EEE104 – Digital Electronics (I) Lecture 9

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- The Karnaugh Map
- Karnaugh Map SOP Minimization
- Karnaugh Map POS Minimization

3

Karnaugh Map

- · A graphical tool to simplify Boolean expressions.
- It is like a truth table in array form, in which each cell corresponds to a row in the truth table.
- Limited to 5-6 variables.

Karnaugh Map

- The number of cells is equal to 2ⁿ, where n is the number of variables.
- The cells are not arranged according to the magnitude of binary values, e.g. 00→ 01 → 11 → 10.

AB C	0	1
00	$\bar{A}\bar{B}\bar{C}$	$\bar{A}\bar{B}C$
01	ĀBĒ	ĀBC
11	$AB\bar{C}$	ABC
10	$Aar{B}ar{C}$	$A\overline{B}C$

2

4

Karnaugh Map

Cell Adjacency

- The cells are arranged so that there is only a singlevariable change between adjacent cells.
- The binary values of two variables: 00→01→11→10.

- 1. Each cell is adjacent to the cells on its four sides.
- 2. The top row is adjacent to the bottom row.
- 3. The leftmost column is adjacent to the rightmost column. ("wrap-around")

Karnaugh Map SOP Minimization

Mapping a Standard SOP Expression

• For a standard SOP, place a 1 on the Karnaugh map in the cell having the same value as the product term.

(

Karnaugh Map SOP Minimization

Mapping a Non-Standard SOP Expression

- Convert it to standard form by **numerical expansion**.
- For each missing variable, the binary value of the product term is split into two by attaching a 1 and 0 respectively.

$$\overline{A} + A\overline{B} + AB\overline{C}$$
000 100 110
001 101
010
011

Karnaugh Map SOP Minimization

Step 1: Grouping the 1s

- The goal is to maximize the size of the groups (shorter product terms) and to minimize the number of groups (less product terms).
- A group may contain 1, 2, 4, 8, or 16 adjacent cells.
- Each 1 must be included in one or **more** groups.

Karnaugh Map SOP Minimization

Step 1: Grouping the 1s

 Alternative grouping will **not** maximize the size or minimize the number of groups.

ć

Karnaugh Map SOP Minimization

Step 2: Determine the Minimum SOP

- When a variable appears in both complemented and uncomplemented form in a group, that variable is eliminated.
- Variables that are the same for all cells of the group must appear.

10

Karnaugh Map SOP Minimization

Step 2: Determine the Minimum SOP

- The variable that is 1 for all cells of the group appear in uncomplemented form.
- The variable that is 0 for all cells of the group appear in complemented form.

Karnaugh Map SOP Minimization

Step 2: Determine the Minimum SOP

For a 3-variable map:

- 1. A 4-cell group yields a 1-variable term.
- 2. A 2-cell group yields a 2-variable product term.
- 3. A 1-cell group yields a 3-variable product term.

11

Karnaugh Map SOP Minimization

Inputs	Output
ABCD	Y
0 0 0 0	0
0 0 0 1	0
0010	0
0 0 1 1	0
0 1 0 0	0
0 1 0 1	0
0 1 1 0	0
0 1 1 1	1
1000	1
1001	1
1 0 1 0	X
1011	x
1 1 0 0	x
1 1 0 1	x
1 1 1 0	x
1 1 1 1	x

"Don't Care"

- Sometimes some input variable combinations will never occur, e.g. six invalid numbers in BCD code.
- Either a 1 or a 0 may be assigned to the output. They can be treated as "don't care" terms, written as X

(b) Without "don't cares" $Y = A\overline{B}\overline{C} + \overline{A}BCD$ With "don't cares" Y = A + BCD

Karnaugh Map SOP Minimization

"Don't Care"

- Can be used to simplify Boolean expressions.
- When an X can be grouped with 1s, then it is thought as 1.
- Otherwise, it is thought as 0.

1

Karnaugh Map POS Minimization

Mapping a Standard POS Expression

• For a standard POS, place a 0 on the Karnaugh map in the cell having the same value as the sum term.

Karnaugh Map POS Minimization

Karnaugh Map Simplification

Same as for an SOP except grouping 0s.

$$(A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

The binary values of the sum terms are 000, 001, 010, 011, 110.

If a variable is always 0, it appears in uncomplemented form; if it is always 1, in complemented $\overline{B} + C$ form.

The minimum POS is $A(\overline{B} + C)$

13