Química Inorgânica 1 - 2021.1

Felipe Pinto 61387 - MIEQB

16 de junho de 2021

Conteúdo

I Background	5	6.2 Hidratação	
1 Teoria Eletrônica Ácido-Base	Ъ	6.3 Coordenação	14 14
2 Ligações	5 5 5	6.7 Óptico	
2.3 Ligações π	5	III Nomenclatura	15
3 Orbitais atômicos	5 5 5	IV Estabilidade	16
3.3 d	5 5	1 Teoria de Pearson (HS AB)	16
4 Teoria dos Orbitais Moleculares TOM	5 5 6	 1.3 Metais de Transição (d)	18
5.1 Grupo de l'ontos 5.2 Operações de Rotação 5.3 Símbolos de Mulliken 5.4 Representação irredutível dos símbolos de Mulliken 5.5 Coordenadas Cartesianas e Rotação 6.6 Coordenadas Cartesianas e Rotação 6.7 Coordenadas coordenadas e Rotação 6.7 Coordenadas coordenadas e Rotação 6.7 Coordenadas e Rotação coordenadas e Rotaçõo coordenadas e Rotaçõo coordenadas e Rotaçõo coordenadas e Rotaçõo coordena	6 6	2 Lista de Ligandos	21 21
5.6 Produtos binários e quadráticos	6	3 Serie Irving-Willians	21
6 Termodinâmica	6	4 Efeito de Quelação	22
II Química de Coordenação	7	5 Equilíbrio de Complexos	23
1 Elemento Central	8	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 23 \\ 24 \end{array}$
2 Ligando Ligando 2.1 Dentação	9 9	7 Fração Especifica α	24
2.2 Quelação	10	8 Numero médio de Ligandos \overline{n}	24
2.4 Crown Eters	12 12 12	9 Experimentalmente	
2.6 Organofosfinas	12	V Teoria dos Orbitais Moleculares	25
3 Esfera de Coordenação	12	1 Teoria do Enlace de Valência	25
4 Numero de Coordenação	13	2 Origens	
	13 14 14	3 Teoria do Campo Cristalino	25

3.3	Fatores que influenciam	27	$oldsymbol{4}$	Teoria do Campo Ligando	27
3.4	Energia de Estabilização dos Campo de Ligandos				
	EECL	27	VI	Reatividade	28
3.5	Espectro de Frequência de Absorção de Luz	27			

Lista de Tabelas

1	Simbolos de Mulliken por Dimensões
2	Estado de oxidação estáveis dos metais de transição
3	Ligandos por Dentação
4	Ligandos por grupo e Quelação
5	Acidos Aminopolicarboxilicos
6	Crown Eters
7	Criptandos
8	Organo fosfinas por grupo
9	Geometrias por NC
10	Distorções de Jean-Teller
11	Tendencias de Acidos/Bases Duros vs Moles
12	Classificação do Hidrogênio por campo Hard-Soft
13	Classificação dos metais alcalinos e alcalinos-terrosos por campo Hard-Soft
14	Classificação de Metais de transição por campo Hard-Soft
15	Classificação dos Lantanídeos e Actinídeos como ácidos pelo campo Hard-Soft
16	Bases das familias III a VII campo Hard-Soft
17	Acidos das familias III a VI campo Hard-Soft
18	Ácidos ligandos classificados por HSAB
19	Bases ligandos classificados por HSAB
20	Série Espectroquímica ou Série de Tsuchida dos Metais
21	Série Espectroquímica ou Série de Tsuchida dos Ligandos

Programa

1º Tema

- Definições
- Composto de Coordenação
- Elemento Central
- Ligando
- Número de Coordenação
- Esfera de Coordenação
- Tipos de Ligandos
- Regras de Nomenclatura

2º Tema

- Afinidade de metais para ligandos
- Classificação HSAB
- Estabilidade de compostos de coordenação
- Efeito de Quelação
- Números de Coordenação mais prováveis em compostos de coordenação
- Isomeria

3° Tema

- Teorias de ligação química em compostos de coordenação
- Teoria do Enlace de Valência
- Teoria do Campo Cristalino
- $4^{\rm o}$ Tema: Interpretação de
- Propriedades Magnéticas
- Espectros Electrónicos
- Propriedades Termodinâmicas

5° Tema

- Diagrama de Orgel
- Diagrama de Tanabe-Sugano
- Propriedades de oxidação-redução de metais de transição
- Série electroquímica de metais

6° Tema

• Reatividade de Complexos Metálicos

I | Background

1 Teoria Eletrônica Ácido-Base

Estuda a ligações de alta rentabilidade, rápidas e expontâneas que ocorrem entre ácidos e báses definidos como

Ácidos: Portador Região positiva Bases: Portados de par eletrônico

1.1 Par conjugado

par entre reagente e produto de uma neutralização, característica de um ácido/base como forte ou fraco é diretamente comparado com força de seu par conjugado

1.2 Anfoterismo generalizado

Comportamento como ácido ou base depende da reação que a espécie está presente

2 Ligações

2.1 Ligações Covalentes Coordenadas

2.2 Ligações σ

Ligações feitas com orbitais paralelos ao eixo de ligação

2.3 Ligações π

Ligações feitas com orbitais perpendiculares ao eixo de ligação

Orbitais

3 Orbitais atômicos

3.1 s

3.3 d

3.2 p

3.4 f

4 Teoria dos Orbitais Moleculares TOM

HOMO: Highest Occupied Molecular Orbital

LUMO: Lowest Unoccupied Molecular Orbital

5 Character Tables

São tabelas que descrevem as características de orbitais sobre um eixo referencial

Grupo de Pontos	Operações de Rotação	Funções de Si	metria
Símbolos de	Representação irredutível	Coordenadas Cartesianas	Produtos binários
Mulliken		e rotações	e quadraticos

- 5.1 Grupo de Pontos
- 5.2 Operações de Rotação
- 5.3 Símbolos de Mulliken

Degeneração 1 1 2 3 4 5 ou Dimensões
Simbolo A B E T G H

Tabela 1: Simbolos de Mulliken por Dimensões

5.3.1 Subscritos do Simbolo de Mulliken

- 1: Simétrico com respeito ao eixo C_n ou caso sem eixo perpendicular, Simétrico com respeito a σ_v
- 2: Anti-simétrico com respeito ao eixo C_n ou caso sem eixo perpendicular, Anti-simétrico com respeito a σ_v
- g: Simétrico com respeito ao invérso primo: Simétrico com respeito a $\sigma_{\rm h}$
- u: Anti-simétrico com respeito ao invérso primo duplo: Anti-simétrico com respeito a $\sigma_{\rm h}$

5.4 Representação irredutível dos símbolos de Mulliken

Funções de simetria

- 5.5 Coordenadas Cartesianas e Rotação
- 5.6 Produtos binários e quadráticos
- 6 Termodinâmica

II | Química de Coordenação

A química se divide em dois ramos, química orgânica e inorgânica. Química inorgânica compreendem todos os compostos que não possuem ligações de carbono do tipo C—H

Complexo de Coordenação São produtos de reações acido-base de Lewis composto de elementos centrais e ligados por ligações covalentes coordenadas.

Quesito para ser considerado um complexo de coordenação

índice de coordenação > estado de oxidação

Classificação

Adultos: Carga elétrica nula Complexo Iônico: Carga elétrica não nula

1 Elemento Central

Elemento metálico posicionado no centro da esfera de coordenação, Considerado um ácido de Lewis, podendo haver mais de um como em complexos polinucleares.

1.1 Estados de Oxidação

<u>d1</u>	d2	d3	d4	d5	d6	d7	d8	d9	d10
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
	0	0 1	0 1	0 1	0 1	0 1	0 1	[0] 1	[1]
	2	$\overset{\cdot}{2}$	$\stackrel{\bullet}{2}$	2	2	2	2	$\overset{\cdot}{2}$	$\frac{1}{2}$
3	3	3	3	3	3	3	3	3	
	4	4	4	4	4	4	4	[4]	
		5	5	5					
			6	6	6				
				7					
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
			0	0	0	0	0		
				1		1		1	[1]
	2	2	2	[2]	2	2	2	2	$\overline{2}$
3	3	3	3	3	3	3		3	
	4	4	4	$\frac{4}{2}$	4	4	4		
		5	5	5	5	5			
			6	6	6	6			
				7	7				
					8				
La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
			0	0	0	0	0	[0]	
				1		1		1	1
	$\frac{2}{2}$	$\frac{2}{3}$	$\frac{2}{2}$	$\frac{2}{2}$	2	$\frac{2}{2}$	2	[2]	2
3	3	3	3	3	3	3		3	
	4	4	4	4	4	4	4	_	
		5	5	5	5	5	5	5	
			6	6	6	6	6		
				7	7 8				
					O				

Tabela 2: Estado de oxidação estáveis dos metais de transição

1.2 Complexos Polinucleares

Complexos que possuem mais de um elemento central

2 Ligando

Elementos diretamente ligados ao elemento central, considerados bases de Lewis

Aniônicos: Possuem carga negativa. Catiônicos: Possuem carga positiva.

Moleculares: Possuem carga nula.

2.1 Dentação

Monodentados: Maximo 1 ligação Polidentados: Mais de 1 ligação

Ambidentados: Mais de 1 ligação mas so faz n(<max) por vez

Dentação			
ch	Ligando	Atomo	Info
		Doador	
I_	Iodo	I	
Br^-	Bromo	Br	
CH_2^-	Amido	C	
OH^-	Hidroxo	O	
O^{2-}	OXO	O	
O_2^{2-}	Peroxo	O	
NO_3^-	Nitrato	0	
${ m ClO}_4^-$	Perclorato	O	<i>T</i> D :
N_3^-	Azido	N	Toxico
F^-	Fluoro	F	
$ m H_2O$	Aqua	O	
$\mathrm{CH_{3}CN}$	Acetonitrilo	N	
py	Piridina	N	
NH_3	Amin / Amino	N	
$\mathrm{PR}_{\mathrm{n}}\mathrm{H}_{\mathrm{3-n}}$	Organofosfinas	Р	
CO	Carbonil	C	
CO_2	Carboxalato	$^{ m C}$	
R-C=C-R	Alquenos		C - 1:1 -
Cp^-	Ciclopentadienil		Se liga pelo orbital molecular
tu	tioureio	N ou S	
${f Bidentado}$			
$\mathrm{C_2O_4^{~2-}}$	Oxalato	2*O	
en	Etilendiamin	2 * N	
bipy	Bipiridil	2 * N	
phen	fenantrolin	2 * N	
acac	Acetilacetonato	2*C	Tambem pode ser Monodentado
			pelo C Central
dppe	Bis(difenilfosfin)etano	2 * P	Ocupa muito espaço
<u>dmg</u>	Dimetilglioxin	2 * N	quelato(4) em pares
${ m Tridentado}$			
dien	Dietilentriamin	3*N	
terpy	Terpiridin	3 * N	Ocupa muito espaço
tacn	Triazaciclononano	3 * N	Quelato(3)
Tetradentado			
trien	Trietilentetramin	4*N	${\text{Quelato}(3)}$
tren	Tris(2-aminetil)amin	4*N	Quelato(3)
Hexadentado			
penten	pentaetilenohexamin	6 * N	Quelato(5)
Monodentado	Ambidentado		
$\overline{\mathrm{CN}^{-}}$	Ciano	C ou N	
SCN^-	Tiocianato	${ m S}$	
NCS^-	Isotiocianato	N	
S^{2-}	Tio	${ m S}$	Bidentado em Pontes
Cl^-	Cloro	Cl	Bidentado em Pontes
OH^-	Hidroxo	O	Bidentado em Pontes
NO_2^{-}	Nitro	N	

Dentação			
ch	Ligando	Atomo Doador	Info
$\overline{\mathrm{ONO}^{-}}$	Nitrito	О	
dppm	Bis(difenilfosfin)metano	Р	Ocupa muito espaço
R-NO	Nitroso	N ou O	
$\mathrm{CO}_3^{\ 2-}$	Carbonato	O	
SO_3^{2-}	Sulfito	S ou O	
SO_4^{2-}	Sulfato	O	
PO_4^{3-}	Fosfato	O	
Outros			
	Crown eters		
	Corroles		
	Acidos Aminopolicarboxilicos		
	Criptandos		
$\mathrm{C_4H_4N_2}$	Pirazin		ditopico

Tabela 3: Ligandos por Dentação

2.2 Quelação

Numero de Anéis que um ligando faz com o elemento central, geralmente diretamente relacionado com o numero de átomos doadores do ligando.

Grupo

	ala	N_{1}	Átomos	Max
Quelação	ch	Nome	Doadores	Lig
1	${ m C_2O_4^{~2-}}$	Oxalato	2*O	$\overline{4}$
1	en	Etilendiamin	2 * N	2
1	bipy	Bipiridil	2 * N	2
1	fen	Fenantrolin	2 * N	2
1	acac	Acetilacetonato	2 * N	3
1	ddpe	Bis(difenilfosfin)etano	2 * N	2
2	dien	Dietilentriamin	3 * N	3
2	terpy	Terpiridin	3 * N	3
3	tacn	Triazaciclononano	3 * N	3
3	trien	Trietilentetramin	4*N	4
3	tren	Tris(2-aminetil)amin	4 * N	4
4	$\mathrm{dmg}_2^{\;2-}$	Bisdimetilglioxin	4*N	4
5	penten	pentaetilenohexamin	6 * N	6
Acidos Ar	ninopolicarb	oxilicos		
1	gly^{1-}	glicinato	N + O	2
2	IDA^{2-}	Iminodiacetato	N + 2 * O	3
3	NTA^{3-}	Nitrilotriacetato	N + 3 * O	4
3	?3-	Nicotianamin	2 * N + 3 * O	5?
3	EDDHA^{4-}		2 * N + 4 * O	6
3	EDDS^{4-}		2 * N + 4 * O	6
5	DTPA^{4-}	Dietilenotriaminpentacetato	3 * N + 5 * O	8
5	$BAPTA^{4-}$		2 * N + 4 * O	6
5	$EDTA^{4-}$	Etilendiamintetracetato	2 * N + 4 * O	6
5	$EGTA^{4-}$	Trietilenoglicodiamintetracetico	2 * N + 4 * O	6
6	$NOTA^{3-}$		3 * N + 3 * O	6
8	$DOTA^{4-}$		4 * N + 4 * O	8
Crown Et	$\overline{ ext{ers}}$			
4		12 - crown - 4	4*O	4
5		15 - crown - 5	5*O	5
6		18 - crown - 6	6*O	6
6	d	ibenzo - 18 - crown - 6	6*O	6
6		diaza - 18 - crown - 6	2 * N + 4 * O	6
Criptando	DS			
9		2.2.2-criptando	6 * O + 2 * N	8

Tabela 4: Ligandos por grupo e Quelação

2.3 Acidos Aminopolicarboxilicos (ACPAs)

Dentação	Sigla	Nome	Átomos Doadores	Quelação
			Doadores	
2	gly^{1-}	glicinato	N + O	1
3	IDA^{2-}	Iminodiacetato	N + 2 * O	2
4	NTA^{3-}	Nitrilotriacetato	N + 3 * O	3
6	$EDTA^{4-}$	Etilendiamintetracetato	2 * N + 4 * O	5
6	$EGTA^{4-}$	${\bf Trietile noglico diamintet racetico}$	2 * N + 4 * O	5
8	DTPA^{4-}	Dietilenotriaminpentacetato	3 * N + 5 * O	5
6	$BAPTA^{4-}$		2 * N + 4 * O	5
6	$NOTA^{3-}$		3 * N + 3 * O	6
8	$DOTA^{4-}$		4 * N + 4 * O	8
4?	$?^{3-}$	Nicotianamin	N + 3 * O	3
6	$\mathrm{EDDHA^{4-}}$		2 * N + 4 * O	3
6	$EDDS^{4-}$		2 * N + 4 * O	3

Tabela 5: Acidos Aminopolicarboxilicos

2.4 Crown Eters

Dentação	Nome	Átomos Doadores	Quelação
4	12 - crown - 4	4 * O	4
5	15 - crown - 5	5 * O	5
6	18 - crown - 6	6 * O	6
6	dibenzo $-18 - \text{crown} - 6$	6 * O	6
6	diaza - 18 - crown - 6	4 * O + 2 * N	6

Tabela 6: Crown Eters

2.5 Criptandos

Dentação	Nome	Átomos Doadores	Quelação
8	2.2.2-criptando	6 * O + 2 * N	9

Tabela 7: Criptandos

2.6 Organofosfinas

Grupo						
ch	Nome	info				
Primárias	PRH_2					
Secundária	as PR_2H					
Terciárias	PR_3					
PPh_3	Trifenilfosfina	Ocupa muito espaço				
PCy_3	Tricyclohexylfosfino	Ocupa muito espaço				
Pet_3	Trietilfosfina					
$P(CH_3)_3$	Trimetilfosfino					
$P(CH_2O)_3$	Trimetilfosfito					
$P(o-tol)_3$	Tris(o-tolil) fosfino					
PF_3	trifluorofosforo					
Ciclicas Pl	Ciclicas PR ₂ H					

Tabela 8: Organo fosfinas por grupo

3 Esfera de Coordenação

Elemento central e seus ligandos diretamente ligados

4 Numero de Coordenação

Numero de ligações feitas pelo elemento central Util para classificar a geometria de Compostos

4.1 Geometria

NC	Geometria	Info
2	Linear	
3	Trigonal-Plana	
4	Tetraédrica	Mais comum
4	Quadrangular-Plana	Metais d8
5	Bipiramide-Trigonal	
5	Piramide de Base Quadrada	Depende dos Ligantes
6	Octáedricos	Mais comum
6	Prisma Trigonal	
7	Bipiramides Pentagonais	Metais Grandes
7	Prismáticas Trigonal Monoapicada	Metais Grandes
8	Cubo	
9	Prisma Trigonal Triapicado	Ítrio, Latânio e Bloco f
10	Cubo Octaédrica	Iões do bloco f

Tabela 9: Geometrias por NC

5 Distorção de Jahn-Teller

Tabela 10: Distorções de Jean-Teller

6 Isomeria

6.1 Ionização

Troca de um Ligandos Aniónicos de dentro e fora da esfera de coordenação

$$[Co(NH_3)Br][SO_4](violeta) \longleftrightarrow [Co(NH_3)SO_4][Br] (roxo)$$

6.2 Hidratação

Troca de ligando e Água de dentro e fora da esfera de coordenação

$$[Cr(H_2O)_4Cl_2]Cl \cdot 2 H_2O \longleftrightarrow [Cr(H_2O)_5Cl]Cl_2 \cdot H_2O$$

6.3 Coordenação

Troca de ligandos entre dois centros metálicos de um composto de coordenação

$$[Co(NH_3)_6][Cr(CN)_6] \longleftrightarrow [Co(CN)_6][Cr(NH_3)_6]$$

6.4 Ligação

Complexos com ligandos ambientados, tem isômeros com as diversas combinações das diferentes formas de se ligarem

$$[Co(NH_3)_4(N-CS)]^{2+} \longleftrightarrow [Co(NH_3)_4(S-CN)]^{2+}$$

6.5 Polimerização

Complexos que tem a mesma formula porem peso molecular diferente

$$[PtCl_2(NH_3)_2] \longleftrightarrow [Pt(NH_3)_4][PtCl_4]$$

6.6 Geométrico

Posição geométrica dos ligandos gerando combinações distintas do mesmo complexo.

Detectado pela determinação estrutural de difração de raios X de monocristal, espectroscopia de infra vermelho (IR) por auxiliar.

Cis-Trans Fac-Mer

6.7 Óptico

Quando a posição dos ligandos pode gerar um isômero espelhado

Levógero(
$$\Lambda$$
)-Destrógero(Δ)

7 Composto de Coordenação

Composto de elementos que inclui pelo menos um complexo de coordenação

III | Nomenclatura

IV | Estabilidade

Estudo Qualitativo

Teoria de Pearson (HS|AB)

polarizabilidade

Duros: Não maleáveis, Nuvem eletrônica não se deforma, fraca Macios: Maleáveis, Nuvem eletrônica facilmente deformável, Elevada polarizabilidade.

Propriedade	Duro	Mole
Raio Atómico/Iônico	Pequeno	Grande
Oxidação	Alto	Baixo ou Zero
Polarização	Baixa	Alta
НОМО	Baixo	Alto
LUMO	Alto	Baixo (> que HOMO da Base mole)
Afinidade	Lig iônica	Lig covalente

Tabela 11: Tendencias de Acidos/Bases Duros vs Moles

1.1 Hidrogênio (H)

Tabela 12: Classificação do Hidrogênio por campo Hard-Soft

1.2 Metais Alcalinos e Alcalinos-terrosos (s)

	2	3	4	5	6	7
s1	Li	Na	K	Rb	Cs	Fr
0	Н	Н	Н	Н	Н	Н
1+	Н	Н	Н	Н	Н	Н
	Н	Н	Н	Н	Н	Н
s2	Be	Mg	Ca	Sr	Ba	Ra
0	Н	Н	Н	Н	Н	Н
1+	Н	Н	Н	Н	Н	Н
	Н	Н	Н	Н	Н	Н

Tabela 13: Classificação dos metais alcalinos e alcalinos-terrosos por campo Hard-Soft

1.3 Metais de Transição (d)

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
4	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
0		Н	Н	Н	Ι	Ι	Ι	Ι	S	
1+		Н	Н	Н	Ι	Ι	Ι	Ι	S	S
2+		Н	Н	Н	I	I	I	Ι	Ι	Ι
3+	Н	Н	Н	Н	Н	Н	Н		Ι	Ι
4+		Н	Н	Н	Н	Н	Н			
5+			Н	Н	Н					
6+				Н	Н	Н				
7+					Н					
5	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
0			Н	Ι	Ι	S	S	S		
1+									S	S
2+		Н	Н			I		S	S	S
3+	Н	Н	Н	Н			Ι			
4+		Н	Н	Н	Н	Н	Н	Н		
5+			Н	Н	Н	Н	Н			
6+				Н	Н	Н	Н			
7+					Н	Н				
8+						Н				
6	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
0	Н	Н	I	Ι	Ι	Ι	S	S	S	
1+									S	S
2+		Н				I		S	S	S
3+	Н	Н	Н	Н	Н	Н	I		S	
4+		Н	Н	Н	Н	Н	Н	S		
5+			Н	Н	Н	Н	Н			
6+				Н	Н	Н	Н			
7+					Н	Н				
8+						Н				

Tabela 14: Classificação de Metais de transição por campo Hard-Soft

1.4 Lantanídeos e Actinídeos (f)

	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14
6	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
0	Н													
1+	Н													
2+	Н													
3+	Н	Н	Н	Н	Н	Н	Н	Η	Н	Н	Н	Н	Н	Н
	Н	Н	Η	Н	Н	Н	Н	Η	Н	Η	Η	Η	Η	Н
7	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
$\frac{}{}$			Pa	U	Np	Pu	Am	$\overline{\mathrm{Cm}}$	Bk	Cf	Es	Fm	Md	No
			Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
0			Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
0 1+			Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
0 1+ 2+			Pa H	U	Np H	Pu	Am	Cm	Bk H	Cf	Es	Fm	Md	No H

Tabela 15: Classificação dos Lantanídeos e Actinídeos como ácidos pelo campo Hard-Soft

1.5 Famílias III a VII (p)

	p1	p2	p3	p4	p5
2	В	С	N	О	F
0	S	S	I	Н	Н
-1		S	Н	Н	Н
-2		S	Н	Н	Н
-3			Н	Н	Н
3	Al	Si	Р	S	Cl
0	S	S	S	I	I
-1	S	S	S	Н	I
- 2	S	S	S	Н	Н
-3	S	S	S		Н
4	Ga	Ge	As	Se	Br
0	S	S	S	S	S
-1	S	S	S		I
-2	S	S	S		
-3	S	S	S		S
5	In	Sn	Sb	Те	I
0	S	S	S	S	S
-1	S	S	S	S	S
-2				S	S
6	Tl	Pb	Bi	Ро	At
0	S	S	S	S	S
-1	S	S	S	S	S
-2				S	S
7	Nh	Fl	Mc	Lv	Ts
0	S	S	S	S	S
-1	S	S	S	S	S
-2					S

Tabela 16: Bases das familias III a VII campo Hard-Soft

	p1	p2	p3	p4	p5
$\overline{2}$	В	\mathbf{C}	N	О	F
0					
+1					
+2					
+3	Н				
3	Al	Si	P	S	Cl
0	Н	Н	Н	Н	
+1	Н	Н	Н	Н	
+2	Н	Н	Н	Н	
+3	Н	Н	Н	Н	
4	Ga	Ge	As	Se	Br
0	Н	Н	Н	Н	
+1	Н	Н	Н	Н	
+2	Н	Н	Н	Н	
+3	Н	Н	Н	Н	
5	In	Sn	Sb	Те	Ι
0	I	Н	Н		
+1	Н	Н	Н	Н	
+2		I			
+3	Н		I		
+4	Н	Н			
6	Tl	Pb	Bi	Ро	At
0	S	I	I		
+1	S	I	I		
+2	S	I	I		
+3	S	S	I		

Tabela 17: Acidos das familias III a VI campo Hard-Soft

2 Lista de Ligandos

Apenas para listar, melhor seguir as tabelas anteriores

2.1 Ácidos

2.2 Bases

Classificação

ch	Nome / Grupo	Atomo			
CII	Nome / Grupo	Doador			
Hard - A -	Duro				
$\mathrm{H_{2}O}$	Aqua	О			
HO^-	Hidroxo	O			
$R - O^{-}$	Alcóxidos	O			
F^-	Fluoro	${ m F}$			
Cl^-	Cloro	Cl			
PO_4^{3-}	Fosfato	O			
SO_4^{2-}	Sulfato	O			
CO_3^{2-}	Carbonato	O			
$\mathrm{R}-\mathrm{CO}_2^-$	Carboxilatos	O			
${ m ClO}_4^{-}$	Perclorato	O			
NO_3^{-}	Nitrato	O			
NH_3	Amin	N			
$N_2 - R_4$	Hidrazinos	N			

Classificação

ch	Noma / Crupa	Atomo									
	Nome / Grupo	Doador									
Hard - A	Hard - A - Duro										
H^+	Hídron	Н									
BF_3	Borontrifluoro	В									
$AlCl_3$	Aluminiotricloro	Al									
SO_3	oxidosulfurico	S									
$\mathrm{NO_2}^+$	Nitronio	N									
CO_2	dioxido de carbono	С									
In betwee	n										
$B(CH_3)_3$	Trimetilborano	В									
SO_2	Dioxido de enchofre	S									
Soft - B -	Mole										
$\overline{}$ BH $_3$											
${\rm I}_2$											

	,				
Tabela 18	8: Acidos	ligandos	classificados	por	HSAB

In between Piridina N ру NO_2^- Nitro N Soft - B - Mole $S - R_2$ S $R - S^{-}$ S Tiolatos $P - R_3$ Fosfinos P $P(CH_2O)_3$ Trimetilfosfito Р $As - R_3$ As R-NC H^{-} Hidreto Η I^- Iodo S SCN^{-} Tiocianato CN^{-} C ou N Ciano Carbonil CO \mathbf{C} C_2H_4 Eteno C_6H_6 Benzeno

Tabela 19: Bases ligandos classificados por HSAB

3 Serie Irving-Willians

Compara relativamente a contribuição que os metais de transição como elementos centrais trazem para a estabilidade do complexo, A comparação é feita com os metais no seu estado de oxidação 2+ De forma geral a estabilidade aumenta com o raio atômico

Ba	<	Sr	<	Ca	<	Mg	<	Mn	<	Fe	<	Co	<	Nu	<	$\overline{C_{11}}$	>	Zn
		\sim \perp				7170				- -		\sim		1 101		$\sim \alpha$		

4 Efeito de Quelação

Complexos que apresentam anéis quelatos são mais estáveis que complexos similares que não possuem anéis, esse efeito é percebido pela maior variação entropica da reação de formação do complexo

Estudo Quantitativo

Equilíbrio de Complexos 5

$$\stackrel{\mathrm{K}_{\mathrm{est}}}{=}$$
 Produtos

$$K_{est} = \prod [Produtos] / \prod [Reagentes]$$

$$M + L \stackrel{K_{est}}{=} ML$$

$$K_{est} = \frac{[ML]}{[M][L]}$$

$$\mathbf{M} + m \mathbf{L} \stackrel{\beta_{\mathbf{ML}_m}}{= \mathbf{ou} \ \beta_m} \mathbf{ML}_m$$

$$\beta_{\mathrm{ML}_m} = \frac{[\mathrm{ML}_m]}{[\mathrm{M}][\mathrm{L}]^m}$$

Constantes de estabilidade parciais 6

$$1 \qquad M + L \Longrightarrow ML \qquad K_1 = [ML]/[M][L]$$

$$\zeta_1 = [\mathrm{ML}]/[\mathrm{M}][\mathrm{L}]$$

$$2 \qquad ML + L \Longrightarrow ML_2 \qquad K_2 = [ML_2]/[ML][L]$$

$$\vdots \qquad \vdots$$

$$K_2 = [ML_2]/[ML][L]$$

$$m \quad \mathrm{ML}_{m-1} + \mathrm{L} \Longrightarrow \mathrm{ML}_{m}$$

$$m$$
 $\mathrm{ML}_{\mathrm{m-1}} + \mathrm{L} \Longrightarrow \mathrm{ML}_{\mathrm{m}}$ $K_m = [\mathrm{ML}_{\mathrm{m}}]/[\mathrm{ML}_{\mathrm{m-1}}][\mathrm{L}]$

Constante Global β_m 6.1

$$\beta_m = \prod_{n=1}^m K_n = [\mathrm{ML}_m]/[\mathrm{M}] [\mathrm{L}]^m$$

$$\log \beta_m = \sum_{n=1}^m \log K_n$$

Comparação de constantes de estabilidade: Validas para complexos com mesmo numero de coordenação

Balanços Globais

6.2 Concentração total $[M]_{tot}$

$$\begin{split} [\mathbf{M}]_{\text{tot}} &= \sum_{n=0}^{m} [\mathbf{ML}_n]; \ [\mathbf{ML}_i] = K_i [\mathbf{ML}_{i-1}] [\mathbf{L}] = \\ &= [\mathbf{M}] [\mathbf{L}]^i \prod_{n=1}^i K_n = [\mathbf{M}] [\mathbf{L}]^i \beta_i \implies \\ &\Longrightarrow [\mathbf{M}]_{\text{tot}} = [\mathbf{M}] + [\mathbf{M}] \sum_{i=1}^{m} \beta_i [L]^i \end{split}$$

6.3 Concentração total $[L]_{tot}$

$$[L]_{tot} = [L] + \sum_{i=1}^{m} i [ML_i]; [ML_i] = K_i [ML_{i-1}] [L] =$$

$$= [M] [L]^i \prod_{n=1}^{i} K_n = [M] [L]^i \beta_i \Longrightarrow$$

$$\Longrightarrow [L]_{tot} = [L] + [M] \sum_{i=1}^{m} i \beta_i [L]^i$$

$$\therefore \frac{[L]_{\text{tot}} - [L]}{[M]_{\text{tot}} - [M]} = \sum_{i=1}^{m} i = (m+1) m/2$$

7 Fração Especifica α

8 Numero médio de Ligandos \overline{n}

$$\alpha_i = \frac{[\mathrm{ML}_i]}{[\mathrm{M}]_{\mathrm{tot}}}$$

$$\alpha_n = \beta_n [\mathrm{L}]^n \alpha_0$$

$$\overline{n} = \sum_{i=1}^{m} i \, \alpha_i = \sum_{i=1}^{m} \frac{i \, [\mathrm{ML}_i]}{[\mathrm{M}]_{\mathrm{tot}}} = \frac{[\mathrm{L}]_{\mathrm{tot}} - [\mathrm{L}]}{[\mathrm{M}]_{\mathrm{tot}}}$$

9 Experimentalmente

Em experimentos o meio utilizado é o aquoso assim as reações de formação das especies estudadas são de substituição onde aquocomplexos tem seus ligantes (H_2O) substituídos pelos ligantes desejados

$$M(H_2O)_x^{n+} + mL^{p-} \Longrightarrow ML_m^{-pm+n} + xH_2O$$

9.1 Constantes de estabilidade experimentais

$$\beta_{\mathrm{ML}_m} = \frac{[\mathrm{ML}_m]}{[\mathrm{M}][\mathrm{L}]} \qquad \qquad \beta_{\mathrm{M(H_2O)}_x} = \frac{[\mathrm{M(H_2O)}_x]}{[\mathrm{M}][\mathrm{H_2O}]^x} \qquad \qquad K = \frac{[\mathrm{ML}_m][\mathrm{H_2O}]^x}{[\mathrm{M(H_2O)}_x][\mathrm{L}]^m} = \frac{\beta_{\mathrm{ML}_m}}{\beta_{\mathrm{M(H_2O)}_x}}$$

V | Teoria dos Orbitais Moleculares

1 Teoria do Enlace de Valência

2 Origens

2.1 Werner - Rever

Tenta descrever para parte dos elementos dois tipos de valência

Valência Primaria Estado de Oxidação

Valência Secundária Número de Coordenação

3 Teoria do Campo Cristalino

Estuda a repulsão de ligandos e os orbitais mais externos do átomo central, considerando os ligandos como cargas pontuais

3.1 Divisão energética dos orbitais

Na presença de ligandos os orbitais d do metal mais próximos do ligando se tornam menos estáveis enquanto os mais distantes se tornam mais estaveis, a energia necessária para um elétron orbitar em um orbital de menor estabilidade é maior

Nota: A energia do sistema deve permanecer constante

Complexo Octaédrico

Complexo Tetaédrico

Campo fraco/Spin alto

Campo forte/Spin baixo

- 3.2 para/dia magnetismo
- 3.3 Fatores que influenciam
- 3.3.1 Natureza do ion Metálico

Diretamente proporconal:

- Estado de Oxidação
- Periodo da tabela dos elementos

Tabela 20: Série Espectroquímica ou Série de Tsuchida dos Metais

3.3.2 Natureza do Ligando

Tabela 21: Série Espectroquímica ou Série de Tsuchida dos Ligandos

3.4 Energia de Estabilização dos Campo de Ligandos EECL

$$ext{EECL} = (l*0.4 - h*0.6) \Delta_{ ext{oct}} - n*P$$

- h: Elétrons no campo de maior energia
- n: Pares eletrônicos
- ullet l: Elétrons no campo de menor energia

Aplicações do Campo Cristalino

3.5 Espectro de Frequência de Absorção de Luz

4 Teoria do Campo Ligando

Aplicação de TOM em complexos, com foco nos orbitais d

VI | Reatividade