The Eye in the Sky

Aaryaan Sharma, Anand Gokhale, Sumanth Hegde IIT Madras

The Challenge

Using labelled data of only 14 satellite images, to implement a segmentation technique for 8 classes: Water, Swimming Pools, Trees, Grass, Buildings, Roads, Railways and Bare Soil.

Our Solution

- Followed a divide-and-conquer strategy.
- Domain specific solutions such as CCCI for certain classes.
- Mix of classical computer vision and deep learning.
- Hard mining for underrepresented classes

MOTIVATION

Motivation - No Deep learning

 Difficult to develop a robust deep learning solution that would not suffer from poor generalization.

 Approached the problem by first exploiting simple features in the satellite images using classical computer vision.

Motivation - No Deep learning ... Yet

- For classes such as Buildings and Roads inter-class similarity and intra-class variance.
- Implemented individual segmentation models .

Why individual models?

Simply because, joint classification approaches fail to provide reasonable accuracy and individual binary classification masks better exploit the unique features of each class.

Water Bodies - Water and Swimming Pools

Water bodies absorb most of the NIR light that is incident upon them.

 Normalized from varying maxima and minima to a uniform scale for all images.(Why?)

 Thresholded the NIR band of the images to separate water bodies from rest of the image.

Swimming Pools

- Performed a pixel-wise binary AND operation on the NIR-based mask and a mask generated based on the typical colour of a swimming pool.
- Removed noise by removing pixels that have already been classified as other water bodies.
- Performed Morphological transforms to remove any remaining noise.

WATER

- Performed an intersection of the water mask and an RGB mask fine-tuned to minimise shadows.
- Eliminated noisy inner contours using morphological transformations
- To further eliminate noise, we then put a threshold on the contour areas of this new mask.

FORESTS AND GRASS - The CCCI Index

 Created a mask containing all trees and grass using the Canopy Chlorophyll Content Index(CCCI).

$$NDRE = \frac{NIR - RED}{NIR + RED}$$

$$CCCI = \frac{NIR - NIR_{min}}{NIR_{max} - NIR_{min}}$$

 Required mask is obtained by thresholding the image after the above transformations.

Separating Grass from Trees

- Shifted to the HSV Colorspace and then applied a bound based on the value parameter to separate grass from trees. obtained in the previous CCCI-based mask.
- We report marginally lower accuracy because of noisy ground truth.

BUILDINGS, ROADS, RAILWAYS AND BARE SOIL: THE GENERAL STRATEGY

PREPROCESSING

- Histogram-equalised for contrast enhancement.
- Broken down into patches of size 64x64.
- To incorporate boundary effects, added padding with reflections.
- Used data augmentation, employing rotations and shifts, incorporating rotational and translational invariance in the neural net.

MODEL ARCHITECTURE

- U-net the standard architecture for semantic segmentation constrained by the size of the dataset.
- Our motivation Deeper architectures such as Deep U-net have obtained better results than the U-net architecture, but are based on further downsampling of the input image.
- Used two variants of the U-net: U-net(a) and U-net(b)
- U-net(a) has more feature channels at each block when compared to the U-net.
- U-net(b) is similar to U-net(a), but with more convolutional layers at each block.

HOW DO WE PREVENT OVERFITTING ??

- Batch normalization after every convolutional layer in our networks and kernel regularization as an additional measure to prevent overfitting.
- Batch normalization, along with a regularization effect on our model, makes the model more stable during training.
- Batch normalization replaces dropout regularization, which is rather ineffective in FCNs, where spatial relationships in the feature maps make the activations highly correlated.

ROADS

The inputs of the size 64x64x4 were fed to a model of U-net(b) architecture.

Used 4128 patches for training and 538 of validation.

The loss function used was binary cross entropy loss.

BUILDINGS

- The inputs of size 64x64x4 fed to a model based on the U-net(b) architecture.
- Our train and validation split: 4128 patches for training and 538 for validation.
- Used a weighted binary cross entropy loss with the weight for the positive targets term to be 0.6.

RAILWAYS - THE HARD MINING APPROACH

- Huge class imbalance when it comes to the railways class.
- Model at a high risk of overfitting and learning a black mask for any input!
- Hard mining to tackle this problem: 50:50 ratio of "positive" and "negative" examples.
- U-net(b) architecture based on binary cross entropy loss.

BARE SOIL

 With similar class imbalance with this class - use the same hard mining approach.

Positive examples - patches containing at-least 15 pixels of this class.

 U-net(a) architecture - to have sufficient model complexity as well to prevent overfitting and binary cross entropy loss.

THE FINAL STEP!

 Different methods of blurring and thresholding specifically tuned for each class-wise mask.

 Combined all the 8 masks generated in the increasing order confidence to further eliminate errors.

References

CCCI:

Cammarano, Davide & Fitzgerald, Glenn & Basso, Bruno & O'Leary, Garry & Chen, Deli & Grace, Peter & Costanza, Fiorentino. (2011). Use of the Canopy Chlorophyl Content Index (CCCI) for Remote Estimation of Wheat Nitrogen Content in Rainfed Environments. Agronomy Journal. 103. 1597-1603. 10.2134/agronj2011.0124.

U-net:

O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, arXive-prints (2015) arXiv:1505.04

Deep U-net:

R. Li, W. Liu, L. Yang, S. Sun, W. Hu, F. Zhang, W. Li, DeepUNet: A Deep Fully Convolutional Network for Pixel-level Sea-Land Segmentation, arXiv e-prints (2017) arXiv:1709.0020

THANK YOU!

ANY QUESTIONS?

