Examen Final Libre

Apellido y Nombre:	
Mail:	LU:

- 1. a) Dar la ecuación de la elipse \mathcal{E} que pasa por los puntos $P_1(-1,4)$ y $P_3(-1,-2)$, su centro está sobre la recta x=-3 y la longitud de su eje horizontal es $4\sqrt{2}$.
 - b) Dar la ecuación de la parábola \mathcal{P} que pasa por los puntos P_1 y Q(0,9) y su eje focal está sobre el *eje mayor* de \mathcal{E} .
 - c) Hallar el ángulo entre las rectas tangentes a \mathcal{E} y \mathcal{P} en el punto P_1 .
 - d) Graficar \mathcal{E} , \mathcal{P} , las tangentes, y los focos correspondientes a cada curva.
- 2. Considere la función $y = \sin(x)e^x$
 - a) Hallar el área limitada por la curva y el eje x para $0 \le x \le 2\pi$.
 - b) Graficar.
- 3. Sea π_1 el plano que tiene trazas $\operatorname{tr}_1: x+y=1$ y $\operatorname{tr}_2: y-\frac{z}{2}=1$.
 - a) Dar la ecuación simétrica de la recta L perpendicular a π_1 y que pasa por $P_0(3, -1, 2)$.
 - b) Dar la ecuación segmentaria de un plano π_2 , que sea perpendicular a π_1 y que tenga la misma traza que π_1 sobre el plano coordenado xz.
- 4. a) Dar la ecuación del hiperboloide \mathcal{H} de una hoja, con centro en C(-1,-2,0), que tiene traza $\mathcal{T}: \frac{(y+2)^2}{9} + \frac{z^2}{16} = 1$ sobre el plano x = -1 y pasa por el punto $P(0, \frac{3\sqrt{5}}{2} 2, 0)$.
 - b) Indicar respecto de cuál plano coordenado la superficie presenta simetría. Justificar.
 - c) Graficar la cuádrica, su eje, y la traza señalada.
- 5. Sea S la cuádrica simétrica respecto del plano xz y del plano xy, que pasa por el origen y los puntos $P_1(2,1,2)$, $P_2(-1,1,1)$ y $P_3(0,0,2)$.
 - a) Dar la ecuación de S.
 - b) Indicar el tipo de superficie y graficar.
 - c) Graficar la traza con el plano xy indicando todos los elementos de la cónica resultante.

- 6. Considere la superficie de revolución $S: r^2 \sin^2(\theta) = 1 r \cos(\theta)$ dada en coordendas esféricas.
 - a) Expresar S en coordenadas cartesianas, indicando una curva generatriz $\mathcal{C}.$
 - b) Hallar el volumen del sólido limitado por S para $z \ge 0$.
 - c) Graficar.
- 7. a) Dar en coordenadas cilíndricas la ecuación del plano π que pasa por los puntos $P_1(1,-1,1)$ (cartesianas), $P_2(\frac{1}{\sqrt{2}},\frac{\pi}{4},1)$ (cilíndricas) y $P_3(\frac{1}{\sqrt{2}},\frac{\pi}{2},\frac{\pi}{4})$ (esféricas).
 - b) Indicar sus trazas.

Justificar todas las respuestas.

Hojas entregadas: Firma: