Supplementary File 1 - Supplementary Methods

Assume the following parameters for a given viral metagenome.

M = Number of genotypes (richness)

L = Average genome length of each genotype (bp)

 f_i = Relative abundance of the i^{th} genotype $(i \in 1, ..., M)$

R =Number of reads

r = Read length (bp)

o = Minimum overlap distance considered in assembling reads (bp)

 $(C_1, C_2, C_3, ..., C_R)$ = Observed contig spectrum, where C_q $(q \in 1, 2, 3, ..., R)$ is the observed number of contigs each having exactly q reads.

 $O_q = q.C_q = \text{Number of reads out of the total } R$ that contributed to observed contigs that have exactly q reads $(q \in 1, 2, 3, ..., R)$.

An important assumption made in this formulation is that the f_i s follow one of the four theoretical distributions: power-law, exponential, logarithmic or lognormal.

If f_i s have a power-law distribution;

$$f_i = \frac{i^{-d}}{\sum_{j=1}^M j^{-d}} \text{ where } d \ge 0$$
 (1)

If f_i s have an exponential distribution;

$$f_i = \frac{exp(-i.d)}{\sum_{j=1}^{M} exp(-j.d)} \text{ where } d \ge 0$$
 (2)

If f_i s have a logarithmic distribution;

$$f_i = \frac{(\log(i+1))^{-d}}{\sum_{j=1}^{M} (\log(j+1))^{-d}} \text{ where } d \ge 0$$
 (3)

If f_i s have a lognormal distribution;

$$f_i = \frac{exp(m_i.d)}{\sum_{j=1}^{M} exp(m_j.d)} \text{ where } d \ge 0$$
(4)

$$m_i = \frac{M}{\sqrt{2\pi}} \cdot \left(exp\left(\frac{-t_i^2}{2}\right) - exp\left(\frac{-t_{i+1}^2}{2}\right)\right)$$

$$t_1 = -\infty, t_{M+1} = +\infty, t_{i+1} = \sqrt{2}.erf^{-1}\left(\frac{2}{M} + erf\left(\frac{t_i}{\sqrt{2}}\right)\right)$$
 where erf denotes the error function

and erf^{-1} denotes the inverse error function.

All four functional forms of f_i (i.e. equations 1, 2, 3 and 4) depends on M and a distribution specific parameter d. Let us denote the function giving the relative abundance of the i^{th} genotype as $F_i(M, T, d)$ where T denotes the distribution function.

If the expected number of reads contributing to contigs having exactly q number of reads is E_q $(q \in \{1, 2, 3, ..., R\})$;

$$E_q = \sum_{i=1}^{M} F_i(M, T, d) \cdot R \cdot q \cdot p_i^{(q-1)} \cdot (1 - p_i)^2$$
(5)

where,

$$p_i = 1 - exp\left(-(r-o).F_i(M, T, d).\frac{R}{L}\right)$$
(6)

Accordingly, the expected contig spectrum of a metagenome having population parameters M, L, T, d and, sequenced and assembled with parameters R, r, o is;

$$\left(\frac{E_1}{1}, \frac{E_2}{2}, \frac{E_3}{3}, ..., \frac{E_R}{R}\right)$$
.

Given the values of R, r, o and $(O_1, O_2, O_3, ..., O_R)$, our aim is to find the values of M, L, T and d such that the difference between $(O_1, O_2, O_3, ..., O_R)$ and $(E_1, E_2, E_3, ..., E_R)$ is minimum.

We use the variance weighted squared difference between $(O_1, O_2, O_3, ..., O_R)$ and $(E_1, E_2, E_3, ..., E_R)$ denoted by S(M, L, T, d) as the similarity measure between the observed and expected contig spectra.

$$S(M, L, T, d) = \sum_{q=1}^{R} \frac{(O_q - E_q)^2}{V_q^2}$$
 (7)

where,

$$V_q^2 = \sum_{i=1}^M F_i(M, T, d) \cdot R \cdot q \cdot p_i^{(q-1)} \cdot (1 - p_i)^2 \cdot \left(1 - q \cdot p_i^{(q-1)} \cdot (1 - p_i)^2\right)$$
(8)

S(M, L, T, d) has multiple local minima and one global minimum with highly similar characteristics for given values of R, r, o and $(C_1, C_2, C_3, ...)$. Consequently, our goal now is to find the values of M, L, T and d when S(M, L, T, d) is at its global minimum.

In order to understand the effect of the presence of multiple local minima, let us consider a population where d = 0. For any case of T, $F_i(M, T, 0) = \frac{1}{M}$. In other words d = 0 corresponds to a population where all M number of genotypes are equally abundant (this is a highly unlikely scenario in a real population). Let us simplify above equations for d = 0.

Equation 6 simplifies to

$$p_i = p = 1 - exp\left(-(r - o).\frac{R}{L.M}\right) \tag{9}$$

Therefore, p is independent of i and depends only on the product term L.M.

Accordingly, equation 5 simplifies to

$$E_q = R.q.p^{(q-1)}.(1-p)^2 (10)$$

Simplified E_q depends only on p which is a function of L.M.

This result implies that, for a given sample, $(E_1, E_2, E_3, ..., E_R)$ will be identical for different L and M value pairs satisfying the equation L.M = constant. If L_0 and M_0 are the true average genome length and the true number of genotypes respectively of the given sample, then $S(M_0, L_0, T, 0) = 0$. Furthermore, S(M, L, T, 0) = 0 for all M and L value pairs such that $M.L = M_0.L_0$ (i.e. $S(M, \frac{M_0.L_0}{M}, T, 0) = 0$). Hence, S(M, L, T, 0) have identical multiple minima along the curve $M.L = M_0.L_0$ making it impossible to find a single pair of M and L values that minimize S(M, L, T, 0). Figures S1 and S2 shows an example of this scenario where we observe identical local minima when d = 0.

When d > 0, there still exists multiple local minima in S(M, L, T, d) but the values differ from $S(M_0, L_0, T, d) = 0$. Also, the relationship $M.L = M_0.L_0$ does not necessarily hold at local minima when d > 0. Figure S2 shows an example of how the cost function S(M, L, T, d) varies over the region $1000 \le M \le 50000$, $5000 \le L \le 100000$ and $d \in \{0.6, 0.7, 0.8\}$ for a simulated contig spectrum with parameters $M_0 = 10000$, $L_0 = 50000bp$, $L_0 = 10000$

Figure S1: Surface plot of log(S(M, L, T, 0) + 1) over the region $100 \le M \le 50000$ and $5000 \le L \le 160000$. The observed contig spectrum used here is a simulated spectrum with parameters $M_0 = 10000$, $L_0 = 50000bp$, $d_0 = 0$, R = 10000, r = 100bp, o = 40bp (subscript $_0$ indicates the true value used to simulate the population). log(S(M, L, T, 0) + 1) is plotted instead of S(M, L, T, 0) for the ease of demonstration. The global minimum points are indicated with a cursor points.

Figure S2: Heat map of log(S(M, L, T, 0) + 1) over the region $100 \le M \le 50000$ and $5000 \le L \le 160000$. The observed contig spectrum used here is a simulated spectrum with parameters $M_0 = 10000, L_0 = 50000bp, d_0 = 0, R = 10000, r = 100bp, o = 40bp$ (subscript $_0$ indicates the true value used to simulate the population). log(S(M, L, T, 0) + 1) is plotted instead of S(M, L, T, 0) for the ease of demonstration. The global minimum points are indicated with a cursor points.

Figure S3: Surface plots and heat maps of log(S(M, L, power - law, d) + 1) over the region $1000 \le M \le 50000$, $5000 \le L \le 100000$ and $d \in \{0.6, 0.7, 0.8\}$. The observed contig spectrum used here is a simulated spectrum with parameters $M_0 = 10000$, $L_0 = 50000bp$, $T_0 = power - law$, $d_0 = 0.7$, R = 10000, r = 100bp, r = 40bp (subscript r = 10000) indicates the true value used to simulate the population). log(S(M, L, power - law, d) + 1) is plotted instead of S(M, L, power - law, d) for the ease of demonstration. The global minimum point of each plot is indicated with a cursor point.