Механико-математический факультет МГУ имени М.В. Лононосова
Конспект курса «Наглядная геометрия и топология»
Автор курса: профессор, д.фм.н. Ведюшкина Виктория Викторовна Автор конспекта: Цыбулин Егор, студент 108 группы
Москва, 8 апреля 2025 г.

Содержание

1	Топ	Топологические пространства		
	1.1	Основные понятия	2	
	1.2	Непрерывность	3	
	1.3	Способы задания топологии	4	
	1.4	Гомеоморфизм	4	
	1.5	Связность	4	
	1.6	Линейная связность	5	
	1.7	Компактность	5	
	1.8	Хаусдорфовость	6	
	1.9	Фактор-топология	6	
2	Графы			
	2.1	Комбинаторное описание графа	7	
	2.2	Топологическое описание графа	8	
	2.3	Теорема о вложении планарного графа в плоскость	10	
	2.4	Теорема Жордана	12	
3	3 Многогранники			
4	4 Многообразия			

1 Топологические пространства

1.1 Основные понятия

Определение 1.1. *Метрика* — это функция $\rho(x,y) \to \mathbb{R}$, которая обладает следующими свойствами:

- 1. $\rho(x,y) \ge 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2. $\rho(x,y) = \rho(y,x);$
- 3. $\rho(x,z) + \rho(z,y) > \rho(x,y)$.

Определение 1.2. Множество X называется метрическим пространством, если на нём задана метрика $\rho(x,y): X \times X \to \mathbb{R}$.

Определение 1.3. ε -окрестность точки x_0 — это множество всех точек $x \in X$: $\rho(x, x_0) < \varepsilon$.

Из курса математического анализа.

Определение 1.4. Точка $x \in X \subset A$ называется внутренней точкой множества X, если $\exists B_{\varepsilon}(x) \subset X$.

Определение 1.5. Множество называется открытым, если все его точки — внутренние.

Определение 1.6. Множество A называется закрытым, если его дополнение $A \setminus X$ открыто.

Свойства открытых множеств:

- 1. Пустое множество и само множество X открыты;
- 2. Любые объединения открытых множеств открыты;
- 3. Конечное пересечение открытых множеств открыто.

Определение 1.7. Семейство τ подмножеств некоторого множества X, удовлетворяющее условиям 1-3, называется mononozue \check{u} .

Определение 1.8. Пусть X — произвольное множество и $\tau = \{U_{\alpha}\}$ — некоторое семейство подмножеств множества X. Семейство подмножеств τ называется *топологией*, если оно удовлетворяет следующим условиям:

- 1. Пустое множество и само множество X принадлежат τ ;
- 2. Объединение любого семейства множеств из τ принадлежит τ ;
- 3. Пересечение любого конечного семейства множеств из τ также принадлежит τ .

Определение 1.9. Множество X с фиксированной топологией τ называется monoлогиче- cким пространством и обозначается через (X, τ) . Элементы множества X называются movie movie

Если X — метрическое пространство, то на нём можно задать топологию, индуцированную метрикой: множество открыто, если любая точка входит в него с некоторым ε -шаром (некоторой окрестностью).

[Дополнение вне лекций] Топология, индуцированная метрикой — это топология, в которой открытые множества определяются через ε -шары. Таким образом, топология τ на множестве X задаётся как:

$$\tau = \{ U \subset X | \ \forall x \in U \ \exists r > 0 : B_r(x) \subset U \}$$

Пример 1.1. 1. \varnothing, X , других нет — тривиальная топология.

2. Семейство au состоит из всех подмножеств множества $X-\partial uc\kappa pemhas$ топология.

Определение 1.10. Множество A топологического пространства X называется *замкну-* mым, если его дополнение $X \setminus A$ открыто.

Определение 1.11. Пусть X — множество, $x_0 \in X$. Окрестностью точки x_0 назовём любое открытое множество, содержащее эту точку.

Утверждение 1.1. Множество A топологического пространства X открыто $\Leftrightarrow \forall x_0 \in A \ \exists U_{x_0} \in \tau : x_0 \in U_{x_0} \subset A$

 \mathcal{A} оказательство. \Longrightarrow Пусть A открыто, x_0 — точка A, тогда $U_{x_0} = A$. \Longleftrightarrow Возьмём $x \in U_x \subset A$, где U_x открыты $(\in \tau)$. Рассмотрим $\cup_{x \in A} U_x = U$, где U открыто, т.к. все U_x открыты. При этом $A \subset U$ и $U \subset A \Rightarrow U = A \Rightarrow A$ открыто.

1.2 Непрерывность

Определение 1.12. Обратимся к курсу математического анализа. Пусть D_f — область определения $f(x), x_0 \in D_f$. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in B_{\delta_{\varepsilon}}(x_0) \cap D_f : |f(x) - f(x_0)| < \varepsilon,$$

то f(x) называется непрерывной в точке x_0 .

$$f: X \to Y \ \forall B_{\varepsilon}(f(x_0)) \ \exists B_{\delta}(x_0): f(B_{\delta}(x_0)) \subset B_{\varepsilon}(f(x_0))$$

в терминах окрестностей.

Определение 1.13. Отображение $f: X \to Y$ топологии пространств X и Y непрерывно, если $\forall x_0 \in X$ и для любой окрестности δ точки $f(x_0)$ существует окрестность точки x_0 такая, что $f(B(x_0)) \subset B_\delta(f(x_0))$.

Утверждение 1.2. Отображение f двух топологических пространств непрерывно \Leftrightarrow прообраз любого открытого множества открыт.

Доказательство. $\Longrightarrow f: X \to Y$. Пусть $A \subset Y$ открыто. Рассмотрим $f^{-1}(A)$. Пусть $x_0 \in f^{-1}(A) \Rightarrow \exists U$ — открытое: $f(U) \subset A \Rightarrow U \subset f^{-1}(A)$. \Longrightarrow Пусть прообраз любого открытого множества открыт. Пусть $x_0 \in X \Rightarrow f(x_0) \in Y$. Возьмём $V \subset Y$, которое будет открыто. $f(x_0) \in V \Rightarrow f^{-1}(V)$ — открытое множество и $x_0 \in f^{-1}(V) \Rightarrow U := f^{-1}(V)$.

Рис. 1: Окружность с выколотым полюсом и прямая гомеоморфны.

1.3 Способы задания топологии

1. Топология на подмножестве: Пусть X — топологическое пространство.

$$X_0 \subset X, \ U \in \tau(X) \Rightarrow \ U \cap X_0 \in \tau(X_0).$$

2. $f: X \to Y, Y$ — топологическое пространство, f — произвольное отображение. Тогда открытые множества на X — прообразы открытых на Y, то есть:

$$\tau_X = \left\{ f^{-1}(U) | \ U \in \tau_Y \right\}$$

Замечание 1.1 (Дополнение с лекции №2). Топология на Y порождается отображением f: множество открыто, если его прообраз открыт.

1.4 Гомеоморфизм

Определение 1.14. Топологические пространства X и Y называются *гомеоморфными*, если между ними существует непрерывная биекция $f: X \to Y$, которая и называется *гомеоморфизмом*, такая, что отображение f^{-1} также непрерывно.

Пример 1.2. Окружность с выколотым полюсом и прямая гомеоморфны (см.рис. 1).

1.5 Связность

Определение 1.15. Топологическое пространство X называется *связным*, если не существует двух открытых непересекающихся множеств A и B таких, что $X = A \cup B$.

Утверждение 1.3. Отрезок вещественной прямой в стандартной топологии связен.

Доказательство. От противного. Пусть отрезок несвязен. $\exists A, B \subset \mathbb{R} : [a,b] = A \cup B, \ A \cap B = \emptyset$, где A, B — открытые множества. Пусть $\alpha \in A$, тогда $[a,\alpha) \subset A$ (т.к. A открыто). Рассмотрим $\alpha_0 = \sup\{\alpha : [a,\alpha) \subset A\}$. Пусть $\alpha_0 \in A$, тогда:

- 1. $\alpha_0 = b \Rightarrow B = \emptyset$ противоречие.
- 2. $\alpha_0 < b \Rightarrow \alpha_0$ входит в A с окрестностью \Rightarrow существует $(\alpha_0 \varepsilon, \alpha_0 + \varepsilon) \in A \Rightarrow \alpha_0$ не супремум противоречие.

Утверждение 1.4. Непрерывный образ связного пространства связен.

Доказательство. $f: X \to Y$. От противного. Пусть образ несвязен. Тогда $Imf = A \cup B$, где A, B — открытые и непустые множества, $A \cap B = \varnothing$. $f^{-1}(A)$ открыто, $f^{-1}(B)$ открыто. Если множества не пересекаются, то и их образы не пересекаются. Так как множества не пусты, то и их образы не пусты. $f^{-1}(A) \cup f^{-1}(B) = X \Rightarrow X$ не связно — противоречие.

Замечание 1.2. Связность является топологическим инвариантом.

1.6 Линейная связность

Определение 1.16. *Непрерывная кривая (параметрическая)* — непрерывное отображение ненулевого отрезка в топологическое пространство. $\gamma:[a,b]\to X$, где γ непрерывна.

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$

$$\begin{cases} x = \cos t, \\ y = \sin t, \\ t \in [0, 2\pi]. \end{cases}$$

Определение 1.17. Топологическое пространство называется *линейно связным*, если любые две его точки можно соединить кривой.

$$x,y$$
 — точки X , тогда $\exists \gamma: [\alpha,\beta] \to X: \ \gamma(\alpha)=x, \ \gamma(\beta)=y$

Утверждение 1.5. Образ линейно связного пространства линейно связен.

Доказательство. Композиция непрерывных отображений непрерывна:

$$\gamma: [\alpha, \beta] \to X, \ f: X \to Y.$$

Утверждение 1.6. Если топологическое пространство линейно связно, то оно связно. (Наоборот, вообще говоря, неверно — как задачу можно попросить привести контрпример).

Доказательство. Пусть топологическое пространство линейно связно, но не связно. Тогда $X=A\cup B$ (множества непусты и не пересекаются). Возьмём $x\in A,\ y\in B$. Пользуемся линейной связностью: $\gamma:[0,1]\to X,\ \gamma$ непрерывна, $\gamma(0)=x,\ \gamma(1)=y,\ Im\gamma$ в X— связно. $Im\gamma\cap A$ — открыто в топологии образа $Im\gamma$, индуцированного топологии на X (пользуемся топологией на подмножестве), $Im\gamma\cap B$ — открыто в топологии образа $Im\gamma$, индуцированного топологии на X— получили противоречие с тем, что отрезок несвязен.

1.7 Компактность

Определение 1.18. Топологическое пространство *компактно*, если из его любого открытого покрытия можно выбрать конечное подпокрытие.

Утверждение 1.7. Непрерывный образ компакта является компактом.

Доказательство. Пусть $f: X \to Y$. Покрываем образ: $Imf \subseteq \bigcup_{\alpha} U_{\alpha}$ — покрытие. $X \subset \bigcup_{\alpha} f^{-1}(U_{\alpha})$ — открытое покрытие X (т.к. f непрерывно). $X \subset \bigcup_{i=1}^n f^{-1}(U_i)$ — конечное подпокрытие. Тогда $Imf \subset \bigcup_{i=1}^n U_i$

Рис. 2: Пример нехаусдорфова пространства

Замечание 1.3. Компактность является топологическим инвариантом.

Утверждение 1.8. Замкнутое подмножество компакта есть компакт.

Доказательство. $M \subset X \subset Y$, M замкнуто, X компактно, Y — топологическое пространство. $M \subset \bigcup_{\alpha} U_{\alpha}$ открытое покрытие M. $(Y \setminus M) \cup \bigcup_{\alpha} U_{\alpha}$ — открытое покрытие. Выберем в нём конечное подпокрытие: $X \subset (Y \setminus M) \cup \bigcup_{i=1}^n U_i$ — конечное подпокрытие. $M \subset \bigcup_{i=1}^n U_i$. \square

1.8 Хаусдорфовость

Определение 1.19. Топологическое пространство X называется $xaycdop\phioвым$, если у любых двух его различных точек существуют непересекающиеся окрестности.

 $\tau = \{X, \varnothing\} \Rightarrow X$ не хаусдорфово.

Лемма 1.1. Компакт в хаусдоровом пространстве является замкнутым множеством.

Доказательство. $M \subset X$, M — компакт. $x_0 \in X \setminus M$, $y \in M$. Пользуемся хаусдорфовостью: $x_0 \in U^y_{x_0}, \ y \in V_y, \ U^y_{x_0} \cap V_y = \varnothing. \bigcup_{y \in M} V_y$ — открытое покрытие всего множества M. Пользуемся компактностью: выберем конечное подпокрытие $M \subset \bigcup_{i=1}^n v_{y_i}, \ y_i \in M$. $\bigcap_{i=1}^n U^{y_i}_{x_0} = U, \ x_0 \in U, \ U \cap V_{y_i} = \varnothing, \ U$ открытое $\Rightarrow X \setminus M$ открыто.

Утверждение 1.9. $f: X \to Y, f$ — непрерывная биекция, X — компакт, Y — хаусдорфово топологическое пространство $\Longrightarrow f$ — гомеоморфизм.

Доказательство. $f: X \to Y, X$ замкнуто, $M \subset X, M$ замкнуто $\Rightarrow M$ компактно $\Rightarrow f(M) \subset Y$, где f(M) тоже компактно (т.к. f непрерывно) $\Rightarrow f(M)$ замкнуто в Y.

1.9 Фактор-топология

Определение 1.20. Пусть X — топологическое пространство, а \sim — отношение эквивалентности на X. Φ актор-пространство X/\sim — это множество классов эквивалентности [x] для всех $x\in X$. Топология на X/\sim называется ϕ актор-топологие ψ .

Множество $U\subset X/\sim$ открыто в фактор-топологии тогда и только тогда, когда его прообраз $f^{-1}(U)$ открыт в X, где $f:X\to X/\sim$.

Пример 1.3 (нехаусдорфова пространства). Рассмотрим две числовые прямые $\mathbb{R}_1, \mathbb{R}_2$ и отождествим все их точки, кроме одной: $x \sim y \Leftrightarrow x = y, \ x \neq 0, x \in \mathbb{R}_1, \ y \in \mathbb{R}_2$. Получили фактор-пространство $\mathbb{R}_1 \sqcup \mathbb{R}_2 / \sim$. Оно не является хаусдорфовым, так как у нулей числовых прямых нет непересекающихся окрестностей (см.рис. 2).

2 Графы

2.1 Комбинаторное описание графа

Определение 2.1 (Комбинаторное определение графа). V — множество вершин (конечное), E — множество рёбер, отношение инцидентности — любому ребру соответствует начало и конец, принадлежащие множеству вершин V.

Рис. 3: Примеры графов

Рассмотрим рис.3 (граф справа):

- 1. Вершина v_1 инцидентна e_2, e_7 ;
- 2. Ребро e_1 инцидентно только v_7 ;
- 3. Вершина v_1 смежна только с v_4, v_7 ;
- 4. Ребро e_2 смежно только с e_1, e_3, e_6, e_7 ;
- 5. Имеется ровно 3 петли: e_1, e_3, e_4 ;
- 6. Кратными являются петли e_1, e_3 и рёбра e_8, e_9 (кратность равна двум);
- 7. Граф справа не простой, граф слева простой.

Определение 2.2. Два графа называются *изоморфными*, если существует биекция между их множествами вершин и рёбер, уважающая отношение инцидентности.

 $v_1, v_2 \in V_1, \ e_1 \in E_1, \ f(v_1), f(v_2) \in V_2$ если вершины v_1 и v_2 были соединены ребром e_1 , то их образы $f(v_1)$ и $f(v_2)$ соединены ребром $f(e_1)$.

Рис. 4: Изоморфные графы.

2.2 Топологическое описание графа

Определение 2.3 (Топологическое определение графа). Пусть дано множество (конечное) точек V, (конечное) множество отрезков E и отображение ∂ : (множество концов отрезков) \rightarrow V. Γ рафом, определённым этими данными, назовём топологическое пространство, состоящее из множества точек V, называемых вершинами графа, множества внутренних точек отрезков E, называемых внутренними точками рёбер графа, на котором задана фактор-топология. Отношение эквивалентности: вершина v лежит в том же классе эквивалентности, что и концы рёбер, которые в неё переходят.

[3]: В теории графов принята следующая терминология:

- 1. если $v \in \partial(e)$, то говорят, что вершина v и ребро e инцидентны;
- 2. если $\partial(e) = \{v, w\}$, то говорят, что вершины v и w смежены, или же, что они соединены ребром e;
- 3. рёбра e, e' называются *смежсными*, если $\partial(e) \cap \partial(e') \neq \emptyset$;
- 4. ребро, иницидентное ровно одной вершине, называется петлёй;
- 5. если некоторой паре вершин инцидентно несколько рёбер, то все эти рёбра называются *кратными*;
- 6. если некоторой вершине инцидентно несколько петель, то все эти петли также называются *кратными*. [Конец цитирования]

$$v \in V, \ \partial^{-1}(v): A \sim B \Leftrightarrow A, B \in \partial^{-1}(v), \ A \sim B \sim v.$$

Определение 2.4. Графы называются *гомеоморфными*, если они гомеоморфны как топологические пространства.

Рис. 5: Гомеорморфные, но не изоморфные графы.

Рис. 6: K_5 и $K_{3,3}$ не являются планарными.

Определение 2.5. Непрерывное отображение графа Γ в топологическое пространство X называется вложением, если при этом отображение Γ и его образ гомеоморфны (никакие две различные точки не переходят в одну).

Определение 2.6 (Вне лекций). Граф без петель и кратных рёбер называется простым.

Определение 2.7. Граф, для которого существует его вложение в плоскость, называется *планарным*.

Определение 2.8. Планарный граф вместе с вложением в плоскость называется плоским.

Определение 2.9 (Вне лекций). K_n — полный граф на n вершинах, то есть граф, каждые две вершины которого соединены ребром.

 $K_{m,n}$ — двудольный граф, то есть граф, все вершины которого можно разбить на две группы так, что каждое ребро графа соединяет вершину из первой группы с вершиной из второй группы, при этом вершины из одной группы не имеют общих рёбер.

Рис. 7: Имеется пять областей, на которые разбивается плоскость.

2.3 Теорема о вложении планарного графа в плоскость

Теорема 2.1. Для связного плоского графа $B - P + \Gamma = 2$, где Γ — количество областей, на которые граф разбивает плоскость.

Теорема 2.2 (\bigstar). Для любого планарного графа существует его вложение в плоскость такое, что образ любого ребра является ломаной с конечным числом звеньев.

Свойства непрерывных кривых:

Лемма 2.1. Образ $\gamma:[a,b]\to\mathbb{R}^2$ непрерывной кривой — замкнутое подмножество плоскости.

Доказательство. [a,b] — компакт \Rightarrow образ его — компакт. \mathbb{R}^2 — хаусдорфово \Rightarrow компакт замкнут в хаусдорфовом пространстве.

Адаптированное доказательство из [1]: Возьмём точку P, которая не принадлежит образу кривой γ . Докажем, что существует такая окрестность U этой точки P, что U не пересекается с образом γ .

Рассмотрим вспомогательную функцию f на [a,b], которая будет обозначать расстояние от точки P до образа кривой. f непрерывна \Rightarrow достигает минимума c>0 (т.к. P не лежит в γ). Рассмотрим тогда круг радиуса c/2 с центром в P. Получим окрестность $U_{P,c/2}$, которая не пересекается с образом γ .

Лемма 2.2 (о первой точке). Ω — замкнутое подмножество \mathbb{R}^2 , $\gamma(t)$ — непрерывная кривая, $\gamma:[0,1]\to\mathbb{R}^2,\ \gamma(0)=A\notin\Omega,\ \gamma(1)=B\in\Omega\Rightarrow\exists t_0\in[0,1]:\ \gamma(t_0)\in\Omega,\ \forall t< t_0\ \gamma(t)\notin\Omega.$

Доказательство. Рассмотрим $T: \{ \tau \in [0,1]: \ \forall t \in [0,\tau): \ \gamma(t) \notin \Omega \}$ — не пусто (так как $0 \in T$) и ограничено.

Так как множество T не пусто и ограничено, то можно сказать, что существует $\sup T=c,$ более того, $c\neq 1$, т.к. $\gamma(1)=B\in \Omega$ по условию.

Если $\gamma(c)=C\notin\Omega$, то существует окрестность U точки C такая, что $U\cap/Omega=\varnothing$ (воспользовались замкнутостью множества Ω).

Так как γ — непрерывная кривая, то существует окрестность $V=(c-\varepsilon,c+\varepsilon)$ такая, что $\gamma(V)\in U$, то есть $\forall t\in (c-\varepsilon,c+\varepsilon): \gamma(t)\notin\Omega\Rightarrow c\neq\sup T$ — противоречие, значит, $C\in\Omega$.

В качестве t_0 возьмём c.

(В исходнике есть наброски прямо с лекции)

Доказательство ★. Адаптация лекционного доказательства, основанная на [1].

Пусть заданный граф не имеет петель. Если они есть, то удалим их, а потом вернём.

Для каждой вершины рассмотрим окрестность такую, что она не пересекается с рёбрами графа, НЕ инцидентными данной вершине v, и другими вершинами. Рассмотрим замкнутые окрестности вершин в два раза меньшего радиуса D_v .

Так как ребро, выходящее из вершины v — непрерывная кривая, то по лемме о первой точке на этой кривой будет первая точка, которая принадлежит замкнутому кругу D_v . Изменим вложение для этого ребра на отрезке между v и первой точкой на радиус (см.рис. 8). Сделаем так для всех рёбер. На этом моменте можно вернуть петли, изображённые ломаными.

Теперь надо поменять вложение на остальных частях рёбер (та, которая лежит между нашими замкнутыми окружностями). Если мы для каждого отдельного ребра докажем, что можем поменять вложение, которое было, на ломаную, не трогая остальных рёбер, то докажем теорему (см.рис. 9).

Рис. 8: Изменение вложения в окрестности вершины

Рис. 9: Изменение вложения на остальных частях рёбер

Рассмотрим ребро, соединяющее вершины v,w. Средняя часть — непрерывная кривая $\gamma:[a,b]\to\mathbb{R}^2$. Рассмотрим множество: $T=\{t\in[a,b]\}$, где t такие, что $\gamma(0)$ можно соединить ломаной с $\gamma(t)$ так, что эта ломаная не имеет самопересечений и не пересекает другие рёбра. T не пусто хотя бы потому, что t=a условие выполняется. Докажем, что и b принадлежит T. Идея дальнейшего доказательства состоит в том, чтобы отступать от левого конца отрезка, чтобы потом добраться до правого конца.

Рис. 10: Изменение вложения на остальных частях рёбер

Сначала докажем, что если $t_0 \in T$, то и $(t_0 - \varepsilon, t_0 + \varepsilon) \subset T$ для некоторого $\varepsilon > 0$ (иными словами, докажем, что множество T — открытое подмножество [0,1]).

Рассмотрим на кривой γ точку $\gamma(t_0)$ и замкнутый круг B с центром в этой точке, который не пересекает другие рёбра и круги D_v (это возможно, так как образы других рёбер—замкнутые подмножества плоскости).

По предположению $t_0 \in T$, тогда существует ломаная, которая идёт от a до t_0 . Тогда мы можем соединить $\gamma(a)$ с любой точкой круга B хорошей ломаной (не имеющей самопересечений и пересечений с другими рёбрами) по ломаной из $\gamma(a)$ в $\gamma(t_0)$ до первой её точки в круге B и далее по отрезку.

С другой стороны (по определению непрерывности кривой), для круга B существует интервал $(t_0 - \varepsilon, t_0 + \varepsilon)$ такой, что его образ содержится в этом круге — стало быть, доказали, что если $t_0 \in T$, то $(t_0 - \varepsilon, t_0 + \varepsilon) \subset T$, то есть, T — открытое подмножество на [a, b].

Далее докажем (аналогично), что если $t_0 \notin T$, то для некоторого $\varepsilon > 0$ выполнено $(t_0 - \varepsilon, t_0 + \varepsilon) \cap T = \varnothing$, то есть, что дополнение $[a,b] \setminus T$ тоже открыто в [a,b]. Предположим, что $\gamma(t_0)$ не принадлежит множеству T. Рассмотрим круг с центром в точке $\gamma(t_0)$, который

 $^{^{1}}$ Здесь и далее в лекциях дан отрезок [0,1], но, очевидно, это ни на что не повлияет, просто мне пока что лень рисовать свои рисунки, поэтому я их просто позаимствовал в [1]

не пересекается с остальными рёбрами, и рассмотрим интервал $(t_0 - \varepsilon, t_0 + \varepsilon)$, который при отображении γ целиком попадает в этот круг.

Мы не можем соединить $\gamma(a)$ хорошей ломаной с точками из этого интервала, если не можем соединить $\gamma(a)$ с точкой $\gamma(t_0)$ — действительно, иначе дойдём до первой точки круга с центром в точке $\gamma(t_0)$, и далее дойдём до точки $\gamma(t_0)$. Таким образом, если $t_0 \notin T$, то и $t \notin T$, где $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$.

Тем самым мы доказали, что множества T и $[a,b]\setminus T$ открыты в [a,b]. Теперь докажем, что если $T\subset [a,b]$ и $([a,b]\setminus T)\subset [a,b]$ — открытые множества в [a,b], то одно из них пусто. Действительно, рассмотрим

$$\sup(t \in [a, b] : [a, t] \in T) = c.$$

Иными словами, рассмотрим отрезок [a,b] и, поскольку мы знаем, что $a \in T$, будем идти по отрезку, пока мы находимся в множестве T.

Если $c \in T$ и $c \neq b$, то как мы доказали, $(c - \varepsilon, c + \varepsilon) \subset T$ для $\varepsilon > 0$, а значит, c не является верхней гранью для этого множества. Значит, если c < b, то c не может принадлежать T.

Аналогично, если $c \notin T$, то есть $c \in [a,b] \setminus T$, то $(c-\varepsilon,c+\varepsilon) \subset [a,b] \setminus T$, то есть c — не точная верхняя грань, поскольку, например, $c-\varepsilon$ — верхняя грань. Поэтому c=b, так как $[a,b] \setminus T$ открыто и не может состоять только из одной точки — правого конца отрезка.

2.4 Теорема Жордана

В этой главе будет почти полное повторение Лекции 3 из [1]. Если у вас есть какие-то дополнения с учётом нашего лекционного курса, то прошу мне сообщить об этом.

Определение 2.10. Для любого подмножества A плоскости отношение: «точки $P,Q \in A$ можно соединить непрерывной кривой, лежащей в A» является отношением эквивалентности. Соответствующие классы эквивалентности называются компонентами линейной связности множества A.

Теорема 2.3 (Жордана (для ломаных)). Замкнутая вложенная ломаная разбивает плоскость на две компоненты связности.

Доказательство. Шаг 1. Число компонент ≤ 2 .

Чтобы доказать, что число компонент, на которые замкнутая вложенная ломаная разбивает плоскость, не больше двух, достаточно выбрать нужным образом две точки и доказать, что любую точку плоскости можно соединить с одной из них непрерывной кривой, не пересекающей ломаную.

Выберем на произвольном ребре ломаной точку и рассмотрим круг с центром в этой точке (достаточно малый, чтобы он пересекался только с внутренними точками ребра, и не пересекался с другими рёбрами ломаной). Ребро разбивает круг на две части, в каждой из частей выберем по точке (обозначим их A и B).

Теперь определим понятие «идти вдоль кривой». Произвольные кривые могут быть устроены достаточно сложно, и для них определить это понятие довольно затруднительно. Для ломаной с конечным количеством звеньев это не вызывает проблем.

Для произвольной точки Q на ломаной выберем достаточно маленький круг D_Q (т.е. если Q — точка на ребре, то D_Q пересекается только с внутренними точками ребра, если Q — вершина, то D_Q не пересекается с другими рёбрами, кроме двух, выходящих из неё). В каждом таком круге выберем пару точек, лежащих в разных компонентах относительно пары радиусов, на которые они этот круг разбивают. Здесь пользуемся следующей леммой:

Рис. 11: Круг с центром в точке ломаной

Лемма 2.3. Два радиуса разбивают круг на две компоненты.

Доказательство. сюда рисунок 2 и 3

Рассмотрим круг, соответствующий вершине, и круг, соответствующий внутренней точке ребра. Несложно понять, что можно выбрать в каждом из кругов пару точек, лежащих в разных частях круга, таким образом, что их можно попарно соединить друг с другом, не пересекая ломаную (выбираем точки достаточно близко к ребру и идём вдоль этого ребра — см.рис.12).

Рис. 12: Проход вдоль ребра

Это означает, что если мы сможем соединить произвольную точку P плоскости с одной из точек любого из кругов, соответствующих точкам ломаной, то мы сможем дальше пройти вдоль ломаной (не пересекая её), и соединить полученную точку либо с точкой A, либо с точкой B — см.рис.13.

Осталось понять, что точку P можно соединить с какой-то точкой из какого-то круга с центром на ломаной. Выберем произвольную точку R на ломаной и соединим её с точкой P отрезком. PR — неперывная кривая, значит, существует первая точка R' пересечения этой кривой с ломаной (по лемме о первой точке). Рассмотрим круг $D_{R'}$ и на отрезке PR' отступим от точки R' на расстояние ε , меньшее радиуса круга. Из получившейся точки мы можем пойти вдоль ломаной и прийти либо в точку A, либо в точку B — см.рис.14.

Таким образом, мы доказали, что количество частей, на которые замкнутная ломаная разбивает плоскость, не может быть больше двух. Чтобы доказать, что таких компонент ровно две, осталось понять, что точки A и B, которые мы выбрали, лежат действительно в разных компонентах, то есть, не существует кривой, которая не пересекая ломаную, соединяет точки A и B.

Шаг 2. Докажем, что число компонент ≥ 2 (есть точки, лежащие в разных компонентах).

Рис. 13: Проход вдоль ломаной

Рис. 14: Соединение произольной точки плоскости с точкой из круга с центром на ломаной.

Рассмотрим ломаную L и точку $P \notin L$. Возможные варианты пересечения (маленькая окрестность точки пересечения) луча l_P с началом в точке P с ломаной L указаны на рисунке 15.

Построим инвариант (грубо говоря, посчитаем чётность количества пересечений луча l_P с ломаной L, но в случае, когда l_P идёт по ребру L, мы получим бесконечное множество точек пересечения, поэтому лучше сказать, что каждому типу пересечения поставим в соответствие 0 или 1, как показано на рисунке 15).

Лучу l_P поставим в соответствие число, которое равно сумме по модулю 2 чисел, соответствующих вариантам пересечения этого луча с ломаной L:

 $\sigma(P)$ — сумма чисел, приписанных пересечением по модулю 2.

Лемма 2.4 (1). При фиксированном X функция $\sigma(x,\varphi)$ не зависит от φ

Лемма 2.5 (2). Функция $\sigma(x) := \sigma(x, \varphi)$ локально постоянна (по x).

Доказательство. Смотри рисунок (которого нет).

Лемма 2.6 (3). $x, y \in \mathbb{R}^2 \setminus L$, x u y можно соединить непрерывной кривой, не пересекающей ломаную.

Доказательство. $\exists \gamma : [0,1] \to \mathbb{R}^2 \setminus L$ — непрерывная. $\gamma(0) = x, \ \gamma(1) = y \Rightarrow \sigma(x) = \sigma(y)$. \square

Рис. 15: Возможные варианты пересечения l_P с ломаной L.

 $\gamma([0,1])$ — компактное подмножество плоскости. Т.к. оно связное, то на нём функция $\sigma(x)=const.$

Итак, мы построили некоторую функцию σ , которая постоянна на каждой компоненте линейной связности. Чтобы доказать, что число компонент, на которые ломаная делит плоскость, не меньше двух, достаточно предъявить две точки, в которых значения этой функции будут разными.

Рассмотрим маленький отрезок P_1P_2 , перпендикулярный ребру ломаной, и не пересекающий другие рёбра. Луч с началом в точке P_1 пересекает ломаную ровно на один раз больше, чем луч с началом в точке P_2 , поэтому $\sigma(P_1) \neq \sigma(P_2)$. Отсюда следует, что число компонент, на которые замкнутная ломаная разбивает плоскость, не меньше двух.

Лемма 2.7 (о четырёх точках). L - замкнутая вложенная ломаная. P, Q, R, S - точки ломаной (расположенные именно в таком порядке). (сюда рисунок 3.10 из Ошемкова). $L_1 -$ ломаная между P и R; $L_2 -$ ломаная между Q и S; L_1, L_2 расположены в одной компоненте связности от L; $L_1 \cap L = \{P, R\}, L_2 \cap L = \{S, Q\}$. Тогда L_1 и L_2 пересекаются.

Доказательство. $\tilde{L} = L_1 \cup$ часть ломаной L между P и R, содержащая Q. Рассмотрим точки S', S'', Q', Q'' в малых кругах с центрами в S и Q так, как показано на рис 3.11 (Ошемков) (то есть в разных компонентах, на которые эти круги разбиваются рёбрами ломаной). Можно считать, что S' и Q' лежат на L_2 . Пусть S'', Q'' расположены в одной компоненте относительно L, которая не содержит L_1, L_2 .

Тогда S'', Q'' расположены в одной компоненте относительно L (действительно, так как S'', Q'' расположены в одной компоненте относительно L, значит, их можно соединить какойто непрерывной кривой, не пересекающей ломаную L, причём эта кривая не пересекает и ломаные L_1, L_2 , поскольку они расположены в другой компоненте. Эта же кривая не пересекает и ломаную \tilde{L} , значит, S'', Q'' расположены в одной компоненте относительно \tilde{L}).

Q',Q'' расположены в разных компонентах относительно \tilde{L} (точки, расположенные по разные стороны от ребра ломаной, лежат в разных компонентах, на которые эта ломаная делит плоскость).

S', S'' расположены в одной компоненте относительно \tilde{L} (очевидно, их можно соединить непрерывной кривой, не пересекающей \tilde{L}).

Суммируя эти утверждения, получаем, что S', Q' расположены в разных компонентах относительно \tilde{L} .

Итак, S', Q' расположены в разных компонентах относительно \tilde{L} и соединены ломаной $\tilde{L_2}$ (полученной из ломаной L_2 выбрасыванием маленьких отрезков SS' и QQ', то есть, ломаная $\tilde{L_2}$ не пересекается с ломаной L).

Значит, $\tilde{L_2}$ пересекает ломаную \tilde{L} , откуда следует, что $\tilde{L_2}$ пересекает ломаную L_1 . Но если ломаные $\tilde{L_2}$, L_1 пересекаются, то ломаные L_2 и L_1 тоже пересекаются, т.к. $\tilde{L_2} \in L_2$. Лемма доказана.

Утверждение 2.1. Граф $K_{3,3}$ не планарен.

Рис. 16: Граф $K_{3,3}$.

Рис. 17: Попытка вложения графа $K_{3,3}$ в плоскость.

Доказательство. Предположим, что нам удалось вложить этот граф в плоскость без самопересечений. Рассмотрим цикл в графе $A_1B_2A_3B_1A_2B_3A_1$. Пусть $K_{3,3}$ вложен в плоскость так, что его рёбра являются ломаными. Тогда этот цикл образует замкнутую ломаную, которая делит плоскость на две компоненты.

Из оставшихся трёх рёбер A_1B_1 , A_2B_2 , A_3B_3 по крайней мере два расположены в одной компоненте, причём концы этих рёбер расположены на цикле в нужном порядке (как в лемме о четырёх точках), поэтому они должны пересекаться, откуда следует, что граф $K_{3,3}$ нельзя вложить в плоскость.

Утверждение 2.2 (Теорема Жордана для замкнутой непрерывной кривой). Пусть L — замкнутая вложенная в плоскость кривая. Тогда она разбивает плоскость не менее чем на 2 компоненты.

Доказательство. Сведём утверждение теоремы к непланарности графа $K_{3,3}$. Будем считать, что на плоскости введены декартовы координаты. Рассмотрим замкнутую вложенную непрерывную кривую γ на плоскости. Пусть l_1 и l_2 — вертикальные прямые, между которыми расположена кривая γ (то есть, l_1 и l_2 содержат точки кривой, а слева от l_1 и справа от l_2 точек кривой нет — см.рис.18).

Рис. 18: К теореме Жордана

Существование таких прямых следует из свойств непрерывной функции на отрезке: функция x(t) достигает своего минимума и максимума, где

$$\gamma(t) = (x(t), y(t)).$$

Рассмотрим на прямых l_1, l_2 «самые верхние» точки, принадлежащие кривой γ (обозначим их A_1, A_2 , соответственно). Существование таких точек следует из того, что образ кривой γ и прямые l_1, l_2 — это замкнутые подмножества плоскости, значит, их пересечение тоже будет замкнутым подмножеством плоскости (то есть, супремум этого множества ему принадлежит, поэтому «самые верхние» точки принадлежат прямым l_1, l_2).

Точки A_1, A_2 разбивают кривую на две части (условно назовём их верхней и нижней). Проведём ещё одну вертикальную прямую l между прямыми l_1, l_2 . Из теоремы о промежуточном значении (для функции x(t)) следует, что прямая l пересекает кривую γ . Найдём отрезок B_1B_2 на прямой l такой, что:

- B_1 лежит на верхней части кривой;
- B_2 лежит на нижней части кривой;
- Между B_1 и B_2 нет точек кривой.

Это можно сделать: действительно, из всех точек пересечения l с верхней частью кривой выберем самую нижнюю точку B_1 , а из всех точек пересечения l с нижней частью кривой, расположенных ниже B_1 , выберем самую верхнюю точку B_2 .

Выберем на отрезке B_1B_2 произвольную точку A_3 и рассмотрим горизонтальную прямую, расположенную выше, чем кривая γ (существование такой прямой следует из того, что функция y(t) ограничена, как непрерывная на отрезке). На этой прямой выберем произвольную точку B_3 .

Мы почти получили вложение графа $K_{3,3}$ — точки A_i соединены с B_j (кроме A_3B_3), но не соединены между собой. Так как граф $K_{3,3}$ не планарен, то нельзя провести непрерывную кривую, соединяющую B_3 и A_3 , не пересекая уже нарисованных рёбер.

Рёбра графа $K_{3,3}$, не лежащие на кривой γ — это A_1B_3 и B_3A_2 , а также B_1A_3 и A_3B_2 (составляющие отрезок B_1B_2). Допустим, что можно нарисовать кривую A_3B_3 , не пересекая кривую γ , тогда она пересекает какую-то из ломаных $A_1B_3A_2$ или B_1B_2 .

В этом случае рассмотрим последнюю точку кривой B_3A_3 , пересекающуюся с $A_1B_3A_2$ и выберем её в качестве B_3 . Аналогично рассмотрим первую точку пересечения кривой B_3A_3 с отрезком B_1B_2 и выберем её в качестве A_3 .

Тогда кривая, соединяющая новые точки A_3 и B_3 , не будет пересекать ломаные $A_1B_3A_2$, B_1B_2 и кривую γ , что противоречит утверждению о том, что граф $K_{3,3}$ не планарен.

Значит, A_3 и B_3 лежат в разных компонентах относительно кривой γ .

Теорема 2.4 (Эйлер). Пусть дан плоский связный граф B, P, Γ — количество вершин, рёбер и частей плоскости, на которые граф разбивает плоскость. Тогда

$$B - P + \Gamma = 2. \tag{1}$$

Доказательство. Начав с произвольной вершины. пройдём по рёбрам графа, не проходя ни по какому ребру дважды. Мы не сможем сделать следующий шаг только в двух случаях: либо мы вернёмся в вершину, где уже были (это будет означать, что в графе есть цикл), либо вернёмся в вершину степени 1.

Определим две операции:

- 1. Если в графе есть вершина степени 1, то удалим её вместе с ребром, которому она принадлежит.
- 2. Если в графе есть цикл, то удалим любое ребро из этого цикла, не удаляя вершин, которым принадлежит это ребро.

Мы можем выполнять эти операции, пока у графа есть рёбра. Значит, процесс остановится только тогда, когда граф состоит из одной вершины и не имеет рёбер (а для этого графа соотношение (1) выполнено).

Осталось понять, что при выполнении вышеуказанных операций число $B-P+\Gamma$ не меняется.

Первая операция:

$$B \to B-1$$

$$P \rightarrow P - 1$$

Вторая операция:

$$B \to B$$

$$P \rightarrow P - 1$$

Отметим, что при выполнении обеих операций число Γ не увеличивается (очевидно, что если некоторые точки можно было соединить непрерывной кривой, не пересекая рёбра графа, то после удаления ребра их можно будет соединить той же кривой).

Осталось доказать, что для операции 1 число компонент не меняется, а для операции 2 число компонент уменьшается ровно на 1. Доказательство проводится примерно так же, как и доказательство теоремы Жордана для ломаных (см. шаг 1, где мы описывали процесс хождения вдоль рёбер замкнутой ломаной).

Для операции 1: надо проверить, что если для точек $P,Q \notin G$ существует непрерывная кривая γ , соединяющая P с Q и не пересекающая рёбра, отличные от e (т.е. ребро, которое мы удаляем), то существует другая непрерывная кривая $\tilde{\gamma}$, соединяющая P с Q и не пересекающая рёбра.

Рис. 19: Существование кривой $\tilde{\gamma}$

Рассмотрим M — первую точку на кривой γ , принадлежащую ребру e и N — последнюю точку на кривой γ , пересекающую ребро e (они существуют, так как образ ребра e — замкнутое подмножество плоскости).

Рассмотрим замкнутый круг D_M с центром в точке M, не пересекающий другие рёбра и пересекающийся с ребром e по двум радиусам (аналогично для точки N рассмотрим круг D_N). Из точки P пройдём по кривой γ до первой точки, принадлежащей кругу D_M , затем пройдём вдоль ломаной до последней точки на кривой γ , принадлежащей кругу D_N , а из неё по кривой γ пройдём до точки Q — получим непрерывную кривую γ , соединяющую точки P и Q, и не пересекающую рёбра, отличные от e.

Для операции 2: поскольку цикл не самопересекающийся, его образ при вложении графа в плоскость можно рассматривать как замкнутую не самопересекающуюся ломаную. По теореме Жордана для ломаных, этот цикл разбивает плоскость на две компоненты.

Рассмотрим замкнутый круг с центром в точке, лежащей на ребре ломаной. Если точки A и B лежат в разных компонентах, на которые рёбра ломаной разбивают круг, тогда точки A и B лежат в разных компонентах относительно этой замкнутой ломаной (это следует из доказательства теоремы Жордана для ломаных). Тогда тем более точки A и B лежат в разных компонентах относительно графа G.

После удаления ребра e очевидно, что эти точки можно соединить непрерывной кривой (например, отрезком), смотри 20.

Рис. 20: Соединение точек А и В, лежащих в разных компонентах

Таким образом, мы доказали, что после операции 2 число компонент уменьшится. Осталось показать, что оно уменьшится ровно на 1.

Поймём, какие точки, которые были в разных компонентах до удаления ребра, могут оказаться в одной компоненте после удаления ребра. Рассмотрим точки P и Q, такие что до удаления ребра их нельзя было соединить непрерывной кривой, не пересекая рёбра графа, а после удаления — можно. Это означает, в частности, что кривая γ , соединяющая P и Q, пересекает только ребро e.

На кривой γ рассмотрим первую и последнюю точки (M и N, соответственно) пересечения этой кривой с ребром e. Рассмотрим замкнутые круги D_M и D_N с центрами в этих точках и докажем, что точки P и Q можно соединить с одной из точек A или B непрерывной кривой, не пересекая рёбер графа.

Рис. 21: Точки P и Q можно соединить с одной из точек A или B

Из точки P пойдём по кривой γ до первой точки пересечения с кругом D_M , затем пойдём вдоль ребра e и соединим эту точку либо с точкой A, либо с точкой B, состоит из части кривой γ и некоторого пути вдоль ломаной.

Аналогично для точки Q — пойдём по кривой γ до первой точки пересечения с кругом D_N , затем пойдём вдоль ребра e до точки A или B (см. рис.21).

Мы доказали, что точка P до удаления ребра e лежит в одной из компонент, которой принадлежат либо точка A, либо точка B, а точка Q лежит во второй из этих компонент (так как точки A и B находятся в разных компонентах). Это и означает, что при удалении ребра e сливаются (становятся одной компонентой) только те компоненты, которые задаются выбранными нами точками A и B. Значит, число компонент уменьшится ровно на 1.

Таким образом, при указанных операциях число $B-P+\Gamma$ не меняется, и если в конце процесса (для графа, состоящего из одной точки), оно равно 2, то и для начального графа выполняется соотношение

$$B - P + \Gamma = 2.$$

Теорема 2.5 (Критерий Понтрягина-Куратовского). Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 и $K_{3,3}$.

Доказательство. Без доказательства.

3 Многогранники

Определение 3.1. *Многоугольник (на плоскости)* — множество точек, ограниченное замкнутой вложенной конечнозвенной ломаной (вместе с этой ломаной).

Определение 3.2. Два многоугольника, расположенных в пространстве, называются *смеж- ными по ребру* a, если a — их общее ребро.

Определение 3.3. *Многогранная поверхность* — это конечный набор многоугольников в \mathbb{R}^3 такой, что для любого ребра любого многоугольника существует единственный другой многоугольник, смежный с ним по данному ребру (причём это отношение симметрично).

Определение 3.4. Многогранная поверхность называется *вложенной*, если выполнены следующие условия:

- 1. Внутренние точки граней принадлежат только этим граням.
- 2. Внутренние точки рёбер принадлежат только тем двум граням, которые смежны по данному ребру.
- 3. У любой вершины существует «обход»: все грани, соответствующие данной вершине (как точке в \mathbb{R}^3) таковы, что для любых двух граней существует цепочка граней, их соединяющая. Причём все они смежные по рёбрам, инцидентных данной вершине.

То есть, у любой точки существует окрестность, гомеоморфная двумерному диску.

Определение 3.5. Многогранная поверхность *связна*, если для любых двух граней существует цепочка граней, смежных по ребрам, их соединяющая.

Замечание 3.1. Мы будем рассматривать только связные и вложенные многогранные поверхности.

Определение 3.6. Пусть дана вложенная связная многогранная поверхность L. Компактная часть пространства, ограниченная L вместе с поверхностью L называется многогрании-ком.

Определение 3.7. Множество в \mathbb{R}^n называется *выпуклым*, если для любых двух точек в нём, оно содержит весь отрезок между ними (отрезок, их соединяющий).

Определение 3.8 (1). Многогранник выпуклый, если его множество точек выпукло.

Определение 3.9 (2). Многогранник *выпуклый*, если он лежит в одном полупространстве, образованном плоскостью, содержащем любую его грань.

Определение 3.10 (3). Многогранник выпуклый, если он совпадает (как множество в \mathbb{R}^3) с выпуклой оболочкой его вершин (выпуклая оболочка множества — это минимальное выпуклое множество, его содержащее).

Теорема 3.1. Определения (1)-(3) эквивалентны.

Доказательство. (1) \Longrightarrow (2). Рассмотрим некоторую грань многогранника и плоскость α , содержащую эту грань. Предположим, что многогранник M не содержится целиком в одном из полупространств, на которые плоскость α разбивает пространство, т.е. существуют две точки $P \in M, \ Q \in M$, расположенные по разные стороны от плоскости α . Рассмотрим S — произвольную внутреннюю точку грани, лежащей в плоскости α , и соединим её с точками P и Q. Так как многогранник M выпуклый, то отрезки PS и QS также принадлежат M.

Рис. 22: Точки $P \in M$, $Q \in M$, расположенные по разные стороны от плоскости α .

Рассмотрим маленький шар с центром в точке S. Его пересечение с гранью, в которой лежит точка S — круг, который делит шар на два полушара, причём точки одного полушара не принадлежат M, а точки другого полушара принадлежат M (т.к. S — внутренняя точка грани).

Тем самым получаем противоречие — отрезки PS и QS целиком принадлежат многограннику, но часть одного из этих отрезков неминуемо попадёт в полушарие, точки которого не принадлежат многограннику M.

 $(2)\Longrightarrow (1).$ Рассмотрим W — пересечение всех полупространств, о которых идёт речь в определении (2). Многогранник M лежит в этом пересечении, потому что он лежит по одну сторону от каждой грани в каждом из этих полупространств: $M\subset W$.

W — выпуклое подмножество (как пересечение выпуклых подмножеств пространства). Докажем, что M=W, т.е. любая точка пересечения полупространств является точкой многогранника.

Предположим, что это не так, то есть существуют точки $P \in W$, $Q \in W$ такие, что $P \in M$, $Q \notin M$. Тогда отрезок PQ пересечёт одну из граней многогранника, а значит, пересечёт и плоскость, содержащую эту грань, но мы выбирали точки P и Q так, чтобы они лежали в одном полупространстве для любой плоскости, содержащей одну из граней многогранника — противоречие, значит, M = W.

- $(3) \Longrightarrow (1)$. Очевидно, так как выпуклая оболочка множества это некоторое выпуклое подмножество.
- $(1)\Longrightarrow (3)$. Пусть многогранник M является выпуклым в смысле определения (1). Рассмотрим множество W выпуклую оболочку его вершин. Очевидно, что $W\subset M$. Докажем, что $M\subset W$, т.е. что все точки многогранника будут принадлежать выпуклой оболочке вершин. У многогранника есть 4 типа точек: вершины, внутренние точки рёбер, внутренние точки граней, внутренние точки многогранника.

Вершины (по определению) принадлежат выпуклой оболочке вершин. Рассмотрим произвольную внутреннюю точку ребра. Поскольку его концы (как вершины) принадлежат множеству W, то и весь отрезок с концами в этих точках тоже принадлежит W, поэтому все внутренние точки рёбер также принадлежат W.

Рассмотрим внутреннюю точку грани. Проведём в плоскости, содержащей эту грань, прямую — она пересечёт стороны многоугольника, про которые мы уже знаем (поскольку это вершины или внутренние точки рёбер), что они принадлежат W, поэтому и весь отрезок с концами в этих точках также принадлежит W. Стало быть, внутренние точки граней также принадлежат W.

Рассмотрим внутреннюю точку многогранника. Проведём через неё прямую, которая пе-

ресечёт грани многогранника в точках, про которые мы уже знаем, что они принадлежат W. Стало быть, внутренние точки многогранника также принадлежат W.

Теорема 3.2. Для любого выпуклого многогранника выполнено

$$B - P + \Gamma = 2$$

Доказательство. Сведём доказательство формулы Эйлера для выпуклых многогранников к доказательству формулы Эйлера для плоских графов.

Нужно так спроектировать многогранник, чтобы граф, получившийся в результате проекции, был плоским. Эту идею можно довести до аккуратного доказательства, если рассматривать строго выпуклый многогранник, но мы будем делать иначе.

Рассмотрим две проекции. Пусть L — многогранная поверхность, задающая многогранник M.

1)
$$\pi:L\to S^2$$
.

Спроектируем поверхность многогранника из некоторой внутренней точки многогранника O на сферу с центром в этой точке (выберем сферу достаточно большого радиуса, чтобы многогранник в ней полностью содержался).

Рис. 23: Проекция многогранника на сферу.

Докажем, что отображение π будет взаимнооднозначным (для этого нужно понять, что луч с началом в точке O ровно один раз пересечёт поверхность многогранника).

Докажем, что луч с началом в точке O пересечёт поверхность многогранника. Так как O — внутренняя точка многогранника, то существует шар с центром в точке O (окрестность точки O), целиком лежащий в многограннике, поэтому начало и некоторая окрестность луча принадлежат многограннику. Также на этом луче будут точки, не принадлежащие многограннику, поэтому существует точка на границе многогранника, принадлежащая лучу (супремум множества точек, принадлежащих многограннику).

Докажем, что луч пересечёт ровно один раз: допустим, луч пересекает поверхность многогранника в двух точках A и B. Как отмечалось выше, существует шар с центром в точке O, целиком лежащий внутри многогранника. Рассмотрим конус над этим шаром с вершиной в точке B. Очевидно, что A — внутренняя точка этого конуса, т.е. существует шар с центром в точке A, целиком лежащий внутри этого конуса (если A лежит вне конуса, то рассмотрим конус с вершиной в точке A — в этом случае B будет внутренней точкой конуса).

Так как многогранник выпуклый, то весь конус принадлежит многограннику, поэтому шар с центром в точке A — это окрестность точки A, целиком состоящая из точек, принадлежащих многограннику, откуда следует. что A — внутренная точка многогранника — противоречие.

Рис. 24: А — внутренняя точка конуса.

Итак, в результате проекции $\pi:L\to S^2$ получаем граф на сфере — каждой вершине многогранника будет соответствовать точка на сфере, каждому ребру многогранника — дуга окружности, являющаяся пересечением плоскости, проходящей через точку O, со сферой.

2) $p: S^2 \setminus C \to \mathbb{R}^2$.

Рис. 25: Стереографическая проекция.

Теперь рассмотрим проекцию сферы на плоскость. Выберем точку C на сфере, не принадлежащую ни одному из рёбер, и рассмотрим стереографическую проекцию из этой точки — получим некоторый плоский граф, причём каждой вершине графа на сфере будет соответстовать вершина графа на плоскости, каждому ребру — ребро, каждой области на сфере, на которые граф разбивал сферу, будет соответствовать область на плоскости, причём области, содержащей точку C, будет соответствовать неограниченная область на плоскости.

Итак, мы получили взаимно-однозначное соответствие между вершинами и рёбрами исходного многогранника и вершинами и рёбрами полученного графа, поэтому формула Эйлера для плоских графов верна и для выпуклых многогранников.

Как делать не надо: если мы спроектируем многогранник на плоскость, то получим некоторый граф. При проекции вершины многогранника перейдут в вершины графа, рёбра — в рёбра, каждой грани многогранника будет соответствовать компонента связности на плоскости, поэтому формула Эйлера для многогранника будет верна, поскольку она верна для плоского графа.

Это рассуждение проходит не для всех выпуклых многогранников — например, если подразбить все грани куба на треугольники, как показано на рис.26, то граф, полученный в результате проекции, не будет вложенным.

Определение 3.11. Правильный многогранник — это выпуклый многогранник, грани которого — это равные правильные многоугольники, все двугранные углы которого равны.

3амечание 3.2. Все двугранные углы равны ⇔ в любой вершине сходится одинаковое число рёбер.

Почему можно заменить? Потому что верна следующая теорема:

Рис. 26: Проекция куба с фиктивными рёбрами.

Теорема 3.3 (Коши). Дла выпуклых многогранника с одинаковым комбинаторным строением, имеющие равные соответствующие грани, совмещаются движением пространства (т.е. конгруэнтны).

Доказательство. Без доказательства.

Теорема 3.4. В пространстве существует ровно пять правильных многогранников (платоновы тела): тетраэдр, куб, октаэдр, икосаэдр, додекаэдр.

Доказательство. Будем рассматривать множество вершин и рёбер многогранника как некоторый граф, для которого верно соотношение

$$B - P + \Gamma = 2$$
.

Теперь используем условие правильности многогранника. Пусть n — количество сторон в каждой грани, k — количество рёбер, сходящихся в вершине. Тогда можно двумя способами подсчитать количество рёбер. Действительно, в каждую вершину входит k рёбер, тогда $B \cdot k$ — удвоенное количество рёбер (каждое ребро посчитали дважды), поэтому

$$2P = B \cdot k$$
.

С другой стороны, у каждой грани n рёбер, тогда $\Gamma \cdot n$ — удвоенное количество рёбер (каждое ребро принадлежит ровно двум граням), поэтому

$$2P = \Gamma \cdot n$$
.

Выражая из полученных соотношений число вершин B и число граней Γ и подставляя в формулу Эйлера, получим:

$$\frac{2P}{k} - P + \frac{2P}{n} = 2 \Leftrightarrow \frac{2}{k} + \frac{2}{n} = 1 + \frac{2}{P}.$$

Так как P, n, k — целые числа, а из геометрических соображений понятно, что $n \ge 3, \ k \ge 3$, то левая часть равенства при больших $k, \ n$ меньше 1, а правая часть больше 1. Перебор:

$$n = 3 \Rightarrow \frac{2}{k} = 13 + \frac{2}{P} \Rightarrow k \le 5 \Rightarrow k = 3, 4, 5$$

$$n=4\Rightarrow rac{2}{k}=rac{1}{2}+rac{2}{P}\Rightarrow k\leq 3\Rightarrow k=3$$
 $n=5\Rightarrow rac{2}{k}=rac{3}{5}+rac{2}{P}\Rightarrow k\leq 3\Rightarrow k=3$ $n\geq 6\Rightarrow rac{2}{k}=rac{2}{3}+rac{2}{P}\Rightarrow k\leq 2\Rightarrow$ решений нет.

Всего получили 5 вариантов: тетраэдр (n = 3, k = 3), октаэдр (n = 3, k = 4), икосаэдр (n = 3, k = 5), куб (n = 4, k = 3), додекаэдр (n = 5, k = 3).

Рис. 27: Правильные многогранники.

Теорема 3.5 (Сабитов). *При изгибании невыпуклого многогранника его объём сохраняется.*

Доказательство. Временно идея доказательства: Формула Герона:

$$S^2 = p(p-a)(p-b)(p-c).$$

Если рассматривать правую часть данной формулы как многочлен, коэффициенты которого зависят от длин сторон, то корень этого многочлена является квадратом площади треугольника.

Аналогичная формула существует и для тетраэдра: если задать длины всех сторон тетраэдра, то можно предъявить многочлен, коэффициенты которого зависят только от длин сторон, а корнем этого многочлена является объеём тетраэдра.

Оказывается, для любого многогранника существует многочлен, коэффициенты которого зависят только от длин сторон многогранника, корнем которого является объём многогранника. Отсюда следует, что при изгибании многогранника его объём будет сохраняться, так как длины всех рёбер сохраняются при изгибании.

Теорема 3.6 (Минковский). Пусть дан набор векторов $\overrightarrow{n_1}$, $\overrightarrow{n_k}$, никакие два из которых не сонаправлены и не лежат в одном полупространстве, и набор чисел s_1, \ldots, s_k , что $\sum s_i \overrightarrow{n_i} = 0$. Тогда существует ровно один строго (вот тут дополни про фиктивные вершины "фиктивная вершина — вершина, в которой сумма плоских углов равна два nu") выпуклый многогранник, для которого вектора $s_i \overrightarrow{n_i}$ являются его ежсом.

Доказательство. Без доказательства.

Теорема 3.7 (Бойяи-Гервин). Два многоугольника на плоскости равносоставлены тогда и только тогда, когда они равновеликие.

Доказательство. Доказательство будет на семинарах (надеюсь, я ничего не перепутал, и это именно данная теорема ушла на семинары). □

Определение 3.12. Два многоугольника W_1, W_2 равносоставлены, если существуют многоугольники M_1, \ldots, M_n такие, что:

- 1. $\forall i, j \ M_i \cap M_j = \emptyset;$
- $2. \bigcup M_i = W_1, \bigcup M_j = W_2.$

Теорема 3.8 (Ден). Куб и правильный тетраэдр равного объёма не равносоставлены.

Определение 3.13. Функция f, определённая на множестве $M \subset \mathbb{R}$, называется аддитивной, если $\forall n_1 x_1 + \cdots + n_k x_k = 0, \ n_i \in \mathbb{Z}, \ x_i \in M$ выполнено

$$n_1 f(x_1) + \dots + n_k f(x_k) = 0.$$

Определение 3.14. Пусть дан W — многогранник. $\alpha_1, \ldots, \alpha_k$ — величины его двугранных углов. Пусть дана аддитивная функция f, определённая на множестве $M: \{\alpha_1, \ldots, \alpha_k, \pi\} \in M$, причём $f(\pi) = 0$. Тогда инвариантом Дена многогранника W назовём число $f(W) = \sum a_i f(\alpha_i)$ — сумма по всем рёбрам.

Утверждение 3.1. Любой инвариант Дена для куба равен нулю.

Доказательство.

$$2 \cdot \frac{\pi}{2} - \pi = 0$$
$$2 \cdot f\left(\frac{\pi}{2}\right) - 1 \cdot f(\pi) = 0 \Rightarrow f\left(\frac{\pi}{2}\right) = 0 \Rightarrow f(\text{куб}) = 6 \cdot 0 = 0.$$

Утверждение 3.2. Инвариант Дена для призмы равен нулю.

Теорема 3.9 (Хадвигер). Пусть $W_1, W_2 - \partial в a$ многогранника, $f - a \partial \partial u m u в н a s$ фнукиция, область определния которой включает число π и величины всех двугранных углов W_1, W_2 . Пусть $f(W_1) \neq f(W_2)$. Тогда W_1, W_2 не равносоставлены.

Замечание 3.3. Через эту теорему будем доказывать теорему Дена.

Доказательство теоремы Дена. Зададим некоторую аддитивную функцию, содержащую величины всех двугранных углов куба $\left(\frac{\pi}{2}\right)$ и правильного тетраэдра $\left(\varphi = \arccos\frac{1}{3}\right)$, т.е. зададим функцию на множестве $M = \left\{\frac{\pi}{2}, \pi, \arccos\frac{1}{3}\right\}$. Так как по условию $f(\pi) = 0$, то и $f(\frac{\pi}{2}) = 0$. Примем $f(\varphi) = 1$. Посчитаем значение инварианта Дена для этой аддитивной функции для куба и правильного тертаэдра:

 $f(\kappa y \delta) = 12f(\frac{\pi}{2}) = 0$

$$f$$
(тетраэдр) = $6bf(\varphi) = 6b \neq 0$.

Осталось проверить, что функция, которую мы задали, действительно будет аддитивной. Для любой зависимости вида

$$n_1\pi + n_2\varphi = 0$$

должно выполняться соотношение

$$n_1 f(\pi) + n_2 f(\varphi) = 0.$$

Так как $f(\pi) = 0$, а $f(\varphi) \neq 0$, это соотношение может быть выполнено только при $n_2 = 0$, иными словами, функция будет аддитивной, если не существует зависимостей вида $n_1\pi + n_2\varphi = 0$ при $n_2 \neq 0$. Это равносильно следующему утверждению (на лекции был другой пример (вроде), но не суть):

Лемма 3.1. Число $\frac{\varphi}{\pi}$ иррационально.

Доказательство. Пусть

$$\frac{\varphi}{\pi} = \frac{1}{\pi} \arccos \frac{1}{3} = \frac{p}{q} \in \mathbb{Q}$$

— несократимая дробь. Пусть также

$$\cos\varphi = \frac{m}{n} \in \mathbb{Q}$$

— несократимая дробь (в нашем случае $\cos \varphi = \frac{1}{3}$). Воспользуемся формулой косинуса двойного угла: если $\cos \alpha = \frac{k}{l} \in \mathbb{Q}$, то

$$\cos 2\alpha = 2\frac{k^2}{l^2} - 1 = \frac{2k^2 - l^2}{l^2}$$

— НОД числителя и знаменателя равен 1 либо 2. Но при l>2 выполнено $\frac{l^2}{2}>l$. Поэтому в последовательности

$$\cos \varphi, \cos 2\varphi, \cos 4\varphi, \cdots, \cos 2^r \varphi, \cdots$$

нет повторяющихся чисел (так как знаменатели дробей возрастают).

С другой стороны, в последовательности

$$\varphi, 2\varphi, 4\varphi, \cdots, 2^r\varphi, \cdots$$

будут углы, равные по модулю 2π : действительно, если $\varphi=\frac{p}{q}\pi$, то в последовательности

$$\frac{p}{q}\pi, 2\frac{p}{q}\pi, 4\frac{p}{q}\pi, \cdots, 2^r\frac{p}{q}\pi, \cdots$$

может быть всего 2q-1 различных числа (по модулю 2π), поэтому достаточно взять r=2q. Получили противоречие — у чисел, равных по модулю 2π , косинусы должны быть равны, но в последовательности, содержащей косинусы этих чисел, нет одинаковых членов.

Тем самым, лемма доказана, а значит, доказана и аддитивность f. Поэтому (по теоерме Хадвигера) куб и правильный тетраэдр не равносоставлены, и теорема Дена доказана.

Доказательство теоремы Хадвигера.

Лемма 3.2 (1). Пусть $f-a\partial d$ итивная функция, определённая на множестве $M: \alpha \in \mathbb{R}, \ \alpha \notin M$. Тогда существует аддитивная функция \tilde{f}_i , определённая на $M \cup \{\alpha\}$ такая, что $\forall x \in M: \ f(x) = \tilde{f}x$

Доказательство. Если между α и числами из M нет зависимости, то $\tilde{f}(\alpha)$ — любое число. Пусть зависимость есть, то есть существуют целые n_0, \ldots, n_k :

$$n_0\alpha + n_1x_1 + \dots + n_kx_k = 0 \ x_i \in M, \ n_0 \neq 0.$$

Тогда $f(\alpha) := -\frac{n_1 f(x_1) + n_2 f(x_2) + \dots + n_k f(x_k)}{n_0}$. Пусть есть другая зависимость $m_0 \alpha + m_1 y_1 + \dots + m_l y_l = 0$, $y_j \in M$, $m_0 \neq 0$. Верно ли $0 = m_0 f(\alpha) + m_1 f(y_1) + \dots + m_l f(y_l) = -\frac{m_0}{n_0} (n_1 f(x_1) + \dots + n_k f(x_k)) + m_1 f(y_1) + \dots + m_l f(y_l) = \frac{-m_0 n_1 f(x_1) - \dots - m_0 n_k f(x_k) + n_0 m_1 f(y_1) + \dots + n_0 m_l f(y_l)}{n_0}$?

$$-m_0n_1x_1 - \cdots - m_0n_kx_k + m_0n_0y_1 + \cdots + m_ln_0y_l = 0$$

Дополнено будет позже.

Лемма 3.3 (2). Пусть W — многогранник, состоящий (разбитый в объединение непересекающихся) из многогранников P_1, \ldots, P_k . f — аддитивная функция, определённая на π и всех двугранных углах многогранников W, P_1, \ldots, P_k . Тогда $f(W) = \sum f(P_i)$.

Доказательство. Будет позже.

Замечание 3.4. Из лемм (1)-(2) будет следовать теорема Хадвигера.

Теорема 3.10 (Сидлер). Пусть для двух равновеликих многогранников все инварианты Дена равны, то есть для любой аддитивной функции, определённой на их двугранных углах и числе π , выполнено $f(\pi) = 0$, $f(w_1) = f(w_2) \Rightarrow w_1, w_2$ равносоставлены.

Определение 3.15. Два равновеликих многогранника A, B называются равнодополняемыми, если существуют два равносоставленных многогранника W_A, W_B , для которых существуют разбиения $W_A = \bigcup_{i=1}^k P_i \cup A, \ W_B = \bigcup P_i \cup B$, где P_i — многогранники.

Теорема 3.11 (3-я проблема Гильберта). Существуют ли не равнодополняемые тетраэдры с равными основаниями и высотами?

Утверждение 3.3. Если многогранники A, B равнодополняемые, то их инварианты Дена равны.

Доказательство. $f(W_A) = f(W_B)$, где

$$f(W_A) = f(A) + \sum_{i=1}^{k} f(P_i) = f(B) + \sum_{i=1}^{k} f(P_i) = f(W_B)$$

Сюда тетраэдр Хилла.

Утверждение 3.4. Тетраэдр Хилла, координатный тетраэдр не равносоставлены, а также не равнодополнены.

4 Многообразия

Определение 4.1. Пусть X — топологическое пространство. Пусть B — семейство его открытых подмножеств такое, что любое открытое множество в X есть объединение множеств из B. B называется базой топологии.

Определение 4.2. Хаусдорфово топологическое пространство называется *двумерным* (*пмерным*) многообразием, если оно имеет счётную базу, и у любой точки существует окрестность, гомеоморфная открытому двумерному (*п*-мерному) диску.

Классификация двумерных связных компактных многообразий Примеры:

- 1. \mathbb{R}^2 плоскость не компактна;
- 2. Сфера связна, компактна, двумерное многообразие;
- 3. Тор (см.рис.28);
- 4. Бутылка Клейна (см.рис.29).

Рис. 29: Бутылка Клейна

Существует способ описания двумерных многообразий с помощью склейки каких-то кусочков плоскости, как на рисунках 30 и 31.

О том, что такое проективная плоскость (\mathbb{RP}^2), читайте в следующих выпусках!

Рис. 31: Склейка сферы, бутылки Клейна и проективной плоскости (слева направо)

Рис. 32: К определению триангуляции

Всем нужно поставить звёздочки за эти прекрасные векторные картинки!

Список литературы

- [1] А.А. Ошемков. Нагядная геометрия и топология. Лекции. Москва: teach in, электронное издание. 185 с.
- [2] Учебные материалы по наглядной геометрии и топологии от кафедры дифференциальной геометрии и приложений механико-математического факультета МГУ имени М.В. Ломоносова [Электронный ресурс]. URL: http://dfgm.math.msu.su/ngit.php (дата обращения: 19.02.2025).
- [3] А.А. Ошемков и др. Курс наглядной геометрии и топологии. Москва: ЛЕНАНД, 2015. 360 с.