SYNTHESE

	N effectif de la population – n effectif de l'échantillon – s²(x) variance dans l'échantillon						
	VARIANCE DES MOYENNES			VARIANCES DES FREQUENCES			
	VARIANCE DE LA	VARIANCE DE LA					
	POPULATION $\sigma^2(x)$	POPULATION $\sigma^2(x)$		p CONNUE	f CONNUE		
	CONNUE	INCONNUE					
Avec remise	$\sigma^2(m_n) = \frac{\sigma^2(x)}{2}$	$\sigma^2(m_n) = \frac{\hat{\sigma}^2(x)}{2}$		$\sigma^2(f_n) = \frac{p(1-p)}{n}$	$\hat{p}(1-\hat{p})$		
100* n/N < 10%	$O(mn) = \frac{1}{2}$	$\sigma(m_n) = \frac{1}{2}$		$O(n) = \frac{n}{n}$	$\sigma^2(f_n) = \frac{\hat{p}(1-\hat{p})}{n}$		
ou n< <n< td=""><td></td><td></td><td></td><td></td><td></td></n<>							
Sans remise	$\sigma^2(m_n) = \frac{N-n}{N-1} \frac{\sigma^2(x)}{2}$	$\sigma^2(m_n) = \frac{N-n}{N-1} \frac{\hat{\sigma}^2(x)}{2}$		$\sigma^2(f_n) = \frac{N-n}{N-1} \frac{p(1-p)}{n}$	$\sigma^2(f_n) = \frac{N-n}{N-1} \frac{\hat{p}(1-\hat{p})}{n}$		
100*n/N > 10%	N-1 2	$O^{-}(m_n) = \frac{1}{N-1} \frac{1}{2}$		N-1 $N-1$	$O(n) = \frac{1}{N-1} = \frac{1}{n}$		
		$\hat{\sigma}^2(x) = \frac{SCEx}{x^2 + 1} = \frac{ns^2(x)}{x^2 + 1}$			$\hat{p} = f = \underline{k}$		
		$O(x) - \frac{1}{n-1} = \frac{1}{n-1}$			$\int_{0}^{P} \int_{0}^{T} n$		

			n-1 $n-1$		n
	\mathbf{X} :	variable m	esurée sur 1 unité statistique - m	n _n : moyenne de n unités statis	tiques
$L(X) = N(\mu, \sigma(x))$ dans la population $L(X)$ inconnue dans la popul			ns la population		
$\sigma(x)$ connu $\sigma(x)$ inconnu		σ(x) inconnu	σ(x) connu ou inconnu		
n > 30	n < 30	n > 30	n < 30	n > 30	n < 30
L(m _n)	= N(E(m), c	5(m))	$L(m_n) = St(v)(E(m), \sigma(m))$ Avec $v = n-1 = ddl$	$L(m_n) = N(E(m), \sigma(m))$	$L(m_n) \neq N$

n>5 et $\left \frac{\sqrt{\frac{p}{q}} - \sqrt{\frac{q}{p}}}{\sqrt{n}} \right \le 0.34$ ou n >100 et 0.1 < f <0.9	$L(f_n) = N(E(f), \sigma(f))$	
n < 100 avec p inconnue tirage avec remise	Utilisation de la loi F	
n > 100 et $f < 0.1$ avec p inconnue tirage avec remise	Utilisation de la loi du X ²	