CS57300 PURDUE UNIVERSITY SEPTEMBER 27, 2021

DATA MINING

DECISION TREES

TREE LEARNING

- Top-down recursive divide and conquer algorithm
 - Start with all training examples at root
 - > Select best attribute/feature: Take a greedy view to decide how "good" an attribute is
 - Partition examples by selected attribute
 - Recurse and repeat
- Other issues:
 - When to stop growing
 - Pruning irrelevant parts of the tree

PREDICTIVE MODELING

CHOOSING AN ATTRIBUTE/FEATURE

- Be greedy: choose an attribute that can immediately minimize the misclassification rate (i.e., as if no further subtree will grow)
- A good feature splits the examples into subsets that distinguish among the class labels as much as possible... ideally into pure sets of "all positive" or "all negative"
- A good attribute leads to **highly certain** prediction for training examples sharing the same value on that attribute!

PREDICTIVE MODELING

MEASURING UNCERTAINTY: ENTROPY

- Used to quantify the amount of randomness of a probability distribution.
- Definition: Suppose a discrete random variable X has a distribution of P(X). The entropy H(X) of X is defined by:

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

ENTROPY OF A RANDOM VARIABLE

A completely random binary variable with P(X)=[0.5,0.5] has entropy: $H(X) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = -(-0.5 + -0.5) = 1$

A deterministic variable with P(X)=[1,0] has entropy: $H(X) = -(1 \log_2 1 + 0 \log_2 0) = -(0+0) = 0$

A biased variable with P(X)=[0.75,0.25] has entropy: H(X)=0.8113

The entropy of a probability distribution **p** expresses the **amount of uncertainty** that we have about the values of X

MEASURING CHANGE OF UNCERTAINTY: INFORMATION GAIN

How much does a feature split decrease the entropy?

$$Gain(S, A) = \underbrace{Entropy(S) - \sum_{v \in values(A)} \frac{|S_v|}{|S|}}_{Entropy(S_v)}$$

age	income	student	credit_rating	buys_computer	
<=30	high	no	fair	no	
<=30	high	no	excellent	no	
3140	high	no	fair	yes	
>40	medium	no	fair	yes	
>40	low	yes	fair	yes	
>40	low	yes	excellent	no	
3140	low	yes	excellent	yes	
<=30	medium	no	fair	no	
<=30	low	yes	fair	yes	
>40	medium	yes	fair	yes	
<=30	medium	yes	excellent	yes	
3140	medium	no	excellent	yes	
3140	high	yes	fair	yes	
>40	medium	no	excellent	no	

Entropy(S)

 $= -9/14 \log 9/14 - 5/14 \log 5/14$

= 0.9400

INFORMATION GAIN

$$Gain(S, A) = Entropy(S) - \sum_{v \in values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Entropy(Income=High)

= -2/4 Log 2/4 - 2/4 Log 2/4 = 1

Entropy(Income=Med)

 $= -4/6 \log 4/6 - 2/6 \log 2/6 = 0.9183$

Entropy(Income=Low)

 $= -3/4 \log 3/4 - 1/4 \log 1/4 = 0.8113$

Gain(S,Income)

= 0.9400 - (4/14[1] + 6/14[0.9183] + 4/14[0.8113])

= 0.029

EXAMPLE: CHOOSE THE ATTRIBUTE WITH LARGEST INFORMATION GAIN

- Features: color, shape, size
- What's the best feature to use at root?

EXAMPLE: CHOOSE THE ATTRIBUTE WITH LARGEST INFORMATION GAIN

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	_
6	Green	Square	Big	-

- H(S) = -(0.5*log0.5+0.5*log0.5)=1
- Gain(S, Color) =1-0.5*(-0.67*log0.67-0.33*log0.33)-0.17*(-1*log1-0*log0)-0.33*(-1*log1-0*log0) = 0.54
- Gain(S, Shape) = 1 0.67*(-0.5*log0.5-0.5*log0.5)-0.33*(-0.5*log0.5-0.5*log0.5)=0
- Gain(S, Size) = 1-0.67*(-0.75*log0.75-0.25*log0.25)-0.33*(-1*log1-0*log0)=0.46

BUILDING TREE RECURSIVELY

Buildtree(examples, attributes)

```
/*examples: a list of training examples at the current node attributes: a set of candidate attributes to place question on*/
```

If examples={} then return

If examples have the same label y then return a leaf node with label y

If attributes={} then return a leaf node with the majority label in examples

 $A = Best_attribute(examples, attributes) /*Suppose attribute A has n possible values*/$

Create an internal node, node(A), with n children

For attribute A's i-th possible value A(i):

The i-th child of node(A) = **Buildtree**($\{examples with its value on A being A(i)\}, attributes-<math>\{A\}$)

DEALING WITH CONTINUOUS ATTRIBUTES

- Discretize the value of a continuous attribute into several intervals
 - Two bins for the continuous variable $x: x \le t$
 - Gain(S, x, t)=Entropy(S)- $|S_{x<=t}|$ *Entropy($S_{x<=t}$)/ $|S|-|S_{x>t}|$ *Entropy($S_{x>t}$)/|S|
 - Gain(S, x)= max_t Gain(S, x, t)

ADDITIONAL ATTRIBUTE SELECTION CRITERIA: GINI GAIN

- Similar to information gain
- Uses gini index instead of entropy

$$Gini(X) = 1 - \sum_{x} p(x)^2$$

Measures decrease in gini index after split:

$$Gain(S, A) = Gini(S) - \sum_{v \in values(A)} \frac{|S_A|}{|S|} Gini(S_A)$$

COMPARING INFORMATION GAIN TO GINI GAIN

$$GG = 0$$

COMPARING INFORMATION GAIN TO GINI GAIN

$$IG = 1.0 - \left[\frac{2}{12} \, 0\right] - \left[\frac{4}{12} \, 0\right] - \left[\frac{6}{12} \, 0.919\right] = 0.541$$

$$GG = 0.5 - \left[\frac{2}{12} \ 0\right] - \left[\frac{4}{12} \ 0\right] - \left[\frac{6}{12} \ 0.444\right] = 0.278$$

ADDITIONAL ATTRIBUTE SELECTION CRITERIA: CHI-SQUARE SCORE

- Widely used to test independence between two categorical attributes (e.g., feature and class label)
- Considers counts in a contingency table and calculates the normalized squared deviation of observed (actual) values from expected (predicted) values

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}$$

Sampling distribution is known to be chi-square distributed, given that cell counts are above minimum thresholds

CALCULATING EXPECTED VALUES FOR A CELL

Attribute

$$o_{(0,+)} = a$$

$$e_{(0,+)} = p(A = 0, C = +) \cdot N$$

$$= p(A = 0)p(C = +|A = 0) \cdot N$$

$$= p(A = 0)p(C = +) \cdot N \qquad \text{(assuming independence)}$$

$$= \left\lceil \frac{a+b}{N} \right\rceil \cdot \left\lceil \frac{a+c}{N} \right\rceil \cdot N$$

EXAMPLE CALCULATION

Observed

Buy	No buy

High

Med

Low

Duy	INO Duy
2	2
4	2
3	1

Expected

Buy	No buy
2.57	1.43
3.86	2.14
2.57	1.43

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(o_{i} - e_{i}\right)^{2}}{e_{i}} = \left(\frac{(2 - 2.57)^{2}}{2.57}\right) + \left(\frac{(4 - 3.86)^{2}}{3.86}\right) + \left(\frac{(3 - 2.57)^{2}}{2.57}\right) + \left(\frac{(2 - 1.43)^{2}}{1.43}\right) + \left(\frac{(2 - 2.14)^{2}}{2.14}\right) + \left(\frac{(1 - 1.43)^{2}}{1.43}\right) = 0.57$$

High

Med

Low

WHEN TO STOP GROWING

- Full growth methods
 - There are no examples left
 - All examples at a node belong to the same class
 - There are no attributes left for further splits
- What impact does this have on the quality of the learned trees?
 - Trees overfit the training data and accuracy on testing data suffers

OVERFITTING

- Consider a distribution D of data representing a population and a sample D_S drawn from D, which is used as training data
- ▶ Given a model space M, a score function S, and a learning algorithm that returns a model $m \in M$, the algorithm **overfits** the training data D_S if: $\exists m' \in M$ such that $S(m, D_S) > S(m', D_S)$ but S(m, D) < S(m', D)
 - In other words, there is another model (m') that is better on the entire distribution and if we had learned from the full data we would have selected it instead

HOW TO AVOID OVERFITTING IN DECISION TREES

- Post-pruning
 - > Separate the training data into a training set and a validation set (i.e., a pruning set).
 - Fully grow a tree
 - Use the pruning set to evaluate the utility of pruning (i.e. deleting) nodes from the tree
- Pre-pruning
 - Apply a statistical test to decide whether to expand a node
 - Add penalty terms in scoring functions to prefer trees with smaller sizes

POST-PRUNING METHOD: REDUCED ERROR PRUNING

- Grow a full tree T using the training set
- Let v be an internal node of the current tree T

- If we prune at v to create a new tree T', in T', the subtree rooted at v will be replaced by a leaf node v', whose label is the majority label for all **training** examples fall under v
- Define the gain of pruning at v as, in the **pruning set**, # of misclassified examples under v (in T) # of misclassified examples that in v' (in T')
- Repeat: Prune at node with largest gain until only negative gain nodes remain

REDUCED ERROR PRUNING EXAMPLE

REDUCED ERROR PRUNING EXAMPLE

Training set

Gain at node X_2 : 1-3=-2

Gain at node X_1 : 3-5=-2

Done!

Pruning set

