

ANSYS material modeling: Hyperelastic material characterization

ANSYS Mechanics Group ANSYS, Inc. August 2002

Overview

- The coefficients of strain energy potential can be calibrated by a few sets of simple stress state tests with a curve fitting procedure
- ANSYS implements both a linear and a nonlinear leastsquares fit procedures for fitting the data
- The common test types include:
 - Uniaxial test
 - Equibiaxial test
 - Shear test (planar test)
 - Volumetric test

Uniaxial Test

Uniaxial test includes uniaxial tension and uniaxial compression.

Deformation state

$$\lambda_{1} = \lambda_{A} \qquad \lambda_{2} = \lambda_{3} = \lambda_{A}^{-1/2}$$

Stress state

$$\sigma_{A} = 2(1 - \lambda_{A}^{-3}) \left(\lambda_{A} \frac{\partial U}{\partial I_{1}} + \frac{\partial U}{\partial I_{2}} \right)$$

 $\lambda_{_{\scriptscriptstyle \Delta}}$ is the uniaxial stretch ratio

Biaxial Test

biaxial test also includes tension and compression.

Deformation state

$$\lambda_{1} = \lambda_{2} = \lambda_{A} \qquad \lambda_{3} = \lambda_{A}^{-2}$$
Stress state
$$\sigma_{A} = 2(\lambda_{A} - \lambda_{A}^{-5}) \left(\frac{\partial U}{\partial I_{1}} + \lambda_{A}^{2} \frac{\partial U}{\partial I_{2}} \right) \qquad \longleftarrow$$

 λ_{Δ} is the biaxial stretch ratio

Planar (pure shear) Test

Planar test has the same stress state as the pure shear test.

Deformation state

$$\lambda_{1} = \lambda_{A} \quad \lambda_{2} = \lambda_{A}^{-1}$$

$$\lambda_{3} = 1$$

Stress state

$$\sigma_{A} = 2(\lambda_{A} - \lambda_{A}^{-3}) \left(\frac{\partial U}{\partial I_{1}} + \frac{\partial U}{\partial I_{2}} \right)$$

 $\lambda_{_{\Delta}}$ is the stretch ratio in loading direction

Volumetric Test

Volumetric test.

Deformation state

$$\lambda_{1} = \lambda_{2} = \lambda_{3} = \lambda_{A} = J^{1/3}$$

Stress state

$$\sigma_{A} = -p = \frac{\partial U}{\partial J}$$

- Curve fitting algorithm
 - Unnormalized least squares fit

$$S = \sum_{i=1}^{NP} (\sigma_{E} - \sigma_{A})^{2}$$

Normalized least squares fit

$$S = \sum_{i=1}^{NP} \left(1 - \frac{\sigma_A}{\sigma_E} \right)^2$$

where: S = relative error

 σ_{F} = experimental stress values

Curve fitting algorithm

- The material constants are determined by a least-squares procedure for a given set of experimental data, which minimizes the relative error, S.
- The Mooney, Polynomial, Yeoh strain energy potentials are linear in terms of the constants. Therefore a linear least-squares fit procedure is used.
- The Ogden, Arruda-Boyce, Gent strain energy potentials are nonlinear in terms of the constants. A nonlinear least-squares fitting procedure is needed. We use Marquard-Levenberg algorithm.

- Equivalent deformation modes
 - Uniaxial tension and equibiaxial compression

Add a hyperstatic stress does change the deformation mode

- Equivalent deformation modes
 - Uniaxial compression and equibiaxial tension

Add a hyperstatic stress does change the deformation mode

- Equivalent deformation modes
 - Planar tension and Planar compression

Add a hyperstatic stress does change the deformation mode

- Multiple types of test set
 - Hyperelastic material models in ANSYS are phenomenological and the parameters characterization relies on a least-squares fitting.
 - Multiple types of tests are essential to cover different deformation and to ensure the accuracy.

- Procedures for determination of material constants
 - Input experimental data
 - Specify hyperelastic material option
 - Fit experimental data
 - Update the material data to ANSYS database
- Curve fitting procedure is accessible both from Material GUI and batch run.
 - Material GUI is a wizard type of application, which guides you through the whole process.
 - Command for batch
 - TBFT,Option1, Option2, Option3,...
 Option1 = EADD, FADD, SET, SOLV, PLOT, FSET

Material GUI

- Command for Input uniaxial test data
 - TBFT, EADD, ID, option1, option2, option3, option4
 - Option1 = UNIA,BIAX, SHEA, or, VOLU
 - Option2 = name of file containing experimental data
 - Option3 = file name extension
 - Option4 = file directory

Input uniaxial test data using GUI

- Enter filename that containing uniaxial experimental data, and/or click next.
- To skip a test simple click next
- Click view file contents to view the experimental from screen

Viewing input contents

The input data is text file with data demilited with commas or spaces

0.13380	1.55060
0.26750	2.43670
0.35670	3.10130
0.62420	4.20890
0.89170	5.31650
1.15920	5.98100
1.42680	6.86710
2.05100	8.86080
2.58600	10.63290
3.03180	12.40510
3.78980	16.17090
4.36940	19.93670
4.81530	23.48100
5.17200	27.46840
5.43950	31.01270
5.70700	34.55700
5.92990	38.32280
6.06370	42.08860
6.19750	45.63290
6.33120	49.39870
6.46500	53.16460
6.55410	56.93040
6.64330	64.24050

Input biaxial test data using GUI

- Enter filename that containing biaxial experimental data, and/or click next.
- To skip a test simple click next
- Click view file contents to view the experimental from screen

Input shear test data using GUI

- Enter filename that containing shear experimental data, and/or click next.
- To skip a test simple click next
- Click view file contents to view the experimental from screen

Input volumetric test data using GUI

- Enter filename that containing volumetric experimental data, and/or click next.
- To skip a test simple click next
- Click view file contents to view the experimental from screen

Specify Material Option

- Command for specifying material option
 - TBFT, FADD, ID, option1, option2, option3, option4
 - Option1 = HYPER
 - Option2 = MOON, POLY, OGDE, BOYCE, GENT, YEOH
 - Option3 = 2, 5, 9 for Option2=MOON; 1,2,3, or n for POLY,
 OGDE, YEOH
- Command for nonlinear curve fitting
 - TBFT, SET, ID, option1, option2, option3, option4, option5
 - Option1 = HYPER
 - Option2 = OGDE, BOYCE, GENT
 - Option3 = 1,2,3, or n for OGDE
 - Option4 = index of coefficient
 - Option5 = initial value of coefficient

Specify Material Option

 Specify hyperelastic material option from the GUI tree

Specify Material Option

 Specify hyperelastic material option from the GUI tree

- For Ogden, Arruda-Boyce, Gent a nonlinear curve fitting procedure is used.
- Specify the initial value of coefficients of the chosen models.
- Specify other parameters such as maximum iteration number, tolerance for residual and coefficients

Data Fitting

- Command for solving the coefficients
 - TBFT, SOLVE, ID, option1, option2, option3, option4,...,Option7
 - Option1 = HYPER
 - Option2 = MOON, POLY, OGDE, BOYCE, GENT, YEOH
 - Option3 = 2, 5, 9 for Option2=MOON; 1,2,3, or n for POLY,
 OGDE, YEOH
 - Option4 = 0 unnormalized least squares,
 1 normalized least squares
 - Option5 = maximum number of iterations
 - Option6 = tolerance of residual changes
 - Option7 = tolerance of coefficient changes

Data Fitting

Curve fitting summary

- The coefficients and the error norms are shown in the summary window.
- The graphics plot of curve fitting results are shown in ANSYS standard window.
- Click update to update the coefficients to ANSYS database.

Curve Plotting

- Command for plotting curves
 - TBFT, PLOT, ID, option1, option2, option3, option4,...,Option7
 - Option1 = UNIA, BIAX, SHEA, VOLU
 - Option2 = HYPER
 - Option3 = MOON, POLY, OGDE, BOYCE, GENT, YEOH
 - Option4 = 2, 5, 9 for Option2=MOON; 1,2,3, or n for POLY,
 OGDE, YEOH

Graphics Plot of Fitting curves

Graphics Plot of Fitting curves

OGDE,3

Graphics Plot of Fitting curves

Data Fitting

- Command for updating results to ANSYS database
 - TBFT, FSET, ID, option1, option2, option3
 - Option1 = HYPER
 - Option2 = MOON, POLY, OGDE, BOYCE, GENT, YEOH
 - Option3 = 2, 5, 9 for Option2=MOON; 1,2,3, or n for POLY,
 OGDE, YEOH

Data Fitting

Update coefficients to ANSYS database

After update, the hyperelastic option appears in the right hand side of GUI

ANSYS Log file

The commands are written to log file

```
Log File
  File
         Close
  *LIST, 'uniaxial', 'dat', '.'
  TBFT, EADD, 1, UNIA, 'uniaxial', 'dat', '.'
TBFT, EADD, 1, BIAX, 'biaxial', 'dat', '.'
TBFT, EADD, 1, SHEA, 'shear', 'dat', '.'
TBFT, EADD, 1, VOLU, 'volumetric', 'dat', '.'
  TBFT, FADD, 1, HYPER, OGDE, 2
  TBFT, SET, 1, HYPER, OGDE, 2, 1, 1
  TBFT, SET, 1, HYPER, OGDE, 2, 2, 1
  TBFT, SET, 1, HYPER, OGDE, 2, 3, 1
  TBFT, SET, 1, HYPER, OGDE, 2, 4, 1
  TBFT, SOLVE, 1, HYPÉR, OGDE, 2, 1, 1000, 0, 005, 0, 005
  /color, grbak, 0
  /color, grid, 0
   /color,curve,0,1
   /gmarker,1,1,1
  ERASE
   /noerase
   /WINDOW, 1, OFF
   /WINDOW, 2, OFF
   /WINDOW, 3, OFF
   /WINDOW,4,0FF
```