The University of Melbourne School of Computing and Information Systems COMP30026 Models of Computation

Selected Problem Set Solutions, Week 12

P12.1 See the Week 12 lecture slides.	(2,1)
P12.2 See the Week 12 lecture slides.	(2,0)
P12.3 (b) is not well-founded, as we can have infinite strictly decreasing sequences in \mathbb{Q} , such as $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ But (a), (c) and (d) are all well-founded. For (d) it may help to look at the Hasse diagram for $\mathbb{N} \times \mathbb{N}$ ordered by \prec (shown here in the margin).	; (1,1)
P12.4 hailstone :: Integer -> Int hailstone 0 = 0 hailstone 1 = 0 hailstone n even n = hailstone (n 'div' 2) + 1 Angula Interest3 Project Exam Help	$ \begin{array}{c} (1,0) \\ \vdots \\ (0,2) \\ (0,1) \\ \vdots \\ (0,0) \end{array} $

P12.5 Assume \mathcal{B} is countable. Then we can enumerate \mathcal{B} :

However, the infinite sequence which has

$$i'\text{th bit} = \left\{ \begin{array}{ll} 0 & \text{if the ith bit of b_i is 1} \\ 1 & \text{if the ith bit of b_i is 0} \end{array} \right.$$

is different from each of the b_i . Hence no enumeration can exist, and \mathcal{B} is uncountable. This should not be surprising, because the set \mathcal{B} is really the same as (or is isomorphic to) $\mathbb{N} \to \Sigma$.