

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатиі	ка и системы у	правления	
КАФЕДРА	Системы об	бработки инфо	рмации и управле	ния
РАСЧЕТ	гно-по	ЯСНИТ	ЕЛЬНАЯ	ЗАПИСКА
		, ,	ЕЛЬСКОЙ ЛИЗУ ДАН	Я РАБОТЕ ПО ННЫХ
Предска	азание сер	НА ТЕМ дечных з	МУ: заболевани	й с
_	_			XGBoost
СтудентИУ5-32		_	(Подпись, дата)	O.К. Румянцев (И.О.Фамилия)
Руководитель	•			Ю.Е. Гапанюк (И.О.Фамилия)
Консультант			((======================================

(Подпись, дата)

(И.О.Фамилия)

Введение

Сердечно-сосудистые заболевания (ССЗ) являются основной причиной смерти во всём мире, забирая около 18 миллионов жизней каждый год, что составляет 31 процент всех смертей в мире. Четыре из пяти смертей, вызванных ССЗ, вызваны сердечными приступами и инсультами, и треть этих смертей являются преждевременными для людей моложе 70 лет. Отказ сердца является частым следствием ССЗ и в представленном наборе данных содержится одиннадцать признаков, которые могут быть использованы для предсказания возможности сердечных заболеваний.

Люди с ССЗ или с высоким риском заболевания нуждаются в ранней диагностике и лечении, в чём может помочь модель машинного обучения.

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Чтение датасета

```
In [2]: df = pd.read_csv("../input/heart-failure-prediction/heart.csv")
    df.head()
```

0	u	t	[2]	į

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	Exercise
0	40	М	ATA	140	289	0	Normal	172	
1	49	F	NAP	160	180	0	Normal	156	
2	37	М	ATA	130	283	0	ST	98	
3	48	F	ASY	138	214	0	Normal	108	
4	54	М	NAP	150	195	0	Normal	122	

```
In [3]: df.shape
```

Out[3]: (918, 12)

Пропуски в данных

Проверим пропуски в данных (значения null)

```
In [4]: df.isnull().sum()
Out[4]: Age
                            0
        Sex
        ChestPainType
        RestingBP
                            0
         Cholesterol
                            0
        FastingBS
        RestingECG
        MaxHR
                            0
        ExerciseAngina
                            0
        Oldpeak
        ST_Slope
                            0
        HeartDisease
                            0
        dtype: int64
```

Пропусков в данных нету

Посмотрим уникальные значения в каждой категории

```
In [5]: print("Sex:",df['Sex'].unique())
```

Стр. 1 из 8 21.12.2021, 14:24

```
print("RestingECG:",df['RestingECG'].unique())
print("ChestPainType:",df['ChestPainType'].unique())
print("ExerciseAngina:",df['ExerciseAngina'].unique())
print("ST_Slope:",df['ST_Slope'].unique())
Sex: ['M' 'F']
RestingECG: ['Normal' 'ST' 'LVH']
ChestPainType: ['ATA' 'NAP' 'ASY' 'TA']
ExerciseAngina: ['N' 'Y']
ST_Slope: ['Up' 'Flat' 'Down']
```

Распределение переменных

Рассмотрим распределение категориальных переменных с использованием библиотеки Seaborn

```
In [6]: f, axes = plt.subplots(2, 3, figsize=(15, 10))
          sns.countplot(x = df['HeartDisease'], data = df, palette='rocket', ax=
          sns.countplot(x = df['RestingECG'], data = df, palette='rocket', ax=ax
          sns.countplot(x = df['ChestPainType'], data = df, palette='rocket', ax
          sns.countplot(x = df['ExerciseAngina'], data = df, palette='rocket', a
          sns.countplot(x = df['RestingECG'], data = df, palette='rocket', ax=ax
          sns.countplot(x = df['Sex'], data = df, palette='rocket', ax=axes[1,2]
          plt.show()
                                                                   500
            500
                                       500
                                                                   400
            400
                                       400
                                                                   300
            300
                                       300
                                                                   200
            200
                                       200
            100
                                                                   100
                                       100
             0
                                           Normal
                                                    st
                                                                             NAP
                      HeartDisease
                                                  RestingECG
                                                                             ChestPainType
                                                                   700
            500
                                       500
                                                                   600
            400
                                       400
                                                                   500
          300
Mili
                                      300
                                                                   400
                                                                   300
            200
                                       200
                                                                   200
            100
                                       100
                                                                   100
```

Стр. 2 из 8 21.12.2021, 14:24

Normal

ExerciseAngina

LVH

Sex

RestingECG

```
In [7]: plt.figure(figsize = (15, 10))
    sns.displot(df['RestingBP'], color = 'y', kind='kde')
    plt.show()
```

<Figure size 1080x720 with 0 Axes>


```
In [8]: plt.figure(figsize = (20, 10))
    sns.displot(df['Cholesterol'])
    plt.show()
```

<Figure size 1440x720 with 0 Axes>

Стр. 3 из 8 21.12.2021, 14:24

Подготовка датасета к обучению модели

Кодирование категориальных признаков

Для обучения модели закодируем категориальные признаки с помощью LabelEncoder

```
In [9]: from sklearn.preprocessing import LabelEncoder

le=LabelEncoder()

df['Sex']=le.fit_transform(df['Sex'])
 df['RestingECG']=le.fit_transform(df['RestingECG'])
 df['ChestPainType']=le.fit_transform(df['ChestPainType'])
 df['ExerciseAngina']=le.fit_transform(df['ExerciseAngina'])
 df['ST_Slope']=le.fit_transform(df['ST_Slope'])
```

Out [9]:

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	Exercise
0	40	1	1	140	289	0	1	172	
1	49	0	2	160	180	0	1	156	
2	37	1	1	130	283	0	2	98	
3	48	0	0	138	214	0	1	108	
4	54	1	2	150	195	0	1	122	

Кореляционная матрица

Стр. 4 из 8 21.12.2021, 14:24

```
In [10]: plt.figure(figsize=(15,10))
    sns.heatmap(df.corr(), annot=True, cmap='RdYlBu')
```

Out[10]: <AxesSubplot:>

Удалим целевую переменную для обучения

```
In [11]: X = df.drop('HeartDisease', axis=1)
y = df['HeartDisease']
```

Разделим выборку на train и test

y_train: (550,)

(368,)

y_test:

```
In [12]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.)

print("X_train: ", X_train.shape)
print("X_test: ", X_test.shape)
print("y_train: ", y_train.shape)
print("y_test: ", y_test.shape)

X_train: (550, 11)
X_test: (368, 11)
```

Стр. 5 из 8

Классификатор AdaBoost

In [13]: from sklearn.ensemble import AdaBoostClassifier

abc = AdaBoostClassifier(n_estimators=500, learning_rate=0.01, random_model = abc.fit(X_train, y_train)

Предсказание результатов

```
In [14]: y_pred_adaboost = model.predict(X_test)
print(y_pred_adaboost)
```

Accuracy модели

```
In [15]: from sklearn.metrics import accuracy_score
    print("AdaBoost Classifier Model Accuracy:", accuracy_score(y_test, y_
AdaBoost Classifier Model Accuracy: 0.8478260869565217
```

Классификатор XGBoost

```
In [16]: from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(n_estimators=500, learning_rate=0.01, model = gbc.fit(X_train, y_train)
```

Предсказание результатов

Стр. 6 из 8 21.12.2021, 14:24

```
In [17]: y_pred_xgboost = model.predict(X_test)
  print(y_pred_xgboost)
  1 0 0
  1 0 0
  1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 0
  0 1 0
  1]
```

Accuracy модели

```
In [18]: from sklearn.metrics import accuracy_score
    print("XGBoost Classifier Model Accuracy:", accuracy_score(y_test, y_r
```

XGBoost Classifier Model Accuracy: 0.8505434782608695

Сравнение моделей Adaboost и XGboost

Стр. 7 из 8 21.12.2021, 14:24

```
In [19]: acc = pd.DataFrame({
    "algorithms": ['Adaboost', 'Xgboost'],
    "accuracy": [accuracy_score(y_test, y_pred_adaboost),accuracy_scor
})
    sns.barplot(x='accuracy', y='algorithms', data=acc, palette='rocket')
Out[19]: <AxesSubplot:xlabel='accuracy', ylabel='algorithms'>
```


Вывод

На данном датасете немного лучше отработала модель Xgboost

In []:

Стр. 8 из 8 21.12.2021, 14:24

Вывод

В рамках курсовой работы был проанализирован датасет сердечных заболеваний, проведён анализ признаков, влияющих на возможность сердечно-сосудистых заболеваний. Проведена очистка и подготовка данных, а так же обучена модель, которая, на основе анализов человека может предсказать риск отказа сердца

Источники

- 1. Документация библиотеки seaborn https://seaborn.pydata.org/
- 2. Документация библиотеки pandas https://pandas.pydata.org/
- 3. Датасет Heart Failure Prediction https://www.kaggle.com/fedesoriano/heart-failure-prediction
- 4. Гапанюк Ю.Е. Методы машинного обучения конспект лекций. https://github.com/ugapanyuk/ml_course_2021/wiki/COURSE_MMO
- 5. Документация библиотеки XGBoost https://xgboost.readthedocs.io/en/latest/