Definition. The depth of $\sigma = \sigma(t) \in t + t \mathbf{F}_2[\![t]\!]$ is defined by $d(\sigma) = \operatorname{ord}_t(\sigma(t) - t) - 1$ (and $d(t) = \infty$), so if $\sigma(t) = t + a_k t^k + O(t^{k+1})$ with $a_k \neq 0$, then $d(\sigma) = k - 1$. The lower break sequence of σ with finite order 2^n is defined as the sequence $(b_i)_{i=0}^{n-1}$, where $b_i = d(\sigma^{\circ p^i})$.

The lower break sequence $(b_i)_{i=0}^{n-1}$ corresponds bijectively to the upper break sequence $\langle b^{(i)} \rangle_{i=0}^{n-1}$ which is defined as follows (the brackets " \langle , \rangle " are there to distinguish both sequences):

$$b^{(0)} = b_0$$
 and $b^{(i)} = b^{(i-1)} + 2^{-i}(b_i - b_{i-1})$ for $i > 0$. (1)

For an element σ of finite order 2^n the elements of the upper break sequence are all integers. Furthermore, the numbers $b^{(i)}$ must also satisfy all of the following 3 conditions:

- (1) $gcd(2, b^{(0)}) = 1;$
- (2) For each i > 0, $b^{(i)} \ge 2b^{(i-1)}$;
- (3) If the above inequality is strict, i.e. $b^{(i)} > 2b^{(i-1)}$, then $gcd(2, b^{(i)}) = 1$.

Starting with $\sigma \in t + t \mathbf{F}_2[t]$, one can calculate the depths b_0, \ldots, b_k of $\sigma, \ldots, \sigma^{\circ 2^k}$. If the corresponding upper break sequence has non-integral elements or if one of the three conditions is not satisfied, then σ does not have finite order.

Example. There is no finite order series σ satisfying $\sigma = t + t^2 + O(t^3)$ and $\sigma^{\circ 2} = t + t^8 + O(t^9)$. The first two terms of its lower break sequence are (1,7) which corresponds to the upper break sequence (1,4). This latter sequence violates the third condition.

The conditions that $gcd(2, b^{(0)}) = 1$ is equivalent to σ being of the form $t + t^{2m} + O(t^{2m+1})$ for some integer $m \ge 1$, here $b^{(0)} = 2m - 1$.

For i > 0 we have $b_i \equiv b_{i-1} \mod 2^i$. This is equivalent to the upper break sequence consisting solely out of integers.