Лекция 22. Правило Лопиталя

22.1. Раскрытие неопределенности 0/0

Мы уже находили пределы вида

$$\lim_{x \to a} \frac{f(x)}{g(x)},\tag{22.1}$$

когда $\lim_{x\to a} g(x) = 0$. Например, был доказан первый замечательный предел $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

В таких случаях нельзя переходить к пределу отдельно в числителе и в знаменателе дроби. Если $\lim_{x\to a} f(x) \neq 0$, то предел (22.1) бесконечен. Поэтому интересен случай, когда $\lim_{x\to a} f(x) = 0$. Настоящая лекция посвящена изучению правил раскрытия неопределенности $\frac{0}{0}$ и $\frac{\infty}{\infty}$ с помощью производных.

Теорема 22.1.1. Пусть f(x) и g(x) удовлетворяют условиям:

- 1. f(a) = g(a) = 0,
- 2. существуют производные f'(a) и g'(a),
- 3. $g'(a) \neq 0$.

Тогда предел (22.1) существует и справедливо равенство

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$
 (22.2)

Доказательство. Для $x \neq a$ в силу дифференцируемости функций f и g в точке x = a имеем

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \begin{cases} x - a = \Delta x \\ \Delta x \to 0 \end{cases} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{g(a + \Delta x) - g(a)} = \lim_{\Delta x \to 0} \frac{f'(a)\Delta x + o(\Delta x)}{g'(a)\Delta x + o(\Delta x)} = \lim_{\Delta x \to 0} \frac{f'(a) + \frac{o(\Delta x)}{\Delta x}}{g'(a) + \frac{o(\Delta x)}{\Delta x}} = \frac{f'(a)}{g'(a)}.$$

Теорема доказана.

В этой теореме можно говорить об односторонних производных функций f и g и соответствующем одностороннем пределе в (22.2). В следующих далее теоремах 22.1.2 и 22.2.1 имеются в виду односторонние пределы.

Теорема 22.1.2. Пусть a — число или бесконечность определенного знака; f(x) и g(x) удовлетворяют условиям:

- 1. $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = 0$;
- 2. f(x) и g(x) дифференцируемы в некоторой проколотой односторонней окрестности $U^{0}(a)$;
- 3. $g'(x) \neq 0 \ \forall x \in U^0(a);$

4. существует конечный или бесконечный $\lim_{x\to a} \frac{f'(x)}{q'(x)}$.

Тогда существует предел (22.1) (конечный или бесконечный) и справедливо равенство

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Доказательство. Будем сначала считать a конечным. Положим f(a)=0, g(a)=0, т. е. доопределим (или переопределим) функции f(x) и g(x) в точке a. Тогда эти функции становятся непрерывными в соответствующей окрестности точки a. Доопределенные функции f(x) и g(x) удовлетворяет условиям теоремы Коши¹ в соответствующей окрестности точки a. Значит, при некотором $\xi \in (a,x)$ (или $\xi \in (x,a)$)

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

По условию предел дроби из правой части этого равенства при $x \to a$ существует. Отсюда вытекает утверждение теоремы для конечных a.

Пусть теперь a — бесконечный символ, для определённости $a=+\infty$. Рассмотрим функции $\varphi(t)=f(1/t)$ и $\psi(t)=g(1/t)$. При достаточно малых положительных t функции $\varphi(t)$ и $\psi(t)$ дифференцируемы и

$$\varphi'(t) = f'(1/t) \left(-\frac{1}{t^2} \right); \quad \psi'(t) = g'(1/t) \left(-\frac{1}{t^2} \right) \neq 0.$$

Поэтому

$$\frac{\varphi'(t)}{\psi'(t)} = \frac{f'(1/t)}{g'(1/t)}$$

и существует предел

$$\lim_{t \to +0} \frac{\varphi'(t)}{\psi'(t)} = \lim_{x \to \infty} \frac{f'(x)}{q'(x)}.$$

Так как $\varphi(t) \to 0$; $\psi(t) \to 0$ при $t \to +0$, то по уже доказанному имеем

$$\lim_{t\to +0}\frac{\varphi(t)}{\psi(t)}=\lim_{t\to +0}\frac{\varphi'(t)}{\psi'(t)}.$$

Для завершения доказательства теоремы осталось только заметить, что

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{t \to +0} \frac{\varphi(t)}{\psi(t)}.$$

- 1. непрерывны на отрезке [a, b],
- 2. дифференцируемы в интервале (a, b),
- 3. $\forall x \in (a,b) \ g'(x) \neq 0$.

Тогда существует точка $\xi \in (a,b)$ такая, что $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$.

 $^{^{1}}$ Пусть функции f(x) и g(x)

22.2. Раскрытие неопределенности ,,частное бесконечностей"

Теорема 22.2.1. Пусть a — число или бесконечность определенного знака; f(x) и g(x) удовлетворяют условиям:

- 1. $\lim_{x \to a} f(x) = \infty$, $\lim_{x \to a} g(x) = \infty$;
- 2. f(x) и g(x) дифференцируемы в некоторой проколотой односторонней окрестности $U^0(a)$;
- 3. $g'(x) \neq 0 \ \forall x \in U^0(a);$
- 4. существует конечный или бесконечный $\lim_{x\to a} \frac{f'(x)}{g'(x)}$.

Тогда существует предел (22.1) и $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

Доказательство приведено в учебном издании: Основы математического анализа: В 2-х ч, Часть 1. — М.: ФИЗМАТЛИТ, 2005, авторы — Ильин В.А., Позняк Э.Г. на стр. 272 — 273.

Замечание 22.1. Отметим, что существование предела $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ является достаточным условием существования предела $\lim_{x\to a} \frac{f(x)}{g(x)}$, но не является необходимым.

Например, если $f(x) = x^2 \sin(1/x)$ и $g(x) = \sin x$, то

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

согласно свойству бесконечно малых² Вместе с тем, дробь

$$\frac{f'(x)}{g'(x)} = \frac{2x \sin\frac{1}{x} + x^2 \cos\frac{1}{x} \cdot \left(-\frac{1}{x^2}\right)}{\cos x} = \frac{1}{\cos x} \left(2x \sin\frac{1}{x} - \cos\frac{1}{x}\right)$$

при $x\to 0$ предела не имеет. Доказать это можно используя следствие³ из критерия существования предела по Гейне. Следовательно, для вычисления предела $\lim_{x\to 0} \frac{x^2\sin\frac{1}{x}}{\sin x}$ правило Лопиталя неприменимо.

22.3. Примеры

Пример 22.1. Найти предел $\lim_{x\to 0} \frac{\sinh^2 x \ln(1+x)}{\tan x - x}$.

² Произведение бесконечно малой величины на ограниченную есть бесконечно малая.

³Если существуют последовательности $\{\bar{x}_n\}$ и $\{\bar{x}_n\}$ точек из области определения функции f, сходящихся к точке a и отличных от a, для которых последовательности $\{f(\bar{x}_n)\}$ и $\{f(\bar{x}_n)\}$ соответствующих значений функции сходятся к разным пределам, то функция f(x) при $x \to a$ предела не имеет.

 \diamond При $x \to 0$ имеем неопределенность $\frac{0}{0}$. Сначала в произведении (в числителе) заменим бесконечно малые функции их эквивалентными: $\sh x \sim x$, $\ln(1+x) \sim x$ при $x \to 0$. В разности (в знаменателе) эквивалентными функциями заменять нельзя! Затем применим к раскрытию неопределенности $\frac{0}{0}$ правило Лопиталя (Lop.).

$$\lim_{x \to 0} \frac{\sinh^2 x \ln(1+x)}{\tan x - x} = \lim_{x \to 0} \frac{x^3}{\tan x - x} = \left\{ \frac{0}{0}; Lop. \right\} = \lim_{x \to 0} \frac{3x^2}{\frac{1}{\cos^2 x} - 1} = \lim_{x \to 0} \frac{3x^2 \cos^2 x}{1 - \cos^2 x}.$$

Так как $\lim_{x\to 0}\cos^2 x = 1$ и

$$\lim_{x \to 0} \frac{3x^2}{1 - \cos^2 x} = \left\{ \frac{0}{0}; Lop. \right\} = \lim_{x \to 0} \frac{6x}{-2\cos x \sin x} = \lim_{x \to 0} \frac{6}{-2\cos x} : \lim_{x \to 0} \frac{\sin x}{x} = -3,$$

$$\text{To } \lim_{x \to 0} \frac{\sinh^2 x \ln(1+x)}{\tan x - x} = \lim_{x \to 0} \cos^2 x \cdot \lim_{x \to 0} \frac{3x^2}{1 - \cos^2 x} = -3.$$

Пример 22.2.

$$\lim_{x \to 1} \frac{x^2 - 1 + \ln x}{e^x - e} = \left\{ \frac{0}{0}; Lop. \right\} = \lim_{x \to 1} \frac{2x + 1/x}{e^x} = \lim_{x \to 1} \frac{2x^2 + 1}{xe^x} = \frac{\lim_{x \to 1} (2x^2 + 1)}{\lim_{x \to 1} xe^x} = \frac{3}{e^x}$$

Правило Лопиталя не является универсальным средством для раскрытия неопределенности 0/0 или ∞/∞ . В некоторых примерах его нельзя применять, в некоторых оно не помогает избавиться от неопределенности или даже ухудшает ситуацию. Это демонстрируют следующие примеры.

Пример 22.3. Найти предел $\lim_{x \to \infty} \frac{f(x)}{g(x)}$, если $\frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sin x + 2x}{\cos x + 3x}$.

 \diamond Так как дробь $\frac{f'(x)}{g'(x)} = \frac{\cos x + 2}{-\sin x + 3}$ при $x \to \infty$ предела не имеет, то для нахождения предела $\lim_{x \to \infty} \left(f(x)/g(x) \right)$ правило Лопиталя применять нельзя. Вычислим данный предел, поделив числитель и знаменатель на x:

$$\lim_{x \to \infty} \frac{\sin x + 2x}{\cos x + 3x} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{\frac{\sin x}{x} + 2}{\frac{\cos x}{x} + 3} = \frac{2}{3}.$$

Пример 22.4. Найти предел $\lim_{x\to +\infty} \frac{\sqrt{x^2+1}}{x}$. Формальное применение правила Лопиталя не дает результата:

$$\lim_{x\to +\infty}\frac{\sqrt{x^2+1}}{x}=\left\{\frac{\infty}{\infty};Lop.\right\}=\lim_{x\to +\infty}\frac{2x}{2\sqrt{x^2+1}}=\left\{\frac{\infty}{\infty};Lop.\right\}=\lim_{x\to +\infty}\frac{\sqrt{x^2+1}}{x}.$$

♦ Этот предел, конечно, легко вычисляется без правила Лопиталя:

$$\lim_{x\to +\infty}\frac{\sqrt{x^2+1}}{x}=\left\{\frac{\infty}{\infty}\right\}=\lim_{x\to +\infty}\frac{|x|\sqrt{1+1/x^2}}{x}=1.$$

Пример 22.5. Найти предел $\lim_{x\to +\infty} \frac{\operatorname{ch} x - \cos x}{\operatorname{sh} x - \sin x}$. Применение правила Лопиталя не дает результата:

$$\lim_{x \to +\infty} \frac{\operatorname{ch} x - \cos x}{\operatorname{sh} x - \sin x} = \left\{ \frac{\infty}{\infty}; Lop. \right\} = \lim_{x \to +\infty} \frac{\operatorname{sh} x + \sin x}{\operatorname{ch} x - \cos x} = \left\{ \frac{\infty}{\infty}; Lop. \right\} =$$

$$= \lim_{x \to +\infty} \frac{\operatorname{ch} x + \cos x}{\operatorname{sh} x + \sin x} = \left\{ \frac{\infty}{\infty}; Lop. \right\} = \lim_{x \to +\infty} \frac{\operatorname{sh} x - \sin x}{\operatorname{ch} x + \cos x} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to +\infty} \frac{\operatorname{ch} x - \cos x}{\operatorname{sh} x - \sin x}.$$

♦ Вычислим данный предел без правила Лопиталя.

$$\lim_{x \to +\infty} \frac{\operatorname{ch} x - \cos x}{\operatorname{sh} x - \sin x} = \lim_{x \to +\infty} \frac{e^x + e^{-x} - 2\cos x}{e^x - e^{-x} - 2\sin x} = \lim_{x \to +\infty} \frac{1 + e^{-2x} - 2e^{-x}\cos x}{1 - e^{-2x} - 2e^{-x}\sin x} = 1,$$

так как $\lim_{x\to +\infty}e^{-2x}=0$, $\lim_{x\to +\infty}e^{-x}\cos x=0$, $\lim_{x\to +\infty}e^{-x}\sin x=0$.

Пример 22.6. Найти предел $\lim_{x\to 0} \frac{e^{-1/x^2}}{x}$. После применения правила Лопиталя ситуация лишь ухудшается:

$$\lim_{x \to 0} \frac{e^{-1/x^2}}{x} = \left\{ \frac{0}{0}; Lop. \right\} = \lim_{x \to 0} \frac{e^{-1/x^2} 2x^{-3}}{1} = 2 \lim_{x \to 0} \frac{e^{-1/x^2}}{x^3}.$$

♦ Сделаем сначала замену переменных, потом применим правило Лопиталя:

$$\lim_{x \to 0} \frac{e^{-1/x^2}}{x} = \left\{ \frac{1/x = t}{t \to \infty} \right\} = \lim_{t \to \infty} \frac{t}{e^{t^2}} = \left\{ \frac{\infty}{\infty}; Lop. \right\} = \lim_{t \to \infty} \frac{1}{e^{t^2} 2t} = 0.$$