Application des séries chronologiques sur les données Dataset_CB.csv

Youness et Ivanhoé

11 janvier 2024

Introduction

Voici un série chronologique issue de données pseudo-réelles issue d'une consommation EDF d'un foyer.

Problématique : Comment prédire à horizon de 7 jours la consommation électrique du foyer sur la première semaine de septembre 2023?

Partie preprocessing

Stationnarité et vérification

Étude des corrélations

Renommer les colonnes et passer au format date

```
EDF = pd.read_csv(path)

EDF.columns = ["DATE", "CONSO"] # renommer col

EDF.DATE = pd.to_datetime(EDF.DATE,format='%d/%m/%y %H:%M')

print("shape = ",EDF.shape)

EDF.head(4)

shape = (744, 2)
```

Chargement des données

		DATE	CONSO
0	2023-08-01	00:00:00	522.646044
1	2023-08-01	01:00:00	142.889213
2	2023-08-01	02:00:00	497.052422
3	2023-08-01	03:00:00	110.082063

Dataset EDF

Consommation du foyer

Passage au log pour réduire la variabilité de la série

EDF['LOGCONSO']	=	np.log(EDF.CONSO)
EDF.head()		

	DATE	CONSO	LOGCONSO
0	2023-08-01 00:00:00	522.646044	6.258904
1	2023-08-01 01:00:00	142.889213	4.962070
2	2023-08-01 02:00:00	497.052422	6.208695
3	2023-08-01 03:00:00	110.082063	4.701226
4	2023-08-01 04:00:00	333.036926	5.808253

Dataset EDF

Log-consommation du foyer

Étude de la stationnarité de la log-consommation

Log-consommation du foyer

Sans différentier

```
# Testons la non-stationnarité
TestA = adfuller(EDF.LOGCONSO) # Test ADF rejeté
print("ADF p-val: ", TestA[1])
# Testons la stationnarité
TestK = kpss(EDF.LOGCONSO) # Test KPSS non rejeté
print("KPSS p-val: ", TestK[1])# Test non rejeté
ADF p-val: 0.0
KPSS p-val: 0.1
```

Tests ADF et KPSS

Étude de la stationnarité de la log-consommation avec une différentiation saisonnière

Différentielle saisonnière log-consommation du foyer

is On vo différentier une fais pour reparder les incréments à 24 heures près DEF[disff44] : DEF[DisCOMSO (siff(24)] flig = px.line(DEF, x=[0ATE*, y="diff2*, labels=[0ATE*, 'dete,' diff24; '')] flig.pobate| spuvil(title="Differentiation saisonnaière de la locy-consommation d'energie du foyer")

Différentiation D=24

Avec différentiation saisonnière s=24

KPSS p-val : 0.1

Testons la non-stationnarité
Testa = adruller(EDF.dift?A.dropna()) # Test ADF rejeté au seuil de 5%
print("ADF "poil: ", TestAll))
Testons la stationnarité
TestK = kps5EDF.dift?A.dropna()) # Test KPSS non rejeté
print("MSSS p.val : ", TestK(1))# Test non rejeté
ADF p.val : 0.00022114073208465094

Tests ADF et KPSS

Étude des corrélations sur la série temporelle

```
ACF = plot_acf(EDF.LOGCONSO, lags=70, alpha=0.05,title="ACF avec lags=70")
PACF = plot_pacf(EDF.LOGCONSO, lags=70, alpha=0.05,title="PACF avec lags=70")
ACF = plot_acf(EDF.LOGCONSO, lags=26, alpha=0.05,title="ACF avec lags=26")
PACF = plot_pacf(EDF.LOGCONSO, lags=26, alpha=0.05,title="ACF avec lags=26")
```


