Light Curve Analysis of a young Type II-L Supernova KSP-ZN7090 from the KMTNet Supernova Program

ESC499 Oral Presentation

Matthew Leung

Supervisor: Prof. Dae-Sik Moon

March 29, 2022

Introduction – Research Gap

- Massive stars ($\gtrsim 8 M_{\odot}$) can explode as core-collapse SNe (CCSNe)
- CCSNe explosion mechanism is still not fully understood due to lacking early observational data
 - E.g. Neutrino mechanism (the leading theory) fails for Type II-L SNe
- Type II-L SNe are rare (< 6%-10% of all CCSNe), and their early behaviour is "largely uncharted territory"

Introduction – Where KSP-ZN7090 fits in

- KSP-ZN7090
 - First detected by KMTNet on **2020-10-12 14:44 UTC** at location (R.A., decl.) = (21^h31^m3.05^s, -53°55′49.91″) (J2000)
 - Young Type II-L SN discovered within ~1 day of explosion
 - Multi-band (BVI) observations from KMTNet

Introduction – Goals

- Provide information on how KSP-ZN7090 evolves
 - Construct light curve
- Estimate key parameters of KSP-ZN7090
 - Temporal parameters: Epoch of first light, peak epoch, etc.
 - Physical parameters: Nickel-56 mass, ejecta mass, ejecta kinetic energy
- End goal: Add another SN to the limited sample of Type II-L SNe

Light Curve Construction

- 1) Image subtraction
- 2) PSF Photometry
- 3) Discarding Bad Quality Images
- 4) Light Curve Binning and Image Stacking
- 5) Colour Correction
- 6) Interstellar Extinction Correction

Light Curve Construction

- 1) Image subtraction
- 2) PSF Photometry
- 3) Discarding Bad Quality Images
- 4) Light Curve Binning and Image Stacking
- 5) Colour Correction
- 6) Interstellar Extinction Correction

Subtract out background objects

Fit PSFs to objects to find their fluxes

Discard bad images

Light Curve – Binning and Stacking

- Data 9 days after first detection was binned with a 24 hour rolling window, using inverse-variance weighting
 - Reduced spread in data

Light Curve – Binning and Stacking

- Early data up to 2 days after first detection were stacked
 - Allowed for deeper images
 - Constrained the first light time of SN

Light Curve – Colour and Extinction Corrections

- Colour correction: KMTNet uses non-standard filters → B band required correction
- Extinction correction: Correct for loss in light due to interstellar material between SN and Earth

Final Light Curve

Some observations:

- Fast rise and relatively fast decline
- Clear linear decline post peak, without plateau → likely not II-P
- V band declines by > 0.5 mag in first 50 days after explosion → it's II-L (Faran 2014)

For more details, see: Faran, T., Poznanski, D., Filippenko, A. V., et al. 2014, Monthly Notices of the Royal Astronomical Society, 445, 554, doi: 10.1093/mnras/stu1760

KSP-ZN7090's Host Galaxy

- At (R.A., decl.) = $(21^h31^m2.86^s, -53^\circ55'50.75'')$ (J2000)
 - Cf. SN is at (R.A., decl.) = $(21^h31^m3.05^s, -53^\circ55'49.91'')$; ~3" positional difference

Wide field view around KSP-ZN7090

KSP-ZN7090's host galaxy marked in green

Magnitude of KSP-ZN7090's host galaxy

Band	Apparent Magnitude	Limiting Magnitude
В	22.165 ± 0.276	21.846
V	22.943 ± 0.283	22.771
1	21.773 ± 0.112	22.569

KSP-ZN7090's Host Galaxy

- Fitted a binary star model to nearby bright object and subtracted it out
- In subtracted image, found centroid of region containing host galaxy

Note: The numbers on the axes (excluding the colour bar) represent pixel positions and not actual WCS coordinates

Temporal Parameters – Peak Fitting

- Used Monte Carlo simulations to fit 7th degree polynomial to light curve
- The B, V, and I bands peak at 5.61 ± 0.19, 7.79 ± 0.25, and 10.96 ± 0.35 days respectively

Temporal Parameters – Power Law Fitting

- Simultaneously fitted single power law to 3 bands to find epoch of first light t_0
- Epoch of first light is 0.191 ± 0.126 days before first detection

Single power law:

$$f_{\lambda}(t) = \begin{cases} 0 & \text{if } t < t_0 \\ C_{\lambda}(t - t_0)^n & \text{if } t \ge t_0 \end{cases}$$

Relevant fitted parameters:

$$t_0 = -0.191 \pm 0.126$$
$$n = 0.285 + 0.068$$

Goodness of fit:

$$\chi^2/\text{dof} = 0.986$$

Bolometric Light Curve

- Required in order to fit models to find physical parameters
- Two methods commonly used:
 - Blackbody Fitting
 - Bolometric Corrections

Bolometric Light Curve – Blackbody Fitting

- At each epoch, fitted a blackbody function to BVI data points
- From the fitted temperature value and proportionality constant, obtained bolometric luminosity as a function of time

Fit function for each epoch (fit parameters are *T* and *A*):

$$f_{\lambda} = AB_{\lambda}(T) = \frac{2Ahc^2/\lambda^5}{\exp\left[hc/(\lambda k_B T)\right] - 1}$$

Bolometric luminosity calculation:

$$L_{\text{bol}} = 4\pi r^2 F_{\text{bol}} = \frac{8Ahc^2 \pi^5 r^2}{15(hc/(k_B T))^4}$$

r is the luminosity distance to SN

Bolometric Light Curve – Blackbody Fitting

- Results had high uncertainty because blackbody was not well constrained
 - Blackbody peak is not always constrained
- Usually, this method is effective if there are observations in more bands

- Added a correction term (polynomial function of colour) to a certain band to obtain bolometric light curve
 - $m_{\text{bol}} = m_B + BC_B = m_B + \sum_{k=0}^{n} c_k (m_B m_V)^k$
 - Coefficients for the polynomial are given in the literature

Bolometric Light Curve

- Clear linear decline
- Not at nebular phase yet
 - Some models not usable

- Modified version of Arnett (1982) model originally for Type Ia SNe without hydrogen recombination phase
- Model shown below (fit parameters are in red):

$$L(t) = M_{\text{Ni}} \exp\left(-\left[\frac{t}{\tau_m}\right]^2\right) \times \left[\left(\epsilon_{\text{Ni}} - \epsilon_{\text{Co}}\right) \int_0^{t/\tau_m} 2z \exp(-2zy + z^2) dz + \epsilon_{\text{Co}} \int_0^{t/\tau_m} 2z \exp(-2zy + 2z^2) dz\right]$$

$$y \equiv \tau_m/(2\tau_{Ni})$$
 $s \equiv \tau_m(\tau_{Co} - \tau_{Ni})/(2\tau_{Co}\tau_{Ni})$

$$\tau_m = \left(\frac{\kappa_{\text{opt}}}{\beta c}\right)^{\frac{1}{2}} \left(\frac{10 M_{\text{ej}}^3}{3 E_{\text{k}}}\right)^{\frac{1}{4}} \qquad E_{\text{k}} = \frac{3 M_{\text{ej}} v_{\text{ph}}^2}{10}$$

Note: Arnett (1982) and Valenti et al. (2008) both have incorrect equations for ejecta kinetic energy and ejecta mass. The correct equation can be found in Toy et al. (2016)

References:

Arnett W. D., 1982, ApJ, 253, 785, doi: 10.1086/159681

Toy, V. L., Cenko, S. B., Silverman, J. M., et al. 2016, The Astrophysical Journal, 818, 79, doi: 10.3847/0004-637x/818/1/79

Valenti, S., Benetti, S., Cappellaro, E., et al. 2008, Monthly Notices of the Royal Astronomical Society, 383, 1485, doi: 10.1111/j.1365-2966.2007.12647.x

- Assumptions: $v_{\rm ph}=10000$ km/s, constant opacity $\kappa=0.34$ cm²/g due to Thompson scattering
- Results: $M_{\rm Ni} = (0.382 \pm 0.041) \, M_{\odot}, \, \tau_m = 3.368 \pm 0.854 \, {\rm days}, \, t_{SBO} = 2.049 \pm 0.521 \, {\rm days}$ before first detection
- Fit to first 4 days after first detection

- Results are inconsistent with other Type II-L SNe
- This model may not be too applicable
 - Originally for Type Ia/Ic SNe
 - Assumes light curve rise is mainly due to energy from radioactive decay
 - Does not capture light curve rise well for longer fit intervals

Comparison of Results

	SN KSP-ZN7090	SN 2013ej	SN 2013hj	SN 2014G	SN 2017ahn
Туре	II-L	II-L	II-L	II-L	II
$M_{ m Ni} \ [\times M_{\odot}]$	0.382 ± 0.041	0.020 ± 0.002	0.08 ± 0.01	0.059 ± 0.003	0.041 ± 0.006
$M_{\rm ej}~[\timesM_{\odot}]$	0.016 ± 0.008	12	9.6	4.8	12.52
$E_{\rm k}$ [× 10^{51} erg]	0.009 ± 0.005	2.3 *	2 *	2.0	1.35

^{*} total energy (kinetic + thermal)

Next Steps

- Fast rise and incompatibility of Valenti et al. (2008) model suggests that light curve rise could be due to shock-heated cooling
- Try analytic models such as Nakar & Sari (2010) and Rabinak & Waxman (2011)
 - These models have been widely used in the literature for Type II SNe with good results

References:

Conclusion

- Constructed BVI light curves
- Estimated temporal parameters
 - Epoch of first light
 - Peak epoch
- Created bolometric light curve
- Roughly estimated physical parameters
 - Likely that light curve rise is not only due to radioactive decay

Conclusion

- Constructed BVI light curves
- Estimated temporal parameters
 - Epoch of first light
 - Peak epoch
- Created bolometric light curve
- Roughly estimated physical parameters
 - Concluded that light curve rise is probably not only due to radioactive decay
- Added another SN to the limited sample of Type II-L SNe

Thank you!

Backup Slides

Additional Content for Q&A

CCSNe Explosion Mechanism Overview

- Once a massive star's iron core is above Chandrasekhar mass, nuclei would undergo photodisintegration → core begins collapsing rapidly in runaway process
- Inner core collapses until it's limited by repulsive strong nuclear force, which rebounds the falling inner core and sends a shock wave outwards
- This shock wave will soon crash supersonically into outer material which is still falling, leading to a stall (accretion shock)
- Some mechanism allows the shock wave to continue moving outwards, overcoming the stall, and allowing us to ultimately observe the SN

Image Credit: R.J. Hall

The "Supernova Problem"

- How can the stalled shock wave continue moving outwards and ultimately provide observable characteristics? (Couch 2017)
- Leading solution: Neutrino mechanism (Colgate & White 1966)
 - Most of energy set free by gravitational core collapse is radiated by neutrinos
 - Neutrino energy deposited in material behind shock front allows it to continue outwards
 - Problems: "Uncertain and controversial" (Janka et al. 2007); has not been fully verified with simulations and real observational data; fails for some SNe types like Type II-L SNe (Sukhbold et al. 2016)

Additional Info:

Colgate, S. A., & White, R. H. 1966, The Astrophysical Journal, 143, 626, doi: 10.1086/148549

Couch, S. M. 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20160271, doi: 10.1098/rsta.2016.0271

Janka, H.-T., Langanke, K., Marek, A., Martinez-Pinedo, G., & Muller, B. 2007, Physics Reports, 442, 38, doi: https://doi.org/10.1016/j.physrep.2007.02.002 Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H.-T. 2016, The Astrophysical Journal, 821, 38, doi: 10.3847/0004-637x/821/1/38 Ugliano, M., Janka, H.-T., Marek, A., & Arcones, A. 2012, The Astrophysical Journal, 757, 69, doi: 10.1088/0004-637x/757/1/69

KSP-ZN7090 Images at Key Epochs

(a) B band last non-detection

(b) B band first detection

(c) B band peak brightness

Light Curve – Image Subtraction

- Sources nearby KSP-ZN7090 → need to do image subtraction
 - Light from other objects can spill over to SN
- Image subtraction done with HOTPANTS

Light Curve – Discard Bad Images

- Sky Conditions
 - Bad seeing (Average FWHM ≥ 4")
 - Low limiting magnitude ($m_{\rm lim} \lesssim 20.5$) \leftarrow
- Detector issues and image artifacts
 - Streaks
 - Bad pixels
 - Random gradients

Light Curve – Binning and Stacking

- Early data up to 2 days after first detection were **stacked** using SWarp, with a COMBINE TYPE flag of AVERAGE
- Data 9 days after first detection was binned with a 24 hour rolling window, using inverse-variance weighting

Inverse-variance weighting:

$$m_{\text{avg}} = \frac{\sum_{i} (m_i / [\delta m_i]^2)}{\sum_{i} (1 / [\delta m_i]^2)}$$

$$\delta m_{\text{avg}} = \sqrt{\frac{1}{\sum_{i} (1/[\delta m_i]^2)}}$$

KSP-ZN7090's Host Galaxy

- Fitted binary star model to nearby object, and subtracted it out
- Calculated centroid in cropped region of subtracted image

Note: The numbers on the axes (excluding the colour bar) represent pixel positions and not actual WCS coordinates

KSP-ZN7090's Host Galaxy

- Why use a binary star?
 - Reason: When it was assumed that the nearby object was a single star (e.g. assuming that the object was a Gaussian PSF), the subtraction did not work well

Note: The numbers on the axes (excluding the colour bar) represent pixel positions and not actual WCS coordinates

Bolometric Light Curve – Blackbody Fitting

- Both the T and A fit parameters had high uncertainty
- Blackbody function fit unreliable in UV regime

- Tried BCs from 2 papers in the literature: Martinez et al. (2021) and Lyman et al. (2013)
- Martinez BC is better suited for Type II-P SNe; consists of 3 phases: cooling, plateau, and nebular
 - BC polynomials are much steeper and lead to higher uncertainties when outside the suggested fit range
 - Plateau phase and nebular phase are not applicable to KSP-ZN7090
- Lyman BC has 2 phases: cooling, and radiatively-/radioactively-powered
 - Radiatively-/radioactively-powered phase was ultimately used, with the assumption that the light curve's rise is mainly caused by energy released by radioactive decay
- See next slide

References:

Bolometric corrections as a polynomial function of colour:

 Bolometric light curves following methods in Martinez et al. (2021) and Lyman et al. (2013):

Bolometric light curve using bolometric correction term from Lyman et al. (2013), radiatively-/radioactively-powered phase

 Comparison between cooling and radiatively-/radioactively-powered phase for Lyman et al. (2013):

Bolometric light curve using bolometric correction term from Lyman et al. (2013), radiatively-/radioactively-powered phase

- Fit fails to capture rise of light curve well
- Note that Type Ic SNe usually peak at longer times (e.g. ~20 days)

