Тема: Определенный интеграл

 1^0 . Следствие теоремы об интеграле Римана как пределе сумм Дарбу со стремящейся к нулю мелкостью. 2^0 . Эквивалентность определений интеграла Римана как предела интегральных сумм Римана и как предела сумм Дарбу по разбиениям с исчезающей мелкостью. 3^0 . Сохранение интегрируемости при переходе к меньшему промежутку. 4^0 . Сохранение интегрируемости при переходе к объединению промежутков. 5^0 . Наследование свойства интегрируемости модулем функции. Интегрируемость суммы, разности, произведения и отношения интегрируемых функций. Признак интегрируемости ограниченной на интервале функции. Пример.

1⁰. В качестве следствия теоремы об интеграле Римана как пределе сумм Дарбу со стремящейся к нулю мелкостью сформулируем следующий полезный критерий интегрируемости.

Следствие (LEQ-критерий интегрируемости). Функция f(x) интегрируема по Риману на промежутке $\Delta \subset D_f$ тогда и только тогда, когда существует последовательность $\tau_k(\Delta)$, $k=1,2,\ldots$, разбиений промежутка Δ с условием, что при $k\to +\infty$ мелкость $| au_k|$ стремится к нулю и при этом выполняется следующее предельное равенство:

$$\lim_{k \to +\infty} [S(f, au_k) - s(f, au_k)] = 0.$$
 (Int)

Отметим, что если найдется хотя бы одна последовательность $\tau_k(\Delta)$, $k=1,2,\ldots$, разбиений промежутка с исчезающей в пределе мелкостью, удовлетворяющая к тому же

предельному условию (Int), то это же условие будет выполнено и для любой другой последовательности $au_k'(\Delta), \ k=1,2,\ldots,$ разбиений промежутка с нулевой мелкостью в пределе, т.е. такой, что $\lim_{k \to +\infty} | au_k'(\Delta)| = 0$. Таким образом, условие (Int) достаточно проверять лишь для какой-то одной конкретной последовательности $au_{k}(\Delta)$, $k=1,2,\ldots$, разбиений промежутка с исчезающей в пределе мелкостью.

 2^0 . Пусть для функции f(x), интегрируемой по Риману на промежутке $\Delta \subset D_f$, построена какая-нибудь последовательность $au_k(\Delta)$, $k=1,2,\ldots$, разбиений промежутка Δ с исчезающей в пределе при $k \to +\infty$ мелкостью $| au_k|$. Если при этом

$$\lim_{k \to +\infty} [S(f,\tau_k) - s(f,\tau_k)] = 0,$$

то, как следует из теоремы о пределе сумм Дарбу, интеграл Римана функции f(x) по про-

межутку 🛆 получается по формулам

$$\lim_{k \to +\infty} s(f, au_k) = \lim_{k \to +\infty} S(f, au_k) = \int_{\Delta} f(x) dx.$$
 (R_{lim})

Вместо сумм Дарбу в последнем равенстве допустимо также использовать последовательность $\sigma(f; \tau_k, \xi)$ интегральных сумм Римана, связанную с суммами Дарбу соотношениями

$$s(f, \tau_k) \leqslant \sigma(f; \tau_k, \xi) \leqslant S(f, \tau_k).$$
 (σ_{\leqslant})

Напомним, что согласно определению

$$\sigma(f; au_k, \xi) = \sum_{i=1}^N f(\xi_i^k) |\Delta_i^k|,$$

где $\xi=(\xi_1^k,\xi_2^k,\ldots,\xi_N^k)$, а каждая из точек ξ_i^k , $k=1,\ldots,N$, лежит в своем мелком промежутке Δ_i^k и в остальном произвольна. Переходя в неравенствах (σ_\leqslant) к пределу при $k\to+\infty$ и пользуясь равенствами (R_{\lim}) , по-

лучаем в результате

$$\lim_{k o +\infty} \sigma(f; au_k, \xi) = \int\limits_{\Delta} f(x) dx. \hspace{1cm} (\mathrm{R}'_{\lim})$$

Равенства ($\mathbf{R}_{\mathrm{lim}}$) и ($\mathbf{R}'_{\mathrm{lim}}$) справедливы для любой последовательности $\tau_k(\Delta)$, $k=1,2,\ldots$, разбиений промежутка Δ с исчезающей в пределе при $k\to +\infty$ мелкостью $|\tau_k|$. По этой причине вместо этих двух равенств зачастую

используются следующие эквивалентные им формулы:

$$\lim_{| au| o 0} s(f, au) = \lim_{| au| o 0} S(f, au) = \int\limits_{\Delta} f(x) dx,$$

$$\lim_{| au| o 0} \sigma(f; au,\xi) = \int\limits_{\Delta} f(x) dx.$$

Последнее из этих равенств обычно рассматривают в качестве определения интеграла

Римана от функции по промежутку. Проведенные нами рассуждения показывают, что это определение интеграла как предела интегральных сумм Римана равносильно принятому нами ранее.

 3^0 . Свойство интегрируемости функции сохраняется при переходе к меньшему промежутку, содержащемуся в исходном.

Лемма. Пусть функция f(x) интегрируема по Риману на промежутке Δ . Тогда функция f(x) интегрируема по Риману и на любом меньшем промежутке Δ' , вложенном в исходный, $\Delta' \subset \Delta$.

Доказательство. Пусть последовательность разбиений $au_k'(\Delta')$, $k=1,2,\ldots$, меньшего промежутка Δ' имеют в пределе исчезающую мелкость $| au_k'|$, то есть $| au_k'| o 0$ при $k o +\infty$.

Каждое из разбиений $\tau_k'(\Delta')$ дополним до некоторого разбиения $\tau_k(\Delta)$ бо́льшего промежутка Δ таким образом, чтобы мелкость $|\tau_k(\Delta)|$ не превосходила мелкости исходного меньшего разбиения:

$$| au_{k}(\Delta)| \leqslant | au_{k}'(\Delta')|, \quad k = 1, 2, \dots$$

Переходя здесь к пределу при $k \to +\infty$, видим, что мелкость $| au_k(\Delta)|$ также стремится к нулю.

Следовательно, и в силу интегрируемости функции f(x) на промежутке Δ имеем равенство

$$\lim_{k \to +\infty} [S(f,\tau_k(\Delta)) - s(f,\tau_k(\Delta))] = 0.$$

Разбиение $\tau_k'(\Delta')$ вложено в дополняющее его множество $\tau_k(\Delta)$. По этой причине и в соответствии с определением сумм Дарбу имеем неравенство

$$S(f, \tau'_{k}(\Delta')) - s(f, \tau'_{k}(\Delta')) \leqslant S(f, \tau_{k}(\Delta)) - s(f, \tau_{k}(\Delta)).$$

Переходя здесь к пределу по $k \to +\infty$ и пользуясь предыдущим равенством, получаем

$$\lim_{k \to +\infty} [S(f, au_k'(\Delta')) - s(f, au_k'(\Delta'))] = 0.$$

Таким образом, на промежутке Δ' с последовательностью разбиений $\tau'_k(\Delta')$, $k=1,2,\ldots$, функция f(x) удовлетворяет условию (Int) из критерия интегрируемости.

Применяя этот критерий заключаем, что f(x) интегрируема и на промежутке Δ' .

 4^{0} . Если функция интегрируема на двух примыкающих к друг к другу, возможно с пересечением, промежутках, то она интегрируема и на их объединении, которое также должно быть промежутком.

Лемма. Пусть Δ' , Δ'' и $\Delta = \Delta' \cup \Delta''$ — это промежутки. Если функция f(x) интегрируема по Риману на Δ' и на Δ'' , то она интегрируема и на Δ .

Доказательство. Если $\Delta' = \Delta$ или $\Delta'' = \Delta$, то утверждение очевидно. Поэтому предполагаем, что $\Delta' \neq \Delta$ и $\Delta'' \neq \Delta$. При этом разность множеств $\Delta''' = \Delta'' \setminus \Delta'$ — это также промежуток, причем

$$\Delta = \Delta' \cup \Delta''', \quad \Delta' \cap \Delta''' = \emptyset, \quad \Delta''' \neq \emptyset.$$

Пусть $\tau_k'(\Delta')$ — это разбиение промежутка Δ' с исчезающей в пределе мелкостью $|\tau_k'|$, то есть $|\tau_k'| \to 0$ при $k \to \infty$.

Пусть также есть разбиение $au_k'''(\Delta''')$ промежутка au''' с мелкостью $| au_k''''|$ и при этом $| au_k''''| o 0$ при $k o +\infty$.

Объединение $\tau_k = \tau_k'(\Delta') \cup \tau_k'''(\Delta''')$ представляет собой некоторое разбиение промежутка Δ . Мелкость этого разбиения стремится к нулю при неограниченном увеличении k:

$$| au_{m k}| = \max\left\{| au_{m k}'|,| au_{m k}'''|
ight\}
ightarrow 0$$
 ПРИ $k
ightarrow +\infty.$

Вычисляя разность вехней и нижней сумм Дарбу при выбранном разбиении $au_k = au_k(\Delta),$ получаем

$$S(f, \tau_{k}(\Delta)) - s(f, \tau_{k}(\Delta)) =$$

$$= [S(f, \tau_{k}') - s(f, \tau_{k}')] + [S(f, \tau_{k}''') - s(f, \tau_{k}''')].$$

По условию функция f(x) интегрируема по Риману на Δ' и на Δ'' .

Учитывая, что $\Delta''' \subset \Delta''$ и применяя предыдущую лемму, заключаем, что функция f(x) интегрируема по Риману и на Δ''' . Таким образом, справедливы равенства

$$\lim_{k \to +\infty} [S(f, \tau_k') - s(f, \tau_k')] = 0,$$

$$\lim_{k \to +\infty} [S(f, au_k''') - s(f, au_k''')] = 0.$$

Но тогда и $\lim_{k \to +\infty} [S(f, au_k(\Delta)) - s(f, au_k(\Delta))] = 0.$

Таким образом, функция f(x) на промежутке Δ с последовательностью разбиений $au_k(\Delta)$, $k=1,2,\ldots$, удовлетворяет условию (Int) критерия интегрируемости.

Следовательно, на объединенном промежутке Δ функция f(x) также интегрируема. 5⁰. Интеграл Римана определен в случае конечного промежутка интегрирования на числовой оси. Таким образом, в текущей лекции все рассматриваемые промежутки интегрирования конечны. Сформулируем ряд свойств определенного интеграла Римана.

 $(\mathrm{DI})_1.$ Пусть функция $f(x),\ x\in D_f$, интегрируема на промежутке $\Delta.$ Тогда функция |f|(x) также интегрируема на промежутке $\Delta.$

Доказательство. Пусть промежуток Δ' вложен в промежуток Δ , а в остальном произволен, $\Delta' \subset \Delta$. Тогда для любой пары точек x_1 и x_2 из Δ' справедливо неравенство

$$||f(x_2)| - |f(x_1)|| \le |f(x_2) - f(x_1)| \le \omega(f, \Delta').$$
 (1)

Здесь $\omega(f, \Delta')$ — это колебание функции f(x) на промежутке Δ' . Из оценки (1) получаем

$$\omega(|f|, \Delta') \leqslant \omega(f, \Delta') \leqslant \omega(f, \Delta).$$
 (2)

Пусть последовательность разбиений

$$au_k(\Delta) = \{\Delta_1^k, \ldots, \Delta_{N_k}^k\}$$

промежутка Δ имеет исчезающую в пределе мелкость $| au_k|$, то есть $| au_k| o 0$ при $k o +\infty$.

Применяя на каждом из промежутков Δ_i^k этого разбиения оценку (2), имеем

$$|\omega(|f|,\Delta_{i}^{k})|\Delta_{i}^{k}|\leqslant \omega(f,\Delta_{i}^{k})|\Delta_{i}^{k}|, \quad i=1,2,\ldots,N_{k}.$$

Суммируя эти неравенства, получаем

$$0\leqslant \sum_{i=1}^{N_k}\omega(|f|,\Delta_i^k)|\Delta_i^k|\leqslant \sum_{i=1}^{N_k}\omega(f,\Delta_i^k)|\Delta_i^k|.$$

При $k \to +\infty$ мажоранта в правой части последней оценки стремится к нулю в силу интегрируемости функции f(x) на Δ . Следовательно, при $k \to +\infty$ неотрицательная сумма $\sum_{i=1}^{N_k} \omega(|f|, \Delta_i^k) |\Delta_i^k|$ в пределе также стремится к i=1

нулю. Это и означает, что модуль |f|(x) является интегрируемой на Δ функцией.

 $(\mathrm{DI})_2.$ Пусть функция f(x), $x \in D_f$, интегрируема на промежутке Δ и при этом

$$|f(x)|\geqslant C>0$$
 ПРИ $orall\,x\in\Delta,$

где C — некоторая положительная постоянная. Тогда отношение $\frac{1}{f}$ — это также интегрируемая на промежутке Δ функция.

Доказательство. Для произвольного вложенного в Δ промежутка Δ' , $\Delta' \subset \Delta$, справедливы следующие оценки:

$$\Big| rac{1}{f(x_1)} - rac{1}{f(x_2)} \Big| = rac{1}{|f(x_1)f(x_2)|} \Big| f(x_2) - f(x_1) \Big| \leqslant 1$$

$$\leqslant \frac{1}{C^2} |f(x_2) - f(x_1)| \leqslant \frac{1}{C^2} \omega(f, \Delta').$$
 (3)

Здесь x_1 , x_2 — произвольные точки из Δ' .

Пусть последовательность разбиений

$$au_k(\Delta) = \{\Delta_1^k, \ldots, \Delta_{N_k}^k\}$$

промежутка Δ имеет исчезающую в пределе мелкость $| au_k|$, то есть $| au_k| o 0$ при $k o +\infty$.

Применяя на каждом из малых промежутков Δ_i^k оценку (3), получаем неравенства

$$0\leqslant \sum_{i=1}^{N_k}\omegaig(rac{1}{f},\Delta_i^kig)|\Delta_i^k|\leqslant rac{1}{C^2}\sum_{i=1}^{N_k}\omega(f,\Delta_i^k)|\Delta_i^k|.$$

При $k \to +\infty$ мажоранта в правой части последней оценки стремится к нулю в силу интегрируемости функции f(x) на Δ . Следовательно, при $k \to +\infty$ промежуточная неотрицательная сумма $\sum_{i=1}^{N_k} \omega(\frac{1}{f}, \Delta_i^k) |\Delta_i^k|$ в пределе также стремится к нулю.

Это и означает, что отношение $\frac{1}{f}$ — это также интегрируемая на Δ функция.

(DI) $_3$. Пусть функции f(x) и g(x) интегрируемы на промежутке Δ . Тогда их сумма f+g, разность f-g и произведение $f\cdot g$ также интегрируемы на том же промежутке Δ .

Доказательство. Пусть Δ' — произвольный вложенный в Δ промежуток, $\Delta' \subset \Delta$. Тогда справедлива следующая оценка:

$$0 \leqslant \omega(f+g,\Delta') \leqslant \omega(f,\Delta') + \omega(g,\Delta').$$
 (4)

Рассуждая таким же образом, как при доказательстве предыдущих свойств $(\mathrm{DI})_1$ и $(\mathrm{DI})_2$, выводим из (4) свойство интегрируемости суммы f+g на промежутке Δ .

Для разности f-g целесообразно использовать оценку

$$0\leqslant \omega(f-g,\Delta')\leqslant \omega(f,\Delta')+\omega(g,\Delta').$$

Оценим теперь колебание произведения $f \cdot g$. Функции f(x) и g(x) интегрируемы на промежутке Δ и, следовательно, ограничены на этом промежутке.

Таким образом, существует такая конечная константа M, что

$$|f(x)|\leqslant M, \quad |g(x)|\leqslant M \qquad orall \, x\in \Delta.$$

Учитывая эти неравенства, для любой пары точек x_1 и x_2 из Δ' имеем

$$|f(x_{1})g(x_{1}) - f(x_{2})g(x_{2})| \leq$$

$$\leq |g(x_{1})(f(x_{1}) - f(x_{2})) + (g(x_{1}) - g(x_{2}))f(x_{2})| \leq$$

$$\leq M|f(x_{1}) - f(x_{2})| + M|g(x_{1}) - g(x_{2})| \leq$$

$$\leq M\omega(f, \Delta') + M\omega(g, \Delta'). \tag{5}$$

Из оценки (5) получаем теперь

$$\omega(fg,\Delta')\leqslant M\omega(f,\Delta')+M\omega(g,\Delta')\leqslant$$

$$\leq M(\omega(f,\Delta) + \omega(g,\Delta)).$$
 (6)

Рассуждая далее аналогично доказательствам свойств $(\mathrm{DI})_1$ и $(\mathrm{DI})_2$, получаем из (6) интегрируемость произведения fg на промежутке Δ .

(DI) $_4$. Пусть функция f(x) ограничена на конечном интервале $(a,b)\subset D_f$ и при этом интерируема на любом отрезке $[\alpha,\beta]$, вложенном в интервал (a,b), $[\alpha,\beta]\subset (a,b)$. Тогда функция f(x) интегрируема на (a,b).

 \mathcal{L} оказательство. По условию существует такая конечная константа M, что

$$|f(x)|\leqslant M \qquad \forall\, x\in (a,b).$$

Возьмем любое $\varepsilon>0$ и выберем затем отрезок $[\alpha,\beta]$ вложенным в интервал (a,b) таким образом, чтобы сумма положительных расстояний $L_1=\alpha-a>0$ и $L_2=b-\beta>0$ не превышала отношения $\frac{\varepsilon}{4M}$, то есть чтобы $L_1+L_2\leqslant \frac{\varepsilon}{4M}$.

По условию функция f(x) интегрируема на выбранном отрезке $[\alpha, \beta]$. Следовательно, су-

ществует разбиение $au([lpha,eta])=\{\Delta_1,\ldots,\Delta_N\}$ отрезка [lpha,eta] такое, что

$$0\leqslant \sum_{i=1}^N \omega(f,\Delta_i)|\Delta_i|<rac{arepsilon}{2}.$$

Рассмотрим еще два интервала $\Delta_0=(a,\alpha)$ и $\Delta_{N+1}=(eta,b).$ Тогда множество

$$\{\Delta_0, \Delta_1, \dots, \Delta_N, \Delta_{N+1}\}$$

задает некоторое разбиение интервала (a, b).

При этом справедливы соотношения

$$0\leqslant \sum_{m{i}=m{0}}^{m{N+1}}\omega(f,\Delta_{m{i}})|\Delta_{m{i}}|=\omega(f,\Delta_{m{0}})|\Delta_{m{0}}|+$$

$$egin{aligned} +\omega(f,\Delta_{N+1})|\Delta_{N+1}| + \sum_{i=1}^N \omega(f,\Delta_i)|\Delta_i| \leqslant \ &\leqslant 2M(lpha-a) + 2M(b-eta) + rac{arepsilon}{2} \leqslant \ &\leqslant 2M(L_1+L_2) + rac{arepsilon}{2} \leqslant arepsilon. \end{aligned}$$

Величина ε здесь произвольна и, следовательно, функция f(x) интегрируема на интервале (a,b).

Пример. Функция $f(x) = \operatorname{sgn}(\sin\frac{1}{x})$ интегрируема на любом интервале вида (0,a).

Доказательство. Заметим, что f(x) ограничена на интервале (0,a), и при этом на любом отрезке $[\alpha,\beta]\subset (0,a)$ функция f(x) является ступенчатой.

Как уже отмечалось, любая ступенчатая функция интегрируема по Риману.

Таким образом, свойство интегрируемости рассматриваемой функции $f(x) = \mathrm{sgn}\,(\sin\frac{1}{x})$ сразу следует из доказанного свойства $(\mathrm{DI})_4$.

Тема : Свойства определенных интегралов и интегрируемых функций

 1^0 Достаточные признаки интегрируемости функций. 2^0 Линейность, аддитивность и монотонность интеграла. 3^0 Интегральная теорема о среднем. 4^0 Интеграл по ориентированному промежутку. Интеграл с переменным верхним пределом: определение, непрерывность, оценка приращения. 5^0 Производная по верхнему пределу интегрирования. Следствия. 6^0 Формула Ньютона — Лейбница. Примеры и следствия. 7^0 Формула интегрирования по частям для определенных интегралов. 8^0 Формула Тейлора с остаточным членом в интегральной форме.

 1^{0} . Функции, интегрируемые по Риману на заданном промежутке Δ числовой прямой, образуют в совокупности векторное (линейное) пространство. Размерность этого пространства равна бесконечности.

Укажем ряд признаков, достаточных для принадлежности функции этому бесконечномерному классу интегрируемых по Риману функций.

 (\mathbf{RS}) . Любая непрерывная на отрезке [a,b] функция интегрируема на этом отрезке.

Следствие. Если функция f(x) ограничена и непрерывна на конечном интервале (a,b), то f(x) интегрируема на этом интервале.

Следствие. Если функция f(x) ограничена и кусочно непрерывна на конечном промежут-ке Δ , то f(x) интегрируема на этом промежутке.

Лемма. Пусть функция f(x) монотонна на отрезке [a,b]. Тогда f(x) интегрируема на [a,b].

 \mathcal{L} оказательство. Для колебания монотонной функции f(x) справедлива формула

$$\omega(f,[a,b]) = |f(b) - f(a)|.$$

Пусть последовательность

$$au_k(\Delta) = \{\Delta_1^k, \ldots, \Delta_{N_k}^k\}$$

разбиений отрезка [a,b] имеет в пределе исчезающую мелкость $| au_k|$, то есть $| au_k| o 0$ при $k o +\infty$. Из условий, что $\Delta_i^k \cap \Delta_j^k = \emptyset$ при $i \neq j$ получаем оценку

$$\sum_{i=1}^{N_k} \omega(f, \Delta_i^k) \leqslant |f(b) - f(a)| = \omega(f, [a, b]).$$

Пользуясь ею, имеем далее

$$\sum_{i=1}^{N_k} \omega(f,\Delta_i^k) |\Delta_i^k| \leqslant | au_k| \sum_{i=1}^{N_k} \omega(f,\Delta_i^k) \leqslant | au_k| |f(b)-f(a)|.$$

Устремляя здесь $k \to +\infty$, получим в пределе равенство

$$\lim_{k o +\infty}\sum_{i=1}^{N_k}\omega(f,\Delta_i^k)|\Delta_i^k|=0.$$

Это означает по определению, что функция f(x) интегрируема на [a,b].

Следствие. Если функция f(x) ограничена и монотонна на конечном интервале (a,b), то f(x) интегрируема на этом интервале.

Следствие. Если функция f(x) ограничена и кусочно монотонна на конечном промежутке Δ , то f(x) интегрируема на этом промежутке. Пример. Функция $f(x) = \sin \frac{1}{x}$ интегрируема на любом промежутке вида (0,a].

Это утверждение следует из ограниченности функции $\sin\frac{1}{x}$ на промежутке (0,a] и непрерывности этой функции, а значит и ее интерируемости, на любом отрезке $[\alpha,\beta]\subset(0,a]$.

Пример. Пусть $f(x) = \frac{1}{x} - [\frac{1}{x}]$, где $[\frac{1}{x}]$ — это целая часть $\frac{1}{x}$. Тогда f(x) интегрируема на любом промежутке вида (0,a].

Интегрируемость следует из ограниченности ϕ ункции f(x), удовлетворяющей оценкам

$$0\leqslant f(x)\leqslant 1,$$

и ее кусочной монотонности на любом отрезке вида $[lpha,eta]\subset (0,a].$

Пример. Функция Римана f(x) определяется следующим образом. Если x=0 или x- иррациональное, то f(x)=0. Если $x \neq 0$ и $x=rac{p}{a}$, где p — целое, q — натуральное, и дробь $\frac{p}{q}$ несократимая, то $f(x) = \frac{1}{q}$. Определенная таким образом функция Римана f(x) интегрируема на любом отрезке [a,b].

Докажите последнее утверждение в качестве упражнения.

 2^0 . Продолжим формулировать важнейшие свойства определенного интеграла.

 $(\mathrm{DI})_5$. Если функция f(x) отлична от нуля лишь в конечном числе точек из промежутка Δ , то f(x) интегрируема на Δ и при этом

$$\int\limits_{\Delta}f(x)\,dx=0.$$

 $(DI)_6$. Пусть f(x) — ступенчатая функция на промежутке Δ , т.е. существует разбиение

$$au(\Delta) = \{\Delta_1, \dots, \Delta_N\}$$

промежутка Δ такое, что

$$f(x) = C_i \qquad \forall x \in \Delta_i, \quad i = 1, \dots, N,$$

где C_i — постоянные. Тогда f(x) — интегри-

руема на 🛆 и при этом

$$\int\limits_{\Delta} f(x) dx = \sum_{i=1}^{N} C_i |\Delta_i|. \tag{1}$$

Теорема (линейность интеграла). Пусть функции f(x) и g(x) интегрируемы на промежутке Δ . Тогда для любых постоянных λ и μ линейная комбинация $\lambda f(x) + \mu g(x)$ также интегрируема на Δ и при этом справедливо

равенство

$$\int_{\Delta} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{\Delta} f(x) dx + \mu \int_{\Delta} g(x) dx. \quad (2)$$

Доказательство. Пусть последовательность

$$au_k(\Delta) = \{\Delta_1^k, \dots, \Delta_{N_k}^k\}$$

разбиений промежутка Δ имеет в пределе исчезающую мелкость $| au_k|$, то есть $| au_k| o 0$

при $k \to +\infty$. Для интегральных сумм Римана, соответствующих разбиению $au_k(\Delta)$, справедливо соотношение

$$\sigma(\lambda f + \mu g, au_k) = \lambda \sigma(f, au_k) + \mu \sigma(g, au_k).$$

Переходя здесь к пределу при $k \to +\infty$, получаем в результате искомую формулу (2) для интеграла от линейной комбинации.

Следствие. Если изменить значения интегрируемой функции f(x) в конечном числе точек промежутка интегрирования, то интеграл от измененной функции по рассматриваемому промежутку равен интегралу от исходной f(x).

 \mathcal{A} оказательство. Пусть значения f(x) изменены в точках $\{x_1, x_2, \dots, x_N\}$ промежутка Δ . Определим функцию g(x) в точке x_j равной

изменению f(x) в этой самой точке. Во всех остальных точках промежутка Δ полагаем g(x) равной нулю. Тогда измененная функция представляет собой сумму f(x) + g(x) и согласно свойству линейности интеграла имеем равенство

$$\int\limits_{\Delta} \left(f(x)+g(x)
ight) dx = \int\limits_{\Delta} f(x) \, dx + \int\limits_{\Delta} g(x) \, dx.$$

Последний интеграл равен нулю в силу формулы (1). Таким образом, интеграл от изме-

ненной функции f(x) + g(x) совпадает с интегралом от исходной функции f(x).

Следствие. Если интегрируемую на интервале (a,b) функцию f(x) доопределить произвольным образом в крайних точках a и b, то интегралы по промежуткам (a,b), [a,b], [a,b] и (a,b] совпадают друг с другом.

В силу последнего утверждения интегралы по всем четырем промежуткам (a,b), [a,b],

[a,b) и (a,b] обозначаются одним и тем же b символом $\int f(x) \, dx$.

Теорема (аддитивность интеграла). Пусть промежутки Δ , Δ' и Δ'' связаны соотношениями $\Delta = \Delta' \cup \Delta''$, $\Delta' \cap \Delta'' = \emptyset$. Если функция f(x) интегрируема на промежутке Δ , то

$$\int_{\Delta} f(x) dx = \int_{\Delta'} f(x) dx + \int_{\Delta''} f(x) dx. \tag{3}$$

Аддитивность интеграла докажите самостоятельно в качестве упражнения.

Теорема (монотонность интеграла). Пусть функции f(x) и g(x) интегрируемы на промежутке Δ и при этом

$$f(x)\leqslant g(x) \qquad orall x\in \Delta.$$

Тогда справедлива оценка

$$\int\limits_{\Delta}f(x)\,dx\leqslant\int\limits_{\Delta}g(x)\,dx.$$

Доказательство. Пусть последовательность

$$au_k(\Delta) = \{\Delta_1^k, \ldots, \Delta_{N_k}^k\}$$

разбиений промежутка Δ имеет в пределе исчезающую мелкость $| au_k|$, то есть $| au_k| \to 0$ при $k \to +\infty$. В силу условия, что $f(x) \leqslant g(x)$, для интегральных сумм Римана, соответствующих разбиению $au_k(\Delta)$, получаем соотношение

$$\sigma(f, \tau_k) \leqslant \sigma(g, \tau_k).$$

Переходя здесь к пределу при $k \to +\infty$, получаем утверждение теоремы.

Следствие. Если функция f(x) интегрируема и неотрицательна на промежутке Δ , то

$$\int\limits_{\Delta}f(x)\,dx\geqslant 0.$$

Следствие. Если функция f(x) интегрируема на промежутке Δ , то

$$\left| \int_{\Delta} f(x) \, dx \right| \leqslant \int_{\Delta} |f(x)| \, dx. \tag{4}$$

Доказательство. Из условия, что f(x) интегрируема на промежутке Δ следует интегрируемость здесь же ее модуля |f|(x). При этом

$$-|f(x)|\leqslant f(x)\leqslant |f(x)| \qquad orall x\in \Delta.$$

Из этих оценок в силу монотонности интеграла следуют соотношения

$$-\int\limits_{\Delta}|f(x)|\,dx\leqslant\int\limits_{\Delta}f(x)\,dx\leqslant\int\limits_{\Delta}|f(x)|\,dx.$$

Это и есть искомое неравенство (4).

Следствие. Пусть функция f(x) интегрируема на промежутке Δ и при этом

$$m\leqslant f(x)\leqslant M \qquad orall x\in \Delta.$$

Тогда для интеграла от f(x) справедливы неравенства

$$m|\Delta|\leqslant\int\limits_{\Delta}f(x)\,dx\leqslant M|\Delta|.$$

 3^0 . Востребованное свойство определенных интегралов часто формулируется как *теоре-ма о среднем* для этих интегралов.

Теорема (интегральная теорема о среднем). Пусть функции f(x) и g(x) интегрируемы на отрезке Δ , функция f(x) непрерывна, а функция g(x) неотрицательна на Δ . Тогда существует такая точка ξ из Δ , что

$$\int_{\Delta} f(x)g(x) dx = f(\xi) \int_{\Delta} g(x) dx. \tag{5}$$

Доказательство. Введем обозначения

$$m = \inf_{x \in \Delta} f(x), \quad M = \sup_{x \in \Delta} f(x).$$

Обе эти величины конечны в силу непрерывности f(x) на отрезке Δ . Из неотрицательности на Δ функции g(x) следует, что

$$mg(x)\leqslant f(x)g(x)\leqslant Mg(x) \qquad orall x\in \Delta.$$

Интегрируя эти неравенства, получаем

$$m\int\limits_{\Delta}g(x)\,dx\leqslant\int\limits_{\Delta}f(x)g(x)\,dx\leqslant M\int\limits_{\Delta}g(x)\,dx.$$

Если $\int_{\Delta} g(x) \, dx = 0$, то из последних двух неравенств следует, что $\int_{\Delta} f(x)g(x) \, dx = 0$, и поэтому равенство (5) справедливо.

Пусть теперь $\int\limits_{\Delta} g(x)\,dx>0$. Тогда имеем

$$m \leqslant rac{\int f(x)g(x) dx}{\int g(x) dx} \leqslant M.$$
 (6)

По условию функция f(x) непрерывна на Δ . Следовательно, она принимает на Δ все значения из отрезка [m, M]. В частности, как это следует из (6), существует точка ξ из Δ , удовлетворяющая равенству (5).

 4^0 . Пусть функция f(x) интегрируема по промежутку Δ числовой прямой, т.е. определен интеграл $\int\limits_{\Delta} f(x)\,dx$. Если $\Delta=[a,b]$, где a< b, то этот же интеграл обозначается символом

$$\int\limits_a^b f(x)\,dx = \int\limits_{[a,b]} f(x)\,dx$$

и называется "интегралом от f(x) по dx от a до b".

Понятие интеграла распространяется также на случай, когда интегрирование ведется от большей точки к меньшей, т.е. "от b до a", где a < b. В этом случае по определению полагается, что

$$\int\limits_{b}^{a}f(x)\,dx=-\int\limits_{a}^{b}f(x)\,dx=-\int\limits_{\Delta}f(x)\,dx,$$

а соответствующий интеграл, как говорят, является "интегралом от b до a по dx". В

частности, при b=a имеем

$$\int\limits_a^a f(x)\,dx = -\int\limits_a^a f(x)\,dx \qquad \Rightarrow \qquad \int\limits_a^a f(x)\,dx = 0.$$

Определение. Интегралы $\int\limits_{a}^{b}f(x)\,dx$ и $\int\limits_{b}^{a}f(x)\,dx$ называются интегралами по ориентированным промежуткам.

На интегралы по ориентированным проме-

жуткам распространяются основные свойства определенного интеграла.

 $(\mathrm{DI})_1'$. Пусть функции f(x) и g(x) интегрируемы на промежутке Δ . Тогда для любых постоянных λ и μ справедливы равенства

$$\int\limits_a^b (\lambda f(x) + \mu g(x))\, dx = \lambda \int\limits_a^b f(x)\, dx + \mu \int\limits_a^b g(x)\, dx,$$

где a и b — любые числа из промежутка Δ .

 $(\mathrm{DI})_2'$. Если функция f(x) интегрируема на Δ , то

$$\int\limits_a^b f(x)\,dx = \int\limits_a^c f(x)\,dx + \int\limits_c^b f(x)\,dx,$$

где a, b, c — любые числа из промежутка Δ .

 $(\mathrm{DI})_3'$. Пусть функции f(x) и g(x) интегрируемы на промежутке Δ , функция f(x) непрерывна на Δ , а функция g(x) не меняет знак

на Δ . Тогда для любых точек a и b из Δ существует точка ξ , лежащая между a и b и такая, что

$$\int\limits_a^b f(x)g(x)\,dx = f(\xi)\int\limits_a^b g(x)\,dx. \hspace{1cm} ext{(MT')}$$

В частности, при g(x)=1 имеем равенство

$$\int\limits_a^b f(x)\,dx = f(\xi)(b-a).$$

Подчеркнем, что в свойствах $(DI)_1'$, $(DI)_2'$ и $(DI)_3'$ числа a и b выбираются из промежутка Δ произвольным образом, т.е. возможны три случая: a < b, a = b и a > b.

В равенстве (DI) $_2'$ точки a, b, c выбираются в промежутке Δ также произвольным образом. При этом возможны все шесть случаев: $a\leqslant b\leqslant c,\ a\leqslant c\leqslant b,\ b\leqslant a\leqslant c$ и т.д.