Entraînement pour interro 3

(Cette interro blanche ne sera pas corrigée. Les ressources du cours ou disponibles en BU permettent l'autocorrection.)

Exercice 1. Définitions, énoncés et preuves de cours, comme d'habitude.

Exercice 2. Dessiner la partie $K := \{z \in \mathbb{C}, |\text{R\'e}(z)| + |\text{Im}(z)| \le 1\}$. Montrer qu'il s'agit d'un compact. Paramétrer son bord (muni de son orientation canonique).

Exercice 3. Appliquer $\frac{\partial}{\partial z}$ et $\frac{\partial}{\partial \overline{z}}$ à $f: \mathbb{C} \to \mathbb{C}, z \mapsto \frac{e^{\operatorname{R\acute{e}}(z)}}{1+|z|^2}$, en utilisant les règles de calcul avec les variables z et \overline{z}

Exercice 4. Soit $U \subset \mathbb{C}$ un ouvert connexe et $f: U \to \mathbb{C}$ une fonction holomorphe. On suppose que $\forall z \in U, e^{f(z)} \in \mathbb{Z}$. Que peut-on dire de f?

Exercice 5. Le but de l'exercice est de calculer $I := \int_0^{+\infty} \frac{dt}{1+t^4}$.

- 1. Donner le domaine de définition U de l'expression $\frac{1}{z^4+1}$, où z est un nombre complexe. Dans la suite on note $f: U \to \mathbb{C}, z \mapsto \frac{1}{z^4+1}$.
- 2. Pour R>0, on note $K_R=\{z\in\mathbb{C}, \mathrm{R}\acute{e}(z)\geq 0, \mathrm{Im}(z)\geq 0, |z|\leq R\}$. Montrer que K_R est compact. Dans la suite, on paramètre ∂K_R par le chemin $\gamma_1^R\vee\gamma_2^R\vee\gamma_3^R$, où :

$$\gamma_1^R : [0, R] \to \mathbb{C}, t \mapsto t,$$

$$\gamma_2^R : [0, \pi/2] \to \mathbb{C}, t \mapsto Re^{it},$$

$$\gamma_2^R : [0, R] \to \mathbb{C}, t \mapsto iR - it.$$

- 3. Déterminer les valeurs de R>0 pour lesquelles $\int_{\partial K_R} f(z)dz$ a un sens. Pour ces valeurs, calculer cette intégrale, en utilisant la fonction auxiliaire $z\mapsto (z-e^{i\pi/4})f(z)$, dont on précisera le domaine de définition et d'holomorphie.
- 4. Montrer que $\int_{\gamma_i^R} f(z)dz \xrightarrow{R \to +\infty} I$.
- 5. Montrer que $\int_{\gamma_2^R} f(z) dz \xrightarrow{R \to +\infty} 0$.
- 6. Montrer que $\int_{\gamma_3^R} f(z) dz \xrightarrow{R \to +\infty} -iI$.
- 7. En déduire la valeur de I.

Indications pour le dernier exercice

Le dernier exercice est une variation sur l'exercice traité en TD sur les intégrales de $\frac{1}{1+t^2}$ et $\frac{1}{(1+t^2)^2}$. En fin de semestre, il n'y aura plus forcément toutes les questions intermédiaires.

1.

- 2. Des questions de topo basique vont tomber à l'exam car il y a de très grosses faiblesses là-dessus. Il faut savoir montrer qu'une partie est compacte, ouverte, fermée, ou connexe. Suggestion de méthode de travail : reprendre les TD de topo de (S4 et) S5. Noter qu'on peut également demander de paramétrer, sans donner le paramétrage.
- 3. Il faut appliquer la formule de Cauchy à *g* comme dans l'exercice du TD.
- 4. Paramétrage puis convergence dominée, ou monotone. Rédiger les détails.
- 5. Majoration standard avec la longueur du chemin et le sup de la fonction.
- 6. Paramétrer puis se ramener à une intégrale qui ressemble à *I*.
- 7. Autocorrection: on trouve $I = \frac{\pi}{2\sqrt{2}}$.