = \int_{S} \vec{f}(\vec{x}, \vec{n}(\vec{x})) dS.$$

Принцип равенства действий и противодействий

Иллюстрация равенства напряжения на противоположных направлениях

Если рассмотреть напряжения, возникающие в точке \vec{x} на площадке с единичной нормалью \vec{n} и ей противоположной, то в следствие принципа равенства действия и противодействия

$$\vec{f}(\vec{x}, \vec{n}) = -\vec{f}(\vec{x}, -\vec{n}).$$

Выделим в сплошной среде, в окрестности точки O, тетраэдр $OA_1A_2A_3$, у которого рёбра OA_1 , OA_2 , OA_3 направлены вдоль координатных линий x_1 , x_2 , x_3 , а грань $A_1A_2A_3$ перпендикулярна единичному вектору

$$\vec{n} = n^1 \vec{e}_1 + n^2 \vec{e}_2 + n^3 \vec{e}_3,$$

$$|\vec{n}| = 1.$$

Площади граней

$$S_1 = S_n \cos(\vec{n}, \vec{e}_1) = S_n n^1,$$

 $S_2 = S_n \cos(\vec{n}, \vec{e}_2) = S_n n^2,$
 $S_3 = S_n \cos(\vec{n}, \vec{e}_3) = S_n n^3,$

где S_i, S_n – площади граней, ортогональных \vec{e}_i (i=1,2,3) и \vec{n} .

Объем тетраэдра

$$V=1/3S_nh,$$

где h — длина перпендикуляра, опущенного из точки O на грань $A_1A_2A_3$.

Уравнения равновесия поверхностных сил в точке

$$\int_{V} \vec{\Phi} dV + \int_{S} \vec{f}(\vec{x}, \vec{n}(\vec{x})) dS = 0$$

$$(\vec{\Phi} = \rho(\vec{F} - \vec{a})),$$

где $\vec{\Phi}$ — отнесённая к единице объёма сумма внешних объёмных сил \vec{F} и сил инерции из-за ускорения \vec{a} — материальных точек.

Оценка объёмного интеграла для уравнения равновесия По теореме о среднем

$$\int\limits_{V} \vec{\Phi} dV = \vec{\Phi}(M)V = \frac{1}{3}\vec{\Phi}(M)S_{n}h,$$

где M – точка внутри тетраэдра, V – объем тетраэдра.

Разложение Используя принцип равенства действий и противодействий имеем

$$\begin{split} \int_{S} \vec{f}(\vec{x}, \vec{n}(\vec{x})) dS &= \int_{S_{1}} \vec{f}(\vec{x}, -\vec{e}_{1}) dS + \int_{S_{2}} \vec{f}(\vec{x}, -\vec{e}_{2}) dS + \int_{S_{3}} \vec{f}(\vec{x}, -\vec{e}_{3}) dS + \\ &+ \int_{S_{n}} \vec{f}(\vec{x}, \vec{n}) dS = \end{split}$$

Разложение Используя принцип равенства действий и противодействий имеем

$$\begin{split} \int_{S} \vec{f}(\vec{x}, \vec{n}(\vec{x})) dS &= \int_{S_{1}} \vec{f}(\vec{x}, -\vec{e}_{1}) dS + \int_{S_{2}} \vec{f}(\vec{x}, -\vec{e}_{2}) dS + \int_{S_{3}} \vec{f}(\vec{x}, -\vec{e}_{3}) dS + \\ &+ \int_{S_{n}} \vec{f}(\vec{x}, \vec{n}) dS = - \int_{S_{1}} \vec{f}(\vec{x}, \vec{e}_{1}) dS - \int_{S_{2}} \vec{f}(\vec{x}, \vec{e}_{2}) dS - \int_{S_{3}} \vec{f}(\vec{x}, \vec{e}_{3}) dS + \\ &+ \int_{S_{n}} \vec{f}(\vec{x}, \vec{n}) dS = \\ &+ \int_{S_{n}} \vec{f}(\vec{x}, \vec{n}) dS = \end{split}$$

Оценка поверхностного интеграла По теореме о среднем для поверхностного интеграла существуют точки M_i и M_n на поверхностях S_i (i=1,2,3) и S_n , такие что

$$= -S_1 \vec{f}(M_1, \vec{e}_1) - S_2 \vec{f}(M_2, \vec{e}_2) - S_3 \vec{f}(M_3, \vec{e}_3) + S_n \vec{f}(M_n, \vec{n}) =$$

Оценка поверхностного интеграла По теореме о среднем для поверхностного интеграла существуют точки M_i и M_n на поверхностях S_i (i=1,2,3) и S_n , такие что

$$= -S_1 \vec{f}(M_1, \vec{e}_1) - S_2 \vec{f}(M_2, \vec{e}_2) - S_3 \vec{f}(M_3, \vec{e}_3) + S_n \vec{f}(M_n, \vec{n}) =$$

Используя связь площадей боковых граней пирамиды тетраэдра и её основания,

$$=-S_n(\vec{f}(M_1,\vec{e}_1)n^1+\vec{f}(M_2,\vec{e}_2)n^2+\vec{f}(M_3,\vec{e}_3)n^3-\vec{f}(M_n,\vec{n})).$$

Формула для напряжения на произвольной площадке Таким образом, сокращая на S_n , имеем

$$-\frac{1}{3}\vec{\Phi}(M)h = \vec{f}(M_1, \vec{e}_1)n^1 + \vec{f}(M_2, \vec{e}_2)n^2 + \vec{f}(M_3, \vec{e}_3)n^3 - \vec{f}(M_n, \vec{n}).$$

Формула для напряжения на произвольной площадке Таким образом, сокращая на S_n , имеем

$$-\frac{1}{3}\vec{\Phi}(M)h = \vec{f}(M_1, \vec{e}_1)n^1 + \vec{f}(M_2, \vec{e}_2)n^2 + \vec{f}(M_3, \vec{e}_3)n^3 - \vec{f}(M_n, \vec{n}).$$

При $h \to 0$ точки $M_i \to O, M_n \to O, M \to O$, при этом левая часть равенства стремится к 0.

Формула для напряжения на произвольной площадке Таким образом, сокращая на S_n , имеем

$$-\frac{1}{3}\vec{\Phi}(M)h = \vec{f}(M_1, \vec{e}_1)n^1 + \vec{f}(M_2, \vec{e}_2)n^2 + \vec{f}(M_3, \vec{e}_3)n^3 - \vec{f}(M_n, \vec{n}).$$

При $h \to 0$ точки $M_i \to O, M_n \to O, M \to O$, при этом левая часть равенства стремится к 0.

Таким образом, для произвольной точки O

$$\vec{f}(O, \vec{n}) = \vec{f}(O, \vec{e}_1)n^1 + \vec{f}(O, \vec{e}_2)n^2 + \vec{f}(O, \vec{e}_3)n^3.$$

Напряжение в точке \vec{x} на площадке перпендикулярной \vec{n} :

$$\vec{f}(\vec{x}, \vec{n}) = \vec{\sigma}_n(\vec{x}) = n^i \vec{\sigma}_i(\vec{x}) = n^i \sigma_i^j(\vec{x}) \vec{e}_j,$$
$$|\vec{n}| = 1.$$

Обозначения

$$\begin{split} \vec{f}(\vec{x}, \vec{e}_1) &= \sigma_1^1(\vec{x}) \vec{e}_1 + \sigma_1^2(\vec{x}) \vec{e}_2 + \sigma_1^3(\vec{x}) \vec{e}_3 = \vec{\sigma}_1(\vec{x}), \\ \vec{f}(\vec{x}, \vec{e}_2) &= \sigma_2^1(\vec{x}) \vec{e}_1 + \sigma_2^2(\vec{x}) \vec{e}_2 + \sigma_2^3(\vec{x}) \vec{e}_3 = \vec{\sigma}_2(\vec{x}), \\ \vec{f}(\vec{x}, \vec{e}_3) &= \sigma_3^1(\vec{x}) \vec{e}_1 + \sigma_3^2(\vec{x}) \vec{e}_2 + \sigma_3^3(\vec{x}) \vec{e}_3 = \vec{\sigma}_3(\vec{x}). \end{split}$$

Определение нового базиса Рассмотрим новый базис $\vec{g}_1, \vec{g}_2, \vec{g}_3$ в заданной точке, такой что

$$\vec{e}_i = \alpha_i^j \vec{g}_j, \quad \vec{g}_l = \beta_l^j \vec{e}_j,$$

где $\alpha_i^j,\,\beta_j^l$ — матрицы перехода между базисами, причём $|\alpha_i^j|\neq 0$, $|\beta_j^l|\neq 0$ и $\alpha_i^j\beta_j^l=\delta_i^l$.

Формулы перехода

$$\vec{n} = \bar{n}^i \vec{g}_i = \bar{n}_i \beta_i^k \vec{e}_k = n^k \vec{e}_k.$$

Следовательно, $n^k = \bar{n}^i \beta_i^k$.

Тогда

$$\vec{\sigma}_n = n^i \sigma_i^j \vec{e}_j = \bar{n}^k \beta_k^i \sigma_i^j \alpha_j^l \vec{g}_l = \bar{n}^k \bar{\sigma}_k^l \vec{g}_l,$$

где $\bar{\sigma}_k^l = \beta_k^i \alpha_j^l \sigma_i^j$. Такое преобразование компонент матрицы σ_{ij} является признаком смешанного тензора второго ранга.

Разложение напряжения

Разложение напряжения на нормальную и тангенциальную составляющие

Напряжение в точке \vec{x} , возникающее на площадке dS с единичной нормалью \vec{n} , можно представить в виде суммы нормальной \vec{f}_n и тангенциальной составляющих \vec{f}_{τ} :

$$\vec{\sigma}_n = \vec{\sigma}_{nn} + \vec{\sigma}_{n\tau}.$$

В этом случае $\vec{\sigma}_{nn}$ называется нормальным растяжением или нормальным давлением. $\vec{\sigma}_{n\tau}$ называют косым напряжением или силой трения.

Выражения для нормальной и тангенциальной составляющих

Нормальная составляющая

Разложение напряжения на нормальную и тангенциальную составляющие

$$\begin{split} \sigma_{nn} &= \vec{\sigma}_n \cdot \vec{n} = (n^i \sigma_i^j \vec{e}_j) \cdot (n^k \vec{e}_k) = \\ &= n^i n^k \sigma_i^j (\vec{e}_j \cdot \vec{e}_k) = n^i n^k \sigma_{ik}. \end{split}$$

Выражения для нормальной и тангенциальной составляющих

Разложение напряжения на нормальную и тангенциальную составляющие

Нормальная составляющая

$$\sigma_{nn} = \vec{\sigma}_n \cdot \vec{n} = (n^i \sigma_i^j \vec{e}_j) \cdot (n^k \vec{e}_k) =$$

$$= n^i n^k \sigma_i^j (\vec{e}_j \cdot \vec{e}_k) = n^i n^k \sigma_{ik}.$$

Тангенциальная составляющая

$$\sigma_{n\tau}^{2} = \sigma_{n}^{2} - \sigma_{nn}^{2} =$$

$$= (n^{i}\sigma_{i}^{j}\vec{e}_{j}) \cdot (n^{k}\sigma_{k}^{l}\vec{e}_{l}) - n^{i}n^{j}\sigma_{ij}n^{k}n^{l}\sigma_{kl} =$$

$$= n^{i}n^{k}\sigma_{i}^{j}\sigma_{k}^{l}(\vec{e}_{j}\cdot\vec{e}_{l}) - n^{i}n^{j}n^{k}n^{l}\sigma_{ij}\sigma_{kl} =$$

$$= n^{i}n^{k}\sigma_{il}\sigma_{ks}g^{ls} - n^{i}n^{j}n^{k}n^{l}\sigma_{ij}\sigma_{kl} =$$

$$= n^{i}n^{k}\sigma_{il}\sigma_{ks}(g^{ls} - n^{l}n^{s}).$$

Главные напряжения, оси тензора напряжений

Допущение

Будем считать, что тензор напряжений симметричный (в дальнейшем это утверждение будет обосновано)

$$\sigma_{ij}=\sigma_{ji}$$
.

Теорема о разложении

Для тензора напряжения в каждой точке сплошной среды существует ортонормированная система координат, в которой он имеет диагональный вид, и существуют три направления, в которых действуют только нормальные напряжения.

Напряжение в системе координат главных осей

Пусть главные оси задаются ортонормированными векторами $\vec{g_i}$, а главные значения в этих осях тензора напряжения σ_i^j равны σ_i , тогда матрица перехода между ортонормированным базисом пространства $\vec{e_j}$ и введённым будет ортогональная (обратная совпадает с транспонированной), т.е. $\sigma_i^j \alpha_j^k = \delta_i^k$, а контравариантные, ковариантные и смешанные компоненты тензора совпадают.

Напряжении на площадке с нормалью \vec{n} имеет вид

$$\vec{\sigma}_n = n^i \sigma_i^j \vec{e}_j = \bar{n}^k \bar{\sigma}_k^l \vec{g}_l = (\bar{n}^l \sigma_l) \vec{g}_l,$$

где \bar{n}^k – координаты нормали в базисе \vec{g}_k , $\bar{\sigma}_k^l = \sigma_k \delta_k^l$ – тензор напряжений в главных осях.

Таким образом, учитывая то, что $|\vec{n}|=1$, из полученной формулы видно, что вдоль главных осей имеют место только растягивающие или сжимающие напряжения.

Инварианты тензора напряжений

Первый инвариант

$$I_1 = \operatorname{tr} \sigma = \sigma_1^1 + \sigma_2^2 + \sigma_3^3 = \sigma_1 + \sigma_2 + \sigma_3,$$

Второй инвариант

$$I_2 = \left| \begin{array}{cc} \sigma_1^1 & \sigma_1^2 \\ \sigma_2^1 & \sigma_2^2 \end{array} \right| + \left| \begin{array}{cc} \sigma_1^1 & \sigma_1^3 \\ \sigma_3^1 & \sigma_3^3 \end{array} \right| + \left| \begin{array}{cc} \sigma_2^2 & \sigma_2^3 \\ \sigma_3^2 & \sigma_3^3 \end{array} \right| = \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3,$$

Третий инвариант

$$I_3 = \det \sigma = \left| egin{array}{ccc} \sigma_1^1 & \sigma_1^2 & \sigma_1^3 \ \sigma_2^1 & \sigma_2^2 & \sigma_2^3 \ \sigma_3^1 & \sigma_3^2 & \sigma_3^3 \end{array}
ight| = \sigma_1 \sigma_2 \sigma_3.$$

Нормальное, тангенциальное и полное напряжение в главных осях

Разложение напряжения на нормальную и тангенциальную составляющие

Нормальная составляющая

$$\sigma_{nn} = n^i n^k \sigma_{ik} = (n^i)^2 \sigma_i.$$

Нормальное, тангенциальное и полное напряжение в главных осях

Разложение напряжения на нормальную и тангенциальную составляющие

Нормальная составляющая

$$\sigma_{nn} = n^i n^k \sigma_{ik} = (n^i)^2 \sigma_i.$$

Тангенциальная составляющая

$$\begin{split} \sigma_{n\tau}^2 &= \sigma_n^2 - \sigma_{nn}^2 = n^i n^k \sigma_{il} \sigma_{ks} (g^{ls} - n^l n^s) = \\ &= n^i n^k \sigma_i \sigma_k (\delta^{ik} - n^i n^k). \end{split}$$

Полное напряжение

$$\vec{\sigma}_n^2 = (n^l \sigma_l \vec{g}_l) \cdot (n^k \sigma_k \vec{g}_k) = \sum_k (n^k \sigma_k)^2,$$

Варианты напряжённого состояния

Определение

Если все три главных напряжения не равны нулю, то такое напряжённое состояние называется трехосным. Если одно из главных напряжений равно нулю, то такое напряжённое состояние называется плоским или двухосным. Если два главных напряжения равны нулю, то такое напряжённое состояние называется одноосным.

Давление

Важной характеристикой тензора напряжения является давление, определяемое первым инвариантом тензора напряжений:

$$p = -\frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}) = -\frac{1}{3}\sigma_{kk}.$$

Тензор напряжения часто записывают в виде суммы шаровой и девиаторной составляющих

$$\sigma_{ij} = -p\delta_{ij} + \tau_{ij}.$$

Литература

• *Нигматулин Р.И.* Механика сплошной среды. Кинематика. Динамика. Термодинамика. Статистическая динамика. М.:ГЭОТАР-Медиа, 2014.