Twin Prime Likelihood

Daniel Eid

December 23, 2024

Abstract

In this paper I will cover how to calculate how frequently a prime is the smallest factor over an interval. I will use this to estimate the likelihood that an integer is prime . I will then determine the likelihood that the product of the first n primes is a twin prime center. I will show that this likelihood increases as more primes are included in the product , and define specific growth and decay rates for approximating this increasing likelihood .

Key Definitions

1. Coprime (Relatively Prime) Integers: Two integers a and b are coprime if their greatest common divisor is 1:

$$gcd(a, b) = 1.$$

2. **Primorial :** The primorial of p_n , denoted P_n , is the product of the first n primes :

$$P_n = \prod_{p \le p_n} p.$$

3. **Totient Function :** The Euler totient function $\phi(a)$ is calculated using the prime factorization of a. If a has the prime factorization:

$$a = p_1^{e_1} p_2^{e_2} \cdots p_b^{e_b},$$

then the totient function is given by:

$$\phi(a) = a \prod_{i=1}^{b} \left(1 - \frac{1}{p_i} \right),$$

where p_1, p_2, \ldots, p_k are the distinct prime factors of a. This formula represents the count of integers x that do not share any factors with a.

Using the Totient Function to Determine the Frequency of a Prime as the Smallest Factor Over a Fixed Interval

$$P_n = a \cdot p_n$$

Consider the product $a \cdot p_n$, where $a = p_1 \cdot p_2 \cdot \dots \cdot p_{n-1}$ is the product of the first n-1 primes, and p_n is the n-th prime. We wish to determine the number of times p_n is the smallest factor of integers in the interval $[1, a \cdot p_n]$.

Integers Factorable by p_n

All integers in $[1, a \cdot p_n]$ that are divisible by p_n take the form:

$$p_n \cdot 1, p_n \cdot 2, p_n \cdot 3, \ldots, p_n \cdot a.$$

This set contains a elements, as a represents the range of possible values for the multiplier m.

Integers whose smallest factor is p_n

For p_n to be the smallest factor of an integer $p_n \cdot m$, m must not share any factors with a, ensuring that p_n is the smallest prime dividing $p_n \cdot m$. The number of integers x in [1,a] that are coprime to a is given by $\phi(a)$. Thus, there are $x = \phi(a)$ integers in $[1, a \cdot p_n]$ for which $p_n \cdot m$ is the smallest factor.

Frequency of p_n as the Smallest Factor

To compute the relative frequency in $[1, a \cdot p_n]$ where p_n is the smallest factor:

Frequency =
$$F_n = \frac{\phi(a)}{a \cdot p_n} = \frac{\phi(P_{n-1})}{P_n}$$

The totient function $\phi(a)$ allows us to determine the exact number of times p_n is the smallest factor of numbers in the interval $[1, a \cdot p_n]$. This is precisely $\phi(a)$, as it counts the values of m coprime to a, which ensures p_n is the smallest prime dividing $p_n \cdot m$. The relative frequency of these numbers decreases as p_n grows.

Sum of frequencies

The total sum of frequencies S_n of numbers in $[1, P_n]$ that are divisible by some prime p_i up to p_n , for which p_i is the smallest factor, is given by:

$$S_n = \sum_{i=1}^n F_i = \sum_{i=1}^n \frac{\phi(P_{i-1})}{P_{i-1} \cdot p_i} = \sum_{i=1}^n \frac{\phi(P_{n-1})}{P_n}.$$

 S_n is the measure of the likelihood of an integer to share a factor with a prime less than or equal to p_n .

The likelihood that a number is coprime to S_n is $1 - S_n$

Approximating the decay rate of F_n

We start from

$$F_n = \frac{\phi(P_{n-1})}{P_n}.$$

$$F_n = \frac{\phi(P_{n-1})}{P_n} = \frac{P_{n-1} \prod_{i=1}^{n-1} \left(1 - \frac{1}{p_i}\right)}{P_{n-1} \cdot p_n}.$$

$$F_n = \frac{P_{n-1} \prod_{i=1}^{n-1} \left(1 - \frac{1}{p_i}\right)}{P_{n-1} \cdot p_n} = \frac{\prod_{i=1}^{n-1} \left(1 - \frac{1}{p_i}\right)}{p_n}.$$

We can use Mertens' third theorem aka Mertens' product formula , to approximate the numerator asymptotically , we have

$$\prod_{i=1}^{n-1} \left(1 - \frac{1}{p_i} \right) \sim \frac{e^{-\gamma}}{\log p_{n-1}}.$$

where γ is the Euler–Mascheroni constant. This provides us with an asymptotic approximation for the numerator .

Since $p_{n-1} \approx p_n$ for large n, this gives

$$\prod_{i=1}^{n-1} \left(1 - \frac{1}{p_i} \right) \approx \frac{e^{-\gamma}}{\log p_n}.$$

To complete the original definition we must factor in the denominator $\boldsymbol{.}$

$$F_n = \frac{1}{p_n} \prod_{i=1}^{n-1} \left(1 - \frac{1}{p_i} \right) \approx \frac{1}{p_n} \cdot \frac{e^{-\gamma}}{\log p_n}.$$

Given

$$F_n \approx \frac{e^{-\gamma}}{p_n \log p_n},$$

and $p_n \sim n \log n$, we have

$$F_n \approx \frac{e^{-\gamma}}{n \log n \cdot \log(n \log n)}$$

$$F_n \approx \frac{e^{-\gamma}}{n \log n \cdot (\log n + \underline{\log \log n}))}$$

For large n F_n will grow as $\log n$ as opposed to $\log \log n$, since $\log n \gg \log \log n$ for large n .

$$F_n pprox rac{e^{-\gamma}}{n(\log n)^2}$$

Thus:

$$S_n \sim \sum_{h=1}^n \frac{1}{h(\log h)^2}$$

As $n \to \infty$, $F_n \to 0$.

Coprimality to S_n

Let P_n be the product of the first n primes $G=\{2,3,5,...,p_n\}$. This means P_n is factorable by all of these primes . It can be shown that $P_n\pm 2$ is factorable by 2, $P_n\pm 3$ is factorable by 3 etc . It can be deduced that $P_n\pm 1$ is not factorable by any of the elements in G. $P_n\pm 1$ is coprime to G.

Error Terms

There are primes p_{n+1}, p_{n+2}, \ldots in the interval $[p_n, P_n]$ whose frequencies are not accounted for and which may be a factor of $P_n \pm 1$, we will call the sum of the frequencies of these terms E_n . If $P_n \pm 1$ is coprime to the primes used to calculate S_n and coprime to the primes used to approximate E_n then $P_n \pm 1$ is prime.

Quantifying the Error Term E_n

We have:

$$E_n = \sum_{m>n}^{\sqrt{P_n+1}} F_m,$$

To estimate E_n , consider the sum:

$$E_n = \sum_{m>n} \frac{e^{-\gamma}}{m(\log m)^2}.$$

For large n, we can approximate sums by integrals. Specifically:

$$\sum_{m>n} \frac{1}{m(\log m)^2} \approx \int_n^\infty \frac{dx}{x(\log x)^2}.$$

Simplify and Evaluate the Integral

$$u = \log x$$

$$\frac{du}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \quad \Rightarrow \quad du = \frac{1}{x}dx \quad \Rightarrow \quad dx = x du$$

$$\frac{1}{x(\log x)^2} = \frac{1}{xu^2}$$

$$I = \int_{n}^{\infty} \frac{dx}{xu^{2}} = \int_{\log n}^{\infty} \frac{x \, du}{xu^{2}} = \int_{\log n}^{\infty} \frac{du}{u^{2}}$$
$$\int \frac{du}{u^{2}} = \frac{1}{u^{2}} = u^{-2} = \frac{u^{-2+1}}{-2+1} = \frac{u^{-1}}{-1} = -\frac{1}{u} + C$$

$$I = \left[-\frac{1}{u} \right]_{\log n}^{\infty} = \left(-\frac{1}{\infty} \right) - \left(-\frac{1}{\log n} \right) = 0 - \left(-\frac{1}{\log n} \right) = \frac{1}{\log n}$$

Thus:

$$\int_{n}^{\infty} \frac{dx}{x(\log x)^2} = \frac{1}{\log n}.$$

Incorporating the constant $e^{-\gamma}$:

$$E_n \approx e^{-\gamma} \cdot \frac{1}{\log n}$$
 as $n \to \infty$.

 E_n is on the order of $\frac{1}{\log n}$. If the sum defining E_n is not from n to ∞ but to some finite upper limit Mwe can write:

$$\int_{n}^{M} \frac{dx}{x(\log x)^2} = \frac{1}{\log n} - \frac{1}{\log M}.$$

If M is extremely large the dominant term is $1/\log n$, ensuring it remains on the order of $1/\log n$ for large n.

$$E_n \approx \frac{e^{-\gamma}}{\log n}.$$

Approximating primality of $P_n \pm 1$

If $P_n \pm 1$ is coprime to the primes used to calculate E_n then it is prime . The likelihood that either $P_n \pm 1$ are coprime to the primes of E_n is $1 - E_n$.

Evaluating Individual Cases

 $E_n=F_{m_1}+F_{m_2}+F_{m_3}....F_{m_m}$, all likelihoods contributed by individual F_m are with respect to primes p_m . Where $p_n\leq p_m\leq \sqrt{P_n+1}$, which are all larger than 2, since 2 is always in G. Since $(P_n + 1) - (P_n - 1) = 2$, we can determine that if any prime p_m is a factor of $P_n - 1$ then it cannot be a factor of $P_n + 1$.

Dependent Case

Assume P_n-1 is composite and factorable by one or more primes p_{m_1},p_{m_2} . Let us call the sum of the frequencies of these primes ϵ , $\epsilon=F_{m_1}+F_{m_2}$. If P_n-1 has a factorable likelihood of E_n , and P_n+1 cannot be factorable by p_{m_1},p_{m_2} , it stands that the factorable likelihood of P_n+1 is $E_n-\epsilon$.

Independent Case

Assume P_n-1 is prime . Therefore it has no relation to any primes p_m . The error for P_n-1 is E_n . Since there are no p_m, F_m , $\epsilon=0$. The error of P_n+1 is $E_n-\epsilon=E_n$ since $\epsilon=0$.

The likelihood that P_n-1 is prime is approximately $(1-E_n)$. The likelihood that P_n-1 is prime goes to 1 as E_n goes to 0. Therefore, as n increases, the likelihood that P_n-1 is prime increases.

Proof

Let A denote the infinite ordered set of all prime numbers. We construct a subset $B \subseteq A$ consisting of primorials that serve as twin prime centers. The construction proceeds iteratively as follows:

1. For each positive integer n, define the primorial P_n as the product of the first n primes:

$$P_n = \prod_{i=1}^n p_i,$$

where p_i is the *i*-th prime number.

2. Define B as the set of primorials P_n for which both P_n-1 and P_n+1 are prime. Formally,

$$B = \left\{ P_n \in A \mid P_n - 1 \text{ and } P_n + 1 \text{ are both prime} \right\}.$$

- 3. Analyze the likelihood that P_n is a twin prime center as n increases.
- 4. Define an error term E_n representing the sum of frequencies of primes beyond p_n that may divide $P_n \pm 1$:

$$E_n = \sum_{m > n}^{\sqrt{P_n + 1}} F_m \approx \frac{e^{-\gamma}}{\log n}.$$

This approximation indicates that E_n diminishes as n increases.

5. Consider the likelihood that P_n-1 is coprime to the set of primes accounted for in E_n . This is approximately $1-E_n$. As $E_n\to 0$ when $n\to\infty$, this likelihood approaches 1. Thus P_n-1 is increasingly likely to be prime .

6. We now have that P_n-1 is increasingly likely to be prime for large n. When P_n-1 is prime we can independently calculate the likelihood that P_n+1 is also prime as $(1-E_n)$. The probability that both are coprime to E_n is approximately

 $\left(1-E_n\right)^2.$

- 7. Therefore, as n increases, the likelihood that P_n serves as a twin prime center increases. Consequently, the set B is expected to contain more elements as n grows.
- 8. Since B is constructed by iteratively including primorials that satisfy the twin prime center condition, and the likelihood of inclusion increases with n, we infer that B is an infinite subset of A.
- 9. Finally, assuming that there are infinitely many primes and that the likelihood of primorials being twin prime centers tends to 1, it follows that there are infinitely many twin prime centers.