

planetmath.org

Math for the people, by the people.

equivalent norms

Canonical name EquivalentNorms
Date of creation 2013-03-22 13:39:28
Last modified on 2013-03-22 13:39:28

Owner matte (1858) Last modified by matte (1858)

Numerical id 10

Author matte (1858) Entry type Definition Classification msc 46B99 Let ||x|| and ||x||' be two norms on a vector space V. These norms are equivalent norms if there exists a number C > 1 such that

$$\frac{1}{C}||x|| \le ||x||' \le C||x|| \tag{1}$$

for all $x \in V$.

Since equation (??) is equivalent to

$$\frac{1}{C}||x||' \le ||x|| \le C||x||' \tag{2}$$

it follows that the definition is well defined. In other words, $\|\cdot\|$ and $\|\cdot\|'$ are equivalent if and only if $\|\cdot\|'$ and $\|\cdot\|$ are equivalent. An alternative condition is that there exist positive real numbers c,d such that

$$c||x|| \le ||x||' \le d||x||.$$

However, this condition is equivalent to the above by setting $C = \max\{1/c, d\}$. Some key results are as follows:

- 1. If $\gamma > 0$ and $||x||' = \gamma ||x||$, then $||\cdot||$ and $||\cdot||'$ are equivalent. For example, if $\gamma > 1$, then condition (??) holds with $C = \gamma$, and for $\gamma < 1$, condition (??) holds with $C = 1/\gamma$.
- 2. Suppose norms $\|\cdot\|$ and $\|\cdot\|'$ are equivalent norms as in equation (??), and let $B_r(x)$ and $B'_r(x)$ be the open balls with respect to $\|\cdot\|$ and $\|\cdot\|'$, respectively. By http://planetmath.org/ScalingOfTheOpenBallInANormedVectorSpacetresult it follows that

$$CB_{\varepsilon}(x) \subseteq B'_{\varepsilon}(x) \subseteq \frac{1}{C}B_{\varepsilon}(x).$$

It follows that the identity map from $(V, \|\cdot\|)$ to $(V, \|\cdot\|')$ is a homeomorphism. Or, alternatively, equivalent norms on V induce the same topology on V.

3. The converse of the last paragraph is also true, i.e. if two norms induce the same topology on V then they are equivalent. This follows from the fact that every continuous linear function between two normed vector spaces is http://planetmath.org/BoundedOperatorbounded (see http://planetmath.org/BoundedOperatorthis entry).

4. Suppose $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle'$ are inner product. Suppose further that the induced norms $\| \cdot \|$ and $\| \cdot \|'$ are equivalent as in equation ??. Then, by the polarization identity, the inner products satisfy

$$\frac{1}{C^2} \langle v, w \rangle' \le \langle v, w \rangle \le C^2 \langle v, w \rangle.$$

- 5. On a finite dimensional vector space all norms are equivalent (see http://planetmath.org/ProofThatAllNormsOnFiniteVectorSpaceAreEquivalentthis page). This is easy to understand as the unit sphere is compact if and only if a space is finite dimensional. On infinite dimensional spaces this result does not hold (see http://planetmath.org/AllNormsAreNotEquivalentthis page).
 - It follows that on a finite dimensional vector space, one can check continuity and convergence with respect with any norm. If a sequence converges in one norm, it converges in all norms. In matrix analysis this is particularly useful as one can choose the norm that is most easily calculated.
- 6. The concept of equivalent norms also generalize to possibly non-symmetric norms. In this setting, all norms are also equivalent on a finite dimensional vector space. In particular, $\|\cdot\|$ and $\|-\cdot\|$ are equivalent, and there exists C>0 such that

$$||-v|| \le C||v||, \quad v \in V.$$