

IGBT

Combi Pack

IXGA/IXGP12N100U1 IXGA/IXGP12N100AU1

V _{CES}	L _{C25}	V _{CE(sat)}
1000 V	24 A	3.5 V
1000 V	24 A	4.0 V

Preliminary Data Sheet

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	1000	V	
V _{CGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}; R_{GE} = 1 \text{ M}\Omega$	1000	V	
V _{GES}	Continuous	±20	V	
\mathbf{V}_{GEM}	Transient	±30	V	
I _{C25}	T _c = 25°C	24	A	
I _{C90}	$T_{C} = 90^{\circ}C$	12	Α	
I _{CM}	$T_{\rm C} = 25^{\circ} \rm C$, 1 ms	48	Α	
SSOA	$V_{GE} = 15 \text{ V}, T_{VJ} = 125^{\circ}\text{C}, R_{G} = 150 \Omega$	I _{CM} = 24	A	
(RBSOA)	Clamped inductive load, L = 300 μH	$@ 0.8 V_{CES}$		
P _c	T _C = 25°C	100	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T_{stg}		-55 + 150	°C	
M _d	Mounting torque with screw M3	0.45/4	Nm/lb.in.	
•	Mounting torque with screw M3.5	0.55/5	Nm/lb.in.	
Weight		4	g	
	ad temperature for soldering 62 in.) from case for 10 s	300	°C	

Symbol (T _J = 25°C,	Test Conditions unless otherwise specified)	Min.	Charact Typ.	eristic Va	alues
BV _{ces}	$I_{\rm C}=3$ mA, $V_{\rm GE}=0$ V	1000			V
$V_{GE(th)}$	$I_{C} = 250 \mu A, V_{GE} = V_{GE}$	2.5		5.5	V
I _{CES}	$V_{CE} = 0.8, V_{CES}$	T _J = 25°C		300	<u>μ</u> Α
	$V_{GE} = 0 V$	$T_J = 125^{\circ}C$		3	mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm CE90}, V_{\rm GE} = 15$	12N100		3.5	V
		12N100A		4.0	V

TO-263 AA (IXGA)

Features

- International standard packages JEDEC TO-220AB and TO-263AA
- IGBT with antiparallel FRED in one package
- Second generation HDMOS[™] process
- Low V_{CE(sat)}
 for minimum on-state conduction losses
- MOS Gate turn-on
 - drive simplicity
- Fast Recovery Expitaxial Diode (FRED)
 - soft recovery with low I_{RM}

Applications

- · AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- · Easy to mount with one screw
- Space savings (two devices in one package)
- Reduces assembly time and cost
- High power density

IXYS reserves the right to change limits, test conditions, and dimensions.

95592A (3/97)

Symbol	Symbol Test Conditions			Characteristic Values		
$(T_{J} = 25^{\circ})$	C, unless otherwise specified)	Min.	Тур.	Max.		
g_{fs}	$I_{c} = I_{c90}$; $V_{cE} = 10 \text{ V}$,	6	10		S	
	Pulse test, t ≤ 300 μs, duty cycle ≤ 2 %	0				
Q_g			65	90	nC	
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \rm V_{\rm CES}$		8	20	nC	
Q _{gc}	J		24	45	nC	
t _{d(on)}	√ Inductive load, T _⊥ = 25°C		100		ns	
t _{ri}	$I_{\rm C} = I_{\rm C90}, V_{\rm GF} = 15 \text{ V}, L = 300 \mu\text{H}$		200		ns	
$\mathbf{t}_{d(off)}$	$V_{CE} = 800 \text{ V}, R_{G} = R_{off} = 120 \Omega$		850	1000	ns	
t _{fi}	Remarks: Switching times may	12N100A	500	700	ns	
	increase for V _{CE} (Clamp) > 0.8 V _{CES} ,	12N100	800	1000	ns	
E_{off}	higher T _J or increased R _G	12N100A	4	6	mJ	
t _{d(on)}	\		100		ns	
t _{ri}	Inductive load, T _J = 125°C		200		ns	
E _{on}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}, L = 300 \mu\text{H}$		1.1		mJ	
t _{d(off)}	$V_{CE} = 800 \text{ V}, R_{G} = R_{off} = 120 \Omega$		900		ns	
t _{fi}	Remarks: Switching times may	12N100A	950		ns	
	increase for V_{CE} (Clamp) > 0.8 V_{CES} ,	12N100	1250		ns	
E _{off}	∫ higher T _J or increased R _G	12N100A	8		mJ	
		12N100	10		mJ	
R _{thJC}				1.25	K/W	
R _{thCK}			0.25		K/W	

Reverse Diode (FRED) Characteristic Values ($T_J = 25^{\circ}C$, unless otherwise specified)

Symbol	Test Conditions Min.	Тур.	Max.	
$\overline{V_{F}}$	$I_{F} = 8A, V_{GE} = 0 V,$		2.75	V
	Pulse test, $t \leq 300~\mu s,$ duty cycle d $\leq 2~\%$			
I _{RM}	$I_F = I_{C90}, V_{GE} = 0 \text{ V}, -di_F/dt = 100 \text{ A/}\mu\text{s}$	6.5		Α
t _{rr}	$V_{R} = 100 \text{ V}, T_{J} = 125^{\circ}\text{C}$	140		ns
	$I_{F} = 1 \text{ A, -di/dt} = 50 \text{ A/}\mu\text{s, V}_{R} = 30 \text{ V T}_{J} = 25^{\circ}\text{C}$	50	60	ns
R _{thJC}			2.5	K/W

TO-220 AB (IXGP) Outline M N N N 1 2 3 4 F B 1 3 4 F B 1 3 4 F B 1 3 4 F B 1 3 4 F B 1 4 F B 1 5 5 F B 1 5 F

Dim.	Millimeter		Inches		
	Min.	Max.	Min.	Max.	
Α	12.70	13.97	0.500	0.550	
В	14.73	16.00	0.580	0.630	
С	9.91	10.66	0.390	0.420	
D	3.54	4.08	0.139	0.161	
Е	5.85	6.85	0.230	0.270	
F	2.54	3.18	0.100	0.125	
G	1.15	1.65	0.045	0.065	
Н	2.79	5.84	0.110	0.230	
J	0.64	1.01	0.025	0.040	
K	2.54	BSC	0.100	BSC	
М	4.32	4.82	0.170	0.190	
N	1.14	1.39	0.045	0.055	
Q	0.35	0.56	0.014	0.022	
R	2.29	2.79	0.090	0.110	

TO-263 AA (IXGA) Outline

Mill	illimeter Inches		
Min.	Max.	Min.	Max.
4.06	4.83	.160	.190
2.03	2.79	.080	.110
0.51	0.99	.020	.039
1.14	1.40	.045	.055
0.46	0.74	.018	.029
1.14	1.40	.045	.055
8.64	9.65	.340	.380
7.11	8.13	.280	.320
9.65	10.29	.380	.405
6.86	8.13	.270	.320
2.54	BSC	.100	BSC
14.61	15.88	.575	.625
2.29	2.79	.090	.110
1.02	1.40	.040	.055
1.27	1.78	.050	.070
0	0.38	0	.015
0.46	0.74	.018	.029
	Min. 4.06 2.03 0.51 1.14 0.46 1.14 8.64 7.11 9.65 6.86 2.54 14.61 2.29 1.02 1.27 0	Min. Max. 4.06 4.83 2.03 2.79 0.51 0.99 1.14 1.40 0.46 0.74 1.14 1.40 8.64 9.65 7.11 8.13 9.65 10.29 6.86 8.13 2.54 BSC 14.61 15.88 2.29 1.79 1.02 1.40 1.27 1.78 0 0.38	Min. Max. Min. 4.06 4.83 .160 2.03 2.79 .080 0.51 0.99 .020 1.14 1.40 .045 1.44 1.40 .045 8.64 9.65 .340 7.11 8.13 .280 9.65 10.29 .380 6.86 8.13 .270 2.54 BSC .100 14.61 15.88 .575 2.29 2.79 .090 1.02 1.40 .040 1.27 1.78 .050 0 0.38 0

Figure 1. Saturation Voltage Characteristics

Figure 3. Saturation Voltage Characteristics

Figure 5. Admittance Curves

Figure 2. Extended Output Characteristics

Figure 4. Temperature Dependence of $V_{\text{CE(sat)}}$

Figure 6. Capacitance Curves

© 2000 IXYS All rights reserved

Figure 7. Dependence of tfi and E_{OFF} on I_{C} .

Figure 9. Gate Charge

Figure 8. Dependence of tfi and E_{OFF} on R_g.

Figure 10. Turn-off Safe Operating Area

Figure 11. Transient Thermal Resistance