Gambit

Overview

Gambit is a superscalar processor with a 52-bit native operating mode. Native mode makes use of a 32-entry register file. Native mode instructions vary in length up to 52-bits. The processor manages branching using a compare instruction and status flags results.

Programming Model

General Registers

Reg			Usage
R0	Z	This register is always zero	
R1	acc	Accumulator	First parameter / return value / loop count
R2	X	'x' index register	Second parameter
R3	у	'y' index register	Third parameter
R4			
R5			
R6			
R7 to 29			
R30	fp	frame pointer	
R31	sp	stack pointer	

Memory Addressing

sr

status register

SR

The cpu is word oriented with byte addressable memory. The smallest addressable unit of data is a 13-bit byte. Up to 2^{52} Bytes of data are supported and 2^{52} bytes of code.

conditional branching

Instruction Set Summary

The instruction set includes basic arithmetic, logic, and shift instructions including: add, sub, and, or, eor, asl, rol, lsr, and ror. There are several additional instructions which are alternate mnemonics for other instructions. These include bit, and cmp.

The cycle counts are assuming no wait states are required for either instructions or data and both instructions and data can be found in the cache.

ALU Operations

ADD – Addition

Description:

Add two operand values and place the result in the target register, updating status flags. The first operand must be in a register specified by the Ra₅ field of the instruction. The second operand may be either a register specified by the Rb₅ field of the instruction, or an immediate value.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: v c n z

Execution Units: ALU

Clock Cycles: 0.5

Exceptions: none

AND – Bitwise 'And'

Description:

Bitwise 'And' two operand values and place the result in the target register, updating status flags. The first operand must be in a register specified by the Ra₅ field of the instruction. The second operand may be either a register specified by the Rb₅ field of the instruction, or an immediate value. The AND instruction has an alternate mnemonic called BIT which updates the flags slightly differently.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: n z

Execution Units: ALU

Clock Cycles: 0.5

ASL – Arithmetic Shift Left

Description:

Left shift one operand value by a second operand value and place the result in the target register, updating status flags. Zeros are shifted into the least significant bits. The first operand must be in a register specified by the Ra_5 field of the instruction. The second operand may be either a register specified by the Rb_5 field of the instruction, or an immediate value.

Formats Supported: RR, RI9

Flags Affected: n z

Execution Units: ALU

Clock Cycles: 0.5

BIT – Bitwise 'And'

Description:

Bitwise 'And' two operand values and discard the result, updating status flags. The first operand must be in a register specified by the Ra₅ field of the instruction. The second operand may be either a register specified by the Rb₅ field of the instruction, or an immediate value. The BIT instruction is an alternate mnemonic for the AND instruction where the target register is specified as R0. The BIT instruction updates the overflow flag to the status of bit 50 of the result.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: v n z

Execution Units: ALU

Clock Cycles: 0.5

Exceptions: none

CMP – Comparison

Description:

Subtract two operand values and discard the result, updating status flags. The first operand must be in a register specified by the Ra₅ field of the instruction. The second operand may be either a register specified by the Rb₅ field of the instruction, or an immediate value. The CMP instruction is an alternate mnemonic for the SUB instruction when the target register is R0. However, unlike SUB, CMP does not update the overflow flag.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: c n z

Execution Units: ALU

Clock Cycles: 0.5

EOR – Bitwise Exclusive 'Or'

Description:

Bitwise exclusive 'Or' two operand values and place the result in the target register, updating status flags. The first operand must be in a register specified by the Ra₅ field of the instruction. The second operand may be either a register specified by the Rb₅ field of the instruction, or an immediate value.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: n z

Execution Units: ALU

Clock Cycles: 0.5

Exceptions: none

LSR – Logical Shift Right

Description:

Right shift one operand value by a second operand value and place the result in the target register, updating status flags. Zeros are shifted into the most significant bits. The first operand must be in a register specified by the Ra_5 field of the instruction. The second operand may be either a register specified by the Rb_5 field of the instruction, or an immediate value.

Formats Supported: RR, RI9

Flags Affected: n z

Execution Units: ALU

Clock Cycles: 0.5

Exceptions: none

OR – Bitwise 'Or'

Description:

Bitwise 'Or' two operand values and place the result in the target register, updating status flags. The first operand must be in a register specified by the Ra₅ field of the instruction. The second operand may be either a register specified by the Rb₅ field of the instruction, or an immediate value.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: n z

Execution Units: ALU

Clock Cycles: 0.5

Exceptions: none

ROL – Rotate Left

Description:

Rotate left one operand value by a second operand value and place the result in the target register, updating status flags. The most significant bits are placed in the least significant bits. The first operand must be in a register specified by the Ra_5 field of the instruction. The second operand may be either a register specified by the Rb_5 field of the instruction, or an immediate value.

Formats Supported: RR, RI9

Flags Affected: n z

Execution Units: ALU

Clock Cycles: 0.5

ROR – Rotate Right

Description:

Rotate right one operand value by a second operand value and place the result in the target register, updating status flags. The least significant bits are placed in the most significant bits. The first operand must be in a register specified by the Ra_5 field of the instruction. The second operand may be either a register specified by the Rb_5 field of the instruction, or an immediate value.

Formats Supported: RR, RI9

Flags Affected: n z

Execution Units: ALU

Clock Cycles: 0.5

SUB – Subtraction

Description:

Subtract two operand values and place the result in the target register, updating status flags. The first operand must be in a register specified by the Ra_5 field of the instruction. The second operand may be either a register specified by the Rb_5 field of the instruction, or an immediate value. The subtraction instruction has an alternate mnemonic CMP which updates the flags differently when the target register is R0.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: v c n z

Execution Units: ALU

Clock Cycles: 0.5

Memory Operations

LD – Load Data (52 bits)

Description:

Data is loaded from the memory address which is either the sum of Ra and an immediate value or the sum of Ra and Rb. Both register indirect with displacement and indexed addressing are supported.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: n z

Operation:

 $Rt = Memory_{52}[d+Ra]$

OI

 $Rt = Memory_{52}[Ra+Rb]$

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

LDB – Load Data Byte (13 bits)

Description:

Data is loaded from the memory address which is the sum of Ra and an immediate value. Only register indirect with displacement addressing is supported.

Formats Supported: RI36

Flags Affected: n z

Operation:

 $Rt = Memory_{13}[d+Ra]$

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

PHP – Push Processor Status to Stack (52 bits)

Description:

The stack pointer is decremented then the status register is stored to the memory address which is contained in the stack pointer register (R31).

Formats Supported: PHP

Flags Affected: none

Operation:

SP = SP - 4Memory₁₃[SP] = SR

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

PLP – Pull Processor Flags from Stack (52 bits)

Description:

The status register is loaded from the memory address which is contained in the stack pointer register (R31) into a general-purpose register. Then the stack pointer is incremented.

Formats Supported: PLP

Flags Affected: c v n z i u

Operation:

 $Rt = Memory_{13}[SP]$ SP = SP + 4

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

POP – Pop Data from Stack (52 bits)

Description:

Data is loaded from the memory address which is contained in the stack pointer register (R31) into a general purpose register. Then the stack pointer is incremented.

Formats Supported: POP

Flags Affected: n z

Operation:

 $Rt = Memory_{13}[SP]$ SP = SP + 4

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

PSH – Push Data to Stack (52 bits)

Description:

The stack pointer is decremented then data from a general-purpose register is stored to the memory address which is contained in the stack pointer register (R31).

Formats Supported: PSH

Flags Affected: none

Operation:

SP = SP - 4Memory₁₃[SP] = Rs

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

ST – Store Data (52 bits)

Description:

Data is stored to the memory address which is either the sum of Ra and an immediate value or the sum of Ra and Rb. Both register indirect with displacement and indexed addressing are supported.

Formats Supported: RR, RI9, RI23, RI36

Flags Affected: none

Operation:

 $\begin{aligned} & Memory_{52}[d+Ra] = Rs \\ & or \\ & Memory_{52}[Ra+Rb] = Rs \end{aligned}$

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

STB – Store Data Byte (13 bits)

Description:

Data is stored to the memory address which is the sum of Ra and an immediate value. Only register indirect with displacement addressing is supported.

Formats Supported: RI36

Flags Affected: none

Operation:

 $\begin{aligned} & Memory_{13}[d+Ra] = Rs \\ & or \\ & Memory_{13}[Ra+Rb] = Rs \end{aligned}$

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

Flow Control (Branch Unit) Operations

JMP - Jump

Description:

Transfer execution of instructions to the address specified by the instruction. The target address may be either a 46-bit absolute address or an address contained in a register. For absolute address mode only the low order 46 bits of the program counter are affected. The upper six bits of the program counter remain the same.

Formats Supported: ABS46, R

Flags Affected: none

Operation:

 $PC = Address_{46}$

or

PC = Ra

Execution Units: Mem

Clock Cycles: 1

JSR – Jump to Subroutine

Description:

Push the address of the next instruction on the stack, then transfer execution of instructions to the address specified by the instruction. The target address may be either a 46-bit absolute address or an address contained in a register. For absolute address mode only the low order 46 bits of the program counter are affected. The upper six bits of the program counter remain the same.

Formats Supported: ABS46, R

Flags Affected: none

Operation:

```
SP = SP - 4

Memory_{52}[SP] = Next PC

PC = Address_{46}

or

PC = Ra
```

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

Exceptions: none

Notes:

The next PC is either the current PC plus four when absolute addressing is used, or the current PC plus one if register indirect addressing is used.

RTI – Return from Interrupt Subroutine

Description:

Pop the status register from the stack. Next pop the address to return to from the stack, then transfer execution of instructions to that address.

Formats Supported: RTI

Flags Affected: none

Operation:

 $SR = Memory_{52}[SP]$

SP = SP + 4

 $PC = Memory_{52}[SP]$

SP = SP + 4

Execution Units: Mem

Clock Cycles: 8 if data is in the cache.

Exceptions: none

Notes:

RTS – Return from Subroutine

Description:

Pop the address of the next instruction from the stack, then transfer execution of instructions to that address.

Formats Supported: RTS

Flags Affected: none

Operation:

 $PC = Memory_{52}[SP]$ SP = SP + 4

Execution Units: Mem

Clock Cycles: 4 if data is in the cache.

Exceptions: none

Notes:

Instruction Formats

Arithmetic / Logical

ADD	Flags: v	c n z										Opco	ode		Bytes
51	39	38	26	25	5 21	20	16	15	11	10	6	5	0		
				0	~4	Rt) 5	Ra	15	Rt ₅		00	O	ADD Rt,Ra,Rb	2
				1		Imm ₉		Ra	15	Rt ₅		00	O	ADD Rt,Ra,#imm ₆	2
				Ir	nm ₂₃			Ra	15	Rt ₅		01	O	ADD Rt,Ra,#imm ₁₄	3
		Im	m ₃₆					Ra	15	Rt ₅		02	O	ADD Rt,Ra,#imm ₃₀	4

SUB	Flags: v	c n z										Opco	ode		Bytes
51	39	38	26	25	5 21	20	16	15	11	10	6	5	0		
				0	~4	Rt) 5	Ra	a ₅	Rt	5	10	0	ADD Rt,Ra,Rb	2
				1		Imm ₉		Ra	a ₅	Rt	5	10	0	ADD Rt,Ra,#imm ₆	2
				In	nm ₂₃			Ra	a ₅	Rt	5	11	0	ADD Rt,Ra,#imm ₁₄	3
		Im	m ₃₆					Ra	a ₅	Rt	5	12	0	ADD Rt,Ra,#imm ₃₀	4

CMP	Flags: c	n z										Opco	ode		Bytes
51	39	38	26	25	5 21	20	16	15	11	10	6	5	0		
				0	~4	Rl) 5	R	a ₅	0_{5}		10	0	ADD Rt,Ra,Rb	2
				1		Imm ₉		R	a ₅	0_{5}		10	0	ADD Rt,Ra,#imm ₆	2
				In	nm ₂₃			R	a ₅	0_{5}		11	0	ADD Rt,Ra,#imm ₁₄	3
		Im	m ₃₆					R	a ₅	0_{5}		12	0	ADD Rt,Ra,#imm ₃₀	4

CMP is an alternate mnemonic for SUB where the target register is R0. CMP does not alter the overflow flag.

AND	Flags: n	Z										Opco	ode		Bytes
51	39	38	26	25	5 21	20	16	15	11	10	6	5	0		
				0	~4	Rb	5	R	a ₅	Rt	5	30	0	ADD Rt,Ra,Rb	2
				1		Imm ₉		R	a ₅	Rt	5	30	0	ADD Rt,Ra,#imm ₆	2
				In	nm ₂₃			R	a ₅	Rt	5	31	0	ADD Rt,Ra,#imm ₁₄	3
		Im	m ₃₆					R	a ₅	Rt	5	32	0	ADD Rt,Ra,#imm ₃₀	4

BIT	Flags: v	n z										Opco	ode		Bytes
51	39	38	26	25	5 21	20	16	15	11	10	6	5	0		
				0	~4	Rt) 5	R	a ₅	0_{5}	;	30	O	ADD Rt,Ra,Rb	2
				1		Imm ₉		R	a ₅	0_{5}	;	30	O	ADD Rt,Ra,#imm ₆	2
				In	nm ₂₃			R	a ₅	0_{5}	;	31	O	ADD Rt,Ra,#imm ₁₄	3
		Im	m ₃₆					R	a ₅	0_{5}	;	32	O	ADD Rt,Ra,#imm ₃₀	4

Bit is the AND operation with no target register; the overflow status is set to bit 50 of the result

OR	Flags: n	Z										Opco	ode		Bytes
51	39	38	26	25	5 21	20	16	15	11	10	6	5	0		
				0	~4	Rb	5	Ra	15	Rt ₅	5	40	0	ADD Rt,Ra,Rb	2
				1		Imm ₉		Ra	15	Rt ₅	5	40	О	ADD Rt,Ra,#imm ₆	2
				In	nm ₂₃			Ra	15	Rt ₅	5	41	O	ADD Rt,Ra,#imm ₁₄	3
		Imn	136					Ra	15	Rts	5	42	0	ADD Rt,Ra,#imm ₃₀	4

EOR	Flags: n	Z										Opc	ode		Bytes
51	39	38	26	25	5 21	20	16	15	11	10	6	5	0		
				0	~4	Rb) 5	R	a_5	Rt	t ₅	50	О	ADD Rt,Ra,Rb	2
				1		Imm ₉		R	a ₅	Rt	t ₅	50	О	ADD Rt,Ra,#imm ₆	2
				In	nm ₂₃			R	a ₅	Rt	t ₅	51	O	ADD Rt,Ra,#imm ₁₄	3
		Im	m ₃₆					R	a ₅	Rt	t ₅	52	О	ADD Rt,Ra,#imm ₃₀	4

Shift Operations / Read-modify-write memory operations.

ASL	Flags: c	n z										Opo	code		Bytes
51	39	38	26	2:		20	16	15	11	10	6	5	0		
				0	~4	R	b ₅	R	a ₅	Rt ₅		00	50	Rt,Ra,Rb	2
				1	~3	Imn	\mathbf{l}_6	R	a_5	Rt ₅		00	50	Rt,Ra,#imm ₁₀	2

ROL	Flags: c	n z										Opc	code		Bytes
51	39	38	26	2:		20	16	15	11	10	6	5	0		
				0	~4	Rb)5	R	a ₅	Rt ₅		10	бо	Rt,Ra,Rb	2
				1	~3	Imm	6	R	a ₅	Rt ₅		10	бо	Rt,Ra,#imm ₁₀	2

LSR	Flags: c	n z										Opc	code		Bytes
51	39	38	26	2:		20	16	15	11	10	6	5	0		
				0	~4	Rt) 5	R	a ₅	Rt ₅		20	50	Rt,Ra,Rb	2
				1	~3	Imm	-6	R	a ₅	Rt ₅		20	50	Rt,Ra,#imm ₁₀	2

ROR	Flags: c	n z										Opo	code		Bytes
51	39	38	26	2:		20	16	15	11	10	6	5	0		
				0	~4	Rb ₅	5	R	a ₅	Rt ₅		30	бо	Rt,Ra,Rb	2
		•		1	~3	Imm ₆		R	a_5	Rt ₅	<u></u>	30	бо	Rt,Ra,#imm ₁₀	2

Load and Store Instructions

LD										Opcode			Bytes
51	39	38	26	25	5 16	15	11	10	6	5	0		
				0	~4 Rb ₅	R	a ₅	Rt	5	60o		Rt.[Ra+Rb]	2
				1	Disp ₉	R	a ₅	Rt	5	60o		Rt,d9[Ra]	2
Disp ₂₃			R	a ₅	Rt	5	61o		Rt,d23[Ra]	3			
		Addr ₃₆				R	a ₅	Rt	5	62o		Rt,d36[Ra]	4

LDB	Flags	Flags: n z							Opc	ode		Bytes	
51	39	38	26	25	16	15	11	10	6	5	0		
Addr_{36}				Ra ₅ Rt ₅			64	4o	Rt,d[Ra]	4			

ST	1 17428. II Z								Opcode			Bytes	
51	39	38	26	25	16	15	11	10	6	5	0		
				0 ~	~4 Rb ₅	R	a ₅	Rs	5	700)	Rs.[Ra+Rb]	2
				1	Disp ₉	R	a ₅	Rs	5	700)	Rs,d9[Ra]	2
			D	isp ₂₃		R	a ₅	Rs	5	710)	Rs,d23[Ra]	3
		Addr ₃₀	5	•		R	a ₅	Rs	5	720)	Rs,d36[Ra]	4

STB	Flags	Flags:						Opcode			Bytes		
51	39	38	26	25	16	15	11	10	6	5	0		
Addr ₃₆				R	.a ₅	R			74o	Ra,d[Ra]	4		

Flow Control

JMP	JMP Flags:								
		Address ₄₆			04o	JMP abs46	4		
			~2	Ra ₅	44o	JMP [Ra]	1		

JSF	R	Fla	Flags:								
			Address ₄₆			14o	JSR abs46	4			
				~2	Ra ₅	54o	JSR [Ra]	1			

RTS	Flags:	~4	0	24o	RTS	1
RTI	Flags: z n c v b d i u	~4	1	24o	RTI	1
PFI	Flags:	~4	2	24o	PFI	1
WAI	Flags:	~4	4	24o	WAI	1
STP	Flags:	~4	6	24o	STP	1
NOP	Flags:	~4	7	24o	NOP	1

BEQ	Flags:	Disp ₁₇	0	15o	BEQ disp	2
BNE	Flags:	Disp ₁₇	1	05o	BNE disp	2
BPL	Flags:	Disp ₁₇	2	05o	BPL disp	2
BMI	Flags:	Disp ₁₇	3	05o	BMI disp	2
BVS	Flags:	Disp ₁₇	4	05o	BVS disp	2
BVC	Flags:	Disp ₁₇	5	05o	BVC disp	2
BCS	Flags:	Disp ₁₇	6	05o	BCS disp	2
BCC	Flags:	Disp ₁₇	7	05o	BCC disp	2
BRA	Flags:	Disp ₁₇	0	25o	BRA disp	2

RST	Flags: b	~4	0	340	RST	1
NMI	Flags: b	~4	1	34o	NMI	1
IRQ	Flags: b	~4	2	340	IRQ	1
BRK	Flags: b	Const ₄	3	34o	BRK	1

Stack push and pop operations.

PHP	Flags:		~7	75o	PHP	1
PSH	Flags:	~2 Ra ₅		76o	PSH Ra	1
PLP	Flags: z c v n i b d u		~7	65o	PLP	1
POP	Flags: n z	~2	Rt ₅	660	POP Rt	1

Status Register Operations

REP	Flags: c v n z i u	Mask ₇	560	REP	1
SEP	Flags: c v n z i u	Mask ₇	46o	SEP	1

String Operations

MVNB	Flags:	~4	0	45o	MVN	1
MVPB	Flags:	~4	1	45o	MVP	1
STSB	Flags:	~4	2	45o	STS	1
CMPSB	Flags: c n z	~4	3	45o	CMPS	1
MVN	Flags:	~4	4	45o	MVN	1
MVP	Flags:	~4	5	45o	MVP	1
STS	Flags:	~4	6	45o	STS	1
CMPS	Flags: c n z	~4	7	45o	CMPS	1
	_					

Opcode Maps

Root Level

	xxx000	xxx001	xxx010	xxx011	xxx100	xxx101	xxx110	xxx111
000xxx	ADD 2r,i9	ADD 2r,i23	ADD 2r,i36		JMP		ASL 2r,i6	
001xxx	SUB / CMP	SUB / CMP	SUB / CMP		JSR	Bcc d17	LSR 2r,i6	
010xxx					RTS / RTI		ROL 2r,i6	
011xxx	AND / BIT	AND / BIT	AND / BIT		BRK	Bcc d17	ROR 2r,i6	
100xxx	OR	OR	OR		JMP [Rn]	{string}	SEP	
101xxx	EOR	EOR	EOR		JSR [Rn]		REP	
110xxx	LD	LD	LD		LDB	PLP	POP	
111xxx	ST	ST	ST		STB	PHP	PSH	

Appendix

The first nine bits of the instruction are used as a nine-bit index into a table which holds pointers to micro-instructions.

Micro-op Instruction Format

Micro-instructions are 24 bits in size.

FL_2	Opcode ₆	Cnst ₄	Src2 ₄	Src1 ₄	Tgt ₄

Micro-op Fields

Tgt ₄	Meaning
0	The value 0
1	Get from instruction bits 6 to 10
2	The accumulator register
3	The X register
4	The Y Register
5	The stack pointer
6	the tmp1 register
7	the tmp2 register
8	the SR register
9	the PC register (source)
10	PC + 1
11	PC + 4

Src1 ₄	Meaning		
0	The value 0		
1	Get from register spec instruction bits 11 to 15		
2	The accumulator register		
3	The X register		
4	The Y Register		

5	The stack pointer
6	the tmp1 register
7	the tmp2 register
8	the SR register

Src2 ₄	Meaning
0	The value 0
1	Get from register spec instruction bits 16 to 25
2	The accumulator register
3	The X register
4	The Y Register
5	The stack pointer
6	the tmp1 register
7	the tmp2 register
8	the SR register
9	the value 1
11	
15	the value -1

Cnst ₄	Meaning	
0	the value 0	
1	the value 1	
2	the value 2	
3	the value 3	
4	the value 4	
5	bits 9 to 25	
6	bits 9 to 12 (branches)	
7	bits 6 to 51 (JMP/JSR)	
8	bits 16 to 25 of instruction	
9	bits 16 to 38 of instruction	
10	bits 16 to 51 of instruction	
11	bits 6 to 12 (REP / SEP)	
13	the value -3	
14	the value -2	
15	the value -1	

Micro-op Lists for Instructions

BRK

SUB SP,SP,#4

ST PC+1,[SP]

SUB SP,SP,#4

ST FLAGS,[SP]

SEP #i

LD TMP,\$FFFFFFFFC

JMP 0[TMP]

MVN

 $LD \quad tmp,[X]$

ST tmp,[Y]

ADD X,X,4

ADD Y,Y,4

SUB AC,AC,#1

```
BNE PC
MVP
     LD
          tmp,[X]
     ST
          tmp,[Y]
     SUB X,X,#4
     SUB Y,Y,#4
     SUB AC,AC,#1
     BNE PC
STS
     ST
          X,[Y]
     ADD Y,Y,#4
     SUB AC,AC,#1
     BNE PC
CMPS
     LD
          tmp1,[X]
     LD
          tmp2,[Y]
     ADD X,X,#4
     ADD Y,Y,#4
     SUB
          ac,ac,#1
     BEQ PC+1
     CMP
          tmp1,tmp2
     BEQ PC
```

Micro-Instruction Opcodes

Opc ₆		Flags Updated
0	ADD	-
1	ADD.	c v n z
2	SUB	-
3	SUB.	c v n z
4	AND.	n z
5	OR.	n z
6	EOR.	n z
7	LD	-
8	LD.	n z
9	LB	-
10	LB.	n z
11	ST	-
12	STB	-
13	ASL.	c n z
14	ROL.	c n z
15	LSR.	c n z
16	ROR.	c n z
17	BRA	-
18	BEQ	-
19	BNE	-
20	BMI	-
21	BPL	-
22	BCS	-
23	BCC	-
24	BVS	-
25	BVC	-
26	SEP	cvnziu
27	REP	cvnziu
28	JMP	
29	STP	
30	WAI	
31		