MATH6302

AUSTIN WU

Date: May 28, 2025.

Problem 1:

a:

Given a \mathcal{L} , run the γ -svp on it. Thus we have obtained a non-zero vector v such that

$$||v|| \le \gamma \lambda_1(\mathcal{L})$$

And since we know from minkowskis theorem that

$$\lambda_1(\mathcal{L}) \leq \sqrt{n} \det(\mathcal{L})^{\frac{1}{n}}$$

Implies that

$$||v|| \le \gamma \sqrt{n} \det(\mathcal{L})^{\frac{1}{n}}$$

Which implies that running γ -SVP returns a non-zero vector that satisfies $\gamma\sqrt{n}$ -MSVP. Thus since γ -SVP runs in polynomial time there is trivially a reduction to polynomial time.

b:

Recall from cauchy schwartz that given

$$||v|| < \frac{1}{\delta} \det(\mathcal{L})^{\frac{1}{n}}$$

and

$$||w|| < \delta \det(\mathcal{L}^*)^{\frac{1}{n}}$$

That by cauchy schwartz, since

$$|\langle w, v \rangle| \le ||w|| ||v||$$

Implies that

(1)
$$|\langle w, v \rangle| \le ||v|| ||w|| < \frac{1}{\delta} \det(\mathcal{L})^{\frac{1}{n}} \delta \det(\mathcal{L}^*)^{\frac{1}{n}} = (\det(\mathcal{L}) \det(\mathcal{L}^*))^{\frac{1}{n}}$$

Thus since $\det(\mathcal{L})\det(\mathcal{L}^*)=1$ even for non full rank lattices, we know that

$$(2) = 1^{\frac{1}{n}}$$

$$(3) = 1$$

But since by definition of a dual lattice we know that $\langle w, v \rangle \in \mathbb{Z}$ and $|\langle w, v \rangle| < 1$ there is only one possible solution which is that $|\langle w, v \rangle| = 0$

 \mathbf{c} :

Let $\det(\mathcal{L}_i)$ be the determinat of the *i*-th lattice. Let r_i be the rank of the *i*-th lattice. Since we start with a lattice at rank n this implies that $r_i = n - i + 1$. Thus since \mathcal{A} solves γ -MSVP we know by theorem 1.1 that

$$||y_i|| \le \delta \det(\mathcal{L}_i)^{\frac{1}{r_i}}$$
$$||w_i|| \le \delta \det(\mathcal{L}_i^*)^{\frac{1}{r_i}}$$

We also know for any given lattice intersecting with w_i^{\perp} reduces the determinant $\det(\mathcal{L}_{i+1}) = \frac{\det(\mathcal{L}_i)}{||w_i||}$. Now let $v = \lambda_1(\mathcal{L}) \in \mathcal{L}$. Recall also that $\det(\mathcal{L}_i) \det(\mathcal{L}_i^*) = 1$ for every i

Let $v \in \mathcal{L}$ be a non-zero vector with $||v|| = \lambda_1(\mathcal{L})$. Now let t be the smallest index such that

$$t := \min \left\{ i : ||v|| \le \frac{1}{\delta} \det(\mathcal{L}_i)^{1/r_i} \right\}.$$

Because $\delta \geq \sqrt{n}$, by Minkowski such an index exists. Thus for all j < t we have $||v|| > \det(\mathcal{L}_j)^{1/r_j}/\delta$. Combining this with the bound on $||w_j||$ and Problem 1.2 gives $\langle w_j, v \rangle \neq 0$ so $v \notin \mathcal{L}_{j+1}$. But since by construction $v \in \mathcal{L}_t$, and at i = t the problem does apply, so since α guarantees a solution to δ -MSVP,

$$\langle w_t, v \rangle = 0,$$
 i.e. $v \in \mathcal{L}_{t+1}$.

$$||y_{t+1}|| \le \delta \det(\mathcal{L}_{t+1})^{1/r_{t+1}} = \delta \left(\det(\mathcal{L}_t)/||w_t||\right)^{1/(r_t-1)}$$

Now since $||w_t|| \leq \delta \det(\mathcal{L}_t^*)^{1/r_t}$ and $\det(\mathcal{L}_t) \det(\mathcal{L}_t^*) = 1$,

$$\det(\mathcal{L}_{t+1})^{1/r_{t+1}} \leq \left(\det(\mathcal{L}_t)\right)^{1/(r_t-1)} = \left(\delta \|v\|\right)^{\frac{r_t}{r_t-1}},$$

where the equality uses the definition of t. Thus,

$$||y_{t+1}|| \leq \delta \left(\delta ||v||\right) = \delta^2 \lambda_1(\mathcal{L}).$$

Thus the algorithm outputs the shortest vector among y_1, \ldots, y_n , so the final answer y satisfies

$$||y|| \le ||y_{t+1}|| \le \delta^2 \lambda_1(\mathcal{L}),$$

i.e. it is a valid solution to δ^2 -SVP.

Problem 2:

a:

Let $y_1, \ldots, y_l \in \mathcal{L}'$ be a basis of \mathcal{L}' and extend it to $y_{l+1}, \ldots, y_n \in \mathcal{L}$ so that y_1, \ldots, y_n is a basis of \mathbb{R}^n . Set $U := \operatorname{span}(\mathcal{L}')$ and $V := \operatorname{span}(y_{l+1}, \ldots, y_n)$. Because $U \oplus V = \mathbb{R}^n$, we have $(\mathcal{L}')^{\perp} = V^{\perp}$ and dim $V^{\perp} = n - l$. Note that $V \cap U = \{0\}$.

For i > l put $z_i := \Pi_{(\mathcal{L}')^{\perp}}(y_i)$. Since the vectors z_{l+1}, \ldots, z_n are linearly independent (projection is injective on V since $\cap U = \{0\}$) and lie in $(\mathcal{L}')^{\perp}$, so they form a basis of $(\mathcal{L}')^{\perp}$.

Now for each z_i since we know it belongs to $S = \Pi_{(\mathcal{L}')^{\perp}}(\mathcal{L})$ we know that $(\mathcal{L}')^{\perp} \subseteq \operatorname{span}(S)$. The opposite inclusion is also obvious, which implies equality.

b:

Let $y_1, \ldots, y_l \in \mathcal{L}'$ be a basis of \mathcal{L}' and extend it to linearly independent $y_{l+1}, \ldots, y_n \in \mathcal{L}$. This is guarenteed to exist since \mathcal{L}' is a sublattice. Now write $B := \{y_1 \ldots y_n\}$, so $L = B\mathbb{Z}^n$ and its dual lattice has basis $B^{-*} := B^{-T}$. Denote the dual basis vectors by y_1^*, \ldots, y_n^* , so $B^{-*} := \{y_1^* \ldots y_n^*\}$.

Now since by construction $y_j^* \in \mathcal{L}^*$. This implies that for $1 \leq i \leq l < j \leq n$ we have $\langle y_i, y_j^* \rangle = \delta_{ij} = 0$, hence $y_j^* \perp \mathcal{L}'$, so $y_j^* \in (\mathcal{L}')^{\perp}$. Not since independence is inherited from the dual basis. Thus $y_{l+1}^*, \ldots, y_n^* \in \mathcal{L}^* \cap (L')^{\perp} = T$ and the vectors are linearly independent.

There are n-l such vectors, matching $\dim(\mathcal{L}')^{\perp}$, so this implies that $\operatorname{span}(T) \supseteq \operatorname{span}\{y_{l+1}^*,\ldots,y_n^*\} = (\mathcal{L}')^{\perp}$.

Thus since we also know that by definition $T \subseteq (\mathcal{L}')^{\perp}$, hence

$$\mathrm{span}(T) = (\mathcal{L}')^{\perp}.$$

c:

Let $w \in \mathcal{L}^* \cap (\mathcal{L}')^{\perp}$. For any $y \in \mathcal{L}$ let $s := \Pi_{(\mathcal{L}')^{\perp}}(y) \in S$. Thus since w is in $(\mathcal{L}')^{\perp}$ and s(y) is in the proejction space which is self adjoint implies that for any $y \in \mathcal{L}$,

$$\langle s(y), w \rangle = \langle \Pi_{(C')^{\perp}}(y), w \rangle = \langle y, \Pi_{(C')^{\perp}}(w) \rangle = \langle y, w \rangle \in \mathbb{Z}$$

Since $w \in \mathcal{L}^*$. Thus since $w \operatorname{span}(S) = (\mathcal{L}')^{\perp}$ implies that $w \in S^*$.

Now let $w \in S^*$. By definition of S^* we already have $w \in \operatorname{span}(S) = (\mathcal{L}')^{\perp}$. To prove $w \in \mathcal{L}^*$, pick an arbitrary $y \in \mathcal{L}$ and set $y = y_{\parallel} + y_{\perp}$ with $y_{\parallel} \in \operatorname{span}(\mathcal{L}')$ and

 $y_{\perp} := \Pi_{(\mathcal{L}')^{\perp}}(y) \in S$. Then

$$\langle y, w \rangle = \langle y_{\parallel}, w \rangle + \langle y_{\perp}, w \rangle.$$

Because $w \in (\mathcal{L}')^{\perp}$, the first term vanishes $(w \perp \mathcal{L}')$ and the second term is an integer since $y_{\perp} \in S$ and $w \in S^*$. Hence $\langle y, w \rangle \in \mathbb{Z}$ for all $y \in \mathcal{L}$, which implies that $w \in \mathcal{L}^*$. Thus the two inclusions give $S^* = lat^* \cap (\mathcal{L}')^{\perp}$, establishing that

$$\left(\Pi_{(\mathcal{L}')^{\perp}}(\mathcal{L})\right)^* = \mathcal{L}^* \cap (\mathcal{L}')^{\perp}.$$

Problem 3:

Not as much as others