Листок №ТА2

Вычислимость

Определение. $f: \mathbb{N}^k \to \mathbb{N}^s$ тотально вычислима, если существует машина Тьюринга, на любом входе (n_1, \dots, n_k) вычисляющая $m = f(n_1, \dots, n_k)$. Функция f может быть частичной, если $\mathrm{Dom}(f) \subsetneq \mathbb{N}^k$; тогда на остальных входах машина Тьюринга зацикливается.

Определение. Множество $P \subseteq \mathbb{N}^k$ *перечислимо*, если существует вычислимая функция f такая, что область её определения равна P.

Задача ТА2.1°. Докажите, что $P \subseteq \mathbb{N}^k$ перечислимо тогда и только тогда, когда существует вычислимая f такая, что область её значений равна P.

Задача ТА2.2°. Докажите, что $\emptyset \neq P \subseteq \mathbb{N}^k$ перечислимо тогда и только тогда, когда существует тотальная вычислимая f такая, что область её значений равна P.

Определение. Функция

$$\chi_P(x) = \begin{cases} 1, x \in P, \\ 0, x \notin P. \end{cases}$$

называется xарактеристической функцией множества P. Функция π_P , которая равна 1 на элементах P и неопределена вне P, называется nonyxapakmepucmuческой.

Определение. Множество $P \subseteq \mathbb{N}^k$ разрешимо, если его характеристическая функция вычислима, то есть алгоритм, способный проверить произвольный вход из \mathbb{N}^k на принадлежность P.

Определение. Множество $P \subseteq \mathbb{N}^k$ *полуразрешимо*, если его полухарактеристическая функция вычислима, то есть алгоритм, способный проверить вход из \mathbb{N}^k на принадлежность P.

Задача ТА2.3°. Приведите пример перечислимого, но не разрешимого множества.

Задача ТА2.4. Проверьте разрешимость множеств:

- а. всех четных чисел;
- б. всех простых чисел;
- в. данного конечного множества;
- г. множества всех решений $(x,y) \in \mathbb{N}^2$ уравнения $x^2 y^2 > 5$.

Задача ТА2.5. Проверьте полуразрешимость множеств:

- а. каждого разрешимого множества;
- б. всех пар простых чисел близнецов;
- **в.** множества всех чисел, представимых в виде суммы квадратов попарно различных нечетных чисел;
- **г.** множества тех $(a_0, a_1, a_2, a_3, a_4, a_5) \in \mathbb{N}^5$, для которых уравнение $a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 = 0$ имеет решение в целых числах.

Задача TA2.6*. Пользуясь определением перечислимого множества проверить перечислимость множеств из задачи TA2.5.

Задача ТА2.7. Доказать исходя из определений:

- **а.** если $A, B \subseteq \mathbb{N}$ разрешимы, то $A \cup B, A \cap B, \neg A$ также разрешимы.
- **б.** если $A, B \subseteq \mathbb{N}$ полуразрешимы, то $A \cup B, A \cap B$ также полуразрешимы.
- **в.** если $A, B \subseteq \mathbb{N}$ перечислимы, то $A \cup B, A \cap B$ также перечислимы.

Листок №ТА2

Задача ТА2.8 (*Теорема Поста*). а. Докажите, что множество $A \subseteq \mathbb{N}$ разрешимо тогда и только тогда, когда A и его дополнение полуразрешимы. $\mathbf{6}^{\circ}$. Докажите, что $P \subseteq \mathbb{N}^k$ — разрешимо тогда и только тогда, когда P и $\mathbb{N}^k \setminus P$ одновременно перечислимы.

Задача ТА2.9. Доказать, что для каждого полуразрешимого множества A существует программа, которая работает вечно, время от времени посылая в выходной поток натуральные числа $a \in A$ таким образом, что каждый элемент A когда-нибудь в нем появится.

Задача ТА2.10. Доказать, что класс всех полуразрешимых подмножеств \mathbb{N} совпадает совпадает с классом всех перечислимых подмножеств \mathbb{N}^* .

Задача ТА2.11. Доказать, что

- **а.** Проекция перечислимого множества $R \in \mathbb{N}^2$ на первую координату является перечислимым множеством.
- **б.** Каждое полуразрешимое множество может быть получено как проекция некоторого разрешимого множества.
- **в.** Получить в качестве следствия из **а.,б.**, что каждое полуразрешимое множество перечислимо.

Задача ТА2.12° (*Теорема о графике*). Докажите, что функция f вычислима тогда и только тогда, когда её график $\Gamma_f = \{(x,y) \mid f(x) = y\}$ перечислим.

Задача ТА2.13. а. Доказать, что у тотальной вычислимой функции $f \colon \mathbb{N} \to \mathbb{N}$ график $\{(x,y) \mid y = f(x), x \in \mathrm{Dom}\, f\}$ разрешим. **б.** Построить пример нетотальной вычислимой функции $f \colon \mathbb{N} \to \mathbb{N}$ с разрешимым графиком.

Задача ТА2.14 (*Теорема об униформизации*). Доказать, что каждое перечислимое подмножество $A \subseteq \mathbb{N}^2$ содержит в себе график некоторой вычислимой функциии $f : \mathbb{N} \to \mathbb{N}$, определенной во всех точках проекции множества A на первую координату.

^{*}Подсказка: посмотрите на одну из соседних задач