EKSAMEN DATABLAD VIR DIE FISIESE WETENSKAPPE (CHEMIE)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Grootte van lading op elektron	е	$1,6 \times 10^{-19} \mathrm{C}$
Massa van 'n elektron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molêre gasvolume by STD	V _m	22,4 dm ³ ⋅mol ⁻¹
Standaardtemperatuur	$T^{\scriptscriptstyle{\theta}}$	273 K
Avogadro se konstante	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday se konstante	F	96 500 C·mol ⁻¹

TABEL 2 CHEMIE FORMULES

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$				
$c = \frac{n}{V}$ OF $c = \frac{n}{M}$	n V	$K_{w} = [H_{3}O^{+}] \cdot [OH^{-}] = 1 \times 10^{-14} \text{ by 298 K}$					
Q = It	E_{s}^{c}	$E_{ m sel}^{ heta}=E_{ m katode}^{ heta}-E_{ m anode}^{ heta}$ $E_{ m sel}^{ heta}=E_{ m oksideermiddel}^{ heta}-E_{ m reduseermiddel}^{ heta}$					

IEB Copyright © 2017

TABEL 3 PERIODIEKE TABEL

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1			Atoom	getal ((Z)	1 	2,1 -	Elektr	onega	ıtiwitei	t						He
2	3 1,0 Li 7	Be 9				Relat	1 iewe a	toomm	nassa				5 2,0 B 10,8 13 1,5	C	N 14	O	F 19	Ne 20
3	11 0,9 Na 23	Mg 24,3											13 1,5 Al 27	14 1,8 Si 28	15 2,1 P 31	16 2,5 S 32	17 3,0 Cl 35,5	Ar 40
4	K	20 1,0 Ca	Sc	Ti	V	24 1,6 Cr	Mn	Fe	Co	Ni	29 1,9 Cu	Zn	Ga	Ge	33 2,0 As	Se	35 2,8 Br	36 Kr
5	39 37 0,8 Rb	38 1,0 Sr	45 39 1,2 Y	48 40 1,4 Zr	51 41 1,6 Nb	52 42 1,8 Mo	55 43 1,9 Tc	56 44 2,2 Ru	59 45 2,2 Rh	59 46 2,2 Pd	63,5 47 1,9 Ag	65,4 48 1,7 Cd	70 49 1,7 In	72,6 50 1,8 Sn	75 51 1,9 Sb	79 52 2,1 Te	80 53 2,5	54 Xe
	85,5 55	88 56	89	91 72	93 73	96 74	99 75	101 76	103 77	106 78	108 79	112 80	115 81	119 82	121 83	128 84	127 85	131 86
6	Cs 133	Ba 137,3		Hf 178,5	Ta	W 184	Re 186	Os 190	Ir 192	Pt 195	Au 197	Hg 200,6	Tℓ 204,4	Pb 207	Bi 209	Po -	At -	Rn -
7	Fr	88 Ra																

ſ	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
F	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Νp	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
	AU	•••	· u		, itp	· u	/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0		•			IVIG	110	

TABEL 4 STANDAARD ELEKTRODEPOTENSIALE

	reaks	e	E°/volt
Li ⁺ + e ⁻	\rightleftharpoons	Li	-3,05
K ⁺ + e ⁻	\rightleftharpoons	K	-2,93
Cs ⁺ + e ⁻	\rightleftharpoons	Cs	-2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2,90
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87
Na ⁺ + e ⁻		Na	-2,71
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,37
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αl	-1,66
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
0 -	\rightleftharpoons	Fe	-0,44
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
Pb ²⁺ + 2e ⁻		Pb	-0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04
2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2(g)$	0,00
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H2O	+0,45
l ₂ + 2e ⁻		2l ⁻	+0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg	+0,79
$NO_3^- + 2H^+ + e^-$		$NO_2(g) + H_2O$	+0,80
$Ag^+ + e^-$		Ag	+0,80
$NO_3^- + 4H^+ + 3e^-$		$NO(g) + 2H_2O$	+0,96
Br ₂ + 2e ⁻		2Br ⁻	+1,09
Pt ²⁺ + 2e ⁻		Pt	+1,20
$MnO_2 + 4H^+ + 2e^-$		$Mn^{2+} + 2H_2O$	+1,21
$O_2 + 4H^+ + 4e^-$		2H ₂ O	+1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cl ⁻	+1,36
	\rightleftharpoons	Au	+1,42
$MnO_4^- + 8H^+ + 5e^-$			+1,51
	\rightleftharpoons	2H ₂ O	+1,77
$F_2(g) + 2e^-$	=	2F ⁻	+2,87

Toenemende reduseervermoë

Toenemende oksideervermoë