AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-6. (Canceled)

7. (Currently Amended) A method of inhibiting collagenase/MMP activities in a mammal comprising administering to the mammal in need thereof an effective amount of one or more compounds of claim 1 polycyclic (pyrimidine-2,4(1H, 3H)-diones) with functionalized alkyl groups in the 1-, 3-, or both positions with the general structures Ia and Ib,

where:

R¹ is hydrogen, methyl, or ethyl;

R² is hydrogen or methyl;

R³ is mercapto or hydroxyaminoacylalkylthio (-SAlkCONHOH);

Alk is C₁-C₅ branched or unbranched alkyl;

R⁴ is hydrogen, benzyl, or phenyl;

n is 0, 1 or 2;

Alk* is C₂-C₁₂ branched or unbranched alkylene, with the exception of 3methylpropylene [-CH₂-CH₂-CH(CH₃)-];

X is mercapto or hydroxyaminoacylalkylthio (-SAlkCONHOH);

A is an annealed benzene ring or a 2,3-annealed thiophene ring,

wherein the 4,5-positions are optionally substituted with methyl groups
or are optionally annealed with a cyclopentene, cyclohexene, or
cycloheptene ring,

R⁵ is hydrogen, 6-methyl, 8-methyl, 6-fluoro, 6-choloro, 6-bromo, 6-methylthio, or 6,7-dimethoxy,

as well as the tautomers and pharmacologically relevant salts of these compounds.

8. (Currently Amended) A method of inhibiting tumor metastasis and invasion in a mammal comprising administering to the mammal in need thereof an effective amount of one or more eompounds of claim 1 polycyclic (pyrimidine-2,4(1H, 3H)-diones) with functionalized alkyl groups in the 1-, 3-, or both positions with the general structures Ia and Ib,

where:

 R^1 is hydrogen, methyl, or ethyl;

R² is hydrogen or methyl;

R³ is mercapto or hydroxyaminoacylalkylthio (-SAlkCONHOH);

Alk is C₁-C₅ branched or unbranched alkyl;

R⁴ is hydrogen, benzyl, or phenyl;

n is 0, 1 or 2;

Alk* is C₂-C₁₂ branched or unbranched alkylene, with the exception of 3methylpropylene [-CH₂-CH₂-CH_{(CH₃)-];}

X is mercapto or hydroxyaminoacylalkylthio (-SAlkCONHOH);

A is an annealed benzene ring or a 2,3-annealed thiophene ring,

wherein the 4,5-positions are optionally substituted with methyl groups

or are optionally annealed with a cyclopentene, cyclohexene, or

cycloheptene ring,

R⁵ is hydrogen, 6-methyl, 8-methyl, 6-fluoro, 6-choloro, 6-bromo, 6-methylthio, or 6,7-dimethoxy,

as well as the tautomers and pharmacologically relevant salts of these compounds.

9. (Currently Amended) A method of treating UV-induced erythema in a mammal comprising administering to the mammal in need thereof an effective amount of one or more compounds of claim 1 polycyclic (pyrimidine-2,4(1H, 3H)-diones) with functionalized alkyl groups in the 1-, 3-, or both positions with the general structures Ia and Ib,

where:

R¹ is hydrogen, methyl, or ethyl;

 R^2 is hydrogen or methyl;

R³ is mercapto or hydroxyaminoacylalkylthio (-SAlkCONHOH);

Alk is C₁-C₅ branched or unbranched alkyl;

R⁴ is hydrogen, benzyl, or phenyl;

n is 0, 1 or 2;

Alk* is C₂-C₁₂ branched or unbranched alkylene, with the exception of 3methylpropylene [-CH₂-CH₂-CH(CH₃)-];

X is mercapto or hydroxyaminoacylalkylthio (-SAlkCONHOH);

A is an annealed benzene ring or a 2,3-annealed thiophene ring,

wherein the 4,5-positions are optionally substituted with methyl groups
or are optionally annealed with a cyclopentene, cyclohexene, or
cycloheptene ring,

R⁵ is hydrogen, 6-methyl, 8-methyl, 6-fluoro, 6-choloro, 6-bromo, 6-methylthio, or 6,7-dimethoxy,

as well as the tautomers and pharmacologically relevant salts of these compounds.

10. (Currently Amended) A method of treating rheumatic <u>diseases</u> diseases in a mammal comprising administration to the mammal in need thereof an effective amount of one or more compounds of claim 1 polycyclic (pyrimidine-2,4(1H, 3H)-diones) with functionalized alkyl groups in the 1-, 3-, or both positions of the general structures Ia and Ib,

$$R_1$$
 R_2
 R_1
 C
 R_3
 C
 C
 R_3
 C
 C
 R_4
 R_4
 R_5
 R_4
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_6
 R_6
 R_6
 R_8
 R_8

where:

R¹ is hydrogen, methyl, or ethyl;

 R^2 is hydrogen or methyl;

R³ is mercapto or hydroxyaminoacylalkylthio (-SAlkCONHOH);

Alk is C₁-C₅ branched or unbranched alkyl;

R⁴ is hydrogen, benzyl, or phenyl;

n is 0, 1 or 2;

Alk* is C₂-C₁₂ branched or unbranched alkylene, with the exception of 3methylpropylene [-CH₂-CH_{(CH₃)-];}

X is mercapto or hydroxyaminoacylalkylthio (-SAlkCONHOH);

A is an annealed benzene ring or a 2,3-annealed thiophene ring,

wherein the 4,5-positions are optionally substituted with methyl groups
or are optionally annealed with a cyclopentene, cyclohexene, or
cycloheptene ring,

R⁵ is hydrogen, 6-methyl, 8-methyl, 6-fluoro, 6-choloro, 6-bromo, 6-methylthio, or 6,7-dimethoxy,

as well as the tautomers and pharmacologically relevant salts of these compounds.

11. (New) The method of claim 7, wherein the one or more polycyclic (pyrimidine-2,4(1H, 3H)-diones) are compounds of the general structures IIa and IIb

where

R¹, R², R³, R⁴, R⁵, Alk, Alk*, n, and X are defined as in claim 7, including their tautomers and pharmacologically relevant salts.

12. (New) The method of claim 8, wherein the one or more polycyclic (pyrimidine-2,4(1H, 3H)-diones) are compounds of the general structures IIa and IIb

$$R_1$$
 R_2
 $CH_2)_n$
 R_5
 R_4
 R_5
 R_4
 R_5
 R_5
 R_4
 R_5
 R_5
 R_6
 R_6
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

where

R¹, R², R³, R⁴, R⁵, Alk, Alk*, n, and X are defined as in claim 8, including their tautomers and pharmacologically relevant salts.

13. (New) The method of claim 9, wherein the one or more polycyclic (pyrimidine-2,4(1H, 3H)-diones) are compounds of the general structures IIa and IIb

$$R_1$$
 C
 R_3
 C
 C
 C
 R_3
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_5

where

R¹, R², R³, R⁴, R⁵, Alk, Alk*, n, and X are defined as in claim 9, including their tautomers and pharmacologically relevant salts.

14. (New) The method of claim 10, wherein the one or more polycyclic (pyrimidine-2,4(1H, 3H)-diones) are compounds of the general structures IIa and IIb

where

R¹, R², R³, R⁴, R⁵, Alk, Alk*, n, and X are defined as in claim 10, including their tautomers and pharmacologically relevant salts.