A new General Purpose Decontamination System for Chemical and Biological Warfare and Terrorism agents

Sushil Khetan, Deboshri Banerjee, Arani Chanda, and Terry Collins

Institute for Green Oxidation Chemistry
Carnegie Mellon University, Pittsburgh, PA 15213

Joint Services Scientific Conference on Chemical & Biological Defense Research

November 20, 2003

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE 19 NOV 2003		2. REPORT TYPE N/A		3. DATES COVE	RED			
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER						
	rpose Decontaminat e and Terrorism age	nical and	5b. GRANT NUMBER					
Diological Wariare	and Terrorism age		5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)			5d. PROJECT NUMBER					
					5e. TASK NUMBER			
			5f. WORK UNIT NUMBER					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Green Oxidation Chemistry Carnegie Mellon University, Pittsburgh, PA 15213 8. PERFORMING ORGANIZATION REPORT NUMBER								
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)						
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited								
	otes 51, Proceedings of t Research, 17-20 No							
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF					
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 32	RESPONSIBLE PERSON			

Report Documentation Page

Form Approved OMB No. 0704-0188

Fe-TAML® Activator of Peroxide

TAML® Activators developed at Carnegie Mellon University

New Applications

Rapid Inactivation of Bacterial Spores and degradation of organophosphorus triesters as surrogates of Biological and chemical Warfare Agents

'Green' Oxidizing System¹

- Biomimetic System
- Non-toxic and non-corrosive
- Efficient user of peroxide
- High turnover in oxidative environment

Tested Applications^{1,2}

- Effluent Treatment
- Bleaching in Pulp and Paper
- Desulfurization of Diesel
- Dye Transfer Inhibition Agent
 - 1. Collins, T. J. Accounts of Chemical Research 2002, 35, 782-790
 - 2. http://www.cmu.edu/Greenchemistry

Activators of Hydrogen peroxide Relative Rates of Reactive Intermediates Formation

Bicarbonate Activated Peroxide* System
 (Aqueous Foam decon by Sandia National Laboratory)

$$HCO_3^- + H_2O_2 \longrightarrow HCO_4^- + H_2O \qquad k \approx 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$$

Fe-TAML® activators of hydrogen peroxide

Fe^{III}-TAML +
$$H_2O_2 \xrightarrow{k'}$$
 'Fe=O'

 $k' \approx 10^4 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$

- Deep Oxidation capability
- Non-toxic and non-corrosive

$$k/1k = 10^7$$

* Richardson, D. E. et al. J. Am. Chem. Soc. 2000, 122, 1729

Biological Warfare Agents

A microorganism or its by-product (toxin), which causes disease in man, plants or deterioration in material; used as weapons of warfare and/or terrorism

Major Threats

- Bacterial Diseases
 - Anthrax
 - Tularemia
 - Plague
- Viral Diseases
 - Smallpox
 - Viral hemorrhagic fevers
- Toxins
 - Botulinum Toxins
 - Ricin

Anthrax Spores

- Dormant survival form of the vegetative bacterium
- Resistant to stress conditions, e.g. heat, UV radiations and chemical treatments
- Germinates on encountering favorable conditions

Bacterial Endospore

Source: L. M. Prescott, Microbiology, McGraw-Hill, NY, 5th Ed., 2002

Spore resistance is due to two protective shells that encase the organism

Spore Coat

Multi-layered highly cross-linked polypeptide structure with numerous disulfide linkages

Spore Cortex

Thick layer of loosely crosslinked peptidoglycan structure with an overall negative charge

Spore Core

- Normal cell structures with ribosomes and a nucleoid
- Metabolically inactive and largely dehydrated

Bacterial Spore Deactivation

Strategies and Mechanism

Strategies

- Penetration of the spore coat with subsequent degradation of bacterial DNA
- Dissolution of spore peptidoglycan structure, exposing the vegetative cell elements
- Initiation of germination with weakening of spore wall followed by deactivation
- Inactivation of spore germination apparatus by destruction of germination-specific lytic enzymes

Weakening of spore coat through oxidation of the disulfide bonds

Model compound:

Dialkyldisulfide (e.g. Cystine)

Modeling Studies Oxidation of Di-alkyl Disulfides

Dissociation of disulfide bonds also observed in di-tert-butyl disulfide

$$(H_3C)_3C-S-S-C(CH_3)_3$$
 di -tert-butyl disulfide

Fe-TAML / H_2O_2
 pH 10.0, rt

O
 $H_3C)_3C-S-OH$
 O
 $tert$ -butyl sulfonic acid

Result obtained from ESI-MS studies

Deactivation Studies with Bacillus spores

Bacillus atrophaeus (formerly B. globigii)

Spore-forming harmless soil bacterium *B. atrophaeus* (ATCC 9372) was tested as surrogate for *Bacillus anthracis* in spore deactivation studies

Optimization of Reaction Conditions

Variation of Fe-TAML® concentrations

 N_0 = Initial number of spores N = Number of surviving spores

- Studies conducted at two H₂O₂ concentrations
- Exponential relationship between spore deactivation and Fe-TAML® concentration
- Optimized Fe-TAML[®] concentration: 10 μM

- Reactions carried out for 1 hour at 30°C
- Spore Population of 5×10⁷ CFU/ml
- Na-carbonate/bicarbonate (0.1 M) buffer, pH 10.0

Optimization of Reaction Conditions

Variation of H₂O₂ concentrations

- Linear relationship between spore deactivation and concentration of H₂O₂
- Optimized H₂O₂
 concentration: 0.5M

 N_0 = Initial number of spores

N = Number of surviving spores

- Reactions carried out for 1 hour at 30°C
- Spore Population of 5×10⁷ CFU/ml
- Na-carbonate/bicarbonate (0.1 M) buffer, pH 10.0

Use of Cationic Surfactant

Cationic Surfactants

- Enhance penetrability
 of Fe-TAML® activators
 across the spore coat
- Increase dispersion of hydrophobic spores in aqueous phase
- Can cause collapse of spore peptidoglycan structure through ionic interactions

Optimized concentration: 0.03% (close to cmc value)

 N_0 = Initial number of spores

N = Number of surviving spores

Time Dependence of Spore Kill

10,000×

 $10.000 \times$

Control

95% mortality with hydrogen peroxide

10,000×

99.98% mortality with Fe-TAML® activator, and hydrogen peroxide

N₀ = Initial number of sporesN = Number of surviving spores

- 99.98% (4-log) kill of spores
- Treatment time: 2 hours
- Fe-TAML[®]: 10 μM; H₂O₂: 0.5 M
- Spore population: 1×10⁸ cfu/ml

Enhanced Spore Mortality

N₀ = Initial number of sporesN = Number of surviving spores

75% with BuOOH

99.99999% with Fe-TAML® + *BuOOH

- 99.99999% (7-log) kill of spores
- Treatment time: 1 hour
- Fe-TAML[®]: 5 μM; ^tBuOOH: 0.3 M
- Spore population: 1×108 cfu/ml

Oxidative Detoxification of Organophosphorus Triesters and Dialkyl sulfides

TAML®-activated H₂O₂ Treatment of Fenitrothion

UV-Visible spectroscopic study

TAML®-activated H₂O₂ Treatment of Fenitrothion

Kinetics of decomposition of fenitrothion is followed through absorption at 396 nm In UV-Vis. Rapid hydrolysis is seen followed by degradation of *p*-nitrocresol.

Time-lapsed analysis of the reaction mixture by HPLC shows initial formation of *p*-nitrocresol and fenitrooxon. In subsequent stage, most of *p*-nitrocresol is degraded.

TAML-activated peroxide decomposition of Fenitrothion

Fenitrothion and Fenitrooxon Degradation - pH Dependence

Initial rate measurements following *p*-nitrocresol formation (395 nm)

TAML/H₂O₂ mediated Fenitrothion degradation

Rate of Fenitrothion Degradation (M/s) 1.6e-5 TAML/peroxide 1.4e-5 peroxide 1.2e-5 1.0e-5 8.0e-6 6.0e-6 4.0e-6 2.0e-6 0.0 10 11 12 9 pН

Peroxide assisted Fenitrooxon degradation

TAML®: Fenitrothion: peroxide (1: 25: 50,000) in phosphate buffer (0.1M)

Fenitrooxon: peroxide (1:2000) in phosphate buffer (0.1M)

p-Nitrocresol Degradation – pH dependence

Optimization of Reaction Conditions

Initial rate measurements

Kinetics of oxidative degradation

At higher pH, the reaction rate increases, but catalyst gets inactivated faster

Optimum pH range 9.5-10.0

Summary of Fenitrothion degradation Study

Optimal reaction conditions for Total degradation of fenitrothion

pH 9.5-10.0, phosphate buffer (0.1 M), 25°C TAML®: Fenitrothion: Peroxide 1:25:50,000

Total Degradation of Fenitrothion

Fenitrothion (99%)

Reaction mixture

TAML catalyst (FeBF₂)

(pH 10, quenched with catalase)

Reduction in toxicity

Fenitrothion Degradation

Aquatic Toxicity

MicroTox	D. Magna
EC ₅₀ (15 min.) Mg/L	EC ₅₀ Mg/L
2.33	14.1
58.00	NA
57.25	>530
25-fold	>38-fold
23 1014	, 69 lela

Reaction of Dialkyl sulfides with TAML/peroxide

TAML:substrate = 1:1,000; pH 8; Phosphate buffer, 25°C

Conclusions

TAML®-peroxide technology:

- ➤ Effectively deactivate bacterial spores, the toughest of all microorganisms, in aqueous solution achieving 99.9999% (7-log) of spore destruction
- Rapidly detoxify organo-phosphorus triesters, followed by the deep oxidation of hydrolysates
- Selectively oxidize dialkyl sulfides to less toxic sufoxide
- Promises an environmentally friendlier superior technology for destruction of all chemical-biological warfare agents

New Decon System Features

- Catalytic Requires very low catalyst and low peroxide concentration
- Designed to be Non-toxic No toxic elements or functionality
- Aqueous based Compatible with wide variety of surfaces and technologies; can be used on sensitive equipment
- Broad-spectrum activity Detoxify and degrade largerange of chemicals and inactivate bacterial spores
- Performance previously unavailable Truly biomimetic with deep oxidation capability (leaves no toxic biproducts)
- Robust system Stable and functional over wide range of pH
- Rapid acting and safe for people and environment
- Easy to use Used at ambient conditions, offers a practical approach

Acknowledgements

Anindya Ghosh
Dr. Peter Berget
Dr. Edwin Minkley
NSF
DURIP

Nucleophile assisted Hydrolytic Detoxification of Chemical Warfare Agents

The rate of nucleophile aided hydrolysis of esters is increased by cationic micelles (e.g. OOH/CTABr).

Wagner and Yang, 2002. Ind. Eng. Chem. Res., 41(8), 1925-1928

Fe-TAML peroxide oxidant system mimics Cytochrome 450

TAML-activated peroxide treatment of fenitrothion possibly results in a common 3-membered ring intermediate formation leading to fenitrooxon and p-nitrocresol

TAML/H₂O₂ Degradation of Organophosphorus Triesters

A Versatile and Robust Process

$$R = -O \longrightarrow NO_2 \longrightarrow NO_2$$

Catalysis of Phosphate Triester Hydrolysis by Cationic Micelles

- Nucleophile (such as peroxide anion) aided hydrolysis is the most preferred reaction to detoxify phosphorus esters.
- The rate of nucleophile aided hydrolysis of esters is increased by cationic micelles (e.g. OOH/CTABr).^{1,2}
- CTABr has significantly enhanced hydrolytic rate of phosphorus esters, (depending on substrate, 20-300 fold enhancement) with hypochlorite.¹
- Aqueous cationic micelles accelerate spontaneous hydrolysis of dinitrophenyl phosphate and acyl phosphate dianions, with an extensive P-O bond cleavage in the transition state.³

^{1.} Dubey, Gupta et al., Langmuir, 2002, 18, 10489-10492

^{2.} Couderc and Toullec, Lanmuir, 2001, 17, 3819-3828.

^{3.} Brinchi, profio et al., Langmuir, 2000, 16, 10101-10105

Bacterial Endospore Spore Cortex

- Loosely cross-linked peptidoglycan composed of Nacetyl glucosamine and N-acetylmuramic acid with short peptide side-chains
- Maintains spore dormancy and heat resistance; hydrolyzes during germination
- An overall negative charge from the phosphate backbone of teichoic acid (20-40% of dry weight of cortex)

Teichoic Acid