Statistics and Estimation for Computer Science

İstanbul Teknik Üniversitesi

Mustafa Kamasak, PhD

Version: 2022.2.22

Descriptive Statistics

Descriptive Statistics

- Data should be explored to understand how it is distributed
 - Central tendency
 - Spread
 - Symmetricity
 - Flatness
- Data should be proprocessed
 - Invalid data
 - Missing values
 - Outliers
 - Normalized/standardized
 - Transformed
- Data should be visualized
 - ► Line plot
 - Bar graph
 - Histogram
 - ▶ Boxplot
 - **...**

Mean - Central Tendency

- ▶ Population mean $(\mu = E(X))$ is not a random variable
- ▶ Sample mean (\overline{x}) is used as a measure of central tendency of distribution

$$\overline{x} = \frac{1}{N} \sum_{i=0}^{N-1} x_i$$

- ▶ *N* is the sample size (number of instances in the sample)
- \triangleright x_i is the i^{th} instance in the sample
- ► For example:

$$x = [1, 3, 11, 5, 6]$$

Then

$$\overline{x} = \frac{1}{5}(1+3+11+5+6)$$

Range of Data - Spread of distribution

- Measure of data dispersion
- Range of data is the difference of maximum and minimum values in the data
- ► For example

$$x = [1, 3, 11, 5, 6]$$

Then

Range
$$x = 11 - 1 = 10$$

Standard Deviation - Spread of distribution

- ▶ Population std. dev. $(\sigma = E(X \mu)^2)$ is not a random variable
- ► Sample std. dev. (s) is also a **measure of data dispersion**

$$s = \sqrt{\frac{1}{N-1} \sum_{i=0}^{N-1} (x_i - \overline{x})^2}$$

- Why $(x_i \overline{x})^2$ instead of $(x_i \overline{x})$?
- A $\sum_{i=0}^{N-1} (x_i \overline{x})$ is always 0.
- ▶ Why N-1?
- A Will be explained later.
- ► For example:

$$x = [1, 3, 11, 5, 6]$$

Then

$$s = \sqrt{\frac{1}{4}(1-\overline{x})^2 + \dots + (6-\overline{x})^2}$$

Outliers (Aykırılıklar)

There may be outlier values in the data

$$x = [1, 3, 11253, 5, 6]$$

- ▶ Outliers may or may not be spurious data caused by temporary errors or rarely seen correct data point. It can never be known.
- Their probability of appearance is very low
- They are different than (further from) normal data
- They substantially affect estimated parameters

$$x = [1, 3, 11, 5, 6] \rightarrow \overline{x} = 5.2$$

 $x = [1, 3, 11253, 5, 6] \rightarrow \overline{x} = 2253.6$

- Outliers are detected and cleaned
- ightharpoonup Parameter estimation methods exist that are robust to outliers ightharpoonup Use ranks instead of values

Median (Ortanca)

- Median is also a measure of central tendency of a distribution
- Mean is sensitive to outliers → use median
- Order data in ascending way and assign ranks

$$x = [1, 3, 5, 6, 11253]$$

 $ranks = [1, 2, 3, 4, 5]$

Mean of rank is

$$\bar{r} = \frac{1}{5}(1+2+3+4+5) = 3$$

$$Median = x[\bar{r}] = 5$$

- ▶ If \overline{r} is not integer (happens when sample size is even), then the average of indices around \overline{r} is used.
- ▶ For example, if $\bar{r} = 3.5$, then median=0.5(x[3] + x[4])

Median

$$x = [1, 3, 11, 5, 6] \rightarrow \text{Median } x = 5, \overline{x} = 5.2$$

 $x = [1, 3, 11253, 5, 6] \rightarrow \text{Median } x = 5, \overline{x} = 2253.6$

Median

- Use of mean/median is also important when population distribution is skewed
 - ► Typically for symmetric (no-skew) distributions mean≈median
 - ightharpoonup Right-skewed dist ightharpoonup mean > median
 - ▶ Left-skewed dist \rightarrow mean < median
- Income data is very right-skewed. Consider mean personal income in US. What happens if you take out billionaires?

Trimmed Mean

- ▶ Trim data at the lower and higher tails before computation of mean
- ► For 10% trimmed mean, 5% of the upper and 5% of the lower data points are removed.
- ▶ The rest of the data (90%) is used to compute mean.
- Not preferred if sample size is small

Percentile (Yüzdelik)

- ▶ Range is sensitive to outliers → use percentiles
- Percentile of a data is the percentile of data that is smaller or equal to the value
- ► For example 15th percentile of the data corresponds to the value for which 15% of the values are smaller or equal to that value.
- ▶ 25^{th} percentile $\rightarrow 1^{st}$ quartile
- ▶ 50^{th} percentile $\rightarrow 2^{nd}$ quartile / median
- ▶ 75^{th} percentile $\rightarrow 3^{rd}$ quartile

$$x = [1, 3, 5, 6, 11253]$$

percentile = $[20, 40, 60, 80, 100]$ %

Interquatile Range (IQR)

Standard deviation is sensitive to outliers → use IQR

$$x = [1, 3, 11, 5, 6] \rightarrow s = 3.37$$

 $x = [1, 3, 11253, 5, 6] \rightarrow s = 4499.70$

- ▶ IQR is defined as the difference between 3rd and 1st quartile
- Robust estimator of standard deviation
- ▶ IQR is also used for outlier detection
- ▶ Values higher than Q3 + 1.5 * IQR are outliers
- ▶ Values lower than Q1 1.5 * IQR are outliers

Interquatile Range (IQR)

$$x = [1, 3, 5, 6, 11253]$$
 $ranks = [1, 2, 3, 4, 5]$
 $percentile = [20, 40, 60, 80, 100]\%$

- ▶ 1^{st} quartile $o Q1 = rac{1*3+3*1}{4} = 1.5$ (linear interpolation)
- ▶ median \rightarrow Q2 = 5
- ▶ 3^{rd} quartile $\rightarrow Q3 = \frac{5*1+6*3}{4} = 5.75$
- ightharpoonup IQR = 5.75-1.5 = 4.25
- \blacktriangleright Lower limit = 1.5-1.5*4.25 = -4,875
- ▶ Upper limit = 5.75+1.5*4.25 = 12.125
- ▶ $11253 \notin [-4,875, 12.125] \rightarrow \text{outlier!}$

IQR

$$x = [1, 3, 11, 5, 6] \rightarrow IQR = 4.25, s = 3.37$$

 $x = [1, 3, 11253, 5, 6] \rightarrow IQR = 4.25, s = 4499.70$

Outlier Detection - Z-score

- Z-score can be thresholded to detect outliers
- Z-score

$$z_i = \frac{x_i - \overline{x}}{s}$$

where \overline{x} is the data mean, and s_x is the standard deviation of data.

$$\overline{x} = \frac{1}{N} \sum_{i} x_{i}$$

$$s = \sqrt{\frac{1}{N-1} \sum_{i} (x_i - \overline{x})^2}$$

- ▶ Typically $|Z| \ge 2.5$ can be assumed outlier
- May not be good for asymmetric (skewed) distributed data

Outlier Detection - Hypothesis Testing

- There are hypothesis testing based methods as well
- ► Grubb's test

$$G = \frac{\max_i |x_i - \overline{x}|}{s}$$

G statistic is thresholded by

$$\frac{\textit{N}-1}{\sqrt{\textit{N}}}\sqrt{\frac{t_{\alpha}^2}{\textit{N}-2+t_{\alpha}^2}}$$

Dixon's Q-test

$$Q = \frac{\min_i |x_j - x_i|}{\text{range}}$$

where x_j is the data point tested for being outlier

- Q statistics thresholded by values obtained from table
- Both tests require normal distributed data

Outliers in Multivariate Data

- Data is typically multivariate/multidimensional
- ► For each instance, a vector is obtained
- ► For example, a person's age, height, weight is a 3-tuple data which are highly correlated
- ightharpoonup For multivariate data, iqr & z-score may not be enough ightarrow Model data and find abnormalities
- ▶ With more than 2 variates, it is easy to visualize/detect by looking

Outliers in Multivariate Data - Dbscan

- Dbscan (Density Based Spatial Clustering of Applications with Noise)
- Groups together points that are closely packed together
- Inputs
 - Distance metric
 - ightharpoonup Radius for neighborhood ϵ
 - minPts used to define core points

 ${\tt Image from https://en.wikipedia.org/wiki/DBSCAN}$

Outliers in Multivariate Data - Dbscan

- with minPts = 4
- ▶ Point A and the other red points are core points (area surrounding these points in ϵ radius contain at least 4 points including the point itself).
- ▶ They are all reachable from one another, they form a single cluster.
- ▶ Points B and C are not core points, but are reachable from A (via other core points) and thus belong to the cluster as well.
- Point N is a noise point that is neither a core point nor directly-reachable.

Outliers in Multivariate Data - Isolation Forest

- Outliers are by definition few and different
- ► A binary tree is formed by
 - Selection a random dimension
 - Selection a random value between [min, max] values of this dimension
- lacktriangle Using subsets of data, different binary trees can be formed ightarrow forest
- ightharpoonup Isolation forest algorithm requires unlabeled data ightarrow unsupervised

Outliers in Multivariate Data - Isolation Forest

- With a new instance, length of path from each tree in the forest is computed and averaged
- Typically, outliers have shorter paths compared to normal data points

 $Figure\ from\ https://towards data science.com/isolation-forest-from-scratch-e7e5978e6f4c$

Handling Outliers

- Detected outliers can be deleted if its believed to be impossible
- Truncation: Set all values above a lower and upper limit to the limit

$$x_i \begin{cases} \ell & \text{if } x_i \le \ell \\ x_i & \text{if } \ell \le x_i \le u \\ u & \text{if } x_i \ge u \end{cases}$$

- Winsoring: Set all outliers to a specified percentile of the data
- ▶ 90% Winsorizing means
 - data below 5% is set to 5%
 - data above 95% is set to 95%

```
from scipy.stats.mstats import winsorize winsorize ([92, 19, 101, 58, 1053, 91, 26, 78, 10, 13, -40, 101, 86, 85, 15, 89, 89, 28, -5, 41], limits = [0.05, 0.05])
```

Moments of Data

- When the distribution of data will be investigated, higher moments are used.
- Definition of a moment of a function/distribution around a point c is defined as follows:

$$M^r = \sum_i (x_i - c)^r f(x_i)$$

- ▶ If the moment is taken around mean, then it is named central moment.
- If the moment is normalized with standard deviation

$$sM^r = \frac{\sum_i (x_i - c)^r f(x_i)}{\sigma^i}$$

Moments of Data

- First moment around $0 \rightarrow \text{mean}$
- ▶ Second central moment → variance
- ► Third standardized central moment → skewness (çarpıklık)
- ▶ Fourth standardized central moment → kurtosis (basıklık)

Skewness (Çarpıklık)

 Third standardized central moment - not a random variable for population distribution

Skewness =
$$E(\frac{(X-\mu)^3}{\sigma^3})$$

- Measure of asymmetry
- ► For symmetric distribution (such as Normal distr.) skewness=0
- For positive skew (right skewed) skewness > 0)
- ▶ Positive skew → larger tail above mean
- ► For negative skew (left skewed) skewness < 0
- ightharpoonup Negative skew ightarrow larger tail below mean

Skewness

Figure taken from https://en.wikipedia.org/wiki/Skewness

Kurtosis (Basıklık)

► Fourth standardized central moment

$$\mathsf{Kurtosis} = E(\frac{(X - \mu)^4}{\sigma^4})$$

- Measure of peakedness/tailedness
- ► For Normal distribution kurtosis = 3

- ► More peak/less tail kurtosis > 3
- ► Less peak/more tail kurtosis < 3

Figure taken from https://modelassist.epixanalytics.com/display/EA/Kurtosis

- ► Sometimes, kurtosis is defined with respect to Normal distribution
- Excess kurtosis is defined as

Excess Kurtosis =
$$E(\frac{(X-\mu)^4}{\sigma^4}) - 3$$

- ▶ For Laplace distr excess kurtosis is 3
- For Normal distr excess kurtosis is 0
- ▶ For uniform distr excess kurtosis is −1.2

Figure taken from https://en.wikipedia.org/wiki/Kurtosis

Classification of distributions in terms of their kurtosis:

- ► Mesokurtic/Mesokurtotic Distr with zero excess kurtosis
- ► Leptokurtic/LeptoKurtotic Distr with positive excess kurtosis
- ► Platykurtic/Platykurtotic Distr with negative excess kurtosis

Figure taken from https://www.analystforum.com/forums/cfa-forums/cfa-level-ii-forum/91346370

Skewness/Kurtosis from Data

- ▶ Use \overline{x} isntead of μ
- ▶ Use s instead of σ
- Use averaging instead of expectation

$$\begin{aligned} \mathsf{Skewness} &= \frac{\frac{1}{N} \sum_{i}^{N} (x_{i} - \overline{x})^{3}}{s^{3}} \\ \mathsf{Kurtosis} &= \frac{\frac{1}{N} \sum_{i}^{N} (x_{i} - \overline{x})^{4}}{s^{4}} \end{aligned}$$

Skewness/Kurtosis from Data

How to use skewness/kurtosis of data:

- \triangleright With \overline{x} and s, they give extra information about data distribution
- ► There are tests that use skewness/kurtosis to test if the data has normal distribution

Visual Methods for Distribution

- ▶ Need to check if data comes from a certain distribution
- Typically computed moment values gives hint about data distribution
- Inspection of data conformity with a probability distribution can be visualized
- ightharpoonup There are also statistical methods ightharpoonup will be covered later
- Visual inspection of probability distribution of 2 sources to see if both comes from the same distribution or not

PP Plot

- Plot emprical cdf vs theoretical cdf
- ▶ Plot two emprical cdf against eachother.
- ▶ If the plot is on a straight line, data comes from that distribution family (with different mean/std. dev)
- ▶ If the plot is on a 45 degree straight line, data comes from the distribution (with the same mean/std. dev)

Figure taken from https://en.wikipedia.org/wiki/P-P_plot

QQ Plot

- Plot emprical quartiles vs theoretical quartiles
- Plot two emprical quartiles against eachother.
- ▶ If the plot is on a 45 degree straight line, data comes from that distribution family (with different mean/std. dev)

Figure taken from https://en.wikipedia.org/wiki/Q-Q_plot

QQ Plot

Figures taken from https://en.wikipedia.org/wiki/Q-Q_plot

Data Standardization

- Data come with various mean, variance, range etc.
- Sometimes data normalization/standardization is required to handle multivariate data
- There are various methods
 - Min-max normalization

$$x_i' = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

- Outlier cause normal data to squeeze in a small range
- z-score standardization

$$z\text{-score}_i = \frac{x_i - \overline{x}}{s}$$

 z-score: distance an observation from the mean, expressed in standard deviation units

Data Transformation

- Some algorithms may require certain data distributions (such as normal)
- ▶ Data should be transformed to have a certain distribution for example: Data may have have exponential distribution → need to have normal distr.
- ▶ Recall from probability theory: Let X be a random variable with
 - probability distribution function (pdf) f(x)
 - cumulative distribution function (cdf) F(x)
- $ightharpoonup U = F_X(x)$ random variable U will have uniform distribution
- Let Z be a random variable with cdf $F_Z()$. $F_Z^{-1}(u)$ will convert uniform distributed U in to Z
- There are direct transformations
 - ▶ Box-Cox transform (exponential→normal dist)
 - ▶ Box-Muller transform (uniform→normal dist)

Multivariate Data -Covariance

- ▶ When we deal with multivariate data, relation of variables against eachother is important
- Co → together
- ▶ vary → change
- ► Co-variance is a measure of **linear** change of variables

$$Cov(X_1, X_2) = E((X_1 - \mu_1)(X_2 - \mu_2))$$

- ightharpoonup Covariance pprox 0 o Uncorrelated (not independent), may have nonlinear relation
- ► High positive covariance → Variables change linearly at the same direction
- lacktriangleright High negative covariance o Variables change linearly at different direction
- ► High?

Consider X_1 and X_2 who are related as follows

$$Cov(X_1, X_2) = E((X_1 - \mu_1)(X_2 - \mu_2))$$

Covariance is **positive**.

Consider X_1 and X_2 who are related as follows

$$Cov(X_1, X_2) = E((X_1 - \mu_1)(X_2 - \mu_2))$$

Covariance is **negative**.

Consider X_1 and X_2 who are related as follows

$$Cov(X_1, X_2) = E((X_1 - \mu_1)(X_2 - \mu_2))$$

Covariance is **close to zero**. X_1 and X_2 seems unrelated.

Consider X_1 and X_2 who are related as follows

$$Cov(X_1, X_2) = E((X_1 - \mu_1)(X_2 - \mu_2))$$

Covariance is **close to zero**. X_1 and X_2 are definitely related.

Covariance to Correlation Coefficient

- Covariance has no limits
- Covariance is related to units

Pearson Correlation Coefficient

- Pearson correlation coefficient
- Definition:

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)}{\sigma_X \sigma_Y}$$

- ▶ Correlation coefficient ρ is a value in [-1,1] range.
- ▶ $-1 \le \rho_{XY} \le 1$ and $|\rho_{XY}| \le 1$
- $ightharpoonup |
 ho_{XY}| = 1$ when X and Y are linearly related.
- $|\rho_{XY}| = 0$ when X and Y are uncorrelated.
- Uncorrelated does not mean independent (except Normal distr)
 Correlation coefficient between
 - height & weight ?
 - ► IQ & GPA ?
 - ▶ IQ & Income ?

Pearson Correlation Coefficient of Data

- Use averaging for expectation
- Use sample mean (\overline{x}) for population mean (μ)
- Use sample std mean (s) for population std dev (σ)
- ▶ Definition:

$$r_{xy} = \frac{\frac{1}{N-1} \sum_{i}^{N} (x_i - \overline{x})(y_i - \overline{y})}{s_x s_y}$$

- Correlation coefficient can only indicate linear relations
- Sensitive to outliers
- |r| > 0.8 means strong correlation
- ightharpoonup |r| < 0.3 means weak correlation
- ightharpoonup r = 0 means no correlation \rightarrow uncorrelated
- ▶ Uncorrelated does not mean unrelated. It means no linear relation.

Pearson Correlation Coefficient of Data

► Sensitive to outliers → use Spearman correlation coefficient Pearson correlation=0.67

Figure taken from https://en.wikipedia.org/wiki/Spearman_rank_correlation_coefficient

Spearman Correlation Coefficient of Data

- Use ranks of data instead of data values
- Definition:

$$r_{xy} = 1 - \frac{6\sum_{i}^{N}(rx_{i} - ry_{i})^{2}}{N(N^{2} - 1)}$$

rx; is the rank of data x;

 $Figure\ taken\ from\ https://en.wikipedia.org/wiki/Spearman_rank_correlation_coefficient$

Decorrelation - Whitening

- Correlation between variables are sometimes not desired
- ▶ By transformation, variables can be decorrelated and covariance matrix can be *I*
- ▶ This process is called whitening

Decorrelation

- ▶ Let X_1 and X_2 are correlated variables
- A transform is required

$$Y_1 = aX_1 + bX_2$$
$$Y_2 = cX_1 + dX_2$$

such that Y_1 and Y_2 are uncorrelated.

▶ In matrix notation

$$\mathbf{Y} = G\mathbf{X}$$

where

$$G = \left[\begin{array}{cc} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{array} \right]$$

• Covariance matrix of X_1, X_2 is

$$\Sigma_X = \left[\begin{array}{cc} \sigma_{X1}^2 & \rho \sigma_{X1} \sigma_{X2} \\ \rho \sigma_{X1} \sigma_{X2} & \sigma_{X2} \end{array} \right]$$

Decorrelation

Decorrelation

- ▶ If **Y** is uncorrelated $\rightarrow \Sigma_Y$ is a diagonal matrix
- ▶ Find eigenvalues ($\Lambda = diag\{\lambda_X\}$) and eigenvectors (V) of Σ_X such that $\Sigma_X = V\Lambda V^T$
- Let $G = V^T$ $(Y = V^T X)$, then Σ_Y will be diagonal and $Cov(Y_1, Y_2) = 0$
- ▶ However diagonal elements σ_{Y1} and σ_{Y2} will not be 1

$$\Sigma_{Y} = \left[\begin{array}{cc} \sigma_{Y1}^{2} & 0 \\ 0 & \sigma_{Y2} \end{array} \right]$$

Whitening

- ▶ Let $G = \Lambda^{-0.5} V^T$ $(Y = \Lambda^{-0.5} V^T X)$, then Σ_Y will be diagonal and diagonal items will be 1.
- $Cov(Y_1, Y_2) = 0$

$$\Sigma_Y = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

