

Basic Navigation Systems

- Inertial Navigation
 - Strapdown
 - Stable Platform
- Radio Navigation Systems
- Vision-based Navigation
 - Terrestrial
 - Celestial
- Magnetic Navigation

February 14, 2023 © Hadi Noba

© Hadi Nobahari, Classification of Guidance and Navigation Systems

Basic Navigation Systems

Inertial Navigation

Strapdown

Stable Platform

IMU?

Accelerometer

Accelerometer

Wayb

Gyroscope

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

Basic Navigation Systems Inertial Navigation robust to external disturbances Non-detectable All weather applicable High rate - Increasing error with time - Expensive in case of high accuracy - Initial Alignment • Radio Navigation - Sensitive to jamming - Difficulties in determining attitudes - Low rate Constant error with time - Low cost February 14, 2023 © Hadi Nobahari, Classification of Guidance and Navigation Systems 12

Basic Navigation Systems

- Vision-based Navigation
 - CPU time
 - Can not be used in bad weather condition
 - Low rate
 - Constant error with time
- Magnetic Navigation
 - Error due to local magnetic fields
 - Only directions
 - Low accuracy
 - High rate
 - Constant error with time

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

13

Combined Navigation Systems Inertial+Radio Inertial+Terrain aided Inertial+Vision (Terrestrial, Celestial) Inertial+Magnetic Inertial+Magnetic+Radio

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

Classification of Guidance Systems

- Command Guidance System
- · Beam Rider Guidance System
- Homing Guidance System
- Inertial Guidance System
- Combined Guidance Systems
- Guidance Systems based on Combined Navigation

February 14, 2023 © Hadi Nobahari, Classification of Guidance and Navigation Systems

Command Guidance System

- Commands are transmitted to the Guided Vehicle (GV) by radio wave or by the wire
- Characteristics
 - Simple and low cost missile
 - No "Fire and Forget" Capability
 - Few targets can simultaneously be serviced
 - Active tracker is in danger
 - Poor in jamming
 - Low accuracy for far targets
- · Roll angle must be controlled
 - It is vital
 - It decouples pitch and yaw channels

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

Beam Rider Guidance System

GV guides itself through the center line of a Radar/Laser beam

- Similar characteristics as command systems
- Lower performance than CLOS
- More robust to jamming than CLOS

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

Homing Guidance System

The guided vehicle detects and tracks the target using the energy emitted by the target

- passive homing
 - Target itself is the source of the energy
- Active homing
 - Target reflects the energy beamed at it by the interceptor
- semi-active homing
 - Target is illuminated by an external source

Passive Homing Guidance System

- It depends to emissions reflected from the target
- · Lower seeker weight and size than active homing
- It has a fire-and-forget capability.
- It is difficult to detect the GV.
- Lower cost

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

© Hadi Nobahari, Classification of Guidance and Navigation Systems February 14, 2023

Active Homing Guidance System

- It is more expensive than passive and semi-active homing.
- More power consumption than passive and semi-active.

• Limited range due to limited size and power.

• Ability to measure closing velocity

• It has fire-and-forget capability.

• It is easy to be detected.

Radar Waves from Missile

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

Semi-active Homing Guidance

- Onboard Complexity: active > semi active ≈ passive
- It does not have a fire-and-forget capability.

More range than active and passive

Ability to measure closing velocity

• The illuminator is in danger.

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

Combined Guidance Systems

Guidance Systems based on Combined Navigation

Inertial Guidance

- Uses INS as the Navigation System
- Guidance calculations are performed in an inertial frame
- Guidance calculations are performed within GV
- GV usually follows a predefined trajectory
- Applications: Ballistic Missiles, Launch Vehicles, Airplanes, ...
- It is an autonomous guidance system

_

Inertial+VisionInertial+Celestial

- Inertial+Radio

· Inertial+Homming

Command+Homming

Command+Inertial+Homming

- Inertial+Magnetic

Inertial+Magnetic+Radio

- Inertial+Terrain aided

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

February 14, 2023

© Hadi Nobahari, Classification of Guidance and Navigation Systems

23