2. Conceptos básicos en seguridad informática

Estado de protección (I)

- Un *Sistema de protección* describe condiciones bajo las que un sistema es seguro -> máquina de estados
- Siendo P un conjunto de todos los posibles estados seguros del sistema, y Q el conjunto que define los estados de protección en el cual el sistema está autorizado a residir, tal que Q ⊆ P.
 - Política de seguridad : caracterización de los estados del conjunto Q.
- Transición de estados: operaciones permitidas sobre elementos de Q.
 - *Mecanismo de seguridad*: prevención para que el sistema no entre en ningún estado que no pertenezca a Q.

Estado de protección (II)

- Supongamos que el conjunto de mecanismos de seguridad restringen al sistema a un conjunto de estados M, entonces dicho conjunto de mecanismos se dice que es:
 - Seguro, si M ⊆ Q.
 - -Preciso, Si M = Q.
 - -Amplio, si existen estados m ∈ M que m \notin Q.
- El *objetivo* es buscar la *precisión* en los resultados de la aplicación de mecanismos de seguridad.

Matriz de control de accesos

- Modelo simple y preciso para describir, especificar los estados de protección de un sistema (SO, BD).
- Definimos:
 - Conjunto O de objetos protegidos (ficheros, máquinas,..)
 - Conjunto S de objetos activos (sujetos). Inician transiciones (procesos, usuarios,....)
 - Conjunto P de permisos para operaciones sobre elementos de O.
 - Matriz A, donde cada entrada $a[s,o] \subseteq P$, donde $s \in S$, y $o \in O$.
 - Finalmente, <u>la tupla (S,O,A)</u> define el conjunto de estados protegidos del sistema.

Ejemplo matriz de control de accesos

- Acceso de procesos a ficheros o a otros procesos.
 - $-O = \{\text{proceso1}, \text{proceso2}, \text{fichero1}, \text{fichero2}, \text{fichero3}\}$
 - $-S = \{\text{proceso } 1, \text{proceso } 2\}$
 - $-P = \{ \text{read}(r), \text{write}(w), \text{execute}(x), \text{append}(a), \text{own}(o) \}$
 - -A:

	fichero1	fichero2	fichero3	proceso1
proceso1	r,w,o	r	r,w,x,o	W
proceso2	a	r,o	r	r,w,x,o

Transición de estados de protección

- Teniendo un estado de protección de sistema $X_i = (S_i, O_i, A_i)$ y queremos pasar a una estado X_{i+1} , se aplicará una transición t_{i+1} para pasar del estado X_i al X_{i+1} .
- Se puede representar una transición de estado por un comando o procedimiento de transformación al cual se le instancian determinados parámetros.

– CreaciónSujeto (s)SuprimirSujeto(s)

– CreaciónObjeto(o)SuprimirObjeto(o)

AñadirPermiso(p,a[s,o])QuitarPermiso(p,a[s,o])

Atenuación de privilegios: copia y propiedad

- *Principio de atenuación de privilegios*: Un sujeto no puede asignar a otro sujeto, permisos que no posee.
- Permiso de copia : da derecho a asignar permisos para otros (permiso "P" en Windows NT)
- Permiso de propiedad: da derecho a añadir o suprimir privilegios para si mismo.

Decidibilidad en seguridad

- ¿ Existe un algoritmo genérico que pueda determinar si un estado es seguro o no ?
- En el caso abstracto no es decidible.
- Se buscan modelos más restringidos que permitan determinar mediante un algoritmo si un estado es seguro o no --> aplicación en políticas y composición de políticas de seguridad :
 - Modelo de protección de Adquirir-Asignar (Take-Grant).

- Planificar las necesidades en seguridad (nivel de confianza).
- Evaluación de riesgos (identificación de los problemas).
- Análisis de costes/beneficios y mejores prácticas.
- Creación de políticas adaptadas a las necesidades.
- Implementación.

Planificar las necesidades

Tipos :

- Confidencialidad (Privacidad) : ley de protección de datos.
- Integridad de datos.
- Disponibilidad.
- Consistencia.
- Control.
- Auditoría.

Ejemplos :

- Banco: integridad, control y capacidades de auditoría
- Defensa: confidencialidad
- Universidad: integridad y disponibilidad

Evaluación de riesgos

• Qué proteger. Frente a qué proteger. Tiempo, esfuerzo y dinero que se está dispuesto a invertir para una adecuada protección.

3 pasos :

- Identificación de bienes y su valor
- Identificación de peligros
- Cálculo de riesgos

Evaluación de riesgos (II)

- Problemas físicos :
 - Fenómenos naturales : incendios, inundaciones, terremotos,...
 - Acceso a componentes físicos del sistema : ordenador, consola de administración, cables de red, etc.
- Problemas lógicos :
 - Errores en los programas.
 - Utilización incorrecta por parte de los usuarios (educación).
 - Utilización fraudulenta del sistema.
 - Principalmente, tres categorías :
 - Contraseñas.
 - Sistemas de ficheros.
 - La red.
- Herramientas para la detección de riesgos informáticos.

Análisis de costes/beneficios y mejores prácticas

- Coste de la pérdida.
- Probabilidad de pérdida.
- Coste de la prevención. Comparativas. Prioridades.
- Seguro = 1 / Utilizable.
- Mejores prácticas : recomendaciones, procedimientos y políticas generalmente aceptadas por los expertos en seguridad informática

Políticas de seguridad

Roles :

- Identificación y justificación de los elementos a proteger.
- Definir responsabilidades para dicha protección.
- Base de interpretación y resolución de conflictos.
- Procedimientos estándares.
- Guías.

Políticas de seguridad (II)

Ideas en el desarrollo de políticas :

- Asignar propiedad a información y equipos.
- Enfocar la expresión de políticas de forma positiva.
- Recordar que empleados y usuarios son personas
- Educar a los usuarios.
- Responsabilidad debe conllevar autoridad.
- Conocer el périmetro de seguridad (portátiles, PDAs, redes inalámbricas, ordenadores utilizados en casa, DVDs, discos extraibles, visitas, impresoras, copiadoras, fax,..)
- Decidir filosofía básica (permitido lo no especificado o inversa)
- Niveles independientes y redundantes de defensa a varios niveles, con auditoría y monitorización

Implementación

- Gestión de riesgos supone sentido común.
 - Uso de tecnologías y educación de personas
 - Múltiples niveles de defensa
 - Priorizar
- Auditorías de cumplimiento de políticas. Problemas :
 - Personal insuficiente (falta formación, sobrecarga,..)
 - Material insuficiente (inadecuación de recursos, sobrecarga,..)
 - Organización insuficiente (asignación responsabilidades y autoridades, conflictos de responsabilidades, tareas poco claras)
 - Política insuficiente (riesgos no previstos, incompletud, conflictos de políticas, discordancia entre políticas y contexto)

Implementación (II)

- Respuestas a incidentes
- Definir que elementos se subcontratan y cómo.

- No se recomienda seguridad mediante oscuridad.
- Tecnología: sistemas y criptografía.

Principios básicos prevención

- Modelos de Protección
- Autentificación (quién es quién) : identificación digital
- Autorización (a quién se le deja hacer qué) :
 - Permisos y privilegios
 - Control de accesos

Elementos básicos de implementación técnica

- Representación de identidades:
 - Máquinas (IP, DNS,...)
 - Ficheros, procesos, objetos (identificadores numéricos de sistema)
 - Usuarios (cuentas de usuario)
 - Grupos y roles (accesos basados en roles)
 - Certificados (confianza aportada por terceros)
 - Estado y cookies (identidad en conexión web)
 - Anonimidad (en conexiones web)

Elementos básicos de implementación técnica (II)

- Mecanismos de control de acceso
 - Listas de control de acceso (ACLs sistemas de ficheros)
 - Capabilities (llaves de permiso de acceso sin identificación directa)
 - Cerraduras y llaves
- Criptografía
- Controles del flujo de información:
 - Mecanismos basados en compiladores
 - Mecanismos basados en ejecución
- Confinamiento:
 - Máquinas virtuales
 - Cubos de arena (sandboxes)

Ejemplo: Conceptos de seguridad en Java 💆

• Evolución:

- 1.0 : modelo de *cubo de arena* (sandbox) :
 - Acceso total a todo el código local
 - Acceso completamente restringido a código Java applets
- 1.1 : Introducción de applets firmados :
 - Acceso total a código local y applets firmados
 - Acceso completamente restringido a applets no firmados.
- Java 2 : servicio de seguridad en ejecución genérico para codigo local y applets. Concepto básico de Dominios de Protección.

Seguridad Java 2 (I)

- Seguridad del núcleo (java runtime) :
 - Verificador de Byte-Code
 - Cargador de clases
 - Origen del código (URL, certificados digitales,..)
 - Clases de permisos : definen acceso a recursos de sistema (ficheros, sockets,)
 - Dominios de protección : relaciones de grupos de clases con dominios de protección donde se definen permisos..
 - Políticas : conjunto de permisos y dominios.
 - Gestor de seguridad :verifica autorizaciones (permisos)
 - Controlador de accesos : control a aspectos de más bajo nivel.

Seguridad Java 2 (II)

- Almacén de claves : contiene claves privadas y certificados, cifrados.
- Extensiones de seguridad :
 - Servicio de autentificación y autorización de Java (JAAS)
 - Definición de permisos de ejecución de código Java específico
 - Extensión de sockets seguros de Java (JSSE)
 - Utilización de SSL/TSL
 - Extensión de servicios genéricos de seguridad de Java (GSS-API
)

Políticas

- Un *modelo de seguridad* representa un conjunto de políticas de seguridad.
- Una *política de seguridad* define los estados de sistema autorizados, o seguros, en contraposición a aquellos que no lo son.
- Un *sistema es seguro* si no entra en estados no autorizados.
- Un agujero de seguridad ocurre cuando un sistema entra en un estado no autorizado.
- La información I tiene *propiedad de confidencialidad* con respecto al conjunto de entidades X, si ningun miembro de X puede obtener ninguna información de I.
- La información I tiene *propiedad de integridad* con respecto a X, si todos los miembros de X confían en I.
- El recurso R tiene *propiedad de disponibilidad* con respecto a X, si todos los miembros de X tienen acceso a R.
- Un *mecanismo de seguridad* es una entidad o procedimiento que obliga a cumplir alguna parte de la política de seguridad.
- Papel central de la noción de *confianza* y de las *hipótesis* de seguridad.

Tipos de control de acceso

- Dos tipos utilizados aisladamente o en combinación :
 - Control de accesos discreccional (DAC), o control de accesos basado en identidad : cada usuario individual puede utilizar un mecanismo de control de accesos para permitir o denegar accesos a recursos.
 - Control de accesos obligatorio (MAC), o control de accesos basado en reglas : un mecanismo de sistema controla los accesos y los usuarios individuales no pueden modificar ese acceso.
- Existe un tercero, control de accesos controlado por el creador, donde el creador del recurso define los controles de acceso.

Lenguajes de políticas de seguridad

- Lenguajes que representan políticas de seguridad
 :
 - Lenguajes de alto nivel : restricciones de políticas mediante abstracciones.
 - Lenguajes de bajo nivel : restricciones expresadas mediante entradas o invocaciones a programas existentes en el sistema.

- Ejemplo:
 - A cada objeto corresponde a un *tipo*.
 - A cada sujeto corresponde un dominio.
 - Las construcciones del lenguaje definen restricciones de miembros de dominio con objetos de un tipo.
 - Política que solo permite escribir en binarios de sistema a administradores en Unix :

• Ejemplos:

xhost +hendrix -merlin

/usr/local/tripwire +gimnpsu012345678-a

/etc/pac 0755 1 root root 16384 sept 17 22:08

Componentes de sistema

- Representacion de identidad
- Mecanismos de control de accesos
- Flujo de informacion
- El problema de confinamiento.

Codigo Malicioso

• Análisis de vulnerabilidades

• Auditoria

• Detección de intrusiones

Seguridad práctica en sistemas :servidor web

- Política
 - Red: Cortafuegos, DMZs, etc
 - Usuarios
 - Autentificación
 - Procesos
 - Ficheros

Sistema de autentificación Kerberos

- Sistema de autentificación de única firma en red con posibilidad de privacidad. Versión 5: MIT, Heimdal, Windows 200X
- Abstracción de acceso de programas a servicios Kerberos :
 - Estándar IETF: Generic Security Services API (<u>GSS-API</u>). disponible en C, C++, JAVA.
 - Windows: Security Support Provider Interface (SSPI)
 - Negociación de mecanismos de autentificación : Simple and Protected Negotiation Mechanism (SPNEGO)
- Tecnología de clave simétrica (3DES en V. 5))

Elementos de Kerberos

Servidor Kerberos Centro de distribución de claves (KDC)

Cliente (C)

Aplicación de red (A)

Concepto protocolo autentificación Kerberos

Implementación protocolo Kerberos (I)

*TGT (Billete para Concesión de billetes) es <u>cifrado para</u> <u>que solo KDC pueda</u> <u>descifrarlo</u>. Contiene información (clave sC,...) que KDC va a leer más tarde.

**Clave sC (Clave de entrada en sesión de C) cifrada con la clave maestra de C (Clave mC). En interacciones futuras con KDC, C utilizara sC para limitar exposición de clave maestra.

Cliente (C)

Implementación protocolo Kerberos (II)

Implementación protocolo Kerberos (III)

4. A descifra Billete de servicio; Utiliza clave CA para verificar Autentificador

SSH(1)

- SSH (Secure Shell) es un protocolo de entrada en sesión y/o ejecución de comandos en una máquina remota (V. 2.0). Implementación standard: Openssh
- Es un sustituto completo de rsh, rlogin, rcp, telnet, rexec, rcp y ftp, pero que provee, además, comunicaciones cifradas seguras entre 2 máquinas sobre una red insegura.
- Autentificación usuarios y máquinas (clave pública: RSA, DSA). Privacidad (simétrico: 3DES, Blowfish). Integridad/Autentificación mensajes (HMAC-SHA1, HMAC-MD5). Compresión de datos.

SSH (2)

- Conexión: ssh pepe@hendrix.cps.unizar.es
- Claves de autentificación automática (RSA, DSA) :
 - Creación : ssh-keygen
 - Almacenamiento autentificación usuario:
 - Clave privada (identificación): \$HOME/.ssh/{identity, id_rsa,....}
 - Clave pública (autentificación): \$HOME/.ssh/{identity,....}.pub
 - Claves externas: \$HOME/.ssh/{authorized_keys}
 - Almacenamiento autentificación máquina:
 - Clave privada (identificación): /etc/ssh/ssh_host_{key, rsa_key,...}
 - Clave pública (autorización): \$HOME/.ssh/known_hosts

SSH (2)

• Tuneles SSH (no es necesario programación específica):

Apache: puerto 80

Luego: mozilla http://localhost:7539

Certificados digitales

- Utilización de criptografía pública como un tipo de sistema de identificación de propósito general.
- Un certificado es una credencial que relaciona un nombre con una clave pública (entre otros datos) en un paquete firmado por una tercera parte confiable, con un tiempo de validez.
- Como un pasaporte o un carnet de conducir.
- Estándar: certificados X.509 v3.
- Comprobando la firma, uno puede verificar que una clave pública pertenece a un determinado usuario.

Autoridades de certificación (CAs)

• Un pequeño conjunto de entidades confiables (tercera parte confiable) que establecen certificados firmados.

• La autoridad de certificación firma su propio certificado que puede ser distribuido de forma confiable.

• Entonces la clave pública del certificado de la CA puede ser utilizado para verificar otros certificados

Solicitud de creación y producción de certificados

- Usuario crea un pareja clave pública/privada.
- Clave privada es almacenada cifrada (passphrase) con una contraseña del usuario.
- La clave pública se coloca en una petición de creación de certificado, que es enviada a una autoridad de certificación.

Producción de certificados

5

- La CA normalmente incluye una Autoridad de Registro (RA) que verifica la petición
 - El nombre del usuario debe ser único en el contexto del CA
 - Es el nombre real del usuario, etc
- El CA firma, entonces, la petición y produce un certificado para el usuario.

Revocación de certificados

- CAs necesitan revocar certificados si:
 - La clave privada del usuario ha sido comprometida.
 - CA descubre haber entregado certificado a usuario erróneo.
 - Certificado producido para permitir acceso usuario a un servicio, usuario ha perdido autorización de acceso a él.
 - Sistema del CA comprometido de tal forma que otro puede emitir certificados falsos de esa CA.
- Métodos de gestionar revocaciones :
 - Lista de revocación de certificados (CRL).
 - Búsqueda regular de CRLs en los CAs: Campo Punto Distribución CRL en X.509 v3 (CDP).
 - Validación de certificados en tiempo real.

Infraestructura de clave pública (PKI) (I)

- *Infraestructura de clave pública* es el sistema de certificados digitales (X.509 v3), autoridades de certificación, sistemas y hardware utilizado para distribuir claves públicas.
- Espacio de nombres de usuarios.
- Certificados en navegadores (Mozilla, Explorer,...)
- Necesidad de más información en los certificados.
- ¿ Cuantas autoridades de certificación?

Infraestructura de clave pública (PKI) (II)

SSL/TLS

- El Nivel Seguro de Sockets (SSL) o Seguridad de Nivel Transporte (TLS -SSL 3.1-), Estándar IETF, utiliza certificados (opcional, pero usual) y sockets TCP para proveer conexiones seguras, con las siguientes opciones :
 - Autentificación de una o ambas partes utilizando certificados
 - Protección de mensajes :
 - Confidencialidad (criptografía simétrica)
 - Integridad (MD5, SHA)
- Librerías Java, C, C++
- Librería OpenSSL.

Arquitectura SSL/TLS

• Dos niveles:

- Protocolo registro SSL provee servicios básicos de seguridad.
- 3 protocolos de nivel superior:
 - Apretón de manos, cambio de especificación de cifrado, alertas

Conexión

- Transporte con algún servicio, asociado a una sesión

Sesión

 Creada por apretón de manos, define parámetros criptográficos de seguridad para múltiples conexiones.

Sesión y conexión

- Parámetros de sesión
 - ID, certificado del otro, método de compresión, especificación del cifrado, clave secreta maestra, se puede reanudar.
- Parámetros de conexión:
 - Calor aleatorio de cliente y servidor, servidor escribe clave secreta MAC, cliente escribe clave secreta MAC, cliente escribe clave secreta MAC, cliente escribe clave, IV, número de secuencia.

Protocolo de registro de SSL

• 2 servicios

Confidencialidad e integridad de mensajes

• Protocolo por niveles:

- Fragmentar datos de aplicación en bloques
- Comprimir datos
- Aplicar código de autentificación de mensaje (MAC) = h(m|s) para mensaje m y clave secreta s
- Cifrar con la clave del cliente o del servidor
- Transmitir sobre TCP
- Especificar tipo de contenido para protocolos superiores

IP Security (IPSEC)

- Objetivos:
 - IP4 no diseñado para seguridad
 - Mecanismo seguridad en nivel de red para IP4 e IP6
 - Puede ser transparente para usuarios

Arquitectura y conceptos IPSEC

- Implementación en estaciones y encaminadores
- Modo túnel vs. Modo transporte
- Asociación de seguridad (SA)
 - Indice de parámetros de seguridad (SPI)
 - Base de datos de la política de seguridad (SPD)
 - Base de datos de la asociación de seguridad (SAD)
- Protocolo Seguridad Encapsulada (ESP), encapsulación de la carga de seguridad
- Cabecera Autentificada (AH)

Estaciones y Encamindores

- Estaciones pueden implementar IPSec a :
 - Otras estaciones en modo transporte o túnel
 - Encaminadores en modo túnel
- Encaminadores a encaminadores : modo túnel:

Modo túnel

Modo transporte

- ESP protege sólo la carga de niveles superiores
- AH puede proteger tanto cabeceras IP como la carga de niveles superiores

Modo túnel

- ESP se aplica sólo al paquete interior
- AH puede ser aplicado al porciones de la cabecera exterior

Asociación de seguridad (SA)

- Determina procesamiento IPSec para emisores
- Determina procesamiento IPSec para receptores
- *SAs no son fijos.....* Son generados y personalizados para cada flujo de tráfico.
- Indice de parámetros de seguridad (SPI):
 - Valor de hasta 32 bits
 - SPI enviado con el paquete por el emisor
 - SPI permite al receptor seleccionar SA correcto->determina correcto procesamiento de seguridad (dado previo acuerdo con emisor)
 - SPI + dirección IP destino + Protocolo IPSec (AH o ESP) identifica de forma única al SA

Base de datos de SAs (SAD)

- Mantiene parámetros para cada SA
 - Tiempo de vida del SA
 - Información de AH y ESP
 - Modo túnel o transporte
- Cada estación o encaminador que participa en IPSec tiene su propia base de datos de SAs.
- Puede ser aplicada más de 1 SA a un paquete IP.
- Ejemplo : ESP no autentifica nueva cabecera IP. ¿ Cómo autentificarla ?
 - Utilizar una SA para aplicar ESP con/sin autentificación sobre paquete original
 - Utilizar 2^a SA para aplicar AH.

Base de datos de Políticas de seguridad (SPD)

- ¿ Qué tráfico proteger?
- Las entradas de la base de datos definen que SA o conjuntos de SA se utilizan en el tráfico IP
- Cada estación o encaminador tiene su propio SPD
- Indices del SPD acceden a campos de selección:
 - IP Destino, IP origen, Protocolo transporte, Protocolo IPSec (índices SA,...
), Puestos origen y Destino,......
- Acciones ligadas a entradas del SPD
 - No dejar entrar o salir, no aplicar o no esperar IPSec,
 - Proteger (aplicar o chequear seguridad). Si no existe SA:
 - Entrada : descartar paquete
 - Salida generar dinámicamente SA

Procesamiento de envío

Procesamiento en entrada

Gestión de claves

- AH y ESP requieren claves de cifrado y autentificación
- Proceso para negociar y establecer SAs de IPSec entre 2 entidades.
- Secretismo perfecto hacia adelante (PFS):
 - La captura de una clave no debe de dar acceso a todos los datos, solo a los datos protegidos por esa calve.
 - Claves no derivadas de sus predecesoras.
- Nonces : Números pseudo aleatorios generados localmente.
- Gestión manual de claves :

Gestión manual de claves

- Obligatorio
- Util cuando desarrolladores de IPSec están depurando
- Intercambio de claves offline (teléfono, email, etc)
- Puesta en marcha de SPI y negociación de parámetros

Intercambio de Claves en Internet (IKE)

- Utilizado cuando un paquete de salida no tiene una SA
- Dos fases:
 - Establecer una SA de IKE
 - Utilizar esa SA para negociar SAs en IPSec
- El SA de IKE es utilizado para definir cifrado y autentificación del tráfico IKE
- Múltiples SAs de IPSec pueden ser establecidas con una SA de IKE