- 1. Udowodnij, że dla dowolnych liczb x_n, x ,
 - $\delta_{x_n} \Rightarrow \delta_x$ wtedy i tylko wtedy, gdy $x_n \to x$.
- 2. Wykaż, że $\frac{1}{n}\sum_{k=1}^n \delta_{k/n} \Rightarrow \lambda$, gdzie λ jest miarą Lebesgue'a na [0,1].
- 3. Podaj przykład rozkładów prawdopodobieństwa μ_n, μ , takich, że $\mu_n \Rightarrow \mu$, ale $\mu_n(A) \nrightarrow \mu(A)$ dla pewnego zbioru A.
- 4. Wykaż, że:
 - a) jeśli $X_n \to X$ p.n., to $X_n \Rightarrow X$;
 - b) jeśli $X_n \to X$ według prawdopodobieństwa, to $X_n \Rightarrow X$;
 - c) jeśli $X_n \Rightarrow c$, gdzie c jest stałą, to $X_n \to c$ według prawdopodobieństwa.
- 5. Zmienne losowe X_n, X przyjmują tylko wartości całkowite.
 - a) Wykaż, że $X_n \Rightarrow X$ wtedy i tylko wtedy gdy $\mathbf{P}(X_n = k) \to \mathbf{P}(X = k)$ dla wszystkich liczb całkowitych k.
 - b) Czy z istnienia granic $\lim_{n\to\infty} \mathbf{P}(X_n=k)$ dla kcałkowitych wynika zbieżność X_n wg rozkładu?
- 6. Czy teza punktu a) poprzedniego zadania się zmieni, jeśli zmienne X_n przyjmują wartości wymierne?
- 7. Niech $\operatorname{Bin}(p,n)$ oznacza rozkład Bernoulliego o n próbach z prawdopodobieństwem sukcesu p, a $\operatorname{Poiss}(\lambda)$ rozkład Poissona z parametrem λ . Wykaż, że jeśli $np_n \to \lambda$, to $\operatorname{Bin}(p_n,n) \Rightarrow \operatorname{Poiss}(\lambda)$.
- 8. Podaj przykład ciągu dystrybuant F_n , zbieżnego punktowo do funkcji, która nie jest dystrybuantą.
- 9. Podaj przykład ciągu zmiennych losowych X_n , zbieżnego wg rozkładu, takiego, że odpowiadający mu ciąg dystrybuant nie zbiega punktowo do dystrybuanty rozkładu granicznego.
- 10. Wykaż, że zmienne losowe mające gęstości mogą zbiegać do stałej.
- 11. Niech X będzie rzeczywistą zmienną losową. Wykaż, że istnieje ciąg zmiennych X_n zbieżny według rozkładu do X taki, że
 - a) każde X_n przyjmuje tylko skończenie wiele wartości,
 - b) zmienne X_n mają gęstość.
- 12. Udowodnij, że $\mathcal{N}(a_n, \sigma_n^2) \Rightarrow \mathcal{N}(a, \sigma^2)$ wtedy i tylko wtedy, gdy $a_n \to a$ oraz $\sigma_n^2 \to \sigma^2$.

- 1. Niech X będzie zmienną losową mającą gęstość oraz liczby a_n i a będą nieujemne. Wykaż, że zmienne a_nX+b_n zbiegają według rozkładu do zmiennej aX+b wtedy i tylko wtedy gdy $a_n\to a$ i $b_n\to b$. **Uwaga.** Wystarczy zakładać, że X jest niezdegenerowane, tzn. $\mathbf{P}(X=c)<1$ dla wszystkich c.
- 2. Co trzeba założyć o funkcji f, by z tego, że X_n jest zbieżne według rozkładu do X wynikała zbieżność według rozkładu $f(X_n)$ do f(X)?
- 3. Udowodnij, że jeśli $X_n \Rightarrow X, \ p > 0$ oraz $\sup_n \mathbf{E} |X_n|^p < \infty$, to $\mathbf{E} |X|^p < \infty$, ale niekoniecznie $\mathbf{E} |X_n|^p \to \mathbf{E} |X|^p$. Jest to jednak prawdą, gdy dla pewnego $\varepsilon > 0$, $\sup_n \mathbf{E} |X_n|^{p+\varepsilon} < \infty$.
- 4. Niech g_n, g oznaczają odpowiednio gęstości rozkładów prawdopodobieństwa μ_n, μ na \mathbb{R}^n . Wykazać, że jeśli $g_n \to g$ p.w., to $\mu_n \Rightarrow \mu$, ale niekoniecznie na odwrót.
- 5. Wykaż, że rodzina rozkładów normalnych $\mathcal{N}(a_{\alpha}, \sigma_{\alpha}^2)$ jest ciasna wtedy i tylko wtedy gdy $\sup_{\alpha} |a_{\alpha}|, \sup_{\alpha} \sigma_{\alpha}^2 < \infty$.
- 6. Dana jest rodzina rozkładów
 - a) wykładniczych $\{\text{Exp}(\lambda) : \lambda \in A\}, A \subseteq \mathbb{R}_+,$
 - b) jednostajnych $\{U(a,b): a,b \in A, a < b\}, A \subseteq \mathbb{R}.$

Jaki warunek musi spełniać zbiór A, aby ta rodzina była ciasna?

- 7. Załóżmy, że ciąg zmiennych losowych X_n zbiega według rozkładu do zmiennej X o rozkładzie ciągłym. Wykaż, że dystrybuanty X_n zbiegają jednostajnie do dystrybuanty X.
- 8. Zmienne X_1, X_2, \ldots są niezależne i mają rozkład jednostajny na [0, a], zbadaj zbieżność według rozkładu ciągu $n \min\{X_1, X_2, \ldots, X_n\}$.

- 1. Oblicz funkcje charakterystyczne rozkładów
 - i) dyskretnych dwupunktowego, geometrycznego, Bernoulliego, Poissona;
 - ii) ciągłych normalnego, jednostajnego, wykładniczego, dwustronnego wykładniczego, Cauchy'ego.
- 2. Które z następujących funkcji są funkcjami charakterystycznymi: $\cos t,$ $\cos^2 t,\,\frac{1}{4}(1+e^{it})^2,\,\frac{1+\cos t}{2},\,\frac{1}{2-e^{it}}?$
- 3. Korzystając z funkcji charakterystycznej oblicz $\mathbf{E}X^k$ dla $X \sim \mathcal{N}(0,1)$.
- 4. Pokaż, że kombinacje wypukłe funkcji charakterystycznych są funkcjami charakterystycznymi.
- 5. Wiadomo, że φ jest funkcją charakterystyczną pewnej zmiennej losowej X. Czy funkcjami charakterystycznymi są : φ^2 , Re φ , $|\varphi|^2$, $|\varphi|$?
- 6. Niech Xbędzie zmienną losową taką, że $\mathbf{P}(X\in\mathbb{Z})=1.$ Pokaż, że dla każdego $n\in\mathbb{Z},$

$$\mathbf{P}(X=n) = \frac{1}{2\pi} \int_0^{2\pi} e^{-itn} \varphi_X(t) dt.$$

7. Wykaż, że jeśli funkcja charakterystyczna zmiennej Xma drugą pochodną w zerze, to $\mathbf{E}X^2<\infty.$

- 1. Przy pomocy funkcji charakterystycznych sprawdź, że jeśli ε_n są niezależnymi symetrycznymi zmiennymi losowymi przyjumjącymi wartości ± 1 , to zmienna losowa $\sum_{n\geqslant 1} 2^{-n} \varepsilon_n$ ma rozkład jednostajny na przedziale [-1,1].
- 2. Udowodnij, że zmienna losowa X jest symetryczna wtedy i tylko wtedy, gdy $\varphi_X(t) \in \mathbb{R}$ dla wszystkich t.
- 3. Zmienne X, Y są niezależne, przy czym X i X+Y mają rozkłady normalne. Udowodnij, że zmienna Y ma także rozkład normalny lub jest stała p.n..
- 4. Zmienne X, Y, ε są niezależne, przy czym X, Y mają rozkład wykładniczy z parametrem λ oraz $\mathbf{P}(\varepsilon = \pm 1) = \frac{1}{2}$. Wykaż, że zmienna X Y ma ten sam rozkład, co zmienna εX .
- 5. Wykaż, że istnieje $t \neq 0$ takie, że $|\varphi_X(t)| = 1$ wtedy i tylko wtedy, gdy $\mathbf{P}(X \in a + b\mathbb{Z}) = 1$ dla pewnych $a, b \in \mathbb{R}$.
- 6. Znajdź zmienne losowe X,Y takie, że $\varphi_{X+Y}=\varphi_X\varphi_Y$ oraz zmienne X,Y są zależne.
- 7. Zmienna X ma funkcję charakterystyczną $\varphi_X(t)=e^{-|t|^{\alpha}}$ dla pewnego $\alpha\in(0,2]$. Co można powiedzieć o rozkładzie zmiennej aX+bY, gdzie $a,b\in\mathbb{R}$, a Y jest niezależną kopią X?
- 8. Wykaż, że dla $\alpha > 2$ nie istnieje zmienna losowa taka, że $\varphi_X(t) = e^{-|t|^{\alpha}}$.
- 9. Załóżmy, że zmienne X i Y są niezależne, mają jednakowy rozkład oraz dla dowolnych liczb a,b zmienna aX+bY ma ten sam rozkład co zmienna $(|a|^{\alpha}+|b|^{\alpha})^{1/\alpha}X$. Wykaż, że $\varphi_X(t)=e^{-c|t|^{\alpha}}$ dla pewnego $c\geqslant 0$.
- 10. Dla $n \ge 1$ zmienna X_n ma rozkład geometryczny z parametrem $p_n \in (0,1)$. Wykaż, że jeśli $(a_n)_n$ jest takim ciągiem liczb dodatnich, że $a_n \to 0$, $p_n/a_n \to \lambda > 0$, to zmienne $a_n X_n$ zbiegają słabo do rozkładu wykładniczego z parametrem λ .
- 11. Podaj przykład zmiennych losowych X_n takich, że $\varphi_{X_n} \to \varphi$ punktowo, ale φ nie jest funkcją charakterystyczna żadnego rozkładu na prostej.

- 1. W pewnym okręgu w wyborach do senatu głosuje 500.000 osób. Zakładając, że wyborcy głosują na każdego z dwu kandydatów z prawdopodobieństwem 50% jaka jest szansa, że różnica między kandydatami będzie mniejsza niż 100 głosów?
- 2. Na podstawie losowej próby szacujemy procent dorosłych osób popierających pewną partię polityczną. Chcemy by błąd był mniejszy niż 1% z prawdopodobieństwem 0.95? Ile w tym celu musimy przepytać osób? Jak zmieni się odpowiedź, jeśli wiemy, że partię popiera nie więcej niż 10% wyborców?
- 3. Prawdopodobieństwo urodzenia chłopca wynosi 0,517. Jakie jest prawdopodobieństwo, że wśród 10000 losowo wybranych noworodków liczba chłopców nie przewyższy liczby dziewcząt?
- 4. Rzucono 1000 razy kostką. Oszacuj prawdopodobieństwo, że suma wyrzuconych oczek będzie zawarta między 3410 a 3590.
- 5. Dane są niezależne zmienne losowe X_1,X_2,\ldots , o wspólnym rozkładzie z wartością oczekiwaną równą 0 i dodatnią wariancją. Wyznacz w zależności od $a,\alpha\in\mathbb{R}$

$$\lim_{n\to\infty} \mathbf{P}\left(\left|\frac{X_1+\ldots+X_n}{n^{\alpha}}\right|>a\right).$$

- 6. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{P}(X_i = a) = \mathbf{P}(X_i = 1/a) = 1/2$ dla pewnego a > 1. Wykaż, że zmienne $Z_n = (X_1 X_2 \cdots X_n)^{1/\sqrt{n}}$ są zbieżne według rozkładu i znajdź rozkład graniczny.
- 7. Zmienne X_{λ} mają rozkład Poissona z parametrem λ . Wykaż, że

$$\frac{X_n - n}{\sqrt{n}} \to \mathcal{N}(0, 1)$$
 według rozkładu, gdy $n \to \infty$.

8. Udowodnij, że

$$\lim_{n \to \infty} e^{-n} \sum_{k \le n} \frac{n^k}{k!} = \frac{1}{2}.$$

- 9. Wykaż, że jeśli $X_n \Rightarrow X$ oraz $Y_n \Rightarrow c$ dla pewnego $c \in \mathbb{R}$, to
 - a) $X_n + Y_n \Rightarrow c + X$,
 - b) $X_n Y_n \to cX$.
- 10. Zmienne losowe X_1,X_2,\ldots są niezależne, mają ten sam rozkład taki, że $\mathbf{E}X_1=0,\,\mathrm{Var}(X)=\sigma^2<\infty.$ Zbadaj zbieżność według rozkładu następujących ciągów

$$U_n = \frac{\sqrt{n}(X_1 + \dots, X_n)}{X_1^2 + \dots + X_n^2}, \quad V_n = \frac{X_1 + \dots + X_n}{\sqrt{X_1^2 + \dots + X_n^2}}.$$

5

1. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi, takimi, że

$$\mathbf{P}(X_n = \pm 1) = \frac{1}{2}(1 - \frac{1}{n^2}), \quad \mathbf{P}(X_n = \pm n) = \frac{1}{2n^2}.$$

Wykaż, że

$$\frac{X_1 + \ldots + X_n}{\sqrt{n}} \Rightarrow \mathcal{N}(0, 1)$$

oraz $\operatorname{Var}(X_n) \to 2$. Wywnioskuj stąd, że

$$\frac{X_1 + \ldots + X_n}{\sqrt{\operatorname{Var}(X_1 + \ldots + X_n)}} \Rightarrow \mathcal{N}(0, 1/2).$$

- 2. Niech X będzie całkowalną z kwadratem zmienną losową, taką, że $X\sim 2^{-1/2}(Y+Z)$, gdzie Y,Z niezależne kopie X. Wykaż, że X ma rozkład $\mathcal{N}(0,\sigma^2)$.
- 3. Załóżmy, że zmienne X_k są niezależne oraz $\mathbf{P}(X_k=\pm 1)=1/2$ zbadaj zbieżność według rozkładu ciągu $n^{-3/2}(X_1+2X_2+\ldots+nX_n)$.
- 4. Zmienne X_i są niezależne i mają rozkład jednostajny na [-1,1]. Zbadaj zbieżność według rozkładu ciągu $n^{-1/2}(X_1+X_2^3+\ldots+X_n^{2n-1})$.
- 5. Zmienne X_1, X_2, \ldots są niezależne i mają jednakowy rozkład o średniej zero i wariancji 1. Ciąg (a_n) jest ograniczony oraz $s_n = (a_1^2 + a_2^2 \ldots + a_n^2)^{1/2} \to \infty$. Wykaż, że $s_n^{-1}(a_1X_1 + a_2X_2 + \ldots + a_nX_n)$ zbiega według rozkładu do $\mathcal{N}(0,1)$.
- 6. Zmienne X_n są niezależne, scentrowane, $\mathrm{Var}(X_n)=1$ oraz $\mathbf{E}X_n^4\leqslant 10$. Zbadaj zbieżność według rozkładu ciągu $n^{-1/2}(X_1+\ldots+X_n)$.
- 7. Udowodnij, że zmienna $X \sim \mathcal{N}(a, B)$ ma gęstość wtedy i tylko wtedy gdy B jest odwracalne oraz, że w tym ostatnim przypadku wynosi ona

$$g_X(x) = \frac{\sqrt{\det C}}{(2\pi)^{d/2}} \exp\Big(\frac{\langle C(x-a), x-a\rangle}{2}\Big), \ \text{gdzie} \ C = B^{-1}.$$

- 1. Rzucamy 10 razy symetryczną monetą. Niech X oznacza łączną liczbę orłów, zaś Y liczbę orłów w pierwszych czterech rzutach. Znajdź $\mathbf{E}(X|Y)$ oraz $\mathbf{E}(Y|X)$.
- 2. Załóżmy, że zmienne X,Y przyjmują wartości naturalne oraz

$$\mathbf{P}(X=k,Y=l) = \left\{ \begin{array}{ll} \frac{1}{l2^l} & \mathrm{dla} \ 1 \leqslant k \leqslant l \\ 0 & \mathrm{w} \ \mathrm{przeciwnym} \ \mathrm{przypadku} \end{array} \right.$$

Oblicz $\mathbf{E}(X|Y)$.

3. Wektor losowy (X, Y) ma gęstość

$$g(x,y) = \left\{ \begin{array}{ll} \frac{x^3}{2} e^{-x(y+1)} & \text{jeśli } x>0, y>0 \\ 0 & \text{w przeciwnym przypadku} \end{array} \right.$$

Znajdź $\mathbf{E}(X|Y)$.

- 4. Zmienne X_1,X_2,\ldots są niezależne o rozkładzie wykładniczym z parametrem λ , niech $S_n=X_1+X_2+\ldots+X_n.$
 - a) Oblicz $\mathbf{E}(S_n|X_1)$, $\mathbf{E}(S_n^2|X_1)$.
 - b) Dla $n \geqslant k$ wyznacz $\mathbf{E}(S_n|S_k)$, $\mathbf{E}(S_n^2|S_k)$ oraz $\mathbf{E}(e^{-S_n}|S_k)$.
- 5. Znajdź przykład zmiennych losowych X,Y, które nie są niezależne, ale $\mathbf{E}(X|Y)=\mathbf{E}X.$
- 6. Zmienne X i Y są niezależne, a f jest borelowską funkcją dwu zmiennych taką, że $\mathbf{E}|f(X,Y)|<\infty$. Wykaż, że $\mathbf{E}(f(X,Y)|Y)=g(Y)$ p.n., gdzie $g(y)=\mathbf{E}f(X,y)$.
- 7. Zmienne X i Y są całkowalne, niezależne i mają jednakowy rozkład. Wykaż, że $\mathbf{E}(X|X+Y)=\mathbf{E}(Y|X+Y)=\frac{1}{2}(X+Y)$.
- 8. Załóżmy, że ε_i są niezależnymi zmiennymi takimi, że $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$. Oblicz $\mathbf{E}(\varepsilon_1 + \varepsilon_2 \varepsilon_3 | \varepsilon_1 \varepsilon_2)$ oraz $\mathbf{E}(\varepsilon_1 \varepsilon_2 | \varepsilon_1 + \varepsilon_2 \varepsilon_3)$.
- 9. Zmienne X i Y są niezależne o rozkładzie jednostajnym na [0,1]. Oblicz $\mathbf{E}(\max(X,Y)|\min(X,Y))$ oraz $\mathbf{E}(X^3|X+Y)$.
- 10. Wektor (X,Y) ma łączny rozkład gaussowski o średniej zero taki, że $\mathrm{Var}(X) = \sigma_1^2$, $\mathrm{Var}(Y) = \sigma_2^2$ oraz $\mathrm{Cov}(X,Y) = c$. Oblicz $\mathbf{E}(X|Y)$ oraz $\mathbf{P}(X\geqslant 0|Y)$.

- 1. Zmienne τ i σ są momentami zatrzymania względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Wykaż, że $\tau+\sigma$ jest momentem zatrzymania. Czy $\tau-1$, $\tau+1$ są momentami zatrzymania?
- 2. Zmienne losowe (X_n) są adaptowalne względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Udowodnij, że następujące zmienne losowe są momentami zatrzymania dla dowolnego zbioru borelowskiego B:
 - a) $\tau_1 = \inf\{n : X_n \in B\}$ pierwsza wizyta w zbiorze B,
 - b) $\tau_k = \inf\{n > \tau_{k-1} : X_n \in B\}, k = 2, 3, \dots k$ -ta wizyta w zbiorze B.
- 3. Zmienne τ i σ są momentami zatrzymania względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Udowodnij, że $\{\tau < \sigma\}, \{\tau \le \sigma\}, \{\tau = \sigma\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} \text{ oraz } \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} = \mathcal{F}_{\tau \wedge \sigma}$.
- 4. Podaj przykład momentu zatrzymania τ , takiego, że $\sigma(\tau) \neq \mathcal{F}_{\tau}$.
- 5. Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych o skończonej wariancji i średniej zero oraz $S_n = X_1 + X_2 + \ldots + X_n$. Wykaż, że S_n i $S_n^2 \text{Var}(S_n)$ są martyngałami względem filtracji generowanej przez X_n .
- 6. Załóżmy, że $\varepsilon_1, \varepsilon_2, \ldots$ są niezależnymi zmiennymi losowymi takimi, że $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$ oraz $\mathcal{F}_n = \sigma(\varepsilon_1, \ldots, \varepsilon_n)$. Niech $S_n = \varepsilon_1 + \ldots + \varepsilon_n$.

 a) Znajdź wszystkie liczby a takie, że $(a^n \cos(S_n), \mathcal{F}_n)$ jest martyngałem.
 b) Wykaż, że dla dowolnego $\lambda > 0$, ciąg $(\exp(\lambda S_n n\lambda^2/2), \mathcal{F}_n)$ jest nadmartyngałem.
- 7. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{E}|X_i| < \infty$ dla wszystkich i. Udowodnij, że $M_n = X_1 X_2 \cdots X_n$ jest martyngałem względem filtracji generowanej przez X_n wtedy i tylko wtedy gdy $\mathbf{E} X_i = 1$ dla wszystkich i lub $X_1 = 0$ p.n..
- 8. Niech X_n będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i średniej 0. Wykaż, że ciąg Z_n dany wzorem $Z_0 = 0$ $Z_n = X_0X_1 + X_1X_2 + \ldots + X_{n-1}X_n$, $n \ge 1$ jest martyngałem względem $\mathcal{F}_n = \sigma(X_0, X_1, \ldots, X_n)$.
- 9. Niech $t \in \mathbb{R}$ oraz X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o rozkładzie normalnym $\mathcal{N}(0,1)$. Przyjmijmy $S_n = X_1 + X_2 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Znajdź wszystkie ciągi (a_n) takie, że $(e^{itS_n + a_n}, \mathcal{F}_n)$ jest martyngałem.

- 1. Ciąg (X_n) jest martyngałem. Zbadaj, czy są pod- bądź nadmartyngałami ciągi:
 - a) $(|X_n|^p)_n \ p \ge 1$;
 - b) $(X_n \wedge a)_n$;
 - c) $(X_n \vee a)_n$;
 - d) $(X_n^3)_n$.
- 2. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{P}(X_i = 1) = p = 1 \mathbf{P}(X_i = -1)$. Przyjmując $S_0 = 0$ oraz $S_n = \sum_{i=1}^n X_i$ znajdź wszystkie liczby rzeczywiste λ dla których λ^{S_n} jest martyngałem względem filtracji generowanej przez (X_n) .
- 3. Oblicz prawdopodobieństwo wygrania (przy skończonym kapitale obu graczy) w grze orła i reszkę monetą niesymetryczną.
- 4. Oblicz średni czas oczekiwania na ruinę któregoś z graczy w grze orła i reszkę
 - a) monetą symetryczną,
 - b) monetą niesymetryczną.
- 5. Niech X_1, X_2, \ldots będą niezależnymi zmienymi losowymi takimi, że $P(X_i = \pm 1) = 1/2, S_n = X_1 + X_2 + \ldots + X_n$ oraz $\tau = \inf\{n : S_n = 1\}$. Wykaż, że $\mathbf{E}\tau = \infty$.
- 6. Gracz A dysponuje nieskończonym kapitałem. Ile wynosi średni czas oczekiwania na wygranie 1 zł. przez A w grze orła i reszkę
 - a) moneta symetryczna,
 - b) monetę niesymetryczną.
- 7. Niech (X_n, \mathcal{F}_n) będzie adaptowalnym ciągiem całkowalnym. Udowodnij, że jest on martyngałem wtedy i tylko wtedy, gdy dla dowolnego ograniczonego momentu zatrzymania τ , $\mathbf{E}X_{\tau} = \mathbf{E}X_0$.
- 8. X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o wspólnym rozkładzie takim, że $EX_i^2 < \infty$. Udowodnij, że dla dowolnego momentu zatrzymania względem filtracji generowanej przez (X_n) takiego, że $\mathbf{E}\tau < \infty$ zachodzi $\mathbf{E}(S_\tau \tau \mathbf{E}X_1)^2 = \mathbf{E}\tau \mathrm{Var}(X_1)$. Czy wzór ten musi być prawdziwy bez założenia o skończoności $\mathbf{E}\tau$?
- 9. Niech $(\varepsilon_n)_n$ będzie ciągiem niezależnych symetrycznych zmiennych losowych o wartościach ± 1 . Wykaż, że nadmartyngał

$$Z_n := e^{a(\varepsilon_1 + \dots + \varepsilon_n) - (na^2/2)}$$

jest zbieżny prawie na pewno. Czy jest zbieżny w L_1 ?

10. Niech X_1, X_2, \dots będą niezależne o rozkładzie jednostajnym na [0,2]. Wykaż, że

$$M_n = \prod_{k=1}^n X_k$$

tworzą martyngał (względem filtracji generowanej przez X_n) zbieżny do 0 prawie na pewno, ale nie w L_1 .

11. Podaj przykład martyngału X_n takiego, że $X_n \to 0$ p.n. oraz $\mathbf{E}|X_n| \to \infty$.

9

- 1. Wykaż, że jeśli (X_i) i (Y_i) są jednostajnie całkowalne, to dla dowolnych $a, b \in \mathbb{R}$, $(aX_i + bY_i)$ jest jednostajnie całkowalny.
- 2. Znajdź jednostajnie całkowalny ciąg X_n taki, że $\mathbf{E}\sup_n |X_n| = \infty$.
- 3. Niech $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ spełnia warunek $\lim_{x\to\infty} \frac{\varphi(x)}{x} = \infty$. Wykaż, że jeśli $\sup_i \mathbf{E}\varphi(|X_i|) < \infty$, to (X_i) jest jednostajnie całkowalny.
- 4. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi takimi, że X_n ma rozkład Poissona z parametrem n^2 . Wykaż, że ciąg

$$M_n = (n!)^{-2} X_1 \cdots X_n, \quad n = 1, 2 \dots$$

jest martyngałem względem filtracji generowanej przez (X_n) . Czy M_n jest zbieżny prawie na pewno? Czy jest zbieżny w L^2 ? Czy jest zbieżny w L^1 ?

- 5. Zmienne $\varepsilon_1, \varepsilon_2, \ldots$ są niezależne oraz $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$. Rozstrzygnij, które z podanych poniżej procesów są łancuchami Markowa.
 - a) $X_0 = 0, X_n = \varepsilon_1 + \ldots + \varepsilon_n, n = 1, 2, \ldots$
 - b) $Y_0 = 1$, $Y_n = \varepsilon_1 \varepsilon_2 \cdots \varepsilon_n$, $n = 1, 2, \dots$
 - c) $Z_n = (-1)^{\varepsilon_n}, , n = 1, 2, \dots$
 - d) $W_n = \varepsilon_n \varepsilon_{n+1}, n = 1, 2, \dots$
 - e) $V_n = \varepsilon_n + \varepsilon_{n+1}, n = 1, 2 \dots$
- 6. Załóżmy, że E jest zbiorem przeliczalnym, $f \colon E \times \mathbb{R} \to E$ jest funkcją mierzalną (przyjmujemy, że wszystkie podzbiory E są mierzalne), Y_0 pewną zmienną o wartościach w E, zaś X_0, X_1, \ldots ciągiem niezależnych zmiennych losowych. Definiujemy

$$Y_{n+1} = f(X_n, Y_n)$$
dla $n = 0, 1,$

Wykaż, że (Y_n) jest łańcuchem Markowa.

- 7. Dwa jednorodne łańcuchy Markowa $(X_n), (Y_n)$ z macierzą przejścia P są niezależne. Udowodnij, że $Z_n = (X_n, Y_n)$ też jest łańcuchem Markowa i znajdź jego macierz przejścia.
- 8. Ciąg $(X_n)_{n\geqslant 0}$ jest łańcuchem Markowa o wartościach w E. Wykaż, że dla dowolnej funkcji różnowartościowej $f:E\to E,\ (f(X_n))$ jest łańcuchem Markowa. Czy tak być musi, jeśli nie założymy różnowartościowości f?

1. Dla łańcuchów Markowa o przestrzeni stanów $\{1,2,3,4\}$ i poniższych macierzach przejścia znajdź wszystkie stany nieistotne i wszystkie zamknięte zbiory stanów.

a)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{4} & \frac{3}{4} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} \qquad b) \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & \frac{3}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 2. (X_n) jest łańcuchem Markowa, czy wynika stąd, że
 - a) $\mathbf{P}(X_n = a_{k+1} | X_{i_k} = a_k, X_{i_{k-1}} = a_{k-1}, \dots, X_{i_1} = a_1) = \mathbf{P}(X_n = a_{k+1} | X_{i_k} = a_k)$ dla dowolnych liczb całkowitych $0 \le i_1 < i_2 < \dots < i_k < n$ oraz stanów a_1, a_2, \dots, a_{k+1} ?
 - b) $\mathbf{P}(X_n \in A_{k+1} | X_{i_k} \in A_k, X_{i_{k-1}} \in A_{k-1}, \dots, X_{i_1} \in A_1) = \mathbf{P}(X_n \in A_{k+1} | X_{i_k} \in A_k)$ dla dowolnych liczb całkowitych $0 \le i_1 < i_2 < \dots < i_k < n$ oraz zbiorów stanów A_1, A_2, \dots, A_{k+1} ?
- 3. Udowodnij, że łańcuch Markowa jest nieprzywiedlny wtedy i tylko wtedy gdy nie ma właściwych podzbiorów zamkniętych.
- 4. Zmienne Y_0,Y_1,Y_2,\ldots są niezależne i mają ten sam rozkład geometryczny z parametrem $\frac{1}{2}$. Ciąg zmiennych X_1,X_2,\ldots jest określony następująco: $X_0\equiv 1$ p.n., a dla $n\geqslant 0$,

$$X_{n+1} = \begin{cases} 1 & \text{jeśli } Y_n = 1, \\ X_n Y_n & \text{jeśli } Y_n \neq 1. \end{cases}$$

- a) Wykaż, że $(X_n)_n$ jest nieprzywiedlnym łańcuchem Markowa.
- b) Czy ten łańcuch jest okresowy?
- c) Udowodnij, że wszystkie stany sa powracające.
- 5. Wykaż, że jeśli y jest stanem chwilowym to $\sum_{n=0}^{\infty} p_{x,y}(n) < \infty$ dla wszystkich x, w szczególności $\lim_{n\to\infty} p_{x,y}(n)=0$.
- 6. Wykaż, że skończony łańcuch Markowa ma przynajmniej jeden stan powracający.
- 7. Wykaż, że w powracalnym i nieprzywiedlnym łańcuchu Markowa z prawdopodobieństwem 1 każdy stan jest odwiedzany nieskończenie wiele razy (niezależnie od rozkładu początkowego).

1. Zbadaj okresowość łańcuchów o poniższych macierzach przejścia:

a)
$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

- 2. Jednorodny łańcuch Markowa o przestrzeni stanów $\{0,1,2\ldots\}$ ma macierz przejścia $(p_{n,m})_{n,m\geqslant 0}$ taką, że $p_{0,1}=1,\ p_{n,n+1}=1-p_{n,n-1}=p$ dla $n=1,2\ldots$, gdzie $p\in (0,1).$ W zależności do parametru p wyznacz wszystkie rozkłady stacjonarne.
- 3. W dwu urnach znajduje się łącznie n kul. W każdej chwili wybieramy losowo kulę i przenosimy ją do innej urny. Znajdź rozkład stacjonarny liczby kul w pierwszej urnie.
- 4. Rozważamy symetryczne błądzenie losowe (X_n) po kracie \mathbb{Z}^2 , tzn. ze stanu (i,j) przechodzimy z równymi prawdopodobieństwami do jednego ze stanów (i+1,j), (i-1,j) (i,j+1) i (i,j-1). Czy łańcuch Markowa (X_n) jest
 - a) okresowy,
 - b) powracalny?
 - c) Czy istnieje rozkład stacjonarny?
- 5. Ciąg niezależnych zmiennych losowych Y_1, Y_2, \ldots ma wspólny rozkład taki, że $\mathbf{P}(Y_i=1)=1-\mathbf{P}(Y_i=-1)=p$. Definiujemy rekurencyjnie ciąg X_n wzorami $X_0=1, \ X_{n+1}=\max(X_n,1)+Y_n$. Wykaż, że ciąg ten jest łańcuchem Markowa. Znajdź rozkład stacjonarny, o ile istnieje.
- 6. W powiecie N. syn piekarza zostaje piekarzem z prawdopodobieństwem 3/4, a syn niepiekarza z prawdopodobieństwem 1/100. Jakie jest prawdopodobieństwo, że wnuk piekarza jest piekarzem? A potomek w n-tym pokoleniu? Jaki procent ludzi w N. stanowią piekarze?

1. Macierz przejścia łańcucha Markowa $(X_n)_n$ na przestrzeni $S = \{1, 2, 3, 4\}$ dana jest następująco:

$$\left(\begin{array}{cccc} 0 & \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4}\\ \frac{2}{3} & 0 & 0 & \frac{1}{3}\\ 0 & \frac{2}{3} & \frac{1}{3} & 0 \end{array}\right).$$

- a) Czy jest to łańcuch nieprzywiedlny?
- b) Oblicz prawdopodobieństwo przejścia w dwu krokach ze stanu 1 do stanu 2.
- c) Zakładając, że $X_0=1$ p.n. oblicz prawdopodobieństwo tego, że X_n będzie w stanie 2 przed stanem 4.
- d) Zakładając, że $X_0=3$ p.n. oblicz wartość oczekiwaną czasu dojścia do stanu 2.
- 2. Rzucamy kostką tak długo, aż pojawi się ciąg 16 lub 66. Jakie jest prawdopodobieństwo, że ciąg 16 pojawi się wcześniej?
- 3. Rzucamy symetryczną monetą aż do momentu, gdy wyrzucimy pod rząd cztery orły. Oblicz wartość oczekiwaną liczby wykonanych rzutów.