§ 10-6 相互垂直的简谐振动的合成

两个同频率的相互垂直的分运动位移表达式

$$x = A_1 \cos(\omega t + \phi_{10})$$
$$y = A_2 \cos(\omega t + \phi_{20})$$

消时间参数,得

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - 2\frac{x}{A_1}\frac{y}{A_2}\cos(\phi_{20} - \phi_{10}) = \sin^2(\phi_{20} - \phi_{10})$$

合运动一般是在 $2A_1$ 向)、 $2A_2$ 向)范围内的一个椭圆。

椭圆的性质(方位、长短轴、左右旋)在 A_1 A_2 确定之后,主要决定于 $\Delta \phi = \phi_{20} - \phi_{10}$

几种特殊情况:

(1) $\phi_{20} - \phi_{10} = 0$, 两个分振动同相位,得 $y = \frac{A_2}{A_1}x$ 在任一时刻离开坐标原点位移为:

$$s = \sqrt{A_1^2 + A_2^2} \cos(\omega t + \phi)$$

(2) $\phi_{20} - \phi_{10} = \pi$, 两个分运动反相位,得

$$y = -\frac{A_2}{A_1} x$$

几种特殊情况:

(3)
$$\phi_{20} - \phi_{10} = \pi/2$$
, $\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} = 1$

这是坐标轴为主轴的椭圆,质点 的轨迹是顺时针旋转。

(4)
$$\phi_{20} - \phi_{10} = 3\pi/2$$
, $\pi/2$, $\pi/2$ $\pi/2$

与(3)相同,只是质点的轨迹沿逆时针旋转。

几种特殊情况:

$$\Delta \phi = 0$$

$$\Delta \phi = \pi/4$$

$$\Delta \phi = \pi/2$$

$$\Delta \phi = 3\pi/4$$

$$\Delta \phi = \pi$$

$$\Delta \phi = 5\pi/4$$

$$\Delta \phi = 3\pi/2$$

$$\Delta \phi = 3\pi/2$$
 $\Delta \phi = 7\pi/4$

$$\Delta \phi = \phi_{20} - \phi_{10}$$

$$\Delta \phi = \pi/4$$

$$\Delta \phi = 7\pi/4$$

方向垂直的不同频率的简谐振动的合成

• 两分振动频率相差很小

$$\Delta \phi = (\omega_2 - \omega_1)t$$

可看作两频率相等而 $\Delta \phi$ 随t 缓慢变化,合运动轨迹将按上页图依次缓慢变化

两振动的频率成整数比轨迹称为李萨如图形

$$\omega_x : \omega_y = 3 : 2$$

 $\phi_{20} = \pi/4, \ \phi_{10} = 0$

几幅典型的利萨如图形

$$\frac{\pi}{2}$$

$$\omega_x : \omega_y = 2 : 1$$

$$\Delta \phi = \pi/2$$

$$\Delta \phi = \pi/2$$

$$\omega_x : \omega_y = 3 : 2$$

$$\Delta \phi = \pi/4$$

$$\omega_x : \omega_y = 3:1$$

$$\Delta \phi = \pi/2$$

$$\Delta \phi = \pi/2$$