Abalone Age Prediction

Assignment -3

Assignment Date	03 October 2022
Team ID	PNT2022TMID27812
Project Name	Smart Lender-Application Credibility Prediction for loan Approval
Student Name	Hariharan A G
Student Roll Number	311519104020
Maximum Marks	2 Marks

Question-1. Download dataset

Solution:

1	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
2	0.365	0.095	0.514	0.2245	0.101	0.15	15	
3	0.265	0.09	0.2255	0.0995	0.0485	0.07	7	
4	0.42	0.135	0.677	0.2565	0.1415	0.21	9	
5	0.365	0.125	0.516	0.2155	0.114	0.155	10	
6	0.255	0.08	0.205	0.0895	0.0395	0.055	7	
7	0.3	0.095	0.3515	0.141	0.0775	0.12	8	
8	0.415	0.15	0.7775	0.237	0.1415	0.33	20	
9	0.425	0.125	0.768	0.294	0.1495	0.26	16	
10	0.37	0.125	0.5095	0.2165	0.1125	0.165	9	
11	0.44	0.15	0.8945	0.3145	0.151	0.32	19	
12	0.38	0.14	0.6065	0.194	0.1475	0.21	14	
13	0.35	0.11	0.406	0.1675	0.081	0.135	10	
14	0.38	0.135	0.5415	0.2175	0.095	0.19	11	
15	0.405	0.145	0.6845	0.2725	0.171	0.205	10	
16	0.355	0.1	0.4755	0.1675	0.0805	0.185	10	
17	0.4	0.13	0.6645	0.258	0.133	0.24	12	
18	0.28	0.085	0.2905	0.095	0.0395	0.115	7	
19	0.34	0.1	0.451	0.188	0.087	0.13	10	
20	0.295	0.08	0.2555	0.097	0.043	0.1	7	
21	0.32	0.1	0.381	0.1705	0.075	0.115	9	
22	0.28	0.095	0.2455	0.0955	0.062	0.075	11	
23	0.275	0.1	0.2255	0.08	0.049	0.085	10	
24	0.44	0.155	0.9395	0.4275	0.214	0.27	12	
25	0.415	0.135	0.7635	0.318	0.21	0.2	9	

Question-2.Load the dataset

Solution:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn

data = pd.read_csv(r"abalone.csv")

data.head

	/bound	mot	had NDEnam	a boad	of	Cov. I	onath	Diameter	Hoi abt	Whole weight	Chucked weight
₽		M	0.455		0.095	sex i			0.2245	whore weight	Shucked weight
	0			0.365			0.5140				
	1	М	0.350	0.265	0.090		0.2255		0.0995		
	2	F	0.530	0.420	0.135		0.6770		0.2565		
	3	М	0.440	0.365	0.125		0.5160		0.2155		
	4	Ι	0.330	0.255	0.080		0.2050		0.0895		
	4172	F	0.565	0.450	0.165		0.8870		0.3700		
	4173	М	0.590	0.440	0.135		0.9660		0.4390		
	4174	М	0.600	0.475	0.205		1.1760		0.5255		
	4175	F	0.625	0.485	0.150		1.0945		0.5310		
	4176	М	0.710	0.555	0.195		1.9485		0.9455		
		Visc	era weight	Shell	weight	Rings	5				
	0		0.1010		0.1500	19	5				
	1		0.0485		0.0700	7	7				
	2		0.1415		0.2100	g)				
	3		0.1140		0.1550	16)				
	4		0.0395		0.0550	7	7				
	4172		0.2390		0.2490	11					
	4173		0.2145		0.2605	16)				
	4174		0.2875		0.3080	9					
	4175		0.2610		0.2960	16					
	4176		0.3765		0.4950	12					
			0.57.05		0.1550						

Question-3. Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data[' Diameter'])

sns.histplot(data[' Diameter '])

sns.boxplot(x = data[' Diameter '])

3.2 Bivariate Analysis

Solution:

sns.lineplot(data = data, x = 'Diameter', y = 'Rings')

sns.barplot(data = data, x = 'Diameter',y = 'Height')

plt.figure(figsize=(20,20))
sns.barplot(data = data, x = 'Diameter', y = 'Shell weight)

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data x = 'Shell weight', y = 'Rings', hue = 'Length')

sns.pairplot(data)

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

```
Length 0.523992
Diameter 0.407881
Height 0.139516
Whole weight 0.828742
Shucked weight 0.359367
Viscera weight 0.180594
Shell weight 0.238831
Rings 9.933684
dtype: float64
```

data.median(numeric_only = True)

Length	0.5450
Diameter	0.4250
Height	0.1400
Whole weight	0.7995
Shucked weight	0.3360
Viscera weight	0.1710
Shell weight	0.2340
Rings	9.0000
dtype: float64	

data['Whole weight'].mode()

```
0 0.2225 dtype: float64 data['Length'].mode()
```

```
0 0.550 1 0.625 dtype: float64
```

data['Rings'].unique()

```
array([15, 7, 9, 10, 8, 20, 16, 19, 14, 11, 12, 18, 13, 5, 4, 6, 21, 17, 22, 1, 3, 26, 23, 29, 2, 27, 25, 24])
```

data.std(numeric_only=True)

Length Diameter	0.120093 0.099240 0.041827
Height Whole weight	0.490389
Shucked weight Viscera weight	0.221963 0.109614
Shell weight	0.139203
Rings dtype: float64	3.224169

data.describe()

data['Whole weight'].value_counts()

```
0.2225
          8
1.1345
0.9700
0.4775
0.1960
0.0475
         1
1.8930
         1
1.8725
         1
2.1055
          1
1.9485
Name: Whole weight, Length: 2429, dtype: int64
```

Question-5. Handle the Missing values.

Solution:

data.isnull().any()

Sex	False
Length	False
Diameter	False
Height	False
Whole weight	False
Shucked weight	False
Viscera weight	False
Shell weight	False
Rings	False
dtype: bool	
	<u>"</u>

data.isnull().sum()

0
0
0
0
0
0
0
0
0

Question-6. Find the outliers and replace the outliers

Solution:

sns.boxplot(x = data['Rings'])

q = data.quantile([0.75,0.25])

a

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	7
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	11.0	
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	8.0	

iqr = q.iloc[0] - q.iloc[1]
iqr

<u>'</u>	
Length	0.1650
Diameter	0.1300
Height	0.0500
Whole weight	0.7115
Shucked weight	0.3160
Viscera weight	0.1595
Shell weight	0.1990
Rings	3.0000
dtype: float64	

u = q.iloc[0] + (1.5*iqr)

u

Length	0.86250
Diameter	0.67500
Height	0.24000
Whole weight	2.22025
Shucked weight	0.97600
Viscera weight	0.49225
Shell weight	0.62750
Rings	15.50000
dtype: float64	

I = q.iloc[1] - (1.5*iqr)

I

Length	0.20250	
Diameter	0.15500	
Height	0.04000	
Whole weight	-0.62575	
Shucked weight	-0.28800	
Viscera weight	-0.14575	
Shell weight	-0.16850	
Rings	3.50000	
dtype: float64		

data['Rings'] = np.where(np.logical_or(data['Rings']>15, data['Rings']<4), 9, data['Rings'])
sns.boxplot(x = data['Rings'])</pre>

Question-7. Check for Categorical columns and perform encoding

Solution:

data['Age'] = data['Rings'] + 1.5
data['Sex'].value_counts()

```
M 1528
I 1342
F 1307
Name: Sex, dtype: int64
```

from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder()
data = pd.get_dummies(data)
data.head()

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

```
y = data['Age']
data = data.drop(['Rings','Age'], axis=1)
x = data
data.head
```



```
16.5
        8.5
2
        10.5
        11.5
4
        8.5
4172
        12.5
4173
       11.5
4174
       10.5
4175
        11.5
4176
        13.5
Name: Age, Length: 4177, dtype: float64
```

Question-9. Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled
```

```
array([[-0.57455813, -0.43214879, -1.06442415, ..., -0.67483383, -0.68801788, 1.31667716],
[-1.44898585, -1.439929 , -1.18397831, ..., -0.67483383, -0.68801788, 1.31667716],
[ 0.05003309, 0.12213032, -0.10799087, ..., 1.48184628, -0.68801788, -0.75948762],
...,
[ 0.6329849 , 0.67640943, 1.56576738, ..., -0.67483383, -0.68801788, 1.31667716],
[ 0.84118198, 0.77718745, 0.25067161, ..., 1.48184628, -0.68801788, -0.75948762],
[ 1.54905203, 1.48263359, 1.32665906, ..., -0.67483383, -0.68801788, 1.31667716]])
```

Solution:

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
x_train

x_train.shape

(2923, 10)

x_test

x_test.shape

(1254, 10)

y_train

```
1376
       11.5
1225
       6.5
2722
       8.5
       10.5
3387
2773
       12.5
1033
       11.5
3264
       13.5
1653
       11.5
2607
       10.5
2732
        9.5
Name: Age, Length: 2923, dtype: float64
```

y_test

```
14.5
668
        9.5
1580
3784
        12.5
463
        6.5
2615
        13.5
1052
       13.5
3439
        9.5
1174
        10.5
2210
       10.5
2408
        16.5
Name: Age, Length: 1254, dtype: float64
```

Question-11. Build the model

Solution:

predict

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
LinearRegression()
predict = lr.predict(x_test)
```

```
array([12.32892845, 10.26905996, 11.99728864, ..., 11.36906433, 13.83936664, 11.45100404])
```

Question-12. Train the model

Solution:

y_train

```
1376
       11.5
1225
        6.5
        8.5
2722
       10.5
3387
2773
       12.5
1033
      11.5
3264
      13.5
       11.5
1653
2607
       10.5
2732
        9.5
Name: Age, Length: 2923, dtype: float64
```

Question-13. Test the model

Solution:

y_test

```
668
      14.5
       9.5
1580
3784
       12.5
463
       6.5
2615
       13.5
1052
      13.5
3439
       9.5
1174
      10.5
       10.5
2210
2408
      16.5
Name: Age, Length: 1254, dtype: float64
```

Question-14. Measure the performance using Metrics

Solution:

```
from sklearn.metrics import r2_score, mean_squared_error
mse = mean_squared_error(y_test, predict)
rmse = np.sqrt(mse)
print("mse = ", mse)
print("rmse = ", rmse)
r2_score(y_test,predict)
```

mse = 2.9684942599827626 rmse = 1.7229318790894672 0.4607933491755676