When must a flow be simulated unsteady?

- 1. B.Cs being a function of time
 - 2. Transient

Example 2: Forward-Facing Step Channel

Assumptions and governing equations

Assumptions: Laminar, incompressible, unsteady, ignore gravity

Mass conservation

$$\nabla \cdot \vec{V} = 0$$

Momentum conservation

$$\rho \frac{\delta \vec{V}}{\delta t} + \rho \nabla \cdot (\vec{V} \times \vec{V}) = -\nabla P + \nabla \cdot (\mu \nabla \vec{V})$$

Boundary conditions

B.Cs of Velocity

	Inlet	Outlet	Walls
Туре	Uniform	Hydrodynamically developed	No slip
Value	$\vec{V}.\hat{n}=V_{in}$	$ abla \vec{V} \cdot \hat{n} = 0$	\vec{V} =0

B.Cs of Pressure

	Inlet	Outlet	Walls
Туре	developed	atmosphere	Zero gradient
Value	$\nabla P.\hat{n}=0$	P = 0	$\nabla P.\hat{n}=0$

Abbreviations

BC: Boundary conditions