

Ejemplo

Si síntoma = dolor de dientes

Entonces problema= caries

Eso no es verdad para todos los pacientes

Si síntoma = dolor de dientes

Entonces problema= caries o cualquier otro

Tendría que agregarse todos los otros problemas para que la regla sea verdadera

Introducción

- En la década de los 20 J. Lukasiewicz desarrollo los principios de la lógica multivalorada cuyos valores de verdad estas comprendidos entre 0 y 1
- 1965 uno de los primeros artículos de lógica difusa Lofti Zadeh
- 1970 Primera aplicación de Lógica Difusa (LD)
- 1975 Introducción de la lógica difusa en Japon
- 1980 Verificación empírica de la LD en Europa
- 1985-1995 La LD es usada en Europa, Japon, EEUU
- 2000 Forma parte muchos sistemas de Sensor

Ejemplo

Si el problema = caries

entonces síntoma = dolor de dientes

También no es verdad

La conexión entre el dolor de dientes y caries no es una consecuencia lógica en cualquier dirección

Problemas

- Problemas en lógica tradicional
 - Las respuestas son categóricas{V, F}
 - Nuestro raciocinio usado día a día no es claramente definido

Grado de Creencia x Grado de Verdad

- Existen dominios de aplicación en los cuales lo incierto es parte inherente del problema debido a datos ausentes o imprecisos y relaciones causa y efecto no determinísticas
- Grado de creencia ⇒ Teoría de probabilidades
- Grado de verdad ⇒ Lógica Difusa

Grado de creencia

- 80 % de pacientes con dolor de dientes tienen caries
- Una probabilidad de 0.8 no significa 80 % verdad pero se tiene un grado de creencia de 80% de esa creencia
- O sea en 80% de los casos esa regla es verdadera

Lógica difusa

- Dada una sentencia
 Mario es alto y Mario tiene fiebre alta
- La lógica difusa determina el valor de verdad en función de los valores de verdad de sus componentes utilizando reglas difusas en su evaluación

Grado de verdad

La teoría de conjuntos difusos permite especificar cuan bien un objeto satisface una descripción vaga.

Dato: Mario es alto

Es verdadero dada la altura de Mario es 1.65m?

.... Mas o menos....

Observar que no hay valores inciertos, la altura de Mario es clara 1.65m el termino alto es vago,

Como interpretarlo?

Tipos de incierto y sus modelos

- Incierto estocástico
- Probabilidad de acertar a un objetivo es 80%
- Incierto léxico
 - Hombres altos, días fríos
 - Tendremos un buen año en negocios
 - La experiencia del especialista A muestra que B esta casi por ocurrir, pero el especialista C esta convencido de no es verdad

Descripciones Vagas

- Existen muchos descripciones que son vagas
 - Alto
 - Mucho
 - Poco
 - Frió
 - Caliente

Probabilidad e Incierto

- "Una persona con hepatitis presenta 60% de los casos fiebre alta 45% piel con coloración amarilla, en 30% nauseas"
- La estocástica y lógica difusa se complementan
- Muchas de las palabras y estimativas que usamos en nuestro raciocinio diario no son fácilmente definidas de forma matemática. Eso permite al hombre raciocinar en nivel abstracto

Fusificación variables lingüística • Definición de términos • Distancia (lejos, medio, cerca, cero, neg_cerca) • Angulo (p_grande, p_peq, cero, n_peq, n_grande) • Potencia (p_alta, p_media, cero, n_media, n_alta) • Definición de función de pertenencia

Defusificación

- Obtener como salida un valor numérico para cada una de las salidas del sistema a partir de conjuntos difusos
- Existen varias técnicas de defusificación
 - Método del centro de gravedad
 - Método del semifallo
 - Media ponderada

Inferencia difusa

- Implementación de las reglas Si Entonces
 - Si distancia = media y Angulo = p_pequ Entonces Potencia = p_media
 - Si distancia = media y Angulo = cero Entonces Potencia = cero
 - Si distancia = lejos y Angulo = cero Entonces Potencia = p_media
- Agregación Calculo de la parte "Si"
- Composición Calculo de la parte "Entonces"

Centro de gravedad

- Consiste en crear una función de pertenencia a un nuevo conjunto obtenido como la unión de ellos a los que pertenece parcialmente el valor de salida
- Esta puede calcularse mediante
 - μ_c = Peso regla R * μ_{ci} + Peso regla R_i * μ_{ci}

Inferencia difusa agregación

• Lógica boleana 0/1

- Lógica difusa provee extensión continua
- $\bullet \quad \text{And: } \mu_{\text{A} \,{\scriptstyle \wedge} \text{B}} \text{= } \min\{\mu_{\text{A},} \, \mu_{\text{B}}\}$
- Or: $\mu_{A\vee B}$ = min{ μ_{A, μ_B} }
- Not μ_A = 1- μ_A

#1: min{0.9; 0.8} = 0.8 #2: min{0.9; 0.2} = 0.2 #3: min{0.1; 0.2} = 0.1

Semifallo

 Consiste en calcular un promedio de los centroides de las funciones de pertenencia de los conjuntos de salida activados y son ponderados por los pesos de las reglas activadas

y = Centroide1 * μ_1 + Centroide 2* μ_2 / (μ_1 + μ_2)

Media Ponderada

- Calcular el promedio de los valores de salida que se obtendrían para cada uno de los conjuntos borrosos multiplicado por el grado de pertenencia al subconjunto
 - $\bullet \ y = y1^* \ \mu_1 + y2 \ ^*\mu_2 / \left(\mu_1 + \mu_2 \right)$

