4.5 节目专用信息

在数字电视系统中,多套节目被复用到一个流中,每套节目只占整个传输流的一部分数据包,一个物理频道对应的传输流包含有多套节目,要观看其中的某套节目,必须从流中提取出该套节目对应的传输包,然后再进行解码。因此,为了管理各种不同数据来源的 TS 包数据,在 MPEG 标准中引入了一些特殊的 TS 数据包来确定各个 PES 数据包之间的关系。这些特殊的 TS 数据包被称为节目专用信息(Program Specific Information,PSI)。

4.5.1 MPEG 中的节目专用信息

在 MPEG 标准中,节目专有信息包括节目关联表 (Program Association Table, PAT)、节目映射表 (Program Map Table, PMT)、条件接收表 (Conditional Access Table, CAT)、网络信息表 (Network Information Table, NIT) 和私有信息表。通过这些表格信息来确立各个不同数据流之间的关系,为机顶盒解码节目提供所必需的信息数据。

1. 节目关联表 (Program Association Table, PAT)

节目关联表的主要作用是指出传输码流中包含的节目、节目编号以及对应的节目映射表所在 TS 包的包识别码 (PID),并提供网络信息表所在 TS 包的包识别码 (PID)。节目关联表由 PID 为 0x0000 的 TS 包传送,如果 PAT 表出错或丢失,将导致机顶盒不能搜寻到 PMT 及相应节目数据包,无法解码 TS 流中的任何节目。

2. 节目映射表 (Program Map Table, PMT)

节目映射表提供各个节目与实际的 PES 数据流之间的映射关系。主要用来指明组成一套节目的视频、音频和数据所在的 TS 包的包识别码,并给出每路节目中含有节目时钟基准字段的 TS 包的包识别码。如果节目映射表出错或丢失,将影响该节目的解码。

3. 条件接收表(Conditional Access Table, CAT)

条件接收表提供条件接收系统中条件接入的信息,指定条件接收系统以及相应的授权管理信息之间的联系,指定授权管理信息的 PID,以及其他相关参数。条件接收表由 PID 为0x0001 的传输包传送,具体内容与所采用的条件接收系统相关。

4、网络信息表(Network Information Table, NIT)

网络信息表提供与多组传输流、物理网络以及网络传输相关的信息,其中包括传输流描述符、通道的频率信息、卫星发射器号码、编码和调制方式等信息。网络信息表由 PID=0x0010 的传输包传送。

4.5.2 节目专有信息的表述方法

在 MPEG-2 标准中规定了三个逻辑层次: 表(Table)、节(Section)和描述子(Descriptor)来表述传输流的 PSI 信息。

1. 表

表是一种概念性的机制,是对节目信息的结构性描述,不是一种实际的语法描述方式。

在实际使用时,要将它划分成一个或多个节,然后按照一定的要求将节放入到传输流的数据包中。

2. 节 (section)

节是一个 MPEG-2 的语法定义,通过节可以将所有的 PSI 表映射到 TS 流的包中。节可以直接放进 TS 包中,不需要事先放入 PES 中,而且节可以不在 TS 包的有效负载的开头开始,它的开始点由开始指针指出,一个 TS 包中可以有多个节,节间没有空隙。下一个节的开始由上一个节的长度指示,不再有相应的开始指针。当一个节结束后不再放其它节时,所剩的负载部分用填充部分填充。

3. 描述子

MPEG-2 在节中明确规定的主要是有关节目构成不可缺少的语法元素。在大部分 PSI 对应的节中通常采用描述子来提供更多的信息。

MPEG-2 中的描述子提供有关视频流、音频流、采用的语言、层次、系统时钟、显示参数、码率等方面的大量信息。除了规定的描述子外,也可以自定义描述子,自定义的描述子 需满足公共格式:{标志,长度,数据}。

根据节目映射表的语法定义通过描述子和节这两种 PSI 表述方式将 PMT 表映射到传输流中。如图 4-16 所示,从 table_id(表识别码)开始到 last_section_number(最后一个分区的序号)都是用于标识节的主要语法元素。从 PCR_PID(载有节目时钟基准的 TS 包的 PID)直到 CRC_32(表格数据的 CRC 校验数据)是节目映射表的表格数据,表格数据则通过描述子的形式映射到节数据流中。最后结节数据流装载到特定 PID 的传输包的负荷中。

4.5.3 利用 PSI 对传输流解复用的过程

节目专有信息表的 PAT 和 PMT 表格在机顶盒解码过程中起着十分重要的作用,在传输流的行程过程中,PAT 和 PMT 表格按一定的间隔插入到传输流中。如图 4-17 所示,一个多节目传输流中插入有 PID=0 的节目关联表,PID=20、PID=30 的节目映射表,还包括其他各

种类型数据的传输包。

解码器首先在码流中找到 PID=0 的 PAT 表所在的 TS 包,根据 PAT 表格的表述方法重建如图 4-17 中的 PAT 表。然后从 PAT 表中查找到所选择收看节目所对应的 PMT 表的 PID值,从码流中找到该 PMT 表的 TS 包,同样按照 PMT 表格的表述方法重建出该节目相应的PMT表。最后根据 PMT表中给出的该套节目的视频、音频、辅助数据的 TS 包的 PID值,从传输流中分别将该套节目的视频和、音频和辅助数据解复用并送入相应的缓冲器,然后分别开始对节目进行解码。

图 4-17 PSI 表格与传输流中的各码流之间的映射关系

通过节目专有信息,机项盒可以获取数字电视码流的基本结构,从而实现解复用和解码。在实际的数字电视接收服务时,特别是在需要节目选择、预定等服务时,仅有 PSI 信息还不能帮助用户方便地收看节目。在实际应用的数字电视广播系统中,都对 PSI 进行了扩展。在 DVB 标准中的 PSI 扩展标准称为 DVB-SI (DVB 业务信息),在 ATSC 标准中称为 PSIP (Program and System Information Protocol)信息。关于业务信息的详细内容可以参看有关标准和规范。