Programare declarativă

Functori și categorii

Ioana Leuștean Traian Șerbănuță

Departamentul de Informatică, FMI, UB

Cutii și computații

Cutii și computații

Tipuri parametrizate — "cutii"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemple

- Clasa de tipuri opțiune asociază unui tip a, tipul Maybe a
 - cutii goale: Nothing
 - cutii care țin un element x de tip a: Just x
- Clasa de tipuri listă asociază unui tip a, tipul [a]
 - cutii care țin 0, 1, sau mai multe elemente de tip a: [1, 2, 3], [], [5]

Tipuri parametrizate — "cutii"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemplu: tip de date pentru arbori binari

 Un arbore este o "cutie" care poate ține 0, 1, sau mai multe elemente de tip a:

Nod 3 Nil (Nod 4 (Nod 2 Nil Nil) Nil), Nil, Nod 3 Nil Nil

Generalizare: Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- Maybe a descrie rezultate de computații deterministe care pot eșua
 - computații care eșuează: Nothing
 - o computații care produc un element de tipul dat: Just 4
- [Int] descrie liste de rezultate posibile ale unor computații nedeterministe
 - care pot produce oricare dintre rezultatele date: [1, 2, 3], [], [5]

Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- Either e a descrie rezultate de tip a ale unor computații deterministe care pot eșua cu o eroare de tip e
 - Right 5 :: Either e Int reprezintă rezultatul unei computații reușite
 - Left "OOM":: Either String a reprezintă o excepție de tip String

Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemplu: tipul funcțiilor de sursă dată

- t -> a descrie computații care atunci când primesc o intrare de tip t produc un rezultat de tip a
 - (++ "!") :: String -> String este o computație care dat fiind un șir, îi adaugă un semn de exclamare
 - length :: String -> Int este o computație care dat fiind un şir, îi prduce lungimea acestuia
 - id :: String -> String este o computație care produce șirul dat ca argument

Clase de tipuri pentru cutii și computații?

Întrebare

Care sunt trăsăturile comune ale acestor tipuri parametrizate care pot fi gândite intuitiv ca cutii care conțin elemente / computații care produc rezultate?

Problemă

Putem proiecta clase de tipuri care descriu funcționalități comune tuturor acestor tipuri?

Functori

Problemă

Formulare cu cutii

Dată fiind o funcție $f :: a \rightarrow b$ și o cutie ca care conține elemente de tip a, vreau să să obțin o cutie cb care conține elemente de tip b obținute prin transformarea elementele din cutia ca folosind functia f (si doar atât!)

Formulare cu computații

Dată fiind o funcție $f::a \rightarrow b$ și o computație ca care produce rezultate de tip a, vreau să să obțin o computație cb care produce rezultate de tip b obținute prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)

Exemplu — liste

Dată fiind o funcție f :: a -> b și o listă *la* de elemente de tip a, vreau să să obțin o lista de elemente de tip b transformând fiecare element din *la* folosind funcția f (și doar atât!)

Definiție

class Functor m where

```
fmap :: (a -> b) -> m a -> m b
```

Dată fiind o funcție f :: a -> b și ca :: m a, fmap produce cb :: m b obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)

Instantă pentru liste

```
instance Functor [] where
fmap = map
```

Instanțe

class Functor f where

 $fmap :: (a \rightarrow b) \rightarrow m a \rightarrow m b$

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b

```
instance Functor Arbore where
  fmap f Nil = Nil
  fmap f (Nod x l r) = Nod (f x) (fmap f l) (fmap f r)
```

Instanțe

class Functor f where

 $fmap :: (a \rightarrow b) \rightarrow m a \rightarrow m b$

Instanță pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

Instantă pentru tipul funcție fmap :: $(a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)$

Instante

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instantă pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

instance Functor (Either e) where
  fmap _ (Left x) = Left x
  fmap f (Right y) = Right (f y)
```

```
Instanță pentru tipul funcție fmap :: (a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)

instance Functor (->) a where
fmap f g = f . g -- sau, mai simplu, fmap = (.)
```

Exemple

```
Main> fmap (*2) [1..3]

Main> fmap (*2) (Just 200)

Main> fmap (*2) Nothing

Main> fmap (*2) (+100) 4

Main> fmap (*2) (Right 6)

Main> fmap (*2) (Left 1)
```

Exemple

```
Main> fmap (*2) [1..3]
[2,4,6]
Main> fmap (*2) (Just 200)
Just 400
Main> fmap (*2) Nothing
Nothing
Main> fmap (*2) (+100) 4
208
Main> fmap (*2) (Right 6)
Right 12
Main> fmap (*2) (Left 135)
Left 135
```

Proprietăți ale functorilor

- Argumentul m al lui Functor m definește o transformare de tipuri
 - m a este tipul a transformat prin functorul m
- fmap definește transformarea corespunzătoare a funcțiilor
 - fmap :: (a -> b) -> (m a -> m b)

Contractul lui fmap

- fmap f ca e obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)
- Abstractizat prin două legi:

```
identitate fmap id == id
compunere fmap (g \cdot f) == fmap g \cdot fmap f
```

Categorii și Functori

Categorii și Functori

Categorii

O categorie C este dată de:

- O clasă |ℂ| a obiectelor
- Pentru oricare două obiecte A, B ∈ |C|,
 o mulțime C(A, B) a săgeților "de la A la B"
 f ∈ C(A, B) poate fi scris ca f : A → B
- Pentru orice obiect A o săgeată $id_A: A \rightarrow A$ numită identitatea lui A
- Pentru orice obiecte A, B, C, o operație de compunere a săgeților
 : ℂ(B, C) × ℂ(A, B) → ℂ(A, C)

Bartosz Milewski — Category: The Essence of Composition

Compunerea este asociativă și are element neutru id

Categorii și Functori

Exemplu: Categoria Set

Obiecte: multimi

Săgeți: funcții

Identități: Funcțiile identitate

• Compunere: Compunerea funcțiilor

- Obiectele: tipuri
- Săgețiile: funcții între tipuri

Identități: funcția polimorfică id

```
Prelude> :t id id :: a -> a
```

• Compunere: funcția polimorfică (.)

```
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
```

- Obiecte: o clasă restânsă de tipuri din |Hask|
 - Exemplu: tipuri de forma [a]
- Săgeți: toate funcțiile din Hask între tipurile obiecte
 - Exemple: concat :: [[a]] -> [a], words :: [Char] -> [String],
 reverse :: [a] -> [a]

Exemple

Liste obiecte: tipuri de forma [a]

Optiuni obiecte: tipuri de forma Maybe a

Arbori obiecte: tipuri de forma Arbore a

Funcții de sursă t obiecte: tipuri de forma t -> a

De ce categorii?

(Des)compunerea este esența programării

- Am de rezolvat problema P
- O descompun în subproblemele P₁,...P_n
- Rezolv problemele $P_1, \dots P_n$ cu programele $p_1, \dots p_n$
 - Eventual aplicând recursiv procedura de față
- Compun rezolvările $p_1, \dots p_n$ într-o rezolvare p pentru problema inițială

Categoriile rezolvă problema compunerii

- Ne fortează să abstractizăm datele
- Se poate acționa asupra datelor doar prin săgeți (metode?)
- Forțează un stil de compunere independent de structura obiectelor

Functori

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F : \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

Bartosz Milewski — Functors

În general un functor $F: \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

În Haskell o instantă Functor m este dată de

- Un tip m a pentru orice tip a (deci m trebuie sa fie tip parametrizat)
- Pentru orice două tipuri a și b, o funcție

$$fmap :: (a \rightarrow b) \rightarrow (m a \rightarrow m b)$$

Compatibilă cu identitățile și cu compunerea

fmap
$$id == id$$

fmap $(g \cdot f) == fmap g \cdot fmap f$