

Intersecții de semiplane orizontale și verticale

Submit solution

My submissions All submissions Best submissions

✓ Points: 10

② Time limit: 1.0s Python 3: 2.0s

Memory limit: 16M Python 3: 64M

Authors:
constantin.majeri@s.unibuc.ro
mihai.stupariu@unibuc.ro
,
adrian.miclaus@s.unibuc.ro

- > Problem types
- ➤ Allowed languages C, C++, Java, Python

Descriere

Orice dreaptă din \mathbb{R}^2 împarte planul în două jumătăți, numite semiplane. Fiindcă o dreaptă în plan este definită de o ecuație de forma ax+by+c=0 (cu $a\neq 0$ sau $b\neq 0$), cele două semiplane corespunzătoare acesteia pot fi descrise ca mulțimile de puncte (x,y) pentru care $ax+by+c\geq 0$, respectiv $ax+by+c\leq 0$. Pentru aceste semiplane, dreapta care le determină se numește **dreaptă suport**.

Pentru această problemă, va trebui să determinați natura intersecției a n semiplane. Oricare din aceste semiplane este **orizontal** (paralel cu axa Ox) sau **vertical** (paralel cu axa Oy).

Date de intrare

Se vor citi de la tastatură un număr natural n, reprezentând numărul de semiplane care trebuie intersectate, și apoi n triplete de numere întregi a_i b_i c_i , separate prin câte un spațiu, reprezentând coeficienții care definesc inecuația semiplanului i, **inecuație de forma** $a_i x + b_i y + c_i \le 0$.

Toate semiplanele citite vor fi fie orizontale, fie verticale (acest lucru nu mai trebuie verificat).

Se va afișa pe ecran unul dintre următoarele șiruri de caractere:

- VOID, dacă intersecția celor n semiplane este **vidă**.
- BOUNDED, dacă intersecția celor n semiplane este **nevidă** și **mărginită**.
- UNBOUNDED, dacă intersecția celor n semiplane este **nevidă** și **nemărginită**.

Restricții și precizări

- $1 \le n \le 10^5$. $-10^7 \le a_i, b_i, c_i \le 10^7$

Exemple

Exemplul 1

Input

Copy 3 10-1 -1 0 2 0 1 3

Output

Сору VOID

Explicație

Sunt trei semiplane, care au inecuațiile $x-1 \le 0$, $-x+2 \le 0$, respectiv $y+3 \le 0$. Inecuațiile pot fi rescrise $x \le 1$, $x \ge 2$, $y \le -3$.

Deoarece nu există niciun punct în \mathbb{R}^2 care să aibă abscisa mai mică sau egală cu 1 și mai mare sau egală cu 2 în același timp, intersecția este vidă.

Exemplul 2

Input

4 -1 0 1 1 0 -2 0 1 3 0 -2 -8

Output

BOUNDED

Explicație

Sunt patru semiplane, care au inecuațiile $-x+1\leq 0$, $x-2\leq 0$, $y+3\leq 0$, respectiv $-2y-8\leq 0$. Inecuațiile pot fi rescrise $x\geq 1$, $x\leq 2$, $y\leq -3$, $y\geq -4$.

Punctele care întrunesc condiția $1 \leq x \leq 2$ sunt cele din fâșia verticală dintre dreptele x=1 și x=2. Punctele care

Exemplul 3

Input

3
-1 0 1
1 0 -2
0 1 3

Output

UNBOUNDED

Explicație

Sunt trei semiplane, care au inecuațiile $-x+1\leq 0$, $x-2\leq 0$, respectiv $y+3\leq 0$. Inecuațiile pot fi rescrise $x\geq 1$, $x\leq 2$, $y\leq -3$.

Punctele care întrunesc condiția $1 \le x \le 2$ sunt cele din fâșia verticală dintre dreptele x=1 și x=2. Condiția $y \le -3$ ne obligă să le luăm pe cele care au ordonata mai mică sau egală cu -3. Prin urmare, intersecția este nevidă și nemărginită.

Comments

Report an issue

There are no comments at the moment.

New comment			
			Post!