Group Assignment 1

Group 11

2025-10-05

Table of contents

Part I	
$Qu\epsilon$	stion 1
$\mathrm{Qu}\epsilon$	stion 2
$\mathrm{Qu}\epsilon$	stion 3
$\mathrm{Qu}\epsilon$	stion 4 \dots
$\mathrm{Qu}\epsilon$	stion 5
$Qu\epsilon$	stion 6
$\mathrm{Qu}\epsilon$	stion 7
$Qu\epsilon$	stion 8
Que	$stion 9 \dots $
Que	stion 10
Part II	12
$Qu\epsilon$	stion 1
Que	$rac{1}{3}$ stion 2
$Qu\epsilon$	$ ext{stion } 3$
$Qu\epsilon$	$\operatorname{stion} 4$
$Qu\epsilon$	stion 5
1 2 3	SBUX Data with New Metrics
4 List o	CMG Data with New Metrics
1	Number of Stocks on Each Exchange that had at least one Daily Trading Volume
0	> 100,000
2	Close Price Trends
3	Close Price Trends with Facets
4	PBPB High Price & Low Price in 2021
5	Trading Volume for PBPB from 2020 to 2023
6	Relationship between daily returns and volume in 2021

Part I

In this part, we will analyze the stock data from four tickers: Starbucks (SBUX), Wendy's (WEN), Potbelly (PBPB), and Chipotle (CMG).

First, load the libraries that we will use in this assignment.

```
library(dplyr)
library(ggplot2)
library(PerformanceAnalytics)
library(lubridate)
library(scales)
```

```
data <- read.csv("compustat_food_bev.csv")

# Filter data for Starbucks (SBUX), Wendy's (WEN), Potbelly (PBPB), and Chipotle (CMG)
sbux_data <- filter(data, tic == "SBUX")
wen_data <- filter(data, tic == "WEN")
pbpb_data <- filter(data, tic == "PBPB")
cmg_data <- filter(data, tic == "CMG")

# Convert their datadate column to date type
sbux_data$datadate <- as.Date(sbux_data$datadate, format = "%d/%m/%Y")
wen_data$datadate <- as.Date(wen_data$datadate, format = "%d/%m/%Y")
pbpb_data$datadate <- as.Date(pbpb_data$datadate, format = "%d/%m/%Y")
cmg_data$datadate <- as.Date(cmg_data$datadate, format = "%d/%m/%Y")</pre>
```

```
#1. Add a new column named daily_return for each stock
# to store daily return value

#2. Drop the rows whose daily_return values are NA
sbux_data <- mutate(sbux_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
sbux_data <- filter(sbux_data, !is.na(daily_return))

wen_data <- mutate(wen_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
wen_data <- filter(wen_data, !is.na(daily_return))

pbpb_data <- mutate(pbpb_data, daily_return = (prccd - lag(prccd)) / lag(prccd))</pre>
```

```
pbpb_data <- filter(pbpb_data, !is.na(daily_return))

cmg_data <- mutate(cmg_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
cmg_data <- filter(cmg_data, !is.na(daily_return))</pre>
```

```
SBUX
#1. Add a new column named momentum_10
  to store 10-day momentum value
#2. Drop the rows whose momentum_10 values are NA
sbux_data <- mutate(sbux_data, momentum_10 = prccd - lag(prccd, 10))</pre>
sbux_data <- filter(sbux_data, !is.na(momentum_10))</pre>
# WEN
#1. Add a new column named overnight_return
# to store overnight return value
#2. Drop the rows whose overnight_return values are NA
wen_data <- mutate(wen_data, overnight_return = (prcod - lag(prccd)) / lag(prccd))</pre>
wen_data <- filter(wen_data, !is.na(overnight_return))</pre>
# PBPB
#1. Add a new column named overnight_return
  to store overnight return value
#2. Drop the rows whose overnight_return values are NA
pbpb_data <- mutate(pbpb_data, overnight_return = (prcod - lag(prccd)) / lag(prccd))</pre>
pbpb_data <- filter(pbpb_data, !is.na(overnight_return))</pre>
# CMG
#1. Add a new column named volume_change
  to store volume change value
#2. Drop the rows whose volume_change values are NA
cmg_data <- mutate(cmg_data, volume_change = (cshtrd - lag(cshtrd)))</pre>
cmg_data <- filter(cmg_data, !is.na(volume_change))</pre>
```

```
# SBUX
# Add a new column named daily_range
# to store daily range value
sbux_data <- mutate(sbux_data, daily_range = prchd - prcld)</pre>
  WEN
#1. Add a new column named volume_change
# to store daily volume change value
#2. Drop the rows whose volume_change values are NA
wen_data <- mutate(wen_data, volume_change = (cshtrd - lag(cshtrd)))</pre>
wen_data <- filter(wen_data, !is.na(volume_change))</pre>
# PBPB
# Add a new column named close_open_change
# to store daily close-open change value
pbpb_data <- mutate(pbpb_data, close_open_change = prccd - prcod)</pre>
# CMG
#1. Add a new column named momentum_10
# to store 10-day momentum value
#2. Drop the rows whose momentum_10 values are NA
cmg_data <- mutate(cmg_data, momentum_10 = prccd - lag(prccd, 10))</pre>
cmg_data <- filter(cmg_data, !is.na(momentum_10))</pre>
```

Display the table for each stock containing only date and four new metrics columns.

A data frame: 6×5

Table 1: SBUX Data with New Metrics

			momen-		
	datadate	$daily_return$	tum_10	daily_range	
	<date $>$	<dbl></dbl>	<dbl $>$	<dbl></dbl>	mfv < dbl >
1	2020-09-17	-	-1.60	1.965	3099384.35
		0.0184430867			
2	2020-09-18	-	-1.53	2.640	-7430383.71
		0.0207492795			
3	2020-09-21	_	-2.38	2.200	6782798.69
		0.0124779282			
4	2020-09-22	0.0007152223	-1.46	1.215	1229446.42
5	2020-09-23	-	-2.87	2.080	-5361087.23
		0.0114353782			
6	2020-09-24	0.0006024822	-1.84	2.220	43793.63

A data.frame: 6×5

Table 2: WEN Data with New Metrics

				vol-	
	datadate <date></date>	daily_return <dbl></dbl>	overnight_re- turn <dbl></dbl>	ume_change <int></int>	mfv <dbl></dbl>
1	2020-09-04	-0.01685649	0.011389522	-929061	-2148667
2	2020-09-08	0.01251158	-0.006950880	87249	1761526
3	2020-09-09	0.02951945	0.006864989	-591443	2005638
4	2020-09-10	-0.02867304	0.002444988	-59870	-2741393
5	2020-09-11	-0.01739130	0.007322654	-462401	-664416
6	2020-09-14	0.02608291	0.007452259	1315156	2556174

A data.frame: 6×5

Table 3: PBPB Data with New Metrics

	datadate	daily_return	overnight_re-	close_open_change	
	<date $>$	<dbl $>$	$\mathrm{turn} < \! \mathrm{dbl} \! >$	<dbl $>$	mfv < dbl >
1	2020-09-03	-0.05442177	0.004535147	-0.26	-264658.17
2	2020-09-04	-0.02637890	0.014388489	-0.17	-163452.05
3	2020-09-08	-0.03694581	-0.002463054	-0.14	-284337.00
4	2020-09-09	0.01023018	0.002557545	0.03	11618.32
5	2020-09-10	0.04556962	-0.002531646	0.19	101495.33
6	2020-09-11	-0.04842615	0.007263923	-0.23	-116163.57

A data.frame: 6×5

Table 4: CMG Data with New Metrics

	datadate <date></date>	daily_return <dbl></dbl>	vol- ume_change <int></int>	momen- tum_10 <dbl></dbl>	mfv <dbl></dbl>
-	2020 00 10	0.000071080	001105	110.05	000505 10
1	2020-09-18	-0.008071032	331185	-113.25	-292595.13
2	2020-09-21	-0.007371573	-474653	-107.21	280004.81
3	2020-09-22	0.023256970	-6320	-65.17	123610.04
4	2020-09-23	0.011185990	227749	-72.64	-363145.20
5	2020-09-24	-0.015307716	-290140	-79.21	-22833.32
6	2020-09-25	0.012381231	-5553	-52.97	117739.00

```
# Add a new column named month for each stock
sbux_data <- mutate(sbux_data, month = month(datadate))
wen_data <- mutate(wen_data, month = month(datadate))
pbpb_data <- mutate(pbpb_data, month = month(datadate))
cmg_data <- mutate(cmg_data, month = month(datadate))</pre>
```

Question 6

```
# Add a new column named year for each stock
sbux_data <- mutate(sbux_data, year = year(datadate))
wen_data <- mutate(wen_data, year = year(datadate))
pbpb_data <- mutate(pbpb_data, year = year(datadate))
cmg_data <- mutate(cmg_data, year = year(datadate))</pre>
```

```
# Calculate the total trading volume (cshtrd) in June 2023 for each stock
# SBUX
sbux_trade_volume_2023_06 <- filter(sbux_data, year == 2023 & month == 6)
print(paste("Trading Volume for SBUX:", sum(sbux_trade_volume_2023_06$cshtrd)))</pre>
```

```
# WEN
wen_trade_volume_2023_06 <- filter(wen_data, year == 2023 & month == 6)
print(paste("Trading Volume for WEN :", sum(wen_trade_volume_2023_06$cshtrd)))
# PBPB
pbpb_trade_volume_2023_06 <- filter(pbpb_data, year == 2023 & month == 6)
print(paste("Trading Volume for PBPB:", sum(pbpb_trade_volume_2023_06$cshtrd)))
# CMG
cmg_trade_volume_2023_06 <- filter(cmg_data, year == 2023 & month == 6)
print(paste("Trading Volume for CMG :", sum(cmg_trade_volume_2023_06$cshtrd)))

[1] "Trading Volume for SBUX: 151045270"
[1] "Trading Volume for WEN : 54557454"
[1] "Trading Volume for PBPB: 6780601"
[1] "Trading Volume for CMG : 5392605"</pre>
```

```
# Calculate the mean of daily return over the period for each stock
# SBUX
sbux_mean_daily_return <- mean(sbux_data$daily_return)
print(paste("Mean Daily Return for SBUX:", sbux_mean_daily_return))
# WEN
wen_mean_daily_return <- mean(wen_data$daily_return)
print(paste("Mean Daily Return for WEN :", wen_mean_daily_return))
# PBPB
pbpb_mean_daily_return <- mean(pbpb_data$daily_return)
print(paste("Mean Daily Return for PBPB:", pbpb_mean_daily_return))
# CMG
cmg_mean_daily_return <- mean(cmg_data$daily_return)
print(paste("Mean Daily Return for CMG :", cmg_mean_daily_return))</pre>
```

- [1] "Mean Daily Return for SBUX: 0.000258033647537639"
- [1] "Mean Daily Return for WEN: 5.37516663492345e-05"

```
[1] "Mean Daily Return for PBPB: 0.00126338129125535"
[1] "Mean Daily Return for CMG: 0.000833175350864445"
```

```
# Find the date for maximum high price over the period for each stock
# SBUX
sbux_max_high_price <- max(sbux_data$prchd)</pre>
sbux_date_max_high_price <- filter(sbux_data, prchd == sbux_max_high_price)</pre>
print(paste("(SBUX)", "Date:", sbux_date_max high_price$datadate,
             " Price:", sbux_max_high_price))
# WEN
wen_max_high_price <- max(wen_data$prchd)</pre>
wen_date_max_high_price <- filter(wen_data, prchd == wen_max_high_price)</pre>
print(paste("(WEN)", " Date:", wen_date_max_high_price$datadate,
             " Price:", wen_max_high_price))
# PBPB
pbpb_max_high_price <- max(pbpb_data$prchd)</pre>
pbpb date max high price <- filter(pbpb data, prchd == pbpb max high price)</pre>
print(paste("(PBPB)", "Date:", pbpb_date_max_high_price$datadate,
            " Price:", pbpb_max_high_price))
# CMG
cmg_max_high_price <- max(cmg_data$prchd)</pre>
cmg_date_max_high_price <- filter(cmg_data, prchd == cmg_max_high_price)</pre>
print(paste("(CMG)", " Date:", cmg date max high price$datadate,
              " Price:", cmg_max_high_price))
```

```
[1] "(SBUX) Date: 2021-07-23 Price: 126.32"
[1] "(WEN) Date: 2021-06-08 Price: 29.46"
[1] "(PBPB) Date: 2023-04-26 Price: 11.14"
[1] "(CMG) Date: 2023-07-19 Price: 2175.01"
```

```
# Find the date for largest daily return over the period for each stock
# SBUX
sbux_max_daily_return <- max(sbux_data$daily_return)</pre>
sbux_date_max_daily_return <- filter(sbux_data, daily_return == sbux_max_daily_return)</pre>
print(paste("(SBUX)", "Date:", sbux_date_max_daily_return$datadate,
            " Daily Return:", sbux_max_daily_return))
# WEN
wen_max_daily_return <- max(wen_data$daily_return)</pre>
wen_date_max_daily_return <- filter(wen_data, daily_return == wen_max_daily_return)
print(paste("(WEN)", " Date:", wen_date_max_daily_return$datadate,
            " Daily Return:", wen_max_daily_return))
# PBPB
pbpb_max_daily_return <- max(pbpb_data$daily_return)</pre>
pbpb_date_max_daily_return <- filter(pbpb_data, daily_return == pbpb_max_daily_return)</pre>
print(paste("(PBPB)", "Date:", pbpb_date_max_daily_return$datadate,
            " Daily Return:", pbpb_max_daily_return))
cmg_max_daily_return <- max(cmg_data$daily_return)</pre>
cmg_date_max_daily_return <- filter(cmg_data, daily_return == cmg_max_daily_return)</pre>
print(paste("(CMG)", " Date:", cmg_date_max_daily_return$datadate,
            " Daily Return:", cmg_max_daily_return))
[1] "(SBUX) Date: 2022-05-04 Daily Return: 0.0983452172743173"
[1] "(WEN) Date: 2021-06-08 Daily Return: 0.258500435919791"
[1] "(PBPB) Date: 2021-03-15 Daily Return: 0.175862068965517"
[1] "(CMG) Date: 2022-07-27 Daily Return: 0.147041620139316"
```

Part II

```
#1. Find all the data with daily trading volume (cshtrd) > 100,000
#2. Group them by exchange and calulate the number of distinct tickers for each exchange
tickers_each_exchange <- data %>%
 filter(cshtrd > 100000) %>%
  group_by(exchg) %>%
  summarise(tic_num = n_distinct(tic))
# Demonstrate the calulating result table
print(tickers_each_exchange)
# Plot the result using column chart
ggplot(tickers_each_exchange, aes(factor(exchg), tic_num)) +
  geom_col(fill = "dark blue") +
  labs(x = "Stock Exchange Code", y = "Number of Stocks")
# A tibble: 4 \times 2
  exchg tic_num
  <int>
         <int>
1
     11
             16
2
     12
             1
3
     14
             36
     19
              1
```


Figure 1: Number of Stocks on Each Exchange that had at least one Daily Trading Volume > 100,000

Figure 2: Close Price Trends

We can see that close price of CMG is far higher than the other three companies, making the line plot hard to read. Therefore, we use facet_wrap to create separate plots for each ticker with free y scales

```
ggplot(subset, aes(datadate, prccd, colour = tic)) +
  geom_line() +
  facet_wrap(~ tic, scales = "free_y") +
  labs(colour = "Ticker", x = "Date", y = "Close Price")
```


Figure 3: Close Price Trends with Facets

```
# We have already calulated mean daily return for the tickers we analyzed before
# (from Part I Question 8)

# Demonstrate the calulating result again
print(paste("mean daily return for SBUX:", sbux_mean_daily_return))
print(paste("mean daily return for WEN :", wen_mean_daily_return))
print(paste("mean daily return for PBPB:", pbpb_mean_daily_return))
print(paste("mean daily return for CMG :", cmg_mean_daily_return))

[1] "mean daily return for SBUX: 0.000258033647537639"
[1] "mean daily return for WEN : 5.37516663492345e-05"
[1] "mean daily return for PBPB: 0.00126338129125535"
[1] "mean daily return for CMG : 0.000833175350864445"
```

Apparently, PBPB has the highest mean daily return among the four tickers. Let's visualize the high and low prices of PBPB in 2021.

```
# Convert datadate to date format
pbpb_data$datadate <- as.Date(pbpb_data$datadate, format = "%d/%m/%Y")

# Filter all the PBPB data in 2021
pbpb_data_2021 <- filter(pbpb_data, year(pbpb_data$datadate) == 2021)

# Plot high and low prices using line plot
ggplot(pbpb_data_2021, aes(datadate, prchd, colour = "High Price")) +
geom_line() +
geom_line(aes(datadate, prcld, colour = "Low Price")) +
labs(colour = "", x = "Date", y = "Price")</pre>
```


Figure 4: PBPB High Price & Low Price in 2021

```
#1. Add a new column called year to pbpb_data to represent the year of each observation
#2. Group the pbpb_data by year and calculate the annual trading volume (cshtrd) for each yeannual_volume <- pbpb_data %>%
    mutate(year = year(datadate)) %>%
    group_by(year) %>%
    summarise(volume = sum(cshtrd))

# Demonstrate the calculating result table
print(annual_volume)

# Plot the result using column chart
# We add scale_y_continuous to make y axis labels more readable
# by scaling down the numbers and adding "M" suffix to represent million
ggplot(annual_volume, aes(year, volume)) +
    geom_col(fill = "dark blue") +
    scale_y_continuous(labels = label_number(scale = 1e-6, suffix = "M")) +
    labs(x = "Year", y = " Trading Volume")
```


Figure 5: Trading Volume for PBPB from 2020 to 2023

```
# Add a new column called model to pbpb_data_2021
# to store the predicted daily return values
lm_return_volume <- lm(formula = daily_return ~ cshtrd, data = pbpb_data_2021)
pbpb_data_2021$model <- predict(lm_return_volume)

# Plot a scatter plot with regression line
ggplot(pbpb_data_2021, aes(cshtrd, daily_return)) +
    geom_point() +
    geom_line(aes(y = model, colour = "Regression Line")) +
    labs(colour = "", x = "Volume", y = "Daily Return")</pre>
```


Figure 6: Relationship between daily returns and volume in 2021.