Introduction to Programming and Predictive Analytics for Business IFI 8410

Final Project Presentation

Outline

- Team introductions
- Business or research question
- Data
- Methods and results
- Limitations and extensions

Team Introductions

- Tyra Bryant- GSU MBA, 2ND Semester
- Chris Drummond- GSU MBA, 4th Semester

Research Question

- Which characteristic has the greatest effect on diamond pricing?
 - Those characteristics include; cut, clarity, color, and carat
 - Dependent Variable: Y=Price
 - We expected clarity to have the biggest effect on diamond price.
- How does the analytics from a larger dataset vary from that of the findings of a smaller dataset?
- When the larger data set is combined with the smaller dataset, does it confirm or differ from the findings of the smaller dataset?

In [5]: ▶ rings.describe()

Out[5]:

	carat	color	clarity	cut	channel	store	price
count	425.000000	425.000000	425.000000	425.000000	425.000000	425.000000	425.000000
mean	1.040685	4.312941	6.134118	0.362353	1.609412	9.240000	6355.992941
std	0.421967	1.864122	1.604354	0.481247	0.718952	2.597858	4404.237376
min	0.200000	1.000000	2.000000	0.000000	0.000000	1.000000	497.000000
25%	0.720000	3.000000	5.000000	0.000000	1.000000	10.000000	3430.000000
50%	1.020000	4.000000	6.000000	0.000000	2.000000	10.000000	5476.000000
75%	1.210000	6.000000	7.000000	1.000000	2.000000	11.000000	7792.000000
max	2.480000	9.000000	10.000000	1.000000	2.000000	12.000000	27575.000000

Small Data Summary
Statistics
(Rings)

Y Value: Price

Minimum: \$497.00

Average: \$6355.00

Maximum: \$27,575.00

425 rows x 7 columns

In [10]: N Drings.describe()

Out[10]:

	carat	cut	color	clarity	depth	table	price	X	у	1
count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
mean	0.797940	2.553003	2.594197	3.835150	61.749405	57.457184	3932.799722	5.731157	5.734526	3.538734
std	0.474011	1.027708	1.701105	1.724591	1.432621	2.234491	3989.439738	1.121761	1.142135	0.705699
min	0.200000	0.000000	0.000000	0.000000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
25%	0.400000	2.000000	1.000000	2.000000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000
50%	0.700000	2.000000	3.000000	4.000000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
75%	1.040000	3.000000	4.000000	5.000000	62.500000	59.000000	5324.250000	6.540000	6.540000	4.040000
max	5.010000	4.000000	6.000000	7.000000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000

• Big Data Summary Statistics (Rings)

Y Value: Price

Minimum: \$326.00

Average: \$3932.79

Maximum: \$18,823.00

[53940 rows x 10 columns]>

Out[392]:

	carat	cut	color	clarity	price
count	54365.000000	54365.000000	54365.000000	54365.000000	54365.000000
mean	0.799837	2.535363	4.478635	3.924198	3953.371783
std	0.474105	1.042801	1.945218	1.679012	4004.661030
min	0.200000	0.000000	1.000000	1.000000	326.000000
25%	0.400000	2.000000	3.000000	2.000000	956.000000
50%	0.700000	2.000000	5.000000	4.000000	2427.000000
75%	1.040000	3.000000	6.000000	5.000000	5364.000000
max	5.010000	4.000000	9.000000	10.000000	27655.000000

Combined Data Summary Statistics (Brings)

Y Value: Price

Minimum: \$326.00

Average: \$3,953.37

Maximum: \$27,655.00

Carat Price Distribution

Distribution of Diamond Price

Small Dataset

Distribution of Diamond Price

Combined Dataset


```
avg_labels = ['average and below', 'above average']
In [11]:
            avg_bins = [-100000, 6355.992941, 100000]
            rings['price_average'] = pd.cut(rings['price'], bins=avg_bins, labels=avg_labels)
            rings
```

Out[11]:

	carat	color	clarity	cut	channel	store	price	price_average
0	0.826	4	7	1	1	1	7775	above average
1	0.996	5	6	1	1	1	9850	above average
2	1.070	4	7	1	1	1	10950	above average
3	1.070	7	7	0	1	1	7500	above average
4	1.010	8	6	0	1	1	6995	above average
420	0.780	6	8	0	0	12	6699	above average
421	0.375	6	8	0	0	12	1542	average and below
422	0.580	7	6	0	0	12	3389	average and below
423	0.395	4	8	0	0	12	1850	average and below
424	0.390	5	8	0	0	12	1761	average and below

425 rows × 8

ó	4	7	1	1	1	7775	above average		1	2	3	4	5	6	7	8	9				
6	5	6	1	1	1	9850	above average	Color	D	E	F	Н	1	J	K	L	M				
0	4	7	1	1	1	10950	above average		-				•								
0	7	7	0	1	1	7500	above average		1	0											
0	8	6	0	1	1	6995	above average	Cut	Ideal	Not Ideal											
										lueai	l										
0	6	8	0	0	12	6699	above average		1	2	0										
5	6	8	0	0	12	1542	average and below	Channel	Indep	Inter	Mall										
0	7	6	0	0	12	3389	average and below		•	net											
5	4	8	0	0	12	1850	average and below		1	2	3	4	5	6	7	8	9	10	11	12	
0	5	8	0	0	12	1761	average and below	Store	<u> </u>	<u> </u>		R.						10		16	
	olum	ne						Store	Good 's	m's	Fred	Holla					Danf		Ashfo		
. 6 0	olum	IIS									M.	n.	an's	rs.	Kay	Zales	ord	Nile	rd	e's	

Clarity

IF VVS1 VVS2 VS1 VS2 SI1 SI2

10 11

Brings['price_average'] = pd.cut(Brings['price'], bins=a\
Brings

Out[4]:

	carat	cut	color	clarity	price	price_average
0	0.36	1	2	4	810	average and below
1	0.40	1	6	5	813	average and below
2	0.31	1	6	5	814	average and below
3	0.34	1	2	5	816	average and below
4	0.41	1	6	3	818	average and below
54360	2.00	4	2	5	18759	above average
54361	1.51	4	2	6	18777	above average
54362	2.03	4	6	2	18781	above average
54363	2.00	4	6	3	18803	above average
54364	2.00	4	9	2	18818	above average
54365 ı	rows ×	5 colu	mns			

Fair	Good	Ideal	Premium
1	2	3	4

Combined Dataset

Color Frequency

Clarity Frequency

Small Dataset

Carat Price Distribution

Carat Price Distribution

Distribution of Diamond Price

Small Dataset

Distribution of Diamond Price

Combined Dataset

Linear Regression Clarity/Color-Price

Small Dataset

Out[5]: OLS Regression Results

Dep. \	/ariable:			price	R-	squared:	0.026
	Model:			OLS	Adj. R-	0.021	
	Method:	- 1	Least So	quares	F-	-statistic:	5.558
	Date:	Wed	d, 21 Apı	2021	Prob (F-	statistic):	0.00414
	Time:		14:	:13:39	Log-Lil	kelihood:	-4162.9
No. Obser	vations:			425		AIC:	8332.
Df Re	siduals:			422		BIC:	8344.
D	f Model:			2			
Covarian	ce Type:		non	robust			
	co	ef	std err	t	P> t	[0.025	0.975
Intercept	9486.97	45 9	63.300	9.848	0.000	7593.510	1.14e+0
clarity	-384.21	63 1	31.921	-2.912	0.004	-643.520	-124.91
color	-179.49	54 1	113.537	-1.581	0.115	-402.665	43.67
Om	nibus:	136.0	10 D	urbin-W	/a son:	0.327	
Prob(Omn	ibus):	0.0	00 Jar	que-Ber	a (JB):	363.335	
	Skew:	1.5	58	Pro	ob(JB):	1.27e-79	
Kui	rtosis:	6.28	38	Cor	nd. No.	35.6	

Combined Dataset

Out[25]:	OLS Regres	ssion Results	;				
	Dep. \	/ariable:		price	R-s	squared:	0.036
		Model:		OLS	Adj. R-s	squared:	0.036
		Method:	Least 9	Squares	F-9	statistic:	1019.
		Date: V	/ed, 21 A	pr 2021	Prob (F-s	tatistic):	0.00
		Time:	1	4:06:51	Log-Lik	elihood:	-5.2711e+05
	No. Obser	vations:		54365		AIC:	1.054e+06
	Df Re	siduals:		54362		BIC:	1.054e+06
	D	f Model:		2			
	Covarian	ce Type:	no	nrobust			
		coef	std err	1	t P> t	[0.025	0.975]
	Intercept	3016.6870	57.493	52.471	0.000	2904.001	3129.373
	clarity	-175.3777	10.044	-17.461	0.000	-195.064	-155.691
	color	362.8118	8.670	41.849	0.000	345.819	379.804
	Om	nibus: 143	43.573	Durbin	-Wa n:	0.0	53
	Prob(Omn	ibus):	0.000	Jarque-E	Bera (JB):	31496.4	15
		Skew:	1.537	ı	Prob(JB):	0.0	00
	Ku	rtosis:	5.109		Cond. No.	21	.8

Linear Regression Carat/Cut - Price

Small Dataset

Out[6]: OLS Regression Results

_					
Dep. Variable	c	price	R-sc	quared:	0.780
Model	:	OLS	Adj. R-sc	quared:	0.779
Method	: Leas	t Squares	F-s	tatistic:	747.2
Date	: Wed, 21	Apr 2021	Prob (F-st	atistic): 2	2.17e-139
Time	c	14:18:26	Log-Like	lihood:	-3846.9
No. Observations	e e	425		AIC:	7700.
Df Residuals	e e	422		BIC:	7712.
Df Model	:	2			
Covariance Type	e i	nonrobust			
	coef std	err	t P> t	[0.02	5 0.975
Intercept -3635.	2801 296.	862 -12.2	0.000	4218.792	2 -3051.768
carat 9347.	7764 243.	404 38.4	0.000	3869.342	2 9826.211
cut 726.3	3226 213.	421 3.4	0.001	306.821	1 1145.824
Omnibus:	164.976	Durbin-V	Watson	1.091	
Prob(Omnibus):	0.000	Jarque-Be	ra (JB):	1166.854	
Skew:	1.486	Pr	ob(JB): 4.	18e-254	
Kurtosis:	10.554	Co	nd. No.	5.82	

Combined Dataset

Out[26]: OLS Regression Results

Dep. Varia	able:		price	R-	squared:	0.850
Mo	odel:		OLS	Adj. R-	squared:	0.850
Met	hod:	Least Sq	uares	F-	statistic:	1.543e+05
	Date: We	d, 21 Apr	2021	Prob (F-s	statistic):	0.00
Т	ime:	14:	17:09	Log-Lik	kelihood:	-4.7650e+05
No. Observati	ions:		54365		AIC:	9.530e+05
Df Resido	uals:		54362		BIC:	9.530e+05
Df Mo	odel:		2			
Covariance T	ype:	noni	obust			
	coef	std err		t P> t	[0.02	25 0.975]
Intercept -21	199.4485	22.181	-99.15	0.000	2242.92	24 -2155.974
carat 77	791.7999	14.044	554.81	0.000	7764.27	73 7819.326
cut -	-30.1770	7.072	-4.26	0.000	-44.03	-16.316
Omnibu	ıs: 1468	4.838	Durbin	-Walser.	0.9	926
Prob(Omnibu	s):	0.000 J	arque-E	Bera (JB):	132973.	848
Ske	w:	1.042	I	Prob(JB):	0	0.00
Kurtos	is: 1	0.373	(Cond. No.	1	11.0

Methods and Results

- Of the methods we've learned, which have you used, and why?
 - The most important method used was the linear regression

- Why are those methods appropriate to your business or research questions?
 - Price is a continuous value
- What are your results and interpretation of your results?
 - Most of the variables were significant to the price of diamonds

Limitations and Extensions

The original dataset lacked enough information

• Given that I was able to combine the smaller dataset to a much larger dataset, I think this is made for a richer dataset and makes the prediction more valuable/valid.

