

Intro to Drone Programming

CDA 4625 - U01 Introduction to Mobile Robotics

Paulo Padrao, Research Assistant School of Computing and Information Sciences ppadraol@fiu.edu

Some applications

Film recording

Surveillance

Delivery

Types of Drones

Quadcopter

Hexacopter

Octocopter

Main Components

- Frame
- Motors
- Propellers (Blades)
- Electric Motor Controller
- Battery
- Power Distribution Board
- Flight Controller
- Camera
- Receiver
- Sensors (IMU, pressure sensor, etc)

How it flies

4 DOF

3 Translations

1 Rotation

How it flies

- 2 propellers rotate CW and 2 propellers rotate CCW
- Generate 0 angular momentum
- Keep it stationary instead of rotating in one direction

How it flies (Hovering)

Hovering: Lift = Weight

How it flies (Translational movements)

Moving up: Lift > Weight

Moving down: Lift < Weight

How it flies (Translational movements)

Moving Right

Moving Left

How it flies (Translational movements)

Moving Forward

Moving Backwards

How it flies (Rotational movements)

Moving CW

Moving CCW

Tello Drone

13_{Min} Flight Time

100_M 720_P Flight Distance

HD Transmission Smart Switching

Auto Takeoff/Landing

Lift off or land with a single

Low Battery Protection

Alerts go off when your battery gets low.

Failsafe Protection

Land safely, even if you lose connection.

Vision Positioning System

Smart tech that facilitates precise hovering.

App Setup and Test Run

Step 0: Download the Tello app.

Step 1: Turn on the drone. When the light starts blinking with a single color, the drone is ready.

App Setup and Test Run

Step 2: In Tello App, go to Settings > More > Firmware Update.

Note: We need to disconnect the drone first and then connect our phone to WiFi to download the firmware updates

Python Installation and Setup

Download Python 3.7.6.

https://www.python.org/downloads/release/python-376/

Version	Operating System	Description	MD5 Sum	File Size	GPG
Gzipped source tarball	Source release		3ef90f064506dd85b4b4ab87a7a83d44	23148187	SIG
XZ compressed source tarball	Source release		c08fbee72ad5c2c95b0f4e44bf6fd72c	17246360	SIG
macOS 64-bit/32-bit installer	macOS	for Mac OS X 10.6 and later	0dfc4cdd9404cf0f5274d063eca4ea71	35057307	SIG
macOS 64-bit installer	macOS	for OS X 10.9 and later	57915a926caa15f03ddd638ce714dd3b	28235421	SIG
Windows help file	Windows		8b915434050b29f9124eb93e3e97605b	8158109	SIG
Windows x86-64 embeddable zip file	Windows	for AMD64/EM64T/x64	5f84f4f62a28d3003679dc693328f8fd	7503251	SIG
Windows x86-64 executable installer	Windows	for AMD64/EM64T/x64	cc31a9a497a4ec8a5190edecc5cdd303	26802312	SIG
Windows x86-64 web-based installer	Windows	for AMD64/EM64T/x64	f9c11893329743d77801a7f49612ed87	1363000	SIG
Windows x86 embeddable zip file	Windows		accb8a137871ec632f581943c39cb566	6747070	SIG
Windows x86 executable installer	Windows		9e73a1b27bb894f87fdce430ef88b3d5	25792544	SIG
Windows x86 web-based installer	Windows		c7f474381b7a8b90b6f07116d4d725f0	1324840	SIG

Python Installation and Setup

Note 1: Make sure to add Python 3.7 to the Path

Note 2: When creating a new project in PyCharm, make sure to check if the interpreter is set to Python 3.7

Python Installation and Setup

Note 3: To install Tello Library, go to File > Settings > Project > Project Interpreter > Add > Type djitello > Install

Note 4: We also need to install opency and pygame libraries

Basic Movements

```
1 from djitellopy import tello
 2 from time import sleep
 4 # create the drone object
 5 drone = tello.Tello()
 6 # connecting the drone through WiFi
 7 drone.connect()
 8 print(drone.get battery())
10 # taking off
11 drone.takeoff()
14 Send RC control via four channels
15 send rc control(left right velocity, forward backward velocity, up down velocity, yaw velocity)
16 data type: int
17 range: -100 ~ 100
19 drone.send rc control(0, 50, 0, 0)
21 # wait for 5 seconds
22 sleep(5)
23 # For safety reasons
24 drone.send rc control(0, 0, 0, 0)
25 # landing
26 drone.land()
```

Image Capturing

```
1 from djitellopy import tello
2 import cv2
4 drone = tello.Tello()
5 drone.connect()
6 print(drone.get battery())
8 # Turn on video streaming
9 drone.streamon()
10
11 while True:
12
      # get the actual frame received by the drone
13
      img = drone.get frame read().frame
14
      # keep the size of the frame small so it could process it faster
15
      img = cv2.resize(img, (360, 240)) # if not resized, the size of the frame is 1280 x 780
16
      # create a window to display the results
17
      cv2.imshow("Name of Window", img)
18
      # write a wait key to keep the window visible
19
      cv2.waitKey(1)
```

Key Press Module

```
1 import pygame
 3 def init():
      pygame.init()
      window = pygame.display.set mode((400, 400))
7 # function to get the key pressed
8 def getKey(keyName):
      answer = False
      for eve in pygame.event.get():
      keyInput = pygame.key.get pressed()
      myKey = getattr(pygame, 'K {}'.format(keyName))
      if keyInput[myKey]:
          ans = True
      pygame.display.update()
      return answer
20 def main():
      if getKey("LEFT"):
          print("Left key pressed!")
      if getKey("RIGHT"):
          print("Right key pressed!")
26 # if running this file as the main file, do the following:
27 if name == ' main ':
      init()
      while True:
          main()
```

Keyboard Control

```
1 from djitellopy import tello
2 import keyPressModule as kp
3 from time import sleep
5 kp.init()
6 drone = tello.Tello()
7 drone.connect()
8 print(drone.get battery())
10 def getKeyboardInput():
  # left/right, forward/backward, up/down, yaw velocity
    lr, fb, ud, yv = 0, 0, 0, 0
    speed = 50
    if kp.getKey("LEFT"):
         lr = -speed
     elif kp.getKey("RIGHT"):
         lr = speed
     if kp.getKey("UP"):
         fb = speed
     elif kp.getKey("DOWN"):
         fb = -speed
     if kp.getKey("w"):
         ud = speed
     elif kp.getKey("s"):
         ud = -speed
     if kp.qetKey("a"):
         yv = -speed
     elif kp.getKey("d"):
         yv = speed
     if kp.getKey("q"):
         drone.land()
         sleep(3)
     if kp.getKey("e"):
         drone.takeoff()
     return [lr, fb, ud, yv]
     commandValues = getKeyboardInput()
     drone.send rc control(commandValues[0], commandValues[1], commandValues[2], commandValues[3])
     sleep(0.05)
```

Surveillance

```
1 from djitellopy import tello
2 import keyPressModule as kp
3 import time
4 import cv2
6 global img
8 kp.init()
9 drone = tello.Tello()
10 drone.connect()
11 print(drone.get battery())
13 # Turn on video streaming
14 drone.streamon()
16 def getKeyboardInput():
      # left/right, forward/backward, up/down, yaw velocity
      lr, fb, ud, yv = 0, 0, 0, 0
      speed = 30
      if kp.getKey("LEFT"):
          lr = -speed
      elif kp.getKey("RIGHT"):
          lr = speed
      if kp.getKev("UP"):
          fb = speed
      elif kp.getKey("DOWN"):
          fb = -speed
```

```
if kp.getKev("w"):
          ud = speed
       elif kp.getKey("s"):
          ud = -speed
      if kp.getKey("a"):
          yv = -speed
       elif kp.getKey("d"):
          yy = speed
       if kp.getKev("g"):
          drone.land()
          time.sleep(3)
      if kp.getKey("e"):
          drone.takeoff()
      if kp.getKey("z"):
          cv2.imwrite(f'Resources/Images/{time.time()}.jpg', img)
          time.sleep(0.3)
       return [lr, fb, ud, yv]
54 while True:
      commandValues = getKeyboardInput()
      drone.send rc control(commandValues[0], commandValues[1], commandValues[2], commandValues[3])
      img = drone.get frame read().frame
      # keep the size of the frame small so it could process it faster
      img = cv2.resize(img, (360, 240)) # if not resized, the size of the frame is 1280 x 780
      # create a window to display the results
      cv2.imshow("Name of the Window", img)
      # write a waitkey to keep the window visible
      cv2.waitKey(1)
```

Task

Move your drone with a square trajectory and take 1 picture at each corner of the square.

At each side of the square, you must go forward 4 seconds.

You must rotate your drone at each corner

Solution

```
Assingment Solution
▶ 1 from djitellopy import tello
     2 from time import sleep
     3 import time
     4 import cv2
     7 drone = tello.Tello()
     8 # connecting the drone through WiFi
     9 drone.connect()
    10 print(drone.get battery())
    11 drone.streamon()
    15 drone.takeoff()
    18 Send RC control via four channels
    19 send rc control(left right velocity, forward backward velocity, up down velocity
    20 data type: int
    23 \text{ speed} = 40
    24 drone.send rc control(0, speed, 0, 0)
    25 # wait for 5 seconds
    26 sleep time = 3
    27 sleep(sleep time)
    28 drone.rotate clockwise(90)
    29 # wait for 5 seconds
    30 sleep(sleep time)
    31 img = drone.get frame read().frame
    32 \text{ img} = \text{cv2.resize(img, (360, 240))}
    33 cv2.imwrite(f'Images/{time.time()}.jpg', img)
    34 sleep(0.3)
    36 drone.send rc control(0, speed, 0, 0)
    37 # wait for 5 seconds
    38 sleep(sleep time)
    39 drone.rotate clockwise(90)
    40 # wait for 5 seconds
```

```
41 sleep(sleep time)
42 img = drone.get frame read().frame
43 img = cv2.resize(img, (360, 240))
44 cv2.imwrite(f'Images/{time.time()}.jpg', img)
45 sleep(0.3)
48 drone.send rc control(0, speed, 0, 0)
49 # wait for 5 seconds
50 sleep(sleep time)
51 drone.rotate clockwise(90)
52 # wait for 5 seconds
53 sleep(sleep time)
54 img = drone.get frame read().frame
55 \text{ img} = \text{cv2.resize(img, (360, 240))}
56 cv2.imwrite(f'Images/{time.time()}.jpg', img)
57 sleep(0.3)
59 drone.send rc control(0, speed, 0, 0)
60 # wait for 5 seconds
61 sleep(sleep time )
62 drone.rotate clockwise(90)
63 # wait for 5 seconds
64 sleep(sleep time)
65 img = drone.get frame read().frame
66 \text{ img} = \text{cv2.resize(img, (360, 240))}
67 cv2.imwrite(f'Images/{time.time()}.jpg', img)
68 sleep(0.3)
71 # For safety reasons
72 drone.send rc control(0, 0, 0, 0)
73 # landing
74 drone.land()
```