Лабораторная работа №17

Задания для самостоятельной работы.

Акопян Сатеник

01 января 1970

Российский университет дружбы народов, Москва, Россия

Объединённый институт ядерных исследований, Дубна, Россия

Выполнить задания для самостоятельной работы.

1. Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задания класса A посту- пают через 20 ± 5 мин, класса B — через 20 ± 10 мин, класса C — через 28 ± 5 мин и требуют для выполнения: класс A — 20 ± 5 мин, класс B — 21 ± 3 мин, класс C — 28 ± 5 мин. Задачи класса C загружаются в ЭВМ, если она полностью свободна.

Задачи классов A и B могут дозагружаться к решающей задаче. Смоделировать работу ЭВМ за 80 ч. Определить её загрузку. (рис. (fig:001?)).

Модель использует хранилище (RAM) для управления памятью, где задания классов A/B делят ресурс (ENTER/LEAVE 1), а класс С монополизирует его (ENTER/LEAVE 2). Это отражает приоритет задач С и конкуренцию A/B за память. Анализ загрузки ЭВМ за 80 часов покажет влияние класса С на общую пропускную способность (рис. (fig:001?), (fig:002?)).

```
ram STORAGE 2
GENERATE 20,5
OUEUE class A
ENTER ram, 1
DEPART class A
ADVANCE 20,5
LEAVE ram, 1
TERMINATE O
GENERATE 20,10
QUEUE class B
ENTER ram, 1
DEPART class B
ADVANCE 21,3
LEAVE ram, 1
TERMINATE 0
```

```
TERMINATE U
GENERATE 20,10
QUEUE class B
ENTER ram, 1
DEPART class B
ADVANCE 21,3
LEAVE ram, 1
TERMINATE O
GENERATE 28,5
QUEUE class C
ENTER ram, 2
DEPART class C
ADVANCE 28,5
LEAVE ram, 2
TERMINATE 0
```


Рис. 3: отчет

Как можно увидеть по отчету, загрузка высокая, т.к. заявки принимаются достаточно часто.

2. Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна.

Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой — для взлёта, то полоса предоставляется взлетающей машине.

Требуется: – выполнить моделирование работы аэропорта в течение суток;

- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Динамика реализована через приоритеты: взлет (приоритет 2) прерывает посадку. Самолёты в очереди на посадку (GATE/TEST) могут уйти после 5 кругов. Модель учитывает конфликты за полосу (SEIZE/RELEASE) и подсчитывает успешные/перенаправленные рейсы за сутки, оценивая загрузку ВПП. (рис. (fig:004?), (fig:005?))

```
Align pin pearly you persons grown prin
Clocks Yight to bear the
GENERATE 10,5,,,1
ASSIGN 1.0
OURUE arrival
landing GATE NU runway, wait
SEIZE runway
DEPART arrival
ADVANCE 2
RELEASE runway
TERMINATE O
wait TEST L p1,5, goaway
ADVANCE 5
ASSIGN 1+,1
TRANSFER 0, landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE O
GENERATE 10,2,,,2
CUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
```

Рис. 4: модель работы аэропорта 1/2

```
Align pin pearly you persons grown prin
CINCO X price to Lincol for
DEPART arrival
ADVANCE 2
RELEASE runway
TERMINATE O
wait TEST L p1,5, goaway
ADVANCE 5
ASSIGN 1+,1
TRANSFER 0.landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE O
GENERATE 10.2...2
QUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
TERMINATE O
GENERATE 1440
TERMINATE 1
START 1
```

Рис. 5: модель работы аэропорта 2/2

из отчета видно, что взлетели 146 самолетов, приземлились 142, были направлены в запасной аэродром 0 (рис. (fig:006?))

коэффициент загрузки небольшой, т.к. полоса используется с ограничением в 2 минуты по условию задачи

Рис. 6: отчет

3. Моделирование работы морского порта

Морские суда прибывают в порт каждые $[a\pm\delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b\pm\epsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта. ## Выполнение лабораторной работы

Исходные данные:

1) a = 20 ч,
$$\delta$$
 = 5 ч, b = 10 ч, ϵ = 3 ч, N = 10, M = 3;

Хранилище (pier) моделирует причалы, где суда занимают несколько слотов (M) одновременно. Разные сценарии (N=10/M=3 и N=6/M=2) проверяют пропускную способность порта. Полугодовое моделирование (4320 часов) выявит оптимальное N для минимизации очерелей (OUEUE/DEPART).

Рис. 7: модель работы морского порта 1/2

2)
$$a = 30 \text{ u}, \delta = 10 \text{ u}, b = 8 \text{ u}, \epsilon = 4 \text{ u}, N = 6, M = 2.$$

Рис. 8: модель работы морского порта 2/2

В результате былы выполнены задания для самостоятельного выполнения, а также закреплены знания о моделировании