

Embracing the quantum future: fundamental training for UPT students

Introduction to key concepts and algorithms

Mihai Udrescu (UPT)

Making the headlines

IEEE Spectrum Electric Cooling Could Shrink Quantum Computers

Q Type to search

NEWS | COMPUTING

Electric Cooling Could Shrink Quantum Computers >

Vacuum-tube effect might simplify cryogenic chambers

BY CHARLES Q. CHOI | 12 SEP 2023 | 3 MIN READ | []

VTT's electronic refrigerator prototypes undergo cryogenic testing. VTT

NEWS

Home | War in Ukraine | Climate | Video | World | UK | Business | Tech | Science | Entertainment & Arts

Science

Quantum breakthrough could revolutionise computing

⊕ 8 February • Comments

Twenty years ago Winfried Hensinger was told by other scientists that developing a powerful quantum computer was impossible. Now he has made the system behind him that he believes will prove them wrong

By Pallab Ghosh

Science correspondent

Scientists have come a step closer to making multi-tasking 'quantum' computers, far more powerful than even today's most advanced supercomputers.

Constitution and the second se

Making the headlines

The New York Times

Quantum Computing Advance Begins New Era, IBM Says

A quantum computer came up with better answers to a physics problem than a conventional supercomputer.

Making the headlines

Google's Quantum Chip "Willow" Marks an Important Milestone in Quantum Computing

What is Quantum Computing?

- Computation with coherent atomic-scale dynamics. [Lee Spector]
- Computation that takes advantage of quantum mechanical phenomena. [Wikipedia]
- A rapidly-emerging technology that harnesses the laws of quantum mechanics to solve problems too complex for classical computers. [ibm.com]

Why Quantum Computing?

SCALE

- Because the higher and higher integration scale will eventually lead to quantum computational devices
- IBM's 2 nm MOSFET (metal—oxide—semiconductor field-effect transistor) 2024?
 - Size: 5 atoms
- Single atom transistor
 - M. Fuechsle et al., A single-atom transistor, Nature Nanotechnology 7: 242–246 (2012)
- Beyond atomic scale?

A 2 nm transistor.
Source: research.ibm.com

Why Quantum Computing?

COMPLEXITY

- Because the quantum algorithms are better than their classical counterparts
- Factoring large integers (Shor's algorithm) in $\mathcal{O}((\log N)^2(\log\log N))$ time
 - —polylogarithmic
 - Classical: NFS, $\mathcal{O}\left(e^{1.9(\log N)^{1/3}}(\log\log N)^{2/3}\right)$ time
 - —subexponential
- Searching in unstructured search spaces (Grover's algorithm) in $\mathcal{O}(\sqrt{N})$
 - Classical $\mathcal{O}(N)$
 - —linear

Discrepancy between polynomial and exponential complexity

Exponential speedup impact

Factor a 5000-digit number

- On a classical computer (1ns/step)
 - The classical algorithm will require more than 5 trillion years
 - The universe is ~10-16 billion years old
- On a quantum computer (1ns/step)
 - Shor's algorithm will require over 2 minutes

The power of Quantum Computing

 In quantum systems possibilities count, even if they never happen!

- Each of the exponentially many possibilities can be used to perform a part of that computation
 - At the same time!

Beam Splitter

- Photons leaving the light source
 - Half arrive at detector A;
 - Half arrive at detector B.

- Equal path lengths, rigid mirrors
- Only 1 photon in the apparatus at a time
- All of the photons leaving the light source arrive at detector B. WHY?

Possibilities count – computing interference

- "You will have to brace yourselves for this not because is difficult to understand, but because it is absolutely ridiculous: All we do is draw little arrows on a piece of paper – that's all!" – Richard Feynman
- Arrows for each possibility
- Arrows rotate; speed depends on frequency
- Arrows flip 180° at mirrors, rotate 90° counter-clockwise when reflected from beam splitters

Adding arrows

Α	В	Sum
←	↓	←
_	/	—
1	ţ	•
1	_	→
→	†	→
`	1	→
1	†	•
1	X	—
—	←	←

Possibilities count even if they do not happen

- The amplitudes can interfere constructively and destructively, even though each photon takes only one path
- The amplitudes at detector A interfere destructively; those at detector B interfere constructively

A photon-triggered bomb

- A mirror is mounted on a plunger on the bomb's nose
- A single photon hitting the mirror depresses the plunger and explodes the bomb

Bomb problem

- Some plunger are stuck, producing duds
- How can you find a good, unexploded bomb?

Elitzur-Vaidman bomb test

• Can be enhanced to reduce or eliminate bomb loss

Quantum states QUBIT

 $|\psi\rangle = a_0|0\rangle + a_1|1\rangle$; $a_0, a_1 \in \mathbb{C}$ Basis $\rightarrow \{|0\rangle, |1\rangle\}$

Measurement $\rightarrow |0\rangle \text{ or } |1\rangle$

Quantum register

$$|\psi\rangle = \sum_{i=0}^{2^{n}-1} a_{i} |i\rangle$$
, with $\sum_{i=0}^{2^{n}-1} |a_{i}|^{2} = 1$

$$|\psi\rangle = \sum_{c_0c_1...c_{n-1}\in\mathbb{B}^n} a_{c_0c_1...c_{n-1}} |c_0c_1...c_{n-1}\rangle$$
, where $\sum_{c_0c_1...c_{n-1}\in\mathbb{B}^n} |a_{c_0c_1...c_{n-1}}|^2 = 1$

$$|\psi_{2-qubit}\rangle = a_0|00\rangle + a_1|01\rangle + a_2|10\rangle + a_3|11\rangle$$
, where $\sum_{i=0}^{\infty} |a_i|^2 = 1$

Quantum register example

$$\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\} = \left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\} \quad |\psi_{2-qubit}\rangle = \begin{bmatrix} a_0\\a_1\\a_2\\a_3 \end{bmatrix}, \text{ where } \sum_{i=0}^{3} |a_i|^2 = 1$$

$$|\psi_{A}\psi_{B}\rangle = |\psi_{A}\rangle \otimes |\psi_{B}\rangle = \begin{bmatrix} a_{A0} \\ a_{A1} \end{bmatrix} \otimes \begin{bmatrix} a_{B0} \\ a_{B1} \end{bmatrix} = \begin{bmatrix} a_{A0} \cdot a_{B0} \\ a_{A0} \cdot a_{B1} \\ a_{A1} \cdot a_{B0} \\ a_{A1} \cdot a_{B1} \end{bmatrix} \qquad |\psi_{A}\rangle = a_{A0}|0\rangle + a_{A1}|1\rangle = \begin{bmatrix} a_{A0} \\ a_{A1} \end{bmatrix}$$

$$|\psi_{B}\rangle = a_{B0}|0\rangle + a_{B1}|1\rangle = \begin{bmatrix} a_{B0} \\ a_{B1} \end{bmatrix}$$

$$|\psi_A\psi_B\rangle = |\psi_A\rangle \otimes |\psi_B\rangle = a_{A0}a_{B0}|00\rangle + a_{A0}a_{B1}|01\rangle + a_{A1}a_{B0}|10\rangle + a_{A1}a_{B1}|11\rangle \in \mathcal{H}^4$$

Tensor product

$$|\psi\rangle \otimes |\phi\rangle = |\psi\phi\rangle = \sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{m}-1} a_i b_j |i,j\rangle$$

$$|\psi\rangle = \sum_{i=0}^{2^{n}-1} a_i |i\rangle$$
, with $\sum_{i=0}^{2^{n}-1} |a_i|^2 = 1$

$$|\phi\rangle = \sum_{i=0}^{2^{m}-1} b_i |i\rangle$$
, with $\sum_{i=0}^{2^{m}-1} |b_i|^2 = 1$

$$|\psi\rangle \otimes |\phi\rangle = |\psi\phi\rangle = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{2^{n}-1} \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{2^{m}-1} \end{bmatrix} = \begin{bmatrix} a_0b_0 \\ \vdots \\ a_0b_{2^{m}-1} \\ \vdots \\ a_{2^{n}-1}b_0 \\ \vdots \\ a_{2^{n}-1}b_{2^{m}-1} \end{bmatrix}$$

Unitary transformations

- Transforms a basis state into a superposition
- Parallel transform of all superposed states
- All transformations are reversible
- Unitary: $U \cdot U^{\dagger} = I$
- Implemented with quantum gates

$$U = \begin{bmatrix} u_{00} & \cdots & u_{0,2^{n}-1} \\ \vdots & \ddots & \vdots \\ u_{2^{n}-1,0} & \cdots & u_{2^{n}-1,2^{n}-1} \end{bmatrix}$$

$$U|\psi\rangle = U\sum_{i=0}^{2^{n}-1} a_i |i\rangle = \sum_{i=0}^{2^{n}-1} Ua_i |i\rangle$$

$$U = \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{n}-1} |x\rangle \cdot u_{xy} \cdot \langle y|, \text{ where } \sum_{i=0}^{2^{n}-1} u_{ix}^{*} \cdot u_{iy} = \delta_{xy}$$

Universal quantum gate sets

Deutsch

Universal gate

$$D(\theta): |x, y, z\rangle \Rightarrow \begin{cases} i \cos\theta |x, y, z\rangle + \sin\theta |x, y, 1 - z\rangle & x = y = 1\\ |x, y, z\rangle & \text{otherwise} \end{cases}$$

Di Vincenzo

$$U_{2}(\omega, \alpha, \beta, \varphi) = e^{-i\varphi} \begin{bmatrix} e^{i\alpha} \cos\omega & -e^{-i\varphi} \sin\omega \\ e^{i\varphi} \sin\omega & e^{-i\alpha} \cos\omega \end{bmatrix} \qquad XOR = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Universal gate set

Quantum gates

• Pseudo-classical operators p(k) is a permutation over the basis states

• $XOR: |x, y\rangle \rightarrow |x, x \oplus y\rangle$

• Toffoli Gate:

$$TOFF: |x, y, z\rangle \rightarrow |x, y, (x\cdot y) \oplus z\rangle$$

$$PC|\psi\rangle = PC \sum_{i=0}^{2^{n}-1} a_i |i\rangle = \sum_{i=0}^{2^{n}-1} a_i |p(i)\rangle$$

$$XOR = \begin{bmatrix} 00 & 01 & 10 & 11 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 01 \\ 0 & 0 & 0 & 1 & 10 \\ 0 & 0 & 1 & 0 & 11 \end{bmatrix}$$

Quantum gates

• Hadamard
$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Quantum gates
$$|\Psi\rangle = H \otimes H \otimes \cdots H |00 \dots 0\rangle$$

$$= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \cdots \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
• Hadamard
$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$= \frac{1}{2^{\frac{n}{2}}}(|00 \cdots 00\rangle + |00 \cdots 01\rangle + \cdots |11 \cdots 11\rangle)$$

$$= \frac{1}{2^{\frac{n}{2}}}\sum_{i=0}^{2^{n}-1}|i\rangle$$

Conditional not

$$CNOT_{(n+1)-qubit}: |x_0, x_1, ..., x_{n-1}, z\rangle \to |x_0, x_1, ..., x_{n-1}, (\Lambda_{i=0}^{n-1} x_i) \otimes z\rangle$$

• Conditional not
$$CNOT_{(n+1)-qubit}: |x_0, x_1 ..., x_{n-1}, z\rangle \to |x_0, x_1 ..., x_{n-1}, (\Lambda_{i=0}^{n-1} x_i) \otimes z\rangle \qquad CNOT = \begin{bmatrix} 1 & 0 & \cdots & & 0 \\ 0 & 1 & & & \\ \vdots & & \ddots & & \vdots \\ & & & 1 & 0 & 0 \\ & & & & 1 & 0 & 0 \\ & & & & & 0 & 1 \\ 0 & & & & & & 0 \end{bmatrix}$$

Conditional phase shift

$$P(\varepsilon)|c_0c_1\dots c_{n-1}\rangle \rightarrow \begin{cases} e^{i\varepsilon}|c_0c_1\dots c_{n-1}\rangle, if\ c_0c_1\dots c_{n-1}=11\cdots 1\\ |c_0c_1\dots c_{n-1}\rangle, otherwise \end{cases}$$

$$P(\varepsilon)|c_{0}c_{1}\dots c_{n-1}\rangle \to \begin{cases} e^{i\varepsilon}|c_{0}c_{1}\dots c_{n-1}\rangle, if\ c_{0}c_{1}\dots c_{n-1}=11\cdots 1\\ |c_{0}c_{1}\dots c_{n-1}\rangle, otherwise \end{cases} \qquad P_{n-qubit}(\varepsilon) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0\\ 0 & 1 & 0 & & \\ 0 & 0 & 1 & & \\ \vdots & & \ddots & \vdots & \\ & & & 1 & 0\\ 0 & & & \cdots & 0 & e^{i\varepsilon} \end{bmatrix}$$

Interference

$$H:\begin{cases} |0\rangle \to \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ |1\rangle \to \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \end{cases}$$

$$H \cdot H : |0\rangle \to H : \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \to \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right] = |0\rangle$$

$$H \cdot H : |1\rangle \to H : \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \to \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) - \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right] = |1\rangle$$

$$\begin{split} H \cdot H \colon |0\rangle &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \to \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \to \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle \\ H \cdot H \colon |1\rangle &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \to \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} +1 \\ -1 \end{bmatrix} \to \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle \end{split}$$

Other important features

Entanglement

$$|\rho\rangle = \frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|10\rangle$$

$$\neg \exists |x\rangle, |y\rangle \text{ s. t. } |\rho\rangle = |x\rangle \otimes |y\rangle$$

Cloning impossibility

For
$$|\psi\rangle = a_0|0\rangle + a_1|1\rangle$$
, $\neg \exists U$ and $\neg \exists |x\rangle$ so that

$$U: (|\psi\rangle \otimes |x\rangle) = |\psi\rangle \otimes |\psi\rangle$$

The Einstein-Podolsky-Rosen paradox

- Is quantum theory incomplete?
- A theory of a system must have
 - Realism: observables characterized by definite values are independent on the measurement performed on the system
 - Localism: there is no action at the distance
- Bohm's interpretation of EPR Alice and Bob receive a pair of particles (Bell state) $|\rho\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A|1\rangle_B + |1\rangle_A|0\rangle_B)$
- Alice and Bob measure the spins of their respective particles
- Assumption of reality and locality => Alice's measurement result will not affect the result of Bob's measurement

The Einstein-Podolsky-Rosen paradox

 Assumption of reality and locality => Alice's measurement result will not affect the result of Bob's measurement

$$|\beta_{11}\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A|1\rangle_B + |1\rangle_A|0\rangle_B)$$

- If Alice obtains |0> with probability 0.5 => Bob obtains |1> with probability 1
- If Alice obtains |1> with probability 0.5 => Bob obtains |0> with probability 1
- Alice's measurement influences the outcome of Bob's measurement
- Quantum mechanics is a nonlocal theory => EPR paradox

Bell inequality

A not B + B not $C \ge A$ not C

$$1 + 4 + 2 + 3 \ge 1 + 2$$

CHSH Bell inequality

- A tool to invalidate the assumptions of the EPR paradox
- Charlie prepares a system of 2 particles in a given state, many times
- Charlie sends 1 particle to Alice, 1 particle to Bob (at a distant location)
- Alice and Bob measure their particles and repeat this experiment many times
- Alice can measure 2 observables on her particle: A₁ and A₂
- Bob measures 2 observables on his particle: B₁ and B₂
- We encode the outcomes (considered binary) as 1 and -1
- Alice and Bob chose randomly which of the 2 observables to measure
- Alice and Bob perform measurement simultaneously
- Assumption: the measurement of an observer cannot disturb the outcome of the other observer (they are situated at a distance)

CHSH Bell inequality

We can state

$$A_1B_1 + A_2B_1 + A_2B_2 - A_1B_2 = (A_1 + A_2)B_1 + (A_1 - A_2)B_2$$

But
$$A_1 = \pm 1$$
 and $A_2 = \pm 1$, so $A_1 + A_2 = 0$ or $A_2 - A_1 = 0$

$$\Rightarrow A_1B_1 + A_2B_1 + A_2B_2 - A_1B_2 = \pm 2$$

$$p(a_1,a_2,b_1,b_2) \in [0, 1]; A_1 = a_1, A_2 = a_2, B_1 = b_1, B_2 = b_2$$

$$\sum_{a_1,a_2,b_1,b_2} p(a_1,a_2,b_1,b_2) = 1$$

CHSH Bell inequality

The mean of
$$A_1B_1$$
 is $E(A_1B_1) = \sum_{a_1,a_2,b_1,b_2} p(a_1,a_2,b_1,b_2) a_1b_1$

$$E(A_1B_1 + A_2B_1 + A_2B_2 - A_1B_2) = \sum_{a_1,a_2,b_1,b_2} p(a_1,a_2,b_1,b_2) (a_1b_1 + a_2b_1 + a_2b_2 - a_1b_2) \le 2 \sum_{a_1,a_2,b_1,b_2} p(a_1,a_2,b_1,b_2) = 2 \sum_{a_1,a_2,b_1,b_2} p(a_1,a_2,b_2,b_2) = 2 \sum_{a_1,a_2,b_1,b_2} p(a_1,a_2,b_2,b_2) = 2 \sum_{a_1,a_2,b_2} p(a_1,a_2,b_2,b_2)$$

$$E(A_1B_1 + A_2B_1 + A_2B_1 - A_1B_2) = E(A_1B_1) + E(A_2B_1) + E(A_2B_2) - E(A_1B_2) \le 2$$

But if the state prepared by Charlie is $|\beta_{11}\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A|1\rangle_B + |1\rangle_A|0\rangle_B$

then
$$< A_1B_1 > + < A_2B_1 > + < A_2B_2 > - < A_1B_2 > = 2\sqrt{2}$$

=> CHSH-Bell inequality is violated and EPR assumption of realism is wrong

Quantum functions

Pseudo-classic operator f over n input qubits and m output qubits:

$$F_{n,m}: |k\rangle \otimes |0\rangle = |k,0\rangle \rightarrow |k,f(k)\rangle = |k\rangle \otimes |f(k)\rangle$$

• Could be applied over a superposition:
$$F: \frac{1}{2^{\frac{n}{2}}} \sum_{i=0}^{2^{n}-1} |i\rangle |0\rangle \to \frac{1}{2^{\frac{n}{2}}} \sum_{i=0}^{2^{n}-1} |i\rangle |f(i)\rangle$$

Measurement (input register)

$$\frac{1}{2^{\frac{n}{2}}} \sum_{i=0}^{2^{n}-1} |i\rangle |f(i)\rangle \xrightarrow{\text{measurement}} |q\rangle |f(q)\rangle$$

• Measurement (output register) and $f(j_0) = f(j_1) = ... = f(j_{w-1}) = q$

$$\frac{1}{2^{\frac{n}{2}}} \sum_{i=0}^{2^{n}-1} |i\rangle |f(i)\rangle \xrightarrow{\text{measurement}} \frac{1}{\sqrt{w}} \sum_{i=0}^{w-1} |j_i\rangle |q\rangle$$

Grover's algorithm

- We consider that the problem has k solutions, $1 \le k \le n$
- We can reduce his problem to a decision problem, thus

$$f_d(x) = \begin{cases} 0 & \text{if } x \text{ is not the solution} \\ 1 & \text{if } x \text{ is the solution} \end{cases}$$

• In this context, we can define a quantum oracle as

$$U_O\colon |x\rangle|u\rangle \mapsto |x\rangle|f_d(x) \oplus u\rangle$$
 Index quregister Oracle quregister

• If
$$|u\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$
, because $NOT: \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \mapsto (-1)\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

• We have:

$$U_0: |x\rangle \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \mapsto (-1)^{f_d(x)}|x\rangle \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

The Oracle

"Marks the Solution"

Grover's algorithm

Grover (Gro) circuit

Grover's algorithm

New basis: $\{|\rho\rangle, |\sigma\rangle\}$

$$|\rho\rangle = \frac{1}{\sqrt{n-k}} \sum_{x \in \bar{S}} |x\rangle \qquad |\sigma\rangle = \frac{1}{\sqrt{k}} \sum_{x \in S} |x\rangle$$

Iterations: $q \le \left| \frac{\pi}{4} \sqrt{\frac{n}{k}} \right|$

$$O\left(\sqrt{\frac{n}{k}}\right)$$

Shor's algorithm

• Step 1:
$$|\psi_1\rangle=|\psi_i\rangle|\psi_o\rangle=|0\rangle^{\bigotimes 2L}|0\rangle^{\bigotimes 2L}$$

• Step 2:
$$|\psi_2\rangle = \left(\frac{1}{2^L}\sum_{i=0}^{2^{2L}-1}|i\rangle\right)|0\rangle$$

• Step 3:
$$|\psi_3\rangle = \frac{1}{2^L} \sum_{i=0}^{2^{2L}-1} |i\rangle |f(i)\rangle$$

• *f* is periodic

$$f_{a,N}(x) = a^x \mod N$$

• factors:

$$\gcd(a^{\frac{r}{2}} \pm 1, N), r \mod N \neq -1$$

Shor's algorithm

• Step 4: output register measurement

$$|\psi_4\rangle = \sqrt{\left\lceil\frac{r}{2^{2L}}\right\rceil} \sum_{i=0}^{\left\lceil\frac{2^{2L}}{r}\right\rceil-1} |r \cdot i + b\rangle |m\rangle$$

Result	Post-measure state	Offset
1	$\xi(0)+ 4\rangle+ 8\rangle+\ldots)1\rangle$	0
4	$\xi(3)+ 7\rangle+ 11\rangle+\ldots)4\rangle$	3
7	$\xi(1)+ 5\rangle+ 9\rangle+\ldots)7\rangle$	1
13	$\xi(2)+ 6\rangle+ 10\rangle+\ldots 13\rangle$	2

Shor's algorithm (QFFT)

- Step 5: offset removal $|\psi_5\rangle = U_{DFT}|\psi_4\rangle$
 - input register measurement: h
 - $h/2^{2L}=a_1/a_2$ is approximated with continued fractions

r does not divide 2^{2l} , distinct peak distance $\lceil 2^{2l}/r \rceil$

