Summary: Functions (LS & GS)

Definition of a function:

A function f is a **mapping** (relation) from I to J, that associates to every x in I exactly **one image** y in J. $f: I \mapsto J$.

$$x \mapsto y = f(x)$$
.

Domain of definition of a function:

- The domain of definition D_f of f is the set of **possible values of** x. This domain is sometimes given.
- If $f(x) = \frac{A}{B}$, then f is defined for $B \neq 0$.
- If $f(x) = \sqrt{A}$, then f is defined for $A \ge 0$.
- If $f(x) = g(x) \pm h(x)$ or f(x) = g(x). h(x), then $D_f = D_g \cap D_h$.
- If $f(x) = \frac{g(x)}{h(x)}$, then $D_f = D_g \cap D_h$ with $h(x) \neq 0$.

Parity of a function (even function - odd function):

- f is said to be **even function** over I if: I is centered at zero and f(-x) = f(x). In this case (C) admits **y-axis** as an **axis of symmetry**. The **symmetric** of the **point** (a; b) with respect to **y-axis** is (-a; b).
- f is said to be **odd function** over I if: I is centered at zero and f(-x) = -f(x). In this case (C) admits the **origin** O as a center of symmetry. The symmetric of the point (a; b) with respect to O is (-a; -b).
 - I is centered at zero if for every $x \in I$, $-x \in I$. For example: \mathbb{R} , \mathbb{R}^* , [-a; a] ...
- There exist functions neither even nor odd.

Axis of symmetry - Center of symmetry:

- The line of equation x = a is an axis of symmetry of (C) of a function f if: f(2a x) = f(x).
- The **point** I(a; b) is a **center of symmetry** of (C) of a function f if: f(2a x) + f(x) = 2b.

Limits of a function:

- We calculate the limit of a function f at the open boundaries of its domain of definition D_f .
- If $\mathbf{a} \in \mathbf{D}_f$, then $\lim_{x \to a} f(x) = f(a)$ (we calculate the **image** of a by f).
- The writing: $x \to a^-$ means: $x \to a$ and x < a, that is: x tends to a from the **left**. The writing: $x \to a^+$ means: $x \to a$ and x > a, that is: x tends to a from the **right**.

Rules of limit:

Let a be a real number:

- $+\infty + \infty = +\infty$; $-\infty \infty = -\infty$; $\infty \pm a = \infty$; $a \times \infty = \infty$; $\frac{\infty}{a} = \infty$.
- $\frac{a}{\infty} = 0 \ ; \frac{a}{0} = \infty \ ; \frac{\infty}{0} = \infty.$
- $(\infty)^2 = +\infty$; $(-\infty)^3 = -\infty$; $\sqrt{+\infty} = +\infty$.

Indeterminate limits:

It is one of the four forms: $\frac{0}{0}$; $\frac{\infty}{\infty}$; $+\infty - \infty$ or $0 \times \infty$, that is the limit is not appeared.

To solve this problem, we must **change** the **form** of the function and calculate the limit again.

The limits at ∞ of polynomial and rational functions:

- To calculate the limit at ∞ of a **polynomial** function, we take the **monomial** of **highest exponent**.
- To calculate the limit at ∞ of a **rational** function, we take the **monomial of highest exponent** in the **numerator** to that in the **denominator**.

Derivative of a function at a point:

The **derivative** of f at a point a, denoted by f'(a), is given by: $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

Graphically: $f'(a) = a_{(T)}$, the slope of the tangent to (C) at a point a.

<u>Table of principle formulas of derivative function:</u>

Function $f(x)$	Derivative function $f'(x)$
a (constant)	0
ax	a
x^n	nx^{n-1}
ax^n	$a. nx^{n-1}$
$\frac{\frac{1}{x} (x \neq 0)}{\sqrt{x} (x > 0)}$	$\frac{-1}{x^2}$
$\sqrt{x} (x > 0)$	$ \begin{array}{c} -1 \\ x^2 \\ \frac{1}{2\sqrt{x}} \end{array} $
u^n (u is a function of x)	$nu^{n-1}.u'$
$u \pm v$	$u' \pm v'$
u.v	u'.v + v'.u
$\frac{u}{v} \ (v \neq 0)$	$\frac{u'.v-v'.u}{v^2}$
$\frac{1}{u} \ (u \neq 0)$	$ \begin{array}{c c} \hline v^2 \\ -u' \\ \underline{u^2} \\ \underline{u'} \\ 2\sqrt{u} \end{array} $
$\sqrt{u} (u > 0)$	$\frac{u'}{2\sqrt{u}}$
a.u	a. u'

Equation of a tangent:

An **equation** of the **tangent** (T) to (C) of a function f at a point of abscissa x = a is given by: (T): y - f(a) = f'(a)(x - a).

Remarks:

- If (C) has a horizontal tangent (T) at a point of abscissa a, then f'(a) = 0.
- If (C) has an extremum at a point A(a; b), then f(a) = b and f'(a) = 0.
- If (C) has a **vertical tangent** (T) at a point of abscissa a, then $f'(a) = \infty$.
- If (C) has an **oblique tangent** (T) at a point of abscissa a, then: $f'(a) = \frac{y_2 y_1}{x_2 x_1}$, where $(x_1; y_1)$ and $(x_2; y_2)$ are **two points on** (T).

Sense of variation of a function:

To study the variation of a function f, we must find the **derivative** function f'(x), then determine the **roots** and make a table of **signs**:

- For f'(x) > 0, f is increasing.
- For f'(x) < 0, f is decreasing.
- For f'(x) = 0 and change its sign, f admits an extremum.
- If f'(x) > 0 for every $x \in I$, then f is strictly increasing over I.
- If f'(x) < 0 for every $x \in I$, then f is strictly decreasing over I.

In the table of variations of f, we put in the row of x: the domain and the roots of f'(x), in the row of f'(x): the sign and zero, and in the row of f(x): the arrows and limits or images.

Drawing the representative curve of a function:

To **draw** the **representative curve** of a function f, we follow these steps:

- Draw the **asymptotes** (vertical asymptote, horizontal asymptote, oblique asymptote).
- Locate the **extremums**.
- Locate some **particular points** (using calculator Mode 7).
- Draw the curve as seen in the table of variation.

Graphical reading of a function:

Mathematical writing	Graphical meaning
f(a) = b	Point $(a; b)$ belongs to (C)
f(x)=0	(C) cuts x-axis
f(x) > 0	(C) is above x-axis
f(x) < 0	(C) is below x-axis
$f(x) \ge 0$	(C) above and cuts x-axis
$f(x) \le 0$	(C) below and cuts x-axis
f(x) = k	(C) cuts the line $y = k$

Limits and asymptotes:

- If $\lim_{x\to a} f(x) = \infty$, then the line of equation x = a is a vertical asymptote to (C).
- If $\lim_{x\to\infty} f(x) = a$, then the line of equation y = a is a horizontal asymptote to (C) at ∞ .
- To prove that the line (*D*) of equation: y = ax + b is an **oblique asymptote** to (*C*), we must prove that: $\lim_{x \to \infty} [f(x) y_{(D)}] = 0$.

Asymptotic directions (only for G.S):

- If $\underset{x\to\infty}{lim} f(x) = \infty$ and $\underset{x\to\infty}{lim} \frac{f(x)}{x} = \infty$, then (C) admits at ∞ a vertical asymptotic direction (fast function). If $\underset{x\to\infty}{lim} f(x) = \infty$ and $\underset{x\to\infty}{lim} \frac{f(x)}{x} = 0$, then (C) admits at ∞ a horizontal asymptotic direction (weak function).
- If $\lim_{x\to\infty} f(x) = \infty$ and $\lim_{x\to\infty} \frac{f(x)}{x} = a \in \mathbb{R}^*$, then we calculate $\lim_{x\to+\infty} [f(x) ax]$: If $\lim_{x\to\infty} [f(x) ax] = \infty$, then (C) admits at ∞ an **oblique asymptotic direction** parallel to the line of equation: $\mathbf{v} = a\mathbf{x}$.
 - ▶ If $\lim [f(x) ax] = b \in \mathbb{R}$, then (C) admits at ∞ an oblique asymptote of equation: y = ax + b.

Relative position of two curves:

To study the relative position of two curves (C) and (C') with respective functions f and g, we must study the sign of the expression: R(x) = f(x) - g(x):

- For R(x) > 0, (C) is above (C').
- For R(x) < 0, (C) is below (C').
- For R(x) = 0, (C) cuts (C').

Remarks:

- The horizontal asymptote and the oblique asymptote may cut the curve (C) of a function f.
- The **vertical asymptote don't cut** the curve (C) of a function f.
- To find the **point(s)** of **intersection** of (C) and x-axis, we solve f(x) = 0.
- To find the **point** of **intersection** of (C) and **v-axis**, we calculate f(0).

Continuity of a function at a point of the curve:

- f is said to be **continuous at** a **point** of abscissa a if: $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$. In this case the **curve** (C) has no gap (no jump) at this point.
- f is said to be discontinuous at a point of abscissa a if $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$. In this case the **curve** (C) has a gap at this point.

Remarks:

- The function f is **continuous over** an **interval** I if it is **continuous at every point** of I.
- The polynomial functions are continuous over \mathbb{R} .
- The **rational functions** are **continuous over** its **domain** of definition D_f .

Differentiability (derivativity) of a function at a point:

- f is said to be differentiable at a point of abscissa a if f'(a) exist, that is: $f'(a^-) = f'(a^+)$. In this case (C) admits one tangent (T) at α , that is (C) has no angular (broken) point at α .
- f is said to be **not differentiable at** a **point** of abscissa a if $f'(a^-) \neq f'(a^+)$. In this case (C) admits two semi-tangents (T_1) and (T_2) at a, one from the left and one from the right, that is (C) has an angular point at a. The equations of (T_1) and (T_2) are given by: $(T_1): y - f(a) = f'(a^-)(x - a) ; (T_2): y - f(a) = f'(a^+)(x - a).$

Remarks:

- If $f'(a) = \infty$, then f is not differentiable at a.
- The function f is differentiable over an interval I if f is differentiable at every point of I.
- If f is **discontinuous** at a, then f isn't differentiable at a.
- If f is differentiable at a, then f is continuous at a. The converse isn't necessary true.

Limits by comparison:

Let f, g and h be a three functions:

- If $f(x) \ge g(x)$ and $\lim_{x \to +\infty} g(x) = +\infty$, then $\lim_{x \to +\infty} f(x) = +\infty$. If $\lim_{x \to +\infty} f(x) > -\infty$, then we can't conclude any result about the limit.
- If $f(x) \le g(x)$ and $\lim_{x \to +\infty} g(x) = -\infty$, then $\lim_{x \to +\infty} f(x) = -\infty$. If $\lim_{x \to +\infty} f(x) < +\infty$, then we can't conclude any result about the limit.
- If $g(x) \le f(x) \le h(x)$ and $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = k$, then $\lim_{x \to +\infty} f(x) = k$ (sandwish rule).

Symmetric and translation:

Let f and g be two functions of respective representative curves (C) and (C'):

- If g(x) = -f(x), then (C') is the image of (C) by symmetric with respect to x-axis. Note that, the symmetric of a point (a; b) with respect to x-axis is (a; -b).
- If g(x) = |f(x)|, then (C') is confounded with (C) when (C) above x-axis, and (C') is symmetric of (C) with respect to **x-axis** when (C) below x-axis.
- If $\mathbf{g}(x) = f(x) + a$, then (C') is the image of (C) by **translation** of a vector $\vec{v} = a\vec{j}$.
- If $\mathbf{g}(x) = f(x + a)$, then (C') is the image of (C) by **translation** of a vector $\vec{v} = -a\vec{\iota}$.
- If $\mathbf{g}(x) = f(x+a) + b$, then (C') is the image of (C) by translation of a vector $\vec{v} = -a\vec{i} + b\vec{j}$.

Concavity of a function next to a point (only for G.S):

To study the **concavity** of a function f at a, we must **determine** f''(a) (second derivative):

- If f''(a) > 0, then the concavity of (C) is upward, and (C) is above the tangent to (C) at a.
- If f''(a) > 0, then the concavity of (C) is downward, and (C) is below the tangent to (C) at a.
- If f''(a) = 0 and change its sign, then (C) admits an inflection point at a, and (C) crosses its **tangent** at a.

L' Hopital's rule:

- If $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\frac{\infty}{\infty}$, then we can apply **L'hopital's rule:** $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

 If, after applying the L'hopital's rule, we still obtain $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then we apply it successively.

5

Intermediate value theorem (I.V.T):

- If f is a **continuous** function over [a; b] with $f(a) \times f(b) < 0$, then the equation f(x) = 0 admits at least one root α such that $a < \alpha < b$, that is $f(\alpha) = 0$. Note that: f(x) = 0 means graphically: (C) cuts the x-axis.
- If f is a **continuous** function and **strictly monotone** (strictly increasing or strictly decreasing) over [a; b] such that $f(a) \times f(b) < 0$, then the equation f(x) = 0 admits a **unique** root α such that $a < \alpha < b$.

Remark:

To prove that the equation f(x) = E, where E is a function of x or constant, admits a solution α with $\alpha < \alpha < b$, we take a **new function** h(x) = f(x) - E and verify that h is **continuous** over [a; b] and $h(a) \times h(b) < 0$.

Note that: f(x) = E means graphically: (C) cuts: y = E.

Image of an interval by a function:

- If f is a **continuous** function over a closed interval I = [a; b], then f(I) = f([a; b]) = [m; M], where m and M are respectively the **absolute minimum** and the **absolute maximum** of f, and for all $x \in [a; b]$, $m \le f(x) \le M$.
- If f is a **continuous** function and **strictly increasing** over [a; b], then: f([a; b]) = [f(a); f(b)].
- If f is a **continuous** function and **strictly decreasing** over [a; b], then f([a; b]) = [f(b); f(a)].