

CSC6023 - Advanced Algorithms

Approximated Algorithms - Week 8

The final week - Week 8

The last week has arrived. If you worked hard, this is a happy moment. Now, we will see approximated algorithms, and the Final Exam is upon us. The course is (almost) over.

Agenda Week 8 Presentation

Approximated Algorithms

- When to settle with an approximation
 - a. The alternative to brute force to reduce cost
 - i. The travelling salesperson problem
 - b. The Real (R) world coping with infinite
 - i. Linear equation systems
 - c. Artificial Intelligence
 - i. Machine learning
 - ii. Automatic players
- Heuristics and Prune

Course Wrap-up

- The final exam
- The final grades
- The next steps in the Masters in CS

When to settle with an approximation

Why not going for the optimal solution?

- The optimal solution may be:
 - too costly
 - Only an extremely costly brute force delivers the optimal solution
 - impossible to find
 - Theoretical infinite cannot be achieved in a finite machine
 - impossible to be recognized
 - The optimal solution is unknown
 - not really necessary
 - The problem does not require precision
- In any of such cases we may settle with an approximated algorithm

Too costly

Wikipedia source

The traveling salesperson problem

- Imagine a salesperson going physically to a series of *n* cities. What is the sequence of cities to visit to have the smallest path to cover
 - The brute force solution has O(n!) complexity, any n above 20 is impractical
 - The cutting edge exact solution using Dynamic Programming has $O(n^2 2^n)$
 - For *n* in the range of thousands it is impractical to solve by a single machine in less than one day
- Heuristic solutions provide near optimal solution with much smaller cost
 - For example a Greedy algorithm (Nearest Neighbor) delivers solutions on average 25% larger than optimal with *O(n²)*

Impossible to find

Wikipedia source

Only approximated value of π can be found!

Since the very ancient times the value of π has been an important bit of knowledge in engineering endeavors (mostly building, but other applications too)

- o In 1706 William Jones, a Welsh mathematician first used the Greek letter π to refer to the ratio of a circle's circumference to its diameter
- In 1761 Johann Heinrich Lambert, a French-Swiss mathematician proved π irrational
- What is the exact value of π ?
 - o Until 1946 π digits were computed by hand (they knew only 620 digits)
 - Since 1949 programs have computed new digits
 - In March 2022 the first 100 trillion digits were computed (it took 158 days)

"Impossible" to find

$$\left\{egin{array}{l} x+3y-2z=5 \ 3x+5y+6z=7 \ 2x+4y+3z=8 \end{array}
ight.$$

$$\begin{bmatrix} 1 & 3 & -2 \\ 3 & 5 & 6 \\ 2 & 4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 8 \end{bmatrix}$$

Wikipedia source

Solution of linear equation systems

- Given a linear equation system with n variables and n equations
 - The problem can be expressed as:
 - Ax = b
 - There are exact algorithms, for example Gaussian Elimination, with O(n³) complexity
 - In a system with n = 100 it is OK, but some industrial applications and mathematical models can easily go beyond millions of variables
 - For such systems approximative algorithms can be possible and a lot faster

Impossible to recognize

Artificial Intelligence - Machine Learning

- Machine learning techniques always deliver approximated solution, as the model to be learned can never be tested on all possible situations
 - The idea behind machine learning is to recognize patterns capable of identifying new inputs, which can, like any input, be of an unpredictable nature
 - The possible inputs are by definition infinite
- Either on classification, aggregation, or regression the result of machine learning is always a best effort solution

Not really necessary

Artificial Intelligence - Automatic Players

- Imagine a mobile device game designed to entertain the user with an adversarial game, for example, checkers (see <u>references</u>)
 - A brute force solution should analyze all possible decisions and somehow weigh all possible responses of the adversary - this may represent a too high cost in time
 - An alternative is to prune the tree of possibilities, which leads to an approximation (and possibly a worse automatic player)
 - Checkers is actually a solved game (just like tic-tac-toe), but to play it perfectly it requires computation
- A mobile implementation doesn't need to be optimal and so can reduce battery consumption

Heuristics and **Prune**

MERRIMACK COLLEGE

Heuristics

- An heuristic is a way to solve a problem with an approach that may or not work optimally
 - Out of CS it may also mean a non rational solution, not for CS...
 - Frequently, "heuristic algorithms" is used as a synonym for randomized algorithms
- Heuristics can introduce bias

Prune

- Often the search for a solution follows a tree or graph's recursive search structure; in such algorithms it is common to provide approximation by stopping the recursive search before going too deep
 - This is called pruning (cutting off the branches of a tree)

Course Wrap-Up

Final Exam

The rules and recommendations

- This Tuesday, at 9 PM EST the exam will be available on Canvas;
- The exam is to be taken online within 4 hours counting as you started;
- The exam has to be submitted no later than this Saturday 11:59 PM EST;
- The format for the submission is a single pdf file that may include typed textual file, print screens, photos of handwritten answers, etc.;
- The exam has 8 questions, one related to each topic, try not to spend more than 30 minutes to each question;
- The exam is open book, open notes, but you should not search information on the Internet.

Course Wrap-Up

Final Grades

The final grades

- All grades, but the exam, should be available by Friday;
- The exam should be graded no later than next Monday;
- The final grades should be available no later than next Monday.

Activity	Percentage
Projects (7)	35%
Quizzes (7)	21%
Worksheets (7)	21%
Discussions (7)	7%
Final Exam	20%

Course Wrap-Up

Next Steps

MS in Computer Science

The Program

- After CSC 6023, you have concluded the backbone of the program
 - You are a programmer, now!
- If you haven't, you need to take DSA 5300 Data Governance and Privacy or CSC 6033 Languages, Automata and Decidability
- Other than that, now you have the advanced courses to take:
 - CSC 6301 Software Design & Documentation
 - CSC 6302 Database Principles
 - CSC 6303 Systems & Languages Survey
 - CSC 6304 Advanced Programming Concepts

That's all for this course folks!

This week's task

Next term

The Exam, good luck!

Next course

It was a privilege to be your instructor in this course

Have a Great Next Term!