## 2.2 Bestmögliches Regressionsmodell kaggle-Contest

Challenge: cml1/3Db Immobilienrechner

Team: Alexander Shanmugam, Si Ben Tran, Gabriel Torrez Gamez, Haris Alic

Aufgabe: 2.2 Bestmögliches Regressionsmodell - kaggle-Contest

Entwickle mit beliebigen Algorithmen das bestmögliche Modell im Sinne des Mean absolute percentage error (MAPE). Vegleiche dabei mindestens drei algorithmische Ansätze, wobei ein multiples lineares Modell Teil davon sein soll als Benchmark. Untersuche die 'Variable Importance' für dein bestes Modell.

#### Abgabe

Notebook und daraus erstellter Bericht (ohne Code) als pdf, welche die Entwicklung deines besten Modells, sowie der zwei weiteren Modelle dokumentiert, inklusive verwendeter Features, Preprocessing, Model Selection Prozess und Untersuchung der 'Variable Importance'.

Eingabe der Vorhersage des Preises für den Testdatensatz mit deinem bestmöglichen Modell auf kaggle.

## **Pipeline**

Um unsere Daten auf die Modelle vorzubereiten wurden die wichtigsten Module importiert, die Daten eingelesen, gesplittet, repariert, imputiert und skaliert. Weitere Informationen sind im Jupyter Notebook vorhanden.

## **Modell 1 - Multiple Lineare Model**

Modell 1 ist ein multiples lineares Modell, welches wir als Benchmark für die weiteren Modelle verwenden werden. Wir haben uns für dieses Modell entschieden, da es ein einfaches Modell ist, welches wir schnell erstellen können und es uns ermöglicht, die Vorhersage des Preises zu erstellen.

Das Multiple Lineare Regression ist ein statistisches Modell, das verwendet wird, um die Beziehung zwischen einer abhängigen und einer oder mehreren unabhängigen Variablen zu beschreiben. Es geht davon aus, dass die Beziehung zwischen den Variablen linear ist und dass die Zufallsfehler normalverteilt sind.

```
Fitting 5 folds for each of 4 candidates, totalling 20 fits
Best params: {'fit_intercept': False, 'positive': True}
Mean absolute percentage error: 3187350940.2074747
```



Wir evaluieren alle unsere Modelle mit dem MAPE Score und zeigen mittels einer Visualisierung wie gut unser Modell den Haus Preis vorhersagen kann.

In der Visualisierung wird der richtige Preis durch die x-Achse dargestellt. Die blaue Linie repräsentiert ein perfektes Modell. Sprich, wenn ein roter Punkt sich auf der blauen Linie befindet, so ist der vorhergesagener Wert identisch, wie die des richtigen Wertes. Dies wäre der Idealfall.

Man erkennt in unserem Plot, dass das multiple Lineare Regressionsmodell die Werte der Preise eher unterschätzt, da die roten Punkte sich unterhalb der blauen Linie sich befinden. Auch erkennen wir vereinzelte Punkte, die sehr weit entfernt von der blauen Linien sind. Aus diesem Grund ist es auch nicht verwunderlich, dass unser MAPE Score einen sehr hohen Wert verzeichnet.

# **Modell 2 - Lasso Regression**

Modell 2 ist ein multiples lineares Lasso Modell. Die Lasso Regression ist eine Art von Regression, die eine Regularisierungstechnik namens L1-Regularisierung verwendet. Diese Technik fügt dem konventionellen Fehlerterm einen Penalties-Term hinzu, der die Summe der absoluten Werte der Regressionskoeffizienten minimiert. Lasso Regression kann verwendet werden, um automatisch unbedeutende Variablen auszuschließen und die Modellkomplexität zu reduzieren.

```
Fitting 5 folds for each of 800 candidates, totalling 4000 fits

Best parameters: {'alpha': 100000.0, 'fit_intercept': True, 'max_iter': 100, 'positive': False,
'random_state': 42, 'selection': 'cyclic'}

Mean absolute percentage error: 0.5057373981991736
```



Wir erkennen im Plot eine deutliche Verbesserung mittels Lasso Regression, verglichen zum mulitplen Linearen modell. Auch die MAPE Metrik ist deutlich gesunken auf 0.5. Da bei der Lasso Regression Features bestraft werden, die keinen Beitrag zur vorhersage des Haus Preises haben, können wir hier uns schon die ersten wichtigen Features herausextrahieren. Sprich Features die keinen Koeffizienten Wert von 0 afuweisen in unserem Modell.

### Untersuchung der Variable Importance Modell 2

```
Fitting 5 folds for each of 80 candidates, totalling 400 fits

Best parameters: {'alpha': 100000.0, 'fit_intercept': True, 'max_iter': 100, 'positive': False,
'random_state': 42, 'selection': 'cyclic'}

Mean absolute percentage error: 0.5057368618984887
```



## **Modell 3 - Ridge Regression**

Modell 3 ist ein multiples lineares Ridge Modell. Die Ridge Regression ist eine weitere Art von Regression, die eine Regularisierungstechnik namens L2-Regularisierung verwendet. Diese Technik fügt dem konventionellen Fehlerterm einen Penalties-Term hinzu, der die Summe der Quadrate der Regressionskoeffizienten minimiert. Ridge Regression kann verwendet werden, um Probleme der Überanpassung (overfitting) zu vermeiden und die Robustheit des Modells zu verbessern.

```
Fitting 5 folds for each of 400 candidates, totalling 2000 fits

Best parameters: {'alpha': 10000.0, 'fit_intercept': True, 'max_iter': 100, 'positive': False,
'random_state': 42}

Mean absolute percentage error: 0.5004054411589232
```



Wir schauen uns nun das Ridge Regression Modell an uns erkennen, das auch hier die roten Punkte sich deutlich besser auf der blauen Linie liegen als beim multiplen Linearen Modell. Entsprechend ist auch der MAPE deutlich tiefer. Sowohl beim Lasso als auch bei der Ridge Regression können wir sagen, das sich der MAPE Score ähnlich sind und gleich gute Resultate liefert. Da ein MAPE von ca. 50% uns nicht genügt, verwenden wir weitere Modelle, um unsere vorhersage über den Immobilienpreis zu verbessern.

## **Modell 4 - Elastic Net Regression**

Modell 4 ist ein multiples lineares Elastic Net Modell. Das Elastic Net Regression ist eine Kombination aus Lasso- und Ridge-Regression. Es vereint die Vorteile beider Methoden, indem es eine Kombination der L1- und L2-Regularisierung verwendet. Dies ermöglicht es, unbedeutende Variablen auszuschließen und gleichzeitig die Modellkomplexität zu begrenzen.

```
Fitting 5 folds for each of 240 candidates, totalling 1200 fits

Best parameters: {'alpha': 100000.0, 'fit_intercept': True, 'l1_ratio': 1, 'max_iter': 100, 'positive':
False, 'random_state': 42, 'selection': 'cyclic'}
```



Bei der Elastic Net Regression erkennen wir keinen weitere Verbesserung des MAPE Scores. Wir testen nun weitere Modelle in unserem Datensatz aus.

## **Modell 5 - KNN Regression**

Modell 5 ist ein KNN Modell. Die KNN Regression (K-Nearest Neighbors Regression) ist ein nicht-parametrisches Modell, das verwendet wird, um Vorhersagen auf der Grundlage von Beobachtungen in den nächsten Nachbarschaft vorzunehmen. Es geht davon aus, dass Beobachtungen, die in der Vergangenheit ähnlich waren, auch in der Zukunft ähnlich sein werden.

```
Fitting 4 folds for each of 8 candidates, totalling 32 fits

Best parameters: {'algorithm': 'ball_tree', 'leaf_size': 5, 'metric': 'minkowski', 'n_neighbors': 3, 'p':

1, 'weights': 'distance'}
```



Es ist sehr interessant zu sehen, dass die KNN Regression eine deutliche Verbesserung zur vorhersage des Immobilienpreises beiträgt. Der MAPE ist deutlich gesunken und befindet sich nun im Bereich von 0.38. Die roten Punkte befinden sich nun nach und nach mehr auf der blauen Ideallinie und unser Modell wird besser. Wir nutzen nun andere Modelle, um die Immobilienpreise besser vorhersagen zu können.

## **Modell 6 - Decision Tree Regression**

Modell 6 ist ein Decision Tree Modell. Das Decision Tree Regression ist ein Modell, das auf Entscheidungsbaum-Algorithmen basiert. Es ermöglicht es, eine Vorhersage anhand von Entscheidungen zu treffen, die anhand von Input-Variablen getroffen werden. Der Entscheidungsbaum besteht aus Knoten und Kanten, wobei jeder Knoten eine Entscheidung darstellt und die Kanten die möglichen Ergebnisse dieser Entscheidungen darstellen.

```
Fitting 5 folds for each of 24 candidates, totalling 120 fits

Best parameters: {'criterion': 'absolute_error', 'max_depth': None, 'max_features': None,
```







Der Decision Tree liefert und einen schlechteren MAPE Score als der KNN Regression. Trotzdem ist dieser interessant für uns, um zu schauen, ob die Feature Importance ähnlich oder gleich sind wie die von der Lasso Regression. Im nächsten Abschnitt extrahieren wir die wichtigsten Features und plotten diese in einem Barplot und schauen uns an, ob sich der MAPE Score verschlechtert.

### Untersuchung der Variable Importance Modell 6

```
Fitting 5 folds for each of 24 candidates, totalling 120 fits

Best parameters: {'criterion': 'poisson', 'max_depth': None, 'max_features': None, 'min_samples_leaf': 1,
'min_samples_split': 2, 'random_state': 42, 'splitter': 'best'}
```



Wir nutzen nun die wichtigsten Features der Lasso Regression und verwenden unsere Decision Tree Regressor, und schauen uns an, wie sich der MAPE Score mit anderen Features sich verändert.

```
Fitting 5 folds for each of 24 candidates, totalling 120 fits

Best parameters: {'criterion': 'squared_error', 'max_depth': None, 'max_features': 'sqrt',
'min_samples_leaf': 1, 'min_samples_split': 2, 'random_state': 42, 'splitter': 'random'}
```

y\_val vs y\_pred Decision Tree Regression, MAPE: 0.4951



Durch die Auswahl der wichtigsten Features von der Lasso Regression, erhalten wir einen schlechteren MAPE Score als mit den wichtigsten Features von Decision Tree selbst.

# **Modell 7 - Random Forest Regression**

Modell 7 ist ein Random Forest Modell. Random Forest Regression ist ein Ensemble-Modell, das auf mehreren Entscheidungsbäumen basiert. Es erstellt mehrere Entscheidungsbäume und verwendet dann die durchschnittlichen Vorhersagen aller Bäume, um die endgültige Vorhersage zu erhalten. Durch die Verwendung mehrerer Bäume wird das Risiko von Überanpassung (overfitting) reduziert und die Vorhersagen werden stabiler und zuverlässiger.

```
Fitting 4 folds for each of 1 candidates, totalling 4 fits

Best parameters: {'max_depth': None, 'max_features': None, 'min_samples_leaf': 1, 'min_samples_split': 2,
'n_estimators': 100, 'random_state': 42}
```



Untersuchung der Variable Importance Modell 7





Analog wie beim Modell 6 sehen wir, dass living\_space das wichtigste Feature im Modell ist, um unseren Immobilienpreis vorhersagen zu koennen. Wir erstellen im nächsten Schritt das gleiche Modell, einfach nur mit den wichtigsten Features. Erwartungsgemäss versclechtert sich der MAPE einwenig.

```
Fitting 4 folds for each of 1 candidates, totalling 4 fits

Best parameters: {'max_depth': None, 'max_features': None, 'min_samples_leaf': 1, 'min_samples_split': 2,
'n_estimators': 100, 'random_state': 42}
```



Interessenshalber nehmen wir nun die wichtigsten Features aus dem Modell Decision Tree und Lasso Regression.

#### Decision Tree Features:

```
Fitting 4 folds for each of 1 candidates, totalling 4 fits

Best parameters: {'max_depth': None, 'max_features': None, 'min_samples_leaf': 1, 'min_samples_split': 2,
'n_estimators': 100, 'random_state': 42}
```

#### y\_val vs y\_pred Random Forest Regression, MAPE: 0.3605



#### Lasso Features:

```
Fitting 4 folds for each of 1 candidates, totalling 4 fits

Best parameters: {'max_depth': None, 'max_features': None, 'min_samples_leaf': 1, 'min_samples_split': 2,
'n_estimators': 100, 'random_state': 42}
```



Wie wir durch unsere Modelle und Plots zeigen konnte, koennen wir durchaus unsere Modelle vereinfachen indem wir nur die wichtigsten Features aus unserem Datensatz nehmen und unser Modell entsprechen trainieren und validieren.

Ein Interessante Beobachtung ist, dass alle wichtigen Features von Lasso, Decision Tree und Random Forest Tree zu fast gleichen MAPE Score führt. Durch die Selektion der wichtigsten Features, koennen wir unsere Modelle vereinfachen und die Performance verbessern.

## **Modell 8 - Gradient Boosting Regression**

Modell 8 ist ein Gradient Boosting Modell. Gradient Boosting Regression ist ein weiteres Ensemble-Modell, das auf Gradient Boosting-Algorithmen basiert. Es erstellt mehrere schwache Modelle und fügt sie dann schrittweise zu einem stärkeren Modell zusammen, indem es auf Fehler des vorherigen Modells fokussiert. GBR ist ein sehr mächtiges Modell, aber es kann leicht zu überanpassen(overfitting) führen, falls nicht sorgfältig reguliert wird.

```
Fitting 5 folds for each of 1 candidates, totalling 5 fits

Best parameters: {'learning_rate': 0.1, 'max_depth': 12, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100, 'random_state': 42}
```



Der Gardient Boosting Regressor liefert und ein ähnlichen MAPE Score, wie unser Random Forest Modell. Beide MAPE Score liegen im Bereich von 0.32.

## **Modell 9 - XGBoost Regression**

Modell 9 ist ein XGBoost Modell. XGBoost Regression ist ein weiteres Ensemble-Modell, das auf Gradient Boosting-Algorithmen basiert, es ist allerdings speziell für die Beschleunigung von Gradient Boosting und für die Handhabung von großen Datensätzen optimiert. Es bietet mehrere fortgeschrittene Funktionen wie automatisches Ressourcen-Management und reguläre Optimierungen.

```
Fitting 4 folds for each of 1 candidates, totalling 4 fits
Best parameters: {'booster': 'gbtree', 'learning_rate': 0.1, 'max_depth': 15, 'random_state': 42}
```



Durch XGBoost konnten wir unseren MAPE Score nochmals um 2 Prozent verbessern. Der MAPE Score liegt nun im Bereich von 0.30.

# Modell 10 - Histgradientboosting Regression (log transformation)

Modell 10 ist ein Histgradientboosting Modell. HistGradientBoosting Regression ist eine spezielle Art der Gradient Boosting Regression, die von Gradient Boosting-Algorithmen für große Datensätze und hohe Dimensionen optimiert ist. Es nutzt eine besondere Technik namens Histograms, welche es ermöglicht effizient mit numerischen Features umzugehen und so die Rechenzeit zu reduzieren.

```
Fitting 4 folds for each of 1 candidates, totalling 4 fits
Best parameters: {'learning_rate': 0.1, 'loss': 'absolute_error', 'max_depth': 18, 'max_leaf_nodes': None,
```





Mit dem Histgradientboosting Regression brechen wir unter der Marke von einem MAPE Score von 0.3. Mit dem Histgradientboositing Regression können wir nun einen MAPE Score von 0.26 liefern, was deutlich besser ist als alle unseren andere Modelle. Da der HistgradientboostingRegression auch mit NA Werten umgehen kann, werden wir dies im nächsten Abschnitt durchführen und schauen uns den MAPE Score wieder an.

# Modell 11 - Histgradientboosting Regression (log transformation) with NA

Unser Vorheriges Modell kann wie erwähnt auch mit NA Werten umgehen. Hier trainieren wir es neu auf nicht imputierte Werte.

```
Fitting 4 folds for each of 1 candidates, totalling 4 fits

Best parameters: {'learning_rate': 0.1, 'loss': 'absolute_error', 'max_depth': 25, 'max_leaf_nodes': None,
'random_state': 42}
```



Dies ist unser bestes Modell. Mit Histgradientboosting Regression mittels Log Transformation und NA Werten erreicht unser Modell den tiefsten MAPE Score auf unserem Validierungsdatensatz von 0.23. Wir erkennen im Plot, dass die meisten roten Punkte sich im Bereich der blauen Linie aufhalten. Im oberen und tieferen Bereich streuen die Punkte von der Linie einwenig ab. Dies bedeutuet, dass wir die besten Vorhersagen im mittleren Bereich unserer Immobilienpreise liefern können.

## Vergleiche der Modelle

Hier werden die Modelle miteinander verglichen und tabellerisch sowie visualisiert dargestellt. Dabei dient das Modell 1 - Multiple Linear Model, als Benchmark.

|    | Model                                   | MAPE              |
|----|-----------------------------------------|-------------------|
| 10 | HistGradientBoosting Regression with NA | 0.233239          |
| 9  | HistGradientBoosting Regression         | 0.260161          |
| 7  | XGBoost Regression                      | 0.304185          |
| 8  | GradientBoosting Regression             | 0.319968          |
| 6  | RandomForest Regression                 | 0.327054          |
| 4  | KNeighbors Regression                   | 0.382445          |
| 5  | DecisionTree Regression                 | 0.418579          |
| 2  | Ridge Regression                        | 0.500405          |
| 1  | Lasso Regression                        | 0.505737          |
| 3  | ElasticNet Regression                   | 0.505737          |
| 0  | Multiple Linear Regression              | 3187350940.207475 |

#### MAPE Score for all Models



Wir erkennen im Barplot deutlich, das alle Modelle besser sind als die multiple lineare Regression. Schon unser zweites Modell, das Lasso Modell schlägt unser Benchmark um das vielfache. Das beste Modell, welches wir für unsere Preisvorhersage nutzen ist die HistGradientBoostingRegression. Dicht gefolgt wird diese durch das gleiche Modell, jedoch ohne mit der Eigenschaft, mit NA Werten umgehen zu koennen. Bei beiden HistGradientBoosting Modellen transformieren wir die Target Variabel. Auf dem dritten Platz befindet sich das XGBoost Modell. Alle drei Modelle liefern uns einen sehr guten MAPE Score bei unseren Validierungsdatensatze. Auf Kaggle haben wir unterschiedliche Submission gemacht und auch hier, analog zum Testdatensatz, liefert die HistGradientBoostingRegression mit NA Werten die besten Resultate in Bezug auf den MAPE Score.

## **Untersuchung der "Variable Importance"**

Wir konnten aus unserem besten Modell die Variabel Importance nicht heraus extrahieren. Aus diesem Grund haben wir die Variabel Importance von unserem zweitbesten Modell, dem xgboost Modell die Variable Importance extrahiert und diese dann mittels barplot visualisiert.



Es ist sehr interessant zu sehen, das dass xgboost Modell das Feature gde\_tax als höchstes Bewertet. Verglichen zu den Lasso, Decision Tree und Random Forest Modell, ist dort living\_space das wichtigste Feature. xgboost bewertet living\_space jedoch als zweit wichtigstes Feature. Dies ist im Barplot visuell dargestellt ersichtlich.

## **Fazit**

Wir konnten in diesem Notebook unsere Kenntnisse mit verschiedenen sklearn Modellen verbessern und erweitern. Es hat uns Spass gemacht, Stück für Stück den MAPE Score zu optimieren und unterschiedliche Regression Modelle anzuwenden und den MAPE von jedem Modell zu vergleichen.

Unser letztes Modell, der HistGradientBoostingRegressor mit NA Werten liefert uns den besten MAPE Score. Wir haben uns entschieden dieses Modell zu verwenden, da es uns die Möglichkeit gibt, mit NA Werten umgehen zu können. Dies hat einen grossen Vorteil, da wir uns nicht mit den NA Werten, wie bei allen anderen Modellen herumschlagen müssen. Nach aktuellem Stand (11.01.2023), stehen wir auch im Leaderboard auf Kaggle auf dem ersten Platz.