

PWGCF: Hands-on Session Femto framework(s)

O2 Analysis Tutorial 4.0

17.10.2024

Anton Riedel, Georgios Mantzaridis, Jaime Gonzalez Gonzalez

Overview

• There are a few frameworks available in O2Physics under PWGCF folder:

First implementation Specialized for analyzing p-p data

```
[anton@silver] ~/alice/02Physics
> find PWGCF/ -type d -iname "Femto*"
PWGCF/Femto3D
PWGCF/FemtoDream
PWGCF/FemtoUniverse
PWGCF/FemtoWorld
```


Overview

• There are a few frameworks available in O2Physics under PWGCF folder:

```
First implementation Specialized for analyzing p-p data
```

```
[anton@silver] ~/alice/02Physics
> find PWGCF/ -type d -iname "Femto*"
PWGCF/Femto3D
PWGCF/FemtoDream
PWGCF/FemtoUniverse
PWGCF/FemtoWorld
```

 Data formats of the different frameworks are partially different -> will be unified/updated in very near future

```
[anton@silver] ~/alice/O2Physics
> find PWGCF/DataModel/ -name "Femto*"
PWGCF/DataModel/FemtoDerived.h
```


• Full chain of femto analysis

AO2D.root

Full chain of femto analysis

		Store	Binding	Description
AO2D.root	Producer		FDExtMCParticles	FDEXTMCPARTICLE
ROOT file(s)	task		FDExtParticles	FDEXTPARTICLE
DF:	Cask		FDMCLabels	FDMCLabel
O2collision			FDMCParticles	FDMCPARTICLE
- O2track			FDCollisions	FDCOLLISION
– O2muon –	•	~	FDParticles	FDPARTICLE

Full chain of femto analysis

		Store	Binding	Description
AO2D.root	Producer		FDExtMCParticles	FDEXTMCPARTICLE
ROOT file(s)	task		FDExtParticles	FDEXTPARTICLE
DF:	Casit		FDMCLabels	FDMCLabel
O2collision			FDMCParticles	FDMCPARTICLE
O2trackO2muon			FDCollisions	FDCOLLISION
- 02muon	,		FDParticles	FDPARTICLE

o2-analysis-cf-femtodream-producer

- Fill femto tables for analysis
- Only store events and tracks/V0/... fulfilling loosest selections
- Compute bitmask for track and PID selections
- Generate extended and/or MC tables for QA and more

Full chain of femto analysis

Tracks one;1

Produce same and mixed event distributions for post-processing

o2-analysis-cf-femtodream-producer

- Fill femto tables for analysis
- Only store events and tracks/V0/... fulfilling loosest selections
- Compute bitmask for track and PID selections
- Generate extended and/or MC tables for QA and more

Full chain of femto analysis

o2-analysis-cf-femtodream-producer

- Fill femto tables for analysis
- Only store events and tracks/V0/... fulfilling loosest selections
- Compute bitmask for track and PID selections
- Generate extended and/or MC tables for QA and more

o2-analysis-cf-femtodream-pair-track-track

- Select particles according to the bitmask
- Pair tracks/V0s in single event for same event distribution
- Pair tracks/V0s across multiple events for mixed event distribution

Full chain of femto analysis

Produce same and mixed event distributions for

post-processing

AnalysisResults.root

Full chain of femto analysis

AnalysisResults.root

Tracks_one;1

- Split (final) analysis into **2 parts**
 - 1. Run skimming up front and remove unnecessary information to reduce the size of the data
 - 2. Run the analysis on derived data
- Computationally very efficient, especially for doing systematics

Analysis of LHC22 MB pass4 (3PB)

Hyperloop test of femtodream producer task

Number of input files	1
Input size	2.4 GB
Output size	12.4 MB
Output size (AO2D only)	12.3 MB
Reduction Factor	196
PSS Memory	Max: 3.7 GB Avg: 3.6 GB Slope: 1.4 MB/s
Private Memory	Max: 2.6 GB Avg: 2.4 GB Slope: 594.1 KB/s
Timing	CPU: 9m 40s Wall: 12m 44s
Throughput	3.2 MB/s/core
Expected resources	33y 291d 16.4 TB

Skimming & Analysis of whole 22 data (3PB)

Hyperloop test of femtodream producer task

Number of input files	1
Input size	2.4 GB
Output size	12.4 MB
Output size (AO2D only)	12.3 MB
Reduction Factor	196
PSS Memory	Max: 3.7 GB Avg: 3.6 GB Slope: 1.4 MB/s
Private Memory	Max: 2.6 GB Avg: 2.4 GB Slope: 594.1 KB/s
Timing	CPU: 9m 40s Wall: 12m 44s
Throughput	3.2 MB/s/core
Expected resources	33y 291d 16.4 TB

Skimming & Analysis of whole 22 data (3PB)

Hyperloop test of femtodream producer task

Number of input files	1
Input size	2.4 GB
Output size	12.4 MB
Output size (AO2D only)	12.3 MB
Reduction Factor	196
PSS Memory	Max: 3.7 GB Avg: 3.6 GB Slope: 1.4 MB/s
Private Memory	Max: 2.6 GB Avg: 2.4 GB Slope: 594.1 KB/s
Timing	CPU: 9m 40s Wall: 12m 44s
Throughput	3.2 MB/s/core
Expected resources	33y 291d 16.4 TB

dpl-config.json

```
"ConfTrkPtMin":
    "values": [
        "0.5",
"ConfTrkPtMax": {
    "values": [
"ConfTrkEtaMax":
    "values": [
        "0.8",
        "0.83"
```

O2track from AO2D.root

O2Tracks from AO2D.root							
Index	1	2					
p_T	0.55	0.42					
eta	0.79	0.9					

Index	p_T min		p_T max	eta max			•••	
	>0.4	>0.5	>0.6	<4	<0.83	<0.8	<0.77	•••
1								
2								

dpl-config.json

O2track from AO2D.root

Index

2

pT>0.5, set bit to 0

p_T min

>0.4 >0.5 0.6

1 1 0

1 0 0

pT>0.5, set bit to 1

 p_T max
 |eta| max
 ...

 <4</td>
 <0.83</td>
 <0.8</td>
 <0.77</td>
 ...

 ...
 ...
 ...
 ...

dpl-config.json

O2track from AO2D.root

Index	p_T min		p_T max	eta max				
	>0.4	>0.5	>0.6	<4	<0.83	<0.8	<0.77	
1	1	1	0	1				
2	1	0	0	1				

dpl-config.json

O2track from AO2D.root

O2Tracks from AO2D.root							
Index	1	2					
p_T	0.55	0.42					
eta	0.79	-0.9					

Index	p_T min		p_T max	eta max				
	>0.4	>0.5	>0.6	<4	<0.83	<0.8	<0.77	•••
1	1	1	0	1	1	1	0	
2	1	0	0	1	0	0	0	

- Use cutculator in femtodream to compute the bitmask for the selections you need
- Cutculator takes as input the configuration of your producer task

```
[O2Physics/latest] ~ $> o2-analysis-cf-femtodream-cutculator dpl-config.json Welcome to the CutCulator!

Found femto-dream-producer-task in dpl-config.json

Do you want to work with tracks or V0s (T/V)? >T

Do you want to manually select cuts or create systematic variations(M/V)? >M

Selection: Sign of the track - (-1 1 )

> 1

Selection: Minimal pT (GeV/c) - (0.4 0.5 0.6 )

> 0.5

Selection: Maximal pT (GeV/c) - (4 )

> 4

Selection: Maximal eta - (0.83 0.8 0.77 )

> 0.8
```

Invoke cutculator with the configuration of your producer as input

- Use cutculator in femtodream to compute the bitmask for the selections you need
- Cutculator takes as input the configuration of your producer task

- Use cutculator in femtodream to compute the bitmask for the selections you need
- Cutculator takes as input the configuration of your producer task

```
[O2Physics/latest] ~ $> o2-analysis-cf-femtodream-cutculator dpl-config.json Welcome to the CutCulator!

Found femto-dream-producer-task in dpl-config.json

Do you want to work with tracks or V0s (T/V)? >T

Do you want to manually select cuts or create systematic variations(M/V)? >M

Selection: Sign of the track - (-1 1 )

> 1

Selection: Minimal pT (GeV/c) - (0.4 0.5 0.6 )

> 0.5

Selection: Maximal pT (GeV/c) - (4 )

> 4

Selection: Maximal eta - (0.83 0.8 0.77 )

> 0.8
```

+++++++++++++++++++++++++++++++++++ Use the bitmask as input CutCulator has spoken - your selection bit is Configuration of for your pair task to select 00000001100000000111010010101010 (bitwise) pair-task-track-track tracks 25195690 (number representation) PID for these species is stored: ConfCutPartOne 25195690 Proton: 0 ConfCutPartTwo 25195690

PID information of tracks from helper tasks						
Index	1	2				
NsigmaTPC (Proton)	1.2	2.8				
NSigmaTOF (Proton)	0.5	5.6				
•••		•••				

dpl-config.json (Producer)

Species	Proton						
	3 2.5			3	.5		
Index	< TPC	< TPCTOF	< TPC	< TPCTOF	< TPC	< TPCTOF	
1							
2							

"ConfTrkPIDspecies":	{
"values": [
"4"	
1	
· .	
, ,	

dpl-config.json (Producer)

PID information of tracks from helper tasks				
Index	1	2		
NsigmaTPC (Proton)	1.2	2.8		
NSigmaTOF (Proton)	0.5	5.6		
			•••	

dpl-config.json (Producer)

from PID.h

```
static constexpr ID Electron = 0;
static constexpr ID Muon = 1;
static constexpr ID Pion = 2;
static constexpr ID Kaon = 3
static constexpr ID Proton = 4;
static constexpr ID Deuteron = 5;
static constexpr ID Triton = 6;
static constexpr ID Helium3 = 7;
static constexpr ID Alpha = 8;
```


dpl-config.json (Producer)

Track 1 passed | nsigma_TPC | < 3, set bit to 1

PID information of tracks from helper2222 tasks					
Index	1	2			
NsigmaTPC (Proton)	2.8	-3.2			
NSigmaTOF (Proton)	0.5	5.6	•••		
		ck 2 did not nass	•••		

| nsigma_TPC|<3, set bit to 0

Species	Proton				
	3	2.5		3	.5
Index	< TPC < TPCTOF	< TPC	< TPCTOF	< TPC	< TPCTOF
1	1	0		1	
2	0	0		1	

dpl-config.json (Producer)

```
"ConfTrkPIDspecies": {
     "values": [
         "4"
     ]
},
```


PID information of tracks from helper2222 tasks				
Index	1	2		
NsigmaTPC (Proton)	2.8	-3.2		
NSigmaTOF (Proton)	-0.5	5.6		

Track 1 passed | nsigma_TPCTOF | < 3, set bit to 1

Track 2 did not pass |nsigma_TPCTOF|<3, set bit to 0

Species		Protor.				DIT TO U
	3		1	.5	3	3.5
Index	< TPC	< TPCTOF	< JPC	< TPCTOF	< TPC	< TPCTOF
1	1	1	0	0	1	1
2	0	0	0	0	1	0

dpl-config.json (Producer)

```
"ConfTrkPIDspecies": {
        "values": [
            "4"
]
},
```

Support for TOF only selections will be added in the future

$n\sigma_{TPCTOF} = \sqrt{n\sigma_{TPC}^2 + n\sigma_{TOF}^2}$

Bitmask for pid cuts

```
PID bits for these species are available:
    .+++++++++++++++++++++++++++++
Species Proton with |NSigma|<3.5
Bit for Nsigma TPC: 65536
Bit for Nsigma TPCTOF: 32768
+++++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<3
Bit for Nsigma TPC: 4096
Bit for Nsigma TPCTOF: 2048
  .++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<2.5
Bit for Nsigma TPC: 256
Bit for Nsigma TPCTOF: 128
```


Bitmask for pid cuts

Cutculator will compute all possible PID selections

```
PID bits for these species are available:
   Species Proton with | NSigma | <3.5
Bit for Nsigma TPC: 65536
Bit for Nsigma TPCTOF: 32768
Species Proton with |NSigma|<3
Bit for Nsigma TPC: 4096
Bit for Nsigma TPCTOF: 2048
  -++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<2.5
Bit for Nsigma TPC: 256
Bit for Nsigma TPCTOF: 128
```

Select particle species of interest

Bitmask for pid cuts


```
PID bits for these species are available:
  ++++++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<3.5
Bit for Nsigma TPC: 65536
Bit for Nsigma TPCTOF: 32768
Species Proton with |NSigma|<3
Bit for Nsigma TPC: 4096
Bit for Nsigma TPCTOF: 2048
  -++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<2.5
Bit for Nsigma TPC: 256
Bit for Nsigma TPCTOF: 128
```

- Select particle species of interest
- Select limit of |nσ|

$n\sigma_{TPCTOF} = \sqrt{n\sigma_{TPC}^2 + n\sigma_{TOF}^2}$

Bitmask for pid cuts

```
PID bits for these species are available:
   Species Proton with |NSigma|<3.5
Bit for Nsigma TPC: 65536
Bit for Nsigma TPCTOF: 32768
Species Proton with |NSigma|<3
Bit for Nsigma TPC: 4096
Bit for Nsigma TPCTOF: 2048
  -++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<2.5
Bit for Nsigma TPC: 256
Bit for Nsigma TPCTOF: 128
```

- Select particle species of interest
- Select limit of |no|
- Select limit for TPC or TPCTOF

$n\sigma_{TPCTOF} = \sqrt{n\sigma_{TPC}^2 + n\sigma_{TOF}^2}$


```
PID bits for these species are available:
   +++++++++++++++++++++++++++++
Species Proton with |NSigma|<3.5
Bit for Nsigma TPC: 65536
Bit for Nsigma TPCTOF: 32768
Species Proton with | NSigma | <3
Bit for Nsigma TPC: 4096
Bit for Nsigma TPCTOF: 2048
 Species Proton with |NSigma|<2.5
Bit for Nsigma TPC: 256
Bit for Nsigma TPCTOF: 128
```

- Select particle species of interest
- Select limit of |nσ|
- Select limit for TPC or TPCTOF
- Read of the bitmask

Bitmask for pid cuts

Cutculator will compute all possible PID selections

```
PID bits for these species are available:
   ++++++++++++++++++++++++++++++
Species Proton with |NSigma|<3.5
Bit for Nsigma TPC: 65536
Bit for Nsigma TPCTOF: 32768
+++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<3
Bit for Nsigma TPC: 4096
Bit for Nsigma TPCTOF: 2048
 -++++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<2.5
Bit for Nsigma TPC: 256
Bit for Nsigma TPCTOF: 128
```

- Select particle species of interest
- Select limit of |nσ|
- Select limit for TPC or TPCTOF
- Read of the bitmask
- Configure the task

Momentum threshold to switch from TPC to TPCTOF

Track1.PIDThres

0.75

Bitmask for pid cuts

Cutculator will compute all possible PID selections

```
PID bits for these species are available:
    +++++++++++++++++++++++++++++
Species Proton with |NSigma|<3.5
Bit for Nsigma TPC: 65536
Bit for Nsigma TPCTOF: 32768
++++++++++++++++++++++++++++++++++++
Species Proton with |NSigma|<3
Bit for Nsigma TPC: 4096
Bit for Nsigma TPCTOF: 2048
Species Proton with | NSigma | < 2.5
Bit for Nsigma TPC: 256
Bit for Nsigma TPCTOF: 128
```

Here: Select protons with $|n\sigma|$ < 3 for TPC and TPCTOF with a momentum threshold of 0.75 GeV

- Select particle species of interest
- Select limit of |nσ|
- Select limit for TPC or TPCTOF
- Read of the bitmask
- Configure the task

Important: Set momentum threshold to switch from TPC to TPCTOF

How do I know that my bitmasks are correct?

Full chain of femto analysis

o2-analysis-cf-femtodream-producer

- Fill femto tables for analysis
- Only store events and tracks/V0/... fulfilling loosest selections
- Compute bitmask for track and PID selections
- Generate extended and/or MC tables for QA and more

How do I know that my bitmasks are correct?

Full chain of femto analysis

AnalysisResults.root

o2-analysis-cf-femtodream-producer

- Fill femto tables for analysis
- Only store events and tracks/V0/... fulfilling loosest selections
- Compute bitmask for track and PID selections
- Generate extended and/or MC tables for QA and more

o2-analysis-cf-femtodream-debug-track

- Select particles according to the bitmask
- Fill distributions of all available track properties and PID for all supported particle species
- Check distributions to see if bitmask is applied correctly

Continued development

- Internals of FemtoDream still very much under active development
 - Performance optimizations
 - Reduction in data size
 - Support for cascades/resonances/...
 - More modular design of the producer task
 - Generic correlator tasks for track-cascade, V0cascade, cascade-cascade, ...
- Unification/Update of exiting data formats

HANDS-ON START

Exercises for the femto tutorial can be found here:

```
[anton@silver] ~/alice/O2Physics
> ls Tutorials/PWGCF/FemtoFramework/src/*
Tutorials/PWGCF/FemtoFramework/src/CFTutorialTask1.cxx
Tutorials/PWGCF/FemtoFramework/src/CFTutorialTask2.cxx
Tutorials/PWGCF/FemtoFramework/src/CFTutorialTask3.cxx
Tutorials/PWGCF/FemtoFramework/src/CFTutorialTask4.cxx
Tutorials/PWGCF/FemtoFramework/src/CFTutorialTask5.cxx
Tutorials/PWGCF/FemtoFramework/src/README.md
Tutorials/PWGCF/FemtoFramework/src/run.sh
```

The source files contain comments on what needs to be implemented

HANDS-ON START

GOAL: Implement an analysis task in O2Physics for pairing tracks to compute same and mixed event distributions using derived data as input (similar to the pair-track-track task that is already available in femtodream)

There are 5 exercise Tasks:

- Task 1:
 - Implement filters for tracks and events
- Task 2:
 - Implement track selections using bitmasks (-> Slide 14-20)
- Task 3:
 - Implement PID selection using bitmasks (-> Slide 21-31)
- Task 4:
 - Implement particle pairing in same events to compute same event distribution
- Task 5:
 - Implement event mixing and particle pairing across multiple events to compute the mixed event distribution

Tasks build on top of each other, meaning the solution of Task 1 is the starting point of Task 2 and so on