218A - Homework 1

1-1 Let X be the set of all points $(x,y) \in \mathbb{R}^2$ such that $y = \pm 1$, and let M be the quotient of X by the equivalence relation generated by $(x,-1) \sim (x,1)$ for all $x \neq 0$. Show that M is locally Euclidean and second-countable, but not Hausdorff.

Proof. There is a bijective correspondence between the nonzero real numbers and the elements of M that are not the images of (0,1) and (0,-1) under the quotient map. Let 0_+ be the image of (0,1) under the quotient map and let 0_- be the image of (0,-1). Denote by [r] the equivalence class $\{(1,r),(1,-r)\}$, $r \neq 0$.

To show that M is locally Euclidean it suffices to show that each of the subspaces $M \setminus \{0_+\}$ and $M \setminus \{0_-\}$ is homeomorphic to \mathbb{R} . Let $f_+: M \setminus \{0_-\}$ be defined by

$$f_{+}([x]) = \begin{cases} x & \text{if } x \neq 0 \\ 0 & \text{if } [x] = 0_{+} \end{cases}$$

 f_{+} is clearly a bijection of sets and continuity follows from the fact that the inverse image of an interval (a, b) is given by

$$(f_{+})^{-}[(a,b)] = \begin{cases} \{[x] : x \in (a,b)\} &, \text{ if } 0 \notin (a,b) \\ \{[x] : x \in (a,0)\} \cup 0_{+} \cup \{[x] : x \in (0,b)\} &, \text{ otherwise} \end{cases}$$

which is open in M in either case. Continuity of the inverse follows from the same reasoning, where we consider a basis for the topology on M given by sets of the form $\{[x]: x \in (a,b), 0 \notin (a,b)\}$ and $\{[x]: x \in (a,0) \cup (0,a)\} \cup 0_+$.

The basis for the topology on M considered above can be made countable by taking a and b to be rational, so M is second-countable. Finally M is not Hausdorff because 0_+ and 0_- are not separable by open sets. Specifically, any open neighborhood of 0_+ would contain a set of the form $\{[x]: x \in (-a,0) \cup (a,0)\}$ for some a, which intersects the neighborhood of 0_- given by $\{[x]: x \in (-a,0) \cup (a,0)\} \cup \{0_-\}$.

1-6 Let M be a nonempty topological manifold of dimension $n \ge 1$. If M has a smooth structure, show that it has uncountably many distinct ones.

Proof. Since M is a manifold, for any $x \in M$ we can find an open neighborhood U of x and a homeomorphism $\phi: U \to \mathbb{B}^n$ and $\phi(x) = 0$.