- Standard Form Problem Omin $f_o(x)$ $S.t f_i(x) \leq O$, i = 1, ..., m $h_i(x) = O$, i = 1, ..., pVariable $x \in \mathbb{R}^n$, domain D, optimal value p^*
- Lagrangian: $L: \mathbb{R}^{h} \times \mathbb{R}^{m} \times \mathbb{R}^{P} \rightarrow \mathbb{R}$ with dom $L = D \times \mathbb{R}^{m} \times \mathbb{R}^{P}$ $L(x, \lambda, v) = f_{o}(x) + \sum_{i=1}^{m} \lambda_{i} f_{i}(x) + \sum_{i=1}^{p} v_{i} h_{i}(x)$ constraint equality function

2, v are Lagrange multiplier

⁻ Lagrange dual function Θ $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ $g(x, v) = \inf_{x \in P} L(x, \lambda, v)$

= inf
$$(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i h_i(x))$$

 $x \in D$

g is concave, can be $-\infty$ for some λ, ν lower bound property: if $\lambda \geq 0$, then $g(\lambda, \nu) \leq P^*$

-> For a convex minimization problem with inequality Constan

min
$$f(x)$$

s.t $f(x) \leq 0$, $i=1,...,m$

Then, For soft SVM

> Primal problem:

min = ||w||^2 + C ||S||

w,b, 5

5.t
$$y_i (\omega x_i + b) \ge 1 - 3_i$$
, $i = 1, 2, ..., N$
 $S_i \ge 0$, $i = 1, ..., N$

> Lagrangian dual problem:

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathcal{L}_{i} \mathcal{L}_{j} \mathcal{Y}_{i} \mathcal{Y}_{j} \quad k(x_{i}, x_{j}) - \sum_{j=1}^{N} \mathcal{L}_{i}$$

S.t
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

 $0 \le \alpha_i \le C$

Derivation

Step 1 Lagrangian for
$$\Delta$$
:

Step 1 L(w,t,3,x,m) = $\frac{1}{2} ||w||^2 + C \frac{3}{2} \frac{3}{2} \frac{3}{2} - \frac{3}{2} \frac{3}$

and
$$\alpha_i \ge 0$$
, $u_i \ge 0$

$$\nabla_{\omega}L = \omega - \sum_{k=1}^{N} x_k y_k x_k$$
 $\nabla_{b}L = -\sum_{k=1}^{N} \alpha_k y_k$ $\nabla_{g}L = C - \sum_{k=1}^{N} \alpha_k - \sum_{k=1}^{N} \alpha_k$

Let $\nabla_{xx}L = \nabla_{x}L = \nabla_{x}L = 0$ and set minL = $-\frac{1}{2}\sum_{x}x_{x}x_{y}y_{x}k_{x}x_{x}x_{y}^{1+2}x_{x}^{2}$ there is only x in it now, do max L, which is min -2finally one set the dual problem:

 $\min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} k(x_{i}, x_{j}) - \sum_{j=1}^{N} \lambda_{i}$ Sep 2. S.t => $\sum_{i=1}^{N} \lambda_{i} y_{i} = 0$ $C - \alpha_{i} - \mathcal{U}_{i} = 0$ $\alpha_{i} \ge 0$

P.S we know $\omega = \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(\alpha_{i})$ $\omega^{T} \omega \Rightarrow \sum_{j=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\alpha_{i}) \phi(\alpha_{j})$

kernels:

k(xi,xi)

Linear $\Rightarrow k(x, \xi) = X^T \xi$ Polynomial $\Rightarrow k(x, \xi) = (H X^T \xi)^d$ Radiu Basis Function (rbf, gaussian kernel)

⇒ s.t O≤ xi ≤ C

kernel, x_i is the sample point x_j is the variable.

 $\Rightarrow k(x, 2) = e^{-\frac{||x-2||^2}{62}}$

Exp> e -11x-211, Leplacian > e -1x-21, sigmoid kernel > tanh(axT+C)

Explanation of kkT

$$g = 2 \Rightarrow \inf_{x \in D} (f_{o}(x) + \sum_{i=1}^{m} \lambda_{i} f_{i}(x) + \sum_{i=1}^{p} \nu_{i} h_{i}(x))$$

gradient vector parralme

case 1: Unconstrained local minimum occurs in the Jesible region

$$\tau g(x^*) < 0 (< 0) in fesible region)$$

$$\nabla f(x^*) = 0$$

Case 2: Un constraied local minimum lies outside the feasible region

$$\frac{g(x^*)=0}{-\nabla f(x^*)=\lambda \nabla_x g(x^*) \Rightarrow \text{telt} \lambda}$$

$$\lambda \geq 0$$

<u>kk</u>T

Given the optimization problem:

min for s.t gorso

Define $2(x,\lambda) = f(x) + \lambda g(x) \Rightarrow \nabla f(x) = \lambda \nabla g(x)$ $\nabla L = 0 \Rightarrow \lambda \exists + \lambda \lambda d(x)$

Then x^* a local minimum \iff there exists a unique $A^* s.t$ $O \nabla_x \angle (x^*, \lambda^*) = 0 \Rightarrow \text{Alt} = \nabla f_o(x) + 2 \lambda g(x) + 3 \text{ when}$ = 0 $\Rightarrow Q \lambda^* \angle 0$

 $3x^*s(x^*)=0 \iff complementaryslackness$

9 g(x)*) ≤ o

If a dual variable is greater oregal than zero then the corresponding primal constraint must be tight

kkT: 0,0,3,6

by
$$kkT \Rightarrow \omega = \sum_{i=1}^{N} \alpha_i y_i x_i$$
 and $y_i (\omega_i x_i + b) - 1 = 0$

$$\Rightarrow b = y_i - \sum_{i=1}^{N} \alpha_i y_i kc x_i x_i) \Rightarrow f(x) = Sign\left(\sum_{i=1}^{N} \alpha_i y_i kc x_i, x_i + b\right)$$