

TEKNOFEST 2022 ROKET YARIŞMASI Lise Kategorisi Ön Tasarım Raporu (ÖTR) Sunuşu HÜRKUŞ

Takım Yapısı

HÜRKUŞ TAKIMI

Talip Taha Bıyıklı Samsun Fen Lisesi 11. sınıf öğrencisi Deneyap Öğrencisi Yazılım ve Üretim

Ece Sude Kabadayı Atakum Anadolu İmam Hatip Lisesi 11. sınıf Öğrencisi Deneyap Öğrencisi Tasarım

Ekin Şiar Bayer Samsun Fen Lisesi 11.sınıf öğrencisi Deneyap Öğrencisi Yazılım ve Üretim

Ceren Selçuk Samsun Ted Koleji 11.sınıf öğrencisi Deneyap Öğrencisi Analiz Sorumlusu

Yarışma Roketi Genel Bilgiler

Yarışma Roketi Hakkında Genel Bilgiler

	Ölçü
Boy (mm):	1860
Çap (mm):	130
Roketin Kuru Ağırlığı (g):	14123
Yakıt Kütlesi (g):	1774
Motorun Kuru Ağırlığı (g):	1584.3
Faydalı Yük Ağırlığı (g):	4050
Toplam Kalkış Ağırlığı (g):	17570

Tahmin Edilen Uçuş Verileri ve Analizleri

	Ölçü
Kalkış İtki/Ağırlık Oranı:	6.3
Rampa Çıkış Hızı (m/s):	25.9
Stabilite (0.3 Mach için):	2.29
En büyük ivme (g):	6.2
En Yüksek Hız (m/s):	180
En Yüksek Mach Sayısı:	0.54
Tepe Noktası İrtifası (m):	1533

Motor

Cesaroni L1050

Genel Tasarım

Operasyon Konsepti (CONOPS)

Atış günü hakemlerden teslim aldığımız roketimizin motor montajını gerçekleştireceğiz. Ardından fırlatma ekibimiz tarafından roketimiz rampaya taşıyacaktır. Rampada bize verilen süre içerisinde aviyonik ve altimetre aktifleştirilecek ve aviyonik sistemimiz 2 dakika içerisinde yer istasyonumuzla bağlantı kuracaktır. Bütün sistemlerin sağlıklı veri akışı sağlandığı doğrulandığında roketimiz atışa hazır hale gelecektir. Roketimizin ateşlemesini gerçekleştirdikten sonra tepe noktasında burun ve gövdeden ayrılma barutla gerçekleştireceğiz. Ana paraşüt açılacak ve görev yükümüz uçuş sürecine tepe (apogee) noktasından sonra gövdeden ayrı devam edecektir. Kurtarma süreci sonlanana kadar görev yükü ve ana gövde yer istasyonu ile aktif konum paylaşımında bulunacaktır.

	Zaman (s)	İrtifa (m)	Hız (m/s)
Fırlatma	0	0	0
Rampa Tepesi	0,5	6	0,6
Burn Out	3,75	375	171,2
Tepe Noktası	18,6	1536	1
Paraşüt Açılması	18,6	1535	5
Paraşüt Sonrası	113	528	9,1
İniş	163	0	8,8

Kütle Bütçesi

Roket Ürün Ağacı							
Alt Sistem İsmi	Komponent 🔻	Kütle (gram) 🔻	Malzeme *	Adet			
	Burun Konisi	1199	Alüminyum	1			
Burun Konisi	Bulkhead	373	Cam Elyaf	1			
	M8 Mapa	49	Çelik	1			
	Üst Gövde	2482	Cam Elyaf	1			
	Alt Gövde	1995	Cam Elyaf	1			
Gövde ve	Kanatçık	544	Karbonfiber	4			
Entegrasyon	Entegrasyon Gövdesi	358	Cam Elyaf	1			
Parçalrı	Motor Yuvası	661	Cam Elyaf	1			
	Kanatçık Yuvası	339	Alüminyum	1			
	Motor Durdurucu	48	Alüminyum	1			
	Ana Paraşüt	161	Ripstop Naylon	1			
Kurtarma Sistemi	Görev Yükü Paraşütü	89	Ripstop Naylon	1			
Kurtailia Sisteilii	k Kordunu (Burun Kon	2	Elastik Kort	2			
	Barut Kapsülü	30		2			
Görev Yükü	Kontrol kartı	307	-	1			
Gorev Tuku	Faydalı Yük Kapsülü	3743	ABS	1			
	Aviyonik Kapsül	1053	ABS	1			
Aviyonik	Uçuş Kartı	274	-	1			
	Bataryalar	273	-	2			

Roket Alt Sistem Detayları

Burun Konisi – Detay

	Burun Konisi Getir/Götür Analizi Tablosu									
	Seçenek 1			Seçenek 2			Seçenek 3			
Özellik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Tasarım	Parabolik	Hava direncini minimum düzeye indirir. Daha yüksek irtifaya ulaşabilir.	Üretimi zordur. Yüksek maliyetlidir.	Eliptik	Stabilitesi yüksektir. Kolay üretilebilir ve düşük maliyetlidir.	Hava direncine karşı mukavemeti düşüktür.	Konik	Üretimi kolaydır.	Stabilitesi düşüktür. Sürtünmeye karşı direnci azdır.	Burun konisinin hava direncini minimum düzeye indirecek ve istenilen stabilite değerini sağlayacak şekilde Parabolik tasarlanmasında karar kılınmıştır.
Malzeme	Karbonfiber	Mukavemet değeri yüksektir. Hafif ve ısıl dayanımı fazladır.	Maliyeti yüksek, üretimi zor ve kırılgandır.	Alüminyum	Mukavemet değeri yüksek, maliyeti düşük, üretimi kolay ve sürekliliği fazladır.	Yoğunluğu yüksek, ısıl dayanımı düşüktür.	Cam Elyaf	lsıl dayanımı yüksek, dayanıklıdır.	Maliyeti yüksek, üretimi zor ve işlenilebilirliği düşüktür.	Roketin atılış esnasında hava basıncı ile temas edecek ilk noktasının burun konisi olması nedeniyle malzeme seçiminde dayanıklılık önem arz etmektedir. Bu nedenle sürekliliği fazla, üretilebilirliği kolay ve aynı zamanda mukavemet değeri yüksek olan alüminyum malzeme seçilmiştir.
Üretim Yöntemi	Elle Yatırma	Düşük maliyetli. Montaj kolaylığı ve mukavemet arttırma olanağı sağlar.	Üretim kalitesi ve hızı düşük.	Vakum İnfüzyon	Yüksek mukavemet ve hafiflik sağlar.	Yüksek maliyetli ve üretim esnasında hata potansiyelinin yüksektir.				Elle yatırma düşük maliyetli ve boyutsal kısıtlama olmadan tasarım esnekliği sağlar. Ayrıca montaj kolaylığı sağladığı için bu yöntem tercih edilmiştir.

Burun Konisi – Detay

Burun konisinin şekli belirlenirken roketin ihtiyaçlarına en uygun tasarımı seçmek için gerekli literatür taraması yapılmış ve veriler OpenRocket Simülasyonu üzerinden kontrol edilmiştir. Projenin ihtiyaçları analiz edildiğinde burun konisinin hava direncini minimum düzeye indirecek ve istenilen stabilite değerini sağlayacak şekilde Parabolik tasarlanmasında karar kılınmıştır. Burun konisi malzemesinin dayanıklı olması gerekmektedir bu nedenle üretilebilirliği kolay ve mukavemet değeri yüksek olan alüminyum malzeme seçilmiştir. Alternatif malzeme olarak düşünülen cam elyaf ve karbon fiber; yüksek maliyetli ve işlenilebilirliği düşük özellikte olmaları nedeniyle tercih edilmemiştir.

$$0 \le K' \le 1 : y = R \left(\frac{2\left(\frac{x}{L}\right) - K'\left(\frac{x}{L}\right)^2}{2 - K'} \right)$$

Fiziksel Özellikler	Burun Konisi	Burun Omuzluğu
Uzunluk (m)	0.3	0.195
Dış Çap (m)	0.130	0.121
Et Kalınlığı (m)	0.003	0.003
Şekil Katsayısı	1	-

Kanatçık – Detay

	Kanatçık Getir/Götür Analizi Tablosu									
		Seçenek 1		Seçenek 2			Seçenek 3			
Özellik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Malzeme	Cam Elyaf	Mukavemet değeri yüksek ve hafiftir.	Üretimi zor ve maliyeti yüksektir.	Alüminyum	Isıl dayanımı yüksek, esnek, maliyeti düşük ve üretimi kolaydır.	Yoğunluğu yüksek, ısıl dayanımı düşüktür.	Karbonfiber	Mukavemet değeri yüksek, yoğunluğu düşük ve ısıl dayanımı fazladır.	Maliyeti yüksek ve üretimi zordur.	Karbonfiber düşük yoğunlukta sertlik ve mukavemet sağlayan bir malzemedir. Aynı zamanda roketin stabilite değeri için önem arz eden ısıl dayanımı yüksektir. Bu nedenle karbonfiber malzeme tercih edilmiştir
Tasarım	Yuvarlatılmış	Sağladığı irtifa ve stabilite değeri istenilen seviyededir.	İmal edilebilirliği düşüktür.	Kanat profili (Airfoil)	Stabilite aralığı istenilen değerde ve ses altı hız için uygundur.	Üretilebilirliği düşüktür.	Dikdörtgen	Üretilebilirliği kolaydır.	İrtifa değeri düşük ve yüksek sürtünme katsayısına sahiptir.	Roketin hava akışını daha düzenli dağıtması açısından kanatçığın kenar kısımlarının yuvarlatılmasına karar verilmiştir.
Üretim Yöntemi	Vakum İnfüzyon	Yüksek mukavemet ve hafiflik sağlar.	Yüksek maliyetli ve üretim esnasında hata potansiyeli yüksektir.	Elle Yatırma	Düşük maliyetlidir. Montaj kolayliği ve mukavemet arttırma olanağı sağlar.	Üretim kalitesi ve hızı düşüktür.	CNC	Yüksek doğrulukta kesim ve hassas üretim imkanı sağlar.	Maliyeti yüksektir. İstenilen ölçüde tezgahlara ulaşım zordur.	Hata payını azaltır, üretimi diğer alternatiflerine oranla kolaydır.

Kanatçık – Detay

Kanatçıklar uçuş esnasında roketin kararlılığını sağlar ve bu sayede izlemesi gereken yörüngede stabil bir şekilde devam eder. Karbon fiber mukavemet değeri yüksek, düşük yoğunluğa sahip ve mekanik açıdan fayda sağlayan bir malzeme olması dolayısıyla tercih edilmiştir. Aynı zamanda bu malzemenin kullanılmasıyla kanat dizaynları ağırlıklarını %40'a kadar azaltmak olasıdır. Alternatif malzeme olarak değerlendirilen alüminyumdan daha hafiftir ve minimum 2 kat daha fazla dayanıklılık sunar. Cam elyafın tercih edilmeme nedeni ise üretilebilirliği zor ve yüksek maliyetli olmasıdır. Hedeflenen irtifa değerinin karşılanması ve stabilite değer aralığı açısından kenarları yuvarlatılmış özdeş kanatçıklar kullanılmasında karar verilmiştir.

Kanatçık Detay Tablosu					
Unsur çeşidi	Değeri				
Kök uzunluğu (m)	0.2				
Uç uzunluğu (m)	0.14				
Hücum Açısı (derece)	48.01				
Kütle(kg)	0.133				
Et Kalınlığı (m)	0.03				

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

	Üst Gövde, Alt Gövde ve Entergrasyon Gövdesi Getir/Götür Analizi Tablosu							
Özellik		Seçenek 1				Seçenek 2		Catir/Cätür Analisi Asıklaması
Ozeilik	Unsur	Avantaj	Avantaj		Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Malzeme	Cam Elyaf		Isıl dayanımı yüksek, dayanıklı, elastik ve sinyal geçirgenliği yüksektir.		Karbonfiber	Mukavemeti yüksek ve hafiftir.	Maliyet yüksek ve üretimi zor.	Dayanıklı, hafif ve en önemlisi uçuş bilgisayarlarında veri aktarımı sağlamak için sinyal geçirgenliği fazla olan cam elyaf tercih edilmiştir.
Üretim Yöntemi	Vakum İnfüzyon	Boyutsal sınırlandırma yoktur. Dayanıklılık ve hafiflik sağlar.		Hata payı ve maliyeti yüksektir	Elle Yatırma	Tasarım esnekliği ve montaj kolaylığı sağlar.	Üretim kalitesi el becerisine bağlıdır.	Elle yatırma yöntemi montaj kolaylığı sağlar ve düşük maliyetlidir. Diğer alternatiflerine oranla hata payını azaltır ve tasarım esnekliği sağlar bu nedenle seçilmiştir.
					Bulkhead Geti	r/Götür Analizi Tablosu		
					Daikiicaa Geti	Ty Gotal Allalizi Tablosa		
<u></u>		Seçenek 1			Seçenek 2			
Özellik	Unsur	Avantaj	Dezavantaj		Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Malzeme	Cam Elyaf	Elastik, sinyal geçirgenliği ve ısıl dayanımı yüksektir.	Maliyeti yüksek, üretimi zor ve işlenilebilirliği düşüktür.		Karbonfiber	Yoğunluğu düşük, ısıl dayanımı fazla.	Maliyet yüksek üretimi zor.	Cam elyaf hafif, dayanıklı ve elastik bir malzemedir. Ek olarak büyük miktarda enerjiyi, kayıpsız olarak depolama olanağı sağlamakta olduğu için tercih edilmiştir.

Elle Yatırma

Montaj kolaylığı ve

tasarım esnekliği sağlar.

Üretim hızı düşük ve

oluşan ürünün

kalitesi el becersine

bağlıdır

Boşluk oluşması

durumunda istenmeyen

sonuçlara neden olur ve

yüksek maliyetlidir.

Vakum

İnfüzyon

Üretim

Yöntemi

Boyutsal sınırlandırma

yoktur. Dayanıklılık ve

hafiflik sağlar.

Düşük yatırım maliyetli, boyutsal kısıtlama bulundurmayan

elle yatırma yöntemi seçilmiştir.

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

	Merkezleme Yüzüğü ve Motor Kapağı Getir/Götür Analizi Tablosu						
Özellik	Seçenek 1				Seçenek 2	Catin/Cätin Analisi Aalulansaa	
Ozemk	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Malzeme	Alüminyum	lsıl dayanımı yüksek, esnek, maliyeti düşük.	Yoğunluğu yüksek, ısıl dayanımı düşük.	Karbon fiber	Mukavemet değeri yüksek, Hafif, Isıl Dayanımı fazla.	Maliyet yüksek, üretimi zor.	Üretimi kolay ve dayanıklı alüminyum seçilmiştir.
Üretim Yöntemi	CNC	hassas üretim imkanı sağlar.	Maliyeti yüksek, istenilen tezgaha ulaşım zor	Elle Yatırma	Montaj kolaylığı sağlar, uygun fiyatlıdır.	Üretim hızı düşüktür.	Hata payı düşük, üretimi diğerlerine oranla kolay.

Birincil Merkezleme Yüzüğü

Kanat Yuvası

İkincil Merkezleme Yüzüğü

Motor Kapağı

Motor Yuvası

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

Gövde ve Entegrasyon Parçaları Fiziksel Özellikler Tablosu						
P	arçalar	Boy (m)	Çap (m)	Kütle (kg)		
	Üst Gövde	0.85	0.13	1.882		
Gövde	Entegrasyon Gövdesi	0.20	0.123	0.284		
Parçaları	İkincil Gövde	0.70	0.13	1.550		
	Motor Kapağı	0.33	0.084	0.180		
	Motor Yuvası	0.70	0.13	1.550		
Gövde Entegrasy on Parçaları	1.Merkezleme Yüzüğü	0.015	0.123	0.278		
	2.Merkezleme Yüzüğü	0.015	0.123	0.235		
	Kanat Yuvası	0.20	0.123	0.329		

	Malzeme	Açıklaması
Мара	Çelik	M8 tipi mapa kullanılacaktır.
Şok kordonu	Elastik cort	Gerçekleşecek patlamalara karşı dayanıklıdır.

2022 TEKNOFEST ROKET YARIŞMASI ÖN TASARIM RAPORU (ÖTR)

Motor Bölümü Mekanik Görünüm & Detay

Montaj Stratejisi Getir/Götür Analizi Tablosu							
	Seçenek 1			Seçenek 2			
Özellik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Motorun Motor Yuvasına Montajı	Fatura sistemi	Titreşimi minimum seviyeye düşürmek için daha sıkı vida kullanılacaktır.	Motorun yuvasının vidalanma aşamasının ardından oluşacak titreşimden ötürü motor kapağı açılabilir.	Motoru motor yuvasına vidalama	Malzemesine kolay ulaşılabilir.	Motorun sıkışma ihtimali yüksek ve böyle bir durumda roketin imha edilmesi gerekebilir.	Motorun motor yuvasına montajı fatura sistemi ile yapılacaktır. Vidalama ile benzer olmasına karşın bu yöntemde titreşimi minimuma indirmek için daha sıkı vidalar kullanılacaktır ve motorun sıkışması gibi bir durum söz konusu olmaz.
Motor Yuvasının Gövdeye Montajı	Merkezleme halkalarının motor yuvasına yapıştırılması	Hızlı kurur ve sağlam bir yapıştırma sağlar	Montaj esnasında istemeyen bir durum oluşunca (parçalanma vb.) roketin imhası gerekebilir.	Motor yuvasını gövdeye vidalama	Malzemesine kolay ulaşılabilir.	Motor yuvası motorla neredeyse aynı boyutta tasarlandığı için vidalama yapılamaz	Motor yuvasının gövdeyi montajının merkezleme halkalarının motor yuvasına yapıştırılması ile yapılmasına karar verilmiştir. Yapıştırma sağlamdır ve motor yuvası motorla boyutu yakın olduğu için vidalama yapılamaz.
Merkezleme Yüzüğünün Montajı	Merkezleme yüzüğü gövdeye vidalanıcak	İstenilen zamanda zaman takıp çıkarma işlemi yapılabilir, sağlamdır.	Vidalardan kaynaklı sıkıntı olabilir.	Epoksi yapıştırıcı	Hızlı kurur ve sağlam bir yapıştırma sağlar	Montaj esnasında istemeyen bir durum oluşunca (parçalanma vb.) roketin imhası gerekebilir.	Merkezleme yüzüklerinin gövdeye vidalanarak monte edilmesine karar verilmiştir. İstenilen herhangi bir zaman çıkarılıp tekrar takılma olanağı sağlar.

Motor Bölümü Mekanik Görünüm & Detay

Aşama No:	Motor Montaj Stratejisi
1	Motor gövdesine bulkhead yerleştirip vidalarla sabitlenicektir.
2	Birinci merkezleme halkası motor yuvasına epoksi ile yapıştırılacaktır.
3	Motor merkezleyici motor yuvasına monte edilecektir.
4	İkinci merkezleme halkası ile kanatçık yuvasının yerleri motor yuvası üzerinde belirlenip monte edilecektir.
5	Kanatçıklar kanatçık yuvasına monte edilecektir.
6	Motor yuvası gövdeye yerleştirilip merkezleme halkaları gövdeye vida ile sabitlenecektir.
7	Motor kapağını motor yuvasına sabitlemek için vida adımı açılmış parça motor yuvasına monte edilecektir.
8	Motor, motor yuvasına yerleştirilecektir.
9	Açılan vida adımları sayesinde motor kapağı gövdeye monte edilecektir.
Montai strat	teiimize göre roketimiz, motor demonte edilebilir sekilde tasarlanmıştır.

Montaj stratejimize gore roketimiz, motor demonte edilebilir şekilde tasarianmıştır.

Fiziksel Özellikler	Çap(m)	Boy(m)	Kütle(kg)
Motor yuvası	0,08	0.535	0,485

Kurtarma Sistemi – Paraşüt Açma Sistemi

	Kanatçık Getir/Götür Analizi Tablosu									
		Seçenek 1			Seçenek 2			Seçenek 3		Catin/Cätür Analisi
Özellik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Tasarım/ Çalışma Prensibi	CO2'li Kurtarm a Sistemi	Isı yayılımına ve zarara sebep olmaz. Temin edilmesi kolaydır. Paraşütlerde ve paraşüt iplerinde hasara neden olmaz.	Ayrılma esnasında istenmeyen durumlar oluşabilir ve daha ağırdır.	Barutlu Kurtarma Sistemi	Alternatiflerine oranla daha az yer kaplayan ve daha hafif bir sistemdir. Ayrılma kısa bir sürede gerçekleşir. Tasarımı kolaydır.	Patlatma anı ve sonrasında roket içerisinde oluşabilecek fazla sıcaklık ve basınç elektronik sisteme zarar verebilir.	Mekanik Kurtarma Sistemi (Yaylı Sistem)	Herhangi bir gaz açığa çıkmayacağından gazla ilgili problem yaşanmaz.	Roket içinde fazla alan kaplamaktadır ve ağırdır.	Roketimiz için seçtiğimiz barutlu kurtarma sistemi, istenilen miktarda barutu yakacak ve bir basınç oluşturacaktır. Bu basınç da paraşütü açmak için kullanılacaktır.
İşlevsellik	CO2 tüpü	İstenmeyen alevlenme sonucunda oluşabilecek olan paraşüt iplerinin yanması vb. bir durum oluşmaz	Titreşim ya da dış etkiler sonucu tetiklenme olasılığı yüksektir.	Kara Barut	Oldukça pratik ve yüksek güçte itki kuvveti sağlayabilmektedir	Doldurma esnasında güvenlik sorunları olabilir.	Yay	Güvenilir ve patlama sonrası yaşanacak sıcaklık artışı vb. durumlardan etkilenmez.	Tasarlanması zordur İtki kuvvetini en az sağlayan sistemdir.	Alternatif sistemlere oranla daha hafif ve tepki süresi daha hızlıdır. Ayrıca bu sistemin tasarım, hesaplama ve üretimi daha kolaydır.
Maliyet	CO2 tüpü	-	CO2 tüplerini sürekli değiştirmek gerekeceği için maliyeti yüksektir.	Kara Barut	Barutun fiyatı uygundur.	-	Yay	Yapılan testlerde malzemenin sürekli temin edilmesi gerekmez maliyeti düşük olur.	Temin edilmesi ve tasarlanması diğer sistemlere göre daha zordur	Barutun ulaşılabilirliği kolay ve maliyeti düşüktür.

Kurtarma Sistemi – Paraşüt Açma Sistemi

No:	Kurtarma aşamaları şu şekildedir:
1	Roket atıldıktan sonra her saniye basınç ve eksen sensöründen aldığı verileri işleyip yazdığımız algoritmaya göre roketin irtifasını ve açısını ölçecektir
2	Ölçülen veriler sayesinde uçuş bilgisayarları roketin düşüşe geçip geçmediğini tespit edecektir.
3	Düşüşe geçtiği tespit edildiğinde barut kapsülünün altında bulunan yanıcı maddeler yakılarak barut uçuş bilgisayarları tarafından infilak ettirilecektir.
4	Gövde içinde oluşan yüksek basınç burun ve paraşütü dışarı çıkaracaktır.
5	Görev yükü paraşütü ve görev yükü dışarı çıkıp roketten bağımsız olarak inecektir.
6	Roket gövdelerinin, paraşüt sayesinde güvenli bir şekilde inişi gerçekleştirilecektir.
7	GPS modülünden alınıp RF modülü ile yer istasyonuna gönderilen konum bilgisiyle roket ve görev yükünün yeri tespit edilecektir.

Roketimiz rampadan ayrıldığı andan itibaren yer istasyonu ile devamlı takip edilecektir. Yer bilgisayarından anlık olarak irtifa, konum, basınç, sıcaklık ve ivme gibi verileri kontrol ediyor olacaktır. Roketimiz ve görev yükümüz yere indiğinde GPS sayesinde konumları tespit edilecektir. Görev yükü üzerindeki BMP280 sensörü ile basınç, sıcaklık, nem verileri kaydedilip seneye yapılacak analizlerde hava koşullarını değişken alarak doğruluğunu ölçmek hedeflenmiştir.

Kurtarma Sistemi – Paraşüt Açma Sistemi

Barutlu Kurtarma Sistemi Özellikleri Tablosu						
Roket İçerisinde Kapladığı Alan	İşlevi					
53cm ³	Bu sistem bir miktar barutu yakar ve açığa çıkan basıncı paraşütü dışarı fırlatmak için kullanır.					

Sıcak Gaz Üreteci Gereksinimleri

Gerekli basıncın hesaplanması

$$F = F_{drag} + F_{s}$$

Basınç = Pascal =
$$N/m^2$$

$$F = \frac{1}{2}\rho V^2 C_d A + \mu N$$

$$P = F/A$$

İstenilen basınç için gerekli barut miktarının hesaplanması

Evrensel Gaz Sabiti =
$$R' = 8.3145 \frac{J}{\text{mol K}}$$

Özgül gaz sabiti = R =
$$\frac{R'}{MW} \frac{J}{kg K}$$

 $P = \rho RT$ $\frac{N}{A} = \frac{m}{V} \cdot R \cdot T$ $\frac{kg m}{m^2} = \frac{kg m}{m^3} \cdot \frac{kg m^2}{kg K} \cdot K$

Ayrılma	Basınçlandırılacak hacim çapı (mm)	Basınçlandırılacak hacim (m^3)	Ulaşılmak istenen basınç (Bar)
 Ayrılma(Burundan Ayrılma) 	124	0.27	1.8
2. Ayrılma	124	0.377	1.8

Kurtarma Sistemi – Paraşütler -1

Roketimizde bulunan paraşütlerin ripstop malzeme kullanılarak üretilmesine karar verilmiştir. Ripstop kumaş; hafif, yırtılmaya karşı dayanıklıdır ve olağanüstü durumlarda yırtılsa dahi oluşan deliğin büyümesini engeller. Ayrıca esneme değeri düşük, ulaşılabilirliği ve üretilebilirliği kolay olduğundan paraşüt malzemesi olarak kullanılmasına karar verilmiştir.

Roketimizde iki farklı paraşüt yer alacaktır. Ana paraşütün renkleri yeşil ve kahverengi, görev yükü paraşütünün rengi ise kırmızı olarak belirlenmiştir. Roketimizin kurtarma aşamasında gözlemlenmesinin kolay olması açısından bu renkler tercih edilmiştir.

Paraşütler üretilirken kubbe delikleri (spill hole) açılacaktır. Bu delik paraşüte binen yükleri dengeleme konusunda oldukça kullanışlıdır. Aynı zamanda roketin performansını arttırır ve daha düz bir iniş yapmasını sağlar.

Paraşütler için sekizgen model seçilmiştir ve her köşede birer adet yer alacak şekilde toplam 8 tane çekme ipi dikilecektir. Çekme iplerinin ucuna barutun patlamasından dolayı oluşacak basıncın sönümlenmesi için şok kordonu bağlanacaktır.

Görev Yükü Paraşütü

Kurtarma Sistemi – Paraşütler -1

Paraşüt Bilgileri							
	h(m)	1500	Görev yükü paraşütü	h(m)	1500		
	m (kg)	14		m(kg)	4.05		
	Spill Hole Çapı (m)	0.2		Spill Hole Çapı (m)	0.035		
	V _{düş} (m/s)	8		V _{düş} (m/s)	8		
Ana Paraşüt	Çekme ipi (m)	2.3		Çekme ipi (m)	0.4		
	Çap (m)	2		Çap (m)	0.35		
	Renk	Kahverengi Yeşil		Renk	Kırmızı		
	Paraşüt Tipi	Hemisphere (Yarı küresel)		Paraşüt Tipi	Hemisphere (Yarı küresel)		

Kullanılan Parametreler

h = paraşütün açıldığı yükseklik m = paraşütün taşıdığı kütle g = yer çekimi ivmesi 9.80665m/s cd = sürükleme katsayısı = 0.8 $V_{dü\$}$ = yere iniş hızı A_{par} = paraşüt alanı a = sekizgenin bir kenar uzunluğu çap = sekizgenin en uzun köşegen

çekme ipi uzunluğu = $qap \times 1.15$ spill hole $qap = qap \times 0.1$

Katlanmış Paraşüt boyutları						
	Katlanmış silindir çapı(m)	Katlanmış silindir boyu(m)				
Ana Paraşüt	0.08	0.36				
Görev yükü Paraşütü	0.05	0.17				

$$P_{hava} = 1.225 \{ \exp[(-7.4)(10^{-6})(h^{1.15})] \}$$

$$2a\sqrt{1+\frac{l}{\sqrt{2}}} = \zeta ap \qquad a = \sqrt{\frac{A_{Par}}{2(1+\sqrt{2})}} \qquad A_{par} = \frac{2mg}{P_{hava}C_dV_{d\ddot{u}\varsigma}^2}$$

Kurtarılacak unsur bileşenleri:

Roketimiz üzerinde iki adet bilgisayar yer alacaktır. Görev yükü bilgisayarında mikro denetleyici olarak bir Deneyap ürünü olan Deneyap Kart kullanılacaktır. Mikro işlemciye bir adet NEO-6M GPS modülü, bir adet XBEE-PRO S3B RF modülü, bir adet BMP 280 basınç ve nem sensörü, bir adet sesli ikaz cihazı (buzzer), bir adet video kamera modülü ve bir adet sd kart modülü PCB üzerinden bağlı bulunmaktadır.

Yedek uçuş bilgisayarı çerçevesinde; bir adet MPU6050 eksen ve ivme sensörü, bir adet BMP280 basınç ve nem sensörü, bir adet sesli ikaz cihazı (buzzer), bir adet NEO-6M GPS modülü, bir adet XBEE-PRO S3B RF modülü bulunmaktadır.

Ana uçuş bilgisayarımız ise ticari sistem olup içerisindeki basınç sensörü ile ölçüm yapmaktadır.

Kurtarma Sistemi – Paraşütler -2

Paraşüt Sistemi	Paraşüt Alanı (m^2)	Paraşüt Sisteminin Taşayacağı Kütle (kg)	Paraşüt Sürükleme Katsayısı	Düşüş Hızı (m/s)
Birincil Paraşüt	4.5	14	0.72	8
Görev Yükü Paraşütü	1.3	4.05	0.72	8

Görev Yükü

Görev yükünün kütlesi ve işlevi:

Görev yükümüzün kütlesi 4050g olup üzerinde bulunan basınç, sıcaklık ve nem sensörü sayesinde apogee noktasından itibaren atmosfer değerlerini ölçmektedir. Bu verilerin ölçülmesinin amacı; görev yükünün anlık irtifasını yer istasyonuna göndermenin yanında uçuş boyunca sd karta kaydedilen diğer parametrelerin incelenip sonraki uçuşlarımız için bir veri tabanı oluşturmaktır. Oluşturacağımız veri tabanı sonraki uçuşlara daha net veriler üzerinden hazırlanmamıza, tasarımlarımızı bu verilere göre

iyileştirmemize yardımcı olacaktır.

 Görev yükünün roketten ayrılışı ve sonrasında bulunması:

Görev yükü apogee noktasının tespitinden sonra roket gövdesindeki bilgisayarlar tarafından gövdeden ayrılacaktır. Ayrılma sistemi takımımız tarafından tasarlanmış Kara barut bazlı bir alevli sistemdir. Roketin burnu ile beraber ayrılan sistem, iniş boyunca içerisinde bulunan GPS sistemi sayesinde yer istasyonuna konumunu iletecektir. Uçuş boyunca ve iniş sonrasında alınan konum bilgisi TEKNOFEST saha ekipleri ile paylaşılacaktır.

Görev Yükü

Görev Yükünün Konumunun Belirlenmesi:

Görev yükü sisteminin içerisinde bulunacak GPS(Gy-neo6mv2) ve Barometre(BMP280) modülünden anlık konum, nem, sıcaklık ve basınç verisi mikro denetleyici (Deneyap Kart) tarafından okunur. Okunan bütün veriler önce Sd kart modülüne kaydedilir ve anlık olarak ulaşılması gereken seçili veriler(Konum ve basınç) RF modülü(XBEE-PRO S3B) ile yer istasyonuna aktarılır.

Görev Yükü Sisteminin Tasarlanışı ve Üretimi:

Sistemin tasarımı, olası hataların önlenmesi için Eagle uygulaması üzerinden yapılmıştır. Aynı sebepten dolayı üretimin PCB üretim firmalarına yaptırılmasına karar verilmiştir. Kullanılacak GPS mikrodenetleyicinin 3 boyutlu modellemesi bulunmadığı için kart görselinde belirtilmemiştir. Modüllerin ölçülerine göre yeterli alan bırakılmıştır.

Görsel(1.1) Görev yükü sistemi şeması

Görsel(1.2) Görev yükü sistemi görünümü

Aviyonik – Özet

• Ticari Uçuş Bilgisayarı(RRC3«SPORT»ALTIMETER):

MissileWorks tarafından model roketçilik için üretilen altimetre bazlı uçuş kontrol sistemidir. Uçuş boyunca irtifa verisini ölçer ve irtifada azalma gerçekleştiğinde kendi kara barut sistemlerinin bağlı olduğu pinleri tetikleyerek ayrılmayı gerçekleştirir.

• Özgün Uçuş Bilgisayarı:

Aviyonik ekibimiz tarafından geliştirilen basınç, ivme ve eksen parametreli uçuş kontrol, konum belirleme ve iletişim sistemidir. Atmega328p-AU mikro işlemcisi üzerinden geliştirilen sistem, uçuş boyunca basınç, nem, ivme ve eksen ölçümü yapar ve algılanan yavaşlama ve düşme hareketlerinde bağlı olan kendi karabarut sistemlerinin olduğu pinleri tetikleyerek ayrılmayı gerçekleştirir. Uçuş boyunca elde edilen verileri depolar, gerekli görülen bilgileri yer istasyonuna iletir. İnişten sonra GPS modülü ile konumu belirler ve yer istasyonuna iletir.

• İki Uçuş Bilgisayarı Arasındaki Geçiş:

Uçuş bilgisayarları arasında kablolu ya da kablosuz herhangi bir bağlantı bulunmamaktadır, ateşleme sistemleri her bilgisayar için ayrıdır. Dolayısı ile bilgisayarlar arasında bir geçiş olmayacak, iki bilgisayar da farklı ateşleyicilerden aynı anda ateşleme yapacaktır.

Aviyonik – Özet

İki Uçuş Bilgisayarı Arasındaki Farklılıklar Tablosu					
Farklılık Türü	Ticari Uçuş Bilgisayarı	Özgün Uçuş Bilgisayarı			
Ateşleme parametresi	Açık hava basıncı	Açık hava basıncı+Roket ekseni ve ivmesi			
Mikro İşlemci	MSP430	Atmega328-AU			
RF modülü	RF modülü bulunmamaktadır	XBEE-PRO S3B DIGI XBP9B-DMST-002			
Harici depolama	Harici depolama bulunmamaktadır	16 gb Sd kart			

İki Uçuş Bilgisayarı arasındaki Benzerlikler Tablosu					
Benzerlik Türü	Ticari Uçuş Bilgisayarı	Özgün Uçuş Bilgisayarı			
Ateşleme Sistemi	Karabarut	Karabarut			
Uçuş Kaydı	VAR	VAR			
Bildirim Araçları	Buzzer ve Led	Buzzer ve Led			

1.Sistem Komponent Karşılaştırma Ve Seçim Tablosu				
Adı	Kodu	Avantaj	Dezavantaj	Açıklama
MissileWorks Uçuş Bilgisayarı	RRC3«SPORT» ALTIMETER	Kolay kullanım, Teknofest Roket Yarışması Hakem Heyeti uygunluğuna sahip. Düşük(35mA) enerji tüketimi. Fiyatı makul.	Telemetri ve GPS sistemine sahip değil, harici haberleşme bilgisayarı gerektiriyor.	İrtifa kaybının tespiti ve kara barut sisteminin tetiklenmesini sağlar.
MissileWorks Uçuş Bilgisayarı	RRC2+ ALTIMETER	Düşük fiyat, piyasada kolayca bulunabilir.	Teknofest Roket Yarışması Hakem Heyeti uygunluğuna sahip değil.	İrtifa kaybının tespiti ve kara barut sisteminin tetiklenmesini sağlar.
Altus Metrum Uçuş bilgisayarı	TeleMetrum	Telemetri ve GPS sistemine ve Teknofest Roket Yarışması Hakem Heyeti uygunluğuna sahip.	Rakiplerine göre; yüksek fiyat, karmaşık yer istasyonu gerektiriyor.	İrtifa kaybının tespiti ve kara barut sisteminin tetiklenmesini ve yer istasyonu ile iletişimi sağlar.

1. Sistem Komponent Karşılaştırma Ve Seçim Tablosu				
Adı	Kodu	Avantaj	Dezavantaj	Açıklama
Quest ateşleyicisi	Q2G2	Kolay kullanım, elde yapılan ateşleyicilere göre daha güvenilir.	Parça başı yüksek fiyat.	Paraşütlerin açılmasını sağlayacak kara barut sistemini ateşler.
Gizem havai fişek ateşleyicisi	GZM003855	Kolay kullanım, elde yapılan ateşleyicilere göre daha güvenilir. Parça başı düşük fiyat.	-	Paraşütlerin açılmasını sağlayacak kara barut sistemini ateşler.
Duracell Procell Tek Kullanımlık pil	6LF22	Kullanımı basit, düşük fiyatlı.	Şarj edilemez, olası rampada bekleme durumlarında yetersiz 200mah kapasite.	Ticari sistemin ihtiyaç duyduğu akım ve voltajı sağlar.
Orion Şarj Edilebilir Bataryası	ORION-9V- 650/LITYUM	Kullanımı basit. Olası rampada bekleme durumlarında yeterli 650mah kapasite(seçilen ticari sistem saatte maksimum 35mah enerji kullanmaktadır).	Yüksek fiyat.	Ticari sistemin ihtiyaç duyduğu akım ve voltajı sağlar.

Görsel(2.1) Ticari Sistem Blok Diyagramı

1. Sistem Diyagram Açıklaması:

Diyagramda görüldüğü üzere, doğrudan ticari bilgisayara bağlı iki anahtar bulunmaktadır. Üreticinin tavsiyesi olan tek anahtarlı bağlantının yerine bu bağlantının seçilmesinin sebebi, PCBye entegre anahtar bölümünde herhangi bir kısa devre olması durumunda sistemin aktif olmasının önüne geçmek istenmesidir. Ateşleyiciler sadece ortak GND ucundan karta bağlıdır. Ateşleyici pili anahtarı kapalı olduğu sürece kartın yaptığı işlemler ateşleyicilere etki etmemektedir. Uçuş öncesinde sırasıyla, 1. pil ünitesi anahtarı, Switch bölümü anahtarı, Ateşleme pili anahtarı el ile açılacak olup. Kart, apogee noktasını tespit ettiğinde Drogue bölümüne GND sinyalini göndererek ateşleme devresinin tamamlanıp paraşütlerin açılmasını sağlayacaktır.

Görsel(2.2) Ticari Sistem Bağlantı Şeması

Ticari Sistemin Bağlantı Türünün Seçimi:

Tasarladığımız ayrılma sisteminde görev yükü paraşütünün alt gövde paraşütü ile aynı anda açılması gerekmektedir. 1.Sistem Detay/3 slaydında açıklanacağı ve görselde gösterildiği gibi bu amaç doğrultusunda ateşleyicilerin ortak GND ucu, kartın Drogue bölümüne bağlanacaktır. Üretici firmanın önerdiği ikili batarya sistemi kullanılarak daha güçlü ateşleme ve daha uzun kullanım süresi sağlanacaktır. Ticari sistemin güç kaynakları, üreticinin bize verdiği maksimum 9v 35mah enerji isteri bilgisi üzerinden asgari 6 saat çalışma süresini karşılayacak şekilde 9v 650mah kapasitede seçilmiştir.

Ticari sistem kullanılırken yapılacak ayarlar:

Seçilen ticari sistemin aşağıdaki görselde belirtiği gibi 3 farklı ayrılma modu vardır. Tasarlayacağımız ayrılma sisteminde apogee noktasında görev yükü ve alt gövde paraşütünün aynı anda açılması istenmektedir. Seçilen uçuş bilgisayarında iki bölümü de aynı anda ateşleyen bir ayar olmadığı için ili ateşleme sistemi de aynı bölüme bağlanacak ve bu şekilde görev tamamlanacaktır. Tek bir bölümden çıkacak akımın yeterli ateşlemeyi yapamama olasılığını göz önüne alınmış olup üreticinin bu gibi durumlarda önerdiği ikili batarya bağlama yöntemi kullanılacaktır.

Dual Deploy Primary Drogue @ Apogee / Main @ Main Deployment Altitude

2. Dual Deploy Backup Drogue @ Apogee + Drogue Delay / Main @ Deployment Altitude

3. Apogee Only Drogue @ Apogee / Main @ Apogee + 1 sec

Görsel(1.3) Ticari Sistem Modları

2. Sistem Komponent Karşılaştırma ve Seçim Tablosu				
Adı	Kodu	Avantaj	Dezavantaj	Açıklama
Atmega mikro işlemcisi	328P-AU	Kullanımı kolay, arduino kütüphaneleri ve parçaları ile uyumlu. Piyasada bulunabilir.	Düşük 20MHz işlem hızı, düşük 32KB bellek alanı.	Özgün sistemin mantıksal işlemlerini üstlenir.
STM mikro işlemcisi	STM32f401re	Yüksek 84MHz işlem gücü, yüksek 512KB bellek alanı, yüksek optimizasyon imkanı.	Kullanım ve kütüphaneleri karmaşık.	Özgün sistemin mantıksal işlemlerini üstlenir
Ublox GPS'i	GY-NEO6MV2	Yeterli; 1 Hz yenileme hızı ve 2.5 m tespit doğruluğuna sahip. Sık kullanılan bir GPS olduğu için kütüphaneleri geniş, sıcak çalıştırmaya uygun. Düşük fiyatlı.	İmei kaydı gerekli.	İnişten sonra roketin konumunun tespitini üstlenir.
Ublox GPS'i	Neo-8M	Yüksek 10 Hz yenileme hızı ve yeterli 2.5 m tespit doğruluğuna sahip. Sık kullanılan bir GPS olduğu için kütüphaneleri geniş, sıcak çalıştırmaya uygun.	Yüksek fiyat. İmei kaydı gerekli.	İnişten sonra roketin konumunun tespitini üstlenir.
MPU ivme ve açı sensoru	6050	Düşük fiyatlı. Eksen(±250, ±500, ±1000) ve ivme(±2g, ±4g, ±8g) ölçüm aralığı yeterli.	Düşük hassasiyet.	Roketin apogee noktasını eksen ve ivme verileri aracılığı ile tespit eder.
DFRobot eksen ve ivme sensoru	FXLN8361	Düşük(180 μA) güç tüketimi, yüksek(±2g/8g) hassasiyet.	Yüksek fiyat, kompleks kullanım	Roketin apogee noktasını eksen ve ivme verileri aracılığı ile tespit eder.

2. Sistem Komponent Karşılaştırma ve Seçim Tablosu				
Adı	Kodu	Avantaj	Dezavantaj	Açıklama
XBEE RF modülü	XBEE PRO 900HP S3B XBP9B-DMST- 002	Yüksek(9km) bağlantı menzilli. Yaygın ve kendini kanıtlamış, güvenilir.	Yüksek fiyat.	Roket ve yer istasyonu arasındaki bağlantıyı sağlar.
XBEE RF modülü	XBEE S2C	Yaygın ve kendini kanıtlamış, güvenilir. Yüksek(2.4ghz) frekans aralığına sahip.	Yetersiz 2km bağlantı menzili.	Roket ve yer istasyonu arasındaki bağlantıyı sağlar.
LoRa RF modülü	433t20dc	Düşük fiyatlı, yüksek(~10) bağlantı menzili.	Muadillerine göre yüksek hacim kaplar. Parametre ayarı için ekstra uğraş gerektirir.	Roket ve yer istasyonu arasındaki bağlantıyı sağlar.
SAMIORE ROBOT sd kart modülü	SD CARD MODULE	Bilgisayarın depolamasını önemli ölçüde artırır.	Kart tasarımını karmaşıklaştırır, ekstra masraf ve ağırlık getirir.	Anlık olarak yer istasyonuna aktarılamayan verilerin kaydederek sonradan incelenebilmesini sağlar
GP ReCyko bataryası	120270AAHC4+2	Şarj edilebilir, kolay kullanım. Olası rampada bekleme durumlarında yeterli 2600mah kapasite(Yapılan hesaplamalar sonucu özgün bilgisayarın maksimum tüketebileceği saatlik enerji 400mah bulunmuştur).	Yüksek fiyat. Batarya şarj cihazı gerektirir.	2.Sistemin faaliyetlerinin gerçekleştirebilmesi için gerekli olan akım ve gerili sağlar.

2022 TEKNOFEST ROKET YARIŞMASI ÖN TASARIM RAPORU (ÖTR)

(Görsel3.1) 2. Sistem devre blok diyagramı

(Görsel3.2) 2. Sistem Ayrıntılı Devre Şeması

Güç tüketimi hesabı: Özgün 2. sistemimizde bulunan temel bileşenlerin saatlik akım tüketimleri; XBEE PRO S3B 290mA, Gyneo6mv2 45mA, MPU6050 4mA ve BMP-280 5μA şeklindedir. Enerji bütçesinin hesabı için bütün sistemlerin ve mikro işlemcinin(20mA) maksimum güçte çalıştığını ve toplamda saatlik ~400mAh tüketimin gerçekleştiğini baz alınmıştır. Bu veri üzerinden asgari 6 saat açık kalması gereken uçuş bilgisayarı için 2600mAh kapasiteli piller seçilmiştir.

Aviyonik – 2.Sistem Detay/2

Görsel(4.3) 2.Sistem Pcb ön yüz görünümü

Görsel(4.4)Aviyonik sistem CAD görseli

Sistemin tasarlanışı ve üretimi:

Sistem, üzerindeki hata payını en aza indirebilmek için bilgisayar ortamında Eagle programı ile tasarlanmıştır. Kartın üretimi pcb firmalarına yaptırılacak, komponentlerin yerleştirilişinde insan faktörünü en aza indirmek için lazer ile kesilmiş hizalama levhası kullanılacaktır. Kullanılan GPS modülünün 3B modellemesi bulunmadığı için görsellerde belirtilmemiştir. Pcbde GPS modülü için gerekli alan bırakılmıştır. Cad görselinin anlaşılabilir olması için Li-Po safe bag görüntüsü eklenmemiştir. Kullanım esnasında piller safe bag içerisinde olacaktır.

Aviyonik – 2.Sistem Detay/3

Kurtarma Sisteminde Kullanılan Parametreler ve Filtreler

Kurtarma sisteminde, veri elde edebilmek için barometre, eksen sensörü ve GPS kullanılacaktır.

- Barometreden gelen verileri Kalman filtresi kullanarak kontrol algoritmasına gönderilecektir. Barometrede kullandığımız temel parametre atmosfer basıncı olacaktır. Kalman filtresi sayesinde tolere edilebilecek olan verilerin sisteme zarar vermemesi sağlanacaktır. Ayrıca barometrenin basınç değeri ile alınan veri sonucunda 150 metreden daha alçak bir yükseklikte basınç artmaya başladıysa paraşüt tehlike oluşturacak bir patlamayı önlemek için açılmaz.
- Eksen sensöründen gelen verinin kendi filtreleme algoritması olduğundan dolayı gelen açı verisi tolere edilebilir olacaktır.
 Eğer roket, düşme açısına geçerse eksen sensörü sayesinde paraşütün açılması sağlanacaktır.
- GPS ise roketin tam konumunu saptamak ve inişten sonraki yerini öğrenmek için kullanılacaktır, kurtarma sisteminin tetiklenmesinde GPS modülünden gelen veriler kesinlikle kullanılmayacaktır.
- Bu sensörlerin olumsuz dış etkilerden etkilenmemesi için; barometrenin önü açık bırakılacaktır ve aviyonik bloğunda atmosfer basıncının iç basınçla eşitlenmesi için yeterli delik açılacaktır, GPS ve RF anteninin birbirinden etkilenmemesi için sinyal hatları farklı yerlerde konumlandırılacaktır.

İkinci yansıda temel düzeydeki algoritma diyagramını görebilirsiniz.

Aviyonik – 2.Sistem Detay/3

Uçuş algoritmasının yazılımı ve testi:

Uçuş yazılımı atmega328p mikro işlemcisinin en çok kullanıldığı ve kendini kanıtladığı Arduino IDE üzerinde yazılacaktır. Üretim sonrasında algoritmadaki basınç parametresi bir basınçlı kap üzerinden test edilecektir. Uçuş boyunca karşılaşabileceğimiz basınç değerleri bu kap ile simüle edilecektir. Eksen parametresi ise roketin uçuş boyunca içinde bulunabileceği durumların simüle edilmesi ile test edilecektir.

Aviyonik – İletişim

RF modülünün seçimi ve kullanımı:

İletişim sisteminin tasarımını yaparken bu yıl sadece Apogee noktasında açılacak ana paraşüt konseptini ele aldık ve bu yıl roketlerin geçen senelere göre daha uzağa sürükleneceğine karar verdik. Uzun sürüklenme durumlarında iletişimin aksamaması için seçilecek modelin; Yüksek çıkış gücü , yüksek alıcı hassasiyeti ve şifreli haberleşme özelliklerine sahip olmasına dikkat edilmiştir. XBEE-PRO S3B modeli istenilen özellikleri karşılaması sebebiyle tercih edilmiştir. Bağlantı menzilini artırmak için 3db kazançlı SMA anten tercih edilmiştir. Uçuş süresince roket gövdesinin ve görev yükünün; Yatay ve Dikey konumlaması, açık hava basıncı, irtifa ve dikey hız verisi anlık olarak yer istasyonuna iletilecektir. İletilen veriler haricindeki veriler sonrasında incelenmek için sd kart modülüne kaydedilecektir. Veri paketlerinin gönderimi 920mhz bandında yapılacak olup veri paketlerinin içeriği aşağıdaki gibidir.

	Roket ve Görev Yükü Veri Paketi Tablosu																		
Byte	0	1	2	3	4-5	6	7-8	9	10	11	12-13	14	15-16-17-18	19	20-21-22-23	24	25	23	24
Roket Gövdesi	0x 3A	0x FF	0x 00	OX FF	ATM_ BASINÇ	OX FF	Paket_ NO	OX FF	İRTİFA	OX FF	Dikey_ HIZ	OX FF	GPS_YATAY	OX FF	GPS_DİKEY	OX FF	DURUM	OX FF	0X 3B
Görev Yükü	0x 3A	0x FF	0x 01	OX FF	ATM_ BASINÇ	OX FF	Paket_ NO	OX FF	irtifa _1	OX FF	Dikey_ HIZ	OX FF	GPS_YATAY	OX FF	GPS_DİKEY	OX FF	OX3B		

Bütçe

	MALZEMELER	ÖZELLİKLERİ	ADET	FİYAT	TOPLAM FİYAT
	Haberleşme Modülü	Digi XBee PRO 900HP S3B	3	848.86	2546,58
	Anten	820 Mhz-960 Mhz RPSMA	3	92.67	278,01
	GPS modülü	GY-NEO-6M	2	41.03	82,06
	6 Eksen İvme ve Gyro Sensörü	MPU6050	1	36,69	36,69
	Mikroişlemci	ATMEGA328PU-AU	1	120,89	120,89
	Konnektör	DC Barrel Power Jack SMD	2	40,95	81,9
	Konnektör	USB Mini-B SMD	2	40,95	81,9
AVİYONİK MALZEMELERİ	Mikrodeneyleyici ve Kamera	Deneyap Elektronik Gelistirme Set	1	426	426
	Elektronik Kart	PCB Kart üretimi (kargo dahil)	2	477,75	955,5
	Krem Lehim	Amtech NC-559-ASM	1	104,33	104,33
	Sarj Edilebilir Pil	Orion 650 mAh 9V Li-Ion	2	69,65	139.3
	Üçlü Pil Yuvası	18650 piller için	2	8,9	17,8
	Şarj Edilebilir Pil	3.7V 1800 mAh Li-Polymer	1	99	99
	Şarj Edilebilir Pil	GP 6'lı ReCyko 2700 Ni-Mh	1	230	230
	Pil Şarj Cihazı	GP 6'lı ReCyko 2700 Ni-Mh	1	155	155
	RRC3 Sport Altimeter	Ticari Sistem	1	1550	1550
	M5 Havşa Başlı Vida		36	8	8
BAĞLANTI	M4 Havşa Başlı Vida	Bağlantı için kullanılacak	16	20	20
MALZEMELERİ	M8 Mapa	olan malzemeler	4	21	84
	M10 Mapa		4	27	108
	Ana Parașüt		5.062 m2	250	250
PARAŞÜT MALZEMELERİ	Görev Yükü Paraşütü	Ripstop Kumaş	1.464 m2	70	70
	Cam Fiber Kumaş	Epoksi uyumlu kumaş	32 m2	140	4000
	Al Tartanana Calad	100 mm çap, 120 mm boy	1	350	350
	Alüminyum Çubuk	150 mm çap, 500 mm boy	1	3175	3175
	Alüminyum Levha	200×500	1	525	525
	Peel Ply Soyma Kumaşı	83 gr/m2	1	86,64	86,64
	Vakum Sızdırmazlık Bandı	15 metre	1	158	158
	Vakum Battaniyesi Keçesi	150gr/m2	1	114,35	114,35
(Coeris as as a series i	Elastik Şok Kordonu	10 metre	1	200	200
ÜRETİM MALZEMELERİ	Release Film Delikli Naylon	150 cm	4	95	380
	Vakum Naylonu G-bag	150 cm	1	67,16	67,16
	Infuzyon Vakum Hortum	10x12mm	3	33	99
	Kalıp Ayırıcı Vaks	1 kg	1	125	125
	Ptfe Teflon Kumaş Yapışkansız	0,13 mm	6	280	1680
	Epoksi Esaslı Elyaf Laminasyon Reçinesi	2 kg	1	480	480
	Cam Yünü	en:120 cm, boy:100cm	1	60	60
	Epoksi Hava Alma Rulosu	18x100mm	1	25	25

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.1.3	Yarışmaya Lise Kategorisinde yalnızca lise öğrencileri katılabilir.		2	Takımımız lise öğrencilerinden meydana gelmektedir.
3.1.8	Yarışmaya takım halinde katılmak zorunludur.		2	Yarışmaya Hürkuş Roket Takımı olarak katılım sağlamaktayız.
3.1.9	Takımlar en az altı (6) en fazla on (10) kişiden oluşmalıdır. Alana en fazla 6 takım üyesi gelebilecektir.		2	Takımımız 6 kişiden oluşmaktadır.
3.1.10	Bir takımın üyesi başka bir takımda üye olarak yer alamaz.		_	Takımımızdaki hiçbir üye başka bir roket takımında yer almamaktadır
3.1.11	Her takımın yarışmaya bir (1) danışmanla katılması zorunludur. Takım danışmanı ile ilgili özellikler ilgili maddede açıklanmıştır.		2	Takımımızın yalnız 1 danışmanı vardır ve ilgili maddelerde bulunan söz konusu gereksinimleri karşılamaktadır.
3.1.12	Bir takım sadece bir kategoriden başvuru yapabilir. İki farklı kategoriden başvuru yaptığı tespit edilen takımlar (ve üyeleri) değerlendirilmeye tabi olmadan yarışmadan elenecektir.			Takımımız yalnızca alçak irtifa kategorisinde başvurusu yapmıştır.
3.1.13	Her takım yarışmaya sadece bir (1) adet roket ile katılabilir.		-	Yarışmaya yalnız 1 roketle katılım gösterilecektir.
3.1.14	Son başvuru tarihinden sonra yapılan başvurular değerlendirilmeyecektir.		-	Başvurumuz 28 Şubat'tan önce yapılmıştır.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.1.15	Yarışmacılar gerekli görülen hesaplamaları, raporları, sunumları ve ilgili diğer dokümantasyonları Yarışma Komitesinin belirlediği standartlara uygun olarak hazırlamakla sorumludurlar.		-	Hazırlanan kontrol listesi, dökümantasyonların standartlara uygun olduğunu göstermektedir.
3.1.20	Takımlar; Proje Planı, Proje Bütçesi, Kontrol Listesi, Görevli Personel Listesi (Takım Danışmanı dâhil olacak şekilde) hazırlamakla sorumludurlar.			Gereksinimlerin tümü karşılanacak şekilde kapsamlı proje planı oluşturulmuştur.
3.1.21	Takımlar, uluslararası öğrenci ve katılımcıları ÖTR aşamasında belirtilmekle sorumludurlar.		2	Uluslararası öğrenci ve katılımcımız bulunmamaktadır.
3.1.22	Takımlar, yarışmada görev alacak takım üyeleri ve takım danışmanını tüm raporlarında (ÖTR, KTR, AHR ve ASDR) listelemekle sorumludurlar.		2	Takım üyeleri ve takım danışmanımız ÖTR raporunda listelenmiş olup ileride hazırlanacak diğer raporlarda da aynı şekilde listelenecektir.
3.1.23	Takımlar, yarışma komitesinin kendilerine sağlayacağı motoru kullanmakla sorumludurlar.		3	Roketimizde şartnamede lise kategorisinde kullanılması gerektiği belirtilen L-1050 motoru kullanılmıştır.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.1.24.1	Danışman olarak eğitim/öğretim kurumlarında görevli, aşağıdaki maddelerdeki tanımlara uyan öğretmenler/akademisyenler veya daha önce yurtiçi ve/veya yurtdışında düzenlenen roket yarışmalarına katılım sağlamış takımlarına aşağıdaki maddelere uyan üyeleri veya danışmanları kabul edilecektir.			Takımımız Samsun DENEYAP Atölyesi'nde kurulmuş olup danışmanımız Adem ÜNLÜ DENEYAP Teknoloji Atölyeleri'nde eğitmen olarak görev yapmaktadır.
3.1.24.5	Lise takımlarının öğretmen danışmanları kendi okullarından olmak şartıyla fen bilimleri alanından bir öğretmen veya daha önce yurt içi veya yurt dışında roket yarışmalarına katılım sağlamış herhangi bir alandan öğretmen olmalıdır. (Bu koşul DENEYAP ve BİLSEM kurumlarından kurulan takımlar için uygulanmayacaktır).		2	Takımımız Samsun DENEYAP Atölyesi'nde kurulmuş olup danışmanımız Adem ÜNLÜ DENEYAP Teknoloji Atölyeleri'nde eğitmen olarak görev yapmaktadır.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.1.26	Yarışma süreci boyunca TEKNOFEST yarışmalar komitesi tarafından yapılacak olan tüm bilgilendirmeler takımın iletişim sorumlusu olarak belirlediği kişiye yapılacaktır. Bu sebeple her takım bir iletişim sorumlusu belirlemelidir.		-	İletişim sorumlumuz olarak takım üyemiz Adem ÜNLÜ seçilmiştir.
3.1.27	Süreçlerin (Başvuru Yapma, Rapor Yükleme Son Tarih, Doldurulması Gereken Form vb.) takibi iletişim sorumlusunun görevi olup iletişim sorumlusundan kaynaklı gecikmeler ve/veya aksaklıklardan TEKNOFEST yarışmalar komitesi sorumlu değildir		-	İletişim sorumlumuz olarak danışmanımız Adem ÜNLÜ seçilmiştir.
3.1.28	Başvurular 28.02.2022 tarihine kadar www.t3kys.com başvuru sistemi üzerinden çevrimiçi olarak yapılır.		-	Başvuru belirtilen tarihten önce yapılmıştır.
3.1.29	Başvuru tarihleri arasında takım kaptanı/danışman sistem üzerinden kayıt olur, varsa danışman ve/veya takım kaptanı/takım üyelerinin kaydını doğru ve eksiksiz olarak sisteme yapar ve varsa danışman ve üyelerin e- postalarına davet gönderir. Davet gönderilen üye Başvuru sistemine giriş yaparak "Takım bilgilerim" kısmından gelen daveti kabul eder ve kayıt tamamlanır. Aksi durumda kayıt tamamlanmış olmaz.		_	Kayıt talimatları izlenerek takım üyeleri sisteme giriş yapmış ve kayıtlarını tamamlamıştır.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.2.1.1	Takımlar, fırlatma sonrası rokete ait tüm bileşenleri (alt bileşenler ve sistemler dahil) ve Görev Yükünü tekrar kullanılabilir şekilde kurtarmaktan sorumludurlar. Kurtarmayı sağlamak için paraşütlerin kullanılması zorunludur.		19	Görev yükü ve roket alt bileşenleri tekrar kullanılabilecek şekilde paraşütle kurtarılacaktır.
3.2.1.2	Farklı kategoriler için operasyon konseptleri ayrı ayrı belirlenmiş olup roket bileşenleri Lise Kategorisinde tek paraşütle kurtarılırken Görev Yükü tüm kategorilerde roket bileşenlerinden farklı bir paraşütle kurtarılacaktır.		19,22	Roketimizin kurtarma süreci tek paraşütle sağlanacaktır.
3.2.1.4	Roketler tepe noktasında (apogee noktasında) Görev Yükünü ayırmakla ve birincil paraşütünü açmakla yükümlüdürler.		/1 /h	Görev yükümüz şartnamedeki söz konusu maddeye uygun olarak tepe (apogee) noktasında açılacaktır.
3.2.1.6	Roket, tepe noktasına ulaşmadan önce herhangi bir ayrılma gerçekleştiremez (Görev Yükünün bırakılması, paraşütün açılması vb.).		6	Roketimizin uçuşu süresince tepe (apogee) noktasından önce ayrılma gerçekleştirmez. Ayrılmalar tepe noktasında ve tepe noktasından bir (1) saniye sonra gerçekleşecektir.
3.2.1.7	Lise kategorisindeki roketler Şekil 2'de örnek olarak belirtilen operasyon konseptini icra etmekle yükümlüdürler.		l h	Roketimiz şartnamede belirtilen operasyon konseptini yerine getirecek şekilde tasarlanmıştır.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.2.1.8	Lise kategorisindeki roketlerin tek bir paraşüt ile kurtarılması sağlanacaktır (İkincil paraşüt olmayacaktır). Takımlar, paraşütün uçuşun tepe noktasında açılmasını sağlayarak roketi kurtarmaktan ve görev yükünü de tepe noktasında roketten ayırmaktan yükümlüdürler.		19	Roket apogee noktasına ulaştığı anda görev yükü roketten ayrılacak ve roketimiz tek paraşütle kurtarılacaktır.
3.2.1.10	TEKNOFEST Roket Yarışmasında takımların kullanacağı motorlar Yarışma Komitesi tarafından temin ve tedarik edilecek olup takımlar ayırıca motor tedariki yapmayacaktır.		16,17	Yarışma Komitesi tarafından temin ve tedarik edilecek olan L-1050 motor kullanılacaktır.
3.2.1.11.1	TEKNOFEST Roket Yarışmasında Yarışma Komitesi tarafından takımlara sağlanacak motorlar her kategori için standart olup Lise Kategorisi için L1050 model motor kullanılacaktır.		16,17	Roketimizde şartnamede lise kategorisinde kullanılması gerektiği belirtilen L-1050 motoru kullanılmıştır.
3.2.1.14	Takımların motor ve motora dair herhangi bir alt bileşen için tasarım ya da üretim yapması kesinlikle yasaktır (Lise, Orta ve Yüksek İrtifa ile Zorlu Görev kategorilerinde motordan çıkacak olan ısı, gaz vb. gibi etkenler roket tasarımını etkileyen faktörler değildir).		16,17	Motor ve motora dair herhangi bir alt bileşen için tasarım ya da üretim yapılmamıştır.
3.2.1.15	Lise, Orta ve Yüksek İrtifa kategorilerinde paralel ya da seri kademeli roket tasarımları ve küme (İng. cluster) denilen tek gövde içerisindeki çoklu motor sistemleri yarışma konseptine dâhil değildir.		16,17	Roketimiz tek kademeli olmakla birlikte yalnızca 1 adet roket motora sahiptir.

	Madde No	Gereksinim	Karşılama Durumu		Açıklama
3	3.2.1.16	Bütün takımlar roket tasarımlarını TEKNOFEST Roket Yarışması Komitesi tarafından sağlanacak motor için yapacaklardır. TEKNOFEST Roket Yarışması Komitesi tarafından tahsis edilecek motor dışında başka bir motor dikkate alınarak roket tasarımı yapılması kabul edilmeyecektir.		16,17	Motor ve motora dair herhangi bir alt bileşen için tasarım yapılmıştır.
3	3.2.1.17	Roketlerin çıktığı azamî irtifanın ispatlanabilmesi için atış hakkını kazanan takımlara birer adet hakem altimetresi TEKNOFEST Roket Yarışması Komitesi tarafından entegrasyon/montaj günü sonunda elden teslim edilecektir.		h /X	Söz konusu gereksinim doğrultusunda hakem altimetresinin entegre edilebileceği bir yer bırakılmış ve gerekli hazırlıklar yapılmıştır.
3	3.2.1.20	Görev yükü roketten bağımsız olarak kurtarılacak olup rokete ait tüm parçalar bir arada kurtarılacaktır. Hem Görev Yükü hem de söz konusu parçaların konumunu belirleyen bir sistem (GPS, radyo vericisi vb.) bulunacaktır.		6,26,27	Roket ve görev yükünün paraşütleri birbirinden bağımsızdır. Hem roket hem de Görev yükünün üzerinde GY-NEO6MV2(GPS) ve XBEE-PRO s3b(Radyo vericisi) içeren bilgisayar sistemleri bulunmaktadır.
3	3.2.1.21	Takımların "Open Rocket Simulation" menüsüne (Şekil 3) uygun olarak yörünge benzetimlerini gerçekleştirmesi zorunludur. Open Rocket dosyasına Şekil 3'te belirtilen simülasyonu eklemeyen takımlar değerlendirmeye alınmayacaktır		4,5	Open Rocket simülasyon ayarları şartnamede belirtilen kriterlere uygundur. Aldığımız simülasyon verileri bu koşullara göre hesaplanmıştır.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.2.1.22	Roketler yerden 85°'lik yükseliş açısı ve yarışma hakemleri tarafından hakim rüzgar yönüne göre tanımlanacak atış istikamet açısı ile fırlatılacaktır. Fırlatma rampası 6 m uzunluğunda bir raya sahip olacaktır. (Ek-2'de fırlatma rampası ile ilgili teknik resim paylaşılmıştır.)		-	Roketimiz fırlatma rampasına uygun olarak tasarlanmıştır
3.2.1.23	Takımlar Görev Yüklerini "Unspecified Mass" ismiyle girmeyecektir. Görev Yükü "PAYLOAD" ismiile adlandırılıp, kütlesi en az 4000 gram (4 kg) ve tek bir parça olarak girilecektir. Şekil 3 ile verilen "Fırlatma Simülasyonu- Launch Simulation" ekranında yer alan değerler simülasyona girilmelidir. Bu değerler ile benzetim yapmamış olan takımlar elenecektir.		26,27	Görev yükümüz payload olarak adlandırılmış olup kütlesi minimum gereksinimin üzerinde kalarak 4050 gramdır. Söz konusu şekildeki değerler simülasyona girilmiştir.
3.2.2.4.1	Lise kategorisinde roketin bütün parçaları birbirine bağlı olarak tek bir paraşüt sistemi ile kurtarılmalıdır.		22	Kurtarma için tek bir paraşüt sistemi tasarlanmıştır.
3.2.2.4.2	Lise kategorisinde kullanılan tek paraşüt ile roketin ve parçaların hasar görmemesi için paraşütle taşınan yüklerin hızı azami 9 m/s, asgari ise 5 m/s olmalıdır.		25	İstek dikkate alınarak gerekli hazırlık yapılmıştır.

	Madde No	Gereksinim	Karşılama Durumu		Açıklama
3	.2.2.5	Görev Yükü, roketin parçalarına herhangi bir bağlantısı olmadan (hiçbir noktaya şok kordonu vb. herhangi bir ekipman ile bağlanmadan) tek başına kendi paraşütü ile "bağımsız" olarak indirilmelidir.		6	Görev yükümüz tek başına kendi paraşütüyle bağımsız olarak indirilecektir. Söz konusu ister Operasyon Konsepti 2 ve Uçuş Profil Tablosu'nda detaylandırılmıştır.
3	.2.2.6	Kurtarma sisteminde (paraşüt) ayırma işlemi için kimyasal sıcak gaz üreteçleri (kara barut vb.), pnömatik, hidrolik mekanik ya da soğuk gaz içeren bir sistem kullanılabilir.		18	Kurtarma sisteminde kara barut kullanılmıştır.
3		Paraşüt ayırma işleminde güvenlik sebebiyle ticarî olmayan basınçlı kapların (basınçlı tank, tüp vb.) kullanılmasına kesinlikle müsaade edilmeyecektir.			Ticarî olmayan basınçlı kaplar kullanılmamıştır.
3	.2.2.8	Takımların sıcak gaz üreteç sistemlerinde kendi piroteknik malzemelerini kullanmalarına izin verilmeyecektir. Söz konusu tipte sistem kullanacak takımlara Yarışma Komitesi tarafından piroteknik kapsüller verilecektir. Bu kapsüller kullanıma hazır bir şekilde yarışma alanında ekiplere teslim edilecektir.		21	Tarafımızca mal edilen piroteknik malzeme kullanılmamıştır.
3	.2.2.9	Sahaya piroteknik malzeme getiren takımlar elenecektir.		21	Sahaya piroteknik malzeme getirilmeyecektir.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.2.2.10	Yarışmada kullanılabilecek ticarî basınçlı kapların entegrasyon alanında doldurulması gerekmektedir. Ticari basınçlı kapların atış alanında doldurulması kesinlikle yasaktır.		-	Söz konusu kaplar entegrasyon alanında doldurulup hazır hale getirilecektir.
3.2.2.11	Takımlar, tüm etiketleri aldıktan sonra sıcak gaz üreteçlerini hakemlerden teslim alacaklar ve hakem kontrolünde roketlerine entegre edeceklerdir.			Takımımız gerekli tüm etiketleri aldıktan sonra sıcak gaz üreteçlerini hakemlerden teslim alacaktır ve hakem kontrolünde roketimize entegre edecektir.
3.2.2.12	Sistem üzerinde bulunan haberleşme bilgisayarları yer istasyonuyla anlık konum verisini kesintisiz paylaşacaktır.		24,28	Sistem üzerindeki haberleşme bilgisayarları 920mhz bandında kesintisiz GPS paylaşmaktadır
3.2.2.13	Her paraşüt birbirinden farklı renkte ve çıplak gözle uzaktan rahat seçilebilir olacaktır (paraşütlerin kesinlikle beyaz ve mavi renklerde veya bu renklerin farklı tonlarında olmaması önemlidir).		22,23	Roketimizde yer alan paraşütler birbirinden farklı renktedir ve çıplak gözle uzaktan rahat seçilebilir olacaktır.
3.2.2.14	Takımlar, kurtarma işlemlerinde Görev Yükü ve roketin tüm bileşenlerini azami bir saat içerisinde bulmakla yükümlüdür.		19	GPS'den alınan bilgiler ışığında kurtarma işleminin bir saat içerisinde sonlanması için gerekli hazırlıklar yapılmıştır.
3.2.2.15	Alan gereksinimlerinde detayları açıklanan telemetri verisi paylaşma kuralları çerçevesinde konum verisini aktarmayan takımlar uçuş sonrası kurtarma operasyonuna çıkamayacaklardır.		19,24,6, 28	Konum verisi söz konusu kurallar çerçevesinde aktarılacaktır.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.2.3.1	Görev Yükünün kütlesi asgari dört (4) kg olmalıdır.		26	Görev yükümüz 4.02 kg kütle ile asgari gereksinimin üzerindedir.
3.2.3.2	Entegrasyon alanında Görev Yükü kütle ölçümü hakem heyeti tarafından yapılacak olup, ölçümün rahat bir şekilde yapılabilmesi için Görev Yükünün roketten kolay bir şekilde ayrılması sağlanacak şekilde tasarım ve üretim yapılmalıdır.		26,4	Görev Yükü iki gövdeyi birbirine bağlayan entegrasyon gövdesinde bulunmaktadır ve rahat bir şekilde sistemden ayrılması sağlanacaktır.
3.2.3.3	Lise kategorisinde asgari 4 kg'lık herhangi bir ağırlık Görev Yükü olarak kabul edilecektir.		26	Görev yükümüz 4.02 kg kütle ile asgari gereksinimin üzerindedir.
3.2.3.7	Bilimsel bir görevi yerine getirmeye yönelik Görev Yükleri canlı organizma, aşındırıcı kimyasal malzeme ve radyoaktif materyal barındıramaz ve çevreye/canlılara zararlı olamazlar.		26,27, 19,28	Görev yükünde canlı organizma, aşındırıcı kimyasal malzeme veya radyoaktif materyal bulunmamaktadır. Bütün bilimsel veriler BMP280(basınç ve nem sensörü) tarafından çevreye zararı olmayacak şekilde ölçülmektedir.
3.2.4.1	Lise, Orta İrtifa ve Zorlu Görev kategorilerinde yarışacak roketlerin ses altı hızlarda (1 Mach'dan düşük hız) uçmaları gerekmektedir.		-	Roketimiz ses altı hızda uçacak şekilde tasarlanmıştır.
3.2.4.3	Roketin tüm parçalarının azamî dış çapları aynı değerde olmalıdır (Kademelerin farklı çaplara sahip olması ve kademeler arasında çap değişimine izin verilmemektedir. Rampa yerleşim kısıtları dahilinde Boat-Tail kullanımına izin verilmektedir.)		-	Roketimizin parçalarının dış çapları aynı değerdedir.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.2.4.4.	Uçuş kontrol yüzeyleri sabit olmalıdır. Hareketli kontrol yüzeylerine ve aktif kontrol yapılmasına izin verilmemektedir.			Roketimiz uçuş kontrol yüzeyleri sabit olacak şekilde tasarlanmıştır.
3.2.4.5	Tüm kategorilerdeki roketlerin 0.3 Mach'taki stabilite değeri 1.5 ile 2.5 arasında olmalıdır.		-	Roketimizin 0.3 Mach'taki stabilite değeri 1.5 ile 2.5 arasında olacak şekilde tasarlanmıştır.
3.2.4.6	Open Rocket ana tasarım sayfasında 0.3 Mach için stabilite değeri hesaplanmakta olup takımlar bu değeri dikkate almalıdırlar.			Open Rocket ana tasarım sayfasında 0.3 Mach için stabilite değeri hesaplanmakta olup takımlar bu değeri dikkate almalıdırlar.
3.2.4.7	Rampadan asgari çıkış hızları; Lise Kategorisi için 15 m/s, Orta İrtifa Kategorisi için 25 m/s, Yüksek İrtifa Kategorisi için 30 m/s ve Zorlu Görev Kategorisi için 20 m/s'dir.		-	Roketimiz rampadan asgari çıkış hızına uygun olacak şekilde tasarlanmıştır.
3.2.5.1	Roketin iç ve dış basıncı dengeli olmalıdır. Basınç dengesini sağlamak için burun ile gövde ön bölgesi arasında, aviyonik sistemlerin bulunduğu gövde parçasında ve gövde arkası ile motor arasındaki gövde üzerinde 3.0-4.5 mm arasında çapa sahip asgari üç (3) delik bulunmalıdır.		-	Roketimizde basınç değerini sağlamak için delikler açılmıştır.

Madde No	Gereksinim	Karşılama Durumu		Açıklama
3.2.5.2	Roketler hem uçuş boyunca maruz kalacağı yapısal yüklere hem de taşıma/rampaya yerleştirme esnasında maruz kalacağı yüklere dayanıklı olmalıdır. Orta irtifa, Yüksek İrtifa ve Zorlu Görev Kategorilerinde takımlar roketlerin maruz kalacağı kuvvetleri analizler ve hesaplar ile göstereceklerdir.		-	Roketimiz uçuş boyunca maruz kalacağı yapısal yüklere karşı dayanıklı olacak şekilde tasarlanmıştır.
3.2.5.3	Aerodinamik yüzey (gövde, kanatçık, burun) malzemesi olarak PVC, sıkıştırılmış kağıt/kraft ve PLA kullanılamaz. Aerodinamik yüzeylerde ve roket içerisinde mukavemet gerektiren yerlerde sağlamlığı testler ve analizler ile kanıtlanmamış, tasarım raporlarında belirtilmemiş malzemelerin kullanılması durumunda takım elenecektir.			Roketimizin tasarımında aerodinamik yüzey malzemesi olarak PVC, sıkıştırılmış kağıt/kraft ve PLA kullanılmamıştır.
3.2.5.4	Kullanılacak mapaların (İng. eye bolt) tek parça ve dövülmüş çelikten imal edilmiş olması gerekmektedir. Büküm mapalarının kullanımına izin verilmeyecektir. Bu kural mapa yerine kullanılabilecek veya mapa ile benzer kuvvetlere maruz kalabilecek her parça için de geçerlidir.		15	Kullandığımız mapalar tek parça ve dövülmüş çelikten imal edilmiştir.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.5.5	Burun omuzluğunun diğer gövdeye girecek kısmının gövde dış çapının en az bir buçuk (1.5) katı olması gerekmektedir. Entegrasyon gövdelerinin entegre edilecekleri gövdelerin her ikisine de gövde dış çapının en az (0.75) katı kadar girmesi beklenmektedir. Bu duruma uymamak diskalifiye sebebidir. Örnek burun omuzluğu Şekil 4'te ve örnek entegrasyon gövdesi Şekil 5'te gösterilmiştir.		10	Burun omuzluğu ve entegrasyon gövdeleri şartnamede yazan değerlere uygun olarak tasarlanmıştır.
3.2.5.6	Takımlara kaydırma ayakları TEKNOFEST Roket Yarışması Komitesi tarafından yarışma alanında Görev Yükü tartılması sonrasında verilecektir.		4,5	Roketimiz kaydırma ayakları sonradan takılabilecek şekilde tasarlanmış.
3.2.5.7	Kaydırma ayakları, gövdenin yapısal olarak güçlendirilmiş bölgelerine takılmalıdır. Bir rokette asgari iki (2) adet kaydırma ayağı bulunmalıdır. Bunlardan bir tanesi motor bölgesinde, motorun ağırlık merkezi ile gövde sonu arasında olmalıdır. Roketin ağırlık merkezi iki kaydırma ayağının arasında olmalıdır.		-	Roketimiz kaydırma ayakları uygun yerlerde bulunacak şekilde tasarlanmıştır.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.5.9	Roket kesit alanında çıkıntı yaratan ve roketin yapısal/aerodinamik bütünlüğünü bozacak parçaların (bu kapsamda sadece sensör, anten ve kamera gibi zarurî elemanlara izin verilecektir) roketin yanması bittikten sonra kütle merkezinin ilerisinde yer alması sağlanacak şekilde önceden sabitlenmiş olmalıdır.		4	Roketimizin yapısal ve aerodinamik bütünlüğünü bozacak parçalar roketin yanması bittikten sonra kütle merkezinin ilerisinde yer alması sağlanacak şekilde önceden sabitlenmiş olacak şekilde tasarlanmıştır.
3.2.5.10	Uçuş bilgisayarı ve görev yükündeki tüm anahtarlar roketin nozülünden azami 2500 mm mesafede olmalıdır (Şekil 6).		4,5	Uçuş bilgisayarı ve görev yükündeki tüm anahtarlar roketin nozülünden azami 2500 mm mesafede olacak şekilde tasarlanmıştır.
3.2.5.11	Roket motoru, bütün gövde bağlantıları tamamlandıktan sonra gerektiğinde demonte edilebilir bir şekilde montajlanmalıdır.		16,17	Roketimizin motoru demonte edilebilir şekilde tasarlanmıştır.
3.2.6.1	Rokette bulunan ayrılma ve kurtarma sistemleri uçuş kontrol bilgisayarı tarafından yönetilir.		19,28	Rokette bulunan ayrılma ve kurtarma sistemleri uçuş kontrol bilgisayarları tarafında birbirinden bağımsız olarak yönetilmektedir.
3.2.6.2	Roketlerin uçuş boyunca telemetri verilerinin yer istasyonuna aktarılmasını sağlayan haberleşme bilgisayarı bağımsız olabileceği gibi Uçuş Kontrol Bilgisayarına da entegre görev yapabilir.		37,38	Haberleşme bilgisayarı uçuş kontrol bilgisayarına entegre görev yapmaktadır.

57

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.6.3	Lise kategorisinde asgari bir (1) adet uçuş kontrol bilgisayarı kullanılması zorunludur (iki (2) adet uçuş kontrol bilgisayarı kullanma zorunluluğu yoktur)		27	Sistemimizde iki (2) adet uçuş kontrol cihazı bulunmaktadır.
3.2.6.4	Lise kategorisinde kullanılacak asgari bir (1) adet uçuş kontrol bilgisayarının ticari ürün olması zorunludur.		27,29	Sistemimizdeki iki (2) adet uçuş kontrol cihazından bir (1) adeti ticari(RRC3"SPORT"ALTİMETER) sistemdir.
3.2.6.5	Özgün uçuş kontrol bilgisayarı geliştiren Lise takımları geliştirdikleri uçuş kontrol bilgisayarını (yedek uçuş kontrol bilgisayarı olarak) ticari bilgisayara (asıl uçuş kontrol bilgisayarı olarak) ilave olarak kullanabilirler. Bunu tercih eden Lise takımları özgün tasarım ödülü değerlendirmesine alınacaktır.		27,31,32	Sistemimizdeki iki (2) adet uçuş kontrol cihazından bir (1) adeti özgün uçuş kontrol cihazıdır. Özgün uçuş kontrol cihazı ticari sisteme ek olarak kullanılmaktadır.
3.2.6.6	Ticari uçuş kontrol bilgisayarında konum belirleme ve haberleşme sistemi bulunmuyorsa takımların ayırıca haberleşme bilgisayarı geliştirmesi zorunludur.		28,32,36	Ticari sistemimizde konum belirleme ve haberleşme sistemi bulunmamaktadır. Ayrıca haberleşme sistemi geliştirilmiştir.
3.2.6.9	Sistemde kullanılan uçuş kontrol bilgisayarlarının arasında herhangi bir elektriksel veya kablosuz bağlantı olamaz.		31,32,36 <i>,</i> 37	Sistemde kullanılan uçuş kontrol bilgisayarları arasında batarya dahil olmak üzere herhangi bir bağlantı bulunmamaktadır
3.2.6.10	Kullanılan uçuş kontrol bilgisayarları birbirinden tamamen bağımsız olmalıdır. Her bilgisayarın kendisine ait işlemcisi, sensörleri, güç kaynağı, kablolaması olmalıdır.		31,32,36, 37	Sistemde kullanılan uçuş kontrol bilgisayarları arasında herhangi bir bağlantı bulunmamaktadır. Her bilgisayarın kendisine ait; işlemcisi, sensörleri,kablolaması bulunmaktadır.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	t Açıklama
3.2.6.11	Kullanılan uçuş kontrol bilgisayarları, ayrılma sistemi eyleyicisine birbirinden bağımsız hatlar ile bağlanmalıdır.		32,33,37 ,38	Uçuş kontrol bilgisayarları ayrılma sistemi eyleyicilerine biribirinden bağımsız hatlar ile bağlanmıştır.
3.2.6.12	Uçuş kontrol bilgisayarları ve/veya bağlı oldukları sistemlerden biri kısmen veya tamamen bozulsa bile diğeri roketin kurtarma işlevlerini aksaksız ve durmaksızın yerine getirmelidir.		32,33,37 <i>,</i> 38	Uçuş kontrol bilgisayarları ve/veya bağlı oldukları sistemlerden biri kısmen veya tamamen bozulsa bile diğeri roketin kurtarma işlevlerini aksaksız ve durmaksızın yerine getirebilmektedir.
3.2.6.13	Uçuş kontrol bilgisayarlarında en az iki (2) adet sensör bulunmalıdır ve uçuş kontrol algoritmasında bu sensörlerden gelen veriler kullanılmalıdır.		37,38	Ticari Uçuş Kontrol Bilgisayarı Teknofest Roket Yarışması Hakem Heyeti'nin onayladığı bir modeldir. Özgün Uçuş Kontrol bilgisayarınd basınç ve eksen sensörleri bulunmaktadır. Uçuş kontrol algoritmasında bu sensörlerden gelen veriler kullanılmaktadır
3.2.6.14	Bütün uçuş kontrol bilgisayarında en az bir (1) adet basınç sensörü olmak zorundadır.		28,37,38	Bütün uçuş kontrol bilgisayarlarında bir (1) adet basınç sensörü bulunmaktadır.
3.2.6.15	Uçuş kontrol bilgisayarında iki (2) adet basınç sensörü kullanılması durumunda kullanılan sensörlerin birbirinden farklı olması gerekmektedir (Farklı uçuş kontrol bilgisayarlarında kullanılan sensörler birbirleri ile aynı olabilir).		28,33,37	İki (2) uçuş kontrol bilgisayarında da bir(1) adet basınç sensörü bulunmaktadır.
3.2.6.16	Uçuş kontrol algoritmasında GPS'den gelen veriler ile ayrılma sistemi tetiklenmemelidir.		39,40	Uçuş kontrol algoritmasında sadece basınç ve eksen sensöründen gelen veriler kullanılmaktadır.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.6.17	Ayrılma sistemlerine bağlı eyleyiciler yedekli olmak zorunda değildir (yaylı bir sistemde yay, DC motorlu bir sistemde DC motor ya da ateşleme teli).		32,37,38	Ayrılma sistemlerine bağlı eyleyiciler yedeklidir.
3.2.6.18	Eğer eyleyici tek ise, ana ve yedek uçuş bilgisayarı tarafından kontrol edilmelidir. Bu eyleyici sistemler kontrolsüz bir şekilde çalışmamalıdır (Örneğin sistemin açılışı ve kurulumu) ve istemsiz olarak kurtarma sisteminin aktive edilmediğinden emin olunmalıdır.		33,37,38	Eyleyici iki(2) adettir, eyleyici sistemler istemsiz çalışmayacak şekilde dizayn edilmiştir.
3.2.6.19	Kurtarma sistemleri istemsiz olarak aktif konuma gelmemelidir.		33,37,38	Eyleyici sistemler istemsiz çalışmayacak şekilde dizayn edilmiştir.
3.2.6.20	Bütün takımların, roketlerinden vegörev yükülerinden anlık olarak veri alan bir yer istasyonuna sahip olması gerekmektedir.		41	Yer istasyonumuz roketten ve görev yükünden anlık olarak veri almaktadır.
3.2.6.21.1	Roketlerin kurtarılmasına çıkılması için rokete ait konum verilerinin yarışmacı yer istasyonuna anlık olarak iletilmiş olması gerekmektedir.		41	Rokete ait konum verisini anlık olarak yer istasyonuna iletilmektedir.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.6.21.2	Atış günü roket aviyonikleri aktifleştirildikten sonra ekiplerin yer istasyonları ile iletişim kurmak için azami iki (2) dakika süresi olacaktır. Bu sürenin sonunda sistemlerin açılıp kapatılmasına izin verilmeyecektir. İki (2) dakika sürenin sonunda sağlıklı bir haberleşme sağlayamayan ekiplerin kararı vermeleri halinde roketlerini rampadan indirip yarışmadan çekilebileceklerdir.		37,38,41	Aviyonik sistemler iki (2) dakikadan kısa bir sürede yer istasyonu ile iletişim kurabilecek şekilde dizayn edilmiştir.
3.2.6.22	Roket parçalarının yer istasyonundan uzak yerlere düşeceği göz önüne alınmalı ve alıcı-verici antenlerin menzili roketlerin uçuş yörüngesi dikkate alınacak şekilde seçilmelidir.		41	Alıcı verici antenleri menzilleri dikkate alınarak seçilmiştir, seçilen modüller sayesinde 9000m menzile ulaşılabilmektedir.
3.2.6.23	RF modülünün gücü değerlendirilerek link bant genişliği bütçesinin yapılması ve ilgili tasarım raporlarında sunulması gerekmektedir.		41	RF modülün menzili değerlendirilerek uygun anten ve frekans seçimi yapılmıştır.
3.2.6.24	Roket üzerindeki aviyonik alt sistemler ve sensörler uçuş esnasında maruz kalacakları titreşim, basınç ve şok gibi etkiler altında görevlerini rahatlıkla yerine getirmelidir. Bu kapsamda gerekli koruyucu önlemler alınmalı, tasarım doğrulama aşamasında ilgili testler gerçekleştirilmeli ve sonuçları ilgili tasarım raporlarında sunulmalıdır.		27,39	Roket üzerindeki aviyonik sistem bloğu, titreşim ve basıncın elektronik devrelere en az şekilde yansıtacak şekilde tasarlanmıştır.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.6.25	Roketin üzerinde bulunan uçuş bilgisayarları roket rampada iken anahtarlar açılarak kontrol edilmelidir.		4,5	Uçuş bilgisayarlarının anahtarları rampada iken açıp kapatılabilecek şekilde dizaynedilmiştir. Roket rampada iken kontrol edilecektir.
3.2.6.26	Uçuş kontrol bilgisayarlarına dışarıdan erişilebilir (Örneğin gövde üzerinden erişilebilir anahtar bulunmalıdır) bir şekilde güç verilebilecek şekilde tasarım ve üretim yapılmalıdır. İpli, şöntlü veya rokete dışarıdan tornavida vb. aletler kullanılarak sistemlerin başlatılmasına izin verilmeyecektir.		4,5	Uçuş bilgisayarlarının anahtarları rampada iken açıp kapatılabilecek şekilde dizaynedilmiştir. Anahtarlamalar gövde dışarısında rokete yatay olarak yapılacaktır, anahtarlar için herhangi bir ek alet gerekmememtedir.
3.2.6.27	Uçuş bilgisayarı açıldığında rokete bağlı herhangi bir sistem aktif hale gelirse takım diskalifiye edilecektir.		32,37,38	Uçuş bilgisayarı, açıldığında herhangi bir sistemi aktifleştirmeyecek şekilde dizayn edilmiştir
3.2.6.28	Görev Yükü içerisindeki elektronik devrelere de roket gövdesi üzerinde yer alacak uygun anahtarlarla güç verilebilecek şekilde tasarım ve üretim yapılmalıdır.		35,39	Görev yükü içerisinde yer alan elektronik sistemler roket gövdesi üzerinden aktifleştirilebilecek şekilde tasarlanmıştır.
3.2.6.29	Sisteme güç sağlayan her türlü güç kaynağı (akü, pil, süperkapasitör vb.) ile besledikleri ilk devreler arasında mekanik açma/kapama anahtarı (Ing. on/off switch) bulunacaktır. Mekanik anahtar vasıtasıyla bağlantı kesildiğinde güç besleme elemaninin herhangi bir sistem elemanıyla (LED göstergeler, güç çeviriciler, regülatorler de dahil olmak üzere) bağlantısı olmayacaktır.		34,37,38	Bütün güç kaynağı bağlantılarımız herhangi bir devre elemanından önce bir anahtara bağlanmıştır. Anahtarlar aktifleştirilmediği sürece hiçbir alt sisteme enerji akışı olmamaktadır.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.6.30	Sistemde Li-Po vb. pil kullanacak takımların "Li-Po Safe Bag" kullanmaları gerekmektedir.		29,30	Görev yükü bilgisayarımızda kullanacağımız Li-Po pil için Li-Po Safe Bag kullanılacaktır.
3.2.6.31	Kullanılacak pilin güvenliğinden takım sorumludur.		29,40	Sistemlerde bulunan bütün piller, güvenlik önlemleri birinci planda olacak şekilde kullanılacaktır.
3.2.6.32	Kullanılacak piller roketin ihtiyacını karşılayabilecek kapasitede ve yeterince dolu olmalıdır.			Bütün piller, roketin alt sistemlerinin enerji ihtiyacını asgari altı(6) saat karşılayabilecek şekilde seçilmiştir.
3.2.6.33	Uçuş algoritmalarında ayrılma sekanslarını tetikleyecek asgari iki kriter belirlenmelidir.		40	Uçuş algoritmasında ayrılma sekanslarını tetikleyecek; roketin irtifasının düşmesi veya roketin düşme açılarına ulaşması olmak üzere iki(2) adet kriter bulunmaktadır.
3.2.6.34	Karar verme parametrelerinde sensörlerden okunan veriler esas olmalıdır.		39,40	Karar verme parametrelerinde sensör verilerinden esas alınmaktadır.
3.2.6.35	Sensörlerden okunan veriler doğrudan kullanılmamalı ve herhangi bir hatalı okuma ya da sensör hatası durumu göz önünde bulundurulmalıdır. Bu gibi durumlar için alınacak önlemler (filtreleme vs.) ilgili tasarım raporlarında detaylı anlatılmalıdır		39,40	Veriler kalman filtresinden geçirilecek, hataların önüne geçilecektir.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.6.36	Özgün uçuş bilgisayarları ve tüm uçuş algoritmaları takım üyelerinin kendi özgün tasarımları olmalıdır. Takım üyeleri özgün sistemler ile ilgili detayları açıklayabilmeli ve özellikle uçuş algoritmalarını değiştirebilecek yetkinlikte olmalıdır. Tasarımlarının özgün olmadığı tespit edilen takımlar diskalifiye edilecektir.		27,39,38	Özgün uçuş kontrol bilgisayarı, Görev Yükü bilgisayarı ve tüm uçuş algoritmaları takım üyelerinin özgün tasarımıdır. Takım üyeleri özgün bilgisayarların yapısı ve algoritması hakkında detaylı bilgiye sahiptir.
3.2.6.37	Kullanılacak ticari uçuş kontrol bilgisayarlarının EK-7'de yer alan listedeki ürünlerden (Yarışma Komitesi tarafından onaylanmış olan ürünler) seçilmesi gerekmektedir.		28,30	Seçilen ticari uçuş kontrol bilgisayarı EK-7'de yer alan listedeki ürünlerden seçilmiştir(RRC3"SPORT"ALTİMETER)
3.2.7.1	Tasarım ve üretim aşamalarında kullanılacak malzeme, donanım ve süreçler insan sağlığına ve çevreye zarar vermemelidir.			Roketimizin tasarım ve üretim süreçleri boyunca kullanılan malzeme ve yöntemler belirlenirken insan sağlığı ve çevreye verdikleri zararlar detaylıca incelenmiştir ve zararlı malzeme ve yöntemler tercih edilmemiştir.
3.2.7.2	Tasarım, insan hatasını en aza indirecek sadelikte ve gürbüzlükte (gürültü etkilerine ve belirsizliklere karşı dayanıklı) olmalıdır.			Tasarımımız oluşturulurken her türlü dış etmen göz önüne alınarak roketimizin bunlardan azami ölçüde etkilenmesi sağlanmıştır. İnsan hatasını en aza indirmek için olabildiğince sade bir tasarım yapılmıştır.
3.2.7.3	Tasarım, üretim ve test süreçleri için planlamalar ve risk azaltma çalışmaları yapılmalı ve ilgili tasarım raporlarında bu çalışmaların yapıldığı sunulmalıdır.			Roketimizin tasarım, üretim ve test süreçleri boyunca detaylı planlar ve riski en aza indirmek için gerekli çalışmalar yapılmıştır. Bu çalışmalar ÖTR'de belirtilmiştir.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
3.2.7.4	Tasarım, üretim, entegrasyon ve atış günlerinde güvenliği tehlikeye atacak unsurlar belirlenmeli, gerekli tedbirler eksiksiz planlamalı ve icra edilmelidir.		-	Roketimizin tasarım sürecinin başlangıcından beri ileride oluşabilecek her türlü risk değerlendirilmiş ve gerekli önlemler planlanmıştır.
3.2.7.5	Fırlatma, uçuş ve kurtarma aşamalarında sistemin güvenliğini tehlikeye atacak risklerin varlığı önceden listelenmeli ve risk azaltıcı tedbirler planlanıp icra edilmelidir.		71,72	Söz konusu aşamalarda oluşabilecek risklerin tespiti için detaylı bir risk analizi yapılmış ve oluşabilecek riskler ÖTR'de listelenmiştir. Alınacak önlemler planlanmıştır.
4.1.1	Yarışmacı takımların hazırladıkları raporlarda başka takımların güncel veya geçmiş rapor içeriklerinden kopya çekmek, ortak çalışma/test/analiz yapmak yasaktır. Tespit edildiği takdirde (yarışma tamamlanmış olsa bile) söz konusu takımlar diskalifiye edilecektir. Bu durum, takımlar birbirlerinin raporlarına ve çalışmalarına referans vererek paylaşım yapsalar dahi yasaktır. atış yapılmış olsa dahi bu durum fark edildiğinde		-	Raporumuzda herhangi bir içerikten kopya çekilmemiştir ve herhangi bir takımla ortak çalışma yapılmamıştır.
4.1.2	Takımların rapor içeriklerinde kendi üretmedikleri tablolar, görseller, denklemler ve benzeri içeriklerin kullanımında ilgili içeriğin alındığı belgeye referans vererek kullanması beklenmektedir. Bu duruma aykırı bir içerik tespit edildiğinde takım kopya çekmiş sayılacak ve yarışmadan diskalifiye edilecektir.		73	Rapor içeriğimizde kendi üretmediğimiz içerikler referans verilerek kullanılmıştır.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
4.1.3	Takımların, referans verecekleri içeriklerde APA (American Psychological Association) referans tipini kullanmaları gerekmektedir. (İsmi verilen referans tipi ile alakalı ihtiyaç duyulan bilgilere "American Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.)." belgesinden ulaşılabilir.		/ -	Referans verdiğimiz içeriklerde gereksinim doğrultusunda APA referans tipi kullanılmıştır.
4.1.4	İlgili raporların (ÖTR ve KTR) teslimatında takımlar tarafında kontrol listesi doldurulacak ve Yarışma Komitesine raporla birlikte teslim edilecektir. Örnek kontrol listesi EK-1'de sunulmuştur.		43-70	Kontrol listesi doldurulmuştur ve ÖTR'ye eklenmiştir.
4.1.5	Tablo 2 ve Tablo 3'te raporların diskalifiye kriterlerine örnekler (geçmiş yıllarda uygulanan kriterler) sunulmuş olup güncel diskalifiye kriterleri yarışma boyunca güncellenmektedir (En doğru diskalifiye kriterleri ilgili tasarım raporlarının güncel rapor şablonunda yer alacaktır).		_	Güncel diskalifiye kriterleri incelenmiş ve ÖTR süreci için gereken yönde aksiyonlar alınmıştır.
4.1.6	Her raporlama aşaması, bir öncekinin diskalifiye kriterlerini de kapsayacaktır.		_	ÖTR için olan diskalifiye kriterleri incelenmiş olup KTR sürecine geçilmesi durumunda da dikkate alınacaktır.
4.2.1	Takımlar, Ön Tasarım Raporunda (ÖTR) temel olarak yaptıkları tasarımların teknik gereksinimleri tamamıyla (eksiksiz) karşıladığını ortaya koymak ve ispatlamakla yükümlüdürler.			Yaptığımız tasarım bütün teknik gereksinimleri eksiksiz karşılamaktadır.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
4.2.2	Teknik gereksinimlerin karşılandığının kanıtlanması için Gereksinimleri Karşılama Matrisi (İng. Compliance Matrix) oluşturulacak ve ilgili tasarım raporlarının EK'inde ayrıca sunulacaktır.		4,5,43-70	Open Rocket tasarımı ile kontrol listesi tüm teknik gereksinimleri karşılayacak biçimde sunulmuştur.
4.2.3	Sistem ve alt sistem seviyesinde, kıyaslamaya/karşılaştırmaya tabi tasarım kriterleri, malzeme ve üretim için en iyileme (optimizasyon) seçimleri yapılmak suretiyle amaç fonksiyonuna ulaşılmasına (hedef irtifaya ulaşmak) yönelik olarak tüm gereksinimlerin optimizasyonu yapılmalı ve getirigötürü analizleri paylaşılmalıdır.		9,11,13,14, 16,18	Roketimizde getiri-götürü analizi tabloları gereksinimlere uygun olarak hazırlanmıştır.
4.2.4	Takımlar, kullanmayı planladıkları sistemler için de getiri- götürü analizi yapmak (İng. trade off), karara esas kriterleri (vazgeçilmez ve opsiyonel kriterler) listelemek ve yapılan seçimleri nedenleriyle birlikte ÖTR'de sunmaktan sorumludurlar.		9,11,13,14, 16,18	Roketimizde kullanılan sistemlerin getiri-götürü analizleri raporumuzda paylaşılmıştır.
4.2.5	Tasarımın mimarî bileşenleri, arayüzler de dahil olmak üzere tanımlanacaktır.		5,6,10,12,15 ,17,20,22,26 ,29,34,37,38	Bütün mimari bileşenler CAD tasarımları ile açıklanmıştır.

Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
4.2.6	Hata Modları ve Etkileri Analizi ile sonuçları da ÖTR'de sunulacaktır (Takımların Hata Modları ve Etkileri Analizi çalışmalarını yapabilmeleri için şablon dokümanlar Yarışma Komitesi tarafından TEKNOFEST'in internet sitesi üzerinden paylaşılacaktır).		<i>,</i> ,	Hata Modları ve Etkileri Analizi ile sonuçlarını sunmak için hazırlanan Excel dosyası sisteme yüklenmiştir.
4.2.7	ÖTR'de takımların üretmeyi planladıkları roketin genel hatlarıyla CAD tasarımını tamamlamış olmaları ve sistemlerini bu tasarım üzerinden detaylı bir şekilde anlatmaları gerekmektedir.		5,6,10,12 ,15,17,20 ,22,26,27 ,33,38	CAD tasarımları tamamlanmıştır ve raporda bulunmaktadır.
4.2.8	Malzeme seçim kriterlerinin ve söz konusu seçimlerin sistemle uyumluluğunun raporda yer alması beklenmektedir.		12,13,14,	Görseller ve tablolar kullanılarak gövde, motor yuvası, burun konisi ve kanatçık için kullanılabilecek malzemeler karşılaştırılmış ve uygun olanları tercih edilmiştir.
4.2.9	TEKNOFEST Yarışma Komitesi tarafından takımlara sağlanacak sıcak gaz üretecine esas olacak ön analizler (basınç, sıcaklık vb. etkileri) ÖTR'de sunulmalıdır.		-	
4.2.10	Takımlar yarışma takviminde belirtilen tarihten önce ÖTR'yi teslim etmekle yükümlüdürler.		_	Ön tasarım raporumuz belirtilen tarihten önce hazırlanmıştır ve teslim edilecektir.

	Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
4	.2.11	Raporu destekleyici ".ork" uzantılı Open Rocket dosyaları da rapor ile birlikte teslim edilmelidir.		-	Open Rocket dosyalarımız rapor ile birlikte sunulmuştur.
4	.2.13	Takımların ÖTR'de istenilen tüm bilgileri eksiksiz ve ilgili bölümlerde sunmaları gerekmektedir. Raporun ilgili bölümünde yer almayan bilgiler değerlendirmeye alınmayacaktır.		-	Şartname incelenmiş ve gereksinimlere uygun bir rapor hazırlanmıştır.
4	.2.14	Raporda istenmeyen bilgiler değerlendirmeye alınmayacaktır.		-	Şartname incelenmiş ve gereksinimlere uygun bir rapor hazırlanmıştır. Raporumuzda yalnızca gereksinimlerde listelenen ve istenen bilgiler bulunmaktadır.
4	.2.15	ÖTR'de sunulmak üzere TEKNOFEST Roket Yarışması Komitesi tarafından istenilen bilgiler, analiz ve değerlendirmeler Türkçe dilbilgisi kurallarına uygun, rahat anlaşılır ve takip edilebilir şekilde raporda sunulmalıdır. Bu şartı yerine getiremeyen takımlar için raporun ilgili bölümünde gerektiğinde %20 (yüzde yirmi) nispetinde azamî puan eksiltmesi uygulanacaktır.		-	ÖTR'de bulunan metin ve içeriklerin hepsinde dilbilgisi kurallarına uyulmuş ve anlaşılır bir rapor ortaya konulmuştur.

Madde No	Takımların sunacağı ÖTR'nin TEKNOFEST Roket Yarışması Komitesi tarafından etkin ve verimli değerlendirilmesi için "Giriş Kriterleri" (Entry Criterias) bulunmaktadır. Takımların ÖTR'de sunmaları beklenen çıktıların Giriş Kriterlerine uyması		ÖTR Slayt No	Açıklama
4.2.17	Komitesi tarafından etkin ve verimli değerlendirilmesi için "Giriş Kriterleri" (Entry Criterias) bulunmaktadır. Takımların		-	Roketimiz belirlenen kriterlere uygundur.
4.2.18	ÖTR'de her kategoriden takımların diskalifiye olma sebepleri Tablo 2'de belirtilmiştir.		-	Söz konusu tablo incelenmiş ve diskalifiye olmaya yol açacak durumlardan kaçınılmıştır.
4.2.19	Kategorilere özel ÖTR'de diskalifiye olma sebepleri Tablo 3'te belirtilmiştir.		-	Söz konusu tablo incelenmiş ve diskalifiye olmaya yol açacak durumlardan kaçınılmıştır.

HTEA* Hata Türleri ve Etkileri Analizi

						HATA TÜRLERİ V	/E ETKİLERİ ANALİZİ 1	TABLOSU				
Hata No	Öge/Fonksiyo n	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi		ata Etkisi	Hata Tespit Yöntemi		rım Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
HT-1	Barut	Barutun başarılı bir şekilde ateşlenmesi	erken veya geç	Ateşleme sisteminin sorunlu çalışması	Uçuş	Ateşleme sisteminin bozulması	Paraşütlerin yanlış zamanda açılması	Görsel muayene ve insan-kullanıcı arayüzünde yer alan uyarı mesajları	sisteminin uygun şekilde	Ateşleme sistem bağlanmadan önce elektronik sistemin kontrol edilmesi	Ateşleme sisteminin yedekli olması	10
HT-2	Paraşüt	Paraşütün doğru zamanda açılması	-	Yanlış okunan veriler	Uçuş	Paraşütün yanlış zamanda açılması	Roketin erken iniş sağlaması veya iniş sağlayamaması	Görsel muayene ve insan-kullanıcı arayüzünde yer alan uyarı mesajları	Algoritma kontrolleri	Yer istasyonuna gelen verilerin kontrol edilmesi	Algoritmada yazılan kurallar	9
HT-3	Batarya	Bataryanın sisteme enerji vermesi	Bataryanın patlaması	Fazla akım çekimi, yüksek sıcaklık ve basınç dengesizliği	Uçuş	Bataryanın kullanılamaz hale gelmesi	Rokete enerji sağlanamaması	Ölçüm ve muayene	Sigorta kontrolü ve basınç dengesinin sağlanması	Arayüzde enerji akışının görünmemesi	Bataryaların paralel bağlanması ve sigorta	7
HT-4	Haberleşme bilgisayarı	Roketin yer istasyonu ile iletişim kurması	İletişim sinyallerinin	Elektromanyet	Uçuş	Sinyallerin karışması	Roketin beklenilmeyen davranışlar sergilemesi	İnsan-kullanıcı arayüzlerinde yer alan uyarı mesajları	hatlarının	Arayüzde sinyal karmaşası algılanması	Algoritmada yazılan kurallar	7
HT-5	Parça Hasarı	Parçaların yarışma alanına kadar sağlam biı şekilde teslim edilmesi	hasar	Sorunlu taşıma süreci	Taşıma	Parçaların kullanılamaz hale gelmesi	Roketin ateşlenememesi veya ateşlenme sonrası beklenildiği gibi ilerleyememesi	Görsel muayene ve insan-kullanıcı arayüzünde yer alan uyarı mesajları	3	Görsel olarak inceleme	Yedek parça taşınması	5

HTEA* Hata Türleri ve Etkileri Analizi

	HATA TÜRLERİ VE ETKİLERİ ANALİZİ TABLOSU											
Hata No	Öge/Fonksiyon	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi	Hata	Etkisi	Hata Tespit Yöntemi	Mevcut Tasa	rım Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
HT-6	Malzeme tedariği	Malzemelerin kargodan beklenen sürede gelmesi	Parçaların tamamlana maması	Kargonun gecikmesi	Depolama	Malzeme eksiği	Roketin fonksiyonlarının eksik olması		Kargo süresinin tam kontrolü	Kargo süresinin hesaplanması	Birden fazla firma ile görüşülmesi	3
HT-7	Bağlantı malzemeleri	Bağlantı malzemelerini n birbiriyle sorunsuz olarak bağlanması	Paslanma	Sıcaklık ve nem	Depolama	Malzemelerin birbirine tutunamaması	Roket parçalarının uçuş esnasında birbirinden ayrılması	muayene	_	Bağlantının sağlamlığının kontrolü	Yedek parça ve düzenli kontrol	3
HT-8	Görev yükünün ayrılamaması		Sıkışma	Görev yükünün ayrılamayacak şekilde sıkışması	Uçuş	fazladan 4 kilo	Roketin yere yüksek hızla çarpması	İnsan-kullanıcı arayüzlerinde yer alan uyarı mesajları, görsel muayene	Kızak kullanımı	Yer istasyonunda hızın kontrol edilmesi	Kızak sisteminin kullanılması	10
HT-9	Motor yuvası uyuşmazlığı	Motorun, motor yuvasına girmemesi	Parça uyuşmazlığı	Parçaların birbiri ile uyum sorunu yaşaması	Depolama	Motorun rokete takılamaması	Roketin çalışmaması	muayene	Üretim öncesinde motor yuvasının test edilmesi	Motor ve motor yuvasının ölçülerinin alınması	Ölçüm alınması, ölçümlerin yanlış çıkması durumunda motor yuvasının yeniden düzenlenmesi	3

Kaynakça

- Crowell Sr, G.A., "The Descriptive Geometry of Nose Cones," URL: http://www. myweb. cableone. net/cjcrowell/NCEQN2.doc, 1996.
- Kumaresan, N., & Vasanthaseelan, S. (2018). Mechanical Characterization and Comparison of Glass Fibre and Fibre Inforcement with Aluminium Alloy.
- <u>Burun konisi tasarımı</u> (wikipedia.org)
- Aluminium vs carbon fiber comparison of materials (dexcraft.com)