Lemat Burnside'a

Bartosz Chomiński

1 Wstęp

Ile jest istotnie różnych naszyjników o n koralikach, które mogą być pokolorowane k kolorami? Dwa naszyjniki są istotnie różne, gdy nie można tak obrócić jednego z nich, by powstał drugi.

Dla k=2 wyniki dla kolejnych n to

Z pozoru nie ma tu żadnej regularności, ale zagłębmy się w szczegóły.

2 Grupa

Grupa to formalne przedstawienie akcji, które możemy wykonywać na obiektach, przykładowo może opisywać obroty, symetrie, permutacje, domnażanie modulo, dodawanie modulo i dużo więcej.

Formalnie grupa G składa się ze zbioru G (oznaczanego tak samo jak grupa i nazywanego uniwersum) oraz działania \cdot , które spełniają następujące własności:

- $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ dla wszystkich $x, y, z \in G$;
- istnieje $e \in G$ takie, że $x \cdot e = e \cdot x = x$ dla wszystkich $x \in G$ (element neutralny);
- dla każdego $x \in G$ istnieje takie $x^{-1} \in G$, że $x \cdot x^{-1} = x^{-1} \cdot x = e$ (element odwrotny).

Przykładową grupą jest grupa obrotów kwadratu, która składa się z elementów $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$, a działanie jest zdefiniowane następująco:

•	0°	90°	180°	270°
0°	0°	90°	180°	270°
90°	90°	180°	270°	0°
180°	180°	270°	0°	90°
270°	270°	0°	90°	180°

Inne małe grupy to przykładowo liczby $\{0,1,\ldots,42\}$ z dodawaniem modulo 43, grupa wszystkich permutacji zbioru trzyelementowego lub grupa obrotów sześcianu.

3 Działanie grupy na zbiorze

Dotychczas przedstawione grupy przedstawiają jakieś "akcje" (pomnóż, obróć, spermutuj), więc teraz chcielibyśmy nakładać te akcje na obiekty (np. "obróć o 90°" nakładamy na \blacksquare i mamy \blacksquare). Sformalizujmy to nakładanie akcji na obiekty – działaniem \circ grupy G na zbiorze X nazywamy taką funkcję, że

- $g \circ x \in X$ dla wszystkich $g \in G$ i $x \in X$;
- $g \circ (h \circ x) = (g \cdot h) \circ x$ dla wszystkich $g, h \in G$ oraz $x \in X$;
- $e \circ x = x$ dla wszystkich $x \in X$.

4 Orbity

Rozważmy wszystkie naszyjniki o czterech dwukolorowych koralikach i działania grupy obrotów kwadratu na tym zbiorze. Okazuje się, że cały zbiór wszystkich 2^4 naszyjników możemy podzielić na kilka części:

Zauważmy, że w obrębie każdej z tych części możemy przejść z jednego ułożenia kolorów na drugi przez akcję z grupy obrotów oraz że nie możemy przejść taką akcją między ułożeniami z różnych części zbioru.

Nie jest to przypadek – istnienie elementu odwrotnego w grupie oraz naturalne dla nas własności działania grupy na zbiorze wymuszają taką sytuację w przypadku każdej grupy i każdego jej działania na każdym zbiorze.

Opisane wyżej części zbioru X nazywamy orbitami, co ma swoje uzasadnienie, gdy wyobrazimy sobie, że poszczególne elementy zbioru X to pozycje planet

na orbitach, a elementy grupy G obracają planety między tymi pozycjami. Orbitę zawierającą x oznaczamy przez orb(x).

5 Lemat o orbicie i stabilizatorze

Dla każdego z narysowanych wyżej naszyjników o czterech dwukolorowych koralikach rozważny ile elementów grupy G nie zmienia go pod wpływem swojej akcji. Przykładowo \Box nie zmienia się pod wpływem jakiegokolwiek obrotu z grupy G – zawsze wychodzi \Box , natomiast \Box pozostaje sobą tylko jeżeli zastosujemy na nim obrót o 0° , a \Box nie zmienia się tylko przy obrotach o 0° i 180° .

Dla każdego elementu $x \in X$ możemy jednoznacznie określić taki podzbiór akcji z G, które go nie zmieniają. Taki podzbiór nazywamy stabilizatorem i oznaczamy jako stab(x).

Z powyższego przykładu możemy spodziewać się pewnej relacji między rozmiarami $\operatorname{orb}(x)$ i $\operatorname{stab}(x)$ – zauważmy, że dla każdego x z tego przykładu zachodzi

$$|\operatorname{orb}(x)| \cdot |\operatorname{stab}(x)| = 4.$$

Nie jest to przypadek – okazuje się, że dla **każdej** grupy i **każdego** jej działania na **każdym** zbiorze zachodzi równość

$$|\operatorname{orb}(x)| \cdot |\operatorname{stab}(x)| = |G|.$$

Dowód. Niech $x \in X$. Rozważmy elementy orb(x) i ponumerujmy je jako x_1, x_2, \ldots, x_n . Oczywiście istnieją takie elementy g_1, g_2, \ldots, g_n grupy G, że $g_i \circ x = x_i$ dla $1 \le i \le n$. Niech h_1, h_2, \ldots, h_m będą wszystkimi elementami stab(x), czyli $h_i \circ x = x$ dla $1 \le i \le m$.

Niech $g \in G$ będzie dowolnym elementem grupy G. Pokażemy, że da się go zapisać jednoznacznie jako $h_i \cdot g_j$ dla pewnych i oraz j.

Niech j będzie taką liczbą naturalną, że $g \circ x = x_j$. Możemy zapisać g jako $g \cdot g_j^{-1} \cdot g_j$ i wówczas mamy

$$x_j = g \circ x = (g \cdot g_j^{-1} \cdot g_j) \circ x = (g \cdot g_j^{-1}) \circ x_j.$$

Wobec tego $g\cdot g_j^{-1}$ należy do stab $(x_j)=\mathrm{stab}(x),$ czyli istnieje takie i, że $g\cdot g_j^{-1}=h_i,$ a w konsekwencji

$$g = (g \cdot g_j^{-1}) \cdot g_j = h_i g_j.$$

Teraz wystarczy pokazać, że dla każdego g istnieje dokładnie jeden taki rozkład. Przypuśćmy nie wprost, że $g=h_1g_1=h_2g_2$. Wówczas mnożąc obustronnie z lewej przez h_2^{-1} i z prawej przez g_1^{-1} mamy

$$h_2^{-1}h_1 = g_2g_1^{-1}$$
.

Wyrażenie po lewej stronie należy do stabilizatora, a to po prawej należy do stabilizatora tylko gdy $g_2 = g_1$. W konsekwencji $h_1 = h_2$, więc dowolne dwa rozkłady g w żądany przez nas sposób tak naprawdę sa jednym rozkładem.

Wobec tego $|G| = n \cdot m = |\operatorname{orb}(x)| \cdot |\operatorname{stab}(x)|$.

6 Konkluzja

Chcemy policzyć orbity X względem G, a więc mamy

$$|\text{orbity}| = \sum_{A \in \text{orbity}} 1 = \sum_{A \in \text{orbity}} \sum_{x \in A} \frac{1}{|A|} = \sum_{x \in X} \frac{1}{|\operatorname{orb}(x)|} =$$

$$= \sum_{x \in X} \frac{|\operatorname{stab}(x)|}{|G|} = \frac{1}{|G|} |\{(g, x) \in G \times X : g \circ x = x\}| =$$

$$= \frac{1}{|G|} \sum_{x \in C} |\{x \in X : g \circ x = x\}|,$$

czyli dla każdej akcji z G wystarczy zliczyć liczbę zachowywanych przez nią na swoim miejscu elementów z X.

Powróćmy do problemu naszyjnika. Rozważmy naszyjnik z n=7 kolorowany na dwa kolory. Grupa obrotów tego naszyjnika składa się z elementów $0^{\circ}, \frac{360^{\circ}}{7}, \dots, 6 \cdot \frac{360^{\circ}}{7}$.

Zauważmy, że z pierwszości liczby 7 wynika, że jedyne naszyjniki zachowywane przez obroty $\frac{360^\circ}{7},\ldots,6\cdot\frac{360^\circ}{7}$ to naszyjniki jednokolorowe. Zauważmy również, że obrót o 0° zachowuje wszystkie naszyjniki. Stąd mamy

|orbity dla
$$n = 7$$
| = $\frac{1}{7}(2^7 + 6 \cdot 2) = 20$.

Rozważmy naszyjnik z n=8 kolorowany dwoma kolorami. Obrót o 0°, jak zwykle, zachowuje wszystkie 256 naszyjników. Obroty o 45°, 135°, 225°, 315° zachowują tylko 2 naszyjniki. Obroty o 90° i 270° zachowują 4 naszyjniki, a obrót o 180° zachowuje 16 naszyjników. Stąd mamy

|orbity dla
$$n = 8$$
| = $\frac{1}{8}(2^8 + 4 \cdot 2 + 2 \cdot 4 + 16) = 36$.