1. List all the perfect squares between 100 and 200 (inclusive). Also write their positive square root.

Perfect Square	Square Root
100	10
121	11

2. Simplify

a.
$$\sqrt{16} = 4$$

b.
$$\sqrt{25}$$

c.
$$\sqrt{81}$$

d.
$$\sqrt{49}$$

- e. $\sqrt{64}$
- f. $\sqrt{9}$
- g. $\sqrt{121}$
- h. $\sqrt{100}$
- i. $\sqrt{36}$
- j. $\sqrt{144}$

3. Estimate square roots

- a. $\sqrt{13}$ lies between 3 and 4
- b. $\sqrt{20}$ lies between $_$ and $_$
- c. $-\sqrt{\frac{1}{25}} = -\frac{\sqrt{1}}{\sqrt{25}}$ = $-\frac{1}{5}$
- d. $-\sqrt{144}$
- e. $\sqrt{15^2}$

f.
$$(\sqrt{6})^2$$

g.
$$-\sqrt{81}$$

a.

$$\sqrt{16} = 4hahaha$$

b.

$$-\sqrt{\frac{1}{25}} = -\frac{\sqrt{1}}{\sqrt{25}} = -\frac{1}{5}$$

c.

$$-\sqrt{144}$$

d.

$$\sqrt{15^2}$$

e.

$$(\sqrt{6})^2$$

f.

$$-\sqrt{81}$$

For any nonnegative real numbers a and b:

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 when $b > 0$

2. Evaluate

a.

 $\sqrt{100}$

b.

 $\sqrt{121}$

c.

$$-\sqrt{400}$$

d.

$$\sqrt{625}$$