This part for lecturer's	CS3230
grading use only	

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING SEMESTER 2 (2012/2013)

EXAMINATION FOR

CS3230: Design and Analysis of Algorithms

May 2013 Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **NINE (9)** problems and comprises **NINE (9)** printed pages, including this page.
- 2. Answer ALL questions within the space provided in this booklet.
- 3. This is an Open Book examination.
- 4. All your asymptotic bounds must be in its simplest form. Namely, if the correct answer is O(n²) and you answered O(n²+n), you will be penalized.

MATRICULATIO	N NO	:								
				ļ						
		•	1					 	,	
This portion is for examiner's use only										

Problem 1 and 2	
Problem 3	
Problem 4	
Problem 5	
Problem 6	
Problem 7	
Problem 8	
Problem 9	
Total	

This part for lecturer's grading use only				CS3230
Problem 2 (6 points) Consider the recurrence relative turns the floor of x. We also				
Consider the recurrence relative teturns the floor of x. We also that $T(n) = O(n^2)$. (You must	know that T(1)=T use mathematical i	(2)=T(3)=1. Use nduction, otherw	mathematical in vise you will not a	duction to prov
Consider the recurrence relative teturns the floor of x. We also that $T(n) = O(n^2)$. (You must	know that T(1)=T use mathematical i	(2)=T(3)=1. Use nduction, otherw	mathematical in vise you will not a	duction to prov
Consider the recurrence relative turns the floor of x. We also that $T(n) = O(n^2)$. (You must	know that T(1)=T use mathematical i	(2)=T(3)=1. Use nduction, otherw	mathematical in vise you will not a	duction to prov
Consider the recurrence relative turns the floor of x. We also that $T(n) = O(n^2)$. (You must	know that T(1)=T use mathematical i	(2)=T(3)=1. Use nduction, otherw	mathematical in vise you will not a	duction to prov
Consider the recurrence relative turns the floor of x. We also that $T(n) = O(n^2)$. (You must	know that T(1)=T use mathematical i	(2)=T(3)=1. Use nduction, otherw	mathematical in vise you will not a	duction to prov
	know that T(1)=T use mathematical i	(2)=T(3)=1. Use nduction, otherw	mathematical in vise you will not a	duction to prov
Consider the recurrence relative teturns the floor of x. We also that $T(n) = O(n^2)$. (You must	know that T(1)=T use mathematical i	(2)=T(3)=1. Use nduction, otherw	mathematical in vise you will not a	duction to prov
Consider the recurrence relative teturns the floor of x. We also that $T(n) = O(n^2)$. (You must	know that T(1)=T use mathematical i	(2)=T(3)=1. Use nduction, otherw	mathematical in vise you will not a	duction to prov

This part for lectu grading use on									CS3230
Problem 3. (6 mar We would like to a counts of the chara	pply prefi	x coding e docum	on a cer ent are:	tain doc	ument to	compress	s its size.	The t	requency
	A: 56	B: 12	C: 3	D: 4	E: 6	F: 20	G: 1		
Draw the optimal I	Huffman t	ree for co	mpressi	ng this d	ocument	•			
What is the minim your answer below						locument	using pre	efix c	odes? Write
Your answer is _	***************************************				_•				

This part for lecturer's grading use only

Problem 4. (6 marks)

Imagine that we run Dijkstra's single-source shortest path algorithm on the following undirected graph where the weight of each edge is indicated next to that edge.

We call an edge as *useful* if it is part of the shortest path (as computed by the algorithm) from the source to some node. Otherwise the edge is called *useless*. Indicate which 3 edges in the graph are useless. You can indicate the 3 edges by indicating their weights, since the edges in the graph all have distinct weights. Write your answer below:

The weights of the 3 useless edges are _	,, and	, respectively.

This part for lecturer's grading use only	CS3230
Problem 5. (4 marks) Recall that Prim's algorithm finds a spanning tree with the minimum cost in a graph G clearly how to modify Prim's algorithm so that the algorithm can now find a spanning maximum cost in G. Your modification should not increase the worst-case asymptotic complexity of Prim's algorithm.	tree with the
Write your suggested modification to Prim's algorithm below:	
Explain clearly why using your modification will find the spanning tree with the maxis and why the complexity satisfies our requirement:	mum cost

This part for lecturer's grading use only	CS3230
Problem 6. (6 marks) Consider the following variant of the knapsack problem. There are n different volunted the i th volunteer job takes exactly $v[i]$ hours for i from I to n . A volunteer job may be than once (i.e., repetition is allowed). But it is not allowed to do only part of a volunteer there words, a job that has started must be completed. Alice has total S hours to do the obs, and she would like to fully spend the S hours so that she does not waste her life, and S are integers. Design a deterministic algorithm using dynamic programming to dowhether it is possible for Alice to achieve her goal. You algorithm should have $O(nS)$ time complexity.	done more er job – in volunteer All the $v[i]$'s etermine
First, write out the recurrence relation for your dynamic programming, with $F[x]$ deno Alice can achieve her goal if Alice has exactly total x hours:	ting whether
Next, write the pseudo-code for your algorithm:	
Finally, briefly explain why your algorithm is correct and why its time complexity is	O(nS):

This part for lecturer's grading use only	CS3230
Problem 7. (6 marks) Consider the following game between you and Alice. Alice holds a positive integer n , larger than some other integer M . You do not know n . You do not know M either. You to choose an arbitrary value x and invoke query(x), and Alice will tell you whether n is smaller than x , or equal to x . Alice does not lie. Each invocation of query() takes $\Theta(I)$ a deterministic algorithm to find out the value of n , such that the worst case time complementation of n . In other words, the time complexity should not depend on M . Also, y required to incur as small asymptotic worst-case time complexity as you can in your s Algorithm efficiency will be a factor considered during grading. (Hint: Doing a bit on over $[0, M]$ will not work, for two reasons. First, you do not know M . Second, the formula complexity will depend on M and does not satisfy the requirement.) Your answer must a concise explanation of your high-level idea, your pseudo-code, and a concise explanation complexity. Write your high-level idea below:	a are allowed is larger than a time. Design plexity is a ou are olution. nary search time it have 3 parts
Write your pseudo-code below (you are allowed to invoke algorithms that we have le	arned in the
module without writing out the pseudo-code of those algorithms):	
Write your explanation on the correctness and the time complexity below:	

This part for lecturer's grading use only	CS3230
Problem 8. (4 marks) There are two decision problems A and B . We already know that problem A has a lowe $2n^2$ on its worst-case time complexity. We also have worked out a reduction algorithm A to B . For any given input X (of size n) to problem A , the reduction algorithm will character input Y (of the same size n) to problem B . The answer to problem B is then directly as the answer to problem A . The worst-case time complexity of the reduction algorithm including the complexity incurred for invoking the algorithm for B) is exactly n^2 . Base conditions, is there any conclusion we can make regarding the lower bound on the work complexity for solving B ? If yes, what is the strongest conclusion that we can make? It Rigorously justify and prove your answer.	that reduces ange it to ectly output a itself (not d on these est-case time

This part for lecturer's grading use only	CS3230
Problem 9. (6 marks) Prove rigorously that the following decision problem is NP-hard: Given an undirected an integer k , determine whether G simultaneously contains a clique of size at least k are independent set of size at least k .	graph G and and an

END-OF-PAPER