Laboratorium Programowanie Sprawozdanie z projektu zaliczeniowego "Wykrywanie artefaktów mrugania w sygnale EEG przy pomocy Sztucznych Sieci Neuronalnych"

Magdalena Jóźwiakowska nr indeksu 374108 jozwiakowska@gmail.com mj18416@st.amu.edu.pl Mikołaj Buchwald nr indeksu 385542 mikolaj.buchwald@gmail.com mb83904@st.amu.edu.pl

28 stycznia 2015

Streszczenie

W niniejszym sprawozdaniu zaprezentowano użycie Sztucznych Sieci Neuronalnych (ang. Artificial Neural Network - ANN) w celu detekcji artefaktów mrugania w sygnale pochodzącym z elektroencefalografu (EEG). Dane przetwarzane na potrzeby projektu pochodzą z jedno-elektrodowego EEG MindWave Mobile firmy NeuroSky. Dane pobrano i podzielono na paczki za pomocą języka programowania Python. Do szkolenia ANN oraz kategoryzacji poszczególnych paczek sygnału wykorzystano bibliotekę języka programowania C - FANN (Fast Artificial Neural Network). Wykresy wygenerowano za pomocą programu Scilab.

1 Wprowadzenie

"W okamgnieniu" - korzystamy z tej frazy przysłówkowej często nawet nie zdając sobie sprawy jak istota jest w naszym życiu zdolność do półautomatycznego ograniczania przystępu do naszych gałek ocznych. Jak się okazuje czynność ta jest bardzo przydatna i można ją na wiele ciekawych oraz niecodziennych sposobów wykorzystać. Niestety w pewnych szczególnych dziedzinach życia czy nauki może się owa czynność okazać niezwykle kłopotliwa.

Elektroencefalografia zajmuje się rejestrowaniem aktywności neuronalnej. Owa aktywność przejawia się tu jako zmiany potencjału elektrycznego na powierzchni czaszki wywołane przesyłaniem impulsów nerwowych w komórkach znajdujących się pod czaszką. W tej dziedzinie nauki badacze często spotykają się z różnego rodzaju zaburzeniami sygnału. Jedną z głównych przyczyn owych zaburzeń (artefaktów, kontaminacji) jest wspomniane wcześniej mruganie. Na ten tak rzadko przez nas uświadamiany sobie, trwający dziesiętne części sekundy proces składa się złożona praca kilkunastu mięśni. To właśnie owe mięśnie (czy raczej sygnały przesyłane do nerwów obwodowych, które ruch mięśni umożliwiają) są źródłem znacznych odchyleń i niestabilności sygnału, który obserwuje badacz w trakcie mrugnięcia.

Artefakty w sygnale pochodzącym z elektroencefalografu (EEG) wywołane mruganiem to w nauce dobrze znane i często poruszane zagadnienie. Podejmowano już próby detekcji tych artefaktów czy kontaminacji w sposób maszynowy. W poniższej pracy podejmuje się kwestię uczenia algorytmów rozpoznawania mrugnięć bazując na sygnale z EEG. Użyto tutaj Sztucznych Sieci Neuronalnych (Artificial Neural Network, w skrócie ANN). Korzystamy z innego rodzaju sprzętu niż badacze przed nami. Sprawia to, że musimy poradzić sobie z nieco innymi problemami. Badania tego typu różnią się zwłaszcza doborem cech, które wyekstraktowane z sygnału pozwalają wyszkolić Sieci Neuronalne.

2 Materialy i metody

Przebadano 3 osoby w wieku 20-22 lata. Do zbierania danych użyto EEG MindWave Moblie firmy NeuroSky. Urządzenie owo posiada jedną elektrodę czołową. Próbkuje ono z częstotliwością 512 razy na sekundę. Badanie z użyciem EEG przeprowadzono na komputerze. Eksperyment wykonano w środowisku PsychoPy korzystając z języka programowania Python.

Rysunek 1: Schemat zależności między algorytmami w eksperymencie: (a) Etap szkolenia Sieci Neuronalnej, (b) Etap kategoryzacji danych pochodzących od osoby badanej

Badanie składało się z dwóch etapów: W pierwszym etapie zbierano dane potrzebne do wyszkolenia sieci neuronalnej. Badani mieli za zadanie mrugać gdy zobacza czerwony kwadrat. Kwadrat ów pojawiał się co 5 sekund na 5 sekund, po czym znikał. Po tym następowało 5 sekund przerwy, w której wyświetlane było jedynie szare tło (bez bodźca). Ten etap trwał 60 sekund. Zatem bodziec wyświetlono 6 razy. Drugi etap polegał na kategoryzacji sygnału przez sieć neuronalną. Podczas 60-ciu sekund, które trwało to badanie w losowym momencie (o pełnej sekundzie) pojawiał się bodziec (czerwony kwadrat). W ciągu tej minuty bodziec pojawiał się 14 razy. Było to podyktowane średnia ilościa mrugnięć, jakie wykonuje człowiek w ciagu minuty. Zadanie osoby badanej w tej cześci polegało na wykonaniu pojedynczego mrugniecia gdy zobaczy ona bodziec. Minimalna różnica czasowa między eskpozycjami bodźców wynosiła 2 sekundy. Owa założona różnica podyktowana była dwoma czynnikami. Średni interwał miedzy spontanicznymi ludzkimi mrugnieciami wynosi od 2 do 10 sekund. Ponadto przerwa krótsza niż 2 sekundy generuje sporo dodatkowych artefaktów, które utrudniaja poprawne skategoryzowanie mrugniecia oraz odróżnienie jednego mrugniecia od drugiego.

Podczas etapu szkoleniowego dane zapisywane były do dwóch plików w formacie csv: norma_raw.csv (zawierającego dane z okresu, w których osoba badana nie mrugała) oraz blink_raw.csv (dane pochodzące z czasu gdy osoba badana mrugała). Za pomocą skryptu w języku programowania Python podzielono dane z obu plików *.csv na paczki po 128 próbek każda (1/4 sekund). Ten sam skrypt ekstraktował cechy ze wspomnianych paczek. Cechy, które ekstraktowane były na potrzeby niniejszego projektu to: odchylenie standardowe sygnału, suma amplitud ujemnych, suma przejść sygnału przez oś OX (0).

Następnie bazując na danych wyekstraktowanych wcześniej stworzono oraz wyszkolono Sztuczną Sieć Neuronalną (ANN).

Dane z eksperymentu polegającego na pojedynczych mrugnięciach również podzielono na paczki po 128 próbek. Wykorzystując wcześniej wyszkoloną sieć skategoryzowano każdą paczkę jako mrugnięcie lub nie-mrugnięcie. Jedno mrugnięcie trwa średnio więcej niż 128 próbek (1/4 sekundy). Artefakty w sygnale wywołane mrugnięciem trwają dłużej niż mrugnięcie. Dlatego przyjęto następujące zasady orzekania o poprawności mrugnięcia:

Założenie wstępne:

Osoba badana mrugała tylko w przypadku reakcji na bodziec (tak w sesji szkolenia sieci jak i sesji kategoryzacji). Egzaminator obserwował osobę badaną. Z badania wyłączono sesje badania, w których badany mrugał w innym przypadku niż pojawienie się bodźca.

* * *

Uwagi wstępne: Przyjmuje się rozróżnienie pomiędzy czterema obiektami:

- poprawnie skategoryzowana paczka
- niepoprawnie skategoryzowana paczka
- poprawnie skategoryzowane mrugnięcie

• niepoprawnie skategoryzowane mrugnięcie

Wprowadzenie powyższego rozróżnienia uzasadnione zostanie poniżej.

Kategoryzacja mrugnięcia uznana jest za poprawną wtedy i tylko wtedy gdy spełnione są trzy poniższe warunki:

- 1. Przynajmniej jedna paczka danych, która pokrywa się czasowo z bodźcem została skategoryzowana jako mrugnięcie.
- 2. Nie więcej niż 4 paczki (jedna za drugą) z których pierwsza pokrywa się czasowo z bodźcem zostały skategoryzowana jako mrugnięcie.
- 3. Jedna lub więcej paczek na przestrzeni czterech kolejnych, z których pierwsza pokrywa się czasowo z bodźcem, zostały skategoryzowana jako mrugnięcie.

W każdym innym przypadku skategoryzowanie paczki danych jako mrugnięcie uważane jest za niepoprawne.

* *

Wszystkie paczki skategoryzowane jako niepoprawne grupuje się w następujący sposób jako niepoprawnie skategoryzowane mrugnięcie:

- 1. Jeżeli jakakolwiek z paczek została niepoprawnie skategoryzowana, to zarówno ją jak i trzy następujące po niej paczki niepoprawnie skategoryzowane (jeśli takowe występują) uważa się za niepoprawnie skategoryzowane mrugnięcie.
- Do dalszego rozpoznawania ciągu paczek jako nie-mrugnięć nie bierze się pod uwagę ciągów wcześniej skategoryzowanych jako nie-mrugnięcie (ani ich poszczególnych elementów).

* * *

W nawiązaniu do powyższego proponujemy ustalenie trzech wskaźników (dotyczących etapu kategoryzacji) poprawności algorytmów:

- 1. Wskaźnik_01. Jest to wskaźnik poprawności kategoryzacji mrugnięcia jako odpowiedzi na bodziec. Jest to stosunek poprawnie skategoryzowanych mrugnięć do ilości bodźców zaprezentowanych w danym eksperymencie. Stosunek ten wyrażono w procentach.
- 2. Wskaźnik 02. Jest to wskaźnik braku poprawności mrugnięcia w odniesieniu do ilości bodźców w eksperymencie. Jest to stosunek ilości błędnie skategoryzowanych mrugnięć do ilości bodźców w eksperymencie. Stosunek ten wyrażono w procentach.
- 3. Wskaźnik 03. Jest to wskaźnik braku poprawności mrugnięcia w odniesieniu do ilości poprawnie skategoryzowanych mrugnięć. Jest to stosunek ilości błędnie skategoryzowanych mrugnięć do ilości poprawnie skategoryzowanych mrugnięć. Stosunek ten wyrażono w procentach.

Etap kategoryzacji dla każdej osoby był oceniany ze względu na trzy powyższe wskaźniki.

Jako wynik ogólny kategoryzacji rozumie się różnicę Wskaźnika_01 oraz Wskaźnika_02.

Jako wartość wskaźnika dla wszystkich osób rozumie się średnią wyników wskaźnika dla poszczególnych osób.

Wskaźnik_03 jest wskaźnikiem pomocniczym i nie jest brany pod uwagę przy ustalaniu wyniku ogólnego kategoryzacji.

2.1 Opis zbioru danych

Częstotliwość próbkowania MindWave Mobile wynosi 512 Hz. Czyli EEG podaje wartość napięcia (w mikro Voltach) 512 razy na sekundę. Pojedynczy odczyt nazywany będzie w dalszej części pracy próbką (samplem). Natomiast zbiór próbek będzie nosił miano paczki (paczki danych). Przykładowe 10 kolejnych próbek zostało przedstawione w tabeli poniżej.

Tabela 1: Sygnał MindWave Mobile EEG z jednej elektrody czołowej. Przykładowe 10 kolejnych próbek.

elektroda nr 1
1.518750
2.137500
2.250000
3.656250
5.175000
4.893750
3.825000
3.712500
3.150000
2.306250

3 Wyniki

3.1 Wartości wskaźników

W poniższej tabeli zaprezentowano wyniki wskaźników dla trzech osób badanych.

Tabela 2: Wartości wskaźników dla poszczególnych osób badanych

	Osoba 001	Osoba 002	Osoba 003	Wszystkie osoby
Wskaźnik_01	100%	100%	100%	100%
Wskaźnik_02	0%	71%	28%	33%
Wskaźnik_03	0%	71%	28%	33%
Ogólny wynik	100%	29%	72%	67%

Objaśnienia do tabeli "Wartości wskaźników dla poszczególnych osób badanych":

- Osoba 001, ..., Osoba n kolumny pokazujące wskaźniki dla poszczególnych osób badanych
- Wskaźnik_01, Wskaźnik_02 oraz Wskaźnik_03 wskaźniki opisane w sekcji pt. "Materiały i metody"
- Wszystkie osoby średni wynik wskaźnika dla wszystkich osób badanych
- Ogólny wynik różnica Wskaźnika pierwszego oraz Wskaźnika drugiego według wytycznych z sekcji pt. "Materiały i metody"

Wykresy oraz wyniki kategoryzacji dla poszczególnych osób dostępne są w dodatku do tego sprawozdania.

3.2 Przykład tabeli z mrugnięciami oraz wykresów Osoba 003

Objaśnienia do tabeli dotyczących paczek oraz grupowania ich w mrugnięcia:

- Nr paczki numer paczki, która została skategoryzowana jako mrugnięcie.
- Względem bodźca czy zasięg paczki pokrywa się z zasięgiem występowania bodźca czy nie.
 - * 0 nie pokrywa się
 - * 1 pokrywa się
- Numer mrugnięcia grupowanie paczek w mrugnięcia na podstawie wcześniejszych założeń. Do tabeli ze wszystkimi paczkami razem: jeśli mrugnięcie ma numer 0 znaczy to, że paczka ta jest niepoprawnie skategoryzowana. W kolejnych tabelach mrugnięcia są rozdzielane na poprawnie oraz niepoprawnie skategoryzowane.
- Początek paczki numer próbki, na której zaczyna się paczka skategoryzowana jako mrugnięcie.
- Koniec paczki numer próbki, na której kończy się paczka skategoryzowana jako mrugnięcie.

Tabela 3: Wszystkie paczki skategoryzowane jako mrugnięcia. Osoba $003\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
01	1	1	1024	1150
02	1	1	1152	1278
03	0	1	1280	1406
04	0	0	2048	2174
05	1	2	2560	2686
06	1	2	2688	2814
07	0	2	2816	2942
08	1	3	4224	4350
09	0	3	4352	4478
10	0	0	4864	4990
11	1	4	6656	6782
12	1	4	6784	6910
13	0	4	6912	7038
14	1	5	9344	9470
15	0	5	9472	9598
16	1	6	10880	11006
17	1	7	12416	12542
18	1	8	13952	14078
19	1	8	14080	14206
20	1	9	16000	16126
21	1	9	16128	16254
22	1	10	17536	17662
23	1	10	17664	17790
24	1	11	19584	19710
25	1	11	19712	19838
26	0	0	21376	21502
27	1	12	23168	23294
28	1	12	23296	23422
29	1	13	25728	25854
30	1	13	25856	25982
31	1	14	27264	27390
32	1	14	27392	27518
33	0	0	27520	27646

Tabela 4: Zbiory paczek poprawnie skategoryzowanych jako mrugnięcia. Osoba $003\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
01	1	1	1024	1150
02	1	1	1152	1278
03	0	1	1280	1406
04	1	2	2560	2686
05	1	2	2688	2814
06	0	2	2816	2942
07	1	3	4224	4350
08	0	3	4352	4478
09	1	4	6656	6782
10	1	4	6784	6910
11	0	4	6912	7038
12	1	5	9344	9470
13	0	5	9472	9598
14	1	6	10880	11006
15	1	7	12416	12542
16	1	8	13952	14078
17	1	8	14080	14206
18	1	9	16000	16126
19	1	9	16128	16254
20	1	10	17536	17662
21	1	10	17664	17790
22	1	11	19584	19710
23	1	11	19712	19838
24	1	12	23168	23294
25	1	12	23296	23422
26	1	13	25728	25854
27	1	13	25856	25982
28	1	14	27264	27390
29	1	14	27392	27518

Tabela 5: Zbiory paczek niepoprawnie skategoryzowanych jako mrugnięcia. Osoba $003\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
01	0	1	2048	2174
02	0	2	4864	4990
03	0	3	21376	21502
04	0	4	27520	27646

3.3 Przykładowe wykresy danych osoby badanej Osoba 003

Poniżej zaprezentowano przykładowy wykres dla osoby badanej 003. Wszystkie wykresy wraz z dokładnymi danymi znajdują się w dodatku załączonym na końcu sprawozdania.

Rysunek 2: Dane dla osoby badanej 003

4 Dyskusja

Metody uczenia maszynowego algorytmów są coraz częściej wykorzystywane w różnych dziedzinach nauki oraz życia. Wyniki uzyskane w przedstawionym eksperymencie potwierdzają zasadność używania takiego podejścia także do interpretowania danych pochodzących z EEG.

Całe badanie, wraz ze szkoleniem sieci neuronalnych trwa około trzech minut. Można skrócić ten czas w pełni automatyzując procesy uruchamiania eksperymentów oraz szkolenia sieci (szkolenie owo miałoby się odbywać podczas czytania instrukcji i wykonywania drugiej części eksperymentu). Już teraz, w ciągu owych trzech minut, algorytm jest w stanie skategoryzować mrugnięcie na poziomie 67 %. Gdyby wprowadzić pewne poprawki (patrz poniżej) lub przedłużyć czas trwania szkolenia o kolejne sesje treningowe dla sieci (również poniżej) możnaby osiągnąć wyniki rzędu 90-100 % poprawnych kategoryzacji.

Bardzo ważne jest by osoba badana podczas etapu szkolenia sieci neuronalnych nie wykonywała żadnych ruchów poza ruchami mięśni powiek. Ten czynnik jest krytyczny jeśli chodzi o szkolenie (tutaj liczy się także częstotliwość mrugania) oraz rozpoznawanie pojedynczych mrugnięć. Proponuje się załączenie filmu instruktażowego do instrukcji wykonywania etapu szkolenia. Na filmie pokreślonoby ruchy jedynie mięśni powiek oraz pokazywałoby poprawną częstotliwość owych ruchów.

Niski wynik dla osoby badanej 002 wynika z trzech czynników. Czynniki te, jako mogące wpływać negatywnie na wyniki szkolenia oraz kategoryzacji, zostaną poniżej pokrótce opisane. Zaproponowano też rozwiązania pozwalające zniwelować lub zmniejszyć wpływ owych czynników na wyniki badania.

- Słabe przeszkolenie osoby badanej. Osoba prawdopodobnie wykonywała ruchy mięśniami powiek lub twarzy także poza pojawieniem się bodźca. Rozwiązania:
 - Dołączenie filmu instruktażowego do instrukcji przed rozpoczęciem badania.
 - Zebranie większej ilości materiału i wyłączenie z sesji szkolenia sieci danych niebędących mruganiem.
- 2. Sieć neuronalna była przeuczona. Zbytnia czułość kategoryzacji brała artefakty o innym źródle niż mruganie za mrugnięcie. Rozwiązania: patrz: Proponowane rozwiązania algorytmiczne mające na celu zwiększenie poprawności kategoryzacji mrugnieć przez ANN.
- 3. Możliwe są błędy algorytmiczne przy zbieraniu danych. Autorzy skorzystali z gotowego skryptu w języku programowania Python na pobieranie danych z urządzenia MindWave Moblie. Przez specyfikę urządzenia zdarza się, że sporadycznie gubi ono paczki z danymi zawierającymi informację o sygnale. Podejrzewa się, że przy owym gubieniu paczek dochodzi do kontaminacji informacji przez nadmiarowe lub nieodpowiednie dane (niemające związku z sygnałem z samego EEG). Warte

podkreślenia jest tutaj, że pomimo owych "zakłóceń" sieć neuronalna, szkolona na tak małym i niepewnym materiale, jest w stanie w miarę poprawnie skategoryzować mrugnięcie. Rozwiązania:

- Zmiana systemu operacyjnego oraz języka programowania używanego do komunikacji z MindWave Mobile.
- Znalezienie źródła problemu w programie w języku Python lub upewnienie się, że to kwestia samego skryptu, a nie platformy, na której wykonywano badanie (Linux) lub sprzętu Bluetooth w komputerze, na którym przeprowadzano badanie.

4.1 Proponowane rozwiązania algorytmiczne mające na celu zwiększenie poprawności kategoryzacji mrugnięć przez ANN

Aby zwiększyć poprawność rozpoznawania mrugnięcia proponuje się następujące rozwinięcia algorytmiczne:

- 1. Zastosowanie rozwiązań ewolucyjnych przy doborze cech ekstraktowanych z surowego sygnału (algorytmy genetyczne). Cechy ekstraktwowane z sygnału w niniejszym sprawozdaniu mogą nie być optymalne do późniejszego szkolenia oraz kategoryzacji paczek jako mrugnięcia lub nie-mrugnięcia.
- 2. Wdrożenie podejścia Bayesowskiego przy poprawnej lub niepoprawnej kategoryzacji paczki jako mrugnięcie. Należy budować kolejne bazy danych do szkolenia sieci neuronalnych na podstawie kategoryzacji paczek jako mrugnięć lub nie-mrugnięć w etapie kategoryzacji bodźców. Na nowo ustruktyryzowanych danych należy wyszkolić po raz kolejny sieć neuronalną i to na niej oprzeć późniejszą kategoryzację.

Literatura

- [1] Augustyniak P., *Przetwarzanie sygnałów elektrodiagnostycznych*, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, 2001.
- [2] Abootalebi V., Moradi M. H., Khalilzadeh M. A., A new approach for EEG feature extraction in P300-based lie detection, Computer Methods and Programs in Biomedicine 94 (2009) 48-57
- [3] Chambayil B., Singla R., Jha R., *EEG Eye Blink Classification Using Neu*ral Network, Proceedings of the World Congress on Engineering 2010 Vol I, WCE 2010, June 30 - July 2, 2010, London, U.K.
- [4] Nissen S., Neural Networks Made Simple, http://fann.sourceforge.net/fann_en.pdf
- [5] http://www.reviewofophthalmology.com/content/d/therapeutic_topics/i/1290/c/24850/

Dodatek A: Programy oraz skrypty

Wszystkie pliki potrzebne do przeprowadzenia eksperymentu oraz obróbki danych dostępne są w repozytorium Github:

https://github.com/mikbuch/eeg_01_mwm_blink

- Python, główna klasa służąca do podziału danych i ekstrakcji cech https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/EEGDataSplitMerge. py
- 2. Python PsychoPy zbieranie danych do szkolenia ANN https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/psychopy_experiment/psypy_train.py
- Python podział danych i ekstrakcja cech dla etapu szkolenia https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/features_ train.py
- 4. C FANN tworzenie oraz szkolenie Sztucznej Sieci Neuronalnej https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/fann_eeg_learn/eeg_blink_tra.c
- 5. Python PsychoPy zbieranie danych do kategoryzacji przez ANN https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/psychopy_experiment/psypy_main.py
- 6. Python podział danych i ekstrakcja cech dla etapu kategoryzacji https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/features_categ.py
- 7. C FANN kategoryzacja poszczególnych paczek danych https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/fann_eeg_learn/eeg_blink_cate.c
- 8. Python generowanie danych do Scilab oraz wyników https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/plotting_data/plot_eeg_blink_categ.py
- 9. Scilab generowanie wykresów i eksport do PDF https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/plotting_data/scilab_plot_eeg_01.sce
- 10. Pomocnicze skrypty bash
 - C FANN kompilacja i uruchamianie programu szkolącego Sieć https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/fann_eeg_learn/fann_train.sh

- C FANN kompilacja i uruchanianie programu do kategoryzacji https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/fann_eeg_learn/fann_categ.sh
- Kontrola etapu szkolenia https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/run_train.sh
- Kontrola etapu kategoryzacji https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/run_categ.sh

Na Github znajduje się także pliki IATEXz wyświetlanym tutaj raportem: https://github.com/mikbuch/eeg_01_mwm_blink/blob/master/report_eeg_blk/prog_lab_mj_mb_project_report.tex

Dodatek B: Szczegółowe wyniki

Objaśnienia do tabeli dotyczących paczek oraz grupowania ich w mrugnięcia:

- Nr paczki numer paczki, która została skategoryzowana jako mrugnięcie.
- Względem bodźca czy zasięg paczki pokrywa się z zasięgiem występowania bodźca czy nie.
 - * 0 nie pokrywa się
 - * 1 pokrywa się
- Numer mrugnięcia grupowanie paczek w mrugnięcia na podstawie wcześniejszych założeń.
- Początek paczki numer próbki, na której zaczyna się paczka skategoryzowana jako mrugnięcie.
- Koniec paczki numer próbki, na której kończy się paczka skategoryzowana jako mrugnięcie.

Zamieszczone zostały tutaj tabele z mrugnięciami już podzielonymi na paczki poprawnie oraz niepoprawnie skaregoryzowane. Pogrupowane też zostały owe paczki w poprawnie skategoryzowane mrugnięcia oraz niepoprawnie skategoryzowane mrugnięcia.

Osoba pierwsza

Tabela 6: Zbiory paczek poprawnie skategoryzowanych jako mrugnięcia. Osoba $001\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
01	1	1	1152	1278
02	1	1	1280	1406
03	0	1	1408	1534
04	1	2	2816	2942
05	0	2	2944	3070
06	0	2	3072	3198
07	1	3	4608	4734
08	1	3	4864	4990
09	0	3	4992	5118
10	1	4	6400	6526
11	1	5	10496	10622
12	0	5	10624	10750
13	1	6	12032	12158
14	1	6	12160	12286
15	1	7	15616	15742
16	1	7	15744	15870
17	1	8	17152	17278
18	1	8	17280	17406
19	1	9	18688	18814
20	1	9	18816	18942
21	1	10	20224	20350
22	1	10	20352	20478
23	1	11	21888	22014
24	1	12	24448	24574
25	0	12	24576	24702
26	1	13	26496	26622
27	0	13	26624	26750
28	1	14	28032	28158
29	0	14	28544	28670

Tabela 7: Zbiory paczek niepoprawnie skategoryzowanych jako mrugnięcia. Osoba $001\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
brak	brak	brak	brak	brak

Zgodnie z wcześniej przyjętymi kryteriami dla osoby badanej 001 nie ma niepoprawnie skategoryzowanych mrugnięć.

Osoba druga

Tabela 8: Zbiory paczek poprawnie skategoryzowanych jako mrugnięcia. Osoba $002\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
01	1	1	1408	1534
01	1	1	1408	1534
02	1	1	1536	1662
03	0	1	1664	1790
04	1	2	2944	3070
05	1	2	3072	3198
06	1	2	3200	3326
07	1	3	5120	5246
08	1	3	5248	5374
09	1	4	6656	6782
10	1	4	6784	6910
11	0	4	6912	7038
12	1	5	9728	9854
13	1	5	9856	9982
14	1	6	11264	11390
15	1	6	11392	11518
16	0	6	11520	11646
17	1	7	13824	13950
18	1	7	13952	14078
19	0	7	14080	14206
20	1	8	16384	16510
21	1	8	16512	16638
22	0	8	16640	16766
23	1	9	17920	18046
24	1	9	18048	18174
25	0	9	18176	18302
26	1	10	22144	22270
27	0	10	22272	22398
28	1	11	23552	23678
29	1	11	23680	23806
30	0	11	23808	23934
31	1	12	25216	25342
32	1	13	26752	26878
33	1	13	26880	27006
34	0	13	27008	27134
35	1	14	28288	28414

Tabela 9: Zbiory paczek niepoprawnie skategoryzowanych jako mrugnięcia. Osoba $002\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
01	0	1	128	254
02	0	2	2688	2814
03	0	3	6400	6526
04	0	4	7168	7294
05	0	5	8576	8702
06	0	6	10240	10366
07	0	7	13056	13182
08	0	7	13312	13438
09	0	8	13568	13694
10	0	9	17024	17150
11	0	10	24192	24318
12	0	10	24320	24446

Osoba trzecia

Tabela 10: Zbiory paczek poprawnie skategoryzowanych jako mrugnięcia. Osoba $003\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
01	1	1	1024	1150
02	1	1	1152	1278
03	0	1	1280	1406
04	1	2	2560	2686
05	1	2	2688	2814
06	0	2	2816	2942
07	1	3	4224	4350
08	0	3	4352	4478
09	1	4	6656	6782
10	1	4	6784	6910
11	0	4	6912	7038
12	1	5	9344	9470
13	0	5	9472	9598
14	1	6	10880	11006
15	1	7	12416	12542
16	1	8	13952	14078
17	1	8	14080	14206
18	1	9	16000	16126
19	1	9	16128	16254
20	1	10	17536	17662
21	1	10	17664	17790
22	1	11	19584	19710
23	1	11	19712	19838
24	1	12	23168	23294
25	1	12	23296	23422
26	1	13	25728	25854
27	1	13	25856	25982
28	1	14	27264	27390
29	1	14	27392	27518

Tabela 11: Zbiory paczek niepoprawnie skategoryzowanych jako mrugnięcia. Osoba $003\,$

Nr	Względem	Numer	Początek	Koniec
paczki	bodźca	mrugnięcia	paczki	paczki
01	0	1	2048	2174
02	0	2	4864	4990
03	0	3	21376	21502
04	0	4	27520	27646

Dodatek C: Podział pracy w grupie

Magdalena Jóźwiakowska:

- Przeprowadzanie eksperymentów
- \bullet Sczytywanie danych w programie w C dane w tablicy (format akceptowalny w C)
- Generowanie pliku z outputem z FANN (język C)
- Wykresy w Scilab: generowanie oraz eksport do PDF
- Pomoc merytoryczna przy tworzeniu skryptów w Python

Mikołaj Buchwald:

- PsychoPy eksperymenty część programistyczna
- Python dzielenie sygnału na paczki i ekstrakcja cech
- Python generowanie wyników
- C FANN tworzenie oraz szkolenie sieci
- C FANN kategoryzacja danych
- Pomoc merytoryczna przy tworzeniu części programu w C (sczytywanie pliku do tablic oraz zapisywanie outputu z FANN)

Wspólnie:

- Projektowanie eksperymentu
- Tworzenie struktury programu
- Skrypty pomocnicze w Bash
- Testowanie programu
- Sprawozdanie w LATFX
- Prezentacja w Beamer (LATEX)
- Prezentowanie programu oraz wyników na forum grupy