

Computational Approaches to Ramsey Problems

Alex Weinstock-Collins & Ethan Mark

REU Week 2 Report June 14, 2013

- Graph Generation
- Examples
- Other Techniques
- Projective Planes

- Graph Generation
- Examples
- Other Techniques
- Projective Planes

Ramsey Theory Review

Recall:.

Ramsey Number $R(n_1,, n_c) = r$ is the minimum order of a complete graph in c colors that must contain a complete subgraph of order n_i whose edges are all color i.

Bipartite Ramsey Number: $b(n_1, ..., n_k)$ is the smallest number b such that any coloring of the edges of $K_{b,b}$, with k colors guarantees a monochromatic copy of K_{n_i,n_i} , in the i-th color, for some i, $1 \le i \le k$.

Zarankiewicz Numbers: z(m, n; s, t) is the maximum number of edges in a subgraph of $K_{m,n}$ that does not contain $K_{s,t}$ as a subgraph.

nauty created in 1984 is a program for creating and computing graphs.

Examples:

Generating complete graphs or bipartite graphs.

Counting graphs with certain properties.

Limits of nauty

How long nauty took to generate C_4 -free bipartite graphs.

Vertices	Edges	Graphs Generated	Time Taken
16	24	4 ¹	1.11 seconds
18	29	1	15.90 seconds
20	34	1	\approx 5.5 minutes
22	39	2 ²	pprox 3 hours

This technique will only be useful for diagonal Zarankiewicz numbers.

¹Includes three subgraphs of $K_{8,8}$ and one subgraph of $K_{7,9}$, since z(8,8)=z(7,9)=24 and nauty does not allow specification of vertex allocation.

²One subgraph of $K_{11,11}$, one of $K_{10,12}$, z(11,11) = z(10,12) = 39.

- Graph Generation
- 2 Examples
- Other Techniques
- Projective Planes

The unique witness for z(9,9) = 29

The unique witness for z(10, 10) = 34

- Graph Generation
- 2 Examples
- Other Techniques
- Projective Planes

Zarankiewicz numbers to check

Zarankiewicz numbers to check

- From Guy, 1969
- Values are z(n, m) + 1 due to alternate definition
- Values above top line determined by easily verifiable theorem
- Values between lines determined by other theorem (proof missing)
- Other values determined by individual argument
- Circled value does not match newer paper (Dybizbański, Dzido, Radziszowski, 2013)
- Values beyond blue line are not feasibly checkable by nauty

Zarankiewicz numbers to check

Theorem (Guy, 1968): $z(n, m) = m + \binom{n}{2}$ for $m > \binom{n}{2}$.

Alternative methods

Algorithm for checking Zarankiewicz numbers:

- Begin with n, m (n < m) and z, a guess at z(n, m) to check
- Generate all possible degree sequences of the *n* vertices on the left which add up to z.
- Eliminate all theoretically impossible sequences
 - Denote the degree sequence $S = (s_0, s_1, \dots, s_{n-1})$
 - Let $\Delta_k = \sum_{i=0}^{k-1} s_i$
 - If $\Delta_k > m + {k \choose 2}$, then the degree sequence can be eliminated (generalization of prior theorem)
- Check all remaining (theoretically possible) degree sequence

Note: Still working on last step

- Graph Generation
- 2 Examples
- Other Techniques
- Projective Planes

Projective Planes

What are they?
Why are they useful?

Graph Generation Examples Other Techniques Projective Planes

Readings

Questions

Questions?