Collision Avoidance

Table of Contents

Introduction	2
Sequence	2
Case Study	2
Project Overview:	2
Objective	2
• Components	2
Key Features:	2
Methodology:	
Ultrasonic Sensor (US):	
Collision Avoidance Module (CA):	
Drive Control Module (DC):	
Project Implementation:	
Activity	
Ultrasonic Sensor (US) Readings:	
Collision Avoidance (CA) Module:	
Drive Control (DC) Module:	
States and Actions:	
Sequence of Events:	
Requirements	
Ultrasonic Sensor (US) Integration	
Distance Sensing	3
Collision Avoidance Module (CA)	3
Speed Control	3
Drive Control Module (DC)	3
Design Diagrams	4
Table of Figures	
Figure 1 Collision Avoidance main Block	Δ
Figure 2 US Sensor	
Figure 3 Collision Avoidance	4
Figure 4 DC Motor	4

Introduction

The Collision Avoidance System for Autonomous Vehicles is a critical component in ensuring the safety and reliability of self-driving vehicles. This case study delves into the development and implementation of a robust collision avoidance system that uses Ultrasonic sensors to detect obstacles and effectively control the vehicle's speed to prevent collisions.

Sequence

- 1. Ultrasonic Sensor (US) detects a distance.
- 2. Collision Avoidance (CA) enters state based on the distance.
- 3. CA instructs Drive Control (DC Motor) to set the speed.
- 4. DC motor enters the state with the speed.

Case Study

Project Overview:

- Objective: To design and implement a real-time collision avoidance system for autonomous vehicles using Ultrasonic sensors.
- Components: Ultrasonic Sensor (US), Collision Avoidance Module (CA), and Drive Control Module (DC).

Key Features:

- Real-time distance sensing.
- Adaptive speed control.
- State management for the collision avoidance module.

Methodology:

Ultrasonic Sensor (US):

- The US continuously monitors the vehicle's surroundings and provides distance readings.
- These readings serve as inputs to the Collision Avoidance Module.

Collision Avoidance Module (CA):

- CA receives distance readings from the US.
- It manages the system's state based on the received data:
 - > "Waiting" state when an obstacle is detected but safe distance exists.
 - "Driving" state when no immediate obstacles are detected.
- CA instructs the Drive Control Module based on the current state.

Drive Control Module (DC):

- DC receives speed instructions from CA.
- It controls the vehicle's speed accordingly:
 - > Sets speed to 0 for stopping the vehicle.
 - > Sets speed to 30 for maintaining a constant speed.
- DC also has states such as "DC_busy" and "DC_idle" based on its speed setting.

Project Implementation:

- Hardware components: Ultrasonic sensor, microcontroller, and vehicle controls.
- Software components: Embedded software for real-time data processing and control.

Activity

Ultrasonic Sensor (US) Readings:

• US detects distances at various points in time.

Collision Avoidance (CA) Module:

- Receives distance readings from the US.
- Manages the state of the collision avoidance system.

Drive Control (DC) Module:

- Receives speed instructions from CA.
- Controls the speed of the vehicle.

States and Actions:

- CA has different states: "Waiting," "Driving," etc., based on the situation.
- CA instructs DC to set the speed as needed:
 - > Speed = 0 for stopping the vehicle.
 - Speed = 30 for driving at a constant speed.
- DC has states such as "DC_busy" and "DC_idle" depending on its speed setting.

Sequence of Events:

- The project follows a sequence of events where US detects distances, and CA and DC respond accordingly to ensure collision avoidance.
- The sequence includes transitions between states and speed adjustments to manage the vehicle's behavior.

Requirements

Ultrasonic Sensor (US) Integration

The system shall integrate an Ultrasonic sensor (US) for real-time distance measurement.

Distance Sensing

• The US shall provide accurate distance measurements with a range suitable for collision avoidance (e.g., 0-100 meters).

Collision Avoidance Module (CA)

- The system shall include a Collision Avoidance Module (CA) responsible for processing US data and making decisions.
- The CA shall manage different states, including "Waiting" and "Driving," based on the detected distance and safety criteria.

Speed Control

- The CA shall instruct the Drive Control Module (DC) to adjust the vehicle's speed based on the current state.
- Speed control shall include settings for
 - Setting speed to 0 for stopping the vehicle.
 - Setting speed to a predefined value (e.g., 30) for maintaining a constant speed.

Drive Control Module (DC)

• The system shall include a Drive Control Module (DC) responsible for controlling the vehicle's speed based on CA instructions. The DC shall have states like "DC_busy" and "DC_idle" based on the speed setting.

Design Diagrams

Figure 1 Collision Avoidance main Block

