ВСЕРОССИЙСКАЯ АКАДЕМИЯ ВНЕШНЕЙ ТОРГОВЛИ

Факультет международного бизнеса

Предметно-аналитическая справка по эконометрике

на тему: «Исследование стоимости фиксированного набора потребительских товаров и услуг»

Работу выполнил:	Научный руководитель:
•	, ,,
Студент 1 курса ФМБ	доктор физмат наук,
Варламов Иван	профессор Д.В. Филиппов
Работа сдана на кафедру « » 2019г.	Оценка работы
	« »2019г.

Москва 2019

1. Подбор данных для анализа

Цель проводимого исследования — построение зависимости стоимости фиксированного набора потребительских товаров и услуг от следующих параметров:

- Курс национальной валюты по отношению к доллару США;
- Доллар к евро обменный курс;
- Мировая цена на уран;
- Экспорт сырой нефти из Российской Федерации;
- Экспорт нефтепродуктов из Российской Федерации;
- Экспорт газа природного в газообразном состоянии из Российской Федерации;
 - Цена на сырую нефть: Западный Техас, Средний уровень (WTI);
 - Экспорт электроэнергии из Российской Федерации;
- Количество сотрудников: Горное дело и лесозаготовка: добыча нефти и газа.

1.1 Временной ряд №1 – XXX

XXX — стоимость фиксированного набора потребительских товаров и услуг; данные представлены в абсолютных значениях в рублях [рубль]. Источник: https://fedstat.ru/indicator/31052.

1.2 Временной ряд №2 – RU

RU – National Currency to US Dollar Exchange Rate: Average of Daily Rates for the Russia Federation (CCUSMA02RUM618N) – Курс национальной валюты по отношению к доллару США: средний дневных курсов для Российской федерации. Данные представлены в [рубль/\$]. Источник: https://fred.stlouisfed.org/series/CCUSMA02RUM618N

1.3 Временной ряд №3 – EUR

EUR – U.S. / Euro Foreign Exchange Rate (EXUSEU) – Доллар к евро обменный курс. Данные представлены в [\$/€]. Источник: https://fred.stlouisfed.org/series/EXUSEU.

1.4 Временной ряд №4 – PURAN

PURAN – Global price of Uranium (PURANUSDM) – Мировая цена на уран, данные представлены в абсолютных значениях в долларах за фунт [\$/lb]. Источник: https://fred.stlouisfed.org/series/PURANUSDM.

1.5 Временной ряд №5 – EXOIL

EXOIL — Экспорт сырой нефти из Российской Федерации. Данные представлены в абсолютных значениях в тысячах долларов [10^3 \$]. Источник: https://fedstat.ru/indicator/37393.

1.6 Временной ряд №6 – PCRUD

PCRUD — Экспорт нефтепродуктов из Российской Федерации. Данные представлены в абсолютных значениях в тысячах долларов [10^3 \$]. Источник: https://fedstat.ru/indicator/37393.

1.7 Временной ряд №7 – PGAS

PGAS – Global price of Natural gas, EU (PNGASEUUSDM) – цена на природный газ. Данные представлены в абсолютных значениях в долларах за м³ [\$/м³]. Источник: https://fred.stlouisfed.org/series/PNGASEUUSDM.

1.8 Временной ряд №8 – POIL

POIL – Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma (MCOILWTICO) – Цены на сырую нефть: Западный Техас, Средний уровень (WTI) - Кушинг, Оклахома. Данные представлены в абсолютных значениях в долларах за баррель [\$/bbls]. Источник: https://fred.stlouisfed.org/series/MCOILWTICO

1.9 Временной ряд №9 – EENER

PGAS — Экспорт электроэнергии из Российской Федерации. Данные представлены в абсолютных значениях в тысячах долларов [10^3 \$]. Источник: https://fedstat.ru/indicator/37393.

1.10 Временной ряд №10 – ЕМР

EMP – All Employees: Mining and Logging: Oil and Gas Extraction (CES1021100001) – Все сотрудники: Горное дело и лесозаготовка: добыча нефти и газа. Данные в абсолютных значениях в тысячах человек [10³ человек]. Данные для США.

Источник: https://fred.stlouisfed.org/series/CES1021100001.

1.11 Описательная статистика

Таблица 1.1 – Описательная статистика 1

Временной	Вариабельность	Среднее	Медиана	Минимум	Максимум
ряд					
XXX	0.29798	10728	10237	5421,2	16122
RU	0.38679	42,113	32,628	23,351	77,217
EUR	0.10217	1,2782	1,2993	1,0545	1,5759
PURAN	0.48840	44,390	40,778	18,568	136,22
EXOIL	0.29831	$1,1064\cdot10^{7}$	$1,0705 \cdot 10^7$	$4,4275 \cdot 10^6$	1,7893·10 ⁷
PCRUD	0.33221	$6,4090\cdot10^6$	$6,0286 \cdot 10^6$	$2,7849 \cdot 10^6$	$1,2550 \cdot 10^7$
PGAS	0.32641	8,8052	8,5600	3,4830	16,020
POIL	0.30886	74,239	74,120	30,320	133,88
EENER	0.32514	73717	69077	30419	$1,3863 \cdot 10^5$
EMP	0.11516	168,32	162,60	139,70	200,80

Таблица 1.2 – Описательная статистика 2

Времен-	Ст. откл.	Ассиметрия	Эксцесс	5%	95%	IQ
ной ряд						
XXX	3196,6	0,090832	-1,2879	5789,2	15578	5741,3
RU	16,289	0,54502	-1,4056	24,490	66,981	29,786
EUR	0,13060	0,078805	-0,87420	1,0808	1,4856	0,22380
PURAN	21,680	1,7800	4,0397	20,679	90,387	23,489
EXOIL	$3,3004 \cdot 10^6$	0,13955	-1,0847	$6,3433\cdot10^6$	$1,6608 \cdot 10^7$	$5,8565\cdot10^6$
PCRUD	2,1291e·10 ⁶	0,46486	-0,44625	$3,4277 \cdot 10^6$	$1,0024 \cdot 10^7$	$3,4357 \cdot 10^6$
PGAS	2,8742	0,24654	-0,37266	4,0700	14,360	4,3325
POIL	22,929	0,19546	-0,84884	41,474	106,40	41,040
EENER	23968	0,73107	0,10778	40121	$1,2259 \cdot 10^5$	27674
EMP	19,383	0,24159	-1,3959	142,10	198,10	36,600

1.12 Временные ряды

Рисунок 1.1 – Временной ряд XXX

Рисунок 1.2 – Временной ряд RU

Рисунок 1.3 – Временной ряд EUR

Рисунок 1.4 – Временной ряд PURAN

Рисунок 1.5 – Временной ряд EXOIL

Рисунок 1.6 – Временной ряд PCRUD

Рисунок 1.7 – Временной ряд PGAS

Рисунок 1.8 – Временной ряд POIL

Рисунок 1.9 – Временной ряд EENER

Рисунок 1.10 – Временной ряд ЕМР

1.13 Диаграммы рассеяния

Рисунок 1.11 – Диаграмма рассеяния XXX и RU

Рисунок 1.12 – Диаграмма рассеяния XXX и EUR

Рисунок 1.13 – Диаграмма рассеяния XXX и PURAN

Рисунок 1.14 — Диаграмма рассеяния XXX и EXOIL

Рисунок 1.15 – Диаграмма рассеяния XXX и PCRUD

Рисунок 1.16 – Диаграмма рассеяния XXX и PGAS

Рисунок 1.17 – Диаграмма рассеяния XXX и POIL

Рисунок 1.17 – Диаграмма рассеяния XXX и EENER

Рисунок 1.19 – Диаграмма рассеяния XXX и EMP

2. Построение модели и начало анализа модели

2.1 Выбор и построение модели множественной регрессии МНК

Модель 1: МНК, использованы наблюдения 2007:01-2019:07 (T = 151) Зависимая переменная: XXX

	Коэффициент	Cr.		t-статистика		
const	13508,3	1695,				*
RU	136,384	8,	74494	15,60	1,70e-032	*
EUR	-5330,77	1037,	92	-5,136	9,16e-07	*1
PURAN	-36,9208	3,	77113	-9,790	1,37e-017	*
EXOIL	8,07909e-0	5,	28742e-05	1,528	0,1288	
PCRUD	0,00029603	3 6,	42394e-05	4,608	9,00e-06	*1
PGAS	-73,9112	30,	3057	-2,439	0,0160	*1
POIL	17,7512	8,	06454	2,201	0,0294	*1
EENER	-0,00403776	0,	00274462	-1,471	0,1435	
EMP	-19,2015	3,	83478	-5,007	1,62e-06	*
реднее зав.	перемен 10	727,61	Ст. откл.	зав. перемен	3196,568	
умма кв. ос	татков 59	315493	Ст. ошибк	а модели	648,5964	
-квадрат	0,	961300	Испр. R-к	вадрат	0,958830	
(9, 141)	38	9,1587	Р-значени	e (F)	6,68e-95	
ог. правдог	одобие -11	86,783	Крит. Ака	ике	2393,566	
рит. Шварца	a 24	23,739	Крит. Хен	нана-Куинна	2405,823	
араметр rho	0,	677412	Стат. Дар	бина-Вотсона	0,636291	
сключая кон	истанту, наибол	њшее р-з	начение по	лучено для пер	еменной 9 (1	EEI
	(RESET) (тольн					
Нулевая ги	ипотеза: специф	икация а	декватна			

```
Тестовая статистика: F(1, 140) = 0,338925
p-значение = P(F(1, 140) > 0,338925) = 0,561387
```

Рисунок 2.1 – Первоначальная модель МНК

2.2 Проверка значимости

2.2.1 Тест Фишера

Нулевая гипотеза – модель в целом не значима

Таблица 2.1 – тест Фишера

t-стат	389,1587
р-знач	6,68·10 ⁻⁹⁵
t _{кр} 1%	2,5356
решение	Значима на 1%-ом уровне значимости

Рисунок 2.2 – распределение вероятности тестовой статистики в случае, когда модель незначима (9,141)

Модель значима на 1%-ом уровне значимости, нулевая гипотеза отвергается

2.2.2 Тест Стьюдента

Нулевая гипотеза – параметр незначим.

 $t_{\text{kp}} 10\% = 1,65573, t_{\text{kp}} 5\% = 1,97693, t_{\text{kp}} 1\% = 2,61115$

Таблица 2.2 – проверка значимости коэффициентов

Регрессор	t-стат	р-знач	t_{\kappap}	решение
RU	15,60	1,70.10-32	$t_{\kappa p} 1\% = 2,61115$	Значим на 1%
EUR	-5,136	9,16·10 ⁻⁷	$t_{\text{kp}} 1\% = 2,61115$	Значим на 1%
PURAN	-9,790	1,37·10 ⁻¹⁷	$t_{\kappa p} 1\% = 2,61115$	Значим на 1%
EXOIL	1,528	0,128	$t_{\rm kp} 10\% = 1,65573$	Не значим
PCRUD	4,608	9,00.10-6	$t_{\kappa p} 1\% = 2,61115$	Значим на 1%
PGAS	-2,439	0,0160	$t_{\kappa p} 5\% = 1,97693$	Значим на 5%
POIL	2,201	0,0294	$t_{\kappa p} 5\% = 1,97693$	Значим на 5%
EENER	-1,471	0,1435	$t_{\rm kp} 10\% = 1,65573$	Не значим
EMP	-5,007	1,62·10 ⁻⁶	$t_{\text{kp}} 1\% = 2,61115$	Значим на 1%

Рисунок 2.3 – распределение вероятности тестовой статистики в случае, когда коэффициент незначим (141 степень свободы)

RU, EUR, PURAN, PCRUD, EMP значимы 1-ом уровне значимости.

PGAS, POIL значимы на 5%-ом уровне значимости.

EXOIL и EENER не значимы.

2.3 RESET-Tect

Вспомогательная регрессия для теста Рамсея МНК, использованы наблюдения 2007:01-2019:07 (T = 151) Зависимая переменная: XXX

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	12914,3	1982,60	6,514	1,22e-09	***
RU	117,932	32,8858	3,586	0,0005	***
EUR	-4920,56	1256,52	-3,916	0,0001	***
PURAN	-35,4977	4,50150	-7,886	8,02e-013	***
EXOIL	6,90591e-05	5,67005e-05	1,218	0,2253	
PCRUD	0,000267464	8,09588e-05	3,304	0,0012	***
PGAS	-73,7640	30,3781	-2,428	0,0164	**
POIL	16,4709	8,37731	1,966	0,0513	*
EENER	-0,00332016	0,00301459	-1,101	0,2726	
EMP	-15,0185	8,14876	-1,843	0,0674	*
yhat^3	2,79396e-010	4,79919e-010	0,5822	0,5614	

Тестовая статистика: F = 0,338925, p-значение = P(F(1,140) > 0,338925) = 0,561

Рисунок 2.5а – тест Рамсея (только кубы)

Модель 1: МНК, использованы наблюдения 2007:01-2019:07 (T = 151) Зависимая переменная: XXX

	Коэффициент	CT.	ошибка	t-статистика	Р-значение	
const	13508,3	1695,	86	7,965	4,99e-013	***
RU	136,384	8,	74494	15,60	1,70e-032	***
EUR	-5330,77	1037,	92	-5,136	9,16e-07	***
PURAN	-36,9208	3,	77113	-9,790	1,37e-017	***
EXOIL	8,07909e-	05 5,2	28742e-05	1,528	0,1288	
PCRUD	0,0002960	33 6,	42394e-05	4,608	9,00e-06	***
PGAS	-73,9112	30,	3057	-2,439	0,0160	**
POIL	17,7512	8,0	06454	2,201	0,0294	**
EENER	-0,0040377	6 0,0	00274462	-1,471	0,1435	
EMP	-19,2015	3,	83478	-5,007	1,62e-06	***
Среднее зав.	. перемен 1	0727,61	Ст. откл.	зав. перемен	3196,568	
Сумма кв. ос	статков 5	9315493	Ст. ошибка	а модели	648,5964	
R-квадрат	0	,961300	Испр. R-к	вадрат	0,958830	
F(9, 141)	3	89,1587	Р-значение	≘ (F)	6,68e-95	
Лог. правдог	подобие -1	186,783	Крит. Акал	ike	2393,566	
Крит. Шварца	a 2	423,739	Крит. Хени	нана-Куинна	2405,823	
Параметр rho	0	,677412	Стат. Дарб	бина-Вотсона	0,636291	

Исключая константу, наибольшее p-значение получено для переменной 9 (EENER)

Тест Рамсея (RESET) (только кубы) — Нулевая гипотеза: спецификация адекватна Тестовая статистика: F(1, 140) = 0,338925 р-значение = P(F(1, 140) > 0,338925) = 0,561387

Рисунок 2.56 – модель МНК

Нулевая гипотеза — спецификация модели адекватна (только кубы). $t_{\rm kp}(10\%)=2,74171.$ t-стат = 0,338925. P-значение = 0,561. Значит нулевая гипотеза не отвергается, спецификация модели адекватна на 10%-ом уровне значимости.

Рисунок 2.6 – распределение вероятности тестовой статистики в случае, когда спецификация модели адекватна

2.4 Анализ мультиколлинеарности параметров с помощью факторов инфляции дисперсии

Строится новая модель, исключающая исследуемый параметр XXX.

```
Метод инфляционных факторов
Минимальное возможное значение = 1.0
Значения > 10.0 могут указывать на наличие мультиколлинеарности
         RU
              7,235
        EUR 6,551
      PURAN 2,383
      EXOIL 10,858
      PCRUD 6,670
       PGAS 2,705
       POIL 12,192
      EENER 1,543
              1,970
        EMP
VIF(j) = 1/(1 - R(j)^2), где R(j) - это коэффициент множественной корреляции
между переменной ј и другими независимыми переменными
Belsley-Kuh-Welsch collinearity diagnostics:
  variance proportions
```

Рисунок 2.7 – метод факторов инфляции дисперсии Фактор инфляции дисперсии для параметров EXOIL и POIL > 10.

Анализ глави n = 151	ных компо	нент		
Собственные	значения	для	матри	цы корреляций
Компонента	Собс. зн	ач.	Доля	Интегральная
1	1,9174		0,958	7 0,9587
2	0,0826		0,041	3 1,0000
Собственные	векторы	(Har	рузка	на компоненты)
	PC1	1	PC2	
EXOIL	0,707	-0,	707	
POIL	0,707	0,	707	

Рисунок 2.8 – анализ главных параметров

Строим новую модель, где регрессоры EXOIL и POIL заменены на собственные векторы PC1 и PC2.

Модель 3: МНК, использованы наблюдения 2007:01-2019:07 (T = 151) Зависимая переменная: XXX

	Коэффициен	т Ст. ошибк	а t-статистика	Р-значение	
const	15720,0	1801,36			***
RU	136,384	8,74494	15,60	1,70e-032	***
EUR	-5330,77	1037,92	-5,136	9,16e-07	***
PURAN	-36,9208	3,77113	-9,790	1,37e-017	***
PCRUD	0,000296	033 6,42394e	-05 4,608	9,00e-06	***
PGAS	-73,9112	30,3057	-2,439	0,0160	**
EENER	-0,004037	76 0,002744	62 -1,471	0,1435	
EMP	-19,2015	3,83478	-5,007	1,62e-06	***
PC1	476,354	111,015	4,291	3,29e-05	***
PC2	99,2638	228,739	0,4340	0,6650	
Среднее за	в. перемен	10727,61 Ст. о	ткл. зав. перемен	3196,568	
Сумма кв.	остатков	59315493 Ст. о	шибка модели	648,5964	
R-квадрат		0,961300 Испр.	R-квадрат	0,958830	
F(9, 141)		389,1587 Р-зна	чение (F)	6,68e-95	
Лог. правд	оподобие -	1186,783 Крит.	Акаике	2393,566	
Крит. Швар	ца	2423,739 Крит.	Хеннана-Куинна	2405,823	
Параметр r	ho	0,677412 Crar.	Дарбина-Вотсона	0,636291	

Исключая константу, наибольшее p-значение получено для переменной 15 (PC2)

Рисунок 2.9 – модель МНК с собственными векторами PC1 и PC2 (EXOIL и POIL заменены)

```
Метод инфляционных факторов
Минимальное возможное значение = 1.0
Значения > 10.0 могут указывать на наличие мультиколлинеарности
```

RU	7,235
EUR	6,551
PURAN	2,383
PCRUD	6,670
PGAS	2,705
EENER	1,543
EMP	1,970
PC1	8,426
PC2	1,542

 $VIF(j) = 1/(1 - R(j)^2)$, где R(j) - это коэффициент множественной корреляции между переменной j и другими независимыми переменными

Belsley-Kuh-Welsch collinearity diagnostics:

variance proportions

Рисунок 2.10 — факторы инфляции дисперсии для новой модели Факторы инфляции дисперсии для всех параметров меньше 10.

2.4 Проверка на избыточные переменные

Модель 1: МНК, использованы наблюдения 2007:01-2019:07 (T = 151) Зависимая переменная: XXX

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	15720,0	1801,36	8,727	6,70e-015	*
RU	136,384	8,74494	15,60	1,70e-032	*
EUR	-5330,77	1037,92	-5,136	9,16e-07	*
PURAN	-36,9208	3,77113	-9,790	1,37e-017	*
PCRUD	0,000296033	6,42394e-0	05 4,608	9,00e-06	*
PGAS	-73,9112	30,3057	-2,439	0,0160	*
EENER	-0,00403776	0,00274462	2 -1,471	0,1435	
EMP	-19,2015	3,83478	-5,007	1,62e-06	*
PC1	476,354	111,015	4,291	3,29e-05	*
PC2	99,2638	228,739	0,4340	0,6650	
еднее за	в. перемен 107	27,61 Cr. or:	кл. зав. перемен	3196,568	
MMA KB.	остатков 593	15493 Ст. ош	ибка модели	648,5964	
квадрат	0,9	61300 Испр. И	R-квадрат	0,958830	
9, 141)	389	,1587 Р-значе	ение (F)	6,68e-95	
р. правд	оподобие -118	6,783 Крит. 1	Акаике	2393,566	
ит. Швар	ца 242	3,739 Крит. У	Хеннана-Куинна	2405,823	
араметр г	ho 0,6	77412 Стат. Д	Царбина-Вотсона	0,636291	

Рисунок 2.11a – «длинная» модель МНК

Модель 1 💥	Модель 2 💥					
	МНК, использо переменная: Х		ения 2007:	01-2019:07 (T	= 151)	
	Коэффицие	нт Ст.	ошибка	t-статистика	Р-значение	
				8,716		
				15,49		
EUR	-5251,83	980,	423	-5,357	3,31e-07	**
PURAN	-36,8008	3,	70397	-9,935	5,18e-018	**
PCRUD	0,00029	8946 6,	35607e-05	4,703	5,97e-06	**
PGAS	-87,9974	29,	2644	-3,007	0,0031	**
EMP	-18,8247	3,	78448	-4,974	1,85e-06	**
PC1	436,931	108,	934	4,011	9,71e-05	***
Среднее за	ав. перемен	10727,61	Ст. откл.	зав. перемен	3196,568	
Сумма кв.	остатков	60551004	Ст. ошибн	а модели	650,7178	
				вадрат		
F(7, 143)		496,6731	Р-значени	re (F)	5,74e-97	
Лог. правд	доподобие	-1188,339	Крит. Ака	ике	2392,679	
Крит. Швар	рца	2416,817	Крит. Хен	нана-Куинна	2402,485	
Параметр і	rho	0,655679	Стат. Дар	бина-Вотсона	0,679877	

Рисунок 2.116 – «короткая» модель МНК

Тестирование модели 1:

Нулевая гипотеза: параметры регрессии нулевые EENER, PC2

Тестовая статистика: F(2, 141) = 1,46848, P-значение 0,233776 Omitting variables improved 3 of 3 information criteria.

Модель 2: МНК, использованы наблюдения 2007:01-2019:07 (T=151) Зависимая переменная: XXX

Коэфф	фициент Ст	. ошибка	t-статистика	Р-значение	
const 15426,8	3 1770	,01	8,716	6,58e-015	***
RU 134,7	753 8	,70052	15,49	2,19e-032	***
EUR -5251,8	33 980	,423	-5,357	3,31e-07	***
PURAN -36,8	3008 3	,70397	-9,935	5,18e-018	***
PCRUD 0,0	000298946 6	,35607e-05	4,703	5,97e-06	***
PGAS -87,9	9974 29	,2644	-3,007	0,0031	***
EMP -18,8	3247 3	,78448	-4,974	1,85e-06	***
PC1 436,9	931 108	,934	4,011	9,71e-05	***
Среднее зав. переме	ен 10727,61	Ст. откл.	зав. перемен	3196,568	
Сумма кв. остатков	60551004	Ст. ошибк	а модели	650,7178	
R-квадрат	0,960494	Испр. R-к	вадрат	0,958560	
F(7, 143)	496,6731	Р-значени	e (F)	5,74e-97	
Лог. правдоподобие	-1188,339	Крит. Ака	ике	2392,679	
Крит. Шварца	2416,817	Крит. Хен	нана-Куинна	2402,485	
Параметр rho	0,655679	Стат. Дар	бина-Вотсона	0,679877	

Рисунок 2.11в – тест на избыточные переменные

 H_0 — параметры EENER и PC2 являются незначимыми. $t_{\kappa p}(10\%) = 2,3406$. t-стат = 1,46848. P-значение = 0,233776. Значит нулевая гипотеза не отвергается, параметры EENER и PC2 являются незначимыми на 10%-ом уровне значимости. Исключаем EENER и PC2

```
F(2, 141)
Правосторонняя вероятность = 0,1
Дополняющая вероятность = 0,9
Критическое значение = 2,3406
```

Рисунок 2.12 – Расчет критического значения

Рисунок 2.13 – Распределение F-статистики

Теперь необходимо провести RESET тест для «короткой модели»

Вспомогательная регрессия для теста Рамсея МНК, использованы наблюдения 2007:01-2019:07 (T = 151) Зависимая переменная: XXX

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	14766,0	2164,77	6,821	2,40e-010	***
RU	118,877	31,0437	3,829	0,0002	***
EUR	-4891,49	1193,04	-4,100	6,92e-05	***
PURAN	-35,7606	4,19509	-8,524	2,05e-014	***
PCRUD	0,000273466	7,96648e-05	3,433	0,0008	***
PGAS	-86,1146	29,5500	-2,914	0,0041	***
EMP	-15,2749	7,66597	-1,993	0,0482	**
PC1	400,106	129,235	3,096	0,0024	***
vhat^3	2,39829e-010	4,50056e-010	0,5329	0,5949	

Тестовая статистика: F = 0,283969, p-значение = P(F(1,142) > 0,283969) = 0,595

Рисунок 2.14 – тест Рамсея (только кубы)

Нулевая гипотеза — спецификация модели адекватна (только кубы). $t_{\rm kp}(10\%) = 2,74119$. t-стат = 0,283969. P-значение = 0,595. Значит нулевая гипотеза не отвергается, спецификация модели адекватна на 10%-ом уровне значимости.

2.5 Анализ структурного сдвига

Тест на отношение правдоподобия Квандта (Quandt) для структурных изменений в неизвестной точке, с 15-процентным цензурированием:
Максимум F(8, 135) = 42,9722 достигается для наблюдения 2014:12
Asymptotic p-value = 2,99309e-071 for chi-square(8) = 343,777

Рисунок 2.15 – тест на отношения правдоподобия Квандта

Рисунок 2.16 – F-статистика для теста Чоу

Максимум достигается для наблюдения 2014:12

Расширенная регрессия для теста Чоу МНК, использованы наблюдения 2007:01-2019:07 (T = 151) Зависимая переменная: XXX

	Коэффицие	ент Ст.	ошибка	t-статистика	Р-значение	
const	-1580,97	1505,	58	-1,050	0,2956	
RU	117,412	22,	8360	5,142	9,37e-07	***
EUR	-1016,64	663,	599	-1,532	0,1279	
PURAN	-13,3461	2,	60725	-5,119	1,04e-06	***
PCRUD	6,20750	e-05 4,	38871e-05	1,414	0,1595	
PGAS	-130,272	21,	2381	-6,134	8,90e-09	***
EMP	55,1350	6,	69354	8,237	1,35e-013	***
PC1	254,330	79,	4309	3,202	0,0017	***
splitdum	20946,6	2402,	07	8,720	9,01e-015	***
sd RU	-80,9412	25,	1410	-3,219	0,0016	***
sd EUR	1814,46	1547,	77	1,172	0,2431	
sd PURAN	84,7859	24,	6327	3,442	0,0008	***
sd PCRUD	-3,95984	le-05 0,	000101824	-0,3889	0,6980	
sd PGAS	-138,860	56,	2220	-2,470	0,0148	**
sd EMP	-102,470	9,	64911	-10,62	1,59e-019	***
sd_PC1	467,942	164,	059	2,852	0,0050	***
Среднее зав	. перемен	10727,61	Ст. откл.	зав. перемен	3196,568	
Сумма кв. о	статков	17073457	Ст. ошибк	а модели	355,6263	
R-квадрат		0,988861	Испр. R-к	вадрат	0,987623	
F(15, 135)		798,9423	Р-значени	re (F)	8,0e-124	
Лог. правдо	подобие	-1092,759	Крит. Ака	ике	2217,519	
Крит. Шварц	a	2265,795	Крит. Хен	нана-Куинна	2237,131	
Параметр rh	0	0,689471	Стат. Дар	бина-Вотсона	0,623772	

Тест Чоу для структурных изменений в точке 2014:12 F(8, 135) = 42,9722 р-значение 0,0000

Рисунок 2.17 –теста Чоу для структурных изменений в точке 2014:12

Нулевая гипотеза — структурного сдвига нет. $t_{\kappa p}(1\%) = 2,64564$. t-стат = 42,9722. P - значение = 0. Значит нулевая гипотеза отвергается, структурный сдвиг есть на 1%-ом уровне значимости.

Рисунок 2.18 – распределение вероятности в случае отсутствия структурного сдвига

2.5 Построение и анализ модели после структурного сдвига

2.5.1 Выбор и построение модели множественной регрессии МНК

Модель 2: МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

				t-статистика		
const	16333,3			8,994		***
RU	31,1444	12,3	630	2,519	0,0153	**
EUR	612,657	1358,3	4	0,4510	0,6541	
PURAN	70,4400	24,7	226	2,849	0,0065	***
EXOIL	0,00013527	6,8	8526e-05	1,965	0,0555	*
PCRUD	-2,58548e-0	5 9,6	8836e-05	-0,02669	0,9788	
PGAS	-270,711	53,2	875	-5,080	6,71e-06	***
POIL	26,3846	11,5	867	2,277	0,0275	**
EENER	0,00501844	0,0	0386844	1,297	0,2010	
EMP	-47,2522	7,0	0216	-6,748	2,18e-08	***
Среднее зав.	перемен 14	365,57	Ст. откл.	зав. перемен	1025,097	
Сумма кв. ос	татков 5	122632	Ст. ошибка	а модели	343,3414	
R-квадрат	0,	906175	Испр. К-к	вадрат	0,887818	
F(9, 46)	49	36391	Р-значение	≘ (F)	1,15e-20	
Лог. правдоп	одобие -40	,9213	Крит. Акад	ike	821,8426	
Крит. Шварца	84:	2,0961	Крит. Хени	нана-Куинна	829,6948	
Параметр rho	0,	172851	Стат. Дарб	бина-Вотсона	1,038005	

Исключая константу, наибольшее р-значение получено для переменной 6 (PCRUD)

Рисунок 2.19 – модель МНК после анализа структурного сдвига

2.5.2 RESET-тест

Вспомогательная регрессия для теста Рамсея МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

	Коэффициент	Ст. ошибка	t-статистика	Р-значение
const	150112	512728	0,2928	0,7711
RU	340,707	1361,02	0,2503	0,8035
EUR	6938,53	27165,5	0,2554	0,7996
PURAN	771,560	3074,10	0,2510	0,8030
EXOIL	0,00144774	0,00591203	0,2449	0,8077
PCRUD	-4,95554e-05	0,000126844	-0,3907	0,6979
PGAS	-2993,77	11839,1	-0,2529	0,8015
POIL	284,767	1150,36	0,2475	0,8056
EENER	0,0532417	0,219583	0,2425	0,8095
EMP	-525,162	2068,72	-0,2539	0,8008
yhat^2	-0,000941637	0,00314353	-0,2995	0,7659
yhat^3	2,76008e-08	7,50306e-08	0,3679	0,7147

Тестовая статистика: F = 3,279104, p-значение = P(F(2,44) > 3,2791) = 0,047

Нулевая гипотеза: спецификация адекватна Тестовая статистика: F(2, 44) = 3,2791

p-значение = P(F(2, 44) > 3,2791) = 0,0470481

Рисунок 2.20а – тест Рамсея (квадраты и кубы)

	Коэффици	ент	Ст. ошиб	ка t-статист	ика Р-значение	1
const	16333,3	18	316,05	8,994	1,06e-011	**
RU	31,1444		12,3630	2,519	0,0153	**
EUR	612,657	13	358,34	0,4510	0,6541	
PURAN	70,4400		24,7226	2,849	0,0065	**
EXOIL	0,0001	35275	6,88526	e-05 1,965	0,0555	*
PCRUD	-2,5854	8e-06	9,68836	-0,0266	9 0,9788	
PGAS	-270,711		53,2875	-5,080	6,71e-06	**
POIL	26,3846		11,5867	2,277	0,0275	**
EENER	0,0050	1844	0,00386	344 1,297	0,2010	
EMP	-47,2522		7,00216	-6,748	2,18e-08	**
реднее за	ав. перемен	14365,5	7 Cr. (откл. зав. пере	мен 1025,097	
Сумма кв.	OCTATKOB	542263	32 Cr. (ошибка модели	343,3414	
R-квадрат		0,90617	75 Испр	. R-квадрат	0,887818	
(9, 46)		49,3639	91 Р-вна	ачение (F)	1,15e-20	
Пог. правд	доподобие	-400,921	.3 Крит	. Акаике	821,8426	
Крит. Швај	рца	842,096	і Крит	. Хеннана-Куинн	a 829,6948	
Параметр	rho	0,47285	о Стат	. Дарбина-Вотсо	на 1,038005	

Рисунок 2.20б – модель МНК

Нулевая гипотеза — спецификация модели адекватна (квадраты и кубы). $t_{\kappa p}(1\%) = 5,12263$. t-стат = 3,2791. Значит нулевая гипотеза не отвергается, спецификация модели адекватна на 1%-ом уровне значимости.

Рисунок 2.21 — распределение вероятности тестовой статистики в случае, когда спецификация модели адекватна

2.5.3 Тест Фишера

Нулевая гипотеза – модель в целом не значима

Таблица 2.2 – тест Фишера

t-стат	49,36391
р-знач	$1,15\cdot 10^{-20}$
t _{кр} 1%	2,82025
решение	Значима на 1%-ом уровне значимости

Рисунок 2.22 – распределение вероятности тестовой статистики в случае, когда модель незначима (9,46)

Модель значима на 1%-ом уровне значимости, нулевая гипотеза отвергается.

2.5.4 Тест Стьюдента

Нулевая гипотеза – параметр незначим.

 $t_{\kappa p}\,10\%=1,\!67866,\,t_{\kappa p}\,5\%=2,\!0129,\,t_{\kappa p}\,1\%=2,\!68701$

Таблица 2.2 – проверка значимости коэффициентов

Регрессор	t-стат	р-знач	t_{\kappap}	решение
RU	2,519	0,0153	$t_{\text{Kp}} 5\% = 2,0129$	Значим на 5%
EUR	0,4510	0,6541	$t_{\rm kp} 10\% = 1,67866$	Не значим
PURAN	2,849	0,0065	$t_{\kappa p} 1\% = 2,68701$	Значим на 1%
EXOIL	1,965	0,00650	$t_{\kappa p} 10\% = 1,67866$	Значим на 10%
PCRUD	-0,02669	0,9788	$t_{\rm kp} 10\% = 1,67866$	Не значим
PGAS	-5,080	6,71·10 ⁻⁶	$t_{\kappa p} 1\% = 2,68701$	Значим на 1%
POIL	2,277	0,0275	$t_{\rm Kp} 5\% = 2,0129$	Значим на 5%
EENER	1,297	0,2010	$t_{\rm kp} 10\% = 1,67866$	Не значим
EMP	-6,748	2,18·10 ⁻⁸	$t_{\kappa p} 1\% = 2,68701$	Значим на 1%

Рисунок 2.23 – распределение вероятности тестовой статистики в случае, когда коэффициент незначим (48 степеней свободы)

PURAN, EMP, PGAS значимы 1%-ом уровне значимости.

RU, POIL значимы на 5%-ом уровне значимости.

EXOIL значим на 1%-ом уровне значимости.

EUR, EENER и PCRUD не значимы.

2.5.5 Анализ мультиколлинеарности параметров с помощью факторов инфляции дисперсии

Строится новая модель, исключающая исследуемый параметр XXX.

```
Метод инфляционных факторов
Минимальное возможное значение = 1.0
Значения > 10.0 могут указывать на наличие мультиколлинеарности
         RU
              1,888
              1,760
        EUR
      PURAN 10,730
      EXOIL
              7,518
              5,294
      PCRUD
       PGAS
              4,032
       POIL 5,759
      EENER 1,754
              9,855
        EMP
VIF(j) = 1/(1 - R(j)^2), где R(j) - это коэффициент множественной корреляции
между переменной ј и другими независимыми переменными
```

Belsley-Kuh-Welsch collinearity diagnostics:

Рисунок 2.24 – метод факторов инфляции дисперсии

Фактор инфляции дисперсии для PURAN больше 10. Наибольшее значение за исключением PURAN имеет EMP.

```
Анализ главных компонент n = 56

Собственные значения для матрицы корреляций Компонента Собс. знач. Доля Интегральная 1 1,9010 0,9505 0,9505 2 0,0990 0,0495 1,0000 Собственные векторы (нагрузка на компоненты)

РС1 РС2

PURAN 0,707 -0,707

EMP 0,707 0,707
```

Рисунок 2.25 – анализ главных параметров

Строим новую модель, где регрессоры PURAN и EMP заменены на собственные векторы PC1 и PC2.

Модель 2: МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

	Коэффициент	Ст. ошибка	t-статистика	Р-значение				
const	10584,4	1653,59	6,401	7,24e-08	***			
RU	31,1444	12,3630	2,519	0,0153	**			
EUR	612,657	1358,34	0,4510	0,6541				
EXOIL	0,000135275	6,88526e-05	1,965	0,0555	*			
PCRUD	-2,58548e-06	9,68836e-05	-0,02669	0,9788				
PGAS	-270,711	53,2875	-5,080	6,71e-06	***			
POIL	26,3846	11,5867	2,277	0,0275	**			
EENER	0,00501844	0,00386844	1,297	0,2010				
PC1	-387,976	48,4042	-8,015	2,81e-010	***			
PC2	-999,038	204,396	-4,888	1,28e-05	***			
Среднее зап	в. перемен 1436	5,57 Ст. откл.	зав. перемен	1025,097				
Сумма кв. о	остатков 542	2632 Ст. ошибк	а модели	343,3414				
R-квадрат	0,90	6175 Испр. R-к	вадрат	0,887818				
F(9, 46)	49,3	6391 Р-значени	e (F)	1,15e-20				
Лог. правдо	оподобие -400,	9213 Крит. Ака:	ике	821,8426				
Крит. Шварі	ца 842 ,	0961 Крит. Хен	нана-Куинна	829,6948				
Параметр rh	no 0,47	2851 Стат. Дар	бина-Вотсона	1,038005				
Исключая к	онстанту, наибольш	ее р-значение по	лучено для пер	еменной 6 (PCRUD)			
Тест Рамсея (RESET) — Нулевая гипотеза: спецификация адекватна Тестовая статистика: F(2, 44) = 3,2791								

Рисунок 2.26 – модель МНК с собственными векторами PC1 и PC2 (PURAN и EMP заменены)

```
Метод инфляционных факторов
Минимальное возможное значение = 1.0
Значения > 10.0 могут указывать на наличие мультиколлинеарности

RU 1,888
EUR 1,760
EXOIL 7,518
PCRUD 5,294
PGAS 4,032
POIL 5,759
EENER 1,754
PC1 2,078
PC2 1,929
```

 $VIF(j) = 1/(1 - R(j)^2)$, где R(j) - это коэффициент множественной корреляции между переменной j и другими независимыми переменными

Belsley-Kuh-Welsch collinearity diagnostics:

p-значение = P(F(2, 44) > 3,2791) = 0,0470481

variance proportions

Рисунок 2.27 –факторы инфляции дисперсии для новой модели

2.5.6 Проверка на избыточные переменные

Модель 2: МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

Зависимая	переменная: XXX					
	Коэффициент	Ст.	ошибка	t-статистика	Р-значение	:
const	10584,4	1653,	59	6,401	7,24e-08	***
RU	31,1444	12,	3630	2,519	0,0153	**
EUR	612,657			0,4510		
EXOIL	0,000135275					*
PCRUD	-2,58548e-06	9,	68836e-05	-0,02669	0,9788	
	-270,711					***
POIL	26,3846	11,	5867	2,277	0,0275	**
EENER	0,00501844					
PC1	-387,976	48,	4042	-8,015	2,81e-010	***
	-999,038					***
	ав. перемен 1436					
Сумма кв.	остатков 542	2632	Ст. ошибк	а модели	343,3414	
R-квадрат	0,90	6175	Испр. R-к	вадрат	0,887818	
F(9, 46)	49,3	6391	Р-значени	te (F)	1,15e-20	
Лог. правд	цоподобие -400,	9213	Крит. Ака	ике	821,8426	
Крит. Швар	оца 842,	0961	Крит. Хен	нана-Куинна	829,6948	
Параметр г	ho 0,47	2851	Стат. Дар	бина-Вотсона	1,038005	
Исключая к	онстанту, наибольш	ee p-s	вначение по	лучено для пер	еменной 6 (PCRUD)
Нулевая	ея (RESET) — гипотеза: специфик и статистика: F(2,					
	ие = P(F(2, 44) >		•	481		

Рисунок 2.28а – «длинная» модель МНК

Модель 3: МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

	Коэффициент	CT.	ошибка	t-статистика	Р-значение	
const	11116,7	887,6	60	12,52	6,91e-017	***
RU	35,8477	11,0	872	3,233	0,0022	***
EXOIL	0,0001678	99 5,3	2734e-05	3,152	0,0028	***
PGAS	-251,187	40,0	764	-6,268	9,04e-08	***
POIL	22,0702	10,8	787	2,029	0,0479	**
PC1	-391,014	43,6	559	-8,957	6,84e-012	***
PC2	-973,379	196,7	43	-4,947	9,26e-06	***
Сумма кв. о R-квадрат F(6, 49)	7 подобие -4 a 8	5664679 ,901987 5,15572	Ст. ошибк Испр. R-к Р-значени Крит. Ака Крит. Хен	зав. перемен а модели вадрат е (F) ике нана-Куинна бина-Вотсона	340,0084 0,889986 5,36e-23 818,2880	
Тестовая	(RESET) - ипотеза: специ статистика: F(e = P(F(2, 47)	2, 47) =	2,68151	9257		

Рисунок 2.28б – «короткая» модель МНК

Тестирование модели 2:

Нулевая гипотеза: параметры регрессии нулевые EUR, PCRUD, EENER
Тестовая статистика: F(3, 46) = 0,684426, P-значение 0,566135
Omitting variables improved 3 of 3 information criteria.

Модель 4: МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

нт Ст. (ошибка	t-статистика	Р-значение	
887,6	60	12,52	6,91e-017	***
11,0	872	3,233	0,0022	***
7899 5,3	2734e-05	3,152	0,0028	***
40,0	764	-6,268	9,04e-08	***
10,8	787	2,029	0,0479	**
43,6	559	-8 , 957	6,84e-012	***
196,7	43	-4,947	9,26e-06	***
14365,57	Ст. откл.	зав. перемен	1025,097	
5664679	Ст. ошибк	а модели	340,0084	
0,901987	Испр. R-к	вадрат	0,889986	
75,15572	Р-значени	re (F)	5,36e-23	
-402,1440	Крит. Ака	ике	818,2880	
832,4655	Крит. Хен	нана-Куинна	823,7846	
0,507482	Стат. Дар	бина-Вотсона	0,980284	
	887,66 11,08 7899 5,33 40,07 10,87 43,65 196,74 14365,57 5664679 0,901987 75,15572 -402,1440 832,4655	887,660 11,0872 7899 5,32734e-05 40,0764 10,8787 43,6559 196,743 14365,57 Ст. откл. 5664679 Ст. ошибк 0,901987 Испр. R-к 75,15572 Р-значени 402,1440 Крит. Ака 832,4655 Крит. Хен	887,660 12,52 11,0872 3,233 7899 5,32734e-05 3,152 40,0764 -6,268 10,8787 2,029 43,6559 -8,957 196,743 -4,947 14365,57 Ст. откл. зав. перемен 5664679 Ст. ошибка модели 0,901987 Испр. R-квадрат 75,15572 Р-значение (F) -402,1440 Крит. Акаике 832,4655 Крит. Хеннана-Куинна	887,660 12,52 6,91e-017 11,0872 3,233 0,0022 7899 5,32734e-05 3,152 0,0028 40,0764 -6,268 9,04e-08 10,8787 2,029 0,0479 43,6559 -8,957 6,84e-012 196,743 -4,947 9,26e-06 14365,57 Ст. откл. зав. перемен 1025,097 5664679 Ст. ошибка модели 340,0084 0,901987 Испр. R-квадрат 0,889986 75,15572 Р-значение (F) 5,36e-23 -402,1440 Крит. Акаике 818,2880 832,4655 Крит. Хеннана-Куинна 823,7846

Рисунок 2.28в – тест на избыточные переменные

 H_0 — параметры EUR, PCRUD и EENER являются незначимыми. $t_{\rm kp}(10\%) = 2,20689$. t-стат = 0,684426. P-значение = 0,566135. Значит нулевая гипотеза не отвергается, параметры EUR, PCRUD и EENER являются незначимыми на 10%-ом уровне значимости. Исключаем EUR, PCRUD и EENER

```
F(3, 46)
Правосторонняя вероятность = 0,1
Дополняющая вероятность = 0,9
Критическое значение = 2,20689
```

Рисунок 2.29 – Расчет критического значения

Рисунок 2.30 – Распределение F-статистики

Теперь необходимо провести RESET тест для «короткой модели»

Вспомогательная регрессия для теста Рамсея МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

	Коэффициент	Ст. ошибка	t-статистика	Р-значение
const	85984,9	275334	0,3123	0,7562
RU	368,219	1509,50	0,2439	0,8083
EXOIL	0,00167025	0,00707961	0,2359	0,8145
PGAS	-2612,27	10576,3	-0,2470	0,8060
POIL	224,860	926,619	0,2427	0,8093
PC1	-4121,58	16545,1	-0,2491	0,8044
PC2	-10114,1	41021,4	-0,2466	0,8063
yhat^2	-0,000872529	0,00304655	-0,2864	0,7758
yhat^3	2,55105e-08	7,31079e-08	0,3489	0,7287

Тестовая статистика: F = 2,681513, p-значение = P(F(2,47) > 2,68151) = 0,0789

Рисунок 2.31 – тест Рамсея (квадраты и кубы)

Нулевая гипотеза — спецификация модели адекватна (квадраты и кубы). $t_{\rm kp}(5\%)=3,19506$. t-стат = 2,68151. P-значение = 0,0789257. Значит нулевая гипотеза не отвергается, спецификация модели адекватна на 5%-ом уровне значимости.

3. Продолжение анализа модели

3.1 Тест Феррара-Глобера

Коэффициенты корреляции, наблюдения 2014:12 - 2019:07 5% критические значения (двухсторонние) = 0,2632 для n = 56

RU	EXOIL	PGAS	POIL	PC1	
1,0000	-0,0954	-0,2565	-0,4002	0,1617	RU
	1,0000	0,4513	0,8195	-0,3289	EXOIL
		1,0000	0,4912	0,2440	PGAS
			1,0000	-0,3947	POIL
				1,0000	PC1

PC2 -0,0665 RU -0,5489 EXOIL -0,5158 PGAS -0,3666 POIL 0,0000 PC1 1,0000 PC2

Рисунок 3.1 – коэффициенты корреляция

	RU	EXOIL	PGAS	POIL	PC1	PC2
RU	1	-0,0954	-0,2565	-0,4002	0,1617	-0,0665
EXOIL	-0,0954	1	0,4513	0,8195	-0,3289	-0,5489
PGAS	-0,2565	0,4513	1	0,4912	0,244	-0,5158
POIL	-0,4002	0,8195	0,4912	1	-0,3947	-0,3666
PC1	0,1617	-0,3289	0,244	-0,3947	1	0
PC2	-0,0665	-0,5489	-0,5158	-0,3666	0	1

Рисунок 3.2 – Корреляционная матрица

Определитель, р	0,052267
T	56
m	6
FG	153,9641

Рисунок 3.3 – Расчет тестовой статистики

Хи-квадрат (15)
Правосторонняя вероятность = 0,01
Дополняющая вероятность = 0,99
Критическое значение = 30,5779

Рисунок $3.3 - Поиск t_{kp}$

Хи-квадрат(15): площадь правее 153,964 = 3,92897e-025 (левее: 1)

Рисунок 3.4 – Поиск р-значения

Рисунок 3.5 – Распределение тестовой статистики

Нулевая гипотеза — мультиколлинеарность отсутствует. $t_{\kappa p}(1\%) = 30,5779$. t-стат = 153,9641. Р-значение = 3,92897·0⁻²⁵. Значит нулевая гипотеза не отвергается, мультиколлинеарность присутствует на 1%-ом уровне значимости, тест не пройден.

3.2 Тесты по проверке гомоскедастичности

3.2.1 Тест Уайта

р-значение = 0,424582

Модель 3: МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

	Коэффицие	нт Ст.	ошибка	t-статистика	Р-значение	
const	11116,7	887,6	 660	12,52		***
RU	35,8477	11,0	0872	3,233	0,0022	***
EXOIL	0,00016	7899 5,3	32734e-05	3,152	0,0028	***
PGAS	-251,187	40,0	0764	-6,268	9,04e-08	***
POIL	22,0702	10,8	3787	2,029	0,0479	**
PC1	-391,014	43,6	5559	-8,957	6,84e-012	***
PC2	-973,379	196,7	743	-4,947	9,26e-06	***
Среднее зав	. перемен	14365,57	Ст. откл	. зав. перемен	1025,097	
Сумма кв. о	статков	5664679	Ст. ошиб	ка модели	340,0084	
R-квадрат		0,901987	Испр. R-	квадрат	0,889986	
F(6, 49)		75,15572	Р-значен	ие (F)	5,36e-23	
_	подобие				818,2880	
Крит. Шварца		•	_	ннана-Куинна	•	
Параметр rho	0	0,507482	Стат. Да	рбина-Вотсона	0,980284	
Тестовая ((RESET) - ипотеза: спе статистика: e = P(F(2, 4	F(2, 47) =	2,68151	89257		
Нулевая ги Тестовая ((White) на го ипотеза: гет статистика: е = Р(Хи-ква	ероскедасти LM = 41,281	ичность от l	сутствует		
Тест Бриша-Пэрана (Breusch-Pagan) на ретероскедастичность — Нулевая гипотеза: ретероскедастичность отсутствует Тестовая статистика: LM = 13,7184 р-значение = P(Хи-квадрат(6) > 13,7184) = 0,0329454						
Нулевая г	мальное расп ипотеза: оши статистика: Х	бки распред	целены по	нормальному за: 33	кону	

Рисунок 3.6 – модель МНК

Тест Вайта (White) на гетероскедастичность МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: uhat^2

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	-8,18270e+06	8,43038e+06	-0,9706	0,3400	
RU	148893	213282	0,6981	0,4909	
EXOIL	-0,354995	0,721729	-0,4919	0,6266	
PGAS	-923897	520580	-1,775	0,0868	*
POIL	297387	151400	1,964	0,0595	*
PC1	211065	784044	0,2692	0,7897	
PC2	984668	3,16184e+06	0,3114	0,7578	
sq RU	-502,365	1310,51	-0,3833	0,7044	
X2 X3	0,0106940	0,00963540	1,110	0,2765	
X2_X4	7206,58	6857,39	1,051	0,3023	
X2 X5	-4133,80	1921,74	-2,151	0,0402	**
X2_X6	-894,992	8205,90	-0,1091	0,9139	
X2 X7	-15050,4	40769,2	-0,3692	0,7148	
sq_EXOIL	-7,44071e-08	2,35899e-08	-3,154	0,0038	***
X3_X4	0,00757364	0,0211057	0,3588	0,7224	
X3_X5	0,0175762	0,00912208	1,927	0,0642	*
X3 X6	5,42631e-05	0,0502349	0,001080	0,9991	
X3_X7	-0,0200548	0,113511	-0,1767	0,8610	
sq_PGAS	50919,0	15426,2	3,301	0,0026	***
X4_X5	-5913,04	4989,44	-1,185	0,2459	
X4 X6	-35075,4	29155,6	-1,203	0,2390	
X4_X7	28668,2	82637,1	0,3469	0,7312	
sq_POIL	-1386,83	1062,45	-1,305	0,2024	
X5_X6	764,410	6532,38	0,1170	0,9077	
X5_X7	-6642,44	28527,4	-0,2328	0,8176	
sq_PC1	33025,3	48087,3	0,6868	0,4979	
X6_X7	-48710,1	134937	-0,3610	0,7208	
sq_PC2	149044	256931	0,5801	0,5665	

Неисправленный R-квадрат = 0,737161

Тестовая статистика: $TR^2 = 41,281027$, p-значение = P(Xи-квадрат(27) > 41,281027) = 0,038694

Рисунок 3.7 – тест Уайта

Нулевая гипотеза — гомоскедастичность присутствует. $t_{\kappa p}(1\%) = 46,9629$. t-стат = 41,281027. P-значение = 0,038694. Значит нулевая гипотеза не отвергается, гомоскедастичность присутствует на 1%-ом уровне значимости.

Рисунок 3.8 – тестовая статистика для теста Уайта

3.2.2 Тест Бриша-Пэгана

Тест Бриша-Пэгана (Breusch-Pagan) на гетероскедастичность МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: Масштабированное uhat^2

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	0,128544	3,35160	0,03835	0,9696	
RU	0,0124570	0,0418628	0,2976	0,7673	
EXOIL	4,39348e-07	2,01148e-07	2,184	0,0338	**
PGAS	-0,375640	0,151319	-2,482	0,0165	**
POIL	-0,0238674	0,0410753	-0,5811	0,5639	
PC1	0,0821170	0,164835	0,4982	0,6206	
PC2	-0,471195	0,742857	-0,6343	0,5288	

Объясненная сумма квадратов = 27,4367

Тестовая статистика: LM = 13,718362, р-значение = P(Xи-квадрат(6) > 13,718362) = 0,032945

Рисунок 3.9 — тест Бриша-Пэгана

Нулевая гипотеза — гомоскедастичность присутствует. $t_{\kappa p}(1\%) = 16,8119$. t-стат = 13,748362. P-значение = 0,032945. Значит нулевая гипотеза не отвергается, гомоскедастичность присутствует на 1%-ом уровне значимости.

Рисунок 3.10 – тестовая статистика для теста Бриша-Пэгана

3.3. Тест на нормальное распределение ошибок

Распределение частот для uhat3, наблюдения 1-56 Количество столбцов = 7, среднее = -1,55913e-012, ст. откл. = 340,008

интерн	ал	середина	частота	OTH.	инт	•
<	-526,83	-647,71	3	5,36%	5,36%	*
-526,83 -	-285,07	-405,95	6	10,71%	16,07%	***
-285,07 -	-43,317	-164,19	19	33,93%	50,00%	******
-43,317 -	198,44	77,561	14	25,00%	75,00%	******
198,44 -	440,19	319,32	8	14,29%	89,29%	****
440,19 -	681,95	561,07	4	7,14%	96,43%	**
>=	681,95	802,83	2	3,57%	100,00%	*

Нулевая гипотеза - нормальное распределение: Хи-квадрат(2) = 1,713 р-значение 0,42458

Рисунок 3.11 – тест на нормальное распределение ошибок

Нулевая гипотеза — ошибки распределены по нормальному закону. $t_{\kappa p}(10\%) = 4,60517$. t-стат = 1,7133. P-значение = 0,424582. Значит нулевая гипотеза не отвергается, ошибки распределены по нормальному закону на 10%-ом уровне значимости.

Рисунок 3.12 — распределение тестовой статистики теста на нормальность распределения ошибок

Модель 3: МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

	Коэффициент	Cr.	ошибка	t-статистика	Р-значение	
const	11116,7	887,6	 60	12,52	6,91e-017	***
RU	35,8477			3,233	0,0022	***
EXOIL	0,0001678	•			0,0028	***
PGAS	-251,187	40.0	764		9,04e-08	***
POIL	22,0702	10,8			0,0479	**
PC1	-391,014	43,6			6,84e-012	***
PC2	•	196,7		-4,947	•	***
Среднее за			Cr. ork	л. зав. перемен	1025,097	
Сумма кв.	остатков	5664679	Ст. оши	бка модели	340,0084	
R-квадрат	0	,901987	Испр. В	-квадрат	0,889986	
F(6, 49)	7	5,15572	Р-значе	ние (F)	5,36e-23	
Лог. правд	оподобие -4	02,1440	Крит. А	каике	818,2880	
Крит. Швар	ца 8	32,4655	Крит. Х	еннана-Куинна	823,7846	
Параметр г	ho 0	,507482	Стат. Д	арбина-Вотсона	0,980284	
Нулевая Тестовая	я (RESET) — гипотеза: специ статистика: F(ие = P(F(2, 47)	2, 47) =	2,68151			
Нулевая Тестовая	(White) на гет гипотеза: гетер статистика: LM ие = Р(Хи-квадр	оскедасти = 41,281	чность о	тсутствует		
Нулевая Тестовая	-Пэгана (Breusc гипотеза: гетер статистика: LM ие = Р(Хи-квадр	оскедасти = 13,718	чность о 4		-	
Нулевая	рмальное распре гипотеза: ошибк статистика: Хи	и распред	елены по	нормальному заг 133	кону	

Рисунок 3.14 – модель МНК

р-значение = 0,424582

3.3. Вывод уравнения

	Среднее	Медиана	S.D.	Min	Max	
PURAN	27,51	25,87	6,134	18,57	39,32	
EMP	162,7	154,1	20,76	139,7	200,6	

Рисунок 3.15 – Описательная статистика

	PC1	PC2		Среднее	S.D.			
PURAN	0,707	-0,707		27,51	6,134			
EMP	0,707	0,707		162,7	20,76			
11116,7	-391,01	-973,38						
PURAN	-45,068	112,191		PURAN	67,1229			
EMP	-13,3163	-33,1493		EMP	-46,4656			
				Const	16830,1			
PURAN	1239,82	-3086,37						
EMP	2166,57	5393,39						
		гN	гогвое ура	внение и	иеет вид:			
Y= 16830-	35,85*RU-	0,000168*	EXOIL-251	,19*PGAS+	22,07*POII	.+67,12*P	URAN-46	,47*EMP

Рисунок 3.15 – Вывод уравнения

Выводы:

- 1. При увеличении курса национальной валюты по отношению к доллару США на 1 рубль стоимость фиксированного набора потребительских товаров и услуг падает на 35,85 рублей.
- 2. При увеличении мировой цены на уран на 1 доллар за фунт стоимость фиксированного набора потребительских товаров и услуг увеличится на 67,12 рублей
- 3. При увеличении экспорта сырой нефти из Российской Федерации на 1 млрд долларов стоимость фиксированного набора потребительских товаров и услуг уменьшится на 168 рублей.

- 4. При увеличении цены на природный газ на 1 доллар за кубометр стоимость фиксированного набора потребительских товаров и услуг падает на 251,19 рублей.
- 5. При увеличении цен на сырую нефть: Западный Техас, Средний уровень (WTI) на 1\$ за баррель стоимость фиксированного набора потребительских товаров и услуг возрастет на 22,07 рублей.
- 6. При увеличении всех занятых человек в добыче нефти и газа в США на 1 тысячу человек стоимость фиксированного набора потребительских товаров и услуг падает на 46,47 рублей.

3.3. Построение фиктивного прогноза

Модель 2: МНК, использованы наблюдения 2014:12-2019:06 (T = 55) Зависимая переменная: XXX

	Коэффицие	ент Ст.	ошибка	t-статистика	Р-значение	
const	11032,1	860,	713	12,82	4,13e-017	***
RU	37,7500	10,	7781	3,502	0,0010	***
EXOIL	0,00014	10331 5,	33077e-05	2,632	0,0114	**
PGAS	-225,175	40,	8214	-5,516	1,36e-06	***
POIL	22,4871	10,	5383	2,134	0,0380	**
PC1	-408,462	43,	1239	-9,472	1,45e-012	***
PC2	-1001,31	191,	036	-5,241	3,53e-06	***
Среднее за	в. перемен	14333,64	Ст. откл	. зав. перемен	1006,041	
Сумма кв.	остатков	5205373	Ст. ошиб	ка модели	329,3103	
R-квадрат		0,904758	Испр. R-	квадрат	0,892853	
F(6, 48)		75,99687	Р-значен	ие (F)	8,33e-23	
Лог. правд	оподобие	-393,1330	Крит. Ак	аике	800,2660	
Крит. Швар	ца	814,3173	Крит. Хе	ннана-Куинна	805,6998	
Параметр г	ho	0,570984	Стат. Да	рбина-Вотсона	0,872951	

Рисунок 3.16 – Модель с отсутствием крайнего временного лага

Рисунок 3.17 – Прогноз

Статистика для оценки прогноза using 1 observations

Средняя ошибка (ME)	747,64
Корень из средней квадратичной ошибки (RMSE)	747,64
Средняя абсолютная ошибка (МАЕ)	747,64
Средняя процентная ошибка (МРЕ)	4,6374
Средняя абсолютная процентная ошибка (МАРЕ)	4,6374
U-статистика Тейла (Theil's U)	0

Рисунок 3.18 — Статистика для оценки прогноза

Последнее значение попало в 95%-ый доверительный интервал.

Вывод: Прогноз подтвердился

3.4 Автокорреляция остатков

3.4.1 Тест Дарбина-Уотсона

Нулевая гипотеза – автокорреляция отсутствует.

Модель 1

Модель 1: МНК, использованы наблюдения 2014:12-2019:07 (T = 56) Зависимая переменная: XXX

	Коэффици	ент Ст.	ошибка	t-статистика	Р-значение	
const	11116,7	887,6	60	12,52	6,91e-017	***
RU	35,8477	11,0	872	3,233	0,0022	***
EXOIL	0,0001	67899 5,3	32734e-05	3,152	0,0028	***
PGAS	-251,187	40,0	764	-6,268	9,04e-08	***
POIL	22,0702	10,8	3787	2,029	0,0479	**
PC1	-391,014	43,6	5559	-8,957	6,84e-012	***
PC2	-973,379	196,7	143	-4,947	9,26e-06	***
Среднее за	ав. перемен	14365,57	Ст. откл	. зав. перемен	1025,097	
Сумма кв.	остатков	5664679	Ст. ошиб	ка модели	340,0084	
R-квадрат		0,901987	Испр. R-	квадрат	0,889986	
F(6, 49)		75,15572	Р-значен	ие (F)	5,36e-23	
Лог. правд	оподобие	-402,1440	Крит. Ак	аике	818,2880	
Крит. Швар	ца	832,4655	Крит. Хе	ннана-Куинна	823,7846	
Параметр г	:ho	0.507482	Стат. Па	рбина-Вотсона	0.980284	

Рисунок 3.19 – Модель МНК

```
5% критические значения для статистики Дарбина-Вотсона, n = 56, k = 6  {\rm dL} = 1,3424 \\ {\rm dU} = 1,8124
```

Рисунок 3.20 – Критические значения

DW = 0.980284

0<DW<DL, значит Но отвергается, положительная автокорреляция присутствует.

$$DW = 2(1-\rho)$$

 $\rho = 0.509858$

3.4.2 Избавление от автокорреляции

Модель 1: МНК, использованы наблюдения 2015:01-2019:07 (T = 55) Зависимая переменная: XXX NEW

	Коэффицие	нт Ст.	ошибка	t-статистика	Р-значение	
const	5540,65	496,1	L89	11,17	6,05e-015	***
RU NEW	37,9850	12,3	3941	3,065	0,0036	***
EXOIL NEW	5,78808	e-05 3,4	15139e-05	1,677	0,1000	
PGAS NEW	-144,857	47,1	1861	-3,070	0,0035	***
POIL NEW	21,6021	9,0	3382	2,391	0,0208	**
PC2 NEW	-748,007	210,6	596	-3,550	0,0009	***
PC_NEW	-465,334	59,8	3864	-7,770	4,91e-010	***
Среднее зав.	перемен	7099,828	Ст. откл	. зав. перемен	474,7166	
Сумма кв. ос	татков	3028525	Ст. ошиб	ка модели	251,1857	
R-квадрат		0,751132	Испр. R-	квадрат	0,720024	
F(6, 48)		24,14560	Р-значен	ие (F)	6,00e-13	
Лог. правдоп	одобие	-378,2386	Крит. Ак	аике	770,4772	
Крит. Шварца		784,5285	Крит. Хе	ннана-Куинна	775,9109	
Параметр rho		0,581251	Стат. Да	рбина-Вотсона	0,838473	

Рисунок 3.21 – Модель МНК

```
5% критические значения для статистики Дарбина-Вотсона, n = 55, k = 6  {\rm dL} \, = \, 1,3344 \\ {\rm dU} \, = \, 1,8137
```

Рисунок 3.22 – Критические значения

DW = 0.838473

0<DW<DL, значит Но отвергается, положительная автокорреляция присутствует.

4.1 Коррелограмма

Так как на коррелограмме ряда первая автокорреляция приближается к единице, то приводим коррелограмму для временного ряда первой разности.

У данного временного ряда присутствует сезонная составляющая и есть подозрение на наличие единичного корня (стохастического тренда)

4.2 тест Дики-Фуллера

```
Расширенный тест Дики-фуллера для XXX testing down from 13 lags, criterion Крит. Акаике объем выборки 137 нулевая гипотеза единичного корня: a = 1

тест без константы включая 13 лага(-ов) для (1-L)XXX модель: (1-L)y = (a-1)*y(-1) + ... + е оценка для (a - 1): 0,00242218 тестовая статистика: tau_nc(1) = 2,10343 асимпт. p-значение 0,992 коэф. автокорреляции 1-го порядка для е: 0,013 лаг для разностей: F(13, 123) = 8,219 [0,0000]
```

тест "без константы" Нулевая гипотеза — есть единичный корень. tстат = 2,10343 P-значение = 0,992

Значит нулевая гипотеза не отвергается на всех стандартных уровнях значимости, единичный корень присутствует.

```
Расширенный тест Дики-фуллера для XXX testing down from 13 lags, criterion Крит. Акаике объем выборки 137 нулевая гипотеза единичного корня: a = 1

тест с константой включая 13 лага(-ов) для (1-L)XXX модель: (1-L)y = b0 + (a-1)*y(-1) + ... + е оценка для (a - 1): -0,000234156 тестовая статистика: tau_c(1) = -0,126552 асимпт. р-значение 0,9448 коэф. автокорреляции 1-го порядка для е: 0,004 лаг для разностей: F(13, 122) = 7,876 [0,0000]
```

тест "с константой" Нулевая гипотеза — есть единичный корень $t\kappa p(10\%) = -2,57$ t-стат = -0,126552 P-значение = 0,9448

Значит нулевая гипотеза не отвергается на всех стандартных уровнях значимости, единичный корень присутствует.

```
Расширенный тест Дики-фуллера для XXX testing down from 13 lags, criterion Крит. Акаике объем выборки 137 нулевая гипотеза единичного корня: a = 1

с константой и трендом включая 13 лага(-ов) для (1-L)XXX модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + е оценка для (a - 1): -0,0409552 тестовая статистика: tau_ct(1) = -2,05262 асимпт. р-значение 0,5717 коэф. автокорреляции 1-го порядка для е: 0,016 лаг для разностей: F(13, 121) = 8,081 [0,0000]
```

тест "с константой и трендом" Нулевая гипотеза — есть единичный корень tkp(10%) = -3,12 t-стат = -2,05262 P-значение = 0,5717

Значит нулевая гипотеза не отвергается на всех стандартных уровнях значимости, единичный корень присутствует

```
Расширенный тест Дики-Фуллера для XXX
testing down from 13 lags, criterion Крит. Акаике
объем выборки 137
нулевая гипотеза единичного корня: a = 1

with constant, linear and quadratic trend
включая 13 лага(-ов) для (1-L)XXX
модель: (1-L)y = b0 + b1*t + b2*t^2 + (a-1)*y(-1) + ... + е
оценка для (a - 1): -0,0470635
тестовая статистика: tau_ctt(1) = -1,9975
асимпт. р-значение 0,8181
коэф. автокорреляции 1-го порядка для е: 0,018
лаг для разностей: F(13, 120) = 8,039 [0,0000]
```

тест "с константой, трендом и квадратичным трендом" Нулевая гипотеза – есть единичный корень t-стат = -1,9975 P-значение = 0,818

Значит нулевая гипотеза не отвергается на всех стандартных уровнях значимости, единичный корень присутствует. Также стоит отметить, что минимальное значение тестовой статистики (с учетом знака) наблюдается на тесте "с константой и трендом". Значит делаем вывод о присутствии детерминированного тренда.

4.3 Выбор параметров и построение модели ARIMA

AR (сезонная)	I	AR	MA	AIC	BIC
1	1	1	0	1527,485	1539,165
1	1	2	0	1518,861	1533,425
1	1	3	0	1527,208	1516,86
1	1	4	0	1501,495	1521,78
1	1	5	0	1491,422	1514,545
1	1	6	0	1482,95	1508,895
1	1	7	0	1474,694	1503,446
1	1	8	0	1466,482	1498,025
1	1	9	0	1458,297	1492,614
1	1	10	0	1450,115	1487,192
AR (сезонная)	I	AR	MA	AIC	BIC
1	1	10	0	1450,115	1487,192
1		4.0	4	1440 70	
1	1	10	1	1448,78	1491,56
1	1	10	2	1448,78	1491,56 1484,929
_			_		
1	1	10	2	1439,297	1484,929
1	1	10 10	2	1439,297 1449,831	1484,929 1498,316
1 1 1	1 1 1	10 10 10	2 3 4	1439,297 1449,831 1452,074	1484,929 1498,316 1503,411
1 1 1 1	1 1 1	10 10 10 10	2 3 4 5	1439,297 1449,831 1452,074 1458,154	1484,929 1498,316 1503,411 1480,172
1 1 1 1 1	1 1 1 1	10 10 10 10 10	2 3 4 5 6	1439,297 1449,831 1452,074 1458,154 1453,94	1484,929 1498,316 1503,411 1480,172 1477,116
1 1 1 1 1 1	1 1 1 1 1 1	10 10 10 10 10 10	2 3 4 5 6	1439,297 1449,831 1452,074 1458,154 1453,94 1454,854	1484,929 1498,316 1503,411 1480,172 1477,116 1479,188

По критерию Акаике и Шварца наилучший порядок авторегрессии AR = 10, скользящего среднего по критерию Акаике и Шварца MA = 2.

Оценок функции: 113 Оценок градиента: 34

Модель 7: ARMAX, использованы наблюдения 2008:12-2019:07 (T=128) Оценено с помощью метода BHHH (Berndt, Hall, Hall and Hausman) (условный метод МП) Зависимая переменная: (1-L) XXX

	Коэффициент	Ст. ошибка	z	Р-значение	
	5,72211				
	2,07995				
phi_2	-1,67871 0,420672	0,265037	-6,334	2,39e-010	***
phi 3	0,420672	0,443789	0,9479	0,3432	
phi 4	0,420672 0,114062	0,474979	0,2401	0,8102	
phi 5	-0,274644	0,397687	-0,6906	0,4898	
phi 6	0,251982 -0,0551077	0,310025	0,8128	0,4163	
phi_7	-0,0551077	0,247552	-0,2226	0,8238	
phi 8	-0,0551402	0,302969	-0,1820	0,8556	
phi_9	0,0486745	0,306773	0,1587	0,8739	
phi_10	0,0486745 -0,0665115	0,145319	-0,4577	0,6472	
Phi 1	0,686674	0,0634246	10,83	2,57e-027	***
theta 1	-1,66999	0,0595345	-28,05	3,91e-173	***
theta 2	-1,66999 0,999998 -0,0105817	0,0466700	21,43	7,48e-102	***
time -	-0,0105817	0,0451000	-0,2346	0,8145	
R-квадрат	о. перемен 71 поваций -0, подобие -70	999541 Испр	. R-квадрат	0,9	999489
R-квадрат	0, оподобие -70 а 14	999541 Испр 13,6485 Крит 184,929 Крит	о. R-квадрат г. Акаике г. Хеннана-К	0,9 14: Суинна 14:	999489
R-квадрат	0, подобие -70 а 14 Действ. час	999541 Испр	о. R-квадрат г. Акаике г. Хеннана-К сть Модуль	9 0,9 14: Уинна 14: Частота	999489
R-квадрат Пог. правдо Крит. Шварц AR	0, подобие -70 а 14 Действ. час	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час	о. R-квадрат г. Акаике г. Хеннана-К гть Модуль	9 0,1 14: Уинна 14: Частота	999489
R-квадрат Пог. правдо Крит. Шварц AR	0, лодобие -70 а 14 Действ. час	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час	о. R-квадрат г. Акаике г. Хеннана-К ть Модуль 	9 0,1 14: Уинна 14: Частота 	999489
R-квадрат Пог. правдо Крит. Шварц AR	0, лодобие -70 а 14 Действ. час	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час	о. R-квадрат г. Акаике г. Хеннана-К ть Модуль 1,1009	9 0,1 14: Уинна 14: Частота 	999489
R-квадрат Пог. правдо Крит. Шварц ——————— AR Корень 1 Корень 2 Корень 3	0, подобие -70 а 14 Действ. час 1,0431 1,0431 0,3994	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 3. Хеннана-К 3. Тъ Модуль 3. 1,1009 1,1009 1,4811	9 0,1 14: Ууинна 14: Частота -0,0518 0,0518 -0,2065	999489
R-квадрат Пог. правдо Крит. Шварц AR Корень 1 Корень 2 Корень 3 Корень 4	0, подобие -70 а 14 Действ. час 1,0431 1,0431 0,3994 0,3994	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 3. Хеннана-К 3. Тъ Модуль 4,1009 1,1009 1,4811 1,4811	9 0,1 14: Ууинна 14: Частота -0,0518 0,0518 -0,2065 0,2065	999489
R-квадрат Пог. правдо Крит. Шварц —————— AR Корень 1 Корень 2 Корень 3 Корень 4	0, подобие -70 а 14 Действ. час 1,0431 1,0431 0,3994 0,3994	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 3. Хеннана-К 3. Тъ Модуль 4,1009 1,1009 1,4811 1,4811	9 0,1 14: Ууинна 14: Частота -0,0518 0,0518 -0,2065 0,2065	999489
R-квадрат Пог. правдо Крит. Шварц AR Корень 1 Корень 2 Корень 3 Корень 4 Корень 5 Корень 6	0, подобие -70 а 14 Действ. час 1,0431 1,0431 0,3994 0,3994 -1,4911 -1,4911	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 3. Хеннана-К 3. Тъ Модуль 1,1009 1,1009 1,4811 1,4811 1,5608 1,5608	9 0,1 14: Ууинна 14: Частота -0,0518 0,0518 -0,2065 0,2065 0,4523 -0,4523	999489
R-квадрат Пог. правдо Пог. Пварц АR Порень 1 Порень 2 Порень 3 Порень 4 Порень 5 Порень 6 Порень 7	0, подобие -70 а 14 Действ. час 1,0431 1,0431 0,3994 0,3994 -1,4911 -0,3946	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 3. Хеннана-К 3. Тъ Модуль 1,1009 1,1009 1,4811 1,4811 1,5608 1,5608 1,5003	9 0,1 14: Ууинна 14: Частота -0,0518 0,0518 -0,2065 0,2065 0,4523 -0,4523 -0,2924	999489
R-квадрат Пог. правдо Крит. Шварц А А Корень 1 Корень 2 Корень 3 Корень 4 Корень 5 Корень 6 Корень 7	0, подобие -70 а 14 Действ. час 1,0431 1,0431 0,3994 0,3994 -1,4911 -0,3946	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 3. Хеннана-К 3. Тъ Модуль 1,1009 1,1009 1,4811 1,4811 1,5608 1,5608 1,5003	9 0,1 14: Ууинна 14: Частота -0,0518 0,0518 -0,2065 0,2065 0,4523 -0,4523 -0,2924	999489
R-квадрат Пог. правдо Пог. Пварц АR Порень 1 Порень 2 Порень 3 Порень 4 Порень 5 Порень 6 Порень 7	0, подобие -70 а 14 Действ. час 1,0431 1,0431 0,3994 0,3994 -1,4911 -0,3946	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 3. Хеннана-К 3. Тъ Модуль 1,1009 1,1009 1,4811 1,4811 1,5608 1,5608 1,5003	9 0,1 14: Ууинна 14: Частота -0,0518 0,0518 -0,2065 0,2065 0,4523 -0,4523 -0,2924	999489
А-квадрат Пог. правдо Прит. Шварц АR Порень 1 Порень 2 Порень 3 Порень 4 Порень 5 Порень 6 Порень 7	0, подобие -70 а 14 Действ. час 1,0431 1,0431 0,3994 0,3994 -1,4911 -1,4911	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 3. Хеннана-К 3. Тъ Модуль 1,1009 1,1009 1,4811 1,4811 1,5608 1,5608 1,5003	9 0,1 14: Ууинна 14: Частота -0,0518 0,0518 -0,2065 0,2065 0,4523 -0,4523 -0,2924	999489
R-квадрат Пог. правдо Крит. Швари АК Корень 1 Корень 2 Корень 3 Корень 4 Корень 5 Корень 6 Корень 7 Корень 8 Корень 9 Корень 10 АК (сезон	0, подобие -70 да 14 Действ. час 1,0431 1,0431 0,3994 0,3994 -1,4911 -0,3946 0,8091 0,8091	999541 Испр 3,6485 Крит 84,929 Крит ТБ Мним. час -0,3523 0,3523 -1,4263 1,4263 0,4611 -0,4611 -1,4475 1,4475 0,6135	2. R-квадрат 2. Акаике 2. Хеннана-К 2. Хеннана-К 2. Ть Модуль 1,1009 1,4811 1,4811 1,5608 1,5608 1,5003 1,5003 1,0154 1,0154	9 0,1 14: Уинна 14: Частота -0,0518 0,0518 -0,2065 0,2065 0,4523 -0,4523 -0,4523 -0,2924 0,2924 0,2924 -0,1033 0,1033	999489
R-квадрат Пог. правдо Крит. Шварц А А Корень 1 Корень 2 Корень 3 Корень 4 Корень 5 Корень 6 Корень 7	0, подобие -70 да 14 Действ. час 1,0431 1,0431 0,3994 0,3994 -1,4911 -0,3946 0,8091 0,8091	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час 	2. R-квадрат 2. Акаике 2. Хеннана-К 2. Хеннана-К 2. Ть Модуль 1,1009 1,4811 1,4811 1,5608 1,5608 1,5003 1,5003 1,0154 1,0154	9 0,1 14: Уинна 14: Частота -0,0518 0,0518 -0,2065 0,2065 0,4523 -0,4523 -0,4523 -0,2924 0,2924 0,2924 -0,1033 0,1033	999489
R-квадрат Пог. правдо Крит. Швари АК Корень 1 Корень 2 Корень 3 Корень 4 Корень 5 Корень 6 Корень 6 Корень 7 Корень 8 Корень 9 Корень 10 АК (сезон Корень 1	0, подобие -70 да 14 Действ. час 1,0431 1,0431 0,3994 0,3994 -1,4911 -0,3946 0,8091 0,8091	999541 Испр 3,6485 Крит 84,929 Крит ть Мним. час -0,3523 0,3523 -1,4263 1,4263 0,4611 -0,4611 -1,4475 1,4475 -0,6135 0,6135	2. R-квадрат 2. Акаике 3. Хеннана-К 2. Ть Модуль 1,1009 1,1009 1,4811 1,4811 1,5608 1,5608 1,5003 1,5003 1,0154 1,0154 1,4563	9 0,1 14: Уинна 14: Частота -0,0518 0,0518 -0,2065 0,2065 0,4523 -0,4523 -0,4523 -0,2924 0,2924 0,2924 0,1033 0,1033	999489

Итоговая модель — ARIMA(10,1,2) с сезонной авторегрессией первого порядка и временным трендом.

5.1 График наблюдаемых и расчетных значений построенной модели ARIMA; график остатков.

Основываясь на том, что коэффициенты AR > 2 незначимы и для AR = 2 имеется локальный минимум AIC; выберем модель с AR = 2. Проанализировав такие модели получаем, что наилучший результат будет у следующей модели: С трендом; с единичным корнем; AR = 2; MA = 0; Сезонное AR = 1; Сезонное MA = 1.

> Оценок функции: 112 Оценок градиента: 56

МА (сезонные)

Модель 1: ARMAX, использованы наблюдения 2008:04-2019:07 (T = 136) Оценено с помощью метода ВННН (Berndt, Hall, Hall and Hausman) (условный метод МП) Зависимая переменная: (1-L) XXX

	Коэффициент	Ст. ошибка	z	Р-значени	e -
const	0,593578	4,37899	0,1356	0,8922	
phi 1	0,520636	0,0729887	7,133	9,81e-013	***
phi 2	-0,0233477	0,109814	-0,2126	0,8316	
Phi 1	0,961528	0,0117330	81,95	0,0000	***
Theta 1	-0,858948	0,0426549	-20,14	3,49e-090	***
time	0,00253357	0,0559017	0,04532	0,9639	
Среднее инно R-квадрат Лог. правдоп Крит. Шварца	одобие -73 15	045153 Ст. 999663 Исп 3,2888 Кри 00,966 Кри ть Мним. ча	т. Хеннана-К сть Модуль	аций 53 0, 14 Уинна 14 Частота	,05481 ,13791 999653 80,578 88,863
AR					
Корень 1	2,1228	0,0000	2,1228	0,0000	
Корень 2	20,1764	0,0000	20,1764	0,0000	
AR (сезонн	ыe)				
Корень 1	1,0400	0,0000	1,0400	0,0000	

1,1642 0,0000 1,1642 0,0000 Корень 1

5.2 Проверка нормальности распределения остатков

2014

2016

2018

2012

-100

-150

-200

-250 L 2008

2010

На всех стандартных уровнях значимости остатки не распределены нормально

5.3 Проверка того, что остатки являются белым шумом

Оценок функции: 112 Оценок градиента: 56

Модель 1: ARMAX, использованы наблюдения 2008:04-2019:07 (T = 136) Оценено с помощью метода BHHH (Berndt, Hall, Hall and Hausman) (условный метод МП)

Зависимая переменная: (1-L) XXX

	Коэффицие	HT	Ст. оши	бка		Z	Р-знач	ение	
const	0,593578		4,37899)	0,	1356	0,8922		
phi 1	0,520636	5	0,07298	87	7,	133	9,81e-	013	***
phi_2	-0,023347	7	0,10981	4	-0,	2126	0,8316		
Phi_1	0,961528	}	0,01173	30	81,	95	0,0000		***
Theta_1	-0,858948	}	0,04265	49	-20,	14	3,49e-	090	***
time	0,002533	57	0,05590	17	0,	04532	0,9639		
Среднее зав.	перемен	70	,50051	CT.	откл.	зав.	перемен	81,	05481
Среднее инно	ваций	-1,	045153	Cr.	откл.	инно	ваций	53,	13791
R-квадрат		0,	999663	Испр	р. R-к	вадра	T	0,9	99653
Лог. правдол	одобие	-73	3,2888	Криз	r. Aka	ике		148	0,578
Крит. Шварца	ı	15	00,966	Криз	г. Хен	нана-	Куинна	148	8,863

		Действ. часть	Мним. част	ь Модуль	Частота
AR					
Корень	1	2,1228	0,0000	2,1228	0,0000
Корень	2	20,1764	0,0000	20,1764	0,0000
AR (c	езонные)			
Корень	1	1,0400	0,0000	1,0400	0,0000
MA (c	езонные)			
Корень	1	1,1642	0,0000	1,1642	0,0000

Функция автокорреляции ошибок ***, **, * indicate significance at the 1%, 5%, 10% levels using standard error $1/T^0$,5

Лаг	ACF	PACF	Q-crar.	[р-значение]
1	-0,0071	-0,0071		
2	0,0270	0,0270		
3	-0,0606	-0,0602		
4	0,0357	0,0343		
5	0,0042	0,0078	0,8100	[0,368]
6	-0,1144	-0,1206	2,7008	[0,259]
7	0,0736	0,0784	3,4898	[0,322]
8	0,0404	0,0474	3,7287	[0,444]
9	-0,0020	-0,0231	3,7293	[0,589]
10	0,0908	0,1103	4,9578	[0,549]
11	-0,0197	-0,0194	5,0163	[0,658]
12	0,0295	0,0031	5,1481	[0,742]
13	-0,1001	-0,0680	6,6775	[0,671]
14	-0,0562	-0,0670	7,1633	[0,710]
15	-0,0474	-0,0500	7,5111	[0,756]
16	-0,0877	-0,0780	8,7137	[0,727]
17	-0,0397	-0,0602	8,9627	[0,776]
18	0,1143	0,1250	11,0410	[0,683]
19	0,1302	0,1167	13,7615	[0,544]
20	0,0743	0,0665	14,6557	[0,550]
21	0,0049	0,0388	14,6596	[0,620]
22	0,0027	-0,0083	14,6608	[0,685]
23	0,0414	0,0582	14,9455	[0,726]
24	-0,0224	0,0164	15,0298	[0,775]
25	-0,1365	-0,1428	* 18,1810	[0,638]
26	-0,0825	-0,1007	19,3427	[0,624]
27	0,0090	-0,0178	19,3565	[0,680]
28	0,1167	0,0693	21,7237	[0,596]
29	0,1215	0,1288	24,3139	[0,501]
30	0,0233	0,0069	24,4102	[0,553]
31	0,0009	-0,0141	24,4104	[0,607]
32	-0,0585	-0,0243	25,0276	[0,626]
33	-0,1300	-0,1248	28,1085	[0,512]

На всех стандартных уровнях значимости автокорреляция остатков отсутствует; остатки являются "белым шумом".

5.4 Запись уравнения построенной модели

Точный метод

При построении модели «*точным методом*» с константой (установлен флажок «Включить константу»), коэффициенты, приведенные в распечатке модели, соответствуют зависимости:

 $X_t - \mu = a_1(X_{t-1} - \mu) + a_2(X_{t-2} - \mu) + \dots + a_p(X_{t-p} - \mu) + \varepsilon_t + b_1\varepsilon_{t-1} + b_2\varepsilon_{t-2} + \dots + b_q\varepsilon_{t-q}$ или (после несложных преобразований):

$$X_t=a_0+a_1X_{t-1}+a_2X_{t-2}+\cdots+a_pX_{t-p}+arepsilon_t+b_1arepsilon_{t-1}+b_2arepsilon_{t-2}+\cdots+b_qarepsilon_{t-q}$$
 где

$$a_0 = \mu \cdot \left(1 - a_1 - a_2 - \dots - a_p\right)$$

<u>Условный метод</u>

При построении модели "*Условным*" методом коэффициенты, приведенные в распечатке модели, соответствуют зависимости:

$$X_{t} = a_{0} + a_{1}X_{t-1} + a_{2}X_{t-2} + \dots + a_{p}X_{t-p} + \varepsilon_{t} + b_{1}\varepsilon_{t-1} + b_{2}\varepsilon_{t-2} + \dots + b_{q}\varepsilon_{t-q}$$

Уравнение с сезонной составляющей (месячные данные)

Пусть a_i – коэффициенты AR, A – коэффициент сезонной AR, b_j – коэффициенты MA, B – коэффициент сезонной MA. Для ARMA без единичного корня уравнение модели записывается следующим образом:

$$(1 - a_1 \hat{L} - a_2 \hat{L}^2 - \dots - a_p \hat{L}^p)(1 - A \hat{L}^{12})X_t = a_0 + \beta t + (1 + b_1 \hat{L} + b_2 \hat{L}^2 + \dots + b_q \hat{L}^q)(1 + B \hat{L}^{12})\varepsilon_t$$

После раскрытия всех скобок получаем итоговое уравнение модели:

$$\begin{split} X_{\ell} &= a_0 + \beta \ell + a_1 X_{\ell-1} + a_2 X_{\ell-2} + \dots + a_p X_{\ell-p} + \Lambda X_{\ell-12} - \Lambda a_1 X_{\ell-13} - \Lambda a_2 X_{\ell-14} - \dots - \Lambda a_p X_{\ell-12-p} + \\ &+ \varepsilon_{\ell} + b_1 \varepsilon_{\ell-1} + b_2 \varepsilon_{\ell-2} + \dots + b_q \varepsilon_{\ell-q} + B \varepsilon_{\ell-12} + B b_1 \varepsilon_{\ell-13} + B b_2 \varepsilon_{\ell-14} + \dots + B b_q \varepsilon_{\ell-12-q} \end{split}$$

Если модель ARIMA с единичным корнем, то вместо X_t во всех слагаемых будет первая разность ΔX_t .

Если модель построена «точным методом...», то константу нужно пересчитать, но учесть наличие сезонной компоненты:

$$a_0 = \mu \cdot (1 - a_1 - a_2 - \dots - a_p) \cdot (1 - A)$$

Модель с трендом; с единичным корнем; AR = 2; MA = 0; Сезонное AR = 1; Сезонное MA = 1.

Оценок функции: 112 Оценок градиента: 56

Модель 1: ARMAX, использованы наблюдения 2008:04-2019:07 (T = 136)

Оценено с помощью метода ВННН (Berndt, Hall, Hall and Hausman) (условный метод МП)

Зависимая переменная: (1-L) XXX

	Коэффицие	нт	Ст. оши	бка	z	Р-знач	ение
const	0,593578		4,37899)	0,1356	0,8922	
phi 1	0,520636		0,07298	87	7,133	9,81e-	013 ***
phi 2	-0,023347	7	0,10981	.4	-0,2126	0,8316	
Phi 1	0,961528		0,01173	30	81,95	0,0000	***
Theta 1	-0,858948		0,04265	49	-20,14	3,49e-	090 ***
time _	0,002533	57	0,05590	17	0,04532	0,9639	
Среднее зав.	перемен	70,	50051	CT.	откл. зав.	перемен	81,05481
Среднее инно	ваций	-1,0	45153	CT.	откл. инно	ваций	53,13791
R-квадрат		0,9	99663	Испр	о. R-квадра	T	0,999653
Лог. правдоп	одобие	-733	,2888	Крил	г. Акаике		1480,578
Крит. Шварца		150	0,966	Криз	г. Хеннана-	Куинна	1488,863

	Действ. часть	Мним. час	ть Модуль	Частота
AR				
Корень 1	2,1228	0,0000	2,1228	0,0000
Корень 2	20,1764	0,0000	20,1764	0,0000
AR (сезонные))			
Корень 1	1,0400	0,0000	1,0400	0,0000
МА (сезонные))			
Корень 1	1,1642	0,0000	1,1642	0,0000

<u>Уравнение с сезонной составляющей (месячные данные)</u>

Пусть a_i – коэффициенты AR, A – коэффициент сезонной AR, b_i – коэффициенты MA, B – коэффициент сезонной MA. Для ARMA без единичного корня уравнение модели записывается следующим образом:

$$(1 - a_1 \hat{L} - a_2 \hat{L}^2 - \dots - a_p \hat{L}^p) (1 - A \hat{L}^{12}) X_t = a_0 + \beta t + (1 + b_1 \hat{L} + b_2 \hat{L}^2 + \dots + b_q \hat{L}^q) (1 + B \hat{L}^{12}) \varepsilon_t$$

После раскрытия всех скобок получаем итоговое уравнение модели:

$$\begin{split} X_{\ell} &= a_0 + \beta \ell + a_1 X_{\ell-1} + a_2 X_{\ell-2} + \dots + a_p X_{\ell-p} + \Lambda X_{\ell-12} - \Lambda a_1 X_{\ell-13} - \Lambda a_2 X_{\ell-14} - \dots - \Lambda a_p X_{\ell-12-p} + \\ &+ \varepsilon_{\ell} + b_1 \varepsilon_{\ell-1} + b_2 \varepsilon_{\ell-2} + \dots + b_a \varepsilon_{\ell-a} + B \varepsilon_{\ell-12} + B b_1 \varepsilon_{\ell-13} + B b_2 \varepsilon_{\ell-14} + \dots + B b_a \varepsilon_{\ell-12-a} \end{split}$$

$$\begin{array}{l} \Delta X_t = 0.593578 + 0.00253357t + 0.520636\Delta X_{t-1} - 0.0233477\Delta X_{t-2} + 0.961528\Delta X_{t-12} \\ - 0.5006\Delta X_{t-13} + 0.022449\Delta X_{t-14} + \varepsilon(t) - 0.858948\varepsilon_{t-12}\P \end{array}$$

$$Aa1 = 0.5006$$
¶

$$Aa2 = -0.022449 m$$

5.5 Построение прогноза

Для временного ряда первой разности XXX построена стационарная (так как все корни AR > 1) обратимая (так как все корни MA > 1) модель с трендом ARMA(14, 12).

На основе полученной модели сделан прогноз, для которого построен 95% доверительный интервал.

5.6 Тест на коинтеграцию временных рядов

```
Шаг 1: тестирование единичного корня для XXX
Расширенный тест Дики-Фуллера для XXX
testing down from 4 lags, criterion Крит. Акаике
объем выборки 149
нулевая гипотеза единичного корня: а = 1
  с константой и трендом
  включая один лаг для (1-L)XXX
  модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
  оценка для (а - 1): -0,0454216
  тестовая статистика: tau ct(1) = -2,31085
  асимпт. р-значение 0,4274
  коэф. автокорреляции 1-го порядка для е: -0,017
Шаг 2: тестирование единичного корня для RU
Расширенный тест Дики-Фуллера для RU
testing down from 4 lags, criterion Крит. Акаике
объем выборки 148
нулевая гипотеза единичного корня: а = 1
  с константой и трендом
  включая 2 лага(-ов) для (1-L)RU
  модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
  оценка для (а - 1): -0,042089
  тестовая статистика: tau ct(1) = -2,16416
  асимпт. р-значение 0,5092
  коэф. автокорреляции 1-го порядка для е: -0,020
  лаг для разностей: F(2, 143) = 33,708 [0,0000]
```

Шаг 3: коинтеграционная регрессия

Коинтеграционная регрессия -

МНК, использованы наблюдения 2007:01-2019:07 (Т = 151)

Зависимая переменная: XXX

	Коэффициент	Ст. оши	бка .	t-статист	ика Р-з	начение	
const RU time	4666,27 31,1212 62,5099	49,5254 2,15558 0,80284	3	94,22 14,44 77,86	4,8	8e-134 2e-030 8e-122	***
Среднее зав. Сумма кв. ос R-квадрат Лог. правдоп Крит. Шварца Параметр rho	татков одобие –	10727,61 6033813 0,996063 1014,228 2043,508 0,890801	Ст. о Испр. Крит. Крит.	ткл. зав. шибка мод R-квадра Акаике Хеннана- Дарбина-	ели т Куинна	3196,5 201,91 0,9960 2034,4 2038,1 0,2158	34 10 57 34

Шаг 4: тестирование единичного корня для uhat

Расширенный тест Дики-Фуллера для uhat testing down from 4 lags, criterion Крит. Акаике объем выборки 147 нулевая гипотеза единичного корня: a = 1

тест без константы включая 3 лага(-ов) для (1-L)uhat модель: $(1-L)y = (a-1)*y(-1) + \dots + e$ оценка для (a-1): -0,180937 тестовая статистика: $tau_ct(2) = -4,50688$ асимпт. p-значение 0,005441 коэф. автокорреляции 1-го порядка для e: 0,004 лаг для разностей: F(3, 143) = 6,663 [0,0003]

There is evidence for a cointegrating relationship if:

- (a) The unit-root hypothesis is not rejected for the individual variables, and
- (b) the unit-root hypothesis is rejected for the residuals (uhat) from the cointegrating regression.

На уровне значимости 1% гипотеза о наличии стохастического тренда для рядов XXX и RU не отвергается, а для ряда

$$u_t = XXX_t - 31.1212RU_t - 62.5099t - 4666.27$$

отвергается; следовательно, присутствует коинтеграционная связь между рядами XXX и RU.

Линейная комбинация рядов XXX и RU

$$Z_t = XXX_t - 31.1212RU_t$$

не содержит стохастического тренда и является стационарной относительно линейного тренда.