Package 'M3JF'

August 14, 2023

Type Package

Multi-Modal Matrix Joint Factorization for Integrative Multi-Omics Data Analysis
Version 0.1.0
Date 2023-07-25
Description Multi modality data matrices are factorized conjointly into the multiplication of a shared sub-matrix and multiple modality specific sub-matrices, group sparse constraint is applied to the shared sub-matrix to capture the homogeneous and heterogeneous information, respectively. Then the samples are classified by clustering the shared sub-matrix with kmeanspp(), a new version of kmeans() developed here to obtain concordant results. The package also provides the cluster number estimation by rotation cost. Moreover, cluster specific features could be retrieved using hypergeometric tests.
Imports MASS, SNFtool, dplyr, InterSIM, stats
Suggests knitr,rmarkdown
VignetteBuilder knitr
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation no
Author Xiaoyao Yin [aut, cre]
Maintainer Xiaoyao Yin <xyyin@xmail.ncba.ac.cn></xyyin@xmail.ncba.ac.cn>
Repository CRAN
Date/Publication 2023-08-14 08:20:06 UTC
R topics documented:
cost
1

2 cost

cost	Calculate the cost defined by the objective function	
Index		13
	update_H	12
	update_E	
	simulateY	
	RotationCostBestGivenGraph	
	M3JF	8
	kmeanspp	7
	intersim_data_gen	
	iNMF_data_gen	6

Description

Calculate the cost defined by the objective function

Usage

```
cost(WL, init_list, lambda)
```

Arguments

WL a list of multiple modality data matrices

init_list a list of the initialized modality specific sub-matrices list Hi and shared sub-

matrix E

lambda a parameter to set the relative weight of the L1,infinity norm defined on sub-

matrices list E

Value

res, a real data value of the cost

```
library(InterSIM)
sim.data <- InterSIM(n.sample=500, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.protein
temp_data <- list(sim.methyl, sim.expr, sim.protein)
init_list <- initialize_WL(temp_data,k=4)
update_H_list <- update_H(temp_data,init_list)
lambda <- 0.01
update_E_list <- update_E(temp_data,update_H_list,lambda)
new_cost <- cost(temp_data,update_E_list,lambda)</pre>
```

crimmix_data_gen 3

0	Generate the simulated dataset with three modalities with the package crimmix
---	---

Description

Generate the simulated dataset with three modalities with the package crimmix

Usage

```
 crimmix\_data\_gen(nclust=4, n\_byClust=c(10,20,5,25), \\ feature\_nums=c(1000,500,5000), noises=c(0.5,0.01,0.3), props=c(0.005,0.01,0.02))
```

Arguments

nclust number of clusters

n_byClust number of samples per cluster

noises percentage of noise adding to each modality

props proportion of cluster related features in each modality

Value

res, a list of length 2, where the first element is a list of simulated data, while the second element is a vector indicating the true label of each sample

Examples

```
crimmix_data <- crimmix_data_gen(nclust=4, n_byClust=c(10,20,5,25),
feature_nums=c(1000,500,5000), noises=c(0.5,0.01,0.3),props=c(0.005,0.01,0.02))</pre>
```

feature_screen_sd Screen the cluster related features via hypergeometric test p value and distribution standard derivation

Description

Screen the cluster related features via hypergeometric test p value and distribution standard derivation

Usage

```
feature_screen_sd(feature_list, sig_num = 20)
```

4 feature_selection

Arguments

```
feature_list a data list, which is the output of feature_selection function sig_num the number of significant features for each cluster
```

Value

selected_features, a list the same long as the cluster number, each element is a sub-list with two vectors, one for the over-expressed features, one for the under-expressed features for the current cluster

Examples

```
library(InterSIM)
sim.data <- InterSIM(n.sample=500, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.expr
sim.protein <- list(sim.methyl, sim.expr, sim.protein)
M3JF_res <- M3JF(temp_data,k=4)
feature_list <- feature_selection(temp_data[[1]],M3JF_res$cluster_res,z_score=TRUE,
upper_bound=1, lower_bound=-1)
selected_features <- feature_screen_sd(feature_list,sig_num=20)</pre>
```

feature_selection

Select the cluster related features via hypergeometric test

Description

Select the cluster related features via hypergeometric test

Usage

```
feature_selection(
   X,
   clusters,
   z_score = FALSE,
   upper_bound,
   lower_bound,
   p.adjust.method = "BH"
)
```

initialize_WL 5

Arguments

X	the feature matrix to be analyzed, with rows as samples and columns as features			
clusters	the numeric cluster results with number specifying the cluster			
z_score	a binary value to specify whether to calculate z-score for X first			
upper_bound	values larger than this value should be treated as over-expressed			
lower_bound	values smaller than this value should be treated as under-expressed			
p.adjust.method				
	the p value adjust method, defalut as 'BH'			

Value

results, a list, which is as long as (cluster number+2), with the first (cluster number) element as two sub-list, each composing a feature vector and a FDR vector. The last two elements are two matrices, one is the matrix representing the fraction of over-express samples in each cluster for each features , and the other represents that of under-express.

Examples

```
library(InterSIM)
sim.data <- InterSIM(n.sample=500, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.expr
sim.protein <- sim.data$dat.protein
temp_data <- list(sim.methyl, sim.expr, sim.protein)
M3JF_res <- M3JF(temp_data,k=4)
feature_list <- feature_selection(temp_data[[1]],M3JF_res$cluster_res,z_score=TRUE,
upper_bound=1, lower_bound=-1)</pre>
```

 $\begin{tabular}{ll} \textbf{Initialize the shared sub-matrix E and modality specific sub-matrices}\\ \textbf{list Hi} \end{tabular}$

Description

Initialize the shared sub-matrix E and modality specific sub-matrices list Hi

Usage

```
initialize_WL(WL, k)
```

Arguments

WL a list of multiple modality data matrices

k the cluster number

iNMF_data_gen

Value

res, a list of length N+3, where N is the number of data modality. the first N elements are the modality specific sub-matrices list Hi, the (N+1) element is the shared sub-matrix E, the last two elements are the loss defined on the shared sub-matrix E and modality specific sub-matrices list Hi.

Examples

```
library(InterSIM)
sim.data <- InterSIM(n.sample=500, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.protein
temp_data <- list(sim.methyl, sim.expr, sim.protein)
init_list <- initialize_WL(temp_data,k=4)</pre>
```

iNMF_data_gen

Generate the simulated dataset with three modalities as the work iNMF

Description

Generate the simulated dataset with three modalities as the work iNMF

Usage

```
iNMF_data_gen(Xs_dim_list=list(c(100,100),c(100,100),c(100,100)),\\ mod_dim_list=list(matrix(c(20,30,20,30,20,30),4,2),\\ matrix(c(20,20,30,30,20,30),4,2),\\ matrix(c(26,24,26,24,20,30,20,30),4,2)),e_u=0.15, e_s=0.9, e_h=0)
```

Arguments

Xs_dim_list	a list of data matrix dimensions for multiple modality data
mod_dim_list	a list of the dimensions of each cluster and their features
e_u	the level of uniform noise
e_s	signal to noise ratio
e_h	block adding probability

Value

res, a list of length 2, where the first element is a list of simulated data, while the second element is a vector indicating the true label of each sample.

intersim_data_gen 7

Examples

```
 iNMF\_data <- iNMF\_data\_gen(Xs\_dim\_list=list(c(100,100),c(100,100),c(100,100)),\\ mod\_dim\_list=list(matrix(c(20,30,20,30,20,30),20,30),4,2),\\ matrix(c(20,20,30,30,20,30,20,30),4,2),\\ matrix(c(26,24,26,24,20,30,20,30),4,2)),e_u=0.15, e_s=0.9, e_h=0)
```

intersim_data_gen

Generate the simulated dataset with three modalities with the package InterSIM

Description

Generate the simulated dataset with three modalities with the package InterSIM

Usage

```
intersim_data_gen(prop=c(0.20,0.30,0.27,0.23), n_sample=500)
```

Arguments

prop proportion of samples for each cluster

n_sample the number of samples

Value

res, a list of length 2, where the first element is a list of simulated data, while the second element is a vector indicating the true label of each sample.

Examples

```
library(InterSIM)
intersim_data <- intersim_data_gen(prop=c(0.20,0.30,0.27,0.23), n_sample=500)</pre>
```

kmeanspp

A new version of kmeans that generates stable cluster result

Description

A new version of kmeans that generates stable cluster result

Usage

```
kmeanspp(X, k)
```

8 *M3JF*

Arguments

X a data matrix with each row as a sample and each column as a feature

k the cluster number

Value

res, the cluster result generated by this function

Examples

```
library(InterSIM)
sim.data <- InterSIM(n.sample=500, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.expr
sim.protein <- list(sim.methyl, sim.expr, sim.protein)
init_list <- initialize_WL(temp_data,k=4)
lambda <- 0.01
update_E_list <- update_E(temp_data,init_list,lambda)
cluster_res <- kmeanspp(update_E_list[[4]],4)</pre>
```

M3JF

Multi-Modal Matrix Joint Factorization

Description

Multi-Modal Matrix Joint Factorization

Usage

```
M3JF(WL, lambda = 0.01, theta = 10^-6, k)
```

Arguments

WL a list of multiple modality data matrices

lambda the parameter to set the relative weight of the group sparse constraint

theta threshold for the stopping criteria

k cluster number

Value

result, a list of 3 elements, the first element is a list comprising the shared sub-matrix and the modality specific sub-matrices. The second element is a vector of the clustering result. The third element is a vector of the cost in each step during optimization.

Examples

```
library(InterSIM)
sim.data <- InterSIM(n.sample=500, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.protein
temp_data <- list(sim.methyl, sim.expr, sim.protein)
M3JF_res <- M3JF(temp_data,k=4)</pre>
```

RotationCostBestGivenGraph

Evaluate the cluster number of multiple modality data

Description

Evaluate the cluster number of multiple modality data

Usage

```
RotationCostBestGivenGraph(W, NUMC = 2:5)
```

Arguments

W a list of multiple modality data matrices

NUMC a vector specify the data range to select best cluster number

Value

quality, a vector of rotation cost the same long as NUMC, where each element is the rotation cost value of the corresponding cluster number.

```
library(InterSIM)
library(SNFtool)
sim.data <- InterSIM(n.sample=100, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.protein
temp_data <- list(sim.methyl, sim.expr, sim.protein)
dat <- lapply(temp_data, function(dd) {
    dd <- as.matrix(dd)
    dd1 <- dist2(dd,dd)</pre>
```

10 simulateY

```
W1 <- affinityMatrix(dd1, K = 10, sigma = 0.5)
})
W <- SNF(dat, 10, 10)
clu_eval <- RotationCostBestGivenGraph(W,2:10)</pre>
```

simulateY

Generate the simulated dataset with specified parameters

Description

Generate the simulated dataset with specified parameters

Usage

```
simulateY(nclust = 4, n_byClust = c(10,20,5,25), J=1000, prop = 0.01, noise = 0.1,flavor =c("normal", "beta", "binary"), params = list(c(mean = 1,sd = 1)))
```

Arguments

nclust	number of clusters
n_byClust	number of samples per cluster
J	number of features in each modality
prop	proportion of cluster related features
noise	percentage of noise adding to each modality
flavor	a vector indicating the data type
params	a list indicating the mean and standard derivation of the simulated data

Value

res, a list of length 2, where the first element is a list of simulated data, while the second element is a vector indicating the true label of each sample

```
temp_data <- simulateY(nclust = 4, n_byClust = c(10,20,5,25), J=1000, prop = 0.01, noise = 0.1,flavor =c("normal", "beta", "binary"), params = list(c(mean = 1, sd = 1)))
```

update_E

Description

Update sub-matrix E

Usage

```
update_E(WL, init_list, lambda)
```

Arguments

WL a list of multiple modality data matrices

init_list a list of the initialized modality specific sub-matrices list Hi and shared sub-

matrix E

lambda a parameter to set the relative weight of the L1,infinity norm defined on sub-

matrices list E

Value

update_E_list, the data list init_list with the shared sub-matrix E updated.

```
library(InterSIM)
sim.data <- InterSIM(n.sample=500, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.protein
temp_data <- list(sim.methyl, sim.expr, sim.protein)
init_list <- initialize_WL(temp_data,k=4)
update_H_list <- update_H(temp_data,init_list)
lambda <- 0.01
update_E_list <- update_E(temp_data,update_H_list,lambda)</pre>
```

12 update_H

111	odate	Н
u	Duate	п

Update sub-matrices list Hi

Description

Update sub-matrices list Hi

Usage

```
update_H(WL, init_list)
```

Arguments

WL a list of multiple modality data matrices

init_list a list of the initialized modality specific sub-matrices list Hi and shared sub-

matrix E

Value

update_H_list, the data list init_list with the modality specific sub-matrices list Hi updated.

```
library(InterSIM)
sim.data <- InterSIM(n.sample=500, cluster.sample.prop = c(0.20,0.30,0.27,0.23),
delta.methyl=5, delta.expr=5, delta.protein=5,p.DMP=0.2, p.DEG=NULL,
p.DEP=NULL,sigma.methyl=NULL, sigma.expr=NULL, sigma.protein=NULL,cor.methyl.expr=NULL,
cor.expr.protein=NULL,do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
sim.methyl <- sim.data$dat.methyl
sim.expr <- sim.data$dat.expr
sim.protein <- sim.data$dat.protein
temp_data <- list(sim.methyl, sim.expr, sim.protein)
init_list <- initialize_WL(temp_data,k=4)
update_H_list <- update_H(temp_data,init_list)</pre>
```

Index

```
cost, 2
crimmix_data_gen, 3

feature_screen_sd, 3
feature_selection, 4

initialize_WL, 5
iNMF_data_gen, 6
intersim_data_gen, 7

kmeanspp, 7

M3JF, 8

RotationCostBestGivenGraph, 9
simulateY, 10

update_E, 11
update_H, 12
```