Question 2 - behavioral cloning

Question 2.2 - BC performance against expert

Archtecture of the neurual net

- Normalization of inputs (aka Z-score) (rmk: std+=1e-6 to avoid divide by 0)
- 2 Dense hidden layer, tanh activation
- · Dense output layer
- Adam optimizer, batch size=256, validation split=10%, verbose=2
- Adam hyperparams to be learnt and the default value learning_rate=0.001, epochs=10 (this part for question 2.3)
- for each expert, num rollouts=20
- for the neurual net, num_rollouts=20
- each rollout stop until max_steps = env.spec.timestep_limit

behavioral cloning performance across all agent

#	expert name	expert mean reward	expert std reward	BC mean reward	BC std reward
0	Ant-v2	4814.0965474080385	108.80632605584692	4406.201751455288	573.3854836162683
1	HalfCheetah- v2	4127.516970772937	104.15206994425873	3513.893690862605	508.35242034980627
2	Hopper-v2	3777.979019335801	3.7795498677440458	348.8571445834208	5.574347555130938
3	Humanoid-v2	10398.817690139582	46.76945115242351	1398.7654248744934	662.1544824968952
4	Reacher-v2	-3.882463098485824	1.5836904717634293	-10.895058170778515	4.211804026505475
5	Walker2d-v2	5518.253465989686	45.763351643271314	5231.149197823615	1010.5542993232773

comparable performance with expert

Ant-v2	expert	imitation
mean reward	4823	4776
std reward	87	92
pct full rollout	100%	100%

significant deviation from expert performance

Reacher-v2	expert	imitation
mean reward	-4.39	-10.06
std reward	2.00	4.62

Reacher-v2	expert	imitation
pct full rollout	100%	100%

Question 2.3 - BC sensitivity analysis to hyperparameters (Ant-v2 as example in this report)

learning rate

training epochs

rewards vs epochs | Ant-v2

Question 3 - DAgger

Question 3.2 - DAgger performance against behavioral cloning (Reacher-v2 as example in this report)

Architecture of the neural net

- Normalization of inputs (aka Z-score) (rmk: std+=1e-6 to avoid divide by 0)
- 2 Dense hidden layer, tanh activation
- Dense output layer
- Adam optimizer, batch_size=256, validation_split=10%, verbose=2, learning_rate=0.001, epochs=10
- for each expert, num rollouts=20
- for the neurual net, num rollouts=20
- each rollout stop until max_steps = env.spec.timestep_limit
- for the ietrations of DAgger, iters=10

DAgger performs better than behavioral cloning

Appendix

BC hyperparams -- rewards vs learning rate

BC hyperparams -- rewards vs epochs

Expert vs BC vs DAgger -- rewards vs iters --

rewards vs iters/epochs | Ant-v2

