専門科目 電気回路(午前)

19 大修

時間 9:30 ~ 11:00

電気電子工学電子物理工学

注 意 事 項

- 1. 解答は問題ごとに指定されている答案用紙に記入せよ。
- 2. すべての答案用紙に受験番号を記入せよ。
- 3. 電子式卓上計算機等の使用は認めない。

電気回路

- 1. 図 1.1 は,一次インダクタンス L_1 ,二次インダクタンス L_2 ,相互インダクタンス M の変圧器である。磁気飽和と巻線抵抗は無視できるものとして,以下の問に答えよ。ただし, $L_1L_2 \neq M^2$ である。
 - 1) 二次巻線を開放し,一次巻線に交流電圧 V_1 を印加した。二次巻線の電圧 V_2 を導出せよ。
 - 2) 図 1.2 のように、二次巻線にコンデンサ Cを接続 した。一次側から見た共振周波数をすべて求めよ。
 - 3) 図 1.3 のように、振幅 V、 角周波数 ω の電圧源と 抵抗 R を接続した。平均消費電力と力率を求めよ。 また、平均消費電力が最大となる R はいくらか。

- 2. 図 2.1 の回路について以下の問に答えよ。ただし、電圧源の振幅 V は一定とし、角周波数 ω は変化するものとする。
 - 1) ω=0 の場合の Vo を求めよ。
 - 2) ω=∞の場合の Vo を求めよ。
 - 3) 電圧源の角周波数 ω に関わらず, 電圧 Vo の振幅 が一定となる条件を示せ。

	問	題	分	野		
電気回路						

- 3. 抵抗Rと容量Cから成る並列回路について,以下の問に答えよ。
 - 1) 図 3.1 に示すように、角周波数 ω 振幅 Vの電圧源を接続したとき、電流 i(t)を求めよ。

図 3.1

2)図 3.2 に示すように、角周波数 ω_1 で振幅 V_1 の電圧源と、角周波数 ω_2 で振幅 V_2 の電圧源を接続したとき、電流 i(t)を重ね合わせの理を用いて求めたい。まず、重ね合わせの理を説明せよ。次に、電流 i(t)を導出の過程も示して求めよ。

図 3.2

3) 図 3.3 に示す 周期 T で振幅 T/4 の三角波 f(t) のフーリエ級数表現を求めよ。

4) 図 3.4 に示すように、回路に三角波の電圧 v(t)を印加して定常状態になったとき、電流 i(t)を求めよ。

図 3.4

- **4.** 抵抗R,容量C,インダクタンスLから成る回路について、以下の間に答えよ。なお、下表のラプラス変換表を用いてよい。
- 1) 図 4.1 の回路において、時刻 t=0 でスイッチを閉じた。 ただし、すべての回路素子の初期電圧および初期電流は 0 とする。
 - a) 微分方程式をたてよ。
 - b) ラプラス変換を用いて V₀(s) を求めよ。
 - c) L=50H C=10000μF R=150Ω としたとき, vo(t) を求めよ。
 - d) $v_o(t)$ の概形を図示せよ。

2) 図 4.2 に示す波形のラプラス変換を求めよ。

ラプラス変換表

時間関数 x(t) [t<0 でx(t)=0とする]	ー ラプラス変換 <i>X</i> (s)	
$\delta(t)$ 単位インパルス関数	1	
U(t) 単位ステップ関数	1/s	
	1/s²	
$t^2/2$	1/s³	
e-at	1/(s+a)	
$\sin \omega t$	$\omega/(s^2+\omega^2)$	
cosωt	$s/(s^2+\omega^2)$	
dx(t)/dt	sX(s)-x(0)	
x(t-a) [t <a]<="" td="" でx(t-a)="0" とする=""><td colspan="2">$e^{-as}X(s)$</td>	$e^{-as}X(s)$	

% a およびωは、正とする。

3) 図 4.3 に示すように、回路に電圧 $\nu_i(t)$ を印加したとき、 $\nu_o(t)$ を求めよ。 ただし、 L=50H、C=10000 μ F、R=150 Ω とし、すべての回路素子の初期電圧および初期電流は 0 とする。

図 4.3