

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по лабораторной работе № 3

Название лабораторной работы:

Моделирование выборки из абсолютно непрерывного закона распределения методом обратных функций.

Вариант № 9

Дисциплина:

Теория вероятности и математическая статистика

Студент группы ФН11-52Б		<u>Очкин Н.В.</u>
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Облакова Т.В.
•	(Подпись, дата)	(И.О. Фамилия)

Содержание

1	Зад	ание		1
2	Исх	одные	данные	1
3	Реш	ление		1
	3.1	Часть	1	1
		3.1.1	Функция распределения	1
		3.1.2	Обратная функция	3
			3.1.2.1 Метод Ньютона	3
			3.1.2.2 Метод центральных разностей	3
		3.1.3	Реализация численного нахождения обратной	
функции				4
			3.1.3.1 Реализация метода центральных разностей	4
			3.1.3.2 Реализация метода Ньютона	4

1 Задание

- 1. Для данного n методом обратных функций смоделируйте выборку из закона распределения с заданной плотностью p(x).
- 2. Для полученной выборки найдите гистограмму относительных частот. Постройте на одном рисунке графики теоретической плотности p(x) и гистограмму относительных частот.
- 3. Вычислите выборочное среднее и выборочную дисперсию и сравните с истинными значениями этих характеристик.
- 4. Используя неравенство Dvoretzky-Kiefer-Wolfowitz, постройте 90% доверительный интервал для функции распределения F(x).

Приведите графическую иллюстрацию

2 Исходные данные

Вариант: 9
$$n:120$$

$$p(x) = \frac{1}{\sqrt{0.4\pi}x} e^{-(\ln x - 2)^2/0.4}, \quad x > 0$$
 (1)

3 Решение

3.1 Часть 1

Для данного n методом обратных функций смоделируйте выборку из закона распределения с заданной плотностью p(x).

3.1.1 Функция распределения

Найдем функцию распределения:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
, где (2)

 $f_X(x)$ - плотность распределения.

Подставим (1) в (2):

$$F_X(x) = \int_0^x \frac{1}{\sqrt{0.4\pi y}} e^{-(\ln y - 2)^2/0.4} dy =$$

$$= \begin{bmatrix} t = \frac{\ln(y) - 2}{\sqrt{0.4}} & dt = \frac{1}{y\sqrt{0.4}} dy \\ \ln(y) - 2 = t\sqrt{0.4} & dy = y\sqrt{0.4} dt \\ \ln(y) = t\sqrt{0.4} + 2 & x : t = \frac{\ln(x) - 2}{\sqrt{0.4}} \\ y = \exp\left[t\sqrt{0.4} + 2\right] & 0 : t = -\infty \end{bmatrix} =$$

$$= \frac{1}{\sqrt{0.4\pi}} \int_{-\infty}^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{\left[-t\sqrt{0.4} - 2\right]} \cdot e^{-t^2} \cdot e^{\left[t\sqrt{0.4} + 2\right]} \cdot \sqrt{0.4} dt =$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{-t^2} dt = \frac{1}{\sqrt{\pi}} \left(\int_{-\infty}^0 e^{-t^2} dt + \int_0^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{-t^2} dt \right) =$$

$$= \frac{1}{\sqrt{\pi}} \left(\frac{\pi}{2} \operatorname{erf}(t) \Big|_{-\infty}^0 + \frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}\left(\frac{\ln(x) - 2}{\sqrt{0.4}}\right) \right) \Leftrightarrow$$

где erf(x) - **функция ошибок** (также называемая функция ошибок Гаусса).

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Примечание: из графика видно, что $\operatorname{erf}(0)=0,\,\operatorname{erf}(-\infty)=-1$

В конечном итоге, функция распределения имеет вид

$$F_X(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\ln(x) - 2}{\sqrt{0.4}}\right)$$
 (3)

3.1.2 Обратная функция

Так как для нахождения обратной функции распределения требуется найти обратную функцию ошибок, что аналитически сделать сложно, воспользуемся численными методами.

3.1.2.1 Метод Ньютона

Для нахождения обратной функции воспользуемся методом касательных (Ньютона). Рабочая формула

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Вообще говоря, метод используется для нахождения корня заданной функции. Так что для нахождения обратной функции y = f(x), т.е. $x = f^{-1}(y)$ будем искать решение уравнения: f(x) - y = 0

$$x_{n+1} = x_n - \frac{f(x_n) - y}{(f(x_n) - y)_x'} = x_n - \frac{f(x_n) - y}{f'(x_n)}$$
(4)

Погрешность ε возьмем равной 1e-6.

3.1.2.2 Метод центральных разностей

Производные будем искать методом центральных разностей. Рабочая формула

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} \tag{5}$$

Погрешность определяется как O(h), h примем равной 1e-6.

Подставив (5) в (4), получим:

$$x_{n+1} = x_n - \frac{(f(x_n) - y) \cdot 2h}{f(x_n + h) - f(x_n - h)}$$
(6)

- 3.1.3 Реализация численного нахождения обратной функции
- 3.1.3.1 Реализация метода центральных разностей
- 3.1.3.2 Реализация метода Ньютона