# Regresija ir interpoliavimas



### Aproksimuojančios kreivės

- Regresija (mažiausių kvadratų metodas)
- Tiesinis interpoliavimas
- Interpoliavimas splainais

# Interpoliavimas daugianariais netinka:



Tiesinis dėsnis: y = 2x + 1.

Duomenys su triukšmu.

Interpoliavimas daugianariais netinka!

# Duomenų aproksimavimas

# Tikslas: nustatyti funkciją y=f(x) (parinkti leidžiamų funkcijų klasę)

### Interpoliavimas

Taškai  $\{(x_k, y_k) \mid k = 1, ..., N\}$  žinomi tiksliai (5 reikšminiai skaitmenys ir daugiau)

## Aproksimavimas mažiausių kvadratų metodu

Tikslumas 2-3 reikšminiai skaitmenys ⇒ yra eksperimento paklaida ir realiai

$$f(x_k) = y_k + e_k$$
,  $e_k$  – matavimo paklaida.

## Netikslių duomenų aproksimavimas

# Reikšmių lentelė $(x_i, y_i), i = 0, 1, \dots N$ :

$$x_0$$
  $x_1$  ···  $x_N$   $y_0$   $y_1$  ···  $y_N$ 

# Tikslas: nustatyti funkciją y = f(x) (parinkti leidžiamų funkcijų klasę).

Egzistuoja eksperimento paklaida ir realiai

$$f(x_k) = y_k + e_k$$
,  $e_k$  – matavimo paklaida.

Kaip rasti geriausią artinį (pvz., daugianarį)

$$f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0,$$

einanţi arti, bet ne visada per visus taškus?

Turime analizuoti paklaidas (netikţi)

$$e_k = f(x_k) - y_k, \quad k = 1, \cdots, N.$$

# Regresija ir matavimo paklaida



## Paklaidos normos

Maksimumo (jei yra vienas blogas taškas, tai jis ir nustato paklaidos reikšmę):

$$E_{\infty}(f) = \max_{1 \leq k \leq N} |f(x_k) - y_k|.$$

Vidurkinė (suvidurkinta paklaida, dažnai naudojama dėl savo paprastumo):

$$E_1(f) = \frac{1}{N} \sum_{k=1}^{N} |f(x_k) - y_k|.$$

Kvadratinė (dažnai naudojama statistikoje):

$$E_2(f) = \left(\frac{1}{N} \sum_{k=1}^{N} |f(x_k) - y_k|^2\right)^{\frac{1}{2}}.$$

## Pavyzdys: paklaidų analizė

Palyginsime paklaidas tiesiniam artiniui y = f(x) = 8, 6 - 1, 6x, kai duoti taškai  $(x_i, y_i)$ :

$$E_{\infty}(f) = \max_{1 \le k \le N} |f(x_k) - y_k| = 0, 8.$$

$$E_1(f) = \frac{1}{N} \sum_{k=1}^{N} |f(x_k) - y_k|$$

$$= \frac{1}{8} \cdot 2, 6 = 0, 325.$$

$$E_2(f) = \left(\frac{1}{N} \sum_{k=1}^{N} |f(x_k) - y_k|^2\right)^{\frac{1}{2}}$$

$$= \left(\frac{1, 4}{8}\right)^{\frac{1}{2}} \approx 0, 41833.$$

| $x_i$ | $y_i$ | $f(x_i)$ | $ e_i $ | $ e_i ^2$ |
|-------|-------|----------|---------|-----------|
| -1    | 10    | 10,2     | 0, 2    | 0,04      |
| 0     | 9     | 8,6      | 0,4     | 0, 16     |
| 1     | 7     | 7,0      | 0,0     | 0,00      |
| 2     | 5     | 5,4      | 0, 4    | 0, 16     |
| 3     | 4     | 3,8      | 0, 2    | 0,04      |
| 4     | 3     | 2,2      | 0, 8    | 0,64      |
| 5     | 0     | 0,6      | 0,6     | 0,36      |
| 6     | -1    | -1       | 0,0     | 0,00      |
| Σ     |       |          | 2,6     | 1,40      |

## Paklaidų analizė

- Geriausia linija gaunama minimizuojant vieną iš paklaidų (1) (3)
   yra trys geriausios linijos.
- Tradiciškai renkama E<sub>2</sub>(f), nes ją lengviau minimizuoti.

#### Tiesiniai modeliai

Tegul žinomi taškai  $(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)$ .

#### Tiesinis modelis

$$y_i = a_1 \varphi_1(x_i) + \cdots + a_m \varphi_m(x_i) + e = \sum_{j=1}^m a_j \varphi_j(x_i).$$

- $\varphi_1(x), \cdots \varphi_m(x)$  duotosios funkcijos.
- Koeficientai a<sub>1</sub>, · · · , a<sub>m</sub> nežinomi parametrai.
- Tiesinė priklausomybė pagal a<sub>j</sub>,
   bet φ<sub>j</sub>(x) dažniausiai netiesinės funkcijos.

#### Pavyzdžiai

 $y \approx a_1 x + a_2 x^2 + a_3 x^3$ ,  $y \approx a_0 x^2 + a_1 \sin x$ - tiesiniai modeliai;  $y \approx a_1 e^{a_2 x}$  - netiesinis modelis.

## Tiesiniai modeliai

### Bendroji lygtis matriciniu pavidalu

$$y = \Phi a + e$$
, arba  $y \approx \Phi a$ ,

čia

$$\Phi = \begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_m(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_m(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_1(x_N) & \varphi_2(x_N) & \cdots & \varphi_m(x_N) \end{pmatrix}$$

### **Netiktis**

$$e = y - \Phi a$$

$$y = (y_1, \dots, y_N)^T$$
 – stebėjimų vektorius;  
 $a = (a_1, \dots, a_m)^T$  – regresijos koeficientai;  
 $e = (e_1, \dots, e_N)^T$  – paklaidos.

## Mažiausių kvadratų metodas

Parametrus  $a_1, \dots, a_m$  parinksime taip, kad netiktis

$$e = y - \Phi a$$

būtu mažiausia vienoje iš normų.

#### Mažiausių kvadratų metodas

$$\min_{a_j} \Big( \sum_{i=1}^N |y_i - \sum_{j=0}^m a_j \varphi_j(x_i)|^2 \Big).$$

## Geometrinė interpretacija

- Minimizuojami vertikalieji atstumai nuo duomenų taškų iki regresijos kreivės.
- Visos klaidos yra tik matavimo paklaidos (x<sub>i</sub>- be paklaidos).



Diagramoje - Lietuvos gydymo įstaigose užregistruoti diagnozuoti diabeto atvejai.

## Normaliosios lygtys

Uždavinys vektoriniu pavidalu:

$$S_r(a) = ||e||^2 = ||y - \Phi a||^2 = (y - \Phi a)^T (y - \Phi a)$$
  
=  $y^T y - y^T \Phi a - a^T \Phi^T y + a^T \Phi^T \Phi a$   
=  $y^T y - 2a^T \Phi^T y + a^T \Phi^T \Phi a$ 

Tikslas: minimizuoti pagal a

$$\Rightarrow (S_r(a))'_a = 0 \Rightarrow -2\Phi^T y + 2\Phi^T \Phi a = 0$$

TLS

$$\Phi^T \Phi a = \Phi^T y$$
  $\Rightarrow a$ 

Randame vektorių a (pvz., Choleckio metodu).

## Tiesinė regresija $f(x) = a_1 + a_2 x$

Tegul žinomi taškai  $(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)$ .

Aproksimavimas tiese:

$$f(x) = a_1 + a_2 x$$
$$y_i \approx a_1 + a_2 x_i.$$

$$\varphi_1(x) = 1, \ \varphi_2(x) = x.$$

$$\Phi = \begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) \\ \vdots & \vdots \\ \varphi_1(x_N) & \varphi_2(x_N) \end{pmatrix} \Rightarrow \Phi = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix}.$$

## 1 pavyzdys: aproksimavimas tiese I

$$f(x) = a_1 + a_2 x$$
$$y_i \approx a_1 + a_2 x_i.$$

$$\varphi_1(x) = 1, \ \varphi_2(x) = x.$$

$$\Phi = \begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) \\ \vdots & \vdots \\ \varphi_1(x_N) & \varphi_2(x_N) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}.$$

## 1 pavyzdys: aproksimavimas tiese II

$$\Phi^T \Phi a = \Phi^T y$$

$$f(x) = a_1 + a_2 x$$
$$y_i \approx a_1 + a_2 x_i.$$

$$\Phi^T \Phi = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix};$$

$$\Phi^{T} y = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1,00 \\ 1,50 \\ 0,75 \\ 1,25 \end{pmatrix} = \begin{pmatrix} 4,5 \\ 11,25 \end{pmatrix};$$

$$\Phi^T \Phi a = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 4,5 \\ 11,25 \end{pmatrix} = \Phi^T y$$

$$\Rightarrow \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right) = \left(\begin{array}{c} 1,125 \\ 0 \end{array}\right)$$

⇒ y=1,125 geriausia linija.



# Kvadratinė regresija $f(x) = a_1 + a_2x + a_3x^2$

Tegul žinomi taškai  $(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)$ .

Aproksimavimas parabole:

$$f(x) = a_1 + a_2x + a_3x^2$$
$$y_i \approx a_1 + a_2x_i + a_3x_i^2.$$

$$\varphi_1(x) = 1, \ \varphi_2(x) = x, \ \varphi_3(x) = x^2.$$

$$\Phi = \begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \varphi_3(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \varphi_3(x_2) \\ \vdots & \vdots & \vdots \\ \varphi_1(x_N) & \varphi_2(x_N) & \varphi_3(x_N) \end{pmatrix} \Rightarrow \Phi = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_N & x_N^2 \end{pmatrix}.$$

## 2 pavyzdys: aproksimavimas parabole I

$$f(x) = a_1 + a_2x + a_3x^2$$
$$y_i \approx a_1 + a_2x_i + a_3x_i^2.$$

$$\varphi_1(x) = 1, \ \varphi_2(x) = x, \ \varphi_3(x) = x^2.$$

$$\Phi = \begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \varphi_3(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \varphi_3(x_2) \\ \vdots & \vdots & \vdots \\ \varphi_1(x_N) & \varphi_2(x_N) & \varphi_3(x_N) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.$$

## 2 pavyzdys: aproksimavimas parabole II

$$\Phi^T \Phi a = \Phi^T y$$

$$f(x) = a_1 + a_2 x + a_3 x^2$$
  
$$y_i \approx a_1 + a_2 x_i + a_3 x_i^2.$$

$$\Phi^T \Phi = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix} = \begin{pmatrix} 4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354 \end{pmatrix};$$

$$\Phi^T y = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{pmatrix} \begin{pmatrix} 2 \\ 7 \\ 9 \\ 6 \end{pmatrix} = \begin{pmatrix} 24 \\ 67 \\ 207 \end{pmatrix};$$

$$\Phi^T \Phi a = \begin{pmatrix} 4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 24 \\ 67 \\ 207 \end{pmatrix} = \Phi^T y$$

$$\Rightarrow \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} -7,5 \\ 11,4 \\ -2,0 \end{pmatrix} \Rightarrow y = -7,5 + 11,4x - 2x^2$$
 geriausia linija.

## Pavyzdys

#### MATLAB sprendimas



| $x_i$ | $y_i$  |
|-------|--------|
| -4, 9 | -65,4  |
| -2, 5 | -20, 1 |
| -2, 2 | -15,4  |
| -0, 5 | 0,6    |
| -0, 2 | 0,5    |
| 0, 6  | 0,2    |
| 1,7   | -6,0   |
| 3, 0  | -21,8  |
| 4,0   | -41,3  |
| 4, 3  | -56, 1 |

Parabolė aproksimuoja geriau