1 Let M be a smooth manifold.

(a) Use partition of unity to show that, if F_1 , F_2 are two closed subsets of M such that $F_1 \cap F_2 = \emptyset$, then there is a smooth function f on M such that f = 1 on F_1 and f = 0 on F_2 .

Note that $\{M \setminus F_1, M \setminus F_2\}$ is an open cover of M. Let $\{\psi_1, \psi_2\}$ be a smooth partition of unity subordinate to this cover. By construction, the support of ψ_1 is contained in $M \setminus F_1$, which means that $\psi_1 \equiv 0$ on F_1 . Similarly, $\psi_2 \equiv 0$ on F_2 . Since $\psi_1 + \psi_2 \equiv 1$, we deduce that $\psi_2 \equiv 1$ on F_1 . Hence, $f = \psi_2$ is the desired function.

(b) Now let U be an open set of M (which then inherits a smooth manifold structure) and F be a closed subset such that $F \subseteq U$. Show that for any smooth function f on U, there is a smooth function \overline{f} on M such that $\overline{f}|_F = f|_F$. (We have made use of this extension result in HW2.)

Applying part (a), choose $h \in C^{\infty}(M)$ such that $h \equiv 1$ on F and $h \equiv 0$ on $M \setminus U$. We now define the smooth function $\overline{f} = f \cdot h$ on U, which we can extend to all of M by defining $\overline{f} \equiv 0$ outside of U.

By construction, \overline{f} is smooth inside of U. For a point $x \in M \setminus U$, we have $x \notin \text{supp } f$. Since the support of f is a closed set, there is a neighborhood V of x which is entirely outside of supp f. In which case, $f \equiv 0$ on V, which is clearly smooth.

2 Let S^n be the standard sphere in \mathbb{R}^{n+1} . Show that, for any $p \in S^n$, T_pS^n can be naturally identified with the subspace of vectors in \mathbb{R}^{n+1} perpendicular to p.

Consider the inclusion $\iota: S^n \hookrightarrow \mathbb{R}^{n+1}$.

We claim that the differential $\iota_*: T_pS^n \to T_p\mathbb{R}^{n+1} \cong \mathbb{R}^{n+1}$ is injective. The radial projection $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to S^n$ is a retraction, i.e., $\pi \circ \iota = \mathrm{id}$. Then functorality of the differential gives us $\pi_* \circ \iota_* = \mathrm{id}$, hence ι_* is injective.

- **3** Recall that the graph Γ of the function $f(x) = |x|, x \in \mathbb{R}$, is a smooth manifold.
- (a) Show that it is diffeomorphic to \mathbb{R} .

Note that \mathbb{R} is a smooth manifold with a global chart $id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$.

There is a global chart $\varphi : \Gamma \to \mathbb{R}$ given by $(x, |x|) \mapsto x$. By definition, this is a smooth map of manifolds.

Moreover, the inverse $\varphi^{-1}: \mathbb{R} \to \Gamma$ is also smooth:

$$\widehat{\varphi^{-1}} = \varphi \circ \varphi^{-1} \circ \mathrm{id}_{\mathbb{R}}^{-1} = \mathrm{id}_{\mathbb{R}}$$

Hence, φ is a diffeomorphism.

(b) Show that, however, there is no diffeomorphism $F: \mathbb{R}^2 \to \mathbb{R}^2$ taking \mathbb{R} to Γ (or vice versa). Here you can take \mathbb{R} to be the real axis of \mathbb{R}^2 . (**Hint**: By contradiction, assume that there is such an F. Without loss of generality, we can assume that F(0,0)=(0,0) (why?). Write F(x,y)=(g(x,y),h(x,y)). What does F taking \mathbb{R} to Γ tell you about the form of F(x,0)? This will depend on which side you are approaching the origin. Now what does this information translate to $F_*(\frac{\partial}{\partial x})$?

Per the hint, assume F is such a diffeomorphism. We may assume F(0,0)=(0,0) since translation on \mathbb{R}^2 is a diffeomorphism.

The fact that F takes \mathbb{R} to Γ tells us that F(x,0) = (g(x,0),|g(x,0)|).

At the point (a,0) we compute

$$F_*(\frac{\partial}{\partial x})(x) = \frac{\partial}{\partial x}|_{(a,0)}g$$
 and $F_*(\frac{\partial}{\partial x})(y) = \frac{\partial}{\partial x}|_{(a,0)}|g|$.

Therefore, we have

$$F_*(\frac{\partial}{\partial x}) = \left(\frac{\partial}{\partial x}\big|_{(a,0)}g\right)\frac{\partial}{\partial x} + \left(\frac{\partial}{\partial x}\big|_{(a,0)}|g|\right)\frac{\partial}{\partial y}.$$

For a < 0 we get

$$F_*(\frac{\partial}{\partial x}) = \left(\frac{\partial}{\partial x}\big|_{(a,0)}g\right)\frac{\partial}{\partial x} - \left(\frac{\partial}{\partial x}\big|_{(a,0)}g\right)\frac{\partial}{\partial y}$$

and for a > 0 we get

$$F_*(\frac{\partial}{\partial x}) = \left(\frac{\partial}{\partial x}\big|_{(a,0)}g\right)\frac{\partial}{\partial x} + \left(\frac{\partial}{\partial x}\big|_{(a,0)}g\right)\frac{\partial}{\partial y}.$$

Since F is a diffeomorphism, F_* is an isomorphism, so these are nonzero for all values of a. But then taking the limit as $a \to 0$ gives us different answers from the left and the right, which is a contradiction.

4 Lee 3-5 (second part only) Let $S^1 \subseteq \mathbb{R}^2$ be the unit circle, and let $K \subseteq \mathbb{R}^2$ be the boundary of the square of side 2 centered at the origin: $K = \{(x,y) : \max(|x|,|y|) = 1\}$. Show that there is a homeomorphism $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that $F(S^1) = K$, but there is no diffeomorphism with the same property. [Hint: let γ be a smooth curve whose image lies in S^1 , and consider the action of $dF(\gamma'(t))$ on the coordinate functions x and y.]