# The Utility of Bayesian Predictive Probabilities for Interim Monitoring of Clinical Trials

Ben Saville, Ph.D.

Berry Consultants

KOL Lecture Series, Nov 2015

#### How are clinical trials similar to missiles?



#### How are clinical trials similar to missiles?

- ▶ Fixed trial designs are like ballistic missiles:
  - Acquire the best data possible a priori, do the calculations, and fire away
  - They then hope their estimates are correct and the wind doesn't change direction or speed
- Adaptive trials are like guided missiles:
  - Adaptively change course or speed depending on new information acquired
  - More likely to hit the target
  - Less likely to cause collateral damage

## Interim analyses in clinical trials

- ► Interim analyses for stopping/continuing trials are one form of adaptive trials
- Various metrics for decisions of stopping
  - Frequentist: Multi-stage, group sequential designs, conditional power
  - Bayesian: Posterior distributions, predictive power, Bayes factors
- Question: Why and when should I use Bayesian predictive probabilities for interim monitoring?
  - ► Clinical Trials 2014: Saville, Connor, Ayers, Alvarez

# Questions addressed by interim analyses

- 1. Is there convincing evidence in favor of the null or alternative hypotheses?
  - evidence presently shown by data
- 2. Is the trial likely to show convincing evidence in favor of the alternative hypothesis if additional data are collected?
  - prediction of what evidence will be available later
- Purpose of Interims
  - ethical imperative to avoid treating patients with ineffective or inferior therapies
  - efficient allocation of resources

# Predictive Probability of Success (PPoS)

- ▶ Definition: The probability of achieving a successful (significant) result at a future analysis, given the current interim data
- Obtained by integrating the data likelihood over the posterior distribution (i.e. we integrate over future possible responses) and predicting the future outcome of the trial
- Efficacy rules can be based either on Bayesian posterior distributions (fully Bayesian) or frequentist p-values (mixed Bayesian-frequentist)

# Calculating predictive probabilities via simulation

- 1. At an interim analysis, sample the parameter of interest  $\theta$  from the current posterior given current data  $X_{(n)}$ .
- 2. Complete the dataset by sampling future samples  $X_{(m)}$ , observations not yet observed at the interim analysis, from the predictive distribution
- 3. Use the complete dataset to calculate success criteria (p-value, posterior probability). If success criteria is met (e.g. p-value < 0.05), the trial is a success
- 4. Repeat steps 1-3 a total of *B* times; the predictive probability (PPoS) is the proportion of simulated trials that achieve success

## Futility - Possible definitions

- 1. A trial that is unlikely to achieve its objective (i.e. unlikely to show statistical significance at the final sample size)
- 2. A trial that is unlikely to demonstrate the effect it was designed to detect (i.e. unlikely that  $H_a$  is true)

# Illustrative Example: Monitoring for futility

- Consider a single arm Phase II study of 100 patients measuring a binary outcome (favorable response to treatment)
- ► Goal: compare proportion to a gold standard 50% response rate
- x ~ Bin(p, N = 100)
   p = probability of response in the study population
   N = total number of patients
- ▶ Trial will be considered a success if the posterior probability that the proportion exceeds the gold standard is greater than  $\eta = 0.95$ ,

$$\Pr(p > 0.5|x) > \eta$$

# Illustrative Example

- ▶ Uniform prior  $p \sim \text{Beta}(\alpha_0 = 1, \beta_0 = 1)$
- ▶ The trial is a "success" if 59 or more of 100 patients respond
- Posterior evidence required for success: Pr(p > 0.50 | x = 58, n = 100) = 0.944Pr(p > 0.50 | x = 59, n = 100) = 0.963
- ► Consider 3 interim analyses monitoring for futility at 20, 50, and 75 patients

#### Notation

- Let j = 1, ..., J index the jth interim analysis
- Let  $n_j$  be the number of patients
- $x_i =$  number of observed responses
- $ightharpoonup m_j = \text{number of future patients}$
- ▶  $y_j$  = number of future responses of patients not yet enrolled i.e.  $n = n_j + m_j$  and  $x = x_j + y_j$

## First Interim analysis

- ▶ Suppose at the 1st interim analysis we observe 12 responses out of 20 patients (60%, p-value = 0.25)
- ▶  $Pr(p > 0.50 | x_1 = 12, n_1 = 20) = 0.81$ , and 47 or more responses are needed in the remaining 80 patients ( $\geq 59\%$ ) in order for the trial to be a success
- $y_1 \sim \text{Beta-binomial}(m_1 = 80, \alpha = \alpha_0 + 12, \beta = \beta_0 + 8)$
- ▶ PPoS =  $Pr(y_1 \ge 47) = 0.54$
- Should we continue?

# Second Interim analysis

- ▶ 2nd interim analysis: 28 responses out of 50 patients (56%, p-value=0.24)
- ▶ Posterior Probability = 0.81
- Predictive Probability of Success = 0.30
- ▶ 31 or more responses are needed in the remaining 50 patients (≥ 62%) in order to achieve trial success.
- Should we continue?

# Third Interim analysis

- ➤ 3rd interim analysis: 41 responses of 75 patients (55%, p-value = .24)
- ▶ Posterior Probability = 0.81
- Predictive Probability of Success = 0.086
- ▶ 18 or more responses are needed in the remaining 25 patients (≥ 72%) in order to achieve success
- Should we continue?
- ► The posterior estimate of 0.80 (and p-value of 0.24) means different things at different points in the study relative to trial "success"

#### **Table**

Table: Illustrative example

| $\overline{n_j}$ | Хj | m <sub>j</sub> | <i>y</i> <sub>i</sub> * | <i>p</i> -value | Pr(p > 0.5) | PPoS  |
|------------------|----|----------------|-------------------------|-----------------|-------------|-------|
| 20               | 12 | 80             | 47                      | 0.25            | 0.81        | 0.54  |
| 50               | 28 | 50             | 31                      | 0.24            | 0.80        | 0.30  |
| 75               | 41 | 25             | 18                      | 0.24            | 0.79        | 0.086 |
| 90               | 49 | 10             | 10                      | 0.23            | 0.80        | 0.003 |

 $n_j$  and  $x_j$  are the number of patients and successes at interim analysis j  $m_j =$  number of remaining patients at interim analysis j  $y_j^* =$  minimum number of successes required to achieve success
PPoS= Bayesian predictive probability of success

# Graphical representation



Figure: Posterior distributions for 4 interim analyses.

# Mapping PPoS to posterior probabilities

- ► Suppose in our example, the trial is stopped when the PPoS is less than 0.20 at any of the interim analyses
  - Power = 0.842
  - ► Type I error rate = 0.032 (based on 10,000 simulations)
- Equivalently, we could choose the following posterior futility cutoffs
  - < 0.577 (12 or less out of 20)</li>
  - < 0.799 (28 or less out of 50)</li>
  - < 0.897 (42 or less out of 75)</li>
- Exactly equivalent to stopping if PPoS < 0.20</li>

# Predictive vs. posterior probabilities

- In simple settings where we can exactly map posterior and predictive probabilities: computational advantages of using the posterior probabilities
- ▶ In more complicated settings, it can be difficult to align the posterior and predictive probability rules
- It is more straightforward to think about "reasonable" stopping rules with a predictive probability
- ► Predictive probabilities are a metric that investigators understand ("What's the probability of a return on this investment if we continue?"), so they can help determine appropriate stopping rules

# Group sequential bounds

- Group sequential methods use alpha and beta spending functions to preserve the Type I error and optimize power
- Given working example, an Emerson-Fleming lower boundary for futility will stop for futility if less than 5, 25, or 42 successes in 20, 50, 75 patients, respectively.
- ▶ Power of design is 0.93, Type I error is 0.05

## Emerson-Fleming lower boundary



Figure: Emerson-Fleming lower boundary for futility

## Emerson-Fleming lower boundary

- The changing critical values are inherently trying to adjust for the amount of information yet to be collected, while controlling Type I and Type II error
- ► The predictive probabilities of success at 5/20 or 25/50 (which both continue with Emerson-Fleming boundaries) are 0.0004 and 0.041
- ► Are these reasonable stopping rules?

# Futility: Repeated testing of alternative hypothesis

- ► Assess current evidence against targeted effect (*H*<sub>a</sub>) using p-values
- ► At each interim look, test the alternative hypothesis at alpha = 0.005 level
- ▶ Requires specification of  $H_a$ , e.g.  $H_a$ :  $p_1 = 0.65$
- Example: Stop for futility if less than 8, 24, 38, or 47 responses at 20, 50, 75, or 90 patients
  - ► Predictive Probabilities are 0.031, 0.016, 0.002, and 0.0, where above rules allow continuation

# Conditional Power: Example

- ▶ Definition: The probability of a successful trial at the final sample size, given observed data and an assumed effect size
- ▶ Commonly used effect sizes: original  $H_a$  ( $CP_{H_a}$ ), current MLE ( $CP_{\text{MLE}}$ ), and null hypothesis  $H_0$  ( $CP_{H_0}$ )
- ► Even when the likelihood that 0.65 is the true response rate becomes less and less likely during the course of the trial,  $CP_{H_a}$  continues to use 0.65
- ► *CP*<sub>MLE</sub> uses the MLE at each analysis but fails to incorporate the variability of that estimate
- ► *CP*<sub>H<sub>0</sub></sub> only gives the probability assuming that the treatment doesn't work (given observed data)

#### **Table**

Table: Illustrative example

| $n_j$ | Xj | m <sub>j</sub> | $y_i^*$ | <i>p</i> -value | Pr(p > 0.5) | $CP_{H_a}$ | $CP_{\mathrm{MLE}}$ | PPoS  |
|-------|----|----------------|---------|-----------------|-------------|------------|---------------------|-------|
| 20    | 12 | 80             | 47      | 0.25            | 0.81        | 0.90       | 0.64                | 0.54  |
| 50    | 28 | 50             | 31      | 0.24            | 0.80        | 0.73       | 0.24                | 0.30  |
| 75    | 41 | 25             | 18      | 0.24            | 0.79        | 0.31       | 0.060               | 0.086 |
| 90    | 49 | 10             | 10      | 0.23            | 0.80        | 0.013      | 0.002               | 0.003 |
|       |    |                |         |                 |             |            |                     |       |

 $n_j$  and  $x_j$  are the number of patients and successes at interim analysis j

 $m_j$  = number of remaining patients at interim analysis j

 $y_i^* = \text{minimum number of successes required to achieve success}$ 

 $CP_{H_a}$  and  $CP_{MLE}$ : Conditional power based on original  $H_a$  or MLE

PPoS = Bayesian predictive probability of success

#### **Conditional Power**



Figure: Conditional Power given 12 success in 20 patients

# Predictive probabilities

- Predictive probabilities are weighted averages of the the conditional powers across the current probability that each success rate is the true success rate (i.e. weighted by the posterior)
- Hence, predictive probabilities are a much more realistic value of predictive trial success than any single estimate of conditional power

# Efficacy

- ► Success: There is convincing evidence that the treatment is effective
  - Question naturally corresponds to evidence currently available
  - ► If outcomes of accrued patients are all observed, prediction methods are not needed
- ▶ If we use PPoS to monitor for early success, one typically needs to already meet the posterior success criteria
  - e.g., if PPoS > 0.95 at interim look, typically implies  $Pr(p > p_0|x_i) > 0.95$ , which implies trial success

#### Efficacy: Delayed outcomes

- Using PPoS for stopping for efficacy is primarily useful for delayed outcomes, e.g. time to event
  - With incomplete data, question of success becomes a prediction problem
  - ▶ At an interim analysis, PPoS with the current patients (some of which have yet to observe their complete follow-up time)
  - ► Trial stopped for expected efficacy, current patients followed until outcomes are observed, final analysis completed

## Efficacy: Delayed outcomes

- ► Traditional group sequential methods
  - If trial is stopped due to an efficacy boundary being met, typically a final analysis is done after all lagged outcomes are observed on the current set of patients
  - Efficacy is determined by interim, not final analysis
  - Hence, DMC's may be unlikely to stop trials for efficacy unless the data are convincing and p-value would not lose significance if a few negative outcomes occurred in the follow-up period
- Predictive probabilities formalize this decision making process, i.e. stop trials for efficacy if they currently show superiority and are likely to maintain superiority after remaining data are collected

# Efficacy: Time-lag with auxiliary variables

- ▶ PPoS can be used to model a final primary outcome using earlier information that is informative about the final outcome
- ► For example, if the primary outcome is success at 24 months, many of the accrued patients at a given interim analysis will not have 24 months of observation time
- ► However, there exists information on the success at 3, 6, and 12 months that is correlated with the outcome at 24 months
- These earlier measures are auxiliary variables, and can be used to model various types of primary outcomes, including binary, continuous, time-to-event, and count data

# Efficacy: Time-lag with auxiliary outcomes

- ► These auxiliary variables may not be valid endpoints from a regulatory perspective
- Incorporates partial information into the predictive distribution of the final outcome to provide a more informative predictive probability of trial success
- ▶ If the predictive probability at final *N* is sufficiently small, the trial can be stopped for futility immediately
- ▶ If the predictive probability with current *n* and more follow-up is sufficiently large, one can stop accrual and wait until the primary outcome is observed for all currently enrolled patients, at which point trial success is evaluated
- Note the auxiliary variables do not contribute to the final analysis

## Efficacy

- ► Time-lags are extremely common in clinical trials; very rare to observe an outcome immediately upon enrollment
- Other competing methods (group sequential, conditional power, posterior probabilities, etc.) are not easily adapted to account for time-lags or auxiliary variables
- Predictive probabilities are also extremely useful for calculating predicted success of future phase III study while in a phase II study

# Relationship between predictive probability and posterior

- Mhen an infinite amount of data remains to be collected, PPoS equals the current posterior estimate of efficacy,  $Pr(p > p_0|x_j, n_j)$
- For example, suppose an interim analysis yields 25 responses from 50 patients. The current estimate of Pr(p > 0.50 | x = 25, n = 50) equals 0.50
- ▶ If the trial claims efficacy for a posterior cutoff of 0.95, i.e.  $Pr(p > 0.50|N) \ge 0.95$ , then for a maximum sample size N = 100 patients, PPoS equals 0.04
- ▶ Given the same interim data, PPoS for maximum sample sizes of 200, 500, 1000, and 10000 patients are 0.17, 0.29, 0.35, and 0.45 (converging to 0.50 as N approaches infinity)

## Predictive Probability vs. Posterior



Figure: Predictive probabilities vs. maximum sample size N by posterior threshold  $\eta$ , with interim n=50 and observed x=25

## Predictive Probability vs. Posterior

- ▶ For a fixed maximum sample size (e.g. *N* = 100) and a fixed posterior probability, PPoS converges to either 0 or 1 as the interim sample size increases
- ► Logical because the trial success or failure becomes more certain as trial nears its end

#### Predictive Probability vs. Posterior



Figure: PPoS vs. posterior estimate  $\Pr(p > 0.50|x)$  by interim sample size n, with maximum sample size N = 100 and posterior threshold  $\eta = 0.95$ 

# Computational challenges

- Simulations are typically used to calculate predictive probabilities; can be problematic for calculating operating characteristics
- ▶ Let *K* trials be needed to assess operating characteristics, *J* the number of interim analyses, and *B* the number of simulations required to calculate a single predictive probability
- ▶ Trial requires  $J \times B \times K$  imputations for a single setting of parameters (e.g. under  $H_0$ )
- ▶ For example, a trial with 3 interim analyses and B=1000, the trial would require a total of  $3\times1000\times1000=3,000,000$  simulated complete data sets
- Further complicated if Bayesian posterior distributions are not available in closed form (MCMC)

#### Prior distributions

- ► Large literature exists on selection of prior distributions for Bayesian analyses of clinical trials
- ► Common choices: "non-informative" prior, skeptical prior, enthusiastic prior, and historical prior
- Clinical trial designs using predictive probabilities for interim monitoring do not claim efficacy using predictive probabilities; the claim of efficacy is based on either Bayesian posterior probabilities or frequentist criteria (p-values)
- ➤ Same discussions of prior distributions in the literature are applicable to Bayesian designs with interim monitoring via predictive probabilities

#### Prior distributions

- One can calculate the predictive probability of trial success at interim looks using historical prior information, even though the final analysis may use the flat or skeptical prior
- For example, simulating complete data sets under the historical prior, but using the flat or skeptical prior to determine whether each simulated trial is a success
- Uses all available information to more accurately predict whether the trial will be a success, but maintain objectivity or skepticism in the prior for the final analysis
- ► Hence a historical (i.e. "honest") prior can be more efficient in making decisions about the conduct of a trial

#### Conclusion

- Predictive probabilities
  - Closely align with the clinical decision making process, particularly with prediction problems such as futility, efficacy monitoring with lagged outcomes, and predicting success in future trials
  - ► Thresholds can be easier for decision makers to interpret compared to those based on posterior probabilities or p-values
  - Avoids illogical stopping rules
  - ► In many settings, the benefits are worth the computational burden in designing clinical trials