MATHEMATICAL NOTATIONS

Basic set notations

N	The set of natural numbers.
\mathbb{R}	The set of real numbers.
S	The size of a (finite) set <i>S</i> .
$\min S$	The smallest value found in set <i>S</i> .
max S	The largest value found in set <i>S</i> .
A	The universal quantifier, used in statements such as "for all".
3	The existential quantifier, used in statements such as "there exists".
$x \in S$	Element <i>x</i> is a member of set <i>S</i> .
$V \backslash W$	The set <i>V</i> excluding elements that are also member of <i>W</i> .
$V \subseteq W$	Denotes that the set V is a subset of W , and possibly equal to W .
$V \subset W$	Denotes that <i>V</i> is a proper subset of <i>W</i> , i.e., $V \subseteq W$ and $V \neq W$.
$V \cap W$	The intersection of the two sets <i>V</i> and <i>W</i> .
$\bigcap_{i=1}^n V_i$	The intersection of <i>n</i> sets: $V_1 \cap V_2 \cap \cdots \cap V_n$
$V \cup W$	The union of the two sets V and W .
$\bigcup_{i=1}^{n} V_i$	The union of n sets: $V_1 \cup V_2 \cup \cdots \cup V_n$
	General mathematical notations
$\lceil x \rceil$	The smallest natural number greater or equal to x .
$\lfloor x \rfloor$	The largest natural number smaller or equal to x .
n!	To be pronounced as <i>n</i> factorial: $n! \stackrel{\text{def}}{=} n \cdot (n-1)$
1	$(n-2)\cdots 1$.
$n\gg k$	The fact that n is much larger than k .

Γ	C_{constant} is a $\sum_{i=1}^{n} \sum_{j=1}^{n} C_{\text{constant}}$
\sum	Summation, such as $\sum_{i=1}^{n} x_i$, meaning $x_1 + x_2 + \cdots + x_n$
П	x_n . Multiplication, such as $\prod_{i=1}^n x_i$, meaning $x_1 \times x_2 \times x_1$
11	with pheation, such as $\Pi_{i=1}^{l}x_{i}$, meaning $x_{1} \wedge x_{2} \wedge \cdots \times x_{n}$.
$[a_1, a_2, \ldots a_n]$	The (ordered) sequence of elements a_1, a_2, \ldots, a_n .
$x \leftarrow S$	x takes the value resulting from the expression S ,
	pronounced as " x becomes S ".
$f(x) \sim \mathcal{O}(g(x))$	$f(x)$ is bounded by $g(x)$: $\exists M \forall x > x_0 : f(x) <$
) () (8(//	$M \cdot g(x) $
$f(x) \sim \Omega(g(x))$	$f(x)$ is bounded from below by $g(x)$: $\exists M \forall x > x_0$:
)() (8()	$ f(x) > M \cdot g(x) $. This also means that $g(x) \sim$
	$\mathcal{O}(f(x))$.
$f(x) \sim \Theta(g(x))$	$f(x)$ follows the same form as $g(x)$: $\exists M, M' \forall x > 0$
3 () (8 () /	$x_0: M' g(x) < f(x) < M g(x) .$
	General graph-theory notations
G = (V, E)	The undirected graph <i>G</i> with vertex set <i>V</i> and edge
	set E.
$\langle u, v \rangle$	The fact that vertex u and v are joined by an edge,
	that is, they are adjacent.
$\neg \langle u, v \rangle$	The fact that vertex u and v are not adjacent.
D = (V, A)	The directed graph D with vertex set V and arc set A .
$\langle \overrightarrow{u,v} \rangle$	The fact that vertex u and v are joined by an arc from
	u to v.
$G[V^*]$	The graph induced by the set of vertices $V^* \subseteq V(G)$.
$G[E^*]$	The graph induced by the set of edges $E^* \subseteq E(G)$.
$H\subseteq G$	H is a subgraph of G .
G-v	The graph induced by $V(G)\setminus\{v\}$.
	FI 1 1 11 F(C)\()
G-e	The graph induced by $E(G)\setminus \{e\}$.
K_n	The complete graph on $n > 0$ vertices.
	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex
K_n $K_{m,n}$	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex sets of size m and n , respectively.
K_n	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex sets of size m and n , respectively. The complement of graph G , i.e., the graph obtained
K_n $K_{m,n}$	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex sets of size m and n , respectively. The complement of graph G , i.e., the graph obtained from G by removing its edges and joining vertices
K_n $K_{m,n}$ \overline{G}	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex sets of size m and n , respectively. The complement of graph G , i.e., the graph obtained from G by removing its edges and joining vertices that were nonadjacent in G .
K_n $K_{m,n}$	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex sets of size m and n , respectively. The complement of graph G , i.e., the graph obtained from G by removing its edges and joining vertices that were nonadjacent in G . A k -connected graph with n vertices and a minimal
K_n $K_{m,n}$ \overline{G} $H_{k,n}$	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex sets of size m and n , respectively. The complement of graph G , i.e., the graph obtained from G by removing its edges and joining vertices that were nonadjacent in G . A k -connected graph with n vertices and a minimal number of edges: a Harary graph.
K_n $K_{m,n}$ \overline{G} $H_{k,n}$ $N(v)$	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex sets of size m and n , respectively. The complement of graph G , i.e., the graph obtained from G by removing its edges and joining vertices that were nonadjacent in G . A k -connected graph with n vertices and a minimal number of edges: a Harary graph. The set of neighbors of vertex v .
K_n $K_{m,n}$ \overline{G} $H_{k,n}$	The complete graph on $n > 0$ vertices. The complete bipartite graph with with two vertex sets of size m and n , respectively. The complement of graph G , i.e., the graph obtained from G by removing its edges and joining vertices that were nonadjacent in G . A k -connected graph with n vertices and a minimal number of edges: a Harary graph.

$\delta(v)$	The degree of vertex v , i.e., the number of incident
	edges.
$\delta_{in}(v)$	The indegree of vertex v , i.e., the number of incoming arcs at v .
$\delta_{out}(v)$	The outdegree of vertex v , i.e., the number of outgoing arcs from v .
$\Delta(G)$	The maximal degree of any vertex in graph G : $\max\{\delta(v) v\in V(G)\}.$
	Metrics on graphs
d(u,v)	The geodesic distance between vertex u and v . This is either a minimal-length (u, v) -path or a minimal-
$\epsilon(u)$	weight (u, v) -path The eccentricity of vertex u : the maximum distance
$\tau(G)$	of <i>u</i> to any other vertex. The network transitivity of graph <i>G</i> : the ratio between the number of triangles and triples in <i>G</i> .
$c_{\mathcal{C}}(u)$	The closeness of vertex u (in a graph G), measured as the reciproke of the total distance u has to the other vertices of G .
$c_B(u)$	The betweenness centrality of vertex <i>u</i> : the ratio of shortest paths between two vertices that go through <i>u</i> .
$c_E(u)$	The vertex centrality of <i>u</i> : the reciproke of its eccentricity.
diam(G)	The diameter of graph <i>G</i> : the length of the longest shortest path between any two vertices, i.e., the maximal eccentricity among the vertices of <i>G</i> .
rad(G)	The radius of graph <i>G</i> : the minimal eccentricity among its vertices.
C(G)	The center of graph <i>G</i> : the set of vertices for which the eccentricity is the same as the radius of <i>G</i> .
cc(v)	The clustering coefficient of vertex v .
CC(G)	The average clustering coefficient measured over all vertices of graph <i>G</i> .
$\omega(G)$	The number of components of graph <i>G</i> .
$\kappa(G) \ \lambda(G)$	The size of a minimal vertex cut of graph <i>G</i> . The size of a minimal edge cut of graph <i>G</i> .
$\chi'(G)$	The edge chromatic number of G : the minimal k for
(- N	which graph <i>G</i> is <i>k</i> -edge colorable.
$\chi(G)$	The chromatic number of <i>G</i> : the minimal <i>k</i> for which graph <i>G</i> is <i>k</i> -vertex colorable.

Probabilities

$\mathbb{P}[\delta=k]$	The probability that the degree (of an arbitrarily cho-	
	sen vertex) is equal to k .	
P[k]	An abbreviation for $\mathbb{P}[\delta = k]$.	
$\mathbb{E}[X]$	The expected value of the random variable X (often	
	corresponding to the <i>mean</i>).	
Special classes of graphs		
FD(44, 42)		
ER(n,p)	The collection of Erdös-Rényi random graphs with <i>n</i>	
	vertices and probability p that two distinct vertices	
	are joined.	
WS(n, k, p)	The collection of Watts-Strogatz random graphs with	
	<i>n</i> vertices, initial vertex degree <i>k</i> and rewiring prob-	
	ability p.	
$BA(n, n_0, m)$	The collection of Barabási-Albert random graphs	
(, 0,)	with n vertices, n_0 initial vertices and a growth of m	
	· · · · · · · · · · · · · · · · · · ·	
	edges at each step.	