ABSTRACT

5

15

An optical recording method for recording mark length-modulated information on a recording medium by using a plurality of recording mark lengths. The optical recording method comprises the steps of:

when a time length of one recording mark is denoted nT (T is a reference clock period equal to or less than 25 ns, and n is a natural number equal to or more than 2),

(i) dividing the time length of the recording mark nT into

 $\eta_1 T$, $\alpha_1 T$, $\beta_1 T$, $\alpha_2 T$, $\beta_2 T$, ..., $\alpha_i T$, $\beta_i T$, ..., $\alpha_m T$, $\beta_m T$, $\eta_2 T$

in that order (m is a pulse division number; $\Sigma_i(\alpha_i + \beta_i) + \eta_1 + \eta_2 = n$; α_i ($1 \le i \le m$) is a real number > 0; β_i ($1 \le i \le m-1$) is a real number > 0; β_m is a real number ≥ 0 ; and η_1 is a real number of $-2 \le \eta_1 \le 2$ and η_2 is a real number of $-2 \le \eta_2 \le 2$);

radiating recording light with a recording power Pw_i in a time duration of $\alpha_i T$ ($1 \le i \le m$), and radiating recording light with a bias power Pb_i in a time duration of $\beta_i T$ ($1 \le i \le m$), the bias power being $Pb_i < Pw_i$ and $Pb_i < Pw_{i+1}$; and

- (ii) changing m, α_i , β_i , η_1 , η_2 , Pw_i and Pb_i according to n of the time length nT of the recording mark;
- wherein the pulse division number m is 2 or more for the time duration of at least one recording mark and meets $n/m \ge 1.25$ for the time length of all the recording marks.