Jack's Car Rental

- □ \$10 for each car rented (must be available when request rec'd)
- ☐ Two locations, maximum of 20 cars at each
- Cars returned and requested randomly
 - *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$ (Poisson distribution)
 - 1st location: average requests = 3, average returns = 3
 - 2nd location: average requests = 4, average returns = 2
- ☐ Can move up to 5 cars between locations overnight
 - at a cost of \$2/car
- ☐ States, Actions, Rewards?
- ☐ Transition probabilities? Discounting?

Jack's Car Rental

Jack's CR Exercise

- □ Suppose the first car moved is free
 - From 1st to 2nd location
 - Because an employee travels that way anyway (by bus)
- □ Suppose only 10 cars can be parked for free at each location
 - More than 10 cost \$4 for using an extra parking lot
- Such arbitrary nonlinearities are common in real problems

Example 1:

https://alexkozlov.com/post/jack-car-rental/

Example 2:

https://towardsdatascience.com/elucidating-policy-iteration-in-reinforcement-learning-jacks-car-rental-problem-d41b34c8aec7

Value Iteration

Recall the **full policy-evaluation backup**:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathbb{S}$$

Here is the **full value-iteration backup**:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \quad \forall s \in S$$

Value Iteration – One array version

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

Repeat
$$\Delta \leftarrow 0$$
 For each $s \in \mathcal{S}$:
$$v \leftarrow V(s)$$

$$V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big]$$

$$\Delta \leftarrow \max(\Delta,|v-V(s)|)$$
 until $\Delta < \theta$ (a small positive number)

Output a deterministic policy,
$$\pi$$
, such that $\pi(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Gambler's Problem

- ☐ Gambler can repeatedly bet \$ on a coin flip
- Heads he wins his stake, tails he loses it
- □ Initial capital $\in \{\$1, \$2, ... \$99\}$
- ☐ Gambler wins if his capital becomes \$100 loses if it becomes \$0
- Coin is unfair
 - Heads (gambler wins) with probability p = .4
- States, Actions, Rewards? Discounting?

Gambler's Problem Solution

Generalized Policy Iteration

Generalized Policy Iteration (GPI):

any interaction of policy evaluation and policy improvement, independent of their granularity.

A geometric metaphor for convergence of GPI:

Asynchronous DP

- ☐ All the DP methods described so far require exhaustive sweeps of the entire state set.
- ☐ Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- ☐ Still need lots of computation, but does not get locked into hopelessly long sweeps
- ☐ Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

Efficiency of DP

- ☐ To find an optimal policy is polynomial in the number of states...
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- ☐ In practice, classical DP can be applied to problems with a few millions of states.
- ☐ Asynchronous DP can be applied to larger problems, and is appropriate for parallel computation.
- ☐ It is surprisingly easy to come up with MDPs for which DP methods are not practical.

Summary

- ☐ Policy evaluation: backups without a max (prediction)
- Policy improvement: form a greedy policy, if only locally
- ☐ Policy iteration: alternate the above two processes (control)
- ☐ Value iteration: backups with a max (control)
- ☐ Full backups (to be contrasted later with sample backups)
- ☐ Generalized Policy Iteration (GPI)
- Asynchronous DP: a way to avoid exhaustive sweeps
- **Bootstrapping**: updating estimates based on other estimates
- ☐ Biggest limitation of DP is that it requires a *probability model* (as opposed to a generative or simulation model)

Q-Learning

Outline

- Control learning
- Control policies that choose optimal actions
- Q learning
- Convergence

Note

The lecture slides are adopted/modified from the following resources:

[1] T. M. Mitchell, Machine Learning, McGraw Hill, 1997. ISBN: 978-0-07-042807-2

Learning based control

Consider learning to choose actions, e.g.,

- Robot learning to dock on battery charger
- Learning to choose actions to optimize factory output
- Learning to play Backgammon

Learning based control

Note several problem characteristics:

- Delayed reward
- Opportunity for active exploration
- Possibility that state only partially observable
- Possible need to learn multiple tasks with same sensors/effectors

Reinforcement Learning problem

Goal: Learn to choose actions that maximize

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma < 1$

Markov decision process

Assume

- \bullet finite set of states S
- \bullet set of actions A
- at each discrete time agent observes state $s_t \in S$ and chooses action $a_t \in A$
- then receives immediate reward r_t
- and state changes to s_{t+1}
- Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - i.e., r_t and s_{t+1} depend only on *current* state and action
 - functions δ and r may be nondeterministic
 - functions δ and r not necessarily known to agent

The Learning Task

Execute actions in environment, observe results, and

• learn action policy $\pi: S \to A$ that maximizes

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$

from any starting state in S

• here $0 \le \gamma < 1$ is the discount factor for future rewards

Note something new:

- Target function is $\pi: S \to A$
- but we have no training examples of form $\langle s, a \rangle$
- training examples are of form $\langle \langle s, a \rangle, r \rangle$

Value function

To begin, consider deterministic worlds...

For each possible policy π the agent might adopt, we can define an evaluation function over states

$$V^{\pi}(s) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$
$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where r_t, r_{t+1}, \ldots are generated by following policy π starting at state s

Restated, the task is to learn the optimal policy π^*

$$\pi^* \equiv \operatorname*{argmax} V^{\pi}(s), (\forall s)$$

What to learn

We might try to have agent learn the evaluation function V^{π^*} (which we write as V^*)

It could then do a lookahead search to choose best action from any state s because

$$\pi^*(s) = \underset{a}{\operatorname{argmax}}[r(s, a) + \gamma V^*(\delta(s, a))]$$

A problem:

- This works well if agent knows $\delta: S \times A \to S$, and $r: S \times A \to \Re$
- But when it doesn't, it can't choose actions this way

Q function

Define new function very similar to V^*

$$Q(s, a) \equiv r(s, a) + \gamma V^*(\delta(s, a))$$

If agent learns Q, it can choose optimal action even without knowing δ !

$$\pi^*(s) = \underset{a}{\operatorname{argmax}}[r(s, a) + \gamma V^*(\delta(s, a))]$$

$$\pi^*(s) = \operatorname*{argmax}_a Q(s, a)$$

Q is the evaluation function the agent will learn

An algorithm for learning Q

Note Q and V^* closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

An algorithm for learning Q

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

Nice! Let \hat{Q} denote learner's current approximation to Q. Consider training rule

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

where s' is the state resulting from applying action a in state s

Q learning algorithm

For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- \bullet Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ as follows:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

 \bullet $s \leftarrow s'$

Let's look an example: derive Q and V tables

r(s, a) (immediate reward) values

An example in the middle

$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')
\leftarrow 0 + 0.9 \max\{63, 81, 100\}
\leftarrow 90$$

A quick note

notice if rewards non-negative, then

$$(\forall s, a, n) \quad \hat{Q}_{n+1}(s, a) \ge \hat{Q}_n(s, a)$$

and

$$(\forall s, a, n) \ 0 \le \hat{Q}_n(s, a) \le Q(s, a)$$

Starting from scratch

<u>○</u>	\ 0	1 <u>00</u> 0	G G
○ ▼	0 \ 0	<u>0</u>	0

r(s,a) (immediate reward) values

	G
S	

Final Q and V tables

r(s, a) (immediate reward) values

Learned policy

There are other optimal policies as well!

Convergence

 \hat{Q} converges to Q. Consider case of deterministic world where see each $\langle s, a \rangle$ visited infinitely often.

Proof: Define a full interval to be an interval during which each $\langle s,a\rangle$ is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ

Let \hat{Q}_n be table after n updates, and Δ_n be the maximum error in \hat{Q}_n ; that is

$$\Delta_n = \max_{s,a} |\hat{Q}_n(s,a) - Q(s,a)|$$

Convergence

For any table entry $\hat{Q}_n(s,a)$ updated on iteration n+1, the error in the revised estimate $Q_{n+1}(s,a)$ is $|\hat{Q}_{n+1}(s,a) - Q(s,a)| = |(r + \gamma \max_{a'} \hat{Q}_n(s',a'))|$ $-(r + \gamma \max_{a'} Q(s', a'))|$ $= \gamma |\max_{a'} \hat{Q}_n(s', a') - \max_{a'} Q(s', a')|$ $\leq \gamma \max_{a'} |\hat{Q}_n(s', a') - Q(s', a')|$ $\leq \gamma \max_{s'',a'} |\hat{Q}_n(s'',a') - Q(s'',a')|$

$$|\hat{Q}_{n+1}(s,a) - Q(s,a)| \le \gamma \Delta_n$$

Nondeterministic cases

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

$$V^{\pi}(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots]$$

$$\equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$$

$$Q(s, a) \equiv E[r(s, a) + \gamma V^*(\delta(s, a))]$$

Nondeterministic cases

Q learning generalizes to nondeterministic worlds

Alter training rule to

$$\hat{Q}_n(s,a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r + \max_{a'} \hat{Q}_{n-1}(s',a')]$$

where

$$\alpha_n = \frac{1}{1 + visits_n(s, a)}$$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]

Temporal Difference learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a} \hat{Q}(s_{t+1}, a)$$

Why not two steps?

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a} \hat{Q}(s_{t+2}, a)$$

Temporal Difference learning

Or n?

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \dots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_{a} \hat{Q}(s_{t+n}, a)$$

Blend all of these:

$$Q^{\lambda}(s_t, a_t) \equiv (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) \right] \bullet \bullet \bullet$$

Temporal Difference learning

Equivalent expression:

$$Q^{\lambda}(s_t, a_t) = r_t + \gamma [(1 - \lambda) \max_{a} \hat{Q}(s_t, a_t) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1})]$$

 $TD(\lambda)$ algorithm uses above training rule

- Sometimes converges faster than Q learning
- converges for learning V^* for any $0 \le \lambda \le 1$ (Dayan, 1992)
- Tesauro's TD-Gammon uses this algorithm

Some ongoing research topics

- Replace \hat{Q} table with neural net or other generalizer
- Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- Learn and use $\hat{\delta}: S \times A \to S$
- Relationship to dynamic programming

Demo: computer games: tic-tac-toe and blackjack

- https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search?source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://www.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https://ww.google.com/search.source=hp&ei=liZXXIu8JqTBjwTw2Y6wCw-24">https:
- https://www.247blackjack.com/

- https://visualstudiomagazine.com/articles/2018/10/18/q-learning-with-python.aspx
- https://www.samyzaf.com/ML/rl/qmaze.html

Summary

- Control learning
- Control policies that choose optimal actions
- Q learning
- Convergence