武汉大学计算机学院

2014~2015 学年第二学期 2014 级《数字逻辑》 期未考试试卷(闭卷考试) A卷参考答案

- 一、填空(每空1分,共12分)
 - 1, $(52.5)_{10} = (110100.1)_{2} = (34.8)_{16}$
 - 2, $(-124)_{10}$ = $(111111100)_{\mathbb{R}}$ = $(10000100)_{\mathbb{R}}$
 - $3 \cdot F = m_0 + m_1 + m_2$

$$=\overline{AB}+\overline{AB}+\overline{AB}$$

 $=\Sigma m(0,1,2)$

4、电平

5、1.5V

6、高组

7、或门(负或门)

8. (325) 10

9、1

- $10, \overline{BC}$
- 二、选择题(每空2分,共20分)
 - 1, A
- 2, B
- 3、C
- 4、C
- 5, D

- 6, B
- 7、C
- 8, A
- 9, D
- 10, B

三、化简题(10分)

把 $F(A,B,C,D) = A\overline{BCD} + B\overline{CD} + \Sigma m(2,3,12) + \Sigma d(1,4,11,14)$ 化成最简 "与一或"式和最简或与式

最简与一或表达式:

$$F = \overline{B}C + B\overline{C}$$

最简与一或表达式:

$$F = (B+C)(\overline{B}+\overline{C})$$

- 四、分析题(每小题12分,共24分)
 - 1、分析图 1 所示组合逻辑电路 (每问 4 分)
 - ① 写出输出函数表达式

$$F(A,B,C,D) = \overline{\overline{A+B}+D} + \overline{\overline{C}+D} = (\overline{A+B}+D)(\overline{C}+D) = D + \overline{A+B}\overline{C} = D + \overline{AB}\overline{C}$$

② 列出真值表

输入 ABCD	输出 F
0 0 0 0	1
0 0 01	1
0 01 0	0
0 01 1	1
01 0 0	0
01 0 1	1
01 1 0	0
01 1 1	1
$1\ 0\ 0\ 0$	0
1001	1
1010	0
1011	1
1100	0
1101	1
1110	0
1111	1

- ③ 电路功能: 当 D=1 或 A、B、C 同时为 000 时 F=1 或 $F = \sum m = (0,1,3,5,7,9,11,13,15)$
- 2、分析图 2 所示脉冲异步时序逻辑电路 (每问 4 分)
 - ① 写出激励函数表达式

 $J_2=K_2=1$ $J_1=K_1=1$ $J_0=K_0=1$

 $C_2 = \overline{Q_1}$ $C_1 = \overline{Q_0}$ $C_0 = CLK$

电路属于 Moore 模型

② 作出状态表和状态图

③ 说明电路功能,作出 Q₂、Q₁、Q₀的波形图 功能: 电路是 8 进制(或模 8、或 3 位二进制)加法(加 1)计数器

五、设计题(每小题 10 分, 共 20 分)

1、(10分)

	输入 ABC	输出 F		F
1	000	0	∆r.	1
	0 0 1	1	20 01 11 10	A
	010	1	0 1 1	o-G
	0 1 1	0		Do Do De De De
	100	1		
	1 0 1	0	Do D, D, 92	
	1 1 0	0		
\	111	1	$F = \sum m(1, 2, 4, 7)$	
			$\Gamma = \sum m(1, 2, 4, 7)$	

选用 AB 作地址选择端: $D_0=D_3=C$ $D_1=D_2=\overline{C}$

- 2、(10分)
- ① 确定激励函数和输出函数

X454.41	y, my yzmy may	x4.4.41	y short yearly mel
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0	610 add 700 add 000	(000 (00) (010 (010 (010 (010)	000
0110	0 0 d	1111	499

$$D_3 = x\overline{y_3} + y_2$$

$$D_2 = \overline{y_3} \overline{y_2} = \overline{y_3 + y_2}$$

$$D_1 = xy_3y_2 + xy_3y_2 = (x \oplus y_3)y_2$$

$$Z = \sum m(4,13) = \overline{x} y_3 \overline{y_2} \overline{y_1} + xy_3 \overline{y_2} y_1 = y_3 \overline{y_2} \overline{x \oplus y_1}$$

- ② 画逻辑图(略)
- ③ 检查电路能否自启动

由以上分析可知, 电路能够自启动, 具备自恢复功能

六 综合应用题(14分)

① 说明该计数器的清零和预置控制信号各有哪几种组合方式? (7分)

a 、清零:	\overline{oc}	\overline{SLCR}	\overline{ALCR}	CP
	0	0	1	1
	0	0	0	X
	0	1	0	X

在这三种组合方式下,QDQcQBQA=0000

b、预置:	\overline{OC}	\overline{SLOAD}	\overline{ALOAD}	SLCR	\overline{ALCR}	CP
	0	0	1	1	1	†
	0	0	0	1	1	X
	0	1	0	1	1	X

在这三种组合方式下, QDQcQBQA=d c b a

② 如果用该计数器构成十进制计数器,试给出一种实现方案,画出连接图 (7分)

十进制计数器的状态转换关系如下:

方案 1: 利用功能表中 $\overline{SLCR}=0$, $\overline{ALCR}=1$ 时清零。因为清零需要 CP 有效,所以在 Q_DQ_CQ_BQ_{A=1001} 之后的那个 CP 清零。可令:

$$\overline{SLCR} = \overline{Q_D Q_A}$$
, $\overline{ALCR} = 1$

Ps为启动清零负脉冲

