Linear Algebra I Summary of Lectures: Notation Used

Dr Nicholas Sedlmayr

iff	if and only if
\Rightarrow	if then
	defined as
:.	therefore
.:	because
	end of proof
\mathbb{R}	set of real numbers
\mathbb{C}	set of complex numbers
\mathbb{I}	identity matrix
\forall	the universal quantifier, for all
\exists	the existential quantifier, there exists
\in	is an element of
	is a subset of