QF624-2025-W8

Number of participants: 19

In the forward pass, the preactivation result z_2^1 (i.e.\ before applying ReLU) of the hidden neuron f_2^1 is:

1 correct answer out of 11 respondents

Wooclap 12/6/25, 11:57 PM

Given $f_3=\mathrm{ReLU}ig(f_1^1w_3^1+f_1^2w_3^2ig)$, which expression equals $rac{\partial f_3}{\partial w_3^2}$? Here, $z_3=f_1^1w_3^1+f_1^2w_3^2$ and $\mathbf{1}\{\cdot\}$ is the

3 correct answers

out of 10 respondents

indicator of the ReLU's "active" region.

$f_1^1 {f 1}\{z_3>0\}$	0%	0 votes
$f_1^2{f 1}\{z_3>0\}$	30%	3 votes
$egin{aligned} (f_1^1 + \ f_1^2) 1 \{z_3 > 0\} \end{aligned}$	70%	7 votes
$1\{z_3>0\}$	0%	0 votes

12/6/25, 11:57 PM Wooclap

Suppose we replaced ReLU with a sigmoid activation in every hidden

7 correct answers out of 10 respondents

3. node. Which phenomenon becomes most severe as the network depth grows?

12/6/25, 11:57 PM Wooclap

> In vanilla gradient descent, the weight update rule for a single scalar weight \boldsymbol{w} minimizing loss

4. L(w) is $w \leftarrow w - \eta \frac{dL}{dw}$. Which of the following best describes why we subtract $\eta \frac{dL}{dw}$?

10 correct answers out of 10 respondents

To move w increases the most rapidly	e loss	0%	0 votes
To move w is direction that decreases the most rapidly	ne loss	(100%)	10 votes
To set the great to zero immediately		0%	0 votes
To ensure th		0%	0 votes

Wooclap 12/6/25, 11:57 PM

Suppose your current learning rate 5. η is too large. What behavior would you likely observe during training?

7 correct answers out of 7 respondents

	The loss decreases smoothly to the minimum.	0%	0 votes
	The loss decreases too slowly and stalls.	0%	0 votes
⊘	The loss bounces around or diverges (goes up).	100%	7 votes
	The gradient becomes zero at every step.	0%	0 votes

Wooclap 12/6/25, 11:57 PM

Sometimes we reduce η over time 6. (e.g.\ halve it every 100 steps). Why might this help?

8 correct answers out of 9 respondents

Wooclap 12/6/25, 11:57 PM

Vanilla (batch) gradient descent computes the gradient over the

×

7. entire training set before each update. Which is a direct consequence?

8 correct answers out of 8 respondents

	Every update is noisy and high-variance.	0%	0 votes
⊘	Each update exactly follows the true loss surface but can be slow per step.	100%	8 votes
	It only works for linear models.	0%	0 votes
	It always converges in one step.	0%	0 votes