LAB NOTEBOOK

ANALYSIS AND OPTIMIZATION OF THE SEQUENCING DATA

PROCESSING FOR THE EFFECTIVE LOCALIZATION OF MUTATIONS

RESPONSIBLE FOR THE ANTIBIOTIC RESISTANCE PROPERTY IN

E.COLI ON THE EXAMPLE OF AMPICILLIN

SIDORENKO OKSANA ILYA OLKHOVSKY

Getting the raw data

Terminal command	Result file	Comment
wget https://ftp.ncbi.nlm.nih.gov/g enomes/all/GCF/000/005/845/ GCF_000005845.2_ASM584v2/ GCF_000005845.2_ASM584v2_ genomic.fna.gz	ecoli_parental_ref.fna.gz.f na.gz	Reference sequence of the parental (unevolved, not resistant to antibiotics) E. coli strain: .fasta
wget https://ftp.ncbi.nlm.nih.gov/g enomes/all/GCF/000/005/845/ GCF_000005845.2_ASM584v2/ GCF_000005845.2_ASM584v2_ genomic.gff.gz	ecoli_parental_ref_annota tion.gff.gz	Annotation:.gff
wget https://figshare.com/ndownlo ader/files/23769689	amp_res_1.fastq.gz	Illumina sequencing reads from shotgun sequencing of an E. coli strain that is resistant to the antibiotic ampicillin: forward
wget https://figshare.com/ndownlo	amp_res_2.fastq.gz	Illumina sequencing reads from shotgun sequencing

ader/files/23769692		of an E. coli strain that is resistant to the antibiotic ampicillin: reverse
gzip -dk amp_res_1.fastq.gz	amp_res_1.fastq	Decompress and keep amp_res_1.fastq.gz
gzip -dk amp_res_2.fastq.gz	amp_res_2.fastq	Decompress and keep amp_res_2.fastq.gz

Inspecting raw sequencing data manually

zcat ecoli_parental_ref.fna.gz | head -20
zcat ecoli_parental_ref_annotation.gff.gz | head -20
zcat amp_res_1.fastq.gz | head -20
zcat amp_res_2.fastq.gz | head -20

Terminal command	Result	Comment
wc -l amp_res_1.fastq	1823504	There are 1823504 lines in amp_res_1.fastq = 455876 reads
wc -l amp_res_2.fastq	1823504	There are 1823504 lines in amp_res_2.fastq = 455876 reads

Inspecting raw sequencing data with fastqc. Filtering the reads

Terminal command	Result	Comment
sudo apt-get install fastqc		Installing fastqc

sudo fastqc -o . /home/oxana/Project1/raw_data/ amp_res_1.fastq /home/oxana/Project1/raw_data/ amp_res_2.fastq conda install -c bioconda trimmomatic	amp_res_1_fastqc.html amp_res_1_fastqc.zip amp_res_2_fastqc.html amp_res_2_fastqc.zip	Running fastqc on the two fastq files: amp_res_1.fastq and amp_res_2.fastq Installing Trimmomatic
java-jar /home/oxana/miniconda3/pkgs/tr immomatic-0.39-hdfd78af_2/shar e/trimmomatic-0.39-2/trimmoma tic.jar PE -phred33 amp_res_1.fastq.gz amp_res_2.fastq.gz output_forward_paired.fq.gz output_forward_unpaired.fq.gz output_reverse_paired.fq.gz output_reverse_unpaired.fq.gz ILLUMINACLIP:/home/oxana/mi niconda3/pkgs/trimmomatic-0.39 -hdfd78af_2/share/trimmomatic- 0.39-2/adapters/TruSeq3-PE.fa:2: 30:10 LEADING:20 TRAILING:20 SLIDINGWINDOW:10:20 MINLEN:20	Using PrefixPair: 'TACACTCTTTCCCTACA CGACGCTCTTCCGATCT' and 'GTGACTGGAGTTCAGA CGTGTGCTCTTCCGATC T' ILLUMINACLIP: Using 1 prefix pairs, 0 forward/reverse sequences, 0 forward only sequences, 0 reverse only sequences Input Read Pairs: 455876 Both Surviving: 445524 (97,73%) Forward Only Surviving: 9951 (2,18%) Reverse Only Surviving: 271 (0,06%) Dropped: 130 (0,03%) • output_forward _paired.fq.gz	Running Trimmomatic in paired end mode, with following parameters: • Cut bases off the start of a read if quality below 20 • Cut bases off the end of a read if quality below 20 • Trim reads using a sliding window approach, with window size 10 and average quality within the window 20. • Drop the read if it is below length 20.

	 output_forward _unpaired.fq.gz output_reverse_ paired.fq.gz output_reverse_ unpaired.fq.gz 	
zcat output_forward_paired.fq.gz wc -l	1782096	Checking the count of the trimmed paired reads (forward) manually: 1782096/4 = 445524
zcat output_reverse_paired.fq.gz wc -l	1782096	Checking the count of the trimmed paired reads (reverse) manually: 1782096/4 = 445524
sudo fastqc -o . /home/oxana/Project1/BI_Project _1/raw_data/output_forward_pai red.fq.gz /home/oxana/Project1/BI_Project _1/raw_data/output_reverse_pair ed.fq.gz	output_forward_paire d_fastqc.html output_forward_paire d_fastqc.zip output_reverse_paired _fastqc.html output_reverse_paired _fastqc.zip	Running fastqc on the two fastq files: output_forward_paired.fq and output_reverse_paired.fq
What happens if we ir	icrease the quality score a	at all steps to 30?
/home/oxana/miniconda3/pkgs/tr immomatic-0.39-hdfd78af_2/shar e/trimmomatic-0.39-2/trimmoma tic.jar PE -phred33 amp_res_1.fastq.gz amp_res_2.fastq.gz		Running Trimmomatic in paired end mode, with following parameters: • Cut bases off the start of a read if quality below 30

	1	
test30_forward_paired.fq.gz test30_forward_unpaired.fq.gz test30_reverse_paired.fq.gz test30_reverse_unpaired.fq.gz ILLUMINACLIP:/home/oxana/mi niconda3/pkgs/trimmomatic-0.39 -hdfd78af_2/share/trimmomatic- 0.39-2/adapters/TruSeq3-PE.fa:2: 30:10 LEADING:30 TRAILING:30 SLIDINGWINDOW:10:30 MINLEN:30		 Cut bases off the end of a read if quality below 30 Trim reads using a sliding window approach, with window size 10 and average quality within the window 30. Drop the read if it is below length 30.
zcat test30_forward_paired.fq.gz wc -l	1439764	Checking the count of the trimmed paired reads (forward) manually: 1782096/4 = 359941
zcat test30_reverse_paired.fq.gz wc -l	1439764	Checking the count of the trimmed paired reads (reverse) manually: 1782096/4 = 359941
sudo fastqc -o . /home/oxana/Project1/BI_Project _1/raw_data/test30_forward_pair ed.fq.gz /home/oxana/Project1/BI_Project _1/raw_data/test30_reverse_pair ed.fq.gz	test30_forward_paired _fastqc.html test30_forward_paired _fastqc.zip test30_reverse_paired_ fastqc.html test30_reverse_paired_ fastqc.zip	Running fastqc on the two fastq files: test30_forward_paired.fq and test30_reverse_paired.fq

Aligning sequences to reference

5.1 Indexing the reference file

Terminal command	Result	Comment
apt-get install bwa	-	bwa installation
bwa index ecoli_parental_ref.fna.gz &	ecoli_parental_ref.fna.gz.amb ecoli_parental_ref.fna.gz.ann ecoli_parental_ref.fna.gz.bwt ecoli_parental_ref.fna.gz.pac ecoli_parental_ref.fna.gz.sa	Indexing the reference file (background)

5.2 Aligning reads

Terminal command	Result	Comment
bwa mem -t2 ecoli_parental_ref.fna.gz output_forward_paired.fq.gz output_reverse_paired.fq.gz > alignment.sam	alignment.sam	Aligning trimmed, paired sequences to the reference genome
samtools view alignment.sam head -20	-	Checking the format manually

5.3. Compressing SAM file

Terminal command Result Comment

samtools view -S -b alignment.sam > alignment.bam	alignment.bam	Converting a sam file to a bam file
samtools view alignment.bam head -20	-	Checking the format manually
samtools flagstat alignment.bam	891306 + 0 in total (QC-passed reads + QC-failed reads) 891048 + 0 primary 0 + 0 secondary 258 + 0 supplementary 0 + 0 duplicates 0 + 0 primary duplicates 890190 + 0 mapped (99.87%: N/A) 889932 + 0 primary mapped (99.87%: N/A) 891048 + 0 paired in sequencing 445524 + 0 read1 445524 + 0 read2 887122 + 0 properly paired (99.56%: N/A) 888962 + 0 with itself and mate mapped 970 + 0 singletons (0.11%: N/A) 0 + 0 with mate mapped to a different chr 0 + 0 with mate mapped to a different chr (mapQ>=5)	Getting some basic statistics: we have 890190 (99.87%) mapped reads.

5.4 Sort and index BAM file

Terminal command	Result	Comment
samtools sort alignment.bam -o alignment_sorted.bam	alignment_sorted.bam	Sorting bam file by sequence coordinate on reference
samtools index alignment_sorted.bam	alignment_sorted.bam.bai	Indexing bam file for faster search
sudo ./igv.sh	Beautiful pictures :)	Visualization with IGV browser with ecoli_parental_ref.fasta and alignment_sorted.bam (we need alignment_sorted.bam. bai as well).

6. Variant calling

Terminal command	Result	Comment
samtools mpileup -f	my.mpileup	Making an mpileup
ecoli_parental_ref.fasta		intermediate file
alignment_sorted.bam >		
my.mpileup		
varscan mpileup2snp	Only SNPs will be reported	Running VarScan to
my.mpileupmin-var-freq	Warning: No p-value	reporn SNPs with
0.2variantsoutput-vcf 1 >	threshold provided, so	option
VarScan_results_snp.vcf		min-var-frequency 0.2

	I	Τ
	p-values will not be	(20%). This sets the
	calculated	minimum % of
	Min coverage: 8	non-reference bases at
	Min reads2: 2	a position required to
	Min var freq: 0.2	call it a mutation in the
	Min avg qual: 15	sample.
	P-value thresh: 0.01	
	Reading input from	Thevariants flag tells
	my.mpileup	VarScan to only output
	4641514 bases in pileup file	positions that are above
	9 variant positions (6 SNP, 3	our threshold.
	indel)	
	0 were failed by the	Theoutput-vcf 1
	strand-filter	option tells we want the
	6 variant positions reported	output in yet another
	(6 SNP, 0 indel)	kind of data format
		called vcf (variant call
	VarScan_results_snp.vcf	format).
varscan mpileup2indel	Only indels will be reported	Running VarScan to
my.mpileupmin-var-freq	Warning: No p-value	detect indels with
0.2variantsoutput-vcf 1 >	threshold provided, so	option
VarScan_results_indel.vcf	p-values will not be	min-var-frequency 0.2
	calculated	(20%). This sets the
	Min coverage: 8	minimum % of
	Min reads2: 2	non-reference bases at
	Min var freq: 0.2	a position required to
	Min avg qual: 15	call it a mutation in the
	P-value thresh: 0.01	sample.
	Reading input from	_
	my.mpileup	Thevariants flag tells
	4641514 bases in pileup file	VarScan to only output

9 variant positions (6 SNP, 3	positions that are above
indel)	our threshold.
0 were failed by the	
strand-filter	Theoutput-vcf 1
3 variant positions reported	option tells we want the
(0 SNP, 3 indel)	output in yet another
	kind of data format
VarScan_results_indel.vcf	called vcf (variant call
	format).

7. Variant effect prediction

Terminal command	Result	Comment
sudo ./igv.sh	Beautiful pictures :)	Visualization with IGV browser with
		ecoli_parental_ref.fasta,
		alignment_sorted.bam,
		ecoli_parental_ref_ann
		otation.gff.gz,
		VarScan_results_snp.vcf

Exploring mutations, find whether each mutation occurs in a gene, whether it is missense (changes the amino acid sequence), nonsense (introduces a frameshift or early stop codon), or synonymous (no amino acid change). For missense or nonsense mutations finding out what that gene name is.

SNPs

Reference	Mutation	Type of mutation	Gene
GCC (A)	GGC (G)	missence	ftsI
CAG (Q)	CTG (L)	missence	acrB

TTT	TCT	not protein coding	rybA
GGT (G)	GAT (D)	missence	mntP
GTA (V)	GGA (G)	missence	envZ
GCC (A)	GCA (A)	synonymous	rsgA

Automatic SNP annotation

Terminal command	Result	Comment
conda install -c bioconda		snpeff installation
snpeff		
wget	GCF_000005845.2_ASM584v2/	Downloading the file
https://ftp.ncbi.nlm.nih.go	GCF_000005845.2_ASM584v2_	that contains both
v/genomes/all/GCF/000/	genomic.gbff.gz	annotation and
005/845/GCF_000005845		sequence
.2 ASM584v2/GCF 00000		
5845.2 ASM584v2 genomi		
<u>c.gbff.gz</u>		
	Database creating	
vim snpEff.config	snpEff.config	Creating text file
		snpeff.config with one
		string:
		k12.genome ecoli_K12
mkdir -p data/k12	data/k12	Creating folder for the
		database

gunzip GCF_000005845.2_ASM584v2 _genomic.gbff.gz cp GCF_000005845.2_ASM584v2 _genomic.gbff data/k12/genes.gbk	data/k12/genes.gbk	Putting the .gbk file (unzipped and renamed to genes.gbk) into data/k12
sudo java -jar /home/oxana/miniconda3/pk gs/snpeff-5.1-hdfd78af_2/shar e/snpeff-5.1-2/snpEff.jar build -genbank -v k12	sequence.NC_000913.3.bin snpEffectPredictor.bin	Creating database
sudo java -jar /home/oxana/miniconda3/pk gs/snpeff-5.1-hdfd78af_0/shar e/snpeff-5.1-0/snpEff.jar ann k12 VarScan_results_snp.vcf > snp_ann.vcf	snpEff_summary.html snp_ann.vcf	Annotation
sudo ./igv.sh	Beautiful pictures :)	Visualization with IGV browser with ecoli_parental_ref.fasta, alignment_sorted.bam, ecoli_parental_ref_ann otation.gff.gz, snp_ann.vcf