1. Find the limit $\lim_{x\to 4} \frac{x-4}{\sqrt{x}-2}$, making sure to state what limit theorems you are using.

Solution. We can factor the numerator as $x-4=(\sqrt{x}-2)(\sqrt{x}+2)$. So

$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2} = \lim_{x \to 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2} = \lim_{x \to 4} (\sqrt{x}+2).$$

By the sum and power rules for limits, $\lim_{x\to 4} (\sqrt{x} + 2) = \sqrt{\lim_{x\to 4} x} + 2 = 4$.

2. Does the limit $\lim_{x\to 0} \frac{x^2}{|x|}$ exist? Explain why or why not.

Solution. The limit does exist. Recall that |x|=x for $x\geq 0$ and |x|=-x for $x\leq 0$. So $\lim_{x\to 0^+}\frac{x^2}{|x|}=\lim_{x\to 0^+}x=0$ and $\lim_{x\to 0^-}\frac{x^2}{|x|}=\lim_{x\to 0^-}-x=0$. Since both one-sided limits exist and are equal, the limit exists and is 0.