Project

Let K be an imaginary quadratic field, and p a rational prime which splits in K into two distinct primes 80, 80. By class field theory, there is a unique Zp-extension Ko/K which is unramified outside of 80. assume now that F is an arbitrary finite extension of K. We call

Fo = FKe

the "split prime" Z_p - extension of F. It seems probable that this split prime Z_p - extension F_{∞}/F has many properties in close analogy with those of the cyclotomic Z_p - extension of F. The aim of the project is to discuss several of these analogies, and establish a few rather limited theoretical and numerical escamples in support of them.

Part I

analogues of the Leopoldt and weak Leopoldt conjectures.

We assume from now on that K is an imaginary quadratic in which p splits into so, got, and that F is an arbitrary finite esctencian of K. For each prime or of F lying above so, write Ur for the group of local units in the completion of F at v which are = 1 mod v. Put U = TT Ur. Thus Up is a Zp-module of rank equal to $\frac{1}{72}$, where $\frac{1}{72}$ denotes the number of complex primes of F (= [F:K]). Let E = be the group of all global units of F which are = 1 mod v for all v | jo. By Dirichlet's theorem, E has Z-rank equal to $\frac{1}{72}$ -1. Now we have the obvious embedding of E into Up, and we define E to be the closure of the image in Up under the sp-adic topology (equivalently, E is the Zp-submodule of Up

which is generated by the image of E_F). Thus E_F must have \mathbb{Z}_f -rank equal to \mathbb{Z}_f -1- S_F , to for some integer S_F , to \mathbb{Z}_f . Special Leopoldt conjecture. S_F , $\mathbb{Z}_f = 0$.

again global class field theory gives a Galois-theoretic interpretation of this conjecture. Let L be the p-Hilbert class field of F, and let M be the mascimal abelian p-extension of F, which is unramified outside the set of primes of F lying above go. Then the artin map induces an isomorphism

UF/EF ~ Gal (M/L),

where we obtain: -

Theorem 1.1. Let M be the mascimal abelian p-esctension of F which is unramified outside the primes of Flying above go. Then Gal (M/F) is a finitely generated \mathbb{Z}_p -module of \mathbb{Z}_p -rank equal to $1+8_{F,p}$.

Corollary 1.2. 8 F, go = 0 if and only if Gal (M/Fa) is finite.

Let $G_1,...,G_{r_2}$ be the embeddings of F into $\overline{\mathbb{Q}}_p$ extending the embedding of K into \mathbb{Q}_p given by p. Let $E_1,...,E_{r_2-1}$ be a \mathbb{Z} -basis of E_F modulo torsion. Note that the series $\log \infty$ converges on all principal units of $\overline{\mathbb{Q}}_p$. Define

 $R_{go}(F) = \det \left(\log \sigma_i(E_j) \right)_{i,j=1,...,T_a-1}$

Exc 1.1. Prove that $S_{F,p} \neq 0$ if and only if $R_p(F) \neq 0$. If F is an abelian extension of K, use Baken's theorem that $\log E_1, \ldots, \log E_r$ are linearly independent over the field of algebraic numbers to show that $R_p(F) \neq 0$.

Exc 1.2. With the help of 5AGE or MAGMA, one can often check numerically that $R_{\wp}(F) \neq 0$ even when F is not an abelian exctension of K. Here is one excample. Take $K = \mathcal{Q}(i)$, h = 5, and $\wp = (1-2i)\mathbb{Z}[i]$. Let $w = 1-\sqrt{5}$, and take

F = K(w, p 4), where B = w (1-2i)

Show that $F = \emptyset$ (8), where S is a root of $\infty^2 - 4 \propto ^6 + 9 \propto ^4 + 10 \stackrel{?}{\sim} + 5 = 0$. Using one of the above programmes, find the group of global units of F, and check that $\operatorname{ord}_{\emptyset}(R_{\emptyset}(F)) = 3/2$.

We now turn to the weak go-adic Leopoldt conjecture for F_{∞}/F . For each $n \gg 0$, let F_n be the unique exctension of F contained in F_{∞} with $[F_n:F]= p^n$. Let $S_{F_n,go}$ denote the g-adic default of Leopoldt for F_n .

Weak go-adio Leopoldt conjecture for Fo/F.

SF, jo is bounded as n -> 00.

Of course, the analogue of this statement for the cyclotomic \mathbb{Z}_p -extension of F was proven by Iwasawa, but unfortunately his proof does not seem to exceed to Fa/F.

There is an equivalent formulation of this conjecture purely in terms of an Iwasawa module. Let M(Fo) be the mascimal abelian p-esciencian of Fo, which is unramified outside the set of primes of Fo lying above 50, and put

Clearly $M(F_{\infty})$ is Galois over F, and so $\Gamma = Gal(F_{\infty}/F)$ acts on $X(F_{\infty})$ in the usual fashion. It follows that $X(F_{\infty})$ is a module over the Iwasawa algebra $\Lambda(\Gamma)$ of Γ , and it is easily seen to be finitely generated over $\Lambda(\Gamma)$. Moreover, we have

$$(X(F_{\infty}))_{\Gamma_n} = Gal(M_n/F_{\infty}),$$

where Mn is the mascimal abelian p-extension of Fn, which is unramified outside the primes of Fn lying above go.

Theorem 1.3. \times (F_o) is \wedge (F)-torsion if and only if $\delta_{F_n, p}$ is bounded as $n \to \infty$.

Corollary 1.4 If $S_{F,p}=0$, then $S_{F,p}$ is bounded as $n\to\infty$.

Of course, one can use Corollary 1.4 to prove the weak go-adic Le opoldt conjecture in numerical escamples (e.g. in the escample of Exc. 2).

There are two other important aspects of the weak g-adic Leopoldt conjecture for F_{00}/F which we mention briefly. Firstly, there is an exact formula for $\#(Gal(M/F_{00}))$ when $R_{0}(F) \neq 0$, which is a first hint that there may be a "main conjecture" for $X(F_{00})$. Let h(F) be the class number of F, w(F) the number of roots of unity in F, and $\Delta(F/K)$ any generator of the discriminant ideal of F/K. If v is a finite place of F, Nv will denote the cardinality of the residue field of v.

Exc 1.3 (see [CW1]). Osoume that $R_p(F) \neq 0$. Then $[M:F_{\infty}] = \left| \frac{h(F) + h(F) R_p(F)}{w(F) \sqrt{\Delta(F/K)}} \frac{1}{v \cdot b} \left(1 - \frac{1}{Nv} \right) \right|_{p}$

where the integer C(F) is defined by $F \cap K_{\infty} = K_{C(F)}$. Here the p-adic valuation on $\widehat{\mathcal{O}}_p$ is normalized by $|\frac{1}{T}|_p = p$. Secondly, the weak Leopoldt conjecture for F_{∞}/F is closely related to the Iwasawa theory for F_{∞}/F of elliptic curves with complex multiplication by the full ring of integers of K (see [Ca]).