Anotações Teoria dos Conjuntos de Lógica

Andrey França

$March\ 22,\ 2017$

Contents

1	Noções de Lógica	2
	1.1 Conectores Lógicos	2
2	Axioms of Zermelo-Fraenkel	2

1 Noções de Lógica

Definição 1.1. Chama-se proposição ou sentença toda oração declarativa que pode ser classificada de verdadeira ou falsa.

Observamos que toda proposição apresenta três características obrigatórias:

- 1) sendo oração, tem sujeito e predicado;
- 2) é declarativa (não é exclamativa nem interrogativa)
- 3) tem um e somente um, dos dois valores lógicos: ou é verdadeira(V) ou é falsa(T).

Exemplo. São proposições:

- a) $9 \neq 5$
- b) 7 ¿ 3
- c) $2 \in \mathbb{Z}$
- d) 3 11
- e) $\mathbb{Z} \subset \mathbb{Q}$

Definição 1.2. A proposição $\neg p$ tem sempre um valor oposto de p, isto é, $\neg p$ é verdadeira, quando p é falsa, e vice-versa.

Como pode ser visto na table abaixo:

p	$\neg p$
F	V
V	\mathbf{F}

1.1 Conectores Lógicos

Apartir de proposições dadas podemos criar novas proposições mediante o emprego de dois símbolos lógicos chamados conectivos: conectivo \land (lê-se e), e conectivo \lor (lê-se ou).

Definição 1.3. A conjunção $p \land q$ é verdadeira se são ambas verdadeiras; se ao menos uma delas for falsa, então $p \land q$ é falsa.

2 Axioms of Zermelo-Fraenkel

Axiom 1 (Axiom of Extensionality). If X and Y have the same elements, then X = Y.

Axiom 2 (Axiom of Pairing). For any a and b there exists a set a, b that contains exactly a and b

Axiom 3 (Axiom Schema of Separation). if P is a property (with parameter p), then for any X and p there exists a set $Y = \{u \in : P(u,p)\}$ that contains all those $u \in X$ that have property P.

Axiom 4 (Axiom of Union). For any X there exists a set $Y = \bigcup X$, the union of all elements of X.

Axiom 5 (Axiom of Power Set). For any X there exists a set Y = P(X), the set of all subsets of X.

Axiom 6 (Axiom of Infinity). There exists an infinite set.

Axiom 7 (Axiom Schema of Replacement). If a class F is a function, the for any X there exists a set $Y = F(X) = \{F(x) : x \in X\}$