Assume A Step Function Lorentz Distribution

In this work we assume $N_{\rm tot}=5,000$ shells which have their Lorentz factors distributed as a step function. Each shell is launched with the same energy, so the mass of shells changes depending on the Lorentz factor assigned. We choose the two Lorentz factor values $\Gamma=100$ and $\Gamma=400$, where each section of step function has an equal mass. This results in 1,000 launched shells with $\Gamma=100$ and 4,000 shells launched with $\Gamma=400$. Each shell is launched $\Delta t_{\rm e}=0.002$ sec after the previous.

We define the initial position of these shells as

$$R_{i,0} = -c * \beta_i * \Delta t_e * (N_i - 1) \tag{1}$$

Where N_i is the shell index and $\beta = \sqrt{1 - \frac{1}{\Gamma^2}}$. In this way, the first shell to be launched stars at $R_{0,0} = 0$ cm and all shells to be launched after have an initially negative radius.

For an observer, the arrival time of emission from a collision is given by

$$t_{\rm a} = t_{\rm coll} - \frac{R_{\rm coll}}{c} \tag{2}$$

where $t_{\rm e}$ and $R_{\rm coll}$ are the time and radius of collision (in the jet frame), respectively.

The first collision must be between the final shell which has $\Gamma = 100$ (i.e., $N_{\rm i} = 1000$) and the first shell with $\Gamma = 400$ (i.e., $N_{\rm i} = 1001$). For simplicity, we will denote these with a subscript s (for slow) and r (for rapid), respectively. We can calculate when the first collision will be and when the emission will arrive at the observer.

$$t_{\text{coll},0} = \frac{(R_{\text{s},0} - R_{\text{r},0})}{c(\beta_{\text{r}} - \beta_{\text{s}})} \tag{3}$$

$$R_{\text{coll},0} = R_{\text{s},0} + (c\beta_{\text{s}} * t_{\text{coll},0}) \tag{4}$$

Which can be used to find the time of first arrival:

$$t_{\rm a,0} = t_{\rm coll,0} - \frac{R_{\rm coll,0}}{c}$$
 (5)

$$t_{\rm a,0} = t_{\rm coll,0} - \frac{R_{\rm s,0} + (c\beta_{\rm s} * t_{\rm coll,0})}{c}$$
 (6)

$$t_{\rm a,0} = t_{\rm coll,0} - \frac{R_{\rm s,0}}{c} - \beta_{\rm s} t_{\rm coll,0}$$
 (7)

$$t_{\rm a,0} = t_{\rm coll,0} (1 - \beta_{\rm s}) - \frac{R_{\rm s,0}}{c}$$
 (8)

$$t_{\rm a,0} = \frac{(R_{\rm s,0} - R_{\rm r,0})}{c(\beta_{\rm r} - \beta_{\rm s})} (1 - \beta_{\rm s}) - \frac{R_{\rm s,0}}{c} \tag{9}$$

$$t_{\rm a,0} = \frac{([-c\beta_{\rm s}\Delta t_{\rm e}(1000-1)] - [-c\beta_{\rm r}\Delta t_{\rm e}(1001-1)])}{c(\beta_{\rm r} - \beta_{\rm s})} (1 - \beta_{\rm s}) - \frac{[-c\beta_{\rm s}\Delta t_{\rm e}(1000-1)]}{c}$$
(10)

$$t_{\rm a,0} = \frac{\Delta t_{\rm e} (1000\beta_{\rm r} - 999\beta_{\rm s})}{(\beta_{\rm r} - \beta_{\rm s})} (1 - \beta_{\rm s}) + 999\beta_{\rm s} \Delta t_{\rm e}$$
(11)

If we use the values of
$$\Delta t_{\rm e}=0.002$$
 sec, $\beta_{\rm s}=\sqrt{1-\frac{1}{100^2}},$ and $\beta_{\rm r}=\sqrt{1-\frac{1}{400^2}},$ we find

$$t_{\rm a,0} \approx 2.000133 \; {\rm sec}$$
 (12)