Ch3: Méthodes Chimiques d'analyse

I Méthodes de suivi d'un titrage

A connaître :

- On mesure la grandeur choisie à chaque ajout de solution titrante.
 On place les points de mesure sur un graphique représentant la grandeur choisie en fonction du volume V de solution titrante versé.
 - Cela permet la détermination graphique du volume équivalent.
- À l'équivalence, les réactifs titrant et titré ont été introduits dans les proportions stœchiométriques de la réaction support du titrage.

SUIVI CONDUCTIMÉTRIQUE

- Condition d'utilisation : si la réaction support du titrage met en jeu des ions.
- Limite : le mélange réactionnel doit avoir un grand volume initial
- Grandeur suivie : la conductivité σ ou la conductance G du mélange réactionnel.
- Détermination du volume équivalent V_E :

SUIVI pH-MÉTRIQUE

- Condition d'utilisation : si la réaction support du titrage est une réaction acide-base.
- Grandeur suivie : le pH du mélange réactionnel.
- Détermination du volume équivalent V_E:
- → Méthode des tangentes ou méthode de la dérivée

La réaction de titrage doit être totale et rapide.

Si son équation est : $aA + bB \rightarrow cC + dD$, le réactif titré A se trouvant dans le bécher et le réactif titrant B se trouvant dans la burette graduée, alors la relation à l'équivalence est :

Soit en fonction des volumes et des concentrations :

niA = neB = ne = ne

CXV = CBXV = CXV = CDXV

Il Composition du système chimique en fonction du volume de solution titrante

On réalise le titrage de l'acide citrique AH₃ par une solution d'hydroxyde de sodium Na⁺(aq) + HO⁻(aq)

Compléter le tableau d'évolution suivant, <u>pour différents états finaux</u> au cours du titrage, en fonction de C_0 , V_A , C_B ou V:

	$AH_{3}(aq) + 3 HO^{-}(aq) \rightarrow A^{3-}(aq) + 3 H_{2}O(\ell)$					
V (HO -)	Réactif limitant	n AH₃ (en mol)	n HO ⁻ (en mol)	nA ³⁻ (en mol)	n H₂O	
V=Véq	Hotet AH3	C ₀ V _A - X _{max} .	C _B .V X _{max}	X _{max}	Excès	
V <véq< td=""><td>HO</td><td>C₀V_A - X_{max}.</td><td>C_B.V X_{max}</td><td> X_{max}</td><td>Excès</td></véq<>	HO	C ₀ V _A - X _{max} .	C _B .V X _{max}	X _{max}	Excès	
V>Véq	<i>А</i> .н ₃	C ₀ V _A - X _{max} .	C _B . V x _{max}	X _{max}	Excès	

III Suivi conductimétrique : interpréter l'évolution des pentes

On réalise le titrage d'une solution d'acide chlorhydrique par une solution d'hydroxyde de sodium par suivi conductimétrique :

lon	λ (en mS·m²·mol ⁻¹)
Na ⁺	5,0
HO-	19,9
H ₃ O ⁺	35,0
Cℓ-	7,6

Conductivités molaires ioniques \(\lambda \)

Ecrire l'équation de titrage (sans faire figurer les ions spectateurs) :

Compléter le tableau suivant par 0, \uparrow , = ou \downarrow puis justifier les pentes avant et après l'équivalence de σ = f(v) :

	V <véq< th=""><th>V>Véq</th></véq<>	V>Véq
n (Na⁺)		
n (HO ⁻)		
n (H₃O⁺)		
n (Cl)		

•	la courbe est une droite de pente négative car :
Après l'équivalence,	la courbe est une droite de pente positive car :

IV <u>Concentration en quantité de matière, densité et pourcentage massique</u> A connaître :

• La densité d d'un liquide, à une température donnée, est le rapport de la masse volumique du liquide ρ sur la masse volumique ρ_{eau} de l'eau :

Densité
$$d$$
 sans unité $d = \frac{\rho}{\rho_{eau}}$ Masses volumiques exprimées dans la même unité

La masse volumique de l'eau est égale à $\rho_{eau} = 1,00 \times 10^3 \text{ g} \cdot \text{L}^{-1}$.

• Le **titre massique en pourcent** (ou pourcentage massique), noté $P_{\rm m}(E)$ d'une espèce E dans un liquide est le quotient de la masse m(E) de cette espèce par la masse totale $m_{\rm tot}$ du liquide :

Titre massique
$$P_m(E) = \frac{m(E)}{m_{tot}}$$
 Masses exprimées dans la même unité

On peut également exprimer le pourcentage massique en multipliant par 100.

Pour déterminer la concentration en quantité de matière en soluté à partir de la densité de la solution et du pourcentage massique en soluté on peut déterminer respectivement :

- la masse volumique de la solution
- la masse de la solution pour 1 L
- la masse de soluté à l'aide du pourcentage massique de soluté
- la quantité de matière de soluté
- la concentration en quantité de matière de soluté de la solution