# Estimación y Predicción en Series Temporales

Estimadores óptimos

### Departamento de Procesamiento de Señales

Instituto de Ingeniería Eléctrica Facultad de Ingeniería

2022

## Agenda

- (Breve) Repaso de probabilidad
- 2 Estimación de parámetros
- Modelado de los datos
- Estimación insesgada de mínima varianza (MVU)

#### Probabilidad:

- Caracteriza la frecuencia relativa o incertidumbre sobre la variable aleatoria X
- X –Variable Aleatoria Discreta

$$p_X(x_i) := \Pr(X = x_i) (p_X : \mathsf{pmf})$$



$$\sum_{i} \Pr(X = x_i) = 1,$$

$$\Pr(X = x_i) \ge 0$$

Valor Esperado

$$\mathbb{E}(X) = \sum_{i} x_i p_X(x_i)$$

$$\mathbb{E}(g(X)) = \sum_{i} g(x_i) p_X(x_i)$$

#### Probabilidad:

 Caracteriza la frecuencia relativa o incertidumbre sobre la variable aleatoria X

#### X –Variable Aleatoria Continua

$$\int\limits_{S}p_{X}(x)=\Pr(x\in S)\text{ ( }p_{X}:\operatorname{pdf})$$



$$\int p_X(x)dx = 1, \quad p_X(x) \ge 0$$

Valor Esperado

$$\mathbb{E}(X) = \int x \, p_X(x) dx$$

$$\mathbb{E}(g(X)) = \int g(x) p_X(x) dx$$

### Distribuciones conjunta y condicional

Regla del Producto

$$p_{X,Y}(x,y) = p_{Y|X}(y \mid x) p_X(x) = p_{X|Y}(x \mid y) p_Y(y)$$

Regla de la Suma

$$p_X(x) = \int_y p_{X,Y}(x,y)$$

$$p_Y(y) = \int_x p_{X,Y}(x,y)$$

La **varianza** de una variable aleatoria X es el segundo momento central,

$$\operatorname{var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right].$$

#### Ejercicio: demostrar las siguientes propiedades

1 Una formulación alternativa de la varianza es,

$$var(X) = \mathbb{E}(X^2) - \mathbb{E}^2(X)$$

2 Si X es una variable aleatoria con varianza finita, para cualquier constantes a y b se cumple que,

$$var(aX + b) = a^2 var(X)$$

3 Si  $X_1$  y  $X_2$  son variables aleatorias independientes,

$$var(X_1 + X_2) = var(X_1) + var(X_2)$$

Estimación de Parámetros

# Estimación de parámetros

#### Planteo del Problema:

- Dadas N muestras de una señal discreta x[n] que depende de cierto parámetro  $\theta$  desconocido.
- Estimar  $\theta$  a partir de las N muestras  $x[0], x[1], \dots, x[N-1]$

Para ello se define un estimador de  $\theta$  que es función de los datos:

$$\hat{\theta} = g(x[0], x[1], \dots, x[N-1])$$

- g:función a determinar
- $\hat{\theta}$ : estimador de  $\theta$

**Objetivo:** Encontrar función g de forma que  $\hat{\theta}$  sea buen estimador de  $\theta$ .

- Estimador  $\hat{\theta}$  debe ser cercano (en algún sentido a definir) al valor verdadero de  $\theta$ .
- El criterio de cercanía debe ser especificado teniendo en cuenta que  $\hat{\theta}$  es una Variable Aleatoria (función de V.As).

• Se dispone de un **conjunto de** N **datos**  $x[i] \in \mathbb{R}^n$ :

$$\mathcal{D} = \left\{ x[0], x[1], \dots, x[N-1] \right\}$$

y un modelo que depende de un parámetro  $\theta$  desconocido.

 Debido a la complejidad del fenómeno a caracterizar, modelamos los datos estadísticamente, mediante la función de densidad de probabilidad o pdf,

$$p(x[0], x[1], \dots, x[N-1]; \theta)$$

- La PDF está parametrizada por el parámetro desconocido  $\theta$ , es decir define una familia de funciones.
- Puede interpretarse como que los datos son "aleatorios"
- **Notación:** se utiliza el punto y coma para denotar esa dependencia con el parámetro  $\theta$  (determinístico). No confundir con una eventual densidad de probabilidad conjunta  $p(x[0], \theta)$ .

### Ejemplo: PDF paramétrica (Gaussiana)

Si N=1, los datos se modelan como:

$$x[0] \sim \mathcal{N}(\theta, \sigma^2), \quad \text{con } \sigma^2 \text{ conocido.}$$

• la PDF sería:

$$\left[ {}^{2}(\theta - [0]x) \frac{1}{z_{\mathcal{O}\mathcal{I}}} - \right] \operatorname{dxs} \frac{1}{z_{\mathcal{O}\pi\mathcal{I}}} = (\theta : [0]x)d$$



- Como el valor de  $\theta$  afecta la probabilidad de x[0], debería ser posible inferir el valor  $\theta$  a partir del valor observado de x[0].
- **Ejemplo.** Si el valor observado de x[0] es negativo es poco probable que  $\theta=\theta_3$ , es más probable que  $\theta=\theta_1$ .

- Especificación de la PDF es crucial para obtener un buen estimador.
- En un problema real, la PDF de los datos no es conocida.
   Debe ser elegida de forma que:
  - Sea consistente con las restricciones del problema
  - Refleje el conocimiento previo de los datos (e.g., ruido Gaussiano)
  - Sea matemáticamente tratable

#### Ruido en imágenes digitales

- Ruido Gaussiano (electrónica)
- shot noise (Fotones, Poisson)
- Ruido impulsivo (píxeles muertos)
- Ruido estructurado (ganancia variable en cada columna del captor)

#### Ejemplo: Temperatura global media de la Tierra



- Los datos son de naturaleza ruidosa, pero en promedio muestran una tendencia creciente.
- Por ejemplo, un modelo razonable sería una recta en ruido,

$$x[n] = A + Bn + w[n], \quad n = 0, 1, \dots, N - 1.$$

#### Ejemplo: Temperatura global media de la Tierra

- Si asumimos que el ruido es blanco y Gaussiano (WGN, White Gaussian Noise).
  - blanco: cada muestra no está correlacionada con las demás muestras
  - Gaussiano: cada muestra w[n] tiene PDF  $\mathcal{N}(0, \sigma^2)$ .
- La PDF conjunta de las muestras de ruido es,

$$p(w[0], w[1], \dots, w[N-1]) = \prod_{n=0}^{N-1} p(w[n])$$

$$= \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{w^2[n]}{2\sigma^2}\right]$$

$$= \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} w^2[n]\right].$$

#### Ejemplo: Temperatura global media de la Tierra

- En este ejemplo, los parámetros desconocidos son A y B.
- Arreglando los datos y los parámetros como un vector,

$$\theta = [A, B]^T, \quad \mathbf{x} = [x[0], x[1], \dots, x[N-1]]^T$$

la PDF de los datos es:

$$\begin{split} p(\mathbf{x};\theta) &= p(x[0],x[1],\dots,x[N-1];\theta) \\ &= p_w\left(x[0]-A,x[1]-A-B,\dots,x[N-1]-A-B(N-1)\right) \\ &= \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n]-A-Bn)^2\right]. \end{split}$$

#### Algunas observaciones:

- La hipótesis de AWGN es justificada por la necesidad de obtener un modelo matemáticamente tratable que conduzca a estimadores que puedan expresarse en forma cerrada.
- La hipótesis también es razonable a menos que haya evidencia de otra cosa (muestras correlacionadas).
- El desempeño del estimador tiene dependencia fuerte con las hipótesis de la PDF de los datos.
- A lo sumo, se puede esperar que el estimador obtenido sea robusto, en el sentido en que pequeños cambios en la PDF de los datos no afecten demasiado el desempeño del estimador.

# Estimadores insesgados

**Definición (estimador insesgado).** Un estimador de cierto parámetro desconocido es *insesgado* si en promedio conduce al valor verdadero del parámetro.

Formalmente, un estimador  $\hat{\theta}$  del parámetro  $\theta \in (a,b)$  es **insesgado** si:

$$\mathbb{E}(\hat{\theta}) = \theta, \quad \forall \theta \in (a, b).$$

#### Ejemplo: Estimador insesgado del nivel de DC en WGN.

Se consideran las observaciones,

$$x[n]=A+w[n],\quad n=0,1,\dots,N-1,$$
 con  $w[n]$  WGN,  $w[n]\sim\mathcal{N}(0,\sigma^2)$  y  $A\in\mathbb{R}$  es el parámetro a estimar.

• Un estimador *razonable* de *A* es la media muestral,

$$\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n].$$

# Estimadores insesgados

#### **Ejemplo:** Estimador insesgado del nivel de DC en WGN.

Se quiere ver si el estimado es insesgado.

$$\mathbb{E}(\hat{A}) = \mathbb{E}\left[\frac{1}{N}\sum_{n=0}^{N-1}x[n]\right]$$
 (a) Linealidad de la esperanza.   
 (b) Como A es determinístico, 
$$\frac{(a)}{N} \frac{1}{N}\sum_{n=0}^{N-1}\mathbb{E}(x[n])$$
 
$$\mathbb{E}(x[n]) = \mathbb{E}(A+w[n])$$

$$\stackrel{(a)}{=} \frac{1}{N} \sum_{n=0}^{N-1} \mathbb{E}(x[n])$$

$$\stackrel{(b)}{=} \frac{1}{N} \sum_{n=0}^{N-1} A = A$$

- Linealidad de la

$$\mathbb{E}(x[n]) = \mathbb{E}(A + w[n])$$
$$= A + \mathbb{E}(w[n])$$
$$= A.$$

En este problema, el estimador media muestral es insesgado.

### ¿Cuál es la PDF de $\hat{A}$ ?

- Suma de variables aleatorias Gaussianas independientes, es una variable aleatoria gaussiana
- $\hat{A}$  es un V.A. Gaussiana (queda especificada por su media y varianza).

# Estimadores insesgados

#### **Ejemplo:** Estimador insesgado del nivel de DC en WGN.

• La media es  $\mathbb{E}(\hat{A}) = A$ . Sólo falta calcular la varianza.

$$\begin{aligned} \operatorname{var}(\hat{A}) &= \operatorname{var}\left[\frac{1}{N}\sum_{n=0}^{N-1}x[n]\right] \\ &\stackrel{(a)}{=} \frac{1}{N^2}\sum_{n=0}^{N-1}\operatorname{var}(x[n]) \\ &\stackrel{(b)}{=} \frac{1}{N^2}\sum_{n=0}^{N-1}\sigma^2 = \frac{\sigma^2}{N} \end{aligned}$$

- (a) Si X e Y son V.A. independ.,  ${\rm var}(aX+bY) = a^2{\rm var}(X) + b^2{\rm var}(Y)$
- (b) Como A es constante,  $\text{var}(x[n]) = \text{var}(A+w[n]) \\ = \text{var}(w[n]) = \sigma^2.$

## ¿Cuál es la PDF de $\hat{A}$ ?

- Se concluye que  $\hat{A} \sim \mathcal{N}(A, \sigma^2/N)$ .
- La varianza del estimador decrece un factor de N respecto a la a varianza de las muestras individuales.

# Estimadores insesgados: Comentarios

• La restricción de que  $\mathbb{E}(\hat{\theta}) = \theta$  para todo  $\theta \in (a,b)$  es importante. Significa que si,

$$\hat{\theta} = g(\mathbf{x}), \text{ con } \mathbf{x} = [x[0], x[1], \dots, x[N-1]]^T,$$

se tiene que cumplir que

$$\mathbb{E}(\hat{\theta}) = \int g(\mathbf{x})p(\mathbf{x}; \theta)d\mathbf{x} = \theta \quad \forall \theta \in (a, b)$$

Podría ocurrir que se cumpla la igualdad únicamente para algunos valores de  $\theta$  pero no para otros.

- Estimadores insesgados: no son necesariamente buenos estimadores. En promedio alcanzan el valor verdadero del parámetro.
- Estimadores sesgados: introducen error sistemático en la estimación pero pueden lograr reducir su varianza (menos variabilidad).
- Compromiso sesgo-varianza (bias-variance tradeoff).

# Combinación de estimadores insesgados

- La propiedad de insesgado tiene implicancias importantes al combinar estimadores.
- Supongamos que disponemos de p estimadores del mismo parámetro  $\theta$ , es decir:  $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_p$ .
- Promedio de estimadores da un nuevo estimador:

$$\hat{\theta} = \frac{1}{p} \sum_{i=1}^{p} \hat{\theta}_i$$

 Asumiendo que los estimadores son insesgados, de igual varianza y no correlacionados, tenemos que:

$$\mathbb{E}(\hat{\theta}) = \theta, \quad \text{var}(\hat{\theta}) = \frac{\text{var}(\hat{\theta}_1)}{p}.$$

 Cuantos más estimadores se combinan, más decrece la varianza y obtenemos un mejor estimador:

$$\lim_{p\to\infty} \mathrm{var}(\hat{\theta})\to 0, \quad \text{entonces } \Pr\left(\lim_{p\to\infty} \hat{\theta}=\theta\right)=1.$$

# Combinación de estimadores sesgados

• En el caso en que los estimadores  $\hat{\theta}_i$  son sesgados (mismo sesgo), es decir,  $\mathbb{E}(\hat{\theta}_i) = \theta + b(\theta)$ , se tiene que,

$$\mathbb{E}(\hat{\theta}) = \frac{1}{p} \sum_{i=1}^{p} \mathbb{E}(\hat{\theta}_i) = \theta + b(\theta).$$

• Sin importar cuántos estimadores se promedien,  $\hat{\theta}$  no converge al valor verdadero  $\theta$ .



• Sesgo de un estimador  $b(\theta) = \mathbb{E}(\hat{\theta}) - \theta$ .

- En la búsqueda de estimadores óptimos es necesario utilizar algún criterio de optimalidad.
- Uno natural es la minimización del Error Cuadrático Medio (MSE, Mean Square Error)

$$MSE(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \theta)^2\right].$$

Análisis (descomposición) del error cuadrático medio:

$$\begin{split} \mathrm{MSE}(\hat{\theta}) &= \mathbb{E}\left[ (\hat{\theta} - \theta)^2 \right] \\ &= \mathbb{E}\left\{ \left[ \left( \hat{\theta} - \mathbb{E}(\hat{\theta}) \right) + \left( \mathbb{E}(\hat{\theta}) - \theta \right) \right]^2 \right\} \\ &= \mathbb{E}\left[ \left( \hat{\theta} - \mathbb{E}(\hat{\theta}) \right)^2 \right] + 2 \underbrace{\mathbb{E}\left[ \left( \hat{\theta} - \mathbb{E}(\hat{\theta}) \right) \left( \mathbb{E}(\hat{\theta}) - \theta \right) \right]}_{\left( \mathbb{E}(\hat{\theta}) - \theta \right) \mathbb{E}(\hat{\theta} - \mathbb{E}(\hat{\theta})) = 0} + \mathbb{E}\left[ \left( \hat{\theta} - \mathbb{E}(\hat{\theta}) \right)^2 \right] \\ &= \mathbb{E}\left[ \left( \hat{\theta} - \mathbb{E}(\hat{\theta}) \right)^2 \right] + \left( \mathbb{E}(\hat{\theta}) - \theta \right)^2 \\ &= \mathrm{var}(\hat{\theta}) + b^2(\theta) \end{split}$$

Descomposición sumamente útil bias-variance.

#### Ejemplo: Estimador MSE del nivel de DC en WGN

$$x[n] = A + w[n], \quad n = 0, 1, \dots, N-1, \quad w[n] \text{ i.i.d con } w[n] \sim \mathcal{N}(0, \sigma^2).$$

Se considera como estimador la media muestral modificada,

$$reve{A} = rac{a}{N} \sum_{n=0}^{N-1} x[n], \quad ext{para una constante } a.$$

Se desea el valor de a que minimiza el MSE.

| Media                      | Sesgo         | Varianza                                                 |
|----------------------------|---------------|----------------------------------------------------------|
| $\mathbb{E}(reve{A}) = aA$ | b(A) = (a-1)A | $\operatorname{var}(\breve{A}) = \frac{a^2 \sigma^2}{N}$ |

• Sustituyendo b(A) y  $var(\check{A})$  en la ecuación del MSE obtenemos

$$MSE(\check{A}) = \frac{a^2 \sigma^2}{N} + (a-1)^2 A^2$$

#### **Ejemplo:** Estimador MSE del nivel de DC en WGN

• Sustituyendo b(A) y  $var(\check{A})$  en la ecuación del MSE obtenemos

$$MSE(\check{A}) = \frac{a^2 \sigma^2}{N} + (a-1)^2 A^2.$$

Diferenciando respecto a a, se obtiene

$$\frac{d\text{MSE}(\check{A})}{da} = \frac{2a\sigma^2}{N} + 2(a-1)A^2,$$

• e igualando a cero para encontrar el valor de  $a_{opt}$  se obtiene que

$$a_{\text{opt}} = \frac{A^2}{A^2 + \sigma^2/N}.$$

El estimador que produce el menor error cuadrático medio es

$$\breve{A} = \left(\frac{A^2}{A^2 + \sigma^2/N}\right) \left(\frac{1}{N} \sum_{n=0}^{N-1} x[n]\right).$$

 Problema: El estimador del parámetro desconocido depende del valor del parámetro desconocido. No se puede realizar.

- En general los estimadores que minimizan el error cuadrático medio (MSE) dependen del parámetro desconocido y por lo tanto no son realizables.
- Esto es porque el MSE es función del sesgo y el sesgo en general depende del parámetro desconocido.
- Comparación de los estimadores del nivel de DC en WGN

| Sesgo                   | Varianza                                                 | MSE                                               |
|-------------------------|----------------------------------------------------------|---------------------------------------------------|
| $b(\check{A}) = (a-1)A$ | $\operatorname{var}(\breve{A}) = \frac{a^2 \sigma^2}{N}$ | $MSE(\check{A}) = a^2 \sigma^2 / N + (a-1)^2 A^2$ |

donde

$$a_{\rm opt} = \frac{A^2}{A^2 + \sigma^2/N} < 1, \quad y \quad a_{\rm unbiased} = 1. \label{eq:aopt}$$

- Estimador insesgado tiene mayor varianza y error cuadrático medio.
- Compromiso sesgo-varianza (bias-variance tradeoff): En general, reducir la varianza de un estimador tiene el costo de hacerlo sesgado.

- El enfoque de minimizar el MSE debe ser abandonado ya que (en general) conduce a estimadores irrealizables.
- Alternativa: restringirse a estimadores insesgados y minimizar la varianza
- Recordar que,  $MSE(\hat{\theta}) = var(\hat{\theta}) + b^2(\theta)$ .

$$\mbox{Si, } b(\theta) = 0, \quad \mbox{entonces, } \mbox{MSE}(\hat{\theta}) = \mbox{var}(\hat{\theta}).$$

- Como el error cuadrático medio de un estimador insesgado es su varianza, minimizar la varianza equivale a minimizar el MSE.
- Estimador insesgados de varianza mínima o MVU, Minimum-variance Unbiased.

#### Existencia de estimadores MVU.

• Se dice que existe un estimador MVU si hay un estimador de menor varianza que el resto de los posibles estimadores para todo  $\theta$ .



- Dos ejemplos: izquierda (existe MVU); derecha (no existe MVU).
- El estimador MVU no tiene porqué existir (Ejemplo a continuación).

#### Ejemplo: no existencia de estimador MVU

- Si la *forma* de la PDF cambia con  $\theta$  es esperable que el mejor estimador también dependa de  $\theta$ .
- Se dispone de dos observaciones independientes x[0] y x[1] con PDF,

$$x[0] \sim \mathcal{N}(\theta, 1)$$
  $x[1] \sim \begin{cases} \mathcal{N}(\theta, 1) & \text{si } \theta \ge 0 \\ \mathcal{N}(\theta, 2) & \text{si } \theta < 0, \end{cases}$ 

y se quiere estimar el parámetro  $\theta$ .

• Se proponen los siguientes estimadores:

$$\hat{\theta}_1 = \frac{1}{2} (x[0] + x[1]), \qquad \hat{\theta}_2 = \frac{2}{3} x[0] + \frac{1}{3} x[1].$$

Es fácil ver que ambos estimadores son insesgados.

#### Ejemplo: no existencia de estimador MVU

• La varianza de los estimadores es,

$$\operatorname{var}(\hat{\theta}_{1}) = \frac{1}{4} \left( \operatorname{var}(x[0]) + \operatorname{var}(x[1]) \right) = \begin{cases} \frac{18}{36} & si \ \theta \geq 0 \\ \frac{27}{36} & si \ \theta < 0, \end{cases}$$
$$\operatorname{var}(\hat{\theta}_{2}) = \frac{4}{9} \operatorname{var}(x[0]) + \frac{1}{9} \operatorname{var}(x[1]) = \begin{cases} \frac{20}{36} & si \ \theta \geq 0 \\ \frac{24}{36} & si \ \theta < 0, \end{cases}$$



- Se cumple que si:
  - $heta \geq 0, \quad \hat{ heta}_1$  menor varianza  $heta < 0, \quad \hat{ heta}_2$  menor varianza
- No existe un estimador MVU entre  $\hat{\theta}_1$  y  $\hat{\theta}_2$ .

- No solo puede no existir el estimador MVU, sino que incluso puede suceder que no exista ni un sólo estimador insesgado.
- En este caso no tiene sentido buscar el estimador MVU.

#### Ejemplo: No existencia de estimador insesgado.

- Se dispone de una única observación x[0], y se sabe que  $x[0] \sim \mathcal{U}[0, 1/\theta]$  con  $\theta > 0$ . Se quiere estimar  $\theta$ .
- Sea  $\hat{\theta}=g(x[0])$  un estimador genérico, y se buscan funciones g de manera de que el estimador sea insesgado. Se necesita que,

$$\mathbb{E}(\hat{\theta}) = \mathbb{E}(g(x[0]))$$

$$\stackrel{(a)}{=} \int g(u)p_{x[0]}(u)du$$

$$\stackrel{(b)}{=} \theta \int_0^{\frac{1}{\theta}} g(u)du$$

$$\stackrel{(c)}{=} \theta.$$

- (a) Definición de esperanza.
- (b) Como  $x[0] \sim \mathcal{U}[0,1/\theta],$   $p_{x[0]}(u) = \left\{ \begin{array}{ll} \theta & \text{si } 0 \leq u \leq 1/\theta \\ 0 & \text{en otro caso.} \end{array} \right.$
- (c) Condición de insesgado.

### **Ejemplo:** No existencia de estimador **insesgado**.

- Se dispone de una única observación x[0], y se sabe que  $x[0] \sim \mathcal{U}[0, 1/\theta]$  con  $\theta > 0$ . Se quiere estimar  $\theta$ .
- Sea  $\hat{\theta} = g(x[0])$  un estimador genérico, y se buscan funciones g de manera de que el estimador sea insesgado. Se necesita que,
- Se llegó a que para que el estimador sea insesgado se tiene que cumplir que:

$$\int_0^{\frac{1}{\theta}} g(u)du = 1, \quad \forall \theta > 0.$$

- No existe una función g que cumpla la condición  $\forall \theta > 0$ .
- Se concluye entonces que no existe un estimador insesgado para este problema de estimación.

## Búsqueda de estimadores MVU

 Aún si existe un estimador MVU, puede no ser posible encontrarlo. No hay ninguna receta infalible para encontrar estimadores MVU.

#### Enfoques de búsqueda de estimadores MVU:

- 1 Utilizando la cota de inferior de Cramér-Rao (CRLB, Cramér-Rao Lower Bound)
  - Determinar la CRLB y ver si algún estimador la alcanza.
  - CRLB determina un límite inferior en la varianza de cualquier estimador insesgado (Capítulo 3 Kay)
  - Si un estimador tiene varianza igual a la CRLB para todos los valores de  $\theta$ , es el estimador MVU.



# Búsqueda de estimadores MVU

#### Enfoques de búsqueda de estimadores MVU:

- ② Buscar estadísticos suficientes y aplicar el teorema de Rao-Blackwell-Lehmann-Scheffé (RBLS)
  - Puede existir un estimador MVU que no alcance la CRLB.
  - Capítulo 5 (Kay)
- Restringir la clase de estimadores (e.g., lineales)
  - Restringir la clase de estimadores no sólo a los insesgados, sino también a los insesgados que sean lineales con los datos, y encontrar el MVU en esta clase.
  - Este estimador no será óptimo, a menos que el estimador MVU sea lineal en ese problema en particular.
- Capítulo 6 (Kay)

# Extensión a vector de parámetros

En el problema general de estimación de parámetros, los parámetros desconocidos pueden ser varios.

#### Estimador insesgado

- Si hay p parámetros desconocidos, se construye el vector de parámetros desconocidos,  $\theta = [\theta_1, \theta_2, \dots, \theta_p]^T$ .
- Se dice que un estimador  $\hat{\theta} = [\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_p]^T$  es insesgado, si

$$\mathbb{E}(\hat{\theta}_i) = \theta_i, \qquad a_i < \theta_i < b_i,$$

para todo  $i = 1, 2, \ldots, p$ .

 Si definimos la esperanza de un vector de variables aleatorias como

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = [\mathbb{E}(\hat{\theta}_1), \mathbb{E}(\hat{\theta}_2), \dots, \mathbb{E}(\hat{\theta}_p)]^T,$$

un estimador insesgado cumple la igualdad vectorial

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}.$$

# MVU: Extensión a vector de parámetros

### Estimador $\hat{\theta}$ de parámetro vectorial $\theta \in \mathbb{R}^p$ es MVU si:

• Es insesgado, es decir cumple la igualdad vectorial

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta};$$

cumple la propiedad de que

$$\operatorname{var}(\hat{\theta}_i)$$
 es mínima, para  $i=1,2,\ldots,p,$ 

entre todos los estimadores insesgados.

### Referencias

 Kay, S. M. (1993)
 Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, Capítulo 2.