

ROBERT L. McDONALD

Chapter 11 (Chapter 13 in the textbook)

Market-Making and Delta-Hedging

Points to Note

- 1. The delta-gamma approximation of the option price. See P.10 – 11.
- 2. How does the delta-hedging work? See P.12 19.
- 3. The relationship between the delta hedging and the Greek letters. See P.18 24.
- 4. The definition of the "Greek" neutral portfolio. See P.26.
- 5. Construction of the "Greek" neutral portfolio. See P.26 31.
- 6. Determine Greek for the binomial tree. See P.32 34.

What Do Market Makers Do?

- Provide immediacy by standing ready to sell to buyers (at ask price) and to buy from sellers (at bid price).
- Generate inventory as needed by shortselling.
- Profit by charging the bid-ask spread.

What Do Market Makers Do? (cont'd)

- The position of a market-maker is the result of whatever order flow arrives from customers.
- Proprietary trading, which is conceptually distinct from market-making, is trading to express an investment strategy. Proprietary traders typically expect their positions to be profitable depending upon whether the market goes up or down.

Market-Maker Risk

- Market makers attempt to hedge in order to avoid the risk from their arbitrary positions due to customer orders.
- Market-makers can control risk by <u>delta-hedging</u>.
 The market-maker computes the option delta and takes an offsetting position in shares. We say that such a position is <u>delta-hedged</u>.
- In general a delta-hedged position is not a zerovalue position: The cost of the shares required to hedge is not the same as the cost of the options. Because of the cost difference, the market-maker must invest capital to maintain a delta-hedged position.

- Delta-hedged positions should expect to earn risk-free return.
- If a customer wishes to buy a 91-day call option, the market-maker fills this order by selling a call option. To be specific, see Table 13.1.
 - Because delta is negative, the risk of the market-maker who has written a call is that the stock price will **rise**.
 - The figure (just after Table 13.1) graphs the overnight profit of the <u>unhedged</u> written call option as a function of the stock price, against the profit of the option at expiration.

TABLE 13.1

Price and Greek information for a call option with S = \$40,

 $K = $40, \sigma = 0.30, r = 0.08$ (continuously compounded),

T - t = 91/365, and $\delta = 0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

FIGURE 13.1

Depiction of overnight and expiration profit from writing a call option on one share of stock, if the marketmaker is unhedged.

- Delta (Δ) and gamma (Γ) as measures of exposure
 - Suppose \triangle is 0.5824, when S = \$40 (Table 13.1 and Figure 13.1).
 - A \$0.75 increase in stock price would be expected to increase option price by \$0.4368 (= \$0.75 x 0.5824).
 - The actual increase in the option's value is higher: \$0.4548.
 - This discrepancy occurs because Δ increases as stock price increases. Using the smaller Δ at the lower stock price **understates** the actual change.
 - Similarly, using the original \triangle **overstates** the change in the option value as a response to a stock price decline.
 - Using Γ in addition to Δ improves the approximation of the option value change.

- Δ – Γ approximations
 - Using the Δ – Γ approximation the accuracy can be improved a lot

$$C(S_{t+h}) = C(S_t) + \varepsilon \Delta(S_t) + \frac{1}{2}\varepsilon^2 \Gamma(S_t)$$

- Example 13.1: $S: $40 \implies $40.75, C: $2.7804 \implies $3.2352, \Gamma: 0.0652$
 - Using \triangle approximation $C(\$40.75) = C(\$40) + 0.75 \times 0.5824 = \3.2172
 - Using Δ – Γ approximation $C(\$40.75) = C(\$40) + 0.75 \times 0.5824 + 0.5 \times 0.75^2 \times 0.0652 = \3.2355
 - Similarly, for a stock price decline to \$39.25, the true option price is \$2.3622. The Δ approximation gives \$2.3436, and the Δ - Γ approximation gives \$2.3619.

• Δ – Γ approximation (cont'd)

FIGURE 13.3

Delta- and delta-gamma approximations of option price. The true option price is represented by the bold line, and approximations by dashed lines.

Delta-Hedging

 Delta hedging for 2 days: (daily rebalancing and mark-tomarket):

Consider the 40-strike call option described in Table 13.1, written on 100 shares of stocks.

- Day 0: Share price = \$40, call price is \$2.7804, and Δ = 0.5824
 - Sell call written on 100 shares for \$278.04, and buy 58.24 shares $(=100\times0.5824)$.
 - Net investment: (58.24x\$40) \$278.04 = \$2051.56.
 - At 8%, overnight financing charge is \$0.45 [= \$2051.56x($e^{0.08/365}$ _1)].

- Day 1: If share price = \$40.5, call price is \$3.0621, and Δ = 0.6142
 - Overnight profit/loss:

```
Gain on 58.24 shares = 58.24 \times (\$40.50 - \$40) = \$29.12

Gain on written call option = \$278.04 - \$306.21 = -\$28.17

Interest = -(e^{0.08/365} - 1) \times \$2051.56 = -\$0.45

Overnight profit = 29.12 - 28.17 - 0.45 = \$0.50.
```

- Since delta has increased, we must buy 61.42 58.24 = 3.18 additional shares. This transaction requires an investment of \$40.5 \times 3.18 = \$128.79.
- Day 2: If share price = \$39.25, call price is \$2.3282.
 - Overnight profit/loss: -\$76.78 + \$73.39 \$0.48 = -\$3.87.

Delta hedging for several days

TABLE 13.2	Daily profit calculation over 5 days for a market-maker who delta-hedges a
	written option on 100 shares.

		Day					
	0	1	2	3	4	5	
Stock (\$)	40.00	40.50	39.25	38.75	40.00	40.00	
Call (\$)	278.04	306.21	232.82	205.46	271.04	269.27	
$100 \times delta$	58.24	61.42	53.11	49.56	58.06	58.01	
Investment (\$)	2051.58	2181.30	1851.65	1715.12	2051.35	2051.29	
Interest (\$)		-0.45	-0.48	-0.41	-0.38	-0.45	
Capital gain (\$)		0.95	-3.39	0.81	-3.62	1.77	
Daily profit (\$)		0.50	-3.87	0.40	-4.00	1.32	

- Let Δ_i denote the option delta on day i, S_i the stock price, C_i the option price, and MV_i the market value of the portfolio.
- Borrowing capacity on day *i* is $MV_i = \Delta_i S_i C_i$.
- The result of the previous example can be generalized to

Net cash flow of from day i-1 to day i

$$= \Delta_{i-1} (S_i - S_{i-1}) + (C_{i-1} - C_i) - (e^{rh} - 1) MV_{i-1}$$

$$= \Delta_i S_i - C_i - (\Delta_{i-1} S_{i-1} - C_{i-1}) - S_i (\Delta_i - \Delta_{i-1}) - (e^{rh} - 1) MV_{i-1}$$

$$= MV_i - MV_{i-1} - S_i (\Delta_i - \Delta_{i-1}) - (e^{rh} - 1) MV_{i-1}.$$

- Hence, as time passes, there are three sources of cash flow into and out of the portfolio:
 - Borrowing: Our borrowing capacity equals the market value of securities in the portfolio; hence, borrowing capacity changes as the net value of the position changes.
 - Purchase or sale of shares: We buy or sell shares as necessary to maintain delta-neutrality.
 - Interest: We pay interest on the borrowed amount.

In our last scenario, we have

$$MV_1 - MV_0 - S_1 (\Delta_1 - \Delta_0) - rhMV_0$$

= \$2181.3 - \$2051.56 - \$128.79 - \$0.45 = \$0.50

This value is equal to the overnight profit we calculated between day 0 and day 1.

- Delta hedging for several days (cont.)
 - $\ \square$ Γ : For the largest moves in the stock price, the market-maker loses money. For small moves in the stock price, the market-maker makes money. The loss for large moves results from Γ :
 - As the stock prices rises, the delta of the call increases and the (shorting) call loses money <u>faster than</u> the stock makes money.
 - As the stock price falls, the delta of the call decreases and the (shorting) call makes money more <u>slowly than</u> the fixed stock position loses money.

In effect, the market-maker becomes unhedged net long as the stock price falls and unhedged net short as the stock prices rises. The losses on days 2 and 4 are attributable to Γ .

- Delta hedging for several days (cont.)

 - ☐ Interest cost: In order to hedge, the market-maker must purchase stock. The net carrying cost is a component of the overall cost.

- ✓ The figure on the next page shows that overnight marketmaker profit on day 1 as a function of the stock price on day 1.
- ✓ The graph verifies that the delta-hedging market-maker who has written a call wants small stock price moves and can suffer substantial loss with a big move.

FIGURE 13.2

Overnight profit as a function of the stock price for a delta-hedged market-maker who has written a call.

Mathematics of Δ-Hedging

θ: Accounting for time

$$\begin{split} C(S_{t+h}, T-t-h) \\ &= C(S_t, T-t) + \varepsilon \Delta(S_t, T-t) + \frac{1}{2} \varepsilon^2 \Gamma(S_t, T-t) + h \theta(S_t, T-t) \\ \text{where } \varepsilon = S_{t+h} - S_t. \end{split}$$

TABLE 13.4

Predicted option price over a period of 1 day, assuming stock price move of \$0.75, using equation (13.6). Assumes that $\sigma = 0.3$, r = 0.08, T - t = 91 days, and $\delta = 0$, and the initial stock price is \$40.

					Option Price 1 Day Later $(h = 1 \text{ day})$	
	Starting Price	$\epsilon\Delta$	$\frac{1}{2}\epsilon^2\Gamma$	θh	Predicted	Actual
$S_{t+h} = 40.75	\$2.7804	0.4368	0.0183	-0.0173	\$3.2182	\$3.2176
$S_{t+h} = 39.25	\$2.7804	-0.4368	0.0183	-0.0173	\$2.3446	\$2.3452

Mathematics of Δ -Hedging (cont'd)

 Market-maker's profit when the stock price changes by ε over an interval h:

Mathematics of Δ -Hedging (cont'd)

- Note that Δ , Γ and θ are computed at t.
- For simplicity, the subscript "t" is omitted in the above equation.
- Since θ is negative, time decay benefits the market-maker, whereas interest and gamma work against the market-maker.

TABLE 13.6

Prices and Greeks for 40-strike call, 45-strike call, and the (gamma-neutral) portfolio resulting from selling the 40-strike call for which T-t=0.25 and buying 1.2408 45-strike calls for which T-t=0.33. By buying 17.49 shares, the market-maker can be both delta- and gamma-neutral. Assumes S=\$40, $\sigma=0.3$, r=0.08, and $\delta=0$.

	40-Strike Call	45-Strike Call	Sell 40-Strike Call, Buy 1.2408 45-Strike Calls
Price (\$)	2.7847	1.3584	-1.0993
Delta	0.5825	0.3285	-0.1749
Gamma	0.0651	0.0524	0.0000
Vega	0.0781	0.0831	0.0250
Theta	-0.0173	-0.0129	0.0013
Rho	0.0513	0.0389	-0.0031

A portfolio is said to be **delta neutral** if the delta of the portfolio is 0.

The same definition is applied to other Greeks such as gamma neutral, vega neutral, etc.

Consider the market-maker in our previous example, he would like to delta-gamma hedge his position (selling 100 40-strike call). That is, he needs to construct a **delta and gamma neutral** portfolio.

The gamma of his delta-hedged portfolio

$$-100(0.0651) = -6.51.$$

We need to find the quantity, Q, of the 45-strike call option that the market-maker must be purchased to make the portfolio to be gamma neutral:

$$-6.51 + Q \times \Gamma_{C(45)} = 0$$

$$Q = \frac{6.51}{0.0524}$$

$$= 124.24.$$

After we have made the portfolio to be gamma neutral, the delta of the portfolio will be changed. The delta of the gamma neutral portfolio becomes:

$$-100\Delta_{C(40)} + 124.24\Delta_{C(45)}$$

$$= -100(0.5825) + 124.24(0.3285)$$

$$= -17.44.$$

The quantity of the underlying stock that must be purchased, Q_S , in order to make the gamma neutral portfolio to be delta neutral again is equal to the opposite of the delta of the gamma neutral portfolio:

$$Q_S = 17.44.$$

In summary, for both delta and gamma hedging 100 units of 40-strike call we have sold, we need to

- i) buy 124.24 of the 45-strike call option **and**
- ii) buy 17.44 shares of stock.

 The following figure shows that the delta-hedged position has the problem that large moves of the stock price always cause losses. The delta-gammahedged position loses less if there is a large move down, and can make money if the stock price increases.

FIGURE 13.4

Comparison of 1-day holding period profit for deltahedged position described in Table 13.2 and deltaand gamma-hedged position described in Table 13.6.

Greeks In The Binomial Model

FIGURE 13.5

Option price and stock price trees, assuming that the stock can move up or down u or d each period.

Greeks In The Binomial Model (cont'd)

<u>Delta</u> at the initial node is computed as

$$\Delta(S,0) = e^{-\delta h} \frac{C_u - C_d}{uS - dS}$$

• *Gamma* at time *h* is computed as

$$\Gamma(S_h, h) = \frac{\Delta(uS, h) - \Delta(dS, h)}{uS - dS}$$

It is a reasonably well approximation of $\Gamma(S_0, 0)$.

Greeks In The Binomial Model (cont'd)

Define

$$\varepsilon = udS - S$$

 $\theta(S, 0)$ can be obtained as follows:

$$C(udS,2h) = C(S,0) + \varepsilon \Delta(S,0) + \frac{1}{2}\varepsilon^{2}\Gamma(S,0) + 2h\theta(S,0)$$
$$C(udS,2h) - \varepsilon \Delta(S,0) - \frac{1}{2}\varepsilon^{2}\Gamma(S,0) - C(S,0)$$
$$\theta(S,0) = \frac{C(udS,2h) - \varepsilon \Delta(S,0) - \frac{1}{2}\varepsilon^{2}\Gamma(S,0) - C(S,0)}{2}$$

$$\frac{2}{2h}$$