M23 – Gekoppelte Pendel

Protokoll zum Versuch des Physikalischen Praktikums I von

Julian Molt & Valentin Stopper

Universität Stuttgart

Verfasser: Julian Molt (Physik),

3803097

Valentin Stopper (Physik),

3774391

Gruppennummer: A-016

Versuchsdatum: 24.09.2025

Betreuerin: Lara Zaiser

Stuttgart, den 26. September 2025

Inhaltsverzeichnis

1	Versuchsziel	1
2	Grundlagen	1
3	Messprinzip	3
4	Formeln	3
5	Messwerte 5.1 40 cm 5.2 55 cm 5.3 70 cm	3 4 4 5
6	Auswertung	6
7	Fehlerrechnung	11
8	Zusammenfassung	11
9	Literatur	11
10	Anhang	11

1 Versuchsziel und Versuchsmethode

2 Grundlagen

Eine Schwingung ist in der Physik eine Bewegung, die sich periodisch wiederholt. Sie wird wesentlich durch zwei Größen charakterisiert: Die Amplitude, welche die maximale Auslenkung aus der Ruhelage ist und die Frequenz, welche der Kehrwert der Schwingungsdauer ist. Die Schwingungsdauer ist die Zeit, die das System benötigt, um wieder in den selben Zustand zu kommen. Die harmonische Schwingung ist eine spezielle Schwingung, bei der die Rückstellkraft proportional zur Auslenkung ist, wodurch die Schwingung sinusförmig abläuft.

Ein klassisches schwingungsfähiges System ist ein Pendel. Unterschieden wird zwischen mathematischen und physikalischen Pendeln, wobei das mathematische eine Punktmasse betrachtet, die an einer masselosen Aufhängung schwingt. Beim Physikalischen werden hingegen alle Massen und ihre räumlichen Ausdehnungen durch das Trägheitsmoment berücksichtigt.

Werden zwei Pendel gekoppelt, können diese wechselwirken und beeinflussen dann jeweils ihre Bewegungsgleichungen, die als ein paar gekoppelter Differenzialgleichungen vorliegen:

$$J\ddot{\psi}_{1} = -Mg\ell_{S}\psi_{1} - D_{F}\ell_{H}^{2}(\psi_{1} - \psi_{2})$$
(2.1)

$$J\ddot{\psi}_{2} = -Mg\ell_{S}\psi_{2} - D_{F}\ell_{H}^{2}(\psi_{2} - \psi_{1})$$
(2.2)

Sie setzen sich zusammen aus den rückstellenden Drehmomenten der Gewichtskraft und der Federkraft. Die Schwerpunktmasse M ergibt sich aus der Summe über alle Teilmassen $m, m_{\rm H}, m_{\rm St}$ und für ihren Abstand zur Drehachse gilt $\ell_{\rm S} = \frac{Lm + l_H m_H + 0.5 L_{St} m_{St}}{M}$.

Mit den Kreisfrequenzen $\omega_0^2=\frac{Mgl_s}{J}$ und $\Omega^2=\frac{D_Fl_H^2}{J}$ ergibt sich:

$$\ddot{\psi}_1 + \omega_0^2 \psi_1 + \Omega^2 (\psi_1 - \psi_2) = 0 \tag{2.3}$$

$$\ddot{\psi}_2 + \omega_0^2 \psi_2 - \Omega^2 (\psi_2 - \psi_1) = 0 \tag{2.4}$$

Das System aus zwei gekoppelten Pendeln kann drei Schwingungsformen einnehmen: gleichsinnige Schwingung, gegensinnige Schwingung und Schwebung. Die ersten beiden sind dabei die Fundamentalschwingungen des Systems.

Bei der gleichsinnigen Schwingung werden beide Pendel anfangs mit gleichem Winkel $\psi_1=\psi_2=\psi_a$ $\dot{\psi}_1=\dot{\psi}_2=0$ ausgelenkt, so dass sie in Phase schwingen. Dadurch gilt:

$$\psi_1 = \psi_2 = \psi_a \cos(\omega_0 t) \tag{2.5}$$

Bei der gegensinnigen Schwingung werden die Pendel mit gegensätzlichen Winkeln $-\psi_1=\psi_2=\psi_a$ $\dot{\psi}_1=\dot{\psi}_2=0$ ausgelenkt. Dadurch gilt

$$\psi_1(t) = \psi_a \cos \sqrt{\omega_0^2 + 2\Omega^2} \cdot t \tag{2.6}$$

$$-\psi_2(t) = \psi_a \cos \sqrt{\omega_0^2 + 2\Omega^2} \cdot t. \tag{2.7}$$

Die Schwebung resultiert aus zwei sich überlagernden Schwingungen, mit unterschiedlichen Frequenzen. Dies kann erreicht werden, indem Pendel 1 ausgelenkt wird, während 2 in Ruhe ist: $\psi_1 = \psi_a \ \psi_2 = 0 \ \dot{\psi}_1 = \dot{\psi}_2 = 0$. Nach dem Beginn der Schwingung nimmt die Amplitude von Pendel 1 ab, während die von 2 zunimmt. Dies geschieht, bis 1 stillsteht, dann liegt die vollständige Energie in der Schwingung von Pendel 2 vor. Ab da transferiert Pendel 2 seine Energie wieder an 1 ab. Das Resultat sind 90° zueinander verschobene Schwingungen der Pendel mit an und abnehmenden Amplituden. Damit ergibt sich:

$$\psi_{1}(t) = \psi_{a} \cos \frac{\sqrt{\omega_{0}^{2} + 2\Omega^{2}} - \omega_{0}}{2} t \cdot \cos \frac{\sqrt{\omega_{0}^{2} + 2\Omega^{2}} + \omega_{0}}{2} t \tag{2.8}$$

$$\psi_2(t) = \psi_a \sin \frac{\sqrt{\omega_0^2 + 2\Omega^2} - \omega_0}{2} t \cdot \sin \frac{\sqrt{\omega_0^2 + 2\Omega^2} + \omega_0}{2} t \tag{2.9}$$

Die Schwingungsdauern lassen sich mit den Kreisfrequenzen $\omega_I = \frac{\sqrt{\omega_0^2 + 2\Omega^2} - \omega_0}{2} = \frac{\omega_{\rm geg} - \omega_{\rm gl}}{2}$ und $\omega_{II} = \frac{\sqrt{\omega_0^2 + 2\Omega^2} + \omega_0}{2} = \frac{\omega_{\rm geg} + \omega_{\rm gl}}{2}$ berechnen: $T_I = \frac{2\pi}{\omega_I}$ $T_{II} = \frac{2\pi}{\omega_{II}}$. Die Stärke der Kopplung kann durch den Kopplungsgrad beschrieben werden.

Die Stärke der Kopplung kann durch den Kopplungsgrad beschrieben werden. Dieser setzt die durch die Kopplung übertragene Energie ins Verhältnis zur Gesamtenergie. Er kann durch eine der drei Formeln berechnet werden:

$$K = \frac{D_F l^2}{mgL + D_F l^2} = \frac{\Omega^2}{\omega_0^2 + \Omega^2}$$
 (2.10)

$$K = \frac{\omega_{\text{geg}}^2 - \omega_{\text{gl}}^2}{\omega_{\text{geg}}^2 + \omega_{\text{gl}}^2} = \frac{T_{gl}^2 - T_{geg}^2}{T_{gl}^2 + T_{geg}^2}$$
(2.11)

$$K = \frac{2\omega_I - \omega_{II}}{\omega_I^2 + \omega_{II}^2} = 4 \cdot \frac{T_S T_{II}}{4T_S^2 + T_{II}^2}$$
 (2.12)

Das Trägheitsmoment J des Pendels kann mit $J=\frac{1}{3}m_{St}L_{St}^2+m_Hl_H^2+mL^2$ berechnet werden, da die Ausdehnung in die Breite der Massen und des Stabes gegenüber der Länge vernachlässigbar sind und so von Punktmassen ausgegangen werden kann. m_{St},L_{St} sind die Masse und Länge des Stabes, m_H,l_H sind die Masse und der Abstand zur Drehachse des Hakens und m,L sind die Masse des Pendelgewichts und dessen Abstand zur Rotationsachse.

3 Messprinzip mit Skizze und Versuchsablauf

Abbildung 1: Aufbau der Pendel, die hier bei $\ell_{\rm H}=70\,{\rm cm}$ gekoppelt sind.

4 Formeln

5 Messwerte

Parameter	Pendel 1	Pendel 2
Masse des Pendelkörpers m / kg	$176,97 \cdot 10^{-3}$	$174,95 \cdot 10^{-3}$
Masse des Hakens $m_{ m H}/{ m kg}$	$16{,}06\cdot10^{-3}$	$15{,}80\cdot10^{-3}$
Masse der Stange	$131,40\cdot 10^{-3}$	$131,\!27\cdot 10^{-3}$
L/kg	$0,\!804$	0,800
$\ell_{ m H}$ / m	$0,\!4$	$0,\!4$
$L_{ m St}/{ m m}$	0,87	0,87

Tabelle 1: Ungekoppelter gleichsinniger Fall

5.1 40 cm

Pendel	t_0 / s	t_1/s
1	1,4	35,5
2	1,3	$35,\!4$

Tabelle 2: Ungekoppelter gleichsinniger Fall

Pendel	t_0 / s	t_1/s
1	0,9	34,8
2	0,8	$34,\!8$

Tabelle 3: Gekoppelter gleichsinniger Fall

Pendel	t_0/s	t_1/s
1	$0,\!4$	33,3
2	1,2	$34,\!1$

Tabelle 4: Gekoppelter gegensinniger Fall

Pendel	t_0 / s	t_1 / s	t_2 / s	t_3 / s	t_4 / s
1	0,0	$52,\!4$	105,8	160,0	211,6
2	$25,\!4$	$79,\!5$	132,9	185,3	237,8

Tabelle 5: Schwebungsfall

5.2 55 cm

Pendel	t_0 / s	t_1/s
1	0,8	35,0
2	0,8	34,8

Tabelle 6: Ungekoppelter gleichsinniger Fall

Pendel	t_0 / s	t_1/s
1	0,5	34,5
2	0,5	34,5

Tabelle 7: Gekoppelter gleichsinniger Fall

Pendel	t_0 / s	t_1/s
1	$1{,}4$	33,6
2	0,6	32,9

Tabelle 8: Gekoppelter gegensinniger Fall

Pendel	t_0 / s	t_1 / s	t_2/s	t_3 / s	t_4 / s
1	14,8	44,9	74,6	105,2	134,8
2	0,0	$29,\!5$	$60,\!2$	89,8	119,6

Tabelle 9: Schwebungsfall

5.3 70 cm

Pendel	t_0/s	t_1/s
1	1,5	35,8
2	1,5	35,7

Tabelle 10: Ungekoppelter gleichsinniger Fall

Pendel	t_0 / s	t_1/s
1	0,5	34,7
2	$0,\!5$	34,7

Tabelle 11: Gekoppelter gleichsinniger Fall

Pendel	t_0/s				
1	1,5	33,0			
2	$0,\!7$	$32,\!2$			

Tabelle 12: Gekoppelter gegensinniger Fall

Pendel	t_0 / s	t_1 / s	t_2 / s	t_3 / s	t_4 / s
1	0,0	18,1	38,7	58,3	77,8
2	9,0	$29,\!5$	49,0	$68,\!6$	88,3

Tabelle 13: Schwebungsfall

Pendel	t_0 / s	t_1 / s	t_2 / s	t_3 / s	t_4/s
1	6,2	26,7	47,1	66,9	85,6
2	$16,\!4$	36,9	57,3	77,1	97,4

Tabelle 14: Schwebungsfall für unterschiedlich ausgelenkte Massen

6 Auswertung

 T_0 berechnet sich aus den Daten, die in Tabelle 2 eingetragen sind durch

$$T_0 = \frac{t_1 - t_0}{20} \,, \tag{6.1}$$

da zwischen t_0 und t_1 20 Perioden durchlaufen wurden. Damit ergibt sich für Pendel 1

$$T_{0,1} = \frac{35,5 \,\mathrm{s} - 1,4 \,\mathrm{s}}{20} = 1,7 \,\mathrm{s}$$
 (6.2)

und für Pendel 2 analog ebenfalls $T_{0,2}=1.7\,\mathrm{s}.$

Für den Kopplungsgrad mit $\ell_{\rm H}=40\,{\rm cm}$ ergeben sich folgende Periodendauern.

Periodendauer	Links	Rechts	Mittel
$T_{ m gl}$	$1.7\mathrm{s}$	$1.7\mathrm{s}$	1,7 s
$T_{ m geg}^{ m gl}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$
$T_{ m II}^{ m geg}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$
$T_{ m S}$	$52,\!9\mathrm{s}$	$53,1\mathrm{s}$	$53{,}0\mathrm{s}$

Tabelle 15: Periodendauern für $\ell_{\rm H}$

Für den Kopplungsgrad mit $\ell_{\rm H}=55\,{\rm cm}$ ergeben sich folgende Periodendauern.

Periodendauer	Links	Rechts	Mittel
$T_{ m gl}$	$1.7\mathrm{s}$	$1.7\mathrm{s}$	$1.7\mathrm{s}$
$T_{ m geg}^{ m gl}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$
$T_{ m II}^{ m geg}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$
$T_{ m S}$	$30,0\mathrm{s}$	$29{,}9\mathrm{s}$	$30,0\mathrm{s}$

Tabelle 16: Periodendauern für $\ell_{\rm H}$

Für den Kopplungsgrad mit $\ell_{\rm H}=70\,{\rm cm}$ ergeben sich folgende Periodendauern.

Periodendauer	Links	Rechts	Mittel
$T_{ m gl}$	$1.7\mathrm{s}$	$1.7\mathrm{s}$	1,7 s
$T_{ m gl} \ T_{ m geg}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$	$1,6\mathrm{s}$
$T_{ m geg} \ T_{ m II}$	$1,6\mathrm{s}$	$1{,}6\mathrm{s}$	$1,6\mathrm{s}$
$T_{ m S}$	$19{,}5\mathrm{s}$	$19,\!8\mathrm{s}$	$19,\!6\mathrm{s}$

Tabelle 17: Periodendauern für $\ell_{\rm H}$

Abbildung 2: Exemplarisches x(t)-Diagrammdes Schwebungsfalles bei $\ell_{\mathrm{H}}=70\,\mathrm{cm}$

Abbildung 3: Exemplarisches x(t)-Diagrammder gleichsinnigen Fundamentalschwingung bei $\ell_{\mathrm{H}}=70\,\mathrm{cm}$

Abbildung 4: Exemplarisches x(t)-Diagramm der gegensinnigen Fundamentalschwingung bei $\ell_{\rm H}=70\,{\rm cm}$

Nach wird das Gesamtträgheitsmoment mit den Daten aus Tabelle 1 berechnet. Für das erste Pendel ergibt sich das Trägheitsmoment

$$J_1 = \frac{1}{3} \cdot 131,40 \cdot 10^{-3} \,\mathrm{kg} \cdot (0,87 \,\mathrm{m})^2 + 16,06 \cdot 10^{-3} \,\mathrm{kg} \cdot (0,4 \,\mathrm{m})^2 + 176,97 \cdot 10^{-3} \,\mathrm{kg} \cdot (0,804 \,\mathrm{m})^2 = 0,150 \,\mathrm{kg} \,\mathrm{m}^2$$

$$(6.3)$$

und für das zweite Pendel $J_2 = 0.148 \,\mathrm{kg}\,\mathrm{m}^2$.

Die Eigenfrequenz ω_0 wird mittels berechnet. Dafür muss zuerst die Lage des Schwerpunktes ℓ_S mit berechnet werden und ergibt

$$\ell_{\rm S} = \frac{Lm + \ell_{\rm H} m_{\rm H} + \frac{1}{2} L_{\rm St} m_{\rm St}}{m + m_{\rm H} + m_{\rm St}}$$
(6.4)

$$\begin{split} \ell_{\mathrm{S},1} &= \frac{0,\!804\,\mathrm{m}\cdot176,\!97\cdot10^{-3}\,\mathrm{kg} + 0,\!4\,\mathrm{m}\cdot16,\!06\cdot10^{-3}\,\mathrm{kg} + \frac{1}{2}0,\!87\,\mathrm{m}\cdot131,\!40\cdot10^{-3}\,\mathrm{kg}}{\left(176,\!97\cdot10^{-3} + 16,\!06\cdot10^{-3} + 131,\!40\cdot10^{-3}\right)\!\mathrm{kg}} \\ &= 0,\!635\,\mathrm{m} \end{split} \tag{6.5}$$

Für $\ell_{S,2}$ ergibt sich $\ell_{S,1}=0.632\,\mathrm{m}$.

- 7 Fehlerrechnung
- 8 Zusammenfassung
- 9 Literatur
 - [1] Versuchsanleitung zu (Abgerufen am 1.04.2050)

10 Anhang

Genist Pandel 7: 774,95 g Gew. Pendelstag 1:131,27g Arthanoung Pendel 7: 75,800 (d=0,01g)
Gewicht Pondel 2: 176,97g C. M Haken Pendel 2: 16,06 g Coewilt Dendelstange 2: 131,40g Masser undrehen? 1. Pendel 1: to t,
1,45 35,50s (für 20 Perioden) Pendel 2: 1,35 35,45 2-1 Geloppelt gleichsinnig Pendel 1 0,95 34,85 20 Penider Dendel 2 (0,805) 34,85 Geloppel gegenniming Pendel 10,40s 33,30s Pendel 2 1,205 34,105 Nochmal gehopelt gegenninning Pendel / 6,905 33,705 Frendel 2/170s 34,60s Shwelungpfall to | t1 | t2 | t4 | t5 | Pendel 1 0,05 | 52,405 105,805 160,05 211,605 Pendel 2 25,405 79,505 132,905 185,305 237,805

() H = S5CM	1)											171				
ungakoppi	et ito)	13 1		11					1)	1			10	111	
Pendel 1	0.80	s 35,0	S		-3/5))ji	1	11/					11	
Pondel 2							y			1/4			Y.			
gelroppelt (gleichs	ennig				110	, K					1	V /			
Pendel 1	6,50s	34,50														
Rendel 2				7)(Cy.	1	je L) 		
geleoppeld	gegow	sinnig			1/1							ly.	/)			
Pendel 1	1,405	33,605										ky.				
Pondul 2	0,605	32,90)s		()):	11/	X 1		V.) (19)		
Schwebefal			1		1	6			1			1	1)			
Pordel 1	74,80s	t, 44, 905	t2 74,60	37	05,	3	5	734	1,8	4	5		t	G	,7.	
Pendel 2	05	29,55	60,2	5/4	089	28	5	77	9,	65) (73		J	and the second

PH = 7	20 cm		9//				45	te
The state of the s	ppel+ (To	-						
Pendel	7 7,5 3	5,8						
ronall	2 7,5	39,7						
gekoppel 0,5	+ gleich	inalo						
Pondel	19 34	75.			,			
pende 2	0,55 3	4, 75						
SPkanne	H gezer	Sinnit						
oca p	1 to 1	to	1	= 37,5 %	0,63			
Pendel 7	7,5 5	33 5						
Pendel 2	0,75	32,2)						
Schnee	ceesas	ssfall (
Pendel 1	Co	t1 .	38,7	583	£4 77.85			
Pendel Z		18,1	49,0		88,3			
				A A 9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$100 AS	
Schweb	ings Call 4	ello an	sgelen k	E				
Pendel 1	to 6,2 2	£1 6, 7	t 7, 7	66.9	# ty			
Dendel 2			57,3	66,9	85,6			
				1				-