

Komunikace s elektroměry dle normy ČSN EN 62056-21

Abstrakt

Výměna technologických dat mezi řídicími systémy firmy AMiT a elektroměry dle normy ČSN EN 62056-21.

Autor: Michal Novotný

Dokument: ap0039_cz_01.pdf

Příloha

Obsah souboru: ap0039_cz_01.zip

zpa_p1_cz_01.dso Příklad komunikace s elektroměrem ED 310	
---	--

Copyright (c) 2010, AMiT®, spol. s r.o. www.amit.cz

Obsah

	Související dokumentace	3
1.	Definice použitých pojmů	4
2.	Norma ČSN EN 62056-21	5
2.1.	Popis protokolu	5
2.1.1	Režim protokolu A	5
2.1.2	Režim protokolu B	5
2.1.3	Režim protokolu C	5
2.1.4	Režim protokolu D	6
2.1.5	Režim protokolu E	6
2.2.	Ukázka vybraných rámců	6
2.2.1	Rámec s požadavkem	6
2.2.2	Rámec s identifikací	6
2.2.3	Rámec s daty	6
3.	Praktické použití	8
3.1.	HW zapojení	8
3.2.	Programové řešení	8
3.2.1	Komunikace s elektroměrem ED 310	8
	Komunikační parametry	8
	Integrace ukázkové aplikace	9
	Spuštění komunikace (čtení a dekódování dat)	9
	Stav komunikace	9
	Výsledek komunikace	9
	Dekódovaná data	10
3.2.2	Komunikace s jinými zařízeními	10
4.	DODATEK	11
4.1.	Popis struktury ukázkové aplikace	11
	Posloupnost vykonávání ukázkové aplikace	
5.	Technická podpora	12
6.	Upozornění	13

KOMUNIKACE S ELEKTROMĚRY DLE NORMY ČSN EN 62056-21

Historie revizí

Verze	Datum	Změny
001	13. 4. 2010	Nový dokument

Související dokumentace

- Nápověda k návrhovému prostředí DetStudio soubor: DetStudioHelp.chm
- 2) Norma ČSN EN 62056-21 Měření elektrické energie
- 3) ISO/IEC 1177:1985 Zpracování informací
- 4) Aplikační poznámka AP0016 Zásady používání RS485 soubor: ap0016_cz_xx.pdf

1. Definice použitých pojmů

Elektroměr (tarifikační zařízení)

Pevná jednotka sběru dat elektrické energie.

Aktivní stanice (Master)

Je to zařízení, které aktivně vyvolává požadavky na komunikaci s ostatními zařízeními.

Pasivní stanice (Slave)

Je to zařízení, které pouze odpovídá na požadavky od aktivní stanice.

Klient

Zařízení požadující služby, obvykle aktivní stanice.

Server

Zařízení zajišťující služby, obvykle elektroměr. Je to zařízení předávající požadované hodnoty nebo provádějící požadované úkoly.

2. Norma ČSN EN 62056-21

Norma ČSN EN 62056-21 je určena pro měření elektrické energie, výměnu dat pro odečet elektroměru, řízení tarifu a regulaci zátěže. Norma ČSN EN 62056 část 21 udává, že se jedná o přímou místní výměnu dat elektroměru.

2.1. Popis protokolu

Charakteristické rysy přenosu:

- ♦ Asynchronní sériově bitový přenos znaků podle ISO/IEC 1177:1985, poloduplexní
- Výchozí přenosová rychlost: 300 bps
- ♦ Normalizované přenosové rychlosti: 300 bps, 600 bps, 1200 bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps
- ◆ Formát znaků: 1 start bit, 7 datových bitů, 1 paritní bit, 1 stop bit
- ♦ Zabezpečení znaků: paritní bit, sudá parita

Protokol umožňuje pět různých komunikačních režimů, které může elektroměr použít: A, B, C, D a E. Výměna dat je v komunikačních režimech A, B, C a E obousměrná a vždy ji iniciuje řídicí systém přenosem rámce s požadavkem. Řídicí systém je v režimech A, B a C jako aktivní stanice (Master) a elektroměr je obvykle jako pasivní stanice (Slave). V komunikačním režimu E funguje řídicí systém jako klient a elektroměr funguje jako server. V komunikačním režimu D je přenos dat jednosměrný a umožňuje pouze odečet.

2.1.1 Režim protokolu A

Komunikační režim A zajišťuje obousměrnou výměnu dat při rychlosti 300 bps bez přepínání přenosové rychlosti. Tento režim umožňuje odečet dat a programování s nepovinným zabezpečením pomocí hesla. Odečet dat probíhá tím způsobem, že řídicí systém vyšle rámec s požadavkem na elektroměr. Elektroměr poté přenáší rámec s identifikací. Bezprostředně po přenesení rámce s identifikací elektroměr posílá rámce s daty.

V komunikačním režimu A je možné se přepnout do programovacího režimu. V programovacím režimu poté probíhá konfigurace elektroměru. Do programovacího režimu se lze přepnout ihned po dokončení odečtu dat vysláním libovolného rámce s povelem.

Kompletní detailní popis komunikačního režimu A poskytuje norma ČSN EN 62056-21.

2.1.2 Režim protokolu B

Komunikační režim B zajišťuje obousměrnou výměnu dat s přepínáním přenosové rychlosti. Tento režim umožňuje odečet dat a programování s nepovinným zabezpečením pomocí hesla. Odečet dat probíhá tím způsobem, že řídicí systém pošle rámec s požadavkem na elektroměr. Elektroměr poté přenáší rámec s identifikací. Po přenesení rámce s identifikací elektroměr krátce přeruší přenos. Během tohoto intervalu elektroměr i řídicí systém přepne na přenosovou rychlost předepsanou v rámci s identifikací. Poté se přenesou rámce s daty novou přenosovou rychlostí.

V komunikačním režimu B je možné se přepnout do programovacího režimu. V programovacím režimu poté probíhá konfigurace elektroměru. Do programovacího režimu se lze přepnout ihned po dokončení odečtu dat vysláním libovolného rámce s povelem od řídicího systému o rychlosti 300 bps.

Kompletní detailní popis komunikačního režimu protokolu B poskytuje norma ČSN EN 62056-21.

2.1.3 Režim protokolu C

Komunikační režim C zajišťuje obousměrnou výměnu dat s přepínáním přenosové rychlosti. Tento režim umožňuje odečet dat, programování se zvýšeným zabezpečením a přepnutí do režimů stanovených výrobcem. Odečet dat probíhá tím způsobem, že řídicí systém pošle rámec

s požadavkem na elektroměr. Elektroměr poté přenáší rámec s identifikací. Po přenesení rámce s identifikací čeká elektroměr na "rámec s volbou potvrzení/možnosti" od řídicího systému. Tou může být požadavek na odečet dat, přepnutí do programovacího režimu nebo přepnutí do režimu stanoveného výrobcem.

Kompletní detailní popis komunikačního režimu C poskytuje norma ČSN EN 62056-21.

2.1.4 Režim protokolu D

Komunikační režim D zajišťuje jednosměrný přenos dat s pevnou přenosovou rychlostí 2400 bps. Tento režim umožňuje pouze odečet dat. Elektroměr přenáší rámce s daty ihned po aktivování tlačítka nebo jiného snímače na elektroměru.

Kompletní detailní popis komunikačního režimu D poskytuje norma ČSN EN 62056-21.

2.1.5 Režim protokolu E

Komunikační režim E zajišťuje obousměrnou výměnu dat a vždy ji iniciuje řídicí systém přenosem rámce s požadavkem. V tomto režimu funguje řídicí systém jako klient a elektroměr funguje jako server. Na počáteční rámec s požadavkem od klienta odpoví server rámcem s identifikací. Rámec s identifikací obsahuje identifikační pole, které může mít délku až 16 znaků. V tomto identifikačním řetězci jedna nebo několik změnových posloupností obsahující znak "V" a jeden následný identifikační znak (viz kapitola 2.2.2 Rámec s identifikací) informují klienta o tom, že jsou k dispozici dokonalejší charakteristiky.

V tomto komunikačním režimu E může být použita transparentnost slabik 1 start bit, 8 bitů dat, 1 stop bit.

Kompletní detailní popis komunikačního režimu E poskytuje norma ČSN EN 62056-21.

2.2. Ukázka vybraných rámců

Z možných rámců byly pro ukázku vybrány tři rámce, které postačují pro vyčtení dat z elektroměru.

2.2.1 Rámec s požadavkem

Rámec s požadavkem od řídicího systému na elektroměr. Adresa zařízení je nepovinná.

/	?	Adresa zařízení	!	CR	LF
---	---	-----------------	---	----	----

2.2.2 Rámec s identifikací

Odpověď elektroměru. Znaky "\" a "W" jsou nepovinné, jsou součástí pole "Identifikace".

ſ	1	Υ	Υ	Υ	7	\	\٨/	Identifikace	CR	ΙF
L	1	^	^	^	_	١	VV	luerillikace	C	

2.2.3 Rámec s daty

Normální odpověď elektroměru, například kompletní datový soubor.

STX	Datový blok	!	CR	LF	ETX	BCC

Vysvětlivky obsahu rámců:

Znak "/"	Start znak (dopředné lomítko, kód 2Fh)			
Znak "?"	Povel s požadavkem na přenos (otazník, kód 3Fh)			
Pole "Adresa zařízení"	Nepovinné pole, specifikováno výrobcem, maximálně 32 znaků			
Znak "!"	Koncový znak (vykřičník, kód 21h)			
Znaky "CR" a "LF"	Ukončovací znak (CR – návrat vozíku, kód 02h, LF – posun o řádku,			
	kód 0Ah)			
Znak "X"	Označení výrobce skládající se ze tří velkých písmen			

KOMUNIKACE S ELEKTROMĚRY DLE NORMY ČSN EN 62056-21

Znak "Z"	Určení přenosové rychlosti
Pole "Identifikace"	Identifikace určená výrobcem, maximálně 16 tiskových znaků s výjimkou
	znaků "/" a "!". Znak "\" je přípustné pouze jako znak změny
Znak "STX"	Znak začátku rámce (STX – začátek textu, kód 02h)
Pole "Datový blok"	Datový blok s měřenými hodnotami
Znak "ETX"	Koncový znak bloku (ETX – konec textu, kód 03h)
Znak "BCC"	Kontrolní znak bloku (BCC)

Kompletní seznam použitelných rámců a popis obsahu těchto rámců poskytuje norma ČSN EN 62056-21.

3. Praktické použití

3.1. HW zapojení

Elektroměr lze připojit přímo na sériové rozhraní (RS232 nebo RS485) řídicího systému. Řídicí systém osazený rozhranním RS232 lze k elektroměru také připojit pomocí převodníku **DM-232TO485** z produkce firmy AMiT.

Topologie sítě tedy může být následovná.

Obr. 1 - Komunikace řídicího systém s elektroměry po lince RS485

Pozor

Komunikační rozhraní řídicího systému, kam je připojen elektroměr, již nelze použít pro zařízení komunikující jiným komunikačním protokolem. Na jednom komunikačním rozhraní, lze provozovat pouze jeden komunikační protokol.

3.2. Programové řešení

Elektroměr lze na komunikační síti s řídicími systémy firmy AMiT provozovat v režimu Slave. Řídicí systém firmy AMiT, který bude požadovat data od elektroměru, je v takovém případě na komunikační síti v roli Mastera. Datová struktura rámců protokolu je dána normou ČSN EN 62056-21. Jelikož v prostředí DetStudia nejsou přímo moduly určené pro komunikaci dle normy ČSN EN 62056-21, je nutné komunikaci řešit pomocí modulů uživatelské komunikace (tzv. UserCom). Základní moduly, potřebné pro naprogramování uživatelské komunikace jsou ComInit, ComWrite a ComRead.

Popis parametrů jednotlivých modulů uživatelské komunikace je součástí nápovědy k návrhovému prostředí DetStudio.

3.2.1 Komunikace s elektroměrem ED 310

Součástí této aplikační poznámky je ukázková aplikace pro komunikaci řídicího systému firmy AMiT s elektroměrem ED 310 od firmy ZPA prostřednictvím normy ČSN EN 62056-21. Ukázková aplikace reší:

- Načtení dat
- Dekódování dat

Ukázková aplikace je vytvořena pro řídicí systém **StartKit**. Lze ji však využít pro jakýkoliv jiný řídicí systém z produkce firmy AMiT. Změnu typu řídicího systému lze provést v prostředí DetStudio pomocí volby "Nástroje/Změnit typ stanice ...".

Komunikační parametry

Řídicí systém komunikuje s elektroměrem ED310 následujícími komunikačními parametry:

- Sériová linka: RS485
- Přenosová rychlost: 300 bps

- ♦ Komunikační port: 1
- ♦ Formát znaků: 7 bitů dat, 1 stop bit, sudá parita

Poznámka

Komunikační parametry jsou v aplikaci nastaveny v procesu Init pomocí hlavního modulu uživatelské komunikace ComInit.

Odečet dat z elektroměru ED310 probíhá v režimu protokolu A (viz kapitola 2.1.1 Režim protokolu A). Adresa elektroměru je specifikovaná výrobcem. O adresaci se uživatel nemusí starat v případě, kdy je adresa v elektroměru prázdná a komunikace je typu bod – bod. Toto je případ i ukázkové aplikace. Pokud je vyžadována adresná komunikace s elektroměrem, lze adresu elektroměru nastavit nebo změnit v konfiguraci elektroměru. Poté je nutné v ukázkové aplikaci upravit rámec s požadavkem. Tím, že do pole "Adresa zařízení" rámce s požadavkem se zadá příslušná adresa.

Integrace ukázkové aplikace

Pro integraci do vaší aplikace zkopírujte z ukázkové aplikace procesy:

- ♦ Proc00
- ♦ ProcINIT

Dále zkopírujete podprogramy:

- ♦ Lib100
- ♦ Lib102
- ♦ Lib103
- ♦ Lib110

A také zkopírujte všechny proměnné obsažené v ukázkové aplikaci.

Spuštění komunikace (čtení a dekódování dat)

Pro spuštění čtení dat slouží bit "cti.0". Nastavením bitu na hodnotu TRUE se spustí komunikace. Rámec na čtení je dán normou a je uložen v aplikaci. Uživatel jej nemusí měnit. V případě úspěšného načtení dat se provede dekódování přijatého rámce. Pokud došlo při čtení dat k chybě, dekódování neproběhne. Informace o tom, že byla komunikace ukončena a došlo k chybě, lze nalézt v proměnných "ReqStatus" a "ReqResult".

Stav komunikace

Hodnota proměnné "ReqStatus" poskytuje informace o stavu komunikace. Popis jednotlivých stavů požadavku je uveden v tabulce níže.

Kódování stavu požadavku RegStatus:

Hodnota	Stav	Význam	
0x0001h (1)	ldle	Čeká se na vložení požadavku	
0x0002h (2)	Busy	Vyřizuje se požadavek	
0x0004h (4)	Finish	Vyřídil se požadavek a výsledek je v proměnné ReqResult	

Výsledek komunikace

Hodnota proměnné "ReqResult" poskytuje informace o výsledku komunikace. Popis jednotlivých výsledků komunikace je uveden v tabulce níže.

Kódování výsledku požadavku ReqResult:

Hodnota	Výsledek	Význam			
0x0001h (1)	Act	Zpráva s potvrzením OK			
0x0002h (2)	Nak	Zpráva s potvrzením chyby			
0x0004h (4)	Data	Rámec s daty			
0x0008h (8)	Error	Chyba, timeout			

Dekódovaná data

Seznam proměnných, do kterých jsou dekódovaná data z příjatého rámce:

Jméno	WID	Тур	Stanice	Komentář
Chyba_elmer	1019	MI[1,6]	1	Chyba elektroměru
SN	1020	MI[1,8]	1	Výrobní číslo
Adresa	1021	MI[1,6]	1	Komunikační adresa
Odber	1022	MI[1,13]	1	Odběr + dodávka v T1
Dodavka	1023	MI[1,13]	1	Dodávka v T1
Cas_odectu	1024	MI[1,14]	1	Datum posledního odečtu
Vypadek_L1	1025	MI[1,4]	1	Počet výpadků napětí fáze L1
Vypadek_L2	1026	MI[1,4]	1	Počet výpadků napětí fáze L2
Vypadek_L3	1027	MI[1,4]	1	Počet výpadků napětí fáze L3
Vypadek_U	1028	MI[1,4]	1	Počet výpadků napájení
Konst_IR	1029	MI[1,15]	1	Konstanta IR [imp/kWh]
Konst_S0	1030	MI[1,15]	1	Konstanta S0 [imp/kWh]
Datum_kalibr	1031	MI[1,13]	1	Datum kalibrace
Ident_konfig	1032	MI[1,4]	1	Identifikace konfigurace
ID_provedeni	1033	MI[1,11]	1	Zákaznické číslo provedení
Doba_cit_odb	1034	MI[1,11]	1	Doba čítání odběru – dodávka v T1
Doba_cit_dod	1035	MI[1,11]	1	Doba čítání dodávky v T1
Provozni_cas	1036	MI[1,11]	1	Provozní čas
Vykon_1	1037	MI[1,10]	1	Výkon L1
Vykon_2	1038	MI[1,10]	1	Výkon L2
Vykon_3	1039	MI[1,10]	1	Výkon L3
Max_vykon	1040	MI[1,10]	1	Maximální výkon ve fázi
Cas_nul_max	1041	MI[1,11]	1	Čas od nulování maxim

3.2.2 Komunikace s jinými zařízeními

Ukázkovou aplikaci je možno využít i pro komunikaci řídicích systémů firmy AMiT s jinými typy elektroměrů (případně s elektroměry stejného typu, avšak s jinak nastavenými parametry odečtu). V takovém případě je nutné provést dekódování dat ve vlastní režii.

Pro integraci do vaší aplikace zkopírujte z ukázkové aplikace procesy:

- ♦ Proc00
- ♦ ProcINIT

Dále zkopírujete podprogramy:

- ♦ Lib100
- ♦ Lib102
- ♦ Lib103

A také zkopírujte všechny proměnné, mimo proměnné uvedené v seznamu proměnných, do kterých jsou v ukázkové aplikaci dekódovaná data z přijatého rámce. Tímto způsobem lze vytvořit aplikaci bez dekódování.

Dekódování hodnot z přijatého rámce musí být provedeno, dle zvoleného nastavení parametrů odečtu elektroměru. Pro dekódování hodnot z přijatého rámce slouží modul StrParse.

4. DODATEK

4.1. Popis struktury ukázkové aplikace

Ukázková aplikace je rozdělena do dvou částí:

♦ Komunikační část

Vysílá rámce s požadavkem

Přijímá rámce s identifikací a přijímá rámce s daty

♦ Dekódovací část

Dekódování rámce s daty

Komunikační část se stará o vlastní přenos rámců a dekódovací část se stará o datový obsah rámců. Komunikační část je realizována stavovým automatem (podprogram Lib103).

Informace o stavu stavového automatu je dána hodnotou proměnné "L2_Status". Právě vykonávaná událost stavového automatu je dána hodnotou proměnné "L2 Event".

Proměnná "L2_Status" může nabývat následujících hodnot:

Kódy jsou v proměnných L2S_xxx, viz tabulka níže

Hodnota	Proměnná	Význam
0x0001h (1)	L2S_ldle	Žádná činnost
0x0002h (2)	L2S_Receive	Čeká se na příjem znaku rámce

Proměnná "L2_Event" může nabývat následujících hodnot:

Kódy jsou v proměnné L2E_xxx, viz tabulka níže

Hodnota	Proměnná	Význam
0x0001h (1)	L2E_None	Žádná událost
0x0002h (2)	L2E_Send	Vyslání rámce
0x0004h (4)	L2E_Char	Přišel znak rámce
0x0008h (8)	L2E_Tmo	Vypršel timeout

Posloupnost vykonávání ukázkové aplikace

- ◆ Po spuštění komunikace (nastavení bitu "cti.0" na hodnotu TRUE) je pomocí modulu ComWrite odeslán rámec s požadavkem na elektroměr (rámec s požadavkem je v proměnné "OutTla").
- ♦ Příjem rámce s identifikací (viz kapitola 2.2.2 Rámec s identifikací) pomocí modulu ComRead.
- ♦ Příjem rámce s daty pomocí modulu ComRead.
- Dekódování dat.

Poznámka

Rozpoznání začátku a konce rámce je možné pomocí speciálních znaků STX a ETX, které se již na jiném místě v rámci nevyskytují. Rámec s daty začíná znakem STX (02H), následuje odečet měřených dat a na závěr je rámec ukončen znakem ETX (03H).

5. Technická podpora

Veškeré informace ohledně komunikace řídicích systémů firmy AMiT dle normy ČSN EN 62056-21, Vám poskytne oddělení technické podpory firmy AMiT. Technickou podporu můžete kontaktovat nejlépe prostřednictvím emailu na adrese **support@amit.cz**.

6. Upozornění

AMiT spol. s r.o. poskytuje informace v tomto dokumentu, tak jak jsou, nepřejímá žádné záruky, pokud se týče obsahu tohoto dokumentu a vyhrazuje si právo měnit obsah dokumentu bez závazku tyto změny oznámit jakékoli osobě či organizaci.

Tento dokument může být kopírován a rozšiřován za následujících podmínek:

Celý text musí být kopírován bez úprav a se zahrnutím všech stránek.

Všechny kopie musí obsahovat označení autorského práva společnosti AMiT, spol. s r. o. a veškerá další upozornění v dokumentu uvedená.

Tento dokument nesmí být distribuován za účelem dosažení zisku.

V publikaci použité názvy produktů, firem apod. mohou být ochrannými známkami nebo registrovanými ochrannými známkami příslušných vlastníků.