Programação 1

Atribuição, operadores aritméticos, entrada de dados

Armazenando na memória

OBS: Todas as variáveis devem ser declaradas

Armazenando na memória

```
#include <stdio.h>
                                     Memória
#include <stdlib.h>
main()
                                        10
                               na
int na,nb;
                                        20
                               nb
na = 10;
nb = 20;
printf("a:%d b:%d\n",na,nb);
na = nb;
printf("a:%d b:%d\n",na,nb);
system("pause");
                                         a:10
                                                 b:20
                                                 b:?
          O que será impresso aqui?
```

Armazenando na memória

Calculando

```
#include <stdio.h>
                                                 Memória
#include <stdlib.h>
main()
             variável
                                                    12
                                       parc1
int parc1,parc2,r;
                                                    15
                                       parc2
parc1 = 12;
                     constante
parc2 = 15; 4
                       expressão
                                                    27
                                         r
r = parc1 + parc2;
printf("soma:%d\n",r);
system("pause");
```

soma: 27

Definições

- Constante: É um valor fixo, invariante.
- Variável: É um espaço de memória que pode conter, a cada tempo, valores diferentes. Seu conteúdo é referenciado através de um nome (identificador). Devemos fornecer nomes significativos para as variáveis.
- Expressões: São representações simbólicas de operações a serem feitas sobre determinados operandos, visando a obtenção de um resultado.

Atribuição

```
variável = constante;
Ex:
                      a = 5;
variável = variável;
Ex:
                       b = c;
variável = expressão;
Ex:
                      d = a+3;
```

Atribuições inválidas:

$$3 = a;$$
 $3+b = a;$ $c-5 = 9+f;$

Comando para entrada de dados

```
#include <stdio.h>
#include <stdlib.h>
main()
int parc1,parc2,r;
scanf ("%d", &parc1);
scanf("%d", &parc2);
r = parc1 + parc2;
printf("Resultado:%d\n",r);
system("pause");
```


scanf

Executa uma leitura do teclado e armazena o valor informado na variável especificada.

Comando para entrada de dados

```
#include <stdio.h>
#include <stdlib.h>
                              parc1 20
                              parc2 30
                                                parc1
                                                            20
main()
                                                            30
                                                parc2
int parc1,parc2,r;
                        Usuário
scanf("%d", &parc1);
scanf("%d", &parc2);
                                                            50
r = parc1 + parc2;
printf("Resultado:%d\n",r);
                                  20
system("pause");
                                  30
                                  Resultado: 50
```

OBS: O valor das parcelas não estão fixas no programa. Ele pode ser utilizado para quaisquer dados de entrada.

Inserindo mensagens junto às entradas de dados

```
#include <stdio.h>
#include <stdlib.h>
                                   Informe o primeiro valor: 10
                                   Informe o segundo valor: 15
main()
                                  Resultado: 25
int parc1,parc2,r;
printf("Informe o primeiro valor: ");
scanf("%d", &parc1);
printf("Informe o segundo valor: ");
scanf ("%d", &parc2);
r = parc1 + parc2;
printf("Resultado:%d\n",r);
system("pause");
```

Permitindo a digitação de números com decimais

float

```
#include <stdio.h>
                           Tipo de dados utilizado
#include <stdlib.h>
                             armazenar valores que possuem
                             casas decimais.
main()
                           Código de formatação: %f
float parc1,parc2,r;
printf("Informe o primeiro valor: ");
scanf("%f", &parc1);
printf("Informe o segundo valor: ");
scanf ("%f", &parc2);
r = parc1 + parc2;
printf("Resultado:%f\n",r);
system("pause");
```

para

Operadores aritméticos

Operador	Operação	Prioridade
*	Multiplicação	1 ^a
/	Divisão	1 ^a
8	Resto da divisão	1 ^a
+	Adição	2 ^a
-	Subtração	2 ^a

Expressões em C

(Determinar o valor atribuído às variáveis abaixo)

OBS: O operador % deve ser utilizado apenas com operandos inteiros (int)

Escrevendo expressões em C

Matemática

$$m = \frac{a+b}{2}$$

$$m = (a+b)/2;$$

$$m=a+\frac{b}{2}$$

$$m = a + b/2;$$

$$r = \left[\frac{a}{b} - (d+e)\right] - 3$$

$$r = (a/b-(d+e))-3;$$

OBS: Para utilizar as funções matemáticas abaixo incluir o arquivo math.h

$$r=5+\sqrt{a+b}$$

$$r = 5 + sqrt(a+b);$$

$$x=(a+b)^2$$

$$x = pow(a+b,2);$$

$$c = 2 pi R$$

$$c = 2 * M_PI * r;$$

Regras para criar nomes de variáveis

- Deve começar com uma letra ou sublinhado (underline).
- O restante pode ser composto por letra, dígito ou sublinhado.
- Não é permitido a utilização de acentuação.
- Palavras reservadas da linguagem não podem ser utilizadas.

auto	default	float	register	struct	volatile
break	do	for	return	switch	while
case	double	goto	short	typedef	
char	else	if	signed	union	
const	enum	int	sizeof	unsigned	
continue	extern	long	static	void	

Exemplos de nomes válidos:

```
base area n1 num_alunos ftotal iNumAlunos teste
```

Exemplos de nomes inválidos:

la n\$ %aumento num-alunos área num alunos float

Roteiro para a resolução dos problemas

- Ler o enunciado até compreender o problema.
- Identificar as saídas exigidas pelo problema.
- Identificar as entradas descritas no enunciado.
- Verificar as transformações necessárias para, dadas as entradas, produzir as saídas especificadas.
- Escrever o algoritmo.
- Testar cada passo, verificando se sua execução está conduzindo aos objetivos desejados.
- Escrever o programa.
- Testar o programa no computador.

Problema resolvido

Escreva um programa para ler a resistência (Ohms) de 2 resistores associados em paralelo, calcular e escrever a resistência equivalente.

Exemplos de dados de entrada e suas respectivas saídas:

```
Exemplo 1
                 Exemplo 2
                                      Exemplo 3
Entrada
                | Entrada
                                      Entrada
200.00 (r1)
              | 250.00 (r1)
                                    | 300.00 (r1)
100.00 (r2)
                | 120.00 (r2)
                                     | 210.00 (r2)
Saída
                | Saída
                                     Saída
66.66 (R. eq.) | 81.08 (R. eq.)
                                    | 123.52 (R. eq.)
```

Problema resolvido

- Ler o enunciado e compreender o problema.
- Identificar as saídas exigidas pelo problema.

Saída: Resistência equivalente

• Identificar as entradas descritas pelo enunciado.

Entradas: Resistência de 2 resistores.

• Verificar as transformações necessárias para, dadas as entradas, produzir as saídas especificadas.

Resistência equivalente =
$$\frac{1}{\frac{1}{R1} + \frac{1}{R2}}$$

Programa em C

• Escrever o programa.

```
#include <stdio.h>
            #include <stdlib.h>
           main()
            float requiv, r1, r2;
           printf("Informe a resistência 1: ");
            scanf("%f",&r1);
    Ler
           printf("Informe a resistência 2: ");
            scanf("%f",&r2);
            requiv = 1 / (1/r1+1/r2);
Calcular
           printf("Resistência equivalente: %f\n",requiv);
Escrever
            system("pause");
```