

Purpose of the Project

Goal: Making beer suggestions

Why: Discover new refreshing drinks that the user should like.

How: Based on a **similarity network**.

User provides a reference (model) of a beer.

Dataset

Data comes from **BreweryDB.com**

BreweryDB gets their data from individuals. Everyone can upload beers data on their website, but administrators validate the information to insure the accurateness of the data.

Data Collection & Cleaning

BreweryDB provides an **API**.

We had to outcome problems of **special characters** in strings and **missing fields.**

Beer characteristics

Typically, beers are characterized by:

• IBU: metric of bitterness

ABV: alcohol by volume

SRM: color metric [1-40]

We can add also where the beer is made:

- Latitude of the brewery
- Longitude of the brewery

SRM values

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

Data cleaning

Otherwise we discarded the beers for which we didn't have neither the values or the style.

~16′500 ----- ~15′400

Visualization of the Dataset

Breweries Location mostly in:

- USA
- EUROPE (UK, Belgium, Germany)

Distances Computation

$$Feature =$$

For the **Features**, we use an euclidean distance.
$$Feature = \begin{bmatrix} abv_1 & ibu_1 & srm_1 \\ abv_2 & ibu_2 & srm_2 \\ \vdots & \vdots & \vdots \\ abv_N & ibu_N & srm_N \end{bmatrix} \cdot \begin{bmatrix} w_{abv} & 0 & 0 \\ 0 & w_{ibu} & 0 \\ 0 & 0 & w_{srm} \end{bmatrix}$$

$$\begin{bmatrix}
w_{abv} & 0 & 0 \\
0 & w_{ibu} & 0 \\
0 & 0 & w_{srm}
\end{bmatrix}$$

$$Distance F = \begin{bmatrix} 0 & d(1,2) & \dots & d(1,N) \\ d(2,1) & 0 & \dots & d(2,N) \\ \vdots & \vdots & \vdots & \vdots \\ d(N,1) & d(N,2) & \dots & 0 \end{bmatrix}$$

Weights that can be tuned if the user is more sensitive to one feature than another.

$$d(b_1, b_2) = ||b_1 - b_2||_2 = \sqrt{(b_1 - b_2)^T (b_1 - b_2)}$$

Distances Computation

For the **location** (lat, long) we cannot use an euclidean-like distance between vectors because the earth is spherical \rightarrow **haversine formula**

$$a = \sin^2(\Delta \phi/2) + \cos \phi_1 \cdot \cos \phi_2 \cdot \sin^2(\Delta \lambda/2)$$

$$c = 2 \cdot \text{atan2}(\sqrt{a}, \sqrt{1-a})$$

$$d = R \cdot c$$

$$\phi: \text{latitude}$$

$$\lambda: \text{longitude}$$

$$R: \text{Earth radius (6371 km)}$$

[https://www.movable-type.co.uk/scripts/latlong.html]

Distances

Finally, to regroup both distances: $d_{i,j} = \frac{d_{i,j}^{euclidean}}{\max\left(d^{euclidean}\right)} + w \frac{d_{i,j}^{haversine}}{\max\left(d^{haversine}\right)}$

Related to the location

Related to the features

Weight matrix - graph construction

In order to build the graph, we converted distances to weights with a Gaussian kernel:

$$W_{i,j} = exp\left(\frac{-d_{i,j}^2}{\sigma^2}\right)$$

Shape of a Gaussian kernel \rightarrow

Distance ponderation Comparison

Distance ponderation Comparison

	abv	ibu	srmld		abv	ibu	srmld		abv	ibu	srmld
10040	0.232558	0.071071	0.400	15541	0.250277	0.119119	0.425	15541	0.250277	0.119119	0.425
13449	0.223699	0.099099	0.425	15533	0.281285	0.029029	0.425	10040	0.232558	0.071071	0.400
14310	0.252492	0.083083	0.400	303	0.181617	0.041041	0.400	13449	0.223699	0.099099	0.425
15541	0.250277	0.119119	0.425	8988	0.208195	0.019019	0.475	15533	0.281285	0.029029	0.425
14892	0.265781	0.042543	0.425	12201	0.224585	0.101101	0.375	12201	0.224585	0.101101	0.375
0	0.241417	0.074074	0.425	0	0.241417	0.074074	0.425	0	0.241417	0.074074	0.425

$$W = 0.1$$
 $W = 1$ $W = 10$

Distance ponderation Comparison

Location Clustering

Clustering with DBSCAN:

Locations
 (longitude, latitude)

Clustering of locations with DBSCAN and Mercator projection

Features Clustering

Clustering with DBSCAN:

- Locations
 (longitude, latitude)
- Features (IBU, ABV, SRM)

First eigenvector

Clustering of features with DBSCAN and projection on the two first eigenvectors

Are Types of Beer Related to a Specific Region?

Result of the clustering by region

Results of the clustering in USA

Results of the clustering in Europe

Demo

ABV IBU SRM 6.6% 28 4

Normalized SRM (color of the beer)

- 1.0

Demo

ABV	IBU	SRM
6.6%	28	4

0	abv	ibu	srmld
14616	0.139535	0.033033	0.075
12676	0.141750	0.019019	0.075
181	0.141750	0.019019	0.075
14824	0.148394	0.019019	0.075
14120	0.150609	0.019019	0.075
15094	0.143965	0.027027	0.075
σ	0.0049	0.14	0

Demo

ABV	IBU	SRM
6.6%	28	4

ABV IBU SRM 6.8% 20 4

ABV IBU SRM 6.5% 20 4

Conclusion

- Purpose of the project
- Dataset and beers features (IBU, ABV, SRM and Location)
- Data collection/cleaning and visualization
- Distances computation/Weights matrix
- Relation analysis between the beer's type and location
- Demo → Beer Suggestion

Thank you for your attention