优化方法: 前三周课后答疑

龚梓阳(助教)

日期: 2021年9月25日

1 基础知识

在此处,我将根据自己的认识和同学的提问,对部分学过以及部分可能尚未涉及的知识进行一个简单地 梳理及介绍。

关于多变量函数 $f: \mathbb{R}^n \to \mathbb{R}$ 的相关定义,如可微、可导、连续,方向导数和泰勒公式等,可类似于单变量函数推广得到,具体说明可以参考"数学分析"(复旦欧阳光中)中第 13,14 章 (多变量微积分学)。其余关于矩阵的知识,如正定、半正定的定义可参考"高等代数"(北大)第 5 章 (二次型)。

1.1 范数

定义 1.1 (范数). 设 X 是域 \mathbb{K} (实数域或复数域)上的线性空间,函数 $\|\cdot\|: X \to \mathbb{R}$ 满足:

- 1. (正定性) $\forall x \in X, ||x|| \ge 0$; $||x|| = 0 \iff x = 0$;
- 2. (齐次性) $\forall x \in X, \alpha \in \mathbb{K}, \|\alpha x\| = |\alpha| \cdot \|x\|$;
- 3. (次可加性) $\forall x, y \in X, ||x + y|| \le ||x|| + ||y||$ 。

则称 $\|\cdot\|$ 是 X 上的一个范数。

例 1.1 (常见范数). 常见范数有:

1. 空间 \mathbb{R} : $\forall x \in \mathbb{X}$

$$||x|| := |x| \tag{1}$$

即范数 ||x|| 为 x 的绝对值。

- 2. 空间 \mathbb{R}^n : $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x} = (x_1, x_2, \dots, x_n)'$
 - (a) 欧几里得范数:

$$\|\mathbf{x}\|_2 := \sqrt{x_1^2 + \dots + x_n^2}$$
 (2)

(b) l_p 范数 $(p \ge 1)$:

$$\|\mathbf{x}\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \tag{3}$$

若 p=1,则

$$\|\mathbf{x}\|_1 := \sum_{i=1}^n |x_i| \tag{4}$$

若 $p = \infty$,则

$$\|\mathbf{x}\|_{\infty} := \max_{i=1,\dots,n} |x_i| \tag{5}$$

(c) l₀ 范数:

$$\|\mathbf{x}\|_0 = |\{x_i : x_i \neq 0, i = 1, \dots, n\}|$$
 (6)

即向量 \mathbf{x} 中分量 x_i 不为零的个数。

评论. 关于范数的由来,以及更详细的定义和性质,将在未来的"泛函分析"这门课程中详细进行学习。在本门课程中,所涉及的 $\|x-y\|$ 可以理解为两个数 x,y 之间距离远近的一种度量方式。

1.2 梯度向量与 Hessien 矩阵

定义 1.2 (梯度向量). 对于多变量函数 $f: \mathbb{R}^n \to \mathbb{R}$,即 $f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$,如果 f 在点 \mathbf{x}_0 关于每一个变量 x_i 都有偏导数 $\frac{\partial f}{\partial x_i}(\mathbf{x}_0)$ 存在,则在点 \mathbf{x} 上,这些偏导数定义了一个向量:

$$\nabla f(\mathbf{x}_0) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}_0), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x}_0)\right)' \tag{7}$$

该向量称为 f 在点 \mathbf{x}_0 的梯度向量。

评论. 关于该定义,在"数学分析"(复旦欧阳光中)中第14.6节(方向导数与梯度)中有过简单介绍,各位同学可翻阅一下自己的教科书,或者可以借助搜索引擎对梯度有一个更清晰的认识。

定义 1.3 (Hessian 矩阵). 对于多变量函数 $f: \mathbb{R}^n \to \mathbb{R}$, 如果 f 在点 \mathbf{x}_0 的所有二阶偏导数都存在,那么函数 f 在点 \mathbf{x}_0 的 Hessian 矩阵为

$$\boldsymbol{H}(\mathbf{x}_{0}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(\mathbf{x}_{0}) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\mathbf{x}_{0}) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(\mathbf{x}_{0}) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(\mathbf{x}_{0}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\mathbf{x}_{0}) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\mathbf{x}_{0}) \end{bmatrix}$$
(8)

或使用下标记号表示为

$$\boldsymbol{H}_{ij}(\mathbf{x}_0) = \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0) \tag{9}$$

1.3 凸集与凸函数

以下内容摘抄自课程用书"数值最优化方法"附录 1,对于完成作业可能有帮助。

定义 1.4 (凸集). 设集合 $C \subset \mathbb{R}^n$ 。若对 $\forall \mathbf{x}, \mathbf{y} \in C$,有

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C, \quad \theta \in [0, 1] \tag{10}$$

则称 C 为凸集。

定义 1.5 (凸函数). 设集合 $C \subset \mathbb{R}^n$ 为非空凸集, 函数 $f: C \to \mathbb{R}$ 。若对 $\forall \mathbf{x}, \mathbf{y} \in C$,有

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}), \quad \theta \in [0, 1]$$
 (11)

则称 f 为 C 上的凸函数。若上述不等式对 $\mathbf{x} \neq \mathbf{y}$ 严格成立,则称 f 为 C 上的严格凸函数。

定理 1.1 (凸函数的一阶判定条件). 设集合 $C \subset \mathbb{R}^n$ 为非空开凸集,函数 $f: C \to \mathbb{R}$ 可微,则 1. f(x) 是凸函数当且仅当对 $\forall \mathbf{x}, \mathbf{y} \in C$,有

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})'(\mathbf{y} - \mathbf{x})$$
 (12)

2. $f(\mathbf{x})$ 是严格凸函数当且仅当对 $\forall \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}$, 有

$$f(\mathbf{y}) > f(\mathbf{x}) + \nabla f(\mathbf{x})'(\mathbf{y} - \mathbf{x}) \tag{13}$$

定理 1.2 (凸函数的二阶判定条件). 设集合 $C \subset \mathbb{R}^n$ 为非空开凸集, 函数 $f: C \to \mathbb{R}$ 二阶连续可微, 则

- 1. f(x) 是凸函数当且仅当对 $\forall x \in C$, Hessien 矩阵 H(x) 半正定;
- 2. 若对 $\forall \mathbf{x} \in C$, Hessien 矩阵 $\mathbf{H}(\mathbf{x})$ 正定,则 f 是严格凸函数。

1.4 常用矩阵求导公式

关于矩阵及向量求导,这里不加证明地给出以下常用矩阵求导公式,同学们可下来自己利用数学分析与 高等代数的知识自己推一遍。

$$\frac{\partial \beta' \mathbf{x}}{\partial \mathbf{x}} = \beta \tag{14}$$

$$\frac{\partial \mathbf{x}' \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{x} \tag{15}$$

$$\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}') \mathbf{x} \tag{16}$$

评论. 更多关于矩阵运算的知识,可参考 "The Matrix Cookbook" (Petersen & Pedersen, 2012)。

2 课堂习题

考虑对正定二次函数 $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}'\mathbf{G}\mathbf{x} + \mathbf{b}'\mathbf{x}$,在点 \mathbf{x}_k ,求出沿下降方向 \mathbf{d}_k 作精确线搜索的步长 α_k 。

证明. 若要给出沿下降方向 \mathbf{d}_k 作精确线搜索的步长 α_k ,则应对于 $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$,满足

$$\mathbf{d}_{k}^{\prime} \nabla f(\mathbf{x}_{k+1}) = 0 \tag{17}$$

由于 $f(\mathbf{x})$ 为正定二次函数,则 \mathbf{G} 为对称正定矩阵,则有 $\mathbf{G}' = \mathbf{G}$,因此

$$\nabla f(\mathbf{x}) = \mathbf{G}\mathbf{x} + \mathbf{b} \tag{18}$$

即

$$\mathbf{d}_{k}^{\prime} \nabla f(\mathbf{x}_{k+1}) = \mathbf{d}_{k}^{\prime} \left[\mathbf{G} \left(\mathbf{x}_{k} + \alpha_{k} \mathbf{d}_{k} \right) + \mathbf{b} \right] = 0 \tag{19}$$

由于 G 为正定矩阵,有 $\mathbf{d}_{k}'G\mathbf{d}_{k}>0$,因此,上式可化简为

$$\alpha_k = -\frac{\mathbf{d}_k' \left(\mathbf{G} \mathbf{x}_k + \mathbf{b}\right)}{\mathbf{d}_k' \mathbf{G} \mathbf{d}_k} = -\frac{\mathbf{d}_k' \nabla f(\mathbf{x}_k)}{\mathbf{d}_k' \mathbf{G} \mathbf{d}_k}$$
(20)