Introduction to Animal Diversity

Chapter 32

5 major Eukaryote Clades

Unikonts

- 2 major subclades
 - 1. Amoebozoans
 - 2. Opisthokonts

Opisthokont Synapomorphies:

- 1. Molecular homologies:
 - rRNA sequences,
 - amino acid sequences
- 2. Morphological homologies:
 - single posterior flagellum (in chytrid fungi only)

Animals = Metazoa

Key Events:

Animal Diversification

What caused the Cambrian Explosion?

Hypotheses:

- 1. Evolution of predation led to predator/ prey "arms race"
 - New forms of locomotion
 - 1st animals w/ exoskeletons appear
- 2. Increased Oxygen
 - Higher metabolic rate
 - More complex tissues
 - Larger body size
- 3. Origin of *Hox* genes and other developmental genes (µRNAs)
 - facilitated evolution of new body forms

Cell Number

- Protists: Mostly unicellular, some multicellular
- Fungi: Some unicellular, mostly multicellular
- Plants & Animals: ALL multicellular

Cell Wall

Plants: yes (cellulose)

• Fungi: yes (chitin)

• Animals: No

- cell structural support is <u>external</u> proteins (usually collagen)

Figure 6.30 (Campbell et al)

Nutrition

Plants: Autotrophic eukaryotes

• Fungi: Heterotrophic absorptive eukaryotes

w/ external digestion

•Animals: Heterotrophic ingestive eukaryotes

w/ internal Digestion

Motility

Plants: Gametes – flagellated sperm in seedless and a few seed plants

Adult - No

Fungi: Gametes (mating hyphae) – No

Adult - No

Animals: Gametes – all w/ flagellated sperm

Adult – some yes, some no

Diploid Dominant

2n multicellular organism

Haploid Dominant

ONE multicellular stage w/ all <u>haploid</u> cells

Occurs in fungi & some protists

Diploid Dominant

2n multicellular organism

Alternation of Generations

TWO multicellular stages Gametophyte w/ haploid cells Sporophyte w/ diploid cells

Occurs in all plants & some protists

LARVAL STAGE

ADULT STAGE

BOTH <u>DIPLOID</u> NOT ALTERNATION OF GENERATION!!!

Summary of Animal Reproduction

- Most (but not all) reproduce sexually;
- Flagellated sperm; large nonmotile eggs;
- Diploid stage dominates life cycle;
 - Only haploid stage is gamete;
 - Gamete produced via meiosis;
 - No alternation of generations (no multicellular (n) stage);
 - No spore stage;
- Plasmogamy and karyogamy occur nearly simultaneous thus is called syngamy.

Overview

Main morphological characters used to categorize animal body plans:

- 1. Symmetry
 - a) none; b) radial; c) bilateral
- 2. Embryonic "germ" layers
 - a) 0; b) 2; c) 3
- 3. Organization of body cavity
 - a) acoelomate; b) coelomate; c) pseudocoelomate
- 4. Possession of vertebral column?
 - a) no; b) yes

Symmetry

- a) No symmetry (asymetric)
 - No way to divide animal into mirror images
 - Clade Porifera

No plane of symmetry

Copyright © 2008 Pearson Benjamin Cummings. All rights reserved.

Symmetry

b) Radial symmetry

- Any imaginary slice through the central axis divides the animal into mirror images
- Clade Cnidaria

Multiple planes of symmetry

Copyright © 2008 Pearson Benjamin Cummings. All rights reserved

Symmetry

c) Bilateral symmetry

- Only 1 imaginary slice divides the animal into mirror images
- All other clades except Porifera and Cnidaria

Overview

Main morphological characters used to categorize animal body plans:

- 1. Symmetry

 - a) none; b) radial; c) bilateral
- 2. Embryonic "germ" layers
 - a) 0; b) 2; c) 3
- 3. Organization of body cavity
- a) acoelomate; b) coelomate; c) pseudocoelomate
- 4. Possession of vertebral column?
 - a) no; b) yes

Embryonic "Germ" Layers

- = collection of cells, formed during animal embryogenesis
 - Different groups have 0, 2 or 3 layers
 - "Germinate" into <u>tissues</u>
 - Tissues = collections of specialized cells isolated from other tissues via a membrane
 - 4 types: Epithelial, connective, muscle, and nervous tissues
 - ***Muscle & nervous tissues are unique to animals

24

Formation of embryonic Germ Layers

- Cleavage = zygote becomes multicellular <u>blastula</u>
 - Blastula = a hollow ball of cells (hollow center = <u>blastocoel</u>)
- 2. <u>Gastrulation</u> = blastula invaginates to form <u>gastrula</u> which results in:
 - A. two layers
 - <u>Ectoderm</u> = outer layer
 - Endoderm = inner layer
 - (In some a 3rd layer (mesoderm) will later develop between ecto- and endoderm
 - B. 2nd hollow space (archenteron) with an external opening (blastopore)
 - Archenteron: later becomes digestive tract
 - Blastopore: later becomes either the mouth or anus

Destiny of embryonic Germ Layers

Ectoderm	Mesoderm	Endoderm
Epidermis	Dermis	Lining of digestive system
Lining of mouth & rectum	Lining of coelom	Digestive organs (liver, thymus, pancreas)
Nervous system	Skeletal, muscular, & circul. systems	Lining of respiratory system (lungs)

Do <u>not</u> need to remember fate of each tissue layer

Destiny of embryonic Germ Layers

The transparent embryo of the Nematode Caenorhabditis elegans makes it possible to trace the lineage of every cell from zygote to adult worm.

Figure 47.18 (Campbell et al)

Embryonic Germ Layers

Sponges have **ZERO** tissue layers

Tissues = collections of specialized cells isolated from other tissues via a membrane

Embryonic Germ Layers

Some animals have 2 germ layers

Diploblastic

✓ Ectoderm

- Wesoderm

✓ Endoderm

anemones jellyfish

Embryonic Germ Layers

Most animals have all three germ layers:

Triploblastic

✓ Ectoderm

✓ Mesooderm

✓ Endoderm

Overview

Main morphological characters used to categorize animal body plans:

```
1. Symmetry
```

- a) none; b) radial; c) bilateral
- 2. Embryonic "germ" layers

```
a) 0; b) 2; c) 3
```

3. Organization of body cavity

- a) acoelomate; b) coelomate; c) pseudocoelomate
- 4. Possession of vertebral column?
 - a) no; b) yes

31

Coelom

Most triploblastic phyla have a body cavity (coelom)

Coelom =

- Fluid or air filled space
- Separates digestive tract from outer body wall
- Fluid cushions organs
- Allows independent growth/movement of organs
- Aids in movement in invertebrates

Embryologic development varies resulting in formation of 0, 1 or 2 body cavities

lining coelom Digestive tract and suspending (from endoderm) internal organs (from mesoderm) Coelomates: 2 body cavities (both enclosed in mesoderm) Body covering (from ectoderm) Pseudocoelom Muscle layer (from mesoderm) Digestive tract (from endoderm) Pseudocoelomates: 1 body cavity (enclosed in endo- & mesoderm)

Figure 32.8 (Campbell et al)

Tissue layer

Coelom

The presence/absence of a coelom does <u>not</u> indicate evolutionary relationships.

i.e. This character has been gained & lost multiple times in various lineages.

i.e. parsimony ≠ phylogeny

Digestive tract (from ectoderm)

Digestive tract and suspending internal organs (from mesoderm)

Coelomates: 2 body cavities (both enclosed in mesoderm)

Pseudocoelomates: 1 body cavity (enclosed in endo- & mesoderm)

Animals can also be grouped based on 2 developmental modes

A) Protostomes B) Deuterostomes

 Genetic analyses now indicate that similarity in developmental mode does <u>not</u> indicate evolutionary relationships

i.e. parsimony ≠ phylogeny

Grouping based on three aspects of early development

- 1. Fate of blastopore differs:
 - Protostomes:
 - Develops into mouth
 - Deuterostomes:
 - Develops into anus

Grouping based on three aspects of early development

- 2. <u>Cleavage</u> differs
 - Angle that cells divide
 - Fate of the cells
 - Protostomes:
 - Spiral and determinate
 - Deuterostomes:
 - radial and indeterminate

Spiral

- Cleavage planes diagonal to vertical axis
- Smaller cells centered over grooves between underlying larger cells

Radial

- Cleavage planes parallel or perpendicular to vertical axis
- Cells aligned directly over one another

Determinate

- Developmental fate of each cell is determined early on (e.g. by 4-cell stage)
- e.g. Snail: Take one cell from the 4-cell stage & it will grow into a nonviable embryo with missing parts

Indeterminate

- Developmental fate of all cells is determined much later.
 - Undifferentiated cells called embryonic stem cells

Grouping based on three aspects of early development

- 3. Coelom formation differs
 - Protostomes:
 - Solid mesoderm masses hollow to form coelom
 - Deuterostome:
 - Folds of archenteron form coelom

Overview

Main morphological characters used to categorize animal body plans:

- 1. Symmetry
 - a) none; b) radial; c) bilateral
- 2. Embryonic "germ" layers
 - a) 0; b) 2; c) 3
- 3. Organization of body cavity
 - a) acoelomate; b) coelomate; c) pseudocoelomate
- 4. Possession of vertebral column?
 - a) no; b) yes

Relationships are still unclear but getting clearer...

Phylogenetic Tree: Morphology

Phylogenetic Tree: Molecular

Points of agreement:

Metazoa (multicellular animals) are MONOPHYLETIC
 & derive from a single common ancestral colonial flagellate

44

Animal ancestor likely resembled modern choanoflagellates

How do we know?

- A. DNA sequences similar btwn choanoflagellates and Metazoa
- B. Choanoflagellate and sponge choanocytes morphologically indistinguishable
 - Similar cells seen in a few other animal groups too but not other protists, fungi, or plants

Phylogenetic Tree: Molecular

Points of agreement:

- 2. Sponges are *basal* group sister taxon/a to all other animals (Eumetazoa)
 - Sponges: multicellular, NO tissues (i.e. nerves or muscles), no symmetry

Phylogenetic Tree: Molecular

Points of agreement:

- 3. Eumetazoa = monophyletic clade of all animals with true tissues
 - Cnidaria and Ctenophora are early branches of the Eumetazoa

Phylogenetic Tree: Molecular

Points of agreement:

4. Bilateria – Most animal phyla belong to the clade Bilateria which have bilateral symetry

Phylogenetic Tree: Molecular

Points of agreement:

5. Chordates and Echinoderms belong to the monophyletic clade Deuterostomia

Phylogenetic Tree: Molecular

Points of <u>DIS</u>agreement:

- Morphological Tree: 2 clades: Deuterostomes vs. Protostomes
 Molecular Tree: 3 subclades of bilataria
 - Some <u>Deuterostomes</u> monophyletic
 - Other Deuterostomes and nearly all Protostomes grouped into either <u>Lophotrochozoa</u> or <u>Ecdysozoa</u>

Phylogenetic Tree: Molecular

Points of **DIS**agreement:

2. Morphological Tree: All platyhelminthes (flat worms) are one group.

Molecular Tree: Acoelomate Platyhelminthes separated into basal Bilateria group called Acoela

Phylogenetic Tree: Molecular

Points of **DIS**agreement:

3. Morphological Tree: Arthropods and Annelids closely related

Molecular Tree: - Arthropods in Ecdysozoa

- Annelids in Lophotrochozoa

Phylogenetic Tree: Molecular

Ecdysozoa:

Bilaterians that excrete hard exoskeletons and moult them as they grow

Moulting = ECDYSIS

Figures 32.10 and 32.11 (Campbell et al.)

Phylogenetic Tree: Molecular

Lophotrochozoa:

Bilateria that either have a:

A. lophophore

= crown of ciliated tentacles used to feed

Apical tuft of cilia Stinct Mouth Anus

(a) An ectoproct, a lophophorate

Metazoa

B. trocophore

= morphologically distinct larval phase e.g. annelids, mollusks

Porifera Ctenophora Eumetazoa Cnidaria Acoela Deuterostomia **Echinodermata** Chordata **Platyhelminthes** Rotifera **Ectoprocta** Brachiopoda Mollusca **Annelida** Nematoda Arthropoda

(b) Structure of trochophore larva

Figures 32.10 and 32.11 (Campbell et al.)

Readings on which you will NOT be tested

Figure 32.6 Inquiry

In general:

- You are NOT responsible for definitions of terms or sections included in the text but which were not discussed in lecture
- You are not responsible for the details of examples used in the text but not discussed in lecture. HOWEVER, these additional examples will help your understanding of concepts discussed and may be used on exams to test if you understand the general concepts.
- You ARE responsible for material covered in lecture but not included in the readings

Next Chapter

Chapter 33 – An Introduction to Invertebrates