Digits Clusterization

Unsupervised Machine Learning

Irene Moyano Fernández

18/10/2020

Framing the problem

Trying to find out the best number of clusters to understand out data, we followed the next steps:

- 1. Dimensionality Reduction: Finding is the best method for our data (SVM Classifier)
- 2. Clustering Techniques
 - o Kmeans o Birch
 - MiniBatchKmeans O Agglomerative
- 3. Performance Conclusions: Metrics
- 4. Next steps: Tuning

1. Dimensionality Reduction

1. DIMENSIONALITY REDUCTION: Finding the best method for our data

(30 components, 85% variance ratio)

	precision	recall	fl-score	support
0 1 2 3 4 5 6 7 8 9	1.00 1.00 0.98 1.00 1.00 0.96 1.00 1.00 0.96 0.95	1.00 0.98 1.00 0.99 1.00 0.98 1.00 0.98 0.98	1.00 0.99 0.99 0.99 1.00 0.97 1.00 0.99 0.97	63 59 55 68 66 52 54 62 51 64
accuracy macro avg weighted avg	0.99 0.99 99 %	0.99 0.99	0.99 0.99 0.99	594 594 594

LDA

(3 comp, 95% variance ratio)

	precision	recall	f1-score	support
0	1.00	0.98	0.99	53
1	1.00	0.98	0.99	42
2	0.98	1.00	0.99	41
3	1.00	0.96	0.98	52
4	1.00	1.00	1.00	47
5	1.00	0.95	0.97	39
6	0.98	1.00	0.99	43
7	1.00	0.96	0.98	48
8	0.92	0.97	0.95	37
9	0.92	1.00	0.96	48
accuracy			0.98	450
macro avg	0.98	0.98	0.98	450
weighted avg	0.98	0.98	0.98	450
Accuracy: 0.98 %				

1. DIMENSIONALITY REDUCTION: Finding the best method for our data

SVM on original data

	precision	recall	f1-score	support
0	1.00	0.98	0.99	63
1	0.95	1.00	0.98	59
2	1.00	1.00	1.00	55
3	1.00	0.99	0.99	68
4	0.99	1.00	0.99	66
4 5	0.96	0.98	0.97	52
6	1.00	1.00	1.00	54
7	1.00	0.98	0.99	62
8	0.96	0.96	0.96	51
9	0.97	0.94	0.95	64
accuracy			0.98	594
macro avģ	0.98	0.98	0.98	594
weighted avg	0.98	0.98	0.98	594
Accuracy: 0.	98 %			

	/	(Under 0.95)	Precision	Recall	F1-score
Original	5	0	98%	98%	98%
PCA	6	0	99%	99%	99%
LDA	6	2	98%	98%	98%

2. Clustering Techniques

2.0. Checking # clusters

Silhouette Method → 9 clusters

Elbow Method →?

2. CLUSTERING TECHNIQUES: Finding the best method for our data

2.1. KMeans

With PCA

2. CLUSTERING TECHNIQUES: Finding the best method for our data

2.2. MiniBatchKMeans (on PCA & 9 clust)

 We expected quite faster results that with KMeans but in this case the difference has just slightly improved:

1269.8 vs 1176.04

2. CLUSTERING TECHNIQUES: Finding the best method for our data

2.3. Birch

brc_02 = Birch(branching_factor=2,
n_clusters=None, threshold=1.5)

brc_50 = Birch(branching_factor=50, n_clusters=None, threshold=1.5)

2.4. Agglomerative

Linkage = average

Linkage = **complete**

2.4. Agglomerative

Linkage = **single**


```
Agg single linkage
Time execution: 10.41
Homogeneity: 0.005
Completeness: 0.275
V-measure: 0.009
Adjusted Rand Index: 0.000
Adjusted Mutual Information: 0.000
Silhouette Coefficient: -0.136
_____
Agg_ward_linkage
Time execution: 11.04
Homogeneity: 0.772
Completeness: 0.821
V-measure: 0.796
Adjusted Rand Index: 0.691
Adjusted Mutual Information: 0.794
  Thouette Coefficient: 0.169
```

Linkage = ward

2. Clustering Conclusions

KMeans, MiniBatchKMeans, Agglomerative, Birch

KMeans PCA over KMeans:

Computational cost

MiniBatchKmeans over KMeansPCA:

Time Performance

• Agglomerative:

Different linkages perform indistinctly mediocre except for the "single" linkage which is even worse because results in a single cluster.

Birch:

It has the best performance in Time, Homogeneity, V-measure, and David Bouldin metrics. Completeness is quite good too.

3. Performance Conclusions: METRICS

3. PERFORMANCE CONCLUSIONS: Metrics

METRIC	TECHNIQUE	SCORE 1	TECH 2	TECH 3
Time execution:	OPTICS	1123.58	DB-SCAN	Birch_50
Homogeneity:	Birch_02, Birch_50 & DBSCAN	1	Kmeans	Agg_avg_link
Completeness:	OPTICS	1	Agg_avg_link	Kmeans
V-measure:	Kmeans	0.71	Agg_avg_link	Birch_02 & Birch_50
Adjusted Rand Index:	Kmeans	0.59	Agg_avg_link	MiniBatch
Adjusted Mutual Information:	Kmeans	0.71	Agg_avg_link	MiniBatch

Gràcies!

¡Gracias!

Thank you!