**CHAPTER 07** 

# 미분 IV

쌍곡선함수 미분법 고계 도함수

김 수 환 동의대학교 수학과

# Contents

7.1 쌍곡선함수 미분법

7.2 고계 도함수

# 쌍곡선함수의 정의

# ● 쌍곡선함수의 정의

- ①  $\sinh x = \frac{e^x e^{-x}}{2}$ 을 쌍곡선 사인함수라 한다.
- ②  $cosh x = \frac{e^x + e^{-x}}{2}$ 을 쌍곡선 코사인함수라 한다.
- ③  $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x e^{-x}}{e^x + e^{-x}}$ 을 쌍곡선 탄젠트함수라 한다.



## 쌍곡선함수의 정의

#### ▶ 쌍곡선 코시컨트함수, 쌍곡선 시컨트함수, 쌍곡선 코탄젠트함수 정의

$$\operatorname{csch} x = \frac{1}{\sinh x}$$
,  $\operatorname{sech} x = \frac{1}{\cosh x}$ ,  $\operatorname{coth} x = \frac{1}{\tanh x}$ 



## 쌍곡선함수의 성질

## ● 쌍곡선함수의 성질

#### 정리 4-6 쌍곡선함수의 성질

- (1)  $\sinh(-x) = -\sinh x$
- (2)  $\cosh(-x) = \cosh x$
- (3)  $\tanh(-x) = -\tanh x$

#### 증명

(1) 
$$\sinh(-x) = \frac{e^{-x} - e^x}{2} = -\left(\frac{e^x - e^{-x}}{2}\right) = -\sinh x$$

(2) 
$$\cosh(-x) = \frac{e^{-x} + e^x}{2} = \cosh x$$

(3) (1)과 (2)의 결과로부터

$$\tanh(-x) = \frac{\sinh(-x)}{\cosh(-x)} = \frac{-\sinh x}{\cosh x} = -\tanh x$$

# 쌍곡선함수의 성질

#### 정리 4-7 쌍곡선함수 공식

(1) 
$$\cosh^2 x - \sinh^2 x = 1$$

(2) 
$$1 - \tanh^2 x = \operatorname{sech}^2 x$$

증명

(1) 
$$\cosh^2 x - \sinh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2$$

$$= \left(\frac{e^{2x} + 2 + e^{-2x}}{4}\right) - \left(\frac{e^{2x} - 2 + e^{-2x}}{4}\right)$$

$$= 1$$

(2) (1)의 결과에 의하여

$$1 - \tanh^{2} x = 1 - \frac{\sinh^{2} x}{\cosh^{2} x}$$

$$= \frac{\cosh^{2} x - \sinh^{2} x}{\cosh^{2} x}$$

$$= \frac{1}{\cosh^{2} x}$$

$$= \operatorname{sech}^{2} x$$

# 쌍곡선함수의 미분법

### ● 쌍곡선함수의 미분

#### 정리 4-8 쌍곡선함수의 미분 정리

- (1)  $y = \sinh x$ 일 때,  $y' = \cos h x$ 이다.
- (2)  $y = \cosh x$ 일 때,  $y' = \sinh x$ 이다.
- (3)  $y = \tanh x$ 일 때,  $y' = \operatorname{sech}^2 x$ 이다.

#### 증명

(1) 
$$y = \sinh x = \frac{e^x - e^{-x}}{2}$$
이므로

$$y' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = \cosh x$$

이다.

# 쌍곡선함수의 미분법

(2) 
$$y = \cosh x = \frac{e^x + e^{-x}}{2}$$
이므로

$$y' = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{e^x - e^{-x}}{2} = \sinh x$$

이다.

(3) (1)과 (2)의 결과를 이용한다. 
$$y = \tanh x = \frac{\sinh x}{\cosh x}$$
이므로

$$y' = \left(\frac{\sinh x}{\cosh x}\right)'$$

$$= \frac{(\sinh x)' \cosh x - \sinh x (\cosh x)'}{\cosh^2 x}$$

$$= \frac{\cosh x \cosh x - \sinh x \sinh x}{\cosh^2 x}$$

$$= \frac{1}{\cosh^2 x}$$

$$= \operatorname{sech}^2 x$$

## 쌍곡선함수의 미분법

#### 예제 4-12

연쇄법칙을 이용하여 다음 함수를 미분하라.

(a) 
$$f(x) = \sinh^2 x$$

(a) 
$$f(x) = \sinh^2 x$$
 (b)  $g(x) = \cosh 3x$  (c)  $h(x) = \tanh x^4$ 

(c) 
$$h(x) = \tanh x^4$$

#### 예제 4-13

연쇄법칙과 미분의 기본 정리를 사용하여 다음 함수를 미분하라.

(a) 
$$f(x) = \sinh 3x \cosh x^2$$

(b) 
$$g(x) = \sinh(\cosh x)$$

(c) 
$$h(x) = \tanh^2 3x^4$$

# 1계, 2계, 3계 도함수

## ● 1계, 2계, 3계 도함수

1계, 2계 도함수의 정의 y = f(x)의 도함수가 존재할 때, f'(x)를 1계 도함수라 한다. 만일 y' = f'(x)의 도함수가 존재할 때

$$(y')' = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

를 y = f(x)의 2계 도함수라 한다.

#### 예제 4-14

2계 도함수의 정의를 이용하여 다음 함수의 2계 도함수를 구하라.

(a) 
$$y = x^5$$

(b) 
$$y = x^3 - 4x$$

(c) 
$$y = \cos x$$

(d) 
$$y = e^{2x}$$

# 1계, 2계, 3계 도함수

## ● 1계, 2계, 3계 도함수

3계 도함수의 정의 y''=f''(x)의 도함수가 존재할 때

$$(y'')' = \lim_{h \to 0} \frac{f''(x+h) - f''(x)}{h}$$

를 y = f(x)의 3계 도함수라 한다.

#### 예제 4-15

3계 도함수의 정의를 이용하여 다음 함수의 3계 도함수를 구하라.

(a) 
$$y = \sqrt{x}$$

(b) 
$$y = \ln x$$

(c) 
$$y = \sin x$$

(d) 
$$y = e^{3x}$$

## n계 도함수

#### ● n계 도함수

n계 도함수의 정의 n이 자연수이고  $y^{(n-1)} = f^{(n-1)}(x)$ 의 도함수가 존재할 때

$$y^{(n)} = (y^{(n-1)})' = \lim_{h \to 0} \frac{f^{(n-1)}(x+h) - f^{(n-1)}(x)}{h}$$

를 y = f(x)의 n계 도함수라 한다.

 $n \geq 2$ 일 때  $y^{(n)}$ 을 고계 도함수라 하고,  $y^{(n)}$  또는  $f^{(n)}(x)$  또는  $\frac{d^n y}{dx^n}$ 로 나타낸다.

### How to 4-2 *n* 계 도함수를 구하는 방법

n=1, n=2, n=3일 때 주어진 함수의 도함수를 계산하고, 이때 나타나는 숫자와 식이 변화되는 값을 관찰하여 n계 도함수를 구한다.

# n계 도함수

#### 예제 4-16

고계 도함수의 정의를 이용하여 다음 함수의 n계 도함수를 구하라.

(a) 
$$y = e^{2x}$$

(b) 
$$y = 3^x$$

(c) 
$$y = \ln x$$

#### 예제 4-17

 $y = \sin x$ 의 n계 도함수를 구하라.

# 매개변수함수의 고계 도함수

## ● 매계 변수함수의 고계 도함수

매개변수함수가  $\begin{cases} x = f(t) \\ y = g(t) \end{cases}$ 일 때, 1계 도함수는

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

이다. 이제  $\frac{dy}{dx} = Y$ 라 하면, 2계 도함수는

$$\frac{d^2 y}{d x^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{d}{dx} (Y) = \frac{\frac{d Y}{dt}}{\frac{dx}{dt}}$$



## 매개변수함수의 고계 도함수

## 매계 변수함수의 고계 도함수 편리한 암기법

$$rac{\mathrm{dy}}{\mathrm{dx}} \left(egin{array}{c} y \ \downarrow \ rac{\mathrm{d}y}{\mathrm{dt}} \ t \ \downarrow \ rac{\mathrm{dt}}{\mathrm{dx}} \end{array}
ight)$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} \begin{pmatrix} y \\ \downarrow & \frac{\mathrm{d}y}{\mathrm{dt}} \\ t \\ \downarrow & \frac{\mathrm{dt}}{\mathrm{dx}} \\ x \end{pmatrix} \qquad \frac{d^2y}{\mathrm{dx}^2} \begin{pmatrix} \frac{\mathrm{dy}}{\mathrm{dx}} \\ \downarrow & \frac{d}{\mathrm{dt}} \left( \frac{\mathrm{dy}}{\mathrm{dx}} \right) \\ t \\ \downarrow & \frac{\mathrm{dt}}{\mathrm{dx}} \end{pmatrix}$$

$$| \mathbf{q} | \mathbf{q} | \mathbf{q} | \mathbf{q} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

$$\mathbf{Q} \mathbf{D} : \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{dy}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \qquad \mathbf{Q} \mathbf{D} : \frac{d^2y}{\mathrm{d}x^2} = \frac{d}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

#### 예제 4-18

다음 함수를 미분하라.

(a) 
$$\begin{cases} x = 3t^2 - 1 \\ y = 9t^3 \end{cases}$$
 일 때,  $\frac{d^2y}{dx^2}$ 를 구하라. (b)  $\begin{cases} x = \sin\theta \\ y = 1 - \cos\theta \end{cases}$  일 때,  $\frac{d^2y}{dx^2}$ 를 구하라.

# Thank you!