

Biostatistiques Oussama Essahili

Applications de la biostatistique

- Santé publique y compris l'épidémiologie
- Conception et analyse des essais cliniques
- Informatique médicale
- Santé environnementale
- Génétique et biologie moléculaire
- Écologie (prévision écologique)
- Bio-informatique

Rôle de la biostatistique :

- 1. Organiser les données provenant des observations
- Décrire les phénomènes par des paramètres résumant les observations
- 3. Estimer les valeurs de ces paramètres dans les populations d'où proviennent les échantillons observés
- 4. Comparer ces paramètres entre plusieurs populations
- 5. Prédire la probabilité de survenue des événements

Définition de la variabilité biologique :

 Variabilité pris en compte par la biostatistique, entraîne une variabilité dans les échantillons, réservée aux mesures quantitatives ET qualitatives

Exemples:

moléculaire/génomique/cellulaire/fonctionnel/populationnel

Variable statistique : Qualitative ou Quantitative

QUALITATIVE

Nominale	Graphique à secteurs : Camembert Diagramme en secteurs (n<5) Diagramme en barres horizontales (n>5)
Binaire/Dichotomique	Diagramme en secteurs (n<5)
Ordinale	Diagramme en bâtons

QUANTITATIVE

Continue/Mesurable	Polygone des effectifs ou des fréquences Histogramme des fréquences cumulées Box plot ou Boite à moustache
Temporelle	Diagramme en secteurs (n<5)
Discontinue	Histogramme

<u>Définition de l'échantillonnage</u>: Méthode qui permet d'étudier la variable sur une partie jugé représentatif. (Car la totalité est difficile et coûteuse)

Echantillonnage probabiliste/non probabiliste:

Probabiliste	Non probabiliste
Aléatoire simple	Accidentel
Aléatoire systématique	Quotas
En grappe	Volontaire
Stratifié	Par choix résonné
	Boule de neige

^{*}Inférence statistique : est la capacité de généraliser les résultats à partir d'un échantillon sur toute la population cible.

Facteurs/Critères intervenant dans le choix d'une méthode d'échantillonnage appropriée

- Disponibilité ou non des données
- Ressources financières et humaines
- La durée
- La nature de question de recherche

^{*}Echantillon représentatif d'une population : produit les caractéristiques de toute la population concernant la question de recherche.

Biais de sélection:

Erreur systématique faite lors de la sélection des sujets à étudier.

Etapes de l'organisation des données :

- 1)- Tri des données
- 2)- Regroupement en classes
- 3)- Transformation de variable
- 4)- Effectifs et fréquences
- 5)- Distribution : Plus les distributions sont normales, plus les données se rapprochent du centre.

Mesures de tendance et de dispersion :

Mesure de tendance centrale	Mesure de dispersion
Moyenne	Etendue
Moyenne pondérée	Intervalle interquartile et semi-interquartile
Médiane	Variance
Mode	Есагь-туре
	Coefficient de variation

Les Lois de distribution :

Loi	Variable
Loi binomiale	Type binaire
Loi de poisson	Qualitative
Loi normale	Variable quantitative continue

Propriétés de la loi normale :

- Les trois mesures de tendance centrale sont égales.
- L'aire entre les deux points d'inflexion de la courbe mesure la probabilité que les valeurs de X soient comprises :

entre -1 σ et +1 σ autour de la moyenne => Probabilité de 68% entre -1,96 σ et +1,96 σ atour de la moyenne => Probabilité de 95%

à l'extérieur de l'intervalle de 2σ autour de la moyenne => Probabilité 2,5% à gauche et de 2,5% à droite

Principes des tests statistiques :

- 1. Etablir une hypothèse nulle
- 2. Proposer une hypothèse alternative
- 3. Calcul d'un test de comparaison
- 4. Résultats d'un test de comparaison
- 5. Choix du risque d'erreur
- 6. Interprétation finale du test

Différents tests de liaison: (3)

Définition : C'est des tests qui vérifient si la liaison observée entre deux ou plusieurs variables d'un échantillon

Finalité : Vérifier si la relation observée entre les variables étudiées de l'échantillon se rapprochent suffisamment du modèle théorique

- Test de tendance
- Test de corrélation
- Test de régression

Risque d'erreur α

C'est le risque de rejeter l'hypothèse nulle (H0) alors que celle-ci est vraie. Ce risque est parfaitement connu : c'est la probabilité utilisée lors de la réalisation du test, c'est à dire la probabilité pour que la valeur de la variable aléatoire Z soit extérieure à l'intervalle [z1, z2]

Différents tests de comparaison + Condition d'application

Variable quantitative

Test de Student (n < 30 + distributions normales + variances égales)

Test de Z (n \geq 30 = comparaison de 2 moyennes)

Variable qualitative

Ecart réduit (concerne % + np \geq 5 + nq \geq 5 avec q = 1 - p

Test de Z (n \geq 30 = comparaison de 2 moyennes)

Cas de petit échantillons (<5)

- Corrections de Yates
- Test exact de Fisher