EE 382V: Parallel Algorithms

Summer 2017

Lecture 22: July 23

Lecturer: Vijay Garg Scribe: Brice Ngnigh

22.1 Introduction

In this lecture, we will build on our previous lecture on the Euler Tour technique to solve problems such as rooting a tree, computing a vertex level, and computing the number of descendants of a tree.

22.2 Rooting a Tree

Given a tree T = (V, E) rooted at a node r. For every node $v \neq r$, we want to find the parent of v, P(v) when the tree T is rooted at r.

Considering the trees below, we compute the root of each vertex:

Figure 22.2: Tree rooted at 2 P(1) = 4 P(1) = 4 P(3) = 4 $P(2) = \emptyset$

22.2.1 Algorithm

Input: A tree T(Given as adjacency list), a node r, the root of T. Output: For every vertex $v \neq r$, the parent P(v).

1. Convert the Euler Circuit into the Euler Path

2. Set $succ(u_{d-1}, r)$ to null

3. Assign wieght w = 1to each edge in the linked list Apply parallel prefix on the linked list

22-2 Lecture 22: July 23

4. For each edge (x, y) in parallel do if prefsum(x,y); prefsum(y,x) then P(y) = x

22.2.2 Example

Tree rooted at node 2:

Euler Circuit : $(1,4) \rightarrow (4,2) \rightarrow (2,4) \rightarrow (4,3) \rightarrow (3,4) \rightarrow (4,1) \rightarrow \rightarrow \rightarrow \rightarrow (1,4)$

Operation	Result
Euler Path	$(2,4) \to (4,3) \to (3,4) \to (4,1) \to (1,4) \to (4,2)$
Weight w	$(1) \rightarrow (1) \rightarrow (1) \rightarrow (1) \rightarrow (1) \rightarrow (1)$
PrefixSum	$(1) \to (2) \to (3) \to (4) \to (5) \to (6)$

22.3 Computing the Vertex Level

Given a tree T = (V, E) rooted at a node r. For every node $v \neq r$, we want to find the level of v, which is the number of edges from vertex v to the root r.

Considering the tree below, we compute the level of each vertex:

Figure 22.3: Tree rooted at 1 $level(2) = 0 \quad level(4) = 1 \quad level(1) = 2 \quad level(3) = 2$

Lecture 22: July 23 22-3

22.3.1 Algorithm

 $Input: A \text{ tree } T(Given \text{ as adjacency list}), \text{ a node } r, \text{ the root of } T. Input: For every vertex v \neq r, \text{output level(v)}, \text{ the distance from vertex v to the root.}$

1. Compute Euler Path for the rooted tree r

```
2. For all v r do in par w(p(v), v) = -1; w(v, p(v)) = -1
```

- 3. Perform prefix sum
- 4. For each v r do in par level(v) = prefix sum (p(), v)
- 5. level(r) = 0

22.3.2 Example

Figure 22.4: Tree rooted at 1

Euler Peth	Weights	Prefix Sum
(1,2)	+1	1
(2,5)	+1	2
(5,2)	-1	1
(2,6)	+1	2
(6,7)	+1	3
(7,6)	-1	2
(6,2)	-1	1
(2,1)	-1	0
(1,3)	+1	1
(3,1)	-1	0
(1,4)	+1	1
(4,1)	-1	0

Figure 22.5: some cap

22.3.3 result

22.4 Computing the Number of Descendants

Given a tree T = (V, E) rooted at a node r. For every node $v \neq r$, we want to find the parent of v, P(v) when the tree T is rooted at r.

Considering the trees below, we compute the root of each vertex:

22-4 Lecture 22: July 23

Figure 22.6: Tree with node level.

Figure 22.8: Tree rooted at 2
$$P(1) = 4$$
 $P(1) = 4$ $P(3) = 4$ $P(2) = \emptyset$

22.4.1 Algorithm

 $Input: A \text{ tree } T(Given \text{ as adjacency list}), \text{ a node } r, \text{ the root of } T. Input: For every vertex } v \neq r, \text{ the parent } P(v).$

- 1. Convert the Euler Circuit into the Euler Path
- 2. Set $succ(u_{d-1}, r)$ to null
- 3. Assign wieght w = 1to each edge in the linked list Apply parallel prefix on the linked list
- 4. For each edge (x, y) in parallel do if prefsum(x,y); prefsum(y,x) then P(y) = x

Lecture 22: July 23 22-5

22.4.2 Example

Tree rooted at node 2:

Euler Circuit : $(1,4) \rightarrow (4,2) \rightarrow (2,4) \rightarrow (4,3) \rightarrow (3,4) \rightarrow (4,1) \rightarrow \rightarrow \rightarrow \rightarrow (1,4)$

O	peration	Result
Ει	ıler Path	$(2,4) \to (4,3) \to (3,4) \to (4,1) \to (1,4) \to (4,2)$
W	Veight w	$(1) \rightarrow (1) \rightarrow (1) \rightarrow (1) \rightarrow (1) \rightarrow (1)$
Pı	refixSum	$(1) \to (2) \to (3) \to (4) \to (5) \to (6)$