L1-MASS - FONCTIONS DE 2 VARIABLES - 2013-2014

FEUILLE DE TRAVAUX DIRIGÉS N° 4

Équation du plan tangent - Développements limités

Enseignant: H. El-Otmany

A.U.: 2013-2014

On considère les fonctions de deux variables suivantes :

1.
$$f(x,y) = x^2 + y^2$$
; $(x_0, y_0) = (1, 1)$.

2.
$$f(x,y) = 3(x^2 + y^2)$$
; $(x_0, y_0) = (0,0)$.

3.
$$f(x,y) = 3sin(xy); (x_0, y_0) = (\frac{\sqrt{\pi}}{2}, \frac{\sqrt{\pi}}{3}).$$

4.
$$f(x,y) = 2(x-1)^2 - 3(y-\sqrt{2})^2$$
; $(x_0, y_0) = (1, \sqrt{2})$.

Dans chacun des cas ci-dessus, déterminer une équation du plan tangent à la surface représentative de f au point (x_0, y_0) .

Exercice n°2 (Développements limités pour une fonction à une seule variable)

Établir pour chacune des fonctions proposées ci-dessous un développement limité de f en 0 à l'ordre n.

(a)
$$f(x) = e^x$$
, $n = 6$ (b) $f(x) = \sqrt{1+x}$, $n = 4$

(c)
$$f(x) = \ln(1+x^2)$$
, $n = 5$ (d) $f(x) = \frac{\ln(1+x)}{1+x}$, $n = 4$ (e) $f(x) = \sin(2x) + \cos(x^2)$, $n = 4$ (f) $f(x) = \tan(x)$, $n = 3$

(e)
$$f(x) = \sin(2x) + \cos(x^2)$$
, $n = 4$ (f) $f(x) = \tan(x)$, $n = 3$

(g)
$$f(x) = e^{3x} \sin(2x)$$
, $n = 4$ (h) $f(x) = (1+x)^{\frac{1}{x}}$, $n = 3$

Exercice n°3 (rappel sur le dérivées) Justifier l'existence des dérivées partielles des fonctions suivantes et les calculer.

(a)
$$f(x,y) = x^2 e^{xy}$$
 (b) $f(x,y) = \sin x^2 + \cos y^2$ (c) $f(x,y) = \sqrt{1 + x^2 y^2}$.

Exercice n°4 On considère la fonction f définie sur \mathbb{R}^2 par : $f(x,y) = \frac{e^x}{1+y^2}$

- 1. Expliquer brièvement pourquoi f est différentiable en tout point de \mathbb{R} .
- 2. Calculer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial u}$.
- 3. Donner un développement limité à l'ordre 1 de f au voisinage du point de coordonnées (0,0).

On considère la fonction f définie par : Exercice n°5

$$f(x,y) = x^2 + 5y^2 - 4xy + 3y - 4.$$

- 1. Calculer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$.
- 2. Donner le développement de Taylor à l'ordre 2 de f au voisinage du point (1,1).

Exercice n°6 On considère les fonctions suivantes :

$$f(x,y) = \frac{x+y}{3+x^2y^2}, \quad f(x,y) = \exp(2x-y)\ln\left(\frac{x}{y}\right).$$

- 1. Calculer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$.
- 2. Donner le développement de Taylor à l'ordre 2 de f au point (0,1).