Learning-Assisted Optimization for Transmission Switching

EURO 2024 (July 1st 2024)

Salvador Pineda

(joint work with J. M. Morales, A. Jiménez-Cordero)

OASYS group, University of Málaga (Spain)

Optimal power flow (OPF): Determine the power generation and power flows to satisfy the demand at the minimum cost

The cheap unit satisfies the demand

Optimal solution: generate all with cheapest unit (cost = 1000€)

Electrons are not potatoes!!!

If $f_{13} \leq 40$, the expensive unit also generates (cost=1800 \in)

Network limits increate the cost!!!

If line 13 is disconnected, cost= 1000€

Disconnecting lines can reduce cost!!!

In the 118-bus system, the average cost saving is 13.2%

The optimal power flow (OPF) is formulated as a linear optimization problem

$$\min_{p_i, f_{ij}, \theta_i} \quad \sum_i c_i \, p_i \tag{1a}$$

s.t.
$$\sum_{(i,j)\in\mathcal{L}_{i}^{-}} f_{ij} - \sum_{(i,j)\in\mathcal{L}_{i}^{+}} f_{ij} = p_{i} - d_{i}, \quad \forall i$$
 (1b)

$$f_{ij} = b_{ij}(\theta_i - \theta_j), \quad \forall (i,j) \in \mathcal{L}$$
 (1c)

$$\underline{p}_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i \tag{1d}$$

$$-\underline{f}_{ij} \leqslant f_{ij} \leqslant \overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
 (1e)

The optimal transmission switching (OTS) requires binary variables x_{ij} and is formulated as a mixed-integer non-linear problem ...

$$\min_{p_i, f_{ij}, \theta_i, x_{ij}} \quad \sum_i c_i \, p_i \tag{2a}$$

s.t.
$$\sum_{(i,j)\in\mathcal{L}_{i}^{-}} f_{ij} - \sum_{(i,j)\in\mathcal{L}_{i}^{+}} f_{ij} = p_{i} - d_{i}, \quad \forall i$$
 (2b)

$$f_{ij} = x_{ij}b_{ij}(\theta_i - \theta_j), \quad \forall (i,j) \in \mathcal{L}$$
 (2c)

$$\underline{p}_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i \tag{2d}$$

$$- \underline{x_{ij}}\underline{f}_{ij} \leqslant f_{ij} \leqslant \underline{x_{ij}}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
 (2e)

$$\mathbf{x}_{ij} \in \{0, 1\}, \quad \forall (i, j) \in \mathcal{L}$$
 (2f)

... that can be directly solved using optimization solvers such as Gurobi.

To avoid the non-linear terms in

$$f_{ij} = \mathbf{x}_{ij}b_{ij}(\theta_i - \theta_j)$$

We replace it by

$$b_{ij}(\theta_i - \theta_j) - \overline{M}_{ij}(1 - x_{ij}) \le f_{ij} \le b_{ij}(\theta_i - \theta_j) - \underline{M}_{ij}(1 - x_{ij})$$

Together with equation

$$-x_{ij}\underline{f}_{ij} \leqslant f_{ij} \leqslant x_{ij}\overline{f}_{ij}$$

We have that:

- If
$$x_{ij} = 1 \Rightarrow b_{ij}(\theta_i - \theta_j) \leqslant f_{ij} \leqslant b_{ij}(\theta_i - \theta_j)$$
 and $-\underline{f}_{ij} \leqslant f_{ij} \leqslant \overline{f}_{ij}$

- If
$$x_{ij} = 0 \Rightarrow f_{ij} = 0$$
 and $\underline{M}_{ij} \leqslant b_{ij}(\theta_i - \theta_j) \leqslant \overline{M}_{ij}$

 $\min_{p_i, f_{ij}, \theta_i, x_{ij}} \quad \sum_i c_i \, p_i$

The OTS is reformulated as a mixed-integer linear problem

s.t.
$$\sum_{(i,j)\in\mathcal{L}_{i}^{-}} f_{ij} - \sum_{(i,j)\in\mathcal{L}_{i}^{+}} f_{ij} = p_{i} - d_{i}, \quad \forall i$$
$$b_{ij}(\theta_{i} - \theta_{j}) - \overline{M}_{ij}(1 - \mathbf{x}_{ij}) \leqslant f_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
$$f_{ij} \leqslant b_{ij}(\theta_{i} - \theta_{j}) - \underline{M}_{ij}(1 - \mathbf{x}_{ij}), \quad \forall (i,j) \in \mathcal{L}$$

 $p_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i$ $-x_{ij}\underline{f}_{ij} \leqslant f_{ij} \leqslant x_{ij}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$

 $x_{i,i} \in \{0,1\}, \quad \forall (i,j) \in \mathcal{L}$ \underline{M}_{ij} and M_{ij} must be valid bounds for $b_{ij}(\theta_i - \theta_j)$ if line is open

 \underline{M}_{ij} and M_{ij} must be small enough to avoid computational issues

10 / 27

(3a)

(3b)

(3c)

(3d)(3e)

(3f)

(3g)

Literature review

Fattahi et al. (2019) find a bound on $\overline{M}_{ij}^{\mathrm{OPT}}$ if there exists a connected spanning subgraph of the network with non-switchable lines

$$\overline{M}_{i'j'}^{\text{OPT}} \leqslant b_{i'j'} \sum_{(k,l) \in SP_{i'j'}} \frac{\overline{f}_{kl}}{b_{kl}}$$

where $SP_{i'j'}$ is the shortest path of **connected lines** between nodes i' and j' (very easy to compute using Dijkstra's algorithm)

Literature review

Learning-based approaches to solve the OTS:

- ullet Johnson et al. (2021): solve K linear problems fixing binary variables to those of nearest neighbors and choose the cheapest solution.
 - Fast and interpretable
 - Probably suboptimal
- Yang and Oren (2019); Han and Hill (2022); Bugaje et al. (2023) learn the line status using neural network.
 - Fast and precise
 - Not interpretable and hard to train

Research question

Is it possible to create a learning-assisted methodology that is fast and precise while remaining interpretable?

The proposed learning-assisted methodology reduce the computational burden of the OTS focusing on:

Fixing some binary variables

Finding tighter big-M values

We compare the following approaches:

• Bench: set big-M as Fattahi et al. (2019) and solve MIP.

- Bench: set big-M as Fattahi et al. (2019) and solve MIP.
- Direct: set binaries to rounded average of nearest neighbors.

- Bench: set big-M as Fattahi et al. (2019) and solve MIP.
- Direct: set binaries to rounded average of nearest neighbors.
- ullet Linear: solve K LPs fixing binaries to nearest neighbors.

- Bench: set big-M as Fattahi et al. (2019) and solve MIP.
- Direct: set binaries to rounded average of nearest neighbors.
- Linear: solve K LPs fixing binaries to nearest neighbors.
- FatM: update shortest paths based on unanimous vote of nearest neighbors to recompute Fattahi's big-M. Binaries are not fixed.

- Bench: set big-M as Fattahi et al. (2019) and solve MIP.
- Direct: set binaries to rounded average of nearest neighbors.
- Linear: solve K LPs fixing binaries to nearest neighbors.
- FatM: update shortest paths based on unanimous vote of nearest neighbors to recompute Fattahi's big-M. Binaries are not fixed.
- FixB: fix binaries based on unanimous vote of nearest neighbors.

- Bench: set big-M as Fattahi et al. (2019) and solve MIP.
- Direct: set binaries to rounded average of nearest neighbors.
- Linear: solve K LPs fixing binaries to nearest neighbors.
- FatM: update shortest paths based on unanimous vote of nearest neighbors to recompute Fattahi's big-M. Binaries are not fixed.
- FixB: fix binaries based on unanimous vote of nearest neighbors.
- FixB-FatM: a combination of the two previous approaches.

- Bench: set big-M as Fattahi et al. (2019) and solve MIP.
- Direct: set binaries to rounded average of nearest neighbors.
- Linear: solve K LPs fixing binaries to nearest neighbors.
- FatM: update shortest paths based on unanimous vote of nearest neighbors to recompute Fattahi's big-M. Binaries are not fixed.
- FixB: fix binaries based on unanimous vote of nearest neighbors.
- FixB-FatM: a combination of the two previous approaches.
- AngM: big-M are set to maximum/minimum angle differences of all observed data. A security factor > 1 can be used.

- 118-bus system with 186-lines (69 switchable lines)
- 500 instances with different demands $(\pm 10\%)$
- ullet Gurobi with mipgap at 0.01% and maximum time 1 hour

Approach	K	# opt	# sub	# inf	gap-ave	gap-max	time (s)
Bench	-	-	-	-	-	-	145.00
Direct	50	0	500	0	2.06%	14.14%	0.00
Direct	499	0	500	0	2.63%	8.38%	0.00
Linear	50	51	449	0	0.08%	1.06%	0.04
Linear	499	127	373	0	0.04%	0.71%	0.39
FatM	50	500	0	0	-	-	109.95
FixB	50	500	0	0	-	-	16.39
FixB-FatM	50	500	0	0	-	-	12.33
$1 \times AngM$	499	495	5	0	0.002%	0.39%	0.70
$1.1 \times AngM$	499	500	0	0	-	-	0.78

- *K*: number of nearest neighbors.
- # opt: number of optimal instances.
- # sub: number of suboptimal instances.
- # inf: number of infeasible instances.
- gap-ave, gap-max: average and maximum gap compared to Bench.
- time: average time of 500 instances (in seconds).

Approach	K	# opt	# sub	# inf	gap-ave	gap-max	time (s)
Bench	-	-	-	-	-	-	145.00
Direct	50	0	500	0	2.06%	14.14%	0.00
Direct	499	0	500	0	2.63%	8.38%	0.00
Linear	50	51	449	0	0.08%	1.06%	0.04
Linear	499	127	373	0	0.04%	0.71%	0.39
FatM	50	500	0	0	-	-	109.95
FixB	50	500	0	0	-	-	16.39
FixB-FatM	50	500	0	0	-	-	12.33
$1 \times A$ ng M	499	495	5	0	0.002%	0.39%	0.70
$1.1{\times} \textit{AngM}$	499	500	0	0	-	-	0.78

- The average time of *Bench* amount to 145s.
- 12 instances are not solved to global optimality in one hour.

Approach	K	# opt	# sub	# inf	gap-ave	gap-max	time (s)
Bench	-	-	-	-	-	-	145.00
Direct	50	0	500	0	2.06%	14.14%	0.00
Direct	499	0	500	0	2.63%	8.38%	0.00
Linear	50	51	449	0	0.08%	1.06%	0.04
Linear	499	127	373	0	0.04%	0.71%	0.39
FatM	50	500	0	0	-	-	109.95
FixB	50	500	0	0	-	-	16.39
FixB-FatM	50	500	0	0	-	-	12.33
$1 \times AngM$	499	495	5	0	0.002%	0.39%	0.70
$1.1 \times AngM$	499	500	0	0	-	-	0.78

- Direct is really fast but suboptimal.
- Linear gets the optimal solution in some instances.
- Linear with K=499 can be competitive.

Approach	K	# opt	# sub	# inf	gap-ave	gap-max	time (s)
Bench	-	-	-	-	-	-	145.00
Direct	50	0	500	0	2.06%	14.14%	0.00
Direct	499	0	500	0	2.63%	8.38%	0.00
Linear	50	51	449	0	0.08%	1.06%	0.04
Linear	499	127	373	0	0.04%	0.71%	0.39
FatM	50	500	0	0	-	-	109.95
FixB	50	500	0	0	-	-	16.39
FixB-FatM	50	500	0	0	-	-	12.33
$1 \times AngM$	499	495	5	0	0.002%	0.39%	0.70
$1.1 \times AngM$	499	500	0	0	-	-	0.78

- FatM does not solve all instances within one hour, but average time is lower than Bench.
- FixB solves all instances within one hour and significantly reduces computational time.
- FixB-FatM yields the best results.

Approach	K	# opt	# sub	# inf	gap-ave	gap-max	time (s)
Bench	-	-	-	-	-	-	145.00
Direct	50	0	500	0	2.06%	14.14%	0.00
Direct	499	0	500	0	2.63%	8.38%	0.00
Linear	50	51	449	0	0.08%	1.06%	0.04
Linear	499	127	373	0	0.04%	0.71%	0.39
FatM	50	500	0	0	-	-	109.95
FixB	50	500	0	0	-	-	16.39
FixB-FatM	50	500	0	0	-	-	12.33
$1 \times AngM$	499	495	5	0	0.002%	0.39%	0.70
$1.1 \times AngM$	499	500	0	0	-	-	0.78

- Learning big-M values using past data significantly reduces time.
- The security factor reduces suboptimality without affecting time.

Approach	K	# opt	# sub	# inf	gap-ave	gap-max	time (s)
Bench	-	-	-	-	-	-	145.00
Linear	499	127	373	0	0.04%	0.71%	0.39
FixB-FatM	50	500	0	0	-	-	12.33
$1.1 \times AngM$	499	500	0	0	-	-	0.78

- If optimality is not crucial, *Linear* is the fastest approach.
- AngM with security factor solves all instances to optimality with a slight increase in computational time.

What if we increase demand variability from $\pm 10\%$ to $\pm 20\%$?

Approach	K	# opt	# sub	# inf	gap-ave	gap-max	time (s)
Bench	-	-	-	-	-	-	510.90
Linear	499	44	456	0	0.153%	1.50%	0.33
FixB-FatM	50	496	4	0	0.002%	0.72%	115.02
$1.1 \times \textit{AngM}$	499	499	1	0	0.000%	0.02%	1.93

- Average time of Bench increases.
- Suboptimal instances of *Linear* increase.
- Computational time of FixB-FatM increases.
- AngM is fast (265x speedup) and precise (only 1 suboptimal).

What if we use normal distributions with correlation?

	K	# opt	# sub	# inf	gap-ave	gap-max	time (s)
Bench	-	-	-	-	-	-	289.50
Linear	499	488	12	0	0.001%	0.11%	0.41
FixB-FatM	50	499	1	0	0.000%	0.17%	0.57
$1.1 \times \textit{AngM}$	499	500	0	0	-	-	0.29

• AngM outperforms the other approaches in precision and time.

Conclusions

• The optimal transmission switching (OTS) determines the lines that can be disconnected to reduce the operating cost.

Conclusions

 The optimal transmission switching (OTS) determines the lines that can be disconnected to reduce the operating cost.

 The OTS is formulated as a mixed-integer linear problem with bigMs that is computationally difficult to solve.

Conclusions

 The optimal transmission switching (OTS) determines the lines that can be disconnected to reduce the operating cost.

 The OTS is formulated as a mixed-integer linear problem with bigMs that is computationally difficult to solve.

 We propose a learning-assisted approach to find tight bigMs and reduce the computational burden of the OTS.

Thanks for the attention!! Questions??

More info: oasys.uma.es Email: spineda@uma.es

References

- Al-Amin B. Bugaje, Jochen L. Cremer, and Goran Strbac. Real-time transmission switching with neural networks. *IET Generation, Transmission & Distribution*, 17(3):696-705, 2023. doi: https://doi.org/10.1049/gtd2.12698. URL https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/gtd2.12698.
- Salar Fattahi, Javad Lavaei, and Alper Atamtürk. A bound strengthening method for optimal transmission switching in power systems. *IEEE Transactions on Power Systems*, 34(1):280–291, 2019.
- Tong Han and David Hill. Learning-based topology optimization of power networks. *IEEE Transactions on Power Systems*, 2022.
- Emma S. Johnson, Shabbir Ahmed, Santanu S. Dey, and Jean-Paul Watson. A k-nearest neighbor heuristic for real-time dc optimal transmission switching, 2021. URL https://arxiv.org/abs/2003.10565.
- Zhu Yang and Shmuel Oren. Line selection and algorithm selection for transmission switching by machine learning methods. In 2019 IEEE Milan PowerTech, pages 1–6. IEEE, 2019.