

ANTICIPATING WEATHER & CLIMATE RISK IN ENERGY SYSTEMS

David Brayshaw

Professor of Climate Science and Energy Meteorology Lead: Energy-Meteorology research group d.j.brayshaw@reading.ac.uk

Challenges in Energy-Climate Modelling

- Climate change is driving a complete transformation of the electricity sector
 - Rapid growth of renewables such as wind & solar (global investment of US\$242 billion in 2020)
 - Electrification of other sectors: transport & heating
- Fundamentally changes exposure of energy-system to weather
 - Need supply (generation) and demand (use of power) to balance quasi-instantaneously
 - Imperfect foresight as both highly weather-dependent
- Key issues:
 - Managing weather/climate risk in the power system today (i.e., operations)
 - Designing power systems that are robust to climate uncertainty in the future (i.e., planning)
- Today:
 - Role of numerical modelling but combining with statistical methods
 - Illustrate with "S2S" subseasonal forecasts for energy applications
 - Focus on "operational" weather/climate risk management
 - Very happy to discuss planning (e.g., capacity expansion under climate uncertainty offline!).

Why physical/numerical models?

- Drivers: differential insolation and rotation
 - Gross large-scale time-average structure of atmospheric/ocean circulation well understood...
 - ... but great complexity for understanding, simulating and predicting variations
- Physically-based numerical GFD models encode representation of 'real' atmospheric structure and behaviour
 - ... correlations, co-dependencies, co-evolution etc

What is a physical NWP model?

Initial condition ensembles

- Initial condition error grows rapidly (~days in the lower atmosphere)
- Illustration: Lorenz-63 model
 - Analogies to NWP
- Skill in longer-range forecasts (> weeks) involves initialization and/or modelling of "slower evolving" climate-system components (sea-ice, upper atmosphere, near-surface ocean, etc)

Subseasonal forecasting

- Subseasonal (or "extended-range") forecasts: approximately 1-4 weeks ahead
- Bridge "gap" between long-range outlooks and short-range weather forecasts
- Applications in planning, trading / financial risk management, scheduling (e.g., maintenance, hydropower), ...
- Previous studies suggest modest but positive forecast skill for wind over Europe (Lynch et al 2014) but...
 - Inherently probabilistic
 - Require large ensembles
 - Spatio-temporal 'aggregation'
 - Time-varying: 'windows of opportunity'
- Here statistical/NWP hybrids for energy forecasting:
 - Introducing the models, data and preliminary skill assessment
 - Part 1 Pattern forecasting / conditioning
 - Part 2 Sequential learning algorithms

H2020 S2S4E project — particular thanks to UREAD team:
Paula Gonzalez, Hannah Bloomfield, David Livings,
Emma Suckling, James Fallon & Andrew Charlton-Perez

Figure: White et al (2017)

Background: models & data

- S2S4E project: Prototype "climate service for energy"
 - ~3 year research programme over 5 EU institutes
- Open Access research dataset (publication: Bloomfield et al, 2021) includes:
 - Nationally-aggregated hourly wind, solar, demand 1950-2020 (from ERA-5 and MERRA2)
 - Two extended-range reforecast datasets for energy (versions current ~2016)
 - ECMWF-ER → 11 member hindcast 1995-2015
 - NCEP-GFS → lagged 12-member hindcast 1999-2010

Figs: Bloomfield (2019 & 2021)

Baseline gridpoint forecast

8

Gridpoint forecast skill

- Evidence for skill (to at least week 2)
- Skill depends on metric chosen
 - Typically less skill in more complex metrics
- Question: can skill be improved?
 - Pattern-based methods
 - Sequential learning algorithms

Week#	Day#
1	5-11
2	12-18
3	19-25
4	26-32

Winter (DJF) Demand-Net-Wind, weekly-mean ECMWF forecast, skill w.r.t. climatological forecast

Skill scores

Figure: Bloomfield et al, 2021, ESSD

Part 1 – Pattern-based techniques

10

This section:

Bloomfield et al (2020 & 2021, Met Applications)

European surface climate/energy strongly influenced by largescale circulation, e.g.:

 Brayshaw et al 2011; Santos-Alamillos et al 2012; Ely et al 2013; Grams et al 2017; van der Weil et al 2019; Bloomfield et al 2020

"Weather-regimes" (e.g., Cassou 2008)

Large-scale circulation potentially offers predictability:

- Error growth from initial condition (type-I) uncertainty saturates at longer leads
- Spatio-temporal averaging enhances signal-to-noise
- Physical "drivers" typically large-scale

Two approaches:

- Pattern-forecasting
- Conditional-prediction

0.1

Demand-net-wind (normalized anomaly)

Figs: Bloomfield et al (2020)

Approach 1 – Pattern forecasting

Predict the large-scale weather pattern (weekly-mean)

Use historic (observed) relationship between the large-scale weather pattern and the energy "impact"

Figs: Bloomfield et al (2021)

Pattern-forecast skill

University of Reading

- Week 1:
 - Pattern forecast outperformed by gridpoint
- ECMWF week 3:
 - Significant skill *improvement* in EnsCorr
 - No change in RPSS/CRPSS
- NCEP week 3:
 - Significant skill improvement in EnsCorr,
 - Also improvement in RPSS & CRPSS

Week#	Day#
1	5-11
2	12-18
3	19-25
4	26-32

Winter (DJF) Demand-Net-Wind, weekly-mean EnsCorr Skill w.r.t. climatological forecast

Figs: Bloomfield et al (2021)

Pattern-forecast discussion

- Interpretation:
 - Forecast = (NWP-derived prediction of large-scale pattern) x (reanalysis-derived impact model)
 - NCEP more biased (w.r.t. ERA5 truth) than ECMWF so benefits more from 2-step process
- However:
 - Predictive skill for weekly-weather patterns at leads of 15-20 days
 - Weather-patterns with stronger link to energy-system impacts (e.g., TCTs; Bloomfield et al 2019) but with some loss of predictive skill (here led to overall weaker performance than standard weather-patterns)
- Challenge: seeking optimal patterns to maximize pattern predictability and energy-system impact

Approach 2 - Conditional forecasting

Predict the large-scale weather pattern (weekly-mean)

Use gridpoint forecast only if >50% of weather pattern assignments agree on a pattern

Conditional gridpoint forecast skill

University of Reading

- Significant improvement in skill
 - ~0.2 RPSSS week 1
 - Up to ~0.5 in week 2
- Modest number of forecasts discarded
 - 8% week 1
 - 28% week 2
- Methodological decisions could be optimized, e.g.:
 - Thresholding for discard/accept

Week#	Day#
1	5-11
2	12-18
3	19-25
4	26-32

Winter (DJF) Demand-Net-Wind, weekly-mean RPSS terciles NCEP forecast skill w.r.t. climatological forecast

Figs: Bloomfield et al (2021)

Conditional gridpoint forecast skill

- Significant improvement in skill
 - ~0.2 RPSSS week 1
 - Up to ~0.5 in week 2
- Modest number of forecasts discarded
 - 8% week 1
 - Part 1 Summary for pattern-based methods
- Significant possibilities for enhancing "modest skill" NWP at extended range Met
 - Weekly-mean weather regimes predictability at leads of ~10-15 days
 - Pattern-forecast "2-step approach" compensates for deficiencies in NWP surface representation
 - Conditional forecasting enables intelligent use of grid-point forecasts

Winter (DJF) Demand-Net-Wind, weekly-mean RPSS terciles NCEP forecast skill w.r.t. climatological forecast Cond WR Cond WR - GP

Z0-3Z 0.0

0.4 RPSS 0.6

0.8 -0.5 - 0.3 - 0.1 0.1

Figs: Bloomfield et al (2021)

0.2

RPSS gain from conditioning

Part 2 – Sequential Learning Algorithms

- This section follows Gonzalez et al 2021 (QJ Royal Met Soc)
- Multiple NWP systems (here NCEP-GFS/ECMWF-ER but also UKMO, DWD, MeteoFrance etc)
 - All have deficiencies, all have limited ensemble size
 - Wish to 'combine' to produce a single 'best' forecast
 - Possible also other expert datastreams (e.g., statistical forecasts) with predictive power
- Most approaches applied to NWP presently tend to:
 - Apply 'fixed weighting' schemes to component forecasts (based on a prior skill assessment)
 - Produce deterministic 'point forecast' output
 - Combine NWP forecasts but not other expert datastreams
- Sequential learning algorithms (SLAs) may offer many benefits:
 - Weighting evolves dynamically (adapts to skill changes, no need for offline retraining)
 - Probabilistic forecast output
 - Combine multiple types of forecast expert (not limited to NWP)

SLA - Methods

University of Reading

- Language & terminology (for those more familiar with NWP!):
 - NWP ensemble properties (e.g., quantiles) → 'experts'
 - Also reanalysis, statistical predictors etc → 'experts'
 - Thanks INI "Maths of Energy Systems" programme (2019).
- Here, using the converted-to-energy datasets discussed previously over a common period (1999-2010):
 - ECMWF ER 11-member hindcast
 - → Experts: MIN, Q10, Q35, Q50, Q65, Q90, MAX
 - NCEP GFS lagged 12-member hindcast
 - → Experts: MIN, Q10, Q35, Q50, Q65, Q90, MAX
 - ERA5 'observations'
 - **>** Experts: Climatology Q10, Q35, Q50, Q65, Q90
 - → Experts: Seasonal climatology MAX MIN
 - → Expert: Last week's weather PERS
 - → Expert: Last year's weather PERS_1YR
- 4 different SLAs (of 2 basic types) open source packages
 - In all cases, a 'genuine' forecast is being made

Name	Description
ВОА	Bernstein Online Aggregation
EGA	Exponentiate Gradient Algorithm
BOA_NWP	BOA restricted to NWP experts
EGA_NWP	EGA restricted to NWP experts

SLA methods – example weight evolution

SLA methods – example weight evolution

SLA forecast skill

University of Reading

- Pinball loss (~CRPSS) referenced to "Equal Weights NWP"
- UK Demand forecast
- Schemes ordered L→R on week 3
 - week 1: days 1–7;
 - week 2: days 8-14;
 - week 3: days 15-21;
 - week 4: days 22–28;
 - week 5: days 29–35.

Fig: Gonzalez et al 2021

SLA forecast skill – week 1

University of Reading

- Pinball loss (~CRPSS) referenced to "Equal Weights NWP"
- UK Demand forecast
- Schemes ordered L→R on week 3
 - week 1: days 1–7;
 - week 2: days 8–14;
 - week 3: days 15–21;
 - week 4: days 22–28;
 - week 5: days 29–35.
- Week 1 (blue dots):
 - ECMWF best forecast (beats any combinations)
 - CLIM worst forecast (and NCEP poor**)
 - SLAs (BOA, EGA, BOA_NWP, EGA_NWP):
 - Outperform "Equal Weights"
 - Are outperformed by ECMWF

^{**} Note: NCEP's relatively poor performance compared to ECMWF can be partly attributed to the use of ERA-5 (based on the ECMWF model) as the reference 'truth'

SLA forecast skill – week 3

University of Reading

- Week 3 (days 15-21) orange squares
- SLAs (EGA and BOA):
 - Outperform any single forecast
 - Outperform Equal Weights (~10%)
- Adding "reanalysis experts" advantageous (few %)
 - EGA > EGA_NWP
 - BOA > BOA NWP
- ECMWF best single forecast but outperformed by all combination schemes (EGA, BOA and, marginally, Equal-weights)
- Note: qualitative behaviour is robust across case studies examined but "best" SLA (and quantitative improvement) varies

Fig: Gonzalez et al 2021

The role of weights

ECMWF > NCEP

Longer leads → more "climatology"

Skew in forecast quantiles

The role of weights

a) UK demand - week3 forecast

SLA forecast skill – week 3

• Week 3 (days 15-21) – orange squares

(b) Q-mean improvement relative to EW_NWP UK Demand – years 4–12 (2002–2010)

Outperform any single forecast

Outporform Equal Weights (~100/)

Part 2 – Summary for Sequential Learning Algorithms

- Significant possibilities for enhancing "modest skill" NWP (here, at extended range)
- By construction well-suited to operations, no need for offline training / refitting
- Able to combine multiple datastreams and adapt to change in skill
- Need for further understanding of the role played by the weights:
 - Residual bias adjustment, responding to "slow" evolution or learning "new" predictability?

Forecast schemes

Summary

- Numerical Weather Prediction (NWP) models are a powerful tool
 - High-quality probabilistic (ensemble) forecasts, embedding physical behaviours and structures
- Nevertheless, in many cases NWP can be enhanced by statistical methods, e.g.:
 - Pattern-based and conditional forecasts
 - Sequential Learning Algorithms
- Sequential learning algorithms highly flexible
 - Significant improvements in skill
 - Open source code/packages
 - Well-suited to operations (no need for offline training, adapts when models/skill changes)
 - Combine multiple "expert" prediction streams
 - ... but somewhat "black box" regards weight evolution need for more understanding
- Not discussed the decision-process
 - Forecast skill into forecast value (decision outcomes) often related to optimization
 - See Brayshaw et al (2020, Met. Applications) for discussion (operations and planning)

Closing remarks

- Next Generation Challenges in Energy-Climate Modelling workshop
 - 14th 16th September 2022
 - Free to attend, highly interactive and opportunity to present research
 - See also Bloomfield et al (2021, Bull. Am. Met. Soc.) for overview of past events
- Climate Services and Climate Impact Modelling course
 - Starts January 2023
 - https://www.reading.ac.uk/meteorology/online-courses/classes

Contact and references

- David Brayshaw: <u>d.j.brayshaw@reading.ac.uk</u>
- Bloomfield, H. C., Brayshaw, D. J., Gonzalez, P. L. M. and Charlton-Perez, A. (2021) Pattern-based conditioning enhances sub-seasonal prediction skill of European national energy variables. Meteorological Applications, 28 (4). e2018. ISSN 1469-8080 doi: https://doi.org/10.1002/met.2018
- Bloomfield, H. C., Brayshaw, D. J., Gonzalez, P. L. M. and Charlton-Perez, A. (2021) Sub-seasonal forecasts of demand, wind power and solar power generation for 28 European Countries. Earth System Science Data, 13 (5). ISSN 1866-3516 doi: https://doi.org/10.5194/essd-13-2259-2021
- Bloomfield, H., Gonzalez, P., Lundquist, J., Stoop, L., Browell, J., Dargaville, R., De Felice, M., Gruber, K., Hilbers, A., Kies, A., Panteli, M., Thornton, H., Wohland, J., Zeyringer, M. and Brayshaw, D. (2021) The importance of weather and climate to energy systems: a workshop on next generation challenges in energy-climate modelling. Bulletin of the American Meteorological Society, 102 (1). E159-E167. ISSN 1520-0477 doi: https://doi.org/10.1175/BAMS-D-20-0256.1
- Bloomfield, H. C., Brayshaw, D. J. and Charlton-Perez, A. J. (2020) Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types. Meteorological Applications, 27 (1). e1858. ISSN 1469-8080 doi: https://doi.org/10.1002/met.1858
- Brayshaw, D. J., Halford, A., Smith, S. and Kjeld, J. (2020) Quantifying the potential for improved management of weather risk using subseasonal forecasting: the case of UK telecommunications infrastructure. Meteorological Applications, 27 (1). e1849. ISSN 1469-8080 doi: https://doi.org/10.1002/met.1849
- Brayshaw, D. J., Troccoli, A., Fordham, R. and Methven, J. (2011) *The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: a case study over the <u>UK.</u> Renewable Energy, 36 (8). pp. 2087-2096. ISSN 0960-1481 doi: https://doi.org/10.1016/j.renene.2011.01.025*
- Ely, C. R., Brayshaw, D. J., Methven, J., Cox, J. and Pearce, O. (2013) Implications of the North Atlantic Oscillation for a UK–Norway renewable power system. Energy Policy, 62. pp. 1420-1427. ISSN 0301-4215 doi: https://doi.org/10.1016/j.enpol.2013.06.037
- Gonzalez, P. L. M., Brayshaw, D. J. and Ziel, F. (2021) A new approach to extended-range multi-model forecasting: sequential learning algorithms. Quarterly Journal of the Royal Meteorological Society. ISSN 1477-870X doi: https://doi.org/10.1002/QJ.4177