12. Elliptic curve cryptography.

A. Ushakov

MA503, April 20, 2022

Contents

Here we discuss the elliptic curve discrete logarithm problem (ECDLP) and basic protocols that use computational hardness of the ECDLP.

- The elliptic curve discrete logarithm problem (ECDLP).
- ECDLP: complexity.
- Babystep-giantstep algorithm: example.
- Pohlig–Hellman algorithm: example.
- Elliptic Diffie-Hellman key exchange. Example.
- Elliptic curve computational DH problem (ECCDH).
- Elliptic ElGamal PKC. Example.

The elliptic curve discrete logarithm problem (ECDLP)

DLP in a finite field F is an algorithmic question for given h, g to find $n \in \mathbb{N}$ satisfying $h = g^n$ in F.

The discrete logarithm problem (DLP) in \mathcal{E} is an algorithmic question for given h, g to find $n \in \mathbb{N}$ satisfying $h = n \cdot g$.

For instance, for $y^2=x^3+3x+8$ over \mathbb{Z}_{13} and g=(1,5) we have

$$\begin{array}{llll} 0(1,5) = \mathcal{O} & \log_{(1,5)}(\mathcal{O}) = 0 & 5(1,5) = (12,11) & \log_{(1,5)}(12,11) = 5 \\ 1(1,5) = (1,5) & \log_{(1,5)}(1,5) = 1 & 6(1,5) = (9,6) & \log_{(1,5)}(9,6) = 6 \\ 2(1,5) = (2,10) & \log_{(1,5)}(2,10) = 2 & 7(1,5) = (2,3) & \log_{(1,5)}(2,3) = 7 \\ 3(1,5) = (9,7) & \log_{(1,5)}(9,7) = 3 & 8(1,5) = (1,8) & \log_{(1,5)}(1,8) = 8 \\ 4(1,5) = (12,2) & \log_{(1,5)}(12,2) = 4 & 9(1,5) = \mathcal{O}. \end{array}$$

If $h = n \cdot g$ has a solution, then it has infinitely many solutions of the form $[n]_{|g|}$.

ECDLP: complexity

ECDLP (the problem to compute $\log_g(\cdot)$ for $g \in \mathcal{E}$) has no faster than $O(\sqrt{|g|})$ solutions.

There are several general algorithms for ECDLP.

- ullet Babystep-giantstep algorithm solves ECDLP in $O(\sqrt{|g|})$ time.
- Pohlig–Hellman algorithm solves ECDLP efficiently if |g| is a product of small prime powers.

There are no index calculus algorithms known for the ECDLP.

ECDLP can be solved in polynomial-time on a quantum computer.

Babystep-giantstep algorithm: example

To compute $\log_g(h)$ for $g,h\in\mathcal{E}$, compute $n=1+\lfloor\sqrt{|g|}\rfloor$ and construct two lists

- (babysteps) $\mathcal{O}, 1 \cdot g, 2 \cdot g, 3 \cdot g, \dots, n \cdot g$,
- (giantsteps) $h, h n \cdot g, h 2n \cdot g, h 3n \cdot g, \dots, h n^2 \cdot g$.

Find a match $i \cdot g = h - jn \cdot g$ and output jn + i.

The curve $\mathcal E$ defined by $y^2=x^3+2x+9$ over $\mathbb Z_{67}$ has 75 elements and (8,1) is primitive in $\mathcal E$. To compute $\log_{(8,1)}(61,7)$ we compute $n=1+\lfloor\sqrt{|(8,1)|}\rfloor=9$. (Babysteps)

$$0 \cdot g = \mathcal{O}$$
 $3 \cdot g = (0, 64)$ $6 \cdot g = (15, 8)$
 $1 \cdot g = (8, 1)$ $4 \cdot g = (9, 32)$ $7 \cdot g = (45, 29)$

$$2 \cdot g = (13,50)$$
 $5 \cdot g = (6,61)$ $8 \cdot g = (11,42).$

(Giantsteps)

$$h = (61,7)$$
 $h - 27 \cdot g = (15,8)$ $h - 54 \cdot g = (30,66)$
 $h - 9 \cdot g = (26,4)$ $h - 36 \cdot g = (0,3)$ $h - 63 \cdot g = (66,26)$
 $h - 18 \cdot g = (17,47)$ $h - 45 \cdot g = (5,12)$ $h - 72 \cdot h = (46,35)$.

Hence, $6 \cdot g = h - 27 \cdot g$. Therefore, $h = 33 \cdot g$.

Pohlig-Hellman algorithm: example

Pohlig-Hellman algorithm can be used to solve ECDLP.

- Consider the curve \mathcal{E} defined by $y^2 = x^3 + x + 5$ of order $|\mathcal{E}| = 30 = 2 \cdot 3 \cdot 5$.
- The point g = (12, 11) is primitive on \mathcal{E} , i.e., its order is 30.

Let h = (21, 6). To compute $\log_g(h)$ using Pohlig-Hellman we compute the following:

$$\begin{split} N_1 &= 15 & g_1 = 15g = (10,0) & h_1 = 15h = (10,0) & \log_{(10,0)}((10,0)) = 1 = k_1 \\ N_2 &= 10 & g_2 = 10g = (26,2) & h_2 = 10h = (26,27) & \log_{(26,2)}((26,27)) = -1 = k_2 \\ N_3 &= 6 & g_3 = 6g = (6,13) & h_3 = 6h = (16,12) & \log_{(6,13)}((16,12)) = k_3. \end{split}$$

We can compute $\log_{(6,13)}((16,12))$ directly by computing multiples of (6,13) (it is better than computing multiples of g) and get $k_3=2$. Finally we reconstruct $k=\log_{\sigma}(h)$ using CRT

$$\begin{cases} k \equiv_2 1 \\ k \equiv_3 -1 \\ k \equiv_5 2 \end{cases}$$

and get k = 17.

Pohlig-Hellman algorithm is efficient if |g| is a product of small powers $p_i^{a_i}$.

Elliptic Diffie-Hellman key exchange

Recall that the goal of a key exchange protocol is to allow two parties establish a common shared key.

Key generation (performed by Alice or by Bob):

- Choose sufficiently large prime field $F = \mathbb{Z}_p$.
- Choose an elliptic curve \mathcal{E} over \mathbb{Z}_p (i.e., a Weierstrass equation).
- Choose a primitive element $g \in \mathcal{E}$.

Encryption step performed by Alice:

• Choose a random $a \in \mathbb{N}$ (Alice's private key); compute $A = a \cdot g$ (Alice's public key); send A to Bob.

Encryption step performed by Bob:

• Choose a random $b \in \mathbb{N}$ (Bob's private key); compute $B = b \cdot g$ (Bob's public key); send B to Alice.

Computing the shared key (performed by Alice): $K = a \cdot B$. Computing the shared key (performed by Bob): $K = b \cdot A$.

It is easy to check that

$$a \cdot B = (ab) \cdot g = b \cdot A$$
,

i.e., Alice and Bob get the same element K.

DH: example

For instance, for the curve \mathcal{E} defined by $y^2 = x^3 + 2x + 9$ over \mathbb{Z}_{13} .

	0	(0,3)	(0, 10)	(1,5)	(1,8)	(3,4)	(3, 9)	(4,4)	(4,9)	(5, 1)	(5, 12)	(6,4)	(6, 9)	(8,2)	(8, 11)	(11, 6)	(11,7)
0	0	(0,3)	(0, 10)	(1,5)	(1,8)	(3,4)	(3, 9)	(4,4)	(4,9)	(5, 1)	(5, 12)	(6,4)	(6, 9)	(8, 2)	(8, 11)	(11, 6)	(11,7)
(0,3)	(0, 3)	(3,9)	0	(3, 4)	(11,7)	(0, 10)	(1,8)	(5, 12)	(8, 11)	(4, 9)	(5,1)	(11, 6)	(8, 2)	(4,4)	(6,4)	(1,5)	(6,9)
(0, 10)	(0, 10)	0	(3,4)	(11,6)	(3,9)	(1,5)	(0, 3)	(8, 2)	(5,1)	(5, 12)	(4,4)	(8, 11)	(11, 7)	(6,9)	(4,9)	(6, 4)	(1,8)
(1,5)	(1, 5)	(3,4)	(11, 6)	(8, 11)	0	(6,4)	(0, 10)	(11,7)	(4,4)	(8, 2)	(6,9)	(5,1)	(3, 9)	(1,8)	(5, 12)	(4, 9)	(0,3)
(1,8)	(1,8)	(11,7)	(3,9)	0	(8, 2)	(0,3)	(6, 9)	(4,9)	(11, 6)	(6, 4)	(8, 11)	(3,4)	(5, 12)	(5,1)	(1,5)	(0, 10)	(4,4)
(3,4)	(3, 4)	(0, 10)	(1,5)	(6, 4)	(0,3)	(11, 6)	0	(6,9)	(5, 12)	(4, 4)	(8,2)	(4,9)	(1,8)	(11,7)	(5,1)	(8, 11)	(3,9)
(3,9)	(3, 9)	(1,8)	(0,3)	(0, 10)	(6,9)	0	(11,7)	(5,1)	(6,4)	(8, 11)	(4,9)	(1,5)	(4, 4)	(5, 12)	(11, 6)	(3, 4)	(8,2)
(4,4)	(4, 4)	(5, 12)	(8, 2)	(11,7)	(4,9)	(6,9)	(5, 1)	(1,5)	0	(0, 10)	(3,4)	(3,9)	(6, 4)	(11,6)	(0,3)	(1,8)	(8, 11)
(4,9)	(4, 9)	(8, 11)	(5,1)	(4, 4)	(11,6)	(5, 12)	(6, 4)	0	(1,8)	(3, 9)	(0,3)	(6, 9)	(3, 4)	(0, 10)	(11, 7)	(8, 2)	(1,5)
(5, 1)	(5,1)	(4,9)	(5, 12)	(8, 2)	(6,4)	(4,4)	(8, 11)	(0, 10)	(3,9)	(0, 3)	0	(11, 7)	(1, 5)	(3,4)	(1,8)	(6, 9)	(11, 6)
(5, 12)	(5, 12)	(5,1)	(4,4)	(6, 9)	(8, 11)	(8, 2)	(4, 9)	(3,4)	(0,3)	0	(0, 10)	(1,8)	(11, 6)	(1,5)	(3,9)	(11, 7)	(6,4)
(6,4)	(6, 4)	(11,6)	(8, 11)	(5, 1)	(3,4)	(4,9)	(1, 5)	(3,9)	(6,9)	(11, 7)	(1,8)	(4,4)	0	(0,3)	(8, 2)	(5, 12)	(0, 10)
(6,9)	(6, 9)	(8, 2)	(11, 7)	(3, 9)	(5, 12)	(1,8)	(4, 4)	(6,4)	(3,4)	(1, 5)	(11,6)	0	(4, 9)	(8, 11)	(0, 10)	(0, 3)	(5,1)
(8, 2)	(8, 2)	(4,4)	(6, 9)	(1,8)	(5, 1)	(11, 7)	(5, 12)	(11,6)	(0, 10)	(3, 4)	(1,5)	(0,3)	(8, 11)	(6,4)	0	(3, 9)	(4,9)
(8, 11)	(8, 11)	(6,4)	(4,9)	(5, 12)	(1,5)	(5,1)	(11,6)	(0,3)	(11, 7)	(1,8)	(3,9)	(8,2)	(0, 10)	0	(6,9)	(4, 4)	(3,4)
(11, 6)	(11,6)	(1,5)	(6,4)	(4, 9)	(0, 10)	(8, 11)	(3, 4)	(1,8)	(8,2)	(6, 9)	(11,7)	(5, 12)	(0, 3)	(3,9)	(4,4)	(5, 1)	0
(11, 7)	(11,7)	(6,9)	(1,8)	(0, 3)	(4,4)	(3,9)	(8, 2)	(8, 11)	(1,5)	(11,6)	(6,4)	(0, 10)	(5, 1)	(4,9)	(3,4)	0	(5, 12)

Since $|\mathcal{E}| = 17$, every nontrivial element is primitive. So, let's choose g = (0,3).

- Encryption step performed by Alice: Alice chooses her private key a = 6, and sends $A = 6 \cdot (0,3) = (8,2)$ to Bob.
- Encryption step performed by Bob: Bob chooses his private key b = 5, and sends $B = 5 \cdot (0,3) = (6,9)$ to Alice.

Alice computes the shared key: $K = 6 \cdot (6,9) = (11,6)$. Computing the shared key (performed by Bob): $K = 5 \cdot (8,2) = (11,6)$.

Elliptic curve computational DH problem (ECCDH)

A passive eavesdropper Eve collects public information:

- The initial information: description of \mathcal{E} and the base element $g \in \mathcal{E}$.
- Alice's public key: $a \cdot g$.
- Bob's public key: b ⋅ g.

Eve's goal is to the find the shared key $(ab) \cdot g$.

(ECCDH for an elliptic curve \mathcal{E})

Given $(g, a \cdot g, b \cdot g)$ compute $(ab) \cdot g$.

Security of elliptic curve Diffie-Hellman key-exchange relies on computational hardness of ECCDH.

Elliptic ElGamal PKC

Key generation (performed by Alice):

- Choose sufficiently large prime field $F = \mathbb{Z}_p$.
- Choose an elliptic curve \mathcal{E} over \mathbb{Z}_p (i.e., a Weierstrass equation).
- Choose a primitive element $g \in \mathcal{E}$.
- Choose $a \in \mathbb{N}$ (Alice's private key) and compute $A = a \cdot g$.

Finally, Alice publishes the triple (\mathcal{E}, g, A) , called the Alice's public key.

Encryption (performed by Bob):

To encrypt the message $m \in \mathcal{E}$ Bob

- picks a (secret) random $j \in \mathcal{E}$;
- computes $c_1 = j \cdot g$ and $c_2 = m + j \cdot A$;
- sends the pair (c_1, c_2) to Alice.

Decryption (performed by Alice):

• Alice computes $c_2 - a \cdot c_1$. The obtained point is m.

It is easy to check that $m = c_2 - a \cdot c_1$ because

$$c_2 - a \cdot c_1 = (m + j \cdot A) - (aj) \cdot g = m + aj \cdot g - aj \cdot g = m.$$

Alice, indeed, obtains Bob's plaintext m.

Elliptic ElGamal PKC: example

Key generation (Alice): choose \mathcal{E} defined by $y^2 = x^3 + 2x + 9$ over \mathbb{Z}_{13} .

	0	(0,3)	(0, 10)	(1,5)	(1,8)	(3,4)	(3, 9)	(4,4)	(4,9)	(5, 1)	(5, 12)	(6,4)	(6, 9)	(8,2)	(8, 11)	(11, 6)	(11,7)
0	0	(0,3)	(0, 10)	(1,5)	(1,8)	(3,4)	(3, 9)	(4,4)	(4,9)	(5, 1)	(5, 12)	(6,4)	(6, 9)	(8, 2)	(8, 11)	(11, 6)	(11,7)
(0,3)	(0, 3)	(3,9)	0	(3, 4)	(11,7)	(0, 10)	(1,8)	(5, 12)	(8, 11)	(4, 9)	(5,1)	(11, 6)	(8, 2)	(4,4)	(6,4)	(1,5)	(6,9)
(0, 10)	(0, 10)	0	(3,4)	(11,6)	(3,9)	(1,5)	(0, 3)	(8, 2)	(5,1)	(5, 12)	(4,4)	(8, 11)	(11, 7)	(6,9)	(4,9)	(6, 4)	(1,8)
(1,5)	(1,5)	(3,4)	(11, 6)	(8, 11)	0	(6,4)	(0, 10)	(11,7)	(4,4)	(8, 2)	(6,9)	(5,1)	(3, 9)	(1,8)	(5, 12)	(4, 9)	(0,3)
(1,8)	(1,8)	(11,7)	(3,9)	0	(8, 2)	(0,3)	(6, 9)	(4,9)	(11, 6)	(6, 4)	(8, 11)	(3,4)	(5, 12)	(5, 1)	(1,5)	(0, 10)	(4,4)
(3, 4)	(3, 4)	(0, 10)	(1,5)	(6, 4)	(0,3)	(11, 6)	0	(6,9)	(5, 12)	(4, 4)	(8,2)	(4,9)	(1,8)	(11,7)	(5, 1)	(8, 11)	(3,9)
(3,9)	(3, 9)	(1,8)	(0,3)	(0, 10)	(6,9)	0	(11, 7)	(5,1)	(6,4)	(8, 11)	(4,9)	(1,5)	(4, 4)	(5, 12)	(11, 6)	(3, 4)	(8, 2)
(4,4)	(4, 4)	(5, 12)	(8, 2)	(11,7)	(4,9)	(6,9)	(5, 1)	(1,5)	0	(0, 10)	(3,4)	(3,9)	(6, 4)	(11,6)	(0,3)	(1,8)	(8, 11)
(4,9)	(4, 9)	(8, 11)	(5,1)	(4, 4)	(11, 6)	(5, 12)	(6, 4)	0	(1,8)	(3, 9)	(0,3)	(6,9)	(3, 4)	(0, 10)	(11, 7)	(8, 2)	(1,5)
(5,1)	(5, 1)	(4,9)	(5, 12)	(8, 2)	(6,4)	(4,4)	(8, 11)	(0, 10)	(3,9)	(0, 3)	0	(11, 7)	(1, 5)	(3,4)	(1,8)	(6, 9)	(11,6)
(5, 12)	(5, 12)	(5,1)	(4,4)	(6, 9)	(8, 11)	(8, 2)	(4, 9)	(3,4)	(0,3)	0	(0, 10)	(1,8)	(11, 6)	(1,5)	(3,9)	(11, 7)	(6,4)
(6, 4)	(6, 4)	(11, 6)	(8, 11)	(5, 1)	(3,4)	(4,9)	(1, 5)	(3,9)	(6,9)	(11, 7)	(1,8)	(4,4)	0	(0,3)	(8, 2)	(5, 12)	(0, 10)
(6, 9)	(6, 9)	(8, 2)	(11, 7)	(3, 9)	(5, 12)	(1,8)	(4, 4)	(6,4)	(3,4)	(1, 5)	(11,6)	0	(4, 9)	(8, 11)	(0, 10)	(0, 3)	(5,1)
(8, 2)	(8, 2)	(4,4)	(6, 9)	(1,8)	(5,1)	(11, 7)	(5, 12)	(11, 6)	(0, 10)	(3, 4)	(1,5)	(0,3)	(8, 11)	(6,4)	0	(3, 9)	(4,9)
(8, 11)	(8, 11)	(6,4)	(4,9)	(5, 12)	(1,5)	(5,1)	(11,6)	(0,3)	(11, 7)	(1,8)	(3,9)	(8, 2)	(0, 10)	0	(6,9)	(4, 4)	(3,4)
(11, 6)	(11, 6)	(1,5)	(6,4)	(4, 9)	(0, 10)	(8, 11)	(3, 4)	(1,8)	(8,2)	(6, 9)	(11,7)	(5, 12)	(0, 3)	(3,9)	(4,4)	(5, 1)	0
(11, 7)	(11,7)	(6,9)	(1,8)	(0, 3)	(4,4)	(3,9)	(8, 2)	(8, 11)	(1,5)	(11, 6)	(6,4)	(0, 10)	(5, 1)	(4,9)	(3,4)	0	(5, 12)

- Since $|\mathcal{E}| = 17$, every nontrivial element is primitive. Choose g = (0,3).
- Choose $a = 7 \in \mathbb{N}$ and compute $A = 7 \cdot (0,3) = (4,4)$.

Alice publishes her public key $(\mathcal{E}, (0,3), (4,4))$.

Encryption (performed by Bob):

To encrypt the message $m=(8,11)\in\mathcal{E}$ Bob

- chooses $j = 2 \in \mathbb{N}$ and computes $c_1 = j \cdot g = (3, 9)$ and $c_2 = m + j \cdot A = (8, 11) + 2 \cdot (4, 4) = (5, 12)$.
- sends the pair ((3,9), (5,12)) to Alice.

Decryption (performed by Alice): $m = c_2 - a \cdot c_1 \equiv (5, 12) - 7(3, 9) = (8, 11) \cdot c_2$