Topic V05

Binary Representation of Instructions

Representing Instructions

Instructions are encoded in a binary representation Called machine code

RISC-V instructions

Encoded as 32-bit instruction words
Small number of formats encoding operation code (opcode),

register number, ...

Regularity!

Register Names:

$$t0-t2 \iff x5-x7$$

$$t3-t6 \Leftrightarrow x28-x31$$

$$s0-s1 \Leftrightarrow x8-x9$$

$$s2 - s11 \Leftrightarrow x18 - x27$$

Representing Instructions: R-Type

Hexadecimal Representation :

0x015B82B3

op: **Opcode** to specify the operation and format of an instruction

funct7: **function code** specifies the variant of the instruction to be executed

funct3: function code; partially, specifies the variant of the instruction to be executed

rd: register destination operand

rs1: first **register source** operand

rs2: second **register source** operand

Organization of a Computer

Representing Instructions: I-Type

```
x19
lw t0, 23(s3)
                    # t0 \leftarrow Memory[s3 + 23]
      immediate
                                  func3
                                            rd
                           rs1
                                                         op
                                             5
          23
                           19
                                                       0x03
                                   0x2
                                   14 12
31
                     20
                       19
                                15
                                        11
                                                 7 6
    00000010111
                          10011
                                   010
                                           00101
                                                      0000011
```

Hexadecimal Representation: 0x0179A283

Representing Instructions: S-Type

```
x6
       x5
   sw t0, 1200(t1)
                          # Memory[t1 + 1200] ← t0
                                            imm[4:0]
    imm[11:5]
                                     func3
                   rs2
                              rs1
                                                           op
        37
                               6
                                      0x2
                                               16
                                                          0x23
                                     14 12 11
   31
             25
               24
                        20
                          19
                                  15
                                                    7 6
     0100101
                  00101
                             00110
                                                         0100011
                                      010
                                              10000
Hexadecimal Representation: 0x4A532823
                                                1200 →
```

Representing Instructions: U-Type

```
      lui
      x5

      lui
      t0, 0x0F008
      # R[rd] = {imm, 12'b0}

      immediate[31:12]
      rd op

      0x0F008
      5
      0x37

      31
      12 11 7 6 0
      0

      0000 1111 0000 0000 1000
      00101 01101111
```

Hexadecimal Representation: 0x0F0082B7

This far we learned

In memory as a 32-bit hexadecimal

Instructions for Making Decisions

Instructions for Making Decisions

```
C code
  if (i == j)
     f = g + h;
  else
     f = g - h;
```

Assumption

```
f \leftrightarrow s0
g \leftrightarrow s1
h \leftrightarrow s2
i \leftrightarrow s3
j \leftrightarrow s4
```

RISC-V assembly

```
bne s3, s4, Subtract add s0, s1, s2 jal zero, Exit Subtract: sub s0, s1, s2 Exit: ...
```

```
# if i ≠ j goto Subtract
# f ← g + h
# goto Exit
# f ← g - h
```

Branch Instructions: SB-Type

Memory Address

```
# if i ≠ j goto Subtr We want to
0x1000 0000
                    bne
                           s3, s4, Subtr
                                                # f \leftarrow g + h
                           s0, s1, s2
                                                                        jump to a label
0x1000 0004
                    add
0x1000 0008
                    jal
                          zero, Exit
                                                # goto Exit
                                                                        12 bytes away
                                                # f \leftarrow g - h
                          s0, s1, s2
0x1000 000C Subtr: sub
0x1000 0010 Exit:
        bne s3, s4, 12
                                  if(R[rs1] \neq R[rs2]) PC \leftarrow PC + {imm, 1b'0}
                                  else PC \leftarrow PC + 4
                                             func3 imm[4:1|11]
    imm[12|10:5]
                        rs2
                                     rs1
                                                                       op
                             20 19
                                          15 14 12 11
    31
                25 24
```

Branch Instructions: SB-Type

Memory Address

```
0x1000 0000
                       bne
                              s3, s4, Subtr
                                             # if i ≠ j goto Subtr We want to
                                                   # f ← g + h
                                                                           jump to a label
  0x1000 0004
                              s0, s1, s2
                       add
  0x1000 0008
                       jal
                             zero, Exit
                                                   # goto Exit
                                                                            12 bytes away
                                                # f ← g - h
                            s0, s1, s2
  0x1000 000C Subtr: sub
  0x1000 0010 Exit:
                                    if(R[rs1] \neq R[rs2]) PC \leftarrow PC + {imm, 1b'0}
           bne s3, s4, 12
                                    else PC \leftarrow PC + 4
       imm[12|10:5]
                                                func3 imm[4:1|11]
                          rs2
                                        rs1
                                                                           op
                  25 24
                               20 19
                                             15
                                                14 12 11
       31
           0 0000 0000 1100
                                      What is 12 expressed in 13 bit signed binary?
               11
                     10:5
                              4:1
                          | 0110 | 0
                                       Bit 0 is always zero and does not need representation
                   000000
         0000 0000 0000 0000 1100 Immediate is sign-extended to 32 bits
              0000 0000 0000 0000 0000
0001 0000 0000 0000 0000 0000 1100 → New PC
```

Branch Instructions: SB-Type

```
x19 x20
Memory Address
                         s3, s4, Subtr # if i ≠ j goto Subtr
0x1000 0000
                   bne
                                            # f \leftarrow g + h
                         s0, s1, s2
0x1000 0004
                   add
0x1000 0008
                   jal
                        zero, Exit
                                             # goto Exit
                                         # f ← g - h
                        s0, s1, s2
0x1000 000C Subtr: sub
0x1000 0010 Exit:
                               if(R[rs1] \neq R[rs2]) PC \leftarrow PC + {imm, 1b'0}
        bne s3, s4, 12
                               else PC \leftarrow PC + 4
                                          func3 imm[4:1|11]
    imm[12|10:5]
                      rs2
                                  rs1
                                                                  op
       0x6 0
                      20
                                  19
                                                                 0x63
                                           0x1
                           20 19
                                       15 14 12 11
              25 24
                                                                         0
    31
      0000000
                    10100
                                                   01100
                                                               1100011
                                10011
                                           001
```

Hexadecimal Representation:

0x01499663

Branch recap

• 0x1000 0000	bne	s3, s4, Subtr
---------------	-----	---------------

• 0x1000 0004 add s0, s1, s2/

• 0x1000 0008 jal zero, Exit

• 0x1000 000C Subtr: sub s0, s1, s2

• 0x1000 0010 Exit:

```
# if i \neq j goto Subtr

# f \leftarrow g + h

# goto Exit

# f \leftarrow g - h
```

Labels appear in the assembly program, but not in the binary representation

Branch recap

Immediate is sign-extended to 32-bits.

Immediate is negative for backward branches.

s3, s4, Subtr

if i ≠ j goto Subtr

s0, s1, s2

$$\# f \leftarrow g + h$$

• 0x1000 0008

jal

zero, Exit

goto Exit

• 0x1000 000C Subtr:

sub

s0, s1, s2

 $\# f \leftarrow g - h$

• 0x1000 0010 Exit:

...

	imm[12 10:5]	rs2	rs1	func3	imm[4:1 11]	ор
	0 0x00	20	19	0x1	0x6 0	0x63
	31 25	24 20	19 15	14 12	11 / 7	6 0
	0000000	10100	10011	001	91100	1100011
•						
					/	

Immediate field has the distance between the branch and its target

Example

A 32-bit RISC-V processor fetched an instruction whose hexadecimal representation is:

0xFE0008E3

From the address 0x00400010

What is the address of the next instruction that will be executed?

Instruction binary in hexadecimal:

0xFE0008E3

1111 1110 0000 0000 0000 1000 1110 0011

OpCode

PSEUDO INSTRUCTIONS 3 MNEMONIC DESCRIPTION USES NAME if(R[rs1]==0) PC=PC+{imm,1b'0} beaz Branch = zero beg if(R[rs1]!=0) PC=PC+{imm,1b'0} bnez Branch ≠ zero fabs.s, fabs.d Absolute Value F[rd] = (F[rs1] < 0) ? -F[rs1] : F[rs1]fsqnx fmv.s,fmv.d fsani FP Move F[rd] = F[rs1]fneg.s, fneg.d FP negate F[rd] = -F[rs1]fsgnjr $PC = \{imm, 1b'0\}$ jal Jump register PC = R[rs1]ialr Load address R[rd] = address auipc Load imm R[rd] = immaddi R[rd] = R[rs1]addi R[rd] = -R[rs1]sub Negate No operation addi not $R[rd] = \sim R[rs1]$ xori Return PC = R[1]jalr R[rd] = (R[rs1] == 0) ? 1 : 0sltiu seqz Set = zeroR[rd] = (R[rs1]! = 0) ? 1 : 0Set ≠ zero sltu OPCODES IN NUMERICAL ORDER BY OPCODE MNEMONIC OPCODE FUNCT3 FUNCT7 OR IMM HEXADECIMAL 0000011 0000011 001 03/1 0000011 010 03/2 0000011 100 03/4 0000011 101 03/5 fence 0001111 0F/0 001 OF/1 fence.i 0001111 addi 0010011 000 13/0 0000000 slli 001 13/1/00 0010011 slti 0010011 010 13/2 13/3 011 sltiu 0010011 xori 0010011 100 13/4 101 0000000 0010011 13/5/00 srli srai 0010011 101 0100000 13/5/20 110 ori 0010011 13/6 andi 0010011 111 13/7 auipc 0010111 17 0100011 000 23/0 0100011 001 23/1 0100011 010 23/2 33/0/00 0110011 sub 0110011 000 0100000 33/0/20 sll 0110011 001 0000000 33/1/00 0000000 33/2/00 slt 0110011 010 0000000 33/3/00 sltu 0110011 011 xor 0110011 100 0000000 33/4/00 0110011 101 0000000 33/5/00 srl 101 0100000 33/5/20 sra 0110011 or 0110011 110 0000000 33/6/00 and 011001 111 0000000 33/7/00 0110111 37 1100011 1100011 001 63/1 blt 1100011 63/4 101 1100011 63/5 bge bltu 1100011 110 63/6 1100011 111 63/7 bgeu 1100111 000 67/0 jalr 1101111 6F ial Ш 000 00000000000 73/0/000 ecall 1110011 000 0000000000001 73/0/001 ebreak 1110011 001 CSRRW 1110011 73/1 CSRRS 1110011 010 73/2

011

101

110

111

1110011

1110011

1110011

1110011

li

lw

CSRRC

CSRRWT

CSRRSI

CSRRCI

GISTER NAME	, USE, CALLI	NG CONVENTION	4
REGISTER	NAME	USE	SAVER
ж0	zero	The constant value 0	N.A.
×1	ra	Return address	Caller
x2	sp	Stack pointer	Callee
ж3	gp	Global pointer	
×4	tp	Thread pointer	
x5-x7	t0-t2	Temporaries	Caller
x8	s0/fp	Saved register/Frame pointer	Callee
x9	s1	Saved register	Callee
x10-x11	a0-a1	Function arguments/Return values	Caller
x12-x17	a2-a7	Function arguments	Caller
x18-x27	s2-s11	Saved registers	Callee
x28-x31	t3-t6	Temporaries	Caller

FP Temporaries

FP Saved registers

FP Saved registers

FP Function arguments

R[rd] = R[rs1] + R[rs2]

FP Function arguments/Return values

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^{S} \times (1 + Fraction) \times 2^{(Exp)}$

f0-f7

f8-f9

f10-f11

f12-f17

f18-f27

f28-f31

where Half-Precision Bias = 15, Single-Precision Bias = 127, Double-Precision Bias = 1023, Quad-Precision Bias = 16383

ft0-ft7

fs0-fs1

fa0-fa1

fa2-fa7

fs2-fs11

ft8-ft11

IEEE Half-, Single-, Double-, and Quad-Precision Formats:

s	Exp	ponent	Fra	ction			
5	14	10	9		0		
3		Exponen	t		Fraction		
31	30		23	22		0	
S		Expon	ent		Fraction		
3	62			52 51			
S		Ex	ponen	t	Frac	ction	
27	126			1	12 111		

SIZE PREFIXES AND SYMBOLS

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
1000¹	Kilo-	K	210	Kibi-	Ki
1000 ²	Mega-	M	220	Mebi-	Mi
1000 ³	Giga-	G	230	Gibi-	Gi
1000 ⁴	Tera-	T	240	Tebi-	Ti
10005	Peta-	P	250	Pebi-	Pi
1000 ⁶	Exa-	E	260	Exbi-	Ei
1000 ⁷	Zetta-	Z	270	Zebi-	Zi
1000 ⁸	Yotta-	Y	2*0	Yobi-	Yi
10009	Ronna-	R	290	Robi-	Ri
1000 10	Quecca-	Q	2100	Quebi-	Qi
1000-1	milli-	m	1000-5	femto-	f
1000-2	micro-	μ	1000-6	atto-	a
1000-3	nano-	n	1000-7	zepto-	z
1000-4	pico-	р	1000-8	yocto-	у
			1000-9	ronto-	r
			1000-10	quecto-	q

OpCode **1100011**

4) together

(columns

Fold bottom side

12

card

separate of

2

along perforation

1. Pull

Card")

"Green

Data Card

Reference

Caller

Callee

Caller

Caller

Callee

Caller

© 2021 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition

73/3

73/5

73/6

73/7

OPCODES IN NUMERICAL ORDER BY OPCODE MNEMONIC FMT OPCODE FUNCT3 FUNCT7 OR IMM HEXADE lb I 0000011 000 03/ lh I 0000011 001 03/ lw I 0000011 010 03/ lbu I 0000011 100 03/ lhu I 0000011 101 03/ fence I 0001111 000 0F/ fence.i I 0001111 001 0F/ additional contents I 0010111 000 0F/	0
1b I 0000011 000 03/ 1h I 0000011 001 03/ 1w I 0000011 010 03/ 1bu I 0000011 100 03/ 1hu I 0000011 101 03/ fence I 0001111 000 0F/ fence.i I 0001111 001 0F/	0
1h I 0000011 001 03/ 1w I 0000011 010 03/ 1bu I 0000011 100 03/ 1hu I 0000011 101 03/ fence I 0001111 000 0F/ fence.i I 0001111 001 0F/	1
lw I 0000011 010 03/ lbu I 0000011 100 03/ lhu I 0000011 101 03/ fence I 0001111 000 0F/ fence.i I 0001111 001 0F/	
lbu I 0000011 100 03/ lhu I 0000011 101 003/ fence I 0001111 000 0F/ fence.i I 0001111 001 0F/	2
1hu I 0000011 101 03/ fence I 0001111 000 0F/ fence.i I 0001111 001 0F/	
1hu I 0000011 101 03/ fence I 0001111 000 0F/ fence.i I 0001111 001 0F/	4
fence.i I 0001111 001 0F/	5
fence.i I 0001111 001 0F/	
•	0
-44: * 0010011 000	1
addi I 0010011 000 13/	0
slli I 0010011 001 0000000 13/1	/00
slti I 0010011 010 13/	
sltiu I 0010011 011 13/	
xori I 0010011 100 13/	_
srli I 0010011 101 0000000 13/5	
srai I 0010011 101 0100000 13/5	
ori I 0010011 110 13/	
andi I 0010011 111 13/	
auipc U 0010111 17	
sb S 0100011 000 23/	0
sh S 0100011 001 23/	1
sw S 0100011 010 23/	2
	/00
add R 0110011 000 0000000 33/0, sub R 0110011 000 0100000 33/0.	
K	
sl1 R 0110011 001 0000000 33/1 slt R 0110011 010 0000000 33/2	
slt R 0110011 010 0000000 33/2 sltu R 0110011 011 0000000 33/3	
xor R 0110011 100 0000000 33/4	
srl R 0110011 101 0000000 334	
sra R 0110011 101 0100000 33/5	
or R 0110011 110 0000000 33/6	
and R 0110011 111 0000000 33/7	
lui U 0110111 37	
beq SB 1100011 000 63/	0
bne SB 1100011 001 63/	
blt SB 1100011 100 63/	
bge SB 1100011 101 63/	
bltu SB 1100011 110 63/	-
bgeu SB 1100011 111 63/	
jalr I 1100111 000 67/	
jal UJ 1101111 6F	
ecall I 1110011 000 00000000000 73/0/	
ebreak I 1110011 000 00000000001 73/0/	
CSRRW I 1110011 001 73/	
CSRRS I 1110011 010 73/	
CSRRC I 1110011 011 73/ CSRRWI I 1110011 101 73/	
-	
CSRRSI I 1110011 110 73/	

f12-f17	fa2-fa7	FP Function arguments	Caller
f18-f27	fs2-fs11	FP Saved registers	Callee
f28-f31	ft8-ft11	R[rd] = R[rs1] + R[rs2]	Caller

IEEE 754 FLOATING-POINT STANDARD $(-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

where Half-Precision Bias = 15, Single-Precision Bias = 127, Double-Precision Bias = 1023, Quad-Precision Bias = 16383

IEEE Half-, Single-, Double-, and Quad-Precision Formats:

S	Ex	ponent	Frac	ction				
15	14	10	9		0			
S		Exponent]	Fraction		
31	30		23	22			0	
S		Expone	nt			Fraction		
63	62			52 5	1			0
S		Exponent				Fract	ion	
127	126				112	111		

SIZE PREFIXES AND SYMBOLS

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
1000¹	Kilo-	K	210	Kibi-	Ki
1000 ²	Mega-	M	2 ²⁰	Mebi-	Mi
1000³	Giga-	G	2 ³⁰	Gibi-	Gi
1000 ⁴	Tera-	T	2 ⁴⁰	Tebi-	Ti
10005	Peta-	P	250	Pebi-	Pi
1000 ⁶	Exa-	E	2 ⁶⁰	Exbi-	Ei
1000 ⁷	Zetta-	Z	270	Zebi-	Zi
1000 ⁸	Yotta-	Y	2 ⁸⁰	Yobi-	Yi
1000°	Ronna-	R	290	Robi-	Ri
1000 10	Quecca-	Q	2100	Quebi-	Qi
1000-1	milli-	m	1000-5	femto-	f
1000-2	micro-	μ	1000 ⁻⁶	atto-	a
1000-3	nano-	n	1000-7	zepto-	z
1000-4	pico-	р	1000-8	yocto-	у
			1000-9	ronto-	r
			1000-10	quecto-	q

OpCode **1100011**

__ _ _ _ _ _ _ 2. Fold bottom sid

card

Pull along perforation to separate

Data Card ("Green Card")

OpCode **1100011**

F	0	r	m	a	t:	S	B
	U			d	ι.	3	

beq	SB	1100011	000		63/0
bne	SB	1100011	001		63/1
blt	SB	1100011	100		63/4
bge	SB	1100011	101		63/5
bltu	SB	1100011	110		63/6
bgeu	SB	1100011	111		63/7
jalr	I	1100111	000		67/0
jal	UJ	1101111			6F
ecall	I	1110011	000	00000000000	73/0/000
ebreak	I	1110011	000	00000000001	73/0/001
CSRRW	I	1110011	001		73/1
CSRRS	I	1110011	010		73/2
CSRRC	Ι	1110011	011		73/3
CSRRWI	I	1110011	101		73/5
CSRRSI	I	1110011	110		73/6
CSRRCI	I	1110011	111		73/7

	1
	1
280	1
1	I
	1
2	1
	1
TIO,	1
٥	1
nic i	1
	1
JIG DOCKOIII	1
DIO.	I
7	1
,	1
Cal	I
arc	I
, Ta	1
2	I
	Ţ
Ian	!
	I
S P	I
	1
Ī	I I
1:1	
	I
3	I I
2	i
cell calu	i
5	i
n (Ole	i
alu	i
2	i
2	i
Neich einer Data Can	i
	i
	i
•	i
	i

			7	Œ	ARITHMETIC CO	DRE IN	STRUCTION SET				2
<∕/	ㄷ	ISC-V	Reference 1	Data	RV64M Multiply Ex	tension					
Vani DA	E INTE	GER INSTRUCTIONS, in al	Teres enece i	Data	MNEMONIC		NAME		DESCRIPTION		NOT
MNEMON			DESCRIPTION (in Verilog)	NOTE	mul	R	MULtiply		R[rd] = (R[rs1] * F		
dd		ADD	R[rd] = R[rs1] + R[rs2]	NOIE	mulh	R	MULtiply High		R[rd] = (R[rs1] * F		
ddi	I	ADD Immediate	R[rd] = R[rs1] + R[rs2] $R[rd] = R[rs1] + imm$		mulhsu	R	MULtiply High Unsigned		R[rd] = (R[rs1] * F		2
nd	R	AND			mulhu	R	MULtiply upper Half Unsigned	F	R[rd] = (R[rs1] * F	R[rs2])(127:64)	6
ndi	I	AND Immediate	R[rd] = R[rs1] & R[rs2]		div	R	DIVide	1	R[rd] = (R[rs1] / R	(rs21)	
uipc			R[rd] = R[rs1] & imm		divu	R	DIVide Unsigned		R[rd] = (R[rs1] / R		2
	U	Add Upper Immediate to PC	R[rd] = PC + {imm, 12'b0}		rem	R	REMainder		R[rd] = (R[rs1] %		
eq	SB	Branch EQual	if(R[rs1]==R[rs2) PC=PC+{imm,1b'0}		remu	R	REMainder Unsigned		R[rd] = (R[rs1] %		2
ge	SB	Branch Greater than or Equal			RV64F and RV64D I				diel (idiai) w	re(102)	
ge	35	Branch Greater than or Equal	PC=PC+{imm,1b'0}		fld, flw	rioating-	Load (Word)		[rd] = M[R[rs1]+	imm]	
geu	SB	Branch ≥ Unsigned	if(R[rs1]>=R[rs2)	2)	fsd, fsw	S	Store (Word)		4[R[rs1]+imm] =		
	0.0	Diamen _ Chaighte	PC=PC+{imm,1b'0}	-/	fadd.s,fadd.d	R	ADD		[rd] = F[rs1] + F[-
lt	SB	Branch Less Than	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td></td><td>fsub.s,fsub.d</td><td>R</td><td>SUBtract</td><td></td><td>[rd] = F[rs1] - F[</td><td></td><td>,</td></r[rs2)>		fsub.s,fsub.d	R	SUBtract		[rd] = F[rs1] - F[,
ltu	SB	Branch Less Than Unsigned	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td>2)</td><td></td><td></td><td>MULtiply</td><td></td><td></td><td>2007.0</td><td></td></r[rs2)>	2)			MULtiply			2007.0	
ne	SB	Branch Not Equal	if(R[rs1]!=R[rs2) PC=PC+{imm,1b'0}		fmul.s,fmul.d fdiv.s,fdiv.d	R	DIVide		F[rd] = F[rs1] * F[r F[rd] = F[rs1] / F[r		
srrc	I	Cont./Stat.RegRead&Clear	R[rd] = CSR;CSR = CSR & ~R[rs1]		The second control of	R					7
srrci	ī	Cont./Stat.RegRead&Clear	R[rd] = CSR;CSR = CSR & ~imm		fsqrt.s,fsqrt.d	R	SQuare RooT		[rd] = sqrt(F[rs1]		7
		Imm	rqraj - corqeor - corca - mini		fmadd.s,fmadd.d	R	Multiply-ADD		[rd] = F[rs1] * F[7
srrs	I	Cont./Stat.RegRead&Set	$R[rd] = CSR; CSR = CSR \mid R[rs1]$		fmsub.s,fmsub.d	R	Multiply-SUBtract		[rd] = F[rs1] * F[7
srrsi	ī	Cont./Stat.RegRead&Set	R[rd] = CSR; CSR = CSR imm		fmnsub.s,fmnsub.c	1000	Negative Multiply-ADD		$F[rd] = -(F[rs1] \bullet)$		7
		Imm	Kiraj – cok, cok – cok mini		fmnadd.s,fmnadd.d	d R	Negative Multiply-SUBtr		[rd] = -(F[rs1] *)		7
srrw	I	Cont./Stat.RegRead&Write	R[rd] = CSR; CSR = R[rs1]		fsgnj.s,fsgnj.d	R	SiGN source	F	$F[rd] = \{ F[rs2] < 6 \}$	3>,F[rs1]<62:0>}	7
srrwi	i	Cont./Stat.Reg Read&Write	R[rd] = CSR; CSR = imm		fsgnjn.s,fsgnjn.d	d R	Negative SiGN source	F	$F[rd] = \{ (\sim F[rs2] <$	63>), F[rs1]<62:0	-} 7
		Imm	Kirdj – CSK, CSK – mini		fsgnjx.s,fsgnjx.d	d R	Xor SiGN source	F	[rd] = {F[rs2]<63	>^F[rs1]<63>,	7
break	I	Environment BREAK	Transfer control to debugger				MINimum		[rs1]<62:0>}	r - 20 0 FF - 13	1/2
call	ī	Environment CALL	Transfer control to operating system		fmin.s,fmin.d	R	MINIMUM	I	F[rd] = (F[rs1] < F F[rs2]	[rs2]) ? F[rs1]:	7
ence	ī	Synch thread	Synchronizes threads		fmax.s, fmax.d	R	MAXimum	F	[rd] = (F[rs1] > F	[rs2]) ? F[rs1] :	7
ence.i	ī	Synch Instr & Data	Synchronizes writes to instruction					F	[rs2]		
0110012		Sylich histi & Data	stream		feq.s,feq.d	R	Compare Float EQual		R[rd] = (F[rs1]==)		7
al	UJ	Jump & Link	$R[rd] = PC+4$; $PC = PC + \{imm, 1b'0\}$		flt.s,flt.d	R	Compare Float Less Than		R[rd] = (F[rs1] < F		7
alr	1	Jump & Link Register	R[rd] = PC+4; $PC = R[rs1]+imm$		fle.s,fle.d	R	Compare Float Less than		R[rd] = (F[rs1] <= 1		7
b	1	Load Byte	R[rd] =	21	fclass.s,fclass.c	d R	Classify Type	F	R[rd] = class(F[rs1])	D	7,8
	1	Load Byte	{24'bM[](7),M[R[rs1]+imm](7:0)}	3)	fmv.s.x,fmv.d.x	R	Move from Integer	F	F[rd] = R[rs1]		7
bu	1	Load Byte Unsigned	$R[rd] = \{24b0,M[R[rs1]+imm](7:0)\}$	4)	fmv.x.s,fmv.x.d	R	Move to Integer	F	R[rd] = F[rs1]		7
h	1	Load Halfword	$R[rd] = \{2400, W[K[rs1] + Hillin](7.0)\}$		fcvt.d.s	R	Convert from SP to DP	F	[rd] = single(F[rs	1])	
	1	Load Hallword	{16'bM[](15),M[R[rs1]+imm](15:0)}		fcvt.s.d	R	Convert from DP to SP	F	[rd] = double(F[r	s1])	
hu	1	Load Halfword Unsigned	$R[rd] = \{16'b0,M[R[rs1]+imm](15:0)\}$	4)	fcvt.s.w,fcvt.d.v	w R	Convert from 32b Integer	. 1	[rd] = float(R[rs1](31:0))	7
ui	U	Load Upper Immediate	$R[rd] = \{imm, 12'b0\}$	4)	fcvt.s.l,fcvt.d.l		Convert from 64b Integer	F	[rd] = float(R[rs1](63:0))	7
w	-	**			fcvt.s.wu, fcvt.d.		Convert from 32b Int Unsigned		[rd] = float(R[rs1		2,7
r	I R	Load Word	$R[rd] = \{M[R[rs1]+imm](31:0)\}$		fcvt.s.lu, fcvt.d.		Unsigned Convert from 64h Int		[rd] = float(R[rs1		2,7
		OR	$R[rd] = R[rs1] \mid R[rs2]$	4)	fcvt.w.s.fcvt.w.o		Convert from 64b Int Unsigned Convert to 32b Integer		R[rd](31:0) = integ		7
ri	I	OR Immediate	$R[rd] = R[rs1] \mid imm$		fcvt.l.s,fcvt.l.d		Convert to 52b Integer		R[rd](63:0) = integ		7
b	S	Store Byte	M[R[rs1]+imm](7:0) = R[rs2](7:0)		fcvt.wu.s,fcvt.wu		Convert to 32b Int Unsign		R[rd](31:0) = integ		2,7
h	S	Store Halfword	M[R[rs1]+imm](15:0) = R[rs2](15:0)		fcvt.lu.s,fcvt.lu		Convert to 64b Int Unsign		R[rd](63:0) = integ		
11	R	Shift Left	R[rd] = R[rs1] << R[rs2]				Convert to 640 Int Onsign	neu r	(traj(63:0) – integ	ger(F[IS1])	2,7
111	I	Shift Left Immediate	$R[rd] = R[rs1] \ll imm$		RV64A Atomic Exte						
lt	R	Set Less Than	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0		amoadd.w,amoadd.d	d R	ADD	F	R[rd] = M[R[rs1]], M[R[rs1]] = M[R[r		9
lti	I	Set Less Than Immediate	R[rd] = (R[rs1] < imm) ? 1 : 0		amoand.w,amoand.d	d D	AND		M[R[rs1]] = M[R[rs1]]	rs1]] + R[rs2]	9
ltiu	I	Set < Immediate Unsigned	R[rd] = (R[rs1] < imm) ? 1 : 0		amound.w/amound.c			ĵ	R[rd] = M[R[rs1]], M[R[rs1]] = M[R[r R[rd] = M[R[rs1]],	rs1]] & R[rs2]	,
ltu	R	Set Less Than Unsigned	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0		amomax.w,amomax.c	d R	MAXimum	F	R[rd] = M[R[rs1]],		. 9
ra	R	Shift Right Arithmetic	R[rd] = R[rs1] >> R[rs2]		amomaxu.w,amomaxu.	d P	MAXimum Unsigned	1	R[rd] = M[R[rs1]],]]) M[R[rs1]] = R[rs	2,9
rai	I	Shift Right Arith Imm	R[rd] = R[rs1] >> imm	2)				ì	f(R[rs2] > M[R[rs1]]]) M[R[rs1]] = R[rs	2]
rl	R	Shift Right (Word)	R[rd] = R[rs1] >> R[rs2]	2)	amomin.w,amomin.c	d R	MINimum	ŀ	R[rd] = M[R[rs1]], R[re1] < M[R[rs1]],]]) M[R[rs1]] = R[rs	9
rli	I	Shift Right Immediate	R[rd] = R[rs1] >> imm	5)	amominu.w, amominu.	d R	MINimum Unsigned	F	R[rd] = M[R[rs1]]		2.9
ub, subw	R	SUBtract (Word)	R[rd] = R[rs1] - R[rs2]	5)	amoor.w,amoor.d		OR	ì	f (R[rs2] < M[R[rs1 R[rd] = M[R[rs1]],]]) M[R[rs1]] = R[rs	2]
w	S	Store Word	M[R[rs1]+imm](31:0) = R[rs2](31:0)		amoor.w,amoor.d	R	OK	,	([R[rs1]] = M[R[rs1]], M[R[rs1]] = M[R[r	rs111 R[rs21	9
or	-	XOR	$R[rd] = R[rs1] ^ R[rs2]$		amoswap.w,amoswap.		SWAP	F	R[rd] = M[R[rs1]],	M[R[rs1]] = R[rs]	9
ori		XOR Immediate	R[rd] = R[rs1] ^ imm		amoxor.w,amoxor.c	d R	XOR	- F	R[rd] = M[R[rs1]], M[R[rs1]] = M[R[133 A Dr - 23	9
		assumes unsigned integers (in			lr.w,lr.d	D	Load Reserved	í	R[rd] = M[R[rs1]]	etii^k[rs2]	
		significant bit of the branch ad						r	eservation on M[F	R[rs1]]	
			n bit of data to fill the 32-bit register		sc.w,sc.d	R	Store Conditional	i	f reserved, M[R[rs R[rd] = 0; else R[rs	s1jj = R[rs2], d) = 1	
			ost bits of the result during right shift				Conchional		deal of else Kill	-, .	
		vith one operand signed and or			CORE INSTRUCT	TION FO	ORMATS				
			on operation using the rightmost 32 bits	of a 64-	31 2			15	14 12	11 7	6 0
	bit F regis		nich properties are true (e.g., -inf, -0,+0,	+ luf	R funct			rs1	funct3	rd	Opcode
"/	Janasijy W	rues a 10-bit mask to show wh	nen properties are true (e.g., -inj, -0, 40,	, · iry,	- Tune		100		62		Operate

OpCode **1100011**

Format: SB

8) Atomic memory operation; nothing else can interpose itself between the read and the

write of the memory location
The immediate field is sign-extended in RISC-V

imm[11:0]

rs2

imm[31:12]

imm[20|10:1|11|19:12]

funct3

rs2 rs1 funct3 imm[4:1|11] opcode

imm[4:0] opcode

rd

imm[11:5]

imm[12|10:5]

Format: SB

OpCode

OpCode

1100011

Format: SB

OpCode

0xFE0008E3

Immediate: 1111 1111 1111 1

CORE INSTRUCTION FORMAT						s /								
	31	27	26	25	24	20	19	15	14	12	11	7	6	0
R	funct7					rs2		rs1		nct3	rd		Opcode	
I	imm[11:0]						rs	s1	fur	nct3	rd /		Opcode	
S	imm[11:5]				rs2		rs.		funct3		imm[4 :0]		opcod	le
SB	im	imm[12 10:5]			rs2		rs1		funct3		imm[4:1 11]		opcode	
U	imm[31:12]									rd		opcod	e	
UJ	imm[20 10:1 11 19:12]										rd		opcod	e

Example

A 32-bit RISC-V processor fetched an instruction whose hexadecimal representation is:

0xFE0008E3

From the address 0x00400010

What is the address of the next instruction that will be executed?

PC = 0x00400010

New PC = 0x00400000

PC = 0x00400010 + 0xFFFFFF0

New PC = 0x00400000

Example

A 32-bit RISC-V processor fetched an instruction whose hexadecimal representation is:

0xFE0008E3

From the address 0x00400010

What is the address of the next instruction that will be executed?

0x00400000

RISC-V does not have a separate jump instruction

Jump

Unconditional jump to an address

Longer range than a branch instruction

Jump-and-Link (jal)

It uses a jal for a common jump

Unconditional jump to first instruction of another function

Must record, in a register, the return address

But it 'records' the 'return address' in x0

```
void foo()
                    When making this call
 r = bar(a, b);
   = r + 2;
                        int bar(int x, int y)
                         return p;
```

Must remember this address

The jump-and-link instruction

jal ra, bar addi s1, a0, 2

The Constant Zero

RISC-V register zero (x0) is the constant 0

It is hard-wired and cannot be overwritten

```
Useful for common operations

E.g. moving between registers

add t2, s1, zero
```

```
E.g. setting a variable to 0 add s4, zero, zero
```

```
E.g. two ways to perform an unconditional jump beq zero, zero, LABEL jal zero, LABEL
```

Jump Instructions: UJ-Type

```
Memory Address
                   bne
                          s3, s4, Subtr
                                        # if i ≠ j goto Subtr
0x1000 0000
                                              # f \leftarrow g + h
0x1000 0004
                         s0, s1, s2
                   add
                  jal zero, Exit
0x1000 0008
                                              # goto Exit
                                          # f ← g - h
0x1000 000C Subtr: sub s0, s1, s2
0x1000 0010 Exit:
              jal zero, Exit \leftrightarrow R[rd] = PC + 4; PC = PC + {imm, 1b'0}
            immediate[20|10:1|11|19:12]
                                                      rd
                                                                    op
                  0 0 0 x 0 0 4 | 0 | 0 x 0 0
                                                       0
                                                                   0x6F
    31
                                               12 11
            0 | 0000000100 | 0 | 00000000
                                                    00000
                                                                 1101111
```

Hexadecimal Representation: 0x0080006F

Jump Instructions: UJ-Type

```
Memory Address
                           s3, s4, Subtr # if i ≠ j goto Subtr
                    bne
0x1000 0000
                                               # f \leftarrow g + h
                         s0, s1, s2
0x1000 0004
                    add
0x1000 0008 jal zero, Exit
                                               # goto Exit
                                           # f ← g - h
0x1000 000C Subtr: sub s0, s1, s2
0x1000 0010 Exit:
              jal zero, Exit \leftrightarrow R[rd] = PC + 4; PC = PC + {imm, 1b'0}
             immediate[20|10:1|11|19:12]
                                                       rd
                                               12 11
                                                                     op
    31
            0 | 0000000100 | 0 | 00000000
                                                      00000
                                                                  1101111
    Saving return address:
    PC
       \rightarrow 0x1000 0008
           \rightarrow + 0x0000 0004
    PC + 4 \leftarrow 0 \times 1000 \ 000C
                                                      zero
```

Jump Instructions: UJ-Type

```
Memory Address
0x1000 0000
                     bne
                            s3, s4, Subtr # if i ≠ j goto Subtr
                                                  # f \leftarrow g + h
                            s0, s1, s2
0x1000 0004
                     add
                jal zero, Exit
                                                  # goto Exit
0x1000 0008
                                               # f ← g - h
0x1000 000C Subtr: sub s0, s1, s2
0x1000 0010 Exit:
               jal zero, Exit \leftrightarrow R[rd] = PC + 4; PC = PC + {imm, 1b'0}
              immediate[20|10:1|11|19:12]
                                                           rd
                                                                          op
                                                   12 11
     31
             0 | 0000000100 | 0 | 00000000
                                                         00000
                                                                       1101111
                                                         Calculating immediate for jump:
                                             implicit bit 0
                0000 0000 0000 0000 1000
                                                         8 bytes to jump \rightarrow immediate is 8
                                                         What is 8 expressed in 21 bit signed binary?
0000 0000 0000 0000 0000 0000x0000 £0008
                                                         ← sign-extended (written as hex)
                             + 0×1000 0008
                                                         \leftarrow PC
```

← New PC

0x1000 0010

0x1000 0010 Exit: ...

21-bit immediate

Immediate is sign extended

Can jump back

Jump recap

Labels appear in the assembly program, but not in the binary representation

