Лекция 10

Машины Тьюринга

Схематическое описание машины Тьюринга:

Математическое описание машины Тьюринга:

<u>Определение.</u> Машина Тьюринга T представляет собой алгебраическую систему $T=(\Sigma,Q,\delta,q_S,q_F)$, работающую в дискретные моменты времени t=0,1,2,... и состоящую из следующих частей:

- конечное множество $\Sigma = \{0,1,...\}$ называется внешним алфавитом,
- конечное множество $Q = \{q_S, q_F, ...\}$ называется внутренним алфавитом, элементы Q называются состояниями машины,
- отображение $\delta: Q \times \Sigma \to Q \times \Sigma \times \{R, L, S\}$, которое определяет список команд $T(q,a) = qa \to q'a'X$ символическое обозначение образов $\delta(q,a) = (q',a',X)$ отображения δ для $q \in Q \setminus \{q_F\}$, $a \in \Sigma$ и $X \in \{R, L, S\}$, множество всех команд $\Pi = \{T(q,a): q \in Q \setminus \{q_F\} \land a \in \Sigma\}$ называется *программой машины*,
- состояние q_S называется *начальным* и означает начало работы машины,

• состояние q_F называется *заключительным* и означает завершение работы машины.

Работа машины Тьюринга T происходит под действием ее команд и заключается в изменении ее конфигураций, описывающих состояния ленты и управляющего устройства, а также положение головки относительно ячеек ленты:

если лента находится в состоянии, которое описывается над алфавитом Σ , и головка В состоянии ячейку просматривает на ленте cсостоянием TO конфигурация Tсоответствующая K машины описывается выражением $M = \alpha q a \beta$, которое называется машинным словом.

При этом K называется начальной конфигурацией, если описывающее ее машинное слово содержит символ начального состояния q_S , и заключительной конфигурацией, если описывающее ее машинное слово содержит символ заключительного состояния q_F .

Программа указывает, что машина делает в каждый момент времени в зависимости от ее настоящей конфигурации K:

если K - заключительная конфигурация, то машина заканчивает работу, если же K не является заключительной конфигурацией и описывается машинным словом $M = \alpha q a \beta$, то в программе Π машина находит команду T(q,a) с левой частью qa и в зависимости от вида правой части такой команды T(q,a) машина заменяет в просматриваемой ячейке букву a на букву a', состояние q на состояние q' и в зависимости от значения $X \in \{R, L, S\}$ сдвигает просматривающую головку либо в соседнюю правую ячейку при X = R, либо в соседнюю левую ячейку при X = R, либо оставляет головку на месте при X = S.

Изменение конфигураций $K_0, K_1, K_2, ...$ машины T под действием команд происходит в дискретные моменты времени t=0,1,2,... и описывается преобразованием соответствующих

машинных слов $M_0, M_1, M_2, ...$ по следующему правилу. За один шаг работы машины T ее машинное слово $M = \alpha q a \beta$ под действием команды T(q,a) преобразуется в новое машинное слово M' по формулам:

если
$$T(q,a) = qa \rightarrow q'a'S$$
, то $M' = \alpha q'a'\beta$, если $T(q,a) = qa \rightarrow q'a'R$ и $M = \alpha qab\beta'$, то $M' = \alpha a'q'b\beta'$, если $T(q,a) = qa \rightarrow q'a'R$ и $M = \alpha qa$, то $M' = \alpha a'q'*$, если $T(q,a) = qa \rightarrow q'a'L$ и $M = \alpha'bqa\beta$, то $M' = \alpha'q'ba'\beta$, если $T(q,a) = qa \rightarrow q'a'L$ и $M = qa\beta$, то $M' = q'*a'\beta$.

Символически такое одношаговое преобразование машинных слов обозначается $M \to^T M'$.

Если существует такая последовательность преобразований машинных слов $M_i \to^T M_{i+1}$ (где i=0,1,...,k-1), для которой $M_0 = M$ и $M_k = M'$, то пишут $M \Rightarrow^T M'$ и говорят, что машинное слово M' получается из машинного слова M с помощью машины T.

Вход (начало работы) машины: слово $w \in \Sigma^*$ на ленте машины T в начальном состоянии q_S .

Выход (завершение работы) машины: слово $w' \in \Sigma^*$ на ленте машины T в заключительном состоянии q_E .

В этом случае говорят, что машина T принимает слово w и выдает значение w'=T(w). В результате машина T определяет язык $L(T) \subset \Sigma^*$, который состоит за всех принимаемых машиной T слов.

<u>Определение</u>. Язык $L \subset \Sigma^*$ *принимается* машиной Тьюринга, если L = L(T) для некоторой машины Тьюринга T.

Таким образом, любая машина Тьюринга T определяет частичную функцию f из Σ^* в Σ^* , область определения которой D_f состоит из всех слов алфавита Σ , которые принимает машина T, и

значения которой для слов $w \in D_f$ определяются по формуле: $f(w) = T(w) \, .$

<u>Определение.</u> Частичная функция f из Σ^* в Σ^* называется вычислимой по Тьюрингу, если она определяется некоторой машиной Тьюринга.

<u>Пример.</u> Пусть машина Тьюринга T имеет внешний алфавит $\Sigma = \{0,1\}$, внутренний алфавит $Q = \{q_S, q_F, q\}$ и программу Π , которая состоит из команд: $q_S 1 \to q1R$, $q1 \to q1R$, $q*\to q_F 1S$. Тогда слово $\alpha = 11$ машиной T перерабатывается в слово $\beta = 111$, так как

$$q_{S}11 \rightarrow^{T} 1q1 \rightarrow^{T} 11q* \rightarrow^{T} 11q_{F}1 \text{ M } T(11) = 111...$$

Легко видеть, что любое слово $\alpha=1^n$ над алфавитом $\Sigma=\{0,1\}$ машиной T перерабатывается в слово $\beta=\alpha 1=1^{n+1}$. Это означает, что машина T к любому слову над алфавитом $A=\{1\}$ приписывает справа символ 1.

Определение. Частичная словарная функция $f:(\Sigma^*)^n \to \Sigma^*$ над алфавитом Σ называется вычислимой по Тьюрингу, если существует машина Тьюринга T с внешним алфавитом Σ , для которой при любых $w_1,...,w_n \in \Sigma^*$ условие $(w_1,...,w_n) \in D_f$ равносильно тому, что машина T применима к слову $\alpha = w_1 * ... * w_n$ и результат $T(\alpha)$ переработки машиной T такого слова равен значению функции $f(w_1,...,w_n)$.

Основная теорема. Для любой частичной словарной функции $f:(\Sigma^*)^n \to \Sigma^*$ следующие условия эквивалентны:

- 1) функция f вычислима по Тьюрингу;
- 2) функция f частично рекурсивна;
- 3) функция f нормально вычислима.

Такие вычислительные процедуры называются алгоритмами.

Можно построить *универсальную машину Тьюринга*, которая моделирует работу произвольной машины Тьюринга для любых заданных входных данных.

Тезис Черча-Тьюринга:

универсальная машина Тьюринга может выполнить любые вычисления, которые могут быть выполнены любым физически реализуемым вычислительным устройством.