MODELLING AND SIMULATION

Lecture 2 - SS 2014 - Michel Kana

Agenda

- Corrections of entrance test
- 2. Summary of the previous exercise
- 3. Malthus population model
- 4. Logistic population model
- 5. Summary

Correction of the entrance test

Summary of the previous practice

[Foundations of Mathematics]

Coefficients of polynomial, order of polynomial, roots of polynomial Equation with one variable, linear system of equations, non - linear system of equations Square schema of numbers, row and column Linear differential equation and system of equations

[Modeling guidelines]

Defining the Problem, Designing the Experiment, Describing the Model Mathematically, Performing Identifiability Analysis, Implementing the Model, Performing Parameters Estimation, Performing Sensitivity Analysis, Validating the Model

Population modeling

Definitions

- Population is group of individuals of any species that live in a well defined geographical area, share or compete for similar resources
- Population size is the total number of individuals in the population at a given time
- Birth Rate is the average number of new individuals added per unit population due to births, hatchings and germinations.
- Death Rate is the average number of natural deaths per unit population per unit time.
- A population at any given time is composed of individuals of different age/age group
- Age groups are: pre-reproductive, reproductive and post- reproductive
- Population growth depends on factors such as food, weather, predators, competition
- Population Density indicates the number of individual or the size of population found in a unit area or space at a given time

Basic problem

- identify classes of population interactions that could lead to the observed type of dynamics
- identify unique predictions of each competing hypothesis that can be tested using observational data
- understanding patterns in cross-species comparisons
- managing fisheries/hunting/harvesting for the highest possible sustainable yield
- developing recovery plans for species threatened by extinction
- trying to contain or prevent the spread of invasive species

Approach

Model the change in population size due to the interaction of organisms with the environment, with individuals of their own kind, and with other types of organisms

Malthus model

- □ We assume the population to be *unstructured*, i.e. we ignore differences between individuals, and assume that the population size irrespective of age, sex, diseases, etc. provides all the necessary information for predicting future population changes
- \Box Fundamental Balance Law for total population size X(t)
 - X(t + h) = X(t) + Births + Immigration Deaths Emigration
 - X(t+h) = X(t) + B + I D E
- We assume constant birth and death rates
 - # Births = (# parents) × (births/parent/time) × (length of time interval)
 - $B = X(t) \cdot b \cdot h$
 - # Deaths= (# parents) × (deaths/parent/time) × (length of time interval)
 - $D = X(t) \cdot d \cdot h$
- □ We assume a **closed** population, i.e. there is no immigration and no emigration
 - \blacksquare # Immigration = # Emigration = 0
 - I = E = 0
 - $X(t+h) = X(t) + X(t) \cdot b \cdot h X(t) \cdot d \cdot h$
 - $\frac{X(t+h)-X(t)}{h} = (b-d) \cdot X(t)$
 - $\frac{X(t+h)-X(t)}{h} = r \cdot X(t)$
- \square Assuming $h \to 0$, we obtain the **Malthus population model**
 - $\frac{dX}{dt} = r \cdot X(t)$
 - $X(t) = X(0) \cdot e^{r \cdot t}$

Malthus model - Analysis

- □ Malthus population model $X(t) = X(0) \cdot e^{r \cdot t} = X(0) \cdot e^{(b-d) \cdot t}$
 - if r > 0 (i.e. if b > d) the population grows exponentially without limit
 - The doubling time is defined as the time it takes to double the population size
 - $2 \cdot X(0) = X(0) \cdot e^{r \cdot t}$
 - if r < 0 (i.e. if b < d) the population decreases to 0.
 - The *half life* is defined as the time it takes to loose half of the population size

- The **fitness** $R_0 = \frac{b}{d}$ is the expected number of offspring of an individual over his entire life-span
- Malthus (1798) found that the local population had a doubling time of 30 years

$$30 = \frac{\ln 2}{r}$$

r = 0.0231 per year, i.e. 2.31% human growth rate per year

Logistic model

- Malthus model is not density-dependent
 - Birth and death rates are typically not fixed because the processes of birth and death often depend on the population size.
 - Due to competition at high population densities birth rates may become lower and death rates higher when the population size increases
- Density-dependent death
 - Assuming a simple linear increase of the per capita death rate with the population size: $f(X) = 1 + \frac{X}{K}$

 - The death rate doubles when X = K
- Density-dependent birth
 - Assuming a simple linear decrease of the per capita birth rate with the population size: $f(X) = 1 + \frac{X}{K}$

 - The birth rate becomes 0 when X = K
- The logistic population model

$$\frac{dX}{dt} = \left[b \cdot (1 - \frac{X}{K}) - d \cdot (1 + \frac{X}{K}) \right] \cdot X(t)$$

 \blacksquare K is the carrying capacity of the population

Logistic model - analysis

- The steady state of the logistic model is obtained at any X when $\frac{dX}{dt}=0$
 - $\mathbf{x} = 0$
 - $\mathbf{x} = \mathbf{X}$
- Effect of the initial population size
 - $r > 0 \text{ and } 0 < X(0) < \frac{K}{2}$
 - The graph of X(t) is sigmoid with inflection at $\frac{K}{2}$
 - $r > 0 \text{ and } \frac{K}{2} < X(0) < K$
 - lacktriangle The graph of X(t) is a concave curve increasing to K
 - - The graph of X(t) is a concave curve decreasing to K

Logistic model with delay

- Oscillations of the population size is observed in some populations
- Oscillations are explained by a delay in fertility of individuals
 - $\frac{dX(t)}{dt} = r \cdot \left(1 \frac{X(t-\tau)}{K}\right) \cdot X(t)$
 - τ is the mean time to achieve fertility.
- Analysis
 - $\hfill \Box$ For $\tau \cdot r < \frac{1}{e}$ the solution is similar to the normal logistic model

 - $\qquad \text{For } \tau \cdot r > \frac{\pi}{2} \text{ the solution is unstable}$

Summary of today's practice

[Population models]

Study the dynamics of unstructured populations due to the interactions with the environment, and with individuals of own kind.

Malthus model: growth is unlimited

Logistic model: growth is limited by the capacity of the studied population

Logistic model with delay: growth is delayed by the mean time to reach fertility

[What is next?]

Next week we will continue with model of two species populations.