

Ablaufplanung ("Scheduling")

Ablaufplanung: Klassifikationsmerkmale

- α Produktionsprozessstruktur
- β Auftragszugang
- β Bearbeitungsprozess
- γ Zielsetzungen

Notation von Graham, Lawler, Lenstra und Rinnooy Kan

$$\alpha |\beta| \gamma$$

Ablaufplanung: Problemspezifikation

Produktionsprozessstruktur

1 eine Maschine (Single-Machine Scheduling)

Pm mehrere parallele Maschinen (Parallel-Machine Scheduling)

Fm Reihenproduktion (Flow-Shop Scheduling)

 $\mathsf{J}m$ Werkstattproduktion (Job-Shop Scheduling)

- □ general job shop
- ▷ re-entrant flow

Om Open-Shop Scheduling

Ablaufplanung: Problemspezifikation

Auftragseingang

- statisch
- dynamisch

 - ▷ stochastisch

Bearbeitungszeiten

- deterministisch
- ▶ stochastisch

Ablaufplanung: Problemspezifikation

Zielsetzung

- auftragsbezogen
- ▶ ressourcenbezogen

 - Gesamtbelegungsdauer
 - ▶ Rüstzeiten
 - ▶ Leerzeiten

Ablaufplanung: Auftragsbezogene Zielgrößen

Durchlaufzeit eines Auftrags p

$$D_p = {\sf Fertigstellungstermin}_p - {\sf Ankunftszeitpunkt}_p$$

$$= \sum_{m=1}^M \left(t_{pm} + w_{pm} + a_{pm}\right) \qquad (p=1,\dots,P)$$

Gesamtdurchlaufzeit aller Aufträge

$$D = \sum_{p=1}^{P} \sum_{m=1}^{M} (t_{pm} + w_{pm} + a_{pm})$$

mittlere Durchlaufzeit aller Aufträge

$$\overline{D} = \frac{D}{P}$$

Ablaufplanung: Auftragsbezogene Zielgrößen

Durchlaufzeit eines Auftrags p

$$D_p = \text{Fertigstellungstermin}_p - \text{Ankunftszeitpunkt}_p$$

$$= \sum_{m=1}^M \left(t_{pm} + w_{pm} + a_{pm}\right) \qquad (p = 1, \dots, P)$$

Gesamtwartezeit aller Aufträge

$$W = \sum_{p=1}^{P} \sum_{m=1}^{M} w_{pm}$$

mittlere Wartezeit aller Aufträge

$$\overline{W} = \frac{W}{P}$$

Ablaufplanung: Auftragsbezogene Zielgrößen

Durchlaufzeit eines Auftrags p

$$D_p = \text{Fertigstellungstermin}_p - \text{Ankunftszeitpunkt}_p$$

$$= \sum_{m=1}^M \left(t_{pm} + w_{pm} + a_{pm}\right) \qquad (p=1,\dots,P)$$

Zykluszeit (Makespan)

$$C = \max_{p} \{D_p\}$$

Terminüberschreitung (Verspätung, Tardiness)

$$V_p = \max \{ \mathsf{Fertigstellungstermin}_p - \mathsf{Plantermin}_p, 0 \}$$
 $(p = 1, \dots, P)$

Gesamt-Terminüberschreitung (Summe der Verspätungen)

$$V = \sum_{p=1}^{P} V_p = \sum_{p=1}^{P} \max \left\{ \mathsf{Fertigstellungstermin}_p - \mathsf{Plantermin}_p, 0 \right\}$$

Ablaufplanung: Ressourcenbezogene Zielgrößen

Kapazität der Ressourcen

$$G = \sum_{m=1}^{M} \sum_{p=1}^{P} a_{pm} + \sum_{m=1}^{M}$$
 Leerzeit an Maschine m

produktiv genutzte Zeit

$$B = \sum_{m=1}^{M} \sum_{p=1}^{P} a_{pm}$$

Auslastung

$$U = \frac{B}{G}$$

Gesamt-Leerzeit

$$L = \sum_{m=1}^{M} \text{Leerzeit an Maschine } m$$

Ablaufplanung: Übergeordnete Zielgrößen

- ► Bestand ⇒ Kapitalbindung
- ► termingerechte Auslieferung ⇒ Kundenservice
- ► Auslastung ⇒ Kapazitätsnutzung

Ablaufplanung: Zielbeziehungen

Littles Gesetz

mittlerer Bestand = Abgangsrate · mittlere Durchlaufzeit

"Dilemma der Ablaufplanung" (Gutenberg)

Bei dynamisch-stochastischem Auftragseingang steigt die Durchlaufzeit (und damit der Bestand, s. Littles Gesetz), wenn die Auslastung maximiert werden soll.

Ablaufplanung für nur eine Maschine

Ablaufplanung für eine Maschine

Planungssituation:

- ► deterministische Bearbeitungszeiten
- ► Notation der Kurzbeschreibung des jeweils betrachteten Spezialproblems:
 - 1|[Anzahl Aufträge]/[Auftragseingang]|[Zielgröße]

1|P Aufträge/statische Situation|mittlere Durchlaufzeit

Auftrag p						
Bearbeitungszeit a_p	3 Z E	1 ZE	2 ZE	5 ZE	4 Z E	7 Z E

1|P Aufträge/statische Situation|mittlere Durchlaufzeit

Auftrag p						
Bearbeitungszeit a_p	3 Z E	1 ZE	2 ZE	5 ZE	4 Z E	7 Z E

1|P Aufträge/statische Situation|mittlere Durchlaufzeit

Beispiel 6 Aufträge

Auftrag p						
Bearbeitungszeit a_p	3 Z E	1 ZE	2 Z E	5 ZE	4 Z E	7 Z E

Optimalitätsbedingung: $a_{[1]} \le a_{[2]} \le a_{[3]} \le a_{[4]} \le a_{[5]} \le a_{[6]}$

⇒ Kürzeste-Operationszeit-Regel (KOZ-/SPT-Regel)

Auftrag p					
Bearbeitungszeit a_p	4 Z E	7 Z E	1 ZE	6 Z E	3 ZE
$Plantermin_p = LT_p$	8	12	4	13	14

Auftrag p	A1	A2	A3	A4	A5
Bearbeitungszeit a_p	4 Z E	7 Z E	1 ZE	6 Z E	3 ZE
$Plantermin_p = LT_p$	8	12	4	13	14

Auftrag p	A1	A2	А3	A4	A 5
Bearbeitungszeit a_p	4 Z E	7 Z E	1 ZE	6 ZE	3 ZE
$Plantermin_p = LT_p$	8	12	4	13	14

Beispiel 5 Aufträge

Auftrag p					
Bearbeitungszeit a_p	4 Z E	7 Z E	1 ZE	6 ZE	3 Z E
$Plantermin_p = LT_p$	8	12	4	13	14

Optimalitätsbedingung: $LT_{[1]} \leq LT_{[2]} \leq LT_{[3]} \leq LT_{[4]} \leq LT_{[5]}$

⇒ Liefertermin-Regel

1|P Aufträge/statische Situation|# verspäteter Aufträge

Verfahren von Hodgson (Moore)

- 1. Sortiere die Aufträge nach der Lieferterminregel! Speichere die Menge der Aufträge als geordnete Menge \mathcal{R} !
- 2. Suche den ersten verspäteten Auftrag, Auftrag α , in \mathcal{R} ! Gibt es keinen, gehe zu Schritt 5!
- 3. Entferne aus den Aufträgen vor α den Auftrag mit der längsten Bearbeitungsdauer aus der Menge \mathcal{R} ! Dadurch reduziert sich die Verspätung der Aufträge in \mathcal{R} in maximalem Ausmaß.
- 4. Wiederhole die Schritte 2 und 3, solange es noch Verspätungen in ${\cal R}$ gibt!
- 5. Gibt es keinen verspäteten Auftrag mehr in \mathcal{R} , dann sortiere die Aufträge nach Lieferterminregel! Die aussortierten Aufträge können in beliebiger Reihenfolge, z. B. nach KOZ-Regel, eingeplant werden.

1|P Aufträge/statische Situation|# verspäteter Aufträge

Auftrag p	A1	A2	A3	A4	A5
Bearbeitungszeit a_p	4 Z E	7 Z E	1 ZE	6 ZE	3 ZE
$Plantermin_p = LT_p$	8	12	4	13	14

Hodgson-Verfahren, Schritt 1: Einplanung nach Liefertermin-Regel

1|P| Aufträge/statische Situation|#| verspäteter Aufträge

Beispiel 5 Aufträge

Auftrag p	A1	A2	A3	A4	A5
Bearbeitungszeit a_p	4 Z E	7 Z E	1 ZE	6 ZE	3 ZE
$Plantermin_p = LT_p$	8	12	4	13	14

Hodgson-Verfahren, Schritt 1: Einplanung nach Liefertermin-Regel Hodgson-Verfahren, Schritt 2 und 3: Entfernung von Auftrag A2

1|P Aufträge/statische Situation|# verspäteter Aufträge

Beispiel 5 Aufträge

Auftrag p	A1	A2	A3	A4	A5
Bearbeitungszeit a_p	4 Z E	7 Z E	1 ZE	6 ZE	3 ZE
$Plantermin_p = LT_p$	8	12	4	13	14

Hodgson-Verfahren, Schritt 1: Einplanung nach Liefertermin-Regel Hodgson-Verfahren, Schritt 2 und 3: Entfernung von Auftrag A2 Hodgson-Verfahren, Schritt 5: Einplanung der aussortierten Aufträge

Beispiel 3 Aufträge

Auftrag p	1	2	3
Bearbeitungszeit a_p	7	3	2
Auftragseingang $_p$	0	1	3

KOZ-Regel, keine Verdrängung:

Beispiel 3 Aufträge

Auftrag p	1	2	3
Bearbeitungszeit a_p	7	3	2
Auftragseingang $_p$	0	1	3

KOZ-Regel, keine Verdrängung:

Beispiel 3 Aufträge

Auftrag p	1	2	3
Bearbeitungszeit a_p	7	3	2
Auftragseingang $_p$	0	1	3

KOZ-Regel, keine Verdrängung, Stillstand möglich:

Beispiel 3 Aufträge

Auftrag p	1	2	3
Bearbeitungszeit a_p	7	3	2
Auftragseingang $_p$	0	1	3

KOZ-Regel, keine Verdrängung, Stillstand möglich:

Beispiel 3 Aufträge

Auftrag p	1	2	3
Bearbeitungszeit a_p	7	3	2
Auftragseingang $_p$	0	1	3

KRZ-Regel, Verdrängung möglich:

Beispiel 3 Aufträge

Auftrag p	1	2	თ
Bearbeitungszeit a_p	7	3	2
Auftragseingang p	0	1	3

KRZ-Regel, Verdrängung möglich, Wiederholung nötig:

Erkenntnisse:

- ► KOZ/KRZ-Regel minimiert die mittlere Durchlaufzeit
- Planungszeitpunkt und Menge der einzuplanenden Aufträge beeinflussen die Lösungsgüte
- ⇒ hoher Anteil zu früh fertiggestellter Aufträge
- → Aufträge mit langer Bearbeitungszeit bleiben liegen
- → hohe Streuung der Durchlaufzeiten

Nach- und Vorlaufzeiten

Die Zyklusdauer ist nicht mehr gleich der Summe der Bearbeitungszeiten.

Das Verfahren von Schrage

► Wähle als nächsten zu bearbeitenden Auftrag aus der Menge der aktuell einplanbaren Aufträge denjenigen mit der längsten Nachlaufzeit!

Beispiel

(vgl. Küpper/Helber (2004))

Vorgang j	1	2	3
Vorlaufzeit _j			0
Bearbeitungszeit j	3	1	2
Nachlaufzeit \check{j}		9	5

Nach- und Vorlaufzeiten

Die Zyklusdauer ist nicht mehr gleich der Summe der Bearbeitungszeiten.

Das Verfahren von Schrage

► Wähle als nächsten zu bearbeitenden Auftrag aus der Menge der aktuell einplanbaren Aufträge denjenigen mit der längsten Nachlaufzeit!

Beispiel				
	Vorgang	$i \parallel$	1	

Daignial

(vgl. Küpper/Helber (2004))

Vorgang j	1	2	3
V orlaufzeit _j			0
Bearbeitungszeit j	3	1	2
Nachlaufzeit \check{j}		9	5

$\mathbf{1}|\infty$ Aufträge/dynamisch-stochastische Situation $|\cdot|$

Die Produktionsaufträge treffen in zufälligen Abständen ein.

Die **Durchlaufzeit** eines Auftrags ist eine Zufallsvariable.

Weitere stochastische Einflüsse auf die Durchlaufzeit eines Auftrags i:

- ▶ stochastische Bearbeitungszeit des Auftrags i
- ▶ stochastische Bearbeitungszeiten der vor i wartenden Aufträge
- ▶ Verdrängung des Auftrags i zu einem zufälligen Zeitpunkt auf Grund der Ankunft eines wichtigeren Auftrags

$\mathbf{1}|\infty$ Aufträge/dynamisch-stochastische Situation $|\cdot|$

Warteschlangendisziplinen

- FCFS (first come first served)
- ► LCFS (last come first served)
- ► SRO (service in random order)
- ► PR (priority service)

Prioritätsregeln

- ► KOZ-Regel (Kürzeste-Operationszeit-Regel)
- ► LOZ-Regel (Längste-Operationszeit-Regel)
- GRB-Regel (Größte-Restbearbeitungszeit-Regel)
- ► KRB-Regel (Kürzeste-Restbearbeitungszeit-Regel)
- ▶ Liefertermin-Regel
- **.**..

$\mathbf{1}|\infty$ Aufträge/dynamisch-stochastische Situation $|\cdot|$

Erkenntnisse aus Simulationsuntersuchungen:

- ► KOZ-Regel minimiert die mittlere Durchlaufzeit
- ⇒ hoher Anteil zu früh fertiggestellter Aufträge
- → Aufträge mit langer erwarteter Bearbeitungszeit bleiben liegen
- → hohe Streuung der Durchlaufzeiten
- ► Liefertermin-Regel reduziert die Streuung der Durchlaufzeit
- ► FCFS-Regel vermeidet hohen Anteil liegenbleibender Aufträge

Ablaufplanung für parallele Maschinen

Beispiel

(vgl. Jähn/Pesch (2014))

Vorgang j	1	2	3	4	5	6	7	8
Bearbeitungszeit $_j$	9	7	6	5	4	3	3	1

Beispiel

(vgl. Jähn/Pesch (2014))

Vorgang j	1	2	3	4	5	6	7	8
Bearbeitungszeit $_j$	9	7	6	5	4	3	3	1

KOZ-Regel

Beispiel

(vgl. Jähn/Pesch (2014))

Vorgang j	1	2	3	4	5	6	7	8
Bearbeitungszeit $_j$	9	7	6	5	4	3	3	1

LOZ-Regel

(vgl. Jähn/Pesch (2014))

Vorgang j	1	2	3	4	5	6	7	8
Bearbeitungszeit $_{i}$	9	7	6	5	4	3	3	1

LOZ-Regel

Optimale Lösung

Optimale Lösung (II)

Ablaufplanung für mehrere Produktionsstufen

Identische Bearbeitungsreihenfolgen (Flow Shop)

Ablaufplanung für zwei Maschinen

Johnson-Verfahren

- 1. Suche den kürzesten, noch nicht eingeplanten Arbeitsgang!
 - ► Ist dieser Arbeitsgang einer an der ersten Maschine, dann ordne diesen möglichst weit vorn in die Bearbeitungsreihenfolge ein!
 - ▶ Ist dieser Arbeitsgang einer an der zweiten Maschine, dann ordne diesen möglichst weit hinten in die Bearbeitungsreihenfolge ein!
- 2. Wiederhole Schritt 1!

Optimalitätsbedingung:

Erledige Auftrag i vor j, falls $\min\{a_{i1}, a_{j2}\} \leq \min\{a_{i2}, a_{j1}\}$!

 $(a_{pm} = Dauer des Auftrags p an Maschine m)$

Beispiel 5 Aufträge

Bearbeitungszeiten

Auftrag	A	В	\cup	Δ	Ш
Maschine 1	3	6	9	4	7
Maschine 2	2	3	8	6	4

Auftragsreihenfolgeplanung nach dem Johnson-Verfahren

Maschine

Beispiel 5 Aufträge

Bearbeitungszeiten

Auftrag	Α	В	U	D	Ш
Maschine 1	3	6	9	4	7
Maschine 2	2	3	8	6	4

Auftragsreihenfolgeplanung nach dem Johnson-Verfahren

Schritt 1					А
Schritt 2				В	А
Schritt 3	D			В	А
Schritt 4	D		Ε	В	А
Schritt 5		\cup	Ш	В	А

Maschine

Beispiel 8 Aufträge

Bearbeitungszeiten

Auftrag	1	2	3	4	5	6	7	8
Maschine 1	4	8	7	8	2	1	3	9
Maschine 2	6	3	6	4	6	5	7	2

Auftragsreihenfolgeplanung nach dem Johnson-Verfahren

Beispiel 8 Aufträge

Bearbeitungszeiten

Auftrag	1	2	3	4	5	6	7	8
Maschine 1	4	8	7	8	2	1	3	9
Maschine 2	6	3	6	4	6	5	7	2

Auftragsreihenfolgeplanung nach dem Johnson-Verfahren

Schritt 1	6	_	_	_	_	_	_	_
Schritt 2	6	5	_	_	_	_	_	_
Schritt 3	6	5	_	_	_	_	_	8
Schritt 4	6	5	_	_	_	_	2	8
Schritt 5	6	5	7	_	_	_	2	8
Schritt 6	6	5	7	1	_	_	2	8
Schritt 7	6	5	7	1	_	4	2	8
Schritt 8	6	5	7	1	3	4	2	8

Kritische Größen:

- Staueffekte
- ► Termineinhaltung
 - Verspätungen

Prioritätsregeln zum Abbau der Staueffekte

- KOZ-Regel
 - Maximierung der Anzahl fertig bearbeiteter Aufträge

 - ▷ Erhöhung der Varianz der Durchlaufzeit
- ► FCFS-Regel

Anwendung der Prioritätsregeln

- ▶ simultan: KOZ-Regel bis kritische Wartezeit, dann FCFS
- ► abwechselnd ⇒ geringerer Anstieg der Durchlaufzeiten
 - ▷ situationsabhängig: FCFS bis kritischer Bestand, dann KOZ-Regel
 bis untere Grenze beim Auftragsbestand, dann wieder FCFS usw.

"globale", bestandsorientierte Prioritätsregeln zum Abbau der Staueffekte

- ► WINQ-Regel (work in next queue): Der Auftrag mit der kleinsten Warteschlange vor der nächsten anzulaufenden Maschine hat höchste Priorität.
- ► XWINQ-Regel (expected work in next queue): Der Auftrag mit der kleinsten Warteschlange zuzüglich der bis dahin erwarteten zusätzlichen Aufträge vor der nächsten anzulaufenden Maschine hat höchste Priorität.

kombinierte Anwendung der Prioritätsregeln zum Abbau der Staueffekte

Prioritätsregelkombination	mittlere Anzahl wartender Aufträge
KOZ	23.25
WINQ	40.43
XWINQ	34.03
$0.5 \cdot \text{KOZ} + 0.5 \cdot \text{WINQ}$	30.14
$0.9 \cdot \text{KOZ} + 0.1 \cdot \text{WINQ}$	23.76
$0.95 \cdot \text{KOZ} + 0.05 \cdot \text{WINQ}$	23.00
$0.97 \cdot \text{KOZ} + 0.03 \cdot \text{WINQ}$	22.83
$0.94 \cdot \text{KOZ} + 0.06 \cdot \text{XWINQ}$	23.26
$0.96 \cdot KOZ + 0.04 \cdot XWINQ$	22.67
$0.98 \cdot \text{KOZ} + 0.02 \cdot \text{XWINQ}$	22.74

⇒ komplizierte Anwendung, aber nur geringe Effekte

Prioritätsregeln zur Einhaltung der Termine

- ► Liefertermin-Regel (DDATE): Der Auftrag mit dem nächsten Liefertermin hat höchste Priorität.
- Schlupfzeit-Regel (SLACK): Der Auftrag mit der geringsten Differenz aus Liefertermin und aktuellem Datum abzüglich der noch verbleibenden Bearbeitungszeiten hat höchste Priorität.
- ► Schlupfzeit-pro-Arbeitsgang-Regel (SLACK/OPN): Der Auftrag mit dem geringsten Quotienten aus Schlupfzeit und Anzahl noch verbleibender Bearbeitungsvorgänge hat höchste Priorität.

Conways Simulationsergebnisse (9 Maschinen, 8700 Aufträge)

	Anzahl	mittlere	Varianz der	mittlere
	Aufträge mit	Terminab-	Terminab-	Durchlauf-
Prioritätsregel	Verspätung	weichung	weichungen	zeit
DDATE	15.75%	-15.5	432	63.7
SLACK	22.02%	-13.1	433	65.8
SLACK/OPN	3.71%	-12.8	266	66.1
KOZ	5.02%	-44.9	2878	34.0
FCFS	44.79%	-4.5	1686	74.4

Modell von Karmarkar

Man betrachtet eine Werkstatt als ein M/M/1-Warteschlangensystem:

- exponentialverteilte Zwischenankunftszeit von Aufträgen
- exponentialverteilte Bearbeitungszeiten
- ein Server (eine Maschine)
- unbegrenzter Warteraum
- ► FCFS

Modell von Karmarkar

Ankunftsrate von Werkstücken: D

Losgröße: Q

Ankunftsrate von Losen: $\lambda = \frac{D}{Q}$

Produktionsrate: P

Rüstzeit: au

mittlere Bearbeitungszeit eines Loses: $\tau + \frac{Q}{P}$

Bearbeitungsrate von Losen: $\mu = \frac{1}{\tau + \frac{Q}{P}} = \frac{P}{P \cdot \tau + Q}$

 $\text{Auslastung: } \rho = \frac{\lambda}{\mu} = \frac{\frac{D}{Q}}{\frac{P}{P \cdot \tau + Q}} = \frac{D}{P} \cdot \frac{P \cdot \tau + Q}{Q} = \frac{D}{P} \cdot \left(\frac{P}{Q} \cdot \tau + 1\right) = \frac{D \cdot \tau}{Q} + \frac{D}{P}$

Modell von Karmarkar

Wegen
$$\rho = \frac{D \cdot \tau}{Q} + \frac{D}{P} \stackrel{!}{<} 1 \iff 1 - \frac{D}{P} \stackrel{!}{>} \frac{D \cdot \tau}{Q}$$
 muss gelten:

$$Q > \frac{D \cdot \tau}{1 - \frac{D}{P}}$$

(Untergrenze für die Losgröße)

mittlere Durchlaufzeit

$$W = \frac{1}{\mu - \lambda} = \frac{1}{\frac{P}{P \cdot \tau + Q} - \frac{D}{Q}} = \frac{1}{\frac{P - \frac{D}{Q} \cdot (P \cdot \tau + Q)}{P \cdot \tau + Q}} = \frac{P \cdot \tau + Q}{P - \frac{D}{Q} \cdot (P \cdot \tau + Q)}$$

$$= \frac{\tau + \frac{Q}{P}}{1 - \frac{D \cdot \tau}{Q} - \frac{D}{P}}$$

$$D = 1.5$$
, $\tau = 1$, $P = 2$

Einlastungsplanung bei Variantenfließproduktion

Variantenfließproduktion

(Quelle: Günther/Tempelmeier (2005))

(Quelle: Günther/Tempelmeier (2005))

Weg-Zeit-Diagramm

Zeit-Weg-Diagramm

Idealfall: gleiche Arbeitsbelastung für alle in Höhe der Taktzeit

Zeit-Weg-Diagramm

Idealfall: gleiche Arbeitsbelastung für alle in Höhe der Taktzeit

Zeit-Weg-Diagramm

Reihenfolge: A-A-A-B-B-B

Zeit-Weg-Diagramm

Reihenfolge: A-B-A-B-A-B

Einlastungsplanung

Ziel: Glättung der Arbeitsbelastung an den einzelnen Stationen

- ► Level Scheduling (variantenbezogen-bedarfsorientiert)
 - möglichst gleichmäßige zeitliche Verteilung der einzuplanenden Ausstattungsvarianten
- ► Car Sequencing (variantenbezogen-kapazitätsorientiert)
 - □ alternierende Auflage von Varianten mit über- und unterdurchschnittlicher Arbeitsbelastung an den Engpassstationen
- ► Mixed-Model Sequencing (werkstückbezogen-kapazitätsorientiert)
 - Doptimale Reihenfolge der einzelnen Werkstücke mit möglichst wenig überdurchschnittlicher Arbeitsbelastung an den einzelnen Stationen