Κεφάλαιο 4

Γραμμικές διαφορικές εξισώσεις δεύτερης τάξης

Συνήθεις διαφορικές εξισώσεις που περιέχουν παραγώγους δεύτερης τάξης της άγνωστης συνάρτησης εμφανίζονται πολύ συχνά σε προβλήματα τα οποία ανακύπτουν στις θετικές και τεχνολογικές επιστήμες. Ο κύριος σκοπός του κεφαλαίου είναι η παρουσίαση ορισμένων βασικών μεθόδων για την επίλυση γραμμικών εξισώσεων δεύτερης τάξης. Αρχικά, διατυπώνονται γενικές αρχές και ειδικές τεχνικές για τον υπολογισμό των λύσεων. Η πλέον θεμελιώδης και σημαντική τεχνική είναι εκείνη η οποία εφαρμόζεται για τη λύση ομογενών γραμμικών εξισώσεων με σταθερούς συντελεστές. Η βασική διαδικασία για την επίλυση μη ομογενών εξισώσεων αναπτύσσεται στη συνέχεια. Επιπρόσθετα, διατυπώνονται τεχνικές επίλυσης για ειδικές κατηγορίες γραμμικών διαφορικών εξισώσεων δεύτερης τάξης με μεταβλητούς συντελεστές.

4.1 Γενική θεωρία

 Σ την παράγραφο αυτή παρουσιάζουμε τη γενική ϑ εωρία των γραμμικών $\Delta.Ε.$ δεύτερης τάξης

$$y'' + a_1(x)y' + a_0(x)y = f(x), (4.1.1)$$

όπου $a_0, a_1, f: I \subseteq \mathbb{R} \to \mathbb{R}$ συνεχείς συναρτήσεις στο διάστημα I.

Αρχικά, μελετούμε βασικές ιδιότητες των λύσεων της αντίστοιχης της (4.1.1) ομογενούς $\Delta.E.$

$$y'' + a_1(x)y' + a_0(x)y = 0. (4.1.2)$$

Για τις λύσεις της (4.1.2) ισχύει το ακόλουθο

Λήμμα 4.1.1 Αν y_1 και y_2 είναι δύο λύσεις της ομογενούς Δ .Ε. (4.1.2) στο διάστημα I τότε η συνάρτηση

$$y = c_1 y_1 + c_2 y_2$$
,

όπου c_1 και c_2 αυθαίρετες πραγματικές σταθερές, είναι επίσης λύση της (4.1.2) στο I.

Απόδειξη. Επειδή οι y_1 και y_2 είναι λύσεις της (4.1.2), ισχύουν

$$y_1'' + a_1 y_1' + a_0 y_1 = 0$$
 xai $y_2'' + a_1 y_2' + a_0 y_2 = 0$,

από τις οποίες για την $y = c_1 y_1 + c_2 y_2$ ευρίσκουμε

$$y'' + a_1(x)y' + a_0(x)y = (c_1y_1 + c_2y_2)'' + a_1(c_1y_1 + c_2y_2)' + a_0(c_1y_1 + c_2y_2)$$
$$= c_1(y_1'' + a_1y_1' + a_0y_1) + c_2(y_2'' + a_1y_2' + a_0y_2) = 0.$$

Παρατήρηση 4.1.1 Ο ισχυρισμός του Λήμματος 4.1.1, ότι κάθε γραμμικός συνδυασμός δύο λύσεων μιας γραμμικής ομογενούς $\Delta.E.$ είναι επίσης λύση της, αναφέρεται ως aρχή της υπέρθεσης.

 \triangle

 Ω ς ένα απλό σχετικό παράδειγμα, θεωρούμε την ομογενή γραμμική Δ .Ε. δεύτερης τάξης y''=0, η οποία έχει ως λύσεις τις συναρτήσεις $y_1=1$ και $y_2=x$. Τότε, σύμφωνα με την αρχή της υπέρθεσης, η συνάρτηση $y=c_1+c_2x$, όπου c_1 και c_2 αυθαίρετες σταθερές, είναι επίσης λύση της Δ .Ε.

Στη συνέχεια διατυπώνουμε (χωρίς απόδειξη) το θεμελιώδες θεώρημα ύπαρξης και μοναδικότητας λύσης για $\Pi.A.T.$ γραμμικών $\Delta.E.$ δεύτερης τάξης.

Θεώρημα 4.1.1 Για κάθε $x_0 \in I$ και $y_0, y_1 \in \mathbb{R}$ υπάρχει ακριβώς μία λύση $y: I \to \mathbb{R}$ του Π.Α.Τ.

$$y'' + a_1(x)y' + a_0(x)y = f(x), \ y(x_0) = y_0, \ y'(x_0) = y_1.$$
 (4.1.3)

П

Σύμφωνα με το θεώρημα αυτό, η μόνη λύση του Π.Α.Τ. (4.1.3) με f=0 και $y_0=y_1=0$ είναι η συνάρτηση y=0.

Έστω $y_1, y_2: I \to \mathbb{R}$ δύο λύσεις της Δ.Ε. (4.1.2). Τότε, σύμφωνα με την αρχή της υπέρθεσης (Λήμμα 4.1.1), κάθε γραμμικός συνδυασμός $c_1y_1 + c_2y_2$ των λύσεων y_1 και y_2

είναι επίσης λύση της Δ .Ε. (4.1.2). Όμως, δεν ισχύει, χωρίς προϋποθέσεις για τις λύσεις y_1 και y_2 , ο (αντίστροφος) ισχυρισμός: Για κάθε λύση y της Δ .Ε. (4.1.2) υπάρχουν σταθερές c_1 και c_2 έτσι ώστε να ισχύει $y=c_1y_1+c_2y_2$.

Πράγματι, θεωρούμε, επί παραδείγματι, την πολύ απλή $\Delta.Ε.$ y''=0, της οποίας τρεις λύσεις είναι οι συναρτήσεις

$$y_1 = 1 + x$$
, $y_2 = 2 + 2x$, $y_3 = 1 - x$,

και παρατηρούμε ότι η έκφραση (ισχυρισμός)

$$1 - x = y_3 = c_1 y_1 + c_2 y_2 = c_1 (1 + x) + c_2 (2 + 2x)$$

οδηγεί στο σύστημα

$$c_1 + 2c_2 = 1$$
 kal $c_1 + 2c_2 = -1$,

το οποίο είναι αδύνατο.

Στην προκειμένη περίπτωση, παρατηρούμε ότι ισχύει $y_2=2y_1$, δηλαδή οι λύσεις y_1 και y_2 είναι γραμμικά εξαρτημένες. Όμως, όπως θα αποδείξουμε παρακάτω, η Δ .Ε. έχει ένα (τουλάχιστον) ζεύγος γραμμικά ανεξάρτητων λύσεων και για οποιεσδήποτε δύο γραμμικά ανεξάρτητες λύσεις y_1 και y_2 της Δ .Ε., κάθε λύση y της Δ .Ε. εκφράζεται ως γραμμικός συνδυασμός των y_1 και y_2 , δηλαδή η γενική λύση της Δ .Ε. (4.1.2) συμπίπτει με το σύνολο των γραμμικών συνδυασμών $\{c_1y_1+c_2y_2\}$.

Υπενθυμίζουμε τώρα τις έννοιες της γραμμικής εξάρτησης και γραμμικής ανεξαρτησίας δύο συναρτήσεων.

Ορισμός 4.1.1 Δύο συναρτήσεις $y_1,y_2:I\subseteq\mathbb{R}\to\mathbb{R}$ ονομάζονται γραμμικά εξαρτημένες στο διάστημα I όταν υπάρχουν σταθερές c_1 και c_2 με $c_1\neq 0$ ή $c_2\neq 0$ έτσι ώστε

$$c_1 y_1(x) + c_2 y_2(x) = 0, \ \forall x \in I.$$
 (4.1.4)

Εξάλλου, οι συναρτήσεις y_1 και y_2 ονομάζονται γραμμικά ανεξάρτητες στο I όταν δεν είναι γραμμικά εξαρτημένες, δηλαδή όταν για δύο σταθερές c_1 και c_2 ισχύει

$$c_1 y_1(x) + c_2 y_2(x) = 0, \ \forall x \in I \Rightarrow c_1 = c_2 = 0.$$
 (4.1.5)

Για παράδειγμα, οι συναρτήσεις $y_1=1$ και $y_2=x^2$ είναι γραμμικά ανεξάρτητες σε κάθε διάστημα I, διότι $c_1+c_2x^2=0$, $x\in I$, πάντα έπεται ότι $c_1=c_2=0$. Ενώ, οι συναρτήσεις $y_1=\sin(2x)$ και $y_2=\sin x\cos x$ είναι γραμμικά εξαρτημένες σε κάθε διάστημα I, διότι ισχύει $\sin(2x)-2\sin x\cos x=0$, $x\in\mathbb{R}$.

Σημαντικό ρόλο στην γραμμική εξάρτηση ή ανεξαρτησία των συναρτήσεων παίζει το διάστημα I που αυτές ορίζονται. Για παράδειγμα, οι συναρτήσεις $y_1=x^2$ και $y_2=x|x|$ είναι

γραμμικά εξαρτημένες σε οποιοδήποτε διάστημα I που δεν περιέχει το μηδέν. Όμως, σε ένα διάστημα I που περιέχει το μηδέν, οι συναρτήσεις y_1 και y_2 είναι γραμμικά ανεξάρτητες στο I, άφού ισχύουν

$$y_1 = y_2, \ \forall x \in I \ \text{me} \ x \ge 0 \quad \text{kal} \quad y_1 = -y_2, \ \forall x \in I \ \text{me} \ x \le 0,$$

και άρα δεν υπάρχουν μη μηδενικές σταθερές c_1 και c_2 για τις οποίες ισχύει $c_1y_1(x)+c_2y_2(x)=0, \ \forall x\in I.$

Σημειώνουμε ότι η γραμμική ανεξαρτησία δύο συναρτήσεων σε ένα διάστημα I δεν συνεπάγεται τη γραμμική ανεξαρτησία αυτών σε κάθε υποδιάστημα του I. Εξάλλου, δύο γραμμικά ανεξάρτητες συναρτήσεις στο διάστημα I θα είναι προφανώς γραμμικά ανεξάρτητες και σε κάθε άλλο διάστημα I_1 που περιέχει το I υπό την προϋπόθεση ότι οι συναρτήσεις ορίζονται και στο I_1 .

Βασική έννοια για τον έλεγχο της γραμμικής ανεξαρτησίας δύο λύσεων y_1 και y_2 της Δ .Ε. (4.1.2) είναι εκείνη της ορίζουσας Wronksi.

Ορισμός 4.1.2 Έστω δύο παραγωγίσιμες συναρτήσεις $y_1, y_2 : I \subseteq \mathbb{R} \to \mathbb{R}$. Η συνάρτηση $W \equiv W(y_1, y_2) : I \to \mathbb{R}$, η οποία ορίζεται από την 2×2 ορίζουσα

$$W(x) := \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = y_1(x)y_2'(x) - y_1'(x)y_2(x), \qquad (4.1.6)$$

ονομάζεται ορίζουσα Wronksi των y_1 και y_2 .

Για την ορίζουσα Wronksi δύο λύσεων y_1 και y_2 της (4.1.2) ισχύει το ακόλουθο

Θεώρημα 4.1.2 (Abel). Για δύο λύσεις y_1 και y_2 της (4.1.2) και $x_0 \in I$, ισχύει

$$W(x) = W(x_0) e^{-\int_{x_0}^x a_1(t)dt}, \ \forall x \in I.$$
 (4.1.7)

Απόδειξη. Από τον Ορισμό 4.1.2, έχουμε

$$W(x) = y_1(x)y_2'(x) - y_1'(x)y_2(x),$$

από την οποία ευρίσκουμε

$$W'(x) = y_1(x)y_2''(x) - y_2(x)y_1''(x).$$

Εξάλλου, επειδή οι y_1 και y_2 είναι λύσεις της (4.1.2), η τελευταία γράφεται

$$W'(x) = y_1(x)(-a_1(x)y_2'(x) - a_0(x)y_2(x)) - y_2(x)(-a_1(x)y_1'(x) - a_0(x)y_1(x)),$$

οπότε

$$W'(x) = -a_1(x)[y_1(x)y_2'(x) - y_2(x)y_1'(x)] = -a_1(x)W(x).$$

Η τελευταία είναι $\Delta.Ε.$ πρώτης τάξης χωριζομένων μεταβλητών και έχει ως λύση

$$W(x) = W(x_0) e^{-\int_{x_0}^x a_1(t)dt}, \ x \in I.$$

Παρατήρηση 4.1.2 Από την (4.1.7) προκύπτει ότι ισχύει $W(x) \neq 0$, $\forall x \in I$ τότε και μόνο τότε όταν $W(x_0) \neq 0$ για κάποιο $x_0 \in I$, δηλαδή W(x) = 0, $\forall x \in I$ τότε και μόνο τότε όταν $W(x_0) = 0$ για κάποιο $x_0 \in I$.

 \triangle

Στο ακόλουθο θεώρημα διατυπώνεται μια ικανή και αναγκαία συνθήκη για τη γραμμική ανεξαρτησία δύο λύσεων y_1 και y_2 της (4.1.2).

Θεώρημα 4.1.3 Δύο λύσεις y_1 και y_2 της (4.1.2) είναι γραμμικά ανεξάρτητες τότε και μόνο τότε όταν $W(x_0) \neq 0$ για κάποιο $x_0 \in I$.

Απόδειξη. Έστω ότι οι λύσεις y_1 και y_2 της (4.1.2) είναι γραμμικά ανεξάρτητες, αλλά ισχύει W(x)=0 για κάθε $x\in I$. Αν x_0 είναι ένα (σταθεροποιημένο) σημείο του I, τότε το ομογενές 2×2 (αλγεβρικό) σύστημα

$$c_1 y_1(x_0) + c_2 y_2(x_0) = 0$$

$$c_1 y_1'(x_0) + c_2 y_2'(x_0) = 0$$

ως προς αγνώστους τα c_1 και c_2 , έχει μία μη μηδενική λύση (c_1^*,c_2^*) , επειδή η ορίζουσά του είναι η $W(x_0)=0$.

Σύμφωνα με την αρχή της υπέρθεσης, η συνάρτηση

(a)
$$y(x) = c_1^* y_1(x) + c_2^* y_2(x), \ x \in I$$

είναι λύση της ομογενούς Δ .Ε. (4.1.2), η οποία επιπλέον ικανοποιεί επίσης τις αρχικές συνθήκες $y(x_0)=0$ και $y'(x_0)=0$ (αφού (c_1^*,c_2^*) είναι λύση του προηγούμενου αλγεβρικού συστήματος).

Από το Θεώρημα 4.1.1, έχουμε ότι το Π.Α.Τ.

$$y'' + a_1(x)y' + a_0(x)y = 0$$
, $y(x_0) = 0$, $y'(x_0) = 0$

έχει ως μοναδική λύση τη συνάρτηση y=0, και έτσι από την (α) προκύπτει ότι

$$c_1^* y_1(x) + c_2^* y_2(x) = 0, \ \forall x \in I,$$

η οποία συνεπάγεται ότι οι λύσεις y_1 και y_2 είναι γραμμικά εξαρτημένες, αφού $(c_1^*,c_2^*)\neq (0,0)$, που συνιστά αντίφαση.

Αντιστρόφως, υποθέτουμε ότι ισχύει $W(x_0) \neq 0$ και έστω σταθερές c_1 και c_2 για τις οποίες ισχύει

$$c_1y_1(x) + c_2y_2(x) = 0, \ \forall x \in I,$$

από την οποία προχύπτει η εξίσωση

$$c_1y_1'(x) + c_2y_2'(x) = 0, \ \forall x \in I.$$

Θεωρούμε, τώρα, το 2 × 2 ομογενές (αλγεβρικό) σύστημα

$$c_1 y_1(x_0) + c_2 y_2(x_0) = 0$$

$$c_1y_1'(x_0) + c_2y_2'(x_0) = 0,$$

το οποίο έχει ως ορίζουσα την $W(x_0) \neq 0$, άρα το σύστημα αυτό έχει μόνο τη μηδενική λύση, δηλαδή ισχύει $c_1 = c_2 = 0$, και επομένως οι y_1 και y_2 είναι γραμμικά ανεξάρτητες.

Συνδυάζοντας το προηγούμενο θεώρημα και το Θεώρημα 4.1.1 (ύπαρξης και μοναδικότητας), λαμβάνουμε το ακόλουθο

Πόρισμα 4.1.1 Υπάρχουν δύο γραμμικά ανεξάρτητες λύσεις της ομογενούς Δ .Ε. (4.1.2) στο I.

Απόδειξη. Από το Θεώρημα 4.1.1 (ύπαρξης και μοναδικότητας), για $x_0 \in I$ και $\alpha \neq 0$ σταθεροποιημένο πραγματικό αριθμό, έχουμε ότι υπάρχουν δύο λύσεις y_1 και y_2 της (4.1.2) που ικανοποιούν τις σχέσεις

$$y_1(x_0) = \alpha$$
 , $y_1'(x_0) = 0$

$$y_2(x_0) = 0$$
 , $y_2'(x_0) = \alpha$.

Τότε, για την ορίζουσα Wronski W των y_1 και y_2 ισχύει ότι

$$W(x_0) = \alpha^2 \neq 0,$$

και επομένως από το Θεώρημα 4.1.3 συνάγουμε ότι οι y_1 και y_2 είναι γραμμικά ανεξάρτητες.

Τώρα, διατυπώνουμε και αποδεικνύουμε το ακόλουθο σημαντικό

Θεώρημα 4.1.4 Αν y_1 και y_2 είναι δύο γραμμικά ανεξάρτητες λύσεις της ομογενούς Δ .Ε. (4.1.2), τότε για κάθε λύση y αυτής, υπάρχουν μοναδικές σταθερές c_1^* και c_2^* έτσι ώστε να ισχύει

$$y(x) = c_1^* y_1(x) + c_2^* y_2(x). (4.1.8)$$

Απόδειξη. Για τυχόν $x_0 \in I$, θεωρούμε το 2×2 ομογενές αλγεβρικό γραμμικό σύστημα

$$c_1 y_1(x_0) + c_2 y_2(x_0) = y(x_0)$$

$$c_1 y_1'(x_0) + c_2 y_2'(x_0) = y'(x_0)$$

ως προς αγνώστους τα c_1 και c_2 , του οποίου η ορίζουσα είναι η ορίζουσα Wronski $W(x_0)$.

Εφόσον οι λύσεις y_1 και y_2 είναι γραμμικά ανεξάρτητες, από το Θεώρημα 4.1.3 έχουμε $W(x_0) \neq 0$. Επομένως, το προηγούμενο σύστημα έχει μοναδική λύση (c_1^*, c_2^*) , δηλαδή

$$c_1^* y_1(x_0) + c_2^* y_2(x_0) = y(x_0)$$

$$c_1^* y_1'(x_0) + c_2^* y_2'(x_0) = y'(x_0).$$

Σύμφωνα με την αρχή της υπέρθεσης, η συνάρτηση

$$\tilde{y}(x) = c_1^* y_1(x) + c_2^* y_2(x)$$

είναι λύση της (4.1.2), για την οποία επιπλέον ισχύουν

$$\tilde{y}(x_0) = y(x_0)$$
 kal $\tilde{y}'(x_0) = y'(x_0)$,

οπότε από το Θεώρημα 4.1.1 (ύπαρξης και μοναδικότητας), έχουμε

$$y(x) = \tilde{y}(x) = c_1^* y_1(x) + c_2^* y_2(x), \ \forall x \in I.$$

Συνδυάζοντας τώρα το Λήμμα 4.1.1 και τα Θεωρήματα 4.1.2, 4.1.3 και 4.1.4, ενοποιούμε τα αποτελέσματά τους στο ακόλουθο

Θεώρημα 4.1.5 Έστω y_1 και y_2 δύο λύσεις της ομογενούς Δ .Ε. (4.1.2) στο διάστημα I. Τότε οι ακόλουθοι ισχυρισμοί είναι ισοδύναμοι.

1. Κάθε λύση y της Δ .Ε. (4.1.2) είναι γραμμικός συνδυασμός των λύσεων y_1 και y_2 στο I, δηλαδή υπάρχουν σταθερές c_1 και c_2 έτσι ώστε να ισχύει

$$y(x) = c_1 y_1(x) + c_2 y_2(x), \ \forall x \in I.$$

- 2. Οι λύσεις y_1 και y_2 είναι γραμμικά ανεξάρτητες στο I.
- 3. Υπάρχει $x_0 \in I$ έτσι ώστε η τιμή της ορίζουσας Wronski W των y_1 και y_2 στο x_0 να είναι διάφορη από το μηδέν, δηλαδή $W(x_0) \neq 0$.
- 4. Για την ορίζουσα Wronski W των y_1 και y_2 ισχύει $W(x) \neq 0$, $\forall x \in I$.

Από το Θεώρημα 4.1.5 συνάγεται ότι για τον προσδιορίσμό όλων των λύσεων της ομογενούς Δ .Ε. (4.1.2), αρχεί η εύρεση δύο γραμμικά ανεξάρτητων λύσεων y_1 και y_2 αυτής, οπότε η γενική λύση της (4.1.2) συμπίπτει με το σύνολο των γραμμικών συνδυασμών

$$y = c_1 y_1 + c_2 y_2,$$

όπου c_1 και c_2 αυθαίρετες πραγματικές σταθερές. Στην προκειμένη περίπτωση, το σύνολο $\{y_1,y_2\}$ αναφέρεται και ως θεμελιώδες σύνολο λύσεων της (4.1.2).

Πόρισμα 4.1.2 Το σύνολο Λ_o των λύσεων της ομογενούς Δ .Ε. (4.1.2) είναι διανυσματικός χώρος διάστασης 2.

Απόδειξη. Από την αρχή της υπέρθεσης, το Λ_o είναι διανυσματικός χώρος. Εξάλλου, από το Πόρισμα 4.1.1 και το Θεώρημα 4.1.4, υπάρχουν δύο γραμμικά ανεξάρτητες λύσεις y_1 και y_2 , οι οποίες παράγουν γραμμικά το διανυσματικό χώρο Λ_o . Έτσι, το σύνολο $B=\{y_1,y_2\}$ είναι βάση του Λ_o και άρα η διάσταση του διανυσματικού χώρου Λ_o είναι 2.

Το πόρισμα αυτό δικαιολογεί επίσης και τη χρήση (αναφορά) του όρου θεμελιώδες σύνολο λύσεων.

Παράδειγμα 4.1.1 Βρείτε τη γενική λύση της Δ .Ε.

$$y'' + k^2 y = 0,$$

όπου k > 0.

Λύση. Επαληθεύουμε εύκολα ότι οι συναρτήσεις $y_1(x)=\cos(kx)$ και $y_2(x)=\sin(kx)$ είναι λύσεις της $\Delta.$ Ε. και υπολογίζουμε την ορίζουσα Wronski W των y_1 και y_2

$$W(x) = \begin{vmatrix} \cos(kx) & \sin(kx) \\ -k\sin(kx) & k\cos(kx) \end{vmatrix} = k > 0.$$

Έτσι, σύμφωνα με το Θεώρημα 4.1.5, οι λύσεις y_1 και y_2 είναι γραμμικά ανεξάρτητες και η γενική λύση της Δ .Ε. είναι

$$y(x) = c_1 \cos(kx) + c_2 \sin(kx), \quad x \in I.$$

Τώρα, για τον προσδιορισμό της γενικής λύσης της μη ομογενούς Δ .Ε. (4.1.1) χρειαζόμαστε την ακόλουθη

Πρόταση 4.1.1 Η διαφορά δύο λύσεων y_1 και y_2 της μη ομογενούς Δ .Ε. (4.1.1) είναι λύση της ομογενούς Δ .Ε. (4.1.2).

Απόδειξη. Επειδή οι y_1 και y_2 είναι λύσεις της (4.1.1), ισχύουν

$$y_1'' + a_1(x)y_1' + a_0(x)y_1 = f(x),$$

$$y_2'' + a_1(x)y_2' + a_0(x)y_2 = f(x),$$

οπότε αφαιρώντας κατά μέλη λαμβάνουμε

$$(y_1 - y_2)'' + a_1(x)(y_1 - y_2)' + a_0(x)(y_1 - y_2) = 0,$$

και επομένως η $y_1 - y_2$ είναι πράγματι λύση της ομογενούς Δ .Ε. (4.1.2).

Συνδυασμός του Θεωρήματος 4.1.4 και της Πρότασης 4.1.1 οδηγεί στο ακόλουθο

Θεώρημα 4.1.6 Έστω ότι y_1 και y_2 είναι δύο γραμμικά ανεξάρτητες λύσεις της ομογενούς $\Delta.Ε.$ (4.1.2) στο I και y_μ είναι μία μερική λύση της μη ομογενούς $\Delta.Ε.$ (4.1.1) στο I. Τότε, κάθε λύση y της (4.1.1) είναι της μορφής

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + y_{\mu}(x), \ x \in I.$$

$$(4.1.9)$$

Απόδειξη. Κάθε συνάρτηση y της μορφής (4.1.9) είναι λύση της μη ομογενούς Δ .Ε. (4.1.1). Πράγματι, από τις υποθέσεις έχουμε

$$y'' + a_1 y' + a_0 y = c_1 y_1'' + c_2 y_2'' + y_{\mu}'' + a_1 (c_1 y_1' + c_2 y_2' + y_{\mu}') + a_0 (c_1 y_1 + c_2 y_2 + y_{\mu}) = c_1 [y_1'' + a_1 y_1' + a_0 y_1] + c_2 [y_2'' + a_1 y_2' + a_0 y_2] + y_{\mu}'' + a_1 y_{\mu}' + a_0 y_{\mu} = 0 + 0 + f = f.$$

Αντιστρόφως, αν y είναι μία οποιαδήποτε λύση της (4.1.1), τότε από την Πρόταση 4.1.1, η διαφορά $y-y_\mu$ είναι λύση της ομογενούς $\Delta.Ε.$ (4.1.2). Εφόσον οι y_1 και y_2 είναι γραμμικά ανεξάρτητες λύσεις της (4.1.2), από το Θεώρημα 4.1.4, υπάρχουν σταθερές c_1 και c_2 ώστε

$$y - y_{\mu} = c_1 y_1 + c_2 y_2.$$

Σημείωση 4.1.1 Σύμφωνα με το Θεώρημα 4.1.4, κάθε λύση y_o της ομογενούς Δ .Ε. (4.1.2) εκφράζεται κατά μοναδικό τρόπο ως γραμμικός συνδυασμός

$$y_o(x) = c_1 y_1(x) + c_2 y_2(x), x \in I,$$

όπου y_1 και y_2 είναι δύο γραμμικά ανεξάρτητες λύσεις της (4.1.2). Επομένως, από το Θεώρημα 4.1.6, κάθε λύση y της μη ομογενούς $\Delta.Ε.$ (4.1.1) είναι το άθροισμα μιας μερικής λύσης της y_μ και της γενικής λύσης y_o της αντίστοιχης ομογενούς $\Delta.Ε.$, δηλαδή

$$y(x) = y_0(x) + y_u(x), \quad x \in I.$$
 (4.1.10)

Δ

Κατά αντιστοιχία με την ομογενή Δ.Ε., η οιχογένεια λύσεων

$$y = c_1 y_1 + c_2 y_2 + y_{\mu},$$

όπου c_1 και c_2 αυθαίρετες πραγματικές σταθερές, αποτελεί τη $\gamma \epsilon \nu i \kappa \dot{\eta}$ λύση της (4.1.1).

Παράδειγμα 4.1.2 Βρείτε τη γενική λύση της $\Delta.Ε.$

$$y'' + k^2 y = x,$$

όπου k > 0.

Λύση. Στο Παράδειγμα 4.1.1 έχουμε υπολογίσει τη γενιχή λύση

$$y_o(x) = c_1 \cos(kx) + c_2 \sin(kx)$$

της αντίστοιχης ομογενούς Δ.Ε.

Εξάλλου, επαληθεύεται εύχολα ότι η συνάρτηση $y_{\mu}(x)=k^{-2}x$ είναι μία μεριχή λύση της δοθείσας μη ομογενούς Δ .Ε. Έτσι, σύμφωνα με την (4.1.10), η ζητούμενη γενιχή λύση είναι

$$y(x) = y_o(x) + y_\mu(x) = c_1 \cos(kx) + c_2 \sin(kx) + k^{-2} x.$$

Δ

Τέλος, συνδυάζοντας τα Θεωρήματα 4.1.1 και 4.1.6, διατυπώνουμε το ακόλουθο

Θεώρημα 4.1.7 Έστω ότι y_1 και y_2 είναι δύο γραμμικά ανεξάρτητες λύσεις της ομογενούς Δ .Ε. (4.1.2) στο I και y_μ είναι μία μερική λύση της μη ομογενούς Δ .Ε. (4.1.1) στο I. Τότε, υπάρχουν μοναδικές σταθερές c_1 και c_2 έτσι ώστε το Π .Α.Τ. (4.1.3) να έχει τη μοναδική λύση

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + y_{\mu}(x), \ x \in I.$$

Παράδειγμα 4.1.3 Λύστε το Π.Α.Τ.

$$y'' - y = x^2$$
, $y(0) = 3$, $y'(0) = 3$.

Λύση. Επαληθεύουμε αρχικά ότι οι συναρτήσεις $y_1(x)=e^x$ και $y_2(x)=e^{-x}$ είναι λύσεις της αντίστοιχης ομογενούς $\Delta.Ε.$ και στη συνέχεια υπολογίζουμε την ορίζουσα Wronksi $W=-2\neq 0, \ \forall x\in \mathbb{R},$ και έτσι συμπεραίνουμε ότι οι y_1 και y_2 είναι γραμμικά ανεξάρτητες.

Εξάλλου, διαπιστώνουμε εύκολα ότι η συνάρτηση $y_{\mu}(x)=-2-x^2$ είναι μία μερική λύση της δοθείσας μη ομογενούς Δ .Ε. Άρα, από την (4.1.10), η γενική λύση της Δ .Ε. είναι

$$y(x) = c_1 e^x + c_2 e^{-x} - 2 - x^2$$
.

Οι σταθερές c_1 και c_2 ικανοποιούν το σύστημα

$$y(0) = c_1 + c_2 - 2 = 3$$

 $y'(0) = c_1 - c_2 = 3$,

το οποίο προχύπτει από τις αρχικές συνθήκες και το οποίο έχει τη λύση $c_1=4$ και $c_2=1$. Έτσι, η λύση του Π.Α.Τ. είναι

$$y(x) = 4e^x + e^{-x} - 2 - x^2.$$

 \triangle

4.2 Ομογενείς διαφορικές εξισώσεις με σταθερούς συντελεστές

Ο προσδιορισμός σε εκπεφρασμένη μορφή των λύσεων των γραμμικών Δ .Ε. δεύτερης τάξης με συντελεστές συναρτήσεις δεν είναι πάντα δυνατός σε αντίθεση με τις γραμμικές Δ .Ε. πρώτης τάξης των οποίων οι λύσεις εκφράζονται ως ολοκληρώματα των συναρτήσεων των συντελεστών (βλ. Παρ. 2.3). Όμως, όταν οι συντελεστές των y,y',y'' μιας ομογενούς Δ .Ε. δεύτερης τάξης είναι σταθεροί τότε η γενική λύση της Δ .Ε. προσδιορίζεται με την ακόλουθη διαδικασία, η οποία βασίζεται στον αλγεβρικό υπολογισμό των ριζών ενός συγκεκριμένου πολυωνύμου.

$$y'' + a_1 y' + a_0 y = 0, (4.2.1)$$

όπου $a_0, a_1 \in \mathbb{R}$, λέγεται ομογενής γραμμική $\Delta.Ε.$ δεύτερης τάξης με σταθερούς συντελεστές.