PROJECT 4: BACKTRACKING TEST MAZE

For the maze each cell can have 4 walls. The walls are encoded by numbers as specified below:

A single cell with 4 walls, labeled a, b, c, d and corresponding values for each wall.

The matrix cell stores the combined value for walls that are present in a cell. For example, if the walls that are present in a single cell includes a and d, meaning that b and c are open, then the value in the matrix for the corresponding cell is 1+8=9.

9	5	5	1	1	3
10	11	9	6	14	10
10	8	4	7	13	2
10	10	13	3	13	2
10	10	13	2	13	2
12	4	5	4	5	6


```
1 N M

2 x y

3 x y

4 C<sub>0,0</sub> C<sub>0,1</sub> C<sub>0,2</sub> .... C<sub>0,M-1</sub>

5 C<sub>1,0</sub> C<sub>1,1</sub> C<sub>1,2</sub> .... C<sub>1,M-1</sub>

...
```

 $N+3 \quad c_{N-1,\,0} \ c_{N-1,\,1} \ c_{N-1,\,2} \ \ c_{N-1,\,M-1}$

In line 1, N is the number of rows, M the number of columns in maze matrix. Coordinates x and y specify the start location in line 2 and the end location in line 3. c_{ij} specifies the value for the walls in location i, j in the matrix.

The maze illustrated on page 1 would be represented in the file as follows: