Ashish Panigrahi

https://ashishpanigrahi.xyz

■ ashish.panigrahi@niser.ac.in • paniash • in ashish-panigrahi99

About me

I am a 4th year physics student studying at the *National Institute of Science Education and Research*, *Bhubaneswar*, *India*. My research interest lies in the experimental aspects of quantum information processing, specifically in quantum photonics investigating photon-photon and spin-photon entanglement using various quantum systems for applications in quantum technologies.

Nationality: Indian

Education

• National Institute of Science Education and Research (NISER)

Integrated Master's (Current CGPA: 9.16/10.0)

Bhubaneswar, India 2018 - 2023

- Major in physics with a minor in computer science.
- Relevant coursework: Quantum Mechanics, Classical Mechanics, Statistical Mechanics, Electromagnetism, Mathematical Methods, Condensed Matter Physics, Quantum Optics, Quantum Information and Computation, Experimental Techniques, Non-linear Optics & Lasers, Computational Physics, Cryptography, Machine Learning.
- Maharishi Vidya Mandir Senior Sec. School
 All India Senior Secondary Certificate Examination (CBSE) 95.6%

Chennai, India *May 2018*

• PSG Public School
All India Secondary School Examination (CBSE) - CGPA 10

Coimbatore, India *May 2016*

Project Experience

• Research Assistantship
Ultrafast TeraHertz Dynamics Group, NISER

Bhubaneswar, India December 2021 - Present

- Project guide: Dr. Shovon Pal, Assistant Professor, NISER; Adjunct Advisor of Dept. of Materials Science, ETH Zürich.
- Currently working on understanding electrodynamics and band structures in semiconductor heterostructures specifically GaAs quantum dots for tailoring quantum optical phenomena.
- Semester Project
 Superconducting Spintronics Group, NISER

Bhubaneswar, India April - July 2021

- Project guide: Dr. Kartikeswar Senapati, Reader-F, NISER.
- Worked on a semester project on the topic, "Study of spin current in NM/HM bilayer and trilayer systems".
- The goal was to analyse and be able to detect spin current emerging from a trilayer system involving a layer of Cu sandwiched between two layers of Pt. The idea was to supply through one end of the H-bridge sample, an electric current which would then get converted to spin current via the spin Hall effect and to measure this spin current via a simple non-local electrical

measurement at the other end of the sample. On this end, the electric current which originated from the back-conversion of the spin current via the inverse spin Hall effect is measured via a micro-voltmeter.

 Through the project, I obtained hands on experience with experimental techniques such as UHV systems, magnetron sputtering and focused ion beam.

• Software Developer Internship

Australia

Quantum Brilliance

February - April 2021

- Project guide: Dr. Nariman Saadatmand, QBQE Product Manager.
- Initially worked on language parsers especially the Earley parser for its use in natural language processing as a potential quantum application. Later transferred to the emulator division, where I worked on the quantum brilliance quantum emulator (QBQE) and enhanced the functionality of its QAOA (Quantum Approximation Optimization Algorithm) module. The relevant code was written in C++.

• Summer Project

Bhubaneswar, India

Institute of Physics, Bhubaneswar

May - June 2019

- Project guide: Dr. Debakanta Samal, Reader-F, Institute of Physics.
- Did a reading project on "Study on Anisotropic Magnetoresistance".
- Topics covered: Origin of magnetoresistance, theory of magnetoresistance in real metals using the 2-band charge carrier model, origin of anisotropic magnetoresistance, its applications and current research scenario in the field.

Honors/Awards

IBM Qiskit Advocate

2021

IBM Quantum

- Selected from a global pool of applicants.
- This achievement depicts a deep level of understanding with Qiskit including circuits, algorithms, simulators, qubits and noise.
- Through my contributions to the Qiskit and the quantum community, I have demonstrated an ability and commitment to educate and influence others by sharing ideas, knowledge and expertise in the field of quantum computing.

Zonal Topper

2021

Mimamsa 2021

IISER Pune

- Science quiz competition for undergraduates with participations from universities all over the country.
- Our team became the zonal topper for the *Odisha and Paschim Medinipur district (WB)* zone.

National Topper

2020

National Graduate Physics Examination

- A country-wide competitive examination conducted by the *Indian Association* of *Physics Teachers* for students pursuing a bachelors in physics.
- Secured a score within the top 1% in the country.

• **Department Topper** (1st & 2nd year) School of Physical Sciences, NISER

2018-2020

- Scored the highest grade in my department for four consecutive semesters (fall 2018, spring 2019, fall 2019, spring 2020).

INSPIRE Fellowship

2018

Department of Science and Technology, Govt. of India

- Eligible for this prestigious fellowship by the Department of Science and Technology, Government of India.
- Awarded to the top 1% students at their higher secondary (+2) level, for those pursuing a bachelors in basic sciences.

• Kishore Vaigyanik Protsahan Yojana (KVPY) Fellowship

2017

Indian Institute of Science

Bengaluru, India

- A prestigious fellowship program funded by the *Department of Science and Technology*, Government of India.
- Cleared the written examination (stage I) and an interview (stage II) to receive the fellowship.

• National Talent Search Examination (NTSE) Scholarship

2016

National Council of Education Research and Training

New Delhi. India

- A national level scholarship program offered by the Government of India.
- It is one of the oldest and most prestigious scholarship programmes in the country.

Academic Exposure

· Qiskit Global Summer School

Virtual

IBM Quantum

July-August 2020

- An intensive 2 week virtual summer school on quantum computation and designing quantum circuits and algorithms using Qiskit.
- Did hands-on coding exercises to learn various quantum algorithms, pulse level control of qubits and concepts in quantum chemistry.
- Also did a project on simulating the ground energy level of LiH molecule using variational quantum eigensolver.

• National Initiative on Undergraduate Science (Physics)

Mumbai, Maharashtra

Homi Bhabha Centre for Science Education, TIFR

June 2019

- Selected as one of top 70 students in the country to participate in this camp.
- An extensive 12-day course containing lectures, independent lab work and a field trip for 2 days.
- Lecture series on quantum mechanics, quantum information theory and quantum computation, basic condensed matter physics, many body physics, astronomy and astrophysics.
- Performed around 30 hours of independent lab work.

Contributions

Qiskit Textbook

GitHub

Learn Quantum Computation using Qiskit

April 2020 - Present

 Qiskit is IBM's software development kit for building software to interact with IBM's quantum devices and OpenQASM.

- The textbook is equivalent to a university level course for learning quantum computation and beyond.
- I am a collaborator for this project and have actively contributed with over 50+ commits since April 2020.

Licenses & Certifications

• IBM Certified Associate Developer

IBM

Quantum Computation using Qiskit v0.2X

July 2021

- This certification demonstrates fundamental knowledge of quantum computing concepts and the ability to express them using the Qiskit open source software development kit (SDK).
- Shows experience in using the Qiskit SDK from the Python programming language to create and execute quantum computing programs on IBM Quantum computers and simulators.

• Introduction to Quantum Computing Course

Qubit by Qubit

IBM Quantum & The Coding School

October 2020 - May 2021

 Developed a foundational understanding of quantum computing, with topics including introductory linear algebra, coding with Qiskit, quantum mechanics, quantum algorithms, and quantum applications.

· Challenge Fall 2020 Achievement - Intermediate

IBM

IBM Quantum

December 2020

- Demonstrated an ability to implement near-future quantum data structures and design a quantum game solver using Grover's algorithm.
- Showed an understanding of quantum circuits, the gates that comprise such circuits, Grover's algorithm, and qRAM (quantum random access memory) as a way to implement complex data structures.

• CS-191x: Quantum Mechanics and Quantum Computation

edX

University of California, Berkeley

August 2020

- Coursework involved ranging from the basics of the qubit to quantum algorithms such as Grover's, Shor's etc. to the Bloch sphere and Schrödinger's wave equation.
- Final score: 97%

Volunteering

• Project Lovelace

Scientific Programming Problems

May 2021 - Present

- Project Lovelace is a platform to learn science through programming.
- Member of the team to add new problems and maintain the website (both frontend and backend).
- Website: https://projectlovelace.net

• Full-Stack Quantum Computation

Community-driven, Opensource Education Resources

December 2020 - Present

 Part of the team as a curator of various articles on quantum technologies, submitted by volunteers. - Website: https://fullstackquantumcomputation.tech

Volunteer

NISER Open Day April 2019

 Outreach programme for depicting the wonders of science to school students from grades 9 to 12.

 I was involved in the demonstration of plasma generation using grapes and a microwave oven as part of our team's project.

Mentor

Avanti Fellows NGO

January - April 2019

- Duties included mentoring students from grades 11 and 12.
- My weekend work involved having a one-to-one discussion with students on physics and general advice on entrance exams.

Technical Skills

Programming and scripting languages

Python (Libraries: Scipy, Numpy, Matplotlib), Julia, C/C++, Bash

Markup languages

ŁTĘX, Markdown, Groff, HTML

Quantum Frameworks

Qiskit

General computing tools

Git, GitHub, vim, tmux, gnuplot, unix-shell

References

- 1. Dr. Shovon Pal, Ultrafast TeraHertz Dynamics Group
 - Assistant Professor of Physics at NISER, Bhubaneswar;
 Adjunct Advisor of Department of Materials Science at ETH Zürich, Switzerland.
 - Email: shovon.pal@niser.ac.in, shovon.pal@mat.ethz.ch
- 2. **Dr. Pratap Kumar Sahoo**, Ion Beam & Nanomaterials Laboratory
 - Associate Professor of Physics at NISER, Bhubaneswar.
 - Email: pratap.sahoo@niser.ac.in
- 3. Dr. Anamitra Mukherjee, Quantum Many Body Theory Group
 - Reader-F, School of Physical Sciences, NISER, Bhubaneswar.
 - Email: anamitra@niser.ac.in