Devoir à la maison n°17

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I – Étude de la suite (T_n)

- 1. On trouve $T_2 = 2X^2 1$ et $T_3 = 4X^3 3X$.
- **2.** T₀ est un polynôme pair de degré nul et de coefficient dominant 1. On fait l'hypothèse de récurrence suivante :

 $\mathrm{HR}(n)$: T_n est un polynôme de degré n, de coefficient dominant 2^{n-1} et de la parité de n.

HR(1) et HR(2) sont vraies.

Supposons HR(n) et HR(n+1) vraies pour un certain $n \in \mathbb{N}$. Alors $\deg XT_{n+1} = n+2$ et $\deg T_n = n < n+2$ donc $\deg T_{n+2} = n+2$. De plus, le coefficient dominant $\deg T_{n+2}$ est le double de celui $\deg T_{n+1}$: il vaut donc 2^{n+1} . Enfin, $T_n(-X) = (-1)^n T_n(X)$ et $T_{n+1}(-X) = (-1)^{n+1} T_{n+1}(X)$ donc

$$T_{n+2}(-X) = -2XT_{n+1}(-X) - T_n(-X) = -2(-1)^{n+1}XT_{n+1}(X) - (-1)^nT_n(X) = (-1)^{n+2}T_{n+2}(X)$$

donc T_{n+2} a bien la parité de n+2.

Par récurrence, HR(n) est donc vraie pour tout $n \in \mathbb{N}^*$.

- 3. La famille $(T_0, ..., T_n)$ est une famille de polynômes à degrés échelonnés. Elle est donc libre. Puisqu'elle comporte n+1 vecteurs et que dim $\mathbb{R}_n[X] = n+1$, c'est une base de $\mathbb{R}_n[X]$.
- 4. On fait l'hypothèse de récurrence suivante :

$$HR(n): \forall x \in \mathbb{R}, T_n(\cos x) = \cos(nx).$$

HR(0) et HR(1) sont évidemment vraies.

Suppsons HR(n) et HR(n+1) vraies pour un certain $n \in \mathbb{N}$. Soit $x \in \mathbb{R}$. Alors

$$\begin{split} \mathbf{T}_{n+2}(\cos x) &= \cos(x)\mathbf{T}_{n+1}(\cos x) - \mathbf{T}_{n}(\cos x) \\ &= 2\cos(x)\cos((n+1)x) - \cos(nx) \\ &= 2\cos(x)\cos((n+1)x) - \cos((n+1)x - x) \\ &= \cos(x)\cos((n+1)x) - \sin((n+1)x)\sin(x) \\ &= \cos((n+1)x + x) = \cos((n+2)x) \end{split}$$

Par récurrence, HR(n) est donc vraie pour tout $n \in \mathbb{N}$.

5. D'après la question précédente, pour tout $k \in [1, n]$,

$$T_n(\cos x_k) = \cos(nx_k) = \cos\left(k\pi - \frac{\pi}{2}\right) = 0$$

Ainsi $\cos x_1, \dots, \cos x_n$ sont bien des racines de T_n . Par ailleurs, les réels x_1, \dots, x_n sont distincts et appartiennent à l'intervalle $[0, \pi]$. La fonction \cos étant strictement décroissante (et donc injective) $\sup [0, \pi]$, les réels $\cos(x_1), \dots, \cos(x_n)$ sont également distincts et donc au nombre de n. Comme deg $T_n = n$, T_n admet au plus n racines. Les réels $\cos(x_1), \dots, \cos(x_n)$ sont donc exactement les racines de T_n .

Partie II – Etude d'un produit scalaire sur $\mathbb{R}[X]$

1. L'application $\langle .,. \rangle$ est évidemment symétrique. Elle est bilinéaire par linéarité de l'intégrale. Elle est positive par positivité de l'intégrale $((P \circ \cos)^2)$ est bien entendu positive sur $[0,\pi]$. Enfin, soit $P \in \mathbb{R}[X]$ tel que (P,P) = 0. Comme $(P \circ \cos)^2$ est continue et positive sur $[0,\pi]$, $(P \circ \cos)^2$ est nulle sur $[0,\pi]$. On en déduit que $P \circ \cos$ est nulle sur $[0,\pi]$. Comme $\cos([0,\pi]) = [-1,1]$, P est nul sur [-1,1]. P admet donc une infinité de racines : il est nul. Ceci prouve que $\langle .,. \rangle$ est définie.

 $\langle .,. \rangle$ est donc une forme bilinéaire, symétrique, définie, positive i.e. un produit scalaire.

2. On a déjà vu que $(T_0, ..., T_n)$ était une base de $\mathbb{R}_n[X]$ à la question **3**. Soient $p, q \in [0, n]$ distincts.

$$\langle T_p, T_q \rangle = \int_0^{\pi} T_p(\cos x) T_n(\cos x) \, dx = \int_0^{\pi} \cos(px) \cos(qx) \, dx = \frac{1}{2} \int_0^{\pi} (\cos((p+q)x) + \cos((p-q)x)) \, dx = 0$$

car $p-q \neq 0$ (p et q sont distincts) et $p+q \neq 0$ (sinon on aurait p=q=0). Ainsi $(T_0, ..., T_n)$ est une base orthogonale de $\mathbb{R}_n[X]$.

3. T_n est orthogonal à T_0, \ldots, T_{n-1} et donc à $\operatorname{vect}(T_0, \ldots, T_{n-1}) = \mathbb{R}_{n-1}[X]$.

Partie III - Calcul exact d'une intégrale

1. **a.** Soit $p \in [0, n-1]$.

$$I(T_p) = \int_0^{\pi} T_p(\cos x) dx = \int_0^{\pi} \cos(px) dx = \begin{cases} \pi & \text{si } p = 0 \\ 0 & \text{sinon} \end{cases}$$

$$S_n(T_p) = \frac{\pi}{n} \sum_{k=1}^n T_p(\cos x_k)$$

$$= \frac{\pi}{n} \sum_{k=1}^n \cos(px_k)$$

$$= \frac{\pi}{n} \sum_{k=1}^n \cos\frac{(2k-1)p\pi}{2n}$$

$$= \frac{\pi}{n} \operatorname{Im} \left(\sum_{k=1}^n e^{\frac{i(2k-1)p\pi}{2n}} \right)$$

$$= \frac{\pi}{n} \operatorname{Im} \left(e^{\frac{ip\pi}{2n}} \sum_{k=0}^{n-1} e^{\frac{ikp}{n}} \right)$$

Si p = 0, alors $e^{ip\pi} = 1$ et donc $e^{\frac{ip\pi}{2n}} \sum_{k=0}^{n-1} e^{\frac{ikp}{n}} = n$ puis $S_n(T_p) = \pi$.

Si $p \in [1, n-1], e^{ip\pi} \neq 1$ donc

$$e^{\frac{ip\pi}{2n}} \sum_{k=0}^{n-1} \frac{e^{ikp}}{n} = e^{\frac{ip\pi}{2n}} \frac{1 - e^{ip\pi}}{1 - e^{\frac{ip\pi}{n}}} = \frac{1 - (-1)^p}{-2i\sin\frac{p\pi}{2n}} = i\frac{1 - (-1)^p}{2\sin\frac{p\pi}{2n}}$$

Puisque ce dernier résultat est imaginaire pur, $S_n(T_p) = 0$.

- **b.** I et S_n sont des formes linéaires sur $\mathbb{R}[X]$. D'après la question précédente, elles coïncident sur la base (T_0, \dots, T_{n-1}) de $\mathbb{R}_{n-1}[X]$ (cf. question 3) : elles sont donc égales sur $\mathbb{R}_{n-1}[X]$. Ainsi pour tout $P \in \mathbb{R}_{n-1}[X]$, $I(P) = S_n(P)$.
- 2. **a.** On a deg $P \le 2n-1$ et deg $R \le \deg T_n-1=n-1 \le 2n-1$. Par conséquent deg $(QT_n)=\deg(P-R) \le 2n-1$. Or deg $(QT_n)=\deg Q+\deg T_n=\deg Q+n$. D'où deg $Q \le n-1$ et $Q \in \mathbb{R}_{n-1}[X]$.
 - b. Puisque I est une forme linéaire,

$$I(P) = I(QT_n) + I(R) = \langle Q, T_n \rangle + I(R)$$

Or d'après 3, T_n est orthogonal à $\mathbb{R}_{n-1}[X]$ et donc à Q. Ainsi $\langle Q, T_n \rangle = 0$ et I(P) = I(R).

c. Puisque S_n est une forme linéaire

$$S_n(P) = S_n(QT_n) + S_n(R)$$

Or $S_n(QT_n) = \frac{\pi}{n} \sum_{k=1}^n Q(\cos x_k) T_n(\cos x_k) = 0$ puisque $\cos x_1, \dots, \cos x_n$ sont les racines de T_n . Puisque $R \in \mathbb{R}_{n-1}[X], S_n(R) = I(R)$ d'après **1.b**. Enfin, d'après la question précédente I(R) = I(P) donc $S_n(P) = I(P)$.

3. Testons avec le polynôme T_{2n} qui est de degré 2n.

$$I(T_{2n}) = \langle T_{2n}, T_0 \rangle = 0$$

puisque T_{2n} est orthogonal à $\mathbb{R}_{2n-1}[X]$ d'après 3 et donc à T_0 .

$$S_n(T_{2n}) = \frac{\pi}{n} \sum_{k=1}^n \cos(2nx_k) = \frac{\pi}{n} \sum_{k=1}^n \cos((2k-1)\pi) = -\pi$$

Ainsi $I(T_{2n}) \neq S_n(T_{2n})$.

Partie IV – Calcul approché d'une intégrale

1. En séparant les termes d'indices pairs et ceux d'indices impairs :

$$\sum_{k=1}^{2n} f \circ \cos\left(\frac{k\pi}{2n}\right) = \sum_{k=1}^{n} f \circ \cos\left(\frac{2k\pi}{2n}\right) + \sum_{k=1}^{n} f \circ \cos\left(\frac{(2k-1)\pi}{2n}\right)$$

et donc

$$\frac{\pi}{n} \sum_{k=1}^{2n} f \circ \cos\left(\frac{k\pi}{2n}\right) = \frac{\pi}{n} \sum_{k=1}^{n} f \circ \cos\left(\frac{k\pi}{n}\right) + \frac{\pi}{n} \sum_{k=1}^{n} f \circ \cos(x_k)$$

On en déduit que

$$S_n(f) = \frac{\pi}{n} \left(\sum_{k=1}^{2n} f\left(\cos\frac{k\pi}{2n}\right) - \sum_{k=1}^{n} f\left(\cos\frac{k\pi}{n}\right) \right)$$

Puisque cos est continue sur $[0, \pi]$ à valeurs dans [-1, 1] et que f est continue sur [-1, 1], $f \circ \cos$ est continue sur $[0, \pi]$. Le théorème sur les sommes de Riemann permet donc d'affirmer que

$$\lim_{n \to +\infty} \frac{\pi}{n} \sum_{k=1}^{n} f\left(\cos \frac{k\pi}{2n}\right) = \lim_{n \to +\infty} \frac{\pi}{2n} \sum_{k=1}^{2n} f\left(\cos \frac{k\pi}{2n}\right) = \int_{0}^{\pi} f \circ \cos(x) \, dx = I(f)$$

On en déduit que $(S_n(f))_{n\in\mathbb{N}}$ converge bien vers I(f).

2. a. Pour $t \in [-1, 1]$

$$a^2 - 2at + 1 \ge (a^2 - 2a + 1) = (a - 1)^2 > 0$$

puisque $a \neq 1$. La fonction $t \mapsto a^2 - 2at + 1$ est continue sur [-1,1] à valeurs dans \mathbb{R}_+^* et ln est continue sur \mathbb{R}_+^* donc f est continue sur [-1,1].

b. Les racines de $X^{2n}+1$ sont les racines $2n^{\text{èmes}}$ de -1, à savoir les complexes $z_k=e^{\frac{(2k-1)i\pi}{2n}}$ avec $k\in [\![1,2n]\!]$. Or pour $k\in [\![1,n]\!]$, $z_k=e^{ix_k}$ et pour $k\in [\![n+1,2n]\!]$, $z_k=\overline{z_{2n-k+1}}$. Les racines de $X^{2n}+1$ sont donc les nombres complexes e^{ix_k} et e^{-ix_k} pour $k\in [\![1,n]\!]$.

On en déduit la décomposition en facteurs irréductibles de $X^{2n} + 1$ sur $\mathbb{C}[X]$:

$$X^{2n} + 1 = \prod_{k=1}^{n} (X - e^{ix_k}) \prod_{k=1}^{n} (X - e^{-ix_k})$$

En regroupant les racines conjuguées, on obtient la décomposition en facteurs irréductibles de $X^{2n} + 1$ sur $\mathbb{R}[X]$:

$$X^{2n} + 1 = \prod_{k=1}^{n} (X^2 - 2X\cos(x_k) + 1)$$

Chacun de ces facteurs est bien irréductible puisque les e^{ix_k} ne sont pas réels. En effet, $x_k \notin \pi \mathbb{Z}$ pour $k \in [1, n]$.

c. D'après la question précédente,

$$S_n(f) = \frac{\pi}{n} \sum_{k=1}^n \ln(a^2 - 2a\cos(x_k) + 1) = \frac{\pi}{n} \ln\left(\prod_{k=1}^n (a^2 - 2a\cos(x_k) + 1)\right) = \frac{\pi}{n} \ln(a^{2n} + 1)$$

d. D'après 1, $\lim_{n\to+\infty} S_n(f) = I(f)$. Si $a\in]0,1[$, $\lim_{n\to+\infty} a^{2n}=0$ donc $\lim_{n\to+\infty} S_n(f)=0$. Ainsi I(f)=0. Si $a\in]1,+\infty[$, alors $\lim_{n\to+\infty}\frac{1}{a^{2n}}=0$. Donc

$$S_n(f) = \frac{\pi}{n} \ln(a^{2n} + 1) = \frac{\pi}{n} \left(2n \ln(a) + \ln\left(1 + \frac{1}{a^{2n}}\right) \right) \underset{n \to +\infty}{\longrightarrow} 2\pi \ln(a)$$

Ainsi $I(f) = 2\pi \ln(a)$.

e. Si $a \in]0,1[$, alors

$$S_n(f) - I(f) = S_n(f) = \frac{\pi}{n} \ln(a^{2n} + 1) \underset{n \to +\infty}{\sim} \frac{a^{2n} \pi}{n}$$

 $\operatorname{car} a^{2n} \underset{\substack{n \to +\infty \\ \text{Si } a \in]1, +\infty[,}}{\longrightarrow} 0 \text{ et } \ln(1+x) \underset{x \to 0}{\sim} x.$

$$S_n(f) - I(f) = \frac{\pi}{n} \ln(a^{2n} + 1) - 2\pi \ln(a) = \frac{\pi}{n} \ln\left(1 + \frac{1}{a^{2n}}\right) \underset{n \to +\infty}{\sim} \frac{\pi}{na^{2n}}$$

 $\operatorname{car} \frac{1}{a^{2n}} \underset{n \to +\infty}{\longrightarrow} 0 \text{ et } \ln(1+x) \underset{x \to 0}{\sim} x.$