Dimensionality Reduction และ Unsupervised Learning Algorithms อื่น

Krittameth Teachasrisaksakul

แรงจูงใจที่ 1: Data Compression (การบีบอัดข้อมูล)

สมมติเราเก็บชุดข้อมูลที่มีหลาย features แต่เรา plot แค่ 2 features

และสมมติว่า เราไม่รู้ว่ามันเป็น ความยาว ในหน่วย cm (เซนติเมตร) และ inches (นิ้ว)

features 2 ตัวนี้ redundant และเราสามารถลดมิติข้อมูลจาก 2D เป็น 1D

คำถาม: reducing dimensions (การลดมิติ) หมายความว่าอะไร?

แรงจูงใจที่ 1: Data Compression (การบีบอัดข้อมูล)

คำถาม: reducing dimensions (การลดมิติ) หมายความว่าอะไร?

หาเส้นที่เหมาะสม (a fitted line) และ project (ฉายภาพ) จุดข้อมูลลง บนอีกแกนหนึ่ง แล้ววัดค่า ตำแหน่งของ example แต่ละตัว บนเส้นนั้น

 $oldsymbol{Z_1}$ เป็น feature ใหม่ ที่บอกตำแหน่งของแต่ละจุดบนเส้นสีเขียว

แรงจูงใจที่ 1: Data Compression (การบีบอัดข้อมูล)

คำถาม: reducing dimensions (การลดมิติ) หมายความว่าอะไร?

$$x^{(1)} \notin \mathbb{R}^2 \mapsto z^{(1)} \notin \mathbb{R}$$
$$x^{(2)} \in \mathbb{R}^2 \mapsto z^{(2)} \in \mathbb{R}$$
$$\vdots$$

ก็คือ ถ้าเราประเ $x^{(m)} \in \mathbb{R}^2 \mapsto z^{(m)} \in \mathbb{R}$ ุลายภาพ / ฉาย เป็นเงา) example เดิมลงบนเส้นสีเขียว แล้วเรา<mark>ต้องการแค่จำนวนจริงตัว</mark> เดียว เพื่อระบุจุดนี้บนเส้น

Data Compression : การบีบอัดข้อมูล

Question

สมมติเราใช้ dimensionality reduction กับชุดข้อมูลที่มี examples m ตัว : $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ เมื่อ $x^{(i)} \in \mathbb{R}^n$ เราจะได้ผลเป็นอะไร

- (i) ชุดข้อมูลที่มีมิติต่ำลง $\{z^{(1)},z^{(2)},...,z^{(k)}\}$ ที่มี k examples เมื่อ $k\leq n$
- (ii) ชุดข้อมูลที่มีมิติต่ำลง $\{z^{(1)},z^{(2)},...,z^{(k)}\}$ ที่มี k examples เมื่อ k>n
- (iii) ชุดข้อมูลที่มีมิติต่ำลง $\{z^{(1)},z^{(2)},...,z^{(m)}\}$ ที่มี \underline{m} examples เมื่อ $z^{(i)}\in\mathbb{R}^k$ สำหรับ k บางค่า และ $k\leq n$
- (iv) ชุดข้อมูลที่มีมิติต่ำลง $\{z^{(1)},z^{(2)},...,z^{(m)}\}$ ที่มี m examples เมื่อ $z^{(i)}\in\mathbb{R}^k$ สำหรับ k บางค่า และ k>n

Ouestion

สมมติเราใช้ dimensionality reduction กับชุดข้อมูลที่มี examples m ตัว : $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ เมื่อ $x^{(i)} \in \mathbb{R}^n$ เราจะได้ผลเป็นอะไร

- ชุดข้อมูลที่มีมิติต่ำลง $\{z^{(1)},z^{(2)},...,z^{(k)}\}$ ที่มี k examples เมื่อ $k\leq n$ (i)
- ชุดข้อมูลที่มีมิติต่ำลง $\{z^{(1)}, \mathbf{z}^{(2)}, ..., \mathbf{z}^{(k)}\}$ ที่มี k examples เมื่อ k > n(ii)
- ชุดข้อมูลที่มีมิติต่ำลง $\{z^{(1)}, \mathbf{z}^{(2)}, ..., \mathbf{z}^{(m)}\}$ ที่มี m examples เมื่อ $\mathbf{z}^{(i)} \in \mathbb{R}^k$ สำหรับ k บางค่า และ $k \leq n$
- ชุดข้อมูลที่มีมิติต่ำลง $\{z^{(1)}, \mathbf{z}^{(2)}, ..., \mathbf{z}^{(m)}\}$ ที่มี m examples เมื่อ $\mathbf{z}^{(i)} \in \mathbb{R}^k$ $(i\vee)$ สำหรับ k บางค่า และ k > n

แรงจูงใจที่ 2: Visualization (การนำเสนอด้วยภาพ)

	x_1	x_2	x_3	x_4	x_5	x_6	
						Mean	
		Per capita			Poverty	household	
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	`46.86	0.91	78.3	40.8	84.3	

(source: wikipedia.org)

แรงจูงใจที่ 2: Visualization (การนำเสนอด้วยภาพ)

Country	z_1	z_2	
Canada	1.6	1.2	
China	1.7	0.3	
India	1.6	0.2	
Russia	1.4	0.5	
Singapore	0.5	1.7	
USA	2	1.5	

เช่น $z^{(i)} \in \mathbb{R}^2$

ก็คือ ลดมิติข้อมูลจาก_50D เป็น <u>2D</u>

แรงจูงใจที่ 2: Visualization (การนำเสนอด้วยภาพ)

Question

สมมติ มีชุดข้อมูล $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ เมื่อ $x^{(i)} \in \mathbb{R}^n$ เพื่อจะ visualize ข้อมูล เราใช้ dimensionality reduction (การลดมิติข้อมูล) และได้ $\{z^{(1)}, z^{(2)}, ..., z^{(m)}\}$ เมื่อ $z^{(i)} \in \mathbb{R}^k$ มี k มิติ ในสภาพแวดล้อม (การตั้งค่า) ทั่วไป ข้อใดต่อไปนี้ที่เราคาดว่าเป็นจริง วงทุกข้อที่ถูกต้อง

- (i) k > n
- (ii) $k \leq n$
- (iii) $k \ge 4$
- (iv) k=2 หรือ k=3 (เพราะเราสามารถ plot ข้อมูล 2D หรือ 3D แต่ไม่มีวิธี visualize ข้อมูลที่มีมิติสูงกว่า)

Ouestion

สมมติ มีชุดข้อมูล $\{X^{(1)}, X^{(2)}, ..., X^{(m)}\}$ เมื่อ $X^{(i)} \in \mathbb{R}^n$ เพื่อจะ visualize ข้อมูล เราใช้ dimensionality reduction (การลดมิติข้อมูล) และได้ $\{z^{(1)}, z^{(2)}, ..., z^{(m)}\}$ เมื่อ $z^{(i)} \in \mathbb{R}^k$ มี k มิติ ในสภาพแวดล้อม (การตั้งค่า) ทั่วไป ข้อใดต่อไปนี้ที่เราคาดว่าเป็นจริง วงทุกข้อที่ถูกต้อง

k > n

$$k \le n$$

$$k \ge 4$$

$$k=2$$
 หรือ $k=3$

(เพราะเราสามารถ plot ข้อมูล 2D หรือ 3D แต่ไม่มีวิธี visualize ข้อมูลที่มีมิติสูงกว่า)

Dimensionality Reduction

Principal Component Analysis (PCA)

Krittameth Teachasrisaksakul

 $x_i \in \mathbb{R}^2$

อยากลดมิติข้อมูลจาก 2D เป็น 1D ก็คือ หาเส้นที่ดีที่สามารถ project (ฉายภาพ) ข้อมูลลงไปได้

ความเข้าใจพื้นฐาน: หาพื้นผิว (surface) ที่มีมิติต่ำกว่า เช่น เส้นสีเขียว ที่สามารถ project (ฉายภาพ) ข้อมูลลงไปได้ และ ต้องทำให้ ผลรวมของ กำลังสอง (sum of squares) ของเส้นสีแดง น้อยที่สุด

ความเข้าใจพื้นฐาน: หาพื้นผิว (surface) ที่มีมิติต่ำกว่า เช่น เส้นสีเขียว ที่สามารถ project (ฉายภาพ) ข้อมูลลงไปได้ และ ต้องทำให้ ผลรวมของ กำลังสอง (sum of squares) ของเส้นสีแดง น้อยที่สุด

หมายเหตุ: ทำ feature scaling ก่อนใช้ PCA

ความเข้าใจพื้นฐาน: หาพื้นผิว (surface) ที่มีมิติต่ำกว่า เช่น เส้นสีเขียว ที่สามารถ project (ฉายภาพ) ข้อมูลลงไปได้ และ ต้องทำให้ ผลรวมของ กำลังสอง (sum of squares) ของเส้นสีแดง น้อยที่สุด

หมายเหตุ: ทำ feature scaling ก่อนใช้ PCA

นิยาม (ลดมิติจาก 2D เป็น 1D):

หาทิศทาง (vector $u^{(i)} \in \mathbb{R}^n$) ที่ project ข้อมูลลงได้ เพื่อทำให้ projection error น้อยที่สุด

ในกรณีนี้ PCA ควรหา $u^{(1)}$ ให้เรา !

หมายเหตุ: ไม่ว่า PCA จะให้ค่า $u^{(1)}$ หรือ - $u^{(1)}$ ก็ไม่สำคัญ)

นิยาม (ลดมิติจาก 2D เป็น 1D):

หาทิศทาง (vector $u^{(i)} \in \mathbb{R}^n$) ที่ project ข้อมูลลงได้ เพื่อ ทำให้ projection error น้อยที่สุด

นิยาม (ลดมิติจาก **n**D เป็น **k**D):

หา vectors k ตัว $u^{(1)}$, $u^{(2)}$, ..., $u^{(k)}$ ที่ project ข้อมูล ลงได้ เพื่อทำให้ projection error น้อยที่สุด

นิยาม (ลดมิติจาก $m{n}$ D เป็น $m{k}$ D):

หา vectors k ตัว $u^{(1)}$, $u^{(2)}$, ..., $u^{(k)}$ ที่ project ข้อมูล ลงได้ เพื่อทำให้ projection error น้อยที่สุด

นิยาม (ลดมิติจาก $m{n}$ D เป็น $m{k}$ D):

หา vectors k ตัว $u^{(1)}$, $u^{(2)}$, ..., $u^{(k)}$ ที่ project ข้อมูล ลงได้ เพื่อทำให้ projection error น้อยที่สุด

นิยาม (ลดมิติจาก $m{n}$ D เป็น $m{k}$ D):

หา vectors k ตัว $u^{(1)}$, $u^{(2)}$, ..., $u^{(k)}$ ที่ project ข้อมูล ลงได้ เพื่อทำให้ projection error น้อยที่สุด

นิยาม (ลดมิติจาก $m{n}$ D เป็น $m{k}$ D):

หา vectors k ตัว $u^{(1)}$, $u^{(2)}$, ..., $u^{(k)}$ ที่ project ข้อมูล ลงได้ เพื่อทำให้ projection error น้อยที่สุด

PCA ไม่ใช่ Linear Regression

สอง algorithm นี้ เป็น algorithm ที่ต่างกันโดยสิ้นเชิง !

Ouestion

สมมติ run PCA กับชุดข้อมูลด้านล่าง ข้อใดต่อไปนี้น่าจะเป็น vector ที่เหมาะสม $\pmb{u}^{(1)}$ ที่จะ project ข้อมูล ลงไป ? (เราเลือก $\pmb{u}^{(1)}$ เพื่อทำให้ และ ความยาวของ $\|u^{(1)}\| = \sqrt{(u_1^{(1)})^2 + (u_2^{(1)})^2}$

(i)
$$u^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

(ii) $u^{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (iv) $u^{(1)} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$

(iii)
$$u^{(1)} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

Question

สมมติ run PCA กับชุดข้อมูลด้านล่าง ข้อใดต่อไปนี้น่าจะเป็น vector ที่เหมาะสม $u^{(1)}$ ที่จะ project ข้อมูล ลงไป ? (เราเลือก $u^{(1)}$ เพื่อทำให้ และ ความยาวของ $\|u^{(1)}\| = \sqrt{(u_1^{(1)})^2 + (u_2^{(1)})^2}$

(i)
$$u^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

(ii) $u^{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (iv) $u^{(1)} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$

(iii)
$$u^{(1)} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

Dimensionality Reduction

PCA: Algorithm

Krittameth Teachasrisaksakul

Data Preprocessing

ก่อนทำ PCA เราควรทำขั้นตอน data pre-processing ดังนี้ เสมอ

ชุดข้อมูล training set: $X^{(1)}$, $X^{(2)}$, ..., $X^{(m)}$

Preprocessing (feature scaling / mean normalization):

$$(\mu_j) = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

แทนที่ $x_j^{(i)}$ แต่ละตัว ด้วย $x_j - \mu_j$

ถ้า features คนละตัว อยู่ใน scale ที่ต่างกัน (เช่น X_1 = ขนาดพื้นที่บ้าน, X_2 = จำนวนห้องนอน) scale feature เพื่อให้ feature มีค่าอยู่ในช่วงที่เทียบกันได้ เพื่อทำให้ feature แต่ละตัว มี mean เป็น

เป้าหมาย:

ลดมิติของข้อมูลจาก n เป็น k

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{T}$$

1. คำนวณ 'covariance matrix':

2. คำนวณ 'eigenvector' ของ matrix Σ :

เช่น โดยเรียก function 'singular value decomposition' หรือ svd

$$(U, S, V) = \operatorname{svd}(\Sigma)$$

หมายเหตุ:

$$U = \begin{bmatrix} 1 & | & | & | & \dots & | \\ | & | & | & | & \dots & | \\ | & u^{(1)} & u^{(2)} & u^{(2)} & u^{(3)} & \dots & u^{(m)} \\ | & | & | & | & \dots & | \\ | & | & | & | & \dots & | \end{bmatrix} \quad \text{เพื่อทำให้ } \underline{U} \in \mathbb{R}^{n \times n}$$

เป้าหมาย:

ลดมิติของข้อมูลจาก n เป็น k

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{T}$$

1. คำนาณ 'covariance matrix':

2. คำนวณ 'eigenvector' ของ matrix Σ :

เช่น โดยเรียก function 'singular value decomposition' หรือ svd

$$(U, S, V) = \operatorname{svd}(\Sigma)$$

หมายเหตุ:

$$U = \begin{bmatrix} | & | & | & | & \dots & | \\ | & | & | & | & \dots & | \\ | & | & u^{(1)} & u^{(2)} & u^{(2)} & u^{(3)} & \dots & u^{(m)} \\ | & | & | & | & \dots & | \\ | & | & | & | & \dots & | \end{bmatrix} \quad \text{เพื่อทำให้ } U \in \mathbb{R}^{n \times n}$$

เลือก k ตัวแรก ! ก็คือ u⁽¹⁾, ..., u^(k)

เป้าหมาย: ลดมิติของข้อมูลจาก
$$n$$
 เป็น k

ก็คือ
$$X \in \mathbb{R}^n \mapsto z \in \mathbb{R}^k$$

Solution (คำตอบ):

PCA Algorithm (Vectorizing)

เป้าหมาย:

ลดมิติของข้อมูลจาก n เป็น k

1. คำนวณ 'covariance matrix':

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (\underline{x}^{(i)}) (\underline{x}^{(i)})^{T}$$

2. คำนวณ 'eigenvector' ของ matrix Σ ($n \times n$):

เช่น โดยเรียก function 'singular value decomposition' หรือ svd

$$(U, S, V) = \operatorname{svd}(\Sigma)$$

Note: $X \in \mathbb{R}^n$ (not $X \in \mathbb{R}^{n+1}$)

$$X \in \mathbb{R}^n \mapsto z \in \mathbb{R}^k$$

Question

ใน PCA : เราได้ $z \in \mathbb{R}^k$ จาก $x \in \mathbb{R}^n$ โดยใช้

ข้อใดต่อไปนี้ เป็น expression ที่ถูกตองของ $oldsymbol{Z_j}$?

$$(i) z_j = (u^{(k)})^T x$$

(ii)
$$z_i = (u^{(j)})^T x_i$$

(iii)
$$z_j = (u^{(j)})^T x_k$$

(iv)
$$z_i = (u^{(j)})^T x$$

Question

ใน PCA : เราได้ $z \in \mathbb{R}^k$ จาก $x \in \mathbb{R}^n$ โดยใช้

$$z = \left(\begin{bmatrix} | & | & \dots & | \\ u^{(1)} & u^{(2)} & \dots & u^{(k)} \\ | & | & \dots & | \end{bmatrix}^T \right) \left(x \right) = \left(\begin{bmatrix} - & - & (u^{(1)})^T & - & - \\ - & - & (u^{(2)})^T & - & - \\ - & - & \vdots & - & - \\ - & - & (u^{(k)})^T & - & - \end{bmatrix} \right) \left(x \right)$$

ข้อใดต่อไปนี้ เป็น expression ที่ถูกต้องของ $oldsymbol{Z}_i$?

$$(i) \quad z_j = (u^{(k)})^T x$$

(ii)
$$z_i = (u^{(j)})^T x_i$$

$$(iii) z_j = (u^{(j)})^T x_k$$

$$(iv) z_j = (u^{(j)})^T x$$

Dimensionality Reduction

Reconstruction from

Compressed Representation

(การฟื้นฟู/สร้างข้อมูล จากตัวแทนที่ถูกบียอัด)

Krittameth Teachasrisaksakul

ความเข้าใจพื้นฐาน

คำถาม: ถ้า PCA เป็น compression algorithm (algorithm บีบอัดข้อมูล)

ควรมีทาง de-compress (ย้อนคืนการบีบอัด) representation กลับเป็นข้อมูลดั้งเดิม (โดยประมาณ) ?

ความเข้าใจพื้นฐาน

คำถาม: ถ้า PCA เป็น compression algorithm (algorithm บีบอัดข้อมูล)

ควรมีทาง de-compress (ย้อนคืนการบีบอัด) representation กลับเป็นข้อมูลดั้งเดิม (โดยประมาณ) ?

ความเข้าใจพื้นฐาน

คำถาม: ถ้า PCA เป็น compression algorithm (algorithm บีบอัดข้อมูล)

ควรมีทาง de-compress (ย้อนคืนการบีบอัด) representation กลับเป็นข้อมูลดั้งเดิม (โดยประมาณ) ?

Question

สมมติ run PCA ด้วย k=n เพื่อทำให้ dimension ของข้อมูลไม่ลดลงเลย (นี่ไม่มีประโยชน์ในทางปฏิบัติ แต่เป็นแบบฝึกหัดที่ดี) ทบทวน: percent หรือ สัดส่วนของ variance ที่ถูกรักษาไว้ คือ $\sum_{i=1}^k S_{ii}$

ข้อใดต่อไปนี้เป็นจริง? วงทุกข้อที่ถูกต้อง

$$\frac{\sum_{i=1}^{\kappa} S_{ii}}{\sum_{i=1}^{n} S_{ii}}$$

(i)
$$U_{
m reduce}$$
 จะเป็น matrix ขนาด $n imes n$

(ii)
$$X_{
m approx} = X$$
 สำหรับค่า X ทุกค่า

(iii) percentage ของ variance ที่ถูกรักษาไว้ จะเป็น 100%

(iv) จะได้ว่า
$$\dfrac{\sum_{i=1}^k S_{ii}}{\sum_{i=1}^n S_{ii}} > 1$$

Question

สมมติ run PCA ด้วย k=n พื่อทำให้ dimension ของข้อมูลไม่ลดลงเลย (นี่ไม่มีประโยชน์ในทางปฏิบัติ แต่เป็นแบบฝึกหัดที่ดี) ทบทวน: percent หรือ

สัดส่วนของ variance ที่ถูกรักษาไว้ คือ ข้อใดต่อไปนี้เป็นจริง? วงทุกข้อที่ถูกต้อง

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}}$$

$$($$
i $)$ $U_{
m reduce}$ จะเป็น matrix ขนาด $n imes n$

$$($$
ii $)$ $X_{
m approx} = X$ สำหรับค่า X ทุกค่า

(iv) จะได้ว่า
$$rac{\Sigma_{i=1}^k S_{ii}}{\Sigma_{i=1}^n S_{ii}} > 1$$

Dimensionality Reduction

การเลือกจำนวน Principal Components

Krittameth Teachasrisaksakul

เลือกค่า $oldsymbol{k}$ อย่างไร ?

เกณฑ์การเลือก $oldsymbol{k}$ (ก็คือ จำนวน principal components)

- Average squared projection error:
- Total variation in the data:

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2$$

โดยทั่วไป เลือก $oldsymbol{k}$ เป็นค่าที่น้อยที่สุด เพื่อทำให้

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{\mathbf{approx}}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$

ก็คือ 99% ของ variance ยังถูกรักษาไว้

เลือกค่า $oldsymbol{k}$ อย่างไร ?

เกณฑ์การเลือก $oldsymbol{k}$ (ก็คือ จำนวน principal components)

- Average squared projection error:
- Total variation in the data:

$$\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x^{(i)}_{approx}\|^{2}$$

$$\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^{2}$$

โดยทั่วไป เลือก $oldsymbol{k}$ เป็นค่าที่น้อยที่สุด เพื่อทำให้

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{\mathbf{approx}}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$

ก็คือ 99% ของ variance ยังถูกรักษาไว้

Algorithm: เลือก $m{k}$ อย่างไร

```
Input: ไม่มี
```

Output:

ตั้งค่า $m{k}$ = 1

ทำซ้ำ จนกระทั่ง เงื่อนไขเป็นจริง (satisfied)

คำนวณ

$$\underline{U_{\text{reduce}}}, \underline{z^{(1)}}, \underline{z^{(2)}}, \dots, \underline{z^{(m)}}, \underline{x^{(1)}_{\text{approx}}}, \dots, \underline{x^{(m)}_{\text{approx}}}$$

ตรวจว่า เงื่อนไขเป็นจริงหรือไม่ ก็คือ

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{\mathbf{approx}}^{(i)}\|^{2}}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^{2}} \le 0.01?$$

ล้วยัง increment $m{k}$

Algorithm: เลือก $m{k}$ อย่างไร

```
Input: ไม่มี
Output:
ตั้งค่า k=1
ทำซ้ำ จนกระทั่ง เงื่อนไขเป็นจริง (satisfied)
           U_{\text{reduce}}, z^{(1)}, z^{(2)}, ..., z^{(m)}, x^{(1)}_{\text{approx}}, ..., x^{(m)}_{\text{approx}}
ตรวจว่า เงื่อนไขเป็นจริงหรือไม่ ก็คือ
                                                                                                                                 สำหรับค่า k ที่มี
ล้าไม่เป็นจริง : increment oldsymbol{k}
```

Algorithm: เลือก $m{k}$ อย่างไร

 $(U, S, V) = svd(\Sigma)$ Input: ไม่มี Output: ตั้งค่า $m{k}$ = 1 ทำซ้ำ จนกระทั่ง เงื่อนไขเป็นจริง (satisfied) $U_{\text{reduce}}, z^{(1)}, z^{(2)}, ..., z^{(m)}, x^{(1)}_{\text{approx}}, ..., x^{(m)}_{\text{approx}}$ คำนวณ ตรวจว่า เงื่อนไขเป็นจริงหรือไม่ ก็คือ สำหรับค่า kที่มี $- \le 0.01$? ถ้าทำแบบนี้ เราไม่จำเป็นต้อง run PCA ใหม่ตั้งแต่ต้น ถ้าไม่เป็นจริง : increment $oldsymbol{k}$ ซ้ำแล้วซ้ำอีก

Ouestion

ก่อนหน้านี้ เรากล่าวว่า PCA เลือกทิศทาง $m{u}^{(1)}$ (หรือทิศทาง $m{k}$ ทิศทาง $m{u}^{(1)}$, ..., $m{u}^{(k)}$) ที่ project ข้อมูลลงไปได้ เพื่อทำให้ the (squared) projection error น้อยที่สุด อีกวิธีที่จะพูดแบบเดียวกัน ก็คือ PCA พยายาม ทำให้ function ใด น้อยที่สุด

(i)
$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2$$

(ii)
$$\frac{1}{m} \sum_{i=1}^{m} \|x_{approx}^{(i)}\|^2$$

(iii)
$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{\mathbf{approx}}^{(i)}||^2$$

(iv)
$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} + x_{approx}^{(i)}||^2$$

Ouestion

ก่อนหน้านี้ เรากล่าวว่า PCA เลือกทิศทาง $m{u}^{(1)}$ (หรือทิศทาง $m{k}$ ทิศทาง $m{u}^{(1)}$, ..., $m{u}^{(k)}$) ที่ project ข้อมูลลงไปได้ เพื่อทำให้ the (squared) projection error น้อยที่สุด อีกวิธีที่จะพูดแบบเดียวกัน ก็คือ PCA พยายาม ทำให้ function ใด น้อยที่สุด

(i)
$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2$$

(ii)
$$\frac{1}{m} \sum_{i=1}^{m} \|x_{\mathbf{approx}}^{(i)}\|^2$$

(iii)
$$\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{\mathbf{approx}}^{(i)}\|^2$$

(iv)
$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} + x_{approx}^{(i)}||^2$$

Dimensionality Reduction

คำแนะนำเกี่ยวกับ การใช้ PCA

Krittameth Teachasrisaksakul

PCA สำหรับ Speed-Up Learning

ชุดข้อมูลสำหรับ supervised learning:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$
, where $x^{(i)} \in \mathbb{R}^{30,000}$

1. ดึง input ออกมา:

ชุดข้อมูลที่ไม่มี label :

(unlabeled dataset)

2. training dataset ใหม่:

PCA สำหรับ Speed-Up Learning

ชุดข้อมูลสำหรับ supervised learning:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$
, where $x^{(i)} \in \mathbb{R}^{30,000}$

100 px

1. ดึง input ออกมา:

ชุดข้อมูลที่ไม่มี label :

(unlabeled dataset)

2. training dataset ใหม่:

$(\mathbf{z}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{z}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{z}^{(m)}, \mathbf{y}^{(m)})$

ถ้ามี **X** ตัวใหม่ เราจะทำ:

(assume ว่า เราใช้ logistic regression model)

 $100 \, \mathrm{px}$

การประยุกต์ใช้ PCA

- Compression / การบีบอัดข้อมูล
 - ลดขนาด memory / disk ที่ต้องใช้เก็บข้อมูล
 - Speed up learning algorithm
- Visualization / การนำเสนอข้อมูลเป็นภาพ
 - เพราะเราสามารถ plot ได้เพียงข้อมูล 2D หรือ 3D 0
 - บ่อยครั้ง เราจึงตั้งค่า k=2 หรือ k=3

เลือก k โดยอิงกับ percentage of variance ที่ถูก รักษาไว้ (variance retained)

การใช้ PCA แบบไม่ถูกต้อง

1. ใช้ PCA เพื่อป้องกัน การเกิด overfitting

ใช้ $z^{(i)}$ แทน $x^{(i)}$ เพื่อลดจำนวน features เป็น k < nเพราะจำนวน features ถูกลดลง แล้วมันจะมีแนวโน้มน้อยลงที่จะ overfit!

นี่อาจทำงานได้ OK แต่ไม่ใช่วิธีที่ดีที่จะแก้ overfitting

ใช้ regularization แทน ก็คือ

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \left(+ \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \right)$$

ทำไมวิธีนี้ *ไม่ใช่* วิธีที่ดีสำหรับแก้ overfitt.

(ข้อมูลบางอย่างจะหายไป!)

การใช้ PCA แบบไม่ถูกต้อง

2. ใช้ PCA โดยไม่มีเหตุผลสนับสนุน

ต่อไปนี้ คือ design ของระบบ machine learning

- Wittraining dataset $\{(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), ..., (X^{(m)}, y^{(m)})\}$
- ullet Run PCA เพื่อลด dimension ของ $oldsymbol{X}^{(i)}$ และหา $oldsymbol{Z}^{(i)}$
- ullet Train logistic regression โดยใช้ $\{(z^{(1)},y^{(1)}),(z^{(2)},y^{(2)}),...,(z^{(m)},y^{(m)})\}$
- ullet Test โดยใช้ test set จุ๊คือ map (เชื่อมโยง) $oldsymbol{X}^{oldsymbol{(i)}}$ test to $oldsymbol{Z}^{oldsymbol{(i)}}$
- Run $h_{\theta}(z)$ ñu $\{(z_{\mathbf{test}}^{(1)}, y^{(1)}), (z_{\mathbf{test}}^{(2)}, y^{(2)}), ..., (z_{\mathbf{test}}^{(m)}, y^{(m)})\}$

แล้วถ้าทำทั้งหมดนี้ โดยไม่ใช้ PCA จะเป็นอย่างไร?

Learning algorithm run ช้าเกินไป หรือ

ต้องใช้ memory และ ขนาด disk (disk space) มากเกินไป

Question

ข้อใดต่อไปนี้ เป็น การประยุกต์ใช้ PCA ที่ดี (ที่แนะนำ)? วงทุกข้อที่ถูกต้อง

- (i) เพื่อบีบอัดข้อมูล เพื่อให้ใช้ computer memory / disk space น้อยลง
- (ii) เพื่อลดมิติของ input data เพื่อทำให้ learning algorithm ทำงานเร็วขึ้น
- (iii) แทนที่จะใช้ regularization ใช้ PCA เพื่อลดจำนวน features เพื่อลด overfitting
- (iv) เพื่อ visualize (นำเสนอด้วยภาพ) ข้อมูลที่มีมิติสูง (high-dimensional data) (โดยเลือก k=2 หรือ k=3)

Question

ข้อใดต่อไปนี้ เป็น การประยุกต์ใช้ PCA ที่ดี (ที่แนะนำ)? วงทุกข้อที่ถูกต้อง

- (i) เพื่อบีบอัดข้อมูล เพื่อให้ใช้ computer memory / disk space น้อยลง
- (ii) เพื่อลดมิติของ input data เพื่อทำให้ learning algorithm ทำงานเร็วขึ้น
- (iii) แทนที่จะใช้ regularization ใช้ PCA เพื่อลดจำนวน features เพื่อลด overfitting
- (iv) เพื่อ visualize (นำเสนอด้วยภาพ) ข้อมูลที่มีมิติสูง (high-dimensional data) (โดยเลือก k=2 หรือ k=3)

PCA vs. LDA

C

Dimensionality Reduction

Unsupervised Learning Algorithm อื่นๆ

Krittameth Teachasrisaksakul

Learning Algorithms อื่นๆ

ในช่วงก่อนหน้านี้ เราได้เรียนรู้ (โดยย่อๆ) เกี่ยวกับการใช้ K-means ทำ clustering และการใช้ PCA สำหรับทำ dimensionality reduction (การลดมิติของ ข้อมูล)

มี learning algorithm อื่นๆ อะไรบ้าง?

Unsupervised learning algorithm ส่วนมาก มีเป้าหมายหนึ่งข้อ หรือมากกว่าหนึ่งข้อ ดังนี้

- 1. Clustering เพื่อ discretizing (นำเสนอหรือแทนข้อมูลด้วยค่า/ปริมาณที่ไม่ต่อเนื่อง / discrete) หรือ ตรวจจับ anomaly (anomaly detection)
- 2. Probability density estimation เพื่อตรวจจับ positive (positive detection), ตรวจจับ anomaly, สังเคราะห์ข้อมูลใหม่ที่มีการกระจายตัวคล้ายกับ ชุดข้อมูล training set
- 3. Latent space discovery เพื่อทำ dimensionality reduction, ตรวจจับ positive, สังเคราะห์ข้อมูลใหม่ที่มีการกระจายตัวคล้ายกับชุดข้อมูล training set

Clustering

เราได้เห็นไปแล้วว่า K-means ทำ clustering กับข้อมูล อย่างไร

การทำ clustering ในลักษณะนี้ บางครั้ง เรียกว่า 'vector quantization' -> เป้าหมายของมัน คือ การ coding (เข้ารหัส/แปลง) inputs เป็นสมาชิกของ discrete set (เซ็ตที่มีค่าไม่ต่อเนื่อง) โดยอ้างอิงจาก <mark>spatial locality (ความใกล้เชิงพื้นที่/ตำแหน่ง)</mark>

clustering algorithm อีกประเภทหนึ่ง คือ วิธี pairwise clustering ที่ใช้ similarity distance เพื่อจัดกลุ่ม inputs มี 2 ประเภท คือ

- Hierarchical clustering เป็นแบบ top-down
- Agglomerative clustering เป็นแบบ bottom-up

Density Estimation : การประมาณค่าความหนาแน่น

ตัวประมาณค่าความหนาแน่น (Density estimators) สามารถใช้ทำ<mark>การตรวจจับ / detection</mark> (input ใดๆที่มี probability density มากกว่าค่าบางค่า จะถูก แยกประเภทเป็น positive)

Density estimators สามารถใช้ทำ anomaly detection (input ใดๆที่มี probability density ต่ำกว่าค่าบางค่า จะถูกแยกประเภทเป็น anomalous = ผิด ปกติ หรือต่างจากเกณฑ์ปกติ)

Latent Space Discovery : การค้นพบปริภูมิแอบแฝง

วิธี Latent space เชื่อมโยง (map) input space ไปยัง representation ที่มีมิติต่ำกว่า (lower-dimensional), เรียกว่า latent / semantic representation

Principle component analysis (PCA) สร้างแบบจำลอง (model) ของ latent space เป็นการกระจายตัวแบบปกติ (Gaussian distribution) ใน <mark>linear subspace</mark> ที่มีมิติเป็น k ของ space ดั้งเดิม ซึ่งข้อมูล input มี variance สูงสุด

Locally-linear embedding (LLE) และวิธี dimensionality reduction ที่ไม่เป็นเชิงเส้น (non-linear) อื่นๆ สร้างแบบจำลองของข้อมูลเป็น เหมือนกับที่สร้าง จาก non-linear submanifold ของ input space

Latent Dirichlet allocation (LDA) เป็น topic model ในสาขา NLP ที่ imposes a prior on การกระจายตัวของข้อมูล (data distribution) ใน latent space

Latent Space Discovery : การค้นพบปริภูมิแอบแฝง

- วิธี Latent space เชื่อมโยง (map) input space ไปยัง <mark>representation</mark> ที่มีมิติต่ำกว่า (lower-dimensional), เรียกว่า latent / semantic representation
- Generative adversarial networks (GANs) represent การเชื่อมโยง (mapping) จาก latent space ไปยัง data space ด้วย neural network ซึ่ง ส่วนมากเป็น deconvolutional neural network
- Generative model นี้ถูก train (ฝึก) <mark>alongside discriminative adversary</mark>

Generative adversarial networks (conceptual)

สรุป

Unsupervised learning เป็น area ที่ <mark>rich</mark> อย่างมาก และเป็นหัวข้อที่สามารถสอนแยกเป็นคอร์สอีกคอร์สได้ !

References

- 1. Andrew Ng, Machine Learning, Coursera.
- 2. Teeradaj Racharak, Al Practical Development Bootcamp.
- 3. What is Machine Learning?, https://www.digitalskill.org/contents/5