)		guyen Xuan i 2 L121, 02660 Espoo		Page: Sheet:	1/14 1
STRUCTURA	\L ANALYS	Model: Beam		Date:	13/10/2021
PROJECT	Beam				
CPEATED BY	Course coo				
	Nguyen Xu	an Binh 8877	799		

Metsälinnunreitti 2 L121, 02660 Espoo

 Page:
 2/14

 Sheet:
 1

MODEL

Project: Assignment Week 5

Model: Beam

Date:

13/10/2021

MODEL - GENERAL DATA

WODEL OLIV			
General	Model name	:	Beam
	Project name	:	Assignment Week 5
	Type of model	:	3D
	Positive direction of global axis Z	:	Downward
	Classification of load cases and	:	According to Standard: EN 1990
	combinations		National Annex: SFS - Finland
Options	□ RF-FORM-FINDING - Find initial equilibrium shapes of m	em	brane and cable structures
1 / 1			
	□ RF-CUTTING-PATTERN		
1 17\			
	☐ Piping analysis		
	T		

Standard Gravity : 10.00 m/s²

Enable CAD/BIM model

FE MESH SETTINGS

T LE IMESUL SE	I IIIVOO			
General	Target length of finite elements	I _{FE}	:	0.500 m
	Maximum distance between a node and a line	ε	:	0.001 m
	to integrate it into the line Maximum number of mesh nodes (in thousands)		:	500
Members	Number of divisions of members with cable,		:	10
	elastic foundation, taper, or plastic characteristic Activate member divisions for large deformation			
	or post-critical analysis Use division for members with node lying on them			
Surfaces	Maximum ratio of FE rectangle diagonals	Δ_{D}	:	1.800
	Maximum out-of-plane inclination of two finite elements	α	:	0.50 °
	Shape direction of finite elements		:	Triangles and quadrangles Same squares where possible

■ 1.1 NODES

٦	. 1. 1 14	ODLO		\supset				
	Node		Reference	Coordinate		Node Coordinates		
	No.	Node Type	Node	System	/ X [m]	Y [m]	Z [m]	Comment
ĺ	1	Standard	-	Cartesian	0.000	0.000	0.000	
	2	Standard	-	Cartesian /	4.000	0.000	0.000	
	3	Standard	-	Cartesian /	/	0.000	0.000	
	4	Standard	-	Cartesian /	2.000	0.000	0.000	
	5	Standard	-	Cartesian / /	3,000	0.000	0.000	

■12LINES

Т	· 1.2 L	INLO			\wedge		
	Line			7	Line Length		
	No.	Line Type	Nodes No.		\\J_{[m]}		Comment
	1	Polyline	3,1		1.000	Χ	
- 1	2	Polyline	4,3	/ /	1.000	Χ	
- 1	3	Polyline	5,4		1.000	Χ	
- 1	4	Polyline	2,5		1.000	Χ	

■ 1.3 MATERIALS

- Т	1.0 1				\ (_ \	
	Matl.	Modulus	Modulus	Poisson's Ratio	Spec. Weight	Coeff. of Th Exp.	Partial Factor	Material
	No.	E [MN/m ²]	G [MN/m²]	v [-]	γ [kN/m 3]	α[1/K]) → γм [-]	Model
	1	Steel S 235 SFS	EN 1993-1-1:2005			3/		
ĺ		210000.000	80769.200	0.300	78.50	1.20E-05	1.00	Isotropic Linear
								Elastic
	2	Steel A992 ANSI/	AISC 360-16:2016				. / /	
		199948.000	77221.300	0.295	78.49	1.20E-05	1.00	Isotropic Linear
								Elastic
	3	E = 1000 MN/m^2					. /	
		1000.000	500.000	0.000	10.00	0.00È+00	1.00	Isotropic Linear
						\(Elastic

■ 1.7 NODAL SUPPORTS

Support			Column			Support C	onditions	
No.	Nodes No.	Axis System	in Z	u _X	u _{Y'}	U _{Z'}	φx	φν' φz'
1	1	User Defined X',Y',Z'		\boxtimes	\boxtimes	\boxtimes	⊠ /	
2	2	User Defined X',Y',Z'			\boxtimes		⊠	

Binh Nguyen Xuan Metsälinnunreitti 2 L121, 02660 Espoo Project: Assignment Week 5 Model: Beam 1.7.10 NODAL SUPPORTS - USER-DEFINED AXIS SYSTEM 1st Node 1 Node 2 2nd Referen Member/Line Rotation [°] Coordinate about X No. No. Type about Y System axis No. axis ZYX -90.00 0.00 0.00 Rotated ZYX -90.00 0.00 0.00

₱1.13 CROSS-SECTIONS

/									
٠,	Section	Matl.	J [cm ⁴]	l _y [cm ⁴]	I _z [cm ⁴]	Principal Axes	Rotation	Overall Dim	ensions [m]
	No.	No,	A [cm ²]	A _y [cm ²]	A _z [cm ²]	α[°]	α' [°]	Width b	Height h
	1/	Rectangle	0.3/0.1					•	
\geq		3	7902.14	2500.00	22500.00	0.00	0.00	0.300	0.100
/			300.00	250.00	250.00				

1.17 MEMBERS

Mbr.	Line		Rota	ation	Cross-	Section	Hing	e No.	Ecc.	Div.	Length	
No.	No.	Member	Туре	β[�]	Start	End	Start	End	No.	No.	L [m]	
1	7 1	Beam	Angle	0.00	1	1	-	-	-	-	1.000	X
2	2	Beam	Angle	0.00	1	1	-	-	-	-	1.000	X
3	3	Beam \	Angle	0.00	1	1	-	-	-	-	1.000	Х
4	4 /	Beam \	Angle	0.00	1	1	-	-	-	-	1.000	X

■ 1.23 FE MĖSH REFINEMĖNTS

Refinem.	FE Mesh Refinement	Nodes	Number	Sphere	Target FE	Length [m]	
No.	applied to	No.	Divisions	Radius [m]	Inner	Outer	Comment
1	Lines via division	1-4	4				

MODEL

■ 2.1 LOAD CASES

Load	Load Case	EN 1990 SFS		Sel	lf-Weigh	ıt F	actor in Direction	n
Case	Description	Action Category	Active	9	/x /	4	Y	Z
LC1	Self-weight	Permanent	\boxtimes		0.00	00	1.000	0.000
LC2	Point Load	Permanent/Imposed	Q_					
LC3	Point Moment	Permanent/Imposed				$\overline{}$		

2.1.1 LOAD CASES - CALCULATION PARAMETERS

Load	Load Case		
Case	Description		Calculation Parameters
LC1	Self-weight	Method of analysis	: Geometrically linear analysis
		Method for solving system of nonlinear algebraic equations	: • Newton-Raphson
		Activate stiffness factors of:	: 🛛 Cross-sections (factor for J, I _y , I _z , A, A _y , A _z)
			: Members (factor for GJ, El _y , El _z , EA, GA _y , GA _z)
LC2	Point Load	Method of analysis	: Geometrically linear analysis
		Method for solving system of nonlinear algebraic equations	: Newton-Raphson
		Activate stiffness factors of:	: Cross-sections (factor for J, I _v , I _z , A, A _v , A _z)
			: Members (factor for GJ, El₂, EA, GA₂, GA₂)
LC3	Point Moment	Method of analysis	: Geometrically linear analysis

Page: 3/14

MODEL

13/10/2021

Sheet:

Date:

Node

4/14 Page: Binh Nguyen Xuan Sheet: 1 Metsälinnunreitti 2 L121, 02660 Espoo **LOADS** Project: Assignment Week 5 Model: Beam Date: 13/10/2021 2.1.1 LOAD CASES - CALCULATION PARAMETERS Load Case Description Calculation Parameters Method for solving system of nonlinear algebraic equations Activate stiffness factors of: : Newton-Raphson Cross-sections (factor for J, I_y, I_z, A, A_y, A_z) Members (factor for GJ, EI_y, EI_z, EA, GA_y, GA_z) 2.5 LOAD COMBINATIONS Load Combination Combin. Load Case Description No Factor CO1 1.00 LC1 Self-weight Permanent Loads 1.00 LC2 1.00 LC3 Point Moment 2.5.2 LOAD COMBINATIONS - CALCULATION PARAMETERS Combin. Description Calculation Parameters CO1 Permanent Loads Method of analysis Second order analysis (P-Delta) Method for solving system of nonlinear algebraic equations Options Picard Consider favorable effects due to tension Consider rayorable effects due to tension Refer internal forces to deformed system for: ☑ Normal forces N ☑ Shear forces V_y and V_z ☑ Moments M_y, M_z and M_T Materials (partial factor ₇M) Cross-sections (factor for J, I_y, I_z, A, A_y, A_z) Activate stiffness factors of: \boxtimes Members (factor for GJ, El_y, El_z, EA, GA_y, GA_z) 3.1 NODAL LOADS - BY COMPONENTS - COORDINATE SYSTEM LC2: Point Load LC2 On Nodes Force [kN] Coordinate Moment [kNm] Point Load System P_X/P_U P_Y / P_V P_Z / P_W M_X / M_U M_Y / M_V 0 | Global XYZ 1 0.000 1.000 0.000 0.000 0.000 0.000 3.1 NODAL LOADS - BY COMPONENTS - COORDINATE SYSTEM LC3: Point Moment LC3 On Nodes Force [kN] Moment [kNm] Point Moment P_Y/P_V P_Z / P_W M_Y / M_V No. System M_X/M_U 2 0 | Global XYZ 0.000 0.000 0.000 0.000 0.000 1.000 **CO1: PERMANENT LOADS** CO1: Permanent Loads In Z-direction 1.000 Loads [kN/m], [kN], [kNm] 0.300 0.300 1.**d**00 0.537 m

Page: 5/14 **RESULTS**

13/10/2021

Date:

Metsälinnunreitti 2 L121, 02660 Espoo Project: Assignment Week 5 Model: Beam

= 4\	d R	FSI	UL.	TS -	. ŚU	M	ИΑ	R)	1

	Description	Value	Unit	Comment
d Case	LC1 - Self-weight Sum of loads in X	0.00	kN	
	Sum of support reactions in X Sum of loads in Y	0.00 1.20	kN kN	
	Sum of support reactions in Y	1.20		Deviation 0.00%
	Sum of loads in Z Sum of support reactions in Z	0.00	kN kN	
	Resultant of reactions about X	0.000	kNm	At center of gravity of model (X:2.000, Y:0.000, Z:0.000 m)
	Resultant of reactions about Y Resultant of reactions about Z	0.000	kNm kNm	At center of gravity of model
	Max. displacement in X	0.00	mm	At center of gravity of model
	Max. displacement in Y Max. displacement in Z	4.49	mm mm	Member No. 2, x: 0.000 m
	Max. vector displacement	4.49	mm	Member No. 2, x: 0.000 m
	Max. rotation about X Max. rotation about Y	0.0	mrad	
	Max. rotation about Z	3.6	mrad	Member No. 1, x: 1.000 m
	Maximum member strain Method of analysis	0.00000 Linear	-	Member No. 0, x: 0.000 m Geometrically linear analysis
	Reduction of stiffness			Cross-sections, Members, Surfaces
	Number of load increments Number of iterations	1		
	Maximum value of element of stiffness matrix	2.4E+08		
	on diagonal Minimum value of element of stiffness matrix on	3.161E+05		
	diagonal	/		
	Stiffness matrix determinant	1.415E+613		
1.0	Infinity Norm	4.8E+08	1	I
Case נ	LC2 - Point Load Sum of loads in X	0.00		
	Sum of support reactions in X Sum of loads in Y	0.00 1.00		
	Sum of support reactions in Y	1.00	kN	Deviation 0.00%
	Sum of loads in Z Sum of support reactions in Z	0.00		
	Resultant of reactions about X	0.000		At center of gravity of model (X:2.000, Y:0.000, Z:0.000 m)
	Resultant of reactions about Y Resultant of reactions about Z	0.000	kNm kNm	At center of gravity of model At center of gravity of model
	Max. displacement in X	0.00	mm	At center of gravity of model
	Max. displacement in Y	4.19		Member No. 2, x: 0.250 m
	Max. displacement in Z Max. vector displacement	0.00 4.19	mm	Member No. 2, x: 0.250 m
	Max. rotation about X	0.0	mrad	
	Max. rotation about Y Max. rotation about Z	0.0	mrad	Member No. 1, x 1.000 m
	Maximum member strain	0.00000	-	Member No. 0, x: 0.000 m
	Method of analysis Reduction of stiffness	Linear		Geometrically linear analysis Cross-sections, Members, Surfaces
	Number of load increments	1		
	Number of iterations Maximum value of element of stiffness matrix	2.4E+08		
	on diagonal			
	Minimum value of element of stiffness matrix on diagonal	3.161E+05		
	Stiffness matrix determinant	1.415E+613		
	Infinity Norm	4.8E+08		
d Case	LC3 - Point Moment Sum of loads in X	0.00	kN	
	Sum of support reactions in X	0.00	kN	9/2
	Sum of loads in Y Sum of support reactions in Y	0.00		
	Sum of loads in Z	0.00	kN	
	Sum of support reactions in Z Resultant of reactions about X	0.00		At center of gravity of model (X:2.000, Y:0.000, Z:0.000 m)
	Resultant of reactions about Y	0.000	kNm	At center of gravity of model
	Resultant of reactions about Z Max. displacement in X	1.000		At center of gravity of model
	Max. displacement in Y	3.34		Member No. 2, x: 0.125 m
	Max. displacement in Z Max. vector displacement	0.00	mm mm	Member No. 2, x: 0.125 m
	Max. rotation about X	3.34	mrad	Weitibet No. 2, X. 0.123 iii
	Max. rotation about Y Max. rotation about Z	0.0 2.6		Member No. 1, x: 0.000 m
	Maximum member strain	0.00000	-	Member No. 0, x: 0.000 m
	Method of analysis	Linear		Geometrically linear analysis Cross-sections, Members, Surfaces
	Reduction of stiffness Number of load increments	1		Cross-sections, Members, Surfaces
	Number of iterations	1		
	Maximum value of element of stiffness matrix on diagonal	2.4E+08		
		3.161E+05		
	Minimum value of element of stiffness matrix on		1	
	diagonal	1.415F+613		
		1.415E+613 4.8E+08		
1 Comb	diagonal Stiffness matrix determinant Infinity Norm bination CO1 - Permanent Loads	4.8E+08		
d Comb	diagonal Stiffness matrix determinant Infinity Norm bination CO1 - Permanent Loads Sum of loads in X	4.8E+08	kN	
d Comb	diagonal Stiffness matrix determinant Infinity Norm bination CO1 - Permanent Loads	4.8E+08	kN kN kN	Deviation 0.00%

Metsälinnunreitti 2 L121, 02660 Espoo

Page:	6/1
Sheet:	

RESULTS

Proj

Project: Assignment Week 5

Model: Beam

Date: 13/10/2021

■ 4.0 RESULTS - SUMMARY

Precision and Tolerance: Change default setting

Options:
Activate shear stiffness of members (Ay, Az)
Activate member divisions for large deformation
or post-critical analysis
Activate entered stiffness modifications
Ignore rotational degrees of freedom
Check of critical forces of members
Nonsymmetric direct solver if demanded by
nonlinear model
Method for the system of equations
Plate bending theory
Solver version

method

■ 4.1 N	4.1 NODES - SUPPORT FORCES										
Node		S	Support Forces [kN]		Suj	pport Moments [kN	m]				
No.	LC/CO	P _X	P _{Y'}	P _{Z'}	M _X	$M_{Y'}$	$M_{Z'}$				
1*	LC1	0.00	0.00	0.60	0.00	0.00	0.00	Self-weight			
	LC2	0.00	0.00	0.75	0.00	0.00	0.00	Point Load			
	LC3	0.00	0.00	-0.25	0.00	0.00	0.00	Point Moment			
	CO1	0.00	0.00	1.10	0.00	0.00	0.00	Permanent Loads			
2*	LC1	0.00	0.00	0.60	0.00	0.00	0.00	Self-weight /			
	LC2	0.00	0.00	0.25	0.00	0.00	0.00	Point Load			
	LC3	0.00	0.00	0.25	0.00	0.00	0.00	Point Moment			
	CO1	0.00	0.00	1.10	0.00	0.00	0.00	Permanent Loads			
Σ Supp.	LC1	0.00	1.20	0.00							
∑ Loads	LC1	0.00	1.20	0.00							
Σ Supp.	LC2	0.00	1.00	0.00							
Σ Loads	LC2	0.00	1.00	0.00							
Σ Supp.	LC3	0.00	0.00	0.00							
Σ Loads	LC3	0.00	0.00	0.00							
Σ Supp.	CO1	0.00	2.20	0.00				\(/ / /			
Σ Supp.	CO1	0.00	2.20	0.00							

 \boxtimes

Direct Mindlin 64-bit

Metsälinnunreitti 2 L121, 02660 Espoo

Page: 7/14 Sheet: 1

RESULTS

Project: Assignment Week 5

Model: Beam

Date: 13/10/2021

■ 4.12 CROSS-SECTIONS - INTERNAL FORCES

Member	/ /	Node	Location		Forces [kN]					
No.	LC/CO	No.	x [m]	N	V_y	Vz	M _T	M_y	M _z	
Section No. 1: Rectangle 0.3/0.1										
1	LC1	3	0.000	0.00	0.30	0.00	0.00	0.00	0.45	
		/ 1	1.000	0.00	0.60	0.00	0.00	0.00	0.00	
	LC2 /	3	0.000	0.00	0.75	0.00	0.00	0.00	0.75	
	\ (1 /	2 1.000	0.00	0.75	0.00	0.00	0.00	0.00	
	LC3	3/	0.000	0.00	-0.25	0.00	0.00	0.00	-0.25	
		1 /	1;000	0.00	-0.25	0.00	0.00	0.00	0.00	
	CO1	3/	0,000	0.01	0.80	0.00	0.00	0.00	0.95	
		(1	1.000	0.01	1.10	0.00	0.00	0.00	0.00	
2	LC1	\ \4	0,000	0.00	0.00	0.00	0.00	0.00	0.60	
		3	1.000	0.00	0.30	0.00	0.00	0.00	0.45	
	LC2	4	0.000	0.00	-0.25	0.00	0.00	0.00	0.50	
		3	1.000	0.00	-0.25	0.00	0.00	0.00	0.75	
	LC3	4	0.000	0.00	-0.25	0.00	0.00	0.00	0.50	
		3	1.000	0.00	-0.25	0.00	0.00	0.00	0.75	
	CO1	4	0.000	0.00	-0.50	0.00	0.00	0.00	1.60	
		3	1.000	0.00-	-0.20	0.00	0.00	0.00	1.95	
3	LC1	5	0.000	0.00	-0.30	0.00	0.00	0.00	0.45	
		4	1.000	0.00	0.00	0.00	0.00	0.00	0.60	
	LC2	5	0.000	0.00	-0.25	0.00	0.00	0.00	0.25	
		4	1.000	0.00	-0.25	0.00	0.00	0.00	0.50	
	LC3	5	0.000	0.00	-0.25	0.00	0.00	0.00	0.25	
		4	1.000	0.00	-0.25	0.00	0.00	0.00	0.50	
	CO1	5	0.000	0.01	-0.80	0.00	0.00	0.00	0.95	
		4	1.000	0.00	-0.50	0.00	0.00	0.00	1.60	
4	LC1	2	0.000	0.00	-0.60	0.00	0.00	0.00	0.00	
		5	1.000	0.00	-0.30	0.00	0.00	0.00	0.45	
	LC2	2	0.000	0.00	-0.25	0.00	0.00	0.00	0.00	
		5	1.000	0.00	-0.25	0.00	0.00	0.00	0.25	
	LC3	2	0.000	0.00	-0.25	0.00	0.00	0.00	0.00	
		5	1.000	0.00	-0.25	0.00	0.00	0.00	0.25	
	CO1	2	0.000	0.01	/-1.10	0.00	0.00	0.00	0.00	
		5	1.000	0.01	-0,80	0.00	0.00	0.00	0.95	

■ GLOBAL DEFORMATIONS uy, SUPPORT REACTIONS

