Nanyang Technological University School of Electrical & Electronic Engineering E2002 Analog Electronics – Tutorial 8

1. The DC operating point of the common-drain amplifier in Figure 1 has been calculated in Question 2 of Tutorial 7 to be $I_D = 1.87 \ mA$ and $V_{DS} = 9.39 \ V$. The *n*-MOS transistor M_1 has $K_n = 1 \ \text{mA/V}^2$, $V_{TN} = 1 \ \text{V}$ and $\lambda = 0.02 \ \text{V}^{-1}$. Assume that the capacitors have infinite value, $R_I = 100 \ \Omega$, $R_1 = 1.2 \ \text{M}\Omega$, $R_2 = 910 \ \text{k}\Omega$, $R_S = 3 \ \text{k}\Omega$, $R_L = 250 \ \Omega$ and $V_{DD} = 15 \ \text{V}$, calculate the voltage gain, input resistance and output resistance of the amplifier.

(Ans: $A_v = 0.31$, $R_{in} = 517.54 \text{ k}\Omega$, $R_{out} = 434.6 \Omega$)

What is the maximum input signal amplitude for small signal operation? (Ans: 556.52 mV)

Figure 1

2. What are the voltage gain, input resistance and output resistance for the amplifier in Figure 2. if $R_I = 250\Omega$, $R_S = 68 \text{ k}\Omega$, $R_L = 200 \text{ k}\Omega$, $R_D = 43 \text{ k}\Omega$ and $V_{DD} = V_{SS} = 15 \text{ V}$? What is the maximum input signal for the amplifier that satisfies the small-signal limit? Use $K_P = 200 \text{ }\mu\text{A/V}^2$ and $V_{TP} = -1\text{V}$ for your calculation.

(Ans: $A_v = 8.98$, $R_{in} = 3.47 \text{ k}\Omega$, $R_{out} = 43 \text{ k}\Omega$, $v_i \le 0.292 \text{ V}$)

Figure 2

- 3. The gate resistor R_G in Figure 3 is said to be "bootstrapped" by the action of the source follower.
 - a. Assume that the MOSFET is operating with $g_m = 3.54$ mS and r_o can be neglected. Draw the small signal model and find the voltage gain, input resistance and output resistance for the amplifier if $R_G = 1$ M Ω , $R_S = 2$ k Ω , $R_L = 100$ k Ω and $V_{DD} = V_{SS} = 10$ V.

(Ans: $A_v = 0.874$, $R_{in} = 7.94$ M Ω , $R_{out} = 247$ Ω)

b. What would R_{in} be if A_{ν} were exactly +1? (Ans: ∞)

Figure 3