Лабораторная работа № 5

Цель работы:

1. Получить коэффициент экранирования магнитного поля для заданной системы.

2. Приобрести навыки задания пользовательских материалов в Femm.

Описание: Данная лабораторная работа предполагает несколько различающиеся варианты задания. В материалах к лабораторной работе содержится информация по заданию пользовательских материалов в Femm. Более подробную информацию можно найти в руководствах Femm и справке к нему.

В ходе выполнения работы необходимо выполнить действия:

а) Рассчитать магнитную индукцию в интересующей точке для случая отсутствия экрана.

б) Выполнить оптимизацию расчетов.

в) Рассчитать магнитную индукцию в интересующей точке для случая наличия экрана.

г) Рассчитать коэффициент экранирования и построить график его зависимости от толщины экрана.

ЗАДАНИЕ

Задание: Определить зависимость коэффициента экранирования магнитного поля от толщины ферромагнитного экрана.

Модель: Экранированные шины постоянного тока.

Рисунок 1 – Модель экранированных шин постоянного тока

На рисунке приведено поперечное сечение длинных прямых шин постоянного тока, окруженных ферромагнитным экраном. Материал шин — медь (Copper). Для материала экрана известна кривая намагничивания (см. таблицу 5.1).

Таблица 5.1.

В, Тл	Н, А/м
0.00	0.000000
0.40	56.692664
0.80	92.574503
1.20	179.516634
1.40	352.648412
1.55	1051.068036
1.75	5832.619704
1.90	13843.912965
1.95	17970.359698
2.05	32234.325960
2.10	51366.778967
2.20	121162.493322
2.30	202470.282245

Внутренняя граница экрана в сечении образует квадрат с вершинами (6, 6), (6, 6), (-6, -6), (-6, 6) см. Толщину экрана необходимо варьировать таким образом, чтобы внутренняя граница осталась неизменной. Остальные геометрические размеры индивидуальны для каждого варианта. Медные шины расположены в геометрическом центре экрана. Расстояние между шинами δ, высота шин а и ширина шин b индивидуальны для каждого

варианта. Нужно рассчитать коэффициент экранирования в точке с координатами (10, 1) см при силе тока в шинах, равной 10 000 А.

ВЫПОЛНЕНИЕ РАБОТЫ

Исходя из формулировки задачи и согласно определению коэффициента экранирования, можно сделать вывод, что нам необходимо рассчитать поле для нескольких вариантов: при отсутствии ферромагнитного экрана и при наличии экранов различной толщины. Для каждого варианта необходимо определить модуль магнитной индукции в заданной точке с координатами (10, 1) см. Каждый вариант будем сохранять в файл как отдельную задачу, выписывая в таблицу значения модуля магнитной индукции.

Расчет поля при отсутствии экрана

Рисунок 2 – Расчет поля

Рисунок 3 – Значение модуля магнитной индукции в точке (10; 1)

Расчет поля при наличии экрана

Добавим в задачу ферромагнитный экран. Будем варьировать его толщину, изменяя положение его внешней границы и оставляя внутреннюю границу неизменной. Рассмотрим 5 случаев, в каждом из которых толщина экрана равна 2 мм, 4 мм, 6 мм, 8 мм и 10 мм соответственно.

Оптимизацию выполнять не будем из-за ограниченности времени. Возьмем параметры из задачи без экрана.

После выполнения расчетов сведем результаты в таблицу 5.3, а также изобразим график зависимости коэффициента экранирования от толщины экрана.

Рисунок 4 – Задание пользовательского материала Ferromagnetic

Рисунок 5 – Задание параметров кривой намагничивания

Рисунок 6 – График зависимости

Рисунок 7 – Расчет поля при толщине экрана 2 мм

Рисунок 8 – Расчет поля при толщине экрана 4 мм

Рисунок 9 – Расчет поля при толщине экрана 6 мм

Рисунок 10 – Расчет поля при толщине экрана 8 мм

Рисунок 11 – Расчет поля при толщине экрана 10 мм

 $B_0 = 0.00313237 \text{ Тл},$

i	1	2	3	4	5
Толщина	2	4	6	8	10
экрана, мм					
В, Тл	8.35736 *	4.66128 *	3.52883 *	2.85287 *	2.42405 *
	10^{-5}	10^{-5}	10-5	10^{-5}	10-5
$K_{3Kp} = B_0/B_i$	37,4804	67,1998	88,7651	109,7972	129,2205

Таблица 5.3

Рисунок 12 - зависимость коэффициента экранирования от толщины экрана

Вывод: в результате выполнения лабораторный работы мы рассчитали магнитную индукцию в интересующей точке для случая отсутствия экрана, рассчитали магнитную индукцию в интересующей точке для случая наличия экрана, а также нашли коэффициент экранирования и построили график его зависимости от толщины экрана, который показывает возрастание коэффициента экранирования при увеличении толщины экрана. Также можно сказать, что значение модуля магнитной индукции в точке (10; 1) при увеличении толщины экрана постепенно уменьшается.

Выполнил студент Пузанов В.Е., ФИТУ 010304-КМСб-о22 Проверила ст. преподаватель каф. ПМ Балабан А.Л.