Pseudo-code:

```
For i to size – 1

Grab point 1 & point 2 and calculate distance(pt1,pt2) initialize result struct

For j (j=i+1) to size-1

Distance = dis (pt[i],pt[j])

If(distance < result.distance)

Result.distance = distance

Clear vector which store the shortest pair of points

Push pt[i],pt[i+1] to vector

else if (distance == result.distance)

push finded pairs to vector

End for
```

Asymptotic Analysis of run time:

For the out for loop it iterates through all elements of the points array who has n elements, so it will execute n times. Inner loop go through element from index i + 1 to 0, so it will go through 1 times, 2 times, ... n-1 times. When out loop go through n times, total times for inner loops execution is $1 + 2 + 3 + ... + n-1 = (1 + n - 1)*n/2 = n^2/2$.

When n -> infinite, $T(n) = n^2/2$, which divider 2 is not import, due to the n^2 domain it. $n^2/2 < n^2$, so $T(n) = O(n^2)$. The time complexity of Brute force would be $O(n^2/2)$.

Empirical analysis and plotting:

NumInputs(100)\times	1st	2nd	3rd	4th	5th
Runtime	0.000159s	0.000149s	0.000155s	0.000170s	0.000148s
	6th	7th	8th	9th	10 th
	0.000162s	0.000150s	0.000175s	0.000149s	0.000149s

Average: 0.000157s

NumInputs(1000)\times	1st	2nd	3rd	4th	5th
Runtime	0.014481s	0.014158s	0.014113s	0.014336s	0.014153s
	6th	7th	8th	9th	10 th
	0.014154s	0.013996s	0.013928s	0.013956s	0.013961s

Average: 0.014248s

NumInputs(10000)\times	1st	2nd	3rd	4th	5th
Runtime	1.424536s	1.451141s	1.554845s	1.533729s	1.411581s
	6th	7th	8th	9th	10 th
	1.592131s	1.407556s	1.409005s	1.589402s	1.412498s

Average: 1.4786474s

NumInputs(100000)\times	1st	2nd	3rd	4th	5th
Runtime	141s	142s	140s	140s	142s
	6th	7th	8th	9th	10 th
	139s	140s	141s	141s	142s

Average: 140.8s

Plot:

After we plug the points into the curve fitting tools, I get this curve and whose formula almost same as $y=x^2$.