1 namų darbas (2 užd.). Atsiskaityti iki kovo 3 d.

Uždavinys 1 (0.2 balo). (a) Pasinaudodami aritmetinės progresijos $a_k, a_{k+1}, \ldots, a_l$ (kur $a_i = a_k + (i - k) \cdot d$, $i = k + 1, \ldots, l$) sumos formule

$$\sum_{i=k}^{l} a_i = \frac{a_k + a_l}{2} (l - k + 1),$$

geometrinės progresijos $b_1, b_2, b_3, \dots, b_k$ (kur $b_i = b_1 \cdot q^{i-1}, i = 2, \dots, k$, ir $q \neq 1$) sumos formule

$$\sum_{i=1}^{k} b_i = b_1 \frac{1 - q^k}{1 - q}$$

bei nesunkiai matematine indukcija įrodoma formule

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

apskaičiuokite baigtinę sumą $f(n) = \sum_{k=u(n)}^{v(n)} g(k)$.

(b) Raskite f(n) asimptotiką, t.y. konstantas a ir b tokias, kad $f(n) \sim an^b$, kai $n \to \infty$. Jei f(n) auga eksponentiškai, tada raskite konstantas a ir b tokias, kad $f(n) \sim ab^n$.

Nurodymas. $f(n) \sim g(n)$ ("f yra asimptotiškai lygi g"), jei

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1.$$

Variantai

1.
$$f(n) = 2^2 + 4^2 + 6^2 + \dots + (2n)^2$$
;

2.
$$f(n) = \sum_{k=2}^{n-1} k^2 - (\sum_{k=3}^n k)^2$$
;

3.
$$f(n) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + (n-1) \cdot n;$$

4.
$$f(n) = \sum_{k=1}^{n} (k+1)^2$$
;

5.
$$f(n) = 1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1}n^2$$
, kai n — nelyginis;

6.
$$f(n) = \sum_{k=1}^{\lfloor n/2 \rfloor} k^2$$
, kur $\lfloor x \rfloor$ yra skaičiaus x sveikoji dalis;

7.
$$f(n) = 1^2 - 1 + 2^2 + 2 + 3^2 - 3 + \dots + n^2 + (-1)^n n;$$

8.
$$f(n) = \sum_{k=-n}^{n} (k^2 + k);$$

9.
$$f(n) = 1 + 2 - 3 + 4 + 5 - 6 + \dots + (n-2) + (n-1) - n$$
, kai n dalinasi iš 3;

10.
$$f(n) = \sum_{k=1}^{n-1} k(k+1);$$

11.
$$f(n) = n + \frac{n}{2} + \frac{n}{4} + \dots + \frac{n}{n/2} + 1$$
, kur $n = 2^k$;

12.
$$f(n) = \sum_{k=1}^{n} (3^k - k^2);$$

13.
$$f(n) = 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + \dots + (n-2) \cdot n$$
, kur $n \ge 3$;

14.
$$f(n) = 1 + 2^1 + 2 + 2^2 + 3 + 2^3 + \dots + n + 2^n$$
;

15.
$$f(n) = \sum_{k=1}^{2n} (-1)^k k^2$$
;

16.
$$f(n) = 2 - 1 + 2^2 - 2 + 2^3 - 3 + \dots + 2^n - n;$$

17.
$$f(n) = \sum_{k=1}^{n} (k^2 - 2k);$$

18.
$$f(n) = \sum_{k=1}^{n} (2^k + k^2);$$

19.
$$f(n) = \sum_{k=1}^{n} \frac{2^k - 1}{3^{k-1}};$$

20.
$$f(n) = n - \frac{n}{2} + \frac{n}{4} - \frac{n}{8} + \dots + (-1)^k \frac{n}{2^k}$$
, kur $n = 2^k$;

21.
$$f(n) = \sum_{k=-n}^{n} (2^k - k^2);$$

22.
$$f(n) = \sum_{k=1}^{n-1} (\frac{2^{k+1}}{3^k} + 1);$$

23.
$$f(n) = \sum_{k=1}^{n} (k-1)(k+1);$$

24.
$$f(n) = \sum_{k=1}^{n} [\frac{k}{2}]$$
, kur $[x]$ yra skaičiaus x sveikoji dalis;

25.
$$f(n) = \sum_{k=0}^{n-1} \frac{2^k+1}{3^{k+1}};$$

26.
$$f(n) = \sum_{k=1}^{n-1} (2^k - k - 1);$$

27.
$$f(n) = 3 - 2 + 3^2 - 2^2 + \dots + (3^n - 2^n);$$

28.
$$f(n) = \sum_{k=0}^{n/2} (2^k + k)$$
, kur n — lyginis;

29.
$$f(n) = \sum_{k=1}^{n} \left[\frac{k^2}{2}\right]$$
, kur $[x]$ yra skaičiaus x sveikoji dalis, o n — lyginis;

30.
$$f(n) = \sum_{k=1}^{[n/2]} (-1)^k 2^k$$
, kur $[x]$ yra skaičiaus x sveikoji dalis.

Uždavinys 2 (0.3 balo). Duotas programos fragmentas su parametru n.

- (a) Raskite tikslų žingsnių skaičių L(n), laikant, kad bet kurios operacijos (priskyrimo, aritmetinės, palyginimo ir kt.) svoris yra 1. Žingsnių skaičius skaičiuojamas "blogiausiu atveju", t.y. maksimalus galimas "blogiausiems duomenims".
- (b) Raskite L(n) asimptotiką, t.y. konstantas a ir b tokias, kad $L(n) \sim an^b$, kai $n \to \infty$.
- (c) Duota nedidelė konstanta c. Nurodykite duomenis, kuriems programa atliks lygiai L(c) žingsnių ir išvardinkite tuos žingsnius.
- (d) Raskite programos vykdymo laiko T(n) eilę, t.y. konstantą d tokią, kad $T(n) = \Theta(n^d)$, kai $n \to \infty$. Skaičiuojant laiką T(n), laikome, kad skirtingų operacijų (pvz. priskyrimo, aritmetinės, palyginimo) laikas yra skirtingas: operacija i reikalauja c_i laiko.

Nurodymai

- 1. f(n) = O(g(n)) (arba $f(n) \leq g(n)$) (sakome, kad "f asimptotiškai yra ne aukštesnės eilės dydis kaip g"), jei $\exists N \in \mathbb{N}$ ir $\exists c > 0$: $f(n) \leq cg(n) \ \forall n \geq N$;
- 2. $f(n) = \Theta(g(n))$ (arba $f(n) \approx g(n)$) (sakome, kad "f ir g asimptotiškai yra tokios pat eilės dydžiai"), jei f(n) = O(g(n)) ir g(n) = O(f(n)).
- 3. Skaičiuojant žingsnius laikome, kad priskyrimo ir aritmetinė operacija yra 1 žingsnis, t.y. komanda a:=1 yra 1 žingsnis, komanda a:=b+c irgi yra vienas žingsnis, bet komanda a:=b+c-d yra 2 žingsniai. Komanda A[i+j]:=b+c taip pat reikalauna 2 žingsnių: (1) apskaičiuojame indekso reikšmę k=i+j, (2) masyvo elementui A[k] priskiriame reikšmę b+c.
- 4. Ciklo **for** ilgio k "palaikymas", t.y. komanda **for** i := 1 **to** k **do**, reikalauja 2(k+1) žingsnių, nes kiekvieną kartą yra vykdoma sudėtis i := i+1 ir palyginimas $i \le k$?. Baigiant ciklą bus atlikta sudėtis i := k+1 bei palyginimas $k+1 \le k$?, po kurių ciklo kūnas jau nebus vykdomas.

Variantai

1. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$\begin{aligned} & \textbf{for } i := 1 \textbf{ to } n \textbf{ do} \\ & B[i] := 0 \\ & \textbf{for } j := i \textbf{ to } n \textbf{ do} \\ & B[i] := B[i] + A[j] \\ & \textbf{if } B[i] < A[i] \textbf{ then } B[i] := 0 \end{aligned}$$

$$\begin{aligned} & \textbf{for } j := 1 \textbf{ to } n \textbf{ do} \\ & C[j] := 0 \\ & i := n \\ & \textbf{while } i \geq j \textbf{ do} \\ & C[j] := C[j] + A[i] \\ & i := i - 1 \\ & \textbf{if } C[j] < 0 \textbf{ then } C[j] := 0 \end{aligned}$$

3. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$\begin{aligned} & \textbf{for} \ j := 1 \ \textbf{to} \ n \ \textbf{do} \\ & C[j] := 0 \\ & \textbf{for} \ i := j + 1 \ \textbf{to} \ n \ \textbf{do} \\ & C[j] := C[j] + A[i] \\ & \textbf{if} \ C[j] < 0 \ \textbf{then} \ C[j] := -C[j] \end{aligned}$$

4. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$\begin{aligned} & \textbf{for} \ j := 1 \ \textbf{to} \ n \ \textbf{do} \\ & B[j] := 0 \\ & k := j - 1 \\ & \textbf{for} \ i := 1 \ \textbf{to} \ k \ \textbf{do} \\ & B[j] := B[j] + A[i] \\ & \textbf{if} \ B[j] < 0 \ \textbf{then} \ B[j] := 0 \end{aligned}$$

5. Duotas sveikų skaičių masyvas A[1:n] (kur n — lyginis); c=2.

$$\begin{aligned} & \textbf{for } j := 1 \textbf{ to } n \textbf{ do} \\ & C[j] := 0 \\ & i := 1 \\ & k := n/2 \\ & \textbf{while } i \leq k \textbf{ do} \\ & C[j] := C[j] + A[i] \\ & i := i+1 \\ & \textbf{if } C[j] < 0 \textbf{ then } C[j] := 0 \end{aligned}$$

$$i := 1$$

while $i \leq n$ do

$$B[i] := 0$$

for j := i to n do

$$B[i] := B[i] + A[j]$$

if
$$B[i] < A[i]$$
 then $B[i] := 0$

$$i := i + 1$$

7. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$j := 1$$

while $j \leq n$ do

$$C[j] := 0$$

$$i := n$$

while $i \geq j$ do

$$C[j] := C[j] + A[i]$$

$$i := i - 1$$

if
$$C[j] < 0$$
 then $C[j] := 0$

$$j := j + 1$$

8. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$j := 1$$

 $\mathbf{while}\ j \leq n\ \mathbf{do}$

$$C[j] := 0$$

for i := j + 1 to n do

$$C[j] := C[j] + A[i]$$

if
$$C[j] < 0$$
 then $C[j] := -C[j]$

$$j := j + 1$$

9. Duotas sveikų skaičių masyvas $A[1:n];\, c=2.$

$$j := 1$$

while $j \leq n$ do

$$B[j] := 0$$

$$k := j - 1$$

for i := 1 to k do

$$B[j] := B[j] * A[i]$$
 if $B[j] < 0$ then $B[j] := 0$
$$j := j + 1$$

10. Duotas sveikų skaičių masyvas A[1:n] (kur n — lyginis); c=2.

$$j:=1$$
 while $j \leq n$ do $C[j]:=0$ $i:=1$ $k:=n/2$ while $i \leq k$ do

$$C[j] := C[j] * A[i]$$

$$i := i + 1$$

if
$$C[j] < 0$$
 then $C[j] := 0$
 $j := j + 1$

11. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$\begin{split} m &:= n-1 \\ \textbf{for } i &:= 1 \textbf{ to } m \textbf{ do} \\ & \min := A[i] \\ k &:= i \\ \textbf{for } j &:= i+1 \textbf{ to } n \textbf{ do} \\ & \textbf{ if } A[j] < \min \textbf{ then} \\ & \min := A[j] \\ k &:= j \\ A[k] &:= A[i] \end{split}$$

12. Duotas realių skaičių masyvas A[0:n] ir $z\in\mathbb{R};$ c=1.

$$S := 0$$

 $\mathbf{for} \ i := 0 \ \mathbf{to} \ n \ \mathbf{do}$
 $d := A[i]$
 $\mathbf{for} \ j := 1 \ \mathbf{to} \ i \ \mathbf{do}$
 $d := d * z$
 $S := S + d$

 $A[i] := \min$

$$\begin{split} i &:= 1 \\ m &:= n-1 \\ \textbf{while } i < n \textbf{ do} \\ \textbf{for } j &:= m \textbf{ step } -1 \textbf{ to } i \textbf{ do} \\ \textbf{ if } A[j] &> A[j+1] \textbf{ then} \\ key &:= A[j+1] \\ A[j+1] &:= A[j] \\ A[j] &:= key \\ i &:= i+1 \end{split}$$

14. Duotas sveikų skaičių masyvas A[1:n] (kur n — nelyginis); c=1.

$$\begin{aligned} &\textbf{for } i := 1 \textbf{ to } n \textbf{ do} \\ &S[i] := 0 \\ &\textbf{for } j := 1 \textbf{ to } n \textbf{ do} \\ &\textbf{ if } j \le (n+1)/2 \textbf{ then } S[i] := S[i] + A[j] * (A[j]+1) \\ &S[i] := S[i] * i \end{aligned}$$

15. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$j := 1$$

while $j < n$ do

 $\min := A[j]$
 $l := j$

for $i := j + 1$ to n do

if $A[i] < \min$ then

 $\min := A[i]$
 $l := i$
 $A[l] := A[j]$
 $A[j] := \min$
 $j := j + 1$

16. Duotas realių skaičių masyvas A[0:n] ir $z \in \mathbb{R}$; c=1.

$$T := 0$$
 for $j := 0$ to n do
$$d := A[j]$$

$$\begin{aligned} i &:= 1 \\ \textbf{while} \ i &\leq j \ \textbf{do} \\ d &:= d*z \\ i &:= i+1 \\ T &:= T+d \end{aligned}$$

$$\begin{split} j &:= 1 \\ \textbf{while } j \leq n \textbf{ do} \\ i &:= n-1 \\ \textbf{while } i \geq j \textbf{ do} \\ \textbf{if } A[i] &> A[i+1] \textbf{ then} \\ key &:= A[i] \\ A[i] &:= A[i+1] \\ A[i+1] &:= key \\ i &:= i-1 \\ j &:= j+1 \end{split}$$

18. Duotas sveikų skaičių masyvas A[1:n] (n — lyginis); c=2.

$$\begin{split} j &:= 1 \\ \textbf{while} \ j \leq n \ \textbf{do} \\ S[j] &:= 0 \\ \textbf{if} \ A[j] > 0 \ \textbf{then} \ l := 2 \ \textbf{else} \ l := 3 \\ \textbf{for} \ i &:= 1 \ \textbf{step} \ l \ \textbf{to} \ n \ \textbf{do} \\ S[j] &:= S[j] + A[j] * A[i] \\ j &:= j + 1 \end{split}$$

19. Duotas sveikų skaičių masyvas A[1:n] (n — lyginis); c=2.

$$\begin{aligned} & \textbf{for } i := 1 \textbf{ to } n \textbf{ do} \\ & S[i] := 0 \\ & l := 2 * i \\ & \textbf{for } j := l \textbf{ to } n \textbf{ do} \\ & S[i] := S[i] + A[j] \end{aligned}$$

$$m:=n-1$$

for $j:=1$ to m do

 $\min:=A[j]$
 $l:=j$
 $i:=n$

while $i>j$ do

if $A[i]<\min$ then

 $\min:=A[i]$
 $l:=i$
 $i:=i-1$
 $A[l]:=A[j]$
 $A[j]:=\min$

21. Duotas realių skaičių masyvas A[0:n] ir $z \in \mathbb{R}$; c=1.

$$S := 0$$

 $i := 0$
while $i \le n$ **do**
 $e := A[i]$
 $j := 1$
while $j \le i$ **do**
 $e := e * z$
 $j := j + 1$
 $S := S + e$
 $i := i + 1$

22. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$m:=n-1$$
 for $j:=1$ to m do
$$\mathbf{for}\ i:=m\ \mathbf{step}\ -1\ \mathbf{to}\ j\ \mathbf{do}$$

$$\mathbf{if}\ A[i]>A[i+1]\ \mathbf{then}$$

$$key:=A[i]$$

$$A[i]:=A[i+1]$$

$$A[i+1]:=key$$

23. Duotas sveikų skaičių masyvas A[1:n] (n — lyginis); c=2.

$$j := 1$$

while $j \leq n$ do

$$S[j] := 0$$

$$k := 2 * j$$

for i := k to n do

$$S[j] := S[j] + A[i]$$

$$j := j + 1$$

24. Duotas sveikų skaičių masyvas A[1:n]; c=2.

for i := 1 to n do

$$S[i] := 0$$

$$k := 1$$

if A[i] < 0 **then** k := 2

for j := i step k to n do

$$S[i] := S[i] + A[i] * A[j]$$

25. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$m := n - 1$$

for j := 1 to m do

$$\min := A[j]$$

$$k := j$$

$$i := j+1$$

 $\mathbf{while}\ i \leq n\ \mathbf{do}$

if $A[i] < \min$ then

$$\min := A[i]$$

$$k := i$$

$$i := i + 1$$

$$A[k] := A[j]$$

$$A[j] := \min$$

26. Duotas realių skaičių masyvas A[0:n] ir $z \in \mathbb{R}$; c=1.

$$j := 0$$

$$m := n + 1$$

$$T := 0$$

while
$$j < m$$
 do
$$e := A[j]$$
 for $i := 1$ to j do
$$e := e * z$$

$$T := T + e$$

$$j := j + 1$$

$$m:=n-1$$
 for $i:=1$ to m do
$$j:=m$$
 while $j\geq i$ do if $A[j]>A[j+1]$ then
$$key:=A[j]$$

$$A[j]:=A[j+1]$$

$$A[j+1]:=key$$

$$j:=j-1$$

28. Duotas sveikų skaičių masyvas A[1:n] (n — lyginis); c=2.

$$\begin{aligned} & \textbf{for } i := 1 \textbf{ to } n \textbf{ do} \\ & S[i] := 0 \\ & \textbf{ if } A[i] > 0 \textbf{ then } k := 2 \textbf{ else } k := 3 \\ & \textbf{ for } j := 1 \textbf{ step } k \textbf{ to } n \textbf{ do} \\ & S[i] := S[i] + A[j] * A[i] \end{aligned}$$

29. Duotas sveikų skaičių masyvas A[1:n]; c=2.

$$j := 1$$

while $j \le n$ do
 $S[j] := 0$
 $l := 1$
if $A[j] > 0$ then $l := 2$
for $i := j$ step l to n do
 $S[j] := S[j] + A[j] * A[i]$
 $j := j + 1$

30. Duotas sveikų skaičių masyvas A[1:n] (n — lyginis); c=2.

$$\begin{aligned} & \textbf{for} \ j := 1 \ \textbf{to} \ n \ \textbf{do} \\ & S[j] := 0 \\ & \textbf{for} \ j := n \ \textbf{step} - 2 \ \textbf{to} \ 1 \ \textbf{do} \\ & k := j/2 \\ & \textbf{for} \ i := 1 \ \textbf{to} \ k \ \textbf{do} \\ & S[j] := S[j] + A[i] \end{aligned}$$