Project Overview

Title: IoT-Based Health Monitoring and Automation System

Objective:

The primary goal of this project is to design and implement an IoT-enabled system that combines health monitoring with home automation. The system integrates various sensors and actuators to monitor health parameters and control environmental conditions. Real-time updates and alerts are sent to a cloud platform for remote monitoring and control, ensuring a smart, responsive, and accessible solution. Additionally, voice-based control via Google Assistant enhances user interaction and convenience.

Components Used

1. Microcontrollers:

o Arduino Uno:

Manages sensor interfacing and LCD display.

o ESP8266 NodeMCU:

Handles cloud integration, IoT connectivity, and communication with Google Assistant.

2. Sensors:

o **ECG Sensor**: Monitors heart rate signals.

o IR Sensor: Detects the patient's presence on the bed.

o **Light Sensor (LDR)**: Monitors ambient light levels.

3. Actuators:

(Insert an image of the relay module, DC motor, and buzzer together.)

o Relay Module: Controls lighting.

4 .DC Motor: Operates as a prototype fan for temperature regulation.

5. **Buzzer**: Alerts in critical conditions (e.g., absence of the patient).

6. Display:

o **I2C LCD (16x2)**: Provides real-time status updates.

7. Power Supply:

o External power supplies (e.g., 9V batteries for Arduino Uno and ESP8266).

8.IoT Cloud Platform:

o **Arduino IoT Cloud**: Facilitates real-time monitoring and control via a web dashboard.

9. Voice Assistant:

 Google Assistant: Enables voice-based control of lights and fan through integration with ESP8266 using IFTTT.

System Design

Health Monitoring

• Setup:

ECG sensor, DHT sensor, and IR sensor are interfaced with the Arduino Uno. Data from these sensors is processed and displayed on the LCD.

• Functionality:

- o ECG sensor monitors heart rate signals.
- o DHT sensor records temperature.
- o IR sensor detects the patient's presence on the bed.
- o The buzzer is activated if the patient is absent from the bed for a specified time.
- Data is transmitted to the IoT Cloud via ESP8266.

Home Automation

Setup:

The relay module and DC motor are connected to the ESP8266.

Functionality:

- o Relay controls light based on cloud commands or voice commands.
- DC motor simulates a fan that operates automatically when temperature thresholds are exceeded or via voice commands.

Voice Control

• Integration:

- o Google Assistant is connected to the ESP8266 using IFTTT applets.
- Commands such as "Turn on the fan" or "Turn off the light" are processed via Google Assistant and trigger appropriate actions on the ESP8266.

Integration

- Communication between Arduino Uno and ESP8266 ensures seamless sensor data transfer and cloud updates.
 - (Insert an image showing the serial connection and voltage divider circuit between Arduino Uno and ESP8266.)
- The Arduino IoT Cloud provides a unified dashboard for real-time updates and device control.

Features

- Real-time health parameter monitoring (ECG, temperature, presence detection).
- Alerts via buzzer and cloud notifications for critical conditions.
- Automated and remote control of home devices.
- Voice-based control of fan and light using Google Assistant.
- LCD display for immediate local feedback.

Block Diagram:

Components Table :

Component	Туре	Key Features	Function in Project
Arduino Uno	Microcontroller	14 digital I/O pins, 6 analog input pins, operates at 5V, supports multiple communication protocols.	Interfacing sensors and output devices, processing data, and sending it to ESP8266 for cloud integration.
ESP8266 NodeMCU	Microcontroller/IoT	Built-in Wi-Fi, supports TCP/IP, 4MB flash memory, operates at 3.3V.	Enables IoT functionality by connecting to Arduino IoT Cloud and controlling devices remotely.
ECG Sensor	Sensor	Measures electrical activity of the heart, provides analog output.	Monitors heart rate signals of the patient for real-time health tracking.
IR Sensor	Sensor	Detects presence or proximity using infrared light, operates at 3-5V.	Checks if the patient is on the bed; triggers alerts if absent.
DHT11 Sensor	Sensor	Measures temperature and humidity, digital output, low power consumption.	Monitors ambient or body temperature for health data and automation.
LCD Display (I2C)	Display Device	16x2 characters, I2C interface for reduced pin usage, operates at 5V.	Displays real-time data such as temperature, heart rate, and system alerts.
Buzzer	Output Device	Generates audible alerts, operates at 3-5V, low power consumption.	Provides alerts in critical conditions (e.g., patient absence from the bed).
Relay Module	Actuator	Operates at 3-5V, allows high-voltage device control, supports multiple channels.	Controls fan and light based on commands from Google Assistant or automation conditions.
Fan (DC Motor)	Actuator	Operates at low voltage (6-12V), adjustable speed, lightweight and compact.	Provides a prototype cooling solution controlled by environmental temperature data or Google Assistant.
Light	Actuator	Can be connected to the relay, operates on household AC or DC voltages.	Provides automated or voice-controlled lighting functionality.
Arduino IoT Cloud	IoT Platform	Offers real-time monitoring, dashboard creation, cloud storage, and remote control via mobile/web apps.	Acts as the centralized platform for data monitoring, control, and voice commands integration.
Google Assistant	Voice Assistant	Supports natural language processing, integrates with IoT platforms, provides hands-free control.	Enables voice commands to control fan and light, enhancing accessibility for patients with mobility issues.

Implementation Details

Circuit Design

• Arduino Uno Connections:

- o ECG sensor to analog pins.
- o IR sensor and temperature sensor to digital pins.
- o LCD connected via I2C interface.

• ESP8266 Connections:

- o Communication with Arduino via voltage divider to match logic levels.
- o Relay and motor connections for light and fan control.

Code Explanation

Arduino Code:

- o Initializes sensors and reads data.
- Displays data on the LCD.
- o Sends data to ESP8266 via serial communication.

ESP8266 Code:

- o Establishes cloud connectivity.
- o Receives data from Arduino Uno.
- o Processes voice commands received via Google Assistant.
- o Controls actuators based on cloud inputs and sensor thresholds.

Power Management

Testing and Results

Testing Scenarios

1. Health Monitoring:

- o Patient absence triggers a buzzer alert.
- o ECG and temperature data displayed on LCD and IoT Cloud.

2. Home Automation:

- o Fan activates when temperature exceeds the threshold or via voice command.
- Light controlled remotely or through voice commands.

Results

- Successfully integrated health monitoring with home automation and voice control.
- Accurate real-time updates on IoT Cloud dashboard.
- Immediate alerts and controls for critical conditions.

Future Enhancements

- Addition of advanced health sensors (e.g., SpO2, blood pressure).
- Development of a mobile app for enhanced user experience.
- Solar-powered energy system for sustainability.

References

- Datasheets for ECG, DHT11/DHT22, IR sensors, and ESP8266.
- Arduino and ESP8266 library documentation.
- Official Arduino IoT Cloud setup guide.
- Google Assistant and IFTTT integration guides.

This document serves as a comprehensive guide to replicate the IoT-Based Health Monitoring and Automation System with voice control.