Université de Carthage Ecole Supérieure de la Statistique et de l'Analyse de l'Information

Examen de Data Mining

3 ème année du cycle de formation d'ingénieurs

Durée de l'épreuve : 1 heure 30 - Documents non autorisés Nombre de pages : 4 - Date de l'épreuve : 31 janvier 2019

On a effectué une enquête sur la relation des consommateurs vis-à-vis des magasins Champion. Un questionnaire a ainsi été administré à un échantillon représentatif de 60 clients. Un extrait du questionnaire qui a été administré dans le cadre de cette enquête est présenté à l'Annexe 1.

N.B.: Dans la suite, à la question numéro i on associe la variable statistique notée Q_i .

A- Analyse en Composantes Principales

On a effectué une Analyse en Composantes Principales (ACP) sur les 9 items $(Q_{1,j}, j \in \{1, ..., 9\})$ de la première question. Les résultats de cette ACP sont présentés à l'Annexe 2.

1- Déterminer le nombre d'axes à retenir.

Dans la suite, on suppose que l'on retient les 4 premières composantes principales.

- 2- Justifier l'intérêt de faire une rotation à l'issu de cette ACP.
- 3- Donner une interprétation des axes retenus.

Dans la suite, les 4 premières composantes principales de l'ACP seront appellées dim1, dim2, dim3, dim4.

B- Arbre de Décision

Dans cette partie, on voudrait expliquer la variable Q_7 , appelée dans la suite satisfaction, par les variables revenu, sexe, csp, dim1, dim2, dim3 et dim4 à l'aide d'un arbre de décision. Les résultats obtenus sont présentés ci-dessous :

```
> arbre.full <- rpart(satisfaction~ revenu+sexe+csp+dim1+dim2+dim3+dim4,
  data = donnees_champion, method = "class")
> print(arbre.full)
n= 60
node), split, n, loss, yval, (yprob)
    * denotes terminal node

1) root 60 27 0 (0.55000000 0.45000000)
```

```
3) revenu< 725 37 12 1 (0.32432432 0.67567568)
     6) dim3< -1.06706 5 1 0 (0.80000000 0.20000000)
      12) dim4< 0.6927249 4 0 0 (1.00000000 0.00000000) *
      13) dim4>=0.6927249 1 0 1 (0.00000000 1.00000000) *
     7) dim3>=-1.06706 32 8 1 (0.25000000 0.75000000)
      14) dim1< -1.795057 2 0 0 (1.00000000 0.00000000) *
      15) dim1>=-1.795057 30 6 1 (0.20000000 0.80000000)
        30) dim4< -0.8938268 3 1 0 (0.66666667 0.333333333) *
        31) dim4>=-0.8938268 27 4 1 (0.14814815 0.85185185)
          62) dim2>=1.359888 1 0 0 (1.00000000 0.00000000) *
          63) dim2< 1.359888 26  3  1 (0.11538462 0.88461538)
           126) dim4>=2.104005 1 0 0 (1.00000000 0.00000000) *
           127) dim4< 2.104005 25 2 1 (0.08000000 0.92000000)
             254) dim2< -0.4813271 7 2 1 (0.28571429 0.71428571)
               508) dim2>=-0.9902607 3 1 0 (0.66666667 0.333333333) *
               509) dim2< -0.9902607 4 0 1 (0.00000000 1.00000000) *
             255) dim2>=-0.4813271 18 0 1 (0.00000000 1.00000000) *
> printcp(arbre.full)
Classification tree:
rpart(formula = satisfaction ~ ., data = donnees_champion, method = "class")
Variables actually used in tree construction:
                         dim4
           dim2
                  dim3
[1] dim1
Root node error: 27/60 = 0.45
n = 60
        CP nsplit rel error xerror
             0 1.00000 1.00000 0.14272
1 0.481481
                1 0.51852 0.59259 0.12687
2 0.111111
                2 0.40741 0.74074 0.13524
3 0.074074
                3 0.33333 0.55556 0.12423
4 0.037037
                   0.18519 0.62963 0.12928
                7
5 0.018519
                9 0.14815 0.66667 0.13147
6 0.010000
> pred <- predict(arbre.full, newdata = donnees_champion, type = "class")
> mc <- table(donnees_champion$satisfaction,pred)</pre>
> print(mc)
   pred
     0
  0 33 0
   1 4 23
```

4- Rappeler le principe qui permet d'obtenir l'arbre optimal.

Par la suite, on a procédé à l'élagage de arbre full, le résultat est donné ci-dessous :

```
> arbre.full.prune<-prune(?)
> print(arbre.full.prune)
```

```
n = 60
node), split, n, loss, yval, (yprob)
      * denotes terminal node
 1) root 60 27 0 (0.55000000 0.45000000)
   2) revenu>=725 23 2 0 (0.91304348 0.08695652) *
   3) revenu< 725 37 12 1 (0.32432432 0.67567568)
     6) dim3< -1.06706 5 1 0 (0.80000000 0.20000000) *
     7) dim3>=-1.06706 32 8 1 (0.25000000 0.75000000)
      14) dim1< -1.795057 2 0 0 (1.00000000 0.00000000) *
      15) dim1>=-1.795057 30 6 1 (0.20000000 0.80000000) *
> pred.prune <- predict(arbre.full.prune, newdata = donnees_champion, type = "class")
> mc.prune <- table(donnees_champion$satisfaction,pred.prune)
> print(mc.prune)
   pred.prune
     0 1
  0 27 6
  1 3 24
```

- 5- Compléter la commande prune par les paramètres adéquats afin d'obtenir arbre.full.prune.
- 6- Déterminer les régles issues de arbre.full.prune.
- 7- Que peut-on conclure quant aux variables explicatives de la satisfaction d'un client?
- 8- Comparer les taux d'erreur des deux arbres.
- 9- Quel arbre choisiriez-vous? Justifier votre réponse.

Annexe 1 : Extrait du questionnaire

1. Veuillez cocher la case qui correspond le plus à votre jugement :

7,5	1 0	0	A	Ľ
<u> </u>		3	4	J
V				
				İ

				<u></u> ,
	1	1 2		i(e). (4) = acceptable e

où (1) = mauvais(e), (2) = moyen(ne), (3) = normal(e), (4) = acceptable et (5) = excellent(e)

- 2. Le nombre de fois par semaine où vous fréquentez Champion \dots
- 3. Le nombre de produits achetés auprès de Champion par semaine
- 4. Quel est votre revevu?
- 5. Catégorie socioprofessionnelle : Retraité ... Cadre ... Ouvrier ... Profession libérale ...
- 6. Sexe: Homme ... Femme ...
- 7. Etes-vous satisfait de Champion? Oui ... Non ...

Annexe 2 : Résultats de l'ACP

Les 6 premières valeurs propres

Composantes	Valeurs propres		
1	2.02		
2	1,41		
3	1.27		
4	1.09		
S CONTRACTOR CONTRACTO	0.99		
6	0.74		

Matrice des composantes

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Composaria				
	1	2	3	4	
t. La modernité de l'equipement et le mobilier du magasin	,845	-,138	-,142	,165	
2. L'attractivité el le design du magasin	,648	-,353	.297	+,148	
3. La propreté des différents services offerts dans le magasin	.706	-,021	-,289	*313	
4. La disponibilié des marchandises à temps pour la clientèle	.300	.373	-,298	-,447	
5 La disponibilité du personnel à répondre aux questions	,027	,314	.608	,347	
6. La sécurité des transactions dans le magasin	-,040	-,022	,622	-,082	
7. Votre degré de conflance à l'égard du personnel	,514	,397	,461	-,382	
8. La variété des marchandises	.027	,730	-,142	-,330	
9. La qualité du service après vents	,104	,541	-,032	,605	

Matrice des composantes après rotation

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Composarité				
	ł	2	3	4	
1. La modernité de l'equipement et le mobilier du magasin	,883	,052	018	,015	
2. L'adractivité et le design du magasin	.619	-,056	,390	-,342	
3. La propreté des différents services offerts dans le magasin	,775	,039	il Co	,201	
4. La disponibilité des marchandises à lemps pour la clientèle	,153	,687	+,\$2%	-,094	
5. La disponibilité du personnet à répondre aux questions	•,045	·,128	,577	,489	
6. La sécutité des transactions dans le magasin	-,126	•,130.	,599	-,038	
7. Votre degré de confiance à l'égard du personnel	120	.474	.631	-,972	
8. La variété des marchandises	.176	,757	190,	,241	
 La qualité du service après vente 	,095	,107	-,027	,876	