Задание 11-3. Прогрессивная электростатика

В современной физике широко распространены различные векторные методы решения прикладных задач. Наглядность и простота векторной алгебры, векторных диаграмм позволяют эффектно и эффективно справляться с задачами различной степени сложности.

В качестве примера рассмотрим электростатическую систему из n одинаковых маленьких положительно заряженных шариков, расположенных в вакууме в вершинах правильного n – угольника (Puc. 1).

Расстояние от центра 0 правильного многоугольника до любой из его вершин равно R.

Угол α между соседними радиусами, проведенными из точки 0 к любым соседним вершинами правильного n – угольника, обозначим через α (см. Рис. 1).

Величины электрических зарядов (q_i) шариков занумеруем по часовой стрелке в том же порядке, что и шарики $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ (см. Рис. 1).

Далее будем рассматривать различные варианты прогрессий, которые образуют электрические заряды (q_i) шариков и напряженности \vec{E}_i электростатических полей, создаваемых ими в центре 0 правильного многоугольника.

Справочные данные и параметры рассматриваемой системы: электрическая постоянная $\varepsilon_0=8,85\cdot 10^{-12}~\Phi/\mathrm{m}$, $R=1,52~\mathrm{m}$, $q_0=151~\mathrm{nK}$ л, $\pi=3,14$.

Часть 1. Арифметическая электростатика

- **1.1** Пусть в вершинах правильного n угольника находятся одинаковые заряды q_0 , т.е. все
- $q_i = q_0$. Методом «мысленного поворота» найдите напряженность \vec{E}_1 электростатического поля, создаваемого всеми зарядами, в центре 0 правильного многоугольника.
- **1.2** Пусть теперь электрические заряды шариков $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ образуют арифметическую прогрессию с первым членом $a_1 = q_1 = q_0$ и разностью $d = q_0$ (Рис. 2). Получите формулу для напряженности \vec{E}_2 электростатического поля, создаваемого всеми зарядами, в центре 0 правильного многоугольника.

1.3 Вычислите \vec{E}_2 для правильного многоугольника, у которого вектор \vec{E}_2 «нацелен» на третью вершину, в которой находится заряд $3q_0$.

Часть 2. Геометрическая электростатика

В этой части задачи величины электрических зарядов $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ вершинах правильного n — угольника образуют геометрическую прогрессию (Рис. 3) с первым членом $b_1 = q_1 = q_0$ и знаменателем q=2 .

- **2.1** Найдите напряженность \vec{E}_0 электростатического поля, создаваемого первым (наименьшим) зарядом $q_1=q_0$ в центре 0 правильного многоугольника.
- **2.2** Выведите формулу для напряженности \vec{E}_3 электростатического поля, создаваемого всеми зарядами, в центре O правильного многоугольника.

