Referentiële onzekerheid, computermodellen en semantische kindertaalcorpora

Barend Beekhuizen¹, Afsaneh Fazly², Aida Nematzadeh² & Suzanne Stevenston²

¹Universiteit Leiden ²University of Toronto

TIN-dag, 9 februari 2013

Vragen

Onderwerp

Computationele cognitieve modellen van het leren van woord-betekenisparen: data.

Vraag #1

Hoe komen we aan semantische input voor dergelijke modellen?

Vraag #2

Hoe kan inzicht hierin gebruikt worden om oude claims te herevalueren? In het bijzonder: kunnen verwervers de betekenis van relationele termen uit de situatie oppikken?

- Cross-situationele modellen van lexicale-betekenisverwerving¹
- Bron van de semantiek: de directe situatie
- Een gemiddeld CHILDES-corpus bevat dat niet.

- Cross-situationele modellen van lexicale-betekenisverwerving¹
- Bron van de semantiek: de directe situatie
- Een gemiddeld CHILDES-corpus bevat dat niet.
- Dus: kunstmatig genereren van semantiek.
 - leder woord is ook een semantisch symbool (Fazly, Alishahi & Stevenson 2010)
 - Gebruik van WordNet e.d. (id., 2008)
- Je kan er grote kwantiteiten data mee maken

- Cross-situationele modellen van lexicale-betekenisverwerving¹
- Bron van de semantiek: de directe situatie
- Een gemiddeld CHILDES-corpus bevat dat niet.
- Dus: kunstmatig genereren van semantiek.
 - leder woord is ook een semantisch symbool (Fazly, Alishahi & Stevenson 2010)
 - Gebruik van WordNet e.d. (id., 2008)
- Je kan er grote kwantiteiten data mee maken
- Maar: kwaliteit van data?
 - Cognitieve beschikbaarheid van de semantiek
 - Situationele beschikbaarheid? (ruis, referentiële onzekerheid)

¹Siskind 1996, Xu & Tenenbaum 2000, Roy & Pentland 2002, Yu & Ballard 2003, Fazly, Alishahi & Stevenson 2010

- Cross-situationele modellen van lexicale-betekenisverwerving¹
- Bron van de semantiek: de directe situatie
- Een gemiddeld CHILDES-corpus bevat dat niet.
- Dus: kunstmatig genereren van semantiek.
 - leder woord is ook een semantisch symbool (Fazly, Alishahi & Stevenson 2010)
 - Gebruik van WordNet e.d. (id., 2008)
- Je kan er grote kwantiteiten data mee maken
- Maar: kwaliteit van data?
 - Cognitieve beschikbaarheid van de semantiek
 - Situationele beschikbaarheid? (ruis, referentiële onzekerheid)
- Recente methode: annoteren video materiaal (Yu, Roy, Frank)
- Maar: hetzij beperkt tot middelgrote objecten of in het pragmatische realisme (expliciete labeling-taken).

¹Siskind 1996, Xu & Tenenbaum 2000, Roy & Pentland 2002, Yu & Ballard 2003, Fazly, Alishahi & Stevenson 2010

Data!

Doel #1

Maken van situationele beschrijvingen (van eigenschappen, dingen, relaties en gedrag) voor een dataset van op video opgenomen ouder-kindinteractie die kan fungeren als een bron van woordbetekenis

Data!

Doel #1

Maken van situationele beschrijvingen (van eigenschappen, dingen, relaties en gedrag) voor een dataset van op video opgenomen ouder-kindinteractie die kan fungeren als een bron van woordbetekenis

- Realisaties:
 - Zulke hoge-kwaliteitsdata kan hoge-kwantiteitsdata complementeren en niet vervangen.
 - Weinig beschreven over hoe.
 - >> Dit werk: gedocumenteerd en handleiding beschikbaar.

Het blokkenspelcorpus

- \bullet \pm 130 90min video's van moeder-dochter (16mo) interactie, verzameld bij Pedagogiek in Leiden
- Elk tweetal speelt een spel: stop samen verschillend gevormde blokjes in verschillend gevormde gaten in de deksel van een emmertje.
- ullet 32 tweetallen (\pm 5 min. per tweetal) werden door twee codeurs met ELAN gecodeerd en door de eerste auteur getranscribeerd.

Het blokkenspelcorpus

- ullet \pm 130 90min video's van moeder-dochter (16mo) interactie, verzameld bij Pedagogiek in Leiden
- Elk tweetal speelt een spel: stop samen verschillend gevormde blokjes in verschillend gevormde gaten in de deksel van een emmertje.
- ullet 32 tweetallen (\pm 5 min. per tweetal) werden door twee codeurs met ELAN gecodeerd en door de eerste auteur getranscribeerd.
- 175 minuten materiaal, 7842 tokens, 2492 uitingen.
- Situationele codering. Voor elk interval (3sec), codeer:
 - simpel gedrag (grab, move, position, letgo),
 - veranderingen in ruimtelijke relaties (in,on,out,off,match),
 - objecten (block, bucket, mother, table)
 - eigenschappen (triangular, square, red, blue)
- Gestructureerd: grab(mother, (red, square, block))
- ullet Hoge intra- & interannotator agreement (bijna alle $\kappa > 0.8)$

Voorbeeld

Table: Een voorbeeld van de dataset. De afkortingen geven eigenschappen van blokken en gaten aan (kleur & vorm)

tijd type	codering/transcriptie			
0m0s situatie				
taal	een. nou jij een.			
0m3s situatie	<pre>position(mother, toy, on(toy, floor)) grab(child, b-ye- tr) move(child, b-ye-tr, on(b-ye-tr, floor), near(b-ye-tr, ho-ro)), mismatch(b-ye-tr, ho-ro)</pre>			
taal	nee daar.			
0m6s situatie	point(mother, ho-tr, child) position(child, b-ye-tr, near(b-ye-tr, ho-ro)) mismatch(b-ye-tr, ho-ro)			
taal	nee lieverd hier past ie niet.			

Verwerven van lexicale betekenis

- Hoe leer je de betekenis van een woord
 - Cross-situationeel waarnemen van objecten, eigenschappen, relaties
 - Lijkt onvoldoende (i.h.b. voor relationele termen: werkwoorden, voorzetsels)
 - Aantal mogelijkheden is enorm (Gentner 1978)
 - Veel acties en relaties die benoemd worden, vallen niet samen met uiting (Gleitman 1990)
 - 'Bootstrapping' met syntactische structuur (Gleitman 1990), intentionaliteit (Tomasello 2003), . . .

Verwerven van lexicale betekenis

- Hoe leer je de betekenis van een woord
 - Cross-situationeel waarnemen van objecten, eigenschappen, relaties
 - Lijkt onvoldoende (i.h.b. voor relationele termen: werkwoorden, voorzetsels)
 - Aantal mogelijkheden is enorm (Gentner 1978)
 - Veel acties en relaties die benoemd worden, vallen niet samen met uiting (Gleitman 1990)
 - 'Bootstrapping' met syntactische structuur (Gleitman 1990), intentionaliteit (Tomasello 2003), . . .

Doel #2

De data gebruiken om de claim te herevalueren: is betekenis echt moeilijk uit de situatie te halen, en waar ligt dat aan?

Het model

- Fazly, Alishahi & Stevenson (2010) incrementeel, probabilistisch model dat woord-betekenisassociaties leert.
- Woorden worden aan betekeniselementen gekoppeld met een gewicht dat afhangt van eerdere ervaring en de eerdere ervaringen met de andere woorden en betekenissen
- De ervaring wordt vervolgens geüpdated met dat gewicht.
- Voor elk woord kan je dan een voorwaardelijke waarschijnlijkheid van verschillende betekenissen bepalen

Voorbereiding data

- Representaties zijn gestructureerd, model neemt verzamelingen van primitieven, dus we maken ze plat: grab(mother,(red,square,block)) → {grab,mother,red,square,block}
- De beschikbare betekenis is de verzameling van de platgemaakte representaties in het interval waarin de uiting begint
- Woorden als lemma's

Evaluatie

- Geen 'gouden lexicon', dus zelf maken voor 'betekenisvolle' woorden (n = 41):
 - Objectlabels: blok betekent block
 - Eigenschappen: rood betekent red
 - Ruimtelijke relaties: op betekent on
 - Acties: pakken betekent grab, stoppen betekent {move,in}

Evaluatie

- Geen 'gouden lexicon', dus zelf maken voor 'betekenisvolle' woorden (n = 41):
 - Objectlabels: blok betekent block
 - Eigenschappen: rood betekent red
 - Ruimtelijke relaties: op betekent on
 - Acties: pakken betekent grab, stoppen betekent {move,in}
- Maat
 - Average Precision (AP): Hoe zijn de juiste betekenissen gerangschikt m.b.t. hun associatiescore t.o.v. de onjuiste betekenissen?

Resultaten

Table: Resultaten van experiment 1. Gegeven zijn gemiddelde *AP* waarden per klasse

	eigenschap	object	ruimtelijk	actie	totaal
AP	0.81	0.25	0.19	0.15	0.31

 Rangschikking gaat goed voor eigenschappen (kleur, vorm), maar vrij slecht voor andere klassen.

Interpretatie

	eigenschap	object	ruimtelijk	actie	totaal
AP	0.81	0.25	0.19	0.15	0.31

- Herevaluatie bevestigt Gleitmans bevinding:
 Eigenschappen > objectlabels > beide relationele klassen
- Waarom zijn de laatste drie zo moeilijk te leren?
 - \bullet Juiste betekenis is afwezig in de situatie S (ruis)
 - Onjuiste betekenissen zijn structureel aanwezig in S (referentiële onzekerheid)
 - 3 Juiste betekenis is ook aanwezig in veel andere Ss (?)
- Combinatie! Voor eigenschappen gelden 2) en 3) ook.

Experiment 2

- Ruis: afwezige, juiste betekenissen
- Misschien is de reikwijdte van het interval te beperkt?
- Leerders letten ook op gebeurtenissen rondom de uitingen, vooral erna (Tomasello & Kruger 1992)
- vooruit Verwerver let op situatie op moment van uiting U_i tot volgende uiting U_{i+1}
- achteruit Verwerver let op situatie op moment van vorige uiting U_{i-1} tot huidige uiting U_i .

Experiment 2

W	eigensch.	object	ruimtelijk	actie	totaal
$U_i:U_i$	0.81	0.25	0.19	0.15	0.31
U_{i-1} : U_i (achteruit)	0.80	0.17	0.20	0.14	0.31
U_i : U_{i+1} (vooruit)	0.79	0.41	0.22	0.20	0.39

- U_i : U_{i+1} geeft kleine verbetering voor drie categorieën
 - Vooruit kijken is informatief: meer juiste betekenissen gevonden
 - maar: referentiële onzekerheid wordt niet veel groter
- Achteruit kijken heeft geen positief effect

- Goede data is schaars
- Maar je kan handmatig coderen, als het met een methode doet, om
 - te kijken of de aannames achter het 'synthetiseren' van semantische data kloppen.
 - kleinschalige experimenten te draaien

- Goede data is schaars
- Maar je kan handmatig coderen, als het met een methode doet, om
 - te kijken of de aannames achter het 'synthetiseren' van semantische data kloppen.
 - 2 kleinschalige experimenten te draaien
- Werkwoords- en voorzetselbetekenissen zijn inderdaad moeilijker te verwerven dan nominale betekenissen, die op hun beurt weer lastiger zijn dan de kleur- en vormbetekenissen.
- Een vooruitkijkend breder interval van situaties helpt een beetje
- Maar ook 'gestructureerd leren' (cf. Gleitman) moet een rol spelen – taak voor modelleurs om dit te formaliseren

- Goede data is schaars
- Maar je kan handmatig coderen, als het met een methode doet, om
 - te kijken of de aannames achter het 'synthetiseren' van semantische data kloppen.
 - 2 kleinschalige experimenten te draaien
- Werkwoords- en voorzetselbetekenissen zijn inderdaad moeilijker te verwerven dan nominale betekenissen, die op hun beurt weer lastiger zijn dan de kleur- en vormbetekenissen.
- Een vooruitkijkend breder interval van situaties helpt een beetje
- Maar ook 'gestructureerd leren' (cf. Gleitman) moet een rol spelen – taak voor modelleurs om dit te formaliseren
- Natuurlijke, observationele data geeft complementair inzicht

Dank u!