GRAFURI HAMILTONIENE

drum/lant hamiltonian

• circuit/ciclu hamiltonian

Definitii:

- graf hamiltonian
- graf non-hamiltonian maximal
- inchidere a grafului

Grafuri hamiltoniene

7.GRAFURI HAMILTONIENE

Caracterizari ale grafurilor hamiltoniene

Proprietati. Teoreme

- 2 Observatii:: grade: Grafuri hamiltoniene
- Caracterizari ale grafurilor hamiltoniene (Cn, Kn, graf partial)
- T. graf hamiltonian: inegalitate nr. componente conexe subgraf (+demonstratie)
 Sa se demonstreze ca graful Herschel nu este hamiltonian.
- T Dirac linea aradala tuturar nadurilar > hamiltanian) / I damanetratia)
- T. Dirac (ineg. gradele tuturor nodurilor = > hamiltonian) (+demonstratie)
- T. Ore: g.hamiltonian <=> G0 hamiltonian (+demonstratie)
- Lema: inchiderea unica (+demonstratie)
- T. Bondy-Chvatal: g.hamiltonian <=> c(G) hamiltonian (+demonstratie)
- Consecinta: inchidere c(G) complet => G hamiltonian.
- Therefore we have the 10/2 stable the estimation of the stable the stable that the stable the stabl
- T. graf complet Kn: (n-1)/2 cicluri hamiltoniene disjuncte (+demonstratie)
 T. graful hamiltonian: oricare relatie are loc: a)-g)
 - a) (Dirac); b) (Ore) c) (Posa); d) (Bondy) e) (Chvatal); f) (Las Vergnas) g) (Chvatal, Bondy)

- Sir William Hamilton, matematician irlandez (1805-1865)
- 1856 inventează un puzzle jocul Icosian, vândut pentru 25 de guinee unui producător de jocuri din Dublin
- jocul Icosian
 - dodecaedru în care cele 20 noduri sunt etichetate cu nume de capitale
 - obiectivul: a construi, folosind muchiile dodecaedrului un traseu prin care se vizitează fiecare oraș exact o dată revenind în orașul de pornire

- să se construiască un ciclu hamiltonian în graful corespunzător dodecaedrului (graful plan obținut prin desfășurarea lui)
- problema studiată inițial de Hamilton a fost cea a simetriilor în icosaedru

Fie G = (X, U) un graf orientat/neorientat cu mulțimea nodurilor X, |X| = n și mulțimea arcelor/muchiilor U, |U| = m.

Definiție

Se numește **drum/lanț hamiltonian** în graful G un drum/lanț în G care trece prin fiecare nod al grafului o singură dată.

Definiție

Se numește **circuit/ciclu hamiltonian** în graful G un circuit/ciclu în G care trece prin fiecare nod al grafului o singură dată.

Definiție

Se numește **graf hamiltonian** un graf G care conține circuit/ciclu hamiltonian.

- $\mu_1=(1,2,3,6,5,4)$ drum hamiltonian în \emph{G}_1 ; \emph{G}_1 nu conține circuit hamiltonian
- $\mu_2 = (4, 2, 3, 6, 5, 1, 4)$ circuit hamiltonian în G_2
- $\mu_3 = (3,1,2,4)$ lanţ hamiltonian în G_3 ; G_3 nu conţine ciclu hamiltonian
- $\mu_4 = (3, 2, 4, 1, 3)$ ciclu hamiltonian în G_4
- G_2 și G_4 sunt hamiltoniene.

Observații:

- pentru ca un graf orientat să conțină circuit hamiltonian, nodurile sale trebuie să aibă atât gradul interior cât și exterior nenule
- pentru ca un graf neorientat să conțină ciclu hamiltonian, nodurile sale trebuie să aibă gradele nodurilor cel puţin 2

În continuare, graful G=(X,U) se va considera graf neorientat, dacă nu se precizează altceva.

Caracterizari ale grafurilor hamiltoniene:

- graful ciclu C_n este graf hamiltonian
- graful complet de ordin n, K_n , este graf hamiltonian
- dacă graful G conține un graf parțial H care este hamiltonian, atunci graful G este hamiltonian

Teoremă

Fie G=(X,U) un graf hamiltonian. Atunci pentru orice submulțime nevidă S a lui X, $S\subset X$, $S\neq\emptyset$, are loc inegalitatea $p(G-S)\leq |S|$, unde p(G-S) este numărul de componente conexe ale subgrafului lui G obținut prin eliminarea nodurilor din S.

Demonstrație:

- fie $G_1=(X_1,U_1),G_2=(X_2,U_2),...,G_p=(X_p,U_p)$ componentele conexe ale subgrafului G-S
- fie $C=(x_1,...,x_n,x_1)$ ciclu hamiltonian cu $x_1\in X_1$
- se notează y_i ultimul nod din ciclul C care este în componenta G_i și z_i nodul imediat următor lui y_i în $C \Rightarrow z_i \notin G_i \Rightarrow z_i \in S$ (altfel (y_i, z_i) muchie în $G S \Rightarrow z_i \in G_i$)
- deci pentru fiecare componentă G_i a lui G-S există un element $z_i \in S$ definit ca mai sus și $z_i \neq z_i$, $i \neq j \Rightarrow p(G-S) \leq |S|$.

Să se demonstreze că graful Herschel nu este hamiltonian.

- pentru S= mulțimea nodurilor rotunde $\Rightarrow p(G-S)=6>5=|S|$.

Definiție

Un graf simplu G se numește **non-hamiltonian maximal** dacă nu este hamiltonian, dar prin adăugarea unei muchii între oricare două noduri neadiacente devine hamiltonian.

- graf non hamiltonian maximal.

Teorema lui Dirac

Dacă un graf G=(X,U) cu $n\geq 3$ noduri are gradele tuturor nodurilor $g(x)\geq \frac{n}{2},\ \forall x\in X$ atunci G este hamiltonian.

Demonstrație:

Pp. graful G nu este hamiltonian

- fie $G'=(X,U'),\ U\subseteq U'$ maximal non-hamiltonian adăugând muchii între noduri neadiacente din $G\Rightarrow G$ graf parțial al lui G'
- în G' are loc relația $g_{G'}(x) \geq \frac{n}{2}, \ \forall x \in X$
- fie $a,b\in X$ neadiacente în G' (există, altfel $G'=K_n$, deci hamiltonian) $\Rightarrow G''=(X,U'\cup\{(a,b)\})$ hamiltonian
- fie C ciclu hamiltonian în G''; C conține muchia (a,b) (altfel G' ar fi fost hamiltonian) $\Rightarrow C = (a = x_{i_1}, x_{i_2}, ..., x_{i_n} = b)$

- fie C ciclu hamiltonian în G"; C conține muchia (a,b) (altfel G' ar fi fost hamiltonian) $\Rightarrow C = (a = x_{i_1}, x_{i_2}, ..., x_{i_n} = b)$
- fie mulțimile de noduri

$$A = \{x \in C | (a, x) \in U\}, card(A) = g(a)$$

$$B = \{x \in C | (b, x) \in U\}, \ card(B) = g(b)$$

- evident $b \notin B$, $b \notin A \Rightarrow card(A \cup B) < n$
- vom demonstra că $A \cap B = \emptyset$
- dacă $\exists x_{i_k} \in A \cap B \Rightarrow C' = (a, x_{i_{k+1}}, x_{i_{k+2}}, ..., x_{i_n}, x_{i_k}, ..., x_{i_2}, a)$ ciclu hamiltonian în G' contradicție
- atunci $card(A \cup B) = card(A) + card(B) card(A \cap B) =$ $card(A) + card(B) \Rightarrow g(a) + g(b) = card(A \cup B) < n$, contradicție cu $g(a), g(b) \ge \frac{n}{2}$

Teorema lui Ore

Fie un graf G=(X,U) cu n noduri și fie a și b două noduri neadiacente în G astfel încât $g(a)+g(b)\geq n$. Graful G este hamiltonian dacă și numai dacă $G'=(X,U\cup\{(a,b)\})$ este hamiltonian.

Demonstrație (Bondy):

- fie G, |X|=n și $a,b\in X$ neadiacente cu $g(a)+g(b)\geq n$
- " G hamiltonian \Rightarrow G' hamiltonian
- fie C ciclu hamiltonian în G
- fie $G' = (X, U \cup \{(a, b)\})$
- C ciclu hamiltonian și în $G' \Rightarrow G'$ hamiltonian

- "G' hamiltonian $\Rightarrow G$ hamiltonian"
- G' Hamiltonian $\Rightarrow \exists C$ ciclu hamiltonian în G'
- pp. G nu hamiltonian $\Rightarrow C$ conține muchia $(a,b) \Rightarrow$ în G există lanț hamiltonian între a și b
- fie $K_n=(X,U_{max})$ în care muchiile din U sunt colorate albastru, iar cele din $U_{max}\setminus U$ sunt roșii
- fie \mathcal{C}_K ciclu hamiltonian în \mathcal{K}_n cu cât mai multe muchii albastre posibil
- dem. că toate muchiile ciclului \mathcal{C}_K sunt albastre, deci ciclul \mathcal{C}_K este hamiltonian în G

- presupunem că C_K conține muchia roșie (a,a^-) și fie $S=\{x\in X,\; (a,x)\in U\}$ mulțimea nodurilor adiacente cu a în G
- toate muchiile $(a, x), x \in S$ sunt albastre
- vecinul a^- al lui a în C_K are o muchie albastră (a^-, c^-) cu c^- succesor al unui nod din $S, c^- \in \Gamma S$; altfel, dacă a^- ar fi adiacent în C_K numai cu noduri din $X \setminus (\Gamma S \cup \{u^-\})$ am avea că

$$g_G(a) + g_G(a^-) \le |S| + (|X| - |S| - 1) = n - 1 < n,$$

contradicție cu ipoteza teoremei

- atunci ciclul C' obținut din C_K schimbând muchia (a,a^-) cu (c,c^-) are mai multe muchii albastre decât C_K , contradicție cu faptul că C_K are număr maxim de muchii albastre.

Definiție

Se numește **închidere a grafului** G, graful c(G) = (X, V) (closure of G) obținut prin adăugarea succesivă de muchii (x,y) între noduri neadiacente din graful G astfel: dacă există nodurile neadiacente x și y astfel încât $g(x) + g(y) \ge n$ atunci se adaugă muchia (x,y); procedeul se repetă până când nu se mai pot adăuga astfel de muchii.

Exemplu:

- muchiile se adaugă în ordinea: (2,6);

- muchiile se adaugă în ordinea: (2,6), (1,6);

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4)

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4), (2,5)

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4), (2,5), (1,4)

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4), (2,5), (1,4), (1,5)

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4), (2,5), (1,4), (1,5), (1,3)

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4), (2,5), (1,4), (1,5), (1,3), (3,4)

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4), (2,5), (1,4), (1,5), (1,3), (3,4), (3,5)

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4), (2,5), (1,4), (1,5), (1,3), (3,4), (3,5), (3,7)

- muchiile se adaugă în ordinea: (2,6), (1,6), (2,4), (2,5), (1,4), (1,5), (1,3), (3,4), (3,5), (3,7), (5,7) $c(G)=K_7$

Lemă

Pentru un graf G, închiderea c(G) este unică, adică nu depinde de ordinea de alegere a perechilor de noduri între care se adaugă muchii.

Demonstratie:

Pp. că există două grafuri închidere, $G_1=(X,V_1)$ respectiv $G_2=(X,V_2)$

- fie $e_1, e_2, ..., e_p \in V_1 \setminus U$, $f_1, f_2, ..., f_q \in V_2 \setminus U$ secvențele de muchii selectate pentru cele două grafuri
- dem. că $e_i \in V_1 \Rightarrow e_i \in V_2$ și $f_i \in V_2 \Rightarrow f_1 \in G_1$
- pp. \exists $e_k=(a,b)\in V_1$ și $e_k\notin V_2$ prima în V_1 cu această proprietate $\Rightarrow e_1,...,e_{k-1}\in V_2$
- fie $H_1 = (X, U \cup \{e_1, e_2, ..., e_{k-1}\}) \Rightarrow g_{G_1}(a) + g_{G_1}(b) \ge n$
- H_1 este subgraf al lui $G_2 \Rightarrow g_{G_2}(a) \geq g_H(a), \ g_{G_2}(b) \geq g_H(b) \Rightarrow$

$$g_{G_2}(a)+g_{G_2}(b)\geq g_H(a)+g_H(b)\geq n\Rightarrow e_k\in V_2$$

- deci $\{e_1,e_2,...,e_p\}=\{f_1,f_2,...,f_q\} \Longleftrightarrow V_1=V_2 \Longleftrightarrow G_1=G_2$.

Teorema Bondy-Chvatal

Fie G un graf cu $n \ge 3$ noduri. Atunci G este hamiltonian dacă și numai dacă c(G) este hamiltonian.

Demonstrație:

- G este graf parțial al lui c(G), dacă G este hamiltonian, atunci și c(G) este hamiltonian
- c(G) graf hamiltonian și fie $G, G_1, G_2, ..., G_{k-1}, G_k = c(G)$ secvența prin care se obține graful închidere c(G)
- $c(G) = G_k$ se obtine din G_{k-1} prin adăugarea unei muchii (a,b) între noduri neadiacente în G_{k-1} cu $g(a) + g(b) \ge n \Rightarrow G_{k-1}$ e hamiltonian
- analog G_{k-2} e hamiltonian ş.a.m.d. G este amiltonian

Consecință

Fie G=(X,U) un graf cu $|X|=n\geq 3$ noduri. Dacă graful închidere c(G) este complet atunci graful G este hamiltonian.

Teoremă

Într-un graf complet K_n cu $n \ge 3$ impar, există $\frac{n-1}{2}$ cicluri hamiltoniene disjuncte.

Demonstrație:

- un graf complet G cu n noduri are $\frac{n(n-1)}{2}$ muchii
- un ciclu hamiltonian conține n muchii
- numărul de cicluri disjuncte nu poate depăși $\frac{n-1}{2}$.
- următorul graf parțial K_n este ciclu hamiltonian.

- dacă considerăm nodurile fixate pe un cerc și rotim poligonul în sensul acelor de ceasornic cu $\frac{360}{n-1}, 2 \cdot \frac{360}{n-1}, \ldots, \frac{n-3}{2} \cdot \frac{360}{n-1}$ grade se obține de fiecare dată un ciclu hamiltonian care nu are nici o muchie comună cu cele dinaintea lui
- există $\frac{n-3}{2}$ cicluri hamiltoniene noi, disjuncte oricare două și disjuncte de cel din figura \Rightarrow există $\frac{n-1}{2}$ cicluri Hamiltoniene disjuncte

Teoremă

Fie un graf G=(X,U) cu gradele nodurilor $d_1 \leq d_2 \leq d_3 \leq ... \leq d_n$. Dacă oricare dintre următoarele releții are loc atunci graful este hamiltonian:

- a) $d_k \geq \frac{n}{2}, \ \forall \ k = \overline{1,n}$ (Dirac)
- b) $d(x) + d(y) \ge \frac{n}{2}$, $\forall x, y \in X$ cu $(x, y) \notin U$ (Ore)
- c) $d_k > k$ pentru $1 \le k \le \frac{n}{2}$ (Posa)
- d) $d_j + d_k \ge n$ pentru orice j < k cu $d_j \le j, \ d_k \le k-1$ (Bondy)
- e) $d_{n-k} \ge n-k, \ \forall \ d_k \le k < \frac{n}{2}$ (Chvatal)
- f) pentru orice $i, j \in \{1, 2, ..., n\}$ cu $i + j \ge n$ cu $(x_i, x_j) \notin U$ și $d(x_i) \le i, d(x_j) \le j 1$ are loc $d(x_i) + d(x_j) \ge n$ (Las Vergnas)
- g) c(G) este graf complet (Chvatal, Bondy).