『多様体上の最適化理論』第1版第3刷の正誤表(2025年10月20日)

訂正箇所	誤	正
p.46, 下から 10 行目	$\operatorname{grad}({m x}_k)$	$\operatorname{grad} f(\boldsymbol{x}_k)$
p.109, 1 行目	$\in \mathscr{O}$	(削除)
p.197, 4 行目	$\gamma\colon I\to\mathbb{R}$	$\gamma\colon I\to S^{n-1}$

p.364 の証明の最後に次の段落を追加:

最後に、 $p \in \mathcal{M}$ について $T_p\mathcal{M} = \operatorname{Ker} \operatorname{D} F(p)$ を示します。 \mathcal{M} 上の点の F による像は常に q で一定なので、 $\iota \colon \mathcal{M} \to \bar{\mathcal{M}}$ を包含写像とすると、 $0 = \operatorname{D} F|_{\mathcal{M}}(p) = \operatorname{D} (F \circ \iota)(p) = \operatorname{D} F(p) \circ \operatorname{D} \iota(p)$ が成り立ちます。よって、任意の $\xi \in T_p\mathcal{M}$ に対して $\operatorname{D} F(p)[\xi] = \operatorname{D} F(p)[\operatorname{D} \iota(p)[\xi]] = 0$ となるので、 $\xi \in \operatorname{Ker} \operatorname{D} F(p)$ です。したがって $T_p\mathcal{M} \subset \operatorname{Ker} \operatorname{D} F(p)$ であり、 $\dim T_p\mathcal{M} = m-n = \operatorname{Ker} \operatorname{D} F(p)$ であることより $T_p\mathcal{M} = \operatorname{Ker} \operatorname{D} F(p)$ が成り立ちます。

以上

『多様体上の最適化理論』第1版第2刷の正誤表(2025年10月20日)

訂正箇所	誤	Œ
p.10, 下から 5 行目	$0 < \mu_1 < \mu_2 < \dots < \mu_p$	$\mu_1 > \mu_2 > \dots > \mu_p > 0$
p.46, 下から 10 行目	$\operatorname{grad}(oldsymbol{x}_k)$	$\operatorname{grad} f(oldsymbol{x}_k)$
p.61, 8 行目	$t_k \coloneqq 1/(k+1)$	$e \coloneqq d/\ d\ _2, \ t_k \coloneqq 1/(k+1)$
p.61, 8 行目	$d\sin t_k$	$oldsymbol{e}\sin t_k$
p.61, 10 行目	d	e(3 箇所)
p.61, 11 行目	$oldsymbol{d} \in \mathcal{T}_{S^{n-1}}(oldsymbol{x})$	$oldsymbol{e} \in \mathcal{T}_{S^{n-1}}(oldsymbol{x})$ であり、 $\mathcal{T}_{S^{n-1}}(oldsymbol{x})$ が
p.01, 11 11 🖽		錐であることから $oldsymbol{d} = \ oldsymbol{d}\ _2 oldsymbol{e} \in \mathcal{T}_{S^{n-1}}(oldsymbol{x})$
p.109, 1 行目	$\in \mathscr{O}$	(削除)
p.158, 定義 5.9.5 の 3 行目	\mathcal{G} は X に滑らかに作用する	$\mathcal G$ は $ar{\mathcal M}$ に滑らかに作用する
p.172, 下から 6 行目	$\mathbb{R}^{n \times n}$	$\mathbb{R}^{p imes p}$
p.197, 4 行目	$\gamma\colon I\to\mathbb{R}$	$\gamma \colon I \to S^{n-1}$
p.212, 例 7.2.1 の 1 行目	$R_x(\boldsymbol{\eta})$	$R_{\boldsymbol{x}}(\boldsymbol{\eta})$ $(x$ をボールドに)
p.274, 9 行目	n ₂ 次元	n_2 次元多様体
p.277, 下から 5 行目	$0 < \mu_1 < \mu_2 < \dots < \mu_p$	$\mu_1 > \mu_2 > \dots > \mu_p > 0$
p.288, 下から 5 行目	$(\mathbb{R}^N)^K$	$(\mathbb{R}^n)^K$
p.290, 9 行目	$ar{ar{f}} \colon \mathbb{R}^{n imes n}$	$\bar{\bar{f}} \colon \mathbb{R}^{n \times n} \to \mathbb{R}$
p.295, 下から 2 行目	$\boldsymbol{\mu}^{\top} \boldsymbol{g}(\boldsymbol{x}) = 0$	$\boldsymbol{\mu}^{T} \boldsymbol{g}(x) = 0 (x $ のボールドを解除)

p.364 の証明の最後に次の段落を追加:

最後に、 $p \in \mathcal{M}$ について $T_p\mathcal{M} = \operatorname{Ker} \operatorname{D} F(p)$ を示します。 \mathcal{M} 上の点の F による像は常に q で一定なので、 $\iota \colon \mathcal{M} \to \bar{\mathcal{M}}$ を包含写像とすると、 $0 = \operatorname{D} F|_{\mathcal{M}}(p) = \operatorname{D} (F \circ \iota)(p) = \operatorname{D} F(p) \circ \operatorname{D} \iota(p)$ が成り立ちます。よって、任意の $\xi \in T_p\mathcal{M}$ に対して $\operatorname{D} F(p)[\xi] = \operatorname{D} F(p)[\operatorname{D} \iota(p)[\xi]] = 0$ となるので、 $\xi \in \operatorname{Ker} \operatorname{D} F(p)$ です。したがって $T_p\mathcal{M} \subset \operatorname{Ker} \operatorname{D} F(p)$ であり、 $\dim T_p\mathcal{M} = m-n = \operatorname{Ker} \operatorname{D} F(p)$ であることより $T_p\mathcal{M} = \operatorname{Ker} \operatorname{D} F(p)$ が成り立ちます。

以上

『多様体上の最適化理論』第1版第1刷の正誤表(2025年10月20日)

訂正箇所	誤	正
p.10, 下から 5 行目	$0 < \mu_1 < \mu_2 < \dots < \mu_p$	$\mu_1 > \mu_2 > \dots > \mu_p > 0$
p.39, 2 行目・3 行目	$oldsymbol{x}_{K+1}$ (3 箇所)	$oldsymbol{x}_K$
p.44, 16 行目	(2.31)	(2.32)
p.46, 下から 10 行目	$\operatorname{grad}(oldsymbol{x}_k)$	$\operatorname{grad} f(\boldsymbol{x}_k)$
p.56, 下から 2 行目	$oldsymbol{d}_k$ に対する	$oldsymbol{d}_k$ が降下方向であるとき,
p.58, 下から 5 行目	$g_i(\boldsymbol{x}) = 0$	$g_i(\boldsymbol{x}) \leq 0$
p.61, 8 行目	$t_k \coloneqq 1/(k+1)$	$e \coloneqq d/\ d\ _2, \ t_k \coloneqq 1/(k+1)$
p.61, 8 行目	$oldsymbol{d}\sin t_k$	$e\sin t_k$
p.61, 10 行目	d	e (3 箇所)
p.61, 11 行目	$oldsymbol{d} \in \mathcal{T}_{S^{n-1}}(oldsymbol{x})$	$e\in\mathcal{T}_{S^{n-1}}(x)$ であり、 $\mathcal{T}_{S^{n-1}}(x)$ が
	. , ,	錐であることから $oldsymbol{d} = \ oldsymbol{d}\ _2 oldsymbol{e} \in \mathcal{T}_{S^{n-1}}(oldsymbol{x})$
p.77, 下から 11 行目	$\mathrm{D}g_{\mathcal{A}(ar{m{x}})}[m{d}]$	$\mathrm{D}g_{\mathcal{A}(ar{oldsymbol{x}})}(ar{oldsymbol{x}})[oldsymbol{d}]$
p.109, 1 行目	$\in \mathscr{O}$	(削除)
p.134, 定義 5.3.4 の 3 行目	$(\mathcal{V};y_1,y_2,\ldots,y_n)$	$(\mathcal{V},\psi)=(\mathcal{V};y_1,y_2,\ldots,y_n)$
p.153, 5 行目	$X \in \mathbb{R}^n$	$X \in \mathbb{R}^{n \times n}$
p.158, 定義 5.9.5 の 3 行目	$\mathcal G$ は X に滑らかに作用する	${\cal G}$ は $ar{\cal M}$ に滑らかに作用する
p.172, 下から 6 行目	$\mathbb{R}^{n \times n}$	$\mathbb{R}^{p imes p}$
p.173, 脚注 4	任意の \mathcal{H}_x	$T_xar{\mathcal{M}}$ の任意の線形部分空間 H_x
p.178, 下から 7 行目	$\mathrm{grad}f(oldsymbol{x})$	$\mathrm{grad} f$
p.197, 4 行目	$\gamma\colon I\to\mathbb{R}$	$\gamma \colon I \to S^{n-1}$
p.202, 5 行目	$c \in (a, b)$	$c \in (0,1)$
p.202, 定義 6.9.1 の 4 行目	$\gamma \colon [0,1] \in \mathcal{M}$	$\gamma \colon [0,1] o \mathcal{M}$
p.212, 例 7.2.1 の 1 行目	$R_x({m{\eta}})$	$R_{m{x}}(m{\eta})$ (x をボールドに)
p.220, 下から 7 行目	M 上の	<i>⊼</i> i 上の
p.229, 下から 10 行目	x^{\star}	$oldsymbol{x}^{\star}$ (x をボールドに)
p.248, 下から 12 行目	g の最小点	η
p.249, 定理 8.1.1 の 4 行目	仮定 7.7.1 が成り立つ	仮定 $7.7.1$ が成り立つとし, f は下に有界
p.250, 下から 5 行目	$1/\sqrt{K+2}$	$1/\sqrt{K}$
p.250, 下から 4 行目	$1/\sqrt{K+1}$	$1/\sqrt{K}$
p.257, 定理 8.2.1 の 6 行目	仮定 7.7.1 が成り立つ	仮定 $7.7.1$ が成り立つとし, f は下に有界
p.260, 定理 8.2.2 の 5 行目	仮定 7.7.1 が成り立つ	仮定 $7.7.1$ が成り立つとし, f は下に有界
p.260, 下から 12 行目	0 <	0 ≤
p.260, 下から 9 行目	$\ \eta_k\ _{x_{k+1}}^2$	$\ \eta_k\ _{x_k}^2$
p.263, 定理 8.3.1 の 3 行目	ニュートン法	ステップ幅が1のニュートン法
p.270, 13 行目	$\rho' \le \rho < 1/4$	$\rho' < \rho < 1/4$
p.270, 下から 1 行目	(8.4)	(アルゴリズム 8.4)
p.271, 13 行目	$-\ Xoldsymbol{v}\ _2^2$ ε	$-\ Xoldsymbol{v}\ _2^2 \ \mathcal{O}$
p.274, 9 行目	n ₂ 次元	n_2 次元多様体
p.276, 下から 3 行目	$T_x \mathcal{M} = T_{x_1} \mathcal{M}_1 \times T_{x_2} \mathcal{M}_2$	$T_x\bar{\mathcal{M}} = T_{x_1}\bar{\mathcal{M}}_1 \times T_{x_2}\bar{\mathcal{M}}_2$

訂正箇所	誤	正
p.277, 下から 5 行目	$0 < \mu_1 < \mu_2 < \dots < \mu_p$	$\mu_1 > \mu_2 > \dots > \mu_p > 0$
p.281, 図 9.3	$\ \operatorname{grad} f(x_k)\ _2$ (グラフの縦軸)	$\ \operatorname{grad} f([X_k])\ _{[X_k]}$
p.283, 13 行目	$\nabla_{(\xi,\eta)}(U,V)$	$\nabla_{(\xi,\eta)}\mathrm{grad}f$
p.286, 6 行目・8 行目	(式番号)	(6 行目でなく 8 行目の式を (9.21) とする)
p.286, 10 行目	Т	Т
p.288, 下から 5 行目	(\mathbb{R}^K)	$(\mathbb{R}^n)^K$
p.289, 5 行目	\mathbb{R}^K	\mathbb{R}^K_{++}
p.290, 9 行目	$ar{ar{f}}\colon \mathbb{R}^{n imes n}$	$ar{ar{f}} \colon \mathbb{R}^{n imes n} o \mathbb{R}$
p.290, 8 行目・11 行目	(式番号)	(8 行目を (9.28),11 行目を (9.29) とする)
p.290, 13 行目	$(9.27) \ge (9.28)$	$(9.28) \ge (9.29)$
p.291, 下から 8 行目	w_1, w_2, w_3	$\hat{w}_1,\hat{w}_2,\hat{w}_3$
p.291, 下から 1 行目	w = [0.2 0.3 0.5]	$oldsymbol{w} = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}^ op$
p.295, 下から 2 行目	$\boldsymbol{\mu}^{\top} \boldsymbol{g}(\boldsymbol{x}) = 0$	$oldsymbol{\mu}^{ op}oldsymbol{g}(x)=0$ (x のボールドを解除)
p.298, 1 行目	\mathbb{R}^n	\mathbb{R}
p.299, 5 行目	$ar{m{x}}$	$ar{x}$ $(x$ のボールドを解除)
p.305, 脚注 4	$T_{\varphi(\bar{x})}\mathcal{U} = \mathbb{R}^r$	$T_{arphi(ar{x})}arphi(\mathcal{U})=\mathbb{R}^n$
p.312, 下から 3 行目	-2x+ (2 箇所)	-2Ax $-$
p.312, 下から 1 行目	$(I_n - \boldsymbol{x} \boldsymbol{x}^{\top}) \max \{ \boldsymbol{0}, \boldsymbol{\mu}_k - \rho_k \boldsymbol{x} \}$	$-(I_n - \boldsymbol{x} \boldsymbol{x}^{\top}) (2A\boldsymbol{x} + \max\{\boldsymbol{0}, \boldsymbol{\mu}_k - \rho_k \boldsymbol{x}\})$
p.323, 12 行目	$\sum_{i=1}^{m}$	$\sum_{i=1}^n$
p.332, 式 (A.13)	x_{j}	e_j
p.337, 下から 13 行目	$A \in \mathbb{R}$	$A \subset \mathbb{R}$
p.350, 14 行目	線形部分空間	線形部分空間全体
p.351, 2 行目	$A, B \in \mathbb{R}^n$	$A, B \in \mathbb{R}^{n \times n}$
p.362, 1 行目	$c_j(p) \frac{\partial}{\partial x_i}\Big _p$	$\left. \frac{c_j(p) \frac{\partial}{\partial x_j}}{\partial x_j} \right _p$
p.367, 9 行目	r^{2^k}	$\{r^{2^k}\}$
p.374, 1 行目	$\langle ilde{ abla}_{m{U}}m{V},m{W} angle_x$	$\langle ilde{ abla}_{m{U}} m{V}, m{W} angle_{m{x}} \; (x m{\epsilon}$ ボールドに)
p.375, 18 行目・21 行目	$D(D\Phi(x))$ (2 箇所)	$D(D\Phi(x))(0_x)$
p.377	(演習問題 7.8 の解答例)	(後述)
p.379, 下から 3 行目から p.380, 2 行目	R_{x_1} (3 箇所)	$R_{x_1}^{(1)}$
p.379, 下から 3 行目から p.380, 2 行目	R_{x_2} (3 箇所)	$R_{x_2}^{(2)}$

p.364 の証明の最後に次の段落を追加:

最後に、 $p \in \mathcal{M}$ について $T_p\mathcal{M} = \operatorname{Ker}\operatorname{D} F(p)$ を示します。 \mathcal{M} 上の点の F による像は常に q で一定なので、 $\iota \colon \mathcal{M} \to \bar{\mathcal{M}}$ を包含写像とすると、 $0 = \operatorname{D} F|_{\mathcal{M}}(p) = \operatorname{D} (F \circ \iota)(p) = \operatorname{D} F(p) \circ \operatorname{D} \iota(p)$ が成り立ちます。よって、任意の $\xi \in T_p\mathcal{M}$ に対して $\operatorname{D} F(p)[\xi] = \operatorname{D} F(p)[\operatorname{D} \iota(p)[\xi]] = 0$ となるので、 $\xi \in \operatorname{Ker}\operatorname{D} F(p)$ です。したがって $T_p\mathcal{M} \subset \operatorname{Ker}\operatorname{D} F(p)$ であり、 $\dim T_p\mathcal{M} = m-n = \operatorname{Ker}\operatorname{D} F(p)$ であることより $T_p\mathcal{M} = \operatorname{Ker}\operatorname{D} F(p)$ が成り立ちます。

演習問題 7.8 の解答例において, p.377 の 10 行目から 12 行目を以下のように訂正:

ここで、ノルムの同値性からある定数 $\gamma > 0$ が存在して、任意の $\mathbf{a} \in \mathbb{R}^n$ に対し $\|\mathbf{a}\|_{\varphi} \leq \gamma \|\mathbf{a}\|_2$ となるので、 $\mathbf{c} \coloneqq [C_i] \in \mathbb{R}^n$ に対して $\frac{\mathbf{c} \coloneqq \|\mathbf{c}\|_{\varphi}}{\mathbf{c}} C \coloneqq \gamma \|\mathbf{c}\|_2$ とおくと、 $\|\mathbf{h}\|_{\varphi} < r_0$ なる任意の \mathbf{h} に対して、 $\|\mathbf{G}(\mathbf{h}) - \mathbf{G}(\mathbf{0}) - \mathbf{D}\mathbf{G}(\mathbf{0})[\mathbf{h}]\|_{\varphi} \leq \frac{\|\|\mathbf{h}\|_{\varphi}^2 \mathbf{c}\|_{\varphi}}{\|\mathbf{h}\|_{\varphi}^2 \mathbf{c}\|_{\varphi}}$ $\gamma \|\|\mathbf{h}\|_{\varphi}^2 \mathbf{c}\|_2 = C\|\mathbf{h}\|_{\varphi}^2 = C\|\mathbf{d}\|^2$ となる.

以上