10121/21 Wednesday 880,05 Ambats · Problem Set #2. · Print out of MATILAB codes for stochastic calculations Follow ups to some practical MATLAB issues - random numbers, algorithms for exponentiation. · introduce some more MATIAB features he will use, like histograms and displaying (printing to screen) variables. address some questions like seeding of random numbers as how to crute a normal distribution with any men as width point of employers. "It notlers how you do it!" In this case, how you calculate e. Issues are speed, occurring, scaling, failure for some types of matrix.

SVM domo program > mostly for alteral enruhment.

Maying with the case in todays after handout > Metropolis example. Prototype well build as for stochastic calculations.

Disarte and continuum calculations of propagators (problems 4 of 5)

Les has don. to by step. Follow-up at recip to items. From Manday.
Estension to functional integral over fulls.
- stochastic evaluation - Metropolis et al. functional derivatives sixisty) = - Javan + Jx14[x]dx = + 9(4) Mare $\frac{S}{Sf(x)} \int g(y)f(y)^{\frac{1}{2}} h(y) dy = \lim_{x \to \infty} \frac{1}{2} \frac{\lambda}{S} \frac{Sg_{1}f_{1}^{2}h_{1}}{h(x)} dx,$ $= \frac{1}{2} \frac{\lambda}{S} \frac{Sg_{1}f_{1}^{2}h_{2}}{h(x)} h(x)$

P0/14/01 Feynman rules for N=1 system, H(p,x;7)= 5m+V(x)-xf(7) = (Bx1) = Por [3(dx)2 + 9x2 x f(x)] (intiviate at intimum discrete and continuous) x(p)=x(o) « boundary undition on trajectorer Rules for long EH] (to at order X 1. dans all connected diagrams with n "vertices" (can you predict how many lines? => (4xn)/5=2 twends to lines It has not will be imported 2, label each rectex with an I variable assign (- A.4!) for each vertex 4. assign A2(1,7) for every line connecting I and I vertices. I integrate each I variable from O to ph 6. apply a symmetry factor as in the model partition for (-67 2).1.3 (diazdo A7 (2,12) 6 A(12,73) A(12,73) A(12,73) A(12,73) A(12,73) A(12,73) Rules for <X(Ta) XTD) at order > 1. dow all competed diagrams with two external points and in vertices 2. latel each victex with a 1 variable and the external points with Ta, Ts (一年)州 for ach vertex AT(T, M) for lines cornecting Tab Tructies. 5 integrate each internal I variable from 0 to pt b. all symmetry Pactor.

Policion For many particles, either symmetrized basis or number basis.

> both one in use in real-life" physics calculations. · Quick recup of symmetrical states Suppose two level and 3 particles (bosons)
Hilbert space is land) & land) & land) What are the symmetrical possibilities for more fructions (1aab) + laba) + lbaa) (1abb) + lbab) + lbba) wixing up by and permutation of the states of the B particles. - We designate the coordinate representation states as:

| XEX X2) - XM = 1 = 1 = 2 | XM > - | XM > which is a complete set, so when evaluating treph we can do the usual splitting into CEA = : CEA: + O(E2) not Nr, but N= So what do we get? >> jump to (91 a) 5 x4... xm) | . E EH: | ym, ... ym) = (m) Dat M e x Exp. ...

	10/21/09	(114)
	Alternative to insecting 1xth - x states is to coherent states built on Ing no no state	insert
M. W	=> complete oil orthormal. Use at at to a	honge numbers.
	$ n_2 - n_\infty = (a_1^t)^n - (a_{\infty}^t)^{\infty} 0 \rangle$	
	$a_k^* a_k n_1 \cdot \cdot \cdot n_{\infty} \rangle = n_k n_1 \cdot \cdot \cdot n_{\infty} \rangle$ $= n_k n_1 \cdot \cdot \cdot n_{\infty} \rangle = n_k n_1 \cdot \cdot \cdot n_{\infty} \rangle$ $= n_k n_1 \cdot \cdot \cdot n_{\infty} \rangle = n_k n_1 \cdot \cdot \cdot n_{\infty} \rangle$	
	A = \(\frac{1}{\pi} \frac{1}{	Daga t.
	· Now (a) states unspecified here. Could be high harmonic oscillators, it states	nogn whs,
	- We know the work function in x space is low	= \dx \q\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	We can do this with the operators as well	
	$Z_{\alpha}(x) = \overline{4}(x)$ $Z_{\alpha}(x) = \overline{4}(x)$	
····· we	Soft (x) = 4x) \(\) \(Spm. 4(2) -> 2(2)
* *	1-> Sox 41x) (-2m) 21x) + (Bx dx/ 41x) 21x/ 1/x/ 1/x/ 1/x/ 1/x/ 1/x/ 1/x/ 1/x/	2) 9 KI JO
	tooks like what we've been don, ,	X)

· 167 mixes all in7's, Most probable has n=161° at En= tow(m/2) = tow(p) +1)=at