Copyright & License	Review
Copyright © 2010 Jason Underdown Some rights reserved.	Thou Shalt Not Distribute Powers or Radicals
Math 1090 – Business Algebra	Math 1090 – Business Algebra
REVIEW	REVIEW
Thou Shalt Not Split a Denominator	Thou Shalt Not Cancel Terms in a Fraction
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.1 Definition	1.1 Definition
algebraic expression	terms & factors
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.1 Definition	1.1 Definition
equation	identity
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.1 Definition	1.1 Definition
linear equation	polynomial
Math 1090 – Business Algebra	Math 1090 – Business Algebra

Thou shalt not distribute powers or radicals.

$$(a \pm b)^n \neq a^n \pm b^n$$

$$\sqrt[n]{a \pm b} \neq \sqrt[n]{a} \pm \sqrt[n]{b}$$

$$\sqrt[n]{a^n \pm b^n} \neq a \pm b$$

Lest I smite thee with a failing grade!

These flashcards and the accompanying IATEX source code are licensed under a Creative Commons Attribution—NonCommercial—ShareAlike 3.0 License. For more information, see creative commons.org. You can contact the author at:

jasonu at math utah edu

Thou shalt not cancel terms in a fraction. Only factors may be cancelled, thus thou must factor first!

$$\frac{a+b}{a+c} \neq \frac{1+b}{1+c}$$
$$\frac{a+b}{ac} \neq \frac{1+b}{c}$$

This is an algebraic abomination.

Thou shalt not split a denominator. (This is distributing a -1 power in disguise.)

$$\frac{1}{a+b} \neq \frac{1}{a} + \frac{1}{b}$$

Do not succumb to such temptation.

A **term** is any algebraic expression participating in addition or subtraction.

A **factor** is any algebraic expression participating in multiplication or division.

An expression obtained by performing additions, subtractions, multiplications, divisions, powers or extractions of roots with one or more real numbers or variables is called an **algebraic expression**.

Think of it as a fragment of a complete mathematical statement, and as such, it can only be simplified but not solved for the variable(s).

An **identity** is a special type of equation which is always true for all values of its variables. It tells you how to rewrite an expression in a different but equivalent way.

For example, the "difference of two squares" formula is an identity.

$$x^2 - a^2 = (x+a)(x-a)$$

An **equation** is a mathematical statement that equates two algebraic expressions. An equation *must* have an equal sign.

We typically solve equations for a particular variable. For example, 3x - 4 = 2.

A **polynomial** is a special algebraic expression of the form:

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

Where each a_i is a real number. For example

$$x^3 - 3x^2 + 3x - 1$$

is a polynomial.

A linear equation is an equation that can be written in the form

$$ax + b = c$$

where $a \neq 0$ and $a, b, c \in \mathbb{R}$.

1.1 Definition	1.1 Definition
THE BEINGING	THE BEHAVIOR
rational equation	domain & range
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.1 Algorithm	1.2 Definition
determining the domain	linear inequality
determining the domain	intear mequanty
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.2 Definition	1.3 Definition
caveat when solving linear inequalities	linear equation in two variables
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.3 Definition	1.3 Definition
input variable	output variable
•	•
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.3 Definition	1.3 Definition
$y\!-\!intercept$	x-intercept
	•
Math 1090 – Business Algebra	Math 1090 – Business Algebra

The domain of a function is the set of allowable inputs. The range of a function is the set of values which correspond to at least one value in the domain.	An rational equation is an equation that contains rational expressions, which are fractions which have polynomials in the numerator and/or denominator. When solving a rational equation it is important to determine the domain, and exclude any values from the solution set which are not in the domain.
A linear inequality is an inequality that can be written in the form $ax+b\leq c$ where $a\neq 0$ and $a,b,c\in\mathbb{R}.$ The inequality symbol may be any one of $<,>,\leq,\geq.$	 If the domain is unspecified, then it includes all real numbers (ℝ) except 1. Values that make the denominator 0, and 2. Values that result in an even root of a negative number, e.g. √-5 or ⁴√-2.
A linear equation in two variables is any equation that can be written in the form $y=ax+b$ where $a,b\in\mathbb{R}.$	 We solve linear inequalities in the same manner as solving linear equations. We can 1. Add (or subtract) any quantity to both sides of the inequality, and 2. Multiply (or divide) both sides of the inequality by any nonzero value. However, when multiplying by a negative number, we must flip the inequality.
The output variable or dependent variable is the variable that is graphed on the vertical axis in a Cartesian coordinate system. It is often denoted by y .	The input variable or independent variable is the variable that is graphed on the horizontal axis in a Cartesian coordinate system. It is often denoted by x .
The point on a line that crosses the x -axis. To find the x -intercept, set the equation of a line equal to zero and solve for x , i.e. solve $mx+b=0$	The point on a line that crosses the y -axis. When an equation of a line is written $y=mx+b$ it is the b value.

1.3 Definition	1.3 Definition
slope of a line	parallel lines
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.3 Definition	1.3 Definition
perpendicular lines	$slope$ $intercept\ form$
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.3 Definition	1.4 Definition
1.5 DEFINITION	1.4 DEFINITION
point-slope form	system of equations
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.4 Definition	1.5 Definition
solution set	revenue & cost
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.5 Definition	1.5 Definition
profit	break-even point
Math 1090 – Business Algebra	Math 1090 – Business Algebra
MATH 1090 – DUSINESS ALGEBRA	MATH 1090 - BUSINESS ALGEBRA

Two lines are parallel if and only if they have the same slope.	The slope of a line is found from two points, (x_1, y_1) and (x_2, y_2) $m = \frac{y_2 - y_1}{x_2 - x_1}$ Remember it as "rise over run."
The equation of a line is in slope—intercept form if it looks like $y=mx+b$ Where m , the slope of the line, and b , the y -intercept of the line are constants.	If a line has slope m , then any line that is perpendicular will have slope $m_{\perp} = \frac{-1}{m}$ Where the symbol m_{\perp} is read " m perp." Remember the perpendicular slope is "the negative reciprocal."
A system of equations is a set of two or more equations in two or more unknowns (variables).	The equation of a line is in point–slope form if it looks like $y-y_1=m(x-x_1)$ where m is the slope of the line, and (x_1,y_1) is a point on the line.
Revenue is the amount of money earned in a business, usually denoted $R(x)$. Cost is the amount of money spent to produce and sell a product or service, usually denoted $C(x)$. There are two types: fixed and variable .	The solution set of a system is the set of all points that lie on all lines in the system. That is, the set of all pairs (x,y) that satisfy all equations simultaneously. The solution set may: 1. be empty (no solution—parallel lines) 2. contain one point (unique solution—crossing lines) 3. contain an infinite number of points (infinitely many solutions—colinear lines)
The point where costs and revenue are equal. Also the point where $P(x)=0$. $R(x)$ $C(x)$	Profit is revenue minus costs. $P(x) = R(x) - C(x)$

→ x

break-even

1.5 Definition	1.5 Definition
marginal	supply equation
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.5 Definition	1.5 Definition
demand equation	equilibrium point
Math 1090 – Business Algebra	Math 1090 – Business Algebra
1.6 Definition	DEFINITION
linear inequality in two variables	
Math 1090 – Business Algebra	Math 1090 – Business Algebra
Definition	DEFINITION
Math 1090 – Business Algebra	Math 1090 – Business Algebra
Definition	DEFINITION
Math 1090 – Business Algebra	Math 1090 – Business Algebra

	T
The supply equation relates p and q and explains how willing producers are to supply product at various prices.	Marginal is an adjective that describes how much something changes for one more unit sold. For example, we could ask for marginal profit, which would indicate how much profit changed for one more unit sold. Marginal profit is the slope of the profit function.
The point where supply and demand are equal. p $demand$ $supply$ $equilibrium point$	The demand equation relates p and q and explains how much of a product consumers will buy at various prices.
	An inequality that can be written in the form $ax+by\leq c$ where $a,b,c\in\mathbb{R}$ and the inequality can be any of $<,>,\leq,\geq.$