Demonstration Problem Manual

For the

MYSTRAN General Purpose Finite Element Structural Analysis Computer Program

(May 2010)

Table of Contents

TABL	LE OF CONTENTS	II
1 OVEF	DEMO PROBLEM 1 – CRAIG-BAMPTON MODEL GENERATION AND SYNTHESIS IN	
1.1 1.1 1.1 1.1 1.1	 .2 Generation of Craig-Bampton model of substructure 1 .3 Generation of Craig-Bampton model of substructure 2 .4 System modes using the 2 CB models and the basic structure FEM 	2 4 5
1.2	Summary	8
1.3	Fig 1.1 – Simple example problem: Basic structure and 2 substructures	9
1.4	Substructure 1 – Generate CB model	10
1.5	Substructure 2 – Generate CB model	19
1.6	FEM basic structure and CUSERIN substructures	32
1.7	FEM basic structure and FEM substructures	47

Preface

This manual is not a complete reference for all types of MYSTRAN analyses but does contain example problems to demonstrate the use of MYSTRAN for solving unique kinds of problems. At the present time, only examples that use the unique Craig-Bampton model generation and synthesis capability are covered. Additional examples will be added as needed to explain how to use the program for solving problems not generally covered by the popular NASTRAN computer program known to most users of finite element analysis computer programs

1 Demo Problem 1 – Craig-Bampton model generation and synthesis into an overall structure model

1.1 Example Problem Definition

1.1.1 Introduction

This example demonstrates two different features in MYSTRAN:

- Generation of Craig-Bampton (CB) models from physical finite element model (FEM). See Appendix C in the MYSTRAN User's Reference manual for a discussion of the theory behind Craig-Bampton substructure modeling.
- Synthesis of CB models, with optional physical FEM's, into overall system models.

Figure 1.1 shows a model made up of a basic structure and 2 substructures. The model can certainly be analyzed as a physical FEM using SOL 3 to obtain the modes of the combined structure. It actually will be so analyzed as a comparison with the CB synthesis model results, but the main purpose of this example is to demonstrate how a structure like the one in Figure 1.1 can be modeled with substructures using the CB substructure technique. The CB reduction technique will be referred to as a modal synthesis or substructure technique to distinguish from the ordinary FEM technique wherein all degrees of freedom (DOF) are physical displacements and rotations at grid points

The simple structure in Figure 1.1 is small enough that using substructure techniques are not economical but is used to demonstrate the techniques that would be used on much larger structural models. The CB technique is a mathematical reduction of the ordinary FEM model having all physical DOF to an approximate model consisting of the physical DOF at the boundary of the substructure (where it connects to other substructures) plus some fixed boundary modal DOF. The technique is exactly equivalent to obtaining the modes (eigenvalues) from the ordinary FEM with all physical DOF if all of the fixed boundary modes are included. However, the economy in using the CB approach is that the user can truncate the boundary modal DOF to some acceptably small fraction of all of the complete set without appreciable loss of accuracy. From a physical point of view, this statement is equivalent to saying that the substructure probably has many higher modes of vibration that are not of interest to the user and do not contribute significantly to the responses of interest to the user.

The first step in a modal synthesis is to break the complete structure into separate substructures. In many cases this is a process of convenience in that separate entities may be responsible for different parts of a structure and would have their own FEM's of their structure's designs. However, there are also modeling concerns, as listed below, in breaking the complete structure into separate substructures:

- It is more economical to separate the substructures at locations where there are a relatively few physical boundary DOF.
- In order to take advantage of modal truncation the separate substructures should be able to be adequately represented using only a small number of modes.

In Figure 1.1 we have already taken into account the considerations above and have made the decision to separate the model into 3 parts:

 A basic structure consisting of the frame of CBAR's connected to the grids numbered in the range 111 to 222. This will be kept as a physical FEM in the analysis rather than reducing it to a CB model.

- Substructure 1, modeled as 1 CBAR from grids 3101 to 3102. This physical FEM will be reduced to a CB model containing only the boundary DOF's (6 components of motion at grid 3101) plus some modal DOF's.
- Substructure 2, modeled as a frame of CBAR's connecting grids 3201 through 3204. This
 physical FEM will be reduced to a CB model containing only the boundary DOF's (in this case
 the 3 translation components of motion at grids 3201, 3202, 3203) plus some modal DOF's

Sections 1.1.2 and 1.1.3 will explain the input/output data for the 2 CB models. Section 1.1.4 will explain the model to obtain the system modes using these 2 CB models and the physical FEM of the basic structure. Finally, section 1.1.5 will show that the CB synthesis results are the same as those from a completely physical FEM model.

1.1.2 Generation of Craig-Bampton model of substructure 1

Section 1.4 has the input data for the generation of a CB model of substructure 1. Note the following regarding the input data deck (see Figure 1.1 for a picture of this substructure):

- SOL 31 is for CB model generation
- OUTPUT4 calls for CB matrices KRRGN and MRRGN (NASTRAN nomenclature for MYSTRAN matrices KXX and MXX) to be output to binary OUTPUT4 formatted files.
- METHOD = 2 selects an EIGR with set ID = 2 to find the eigenvalues (so modes found will be fixed base relative to the boundary DOF's identified by the SUPORT Bulk Data entry)
- Model has 2 GRID's and 1 CBAR
- Coordinate system 19 is used for the global system for the 2 grids. This is only done to demonstrate the flexibility of MYSTRAN to deal with coordinate systems other then basic in CB analyses
- The only mass is a concentrated mass at grid 3102
- SUPORT identifies the boundary DOF for this substructure to be the 3 translation components of displacement at grid 3101
- PARAM CUSERIN requests MYSTRAN to print out equivalent CUSERIN Bulk Data entries for this substructure

The output is shown on the following pages in section 1.4. Note the following:

- Grid Point Weight Generator output shows the rigid body mass properties of substructure 1 relative to its basic coordinate system.
- *INFORMATION: message listed shows that matrices KXX, MXX, RBM0 have been written to binary file CB1d-SUBSTR-1-CB-MODEL.OP1 which will be used in the synthesis run (section 1.6)
- Based on Bulk data PARAM CUSERIN, the Bulk Data entries needed in the synthesis run for this CB substructure is listed. Some of the entries will have to be modified (e.g. CID0 must be defined) for the synthesis run in section 1.6

- Only 3 eigenvalues were found although 4 were requested. Since the model has only 3 mass DOF, there are only 3 finite eigenvalues. Normally we would not be asking for all modes in a CB analysis but are doing so here so that the system modes can be compared to a run in which a complete FEM model is used (section 1.7)
- Output of displacements was requested in Case Control and the output is shown next. Note
 that for CB analyses, "displacement" output is of the rows of the Displacement Output
 Transformation Matrix (Displ OTM) described in Appendix D to Reference 1

1.1.3 Generation of Craig-Bampton model of substructure 2

Section 1.5 has the input data for the generation of a CB model of substructure 2. Note the following regarding the input data deck (see Figure 1.1 for a picture of this substructure):

- SOL 31 is for CB model generation
- OUTPUT4 calls for CB matrices KXX and MXX (NASTRAN matrices KRRGN and MRRGN) to be output to binary OUTPUT4 formatted files
- METHOD = 2 selects an EIGR with set ID = 2 to find the eigenvalues (so modes found will be fixed base relative to the boundary DOF's identified by the SUPORT Bulk Data entry)
- Model has 4 GRID's and 6 CBAR's
- Coordinate systems 291 through 294 are used for the global system for the 4 grids. This is only
 done to demonstrate the flexibility of MYSTRAN to deal with coordinate systems other then
 basic in CB analyses
- The only mass is a concentrated mass at grid 3204
- SUPORT identifies the boundary DOF for this substructure which is to be the 3 translation components of displacement at grids 3201, 3202, 3203
- PARAM CUSERIN requests MYSTRAN to print out equivalent CUSERIN Bulk Data entries for this substructure

The output is shown on the following pages in section 1.5. Note the following:

- Grid Point Weight Generator output shows the rigid body mass properties of substructure 2 relative to its basic coordinate system.
- *INFORMATION: message listed shows that matrices KXX, MXX, RBM0 have been written to binary file CB1d-SUBSTR-2-CB-MODEL.OP1 which will be used in the synthesis run (section 1.6)
- Based on Bulk data PARAM CUSERIN, the Bulk Data entries needed in the synthesis run for this CB substructure is listed. Some of the entries will have to be modified (e.g. CID0 must be defined) for the synthesis run in section 1.6
- Only 3 eigenvalues were found although 4 were requested. Since the model has only 3 mass DOF, there are only 3 finite eigenvalues. Normally we would not be asking for all modes in a CB analysis but are doing so here so that the system modes can be compared to a run in which a complete FEM model is used (section 1.7)

 Output of displacements was requested in Case Control and the output is shown next. Note that for CB analyses, "displacement" output is of the rows of the Displacement Output Transformation Matrix (Displ OTM) described in Appendix D to Reference 1

1.1.4 System modes using the 2 CB models and the basic structure FEM

Section 1.6 has the input data for the system modes model. In this run we will use the CB model data generated in the runs described in the 2 previous sections along with a physical model FEM of the basic structure. Note the following about the input data:

- IN4 statements in Exec Control define the files that contain the stiffness and mass data generated in the 2 CB runs described in the last 2 sections. There must be one of these IN4 statements for every CB model included in the synthesis run
- SOL 3 requests an eigenvalue run with METHOD = 2 selecting Bulk data EIGRL entry with set ID 2
- The 1st portion of the Bulk Data is a standard FEM model of the basic structure containing 8 grids and 12 CBAR's and concentrated masses at all 8 grids
- The 2nd portion of the input data is the CB model definition for substructure 1. It uses the CUSERIN, PUSERIN, etc data written to the F06 file in section 1.4 to describe the substructure 1 CB model connection and "property" data (more on this below)
- The 3rd portion of the input data is the CB model definition for substructure 2. It uses the CUSERIN, PUSERIN, etc data written to the F06 file in section 1.5 to describe the substructure 2 CB model connection and "property" data (more on this below)
- Each CB model must have its basic coordinate system defined relative to the basic coordinate system of the overall system model. All other CB unique coordinate systems must be defined relative to this CB basic coordinate system.
- In this example, RBE2 rigid elements are used to connect CB boundary grids to the basic structure grids. This is not at all necessary, only a preference of the author. The CUSERIN connection data for each substructure could have alternately referred to grids from the basic structure where the CB model attached. For example, CUSERIN 100 would have referred to grid 112 instead of 3101 and then the RBE2 1001 and GRID 3101 would have been omitted from the substructure 1 CB model definition. Note that this would also have required that GRID 112 have the coordinate system 19 that was used in CB model 1 as the global coordinate system.

Since some of the input data for the CB models is not standard NASTRAN type of input, the description below is given to help explain that input data.

The CUSERIN Bulk Data connection parent entry specifies:

Field 1: CUSERIN

Field 2: element ID

Field 3: property ID

• Field 4: number of boundary grids (the number that are in the R-set when the CB model was generated)

- Field 6: number of SPOINT's (1 for each modal DOF in the CB model)
- Field 6: ID of the coordinate system which defines the basic system used when the CB model
 was generated. It must define this coordinate system relative to the basic coordinate system of
 the overall system model

Subsequent CUSERIN continuation entries define

- grids/components that define the support (boundary) DOF for this substructure
- ID's of SPOINT's for MYSTRAN to use as the DOF identifiers for the modal DOF (these must begin on a new continuation entry; i.e. they can not be on the same continuation entry as the grid/component definition)

The PUSERIN "property" entry does not define physical properties (as is the case with other finite elements); rather it specifies information about the files that contain the KRRGN and MRRGN matrices for the CB element. It also specifies the names of these matrices as they were written to the OUTPUT4 file when the CB model was generated. There is one more matrix defined; RBM0, which is a 6x6 rigid body mass matrix relative to the basic coordinate system origin for the CB model (RBM0 generated in the run that creates the CB model). If the RBM0 matrix is not present one will be generated internally.

Specifically, the PUSERIN Bulk Data entry specifies:

- Field 1: PUSERIN
- Field 2: property ID referenced in field 3 of the CUSERIN entry
- Field 3: ID of a IN4 Executive Control Deck entry which has the name of the file containing the KXX, MXX, RBM0 (NASTRAN KRRGN, MRRGN and RBMCG) matrices
- Field 4: Name of the KRRGN matrix (can be up to 8 characters long)
- Field 5: Name of the MRRGN matrix (can be up to 8 characters long)
- Field 6: Name of the RBM0 matrix (can be up to 8 characters long) if there is one

The KXX, MXX, RBM0 (NASTRAN KRRGN, MRRGN, RBMCG) matrices are read into MYSTRAN in NASTRAN INPUTT4 format. The command statements to do this are part of the Executive Control Deck, the format of which is shown in the listing in section 1.6. The commands to read in the matrices are: IN4 i = *filename*, where i is the file ID in field 3 of the PUSERIN property entry for the CUSERIN element and *filename* is the name of the file in which the matrices were written when the CB model was generated

The output for this modal synthesis run is the standard type of output one would expect from a SOL 3 modal analysis. Note the following:

- The Grid Point Weight Generator gives the rigid body mass properties of the complete model.
 Unless the CB matrices RBM0 had been input (IN4 Exec Control command), the overall model
 mass properties would not have been correct and would not match those shown in the next
 section in which a completely physical FEM model is run
- The eigenvalues are system values and will be directly comparable to those in section 1.7.
 They will, in fact, be exactly the same since we have used all of the finite modes for each substructure (not a normal circumstance, only done here for demonstration purposes)

• The eigenvectors show the "mode shapes" for the CB synthesis DOF's, which, in this model, uses physical grids for the basic structure and CB boundary DOF's plus modal DOF's for the fixed base modes of each substructure. The meaning of an eigenvector like this for the CB fixed base modes is the following. The magnitudes shown in system eigenvector i for the CB DOF's (scalar points 10001,2,3 and 20001,2,3) are the relative magnitudes of the substructure CB eigenvactors in their contribution to system eigenvector i.

1.1.5 System modes using complete structure FEM

In order to demonstrate that the CB substructure techniques used in the last section can yield the same eigenvalues as would be used if it were analyzed as a full FEM model, section 1.7 is included. It shows the results of a run using a complete physical FEM of the basic structure with the 2 substructures run as one complete model. The input shown is that used in a standard analysis of a FEM with SOL 3 and requesting 10 eigenvalues. The output shows the rigid body mass properties of the complete model, the 10 eigenvalues and 1 of the eigenvactors. The eigenvalue data in section 1.7 is to be compared with those in section 1.6 (using CB models for the 2 substructures). The eigenvector data will, however, be different as the system DOF's for the two runs are not the same. In the case of the complete FEM, the DOF's are all 6 component displacement components at physical grids. For the CB synthesis run the DOF's are physical grids for the basic structure but the DOF's for the substructures have physical grids for the boundary DOF's and modal DOF's for the remainder of the CB model. Analysts familiar with modal synthesis will be aware of this distinction.

1.2 Summary

The eigenvalues in section 1.7, which is a complete FEM model, form the baseline for comparison with the eigenvalues in section 1.6, which uses CB models for substructures 1 and 2. Since all of the finite mass modes were included in generating the substructure CB models, it should be expected that the eigenvalues in section 1.6 should be exactly the same as those in section 1.7. As shown in these two sections the 10 eigenvalues found for the combined structure are identical. In a practical CB synthesis, only some of the modes of each CB model would be used and then the CB synthesis eigenvalues would not be identical to those from the completely physical FEM model. However, if the analyst is careful in modeling the problem at hand the important eigenvalues in the CB synthesis should be a very good approximation to the ones that would have been obtained from a run using a completely physical FEM.

1.3 Fig 1.1 – Simple example problem: Basic structure and 2 substructures

Substructure 1

Substructure 2

Basic structure with substructures attached

1.4 Substructure 1 – Generate CB model

(input deck CB1d-SUBSTR-1-CB-MODEL.DAT)

511121050

ENDDATA

MYSTRAN Version 6.13 May 10 2010 by Dr Bill Case

```
>> MYSTRAN BEGIN : 5/11/2010 at 12:10:50.531 The input file is CB1d-SUBSTR-1-CB-MODEL.DAT
>> LINK 0 BEGIN
ID CB1, RUN (d)
SOL 31
$
OUTPUT4 KRRGN, MRRGN, , , //-1/21
$
CEND
TITLE
       = CB PROBLEM - SUBSTR 1, GENERATE CB MODEL
       = SUBSTR GLOBAL IS COORD SYSTEM 19
SUBTI
LABEL
       = V VEC FOR BAR IS X19 DIR WHICH IS OA MODEL BASIC X0
ECHO
       = UNSORT
METHOD = 2
DISP
        = ALL
MEFFMASS = ALL
BEGIN BULK
$
EIGR
       2
               MGIV
                                     1
                                              4
                                                                     +E1
+E1
       MASS
$
                              0.
                                      0.
                                              1.
                                                      0.
                                                             0.
CORD2R 19
                       0.
                                                                     +C19
+C19
       0.
               0.
                       1.
$
                       0.
                               0.
GRID
       3101
                                       0.
                                              19
GRID
       3102
                       25.
                               0.
                                       0.
                                              19
$
CBAR
       3101
               3101
                       3101
                              3102
                                      1.
                                              0.
                                                      0.
$
PBAR
       3101
               301
                      1.
                              20.
                                      20.
                                              40.
$
               30.+6
                              . 3
MAT1
       301
*INFORMATION: MAT1 ENTRY
                             301 HAD FIELD FOR G BLANK. MYSTRAN CALCULATED G = 1.153846E+07
$
CONM2
       3102
               3102
                              400.
$
SUPORT 3101
               123456
$
                               10001 100
PARAM
       CUSERIN 100
                     190
PARAM
       GRDPNT
                Ω
PARAM
       WTMASS
                .002591
Ś
```

Total mass = 4.000000E+02

X Y Z
C.G. location: 2.500000E+01 0.000000E+00 0.000000E+00 (relative to reference point in basic coordinate system)

6x6 Rigid body mass matrix - about reference point in basic coordinate system

 $\ensuremath{\text{M.O.I.}}$ matrix - about reference point in basic coordinate system

```
* 0.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 2.500000E+05 0.000000E+00 *
* 0.000000E+00 0.000000E+00 2.500000E+05 *
***
```

M.O.I. matrix - about above c.g. location in basic coordinate system

```
* 0.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 0.000000E+00 0.000000E+00 *
```

M.O.I. matrix - about above c.g. location in principal directions

```
* 0.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 0.000000E+00 0.000000E+00 *
```

Transformation from basic coordinates to principal directions

* * *

```
* 1.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 1.000000E+00 0.000000E+00 *
* 0.000000E+00 0.000000E+00 1.000000E+00 *
```

OUTPUT4 file on unit 21 has been created as: CB1d-SUBSTR-1-CB-MODEL.OP1 and will contain the matrices:

(1) KRRGN : this is MYSTRAN matrix KXX

(2) MRRGN : this is MYSTRAN matrix MXX

EIGENVALUE ANALYSIS SUMMARY (MGIV)

LARGEST OFF-DIAGONAL GENERALIZED MASS TERM 0.0E+00 (Vecs renormed to 1.0 for gen masses)

. . . 1

NUMBER OF OFF DIAGONAL GENERALIZED MASS

TERMS FAILING CRITERION OF 0.0E+00. 0

MODE NUMBER	EXTRACTION ORDER	EIGENVALUE	REAL EIGE RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS
1	1	1.111540E+05	3.333977E+02	5.306188E+01	1.000000E+00	1.111540E+05
2	2	1.111540E+05	3.333977E+02	5.306188E+01	1.000000E+00	1.111540E+05
3	3	1.157854E+06	1.076036E+03	1.712565E+02	1.000000E+00	1.157854E+06

```
$BULK DATA ENTRIES FOR CUSERIN ELEM
      (to be used to define a substructure in an overall systems model)
$ The GRID and CUSERIN entries below are for the R -set from file:
$ CB1d-SUBSTR-1-CB-MODEL.F06
$ run on 5/11/2010 at 12:10:50.531
$--1---|--2--|--3---|--4---|--5---|--6---|--7---|--8---|--9---|-10---|
GRID
       3101
               "CID0" 0.00
                             0.00
                                     0.00
CORD2R 19
               "CID0" 0.00
                             0.00
                                   0.00 1.00 0.00
                                                            0.00
       0.00
               0.00
                      1.00
SPOINT 10001
                      10003
              THRU
CUSERIN 100
              190
                      1
                              3
                                     "CTD0"
       3101
              123456
PUSERIN 190
              100
                      <-"mat 1 name"-><-"mat 2 name"-><-"mat 3 name"->
S NOTES:
$ ----
$ "CIDO"
          is to be replaced with the coord sys ID that is used to define the
$ basic coord sys of this USERIN elem rel to the system model basic coord
$ system in the system model run
$ If the above grid entries are used, and are different than the corresponding
$ grids in the system model, RBE2's should be included to connect them to the
$ corresponding grids in the system model.
$ **NOTE: If RBE2's are NOT used, it is imperative that the grids in the
$ system model that this USERIN element is connected to have the same global
$ coordinate system as was used in generating this substructure.
$ name 1 is to be replaced with the stiffness matrix name:
$
        For CB model generation, KXX or its alias, KRRGN
Ś
        For statics, KGG, KAA, etc
$ name 2 is to be replaced with the mass matrix name (if one is input):
        For CB model generation, MXX or its alias, MRRGN
$
$
        For statics, MGG, MAA, etc
$ name 3 is to be replaced with:
Ś
        For CB model generation, RBMO (not required)
        For statics, load matrix PG, PA, etc
$
$ The matrices whose names are "name i" must have been requested to be
$ written to binary files via Exec Control OUTPUT4 statement(s) in this run
$ Finally, make sure that the real numbers above have enough decimal places to
$ accurately represent the quantities. Otherwise replace them before using them
```

OUTPUT FOR CRAIG-BAMP	TON DOF	1 OF	15 (bo	undary acceler	ration for gri	d 3101 comp	onent 1)
GRID C	OORD T1			D I S P L A bal coordinate T3	e system at ea		R3
	SYS						
3101	19 0.0	0.0		0.0	0.0	0.0 -5.397917E-07	0.0
3102	19 -8.996528E	E-06 0.0		0.0	0.0	-5.397917E-07	0.0
OUTPUT FOR CRAIG-BAM	PTON DOF	2 OF	15 (b	oundary accele	eration for gr	rid 3101 com	ponent 2)
			СВ	DISPLA	CEMENT	ОТМ	
				bal coordinate			
			Т2	Т3	R1	R2	R3
	SYS 19 0 0	0 0		0.0	0 0	0 0	0.0
3102	19 0.0	-8.99	6528E-06	0.0	5.397917E-07	7 0.0	0.0
OUTPUT FOR CRAIG-BAM	PTON DOF	3 OF	15 (b	oundary accele	eration for gr	rid 3101 com	ponent 3)
			СВ	DISPLA	CEMENT	ОТМ	
				bal coordinate			
j	OORD T1 SYS			Т3		R2	R3
		0.0		0.0	0.0	0.0	
3102	19 0.0	0.0		-8.636667E-07	0.0	0.0	0.0
OUTPUT FOR CRAIG-BAM	PTON DOF	4 OF	15 (b	oundary accele	eration for gr	rid 3101 com	ponent 4)
			СВ	DISPLA	CEMENT	ОТМ	
				bal coordinate			
	OORD T1 SYS					R2	R3
	19 0.0	0.0		0.0	0.0	0.0	0.0
3102	19 0.0	2.24	9132E-04	0.0	-1.349479E-05	5 0.0	0.0
OUTPUT FOR CRAIG-BAM	PTON DOF	5 OF	15 (b	oundary accele	eration for gr	rid 3101 com	ponent 5)
			СВ		C E M E N T		
antn a	00DD m1		_	bal coordinate	_		r. J
	OORD T1 SYS		T2	Т3	R1	R2	R3
3101	19 0.0	0.0		0.0	0.0	0.0	0.0
3102	19 -2.249132E	E-04 0.0		0.0	0.0	-1.349479E-05	0.0

OUTPUT I	FOR CRAIG-E	BAMPTON	DOF	6 OF	15 (b	oundary accele	ration for gr	id 3101 comp	oonent 6)
	GRID	COORD	т1		_	D I S P L A bal coordinate T3	-		R3
	3101 3102	SYS 19 19		0.0		0.0	0.0	0.0	0.0
OUTPUT I	FOR CRAIG-E	BAMPTON	DOF	7 OF	15 (m	odal accelerat	ion for mode	1)	
	GRID	COORD SYS			(in glo T2	DISPLA bal coordinate T3	system at ea R1	ch grid) R2	R3
	3101 3102	19 19 -	0.0 -8.83713	0.0 0E-06 0.0		0.0	0.0	0.0 -5.302278E-07	0.0
OUTPUT I	FOR CRAIG-E	BAMPTON	DOF	8 OF	15 (m C B	odal accelerat			
	CDID	GOODD	Т1		(in glo	bal coordinate			R3
	GRID	COORD SYS			Т2		R1		
	3101 3102	19 19		-8.83	7130E-06	0.0	0.0 5.302278E-07	0.0	0.0
OUTPUT I	FOR CRAIG-E	BAMPTON	DOF	9 OF	15 (m	odal accelerat	ion for mode	3)	
						DISPLA bal coordinate			
	GRID	COORD SYS	Т1		Т2		R1	R2	R3
	3101 3102	19 19				0.0 -8.483644E-07		0.0	0.0
OUTPUT I	FOR CRAIG-E	BAMPTON	DOF	10 OF	15 (b	oundary displa	cement for gr	id 3101 comp	onent 1)
	GRID	COORD SYS	Т1		C B (in glo	D I S P L A bal coordinate T3	C E M E N T system at ea R1		R3
	3101 3102	19		0E+00 0.0 0E+00 0.0		0.0	0.0	0.0	0.0

OUTPUT	FOR CRAIG-	-BAMPTON	DOF	1	.1 OF	15 (k	ooundary displa	acement for gr	rid 3101 co	mponent	2)
	GRID	COORD		T1		-	DISPLA bbal coordinate T3				R3
	3101 3102	SYS 19 19	0.0			00000E+00 00000E+00		0.0	0.0	0.0	
OUTPUT	FOR CRAIG-	-BAMPTON	DOF	1	.2 OF	15 (k	ooundary displa	acement for gr	rid 3101 co	mponent	3)
						СВ	DISPLA	CEMENT	ОТМ		
						(in glo	bal coordinate	e system at ea			
	GRID	COORD SYS		T1		Т2	Т3	R1	R2		R3
	3101		0.0		0.0		1.000000E+00	0.0	0.0	0.0	
	3102	19	0.0		0.0		1.000000E+00	0.0	0.0	0.0	
OUTPUT	FOR CRAIG-	-BAMPTON	DOF	1	.3 OF	15 (k	ooundary displa	acement for gr	rid 3101 co	mponent	4)
						C B (in glo	DISPLA bbal coordinate	CEMENT e system at ea			
	GRID	COORD SYS		T1		Т2	Т3	R1	R2		R3
	3101 3102		0.0		0.0 -2.50	0000E+01		1.000000E+00 1.000000E+00		0.0	
OUTPUT	FOR CRAIG-	-BAMPTON	DOF	1	.4 OF	15 (k	ooundary displa	acement for gr	rid 3101 co	mponent	5)
							DISPLA				
	GRID	COORD		Т1		(in glo	obal coordinate T3	e system at ea R1	ich grid) R2		R3
	GRID	SYS				12	13	1(1	102		103
	3101		0.0		0.0		0.0	0.0	1.00000E+0		
	3102	19	2.50	0000E+0	0.0		0.0	0.0	1.000000E+0	0.0	
OUTPUT	FOR CRAIG-	-BAMPTON	DOF	1	.5 OF	15 (k	ooundary displa	acement for gr	rid 3101 co	mponent	6)
						C B (in glo	DISPLA bbal coordinate	CEMENT e system at ea			
	GRID	COORD SYS		T1		Т2	Т3	R1	R2		R3
	3101	19	0.0		0.0		0.0	0.0	0.0		0000E+00
	3102	19	0.0		0.0		0.0	0.0	0.0	1.00	0000E+00

CB PROBLEM - SUBSTR 1, GENERATE CB MODEL SUBSTR GLOBAL IS COORD SYSTEM 19 V VEC FOR BAR IS X19 DIR WHICH IS OA MODEL BASIC X0

EFFECTIVE MODAL MASSES OR WEIGHTS (in coordinate system 0)

Units are same as units for mass input in the Bulk Data Deck Reference point is the basic coordinate system origin

MODE	CYCLES	T1	T2	Т3	R1	R2	R3
NUM							
1	5.306188E+01	0.00000E+00	0.00000E+00	4.000000E+02	0.00000E+00	2.500000E+05	0.00000E+00
2	5.306188E+01	0.00000E+00	4.000000E+02	0.00000E+00	0.00000E+00	0.00000E+00	2.500000E+05
3	1.712565E+02	4.000000E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
S	um all modes:	4.000000E+02	4.000000E+02	4.000000E+02	0.00000E+00	2.500000E+05	2.500000E+05
Tota	l model mass:	4.000000E+02	4.000000E+02	4.000000E+02	0.00000E+00	2.500000E+05	2.500000E+05
Modes % of	total mass*:	100.00%	100.00%	100.00%		100.00%	100.00%

^{*}If all modes are calculated the % of total mass should be 100% of the free mass (i.e. not counting mass at constrained DOF's).

Percentages are only printed for components that have finite model mass.

1.5 Substructure 2 – Generate CB model

(input deck CB1d-SUBSTR-2-CB-MODEL.DAT)

MYSTRAN Version 6.13 May 10 2010 by Dr Bill Case

>> MYSTRAN BEGIN : 5/11/2010 at 12:10:51.890 The input file is CB1d-SUBSTR-2-CB-MODEL.DAT

>> LINK 0 BEGIN

ID CB1, RUN (d) SOL 31 \$ OUTPUT4 KRRGN, MRRGN, , , //-1/21 \$ TIME 7 CEND TITLE = CB PROBLEM - SUBSTR 2, GENERATE CB MODEL SUBTI = SUBSTR GLOBAL IS COORD SYSTEM 29 = BARS 3201-3 V IS OA MODEL BASIC ZO, BARS 3204-6 V IS OA MODEL BASIC YO LABEL ECHO = UNSORT METHOD = 2DISP = ALL MEFFMASS = ALL BEGIN BULK \$ 2 EIGR MGIV 1 4 +E1 +E1 MASS \$ CORD2R 291 0. 0. 0. 1. 0. 0. +C29 +C29 0. 1. 0. \$ CORD2R 292 0. 0. 0. 0. 1. 0. +C29 +C29 0. 0. 1. \$ CORD2R 293 0. 0. 0. 0. 0. 1. +C29 +C29 1. 0. 0. \$ 0. 0. 0. 0. 0. 1. +C29 CORD2R 294 +C29 1. 0. 0. \$ 50. GRID 3201 0. 0. 291 GRID 3202 0. 0. 0. 292 GRID 3203 0. 0. 50. 293 GRID 3204 0. 50. 0. 294 \$ 0. CBAR 3201 3201 3201 3202 1. 0. CBAR 3202 3201 3202 3203 0. 0. 1. CBAR 3203 3201 3203 3201 0. 1. 0. \$

CBAR	3204	3201	3201	3204	0.	0.	1.						
CBAR	3205	3201	3202	3204	0.	1.	0.						
CBAR	3206	3201	3203	3204	1.	0.	0.						
\$													
PBAR	3201	302	1.	20.	20.	40.							
\$													
MAT1	302	30.+6		.3									
*INFOR	:MATION	MAT1 ENT	ΓRΥ	302 HAD	FIELD	FOR G	BLANK.	MYSTRAN	CALCULATED	G	=	1.153846E+07	
\$													
CONM2	3201	3204		600.									
\$													
SUPORT	3201	123	3202	123	3203	123							
\$													
PARAM	CUSERIN	200	290	20001	200								
PARAM	GRDPNT	0											
PARAM	WTMASS	.00259	91										
\$													
ENDDATA													

OUTPUT FROM GRID POINT WEIGHT GENERATOR REFERENCE POINT IS BASIC COORD SYSTEM ORIGIN

Total mass = 6.000000E+02

C.G. location: 0.000000E+00 5.000000E+01 0.000000E+00

Υ

X

```
(relative to reference point in basic coordinate system)
     6x6 Rigid body mass matrix - about reference point in basic coordinate system
***
* 6.000000E+02 0.000000E+00 0.000000E+00 * 0.000000E+00 0.000000E+00 -3.000000E+04 *
* 0.000000E+00 6.000000E+02 0.000000E+00 * 0.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 0.000000E+00 6.000000E+02 * 3.000000E+04 0.000000E+00 0.000000E+00
* 0.000000E+00 0.000000E+00 0.000000E+00 * 1.500000E+06 0.000000E+00 0.000000E+00 *
* 0.000000E+00 0.000000E+00 0.000000E+00 * 0.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 0.000000E+00 0.000000E+00 * 0.000000E+00 0.000000E+00 1.500000E+06 *
            M.O.I. matrix - about reference point in basic coordinate system
                    * 1.500000E+06 0.000000E+00 0.000000E+00 *
                    * 0.000000E+00 0.000000E+00 0.000000E+00 *
                    * 0.000000E+00 0.000000E+00 1.500000E+06 *
                    +++
          M.O.I. matrix - about above c.q. location in basic coordinate system
                    * 0.000000E+00 0.000000E+00 0.000000E+00 *
                    * 0.000000E+00 0.000000E+00 0.000000E+00 *
                    * 0.000000E+00 0.000000E+00 0.000000E+00 *
                    +++
             M.O.I. matrix - about above c.g. location in principal directions
                    * 0.000000E+00 0.000000E+00 0.000000E+00 *
                    * 0.000000E+00 0.000000E+00 0.000000E+00 *
                    * 0.000000E+00 0.000000E+00 0.000000E+00 *
                    ***
             Transformation from basic coordinates to principal directions
                    * 1.000000E+00 0.000000E+00 0.000000E+00 *
                    * 0.000000E+00 1.000000E+00 0.000000E+00 *
                    * 0.000000E+00 0.000000E+00 1.000000E+00 *
```

* * *

*INFORMATION: THE FOLLOWING 2 MATRICES HAVE BEEN REQUESTED TO BE WRITTEN TO 1 OUTPUT4 FILES IN THE ORDER LISTED BELOW:

REAL EIGENVALUES

RADIANS

2.865191E+02

3.835096E+02

8.541467E+02

MODE EXTRACTION

1

2

NUMBER ORDER

1

2

EIGENVALUE

8.209320E+04

1.470796E+05

7.295666E+05

OUTPUT4 file on unit 21 has been created as: CB1d-SUBSTR-2-CB-MODEL.OP1 and will contain the matrices:

(1) KRRGN : this is MYSTRAN matrix KXX

(2) MRRGN : this is MYSTRAN matrix MXX

E I G E N V A	LUE	A N	A L	Y S	I	S	S	U M	M	A	R	Y	(MGI	V)						
NUMBER OF	EIGENVA	LUES	EXT	RAC	TEL								3								
LARGEST (FF-DIAGC	NAL	GENE	RAL	IZE	ED M.	ASS	TE	RM			2.5E-	-11	(Vecs	renormed	to	1.0	for	gen	masses)
	MODE PA	IR .							•	•			3								
								•	•	•			1								
NUMBER OF TERMS FAI									•	٠			3								

GENERALIZED

MASS

1.000000E+00

1.000000E+00

1.000000E+00

GENERALIZED

STIFFNESS

8.209320E+04

1.470796E+05

7.295666E+05

CYCLES

4.560093E+01

6.103745E+01

1.359417E+02

```
$BULK DATA ENTRIES FOR CUSERIN ELEM
      (to be used to define a substructure in an overall systems model)
$ The GRID and CUSERIN entries below are for the R -set from file:
S CB1d-SUBSTR-2-CB-MODEL.F06
$ run on 5/11/2010 at 12:10:51.890
$--1---|--2--|--3---|--4---|--5---|--6---|--7---|--8---|--9---|-10---|
       3201
               "CID0" 50.0
                              0.00
                                     0.00
                                             291
GRID
GRID
       3202
               "CIDO" 0.00
                              0.00
                                     0.00
                                             292
GRID
       3203
               "CID0" 0.00
                              0.00
                                     50.0
                                             293
CORD2R 291
               "CID0" 0.00
                              0.00
                                     0.00
                                             1.00
                                                     0.00
                                                             0.00
       0.00
               1.00
                      0.00
CORD2R 292
               "CID0" 0.
                                                             0.00
                              0.
                                     0.
                                             1.00
                                                     0.00
       0.00
               1.00
                      0.00
CORD2R 293
               "CID0" 0.
                              0.
                                     0.
                                             0.00
                                                     0.00
                                                            1.00
       1.00
               0.00
                      0.00
SPOINT 20001
               THRU
                      20003
CUSERIN 200
               290
                      3
                              3
                                      "CIDO"
       3201
               123
                      3202
                              123
                                      3203
                                             123
PUSERIN 290
               200
                      <-"mat 1 name"-><-"mat 2 name"-><-"mat 3 name"->
$ NOTES:
$ ----
$ "CID0"
          is to be replaced with the coord sys ID that is used to define the
$ basic coord sys of this USERIN elem rel to the system model basic coord
$ system in the system model run
$ If the above grid entries are used, and are different than the corresponding
$ grids in the system model, RBE2's should be included to connect them to the
$ corresponding grids in the system model.
$ **NOTE: If RBE2's are NOT used, it is imperative that the grids in the
$ system model that this USERIN element is connected to have the same global
$ coordinate system as was used in generating this substructure.
$ name 1 is to be replaced with the stiffness matrix name:
        For CB model generation, KXX or its alias, KRRGN
$
$
        For statics, KGG, KAA, etc
$ name 2 is to be replaced with the mass matrix name (if one is input):
        For CB model generation, MXX or its alias, MRRGN
$
$
        For statics, MGG, MAA, etc
$ name 3 is to be replaced with:
        For CB model generation, RBMO (not required)
$
        For statics, load matrix PG, PA, etc
$ The matrices whose names are "name i" must have been requested to be
$ written to binary files via Exec Control OUTPUT4 statement(s) in this run
$ Finally, make sure that the real numbers above have enough decimal places to
$ accurately represent the quantities. Otherwise replace them before using them
```

OUTPUT FOR CRAIG-BAMPTON DOF 1 OF 21 (boundary acceleration for grid 3201 component 1)

CB PROBLEM - SUBSTR 2, GENERATE CB MODEL

SUBSTR GLOBAL IS COORD SYSTEM 29

BARS 3201-3 V IS OA MODEL BASIC ZO, BARS 3204-6 V IS OA MODEL BASIC YO

21110 3201 3 V 18	011 110222 .	21.010 20, 21	110 5201 0	, 15 011 110222 211			
				CB DISPL	л С в м в м т	ОТМ	
					-	-	
	~~~~	1		n global coordina	_	_	
GRID	COORD	T1	Т2	Т3	R1	R2	R3
	SYS						
3201	291 0		0.0	0.0	3.863993E-10		
3202	292 0	. 0	0.0	0.0		1.606673E-08	
3203	293 0	. 0	0.0	0.0	2.034509E-08	-8.242526E-09	-9.579740E-08
3204	294 8	.954192E-06	2.284642E	E-06 2.155154E-0	06 5.610407E-08	-1.791753E-08	-1.976135E-07
OUTPUT FOR CRAIG	-BAMDTON DO	<b>⊃</b> ₽ 2	OF 2	1 (boundary acce	leration for ari	id 3201 comm	onent 2)
OUTFOI FOR CRAIG	DAME TON DO	<i>J</i> r 2	OF 2	i (boundary acce	reraction for gri	10 3201 COME	Official 2)
						O E M	
				C B D I S P L	-	OTM	
				n global coordina	_		
GRID	COORD	T1	Т2	Т3	R1	R2	R3
	SYS						
3201	291 0	. 0	0.0	0.0	-2.270768E-11	7.125241E-11	-3.715046E-10
3202	292 0	. 0	0.0	0.0	2.636055E-10	-2.636055E-10	0.0
3203	293 0	. 0	0.0	0.0	-7.125241E-11	2.270768E-11	3.715046E-10
3204				E-08 -2.916436E-0			
3201	271 2	. 9101301 00	1.1713301	2.7101301 0	70 0.0300701 10	0.0	0.0300701 10
	DAMDTON D	<b>⊃</b> ₽ 2	OF 3	)1 (boundary aggo	aloration for ari	id 2201 gomm	onont 2)
OUTPUT FOR CRAIG	-BAMPTON DO	OF 3	OF 2	21 (boundary acce	eleration for gri	id 3201 comp	ponent 3)
OUTPUT FOR CRAIG	-BAMPTON DO	OF 3					ponent 3)
OUTPUT FOR CRAIG	-BAMPTON DO	OF 3		C B D I S P L	ACEMENT	ОТМ	ponent 3)
			(in	CB DISPL nglobal coordina	ACEMENT ate system at eac	OTM ch grid)	
OUTPUT FOR CRAIG	COORD	DF 3		C B D I S P L	ACEMENT	ОТМ	ponent 3)
GRID	COORD SYS	Т1	(in T2	CB DISPL global coordina T3	ACEMENT ate system at eac R1	O T M ch grid) R2	R3
	COORD	Т1	(in	CB DISPL nglobal coordina T3	A C E M E N T ate system at eac R1 -2.109567E-10	O T M ch grid) R2 5.870611E-09	R3 -4.005508E-08
GRID	COORD SYS	T1 .0	(in T2	CB DISPL nglobal coordina T3	ACEMENT ate system at eac R1	O T M ch grid) R2 5.870611E-09	R3 -4.005508E-08
GRID 3201 3202	COORD SYS 291 0	T1 .0 .0	(ir. T2	CB DISPL nglobal coordina T3	A C E M E N T ate system at eac R1 -2.109567E-10 7.696471E-08	O T M ch grid) R2 5.870611E-09 -1.315541E-08	R3 -4.005508E-08 -2.058377E-10
GRID 3201 3202 3203	COORD SYS 291 0 292 0 293 0	T1 .0 .0	(in T2	CB DISPL n global coordina T3 0.0 0.0 0.0	A C E M E N T ate system at eac R1 -2.109567E-10 7.696471E-08 -1.839181E-08	O T M ch grid) R2 5.870611E-09 -1.315541E-08 7.560184E-09	R3 -4.005508E-08 -2.058377E-10 8.689709E-08
GRID 3201 3202	COORD SYS 291 0 292 0 293 0	T1 .0 .0	(in T2	CB DISPL nglobal coordina T3 0.0 0.0	A C E M E N T ate system at eac R1 -2.109567E-10 7.696471E-08 -1.839181E-08	O T M ch grid) R2 5.870611E-09 -1.315541E-08 7.560184E-09	R3 -4.005508E-08 -2.058377E-10 8.689709E-08
GRID 3201 3202 3203	COORD SYS 291 0 292 0 293 0	T1 .0 .0	(in T2	CB DISPL n global coordina T3 0.0 0.0 0.0	A C E M E N T ate system at eac R1 -2.109567E-10 7.696471E-08 -1.839181E-08	O T M ch grid) R2 5.870611E-09 -1.315541E-08 7.560184E-09	R3 -4.005508E-08 -2.058377E-10 8.689709E-08
GRID 3201 3202 3203 3204	COORD SYS 291 0 292 0 293 0 294 -8	T1 .0 .0 .0 .163419E-06	(in T2  0.0  0.0  0.0  -2.027860E	CB DISPL n global coordina T3 0.0 0.0 0.0 0.0	A C E M E N T ate system at eac R1 -2.109567E-10 7.696471E-08 -1.839181E-08 06 -4.751698E-08	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07
GRID 3201 3202 3203	COORD SYS 291 0 292 0 293 0 294 -8	T1 .0 .0 .0 .163419E-06	(in T2  0.0  0.0  0.0  -2.027860E	CB DISPL n global coordina T3 0.0 0.0 0.0	A C E M E N T ate system at eac R1 -2.109567E-10 7.696471E-08 -1.839181E-08 06 -4.751698E-08	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07
GRID 3201 3202 3203 3204	COORD SYS 291 0 292 0 293 0 294 -8	T1 .0 .0 .0 .163419E-06	(in T2  0.0 0.0 0.0 0.0 -2.027860E	CB DISPL a global coordina T3  0.0 0.0 0.0 0.0 5-06 -1.803074E-0	A C E M E N T  ate system at eac  R1  -2.109567E-10  7.696471E-08  -1.839181E-08 06 -4.751698E-08	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07
GRID 3201 3202 3203 3204	COORD SYS 291 0 292 0 293 0 294 -8	T1 .0 .0 .0 .163419E-06	(in T2  0.0 0.0 0.0 0.0 -2.027860E	C B D I S P L n global coordina T3  0.0 0.0 0.0 0.0 5-06 -1.803074E-0	A C E M E N T  ate system at eac  R1  -2.109567E-10  7.696471E-08  -1.839181E-08 06 -4.751698E-08  eleration for gri	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08  id 3202 comp	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07
GRID  3201 3202 3203 3204  OUTPUT FOR CRAIG	COORD SYS 291 0 292 0 293 0 294 -8	T1 .0 .0 .0 .163419E-06 DF 4	(in T2  0.0 0.0 0.0 -2.027860E  OF 2	C B D I S P L n global coordina T3  0.0 0.0 0.0 0.0 5-06 -1.803074E-0 21 (boundary acce	A C E M E N T  ate system at eac  R1  -2.109567E-10  7.696471E-08  -1.839181E-08  06 -4.751698E-08  eleration for gradue at each at ea	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08  id 3202 comp	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07
GRID 3201 3202 3203 3204	COORD SYS 291 0 292 0 293 0 294 -8 -BAMPTON DO	T1 .0 .0 .0 .163419E-06	(in T2  0.0 0.0 0.0 0.0 -2.027860E	C B D I S P L n global coordina T3  0.0 0.0 0.0 0.0 5-06 -1.803074E-0	A C E M E N T  ate system at eac  R1  -2.109567E-10  7.696471E-08  -1.839181E-08 06 -4.751698E-08  eleration for gri	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08  id 3202 comp	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07
GRID  3201 3202 3203 3204  OUTPUT FOR CRAIG	COORD SYS 291 0 292 0 293 0 294 -8 -BAMPTON DO COORD SYS	T1 .0 .0 .0 .0 .163419E-06 DF 4	(in T2  0.0 0.0 0.0 -2.027860E  OF 2 (in T2	C B D I S P L n global coordina T3  0.0 0.0 0.0 0.0 C-06 -1.803074E-0 21 (boundary acce C B D I S P L n global coordina T3	A C E M E N T  ate system at eac  R1  -2.109567E-10  7.696471E-08  -1.839181E-08  06 -4.751698E-08  eleration for gradue at each at ea	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08  id 3202 comp	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07
GRID  3201 3202 3203 3204  OUTPUT FOR CRAIG	COORD SYS 291 0 292 0 293 0 294 -8 -BAMPTON DO	T1 .0 .0 .0 .0 .163419E-06 DF 4	(in T2  0.0 0.0 0.0 -2.027860E  OF 2	C B D I S P L n global coordina T3  0.0 0.0 0.0 0.0 5-06 -1.803074E-0 21 (boundary acce C B D I S P L n global coordina T3	A C E M E N T  ate system at eac  R1  -2.109567E-10  7.696471E-08  -1.839181E-08  06 -4.751698E-08  eleration for gradue at each at ea	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08  id 3202 comp	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07
GRID  3201 3202 3203 3204  OUTPUT FOR CRAIG	COORD SYS 291 0 292 0 293 0 294 -8 -BAMPTON DO COORD SYS 291 0	T1 .0 .0 .0 .0 .163419E-06 DF 4	(in T2  0.0 0.0 0.0 -2.027860E  OF 2 (in T2	C B D I S P L n global coordina T3  0.0 0.0 0.0 0.0 C-06 -1.803074E-0 C1 (boundary acce C B D I S P L n global coordina T3  0.0	A C E M E N T  ate system at eac  R1  -2.109567E-10  7.696471E-08  -1.839181E-08  06 -4.751698E-08  eleration for gri  A C E M E N T  ate system at eac  R1	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08  id 3202 comp O T M ch grid) R2  1.882026E-09	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07  conent 1)  R3 -8.528800E-09
GRID  3201 3202 3203 3204  OUTPUT FOR CRAIG  GRID  3201 3202	COORD SYS 291 0 292 0 293 0 294 -8 -BAMPTON DO  COORD SYS 291 0 292 0	T1 .0 .0 .0 .163419E-06 DF 4 T1 .0	(in T2  0.0 0.0 0.0 -2.027860E  OF 2 (in T2	C B D I S P L n global coordina T3  0.0 0.0 0.0 0.0 C-06 -1.803074E-0 21 (boundary acce C B D I S P L n global coordina T3  0.0 0.0	A C E M E N T ate system at eac R1  -2.109567E-10 7.696471E-08 -1.839181E-08 06 -4.751698E-08 eleration for gra A C E M E N T ate system at eac R1  -6.596340E-10 2.647710E-09	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08  id 3202 comp O T M ch grid) R2  1.882026E-09 -7.048835E-09	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07  conent 1)  R3 -8.528800E-09 1.419727E-11
GRID  3201 3202 3203 3204  OUTPUT FOR CRAIG  GRID  3201	COORD SYS 291 0 292 0 293 0 294 -8  -BAMPTON DO  COORD SYS 291 0 292 0 293 0	T1 .0 .0 .0 .163419E-06 DF 4 T1 .0 .0	(in T2  0.0 0.0 0.0 -2.027860E  OF 2  (in T2  0.0 0.0 0.0	C B D I S P L n global coordina T3  0.0 0.0 0.0 0.0 C-06 -1.803074E-0 C1 (boundary acce C B D I S P L n global coordina T3  0.0	A C E M E N T ate system at eac R1  -2.109567E-10 7.696471E-08 -1.839181E-08 06 -4.751698E-08 eleration for gri A C E M E N T ate system at eac R1  -6.596340E-10 2.647710E-09 -1.018400E-09	O T M ch grid) R2  5.870611E-09 -1.315541E-08 7.560184E-09 1.676144E-08  id 3202 comp O T M ch grid) R2  1.882026E-09 -7.048835E-09 1.527349E-10	R3 -4.005508E-08 -2.058377E-10 8.689709E-08 1.798959E-07  conent 1)  R3 -8.528800E-09 1.419727E-11 5.297961E-09

OUTPUT FOR CRAIG-	BAMPTON DOF	5 OF 21 (	boundary accel	leration for gri	d 3202 comp	onent 2)
		СВ	BDISPLA	ACEMENT	ОТМ	
		(in gl	obal coordinat	te system at eac	h grid)	
GRID	COORD T1 SYS	Т2	Т3	R1	R2	R3
3201	291 0.0	0.0	0.0	-1.527349E-10	1.018400E-09	-5.297961E-09
3202	292 0.0	0.0		7.048835E-09		
3203	293 0.0	0.0	0.0	-1.882026E-09		
3204	294 -7.616085E-	-07 -2.448662E-07				
OUTPUT FOR CRAIG-	BAMPTON DOF	6 OF 21 (	boundary accel	leration for gri	d 3202 comp	onent 3)
		C E	BDISPLA	ACEMENT	ОТМ	
				te system at eac		
GRID	COORD T1 SYS	Т2		R1	R2	R3
3201	291 0.0	0.0	0.0	-9.370576E-09	4.100224E-08	-1.710049E-07
3202	292 0.0	0.0	0.0	1.175621E-07	-1.175621E-07	0.0
3203	293 0.0	0.0	0.0	-4.100224E-08	9.370576E-09	1.710049E-07
3204		-05 -7.011891E-06				3.129434E-07
OUTPUT FOR CRAIG-	BAMPTON DOF	7 OF 21 (	boundary accel	leration for gri	d 3203 comp	onent 1)
		,	1			,
		C E	BDISPLA	ACEMENT	ОТМ	
		(in gl	obal coordinat	te system at eac	h grid)	
GRID	COORD T1 SYS	T2	Т3	R1	R2	R3
3201	291 0.0	0.0	0.0	-2.270768E-11	7.125241E-11	-3.715046E-10
3202	292 0.0	0.0	0.0	2.636055E-10	-2.636055E-10	0.0
3203	293 0.0	0.0	0.0	-7.125241E-11	2.270768E-11	3.715046E-10
3204	294 -2.916436E-	-08 -1.191538E-08	-2.916436E-08	B -6.656870E-10	0.0	6.656870E-10
OUTPUT FOR CRAIG-	BAMPTON DOF	8 OF 21 (	boundary accel	leration for gri	d 3203 comp	onent 2)
OUTFOIL FOR CHAILO	Divili 1010 DOI	0 01 21 (	Dodinadi y doces	reracton for gri	a 3203 comp	oncirc 2,
		C B	BDISPLA	ACEMENT	ОТМ	
		(in gl	obal coordinat	te system at eac	h grid)	
GRID	COORD T1 SYS	T2	Т3	R1	R2	R3
3201	291 0.0	0.0	0.0	0 242E26E 00	-2.034509E-08	0 E707/0E 00
3201	291 0.0	0.0	0.0		-2.034509E-08	

0.0

0.0

3202

3203

3204

292 0.0

293 0.0

0.0

0.0

294 2.155154E-06 2.284642E-06 8.954192E-06 1.976135E-07 1.791753E-08 -5.610407E-08

-1.606673E-08 8.427715E-08 -2.200350E-10

6.960263E-09 -3.863993E-10 -4.572454E-08

OUTPUT FOR CRAIG-BAMPTON	DOF 9	OF 21 (b	oundary accel	eration for gri	ld 3203 comp	onent 3)
		СВ	DISPLA	CEMENT	ОТМ	
		-		e system at eac	-	
GRID COORI	T1	Т2	Т3	R1	R2	R3
SYS						
	0.0	0.0	0.0	-7.560184E-09		
	0.0	0.0		1.315541E-08		
	0.0	0.0	0.0		2.109567E-10	
3204 294	-1.803074E-06	-2.027860E-06	-8.163419E-06	-1.798959E-07	-1.676144E-08	4.751698E-08
OUTPUT FOR CRAIG-BAMPTON	N DOF 10	OF 21 (m	nodal accelera	tion for mode	1)	
		СВ		CEMENT	O T M	
		-		e system at eac		
GRID COORI	) T1	T2	T3	R1	R2	R3
SYS			13		112	110
3201 291	0.0	0.0	0.0	-4.832001E-09	1.815683E-08	-8.362304E-08
3202 292	0.0	0.0		5.836064E-08	-5.836064E-08	0.0
	0.0	0.0	0.0	-1.815683E-08	4.832001E-09	8.362304E-08
3204 294	-6.556822E-06	-3.076394E-06	-6.556822E-06	-1.515262E-07	0.0	1.515262E-07
OUTPUT FOR CRAIG-BAMPTON	J DOF 11	OF 21 (m	nodal accelera	tion for mode	2)	
				CEMENT		
				e system at eac	ch grid)	
GRID COORI SYS	) T1	Т2	Т3	R1	R2	R3
3201 291	0.0	0.0	0.0	4.455374E-09	-7.590815E-09	2.839736E-08
	0.0	0.0	0.0		3.868356E-08	
	0.0	0.0	0.0	-7.590815E-09		
3204 294	-3.855877E-06	0.0	3.855877E-06	8.025298E-08	2.032281E-08	8.025298E-08
OUTPUT FOR CRAIG-BAMPTON	I DOF 12	OF 21 (m	nodal accelerat	tion for mode	3)	
		СВ	DISPLA	CEMENT	ОТМ	
		(in glo	bal coordinate	e system at eac	ch grid)	
GRID COORI	) T1	Т2	Т3	R1	R2	R3
SYS	0 0	0 0	0 0	0 5620125 10	E EE00E0= 00	0 0000000
3201 291		0.0	0.0	9.763913E-10		
3202 292 3203 293	0.0	0.0	0.0		4.812417E-09 -9.763913E-10	
	0.0 2.447762E.07	0.0 -1.043400E-06	0.0 2.447762E.07			-2.829765E-09 -2.246170E-10
3404 494	Z.44//02E-U/	-1.0424005-00	Z.44//0ZE-U/	7.7401/0F-T0	0.0	-7.740T/OF-TO

OUTPUT FOR CRAIG-BAMPTON	DOF 13	3 OF 21 (	boundary displa	acement for gri	d 3201 comp	onent 1)
		СВ	DISPLA	CEMENT	ОТМ	
		(in gl	obal coordinate	e system at eac	h grid)	
GRID COORD SYS	Т1	Т2	Т3	R1	R2	R3
	1.000000E+00	) () ()	0.0	0.0	2.000000E-02	0.0
3202 292	0.0	0.0	0.0	2.000000E-02		0.0
3203 293	0.0	0.0	0.0	0.0	0.0	2.000000E-02
	-1.000000E+00	) -2.680920E-16	-2.606869E-16	0.0	0.0	2.000000E-02
OUTPUT FOR CRAIG-BAMPTON	DOF 14	1 OF 21 (	boundary displa	acement for gri	d 3201 comp	onent 2)
		СВ	DISPLA	CEMENT	ОТМ	
				e system at eac		
GRID COORD	T1	T2	Т3	R1	R2	R3
SYS						
3201 291		1.000000E+00		-2.085837E-02		
3202 292	0.0	0.0		-5.875979E-05		
3203 293	0.0	0.0		-4.767823E-05		
3204 294	2.636149E-03	3 -5.319149E-05	2.636149E-03	-1.052564E-03	-1.000000E-02	1.052564E-03
OUTPUT FOR CRAIG-BAMPTON	DOF 15	5 OF 21 (	boundary displa	acement for gri	d 3201 comp	onent 3)
OUTPUT FOR CRAIG-BAMPTON	DOF 15	5 OF 21 (		acement for gri		onent 3)
OUTPUT FOR CRAIG-BAMPTON	DOF 15	СВ	DISPLA		ОТМ	onent 3)
OUTPUT FOR CRAIG-BAMPTON  GRID COORD  SYS		СВ	DISPLA	CEMENT	ОТМ	onent 3)
GRID COORD	Т1	C B (in gl	D I S P L A obal coordinate T3	CEMENT e system at eac	O T M h grid) R2	R3
GRID COORD SYS 3201 291 3202 292	T1	C B (in gl T2	D I S P L A obal coordinate T3  1.000000E+00	C E M E N T e system at eac R1 -4.742082E-03 -1.150011E-02	O T M h grid) R2 5.577378E-03 -1.588240E-04	R3 2.256943E-03 2.304165E-03
GRID COORD SYS 3201 291 3202 292 3203 293	T1 0.0 0.0 0.0	C B (in gl T2	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0	C E M E N T e system at eac R1 -4.742082E-03 -1.150011E-02 2.669116E-04	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03	R3 2.256943E-03 2.304165E-03 -8.894334E-03
GRID COORD SYS 3201 291 3202 292 3203 293	T1 0.0 0.0 0.0	C B (in gl T2	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0	C E M E N T e system at eac R1 -4.742082E-03 -1.150011E-02 2.669116E-04	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03	R3 2.256943E-03 2.304165E-03 -8.894334E-03
GRID COORD SYS 3201 291 3202 292 3203 293 3204 294	T1 0.0 0.0 0.0 0.0 9.192786E-01	C B (in gl T2  0.0 0.0 0.0 0.0 -1.447398E-02	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0 -1.619859E-02	C E M E N T e system at eac R1 -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03	R3 2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02
GRID COORD SYS 3201 291 3202 292 3203 293	T1 0.0 0.0 0.0 0.0 9.192786E-01	C B (in gl T2  0.0 0.0 0.0 0.0 -1.447398E-02	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0 -1.619859E-02	C E M E N T e system at eac R1 -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03	R3 2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02
GRID COORD SYS 3201 291 3202 292 3203 293 3204 294	T1 0.0 0.0 0.0 0.0 9.192786E-01	C B (in gl T2  0.0 0.0 0.0 0.0 -1.447398E-02	D I S P L A obal coordinate	C E M E N T e system at eac R1 -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03	R3 2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02
GRID COORD SYS 3201 291 3202 292 3203 293 3204 294	T1 0.0 0.0 0.0 0.0 9.192786E-01	C B (in gl T2)  0.0 0.0 0.0 0.0 11.447398E-02	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0 -1.619859E-02  boundary displa	C E M E N T e system at eac R1 -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03 d 3202 comp	R3 2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02
GRID COORD	T1 0.0 0.0 0.0 9.192786E-01 DOF 16	C B (in gl T2)  0.0 0.0 0.0 0.0 11.447398E-02	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0 -1.619859E-02  boundary displa	C E M E N T e system at eac R1  -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04  accement for gri C E M E N T	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03 d 3202 comp	R3 2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02
GRID COORD	T1  0.0 0.0 0.0 9.192786E-01  DOF 16	C B (in gl T2	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0 -1.619859E-02  boundary displa D I S P L A obal coordinate T3	C E M E N T e system at eac R1  -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04  accement for gri C E M E N T e system at eac R1	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03 d 3202 comp O T M h grid) R2	R3  2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02  onent 1)
GRID COORD	T1  0.0 0.0 0.0 9.192786E-01  DOF 16	C B (in gl T2	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0 -1.619859E-02  boundary displa D I S P L A obal coordinate T3  0.0	C E M E N T e system at eac R1  -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04  accement for gri C E M E N T e system at eac R1  1.445243E-02	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03  d 3202 comp O T M h grid) R2 2.192333E-04	R3  2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02  onent 1)  R3  -6.292326E-03
GRID COORD	T1  0.0 0.0 0.0 9.192786E-01  DOF 16  T1  0.0 1.000000E+00	C B (in gl T2	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0 -1.619859E-02  boundary displa D I S P L A obal coordinate T3  0.0 0.0	C E M E N T e system at eac R1  -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04  accement for gri C E M E N T e system at eac R1  1.445243E-02 -1.000642E-04	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03  d 3202 comp O T M h grid) R2 2.192333E-04 -1.155887E-02	R3  2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02  onent 1)  R3  -6.292326E-03 1.230417E-02
GRID COORD SYS 3201 291 3202 292 3203 293 3204 294  OUTPUT FOR CRAIG-BAMPTON  GRID COORD SYS 3201 291 3202 292 3203 293	T1  0.0 0.0 0.0 9.192786E-01  DOF 16	C B (in gl T2	D I S P L A obal coordinate T3  1.000000E+00 0.0 0.0 -1.619859E-02  boundary displa D I S P L A obal coordinate T3  0.0 0.0 0.0	C E M E N T e system at eac R1  -4.742082E-03 -1.150011E-02 2.669116E-04 3.256101E-04  accement for gri C E M E N T e system at eac R1  1.445243E-02 -1.000642E-04	O T M h grid) R2 5.577378E-03 -1.588240E-04 -6.405944E-03 -2.717381E-03  d 3202 comp O T M h grid) R2 2.192333E-04 -1.155887E-02 -5.600453E-03	R3  2.256943E-03 2.304165E-03 -8.894334E-03 -1.373142E-02  onent 1)  R3  -6.292326E-03 1.230417E-02 -3.450652E-04

OUTPUT FOR CRAIG-BAMPTON	DOF 17	OF 21 (b	oundary displa	acement for gri	d 3202 comp	oonent 2)	
		СВ	DISPLA	CEMENT	ОТМ		
		(in glo	bal coordinate	e system at eac	h grid)		
GRID COORI SYS	T1	Т2		R1	R2	R3	
3201 291	0.0	0.0	0.0	5.600453E-03 1.155887E-02 -2.192333E-04	-5.625056E-03	3.450652E-04	
3202 292	0.0	1.000000E+00	0.0	1.155887E-02	1.000642E-04	-1.230417E-02	
3203 293	0.0	0.0	0.0	-2.192333E-04	-1.445243E-02	6.292326E-03	
3204 294		1.452717E-02					
OUTPUT FOR CRAIG-BAMPTON	DOF 18	OF 21 (b	oundary displa	acement for gri	d 3202 comp	ponent 3)	
		-		CEMENT			
				e system at eac			
GRID COORI SYS	) T1	Т2	Т3	R1	R2	R3	
	0.0	0.0	0.0	0.0	-2.00000E-02	2.000000E-02	
3202 292	0.0	0.0	1.000000E+00	-2.000000E-02	2.000000E-02	0.0	
3203 293	0.0	0.0	0.0	-2.000000E-02 2.000000E-02 2.000000E-02	0.0	-2.000000E-02	
3204 294	1.000000E+00	1.000000E+00	1.000000E+00	2.000000E-02	0.0	-2.000000E-02	
OUTPUT FOR CRAIG-BAMPTON DOF 19 OF 21 (boundary displacement for grid 3203 component 1)  C B D I S P L A C E M E N T O T M							
GRID COORI	т1			e system at eac	_		
			ш.3	₽1	ט'ס	D2	
CVC	, 11	T2	Т3	R1	R2	R3	
SYS							
3201 291	0.0	0.0	0.0	-8.583711E-04	4.767823E-05	-2.602008E-03	
3201 291 3202 292	0.0	0.0	0.0	-8.583711E-04	4.767823E-05	-2.602008E-03	
3201       291         3202       292         3203       293	0.0 0.0 1.000000E+00	0.0 0.0 0.0	0.0 0.0 0.0	-8.583711E-04 -5.875979E-05 -4.767823E-05	4.767823E-05 5.875979E-05 2.085837E-02	-2.602008E-03 1.000000E-02 2.602008E-03	
3201       291         3202       292         3203       293	0.0 0.0 1.000000E+00	0.0	0.0 0.0 0.0	-8.583711E-04 -5.875979E-05 -4.767823E-05	4.767823E-05 5.875979E-05 2.085837E-02	-2.602008E-03 1.000000E-02 2.602008E-03	
3201       291         3202       292         3203       293	0.0 0.0 1.000000E+00 2.636149E-03	0.0 0.0 0.0 -5.319149E-05	0.0 0.0 0.0 2.636149E-03	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03	
3201 291 3202 292 3203 293 3204 294	0.0 0.0 1.000000E+00 2.636149E-03	0.0 0.0 0.0 -5.319149E-05 OF 21 (b	0.0 0.0 0.0 2.636149E-03 coundary displa	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03 acement for gri	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02 d 3203 comp	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03	
3201 291 3202 292 3203 293 3204 294	0.0 0.0 1.000000E+00 2.636149E-03	0.0 0.0 0.0 -5.319149E-05 OF 21 (b	0.0 0.0 0.0 2.636149E-03 coundary displa	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02 d 3203 comp	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03	
3201 291 3202 292 3203 293 3204 294	0.0 0.0 1.000000E+00 2.636149E-03	0.0 0.0 0.0 -5.319149E-05 OF 21 (b	0.0 0.0 0.0 2.636149E-03 coundary displa D I S P L A	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03 acement for gri	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02 d 3203 comp	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03	
3201 291 3202 292 3203 293 3204 294 OUTPUT FOR CRAIG-BAMPTON	0.0 0.0 1.000000E+00 2.636149E-03	0.0 0.0 0.0 -5.319149E-05 OF 21 (b C B (in glo	0.0 0.0 0.0 2.636149E-03 coundary displa D I S P L A bal coordinate	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03 acement for gri C E M E N T e system at eac R1	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02 d 3203 comp O T M h grid)	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03	
3201 291 3202 292 3203 293 3204 294 OUTPUT FOR CRAIG-BAMPTON GRID COORI SYS	0.0 0.0 1.000000E+00 2.636149E-03	0.0 0.0 0.0 -5.319149E-05 OF 21 (b C B (in glo	0.0 0.0 0.0 2.636149E-03 coundary displa D I S P L A bal coordinate	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03 acement for gri C E M E N T e system at eac R1	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02 d 3203 comp O T M h grid)	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03	
3201 291 3202 292 3203 293 3204 294 OUTPUT FOR CRAIG-BAMPTON GRID COORI SYS	0.0 0.0 1.000000E+00 2.636149E-03	0.0 0.0 0.0 -5.319149E-05 OF 21 (b C B (in glo	0.0 0.0 0.0 2.636149E-03 coundary displa D I S P L A bal coordinate	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03 acement for gri C E M E N T e system at eac R1	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02 d 3203 comp O T M h grid)	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03	
3201 291 3202 292 3203 293 3204 294 OUTPUT FOR CRAIG-BAMPTON GRID COORI SYS 3201 291	0.0 0.0 1.000000E+00 2.636149E-03 DOF 20	0.0 0.0 0.0 -5.319149E-05 OF 21 (b C B (in glo T2 0.0 0.0 1.0000000E+00	0.0 0.0 0.0 2.636149E-03 coundary displa D I S P L A abal coordinate T3 0.0 0.0 0.0	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03 acement for gri C E M E N T e system at eac R1 0.0 0.0 -2.0000000E-02	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02 d 3203 comp O T M h grid) R2 0.0 -2.0000000E-02	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03  conent 2)  R3  -2.0000000E-02 0.0 0.0	
3201 291 3202 292 3203 293 3204 294  OUTPUT FOR CRAIG-BAMPTON  GRID COORI SYS 3201 291 3202 292 3203 293	0.0 0.0 1.000000E+00 2.636149E-03 DOF 20 T1	0.0 0.0 0.0 -5.319149E-05 OF 21 (b C B (in glo T2 0.0 0.0 1.0000000E+00	0.0 0.0 0.0 2.636149E-03 coundary displa D I S P L A abal coordinate T3 0.0 0.0 0.0	-8.583711E-04 -5.875979E-05 -4.767823E-05 -1.052564E-03 acement for gri C E M E N T e system at eac R1 0.0 0.0	4.767823E-05 5.875979E-05 2.085837E-02 1.000000E-02 d 3203 comp O T M h grid) R2 0.0 -2.0000000E-02	-2.602008E-03 1.000000E-02 2.602008E-03 1.052564E-03	

OUTPUT FOR CRAIG-BAMPTON DOF	21 OF	21 (boundar	y displacement for grid	3203 component 3)
------------------------------	-------	-------------	-------------------------	-------------------

# C B D I S P L A C E M E N T O T M (in global coordinate system at each grid)

GRID	COORD	T1 T2	Т3	R1	R2	R3
	SYS					
3201	291 0.0	0.0	0.0	6.405944E-03	-2.669116E-04	8.894334E-03
3202	292 0.0	0.0	0.0	1.588240E-04	1.150011E-02	-2.304165E-03
3203	293 0.0	0.0	1.000000E+00	-5.577378E-03	4.742082E-03	-2.256943E-03
3204	294 -1 61	9859E-02 -1 447398E-02	9 192786E-01	1 373142E-02	2 717381E-03	-3 256101E-04

CB PROBLEM - SUBSTR 2, GENERATE CB MODEL
SUBSTR GLOBAL IS COORD SYSTEM 29
BARS 3201-3 V IS OA MODEL BASIC ZO, BARS 3204-6 V IS OA MODEL BASIC YO

# EFFECTIVE MODAL MASSES OR WEIGHTS (in coordinate system 0)

Units are same as units for mass input in the Bulk Data Deck Reference point is the basic coordinate system origin

	MODE	CYCLES	T1	T2	Т3	R1	R2	R3
	NUM							
	1	4.560093E+01	2.702533E+02	5.949331E+01	2.702533E+02	6.756334E+05	-2.092247E-15	6.756334E+05
	2	6.103745E+01	3.000000E+02	4.284921E-14	3.000000E+02	7.500000E+05	5.291766E-28	7.500000E+05
	3	1.359417E+02	2.974665E+01	5.405067E+02	2.974665E+01	7.436663E+04	5.230616E-16	7.436663E+04
	S	um all modes:	6.000000E+02	6.000000E+02	6.000000E+02	1.500000E+06	-1.569185E-15	1.500000E+06
	Tota	l model mass:	6.000000E+02	6.000000E+02	6.000000E+02	1.500000E+06	4.184493E-15	1.500000E+06
Mod	es % of	total mass*:	100.00%	100.00%	100.00%	100.00%	-37.50%	100.00%

^{*}If all modes are calculated the % of total mass should be 100% of the free mass (i.e. not counting mass at constrained DOF's).

Percentages are only printed for components that have finite model mass.

1.6 FEM basic structure and CUSERIN substructures

(input deck CB1d-BASIC-STR-W-CUSERIN-SUBSTRS.DAT)

CBAR

\$

1008

1102

122

112

0.

0.

1.

MYSTRAN Version 6.13 May 10 2010 by Dr Bill Case

```
>> MYSTRAN BEGIN : 5/11/2010 at 12:10:55.312 The input file is CBld-BASIC-STR-W-CUSERIN-SUBSTRS.DAT
>> LINK 0 BEGIN
ID CB1, RUN (d)
SOL 3
$
IN4 100 = CB1d-SUBSTR-1-CB-MODEL.OP1
IN4 200 = CB1d-SUBSTR-2-CB-MODEL.OP1
CEND
TITLE = CB PROBLEM - BASIC STR AND 2 SUBSTR'S
SUBTI = SUBSTR'S LOCATED IN SEPARATE COORD SYSTEMS. SUBSTR GLOBAL ARE SEVERAL SYS DEFINED IN EACH SUBSTR DECK
ECHO = UNSORT
SPC
        = 1
METHOD = 2
DISP
      = ALL
MEFFMASS = ALL
BEGIN BULK
EIGRL 2
                                1.0
                                                              MASS
$ Basic str
$ -----
GRID
       100
                        0.
                                0. -50.
$
GRID
                        -25.
                                -25. -50.
       111
GRID
       211
                        25.
                                -25. -50.
                         25.
                                 25.
                                      -50.
GRID
       221
GRID
       121
                        -25.
                                 25. -50.
$
GRID
       112
                        -25.
                                -25.
                                        50.
GRID
       212
                         25.
                                -25.
                                        50.
                         25.
                                 25.
GRID
       222
                                        50.
GRID
       122
                        -25.
                                 25.
                                        50.
$
CBAR
       1001
                                       0.
                                               0.
                                                      1.
               1101
                       111
                               211
CBAR
       1002
               1101
                       211
                               221
                                       0.
                                               0.
                                                       1.
CBAR
       1003
               1101
                       221
                               121
                                       0.
                                               0.
                                                      1.
CBAR
       1004
               1101
                       121
                               111
                                       0.
                                               0.
                                                       1.
$
                       112
CBAR
       1005
               1102
                               212
                                       0.
                                               0.
                                                      1.
CBAR
       1006
               1102
                       212
                               222
                                       0.
                                               0.
                                                      1.
CBAR
                       222
                               122
                                       0.
                                               0.
                                                       1.
       1007
               1102
```

```
CBAR
      1009
            1103
                  111
                         112
                               1.
                                      0.
                                            0.
CBAR
      1010
            1103
                   211
                         212
                               1.
                                      0.
                                            0.
CBAR
      1011
            1103
                  221
                         222
                               1.
                                      0.
                                            0.
CBAR
      1012
            1103
                  121
                                     0.
                                            0.
                         122
                               1.
$
                  1.
                         80.
PBAR
      1101
            100
                               80.
                                      80.
PBAR
      1102
            100
                  1.
                         80.
                               80.
                                      80.
PBAR
      1103
            100
                  1.
                         80.
                               80.
                                      80.
$
      100
            10.+06
                        .3
MAT1
                        100 HAD FIELD FOR G BLANK. MYSTRAN CALCULATED G = 3.846154E+06
*INFORMATION: MAT1 ENTRY
$
RBE2
      1000
            100
                 123456 111
                               211
                                      221
                                          121
$
CONM2 1001
                         500.
            111
CONM2
      1002
            211
                         500.
CONM2
     1003
            221
                         500.
CONM2
     1004
            121
                         500.
     1005
            112
                         500.
CONM2
CONM2
     1006
            212
                         500.
CONM2
     1007
            222
                         500.
CONM2 1008
           122
                       500.
$
SPC1 1
            123456 100
Ś
$ Substr #1
$ CORD2R 10 defines the basic system for substr 1 relative to OA model basic
$
                               50.
CORD2R 10
                  -25.
                         -25.
                                      -20.
                                            -25.
                                                  50.
                                                      +C10
+C10 -25.
          -25.
                  60.
$
                   0.
CORD2R 19
            10
                         0.
                               0.
                                      1.
                                            0.
                                                  0.
                                                         +C19
+C19
     0.
            0.
                  1.
$
GRID
    3101
            10
                  0.
                        0.
                                0.
                                      19
$
SPOINT 10001
           THRU
                  10003
$
CUSERIN 100
            190
                   1
                         3
                               10
      3101
            123456
      10001
            THRU
                   10003
$
PUSERIN 190
            100
                  KXX
                         MXX
$
RBE2
      1001
            112
                  123456 3101
$
$ Substr #2
$ CORD2R 20 defines the basic system for substr 2 relative to OA model basic
```

³⁴ 

\$ CORD21	R 291, 2	92, 293,	294 are	global	systems	for subs	str 2		
CORD2R +C20	20 25.	20.	25. 50.	25.	50.	20.	25.	50.	+C20
CORD2R +C29	291 0.	20	0. 0.	0.	0.	1.	0.	0.	+C29
CORD2R +C29 \$	292 0.	20	0. 1.	0.	0.	0.	1.	0.	+C29
CORD2R +C29 \$	293 1.	20	0. 0.	0.	0.	0.	0.	1.	+C29
GRID GRID GRID \$	3201 3202 3203	20 20 20	50. 0. 0.	0. 0. 0.	0. 0. 50.	291 292 293			
SPOINT \$	20001	THRU	20003						
CUSERIN	200 3201 20001	290 123 THRU	3 3202 20003	3 123	20 3203	123			
\$ PUSERIN \$	290	200	KXX	MXX					
RBE2 RBE2 RBE2 \$	2001 2002 2003	212 222 122	123 123 123	3201 3202 3203					
	*****	*****	*****	*****	*****	*****	*****	*****	*****
PARAM	GRDPNT WTMASS PRTDOF PRTSET	211 .00259 2 1	1						
	PRTSTIF		3	3	3	3			
PARAM PARAM \$ ENDDATA	PRTSTIF PRTMASS		3	3	3	3			

Total mass = 4.000000E+02

X Y Z
C.G. location: -5.000000E+01 0.000000E+00 1.250000E+02
(relative to reference point in basic coordinate system)

6x6 Rigid body mass matrix - about reference point in basic coordinate system

M.O.I. matrix - about reference point in basic coordinate system

```
* 6.250000E+06 0.000000E+00 2.500000E+06 *
* 0.000000E+00 7.250000E+06 0.000000E+00 *
* 2.500000E+06 0.000000E+00 1.000000E+06 *
***
```

M.O.I. matrix - about above c.g. location in basic coordinate system

```
* 0.000000E+00 0.000000E+00 0.000000E+00 *
* 0.000000E+00 -9.313226E-10 0.000000E+00 *
* 0.000000E+00 0.000000E+00 0.000000E+00 *
```

M.O.I. matrix - about above c.g. location in principal directions

Transformation from basic coordinates to principal directions

```
***

* 0.000000E+00 1.000000E+00 0.000000E+00 *

* 1.000000E+00 0.000000E+00 0.000000E+00 *

* 0.000000E+00 0.000000E+00 1.000000E+00 *

***
```

Total mass = 6.000000E+02

X Y Z
C.G. location: -1.065874E-14 5.000000E+01 1.500000E+02
(relative to reference point in basic coordinate system)

6x6 Rigid body mass matrix - about reference point in basic coordinate system

M.O.I. matrix - about reference point in basic coordinate system
***

* 1.500000E+07 -2.106124E-09 1.053062E-09 * -2.895921E-09 1.350000E+07 -4.500000E+06 * 1.118879E-09 -4.500000E+06 1.500000E+06 * ***

M.O.I. matrix - about above c.g. location in basic coordinate system

* 2.980232E-08 -2.425887E-09 9.377550E-11 * -3.215683E-09 1.862645E-09 3.725290E-09 * 1.595919E-10 3.725290E-09 -2.793968E-09 * ***

 ${\tt M.O.I.}$  matrix - about above c.g. location in principal directions

* -4.921328E-09 3.518674E-11 -4.441183E-10 *
* 2.394211E-11 3.711538E-09 6.492380E-10 *
* 2.500863E-12 -5.372939E-12 3.008079E-08 *
***

 ${\tt Transformation} \ {\tt from} \ {\tt basic} \ {\tt coordinates} \ {\tt to} \ {\tt principal} \ {\tt directions}$ 

* -3.673723E-02 -4.919769E-01 8.698328E-01 * * 7.892750E-02 8.662729E-01 4.932968E-01 * * -9.962032E-01 8.677609E-02 7.006038E-03 * ***

```
OUTPUT FROM THE GRID POINT WEIGHT GENERATOR FOR RESIDUAL STRUCTURE (reference point is grid point 211)
```

Total mass = 4.000000E+03

X Y Z
C.G. location: -2.500000E+01 2.500000E+01 5.000000E+01
(relative to reference point in basic coordinate system)

6x6 Rigid body mass matrix - about reference point in basic coordinate system

M.O.I. matrix - about reference point in basic coordinate system

```
* 2.500000E+07 2.500000E+06 5.000000E+06 * 2.500000E+06 2.500000E+07 -5.000000E+06 * 5.000000E+06 -5.000000E+06 1.000000E+07 * ***
```

M.O.I. matrix - about above c.q. location in basic coordinate system

```
* 1.250000E+07 0.000000E+00 0.000000E+00 *
* 0.000000E+00 1.250000E+07 0.000000E+00 *
* 0.000000E+00 0.000000E+00 5.000000E+06 *
```

M.O.I. matrix - about above c.g. location in principal directions

Transformation from basic coordinates to principal directions

```
***

* 0.000000E+00 0.000000E+00 1.000000E+00 *

* 0.000000E+00 1.000000E+00 0.000000E+00 *

* 1.000000E+00 0.000000E+00 *

***
```

```
OUTPUT FROM THE GRID POINT WEIGHT GENERATOR FOR OVERALL MODEL (reference point is grid point 211)
```

Total mass = 5.000000E+03

X Y Z
C.G. location: -2.400000E+01 2.600000E+01 6.800000E+01
(relative to reference point in basic coordinate system)

 $\ensuremath{\mathsf{6x6}}$  Rigid body mass matrix - about reference point in basic coordinate system

M.O.I. matrix - about reference point in basic coordinate system

* 4.625000E+07 2.500000E+06 7.500000E+06 * 2.500000E+06 4.575000E+07 -9.500000E+06 * 7.500000E+06 -9.500000E+06 1.250000E+07 * ***

M.O.I. matrix - about above c.g. location in basic coordinate system

***

* 1.975000E+07 -6.200000E+05 -6.600000E+05 *

* -6.200000E+05 1.975000E+07 -6.600000E+05 *

* -6.600000E+05 -6.600000E+05 6.240000E+06 *

M.O.I. matrix - about above c.g. location in principal directions

***

* 6.172763E+06 4.656613E-10 1.877026E-10 *

* 3.492460E-10 1.919724E+07 5.969503E-09 *

* 1.271812E-10 2.321052E-09 2.037000E+07 *
***

Transformation from basic coordinates to principal directions

***

* 5.080514E-02 5.080514E-02 9.974155E-01 *

* 7.052793E-01 7.052793E-01 -7.184932E-02 *

* -7.071068E-01 7.071068E-01 1.018074E-15 *

***

EIGENVALUE ANALYSIS SUMMARY (LANCZOS Mode 2 DPB Shift eigen = 0.00E+00)

2

LARGEST OFF-DIAGONAL GENERALIZED MASS TERM -7.0E-11 (Vecs renormed to 1.0 for gen masses)

. . . 4

NUMBER OF OFF DIAGONAL GENERALIZED MASS

TERMS FAILING CRITERION OF 1.0E-04. . . . . 0

REAL EIGENVALUES	R	Ε	Α	L		Ε	I	G	Ε	Ν	V	Α	L	U	Ε	S	
------------------	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--

MODE NUMBER	EXTRACTION ORDER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS
1	1	2.682498E+03	5.179284E+01	8.243086E+00	1.000000E+00	2.682498E+03
2	2	2.726318E+03	5.221415E+01	8.310141E+00	1.000000E+00	2.726318E+03
3	3	5.121950E+03	7.156780E+01	1.139037E+01	1.000000E+00	5.121950E+03
4	4	2.254593E+04	1.501530E+02	2.389760E+01	1.000000E+00	2.254593E+04
5	5	4.873465E+04	2.207593E+02	3.513493E+01	1.000000E+00	4.873465E+04
6	6	5.145711E+04	2.268416E+02	3.610296E+01	1.000000E+00	5.145711E+04
7	7	5.822092E+04	2.412901E+02	3.840251E+01	1.000000E+00	5.822092E+04
8	8	8.792938E+04	2.965289E+02	4.719404E+01	1.000000E+00	8.792938E+04
9	9	1.045087E+05	3.232780E+02	5.145130E+01	1.000000E+00	1.045087E+05
10	10	2.864546E+05	5.352146E+02	8.518204E+01	1.000000E+00	2.864546E+05

(in global coordinate system at each grid)

			(111 910	Dai Cooldinate	system at eac	ii giiu)	
GRID	COORD	T1	T2	T3	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	2.257796E-01	2.257796E-01	5.556862E-02	-1.831903E-03	1.831903E-03	1.369739E-16
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	2.253124E-01	2.244884E-01	5.061107E-03	-1.544883E-03	1.930698E-03	1.247654E-05
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	2.244884E-01	2.253124E-01	5.061107E-03	-1.930698E-03	1.544883E-03	-1.247654E-05
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	2.248731E-01	2.248731E-01	-6.717091E-02	-1.902515E-03	1.902515E-03	1.456876E-16
3101	19	2.257796E-01	2.257796E-01	5.556862E-02	-1.831903E-03	1.831903E-03	1.369739E-16
3201	291	5.061107E-03	-2.244884E-01	-2.253124E-01	0.0	0.0	0.0
3202	292	-2.248731E-01	-2.248731E-01	-6.717091E-02	0.0	0.0	0.0
3203	293	-2.244884E-01	5.061107E-03	-2.253124E-01	0.0	0.0	0.0
10001	0	6.837237E-03	0.0	0.0	0.0	0.0	0.0
10002	0	6.837237E-03	0.0	0.0	0.0	0.0	0.0
10003	0	1.313670E-04	0.0	0.0	0.0	0.0	0.0
20001	0	-1.770954E-02	0.0	0.0	0.0	0.0	0.0
20002	0	-2.673628E-15	0.0	0.0	0.0	0.0	0.0
20003	0	3.163012E-04	0.0	0.0	0.0	0.0	0.0

OUTPUT FOR EIGENVECTOR 2

#### EIGENVECTOR

(in global coordinate system at each grid) GRID T1 T2 T3 R1 R2 R3 COORD SYS 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 111 0.0 0.0 0.0 0.0 112  $0 \quad 2.098268E - 01 \quad -2.098268E - 01 \quad 1.478671E - 14 \quad 1.908249E - 03 \quad 1.908249E - 03 \quad -7.239933E - 04$ 121 0.0 0.0 0.0 0.0 0.0 122 211 0.0 0.0 0.0 0.0 0.0 0.0 0 2.077252E-01 -2.469433E-01 -6.053706E-02 1.844591E-03 1.625426E-03 -7.442003E-04 212 221 0.0 0.0 0.0 0.0 0.0 222 0 2.462213E-01 -2.462213E-01 -1.795691E-14 1.814842E-03 1.814842E-03 -7.644073E-04 3101 19 2.098268E-01 -2.098268E-01 1.478671E-14 1.908249E-03 1.908249E-03 -7.239933E-04 3201 291 -6.053706E-02 -2.077252E-01 2.469433E-01 0.0 0.0 0.0 3202 292 -2.462213E-01 2.462213E-01 -1.795691E-14 0.0 0.0 0.0 3203 293 2.077252E-01 6.053706E-02 -2.469433E-01 0.0 0.0 0.0 0 6.592239E-03 0.0 0.0 0.0 10001 0.0 0.0 0.0 0.0 10002 0 -6.592239E-03 0.0 0.0 0.0 10003 0 2.936680E-17 0.0 0.0 0.0 0.0 0.0 20001 0 -4.995894E-15 0.0 0.0 0.0 0.0 0.0 0 1.023825E-02 0.0 0.0 0.0 0.0 20002 0.0 0.0 20003 0 9.411529E-17 0.0 0.0 0.0 0.0

(in global coordinate system at each grid)

			(111 910	Spar Coordinate	e system at eac	JII grid)	
GRID	COORI	) T1	T2	Т3	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	2.793835E-01	-2.793835E-01	5.004811E-16	1.441582E-03	1.441582E-03	9.660273E-03
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	-2.099831E-01	-2.745273E-01	-8.363813E-04	7.782410E-04	-6.846300E-04	9.577011E-03
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	2.745273E-01	2.099831E-01	8.363813E-04	-6.846300E-04	7.782410E-04	9.577011E-03
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	-2.091551E-01	2.091551E-01	-6.517893E-16	-7.371523E-04	-7.371523E-04	9.493750E-03
3101	19	2.793835E-01	-2.793835E-01	5.004811E-16	1.441582E-03	1.441582E-03	9.660273E-03
3201	291	8.363813E-04	-2.745273E-01	-2.099831E-01	0.0	0.0	0.0
3202	292	2.091551E-01	-2.091551E-01	-6.517893E-16	0.0	0.0	0.0
3203	293	2.745273E-01	-8.363813E-04	2.099831E-01	0.0	0.0	0.0
10001	0	1.551155E-02	0.0	0.0	0.0	0.0	0.0
10002	0	-1.551155E-02	0.0	0.0	0.0	0.0	0.0
10003	0	5.819547E-18	0.0	0.0	0.0	0.0	0.0
20001	0	-1.474285E-16	0.0	0.0	0.0	0.0	0.0
20002	0	-1.340916E-02	0.0	0.0	0.0	0.0	0.0
20003	0	0.0	0.0	0.0	0.0	0.0	0.0

OUTPUT FOR EIGENVECTOR 4

#### EIGENVECTOR

(in global coordinate system at each grid) GRID COORD T1 Т3 R1 R2 R3 SYS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 111 0.0 0.0 0.0 0.0 0.0 112 0 1.409456E-01 1.409456E-01 4.074739E-02 -3.821831E-03 3.821831E-03 2.238448E-17 0.0 121 0.0 0.0 0.0 0.0 0.0 122 0 8.206453E-02 9.996514E-02 -6.860444E-02 -1.050561E-03 -4.367738E-03 6.187025E-04 211 0.0 0.0 0.0 0.0 0.0 0.0 212 0 9.996514E-02 8.206453E-02 -6.860444E-02 4.367738E-03 1.050561E-03 -6.187025E-04 221 0.0 0.0 0.0 0.0 0.0 0.0 222 0 8.332244E-02 8.332244E-02 2.732509E-01 4.602225E-03 -4.602225E-03 2.034953E-17 3101 19 1.409456E-01 1.409456E-01 4.074739E-02 -3.821831E-03 3.821831E-03 2.238448E-17 3201 291 -6.860444E-02 -9.996514E-02 -8.206453E-02 0.0 0.0 0.0 3202 292 -8.332244E-02 -8.332244E-02 2.732509E-01 0.0 0.0 0.0 3203 293 -9.996514E-02 -6.860444E-02 -8.206453E-02 0.0 0.0 0.0 10001 0 6.125957E-02 0.0 0.0 0.0 0.0 0.0 10002 0 6.125957E-02 0.0 0.0 0.0 0.0 0.0 10003 0 8.237927E-04 0.0 0.0 0.0 0.0 0.0 20001 0 2.051004E-01 0.0 0.0 0.0 0.0 0.0 20002 0 -5.005985E-16 0.0 0.0 0.0 0.0 0.0 20003 0 5.714306E-03 0.0 0.0 0.0 0.0 0.0

SPC Force Summary on AUTOSPC'd DOF's

(in global coordinate system at each grid)

			( 9	obar cooramacc	by been at car	J11 91 10/	
GRID	COORI SYS	) T1	T2	Т3	R1	R2	R3
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	6.341469E-02	6.341469E-02	-3.911836E-01	1.145572E-02	-1.145572E-02	-1.047146E-17
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	1.623121E-01	1.473997E-01	2.739692E-02	3.671459E-03	-2.130204E-03	-1.163037E-03
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	1.473997E-01	1.623121E-01	2.739692E-02	2.130204E-03	-3.671459E-03	1.163037E-03
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	1.668975E-01	1.668975E-01	1.681957E-01	1.416000E-03	-1.416000E-03	-5.235730E-17
3101	19	6.341469E-02	6.341469E-02	-3.911836E-01	1.145572E-02	-1.145572E-02	-1.047146E-17
3201	291	2.739692E-02	-1.473997E-01	-1.623121E-01	0.0	0.0	0.0
3202	292	-1.668975E-01	-1.668975E-01	1.681957E-01	0.0	0.0	0.0
3203	293	-1.473997E-01	2.739692E-02	-1.623121E-01	0.0	0.0	0.0
10001	0	-1.772331E-01	0.0	0.0	0.0	0.0	0.0
10002	0	-1.772331E-01	0.0	0.0	0.0	0.0	0.0
10003		-1.749863E-02	0.0	0.0	0.0	0.0	0.0
20001	0	4.296179E-02	0.0	0.0	0.0	0.0	0.0
20002	0	1.534069E-15	0.0	0.0	0.0	0.0	0.0
20003	0	1.510498E-02	0.0	0.0	0.0	0.0	0.0

OUTPUT FOR EIGENVECTOR 6

# EIGENVECTOR

(in global coordinate system at each grid)

			( )-			3/	
GRID	COORI SYS	) T1	T2	Т3	R1	R2	R3
100		0 0	0.0	0 0	0.0	0.0	0 0
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	3.724522E-02	3.724522E-02	-3.693792E-01	-2.515040E-03	2.515040E-03	9.222831E-18
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	-2.542942E-02	-1.207365E-02	-3.433346E-01	1.395074E-03	-6.731852E-04	7.305658E-04
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	-1.207365E-02	-2.542942E-02	-3.433346E-01	6.731852E-04	-1.395074E-03	-7.305658E-04
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	-2.487312E-02	-2.487312E-02	-2.889412E-01	1.012371E-03	-1.012371E-03	4.611415E-17
3101	19	3.724522E-02	3.724522E-02	-3.693792E-01	-2.515040E-03	2.515040E-03	9.222831E-18
3201	291	-3.433346E-01	1.207365E-02	2.542942E-02	0.0	0.0	0.0
3202	292	2.487312E-02	2.487312E-02	-2.889412E-01	0.0	0.0	0.0
3203	293	1.207365E-02	-3.433346E-01	2.542942E-02	0.0	0.0	0.0
10001	0	8.785845E-02	0.0	0.0	0.0	0.0	0.0
10002	0	8.785845E-02	0.0	0.0	0.0	0.0	0.0
10003	0	-1.748922E-02	0.0	0.0	0.0	0.0	0.0
20001	0	3.348994E-02	0.0	0.0	0.0	0.0	0.0
20002	0	-2.274965E-15	0.0	0.0	0.0	0.0	0.0
20003	0	-2.930656E-02	0.0	0.0	0.0	0.0	0.0

(in global coordinate system at each grid)

		(111 91)	SDAI COOLAINACC	system at cae	ii giia,	
COORI SYS	) T1	Т2	Т3	R1	R2	R3
0	0.0	0.0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0	0.0	0.0
0	-1.161277E-01	1.161277E-01	2.066697E-15	8.532284E-03	8.532284E-03	1.991342E-03
0	0.0	0.0	0.0	0.0	0.0	0.0
0	-2.103757E-01	1.580113E-01	3.700141E-01	3.813257E-03	5.055154E-03	1.576458E-03
0	0.0	0.0	0.0	0.0	0.0	0.0
0	-1.580113E-01	2.103757E-01	-3.700141E-01	5.055154E-03	3.813257E-03	1.576458E-03
0	0.0	0.0	0.0	0.0	0.0	0.0
0	-2.239355E-01	2.239355E-01	-8.999290E-15	4.548427E-03	4.548427E-03	1.161574E-03
19	-1.161277E-01	1.161277E-01	2.066697E-15	8.532284E-03	8.532284E-03	1.991342E-03
291	-3.700141E-01	1.580113E-01	-2.103757E-01	0.0	0.0	0.0
292	2.239355E-01	-2.239355E-01	-8.999290E-15	0.0	0.0	0.0
293	-1.580113E-01	3.700141E-01	2.103757E-01	0.0	0.0	0.0
0	1.088153E-01	0.0	0.0	0.0	0.0	0.0
0	-1.088153E-01	0.0	0.0	0.0	0.0	0.0
0	1.610520E-16	0.0	0.0	0.0	0.0	0.0
0	2.616073E-16	0.0	0.0	0.0	0.0	0.0
0	1.834231E-01	0.0	0.0	0.0	0.0	0.0
0	-9.287058E-16	0.0	0.0	0.0	0.0	0.0
	SYS 0 0 0 0 0 0 0 0 19 291 292 293 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SYS  0 0.0 0 0.0 0 -1.161277E-01 0 0.0 0 -2.103757E-01 0 0.0 0 -1.580113E-01 0 0.0 0 -2.239355E-01 19 -1.161277E-01 291 -3.700141E-01 292 2.239355E-01 293 -1.580113E-01 0 1.088153E-01 0 -1.088153E-01	COORD T1 T2  SYS  0 0.0 0.0 0.0 0 -1.161277E-01 1.161277E-01 0 0.0 0.0 0 -2.103757E-01 1.580113E-01 0 0.0 0.0 0 -1.580113E-01 2.103757E-01 0 0.0 0.0 0 -2.239355E-01 2.239355E-01 19 -1.161277E-01 1.161277E-01 291 -3.700141E-01 1.580113E-01 292 2.239355E-01 -2.239355E-01 293 -1.580113E-01 3.700141E-01 0 1.088153E-01 0.0 0 -1.088153E-01 0.0 0 1.610520E-16 0.0 0 2.616073E-16 0.0 0 1.834231E-01 0.0	COORD         T1         T2         T3           SYS         0 0.0         0.0         0.0           0 0.0         0.0         0.0           0 0.0         0.0         0.0           0 -1.161277E-01         1.161277E-01         2.066697E-15           0 0.0         0.0         0.0           0 -2.103757E-01         1.580113E-01         3.700141E-01           0 0.0         0.0         0.0           0 -1.580113E-01         2.103757E-01         -3.700141E-01           0 0.0         0.0         0.0           0 -2.239355E-01         2.239355E-01         -8.999290E-15           19 -1.161277E-01         1.161277E-01         2.066697E-15           291 -3.700141E-01         1.580113E-01         -2.103757E-01           292 2.239355E-01         -2.239355E-01         -8.999290E-15           293 -1.580113E-01         3.700141E-01         2.103757E-01           0 1.088153E-01         0.0         0.0           0 -1.088153E-01         0.0         0.0           0 1.610520E-16         0.0         0.0           0 2.616073E-16         0.0         0.0           0 1.834231E-01         0.0         0.0	COORD       T1       T2       T3       R1         SYS       0 0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0	SYS         0       0.0       0.0       0.0       0.0       0.0       0.0         0       0.0       0.0       0.0       0.0       0.0       0.0         0       0.1.161277E-01       1.161277E-01       2.066697E-15       8.532284E-03       8.532284E-03         0       0.0       0.0       0.0       0.0       0.0         0       -2.103757E-01       1.580113E-01       3.700141E-01       3.813257E-03       5.055154E-03         0       0.0       0.0       0.0       0.0       0.0       0.0         0       -1.580113E-01       2.103757E-01       -3.700141E-01       5.055154E-03       3.813257E-03         0       0.0       0.0       0.0       0.0       0.0       0.0         0       -2.239355E-01       2.239355E-01       -8.999290E-15       4.548427E-03       4.548427E-03         291       -3.700141E-01       1.580113E-01       -2.103757E-01       0.0       0.0         292       2.239355E-01       -2.239355E-01       -8.999290E-15       0.0       0.0         293       -1.580113E-01       3.700141E-01       2.103757E-01       0.0       0.0         293       -1.58013E-01       0.0

OUTPUT FOR EIGENVECTOR 8

# EIGENVECTOR

(in global coordinate system at each grid)

			( ) (	SDAI COOLAINAC	by been at each	,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	
GRID	COORI SYS	T1	T2	Т3	R1	R2	R3
100		0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	-1.419129E-01	1.419129E-01	2.317995E-14	9.845793E-03	9.845793E-03	-3.905077E-03
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	9.985553E-02	3.117029E-01	-1.565936E-01	-7.646235E-03	-1.079164E-03	-6.508205E-03
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	-3.117029E-01	-9.985553E-02	1.565936E-01	-1.079164E-03	-7.646235E-03	-6.508205E-03
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	1.077791E-01	-1.077791E-01	-1.665356E-14	-2.559339E-03	-2.559339E-03	-9.111334E-03
3101	19	-1.419129E-01	1.419129E-01	2.317995E-14	9.845793E-03	9.845793E-03	-3.905077E-03
3201	291	1.565936E-01	3.117029E-01	9.985553E-02	0.0	0.0	0.0
3202		-1.077791E-01		-1.665356E-14	0.0	0.0	0.0
3203	293	-3.117029E-01	-1.565936E-01	-9.985553E-02	0.0	0.0	0.0
10001	0	4.017448E-01	0.0	0.0	0.0	0.0	0.0
10002		-4.017448E-01	0.0	0.0	0.0	0.0	0.0
10003	0	2.252365E-15	0.0	0.0	0.0	0.0	0.0
20001	0	1.141315E-14	0.0	0.0	0.0	0.0	0.0
20002		-1.473824E-01		0.0	0.0	0.0	0.0
20003	0	-2.797529E-15	0.0	0.0	0.0	0.0	0.0

(in global coordinate system at each grid)

			(III GIC	par coordinate	system at eac	ii gria)	
GRID	COORD	T1	T2	Т3	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	9.874954E-03	9.874954E-03	-3.318802E-01	-3.540108E-04	3.540108E-04	-2.349437E-16
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0 -	1.314425E-01	-1.303271E-01	3.130906E-01	1.280416E-02	1.936418E-03	1.852483E-03
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0 -	1.303271E-01	-1.314425E-01	3.130906E-01	-1.936418E-03	-1.280416E-02	-1.852483E-03
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0 -	1.451769E-01	-1.451769E-01	1.668669E-01	-6.882197E-04	6.882197E-04	-6.703288E-16
3101	19	9.874954E-03	9.874954E-03	-3.318802E-01	-3.540108E-04	3.540108E-04	-2.349437E-16
3201	291	3.130906E-01	1.303271E-01	1.314425E-01	0.0	0.0	0.0
3202	292	1.451769E-01	1.451769E-01	1.668669E-01	0.0	0.0	0.0
3203	293	1.303271E-01	3.130906E-01	1.314425E-01	0.0	0.0	0.0
10001	0	2.997971E-01	0.0	0.0	0.0	0.0	0.0
10002	0	2.997971E-01	0.0	0.0	0.0	0.0	0.0
10003	0 -	3.352174E-02	0.0	0.0	0.0	0.0	0.0
20001	0 -	2.006229E-01	0.0	0.0	0.0	0.0	0.0
20002	0 -	9.353935E-15	0.0	0.0	0.0	0.0	0.0
20003	0	3.435181E-02	0.0	0.0	0.0	0.0	0.0

OUTPUT FOR EIGENVECTOR 10

### EIGENVECTOR

(in global coordinate system at each grid) GRID COORD T1 Т3 R1 R2 R3 SYS 0.0 0.0 0.0 0.0 100 0.0 0.0 111 0.0 0.0 0.0 0.0 0.0 0.0 112 0 5.244173E-01 5.244173E-01 3.226796E-02 1.104391E-02 -1.104391E-02 -4.352106E-17 0.0 121 0.0 0.0 0.0 0.0 0.0 122 0 -1.457712E-01 3.010482E-02 1.107608E-01 -2.311276E-03 2.176723E-03 6.667304E-03 211 0.0 0.0 0.0 0.0 0.0 0.0 212 0 3.010482E-02 -1.457712E-01 1.107608E-01 -2.176723E-03 2.311276E-03 -6.667304E-03 221 0.0 0.0 0.0 0.0 0.0 0.0 222 0 -1.849120E-01 -1.849120E-01 -1.282324E-01 -3.080425E-03 3.080425E-03 0.0 3101 19 5.244173E-01 5.244173E-01 3.226796E-02 1.104391E-02 -1.104391E-02 -4.352106E-17 3201 291 1.107608E-01 -3.010482E-02 1.457712E-01 0.0 0.0 0.0 3202 292 1.849120E-01 1.849120E-01 -1.282324E-01 0.0 0.0 0.0 3203 293 -3.010482E-02 1.107608E-01 1.457712E-01 0.0 0.0 0.0 10001 0 -4.130922E-01 0.0 0.0 0.0 0.0 0.0 10002 0 -4.130922E-01 0.0 0.0 0.0 0.0 0.0 10003 0 1.079876E-02 0.0 0.0 0.0 0.0 0.0 20001 0 2.823822E-01 0.0 0.0 0.0 0.0 0.0 20002 0 -2.915911E-15 0.0 0.0 0.0 0.0 0.0 20003 0 -6.471028E-02 0.0 0.0 0.0 0.0 0.0

# EFFECTIVE MODAL MASSES OR WEIGHTS (in coordinate system 0)

Units are same as units for mass input in the Bulk Data Deck Reference point is the PARAM GRDPNT grid: 211

MODE NUM	CYCLES	T1	Т2	Т3	R1	R2	R3
1	8.243086E+00	1.441150E+03	1.441150E+03	1.174957E+00	2.086481E+07	2.086481E+07	3.759155E-21
2	8.310141E+00	1.453188E+03	1.453188E+03	1.618394E-25	2.026645E+07	2.026645E+07	9.350473E+04
3	1.139037E+01	1.220303E+01	1.220303E+01	4.104911E-27	3.352989E+04	3.352989E+04	3.641755E+06
4	2.389760E+01	2.613795E+01	2.613795E+01	2.373060E+02	7.807750E+04	7.807750E+04	6.648079E-25
5	3.513493E+01	3.252471E+01	3.252471E+01	4.597040E+01	1.147872E+05	1.147872E+05	1.750904E-24
6	3.610296E+01	1.331710E-04	1.331710E-04	2.636815E+03	6.072446E+03	6.072446E+03	1.160188E-24
7	3.840251E+01	3.422216E+01	3.422216E+01	5.893452E-25	1.529019E+05	1.529019E+05	1.057675E+02
8	4.719404E+01	1.393397E-01	1.393397E-01	7.232226E-25	3.848304E+04	3.848304E+04	1.442802E+04
9	5.145130E+01	2.890068E-02	2.890068E-02	7.515295E+01	5.791888E+04	5.791888E+04	6.246470E-23
10	8.518204E+01	6.853074E-02	6.853074E-02	7.414881E-01	1.497763E+03	1.497763E+03	1.715368E-25
St	um all modes:	2.999662E+03	2.999662E+03	2.997161E+03	4.161452E+07	4.161452E+07	3.749794E+06
Tota	l model mass:	5.000000E+03	5.000000E+03	5.000000E+03	4.625000E+07	4.575000E+07	1.250000E+07
Modes % of	total mass*:	59.99%	59.99%	59.94%	89.98%	90.96%	30.00%

^{*}If all modes are calculated the % of total mass should be 100% of the free mass (i.e. not counting mass at constrained DOF's).

Percentages are only printed for components that have finite model mass.

# 1.7 FEM basic structure and FEM substructures

(input deck CB1d-BASIC-STR-W-FEM-SUBSTRS.DAT)

NOTE: This run is only made to show that the answers from the synthesis run using C-B models gives the correct results

MYSTRAN Version 6.13 May 10 2010 by Dr Bill Case

>> MYSTRAN BEGIN : 5/11/2010 at 12:10:54. 15 The input file is CBld-BASIC-STR-W-FEM-SUBSTRS.DAT

>> LINK 0 BEGIN

ID CB1, RUN (d)

SOL 3

CEND

TITLE = CB PROBLEM - PHYSICAL FEM MODELS FOR BASIC STR AND SUBSTR'S

SUBTI = SUBSTR'S LOCATED IN SEPARATE COORD SYSTEMS. SUBSTR GLOBAL ARE SEVERAL SYS DEFINED IN EACH SUBSTR DECK

ECHO = UNSORT

SPC = 1

METHOD = 2

MEFFMASS = ALL

DISP = ALL

BEGIN BULK

\$

CBAR

1012

1103 121

122

EIGRL	2			10				MASS	
\$****	*****	******	*****	*****	*****	*****	*****	* * * * * * * * *	*****
\$ Basi	c str								
\$									
GRID	100		0.	0.	-50.				
\$									
GRID	111		-25.	-25.	-50.				
GRID	211			-25.					
GRID	221		25.	25.	-50.				
GRID	121		-25.	25.	-50.				
\$									
GRID	112		-25.	-25.	50.				
GRID	212		25.	-25.	50.				
GRID	222		25.	25.	50.				
	122		-25.	25.	50.				
\$									
CBAR	1001	1101	111	211	0.	0.	1.		
CBAR	1002	1101	211	221	0.	0.	1.		
CBAR	1003	1101		121	0.	0.	1.		
CBAR	1004	1101	121	111	0.	0.	1.		
\$									
CBAR	1005	1102	112	212		0.	1.		
CBAR	1006	1102	212	222	0.	0.	1.		
CBAR	1007	1102	222	122	0.	0.	1.		
CBAR	1008	1102	122	112	0.	0.	1.		
\$									
CBAR	1009	1103	111	112	1.	0.			
CBAR		1103	211	212	1.	0.	0.		
CBAR	1011	1103	221	222	1.	0.	0.		

1.

0.

0.

```
$
PBAR
       1101
             100
                    1.
                            80.
                                  80.
                                          80.
PBAR
       1102
             100
                    1.
                            80.
                                  80.
                                          80.
PBAR
       1103
             100
                    1.
                            80.
                                  80.
                                          80.
$
MAT1
       100
             10.+06
                           . 3
*INFORMATION: MAT1 ENTRY
                           100 HAD FIELD FOR G BLANK. MYSTRAN CALCULATED G = 3.846154E+06
$
RBE2
       1000
             100
                    123456 111
                                   211
                                          221
                                                 121
$
                            500.
CONM2
       1001
             111
CONM2
       1002
              211
                            500.
CONM2
      1003
              221
                            500.
CONM2
       1004
             121
                            500.
CONM2
      1005
             112
                            500.
CONM2
      1006
              212
                            500.
CONM2
      1007
              222
                            500.
CONM2
      1008
             122
                            500.
$
             123456 100
SPC1
      1
$
$
$ Substr #1
$ -----
$ CORD2R 10 defines the basic system for substr 1 relative to OA model basic
Ś
CORD2R 10
                     -25.
                            -25.
                                   50.
                                          -20.
                                                 -25.
                                                        50.
                                                               +C10
+C10
      -25.
             -25.
                     60.
$
CORD2R 19
             10
                     0.
                            0.
                                  0.
                                          1.
                                                 0.
                                                        0.
                                                               +C19
+C19
       0.
              0.
                    1.
$
       3101
                     0.
                                         19
GRID
             10
                            0.
                                   0.
GRID
       3102
             10
                     25.
                            0.
                                   0.
                                         19
              3101
                     3101
                            3102
                                  1.
                                          0.
                                                 0.
CBAR
       3101
PBAR
       3101
              301
                     1.
                            20.
                                   20.
                                          40.
MAT1
       301
              30.+6
                            . 3
*INFORMATION: MAT1 ENTRY
                           301 HAD FIELD FOR G BLANK. MYSTRAN CALCULATED G = 1.153846E+07
$
      1001
             112
                    123456 3101
RBE2
$
CONM2
       3102
              3102
                            400.
Ś
$
$ Substr #2
$ -----
$ CORD2R 20 defines the basic system for substr 2 relative to OA model basic
$ CORD2R 291, 292, 293, 294 are global systems for substr 2
Ś
CORD2R 20
                      25.
                            25.
                                    50.
                                          20.
                                                  25.
                                                        50.
                                                               +C20
+C20
        25.
              20.
                      50.
$
```

CORD2R +C29	291 0.	20 1.	0. 0.	0.	0.	1.	0.	0.	+C29	
\$	0.		0.							
CORD2R	292	20	0.	0.	0.	0.	1.	0.	+C29	
+C29	0.	0.	1.							
\$										
CORD2R	293	20	0.	0.	0.	0.	0.	1.	+C29	
+C29	1.	0.	0.							
\$										
CORD2R	294	20	0.	0.	0.	0.	0.	1.	+C29	
+C29	1.	0.	0.							
\$	2001	20	F 0	0	0	201				
GRID	3201	20	50.	0.	0.	291				
GRID	3202	20	0.	0.	0.	292				
GRID	3203	20	0.	0.	50.	293				
GRID	3204	20	0.	50.	0.	294				
\$ CDAD	2201	2201	2201	2202	1	0.	0.			
CBAR	3201	3201	3201	3202	1.					
CBAR	3202	3201	3202	3203	0.	0.	1.			
CBAR \$	3203	3201	3203	3201	0.	1.	0.			
ÇBAR	3204	3201	3201	3204	0.	0.	1.			
CBAR	3205	3201	3202	3204	0.	1.	0.			
CBAR	3205	3201	3202	3204	1.	0.	0.			
\$	3200	3201	3203	3204	Τ.	0.	0.			
PBAR	3201	302	1.	20.	20.	40.				
MAT1	302	30.+6	<b>-</b> •	.3	20.	10.				
	MATION:		'RY		FIELD H	FOR G	BLANK.	MYSTRAN	CALCULATED G	= 1.153846E+07
\$										
RBE2	2001	212	123	3201						
RBE2	2002	222	123	3202						
RBE2	2003	122	123	3203						
\$										
CONM2	3201	3204		600.						
\$										
\$*****	*****	*****	*****	*****	*****	*****	*****	*****	******	
PARAM	GRDPNT	100								
PARAM	GRIDSEQ	GRID								
PARAM	WTMASS	.00259	1							
\$										
ENDDATA	L									

```
OUTPUT FROM THE GRID POINT WEIGHT GENERATOR FOR OVERALL MODEL (reference point is grid point 100)
```

Total mass = 5.000000E+03

X Y Z
C.G. location: 1.000000E+00 1.000000E+00 6.800000E+01
(relative to reference point in basic coordinate system)

6x6 Rigid body mass matrix - about reference point in basic coordinate system

M.O.I. matrix - about reference point in basic coordinate system

***

* 4.287500E+07 -6.250000E+05 -1.000000E+06 *
* -6.250000E+05 4.287500E+07 -1.000000E+06 *
* -1.000000E+06 -1.000000E+06 6.250000E+06 *
* **

M.O.I. matrix - about above c.g. location in basic coordinate system

***

* 1.975000E+07 -6.200000E+05 -6.600000E+05 *

* -6.200000E+05 1.975000E+07 -6.600000E+05 *

* -6.600000E+05 -6.600000E+05 6.240000E+06 *

M.O.I. matrix - about above c.g. location in principal directions

***

* 6.172763E+06 0.000000E+00 -6.017513E-13 *

* 1.164153E-10 1.919724E+07 3.742019E-09 *

* -2.910383E-11 3.725290E-09 2.037000E+07 *

***

Transformation from basic coordinates to principal directions

***

* -5.080514E-02 -5.080514E-02 -9.974155E-01 *

* 7.052793E-01 7.052793E-01 -7.184932E-02 *

* 7.071068E-01 -7.071068E-01 0.000000E+00 *

51

***

LARGEST OFF-DIAGONAL GENERALIZED MASS TERM -3.8E-11 (Vecs renormed to 1.0 for gen masses)

. . . 1

NUMBER OF OFF DIAGONAL GENERALIZED MASS

TERMS FAILING CRITERION OF 1.0E-04. . . . . 0

	REAL EIGENVALUES										
MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED					
NUMBER	ORDER				MASS	STIFFNESS					
1	1	2.682498E+03	5.179284E+01	8.243086E+00	1.000000E+00	2.682498E+03					
2	2	2.726318E+03	5.221415E+01	8.310141E+00	1.000000E+00	2.726318E+03					
3	3	5.121950E+03	7.156780E+01	1.139037E+01	1.000000E+00	5.121950E+03					
4	4	2.254593E+04	1.501530E+02	2.389760E+01	1.000000E+00	2.254593E+04					
5	5	4.873465E+04	2.207593E+02	3.513493E+01	1.000000E+00	4.873465E+04					
6	6	5.145711E+04	2.268416E+02	3.610296E+01	1.000000E+00	5.145711E+04					
7	7	5.822092E+04	2.412901E+02	3.840251E+01	1.000000E+00	5.822092E+04					
8	8	8.792938E+04	2.965289E+02	4.719404E+01	1.000000E+00	8.792938E+04					
9	9	1.045087E+05	3.232780E+02	5.145130E+01	1.000000E+00	1.045087E+05					
10	10	2.864546E+05	5.352146E+02	8.518204E+01	1.000000E+00	2.864546E+05					

(in global coordinate system at each grid)

			(111 910	DDAI COOLUINACE	e system at eac	ii gria)	
GRID	COORD	T1	T2	Т3	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	2.257796E-01	2.257796E-01	5.556862E-02	-1.831903E-03	1.831903E-03	4.204085E-16
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	2.253124E-01	2.244884E-01	5.061107E-03	-1.544883E-03	1.930698E-03	1.247654E-05
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	2.244884E-01	2.253124E-01	5.061107E-03	-1.930698E-03	1.544883E-03	-1.247654E-05
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	2.248731E-01	2.248731E-01	-6.717091E-02	-1.902515E-03	1.902515E-03	4.353024E-16
3101	19	2.257796E-01	2.257796E-01	5.556862E-02	-1.831903E-03	1.831903E-03	4.204085E-16
3102	19	2.782932E-01	2.782932E-01	5.569766E-02	-2.234869E-03	2.234869E-03	4.206278E-16
3201	291	5.061107E-03	-2.244884E-01	-2.253124E-01	-1.633467E-05	1.467460E-03	-1.573769E-03
3202	292	-2.248731E-01	-2.248731E-01	-6.717091E-02	1.535535E-03	-1.535535E-03	4.390095E-16
3203	293	-2.244884E-01	5.061107E-03	-2.253124E-01	-1.467460E-03	1.633467E-05	1.573769E-03
3204	294	-3.070889E-01	-7.139002E-02	-3.070889E-01	-1.671972E-03	4.584769E-16	1.671972E-03

OUTPUT FOR EIGENVECTOR 2

#### EIGENVECTOR

(in global coordinate system at each grid) GRID COORD Т3 т1 Т2 R1 R2 R3 SYS 100 0.0 0.0 0.0 0.0 0.0 0.0 111 0.0 0.0 0.0 0.0 0.0 0.0 112 0 2.098268E-01 -2.098268E-01 2.749016E-14 1.908249E-03 1.908249E-03 -7.239933E-04 0.0 121 0.0 0.0 0.0 0.0 0.0 122 0 2.469433E-01 -2.077252E-01 6.053706E-02 1.625426E-03 1.844591E-03 -7.442003E-04 211 0.0 0.0 0.0 0.0 0.0 0.0 212 0 2.077252E-01 -2.469433E-01 -6.053706E-02 1.844591E-03 1.625426E-03 -7.442003E-04 221 0.0 0.0 0.0 0.0 0.0 0.0 222 0 2.462213E-01 -2.462213E-01 -3.353193E-14 1.814842E-03 1.814842E-03 -7.644073E-04 3101 19 2.098268E-01 -2.098268E-01 2.749016E-14 1.908249E-03 1.908249E-03 -7.239933E-04 3102 19 2.640084E-01 -2.640084E-01 2.755243E-14 2.296775E-03 2.296775E-03 -7.239933E-04 3201 291 -6.053706E-02 -2.077252E-01 2.469433E-01 -7.846801E-04 -1.195091E-03 -1.258295E-03 3202 292 -2.462213E-01 2.462213E-01 -3.353193E-14 -1.277410E-03 -1.277410E-03 -7.662186E-04 3203 293 2.077252E-01 6.053706E-02 -2.469433E-01 -1.195091E-03 -7.846801E-04 -1.258295E-03 3204 294 3.132401E-01 -3.567182E-14 -3.132401E-01 -1.341269E-03 -8.044487E-04 -1.341269E-03

(in global coordinate system at each grid)

			(111 910	Spar Coordinate	e system at ea	on gria,	
GRID	COORI	T1	T2	Т3	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	-2.793835E-01	2.793835E-01	-1.257871E-17	-1.441582E-03	-1.441582E-03	-9.660273E-03
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	2.099831E-01	2.745273E-01	8.363813E-04	-7.782410E-04	6.846300E-04	-9.577011E-03
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	-2.745273E-01	-2.099831E-01	-8.363813E-04	6.846300E-04	-7.782410E-04	-9.577011E-03
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	2.091551E-01	-2.091551E-01	-1.551879E-16	7.371523E-04	7.371523E-04	-9.493750E-03
3101	19	-2.793835E-01	2.793835E-01	-1.257871E-17	-1.441582E-03	-1.441582E-03	-9.660273E-03
3102	19	-3.306597E-01	3.306597E-01	-1.357894E-17	-2.355785E-03	-2.355785E-03	-9.660273E-03
3201	291	-8.363813E-04	2.745273E-01	2.099831E-01	-9.691665E-03	3.082395E-06	-7.822932E-05
3202	292	-2.091551E-01	2.091551E-01	-1.551879E-16	-1.026739E-04	-1.026739E-04	-9.669339E-03
3203	293	-2.745273E-01	8.363813E-04	-2.099831E-01	3.082395E-06	-9.691665E-03	-7.822932E-05
3204	294	2.183707E-01	-1.464586E-16	-2.183707E-01	-1.861042E-04	-9.718228E-03	-1.861042E-04

OUTPUT FOR EIGENVECTOR 4

#### EIGENVECTOR

(in global coordinate system at each grid) GRID COORD т1 T3 R1 R2 Т2 R3 SYS 100 0.0 0.0 0.0 0.0 0.0 0.0 111 0.0 0.0 0.0 0.0 0.0 0.0 112 0 -1.409456E-01 -1.409456E-01 -4.074739E-02 3.821831E-03 -3.821831E-03 4.833014E-17 0.0 0.0 121 0.0 0.0 0.0 0.0 122 0 -8.206453E-02 -9.996514E-02 6.860444E-02 1.050561E-03 4.367738E-03 -6.187025E-04 0.0 211 0.0 0.0 0.0 0.0 0.0 212 0 -9.996514E-02 -8.206453E-02 6.860444E-02 -4.367738E-03 -1.050561E-03 6.187025E-04 221 0 0.0 0.0 0.0 0.0 0.0 0.0 222 0 -8.332244E-02 -8.332244E-02 -2.732509E-01 -4.602225E-03 4.602225E-03 4.019032E-17 3101 19 -1.409456E-01 -1.409456E-01 -4.074739E-02 3.821831E-03 -3.821831E-03 4.833014E-17 3102 19 -2.966655E-01 -2.966655E-01 -4.155659E-02 7.432282E-03 -7.432282E-03 4.883887E-17 3201 291 6.860444E-02 9.996514E-02 8.206453E-02 -4.408058E-04 7.160866E-03 -8.333937E-03 3202 292 8.332244E-02 8.332244E-02 -2.732509E-01 7.811994E-03 -7.811994E-03 4.375149E-17 3203 293 9.996514E-02 6.860444E-02 8.206453E-02 -7.160866E-03 4.408058E-04 8.333937E-03 3204 294 -3.689602E-01 -3.293645E-01 -3.689602E-01 -9.440189E-03 4.426023E-17 9.440189E-03

#### E I G E N V E C T O R

(in global coordinate system at each grid)

			(111 910	DDAI COOLUINACE	e system at eac	on grid)	
GRID	COORI	T1	Т2	Т3	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	-6.341469E-02	-6.341469E-02	3.911836E-01	-1.145572E-02	1.145572E-02	-1.207958E-16
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	-1.623121E-01	-1.473997E-01	-2.739692E-02	-3.671459E-03	2.130204E-03	1.163037E-03
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	-1.473997E-01	-1.623121E-01	-2.739692E-02	-2.130204E-03	3.671459E-03	-1.163037E-03
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	-1.668975E-01	-1.668975E-01	-1.681957E-01	-1.416000E-03	1.416000E-03	-7.629207E-17
3101	19	-6.341469E-02	-6.341469E-02	3.911836E-01	-1.145572E-02	1.145572E-02	-1.207958E-16
3102	19	3.970712E-01	3.970712E-01	4.083722E-01	-2.190130E-02	2.190130E-02	-1.245356E-16
3201	291	-2.739692E-02	1.473997E-01	1.623121E-01	4.095169E-04	2.914967E-03	-3.029385E-03
3202	292	1.668975E-01	1.668975E-01	-1.681957E-01	3.023068E-03	-3.023068E-03	-7.404819E-17
3203	293	1.473997E-01	-2.739692E-02	1.623121E-01	-2.914967E-03	-4.095169E-04	3.029385E-03
3204	294	1.427369E-03	-1.904093E-01	1.427369E-03	-3.371325E-03	-5.534915E-17	3.371325E-03

OUTPUT FOR EIGENVECTOR 6

#### EIGENVECTOR

(in global coordinate system at each grid) T2 T3 R1 R2

GRID	COORI	т1	T2	Т3	R1	R2	R3
GRID		) 11	12	13	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	-3.724522E-02	-3.724522E-02	3.693792E-01	2.515040E-03	-2.515040E-03	-1.867623E-16
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	2.542942E-02	1.207365E-02	3.433346E-01	-1.395074E-03	6.731852E-04	-7.305658E-04
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	1.207365E-02	2.542942E-02	3.433346E-01	-6.731852E-04	1.395074E-03	7.305658E-04
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	2.487312E-02	2.487312E-02	2.889412E-01	-1.012371E-03	1.012371E-03	-1.298882E-16
3101	19	-3.724522E-02	-3.724522E-02	3.693792E-01	2.515040E-03	-2.515040E-03	-1.867623E-16
3102	19	-1.864230E-01	-1.864230E-01	3.865585E-01	7.693148E-03	-7.693148E-03	-1.859938E-16
3201	291	3.433346E-01	-1.207365E-02	-2.542942E-02	-3.130493E-04	1.017383E-03	-1.451089E-03
3202	292	-2.487312E-02	-2.487312E-02	2.889412E-01	1.356019E-03	-1.356019E-03	-1.329625E-16
3203	293	-1.207365E-02	3.433346E-01	-2.542942E-02	-1.017383E-03	3.130493E-04	1.451089E-03
3204	294	-1.029617E-01	3.028070E-01	-1.029617E-01	-1.544026E-03	-1.068311E-16	1.544026E-03

### (in global coordinate system at each grid)

			(111 910	Dai Coolainac	. Bybecen at car	JII griu,	
GRID	COORI	) T1	T2	Т3	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	-1.161277E-01	1.161277E-01	3.712861E-14	8.532284E-03	8.532284E-03	1.991342E-03
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	-2.103757E-01	1.580113E-01	3.700141E-01	3.813257E-03	5.055154E-03	1.576458E-03
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	-1.580113E-01	2.103757E-01	-3.700141E-01	5.055154E-03	3.813257E-03	1.576458E-03
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	-2.239355E-01	2.239355E-01	9.574826E-15	4.548427E-03	4.548427E-03	1.161574E-03
3101	19	-1.161277E-01	1.161277E-01	3.712861E-14	8.532284E-03	8.532284E-03	1.991342E-03
3102	19	2.040667E-01	-2.040667E-01	3.904488E-14	1.494552E-02	1.494552E-02	1.991342E-03
3201	291	-3.700141E-01	1.580113E-01	-2.103757E-01	1.047123E-03	-7.116251E-03	-8.256382E-03
3202	292	2.239355E-01	-2.239355E-01	9.574826E-15	-8.601971E-03	-8.601971E-03	1.387704E-03
3203	293	-1.580113E-01	3.700141E-01	2.103757E-01	-7.116251E-03	1.047123E-03	-8.256382E-03
3204	294	2.627866E-01	8.790004E-15	-2.627866E-01	-9.747110E-03	6.965249E-04	-9.747110E-03

OUTPUT FOR EIGENVECTOR 8

#### EIGENVECTOR

#### (in global coordinate system at each grid) GRID COORD т1 T2 T3 R1 R2 R3 SYS 100 0.0 0.0 0.0 0.0 0.0 0.0 111 0.0 0.0 0.0 0.0 0.0 0.0 0 1.419129E-01 -1.419129E-01 -1.945058E-15 -9.845793E-03 -9.845793E-03 3.905077E-03 112 121 0.0 0.0 0.0 0.0 0.0 122 0 -9.985553E-02 -3.117029E-01 1.565936E-01 7.646235E-03 1.079164E-03 6.508205E-03 211 0.0 0.0 0.0 0.0 0.0 0.0 212 0 3.117029E-01 9.985553E-02 -1.565936E-01 1.079164E-03 7.646235E-03 6.508205E-03 221 0.0 0.0 0.0 0.0 0.0 0.0 222 0 - 1.077791E - 01 1.077791E - 01 - 2.571978E - 16 2.559339E - 03 2.559339E - 03 9.111334E - 0319 1.419129E-01 -1.419129E-01 -1.945058E-15 -9.845793E-03 -9.845793E-03 3.905077E-03 3101 3102 19 -4.988587E-01 4.988587E-01 -2.395155E-15 -3.352340E-02 -3.352340E-02 3.905077E-03 3201 291 -1.565936E-01 -3.117029E-01 -9.985553E-02 8.204729E-03 -2.921019E-03 -3.800032E-03 3202 292 1.077791E-01 -1.077791E-01 -2.571978E-16 -4.062794E-03 -4.062794E-03 8.431563E-03 3203 293 3.117029E-01 1.565936E-01 9.985553E-02 -2.921019E-03 8.204729E-03 -3.800032E-03 3204 294 1.398105E-01 -3.214973E-16 -1.398105E-01 -4.977733E-03 7.906040E-03 -4.977733E-03

(in global coordinate system at each grid)

			(111 910	Dai Coolainac	z bybicim at car	on grid,	
GRID	COORI	T1	Т2	Т3	R1	R2	R3
	SYS						
100	0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0.0	0.0	0.0	0.0	0.0	0.0
112	0	9.874954E-03	9.874954E-03	-3.318802E-01	-3.540108E-04	3.540108E-04	1.057657E-17
121	0	0.0	0.0	0.0	0.0	0.0	0.0
122	0	-1.314425E-01	-1.303271E-01	3.130906E-01	1.280416E-02	1.936418E-03	1.852483E-03
211	0	0.0	0.0	0.0	0.0	0.0	0.0
212	0	-1.303271E-01	-1.314425E-01	3.130906E-01	-1.936418E-03	-1.280416E-02	-1.852483E-03
221	0	0.0	0.0	0.0	0.0	0.0	0.0
222	0	-1.451769E-01	-1.451769E-01	1.668669E-01	-6.882197E-04	6.882197E-04	-1.23222E-17
3101	19	9.874954E-03	9.874954E-03	-3.318802E-01	-3.540108E-04	3.540108E-04	1.057657E-17
3102	19	3.132106E-01	3.132106E-01	-3.648080E-01	-1.802313E-02	1.802313E-02	1.177457E-17
3201	291	3.130906E-01	1.303271E-01	1.314425E-01	1.955859E-04	3.010059E-03	-4.448523E-03
3202	292	1.451769E-01	1.451769E-01	1.668669E-01	4.163780E-03	-4.163780E-03	-7.256419E-18
3203	293	1.303271E-01	3.130906E-01	1.314425E-01	-3.010059E-03	-1.955859E-04	4.448523E-03
3204	294	-1.276522E-01	1.427482E-01	-1.276522E-01	-5.587510E-03	-1.293833E-17	5.587510E-03

OUTPUT FOR EIGENVECTOR 10

#### EIGENVECTOR

(in global coordinate system at each grid) GRID COORD Т3 R1 R2 T1Т2 R3 SYS 100 0.0 0.0 0.0 0.0 0.0 0.0 111 0.0 0.0 0.0 0.0 0.0 0.0 112 0.0 0.0 0.0 121 0.0 0.0 0.0 122 0 1.457712E-01 -3.010482E-02 -1.107608E-01 2.311276E-03 -2.176723E-03 -6.667304E-03 211 0.0 0.0 0.0 0.0 0.0 0.0 0 -3.010482E-02 1.457712E-01 -1.107608E-01 2.176723E-03 -2.311276E-03 6.667304E-03 212 221 0 0.0 0.0 0.0 0.0 0.0 0.0 222 0 1.849120E-01 1.849120E-01 1.282324E-01 3.080425E-03 -3.080425E-03 -7.253510E-17 3101 19 -5.244173E-01 -5.244173E-01 -3.226796E-02 -1.104391E-02 1.104391E-02 2.466193E-16 3102 19 1.574536E-01 1.574536E-01 -4.287539E-02 -3.539030E-02 3.539030E-02 2.611264E-16 3201 291 -1.107608E-01 3.010482E-02 -1.457712E-01 -4.762449E-03 -4.392630E-03 2.025267E-03 3202 292 -1.849120E-01 -1.849120E-01 1.282324E-01 -3.668946E-03 3.668946E-03 0.0 3203 293 3.010482E-02 -1.107608E-01 -1.457712E-01 4.392630E-03 4.762449E-03 -2.025267E-03 3204 294 -7.299191E-02 1.050199E-01 -7.299191E-02 1.354195E-03 1.015491E-16 -1.354195E-03

# EFFECTIVE MODAL MASSES OR WEIGHTS (in coordinate system 0)

Units are same as units for mass input in the Bulk Data Deck Reference point is the PARAM GRDPNT grid: 100

MODE NUM	CYCLES	T1	Т2	Т3	R1	R2	R3
1	8.243086E+00	1.441150E+03	1.441150E+03	1.174957E+00	2.086481E+07	2.086481E+07	3.128029E-20
2	8.310141E+00	1.453188E+03	1.453188E+03	7.813450E-25	2.026645E+07	2.026645E+07	9.350473E+04
3	1.139037E+01	1.220303E+01	1.220303E+01	1.498775E-26	3.352989E+04	3.352989E+04	3.641755E+06
4	2.389760E+01	2.613795E+01	2.613795E+01	2.373060E+02	7.807750E+04	7.807750E+04	3.128762E-24
5	3.513493E+01	3.252471E+01	3.252471E+01	4.597040E+01	1.147872E+05	1.147872E+05	5.111790E-25
6	3.610296E+01	1.331710E-04	1.331710E-04	2.636815E+03	6.072446E+03	6.072446E+03	2.361307E-24
7	3.840251E+01	3.422216E+01	3.422216E+01	6.691178E-24	1.529019E+05	1.529019E+05	1.057675E+02
8	4.719404E+01	1.393397E-01	1.393397E-01	3.924220E-27	3.848304E+04	3.848304E+04	1.442802E+04
9	5.145130E+01	2.890068E-02	2.890068E-02	7.515295E+01	5.791888E+04	5.791888E+04	2.324093E-26
10	8.518204E+01	6.853074E-02	6.853074E-02	7.414881E-01	1.497763E+03	1.497763E+03	2.607528E-25
S ⁻	um all modes:	2.999662E+03	2.999662E+03	2.997161E+03	4.161452E+07	4.161452E+07	3.749794E+06
Tota	l model mass:	5.000000E+03	5.000000E+03	5.000000E+03	4.287500E+07	4.287500E+07	6.250000E+06
Modes % of	total mass*:	59.99%	59.99%	59.94%	97.06%	97.06%	60.00%

^{*}If all modes are calculated the % of total mass should be 100% of the free mass (i.e. not counting mass at constrained DOF's).

Percentages are only printed for components that have finite model mass.