Number-Base Conversions

Conversion Among Bases

The possibilities:

Binary -to- Decimal Process

The Process: Weighted Multiplication

- a) Multiply each bit of the *Binary Number* by it corresponding bitweighting factor (i.e. Bit-0 \rightarrow 2⁰=1; Bit-1 \rightarrow 2¹=2; Bit-2 \rightarrow 2²=4; etc).
- b) Sum up all the products in step (a) to get the *Decimal Number*.

Example:

Convert the decimal number 0110₂ into its decimal equivalent.

$$\therefore 0110_2 = 6_{10}$$

Example:

Convert the binary number 10010₂ into its decimal equivalent.

Example:

Convert the binary number 10010₂ into its decimal equivalent.

Solution:

Example:

Convert the binary number 0110101₂ into its decimal equivalent.

Example:

Convert the binary number 0110101₂ into its decimal equivalent.

Solution:

$$\therefore 0110101_2 = 53_{10}$$

Binary → Dec : More Examples

a)
$$0110_2 = ?$$

b)
$$11010_2 = ?$$

c)
$$0110101_2 = ?$$

d)
$$11010011_2 = ?$$

Binary → Dec : More Examples

a)
$$0110_2 = ?$$
 6 ₁₀

b)
$$11010_2 = ?$$
 26 ₁₀

c)
$$0110101_2 = ?$$
 53 ₁₀

d)
$$11010011_2 = ?$$
 211_{10}

Example:

Convert the binary number 0.1101₂ into its decimal equivalent.

Solution:

Just as with integers, we multiply each digit by its place value and add the results. For my example, we'd get:

$$1*.5 = .5$$

 $+1*.25 = .25$
 $+0*.125 = .0$
 $+1*.0625 = .0625$

$$0.1101_2 = 0.8125_{10}$$

Example:

Convert the binary number 0.0001₂ into its decimal equivalent.

Example:

Convert the binary number 0.0001₂ into its decimal equivalent.

$$0 * .5 = 0$$

$$0 * .25 = 0$$

$$0 * .125 = 0$$

$$1 * .0625 = .0625$$

$$0.0001_2 = 0.0625_{10}$$

Range of Numbers

n = no. of bits

No. of positions = 2^n

Maximum no. $=2^{n}-1$

With 8 bits no. of positions = $2^8 = 256$

With 8 bits maximum no. $= 2^8-1 = 255$

ex: 1 1 1 1 1 1 1 1

$$128+64+32+16+8+4+2+1=255$$

Range of Numbers

How many bits do we need to write $(512)_{10}$ in binary?

Range of Numbers

How many bits do we need to write $(512)_{10}$ in binary?

We need 10 bits to write $(512)_{10}$ in binary

```
2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 1 0 0 0 0 0 0 0 0
```

How can you tell only looking at a binary number that it is odd or even?

How can you tell only looking at a binary number it is odd or even?

If the LSB is 0 the number is even otherwise it's odd

MSB &LSB

Example:

Convert the binary number 0.0001₂ into its decimal equivalent.

Solution:

Just as with integers, we multiply each digit by its place value and add the results. For my example, we'd get:

$$0*.5 = .0$$

 $+0*.25 = .0$
 $+0*.125 = .0$
 $+1*.0625 = .0625$

$$0.0001_2 = 0.0625_{10}$$

Decimal -to- Binary Conversion

The Process: Successive Division

- a) Divide the *Decimal Number* by 2; the remainder is the LSB of *Binary Number*.
- b) If the quotient is zero, the conversion is complete; else repeat step (a) using the quotient as the Decimal Number. The new remainder is the next most significant bit of the *Binary Number*.

Example:

Convert the decimal number 6₁₀ into its binary equivalent.

$$2)6$$
 r = 0 ← Least Significant Bit
 $2)3$ r = 1 ∴ $6_{10} = 110_2$
 $2)1$ r = 1 ← Most Significant Bit

Example:

Convert the decimal number 26₁₀ into its binary equivalent.

Example:

Convert the decimal number 26₁₀ into its binary equivalent.

Solution:

$$\therefore 26_{10} = 11010_2$$

Example:

Convert the decimal number 41₁₀ into its binary equivalent.

Example:

Convert the decimal number 41₁₀ into its binary equivalent.

Solution:

$$2)$$
 41 $r=1 \leftarrow LSB$

$$\frac{10}{2 \cdot 20}$$
 $r = 0$

$$\frac{5}{2 \cdot 10}$$
 $r = 0$

$$\frac{2}{2)5}$$
 r=1

$$\frac{1}{2}$$
 $r = 0$

$$2) 1$$
 $r = 1 \leftarrow MSB$

$$\therefore$$
 41₁₀ = 101001₂

Dec → Binary : More Examples

a)
$$13_{10} = ?$$

b)
$$22_{10} = ?$$

c)
$$43_{10} = ?$$

d)
$$158_{10} = ?$$

Dec → Binary : More Examples

a)
$$13_{10} = ?$$
 1 1 0 1 2

b)
$$22_{10} = ?$$
 1 0 1 1 0 $_2$

c)
$$43_{10} = ?$$
 1 0 1 0 1 1 2

d)
$$158_{10} = ?$$
 10011110_2

Dec → Binary : Fraction Examples

Example:

Convert the decimal number (0.6875)₁₀ into its binary equivalent.

	Integer		Fraction	
$0.6875 \times 2 =$	1	+	0.3750	
$0.3750 \times 2 =$	0	+	0.7500	
$0.7500 \times 2 =$	1	+	0.5000	
$0.5000 \times 2 =$	1	+	0.0000	

 $(0.6875)_{10} = (0.1011)_2.$

Octal and Hexadecimal Numbers

Octal Number

- ► Base or radix 8.
- ▶ 1 octal digit is equivalent to 3 bits.
- ➤ Octal numbers are 0 to 7.
- ► Numbers are expressed as powers of 8.

Octal Number

Decimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17

Binary-Octal

Step 1: Group the binary digits by threes, separate them by space

 110011001100_2 becomes $110 \ 011 \ 001 \ 100_2$

 11110000_2 becomes $11 110 000_2$

Step 2: Add zeros to the left (most significant digits) to make all numbers 3 bit numbers:

11 110 000₂ becomes 011 110 000₂

Step 3: Now convert each three bit number into a octal number: 0..7

110 011 001 100₂ becomes 6314₈

 $011 \ 110 \ 000_2$ becomes 360_8

Binary -> Octal	Octal -> Binary
01101001=	264 ₈ =
10101010=	701 ₈ =
11000011=	076 ₈ =
10100101=	567 ₈ =

Binary -> Octal	Octal -> Binary
01101001= 001 101 001 = 151	264 ₈ = 010 110 100
10101010= 010 101 010) = 252	701 ₈ = 111 000 001
11000011= 011 000 011 = 303	076 ₈ = 000 111 110
10100101= 010 100 101= 245	567 ₈ = 101 110 111

Hexadecimal Number

- Base or radix 16 number system.
- \gt 1 hex digit is equivalent to 4 bits. $2^4 = 16$
- Numbers are 0,1,2.....8,9, A, B, C, D, E, F.
- > B is 11, E is 14
- Numbers are expressed as powers of 16.

Hexadecimal Number

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	A
11	В
12	C
13	D
14	E
15	F

Signed Number

Sign-Magnitude Notation

The simplest form of representation that employs a sign bit, the leftmost significant bit. For an N-bit word, the rightmost N-1 bits hold the magnitude of the integer. Thus,

- ❖ 00010010 = +18
- **❖** 10010010 = -18

2's Complement Notation

Method:

Step1: Form the regular binary representation

to the required number of bits.

Ste2: Invert it.

Step3: Add a 1.

Ex1: We need to write -10 with 8 bits

Step1: First write +10 with 8 bits: 0 0 0 0 1 0 10

Step2: Invert it: 1 1 1 1 0 1 0 1

Step3: Add a 1: 1 1 1 1 0 1 0 1

Gray Code

- Gray coding is used for its speed & freedom from errors.
- In BCD or 8421 BCD when counting from 7 (0111) to 8 (1000) requires 4 bits to be changed simultaneously.
- If this does not happen then various numbers could be momentarily generated during the transition so creating spurious numbers which could be read.
- Gray coding avoids this since only one bit changes between subsequent numbers. Two simple rules.
 - 1. Start with all 0s.
 - 2. Proceed by changing the least significant bit (lsb) which will bring about a new state.

Gray Code Continued

-		\sim	-	ıal
				141
	•	•		

0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
0	1111
11	1110
2	1010
3	1011

1001

ASCII Code

- * ASCII: American Standard Code for Information Interchange
- The standard ASCII code defines 128 character codes (from 0 to 127), of which, the first 32 are control codes (non-printable), and the other 96 are representable characters.
- In addition to the 128 standard ASCII codes there are other 128 that are known as extended ASCII, and that are platformdependent.

Table 1.7 *American Standard Code for Information Interchange (ASCII)*

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	\mathbf{C}	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	4	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	O	DEL

Decode the following ASCII code: 1010011 1110100 1100101 1110110 1100101 0100000 1001010 1101111 1100010 1110011.

Decode the following ASCII code: 1010011 1110100 1100101 1110110 1100101 0100000 1001010 1101111 1100010 1110011.

Steve Jobs

