1. Defining Problem Statement and Analysing basic metrics

Problem Statement:

df.describe()

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

- 1. Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts.
- For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
                                                        + Code — + Text
df=pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmill.csv?1639992749")
df.head()
        Product Age Gender Education MaritalStatus Usage Fitness Income Miles
                                                                                  KP281
                                                                    29562
                 18
                       Male
                                   14
                                              Single
                                                        3
                                                                             112
                                                                                  d.
                                                                    31836
         KP281
                                              Single
                                                        2
                                                                3
                                                                             75
     1
                 19
                       Male
                                   15
     2
         KP281
                                   14
                                           Partnered
                                                        4
                                                                3
                                                                    30699
                                                                             66
                 19
                    Female
         KP281
                                   12
                                              Sinale
                                                        3
                                                                3
                                                                    32973
                                                                             85
     3
                 19
                       Male
         KP281
                                           Partnered
                                                                    35247
                                                                             47
                 20
                       Male
                                   13
df.keys()
    dtype='object')
df.shape
    (180, 9)
df.size
    1620
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 180 entries, 0 to 179
    Data columns (total 9 columns):
     #
        Column
                      Non-Null Count Dtype
     0
         Product
                       180 non-null
                                      object
                       180 non-null
     1
         Age
                                      int64
     2
         Gender
                       180 non-null
                                      object
                       180 non-null
         Education
         MaritalStatus 180 non-null
                                      object
                       180 non-null
         Usage
                                      int64
         Fitness
                       180 non-null
                                      int64
         Income
                       180 non-null
                                      int64
                       180 non-null
         Miles
                                      int64
    dtypes: int64(6), object(3)
    memory usage: 12.8+ KB
```

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
750/	33 UUUUUU	16 000000	4 000000	4 000000	ESEES UUUUUU	11/ 750000
.isna().su	ım()					
Product Age	9 0					
Gender Educati	0 Ion 0					
MaritalStatus 0						
Usage	0					
Fitness	9					
Income	0					
Miles	0					
dtype:						

▼ 2. Non-Graphical Analysis: Value counts and Unique attributes

```
df['Product'].unique()
    array(['KP281', 'KP481', 'KP781'], dtype=object)
df['Product'].value_counts()
    KP281
    KP481
             60
    KP781
             40
    Name: Product, dtype: int64
df['Gender'].value_counts()
    Male
              104
    Female
               76
    Name: Gender, dtype: int64
df['Education'].value_counts()
    16
          85
    14
          55
    18
          23
    15
    13
    12
    21
     20
    Name: Education, dtype: int64
df['MaritalStatus'].value_counts()
    Partnered
    Single
    Name: MaritalStatus, dtype: int64
df['Fitness'].value_counts()
         97
    5
         31
    2
         26
    Name: Fitness, dtype: int64
```

▼ 3.Visual Analysis - Univariate, Bivariate after pre-processing of the data

1. Analysis / Continuous Variables

sns.countplot(x='Product',data=df)
plt.title('Count Vs Type of Products')

Text(0.5, 1.0, 'Count Vs Type of Products')

sns.countplot(x='Gender',data=df)
plt.title('Count Vs Gender')

Text(0.5, 1.0, 'Count Vs Gender')

sns.countplot(x='MaritalStatus',data=df)
plt.title('Count Vs MaritalStatus')

Text(0.5, 1.0, 'Count Vs MaritalStatus')

sns.countplot(x='Fitness',data=df)
plt.title('Count Vs Fitness_Rating')

Text(0.5, 1.0, 'Count Vs Fitness_Rating')

plt.hist(df['Age'])

(array([17., 37., 44., 22., 18., 17., 13., 3., 4., 5.]),
 array([18., 21.2, 24.4, 27.6, 30.8, 34., 37.2, 40.4, 43.6, 46.8, 50.]),
 <BarContainer object of 10 artists>)


```
sns.distplot(df['Age'])
```

<ipython-input-19-0fafe04ea3f6>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Age'])
<Axes: xlabel='Age', ylabel='Density'>

4.2 Categorical Variable

sns.boxplot(data=df, palette='rainbow',orient='h')

<Axes: >

sns.boxplot(x='Income',y='Gender',data=df,orient='h')
plt.show()

sns.boxplot(x='Income',y='Product',data=df,orient='h')
plt.show()

sns.boxplot(x='Income',y='MaritalStatus',data=df,orient='h')
plt.show()

sns.boxplot(x='Usage',y='MaritalStatus',data=df,orient='h')
plt.show()

sns.boxplot(x='Usage',y='Product',data=df,orient='h')
plt.show()

4.3 For Correlation

sns.heatmap(pd.crosstab(df['Income'],df['Product']))

```
<Axes: xlabel='Product', ylabel='Income'>
sns.heatmap(pd.crosstab(df['Usage'],df['Product']))
```


sns.heatmap(pd.crosstab(df['Miles'],df['Product']))

▼ 4.Missing Value & Outlier Detection

```
df.isna().sum()
     Product
                      0
     Age
                      0
     Gender
                      0
     Education
                      0
     MaritalStatus
                      0
     Usage
                      0
     Fitness
                      0
     Income
                      0
     Miles
                      0
     dtype: int64
```

sns.heatmap(df.isnull())

▼ 5.Insights based on Non-Graphical and Visual Analysis

- 1. From the above analysis we observe that KP281 has be puurchased by maximum customer followed by KP481.
- 2. Purchase of tread mill is more among the Males than the Females.
- 3. Most of the Married or partnered people have purchased it than the singles.
- 4. Interms of Fitness rating, rating 3 is given to most of the customers.
- 5. Age group for the treadmill lie mostly between 25 to 30.
- 6. Interms of income, males having higher income go for purchasing while female average income lower than male purchase it.
- 7. KP781 as it is a higher segment product, mostly afforded by people having higher income.

→ 6.Recommendations

- 1. As income segment differs the product selling will be intensive in the case of KP281 as most people fall under the segment.
- 2. KP781 to be pitched to high end customers having higher incomes.
- 3. Most of the product selling coming from married customers which should be the focussed area for selling.

- 4. Most of the young people having age ranging from 25-30 being health cautious, are more inclined towards fitness and can be prospect customers.
- 5. Males purchase is more compared to female o the other hand female having lower average income purchase than the average income og male. So focus towards female segment can bring in lots of profits.