Homework 7

Math 55b Due Tuesday, 17 Mar 2009.

Figure 1. A path on a cylinder in \mathbb{R}^3 .

- 1. Let X be a nonempty compact metric space, and suppose $f: X \to X$ satisfies d(f(x), f(y)) < d(x, y) whenever $x \neq y$. (i) Prove that f has a unique fixed point. (ii) Give an example of such a map which is not a strict contraction (there is no $\lambda < 1$ such that $d(f(x), f(y)) < \lambda d(x, y)$).
- 2. Let $U = B(0,1) \subset \mathbb{R}^n$ be the open unit ball, and let $f: U \to \mathbb{R}^n$ be the identity map. (i) Show that if $||f g||_{C^1(U)}$ is small enough, then $g: U \to \mathbb{R}^n$ is injective. (ii) Give an example of a different open set U such that (i) fails.
- 3. Prove that $d(d(\omega)) = 0$ for any smooth k-form on \mathbb{R}^n .
- 4. (i) Find an affine map $f: \mathbb{R}^2 \to \mathbb{R}^2$ which sends the unit square S to the parallelogram P with vertices (1,1), (3,2), (4,5), (2,4). What is det Df?
 - (ii) Let $\omega = \exp(x y) dx dy$ on P. Compute $f^*\omega$.
 - (iii) Compute $\int_P \omega$ using an integral over S.
- 5. Let $R = [a, b] \times [c, d] \subset \mathbb{R}^2$. Prove directly (without using Stokes' theorem) that if $\omega = f \, dx + g \, dy$ satisfies dg/dx = df/dy, then $\int_{\partial R} \omega = 0$.
- 6. (i) Let $\gamma:[a,b]\to\mathbb{R}^2$ be a smooth loop enclosing a region U (so that $\gamma(a)=\gamma(b)$). Using Stokes' theorem, prove that the area of U is given by $(1/2)\int_a^b\det(\gamma(t),\gamma'(t))\,dt$.
 - (ii) Parameterize the curve given in polar coordinates by $r^2 = \cos 2\theta$, compute the area it encloses, and explain the answer.
- 7. Give a formula relating Euclidean (x, y, z) coordinates to spherical (r, θ, ϕ) coordinates on \mathbb{R}^3 . (Here r is the length of the vector (x, y, z), ϕ measures its angle with the z-axis, and θ measure the angle between the vector (x, y, 0) and the x-axis.) Use your formula to compute the Euclidean volume element dx dy dz in spherical coordinates.

- 8. Find a 2-form ω on \mathbb{R}^3 such that $\int_{S^2} \omega$ computes the area of the unit sphere, and $\int_{B^3} d\omega$ computes the volume of the unit ball (up to a constant). Use Stokes' theorem to relate the two integrals and show $\operatorname{area}(S^2) = 3\operatorname{vol}(B^3)$. Generalize your proof to \mathbb{R}^n . Explain geometrically why this relationship should hold.
- 9. Let γ be the oriented path in \mathbb{R}^3 that connects (1,0,0) to (1,0,1) by spiraling three times around the surface of the cylinder $x^2 + y^2 = 1$ at a constant slope. (see Figure 1). Let $\omega = y \sin z \, dx + x \sin z \, dy + xy \cos z \, dz$. Compute $\int_{\gamma} \omega$.
- 10. Let $S \subset \mathbb{R}^3$ be the part of the hypersurface $x^4 + y^4 + z^4 = 1$ with $z \geq 0$. Give S a well-defined orientation, and then compute $\int_S \omega$ where

$$\omega = e^y z^2 dx dy - e^y 2xz dy dz + \cos(z) dx dz.$$