CS7150 Deep Learning

Jiaji Huang

https://jiaji-huang.github.io

02/17/2024

Recap of Last Lecture

- Encoder: understanding, e.g., BERT
- Decoder: generation, e.g., GPT
- Encoder-Decoder: seq-to-seq tasks, e.g., translation, ASR

Recap of Gradient Descent (GD)

For step s = 0, 1, ...

$$\boldsymbol{w}_{S+1} = \boldsymbol{w}_S - \eta \nabla L(\boldsymbol{w}_S),$$

till $\nabla L(\mathbf{w}_s) \approx 0$ (stationary point reached)

Problem with GD

• Local minima and saddle point (both are stationary points)

Illustration from <u>CS231n</u> and <u>Bishop book chapter 7</u>

Agenda

- Optimization
 - Initialization
 - Loss landscape and normalization
 - Momentum and higher order methods
- Generalization: old and new
- Parallelism

Initialization matters

• Different initializations land at different stationary points

A not so good idea

• Initialize all parameters as constant *c*?

•
$$\frac{\partial \ell}{\partial v_1} = \frac{\partial \ell}{\partial v_2}$$
, $\frac{\partial \ell}{\partial w_{11}} = \cdots = \frac{\partial \ell}{\partial w_{32}}$

Parameters in the same layer keep the same along gradient updates!

Break the Symmetry

- Initialize with random weights, draw from some distribution
- Control the variance

• Going deeper, activation's variance (scale) can further increase

- Consider MLP network with $\sigma(\cdot)$ as sigmoid or tanh
- Key idea: activation and gradient with constant variance
- Key assumption:
 - Weights and inputs centered around 0, i.i.d distributed
 - Bias initialized as all zero
- Key property:
 - $\sigma(z) \approx z$ around 0

• For l-th layer: linear units $z_i^l = \sum_{j=1}^{n_{l-1}} w_{i,j} a_i^{l-1}$, activations $a_i^l = \sigma(z_i^l)$

•
$$Var[a_{i}^{l}] \approx Var[z_{i}^{l}]$$
 as $\sigma(z) \approx z$ around 0, so
$$Var[a_{i}^{l}] = Var \left[\sum_{j=1}^{n_{l-1}} w_{i,j} a_{j}^{l-1} \right] = \sum_{j=1}^{n_{l-1}} Var[w_{i,j} a_{j}^{l-1}]$$

$$= \sum_{j=1}^{n_{l-1}} Var[w_{i,j}] Var[a_{j}^{l-1}] = n_{l-1} Var[w_{i,j}] Var[a_{j}^{l-1}]$$

$$\Rightarrow Var[w_{i,j}] = \frac{1}{n_{l-1}}$$

Consider backward

$$\frac{\partial L}{\partial a_{i}^{l-1}} = \sum_{j=1}^{n_{l}} \frac{\partial L}{\partial a_{j}^{l}} \cdot \frac{\partial a_{j}^{l}}{\partial z_{j}^{l}} \cdot \frac{\partial z_{j}^{l}}{\partial a_{i}^{l-1}} = \sum_{j=1}^{n_{l}} \frac{\partial L}{\partial a_{j}^{l}} \cdot w_{i,j}$$

$$Var \left[\frac{\partial L}{\partial a_{i}^{l-1}} \right] = n_{l} Var \left[\frac{\partial L}{\partial a_{j}^{l}} \right] Var[w_{i,j}]$$

$$\Rightarrow Var[w_{i,j}] = \frac{1}{n_{l}}$$

Putting together, set

$$Var[w_{i,j}] = \frac{2}{n_{l-1} + n_l}$$

If normal distribution

$$w_{i,j} \sim \mathcal{N}\left(0, \frac{2}{n_{l-1} + n_l}\right)$$

If uniform distribution

$$w_{i,j} \sim \mathcal{N}\left(-\frac{\sqrt{6}}{\sqrt{n_{l-1}+n_l}}, \frac{\sqrt{6}}{\sqrt{n_{l-1}+n_l}}\right)$$

He initialization

- Consider a = ReLU(z)
- $Var[a_i^l] \approx \frac{1}{2} Var[z_i^l]$
- Follow the same derivation, we can get
 - $Var[w_{i,j}] = \frac{2}{n_{l-1}}$ for forward variance preservation
 - $Var[w_{i,j}] = \frac{2}{n_l}$ for backward variance preservation

Question

 $n_{l-1} = C_{in} \times m \times n$

• If the l-th layer is convolution, what would be the n_{l-1} and n_l ? $(C_{out},C_{in},m,n) \mbox{ filter} \\ n_l=C_{out}$

Agenda

- Optimization
 - Initialization
 - Loss landscape and normalization
 - Momentum and higher order methods
- Generalization: old and new
- Parallelism

Loss landscape

- Consider Taylor's expansion near a stationary point w^*
- $L(w) = L(w^*) + \nabla L(w^*)(w w^*) + \frac{1}{2}(w w^*)^T H(w w^*)$ $= L(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$
- $H = \frac{\partial^2 L}{\partial w \partial w^T} \Big|_{\dots = \dots^*}$ is Hessian

• Eigen-decomposition
$$\mathbf{H} = \mathbf{U}\Lambda\mathbf{U}^T$$
, and rewrite
$$\frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*) = \frac{1}{2}\sum \lambda_i \left[\mathbf{u}_i^T(\mathbf{w} - \mathbf{w}^*)\right]^2$$

Loss landscape

• So near local minimum w^* , loss is

$$L(\mathbf{w}) = L(\mathbf{w}^*) + \frac{1}{2} \sum_{i} \lambda_i \left[\mathbf{u}_i^T (\mathbf{w} - \mathbf{w}^*) \right]^2$$

• If locally convex, all $\lambda_i \geq 0$

Gradient steps through the contours (Bishop et. al, chapter 7)

Loss Landscape

Local approximation

$$L(\mathbf{w}) = L(\mathbf{w}^*) + \frac{1}{2} \sum_{i} \lambda_i \left[\mathbf{u}_i^T (\mathbf{w} - \mathbf{w}^*) \right]^2$$

Gradient

$$\nabla L(\mathbf{w}) = \sum \lambda_i \mathbf{u}_i^T (\mathbf{w} - \mathbf{w}^*) \mathbf{u}_i$$

Take a gradient step

$$\mathbf{w}_{S+1} = \mathbf{w}_S - \eta \nabla L(\mathbf{w}_S)$$

•
$$\alpha_{i,s+1} = (1 - \eta \lambda_i) \alpha_{i,s}$$

Loss Landscape

Inspect the excessive loss term $\frac{1}{2}\sum \lambda_i \alpha_i^2$

- After s-th gradient step, $\alpha_{i,s+1} = (1 \eta \lambda_i)\alpha_{i,s}$
- To make sure excessive loss decays, we want

$$|1 - \eta \lambda_i| \le 1 \text{ for all } i$$

$$\Rightarrow \eta \le \frac{2}{\lambda_{max}}$$

• The loss term that decays slowest has $1 - \eta \lambda_{min} \ge 1 - 2 \cdot \frac{\lambda_{min}}{\lambda_{max}}$

The effect of unnormalized feature

Consider linear regression

$$\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$

- Hessian is X^TX
- e.g., 2D case, x_1 : blood platelet count, ~10⁵ x_2 : body height in meters, ~10⁰
- $X^T X$ would $\sim \begin{bmatrix} 10^{10} & 10^5 \\ 10^5 & 1 \end{bmatrix}$, $\lambda_{max} \sim 10^{10}$, $\lambda_{min} \sim 0$
- Very skewed landscape, and $\frac{\lambda_{min}}{\lambda_{max}}$ \sim 0, extremely slow convergence

Normalization

Mean and standard deviation

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x_n,$$

$$\sigma_i = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_{n,i} - \mu_i)^2}$$

Normalization:

$$\overline{x_{n,i}} = \frac{x_{n,i} - \mu_i}{\sigma_i}$$

Illustration of the effect of input data normalization. The red circles show the original data points for a data set with two variables. The blue crosses show the data set after normalization such that each variable now has zero mean and unit variance across the data set.

Batch Normalization

- For the activations x at a layer
- Training phase:
 - Estimate μ and σ_i 's for a minibatch, update moving average estimate
 - Normalize x to \overline{x}
 - Update to $\widetilde{x_i} = \gamma_i \overline{x_i} + \beta_i$
- Inference phase
 - Use the moving average estimated μ and σ_i 's

<u>Ioffe et. al, 2015</u>

Illustration: Bishop book Chapter 7

Discussion

- Why we set the learnable multipliers γ_i and β_i ?
- Drawback of batch normalization?
 - Batch size = 1?
 - Determinism

Layer Norm

- Do this for each sample x in the minibatch
- Compute μ by averaging all dimensions of x
- Compute σ as the norm of $x \mu$
- Normalize by $\widetilde{x} = (x \mu)/\sigma$
- Compute $\widetilde{x}_i = \gamma_i \overline{x}_i + \beta_i$
- No difference between training and testing phase

Illustration: <u>Bishop book Chapter 7</u>

Agenda

- Optimization
 - Initialization
 - Loss landscape and normalization
 - Momentum and higher order methods
- Generalization: old and new
- Parallelism

Recap of Stochastic Gradient Descent (SGD)

•
$$\min_{\mathbf{w}} \{ L = \frac{1}{N} \sum_{n=1}^{N} \ell(\mathbf{w}, \mathbf{x}_n) \}$$

- If N is big, Compute $\nabla \ell(\mathbf{w}, \mathbf{x}_n)$ for all n's can be costly
- So we sample a mini-batch \mathcal{B} of n's each step

For step s = 0, 1, ...

$$\mathbf{w}_{s+1} = \mathbf{w}_s - \eta \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \nabla \ell(\mathbf{w}_s, \mathbf{x}_n)$$

till stopping criteria met

Problems with SGD

- Same as GD
 - big condition number hamper convergence
 - Local minima and saddle point

• In addition: noisy steps

Momentum

Smooth the steps by moving average of historical gradients

$$V_{S} = \alpha V_{S-1} - \eta \nabla L(\mathbf{w}_{S})$$
$$\mathbf{w}_{S} = \mathbf{w}_{S-1} + V_{S}$$

• α : momentum parameter

Gradient steps with momentum

Skip local minima

The inertia helps

Illustration from paperwithcode

In pyTorch

```
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
```

Usually use momentum > 0.9

Agenda

- Optimization
 - Initialization
 - Loss landscape and normalization
 - Momentum
 - Higher order methods
- Generalization: old and new
- Parallelism

2nd order Optimization

Approximate with quadratic function, and move to its minimum

Newton's method

•
$$L(\mathbf{w}) \approx L(\mathbf{w}_S) + (\mathbf{w} - \mathbf{w}_S)^T \nabla L(\mathbf{w}_S) + (\mathbf{w} - \mathbf{w}_S)^T \mathbf{H} (\mathbf{w} - \mathbf{w}_S)$$

RHS has minimum at

$$\boldsymbol{w}_{S+1} = \boldsymbol{w}_S - \boldsymbol{H}^{-1} \nabla L(\boldsymbol{w}_S)$$

- No learning rate required, faster convergence than GD
- Damped Newton's method:

$$\boldsymbol{w}_{S+1} = \boldsymbol{w}_S - \eta \cdot \boldsymbol{H}^{-1} \nabla L(\boldsymbol{w}_S)$$

Where $0 < \eta < 1$

• Inverse Hessian is costly, $O(M^3)$, where M is number of model parameters

Black: Gradient Descent Blue: Newton's method

Stochastic Version

- Approximate the $H^{-1}\nabla L(w_s)$, where $L(w) = \frac{1}{N}\sum_{i=1}^N \ell(w, x_i)$
- Sample a batch ${\mathcal B}$

$$\nabla \widehat{L(\mathbf{w}_s)} = \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \nabla \ell(\mathbf{w}_s, \mathbf{x}_n)$$

$$\widehat{\boldsymbol{H}} = \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \nabla^2 \ell(\boldsymbol{w}_{\scriptscriptstyle S}, \boldsymbol{x}_n)$$

• Still not practical for deep learning, because of $\widehat{\pmb{H}}^{-1}$

Scale the Gradient: Adagrad

 Normalize each dimension of the gradient by accumulated magnitude G = 0

For s=1,2,...

sample batch ${\mathcal B}$

compute stochastic gradient $G = \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \nabla \ell(\boldsymbol{w}_{S}, \boldsymbol{x}_{n})$

$$\mathsf{update}\; G \mathrel{+}= g * g$$

update
$$G += g * g$$

$$w_{s+1} = w_s - \eta \cdot \frac{g}{\sqrt{G}}$$

Scale the Gradient: RMSProp

```
G=0 For s=1,2,... sample batch \mathcal{B} compute stochastic gradient g=rac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}
abla\ell(w_s,x_n) update G=\gamma G+(1-\gamma)g*g w_{s+1}=w_s-\eta\cdotrac{g}{\sqrt{G}}
```

Scale the Gradient: Adam

$$\begin{split} G_1 &= 0, G_2 = 0 \\ \text{For s=1,2,...} \\ \text{sample batch } \mathcal{B} \\ \text{compute stochastic gradient } g &= \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \nabla \ell(\boldsymbol{w}_s, \boldsymbol{x}_n) \\ \text{update } G_1 &= \beta_1 G_1 + (1 - \beta_1) g \\ \text{update } G_2 &= \beta_2 G_2 + (1 - \beta_2) g * g \\ \text{bias correction: } G_1 &= G_1/(1 - \beta_1^t), G_2 &= G_2/(1 - \beta_2^t) \\ w_{s+1} &= w_s - \eta \cdot \frac{G_1}{\sqrt{G_2}} \end{split}$$

In pytorch

ADAGRAD

```
CLASS torch.optim.Adagrad(params, 1r=0.01, 1r_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, foreach=None, *, maximize=False, differentiable=False) [SOURCE]
```

Implements Adagrad algorithm.

RMSPROP

CLASS torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False, foreach=None, maximize=False, differentiable=False) [SOURCE]

Implements RMSprop algorithm.

ADAM

```
CLASS torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False, *, foreach=None, maximize=False, capturable=False, differentiable=False, fused=None) [SOURCE]
```

Implements Adam algorithm.

Learning Rate Scheduler

- Infeasible to compute ideal learning rate
- Often decay the learning rate along training
- Warmup is sometimes used to skip local minima

cosine learning rate scheduler. Left: no warmup; right: with warmup

Check pytorch <u>page</u>, figures from this <u>post</u>

Discussion

- How to choose batch size in practice?
- How do we scale learning rate w.r.t. batch size?

Agenda

- Optimization
 - Initialization
 - Loss landscape and normalization
 - Momentum and higher order methods
- Generalization: old and new
- Parallelism

Recap: Generalization

- The ability to predict well on unseen samples
- Model family $\mathcal{F} = \{f_{\theta}(x)\}$
- Generalization error: expected error/loss on a test input
- ≈ modeling error + estimation error

Reduce the Variance

- Inject inductive bias (encodes our prior knowledge)
- e.g., small variation doesn't change object category

Figure 9.1 Illustration of data set augmentation, showing (a) the original image, (b) horizontal inversion, (c) scaling, (d) translation, (e) rotation, (f) brightness and contrast change, (g) additive noise, and (h) colour shift.

Regularization

- ullet Constrain the model family ${\mathcal F}$
- e.g., weight decay $\min_{\boldsymbol{w}} L(\boldsymbol{w}) + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$
- e.g., sparsity $\min_{\mathbf{w}} L(\mathbf{w}) + \frac{\lambda}{2} ||\mathbf{w}||_1$

Question: what are the gradients for these two cases?

Weight Decay: Loss Landscape View

- Suppressing the magnitude of weights
- Especially those to which loss is less sensitive

Earlier Stopping

From the perspective of weight decay

Bishop book Chapter 9

Drop out

Figure 9.17 A neural network on the left along with two examples of pruned networks in which a random subset of nodes have been omitted.

Bishop book Chapter 9

Model Averaging

Sharpness

- Sharp local minima generalizes poorly
- Question: How to measure sharpness?

Keskar et. al, 2016