3. Gráfkeresés

- □ A gráfkeresés olyan KR, amelynek
 - globális munkaterülete: a reprezentációs gráf startcsúcsból kiinduló már feltárt útjait tárolja (tehát egy részgráfot), és külön az egyes utak végeit, a nyílt csúcsokat
 - · kiinduló értéke: a startcsúcs,
 - terminálási feltétel: megjelenik egy célcsúcs vagy megakad az algoritmus.
 - keresés szabálya: egyik útvégi csúcs kiterjesztése
 - vezérlés stratégiája: a legkedvezőbb csúcs kiterjesztésére törekszik

3.1. Általános gráfkereső algoritmus

Jelölések:

- keresőgráf (G): a reprezentációs gráf eddig bejárt és eltárolt része
- nyílt csúcsok halmaza (NYÍLT): kiterjesztésre várakozó csúcsok, amelyeknek gyerekeit még nem vagy nem eléggé jól ismerjük
- kiterjesztett csúcsok halmaza (ZÁRT): azok a csúcsok, amelyeknek a gyerekeit már előállítottuk
- kiértékelő függvény ($f: NYÍLT \rightarrow \mathbb{R}$): kiválasztja a megfelelő nyílt csúcsot kiterjesztésre

ADAT := kezdeti érték

while - terminálási feltétel(ADAT) loop

SELECT SZ FROM alkalmazható szabályok

ADAT := SZ(ADAT)

endloop

Kezdetleges verzió

Procedure *GKO*

- 1. $G := (\{start\}, \emptyset); NYILT := \{start\}$
- 2. loop
- 3. **if** *empty*(*NYÍLT*) **then return** *nincs megoldás*
- 4. $n := min_f(NYILT)$
- 5. if cél(n) then return van megoldás
- 6. $NYILT := NYILT \{n\} \cup \Gamma(n) \pi(n)$
- 7. $G := G \cup \{(n,m) \in A \mid m \in \Gamma(n) \pi(n)\}$
- 8. endloop

end

Kritika

- □ Nem olvasható ki a megoldási út a kereső gráfból
 - Meg kell jegyezni a felfedezett utak nyomát.
- Nem garantál optimális megoldást (sőt még a megoldást sem)
 - Tároljuk el egy csúcsnál az odavezető eddig talált legjobb út költségét.
- Körökre érzékeny
 - Ha ehhez a csúcshoz egy kört tartalmazó utat találunk, akkor annak költsége drágább lesz a tárolt értéknél, hiszen δ-gráfban vagyunk.

Gráfkeresés függvényei

- \square $\pi: N \rightarrow N$ szülőre visszamutató pointer
 - $-\pi(n) = n$ csúcs már ismert szülője, $\pi(start) = nil$
 - π egy *start* gyökerű irányított feszítőfát jelöl ki *G*-ben: π -feszítőfa, π -út
 - Jó lenne ha a π -út optimális $start \rightarrow n$ G-beli utat jelölne ki: a π feszítőfa optimális lenne.

- \square $g: N \rightarrow \mathbb{R}$ költség függvény
 - $=g(n)=c^{\alpha}(start,n)$ egy már megtalált $\alpha \in \{start \rightarrow n\}$ út költsége
 - <u>Jó lenne</u> ha minden n-re a g(n) a π -út költségét mutatná, azaz π és g konzisztens lenne.

Az n csúcs akkor korrekt, ha konzisztens és optimális: $g(n) = c^{\pi}(start, n)$ és $c^{\pi}(start, n) = \min_{\alpha \in \{start \rightarrow n\} \cap G} c^{\alpha}(start, n)$ A G korrekt, ha minden csúcsa korrekt.

A korrektség fenntartása

- □ Kezdetben: $\pi(start) := nil$, g(start) := 0
- \square Az *n* csúcs kiterjesztése után minden $m \in \Gamma(n)$ csúcsra
- o 1. Ha m új csúcs

azaz *m*∉*G* akkor

$$\pi(m) := n, \ g(m) := g(n) + c(n,m)$$

$$NYILT := NYILT \cup \{m\}$$

2. Ha m régi csúcs, amelyhez olcsóbb utat találtunk

azaz
$$m \in G$$
 és $g(n)+c(n,m) < g(m)$ akkor
$$\pi(m) := n, \ g(m) := g(n)+c(n,m)$$

g(*n*) értéke ekkor csökken

3. Ha m régi csúcs, amelyhez nem találtunk olcsóbb utat

azaz
$$m \in G$$
 és $g(n)+c(n,m) \ge g(m)$ akkor *SKIP*

Mégsem marad korrekt a kereső gráf

- 1. Járjuk be és javítsuk ki a pointereiket és költségeiket!
- 2. Kerüljük el egy jó kiértékelő függvénnyel, hogy ilyen történjen!
- 3. Semmi mást ne tegyünk, csak legyen az m csúcs újra nyílt!

```
ADAT := kezdeti érték

while ¬ terminálási feltétel(ADAT) loop

SELECT SZ FROM alkalmazható szabályok

ADAT := SZ(ADAT)

Ováfkovoső algovitmus
```

endloop

gráfkereső algoritmus

```
1. G := (\{start\}, \emptyset); NYILT := \{start\}; g(start) := 0; \pi(start) := nil
```

- 2. loop
- 3. **if** *empty*(*NYÍLT*) **then return** *nincs megoldás*
- 4. $n := min_f(NYILT)$
- 5. if cél(n) then return megoldás
- 6. $NYILT := NYILT \{n\}$
- 7. **for** $\forall m \in \Gamma(n) \pi(n)$ **loop**
- 8. **if** $m \notin G$ or g(n)+c(n,m)< g(m) **then**
- 9. $\pi(m) := n; \ g(m) := g(n) + c(n,m); NYILT := NYILT \cup \{m\}$
- 10. **endloop**
- 11. $G := G \cup \{(n,m) \in A \mid m \in \Gamma(n) \pi(n)\}$
- 12. endloop

Működés és eredmény

Bebizonyítható:

- A GK δ-gráfban a működése során egy csúcsot legfeljebb véges sokszor terjeszt ki.
 (ebből következik például, hogy körökre nem érzékeny)
- □ A *GK* <u>véges</u> δ-gráfban mindig terminál.
- Ha egy <u>véges</u> δ-gráfban létezik megoldás, akkor a *GK* megoldás megtalálásával terminál.

Gráfkeresés működési grafikonja

□ Soroljuk fel a kiterjesztett csúcsokat kiterjesztésük sorrendjében (ugyanaz a csúcs többször is szerepelhet, hiszen többször is kiterjesztődhet) a kiterjesztésükkor mért f kiértékelő függvényértékükkel.

Csökkenő kiértékelő függvény

- Egy *GK* kiértékelő függvénye *csökkenő*, amennyiben a egy csúcs kiértékelő függvény értéke az algoritmus működése során nem növekszik, viszont mindig csökken, valahányszor a korábbinál olcsóbb utat találunk hozzá.
- Csökkenő kiértékelő függvény mellett a *GK* időről időre automatikusan helyreállítja a kereső gráf korrektségét, azaz a π feszítő fájának optimálisságát és konzisztenciáját.

Mikor lesz a kereső gráf korrekt csökkenő kiértékelő függvény mellett?

- □ Válasszuk ki az értékekből azt az F^i (i=1,2,...) monoton növekedő részsorozatot, amely a legelső értékkel kezdődik, majd mindig a legközelebbi nem kisebb értékkel folytatódik.
- Csökkenő kiértékelő függvény használata mellett a GK
 - kereső gráfja korrekt lesz valahányszor küszöbcsúcsot terjeszt ki
 - soha nem terjeszt ki inkorrekt csúcsot

3.2. Nevezetes gráfkereső algoritmusok

■ Most az f kiértékelő függvény megválasztása következik.

Nem-informált

Heurisztikus

□ mélységi (MGK)

□ előre tekintő (mohó, best-first)

□ szélességi (SZGK)

 \Box A, A*, A^c

egyenletes (EGK)

- \Box A**, B
- Az úgynevezett tie-breaking rule-ok (egyenlőséget feloldó szabályok) a nem-informált gráfkereséseknél is tartalmazhatnak heurisztikát.

Nevezetes nem-informált algoritmusok

Kapcsolat a visszalépéses kereséssel

Algoritmus /	Definíció	Eredmények
Mélységi gráfkeresés (MGK)	f = -g, $c(n,m) = 1$	végtelen gráfokban csak mélységi korláttal garantál megoldást
Szélességi gráfkeresés (SZGK)		optimális (legrövidebb) megoldást adja, ha van (még végtelen δ-gráfokban is) egy csúcsot legfeljebb egyszer terjeszt ki
Egyenletes gráfkeresés (EGK)	f = g	optimális (legolcsóbb) megoldást adja, ha van (még végtelen δ-gráfokban is) egy csúcsot legfeljebb egyszer terjeszt ki

Heurisztika a gráfkereséseknél

- □ Heurisztikus függvénynek nevezzük azt a $h:N \to \mathbb{R}$ függvényt, amelyik egy csúcsnál megbecsüli a csúcsból a célba vezető ("hátralévő") optimális út költségét.
- Ez egy az eddiginél szigorúbb definíciója a heurisztikának.
- □ Példák:
 - hátralevő optimális költség
 - 8-kirakó: W, P
 - 0 (zéró függvény)?

Heurisztikus függvények tulajdonságai

- Nevezetes tulajdonságok:
 - Nem-negativ: $h(n) \ge 0 \quad \forall n \in \mathbb{N}$
 - Megengedhető (admissible): $h(n) \le h^*(n)$ $\forall n \in N$
 - Monoton megszorítás: $h(n)-h(m) \le c(n,m)$ ∀ $(n,m) \in A$ (következetes)
- Megjegyzés:
 - 8-kirakó : W és P mindhárom tulajdonsággal bír.
 - -h monoton + h célban nulla ⇒ h megengedhető
 - Zéró függvény mindhárom tulajdonsággal bír.

Nevezetes heurisztikus algoritmusok

Algoritmus	Definíció	Eredmények	
Előre tekintő gráfkeresés	f = h	nincs említhető extra tulajdonsága	
A algoritmus	$f = g + h \text{ \'es } h \ge 0$	 megoldást ad, ha van megoldás (még végtelen δ-gráfban is) 	
A^* algoritmus	$f = g + h \text{ \'es } h \ge 0 \text{ \'es}$ $h \le h^*$	 optimális megoldást ad, ha van (még végtelen δ-gráfban is) optimális megoldást ad, ha van (még végtelen δ-gráfban is) 	
A ^c algoritmus	$f = g + h \text{ \'es } h \ge 0 \text{ \'es}$ $h \le h^* \text{ \'es}$		
	$h(n) - h(m) \leq c(n,m)$	• egy csúcsot legfeljebb egyszer terjeszt ki	
	egyenletes gráfkeresés: $f = g+0$		

Fekete-fehér kirakó állapot gráfja

Mélységi gráfkeresés

$$f = -g$$

Szélességi gráfkeresés

$$f = g$$

Előre tekintő gráfkeresés

$$f = I$$

A algoritmus

$$f = g + I$$

A algoritmus

$$f = g + 2*I$$

A algoritmus

$$f = g + 2*I - (1 \text{ ha van } BW_\text{vagy } BW)$$

Elemzés

A^c alg

${f f}$	Alg /	mo	G	Γ			
-g	MGK /	5	8	5			
g	SZGK [¥]	4	10	8			
1	Előre tekintő	5	8	5			
g+l	A alg 🗼	4	9	7			
g+2*I	A alg 🔍	4	8	6			
g+2*I–1(ha)	A alg	4	7	5			
$A^c alg$							

3.3. A* algoritmus hatékonysága

Hatékonyság

Memória igény

Zárt csúcsok száma termináláskor jól jellemzi a kereső gráf méretét

Futási idő

Kiterjesztések száma a zárt csúcsok számához viszonyítva

A hatékonyságot a megengedhető feladatokon vizsgáljuk, amelyeknek van megoldása és ismert egy megengedhető heurisztikája, tehát az A^* algoritmus optimális megoldást talál hozzájuk.

3.3.1. A memória igény vizsgálata

- Arr \sim az S gráfkereső algoritmus által lezárt (kiterjesztett) csúcsok halmaza
- □ Rögzítsünk egy feladatot és két, *X* és *Y* gráfkereső algoritmust Az adott feladatra nézve
 - a. az X nem rosszabb az Y-nál, ha $ZART_X \subseteq ZART_Y$
 - b. az X jobb az Y-nál, ha $ZART_X \subset ZART_Y$
- Ezek alapján összevethető
- 1. két eltérő heurisztikájú A^* algoritmus ugyanazon a feladaton, azaz a két heurisztika.
- 2. két útkereső algoritmus, például az *A** *algoritmus* és egy másik szintén optimális megoldást garantáló gráfkereső algoritmus a megengedhető problémák egy részhalmazán.

Különböző heurisztikájú A* algoritmusok memória igényének összehasonlítása

□ Az A_1 (h_1 heurisztikával) és A_2 (h_2 heurisztikával) A^* algoritmusok közül az A_2 jobban informált, mint az A_1 , ha minden $n \in N \setminus T$ csúcsra teljesül, hogy $h_1(n) \leq h_2(n)$.

$$h_1(n) < h_2(n) \le h^*(n)$$

■ Bebizonyítható, hogy a jobban informált A_2 nem rosszabb a kevésbé informált A_1 -nél, azaz $Z\acute{A}RT_{A_2} \subseteq Z\acute{A}RT_{A_1}$

Megjegyzés

- A gyakorlatban a bizonyított állításnál enyhébb feltételek mellett látványosabb különbségekkel is találkozhatunk:
 - Sokszor akkor is jóval több csúcsot terjeszt ki az A_1 , mint A_2 ($ZART_{A_2} \subset ZART_{A_1}$), ha csak a $h_1 \leq h_2$ teljesül, esetleg nem is minden csúcsra.
 - Példák:
 - 8-as tologató: $0 \le W \le P (\le F)$
 - Fekete-fehér: $I \leq M (\leq 2 \cdot I)$
- Minél jobban (közelebbről) becsli (ha lehet, alulról) a heurisztika a h*-ot, várhatóan annál kisebb lesz a memória igénye.

15-kirakó

<i>f</i> =	g+0	g+W	g+P
6 lépéses megoldás	117	7	6
13 lépéses megoldás	32389	119	13
21 lépéses megoldás	n.a.	3343	145
30 lépéses megoldás	n.a.	n.a.	1137
34 lépéses megoldás	n.a.	n.a.	3971

3.3.2. A futási idő elemzése

 \square Zárt csúcsok száma: k = |ZART|

- □ Alsókorlát: k
 - Egy monoton megszorításos heurisztika mellett egy csúcs legfeljebb csak egyszer terjesztődik ki,
 - habár ettől még a kiterjesztett csúcsok száma igen sok is lehet (lásd egyenletes keresés)
- □ Felsőkorlát: 2^{k-1}
 - lásd. Martelli példáját

Megjegyzés

- Másik heurisztikával ugyanazon a feladaton természetesen javítható a kiterjesztések száma, bár nem biztos, hogy ez minden esetben tényleges javulás lesz, hiszen másik heurisztika esetén a *k* értéke is változhat.
- □ A kiterjesztések száma ugyanis a kiterjesztett (zárt) csúcsok számához viszonyított szám
 - h_I heurisztika mellett k_I darab zárt csúcs, és 2^{k_I-1} kiterjesztés
 - $-h_2$ heurisztika mellett k_2 darab zárt csúcs, és k_2 kiterjesztés
 - Mégis lehet, hogy $2^{k_1-1} < k_2$, ha $k_1 << k_2$.

Martelli példája

A probléma oka és csillapítása

- □ Egy csúcs még akár egy árkon belül is többször kiterjesztődhet.
- □ Használjunk az árkokban egy másik, egy másodlagos (belső) kiértékelő függvényt! Bizonyítható, hogy ettől nem változik meg az egy árokban kiterjesztett csúcsok halmaza, csak a csúcsok árkon belüli kiterjesztési sorrendje lesz más, ennél fogva pedig a küszöbcsúcsok, azok sorrendje és értékei változatlanok maradnak. Ennél a belső kiértékelő függvény csak a futási időt (kiterjesztések számát) befolyásolja.

B algoritmus

- Martelli javasolta belső kiértékelő függvénynek a g költség függvényt.
- □ A *B algoritmust* az *A algoritmusból* kapjuk úgy, hogy bevezetjük az *F* aktuális küszöbértéket, majd
 - az 1. lépést kiegészítjük az F := f(s) értékadással,
 - a 4. lépést pedig helyettesítjük az
 if min_f(NYÍLT)<F

then $n := min_g(m \in NYILT \mid f(m) < F)$ else $n := min_f(NYILT); F := f(n)$

endif elágazással.

B algoritmus futási ideje

- □ A B algoritmus ugyanúgy működik, mint az A*, azzal a kivétellel, hogy egy árokhoz tartozó csúcsot csak egyszer terjeszt ki.
- □ Futási idő elemzése:
 - Legrosszabb esetben
 - minden zárt csúcs először küszöbcsúcsként terjesztődik ki. (Csökkenő kiértékelő függvény mellett egy csúcs csak egyszer, a legelső kiterjesztésekor lehet küszöb.)
 - Az *i*-dik árok legfeljebb az összes addigi *i−1* darab küszöbcsúcsot tartalmazhatja (a start csúcs nélkül).
 - Így az összes kiterjesztések száma legfeljebb $\frac{1}{2} \cdot k^2$

Heurisztika szerepe

- □ Milyen a jó heurisztika?
 - megengedhető: h(n) ≤ $h^*(n)$
 - · Bár nincs mindig szükség optimális megoldásra.
 - jól informált: $h(n) \sim h^*(n)$
 - monoton megszorítás: $h(n) h(m) \le c(n,m)$
 - Ilyenkor nem érdemes *B algoritmust* használni
- □ Változó heurisztikák:
 - $-f = g + \phi \cdot h$ ahol $\phi \sim d$
 - B' algoritmus

B' algoritmus

```
if h(n) < min_{m \in \Gamma(n)} (c(n,m) + h(m))

then h(n) := min_{m \in \Gamma(n)} (c(n,m) + h(m))

else for \forall m \in \Gamma(n)-re loop

if h(n) - h(m) > c(n,m) then h(m) := h(n) - c(n,m)

endloop
```

- A h megengedhető marad
- A h nem csökken
- A mononton megszorításos élek száma nő

Mohó A algoritmus

- □ Nincs mindig szükség az optimális megoldásra.
 - Ilyenkor a mohó A^* algoritmus is használható, amely rögtön megáll, ha célcsúcs jelenik meg a NYILT-ban.
- □ A mohó A* algoritmus csak a megoldás megtalálását garantálja. De belátható
 - Ha *h* megengedhető és $\forall t \in T$: $\forall (n,t) \in A$: $h(n)+\alpha \ge c(n,t)$, akkor a talált megoldás költsége: $g(t) \le h^*(s) + \alpha$
- ightharpoonup A mohó A^* algoritmus megengedhető heurisztika mellett akkor garantálja az optimális megoldást is,
 - ha $\forall t \in T$: $\forall (n,t) \in A$: h(n) = c(n,t) vagy
 - ha *h* monoton és $\exists \alpha \ge 0$: $\forall t \in T$: $\forall (n,t) \in A$: h(n)+ α =c(n,t)