First Applications of Suffix Trees (7.12 ~ 7.13)

한양대학교 2015101331 Ko Daejin

발표자료 : 조윤성

Index

• 7.12 APL 11 : Finding all maximal repetitive structures in linear time.

• 7.13 APL 12 : Circular string linearization.

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = kyzabaaxyraxyzabaaxzz$

Finding all maximal repetitive structures in linear time

Finding all maximal repetitive structures in linear time

• Ex) S = k y z a b a a x y r a x y z a b a a x z z

Naive

ky zabaaxyraxyzabaaxzz

• Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = k y z a b a a x y r a x y z a b a a x z z$

Naive

kyzabaaxyraxyzabaaxzz

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = kyzabaaxyraxyzabaaxzz$

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = k y z a b a a x y r a x y z a b a a x z z$

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = k y z a b a a x y r a x y z a b a a x z z$

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = k y z a b a a x y r a x y z a b a a x z z$

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = k y z a b a a x y r a x y z a b a a x z z$

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = k y z a b a a x y r a x y z a b a a x z z$

Naive

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = k y z a b a a x y r a x y z a b a a x z z$

Naive

Finding all maximal repetitive structures in linear time

```
• Ex) S = k y z a b a a x y r a x y z a b a a x z z
```

Naive

kyzabaaxyraxyzabaaxzz

Finding all maximal repetitive structures in linear time

```
• Ex) S = kyzabaaxyraxyzabaaxzz
```

Naive

kyzabaaxyraxyzabaaxzz

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = k y z a b a a x y r a x y z a b a a x z z$

Consider $\Theta(n^4)$ pairs !!

Finding all maximal repetitive structures in linear time

•
$$Ex$$
) $S = kyzabaaxyraxyzabaaxzz$

Naive kyzabaaxyraxyzabaaxzz

Consider $\Theta(n^4)$ pairs !!

→ We can make it linear time

Maximal pair

• Identical substrings α and β in S such that the character to the immediate left(right) of α is different from the character to the immediate left(right) of β .

• Ex) S = xabcyzabcqabcyr

xabcyzabcqabcyr xabcyzabcqabcyr xabcyzabcqabcyr xabcyzabcqabcyr xabcyzabcqabcyr xabcyzabcqabcyr xabcyzabcqabcyr xabcyzabcqabcyr xabcyzabcqabcyr

- Triple (p1, p2, n')
 - A maximal pair is represented by the triple.
 - p1, p2: starting positions of the two substrings
 - *n*': substring length

Ex) S = x a b c y z a b c q a b c y r

- Triple (p1, p2, n')
 - A maximal pair is represented by the triple.
 - p1, p2: starting positions of the two substrings
 - *n*': substring length

$$Ex) S = x a b c y z a b c q a b c y r$$

- $\mathbf{R}(\mathbf{S})$
 - Set of all triples

$$R(S) = \{ (2,7,3), (7,11,3), (2,11,4) \}$$

Maximal repeats α

- Substring of S that occurs in a maximal pair in S.
- α is maximal repeat in S if there is a triple $(p1, p2, |\alpha|) \subseteq R(S)$ and α occurs in S starting at position p1 and p2.

Ex) S = x a b c y z a b c q a b c y r

Maximal repeats α

- Substring of S that occurs in a maximal pair in S.
- α is maximal repeat in S if there is a triple $(p1, p2, |\alpha|) \subseteq R(S)$ and α occurs in S starting at position p1 and p2.

$$Ex) \ S = x \ a \ b \ c \ y \ z \ a \ b \ c \ q \ a \ b \ c \ y \ r$$

- R'(S)
 - Set of maximal repeats

$$R'(S) = \{ abc, abcy \}$$

Supermaximal repeat

 Maximal repeat that never occurs as a substring of any other maximal repeat.

$$R(S) = \{ (2,7,3), (7,11,3), (2,11,4) \}$$

$$R'(S) = \{ abc, abcy \}$$

Supermaximal repeat of S = 'abcy'

- T = Suffix tree for string S
- If a string α is maximal repeat in S then α is the path-label of a node v in T.

```
Ex) S = x \alpha y \alpha z (\alpha = substring)
```

- T = Suffix tree for string S
- If a string α is maximal repeat in S then α is the path-label of a node v in T.

```
Ex) S = x \alpha y \alpha z ( \alpha = substring )
```

- T = Suffix tree for string S
- If a string α is maximal repeat in S then α is the path-label of a node v in T.

Ex)
$$S = x \alpha y \alpha z$$
 ($\alpha = \text{substring}$)

 $x \alpha y \alpha z$
 $x \alpha y \alpha z$
 $x \alpha y \alpha z$

• S(i-1), left character

• The left character of a leaf of T is the left character of the suffix position represented by that leaf.

$$S(1) = x$$

 $S(2) = a$
 $S(3) = b$

$$S(4) = x$$

$$S(5) = a$$

$$S(6) =$$
\$

• S(i-1), left character

• The left character of a leaf of T is the left character of the suffix position represented by that leaf.

• S(i-1), left character

• The left character of a leaf of T is the left character of the suffix position represented by that leaf.

Left character of **2** is 'x'

• S(i-1), left character

• The left character of a leaf of T is the left character of the suffix position represented by that leaf.

Left character of 4 is 'b'

• S(i-1), left character

• The left character of a leaf of T is the left character of the suffix position represented by that leaf.

Left diverse

• A node *v* is called left diverse if at least two leaves in *v*'s subtree have different left characters.

• Left diverse

• A node *v* is called left diverse if at least two leaves in *v*'s subtree have different left characters.

Left diverse

• A node *v* is called left diverse if at least two leaves in *v*'s subtree have different left characters.

Theorem

• The string α labeling the path to a node v is a maximal repeat if and only if v is left diverse.

Maximal pair

- Identical substrings α and β in S such that the character to the immediate left(right) of α is different from the character to the immediate left(right) of β .
- Ex) S = xabcyzabcqabcyr

xabcyzabcqabcyr
xabcyzabcqabcyr
xabcyzabcqabcyr
xabcyzabcqabcyr
xabcyzabcqabcyr
xabcyzabcqabcyr
xabcyzabcqabcyr
xabcyzabcqabcyr
xabcyzabcqabcyr

xabcyzabcqabcyr xabcyzabcqabcyr

Theorem

Theorem

Theorem

Theorem

1. Records the left character of every leaf

- 2. (a) If any child of *v* has been identified as being left diverse, it records that v is left diverse
 - (b) else, examines the characters recorded at v's children

- 2. (a) If any child of *v* has been identified as being left diverse, it records that v is left diverse
 - (b) else, examines the characters recorded at v's children

Supermaximal repeat

- Maximal repeat that is not a substring of any other maximal repeat.
- Node v represents a supermaximal repeat α if and only if..
 - 1. Each children has a distinct left character.
 - 2. All of v's children are leaves

2. All of v's children are leaves

LD: left diverse

2. All of v's children are leaves

2. All of v's children are leaves

- The algorithm is an extension of the method given earlier to find all maximal repeats.
- Save left character with it's postion.
- Working bottom up
- When calculate node v, Save the information about v's children

Ex) S = xabcyabxabzabc\$

Maximal pair

(2, 6, 'ab') (6, 9, 'ab') (6, 12, 'ab') (9, 12, 'ab')

Circular string

• Ex) S = b a a c b

Circular string

We want to Find the lexically smallest of all the *n* possible linear strings

$$ex) S = b a a c b$$

1) a a c b b

- 2) a c b b a
- 3) baacb
- 4) bbaac
- 5) cbbaa

We want to Find the lexically smallest of all the *n* possible linear strings

$$ex) S = b a a c b$$

- Lexically
 (dictionary order)
 smallest string
- 2) a c b b a
- 3) baacb
- 4) b b a a c
- 5) cbbaa

Ex)
$$S = b \ a \ a \ c \ b \$$

- 1) a a c b b
- 2) a c b b a
- 3) b a a c b
- 4) b b a a c
- 5) cbbaa

Can't find these strings by suffix tree of *S*.

Ex) S' = b a a c b b a a c b \$Lexically smallest string a c b \$/ → a a c b b