Assignment 23

Problem Statement

Predicting Survival in the Titanic Data Set

We will be using a decision tree to make predictions about the Titanic data set from Kaggle. This data set provides information on the Titanic passengers and can be used to predict whether a passenger survived or not.

```
In [88]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
    from sklearn.preprocessing import StandardScaler
In [89]: # URL of where the dataset resides
    url = 'https://raw.githubusercontent.com/BigDataGal/Python-for-Data-Science/master/titanic-train.csv'
In [90]: # Read the dataset into a dataframe
    titanic = pd.read_csv(url)
```

In [91]: # Display the top 5 rows of the dataset
 titanic.head()

Out[91]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [92]: # See the column data types and non-missing values titanic.info(0)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): PassengerId 891 non-null int64 Survived 891 non-null int64 891 non-null int64 Pclass 891 non-null object Name 891 non-null object Sex 714 non-null float64 Age SibSp 891 non-null int64 891 non-null int64 Parch Ticket 891 non-null object 891 non-null float64 Fare 204 non-null object Cabin 889 non-null object Embarked dtypes: float64(2), int64(5), object(5) memory usage: 83.6+ KB

In [93]: # Statistics for each column
 titanic.describe()

Out[93]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [94]: # I am only going to use Pclass, Sex, Age, SibSp (Siblings Aboard), Parch (Parents and Children Aboard), and
Fare to determine
if the passenger survived or not. Therefore I am going to drop the PassengerId, Name, Ticket, Cabin, and Em
barked columns
from my dataset.

titanic.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], inplace=True)

In [95]: titanic.head()

Out[95]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare
0	0	3	male	22.0	1	0	7.2500
1	1	1	female	38.0	1	0	71.2833
2	1	3	female	26.0	0	0	7.9250
3	1	1	female	35.0	1	0	53.1000
4	0	3	male	35.0	0	0	8.0500

Exploratory Data Analysis

```
In [96]: # Visualize how many survived and how many did not survived.
sns.set_style('whitegrid')
sns.countplot(x='Survived', data=titanic, palette='RdBu_r')
```

Out[96]: <matplotlib.axes._subplots.AxesSubplot at 0x262a5c1f208>


```
In [97]: # Visualize how many Survived by Gender
sns.set_style('whitegrid')
sns.countplot(x='Survived', hue='Sex', data=titanic, palette='RdBu_r')
```

Out[97]: <matplotlib.axes._subplots.AxesSubplot at 0x262a5e29cc0>


```
In [98]: # Visualize how many Survived based on Passenger Class
sns.set_style('whitegrid')
sns.countplot(x='Survived', hue='Pclass', data=titanic, palette='rainbow')
```

Out[98]: <matplotlib.axes._subplots.AxesSubplot at 0x262a5d58128>

In [99]: # Visualize the age distribution in our dataset after temporarily dropping the Null values in Age column.
sns.distplot(titanic['Age'].dropna(), kde=False, color='darkred', bins=30)

Out[99]: <matplotlib.axes._subplots.AxesSubplot at 0x262a5ce70f0>

In [100]: # Visualize the number of siblings and spouse are present in the dataset.
sns.countplot(x='SibSp', data=titanic)

Out[100]: <matplotlib.axes._subplots.AxesSubplot at 0x262a5dcbd68>


```
In [101]: # Visualize the number of Parents and Childrens are present in the dataset.
sns.countplot(x='Parch', data=titanic)
```

Out[101]: <matplotlib.axes._subplots.AxesSubplot at 0x262a6015898>

Data Cleaning

In [102]: # Count the number of null values in the columns
 titanic.isnull().sum(axis=0)

Out[102]: Survived 0
Pclass 0
Sex 0
Age 177
SibSp 0
Parch 0
Fare 0
dtype: int64

```
In [103]: # Looks like the Age is only column with null values. We will find the average age of the passengers based on
          Passenger Class.
          titanic.groupby('Pclass')['Age'].mean()
Out[103]: Pclass
               38.233441
               29.877630
               25.140620
          Name: Age, dtype: float64
In [104]: # Based on the average age by passenger class, I will create a function to replace the null values.
          def impute_age_titanic(cols):
              Age = cols[0]
              Pclass = cols[1]
              if pd.isnull(Age):
                  if Pclass == 1:
                      return 38
                  elif Pclass == 2:
                      return 30
                  else:
                       return 25
              else:
                  return Age
In [105]: # Apply the function to replace the null values in the age column by the mean values
          titanic['Age'] = titanic[['Age', 'Pclass']].apply(impute age titanic,axis=1)
In [106]: titanic.isnull().sum(axis=0)
Out[106]: Survived
                      0
          Pclass
                      0
                      0
          Sex
                      0
          Age
          SibSp
                      0
          Parch
                      0
          Fare
          dtype: int64
```

Convert categorical features

```
In [107]: # We will convert Sex into dummy variables and drop one value from Sex
           sex = pd.get dummies(titanic['Sex'], drop first=True)
In [108]: titanic.drop(columns=['Sex'], inplace=True)
In [109]: | titanic = pd.concat([titanic, sex], axis=1)
In [110]: titanic.head()
Out[110]:
              Survived Pclass Age SibSp Parch
                                                 Fare male
                    0
                           3 22.0
                                               7.2500
           0
                                      1
                                                         1
                           1 38.0
                                            0 71.2833
                                                         0
           2
                           3 26.0
                                               7.9250
                                                         0
                           1 35.0
                                            0 53.1000
                    0
                           3 35.0
                                               8.0500
                                      0
```

Building a Decision Tree Model

Split the data set into training set and test set

```
In [113]: # Split the feature set and target set
    features = titanic.drop(columns='Survived')
    targets = titanic['Survived']
```

```
In [114]: | # Split the data into 70% training set and 30% test set
          X train, X test, y train, y test = train test split(features, targets, test size = 0.3, random state = 42)
          print(X_train.shape)
          print(X test.shape)
          print(y train.shape)
          print(y test.shape)
          (623, 6)
          (268, 6)
          (623,)
          (268,)
In [115]:
          # Since the dataset is in different units ( Age = Years, Fare = Dollars), apply standard scaler to the X trai
          n and X test.
          sc = StandardScaler()
          # Transform and fit both the training and testing data
          X train = sc.fit transform(X train)
          X test = sc.fit transform(X test)
          C:\Users\KSamrari\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py:625: DataConversionWarning: Data
          with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.
            return self.partial fit(X, y)
          C:\Users\KSamrari\Anaconda3\lib\site-packages\sklearn\base.py:462: DataConversionWarning: Data with input dty
          pe uint8, int64, float64 were all converted to float64 by StandardScaler.
            return self.fit(X, **fit params).transform(X)
          C:\Users\KSamrari\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py:625: DataConversionWarning: Data
          with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.
            return self.partial fit(X, y)
          C:\Users\KSamrari\Anaconda3\lib\site-packages\sklearn\base.py:462: DataConversionWarning: Data with input dty
          pe uint8, int64, float64 were all converted to float64 by StandardScaler.
            return self.fit(X, **fit_params).transform(X)
```

```
In [116]: # Classify the X train and Y train data and choose criterion as Entropy
          classifier = DecisionTreeClassifier(criterion='entropy', random state=42)
          classifier.fit(X train,y train)
Out[116]: DecisionTreeClassifier(class weight=None, criterion='entropy', max depth=None,
                      max features=None, max leaf nodes=None,
                      min impurity decrease=0.0, min impurity split=None,
                      min samples leaf=1, min samples split=2,
                      min weight fraction leaf=0.0, presort=False, random state=42,
                      splitter='best')
In [118]: # Make predictions
          y pred = classifier.predict(X test)
In [119]: # Evaluate the model, look at the confusion matrix to see how our test data compares to the predicted data
          conf mat = confusion matrix(y test, y pred)
In [120]: conf_mat
Out[120]: array([[145, 12],
                 [ 48, 63]], dtype=int64)
In [122]: # Calculate the accuracy of our model
          accuracy = accuracy score(y test, y pred)
In [124]: print ('Decission Tree Model Performance on the test set: Accuracy = %0.4f' % accuracy)
           Decission Tree Model Performance on the test set: Accuracy = 0.7761
In [126]: # Compare the Test values to the Predicted values
          ActualvsPred = pd.DataFrame({'Actual': y test, 'Predicted': y pred})
```

In [127]: print(ActualvsPred.head(15))

	Actual	Predicted
709	1	0
439	0	0
840	0	0
720	1	1
39	1	1
290	1	0
300	1	0
333	0	0
208	1	0
136	1	1
137	0	0
696	0	0
485	0	0
244	0	0
344	0	0

In []: # Using the given titanic data set, our Decsion Tree Machine Learning model can predict # if the Passenger Survived or not with 78% accuracy.