Quiz 5

Math 54-Lec 3, Linear Algebra, Fall 2017

SECTION:

Name:

You have 30 minutes to complete this quiz. To receive full credit, you must justify your answers.

Problem 1.(12 points)

(a.)(8 points) Find the eigenvalues of the matrix A below and find a basis for each eigen-space. Hence, is A diagonalizable?

$$A = \begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix}$$

(b.)(4 points) Compute $A^{10}\vec{x}$ for $\vec{x} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$.

Problem 2.(1 point each) Label the following statements true or false. If the statement is true, explain why. If it is false, explain why or provide a counterexample. Correct answers without justification will receive no credit.

- (a.) If A is an $n \times n$ diagonalizable matrix, then A is invertible.
- (b.) If λ is eigenvalue of an $n \times n$ matrix A, then the linear transformation defined by the matrix $(A \lambda I)$ is not injective.
- (c.) If λ_0 is a eigenvalue of a matrix A, then the multiplicity of λ_0 as the root of the characteristic polynomial of A is the equal to the dimension of the eigenspace corresponding to λ_0 .