ESc201: Introduction to Electronics

DC Power Supply

Dr. Y. S. Chauhan

Dept. of Electrical Engineering

IIT Kanpur

Half wave Rectifier circuit

220V rms

$$220V \times \sqrt{2}$$
= 311.127V peak value

Transformer

$$\frac{V_S}{V_{IN}} = \frac{N_1}{N_2}$$

$$V_S = 220V \times \sqrt{2}$$
$$= 311.127V \ peak \ value$$

For V_O to be 12V, the input V_{IN} should be ~12.7V

$$\frac{N_1}{N_2} = \frac{311}{12.7} = 24.5$$

Zoomed view

Want to hold that voltage during negative half cycle

Diode is reverse biased

Output has a ripple

Ripple Voltage:
$$V_r = V_M - V_L$$

Average Output Voltage: $V_O(avg) \cong V_M - \frac{V_R}{2}$

What does ripple voltage depend on?

$$C\frac{dV_O}{dt} + \frac{V_O}{R_L} = 0 \Rightarrow \frac{dV_O}{dt} = -\frac{V_O}{R_LC}$$

$$V_O(t) = V_M \times e^{-\frac{t}{R_LC}}$$

$$V_O(t) = V_M \times e^{-\frac{t}{R_L C}}$$

$$V_L = V_M \times e^{-\frac{t_1}{R_L C}}$$

$$V_r = V_M - V_L = V_M \times (1 - e^{-\frac{t_1}{R_L C}})$$

Assuming that $t_1 \ll R_L C$

$$V_r \cong V_M \times \{1 - (1 - \frac{t_1}{R_L C})\} = \frac{V_M t_1}{R_L C}$$

$$t_1 \cong T$$

$$V_r = \frac{V_M t_1}{R_L C} \cong \frac{V_M T}{R_L C}$$

$$V_r \cong \frac{V_M}{fR_LC}$$

Example

Example

$$V_r \cong \frac{V_M}{fR_L C} = \frac{11.904}{50 \times 10^3 \times 500 \times 10^{-6}} = 0.476V$$

$$\frac{R_L C}{T} = 25$$

Design Example

Design a power supply that will supply 6V to a load of 100Ω with ripple voltage less than 0.1V.

For V_O to be 6V, the input V_{IN} should be ~6.7V $\frac{N_1}{N_2} = \frac{311.127}{6.7} = 46.4$

$$V_r \cong \frac{V_M}{fR_LC} = 0.1 \Longrightarrow C = 12mF$$

How do we choose a diode for this application?

How do we choose a diode for this application?

Peak diode current, average diode current and peak inverse voltage

Diode forward bias current

$$i_D = C \times \frac{dv_O}{dt} + \frac{v_O}{R_L}$$

18

Peak Diode Current

$$i_{D\max} \cong \omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$$

$$V_r \cong \frac{V_M}{fR_L C}$$

$$\Delta t = \frac{1}{\omega} \sqrt{\frac{2V_r}{V_M}}$$

$$i_{D\max} = \frac{V_M}{R_L} \left[1 + 2\pi \sqrt{\frac{2V_M}{V_r}} \right]$$

Average Diode Currents

Peak and Average Diode Currents

Peak diode current increases as ripple reduces²