

Epreuve de synthèse en Processus Stochastique

1^{er} février 2022

Exercice 1 Soit 0 , on modélise un processus de vie et de mort fini par une chaînede Markov à valeurs dans 0, ..., N. Quand il n'y a pas d'individus, il s'en crée un avec une probabilité p, quand il y en a N l'un d'eux meurt avec la probabilité 1-p. Quand il y en a $k, \ 0 \le k \le N$, il y a une naissance avec une probabilité p et une mort avec une probabilité 1 - p.

- 1) Dessiner le diagramme de la chaîne.
- 2) Déterminer sa matrice de transition.
- 3) Démontrer que la chaîne admet une loi stationnaire unique, déterminer la.
- 4) Quel est le comportement de la chaîne pour p très petit, très proche de 1 et $p=\frac{1}{2}$.

Exercice 2 On considère un processus de branchement X_n tel que $\mu = \acute{\Phi}(1) = 1$ et $\acute{\Phi}(1)$ existe, Φ la fonction génératrice de Z le nombre de descendants. Soit $\tau = \inf\{n \geq 0, X_n = 0\}$ le temps d'extinction.

- 1) Montrer que τ est presque sûrement fini.
- 2) Soit $\Phi_n(t)$ la fonction génératrice de X_n , on pose $u_n = \mathbf{P}\{\tau > n\}$, écrire u_n en fonction de $\Phi_n(0)$, en déduire une relation de récurrence sur la suite $(u_n)_n$. (Indication : utiliser la propriété $\Phi_n(t) = \Phi^{(n)}(t)$ la composition n fois de Φ avec elle même)
- 3) calculer $\lim_{n\to\infty} u_n$, en déduire un développement limité d'ordre 2 dans la relation de récurrence.
- 4) Montrer que $\frac{1}{u_{n+1}} \frac{1}{u_n} \sim \frac{\oint(1)}{2}$. 5) On en déduit que $u_n \sim \frac{2}{n\oint(1)}$, montrer que $\mathbf{E}(\tau) = +\infty$.

Exercice 3 Sachant que les clients arrivent suivant un processus de Poisson de paramètre λ , on souhaite comparer les trois architectures de files d'attente suivantes :

A : consiste à utiliser un serveur de capacité 2μ.

B: consiste à utiliser deux serveurs en parallèle de capacité μ , ces serveurs partagent la

même file d'attente.

C : consiste à utiliser deux serveurs de capacité μ en parallèle, mais chaque serveur a sa propre file.

- $a) \ Pour \ chacune \ des \ trois \ configurations \ donner:$
- 1) La condition de stabilité.
- 2) Le nombre moyen de clients dans le système.
- 3) Le temps moyen de réponse.(temps de moyen de séjour)
- b) Quelle est la meilleure configuration?

Corrigé de l'epreuve de synthèse en Processus Stochastique

4 février 2022

Exercice 1 1) le graphe

(1 pt)

2) la matrice de transition \mathcal{P}

$$\mathcal{P} = \begin{pmatrix} 1-p & p & 0 & \dots & 0 & 0 \\ 1-p & 0 & p & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1-p & 0 & p \\ 0 & 0 & \dots & 0 & 1-p & p \end{pmatrix}$$

(2 pt)

3) la chaine est irréductible (0.5 pt), récurrente positive (0.5 pt) et apériodique (0.5 pt) alors elle admet une loi stationnaire unique (0.5 pt).

Soit la loi stationnaire Π , Pour la déterminer on applique $\Pi = \Pi \mathcal{P}$ on a :

$$\Pi(0) = (1-p)\Pi(0) + (1-p)\Pi(1)$$
 d'où $\Pi(1) = \frac{p}{1-p}\Pi(0)$

$$\Pi(2) = p\Pi(1) + (1-p)\Pi(3) \text{ alors } \Pi(k) = p\Pi(k-1) + (1-p)\Pi(k+1)$$

$$et \ \Pi(N) = p\Pi(N-1) + p\Pi(N)$$

Alors on a la relation de récurrence suivante :
$$\Pi(k) = \left(\frac{p}{1-p}\right)^k \Pi(0) \text{ pour } 0 \le k \le N. \text{ (2 pts)}$$

en utilisant $\sum_{k=0}^{N} \Pi(k) = 1$ d'où $\sum_{k=0}^{N} \left(\frac{p}{1-p}\right)^k \Pi(0) = 1$.

$$\Pi(0) = \frac{1 - \frac{p}{1 - p}}{1 - \left(\frac{p}{1 - p}\right)^{(N+1)}}.$$
 ($0.5pt$)

4) *Pour p très petit, $\frac{p}{1-p} \sim p$ alors $\Pi(1)$ est trés petit par rapport à $\Pi(0)$, donc la chaîne reste essentiellement en 0. (0.5 pt)

*Pour p proche de 1, $\frac{p}{1-p}$ est très grand, alors la chaîne atteint l'état N presque tout le temps. (0.5 pt)

*Pour p proche de $\frac{1}{2}$, $\frac{p}{1-p}$ est proche de 1, donc la distribution est proche de la distribution uniforme. (0.5 pt)

Exercice 2 1) μ le nombre moyen de descendants, $\mu = 1$ alors extinction de la population, $donc \ \tau \ est \ presque \ sûrement \ fini. \ (1 \ pt)$

2)
$$u_n = \mathbf{P}(\tau > n) = \mathbf{P}(X_n \neq 0) = 1 - \mathbf{P}(X_n = 0) = 1 - \Phi_n(0)$$
.

$$u_{n+1} = 1 - \Phi_{n+1}(0) = 1 - \Phi_n(\Phi(0)) = 1 - \Phi^{(n)}(\Phi(0)) = 1 - \Phi(\Phi^{(n)}(0)).$$

 $d'o\dot{u} u_{n+1} = 1 - \Phi(1 - u_n)$. (1pt)

3) $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \mathbf{P}\{\tau > n\} = 0$, car τ est presque sûrement fini. (1pt)

$$u_{n+1} = 1 - [\Phi(1) - \acute{\Phi}(1)u_n + \frac{\acute{\Phi}(1)}{2}u_n^2 + o(u_n^2)].$$
 D'où

$$u_{n+1} = 1 - \left[1 - u_n + \frac{\acute{\Phi}(1)}{2}u_n^2 + o(u_n^2)\right].$$
 Alors

$$u_{n+1} = u_n + \frac{\dot{\Phi}(1)}{2}u_n^2 + o(u_n^2)$$
. (1pt)

$$u_{n+1} = u_n + \frac{\acute{\Phi}(1)}{2}u_n^2 + o(u_n^2). \ (1pt)$$

$$4)\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{\frac{\acute{\Phi}(1)}{2}u_n^2 + o(u_n^2)}{u_n^2 - \frac{\acute{\Phi}(1)}{2}u_n^3 + o(u_n^3)}. \ En \ simplifiant \ et \ en \ passant \ \grave{a} \ la \ limite \ on \ obtient$$

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} \sim \frac{\acute{\Phi}(1)}{2} . (1pt)$$

$$u_{n+1} \quad u_n = 2$$
 (17) $E(\tau) = \sum_{n \ge 1} \mathbb{P}(\tau > n) = \sum_{n \ge 1} u_n = +\infty$, $car(u_n \sim \frac{2}{n \dot{\Phi}(1)})$. (1pt)

Exercice 3 Pour A:

1) la condition de stabilité est $\lambda < 2\mu$. (0.5pt)

2)
$$L = \frac{\frac{\lambda}{2\mu}}{1 - \frac{\lambda}{2\mu}} = \frac{\lambda}{2\mu - \lambda}$$
. (0.5pt)

3)
$$W = \frac{L}{\lambda}^{2\mu} = \frac{1}{2\mu - \lambda}$$
. (0.5pt)

Pour B:

1) la condition de stabilité $\frac{\lambda}{2} < \mu$. (0.5pt)

2)
$$L = \frac{\frac{\lambda}{2\mu}}{1 - \frac{\lambda}{2\mu}} = \frac{\lambda}{2\mu - \lambda}$$
. (0.5pt)

3)
$$W = \frac{L}{\lambda} = \frac{1}{2\mu - \lambda}$$
. (0.5pt)
Pour C:

1) La condition de stabilité est $\lambda < 2\mu$. (0.5pt)

2)
$$L = 2\frac{\frac{\lambda}{2\mu}}{1 - \frac{\lambda}{2\mu}} = 2\frac{\lambda}{2\mu - \lambda}$$
. (0.5pt)
3) $W = \frac{L}{\lambda} = \frac{2}{2\mu - \lambda}$. (0.5pt)

3)
$$W = \frac{L}{\lambda} = \frac{2}{2\mu - \lambda}$$
. (0.5pt)

b) le temps d'attente est le même pour les deux la configurations A et B, mais la capacité de service pour A est le double de celle dans B, alors la meilleure configuration est A. (0.5pt)