Module 6 Lambda Calculus

CS 332 Organization of Programming Languages Embry-Riddle Aeronautical University Daytona Beach, FL

Mo6 Outcomes

At the end of this module you should be able to ...

- 1. Identify the values, identifiers, operators, and operands in an expression.
- 2. Recognize two expressions as structurally equivalent or not.
- 3. Identify the forms of expressions: variable, function, application
- 4. Identify the free and bound variables in a function.
- 5. Identify the scope of any bound variables in a function.
- 6. Identify where inadvertent capture may occur in a function.
- 7. Reduce an expression using Alpha and Beta reduction.
- 8. Reduce Boolean and recursive functions.

A Reminder Before we begin

- Course Meta-Lesson: What is computation?
- Don't confuse the thing with the usage
 - Use computation to solve numeric/logical problems
 - These things have meaning
- Computation: Manipulation of symbols using formal rules
 - There is no meaning in the symbols or the manipulations (operations)
 - Formal (well defined, unambiguous) allows for autonomous operation
 - Mindless and autonomous → computers!
- Manipulation of symbols / expressions is also called rewriting.

Motivation

- Functional Programming
 - Functional Language like LISP, Scheme, Racket mimic λ calculus
 - Python supports fully, Java contains functional elements

Computation

- λ calculus defines and can represent all computations
- Provide clarity on what computation is (and isn't)

Formal Systems

- Course meta-lesson: nature of formal systems
- Understanding formal systems helps one write formal specifications

λ Calculus Background

- Devised by Alonzo Church (and others) in the 1930's
- Wanted to create a system expressing all computations
- Similar time frame to Turing's work (Turing Machine, circa 1936)
- Both approaches came to the same conclusions
 - Some things are not computable (Church-Turing Thesis)
 - We can define computability and required characteristics
 - Turing defined in terms of decidability and termination.
 - Church defined in terms of *expressiveness*.

λ Calculus Basic Definitions

- All formal systems have:
 - A small number of things (operands)
 - A small number of operators to manipulate those things
 - Complexity through repetition (iteration or recursion)
- λ Calculus has only one thing the expression
 - But there are three types of expressions: variables, functions, application
 - So, okay, three things.
- λ Calculus has only one operator the function
- The BNF definition:
 - expr \rightarrow var | λ var.exp | exp₁ exp₂

variable function application

Expressions

- The BNF definition: $\exp r \rightarrow var \mid \lambda var.exp \mid exp_1 exp_2$
 - Variables are simply names: x, y, z, p, q, radius, area, chucky
 - λ var.exp is a function having variable var as input
 - Think of λx .exp as a function of x, defined in exp = f(x)
 - exp₁ exp₂ is an application, applying exp₁ to exp₂
 - Typically, exp₁ is a function, and exp₂ is the input to the function
- Highly abstract: No numerals, no math operators
 - We will pretend they exist at first (easier to make examples)
 - We will prove they can be derived later (justifies the pretending)

Expressions

- The BNF definition: $\exp r \rightarrow var \mid \lambda var.exp \mid exp_1 exp_2$
- The third BNF rule (application) can make long expressions
 - $\exp_1 \exp_2 \exp_3 \exp_4 \exp_5 \exp_6 \dots \exp_n$
 - Is this one expression or n expressions? (Answer: Yes.)
 - "Expression" is a rubbery term.
- Some expressions:
 - x (a variable)
 - x y (application: $exp_1 = x$ and $exp_2 = y$)
 - $\lambda x.(x + 1)$ (a function: We're pretending that "+" and "1" exist.)
 - $\lambda x.(x + 1)$ 7 (application, applying "x+1" to 7)

More About Expressions

- Symbols have no inherent meaning
 - R = Resistance? Radius? Gas Constant?
- Focus on structure
- Expression $\lambda x.x$ is the same as $\lambda y.y$ or $\lambda q.q$, and ...
- $\lambda x.(x + x)$, $\lambda y.(y + y)$, $\lambda z.(z + z)$ are the same, but ...
 - Common form: $\lambda var_1 \cdot (var_1 + var_1)$
- $\lambda x.(x + y)$ is not the same as $\lambda y.(y + y)$,
 - $\lambda x.(x + y)$ is adding two separate variables -- $\lambda var_1.(var_1 + var_2)$
 - $\lambda y.(y + y)$ is adding a variable to itself -- $\lambda var_1.(var_1 + var_1)$

Functions

- Reminder: Pretending that numerals and math operations exist.
- $\lambda x.(x + x)$ is a function, where x is the input
 - $\lambda \rightarrow$ Tells us this is a function
 - $x \rightarrow$ The independent variable in the function (using algebra/calc language)
 - $(x + x) \rightarrow$ The expression that serves as the body of the function
- This is almost the same as what you learned in algebra/calculus
 - y = x + x is a function of x, y = f(x).
 - y = x + x sets up a relation between x and y
 - the function input has a name: x
 - the function output has a name: y
 - The output of $\lambda x.(x + x)$ does not have a name otherwise very similar

Functions, Bound and Free Variables

- Variables are either bound or free in a function
- The variable named right after the λ is bound, all others are free
 - $\lambda x.(x + x)$ Here, x is bound, and there are no free variables
 - $\lambda x.(x + y)$ Here, x is bound, and y is free
- This can get interesting scoping rules apply
 - $\lambda x.(\lambda y.(y + y) + x)$ Here y is bound by the inner λ , x bound by the outer λ
 - $\lambda x.(\lambda y.(y + x))$ Again, y is bound by the inner, and x bound by the outer λ
 - $\lambda x.(\lambda y.(y + x) + y)$ Here, y occurs both bound and free don't do this!
 - $\lambda x.(\lambda y.(y x))$ Same as before, but what is (x y)? Application: $\exp_1 \exp_2 x$

Functions, Bound and Free Variables

- This can also get ugly, so introduce cleaner notation
 - $\lambda x.(\lambda y (\lambda z.(x y z))) \rightarrow \lambda xyz.(x y z)$
 - We'll use this shorter notation

Rewriting Rules (Named, not Explained)

- Computation: rewriting expressions through formal rules
- λ calculus applies functions to expressions: How?
 - Using formal <u>rewriting rules</u>
 - Often called <u>reductions</u> (they tend to reduce the size of the expression)
 - Naming them here; details later
- λ calculus has three rewriting rules (called reductions)
 - α reduction changes the variables named in an expression
 - β reduction Applies a function to input
 - η reduction Provides equivalence between functions (we're ignoring)

α Reductions

- An α reduction renames one or more variables in an expression.
 - Given $\lambda x.x$, we can change it to $\lambda y.y$
 - Given $\lambda x.(x + y)$, we can change it to $\lambda x.(x + s)$
 - Given y (yes, that's an expression), we can change it to z (or any variable)
- Why can we do this? Variable names don't matter structure does.
- When can't we do this? When we change the structure
 - Given $\lambda x.(x + y)$, we cannot change it to $\lambda x.(x + x)$
 - (x + y) adds two distinct variables, (x + x) adds a variable to itself.
 - The structure changed, so cannot use the α reduction
- Why so we do this? We'll see

β Reductions

- Used for application, $exp_1 exp_2$, where exp_1 is a function
- Given $\lambda x.\exp_1 \exp_2$ the β reduction does the following:
 - Remove the "λx."
 - Substitute every occurrence of "x" in exp₁ with "exp₂"
 - Remove exp₂

β Reduction Example

- Simple example $\lambda x.x$ 7
 - $\exp_1 = \lambda x.x$
 - $\exp_2 = 7$
 - Since exp_1 is a function, we can use a β Reduction
 - Result $\lambda x.x \neq 7 \Rightarrow 7$ (removed the " $\lambda x.$ " and replaced "x" with "7")
- $\lambda x.x$ is the identity function, as it returns the input it receives
- λ calculus is abstract; so relate to less abstract examples:
 - λ calculus: $\lambda x.x 7 \rightarrow 7$
 - Algebra: f(x) = x, and f(7) = 7
 - Java: public int identity(int x) { return x; }, and identity(7) returns 7.

β Reduction Examples

- $\lambda x.(x + 1)$ 7 \rightarrow 7 + 1 = 8 (still pretending numerals/ops exist)
- $\lambda x.(x + 1)$ y \rightarrow y + 1 (this is as far as we can go)
- $\lambda x.(x + y)$ 7 \rightarrow 7 + y (as far as we can go)
- $\lambda x.(x y) z \rightarrow z y$ (as far as we can go)
- Functions having more than one variable:
 - $\lambda xy.(x + y)$ -- substitute left to right, x first, then y
 - $\lambda xy.(x + y)$ 8 6 $\rightarrow \lambda y.(8 + y)$ 6 \rightarrow 8 + 6 = 14
 - $\lambda xyz.(z + x + y*x)$ 2 3 4 $\rightarrow \lambda yz.(z + 2 + y*2)$ 3 4 $\rightarrow \lambda z.(z + 2 + 3*2)$ 4 \rightarrow 4 + 2 + 3*2 = 12

• Reminder: This is exactly the syntax for functional languages.

β Reduction Examples

- A little more complicated; the second expression can be anything
 - $\lambda x.(x 12)$ $\lambda t.(t + 5) \rightarrow \lambda t.(t + 5)$ $12 \rightarrow 12 + 5 = 17$
 - $\lambda x.(x y)$ $\lambda t.(t + 5) \rightarrow \lambda t.(t + 5) y \rightarrow y + 5$ (as far as we can go)
- A bad example: "accidental capture"
 - $\lambda xy.(x + y) t \rightarrow \lambda y.(t + y) : y is bound, t is free$
 - $\lambda xy.(x + y) y \rightarrow \lambda y.(y + y)$: no free variables
 - the substituted "y" was "captured"
 - structure of the expression was modified not good!
- Fix accidental capture with the α reduction:
 - $\lambda xy.(x + y) y \rightarrow \lambda xy.(x + y) z \rightarrow \lambda y.(z + y)$ structure is preserved

Numerals

- All formal systems have things and operators
- \bullet λ calculus does not include numerals as one of the things
- But, λ calculus can represent numerals:
 - Find some expression and call it o (zero)
 - Let 1 be the successor to zero
 - Let 2 successor to 1 and so on (forever)
 - This has been done for us
 - It will not be pretty
- λ calculus is ugly, cleaner to assign names to expressions

Numerals

- Numerals are represented as follows:
 - $o \equiv \lambda sz.z$
 - $1 \equiv \lambda sz.s(z)$
 - $2 \equiv \lambda sz.s(s(z))$
 - $3 \equiv \lambda sz.s(s(s(z)))$
 - $4 \equiv \lambda sz.s(s(s(s(z))))$
 - And so on told you it was ugly. Try 1,000,427!
- "z" and "s" have no meaning, often used as a mnemonic
 - "z" reminds you of zero
 - "s" reminds you of the successor function

Math at Last!

• Successor Function: $S = \lambda wyx.y(w y x)$

- Apply S to o (zero):
 - $o \equiv \lambda sz.z$
 - $1 \equiv \lambda sz.s(z)$
 - $2 \equiv \lambda sz.s(s(z))$
 - $3 \equiv \lambda sz.s(s(s(z)))$
 - $4 \equiv \lambda sz.s(s(s(s(z))))$

$$S O = \lambda wyx.y(w y x) \lambda sz.z$$

$$S 0 = \lambda sz.s(z) = 1$$

1 + 1 = 2 (The successor to 1 is 2)

• Successor Function: $S = \lambda wyx.y(wyx)$

- Apply S to o (zero):
 - $o \equiv \lambda sz.z$
 - $1 \equiv \lambda sz.s(z)$
 - $2 \equiv \lambda sz.s(s(z))$
 - $3 \equiv \lambda sz.s(s(s(z)))$
 - $4 \equiv \lambda sz.s(s(s(s(z))))$

Reminder: All math
is derived from the
+1 function.

$$S 1 = \lambda wyx.y(w y x) \lambda sz.s(z)$$

$$S 1 = \lambda yx.y(\lambda sz.s(z) y x)$$
 β Reduction

-- OR -

$$S 1 = \lambda sz.s(s(z)) = 2$$

Boolean Values and Operators

- Consider standard if-then-else in programming
 - if P then x else y
 - If P = T, us x and throw away y
 - If P = F, throw away x and use y
- T = $\lambda xy.x$ \rightarrow Take in two variables, use the first, throw out the second
- $F = \lambda xy.y \rightarrow$ Take in two variables, throw out the first, use the second
- AND $\wedge = \lambda xy.xy(\lambda uv.v) = \lambda xy.xyF$
- OR $V = \lambda xy.x(\lambda uv.u)y = \lambda xy.xTy$
- NOT $\neg = \lambda x.x(\lambda uv.v)(\lambda ab.a) = \lambda x.xFT$

Boolean Operations - AND

$$\wedge$$
 T T = $\lambda xy.xy(\lambda uv.v)$ T T

$$\wedge$$
 T T = λ xy.xyF T T (since F = λ uv.v)

$$\wedge$$
 T T = λ y.TyF T β Reduction

$$\wedge T T = T T F$$
 β Reduction

$$\wedge T T = T$$
 β Reduction

Boolean Operations - AND

$$\wedge$$
 T F = $\lambda xy.xy(\lambda uv.v)$ T F

$$\wedge$$
 T F = λ xy.xyF T F (since F = λ uv.v)

$$\wedge$$
 T F = λ y.TyF F β Reduction

$$\wedge T F = T F F$$
 β Reduction

$$\Lambda T F = F$$
 β Reduction

Boolean Operations - OR

V F T= $\lambda xy.x(\lambda uv.u)y$ F T

 $V T F = \lambda xy.xTy T F$

(since $T = \lambda uv.u$)

 $V T F = \lambda y.TTy F$

β Reduction

V T F = T T F

β Reduction

V T F = T

β Reduction

Repetition Through Recursion

- Generalized computation requires some form of repetition
- Lambda calculus achieves this through recursion
- The expression creating recursion is the <u>Y-Combinator</u>.
- $Y = \lambda y.((\lambda x.y(xx))(\lambda x.y(xx)))$ R
- The $(\lambda x.y(xx))$ portion is the "make a copy" portion
- The outer λy . F(y) allows you to input what you want copied.

Recursion

```
Y R = \lambda y.((\lambda x.y(xx))(\lambda x.y(xx)))
Y R = (\lambda x.R(xx)) (\lambda x.R(xx))
                                                           β Reduction
Y R = R((\lambda x.R(xx))(\lambda x.R(xx)))
                                                           β Reduction
Y R = R(R((\lambda x.R(xx))(\lambda x.R(xx))))
                                                           β Reduction
Y R = R(R(R((\lambda x.R(xx))(\lambda x.R(xx)))))
                                                           β Reduction
 and so on ...)
```

Fully Computational?

- There are four basic statement types that make a programming language in any programming language
 - Variable definition / declaration initial definition of variables and functions
 - Assignment binding of values to variables
 - Selection if-then-else and all its forms (if-then-else, switch statements)
 - Repetition iteration (for and while loops) and/or recursion
- Lambda calculus has all of these things
 - Assignment is radically different than in imperative and OO paradigms
- When speaking at the program level, evaluation of expressions is often assumed
 - Lambda Calculus actually defines it, beginning with zero and successor
- Functional programming paradigm maps directly to Lambda calculus