

Programmer avec le logiciel R – Cours 2

Gaëlle LELANDAIS

Version du document : 11/11/2019, ce cours a été conçu avec Leslie RFGAD

Importation et exportation de données

Rappel: gérer son répertoire de travail

- Dans quel répertoire je travaille ?
 - > getwd()
- Changer de répertoire
 - > setwd()

```
> getwd()
[1] "/Users/gaellelelandais/Enseignements/Seance2"
> setwd("../Seance3")
> getwd()
[1] "/Users/gaellelelandais/Enseignements/Seance3"
```

Lecture d'un fichier texte

- Objectif
 - Importer dans R un ensemble de données écrites dans un fichier texte
- Fonctions disponibles
 - > scan()
 - read.table(), read.csv()
 - readLines()

Fonction « read.table() »

Le nom du fichier texte est « FichierALire.txt »

Les colonnes sont séparées par des tabulations

Ecriture d'un fichier texte

- Objectif
 - Ecrire un ensemble de données obtenues avec le logiciel R dans un fichier texte
 - Ce fichier pourra être lu par un autre logiciel (Excel ou OpenOffice par exemple)
- Fonctions disponibles
 - > cat()
 - > write()
 - write.table()

La fonction « write.table() »

Exemple

 Choisir au hasard un ensemble de 10 valeurs numériques selon distribution normale, puis sauver le résultat dans un fichier

```
> myData = rnorm(10)
> write.table(myData, file = "FichierDeSortie.txt")
> write.table(myData, file = "FichierDeSortie2.txt", row.names
= F, col.names = F)
```


Manipulation des objets

Vecteurs

Définition

 Succession d'éléments (ou informations) de même type (nombres entiers ou décimaux, lettres de l'alphabet, mots, etc.)

```
> Vect = c(1, 4, 5, 6, 57)
> Vect
[1] 1 4 5 6 57
> Vect2 = c('a', 'k', 'm', 'p')
> Vect2
[1] 'a' 'k' 'm' 'p'
```

Valeurs particulières

- > NA : Valeur manquante (Not Available)
- NaN : Pas de nombre (Not a Number)
- -Inf/Inf : Symbole infini (+ ou –)

Vecteurs

Exemple

```
> vect = 12:28
[1] 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
```

- Accéder à un élément d'un vecteur
 - > Symbole « [] »

```
> vect[2]  # 2ème élément du vecteur
[1] 13
```

Vecteurs

- Accéder à plusieurs éléments d'un vecteur
 - > Consécutifs

```
> vect[c(5, 6, 7, 8, 9)]
[1] 16 17 18 19 20
```

> vect[5:9] [1] 16 17 18 19 20

Non consécutifs

```
> vect[c(5, 10, 13)]
[1] 16 21 24
```

Supprimer un ou plusieurs éléments d'un vecteur

```
> vect[-1]
[1] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
> vect[-5:-9]
[1] 12 13 14 15 21 22 23 24 25 26 27 28
```

Etiquetage des éléments d'un vecteur

Principe

- > Donner un nom explicite aux éléments d'un vecteur
- Possibilité de suivre les éléments au fur et à mesure des manipulations du vecteur

Fonction

names()

```
> notes = c(12,15,8,9,11,15,5,20,17)
> names(notes) = c("Villon", "Polin", "Exfi", "Rotaf", "Zerif",
"Gared", "Neyres", "Ropert", "Saidil")
> notes
Villon Polin Exfi Rotaf Zerif Gared Neyres Ropert Saidil
    12    15    8    9    11    15    5    20    17
> notes[c("Exfi", "Gared")]
    Exfi Gared
    8    15
```

Tableaux: matrices et data frame

Définition

> Ensemble d'éléments regroupés en deux dimensions

Matrice

Un seul type d'élément pour toutes les cellules

Data frame

Les colonnes peuvent être de types différents (valeurs numériques, chaines de caractères, etc.)

Utilisation des tableaux

- Fonctions de création d'un tableau
 - matrix(), data.frame(), cbind(), rbind(), etc.
- Fonctions de manipulation d'un tableau
 - data.class()
 - > dim()
 - > etc.

Tableaux

• Exemple :

- Accéder aux éléments du tableau
 - > Symbole « [ligne, colonne] »

Etiquetage des éléments d'un tableau

Principe

 Donner un nom explicite aux lignes et aux colonnes d'un tableau

Fonctions

row.names(), colnames()

Test sur un vecteur ou un tableau

- Identifier les éléments d'un vecteur qui vérifient une condition
- Les positions peuvent également être obtenues
 - > which(cond)

```
> vect = c(12,15,8,15,9,5,11,17,19,5,15,12,8)
> vect <= 10
  [1] FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
TRUE FALSE FALSE TRUE

> vect = 100:110
> vect
  [1] 100 101 102 103 104 105 106 107 108 109 110
> which(vect >= 105)
  [1] 6 7 8 9 10 11
```

Sauvegarde des commandes

- Choisir un logiciel d'édition de texte
 - Par exemple: kate, kwrite, gedit, nedit, vim, emacs, etc.
- Copier les commandes écrites dans l'éditeur de texte puis les coller dans la console R
 - Ne pas oublier de sauvegarder le fichier texte

Exécuter les commandes d'un fichier

- Les commandes R écrites dans un fichier texte peuvent être exécutées successivement
 - > source(« MonFichier.R »)
- Certaines lignes peuvent être ignorées
 - > Ajout du symbole « # » en début de ligne

Fichier texte (nommé « ScriptR.R »):

```
# Exemple de script R
print("c'est un test")

# Calcul de la valeur du
# cosinus de 90
a = cos(90)
print(a)
```

Logiciel R:

```
> source("ScriptR.R")
[1] "c'est un test"
[1] -0.4480736
```

Le logiciel RStudio

https://rstudio.com/

Séance d'exercices