

Machine Leaning COMP4702/COMP7703

Prac 3

Different types of Learning

- Supervised Learning :

(y_i is available for all x_i)

- classification: quantitative y_i
- regression: categorical y_i
- Unsupervised Learning:

(y_i is unavailable for all x_i)

- Semi-Supervised Learning:

(y_i is unavailable for some x_i)

K-Nearest Neighbour (k-NN)

How does k-nn work:

- 1. Calculate distances
- 2. Find neighbours
- 3. Majority Vote / Averaging

K-Nearest Neighbour (k-NN)

Choosing a k value

• Small k value – wriggled decision boundary – Overfitting – Sensitivity to Noise

Large k value – smooth decision boundary – Underfitting – Robust to Noise

K-Nearest Neighbour (k-NN)

Calculating Distance

- quantitative features:

Euclidean Distance, Manhattan Distance, Mahalanobis Distance, ...

Categorical features :

Hamming Distance, Jaccard Similarity, ...

- **Normalisation** or **standardisation** is advised.

Structure:

- Root Node: Represents the entire dataset.
 It is from this node that the initial splitting starts.
- Decision/Internal Nodes: Nodes that occur between the root node and the leaf nodes. Each represents a "if-the-else" statement.
- Leaf/Terminal Node: Nodes that do not split further, representing the outcome or decision.

Algorithm: Recursive Binary Partitioning

- 1. All observations in a single set
- 2. Sort values on first variable
- 3. Compute split criteria for all possible splits into two sets
- 4. Choose the best split on this variable
- 5. Repeat 2-4 for all other variables
- 6. Choose the best split among all variables. Your data is now in two sets.
- 7. Repeat 1-6 on each subset.
- 8. Stop when stopping rule is achieved.

Split Criteria:

- Classification
 - The Gini index measures total variance across the K classes, for subset m:

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

Entropy is defined as

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} log(\hat{p}_{mk})$$

• If all \hat{p}_{mk} 's close to zero or one, G and D are small. Lower is better!

- Regression

 Split the data where combining MSE for left bucket (MSE_L) and right bucket (MSE_R), makes the biggest reduction from the overall MSE:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Stopping Rules:

- max_depth: The maximum depth of the tree.
- min_split: The minimum number of samples required to split an internal node.
- min_samples_leaf: The minimum number of samples required to be at a leaf node.
- max_leaf_nodes: The maximum number of leaf nodes a tree can have.
- min_impurity_decrease: A node will be split if this split induces a decrease of the impurity greater than or equal to this value.