

WE CLAIM:

1. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (I) or (II):

[I-a]

[I-b]

[I-c]

[II-a]

[II-b]

[II-c]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D is hydrogen, alkyl, acyl, monophosphate, diphosphate, triphosphate, monophosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid;

each W¹ and W² is independently CH or N;

each X¹ and X² is independently hydrogen, halogen (F, Cl, Br or I), NH₂, NHR⁴, NR⁴R⁴, NHOR⁴, NR⁴NR⁴R⁴, OH, OR⁴, SH or SR⁴;

each Y¹ is O, S or Se;

each Z is CH₂ or NH;

each R¹ and R¹' is independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, alkylaryl, halogen (F, Cl, Br or I), NH₂, NHR⁵, NR⁵R⁵, NHOR⁵, NR⁵NHR⁵, NR⁵NR⁵R⁵, OH, OR⁵, SH, SR⁵, NO₂, NO, CH₂OH, CH₂OR⁵, CO₂R⁵, CONH₂, CONHR⁵, CONR⁵R⁵ or CN;

each R² and R^{2'} independently is hydrogen or halogen (F, Cl, Br or I), OH, SH, OCH₃, SCH₃, NH₂, NHCH₃, CH=CH₂, CN, CH₂NH₂, CH₂OH, CO₂H.

each R³ and R^{3'} independently is hydrogen or halogen (F, Cl, Br or I), OH, SH, OCH₃, SCH₃, NH₂, NHCH₃, CH₃, C₂H₅, CH=CH₂, CN, CH₂NH₂, CH₂OH, CO₂H.

each R⁴, R^{4'}, R^{4''}, R⁵, R^{5'} and R^{5''} independently is hydrogen, lower alkyl, lower alkenyl, aryl, or arylalkyl such as unsubstituted or substituted phenyl or benzyl; such that for the nucleoside of the general formula (I) or (II) at least one of R² and R^{2'} is hydrogen and at least one of R³ and R^{3'} is hydrogen.

2. The method of claim 1, wherein the β -D nucleoside of the formula (I-a) is selected from one of the following:

X ¹	Y ¹	R ¹	R ^{1'}	R ²	R ^{2'}	R ³	R ^{3'}
NH ₂	O	H	H	OH	H	H	OH
NH ₂	O	H	H	OH	H	H	I
NH ₂	O	H	H	OH	H	H	Cl
NH ₂	O	H	H	OH	H	H	Br
NH ₂	O	H	H	OH	H	H	S-CN
NH ₂	O	H	H	OH	H	H	N ₃
NH ₂	O	H	H	H	Cl	H	OH
NH ₂	O	H	H	H	Br	H	OH
NH ₂	O	H	H	H	OH	Br	H
NH ₂	O	H	H	H	OH	H	H
NH ₂	O	H	H	H	OH	O-Ms	H
NH ₂	O	H	H	H	OH	O-Ts	H
NH ₂	O	H	H	O-Ms	H	H	OH
NH ₂	O	H	H	Cl	H	H	OH
NH ₂	O	D	D	OH	H	H	OH
NH ₂	O	F	H	OH	H	H	OH
NH ₂	O	F	H	H	OH	H	OH
NH ₂	O	F	H	H	OH	H	H
NH ₂	O	F	H	H	OH	Cl	H
NH ₂	O	F	H	H	OH	Br	H

X¹	Y¹	R¹	R^{1'}	R²	R^{2'}	R³	R^{3'}
NH ₂	O	F	H	H	Cl	H	OH
NH ₂	O	F	H	H	OH	O-Ts	H
NH ₂	O	F	H	H	OH	O-Ms	H
NH ₂	O	Cl	H	H	OH	O-Ms	H
NH ₂	O	Br	H	H	OH	O-Ms	H
NH ₂	O	Br	H	H	OH	O-Ts	H
NH ₂	O	Br	H	H	OH	Cl	H
NH ₂	O	Br	H	H	OH	H	OH
NH ₂	O	Br	H	OH	H	H	OH
NH ₂	O	I	H	H	OH	O-Ms	H
NH ₂	O	I	H	H	OH	Br	H
NH ₂	O	I	H	H	OH	O-Ts	H
NH ₂	O	I	H	H	Cl	H	OH
NH ₂	O	I	H	Br	H	H	OH
NH ₂	O	OH	H	OH	H	H	OH
NH ₂	O	NH ₂	H	H	OH	H	OH
NH ₂	O	CH ₃	H	H	OH	Cl	H
NH ₂	NH	H	H	OH	H	H	OH
NH ₂	S	H	H	H	Se-phenyl	H	H
NH-(2-Ph-Et)	O	H	H	OH	H	H	OH
NH-COCH ₃	O	H	H	OH	H	H	OH
NH-NH ₂	O	H	H	OH	H	H	OH
NH-NH ₂	O	F	H	OH	H	H	OH
NH-NH ₂	O	CH ₃	H	H	OH	H	OH
NH-OH	O	H	H	H	OH	H	OH
NH-OH	O	F	H	H	OH	H	OH
NH-OH	O	Br	H	H	OH	H	OH
NH-OH	O	I	H	H	OH	H	OH
NH-OH	O	H	H	OH	H	H	OH
OH	O	OH	H	OH	H	H	OH
OH	O	NH ₂	H	H	OH	H	OH

X ¹	Y ¹	R ¹	R ^{1'}	R ²	R ^{2'}	R ³	R ^{3'}
OH	O	F	H	OH	H	H	OH
OH	O	F	H	H	O-Ts	H	OH
OH	O	F	H	H	O-Ms	H	O-Ms
OH	O	F	H	H	OH	H	OH
OH	O	F	H	H	OH	H	O-Ts
OH	O	F	H	H	H	H	OH
O-Et	O	H	H	H	O-Bz	H	O-Bz
S-CH ₃	O	H	H	H	F	H	OH
SH	O	H	H	H	OH	H	OH
SH	O	F	H	H	OH	H	OH
N ₃	O	H	H	H	H	H	H
NH-(2-Ph-Et)	O	H	H	H	OH	H	OH
OH	O	OH	H	H	OH	H	OH
OH	O	H	H	H	OH	H	H

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

3. The method of claim 1, wherein the β -D nucleoside of the formula (I-b) is selected from one of the following:

X ¹	X ²	W ¹	R ²	R ^{2'}	R ³	R ^{3'}
OH	NH ₂	N	H	OH	H	OH
OH	NH ₂	CH	F	H	H	OH
NH-cyclohexyl	H	CH	H	H	H	H
NH ₂	H	CH	H	OH	H	F
NH ₂	H	CH	H	H	H	H
NH ₂	NH ₂	N	H	OH	H	OH
NH ₂	NH ₂	CH	H	OH	H	OH
Cl	H	CH	F	H	H	H
Cl	I	CH	H	O-Ac	H	O-Ac
Cl	H	CH	H	OH	H	OH
NH ₂	H	CH	H	OH	H	H

X¹	X²	W¹	R²	R^{2'}	R³	R^{3'}
Cl	H	CH	H	OH	H	H

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

4. The method of claim 1, wherein the β -D nucleoside of the formula (II-a) is selected from one of the following:

X¹	Y¹	R¹	R^{1'}	R²	R³
NH-Bz-(<i>m</i> -NO ₂)	O	F	H	H	H
NH-Bz-(<i>o</i> -NO ₂)	O	F	H	H	H
NH ₂	O	F	H	F	H

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

5. The method of claim 1, wherein the β -D nucleoside of the formula (II-b) is selected from one of the following:

X¹	X²	W¹	R²	R³
Cl	H	CH	F	H
OH	H	CH	H	H
NH ₂	F	CH	H	H
NH ₂	F	CH	F	H
NH ₂	H	CH	H	H
OH	NH ₂	CH	H	H
OH	H	CH	H	H

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

6. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (V) or (VI):

[V-a]

[V-b]

[V-c]

[VI-a]

[VI-b]

[VI-c]

[VI-a]

[VI-b]

[VI-c]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, W¹, W², X¹, X², Y¹, Z, R¹, R^{1'}, R², R^{2'}, R³ and R^{3'} is the same as defined previously;

such that for the nucleoside of the general formula (V) or (VI), at least one of R² and R^{2'} is hydrogen and at least one of R³ and R^{3'} is hydrogen.

7. The method of claim 6, wherein the β -D nucleoside of the formula (V-a) is selected from one of the following:

X^1	Y^1	R^1	$R^{1'}$	R^2	$R^{2'}$	R^3	$R^{3'}$
NH ₂	O	F	H	H	OH	H	OH
OH	H	CH ₃	H	H	H	H	H
OH	O	H	H	H	H	H	H
NH ₂	O	H	H	H	OH	H	OH
NH ₂	O	H	H	H	H	H	H
OH	O	F	H	H	OH	H	OH
NH ₂	O	I	H	H	H	H	H
NH ₂	O	I	H	H	OH	H	OH
NH ₂	O	Cl	H	H	OH	H	OH

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

8. The method of claim 6, wherein the β -D nucleoside of the formula (VII-a) is selected from one of the following:

X^1	Y^1	R^1	$R^{1'}$	R^2	$R^{2'}$	R^3	$R^{3'}$
NH ₂	O	H	H	H	OH	H	OH
NH ₂	O	F	H	H	OH	H	OH
NH-OH	O	H	H	H	OH	H	OH

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

9. The method of claim 6, wherein the β -D nucleoside of the formula (VII-b) is selected from the following:

X^1	X^2	W^1	R^2	$R^{2'}$	R^3	$R^{3'}$
NH ₂	H	CH	H	OH	H	OH

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

10. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular

proliferation comprising administering an effective amount of a compound of the general formula (XI):

[XI-a]

[XI-b]

[XI-c]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
 each D, W¹, W², X¹, X², Y¹, Z, R¹, R², R²', R³ and R³' is the same as defined previously;
 each Z¹ and Z² independently is O, S, NR⁶ or Se;
 each R⁶ is hydrogen, lower alkyl or lower acyl.

11. The method of claim 10, wherein the β -D nucleoside of the formula (XI-a) is selected from one of the following:

X ¹	Y ¹	Z ¹	Z ²	R ¹	R ¹ '
NH ₂	O	O	O	H	H
NH ₂	O	O	S	F	H
NH ₂	O	O	O	F	H

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

12. The method of claim 10, wherein the β -D nucleoside of the formula (XI-b) is selected from one of the following:

X ¹	X ²	W ¹	Z ¹	Z ²
Cl	H	CH	O	S
Cl	NH ₂	CH	O	S
NH ₂	F	CH	O	S
OH	H	CH	O	O

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

13. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XIII):

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, R^1 , R^1' , R^2 , R^2' , R^3 and R^3' is the same as defined previously;

each Y^2 is O, S, NH or NR^7 ;

each Y^3 is O, S, NH or NR^8 ;

each X^3 is OR^9 or SR^9 ; and

each R^7 , R^8 and R^9 is hydrogen, lower alkyl of C_1 - C_6 , arylalkyl or aryl;

such that for the nucleoside of the general formula (XIII-d), at least one of R^2 and

R^2' is hydrogen and at least one of R^3 and R^3' is hydrogen.

14. The method of claim 13, wherein the β -D nucleoside of the formula (XIII-a) is selected from one of the following:

Y^2	Y^3	R^1	R^1'	R^2	R^2'	R^3	R^3'
O	O	F	H	H	OH	H	OH

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

15. The method of claim 13, wherein the β -D nucleoside of the formula (XIII-c) is selected from one of the following:

Y^2	Y^3	R^1	R^1'	R^2	R^3'
O	O	F	H	H	OH
O	O	F	H	H	O-Ms
NH	O	H	H	H	O-Ms

Y²	Y³	R¹	R^{1'}	R³	R^{3'}
NH	O	H	H	H	O-Ac
NH	O	H	H	H	OH
NH	O	F	H	H	OH
NH	O	F	H	H	O-Ac

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

16. The method of claim 13, wherein the β -D nucleoside of the formula (XIII-d) is selected from the following:

Y²	X³	R¹	R^{1'}	R²	R^{2'}	R³	R^{3'}
O	O-CH ₃	H	H	H	O-Ac	H	O-Ac

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

17. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XIV):

[XIV]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
 each D, X¹, Y¹, Z¹, R¹, R², R^{2'}, R³ and R^{3'} is the same as defined previously;
 each L¹ is hydrogen, Cl or Br;
 each L² is OH, OCH₃, OC₂H₅, OC₃H₇, OCF₃, OAc or OBz;
 each Z³ can be O or CH₂.

18. The method of claim 17, wherein the β -D nucleoside of the formula (XIV) is selected from one of the following:

X^1	Y^1	R^1	$R^{1'}$	R^2	$R^{2'}$	R^3	$R^{3'}$	L^1	L^2
NH ₂	O	NH-OH	OH	OH	H	H	OH	H	OH
OH	O	O	F	H	OH	H	OH	Cl	O-CH ₃
OH	O	O	H	H	OH	H	OH	Br	O-CH ₃
OH	O	O	F	H	OH	H	OH	Br	O-COCH ₃
OH	O	O	F	H	OH	H	OH	Br	O-CH ₃
OH	O	O	F	H	OH	H	OH	Br	O-Et
OH	O	O	Cl	H	OH	H	OH	Br	O-CH ₃

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

19. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XV):

[XV-a]

[XV-b]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, W¹, W², X¹, Y¹, Z³, R¹, R^{1'}, R², R^{2'}, R³ and R^{3'} is the same as defined previously.

20. The method of claim 19, wherein the β -D nucleoside of the formula (XV-a) is defined as the following:

Y^1	Z^3	R^1	$R^{1'}$	R^2	$R^{2'}$	R^3	$R^{3'}$
O	O	H	H	H	OH	H	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

21. The method of claim 19, wherein the β -D nucleoside of the formula (XV-b) is defined as the following:

X^1	W^1	Z^3	R^2	$R^{2'}$	R^3	$R^{3'}$
NH ₂	CH	O	H	OH	H	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

22. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XVI):

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, W¹, X¹, X², Y¹, Z, R¹, R², R^{2'}, R³ and R^{3'} is the same as defined previously;

each W³ is independently N, CH or CR¹;

each W⁴ and W⁵ is independently N, CH, CX¹ or CR^{1'}; and

each Z⁴ and Z⁵ is independently NH or C(=Y¹);

such that if Z⁴ and Z⁵ are covalently bound, then Z⁴ is not C(=Y¹) when Z⁵ is C(=Y¹); and

there are no more than three ring-nitrogens.

23. The method of claim 22, wherein the β -D nucleoside of the formula (XVI-a) is selected as one of the following:

W ³	Z ⁴	W ⁵	W ⁴	Z ⁵	R ²	R ^{2'}	R ³	R ^{3'}
CH	NCH ₃	C-OH	N	C=O	H	OH	H	O-Ts
CH	NH	C-NH ₂	N	C=O	H	OH	H	OH
CH	NH	C-NHAc	N	C=O	H	OH	H	OH
CH	NH	C-OH	N	C=O	H	OH	H	OH
CH	NCH ₃	C-NH ₂	N	C=O	H	OH	H	OH
CH	NH	C-NHBz	N	C=O	H	OH	H	OH
CH	C=O	C-NH ₂	C-SH	NH	H	OH	H	OH
CH	NH	C-OH	N	C=O	H	Cl	H	OH
CH	NH	C-NH ₂	N	C=O	H	Br	H	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

24. The method of claim 22, wherein the β -D nucleoside of the formula (XVI-c) is defined as the following:

W ³	Z ⁴	Z ⁵	W ⁴	R ²	R ^{2'}	R ³	R ^{3'}
CH	N-CH ₃	C=O	N	H	OH	H	O-Ac

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

25. The method of claim 22, wherein the β -D nucleoside of the formula (XVI-d) is defined as the following:

W ³	Z ⁴	Z ⁵	W ⁴	R ²	R ³	R ^{3'}

W³	Z⁴	Z⁵	W⁴	R³	R^{3'}
CH	N	C=NH	N	H	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

26. The method of claim 22, wherein the β -D nucleoside of the formula (XVI-f) is defined as the following:

X¹	X²	W¹	R²	R^{2'}	R³	R^{3'}
NH ₂	H	N	H	OH	H	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

27. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XVII):

[XVII-a]

[XVII-b]

[XVII-c]

[XVII-d]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, W¹, W², X¹, X², Y¹, Z³, R¹, R^{1'}, R², R^{2'}, R³ and R^{3'} is the same as defined previously;

each X^4 and X^5 is independently hydrogen, halogen (F, Cl, Br or I), N_3 , NH_2 , NHR^8 , $NR^8R^{8'}$, OH, OR⁸, SH or SR⁸; and
 each R^8 and $R^{8'}$ is independently hydrogen, lower alkyl, lower alkenyl, aryl or arylalkyl, such as an unsubstituted or substituted phenyl or benzyl;
 such that for the nucleoside of the general formula (XVII-a) or (XVII-b), X^4 is not OH or OR⁸.

28. The method of claim 27, wherein the β -D nucleoside of the formula (XVII-d) is defined as the following:

X^1	X^2	W^1	X^3	X^4
NH_2	F	CH	H	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

29. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XVIII):

[XVIII-a]

[XVIII-b]

[XVIII-c]

[XVIII-d]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, W¹, W², X¹, X², Y¹, R¹, R², R^{2'}, R³ and R^{3'} is the same as defined previously;

30. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XIX):

[XIX]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, R¹, R⁴ and R^{4'} is the same as defined previously;

each R⁹ is hydrogen, halogen (F, Cl, Br or I) or OP³;

each P¹ is hydrogen, lower alkyl, lower alkenyl, aryl, arylalkyl (such as an unsubstituted or substituted phenyl or benzyl), OH, OR⁴, NH₂, NHR⁴ or NR⁴R^{4'}; and

each P² and P³ is independently hydrogen, alkyl, acyl, -Ms, -Ts, monophosphate, diphosphate, triphosphate, mono-phosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid.

31. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D and P² is the same as defined previously.

32. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XX):

[XX]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P¹, P², P³, R¹, R⁴, R^{4'} and R⁹ is the same as defined previously.

33. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XXI):

[XXI]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P¹, P², P³, R¹, R⁴ and R^{4'} is the same as defined previously.

34. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P² and P³ is the same as defined previously.

35. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XXII):

[XXII]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P¹ and R¹ is the same as defined previously.

36. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
D is the same as defined previously.

37. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XXIII):

[XXIII]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P¹, P², P³, R¹, R⁴ and R⁹ is the same as defined previously.

38. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P² and P³ is the same as defined previously.

39. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

or its pharmaceutically acceptable salt thereof.

40. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

or its pharmaceutically acceptable salt thereof.

41. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

or its pharmaceutically acceptable salt thereof.

42. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (I) or (II):

Chemical structure of 2'-deoxyuridine (dU) with a chlorine atom at the 4' position of the pyrimidine ring. The structure shows a deoxyribose sugar ring with hydroxyl groups at the 2' and 3' positions, and a chlorine atom at the 4' position of the pyrimidine ring.

or its pharmaceutically acceptable salt thereof.

43. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

Chemical structure of 2'-deoxyuridine (dU) with an amino group at the 4' position of the pyrimidine ring and a fluorine atom at the 2' position of the sugar ring. The structure shows a deoxyribose sugar ring with hydroxyl groups at the 3' and 5' positions, and a fluorine atom at the 2' position of the sugar ring, and an amino group at the 4' position of the pyrimidine ring.

or its pharmaceutically acceptable salt thereof.

44. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a compound according to any one of claims 1-29.

45. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XIX):

[XIX]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
 each D, R¹, R⁴ and R^{4'} is the same as defined previously;
 each R⁹ is hydrogen, halogen (F, Cl, Br or I) or OP³;
 each P¹ is hydrogen, lower alkyl, lower alkenyl, aryl, arylalkyl (such as an unsubstituted or substituted phenyl or benzyl), OH, OR⁴, NH₂, NHR⁴ or NR⁴R^{4'}; and
 each P² and P³ is independently hydrogen, alkyl, acyl, -Ms, -Ts, monophosphate, diphosphate, triphosphate, mono-phosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid;
 optionally in a pharmaceutically acceptable carrier.

46. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
 each D and P² is the same as defined previously;
 optionally in a pharmaceutically acceptable carrier.

47. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XX):

[XX]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P¹, P², P³, R¹, R⁴, R^{4'} and R⁹ is the same as defined previously;
optionally in a pharmaceutically acceptable carrier.

48. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XXI):

[XXI]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P¹, P², P³, R¹, R⁴ and R^{4'} is the same as defined previously;
optionally in a pharmaceutically acceptable carrier.

49. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P² and P³ is the same as defined previously;
optionally in a pharmaceutically acceptable carrier.

50. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XXII):

[XXII]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
each D, P¹ and R¹ is the same as defined previously;
optionally in a pharmaceutically acceptable carrier.

51. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
 D is the same as defined previously;
 optionally in a pharmaceutically acceptable carrier.

52. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XXIII):

[XXIII]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
 each D, P¹, P², P³, R¹, R⁴ and R^{4'} is the same as defined previously;
 optionally in a pharmaceutically acceptable carrier.

53. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XXIII) is the following:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:
 each D, P² and P³ is the same as defined previously;
 optionally in a pharmaceutically acceptable carrier.

54. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

55. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

56. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

57. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

58. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.