

杉数科技教学平台

第三章线性规划的对偶

第一节 对偶形式推导

郭加熠 | 助理教授

艺术品是如何做出来的?

▶ 整块石膏雕刻

► 3D 打印

生产问题与收购问题

生产问题 (原问题):

企业 A 如何安排生产计划, 实现利润最大化?

	产品类型Ⅰ	产品类型	库存容量
物料 1	5	15	480
物料 2	4	4	160
物料 3	35	20	1190
单位利润	13	23	

A 企业出让条件: 出让代价应不低于用同等数量资源由自己组织生产活动时获取的

盈利。

生产问题与收购问题

生产问题 (原问题):

▶ 企业 A 如何安排生产计划, 实现利润最大化?

收购问题 (对偶问题):

► 公司 B 如何用最小代价, 收购企业 A 的全部资源?

	产品类型	产品类型	库存容量
物料 1	5	15	480
物料 2	4	4	160
物料 3	35	20	1190
单位利润	13	23	

A 企业出让条件: 出让代价应不低于用同等数量资源由自己组织生产活动时获取的

盈利。

生产问题与收购问题建模

	产品类型I	产品类型	库存容量
物料 1	5	15	480
物料 2	4	4	160
物料 3	35	20	1190
单位利润	13	23	

生产问题: 设生产 | 型和 || 型产品分别为 x_1 和 x_2 件 收购问题: 设 y_1, y_2, y_3 为原料收购的单位定价

maximize
$$13x_1 + 23x_2$$
 minimize $480y_1 + 160y_2 + 1190y_3$ subject to $5x_1 + 15x_2 \le 480$ subject to $5y_1 + 4y_2 + 35y_3 \ge 13$ $4x_1 + 4x_2 \le 160$ $15y_1 + 4y_2 + 20y_3 \ge 23$ $35x_1 + 20x_2 \le 1190$ $y_1 \ge 0$, $y_2 \ge 0$, $y_3 \ge 0$

原问题与对偶问题

原问题(生产问题):

安排生产计划,使利润最大化

对偶问题(收购问题):

收购工厂, 盘算最小收购价格

minimize
$$480y_1 + 160y_2 + 1190y_3$$

subject to $5y_1 + 4y_2 + 35y_3 \ge 13$
 $15y_1 + 4y_2 + 20y_3 \ge 23$
 $y_1 \ge 0, \quad y_2 \ge 0, \quad y_3 \ge 0$

数学形式上,如何从原问题导出对偶问题?

从探索原问题最优值的上界和下界出发

目录

最大化问题的对偶

最小化问题的对偶

对偶形式总结与另一个视角

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

寻找原问题最优值下界

maximize
$$z = 13x_1 + 23x_2$$
 subject to $5x_1 + 15x_2 \le 480$ $4x_1 + 4x_2 \le 160$ $35x_1 + 20x_2 \le 1190$

通过可行解,探索最优值 z* 的下界:

 $x_1 > 0, x_2 > 0$

$$(x_1, x_2) = (1, 1)$$
 $\Rightarrow z^* \ge 36$
 $(x_1, x_2) = (34, 0)$ $\Rightarrow z^* \ge 442$
 $(x_1, x_2) = (0, 32)$ $\Rightarrow z^* \ge 736$
 $(x_1, x_2) = (12, 28)$ $\Rightarrow z^* \ge 800$
 $\Leftrightarrow \bot, z^* \ge 800$

寻找原问题最优值上界

maximize
$$z = 13x_1 + 23x_2$$

subject to
$$5x_1 + 15x_2 \le 480$$
 (1)

$$4x_1 + 4x_2 \le 160 \tag{2}$$

$$35x_1 + 20x_2 \le 1190 \tag{3}$$

$$x_1 \ge 0, x_2 \ge 0$$

利用约束做变换,寻找最优值 z* 的上界

考虑
$$6 \times (2)$$
, 即 $24x_1 + 24x_2 \le 960$ $\Rightarrow z^* \le 960$ 考虑 $2 \times (1) + (2)$, 即 $14x_1 + 34x_2 \le 1120$ $\Rightarrow z^* \le 1120$ 考虑 $(1) + 2 \times (2)$, 即 $13x_1 + 23x_2 \le 800$ $\Rightarrow z^* \le 800$

综上, $z^* \le 800$ 。结合下界, 所以 $z^* = 800$

寻找上界的一般思路

maximize
$$z = 13x_1 + 23x_2$$

subject to
$$5x_1 + 15x_2 \le 480$$
 (1)

$$4x_1 + 4x_2 \le 160 \tag{2}$$

$$35x_1 + 20x_2 \le 1190\tag{3}$$

$$x_1 \ge 0, x_2 \ge 0$$

利用约束做变换的一般情况: 考虑 $y_1 \times (1) + y_2 \times (2) + y_3 \times (3)$

$$(5x_1 + 15x_2)y_1 + (4x_1 + 4x_2)y_2 + (35x_1 + 20x_2)y_3 \le 480y_1 + 160y_2 + 1190y_3$$

为保持 \leq , 要求: $y_1, y_2, y_3 \geq 0$

从原问题导出对偶问题

maximize $z = 13x_1 + 23x_2$

subject to
$$5x_1 + 15x_2 \le 480$$

$$4x_1 + 4x_2 \le 160 \tag{2}$$

$$35x_1 + 20x_2 \le 1190\tag{3}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$(5x_1 + 15x_2)y_1 + (4x_1 + 4x_2)y_2 + (35x_1 + 20x_2)y_3 \le 480y_1 + 160y_2 + 1190y_3$$
$$(5y_1 + 4y_2 + 35y_3)x_1 + (15y_1 + 4y_2 + 20y_3)x_2 \le 480y_1 + 160y_2 + 1190y_3$$

minimize
$$480y_1 + 160y_2 + 1190y_3$$

subject to
$$5v_1 + 4v_2 + 35v_3 > 13$$

$$15y_1 + 4y_2 + 20y_3 \ge 23$$

$$15y_1 + 4y_2 + 20y_3 \ge 23$$

 $v_1 > 0, v_2 > 0, v_3 > 0$

(1)

两个线性规划问题

maximize
$$\boldsymbol{c}^T \boldsymbol{x}$$
 minimize $\boldsymbol{b}^T \boldsymbol{y}$ subject to $A \boldsymbol{x} \leq \boldsymbol{b}$ subject to $A^T \boldsymbol{y} \geq \boldsymbol{c}$ $\boldsymbol{x} \geq 0$ $\boldsymbol{y} \geq 0$

- ▶ 这两个线性规划互为对偶
- ▶ 如果将一个问题看作原问题,另一个问题为该问题的对偶问题
- ▶ 将 y 记做对偶变量 (对于左侧问题)

对偶形式变种:原问题包含等式约束

maximize $z = 13x_1 + 23x_2$

subject to
$$5x_1 + 15x_2 = 480$$

$$4x_1 + 4x_2 \le 160 \tag{2}$$

$$35x_1 + 20x_2 \le 1190\tag{3}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$(5x_1 + 15x_2)y_1 + (4x_1 + 4x_2)y_2 + (35x_1 + 20x_2)y_3 \le 480y_1 + 160y_2 + 1190y_3$$
$$(5y_1 + 4y_2 + 35y_3)x_1 + (15y_1 + 4y_2 + 20y_3)x_2 \le 480y_1 + 160y_2 + 1190y_3$$

minimize
$$480y_1 + 160y_2 + 1190y_3$$

subject to
$$5y_1 + 4y_2 + 35y_3 \ge 13$$

$$15y_1 + 4y_2 + 20y_3 \ge 23$$

$$y_1$$
 无约束, $y_2 > 0$, $y_3 > 0$

(1)

对偶形式变种: 原问题包含无约束变量 $z = 13x_1 + 23x_2$

subject to
$$5x_1 + 15x_2 \le 480$$

$$4x_1 + 4x_2 \le 160$$

 $35x_1 + 20x_2 \le 1190$

(2)

$$x_1$$
 无约束, $x_2 \ge 0$

$$(5x_1 + 15x_2)y_1 + (4x_1 + 4x_2)y_2 + (35x_1 + 20x_2)y_3 \le 480y_1 + 160y_2 + 1190y_3$$
$$(5y_1 + 4y_2 + 35y_3)x_1 + (15y_1 + 4y_2 + 20y_3)x_2 \le 480y_1 + 160y_2 + 1190y_3$$

minimize
$$480y_1 + 160y_2 + 1190y_3$$

subject to
$$5y_1 + 4y_2 + 35y_3 = 13$$

$$15y_1 + 4y_2 + 20y_3 \ge 23$$

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

目录

最大化问题的对偶

最小化问题的对偶

对偶形式总结与另一个视角

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

最小化问题探索

minimize
$$z = 480x_1 + 160x_2 + 1190x_3$$

subject to
$$5x_1 + 4x_2 + 35x_3 \ge 13$$
 (1)

$$15x_1 + 4x_2 + 20x_3 \ge 23 \tag{2}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

最优值上界:
$$(x_1, x_2, x_3) = (1, 2, 0)$$
 $\Rightarrow z^* \le 800$

最优值下界: 考虑
$$12 \times (1) + 28 \times (2)$$

$$\mathbb{I} 480x_1 + 160x_2 + 980x_3 \ge 800 \quad \Rightarrow z^* \ge 800$$

一般情况: 考虑
$$y_1 \times (1) + y_2 \times (2)$$

从原问题导出对偶问题

minimize $z = 480x_1 + 160x_2 + 1190x_3$

subject to
$$5x_1 + 4x_2 + 35x_3 \ge 13$$

$$15x_1 + 4x_2 + 20x_3 \ge 23 \tag{2}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$(5x_1 + 4x_2 + 35x_3)y_1 + (15x_1 + 4x_2 + 20x_3)y_2 \ge 13y_1 + 23y_2$$

$$(5y_1 + 15y_2)x_1 + (4y_1 + 4y_2)x_2 + (35y_1 + 20y_2)x_3 \ge 13y_1 + 23y_2$$

maximize
$$13y_1 + 23y_2$$

subject to
$$5y_1 + 15y_2 \le 480$$

$$4y_1 + 4y_2 \le 160$$

$$35y_1 + 20y_2 \le 1190$$

$$y_1 \ge 0, y_2 \ge 0$$

(1)

对偶形式变种:原问题包含等式约束

minimize $z = 480x_1 + 160x_2 + 1190x_3$

subject to
$$5x_1 + 4x_2 + 35x_3 = 13$$

(2)

$$15x_1 + 4x_2 + 20x_3 \ge 23$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$(5x_1 + 4x_2 + 35x_3)y_1 + (15x_1 + 4x_2 + 20x_3)y_2 \ge 13y_1 + 23y_2$$

$$(5y_1 + 15y_2)x_1 + (4y_1 + 4y_2)x_2 + (35y_1 + 20y_2)x_3 \ge 13y_1 + 23y_2$$

maximize
$$13y_1 + 23y_2$$

subject to
$$5y_1 + 15y_2 \le 480$$

$$4y_1 + 4y_2 \le 160$$

$$35y_1 + 20y_2 \le 1190$$

$$y_1$$
无约束, $y_2 \ge 0$

对偶形式变种:原问题包含无约束变量

minimize $z = 480x_1 + 160x_2 + 1190x_3$

subject to
$$5x_1 + 4x_2 + 35x_3 \ge 13$$

$$15x_1 + 4x_2 + 20x_3 \ge 23$$

 x_1 无约束, $x_2 \ge 0$, $x_3 \ge 0$

$$(5x_1 + 4x_2 + 35x_3)y_1 + (15x_1 + 4x_2 + 20x_3)y_2 \ge 13y_1 + 23y_2$$

$$(5y_1 + 15y_2)x_1 + (4y_1 + 4y_2)x_2 + (35y_1 + 20y_2)x_3 \ge 13y_1 + 23y_2$$

$$\text{maximize} \quad 13y_1 + 23y_2$$

$$\text{subject to} \quad 5y_1 + 15y_2 = 480$$

多杉数科技 Cardinal Operations

 $4v_1 + 4v_2 < 160$

 $35v_1 + 20v_2 \le 1190$

目录

最大化问题的对偶

最小化问题的对偶

对偶形式总结与另一个视角

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

对偶形式总结

	原问题			对偶问题	
minimize	$c^T x$		maximize	$\boldsymbol{b}^{T} \boldsymbol{y}$	
subject to	$a_i^T x \geq b_i$,	$i \in M_1$,	subject to	$y_i \geq 0$,	$i \in M_1$
	$\boldsymbol{a}_{i}^{T}\boldsymbol{x}\leq b_{i}$,	$i \in M_2$,		$y_i \leq 0$,	$i \in M_2$
	$\boldsymbol{a}_{i}^{T}\boldsymbol{x}=b_{i},$	$i \in M_3$,		y _i 无约束,	$i \in M_3$
	$x_j \ge 0$, $x_j \le 0$,	$j\in \mathcal{N}_1$,		$A_j^T \mathbf{y} \leq c_j$,	$j\in \textit{N}_1$
	$x_j \leq 0$,	$j\in \mathcal{N}_2$,		$A_j^T \mathbf{y} \geq c_j$,	$j\in \textit{N}_2$
	x _j 无约束,	$j\in \mathcal{N}_3$,		$A_j^T \mathbf{y} = c_j$,	$j\in \mathcal{N}_3$

- ▶ a_i^T 为 A 矩阵第 i 行, A_i 为 A 矩阵第 j 列
- ▶ 每个原问题约束对应一个对偶问题变量
- ▶ 每个原问题变量对应一个对偶问题约束
- ▶ 等式约束对应无约束变量,反之亦然

记忆技巧

原问题	minimize	maximize	对偶问题
	$\geq b_i$	≥ 0	
约束	$\leq b_i$	≤ 0	变量
	$=b_i$	无约束	
	≥ 0	$\leq c_j$	
变量	≤ 0	$\geq c_j$	约束
	无约束	$= c_j$	

- ▶ 等式约束对应无约束变量,反之亦然
- ▶ 变量的非负约束记为正常约束,变量的非正约束记为异常约束;最大化问题,将 $\leq c_j$ 记做正常约束,将 $\geq c_j$ 记做异常约束;最小化问题,将 $\geq b_i$ 记做正常约束,将 $\leq b_i$ 记做异常约束;
- ▶ 正常(异常)约束对应正常(异常)约束。

例子

考虑问题: minimize
$$x_1 + 2x_2 + 3x_3$$
 subject to $-x_1 + 3x_2 = 5$ $2x_1 - x_2 + 3x_3 \ge 6$ $x_3 \le 4$ $x_1 \ge 0$ $x_2 \le 0$ x_3 无约束 其对偶问题: maximize $5y_1 + 6y_2 + 4y_3$ subject to $-y_1 + 2y_2 \le 1$ $3y_1 - y_2 \ge 2$ $+3y_2 + y_3 = 3$ y_1 无约束 $y_2 \ge 0$ $y_3 \le 0$

定理 3.1

对偶问题的对偶问题是原问题

定理 3.2

两个等价问题(比如加入剩余变量、替换无约束变量)的对偶问题也是等价的

对偶形式推导

对

考虑标准型的线性规划:

minimize
$$c^T x$$
 subject to $Ax = b$ $x \ge 0$.

其中, $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ 。我们称之为<mark>原问题</mark>,这里先假设其最优解 \mathbf{x}^* 存在

- ▶ 我们接下来推导其对偶问题
- ▶ 对偶理论是拉格朗日乘子法的衍生

对偶形式推导(续)

▶ 引入等式约束 Ax = b 的对偶乘子 $y \in \mathbb{R}^m$,将原问题转换做如下:

minimize
$$\mathbf{c}^T \mathbf{x} + \mathbf{y}^T (\mathbf{b} - \mathbf{A}\mathbf{x})^{\oplus}$$
 subject to $\mathbf{x} \geq 0$ $\mathbf{x} \geq 0$ $\mathbf{c}^T \mathbf{x} + \mathbf{y}^T (\mathbf{b} - \mathbf{A}\mathbf{x})$

▶ 由于 g(y) 有以下特性,所以该问题为原问题的<mark>松弛问题</mark>:

$$g(\mathbf{y}) \leq \mathbf{c}^T \mathbf{x}^* + \mathbf{y}^T (\mathbf{b} - A\mathbf{x}^*) = \mathbf{c}^T \mathbf{x}^*$$

对于任意 \mathbf{y} , $\mathbf{g}(\mathbf{y})$ 都是原问题的下界

对偶形式推导(续)

▶ 我们希望寻找最紧的这样的下界:

$$\max_{\boldsymbol{y} \in \mathbb{R}^m} \operatorname{g}(\boldsymbol{y})$$

该问题就是对偶问题

之后我们将了解到:对偶理论表明,在线性规划中,对偶问题的最优值与原问题的最优值相等

▶ 现在,我们继续推导 g(y) 的具体形式:

$$g(\mathbf{y}) = \underset{\mathbf{x} \geq 0}{\text{minimize}} \quad \mathbf{c}^T \mathbf{x} + \mathbf{y}^T (\mathbf{b} - A\mathbf{x})$$
$$= \mathbf{b}^T \mathbf{y} + \underset{\mathbf{x} \geq 0}{\text{minimize}} \quad (\mathbf{c} - A^T \mathbf{y})^T \times$$

对偶形式推导(续)

▶ 注意:

minimize
$$(\boldsymbol{c} - \boldsymbol{A}^T \boldsymbol{y})^T \boldsymbol{x} = \begin{cases} 0, & \text{如果 } \boldsymbol{c} - \boldsymbol{A}^T \boldsymbol{y} \ge 0, \\ -\infty, & \text{其余情况.} \end{cases}$$

而在对偶问题中,我们希望寻找原问题最紧的下界,所以只需要考虑使 g(y) 不为 $-\infty$ 的那些 v

▶ 于是,我们得到了对偶问题的最终形式:

另一种视角:对偶形式推导

考虑标准线性规划 $(m \times n)$:

minimize_x
$$c^T x$$
 subject to $Ax = b$ $x \ge 0$

可以等价表示为:

$$\begin{aligned} & \text{minimize}_{\pmb{x}} & & \pmb{c}^{T} \pmb{x} + \max_{\pmb{y} \in \mathbb{R}^m} \pmb{y}^{T} (\pmb{b} - A \pmb{x}) \\ & \text{subject to} & & \pmb{x} \geq 0 \end{aligned}$$

- ▶ 所以此形式隐含了约束 Ax = b

▲ 另一种视角: 交换 min 与 max 顺序

$$\min_{\boldsymbol{x} \geq 0} \max_{\boldsymbol{y}} \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{y}^{\mathsf{T}} (\boldsymbol{b} - A\boldsymbol{x})$$

假设我们可以交换 max 和 min (后面会讨论其中道理),那么这个问题变成:

$$\mathsf{maximize} {\boldsymbol{y}} \quad {\boldsymbol{b}}^T {\boldsymbol{y}} + \min_{{\boldsymbol{X}} \geq 0} {\boldsymbol{x}}^T ({\boldsymbol{c}} - {\boldsymbol{A}}^T {\boldsymbol{y}})$$

其等价形式:

$$\begin{aligned} \mathsf{maximize} \boldsymbol{y} & \quad \boldsymbol{b}^T \boldsymbol{y} \\ \mathsf{subject to} & \quad A^T \boldsymbol{y} \leq \boldsymbol{c} \\ \\ \min_{\boldsymbol{x} \geq 0} \boldsymbol{x}^T (\boldsymbol{c} - A^T \boldsymbol{y}) = \left\{ \begin{array}{ll} 0 & \text{if } A^T \boldsymbol{y} \leq \boldsymbol{c} \\ -\infty & \text{if } A^T \boldsymbol{y} \not\leq \boldsymbol{c} \end{array} \right. \end{aligned}$$

对偶理论总结

- ▶ 在线性优化中,对偶理论是非常重要的(对一般优化问题也是)
- ▶ 对偶问题保留了原问题全部的有用信息
- ▶ 辅助求解线性规划问题

本课时:对偶形式推导

后续课程:对偶问题的好性质,大量实际应用

感谢聆听!

Thank You!

