## 数据结构与算法 II 作业 (9.8)

中国人民大学 信息学院 崔冠宇 2018202147

**P30, T3.1-1** 假设 f(n) 与 g(n) 都是渐近非负函数. 使用  $\Theta$  记号的基本定义来证明  $\max\{f(n),g(n)\} = \Theta(f(n)+g(n))$ .

**证明:** 由于 f(n) 渐近非负, 则  $\exists N_1 > 0$ , 使得  $\forall n \geq N_1$  时, 有  $f(n) \geq 0$ ; 同理,  $\exists N_2 > 0$ , 使得  $\forall n \geq N_2$  时, 有  $g(n) \geq 0$ .

取  $n_0 = \max\{N_1, N_2\}$ ,  $c_1 = \frac{1}{2}$ ,  $c_2 = 1$ , 下面只需要证明: 对  $\forall n \geq n_0$ , 有  $0 \leq \frac{1}{2}(f(n) + g(n)) \leq \max\{f(n), g(n)\} \leq (f(n) + g(n))$ .

 $\forall n \geq n_0$ , 分类讨论:

- ② 若 f(n) < g(n), 则  $0 \le \frac{1}{2}(f(n) + g(n)) \le \frac{1}{2}(g(n) + g(n)) = g(n) = \max\{f(n), g(n)\} \le f(n) + g(n)$ .

综上, 不等式对  $\forall n \geq \max\{N_1, N_2\}$  恒成立, 所以有

$$\max\{f(n),g(n)\} = \Theta(f(n) + g(n))$$

**P30, T3.1-7** 证明:  $o(g(n)) \cap \omega(g(n))$  为空集.

**证明:** 反证法,假设  $o(g(n)) \cap \omega(g(n)) \neq \emptyset$ , 则取  $f(n) \in o(g(n)) \cap \omega(g(n))$ .

根据 o 记号和  $\omega$  记号的含义, f 应该满足:

 $\forall c > 0, \exists N_1, N_2 > 0$ , 使得  $\forall n \geq N_1$  时, 有  $0 \leq f(n) < cg(n)$  以及  $\forall n \geq N_2$  时, 有  $0 \leq cg(n) < f(n)$ .

于是当  $\forall n \geq \max\{N_1, N_2\}$  时,同时有 f(n) < cg(n) 和 cg(n) < f(n),矛盾. 故假设不成立, $o(g(n)) \cap \omega(g(n)) = \emptyset$ .

**P35**, **T3.2** (相对渐近增长)为下表中的每对表达式 (A, B) 指出 A 是否是 B 的 O、o、Ω、ω 或 Θ. 假设  $k \ge 1$ 、ε > 0 且 e > 1 均为常量. 回答应该以表格的形式, 将"是"或"否"写在每个空格中.

解: 此处题干含义不太明确,下面按照  $A = \Box(B)$  来理解 ( $\Box$  代表  $O \times o \times \Omega \times \omega$  或  $\Theta$ ).

先对各对函数进行分析, 然后完成表格.

- **a.** 因为  $\lim_{n\to\infty}\frac{\lg^k n}{n^\varepsilon}=\frac{k!}{\varepsilon^k\ln^k10}\lim_{n\to\infty}\frac{1}{n^\varepsilon}=0$ ,所以  $\lg^k n=o(n^\varepsilon)=O(n^\varepsilon)$ ,但不是  $\Omega(n^\varepsilon)$ 、 $\omega(n^\varepsilon)$  或  $\Theta(n^\varepsilon)$ ;
- **b.** 因为  $\lim_{n\to\infty}\frac{n^k}{c^n}=0$ ,所以  $n^k=o(c^n)=O(c^n)$ ,但不是  $\Omega(c^n)$ 、  $\omega(c^n)$  或  $\Theta(c^n)$ ;
- **c.** 因为  $\sin n$  是值域为 [-1,1] 的周期函数,
- ①  $\stackrel{\text{de}}{=} \sin n = 1 \text{ fr}, \frac{\sqrt{n}}{n^{\sin n}} = \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}} < 1;$

满足上面两个不等式的 n 有无穷多个, 所以  $\sqrt{n}$  不是  $O(n^{\sin n})$ 、 $o(n^{\sin n})$ 、 $\Omega(n^{\sin n})$ 、 $\omega(n^{\sin n})$  或  $\Theta(n^{\sin n})$  的;

**d.** 因为  $\lim_{n\to\infty}\frac{2^n}{2^{n/2}}=\lim_{n\to\infty}2^{n/2}=+\infty$ ,所以  $2^n=\omega(2^{n/2})=\Omega(2^{n/2})$ ,但不是  $O(2^{n/2})$ 、 $o(2^{n/2})$  或  $\Theta(2^{n/2})$ ;

e. 因为  $\lim_{n \to \infty} \frac{n^{\lg c}}{c^{\lg n}} = \lim_{n \to \infty} \frac{10^{\lg c \lg n}}{10^{\lg n \lg c}} = 1$ ,所以  $n^{\lg c} = \Theta(c^{\lg n}) = O(c^{\lg n}) = \Omega(c^{\lg n})$ ,但不是  $o(c^{\lg n})$  或  $\omega(c^{\lg n})$ ;

**f.** 因为  $\lg(n^n) = n \lg n$ ,根据《算法导论》P33 关于阶乘的结论:  $\lg(n!) = \Theta(n \lg n)$ ,所以  $\lg(n!) = \Theta(\lg(n^n)) = O(\lg(n^n)) = \Omega(\lg(n^n))$ ,但不是  $o(\lg(n^n))$  或  $\omega(\lg(n^n))$ ;

表 1: P35, T3.2 表

| A           | В                 | O | 0 | Ω | $\mid \omega \mid$ | Θ |
|-------------|-------------------|---|---|---|--------------------|---|
| $-\lg^k n$  | $n^{\varepsilon}$ | 是 | 是 | 否 | 否                  | 否 |
| $n^k$       | $c^n$             | 是 | 是 | 否 | 否                  | 否 |
| $\sqrt{n}$  | $n^{\sin n}$      | 否 | 否 | 否 | 否                  | 否 |
| $2^n$       | $2^{n/2}$         | 否 | 否 | 是 | 是                  | 否 |
| $n^{\lg c}$ | $c^{\lg n}$       | 是 | 否 | 是 | 否                  | 是 |
| $\lg(n!)$   | $\lg(n^n)$        | 是 | 否 | 是 | 否                  | 是 |

附录: 使用 Mathematica 验证结果.

