Applied LATEX for Researchers

Daniel Sánchez Pazmiño, MA

Laboratorio de Investigación para el Desarrollo del Ecuador

February 2025

library(tidyverse)
library(modelsummary)
library(knitr)
library(kableExtra)

Math Mode Revisited

Math Mode Revisited

- Math mode is arguably LATEX's most powerful feature
 - However, its syntax often takes some time to master
- Fortunately, tools have been developed to help users write Large ATEX code more easily
- In this section, we will explore some of these tools

Using AI

- Never ignore AI in your workflows
 - Al will not replace you, someone who knows how to use it will
- ChatGPT can help you with any sort of text generation or syntax question
 - Ask it to generate an equation in LATEX for you
 - Alternatively, you may feed it a picture of an equation and ask it to generate the LaTEX code for you
- Writefull AI is Overleaf's own AI assistant
 - Cheaper than ChatGPT, but still not free
- Check out There's an AI for That for more AI tools
 - A quick search yields several other tools, such as LaText AI.

Codecogs

- Codecogs is a free online LATEX equation editor
- Following a more "click and drag" approach, it is a good tool for beginners
 - Much like Overleaf's equation editor, you can click on symbols to add them to your equation
 - It also has a "Copy to Clipboard" button, which makes it easy to paste the equation into your document

Mathpix

- Mathpix is one of the best tools for converting images of equations into LATEX code
- Available as a desktop app, you can take a screenshot of an equation and Mathpix will convert it into LATEX code
 - It also has a mobile app, which is useful for taking pictures of equations in textbooks
- Without spending any money, it will allow you to convert a limited number of equations per month
 - However, the paid version is not expensive

Word Equations

- If for any reason you need to write a Word document with complex equations, you can actually write the equations in LATEX and then convert them to Word format
- This will require you to turn on the "LaTeX" option in the Equation tab, rather than the "Unicode" option.

Creating Bibliographies

Creating Bibliographies

- The bibliography or reference list is a crucial part of any academic paper.
- In LaTeX, you can create a bibliography using several different packages
 - natbib, biblatex, and apacite are some of the most popular
 - Each package has its own syntax and features
- In this section, we will focus on biblatex, which is the most modern and flexible of the three
 - The workflow is similar to referencing in Quarto/RMarkdown

Where to store your bibliography

- You can create a bibliography in LaTeXon your own, but it is much easier to use a reference manager
 - Zotero, Mendeley, and EndNote are some of the most popular reference managers
- Zotero is free and open-source, and it has a plugin for Word and LibreOffice
 - It also has a plugin for Google Docs, which is useful for collaborative writing
 - Here, we will focus on Zotero
- You can add references to Zotero using the Chrome add-on, or by manually entering them

Loading the package into LATEX

- To use biblatex, you need to load the package in the preamble of your document
 - You also need to specify the style of the bibliography
 - The most common styles are apa, mla, and chicago
- A very good guide on citation is on the Overleaf website
 - Bibliography management in LaTeX
 - Bibliography management with biblatex

Adding the bibliography package biblatex

\usepackage[style=apa]{biblatex}

- The style option specifies the style of the bibliography
 - The apa style is based on the American Psychological Association's citation style
 - You can find a list of all the available styles in the biblatex documentation
- You also need to specify the .bib file that contains your references

The .bib file

- The .bib file is a plain text file that contains all the references you want to include in your bibliography
 - Each reference is stored in a separate entry
 - The format of the entries is specified by the biblatex package
- It follows a LATEX-like syntax, with each entry starting with an @ symbol
 - The type of the entry is specified after the @ symbol
 - The fields of the entry are enclosed in curly braces {}
- Don't try to write the .bib file by hand!
 - Zotero can export your references to a .bib file
 - You only need to put it in the same folder as your .tex file or upload it to Overleaf

The .bib file

```
@article{einstein,
  author = {Albert Einstein},
  title = {Zur Elektrodynamik bewegter K{\"o}rper},
  journal = {Annalen der Physik},
  volume = {322},
  number = {10},
  pages = {891-921},
  year = {1905},
  publisher = {Wiley-VCH},
  doi = {10.1002/andp.200510497}
}
```

Adding the bibliography file

\addbibresource{references.bib}

- The \addbibresource command specifies the .bib file that contains your references
 - You need to put the .bib file in the same folder as your .tex file or upload it to Overleaf
 - The file extension .bib is optional
- You can add multiple .bib files to your document
 - Just use the \addbibresource command multiple times
- The \printbibliography command prints the bibliography in your document

Adding the bibliography

\printbibliography

- The \printbibliography command prints the bibliography in your document
 - You can specify the title of the bibliography by passing an argument to the command
 - You can also filter the bibliography by passing options to the command
 - The options are specified in square brackets []

Citation commands

- To include a citation in your document, you need to use the \cite command
 - The \cite command takes the key of the reference you want to cite as an argument
 - You can cite multiple references by separating the keys with commas
 - The \cite command prints the citation in the text and adds the reference to the bibliography

Citation commands

\cite{einstein}

- The \cite command takes the key of the reference you want to cite as an argument
 - You can cite multiple references by separating the keys with commas
 - The \cite command prints the citation in the text and adds the reference to the bibliography
- The \textcite command is similar to the \cite command, but it prints the author's name in the text
- The \parencite command is similar to the \cite command, but it adds parentheses around the citation

Citation commands

```
\textcite{einstein} showed that \ldots
\parencite{einstein}
\cite{einstein}
\cite{einstein,dirac}
\cite{einstein,dirac,bohr}
```

Exporting from statistical software to $\mbox{\em ETEX}$

Exporting from statistical software to LATEX

- If you are using statistical software to analyze your data, you can export the results to LATEX
 - This is useful if you want to include tables, figures, or other output in your document
 - Most statistical software packages have built-in support for exporting to LATEX
- \blacksquare Here, we will focus on how to export tables from R and Stata to \LaTeX
 - Both have packages that make it relatively easy to export tables to LATEX

The export environment in R

Exporting tables from R

- Many options exist for exporting tables from R to LATEX
 - stargazer is likely the most known package for exporting tables to LATEX
 - However, modelsummary is a more modern and flexible package
- Other packages, such as kableExtra, xtable, and huxtable, can also be used to export tables to LATEX
 - kableExtra is particularly useful for creating complex tables with formatting
 - gt is another great package for creating tables in R
 - flextable is particularly useful for Word documents (we covered it in our RMarkdown lecture)

An example with stargazer

■ We export the mtcars dataset to a LATEX table using stargazer

modelsummary

- modelsummary is a more modern and flexible package for exporting tables to LATEX
 - It is particularly useful for exporting regression tables
 - Exports to a larger amount of formats, including HTML, Word, and Markdown
 - It is also more flexible than stargazer
 - Can do summary statistics with datasummary
- Check the author's GitHub page for more information
 - Includes awesome vignettes and documentation!

modelsummary::datasummary

- datasummary has a wide range of possibilities, you can see the vignettes here.
 - datasummary_skim produces quick summary statistics
 - datasummary_balance specifically works for "balance tables"
 - datasummary is the most general function, and it can be used for a wide range of tables

An example with modelsummary::datasummary_skim

```
library(modelsummary)
data(mtcars)

# skim datasummary of all variables in mtcars, non-numeric varia
datasummary skim(mtcars)
```

CD

Min

Haiaua

Missing Det

11000

	Unique	iviissing Pct.	iviean	SD	IVIIN	iviedian	iviax	HIST
mpg	25	0	20.1	6.0	10.4	19.2	33.9	
disp	27	0	230.7	123.9	71.1	196.3	472.0	4
hp	22	0	146.7	68.6	52.0	123.0	335.0	
drat	22	0	3.6	0.5	2.8	3.7	4.9	4
wt	29	0	3.2	1.0	1.5	3.3	5.4	
qsec	30	0	17.8	1.8	14.5	17.7	22.9	_

Madian

1100

∐ic+

The formula syntax in datasummary

- datasummary requires a formula (like that in lm) to work
 - This allows for amazing flexibility
- For instance, if we want to report the mean of mpg, we can use the following formula: mpg ~ Mean
 - Mean is the special mean function in datasummary, which is just mean(x, na.rm = TRUE)
 - Others available are Median, SD, N, among others
- To do more statistics, sum them to the LHS of the formula
 - to add groups, use the nesting operator * in the RHS of the formula

An example with modelsummary::datasummary

```
data(mtcars)

datasummary(mpg ~ Mean, data = mtcars)
```

```
Mean 20.09
```

An example with modelsummary::datasummary

datasummary(mpg ~ as.factor(cyl)*(Mean + SD + N), data = mtcars)

	4			6			8		
	Mean	SD	N	Mean	SD	N	Mean	SD	N
mpg	26.66	4.51	11	19.74	1.45	7	15.10	2.56	14

Regression tables with modelsummary

- modelsummary is particularly useful for exporting regression tables to LATEX
 - It can export tables from lm, glm, feols and many other packages for modelling
- It is very customizable, and you can add custom statistics, change the formatting, and add notes to the table
- Check the function's GitHub page for more information

An example with modelsummary

```
data(mtcars)
model <- lm(mpg ~ wt + hp, data = mtcars)
modelsummary(model)</pre>
```

An example with modelsummary

	(1)
(Intercept)	37.227
	(1.599)
wt	-3.878
	(0.633)
hp	-0.032
	(0.009)
Num.Obs.	32
R2	0.827
R2 Adj.	0.815
Log.Lik.	-74.326
F	69.211
RMSF	2 47

modelsummary functionality

Among other things, modelsummary can:

- Add a custom covariance matrix (adjust the standard errors)
- Add custom statistics (goodness of fit, for instance)
- Change the shape of the table
- Add notes to the table
- Change the formatting of the table (e.g. rounding)
- Titles, subtitles, exponentiation of coefficients, etc.
- Name titles
- Exporting to HTML, Word, Markdown, and other formats

The Export Environment in Stata

Exporting tables from Stata

- Stata can export to multiple formats, including Excel, LaTeX and Word
 - Its output copies easily to Word and Excel (more than R)
- For descriptive statistics, Stata 18's dtable command is particularly useful
 - It can export tables to LaTeX, Word, and Excel
 - It is very customizable, and you can add custom statistics, change the formatting, and add notes to the table
 - As an alternative, you can use the estout package
- Among other methods, the outreg2 and esttab commands are also useful for exporting regression tables to LaTeX.
 - It is also easy to export to Excel by copying and pasting and then using the Excel2LateX add-in.
- Check Stata\LaTex workflows for more info.

Descriptive statistics: dtable

- dtable is a new command in Stata 18 that allows you to create publication-quality tables
 - It is particularly useful for exporting descriptive statistics to LaTeX,
 Word, and Excel
 - It is very customizable, and you can add custom statistics, change the formatting, and add notes to the table
 - See more here

An example with dtable

```
webuse nhanes21, clear
dtable age weight bpsystol i.sex i.race, by(diabetes) export(tab
```

- The export option allows you to export the table to a file
 - You can specify the format of the file by changing the file extension
 - The replace option allows you to overwrite an existing file
 - you may use table1.pdf to export to pdf, also word, excel, latex, etc.
- The menu-driven dtable is also very useful for creating tables
 - Statistics > Summaries, tables and tests > Table of descriptive statistics

If you don't have Stata 18 available

- If you don't have Stata 18, dtable is not available, but you may use esttout (package)
- estout is a package for exporting regression tables to LaTeX, Word, and Excel
 - It is very customizable, and you can add custom statistics, change the formatting, and add notes to the table
 - It is particularly useful for exporting regression tables to LaTeX
 - Check the package's GitHub page

An example with estout's estpost summarize

```
sysuse auto, clear
estpost sum price mpg weight
esttab using "summary_stats.doc", replace ///
    cells("mean sd min max") ///
    label title("Summary Statistics") ///
    alignment(D) ///
    nomtitles nonumber
```

Regression tables with etable

- etable is the new Stata command for exporting regression tables to LaTeX, Word, and Excel
 - Available to version 18 users
- In the menu, Statistics > Summaries, tables and tests > Table of estimation results
 - Works with much more than just regressions

Regression tables exporting with estout

- estout is particularly useful for exporting regression tables to LaTeX
 - It can export tables from reg, logit, probit, ivreg, and many other packages for modelling
 - It is very customizable, and you can add custom statistics, change the formatting, and add notes to the table
 - Check the package's GitHub page for more information
 - Outreg2 is another useful package for exporting regression tables to LaTeX

An example with estout

```
quietly regress bpsystol age weight i.region // quietly does not estimates store model1 esttab model1 model2 using "outputs/latex_stata_export.tex", reptitle("Tabla Regresion") b(%9.3f) se star booktabs
```

outreg2

- Outreg2 is another package for exporting regression results to LATEX
 - A bit less used than estout, but still very useful
- Some syntax options will be different, but the logic is similar
 - Run the regression
 - Store results with est store
 - Export with outreg2 using the "name" of the stored results

An example with outreg2

```
quietly regress bpsystol age weight i.region
est store model1
quietly regress bpsystol age weight
est store model2
outreg2 [model*] using "outputs/latex_stata_export.tex", replace
```

■ Notice that the * operator is used to select all stored results that start with model

Further resources

- Stata is a bit clunky for these purposes, yet fortunately plenty of guides have been made to help you
 - A full guide to dtable
 - A more general guide to Stata, with a focus on earlier versions here
 - The LaTeX/Stata workflows
 - The Stata to LaTeX guide