BT209

Bioreaction Engineering

26/04/2023

Non ideal flow reactor (RTD)

RTD of ideal CSTR

In an ideal CSTR (perfectly mixed) the concentration of any substance in the effluent stream is identical to the concentration throughout the reactor.

A material balance on an inert tracer that has been injected as a pulse at time t=0 into a CSTR yields for t > 0

$$In - Out = Accumulation$$

$$\widetilde{0} - \widetilde{vC} = V \frac{dC}{dt}$$

$$E(t) = \frac{C(t)}{\int_0^\infty C(t) dt} = \frac{C_0 e^{-t/\tau}}{\int_0^\infty C_0 e^{-t/\tau} dt} = \frac{e^{-t/\tau}}{\tau}$$

Cont.

F-curve of ideal CSTR:
$$F(t) = \int_0^t E(t)dt = 1 - e^{-t/\tau}$$

Mean residence time of ideal CSTR:
$$t_m = \int_0^\infty tE(t) dt = \int_0^\infty \frac{t}{\tau} e^{-t/\tau} dt = \tau$$

RTD of ideal PFR

- In ideal PFR, all the atoms leaving the reactor have spent precisely the same amount of time within the reactors.
- For pulse input of tracer, the tracer outlet concentration distribution will be same as input pulse (spike of infinite height and zero width) but the spice occur at $t=\tau$
- The RTD function in such a case is a spike of infinite height and zero width, whose area is equal to 1
- ☐ Mathematically, this spike is represented by the Dirac delta function:

$$E(t) = \delta(t - \tau)$$
 spice occur at $t = \tau$

PROPERTY

Area under the curve: $\int_0^\infty \delta(t-t_0)dt = 1$

$$\int_0^\infty \delta(t-t_0)dt = 1$$

Any integration with a δ function:

$$\int_0^\infty \delta(t-t_0)f(t)dt = f(t_0)$$

Cont...

Mean residence time of ideal PFR:
$$t_m = \int_0^\infty tE(t) dt = \int_0^\infty t \delta(t - \tau) dt = \tau$$

Variance of ideal PFR:

$$\sigma^2 = \int_0^\infty (t - \tau)^2 \, \delta(t - \tau) \, dt = 0$$

F-curve of ideal PFR:

$$F(t) = \int_0^t E(t)dt = \int_0^t \delta(t - \tau)dt$$

RTD of ideal CSTR followed by ideal PFR

RTD of ideal PFR followed by ideal CSTR

(same RTD as CSTR→PFR)

☐ RTD is specific to a reactor system but same RTD does not mean same reactor system

Why mixing model?

- ✓ Same RTD, but does not give same **conversion** for a reactant A (CHECK IT, Except 1st order)
 - ➤ The RTD is not a complete description of structure for a particular reactor or system of reactors
 - Mixing is another important parameter (late mixing, early mixing)
- > Need mixing model to predict conversion or size of reactor apart from RTD and kinetics