## 情報統計第11回

2024年8月1日 神奈川工科大学



#### 櫻井 望

### 補足

- カイ二乗検定の計算
  - ✓ どこで使われる?
  - ✓ 期待度数などの計算
- 主成分分析
  - ✓ 第n軸が全く同じ分散になったら?

|    | ビール<br>好き | ビール<br>あんまり |
|----|-----------|-------------|
| 男性 | 69        | 36          |
| 女性 | 21        | 24          |

|    | A型 | B型 | AB型 | O型 |
|----|----|----|-----|----|
| 男性 |    |    |     |    |
| 女性 |    |    |     |    |

|           | ゲーム<br>好き | ゲーム<br>しない |
|-----------|-----------|------------|
| 朝食<br>食べる |           |            |
| 朝食 食べない   |           |            |

|    | ペット<br>飼ってる | ペット<br>いない |
|----|-------------|------------|
| 独身 |             |            |
| 既婚 |             |            |

|            | 治った | 治らな<br>かった |
|------------|-----|------------|
| 薬剤投与       |     |            |
| コント<br>ロール |     |            |

分割表 数字の大小で表せないも のを扱う

#### 期待度数

| (1) 観測テ  | ータから、カラ  | テゴリーご。 | とに割合を | 出す    |       |    |
|----------|----------|--------|-------|-------|-------|----|
|          | ビール好き    | ビール好き  | 合計    | 割合    |       |    |
| 男性       | 69       | 36     | 105   | 0.7   |       |    |
| 女性       | 21       | 24     | 45    | 0.3   |       |    |
| 合計       | 90       | 60     | 150   |       |       |    |
| 割合       | 0.6      | 0.4    |       |       |       |    |
|          |          |        |       |       |       |    |
| (2)(1)の害 | 引合から、カテ: |        |       | の度数(期 | 待度数)を | 出す |
|          | ビール好き    | ビール好き  | きではない |       |       |    |
| 男性       | =E10*C13 | 42     |       |       |       |    |
| 女性       | 27       | 18     |       |       |       |    |

#### 自由度

自由度 =(COUNTA(C3:D3)-1) \* (COUNTA(B4:B5)-1)

| 観測データ | タ     |       |       |
|-------|-------|-------|-------|
|       | ビール好き | ビール好き | きではない |
| 男性    | 69    | 36    |       |
| 女性    | 21    | 24    |       |

### 研究紹介

主成分分析、散布図などの例

## 情報統計第12回

2024年8月1日 神奈川工科大学



#### 櫻井 望

# 補足

- 数学記号
- ログ変換

### 2群の t 検定(独立2群)

等分散が仮定できない場合 ウェルチの方法

1群目:標本数 n1, 不変標本分散 s1, 標本平均 $\overline{x1}$ 

2群目:標本数 n2, 不変標本分散 s2, 標本平均 $\overline{x2}$ 

**検定統計量** 
$$t = \frac{x1 - x2}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}}$$

(近似)自由度 
$$v \approx \frac{\left(\frac{s1^2}{n1} + \frac{s2^2}{n2}\right)^2}{\frac{s1^4}{n1^2(n1-1)} + \frac{s2^4}{n2^2(n2-1)}}$$

帰無仮説: 2群の母集団の平均値は等しい

で、同様に検定できます

参考まで



ほぼ等しい

数学記号

|                                    |      | _ · · · · · · · · · · · · · · · · · · ·                                                                  |
|------------------------------------|------|----------------------------------------------------------------------------------------------------------|
| 0                                  | 合成写像 | 「 $f\circ g$ 」は写像 $g$ と写像 $f$ の合成を表す。すなわち $(f\circ g)(x)=f(g(x))$ である。                                   |
| Im, Image, $\bullet$ [ $\bullet$ ] | 像    | 写像 $\varphi$ に対して、Image $\varphi$ はその写像の像全体の集合(値域)を表す。写像 $\varphi\colon X \to Y$ に対して $\varphi[X]$ とも書く。 |

#### 二項関係演算

| 記号     | 意味    | 解説                                       |
|--------|-------|------------------------------------------|
| =      | 相等    | x = y は $x$ と $y$ が等しいことを表す。             |
| $\neq$ | 不一致   | $x \neq y$ は $x \geq y$ が等しくないことを表す。     |
| ≒, ≈   | ほぼ等しい | $ \lceil x = y                         $ |

#### 順序構造

| 記号  | 意味      | 解説                                                                                                                                         |
|-----|---------|--------------------------------------------------------------------------------------------------------------------------------------------|
|     |         | $[x < y]$ は $x \ge y$ の間に何 $fx \le y$ の間に何 |
| <.> | 大小関係、順序 | 方が「先」であることを示す。 WIKIDECIA                                                                                                                   |

# 補足

- 数学記号
- ログ変換

#### 生物の遺伝子情報の流れとオミクス



オミクス それぞれの要素を一斉に検出し ようとする技術・学問 一見、正規分布のように見えないデータでも、ログスケール(対数)にすることで、 正規分布に近い分布になることがある

- ✓ 遺伝子発現量データ
- ✓ 質量分析での化合物検出データ

など

#### 大葉(しそ)で検出された代謝物質

- 液体クロマトグラフィー-質量分析
- ESIポジティブモード

計5760ピーク



**検出値** (リニアスケール)



log10変換後 (ログスケール)

Excel関数: LOGなど

### ログスケールにするメリット

シグナル強度によるばらつき(分散)の変化を打ち消 すことができる

例)強度10のピークの10%のばらつきは1の差なのに対し、 強度1000のピークでは、同じ10%のばらつきで100の差に なる。

logに変換すると、どんな強度でも同じ数値幅のばらつきにすることができる(等分散)



#### データの分布をExcelで描いて判断

## 情報統計第13回

2024年8月1日 神奈川工科大学



#### 櫻井 望

# 

課題の準備

### 情報統計第14回

2024年8月1日 神奈川工科大学



#### 櫻井 望

# 発表会

### お疲れさまでした