Question

April 2021

1

What is z=F(x,y)? Suppose we work with options. z is the total reserved value, x,y are call and put token produced respectively. Thus, $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ are costs to produce call and put token respectively. Option price floor is F and price celling is C. Here we simplify it, letting F=0,C=1. For x,y,z>0, $\frac{\partial z}{\partial x}\in(0,1), \frac{\partial z}{\partial y}\in(0,1)$ and $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1$. When $x=y, \frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}=0.5$. When $y/x\to0, \frac{\partial z}{\partial x}\to0, \frac{\partial z}{\partial y}\to1$. When $y/x\to\infty, \frac{\partial z}{\partial x}\to1, \frac{\partial z}{\partial y}\to0$. We also restrict that for k>0, F(kx,ky)=kF(x,y). $\frac{\partial kz}{\partial kx}=\frac{\partial z}{\partial x}$ and $\frac{\partial kz}{\partial ky}=\frac{\partial z}{\partial y}$ I tried $\frac{\partial z}{\partial x}=\frac{y}{x+y}$ and $\frac{\partial z}{\partial y}=\frac{x}{x+y}$. Is there a smooth solution?