Clustering of nodes in social networks

Pierre Latouche

Université Paris Descartes Laboratoire MAP5 http://www.math-info.univ-paris5.fr/~platouch

Introduction

Erdös-Rényi model

Stochastic block model

Latent position cluster model

Others

Linkage

Introduction Modularity

Erdös-Rényi model

Stochastic block model

Latent position cluster model

Others

Linkage

The Linkage statistical model The Linkage project The technology behind Linkage Analysis of the Enron Emails

Dot plot

Network of blogs (Zanghi et al., 2008)

Clustering

Network of blogs (Zanghi et al., 2008)

Clustering

- Goal : to build a partition of the nodes
- \blacktriangleright A partition of *K* clusters is a family of sets P_k such that

$$P_k \cap P_l = \emptyset, \forall k \neq l$$

$$V_{k=1}^K P_k = V$$

- ► How?
 - Nodes in a cluster should be similar
 - Nodes in different clusters should disimilar
- How to measure the similarity between nodes?

- ► *NP* hard problem
- ► Looking for communities = looking for very specific clusters
- More edges between nodes of the same cluster
- ▶ Based on a criterion called *modularity*

$$Q = \frac{1}{2m} \sum_{i,j} (A_{ij} - P_{ij}) \delta(C_i, C_j)$$

- ▶ P_{ij} : expectation of the number of edges between i and j, under a null model
- ▶ $\delta(C_i, C_j) = 1$ if i and j are in the same community $(C_i = C_j)$

Introduction

Types of networks : $(\rightarrow development of statistical approaches)$

- ► Binary + static edges
- Discrete / continuous / categorical / ...
- Covariates on vertices / edges
- Dynamic edges:
 - Continous time → point processes
 - Discrete time → Markov,...

Types of clusters : (→ development of statistical approaches)

- Communities (transitivity)
- ► Heterogeneous clusters
- Partitions, overlapping clusters, hierarchy

Introduction

Essentially, two starting points:

- ► The latent position model [HRH02]
- ► The stochastic block model [WW87, NS01]

Introduction Modularity

Erdös-Rényi model

Stochastic block model

Latent position cluster model

Others

Linkage

The Linkage statistical model The Linkage project The technology behind Linkage Analysis of the Enron Emails

Erdös-Rényi model

- ► Two nodes connect with probability $\mu : X_{ij} \sim \mathcal{B}(\mu)$
- So $D_i = \sum_{j=1}^n X_{ij}$ is (approximately) drawn from a Poisson distribution
 - $ightharpoonup D_i \sim \mathcal{B}(n-1,\mu) \approx \mathcal{P}(n\mu)$
 - \blacktriangleright $\forall k, \mathbb{P}(D_i = k) \approx e^{-np} (n\mu)^k / k! \not\propto k^{-a}$
 - ► Not a power law!
- ► AND : homogenous model!
- ► A lot of developments on theoretical aspects
- Not adapted to real networks

Introduction Modularity

Erdös-Rényi model

Stochastic block model

Latent position cluster model

Others

Linkage

The Linkage statistical model The Linkage project The technology behind Linkage Analysis of the Enron Emails

Stochastic Block Model (SBM) [WW87, NS01]

- $ightharpoonup Z_i$ independent hidden variables :
 - $ightharpoonup Z_i \sim \mathcal{M}(1, \alpha = (\alpha_1, \alpha_2, \dots, \alpha_K))$
 - $ightharpoonup Z_{ik} = 1$: vertex *i* belongs to class *k*
- ► X|Z edges drawn independently :

$$X_{ij}|\{Z_{ik}Z_{jl}=1\}\sim\mathcal{B}(\pi_{kl})$$

► A mixture model for graphs :

$$X_{ij} \sim \sum_{k=1}^K \sum_{l=1}^K \alpha_k \alpha_l \mathcal{B}(\pi_{kl})$$

Maximum likelihood estimation

- Log-likelihoods of the model :
 - ► Observed-data : log $p(X|\alpha, \pi)$ = log { $\sum_{Z} p(X, Z|\alpha, \pi)$ } $\hookrightarrow K^{N}$ terms
- Expectation Maximization (EM) algorithm requires the knowledge of $p(Z|X, \alpha, \pi)$

Problem

 $p(Z|X, \alpha, \pi)$ is not tractable (no conditional independence)

Variational EM Daudin et al. [DPR08

Maximum likelihood estimation

- Log-likelihoods of the model :
 - ► Observed-data : log $p(X|\alpha, \pi)$ = log { $\sum_{Z} p(X, Z|\alpha, \pi)$ } $\hookrightarrow K^{N}$ terms
- Expectation Maximization (EM) algorithm requires the knowledge of $p(Z|X, \alpha, \pi)$

Problem

 $p(Z|X, \alpha, \pi)$ is not tractable (no conditional independence)

Variational EM Daudin et al. [DPR08]

Maximum likelihood estimation

- ► Log-likelihoods of the model :
 - ► Observed-data : log $p(X|\alpha, \pi)$ = log { $\sum_{Z} p(X, Z|\alpha, \pi)$ } $\hookrightarrow K^{N}$ terms
- Expectation Maximization (EM) algorithm requires the knowledge of $p(Z|X, \alpha, \pi)$

Problem

 $p(Z|X, \alpha, \pi)$ is not tractable (no conditional independence)

Variational EM

Daudin et al. [DPR08]

Graphical model and moral graph

Model selection

Criteria

Since $\log p(X|\alpha, \pi)$ is not tractable, we *cannot* rely on :

- $AIC = \log p(X|\hat{\alpha}, \hat{\pi}) M$
- $\blacktriangleright BIC = \log p(X|\hat{\alpha}, \hat{\pi}) \frac{M}{2} \log \frac{N(N-1)}{2}$

ICL

Biernacki et al. [BCG00] → Daudin et al. [DPR08]

Variational Bayes EM ← ILvb

Others

McDaid et al. [MDMNH13]

Model selection

Criteria

Since $\log p(X|\alpha, \pi)$ is not tractable, we *cannot* rely on :

- $ightharpoonup AIC = \log p(X|\hat{\alpha}, \hat{\pi}) M$
- $\blacktriangleright BIC = \log p(X|\hat{\alpha}, \hat{\pi}) \frac{M}{2} \log \frac{N(N-1)}{2}$

ICL

Biernacki et al. [BCG00] \hookrightarrow Daudin et al. [DPR08]

Variational Bayes EM $\hookrightarrow ILvb$

Latouche et al. [LBA12]

Others

McDaid et al. [MDMNH13]

Bayesian framework

- Conjugate prior distributions :
 - $p(\alpha|n^0 = \{n_1^0, \dots, n_K^0\}) = Dir(\alpha; n^0)$
- ► Non informative Jeffreys prior :
 - $n_{\nu}^{0} = 1/2$
 - $\eta_{kl}^{0} = \zeta_{kl}^{0} = 1/2$

Variational Bayes EM [LBA09]

 \triangleright $p(Z, \alpha, \pi | X)$ not tractable

Decomposition

$$\log p(X) = \mathcal{L}(q) + \mathrm{KL}\left(q(\cdot) \mid\mid p(\cdot \mid X)\right)$$

where

$$\mathcal{L}(q) = \sum_{Z} \int \int q(Z, \alpha, \pi) \log \left\{ \frac{p(X, Z, \alpha, \pi)}{q(Z, \alpha, \pi)} \right\} d\alpha d\pi$$

Factorization

$$q(Z, \alpha, \pi) = q(\alpha)q(\pi)q(Z) = q(\alpha)q(\pi)\prod_{i=1}^{N}q(Z_i)$$

Variational Bayes EM [LBA09]

E-step

M-step

A new model selection criterion: ILvb [LBA12]

- ► After convergence, use $\mathcal{L}(q)$ as an approximation of $\log p(X|K)$

ILvb

$$\begin{split} IL_{vb} &= \log \left\{ \frac{\Gamma(\sum_{k=1}^{K} n_k^0) \prod_{k=1}^{K} \Gamma(n_k)}{\Gamma(\sum_{k=1}^{K} n_k) \prod_{k=1}^{K} \Gamma(n_k^0)} \right\} \\ &+ \sum_{k \leq l}^{K} \log \left\{ \frac{\Gamma(\eta_{kl}^0 + \zeta_{kl}^0) \Gamma(\eta_{kl}) \Gamma(\zeta_{kl})}{\Gamma(\eta_{kl} + \zeta_{kl}) \Gamma(\eta_{kl}^0) \Gamma(\zeta_{kl}^0)} \right\} - \sum_{i=1}^{N} \sum_{k=1}^{K} \tau_{ik} \log \tau_{ik} \end{split}$$

Extensions and results

- Many extensions have been proposed for SBM
 - Overlapping clusters : MMSBM [ABFX08], OSBM [LBA11]
 - Covariates [ZVA10, MRV10]
 - Continuous, discrete, categorial edges [MRV10, JLB+14, MR14]
 - ▶ .
- ► Identifiability of SBM [AMR11]
- Consistency of variational approaches in SBM [CDP12, BCCZ13, MM15]

Introduction Modularity

Erdös-Rényi model

Stochastic block model

Latent position cluster model

Others

Linkage

The Linkage statistical model The Linkage project The technology behind Linkage Analysis of the Enron Emails

Latent position cluster model

 $ightharpoonup Z_i$ independent hidden variables :

$$Z_i \sim \sum_{k=1}^K \alpha_k \mathcal{N}(\boldsymbol{\mu}_k, \sigma_k^2 \mathbf{I}),$$

ightharpoonup X|Z edges drawn independently :

$$X_{ij}|Z_i,Z_j,\mathbf{Y}_{ij}\sim \mathcal{B}\left(g(a_{Z_i,Z_j,\mathbf{Y}_{ij}})\right).$$

The function $g(x) = 1/(1 + e^{-x})$ is the logistic sigmoid function. Moreover $a_{Z_i,Z_j,\mathbf{Y}_{ij}}$ is given by :

$$a_{Z_i,Z_j,\mathbf{Y}_{ij}} = \mathbf{Y}_{ij}^\mathsf{T} \boldsymbol{\beta}_0 - \beta_1 |Z_i - Z_j|, \tag{1}$$

where β_0 as the same dimensionality as \mathbf{Y}_{ij} and β_1 is a scalar

Introduction Modularity

Erdös-Rényi model

Stochastic block model

Latent position cluster model

Others

Linkage

The Linkage statistical model The Linkage project The technology behind Linkage Analysis of the Enron Emails

What about ERGM?

- Used in many applications
- Less and less by statisticians

Introduction Modularity

Erdös-Rényi model

Stochastic block model

Latent position cluster model

Others

Linkage

The Linkage statistical model The Linkage project The technology behind Linkage Analysis of the Enron Emails

STBM: Context and notations

We are interesting in clustering the *M* nodes of a network into *Q* groups :

▶ the network is represented by its $M \times M$ adjacency matrix A:

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge between i and j} \\ 0 & \text{otherwise} \end{cases}$$

▶ if $A_{ij} = 1$, the textual edge is characterized by a set of D_{ij} documents, where each document W_{ij}^d is made of N_{ij}^d words:

$$\mathbf{W}_{ij} = (W_{ij}^1, ..., W_{ij}^d, ..., W_{ij}^{D_{ij}}),$$
 where $W_{ij}^d = (W_{ij}^{d1}, ..., W_{ij}^{dn}, ..., W_{ij}^{dN_{ij}^d}),$

▶ in practice, the user has to provide a list of textual edges: Alexis; Arthur; "I am very happy to try Linkage" Louis; Nathan; "Do you know that Romain tried Linkage?"

STBM : Context and notations

We are interesting in clustering the *M* nodes of a network into *Q* groups :

• the network is represented by its $M \times M$ adjacency matrix A:

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge between i and j} \\ 0 & \text{otherwise} \end{cases}$$

▶ if $A_{ij} = 1$, the textual edge is characterized by a set of D_{ij} documents, where each document W_{ij}^d is made of N_{ij}^d words:

$$\mathbf{W}_{ij} = (W_{ij}^{1}, ..., W_{ij}^{d}, ..., W_{ij}^{D_{ij}}),$$
 where $W_{ij}^{d} = (W_{ij}^{d1}, ..., W_{ij}^{dn}, ..., W_{ij}^{dN_{ij}^{d}}),$

▶ in practice, the user has to provide a list of textual edges: Alexis; Arthur; "I am very happy to try Linkage" Louis; Nathan; "Do you know that Romain tried Linkage?"

STBM : A quick reminder on Statistics...

Let us remind that:

► The Bernouilli distribution acts, for a binary random variable $X \in \{0, 1\}$, as follows:

$$X \sim \mathcal{B}(\pi = 0.7) \rightarrow \{0, 1, 1, 1, 0, 1, 1, 0, 1, 1, ...\},\$$

where π is the probability of success.

► The Multinomial distribution acts, for a categorical random variable $X \in \{1, ..., Q\}$, as follows:

$$X \sim \mathcal{M}(\rho = (0.2, 0.3, 0.5)) \rightarrow \{2, 1, 3, 3, 2, 3, 2, 1, 3, ...\},$$

where ρ_q is the probability of getting the value q.

STBM : Modeling of the edges

Let us assume that edges are generated as follows:

► each node *i* is associated with an (unobserved) group among *Q* such that :

$$Y_i \sim \mathcal{M}(\rho),$$

where $\rho \in [0,1]^{\mathbb{Q}}$ is the vector of group proportions,

▶ the presence of an edge A_{ij} between i and j is drawn according to :

$$A_{ij}|Y_{iq}Y_{jr}=1\sim\mathcal{B}(\pi_{qr}),$$

where $\pi_{qr} \in [0, 1]$ is the connection probability between clusters q and r.

STBM : Modeling of the edges

Let us assume that edges are generated as follows:

► each node *i* is associated with an (unobserved) group among *Q* such that :

$$Y_i \sim \mathcal{M}(\rho)$$
,

where $\rho \in [0,1]^{\mathbb{Q}}$ is the vector of group proportions,

▶ the presence of an edge A_{ij} between i and j is drawn according to :

$$A_{ij}|Y_{iq}Y_{jr}=1\sim\mathcal{B}(\pi_{qr}),$$

where $\pi_{qr} \in [0, 1]$ is the connection probability between clusters q and r.

STBM: Modeling of the documents

The generative model for the documents is as follows:

▶ the *n*th word W_{ij}^{dn} of documents *d* in W_{ij} is then associated to a latent topic vector Z_{ij}^{dn} according to :

$$Z_{ij}^{dn} | \{A_{ij}Y_{iq}Y_{jr} = 1, \theta\} \sim \mathcal{M}(\theta_{qr}),$$

where $\theta_{qr} = (\theta_{qrk})_k$ is the vector of topic proportions for the pair (q, r).

▶ then, given Z_{ij}^{dn} , the word W_{ij}^{dn} is assumed to be drawn from a multinomial distribution :

$$W_{ij}^{dn}|Z_{ij}^{dnk}=1\sim\mathcal{M}(1,\beta_k=(\beta_{k1},\ldots,\beta_{kV})),$$

where V is the vocabulary size.

STBM: Modeling of the documents

The generative model for the documents is as follows:

▶ the *n*th word W_{ij}^{dn} of documents *d* in W_{ij} is then associated to a latent topic vector Z_{ij}^{dn} according to :

$$Z_{ij}^{dn}|\left\{A_{ij}Y_{iq}Y_{jr}=1,\theta\right\}\sim\mathcal{M}\left(\theta_{qr}\right),$$

where $\theta_{qr} = (\theta_{qrk})_k$ is the vector of topic proportions for the pair (q, r).

▶ then, given Z_{ij}^{dn} , the word W_{ij}^{dn} is assumed to be drawn from a multinomial distribution :

$$W_{ij}^{dn}|Z_{ij}^{dnk}=1\sim\mathcal{M}(1,\beta_k=(\beta_{k1},\ldots,\beta_{kV})),$$

where V is the vocabulary size.

STBM at a glance...

Figure – The stochastic topic block model.

Inference and model selection

To estimate the model parameters:

- we proposed an algorithm, that we called a C-VEM algorithm,
- which iteratively estimates the set of model parameters.

Model selection

- a key point of the methodology is the ability to automatically select the most appropriate values for Q and K,
- ▶ to this end, we derived an ICL criterion which identify the best couple (Q^*, K^*) for the data at hand.

Inference and model selection

To estimate the model parameters:

- we proposed an algorithm, that we called a C-VEM algorithm,
- which iteratively estimates the set of model parameters.

Model selection:

- a key point of the methodology is the ability to automatically select the most appropriate values for Q and K,
- ▶ to this end, we derived an ICL criterion which identify the best couple (Q^*, K^*) for the data at hand.

From research to innovation: the linkage project Linkage is a maturation project:

- Linkage.fr is the result of a maturation project, supported by IDFInnov,
- to handle large networks, it needed a deep re-thinking of :
 - the data structure,
 - the inference algorithm,
 - the visualization tools,
- ▶ 6 months of engineering were also necessary to build up the web architecture, with the latest web technologies.

From research to innovation: the linkage project Linkage is a maturation project:

- Linkage.fr is the result of a maturation project, supported by IDFInnov,
- to handle large networks, it needed a deep re-thinking of:
 - the data structure,
 - the inference algorithm,
 - the visualization tools,
- ▶ 6 months of engineering were also necessary to build up the web architecture, with the latest web technologies.

www.linkage.fr

Innovation: the linkage project

Linkage.fr: a SAAS platform to prove the concept

- Linkage.fr aims to demonstrate the abilities of the technology in a few practical situations:
 - analysis of co-authorship networks,
 - analysis of Twitter networks,
 - analysis of Email networks,
- the platform also allows the user to provide their own data as CSV files.

The platform is already well known and used:

- > 800 registered users,
- several operational projects achieved or in progress.

Innovation: the linkage project

Linkage.fr: a SAAS platform to prove the concept

- Linkage.fr aims to demonstrate the abilities of the technology in a few practical situations:
 - analysis of co-authorship networks,
 - analysis of Twitter networks,
 - analysis of Email networks,
- the platform also allows the user to provide their own data as CSV files.

The platform is already well known and used:

- ► > 800 registered users,
- several operational projects achieved or in progress.

The Enron data set:

- all emails between 149 Enron employees,
- ▶ from 1999 to the bankrupt in late 2001,
- ▶ almost 253 000 emails in the whole data base.

Figure – Temporal distribution of Enron emails.

Figure – Model selection on the Enron network.

Figure – Clustering of the Enron network.

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5
clock	heizenrader	contracts	floors	netting
receipt	bin	rto	aside	kilmer
gas	gaskill	steffes	equipment	juan
limits	kuykendall	governor	numbers	pkgs
elapsed	ina	phase	assignment	geaccone
injections	ermis	dasovich	rely	sara
nom	allen	mara	assignments	kay
wheeler	tori	california	regular	lindy
windows	fundamental	super	locations	donoho
forecast	sheppard	saturday	seats	shackleton
ridge	named	said	phones	socalgas
equal	forces	dinner	notified	lynn
declared	taleban	fantastic	announcement	master
interruptible	park	davis	computer	hayslett
storage	ground	dwr	supplies	deliveries
prorata	phillip	interviewers	building	transwestern
select	desk	state	location	capacity
usage	viewing	interview	test	watson
ofo	afghanistan	puc	seat	harris
cycle	grigsby	edison	backup	mmbtud

Figure – Most specific terms in the found topics for the Enron data.

Figure – Meta-network for the Enron data set.

References I

- E.M. Airoldi, D.M. Blei, S.E. Fienberg, and E.P. Xing, *Mixed membership stochastic blockmodels*, Journal of Machine Learning Research **9** (2008), 1981–2014.
- Elizabeth S Allman, Catherine Matias, and John A Rhodes, *Parameter identifiability in a class of random graph mixture models*, Journal of Statistical Planning and Inference **141** (2011), no. 5, 1719–1736.
- Peter Bickel, David Choi, Xiangyu Chang, and Hai Zhang, Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels, Ann. Statist. 41 (2013), no. 4, 1922–1943.
- C. Biernacki, G. Celeux, and G. Govaert, *Assessing a mixture model for clustering with the integrated completed likelihood*, IEEE Trans. Pattern Anal. Machine Intel **7** (2000), 719–725.

References II

- A. Celisse, J.J Daudin, and L. Pierre, *Consistency of maximum likelihood and variational estimators in stochastic block models*, Electronic Journal of Statistics **6** (2012), 1847–1899.
- J. Daudin, F. Picard, and S. Robin, *A mixture model for random graphs*, Statistics and Computing **18** (2008), 1–36.
- Peter D Hoff, Adrian E Raftery, and Mark S Handcock, *Latent space approaches to social network analysis*, Journal of the american Statistical association **97** (2002), no. 460, 1090–1098.
- Y. Jernite, P. Latouche, C. Bouveyron, P. Rivera, L. Jegou, and S. Lamassé, *The random subgraph model for the analysis of an acclesiastical network in merovingian gaul*, Annals of Applied Statistics 8 (2014), no. 1, 377–405.
- P. Latouche, E. Birmelé, and C. Ambroise, *Bayesian methods* for graph clustering, pp. 229–239, Springer, 2009.

References III

- P. Latouche, E Birmelé, and C. Ambroise, *Overlapping stochastic block models with application to the french political blogosphere*, Annals of Applied Statistics **5** (2011), no. 1, 309–336.
- P. Latouche, E. Birmelé, and C. Ambroise, *Variational bayes inference and complexity control for stochastic block models*, Statistical Modelling **12** (2012), no. 1, 93–115.
- A. Mc Daid, T.B. Murphy, Frieln N., and N.J. Hurley, *Improved bayesian inference for the stochastic block model with application to large networks*, Computational Statistics and Data Analysis **60** (2013), 12–31.
- Mahendra Mariadassou and Catherine Matias, Convergence of the groups posterior distribution in latent or stochastic block models, Bernoulli **21** (2015), no. 1, 537–573.

References IV

- C. Matias and S. Robin, *Modeling heterogenity in random graphs through latent space models : a selective review*, Esaim Prooceedings and Surveys **47** (2014), 55–74.
- Mahendra Mariadassou, Stéphane Robin, and Corinne Vacher, *Uncovering latent structure in valued graphs : a variational approach*, The Annals of Applied Statistics (2010), 715–742.
- K. Nowicki and T.A.B. Snijders, *Estimation and prediction for stochastic blockstructures*, Journal of the American Statistical Association **96** (2001), 1077–1087.
- Y.J. Wang and G.Y. Wong, Stochastic blockmodels for directed graphs, Journal of the American Statistical Association 82 (1987), 8–19.

References V

H. Zanghi, S. Volant, and C. Ambroise, *Clustering based on random graph model embedding vertex features*, Pattern Recognition Letters **31** (2010), no. 9, 830–836.