Punto fijo

Ejemplo

```
clear all
syms c;
f=exp(-c);
xr(1)=double(subs(f,c,0));
iter(1) = 1;
imax = 10;
es=0.5;
ea(1)=100;
i = 1;
while abs(ea(i)) >= es && i < imax</pre>
    xr(i+1) = double(subs(f,c,xr(i)));
    iter(i+1) = i + 1;
    if xr ~= 0
        ea(i+1) = abs((xr(i+1)-xr(i))/xr(i+1))*100;
    i = i + 1;
end
table(iter',xr',ea','VariableNames',{'I','Xr','Ea'})
```

= 10×	3 table		
	1	Xr	Ea
1	1	1.0000	100.0000
2	2	0.3679	171.8282
3	3	0.6922	46.8536
4	4	0.5005	38.3091
5	5	0.6062	17.4468
6	6	0.5454	11.1566
7	7	0.5796	5.9034
8	8	0.5601	3.4809
9	9	0.5711	1.9308
10	10	0.5649	1.1089

Ejercicios:

1. Usar el método de iteración del punto fijo para aproximar la raíz de $f(x)=\cos x$ –x, comenzando con x_0 =0 y hasta que ε_a ≤ 1%.

```
clear all
syms c;
f=cos(c);
```

I	Хг	Ea
1	1.0000	100.0000
2	0.5403	85.0816
3	0.8576	36.9949
4	0.6543	31.0663
5	0.7935	17.5418
6	0.7014	13.1331
7	0.7640	8.1930
8	0.7221	5.7966
9	0.7504	3.7733
10	0.7314	2.5996
11	0.7442	1.7244
12	0.7356	1.1735
13	0.7414	0.7850
	1 2 3 4 5 6 7 8 9 10	1 1.0000 2 0.5403 3 0.8576 4 0.6543 5 0.7935 6 0.7014 7 0.7640 8 0.7221 9 0.7504 10 0.7314 11 0.7442 12 0.7356

2. Utilice la iteración simple de punto fijo para localizar la raíz de $f(x)=sen(\sqrt{x_i})$ –x, x_0 =0.5, e itere hasta que ε_a ≤ 0.001%. Compruebe que el proceso converge en forma lineal.

```
clear all
syms c;
f=sin(sqrt(c));
xr(1)=double(subs(f,c,0.5));
iter(1) = 1;
imax = 30;
es=0.001;
ea(1)=100;
i = 1;
```

	1	Хг	Ea
1	1	0.6496	100.0000
2	2	0.7215	9.9632
3	3	0.7509	3.9123
4	4	0.7621	1.4691
5	5	0.7662	0.5418
6	6	0.7678	0.1984
7	7	0.7683	0.0725
8	8	0.7685	0.0265
9	9	0.7686	0.0097
10	10	0.7686	0.0035
11	11	0.7686	0.0013
12	12	0.7686	0.0005