

SEQUENCE LISTING

<110> Cherkasky, Alexander

<120> PCT/IB 2004/003536: CHERKASKY PROTEINS CONTAINING ANTIBODY-,
ANTIGEN- AND MICROTUBULE-BINDING REGIONS AND IMMUNE
RESPONSE-TRIGGERING REGIONS

<130> -

<140> US/10/577,613

<141> 2006-11-28

<160> 14

<170> PatentIn version 3.4

<210> 1

<211> 676

<212> PRT

<213> Artificial

<220>

<223> 1a SPA-5G-gephyrin

<220>

<221> FUSION_PRT

<222> (1)..(676)

<223> fusion protein Staph. aureus Protein A and H. sapiens gephyrin

<400> 1

Ala Ala Gln His Asp Glu Ala Gln Gln Asn Ala Phe Tyr Gln Val Leu

1 5 10 15

Asn Met Pro Asn Leu Asn Ala Asp Gln Arg Asn Gly Phe Ile Gln Ser

20 25 30

Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Val Leu Gly Glu Ala Lys

35 40 45

Lys Leu Asn Glu Ser Gln Ala Pro Lys Ala Asp Asn Asn Phe Asn Lys
50 55 60

Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu Asn Met Pro Asn Leu Asn
65 70 75 80

Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser
85 90 95

Gln Ser Ala Asn Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser Gln
100 105 110

Ala Pro Lys Ala Asp Asn Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe
115 120 125

Tyr Glu Ile Leu His Leu Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly
130 135 140

Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu
145 150 155 160

Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Ala Asp Asn
165 170 175

Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu
180 185 190

Pro Asn Leu Thr Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys
195 200 205

Asp Asp Pro Ser Val Ser Lys Glu Ile Leu Ala Glu Ala Lys Lys Leu
210 215 220

Asn Asp Ala Gln Ala Pro Lys Glu Glu Asp Asn Asn Lys Pro Gly Lys
225 230 235 240

Glu Asp Gly Asn Lys Pro Gly Lys Glu Asp Gly Asn Gly Gly Gly
245 250 255

Gly Met Ser Pro Phe Pro Leu Thr Ser Met Asp Lys Ala Phe Ile Thr
260 265 270

Val Leu Glu Met Thr Pro Val Leu Gly Thr Glu Ile Ile Asn Tyr Arg
275 280 285

Asp Gly Met Gly Arg Val Leu Ala Gln Asp Val Tyr Ala Lys Asp Asn
290 295 300

Leu Pro Pro Phe Pro Ala Ser Val Lys Asp Gly Tyr Ala Val Arg Ala
305 310 315 320

Ala Asp Gly Pro Gly Asp Arg Phe Ile Ile Gly Glu Ser Gln Ala Gly
325 330 335

Glu Gln Pro Thr Gln Thr Val Met Pro Gly Gln Val Met Arg Val Thr
340 345 350

Thr Gly Ala Pro Ile Pro Cys Gly Ala Asp Ala Val Val Gln Val Glu
355 360 365

Asp Thr Glu Leu Ile Arg Glu Ser Asp Asp Gly Thr Glu Glu Leu Glu
370 375 380

Val Arg Ile Leu Val Gln Ala Arg Pro Gly Gln Asp Ile Arg Pro Ile
385 390 395 400

Gly His Asp Ile Lys Arg Gly Glu Cys Val Leu Ala Lys Gly Thr His
405 410 415

Met Gly Pro Ser Glu Ile Gly Leu Leu Ala Thr Val Val Thr Glu
420 425 430

Val Glu Val Asn Lys Phe Pro Val Val Ala Val Met Ser Thr Gly Asn
435 440 445

Glu Leu Leu Asn Pro Glu Asp Asp Leu Leu Pro Gly Lys Ile Arg Asp
450 455 460

Ser Asn Arg Ser Thr Leu Leu Ala Thr Ile Gln Glu His Gly Tyr Pro
465 470 475 480

Thr Ile Asn Leu Gly Ile Val Gly Asp Asn Pro Asp Asp Leu Leu Asn
485 490 495

Ala Leu Asn Glu Gly Ile Ser Arg Ala Asp Val Ile Ile Thr Ser Gly
500 505 510

Gly Val Ser Met Gly Glu Lys Asp Tyr Leu Lys Gln Val Leu Asp Ile
515 520 525

Asp Leu His Ala Gln Ile His Phe Gly Arg Val Phe Met Lys Pro Gly
530 535 540

Leu Pro Thr Thr Phe Ala Thr Leu Asp Ile Asp Gly Val Arg Lys Ile
545 550 555 560

Ile Phe Ala Leu Pro Gly Asn Pro Val Ser Ala Val Val Thr Cys Asn
565 570 575

Leu Phe Val Val Pro Ala Leu Arg Lys Met Gln Gly Ile Leu Asp Pro
580 585 590

Arg Pro Thr Ile Ile Lys Ala Arg Leu Ser Cys Asp Val Lys Leu Asp
595 600 605

Pro Arg Pro Glu Tyr His Arg Cys Ile Leu Thr Trp His His Gln Glu
610 615 620

Pro Leu Pro Trp Ala Gln Ser Thr Gly Asn Gln Met Ser Ser Arg Leu
625 630 635 640

Met Ser Met Arg Ser Ala Asn Gly Leu Leu Met Leu Pro Pro Lys Thr
645 650 655

Glu Gln Tyr Val Glu Leu His Lys Gly Glu Val Val Asp Val Met Val
660 665 670

Ile Gly Arg Leu
675

<210> 2

<211> 2092

<212> DNA

<213> Artificial

<220>

<223> 1b SPA-5G-gephyrin

<220>

<221> misc_recomb

<222> (1)..(2092)

<223> nucleic acid encoding Staph. aureus Protein A and H. sapiens
gephyrin fusion prt

<400> 2

tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60

cttaaatgtc gatcaacgca atggtttat ccaaaggcctt aaagatgatc caagccaaag 120

tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180

caatttcaac aaagaacaac aaaatgcctt ctatgaaatc ttgaacatgc ctaacttcaa 240

cgaagaacaa cgcaatggtt tcataccaaag cttaaaagat gacccaagtc aaagtgctaa 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaatt 360
caacaaagaa caacaaaatg ctcttatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccga agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcacaaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcttct atgaaattt acatttacct aacttaactg aagagcaacg 600
taacggcttc atccaaagcc taaaagacga tcctcagtg agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaaggcacc aaaagagggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggtaacggc ggccggccg gcgtttaggt 780
cacagtgcgt tcgatatcac caaggtggct agaagacatc gcatgtctcc tttcctctg 840
acatctatgg acaaaggcctt tattcacatc ctggagatga ctccgggtct tgggacagaa 900
atcatcaatt accgagatgg aatggggcga gtcctgctc aagatgtata tgcaaaagac 960
aatttacccc cttcccccgc atcgtaaaaa gatggctatg ctgtccgagc tgctgatggc 1020
ccaggagatc gtttcatcat tgggaaatcc caagctggtg aacagccaaac tcagacagta 1080
atgccaggac aagtcatgcg ggttacaaca ggtgtccaa taccctggg tgctgatgca 1140
gttgtacaag tggaagatac cgaacttac agggaatcag atgatggcac tgaagaactt 1200
gaagtgcgaa ttctggtgca agctcgccca gccaagata tcagacccat cggccatgac 1260
attaaaagag gggaaatgtgt tttggccaaa ggaacccaca tggcccccctc agagattgg 1320
tttctggcaa ctgttaggtt cacagaggtt gaagttata agttccagt ggttgcatc 1380
atgtcaacag ggaatgagct gctaaatcct gaagatgacc tcttaccagg gaagattcga 1440
gacagcaatc gttcaactct tctagcaaca attcaggaac atggttaccc cacgtcaac 1500
ttgggtattt taggagacaa cccagatgac ttactcaatg cttgaatga gggatcagt 1560
cgtgctgatg tcatcatcac atcagggggt gtatccatgg gggaaaagga ctatctcaag 1620

caggtgctgg acattgatct tcatgcttag atccatttg gcagggttt tatgaaacca 1680
ggcttgccaa caacattgc aacttggat attgatggtg taagaaaaat aatcttgca 1740
ctacctggga atcctgtatc ggctgtggc acctgcaatc tccttgtgt gcctgcactg 1800
aggaaaaatgc agggcatctt ggatcctcg ccaaccatca tcaaagcaag gttatcatgt 1860
gatgtaaaac ttgatcctcg tccagaatac catcggtgt tactaacttg gcatcacca 1920
gaaccactac cttggcaca gagtacaggt aatcaaatga gcagccgtct gatgagcatg 1980
cgcagtgccaa atggattgtt gatgctacct ccaaagacag aacagtacgt ggagctccac 2040
aaaggcgagg tggatgtt catggcattt ggacggctat gatggtcacc ag 2092

<210> 3
<211> 300
<212> PRT
<213> Artificial

<220>
<223> 2a SPA-5G-MBP

<220>
<221> FUSION_PRT
<222> (1)..(300)
<223> Fusion Protein of Staph. aureus Protein A and H. sapiens MBP

<220>
<221> MISC_FEATURE
<222> (264)..(264)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> MISC_FEATURE
<222> (278)..(278)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> MISC_FEATURE
<222> (281)..(281)
<223> Xaa can be any naturally occurring amino acid

<400> 3

Ala Ala Gln His Asp Glu Ala Gln Gln Asn Ala Phe Tyr Gln Val Leu
1 5 10 15

Asn Met Pro Asn Leu Asn Ala Asp Gln Arg Asn Gly Phe Ile Gln Ser
20 25 30

Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Val Leu Gly Glu Ala Lys
35 40 45

Lys Leu Asn Glu Ser Gln Ala Pro Lys Ala Asp Asn Asn Phe Asn Lys
50 55 60

Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu Asn Met Pro Asn Leu Asn
65 70 75 80

Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser
85 90 95

Gln Ser Ala Asn Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser Gln
100 105 110

Ala Pro Lys Ala Asp Asn Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe
115 120 125

Tyr Glu Ile Leu His Leu Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly
130 135 140

Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu
145 150 155 160

Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Ala Asp Asn
165 170 175

Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu
180 185 190

Pro Asn Leu Thr Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys
195 200 205

Asp Asp Pro Ser Val Ser Lys Glu Ile Leu Ala Glu Ala Lys Lys Leu
210 215 220

Asn Asp Ala Gln Ala Pro Lys Glu Glu Asp Asn Asn Lys Pro Gly Lys
225 230 235 240

Glu Asp Gly Asn Lys Pro Gly Lys Glu Asp Gly Asn Gly Gly Gly
245 250 255

Gly Ala Ala Ala Ser Thr Ala Xaa Ala Ser Thr Ala Lys Glu Thr Ala
260 265 270

Glu Ala Val Ala Asp Xaa Ile Leu Xaa Lys Ala Gly Pro Leu Val Ala
275 280 285

Val Ser Ala Val Ala Leu Asp Ile Thr Ala Tyr Pro
290 295 300

<210> 4
<211> 912
<212> DNA
<213> Artificial

<220>
<223> 2b SPA-5g-MBP

<220>
<221> misc_recomb
<222> (1)..(912)
<223> nucleic acid encoding Staph. aureus Protein A and H. sapiens MBP
fusion prt

<220>
 <221> misc_feature
 <222> (792)..(792)
 <223> n is a, c, g, t or u

<220>
 <221> misc_feature
 <222> (835)..(835)
 <223> n is a, c, g, t or u

<220>
 <221> misc_feature
 <222> (844)..(844)
 <223> n is a, c, g, t or u

<400> 4

tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa	60
cttaaatgct gatcaacgca atggtttat ccaaaggcctt aaagatgatc caagccaaag	120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa	180
caattcaac aaagaacaac aaaatgctt ctatgaaatc ttgaacatgc ctaacttgaa	240
cgaagaacaa cgcaatggtt tcataccaaag cttaaaagat gacccaagtc aaagtgtcaa	300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaatt	360
caacaaagaa caacaaaatg ctttctatga aatcttacat ttacctaact taaacgaaga	420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt	480
agcagaagct aaaaagctaa atgatgcaca agcaccaaaa gctgacaaca aattcaacaa	540
agaacaacaa aatgcttct atgaaatttt acatttacct aacttaactg aagagcaacg	600
taacggcttc atccaaagcc ttaaagacga tcctcagtg agcaaagaaaa ttttagcaga	660
agctaaaaag ctaaacgatg ctcaaggcacc aaaagagggaa gacaacaaca aacctggtaa	720
agaagacggc aacaaacctg gcaaagaaga cggtaacggc ggcggcggcgc gcgcggccgc	780
gtcgaccgcg gnccggtcga cggcaaagga gactgctgag gctgttgctg atganatact	840
gganaaggct gggccacttg ttgctgtgtc tgctgtgca cttgatataa ctgcctaccc	900

ctaaaagcca aa 912

<210> 5
<211> 3718
<212> DNA
<213> Artificial

<220>
<223> 3 SPA-5g-FLJ 314424 fis (MBP)

<220>
<221> misc_recomb
<222> (1)..(3718)
<223> nucleic acid encoding Staph. aureus Protein A and H. Sapiens FLJ
314424 fis fusion prt

<400> 5
tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaaggcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caattcaac aaagaacaac aaaatgcitt ctatgaaatc ttgaacatgc ctaacttgaa 240
cgaagaacaa cgcaatggtt tcattccaaag cttaaaagat gacccaagtc aaagtgcata 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaatt 360
caacaaagaa caacaaaatg cttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcaccaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcattct atgaaatttt acatttacct aacttaactg aagagcaacg 600
taacggcttc atccaaagcc ttaaagacga tccttcagtg agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaaggcacc aaaagaggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggttaacggc ggcggcggcg gcaatgtccc 780

gaattccag cctcaccacc ccttctcagt aatgaccctg gttggttgca ggaggtaacct 840
actccatact gagggtgaaa ttaagggaag gcaaagtcca ggcacaagag tgggacccca 900
gcctctcaact ctcagttcca ctcatccaac tgggaccctc accacgaatc tcatgatctg 960
attcggttcc ctgtctcctc ctcccgtcac agatgtgagc cagggcactg ctcagctgtg 1020
acccttaggtg tttctgcctt gttgacatgg agagagccct ttcccctgag aaggcctggc 1080
cccttcctgt gctgagccca cagcagcagg ctgggtgtct tgggtgtcag tgggtggcacc 1140
aggatggaag ggcaaggcac ccagggcagg cccacagtcc cgctgtcccc cacttgacc 1200
ctagcttcta gctgccaacc tcccagacag cccagccgc tgctcagetc cacatgcata 1260
gtatcagccc tccacaccccg acaaaggga acacacccccc ttggaaatgg ttctttccc 1320
ccagtcaggc ctggaagcca tgctgtctgt tctgctggag cagctgaaca tatacataga 1380
tgttgcctg ccctccccat ctgcaccctg ttgagttgta gttggatttg tctgtttatg 1440
cttggattca ccagagtgc tatgatagtg aaaagaaaaa aaaaaaaaaa aaaggacgca 1500
tgtatcttga aatgcttcta aagaggtttc taacccaccc tcacgagggtg tctctcaccc 1560
ccacactggg actcgtgtgg cctgtgtggt gccaccctgc tgggcctcc caagtttga 1620
aaggcttcc tcagcacctg ggacccaaca gagaccagct tctagcagct aaggaggccg 1680
ttcagctgtg acgaaggcct gaagcacagg attaggactg aagcgatgtat gtcccttcc 1740
ctacttcccc ttggggctcc ctgtgtcagg gcacagacta ggtcttgttgc ctggctggc 1800
ttgcggcgcg aggatggttc tctctggta tagcccaag tctcatggca gtcccaaagg 1860
aggcttacaa ctcctgcac acaagaaaaa ggaagccact gccagctggg gggatctgca 1920
gctccagaa gctccgtgag cctcagccac ccctcagact gggttcctt ccaagctgc 1980
cctctggagg ggcagcgcag cctccacca agggccctgc gaccacagca gggattggga 2040
tgaattgcct gtcctggatc tgctctagag gcccaagctg cctgcctgag gaaggatgac 2100
ttgacaagtc aggagacact gttcccaaag cttgaccag agcacccat cccgctgacc 2160

ttgcacaaac tccatctgct gccatgagaa aagggaagcc gccttgcaa aacattgctg 2220
cctaaagaaa ctcagcagcc tcaggccaa ttctgccact tctggttgg gtacagttaa 2280
aggcaaccct gagggacttg gcagtagaaaa tccagggcct cccctggggc tggcagctc 2340
gtgtcagct agagctttac ctgaaaggaa gtctctgggc ccagaactct ccaccaagag 2400
cctccctgcc gttcgctgag tcccagcaat tccctaagt tgaaggatc tgagaaggag 2460
aaggaaatgt gggtagatt tgggtgggt tagagatatg cccccctcat tactgccaac 2520
agttcggct gcatttcttc acgcacctcg gttccttcc ctgaagttct tgtgccctgc 2580
tcttcagcac catggccctt cttatacgga aggctctggg atctccccc tgtggggcag 2640
gctcttgggg ccagcctaag atcatggttt agggtatca gtgctggcag ataaattgaa 2700
aaggcacgct ggcttgtat cttaaatgag gacaatcccc ccagggctgg gcactcctcc 2760
cctccctca cttctccac ctgcagagcc agtgccttg ggtggctag ataggatata 2820
ctgtatgcgg gtcctcaa gctgctgact cactttatca atagttccat ttaaattgac 2880
ttcagtggtg agactgtatc ctgittgcta ttgcttggt tgctatgggg ggagggggga 2940
ggaatgtta agatagttaa catggcaaa gggagatctt ggggtgcagc acttaaactg 3000
cctcgtaacc ctttcatga ttcaaccac atttgctaga gggagggagc agccacggag 3060
tttagaggccc ttggggtttc tctttccac tgacaggctt tcccaggcag ctggctagtt 3120
cattccctcc ccagccaggt gcaggcgtag gaatatggac atctgggtgc tttggcctgc 3180
tgccctt caggggtcct aagcccacaa tcatgcctcc ctaagacctt ggcaccccttc 3240
cctctaagcc gttggcacct ctgtgccacc tctcacactg gctccagaca cacagcctgt 3300
gctttggag ctgagatcac tcgcttcacc ctccatct ttgttctcca agtaaagcca 3360
cgaggtcggtt gcgagggcag aggtatcac ctgcgtgtcc catctacaga cctgcagctt 3420
cataaaactt ctgatttctc tttagtttggaaa aaaaagggtta ccctgggcac tggcctagag 3480
cctcacccctcc taatagactt agcccatga gtttgccatg ttgagcagga ctatctgg 3540

cacttgcaga tcccatgatt tcttcggtaa ttctgagggt ggggggaggg acatgaaatc 3600
atcttagctt agctttctgt ctgtgaatgt ctatatagtt tatttgtgtt tttaacaaat 3660
gatttacact gactgttgct gtaaaagtga atttggaaat aaagtttata ctctgatt 3718

<210> 6
<211> 2553
<212> DNA
<213> Artificial

<220>
<223> 4 IL 15-5G-gephyrin-Fc

<220>
<221> misc_recomb
<222> (1)..(2553)
<223> nucleic acid encoding H. sapiens IL 15 and H. sapiens gephyrin fusion protein

<400> 6
ccatccagtg ctacttgtt ttacttctaa acagtcattt tctaactgaa gctggcattc 60
atgtcttcat ttgggcgtt ttcagtgcag ggcttcctaa aacagaagcc aactgggtga 120
atgtataaag tgatttgaaa aaaattgaag atcttattca atctatgcat attgatgcta 180
cttttatatac ggaaagtgtat gttcacccca gttgcaaagt aacagcaatg aagtgcattc 240
tcggagtt acaaggattt tcacttgagt ccggagatgc aagtattcat gatacagtag 300
aaaatctgat catcctagca aacaacagtt tgtcttctaa tggaatgta acagaatctg 360
gatgcaaaga atgtgaggaa ctagagggaaa aaaatattaa agaatttttgcagagtttg 420
tacatattgt ccaaattgttc atcaacactt ctggcgccg gcggcgccgt ttaggtcaca 480
gtgctgtcga tatcaccaag gtggctagaa gacatcgcat gtctccccc cctctgacat 540
ctatggacaa agccttatac acagtcctgg agatgactcc ggtgcttggg acagaaatca 600
tcaattaccg agatgaaatg gggcgagtcc ttgctcaaga tgtatatgca aaagacaatt 660
taccccccctt cccagcatca gtaaaagatg gctatgtgtt ccgagctgctt gatggcccg 720

gagatcggtt catcattggg gaatcccaag ctggtaaca gccaactcg acagtaatgc 780
caggacaagt catcggtt acaacaggtg ctccaatacc ctgcggtgct gatgcagtag 840
tacaagtgga agataccgaa cttatcaggg aatcagatga tggcactgaa gaacttgaag 900
tgcgaattct ggtgcaagct cgcccaggcc aagatatcg accccatcgcatgacatta 960
aaagagggga atgtgtttg gccaaaggaa cccacatggg cccctcagag attggcttc 1020
tggcaactgt aggtgtcaca gaggttgaag ttaataagtt tccagtggtt gcagtcgt 1080
caacagggaa tgagctgcta aatcctgaaatgacctt accagggaaatcgagaca 1140
gcaatcggtt aactcttcta gcaacaattc aggaacatgg ttacccacg atcaacttgg 1200
gtattgttagg agacaaccca gatgacttac tcaatgcctt gaatgagggt atcagtcgt 1260
ctgtatgtcat catcacatca ggggtgtat ccatggggaa aaaggactat ctcaagcagg 1320
tgctggacat tgatcttcat gctcagatcc attttggcag ggttttatg aaaccaggct 1380
tgccaacaac atttgcaact ttggatattg atggtgaag aaaaataatc ttgcactac 1440
ctggaaatcc tggatcggtt gtggcacct gcaatcttt tggatcgct gcactgagga 1500
aaatgcaggg catctggat cctcgccaa ccatcatcaa agcaaggta tcatgtgatg 1560
taaaacttga tcctcgcca gaataccatc ggtgtatact aacttggcat caccaagaac 1620
cactacccgtt ggcacagagt acaggtatc aaatgagcag ccgtctgatg agcatcgca 1680
gtgccaatgg attgttgatg ctacctccaa agacagaaca gtacgtggag ctccacaaag 1740
gcgagggttgtt ggatgtcatg gtcattggac ggctatgatg gtcaccagctt gttgacaatt 1800
aatcatcgcc tcgtataatg tgtgaaattt tgagcggata acaatttcac acaggaaaca 1860
ggatccgata atgacatgcc caccgtgccc agcacctgaa ctcctggggg gaccgtcagt 1920
cttccttttcccccaaaac ccaaggacac cctcatgatc tcccgaccc ctgaggtcac 1980
atgcgtgggtt gtggacgtga gccacgaaga ccctgaggct aagtcaact ggtacgtgga 2040
cgccgtggag gtgcataatg ccaagacaaa gccgcgggag gagcagtaca acagcacgtt 2100

ccgggtggc agcgcctca ccgcctgca ccaggactgg ctgaatggca aggagtacaa 2160
gtgcaaggc tccaacaaag ccccccagc ccccatcgag aaaaccatct ccaaagccaa 2220
agggcagccc cgagaaccac aggtgtacac cctgccccca tcccgggagg agatgaccaa 2280
gaaccaggc agcctgacct gcctggtcaa aggcttctat cccagcgaca tcgccgtgga 2340
gtgggagagc aatgggcagc cggagaacaa ctacaagacc acgcctcccg tgctggactc 2400
cgacggctcc ttcttcctct atagcaagct caccgtggac aagagcaggt ggcagcaggg 2460
gaacgtcttc tcatgctccg tcatgcatga ggctctgcac aaccactaca cgcagaagag 2520
cctctccctg tccccggta aataatagga tcc 2553

<210> 7
<211> 2505
<212> DNA
<213> Artificial

<220>
<223> 5 IL 2-5G-gephyrin -Fc

<220>
<221> misc_recomb
<222> (1)..(2505)
<223> nucleic acid encoding H. sapiens IL 2, H. sapiens gephyrin and H. sapiens IgG Fc fusion protein

<400> 7
atgcctactt caagttctac aaagaaaaaca cagctacaac tggagcattt actgctggat 60
ttacagatga tttgaatgg aattaataat tacaagaatc ccaaactcac caggatgctc 120
acatttaagt tttacatgcc caagaaggcc acagaactga aacatttca gtgtctagaa 180
gaagaactca aacctctgga ggaagtgcta aatttagctc aaagcaaaaa ctttcaactta 240
agacccaggg acttaatcag caatatcaac gtaatagttc tggaactaaa gggatctgaa 300
acaacattca tgtgtgaata tgctgatgag acagcaacca ttgtagaatt tctgaacaga 360

tggattaccttctcaaag catcatctca acactgactt gataaggcgg cggcggcggc 420
gtttaggtca cagtgcgtc gatatcacca aggtggctag aagacatgc atgtccctt 480
ttcctctgac atctatggac aaaggctta tcacagtcct ggagatgact ccggtgcttg 540
ggacagaaaat catcaattac cgagatggaa tggggcgagt cttgctcaa gatgtatatg 600
caaaagacaa ttacccccc ttcccagcat cagtaaaaga tggctatgct gtccgagctg 660
ctgatggccc aggagatcgt ttcatcattt gggaaatccca agctggtaa cagccaactc 720
agacagtaat gccaggacaa gtcatgcggg ttacaacagg tgctccaata ccctgcggtg 780
ctgatgcagt agtacaagt gaaagataccg aacttatcag ggaatcagat gatggcactg 840
aagaacttga agtgcgaatt ctggcgaag ctggccagg ccaagatatc agaccatcg 900
gccatgacat taaaagaggg gaatgtgtt tggccaaagg aacccacatg ggccctcag 960
agattggctctggcaact gtaggtgtca cagaggtaa agttaataag ttccagtgg 1020
ttgcagtcat gtcaacagg aatgagctgc taaatcctga agatgaccc ttaccaggga 1080
agattcgaga cagcaatcgt tcaactttc tagcaacaat tcaggaacat gttacccca 1140
cgatcaactt gggtattgtt ggagacaacc cagatgactt actcaatgcc ttgaatgagg 1200
gtatcagtcg tgctgatgtc atcatcacat caggggtgt atccatggg gaaaaggact 1260
atctcaagca ggtgctggac attgatttc atgctcagat ccattttgc agggttta 1320
tgaaccagg cttgccaaca acatttgc当地 cttggatat tgatggta agaaaaataa 1380
ctttgcact acctggaaat cctgtatcgg ctgtggcac ctgcaatctc ttgttgtgc 1440
ctgcactgag gaaaatgc当地 ggc当地tgg当地 atcctcggcc aaccatcatc aaagcaaggt 1500
tatcatgtt当地 tgtaaaactt gatcctcgtc cagaatacca tcgggtata ctaacttgc 1560
atcaccaaga accactaccc tggcacaga gtacaggtaa tcaaatttgc当地 agccgtctga 1620
tgagcatgctc cagtgc当地tgg当地 ggattgtt当地 tgctacccaa aaagacagaa cagtaatgtt当地 1680
agctccacaa aggccagggtt当地 gtggatgtca tggtcatttgc当地 acggctatga tggtcaccag 1740

ctgttgacaa ttaatcatcg gctcgataa tgtgtggaat tgtgagcggtaacaattc 1800
acacaggaaa caggatccga taatgacatg cccaccgtgc ccagcacctg aactcctggg 1860
gggaccgtca gtcttccttccccc aaaccaggac accctcatga tctccggac 1920
ccctgaggc acatgcgtgg tggtgacgt gagccacgaa gaccctgagg tcaagttcaa 1980
ctggtagctg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcaga 2040
caacagcactg taccgggtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg 2100
caaggagtac aagtgcagg tctccaacaa agccctccca gccccatcg agaaaaccat 2160
ctccaaagcc aaaggcagg cccgagaacc acaggtgtac accctgcccc catccggga 2220
ggagatgacc aagaaccagg tcagcctgac ctgcctggc aaaggctct atccagcga 2280
catcgccgtg gagtggaga gcaatggca gccggagaac aactacaaga ccacgcctcc 2340
cgtgctggac tccgacggct ctttttcctt ctatagcaag ctcaccgtgg acaagagcag 2400
gtggcagcag gggAACGTCT tctcatgctc cgtgatgcat gaggctctgc acaaccacta 2460
cacgcagaag agcctctccc tggccggg taaataatag gatcc 2505

<210> 8
<211> 1373
<212> DNA
<213> Artificial

<220>
<223> 6 IL 15-5G-MBP-Fc

<220>
<221> misc_recomb
<222> (1)..(1373)
<223> nucleic acid encoding H.sapiens IL 15, H.sapiens MBP and
H.sapiens IgG Fc fusion prt

<220>
<221> misc_feature
<222> (488)..(488)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (531)..(531)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (540)..(540)
<223> n is a, c, g, t or u

<400> 8
ccatccatg ctacttgtt ttacttctaa acagtcattt tctaactgaa gctggcattc 60
atgtcttcat ttgggcgtgt ttcagtgcag ggcttcctaa aacagaagcc aactgggtga 120
atgtataaag tgatttgaaa aaaattgaag atcttattca atctatgcat attgatgcta 180
ctttatatac ggaaagtgtat gttcacccca gttgcaaagt aacagcaatg aagtgcattc 240
tcttggagtt acaagtttatt tcacttgagt ccggagatgc aagtattcat gatacagtag 300
aaaatctgtat catcctagca aacaacagtt tgtcttctaa tggaatgta acagaatctg 360
gatgcaaaga atgtgaggaa ctagagggaaa aaaatattaa agaattttg cagagtttg 420
tacatattgt ccaaattgttc atcaacactt ctggcgccg gcggcgccgc ggccgcgtcg 480
accgcggncg cgtcgacggc aaaggagact gctgaggctg ttgctgatga natactggan 540
aaggctgggc cacttgttgc tgtgtctgct gttgcacttg atataactgc ctaccctaa 600
aagccaaact gttgacaatt aatcatcgcc tcgtataatg tgtggattt tgagcggata 660
acaatttcac acagggaaaca ggtacgtataatg atgacatgcc caccgtcccc agcacctgaa 720
ctcctggggg gaccgtcagt cttcccttcc cccccaac ccaaggacac cctcatgatc 780
tcccgaccc ctgaggtcac atgcgtggtg gtggacgtga gccacgaaga ccctgaggctc 840
aagtcaact ggtacgtggc cggcgtggag gtgcataatg ccaagacaaa gccgcgggag 900
gagcagtaca acagcacgtt ccgggtggtc agcgtcctca ccgtcctgca ccaggactgg 960
ctgaatggca aggagtacaa gtgcaagggtc tccaacaaag ccctcccagc ccccatcgag 1020

aaaaccatct ccaaagccaa agggcagccc cgagaaccac aggtgtacac cctgccccca 1080
tcccgggagg agatgaccaa gaaccaggc agcctgacct gcctggtcaa aggcttctat 1140
cccagcgaca tcgccgtgga gtgggagagc aatgggcagc cggagaacaa ctacaagacc 1200
acgcctcccg tgctggactc cgacggctcc ttcttcctt atagcaagct caccgtggac 1260
aagagcaggt ggcagcaggg gaacgtcttc tcatgctccg tcatgcatga ggctctgcac 1320
aaccactaca cgcagaagag cctctccctg tccccggta aataatagga tcc 1373

<210> 9
<211> 1325
<212> DNA
<213> Artificial

<220>
<223> 7 IL 2-5G-MBP-Fc

<220>
<221> misc_recomb
<222> (1)..(1325)
<223> nucleic acid encoding H.sapiens IL 2, H.sapiens MBP and H.sapiens IgG Fc fusion prt

<220>
<221> misc_feature
<222> (440)..(440)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (483)..(483)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (492)..(492)
<223> n is a, c, g, t or u

<400> 9
atgcctactt caagttctac aaagaaaaaca cagctacaac tggaggattt actgctggat 60

ttacagatga tttgaatgg aattaataat tacaagaatc ccaaactcac caggatgctc 120
acatttaagt tttacatgcc caagaaggcc acagaactga aacatttca gtgtctagaa 180
gaagaactca aacctctgga ggaagtgcta aatttagtgc aaagcaaaaa ctttcactta 240
agaccaggc acttaatcg caatatcaac gtaatagttc tggaactaaa gggatctgaa 300
acaacattca tgtgtgaata tgctgatgag acagcaacca ttgtagaatt tctgaacaga 360
tggttaccc ttctcaaag catcatctca acactgactt gataaggcgg cggcggcggc 420
gcggccgcgt cgaccgcgn cgcgtcgacg gcaaaggaga ctgctgaggc tggtgctgat 480
ganatactgg anaaggctgg gccacttgtt gctgtgtctg ctgtgcact tgatataact 540
gcctaccctt aaaaggccaaa ctgtgacaa ttaatcatcg gctcgataa tgtgtgaaat 600
tgtgagcggta taacaatttc acacaggaaa caggatccga taatgacatg cccaccgtgc 660
ccagcacctg aactcctggg gggaccgtca gtcttcctct tccccccaaa acccaaggac 720
accctcatga tctccggac ccctgagggtc acatgcgtgg tggtggacgt gagccacgaa 780
gaccctgagg tcaagttcaa ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca 840
aagccgcggg aggagcagta caacagcacg taccgggtgg tcagcgtcct caccgtcctg 900
caccaggact ggctgaatgg caaggagtac aagtgcagg tctccaacaa agccctccca 960
gcccccatcg agaaaaccat ctccaaagcc aaagggcagc cccgagaacc acaggtgtac 1020
accctgcccc catccggga ggagatgacc aagaaccagg tcagcgtcct ctgcctggc 1080
aaaggcttct atcccagcga catcgccgtg gagtgggaga gcaatggca gccggagaac 1140
aactacaaga ccacgcctcc cgtgctggac tccgacggct ccttcttcct ctatagcaag 1200
ctcaccgtgg acaagagcag gtggcagcag gggAACgtct tctcatgctc cgtgatgcat 1260
gaggctctgc acaaccacta cacgcagaag agcctctccc tgccccggg taaataatag 1320
gatcc 1325

<210> 10

<211> 4178

<212> DNA

<213> Artificial

<220>

<223> 8 IL 15-5G-FLJ 314424 fis (MBP)-Fc

<400> 10

ccatccagtg ctacttgtt tacttctaa acagtcat ttctactgaa gctggcattc 60

atgtcttcat ttgggcgtgt ttcagtgcag ggcttcctaa aacagaagcc aactgggtga 120

atgtataaag tgatttggaaa aaaatttgaag atcttattca atctatgcat attgatgcta 180

ctttatatac ggaaaggatgtat gttcacccca gttgcaaagt aacagcaatg aagtgcattc 240

tcttggagtt acaagtttatt tcacttgagt ccggagatgc aagtattcat gatacagtag 300

aaaatctgat catcctagca aacaacagtt tgtcttctaa tggaaatgta acagaatctg 360

gatgcaaaga atgtgaggaa ctagaggaaa aaaatattaa agaatttttgcagagttttg 420

tacatattgt ccaaattgttc atcaacactt ctggcgccg gcccggccaa tgtcccaat 480

tcccagccctc accaccctt ctcagtaatg accctgggtt gttgcaggag gtacctactc 540

catactgagg gtgaaattaa gggaggca agtccaggca caagagtggg accccagcct 600

ctcaactctca gttccactca tccaactggg accctcacca cgaatctcat gatctgattc 660

ggttccctgt ctcctccctc cgtcacagat gtgagccagg gcactgctca gctgtgaccc 720

taggtgtttc tgccttggt acatggagag agcccttcc cctgagaagg cctggccct 780

tcctgtgtcg agccccacagc agcaggctgg gtgtcttggt tgtcagtttgcaccaggaa 840

tggaaggcaggca aggccacccag ggcaggccca cagtcccgct gtcccccact tgcaccctag 900

ctttagctg ccaacccccc agacagccca gcccgcgtct cagctccaca tgcatagttat 960

cagccctcca cacccgacaa aggggaacac acccccttgg aaatggttct tttccccccag 1020

tcccagctgg aagccatgct gtctgttctg ctggaggcagc tgaacatata catagatgtt 1080

gccctgcctt ccccatctgc accctgttga gttgttagttt gatttgcattt tttatgcattt 1140

gattcaccag agtgaactatg atagtaaaaaa gaaaaaaaaaa aaaaaaaaaaag gacgcata 1200
tcttgcggatg cttgtaaaaga gggttctaaccacccctcac gaggtgtctc tcaccccccac 1260
actggggactc gtgtggcctg tgggtgcca ccctgctgg gcctcccaag ttgtggaaagg 1320
ctttcctcag cacctggac ccaacagaga ccagcttcta gcagctaagg aggccgttca 1380
gctgtgacga aggccctgaag cacaggatta ggactgaagc gatgatgtcc cttccctac 1440
ttcccccttgg ggctccctgt gtcagggcac agacttagtgc ttgtggctgg tctggctgc 1500
ggcgcgagga tggttctctc tggcatagc ccgaagtctc atggcagtcc caaaggaggc 1560
ttacaactcc tgcatcacaa gaaaaaggaa gccactgcca gctgggggaa tctgcagtc 1620
ccagaagctc cgtgagccctc agccacccct cagactgggt tcctctcaa gctcgccctc 1680
tggaggggca gcgcagccctc ccaccaaggg ccctgcgacc acagcaggaa ttggatgaa 1740
ttgcctgtcc tggatctgct ctagaggccc aagctgcctg cctgagggaa gatgacttga 1800
caagtcagga gacactgttc ccaaagcctt gaccagagca cctcagcccg ctgacctgc 1860
acaaaactcca tctgctgcca tgagaaaagg gaagccgcct ttgcaaaaca ttgctgccta 1920
aagaaaactca gcagccctcag gcccaattct gccacttctg gtttgggtac agttaaaggc 1980
aaccctgagg gacttggcag tagaaatcca gggctcccc tggggctggc agcttcgtgt 2040
gcagctagag cttaacctga aaggaagtct ctggcccgag aactctccac caagagccctc 2100
cctgccgttc gctgagttccc agcaattctc ctaagttgaa gggatctgag aaggagaagg 2160
aaatgtgggg tagatttgggt ggtggtaga gatatgcctt cctcattact gccaacagtt 2220
tcggctgcatttacgc acctcggttc ctcttcttgc agttcttgc ccctgcttt 2280
cagcaccatg ggccttctta tacggaaaggc tctggatct ccccttgc gggcaggctc 2340
ttggggccag cctaagatca tggtttaggg tgatcagtgc tggcagataa attgaaaagg 2400
cacgctggct tggatctta aatgaggaca atccccccag ggctggcaca tcctccctc 2460
ccctcacttc tcccacactgc agagccagtg tcctgggtg ggcttagatag gatatactgt 2520

atgccggctc cttcaagctg ctgactcaact ttatcaatag ttccatttaa attgacttca 2580
gtggtgagac tgtatccgt ttgcattgc ttgttgtgct atggggggag gggggaggaa 2640
tgtgtaaat agttaacatg ggcaaaggga gatcttgggg tgcagcaccc aaactgcctc 2700
gtaaccctt tcatgattc aaccacattt gctagaggga gggagcagcc acggagttag 2760
aggcccttgg ggtttcctt ttccactgac aggcttccc aggtagctgg ctatccatt 2820
ccctccccag ccaggtgcag gcgttagaat atggacatct ggtagcttgc gcctgctgcc 2880
ctcttcagg ggtcctaagc ccacaatcat gcctccctaa gaccttggca tcctccctc 2940
taagccgttgc acacttcgtt gtcacccctcc tcatactttgt tctccaagta aagccacgag 3000
ttggagctga gatcactcgcc ttcacccctcc tcatactttgt tctccaagta aagccacgag 3060
gtcggggcga gggcagaggt gatcacctgc gtgtcccatc tacagacctg cagcttcata 3120
aaacttctga ttctcttca gcttgaaaaa gggttaccct gggcactggc ctagagccctc 3180
accccttaat agacttagcc ccatgagttt gccatgtga gcaggactat ttctggcact 3240
tgcaagtccc atgatttctt cggttaattct gagggtgggg ggagggacat gaaatcatct 3300
tagcttagct ttctgtctgt gaatgtctat atagtgattt gtgtgtttta acaaatttattt 3360
tacactgact gttgctgtaa aagtgaattt gaaaataaag ttattactct gattctgttgc 3420
acaattaatc atcggctcgta ataatgtgtg gaattgtgag cggataacaa tttcacacag 3480
gaaacaggat ccgataatga catgcccacc gtgcccagca cctgaactcc tgggggaccg 3540
tcagtcctcc tcttcccccc aaaacccaag gacaccctca tgatctcccg gaccctgag 3600
gtcacatgcg tgggtgggaa cgtgagccac gaagaccctg aggtcaagtt caactggtag 3660
gtggacggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gtacaacagc 3720
acgtaccggg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa tggcaaggag 3780
tacaagtgcg aggtctccaa caaagccctc ccagccccca tcgagaaaac catctccaaa 3840
gccaaggcgc agcccccaga accacaggtg tacaccctgc ccccatcccg ggaggagatg 3900

accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctatccag cgacatcgcc 3960
gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg 4020
gactccgacg gtccttctt cctctatagc aagctcaccg tggacaagag caggtggcag 4080
caggggaacg tttctcatg ctccgtatg catgaggctc tgacacaacca ctacacgcag 4140
aagagcctct ccctgtcccc gggtaataaa taggatcc 4178

<210> 11
<211> 4131
<212> DNA
<213> Artificial

<220>
<223> 9 IL 2-5G-FLJ 314424 fis-Fc

<400> 11
atgcctactt caagttctac aaagaaaaca cagctacaac tggagcattt actgctggat 60
ttacagatga tttgaatgg aattaataat tacaagaatc ccaaactcac caggatgctc 120
acattnaagt ttacatgcc caagaaggcc acagaactga aacatttca gtgtctagaa 180
gaagaactca aacctctgga ggaagtgcta aatttagctc aaagcaaaaa cttdactta 240
agacccaggg acttaatcag caatatcaac gtaatagttc tggaactaaa gggatctgaa 300
acaacattca tgtgtgaata tgctgtatgag acagcaacca ttgtagaatt tctgaacaga 360
tggattacct ttctcaaag catcatctca acactgactt gataaggcgg cggcggcggc 420
aatgtcccgaa attcccgcc tcaccacccc ttctcagtaa tgacccttgt tggttgcagg 480
aggtacctac tccatactga gggtaaaatt aaggaaaggc aaagtccagg cacaagagt 540
ggaccccagc ctctcactt cagttccact catccaactg ggaccctcac cacgaatctc 600
atgatctgtat tgggtccct gtctcttccct cccgtcacag atgtgagcca gggactgct 660
cagctgtac cctagggttt tctgccttgt tgacatggag agagccctt cccctgagaa 720
ggcctggccc cttccctgtgc tgagcccaca gcagcaggct ggggtcttg gttgtcagt 780

gtggcaccag gatggaaggg caaggcaccc agggcaggcc cacagtccc ctgtccccca 840
cttgcacctt agcttgtac tgccaacctc ccagacagcc cagcccgctg ctcagctcca 900
catgcatagt atcagccctc cacacccgac aaaggggaac acacccctt ggaaatggtt 960
ctttcccccc agtcccagct ggaagccatg ctgtctgttc tgctggagca gctgaacata 1020
tacatagatg ttgccctgcc ctcccatct gcaccctgtt gagttgttagt tggatttgc 1080
tgtttatgct tggattcacc agagtacta tgatagtgaa aagaaaaaaaaaaaaaaa 1140
aggacgcatg tatcttgaaa tgcttgaaa gaggttcta acccaccctc acgaggtgtc 1200
tctcacccccc acactggac tcgtgtggcc tgtgtgggtc caccctgctg gggctccca 1260
agtttgaaa ggcttcctc agcacctggg acccaacaga gaccagctc tagcagctaa 1320
ggaggccgtt cagctgtac gaaggcctga agcacaggat taggactgaa gcgtatgt 1380
ccccccctt acttccctt ggggctccct gtgtcagggc acagactagg tcttgtggct 1440
ggtctggctt gcggcgcgag gatggtctc tctggtcata gcccgaagtc tcatggcagt 1500
cccaaaggag gcttacaact cctgcatcac aagaaaaagg aagccactgc cagctgggg 1560
gatctgcagc tcccagaagc tccgtgagcc tcagccaccc ctcagactgg gttcctctcc 1620
aagctcgccc tctggagggg cagcgcagcc tcccaccaag gccctgcga ccacagcagg 1680
gattgggatg aattgcctgt cctggatctg ctctagaggc ccaagctgcc tgcctgagga 1740
aggatgactt gacaagtcag gagacactgt tccaaagcc ttgaccagag cacctcagcc 1800
cgctgacctt gcacaaactc catctgctgc catgagaaaa gggaaagccgc cttgcaaaa 1860
cattgctgcc taaagaaact cagcagcctc aggcccaatt ctgccacttc tggttgggt 1920
acagttaaag gcaaccctga gggacttggc agtagaaatc cagggcctcc cctggggctg 1980
gcagcttcgt gtgcagctag agctttaccc taaaaggaaatg ctctggggcc agaactctcc 2040
accaagagcc tccctgcccgt tcgctgagtc ccagcaattc tcctaagttt aaggatctg 2100
agaaggagaa ggaaatgtgg ggttagatttgg tgggtggta gagatatgcc cccctcatta 2160

ctgccaacag ttcggctgc atttccac gcacctcggt tcctttctt gaagttcttg 2220
tgccctgctc ttccacca tggccttct tatacggaaag gctctggat ctcccccttg 2280
tggggcaggc tcttgggccc agcctaagat catggtttag ggtgtatcagt gctggcagat 2340
aaattgaaaa ggcacgctgg cttgtatct taaatgagga caatcccccc agggctggc 2400
actcctcccc tcccctact tctccaccc gcagagccag tgtccttggg tgggcttagat 2460
aggatatact gtatgccggc tcctcaagc tgctgactca ctttatcaat agttccattt 2520
aaattgactt cagtggtgag actgtatcct gtttgctatt gcttgttg ctagggggg 2580
aggggggagg aatgtgtaa atagttaaca tggcaaagg gagatctgg ggtgcagcac 2640
ttaaactgcc tcgtaaccct ttcatgatt tcaaccat ttgctagagg gagggagcag 2700
ccacggagtt agaggccctt ggggttctc tttccactg acaggcttc ccaggcagct 2760
ggctagttca ttccctcccc agccaggtgc aggcgttagga atatggacat ctggttgctt 2820
tggcctgctg ccctttca ggggtcctaa gcccacaatc atgcctccct aagaccttgg 2880
catccttccc tctaagccgt tggcacctct gtgccacctc tcacactggc tccagacaca 2940
cagcctgtgc tttggagct gagatcactc gttcacccct cctcatctt gtttccaag 3000
taaagccacg aggtcggggc gagggcagag gtgtacacct gcgtgtccca tctacagacc 3060
tgcaaccttca taaaacttctt gatttctt cagcttcaa aagggttacc ctggcactg 3120
gcctagagcc tcacccctta atagacttag ccccatgagt ttgccatgtt gagcaggact 3180
atttctggca ctgcagaatc ccatgatttcc ttcggtaatt ctgaggggtgg ggggaggac 3240
atgaaatcat cttagcttag ctctgtct gtgaatgtct atatagtgtt ttgtgtttt 3300
taacaaatga ttacactga ctgttgctgt aaaagtgaat ttggaaataa agttattact 3360
ctgattctgt tgacaattaa tcatggctc gtataatgtg tgaaattgtg agcggataac 3420
aatttcacac aggaaacagg atccgataat gacatgccca ccgtgccca cacctgaact 3480
cctggggggga ccgtcagttct tcctttcccc cccaaaaccc aaggacaccc tcatgatctc 3540

ccggaccctt gaggcacat gcgtgggtggt ggacgtgagc cacgaagacc ctgaggtcaa 3600
gttcaactgg tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgccggagga 3660
cgagtacaac agcacgtacc gggtggtcag cgtcctcacc gtccgcacc aggactggct 3720
aatggcaag gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa 3780
aaccatctcc aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccattc 3840
ccgggaggag atgaccaaga accaggtcag cctgacctgc ctggtaaaag gcttcttatcc 3900
cagcgacatc gccgtggagt gggagagcaa tggcagccg gagaacaact acaagaccac 3960
gcctcccggt ctggactccg acggctcctt cttcccttat agcaagctca ccgtggacaa 4020
gagcaggtgg cagcagggga acgtctctc atgctccgtg atgcattagg ctctgcacaa 4080
ccactacacg cagaagagcc tctccctgtc cccgggtaaa taataggatc c 4131

<210> 12
<211> 1677
<212> DNA
<213> Artificial

<220>
<223> 10 SPA-5G-MBP-Fc

<220>
<221> misc_feature
<222> (792)..(792)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (835)..(835)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (844)..(844)
<223> n is a, c, g, t or u

<400> 12

tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaagcctt aaagatgatc caagccaaag 120
tgctaacgtt ttagtgtaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caatttcaac aaagaacaac aaaatgctt ctatgaaatc ttgaacatgc ctaactgaa 240
cgaagaacaa cgcaatggtt tcataccaaag cttaaaagat gacccaagtc aaagtctaa 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaaggcg ataacaatt 360
caacaaagaa caacaaaatg ctttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcaccaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcttct atgaaattt acatttacat aacttaactg aagagcaacg 600
taacggcttc atccaaagcc taaaagacga tccttcagtg agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaagcacc aaaagaggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggtaacggc ggccggccgc gcgcggccgc 780
gtcgaccgcg gnccgctgca cggcaaagga gactgctgag gctgttgctg atganatact 840
gganaaggct gggccacttg ttgctgtgtc tgctgtgca ctgtatataa ctgcctaccc 900
ctaaaagcca aacttgtgac aattaatcat cggctcgtat aatgtgtgga attgtgagcg 960
gataacaatt tcacacagga aacaggatcc gataatgaca tgcccaccgt gcccagcacc 1020
tgaactccctg gggggaccgt cagtccttccttccccca aaacccaagg acaccctcat 1080
gatctcccg acccctgagg tcacatgcgt ggtgggtggac gtgagccacg aagaccctga 1140
ggtagggcag tacaacagca cgtaccgggt ggtcagcgct ctcaccgtcc tgcaccagga 1200
ctggctgaat ggcaaggagt acaagtgcaa ggtctccaac aaagccctcc cagccccat 1260
cgagaaaaacc atctccaaag ccaaaggcga gccccgagaa ccacaggtgt acaccctgcc 1320
1380

cccatccccg gaggagatga ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt 1440
ctatcccagc gacatcgccg tggagtggga gagcaatggg cagccggaga acaactacaa 1500
gaccacgcct cccgtgctgg actccgacgg ctcccttc ctctatagca agctcacccgt 1560
ggacaagagc aggtggcagc aggggaacgt cttctcatgc tccgtgatgc atgaggctct 1620
gcacaaccac tacacgcaga agagcctctc cctgtccccc ggtaaataat aggatcc 1677

<210> 13
<211> 2857
<212> DNA
<213> Artificial

<220>
<223> 11 SPA-5G-gephyrin-Fc

<220>
<221> misc_recomb
<222> (1)..(2857)
<223> nucleic acid encoding Staph aureus Protein A, H.sapiens gephyrin
and H.sapiens IgG Fc fusion prt

<400> 13
tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaagcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcacccga aagctgacaa 180
caatttcaac aaagaacaac aaaatgcctt ctatgaaatc ttgaacatgc ctaacttcaa 240
cgaagaacaa cgcaatggtt tcacccaaag cttaaaagat gacccaaagtc aaagtgcctaa 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaatt 360
caacaaagaa caacaaaatg cttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcaccaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcttct atgaaattt acatttacct aacttaactg aagagcaacg 600

taacggcttc atccaaagcc taaaagacga tcctcagtg agcaaagaaa tttagcaga 660
agctaaaaag ctaaacgatg ctcaaggcacc aaaagaggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cgtaacggc ggccgcggcg gcgtttaggt 780
cacagtgcgt tcgatcac caaggtggct agaagacatc gcatgtctcc tttcctctg 840
acatctatgg acaaagcctt tatcacagtc ctggagatga ctccggtgct tggacagaa 900
atcatcaatt accgagatgg aatggggcga gtcctgctc aagatgtata tgcaaaagac 960
aatttacccc ccttcccagc atcagtaaaa gatggctatg ctgtccgagc tgctgatggc 1020
ccaggagatc gtttcatcat tgggaatcc caagctggtg aacagccaac tcagacagta 1080
atgccaggac aagtcatgct ggttacaaca ggtgctcaa taccctgcgg tgctgatgca 1140
gtgtacaag tggaaagatac cgaacttatac aggaaatcag atgatggcac tgaagaactt 1200
gaagtgcgaa ttctggcga agctcgccca ggccaagata tcagacccat cggccatgac 1260
attaaaagag gggaaatgtgt tttggccaaa ggaacccaca tggccctc agagattgg 1320
cttctggcaa ctgttaggtgt cacagaggtaa gaagtaata agttccagt ggtgcagtc 1380
atgtcaacag ggaatgagct gctaaatcct gaagatgacc tcttaccagg gaagattcga 1440
gacagcaatc gttcaactct tctagcaaca attcaggaac atggttaccc cacgatcaac 1500
ttgggtattt taggagacaa cccagatgac ttactcaatg ccttgaatga ggttatcagt 1560
cgtgctgatg tcatcatcac atcaggggggt gtatccatgg gggaaaagga ctatctaag 1620
caggtgctgg acattgatct tcatgctcag atccatttg gcagggttt tatgaaacca 1680
ggcttgccaa caacattgc aactttggat attgatggtg taagaaaaat aatcttgca 1740
ctacctggga atcctgtatc ggctgtggtc acctgcaatc tcttggtgt gcctgcactg 1800
aggaaaaatgc agggcatctt ggatcctcgg ccaaccatca tcaaagcaag gttatcatgt 1860
gatgtaaaaac ttgatcctcg tccagaatac catcggtgt tactaacttg gcatcaccaa 1920
gaaccactac ctgggcaca gagtacaggt aatcaaatga gcagccgtct gatgagcatg 1980

cgcagtgcc aatggattgtt gatgtacacct ccaaagacag aacagtacgt ggagctccac 2040
aaaggcgagg tggtgatgt catggcatt ggacggctat gatggtcacc agcttgtac 2100
aattaatcat cggctcgat aatgtgtgga attgtgagcg gataacaatt tcacacagga 2160
aacaggatcc gataatgaca tgcccaccgt gcccagcacc tgaactcctg gggggaccgt 2220
cagtccttcccttccccca aaacccaagg acaccctat gatctcccg accccctgagg 2280
tcacatgcgt ggtggtggac gtgagccacg aagaccctga ggtcaagttc aactggtagc 2340
tggacggcgt ggagggtcat aatgccaaga caaagccgctg ggaggagcag tacaacagca 2400
cgtaccgggt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctaat ggcaaggagt 2460
acaagtgc aa ggtctccaac aaagccctcc cagccccat cgagaaaaacc atctccaaag 2520
ccaaaggcga gccccgagaa ccacaggtgt acaccctgcc cccatcccg gaggagatga 2580
ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt ctatcccagc gacatcgccg 2640
tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgcct cccgtgctgg 2700
actccgacgg ctcccttc ctctatagca agtcaccgt ggacaagagc aggtggcagc 2760
aggggaacgt cttctcatgc tccgtatgc atgaggctct gcacaaccac tacacgcaga 2820
agagcctctc cctgtccccg ggtaaataat aggtatcc 2857

<210> 14
<211> 4483
<212> DNA
<213> Artificial

<220>
<223> 12 SPA-5G-FLJ 314424 fis-Fc

<220>
<221> misc_recomb
<222> (1)..(4483)
<223> nucleic acid encoding Staph. aureus Protein A, H.sapiens FLJ
314424 fis and H.sapiens IgG Fc fusion prt

<400> 14
tgctgcgcaa cacgatgaag ctcaacaaaa cgcttttat caagtctaa atatgcctaa 60
cttaaatgct gatcaacgca atggtttat ccaaaggcctt aaagatgatc caagccaaag 120
tgctaacgtt ttaggtgaag ctaaaaaatt aaacgaatct caagcaccga aagctgacaa 180
caattcaac aaagaacaac aaaatgctt ctatgaaatc ttgaacatgc ctaactgaa 240
cgaagaacaa cgcaatggtt tcataccaaag cttaaaagat gacccaagtc aaagtgctaa 300
cctattgtca gaagctaaaa agttaaatga atctcaagca ccgaaagcgg ataacaatt 360
caacaaagaa caacaaaatg cttctatga aatcttacat ttacctaact taaacgaaga 420
acaacgcaat ggttcatcc aaagcctaaa agatgaccca agccaaagcg ctaaccttt 480
agcagaagct aaaaagctaa atgatgcaca agcaccaaaa gctgacaaca aattcaacaa 540
agaacaacaa aatgcttct atgaaattt acatttacct aacttaactg aagagcaacg 600
taacggcttc atccaaagcc taaaagacga tcctcagt agcaaagaaa ttttagcaga 660
agctaaaaag ctaaacgatg ctcaagcacc aaaagagggaa gacaacaaca aacctggtaa 720
agaagacggc aacaaacctg gcaaagaaga cggtaacggc ggcggcggcg gcaatgtccc 780
gaattccag cctcaccacc ccttcagt aatgaccctg gtgggttgcg ggaggtacct 840
actccatact gagggtgaaa ttaagggaag gcaaagtcca ggcacaagag tgggacccc 900
gcctctcact ctcagttcca ctcatccaaac tggaccctc accacgaatc tcatgatctg 960
attcggttcc ctgtctcctc ctcccgac agatgtgagc cagggcactg ctcagctgtg 1020
acccttaggtg tttctgcctt gttgacatgg agagagccct ttcccctgag aaggcctggc 1080
cccttcctgt gctgagccca cagcagcagg ctgggtgtct tggttgtcag tggtggcacc 1140
aggatggaag ggcaaggcac ccagggcagg cccacagtcc cgctgtcccc cacttgacc 1200
ctagttgta gctgccaacc tcccagacag cccagccgc tgctcagctc cacatgcata 1260
gtatcagccc tccacacccg acaaagggga acacacccccc ttggaaatgg ttctttccc 1320

ccagtcggc ctggaagcca tgctgttgt tctgctggag cagctgaaca tatacataga 1380
tgttgccctg ccctccccat ctgcaccctg ttgagttgt a gttggatttgc tctgtttatg 1440
cttggattca ccagagtgc tatgatagtg aaaagaaaaaa aaaaaaaaaaa aaaggacgca 1500
tgtatcttga aatgcttgc a aagaggttc taaccaccc tcacgagggtg tcttcaccc 1560
ccacactggg actcggtgg cctgtgtggt gccaccctgc tggggctcc caagtttgc 1620
aaggcttcc tcagcacctg ggacccaaca gagaccagct tctagcagct aaggaggccg 1680
ttcagctgtg acgaaggcct gaagcacagg attaggactg aagcgatgtat gtcccctcc 1740
ctactcccc ttggggctcc ctgtgtcagg gcacagacta ggtcttgc tgggtctggc 1800
ttgcggcgcg agatgggtc tctctggta tagcccgaag tctcatggca gtcccaaagg 1860
aggcttacaa ctcctgcac acaagaaaaa ggaagccact gccagctggg gggatctgca 1920
gctcccagaa gctccgtgag cctcagccac ccctcagact gggttccct ccaagctcgc 1980
cctctggagg ggcagcgcag cctcccacca agggccctgc gaccacagca gggattggga 2040
tgaattgcct gtcctggatc tgctcttagag gccaaagctg cctgcctgag gaaggatgac 2100
ttgacaagtc aggagacact gttccaaag cttgaccag agcacccat cccgctgacc 2160
ttgcacaaac tccatctgct gccatgagaa aagggaaagcc gccttgcaa aacattgctg 2220
cctaaagaaa ctcagcagcc tcaggccaa ttctgccact tctgggttgg gtacagttaa 2280
aggcaaccct gaggacttg gcagtagaaa tccagggcct cccctggggc tggcagctc 2340
gtgtgcagct agagcttac ctgaaaggaa gtcctgggc ccagaactct ccaccaagag 2400
cctccctgcc gttcgctgag tccagcaat tctcctaagt tgaagggatc tgagaaggag 2460
aaggaaatgt gggtagatt tgggtgtgg tagagatatg ccccccctcat tactgccaac 2520
agtttcggct gcatttcttc acgcaccccg gttcccttc ctgaagtct tgcctgc 2580
tcttcagcac catggccctt cttatacgga aggctctggg atctccctt tggggcag 2640
gctcttgggg ccagcctaag atcatggttt agggtgatca gtgctggcag ataaattgaa 2700

aaggcacgct ggcttgtat cttaaatgag gacaatcccc ccagggctgg gcactcctcc 2760
cctccctca cttctccac ctgcagagcc agtgccttg ggtggctag ataggatata 2820
ctgtatgccg gctcctcaa gctgctgact cactttatca atagttccat ttaaattgac 2880
ttcagtggtg agactgtatc ctgttgcta ttgcttggtg tgctatgggg ggagggggga 2940
ggaatgtgt aagatagttaa catggcaaa gggagatctt ggggtgcagc acttaaactg 3000
cctcgtaacc ctttcatga tttcaaccac atttgctaga gggagggagc agccacggag 3060
tttagaggccc ttggggtttc tctttccac tgacaggctt tcccaggcag ctggctagtt 3120
cattccctcc ccagccaggt gcagggctgtag gaatatggac atctggttgc tttggcctgc 3180
tgccctctt caggggtcct aagcccaaa tcatgcctcc ctaagacctt ggcaccccttc 3240
cctctaagcc gttggcacct ctgtgccacc tctcacactg gctccagaca cacagcctgt 3300
gctttggag ctgagatcac tcgcttcacc ctccatct ttgttctcca agtaaagcca 3360
cgaggtcggg gcgagggcag aggtgatcac ctgcgtgtcc catctacaga cctgcagctt 3420
cataaaaactt ctgatttctc tttagcttg aaaagggtta ccctggcac tggcttagag 3480
cctcacctcc taatagactt agccccatga gttgccatg ttgagcagga ctattctgg 3540
cacitgcaag tcccatgatt tctcggtaa ttctgagggt ggggggaggg acatgaaatc 3600
atcttagctt agctttctgt ctgtgaatgt ctatatactg tattgtgtt tttaacaaat 3660
gatttacact gactgtgtt gtaaaagtga atttggaaat aaagtttata ctctgattct 3720
gttgacaattt aatcatcgcc tcgtataatg tggaaattt tgagcggata acaatttcac 3780
acaggaaaca ggatccgata atgacatgcc caccgtgcc agcacctgaa ctccgggg 3840
gaccgtcagt cttcccttc ccccaaaac ccaaggacac cctcatgatc tcccggaccc 3900
ctgaggtcac atgcgtggtg gtggacgtga gccacgaaga ccctgaggctc aagttcaact 3960
ggtacgtgga cggcgtggag gtgcataatg ccaagacaaa gccgcgggag gagcagtaca 4020
acagcacgta ccgggtggtc agcgtcctca ccgtcctgca ccaggactgg ctgaatggca 4080

aggagtacaa gtgcaaggc tccaacaaag ccctcccagc ccccatcgag aaaaccatct 4140
ccaaagccaa agggcagccc cgagaaccac aggtgtacac cctgccccca tcccgagg 4200
agatgaccaa gaaccaggtc agcctgacct gcctggtaaa aggcttctat cccagcgaca 4260
tcggccgtgga gtgggagagc aatgggcagc cggagaacaa ctacaagacc acgcctccg 4320
tgctggactc cgacggctcc ttcttcctt atagcaagct caccgtggac aagagcaggt 4380
ggcagcaggga gaacgtttc tcatttcgg tgatgcata ggctctgcac aaccactaca 4440
cgcagaagag cctctccctg tccccggta aataatagga tcc 4483