Gradient Descent

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Andrew Ng's notes
Wikipedia

Introduction

- In general, the loss function has no analytical solutions. We use Gradient Descent.
- Gradient = direction of the steepest ascent
- Find a local minimum of a function
- Often a first-order iterative optimization algorithm

General Idea

Algorithm

Find a local minimum of a C^1 continuous f(c)

- Start with random value c^0
- Update new value:

$$c^{i+1} = c^i - \alpha \frac{\partial f(c^i)}{\partial c^i}$$

 α : learning rate, very small

■ Repeat until
$$\left\| \frac{\partial f(c^i)}{\partial c^i} \right\| \le \text{tolerance}$$

Making Sure Gradient Descent Working Correctly

 Function f(c) should decrease after every iteration (monotonically decreases)

Making Sure Gradient Descent Working Correctly

• Use smaller learning rate α

Very large learning rate

Making Sure Gradient Descent Working Correctly

- Feature scaling:
 - Example: assume features for the house price includes number of bedrooms and living area
 - # of bedrooms between 0 and 5
 - But living area between 1 and 5000 feet²
 - Make all features have the same level of magnitude

Application for Minimizing Loss Function

• <u>Linear regression</u>: loss function for predictor $p_{\mathbf{c}}(x) = c_0 + c_1 x$ is

$$L(c_0, c_1) = \sum_{i=1}^{m} (p(x^{(i)}) - y^{(i)})^2$$
$$= \sum_{i=1}^{m} (c_0 + c_1 x^{(i)} - y^{(i)})^2$$

Use gradient descent to $\min_{c_0,c_1} L(c_0,c_1)$

Application for Minimizing Loss Function

• Step 1: Assign initial values for c_0 , c_1 : $c_0 = 0$, $c_1 = 1$

Step 2: Update the change in values for

$$c_0, c_1$$
: $c_0 := c_0 - \alpha \frac{\partial}{\partial c_0} L(c_0, c_1)$
 $:= c_0 - \alpha \sum_{i=1}^{m} 2(c_0 + c_1 x^{(i)} - y^{(i)})$

Step 2: (continue)

$$c_1 \coloneqq c_1 - \alpha \frac{\partial}{\partial c_1} L(c_0, c_1)$$

\(\sim c_1 - \alpha \sum_{i=1}^m 2x^{(i)} \left(c_0 + c_1 x^{(i)} - y^{(i)} \right)

Step 3: Repeat Step 2 until it converges

Logistic regression: do it similarly

- Stochastic gradient descent (SGD):
- Herbert Robbins and Sutton Monro (1951)
- Good for large/huge data sets
 - 1) Choose an initial parameter set c and learning rate α
 - 2) Randomly shuffle samples in the training set to update *c*

$$c \coloneqq c - \alpha \frac{\partial}{\partial c} L(c, \mathbf{x}^{(i)}, y^{(i)}), i = 1, 2, ..., m$$

No sum over i

3) Repeat 2) until the convergence is reached.

SGD with momentum: accelerate SGD

$$v \coloneqq \gamma v + \alpha \frac{\partial}{\partial c} L(c, \mathbf{x}^{(i)}, y^{(i)})$$
$$c \coloneqq c - v$$

https://distill.pub/2017/momentum/

- Adaptive learning rates are often used.
- If multiple passes are needed, the data can be shuffled for each pass to prevent cycles.

- A Method for Stochastic Optimization (Adam) by Kingma & Ba, 2015: An efficiency version of SGD using first and second order momentum, well suited for large data set problems
- Kalman-based Stochastic Gradient Descent: SIAM Journal on Optimization. 26 (4): 2620– 2648. arXiv:1512.01139

Methods

$$g \coloneqq \frac{\partial}{\partial c} L(c, \mathbf{x}^{(i)}, y^{(i)})$$
 (Compute gradient)

$$\boldsymbol{m} \coloneqq \beta_1 \boldsymbol{m} + (1 - \beta_1) \boldsymbol{g}$$
 (Update 1st order momentum)

$$v \coloneqq \beta_2 v + (1 - \beta_2) g^2$$

 $v \coloneqq \beta_2 v + (1 - \beta_2)g^2$ (Update 2nd order momentum)

 $\widehat{\boldsymbol{m}} \coloneqq \frac{\boldsymbol{m}}{\beta_1^k}$

(Compute corrected-1st order momentum)

 $\hat{v} := \frac{v}{\beta_2^k}$ (Compute corrected-2nd order momentum)

$$c \coloneqq c - \alpha \frac{n\epsilon}{\sqrt{\widehat{v}} + \epsilon}$$

(Update parameters)

Other Gradient Descent Methods

Adaptive Gradient Descent

Barzilai-Bowein method (for L(c) convex and $\frac{\partial}{\partial c}L(c)$ Lipschitz):

$$\boldsymbol{\alpha}^{n} = \boldsymbol{c}^{n-1} - \alpha^{n} \frac{\partial}{\partial c} L(\boldsymbol{c})$$

$$\alpha^{n} = \frac{(\boldsymbol{c}^{n} - \boldsymbol{c}^{n-1})^{T} \left[\frac{\partial}{\partial c} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n}} - \frac{\partial}{\partial c} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n-1}} \right]}{\left\| \frac{\partial}{\partial c} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n}} - \frac{\partial}{\partial c} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n-1}} \right\|^{2}}$$

Convex => the global minimum!

Discussions

Other potential mathematical approaches: Explicit Euler, implicit Euler, Crank-Nicholson, leapfrog, Guass-Legendre Runge-Kutta, Guass-Radau Runge-Kutta, Gauss-Lobatto Runge-Kutta, symplectic Runge-Kutta, Adams-Bashforth, Adams-Moulton, Strong stability preserving, hybrid multistep-multistage methods and adaptive SGD. (http://users.math.msu.edu/users/wei/paper/p1 75.pdf)

Discussions

Pros and Cons of Gradient Descent

Pros

- Can be applied for any dimensional space
- Nonlinear problems
- Easy to implement

Cons:

- Local optima problem
- Slowly to reach the local minimum
- Cannot be applied for discontinuous functions

Discussions

- Sample noise (uncertainty in $\{y^{(i)}\}$)
- Parameter linear dependence (in $\{c_i\}$)
- Manifold properties:
 - Smoothness -- differentiability
 - Convex/concave
 - > Tangent bundle/cotangent bundle
 - > Topological structure of the tangent space
 - de Rham-Hodge theory