Low-Resources Machine Translation IFT 6579 - Project 02 - Team 01

Chih-Chao. Carolyne. Akshay. Yifan. Ying

Introduction

- Traditional approaches(MLP) use phrase-based methods
- Our task: Build Neural Machine Translation (NMT)
 Create a French target sentence from an English source automatically. Take entire sequence to incorporate contextual information.
- Data organized in pairs of sentences for training, matched casing/punctuation:

"Hello!" --> "Bonjour!"

Data Sources

1. 11K Aligned Parallel Examples:

English mostly unpunctuated/lower-cased, French properly formatted. Both tokenized.

2. 474K Unaligned Monolingual Examples:

Both properly formatted but untokenized.

Major Challenges

- 1. Low availability of aligned, parallel examples: Only 11k
- 2. Source English texts lacks formatting: uncapitalized, mostly unpunctuated
- 3. Massive amount of monolingual examples available but unaligned

Metric

- BiLingual Evaluation Understudy (BLEU) score
- sacreBLEU a standardized implementation
 - Produces official WMT score
 - Standardizes tokenization handling
 - Computes BLEU
 - Outputs detokenized results
 - Downloads and manages of test sets.

- Word/Subword/Characters Tokens
 - Sentence lengths, vocab size, out-of-vocab(OOV): computational efforts performance tradeoffs
- Exploratory Analysis:
 - Use given SpaCy tokenizer and punctuation remover
 - Word based unique tokens
 - OOV: non-alphabet words (~1.6-1.7% total word count (WC))

	WC	Vocab Size
Unaligned EN	8820344	57293
Aligned EN	205361	13657
Unaligned FR	9746232	80769
Aligned FR	227856	18222

Usable Vocab Size:

- Speed/Performance Tradeoff
- Log-10 transformation WC

Sentence Length:

- Embedding sizes
- Language and dataset alignments

FR/EN (mean/std/max):

- Unaligned: 20.56/10.82/224 | Aligned: 20.71/10.91/105
- o Unaligned: 18.61/9.76/180 | Aligned: 18.61/9.76/95

Pipeline

- Data Pre-processing
- Word Embeddings
- Seq2Seq Model (GRUs and Transformers)
- Back Translation

Data Pre-Processing

A vocab size of 20000 was selected for both English and French based on Data Analysis

- For all data in both French and English
 - stripped each sentence of leading and trailing whitespace
 - added <start> and <end> tokens
- For the unaligned English data
 - lowercase the sentences
 - o remove everything except for letters.
- For the unaligned French data
 - o add space between the punctuation
- 80/20 split train/validation

Word Embeddings

Pre-trained Word2Vec on English and

French unaligned text (CBOW)

Vocabulary size of 20K

Embedding Dimension: 256

Pre-trained **roBERTa** on English unaligned text (masked language modeling task)

6 layers

512/128 max sequence length

52K/20K vocabulary size

10 epochs, batch size of 64 (16 for finetune)

Seq-Seq GRUs with Attention

Adam optimizer with learning rate= 0.001, β_1 = 0.9, β_2 = 0.999, ϵ = 10⁻⁷

Categorical Cross-Entropy loss between labels (gold French word) and predictions (French translated word from model)

512 hidden size

20 epochs, batch size of 64

Seq-Seq with Transformers

Adam optimizer with a custom learning r schedule

Categorical Cross-Entropy loss

1024 hidden size

256 embedding dim

4 hidden layers for both encoder/decode

Batch size of 64

$$Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = softmax(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{n}})\mathbf{V}$$

$$Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = softmax(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{n}})\mathbf{V}$$

Back Translation

Iterative Back Translation

Results

	100 St. Call (00)	ACTION OF CONTACTOR CONTACTOR	GOODEN MEG.	90.000
ID	Models	Embedding-Size	Ratio	Bleu
01	GRU	Glorot-100	- s	2.68
02	GRU	W2V-256	-	3.40
03	GRU	roBERTa_FE-768	-	0.72
04	GRU	roBERTa_FE-252	-	1.80
05	GRU	roBERTa_FT-252	-	2.40
06	T_S	-	-	7.20
07	T_M	-	E 3	7.48
08	T_S	W2V	₩	8.38
09	T_{M}	W2V	=:	8.40
10	T_M	roBERTa_FE	=.:	6.70
11	T_L	roBERTa_FE	- 9	3.32
12	T_S	W2V	BackTrans - 1:1	10.56
13	T_S	W2V	BackTrans - 1:4	11.47
13	T_S	W2V	BackTrans - 1:8	12.03
14	T_S	W2V	Re-BackTrans - 1:8	13.05
15	T_M	W2V	BackTrans - 1:1	10.64
16	T_{M}	W2V	BackTrans - 1:4	11.78
16	T_{M}	W2V	BackTrans - 1:8	12.13
17	T_{M}	W2V	Re-BackTrans - 1:8	13.70

Results

Results

Conclusion

- We investigated performance of a English to French NMT system using models with differing architectures like GRUs with attentions and transformer models.
- Low availability of aligned examples requires us to utilize unaligned data with large amount of back-translated synthetic data to increase training size, thus improving scores.
- Despite low quality, the model learns to construct sentences well and produced plausible results.
- We also showed while translation performance improves with additional synthetic data, performance tends to saturate when balanced is tipped too far in favour of synthetic data.
- Iterative back-translation was also explored where system improved with quality of synthetic data.

Future Work

- Beam Search decoder would be preferred over Greedy, and this is especially useful when we
 have synthetic samples in the training data.
- A multi-task system could be useful where BERT is trained on masked modelling and simultaneously improved by joining it with a decoder for translation task.
- We could also experiment with adding and fine tuning roBERTa in the decoder of GRU Seq2Seq model.
- We could explore various other tokenizers such as byte-processed ones to better handle OOV words.

Questions?