МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Южно-Уральский государственный университет (национальный исследовательский университет)"

Высшая школа электроники и компьютерных наук Кафедра «Электронные вычислительные машины»

Отчет по лабораторной работе № 3

на тему «Анализ командной реализации программы» Вариант № 12

AB	горы р	аооты:	
сту	денты	группы КЭ-303	
		/ Д.В. Старост	енок
«	>>	20	23 г.
		/ Е.В. Елисеев	}
‹ ‹	>>	20	23 г.
Про	оверил]	
		/ И.Л. Кафтан	ников
//	<i>\\</i>	20	23 г

ОГЛАВЛЕНИЕ

ЗАДАНИЕ		3
КОД АССЕМБЛЕРА ДЛЯ PDP-1	1	4
КОД АССЕМБЛЕРА ДЛЯ МП-58	80	5
КОД АССЕМБЛЕРА ДЛЯ ІА32		6
СРАВНЕНИЕ ПРОГРАММ ПО В	КОЛИЧЕСТВУ КОМАНД.	7
ПОДСЧЕТ КОЛИЧЕСТВА КОМ	АНД ПО ГРУППАМ	7
ПРОЦЕНТНОЕ СООТНОШЕНИ	Е КОМАНД ПРЕОБРАЗО	ВАНИЯ ДАННЫХ
И ВСПОМОГАТЕЛЬНЫХ	СООТВЕТСТВЕННО	АРХИТЕКТУРЕ
ПРОЦЕССОРА		7
ВЫВОДЫ		7
СПИСОК ЛИТЕРАТУРЫ		9

ЗАДАНИЕ

Согласно полученному варианту разработать программу решения задачи на языке Assembler, используя следующие системы команд:

- PDP-11;
- M Π 580;
- IA32.

Этапы выполнения задания:

- Реализация программ на языке Assembler для предложенных систем команд, синтаксис которых описан в справочниках, приложенных к лабораторной работе;
 - Сравнение синтезированных программ по количеству команд;
 - Подсчет количества команд каждой группы:
 - 1. Арифметические;
 - 2. Логические;
 - 3. Сдвига;
 - 4. Управления;
 - 5. Пересылки;
 - 6. Ввода-вывода;
 - 7. Прочие.

Цель работы:

Практическое применение навыков разработки программного обеспечения на низкоуровневом языке программирования Assembler, получение опыта анализа разработанной программы по критерию количества команд каждой функциональной группы языка.

В соответствии с вариантом 12.

Задача: Число, чаще всего встречающееся в массиве

Определить, какое число в массиве встречается чаще всего.

КОД АССЕМБЛЕРА ДЛЯ PDP-11

```
.org 1000
                                        bra inner loop ; переходим к
                                        следующему элементу массива
mov #array, r0
                                        end inner loop:
                  ; указатель на
начало массива
                                           cmp r6, r3
                                                          ; если текущий
mov #end of array, r1 ; указатель на
                                        элемент встретился чаще, чем
                                        наиболее частый элемент, обновляем
конец массива
mov #0, r2
                  ; текущий наиболее
                                        значения
                                            ble continue_loop
часто встречающийся элемент
mov #0, r3 ; текущее количество
                                            mov r4, r2
                                                         ; обновляем
                                        наиболее часто встречающийся
вхождений наиболее часто встречающегося
элемента
                                        элемент
                                           mov r6, r3
                                                          ; обновляем
                                        текущее количество вхождений
loop:
   cmp r0, r1 ; если достигнут
                                        наиболее часто встречающегося
конец массива, выходим из цикла
                                        элемента
                                        continue loop:
  beq end loop
   mov (r0)^+, r4 ; загружаем текущий
                                           bra loop
                                                           ; переходим к
элемент массива
                                        следующему элементу массива
  mov #array, r5 ; указатель на
                                        end loop:
                                            ; выводим результат на экран
начало массива
  mov #0, r6
                 ; текущее количество
                                            mov r2, r0
вхождений текущего элемента
                                            jsr pc, print r0
inner loop:
                                            halt
  cmp r5, r1
                 ; если достигнут
конец массива, выходим из цикла
   beq end_inner_loop
cmp (r5)+, r4 ; сравниваем текущий
элемент с очередным элементом массива
   bne continue ; если элементы не
равны, продолжаем цикл
   inc r6
                 ; увеличиваем
счетчик вхождений текущего элемента
   continue:
```

КОД АССЕМБЛЕРА ДЛЯ МП-580

```
.org Oh
; инициализация указателя на начало массива
lxi h, array
; инициализация переменных
mvi b, 0 ; счетчик наиболее часто встречающегося числа
mvi c, 0 ; наиболее часто встречающееся число
mvi d, 0 ; временный счетчик
mvi e, 0 ; временное значение числа
; перебор элементов массива
next element:
   ldax h ; загрузка значения элемента в регистр A
   mov e, a ; сохранение значения в регистре E
   mvi a, 0 ; обнуление регистра A
    mvi d, 0 ; обнуление счетчика
    ; подсчет количества вхождений числа в массиве
    count occurrences:
        стр е ; сравнение регистра А с значением числа
        jnz next byte ; если не совпадает, переход к следующему элементу
        inr d; увеличение счетчика
    next byte:
        inx h ; сдвиг указателя на следующий элемент
        mov a, h ; сохранение указателя в регистре A
        cpi end of array - 1 ; сравнение с концом массива
        jnz count occurrences ; если не конец массива, продолжение подсчета
    ; проверка на наиболее часто встречающееся число
    стр b ; сравнение наиболее частого числа с текущим
    jnc next element ; если текущее число встречается реже, переход к
следующему элементу
    mov b, d ; сохранение счетчика в регистре В
    mov c, е ; сохранение числа в регистре C
    jmp next_element ; переход к следующему элементу
; вывод результата
result:
   ; вывод наиболее часто встречающегося числа и количества вхождений
    ; внимание: это пример вывода на экран, конкретная реализация может
отличаться
   mvi a, c ; загрузка числа в регистр A
    call print number ; вывод числа на экран
   mvi a, ' '\ddot{}; загрузка пробела в регистр А
    call print char ; вывод пробела на экран
    mvi a, '('; загрузка открывающей скобки в регистр А
    call print char ; вывод открывающей скобки на экран
    mvi a, b ; загрузка количества вхождений в регистр А
```

КОД АССЕМБЛЕРА ДЛЯ ІАЗ2

```
org 100h
                                            add edi, 4
                                     увеличиваем указатель на следующий
mov ecx, 0
                  ; инициализируем
переменную счетчика на 0
                                     элемент массива
mov edx, 0 ; инициализируем
                                            dec ebx
                                     уменьшаем счетчик оставшихся
переменную счетчика максимального
повторения на 0
                                     элементов
mov esi, array
                                            cmp ebx, 0
                 ; загрузка адреса
массива в регистр esi
                                     проверяем, достигнут ли конец массива
mov ebx, end_of_array - array
                                            jne loop_array ; если
                                     нет, переходим к следующему элементу
количество элементов массива
mov eax, [esi] ; загрузка
первого элемента массива в регистр
                                        стр есх, еdх ; сравнение
eax
                                     счетчика повторений текущего элемента
                                     с максимальным
check array:
                                        jle continue
                                                       ; если текущий
  mov edi, esi
                 ; копируем адрес
                                     элемент повторился меньше или столько
текущего элемента в регистр edi
                                     же раз,
 mov есх, 0 ; обнуляем
                                                        ; то пропускаем
счетчик повторений текущего элемента
                                     его
  mov edx, 0 ; обнуляем
                                      mov edx, ecx
                                                      ; иначе,
счетчик максимальных повторений
                                     обновляем максимальный счетчик
  mov ebx, end of array - array ;
                                     повторений
количество элементов массива
                                      mov ebx, eax
                                                      ; и сохраняем
  стр ebx, 0 ; проверка, что
                                     текущий элемент в регистре ebx
мы не дошли до конца массива
  je done ; переход к
                                     continue:
завершению, если достигнут конец
                                       add esi, 4 ; переходим к
массива
                                     следующему элементу массива
   loop array:
                                       mov eax, [esi] ; загружаем
      cmp [edi], eax
                                     следующий элемент массива в регистр
сравнение текущего элемента с
                                       dec end of array - array
загруженным в еах
      jne skip
                         ; переход
                                     уменьшаем количество оставшихся
к пропуску, если элемент не равен
                                     элементов массива
                                       jnz check array ; если не
                                     достигнут конец массива, продолжаем
      inc ecx
увеличиваем счетчик повторений
                                     пикл
текущего элемента
                                     done:
                                        mov eax, ebx ; сохраняем
                                     максимальный элемент в регистре еах
                                        call print eax ; выводим его на
                                        int 20h
                                                       ; завершаем
                                     программу
```

СРАВНЕНИЕ ПРОГРАММ ПО КОЛИЧЕСТВУ КОМАНД

PDP-11	МП-580	IA32
38	59	39

ПОДСЧЕТ КОЛИЧЕСТВА КОМАНД ПО ГРУППАМ

Тип	PDP-11	МП-580	IA32
Арифметические	0	6	2
Логические	2	4	3
Сдвига	0	2	0
Управления	12	7	9
Пересылки	8	14	5
Ввода вывода	2	3	1
Прочие	14	23	19

ПРОЦЕНТНОЕ СООТНОШЕНИЕ КОМАНД ПРЕОБРАЗОВАНИЯ ДАННЫХ И ВСПОМОГАТЕЛЬНЫХ СООТВЕТСТВЕННО АРХИТЕКТУРЕ ПРОЦЕССОРА

	PDP-11	МП-580	IA32
Преобразования	26,3%	24,1%	23,07%
Вспомогательные	73,7%	75,9%	76,92%

ВЫВОДЫ

В рамках данного сравнения были проанализированы три архитектуры процессоров: PDP-11, МП-580 и IA32. При этом было выявлено, что МП-580 содержит наибольшее количество команд 59, в то время как PDP-11 имеет наименьшее количество команд 38. Количество команд для IA32 составляет 39.

Для каждой из архитектур процессоров было проанализировано количество команд по группам: арифметические, логические, сдвига, управления, пересылки, ввода-вывода и прочие. В результате анализа было выявлено следующее:

Для всех трех архитектур процентное соотношение команд преобразования данных составляет примерно 23-26%. Наибольшее

процентное соотношение команд преобразования данных у PDP-11 (26,3%), а наименьшее у IA32 (23,07%).

Вспомогательные команды составляют примерно 74-77% от общего числа команд для каждой из архитектур. Наибольшее процентное соотношение вспомогательных команд у IA32 (76,92%), а наименьшее у PDP-11 (73,7%).

СПИСОК ЛИТЕРАТУРЫ

- 1) Справочник Форматы команд, директив и пр.
- 2) Справочник Архитектура однокристального микропроцессора К580BM80A
- 3) Негода В.Н., Никищенков И.А. Функциональная организация микроэвм и микроконтроллеров часть 1: pdp-11