Project Summary: Analysis of CO₂ Concentrations and Temperature Anomalies

1. Introduction

This project analyzes the relationship between **CO**₂ **concentrations** and **global temperature anomalies** to understand the impact of emissions on climate change. It uses historical data, statistical analysis, and machine learning techniques to identify trends, correlations, and future projections based on different emission scenarios.

2. Key Findings

Statistical Analysis:

- Strong correlation (R = 0.96) between rising CO₂ levels and temperature anomalies.
- Both show consistent upward trends, reflecting global warming and increased emissions.

Seasonal Patterns:

 CO₂ levels exhibit cyclical variations, influenced by natural processes like plant growth.

Lag Analysis:

 Immediate and short-term impacts of CO₂ on temperatures were observed, while longer lags showed insignificant effects.

Clustering

Years were grouped into three climate patterns (low, moderate, and high CO₂ and temperatures), showing a progression in climate change over time.

Scenario Simulations:

- Predicted temperature anomalies based on CO₂ increases or decreases:
 - **■** +10% CO₂ → 1.09°C rise.
 - -10% CO₂ → 0.06°C drop.
 - **+20% CO**₂ → 1.66°C rise.
 - -20% CO₂ → 0.63°C drop.
- Demonstrates the potential impacts of emission growth or reductions.

3. Recommendations

- 1. **Reduce Emissions** by 10–20% through renewable energy and carbon capture technologies.
- 2. **Adaptation Measures** to handle climate-related challenges such as heatwaves and flooding.
- 3. **Enhanced Monitoring** systems and research investments to refine predictions and track changes.
- 4. **Policy Implementation** to enforce emission reductions and promote sustainable practices globally.

4. Conclusion

The study confirms a **strong relationship between CO**₂ **and global temperatures** and highlights the importance of **reducing emissions** to mitigate climate change. Simulations emphasize that emission growth could significantly **increase temperatures**, while reductions offer a **cooling effect**. Effective policies and sustainable actions are critical to **stabilizing climate conditions**.