MA 519: Homework 9

Max Jeter, Carlos Salinas October 27, 2016

Problem 9.1 (Handout 13, # 7)

Let X have a double exponential density $f(x) = \frac{1}{2\sigma} e^{-\frac{|x|}{\sigma}}, -\infty < x < \infty, \sigma > 0.$

- (a) Show that all moments exist for this distribution.
- (b) However, show that the MGF exists only for restricted values. Identify them and find a formula.

SOLUTION. For part (a), we show that $E(X^n) < \infty$ for all $n \in \mathbb{N}$. By direct calculation, we have

$$E(X^n) = \int_{-\infty}^{\infty} x^n f(x) dx$$

$$= \int_{-\infty}^{\infty} \frac{x^n}{2\sigma} e^{-\frac{|x|}{\sigma}} dx$$

$$= \underbrace{\int_{-\infty}^{0} \frac{x^n}{2\sigma} e^{\frac{x}{\sigma}} dx}_{I} + \underbrace{\int_{0}^{\infty} \frac{x^n}{2\sigma} e^{-\frac{x}{\sigma}} dx}_{I}.$$

To evaluate I we make the substitution $x \mapsto -y$ and use integration by parts

$$I = \int_{-\infty}^{0} \frac{x^{n}}{2\sigma} e^{\frac{x}{\sigma}}$$

$$= \int_{0}^{\infty} (-1)^{n} \frac{y^{n}}{2\sigma} e^{-\frac{y}{\sigma}}$$

$$= (-1)^{n+1} \frac{y^{n}}{2} e^{-\frac{y}{\sigma}} \Big|_{0}^{\infty} - \int_{0}^{\infty} n(-1)^{n+1} \frac{y^{n-1}}{2} e^{-\frac{y}{\sigma}} dx$$

$$= (-1)^{n+1} \frac{y^{n}}{2} e^{-\frac{y}{\sigma}} + n(-1)^{n+2} \sigma \frac{y^{n-1}}{2} e^{-\frac{y}{\sigma}} \Big|_{0}^{\infty}$$

$$+ \int_{0}^{\infty} n(n-1)(-1)^{n+2} \sigma \frac{y^{n-2}}{2} e^{-\frac{y}{\sigma}} dx$$

$$\vdots$$

$$= p(x) e^{-\frac{y}{\sigma}} \Big|_{0}^{\infty}$$

$$= p(0)$$

$$< \infty,$$

$$(9.1)$$

where p is some polynomial of degree n. One can similarly show that I = q(0) for some polynomial q of degree n. Therefore, $E(X^n) < \infty$ for all $n \in \mathbb{N}$.

For part (b),

PROBLEM 9.2 (HANDOUT 13, # 16)

Give an example of each of the following phenomena:

- (a) A continuous random variable taking values in [0,1] with equal mean and median.
- (b) A continuous random variable taking values in [0,1] with mean equal to twice the median.
- (c) A continuous random variable for which the mean does not exist.
- (d) A continuous random variable for which the mean exists, but the variance does not exist.
- (e) A continuous random variable with a PDF that is not differentiable at zero.
- (f) a positive continuous random variable for which the mode is zero, but the mean does not exist.
- (g) A continuous random variable for which all moments exist.
- (h) A continuous random variable with median equal to zero, and 25th and 75th percentiles equal to 1.
- (i) A continuous random variable X with mean equal to median equal to mode equal to zero, and $E(\sin X) = 0$.

Solution.

Problem 9.3 (Handout 13, # 17)

An exponential random variable with mean 4 is known to be larger than 6. What is the probability that it is larger than 8?

Problem 9.4 (Handout 13, # 18)

(Sum of Gammas). Suppose X, Y are independent random variables, and $X \sim G(\alpha, \lambda), Y \sim G(\beta, \lambda)$. Find the distribution of X + Y by using moment-generating functions.

Problem 9.5 (Handout 13, # 19)

(Product of Chi Squares). Suppose X_1, X_2, \dots, X_n are independent chi square variables, with $X_i \sim \chi^2_{m_i}$. Find the mean and variance of $\prod_{i=1}^n X_i$.

Problem 9.6 (Handout 13, # 20)

Let $Z \sim N(0,1)$. Find

$$P(0.5 < |Z - \frac{1}{2}| < 1.5); P(\frac{e^Z}{1 + e^Z} > \frac{3}{4}); P(\Phi(Z) < 0.5).$$

Problem 9.7 (Handout 13, # 21)

Let $Z \sim N(0,1)$. Find the density of $\frac{1}{Z}$. Is the density bounded?

SOLUTION.

MA 519: Homework 9

Problem 9.8 (Handout 13, # 22)

The 25^{th} and the 75^{th} percentile of a normally distributed random variable are -1 and 1. What is the probability that the random variable is between -2 and 2?