Lista de exercícios

Macroeconomia

Prof. Regis Augusto Ely

Mestrado em Economia (PPGOM) Universidade Federal de Pelotas (UFPel)

16 de setembro de 2016

1. Considere uma economia com um grande número de indivíduos idênticos em que cada indivíduo possui uma árvore idêntica que vive infinitamente e produz frutos que equivalem a d_t unidades de consumo, onde d_t é um processo markoviano invariante no tempo. Denotando p_t como o preço de uma árvore no período t, e k_t o estoque de árvores, o problema de um indivíduo representativo é:

$$\max_{c_t} E_0 \sum_{t=0}^{\infty} \beta^t \ln c_t \tag{1}$$

s.a.
$$(p_{t+1} + d_{t+1})k_{t+1} = \frac{p_{t+1} + d_{t+1}}{p_t}[(p_t + d_t)k_t + y_t - c_t]$$
 (2)

- a) Monte o funcional de Bellman do problema acima e calcule as condições de primeira ordem.
- b) Encontre e interprete a equação de Euler do problema.
- c) Construa as hipóteses necessárias para obter a partir do problema acima a hipótese de passeio aleatório para o preço da árvore. O que esta hipótese nos diz?
- d) Dê uma solução recursiva para a equação de Euler e encontre uma expressão para o preço de uma árvore. Explique essa expressão.
- e) Suponha agora que $y_t = 0 \ \forall t$, e que $c_t = d_t$. Como fica a solução recursiva da equação de Euler? Como ela se difere da anterior?

2. Considere o modelo de crescimento com poupança endógena em tempo discreto. Existe um grande número de indivíduos iguais nessa economia, cujas decisões de poupança e consumo podem ser representadas pelo problema de um planejador central benevolente:

$$\max_{c_t} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma} \tag{3}$$

$$s.a. k_{t+1} = k_t^{\theta} + (1 - \delta)k_t - c_t \tag{4}$$

- a) Monte o funcional de Bellman e calcule as condições de primeira ordem do problema.
- b) Encontre a equação de Euler. Podemos resolvê-la recursivamente se tivermos apenas o valor de k_0 ? Se não, qual outra condição que se faz necessária?
- c) Encontre os possíveis estados estacionários desse problema.
- d) No caso em que $\sigma \to 1$ e $V_0 = 0$, construa expressões para a função valor e a regra de decisão faltando 1 e 2 horizontes de programação.
- 3. Considere o modelo de crescimento da questão anterior, mas agora introduzimos uma oferta de trabalho elástica e choques de produtividade. Dessa forma, obtemos o seguinte modelo básico de ciclos reais:

$$\max_{c_t, h_t} \sum_{t=0}^{\infty} \beta^t \left\{ \frac{c_t^{1-\sigma}}{1-\sigma} - \frac{h_t^{1+\varphi}}{1+\varphi} \right\}$$
 (5)

$$s.a. k_{t+1} = A_t k_t^{\theta} h_t^{1-\theta} + (1-\delta)k_t - c_t$$
 (6)

$$A_t = A_{t-1}^{\rho} e^{\varepsilon_t}, \ \varepsilon_t \sim iid(0, \sigma_{\varepsilon}^2)$$
 (7)

$$k_0 \ dado$$
 (8)

- a) Monte o funcional de Bellman e encontre as condições de primeira ordem.
- b) Encontre e interprete a equação de Euler.
- c) Calcule o estado estacionário.
- d) Monte o mesmo problema em uma economia descentralizada e defina o equilíbrio competitivo recursivo.

- 4. A partir do modelo da questão anterior, podemos pensar no caso em que as horas trabalhas não são medidas fracionadas, sendo que os indivíduos podem trabalhar \hat{h} ou zero horas. Com base nessa idéia responda:
 - a) Construa o modelo de trabalho indivisível a partir do modelo básico de RBC. Quais são as hipóteses necessárias e como podemos montar o problema de uma maneira similar a anterior?
 - b) Resolva o problema exposto no item a supondo uma função de utilidade logarítmica no consumo e uma tecnologia Cobb-Douglas. Não esqueça de encontrar as C.P.O.s, a equação de Euler e o estado estacionário.
- 5. Considere o seguinte problema de um agente representativo que busca maximzar o sua utilidade intertemporal:

$$\max_{c_t, h_t} \sum_{t=0}^{\infty} \beta^t u(c_t, 1 - h_t) \tag{9}$$

$$s.a. y_t = Af(k_t, h_t) \tag{10}$$

$$y_t = c_t + i_t \tag{11}$$

$$s_{j,t+1} = s_{j+1,t} (12)$$

$$i_t = \sum_{j=1}^{J} b_j s_{j,t} \tag{13}$$

$$k_{t+1} = (1 - \delta)k_t + s_{1,t} \tag{14}$$

onde $u(\bullet)$ e $f(\bullet)$ são funções côncavas, crescentes e duas vezes continuamente diferenciáveis, $\beta, \delta \in (0,1), \sum_{j=1}^{J} b_j = 1$, e as condições iniciais são k_0 e $s_{j,0}$, com $j = 1, \ldots, J - 1$. Observe também que, pelas restrições, temos:

$$i_{t} = \sum_{j=1}^{J} b_{j} s_{j,t} = \sum_{j=1}^{J} b_{j} s_{1,t+j-1} = \sum_{j=1}^{J} b_{j} [k_{t+j} - (1-\delta)k_{t+j-1}]$$
 (15)

- a) Encontre as equações de primeira ordem e a equação de Euler desse problema.
- b) Interprete o problema acima e a condição de substituição intertemporal que você encontrou no item a.