				_			
$\tau_{1}^{\#2}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+2 k^2)^2 t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$ au_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

$f_{1^-}^{\#2} lpha$	0	0	0	$-\frac{2}{3}$ Ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	3 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	1 2 3	$-\frac{1}{3}$ \bar{l} k t_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} \ t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$+^{\alpha\beta}$	$-\alpha\beta$	$ \alpha \beta $	$\omega_{1}^{\#1} +^{\alpha}$	σ_	α _.	٦

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$	0	0	0
$f_{2+}^{#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1}$ † $^{\alpha\beta\chi}$	0	0	0
'			

Source constraints				
SO(3) irreps	#			
$\tau_{0+}^{#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1			
$\tau_1^{\#2\alpha} - i k \sigma_1^{\#1\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\sigma_{1}^{\#1}{}^{\alpha} + 2 \sigma_{1}^{\#2}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#1\alpha\beta} == 0$	3			
$\sigma_{1+}^{\#1}{}^{\alpha\beta} = \sigma_{1+}^{\#2}{}^{\alpha\beta}$	3			
$\sigma_2^{\#1}{}^{\alpha\beta\chi} == 0$	5			
$\tau_{2+}^{\#1\alpha\beta} == 0$	5			
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5			
Total #:	32			

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_{0}^{\sharp 1}$
$\omega_{0^+}^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}$ †	$\bar{i} \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0+}^{#2} \dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2r_2+t_2}$	
$\tau_{0}^{\#2}$	0	0	0	0	
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0	
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}\dagger$	

	$\sigma_{2}^{\#1}_{\alpha\beta}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\frac{^{\#1}}{2}$ † $^{\alpha\beta\chi}$	0	0	0

	Massive parti		
? $J^P = 0^- $?	Pole residue:	$-\frac{1}{r_2} >$	
$J^{2}\equiv 0$	Polarisations:	1	
k^{μ}	Square mass:	$-\frac{t_2}{r_2} >$	
?	Spin:	0	
	Parity:	Odd	

	Massive particl	e	
?	Pole residue:	$-\frac{1}{r_2} > 0$	
	Polarisations:	1	
,	Square mass:	$-\frac{t_2}{r_2} > 0$	
\ ?	Spin:	0	
	Parity:	Odd	

itarity con	טוומטטוכטט
conditions	י אמו רורובי