EXPERIÊNCIA 24

CIRCUITOS RC EM REGIME AC

PRÉ-RELATÓRIO 24

1) Dado o circuito abaixo, determinar a tensão instantânea sobre o capacitor quando o valor da corrente for de 0,32mA.

2) Mostrar o circuito de um divisor de tensão AC capacitivo, com dois componentes.

EXPERIMENTO 24

Lista de materiais							
Capacitores;	Multímetro;	Osciloscópio;	Gerador de funções.				
Resistores.	Fonte de alimentação;	Proto-board;	-				

3) Montar o circuito abaixo.

4) Ajustar a tensão do gerador de funções sobre o resistor R₁ conforme tabela abaixo. Medir a tensão pico-a-pico sobre o capacitor C₁. Anotar os valores na tabela abaixo. Calcular a tensão V_{RMS} ou V_{EFICAZ} de R₁, a tensão V_{RMS} ou V_{EFICAZ} de C₁. Medir a corrente I(t) do circuito (I_{RMS} ou I_{EFICAZ}) e calcular a Reatância Capacitiva (X_C).

$V_{RPP}(V)$	$1 V_{PP}$	$2 V_{PP}$	$3 V_{PP}$	4 V _{PP}	5 V _{PP}	6 V _{PP}	$7 V_{PP}$	$8V_{PP}$	9 V _{PP}	10 V _{PP}
$V_{R1EF}(V)$	0,349	0,648	1,05	1,4	1,74	2,09	2,44	2,79	3,14	3,49
I _{EF} (mA)	0,349	0,698	1,05	1,4	1,74	2,09	2,44	2,39	3,14	3,49
$V_{C1PP}(V)$	0,156	0,343	0,469	0,626	0,782	0,938	1.09	1,25	1,41	1,62
$V_{C1EF}(V)$	0,055	0,111	0,166	0,322	0,237	0,332	0,387	0,442	0,493	0,544
$X_{C1}(\Omega)$	154,15	154,15	154,15	154,15	154,15	154.15	154,15	159.15	154.15	159.15

5) Ajustar o gerador de funções para um sinal senoidal de 1V_{PP}. Variar a frequência conforme a tabela abaixo. Anotar utilizando o osciloscópio as tensões pico-a-pico no resistor R_1 e no capacitor C_1 . Calcular a tensão V_{RMS} ou V_{EFICAZ} de R_1 , a tensão V_{RMS} ou V_{EFICAZ} de C₁. Medir a corrente I(t) do circuito (I_{RMS} ou I_{EFICAZ}) e calcular Reatância Capacitiva (X_C).

f (kHz)	$V_{RPP}(V)$	$V_{REF}(V)$	$V_{CPP}(V)$	V _{CEF} (V)	I _{EF} (mA)	$X_{C}(\Omega)$
1	0,533	5,488	0,846	2,99	0,188	1591,5
2	0,783	0,274	0,621	2,19	0,277	795,77
3	0,884	0,312	0,467	1,66	0.312	530,62
4	0,929	0,328	0,368	1,31	0,328	397,89
5	0,953	0,334	0,302	1,07	0,337	318,31
6	ର,966	0,341	ດ, 25 <i>5</i>	2,903	9,341	265,26
7	0,975	0,344	0,221	08નિલ	0,344	224,36
8	0,481	0,346	0,194	0,684	0,346	198,94
9	0,984	0,348	0,113	0,613	0,348	176,84
10	0,986	0,349	0,156	0.056	0,349	164,15

6) A partir da tabela do item 4, construir utilizando a ferramenta Excel o gráfico X_C x V_{RPP} , e anexar ao experimento.

Proxima Pag e no Excel

7) A partir da tabela do item 5, construir utilizando a ferramenta Excel o gráfico X_C x f, e anexar ao experimento.

Proxima Pag e no Excel

8) Comparar os valores obtidos da reatância capacitiva entre as duas tabelas (frequência fixa versus frequência variável).

Como A reatância é Inversamente proforcional A frequência fixa versus frequência variável).

TIMA NÃO NO ALTERAÇÃO ENTRETENTO SI NÃ VAVIAÇÃO CASO Armento A reatência

TIMA tender A Zero permitindo 4 ssim que A corrente flua melhor qua CAPACILOR

nome: Erick Lemmy Jos Santos Oliveira

9) Montar o divisor de tensão capacitivo do item 2 com capacitores de 10nF. Ajustar o gerador de funções para uma tensão senoidal de 5V_{PP}, 60Hz. Conectar o gerador ao circuito. Medir a tensão de entrada e de saída do divisor. Alterar a frequência para 1kHz e repetir o procedimento de medidas.

10) Montar o divisor de tensão capacitivo do item 2 com capacitores de 100nF. Ajustar o gerador de funções para uma tensão senoidal de 5V_{PP}, 60Hz. Conectar o gerador ao circuito. Medir a tensão de entrada e de saída do divisor. Alterar a frequência para 1kHz e repetir o procedimento de medidas.

11) Comparar os resultados obtidos nos itens 9 e 10.

Observer-su fila Simulação que as tensões de Entrada e Saida foram
Invais, Alterando Afinas seus pilos de Emsão com as diferentes frequências
as tensões (avais su deve pilo fabo das capacitancias seven igrais e multiple de
Si mesmo (10 e 100)

Data

Visto do Orientador:

Aluno: Erick Lemmy Jos 5.0

28/10/21

Aluno: _____

EXPERIÊNCIA 25

CIRCUITOS RL EM REGIME AC

PRÉ-RELATÓRIO 25

1) Dado o circuito abaixo, determinar a corrente instantânea sobre o indutor quando o valor da tensão $V_{\rm IN}$ for 5V. Mostrar a resposta na forma retangular e fasorial.

2) Mostrar o circuito de um divisor de tensão AC indutivo, com dois componentes.

EXPERIMENTO 25

Lista de materiais							
Indutores;	Multímetro;	Osciloscópio;	Gerador de funções.				
Resistores.	Fonte de alimentação;	Proto-board;	-				

3) Montar o circuito abaixo.

4) Ajustar a tensão do gerador de funções e medir no resistor R_1 , as tensões conforme a tabela abaixo. Para cada caso anotar utilizando o osciloscópio a tensão pico a pico do indutor L_1 . Calcular a tensão sobre R_1 (V_{RMS} ou V_{EFICAZ}), a tensão sobre $L_1(V_{RMS}$ ou V_{EFICAZ}), a corrente I(t) do circuito (I_{RMS} ou I_{EFICAZ}) e a Reatância Indutiva (I_{L}).

$V_{RPP}(V)$	$1 V_{PP}$	$2 V_{PP}$	$3 V_{PP}$	$4 V_{PP}$	5 V _{PP}	6 V _{PP}	7 V _{PP}	$8V_{PP}$	9 V _{PP}	10 V _{PP}
$V_{R1EF}(V)$	0,244	0,594	୦.ଃ୩6	4,19	1,44	1,79	2.09	2,39	2,69	2,99
$I_{EF}\left(mA\right)$	0,299	0.597	ବ୍ୟୁ	1,19	1,49	1,179	2.09	2,39	2,69	2,99
$V_{L1PP}\left(V\right)$	0,533	1,04	1,6	2,13	2,64	3,2	3,73	4,24	4,8	5,33
$V_{L1EF}\left(V\right)$	0,188	0,347	0,565	0,754	0,942	1,13	1,32	1,51	1,7	1,88
$X_{L1}\left(\Omega \right)$	628,32	628.32	628,32	628,32	628.32	628,32	628,32	618.32	618.32	638,32

5) Ajustar o gerador de funções para um sinal senoidal de 5V_{PP}. Variar a frequência conforma a tabela abaixo. Anotar utilizando o osciloscópio as tensões pico-a-pico no resistor R₁ e no indutor L₁. Calcular a tensão sobre R₁ (V_{RMS} ou V_{EFICAZ}), a tensão sobre L₁(V_{RMS} ou V_{EFICAZ}), a corrente I(t) do circuito (I_{RMS} ou I_{EFICAZ}) e a Reatância Indutiva (X_L).

f (kHz)	V _{RPP} (V)	V _{REF} (V)	$V_{LPP}(V)$	V _{LEF} (V)	I _{EF} (mA)	$X_L(\Omega)$
1	5	1,76	0,314	0,111	1.26	62,83
2	4,96	1,76	0,625	0,221	1.76	125,66
3	4,41	1,74	0,929	0,328	1,74	188,50
4	4,84	1,71	1,22	0,432	1,71	251,36
5	4,77	1,68	1,5	5,531	1,68	314,16
6	4,617	1,65	1,7-7	0,625	1,65	346,99
7	4,67	1,62	2,02	0,713	1,62	439,82
8	4,46	1,58	2,25	0,795	1,58	502,65
9	4,35	1,54	2,47	0,872	1,54	56549
10	4,23	1,49	2,66	0,942	1,49	628,32

6) A partir da tabela do item 4, construir utilizando a ferramenta Excel o gráfico $X_L \times V_{RPP}$, e anexar ao experimento.

7) A partir da tabela do item 5, construir utilizando a ferramenta Excel o gráfico $X_L \, x \, f$, e anexar ao experimento.

8) Comparar os valores obtidos da reatância indutiva entre as duas tabelas (frequência fixa versus frequência variável).

Como A rentancia e Inversamente proporcional D frequência se ela se manten fina não no alterpriso tozavio com A VAVIAÇÃO da frequência aumenta proporcionalmente com a frequência demonstrando uma oposição A passamem de 109 Corrente pelo nome: Erick Lemmy Jos Santos Oliveira

9) Montar o divisor de tensão indutivo do item 2 com indutores de 1mH. Ajustar o gerador de funções para uma tensão senoidal de 5V_{PP}, 60Hz. Conectar o gerador ao circuito. Medir a tensão de entrada e de saída do divisor. Alterar a frequência para 1kHz e repetir o procedimento de medidas.

Tensão de entrada e saída para 60Hz

Tensão de entrada e saída para 1kHz time: 2.25ms Vin.Vt: 2.5 time: 2.25ms Vout.Vt: 1.25 5e-4 0.0015 0.002 time Erick Lemmy dos Santos Oliveira

10) Montar o divisor de tensão indutivo do item 2 com indutores de 10mH. Ajustar o gerador de funções para uma tensão senoidal de 5VPP, 60Hz. Conectar o gerador ao circuito. Medir a tensão de entrada e de saída do divisor. Alterar a

frequência para 1kHz e repetir o procedimento de medidas.

Tensão de entrada e saída para 60Hz

Tensão de entrada e saída para 1kHz time: 2.25ms 2 Vin.Vt: 2.5 time: 2.25ms Vout.Vt: 1.25 5e-4 1e-3 0.0015 0.002 Erick Lemmy dos Santos Oliveira

11) Comparar os resultados obtidos nos itens 9 e 10.

Observa-se que as tensões de entrada VALIBA ses respective diferentes tempo Levido As frequências

Data

Visto do Orientador:

Aluno: Exich Lemmy Los 5.0

28/10/21

Aluno: _