Chapter DM:II (continued)

II. Cluster Analysis

- □ Cluster Analysis Basics
- □ Hierarchical Cluster Analysis
- □ Iterative Cluster Analysis
- □ Density-Based Cluster Analysis
- Cluster Evaluation
- Constrained Cluster Analysis

DM:II-271 Cluster Analysis ©STEIN 2007-2019

Person Resolution Task

DM:II-272 Cluster Analysis © STEIN 2007-2019

Person Resolution Task

DM:II-273 Cluster Analysis © STEIN 2007-2019

Person Resolution Task

DM:II-274 Cluster Analysis © STEIN 2007-2019

Person Resolution Task

DM:II-275 Cluster Analysis ©STEIN 2007-2019

Person Resolution Task

Multi-document resolution task:

Names, Target names: $N = \{n_1, \dots, n_l\}, \quad T \subset N$

Referents: $R = \{r_1, \dots, r_m\}, \quad \tau : R \to T, \ |R| \gg |T|$

Documents: $D = \{d_1, \dots, d_n\}, \quad \nu : D \to \mathcal{P}(N), \quad |\nu(d_i) \cap T| = 1$

A solution: $\gamma: D \to R$, s.t. $\tau(\gamma(d_i)) \in \nu(d_i)$

DM:II-276 Cluster Analysis © STEIN 2007-2019

Person Resolution Task

□ Facts about the Spock data mining challenge:

Target names: |T| = 44

Referents: |R| = 1101

Documents: $|D_{train}| = 27\,000$ (labeled ≈ 2.3 GB)

 $|D_{\textit{test}}| = 75\,000$ (unlabeled ≈ 7.8 GB)

DM:II-277 Cluster Analysis © STEIN 2007-2019

Person Resolution Task

- up to 105 referents for a single target name
- about 25 referents on average per target name

about 23 documents on average per referent

Facts about the Spock data mining challenge:

600

Target names: |T| = 44

200

Referents: $|R| = 1\,101$

400

Documents: $|D_{train}| = 27\,000$ (labeled ≈ 2.3 GB)

800

1000

 $|D_{\textit{test}}| = 75\,000$ (unlabeled pprox 7.8GB)

DM:II-278 Cluster Analysis © STEIN 2007-2019

Applied to Multi-Document Resolution

- 1. Model similarities → new and established retrieval models:
 - global and context-based vector space models
 - explicit semantic analysis
 - ontology alignment
- 2. Learn class memberships (supervised) → logistic regression
- 3. Find equivalence classes (unsupervised) → cluster analysis:
 - (a) adaptive graph thinning
 - (b) multiple, density-based cluster analysis
 - (c) clustering selection by expected density maximization

DM:II-279 Cluster Analysis © STEIN 2007-2019

Applied to Multi-Document Resolution

- 1. Model similarities → new and established retrieval models:
 - global and context-based vector space models
 - explicit semantic analysis
 - ontology alignment
- 2. Learn class memberships (supervised) → logistic regression
- 3. Find equivalence classes (unsupervised) → cluster analysis:
 - (a) adaptive graph thinning
 - (b) multiple, density-based cluster analysis
 - (c) clustering selection by expected density maximization

DM:II-280 Cluster Analysis © STEIN 2007-2019

Applied to Multi-Document Resolution

- 1. Model similarities → new and established retrieval models:
 - global and context-based vector space models
 - explicit semantic analysis
 - ontology alignment
- 2. Learn class memberships (supervised) → logistic regression
- 3. Find equivalence classes (unsupervised) → cluster analysis:
 - (a) adaptive graph thinning
 - (b) multiple, density-based cluster analysis
 - (c) clustering selection by expected density maximization

DM:II-281 Cluster Analysis © STEIN 2007-2019

Applied to Multi-Document Resolution

- 1. Model similarities → new and established retrieval models:
 - global and context-based vector space models
 - explicit semantic analysis
 - ontology alignment
- 2. Learn class memberships (supervised) → logistic regression
- 3. Find equivalence classes (unsupervised) → cluster analysis:
 - (a) adaptive graph thinning
 - (b) multiple, density-based cluster analysis
 - (c) clustering selection by expected density maximization

DM:II-282 Cluster Analysis © STEIN 2007-2019

Applied to Multi-Document Resolution

- 1. Model similarities → new and established retrieval models:
 - global and context-based vector space models
 - explicit semantic analysis
 - ontology alignment
- 2. Learn class memberships (supervised) → logistic regression
- 3. Find equivalence classes (unsupervised) → cluster analysis:
 - (a) adaptive graph thinning
 - (b) multiple, density-based cluster analysis
 - (c) clustering selection by expected density maximization

DM:II-283 Cluster Analysis © STEIN 2007-2019

Applied to Multi-Document Resolution

- 1. Model similarities → new and established retrieval models:
 - global and context-based vector space models
 - explicit semantic analysis
 - ontology alignment
- 2. Learn class memberships (supervised) → logistic regression
- 3. Find equivalence classes (unsupervised) → cluster analysis:
 - (a) adaptive graph thinning
 - (b) multiple, density-based cluster analysis
 - (c) clustering selection by expected density maximization

DM:II-284 Cluster Analysis © STEIN 2007-2019

Idealized Class Membership Distribution over Similarities

Similarity distributions for document pairs from different referents and same referent.

Logistic regression task:

- □ sample size: 400 000
- ullet classes imbalance: non-target class : target class pprox 25:1
- items are drawn uniformly distributed wrt. non-targets and targets
- items are uniformly distributed over the groups of target names

DM:II-285 Cluster Analysis ©STEIN 2007-2019

Membership Distribution under tf-idf Vector Space Model

Model details:

□ corpus size: 25 000 documents

☐ dictionary size: 1,2 Mio terms

□ stopwords number: 850

□ stopword volume: 36%

DM:II-286 Cluster Analysis © STEIN 2007-2019

Membership Distribution under Context-Based Vector Space Model

Model details:

□ corpus size: 25 000 documents

☐ dictionary size: 1,2 Mio terms

□ stopwords number: 850

□ stopword volume: 36%

DM:II-287 Cluster Analysis © STEIN 2007-2019

Membership Distribution under Ontology Alignment Model

Model details:

- DMOZ open directory project
- → > 5 million documents
- □ 12 top-level categories
- □ 31 second level categories
- ☐ ML: hierarchical Bayes
- □ training set: 100 000 pages

DM:II-288 Cluster Analysis © STEIN 2007-2019

In-Depth: Multi-Class Hierarchical Classification

Flat (big-bang) classification

- + simple realization
- loss of discriminative power with increasing number of categories

Hierarchical (top-down) classification

- + specialized classifiers (divide and conquer)
- misclassification at higher levels can never become repaired

DM:II-289 Cluster Analysis ©STEIN 2007-2019

In-Depth: Multi-Class Hierarchical Classification

State of the art of effectiveness analyses:

- 1. independence assumption between categories
- 2. neglection of both hierarchical structure and degree of misclassification

Improvements:

- \supset Consider similarity $\varphi(C_i, C_j)$ between correct and wrong category.
- \Box Consider graph distance $d(C_i, C_i)$ between correct and wrong category.

DM:II-290 Cluster Analysis ©STEIN 2007-2019

In-Depth: Multi-Class Hierarchical Classification

Improvements continued:

Multi-label (multi path) classification

- traverse more than one path and return all labels
- employ probabilistic classifiers with a threshold: split a path or not

Multi-classifier (ensemble) classification

- classification result is a majority decision
- employ different classifier (different types or differently parameterized)

DM:II-291 Cluster Analysis © STEIN 2007-2019

Membership Distribution under Optimized Retrieval Model Combination

Retrieval Model	$\overline{F_{1/3}}$ -Measure
tf-idf vector space	0.39
context-based vector space	0.32
ESA Wikipedia persons	0.30
phrase structure grammar	0.17
ontology alignment	0.15
optimized combination	0.42

DM:II-292 Cluster Analysis © STEIN 2007-2019

Membership Distribution under Optimized Retrieval Model Combination

Retrieval Model	$F_{1/3}$ -Measure
tf-idf vector space	0.39
context-based vector space	0.32
ESA Wikipedia persons	0.30
phrase structure grammar	0.17
ontology alignment	0.15
optimized combination	0.42

Referent 1		Refer	Referent 2		Referent		
0	•	0	0		0	0	
0	•	0	0		0	0	
0	•	0	0		0	0	

DM:II-293 Cluster Analysis © STEIN 2007-2019

Membership Distribution under Optimized Retrieval Model Combination

		Refe	rent 1	Refe	rent 2		Refe	rent m
Retrieval Model	$F_{1/3}$ -Measure	0	0	0	0		0	0
tfidf vector space	0.39	0	0	0	0	•••	0	0
context-based vector space	0.32	•	0	0	0		0	0
ESA Wikipedia persons	0.30							
phrase structure grammar	0.17	_		_	_		_	
ontology alignment	0.15	0	0	0	0		0	0
		0	0	0	0	•••	0	0
optimized combination	0.42	0	0	0	0		0	0

DM:II-294 Cluster Analysis © STEIN 2007-2019

Membership Distribution under Optimized Retrieval Model Combination

Retrieval Model	$F_{1/3}$ -Measure
tf-idf vector space	0.39
context-based vector space	0.32
ESA Wikipedia persons	0.30
phrase structure grammar	0.17
ontology alignment	0.15
optimized combination	0.42

Refer	Referent 1 R		ent 2	Refer	rent m
•	0	0	0	0	0
0	0	0	0	 0	0
0	0	0	0	0	0
0	?		?	 <u> </u>	?

DM:II-295 Cluster Analysis © STEIN 2007-2019

Membership Distribution under Optimized Retrieval Model Combination

In the example:

- □ precision = 0.4
- □ recall = 0.43
- \Box $F_{1/3} = 0.41$

(if false negatives are uniformly distributed)

DM:II-296 Cluster Analysis © STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

Consideration of imbalance:

DM:II-297 Cluster Analysis © STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

- □ class imbalance factor (CIF) of 25
- \Rightarrow precision in interval [0.725; 1] for edges between same referents: ≈ 0.17

How can $F_{1/3}$ = 0.42 be achieved via cluster analysis?

Consideration of imbalance:

DM:II-298 Cluster Analysis © STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C|=23)

- \Rightarrow | TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
- $\Rightarrow \frac{|TP|}{|C|}$ degree of true positives per node (here: 11)
- $\Rightarrow |TP|(\frac{1}{precision} 1)$ false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP*, connect to same cluster

- \Rightarrow analyze $P(|FP^*| > k \mid D, R_{iid})$ (here: $E(|FP^*|) = 2.7$)
- \Rightarrow edge tie factor (*ETF*) specifies the excess of true positives until tie (here: 3...5)

$$ETF = \frac{|TP|}{|C| \cdot E(|FP^*|)},$$
 effective precision = $precision \cdot \frac{CIF}{ETF}$

DM:II-299 Cluster Analysis ©STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C| = 23)

- \Rightarrow |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
- $\Rightarrow \frac{|TP|}{|C|}$ degree of true positives per node (here: 11)
- $\Rightarrow |TP|(\frac{1}{precision} 1)$ false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP*, connect to same cluster

- \Rightarrow analyze $P(|FP^*| > k \mid D, R_{iid})$ (here: $E(|FP^*|) = 2.7$)
- \Rightarrow edge tie factor (*ETF*) specifies the excess of true positives until tie (here: 3...5)

$$ETF = \frac{|TP|}{|C| \cdot E(|FP^*|)},$$
 effective precision = $precision \cdot \frac{CIF}{ETF}$

DM:II-300 Cluster Analysis ©STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C|=23)

- \Rightarrow |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
- $\Rightarrow \frac{|TP|}{|C|}$ degree of true positives per node (here: 11)
- $\Rightarrow |TP|(\frac{1}{precision} 1)$ false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP*, connect to same cluster

- \Rightarrow analyze $P(|FP^*| > k \mid D, R_{iid})$ (here: $E(|FP^*|) = 2.7$)
- \Rightarrow edge tie factor (*ETF*) specifies the excess of true positives until tie (here: 3...5)

$$ETF = \frac{|TP|}{|C| \cdot E(|FP^*|)},$$
 effective precision = $precision \cdot \frac{CIF}{ETF}$

DM:II-301 Cluster Analysis ©STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with $\left|C\right|=23$)

- \Rightarrow |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
- $\Rightarrow \frac{|TP|}{|C|}$ degree of true positives per node (here: 11)
- $\Rightarrow |TP|(\frac{1}{precision} 1)$ false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP*, connect to same cluster

- \Rightarrow analyze $P(|FP^*| > k \mid D, R_{iid})$ (here: $E(|FP^*|) = 2.7$)
- \Rightarrow edge tie factor (*ETF*) specifies the excess of true positives until tie (here: 3...5)

$$ETF = \frac{|TP|}{|C| \cdot E(|FP^*|)},$$
 effective precision = $precision \cdot \frac{CIF}{ETF}$

DM:II-302 Cluster Analysis ©STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with $\left|C\right|=23$)

- \Rightarrow |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
- $\Rightarrow \frac{|TP|}{|C|}$ degree of true positives per node (here: 11)
- $\Rightarrow |TP|(\frac{1}{\textit{precision}} 1) \text{ false 1-similarities per cluster (here: } 760)$

Density-based cluster analysis: effective false positives, FP*, connect to same cluster

- \Rightarrow analyze $P(|FP^*| > k \mid D, R_{iid})$ (here: $E(|FP^*|) = 2.7$)
- \Rightarrow edge tie factor (*ETF*) specifies the excess of true positives until tie (here: 3...5)

$$ETF = \frac{|TP|}{|C| \cdot E(|FP^*|)},$$
 effective precision = $precision \cdot \frac{CIF}{ETF}$

DM:II-303 Cluster Analysis ©STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

Density-based cluster analysis: effective false positives, FP*, connect to same cluster

- \Rightarrow analyze $P(|FP^*| > k \mid D, R_{iid})$ (here: $E(|FP^*|) = 2.7$)
- \Rightarrow edge tie factor (*ETF*) specifies the excess of true positives until tie (here: 3...5)

$$ETF = \frac{|TP|}{|C| \cdot E(|FP^*|)},$$
 effective precision = $precision \cdot \frac{CIF}{ETF}$

DM:II-304 Cluster Analysis ©STEIN 2007-2019

In-Depth: Analysis of Classifier Effectiveness

Determine optimum similarity threshold for class-membership function:

$$\theta^* = \operatorname*{argmax}\{\frac{1+\alpha}{\underbrace{\mathit{ETF}}_{\mathit{precision}_{\theta}\cdot\mathit{CIF}} + \frac{\alpha}{\mathit{recall}_{\theta}}}\}$$

 θ^* considers co-variate shift, introduces model formation bias and sample selection bias.

DM:II-305 Cluster Analysis © STEIN 2007-2019

Model Selection: Our Risk Minimization Strategy

Retrieval Model	$F_{1/3}$ -Measure
tfidf vector space	0.39
context-based vector space	0.32
ESA Wikipedia persons	0.30
phrase structure grammar	0.17
ontology alignment	0.15
optimized combination	0.42
Ensemble cluster analysis	0.40

Ensemble cluster analysis: higher bias, better generalization.

- (1) Do we speculate on a better fit for D_{test} ?
- (2) Do we expect a significant covariate shift, more noise, etc. in D_{test} ?

DM:II-306 Cluster Analysis ©STEIN 2007-2019

Recap

- 1. Multi-document resolution can be tackled with constrained cluster analysis.
- 2. Constraints are derived from labeled examples.
- 3. Class membership function ties constraints to multiple retrieval models.
- 4. Advanced density-based clustering technology is key.

DM:II-307 Cluster Analysis © STEIN 2007-2019

References

Disambiguating Web Appearances of People in a Social Network.
[R. Bekkerman, A. McCallum. WWW 2005]
A Bayesian Model for Supervised Clustering with the Dirichlet Process Prior.
[H. Daumé III, D. Marcu. Journal MLR 2005]
Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis.
[E. Gabrilovich, S. Markovitch. IJCAI 2007]
Unsupervised Discrimination of Person Names in Web Contexts.
[T. Pedersen, A. Kulkarni. CICLing 2007]
On Information Need and Categorizing Search.
[S. Meyer zu Eissen. Dissertation, Paderborn University, 2007]
Weighted Experts: A Solution for the Spock Data Mining Challenge.
[B. Stein, S. Meyer zu Eissen. I-KNOW 2008]

GRAPE: A System for Disambiguating and Tagging People Names in Web Search.

[L. Jiang, W. Shen, J. Wang, N. An. WWW 2010]

DM:II-308 Cluster Analysis ©STEIN 2007-2019