

CS598PS - Machine Learning for Signal Processing

Sparsity, Compressive Sensing and Random Projections

3 November 2017

Today's lecture

Sparsity

Compressive sensing

Quantization, randomness and high dimensions

What is sparsity?

Depends who you ask

 Basic idea: We want most numbers in a collection to be zero

Too many ways to express that

A starting point

Linear equation with multiple solutions:

$$y = \mathbf{a} \cdot \mathbf{x} \Rightarrow 2 = \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Which solution would you pick?

$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{x} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$

A sparse answer What MATLAB gives This one is fine too!

What MATLAB gives

This one is fine too!

Infinite solutions

All solutions lie on a line

- Which one do we pick?
 - Why did MATLAB pick [1, 1]?

• Does it make a difference?

The generic answer

• Least squares problem:

$$y = \mathbf{A} \cdot \mathbf{x} \Rightarrow \mathbf{x} = \mathbf{A}^{+} \cdot \mathbf{y}$$

$$\Rightarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \left(\left\| \mathbf{A} \cdot \mathbf{x} - \mathbf{y} \right\|_{2} + \left\| \mathbf{x} \right\|_{2} \right)$$

- Find the minimum-norm x that minimizes the error
 - But why $\|\mathbf{x}\|_2$?

Least squares, pseudoinverse, and ℓ_2

• Use Langrangian multipliers:

$$\left\|\mathbf{x}\right\|_{2}^{2} + \lambda^{\top} \cdot \left(\mathbf{A} \cdot \mathbf{x} - \mathbf{y}\right) \Rightarrow \hat{\mathbf{x}} = -\frac{1}{2} \mathbf{A}^{\top} \cdot \lambda$$

Put back in original equation:

$$\mathbf{A} \cdot \hat{\mathbf{x}} = -\frac{1}{2} \mathbf{A} \cdot \mathbf{A}^{\top} \cdot \lambda = \mathbf{y} \Rightarrow \lambda = -2 \left(\mathbf{A} \cdot \mathbf{A}^{\top} \right)^{-1} \cdot \mathbf{y}$$
$$\Rightarrow \hat{\mathbf{x}} = \mathbf{A}^{\top} \cdot \left(\mathbf{A} \cdot \mathbf{A}^{\top} \right)^{-1} \cdot \mathbf{y} = \mathbf{A}^{+} \cdot \mathbf{y}$$

7

Many more norms

• p-Norm (or Lp / L $_p$ / ℓ_p)

$$\|\mathbf{x}\|_p = \sqrt{\sum_i |x_i|^p}$$

- ℓ_2 norm is the Euclidean norm
- ullet ℓ_1 norm is sum of absolute values
- ℓ_0 norm is the number of non-zero values
- ℓ_{∞} norm is max of all values

How do they look?

Unit norms in 2D

Unit norms in 3D

l2-based pseudoinverse

- All possible solutions lie on a hyperplane
 - Minimum ℓ_2 solution will be the point where the smallest possible ℓ_2 -ball touches the solutions hyperplane

Other ℓ_p -norm solutions

- With different norms the solution will change
 - Larger p will produce a "busier" solution
 - Smaller p will produce sparser solution

Which one to use?

- ullet For sparsity we ideally we want minimum ℓ_0
 - Directly results in smallest number of non-zero values
- But, this is an inconvenient form ...

$$\ell_0(\mathbf{x}) = \sum_i \left[x_i \neq 0 \right]$$
if content evaluates to true it returns 1 otherwise it returns 0

• Discontinuous, no derivative, not convex, etc ...

$$\frac{\partial \|\mathbf{x}\|_{0}}{\mathbf{x}} = ? \longrightarrow \|\mathbf{x}\|_{0} + \lambda^{\top} \cdot (\mathbf{A} \cdot \mathbf{x} - \mathbf{y})$$

12

Let's try something simpler then

- How about using the ℓ_1 instead?
 - Seems to produce the same solution

Why does this work?

- The ℓ_1 case is (sort of) convex
 - ℓ_1 ball shrinks as we move towards the ideal sparse solution
 - There's one ill-defined scenario, but it isn't a big problem
 - Which is it?

So let's solve that instead

The problem to solve

• We now have:

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} \left(\left\| \mathbf{A} \cdot \mathbf{x} - \mathbf{y} \right\|_{2} + \left\| \mathbf{x} \right\|_{1} \right)$$

• Minor glitch: We can't differentiate the absolute values in the ℓ_1 norm!

$$\sum |x_i| + \lambda^\top \cdot (\mathbf{A} \cdot \mathbf{x} - \mathbf{y})$$

But we can use other tools

Linear programming

A linear program is defined as:

minimize
$$\mathbf{c}^{\top} \cdot \mathbf{x}$$

subject to $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{y}$
and $\mathbf{x} > 0$

 A Nobel-prize staple of optimization theory, resource allocation, economics, etc.

Doesn't exactly match the ℓ_1 problem

 We would like to change our problem definition to fit the linear programming formulation

minimize $\|\mathbf{x}\|_1$ subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$

 $\begin{array}{lll} \text{minimize} & \mathbf{c}^\top \cdot \mathbf{x} \\ \text{subject to} & \mathbf{A} \cdot \mathbf{x} \leq \mathbf{y} \\ \text{and} & \mathbf{x} > 0 \\ \end{array}$

What we can solve

With some shuffling around

• We rewrite the unknown vector x as a difference of positive-valued vectors:

$$\mathbf{x} = \mathbf{u} - \mathbf{v}, \ \mathbf{u}_i, \mathbf{v}_i \ge 0, \ \mathbf{z} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

Now our problem can written as:

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \Rightarrow \begin{bmatrix} \mathbf{A}, & -\mathbf{A} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \mathbf{y} \Rightarrow \begin{bmatrix} \mathbf{A}, & -\mathbf{A} \end{bmatrix} \cdot \mathbf{z} = \mathbf{y}$$

18

Now it is a linear program

And we can solve our problem

Minimum ℓ_1 problem

minimize | x | 1

subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$

Equivalent linear program

minimize
$$\|\mathbf{z}\|_1 = 1^{\top} \cdot \mathbf{z}$$

subject to $[\mathbf{A}, -\mathbf{A}] \cdot \mathbf{z} = \mathbf{y}$
and $\mathbf{z} > 0$

A simple example

- Suppose you measure this sinusoid
 - Can you recover the original signal using only the small number of measurements that we made?

Key observation

- The original signal is sparse in the frequency domain
 - How about we use that to construct a problem?

The problem to solve

• Find a set of small coefficients x in the DCT domain, and make sure that they explain all our data y, i.e.:

$$\mathbf{A} \cdot \mathbf{C}^{-1} \cdot \mathbf{x} = \mathbf{y}$$

- Where matrix A selects only the indices that we observe
- ullet Simple least squares problem using minimum ℓ_2 ${\bf x}$

$$\mathbf{x} = \left(\mathbf{A} \cdot \mathbf{C}^{-1}\right)^{+} \cdot \mathbf{y}$$

And it doesn't really do much

But you expected that!

What happened?

- Minimizing the ℓ_2 resulted in adding more frequencies in the signal
 - ℓ_2 doesn't give sparsity
 - Small coefficients \neq min ℓ_2

- ullet We instead should find a minimal ℓ_1 solution
 - Because it actually enforces sparsity

And the result

A much better reconstruction

Arealization

 According to the rules of sampling this is impossible!

- What is the magic taking place here?
 - Why is sparsity special?

Why sparsity?

 Sparsity implies structure, and structure is everywhere

 Signals often exhibit sparsity after undergoing the right transformation

Sparsity in signals

- Many signals are sparse in certain domains
 - e.g. sound spectra
 - Image wavelets
 - •

or to describe them easier

Vector spaces of signals

- Signals can be sparse in various ways
 - And some are "compressible"

1-sparse signal space

2-sparse signal space

Compressible signal space

Sparse approximations

Represent signals using:

$$\mathbf{f} = \sum_{k} a_{k} \mathbf{b}_{k}$$
Bases / Dictionary

- Two goals:
 - Analysis: Study f through structure of a and b (seen that)
 - Approximation: Reconstruct f with a minimal number of terms

Exposing sparsity via dictionaries

 Can we use dictionaries that produce sparse coefficients?

 Why would they be useful and how would we implement them?

Example case: Wavelets

- Note how most coefficients are zero
 - A sparse representation

A simple example

A sinusoid with a couple of spikes

Using a generic dictionary

- Analyzed via the DCT
 - Resulting coefficients are not sparse
 - Multiple sines are used to approximate the spikes

A "better" dictionary

- Use both sinusoids and spikes!
 - Now we won't use as many sines to represent the spikes

Applying the dictionary

- Using the straightforward decomposition won't help
 - Spike elements are not utilized
 - ullet Minimal ℓ_2 cost penalizes the bases describing the loud spikes

Doing it the right way

- ullet This time we ask for minimum ℓ_1 coefficients
 - And we get a perfect description of the input!

Overcomplete dictionaries

- Use dictionaries that contain "everything"!
 - Use compact descriptions of elements

- Some problems
 - Large size/computations
 - Lack of fast algorithms (e.g. FFT)
 - Problems with "coherence"
 - This is a big one

Dictionary coherence

 Make sure that the dictionary elements don't result in ambiguous coefficients

• A measure of coherence: $\mu = \max_{i,j} \left\langle \mathbf{d}_i, \mathbf{d}_j \right\rangle$

Examples of incoherent dictionaries

Getting greedy

- The linear programming approach will fail now
 - It is slow for large dictionaries
 - It looks for exact equality, not approximation

 We can instead use a greedy approach to resolving sparse approximations

Matching pursuit (MP)

- Family of many approaches based on successive fits
 - Each new fit explains what's the previous ones couldn't

Measure input against dictionary
$$\left\langle \mathbf{d}_{k}, \mathbf{f} \right\rangle = \rho_{k}$$

Add to representation

Dictionary \mathbf{D}^{T} Input \mathbf{f} Correlations ρ

Select largest correlation ρ_{k}
 $\mathbf{d}_{i} \leftarrow \rho_{k}$

Compute residual $\mathbf{f} \leftarrow \mathbf{f} - \rho_{k} \mathbf{d}_{k}$

On a familiar example

- Each iteration knocks off an element
 - by 4th iteration there's nothing significant left to represent
 - Faster! For N = 1024, MP: 0.005 sec, LP: 63 sec

CoSaMP (Compressive Sensing MP)

A useful variation to get
 K non-zero coefficients

Measure input against dictionary
$$\left\langle \mathbf{d}_{k},\mathbf{f}\right\rangle =
ho_{k}$$

Invert over support

$$\mathbf{b} = \mathbf{D}_{\Omega}^{\dagger} \cdot \mathbf{f}$$

Truncate to K and compute residual

$$T = \operatorname{supp}(b|_{K})$$

$$a = b \mid_{K}$$

$$\mathbf{f} \leftarrow \mathbf{f} - \mathbf{D} \cdot \mathbf{a}$$

44

Revisiting sampling

- Traditional acquisition samples uniformly
 - e.g. constant sample rates in audio, CCD grids in camera

- Foundation: Nyquist/Shannon sampling theory
 - Sample at twice the highest frequency
 - Projects to a complete basis that spans all the signal space

A redundancy in the loop

- Take a picture
 - Using dense sampling → lots of data

- Transform to a sparse domain and quantize
 - i.e. MPEG/JPEG compression \rightarrow fewer data

Process, transmit, view, etc.

Compressive sensing

- Why sample and then compress?
 - Do both at once!

- Sample fewer samples and use signal sparsity
 - Helps in finding a unique and plausible sparse signal

The compressive sensing pipeline

- Acquire signal using underdetermined measurements
 - e.g. linear combinations of a few samples: $\mathbf{y}_i = \mathbf{P}_i \cdot \mathbf{x}$
 - Don't sample densely, don't sample all the data

- Reconstruct signal assuming sparsity
 - Sparsity constraints signal space w.r.t. measurements
 - Allows for a plausible reconstruction

What's a good measurement matrix?

• We need:

$$\mathbf{P} \cdot \mathbf{x}_1 \neq \mathbf{P} \cdot \mathbf{x}_2$$
 for all *K*-sparse $\mathbf{x}_1 \neq \mathbf{x}_2$

• i.e. ensure that we can distinguish different inputs

- Necessary condition: P must have at least 2K rows
 - Assuming noiseless and well-behaved data

Example 1-sparse case

Some poor measurement matrices

Example 1-sparse case

Some good measurement matrices

Embedding viewpoint

- This is similar to the subspace/manifold methods
 - Find low-rank projection that preserves cluster characteristics

- Special case: Random projection
 - For n points in p-dims there exists a q-dim projection that preserves distances by a factor of $1+\varepsilon$, $q \ge O(\varepsilon-2\log n)$

Restricted Isometry Property (RIP)

• A measurement matrix P has order-K RIP if:

$$\left(1 - \delta_{K}\right) \leq \frac{\left|\left|\mathbf{P} \cdot \mathbf{x}\right|\right|_{2}^{2}}{\left|\left|\mathbf{x}\right|\right|_{2}^{2}} \leq \left(1 + \delta_{K}\right), \ \forall \ K\text{-sparse } \mathbf{x}$$

- How do we check? Difficult ...
 - But we have some good choices
 - Gaussian, Bernoulli, Fourier, etc.

An simple compressed sensing case

- Simple 64 × 64 input
 - Take a set of masked measurements, store only average value
 - Measure using: $y_i = \mathbf{p}_i^{\mathsf{T}} \cdot \text{vec}(\mathbf{x}), \quad \mathbf{p}_i \in \{0,1\}$

Resolving via the DCT

• Model is:

$$\mathbf{y} = \mathbf{P}^{\top} \cdot \mathbf{x} = \mathbf{P}^{\top} \cdot \left(\mathbf{C}^{\top} \cdot \mathbf{z} \right)$$

- Assume sparsity in **z**
- Resolve:

$$\min ||\mathbf{z}||_1 + ||\mathbf{y} - \mathbf{P}^\top \cdot \mathbf{C}^\top \cdot \mathbf{z}||_1$$

• Reconstruct:

$$\hat{\mathbf{x}} = \mathbf{C}^{\top} \cdot \mathbf{z}$$

• Using ~2% of samples!

Putting compressive sensing to work

- The single-pixel camera
 - Measure image intensity using multiple random masks
 - Reconstruct assuming sparsity
 - In some domain ...

Other kinds of sparsity

- Up to now we talked about a simple form of sparsity
 - Sparsity over all coefficients separately

- Some problems need more elaborate definitions
 - e.g. block structure, joint structure, temporal structure, etc.

Block sparsity

- Have sparsity appear in non-overlapping blocks
 - Useful for some imaging operations

Joint sparsity

- Obtain multiple solutions with the same sparsity
 - Useful for multimodal/multichannel data

Learning and sparsity

- How about other models?
 - Add sparsity as an extra "regularizer"

- Sparse decompositions
 - Sparse NMF, sparse PCA, etc ...

ICA is already (sort of) sparse!

Recap

- Sparsity and ℓ_p norms
 - Different definition of sparsity

- Minimum- ℓ_1 coefficient algorithms
 - Linear programming
 - Greedy methods
- Compressive sensing and random projections
 - 1-pixel camera

Reading material

- Compressive sensing
 - http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/baraniukCSlecture07.pdf

- Compressive Sensing page
 - http://dsp.rice.edu/cs

- Experiments with Random Projections
 - http://dimacs.rutgers.edu/Research/MMS/PAPERS/rp.pdf

Next lecture

- Deep learning!
 - aka neural nets v2.0

- Also Problem Set 4 is out
 - Optional, due at last day of classes
 - Use it to perk up your grade if you need to
 - Would also help if your final project is floundering