24500 HW4

Bin Yu

Feb 6, 2025

Question 1

From the formula of block matrix, if we have a partitioned matrix

$$\Sigma = \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{pmatrix}.$$

A standard result for its inverse (assuming the necessary inverses exist) is

$$\Sigma^{-1} = \begin{pmatrix} \Sigma_{xx.y}^{-1} & -\Sigma_{xx.y}^{-1} \Sigma_{xy} \Sigma_{yy}^{-1} \\ -\Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1} & \Sigma_{yy}^{-1} + \Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1} \Sigma_{xy} \Sigma_{yy}^{-1} \end{pmatrix},$$

where

$$\Sigma_{xx.y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}.$$

Let

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{pmatrix}\right).$$

That is, (X,Y) is jointly normal with mean vector $\mu = (\mu_x, \mu_y)$ and covariance matrix Σ as above.

Marginally,

$$X \sim \mathcal{N}(\mu_x, \ \Sigma_{xx}), \quad Y \sim \mathcal{N}(\mu_y, \ \Sigma_{yy}).$$

The joint density is

$$f_{X,Y}(x,y) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \Sigma^{-1} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}\right).$$

The conditional density of X given Y = y is

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}.$$

and the marginal density of Y as

$$f_Y(y) \propto \exp\left(-\frac{1}{2}(y-\mu_y)^T \Sigma_{yy}^{-1}(y-\mu_y)\right).$$

Hence,

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} \propto \exp\left(-\frac{1}{2}\left[(x-\mu_x),(y-\mu_y)\right] \Sigma^{-1} \begin{pmatrix} x-\mu_x \\ y-\mu_y \end{pmatrix} + \frac{1}{2}(y-\mu_y)^T \Sigma_{yy}^{-1}(y-\mu_y)\right).$$

Calculate the exponential term and factor out $-\frac{1}{2}$:

$$\left(\left[(x-\mu_{x}),(y-\mu_{y})\right] \Sigma^{-1} \begin{pmatrix} x-\mu_{x} \\ y-\mu_{y} \end{pmatrix} - (y-\mu_{y})^{T} \Sigma_{yy}^{-1} (y-\mu_{y})\right) \\
= (x-\mu_{x})^{T} \Sigma_{(x,x)}^{-1} (x-\mu_{x}) + (x-\mu_{x})^{T} \Sigma_{(x,y)}^{-1} (y-\mu_{y}) + (y-\mu_{y})^{T} \Sigma_{(y,x)}^{-1} (x-\mu_{x}) + (y-\mu_{y})^{T} \left[\Sigma_{(y,y)}^{-1} - \Sigma_{yy}^{-1}\right] (y-\mu_{y}) \\
= (x-\mu_{x})^{T} \Sigma xx.y^{-1} (x-\mu_{x}) + (x-\mu_{x})^{T} (-\Sigma_{xx.y}^{-1} \Sigma_{xy} \Sigma_{yy}^{-1}) (y-\mu_{y}) + (y-\mu_{y})^{T} (-\Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1}) (x-\mu_{x}) \\
+ (y-\mu_{y})^{T} (\Sigma_{yy}^{-1} + \Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1} \Sigma_{yy}^{-1}) (y-\mu_{y}) + (y-\mu_{y})^{T} (-\Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1}) (x-\mu_{x}) \\
+ (y-\mu_{y})^{T} (\Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1} \Sigma_{yy}^{-1}) (y-\mu_{y}) + (y-\mu_{y})^{T} (-\Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1}) (x-\mu_{x}) \\
+ (y-\mu_{y})^{T} (\Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1} \Sigma_{xy} \Sigma_{yy}^{-1}) (y-\mu_{y})$$

$$= (x - \mu_x)^T \Sigma_{xx.y}^{-1} [(x - \mu_x) - (\Sigma_{xy} \Sigma_{yy}^{-1})(y - \mu_y)] + (y - \mu_y)^T (\Sigma_{yy}^{-1} \Sigma_{yx} \Sigma_{xx.y}^{-1}) [(\Sigma_{xy} \Sigma_{yy}^{-1})(y - \mu_y) - (x - \mu_x)]$$

$$=[(x-\mu_x)^T-(y-\mu_y)^T(\Sigma_{yy}^{-1}\Sigma_{yx})]\Sigma_{xx,y}^{-1}[(x-\mu_x)-(\Sigma_{xy}\Sigma_{yy}^{-1})(y-\mu_y)]$$

Since

$$\Sigma_{yx}^T = \Sigma_{xy}, \quad (\Sigma_{yy}^{-1})^T = \Sigma_{yy}^{-1}, \quad \text{and} \quad (AB)^T = B^T A^T.$$

Specifically,

$$(y - \mu_y)^T \left(\Sigma_{yy}^{-1} \Sigma_{yx}\right) = \left[\left(\Sigma_{yy}^{-1} \Sigma_{yx}\right)^T (y - \mu_y)\right]^T \qquad \text{(since it is a scalar, equals its transpose)}$$

$$= \left[\Sigma_{yx}^T \left(\Sigma_{yy}^{-1}\right)^T (y - \mu_y)\right]^T \qquad \text{(transpose of a product reverses the order)}$$

$$= \left[\Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)\right]^T \qquad \text{(using } \Sigma_{yx}^T = \Sigma_{xy} \text{ and } \Sigma_{yy}^{-1} \text{ is symmetric)}$$

$$= \left[\Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)\right]^T.$$

Therefore,

$$(x - \mu_x)^T - (y - \mu_y)^T (\Sigma_{yy}^{-1} \Sigma_{yx}) = (x - \mu_x)^T - [\Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)]^T.$$

For vectors a and b, we know $a^T - b^T = (a - b)^T$. Hence the above difference can be written as

$$\left[\left(x - \mu_x \right) - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y) \right]^T.$$

Therefore,

$$\left\{ (x - \mu_x)^T - (y - \mu_y)^T (\Sigma_{yy}^{-1} \Sigma_{yx}) \right\} \Sigma_{xx,y}^{-1} \left\{ (x - \mu_x) - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y) \right\}
= \left[x - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y) \right]^T \Sigma_{xx,y}^{-1} \left[x - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y) \right].$$

Therefore,

$$f_{X|Y}(x \mid y) \propto \exp\left(-\frac{1}{2}\left[x - \mu_x - \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y)\right]^T \Sigma_{xx.y}^{-1}\left[x - \mu_x - \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y)\right],$$

we see that the exponent is the usual quadratic form

$$-\frac{1}{2} \left[x - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y) \right]^T \Sigma_{xx.y}^{-1} \left[x - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y) \right].$$

This indicates that $f(x \mid y)$ has the kernel of a multivariate normal density in x with shifted mean

$$\mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)$$
 and covariance $\Sigma_{xx.y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}$

Hence, putting the normalizing constant back in, we conclude

$$(X \mid Y = y) \sim \mathcal{N} \Big(\mu_x + \Sigma_{xy} \, \Sigma_{yy}^{-1} (y - \mu_y), \ \Sigma_{xx} - \Sigma_{xy} \, \Sigma_{yy}^{-1} \, \Sigma_{yx} \Big).$$

In other words, the conditional distribution $X \mid Y = y$ is still Gaussian.

Question 2

(a)

We have $E[X_1] = \mu$, $E[\overline{X}] = \mu$.

For the variance and covariance:

$$Var(X_1) = 1.$$

with X_i i.i.d. having variance 1:

$$Var(\overline{X}) = Var(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n^2}\sum_{i=1}^{n}Var(X_i) = \frac{1}{n^2} \cdot n \cdot 1 = \frac{1}{n}.$$

For covariance, we can use the linear property of covariance:

$$\operatorname{Cov}(X_1, \overline{X}) = \operatorname{Cov}(X_1, \frac{1}{n} \sum_{i=1}^n X_i) = \frac{1}{n} \sum_{i=1}^n \operatorname{Cov}(X_1, X_i).$$

Since X_1 is independent of X_j for any $j \neq 1$, we have $Cov(X_1, X_j) = 0$ if $j \neq 1$. Meanwhile, $Cov(X_1, X_1) = Var(X_1) = 1$.

$$\frac{1}{n} \sum_{j=1}^{n} \text{Cov}(X_1, X_j) = \frac{1}{n} \left(\text{Var}(X_1) + 0 + \dots + 0 \right) = \frac{1}{n} (1) = \frac{1}{n}.$$

$$\operatorname{Cov}(X_1, \overline{X}) = \frac{1}{n}.$$

Hence

$$\begin{pmatrix} X_1 \\ \overline{X} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu \\ \mu \end{pmatrix}, \begin{pmatrix} 1 & 1/n \\ 1/n & 1/n \end{pmatrix} \right).$$

Apply the conditional-Gaussian formula:

$$X \mid Y = y \sim \mathcal{N}\left(\mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y), \ \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}\right)$$

 $\mu_x = \mu_y = \mu$, $\Sigma_{xy} = \frac{1}{n}$, $\Sigma_{yy} = \frac{1}{n}$, etc., yields

$$E(X_1 \mid \overline{X} = y) = \mu + \frac{\frac{1}{n}}{\frac{1}{n}} (y - \mu) = y.$$

$$E(X_1 \mid \overline{X}) = \overline{X}.$$

(b)

By linearity of conditional expectation,

$$E\left(\frac{X_1+X_2}{2}\mid \overline{X}\right) = \frac{1}{2}\left(E(X_1\mid \overline{X}) + E(X_2\mid \overline{X})\right).$$

Since X_1 and X_2 are iid, the calculation of $E[X_i \mid \overline{X}]$ holds for other i using the same method.

$$E(X_1 \mid \overline{X}) = E(X_2 \mid \overline{X}) = \overline{X}.$$

Hence

$$E\left(\frac{X_1+X_2}{2} \mid \overline{X}\right) = \frac{1}{2} (\overline{X} + \overline{X}) = \overline{X}.$$

(c)

By linearity and symmetry,

$$E\left(\frac{X_1+X_2+X_3}{3}\mid \overline{X}\right) = \frac{1}{3}\left(E(X_1\mid \overline{X}) + E(X_2\mid \overline{X}) + E(X_3\mid \overline{X})\right) = \frac{1}{3}\left(\overline{X} + \overline{X} + \overline{X}\right) = \overline{X}.$$

(d)

From parts (a)–(c), we see a recurring pattern:

$$E\left(\frac{X_1 + X_2 + \dots + X_k}{k} \,\middle|\, \overline{X}\right) = \overline{X}.$$

Therefore, once we condition on the sample mean \overline{X} , the variables X_i become exchangeable with the same conditional mean, hence the conditional expectation of any average (or sum) of them is the same \overline{X} .

Question 3

Define the sample mean and sample variance as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

According to the formula (2) in class:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

When the null hypothesis is of the form

$$H_0: \sigma^2 \le 1$$
 vs. $H_1: \sigma^2 > 1$,

Testing Statistics:

$$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

We only need to consider $\sigma^2 = 1$, since:

• If
$$\sigma^2 = 1$$
, then $(n-1) S^2 \sim \chi_{n-1}^2$.

• If $\sigma^2 < 1$, $(n-1)S^2$ would be smaller on average, so a rejection threshold designed for $\sigma^2 = 1$ is guaranteed to keep the type-I error at or below the nominal α level.

Therefore, the type I error can be written as:

$$P[(n-1)S^2 > \chi^2_{n-1, 1-\alpha} \mid \sigma^2 = 1] = \alpha.$$

Since H_1 asserts $\sigma^2 > 1$, we expect S^2 to be large when σ^2 is actually above 1. The rejection region is:

Reject
$$H_0$$
 if $(n-1) S^2 > \chi^2_{n-1, 1-\alpha}$,

As a result, if

$$S^2 > \frac{\chi_{n-1, 1-\alpha}^2}{n-1}.$$

reject the null, otherwise, accept the null.

Question 4

$$H_0: \mu \leq 0$$
 versus $H_1: \mu > 0$.

Test statistic:

$$T(X) = \sqrt{n} \frac{\overline{X}}{\sigma}.$$

Under H_0 , for $\mu = 0$) T(X) is $\mathcal{N}(0,1)$. For $\mu < 0$, T(X) is smaller (shifted to the left).

We define

$$p(X) = \Phi\left(-\frac{\sqrt{n}\,\overline{X}}{\sigma}\right),$$

, where Φ is the standard normal CDF, since our goal is to reject the null when the test-statistic is small.

Take any $\mu \leq 0$. Then

$$P_{\mu}\big\{p(X) \leq \alpha\big\} \; = \; P_{\mu}\!\Big\{\,\Phi\!\big(\!-\!\frac{\sqrt{n}\,\overline{X}}{\sigma}\big) \; \leq \; \alpha\Big\}.$$

Since $\Phi(\cdot)$ is strictly increasing, the event inside is equivalent to

$$-\frac{\sqrt{n}\,\overline{X}}{\sigma} \,\leq\, z_{\alpha}$$

$$\frac{\sqrt{n}\,\overline{X}}{\sigma} \geq -z_{\alpha},$$

where $z_{\alpha} = \Phi^{-1}(\alpha)$.

Let

$$Z = \frac{\sqrt{n} \left(\overline{X} - \mu \right)}{\sigma}.$$

Then $Z \sim \mathcal{N}(0,1)$ under the parameter μ :

$$\frac{\sqrt{n}\,\overline{X}}{\sigma} \;=\; Z + \frac{\sqrt{n}\,\mu}{\sigma}.$$

Therefore,

$$P(\frac{\sqrt{n}\,\overline{X}}{\sigma} \geq -z_{\alpha}) = P(Z + \frac{\sqrt{n}\,\mu}{\sigma} \geq -z_{\alpha}) = P(Z \geq -z_{\alpha} - \frac{\sqrt{n}\,\mu}{\sigma}).$$

Since $\mu \leq 0$, the shift $\frac{\sqrt{n} \mu}{\sigma}$ is nonpositive:

$$-z_{\alpha} - \frac{\sqrt{n}\,\mu}{\sigma} \leq -z_{\alpha}.$$

Therefore

$$P_{\mu}\!\!\left(Z \; \geq \; -z_{\alpha} \; - \; \frac{\sqrt{n}\,\mu}{\sigma}\right) \; \leq \; P_{\mu}\!\!\left(Z \; \geq \; -z_{\alpha}\right) \; = \; P\!\!\left(Z \leq z_{\alpha}\right) \; = \; \Phi(z_{\alpha}) \; = \; \alpha.$$

Thus

$$P_{\mu}\{p(X) \le \alpha\} \le \alpha \text{ for all } \mu \le 0.$$

In general, the p-value $p(X) = \Phi(-T(X))$ does not follow a Uniform(0,1) distribution whenever $\mu < 0$. Because if $\mu = 0$, we can show

$$P_{\mu=0}\{p(X) \le \alpha\} = \alpha,$$

But the inequality $P_{\mu}\{p(X) \leq \alpha\} \leq \alpha$ would be strict if $\mu \neq 0$. Hence the p-value distribution is not uniform over [0,1] on the entire null parameter space.

Question 5

(a)

Define the indicator variable

$$I_j = \mathbf{1}\{\mu_j \notin [\hat{\mu}_{j,\text{left}}, \, \hat{\mu}_{j,\text{right}}]\}$$
 for $j = 1, \dots, m$.

Then the total number of uncovered parameters is

$$M = \sum_{j=1}^{m} I_j.$$

By linearity of expectation,

$$E[M] = \sum_{j=1}^{m} E[I_j].$$

where $E[I_j] = P(\mu_j \notin [\hat{\mu}_{j,\text{left}}, \hat{\mu}_{j,\text{right}}]).$

Since each individual CI covers its parameter with probability $1 - \alpha$:

$$P(\mu_j \in [\hat{\mu}_{j,\text{left}}, \, \hat{\mu}_{j,\text{right}}]) = 1 - \alpha \implies P(\mu_j \notin [\hat{\mu}_{j,\text{left}}, \, \hat{\mu}_{j,\text{right}}]) = \alpha.$$

$$E[I_j] = \alpha$$
 and $E[M] = \sum_{i=1}^m \alpha = m \alpha$.

(b)

Stricter CI:s

$$\{\mu_1 \in [\hat{\mu}_{1,\text{left}}, \hat{\mu}_{1,\text{right}}], \ldots, \mu_m \in [\hat{\mu}_{m,\text{left}}, \hat{\mu}_{m,\text{right}}]\} \iff \bigcap_{j=1}^m \{\mu_j \in [\hat{\mu}_{j,\text{left}}, \hat{\mu}_{j,\text{right}}]\}.$$

We want $P(\bigcap_{j=1}^{m} E_j) \ge 1 - \alpha$, where E_j is the event " μ_j is in its CI."

Using the usual union bound inequality:

$$P(\bigcap_{j=1}^{m} E_j) = 1 - P(\bigcup_{j=1}^{m} E_j^c) \ge 1 - \sum_{j=1}^{m} P(E_j^c).$$

Hence, if we make each CI narrower:

$$P(\mu_j \in [\hat{\mu}_{j,\text{left}}, \ \hat{\mu}_{j,\text{right}}]) = 1 - \frac{\alpha}{m}$$

instead of $1 - \alpha$, then

$$P(E_j^c) = \frac{\alpha}{m}$$
, and thus $\sum_{j=1}^m P(E_j^c) = m \frac{\alpha}{m} = \alpha$.

Therefore

$$P\left(\bigcap_{j=1}^{m} E_j\right) \geq 1 - \alpha.$$

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, I_m)$, each observation is an m-dimensional vector, and they are i.i.d. with $\mathcal{N}(\mu, I_m)$:

$$\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n X_{i,j}$$

Since each $X_{i,j}$ is $\mathcal{N}(\mu_j, 1)$ and they are i.i.d., it follows that

$$\hat{\mu}_j \sim \mathcal{N}\left(\mu_j, \frac{1}{n}\right).$$

If a random variable Z is $\mathcal{N}(0,1)$, then

$$P\big(|Z| \le z_{1 - \frac{\alpha}{2m}}\big) \ = \ 1 - \frac{\alpha}{m},$$

where $z_{1-\frac{\alpha}{2m}}$ is the $(1-\frac{\alpha}{2m})$ -quantile of the standard normal distribution.

$$\frac{\hat{\mu}_j - \mu_j}{1/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

Thus

$$\begin{split} P\Big(\Big|\hat{\mu}_j - \mu_j\Big| \; \leq \; z_{1-\frac{\alpha}{2m}} \; \sqrt{\frac{1}{n}}\Big) \; = \; 1 - \frac{\alpha}{m}. \\ P\Big(\mu_j \; \in \; \left[\hat{\mu}_j - z_{1-\frac{\alpha}{2m}} \sqrt{\frac{1}{n}}, \; \hat{\mu}_j + z_{1-\frac{\alpha}{2m}} \sqrt{\frac{1}{n}}\right]\Big) \; = \; 1 - \frac{\alpha}{m}. \end{split}$$

Hence we define the following confidence interval for μ_j :

$$[\hat{\mu}_{j,\text{left}}, \ \hat{\mu}_{j,\text{right}}] = \left[\hat{\mu}_{j} - z_{1-\frac{\alpha}{2m}} \sqrt{\frac{1}{n}}, \ \hat{\mu}_{j} + z_{1-\frac{\alpha}{2m}} \sqrt{\frac{1}{n}} \right]$$

Each such interval has coverage $1 - \frac{\alpha}{m}$.

We want all m parameters μ_1, \ldots, μ_m to be contained in their respective intervals simultaneously with probability at least $1 - \alpha$:

$$E_j = \{ \mu_j \in [\hat{\mu}_{j,\text{left}}, \, \hat{\mu}_{j,\text{right}}] \}.$$

Then

$$P\Big(\bigcap_{j=1}^{m} E_j\Big) = 1 - P\Big(\bigcup_{j=1}^{m} E_j^c\Big).$$

By the union bound,

$$P\left(\bigcup_{j=1}^{m} E_{j}^{c}\right) \leq \sum_{j=1}^{m} P(E_{j}^{c}).$$

$$P(E_{j}^{c}) = \frac{\alpha}{m}.$$

$$\sum_{j=1}^{m} P(E_j^c) = m \times \frac{\alpha}{m} = \alpha.$$

Therefore,

$$P\left(\bigcap_{j=1}^{m} E_j\right) \geq 1 - \alpha.$$

This shows that the probability of covering all coordinates μ_1, \ldots, μ_m simultaneously is at least $1 - \alpha$. Therefore, the CI is:

$$[\hat{\mu}_{j,\mathrm{left}}, \ \hat{\mu}_{j,\mathrm{right}}] = \left[\hat{\mu}_{j} - z_{1-\frac{\alpha}{2m}} \sqrt{\frac{1}{n}}, \ \hat{\mu}_{j} + z_{1-\frac{\alpha}{2m}} \sqrt{\frac{1}{n}} \right].$$