Project 8: Backtesting

In this project, you will build a fairly realistic backtester that uses the Barra data. The backtester will perform portfolio optimization that includes transaction costs, and you'll implement it with computational efficiency in mind, to allow for a reasonably fast backtest. You'll also use performance attribution to identify the major drivers of your portfolio's profit-and-loss (PnL). You will have the option to modify and customize the backtest as well.

Instructions

Each problem consists of a function to implement and instructions on how to implement the function. The parts of the function that need to be implemented are marked with a # T0D0 comment. Your code will be checked for the correct solution when you submit it to Udacity.

Packages

When you implement the functions, you'll only need to you use the packages you've used in the classroom, like Pandas and Numpy. These packages will be imported for you. We recommend you don't add any import statements, otherwise the grader might not be able to run your code.

Install Packages

```
In [1]:
        import sys
        !{sys.executable} -m pip install -r requirements.txt
        Requirement already satisfied: matplotlib==2.1.0 in /opt/conda/lib/python
        3.6/site-packages (from -r requirements.txt (line 1)) (2.1.0)
        Collecting numpy==1.16.1 (from -r requirements.txt (line 2))
          Downloading https://files.pythonhosted.org/packages/f5/bf/4981bcbee4393
        4f0adb8f764a1e70ab0ee5a448f6505bd04a87a2fda2a8b/numpy-1.16.1-cp36-cp36m-m
        anylinux1_x86_64.whl (17.3MB)
            100%
                                                  | 17.3MB 2.0MB/s eta 0:00:01
                                            542kB 5.0MB/s eta 0:00:04
                                        4.9MB 35.2MB/s eta 0:00:01
                                   | 17.2MB 30.0MB/s eta 0:00:01
        Collecting pandas==0.24.1 (from -r requirements.txt (line 3))
          Downloading https://files.pythonhosted.org/packages/e6/de/a0d3defd8f338
        eaf53ef716e40ef6d6c277c35d50e09b586e170169cdf0d/pandas-0.24.1-cp36-cp36m-
        manylinux1 x86 64.whl (10.1MB)
                                                10.1MB 4.8MB/s eta 0:00:01
                                             3.7MB 30.5MB/s eta 0:00:01
        36%
```

about:srcdoc Seite 1 von 39

```
Collecting patsy==0.5.1 (from -r requirements.txt (line 4))
  Downloading https://files.pythonhosted.org/packages/ea/0c/5f61f1a3d4385
d6bf83b83ea495068857ff8dfb89e74824c6e9eb63286d8/patsy-0.5.1-py2.py3-none-
any.whl (231kB)
    100%
                                         235kB 20.0MB/s ta 0:00:01
Requirement already satisfied: scipy==0.19.1 in /opt/conda/lib/python3.6/
site-packages (from -r requirements.txt (line 5)) (0.19.1)
Collecting statsmodels==0.9.0 (from -r requirements.txt (line 6))
  Downloading https://files.pythonhosted.org/packages/85/d1/69ee7e757f657
e7f527cbf500ec2d295396e5bcec873cf4eb68962c41024/statsmodels-0.9.0-cp36-cp
36m-manylinux1 x86 64.whl (7.4MB)
                                         7.4MB 6.4MB/s eta 0:00:01
    100%
                                    | 5.6MB 29.8MB/s eta 0:00:01
75%
Collecting tgdm==4.19.5 (from -r requirements.txt (line 7))
  Downloading https://files.pythonhosted.org/packages/71/3c/341b4fa23cb3a
bc335207dba057c790f3bb329f6757e1fcd5d347bcf8308/tqdm-4.19.5-py2.py3-none-
any.whl (51kB)
    100%
                                       61kB 12.2MB/s ta 0:00:01
Requirement already satisfied: six>=1.10 in /opt/conda/lib/python3.6/site
-packages (from matplotlib==2.1.0->-r requirements.txt (line 1)) (1.11.0)
Requirement already satisfied: python-dateutil>=2.0 in /opt/conda/lib/pyt
hon3.6/site-packages (from matplotlib==2.1.0->-r requirements.txt (line
1)) (2.6.1)
Requirement already satisfied: pytz in /opt/conda/lib/python3.6/site-pack
ages (from matplotlib==2.1.0->-r requirements.txt (line 1)) (2017.3)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/s
ite-packages/cycler-0.10.0-py3.6.egg (from matplotlib==2.1.0->-r requirem
ents.txt (line 1)) (0.10.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 i
n /opt/conda/lib/python3.6/site-packages (from matplotlib==2.1.0->-r requ
irements.txt (line 1)) (2.2.0)
tensorflow 1.3.0 requires tensorflow-tensorboard<0.2.0,>=0.1.0, which is
not installed.
moviepy 0.2.3.2 has requirement tqdm==4.11.2, but you'll have tqdm 4.19.5
which is incompatible.
Installing collected packages: numpy, pandas, patsy, statsmodels, tqdm
  Found existing installation: numpy 1.12.1
    Uninstalling numpy-1.12.1:
      Successfully uninstalled numpy-1.12.1
  Found existing installation: pandas 0.23.3
    Uninstalling pandas-0.23.3:
      Successfully uninstalled pandas-0.23.3
  Found existing installation: patsy 0.4.1
    Uninstalling patsy-0.4.1:
      Successfully uninstalled patsy-0.4.1
  Found existing installation: statsmodels 0.8.0
    Uninstalling statsmodels-0.8.0:
      Successfully uninstalled statsmodels-0.8.0
  Found existing installation: tqdm 4.11.2
    Uninstalling tqdm-4.11.2:
      Successfully uninstalled tqdm-4.11.2
Successfully installed numpy-1.16.1 pandas-0.24.1 patsy-0.5.1 statsmodels
-0.9.0 tqdm-4.19.5
```

Load Packages

about:srcdoc Seite 2 von 39

```
In [2]: import scipy
import patsy
import pickle

import numpy as np
import pandas as pd

import scipy.sparse
import matplotlib.pyplot as plt

from statistics import median
from scipy.stats import gaussian_kde
from statsmodels.formula.api import ols
from tqdm import tqdm
```

Load Data

We'll be using the Barra dataset to get factors that can be used to predict risk. Loading and parsing the raw Barra data can be a very slow process that can significantly slow down your backtesting. For this reason, it's important to preprocess the data beforehand. For your convenience, the Barra data has already been pre-processed for you and saved into pickle files. You will load the Barra data from these pickle files.

In the code below, we start by loading 2004 factor data from the pandas—frames.2004.pickle file. We also load the 2003 and 2004 covariance data from the covaraince.2003.pickle and covaraince.2004.pickle files. You are encouraged to customize the data range for your backtest. For example, we recommend starting with two or three years of factor data. Remember that the covariance data should include all the years that you choose for the factor data, and also one year earlier. For example, in the code below we are using 2004 factor data, therefore, we must include 2004 in our covariance data, but also the previous year, 2003. If you don't remember why must include this previous year, feel free to review the lessons.

about:srcdoc Seite 3 von 39

```
In [3]: barra_dir = '../../data/project_8_barra/'

data = {}
for year in [2004]:
    fil = barra_dir + "pandas-frames." + str(year) + ".pickle"
    data.update(pickle.load( open( fil, "rb" ) ))

covariance = {}
for year in [2004]:
    fil = barra_dir + "covariance." + str(year) + ".pickle"
    covariance.update(pickle.load( open(fil, "rb" ) ))

daily_return = {}
for year in [2004, 2005]:
    fil = barra_dir + "price." + str(year) + ".pickle"
    daily_return.update(pickle.load( open(fil, "rb" ) ))
```

Shift Daily Returns Data (TODO)

In the cell below, we want to incorporate a realistic time delay that exists in live trading, we'll use a two day delay for the daily_return data. That means the daily_return should be two days after the data in data and cov_data. Combine daily_return and data together in a dict called frames.

Since reporting of PnL is usually for the date of the returns, make sure to use the two day delay dates (dates that match the daily_return) when building frames.

This means calling frames ['20040108'] will get you the prices from "20040108" and the data from data at "20040106".

Note: We're not shifting covariance, since we'll use the "DataDate" field in frames to lookup the covariance data. The "DataDate" field contains the date when the data in frames was recorded. For example, frames ['20040108'] will give you a value of "20040106" for the field "DataDate".

about:srcdoc Seite 4 von 39

In [6]: print(frames['20040202'])

	Barrid	USFASTD_1DREVRSL	-	USFASTD_AIRLINES	,
0	USA0001	-0.453	0.000	0.0	
1	USA0011	0.298	0.000	0.0	
2	USA0031	0.562	0.000	0.0	
3	USA0062	-0.339	0.431	0.0	
4	USA00E2	-0.069	0.000	0.0	
5	USA00F1	0.576	0.000	0.0	
6	USA00G2	-0.399	0.000	0.0	
7	USA00H1	1.029	0.000	0.0	
8	USA00I1	-0.869	0.000	0.0	
9	USA00J1	0.710	0.000	0.0	
10	USA00K1	-0.607	0.000	0.0	
11	USA00P1	-0.285	0.000	0.0	
12	USA00R1	0.346	0.000	0.0	
13	USA00S1	-0.545	0.000	0.0	
14	USA00V1	1.175	0.000	0.0	
15	USA0131	-0.085	1.000	0.0	
16	USA0161	-2.587	1.000	0.0	
17	USA01I1	0.776	0.000	0.0	
18	USA01J2	-0.999	0.000	0.0	
19	USA01L1	-0.336	0.000	0.0	
20	USA01P1	-0.879	0.000	0.0	
21	USA01Q1	0.623	0.000	0.0	
22	USA0202	-0.638	0.000	0.0	
23	USA0231	-0.284	0.000	0.0	
24	USA0281	-0.017	0.000	0.0	
25	USA0291	-0.720	0.000	0.0	
26	USA02A1	0.191	0.000	0.0	
27	USA02B1	-0.915	0.000	0.0	
28	USA02H1	0.136	0.000	0.0	
29	USA02P1	-0.295	0.000	0.0	
	USAUZFI			0.0	
 12387	USAZY41	0.246	0.000	0.0	
12388	USAZY51	-1.058	0.000	0.0	
12389	USAZY61		0.000		
		-0.230		0.0	
12390	USAZY71	-2.661	0.000	0.0	
12391	USAZYI1	1.538	0.000	0.0	
12392	USAZYJ1	-1.280	0.000	0.0	
12393	USAZYK1	-0.852	0.000	0.0	
12394	USAZYM1	-0.771	0.000	0.0	
12395	USAZYR1	-2.661	0.000	0.0	
12396	USAZYS1	-1.242	0.000	0.0	
12397	USAZYT1	-0.049	0.000	0.0	
12398	USAZYV1	2.089	0.000	0.0	
12399	USAZYX1	-0.625	0.000	0.0	
12400	USAZZ41	-0.788	0.000	0.0	
12401	USAZZ51	-1.226	0.000	0.0	
12402	USAZZ61	-1.172	0.000	0.0	
12403	USAZZ71	-1.659	0.000	0.0	
12404	USAZZ81	0.136	0.000	0.0	
12405	USAZZ91	-1.684	0.000	0.0	
12406	USAZZA1	2.349	0.000	0.0	
12407	USAZZB1	-1.159	0.000	0.0	
12407					

about:srcdoc Seite 5 von 39

12409	USAZZF1	-2.661	0.000	0.0
12410	USAZZI1	2.664	0.000	0.0
12411	USAZZJ1	-2.661	0.000	0.0
12412	USAZZL1	-0.470	0.000	0.0
12413	USAZZP1	-0.117	0.000	0.0
12414	USAZZR1	-0.990	0.000	0.0
12415	USAZZX1	-1.602	0.000	0.0
12416	USAZZY1	-0.299	0.000	0.0
	USFASTD_ALUMSTEL	USFASTD_APPAREL	USFASTD_AUTO	USFASTD_BANKS
0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0
14	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0
16	0.0	0.0	0.0	0.0
17	0.0	0.0	0.0	0.0
18	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0
21	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	0.0
23	0.0	0.0	0.0	0.0
24	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0
26	0.0	0.0	0.0	0.0
27	0.0	0.0	0.0	0.0
28	0.0	0.0	0.0	1.0
29	0.0	0.0	0.0	0.0
12387	0.0	0.0	0.0	0.0
12388	0.0	0.0	0.0	0.0
12389	0.0	0.0	0.0	0.0
12390	0.0	0.0	0.0	0.0
12391	0.0	0.0	0.0	0.0
12392	0.0	0.0	0.0	0.0
12393	0.0	0.0	0.0	0.0
12394	0.0	0.0	0.0	0.0
12395	0.0	0.0	0.0	0.0
12396	0.0	0.0	0.0	0.0
12397	0.0	0.0	0.0	0.0
12398	0.0	0.0	0.0	0.0
12399	0.0	0.0	0.0	0.0
12400	0.0	0.0	0.0	0.0
12401	0.0	0.0	0.0	0.0
12402	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0

about:srcdoc Seite 6 von 39

29.12.23, 01:21 project_8_resubmission

12403		0.0	0.0	0.0		0.0
12404		0.0	0.0	0.0		0.0
12405		0.0	0.0	0.0		0.0
12406		0.0	0.0	0.0		0.0
12407		0.0	0.0	0.0		0.0
12408		0.0	0.0	0.0		0.0
12409		0.0	0.0	0.0		0.0
12410		0.0	0.0	0.0		0.0
12411		0.0	0.0	0.0		0.0
12412		0.0	0.0	0.0		0.0
12413		0.0	0.0	0.0		0.0
12414		0.0	0.0	0.0		0.0
12415		0.0	0.0	0.0		0.0
12416		0.0	0.0	0.0		0.0
	USFASTD_BETA	USFASTD BEVTOB		DailyVolume	ADTCA_30	\
0	-2.132	0.000		NaN	NaN	·
1	-2.132	0.000		NaN	NaN	
2	-2.034	0.000		NaN	NaN	
3	-2.268	0.000		NaN	NaN	
4	-2.159	0.000		NaN	NaN	
5	-2.042	0.000		NaN	NaN	
6	-2.137	0.000		NaN	NaN	
7	-1.875	0.000		NaN	NaN	
8	-0.714	0.000		NaN	NaN	
9	-2.017	0.863		NaN	NaN	
10	-2.280	0.000		NaN	NaN	
11	-1.060	0.000		NaN	NaN	
12	-1.683	0.000		NaN	NaN	
13	-1.104	0.000		17526.0	NaN	
14	-2.132	0.000		NaN	NaN	
15	-2.410	0.000		NaN	NaN	
16	-1.102	0.000		1600.0	NaN	
17	-1.929	0.000		NaN	NaN	
18	-2.003	0.000		NaN	NaN	
19	-1.987	0.000		NaN	NaN	
20	-1.743	0.000		NaN	NaN	
21	-2.564	1.000		NaN	NaN	
22	-0.328	0.000		NaN	NaN	
23	-1.961	0.000		NaN	NaN	
24	-2.144	0.000		NaN	NaN	
25	-1.252	0.000		NaN	NaN	
26	-2.101	0.000		NaN	NaN	
27	-1.391	0.000		205.0	NaN	
28	-1.479	0.000		NaN	NaN	
29	-2.131	0.000		18250.0	NaN	
• • •	• • •	•••		• • •	• • •	
12387	-2.132	0.000		NaN	NaN	
12388	-1.429	0.000		7500.0	1204.44	
12389	-0.721	0.000		NaN	NaN	
12390	0.319	0.000	• • •	18000.0	196.03	
12391	-0.727	0.000	• • •	14000.0	6070.63	
12392	-0.741	0.000	• • •	NaN	NaN	
12393	0.020	0.000	• • •	1000.0	38.26	
12394	-0.121	0.000	• • •	NaN	NaN	
12395	-0.656	0.000	• • •	1088748.0	302807.87	
12396	0.165	0.000		NaN	NaN	
====	3.103	0.000	•	21021	1,011	

about:srcdoc Seite 7 von 39

12397	-1.217	0.00		133730.0	47196.41	
12398	-0.647	0.00		2236000.0	12660.04	
12399	-1.294	0.00		500.0	17031.25	
12400	-1.307	0.00		100400.0	18613.46	
12401	-1.327	0.00		NaN	NaN	
12402	-0.646	0.00	0	349844.0	6387.69	
12403	-0.783	0.00	0	NaN	NaN	
12404	-1.604	1.00	0	19800.0 1	642336.25	
12405	0.057	0.00	0	NaN	NaN	
12406	-0.137	0.00	0	6664.0	2648.89	
12407	-1.649	0.00	0	NaN	NaN	
12408	0.342	0.00		NaN	NaN	
12409	-0.105	0.00		4000.0	2294.39	
12410	-1.827	1.00		15000.0	954.60	
12411	-1.579	0.00		0.0	NaN	
12412	-0.341	0.00		3000.0	16052.11	
12412	-1.012	1.00				
				NaN	NaN	
12414	-0.689	0.00		NaN	NaN	
12415	-0.033	0.00		10000.0	4573.75	
12416	-0.549	0.00	0	110500.0 3	897348.45	
	IssuerMarketCap	Yield	TotalRisk	SpecRisk	HistBeta	PredB
eta \	-			-		
0	5.289123e+10	0.188679	20.694434	14.729043	-0.000178	0.115
036						
1	5.961760e+09	0.000000	23.609017	17.014409	0.000004	0.108
720	3.3017000.03	0.000000	23.003017	17.011109	0.000001	0.100
2	6.836196e+10	2.103004	28.434662	23.925639	0.046058	0.194
914	0.0301706110	2.103004	20.434002	23.723037	0.040000	0.174
3	3.091896e+10	2.243494	33.123394	20 440700	-0.064070	0.223
_	3.0910900+10	2.243434	33.123394	30.440/09	-0.004070	0.223
348	F 400100-110	2 167256	20 742070	25 000504	0 012000	0 202
4	5.498100e+10	2.167256	38.742879	35.090504	-0.012908	0.283
564	1 005150 .11		00 000445	16 015600	0 040004	0 006
5	1.807170e+11	0.392275	20.908445	16.315682	0.042024	0.306
262						
6	1.543809e+10	4.679803	29.128388	20.217000	-0.002480	-0.010
724						
7	8.388786e+10	0.000000	31.290932	25.358922	0.120849	0.244
778						
8	1.748390e+10	0.087623	43.596154	34.359011	0.665980	1.096
755						
9	4.224772e+10	1.670463	29.970976	26.739438	0.053856	0.292
584						
10	3.582410e+10	0.000000	46.333840	36.759635	-0.069733	0.509
957						
11	2.563947e+10	1.413784	26.625234	21.618835	0.503530	0.880
865						
12	6.628188e+09	2.641914	22.013825	16.586309	0.210873	0.598
267						
13	1.479395e+10	1.244629	29.702855	26.651338	0.482919	0.576
354						- • •
14	1.139173e+10	1.458435	18.855765	13.979951	0.000004	0.090
631						
15	3.384689e+10	1.613669	33.266556	28.789954	-0.130689	0.145
135	3.3010070110	1.01000	33.200330	20.707734	0.10000	0.110
16	3.384689e+10	1.613669	41.551565	37.197262	0.483906	0.696
619	3.3040076110	1.013007	11.00100	5, . 17, 202	0.403700	0.000
013						

about:srcdoc Seite 8 von 39

17	2.857268e+10	0.196207	20.486961	16.531848	0.095167	0.183
195 18	2.665842e+10	1.782703	31.059667	27.220645	0.060486	0.421
393 19	9.331422e+10	3.380021	31.157916	26.862454	0.068120	0.215
968 20	1.807344e+11	0.000000	46.490068	41.729253	0.182851	0.384
355 21	1.218813e+11	1.733990	29.504052	25 863022	-0.203113	0.067
142						
22 267	1.614523e+10	0.000000	40.607774	34.767773	0.847529	1.017
23 086	8.649954e+10	0.000000	32.091533	28.309044	0.080463	0.449
24 621	4.376922e+10	3.050774	26.983458	22.155723	-0.005764	0.347
25	3.480358e+10	0.000000	31.818067	27.290722	0.413301	0.718
060 26	8.283299e+09	1.947799	15.724159	11.585231	0.014474	0.230
623 27	8.283299e+09	1.947799	47.468973	44.602211	0.348162	0.696
023 28	7.470167e+10	2.398082	28.189902	24.433436	0.306536	0.527
372						
29 863	3.409415e+11	2.582311	30.580899	27.093828	0.000217	0.275
• • •	•••	• • •	• • •	•••	• • •	
12387 863	5.056250e+06	NaN	27.260771	18.932814	0.000004	-0.023
12388	6.090515e+06	0.000000	104.469478	101.750333	0.330220	0.593
409 12389	3.570880e+06	NaN	97.702577	94.360826	0.662657	0.913
293 12390	4.904000e+05	0.000000	133.526537	129.376135	1.151356	1.328
151 12391	6.241790e+06	0.000000	110.837739	107.382513	0.659717	0.966
192						
12392 332	2.165040e+07	NaN	101.811941	97.978433	0.653215	1.072
12393 880	6.832300e+04	NaN	103.543000	99.234095	1.011012	1.276
12394 323	1.513400e+06	NaN	112.477902	108.892673	0.944760	1.100
12395	1.934550e+07	0.00000	161.471931	158.735624	0.693495	0.823
788 12396	5.030700e+01	0.000000	54.510589	43.898056	1.078707	1.314
595 12397	2.664900e+07	0.000000	101.664223	98.931488	0.429639	0.725
879 12398	2.022045e+06	0.000000	163.088286	160.367777	0.697482	1.088
300 12399	4.408008e+07	0.000000	36.575626	31.719218	0.393721	0.240
775						
12400 172	5.667890e+06	NaN	97.804564	94.667639	0.387307	0.706
12401	7.414000e+05	NaN	48.075393	40.713728	0.377943	0.628

about:srcdoc Seite 9 von 39

380 12402	7 7854	00e+06	0.000000	184.516847	182.334727	0.697834	0.899	
932	7.7054	000100	0.000000	104.510047	102.334727	0.097034	0.099	
12403	1.5507	96e+07	0.000000	94.508199	89.964068	0.633557	0.928	
682	0 0511	47 .10	4 714006	20 047040	20 110540	0.047050	0 271	
12404 527	2.9511	47e+10	4.714286	32.947040	30.112542	0.247859	0.371	
12405	1.3528	60e+06	0.000000	61.704020	51.280116	1.028419	1.074	
434				010,01010	011101110			
12406	1.0871	00e+06	NaN	130.599161	126.879075	0.936892	1.241	
884								
12407	1.2514	80e+06	0.000000	41.244786	33.040499	0.226796	0.535	
050 12408	2 5011	00e+05	NaN	116.403801	112.333291	1.162148	1.408	
065	2.3911	006+03	Nan	110.403001	112.333291	1.102140	1.400	
12409	3.4924	80e+06	NaN	138.440849	134.845868	0.952318	1.176	
245								
12410	5.8625	00e+05	0.000000	200.094389	198.665668	0.143345	0.409	
695	1 0010	F2 .07	0 000000	06 007412	01 062600	0.050700	0 225	
12411 687	1.0819	53e+07	0.000000	96.897413	91.863688	0.259780	0.335	
12412	3.6756	00e+07	0.000000	78.220357	73.194224	0.841392	1.083	
367								
12413	1.3072	80e+06	NaN	112.223384	109.112273	0.525998	0.748	
585								
12414 724	2.4370	80e+07	NaN	52.605311	45.356111	0.677706	0.911	
12415	2.0318	60e+06	0.000000	172.922415	170.021760	0.986007	1.199	
472								
12416	8.4730	52e+08	0.620877	49.819346	37.558330	0.743676	0.979	
055								
	DataDate	DlyRet	urn					
0	20040129	0.000						
1	20040129	0.000	000					
2	20040129	0.000	000					
3	20040129	0.000						
4	20040129	0.000						
5	20040129	0.000						
6 7	20040129 20040129	0.000						
8	20040129	0.000						
9	20040129	0.000						
10	20040129	0.000	000					
11	20040129	0.000						
12	20040129	0.000						
13	20040129	-0.028						
14 15	20040129 20040129	0.000						
16	20040129	-0.007						
17	20040129	0.000						
18	20040129	0.000						
19	20040129	0.000	000					
20	20040129	0.000						
2.1	20040120	Λ Λ Λ Λ	0.00					

about:srcdoc Seite 10 von 39

0.000000

0.000000

0.000000

21

22

23

20040129

20040129

20040129

```
24
                  0.00000
       20040129
25
       20040129
                  0.00000
26
       20040129
                  0.00000
27
       20040129
                -0.044211
28
       20040129
                  0.00000
29
       20040129
                  0.012723
            . . .
       20040129
                  0.00000
12387
       20040129
                  0.090047
12388
12389
       20040129
                  0.00000
12390
       20040129
                 -0.500000
12391
       20040129
                  0.126582
12392
      20040129
                  0.00000
12393
      20040129
                  0.000000
12394
       20040129
                  0.000000
12395
       20040129
                 -0.037736
12396
       20040129
                  0.000000
12397
       20040129
                 -0.033898
12398
       20040129
                  0.00000
12399
       20040129
                 -0.004711
12400
       20040129
                  0.000000
12401
       20040129
                  0.000000
12402
       20040129
                  0.00000
12403
       20040129
                  0.346154
12404
       20040129
                  0.010646
12405
       20040129
                  0.00000
12406
       20040129
                  0.800000
12407
       20040129
                  0.000000
12408
       20040129
                  0.000000
12409
       20040129
                  0.00000
12410
       20040129
                  0.00000
12411
                 -0.027843
       20040129
12412
       20040129
                 -0.066390
12413
       20040129
                  0.000000
12414
       20040129
                  0.00000
12415
       20040129
                  0.00000
12416
       20040129
                 -0.003458
```

[12417 rows x 93 columns]

Add Daily Returns date column (Optional)

Name the column DlyReturnDate . **Hint**: create a list containing copies of the date, then create a pandas series.

```
In [7]: # Optional
for DlyReturnDate, df in frames.items():
    # Get the number of rows
    n_rows = df.shape[0]
    # Add a column for the datadate
    df['DlyReturnDate'] = pd.Series([DlyReturnDate] * n_rows)
In [8]: print(frames['20040202'])
```

about:srcdoc Seite 11 von 39

\

	Barrid	USFASTD_1DREVRSL	USFASTD_AERODEF	USFASTD_AIRLINES
0	USA0001	-0.453	0.000	0.0
1	USA0011	0.298	0.000	0.0
2	USA0031	0.562	0.000	0.0
3	USA0062	-0.339	0.431	0.0
4	USA00E2	-0.069	0.000	0.0
5	USA00F1	0.576	0.000	0.0
6	USA00G2	-0.399	0.000	0.0
7	USA00H1	1.029	0.000	0.0
8	USA00I1	-0.869	0.000	0.0
9	USA00J1	0.710	0.000	0.0
10	USA00K1	-0.607	0.000	0.0
11	USA00P1	-0.285	0.000	0.0
12	USA00R1	0.346	0.000	0.0
13	USA00S1	-0.545	0.000	0.0
14	USA00V1	1.175	0.000	0.0
15	USA0131	-0.085	1.000	0.0
16	USA0161	-2.587	1.000	0.0
17	USA01I1	0.776	0.000	0.0
18	USA01J2	-0.999	0.000	0.0
19	USA01L1	-0.336	0.000	0.0
20	USA01P1	-0.879	0.000	0.0
21	USA01Q1	0.623	0.000	0.0
22	USA0202	-0.638	0.000	0.0
23	USA0231	-0.284	0.000	0.0
24	USA0281	-0.017	0.000	0.0
25	USA0291	-0.720	0.000	0.0
26	USA02A1	0.191	0.000	0.0
27	USA02B1	-0.915	0.000	0.0
28	USA02H1	0.136	0.000	0.0
29	USA02P1	-0.295	0.000	0.0
• • •	• • •	• • •		• • •
12387	USAZY41	0.246	0.000	0.0
12388	USAZY51	-1.058	0.000	0.0
12389	USAZY61	-0.230	0.000	0.0
12390	USAZY71	-2.661	0.000	0.0
12391	USAZYI1	1.538	0.000	0.0
12392	USAZYJ1	-1.280	0.000	0.0
12393	USAZYK1	-0.852	0.000	0.0
12394	USAZYM1	-0.771	0.000	0.0
12395	USAZYR1	-2.661	0.000	0.0
12396	USAZYS1	-1.242	0.000	0.0
12397	USAZYT1	-0.049	0.000	0.0
12398	USAZYV1	2.089	0.000	0.0
12399	USAZYX1	-0.625	0.000	0.0
12400	USAZZ41	-0.788	0.000	0.0
12401	USAZZ51	-1.226	0.000	0.0
12402 12403	USAZZ61 USAZZ71	-1.172 -1.659	0.000	0.0
12403	USAZZ71 USAZZ81	0.136	0.000	0.0
12404	USAZZ81 USAZZ91	-1.684	0.000	0.0
12405	USAZZA1	2.349	0.000	0.0
12400	USAZZB1	-1.159	0.000	0.0
12407	USAZZD1	-0.671	0.000	0.0
12409	USAZZF1	-2.661	0.000	0.0
12410	USAZZI1	2.664	0.000	0.0
12411	USAZZJ1	-2.661	0.000	0.0
	0011001	-2.001	0.000	0.0

about:srcdoc Seite 12 von 39

12412	USAZZL1	-0.470	0.000	0.0
12413	USAZZP1	-0.117	0.000	0.0
12414	USAZZR1	-0.990	0.000	0.0
12415	USAZZX1	-1.602	0.000	0.0
12416	USAZZY1	-0.299	0.000	0.0
	USFASTD_ALUMSTEL	USFASTD_APPAREL	USFASTD_AUTO	USFASTD_BANKS
0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0
12				
	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0
14	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0
16	0.0	0.0	0.0	0.0
17	0.0	0.0	0.0	0.0
18	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0
21	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	0.0
23	0.0	0.0	0.0	0.0
24	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0
26	0.0	0.0	0.0	0.0
27	0.0	0.0	0.0	0.0
28	0.0	0.0	0.0	1.0
29	0.0	0.0	0.0	0.0
• • •	• • •	• • •	• • •	• • •
12387	0.0	0.0	0.0	0.0
12388	0.0	0.0	0.0	0.0
12389	0.0	0.0	0.0	0.0
12390	0.0	0.0	0.0	0.0
12391	0.0	0.0	0.0	0.0
12392	0.0	0.0	0.0	0.0
12393	0.0	0.0	0.0	0.0
12394	0.0	0.0	0.0	0.0
12395	0.0	0.0	0.0	0.0
12396	0.0	0.0	0.0	0.0
12397	0.0	0.0	0.0	0.0
12398	0.0	0.0	0.0	0.0
12399	0.0	0.0	0.0	0.0
12400	0.0	0.0	0.0	0.0
12401	0.0	0.0	0.0	0.0
12402	0.0	0.0	0.0	0.0
12403	0.0	0.0	0.0	0.0
12404	0.0	0.0	0.0	0.0
12405	0.0	0.0	0.0	0.0

about:srcdoc Seite 13 von 39

12406		0.0	0.0	0.	0.0	
12407		0.0	0.0	0.	0.0	
12408		0.0	0.0	0.	0.0	
12409		0.0	0.0	0.	0.0	
12410		0.0	0.0	0.	0.0	
12411		0.0	0.0	0.	0.0	
12412		0.0	0.0	0.	0.0	
12413		0.0	0.0	0.	0.0	
12414		0.0	0.0	0.	0.0	
12415		0.0	0.0	0.	0.0	
12416		0.0	0.0	0.	0.0	
		HATTA ATTO DELLEGO		3.D.T.G.3.0	T W 1 1 G	,
0	USFASTD_BETA -2.132	USFASTD_BEVTOB 0.000	• • •	ADTCA_30 NaN	IssuerMarketCap 5.289123e+10	\
1	-2.132	0.000	• • •	NaN	5.961760e+09	
2	-2.132	0.000	• • •	NaN	6.836196e+10	
3	-2.268	0.000	• • •	NaN	3.091896e+10	
4			• • •		5.498100e+10	
5	-2.159	0.000	• • •	NaN		
6	-2.042	0.000	• • •	NaN	1.807170e+11	
	-2.137	0.000	• • •	NaN	1.543809e+10	
7	-1.875	0.000	• • •	NaN	8.388786e+10	
8	-0.714	0.000	• • •	NaN	1.748390e+10	
9	-2.017	0.863	• • •	NaN	4.224772e+10	
10	-2.280	0.000	• • •	NaN	3.582410e+10	
11	-1.060	0.000	• • •	NaN	2.563947e+10	
12	-1.683	0.000	• • •	NaN	6.628188e+09	
13	-1.104	0.000	• • •	NaN	1.479395e+10	
14	-2.132	0.000	• • •	NaN	1.139173e+10	
15	-2.410	0.000	• • •	NaN	3.384689e+10	
16	-1.102	0.000	• • •	NaN	3.384689e+10	
17	-1.929	0.000	• • •	NaN	2.857268e+10	
18	-2.003	0.000	• • •	NaN	2.665842e+10	
19	-1.987	0.000	• • •	NaN	9.331422e+10	
20	-1.743	0.000	• • •	NaN	1.807344e+11	
21	-2.564	1.000	• • •	NaN	1.218813e+11	
22	-0.328	0.000	• • •	NaN	1.614523e+10	
23	-1.961	0.000	• • •	NaN	8.649954e+10	
24	-2.144	0.000	• • •	NaN	4.376922e+10	
25	-1.252	0.000	• • •	NaN	3.480358e+10	
26	-2.101	0.000	• • •	NaN	8.283299e+09	
27	-1.391	0.000	• • •	NaN	8.283299e+09	
28	-1.479	0.000	• • •	NaN	7.470167e+10	
29	-2.131	0.000	• • •	NaN	3.409415e+11	
• • •	• • •	• • •	• • •	• • •	•••	
12387	-2.132	0.000	• • •	NaN	5.056250e+06	
12388	-1.429	0.000	• • •	1204.44	6.090515e+06	
12389	-0.721	0.000	• • •	NaN	3.570880e+06	
12390	0.319	0.000	• • •	196.03	4.904000e+05	
12391	-0.727	0.000	• • •	6070.63	6.241790e+06	
12392	-0.741	0.000	• • •	NaN	2.165040e+07	
12393	0.020	0.000	• • •	38.26	6.832300e+04	
12394	-0.121	0.000	• • •	NaN	1.513400e+06	
12395	-0.656	0.000	• • •	302807.87	1.934550e+07	
12396	0.165	0.000	• • •	NaN	5.030700e+01	
12397	-1.217	0.000	• • •	47196.41	2.664900e+07	
12398	-0.647	0.000	• • •	12660.04	2.022045e+06	
12399	-1.294	0.000		17031.25	4.408008e+07	

about:srcdoc Seite 14 von 39

12400	-1.	307	0.000	. 18613	.46 5.6	67890e+06	
12401	-1.	327	0.000	. 1	NaN 7.4	114000e+05	
12402		646	0.000			785400e+06	
12402	-0.					550796e+07	
12404		604	1.000			951147e+10	
12405		057	0.000			352860e+06	
12406	-0.	137	0.000	2648	.89 1.0	087100e+06	
12407	-1.	649	0.000	. 1	NaN 1.2	251480e+06	
12408	0.	342	0.000	. 1	NaN 2.5	591100e+05	
12409		105	0.000			192480e+06	
12410	-1.		1.000			362500e+05	
12411		579	0.000			081953e+07	
12412	-0.		0.000			575600e+07	
12413	-1.		1.000			307280e+06	
12414	-0.	689	0.000	. 1	NaN 2.4	137080e+07	
12415	-0.	033	0.000	4573	.75 2.0)31860e+06	
12416	-0.	549	0.000	3897348	.45 8.4	173052e+08	
	Yield	TotalRisk	SpecRisk	HistBeta	PredBeta	DataDate	\
0	0.188679	20.694434	_	-0.000178	0.115036	20040129	`
	0.000000	23.609017	17.014409	0.0000178	0.113030	20040129	
1							
2	2.103004	28.434662	23.925639	0.046058	0.194914	20040129	
3	2.243494	33.123394		-0.064070	0.223348	20040129	
4	2.167256	38.742879	35.090504	-0.012908	0.283564	20040129	
5	0.392275	20.908445	16.315682	0.042024	0.306262	20040129	
6	4.679803	29.128388	20.217000	-0.002480	-0.010724	20040129	
7	0.000000	31.290932	25.358922	0.120849	0.244778	20040129	
8	0.087623	43.596154	34.359011	0.665980	1.096755	20040129	
9	1.670463	29.970976	26.739438	0.053856	0.292584	20040129	
10	0.000000	46.333840		-0.069733	0.509957	20040129	
11	1.413784	26.625234	21.618835	0.503530	0.880865	20040129	
12	2.641914	22.013825	16.586309	0.210873	0.598267	20040129	
13	1.244629	29.702855	26.651338	0.482919	0.576354	20040129	
14	1.458435	18.855765	13.979951	0.000004	0.090631	20040129	
15	1.613669	33.266556	28.789954	-0.130689	0.145135	20040129	
16	1.613669	41.551565	37.197262	0.483906	0.696619	20040129	
17	0.196207	20.486961	16.531848	0.095167	0.183195	20040129	
18	1.782703	31.059667	27.220645	0.060486	0.421393	20040129	
	3.380021	31.157916	26.862454	0.068120	0.215968	20040129	
19							
20	0.000000	46.490068	41.729253	0.182851	0.384355	20040129	
21	1.733990	29.504052		-0.203113	0.067142	20040129	
22	0.000000	40.607774	34.767773	0.847529	1.017267	20040129	
23	0.000000	32.091533	28.309044	0.080463	0.449086	20040129	
24	3.050774	26.983458	22.155723	-0.005764	0.347621	20040129	
25	0.000000	31.818067	27.290722	0.413301	0.718060	20040129	
26	1.947799	15.724159	11.585231	0.014474	0.230623	20040129	
27	1.947799	47.468973	44.602211	0.348162	0.696023	20040129	
28	2.398082	28.189902	24.433436	0.306536	0.527372	20040129	
29	2.582311	30.580899	27.093828	0.000217	0.275863	20040129	
• • •	• • •	• • •	• • •		• • •	• • •	
12387	NaN	27.260771	18.932814		-0.023863	20040129	
12388	0.00000	104.469478	101.750333	0.330220	0.593409	20040129	
12389	NaN	97.702577	94.360826	0.662657	0.913293	20040129	
12390	0.000000	133.526537	129.376135	1.151356	1.328151	20040129	
12391	0.000000	110.837739	107.382513	0.659717	0.966192	20040129	
12392	NaN	101.811941	97.978433	0.653215	1.072332	20040129	
12392	NaN	103.543000	99.234095	1.011012	1.276880	20040129	
12333	Man	T02.242000	99.434093	1.011012	1.2/0000	20040123	

about:srcdoc Seite 15 von 39

12394	NaN	112.477902	108.892673	0.944760	1.100323	20040129
12395	0.000000	161.471931	158.735624	0.693495	0.823788	20040129
12396	0.000000	54.510589	43.898056	1.078707	1.314595	20040129
12397	0.000000	101.664223	98.931488	0.429639	0.725879	20040129
12398	0.000000	163.088286	160.367777	0.697482	1.088300	20040129
12399	0.000000	36.575626	31.719218	0.393721	0.240775	20040129
12400	NaN	97.804564	94.667639	0.387307	0.706172	20040129
12401	NaN	48.075393	40.713728	0.377943	0.628380	20040129
12402	0.000000	184.516847	182.334727	0.697834	0.899932	20040129
12403	0.00000	94.508199	89.964068	0.633557	0.928682	20040129
12404	4.714286	32.947040	30.112542	0.247859	0.371527	20040129
12405	0.000000	61.704020	51.280116	1.028419	1.074434	20040129
12406	NaN	130.599161	126.879075	0.936892	1.241884	20040129
12407	0.00000	41.244786	33.040499	0.226796	0.535050	20040129
12408	NaN	116.403801	112.333291	1.162148	1.408065	20040129
12409	NaN	138.440849	134.845868	0.952318	1.176245	20040129
12410	0.00000	200.094389	198.665668	0.143345	0.409695	20040129
12411	0.00000	96.897413	91.863688	0.259780	0.335687	20040129
12412	0.00000	78.220357	73.194224	0.841392	1.083367	20040129
12413	NaN	112.223384	109.112273	0.525998	0.748585	20040129
12414	NaN	52.605311	45.356111	0.677706	0.911724	20040129
12415	0.00000	172.922415	170.021760	0.986007	1.199472	20040129
12416	0.620877	49.819346	37.558330	0.743676	0.979055	20040129

	DlyReturn	DlyReturnDate
0	0.000000	20040202
1	0.000000	20040202
2	0.00000	20040202
3	0.00000	20040202
4	0.00000	20040202
5	0.000000	20040202
6	0.000000	20040202
7	0.000000	20040202
8	0.000000	20040202
9	0.000000	20040202
10	0.000000	20040202
11	0.000000	20040202
12	0.000000	20040202
13	-0.028063	20040202
14	0.000000	20040202
15	0.000000	20040202
16	-0.007407	20040202
17	0.000000	20040202
18	0.000000	20040202
19	0.000000	20040202
20	0.000000	20040202
21	0.000000	20040202
22	0.000000	20040202
23	0.00000	20040202
24	0.000000	20040202
25	0.000000	20040202
26	0.000000	20040202
27	-0.044211	20040202
28	0.000000	20040202
29	0.012723	20040202
• • •		• • •
12387	0.00000	20040202

about:srcdoc Seite 16 von 39

```
12388
        0.090047
                        20040202
12389
        0.000000
                        20040202
12390
       -0.500000
                        20040202
12391
        0.126582
                        20040202
12392
        0.00000
                        20040202
12393
        0.00000
                        20040202
12394
        0.00000
                        20040202
12395
       -0.037736
                        20040202
12396
        0.000000
                        20040202
       -0.033898
                        20040202
12397
12398
        0.00000
                        20040202
12399
       -0.004711
                        20040202
        0.000000
                        20040202
12400
12401
        0.00000
                        20040202
12402
        0.000000
                        20040202
12403
        0.346154
                        20040202
12404
        0.010646
                        20040202
12405
        0.00000
                        20040202
12406
        0.800000
                        20040202
12407
        0.00000
                        20040202
12408
        0.000000
                        20040202
12409
        0.00000
                        20040202
12410
        0.000000
                        20040202
12411
       -0.027843
                        20040202
12412
       -0.066390
                        20040202
        0.00000
                        20040202
12413
12414
        0.000000
                        20040202
12415
        0.000000
                        20040202
12416
      -0.003458
                        20040202
```

[12417 rows x 94 columns]

Winsorize

As we have done in other projects, we'll want to avoid extremely positive or negative values in our data. Will therefore create a function, wins, that will clip our values to a minimum and maximum range. This process is called **Winsorizing**. Remember that this helps us handle noise, which may otherwise cause unusually large positions.

```
In [9]: def wins(x,a,b):
    return np.where(x <= a,a, np.where(x >= b, b, x))
```

Density Plot

Let's check our wins function by taking a look at the distribution of returns for a single day 20040102. We will clip our data from -0.1 to 0.1 and plot it using our density_plot function.

about:srcdoc Seite 17 von 39

```
In [10]:
    def density_plot(data):
        density = gaussian_kde(data)
        xs = np.linspace(np.min(data),np.max(data),200)
        density.covariance_factor = lambda : .25
        density._compute_covariance()
        plt.plot(xs,density(xs))
        plt.xlabel('Daily Returns')
        plt.ylabel('Density')
        plt.show()

test = frames['20040108']
    test['DlyReturn'] = wins(test['DlyReturn'],-0.1,0.1)
    density_plot(test['DlyReturn'])
```


Factor Exposures and Factor Returns

Recall that:

```
r_{i,t} = \sum_{j=1}^{k} (\beta_{i,j,t-2} \times f_{j,t})
where i=1...N (N assets),
and j=1...k (k factors).
```

where $r_{i,t}$ is the return, $\theta_{i,j,t-2}$ is the factor exposure, and $f_{i,t}$ is the factor return. Since we get the factor exposures from the Barra data, and we know the returns, it is possible to estimate the factor returns. In this notebook, we will use the Ordinary Least Squares (OLS) method to estimate the factor exposures, $f_{i,t}$, by using $\theta_{i,j,t-2}$ as the independent variable, and $f_{i,t}$ as the dependent variable.

about:srcdoc Seite 18 von 39

```
In [11]: def get_formula(factors, Y):
             L = ["0"]
             L.extend(factors)
             return Y + " ~ " + " + ".join(L)
         def factors from names(n):
             return list(filter(lambda x: "USFASTD_" in x, n))
         def estimate_factor_returns(df):
             ## build universe based on filters
             estu = df.loc[df.IssuerMarketCap > 1e9].copy(deep=True)
             ## winsorize returns for fitting
             estu['DlyReturn'] = wins(estu['DlyReturn'], -0.25, 0.25)
             all factors = factors from names(list(df))
             form = get formula(all factors, "DlyReturn")
             model = ols(form, data=estu)
             results = model.fit()
             return results
In [12]: facret = {}
         for date in frames:
             facret[date] = estimate_factor_returns(frames[date]).params
```

Choose Alpha Factors

We will now choose our alpha factors. Barra's factors include some alpha factors that we have seen before, such as:

In [13]: my dates = sorted(list(map(lambda date: pd.to datetime(date, format='%Y%m

USFASTD_1DREVRSL : Reversal

• USFASTD_EARNYILD : Earnings Yield

• USFASTD_VALUE : Value

• **USFASTD_SENTMT** : Sentiment

We will choose these alpha factors for now, but you are encouraged to come back to this later and try other factors as well.

about:srcdoc Seite 19 von 39

```
In [14]: alpha_factors = ["USFASTD_1DREVRSL", "USFASTD_EARNYILD", "USFASTD_VALUE",
    facret_df = pd.DataFrame(index = my_dates)

for dt in my_dates:
        for alp in alpha_factors:
            facret_df.at[dt, alp] = facret[dt.strftime('%Y%m%d')][alp]

for column in facret_df.columns:
            plt.plot(facret_df[column].cumsum(), label=column)
    plt.legend(loc='upper left')
    plt.xlabel('Date')
    plt.ylabel('Cumulative Factor Returns')
    plt.show()
```

/opt/conda/lib/python3.6/site-packages/pandas/plotting/_converter.py:129: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.

```
To register the converters:

>>> from pandas.plotting import register_matplotlib_converters
>>> register_matplotlib_converters()
warnings.warn(msg, FutureWarning)
```


Merge Previous Portfolio Holdings

In order to optimize our portfolio we will use the previous day's holdings to estimate the trade size and transaction costs. In order to keep track of the holdings from the previous day we will include a column to hold the portfolio holdings of the previous day. These holdings of all our assets will be initialized to zero when the backtest first starts.

about:srcdoc Seite 20 von 39

Build Universe Based on Filters (TODO)

In the cell below, implement the function <code>get_universe</code> that creates a stock universe by selecting only those companies that have a market capitalization of at least 1 billion dollars **OR** that are in the previous day's holdings, even if on the current day, the company no longer meets the 1 billion dollar criteria.

When creating the universe, make sure you use the <code>.copy()</code> attribute to create a copy of the data. Also, it is very important to make sure that we are not looking at returns when forming the portfolio! to make this impossible, make sure to drop the column containing the daily return.

about:srcdoc Seite 21 von 39

```
In [17]:
         def get_universe(df):
             Create a stock universe based on filters
             Parameters
              _____
             df : DataFrame
                 All stocks
             Returns
             _____
             universe : DataFrame
                 Selected stocks based on filters
             # TODO: Implement
             # Get universe
             universe = df.loc[(df['IssuerMarketCap'] >= 1e9) | (abs(df['h.opt.pre
             # Remove daily returns from df so that it is impossible to read off d
             universe = universe.drop(columns = 'DlyReturn')
             return universe
         universe = get_universe(df)
In [18]:
         date = str(int(universe['DataDate'][1]))
```

Factors

We will now extract both the risk factors and alpha factors. We begin by first getting all the factors using the factors_from_names function defined previously.

```
In [19]: all_factors = factors_from_names(list(universe))
```

We will now create the function setdiff to just select the factors that we have not defined as alpha factors

```
In [20]: def setdiff(temp1, temp2):
    s = set(temp2)
    temp3 = [x for x in temp1 if x not in s]
    return temp3
```

```
In [21]: risk_factors = setdiff(all_factors, alpha_factors)
```

We will also save the column that contains the previous holdings in a separate variable because we are going to use it later when we perform our portfolio optimization.

about:srcdoc Seite 22 von 39

```
In [22]: h0 = universe['h.opt.previous']
```

Matrix of Risk Factor Exposures

Our dataframe contains several columns that we'll use as risk factors exposures. Extract these and put them into a matrix.

The data, such as industry category, are already one-hot encoded, but if this were not the case, then using <code>patsy.dmatrices</code> would help, as this function extracts categories and performs the one-hot encoding. We'll practice using this package, as you may find it useful with future data sets. You could also store the factors in a dataframe if you prefer.

How to use patsy.dmatrices

patsy.dmatrices takes in a formula and the dataframe. The formula tells the function which columns to take. The formula will look something like this:

SpecRisk ~ 0 + USFASTD_AERODEF + USFASTD_AIRLINES + ...

where the variable to the left of the ~ is the "dependent variable" and the others to the right are the independent variables (as if we were preparing data to be fit to a model).

This just means that the <code>pasty.dmatrices</code> function will return two matrix variables, one that contains the single column for the dependent variable <code>outcome</code>, and the independent variable columns are stored in a matrix <code>predictors</code>.

The predictors matrix will contain the matrix of risk factors, which is what we want. We don't actually need the outcome matrix; it's just created because that's the way patsy.dmatrices works.

```
In [23]: formula = get_formula(risk_factors, "SpecRisk")
In [24]: def model_matrix(formula, data):
        outcome, predictors = patsy.dmatrices(formula, data)
        return predictors

In [25]: B = model_matrix(formula, universe)
    BT = B.transpose()
```

Calculate Specific Variance

Notice that the specific risk data is in percent:

about:srcdoc Seite 23 von 39

```
In [26]: universe['SpecRisk'][0:2]

Out[26]: 0     9.014505
     1     11.726327
     Name: SpecRisk, dtype: float64
```

Therefore, in order to get the specific variance for each stock in the universe we first need to multiply these values by 0.01 and then square them:

```
In [27]: specVar = (0.01 * universe['SpecRisk']) ** 2
```

Factor covariance matrix (TODO)

Note that we already have factor covariances from Barra data, which is stored in the variable covariance. covariance is a dictionary, where the key is each day's date, and the value is a dataframe containing the factor covariances.

```
In [28]:
          covariance['20040102'].head()
Out[28]:
                       Factor1
                                         Factor2
                                                 VarCovar DataDate
                                                 1.958869 20040102
          0 USFASTD_1DREVRSL
                               USFASTD_1DREVRSL
          1 USFASTD_1DREVRSL
                                   USFASTD_BETA
                                                  1.602458 20040102
                                                 -0.012642 20040102
          2 USFASTD_1DREVRSL
                                USFASTD_DIVYILD
          3 USFASTD_1DREVRSL
                               USFASTD_DWNRISK -0.064387 20040102
          4 USFASTD 1DREVRSL USFASTD EARNQLTY
                                                 0.046573 20040102
```

In the code below, implement the function diagonal_factor_cov to create the factor covariance matrix. Note that the covariances are given in percentage units squared. Therefore you must re-scale them appropriately so that they're in decimals squared. Use the given colnames function to get the column names from B.

When creating factor covariance matrix, you can store the factor variances and covariances, or just store the factor variances. Try both, and see if you notice any differences.

```
In [29]: def colnames(B):
    if type(B) == patsy.design_info.DesignMatrix:
        return B.design_info.column_names
    if type(B) == pandas.core.frame.DataFrame:
        return B.columns.tolist()
    return None
```

about:srcdoc Seite 24 von 39

```
In [30]:
         def diagonal_factor_cov(date, B):
             Create the factor covariance matrix
             Parameters
              ______
             date : string
                    date. For example 20040102
             B : patsy.design_info.DesignMatrix OR pandas.core.frame.DataFrame
                  Matrix of Risk Factors
             Returns
             Fm : Numpy ndarray
                  factor covariance matrix
             cv = covariance[date]
             k = np.shape(B)[1]
             Fm = np.zeros([k,k])
             for j in range(0,k):
                  fac = colnames(B)[j]
                  Fm[j,j] = (0.01**2) * cv.loc[(cv.Factor1==fac) & (cv.Factor2==fac)
             return(Fm)
         Fvar = diagonal factor cov(date, B)
```

Transaction Costs

To get the transaction cost, or slippage, we have to multiply the price change due to market impact by the amount of dollars traded:

```
\label{thm:linear} $$ \mbox{tcost_{i,t}} = \% \Delta_{price}_{i,t} \times \mbox{trade}_{i,t} $$ In summation notation it looks like this: $$ \mbox{tcost}_{i,t} = \sum_i^{N} \lambda_{i,t} - h_{i,t-1})^2 $$ where $$ \lambda_{i,t} = \frac{1}{10\times \mbox{ADV}_{i,t}} $$
```

Note that since we're dividing by ADV, we'll want to handle cases when ADV is missing or zero. In those instances, we can set ADV to a small positive number, such as 10,000, which, in practice assumes that the stock is illiquid. In the code below if there is no volume information we assume the asset is illiquid.

about:srcdoc Seite 25 von 39

```
In [31]: def get_lambda(universe, composite_volume_column = 'ADTCA_30'):
    universe.loc[np.isnan(universe[composite_volume_column]), composite_v
    universe.loc[universe[composite_volume_column] == 0, composite_volume
    adv = universe[composite_volume_column]
    return 0.1 / adv

Lambda = get_lambda(universe)
```

Alpha Combination (TODO)

In the code below create a matrix of alpha factors and return it from the function get_B_alpha. Create this matrix in the same way you created the matrix of risk factors, i.e. using the get_formula and model_matrix functions we have defined above. Feel free to go back and look at the previous code.

```
In [32]: def get_B_alpha(alpha_factors, universe):
    # TODO: Implement

    return model_matrix(get_formula(alpha_factors, "SpecRisk"), data = un

B_alpha = get_B_alpha(alpha_factors, universe)
```

Now that you have the matrix containing the alpha factors we will combine them by adding its rows. By doing this we will collapse the B_alpha matrix into a single alpha vector. We'll multiply by 1e-4 so that the expression of expected portfolio return, \$\alpha^T \mathbb{h}^{s}, is in dollar units.

about:srcdoc Seite 26 von 39

Optional Challenge

You can also try to a more sophisticated method of alpha combination, by choosing the holding for each alpha based on the same metric of its performance, such as the factor returns, or sharpe ratio. To make this more realistic, you can calculate a rolling average of the sharpe ratio, which is updated for each day. Remember to only use data that occurs prior to the date of each optimization, and not data that occurs in the future. Also, since factor returns and sharpe ratios may be negative, consider using a max function to give the holdings a lower bound of zero.

Objective function (TODO)

The objective function is given by:

Where the terms correspond to: factor risk + idiosyncratic risk - expected portfolio return + transaction costs, respectively. We should also note that \$\textbf{Q}^T\textbf{Q}\\$ is defined to be the same as \$\textbf{BFB}^T\\$. Review the lessons if you need a refresher of how we get \$\textbf{Q}\\$.

Our objective is to minimize this objective function. To do this, we will use Scipy's optimization function:

```
scipy.optimize.fmin_l_bfgs_b(func, initial_guess, func_gradient)
```

where:

- func : is the function we want to minimize
- initial_guess : is out initial guess
- func_gradient : is the gradient of the function we want to minimize

So, in order to use the scipy.optimize.fmin_l_bfgs_b function we first need to define its parameters.

In the code below implement the function obj_func(h) that corresponds to the objective function above that we want to minimize. We will set the risk aversion to be 1.0e-6.

about:srcdoc Seite 27 von 39

```
In [34]: risk_aversion = 1.0e-6

def get_obj_func(h0, risk_aversion, Q, specVar, alpha_vec, Lambda):
    def obj_func(h):
        # TODO: Implement
        f = 0.0
        f += 0.5 * risk_aversion * np.sum( np.matmul(Q, h) ** 2 )
        f += 0.5 * risk_aversion * np.dot(h ** 2, specVar) #since Specifi
        f -= np.dot(h, alpha_vec)
        f += np.dot( (h - h0) ** 2, Lambda)

    return f

return obj_func
```

Gradient (TODO)

Now that we can generate the objective function using <code>get_obj_func</code>, we can now create a similar function with its gradient. The reason we're interested in calculating the gradient is so that we can tell the optimizer in which direction, and how much, it should shift the portfolio holdings in order to improve the objective function (minimize variance, minimize transaction cost, and maximize expected portfolio return).

Before we implement the function we first need to know what the gradient looks like. The gradient, or derivative of the objective function, with respect to the portfolio holdings h, is given by:

In the code below, implement the function grad(h) that corresponds to the function of the gradient given above.

about:srcdoc Seite 28 von 39

Optimize (TODO)

Now that we can generate the objective function using <code>get_obj_func</code>, and its corresponding gradient using <code>get_grad_func</code> we are ready to minimize the objective function using <code>Scipy's</code> optimization function. For this, we will use out initial holdings as our <code>initial_guess</code> parameter.

In the cell below, implement the function <code>get_h_star</code> that optimizes the objective function. Use the objective function (<code>obj_func</code>) and gradient function (<code>grad_func</code>) provided within <code>get_h_star</code> to optimize the objective function using the <code>scipy.optimize.fmin_l_bfgs_b</code> function.

about:srcdoc Seite 29 von 39

```
In [36]: risk_aversion = 1.0e-6
         Q = np.matmul(scipy.linalg.sqrtm(Fvar), BT)
         QT = Q.transpose()
         def get_h_star(risk_aversion, Q, QT, specVar, alpha_vec, h0, Lambda):
             Optimize the objective function
             Parameters
             _____
             risk aversion : int or float
                 Trader's risk aversion
             Q : patsy.design info.DesignMatrix
                 Q Matrix
             QT : patsy.design_info.DesignMatrix
                 Transpose of the Q Matrix
             specVar: Pandas Series
                 Specific Variance
             alpha_vec: patsy.design_info.DesignMatrix
                 alpha vector
             h0 : Pandas Series
                 initial holdings
             Lambda: Pandas Series
                 Lambda
             Returns
             optimizer_result[0]: Numpy ndarray
                 optimized holdings
             obj func = get_obj func(h0, risk_aversion, Q, specVar, alpha_vec, Lam
             grad func = get grad func(h0, risk aversion, Q, QT, specVar, alpha ve
             # TODO: Implement
             optimizer result = scipy optimize fmin 1 bfgs b(obj func, h0, grad fu
             return optimizer result[0]
         h_star = get_h_star(risk_aversion, Q, QT, specVar, alpha_vec, h0, Lambda)
```

After we have optimized our objective function we can now use, h_star to create our optimal portfolio:

```
In [37]: opt_portfolio = pd.DataFrame(data = {"Barrid" : universe['Barrid'], "h.op
```

about:srcdoc Seite 30 von 39

Risk Exposures (TODO)

We can also use h_star to calculate our portfolio's risk and alpha exposures.

In the cells below implement the functions get_risk_exposures and get_portfolio_alpha_exposure that calculate the portfolio's risk and alpha exposures, respectively.

```
In [38]:
         def get_risk_exposures(B, BT, h_star):
             Calculate portfolio's Risk Exposure
             Parameters
             B : patsy.design_info.DesignMatrix
                 Matrix of Risk Factors
             BT : patsy.design_info.DesignMatrix
                 Transpose of Matrix of Risk Factors
             h_star: Numpy ndarray
                 optimized holdings
             Returns
             risk exposures : Pandas Series
                 Risk Exposures
             # TODO: Implement
             risk_exposures = np.matmul(B.T, h_star)
             return pd.Series(risk_exposures, index = colnames(B))
         risk_exposures = get_risk_exposures(B, BT, h_star)
```

about:srcdoc Seite 31 von 39

Transaction Costs (TODO)

We can also use h_star to calculate our total transaction costs: $\$ \mbox{tcost} = \sum_i^{N} \lambda_{i,t} - h_{i,t-1}^2 \$\$

In the cell below, implement the function <code>get_total_transaction_costs</code> that calculates the total transaction costs according to the equation above:

about:srcdoc Seite 32 von 39

```
In [40]: def get_total_transaction_costs(h0, h_star, Lambda):
             Calculate Total Transaction Costs
             Parameters
             _____
             h0 : Pandas Series
                 initial holdings (before optimization)
             h_star: Numpy ndarray
                 optimized holdings
             Lambda: Pandas Series
                 Lambda
             Returns
             _____
             total_transaction_costs : float
                 Total Transaction Costs
             # TODO: Implement
             # I had this formula wrong, so I checked the forums to get an idea on
             # https://hub.udacity.com/rooms/community:nd880:346730-project-581?co
             # contributions on April 9, 2019 by Ram Krishnan K. and Sarganil D.
             total transaction costs = np.sum((h star-h0)**2 * Lambda)
             return total_transaction_costs
         total_transaction_costs = get_total_transaction_costs(h0, h_star, Lambda)
```

Putting It All Together

We can now take all the above functions we created above and use them to create a single function, form_optimal_portfolio that returns the optimal portfolio, the risk and alpha exposures, and the total transactions costs.

about:srcdoc Seite 33 von 39

```
In [41]:
         def form optimal portfolio(df, previous, risk aversion):
             df = df.merge(previous, how = 'left', on = 'Barrid')
             df = clean nas(df)
             df.loc[df['SpecRisk'] == 0]['SpecRisk'] = median(df['SpecRisk'])
             universe = get universe(df)
             date = str(int(universe['DataDate'][1]))
             all_factors = factors_from_names(list(universe))
             risk factors = setdiff(all factors, alpha factors)
             h0 = universe['h.opt.previous']
             B = model_matrix(get_formula(risk_factors, "SpecRisk"), universe)
             BT = B.transpose()
             specVar = (0.01 * universe['SpecRisk']) ** 2
             Fvar = diagonal_factor_cov(date, B)
             Lambda = get lambda(universe)
             B_alpha = get_B_alpha(alpha_factors, universe)
             alpha_vec = get_alpha_vec(B_alpha)
             Q = np.matmul(scipy.linalg.sqrtm(Fvar), BT)
             QT = Q.transpose()
             h_star = get_h_star(risk_aversion, Q, QT, specVar, alpha_vec, h0, Lam
             opt_portfolio = pd.DataFrame(data = {"Barrid" : universe['Barrid'],
             risk exposures = get risk exposures(B, BT, h star)
             portfolio_alpha_exposure = get_portfolio_alpha_exposure(B_alpha, h_st
             total transaction costs = get total transaction costs(h0, h star, Lam
             return {
                  "opt.portfolio" : opt_portfolio,
                  "risk.exposures" : risk_exposures,
                  "alpha.exposures" : portfolio_alpha_exposure,
                  "total.cost" : total_transaction_costs}
```

Build tradelist

The trade list is the most recent optimal asset holdings minus the previous day's optimal holdings.

```
In [42]:
    def build_tradelist(prev_holdings, opt_result):
        tmp = prev_holdings.merge(opt_result['opt.portfolio'], how='outer', o
        tmp['h.opt.previous'] = np.nan_to_num(tmp['h.opt.previous'])
        tmp['h.opt'] = np.nan_to_num(tmp['h.opt'])
        return tmp
```

about:srcdoc Seite 34 von 39

Save optimal holdings as previous optimal holdings.

As we walk through each day, we'll re-use the column for previous holdings by storing the "current" optimal holdings as the "previous" optimal holdings.

```
In [43]: def convert_to_previous(result):
    prev = result['opt.portfolio']
    prev = prev.rename(index=str, columns={"h.opt": "h.opt.previous"}, co
    return prev
```

Run the backtest

Walk through each day, calculating the optimal portfolio holdings and trade list. This may take some time, but should finish sooner if you've chosen all the optimizations you learned in the lessons.

```
In [44]: trades = {}
port = {}

for dt in tqdm(my_dates, desc='Optimizing Portfolio', unit='day'):
    date = dt.strftime('%Y%m%d')

    result = form_optimal_portfolio(frames[date], previous_holdings, risk
    trades[date] = build_tradelist(previous_holdings, result)
    port[date] = result
    previous_holdings = convert_to_previous(result)
Optimizing Portfolio: 100%
```

about:srcdoc Seite 35 von 39

Profit-and-Loss (PnL) attribution (TODO)

Profit and Loss is the aggregate realized daily returns of the assets, weighted by the optimal portfolio holdings chosen, and summed up to get the portfolio's profit and loss.

The PnL attributed to the alpha factors equals the factor returns times factor exposures for the alpha factors.

\$\$ \mbox{PnL}_{alpha}= f \times b_{alpha} \$\$

Similarly, the PnL attributed to the risk factors equals the factor returns times factor exposures of the risk factors.

\$\$ \mbox{PnL}_{risk} = f \times b_{risk} \$\$

In the code below, in the function build_pnl_attribution calculate the PnL attributed to the alpha factors, the PnL attributed to the risk factors, and attribution to cost.

```
In [45]:
         ## assumes v, w are pandas Series
         def partial_dot_product(v, w):
             common = v.index.intersection(w.index)
             return np.sum(v[common] * w[common])
         def build pnl attribution():
             df = pd.DataFrame(index = my_dates)
             for dt in my dates:
                 date = dt.strftime('%Y%m%d')
                 p = port[date]
                 fr = facret[date]
                 mf = p['opt.portfolio'].merge(frames[date], how = 'left', on = "B
                 mf['DlyReturn'] = wins(mf['DlyReturn'], -0.5, 0.5)
                 df.at[dt,"daily.pnl"] = np.sum(mf['h.opt'] * mf['DlyReturn'])
                 # TODO: Implement
                 # I was completely lost here, and it took me a while to find a so
                 # of some Forum discussions:
                  # https://hub.udacity.com/rooms/community:nd880:346730-project-58
                 df.at[dt,"attribution.alpha.pnl"] = partial_dot_product(fr, p['al
                 df.at[dt,"attribution.risk.pnl"] = partial_dot_product(fr, p['ris
                 df.at[dt, "attribution.cost"] = p['total.cost']
             return df
```

about:srcdoc Seite 36 von 39

Build portfolio characteristics (TODO)

Calculate the sum of long positions, short positions, net positions, gross market value, and amount of dollars traded.

In the code below, in the function build_portfolio_characteristics calculate the sum of long positions, short positions, net positions, gross market value, and amount of dollars traded.

about:srcdoc Seite 37 von 39

```
In [50]:
         def build portfolio characteristics():
              df = pd.DataFrame(index = my_dates)
              for dt in my dates:
                  date = dt.strftime('%Y%m%d')
                  p = port[date]
                  tradelist = trades[date]
                  h = p['opt.portfolio']['h.opt']
                  # TODO: Implement
                  # Again, I found this discussion from the Forums helpful:
                  # https://hub.udacity.com/rooms/community:nd880:346730-project-58
                  long = np.sum([item for item in h if item >= 0])
                  short = np.sum([item for item in h if item < 0])</pre>
                  df.at[dt,"long"] = long
                  df.at[dt,"short"] = short
                  df.at[dt,"net"] = long + short
                  df.at[dt, "gmv"] = abs(long) + abs(short)
                  df.at[dt,"traded"] = np.sum(abs(tradelist['h.opt'] - tradelist['h
              return df
```


about:srcdoc Seite 38 von 39

Optional

Choose additional metrics to evaluate your portfolio.

In []: # Optional

Submission

Now that you're done with the project, it's time to submit it. Click the submit button in the bottom right. One of our reviewers will give you feedback on your project with a pass or not passed grade.

about:srcdoc Seite 39 von 39