Compito di Matematica Discreta e Algebra Lineare 13 febbraio 2020

Cognome e nome:		
Numero di matricola:Cors	so e Aula:	
IMPORTANTE: Scrivere il nome su ogni ferisposte, e nel resto del foglio o sul retro lo		MENTE nei riquadri le
Esercizio 1. Si trovino le radici razionali onell'anello dei polinomi a coefficienti in \mathbb{R} ,		+20e si fattorizzi $p(x)$
Radici razionali Fattori in $\mathbb{R}[x]$	Fattori in $\mathbb{C}[x]$	Fattori in $\mathbb{Z}/(5)[x]$

soluzione? Si trovino tutte le soluzioni		$= 4.$ $\equiv 1 \mod 9$ $\equiv b \mod 6$ $\equiv 7 \mod 5$
	(x)	$\equiv 7 \bmod 5$

Valori di \boldsymbol{b}

Soluzione per b=4

Esercizio 3. Consideriamo la matrice

$$A = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & b \end{pmatrix}.$$

- a) Per quali valori del parametro bla matrice Aha due autovalori uguali?
- b) Per quali valori di b la matrice A è diagonalizzabile?

Risposta a)	Risposta b)

Esercizio 4. Consideriamo lo spazio vettoriale $V=M_{2\times 2}(\mathbb{R})$ costituito delle matrici 2×2 a coefficienti reali.

a) Determinare i valori del parametro $a \in \mathbb{R}$ tale che la matrice $\begin{pmatrix} 1 & a \\ 3 & 4 \end{pmatrix}$ è contenuta nel sottospazio di generato da

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

 $\begin{pmatrix}1&0\\0&1\end{pmatrix},\quad\begin{pmatrix}0&0\\1&1\end{pmatrix},\quad\begin{pmatrix}1&0\\1&0\end{pmatrix}$ b) Sia $f:V\to V$ l'applicazione lineare che manda le matrici della base standard di V

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

rispettivamente in

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & a \\ 3 & 4 \end{pmatrix}.$$

Per quali valori del parametro a, l'applicazione f ha nel nucleo solo la matrice $\mathbf{0} \in \mathbf{V}$?

Risposta a)	Risposta b)