

Exploration visuelle des données

Nicoleta ROGOVSCHI

nicoleta.rogovschi@parisdescartes.fr

M2-INFO

Self Organizing Map (SOM)

Outline

- Introduction et définitions des réseaux de neurones
- Introduction SOM
- Algorithme
- Exemple
- Conclusions

Réseaux de neurones

- Un ensemble de neurones interconnectés/ des unités de traitement de l'information
- Une technique conçu pour modéliser la façon dont le cerveau effectue une tâche particulière
- Permet d'extraire le «pattern» d'information à partir d'ensembles de données qui contiennent des relations latentes
- Habilité de traiter des données bruitées

L'apprentissage par réseaux de neurones

- Par apprentissage on arrive à extraire de l'information
- Cette information est stockées sur les liens
 entre les neurones
 Réseau de neurones
- On l'appelle aussi poids Entrées Poids Poids Sorties
- A l'aide des réseaux de neurones on peut réaliser 2 types d'apprentissage:
 - Supervisé
 - Non supervisée

L'auto-organisation

- Les cellules du cerveau s'auto-organisent en groupes, selon les informations reçues.
- Cette information est non seulement accueillie par une seule cellule nerveuse, mais influe également sur d'autres cellules dans son voisinage. Cette organisation se traduit par une sorte de carte, où les cellules nerveuses ayant des fonctions similaires sont disposées proches les unes par rapport aux autres.
- Le mécanisme des cartes SOM est aussi basé sur ce principe

Le principe des SOM

- SOM produit un graphe de similarité des données de départ
- Cette technique convertit les relations non linéaires entre les données de haute dimension en relations géométriques simples

SOM

- Introduite en 1984 par Teuvo Kohonen
- Quantification vectorielle + projection vectorielle
- Technique basée sur l'apprentissage nonsupervisé
- Utilisée en classification et visualisation des données de grandes taille
- Utilisée dans de nombreux domaines

Domaines d'applications

Applications

- Analyse exploratoire des données, clustering
- Quantification, sélection des variables, détection des données aberrantes
- Diagnostic, prédiction, données manquantes

Domaines

- Socio-economique
- TextMining
- Télécomunication
- Processus industriels

Architecture de SOM

- Un ensemble de neurones / unités des clusters
- Chaque neurone est associé à un vecteur prototype qui est pris à partir de l'ensemble de données d'entrée
- Les neurones de la carte peuvent être disposée sur une grille de forme rectangulaire ou hexagonale

Voisinage hexagonal

Voisinage rectangulaire

SOM

• Fonction de coût:

$$C(w) = \sum_{i} \sum_{k} h_{k,s(x_i)} ||x_i - w_k||^2$$

Algorithme de SOM

1. Phase d'initialisation

- Définir la topologie de la carte
- Initialiser aléatoirement tous les prototypes pour chaque neurone.

2. Phase de compétition

- Présenter une donnée x_i choisie aléatoirement
- Déterminer le neurone gagnant selon la règle :

$$s(x_i) = A \operatorname{rg min}_{1 \le k \le m} \|x_i - w_k\|^2$$

3. Phase d'adaptation

Adapter les prototypes selon la règle

$$W_k(t+1) = W_k(t) + \varepsilon(t)h_{k,s(x_i)}(x_i - W_k(t))$$

4. Répéter les phases 2 et 3 jusqu'à ce que les mises à jours des prototypes soient négligeables

Phase d'auto organisation

Phase d'auto organisation

La carte s'organise en vérifiant les propriétés suivantes :

- Chaque neurone se spécialise dans une portion de l'espace d'entrée
- Des données similaire auront des projections proches sur la cartes.

Visualisation des données utilisant SOM

- Visualisation des clusters et de la forme des données (projections, U-matrices et d'autres matrices de distances)
- Visualisation des composantes/variables (scatter plots, plan des composantes)
- Visualisation des projections des données

Exemple: Pays du monde

SOM 15-Nov-2016

SOM 15-Nov-2016

SOM 15-Nov-2016

X-coord

Y-coord

Z-coord

Relative importance

SOM 15-Nov-2016

SOM 15-Nov-2016

