Langage ensembliste

- 1. Expliciter les ensembles suivants (si nécessaire, reformuler l'énoncé d'une manière plus compréhensible) :
 - a) $A = \{ n \mid n \in \mathbb{N} \text{ et } 2n + 1 < 16 \}$
 - b) $B = \{ n \in \mathbb{N} \mid n^3 \text{ est impair } \}$
 - c) $C = \{3y + 1 \mid y \in \mathbb{N} \}$
 - d) $D = \{ a \in \mathbb{Z}^* \mid \text{ le produit de } a \text{ par 6 est élément de } \mathbb{Z}^* \}$
 - e) $E = \{ 4y \mid y \in \mathbb{Z} \}$
 - f) $F = \{ x \mid x \in \mathbb{Q} \text{ et } x^2 2 = 0 \}$
 - g) $G = \{ n \mid n \in \mathbb{N} \text{ et } 2 < 3n + 1 < 20 \}$
 - h) $H = \{ x \in \mathbb{R} \mid -5 < x 3 < 5 \text{ et } x > 2 \}$
 - i) $I = \{ x \in \mathbb{R} \mid x+5 > 4 \text{ ou } x+5 < -4 \}$
 - j) $J = \{ x \in \mathbb{R} \mid 3x^2 14x + 8 = 0 \text{ et } x \notin \mathbb{N} \}$
 - k) $K = \{ x \in \mathbb{Z} \mid x^2 3x 10 = 0 \text{ ou } x \in \mathbb{N}^* \}$

Soient \mathcal{E} l'ensemble des points du plan et U,V deux points fixés distincts :

- l) $L = \{ M \in \mathcal{E} \mid \text{distance de } U \text{ à } M = \text{distance de } V \text{ à } M \}$
- m) $N = \{ M \in \mathcal{E} \mid \text{distance de } U \text{ à } M \text{ est inférieure à 2} \}$
- n) $P = \{ M \in \mathcal{E} \mid l$ 'angle saillant entre MU et MV est droit $\}$
- 2. Décrire les ensembles suivants à l'aide d'une propriété caractéristique de leurs éléments :
 - a) K = l'ensemble des entiers positifs ou nuls multiples de 5.
 - b) L = l'ensemble des entiers compris entre -3/2 et 9/2.
 - c) $A = \{-3; -2; -1; 0; 1; 2; 3\}$
 - d) $B = \{3; 10; 17; 24; \cdots \}$
 - e) $C = \{-\sqrt{5}; \sqrt{5}\}$
 - f) N= l'ensemble des points du demi-plan contenant A dont la frontière est la médiatrice du segment AB.
- 3. Est-il juste ou faux d'écrire les relations suivantes?
 - a) $\sqrt{4} \notin \mathbb{N}$

e) $\{1\} \in \{1; 4; 5\}$

b) $\mathbb{N} \subset \mathbb{N}$

f) $\{1; 4\} \supset \{4\}$

c) $\mathbb{Q} \in \mathbb{Q}$

g) $\emptyset \subset \mathbb{R}$

 $d) \ 2 \in \emptyset$

h) $\{2; 5\} \not\subset \{2; 4; 6\}$

4. Soient $A = \{1; 2; 3; 4\}$, $B = \{1; 2; 3\}$, $C = \{2; 4\}$; trouver tous les ensembles X vérifiant :

a)
$$X \subset B$$
 et $X \subset C$,

c)
$$X \subset A$$
 et $X \not\subset B$,

b)
$$X \subset B$$
 et $X \not\subset C$,

d)
$$X \subset C$$
 et $X \not\subset B$.

5. Dans quels cas, les ensembles A et B sont-ils égaux?

a)
$$A = \{ n \in \mathbb{Z} \mid n^2 < 4 \}$$

a)
$$A = \{n \in \mathbb{Z} \mid n^2 \le 4\}$$
 et $B = \{x \in \mathbb{R} \mid x^2 - 3x + 2 = 0\}$,
b) $A = \{x \in \mathbb{R} \mid x^2 = -1\}$ et $B = \{x \in \mathbb{Q} \mid x^2 = 2\}$,
c) $A = \{x \in \mathbb{Z} \mid x^2 \le 1\}$ et $B = \{x \in \mathbb{R} \mid x^3 = x\}$.

b)
$$A = \{x \in \mathbb{R} \mid x^2 = -1\}$$

et
$$B = \{x \in \mathbb{O} \mid x^2 = 2\}$$
.

c)
$$A = \{x \in \mathbb{Z} \mid x^2 < 1\}$$

et
$$B = \{x \in \mathbb{R} \mid x^3 = x\}$$
.

6. On note $\mathcal{P}(E)$ l'ensemble de toutes les parties d'un ensemble E. Soit $E = \{1; 2; 3\}$.

- a) Enumérer les éléments de $\mathcal{P}(E)$.
- b) Définir $F = \{\{1\}; \{1; 2\}; \{1; 3\}; \{1; 2; 3\}\}$ par une propriété caractéristique de ses éléments.

7. Soit $A = \{a; b\}$. Est-il juste ou faux d'écrire les relations suivantes?

a)
$$\{a\} \subset A$$
,

e)
$$A \in A$$
,

b)
$$\{a\} \in A$$
,

f)
$$A \supset A$$
,

c)
$$\{a\} \in \mathcal{P}(A)$$
.

g)
$$A \in \mathcal{P}(A)$$
.

d)
$$\{\{a; b\}\} = A$$
,

h)
$$\{\{a\}; \{b\}\} = \mathcal{P}(A)$$
.

8. Soient $A \subset E$ et $B \subset E$. Quels sont les éléments de A, B et E si :

$$A \cup B = \{2; 3; 5; 7; 8; 9; 10\},$$

 $C_E A = \{1; 4; 5; 6; 8; 9\},$
 $C_E B = \{1; 2; 3; 4; 6\}.$

9. Soient $A, B, C \subset E$. Quels sont les éléments de A, B, C et E sachant que :

$$C_E(A \cup B \cup C) = \{1; 8; 12\},\$$

$$C_EB = \{1; 2; 5; 6; 8; 10; 11; 12\},\$$

$$B \cap C = \emptyset$$
,

$$A \cap C = \{5\},\,$$

$$A \cup B = \{2; 3; 4; 5; 7; 9\},$$

$$A \cup C = \{2; 3; 4; 5; 6; 10; 11\}.$$

10. Trouver des ensembles A, B, C tels que : $A \cap B \cap C = \emptyset$ mais ni $A \cap B$, ni $A \cap C$, ni $B \cap C$ ne soient vides.

- 11. On note par $n\mathbb{Z}$, $n\in\mathbb{N}^*$, l'ensemble des multiples de n dans \mathbb{Z} . Expliciter les ensembles suivants :
 - a) $6\mathbb{Z} \cap 4\mathbb{Z}$,
 - b) $7\mathbb{Z} \cap 2\mathbb{Z}$,
 - c) $3\mathbb{Z} \cap 5\mathbb{Z}$.
- 12. On considère les ensembles suivants :

$$A = \{x \in \mathbb{R} \mid -x^2 + x + 12 > 0\}$$

$$B = \{x \in \mathbb{R}_+ \mid (x - 1)^2 > 0\}$$

$$C = \{x \in \mathbb{R} \mid x^2 - 25 \le 0\}$$

Expliciter:

- a) $A \cap B$
- b) $A \cup B$
- c) $A \cup (B \cap C)$
- d) $A \cap (B \cup C)$

- e) $C_C(A \cap B)$
- f) $C_C A \cup B$
- g) peut-on trouver une formulation équivalente dans les cas c) et d)?

13. On donne :

$$A = \{x \in \mathbb{Z} \mid 1 \le x < 4\}$$

$$B = \{x \in \mathbb{Z} \mid -2 \le x \le 3\}$$

- a) Représenter graphiquement $A \times B$.
- b) Trouver un sous-ensemble H' de $A \times B$ tel que H' s'écrit comme un ensemble produit.
- c) Trouver un sous-ensemble H'' de $A \times B$ tel que H'' ne peut pas s'écrire comme un ensemble produit.
- **14.** Soient $G = \{1; 2\}$, $F = \{-1; 0; 1\}$. Exprimer $K = ((\mathbb{Z} \times G) \cap (F \times \mathbb{N})) \cup G^2$ comme produit de deux ensembles à déterminer.
- 15. On considère les ensembles suivants :

$$A = \{x \in \mathbb{Z} \mid -1 \le x < 4\}$$

$$B = \{x \in \mathbb{Z} \mid -1 < x \le 3\}$$

$$C = \{(x; y) \in \mathbb{R}^2 \mid y = -x + 1\}$$

Représenter graphiquement $(A \times B) \cap C$.

16. On considère les ensembles suivants :

$$A =]0; \to [$$

$$E = \{x \in 2\mathbb{Z} \mid -4 \le x < 4\}$$

$$B = \bigcup_{k \in E}]k; k+1]$$

$$D = \{(x; y) \in \mathbb{R}^2 \mid y+x-3=0\}$$

Représenter graphiquement $(B \times A) \cap D$.

17. On considère les ensembles suivants :

$$\begin{array}{rcl} A & = &]-3; \to [\\ I & = & \{-3; \, -1; \, 1; \, 3\} \\ B & = & \bigcup_{k \in I}]k; \, k+1] \\ D & = & \{(x; \, y) \in \mathbb{R}^2 \, | \, x \geq 4 \text{ ou } |y| \leq 2\} \end{array}$$

Représenter graphiquement $(A \times B) \cap D$.

- **18.** Expliciter $\mathcal{P}(\mathcal{P}(E))$ où $E = \{(0; 1)\}$.
- **19.** Soient P et Q deux propriétés définies sur un référentiel E. On considère les ensembles $A = \{x \in E \mid x \text{ vérifie } P\}$ et $B = \{x \in E \mid x \text{ vérifie } Q\}$.
 - a) Traduire en langage ensembliste la propriété :

R: quel que soit x appartenant à E, x vérifie [(nonP) ou Q].

Traduire en langage ensembliste la propriété $S:\ P\ \Rightarrow\ Q$.

- b) A l'aide d'un diagramme de Venn, illustrer l'équivalence entre les propriétés R et S.
- **20.** Soient $E = \{ n \in \mathbb{Z} \mid -20 \le n \le 20 \}$ et P, Q, R trois propriétés définies sur E. P: "est divisible par 4", Q: "est divisible par 5" et R: "est divisible par 10". Traduire en langage ensembliste, puis vérifier sur E l'implication : $(P \text{ et } Q) \Rightarrow R$.

Réponses

```
1. a) A = \{0; 1; 2; 3; 4; 5; 6; 7\},
```

- b) $B = \{1; 3; 5; 7; \ldots\},\$
- c) $C = \{1; 4; 7; 10; 13; 16; \ldots\},\$
- d) $D = \mathbb{Z}^*$
- e) $E = \{ \dots 8; -4; 0; 4; 8; 12; \dots \}$
- f) $F = \emptyset$,
- g) $G = \{1; 2; 3; 4; 5; 6\}$
- h) H = [2; 8],
- i) $I =] \leftarrow; -9[\cup] 1; \rightarrow [,$
- j) $J = \{2/3\}$
- k) $K = \{-2; 1; 2; 3; 4; \ldots\}$
- 1) L est l'ensemble des points de la médiatrice de UV.
- m) N est l'ensemble des points du disque de centre U et de rayon 2, frontière non-comprise.
- n) P est l'ensemble des points du cercle de Thalès du segment UV, extrémités non-comprises.
- **2.** a) $K = \{x \in \mathbb{N} \mid \exists k \in \mathbb{N}, x = 5k\},\$
 - b) $L = \{x \in \mathbb{Z} \mid -3/2 < x < 9/2\},\$
 - c) $A = \{x \in \mathbb{Z} \mid |x| \le 3\},\$
 - d) $B = \{x \in \mathbb{N} \mid \exists k \in \mathbb{N}, x = 3 + 7k\},\$
 - e) $C = \{x \in \mathbb{R} \mid x^2 5 = 0\},\$
 - f) Soit \mathcal{E} l'ensemble des points du plan; $N = \{M \in \mathcal{E} \mid d(M; A) \leq d(M; B)\}$, où d désigne la distance.
- 3. a) faux : $2 \in \mathbb{N}$,

e) faux : $\{1\} \subset \{1; 4; 5\}$,

b) juste,

f) juste,

c) faux : $\mathbb{Q} \subset \mathbb{Q}$,

g) juste,

d) faux : $2 \notin \emptyset$,

h) juste.

- **4.** a) \emptyset , $\{2\}$;
 - b) {1}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3};
 - c) {4}, {1; 4}, {2; 4}, {3; 4}, {1; 2; 4}, {1; 3; 4}, {2; 3; 4}, {1; 2; 3; 4};
 - d) {4}, {2; 4}.

```
5. a) A \neq B: par exemple: -1 \in A mais -1 \notin B,
```

b)
$$A = B = \emptyset$$
,

c)
$$A = B = \{-1; 0; 1\}$$
.

6.
$$\mathcal{P}(E) = \{\emptyset; \{1\}; \{2\}; \{3\}; \{1; 2\}; \{1; 3\}; \{2; 3\}; \{1; 2; 3\}\},\$$

$$F = \{X \in \mathcal{P}(E) \mid 1 \in X\}.$$

- b) faux : $\{a\} \subset A$,
- c) juste,
- d) faux : $\{\{a; b\}\}\subset \mathcal{P}(A)$,
- e) faux : $A \subset A$,
- f) juste,
- g) juste,
- h) faux : $\{\{a\}; \{b\}\} \subset \mathcal{P}(A)$.

8.
$$A = \{2; 3; 7; 10\},\$$

 $B = \{5; 7; 8; 9; 10\},\$
 $E = \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}.$

9.
$$A = \{2; 3; 4; 5\},$$

$$B = \{3; 4; 7; 9\},\$$

$$C = \{5; 6; 10; 11\},\$$

$$E = \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12\}.$$

10.
$$A = \{1, 2\}, B = \{1, 3\}, C = \{2, 3\}, \text{ par exemple.}$$

11. a)
$$6\mathbb{Z} \cap 4\mathbb{Z} = \{\cdots - 24; -12; 0; 12; 24; \ldots\} = 12\mathbb{Z}, \quad 12 = \text{ppcm } (6,4),$$

b)
$$7\mathbb{Z} \cap 2\mathbb{Z} = \{\cdots - 28; -14; 0; 14; 28; \ldots\} = 14\mathbb{Z}$$
,

c)
$$3\mathbb{Z} \cap 5\mathbb{Z} = \{\cdots - 30; -15; 0; 15; 30; \ldots\} = 15\mathbb{Z}$$
.

12.
$$A =]-3; 4[, B = \mathbb{R}_+ - \{1\}, C = [-5; 5].$$

- a) $A \cap B = [0; 1[\cup]1; 4[,$ e) $C_C(A \cap B) = [-5; 0[\cup \{1\} \cup [4; 5],$
- b) $A \cup B =]-3; \to [$,
- f) $C_C A \cup B = [-5; -3] \cup [0; 1] \cup [1; \to [,$
- c) $A \cup (B \cap C) =]-3; 5],$ g) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$

d)
$$A \cap (B \cup C) =] - 3; 4[,$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

13. a)

- b) Par exemple:
 - $H' = \{(3; -2); (3; -1); (3; 0); (3; 1); (3; 2); (3; 3)\} = \{3\} \times B$ est un ensemble produit;
 - $H''=\{(1;\,1);\,(2;\,2)\}\subset A\times B$ n'est pas un ensemble produit.
- **14.** $K = \{-1; 0; 1; 2\} \times \{1; 2\}$.
- **15.** $A = \{-1; 0; 1; 2; 3\}, \qquad B = \{0; 1; 2; 3\}, \qquad C = \{(x; y) \in \mathbb{R}^2 \mid y = -x + 1\}.$

16. $A =]0; \rightarrow [,$ $B =]-4; -3] \cup]-2; -1] \cup]0; 1] \cup]2; 3],$ $D = \{(x; y) \in \mathbb{R}^2 \mid x+y-3=0\}.$

17. $A =]-3; \rightarrow [,$ $B =]-3; -2] \cup]-1; 0] \cup]1; 2] \cup]3; 4],$ $D = \{(x; y) \in \mathbb{R}^2 \mid x \ge 4 \text{ ou } |y| \le 2\}.$

- **18.** $\mathcal{P}(E)$) = { \emptyset ; {(0; 1)}}, $\mathcal{P}(\mathcal{P}(E))$ = { \emptyset ; { \emptyset }; {{(0; 1)}}; { \emptyset ; {(0; 1)}}}.
- **19.** $R \Leftrightarrow \overline{A} \cup B = E$ $S \Leftrightarrow A \subset B$
- **20.** Soient $A = \{ n \in E \mid n \text{ v\'erifie } P \}$, $B = \{ n \in E \mid n \text{ v\'erifie } Q \}$ et $C = \{ n \in E \mid n \text{ v\'erifie } R \}$. Il suffit de v\'erifier que $(A \cap B) \subset C$.