Syntax and Semantics of D

Roger Burtonpatel

November 24, 2023

1 Syntax

We present a grammar of D, the language of decision trees:

Programs	P	::=	$\{d\}$	definition
Definitions	d	::=	$\operatorname{val} x = e$	bind name to expression
Expressions	e	::= 	$egin{array}{l} x \ \mathcal{D}_{lpha} \ K\{e\} \ e_1 \ e_2 \end{array}$	name decision trees value constructor application function application
Decision Tree	\mathcal{D}_{lpha}	::= 	case x of $\{ K\{x\} \Rightarrow \mathcal{D}_{\alpha} \}[x \Rightarrow \mathcal{D}_{\alpha}]$ α if x then \mathcal{D}_{α} else \mathcal{D}_{α} let $x = knf$ in \mathcal{D}_{α}	test node match node condition with two children let-bind a name
Value Constructors	K	::= 	:: [] # x A- Zx [- +](0 - 9)+	cons empty list name beginning with # name beggining with capital letter signed integer literal

2 What is a decision tree?

Scott, Ramsey 2000:

A decision tree is a pattern-matching automaton in which every state except the initial state has a unique predecessor.

More details will go here as needed.