Compound Angle Formulas

Addition Formulas

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Subtraction Formulas

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Example 1

Simplify each expression.

a)
$$\sin \frac{7x}{5} \cos \frac{2x}{5} - \cos \frac{7x}{5} \sin \frac{2x}{5}$$

b) $\tan \left(x + \frac{\pi}{4}\right)$

Example 2

Evaluate each expression.

a)
$$\cos 20^{\circ} \cos 190^{\circ} - \sin 20^{\circ} \sin 190^{\circ}$$

b)
$$\frac{\tan\frac{8\pi}{9} - \tan\frac{5\pi}{9}}{1 + \tan\frac{8\pi}{9}\tan\frac{5\pi}{9}}$$

Example 3

Determine the exact value of

a)
$$\sin\left(\frac{7\pi}{12}\right)$$

b) $\tan\left(-195^{\circ}\right)$

Example 4

The tangent of the acute angle $\,lpha\,$ is 0.75, and the tangent of the acute angle $\,eta\,$ is 2.4. Without using a calculator, determine the value of $\sin(lpha+eta)$ and $\cos(\alpha-\beta)$.

Proving Trigonometric Identities

The following trigonometric identities are important for you to remember:

Reciprocal Identities

$$\csc x = \frac{1}{\sin x} \qquad \tan x = \frac{\sin x}{\cos x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\cot x = \frac{1}{\tan x}$$

Quotient Identities

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

Addition and Subtraction Formulas

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double Angle Formulas

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\cos 2x = 2\cos^2 x - 1$$

$$\cos 2x = 1 - 2\sin^2 x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

To prove that a given equation is an identity, the two sides of the equation must be shown to be equivalent. This can be accomplished using a variety of strategies, such as

- simplifying the more complicated side until it is identical to the other side, or manipulating both sides to get the same expression
- rewriting expressions using any of the identities stated above
- using a common denominator or factoring, where possible

Example 3

Prove each identity.

a)
$$(1-\cos\beta)^2 + \sin^2\beta = 2(1-\cos\beta)$$

b)
$$\cos^4 \theta - \sin^4 \theta = 1 - 2\sin^2 \theta$$

c)
$$\frac{1}{1-\sin x} - \frac{1}{1+\sin x} = \frac{2\tan x}{\cos x}$$

d)
$$\frac{\sin \alpha + \tan \alpha}{1 + \sec \alpha} = \sin \alpha$$

Example 4

Prove each identity.

a)
$$\sin\left(\frac{\pi}{4} + x\right) + \sin\left(\frac{\pi}{4} - x\right) = \sqrt{2}\cos x$$

b)
$$\sin(\alpha + \beta) \times \sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta$$

b)
$$\sin(\alpha + \beta) \times \sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta$$

c) $\tan 2x = \frac{2}{\cot x - \tan x}$

d)
$$\frac{\sin 2\theta}{1 - \cos 2\theta} = 2 \csc 2\theta - \tan \theta$$

Related & Corelated Angles

 $\frac{\pi}{2}$

$$\sin(\pi - \theta) =$$

 $\cos(\pi - \theta) =$

 $\tan (\pi - \theta) =$

sin θ

cos 0

tan 0

 $\sin(\pi + \theta) =$

 $\cos (\pi + \theta) =$

 $\tan (\pi + \theta) =$

 $\sin\left(2\pi-\theta\right)=$

 $\sin(-\theta) =$

 $0^r/2\pi$

0° / 2π

 $\cos(2\pi - \theta) =$

 $\cos(-\theta) =$

 $\tan (2\pi - \theta) =$

 $\tan(-\theta) =$

2

 $\sin\left(\frac{\pi}{2} + \theta\right)$

 $\cos\left(\frac{\pi}{2} + \theta\right)$

 $\tan\left(\frac{\pi}{2} + \theta\right)$

 $\sin\left(\frac{\pi}{2}-\theta\right)$

 $\cos\left(\frac{\pi}{2}-\theta\right)$

 $\tan\left(\frac{\pi}{2}-\theta\right)$

 $\sin\left(\frac{3\pi}{2}-\theta\right)$

 $\cos\left(\frac{3\pi}{2}-\theta\right)$

 $\tan\left(\frac{3\pi}{2}-\theta\right)$

 $\sin\left(\frac{3\pi}{2}+\theta\right)$

 $\cos\left(\frac{3\pi}{2} + \theta\right)$

 $\tan\left(\frac{3\pi}{2} + \boldsymbol{\theta}\right)$

Related and Corelated Angle Identities

Recall:

- If an angle is in standard position, the acute angle between the terminal arm and the x-axis is the *related* acute angle.
- If an angle is in standard position, the acute angle between the terminal arm and the y-axis is the correlated acute angle.

*Any angle can be defined in terms of its related (or correlated acute angle.

Related Angle Identities:

Eg. 1 Simplfiy.

a)
$$\sin(\pi - x)$$

b)
$$\cos(\pi - x)$$

c)
$$tan(\pi - x)$$

$$=\sin\pi\cos x - \cos\pi\sin x$$

$$=\cos\pi\cos x + \sin\pi\sin x$$

$$=\frac{\sin(\pi-x)}{\cos(\pi-x)}$$

$$= (0)\cos x - (-1)\sin x$$

$$= (-1)\cos x + (0)\sin x$$

$$= \frac{\sin x}{-\cos x}$$

$$=\sin x$$

$$=-\cos x$$

$$=-\tan x$$

Summary:

$$\sin(\pi - x) = \sin x$$

$$\sin(\pi + x) = -\sin x$$

$$\sin(2\pi - x) = -\sin x$$

$$\sin(-x) = -\sin x$$

$$\cos(\pi - x) = -\cos x$$

$$\cos(\pi+x)=-\cos x$$

$$\cos(2\pi - x) = \cos x$$

$$\cos(-x) = \cos x$$

$$\tan(\pi - x) = -\tan x$$

$$\tan(\pi + x) = \tan x$$

$$\tan(2\pi - x) = -\tan x$$

$$\tan(-x) = -\tan x$$

Correlated Angle Identities:

Eg. 2 Simplfiy.

a)
$$\sin(\frac{\pi}{2}-x)$$

b)
$$\cos(\frac{\pi}{2}-x)$$

c)
$$\tan(\frac{\pi}{2} - x)$$

$$=\sin\frac{\pi}{2}\cos x - \cos\frac{\pi}{2}\sin x$$

$$=\cos\frac{\pi}{2}\cos x + \sin\frac{\pi}{2}\sin x$$

$$=\frac{\sin\left(\frac{\pi}{2}-x\right)}{\cos\left(\frac{\pi}{2}-x\right)}$$

$$= (1)\cos x - (0)\sin x$$

$$= (0)\cos x + (1)\sin x$$

$$=\frac{\cos x}{\sin x}$$

$$=\cos x$$

$$=\sin x$$

$$=\cot x$$

Summary:

$$\sin(\frac{\pi}{2} + x) = \cos x$$

$$\sin(\frac{\pi}{2} - x) = \cos x$$

$$\sin(\frac{3\pi}{2} - x) = -\cos x$$

$$\sin(\frac{3\pi}{2} + x) = -\cos x$$

$$\cos(\frac{\pi}{2} + x) = -\sin x$$

$$\cos(\frac{\pi}{2} - x) = \sin x$$

$$\cos(\frac{3\pi}{2} - x) = -\sin x$$

$$\cos(\frac{3\pi}{2} + x) = \sin x$$

$$\tan(\frac{\pi}{2} + x) = -\cot x$$

$$\tan(\frac{\pi}{2} - x) = \cot x$$

$$\tan(\frac{3\pi}{2} - x) = \cot x$$

$$\tan(\frac{3\pi}{2} + x) = -\cot x$$

MHF 4U

Related Angle, Co - Related Angle Identities

1. Write each in a simpler form.

a)
$$\sin (\pi - x)$$

f) cot
$$(\pi + x)$$

f) cot
$$(\pi + x)$$

g)
$$\cos (\pi - x)$$

i)
$$csc(\pi - x)$$

2. Find the exact value of the following.

a)
$$\sin (\pi + \frac{\pi}{6})$$

b) cot
$$(\pi - \frac{\pi}{3})$$

c) sec
$$(\pi + \frac{\pi}{4})$$

c)
$$\sec (\pi + \frac{\pi}{4})$$
 d) $\csc (\pi - \frac{\pi}{6})$

3. Find the exact value of the following.

a) sec
$$\left(\pi - \frac{\pi}{6}\right)$$

b)
$$\cos\left(\pi-\frac{\pi}{3}\right)$$

c)
$$\cot \left(\pi + \frac{\pi}{4}\right)$$
 d) $\sin \left(\pi + \frac{\pi}{6}\right)$

d)
$$\sin\left(\pi + \frac{\pi}{6}\right)$$

4. Use the relationship $\cos (\pi - x) = -\cos x$ to evaluate the following.

a)
$$\cos \frac{5\pi}{6}$$

b)
$$\cos \frac{2\pi}{3}$$

c)
$$\cos \frac{3\pi}{4}$$

5. Use the relationship tan $(-x) = -\tan x$ to evaluate the following.

a) tan
$$\left(-\frac{\pi}{3}\right)$$

b) tan
$$\left(-\frac{\pi}{6}\right)$$

c) tan
$$\left(-\frac{\pi}{4}\right)$$

6. Write each in a simpler form.

a)
$$\sin(\frac{3\pi}{2} - x)$$

b) sec
$$(\frac{\pi}{2} + x)$$

c)
$$\tan{(\frac{3\pi}{2} + x)}$$

b)
$$\sec{(\frac{\pi}{2} + x)}$$
 c) $\tan{(\frac{3\pi}{2} + x)}$ d) $\csc{(\frac{3\pi}{2} + x)}$ e) $\sec{(\frac{\pi}{2} - x)}$

e)
$$\sec{(\frac{\pi}{2} - x)}$$

7. Write each in a simpler form.

a)
$$\sin\left(\frac{\pi}{2}-x\right)$$

b)
$$\tan\left(\frac{3\pi}{2} - x\right)$$

b)
$$\tan \left(\frac{3\pi}{2} - x\right)$$
 c) $\sec \left(\frac{3\pi}{2} + x\right)$ d) $\csc \left(\frac{\pi}{2} + x\right)$

d)
$$\csc\left(\frac{\pi}{2} + x\right)$$

e) cot
$$\left(\frac{\pi}{2} + x\right)$$

8. Find the exact value of the following.

a)
$$\sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right)$$

a)
$$\sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right)$$
 b) $\cot\left(\frac{3\pi}{2} - \frac{\pi}{3}\right)$ c) $\sec\left(\frac{3\pi}{2} + \frac{\pi}{4}\right)$ d) $\csc\left(\frac{\pi}{2} - \frac{\pi}{6}\right)$

c) sec
$$(\frac{3\pi}{2} + \frac{\pi}{4})$$

d) csc
$$(\frac{\pi}{2} - \frac{\pi}{6})$$

9. Find the exact value of the following.

a)
$$\sec\left(\frac{\pi}{2} + \frac{\pi}{6}\right)$$

b)
$$\cos\left(\frac{3\pi}{2} - \frac{\pi}{3}\right)$$

c) cot
$$\left(\frac{3\pi}{2} + \frac{\pi}{4}\right)$$
 d) $\sin\left(\frac{\pi}{2} - \frac{\pi}{6}\right)$

d)
$$\sin\left(\frac{\pi}{2} - \frac{\pi}{6}\right)$$

ANSWERS

1. a) $\sin x$ b) $-\sec x$ c) $-\tan x$ d) $-\csc x$ e) $-\sec x$ f) $\cot x$ g) $-\cos x$ h) $-\sin x$ i) $\csc x$ j) $\sec x$ 2. a) $\frac{-1}{2}$ b) $-\frac{1}{2}$ c) $-\frac{1}{2}$ d) 2

3. a)
$$-\frac{2\sqrt{3}}{3}$$
 or $-\frac{2}{\sqrt{3}}$ b) $\frac{-1}{2}$ c) 1 d) $\frac{-1}{2}$ 4. a) $\frac{-\sqrt{3}}{2}$ b) $\frac{-1}{2}$ c) $-\frac{1}{\sqrt{2}}$ 5. a) $-\sqrt{3}$ b) $-\frac{1}{\sqrt{3}}$ c) -1 6. a) $-\cos x$ b) $-\csc x$ c) $-\cot x$ d) $-\sec x$

e) csc x 7. a) cos x b) cot x c) csc x d) sec x e) -tan x 8. a)
$$\frac{\sqrt{3}}{2}$$
 b) $\sqrt{3}$ c) $\sqrt{2}$ d) $\frac{2}{\sqrt{3}}$ 9. a) -2 b) $-\frac{\sqrt{3}}{2}$ c) -1 d) $\frac{\sqrt{3}}{2}$

MHF 4U

Proving Trigonometric Identities

Strategies

- begin with the more complex side and continue until it is the same as the simpler side
- sometimes it is easier to work with both sides and manipulate them until they are the same
- express all functions in terms of sine and/or cosine (if all terms are in terms of the came trily function, it is often easier to work with those instead of changing to sin and cos)
- look for factoring opportunities
- often just doing the operations in the identity will help immensely
- look for squares and use the Pythagorean identities
- express all functions with the same argument

A: Prove that following identities using the reciprocal, quotient, and Pythagorean identities.

- 1. $\sin x \tan x = \sec x \cos x$
- $2. \qquad \csc^2 x + \sec^2 x = \csc^2 x \sec^2 x$
- 3. $\cos^2 x \sin^2 x = 1 2\sin^2 x$
- 4. $\sec x \cos x = \sin x \tan x$

$$\frac{1-\sin x}{\cos x} = \frac{\cos x}{1+\sin x}$$

$$6. \frac{\sec x - 1}{1 - \cos x} = \sec x$$

7.
$$\frac{1+\tan x}{\sin x} - \sec x = \csc x$$

8.
$$\tan x + \cot x = \frac{1}{\cos x \sin x}$$

9.
$$\frac{\sin x - \cos x}{\cos x} + \frac{\sin x + \cos x}{\sin x} = \sec x \csc x$$

10.
$$\frac{1 + \tan^2 x}{1 + \cot^2 x} = \frac{1 - \cos^2 x}{\cos^2 x}$$

11.
$$\tan x + \cot x = \sec^2 x \cot x$$

12.
$$\frac{1}{1+\sec x} + \frac{1}{1-\sec x} = -2\cot^2 x$$

13.
$$\frac{1-\sin^2 x \cos^2 x}{\cos^4 x} = \tan^4 x + \tan^2 x + 1$$

B: Prove that following identities using related, co-related angles, Add/Sub and double angle formulas,

1.
$$\cos(x + y) \cos y + \sin(x + y) \sin y = \cos x$$

2.
$$\sin x + \tan y \cos x = \frac{\sin(x+y)}{\cos y}$$

$$3. \qquad \cos\left(\frac{3\pi}{4} + x\right) + \sin\left(\frac{3\pi}{4} - x\right) = 0$$

4.
$$\sin(x + y) \sin(x - y) = \cos^2 y - \cos^2 x$$

5.
$$\frac{\tan(x-y)+\tan y}{1-\tan(x-y)\tan y}=\tan x$$

6.
$$\frac{\sin(\pi - x)}{\tan(\pi + x)} \frac{\cot\left(\frac{\pi}{2} - x\right)}{\tan\left(\frac{\pi}{2} + x\right)} \frac{\cos(2\pi - x)}{\sin(-x)} = \sin x$$

7.
$$\frac{\csc(\pi - x)}{\sec(\pi + x)} \frac{\cos(-x)}{\cos\left(\frac{\pi}{2} + x\right)} = \cot^2 x$$

8.
$$\frac{\cos\left(\frac{\pi}{2} + x\right) \sec(-x) \tan(\pi - x)}{\sec(2\pi + x) \sin(\pi + x) \cot\left(\frac{\pi}{2} - x\right)} = -1$$

9.
$$\frac{\sin(\pi - x)\cos(\pi + x)\tan(2\pi - x)}{\sec\left(\frac{\pi}{2} + x\right)\cos\left(\frac{3\pi}{2} - x\right)\cot\left(\frac{3\pi}{2} + x\right)} = \sin^4 x - \sin^2 x$$

C: Prove that following identities using a variety of formulas and identities.

1.
$$\sin^2 x + \cos^4 x = \cos^2 x + \sin^4 x$$

2.
$$\cos x = \sin x \tan^2 x \cot^3 x$$

3.
$$(\sin x + \cos x)(\tan x + \cot x) = \sec x + \csc x$$

4.
$$\sin^3 x + \cos^3 x = (1 - \sin x \cos x)(\sin x + \cos x)$$

6.
$$\sin(x + y) + \sin(x - y) = 2\sin x \cos y$$

7.
$$\tan x + \tan (\pi - x) + \cot \left(\frac{\pi}{2} + x\right) = \tan(2\pi - x)$$

8.
$$\sin\left(\frac{\pi}{2} + x\right)\cos(\pi - x)\cot\left(\frac{3\pi}{2} + x\right) = \sin\left(\frac{\pi}{2} - x\right)\sin\left(\frac{3\pi}{2} - x\right)\cot\left(\frac{\pi}{2} + x\right)$$

9.
$$\tan\left(\frac{\pi}{2} - x\right) - \cot\left(\frac{3\pi}{2} - x\right) + \tan(2\pi - x) - \cot(\pi - x) = \frac{4 - 2\sec^2 x}{\tan x}$$

10.
$$\csc^2\left(\frac{\pi}{2}-x\right)=1+\sin^2 x \csc^2\left(\frac{\pi}{2}-x\right)$$

11.
$$\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right) = 2\sec 2x$$