DataSet_Analyiss

Paweł Gędłek, Andrzej Szaflarski 13 06 2020

Fifa17 dataset

https://www.kaggle.com/artimous/complete-fifa-2017-player-dataset-global?select=FullData.csv

Content:

- 17,000+ players
- 50+ attributes per player ranging from ball skills aggression etc.
- · Player's attributes sourced from EA Sports' FIFA video game series, including the weekly updates
- Players from all around the globe
- URLs to their homepage
- Club logos
- Player images male and female
- · National and club team data

Columns:

- 'Name'
- 'Nationality'
- 'National Position'
- 'National_Kit'
- 'Club'
- 'Club_Position'
- · 'Club Kit'
- 'Club_Joining'
- 'Contract_Expiry'
- · 'Rating'
- 'Height'
- 'Weight'
- · 'Preffered_Foot'
- 'Birth_Date'
- 'Age'
- 'Preffered_Position'
- 'Work Rate'
- 'Weak_foot'
- 'Skill_Moves'
- 'Ball_Control'
- 'Dribbling'
- · 'Marking'
- 'Sliding_Tackle'
- 'Standing_Tackle'
- · 'Aggression'
- 'Reactions'
- · 'Attacking_Position'
- · 'Interceptions'
- 'Vision'
- 'Composure'
- 'Crossing'
- · 'Short Pass'
- 'Long_Pass'
- 'Acceleration'
- 'Speed'
- 'Stamina'
- 'Strength'
- 'Balance'
- · 'Agility'
- 'Jumping'
- 'Heading'
- · 'Shot_Power'

- · 'Finishing'
- · 'Long_Shots'
- · 'Curve'
- · 'Freekick_Accuracy'
- · 'Penalties'
- 'Volleys'
- · 'GK Positioning'
- · 'GK Diving'
- · 'GK_Kicking'
- 'GK_Handling'
- · 'GK Reflexes'

Początkowo dane należało wyczyścić: m.in.: - dodać kolumny z skonwertowanymi danymi stringowymi na integery za pomocą techniki onehot encoding,

```
Fifa <- read.csv("Fifa17_ext.csv", header = TRUE, na.strings = "?")
Fifalh <- subset(Fifa, select = -c(X, Name, Nationality, Club, Club_Position, Club_Joining, Birth_Date, P
reffered_Foot, Preffered_Position, Work_Rate))
na.omit(Fifalh)
dim(Fifalh)

attach(Fifa)
head(Fifalh)</pre>
```

Regresja ratingu zawodnika względem wieku

Jako pierwszą postanowiono przeprowadzić analizę wpływu wieku zawodnika na jego rating.

Regresja liniowa

W pierwszym kroku użyto regresji liniowej.

```
ageRatingLinear <- lm(Rating ~ Age, data = Fifa)
summary(ageRatingLinear)</pre>
```

```
##
## Call:
## lm(formula = Rating ~ Age, data = Fifa)
## Residuals:
            1Q Median
                         3Q
## Min
## -36.105 -4.234 -0.234 3.927 26.153
##
## Coefficients:
     Estimate Std. Error t value Pr(>|t|)
## Age 0.69355 0.01014 68.38 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.296 on 17586 degrees of freedom
## Multiple R-squared: 0.21, Adjusted R-squared: 0.21
## F-statistic: 4675 on 1 and 17586 DF, p-value: < 2.2e-16
```

Prezentacja graficzna dopasowania:

```
plot(Age, Rating)
abline(ageRatingLinear, col='blue')
```


Regresja wielomianowa

Patrząc na powyższy wykres, ale także analizując logicznie zależność ogólnej oceny zawodnika od wieku wydaje się, że do pewnego momentu w karierze zawodnika jego **Rating** rośnie, a następnie powinien spadać.

Z tego względu postanowiono zbadać, czy istnieją oznaki istotnej nieliniowej zależności między Age a Rating.

Dopasowano model regresji wielomianowej trzeciego stopnia:

```
ageRatingPoly <- lm(Rating ~ poly(Age, 3), data = Fifa)
summary(ageRatingPoly)</pre>
```

```
## Call:
## lm(formula = Rating ~ poly(Age, 3), data = Fifa)
## Residuals:
      Min
##
                1Q Median
                                   30
  -23.3575 -3.9424 -0.3715
                             3.6425 24.3676
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                 66.16619 0.04501 1470.136 < 2e-16 ***
## (Intercept)
## poly(Age, 3)1 430.46835
                             5.96880
                                      72.120 < 2e-16 ***
                             5.96880 -43.800 < 2e-16 ***
## poly(Age, 3)2 -261.43378
                 47.07163
                             5.96880
                                       7.886 3.29e-15 ***
## poly(Age, 3)3
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.969 on 17584 degrees of freedom
## Multiple R-squared: 0.29, Adjusted R-squared: 0.2899
  F-statistic: 2394 on 3 and 17584 DF, p-value: < 2.2e-16
```

Porównując dopasowanie w modelu liniowym i wielomianowym można zauważyć m.in. wzrost statystki **Multiple R-squared** z **0.21** do **0.29**. Potwierdza to, że zastosowanie nieliniowego modelu w tym przypadku jest jak najbardziej zasadne.

W celu dodatkowej wizualizacji różnicy w dopasowaniach, oba dopasowania przedstawiono na tle danych na jednym wykresie:

```
plot(Age, Rating)
lines(sort(Age), fitted(ageRatingPoly)[order(Age)], col='red')
abline(ageRatingLinear, col='blue')
```


Które cechy mają największy wpływ na Rating zawodnika?

Na początku poszukujemy optymalnego zbioru cech, który ma największy wpływ na rating zawodnika. W tym celu zastosujemy: * regresję wielokrotną, * selekcja cech w modelach liniowych, * selekcja krokowa do przodu i wstecz * drzewa regresyjne * bagging * lasy losoowe * boosting

Regresja wielokrotna

lmFit.many <- lm(Rating ~ ., data = Fifalh)
summary(lmFit.many)</pre>

```
## lm(formula = Rating ~ ., data = Fifalh)
##
## Residuals:
## Min 1Q Median 3Q
                                          Max
## -13.5724 -1.8074 -0.0015 1.7981 14.2181
## Coefficients:
## Weight
                              2.046e-02 5.388e-03
                                                     3.798 0.000146 ***
6.683e-02 6.160e-03 10.848 < 2e-16 ***
## Age
                            6.683e-02 0...
1.178e-01 3.549e-02
## Heading 1.049e-01 2.934e-03 35.746 < 2e-16 ***
## Shot_Power 2.311e-02 3.018e-03 7.657 2.01e-14 ***
## Finishing 2.625e-02 3.457e-03 7.592 3.31e-14 ***
## Long_Shots -2.413e-02 3.231e-03 -7.470 8.40e-14 ***
## Curve 1.106e-02 2.970e-03 3.724 0.000197 ***
## Club_encoded 1.766e-04 1.153e-04 1.532 0.125624
## Preffered_Foot_encoded -2.040e-01 5.253e-02 -3.884 0.000103 ***
## Preffered_Position_encoded -3.406e-03 3.856e-04 -8.831 < 2e-16 ***
## Work Rate encoded -6.620e-02 8.374e-03 -7.905 2.84e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.78 on 17540 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.8463, Adjusted R-squared: 0.8459
## F-statistic: 2099 on 46 and 17540 DF, p-value: < 2.2e-16
```

Regresja wielokrotna wskazuję, że cechami na które warto zwrócić by uwagę w dalej analizie są m.in: * Age * Skill_Moves * Ball_Control * Standing_Tackle * Reactions * Attacking_Position * Composure * Short_Pass * Speed * Strength * Heading * GK_Positioning

^{*} GK_Diving

^{*} GK_Kicking

^{*} GK_Handling

^{*} GK Reflexes

Fifa_selected <- select(Fifalh, Rating, Age, Skill_Moves, Ball_Control, Standing_Tackle, Reactions, Attac king_Position, Composure, Short_Pass, Speed, Strength, Heading, GK_Positioning, GK_Diving, GK_Kicking, GK_Handling, GK_Reflexes, Preffered_Position_encoded)

```
lmFit <- lm(Rating ~ ., data = Fifa_selected)
summary(lmFit)</pre>
```

```
##
## Call:
## lm(formula = Rating ~ ., data = Fifa selected)
## Residuals:
             1Q Median
                           3Q
##
    Min
## -14.732 -1.845 0.015 1.823 15.649
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          6.0429953 0.2542253 23.770 < 2e-16 ***
## Age
## Skill_Moves
## Ball_Control
## Standing_Tackle
## Deactions
## Deactions

## Age

0.075121

1.1480812
0.0481632
23.837
< 2e-10
***

0.1951679
0.0044282
44.074
< 2e-16
***

0.0410400
0.0017874
22.961
< 2e-16
***

0.2821578
0.0037522
75.198
< 2e-16
***
0.0475462 0.0026635 17.851 < 2e-16 ***
## Composure
                          0.0579150 0.0039103 14.811 < 2e-16 ***
## Short Pass
                         ## Speed
                         ## Strength
                         0.1170531 0.0025643 45.648 < 2e-16 ***
## Heading
0.0891626 0.0062591 14.245 < 2e-16 ***
## GK Kicking
## GK_Handling
                          0.0884226 0.0062057 14.249 < 2e-16 ***
## GK Reflexes
## Preffered Position encoded -0.0018921 0.0003636 -5.204 1.97e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.828 on 17570 degrees of freedom
## Multiple R-squared: 0.8408, Adjusted R-squared: 0.8406
## F-statistic: 5458 on 17 and 17570 DF, p-value: < 2.2e-16
```

Z powyższej krótkiej analizy regresji wielokrotnej wynika, że najważniejszym współczynnikami z punktu widzenia Ratingu zawodnika są:

- Reactions
- Heading
- Ball_Control
- Speed
- Strength
- Standing_Tackle

Selekcja cech modelu liniowego

```
fit.bs <- regsubsets(Rating ~ ., data = Fifa1h[1:2000,], nvmax = 47)
fit.bs.summary <- summary(fit.bs)
fit.bs.summary</pre>
```

Obiekt zwracany przez funkcję summary.regsubsets() zawiera informacje umożliwiające zidentyfikowanie globalnie najlepszego pozdbioru cech, np. miarę Cp.

```
fit.bs.summary$cp
```

```
## [1] 652.62365 595.48095 501.36443 419.75832 335.94043 260.33939 211.66962

## [8] 158.67852 135.51454 111.78142 79.21138 71.19793 59.16293 51.16492

## [15] 44.64462 38.36763 32.46693 27.77737 23.23904 17.90119 17.60798

## [22] 16.63355 16.23296 16.72903 16.23323 16.09142 16.30181 17.03525

## [29] 18.02624 19.25321 20.56639 21.78975 23.28500 24.76098 26.27870

## [36] 27.86808 29.48297 31.21764 33.07786 35.03447 37.00894 39.00187

## [43] 41.00014 43.00002 45.00000
```

```
bic.min <- which.min(fit.bs.summary$bic)
bic.min
```

```
## [1] 17
```

fit.bs.summary\$bic[bic.min]

```
## [1] -1540.892
```



```
plot(fit.bs, scale = "bic")
```


coef(fit.bs, id = 17)

```
##
          (Intercept)
                                Club Kit
                                             Contract Expiry
                                                                          Height
                             -0.00773203
                                                  0.15955240
                                                                      0.03600057
##
        -296.55706133
                             Skill Moves
                                                Ball Control
                                                                       Reactions
                  Age
##
          0.06634768
                             0.78214993
                                                  0.07266140
                                                                      0.31591879
## Attacking_Position
                               Composure
                                                  Short Pass
                                                                           Speed
         -0.06956778
                                                                      0.04135903
##
                              0.03485960
                                                  0.07522672
##
                                                  Shot Power
                                                                      GK Diving
             Strength
                                 Heading
##
          0.02417339
                              0.02927317
                                                  0.01613018
                                                                      0.04666119
##
          GK Handling
                             GK Reflexes
##
          0.05744045
                              0.03615208
```

```
fit.forward <- regsubsets(Rating ~ ., data = Fifalh[1:nrow(Fifalh)/2,], nvmax = 47, method = "forward")
fit.forward.summary <- summary(fit.forward)
fit.forward.summary</pre>
```

```
fit.backward <- regsubsets(Rating ~ ., data = Fifalh[1:nrow(Fifalh)/2,], nvmax = 47, method = "backward")
fit.backward.summary <- summary(fit.backward)
fit.backward.summary</pre>
```

fit.backward.summary\$cp

```
## [1] 9873.72791 9407.14484 6642.81347 4751.56254 4083.76792 3442.77585
## [7] 2811.50631 2250.80508 1740.79643 1434.37278 1070.36141 810.78679
        668.80060 528.65943 459.81921 398.03641
                                                               317.61038
## [13]
                                                    377.43724
        266.32306
                   223.29302
                              199.59962
                                         174.00645
                                                    153.90822
  [19]
## [25]
        118.63640
                   102.12615
                               90.38224
                                          75.87439
                                                     66.03159
                                                                 57.14609
## [31]
         51.14415
                    47.54842
                               43.89387
                                          43.30747
                                                     40.85303
                                                                 40.39099
## [37]
         39.63987
                    38.95124
                               39.49811
                                          39.54629
                                                     40.18196
                                                                 41.25333
## [43]
         42.43968
                    43.90285
                               45.43601
                                          47.00000
```

fit.forward.summary\$cp

```
[1] 9873.72791 9084.11770 8049.13945 5911.19085 4241.29130 3601.96447
##
   [7] 3058.41504 2744.42337 1740.79643 1434.37278 1070.36141 810.78679
##
        668.80060 528.65943 459.81921 398.03641 348.58264 300.80469
## [13]
        268.47782 240.55578 199.59962 174.00645 153.90822 136.53559
## [19]
## [25] 118.63640 102.12615
                             90.38224
                                       75.87439
                                                  66.03159
                                                            57.14609
## [31]
        51.14415
                   47.54842
                             43.89387
                                       43.30747
                                                  40.85303
                                                            40.21875
## [37]
         39.79397
                   38.95124
                             39.49811
                                       39.54629
                                                   40.18196
                                                            41.25333
## [43]
         42.43968
                   43.90285
                             45.43601
                                        47.00000
```

```
bic.min <- which.min(fit.backward.summary$bic)
bic.min</pre>
```

```
## [1] 30
```

fit.backward.summary\$bic[bic.min]

```
## [1] -20099.49
```

```
bic.min <- which.min(fit.forward.summary$bic)
bic.min</pre>
```

```
## [1] 30
```

fit.forward.summary\$bic[bic.min]

```
## [1] -20099.49
```



```
plot(fit.backward, scale = "bic")
```



```
coef(fit.backward, id = 30)
```

```
##
                   (Intercept)
                                                  Club Kit
                -1.787279e+02
                                             -4.509855e-03
##
              Contract Expiry
                                                    Height
##
                 9.642471e-02
                                              3.227771e-02
##
                  Skill Moves
                                              Ball Control
                  8.101838e-01
                                              1.371137e-01
##
##
              Standing Tackle
                                                Aggression
##
                 1.592046e-02
                                              6.723965e-03
##
                     Reactions
                                        Attacking Position
##
                  2.801764e-01
                                             -4.655247e-02
##
                        Vision
                                                 Composure
                -1.382535e-02
                                              3.871448e-02
##
                   Short Pass
##
                                              Acceleration
##
                  1.010068e-01
                                              1.783863e-02
##
                         Speed
                                                   Stamina
##
                  3.783483e-02
                                             -1.030202e-02
##
                      Strength
                                                   Agility
                  2.438192e-02
##
                                             -1.165206e-02
##
                       Jumping
                                                   Heading
                  9.725594e-03
                                              7.031062e-02
##
##
                    Shot Power
                                                 Finishing
##
                  1.794015e-02
                                              1.485191e-02
##
                    Long Shots
                -2.040893e-02
                                              6.660428e-03
##
               GK Positioning
                                                 GK Diving
##
                  6.341766e-02
##
                                              5.976209e-02
                   GK Kicking
                                               GK Handling
##
                  2.097294e-02
                                              6.551359e-02
##
##
                  GK Reflexes Preffered Position encoded
##
                  5.967447e-02
                                             -2.886439e-03
##
            Work Rate encoded
##
                -6.270920e-02
```

Drzewa decyzyjne

Drzewa regresyjne

```
rating.tree <- tree(Rating ~ ., data = Fifalh)
summary(rating.tree)</pre>
```

```
##
## Regression tree:
## tree(formula = Rating ~ ., data = Fifalh)
## Variables actually used in tree construction:
## [1] "Reactions" "Ball_Control" "Marking" "GK_Positioning"
## [5] "Standing_Tackle"
## Number of terminal nodes: 12
## Residual mean deviance: 12.07 = 212200 / 17580
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -20.0800 -2.0780 0.1119 0.0000 2.1180 17.5800
```

```
plot(rating.tree)
text(rating.tree, pretty = 0)
```


rating.tree

```
## node), split, n, deviance, yval
##
         * denotes terminal node
##
   1) root 17587 882100 66.17
\#\#
      2) Reactions < 62.5 9088 259900 61.58
##
##
        4) Reactions < 54.5 3932 97070 58.32
##
          8) Ball Control < 58.5 2756 60850 56.78
##
          16) Marking < 56.5 2204 39130 55.62
##
             32) GK Positioning < 59.5 2030 26480 54.98 *
##
            33) GK_Positioning > 59.5 174
                                            2146 63.07 *
          17) Marking > 56.5 552 6843 61.42 *
##
          9) Ball_Control > 58.5 1176 14400 61.93 *
##
        5) Reactions > 54.5 5156 89210 64.07
##
##
         10) Standing Tackle < 66.5 4259 66770 63.32
##
           20) Ball_Control < 63.5 2725 37710 61.89 *
##
           21) Ball Control > 63.5 1534 13570 65.86 *
##
         11) Standing_Tackle > 66.5 897
                                          8783 67.61 *
      3) Reactions > 62.5 8499 226800 71.07
\#\#
        6) Reactions < 71.5 5866 87740 69.02
##
##
         12) Ball Control < 70.5 4436 61580 68.11
##
           24) Standing Tackle < 69.5 3379 38680 67.11 *
##
          25) Standing Tackle > 69.5 1057
##
        13) Ball Control > 70.5 1430 10860 71.87 *
##
        7) Reactions > 71.5 2633 59780 75.63
##
        14) Reactions < 76.5 1749 25140 73.88 *
         15) Reactions > 76.5 884 18780 79.08 *
##
```

```
set.seed(1)
n <- nrow(Fifalh)
train <- sample(1:n, n / 2)
test <- -train
rating.tree <- tree(Rating ~ ., data = Fifalh, subset = train)
rating.pred <- predict(rating.tree, newdata = Fifalh[test,])
mean((rating.pred - Fifalh$Rating[test])^2)</pre>
```

```
## [1] 12.26272
```

```
rating.cv <- cv.tree(rating.tree)
plot(rating.cv$size, rating.cv$dev, type = "b")</pre>
```



```
rating.pruned <- prune.tree(rating.tree, best = 12)
plot(rating.pruned)
text(rating.pruned)</pre>
```



```
rating.bag <- randomForest(Rating ~ ., data = Fifalh[1:2000,], mtry = 10, importance = TRUE, na.action=na
.roughfix)
rating.bag</pre>
```

```
plot(rating.bag, type = "l")
```

rating.bag

importance(rating.bag)

##		%IncMSE	IncNodePurity
##	Club_Kit	3.106361	92.008486
##	Contract_Expiry	2.824361	50.413598
##	Height	5.771448	81.293125
##	Weight	5.238821	87.432114
##	Age		75.358909
	Weak foot	1.376934	23.187692
	Skill Moves	5.365105	32.163508
	Ball Control	28.220104	
	Dribbling		740.629169
	Marking		573.274531
	Sliding Tackle		673.394638
	Standing Tackle	29.969612	
	Aggression	9.002118	
		36.576773	
	Reactions		
	Attacking_Position		627.816317
	Interceptions		660.655053
	Vision		537.851981
	Composure		922.544614
	Crossing		191.682786
	Short_Pass		827.432250
##	Long_Pass	10.741949	195.380445
##	Acceleration	16.579813	160.042836
##	Speed	16.561842	189.492802
##	Stamina	13.950592	161.841887
##	Strength	11.594624	124.407917
##	Balance	8.049026	89.352127
##	Agility	11.859445	112.795024
##	Jumping	5.937057	115.788461
##	Heading	12.434539	241.702364
	Shot Power	16.167282	196.283560
	Finishing	24.754539	604.044564
	Long Shots	12.519810	256.375535
	Curve	10.386941	
	Freekick Accuracy	5.054647	
	Penalties	4.410202	
	Volleys	11.572699	
	GK Positioning		429.022261
	GK Diving		349.195628
	GK Kicking	5.250074	132.987402
	GK Handling	13.542031	490.366308
	GK_Handling GK Reflexes	11.487956	507.419025
	_		
	Nationality_encoded	1.413140	71.211723
	Club_encoded	3.144618	101.025863
	Preffered_Foot_encoded	-1.136055	9.883755
	Preffered_Position_encoded		85.981085
##	Work_Rate_encoded	3.184776	45.006065

varImpPlot(rating.bag)

rating.bag

Lasy Iosoowe

plot(rating.rf, type = "1")

rating.rf

_			
##		%IncMSE	IncNodePurity
##	Club Kit	9.237220	67.965688
##	 Contract_Expiry	6.292984	29.813992
##	Height	7.517606	37.337123
##	Weight	8.591278	52.565606
##	Age		38.908536
	Weak foot	2.544246	12.326419
		4.460878	12.035900
	Ball Control	29.239745	
	_ Dribbling	16.626497	
	Marking	16.890611	
	Sliding Tackle		401.300073
	Standing Tackle		817.696842
			77.904515
		40.287441	
	~ <u>~</u>		276.265725
	Interceptions		267.001498
	Vision		186.447829
	Composure		819.453451
	Crossing		86.887540
	Short_Pass	19.411709	
##			74.124698
##	Acceleration	11.291445	
##	Speed		80.713457
##	Stamina	10.140981	70.849897
##	Strength	11.988328	63.549604
##	Balance	8.752502	
##	Agility	7.141115	49.581009
##	Jumping	10.902827	84.861109
##	Heading	9.377662	90.863560
	Shot Power	8.981559	
	_	16.423983	293.281036
	Long Shots	9.543369	88.256971
	Curve		68.130003
	Freekick Accuracy		64.846800
	Penalties		50.472551
	Volleys	9.307049	97.586616
	_	11.967984	
	GK Diving	14.143081	
	GK Kicking	6.805156	59.806866
		13.623396	187.277116
	GK Reflexes	13.365042	210.080832
	Nationality encoded	5.897881	45.024915
	- -		
	Club_encoded Proffored Fact angoded	7.318435	58.490042
	Preffered_Foot_encoded	2.965265	5.555083
	Preffered_Position_encoded	8.823785	42.814402
##	Work_Rate_encoded	4.649064	22.598128

varImpPlot(rating.bag)

Boosting


```
var
                                                           rel.inf
                                              Reactions 37.21261276
## Reactions
## Ball Control
                                           Ball Control 10.38008476
                                        Standing Tackle 6.92507694
## Standing_Tackle
                                            GK_Handling 3.13655677
## GK Handling
                                            Short Pass 2.95111645
## Short Pass
                                         Sliding Tackle 2.81232260
## Sliding Tackle
                                              Finishing 2.74856780
## Finishing
## GK Positioning
                                         GK Positioning 2.63755241
## GK Reflexes
                                            GK_Reflexes 2.51363840
## Interceptions
                                          Interceptions 1.90419153
## Attacking_Position
                                     Attacking_Position 1.87149093
## Dribbling
                                             Dribbling 1.73111968
                                             Marking 1.61109905
Shot_Power 1.46170048
## Marking
## Shot Power
## GK Diving
                                              GK Diving 1.44732623
## Composure
                                              Composure 1.44130688
                                                  Speed 1.38804025
## Speed
## Stamina
                                                Stamina 1.38100497
## Heading
                                                Heading 1.27513111
## Crossing
                                               Crossing 1.24825963
## Jumping
                                                Jumping 0.97941198
## Strength
                                               Strength 0.83836958
## Vision
                                                 Vision 0.83705529
                                           Acceleration 0.75025299
## Acceleration
## Preffered_Position_encoded Preffered_Position_encoded 0.71619021
## Club encoded
                                           Club_encoded 0.69478746
## Long_Pass
                                              Long Pass 0.64939742
## Long Shots
                                             Long Shots 0.64209022
                                             Aggression 0.60797853
## Aggression
                                             GK Kicking 0.52970559
## GK Kicking
                                      Freekick_Accuracy 0.42291147
## Freekick_Accuracy
                                                Agility 0.42124136
## Agility
                                              Penalties 0.40054008
## Penalties
                                                Height 0.39725881
## Height
## Club Kit
                                               Club Kit 0.38575059
## Weight
                                                 Weight 0.37782708
## Volleys
                                                Volleys 0.36388491
## Nationality_encoded
                                  Nationality_encoded 0.33827999
                                                Balance 0.32835550
## Balance
## Age
                                                   Age 0.32555392
                                                  Curve 0.30731076
## Curve
## Contract Expiry
                                        Contract Expiry 0.20921847
                                     Work Rate encoded 0.19220728
## Work Rate encoded
## Skill Moves
                                            Skill Moves 0.10116344
                                             Weak_foot 0.09299013
## Weak foot
## Preffered Foot encoded
                                 Preffered Foot encoded 0.01206729
```

Podsumowanie najlepszego doboru cech:

Nazwa metody doboru cech Najważniejsze cechy

Regresja wielokrotna	Reactions, Heading, Ball_Control
Selekcja cech modelu liniowego	Skill_Moves, Reactions, Contract_Expiry
Selekcja krokowa do przodu i wstecz	Skill_Move, Reactions, Ball_Control
Drzewa regresyjne	Reactions, Ball_Control, Marking
Bagging	Reactions, Standing_Tackle, Ball_Control
Lasy losowe	Reactions, Ball_Control, Standing_Tackle
Boosting	Reactions, Ball_Control, Standing_Tackle

Walidacja krzyżowa wybranych cech

```
set.seed(2)
validation.set <- Fifalh[-train,]
max.degree <- 11
mse <- rep(0, times = max.degree)
for (i in 1:max.degree) {
  fit.lm <- lm(Rating ~ poly(Reactions, degree = i), data = Fifalh, subset = train)
  mse[i] <- mean((validation.set$Rating - predict(fit.lm, validation.set))^2)
}
mse</pre>
```

```
## [1] 15.66316 15.36067 15.34681 15.30105 15.30017 15.27759 15.26670 15.26459
## [9] 15.26400 15.27116 15.29010
```

```
plot(mse, ylab = "MSE", type = "b", pch = 20, col = "blue")
```



```
lmFitSimple <- lm(Rating ~ Reactions, data = Fifalh)
summary(lmFitSimple)</pre>
```

```
##
## Call:
## lm(formula = Rating ~ Reactions, data = Fifalh)
##
## Residuals:
             1Q Median
## Min
## -18.7394 -2.4742 0.1168
                             2.6055 25.6662
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 27.091145  0.201495  134.5  <2e-16 ***
## Reactions 0.632583 0.003226 196.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.968 on 17586 degrees of freedom
## Multiple R-squared: 0.6862, Adjusted R-squared: 0.6862
## F-statistic: 3.846e+04 on 1 and 17586 DF, p-value: < 2.2e-16
```

```
plot(Reactions, Rating)
abline(lmFitSimple)
```


plot(lmFitSimple)

Porównując z regresja nieliniową dla optymalnego wielomianu 9 stopnia:

```
lmFit9 <- lm(Rating ~ poly(Reactions, 9))
anova(lmFitSimple, lmFit9)

## Analysis of Variance Table
##
## Model 1: Rating ~ Reactions
## Model 2: Rating ~ poly(Reactions, 9)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 17586 276878
## 2 17578 269558 8 7319.4 59.663 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Wybrane ciekawsze analizy poszczególnych parametrów BMI piłkarzy

Przy pomocy parametrów wzrostu i wagi wyznaczono BMI dla każdego zawodnika.

Na wykresie przedstawiono wartość BMI dla rankigu zawodników. Na czerwono zaznaczono granice wartości określanych jako "in the healthy weight range".

```
BMI = Weight / (Height / 100)^2
plot(Rating, BMI)
abline(h=18.5, col="red")
abline(h=24.9, col="red")
```


Wnioski:

- Bardziej prawdopobonbe jest, że profesjonalny piłkarz ma naddwagę niż niedowagę
- Najlepsi piłkarze w zdecydowanej większości znajdują się w zakresie zdrowej wartości BMI.

Pozycja zawodnika a parametry jakościowe

W następnej kolejności zbadano jak pozycja na jakiej występuje zawodnik ma wpływ na jego wybrane parametry. Celem było zbadanie, czy w rzeczywistości na pewnych pozycjach niezbędne jest posiadanie odpowiednich cech.

Szybkość

Piewszym znanym twierdzeniem jest, teza, że skrzydłowy musi być przede wszystkim szybki. Postanowiono zbadać czy zebrane dane potwierdzają taką tezę.

W tym celu kolumnę zbadano średnią i medianę wartości Speed w zależności od kolumny Club_position.

```
position_speed <- data.frame(Club_Position, Speed)
mean_speed = aggregate(.~Club_Position, data=position_speed, mean)
print(head(mean_speed[order(-mean_speed[,2]),], 10))</pre>
```

```
Club Position
                       Speed
## 16
                 LW 80.09774
## 27
                 RW 79.35338
## 25
                RM 77.10145
## 14
                LM 76.55797
## 28
                RWB 74.35556
                LWB 74.31111
  17
                LAM 74.30556
## 19
                 RB 74.21898
                 LB 73.76503
## 9
## 18
                RAM 73.38889
```

```
median_speed = aggregate(.~Club_Position, data=position_speed, median)
print(head(median_speed[order(-median_speed[,2]),], 10))
```

```
##
    Club Position Speed
       RW 80.0
## 27
## 16
             LW 79.0
            RM 78.0
## 25
            LM 77.0
## 14
           LAM 75.0
## 8
           LWB 75.0
## 17
            RB 75.0
## 19
## 9
            LB 74.0
## 28
           RWB 74.0
## 18
           RAM 73.5
```

Wyjaśnienia powyższych skrótóW:

- LW Left Winger
- RW Right Winger
- RM Right Midfielder
- · LM Left Midfielder
- · RWB Right Winger Back
- · LWB Left Winger Back
- · LAM Left Attacking Midfielder
- · RB Right Back
- · LB Left Back
- · RAM Right Attacking Midfielder

Powyższe zestawienie potwierdza, że boczni zawodnicy, w szczególności skrzydłowi powinni cechować się znaczną szybkością.

Wzrost

Oczywistym jest, że najwyższym wzrostem powinni cechować się bramkarze. Inne znane tezy mówią, że wysocy powinni być równieć środkowi obrońcy. Czasami mówi się również, że wzrost może być dużym atutem naspastników. W celu sprawdzenia takiej zależności przeprowadzono analizę analogiczną jak poprzednio jednak z wykorzystaniem parametru *Height* zamiast *Speed*.

```
position_height <- data.frame(Club_Position, Height)
mean_height = aggregate(.~Club_Position, data=position_height, mean)
print(head(mean_height[order(-mean_height[,2]),], 5))</pre>
```

```
median_height = aggregate(.~Club_Position, data=position_height, median)
print(head(median_height[order(-median_height[,2]),], 5))
```

Powyższe wyniki potwierdzają, że w czołówce pozycji pod względem wzrostu znajdują się bramkarze, oraz środkowi obrońcy (CB - Center Back)

Wytrzymałość

Często mówi się, że najwięcej biegać muszą defensywni pomocy. W celu weryfikacji czy w parametrach zawodników można znaleźć taką zależność przeprowadzono analizę poziomu wytrzymałości w zależności od pozycji zajmowanej na boisku.

```
position_stamina <- data.frame(Club_Position, Stamina)
mean_stamina = aggregate(.~Club_Position, data=position_stamina, mean)
print(head(mean_stamina[order(-mean_stamina[,2]),], 5))</pre>
```

```
median_stamina = aggregate(.~Club_Position, data=position_stamina, median)
print(head(median_stamina[order(-median_stamina[,2]),], 5))
```

```
##
     Club Position Stamina
## 4
            CDM
## 22
                      77
             RDM
## 12
                      76
             LDM
## 19
             RB
                      76
## 21
            RCM
                      76
```

Również te wyniki potwerdziły słuszność wcześniej wymienionej tezy.

Największą wytrzymałością cechowali się zawodnicy na pozycji DM (Defensive Midfielder).