# ШАД. Хэндбук поступающего

Автор: Даниил Скороходов

@neuralspeedster

07.10.2025

# Содержание

| A. | Алго | ебра                                              | 4 |
|----|------|---------------------------------------------------|---|
|    | A.1. | Перестановки                                      | 4 |
|    |      | А.1.1. Умножение перестановок                     | 4 |
|    |      | А.1.2. Циклы и транспозиции                       | 5 |
|    |      | А.1.3. Чётность Перестановки                      | 6 |
|    | A.2. | Комплексные числа                                 | 7 |
|    |      | А.2.1. Геометрическая интерпретация               | 7 |
|    |      | А.2.2. Формы записи                               | 9 |
|    |      | А.2.3. Об умножении комплексных чисел             | 0 |
|    |      | А.2.4. Извлечение корней                          | 1 |
|    |      | А.2.5. Корни из единицы                           | 2 |
|    | A.3. | Системы линейных уравнений                        | 3 |
|    | A.4. | Линейная зависимость и ранг                       | 4 |
| B. | Мат  | ематический анализ1                               | 5 |
|    | B.1. | Кратные интегралы                                 | 5 |
|    |      | В.1.1. Двойные интегралы                          | 5 |
|    |      | В.1.1.1. Определение двойного интеграла           |   |
|    |      | В.1.1.2. Суммы Дарбу                              | 5 |
|    |      | В.1.1.3. Свойства двойного интеграла              | 5 |
| C. | Ком  | бинаторика                                        | 9 |
|    | C.1. | Основные правила комбинаторики                    | 9 |
|    |      | С.1.1. Првила суммы и произведения                | 9 |
|    |      | С.1.2. Принцип Дирихле                            | 0 |
|    |      | С.1.3. Примеры                                    | 1 |
|    | C.2. | Множества                                         | 2 |
|    |      | С.2.1. Операции на множествах                     | 2 |
|    |      | С.2.2. Свойства бинарных операций над множествами | 2 |
|    |      | С.2.3. Кортеж                                     | 2 |
|    |      | С.2.4. Декартово произведение                     | 3 |
|    |      | С.2.5. Мощность множества                         | 3 |
|    |      | С.2.6. Круги Эйлера                               |   |
|    |      | С.2.7. Формула включений и исключений             | 4 |
|    | C.3. | Перестановки, сочетания и размещения              | 5 |
|    |      | С.3.1. Выбор без повторений                       | 5 |

|    | С.3.2. Выбор с повторениями                         |    |
|----|-----------------------------------------------------|----|
|    | С.4. Производящие функции                           | 27 |
| D. | О. Теория вероятностей                              | 28 |
|    | D.1. Основные понятия                               | 28 |
|    | D.1.1. Операции над событиями                       | 28 |
|    | D.1.2. Аксиомы вероятности                          | 29 |
|    | D.1.3. Следствия из Аксиом                          | 30 |
| E. | Е. Алгоритмы и структуры данных && программирование | 31 |
|    | Е.1. Основные понятия                               | 31 |
|    | Е.2. Анализ сложности и эффективности алгоритмов    | 32 |
|    | Е.2.1. Асимптотические оценки функций               | 32 |
|    | Е.3. Динамическое программирование                  | 33 |
| F. | F. Анализ данных                                    | 34 |

### А. Алгебра

Здесь много базы!

### А.1. Перестановки

Пусть  $\Omega$  - конечное множество из n элементов. Удобно считать, что  $\Omega = \{1, 2, ..., n\}$ . Зададим множество всех биективных преобразований  $\Omega \to \Omega$ :

$$S = S_n(\Omega) = \{ \sigma : \Omega \to \Omega \mid \sigma - \text{биективно} \}$$
 (1)

Элементы множества S называются nepecmanoвками(или nepecmanoвками) множества  $\Omega$ .

Развёрнутая запись Перестановки  $\pi: i \to \pi(i) \ \forall i = 1, 2, ..., n$  имеет вид:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix} \tag{2}$$

Перестановка  $e=e_{\Omega}=\begin{pmatrix}1&2&\dots&n\\1&2&\dots&n\end{pmatrix}$  называется единичной Перестановкой.

### А.1.1. Умножение перестановок

Пусть  $\pi, \sigma \in S$ . Тогда их произведение  $\pi \sigma$  находится из общего определения композиции преобразований:

$$(\pi\sigma)(i) = \pi(\sigma(i)) \tag{3}$$

Пусть, например,  $\pi=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$  и  $\sigma=\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$ . Тогда:

$$(\pi\sigma)(1) = \pi(\sigma(1)) = \pi(4) = 1$$
 (4)

$$(\pi\sigma)(2) = \pi(\sigma(2)) = \pi(3) = 4 \tag{5}$$

$$(\pi\sigma)(3) = \pi(\sigma(3)) = \pi(2) = 3$$
 (6)

$$(\pi\sigma)(4) = \pi(\sigma(4)) = \pi(1) = 2 \tag{7}$$

Таким образом,  $\pi\sigma=\begin{pmatrix}1&2&3&4\\1&4&3&2\end{pmatrix}$ . Заметим, что вообще говоря,  $\pi\sigma\neq\sigma\pi$ . Имеем:

Свойства произведения перестановок:

- 1. Ассоциативность:  $\forall \alpha, \beta, \gamma \in S_n : \alpha(\beta\gamma) = (\alpha\beta)\gamma.$
- 2. Единичный элемент:  $\exists e \in S_n : \forall \alpha \in S_n \alpha e = e \alpha.$
- 3. Обратная Перестановка:  $\forall \alpha \in S_n \exists \alpha^{-1} \in S_n : \alpha \alpha^{-1} = \alpha^{-1} \alpha = e.$

Порядок группы перестановок или же попросту мощность множества перестановок равна факториалу количества элементов  $\Omega$ . Действительно, для каждого из n элементов множества  $\Omega$  можно выбрать одно из n мест, затем для оставшихся n-1 элементов — одно из n-1 мест и так далее. В итоге получаем:

Card 
$$S_n = n(n-1)(n-2)...1 = n!$$
 (9)

### А.1.2. Циклы и транспозиции

 $_i$  Ииклом длины  $m \leq n$  множества  $\Omega$  называется такая Перестановка  $\sigma \in S_n$ , что  $\sigma(i) = (i+1) \ \forall i=1,2,...,(m-1)$  и  $\sigma(m)=1$ , а все элементы  $\Omega$ , не указанные перечислением, остаются на своих местах. Т. е.  $\forall k \notin \{1,...,m\}: \sigma(k)=k$ .

Примечание: элементы цикла приведены условно как  $\{1,...,m\}$ .

*Транспозицией* называется цикл длины 2. Записывается как  $au=(i\ j)$ , где  $i\ u\ j-$  элементы, которые меняются местами.

Исходя из общего определения цикла, очевидно, что транспозиция оставляет неподвижными все элементы, кроме двух указанных.

**Th. 1 (О разложении перестановок).** Любая Перестановка  $\pi \in S_n \setminus \{e\}$  может быть представлена в виде произведения циклов.

Доказательство: Пусть  $\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$ . Разобьём множество  $\Omega$  на непересекающиеся циклы. Для этого будем рассматривать последовательности элементов, которые переходят друг в друга под действием Перестановки  $\pi$ .

*Следствие 1.* Любая Перестановка может быть разложена в произведение транспозиций.

Доказательство: Разложим Перестановку  $\pi=\pi_1\pi_2...\pi_k$ , где  $\pi_1,\pi_2,...,\pi_k$  — циклы. Каждый цикл  $\pi_j$  можно представить в виде произведения транспозиций, например, так:  $\begin{pmatrix} 1 & 2 & ... & m \end{pmatrix} = \begin{pmatrix} 1 & l \end{pmatrix} \begin{pmatrix} 1 & l-1 \end{pmatrix} ... \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$ .

Индуктивное определение степени Перестановки. Пусть  $\pi \in S_n$ . Тогда:

$$\pi^{s} = \begin{cases} \pi(\pi^{s-1}), & \text{если } s > 0 \\ e, & \text{если } s = 0 \\ \pi^{-1}\left(\left(\pi^{-1}\right)^{-s-1}\right), & \text{если } s < 0 \end{cases}$$
 (10)

Вернёмся к примеру  $\pi=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$  и  $\sigma=\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$ . Здесь  $\pi-$  цикл длины 4, а  $\sigma$  раскладывается в произведение двух транспозиций:  $\sigma=\begin{pmatrix}1&4\\2&3\end{pmatrix}$ .

$$\sigma^2 = (1 \ 3)(2 \ 4), \ \sigma^4 = (\sigma^2)^2 = e, \ \pi^2 = e$$

Aлгебpa 5

### А.1.3. Чётность Перестановки

Пусть Перестановка  $\pi \in S_n$  раскладывается на множители  $\pi = \tau_1 \tau_2 ... \tau_k$ , где  $\tau_j$  транспозиции.

Знаком(или чётностью) Перестановки называется число

$$\varepsilon_{\pi} = (-1)^k \tag{11}$$

Тh. 2: Чётность Перестановки не зависит от выбора разложения на транспозиции.

### Th. 2.1 (О знаке произведения):

$$\varepsilon_{\alpha\beta} = \varepsilon_{\alpha}\varepsilon_{\beta} \tag{12}$$

**Th. 3:** Количество чётных перестановок равно количеству нечётных и равно  $\frac{n!}{2}$ .

### А.2. Комплексные числа

Комплексным числом называется пара действительных чисел (a, b).

$$\mathbb{C} = \{ (a, b) \mid a, b \in \mathbb{R} \} \tag{13}$$

Если z = (a, b), то

$$a = \Re(z) \tag{14}$$

$$b = \Im(z) \tag{15}$$

a называется действительной частью комплексного числа  $z,\,b$  — мнимой частью.

Для комплексных чисел операции сложения и умножения определяются так:

1. 
$$(a,b) + (c,d) = (a+c,b+d)$$

$$2. \ (a,b)(c,d)=(ac-bd,ad+bc)$$

Заметим, что  $(a,0)=a \ \forall a \in \mathbb{R}$ . Так что  $\mathbb{R} \subset \mathbb{C}$ .

**Мнимая единица.**  $(0,1)^2=(0,1)(0,1)=(0\cdot 0-1\cdot 1,0\cdot 1+1\cdot 0)=(-1,0)=-1.$  Число (0,1) принято обозначать i и называть мнимой единицей. Итак,

$$i^2 = -1 \tag{16}$$

Стандартное обозначение для комплексного числа z = (a, b):

$$z = a + bi (17)$$

Для произвольных комплексных чисел нельзя корректно ввести бинарное отношение порядка(<).

### А.2.1. Геометрическая интерпретация

Комплексному числу можно сопоставить точку в двумерном пространстве с декартовыми координатами (a,b). По оси абсцисс откладывается действительная часть, по оси ординат — мнимая.

Aлгебра 7



Рис. 1 - комплексная плоскость

Операция сопряжения. Число  $\overline{z}=a-bi$  называется сопряжённым числу z=a+bi. Операция сопряжения соотвествует симметрии  $S_{\mathfrak{R}}$  относительно действительной оси.

Заметим, что  $\mathfrak{I}(z\overline{z})=0\Leftrightarrow z\overline{z}\in\mathbb{R}$ 

**Модуль комплексного числа.** Величина  $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$  называется модулем z.

**Аргумент комплексного числа.** Величина  $\arg(z)=\varphi$ , где  $\varphi\in(-\pi;\pi]$  — ориентированный угол между радиус-вектором z и положительным направлением оси абсцисс называется *аргументом комплексного числа*. Аргумент числа (0,0) не определён.

Неравенство треугольника в комплексных числах.  $\forall z_1, z_2 \in \mathbb{C}:$ 

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{18}$$

(Доказывается алгебраическими преобразованиями или использованием неравенства Коши-Буняковского-Шварца)

**Переход в полярные координаты.** Пусть z = x + yi Сделаем замену:

$$\begin{cases} r = |z| = \sqrt{x^2 + x^2} \\ \theta = \arg(z) \end{cases}$$
 (19)

Главными называются значения аргумента из полуинтервала  $(-\pi;\pi]$ .

Явное выражение для главного значения аргумента.

$$Arg(z) = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) \tag{20}$$

Доказательство: Пусть комплексное число (x,y) имеет аргумент  $\theta$ . Вписанный угол, опирающийся на дугу меры  $\theta$ , равен половине центрального угла  $\theta$ . Тогда из прямоугольного треугольника(см. рисунок).



$$\operatorname{tg}\left(\frac{\theta}{2}\right) = \frac{y}{x+r} \tag{21}$$

Это и эквивалентно  $\theta = 2 \operatorname{arctg} \left( \frac{y}{x+r} \right)$ .  $\blacksquare$ 

### А.2.2. Формы записи

1. Алгебраическая:

$$z = x + yi \tag{22}$$

2. Тригонометрическая:

$$z = r(\cos\varphi + i\sin\varphi) \tag{23}$$

3. Показательная:

$$z = re^{i\varphi} \tag{24}$$

Показательная форма есть просто следствие формулы Эйлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi \tag{25}$$

Доказательство самой формулы Эйлера вытекает из следующих трёх разложений.  $\forall z \in \mathbb{C}$ 

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
 (26)

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
 (27)

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 (28)

Подставим в разложение экспоненты  $z=i\varphi$ , где  $\varphi\in\mathbb{R}$  и учтем следующие тождества:  $i^2=-1,\ i^3=-i,\ i^4=1,\ i^5=i.$  Вообще говоря,  $i^n=i^{n-4}.$  Отсюда и следует требуемое.  $\blacksquare$ 

### А.2.3. Об умножении комплексных чисел

Алгебраическое умножение комплексных чисел не столь удобно, особенно при возведении в степень.

Пусть даны два комплексных числа  $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$  и  $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$ . Тогда их произведение можно записать в виде:

$$\begin{split} z_1 z_2 &= r_1 r_2 (\cos \varphi_1 + i \sin \varphi_1) (\cos \varphi_2 + i \sin \varphi_2) = \\ &= r_1 r_2 (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i (\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2)) = \\ &= r_1 r_2 (\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)) \end{split} \tag{29}$$

Итак,

$$\begin{cases} |z_1 z_2| = |z_1| |z_2| \\ \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \end{cases} \tag{30}$$

Исходя из этого, можно быстро возводить комплексные числа в произвольную натуральную степень.

Формула Муавра.  $\forall z = r(\cos \varphi + i \sin \varphi) \in \mathbb{C}, n \in \mathbb{N}$ :

$$z^{n} = r^{n}(\cos(n\varphi) + i\sin(n\varphi)) \tag{31}$$

Доказательство: докажем по индукции.

- 1. База: n=1. Тогда  $z^1=z=r(\cos\varphi+i\sin\varphi)$ . Это уже получено. Для уверенности можем проверить случай n=2. Легко видеть, что это следствие (30) для  $z=z_1=z_2$ .
- 2. Предположение индукции. Пусть верно для  $n\in\mathbb{N}$ :  $z^n=r^n(\cos(n\varphi)+i\sin(n\varphi))$
- 3. Шаг индукции. Докажем для n+1. Тогда

$$z^{n+1} = z^n z = r^n r(\cos(n\varphi + \varphi) + i\sin(n\varphi + \varphi)) =$$

$$= r^{n+1}(\cos((n+1)\varphi) + i\sin((n+1)\varphi))$$
(32)

Здесь мы снова использовали (30). Таким образом, формула верна для  $n+1\Rightarrow$  она верна  $\forall n\in\mathbb{N}.$ 

**Дополнительно.** Легко видеть, что умножение  $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$  на  $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$  задаёт композицию поворота  $R_o^{\varphi_2}$  и гомотетии  $H_O^{r_2}$  точки  $z_1$  на плоскости  $\mathbb C$ . Полученное преобразование  $\mathbb R^2\to\mathbb R^2$  называется поворотной гомотетиней:  $H_O^{r_2,\varphi_2}=H_O^{r_2}\!\circ\! R_O^{\varphi_2}$ .

### А.2.4. Извлечение корней

Алгебраическим корнем степени n>1 числа  $z\in\mathbb{C}$  называется множество  $\Omega=\{w\mid w^n=z\mid w\in\mathbb{C}, n\in\mathbb{N}\}$  и обозначается  $\sqrt[n]{z}$ .

$$\forall z \in \mathbb{C} : \operatorname{Card}(\sqrt[n]{z}) = n.$$

Выведем формулу для корней из комплексного числа  $z=r(\cos\varphi+i\sin\varphi)$ .

Пусть 
$$\sqrt[n]{z} = \{w_k \mid w_k^n = z \mid k = 0, 1, ..., n-1\}.$$

- 1. Очевидно, что  $|w_k|=\sqrt{r}$ , где  $\sqrt{r}-$  арифметический квадратный корень из действительного числа r. И правда, по формуле Муавра  $|z|=|w_k|^n$ .
- 2. Пусть  $\, \varphi_k = \arg(w_k) .$  Тогда по формуле Муавра:  $n \varphi_k = \varphi + 2\pi k .$  Для всех  $k \in \{k_0+i \mid i=0,1,...(n-1)\}$  будут получаться все n корней. Поэтому для удобства полагают  $k_0=0.$

Итак, доказана формула корней числа  $z=r(\cos\varphi+i\sin\varphi)\ \forall k\in\{0,1,...,n-1\}$  :

$$w_k = \sqrt{r} \left( \cos \left( \frac{\varphi}{n} + 2\pi \frac{k}{n} \right) + i \sin \left( \frac{\varphi}{n} + 2\pi \frac{k}{n} \right) \right) \tag{33}$$

Все корни из числа z лежат на вершинах правильного n-угольника, вписанного в окружность с центром в начале координат и радиусом  $\sqrt{r}$ .

Это легко видеть, исходя из того, что у всех корней одинаковый модуль, и каждый следующий получается из предыдущего поворотом на один и тот же угол  $\frac{2\pi}{n}$ .



Рис. 2 — корни 5 степени из z=4+4i

### А.2.5. Корни из единицы

Положим z=1. Тогда корни степени n выражаются так:

$$\sqrt[n]{1} = \varepsilon_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) \tag{34}$$

$$\forall k \in \{0, 1, ..., n-1\}.$$

Все корни есть вершины правильного n-угольника, вписанного в окружность единичного радиуса. Её уравнение  $z\overline{z}=1$ .

Aлzебрa 12

# А.3. Системы линейных уравнений

# А.4. Линейная зависимость и ранг

### В. Математический анализ

### В.1. Кратные интегралы

### В.1.1. Двойные интегралы

### В.1.1.1. Определение двойного интеграла

Пусть тело (V) в  $\mathbb{R}^3$  ограничено сверху поверхностью z=f(x,y). С боков ограничено цилиндрической поверхностью с образующей, параллельной оси z, а снизу плоской фигурой D на плоскости z=0. Требуется найти объём тела V.

Разобьём D на малые фигуры  $(\sigma_i),\ i=1,...n$ . Внутри каждой фигуры рассмотрим точку  $(\xi_i,\eta_i)\in\sigma_i$ . Тогда объём i-того столбика равен

$$|V_i| = f(\xi_i, \eta_i) \cdot |\sigma_i| \tag{35}$$

Приближённо можно написать, что

$$|V| \approx S_n = \sum_{i=1}^n f(\xi_i, \eta_i) \cdot |\sigma_i| \tag{36}$$

Полученная сумма называется интегральной. Будем неограниченно увеличивать мощность разбиения:  $n \to \infty$ . При стремлении макисмального диаметра фигуры  $\sigma_i$  к нулю:

$$\lambda = \max_{i=1,\dots n} d(\sigma_i) \tag{37}$$

получим, что объём |V| равен пределу

$$|V| = \lim_{\substack{n \to \infty \\ \lambda \to 0}} \left[ \sum_{i=1}^{n} f(\xi_i, \eta_i) \cdot |\sigma_i| \right]$$
 (38)

Oпределение. Число I называется двойным интегралом функции f(x,y) по области D,если  $\forall \varepsilon>0 \; \exists \delta>0: \; \forall$  разбиений D, таких, что максимальный диаметр фигур  $\sigma_i$  меньше  $\delta,$  выполняется  $|I-S_n|<\varepsilon,$  где  $S_n$  - интегральная сумма. Обозначается

$$I = \iint\limits_{D} f(x, y) dx dy \tag{39}$$

Условие существования двойного интеграла. Если функция f непрерывна на ограниченной замкнутой области D, то она интегрируема на D.

### В.1.1.2. Суммы Дарбу

Пусть область D разбита на конечное число подмножеств  $\sigma_i,\ i=1,...,n.$  Обозначим

$$M_i = \sup_{\sigma_i} f(x, y) \tag{40}$$

$$m_i = \inf_{\sigma_i} f(x, y) \tag{41}$$

1. Верхняя сумма Дарбу:

$$S = \sum_{i=1}^{n} M_i \cdot |\sigma_i| \tag{42}$$

2. Нижняя сумма Дарбу:

$$s = \sum_{i=1}^{n} m_i \cdot |\sigma_i| \tag{43}$$

Для любого разбиения справедливо, что

$$s \le S_n \le S \tag{44}$$

Свойства сумм Дарбу:

- 1. При добавлении новых фигур  $\sigma_i$  и линий в разбиение D нижняя сумма Дарбу не убывает, а верхняя не возрастает.
- 2. Любая нижняя сумма Дарбу не превосходит любой верхней суммы Дарбу, даже для разных разбиений.

Определение. Колебанием функции f(x,y) на области D называется число

$$S - s = \sum_{i=1}^{n} (M_i - m_i) \cdot |\sigma_i| \tag{45}$$

**Критерий интегрируемости Римана.** Для того, чтобы ограниченная функция f была интегрируема по области D необходимо u достаточно, чтобы

$$\lim_{\lambda \to 0} S - s = 0 \tag{46}$$

### В.1.1.3. Свойства двойного интеграла

Пусть функции f(x,y) и g(x,y) интегрируемы в D.

1. Линейность.  $\forall \alpha, \beta \in \mathbb{R}$ :

$$\iint\limits_{D} (\alpha f(x,y) + \beta g(x,y)) d\sigma = \alpha \iint\limits_{D} f(x,y) d\sigma + \beta \iint\limits_{D} g(x,y) d\sigma \tag{47}$$

2. Аддитивнось по области.  $\forall D_1, D_2: (D_1 \cup D_2 = D) \wedge (\operatorname{int}(D_1) \cap \operatorname{int}(D_2) = \varnothing):$ 

$$\iint\limits_{D} f(x,y)d\sigma = \iint\limits_{D_{1}} f(x,y)d\sigma + \iint\limits_{D_{2}} f(x,y)d\sigma \tag{48}$$

3. Интегрирование неравенств. Если  $f(x,y) \leq g(x,y)$ , то

$$\iint\limits_{D} f(x,y)d\sigma \le \iint\limits_{D} g(x,y)d\sigma \tag{49}$$

3.1. Следствие. Если  $m \leq f(x,y) \leq M$ , то

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D|$$
 (50)

3.1. Следствие.

$$\left| \iint\limits_{D} f(x,y) d\sigma \right| \le \iint\limits_{D} |f(x,y)| d\sigma \tag{51}$$

4. Теорема о среднем. Если функция f(x,y) непрерывна в замкнутой связной области D, то  $\exists (\xi,\eta) \in D$  :

$$f(\xi, \eta) = \frac{1}{|D|} \iint_{D} f(x, y) d\sigma \tag{52}$$

Доказательство. По теореме Вейерштрасса, на связной замнкутой области D функция f ограничена, поэтому  $\exists m, M \in \mathbb{R}: \ \forall (x,y) \in D: \ m \leq f(x,y) \leq M.$  Используя следствие (3.1), можно написать, что

$$m \le \frac{1}{|D|} \iint\limits_{D} f(x, y) d\sigma \le M \tag{53}$$

По теореме Больцано-Коши (о промежуточном значении), непрерывная функция f принимает на D все значения между m и M, в частности  $\exists (\xi,\eta) \in D$ , для которой выполнено требуемое.  $\blacksquare$ 

5. Интеграл от единицы.

$$\iint\limits_{D} dx dy = |D| \tag{54}$$

### С. Комбинаторика

В этом разделе рассматриваются основные понятия и тождества комбинаторики, а так же основы теории множеств и теории графов.

### С.1. Основные правила комбинаторики

### С.1.1. Првила суммы и произведения

**Правило суммы.** Если элемент множества A можно выбрать m способами, а элемент множества B n способами, то выбор «либо A, либо B» может быть сделан m+n способами, при условии, что множества A и B не пересекаются.

*Доказательство*: Количество способов выбрать «либо A, либо B» равно мощности множества  $A \cup B$ . По условию  $A \cap B = \emptyset$ , поэтому надо доказать лемму:

$$A \cap B = \bigotimes \Rightarrow |A \cup B| = |A| + |B| \tag{55}$$

Доказательство леммы: пусть  $A=\{a_1,...,a_m\}$  и  $B=\{b_1,...,b_n\}$  Тогда

$$A \cup B = \{a_1, ..., a_m, b_1, ..., b_n\} \tag{56}$$

Здесь существенно использовано то, что  $A\cap B=\emptyset$ , так как тогда  $\forall a\in A,\ \forall b\in B:\ a\neq b.$  Следовательно,  $|A\cup B|=m+n.$ 

По лемме,  $|A \cup B| = |A| + |B|$ , что и требовалось доказать.  $\blacksquare$ 

**Правило произведения.** Если объект A можно выбрать m способами и для каждого выбора A объект B можно выбрать n способами, то количество способов выбрать n упорядоченные пары n0 равно n1.

Доказательство: Переформулируем доказываемое утверждение так: пусть  $|A|=m,\ |B|=n.$  Тогда надо доказать, что мощность декартова произведения множеств равна произвдению мощностей сомножителей:

$$|A \times B| = m \cdot n \tag{57}$$

. Перед доказательством сформулируем важную лемму, которая доказана в разделе, связанном с теорией множеств. Лемма о дистрибутивности декартова произведения относительно объединения множеств:

$$A \times (B \cup C) = (A \times B) \cup (A \times C) \tag{58}$$

- . Докажем исходное утверждение индукцией по мощности второго сомножителя:
- 1. База индукции.

1.1. 
$$n=0:A\times B=A\times \boxtimes=\boxtimes$$
. Но  $|\boxtimes|=0=m\cdot n$ .  
1.2.  $n=1:A\times B=A\times \{b_1\}=\{(a_1,b_1),...,(a_m,b_1)\}$ . Легко видеть, что

- 2. Предположение индукции. Пусть верно для некоторого  $n\in\mathbb{N}$ , что  $\forall A,B:\ |A imes B|=m\cdot n.$
- 3. Шаг. Докажем для n+1 на основе предположения индукции. Пусть множество  $B_{n+1} = B_n \cup \{b_{n+1}\} \ \ \text{и} \ \ |B_n| = n.$

$$A\times B_{n+1}=A\times \left(B_n\cup \left\{b_{n+1}\right\}\right)=A\times B_n\cup A\times \left\{b_{n+1}\right\} \tag{59}$$

Тогда

$$|A \times B_{n+1}| = |A \times B_n| + |A \times \{b_{n+1}\}| = m \cdot n + m \cdot 1 = m \cdot (n+1)$$
 (60)

Шаг индукции верен, поэтому утверждение доказано.

 $|\{(a_1,b_1),...,(a_m,b_1)\}|=m=m\cdot 1.$ 

### Обобщённые правила суммы и произведения:

- 1. Обобщённое правило суммы. Пусть даны попарно непересекающиеся множества  $A_1,A_2,...A_n$ . Число способов сделать выбор « $A_1$  или  $A_2$  ...или  $A_n$ » равно  $\sum_{i=1}^n |A_i|$ . Доказывается по индукции.
- 2. Обобщённное правило произведения. Пусть даны множества  $A_1,A_2,...A_n$ . Число способов выбрать упорядоченный кортеж  $(a_1,...,a_n)\mid a_i\in A_i$  из n элементов равно  $\prod_{i=1}^n |A_i|$ . Доказывается по индукции.

Пример использования обобщённого правила произведения. Докажем, что порядок группы перестановок  $S_n=S(\Omega)$  равен n!, где  $n=|\Omega|$ . Для первой позиции образа мы можем выбрать любой из n прообразов. Далее для второй позиции уже (n-1) прообраз и т. д. На последнюю позицию можно выбрать единственный элемент множества  $\Omega$ . Имеем:  $P_n=n\cdot (n-1)\cdot \ldots \cdot 1$ 

### С.1.2. Принцип Дирихле

Обозначим 
$$\lceil x \rceil = \min\{a \mid a \geq x, \ a \in \mathbb{Z}\}$$

Принцип Дирихле. Если n объектов разместить в m ящиках и n>m, то существует хотя бы один ящик, в котором находится не менее  $\left\lceil \frac{n}{m} \right\rceil$  объектов.

Доказательство. Обозначим  $k = \left\lceil \frac{n}{m} \right\rceil$  и предположим противное: во всех ящиках лежит меньше k объектов. Тогда для любого ящика, в нем находится не более k-1 объектов. Общее число объектов тогда не превосходит  $m \cdot (k-1)$ , т. е. имеет место

неравенство  $n \leq m \cdot (k-1)$ . Но по свойству округления вверх:  $k-1 = \left \lceil \frac{n}{m} \right \rceil - 1 < \frac{n}{m}$ . Имеем:

$$\begin{cases} n \le m \cdot (k-1) \\ n > m \cdot (k-1) \end{cases}$$
 (61)

Получили противоречие, значит противное неверно и исходное утверждение доказано.  $\blacksquare$ 

### С.1.3. Примеры

### С.2. Множества

«Элемент a принадлежит множеству A» обозначают  $a \in A$ . Отрицание этого утверждения обозначается  $a \notin A$ .

Множество B называется подмножеством A, если  $\forall x \in B: \ x \in A$ . Обозначают  $B \subset A$ .

Множества A и B называаются равными, если  $A\subset B\wedge B\subset A$ . Обозначают A=B.

Пустым множеством называется множество, не содержащее ни одного элемента. Оно является подмножеством любого множества. Обозначается  $\varnothing$ .  $\forall A: \varnothing \subset A$ 

### С.2.1. Операции на множествах

Основные бинарные операции над множествами определены так:

- 1. Объединение.  $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение.  $A \cap B = \{x \mid x \in A \land x \in B\}$
- 3. Разность.  $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- 4. Симметрическая разность.  $A \triangle B = (A \setminus B) \cup (B \setminus A)$

### С.2.2. Свойства бинарных операций над множествами

- 1. Коммутативность объедиения и пересечения:
  - $A \cup B = B \cup A$
  - $A \cap B = B \cap A$ .
- 2. Ассоциативность объедиения и пересечения:
  - $(A \cup B) \cup C = A \cup (B \cup C)$
  - $(A \cap B) \cap C = A \cap (B \cap C)$ .
- 3. Дистрибутивность объедиения и пересечения:
  - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
  - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ .

### С.2.3. Кортеж

Кортежем называется упорядоченная п-ка элементов. Обозначается как

$$(a_1,a_2,...,a_n) \text{ или } \langle a_1,a_2,...,a_n \rangle \tag{62}$$

Более строго, можно индуктивно сопоставить кортежи множествам:

• 
$$\varnothing \leftrightarrow \langle \rangle$$

• 
$$\{a_1\} \leftrightarrow \langle a_1 \rangle$$

$$\bullet \ \{a_1,\{a_1,a_2\}\} \leftrightarrow \langle a_1,a_2\rangle$$

Тогда:

$$\bullet \ \{a_1,a_2,...,a_n\} \leftrightarrow \langle a_1,a_2,...,a_n\rangle \underset{\mathrm{def}}{=} \langle \langle a_1,a_2,...,a_{n-1}\rangle,a_n\rangle$$

Альтернативно, можно дать такое определение:

$$\langle a_1, a_2, ..., a_n \rangle = f: [n] \to \{a_1, a_2, ..., a_n\} \tag{63}$$

### С.2.4. Декартово произведение

Декартовым произведением двух множеств A и B называется множество всех упорядоеченных пар элементов из A и B.

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

$$(64)$$

Свойства декартова произведения:

- 1. Некоммутативность. Вообще говоря,  $A \times B \neq B \times A$ , если  $A \neq B$
- 2. Ассоциативность.  $A \times (B \times C) = (A \times B) \times C$
- 3. Дистрибутивность относительно объедиения и пересечения(по левому и по правому множителю):

• 
$$A \times (B \cup C) = A \times B \cup A \times C$$

• 
$$A \times (B \cap C) = A \times B \cap A \times C$$

• 
$$(B \cup C) \times A = B \times A \cup C \times A$$

• 
$$(B \cap C) \times A = B \times A \cap C \times A$$

### С.2.5. Мощность множества

Мощностью конечного множества  $A=\{a_1,a_2,...,a_n\}$  называется количество элементов в нём: |A|=n.

Утверждение 1. 
$$A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$$

(Уже доказано, см. 55)

Утверждение 2.  $|A \times B| = |A| \cdot |B|$ 

(Уже доказано, см. 57)

### С.2.6. Круги Эйлера

Отношения между множествами можно визуально представить с помощью кругов Эйлера.

### С.2.7. Формула включений и исключений

Пусть  $A_1, A_2, ..., A_n$  - конечные множества. Тогда

$$\begin{split} \left| \bigcup_{i=1}^n A_i \right| &= \sum_i |A_i| - \sum_{i < j} \left| A_i \cap A_j \right| + \\ &+ \ldots + (-1)^{n-1} |A_1 \cap A_2 \cap \ldots \cap A_n| \end{split} \tag{65}$$

### С.3. Перестановки, сочетания и размещения

Существуют две схемы выбора элементов из множества  $\Omega$  мощности n: с повторениями и без повторений.

В первой схеме выбранный элемент не возвращается в множество, а во второй схеме на каждом шаге элемент должен быть возвращён в множество.

### С.3.1. Выбор без повторений

Перестановка. Определение перестановкибыло дано в разделе А.1.

 $\it Teopema$ . Число всех перестановок без повторений длины  $\it n$  равно

$$P_n = n! (66)$$

Доказательство приведено здесь.

**Размещением из n элементов по m** называют кортеж, содержащий m различных элементов  $\Omega$ .

Tеорема. Число всех размещений из n по m равно

$$A_n^m = \frac{n!}{(n-m)!} \tag{67}$$

 ${\it Доказательство}$ : Постоим размещение: для первоой позиции элемента можно выбрать любой из n элементов исходного множества, для второго любой из n-1 оставшихся, ... для m-ой позиции (n-m+1) из оставшихся. По правилу произведения на m позиций имеем:

$$A_n^m = n \cdot (n-1) \cdot \dots \cdot (n-m+1) = \frac{n!}{(n-m)!}$$
 (68)

Что и требовалось доказать ■.

Сочетанием из n элементов по m называется подмножество мощности m множества  $\Omega$ .

Tеорема. Число сочетаний из n по m равно

$$C_n^m = \frac{n!}{(n-m)! \cdot m!} \tag{69}$$

$$C_n^m = \frac{A_n^m}{P_m} = \frac{n!}{(n-m)! \cdot m!}$$
 (70)

что и требовалось доказать  $\blacksquare$ .

### С.3.2. Выбор с повторениями

# С.4. Производящие функции

### **D.** Теория вероятностей

### **D.1.** Основные понятия

**Случайное событие** — событие, про которое нельзя точно сказать, произойдёт оно или нет. Обозначают буквами латинского алфавита: A, B, C...

**Достоверным** называется событие, которое происходит всегда. Обозначается  $\Omega$ .

Невозможным называется событие, которое не может произойти. Обозначается ⊗.

**Вероятность случайного события** это численная мера объективной возможности наступления данного события. Обозначение: P(A) — вероятность события A.

### D.1.1. Операции над событиями

 $\overline{A}$  — событие, противоположное А. Заключается в том, что событие A не произошло.

 $A \cap B$  — произведение событий. Это событие, которое заключается в совместном происхождении событий A, B.

Если  $A \cap B = \emptyset$ , то события A, B называются несовместными.

Вместо  $A \cap B$  иногда пишут AB.

 $A \cup B$  — объединение или сумма событий. Заключается в том, что хотя бы одно из  $\{A,B\}$  верно.

Закон де Моргана в терминах событий:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{71}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \tag{72}$$

Диаграммы Венна

Свойства противоположного события:

1. 
$$\overline{\overline{A}} = A$$

2. 
$$A \cap \overline{A} = \emptyset$$

3. 
$$A \cup \overline{A} = \Omega$$

Свойства бинарных операций над событиями.

- 1. Коммутативность:
  - $A \cap B = B \cap A$ ;
  - $A \cup B = B \cup A$ .
- 2. Ассоциативность:

- $A \cap (B \cap C) = (A \cap B) \cap C$ ;
- $A \cup (B \cup C) = (A \cup B) \cup C$ .
- 3. Дистрибутивность.
  - $A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$ ;
  - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ .

### Операция включения

 $A \subset B$  — событие, которое заключается в том, что происхождение B влечёт A.

### Разность и симметрическая разность.

Разность событий A и B определяется как:

$$A \setminus B = A \cap \overline{B} \tag{73}$$

Симметрической разностью называется бинарная операция над событиями, такая, что

$$A \triangle B = (A \cup B) \cap \left(\overline{A} \cup \overline{B}\right) \tag{74}$$

Отрицание симметрической разности:

$$\overline{A \triangle B} = \overline{A} \triangle B = A \triangle \overline{B} = \overline{A} \triangle \overline{B} \tag{75}$$

### Поглощение.

- 1.  $A \cup (A \cap B) = A$
- $2. \ A \cap (A \cup B) = A$
- 3.  $\overline{A} \cup (A \cap B) = \overline{A} \cup B$
- 4.  $\overline{A} \cap (A \cup B) = \overline{A} \cap B$

### Декомпозиция бинарных операций.

- 1.  $A \cup B = A \triangle B \triangle AB$
- 2.  $A \setminus B = A \setminus (AB)$

### **D.1.2.** Аксиомы вероятности

- 1.  $\forall A \ P(A) \ge 0$  (неотрицательность);
- 2.  $P(\Omega) = 1$  (Вероятность достоверного события);
- 3.  $\forall A, B: A \cap B = \emptyset: \ P(A \cup B) = P(A) + P(B).$  (Аддитивное свойство вероятности).

### **D.1.3.** Следствия из Аксиом

Теорема о вероятности противоположных событий.

$$P(A) + P(\overline{A}) = 1 \tag{76}$$

.

Доказательство: так как

$$\begin{cases} A \cup \overline{A} = \Omega \\ A \cap \overline{A} = \emptyset \end{cases} \tag{77}$$

то из аксиом 2 и 3:  $P\!\left(A\cup\overline{A}\right)=P(\Omega)=1.$   $\blacksquare$ 

Следствие из теоремы.

Вероятность объединения n попарно независимых событий.

$$\forall A_1, A_2, ... A_n : \forall i, j : i \neq j : A_i \cap A_j = \emptyset :$$
 
$$P\left(\bigcup_{1 \leq i \leq n} A_i\right) = \sum_{i=1}^n P(A_i)$$
 
$$(78)$$

Доказательство: по индукции. n=2: это аксиома 3.

Пусть верно для  $n\in\mathbb{N}.$  Тогда  $P\Bigl(\bigcup_{1\leq i\leq n}A_i\Bigr)=\sum_{i=1}^nP(A_i)$  Докажем для n+1:

$$P\left(\bigcup_{1\leq i\leq n+1}A_i\right) = P\left(\left[\bigcup_{1\leq i\leq n}A_i\right] \cup A_{n+1}\right) = P\left(\bigcup_{1\leq i\leq n}A_i\right) + \\ +P(A_{n+1}) = \sum_{i=1}^n P(A_i) + P(A_{n+1}) = \sum_{i=1}^{n+1} P(A_i) \blacksquare$$
 (79)

# Е. Алгоритмы и структуры данных && программирование

### Е.1. Основные понятия

**Алгоритм** — точное или формализованное описание вычислительного процесса, ведущее от входных данных к искомому результату.

Структуры данных — множество элементов данных и связи между ними.

Физические данные существуют в памяти машины, а теоретические нет.

Элементарные данные не могут быть разделены на более мелкие части. Если же данные могут быть разделены на логически более мелкие части, то они называются сложными

### Е.2. Анализ сложности и эффективности алгоритмов

Должны быть некие критерии хорошего алгоритма.

Два основных критерия, используемых на практике:

- 1. Быстродействие;
- 2. Объём потребляемой памяти.

Прямое измерение времени работы программной реализации измеряет далеко не только быстродействие алгоритма. На время выполнения влияют так же способ реализации, умения программиста, среда разработки и мощность компъютера.

Измеренеия скорости и памяти носят теоретический характер.

- T(n) функция теоретического времени работы алгоритма.
- V(n) функция теоретической пространственной сложности алгоритма.

Получить точную формулу нельзя, можно только получить скорость и порядок скорости изменения времени выполнения.

### Е.2.1. Асимптотические оценки функций

$$f(n) = O(g(n)) \Leftrightarrow \exists N, C > 0 : \forall n > N : |g(n)| \le C \cdot |f(n)| \tag{80}$$

# **Е.3. Динамическое программирование**Динамическое программирование, как и метод разбиения, позволяет решать задачи, комбинируя решения вспомогательных задач

# **F.** Анализ данных

Анализ данных 34