2.20

$x \equiv \dots$	$\mod 5$	0	1	2	3	4
$x^2 \equiv \dots$	$\mod 5$	0	1	4	4	1

On remarque notamment que si le carré d'un nombre est divisible par 5, alors ce nombre est lui-même divisible par 5:

$$x^2 \equiv 0 \mod 5 \implies x \equiv 0 \mod 5$$
.

Soient x, y et z trois entiers tels que $x^2 + y^2 = z^2$.

Puisque l'on doit avoir $x^2 + y^2 \equiv z^2 \mod 5$ et que les seules valeurs possibles (modulo 5) pour x^2 , y^2 et z^2 sont 0, 1 et 4, on recense les possibilités suivantes :

x^2	+	y^2	≡	z^2
0	+	0	\equiv	0
0	+	1	\equiv	1
0	+	4	≡	4
1	+	0		1
1	+	4	=	0
4	+	0		4
4	+	1	=	0

Comme $z^2 \not\equiv 2 \mod 5$ et $z^2 \not\equiv 3 \mod 5$, on a dû écarter les possibilités

x^2	+	y^2	\equiv	$x^2 + y^2$
1	+	1	=	2
4	+	4	=	3

On constate que dans les seules combinaisons possibles, il apparaı̂t toujours $x^2 \equiv 0 \mod 5$ ou $y^2 \equiv 0 \mod 5$ ou $z^2 \equiv 0 \mod 5$.

En d'autres termes, l'un au moins des nombres x^2 , y^2 ou z^2 est divisible par 5. La remarque liminaire implique finalement que l'un des nombres x, y ou z doit être divisible par 5.