Teoria Współbieżności

Ćwiczenie 8

Wiktor Satora 411502 04.01.2024

Zadanie 1

Polecenie

Wymyślić własną maszynę stanów, zasymulować przykład i dokonać analizy grafu osiągalności oraz niezmienników.

Rysunek sieci

Figure 1 Rysunek sieci wraz z klasyfikacją

Przykładowa maszyna stanów to prosty automat skończony badający podzielność liczby wejściowej przez 4. Widok klasyfikacji to potwierdza

Symulacja przykładu

Initial Marking

0->1

1->2

2->0

0->1

loop 1

loop 1

loop 1

1->2

2->0

loop 0

Figure 2 Wygląd sieci po przebiegu symulacji

Graf osiągalności

Figure 3 Graf osiągalności maszyny stanów

Graf jest silnie spójny (z każdego wierzchołka można dostać się z każdego – przez inne)

Sieć jest maszyną stanów, więc suma markować jest stała. Niezmienniki miejsc to wektor jedynek. Sieć jest pokryta niezmiennikami tranzycji, jest ograniczona, bezpieczna i żywa

Zadanie 2 Polecenie

Zasymulować siec jak poniżej:

Dokonać analizy niezmienników przejść. Jaki wniosek można wyciągnąć o odwracalności sieci? Wygenerować graf osiągalności. Proszę wywnioskować z grafu, czy siec jest żywa. Proszę wywnioskować czy jest ograniczona. Objaśnić wniosek.

Zasymulowany rysunek sieci

Symulacja przykładu

Initial Marking

T1

T2

T0

T1

T2

T0

T1

T2 T0

T1

Po jej zakończeniu w P3 znajdowało się 5 znaczników

Niemienniki

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Analysis time: 0.0s

Brak niezmienników tranzycji mówi, że sieć nie jest odwracalna i nie ma żadnego znakowania własnego. Sieć nie jest zachowawcza i nie jest ograniczona

State

Nie ma znakowań własnych więc sieć nie może być żywa

Zadanie 3

Polecenie

Zasymulować wzajemne wykluczanie dwóch procesów na wspólnym zasobie. Dokonać analizy niezmienników miejsc oraz wyjaśnić znaczenie równań (P-invariant equations). Które równanie pokazuje działanie ochrony sekcji krytycznej?

Rysunek sieci

Petri net invariant analysis results

T-Invariants

T0	T1	T2	Т3
1	1	0	0
0	0	1	1

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

M(zasób jest wolny) + M(proces1 ma zasób) + M(proces2 ma zasób) = 1

Analysis time: 0.0s

Równanie pokazuje, że suma znaczników we wszystkich trzech miejscach jest stała i równa 1. Miejsca odpowiadają stanom zajętości zasobu, więc to równanie również wskazuje na brak możliwości zajęcia zasobu jednocześnie przez oba procesy – ochrona sekcji krytycznej.

Zadanie 4

Polecenie

Uruchomić problem producenta i konsumenta z ograniczonym buforem (można posłużyć się przykładem, menu: file, examples). Dokonać analizy niezmienników. Czy siec jest zachowawcza? Które równanie mówi nam o rozmiarze bufora?

Rysunek sieci

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	Р3	P4	Р5	P6	P7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Analysis time: 0.001s

Sieć jest żywa gdyż wszystkie przejścia mogą być wykonane.

Sieć jest odwracalna gdyż można dojść ponownie powrotem do stanu początkowego.

Zachowawczość sieci

Każda tranzycja w sieci ma tyle samo miejsc wejściowych ile wyjściowych, czyli liczba znaczników w sieci nie zmienia się – sieć jest zachowawcza

O rozmiarze bufora mówi nam równanie M(P6) + M(P7) = 3

Zadanie 5

Polecenie

Stworzyć symulacje problemu producenta i konsumenta z nieograniczonym buforem. Dokonać analizy niezmienników. Zaobserwować brak pełnego pokrycia miejsc.

Rysunek sieci

Sieć powstała przez usunięcie miejsca P7 z powyższej, raz o zmianie tranzycji na natychmiastowe

Symulacja przykładu

Initial Marking

T0

T1

T2

T5

Т3

T4

T0

T3 T4

T0

T3

T1

T2

T5

T1

T4

T0

T3

T2

T5

Widok na sieć po symulacji:

Niezmienniki

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$

Analysis time: 0.001s

Sieć nie jest ograniczona, jest możliwe składowanie dowolnej ilości elementów w buforze (uzyskanie dowolnej ilości markowań w P6) – nie może być pokryte niezmiennikami miejsc.

Zadanie 6

Polecenie

Zasymulować prosty przykład ilustrujący zakleszczenie. Wygenerować graf osiągalności i zaobserwować znakowania, z których nie można wykonać przejść. Zaobserwować właściwości sieci w "State Space Analysis".

Analiza stanów

Petri net state space analysis results

Bounded true Safe true Deadlock true

Shortest path to deadlock: T2 T5

Nie da się uzyskać więcej niż 1 znacznika w jakimkolwiek miejscu, więc sieć jest 1organiczona, czyli bezpieczna. Można natomiast doprowadzić do zakleszczenia w najkrótszym przykładzie T2 -> T5

Symulacja przykładu

Initial Marking

Т3

T4

(i zakleszczenie)

Wygląd sieci po wykonaniu symulacji:

Graf osiągalności

Czerwone pola to te które symbolizują zakleszczenie. Graf osiągalności potwierdza nam przebieg symulacji (S0->T3->T4->S7). Z tych znakowań nie można wykonać żadnego przejścia.