Recall from last time ...

Linear Regression

Feature Scaling

Feature Scaling

Idea: Make sure features are on similar scale.

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{\text{size} - 1000}{2000}$$
 $\longrightarrow -0.5 \le x_1 \le 0.5$ $x_2 = \frac{\text{\#bedrooms} - 2.5}{5}$ $\longrightarrow -0.5 \le x_2 \le 0.5$

$$x_1 = \frac{x_1 - \mu_1}{s_1}$$
 $x_2 = \frac{x_2 - \mu_2}{s_2}$

Learning Rate

Gradient Descent

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Features and Polynomial Regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$

Area
$$x = \text{frontage} \times \text{depth}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Choice of Features

Choice of Features

Normal Equation

Gradient Descent

Normal equation: Method to solve θ analytically.

Examples: m = 4.

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Examples: m = 4.

Size (feet ²) x_1	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Price (\$) in 1000's
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
	(feet²) x ₁ 2104 1416 1534	(feet²) bedrooms x_1 x_2 2104 5 1416 3 1534 3	(feet²) bedrooms of floors x_1 x_2 x_3 2104 5 1 1416 3 2 1534 3 2	(feet²) bedrooms of floors (years) x_1 x_2 x_3 x_4 2104 5 1 45 1416 3 2 40 1534 3 2 30

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

Examples: m = 4.

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_0	\boldsymbol{x}_1	x_2	x_3	x_4	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315

X = features/variables

y = target

 θ = parameters

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \qquad \theta = (X^T X)^{-1} X^T y$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$m \times (n+1)$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$ is inverse of matrix X^TX .

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

What if X^TX is noninvertible?

The common causes might be having:

- Redundant features, where two features are very closely related (i.e. they are linearly dependent).
- Too many features (e.g. $m \le n$). In this case, delete some features or use "regularization".

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Don't need to scale.
- Need to compute $(X^TX)^{-1} \rightarrow O(n^3)$.
- lacksquare Slow if n is very large.

m examples and *n* features

Size (feet²) x_1	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Color x_5	Price (\$) in 1000's <i>y</i>
2104	5	1	45	blue	460
1416	3	2	40	white	232
1534	3	2	30	pink	315
852	2	1	36	green	178

Dummy coding & One-hot encoding

http://www.statisticssolutions.com/dummy-coding-the-how-and-why/https://en.wikiversity.org/wiki/Dummy_variable_(statistics)

Dummy coding & One-hot encoding

• blue = 1, white = 2, pink = 3, and green = 4.

Dummy coding & One-hot encoding

color	blue	white	pink	green
blue	1	0	0	0
white	0	1	0	0
pink	0	0	1	0
green	0	0	0	1

In this simplified data set, if we know that color is not Blue, not White, and not Pink, then it is Green.

So we only need to use three of these four.

Logistic Regression Machine Learning and Pattern Recognition

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

Today's Agenda

- Logistic Regression
 - Classification
 - Hypothesis Representation
 - Decision Boundary
 - Cost Function
 - Simplified Cost Function and Gradient Descent
 - Multiclass Classification

Classification

Spam Filtering

Bad Cures fast and effective! - Canadian *** Pharmacy #1 Internet Inline Drugstore Viagra Cheap Our price \$1.99 ...

Good Interested in your research on graphical models - Dear Prof., I have read some of your papers on probabilistic graphical models. Because I ...

Sensitive Content Classification

Skin Cancer Classification

Melanomas (top row) and benign skin lesions (bottom row)

Classification

Email: Spam / Not Spam?

Content Video: Sensitive / Non-sensitive?

Skin Lesion: Malignant / Benign?

Classification

Email: Spam / Not Spam?

Content Video: Sensitive / Non-sensitive?

Skin Lesion: Malignant / Benign?

 $y \in \{0,1\}$ 0: "Negative Class" (e.g., Benign skin lesion) 1: "Positive Class" (e.g., Malignant skin lesion)

$$h_{\theta}(x) = \theta^{T} x$$

$$h_{\theta}(x) = \theta^T x$$

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If $h_{\theta}(x) < 0.5$, predict " $y = 0$ "

$$h_{\theta}(x) = \theta^T x$$

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If $h_{\theta}(x) < 0.5$, predict " $y = 0$ "

$$h_{\theta}(x) = \theta^T x$$

Threshold classifier output $h_{\theta}(x)$ at 0.5: If $h_{\theta}(x) \geq 0.5$, predict "y = 1" If $h_{\theta}(x) < 0.5$, predict "y = 0"

$$h_{\theta}(x) = \theta^T x$$

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If $h_{\theta}(x) < 0.5$, predict " $y = 0$ "

$$h_{\theta}(x) = \theta^T x$$

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If $h_{\theta}(x) < 0.5$, predict " $y = 0$ "

Classification: y = 0 or y = 1

$$h_{\rho}(x)$$
 can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Hypothesis Representation

Want $0 \le h_{\theta}(x) \le 1$

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = \theta^{\mathrm{T}} x$$

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^{\mathrm{T}}x)$$

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^{T}x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^{T}x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid Function Logistic Function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathrm{T}}x}}$$

Want
$$0 \leq h_{\theta}(x) \leq 1$$

$$h_{\theta}(x) = g(\theta^{T}x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid Function Logistic Function

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

$$h_{\theta}(x) = g(\theta^{T}x)$$

$$g(z) = \frac{1}{1+e^{-2}}$$

Sigmoid Function Logistic Function

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

$$h_{\theta}(x)$$
 = estimated probability that $y = 1$ on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

$$h_{\rho}(x)$$
 = estimated probability that $y = 1$ on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

"probability that y = 1, given x, parameterized by θ "

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

$$h_{\rho}(x)$$
 = estimated probability that $y = 1$ on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

"probability that y = 1, given x, parameterized by θ "

$$P(y = 0 \mid x;\theta) + P(y = 1 \mid x;\theta) = 1$$

 $P(y = 1 \mid x;\theta) = 1 - P(y = 0 \mid x;\theta)$

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

$$h_{\theta}(x) = g(\theta^{\mathrm{T}} x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = g(\theta^{\mathrm{T}} x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y = 1$$
" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

$$h_{\theta}(x) = g(\theta^{\mathrm{T}}x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y = 1$$
" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

$$g(z) \ge 0.5$$
 when $z \ge 0$

$$h_{\theta}(x) = g(\theta^{\mathrm{T}} x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y = 1$$
" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{a}(x) < 0.5$

$$g(z) \ge 0.5$$
 when $z \ge 0$

$$g(z) < 0.5 \text{ when } z < 0$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$-3 \quad 1 \quad 1$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

$$-3 \quad 1 \quad 1$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$
 $x_1 + x_2 \ge 3$

$$-3 \quad 1 \quad 1$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$
 $x_1 + x_2 \ge 3$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$
 $x_1 + x_2 \ge 3$

$$-3 \quad 1 \quad 1$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$
 $x_1 + x_2 \ge 3$

$$y = 0, x_1 + x_2 < 3$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Decision Boundary

$$x_1 + x_2 = 3$$
$$h_{\theta}(x) = 0.5$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$
 $x_1 + x_2 \ge 3$

y = 0, $x_1 + x_2 < 3$

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$
 $x_1^2 + x_2^2 \ge 1$

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$
 $x_1^2 + x_2^2 \ge 1$

Non-linear Decision Boundaries

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$
 $x_1^2 + x_2^2 \ge 1$

Non-linear Decision Boundaries

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$
 $x_1^2 + x_2^2 \ge 1$

Cost Function

Training set: $\{(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}), ..., (x^{(m)},y^{(m)})\}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}} \qquad x \in \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \quad x_{0} = 1, y \in \{0,1\}$$

How to choose parameters θ ?

Cost Function

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$Cost(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^2$$

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
Logistic

$$Cost(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^2$$
 $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Cost Function

 $Cost(h_{\theta}(x^{(i)}), y^{(i)})$

Logistic regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

$$Cost(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^2$$
 $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Derivative of Logistic Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = \frac{d}{dz} \frac{1}{1 - e^{-z}}$$

$$= \frac{0 \cdot (1 - e^{-z}) - 1 \cdot (-e^{-z})}{(1 - e^{-z})^2} \quad \text{(quotient rule)}$$

$$= \frac{e^{-z}}{(1 - e^{-z})^2}$$

$$= \left(\frac{1}{1 - e^{-z}}\right) \left(1 - \frac{1}{1 - e^{-z}}\right)$$

$$= g(z)(1 - g(z))$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\begin{aligned} \operatorname{Cost} &= 0 \text{ if } y = 1, \, h_{\theta}(x) = 1 \\ \operatorname{But as} & h_{\theta}(x) \longrightarrow 0 \\ \operatorname{Cost} & \longrightarrow \infty \end{aligned}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1 \mid x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Simplified Cost Function and Gradient Descent

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -y\log(h_{\theta}(x)) - (1-y)\log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1-y)log(x)$$

$$v = 1$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -y \log(x) - (1-y)\log(1 - h_{\theta}(x))$$
$$y = 0$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ : $\min_{\alpha} J(\theta)$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ : $\min_{\theta} J(\theta)$

To make a new prediction given new x: Output $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\alpha} J(\theta)$:

repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

} (simultaneously update θ_i for j = 0, 1, ..., n)

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

$$\begin{aligned} & \text{Want } \min_{\theta} J(\theta) \colon \\ & \text{repeat } \{ & & \underbrace{\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}}_{i} \\ & \theta_j := \theta_j - \alpha \underbrace{\frac{\partial}{\partial \theta_j} J(\theta)}_{j} \\ & \text{ } \{ \text{simultaneously update } \theta_i \text{ for } j = 0, 1, ..., n \} \end{aligned}$$

https://math.stackexchange.com/questions/477207 /derivative-of-cost-function-for-logistic-regrssion

Want
$$\min_{\theta} J(\theta)$$
:

repeat {

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update θ_i for j = 0, 1, ..., n)

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

{ (simultaneously update θ_i for j = 0, 1, ..., n)

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

} (simultaneously update θ_j for j = 0, 1, ..., n)

Algorithm looks identical to linear regression!

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want
$$\min_{\theta} J(\theta)$$
:

$$h_{\theta}(x) = \theta^{T}x \implies h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

} (simultaneously update θ_i for j = 0, 1, ..., n)

Algorithm looks identical to linear regression!

Multiclass Classification: One-vs-all

Classification

Email tagging: Work, Friends, Family

Skin Lesion: Melanoma, Carcinoma, Nevus, Keratosis

Video: Pornography, Violence, Gore scenes, Child abuse

Classification

Email tagging: Work, Friends, Family

$$y = 1 \qquad y = 2 \qquad y = 3$$

Skin Lesion: Melanoma, Carcinoma, Nevus, Keratosis

$$y = 1 \qquad \qquad y = 2 \qquad \qquad y = 3 \qquad \qquad y = 4$$

Video: Pornography, Violence, Gore scenes, Child abuse

Binary Classification

x_2

Multi-class Classification

Class 1: ▲

Class 2:

Class 3:

Class 1: ▲

Class 2:

Class 3:

Class 1: ▲

Class 2:

Class 3: •

Class 1: ▲

Class 2:

Class 3: •

Class 1: ▲

Class 2:

Class 3:

$$h_{\theta}^{(i)}(x) = P(y = i \mid x; \theta)$$

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y = i.

One a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 4
- Pattern Recognition and Machine Learning, Chap. 4

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 3
- Logistic Regression The Math of Intelligence (Week 2): https://youtu.be/D8alok2P468
- http://cs229.stanford.edu/notes/cs229-notes1.pdf

Logistic Regression — The Math of Intelligence (Week 2) by Siraj Raval https://youtu.be/D8alok2P468

Search

Q

Logistic Regression - The Math of Intelligence (Week 2)

47,532 views

YouTube

