

Année académique: 2017-2018

TD sur les Matrices

- 1. Ecrire les matrices des applications linéaires dans les bases canoniques:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (x + y, x y, 2x)$.
 - (b) $g: \mathbb{R}^4 \to \mathbb{R}^2$, $(x, y, z, t) \mapsto (x + y + 2z t, x y z + 2t)$.
 - (c) $h: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto [(m+2)x y + z, -x + (m+2)y + z, x y + (m+2)z]$.
- 2. Calculer les inverses des matrices suivnates:

$$M = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 0 \end{pmatrix}, L = \begin{pmatrix} 1 & -\sqrt{3} & 0 \\ \sqrt{3} & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

3. Dans l'espace vectoriel \mathbb{R}^3 muni de la base canonique $\mathcal{B} = (e_1, e_2, e_3)$, on considère l'endomorphisme u dont la matrice M par rapport à \mathcal{B} est: $M = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$.

Calculer M^2 et vérifier que $M^3=0$ puis calculer $(I-M)(I+M+M^2)$. En déduire que I-M est inversible et préciser son inverse. Quelle est la dimension du noyau de u?

Quel est le rang de u?

4. Soit $E = \left\{ M_{abc} = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}, \quad a, b, c \in \mathbb{R} \right\}$

Trouver trois matrices I, J et K telles que $M_{abc} = aI + bJ + cK$. Calculer $\dot{J}K$ et J^{-1} . On considère les éléments $H = M_{111}$ et $L = M_{011}$. Calculer L^2 et H^3 .

- 5. Soit la matrice $B = \begin{pmatrix} 0 & 2 & -1 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix}$. Indiquer le rang de cette matrice
 - (a) 1
 - (b) 2
 - (c) 4
 - (d) 8
- 6. Soient $E = \mathbb{R}^2$ muni sa base canonique \mathcal{B} et f un endomorphisme de E. Dire si chacune des propositions suivantes est vraie ou fausse.
 - (a) La matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ est inversible.
 - (b) La matrice de f par rapport à \mathcal{B} donnée par $M_f=\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ permet d'affirmer que f est un isomorphisme.
 - (c) Le vecteur v=(-1,1,-1) est dans le noyau de f.
 - (d) Le vecteur v = (-1, 1, -1) est dans l'image de f.
- 7. Soit E un espace vectoriel muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. On définit les vecteurs $v_1 = e_1 + e_2 + e_3$, $v_2 = e_1 e_3$ et $v_3 = e_2 + e_3$ et f l'endomorphisme de E tel que: $f(e_1) = 2e_1 3e_2 + e_3$, $f(e_2) = -e_1 + e_2 3e_3$ et $f(e_3) = e_1 e_3$. Dans les questions suivantes indiquer les propositions vraies ou fausses.

 Q_1) La matrice de f par rapport à \mathcal{B} est:

$$A: \left(egin{array}{cccc} 2 & -3 & 1 \ -1 & 1 & -3 \ 1 & 0 & -1 \end{array}
ight) \qquad B: \left(egin{array}{cccc} 2 & -2 & 1 \ -1 & 1 & -3 \ 1 & -1 & 0 \end{array}
ight) \qquad C: \left(egin{array}{cccc} 2 & -1 & 1 \ -3 & 10 \ 1 & -3 & -1 \end{array}
ight) \qquad D: \left(egin{array}{ccccc} 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & -1 & 1 \end{array}
ight).$$

 Q_2) L'image par f de v_1 a pour coordonnées:

$$A: {}^{t}(2,-2,-3)$$
 $B: {}^{t}(2,-3,-2)$ $C: {}^{t}(0,-3,0)$

 Q_3) La matrice de passage de \mathcal{B} à $\{v_1, v_2, v_3\}$ est :

$$A:\begin{pmatrix}1&1&1\\1&0&-1\\0&1&1\end{pmatrix} \qquad B:\begin{pmatrix}1&-1&1\\0&1&-1\\-1&2&-1\end{pmatrix} \qquad C:\begin{pmatrix}2&-1&1\\-3&1&0\\1&-3&-1\end{pmatrix} \qquad D:\begin{pmatrix}1&1&0\\1&0&1\\1&-1&1\end{pmatrix}$$

8. Quelles sont les définitions correctes?

A: Une matrice est dite carrée si chacun de ses coefficients est un carré.

B: La matrice inverse de la matrice $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ est définie si chacun des a_{ij} est non nul; c'est

la matrice
$$\left(\frac{1}{a_{ij}}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$$
.

9. Soit M la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Que vaut M^{2017} ?

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$