Manual executions

Graph:

Djikstra's algorithm:

- the minimum cost walk from a vertex s to all the other vertices
- graph with non-negative costs

s=0, t=4

	X	у	dist: dictionary	q: priority queue	prev: dictionary
initialization			0 0	<- (0,0) <-	
iteration 1	0				
iteration 1.1		1	0 1	<- (1,5) <-	1
iteration 1.2		2	$\begin{bmatrix} 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$	<- (1,5) (2,11) <-	0 1 2
			0 5 11		0 0
iteration 2	1			<- (2,11) <-	
iteration 2.1		2	$\begin{array}{c cccc} 0 & 1 & 2 \\ \hline 0 & 5 & 11 \end{array}$	<- (2,11) <-	
iteration 2.2		3	0 1 2 3 0 5 11 17	<- (2,11) (3,17) <-	$\begin{array}{ c c c c c }\hline 1 & 2 & 3 \\\hline 0 & 0 & 1 \\\hline \end{array}$
iteration 2.3		4	0 1 2 3 4		
			0 5 11 17 14	<- (2,11) (4,14) (3,17) <-	1 2 3 4 0 0 1 1
iteration 3	2			<- (4,14) (3,17) <-	
Iteration 4	4				

The minimum cost walk from s=0 to t=4 is built backwards from prev:

$$t=4$$
; $prev[4] = 1$; $prev[1] = 0 = s$

$$0->1->4$$
, $cost = dist[4] = 14$

	X	у	dist: dictionary	q: priority queue	prev: dictionary
initialization			0	<- (2,0) <-	
iteration 1	2				

There is no walk from 2 to 3, because 2's outer degree is 0.