One-to-one and Onto

One-to-one and Onto (1)

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (*injective*) if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at most one solution x in \mathbb{R}^n .

Equivalent definitions:

- For every vector b in \mathbb{R}^m , the equation T(x) = b has one or zero solutions x in \mathbb{R}^n
- ➤ Different inputs of *T* have different outputs
- ightharpoonup If T(u) = T(v) then u = v

T is <u>not</u> one-to-one if (equivalent statements below)

- \triangleright There exists some vector b in \mathbb{R}^m such that the equation T(x) = b has more than one solution
- \triangleright There are two different inputs of T with the same output
- ightharpoonup There exist vectors u, v such that $u \neq v$ but T(u) = T(v)

One-to-one and Onto (2)

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (*injective*) if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at most one solution x in \mathbb{R}^n .

One-to-one and Onto (3)

Examples (single variable functions):

- $F: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$ is not one-to-one since $\sin(0) = \sin(\pi) = 0$; 0 and π have the same output. The equation $\sin x = 0$ actually has infinitely many solutions: $k\pi$ where k is any integer.
- $> g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = e^x$ is one-to-one since g(x) = g(y) implies that x = y; $e^x = e^y \implies \ln(e^x) = \ln(e^y) \implies x = y$, or note that the equation $e^x = C$ has one solution, ln C, if C > 0 and no solutions if $C \le 0$.
- $p: \mathbb{R} \to \mathbb{R}$ defined by $p(x) = x^3$ is one-to-one since $x^3 = y^3$ implies that x = y (taking the cube root of both sides)
- \Rightarrow $q: \mathbb{R} \to \mathbb{R}$ defined by $q(x) = x^3 x$ is not one-to-one since q(0) = q(1) = q(-1) = 0; these are the solutions to the equation $x^3 x = 0$ ($\Rightarrow x(x-1)(x+1) = 0 \Rightarrow x = 0,1,-1$)

One-to-one and Onto (4)

Theorem: Let A be an $m \times n$ matrix, and let $T_A = Ax$ be the corresponding matrix transformation. The following statements are equivalent:

- 1. *T* is one-to one
- 2. For every b in \mathbb{R}^m the equation T(x) = b has at most one solution
- 3. For every b in \mathbb{R}^m the equation Ax = b has a unique solution or is inconsistent
- 4. Ax = 0 has only the trivial solution \checkmark
- 5. The columns of *A* are linearly independent
- 6. A has a pivot in every column
- 7. The range of T has dimension n

Proof: (1),(2) and (3) are equivalent by definition; (3) and (4) are equivalent since if Ax = b has a solution it must be a translate of the zero vector which is the solution of Ax = 0 which is a single vector (in other words there are no free variables); (4), (5) and (6) are equivalent as a result of the definition of linear independence; (6) and (7) are equivalent because range of T is Col(A) and rank(A) is equal to the number of pivot columns.

One-to-one and Onto (5)

Example 1

Let
$$A = \begin{bmatrix} 2 & 4 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$$
. Is T_A defined by $T_A(x) = Ax$ one-to-one?
$$\begin{bmatrix} 2 & 4 \\ 0 & 1 \\ 1 & 2 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix}$$

Example 2

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. Is T_A defined by $T_A(x) = Ax$ one-to-one? If not, find two different vectors u, v such that $T_A(u) = T_A(v)$.

We then $T_A(u) = T_A(v)$ for example, let $v = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $T_A(u) = T_A(u)$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for example, let $T_A(u) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

One-to-one and Onto (6)

Example 3

Example 4

Let
$$A = \begin{bmatrix} 1 & -1 & 3 \\ -2 & 2 & -6 \end{bmatrix}$$
. Is T_A defined by $T_A(x) = Ax$ one-to-one? If not, find two different vectors u, v such that $T_A(u) = T_A(v)$.

$$\begin{bmatrix} 1 & -1 & 3 \\ -2 & 2 & -6 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_1} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_2} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_2} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_2} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_2} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_2} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_2} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_2} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbb{R}_2 + 2\mathbb{R}_2} \begin{bmatrix} 1$$

One-to-one and Onto (7)

Some observations

 $ightharpoonup T_A$ is <u>not</u> one-to-one \Leftrightarrow Nul(A) is not the zero space \Leftrightarrow nullity(A) > 0

➤ Transformations whose associated matrices are wide (n > m) are <u>not</u> one-to-one. (Each column and each row can only contain one pivot, so in order to have a pivot in every column, A must have at least as many rows as columns, so we need $n \le m$.) Geometric interpretation, - for example, let A be a 2 × 3 matrix and let $T_A: \mathbb{R}^3 \to \mathbb{R}^2$ be the associated transformation. T_A cannot be one-to-one, - \mathbb{R}^3 is too big to admit a one-to-one transformation into \mathbb{R}^2 .

One-to-one and Onto (8)

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (*surjective*) if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at least one solution x in \mathbb{R}^n .

Equivalent definitions:

- \triangleright Range of *T* is equal to the codomain of *T*.
- > Every vector in the codomain is the output of some input vector.

T is <u>not</u> onto if (equivalent statements below)

- \triangleright The range of *T* is smaller than the codomain of *T*.
- \triangleright There exists a vector b in \mathbb{R}^m such that the equation T(x) = b does not have a solution.
- > There is a vector in the codomain that is not the output of any input vector.

One-to-one and Onto (9)

Examples (single variable functions):

- $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$ is not onto since, for example, $\sin x = 2$ has no solution. The range of f is the interval [-1,1] which is smaller than the codomain \mathbb{R} .
- $\triangleright g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = e^x$ is not onto because the range of g is $(0, \infty)$ which is smaller than the codomain.
- $p: \mathbb{R} \to \mathbb{R}$ defined by $p(x) = x^3$ is onto since the equation $x^3 = b$ always has the solution $x = \sqrt[3]{b}$.
- $ightharpoonup q: \mathbb{R} \to \mathbb{R}$ defined by $q(x) = x^3 x$ is onto since $x^3 x = b$ always has a solution, it is a root of the polynomial $x^3 x b$ which is a cubic and must intersect the x-axis at least once guaranteeing at least one real root.

One-to-one and Onto (10)

Theorem: Let *A* be an $m \times n$ matrix, and let $T_A = Ax$ be the corresponding matrix transformation. The following statements are equivalent:

- 1. *T* is onto
- 2. T(x) = b has at least one solution for every b in \mathbb{R}^m
- 3. Ax = b is consistent for every b in \mathbb{R}^m
- 4. The columns of A span all of \mathbb{R}^m
- 5. A has a pivot in every row
- 6. The range of T has dimension m

Proof: (1),(2) and (3) are equivalent by definition; (3), (4) and (6) are equivalent since any b for which Ax = b is consistent must be a linear combination of the column vectors of A and the dimension of $Col(A) = \mathbb{R}^m$ is m. Here's why (5) \Leftrightarrow (3):

If A has a pivot in every row then its RREF potentially looks like $\begin{bmatrix} 1 & 0 & * & 0 & * \\ 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 1 & * \end{bmatrix}$ and when

augmented with any b it will become $\begin{bmatrix} 1 & 0 & * & 0 & * & * \\ 0 & 1 & * & 0 & * & * \\ 0 & 0 & 0 & 1 & * & * \end{bmatrix}$ which is consistent. Conversely, if there

is a row of zeros, then Ax = b will be inconsistent for some b.

One-to-one and Onto (11)

Example 5

Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
. Is T_A defined by $T_A(x) = Ax$ onto?

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{A \text{ is onto become there is a proof in every now.}}$$

Example 6

$$T(x) = b$$
 has no solution.

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Is T_A defined by $T_A(x) = Ax$ onto? If not, find a vector b in \mathbb{R}^3 such that $T(x) = b$ has no solution.

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Let $b = \begin{bmatrix} 2 \\ 3$

One-to-one and Onto (12)

Example 7

Let $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{bmatrix}$. Is T_A defined by $T_A(x) = Ax$ onto? If not, find a basis for the range of T_A and then find a vector b in \mathbb{R}^2 such that T(x) = b has no solution.

$$\begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{Ne + outo}$$
about

Ronge of $I_A = coe(A) = span([-1])$

Any vector not course to $[-1]$ will do.

$$L_1 = [-1]$$

$$L_2 = [-1]$$

One-to-one and Onto (13)

Some observations

Let *A* be an $m \times n$ matrix. T_A is <u>not</u> onto \Leftrightarrow Col(*A*) is a subspace of \mathbb{R}^m whose dimension is less than m, that is, rank(*A*) < m

Transformations whose associated matrices are tall (n < m) are <u>not</u> onto. (Each column and each row can only contain one pivot, so in order to have a pivot in every row, A must have at least as many columns as rows, so we need $n \ge m$.) Geometric interpretation, - for example, let A be a 3×2 matrix and let $T_A: \mathbb{R}^2 \to \mathbb{R}^3$ be the associated transformation. T_A cannot be onto, - \mathbb{R}^2 is too small (not enough vectors to fill \mathbb{R}^3).

One-to-one and Onto (14)

Some observations

ightharpoonup Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a transformation associated with one of the following matrices:

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (*T* is a reflection)

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 (*T* is a dilation)

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (*T* is the identity)

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 (*T* is a rotation)

In all of the cases above T is both one-to-one and onto. A 2 × 2 matrix has a pivot in every column if and only if it has a pivot in every row. So, T_A is one-to-one if and only if it is onto.

True for any T_A where A is a square $n \times n$ matrix. Conversely, if $T_A : \mathbb{R}^m \to \mathbb{R}^n$ is both one-to one and onto then m = n.