

TD7 - Intégrales à paramètre

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par l'intégrale à paramètre :

$$f(x) := \int_0^{\pi} \cos(x \sin t) \, \mathrm{d}t.$$

- **1.** Montrer que f est continue sur \mathbb{R} .
- **2.** Montrer que f est de classe \mathscr{C}^2 sur \mathbb{R} et exprimer f'(x) et f''(x) comme des intégrales à paramètre.
- **3.** Montrer que $x(f''(x) + f(x)) = \int_0^{\pi} x \cos^2(t) \cos(x \sin t) dt$.
- 4. En intégrant par partie cette dernière intégrale, montrer que f est solution de l'équation différentielle :

$$xy'' + y' + xy = 0.$$

Exercice 2. On appelle fonction gamma d'Euler la fonction définie par :

$$\Gamma(x) := \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- 1. Déterminer l'ensemble de définition de Γ .
- **2.** Montrer que Γ est continue sur sur \mathbb{R}_+^* . *Indication : montrer que* Γ *est continue sur tout intervalle* $[a,b] \subset \mathbb{R}_+^*$.
- **3.** Montrer que $\Gamma(1) = 1$ et $\forall x > 0$, $\Gamma(x+1) = x \Gamma(x)$.
- **4.** En déduire que $\forall n \in \mathbb{N}$, $\Gamma(n+1) = n!$.
- **5.** Déterminer un équivalent de $\Gamma(x)$ lorsque $x \to 0$.

Exercice 3 (Examen 2023–2024). L'objectif de l'exercice est de calculer l'intégrale de Gauss $I := \int_0^{+\infty} e^{-x^2} dx$. Soit Φ la fonction définie sur \mathbb{R}_+ par :

$$\Phi(x) := \int_0^{+\infty} \frac{e^{-x(1+t^2)}}{1+t^2} dt.$$

- 1. Montrer que Φ est bien définie et continue sur \mathbb{R}_+ .
- **2.** Montrer que Φ est de classe \mathscr{C}^1 sur \mathbb{R}^*_+ et calculer $\Phi'(x)$.
- **3.** En utilisant le changement de variable $u = t\sqrt{x}$, relier $\int_0^A e^{-xt^2} dt$ et $\int_0^{A\sqrt{x}} e^{-u^2} du$. En déduire une relation entre $\Phi'(x)$, $\frac{e^{-x}}{\sqrt{x}}$ et I.
- **4.** En utilisant le changement de variable $x = t^2$, établir une relation entre $\int_0^A \frac{e^{-x}}{\sqrt{x}} dx$ et $\int_0^{\sqrt{A}} e^{-t^2} dt$ pour tout A > 0.
- **5.** Montrer que $\lim_{x \to +\infty} \Phi(x) = 0$ et calculer $\Phi(0)$.
- **6.** En intégrant la relation trouvée à la question 3 entre 0 et A > 0, puis en faisant tendre A vers $+\infty$, calculer I.

Exercice 4. L'objectif de l'exercice est de calculer l'intégrale de Dirichlet $I := \int_0^{+\infty} \frac{\sin t}{t} dt$. Pour cela, on pose :

$$\forall x \in \mathbb{R}_+, \quad F(x) := \int_0^{+\infty} \frac{\sin t}{t} e^{-xt} dt.$$

- **1.** Justifier que F est bien définie sur \mathbb{R}_+ , et continue sur \mathbb{R}_+^* .
- **2.** Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- 3. Montrer que $F'(x) = -\frac{1}{1+x^2}$ sur]0, $+\infty$ [. En déduire que $F(x) = \frac{\pi}{2} \arctan(x)$ pour tout x > 0.
- **4.** Posons $G(x) = \int_x^{+\infty} \frac{\sin t}{t} dt$. Montrer que G est dérivable sur \mathbb{R}_+ est donner l'expression de G'(x).
- **5.** Montrer que $\forall x \in \mathbb{R}_+^*$, $F(x) F(0) = -\int_0^{+\infty} G\left(\frac{s}{r}\right) e^{-s} ds$. Indication: IPP et changement de variable.
- **6.** Démontrer que F est continue en 0 et en déduire la valeur de I.