

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 Álgebra Lineal para Ingeniería Prueba Recuperativa Jueves 19 de Diciembre de 2013

Nombre:	Gru	po:	.Sala:	
1 (011101 0	OLU	PO	.Dara	

Instrucciones

- Conteste en forma ordenada identificando la pregunta e ítem que corresponde.
- Cada solución debe llevar desarrollo y respuesta.

1.- (2.0)

• No se permite el uso de Calculadora.

2.- (1.5)

■ Tiempo: 90 minutos.

- 3.- (2.5)
- Si usted debe solamente un control, conteste la pregunta 1 o 3 (solo una de ellas).
- 1. Se tiene el siguiente producto interno en \mathbb{R}^3 :

$$\langle (u, v, w), (x, y, z) \rangle = 2ux + vx + uy + vy + 3wz$$

a) Pruebe que $\langle (u, v, w), (u, v, w) \rangle \geq 0$

Solución

Sea $(u, v, w) \in \mathbb{R}^3$.

$$\langle (u, v, w), (u, v, w) \rangle = 2u^2 + uv + uv + v^2 + 3w^2$$

$$= u^2 + u^2 + 2uv + v^2 + 3w^2$$

$$= u^2 + (u^2 + 2uv + v^2) + 3w^2$$

$$= u^2 + (u + v)^2 + 3w^2$$

$$= > 0$$

b) Dado $W=\langle (1,2,0),(-1,1,2)\rangle \leq \mathbb{R}^3$ con el producto interno antes definido, encuentre base y dimensión de W^\perp

Solución

Sea $(u, v, w) \in \mathbb{R}^3$, tal que:

$$\langle (u, v, w), ((1, 2, 0)) \rangle = 0 \text{ y } \langle (u, v, w), ((-1, 1, 2)) \rangle = 0$$

$$2u + v + 2u + 2z + 3w = 0$$

$$-2u - v + u + v + 6w = 0$$

$$4u + 3v = 0$$

$$-u + 6w = 0$$

Luego, el conjunto solución del sistema es: $S=\{(6w,-8w,w)\in\mathbb{R}^3:w\in\mathbb{R}\},$ por lo tanto:

$$W^{\perp} = \langle (6, -8, 1) \rangle$$

- $B = \{(6, -8, 1)\}$ es base de W^{\perp} ya que es linealmente independiente y genera.
- $dim(W^{\perp}) = 1$
- 2. Considere $B = \{x^2 + x + 1, x + 1, 1\}$ una base ordenada de $P_2(\mathbb{R})$.

Se define $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ transformación lineal, tal que:

$$T(x^2 + x + 1) = (0, 2, 3)$$

 $T(x + 1) = (-1, 1, 0)$
 $T(1) = (0, 2, 3)$

Obtenga $T(ax^2 + bx + c)$

Solución.

Escribamos $ax^2 + bx + c$ en combinación lineal de la base B.

$$\alpha(x^{2} + x + 1) + \beta(x + 1) + \gamma(1) = ax^{2} + bx + c$$

$$\alpha x^{2} + (\alpha + \beta)x + (\alpha + \beta + \gamma)1 = ax^{2} + bx + c$$

Planteamos el sistema:

$$\begin{array}{rcl} \alpha & = & a \\ \alpha + \beta & = & b \\ \alpha + \beta + \gamma & = & c \end{array}$$

Su solución es $\alpha = a, \beta = b - a, \gamma = c - b$. Tenemos:

$$T(ax^{2} + bx + c) = T((a)(x^{2} + x + 1) + (b - a)(x + 1) + (c - b)(1))$$

$$= (a)T(x^{2} + x + 1) + (b - a)T(x + 1) + (c - b)T(1)$$

$$= (a)(0, 2, 3) + (b - a)(-1, 1, 0) + (c - b)(0, 2, 3)$$

$$= (a - b, a - b + 2c, 3a - 3b + 3c)$$

Por lo tanto:

$$T(ax^2 + bx + c) = (a - b, a - b + 2c, 3a - 3b - 3c)$$

- 3. Sea $A \in M_3(\mathbb{R})$, tal que sus valores propios son $\lambda_1 = 1$, $\lambda_2 = 2$ (con multiplicidad 2), sus vectores propios son $v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ asociado a λ_1 y $v_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ asociados a λ_2
 - a) Justifique por qué A es diagonalizable.

Solución.

Primera Forma

$$V_1 = \left\langle \left(\begin{array}{c} 1\\ -1\\ 1 \end{array} \right) \right\rangle$$

Es un subespacio propio, formado por un conjunto linealmente independiente ya que tiene solo un vector, además:

$$dim(V_1) = multiplicidad(\lambda = 1) = 1$$

$$V_2 = \left\langle \left(\begin{array}{c} 0\\2\\2\\2 \end{array} \right), \left(\begin{array}{c} 1\\-1\\0 \end{array} \right) \right\rangle$$

Es un subespacio propio, formado por un conjunto linalmente independiente ya que ningún vector es múltiplo del otro, además:

$$dim(V_2) = multiplicidad(\lambda = 2) = 2$$

El orden de la matriz A es 3 y coincide con la suma de las dimensiones de los subespacios propios V_1 y V_2 . Por lo tanto A es diagonalizable

Segunda Forma

El conjunto
$$B = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$$
 formado por tres vectores propios, es

un conjunto linealmente independiente (se debe justificar). Por otra parte, el orden de la matriz A es 3.

Como coincide el cardinal de B con el orden de A se tiene que A es diaginalizable .

3

b) Encuentre la matriz P que diagonaliza a A y la matriz D similar a A.

Solución

$$P = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & -1 \\ 1 & 1 & 0 \end{array}\right), D = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

c) Halle la matriz A.

Solución

■ Encontrar P^{-1}

$$P^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & 1\\ \frac{1}{2} & \frac{1}{2} & 0\\ \frac{3}{2} & \frac{1}{2} & -1 \end{pmatrix}$$

■ Ocupando la propiedad $P^{-1}AP = D \Leftrightarrow A = PAP^{-1}$, se puede encontrar el valor de A:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{3}{2} & \frac{1}{2} & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} \frac{5}{2} & \frac{1}{2} & -1 \\ -\frac{1}{2} & \frac{3}{2} & 1 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix}$$