Постановка завдання

У результаті проведення експерименту по вивченню 2-х властивостей було обстежено N об'єктів. Результати вимірів властивостей представлені в таблиці 1. Необхідно провести перетворення отриманої сукупності даних по методу відхилень. Як результат представити:

А) розрахунки по формулах (2.5) - (2.11) (координати полюсів, перетворені значення ознак і т.д.);

- Б) координати точок у системах координат X1OX2, U1OU2 i MOW;
- В) сукупність однорідних підмножин;
- Г) висновки.

Таблиця 1 – Вхідні дані.

Підприємство, n _i	Продуктивність праці, X_1	Індекс зниження собівартості продукції,Х₂
1	4.1	4.4
2	4.3	4.5
3	4.6	4.8
4	4.7	4.7
5	4.8	4.9
6	4.9	5.1
7	5.2	5.3
8	5.5	5.4
9	5.6	5.8
10	5.8	6.7

Виконання

Виконаємо розрахунки відповідно до алгоритму, наведеного в описі методу. Вихідні дані є стимуляторами, тому крок 1 пропускаємо . Результати виконання кроків 2,3 та 4 занесемо до табл. 2. Діаграма розсіювання точок-об'єктів зображена на рис 1.

Таблиця 2.

		X ₁	X ₂	U_1	U ₂
	1	4.1	4.4	0	0
	2	4.3	4.5	0.2	0.1
	3	4.6	4.8	0.5	0.4
_	4	4.7	4.7	0.6	0.3
06'екти	5	4.8	4.9	0.7	0.5
9,90	6	4.9	5.1	0.8	0.7
	7	5.2	5.3	1.1	0.9
	8	5.5	5.4	1.4	1
	9	5.6	5.8	1.5	1.4
	10	5.8	6.7	1.7	2.3
Полюсы	Р[н]	4.1	4.4	0	0
	P[B]	5.8	6.7	1.7	2.3

Таблиця 2.1

	Матриця відстаней U10U2												
	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10			
d1	0.0000	0.2236	0.6403	0.6708	0.8602	1.0630	1.4213	1.7205	2.0518	2.8601			
d2	0.2236	0.0000	0.4243	0.4472	0.6403	0.8485	1.2042	1.5000	1.8385	2.6627	Однор	ідні підмн	южини
d3	0.6403	0.4243	0.0000	0.1414	0.2236	0.4243	0.7810	1.0817	1.4142	2.2472	Ω1=	n1, n2	
d4	0.6708	0.4472	0.1414	0.0000	0.2236	0.4472	0.7810	1.0630	1.4213	2.2825	Ω2=	n3, n4, n!	5, n6, n7
d5	0.8602	0.6403	0.2236	0.2236	0.0000	0.2236	0.5657	0.8602	1.2042	2.0591	Ω3=	n8, n9	
d6	1.0630	0.8485	0.4243	0.4472	0.2236	0.0000	0.3606	0.6708	0.9899	1.8358	Ω4=	n10	
d7	1.4213	1.2042	0.7810	0.7810	0.5657	0.3606	0.0000	0.3162	0.6403	1.5232			
d8	1.7205	1.5000	1.0817	1.0630	0.8602	0.6708	0.3162	0.0000	0.4123	1.3342			
d9	2.0518	1.8385	1.4142	1.4213	1.2042	0.9899	0.6403	0.4123	0.0000	0.9220			
d10	2.8601	2.6627	2.2472	2.2825	2.0591	1.8358	1.5232	1.3342	0.9220	0.0000	r=		
min	0.2236	0.2236	0.1414	0.1414	0.2236	0.2236	0.3162	0.3162	0.4123	0.9220	0.9220		
k	5	6	7	7	8	7	7	5	3	1			

Рис. 1 - Діаграма розсіювання точок-об'єктів даних.

Знайдемо координати проекцій на вісь сукупності (формула 2.7) . Для цього обчислимо величини ti за формулою ниже. Необхідні для цього розрахунки занесемо до табл. 3.

$$y_{sj} = y'_{0j}t_{s}$$

$$t_{s} = \frac{\sum_{j=1}^{n} y'_{0j}u_{sj}}{\sum_{j=1}^{n} (y'_{0j})^{2}}$$

Обчислимо відхилення точок-спостережень від осі сукупності (формула 2.9). Результати обчислень занесемо в табл. 3 разом з координатами проекції на вісь сукупності

координати проекцій точок-спостережень на вісь сукупності. Значення показників M та W пронормуємо.

$$m_{s}^{*} = \sqrt{\sum_{j=1}^{n} y_{ij}^{2}}, \quad w_{s}^{*} = \sqrt{\sum_{j=1}^{n} (u_{sj} - y_{sj})^{2}},$$

$$m_{s} = \frac{m_{s}^{*}}{\max_{s} \{m_{s}^{*}\}}, \quad w_{s} = \frac{w_{s}^{*}}{\max_{s} \{w_{s}^{*}\}}.$$

Таблиця 3.

X ₁ * x U ₁	X ₂ * x U ₂	t	Y1	Y2	Y1^2+Y2^2	M*[s]	M[s]	(U1-Y1)^2	(U2-Y2)^2	W*	W
0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.34	0.23	0.0697	0.1185	0.1603	0.0397	0.1993	0.0697	0.0066	0.0036	0.1014	0.1908
0.85	0.92	0.2164	0.3678	0.4977	0.3830	0.6189	0.2164	0.0175	0.0095	0.1643	0.3092
1.02	0.69	0.2090	0.3554	0.4808	0.3575	0.5979	0.2090	0.0598	0.0327	0.3042	0.5724
1.19	1.15	0.2861	0.4863	0.6579	0.6694	0.8182	0.2861	0.0457	0.0249	0.2657	0.5000
1.36	1.61	0.3631	0.6172	0.8351	1.0783	1.0384	0.3631	0.0334	0.0182	0.2273	0.4276
1.87	2.07	0.4817	0.8188	1.1078	1.8978	1.3776	0.4817	0.0791	0.0432	0.3496	0.6579
2.38	2.3	0.5721	0.9726	1.3159	2.6776	1.6363	0.5721	0.1827	0.0998	0.5315	1.0000
2.55	3.22	0.7054	1.1991	1.6224	4.0700	2.0174	0.7054	0.0905	0.0494	0.3741	0.7039
2.89	5.29	1.0000	1.7000	2.3000	8.1800	2.8601	1.0000	0.0000	0.0000	0.0000	0.0000
·	·		·	·	max=	2.8601				0.5315	

Матриця видстаней показана в таблиця 3.1

Таблиця 3.1

				Ma	триця від	станей Х10Х2							
	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10			
d1	0.0000	0.2236	0.6403	0.6708	0.8602	1.0630	1.4213	1.7205	2.0518	2.8601			
d2	0.2236	0.0000	0.4243	0.4472	0.6403	0.8485	1.2042	1.5000	1.8385	2.6627	Однорі	ідні підмн	ожини
d3	0.6403	0.4243	0.0000	0.1414	0.2236	0.4243	0.7810	1.0817	1.4142	2.2472	Ω1=	n1, n2	
d4	0.6708	0.4472	0.1414	0.0000	0.2236	0.4472	0.7810	1.0630	1.4213	2.2825	Ω2=	n3, n4, n!	5, n6, n7
d5	0.8602	0.6403	0.2236	0.2236	0.0000	0.2236	0.5657	0.8602	1.2042	2.0591	Ω3=	n8, n9	
d6	1.0630	0.8485	0.4243	0.4472	0.2236	0.0000	0.3606	0.6708	0.9899	1.8358	Ω4=	n10	
d7	1.4213	1.2042	0.7810	0.7810	0.5657	0.3606	0.0000	0.3162	0.6403	1.5232			
d8	1.7205	1.5000	1.0817	1.0630	0.8602	0.6708	0.3162	0.0000	0.4123	1.3342			
d9	2.0518	1.8385	1.4142	1.4213	1.2042	0.9899	0.6403	0.4123	0.0000	0.9220			
d10	2.8601	2.6627	2.2472	2.2825	2.0591	1.8358	1.5232	1.3342	0.9220	0.0000	r=		
min	0.2236	0.2236	0.1414	0.1414	0.2236	0.2236	0.3162	0.3162	0.4123	0.9220	0.9220		
k	5	6	7	7	8	7	7	5	3	1	·		

Рис 2.

Зобразимо точки-об'єкти в системі координат MOW (рис 3). В результаті за виглядом одержаного зображення можна визначити, що слід розподілу ознак S-образний, то він спочатку ділиться на два C-образних, а за їх видом проводиться розбиття сукупності даних.

За значеннями перетворених ознак Uij одержимо матрицю ізоморфічних відстаней D за формулою:

$$d_{ik} = \sqrt{\sum_{j=1}^{n} (U_{ij} - U_{kj})^2}$$

По матриці відстаней побудуємо діаграму Чекановського. Як критичну відстань візьмемо значення dkr = 0.5.

Матриця видстаней показана в таблиця 3.1

Таблиця 3.1

				Ma	триця від	станей MOW							
	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10			
d1	0.0000	0.2031	0.3774	0.6093	0.5760	0.5610	0.8154	1.1521	0.9965	1.0000			
d2	0.2031	0.0000	0.1885	0.4062	0.3774	0.3771	0.6228	0.9525	0.8170	0.9497	Однор	ідні підмн	южини
d3	0.3774	0.1885	0.0000	0.2633	0.2031	0.1885	0.4381	0.7770	0.6284	0.8424	Ω1=	n1, n2	
d4	0.6093	0.4062	0.2633	0.0000	0.1057	0.2114	0.2857	0.5610	0.5135	0.9763	Ω2=	n3, n4, n!	5, n6, n7
d5	0.5760	0.3774	0.2031	0.1057	0.0000	0.1057	0.2514	0.5760	0.4663	0.8716	Ω3=	n8, n9	
d6	0.5610	0.3771	0.1885	0.2114	0.1057	0.0000	0.2590	0.6093	0.4399	0.7672	Ω4=	n10	
d7	0.8154	0.6228	0.4381	0.2857	0.2514	0.2590	0.0000	0.3539	0.2284	0.8376			
d8	1.1521	0.9525	0.7770	0.5610	0.5760	0.6093	0.3539	0.0000	0.3247	1.0877			
d9	0.9965	0.8170	0.6284	0.5135	0.4663	0.4399	0.2284	0.3247	0.0000	0.7631			
d10	1.0000	0.9497	0.8424	0.9763	0.8716	0.7672	0.8376	1.0877	0.7631	0.0000	r=		
min	0.2031	0.1885	0.1885	0.1057	0.1057	0.1057	0.2284	0.3247	0.2284	0.7631	0.7631		
k	7	8	10	9	10	10	10	7	9	6			

Рис 3.

Таким чином вся сукупність розбивається на 4 однорідних підмножини:

```
W1={d1,d2};
W2={d3,d4,d5,d6,d7};
W3={d8, d9};
W4={d10};
```

Висновки

В даній лабораторній роботі були розподілені елементи на однорідні підмножини. Для цього застосовано метод відхилень, який полягає в ізоморфічному перетворенні даних та переході від багатомірних об'єктів до двовимірного простору MOW.

За допомогою діаграми Чекановського визначив однорідні підмножини об'єктів:

```
W1={d1,d2};
W2={d3,d4,d5,d6,d7};
W3={d8, d9};
W4={d10};
```