KU LEUVEN

Joppe De Jonghe, Juha Carlon

Begeleiders: prof. Giovanni Samaey

Bert Mortier

Academiejaar: 2020-2021

Analyseren van de invloed van metaparameters op neurale netwerken

Verschillende waarden voor stap- en batch-grootte:

Netwerk fout

 STAP-GROOTTE

 0.05
 0.15
 0.25
 0.35

BATCH-GROOTTE1 10 100 500

Andere (meta)parameters constant houden

Analyseren van metaparameters: stap-grootte_en batch-grootte.

Invloed analyseren met:

- Eenvoudige netwerken
- Simpele vormen van data: cirkel, driehoek en ster

Performantie analyseren aan de hand van:

- Compact datarooster
- Percentage correcte classificaties

Sensitiviteit analyseren aan de hand van:

- Dataset D1
- Een datapunt van D1 perturberen
- Resulteert in dataset D2

→ Sensitiviteit draagt bij aan performantie analyse

Referenties

- Deep Learning: An Introduction for Applied Mathematicians (2020)
- Train faster generalize better: Stability of stochastic gradient descent (2015)
- Hands-on Bayesian Neural Networks a Tutorial for Deep Learning Users (2020)

Generalisatie performantie analyseren

Stap-grootte (enkel cirkel en ster):

Resultaten uit de grafieken roepen bepaalde bevindingen/vragen op:

Cirke

- Stap van 0.05 minder betrouwbaar voor het halen van een hoog percentage correcte classificaties.
 → Mogelijks geen convergentie.
- Lijkt op een dalende trend bij hogere stapgrootte.
 → Gevoeliger om over minimale waarde van de kostfunctie te springen bij hogere stapgrootte?

Ster:

 Groot percentage correcte classificaties voor iedere stapgrootte maar een stijgende trend.
 → Mogelijks geen convergentie. Grotere stapgrootte mogelijk?

Batch-grootte:

Analyse van batch-grootte is idem aan deze van stapgrootte:

- Uitvoeren van testen
- Bevindingen afleiden uit resultaten
- Inzicht verkrijgen over de invloed van deze metaparameter op het aantal correcte classificaties.

Generalisatie performantie:

Combinatie van percentage correcte classificaties en sensitiviteit van het resultaat.

Generalisatie sensitiviteit analyseren

Perturbatie van datapunt:

Niet alle perturbaties zijn even nuttig om generalisatie sensitiviteit te analyseren:

Regularisatie

- Enkel punten gaan perturberen op een manier die een invloed kan uitoefenen op de generalisatie performantie.
- Classificatie van datapunten in de buurt van de rand van de data vorm omkeren.
- Creëeren van één 'ruis' punt.

Doel:

- Diepere analyse van netwerk + parameter combinaties die een hoog percentage correcte classificaties hebben.
- Indien het resultaat zeer sensitief is ten opzichte van de data kan dit op een slechte generalisatie duiden.

Testen:

n willekeurige verschillende perturbaties uitvoeren \rightarrow steekproef:

• Gemiddelde absolute verschil berekenen tussen het percentage correcte classificaties met (= v_i) en zonder perturbatie (= u_i): $\sum_{i=1}^n |u_i - v_i|$

 $\bar{X} = \frac{\sum_{i=1}^{n} |u_i - v_i|}{n}$

• Gebruikmaken van t-test om te bepalen of er een significant verschil is van nul:

$$T = \frac{\bar{X} - \mu_0}{S/n} \text{ met } S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (|u_i - v_i| - \bar{X})^2}$$

Nulhypothese H_0 : $\mu_0 = 0$

Alternatieve hypothese H_1 : $\mu_0 > 0$

BAYESIAANS

Motivatie

In veel toepassingen moet een neuraal netwerk beslissingen nemen met een bepaalde zekerheid:

- Zelfrijdende auto's
- Autonome reactoren
- Robots
- \rightarrow Bayesiaanse algoritmes
- → Bevatten ook metaparameters
- → Analyse van de invloed van metaparameters op onzekerheid mogelijk

Geanalyseerd algoritme

Metropolis-Hastings:

Draw $\mathbf{x}_0 \sim Initial$ while n = 0 to N do

Draw $\mathbf{x}' \sim Q(\mathbf{x}|\mathbf{x}_n)$ $p = min\left(1, \frac{Q(\mathbf{x}'|\mathbf{x}_n)}{Q(\mathbf{x}_n|\mathbf{x}')} \frac{f(\mathbf{x}')}{f(\mathbf{x}_n)}\right)$ Draw $k \sim Bernoulli(p)$ if k then $\mathbf{x}_{n+1} = \mathbf{x}' : Met: O(\mathbf{x}'|\mathbf{x}_n) = 0$

n = n + 1end if
end while $p = min\left(1, \frac{f(x')}{f(x_n)}\right)$

Onzekerheid visualiseren

Trekken van n verschillende netwerken uit het resultaat van Metropolis-Hastings algoritme:

- Data door ieder netwerk sturen
- Twee mogelijkheden (A of B)

Voor ieder datapunt:

- → n₁ netwerken die punt als A classificeren
- \rightarrow n₂ netwerken die punt als B classificeren

$$rac{|n_1-n_2|}{n}pprox 0$$
 Zeer onzeker $rac{|n_1-n_2|}{n}pprox 1$ Zeer zeker

Visualisatie data cirkel:

