Michelle's model

Michelle Larissa and Tiago Januario

October 21, 2017

1 Dictionary

- Decision variables:
 - $-x_i$, in which $x_i = 1$ if the feature f_i is active, 0 otherwise.
- Input data
 - $-c_i$ = utility value of feature f_i .
 - -F = set of all features, in which |F| = n.

2 Model

Let F be the set of all features, in which |F| = n. Let F^m be the feature model that represents the hierarchical relation between features. We say that the ordered pair of features $(f_p, f_c) \in F^m$ if the feature f_c is a child of f_p . Let $M \subseteq F^m$ be the subset of mandatory relations between features, i.e., if $(f_p, f_c) \in M$, booth features f_p and f_c must be activated or deactivated at the same time.

Now, consider the following Integer Programming formulation:

$$\max \sum_{i=1}^{n} c_i \cdot x_i \tag{1}$$

subject to:

$$x_i = x_j, \forall (i, j) \in M \tag{2}$$

$$x_i \le x_j, \forall (i,j) \in F^m \tag{3}$$

$$\sum x_i \ge x_j, \forall (i,j) \in F^m \tag{4}$$

Equation 1 is the objective function. Constraint ?? (1) represents all mandatory relations between features.