CPE201 Digital Design

By Benjamin Haas

Class 26: ADC and DAC

Outline

- Analog to Digital Conversion
- Digital to Analog Conversion

Continuous vs Discrete

- Or Analog vs Digital
- Anything Analog must be converted to

Converters (Sensors)

- There are many things that do this already
 - Microphones
 - Speakers
 - Digital thermometers, barometers, accelerometers
 - GPS

Sensors

- All of these work on the same principles
 - Convert a measurement to a voltage
 - Convert the voltage to a digital signal
 - Capture/store/manipulate the signal

Convert to Voltage

Microphone

Convert to Voltage

Thermometer

Convert to Voltage RGB Inside the Camera

Camera Senso

Sample the Voltage

The actual ADC part – usually sample

ADC

- Compares sample to a voltage reference (Vref)
- An ADC has a set number of bits
- Each ADC count is worth Vref/(2ⁿ-1) volts
- Most ADCs have 10-16 bits right now
 - So encoded as a 10-16-bit binary number

ADC

- A 3-bit ADC can give 0-7 counts (2³-1)
- If Vref is 7V, then each count is 1V

- A 10-bit ADC can give 0-1023 counts
- If Vref=5V, then each count is 4.89mV

Convert the Sample

Flash (Simultaneous) ADC (Vref = 7V)

Convert the Sample

Successive-Approximation ADC

Example

Vref = 15V

(c) 2¹-bit trial

(d) LSB trial (conversion complete)

Other Types

There are plenty

- Flash ADC is more expensive (more hardware) but fast
- SAR ADC is cheaper, but slower

DAC

- Converting voltages back to analog
 - For anything where on/off is not great
 - Dimming lights
 - Amount of gas/brake in a car
 - Audio

https://www.youtube.com/watch? v=xNWv7htg7 c

Binary-Weighted-Input DAC

Op-amp in summing mode

- Resistors scaled like ADC, MSB = half of

voltage

Gives 15output levels

$$I_0 = \frac{V}{8R}$$

$$I_1 = \frac{V}{4R}$$

$$I_2 = \frac{V}{2R}$$

$$I_3 = \frac{V}{R}$$

ADC & DAC

Common in most systems today

Simplified block diagram of a digital cellular phone.

Reading

- This lecture
 - Sections 12.1-12.3
- Next lecture
 - Sections 13.6-13.9