Home

Course Information

Course Supervisor

Dr. Péter Galambos peter.galambos@irob.uni-obuda.hu

Teachers

Tamás D. Nagy tamas.daniel.nagy@irob.uni-obuda.hu

Borsa Détár detar.borsa@gmail.com

Schedule

Week	Date	Торіс	Test
2.	March 7	Course requirements. Introduction, System setup.	-
4.	March 21	Linux, ROS introduction.	-
5.	March 28	Python principles, ROS Publisher, ROS Subscriber. Projekt labor I.	-
6.	April 4	ROS 2 Launch, ROS 2 Param, ROS 2 Bag.	-
8.	April 18	Git. Project lab I.	-
9.	April 25	Principles of robotics, da Vinci I.	-

Week	Date	Торіс	Test
10.	May 2	Principles of robotics, da Vinci II.	-
11.	May 9	Kinematics, Inverse kinematics I.	-
12.	May 16	Kinematics, Inverse kinematics II.	Test
13.	May 23	Project lab II.	-
14.	May 30	Project presentations.	Test retake
14+1.	June 6	-	-

The schedule may change during the semester!

Course Requirements

Project

- Proved to be the student's own work
- Running results valid output
- Grading: completeness of the soultion, proper ROS communication, proper structure of the program, quality of implementation, documentation

Grading

Personal attendance on the classes is mandatory (min 70%).

To pass the course, Tests and the Project must be passed (grade 2). One of the Test can be taken again.

Grade

 $\(Grade = (Test1 + Test2 + 2 \land Project) / 4)$

Antal Bejczy Center for Intelligent Robotics (BARK/IROB)

ÓBUDAI EGYETEM

BEJCZY ANTAL INTELLIGENS ROBOTTECHNIKAI KÖZPONT

Ĭ

https://irob.uni-obuda.hu

irob-saf

(iRob Surgical Automation Framework)

https://github.com/ABC-iRobotics/irob-saf

PlatypOUs

https://github.com/ABC-iRobotics/PlatypOUs-Mobile-Robot-Platform