Biçimsel Diller ve Otomata Teorisi

Hafta 4: Sonlu Otomata (II.Bölüm)

Hafta 4 Plan

- 1. NFA inşası
- 2. Epsilon Geçişleri
- 3. Nondeterministik Sonlu Otomata'nın Resmi Gösterimi
- 4. Bir NFA'yı bir DFA'ya Dönüştürme

ör. $\Sigma = \{0,1\}$ alfabesi kullanılarak üretilen kelimerlerden sonu '101' ile biten kelimeleri kabul eden determinstik ve nondeterminstik sonlu otomatalar:

Nondeterministik

Bir önceki soruda NFA'yı inşa ederken:

Öncelikle 101 geldiginde kabul durumuna ulaşan otomata inşa edilir:

Ve buna q_0 ' dan 0 ve 1 oklari ekleriz ki, 0 yada 1 ile baslayip 101 ile biten kelimeri kabul etsin.

Ek bilgi:

Onceki ornekteki nondetermistik otomata q_0 ' da karsilastigi her 1 harfi icin <u>kendini</u> <u>kopyalar.</u> Ornek olarak 1101 kelimesini aldigini dusunelim.

Epsilon(ε) geçişleri

NFA'nın bir diğer güzelliği epsilon geçişlerine izin vermesidir.

Bu geçiş diğer geçişlerden farklı olarak harf almaz. Yani epsilon (ε) ile bağlanan iki durumdan, birinden diğerine geçmek için bir harf gerekmez; otomatik olarak geçeriz. Yani bu iki durumdan ilkine vardığımızda diğerine de varmış oluruz.

ör. $\Sigma = \{a, b, c\}$ alfabesi kullanılarak oluşturulan kelimelerden *a,b,c* harflerinden herhangi ikisini içerip birini içermeyen kelimeleri

tanıyan otomata:

Epsilon(ε) geçişleri

Aralarında bir ε geçişi olan iki durumdan ilkine vardığımızda ilkiyle beraber ikinciye de otomatik olarak varmış oluruz.

ör. $\Sigma = \{a, b\}$ alfabesi kullanılarak üretilen kelimelerden ε, a, baa ve baba kelimelerini kabul eden; fakat b ve bb kelimelerini kabul etmeyen sonlu otomata:

ör. $\Sigma = \{0,1\}$ alfabesi kullanılarak üretilen kelimerlerden sonu '00' yada '010' yada '0110' ile biten kelimeleri kabul eden nondeterminstik sonlu otomata:

ör. $\Sigma = \{0\}$ alfabesi kullanılarak oluşturulan kelimelerden 2'nin yada 3'ün katı uzunluğundaki kelimeleri tanıyan sonlu otomata:

Neden Nondeterministik?

ör. $\Sigma = \{0,1\}$ alfabesi kullanılarak üretilen kelimelerden sondan 3. harfi yada sondan 2. harfi 1 olan kelimeleri tanıyan nondeterministik sonlu otomata:

Nondeterministik

Deterministik

Nondeterministik Sonlu Otomatanin Formal Tanımı

Bir nondeterministik sonlu otomata 5-li sıradır ve $(Q, \Sigma, \delta, q_0, F)$ ile gösterilir. Burada:

- 1. Q tüm durumları içeren sonlu bir kümedir,
- 2. Σ kullandığımız harfleri (inputları) içeren alfabedir,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ geçiş fonksiyonudur (transition function),
- 4. $q_0 \in Q$ baslangıç durumudur,
- 5. $F \subseteq Q$ final durumları içeren kümedir.

Not 1. $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ Yani NFA'da ε geçişine de izin veriyoruz.

Not 2. Dikkat et! NFA'da geçiş fonksiyonun değer kümesi Q değil, Q'nun güç kümesi olan $\mathcal{P}(Q)$ ' dur. $\mathcal{P}(Q)$ 'nun elemanları Q'nun altkümeleri idi. Yani böylece NFA'da bir durumdan yalnız bir duruma değil birden çok duruma geçiş yapabiliriz.

ör.

$$Q = \{q_0, q_1, q_2, q_3\},\$$

 $\Sigma = \{0,1\},\$
 $q_0,\$
 $F = \{q_3\}.$

δ	0	1	3
q_0	$\{q_{0}\}$	$\{q_0, q_1\}$	Ø
q_1	$\{q_2\}$	$\{q_{2}\}$	$\{q_2\}$
q_2	$\{q_{3}\}$	$\{q_3\}$	Ø
q_3	Ø	Ø	Ø

NFA ve DFA'nın Denkliği

NFA, DFA'dan daha güçlü görünmesine karşın, aslında NFA ve DFA aynı dili tanırlar; yani birbirlerine denktirler.

Teorem 1: Her bir DFA zaten bir NFA dur. (DFA⊆NFA)

Bir DFA, bir NFA'ya dönüştürülürken yalnızca geçiş fonksiyonu aşağıdaki gibi değiştirilir:

$$\delta: Q \times \Sigma \to Q$$
 iken, $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ olur.

ör.
$$\delta\left(q_{i},0\right)=q_{j},\delta\left(q_{i},0\right)=\left\{q_{j}\right\}$$
 olur.

Teorem 2: Her bir NFA'ya karşılık bir DFA vardır.

Bir NFA'yı bir DFA'ya dönüştürürken şu süreç izlenir.

Bir NFA'yı bir DFA'ya dönüştürme:

Bir NFA N = $(Q, \Sigma, \delta, q_0, F)$, bir D DFA'ya dönüştürülürken:

- $1.\mathcal{P}(Q)$ oluşturulur, yani Q'nun bütün altkümeleri. D'nin durumları bu $\mathcal{P}(Q)$ 'nun elemanlari olan altkümeler olur.
- 2. D'nin başlangıç ve final (kabul) durumlarına karar verilir:

Başlangıç durumu: N'deki başlangıç durumu q_0 'ı ve varsa q_0 'ın ε ile bağlandığı diğer durumları içeren $\mathcal{P}(Q)$ 'nun elemanı olan küme D'nin başlangıç durumu olur.

Kabul durumu: N'deki kabul durumlarını içeren $\mathcal{P}(Q)$ 'nun h<u>er</u> e<u>lemanı</u> D'nin bir kabul durumu olur.

3.D için geçiş tablosu oluşturulur. Bunun için $\mathcal{P}(Q)$ 'nun her biri bir altküme olan elemanı için, bu altkümedeki her bir durumun Σ 'daki her bir harf için hangi duruma gittiği bulunur. Bulunan durumların oluşturduğu birleşim kümesi geçiş durumu olur.

Bir NFA'yı bir DFA'ya dönüştürme:

4. Son olarak $\mathcal{P}(Q)$ 'nun geciş alan elemanları için 3'de bulunan geçiş tablosu yardimiyla DFA çizilir.

ör.

$$0,1 \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_2$$

•
$$N = (Q = \{q_0, q_1, q_2\}, \Sigma = \{0,1\}, \delta, q_0, F = \{q_2\})$$

- NFA 'sının DFA'ya dönüşümü:
 - 1. $P(Q) = \{\emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}\}$
- 2. Başlangıç durumu: $\{q_0\}$,
 - Kabul durumları: $\{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}$
 - (P(Q)'nun q_2 'yi içeren her elemanını aldık)

3. Geçiş tablosu:

	$\delta_{\it D}$	0	1
Yeni durumlar	Ø	Ø	Ø
	$\{q_{0}\}$	$\{q_0, q_1\}$	$\{q_0\}$
	$\{q_1\}$	Ø	$\{q_2\}$
	$\{q_{2}\}$	Ø	Ø
	$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
	$\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$
	$\{q_1, q_2\}$	Ø	$\{q_2\}$
	$\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

4. Yukarıdaki tabloda yalnızca Ø, $\{q_0\}$, $\{q_0\}$, $\{q_0\}$, $\{q_0, q_1\}$ ve $\{q_0, q_2\}$ durumlarına geçiş vardır. O yüzden DFA'yı inşa ederken yalnızca bu durumları dikkate alacağız.

Bu parçaya başlangıç durumu $\{q_0\}$ 'dan ulaşılamayacağı için, bu parçayı atıyoruz.

Not 1. Baslangic durumu yalnız q_0 değil, q_0 ile birlikte q_0' ın ε ile bağlandığı q_2 .

Not 2. Kabul durumları NFA'daki kabul durumu olan q_0 'ı içeren tüm alt kümeler.