from

Silent Spring

by Rachel Carson

CHAPTER 6 EARTH'S GREEN MANTLE

Water, soil, and the earth's green mantle of plants make up the world that supports the animal life of the earth. Although modern man seldom remembers the fact, he could not exist without the plants that harness the sun's energy and manufacture the basic foodstuffs he depends upon for life. Our attitude toward plants is a singularly narrow one. If we see any immediate utility in a plant we foster it. If for any reason we find its presence undesirable or merely a matter of indifference, we may condemn it to destruction forthwith. Besides the various plants that are poisonous to man or his livestock, or crowd out food plants, many are marked for destruction merely because, according to our narrow view, they happen to be in the wrong place at the wrong time. Many others are destroyed merely because they happen to be associates of the unwanted plants.

The earth's vegetation is part of a web of life in which there are intimate and essential relations between plants and the earth, between plants and other plants, between plants and animals. Sometimes we have no choice but to disturb these relationships, but we should do so thoughtfully, with full awareness that what we do may have consequences remote in time and place. But no such humility marks

143

4

5

6

7

the booming "weed killer" business of the present day, in which soaring sales and expanding uses mark the production of plant-killing chemicals.

One of the most tragic examples of our unthinking bludgeoning of the landscape is to be seen in the sagebrush lands of the West, where a vast campaign is on to destroy the sage and to substitute grasslands. If ever an enterprise needed to be illuminated with a sense of the history and meaning of the landscape, it is this. For here the natural landscape is eloquent of the interplay of forces that have created it. It is spread before us like the pages of an open book in which we can read why the land is what it is, and why we should preserve its integrity. But the pages lie unread.

The land of the sage is the land of the high western plains and the lower slopes of the mountains that rise above them, a land born of the great uplift of the Rocky Mountain system many millions of years ago. It is a place of harsh extremes of climate: of long winters when blizzards drive down from the mountains and snow lies deep on the plains, of summers whose heat is relieved by only scanty rains, with drought biting deep into the soil, and drying winds stealing moisture from leaf and stem.

As the landscape evolved, there must have been a long period of trial and error in which plants attempted the colonization of this high and windswept land. One after another must have failed. At last one group of plants evolved which combined all the qualities needed to survive. The sage—low-growing and shrubby—could hold its place on the mountain slopes and on the plains, and within its small gray leaves it could hold moisture enough to defy the thieving winds. It was no accident, but rather the result of long ages of experimentation by nature, that the great plains of the West became the land of the sage.

Along with the plants, animal life, too, was evolving in harmony with the searching requirements of the land. In time there were two as perfectly adjusted to their habitat as the sage. One was a mammal, the fleet and graceful pronghorn antelope. The other was a bird, the sage grouse—the "cock of the plains" of Lewis and Clark.

The sage and the grouse seem made for each other. The original range of the bird coincided with the range of the sage, and as the sagelands have been reduced, so the populations of grouse have dwindled. The sage is all things to these birds of the plains. The low sage of the foothill ranges shelters their nests and their young;

10

the denser growths are loafing and roosting areas; at all times the sage provides the staple food of the grouse. Yet it is a two-way relationship. The spectacular courtship displays of the cocks help loosen the soil beneath and around the sage, aiding invasion by grasses which grow in the shelter of sagebrush.

The antelope, too, have adjusted their lives to the sage. They are primarily animals of the plains, and in winter when the first snows come those that have summered in the mountains move down to the lower elevations. There the sage provides the food that tides them over the winter. Where all other plants have shed their leaves, the sage remains evergreen, the gray-green leaves—bitter, aromatic, rich in proteins, fats, and needed minerals—clinging to the stems of the dense and shrubby plants. Though the snows pile up, the tops of the sage remain exposed, or can be reached by the sharp, pawing hoofs of the antelope. Then grouse feed on them too, finding them on bare and windswept ledges or following the antelope to feed where they have scratched away the snow.

And other life looks to the sage. Mule deer often feed on it. Sage may mean survival for winter-grazing livestock. Sheep graze many winter ranges where the big sagebrush forms almost pure stands. For half the year it is their principal forage, a plant of higher energy value than even alfalfa hay.

The bitter upland plains, the purple wastes of sage, the wild, swift antelope, and the grouse are then a natural system in perfect balance. Are? The verb must be changed—at least in those already vast and growing areas where man is attempting to improve on nature's way. In the name of progress the land management agencies have set about to satisfy the insatiable demands of the cattlemen for more grazing land. By this they mean grassland—grass without sage. So in a land which nature found suited to grass growing mixed with and under the shelter of sage, it is now proposed to eliminate the sage and create unbroken grassland. Few seem to have asked whether grasslands are a stable and desirable goal in this region. Certainly nature's own answer was otherwise. The annual precipitation in this land where the rains seldom fall is not enough to support good sod-forming grass; it favors rather the perennial bunch grass that grows in the shelter of the sage.

Yet the program of sage eradication has been under way for a number of years. 11 Several government agencies are active in it; industry has joined with enthusiasm to promote and encourage an enterprise which creates expanded markets not only for grass seed but for a large assortment of machines for cutting and plowing and

13

14

15

seeding. The newest addition to the weapons is the use of chemical sprays. Now millions of acres of sagebrush lands are sprayed each year.

What are the results? The eventual effects of eliminating sage and seeding with grass are largely conjectural. Men of long experience with the ways of the land say that in this country there is better growth of grass between and under the sage than can possibly be had in pure stands, once the moisture-holding sage is gone.

But even if the program succeeds in its immediate objective, it is clear that the whole closely knit fabric of life has been ripped apart. The antelope and the grouse will disappear along with the sage. The deer will suffer, too, and the land will be poorer for the destruction of the wild things that belong to it. Even the livestock which are the intended beneficiaries will suffer; no amount of lush green grass in summer can help the sheep starving in the winter storms for lack of the sage and bitterbrush and other wild vegetation of the plains.

These are the first and obvious effects. The second is of a kind that is always associated with the shotgun approach to nature; the spraying also eliminates a great many plants that were not its intended target. Justice William O. Douglas, in his recent book My Wilderness: East to Katahdin, has told of an appalling example of ecological destruction wrought by the United States Forest Service in the Bridger National Forest in Wyoming. Some 10,000 acres of sagelands were sprayed by the Service, yielding to pressure of cattlemen for more grasslands. The sage was killed, as intended. But so was the green, life giving ribbon of willows that traced its way across these plains, following the meandering streams. Moose had lived in these willow thickets, for willow is to the moose what sage is to the antelope. Beaver had lived there, too, feeding on the willows, felling them and making a strong dam across the tiny stream. Through the labor of the beavers, a lake backed up. Trout in the mountain streams seldom were more than six inches long; in the lake they thrived so prodigiously that many grew to five pounds. Waterfowl were attracted to the lake, also. Merely because of the presence of the willows and the beavers that depended on them, the region was an attractive recreational area with excellent fishing and hunting.

But with the "improvement" instituted by the Forest Service, the willows went the way of the sagebrush, killed by the same impartial spray. When Justice Douglas visited the area in 1959, the year of the spraying, he was shocked to see the shriveled and dying willows—the "vast, incredible damage." What would become

of the moose? Of the beavers and the little world they had constructed? A year later he returned to read the answers in the devastated landscape. The moose were gone and so were the beaver. Their principal dam had gone out for want of attention by its skilled architects, and the lake had drained away. None of the large trout were left. None could live in the tiny creek that remained, threading its way through a bare, hot land where no shade remained. The living world was shattered.

Besides the more than four million acres of rangelands sprayed each year, tremendous areas of other types of land are also potential or actual recipients of chemical treatments for weed control. For example, an area larger than all of New England—some 50 million acres—is under management by utility corporations and much of it is routinely treated for "brush control." In the Southwest an estimated 75 million acres of mesquite lands require management by some means, and chemical spraying is the method most actively pushed. An unknown but very large acreage of timber-producing lands is now aerially sprayed in order to "weed out" the hardwoods from the more spray-resistant conifers. Treatment of agricultural lands with herbicides doubled in the decade following 1949, totaling 53 million acres in 1959. And the combined acreage of private lawns, parks, and golf courses now being treated must reach an astronomical figure.

The chemical weed killers are a bright new toy. They work in a spectacular way; they give a giddy sense of power over nature to those who wield them, and as for the long-range and less obvious effects—these are easily brushed aside as the baseless imaginings of pessimists. The "agricultural engineers" speak blithely of "chemical plowing" in a world that is urged to beat its plowshares into spray guns. The town fathers of a thousand communities lend willing ears to the chemical salesman and the eager contractors who will rid the roadsides of "brush"—for a price. It is cheaper than mowing, is the cry. So, perhaps, it appears in the neat rows of figures in the official books; but were the true costs entered, the costs not only in dollars but in the many equally valid debits we shall presently consider, the wholesale broadcasting of chemicals would be seen to be more costly in dollars as well as infinitely damaging to the long-range health of the landscape and to all the varied interests that depend on it.

Take, for instance, that commodity prized by every chamber of commerce throughout the land—the good will of vacationing tourists. There is a steadily growing chorus of outraged protest about the disfigurement of once beautiful

roadsides by chemical sprays, which substitute a sere expanse of brown, withered vegetation for the beauty of fern and wildflower, of native shrubs adorned with blossom or berry. "We are making a dirty, brown, dying-looking mess along the sides of our roads," a New England woman wrote angrily to her newspaper. "This is not what the tourists expect, with all the money we are spending advertising the beautiful scenery."

In the summer of 1960 conservationists from many states converged on a peaceful Maine island to witness its presentation to the National Audubon Society by its owner, Millicent Todd Bingham. The focus that day was on the preservation of the natural landscape and of the intricate web of life whose interwoven strands lead from microbes to man. But in the background of all the conversations among the visitors to the island was indignation at the despoiling of the roads they had traveled. Once it had been a joy to follow those roads through the evergreen forests, roads lined with bayberry and sweet fern, alder and huckleberry. Now all was brown desolation. One of the conservationists wrote of that August pilgrimage to a Maine island: "I returned. . . angry at the desecration of the Maine roadsides. Where, in previous years, the highways were bordered with wildflowers and attractive shrubs, there were only the scars of dead vegetation for mile after mile As an economic proposition, can Maine afford the loss of tourist goodwill that such sights induce?"

Maine roadsides are merely one example, though a particularly sad one for those of us who have a deep love for the beauty of that state, of the senseless destruction that is going on in the name of roadside brush control throughout the nation.

Botanists at the Connecticut Arboretum declare that the elimination of beautiful native shrubs and wildflowers has reached the proportions of a "roadside crisis," Azaleas, mountain laurel, blueberries, huckleberries, viburnums, dogwood, bayberry, sweet fern, low shadbush, winterberry, chokecherry, and wild plum are dying before the chemical barrage. So are the daisies, black-eyed Susans, Queen Anne's lace, goldenrods, and fall asters which lend grace and beauty to the landscape.

The spraying is not only improperly planned but studded with abuses such as these. In a southern New England town one contractor finished his work with some chemical remaining in his tank. He discharged this along woodland roadsides where no spraying had been authorized. As a result the community lost the blue

20

21

19

and golden beauty of its autumn roads, where asters and goldenrod would have made a display worth traveling far to see. In another New England community a contractor changed the state specifications for town spraying without the knowledge of the highway department and sprayed roadside vegetation to a height of eight feet instead of the specified maximum of four feet, leaving a broad, disfiguring, brown swath. In a Massachusetts community the town officials purchased a weed killer from a zealous chemical salesman, unaware that it contained arsenic. One result of the subsequent roadside spraying was the death of a dozen cows from arsenic poisoning.

Trees within the Connecticut Arboretum Natural Area were seriously injured when the town of Waterford sprayed the roadsides with chemical weed killers in 1957. Even large trees not directly sprayed were affected. The leaves of the oaks began to curl and turn brown, although it was the season for spring growth. Then new shoots began to be put forth and grew with abnormal rapidity, giving a weeping appearance to the trees. Two seasons later, large branches on these trees had died, others were without leaves, and the deformed, weeping effect of whole trees persisted.

I know well a stretch of road where nature's own landscaping has provided a border of alder, viburnum, sweet fern, and juniper with seasonally changing accents of bright flowers, or of fruits hanging in jeweled clusters in the fall. The road had no heavy load of traffic to support; there were few sharp curves or intersections where brush could obstruct the driver's vision. But the sprayers took over and the miles along that road became something to be traversed quickly, a sight to be endured with one's mind closed to thoughts of the sterile and hideous world we are letting our technicians make. But here and there authority had somehow faltered and by an unaccountable oversight there were oases of beauty in the midst of austere and regimented control—oases that made the desecration of the greater part of the road the more unbearable. In such places my spirit lifted to the sight of the drifts of white clover or the clouds of purple vetch with here and there the flaming cup of a wood lily.

Such plants are "weeds" only to those who make a business of selling and applying chemicals. In a volume of *Proceedings* of one of the weed-control conferences that are now regular institutions, I once read an extraordinary statement of a weed killer's philosophy. The author defended the killing of good plants "simply because they are

2.5

in bad company." Those who complain about killing wildflowers along roadsides reminded him, he said, of antivivisectionists "to whom, if one were to judge by their actions, the life of a stray dog is more sacred than the lives of children."

To the author of this paper, many of us would unquestionably be suspect, convicted of some deep perversion of character because we prefer the sight of the vetch and the clover and the wood lily in all their delicate and transient beauty to that of roadsides scorched as by fire, the shrubs brown and brittle, the bracken that once lifted high its proud lacework now withered and drooping. We would seem deplorably weak that we can tolerate the sight of such "weeds," that we do not rejoice in their eradication, that we are not filled with exultation that man has once

more triumphed over miscreant nature.

Justice Douglas tells of attending a meeting of federal field men who were discussing protests by citizens against plans for the spraying of sagebrush that I mentioned earlier in this chapter. These men considered it hilariously funny that an old lady had opposed the plan because the wildflowers would be destroyed. "Yet, was not her right to search out a banded cup or a tiger lily as inalienable as the right of stockmen to search out grass or of a lumberman to claim a tree?" asks this humane and perceptive jurist. "The esthetic values of the wilderness are as much our inheritance as the veins of copper and gold in our hills and the forests in our mountains."

There is of course more to the wish to preserve our roadside vegetation than even such esthetic considerations. In the economy of nature the natural vegetation has its essential place. Hedgerows along country roads and bordering fields provide food, cover, and nesting areas for birds and homes for many small animals. Of some 70 species of shrubs and vines that are typical roadside species in the eastern states alone, about 65 are important to wildlife as food.

Such vegetation is also the habitat of wild bees and other pollinating insects. Man is more dependent on these wild pollinators than he usually realizes. Even the farmer himself seldom understands the value of wild bees and often participates in the very measures that rob him of their services. Some agricultural crops and many wild plants are partly or wholly dependent on the services of the native pollinating insects. Several hundred species of wild bees take part in the pollination of cultivated crops—100 species visiting the flowers of alfalfa alone. Without insect pollination, most of the soil-holding and soil-enriching plants of uncultivated areas

27

26

28

would die out, with far-reaching consequences to the ecology of the whole region. Many herbs, shrubs, and trees of forests and range depend on native insects for their reproduction; without these plants many wild animals and range stock would find little food. Now clean cultivation and the chemical destruction of hedgerows and weeds are eliminating the last sanctuaries of these pollinating insects and breaking the threads that bind life to life.

These insects, so essential to our agriculture and indeed to our landscape as we know it, deserve something better from us than the senseless destruction of their habitat. Honeybees and wild bees depend heavily on such "weeds" as goldenrod, mustard, and dandelions for pollen that serves as the food of their young. Vetch furnishes essential spring forage for bees before the alfalfa is in bloom, tiding them over this early season so that they are ready to pollinate the alfalfa. In the fall they depend on goldenrod at a season when no other food is available, to stock up for the winter. By the precise and delicate timing that is nature's own, the emergence of one species of wild bees takes place on the very day of the opening of the willow blossoms. There is no dearth of men who understand these things, but these are not the men who order the wholesale drenching of the landscape with chemicals.

And where are the men who supposedly understand the value of proper habitat for the preservation of wildlife? Too many of them are to be found defending herbicides as "harmless" to wildlife because they are thought to be less toxic than insecticides. Therefore, it is said, no harm is done. But as the herbicides rain down on forest and field, on marsh and rangeland, they are bringing about marked changes and even permanent destruction of wildlife habitat. To destroy the homes and the food of wildlife is perhaps worse in the long run than direct killing.

The irony of this all-out chemical assault on roadsides and utility rights-ofway is twofold. It is perpetuating the problem it seeks to correct, for as experience has clearly shown, the blanket application of herbicides does not permanently control roadside "brush" and the spraying has to be repeated year after year. And as a further irony, we persist in doing this despite the fact that a perfectly sound method of selective spraying is known, which can achieve long-term vegetational control and eliminate repeated spraying in most types of vegetation.

The object of brush control along roads and rights-of-way is not to sweep the land clear of everything but grass; it is, rather, to eliminate plants ultimately tall

31

enough to present an obstruction to drivers' vision or interference with wires on rights-of-way. This means, in general, trees. Most shrubs are low enough to present no hazard; so, certainly, are ferns and wildflowers.

34

Selective spraying was developed by Dr. Frank Egler during a period of years at the American Museum of Natural History as director of a Committee for Brush Control Recommendations for Rights-of-Way. It took advantage of the inherent stability of nature, building on the fact that most communities of shrubs are strongly resistant to invasion by trees. By comparison, grasslands are easily invaded by tree seedlings. The object of selective spraying is not to produce grass on roadsides and rights-of-way but to eliminate the tall woody plants by direct treatment and to preserve all other vegetation. One treatment may be sufficient, with a possible follow-up for extremely resistant species; thereafter the shrubs assert control and the trees do not return. The best and cheapest controls for vegetation are not chemicals but other plants.

35

The method has been tested in research areas scattered throughout the eastern United States. Results show that once properly treated, an area becomes stabilized, requiring no re-spraying for at least 20 years. The spraying can often be done by men on foot, using knapsack sprayers, and having complete control over their material. Sometimes compressor pumps and material can be mounted on truck chassis, but there is no blanket spraying. Treatment is directed only to trees and any exceptionally tall shrubs that must be eliminated. The integrity of the environment is thereby preserved, the enormous value of the wildlife habitat remains intact, and the beauty of shrub and fern and wildflower has not been sacrificed.

36

Here and there the method of vegetation management by selective spraying has been adopted. For the most part, entrenched custom dies hard and blanket spraying continues to thrive, to exact its heavy annual costs from the taxpayer, and to inflict its damage on the ecological web of life. It thrives, surely, only because the facts are not known. When taxpayers understand that the bill for spraying the town roads should come due only once a generation instead of once a year, they will surely rise up and demand a change of method.

37

Among the many advantages of selective spraying is the fact that it minimizes the amount of chemical applied to the landscape. There is no broadcasting of material but, rather, concentrated application to the base of the trees. The potential harm to wildlife is therefore kept to a minimum.

The most widely used herbicides are 2,4-D, 2,4,5-T, and related compounds. Whether or not these are actually toxic is a matter of controversy. People spraying their lawns with 2,4-D and becoming wet with spray have occasionally developed severe neuritis and even paralysis. Although such incidents are apparently uncommon, medical authorities advise caution in use of such compounds. Other hazards, more obscure, may also attend the use of 2,4-D. It has been shown experimentally to disturb the basic physiological process of respiration in the cell, and to imitate X-rays in damaging the chromosomes. Some very recent work indicates that reproduction of birds may be adversely affected by these and certain other herbicides at levels far below those that cause death.

Apart from any directly toxic effects, curious indirect results follow the use of certain herbicides. It has been found that animals, both wild herbivores and livestock, are sometimes strangely attracted to a plant that has been sprayed, even though it is not one of their natural foods. If a highly poisonous herbicide such as arsenic has been used, this intense desire to reach the wilting vegetation inevitably has disastrous results. Fatal results may follow, also, from less toxic herbicides if the plant itself happens to be poisonous or perhaps to possess thorns or burs. Poisonous range weeds, for example, have suddenly become attractive to livestock after spraying, and the animals have died from indulging this unnatural appetite. The literature of veterinary medicine abounds in similar examples: swine eating sprayed cockleburs with consequent severe illness, lambs eating sprayed thistles, bees poisoned by pasturing on mustard sprayed after it came into bloom. Wild cherry, the leaves of which are highly poisonous, has exerted a fatal attraction for cattle once its foliage has been sprayed with 2,4-D. Apparently the wilting that follows spraying (or cutting) makes the plant attractive. Ragwort has provided other examples. Livestock ordinarily avoid this plant unless forced to turn to it in late winter and early spring by lack of other forage. However, the animals eagerly feed on it after its foliage has been sprayed with 2,4-D.

The explanation of this peculiar behavior sometimes appears to lie in the changes which the chemical brings about in the metabolism of the plant itself. There is temporarily a marked increase in sugar content, making the plant more attractive to many animals.

Another curious effect of 2,4-D has important effects for livestock, wildlife, and apparently for men as well. Experiments carried out about a decade ago showed

that after treatment with this chemical there is a sharp increase in the nitrate content of corn and of sugar beets. The same effect was suspected in sorghum, sunflower, spiderwort, lambs quarters, pigweed, and smartweed. Some of these are normally ignored by cattle, but are eaten with relish after treatment with 2,4-D. A number of deaths among cattle have been traced to sprayed weeds, according to some agricultural specialists. The danger lies in the increase in nitrates, for the peculiar physiology of the ruminant at once poses a critical problem. Most such animals have a digestive system of extraordinary complexity, including a stomach divided into four chambers. The digestion of cellulose is accomplished through the action of microorganisms (rumen bacteria) in one of the chambers. When the animal feeds on vegetation containing an abnormally high level of nitrates, the microorganisms in the rumen act on the nitrates to change them into highly toxic nitrites. Thereafter a fatal chain of events ensues: the nitrites act on the blood pigment to form a chocolate-brown substance in which the oxygen is so firmly held that it cannot take part in respiration, hence oxygen is not transferred from the lungs to the tissues. Death occurs within a few hours from anoxia, or lack of oxygen. The various reports of livestock losses after grazing on certain weeds treated with 2,4-D therefore have a logical explanation. The same danger exists for wild animals belonging to the group of ruminants, such as deer, antelope, sheep, and goats.

42

Although various factors (such as exceptionally dry weather) can cause an increase in nitrate content, the effect of the soaring sales and applications of 2,4-D cannot be ignored. The situation was considered important enough by the University of Wisconsin Agricultural Experiment Station to justify a warning in 1957 that "plants killed by 2,4-D may contain large amounts of nitrate." The hazard extends to human beings as well as animals and may help to explain the recent mysterious increase in "silo deaths." When corn, oats, or sorghum containing large amounts of nitrates are ensiled they release poisonous nitrogen oxide gases, creating a deadly hazard to anyone entering the silo. Only a few breaths of one of these gases can cause a diffuse chemical pneumonia. In a series of such cases studied by the University of Minnesota Medical School all but one terminated fatally.

43

"Once again we are walking in nature like an elephant in the china cabinet." So C. J. Briejèr, a Dutch scientist of rare understanding, sums up our use of weed

killers. "In my opinion too much is taken for granted. We do not know whether all weeds in crops are harmful or whether some of them are useful," says Dr. Briejèr.

Seldom is the question asked, What is the relation between the weed and the soil? Perhaps, even from our narrow standpoint of direct self-interest, the relation is a useful one. As we have seen, soil and the living things in and upon it exist in a relation of interdependence and mutual benefit. Presumably the weed is taking something from the soil; perhaps it is also contributing something to it. A practical example was provided recently by the parks in a city in Holland. The roses were doing badly. Soil samples showed heavy infestations by tiny nematode worms. Scientists of the Dutch Plant Protection Service did not recommend chemical sprays or soil treatments; instead, they suggested that marigolds be planted among the roses. This plant, which the purist would doubtless consider a weed in any rosebed, releases an excretion from its roots that kills the soil nematodes. The advice was taken; some beds were planted with marigolds, some left without as controls. The results were striking. With the aid of the marigolds the roses flourished; in the control beds they were sickly and drooping. Marigolds are now used in many places for combating nematodes.

In the same way, and perhaps quite unknown to us, other plants that we ruthlessly eradicate may be performing a function that is necessary to the health of the soil. One very useful function of natural plant communities—now pretty generally stigmatized as "weeds"—is to serve as an indicator of the condition of the soil. This useful function is of course lost where chemical weed killers have been used.

Those who find an answer to all problems in spraying also overlook a matter of great scientific importance—the need to preserve some natural plant communities. We need these as a standard against which we can measure the changes our own activities bring about. We need them as wild habitats in which original populations of insects and other organisms can be maintained, for, as will be explained in Chapter 16, the development of resistance to insecticides is changing the genetic factors of insects and perhaps other organisms. One scientist has even suggested that some sort of "zoo" should be established to preserve insects, mites, and the like, before their genetic composition is further changed.

Some experts warn of subtle but far-reaching vegetational shifts as a result of the growing use of herbicides. The chemical 2,4-D, by killing out the broad-leaved plants, allows the grasses to thrive in the reduced competition—now some of the

grasses themselves have become "weeds," presenting a new problem in control and giving the cycle another turn. This strange situation is acknowledged in a recent issue of a journal devoted to crop problems: "With the widespread use of 2,4-D to control broadleaved weeds, grass weeds in particular have increasingly become a threat to corn and soybean yields."

48

Ragweed, the bane of hay fever sufferers, offers an interesting example of the way efforts to control nature sometimes boomerang. Many thousands of gallons of chemicals have been discharged along roadsides in the name of ragweed control. But the unfortunate truth is that blanket spraying is resulting in more ragweed, not less. Ragweed is an annual; its seedlings require open soil to become established each year. Our best protection against this plant is therefore the maintenance of dense shrubs, ferns, and other perennial vegetation. Spraying frequently destroys this protective vegetation and creates open, barren areas which the ragweed hastens to fill. It is probable, moreover, that the pollen content of the atmosphere is not related to roadside ragweed, but to the ragweed of city lots and fallow fields.

49

The booming sales of chemical crabgrass killers are another example of how readily unsound methods catch on. There is a cheaper and better way to remove crabgrass than to attempt year after year to kill it out with chemicals. This is to give it competition of a kind it cannot survive, the competition of other grass. Crabgrass exists only in an unhealthy lawn. It is a symptom, not a disease in itself. By providing a fertile soil and giving the desired grasses a good start, it is possible to create an environment in which crabgrass cannot grow, for it requires open space in which it can start from seed year after year.

50

Instead of treating the basic condition, suburbanites—advised by nurserymen who in turn have been advised by the chemical manufacturers—continue to apply truly astonishing amounts of crabgrass killers to their lawns each year. Marketed under trade names which give no hint of their nature, many of these preparations contain such poisons as mercury, arsenic, and chlordane. Application at the recommended rates leaves tremendous amounts of these chemicals on the lawn. Users of one product, for example, apply 60 pounds of technical chlordane to the acre if they follow directions. If they use another of the many available products, they are applying 175 pounds of metallic arsenic to the acre. The toll of dead birds, as we shall see in Chapter 8, is distressing. How lethal these lawns may be for human beings is unknown.

52.

53

54

55

56

The success of selective spraying for roadside and right-of-way vegetation, where it has been practiced, offers hope that equally sound ecological methods may be developed for other vegetation programs for farms, forests, and ranges methods aimed not at destroying a particular species but at managing vegetation as a living community.

Other solid achievements show what can be done. Biological control has achieved some of its most spectacular successes in the area of curbing unwanted vegetation. Nature herself has met many of the problems that now beset us, and she has usually solved them in her own successful way. Where man has been intelligent enough to observe and to emulate Nature he, too, is often rewarded with success.

An outstanding example in the field of controlling unwanted plants is the handling of the Klamath-weed problem in California. Although the Klamath weed, or goatweed, is a native of Europe (where it is called St. Johnswort), it accompanied man in his westward migrations, first appearing in the United States in 1793 near Lancaster, Pennsylvania. By 1900 it had reached California in the vicinity of the Klamath River, hence the name locally given to it. By 1929 it had occupied about 100,000 acres of rangeland, and by 1952 it had invaded some two and one half million acres.

Klamath weed, quite unlike such native plants as sagebrush, has no place in the ecology of the region, and no animals or other plants require its presence. On the contrary, wherever it appeared livestock became "scabby, sore-mouthed, and unthrifty" from feeding on this toxic plant. Land values declined accordingly, for the Klamath weed was considered to hold the first mortgage.

In Europe the Klamath weed, or St. Johnswort, has never become a problem because along with the plant there have developed various species of insects; these feed on it so extensively that its abundance is severely limited. In particular, two species of beetles in southern France, pea-sized and of metallic color, have their whole beings so adapted to the presence of the weed that they feed and reproduce only upon it.

It was an event of historic importance when the first shipments of these beetles were brought to the United States in 1944, for this was the first attempt in North America to control a plant with a plant-eating insect. By 1948 both species had become so well established that no further importations were needed. Their spread was accomplished by collecting beetles from the original colonies and redistributing

58

59

60

them at the rate of millions a year. Within small areas the beetles accomplish their own dispersion, moving on as soon as the Klamath weed dies out and locating new stands with great precision. And as the beetles thin out the weed, desirable range plants that have been crowded out are able to return.

A ten-year survey completed in 1959 showed that control of the Klamath weed had been "more effective than hoped for even by enthusiasts," with the weed reduced to a mere 1 per cent of its former abundance. This token infestation is harmless and is actually needed in order to maintain a population of beetles as protection against a future increase in the weed.

Another extraordinarily successful and economical example of weed control may be found in Australia. With the colonists' usual taste for carrying plants or animals into a new country, a Captain Arthur Phillip had brought various species of cactus into Australia about 1787, intending to use them in culturing cochineal insects for dye. Some of the cacti or prickly pears escaped from his gardens and by 1925 about 20 species could be found growing wild. Having no natural controls in this new territory, they spread prodigiously, eventually occupying about 60 million acres. At least half of this land was so densely covered as to be useless.

In 1920 Australian entomologists were sent to North and South America to study insect enemies of the prickly pears in their native habitat. After trials of several species, 3 billion eggs of an Argentine moth were released in Australia in 1930. Seven years later the last dense growth of the prickly pear had been destroyed and the once uninhabitable areas reopened to settlement and grazing. The whole operation had cost less than a penny per acre. In contrast, the unsatisfactory attempts at chemical control in earlier years had cost about £10 per acre.

Both of these examples suggest that extremely effective control of many kinds of unwanted vegetation might be achieved by paying more attention to the role of plant-eating insects. The science of range management has largely ignored this possibility, although these insects are perhaps the most selective of all grazers and their highly restricted diets could easily be turned to man's advantage.