Equity Post-HCT Survival Predictions

"Equipo O+"

El Desafio del Trasplante de Células Hematopoyéticas (TCH)

¿Qué es TCH?

Procedimiento que reemplaza células madre defectuosas con células sanas de un donante o del propio paciente.

Existen dos tipos principales:

- Autotrasplante.
- Alotrasplante.

Pacientes que lo requieren

El TCH se utiliza para tratar a pacientes con enfermedades que afectan a la sangre, el sistema inmunitario o algunos tipos de cáncer. Por ejemplo, Leucemias agudas y crónicas, Linfomas, Mieloma múltiple, Enfermedades de la médula ósea, Inmunodeficiencias, Lupus, etc.

Impacto de la Inequidad en Datos de TCH

Problema

Sesgo en los datos médicos afecta la disponibilidad de donantes compatibles, la investigación y los resultados en trasplantes de células hematopoyéticas.

Consecuencias

Subrepresentación en registros de donantes, por lo que ciertos grupos étnicos tienen menos probabilidad de encontrar donantes.

Desigualdades en diagnóstico y acceso a centros especializados

Introducción al problema

Descripción del problema

Los modelos predictivos actuales frecuentemente no logran abordar las disparidades relacionadas con el estatus socioeconómico, la raza y la geografía.

Resolver estas brechas es fundamental para:

- Mejorar la atención al paciente
- Optimizar el uso de recursos

Solución propuesta

Desarrollar modelos predictivos basados en inteligencia artificial que mejoren la estratificación de riesgo, anticipe recaídas y optimice decisiones clínicas en pacientes de trasplante alogénico, eliminando sesgos socioeconómicos, raciales y geográficos

Descripción del Dataset

Fuente y Naturaleza del Dataset

El dataset utilizado proviene de datos sintéticos generados para reflejar situaciones reales de pacientes sometidos a trasplante alogénico de células hematopoyéticas (HCT). Se compone de variables clínicas, demográficas y de seguimiento, que permiten evaluar la probabilidad de supervivencia post-HCT. Aunque los datos son sintéticos, han sido diseñados para mantener las características y complejidades de los datos reales, garantizando la privacidad de los pacientes sin comprometer la validez del análisis.

Fuente de los datos: <u>Kaggle - Equity in Post-HCT Survival</u>

Tamañoo y Limitaciones

El dataset contiene 28,800 registros y 60 columnas, representando diferentes características de los pacientes. Entre las principales limitaciones del dataset se encuentran:

- Datos censurados: Algunas observaciones pueden no incluir el desenlace final del paciente, lo que complica la modelación de la supervivencia.
- Posible sesgo en la generación de datos: Aunque los datos han sido diseñados para reflejar la realidad, pueden no capturar completamente las relaciones complejas presentes en los datos clínicos reales.

Columnas clave

Entre las columnas clave del dataset, destacan:

- efs_time: Tiempo transcurrido hasta el evento de fallo o censura en la supervivencia del paciente.
- efs: Variable indicadora de evento (1 si ocurrió el evento, O si el paciente no sufrió un evento hasta ese momento).
- y_nel: Transformación del tiempo de fallo basada en la función de Nelson-Aalen para mejorar la modelación de la variable objetivo.

```
from lifelines import NelsonAalenFitter

def create_nelson(data):
    data = data.copy()
    naf = NelsonAalenFitter(nelson_aalen_smoothing=0)
    naf.fit(durations=data['efs_time'],
    event_observed=data['efs'])
    return naf.cumulative_hazard_at_times(data
        ['efs_time']).values * -1

train["y_nel"] = create_nelson(train)
train.loc[train.efs == 0, "y_nel"] = (-(-train.loc
[train.efs == 0, "y_nel"])**0.5)
```

Limpieza de datos

Se aplican conversiones de tipo y codificación de variables categoricas para que el dataset sea compatible con el modelo XGBoost.

```
from sklearn.model_selection import KFold,StratifiedKFold
from xgboost import XGBRegressor, XGBClassifier
import xgboost as xgb
print("Using XGBoost version",xgb.__version__)
```

Tras cargar los datos, y observarlos notamos que existen datos nulos, se utilizan métodos como fillna() para imputar o reemplazar esos valores.

```
CATS = []
for c in FEATURES:
    if train[c].dtype=="object":
        CATS.append(c)
        train[c] = train[c].fillna("NAN")
        test[c] = test[c].fillna("NAN")
print(f"In these features, there are {len(CATS)} CATEGORICAL FEATURES: {CATS}")
```

Análisis exploratorio de datos.

Histogramas y Distribuciones

Análisis exploratorio de datos.

Histogramas y Distribuciones

train.isna().sum().	sort_va	lues (ascei	nding=Fa	lse)[:
	0			
tce_match	18996			
mrd_hct	16597			
cyto_score_detail	11923			
tce_div_match	11396			
tce_imm_match	11133			
cyto_score	8068			
hla_high_res_10	7163			
hla_high_res_8	5829			
hla_high_res_6	5284			
hla_match_dqb1_high	5199			

Análisis de correlaciones

ID	1	-0.0089	-0.012	-0.0095	6-0.011	-0.014	-0.0071	1-0.014	-0.009	-0.013	-0.015	0.0058	-0.0086	D.00034	10.0082	2-0.0018	0.0039	0.0047	0.0043	-0.0092	-0.011	-0.017	-0.012	-0.0035	-0.0011	A N	1.0
hla_match_c_high	-0.0089	1	0.86	0.75	0.75	0.85	0.61	0.75	0.74	0.69	0.59	-0.15	0.57	-0.081	0.73	-0.021	0.59	0.7	-0.035	-0.022	0.79	0.68	0.8	0.032	0.033		
hla_high_res_8	0.012	0.86	1	0.91	0.98	0.99	0.7	0.88	0.8	0.81		-0.17	0.82	-0.059	0.84	0.012	0.77	0.88	-0.014	-0.039	0.92	0.88	0.92	0.044	0.038		
hla_low_res_6				1	0.9	0.91	0.68	0.88	0.76	0.89	0.64	-0.16	0.76	-0.046	0.9	0.026	0.87	0.77	-0.0085	-0.047	0.98	0.81	0.97	0.047	0.032		- 0.8
hla_high_res_6					1											0.022				and the second							
hla high res 10																0.018											
hla_match_dqb1_high														-0.05		0.024						0.64		0.04			- 0.6
hla_nmdp_6																0.021									0.039		
hla_match_c_low																-0.03											- 0.4
hla_match_drb1_low																0.06					0.88		0.88	0.067	0.011		
hla_match_dqb1_low	0.015						0.59		0.58		1	-0.1	0.49	-0.061		0.012	0.49	0.56	-0.027	-0.04			0.78	0.032	0.021		
year_hct	-0.0058	-0.15	-0.17	-0.16	-0.16	-0.16	-0.11	-0.15	-0.15	-0.15	-0.1	1	-0.12	-0.039	-0.15	0.00017	7-0.13	-0.14	0.098	-0.037	-0.17	-0.14	-0.16	-0.11	-0.26		- 0.2
hla_match_a_high	-0.0086	0.57	0.82	0.76	0.85	0.8	0.53	0.75	0.57		0.49	-0.12	1	0.0071		0.025	0.76	0.61	0.013	-0.033	0.75		0.74	0.016	0.043		
donor_age	0.00034	1-0.081	-0.059	-0.046	-0.045	-0.066	-0.05	-0.036	-0.084	-0.052	-0.061	-0.039	0.0071	1	-0.068	0.15	0.0057	-0.061	0.086	-0.034	-0.061	-0.057	-0.07	0.048	-0.015		
hla_match_b_low	-0.0082	0.73	0.84	0.9	0.82	0.85	0.63	0.8	0.74	0.73	0.59	-0.15	0.63	-0.068	1	-0.016	0.65	0.75	-0.019	-0.033	0.9	0.74	0.89	0.041	0.022		- 0.0
age_at_hct	-0.0018	-0.021	0.012	0.026	0.022	0.018	0.024	0.021	-0.03	0.06	0.012-	0.0001	70.025	0.15	-0.016	1	0.02	-0.017	0.24	-0.22	0.012	0.049	0.014	0.23	-0.15		
hla_match_a_low	-0.0039	0.59	0.77	0.87	0.78	0.77	0.54	0.77	0.59		0.49	-0.13	0.76	0.0057		0.02	1	0.62	0.012	-0.029	0.84		0.81	0.015	0.049		
hla_match_b_high	-0.0047		0.88	0.77	0.88	0.87	0.6	0.75	0.71		0.56	-0.14		-0.061	0.75	-0.017		1	-0.014	-0.02	0.79		0.8	0.026	0.036		0.2
comorbidity_score	-0.0043	-0.035	-0.014	-0.0085	0.0062	-0.018	-0.034	0.0028	-0.021	-0.018	-0.027	0.098	0.013	0.086	-0.019	0.24	0.012	-0.014	1	-0.16	-0.013	-0.012	-0.013	0.15	-0.14		
karnofsky_score	-0.0092	-0.022	-0.039	-0.047	-0.042	-0.045	-0.039	-0.044	-0.024	-0.059	-0.04	-0.037	-0.033	-0.034	-0.033	-0.22	-0.029	-0.02	-0.16	1	-0.044	-0.052	-0.05	-0.091	0.098		
hla_low_res_8	0.011	0.79	0.92	0.98	0.9	0.93	0.7	0.89	0.87	0.88	0.66	-0.17	0.75	-0.061	0.9	0.012	0.84	0.79	-0.013	-0.044	1	0.81	0.99	0.041	0.038		0.4
hla_match_drb1_high	0.017		0.88	0.81	0.89	0.88		0.78		0.76		-0.14		-0.057	0.74	0.049			-0.012	-0.052	0.81	1	0.82	0.074	0.01		
hla_low_res_10	0.012	0.8	0.92	0.97	0.9	0.93	0.72	0.89	0.86	0.88	0.78	-0.16	0.74	-0.07	0.89	0.014	0.81	0.8	-0.013	-0.05	0.99	0.82	1	0.042	0.036		
efs	-0.0035	0.032	0.044	0.047	0.045	0.048	0.04	0.04	0.016	0.067	0.032	-0.11	0.016	0.048	0.041	0.23	0.015	0.026	0.15	-0.091	0.041	0.074	0.042	1	-0.74		0.6
efs_time	-0.0011	0.033	0.038	0.032	0.036	0.034	0.018	0.039	0.043	0.011	0.021	-0.26	0.043	-0.015	0.022	-0.15	0.049	0.036	-0.14	0.098	0.038	0.01	0.036	-0.74	1		
	- Q	high -	- 8_s	- 9 Sa	- 9 sa.	- 92-	high -	- 9 ⁻ dp	- wol-	- wol -	- wol-	r_hct -	high -	- age -	- wol-	t_hct -	- wol-	high -	score -	core -	es_8 -	high -	- 10 -	efs -	efs_time -		
		hla_match_c_high	hla_high_res	hla_low_res	hla_high_res	hla_high_res_10	atch_dqb1_high	hla_nmdp_	_match_c_lov	match_drb1_lov	match_dqb1_low	yea	_match_a_high	donor_age	match_b_low	age_at_hc	match_a_lo	hla_match_b_high	comorbidity_sco	karnofsky_sco	hla_low_res	match_drb1_high	hla_low_res_10		efs		
		hla	I	=	I	hla	la_mat		ьlа	hla_ma	hla_mat		hla_r		hla		hla	hla	comc	ka	10 m	lla_mat	로				

Visualizaciones Adicionales

```
train["efs"].value_counts()
```

count

efs

1.0 15532

0.0 13268

Visualizaciones * Adicionales

	count
race_group	
More than one race	4845
Asian	4832
White	4831
Black or African-American	4795
American Indian or Alaska Native	4790
Native Hawaiian or other Pacific Islander	4707

Análisis Profundos Propuestos

Análisis de regresión

Es una técnica estadística utilizada para modelar y analizar la relación entre una variable dependiente y una o más variables independientes. Su objetivo es predecir valores y comprender la influencia de las variables independientes sobre la dependiente.

Objetivo del análisis

Se busca modelar la relación entre diversas variables del dataset y la variable objetivo y_nel, que representa la estimación del riesgo de los pacientes tras el trasplante. Este análisis permitirá evaluar qué factores influyen más en la predicción de la supervivencia.

Potencial impacto del análisis

Se espera identificar variables clave que afectan la supervivencia post-HCT y así mejorar la precisión del modelo predictivo y a desarrollar estrategias de intervención más efectivas para los pacientes en alto riesgo.

Análisis Profundos Propuestos

Análisis de clasificación

A diferencia de la regresión, que predice valores continuos, la clasificación se utiliza para predecir valores discretos.

Objetivo del análisis

La clasificación se centrará en predecir si un paciente tiene un alto o bajo riesgo de no sobrevivir tras el trasplante, basándose en la variable binaria **efs** (evento de falla del trasplante).

Potencial impacto del análisis

Diferenciar grupos de pacientes con diferentes niveles de riesgo, además de evaluar si ciertos subgrupos poblacionales presentan sesgos en la predicción, asegurando un modelo más equitativo.

Análisis Profundos Propuestos

Análisis de clusterización

Busca agrupar un conjunto de objetos en grupos (clusters) de tal manera que los objetos dentro del mismo grupo sean más similares entre sí.

Expectativas de Analisis

Se pretende segmentar a los pacientes en grupos según su nivel de riesgo post-HCT, identificando aquellos más propensos a eventos adversos y aquellos con mejor pronóstico de supervivencia.

Modelado

Modelos entrenados

Clasificación

XGBClassifier

Se usa para clasificación, es decir, predecir categorías.

Regresion

XGBRegressor

Se usa para regresión, es decir, predecir valores numéricos

Clusterización k-means

Algoritmo de clusterización que agrupa datos en "k" grupos según su similitud.

Aprendizaje no supervisado: Clustering

```
# Train k_means with 4 clusters
kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0)
y_kmeans = kmeans.fit_predict(train_clusters_sclaed)
train_clusters_sclaed["cluster"] = y_kmeans
```

Los clusters se formaron utilizando las siguientes características:

- 1. **karnofsky_score** (Qué tan bien puede una persona realizar sus actividades diarias normales sin ayuda médica)
 - 2. dri_score (puntuación de riesgo de donante)
 - 3. prim_disease_hct (enfermedad primaria del paciente)
 - 4. obesity (obesidad)
 - 5. donor_related (donante relacionado o no)
 - 6. **sex_match** (compatibilidad de sexo)
 - 7. cyto_score (puntuación citogenética)
 - 8. donor_age (edad del donante)
 - 9. age_at_hct (edad al momento del trasplante)

Aprendiza je no supervisado: Clustering

Cluster O

Peor estado funcional, mayor edad y riesgo general.

Cluster 1

Mejor estado funcional, menor edad y riesgo bajo.

Cluster 2

Características intermedias en edad, riesgo y enfermedad.

Cluster 3

Alto riesgo genético, aunque buen estado funcional.

Supervivencia (y_nel)

El valor negativo de y_nel (que representa el hazard acumulado de Nelson-Aalen) muestra diferencias entre clusters:

Clusters O y 3: peor pronóstico.

Clusters 1 y 2: mejor pronóstico.

Aprendiza je supervisado: Regresión

Transformación del target

Se hizo uso de una herramienta estadística de riesgo acumulado (NelsonAalenFitter) para unificar las variables "efs" y "efs_time", con el fin de utilizar el modelo XGBoost, ya que este no entiende datos de supervivencia.

Estratificación por grupo racial

Con el fin de obtener los resultados con el menor sesgo posible se utilizó Stratified K-Fold, una función que permite que cada fold tenga proporciones similares, en este caso aplicado al factor del grupo racial.

Aprendiza je supervisado: Regresión

XGBRegressor

El objetivo es predecir con exactitud el riesgo de un paciente que se somete a este tratamiento.

La mejor precisión obtenida fue: 0.690316

```
for i in range(FOLDS):
    print("#"*25)
    print(f"### Fold {i+1}")
    print("#"*25)
    x_train = train.loc[train.fold!=i,FEATURES].copy()
    y_train = train.loc[train.fold!=i,"y_nel"]
   x valid = train.loc[train.fold==i,FEATURES].copy()
   y_valid = train.loc[train.fold==i,"y_nel"]
   x_test = test[FEATURES].copy()
    model xgb = XGBRegressor(
        # device="cuda",
        max depth=4,
        colsample bytree=0.55,
        subsample=0.8,
       n estimators=5000,
       learning rate=0.02,
        enable categorical=True,
        min_child_weight=80,
       early_stopping_rounds=200,
        n jobs=4
    model xgb.fit(
       x train, y train,
        eval_set=[(x_valid, y_valid)],
        verbose=500
```

Aprendiza je supervisado: Clasificación

XGBClassifier

El objetivo es anticipar el resultado clínico y así poder actuar a tiempo en pacientes con alto riesgo.

Conclusión

Resumen de aprendizaje

La mayoría de los eventos adversos ocurren en los primeros días post-trasplante, destacando la importancia de este periodo. Identificamos subgrupos de riesgo y variables HLA altamente correlacionadas, lo que sugiere optimizar la selección de características. efs_time es clave en la predicción de supervivencia. Aplicamos XGBoost y clustering para segmentar pacientes y mejorar la toma de decisiones clínicas.

Pasos Futuros

Mejorar el desempeño de los modelos, mediante distintas técnicas, como *feature engineering*, *PCA*, etc. Ayudar al desarrollo de aplicaciones/páginas que permitan acercar este tipo de tecnología a las personas que más las necesitan.