Теория на Множествата

Мария Гроздева

18.02.2022г.

Задача 1 (ZFC):

Да се докаже, че едно множество A е крайно точно тогава, когато всяко непразно подмножество на $\mathcal{P}(A)$ има максимален относно \subseteq елемент.

Решение:

```
\implies) Нека Fin(A), B \subseteq \mathcal{P}(A), B \neq \emptyset.
```

 $C \rightleftharpoons \{n \mid (\exists x \in B)(|x| = n)\}.$ $C \neq \emptyset$ (защото $B \neq \emptyset$), $C \subseteq \omega$.

 $n \in C \Rightarrow n \leq |A|$ (всяко подмножество на A има най-много |A| елемента).

Твърдя, че C има най-голям елемент.

Наистина, нека D е множеството от всички горни граници на C, т.е.

 $D \rightleftharpoons \{k \mid (\forall n \in C)(n \le k)\}.$

 $D \neq \emptyset$ (защото $|A| \in D$), $D \subseteq \omega$.

Нека k_0 е най-малкият елемент на D.

Нека $k_0=0$. Тогава $C=\{0\}$. Значи, $B=\emptyset$. Но, по условие, $B\neq\emptyset$.

Следователно $k_0 \neq 0$.

 k_0 е естествено число, т.е. $\neg Limit(k_0)$. Тогава, $k_0 = S(k_0')$ за някое k_0' . $k_0' < k_0$, k_0 е най-малкият елемент на мн-вото D. Следователно $k_0' \notin D$. Тогава $\exists n_0 \in C$, такова че $k_0' < n_0$. Нека n_0 е свидетел за това съществуване, т.е. $n_0 \in C$, $k_0' < n_0$.

Забелязваме, че $S(k_0')=n_0,\ k_0=S(k_0')=n_0,\ k_0=n_0.$ $n_0\in C.$ Тогава съществува $b\in B, |b|=n_0.$ Нека b е свидетел.

Твърдя, че b е максимален относно \subseteq елемент за B.

Наистина, нека $x \in B, |x| = m$.

Нека $b \subseteq x$. Тогава $|b| = n_0 \le m = |x|, n_0 \le m$.

Но n_0 е най-големият елемент на множеството $C, |x| = m \in C,$ следователно $n_0 = m, \ b = x, b$ е максимален елемент за B.

Нека $b \subseteq x, b \neq x$. Тогава |b| < |x|. Но $|b| \in C, |x| \in C, |b| = n_0$ - максимален елемент. Следователно $|x| \le |b|$ Противоречие.

Следователно, b е максимален относно \subseteq елемент за B.

←) Ще докажа контрапозицията на твърдението:

Ако едно множество A не е крайно, то съществува непразно подмножество на $\mathcal{P}(A)$, което няма максимален елемент относно \subseteq ,

$$\neg Fin(A) \Rightarrow \neg \forall B(B \neq \emptyset \& B \subseteq \mathcal{P}(A) \Rightarrow (\exists b \in B)(\forall x \in B)(b \subseteq x \Rightarrow x = b))$$

Нека $\neg Fin(A)$.

Нека $B = \{x \mid x \in \mathcal{P}(A) \& Fin(x)\}, B \neq \emptyset, B \subseteq \mathcal{P}(A).$

Твърдя, че B няма максимален елемент относно \subseteq .

Наистина, нека $b \in B$. Тогава Fin(b), |b| = n.

 $\neg Fin(A \setminus b)$ (защото $\neg Fin(A)$), в частност $A \setminus b \neq \emptyset$.

Нека $u \in A \setminus b$. Тогава $b \cup \{u\} \subseteq A, \ b \cup \{u\} \in B$.

 $|b \cup \{u\}| = S(n) > n = |b|, \ b \subseteq b \cup \{u\}.$

Така, $(\forall b \in B)(\exists b' \in B)(b \subseteq b' \& b \neq b')$.

Следователно, B няма максимален елемент относно \subseteq . \sqcap

Задача 2:

Нека $f:\mathcal{P}(B)\to\mathcal{P}(B)$ е монотонна функция и I е нейната най-малка неподвижна точка. Докажете, че:

- ако $I\subseteq A\subseteq B$ и $f_A:\mathcal{P}(A)\to\mathcal{P}(A)$ е дефинирана с $f_A(X)=A\cap f(X)$ за всяко $X\subseteq A$, то I е най-малката неподвижна точка и на f_A ;
- ако $B \subseteq C$ и $f^C : \mathcal{P}(C) \to \mathcal{P}(C)$ е дефинирана с $f^C(X) = f(X \cap B)$ за всяко $X \subseteq C$, то I е най-малката неподвижна точка и на f^C .

Решение:

• Твърдя, че I е неподвижна точка на f_A . Наистина

Твърдя, че I е най-малката неподвижна точка на f_A .

Наистина, да допуснем, че J е най-малката неподвижна точка на f_A , т.е. $J\subseteq I\subseteq A\subseteq B,\, f_A(J)=J.$

J е неподвижна точка и за f.

Наистина, от монотонността на f и $J\subseteq I$, получаваме $f(J)\subseteq f(I)=I\subseteq A$. Тогава $J=f_A(J)=A\cap f(J)=f(J)$.

Но I е най-малката неподвижна точка на f. Така $I\subseteq J$.

Следователно J = I и I е най-малката неподвижна точка на f_A .

• Твърдя, че I е неподвижна точка на f^C . Наистина,

$$f^C(I) = f(I \cap B) = f(I) = I.$$

```
Твърдя, че I е най-малката неподвижна точка на f^C. Наистина, да допуснем, че J е най-малката неподвижна точка на f^C, т.е. J\subseteq I\subseteq B\subseteq C,\ f^C(J)=J. J е неподвижна точка и за f. Наистина, J=f^C(J)=f(J\cap B)=f(J). Но I е най-малката неподвижна точка на f. Така I\subseteq J. Следователно J=I и I е най-малката неподвижна точка на f^C. \square
```

Задача 3 (ZF):

Нека x е множество. Тогава x е ординал точно тогава, когато всяко транзитивно собствено подмножество на x е елемент на x.

```
Решение:
\implies) Heka ord(x).
Твърдим, че ако y \subseteq x и trans(y), то y \in x.
Нека u = x \setminus y. u \neq \emptyset, защото ако u = \emptyset, то y = x.
\in WO(x) и значи \exists z(z \in u \& z \cap u = \emptyset), тоест z е най-малкият елемент
относно \in на множеството u.
Твърдя, че y=z.
Наистина, нека t \in y, произволен елемент. Ще покажа, че t \in z.
t \in y, значи t \in x^*, защото y \subsetneq x.
z \in u, \ u \subseteq x, значи z \in x^{**}.
От *,** и това, че \in WO(x), точно едно от t \in z, z \in t, t = z е в сила.
Твърдя, че е в сила t \in z.
Наистина, да допуснем, че z \in t.
t \in y, \ trans(y), значи t \subseteq y. Тогава z \in y. Но z \in u, \ u = x \setminus y и значи z \in y
и z \notin y. Невъзможно!
Да допуснем, че t=z.
Отново, t=z,\ z\in u,\ u=x\setminus y и t\notin y. Противоречие.
Следователно, t \in z.
Следователно y \subseteq z.
Нека t \in \mathbb{Z}, произволен елемент. Ще покажа, че t \in \mathbb{Z}.
От избора на z следва, че t \notin u. Освен това, t \in z, z \in x, откъдето по тран-
зитивността на x следва, че t \in x. Получаваме, че t \in x \setminus u = y.
Следователно z \subseteq y.
Следователно y=z.
y=z,\ z\in u,\ u\subseteq x. Тогава y\in x.
```

 \iff) Нека x е множество. Твърдим, че $\forall u((u \subsetneq x \& trans(u) \Rightarrow u \in x) \Rightarrow ord(x)).$

1 случай: Ако $x = \emptyset$, то твърдението е тривиално изпълнено.

2 случай: Нека $x \neq \emptyset$.

Нека $\forall u(u \subsetneq x \& trans(u) \Rightarrow u \in x)$ и да допуснем, че $\neg ord(x)$. Ще докажа, че всеки ординал е собствено подмножество на x,

$$\forall \alpha (\alpha \subseteq x).$$

Нека $\varphi(\alpha, x) \leftrightharpoons \alpha \subsetneq x$.

Чрез трансфинитна индукция ще докажа, че $\forall \alpha \varphi(\alpha, x)$:

- $\varphi(0,x)$, $\emptyset \subsetneq x \ (x \neq \emptyset)$.
- Ще докажа, че $\forall \alpha(\varphi(\alpha, x) \Rightarrow \varphi(S(\alpha), x))$. Нека α - произволен ординал и нека $\varphi(\alpha, x)$. $\alpha \subsetneq x, \ ord(\alpha) \Rightarrow trans(\alpha)$. Тогава $\alpha \in x$. $\alpha \subsetneq x, \ \alpha \in x$. Следователно $\alpha \cup \{\alpha\} = S(\alpha) \subsetneq x$.
- Ще докажа, че $\forall \alpha(Limit(\alpha) \& (\forall \beta < \alpha)\varphi(\beta, x) \Rightarrow \varphi(\alpha, x))$. Нека $Limit(\alpha)$ и нека $(\forall \beta < \alpha)(\varphi(\beta, x))$, т.е. $(\forall \beta < \alpha)(\beta \subsetneq x)$. Но $\alpha = \cup \{\beta \mid \beta < \alpha\}$. Следователно $\alpha \subseteq x$. Но $ord(\alpha)$, $\neg ord(x)$. Значи $\alpha \subsetneq x$, т.е. $\varphi(\alpha, x)$.

Доказахме, че $\forall \alpha (\alpha \subseteq x)$.

Ho $trans(\alpha)$. Следователно $\forall \alpha (\alpha \subseteq x \& trans(\alpha))^*$.

Но от * получаваме, че $\forall \alpha (\alpha \in x)$. Тоест, получихме множество на всички ординали. Абсурд! Противоречието се получи, защото допуснахме, че $\neg ord(x)$. Следователно ord(x).

П

Задача 4 (ZF):

Нека $\varphi(x)$ е теоретико-множествено свойство. Ще казваме, че φ е транзитивно върху ординалите, ако е в сила, че:

$$(\forall \alpha)(\forall \beta)[\alpha \in \beta \& \varphi(\beta) \Rightarrow \varphi(\alpha)].$$

Докажете, че ако φ е транзитивно върху ординалите, то:

- (i) за всеки ординал α , за който $\neg \varphi(\alpha)$, е в сила, че $(\forall \beta)[\varphi(\beta) \Rightarrow \beta < \alpha];$
- (ii) ако не съществува множество A, такова че $(\forall \alpha)[\alpha \in A \iff \varphi(\alpha)]$, то $\forall \alpha(\varphi(\alpha)).$

Решение:

(*i*) Нека α е ординал и нека $\neg \varphi(\alpha)$.

Нека β е произволен ординал и нека $\varphi(\beta)$.

Твърдя, че $\beta < \alpha$.

Знаем, че $(\forall \alpha)(\forall \beta)[\alpha \in \beta \& \varphi(\beta) \Rightarrow \varphi(\alpha)]$. Но $\neg \varphi(\alpha)$.

Значи, $\neg(\alpha \in \beta \& \varphi(\beta)), \ \alpha \notin \beta \lor \neg \varphi(\beta).$ Но $\varphi(\beta).$ Тогава $\alpha \notin \beta \stackrel{\mathrm{def}}{\longleftrightarrow} \alpha \not< \beta.$

Но α и β - ординали. Тогава е в сила точно едно от трите:

 $\alpha<\beta,\ \beta<\alpha,\ \alpha=\beta.$ Но $\alpha\not<\beta.$ Значи или $\beta<\alpha,$ или $\alpha=\beta.$ Твърдя, че $\beta<\alpha.$

Наистина, да допуснем, че $\alpha = \beta$. Но $\varphi(\beta)$, значи $\varphi(\alpha)$. Но $\neg \varphi(\alpha)$.

Невъзможно!

Следователно, $\beta < \alpha$.

(ii) Ще докажа контрапозицията на твърдението, т.е.

Ако $\exists \alpha (\neg \varphi(\alpha))$, то съществува множество A, такова че $(\forall \alpha)[\alpha \in A \iff \varphi(\alpha)]$.

Нека е изпълнено $\exists \alpha (\neg \varphi(\alpha))$ и нека β е най-малкият ординал, за който $\neg \varphi(\beta)$, т.е. $\forall \gamma (\gamma < \beta \Rightarrow \varphi(\gamma))$ *.

Твърдя, че β е такова множество, че $(\forall \alpha)[\alpha \in \beta \iff \varphi(\alpha)]$.

Наистина, нека първо $\gamma \in \beta$ е произволен ординал. Тогава $\gamma < \beta$ и от * следва, че $\varphi(\gamma)$.

Нека сега γ е произволен ординал, за който $\varphi(\gamma)$. Твърдя, че $\gamma \in \beta$.

Наистина, да допуснем, че $\gamma = \beta$. Но $\neg \varphi(\beta)$, значи $\neg \varphi(\gamma)$. Противоречие.

Да допуснем, че $\beta < \gamma$. Тогава $\beta \in \gamma$ & $\varphi(\gamma)$. Но φ е транзитивно, следователно $\varphi(\beta)$. Противоречие.

Следователно $\gamma < \beta$, т.е. $\gamma \in \beta$.

Тогава $(\forall \alpha)[\alpha \in \beta \iff \varphi(\alpha)]$, с което съществуването на търсеното множество е доказано.

Задача 5 (ZF):

Нека A е безкрайно множество, т.е. $\forall n(\overline{\overline{A}} \neq \overline{\overline{n}})$. Да се докаже, че ако съществува добра наредба \leq_1 в A, то съществува добра наредба \leq_2 в A, за която добре наредените множества $\langle A, \leq_1 \rangle$ и $\langle A, \leq_2 \rangle$ не са изоморфни.

Решение:

Доказани теореми и твърдения, които ще използвам в доказателството:

• Нека $\langle W, \leq \rangle$ е д.н.м. Тогава съществуват единствен ординал α и единствен изоморфизъм $f: W \to \alpha$ между д.н.м. $\langle W, \leq \rangle$ и $\langle \alpha, \in \rangle$. *

- $\forall \alpha (\omega \leq \alpha \Rightarrow \overline{\overline{\alpha}} = \overline{\overline{S(\alpha)}}). **$
- ullet Нека W_1 и W_2 са д.н.м. Тогава е в сила точно едно от трите: ***
 - $-W_1$ е изоморфно на W_2 ,
 - $-\ W_1$ е изоморфно на собствен начален сегмент на $W_2,$
 - $-\ W_2$ е изоморфно на собствен начален сегмент на $W_1.$

Нека $\langle A, \leq_1 \rangle$ е д.н.м.

Нека α е единственият ординал и $f:A\to \alpha$ - единственият изоморфизъм, за които $\langle A,\leq_1\rangle\cong\langle\alpha,\in\rangle$. (*)

 $\overline{\overline{\alpha}}=\overline{S(\alpha)}$ (**). Следователно, $\exists g(g:\alpha\rightarrowtail S(\alpha))$. Нека g е свидетел, т.е $g:\alpha\rightarrowtail S(\alpha)$.

Твърдя, че $\langle \alpha, \in \rangle \not\cong \langle S(\alpha), \in \rangle$.

 α е собствен начален сегмент на $S(\alpha)$, защото $\alpha \subsetneq S(\alpha)$) и α е затворено надолу относно \in .

Но тогава $\langle \alpha, \in \rangle \cong \langle \alpha, \in \rangle$ с единствен изоморфизъм идентитетът и значи $\langle \alpha, \in \rangle \not\cong \langle S(\alpha), \in \rangle$. (***)

Дефинираме \leq_2 по следния начин:

 $a \leq_2 b \iff g(f(a)) \in g(f(b)).$

Твърдя, че $\langle A,\leq_2 \rangle\cong \langle S(\alpha),\in
angle$, а от там $\langle A,\leq_2
angle$ е д.н.м.

Наистина, $f:A\rightarrowtail \alpha, g:\alpha\rightarrowtail S(\alpha)$, значи $f\circ g:A\rightarrowtail S(\alpha)$. Освен това $f\circ g$ запазва наредбата (от деф. на \leq_2).

Значи, $\langle A, \leq_2 \rangle \cong \langle S(\alpha), \in \rangle$ с единствен изоморфизъм $f \circ g$. Следователно $\langle A, \leq_2 \rangle$ е д.н.м.

Получихме, че:

 $\langle A, \leq_1 \rangle \cong \langle \alpha, \in \rangle,$ $\langle A, \leq_2 \rangle \cong \langle S(\alpha), \in \rangle,$ $\langle \alpha, \in \rangle \ncong \langle S(\alpha), \in \rangle.$

Тогава, $\langle A, \leq_1 \rangle$ и $\langle A, \leq_2 \rangle$ са д.н.м. и $\langle A, \leq_1 \rangle \not\cong \langle A, \leq_2 \rangle$.

Задача 6 (ZF):

Да се докаже, че в $\langle \mathcal{P}(\omega), \subseteq \rangle$ има вериги, които са равномощни с $\mathcal{P}(\omega)$.

Решение:

$$\overline{\overline{\mathcal{P}(\omega)}} = \overline{\overline{2^{\omega}}} = \overline{\overline{\mathbb{R}}}.$$

Следователно, свеждаме доказателството до намиране на верига в $\langle \mathcal{P}(\omega), \subseteq
angle$, която е равномощна с континуума $\mathbb R$.

 $\langle \mathbb{Q}, < \rangle$ е линейно наредено множество.

Разрез (англ. cut) на л.н.м. $\langle \mathbb{Q}, < \rangle$ е наредена двойка $\langle A, B \rangle$ от множества, такива че:

- A и B са непразни непресичащи се подмножества на $\mathbb{Q},$ такива че $A \cup B = \mathbb{Q}.$
- Ако $a \in A$ и $b \in B$, то a < b.

Разрез $\langle A,B\rangle$ е разрез на Дедекинд (англ. Dedekind cut), ако A няма найголям елемент.

Заб.: Ще идентифицираме разрез само с първия му елемент A, тъй като $B=\mathbb{Q}\setminus A$.

Ще използвам конструкцията на Дедекинд за представане на реалните числа (англ. Dedekind cut construction of reals). Тя ни "казва", че всеки разрез на Дедекинд представлява единствено **реално число**.

Нека r_1 и r_2 са реални числа. Тогава дефинираме следната линейна наредба върху реалните числа:

$$r_1 \le r_2 \stackrel{\text{def}}{\longleftrightarrow} r_1 \subseteq r_2.$$

Получихме, че $f: \mathbb{R} \rightarrowtail \mathcal{P}(\mathbb{Q}), \ r \in \mathbb{R}, f(r) = \{x \in \mathbb{Q} \mid x < r\} \subsetneq \mathbb{Q}$ и f запазва наредбата.

Но $\exists h(h:\mathbb{Q} \rightarrowtail \omega)$, откъдето следва, че $\langle \mathcal{P}(\mathbb{Q}), \subseteq \rangle \cong \langle \mathcal{P}(\omega), \subseteq \rangle$. Нека t е изоморфизмът между тях.

Получаваме, че $f \circ t : \mathbb{R} \to \mathcal{P}(\omega)$ и $f \circ t$ запазва наредбата.

Нека $g:\mathbb{R}\to f\circ t[\mathbb{R}],\ r\in\mathbb{R}, g(r)=f(r)$. Твърдя, че $g:\mathbb{R}
ightharpoonup f\circ t[\mathbb{R}].$

Наистина, нека $g(r_1) = g(r_2)$ за някои $r_1 \in \mathbb{R}, r_2 \in \mathbb{R}$.

 $g(r_1) \in f \circ t[\mathbb{R}], g(r_2) \in f \circ t[\mathbb{R}]$. Но $f \circ t$ е инекция, следователно $r_1 = r_2$. Значи $g: \mathbb{R} \rightarrowtail f \circ t[\mathbb{R}]$.

Нека $a\in Range(g)$. Тогава $a\in f\circ t[\mathbb{R}]$. Значи има $r\in \mathbb{R}$, такова че $f\circ t(r)=a$. Значи $g:\mathbb{R} \twoheadrightarrow f\circ t[\mathbb{R}]$.

Следователно, $g: \mathbb{R} \rightarrowtail f \circ t[\mathbb{R}]$.

Но също така, g запазва наредбата (от дефиницията $\ddot{\mathbf{n}}$).

Тогава, $\langle \mathbb{R}, < \rangle \cong \langle f \circ t[\mathbb{R}], \subseteq \rangle$ с единствен изоморфизъм g.

Но тогава $f \circ t[\mathbb{R}]$ е линейно наредено и $f \circ t[\mathbb{R}] \subsetneq \mathcal{P}(\omega)$

С това доказахме, че $f \circ t[\mathbb{R}]$ е верига в $\langle \mathcal{P}(\omega), \subseteq \rangle$.

$$g: \mathbb{R} \rightarrowtail f \circ t[\mathbb{R}].$$
 Следователно, $\overline{\overline{\mathcal{P}(\omega)}} = \overline{\overline{\mathbb{R}}} = \overline{f \circ t[\mathbb{R}]}.$

Задача 7 (ZF):

Да се докаже, че за произволно множество A са в сила следните:

1.
$$\overline{\overline{A}} = \overline{\overline{A \cup \{A\}}} \Rightarrow \overline{\overline{\mathcal{P}(A)}} = \overline{\overline{\mathcal{P}(A) \cup \{\mathcal{P}(A)\}}};$$

2.
$$\overline{\overline{A}} = \overline{\overline{A \cup \{A\}}} \Rightarrow \overline{\overline{\mathcal{P}(\mathcal{P}(A))}} = \overline{\overline{\mathcal{P}(\mathcal{P}(A)) \times \mathcal{P}(\mathcal{P}(A))}}$$
.

Решение:

Ако $A = \emptyset$ или Fin(A), то предпоставките на импликациите са лъжа, следователно твърденията са тривиално верни. Нека $A \neq \emptyset$ и $\neg Fin(A)$.

1. Нека $f: A \rightarrowtail A \cup \{A\}$.

 $f:A\rightarrowtail A\cup\{A\}$ и $A\in Range(f)$. Тогава $\exists!a_0\in Dom(f)=A$, т.че $f(a_0)=A$. Нека a_0 е свидетел, т.е. $a_0\in A, f(a_0)=A$.

Нека $C = \{\{c\} \mid c \in A\}$. $C \subseteq \mathcal{P}(A)$, защото $(\forall a \in A)(\{a\} \subseteq A)$, т.е. $(\forall a \in A)(\{a\} \in \mathcal{P}(A))$.

Нека $id_{\mathcal{P}(A)\setminus C}$ е идентитетът на множеството $\mathcal{P}(A)\setminus C$.

Дефинираме функцията g по следния начин:

$$g(\{x\}) = \begin{cases} \mathcal{P}(A), & x = a_0, \\ \{f(x)\}, & x \neq a_0 \& x \in A. \end{cases}$$

 $g: C \to C \cup \{\mathcal{P}(A)\}.$

Наистина, $\{x\} \in Dom(g) \Longleftrightarrow x \in A$. Но от дефиницията на C следва, че $\{x\} \in C$.

Тогава Dom(g) = C.

Ako $x = a_0$, to $g(\{x\}) = \mathcal{P}(A) \in C \cup \{\mathcal{P}(A)\}.$

Ако $x \neq a_0$ и $x \in A$, то $g(\{x\}) = \{f(x)\}$. Но $f(x) \in A$, следователно $\{f(x)\} \in C \subseteq C \cup \{\mathcal{P}(A)\}$.

Тогава $Range(g) = C \cup \{\mathcal{P}(A)\}.$

Твърдя, че $g:C\rightarrowtail C\cup \{\mathcal{P}(A)\}$. Наистина, нека $g(\{x\}),g(\{y\})\in Range(g)$ и нека $g(\{x\})=g(\{y\})$.

- Ако $g(\{x\}) = g(\{y\}) = \mathcal{P}(A)$, то $x = y = a_0$. Но a_0 беше единствено. Следователно x = y.
- Ако $\{f(x)\}=g(\{x\})=g(\{y\})=\{f(y)\}$, то $\{f(x)\}=\{f(y)\}$ за $x,y\in A$. Но $\{f(x)\}=\{f(y)\}\iff f(x)=f(y)$. Но f е инекция, следователно x=y.

Следователно, $g: C \rightarrow C \cup \{\mathcal{P}(A)\}.$

Нека $y \in Range(g)$. Тогава:

• $y = \mathcal{P}(A)$. Тогава $g(\{a_0\}) = y = \mathcal{P}(A)$.

• $y = \{f(x)\}$. Dom(f) = A. Значи $x \in A, x \neq a_0$, защото ако допуснем, че $x = a_0$, то $y = \{f(a_0)\} = \{A\}$. Но $y \in Range(g) \Rightarrow \{A\} \in Range(g)$. Тогава $\{A\} \in C$ и от дефиницията на $C, A \in A$. Противоречие.

Тогава $x \in A, x \neq a_0$ и значи $g(\lbrace x \rbrace) = y$.

Следователно, $g:C \twoheadrightarrow C \cup \{\mathcal{P}(A)\}$ и значи $g:C \rightarrowtail C \cup \{\mathcal{P}(A)\}$.

Дефинираме функцията h по следния начин: $h = g \cup id_{\mathcal{P}(A) \setminus C}$.

Очевидно функциите g и $id_{\mathcal{P}(A)\backslash C}$ са съвместими, тъй като

 $Dom(g) = C, \ Dom(id_{\mathcal{P}(A)\setminus C}) = \mathcal{P}(A)\setminus C.$

Tогава Func(h),

 $Dom(h) = Dom(g) \cup Dom(id_{\mathcal{P}(A) \setminus C}) = C \cup \mathcal{P}(A) \setminus C = \mathcal{P}(A),$

 $Range(h) = Range(g) \cup Range(id_{\mathcal{P}(A) \setminus C}) = C \cup \{\mathcal{P}(A)\} \cup \mathcal{P}(A) \setminus C = \mathcal{P}(A) \cup \{\mathcal{P}(A)\}.$

Следователно, $h: \mathcal{P}(A) \to \mathcal{P}(A) \cup \{\mathcal{P}(A)\}.$

Твърдя, че $h: \mathcal{P}(A) \rightarrowtail \mathcal{P}(A) \cup \{\mathcal{P}(A)\}.$

 $h = g \cup id_{\mathcal{P}(A) \setminus C},$

 $Dom(g) \cap Dom(id_{\mathcal{P}(A)\setminus C}) = \emptyset,$

 $Range(g) \cap Range(id_{\mathcal{P}(A)\setminus C}) = \emptyset.$

Но обединение на биективни функции, чиито дефиниционни области и области от стойности са непресичащи се, е биективна функция.

Тогава
$$h: \mathcal{P}(A) \rightarrowtail \mathcal{P}(A) \cup \{\mathcal{P}(A)\}$$
, откъдето $\overline{\overline{\mathcal{P}(A)}} = \overline{\overline{\mathcal{P}(A)} \cup \{\mathcal{P}(A)\}}$.

- 2. Ще разгледам поотделно двете страни:
 - $\overline{\frac{\overline{\mathcal{P}(\mathcal{P}(A))}}{\overline{\mathcal{P}(A)2}}} = \overline{\frac{\overline{\mathcal{P}(A)2}}{\overline{\mathcal{P}(A)2}}}$, защото $\overline{\overline{\mathcal{P}(X)}} = \overline{\overline{X2}}$, $\overline{\frac{\overline{\mathcal{P}(A)2}}{\overline{\mathcal{P}(A)2}}} = \overline{\frac{\overline{\mathcal{P}(A)2} \times \{\mathcal{P}(A)\}2}{\overline{\mathcal{P}(A)2} \times \{\mathcal{P}(A)\}2}}$, защото ако $B \cap C = \emptyset$, то $\overline{\frac{\overline{B \cup C2}}{\overline{B2} \times C2}} = \overline{\frac{\overline{B2} \times \overline{C2}}{\overline{C2}}}$.
 - $\overline{\mathcal{P}(\mathcal{P}(A)) \times \mathcal{P}(\mathcal{P}(A))} = \overline{\mathcal{P}(A)2 \times \mathcal{P}(A)2}$, защото $\overline{\mathcal{P}(X)} = \overline{X2}$.

Трябва да покажем, че $\overline{\overline{\mathcal{P}(A)2} \times \{\mathcal{P}(A)\}} = \overline{\overline{\mathcal{P}(A)2} \times \mathcal{P}(A)} = \overline{\mathcal{P}(A)2 \times \mathcal{P}(A)2} = \overline{\mathcal$

Задача 8 (ZFC):

Нека $X \subseteq \mathbb{R}$ е добре наредено от обичайната наредба в \mathbb{R} . Докажете, че X е или крайно, или изброимо.

Решение:

Твърдим, че ако X е безкрайно, то X е изброимо. Нека $\neg Fin(X)$.

Нека $\langle \mathbb{Q}_k \mid k \in \omega \rangle$ е индексиране на рационалните числа.

Нека x е произволен елемент на множеството X.

Нека S(x) е най-малкият елемент на множеството $C = \{y \mid x < y\}$. Такъв елемент със сигурност съществува, тъй като $WO(X), \ C \subseteq X$, следователно C има най-малък елемент.

Ако X има най-голям елемент, нека го означим със z и нека S(z)=z+1.

 $x \neq S(x)$. Рационалните числа са гъсти в множеството на реалните. Следователно $\exists q_x (x < q_x < S(x))$. Нека q_x е първото рационално число от зададената индексация на $\mathbb Q$, такова че $x < q_x < S(x)$.

Нека $f: X \to \mathbb{Q}$, $f(x) = q_x$ е функцията, която на всеки елемент от множеството X ни съпостява рационално число по описания по- горе начин. Твърдя, че $f: X \rightarrowtail \mathbb{Q}$.

Наистина, нека за някои $x, y \in X, x \le y$,

 $f(x) = q_x \in \mathbb{Q}, f(y) = q_y \in \mathbb{Q}$ и $q_x = q_y$.

От избора на q_x имаме, че $x < q_x = q_y < S(x)$.

От избора на q_y имаме, че $x \le y < q_x = q_y < S(x)$.

Но S(x) е най-малкият елемент на множеството X, такъв че x < S(x). Следователно $y \le x$. Тогава x = y.

Доказахме, че $f:X\rightarrowtail\mathbb{Q},$ а от това следва, че множеството X е изброимо.

Задача 9:

Нека $\Lambda \neq \emptyset$ и $\{A_{\lambda}\}_{{\lambda} \in \Lambda}$ е Λ -индексирана фамилия от множества.

Нека f е биекция на Λ върху Λ и Λ -индексираната фамилия от множества $\{B_{\lambda}\}_{\lambda\in\Lambda}$ е дефинирана така: $B_{\lambda}=A_{f(\lambda)}$ за всяко $\lambda\in\Lambda$. Да се докаже, че:

$$\bigcup_{\lambda \in \Lambda} A_{\lambda} = \bigcup_{\lambda \in \Lambda} B_{\lambda} \text{ if } \bigcap_{\lambda \in \Lambda} A_{\lambda} = \bigcap_{\lambda \in \Lambda} B_{\lambda}$$

(Комутативен закон за безкрайните обединения и безкрайните сечения)

Решение:

$$\begin{array}{l} x \in \bigcup\limits_{\lambda \in \Lambda} A_{\lambda} \Longleftrightarrow \\ x \in \bigcup\limits_{} Range(A) \Longleftrightarrow \end{array}$$

```
 \exists \lambda(\lambda \in \Lambda \& x \in A(\lambda)) \Longleftrightarrow 
 \exists \lambda(\lambda \in \Lambda \& \exists \lambda_1(\lambda_1 \in \Lambda \& \lambda = f(\lambda_1) \& x \in A(\lambda))) \Longleftrightarrow 
 \exists \lambda \exists \lambda_1(\lambda \in \Lambda \& \lambda_1 \in \Lambda \& \lambda = f(\lambda_1) \& x \in A(\lambda)) \Longleftrightarrow 
 \exists \lambda_1(\exists \lambda(\lambda \in \Lambda \& \lambda = f(\lambda_1)) \& \lambda_1 \in \Lambda \& x \in A(f(\lambda_1))) \Longleftrightarrow 
 \exists \lambda_1(\lambda_1 \in \Lambda \& x \in A(f(\lambda_1))) \Longleftrightarrow 
 \exists \lambda_1(\lambda_1 \in \Lambda \& x \in B(\lambda_1)) \Longleftrightarrow 
 \exists \lambda_1(\lambda_1 \in \Lambda \& x \in B(\lambda_1)) \Longleftrightarrow 
 x \in \bigcup_{\lambda_1 \in \Lambda} B_{\lambda_1} \Longleftrightarrow 
 x \in \bigcup_{\lambda_1 \in \Lambda} B_{\lambda_1} \Longrightarrow 
 x \in \bigcup_{\lambda_1 \in \Lambda} B_{\lambda_1} \Longrightarrow 
 x \in \bigcup_{\lambda_1 \in \Lambda} B_{\lambda_1} \Longrightarrow
```

Задача 10 (ZFC):

Нека $\langle A, \leq_A \rangle$ е добре наредено множество. В множеството ${}^A\alpha$ на всички функции от A към α дефинираме бинарната релация \prec така:

$$f \prec g \iff (\exists a \in A)((\forall b \in A)(b <_A a \Rightarrow f(b) = g(b)) \& f(a) < g(a)).$$

Проверете дали $\langle {}^{A}\alpha, \preceq \rangle$ е добре наредено множество.

Решение:

Множеството $\langle {}^A\!\alpha, \preceq \rangle$ НЕ е добре наредено. Ще покажа, че съществува $\varnothing \neq B \subseteq {}^A \alpha$, което няма минимален елемент относно релацията \prec .

Нека $A = \alpha = \omega$.

Дефинираме функцията $f_n:\omega \to \{0,1\}$ по следния начин:

$$f_n(k) = \begin{cases} 0 & k < n \\ 1 & k \ge n \end{cases}$$

$$f_1 = \{ \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 1 \rangle, ..., \langle m, 1 \rangle, ... \}$$

$$f_2 = \{ \langle 1, 0 \rangle, \langle 2, 1 \rangle, \langle 3, 1 \rangle, ..., \langle m, 1 \rangle, ... \}$$

$$f_3 = \{ \langle 1, 0 \rangle, \langle 2, 0 \rangle, \langle 3, 1 \rangle, ..., \langle m, 1 \rangle, ... \}$$
...
$$f_m = \{ \langle 1, 0 \rangle, \langle 2, 0 \rangle, \langle 3, 0 \rangle, ..., \langle m - 1, 0 \rangle, \langle m, 1 \rangle, ... \}$$

Множеството $B=\{f_n\mid n<\omega\}$ е непразно подмножество на ${}^\omega\omega$, тъй като за произволно $f_k\in B,\ Dom(f_k)=\omega\subseteq\omega,\ Range(f_k)=\{0,1\}\subseteq\omega,$ следователно $f_k\in{}^\omega\omega.$

Твърдя, че множеството B няма минимален елемент.

Да разгледаме функциите $f_1 \in B$ и $f_2 \in B$.

$$f_2 \prec f_1 \stackrel{\text{def}}{\longleftrightarrow} (\exists a \in \omega)((\forall b \in \omega)(b < a \Rightarrow f_2(b) = f_1(b)) \& f_2(a) < f_1(a)).$$

Нека a=1

Тогава, наистина $((\forall b \in \omega)(b < 1 \Rightarrow f_2(b) = f_1(b)) \& f_2(1) < f_1(1)).$

Следователно $f_2 \prec f_1$.

Аналогично, за:

$$a=2, f_3 \prec f_2 \prec f_1,$$

. . .

$$a = k, \ f_{k+1} \prec f_k \prec f_{k-1} \prec \ldots \prec f_3 \prec f_2 \prec f_1.$$

Но ¬ $Fin(\omega)$. Следователно, редицата $f_1,f_2,f_3,..,f_k,..$, такава че $f_1\succ f_2\succ f_3\succ ...\succ f_k\succ ...$, е безкрайна.

Но в добре наредено множество не съществуват такива безкрайни редипи.

Следователно, $\langle {}^{A}\alpha, \preceq \rangle$ не е добре наредено.