Отчет по лабораторной работе 8

Модель конкуренции двух фирм

Серегин Денис Алексеевич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение 3.1 Модель одной фирмы 3.2 Конкуренция двух фирм 3.2.1 Случай 1 3.2.2 Случай 2	7 7 8 8 9
4	Выполнение лабораторной работы	11
5	Выводы	16
Сп	писок литературы	17

Список иллюстраций

4.1	Код для первой модели	11
4.2	График для первой модели	12
4.3	Модель в openmodelica	12
4.4	Результаты моделирования в openmodelica	13
4.5	Код для второй модели	13
4.6	Результат моделирования в julia	14
4.7	Код для второй модели	14
4.8	График модели	15

Список таблиц

1 Цель работы

Изучить построение математической модели конкуренции двух фирм.

2 Задание

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

3 Теоретическое введение

3.1 Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим: N – число потребителей производимого продукта. S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. M – оборотные средства предприятия \square – длительность производственного цикла p – рыночная цена товара \tilde{p} – себестоимость продукта, то есть переменные издержки на производство единицы продукции. δ – доля оборотных средств, идущая на покрытие переменных издержек. κ – постоянные издержки, которые не зависят от количества выпускаемой продукции.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{q}{S}$$

, где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина

 $p_{cr} = Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{m\delta}{\tau} + NQp - k$$

Уравнение для рыночной цены р представим в виде

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau\tilde{p}} + Nq(1-\frac{p}{p_{cr}}))$$

Подробнее в [pres?].

3.2 Конкуренция двух фирм

3.2.1 Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.)

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей какимлибо иным способом.)

Исследуем систему в случае, когда постоянные издержки (k1,k2) пренебрежимо малы. И введем нормировку $t=c_q\theta$. Получим следующую систему:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_1 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Чтобы решить систему необходимо знать начальные условия.

3.2.2 Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться.

Рассмотрим следующую модель:

$$\frac{dM_1}{d\theta} = M_1 - (\frac{b}{c_1} + 0.002) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_1 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

Замечание: Стоит отметить, что рассматривается упрощенная модель, которая дает модельное решение. В реальности факторов, влияющих на динамику изменения оборотных средств предприятий, больше.

Подробнее в [julia?].

4 Выполнение лабораторной работы

1. Зададим систему и начальные условия на Julia (4.1).

```
"""Правая часть нашей системы, p, t не используются
    u[1] -- x, u[2] -- y
    function F!(du, u, p, t)
   du[1] = p[4]*u[1] - p[3]*u[1]*u[2] - p[1]*u[1]*u[1]
   du[2] = p[5]*u[2] - p[3]*u[1]*u[2] - p[2]*u[2]*u[2]
                                                                                                       ▶ 4.4 m
ODEProblem with uType Vector{Int64} and tType Int64. In-place: true
timespan: (0, 100)
u0: 2-element Vector{Int64}:
7700
        u<sub>0</sub> = [2300, 1600]
        T = (0, 100)
pcr = 18
         N = 21
         q = 1
         t1 = 14
         t2 = 17
         p = [pcr / (t1*t1*p1*p1*N*q), pcr / (t2*t2*p2*p2*N*q), pcr /
         (t1*t1*t2*t2*p1*p1*p2*p2*N*q), (pcr - p1) / t1 / p1, (pcr - p2) / t2/ p2]
         prob = ODEProblem(\underline{F!}, u_0, T, p)

→ 75.9 r
```

Рис. 4.1: Код для первой модели

2. Построим график изменения численности (4.2)

Рис. 4.2: График для первой модели

3. Теперь зададим модель в Opemmodelica (4.3).

```
Real M1;
4
    Real M2;
    Real pcr = 18;
    Real \overline{N} = 21;
7
    Real q = 1;
    Real t1 = 14;
    Real t2 = 17;
    Real p1 = 11;
.1
    Real p2 = 9;
.2
    Real t = time;
    Real a1 = pcr / (t1*t1*p1*p1*N*q);
Real a2 = pcr / (t2*t2*p2*p2*N*q);
    Real b = pcr / (t1*t1*t2*t2*p2*p2*p1*p1*N*q);
    Real c1 = (pcr - p1) / t1 / p1;
Real c2 = (pcr - p2) / t2 / p2;
. 9
    initial equation
    M1 = 2300;
1
    M2 = 1600;
2
    equation
13
    der(M1) = c1*M1 - b*M1*M2 - a1*M1*M1;
4
    der(M2) = c2*M2 - b*M1*M2 - a2*M2*M2;
2.5
6
    end d;
```

Рис. 4.3: Модель в openmodelica

4. Построим график (4.4).

Рис. 4.4: Результаты моделирования в openmodelica

- 5. Рассмотрим второй случай.
- 6. Система уравнений в Julia (4.5).

Рис. 4.5: Код для второй модели

7. Построим графики (4.6)

Рис. 4.6: Результат моделирования в julia

8. Та же модель в openmodelica (4.7)

```
3 Real M1;
     Real M2;
      Real pcr = 18;
      Real N = 21;
      Real q = 1;
     Real t1 = 14;
      Real t2 = 17;
      Real p1 = 11;
      Real p2 = 9;
      Real t = time;
      Real al = pcr / (t1*t1*p1*p1*N*q);
    Real a2 = pcr / (t1 t1 p1 p1 N q//

Real a2 = pcr / (t2*t2*p2*p2*N*q);

Real b = pcr / (t1*t1*t2*t2*p2*p2*p1*p1*N*q);

Real c1 = (pcr - p1) / t1 / p1;

Real c2 = (pcr - p2) / t2 / p2;
14
16
18
19
     initial equation
20
     M1 = 2300;
     M2 = 1600;
      equation
     der(M1) = c1*M1 - (b + 0.0015*c1)*M1*M2 - a1*M1*M1;
der(M2) = c2*M2 - b*M1*M2 - a2*M2*M2;
26
      end d;
```

Рис. 4.7: Код для второй модели

9. И результаты моделирования (4.8)

Рис. 4.8: График модели

5 Выводы

В итоге была рассмотрена простейшая модель конкуренции двух фирм . С использованием Julia и OpenModelica построены графики изменения численности, найдена точка максимума скорости.

Список литературы