

Introducción al *Machine Learning*

Aprendizaje supervisado

Profesor: José Javier Valero Mas

Contenidos

- (re-)Introducción al aprendizaje supervisado
- Regresión
 - Definición
 - Técnicas y modelos
- Clasificación
 - Definición
 - Modelos no paramétricos
 - Modelos neuronales
- Evaluación de modelos

Tipos de aprendizaje

Aprendizaje supervisado

• Aprendizaje no supervisado

Aprendizaje por refuerzo

(re-)Introducción al aprendizaje supervisado

- Existe un objetivo concreto a inferir a partir de los datos:
 - Regresión: Un valor o valores de naturaleza numérica (valor real)

Clasificación: Una categoría de un conjunto de posibilidades

(re-)Introducción al aprendizaje supervisado

Necesitamos datos etiquetados para entrenar el modelo

Por contra, constituye una de sus principales limitaciones

Predecir el valor del punto señalado como? en:

• ¿Posibilidades?

- Posibles problemas a modelar:
 - Mercado de valores
 - Predicción de ventas
 - Puntuación de una película
 - 0 ...

• Objetivo: obtener una función que minimice el error con los datos dados

$$\epsilon_T = \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4$$

- Medidas típicas de error:
 - Error Absoluto Medio (Mean Absolute Error, MAE)
 - Error Cuadrático Medio (Mean Square Error, MSE)

?

Regresión lineal

Características:

- \vee Valor de salida \rightarrow suma ponderada de todos los descriptores
- Sencillo de implementar

Limitaciones:

- Problemas de tipo lineal
- Todos los descriptores → ¿todas las características son útiles?

Alternativas:

- LASSO (Least Absolute Shrinkage and Selection Operator)
- Modelos no lineales → Los veremos en clasificación

Clasificación

Frontera de decisión

- Clasificador: mecanismos para modelar fronteras de decisión
- Estas fronteras dividen el espacio de características en categorías

Estudiaremos cómo obtienen estas fronteras diferentes clasificadores

k-Nearest Neighbor (kNN)

- **Premisa**: dada una consulta ?, se le asigna la clase más común entre los *k* elementos más cercanos
- Cercanía: se necesita una medida de (di)similitud para poder estimarla

k-Nearest Neighbor (kNN)

Ventajas:

- Sólo requiere una medida de disimilitud → aplicable a datos de tipo estadístico y estructurados
- No requiere entrenamiento
- Aplicable a casos binarios y multiclase; fácilmente adaptable a multietiqueta

Desventajas:

Requiere examinar de manera exhaustiva el conjunto de entrenamiento para cada consulta

Support Vector Machines (SVM)

- **Premisa**: clasificador binario que crea un hiperplano que separa el espacio de características en dos zonas, una por categoría
- Entrenamiento: sitúa el hiperplano de manera que la distancia a los puntos más cercanos de cada clase sea máxima

Support Vector Machines (SVM)

- SVM asume que las clases son linealmente separables → Muy infrecuente
 - Kernel trick: Cambiar el espacio de representación (normalmente a uno de mayor dimensionalidad) que cumpla la premisa de linealidad

Kernels típicos: Polynomial, Radial Basis Function (RBF)

Support Vector Machines (SVM)

- Sólo vale para problemas binarios? Se puede adaptar a multiclase:
 - One-VS-All: Enfrentar una clase contra una agrupación del resto
 - One-VS-One: Enfrentar pares de clases

- También puede darse que no haya manera de separar las clases de manera lineal en ningún espacio de representación
 - Se relaja la condición de separación total de clases (parámetro C)

Árboles de decisión

• **Premisa**: dada una consulta ?, se le asigna la clase obtenida recorriendo un árbol construido en base al conjunto de entrenamiento

- Árbol:
 - Nodos: Atributos (X)
 - Hojas: Categorías/etiquetas (Y)

Árboles de decisión

Entrenamiento:

- Ganancia de información → Capacidad de los atributos de separar las clases
- \circ Sobreajusta de manera natural \rightarrow Poda del árbol (pruning)

Características:

- Altamente eficiente
- o Interpretable → Se puede obtener un conjunto de reglas
- Aplicable a casos binarios y multiclase; fácilmente adaptable a multietiqueta

Random Forest

 Caso particular en el que se crean diferentes árboles de decisión y se unen sus predicciones individuales

- Añade robustez a la clasificación
- Realmente pertenece a la familia de ensemble learning

Random Forest

• Predicción (clase) final → moda de las predicciones de cada árbol

- Modelo que imita el comportamiento de las neuronas biológicas
- Unidad básica: perceptrón
 - Suma ponderada de las entradas con una función de activación

Objetivo: aprender los pesos (w)

Función de activación:

- Se estructuran por capas:
 - Capa de entrada (input): Entrada de datos. No son perceptrones
 - Capa/s oculta/s (hidden): Normalmente no lineales
 - Capa de salida (output): Reporta el resultado

• Capa de entrada: Tamaño igual a la cantidad de características

• Capa/s oculta/s: Según complejidad del problema y datos disponibles

- Capa salida:
 - Regresión: Un perceptrón por elemento a predecir
 - Clasificación:
 - Binaria: Un perceptrón por clase/dos perceptrones
 - Multiclase: Un perceptrón por clase

- Proceso de entrenamiento:
 - 1) Se introduce un dato en la red y se obtiene la salida (forward)
 - 2) Se compara el resultado obtenido con el esperado (pérdida o *loss*)
 - 3) Se propaga el error hacia atrás para adaptar los pesos (backpropagation)

- Descenso por gradiente:
 - Objetivo del entrenamiento: minimizar la función de pérdida
 - Problema: función de gran dimensionalidad → Métodos analíticos
 - Recorrer la función de pérdida para buscar un mínimo (idealmente, global)

- Detalles de entrenamiento:
 - Se utilizan grupos de datos (batches)
 - Época: cuando la red ha procesado todos los datos de entrenamiento
 - Se itera por varias épocas → Minimizar la pérdida
 - Optimizador → Método utilizado para recorrer la función de pérdida

Ejemplos de fronteras de decisión

Evaluación

Métricas de evaluación

- Hasta ahora hemos asumido que cualquier métrica de evaluación es válida para nuestro problema:
 - Por ejemplo, asumimos que la tasa de acierto es una buena métrica para cualquier problema de clasificación
- Sin embargo esto no es siempre así ya que ciertas métricas se ven afectadas por particularidades de nuestros datos
 - Caso típico: datos desbalanceados

Estudiaremos esto con un ejemplo práctico

Introducción al *Machine Learning*

Aprendizaje supervisado

Profesor: José Javier Valero Mas