Cálculo Diferencial e Integral II

Vinicius de Oliveira Rodrigues 5 de setembro de 2025

Sumário

1	Introdução	1
	1.1 Os espaços \mathbb{R}^n	1
	1.2 Operações em \mathbb{R}^n	
	1.3 Distância em \mathbb{R}^n	
2	Limites e Continuidade	ç
	2.1 Continuidade em \mathbb{R}^n	Ç
	2.2 Continuidade via funções coordenadas	Ç
	2.3 Pontos de acumulação e limites	
3	Curvas deriváveis	13
	3.1 Conjuntos abertos em \mathbb{R}^n	13
	3.2 Curvas e diferenciabilidade de curvas	
4	Limites e Continuidade de funções de várias variáveis	17
	4.1 Regras básicas de Continuidade em \mathbb{R}^n	17
	4.2. O Teorema do Confronto	

ii $SUM\acute{A}RIO$

Capítulo 1

Introdução

Neste capítulo, introduziremos de forma sucinta algumas noções sobre os espaços \mathbb{R}^n .

1.1 Os espaços \mathbb{R}^n

Uma forma usual de visualizar o conjunto $\mathbb R$ dos números reais é pensar neste como o conjunto dos pontos de uma reta.

Figura 1.1: A reta real.

Lembremos que \mathbb{R}^2 é o conjunto de todos os pares ordenados (x,y), onde $x,y\in\mathbb{R}$. Em símbolos:

$$\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}.$$

Em analogia à representação de $\mathbb R$ como uma reta, podemos visualizar $\mathbb R^2$ como o conjunto dos pontos de um plano Cartesiano.

Figura 1.2: O plano Cartesiano.

Por sua vez, o conjunto de todas as triplas ordenadas de números reais é denotado por \mathbb{R}^3 . Em símbolos:

$$\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}.$$

Seguindo o padrão já comentado, podemos visualizar \mathbb{R}^3 como o conjunto dos pontos do espaço tridimensional

Figura 1.3: O espaço tridimensional.

No geral, para $n \geq 4$, o conjunto \mathbb{R}^n é definido como o conjunto de todas as n-tuplas ordenadas de números reais:

$$\mathbb{R}^n = \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}.$$

Tal conjunto não possui uma representação gráfica simples a estilo dos anteriores. Porém, a teoria desenvolvida para \mathbb{R}^n é uma extensão natural da teoria desenvolvida para \mathbb{R} e \mathbb{R}^2 , e possui amplas aplicações práticas e teóricas.

Elementos de \mathbb{R}^n serão frequentemente chamados de *pontos* ou *vetores*. Portanto, neste texto, pontos e vetores serão os mesmos objetos matemáticos, e tais palavras podem ser usadas indistintamente. A palavra *ponto* será usualmente utilizada em situações em que se faz referência a posições no espaço, enquanto a palavra *vetor* é mais utilizada em situações em que pensamos na direção, sentido e comprimento determinados pelo ponto com relação à origem $0 = (0, \dots, 0)$.

1.2 Operações em \mathbb{R}^n

Algumas operações importantes em \mathbb{R}^n incluem soma, produto escalar, produto por escalar e normas. Nesta seção, revisaremos tais operações.

Definição 1.2.1. Sejam $p=(x_1,\ldots,x_n)$ e $q=(y_1,\ldots,y_n)$ dois elementos de \mathbb{R}^n , e $\alpha\in\mathbb{R}$ um número real. A soma p+q é definida como:

$$p+q=(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

A multiplicação por escalar αp é definida como:

$$\alpha p = \alpha(x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n).$$

O produto escalar $p \cdot q$ é definido como:

$$p \cdot q = (x_1, \dots, x_n) \cdot (y_1, \dots, y_n) = x_1 y_1 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

A norma de p é definida como:

$$||p|| = \sqrt{p \cdot p} = \sqrt{x_1^2 + \ldots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}.$$

Vamos lembrar de importantes interpretações geométricas destas operações.

A soma dos vetores v = (3, 2) e w = (-1, 1) pode ser visualizada como o vetor com início da origem e fim no ponto obtido posicionando-se o vetor w com início no ponto final do vetor v, conforme ilustrado abaixo.

Figura 1.4: Soma de vetores em \mathbb{R}^2 .

O produto escalar de v=(1,2) por 2 e por -2 correspondem a, respectivamente, multiplicar o comprimento do vetor v pelo fator 2, mantendo a direção e sentido, e invertendo o sentido.

Figura 1.5: Produto por escalar em \mathbb{R}^2 .

A norma de um vetor $v=(x_1,\ldots,x_n)$ é o comprimento do vetor que parte da origem até o ponto (x_1,\ldots,x_n) utilizando-se a métrica usual (Euclidiana) em \mathbb{R}^n . Vendo v como um ponto no espaço, sua norma denota a distância de p até a origem.

Quanto ao produto escalar, algumas propriedades importantes são as seguintes.

Proposição 1.2.2. $p,q,r \in \mathbb{R}^n$ e $\alpha \in \mathbb{R}$. Então:

- 1. $p \cdot q = q \cdot p$ (comutatividade);
- 2. $(p+q) \cdot r = p \cdot r + q \cdot r$ (distributividade);

3. $(\alpha p) \cdot q = \alpha(p \cdot q)$ (associatividade com escalares);

4.
$$p \cdot p = ||p||^2$$
.

Demonstração. Escrevamos as coordenadas de p,q,r como $p=(x_1,\ldots,x_n),\ q=(y_1,\ldots,y_n)$ e $r=(z_1,\ldots,z_n).$

Para a comutatividade, temos:

$$p \cdot q = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = q \cdot p.$$

Para a distributividade, temos:

$$(p+q) \cdot r = \sum_{i=1}^{n} (x_i + y_i) z_i$$
$$= \sum_{i=1}^{n} x_i z_i + \sum_{i=1}^{n} y_i z_i$$
$$= p \cdot r + q \cdot r.$$

Quanto a associatividade com escalares, temos:

$$(\alpha p) \cdot q = \sum_{i=1}^{n} (\alpha x_i) y_i = \alpha \sum_{i=1}^{n} x_i y_i = \alpha (p \cdot q).$$

Finalmente, temos:

$$p \cdot p = \sum_{i=1}^{n} x_i y_i = ||p||^2.$$

Algumas propriedades da norma são as seguintes.

Proposição 1.2.3. Sejam $v, w \in \mathbb{R}^n$ e $\alpha \in \mathbb{R}$. Então:

- (i) ||v|| = 0 se, e somente se, v = 0;
- (ii) $\|\alpha v\| = |\alpha| \|v\|$;
- (iii) $|v \cdot w| \le ||v|| ||w||$ (designaldade de Cauchy-Schwarz);
- (iv) $||v + w|| \le ||v|| + ||w||$ (designaldade triangular).

Demonstração. Vamos verificar cada uma das propriedades. Escreva $v=(x_1,\ldots,x_n)$ e $w=(y_1,\ldots,y_n)$.

- (i) Se v = 0, então $||v|| = \sqrt{0^2 + \ldots + 0^2} = 0$. Reciprocamente, se ||v|| = 0, então $\sqrt{\sum_{i=1}^n x_i^2} = 0$, o que implica que $x_i = 0$ para todo i, ou seja, v = 0.
- (ii) Temos que $\|\alpha v\| = \sqrt{(\alpha x_1)^2 + \ldots + (\alpha x_n)^2} = |\alpha| \sqrt{x_1^2 + \ldots + x_n^2} = |\alpha| \|v\|.$
- (iii) Se w=0, então a expressão desejada é $0 \le 0$, que é verdadeira. Se $w \ne 0$, então, para qualquer que seja o número real t, temos que:

$$0 \le ||v + tw||^2 = (v + tw) \cdot (v + tw)$$
$$= v \cdot v + 2t(v \cdot w) + t^2(w \cdot w)$$
$$= ||v||^2 + 2t(v \cdot w) + t^2||w||^2.$$

Pondo $t = \frac{-v \cdot w}{\|w\|^2}$, temos que:

$$0 \le ||v||^2 - 2\frac{(v \cdot w)^2}{||w||^2} + \frac{(v \cdot w)^2}{||w||^2}$$
$$= ||v||^2 - \frac{(v \cdot w)^2}{||w||^2}$$
$$\iff (v \cdot w)^2 \le ||v||^2 ||w||^2.$$

Assim, temos que $|v \cdot w| \le ||v|| ||w||$.

(iv) A desigualdade triangular segue da desigualdade de Cauchy-Schwarz:

$$||v+w||^2 = (v+w) \cdot (v+w) = ||v||^2 + 2v \cdot w + ||w||^2 \le ||v||^2 + 2||v|| ||w|| + ||w||^2 = (||v|| + ||w||)^2.$$

O produto escalar pode ser utilizado para decidir-se ortogonalidade entre vetores. É fato conhecido que vale a recíproca do Teorema de Pitágoras: se $\triangle BAC$ é um triângulo, então o ângulo $\angle ABC$ é reto se, e somente se, sendo a,b,c respectivamente as medidas dos segmentos $\overline{BC},\overline{AC},\overline{AB}$, temos que $a^2=b^2+c^2$.

Figura 1.6: Triângulo retângulo.

No aspecto vetorial, dados dois vetores $v \in w$, perceba que o vetor v + w = v + (-w) pode ser representado como o segmento que une as extremidades dos vetores $v \in -w$, conforme ilustrado abaixo.

Assim, os vetores $v \in w$ são ortogonais, se, e somente se, $||v - w||^2 = ||v||^2 + ||w||^2$.

Proposição 1.2.4. Sejam $v, w \in \mathbb{R}^n$. Então, v e w são ortogonais se, e somente se, $v \cdot w = 0$.

Demonstração. Notemos que, no geral:

$$||v - w||^2 = (v - w) \cdot (v - w) = v \cdot v - 2v \cdot w + w \cdot w = ||v||^2 - 2v \cdot w + ||w||^2.$$

Assim, temos que:

$$||v - w||^2 = ||v||^2 + ||w||^2$$

$$\iff ||v||^2 - 2v \cdot w + ||w||^2 = ||v||^2 + ||w||^2$$

$$\iff -2v \cdot w = 0$$

$$\iff v \cdot w = 0.$$

1.3 Distância em \mathbb{R}^n

A distância entre dois pontos $p, q \in \mathbb{R}^n$ é dada pela métrica usual (Euclidiana), motivada pelo Teorema de Pitágoras.

Definição 1.3.1. Sejam $p, q \in \mathbb{R}^n$. A distância (usual, também chamada de Euclidiana) entre p e q é definida como:

$$d(p,q) = ||p-q|| = \sqrt{(p-q)\cdot(p-q)} = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}.$$

Algumas propriedades básicas da distância são as seguintes.

Proposição 1.3.2. Sejam $p, q, r \in \mathbb{R}^n$. Então:

- 1. d(p,q) = 0 se, e somente se, p = q.
- 2. d(p,q) = d(q,p) (simetria);
- 3. $d(p,r) \leq d(p,q) + d(q,r)$ (designaldade triangular).

Demonstração. Vamos verificar cada uma das propriedades.

- 1. Dados p e q, temos que d(p,q)=0 se, e somente se, ||p-q||=0, o que ocorre se, e somente se, p-q=0, ou seja, p=q.
- 2. Temos que d(p,q) = ||p-q|| = |-1|||p-q|| = ||q-p|| = d(q,p).
- 3. Temos que:

$$d(p,r) = ||p-r|| = ||p-q+q-r||$$

$$\leq ||p-q|| + ||q-r|| = d(p,q) + d(q,r).$$

A seguir, definiremos generalizações da noção de intervalo aberto de \mathbb{R} , conceitos essenciais para o futuro estudo de limite, continuidade e diferenciabilidade em \mathbb{R}^n .

Definição 1.3.3. Sejam $p \in \mathbb{R}^n$ e r > 0. A bola aberta de centro p e raio r é o conjunto:

$$B(p,r) = \{ q \in \mathbb{R}^n : d(p,q) < r \}.$$

A bola fechada de centro p e raio r é o conjunto:

$$\overline{B}(p,r) = \{ q \in \mathbb{R}^n : d(p,q) \le r \}.$$

Uma bola aberta de raio r centrada em p é ilustrada abaixo.

Figura 1.7: Bola aberta de centro p e raio r em \mathbb{R} .

Figura 1.8: Bola aberta de centro p e raio r em \mathbb{R}^2 .

Capítulo 2

Limites e Continuidade

Neste capítulo, introduziremos as noções gerais de limites e continuidade em \mathbb{R}^n .

2.1 Continuidade em \mathbb{R}^n

Como acontece no caso unidimensional, intuitivamente, uma função f é contínua em um ponto p de seu domínio se, e somente se f(x) fica tão próximo de f(p) quanto se queira, desde que x esteja suficientemente próximo de p.

Formalmente, temos a definição abaixo.

Definição 2.1.1. Seja $A\subseteq \mathbb{R}^n$ um conjunto e $f:A\to \mathbb{R}^m$ uma função.

Seja $a \in A$. Dizemos que f é contínua em a se, para toda bola aberta B em torno de f(p), existe uma bola aberta B' em torno de p tal que $f[B' \cap A] \subseteq B$.

Equivalentemente, f é contínua em p se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que $f[B(p,\delta) \cap A] \subseteq B(f(p),\varepsilon)$.

Ou, ainda, f é contínua em p se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que, para todo $x \in A$, se $d(x,p) < \delta$, então $d(f(x),f(p)) < \varepsilon$.

Dizemos que f é contínua se, e somente se, f é contínua em todo ponto de seu domínio A.

Figura 2.1: Ilustração da continuidade: para toda bola B em torno de f(p), existe uma bola B' em torno de p tal que $f[B'] \subseteq B$.

2.2 Continuidade via funções coordenadas

Se A é qualquer conjunto e $f: A \to \mathbb{R}^m$ é uma função, então para cada $a \in A$, f(a), sendo um elemento de \mathbb{R}^m , é um ponto (y_1, \ldots, y_m) . As coordenadas y_i são denotadas por $f_i(a)$. Assim, $f(a) = (f_1(a), \ldots, f_m(a))$.

Definição 2.2.1. Seja $f: A \to \mathbb{R}^m$ uma função. As funções coordenadas de f são as únicas funções $f_i: A \to \mathbb{R}$ tal que, para todo $a \in A$, temos $f(a) = (f_1(a), \dots, f_m(a))$.

Proposição 2.2.2. Seja $A\subseteq \mathbb{R}^n$ um conjunto e $f:A\to \mathbb{R}^m$ uma função.

Então, f é contínua em $p \in A$ se, e somente se, todas as funções coordenadas f_i são contínuas em p.

Demonstração. Primeiro, suponha que f é contínua em p. Vejamos que cada função coordenada f_i é contínua em p.

Para isso, fixamos um $i \in \{1, ..., m\}$ e consideramos $\epsilon > 0$.

Como f é contínua em p, existe $\delta > 0$ tal que, para todo $x \in A$, se $d(x,p) < \delta$, então $d(f(x),f(p)) < \epsilon$. Veremos que o mesmo δ funciona para f_i . De fato, se $d(x,p) < \delta$, então temos:

$$|f_i(x) - f_i(p)| = \sqrt{(f_i(x) - f_i(p))^2}$$

$$= \sqrt{(f_1(x) - f_1(p))^2 + \dots + (f_m(x) - f_m(p))^2}$$

$$= ||f(x) - f(p)|| = d(f(x), f(p)) < \epsilon.$$

Portanto, f_i é contínua em p.

Reciprocamente, suponha que para todo i, f_i é contínua em p. Fixamos $\epsilon > 0$ e, para cada i, existe $\delta_i > 0$ tal que, se $d(x, p) < \delta_i$, então $|f_i(x) - f_i(p)| < \epsilon$.

Seja $\delta = \min\{\delta_1, \dots, \delta_m\}$. Então, se $d(x, p) < \delta$, temos que:

$$d(f(x), f(p)) = \sqrt{(f_1(x) - f_1(p))^2 + \dots + (f_m(x) - f_m(p))^2}$$

$$< \sqrt{\epsilon^2 + \dots + \epsilon^2} = \sqrt{m}\epsilon.$$

Assim, se de partida, ao invés de ϵ , tomarmos $\delta_1, \ldots, \delta_n$ que funcione para $\epsilon' = \frac{\epsilon}{\sqrt{m}}$, concluiremos que para todo $x \in A$ com $d(x, p) < \delta$, temos que $d(f(x), f(p)) < \epsilon'$.

2.3 Pontos de acumulação e limites

Ao considerar a continuidade de uma função $f: A \to \mathbb{R}^m$, onde $A \subseteq \mathbb{R}^n$, no caso de $p \in A$ ser um ponto "afastado" do restante de A, é intuitivo que ao se considerar x suficientemente próximo de p, a única possibilidade de escolha de x é p, e, portanto, f(x) estará arbitrariamente próximo de f(p), uma vez que teremos f(x) = f(p).

Formalmente, definimos:

Definição 2.3.1. Seja $A \subseteq \mathbb{R}^n$ um conjunto e p um ponto. Dizemos que p é um ponto isolado de A se existe um $\delta > 0$ tal que $B(p, \delta) \cap A = \{p\}$.

Caso isso não ocorra, p é dito um ponto de acumulação de A.

Ainda mais, mesmo que $p \notin A$, se para todo $\delta > 0$ existe $x \in B(p, \delta) \cap A \setminus \{p\}$, dizemos que p é um ponto de acumulação de A.

Proposição 2.3.2. Seja $A \subseteq \mathbb{R}^n$ um conjunto e $f: A \to \mathbb{R}^m$ uma função. Se $p \in A$ é um ponto isolado de A, então f é contínua em p.

Demonstração. Seja $\epsilon > 0$. Como p é um ponto isolado de A, existe um $\delta > 0$ tal que $B(p,\delta) \cap A = \{p\}$. Assim, se $x \in A$ e $d(x,p) < \delta$, temos que x = p. Portanto, $d(f(x),f(p)) = d(f(p),f(p)) = 0 < \epsilon$. Logo, f é contínua em p.

E quanto a pontos não isolados?

Podemos estudar a continuidade deles a partir da noção de limite. Ao discutir a continuidade de uma função f em p, queremos ver que f(x) fica arbitrariamente próximo de f(p) quando x está suficientemente próximo de p. No caso de isso não ocorrer, o que pode ocorrer?

Uma das opções é que f(x) se aproxime de outro valor $L \in \mathbb{R}^m$, com $L \neq f(p)$.

Definição 2.3.3. Seja $A \subseteq \mathbb{R}^n$ um conjunto, $f: A \to \mathbb{R}^m$ uma função e $p \in \mathbb{R}^n$ um ponto de acumulação de A.

Seja $L \in \mathbb{R}^m$.

Dizemos que L é limite de f em p se, para toda bola aberta B em torno de L, existe uma bola aberta B' em torno de p tal que $f[B' \cap A \setminus \{p\}] \subseteq B$.

Equivalentemente, L é limite de f em p se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que $f[B(p,\delta) \cap A \setminus \{p\}] \subseteq B(L,\varepsilon)$.

Ou, ainda, L é limite de f em p se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que, para todo $x \in A \setminus \{p\}$, se $d(x,p) < \delta$, então $d(f(x),L) < \varepsilon$.

Proposição 2.3.4. Seja $A\subseteq\mathbb{R}^n$ um conjunto, $f:A\to\mathbb{R}^m$ uma função e $p\in\mathbb{R}^n$ um ponto de acumulação de A.

Então f possui no máximo um limite em p.

Demonstração. Seja $L_1, L_2 \in \mathbb{R}^m$ limites de f em p.

Suponha por absurdo que $L_1 \neq L_2$. Então $d(L_1, L_2) > 0$.

Seja $R = \frac{d(L_1, L_2)}{2} > 0$. Então, existem $\delta_1, \delta_2 > 0$ tais que, para todo $x \in A \setminus \{p\}$, se $d(x, p) < \delta_1$, então $d(f(x), L_1) < R$ e, se $d(x, p) < \delta_2$, então $d(f(x), L_2) < R$.

Seja $\delta = \min\{\delta_1, \delta_2\}$. Como p é ponto de acumulação de A, existe $x \in B(p, \delta) \cap A \setminus \{p\}$ tal que $x \in A \setminus \{p\}$.

Assim, $d(x, p) < \delta \le \delta_1, \delta_2$, logo:

$$d(f(x), L_1) < R$$

$$d(f(x), L_2) < R.$$

Assim, temos que:

$$d(L_1, L_2) \le d(L_1, f(x)) + d(f(x), L_2)$$

$$< R + R = 2R = d(L_1, L_2),$$

o que é uma contradição. Logo, $L_1 = L_2$.

Definição 2.3.5. Seja $A \subseteq \mathbb{R}^n$ um conjunto, $f: A \to \mathbb{R}^m$ uma função e $p \in A$ um ponto de acumulação de A.

Então, caso exista, o único limite de f em p é denotado por

$$\lim_{x \to p} f(x).$$

Proposição 2.3.6. Seja $A \subseteq \mathbb{R}^n$ um conjunto, $f: A \to \mathbb{R}^m$ uma função e $p \in A$ um ponto de acumulação de A.

Então f é contínua em p se, e somente se, existe $\lim_{x\to p} f(x) = f(p)$.

Demonstração. Se f é contínua em p, então para todo $\epsilon > 0$, existe $\delta > 0$ tal que, para todo $x \in A$, se $d(x,p) < \delta$, então $d(f(x),f(p)) < \epsilon$. Por definição, temos imediatamente que $f(p) = \lim_{x \to p} f(x)$.

Agora, suponha que f(p) é limite de f em p. Então, para todo $\epsilon > 0$, existe $\delta > 0$ tal que, para todo $x \in A \setminus \{p\}$, se $d(x,p) < \delta$, então $d(f(x),f(p)) < \epsilon$.

Resta apenas ver que vale a implicação $d(p,p) < \delta \rightarrow d(f(p),f(p)) < \epsilon$. Ora, essa implicação nos diz que se $0 < \delta$ então $0 < \epsilon$, o que é verdade, uma vez que $0 < \epsilon$.

Proposição 2.3.7. Seja $A \subseteq \mathbb{R}^n$ um conjunto, $f: A \to \mathbb{R}^m$ uma função e $p \in A$ um ponto de acumulação de A.

Seja $L = (L_1, \dots, L_m) \in \mathbb{R}^m$. Então L é limite de f em p, se, e somente se, para todo i entre 1 e m, L_i é limite de f_i em p.

Demonstração. Primeiro, suponha que L é limite de f em p. Vejamos que cada L_i é limite de f_i em p. Para isso, fixamos um $i \in \{1, \ldots, m\}$ e consideramos $\epsilon > 0$.

Como L é limite de f em p, existe $\delta>0$ tal que, para todo $x\in A\setminus\{p\}$, se $d(x,p)<\delta$, então $d(f(x),L)<\epsilon$.

Veremos que o mesmo δ funciona para f_i . De fato, se $d(x,p) < \delta$, então temos:

$$|f_i(x) - L_i| = \sqrt{(f_i(x) - L_i)^2}$$

$$= \sqrt{(f_1(x) - L_1)^2 + \dots + (f_m(x) - L_m)^2}$$

$$= ||f(x) - L|| = d(f(x), L) < \epsilon.$$

Portanto, f_i é limite de f_i em p.

Reciprocamente, suponha que para todo i, L_i é limite de f_i em p. Fixamos $\epsilon > 0$ e, para cada i, existe $\delta_i > 0$ tal que, se $x \in A \setminus \{p\}$ e $d(x,p) < \delta_i$, então $|f_i(x) - L_i| < \epsilon$.

Seja $\delta = \min\{\delta_1, \dots, \delta_m\}$. Então, se $x \in A \setminus \{p\}$ e $d(x, p) < \delta$, temos que:

$$d(f(x), L) = \sqrt{(f_1(x) - L_1)^2 + \dots + (f_m(x) - L_m)^2}$$
$$< \sqrt{\epsilon^2 + \dots + \epsilon^2} = \sqrt{m}\epsilon.$$

Assim, se de partida, ao invés de ϵ , tomarmos δ_1,\ldots,δ_n que funcione para $\epsilon'=\frac{\epsilon}{\sqrt{m}}$, concluiremos que para todo $x\in A\setminus\{p\}$ com $d(x,p)<\delta$, temos que $d(f(x),L)<\epsilon'$.

Capítulo 3

Curvas deriváveis

Curvas (contínuas) são funções contínuas cujo domínio é um intervalo e contradomínio é \mathbb{R}^n . Neste capítulo, discutiremos derivabilidade de curvas e retas tangentes.

3.1 Conjuntos abertos em \mathbb{R}^n

Definição 3.1.1. Um conjunto $U \subseteq \mathbb{R}^n$ é dito aberto se, para todo $x \in U$, existe um raio r > 0 tal que a bola aberta B(x,r) está contida em U.

Proposição 3.1.2. Sobre abertos de \mathbb{R}^n , temos as seguintes propriedades.

- 1. \mathbb{R}^n e o conjunto vazio \emptyset são abertos.
- 2. A união de qualquer coleção de conjuntos abertos é aberta.
- 3. A interseção de dois conjuntos abertos é aberta.
- 4. Bolas abertas são conjuntos abertos.

Demonstração. É imediato que \mathbb{R}^n e \emptyset são abertos.

Se \mathcal{C} é uma coleção de conjuntos abertos, então $\bigcup \mathcal{C} = \bigcup_{U \in \mathcal{C}} U$ é aberto, pois, se $x \in \bigcup \mathcal{C}$, então existe $U \in \mathcal{C}$ tal que $x \in U$. Como U é aberto, existe um raio r > 0 tal que $B(x, r) \subseteq U \subseteq \bigcup \mathcal{C}$.

Se $U, V \subseteq \mathbb{R}^n$ são abertos, então $U \cap V$ é aberto, pois, se $x \in U \cap V$, então $x \in U$ e $x \in V$. Assim, existe um raio $r_1 > 0$ tal que $B(x, r_1) \subseteq U$, e um raio $r_2 > 0$ tal que $B(x, r_2) \subseteq V$. Tomando $r = \min\{r_1, r_2\}$, temos $B(x, r) \subseteq U \cap V$.

Agora verifiquemos que bolas abertas são abertas. Considere uma bola aberta B(p,r), onde $p \in \mathbb{R}^n$ e r > 0. Fixe $q \in B(p,r)$. Devemos ver que existe um raio s > 0 tal que $B(q,s) \subseteq B(p,r)$. Como $q \in B(p,r)$, temos d(q,p) < r. Assim, podemos tomar s = r - d(q,p) > 0. O raio s funciona: de

Figura 3.1: Relação de inclusão entre as bolas abertas.

 $x \in B(q, s)$, temos que d(x, q) < s, e, portanto, $d(x, p) \le d(x, q) + d(q, p) < s + d(q, p) = r$. Assim, $x \in B(p, r)$.

Conjuntos abertos serão importantes ao trabalhar com diferenciabilidade.

3.2 Curvas e diferenciabilidade de curvas

Definição 3.2.1. Uma curva (contínua) em \mathbb{R}^m é uma função contínua $f:I\to\mathbb{R}^m$, onde I é um intervalo de \mathbb{R} .

Definição 3.2.2. Seja $I \subseteq \mathbb{R}$ um conjunto aberto e $f: I \to \mathbb{R}^m$ uma função contínua.

Para $s \in I$, dizemos que f é diferenciável, ou derivável em s se existir o limite a seguir:

$$\lim_{t \to s} \frac{f(s) - f(t)}{s - t} \tag{3.1}$$

Caso f seja diferenciável em s, denotamos tal limite por f'(s), e o chamamos de derivada de f em s. Se f é diferenciável (derivável) em todos os pontos de I, dizemos que f é diferenciável (derivável).

Observação: o limite na equação (3.1) é o limite da função g cujo domínio é $I \setminus \{s\}$ e dada por $g(t) = \frac{f(s) - f(t)}{s}$.

O ponto s é um ponto de acumulação de $I \setminus \{s\}$, pois, se fosse isolado, existiria $\delta > 0$ tal que $B(s,\delta) \cap I \setminus \{s\} = \emptyset$. Ao mesmo tempo, I é aberto, logo, encolhendo δ se necessário, podemos garantir que $B(s,\delta) \subseteq I$. Mas $B(s,\delta)$ possui outros pontos além de s, o que é absurdo.

Proposição 3.2.3. Seja $I \subseteq \mathbb{R}$ um conjunto aberto e $f: I \to \mathbb{R}^m$.

Seja $s \in I$.

Então f é derivável em s se, e somente se, cada função coordenada f_i é derivável em s. Nesse caso, temos que $f'(s) = (f'_1(s), \dots, f'_m(s))$.

Demonstração. Primeiro, suponha que f é derivável em s.

Temos que existe o limite f'(t) de g em s, onde $g(t) = \frac{f(s) - f(t)}{s - t}$.

Temos que a *i*-ésima coordenada de g é dada por $g_i(t) = \frac{f_i(s) - f_i(t)}{s - t}$. Logo, a *i*-ésima coordenada de f'(s) é o limite de g_i em s. Porém, por definição, também é $f'_i(s)$.

Assim, concluímos que $f'(s) = (f'_1(s), \dots, f'_m(s)).$

Reciprocamente, suponha que cada função coordenada f_i é derivável em s.

Temos que, para cada $i, f'_i(s)$ é o limite de g_i em s, e, portanto, existe o limite de g em s, e este é dado por $(f'_1(s), \ldots, f'_m(s))$.

Funções deriváveis possuem o que chamamos de retas tangentes.

Definição 3.2.4. Seja $I \subseteq \mathbb{R}$ um conjunto aberto, $a \in I$ e $f: I \to \mathbb{R}^m$ uma função derivável em a tal que $f'(a) \neq 0$.

A reta tangente à trajetória (ou imagem) de f em a é a reta que passa por f(a) e tem direção dada por f'(a), ou seja, é o conjunto r dado por:

$$\{f(a) + tf'(a) : t \in \mathbb{R}\}.$$

Nesse caso, dizemos que r é uma reta tangente à trajetória de f em a.

Além disso, temos a melhor aproximação linear possível para f em a.

Definição 3.2.5. Seja $I \subseteq \mathbb{R}$ um conjunto aberto, $a \in I$ e $f: I \to \mathbb{R}^m$ uma função derivável em a. A melhor aproximação linear de f em a é a função $T: \mathbb{R} \to \mathbb{R}^m$ dada por:

$$T(t) = f(a) + (t - a)f'(a).$$

Proposição 3.2.6. Seja $I \subseteq \mathbb{R}$ um conjunto aberto, $a \in I$ e $f: I \to \mathbb{R}^m$.

Se f é derivável em a, então a melhor aproximação de f em a, $T : \mathbb{R} \to \mathbb{R}^m$, é a única função afim (ou seja, a única função da forma T(t) = w + tv, onde $w, v \in \mathbb{R}^m$) tal que:

(a)
$$T(a) = f(a)$$
, e

(b)
$$\lim_{t\to a} \frac{f(t)-T(t)}{|t-a|} = 0.$$

Reciprocamente, f admite uma função $T: \mathbb{R} \to \mathbb{R}^n$ afim que satisfaz (a) e (b), então f é derivável em a e T é a melhor aproximação linear de f em a.

Demonstração. Para a primeira parte, primeiro note que T(a) = f(a) + (a-a)f'(a) = f(a). Agora, vejamos que $\lim_{t\to a}\frac{f(t)-T(t)}{|t-a|}=0$. De fato, temos:

$$\lim_{t \to a} \frac{f(t) - T(t)}{|t - a|} = \lim_{t \to a} \frac{f(t) - f(a) - (t - a)f'(a)}{|t - a|}$$

$$= \lim_{t \to a} \frac{f(t) - f(a)}{t - a} - f'(a)$$

$$= 0.$$

pois f'(a) é o limite de $\frac{f(t)-f(a)}{t-a}$ em a. Para o resto da proposição, seja T(t)=w+tv uma função afim que satisfaz (a) e (b). Veremos que f é derivável e que T é a melhor aproximação linear de f em a.

Primeiro, por a, temos que w + av = f(a), ou seja, w = f(a) - av. Assim, T(t) = f(a) + (t - a)v. Por (b), temos que:

$$0 = \lim_{t \to a} \frac{f(t) - T(t)}{|t - a|}$$

$$= \lim_{t \to a} \frac{f(t) - f(a) - (t - a)v}{|t - a|}$$

$$= \lim_{t \to a} \frac{f(t) - f(a)}{t - a} - v.$$

Logo:

$$v = \lim_{t \to a} \frac{f(t) - f(a)}{t - a}$$

e, portanto, f é derivável em a e f'(a) = v. Assim, T é, por definição a melhor aproximação linear de fem a.

Capítulo 4

Limites e Continuidade de funções de várias variáveis

Neste capítulo, introduziremos técnicas referentes a análise da continuidade e cálculo de limites de funções de várias variáveis à valores reais.

4.1 Regras básicas de Continuidade em \mathbb{R}^n

Proposição 4.1.1. Seja $f: \mathbb{R}^n \to R$ uma projeção, ou seja, uma função da forma $f(x_1, \dots, x_n) = x_i$ para algum $i \in \{1, \dots, n\}$. Então f é contínua.

Demonstração. Seja $p = (p_1, \ldots, p_n) \in \mathbb{R}^n$ e $\epsilon > 0$.

Note que, dado qualquer $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, temos que:

$$d(f(x), f(p)) = |x_i - p_i| \le \sqrt{(x_1 - p_1)^2 + \dots + (x_n - p_n)^2} = d(x, p).$$

Assim, se $d(x,p)<\epsilon$, então $d(f(x),f(p))<\epsilon$. Logo, tomando $\delta=\epsilon$, vemos que f é contínua em p.

Proposição 4.1.2. Seja $f: \mathbb{R}^n \to R$ uma função constante, ou seja, uma função da forma $f(x_1, \dots, x_n) = k$ para algum $k \in \mathbb{R}$. Então f é contínua.

Demonstração. Seja $p = (p_1, \ldots, p_n) \in \mathbb{R}^n \in \epsilon > 0$.

Note que, dado qualquer $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, temos que:

$$d(f(x), f(p)) = |k - k| = 0 < \epsilon$$

Assim, escolhendo qualquer $\delta > 0$ (por exemplo, $\delta = 1$), vemos que f é contínua em p.

Lembremos que se $f, g: A \to \mathbb{R}$, podemos definir as funções f+g, f-g, $fg \in \frac{f}{g}$ (desde que $g(x) \neq 0$ para todo $x \in A$) como a seguir.

Definição 4.1.3. Seja $A \subseteq \mathbb{R}^n$ um conjunto e $f,g:A \to \mathbb{R}$ funções. Então, definimos as funções $f+g:A \to \mathbb{R}, \, f-g:A \to \mathbb{R}, \, fg:A \to \mathbb{R}$ e $\frac{f}{g}:B \to \mathbb{R}$, em que $B=\{x\in A:g(x)\neq 0\}$, por:

$$(f+g)(x) = f(x) + g(x)$$
$$(f-g)(x) = f(x) - g(x)$$
$$(fg)(x) = f(x)g(x)$$
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$$

Proposição 4.1.4. Seja $A \subseteq \mathbb{R}^n$ um conjunto e $f,g:A \to \mathbb{R}$ funções. Seja $a \in A$ um ponto de acumulação de A.

Sejam $L, S \in \mathbb{R}$ tais que $\lim_{x \to a} f(x) = L$ e $\lim_{x \to a} g(x) = S$. Então:

- (a) $\lim_{x\to a} (f+g)(x) = L + S;$
- (b) $\lim_{x\to a} (fg)(x) = LS;$
- (c) $\lim_{x\to a} (f-g)(x) = L S$.

Demonstração. Provaremos primeiro o item (a). Seja dado $\epsilon > 0$.

Como $\lim_{x\to a} f(x) = L$, existe $\delta_f > 0$ tal que, para todo $x \in A \setminus \{a\}$, se $d(x,a) < \delta_f$, então $|f(x) - L| < \frac{\epsilon}{2}$.

Analogamente, como $\lim_{x\to a} g(x) = S$, existe $\delta_g > 0$ tal que, para todo $x \in A \setminus \{a\}$, se $d(x,a) < \delta_g$, então $|g(x) - S| < \frac{\epsilon}{2}$.

Seja $\delta = \min\{\delta_f, \delta_q\}$ Agora, dado $x \in A \setminus \{a\}$ tal que $d(x, a) < \delta$, temos que:

$$\begin{split} |(f+g)(x) - (L+S)| &= |f(x) + g(x) - L - S| \\ &= |(f(x) - L) + (g(x) - S)| \\ &\leq |f(x) - L| + |g(x) - S| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Logo, $\lim_{x\to a} (f+g)(x) = L+S$.

Agora, provaremos o item (b). Seja dado $\epsilon > 0$. Fixe um número positivo M qualquer. Como $\lim_{x\to a} f(x) = L$, existe $\delta_f > 0$ tal que, para todo $x \in A \setminus \{a\}$, se $d(x,a) < \delta_f$, então |f(x) - L| < M.

Analogamente, como $\lim_{x\to a} g(x) = S$, existe $\delta_g > 0$ tal que, para todo $x \in A \setminus \{a\}$, se $d(x,a) < \delta_g$, então |g(x) - S| < M.

Seja $\delta = \min\{\delta_f, \delta_g\}$

Agora, dado $x \in A \setminus \{a\}$ tal que $d(x, a) < \delta$, temos que:

$$\begin{split} |(fg)(x) - LS| &= |f(x)g(x) - LS| \\ &= |f(x)g(x) - f(x)S + f(x)S - LS| \\ &= |f(x)(g(x) - S) + S(f(x) - L)| \\ &\leq |f(x)||g(x) - S| + |S||f(x) - L| \\ &< |f(x)|M + |S|M \\ &= (|f(x)| + |S|)M. \end{split}$$

Notemos que, nessa hipótese, $|f(x)| = |f(x) - L + L| \le |f(x) - L| + |L| < M + |L|$. Logo, |(fg)(x) - LS| < (M + |L| + |S|)M.

Tomando, de partida, M tal que M<1 e $M<\frac{\epsilon}{1+|L|+|S|}$, concluímos que $|(fg)(x)-LS|<(M+|L|+|S|)M<(1+|L|+|S|)\frac{\epsilon}{1+|L|+|S|}=\epsilon$.

Logo, $\lim_{x\to a} (fg)(x) = LS$.

Para o item (c), note que f-g=f+(-1)g. Como a função constante (-1) é contínua, decorre dos itens anteriores que o limite de f-g em a é L+(-1)S=L-S.

Corolário 4.1.5. Seja $A\subseteq\mathbb{R}^n$ um conjunto e $f,g:A\to\mathbb{R}$ funções e $a\in A.$

Se f, g são contínuas em a, então as funções f+g, f-g e fg são contínuas em a.

Demonstração. Se a é ponto isolado de A, então f,g,f+g,f-g e fg são contínuas em a.

Caso contrário, temos, da hipótese de continuidade, que, $\lim_{x\to a} f(x) = f(a)$ e $\lim_{x\to a} g(x) = g(a)$. Daí, da proposição anterior, temos que:

$$\lim_{x \to a} (f+g)(x) = f(a) + g(a) = (f+g)(a)$$

$$\lim_{x \to a} (f-g)(x) = f(a) - g(a) = (f-g)(a)$$

$$\lim_{x \to a} (fg)(x) = f(a)g(a) = (fg)(a).$$

Assim, f + g, f - g e fg são contínuas em a.

Sobre funções compostas, temos o seguinte resultado.

Proposição 4.1.6. Sejam $f: A \to \mathbb{B}$ e $g: B \to \mathbb{R}^k$, onde $A \subseteq \mathbb{R}^m$ e $B \subseteq \mathbb{R}^n$ são conjuntos tais que $f(A) \subseteq B$. Seja $a \in \mathbb{R}^n$ um ponto de acumulação de A e $L \in B$.

Se $\lim_{x\to a} f(x) = L$ e g é contínua em L, então $\lim_{x\to a} (g \circ f)(x) = g(L)$.

Demonstração. Seja dado $\epsilon > 0$.

Como g é contínua em L, existe $\eta > 0$ tal que, para todo $y \in B$, se $d(y,L) < \eta$, então $d(g(y),g(L)) < \epsilon$. Como $\lim_{x\to a} f(x) = L$ e g é contínua em L, existe $\delta > 0$ tal que, para todo $x \in A \setminus \{a\}$, se $d(x,a) < \delta$, então $d(f(x),L) < \eta$.

Agora, dado $x \in A \setminus \{a\}$ tal que $d(x,a) < \delta$, temos que $d(f(x),L) < \eta$, logo, $d((g \circ f)(x),g(L)) < \epsilon$. Assim, $\lim_{x\to a} (g \circ f)(x) = g(Lsssss)$.

Como consequência, temos os seguintes corolários.

Corolário 4.1.7. Sejam $f: A \to \mathbb{B}$ e $g: B \to \mathbb{R}^k$, onde $A \subseteq \mathbb{R}^m$ e $B \subseteq \mathbb{R}^n$ são conjuntos tais que $f(A) \subseteq B$. Seja $a \in A$ um ponto de acumulação de A e $L \in B$.

Se $\lim_{x\to a} f(x) = L$ e g é contínua em L, então $\lim_{x\to a} (g \circ f)(x) = g(L)$.

Corolário 4.1.8. Sejam $f: A \to \mathbb{R} \setminus \{0\}$, com $A \subseteq \mathbb{R}^n$, e $a \in \mathbb{R}^n$ um ponto de acumulação de A. Se $\lim f(x) = L \neq 0$ e f é contínua em a, $\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{L}$.

Demonstração. Note que a função $g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dada por $g(x) = \frac{1}{x}$ é contínua em todo ponto de seu domínio.

Corolário 4.1.9. Sejam $f: A \to \mathbb{R} \setminus \{0\}$, com $A \subseteq \mathbb{R}^n$, e $a \in A$. Se f é contínua em a, então $\frac{1}{f}$ é contínua em a.

Sobre composição de funções, temos também o seguinte resultado.

Proposição 4.1.10. Sejam $f: A \to \mathbb{R}^n$, com $A \subseteq \mathbb{R}^m$, e a ponto de acumulação de A.

Suponha que exista $\lim_{x\to a} f(x) = L \in \mathbb{R}^n$.

Então, para todo $u: U \to A$, com $U \subseteq \mathbb{R}^k$ e α ponto de acumulação de U, se:

- (a) Existe uma bola aberta B em torno de α tal que para todo $t \in B \cap U \setminus \{u\}$, temos que $u(t) \neq \alpha$.
- (b) $\lim_{t\to\alpha} u(t) = a$.

Então $\lim_{t\to\alpha} (f\circ u)(t) = L$.

Demonstração. Seja dado $\epsilon > 0$.

Como $\lim_{x\to a} f(x) = L$, existe $\delta > 0$ tal que, para todo $x \in A \setminus \{a\}$, se $d(x,a) < \eta$, então $d(f(x),L) < \epsilon$. Como $\lim_{t\to\alpha} u(t) = a$, existe $\delta_u > 0$ tal que, para todo $t \in U \setminus \{\alpha\}$, se $d(t,\alpha) < \delta_u$, então $d(u(t),a) < \eta$. Além disso, existe $\delta' > 0$ tal que para todo $t \in B(\alpha,\delta')$ com $t \neq \alpha$, temos que $u(t) \neq \alpha$. Seja $\delta = \min\{\delta_u,\delta'\}$.

Agora, dado $t \in U \setminus \{\alpha\}$ tal que $d(t, \alpha) < \delta$, temos que $d(u(t), a) < \delta_u$ e $u(t) \neq \alpha$, logo, $d((f \circ u)(t), L) < \delta_u$

Assim,
$$\lim_{t\to\alpha} (f\circ u)(t) = L$$
.

Com isso, temos o seguinte.

Corolário 4.1.11 (Teste das curvas). Sejam $f:A\to\mathbb{R}$, com $A\subseteq\mathbb{R}^m$, e p ponto de acumulação de A. Sejam $u,v:I\to A$, com $I\subseteq\mathbb{R}$ um intervalo aberto contínuas em $\alpha\in I$ e $u(\alpha)=v(\alpha)=p$. Se existir o limite L de f em p, então $L=\lim_{t\to\alpha}(f\circ u)(t)=\lim_{t\to\alpha}(f\circ v)(t)$. Em particular:

- Se $f \circ u$ ou $f \circ v$ não possuirem limites em α , então f não possui limite em p.
- Se $f \circ u$ e $f \circ v$ possuírem limites em α , mas $\lim_{t \to \alpha} (f \circ u)(t) \neq \lim_{t \to \alpha} (f \circ v)(t)$, então f não possui limite em p.
- Se $f \circ u$ e $f \circ v$ possuírem limites em α , e ambos forem iguais, o teste é inconclusivo, mas outras curvas podem ser testadas.

4.2 O Teorema do Confronto

Proposição 4.2.1. Sejam $f, g, h : A \to \mathbb{R}$ uma função, onde $A \subseteq \mathbb{R}^m$.

Sejam $p \in A$ um ponto de acumulação de A e $L \in \mathbb{R}$.

Suponha que existe uma bola aberta B em torno de p tal que, para todo $x \in B \cap A \setminus \{p\}$, temos que $f(x) \leq g(x) \leq h(x)$.

Nessas hipóteses, se $\lim_{x\to p} f(x) = \lim_{x\to p} h(x) = L$, então $\lim_{x\to p} g(x) = L$.

Demonstração. Seja dado $\epsilon > 0$.

Como $\lim_{x\to p} f(x)=L$, existe $\delta_f>0$ tal que, para todo $x\in A\setminus\{p\}$, se $d(x,p)<\delta_f$, então $|f(x)-L|<\epsilon$.

Analogamente, como $\lim_{x\to p} h(x) = L$, existe $\delta_h > 0$ tal que, para todo $x \in A \setminus \{p\}$, se $d(x,p) < \delta_h$, então $|h(x) - L| < \epsilon$.

Por fim, existe $\delta_g > 0$ tal que, para todo $x \in B(p, \delta_g)$, se $x \in A \setminus \{p\}$, então $f(x) \leq g(x) \leq h(x)$. Seja $\delta = \min\{\delta_f, \delta_h, \delta_g\}$.

Seja $x \in A \setminus \{p\}$ tal que $d(x,p) < \delta$, então $-\epsilon < f(x) - L \le g(x) - L \le h(x) - L < \epsilon$, logo, $|g(x) - L| < \epsilon$, ou seja, $d(g(x), L) < \epsilon$.

Índice Remissivo

ponto de acumulação, 10 ponto isolado, 10