Métodos Matemáticos da Física

2013/14

Teste 1 29-03-2014

1.a) Determine as funções próprias v(x) e valores próprios do operador d^2/dx^2 no domínio $x \in [0, \ell]$ que satisfazem as condições fronteira: v'(0) = 0, $v'(\ell) = 0$.

b) Encontre a solução geral u(t,x) da seguinte equação diferencial, sujeita às condições fronteira indicadas:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $\frac{\partial u}{\partial x}(t,0) = 0$, $\frac{\partial u}{\partial x}(t,\ell) = 0$.

c) Encontre a solução geral u(x, y) da equação de Laplace sujeita às condições fronteira indicadas:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 , \qquad \frac{\partial u}{\partial x}(0, y) = 0 , \qquad \frac{\partial u}{\partial x}(\ell, y) = 0 , \qquad \lim_{y \to \infty} u(x, y) = 0 .$$

2.a) Diga qual a definição de operador hermítico num espaço vetorial onde está definido um produto interno.

b) Considere o conjunto de funções u(x) no intervalo $a \le x \le b$ onde o produto interno tem função peso $\rho(x) = 1$. Diga a que é igual o produto interno de duas funções u(x), v(x). Demonstre que o operador d^2/dx^2 é hermítico no espaço de funções que obedecem à condição fronteira u(a) = 0, u'(b) = 0.

3. Sejam as funções $y_n(x) = e^{i n \pi x/\ell}$, $n \in \mathbb{Z}$, definidas no intervalo $-\ell \le x \le \ell$.

a) Mostre que as funções $y_n(x)$ são ortogonais para o produto interno de função peso $\rho(x) = 1$. Calcule ainda o produto interno $\langle y_n | y_n \rangle$.

b) Admita que a função definida como

$$u(x) = \begin{cases} 1, & -a \le x \le a \\ 0, & |x| > a \end{cases},$$

pode ser expandida como uma série de Fourier: $u(x) = \sum_n c_n y_n(x)$. Calcule os coeficientes c_n da série de Fourier.

- c) Obtenha a função u(x) como uma série de senos e cosenos.
- d) Diga justificando quais os valores da série de Fourier da função u(x) nos pontos $x=a,\,x=\ell.$