# প্রাচীন ভারতীয় গণিতের ইতিবৃত্ত

"...to construct a history of thought without profound study of the mathematical ideas of successive epochs is like omitting Hamlet from the play which is named after him."

-A. N. Whitehead

# প্রাচীন ভারতীয় গণিতের ইতিরত

(প্রাচীন ও মধ্যযুগ)

নন্দলাল মাইতি

CASS TRAINER : WAST MAIN

00'00 S 1965



ফার্মা কেএলএম প্রাইভেট লিমিটেড কলিকাতা \* \* ১৯৮৩

#### Prachin Bharatiya Ganiter Itibrtta

-Nandalal Maiti

প্রকাশক:

ফার্মা কেএলএম প্রাইভেট লিমিটেড ২৫৭ বি, বিপিনবিহারী গাঙ্গুলী খ্রীট কলিকাতা-৭০০০১২

Ace No-15644

প্রথম প্রকাশ: কলিকাতা, ১৯৮৩

© নন্দলাল মাইতি

भूना : ७०'००

মৃদ্রাকর:
নায়ক প্রিকাস

৮১/১=ই, রাজা দীনেন্দ্র খ্রীট
কলিকাতা-৭০০০৬

যথা শিথা মন্থ্রাণাং নাগানাং মণয়ো যথা।
ভদ্বদেশজশাস্ত্রাণাং গণিতং মূর্দ্ধণি স্থিতম্।।
—বেদাস জ্যোতিষ

# ্ৰিলাৰকাৰ হয়াপ ৰজাৰ ।। ভূমিকা ।। ৰাজ্য ৰাজ্য ৰ জাইনিকা

अधिक है जिल्लाका क्षिति महत्र अध्य प्रकार हो है (हो स्थाप अपने हो है,

1 THE STREET OF STREET OF STREET

গণিতের ইতিহাস মানবসভাতার ইতিহাসের নামান্তর। সভাতার ক্রমবিকাশের বিভিন্ন স্তরের সঙ্গে গণিতের ইতিহাস ওতপ্রোভভাবে জড়িত। সে-কারণে গণিতের ইতিহাসকে সভাতার দর্পন বলা খুবই যুক্তিযুক্ত। বস্তুত, সভাতা-সংস্কৃতির উন্নতি-অবনতি, এর ক্রটি-বিচ্চাতি সামগ্রিক রূপ নিয়ে গণিতের ইতিহাসের মধ্যে এমনভাবে প্রতিকলিত হয় যে, জ্ঞান-বিজ্ঞানের অন্য শাখার ইতিহাসে তেমনটি হয় কিনা সন্দেহ। কাব্য-সাহিত্য-দর্শন-বিজ্ঞান-সঙ্গীত-শিল্ল-কলা সবের উন্নতি ও উৎকর্ষের মূলে গণিত,—গাণিতিক-চিন্তন ব্যতিরেকে কোন কিছুর উন্নতি সম্ভব নয়। কথাটি একটু হেয়ালির মতো শোনালেও এটি সত্য। যাঁরা আধুনিক গণিত ও তার প্রয়োগ ইত্যাদির সঙ্গে সামান্ত পরিচিত, তাঁরা সহজেই কথাটি অমুধাবন করতে পারবেন। তা' ছাড়া প্রাচীন মনস্বীরা যে গণিতের এই সারবন্তা উপলব্ধি করেননি তা নয়। দার্শনিক প্রেটো তাঁর আকাদামীর তোরণ-ছারে উৎকার্ণ করেছিলেন,—"Let no man ignorant of geometry enter here." আর তা ভিঞ্চি তো বলেছিলেন, গণিতে যাঁদের জ্ঞান নাই, তাঁরা যেন তাঁর শিল্লস্টি বিচার না করেন।

দবার জানা, অতি প্রাচীনকাল থেকেই ভারতে জ্ঞান-বিজ্ঞানের বিকাশ হয়।
সেই ধারা নানা উত্থান-পতনের মধ্য দিয়ে এখনো অব্যাহত গতিতে বয়ে
চলেচে,—যদিও একটু ভিন্ন চেহারায়। প্রাচীন ভারতীয় সভ্যতার স্বাক্ষর রয়েছে
জ্ঞান-বিজ্ঞানের নানা শাখায়; প্রাচীন ভারতের ইতিহাদ পাঠে তার কিছু কিছু
আভাদ পাওয়া যায়। ভারতীয় সভ্যতার পরিচয় পেতে হলে, তার একটি
দামগ্রিক রূপের ধারণা পেতে হলে নানা ধর্মের যে বিশাল শাল্বরাজি বয়েছে,
ইতিহাস-পুরাণ-কাব্য-দর্শন রয়েছে, আর জ্ঞান-বিজ্ঞানের গ্রন্থরাজি বয়েছে, তা
দবই অধ্যয়ন করা দরকার। কিন্তু বাস্তবে এই বিশাল দম্দ্র মন্থন এক অদম্ভব
ব্যাপার বলে মনে হয়। তা ছাড়া স্বার স্ব বিষয়ে অধিকারও নাই, ক্রচিপ্রবণতাও নাই। তা হলে কিভাবে এই স্ভাতার পরিচয় পাওয়া যায়?
এ বিষয়ে গণিতের ইতিহাদ আমাদের যথেষ্ট সাহায্য করতে পারে। এই একটিমাত্র
বিজ্ঞানের শাথার জানলা দিয়ে স্ব দেখা যায়,—এমনি এর আণুবীক্ষণিক চোখ।

গণিতের ইতিহাদের চোখে দব ধরা পড়ে, তা যত ছো ট হোক আর বড়ই হোক, যত কাছের হোক, আর যত দূরেরই হোক।

গণিতের ইতিহাস দেখার নানা রক্ষ পদ্ধতি থাকতে পারে: গণিতাশ্রমী, ইতিহাসাশ্রমী বা এ দুয়ের সংমিশ্রণ-; আবার গণিতজ্ঞদের জীবনী ও তাঁদের সামগ্রিক ও বিশেষ বিশেষ অবদান নিম্নেও ক্রমপরম্পরায় গণিতের ইতিহাস রচিত হতে পারে। অথবা সমাজ জীবনের প্রেক্ষাপটে গণিতের উপাদানগুলি স্থাপন করে তার স্ক্র্ম বিশ্লেষণমূলক ইতিহাসও হতে পারে। বস্তুত গণিতের ইতিহাস রচনা করা যেমন জটিল তেমনি তুরহ। গণিত ঐতিহাসিকের যেমন ইতিহাসে জ্ঞান থাকা দরকার,—ঐতিহাসিক তত্ত্ব ও তথ্যের ব্যঞ্জনা বুঝে নেওয়ার ক্ষমতা থাকা দরকার, তেমনি গণিতেও জ্ঞান থাকা দরকার। আর কেবল এতেই হবে না, সভ্যতা সংস্কৃতির ক্রমবিকাশের ধারাট অম্পরণ করাও প্রয়োজন। সর্বোপরি সবার সমন্বয়ে গঠিত সামগ্রিক স্বচ্ছ ধারণা অপরিহার্য।

প্রাচীন ভারতের ইতিহাসে নানা পরস্পার বিরোধী তত্ত্ব ও তথ্য আছে,—
এ-নিয়ে পণ্ডিত মহলে তর্কের শেব নাই। সেইসব বিতর্কিত তত্ত্ব ও তথ্যের
মধ্য থেকে একটি সন্তোষজনক সমাধান ও সিদ্ধান্তে পৌঁছানো যে কত কঠিন, তা
ভূক্তভোগীমাত্রেই বুঝানে। সত্যি কথা বলতে কি, এই তর্কের মাঝে পড়ে সব
সময় যে সম্পূর্ণ নিরপেক্ষতা বজায় রাখতে পেরেছি, তা জাের করে বলতে
পারি না। তবে বেশীবভাগ ক্ষেত্রেই পূর্বাচার্যদের মত ও পথই অবলম্বন করেছি,
আর কখনা কথনা বিভিন্ন গ্রন্থাদি পাঠে যে ধারণা ও দৃষ্টিভঙ্গী লাভ করেছি,
তার বথেষ্ট কোন প্রামাণিকতা না থাকলেও, না বলে পারিনি।

ইতিহাদের স্থবিশাল পটভূমিতে তত্ত্ব ও তথোর স্ক্ষতম বিশ্লেষণ করে গাণিতিক দিদ্ধান্তে পৌঁছানো এই প্রন্থের বাইরে। দে-বিষয়ে লেখকের সম্পূর্ণ অধিকার আছে বলে ভান করার দরকারও নাই। এই প্রন্থে মূলত প্রাচীন ভারতের সভ্যতার উন্মেষক্ষণ থেকে গণিতের উত্থান-পতনের সহজ ইতিবৃত্ত দেবার প্রচেষ্টা করা হয়েছে। দে-কারণে আমাদের গাণিতিক ঐতিহ্য ও উত্তরাধিকারের বিশেষ বিশেষ দিকের সংক্ষিপ্ত আলোচনা আছে,—বিশ্লেষণের মধ্যে না গিয়ে সংশ্লেষণের প্রশ্লাদ পেয়েছি মাত্র।

অনিবার্য কারণে মাঝে মাঝে আলোচনার হত্ত আনতে গিয়ে একই বিষয়ের

অবতারণা করতে হয়েছে। প্রাচীন ভারতীয় গণিত সম্পর্কে যাঁরা সামান্ত অবগত আছেন, তাঁরা স্বীকার করবেন এ ছাড়া উপায় ছিল না। কোন কোন গাণিতিক তত্ত্ব একটি যুগে সম্পূর্ণতা লাভ করে না। একই ধারণা, একই তত্ত্ব বিভিন্ন যুগের গণিতাচার্যরা আলোচনা করেছেন। আর তাঁদের কথা বলতে গিয়ে পুনক্ষক্তি অপরিহার্য ও অনিবার্য হয়ে উঠে।

প্রাচীন ভারতে গণিত পৃথক বিষয় হিদাবে আলোচিত হতো না,—জ্যোতি-বিজ্ঞানের গবেষণা ও প্রয়োজনের তাগিদে আলোচিত হতো। তাই এই গ্রন্থে জ্যোতির্বিজ্ঞানের কয়েকটি পারিভাষিক শব্দের উল্লেখ করতে হয়েছে। কিন্তু গণিত প্রধান আলোচ্য বিষয় হওয়ায় জ্যোতিবিজ্ঞান আলোচিত হয়নি। কেবলমাত্র সোয়াই জয় সিং সম্বন্ধে সামান্ত আলোচনা আছে।

বলা বাহুল্য, গ্রন্থটি পণ্ডিত ও বিশেষজ্ঞদের জন্ম নয়। সাধারণ মান্ত্রয়, বাংলা ভাষার মাধ্যমে অন্ধ্যন্তিংক পাঠক-পাঠিক বিশেষ করে স্কুল পর্যায়ের ছাত্র-ছাত্রীরা ষাতে আমাদের প্রাচীন গণিতের একটি রূপরেথা পান, দেই উদ্দেশ্যেই গ্রন্থটি পবিকল্পিত। তাই,—এই গ্রন্থ অমন কোন গণিতিক উপাদান অন্তর্ভুক্ত করা হয়নি য স্কুল গণিত-জ্ঞানের বাইরে, কেবলমাত্র তু-একটি ক্ষেত্রে উচ্চ গণিতের উপাদানের উল্লেখ আছে। এতে গণিতাচার্যদের স্ত্রানয়মাদির মূল সংস্কৃত ক্লোকগুলির কিছু কিছু উদ্ধান হয়েছে সত্যা, কিন্তু ভাতে সংস্কৃতে অনভিক্ত কাকর পক্ষে বিষয়টি বুঝাতে অন্থরিধা হবে না। কারণ,—সর্বত্র বঙ্গান্থবাদ, ভাবান্থবাদ বা মর্মার্থ দেওয়া হয়েছে; এমন কি প্রায় সর্বত্র উদাহরণ দিয়ে স্পষ্ট করার প্রয়াসনেওয়া হয়েছে।

লক্ষণীয়, এই গ্রন্থে পাদটীকা নাই বললেই চলে। গ্রন্থপঞ্জীও যে বিভারিত তা বলার স্পর্ধা রাখি না। ধথাস্থানে উল্লিখিত হলেও এখানে করেকটি গ্রন্থের নাম বিশেষভাবে উল্লেখযোগা। প্রথমেই যে গ্রন্থের নাম করতে হয়, তা হলো Dr. B. B. Datta ও Dr. A. N. Singh-এর History of Hindu Mathematics; Dr. B. B. Datta-এর Science of Sulba; Dr. T. A. Saraswati Amma-র Geometry in Ancient and Medieval India; Dr. C. N. Srinivasienger-এর History of Ancient Indian Mathematics; A Concise History of Science in India-এর অন্তর্গত S. N. Sen বচিত গণিতের ইতিহাস। প্রাচীন লিপি ও চিত্রগুলির অধিকাংশই উল্লিখিত গ্রন্থমূচ থেকে গৃহীত। পাণ্ড্লিপির সামান্ত পরিমার্জনাকালে ও প্রফ দেখার সময় ড: প্রদীপকুমার মজুমদারের 'প্রাচীন ভারতে গণিতচর্চা' বইটির সাহাষ্য নিয়েছি। এবং গ্রন্থ মধ্যে প্রা. ভা. গ. চ. নামে উল্লেখ করেছি।

প্রফুতপক্ষে, এই গ্রন্থে নতুন কোন তত্ত্ব ও তথ্যের পরিবেশনা নাই, আর নতুন কোন তত্ত্বে উপস্থাপনাও নাই। তবে ত্ব-একটি ক্ষেত্রে লেখকের নিজস্ব অভিমত আছে। তা হলেও বলা যায়, এতে অতি পরিচিত তথ্যের সঙ্কলন আছে মাত্র। এ-বিষয়ে পূর্বাচার্যদের ও পূর্বসুরীদের প্রতি আমার ঋণ অকুপ্রচিত্তে স্বীকার করি।

আর একটি কথা: প্রাচীন ভারতীয় গণিতের কিছু কিছু মূলগ্রন্থ, অম্বাদ ও ইতিহাস পাঠে যে যুগপৎ বিশ্বয় ও আনন্দ অমুভব ও উপলব্ধি করেছি, এবং সাধারণ পাঠক ও স্কুলের ছাত্র-ছাত্রীদের কাছে তার যতটুকু উপযোগিতা আছে বলে মনে হয়েছে, তার সামান্ত অংশ পরিবেশন করার প্রচেষ্টা করেছি মাত্র। কিন্তু প্রাচীন ভারতীয় গণিতের নানা তত্ব ও তথ্য জটিল ও তুর্বোধ্য। তাই এই গ্রন্থে কোন ত্রুটি নাই, একথা বলার মতো ধুষ্টতা আমার নাই। যদি অমুরাগী পাঠক ও স্বধীজন ভুল-ত্রুটি উল্লেখ করে গ্রন্থটির উৎকর্ষ বৃদ্ধিতে গঠনমূলক প্রস্তাব দেন, তা হলে অমুগৃহীত হবো।

গ্রন্থে কোথাও কোথাও একাধিক বানান আছে এবং ভুলও অন্নপ্রবিষ্ট হয়েছে,—কিছু মৃদ্রণ-ভুল, আর কিছু লেখকের অনবধানতার জন্য ভুল। লেখকের পক্ষে সব প্রফ দেখা সম্ভব হয়নি, আবার লেখক প্রফ দেখায় খুবই অদক। ভুল যে-কাকরই হোক, লেখক অকুণ্ঠচিত্তে তাঁর ক্রটি স্বীকার করেছেন। পরিশেষে একটি শুদ্ধিণত্র দেওয়া হলো। জানি, পাঠক-পাঠিকাদের পড়তে অস্কবিধা হবে। এই অনিচ্ছাকৃত ক্রটির জন্য মার্জনাপ্রার্থী।

এখানে ত্-জন দরকারী কর্মচারীর নাম উল্লেখ করে ক্তজ্ঞতা জানাই। এঁরা হচ্ছেন শ্রীঅনিলচন্দ্র দাস ও শ্রীবীরেন্দ্রনাথ অধিকারী। আমি এই প্রস্থের প্রায় তিন-চতুর্থাংশ পাণ্ডুলিপিসমেত একটি বাাগ কলকাতা থেকে বাঁকুড়াগামী এক্সপ্রেস বাসে ফেলে আসি। কিন্তু ড্রাইভার শ্রীদাস ও কণ্ডাক্টর শ্রীঅধিকারী পরদিন সকালে আমায় টাকাপয়স্বা, পাণ্ডুলিপি ও অক্যাক্ত দরকারী কাগজপত্র সমেত ব্যাগটি ফেরৎ দেন। তাঁদের মহত্ব ও সহাদয়তা আমায় আরো প্রেরণা দিয়েছে।

বাঁরা আমার প্রন্থ রচনার নানাভাবে সাহায্য ও উৎসাহিত করেছেন তাঁরা স্থাবত কর, ডা: কালাচাঁদ রায়, ডা: গোপালচন্দ্র মাইভি, অনীতা কর, প্রণতি রায়, অশোক কুমার খামকই, কিশোরী মোহন মান্না, ড: অসীম বর্ধন ও রবীন বল। এঁদের ক্তজ্ঞতা ও ধন্যবাদ জানাই। ড: প্রদীপকুমার মজুমদার ড: অম্ল্যকুমার বাগের মূল একটি প্রবন্ধ সরবরাহ করার ও বইটিতে বিশেষ ওৎস্ক্য ও আগ্রহ প্রকাশ করায় তাঁকে ধন্যবাদ ও ক্তজ্ঞতা জানাই।

ফার্মা কেএলএম-এর কর্ণধার কানাইলাল মুখোপাধ্যার মহাশর গ্রন্থটি প্রকাশে সবিশেষ বত্ন ও আন্তরিকতা দেখিয়েছিলেন, এবং অমুজপ্রতিম লেথককে সর্বদা মপরামর্শ দিতেন। কিন্তু গ্রন্থটি প্রকাশের পূর্বে তাঁর আকন্মিক প্রয়ানে গভীর বেদনা অমুভব করছি এবং তাঁকে সম্প্রাচিত্তে শ্বরণ করছি। স্বর্গত মুখোপাধ্যায়ের স্থাগ্য পুত্র প্রীর্থীক্রনাথ মুখোপাধ্যায় মহাশয় গ্রন্থটি প্রকাশে উপযুক্ত ব্যবস্থাদি গ্রহণ করায় তাঁকে ধন্যবাদ ও কৃতজ্ঞতা জানাই।

কেএলএম-এর প্রকাশন বিভাগের শ্রীপতিপ্রদাদ ঘোষ ও স্থবেন্দ্বিকাশ পাল মহাশয়কে ধন্যবাদ জানাই; তাঁরা নানাভাবে আমায় প্রভৃত সাহায্য করেছেন।

ল. ম.

"The best of prophets of the future is past."

-Byron

THE RESERVE OF STREET STREET, STREET,

# স্থচীপত্ৰ

# ज्यिका ।।

সাত

অবতরণিকা।।

আকরগ্রন্থ সমৃহের সংক্ষিপ্ত পরিচয়,—বৈদিক সাহিত্য-২, ঋথেদ
-৬, সামবেদ-৬, বজুর্বেদ-৬, অথর্ববেদ-৪, ব্রাহ্মণ-৪, আরণাকউপনিবদ-৪, বেদান্ধ-৪, স্ত্র-৪, ছন্দ-৫, বৌদ্ধ ও জৈনগ্রন্থ-৫,
স্থানান্ধ স্ত্র-৬, সমবায়ান্ধ-৬, স্থ-প্রজ্ঞপ্তি-৬, চন্দ্র-প্রজ্ঞপ্তি-৬,
জমুদ্বীপ-প্রজ্ঞপ্তি-৬, গণিতবিত্য-৬, কল্পস্তর, উত্তরাধ্যায়ন স্ত্র-৬।

#### खथम जबागम ।।

b-11

সিন্ধু সভ্যতা ৮, মহেঞ্জো-দড়ো হরপ্লার প্রাপ্ত ওজন, গণনা ও সংখ্যা ৯, পরিমাপ ১০, সংখ্যা ১১।

#### দিভীয় অধ্যায়।।

32-36

বৈদিক যুগের গণিত ১২, দংখ্যা ১২, প্রাথমিক চার নিয়ম ১৩, ভগ্নাংশ ১৪, প্রগতি ১৪, বৈদিক যুগের বীজগণিত ১৫, সমবার ও বিন্যাস ১৫, সমস্যা ১৬, নিয়ম ১৬।

### তৃত্তীয় অধ্যায়।।

19-00

শুলস্ত্র ১৭, অগ্নির স্বরূপ ও বৈদিক পূজা অম্প্রানের পরিচয় ১৭, শুল ও শুলকার ১৯, বৌধায়ণ ১৯, কাত্যায়ন ২০, আপস্তথ ২০, মানব ২০, পূর্ব পশ্চিম রেখা নির্ণয় ২২, কয়েকটি স্বত:সিদ্ধ ও শীকার্য ২২, প্রাচীন বজ্ঞবেদীর পরিচয় ও ইতিহাস ২০, কয়েকটি বজ্ঞবেদীর জ্যামিতিক পরিচয় ২৬, প্রীথাগোরাসের পূর্বে ২৭, রুত্তের বর্গরূপ ও য় (পাই) এর মান ২৯, শুলস্ত্রে একক ৩০, শুলস্ত্রে গণিত ৩১, অমূলদরাশি ৩২, ক্ষেত্রেল ও আয়তন ৩৪, শুলস্ত্রের ভাষ্যকারগণ ৩৪, বৌধায়ন শুলস্ত্র ৩৪, কাত্যায়ন শুলস্ত্র ৩৫, আপস্তম্ব শুলস্ত্র ৩৫, মানব শুলস্ত্র ৩৬।

#### **क्टूर्थ** जशाम् ॥

09-85

লেখন ও প্রাচীন সংখ্যা ৩৭, প্রাচীন ভারতীয় সংখ্যা ৩৮, বান্ধীলিপির ভারতীয় উৎস ৩৮, খরোষ্ঠী ও ব্রান্ধীলিপিতে সংখ্যা ৩৯।

#### शक्य अध्याम् ॥

82-6.

বৈ অব্যায়।।
জৈন গণিত ৪২, সংখ্যাতত্ব ৪২, গণিতের বিষয়বস্থ ৪৪,
পরিকর্ম—প্রাথমিক চার নিয়ম ৪৫, কলাসবর্ণ—ভগ্নাংশ ৪৫,
রজ্জু—জ্যামিতি ৪৫, দ এর আসম মান ৪৬, জমুখীপ বা পৃথিবী
বিষয়ে ধারণা ৪৬, স্টক ৪৭, বিকল্প, সমবায় ও বিন্যাস ৪৭,
হজন অগণিতক্ত জৈন আচার্যের জীবনী ৪৯, ভদ্রবাহ্ন ৪৯,
উমাস্বাতী ৫০

#### यर्छ जन्ताम ।।

THE PART OF PRINTING AND CA-60

বকশালী পাণ্ড্লিপি ৫১, সঙ্কলন গ্রন্থ ৫৩, অজ্ঞাত বাশির সঙ্কেত ৫৩, ঋণাত্মক চিহ্ন ৫৪, বকশালী পাণ্ড্লিপির সর্বশ্রেষ্ঠ অবদান ৫৫, ভগ্নাংশ ৫৬, কয়েকটি অঙ্কের উদাহরণ ৫৭, অপ্রাক্ত নিয়ম (Regula Falsi) ৫৯

#### जश्य जशांश ।।

95-98

আর্যভট ৬১, আর্যভট সমস্থা ৬৩, আর্যভটীয় গ্রন্থের সংক্ষিপ্ত পরিচয় ৬৪, দ এর মান ৬৬, বর্গমূল ও ঘনমূল ৬৭, প্রগতি ৬১, সাইন এর উদ্ভব ও ক্রমবিকাশ ৭১, একঘাত অনির্ণেয় সমীকরণ ৭৬, কয়েকটি জ্যামিতিক স্তুর ৭৬, আচার্য আর্যভট ৭৪

### अष्टेम अशाश ।।

94-91

বরাহমিহির ৭৫, প্রথম ভাস্কর ৭৭

#### নবম অধ্যায়।।

92-29

বন্ধগুপ্ত ৭৯, বন্ধস্টু দিদ্ধান্তের সংক্ষিপ্ত পরিচয় ৮০, বন্ধগুপ্তের অবদান ৮১, দ্বিঘাত সমীকরণ ৮১, হৃ° একটি পুত্র ৮২, শ্রেণী ৮৩, প্রাচীন উৎস ও ঐতিহাসিক উপাদান ৮৫, জ্যামিতি ৮৬,
একটি সম্পান্ত ৮৮, চতুর্ভু জ ৮৯, ট্রাপিজিয়াম ৯২, এক নতুন
তত্ত্বের দিশারী ৯৩, বিদান সর্বত্ত প্রভাতে ৯৪, সংযোজন ৯৪,
বরক্চি ৯৪, হরিদত্ত ৯৫, শ্রীধরাচার্য ৯৫, গোবিন্দ স্থামিন ৯৭,
শক্ষর নারায়ণ ৯৭

#### জশম অধ্যায়।।

26-72

মহাবীরাচার্য ৯৮, গণিত-সার-সংগ্রহের সংক্ষিপ্ত পরিচয় ৯৯,
আচার্য মহাবীরের অবদান ৯৯, পাটীগণিত ১০০, মাল্য গুণন
১০২, একক ভগ্নাংশ ১০২, কয়েকটি স্ত্র ১০৪, জ্যামিতি ১০৬,
সংযোজন ১০৯, দ্বিতীয় আর্যভট ১১০, শ্রীপতি ১১১

#### क्रांम्य व्यवतात्र ॥

120-101

ভাস্করাচার্য ১১৩, লীলাবতী উপকাহিনী ১১৪, লীলাবতীর বিষয়বস্ত ১১৬, বীজগণিতের বিভাগ ১১৬, দমবায় ও বিন্যাদ ১১৭, ভাস্করীয় গণিতে শ্ন্য ১১৭, করণী ১১৮, কয়েকটি উদাহরণ ১১৯, স্থদ নির্ণয় ১২০, দময় নির্ণয় ১২১, পরিমিতি ১২৩, জ্যামিতি ১২৪, ত্রিভুজ ১২৪, ট্রাপিজিয়াম ১২৫, বৃত্ত ১২৬, ত্রিকোণমিতি ১২৬, কলন ১২৭, দিদ্ধান্ত শিরোমণির জনপ্রিয়তা ১২৮, সংযোজন ১২৮, নারায়ণ পণ্ডিত ১২৮, শ্ন্য ১২৯

#### দ্বাদশ অধ্যায়।।

302-303

ভাষ্যকার পরিচয় ১৩২, পৃথুদকস্বামী ১৩৩, পরমেশ্বর ১৩৪, নীলকণ্ঠ দোময়াজী ১৩৪, কয়েকটি পরিবারের কথা ১৩৬, দোয়াই জয়সিং ১৩৮, জয় সিং-এর জীবনের সংক্ষিপ্ত পরিচয় ১৩৯, জ্যোতির্বিজ্ঞানে অবদান ১৪০, তুর্লভ তিনথানি গ্রন্থ ১৪৬, যুক্তিভাষা ১৪০, করণপদ্ধতি ১৪৯, সদ্রত্নমালা ১৫০

#### व्यापन व्याप्त ॥

102-165

দশগুণোত্তর স্থানিক-মান পদ্ধতি ১৫২, সংখ্যা-শন্ধ পদ্ধতি ১৫৫, সংখ্যা-বর্ণ পদ্ধতি ১৫৭, কটপয়ধি পদ্ধতি ১৫৯, শৃক্ত ১৬০

### **हर्जुम अशा**श्र ।।

পাটীগণিতের বিষয়বস্ত ১৬২, প্রাথমিক চার নিয়ম ১৬৩, বোগ ১৬৪, বিয়োগ ১৬৫, গুণন ১৬৬, ভাগ ১৭১, ভগাংশ ১৭৩

#### अक्षम्य व्यव्याश्च ॥

299-269

বর্গ ১৭৭, বর্গমূল ১৮১, ঘন ও ঘনমূল ১৮৩, ত্রৈরাশিক ১৮৪

#### ষোডশ অধ্যায় ।।

766-575

বীজগণিত ১০৮, চিহ্ন ও সক্ষেত ১৯০, অজ্ঞাতরাশি ১৯১, সহগ ১৯২, ঘাত ১৯৩, প্রবক রাশি ১৯৬, চিহ্নের পত্র ১৯৬, বিয়োগ ১৯৪, গুণন ১৯৫, ভাগ ১৯৫, সমীকরণ ১৯৭, সমীকরণ লেখন ১৯৮, একবর্ণ সমীকরণ ১৯৯, তুইটি অজ্ঞাত-রাশি বিশিষ্ট একঘাত সমীকরণ ২০৬, তিনটি অজ্ঞাতরাশি বিশিষ্ট একঘাতসমীকরণ ২০৬, ত্বিঘাত সমীকরণ ২০৪, ত্বিঘাত সমীকরণের তুটি বীজ ২০৭, একটি বিতর্ক ২০৮, শ্রেটা ২০৯

#### अञ्चल व्यवगांत्र ।।

355-258

কুট্টক ২১৩, একঘাত অনির্ণের দমীকরণের শ্রেণীবিভাগ ২১৪, আর্যভট ও একঘাত অনির্ণের সমীকরণ ২১৫, একঘাত অনির্ণের সহ সমীকরণ ২১৯, বর্গ-প্রকৃতি ২২১, চক্রবাল ২২২, ছুটি ঐতিহাসিক অপলাপ ২২৩

#### অষ্টাদশ অধ্যায় ।।

20-209

শৃত্য ২২৫, শৃত্যের প্রাচীনতা ও দার্শনিক তাৎপর্য ২২৫ শৃত্যের গাণিতিক তাৎপর্য ২২৬, শৃত্যের পাটীগাণিতিক তাৎপর্য ২২৭, শৃত্যের বীজগাণিতিক তাৎপর্য ২২৭, শৃত্য ও ইপসিলন ২২৮, শৃত্য ও অনস্ত ২২৯, আধুনিক কবির ভাষায় শৃত্য ২৩০, ভাষাতত্ব ও ভারতীয় গণিতের কাল ২৩১

প্রাচীন ভারতীয় গণিতের কয়েকটি পারিভাষিক শন্দ

२७५

নিৰ্বাচিত গ্ৰন্থপঞ্জী

286

निर्घके

386

# ॥ অবতরণিকা॥

"For out of olde feldes, as men seith, cometh al this newe corn fro yeer to yeer; And out of olde bokes, in good feith, cometh al this newe science that men lere."

-Chaucer

মানব সভ্যতার ইতিহাসে ভারতবর্ষের একটি বিশিষ্ট স্থান আছে। অলৌকিক প্রতিভাসম্পন্ন প্রাচীন ভারতীয় ঋষি ও মনীষীরা নিত্য-নতুন আবিষ্কারে সারা বিশ্বের বিশ্বয় উৎপাদন করেছিলেন। জ্ঞান ও বিজ্ঞানের বিভিন্ন শাখায় এমন অনির্বচনীয় মৌলিকতা বোধ হয় আর কোন দেশের ইতিহাসে দেখতে পাওয়া যায় না। প্রাচীন সভ্য দেশ সমূহে,—মিশর, ব্যাবিলন, চীন, গ্রীস প্রভৃতি দেশে সভ্যতার ক্রমবিবাশের একটি ফ্ল্ম ধারা লক্ষ্য করা যায়। কিন্তু প্রাচীন ভারতীয় সভ্যতায় এই স্বাভাবিক ধারাটি যেন কোন যাত্বমন্তবলে হঠাৎ পূর্ণতা প্রাপ্ত হয়েছে। এই অস্বাভাবিকত্বের প্রধান কারণ বোধ হয় এই দেশের মাটিতে অলৌকিক প্রতিভাসম্পন্ন মৃনি, ঋষি ও মনীষীদের আবির্ভাব। তাই তাঁদের প্রতিভার স্বীকৃতি-স্বরূপ আজ্ব আমরা জ্ঞান-বিজ্ঞানের সর্বশ্রেষ্ঠ আকর গ্রন্থ বেদ-কে প্রভিতার বিচনা বলে মনে করি। নিঃসন্দেহে অলৌকিক প্রতিভা ভগবানের ঐশ্বর্য-স্বরূপ।

শিক্ষিত মহলে দ্বিমত নাই, ভারতীয় জ্ঞান-বিজ্ঞানের বিভিন্ন শাখার প্রাচীন ই তিহাস আমাদের বিশ্বিত করে,—বিমৃত্ করে। আমরা হতবাক হয়ে দেই সব ভগবৎ এখর্মের অধিকারী মৃনি-ঋষিদের গবেষণা ও আবিষ্কারের অবলুগু ধারাটি অহুসরণ করতে না পেরে অনেক সময় অর্থহীন মন্তব্য করি। আজও দেশে প্রতিভার অভাব নাই, আজও গবেষণা ও আবিষ্কার হচ্ছে। কিন্তু আমাদের নিজম্ব যে ঐতিহাসিক ধারাটি অবলুগু, তার পুনক্জীবনে আমরা সচেষ্ট নই। ফলে, আমাদের প্রক্লত বৈশিষ্ট্য ও অভিনবত্বের যথার্থ মূল্যায়ন আজও সম্ভব হয়নি।

দর্বজন স্বীকৃত, কেবলমাত্র অন্তকরণের দ্বারা কোন জ্বাতি বড় হয় না,—চাই
স্বীকরণ। স্বীকরণ অনায়াসসাধ্য হয়ে ওঠে যথন তা নিজস্ব ধারাটি প্রাপ্ত হয়।
বর্তমানে আমাদের শিক্ষা-ব্যবস্থায় কেবল অন্তকরণের আয়োজন। তাই, দর্বস্তবে
আমরা শিক্ষার ফল থেকে বঞ্চিত। আমরা দ্বাই 'তোডা কাহিনীর'

তোতাপাথী। শেখানো বুলি, মুখস্থ বিচ্ছে ছাড়া আর আমাদের কি আছে! আমাদের নিজস্ব বলে কিছু নাই,—জ্ঞান ও বিভাব সর্ব:ক্ষত্রে। অথচ আমরা এক বিশাল সভ্যতা, সংস্কৃতি ও ঐতিহ্যের উত্তরাধিকারী। এই আলোকবর্তিকা থেকে আমরা নিভূলি পথের নিশানা পেতে পারি, চলার পথের গতি ত্বান্থিত করতে পারি। কিন্তু হৃংখের বিষয় আমরা অনেকেই আমাদের অতীত গৌরবের প্রায় কিছুই জানি না। যেটুকু জানি তা হচ্ছে গুটি কয়েক নাম। আর এক শ্রেণীর শিক্ষিতের কাছে তো প্রাচীন ভারতের সব কিছুই অচল, মৃত। শিক্ষায় ব্যক্তি-স্বাতন্ত্রোর উল্লেষের ক্থা ভাবি, কিন্তু জাতির স্বাতন্ত্রোর কথা ভাবি না, আমাদের সামগ্রিক বৈশিষ্ট্যের কথা ভাবি না।

বিশ্বগণিতের ইতিহাসের পটভূমিকায় বিচার করলে প্রাচীন ভারতীয় গণিতের ইতিহাস এক পরম বিশ্বয়। এই ইতিহাসে সন-ভারিথ নাই, নাই কোন ব্যক্তিপরিচয়, আর নাই গণিতের সর্বশ্রেষ্ঠ আবিষ্কারগুলির অন্তরালের কাহিনী। হায়, কোপীনধারী ভারতীয় মৃনি ঋষিগণ! ভোমরা পার্থিব খ্যাতি ও প্রতিপত্তিতে কেন উদাসীন ছিলে? সন-ভারিথ দিয়ে লেখার প্রচলন ছিল না। 326-27 খ্রী: প্রং পরবর্তী রচনায় কিছু কিছু সন-ভারিথের উল্লেখ পাওয়া যায় বটে, কিন্তু ভার পূর্বের রচনার সয়য় নির্ণয় হুংসাধ্য।

প্রাচীন ভারতীয় গণিতের প্রক্তর মুদ্যায়ন করে ইতিহাদ রচনা করা প্রায় অসম্ভব রাপার। কারণ, প্রাচীন ভারতের গাণিতিক উপাদান এই দেশের বিভিন্ন ধর্মের বিশাল শাল্প ও সাহিত্যের মধ্যে বিশিপ্তভাবে ছড়িয়ে আছে। সংস্কৃত, পালি, প্রাক্কত, অপভ্রংশ প্রভৃতি ভাষার পথ অতিক্রম করে অধ্যয়ন করা যে কি কঠিন, তা ভুক্তভোগীমাত্রেই বুঝবেন। সার্থক ও সফল গণিতের ইতিহাদ রচনা একমাত্র তখনই সম্ভব যদি বিশেষজ্ঞ ও পণ্ডিতগণ বিভিন্ন ধর্মের শাল্প ও বিভিন্ন ভাষার সাহিত্যাদি বিভিন্ন আঞ্চলিক ভাষায় অন্থবাদ ও সম্পাদনা করেন।

# । আকর প্রন্থসমূহের সংক্ষিপ্ত পরিচয় ।। (বৈদিক সাহিত্য)

বিষয়বস্তু ও রচনাকালের ভিত্তিতে সমগ্র বৈদিক সাহিত্যকে তিন শ্রেণীতে বিভক্ত করা হয়েছে—সংহিতা, ব্রাহ্মণ ও আরণ্যক-উপনিষদ। এই বিভাগ সত্ত্বেও প্রস্পারের মধ্যে যথেষ্ট সাদৃশ্য মাছে। এমন কি বিভিন্ন বিভাগে একই তথ্যের পুনরা বৃত্তিও ঘটেছে। 'সংহিতা' দ্বাপেক্ষা প্রাচীন হলেও কোন কোন 'বান্ধন' কোন কোন সংহিতার পূর্ববর্তী। তেমনি কোন কোন আরণ্যক-উপনিষদ আবার কোন কোন ব্যান্ধণ গ্রন্থের পূর্ববর্তী।

ঋথেদ সংহিতা সর্বাপেক্ষা প্রাচীন। এই সংহিতার বচনাকাল নিয়ে নানা তর্ক-বিতর্ক আছে। ম্যাক্স্মনার 1500 গ্রীঃ পৃঃ এর রচনাকাল বলেছেন, আবার ভিনটারনিজ (Winternitz) 2000—2500 গ্রীঃ পৃঃ এই সংহিতার রচনাকাল বলে মনে করেন। তিলক ও জ্যাকোবি ঋথেদ সংহিতাকে আরো প্রাচীন বলে মনে করেন। বর্তমানে অনেকেই ভিনটারনিজের সময়কাল নির্ণয়েই বেশী আত্মা স্থাপন করেন। প্রমাণের অভাবে তা-ই আমাদের মেনে নিতে হবে।

#### या या प

ঋথেদ দশটি মণ্ডলে বিভক্ত। পণ্ডিতরা বলেন ঋথেদের বিভিন্ন মণ্ডল বিভিন্ন দময়ে রচিত। এই প্রন্থে পৌরাণিক গল্পের মাধ্যমে বিজ্ঞানের নানা বিষয় উল্লিখিত হয়েছে। বিশ্বের তিনটি বিভাগ, স্বর্য, চন্দ্র,—এদের গতি, স্বর্যগ্রহণ ও চন্দ্রগ্রহণ, দিন, মাদ ও বৎদরের সময়ের বিভাগ দম্বন্ধে আলোচনা এই প্রস্থে পাওয়া যায়। তাছাড়া বিভিন্ন যজ্ঞবেদী ও সংখ্যার উল্লেখ থেকে গণিতের প্রাচীনত্ব প্রমাণিত হয়।

#### সামবেদ

এই সংহিতার তেমন গাণিতিক বৈশিষ্ট্য নাই। তবে ভারতীয় সঙ্গীতের ইতিহাসে এর একটি গুরুত্বপূর্ণ স্থান আছে।

#### यजुदर्वम

এই সংহিতার গৃটি বিভাগ—কৃষ্ণ যজুর্বেদ ও শুকু যজুর্বেদ। কৃষ্ণ যজুর্বেদে গতে তাত্ত্বিক আলোচনা ও ব্যাথ্যা করা হয়েছে। শুকু যজুর্বেদের বিষয়বস্তব আলোচনায় একটি শৃঙ্খলার ভাব আছে। কৃষ্ণ যজুর্বেদ দক্ষিণ ভারতে, কাশ্মীর, গুজরাট ও পাঞ্চাবে অধিক প্রচলিত ছিল। শুকু যজুর্বেদ উত্তর ও পূর্বভারতে প্রচলিত ছিল।

জ্যোতির্বিজ্ঞানের আলোচনায় এই সংহিতার গুরুত্ব অনেকথানি। প্রাচীন ভারতে গণিত পৃথক বিষয় হিসাবে আলোচিত হয়নি। গণিত ছিল জ্যোতিব বা জ্যোতির্বিজ্ঞানের অস্ব। ফলে, জ্যোতির্বিজ্ঞানের আলোচনায় গণিতের বিভিন্ন বিষয়ের পরিচয় পাওয়া যায়: দশের গুণিতকে বড় বড় সংখ্যার নাম, যোগ,

বিয়োগ, গুল, ভগাংশ ও প্রগতির বিষয় ঋগ্নেদে উল্লিখিত হলেও এথানে আরো বিস্তৃতভাবে আলোচিত হয়েছে।

#### অথব্বেদ

জ্যোতিষ ও গণিতের আলোচনা এই সংহিতায় না থাকলেও চিকিৎদা বিজ্ঞানের আলোচনায় এই সংহিতার গুরুত্ব অপরিদীম।

#### বাক্ষণ

দমগ্র বৈদিক সাহিত্যের দ্বিতীয় বিভাগ হচ্ছে ব্রাহ্মণ অংশ। এই অংশে পূজার্চনা, ও নানা বৈদিক অন্তর্গানের বিষয় আলোচিত হয়েছে। বিভিন্ন সংহিতার ব্রাহ্মণ অংশের বিস্তৃত আলোচনা থেকে জ্যোতিষ ও গণিতের স্বরূপ সম্বন্ধে স্বস্পষ্ট ধারণা করা যায়। গণিতের ইতিহাদে বৈদিক সাহিত্যের এ অংশের অবদান অপরিসীয়।

#### আরণ্যক-উপনিষদ

বৈদিক সাহিত্য বিভাগের এই অংশের তাত্ত্বিক ও দার্শনিক আলোচনা আমাদের গর্বের বিষয়। কিন্তু জ্যোতিষ ও গণিত বিষয়ে এখানে উল্লেখযোগ্য কোন আলোচনা নাই। যেটুকু আছে, তা পূর্ববর্তী সংহিতার অন্থর্মণ।

#### दबनाङ

বেদাঙ্গ অর্থাৎ বেদের অঙ্গ। বিভিন্ন বেদ অধ্যয়নের জন্ম বেদাঙ্গের জ্ঞান অপরিহার্য ছিল। বেদাঙ্গে আছে বিশেষ জ্ঞানের আলোচনা। বেদাঙ্গ ছ'প্রকার—শিক্ষা, কল্প, বাাকরণ, নিরুক্ত, ছন্দ ও জ্যোতিষ। বেদাঙ্গে গণিত, জ্যোতিষ ও বিজ্ঞানের নানা তত্ত্ব ও তথ্য ছড়িয়ে আছে।

#### भृज

কালক্রমে বিপূলায়তন বেদ ও বেদাঙ্গ পড়া অসম্ভব হয়ে পড়ে। তথন স্ত্রাকারে দব কিছু লেখার প্রয়োজন হয়ে পড়ে। স্ত্রের:দংজ্ঞায় বলা হয়েছে: স্বলাক্ষরমদন্ধির দারবদ বিশ্বতোম্থা। অস্তোতম্ অনবজং চ স্তরং স্ত্রবিদোবিন্দু:॥ অর্থাৎ "স্বলাক্ষর, দারবান, দর্বত্র প্রযোজ্য, অদন্দির্ধার্থ, স্ত্রাকারে গ্রথিত স্থন্দর গত রচনাকে স্ত্র বলা হয়।" স্বগুলির স্প্রতা ও দংক্ষিপ্ততা বিষয়ে ভিন্টারনিজ বলেন, "There is probably nothing like these sutras of the Indians in the entire literature of the world." দীমিত শবের প্রয়োগে স্তত্রন্থ জিলি প্রায় তুর্বোধ্য। ভাষ্য ব্যতিরেকে এদের মর্মার্থ গ্রহণ অসম্ভব বললেই চলে। তাই, বিভিন্ন স্থত্তের অনেক ভাষ্য রচিত হয়েছে। পতঞ্জলি, বাৎস্যায়ন, শঙ্কর প্রভৃতি স্থনামধন্য ভাষ্যকার।

পূজাপদ্ধতি ও নানা অষ্ঠানের বিধি-নিয়ম কল্লস্ত্তে আলোচিত হয়েছে। শুবস্ত্র কল্লস্ত্ত্রের অন্তর্গত। শুবস্ত্র সম্পর্কে আমরা পরে বিস্তৃত আলোচনা করব।

### TO THE REPORT OF THE RESIDENCE OF THE RE

প্রাচীন ভারতীয় গণিতের ইতিহাদে ছন্দের গুরুত্ব অনেকথানি। বিশেষ করে থ্রীষ্টপূর্ব দ্বিতীয় শতকে রচিত পিঙ্গলের ছন্দুয়ত্ত গ্রন্থটি। কারণ, এখানেই আমরা প্রথম শৃত্যের (0) ব্যবহার দেখতে পাই। এমন কি ভারতীয় গাণিতিকদের সমবায় ও বিহাদ ও দ্বিণদ উপপাত্যের ধারণা এই গ্রন্থ থেকে জানতে পারা যায়।

# বৌদ্ধ ও জৈন গ্রন্থ

ভারতীয় গণিতের ইতিহাদে বৌদ্ধ ও জৈনদের অবদান কম নয়। সন-ভারিথ সম্বন্ধে যতচুকু ধারণা করা যায়, তা এই সব ধর্মীয় শাস্ত্রের দৌলতেই সম্ভব হয়েছে।

ধর্মীয় দিক থেকে ব্রাহ্মণাধর্মের বিরুদ্ধে জেহাদ ঘোষণা করে বৌদ্ধর্ম আবিভূ ত হয়ে পালি ভাষায় এক বিশাল ধর্মীয় গ্রন্থবাজি স্থাষ্ট করেছিল। তখনকার আচার-অন্নর্ছান-সর্বস্থ ব্রাহ্মণাধর্মের কঠিন নাগপাশ থেকে মান্ত্র্যের মৃক্তিসাধনের এক নতুন পথের আবিজ্ঞার করে এই ধর্ম বহির্জারতে প্রসারলাভ করলেও জ্যোতিষ, গণিত ও বিজ্ঞানের বিকাশ সাধনে এই ধর্মের উল্লেখযোগ্য তেমন কোন অবদান নাই। তা বলে বৌদ্ধরা এই বিষয়গুলি চর্চা করেননি এমন নয়। প্রধানত ব্রাহ্মণ্য জ্যোতিষ ও গণিতের চর্চার মধ্যেই তারা নিজেদের নিয়োজিত রেখেছিলেন। গণিত অধ্যয়ন এই ধর্মে স্বীকৃত হলেও জৈনদের মত গণিতে বৌদ্ধদের তেমন কোন অবদান নাই। বিশাল বিশাল সংখ্যার নামকরণ ও ব্যবহার বৌদ্ধদের গণিত-চর্চার একটি দৃষ্টান্ত। যথাস্থানে আমরা ত্'একটি বৌদ্ধ গ্রন্থের নামোল্লেখ করেব।

জৈনদের ধর্মশাস্ত্র 'আগম' বা 'দিদ্ধান্ত' নামে পরিচিত। এই আগম গ্রন্থদেহ জৈনধর্মের তত্ত্ব, ব্যাখ্যা, জিনচরিত ও মহাবীর বর্ধমানের প্রবচনসমূহ আলোচিত হয়েছে। আগম গ্রন্থের মোট সংখ্যা 45, কারো কারো মতে 84। এই 45 খানি বা 84 খানি গ্রন্থ অঙ্গ, উপাঙ্গ, প্রকীর্ণ, ছেদ-স্থত্ত ও মূল-স্তত্তে বিভক্ত। নিমে গণিত ও জ্যোতিষ সম্পর্কিত কয়েকটি গ্রন্থের নামসহ সংক্ষিপ্ত পরিচয় দেওয়া হলো।

স্থানাঙ্গ সূত্র (ঠানাংগ): এই গ্রন্থে 1 থেকে 10 পর্যন্ত সংখ্যার নানাবিধ তথ্যের আলোচনা আছে। স্থানাঙ্গ প্রের গাণিতিক মূল্য অপরিদীম।

সমবায়ান্ধ (সমবায়ংগ): স্থানাঙ্গ সত্তে যে সংখ্যাগত দিকের আলোচনা আছে তার বিস্তৃত বিবরণ এই গ্রন্থে পাওয়া যায়। এটিকে স্থানাঙ্গ স্ত্তের ভাষারূপে গণ্য করা যেতে পারে।

স্থ-প্রজ্ঞপ্তি (স্র-পন্নতি): এই গ্রন্থটি জ্যোতিষ বা জ্যোতির্বিজ্ঞান সম্বন্ধীয়। খাদশ রাশি, স্থ্, চন্দ্র ও নক্ষত্রের বিবরণ থেকে জৈনদের জ্যোতির্বিজ্ঞান সম্বন্ধে ধারণার কথা জানতে পারা যায়।

চন্দ্র-প্রজ্ঞপ্তি ( চন্দ্র-পন্নতি ) : এই গ্রন্থটি পূর্য-প্রজ্ঞপ্তির ন্যায় জ্যোতির্বিজ্ঞান বিষয়ক গ্রন্থ।

জমুদীপ-প্রজ্ঞান্তি (জমুদ্দীপ-পন্নতি ): এই গ্রন্থটি প্রধানত ভূগোল বিষয়ক। তা হলেও এখানে নানা গাণিতিক স্থাের সন্ধান পাওয়া যায়।

গণিত-বিভা (গণি বিজ্ঞা): জ্যোতির্বিজ্ঞানের আলোচনায় গণিত অপরিহার্য। তাই এই গ্রন্থে জ্যোতির্বিজ্ঞান সম্পর্কিত গণিতের আলোচনা আছে।

কল্প সূত্র ও উত্তরাধ্যায়ন সূত্র: প্রকৃতপক্ষে এই গ্রন্থন্ন গণিত বিষয়ক নয়। তব্ও এখানে ভদ্রবাহু নানা গণিত-তথ্যের উল্লেখ করেছেন। 'জৈনগণিত' অধ্যায়ে আমরা ভদ্রবাহু সম্পর্কে আলোচনা করব।

জৈনধর্মে গণিতের অন্থালন ধর্মীয় কর্তব্য বলে গণ্য করা হতো। সর্বশেষ তীর্থক্ষর মহাবীর বর্ধমান ও বাইশতম তীর্থক্ষর অরিষ্টনেমির শিক্ষণীয় বিষয়ের তালিকা থেকে জানতে পারা যায় খ্রী: পৃ: ষষ্ঠ শতকে ও তারও পূর্ববর্তী সময়ে জ্ঞানার্জনের ক্ষেত্রটি ইতিহাস ও ষষ্ঠস্থানীয় নিঘন্ট (বৈদিক কোষগ্রন্থ), এদের অঙ্গ উপান্ধ এবং রহস্থ, এদের সাত, সংখ্যা-শাস্ত্র (গণিত), ষড়ঙ্গশাস্ত্র (শিক্ষা-কল্ল-ব্যাকরণ-ছন্দ-নিক্জ-জ্যোতিয়), নীতিশাল্প প্রভৃতি অধ্যয়ন করে সর্ববিষয়ে

বুংপত্তি অর্জন করেছিলেন। জৈনদের প্রথম তীর্থন্ধর ঋষভদেব ঠার রাজ্ত্বকালে প্রজাদের হিতার্থে বাহাত্তর কলা, চৌষষ্টি মহিলা-গুণ, শতপ্রকার শিল্প ও তিন প্রকার কর্ম বিষয়ে উপদেশ দিতেন। ওই বাহাত্তর কলার প্রথমটি লেখা, প্রধানটি গণিত এবং দর্বশেষটি শকুনের ভাষার অর্থ-নির্ণন্ধ। ঋষভদেবের সময়কাল নির্ণন্ধ করা এক অসম্ভব ব্যাপার। পরপর হ'জন তীর্থক্ষরের আবির্ভাব শত বংসর করে ধরলেও ঋষভদেবের আবির্ভাব কাল গ্রীঃ পৃঃ 3000 বংসর হয়। ভাহলে কি তিনি মহেজো-দড়ো ও হরপ্পার যুগের নিকটবর্তী সময়ে আবির্ভূত হয়েছিলেন? যাই হোক,—একথা নিঃসন্দেহে বলা যায় ভারতবর্ষে বছ প্রাচীন কাল থেকে গণিত-চর্চা চলে আসছে।

# প্রথম অধ্যায়

delicated and and and analysis of the state of the state

"The history of mathematics is one of the large windows through which the philosphic eye looks into past ages and traces the line of intellectual development.

-F. Cajori

# ॥ সিন্ধু সভ্যতা ॥

ভারতীয় ইতিহাদে দিল্ল্-সভাতা যেন প্রাগৈতিহাদিক যুগের। এই সভাতার ধারণা খুব স্পষ্ট নয়, কেবল কিছুটা ধারণার মধ্যে সীমাবদ্ধ। ইতিহাদ রচনার মশলার অভাব বেশী নাই। অনেক পুরাবস্তু আবিষ্কৃত হয়েছে কিন্তু প্রকৃত ইতিহাদ রচনা সম্ভব হয়নি। এখানকার শীলমোহর থেকে যদি কোনদিন লিপি পাঠ সম্ভব হয়, তা হলে হয়তো ভারতীয় সভাতার প্রকৃত ইতিহাদ আমরা জানতে পারব। আর মনে হয় তথন অনেক গবেষণা নির্থক হয়ে উঠবে। তথনই কেবল বেদ-বেদান্তের ক্রমবিকাশের ধারাটি স্কুপ্ট হয়ে উঠবে।

তবুও সিক্ক নদের তীরে অতি প্রাচীনকালে ভারতবর্ষে এক স্থমতা জাতি বাস করতো। আধুনিক সভাতার নগর-জীবন তাদের অলভ্য ছিল না। 180 ফুট দীর্ঘ 100 ফুট বিস্কৃত বিরাট স্থানাগারের মধ্য ভাগের প্রাঙ্গনে 39 ফুট দীর্ঘ, 23 ফুট বিস্কৃত ও ৪ ফুট গভীর সম্ভবণবাপীতে যে রাজা বা সর্দার অথবা দোর্দ গু প্রতাপ কোন পুরোহিত সথী বা দেবদাসীসহ জলকীড়া করত না কে বলতে পারে? এখানকার কূপের ধারে ক্ষয়ে যাওয়া ইটের চিহ্ন দেখে কোন স্থপ্রবিলাসী কবি যদি অপরাহ্ন বেলায় নানা ভ্যদে সজ্জিত দিন্ধু ললনাদের কলহাত্ম মুখরিত একটি অধ্যায়ের গীতিকাব্য রচনা করেন, তা হলে খুব দোষের হবে না। নগরের বিভিন্ন প্রায়ের বিভিন্ন পল্লীর নরনারীর প্রেমের উপাখ্যান শিলান্তরের কোথায় লুকিয়ে আছে, আজ তার সব সন্ধান মিলবে না। রক্ত মাংসের চিহ্ন মাজ আর নাই, আছে কেবল কন্ধাল আর ভগ্নস্থা। আমরা এর মধ্য থেকেই কিছু সন্ধান করার আয়োজন করছি।

নগর পরিকল্পনা, অট্টালিকা ও গৃহনির্মাণে যে বৈজ্ঞানিক পদ্ধতি দিল্পু তীরবাদী কোন ইঞ্জিনিয়ার গ্রহণ করেছিলেন, আজ তার কোন পরিচয় লিপিবদ্ধ নাই। যে বিশাল শস্তগারে শাসনকর্তার রাজস্ব জমা হতো তার ওজন-পদ্ধতির কোন লিখিত রূপ আমাদের জানা নাই। সভ্যতা ও সংস্কৃতির কিছু নিদর্শন কালের করাল গ্রাদ অতিক্রম করে আমাদের নয়নগোচর হয়েছে বটে, আজও কিন্তু সবই আহুমানিক, কাল্পনিক। সেজন্তেই বলছিলাম এই সভ্যতার প্রকৃত ইতিহাদ আজও রচিত হয়নি।

# ॥ मरहरक्षा-प्रदर्भ ७ इत्रश्रीत श्रीख ७ जन, गर्गना ७ मर्था।

বৃহৎ বৃহৎ অট্রালিকা ও গৃহ-নির্মাণে যারা নৈপুণ্য অর্জন করেছিলেন, তাঁরা যে পরিমাপ ও গণনায় নিপুণ ছিলেন, এ সম্বন্ধে নিশ্চিত মন্তব্য করা যায়। কারণ, গণিত-বিভার প্রাথমিক নিয়মগুলি ব্যতিরেকে এত বড় সভ্যতার বিকাশ সম্ভব হয়েছিল, এ-কথা ভাবা যায় না। চিত্র-দম্বলিত অসংখ্য শীলমোহর ও বিভিন্ন ওজনের পাথরের বাটখারার মধ্যেই এ-সবের প্রমাণ আছে।

শীলমোহবের পাঠোদ্ধার এখনো সম্ভব হয়নি। ঐতিহাসিকরা মনে করেন বহিবাণিজ্যে এই শীলমোহর ব্যবহৃত হতো এবং বস্তুর নাম ও ওজন লিপিবদ্ধ করা আছে। ওজন পাথরগুলি সাধারণত চকমিক পাথরের তৈরী, দৈর্ঘ্যে, প্রম্থে ও উচ্চতায় প্রায় সমান অর্থাৎ ঘনকাক্ষতি। বড বড পাথবগুলি মন্দিরাকৃতি, দড়ি দিয়ে ঝুলোবার জন্মে এতে ছিন্দ্রও থাকত। মি. হেমির মতে এই ওজন-গুলি এলাম ও মেদোপটেমিয়ার ওজন অপেক্ষা উৎকৃষ্ট ও নিভল। এই সব ওজন-পাথবের পরিমাপ পরীক্ষা করলে দেখা যায় স্থদার ওজনের মত প্রথমত দিগুণিত 1, 2, 4, 8, 16, 32, 64; কিন্তু তারপর দশগুণোত্তর, 110, 200, 320, 640, 1600 প্রভৃতি। মহেঞাদড়ো ও হংপ্লায় খনন করে 13.71 গ্রাম ওজনের বহু পাথর পাওয়া গেছে। স্থতরাং মনে হয়, দিল্ধবাদীবা 13.71 গ্রামকেই ওজনের একক হিসাবে ব্যবহার করত। কয়েকটি ধাতব তুলাদণ্ডের আবিষ্কার থেকে প্রমাণিত হয় যে, দে মূগে ওজন পদ্ধতির ব্যাপক প্রচলন ছিল। মনে করা হয়, এ-দব তুলাদণ্ডের ছোট্ট হালকা ধরনের কোন কিছু মূল্যবান সামগ্রী ওজন করা হতো। যেমন আমরা বিশেষ বিশেষ ক্ষেত্রে নিক্তি ও ব্যালেন্স ব্যবহার করি। ওজন বাটখারার একক ভগ্নাংশ ছিল বলে, মনে হয় দেই অতি প্রাচীন ভারতীয়রা ভগ্নংশের বাবহার জানত।

মহেজে:-দড়োর পরিকল্পনা, স্থাপত্য ও পূর্ত-বহস্ত বিশ্বহের বস্ত । এই নগরীর

ইমারং নির্মাণে যেন বর্তমানের ইট ব্যবস্থাত হয়েছে। ধ্বংদভূপের মধ্যে  $10\frac{1}{3}$  বা  $11'' \times 2\frac{9}{2}$  মাণের ইট দেখতে পাওয়া যায়। স্থান ও কার্যবিশেষে কথনো কথনো কাঁচা ও পোড়া ইটের মাপ  $10\frac{1}{2}$   $\times 5'' \times 2\frac{1}{2}$  থেকে  $20\frac{1}{3}$   $\times 8\frac{1}{2}$   $\times 2\frac{1}{3}$  পর্যন্ত দেখা যায়। কাশ্যপ-সংহিতায়  $10\frac{1}{3}$  বা  $11 \times 5\frac{1}{3} \times 2\frac{9}{3}$  অঙ্গলি মাণের ইটের সঙ্গে এক বিশ্ময়কর সাদৃশ্য দেখতে পাওয়া যায়।

পরিমাপ: এই মৃত-ভূপের মধ্য থেকে তু'ধরণের স্কেল আবিষ্কৃত হয়েছে। এক প্রকার শন্ধের তৈরী বর্তমান ফুটের মত।



চিত্র—1 ( সিন্ধু-সভ্যতা যুগের ব্যব্ছত স্কেল )

ভাঙ্গা এই স্কেলটি দৈর্ঘ্যে 6.62 দেমি এবং প্রস্তু 0.6 দেমি। এতে সুক্ষ করাত দিয়ে ন'ট দমান্তরাল দাগ কাটা আছে। এই দাগের একটিতে বৃত্ত ও ষষ্ঠ দাগে একটি বিন্দু চিহ্নিত আছে। বিন্দু ও বৃত্তের মধ্যবর্তী স্থানের দ্রত্ব 1.32 ইঞ্চিনে পরপর ঘটি দাগের মধ্যবর্তী স্থানের দ্রত্ব 0.264 ইঞ্চি। 1.32 ইঞ্চিকে দিক্ষু-ইঞ্চি ধরিলে এই পরিমাপ 2 স্থমেরীয় গুশির সমান। এই স্কেলের সঙ্গে সমাট আকবরের দময় উত্তর ভারতে গজের এক বিন্দয়কর মিল দেখতে পাওয়া যায়। আকবরের দময় উত্তর ভারতে 33 ইঞ্চিতে এক গজ ব্যবহৃত হতো। আর তা 25 দিক্কু-ইঞ্চির সমান।

আগেই বলা হয়েছে উপরোক্ত স্কেলটি ভগ্ন। ম্যাকে মনে করেন সমগ্র স্কেলটির পরিমাপ 13·2 ইঞ্চি। এই মাপের একক দশমিকে বিভক্ত ছিল বলে তিনি মনে করেন। ফুটের মত মাপ প্রাচীন মিশর ও এলামে প্রচলিত ছিল। সিন্ধু-তীরবাসীরা মাপের উন্নততর পদ্ধতি, দশমিক পদ্ধতি ব্যবহারের জন্ম গর্ব করতে পারে।

তথন আর এক প্রকার মাপকাঠি প্রচলিত ছিল,—হাতের মত প্রায় 20.5 ইঞ্চি লম্বা। প্রাচীন সভ্যদেশ সমূহে প্রায় সর্বত্তই এই হাতের মাপ ব্যবহৃত হতো। বৈদিকযুগের সময় থেকেই আমরা এই প্রকার মাপের বহু প্রমাণ পাই। কে বলতে পারে ভারতে এই মাপ হয় তো সিন্ধু-সভ্যতারই অন্তবর্তন!

সংখ্যা: মি. রোদ দির্ম্-শীলমোহরে প্রাপ্ত সংখ্যা বিষয়ে আলোচনা করে 1, 2, 3, 4, 5, 6, 7, 8, 9, এবং 12 এই কয়েকটি সংখ্যা নির্দেশক চিহ্ন আবিকার করেছেন বলে মত প্রকাশ করেছেন। দির্ম্বাদীরা উল্লম্ব রেখার দাহাযো সংখ্যা প্রকাশ করত। উল্লম্ব রেখাগুলি পাশাপাশি লেখা হতো, আবার দলগত ভাবেও লেখা হতো। এই ধরণের সংখ্যা বহু প্রাচীন সভ্য দেশে দেখতে পাওয়া যায়।



### চিত্ৰ—2 ( দিব্ধ-সভ্যতা মুগের সংখ্যা )

সবচেয়ে আশ্চর্যের বিষয় সিন্ধু-সংখ্যার সঙ্গে থরোষ্টী ও ব্রাহ্মী সংখ্যার কিছু কিছু মিল আছে। গুধু সংখ্যা নয়, শীলমোহরের কিছু কিছু লিপির সঙ্গে ব্রাহ্মী-লিপির সাদৃশ্যও আছে।

মহেঞ্জো-দড়োর আদি-স্তরের খনন সম্ভব হলে, হয়তো ভারতের এই পর্বের ইতিহাস আবার নতুন করে লিখতে হবে। হয়তো তথন শীলমোহরের লিপি-পাঠ সম্ভব হবে,—অনেকের মত গণিতের ইতিহাসও নতুন করে লিখতে হবে।

# ॥ দ্বিতীয় অধ্যায়॥

"This long period of nearly five thousand years show the rise and fall of many a civilization, each leaving behind it a heritage of literature, art, philosophy, and religion. But what was the net achievement in the field of reckoning, the earliest art practiced by man?"

-Dantiz.

# ॥ বৈদিক যুগের গণিত॥

প্রাচীন ভারতীয় গণিতের আলোচনায় সংহিতা, ব্রাহ্মণ ও বেদাঙ্গের গুরুত্ব সম্বন্ধে অবতরণিকায় সংক্ষেপে কিছু ইঙ্গিত দেওয়া হয়েছে। এই বিশাল গ্রন্থরাজিতে ছড়ানো গাণিতিক উপাদানসমূহ বৈদিক যুগে ভারতীয়দের গাণিতিক বৈপুণা সম্বন্ধে কিছুটা ধারণার স্বষ্টি করে। বিশেষ করে কল্লস্ত্রের অন্তর্গত শুলুস্ত্রেও জ্যোতিষে গাণিতিক উপাদানের প্রাচুর্য পরিলক্ষিত হয়। শুলুস্ত্র বৈদিক যুগে ব্রাচিত হলেও পৃথকভাবে আমরা এ-সম্বন্ধে আলোচনা করব। বৈদিক যুগে জ্ঞানের বিভিন্ন শাথা অধ্যয়নে গণিতের একটি বিশেষ স্থান ছিল। সনংকুমারের দ্বারা জিজ্ঞাসিত হয়ে নারদ তাঁর জ্ঞানার্জনের ক্ষেত্রগুলির যে বিস্তৃত তালিকা দিয়েছেন তার মধ্যে গণিত ও জ্যোতিষ স্থান পেয়েছে। বেদাঙ্গ-জ্যোতিষে গণনা বা রাশি-বিত্যাকে ময়্বের মাথায় শিথা এবং সাপের মাথার মণির সঙ্গে তুলনা করা হয়েছে। বৌদ্ধ ও জ্লৈন ধর্মে গণিতের সারবত্যা সর্বন্ত লাক্তর হয়েছে।

সংখ্যা: বৈদিক যুগে সংখ্যা-লিখনে দশগুণোত্তর পদ্ধতির পরিচয় পাওয়া যায়। বৃহৎ বৃহৎ সংখ্যার নামকরণে প্রাচীন সভ্য জাতির মধ্যে ভারতীয়গণ অগ্রগণ্য। গ্রীকরা মিরিয়াড (104) পর্যন্ত নামকরণ করেছিল। যজুর্বেদ সংহিতায় 1012 পর্যন্ত সংখ্যার নামকরণ পাওয়া যায়। তৈত্তিরীয় সংহিতায় এক (1), দশ (10), শত (102), সহ্ম (103), অয়ুত (104), নিমুত (105), প্রযুত (106), অরুদি (107), তার্দি (106), সমুদ্র (108), মধ্য (1010), অন্ত্য (1011) এবং পরার্ধ (1012) সংখ্যার নাম পাওয়া যায়। পঞ্চবিংশ ব্রাহ্মণেও একইভাবে নামকরণ দেখা যায়, তবে দেখানে পরার্ধের পরও বৃহৎ বৃহৎ সংখ্যার নামকরণ আছে। বিশ্বগণিতের ইতিহাসে বৃহৎ বৃহৎ সংখ্যার এই নামকরণ অনক্য। আর এটাই হচ্ছে ভারতীয়দের একটি বৈশিষ্ট্য।

কেবলমাত্র বৈদিক মুগেই যে বৃহৎ বৃহৎ সংখ্যা দেখা যায়, তা নয়। বৌদ্ধ ও জৈন গাণিতিকরাও বিরাট বিরাট সংখ্যার কল্পনা করে নামকরণ করেছেন। বৌদ্ধরা দশগুণোত্তর পদ্ধতির পরিবর্তে শতোত্তর পদ্ধতি অবলম্বন করে 10<sup>58</sup> সংখ্যাটির নাম দেয় "তল্লক্ষণ"। শীর্ষ-প্রহেলিকা অবলম্বন করে জৈনরাও আরো বিশাল সংখ্যাগঠন ও নামকরণ করে।

সংখ্যার নামকরণে বৈদিক গাণিতিকরা তিন প্রকার পদ্ধতি অবলম্বন করে। বিজ্ঞান-সমত এই পদ্ধতিই আমাদের বিশায় উদ্রেগ করে। প্রথমত প্রথম ন'টি অক্ষের নাম,—এক, দ্বি, ত্রি, চতুর, পঞ্চ, ষট্, সপ্ত, অষ্ট, এবং নব। দ্বিতীয়ত আর ন'টি সংখ্যা উপরের অক্ষগুলিকে 10 দ্বারা গুল করে দশ, বিংশতি, জিংশৎ, চতুর্বিংশৎ, পঞ্চাশৎ, ষষ্টি, দপ্ততি, অশীতি, এবং নবতি নামকরণ করা হয়েছে। তৃতীয়ত শত থেকে গুরু করে পরার্ধ পর্যন্ত এই এগারোটি সংখ্যা 10 ছারা গুণ করে পাওয়া গেছে। দ্বিতীয় ও তৃতীয় প্রকারে গুণের নিয়ম ব্যবহার করা হয়েছে। যে-সব সংখ্যা প্রথম ও বিতীয় প্রকারের সংখ্যা ছারা গঠিত, দেখানে যোগের পদ্ধতি অহুস্ত হয়েছে। বেমন, আদশ= 10+2। বে-সব সংখ্যা গঠনে যোগ ও গুণ উভয় পদ্ধতি অনুস্ত হয়েছে, দেখানে তৃতীয় ও প্রথম অথবা বিতীয় প্রকারের সংখ্যার মিশ্রণ ঘটেছে। যেমন,—সপ্ত শতানি বিংশতি =720= 7×100+20। বিয়োগ-নিয়মও সংখ্যার নামকংণে ব্যবহৃত হয়েছে। শুৰুস্ত্তে এর উদাহরণ আছে। যেমন, একাম-শত বলতে তথন একশ' অপেক্ষা 'এক' কম বোঝানো হতো। একাল-শত=100-1=99। ভাষার ক্রমবিকাশের পঞ্ 'একান্ন'-ই পরবর্তীকালে 'একোন' হয়ে 'উন'-তে পরিণত হয়েছে। এখন 'উন' অর্থে আমরা 'এক কম' বুঝি। প্রাচীন ব্যাবিলন ও গ্রীদেও এই পদ্ধতি দেখতে পাওয়া যায়।

প্রথমক চার নিয়ম: সমগ্র বৈদিক সাহিত্যে প্রাথমিক চার নিয়মের স্পষ্ট কোন আলোচনা নাই। তার একমাত্র কারণ হচ্ছে গণিত-শিক্ষণে এ-সব নিয়ম এমনই অপরিহার্য যে তাঁরা এ-সব নিয়মের আলোচনা করার প্রয়োজন আছে বলে মনে করেন নি। ঠিক একই কারণে প্রথম আর্যভট ও ব্রহ্মগুপ্তও এ-সম্বন্ধে কিছু বলেন নি। দশম শতকে দ্বিভীয় আর্যভটের দময় যোগ ও বিয়োগের আলোচনা দেখা যায়। 'গুণ' শক্ষটি বৈদিক সাহিত্যে আছে। তথন 'গুণ' শব্দের অর্থে 'হনন', 'বধ' ও 'ক্ষয়' বোঝানো হতো। ঋরেদ ও ব্রাহ্মণে এক হাজারকে তিন দ্বারা ভাগের উল্লেখ আছে। কিন্তু ঋরেদেও স্কুস্পষ্ট কোন প্রক্রিয়ার উল্লেখ নাই। শতপথ

ব্রাহ্মণে এই প্রসঙ্গের পরিপূর্ণ ব্যাখ্যা পাওয়া যায়। দেখানে ইক্র ও বিষ্ণু কর্তৃক এক হাজার গাভীকে ভাগ করা প্রসঙ্গে বলা হয়েছে যে, কেউ যদি এক হাজারকে তিন দ্বারা ভাগ করে, তা হলে সব সময় এক বেশী হবে অর্থাৎ ভাগশেষ থাকবে।

ভগ্নাংশ: প্রাগৈতিহাসিক যুগ থেকেই ভারতবর্ষে ভগ্নাংশের প্রচলন ছিল। মহেঞ্জো-দড়োও হরপ্লায় প্রাপ্ত ওজন ও পরিমাপের একক থেকেই তা প্রমাণিত হয়। বৈদিক সাহিত্যেও ভগ্নাংশের উল্লেখ আছে,—অর্ধ (রু), ত্রিপাদ (রু), কলা (রি), প্রভাত কয়েকটি উদাহরণ। শুবস্তুত্র-মূগের পর ভগ্নাংশ বলতে 'অংশ', 'ভাগ' বোঝানো হতো। কয়েকটি উদাহরণ:—ত্রিভাগ—রু, পঞ্চম ভাগ, পঞ্চম—রু; বাদশ-ভাগ, ঘাদশ—রু, পঞ্চদশ-ভাগ—রু, ত্রি-অইম, ত্রাই—রু; বি-সপ্তম—রু; পঞ্চমশু চতুর্বিংশ—রু, এর রু।

ভগ্নাংশ প্রকাশের আরো একটি রীতি ছিল। যেমন,—7 ব্রু বলতে অর্ধাষ্ট্রম, 
রি বলতে অর্ধনবম, ব্রু—বিগুল, ব্রু—ব্রিগুল প্রভৃতি। 'অর্ধাষ্ট্রম' বলতে এখানে আট
থেকে অর্ধ কম বোঝাছে। এই রীতি ভারতীয় গণিতে নতুন নয়।

প্রাথমিক চার নিয়ম সহ ভগ্নাংশের বর্গীকরণ শুবস্থতে দেখতে পাওয়া যায়। প্রতিটি  $\frac{1}{3}$ ে বর্গ পুরুষ ইট দারা  $7\frac{1}{3}$  বর্গ পুরুষ স্থান আবৃত করতে মোট ইট লাগবে  $7\frac{1}{3}\div\frac{1}{3}=187\frac{1}{3}$ । শুবস্থতে এই প্রক্রিয়াটি দেখতে পাওয়া যায়।

প্রগতি: প্রগতি ছিল প্রাচীন ভারতীয় গাণিতিকদের একটি অতি আকর্ষণীয় বিষয়। সংহিতার যুগেও প্রগতির অস্তিত্ব পরিলক্ষিত হয়। তৈত্তিরীয় সংহিতায় নিম্নলিখিত সমান্তর শ্রেণী দেখতে পাওয়া যায়:

| 1 | 3  | 5  | 19  | 29 | 39 | 90 |
|---|----|----|-----|----|----|----|
|   | 4  | 6  | 20  |    | 3, | ,  |
| 4 | 8  | 12 | 20  |    |    |    |
| 5 | 10 | 15 | 100 |    |    |    |
| 0 | 20 | 30 | 100 |    |    |    |

পঞ্চবিংশ ব্রাহ্মনে 'দক্ষিণা' দেবার একটি নিয়মের মধ্যে গুণোত্তর শ্রেণীর ব্যবহার দেথতে পাওয়া যায়। অবশ্র, এথানে শ্রেণীর সমষ্টি নির্ণয়ের কোন নিয়ম দেওয়া হয়নি। শতপথ ব্রাহ্মণে এই নিয়ম দেখতে পাওয়া যায়। কিন্তু কোন সাধারণ পদ্ধতির নিয়ম নাই। তবুও সমান্তর ও গুণোত্তর শ্রেণীর উল্লেখও নির্ভুল সমষ্টি নির্ণয় থেকে মনে হয় বৈদিক গাণিতিকরা হয়তো কোন সাধারণ পদ্ধতি জানতেন। বৃহদ্দেবতায় সমষ্টি নির্ণয়ের এই অক্ষটি আছে:

2+3+4+5+.....+1000-5004991

作性 网络沙沙

গ্রীষ্টপূর্ব বিতীয় শতকে বিভিত্ত পিঙ্গলের ছন্দস্তত্তে গুণোত্তর শ্রেণীর ব্যবহার দেখতে পাওয়া যায়। পরবর্তীকালের ভারতীয় গাণিতিকরা পূর্ববর্তীদের মত সমান আগ্রহী ছিলেন এ-বিষয়ে। মহাবীর, দ্বিতীয় ভাস্করাচার্য ও নারায়ণ প্রভৃতি গাণিতিকরা শ্রেণীর সমষ্টি নির্ণয়ের সাধারণ স্থ্র দিয়ে তাঁদের প্রতিভার সাক্ষর রেথেছেন।

বৈদিক যুগের বীজগণিত

সাধারণত বীজগণিতের উদ্ভব-কাল শুল্যুণ স্চীত হয়। কিন্তু ব্রাহ্মণ যুগেও গণিতের এই শাথার অন্তিত্ব লক্ষিত হয়। তথন এর জ্যামিতিক রুণটি ছিল গাণিতিকদের আকর্ষণের কেন্দ্র-বিন্দু। প্রদন্ত একটি বাছ দ্বারা কোন বর্গক্ষেত্রকে আয়তক্ষেত্রে রূপান্তরিত করার পদ্ধতিতে  $ax=c^2$  এই সমীকরণের বীজ নির্ণয় করতে হতো। 'মহাদেবী' ও 'শ্রেণ-চিতি' নির্মাণে যে সমীকরণের সাহায্য নিতে হতো তা থেকে স্পষ্ট প্রতীয়মান হয় যে প্রীষ্টপূর্ব 2000 বংসর পূর্বেও ভারতীয় গাণিতিকরা বীজগণিতের ধারণা ও তার নিয়মাবলী সম্বন্ধে অবহিত ছিলেন। শুলুম্ব্রে দ্বিয়াত, অনির্ণয় সমীকরণ, করণী, মূলদ ও অমূলদ রাশি ও আসর মান নির্ণয় প্রভৃতি বিষয়ে আলোচনা আছে। a ও b বাছ্যুক্ত আয়তক্ষেত্রের কর্ণ  $\sqrt{a^2+b^2}$ । ড: টি, এ, সরম্বতী আম্মা তাঁর Geo netry in Ancient and Medieval India গ্রন্থে বলেছেন: "Here (as also in evaluating  $\sqrt{a^2-b^2}$ ), the purpose of the Śulbasūtras is really more geometrical i. e. to combine two squares into an equivalent square...."

সমবায় ও বিতাস: প্রগতির তায় সমবায় ও বিতাসও ছিল প্রাচীন ভারতীয় গাণিতিকদের একটি প্রিয় বিষয়। শুর্ গাণিতিকরা নন, অ-গাণিতিক ছালদিকরা আবার এ-বিষয়ে বিশেষ পারদর্শী ছিলেন। প্রাচীন ভারতীয় সাহিত্যে বৈদিক ছল ও তার বৈশিষ্ট্য সংঘটনে এই বিষয়ের আলোচনা লক্ষ্য করা যায়। এ জন্তেই কেবল নয়, অত্য বিষয়ের সমস্তা সমাধানেও এই নিয়মের ব্যবহার হয়েছে। যেমন, 16টি বিভিন্ন প্রকারের বস্তু থেকে একসঙ্গে 1, 2, 3 অথবা 4টি করে বস্তু নিয়ে কত প্রকারের হুগদ্ধি প্রস্তুত্ত করা যায়, তার সমাধানও করা হয়েছে। জ্ঞান ও সমস্তার নানান ক্ষত্রে ব্যাপক প্রয়োগ করে সমবায় ও বিতাস তত্ত্বে বছল প্রয়োগ ও নিভূলি উত্তর-নির্ণয় থেকে প্রমাণিত হয় ভারতীয় গণিতের তথ্বে বছল প্রয়োগ ও নিভূলি উত্তর-নির্ণয় থেকে প্রমাণিত হয় ভারতীয় গণিতের তথ্বে কর্য ।

সমরায় ও বিশ্বাদের আলোচনায় এইপূর্ব দ্বিতীয় শতকে রচিত পিঙ্গলের ছন্দস্যত্তের অবদান কম নয়। পিঙ্গল সংক্ষিপ্ত নিয়ম বর্ণনা করে সমস্তা সমাধান করেছেন। একটি উদাহরণের মাহায্যে তাঁর নিয়ম ও পদ্ধতির আলোচনা করা যাক।

সমস্তা: —পুনরাবৃত্তির দাহায্যে n-দংখ্যক বস্তকে ছটি করে নিয়ে কভ প্রকারে বিভাস করা যায় ? ( এখানে ছটি বস্ত বলতে দীর্ঘ ও হুত্ব মাত্রার কথা বলা হয়েছে )

নিয়ম:—"যথন অর্থ করা হবে তখন 2 বসাও, যখন 1 বিয়োগ করা হবে তখন শৃক্ত বসাও; শৃক্তের বেলায় 2 বারা ওণ ও অর্থের বেলায় বর্গ কর।"

6 মাত্রার গায়ত্রী ছল্পের ক্ষেত্রে বিভাগ-নিয়ম প্রয়োগ করে পিঙ্গলের নিয়মটি আলোচিত হচ্ছে।

| SALE OF BUILDING STATE OF       | A | В |
|---------------------------------|---|---|
| 1. সংখ্যাটি বৃদাও               | 6 | × |
| ( এখানে ছম্পের সংখ্যা )         |   |   |
| 2. वर्षकव                       | 3 | 2 |
| 3. 3 वर्ग, वाज्यव 1 विद्यांग कर | 2 | 0 |
| 4. वर्षकव                       | 1 | 2 |
| 5. 1 অমুগা অভএব 1 বিয়োগ কর     | 0 | 0 |

B-তত্তের সংখ্যাগুলি পিদলকত নিয়ম ছারা পাই। প্রকৃত গণনা B
তত্ত থেকে তক হয়। শুভের বেলায় 2 ছারা গুণ করে 2 পাওয়া যায়; অধের
বেলায় বর্গ; স্কৃতরাং 2-এর বর্গ=2°। আবার শুভের বেলায় দ্বিগুণ করলে  $2 \times 2^{9} = 2^{3}$  পাওয়া যায়। অধের বেলায় বর্গ হবে; স্কৃতরাং  $(2^{9}_{-})^{9} = 2^{\circ}$ ।
এটাই সমস্তার নির্ণেষ্ক উত্তর।

কেবল বিভাগ নয়, পিদলের গ্রন্থে সমরায়ের আলোচনাও আছে। ভারতীয় গণিতে সমরায়ের নাম "মেক্ত-প্রস্তর্"। দশম শতকে হলায়ুর এই পদ্ধতির সম্পূর্ণ ব্যাখ্যা করেছেন। সপ্তদশ শতকে পাসকাল এই পদ্ধতি আবিদার করেন। এখন তা "পাসকালের ত্রিভূদ্ধ" নামে পরিচিত। কিন্তু ভারতীয় গাণিতিকরা কমপক্ষে ত্রীষ্টপূর্বে বিতীয় শতকে পাসকালের প্রায় 2000 বংসর পূর্বে এই পদ্ধতি আবিদার করেন।

# তৃতীয় অখ্যায়

"Let no one who is unacquainted with geometry enter here."-Plato

#### শুৰ্সূত্ৰ

প্রাচীন কালে বিজ্ঞানানুনীলন ধর্মীয় আচার-মন্থঠানের অঙ্গ হিসাবে পরিগণিত হতো। ফলতঃ ধর্মীয় আচার-অন্থঠান ও উৎসবাদিতে গণিতের একটি বিশিষ্ট স্থান ছিল। ধর্মীয় ক্রিয়াকলাপ কটুচাবে ও বিজ্ঞানসম্মত উপায়ে সম্পন্ন করতে হলে গ্রহ-উপগ্রহের বিশেষ সময়ে অবস্থান, স্থাপ্ত, স্থ্যাধ্য, স্থাপ্তর, চন্দ্রগ্রহণ, চন্দ্রগ্রহণ, প্রকৃতিতে বিশেষ জ্ঞানের প্রয়োজন ছিল। প্রাচীনকালে জ্যোতির্বিজ্ঞান প্রধানভাবে আলোচিত হলেও এই বিজ্ঞান-চর্চার প্রধান হাতিয়ার হিসাবে গণিতও অন্থনীলিত হতো। এইভাবেই আমরা পাটীগণিত, বাজগণিত, ক্রিকোণমিতি ও জ্যামিতি চর্চার ইতিহাস জ্ঞানতে পারি।

ভারতবর মুখ্যত ধর্মপ্রাণ দেশ। সেই প্রাগৈতিহাদিক মুগ থেকে ভারতের সভ্যতা ও সংস্কৃতি ধর্মকে কেন্দ্র করেই গড়ে উঠেছে। এক কথার বলতে গেলে, ধর্মই ছিল ভারতীয় সমাজ-জীবন, বাজনৈতিক-জীবন ও সাংস্কৃতিক-জীবনের মূল ভিত্তি। ভারতীয় সাহিত্য ও দর্শনে যেমন ধর্মীয় প্রভাব লক্ষ্য করা যায়, তেমনি এ-দেশের বিজ্ঞান-চেতনার মূলেও দর্মের অপ্রতিহত প্রভাব পরিলজ্জিত হয়। সে-কারণে বেদী নির্মাণ থেকেই এদেশের জ্যামিতির উদ্ভব হয়েছিল। তম্ম প্রক্রে নিহিত প্রাচীন ভারতীয় জ্যামিতির পরিচয় দেওবার আগে বৈদিক পূজা অন্তর্ভানের বিধি ও বীতি নিয়ে কিজিৎ আলোচনার প্রয়োজন। ভারতো আমরা ভারতীয় জ্যামিতির উদ্ভব ও ক্রমবিকাশের ধারাটি অন্তর্গন করতে পরিব।

# अधित चल्ल ७ देवनिक शृक्षा अष्ट्रकारमत शतिहस

বিধি ও নিয়মাছবাটী বেদী-নির্মাণ ও অগ্নি প্রজ্জানিত করে পূজা ও অর্থা নিবেদন করাই ছিল বৈদিক অন্তষ্ঠানের অনুশাসন। অগ্নির স্কুল না জানলে অগ্নিতে আন্ততি প্রদানের তাৎপর্য উপলব্ধি হবে না। অগ্নেদের ক্ষমিরা অগ্নির ইটি স্বরূপের কথা বলেছেন: একটি সুল রূপ বা নিরুষ্ট রূপ, আর অন্যটি স্ক্র বা উৎকৃষ্ট রূপ। ঋষিগণ দেই অগ্নির উপাদনার কথা বলেছেন যে কারণ-সত্তা থেকে অগ্নি উৎপন্ন হয়েছে। অগ্নির যে অংশ সুল, যে অংশ মৃতদেহ ভক্ষণ করে, দে অংশের অর্চনা ঋষিদের অভিপ্রেত নয়। তাঁদের অভিপ্রায়—যে অগ্নির মধ্যে আর একটি অগ্নি আছে, যে অগ্নি দেবতাদের কাছে যজ্জের হবি বহন করে থাকে, যে অগ্নি বিশ্বের তাবৎ বস্তুকে জানে, তাঁরই উপাদনা করা। দেবতাদের উদ্দেশ্যে যে যজ্ঞ করা হয়, সেই যজ্জের উপাশ্য দেবতা স্থুল অগ্নাদি দেবতা নয়। অর্থাৎ অগ্নির ক্রম্ম রূপটিই দেবতাদের কাছে যজ্ঞীয় হবি বহন করে। যজ্জের অগ্নির প্রকৃত তাৎপর্যই এই। ঋর্থেদে সর্বত্রই অগ্নিকে দেবতাদের দৃত বলে বর্ণনা করা হয়েছে। হবি বহন করে বলে অগ্নি দৃত। যে মানব কেবলমাত্র অমৃত প্রাপ্তির জন্ম অগ্নিতে হবি প্রক্রেপ করে, কেবল দেই মান্নযের সম্বন্ধেই অগ্নি দৃত হয়। অন্তন্ত্র নয়।

বৈদিক অষ্ঠানে যজ্ঞের অপরিহার্যতা উপরের আলোচনায় কিছুটা প্রকাশ পেয়েছে বলে আশা করা যায়। যা হোক, যজ্ঞ ছিল ত্'রকমের। প্রথম প্রকারের নাম 'নিড্য' এবং দ্বিতীয় প্রকারের নাম 'কাম্য'। নিত্য শক্টির অর্থ আবিশ্রিক, কাম্য হচ্ছে কামনা করা,—কিছু পেতে ইচ্ছা করা।

বৈদিক ধর্মাবল্দী প্রত্যেক গৃহস্থের প্রতি দিন কয়েকটি ধর্মীয় অন্তণ্ঠান আবশ্রিক বলে বিবেচিত হতো। কেবল বাঁরা সন্ধ্যানী,—বাঁরা গৃহ থেকে দ্রে কোন অরণ্যে বা পর্বতকলরে গভীর ধ্যানে মগ্ন থাকতেন, তাঁরা ছিলেন সব রকম আচার-অন্তর্ভানের বাইরে। বিশেষ ধরণের যজ্ঞ-বেদীতে প্রত্যেক গৃহস্থকে তিন প্রকার অগ্নি সংরক্ষিত রাখতে হতো। সেগুলি ছিল 'গার্হপত্য', 'আহ্বানীয়' ও 'দক্ষিণ'। যজ্জবেদী-নির্মাণে সবিশেষ সাবধানতা বৈদিক অন্তশাহন। কারণ, বেদী নির্মাণে,— এর আকার ও আয়তনে সামাস্ততম ভুল ক্রটি হলে গৃহস্থের অমঙ্গল ও অকল্যাণ ছিসাবে গণ্য হতো।

গার্হপত্য বেদী বর্গাকার অথবা রন্তাকার হতে পারত, আহ্বানীয় বেদী বর্গাকার ও দক্ষিণ বেদী ছিল অর্বরন্তাকার। 'ব্যাম' একক হিসাবে ব্যবহৃত হতো। এক ব্যামের পরিমাপ ছিল 72 ইঞ্চি। 'পুরুষ'-ও একক হিসাবে ব্যবহৃত হতো। এর পরিমাপ ছিল 90 ইঞ্চি। সে-যুগে 'পুরুষ' একক কোন রাজা বা পুরোহিতের দৈর্ঘ্য ছিল বলে মনে হয়।

উপরোক্ত তিন প্রকার অগ্নি নিত্য পূজা-অর্চনার জন্ম নির্দেশিত ছিল। আর

এক প্রকার অগ্নি, 'কামাগ্নি'-র প্রচলন ছিল। এই প্রকার অগ্নির মধ্যে কোননা-কোন পার্থিব লাভালাভ জড়িত ছিল বলে শান্তে এই প্রকার অগ্নি সমাদৃত
হতো না। রাজা-রাজড়ারা ছিল এই প্রকার অগ্নির ভক্ত। অশ্বমেধ, রাজস্ম
প্রভৃতি যজানুষ্ঠানের কথা আমাদের অজানা নেই। অবশ্ব কথনো কথনো মৃনিখ্যিরা একত্রে দেশ বা কোন গোপ্ঠার বৃহত্তর কলাাণে এই যজ্ঞের অম্প্রচান করতেন।
কামাগ্নি নির্মাণ অভীব জটিল। ত্রিভুজ, আয়তক্ষেত্র, ট্রাপেজিয়াম প্রভৃতিতে
বিশিষ্ট জ্ঞান ব্যতিরেকে এই প্রকারের বেদী-নির্মাণ দম্ভব ছিল না। তা ছাড়া
এক বেদীকে সম-আকার বা ভিন্ন-আকারের অন্ত বেদীতে রূপান্তরিত করা ছিল
আরো জটিল।

#### ॥ एव ७ एवकात्।।

শুল শব্দের অর্থ 'রজ্জু' বা 'দড়ি'। তাই কথনো কথনো শুল শব্দের পরিবর্তে রজ্জু শল্টি ব্যবহৃত হতে দেখা যায়। রজ্জু বা দড়ি দিয়ে জ্যামিতিক চিত্রাঙ্গণ হতো বলে খুব সম্ভব এই নাম দেওয়া হয়েছিল। প্রাচীন মিশ্ব ও গ্রীদেও 'লিলেন' বা স্তোর ব্যবহার দেখা যায়। জ্যামিতির নানা উপপাত্ম, সম্পাত্ম ও সিদ্ধান্ত স্থ্রাকাবে শুল স্থ্রে নিহিত আছে। 'অবতরণিকা'য় আমরা স্থরের সংজ্ঞা দিয়েছি। বৈদিক যুগের শিক্ষা দান ছিল মৌখিক। কিন্তু কালক্রমে বিশাল জ্ঞান মৌথিক শিক্ষা দানে অসম্ভব হয়ে উঠে। তখনই স্থ্রাকাবে লিখে রাখার প্রয়োজন অন্তভূত হয়,—স্ত্র যুগের শুক্ত হয়। এক সময় ভারতে বহু বৈদিক প্রতিষ্ঠান ছিল। 150 প্রীষ্ট পূর্বাব্দের বিখ্যাত বৈয়াকরণিক পতঞ্জলির রচনা থেকে জানতে পারা যায় তখন 1131 বা 1137 প্রকারের বৈদিক প্রতিষ্ঠান ছিল। অন্থমিত হয়, ভিন্ন ভিন্ন বৈদিক প্রতিষ্ঠানে ভিন্ন ভিন্ন শুল স্থ্রে পড়ানো হতো। কিন্তু বর্তমানে আমরা মাত্র সাত প্রকারের শুলস্বের কথা জানি।

ভারতীয় রীতি ও বৈশিষ্ট্য অমুযায়ী শুৰকারদের ব্যক্তিগত জীবন সম্বন্ধে আমরা কিছুই জানি না। আর জানি না তাঁদের রচিত গ্রন্থের রচনা কাল সম্বন্ধে। নীচে শুৰকারদের নাম ও তাঁদের রচিত গ্রন্থের সংক্ষিপ্ত বিবরণ প্রদত্ত হলো।

### ।। विश्वायम ।।

প্রাচীনতার দিক থেকে বৌধায়নের নাম সর্বাগ্রে করতে হয়। এঁর রচনা-কাল সম্বন্ধে নিশ্চিত করে কিছু বলা না গেলেও পণ্ডিতরা 800 গ্রীষ্ট পূর্বান্ধকে এঁর রচনাকাল বলে অহুমান করেন। বৌধায়নের স্ত্রগ্রন্থ সর্বাপেক্ষা বৃহৎ গ্রন্থ। তিনটি অধ্যায়ে বিভক্ত এই গ্রন্থেমোট 525টি স্তর আছে। ইউক্লিডের এলিমেন্টস-এ
দশটি স্বত:দিদ্ধ অবলম্বনে 467টি উপপাগ্য আছে। এই আলেকজেন্দ্রীয় শিক্ষকের
মণীষায় আমরা প্রায়ই অভিভূত হই, আর তাঁর উচ্চুদিত প্রশংদা করি। কিন্তু
বৌধায়ন প্রভৃতি জ্যামিতিকারদের সম্পর্কে আমরা প্রায়ই নীরব থাকি,—এটা
অত্যন্ত তৃংথের বিষয়। যা হোক,—বৌধায়ন তাঁর গ্রন্থে বিভিন্ন প্রকার বেদী
তথা জ্যামিতিক চিত্রাঙ্কনের নিয়ম কথনো বিস্তারিতভাবে কথনো অতি সংক্ষেপে
তথা স্ব্রোকারে বিবৃত করেছেন। প্রকৃতপক্ষে, গুলকারগণ কোন স্ব্রের
আবিষ্কারক নন। খুব সম্ভব, ইউক্লিভের মত বৌধায়নও কোন বৈদিক প্রতিষ্ঠানের
স্বযোগ্য আচার্য ছিলেন।

#### ।। কাত্যায়ন।।

কাত্যায়নের শুল্বস্ত্র ছটি অংশে বিভক্ত। প্রথম অংশের স্ত্র সংখ্যা 90 এবং বিতীয় অংশের সংখ্যা 40 বা 48। বৌধায়নের তুলনায় কাত্যায়নের বেশী কিছু কৃতিত্ব নাই। এখানে-ওখানে সামাত্ত পরিবর্তন দেখা যায় মাত্র। এই গ্রন্থের রচনা আনুমানিক 500 এই পূর্বান্ধ বলে ধরা হয়।

#### ।। আপস্তন্ত ।।

ইনি সম্ভবত 400 এই পূর্বান্দে বর্তমান ছিলেন। এঁর গ্রন্থ 21টি অধ্যায়ে বিভক্ত এবং মোট স্থত্ত সংখ্যা 223টি। আপস্তম্বের বৈশিষ্ট্য এই যে, তিনি বিভিন্ন প্রকার বেদী-নির্মাণ পদ্ধতি উল্লেখ করেছেন।

#### ।। गानव।।

অভাভ শুবহতের ভার মানব শুবহতে বিভিন্ন প্রকারের বেদী ও অগ্নি নির্মাণের নিরম ও হ্রাদির বর্ণনা আছে। মানব ও কাত্যায়ন শুবের সঙ্গে অভাভাদের একটি বিশেষ পার্থকা আছে। বৌধায়ন ও আপস্তম্ব নিরমগুলি হ্রোকারে ব্যক্ত করেছেন; কিন্তু মানব ও কাত্যায়ন পভের ব্যবহার করেছেন। মানব শুবের প্রধান ভায়্যকার শিবদাস বলেন, পভাংশের রচয়িতা হচ্ছেন শুবকারগণ। পণ্ডিতগণ অহ্মান করেন মানব-শুব 500 এইপূর্বান্ধ থেকে 200 এইান্ধের মধ্যে কোন সময়ে রচিত হয়ে থাকবে।

মানব-ভবের প্রথম অধ্যায়ে পরিভাষা হত্তের আলোচনা আছে। দ্বিভীয়,

ভূতীয়, চতুর্থ, পঞ্চম ও ষষ্ঠ অধ্যায়ে বিভিন্ন প্রকার বেদীর আলোচনা দেখা যায়।
সপ্তম অধ্যায়ের কিছু অংশে পরিমাপ ও 'দক্ষিণা' সম্বন্ধে বলা হয়েছে; অবশিষ্ট
অংশে 'স্বপর্ণ-চিতিও' নামে এক প্রাচীন চিতির উল্লেখ আছে। স্বপর্ণ-চিতিকে
গরুড়-চিতিও বলা হয়। 'স্বপর্ণ' শব্দের অর্থ পরম সন্তা, প্রাণশন্তি, বিষ্ণু,
সূর্য। এই চিতির উল্লেখ ও অক্যাক্ত দেবতাদের সঙ্গে অগ্নির সম্পর্ক বিষয়ে
নিম্নলিখিত শ্লোকটি লক্ষ্যণীয়:—

"ইন্দ্ৰং মিত্ৰং বৰুণমগ্নিমাছ বথো দিব্যঃ দ স্থপৰ্ণ গৰুত্মান।"

বৌধায়ন ও আপস্তম্বে এই চিতির উল্লেখ নাই। কিন্তু রামায়ণে উল্লেখ আছে। মহারাজ দশরথ পুত্রেষ্টি যজ্ঞ সম্পাদনের জন্ম 'গরুড়-চিতি' নির্মাণ করেছিলেন। 'নপ্তবিধ-চতুরশ্র-শ্রেন-চিৎ'-এর সঙ্গে মস্তক ছাড়া সব দিক থেকে এই চিতির মিল দেখা যায়।

মানব শুল্বপত্রে আর কোন চিতি বা অগ্নির উল্লেখ নাই। তাঁর প্রস্থের অধিকাংশই নানা প্রকারের বেদী-নির্মাণের বিবরণ আছে। অর কারণ সম্বন্ধে নরেন্দ্রন্মার মজুমদার তাঁর "Mānava Sūlba Sūtram" প্রবন্ধে বলেছেন মানব শুল্বপত্রের ব্যবহার সম্ভবত অনগ্নিক-যজ্ঞ অঞ্চলে প্রচলিত ছিল এবং অশু তৃটি আগ্নিক-যজ্ঞ অঞ্চলে প্রচলিত ছিল। শক্ষরাচার্যের বেদান্ত-ভাষ্ম থেকেও এই মত সমর্থিত হয়। তিনি বলেছেন, "বাঁহারা ঋর্যেদী—ঋ্রেধান্থদারে যজ্ঞকারী, তাঁহারা তাঁহাদের শাস্ত্রে সকল বিকারে অফুস্যুত, জগৎ-কারণ ব্রন্ধেরই উপাদনা করিয়া থাকেন। বাঁহারা যন্ত্রেদী, তাঁহারা বাবতীয় অগ্নির মধ্যে এই ব্রন্ধ-সত্তাকেই উপাদনা করেন। বাঁহারা দামবেদী, তাঁহারাও মহাত্রত নামক যজ্ঞে এই ব্রন্ধেরই উপাদনা করেন।

পরিভাষা থণ্ডে পরিমাপের জন্ম রজ্জুও শঙ্কুর বর্ণনা আছে। অন্ম কোন শুরুর প্রকাপ দেখা যায় না। 'পূর্ব-পশ্চিম-রেখা' নির্ণয় সব ধরনের বেদী ও অগ্নি নির্মাণের ভিত্তি-স্বরূপ। মানব এই রেখা নির্ণয়ের চার প্রকার পদ্ধতি দিয়েছেন। কাত্যায়নে মাত্র একটি, আর অন্ম শু: শুরুত্বপূর্ণ এই রেখা নির্ণয়ের কোন বর্ণনা নাই। অবশ্য প্রাথমিক এই নিয়মটি স্বতঃ সিদ্ধের মতই স্পাষ্ট ও সত্য বলে ধরে নেওয়ার জন্মই সম্ভবত এর বর্ণনা অন্যান্য শুন্থগ্রেছে দেখতে পাওয়া যার না।

### ।। পূর্বপশ্চিম রেখা নির্ণয়।।

কাত্যায়ন গুলুসত্ত্বে গুরুত্বপূর্ণ এই রেখা নির্ণয়ের স্থাটি নিমুরূপ:—

"সমে শংকুং নিথায় শংকুসম্মিত্যা রজা মণ্ডলং পরিলিখ্য যত্ত্ব লেখ্যো:
শংকবগ্রাহ্যায়া নিপত্তি তত্ত্ব শংকু নিহন্তি সা প্রাচী।"

মানব ভ্ৰেণ্ড একই পদ্ধতি দেখতে পাওয়া যায়। যেমন,—

সামত লিক ক্ষেত্রে একটি বৃত্ত অঙ্কন করে কেন্দ্রে দৃঢ়ভাবে একটি শঙ্কু স্থাপন করতে হবে। স্থাদিয়ের সময় বৃত্তের পরিধিতে শঙ্কুর ছায়া যে বিন্দৃতে পতিত হবে এবং স্থাস্তের সময় শঙ্কুর ছায়া বৃত্তের পরিধিস্থ যে বিন্দৃতে পতিত হবে— এই উভয় বিন্দুর সংযোগ রেখাই হবে "পূর্ব-পশ্চিম-রেখা।"

#### ।। কয়েকটি স্বতঃসিদ্ধ ও স্বীকার্য।।

ইউক্রিডের জ্বামিতি পাঁচটি স্থতঃসিদ্ধ ও পাঁচটি স্বীকার্যের উপর প্রতিষ্ঠিত। এইগুলিই জ্যামিতিক প্রমাণ ও সিদ্ধান্তের ভিত্তি। ইউক্লিড এগুলির উপর নির্ভর করেই মোট 464টি উপপাত যক্তি-তর্কের মাধ্যমে প্রমাণ করেছেন। বলা বাহন্য, আরোহ-অবরোহ পদ্ধতিতে দত্তর্ক যুক্তি-তর্ক-নির্ভর ইউক্লিডের জ্যামিতি। ভারতীয় ও গ্রীক জ্যামিতির পার্থক্য এখানেই। ভারতীয় গণিতে স্বতঃসিদ্ধ বা স্বীকার্যের কোন উল্লেখ নাই। ভারতীয় গণিত একাস্কভাবে গণিত নির্ভর। ভারতীয় জ্যামিতির বৈশিষ্ট্য সম্পর্কে ড: টি. এ. সরম্বতী আম্মার মন্তব্য: "The Indian's aim was not to build up an edifice of geometry on a few self-evident axioms, but to convince the intelligent student of the validity of the theorem, so that visual demonstration was quite an accepted form of proof." ভারতীয় বৈশিষ্ট্যের এই দিকটির প্রতি লক্ষ্য রেখে বিচার করলে মনে হয়, ভারতীয় জ্যামিতি কোন প্রকারেই গ্রীসের নিকট ঋণী নয়। ইউক্লিডের জ্যামিতিতে আছে সাডে চারশ'-র মত উপপাত। কিন্তু ভারতীয় গণিতে এই সংখ্যা পাঁচশ'-রও বেশী। পতঞ্জলির মত যদি সতা হয়,—যদি ভারতে এক হাজারেরও বেশী বৈদিক প্রতিষ্ঠান থেকে থাকে, এবং দে-সব প্রতিষ্ঠানে যদি ভিন্ন ভিন্ন ভবস্থতের অধ্যয়ন হয়ে থাকে. তা হলে এই সংখ্যা যে কত বেশী হবে তা কল্পনা করে নিতে হয়। মানবের গুৰস্ত্ৰের মারুতি, বারুণী, স্থপর্ণ-চিতি প্রভৃত্তির নিয়ম অন্ত কোন সূত্রে দেখতে পাওয়া যায় না। তা বলে এর অস্তিত্ব উডিয়ে দেওয়া যায় না।

প্রাচীন ভারতীয় জ্যামিভিতে স্বতঃসিদ্ধ বা স্বীকার্যের কোন উল্লেখ নাই। তা বলে তাঁরা কি এ-বিষয়ে অজ্ঞ ছিলেন? তাঁরা কি কেবল অভিজ্ঞতা ও পরিমাণ থেকেই বেদা ও অগ্নি নির্মাণে বিভিন্ন স্বীকার্যের সহায়তা নিতেন? আজ্ঞ আমাদের হাতের কাছে তেমন প্রমাণ নাই যা থেকে আমরা উপবের প্রশ্নগুলির সম্ভোষজনক উত্তর দিতে পারি। তবে ধারা সেই প্রাচীন কালে গণিতে অভ্ত-পূর্ব উন্নতিসাধন করেছিলেন, জটল পাটিগাণিতিক সমস্তা, বীজগনিত ও গোলীয় ত্রিকোণমিতির ধারণা ও স্বত্রাদি প্রয়োগ করে জ্যোতির্বিজ্ঞানের বিশ্ময়কর উন্নতি করেছিলেন, তাঁরা কোন যুক্তি-তর্কের ধার ধারতেন না, এ এক অদন্তা কল্পনা মাত্র। শুলুস্ত্রের নানা জ্যামিতিক অক্ষন থেকে কয়েকটি স্বতঃসিদ্ধ ও স্বীকার্য নিয়ে প্রদৃত্ত হলো:—

- (1) যে-কোন সরল রেথাকে যে-কোন সংখ্যক সমান অংশে বিভক্ত করা যায়।
  - (2) ব্যাদ অক্ষনের ছারা বৃত্তকে যে-কোন অংশে বিভক্ত করা যায়।
  - (3) আয়তক্ষেত্রের কর্ণ ক্ষেত্রটিকে সমন্বিথণ্ডিত করে।
  - (4) কর্ণদারা আয়তক্ষেত্র চারটি অংশে বিভক্ত হয় এবং বিপরীত অংশগুলি প্রস্পার সমান।
  - (5) রম্বদের কর্ণন্তয় পরস্পারকে সমকোণে সমন্বিধণ্ডিত করে।
  - (6) সমদ্বিবাহু ত্রিভুজের শীর্ষবিন্দু ও ভূমির সংযোজক বেথা ত্রিভুজটিকে তুইটি সমান অংশে বিভক্ত করে।
  - (7) এক ই ভূমি ও সমান্তরাল সরলবেথার মধ্যবর্তী আয়তক্ষেত্র ও সামন্ত-রিকের ক্ষেত্রফল সমান।
  - (১) আয়তক্ষেত্রের কর্ণের উপর অঙ্কিত বর্গক্ষেত্র অপর বাহুদ্বয়ের উপর অঙ্কিত বর্গক্ষেত্রদয়ের সমষ্টির সমান।
  - (9) ত্রিভুজের বাহগুলিকে সমান সংখ্যক অংশে বিভক্ত ক'রে এবং ছই-ছই হিসাবে বিন্দুগুলি শীর্যবিন্দুর সহিত সংযোজিত ক'রে ত্রিভুজটিকে যে কোন সংখ্যক সমান ক্ষেত্রফল বিশিষ্ট অংশে বিভক্ত করা যায়।

# ।। প্রাচীন যজ্ঞবেদীর পরিচয় ও ইভিহাস।।

ঋথেদ সংহিতায় পূজা-অর্চনা ও আচার-অন্নষ্ঠানের বর্ণনা পাওয়া যায় মাত্র। কিন্তু তৈত্তিরীয় সংহিতা ও ব্রাহ্মণে যজ্ঞ-বেদীর নির্মাণ সম্পর্কে স্কুস্পষ্ট নির্দেশ আছে। শ্রীবামচন্দ্রের অগস্তাম্নির আশ্রম গমনের সময় এবং চিত্রকৃট ও পঞ্চবটাতে অবস্থানের সময় যজ্ঞ-বেদীর উল্লেখ আছে। পূর্বেই উল্লিখিত হয়েছে তিন প্রকার বেদী—গার্হপত্য, আহ্বানীয় ও দক্ষিণ বেদী সর্বাপেক্ষা প্রাচীন এবং ঋথেদের যুগের পূর্ববর্তী বলে স্বীকৃত। অথচ আশ্চর্যের বিষয়, এই সব বেদী-নির্মাণে বুত্তের বর্গ ও অতিভুজের বর্গ-জনিত সমস্তা সম্পর্কে সম্যক জ্ঞানের প্রয়োজন ছিল। স্থতবাং পীথাগোরাসের নামে পরিচিত উপপাতটি ভারতে কমপক্ষে তিন থেকে সাড়ে তিন হাজার বছর পূর্বে প্রচলিত ছিল।

উপরোক্ত তিনপ্রকার 'নিত্য' যজ ছাড়াও বিভিন্ন সময়ে ভিন্ন ভিন্ন ঋতুতে আরো কতকগুলি আবিখ্যিক অন্নষ্ঠান ছিল। যেমন,—ইষ্টিযজ্ঞ, পশুষজ্ঞ ও সোমযজ্ঞ। ইষ্টিযজ্ঞ ছিল তৃ'রকমের—দর্শ ও পৌর্ণমাদ। প্রতি অমাবস্থা ও পূর্ণিমাতে মাথন ও ফলমূল দিয়ে এই অন্নষ্ঠান সম্পাদিত হতো।



**Бि**ख-3 ( मर्भार्भार्भिकी (विमी )

বছরে অন্তত একবার করে বর্ষাকালের যে-কোন অমাবস্থা বা পূর্ণিমার পশুষজ্ঞ অন্তুঠিত হতো। দোম যজানুষ্ঠান ছিল খুব জাঁকজমকপূর্ণ এক বিরাট ব্যাপার। ব্যয়বহুল এই যজানুষ্ঠান তিন-পুক্রমে মাত্র একবার অন্তুঠিত হওয়ার বিধি ছিল।

কাম্য যজ্ঞামন্তানের ক্ষেত্রে সর্বাপেক্ষা প্রাচীন যে বেদীর নাম পাওয়া যায়, তা হচ্ছে খেল-চিতি। এই বেদীর আকার বাজপাথীর মত ছিল বলে এরকম নামকরণ হয়েছে। কামাগ্নি নির্মাণ প্রণালী সাধারণত জটিল। তাই 'শ্রেন-চিতি' নির্মাণ প্রণালী ভীষণ জটিল।



চিত্ৰ—4 ( শ্বেন-চিতি )

আর এক প্রকার বেদীর নাম ছিল বজ্ত-পক্ষ-ব্যস্ত-পুচ্ছ-শ্যেন। বাজপাথীর মত দেখতে এই বেদীর ডানা ছটি ছিল নিমুম্থী এবং লেজটি ছিল বিস্তৃত।



চিত্ৰ—5 ( বক্ত-পক্ষ-বাস্ত-পুচ্ছ-খেন)

কঙ্ক বেদী ছিল বকের মত দেখতে। অলজ এক প্রকার পাখীর মত, প্রতীগ ছিল সমধিবাহ তিভুদ্ধ, উভয়তঃ প্রতীগ ছিল রম্বদের মত। রথ-চক্র রথের চাকার মত, জোণ ছিল দোনা,—পাত্রের মত। পরিচর্ষ বৃত্তাকার, কুর্ম কচ্ছপের মত। একাদশিনী বেদী মহাবেদীর মত দেখতে হলেও এই বেদী মহাবেদীর এক বৃহৎ রূপ—উভয় বেদীর মধ্যে একটি সরল অয়পাত দেখতে পাওয়া যায়। 'একাদশিনী' নামকরণের তাৎপর্য এই যে এই বেদীর সম্মুখতাগে অর্থাৎ পূর্বপ্রাস্তে এগারোটি 'মৃপ' স্থাপনের বিধি ছিল। অস্বমেধ বেদীও মহাবেদীর মত দেখতে। কিন্তু আয়তনে একাদশিনী বেদীর চেয়ে বড়। এই বেদীর পূর্বপ্রাস্তে একুশটি তৃপ স্থাপন করার বিধি। সীতা উদ্ধারের পর রামচন্দ্র যথন পূপকে চড়ে অযোধ্যার নিকটবর্তী হয়েছিলেন, তখন মহাকবি কালিদাদ তার অনমুকরণীয় ভিদ্মায় বর্ণনা দিচ্ছেন:

"জলানি যা তীরনিথাত্যুপা বত্যেযোধ্যামনু রাজধানীম্।
তুরঙ্গমেধাবভূথাবতীনৈঃ ইক্ষাকৃতিঃ পুণ্যত্রীকৃতানি"।।

''যে সরযুর তীরে যুপ সকল প্রোথিত রহিয়াছে ও ইক্ষাকুবংশীয় রাজগণের অখ্যোধ যজ্ঞান্ত স্নান ছারা যে সরযুর জল পবিত্রতর হইয়া রাজধানী অযোধ্যার নিকট দিয়া বহিয়া চলিয়াছে।''

অখনেধ যজ্ঞে যুপের প্রচলন সম্পর্কে রঘুবংশের স্নোকটি আমাদের কিছু ধারণা বহন করে বলে উদ্ধৃত হলো।

## ।। কয়েকটি যজ্ঞবেদীর জ্যামিতিক পরিচয় ।।

প্রাচীন ভারতীয় জ্যামিতি গ্রীক জ্যামিতির মত যুক্তি-তর্ক-নির্ভর নয়।
তাই, যজ্ঞবেদীর জ্যামিতিক পরিচয়ে আমরা তার গাণিতিক দিকটির পরিচয়
বেশী করে পাই। প্রাচীন ভারতে জ্ঞান-চর্চা উদ্দেশুবিহীন ছিল না। কেবল,
জ্ঞানের জন্মই জ্ঞান নয়—সব জ্ঞানের সর্বশেষ লক্ষ্যটি ছিল ব্রহ্মদর্শন। প্রাচীন

ভারতে জ্ঞান তাই ছিল প্রয়োজন-ভিত্তিক। জ্যামিতি চর্চাপ্ত এই নিয়ম-বিধি বহিভূতি ছিল না।

সর্বাপেক্ষা প্রাচীন তিন বেদী—গার্হপন্ড্য, আহ্বানীয় ও দক্ষিণের মধ্যে আকারে প্রভেদ থাকলেও আয়তনে কোন প্রভেদ নাই। প্রভ্যেক প্রকার বেদীর ক্ষেত্রফল ছিল নির্দিষ্ট এবং তা এক বর্গব্যাম। মহাবেদী বা সৌমিকী-বেদীর আকার ছিল সমদ্বিবাহ ট্রাপি-

চিত্র—6 (মহাবেদী) সৌমিক্ট্-বেদীর আকার ছিল সমদ্বিবাহ ট্রাপি-জিয়াম। প্রাচীন এই বেদীর সম্মুখীন বাছ 24 পদ, ভূমি 30 পদএবং উচ্চতা ছিল 36 পদ। সৌত্তমণি-বেদীর আকারও ছিল সমন্বিবাছ টাপিজিয়াম। কিন্তু ক্ষেত্রফল ছিল মহাবেদীর এক তৃতীয়াংশ। পৈতৃকী-বেদীর আকারও তাই, কিন্তু ক্ষেত্রফল সৌত্তমণি-বেদীর এক নবমাংশ। প্রাগ্-বংশ-বেদীর আকার আয়তক্ষেত্র। একাদশিনী বেদীর পূর্বপ্রান্তের দৈর্ঘ্য 10 অক্ষ 11 পদ 8 অঙ্গুলি; অধ্বমেধ-বেদীর পূর্বপ্রান্তের দৈয়্য 20 অক্ষ 21 পদ 8 অঞ্গুলি।

বেদী-নির্মাণে ইট ব্যবহার করা হতো। প্রাথমিক পর্বে বেদীতে পাঁচটি স্তর্থাকত। প্রাথমিক বেদী উচ্চতায় হাঁটুর সমান,—বৈদিক পরিমাপ অম্বায়ী 32 অঙ্গুলি। প্রত্যেক ইটের আকার ও আয়তন নির্দিষ্ট ছিল। যেমন—চত্ত্রশ্র-শোন-চিতি নির্মাণে প্রত্যেকটি ইট হতো বর্গাকার এবং প্রত্যেক স্তরে 200 ইট থাকার বিধি ছিল। অবশ্য কোন কোন বেদী-নির্মাণে ইটের আকার ভিন্ন হলেও সংখ্যা স্তনিদিষ্ট রাখার বিধি ছিল।

গার্হপত্য বেদী পাঁচ স্তবে নির্মিত হতো। প্রতি স্তবে ইটের সংখ্যা 21 এবং যজ্জবেদীর ক্ষেত্রফল হতো এক বর্গ ব্যাম। লক্ষ্য করার বিষয়, স্তর নির্মাণে নিশ্চিত কিছু 'মশলা' ব্যবহার করা হতো এবং হুটি ইটের মধ্যেকার ফাঁক প্রণ করার বিষয়ে গাণিতজ্জদের চিস্তার অবকাশ ছিল। বোধায়ন এই বেদী-নির্মাণে তিন প্রকার ইট ব্যবহার করার বিষয় আলোচনা করেছেন। এদের আকার এক ব্যামের এক-ষ্ঠাংশ, এক-চতুর্থাংশ ও এক-তৃতীয়াংশ। প্রথম স্তর নির্মাণে প্রথম প্রকারের 9টি ইট, দ্বিতীয় প্রকারের 12টি ব্যবহৃত হতো। তৃতীয় স্তবে প্রথম স্তবের প্রথম স্তবের আয় ইট লাগত, আর চতুর্থ স্তর্যটি ছিল দিতীয় স্তবের অম্বর্গ।

# ়। পীথাগোরাসের পূর্বে।।

অতিভূজের উপর বর্গ সম্পর্কিত উপপাছটির আবিষ্কারক হিসাবে গ্রীক গণিতজ্ঞ ও দার্শনিক পীথাগোরাদের সর্বাধিক পরিচিতি। কিন্তু গণিত ইতিহাসকারগণ ঐ-বিষয়ে সন্দেহ প্রকাশ করেন। বিছালয়ের ছাত্র-ছাত্রীরা পীথাগোরাদের উপপাছের যে প্রমাণটি পড়ে, সেটিও তাঁর নয়। খুব সম্ভব, এই প্রমাণটির ক্ষতিত্ব ইউক্লিডের প্রাপা। সে যা হোক,—ভারতে ঋরেদের যুগের পূর্বেও এই উপপাছটির অস্তিত্ব প্রমাণিত হয়েছে। শুধু ভারতে কেন,—পৃথিবীর সব প্রাচীন সভাদেশেই এই উপপাছের অস্তিত্ব লক্ষ্য করা যায়। ভারতে এই উপপাছটি 'কর্দের উপর বর্গ' নামে থ্যাত। অতি প্রাচীন দক্ষিণ বেদী নির্মাণে

এই উপপান্যের সাহায্য অপরিহার্য। তা ছাড়া আরো নানা ধরণের বেদী নির্মাণে এই উপপাত্যের জ্ঞান অত্যাবশুক।

বৌধায়ন শুলুসুত্রে উপপাত্তির বর্ণনা এইভাবে পাওয়া যায়:-

''দীর্ঘচতুরপ্রস্থা ক্রয়ারজ্জুঃ পার্শ্বমাণী তির্বঙ্মাণী চ যংপৃথগ ভূতে কুরুতস্তমভূতরং করোতি"—

—স্বায়তক্ষেত্রের দৈর্ঘ্য ও প্রস্থ যাহা (ক্ষেত্রফল) পৃথক পৃথক ভাবে উৎপন্ন করে।
ভাহা (ক্ষেত্রফল) উহার কর্ণ উৎপন্ন করে।

সহজ ও সরল ভাষায় আয়তক্ষেত্রের দৈর্ঘ্য ও প্রস্থের ক্ষেত্রফল একত্রে উহার কর্ণের ক্ষেত্রফলের সমান।

তঃখের বিষয়, এই গুরুত্বপূর্ণ উপপাতটির বর্ণনা গুল্পত্তে থাকলেও এর কোন প্রমাণের উল্লেখ নাই। থিবো, বুয়র্ক ও ড: বিভূতিভূষণ দত্ত এই উপপাতাটির তথনকার প্রচলিত প্রমাণই দংগ্রহের চেষ্টা করেছেন। এই উপপাতোর নিশ্চয় প্রমাণ ছিল। এর বহুল প্রচার ও প্রয়োগই সম্ভবতঃ শুল্বকারদের লিখে রাখার প্রেরণা দেয়নি। বৌধায়ন এর গাণিতিক দিক্টির উল্লেখ করে বলেছেন, এর সভ্যতা উপলব্ধি হবে 3 ও 4 একক, 12 ও 5 একক, 15 ও ৪ একক, 7 ও 24 একক এবং 15 ও 26 একক বিশিষ্ট আয়তক্ষেত্রের বেলায়। আমরা জানি, 3°+4°-5°; 12°+5°-13° প্রভৃতি। আয়তক্ষেত্রের কর্ণ 5 একক হলে তার দৈর্ঘা ও প্রস্ত মথাক্রমে 4 ও 3 একক হবে। স্থতরাং কর্ণের উপর বর্গ সম্পর্কিত উপপাত্তীর সভ্যতা সম্বন্ধে কোন সন্দেহ থাকে না। তা ছাড়া শুলুস্ত্রে এর প্রমাণ থাকার কথাও নয়। ঘেথানে মুখা উদ্দেশ হচ্ছে বেদী-নির্মাণ, দেখানে সমকোণী ত্রিভূজের বৈশিষ্টের প্রমাণই বা থাকবে কেন ? এই প্রদঙ্গে ড: টি. এ. সরস্বতী আশার মতটি উল্লেখযোগ্য: "To speculate on whether the Indians have a proof for the theorem or what the proof could have been is idle. The Sulbasūtras, our only means of knowing what the condition of mathematics then was in India, are only practical manuals for the construction of the altars. Proofs are outside their scope. Very likely they had proofs orally transmitted to the enquiring student."

বুয়র্কের মতে এই উপপাতাটির প্রমাণে প্রাচীন শুলকারগণ হয়তো কর্ণ ও অভ্য

বাহু তুটিকে একক বর্গে পরিণত করে গণনার দ্বারা এর সত্যতা প্রমাণ করতেন।
নিমের চিত্রটি লক্ষ্য করলে বুঝাতে পারা যাবে।



।। রভের বগ'-রূপ ও π (পাই)-এর মান।।

কোন বুত্তের সমান বর্গক্ষেত্র ও কোন বর্গক্ষেত্রের সমান বৃত্তাঙ্কনের ইতিহাস খুব প্রাচীন। প্রীক গণিতে যে তিনটি সমস্যা দীর্ঘদিন অসমাধানিত ছিল, এটি তার মধ্যে একটি। প্রকৃত কাল-নির্গন্ধ করা না গেলেও একখা নিঃসন্দেহে বলা যায় যে, এই সমস্যাটির সমাধান প্রাচীন ভারতীয় গণিতজ্ঞরা অন্তত তিন হাজার বছর পূর্বে করেছিলেন। গার্হপত্য, আহ্বানীয় ও দক্ষিণ বেদী-নির্মাণ এই সমস্যার সমাধান না হলে সম্ভব হতো না। তা ছাড়াও অন্যান্ত বেদী শাশান-চিৎ, র্থচক্র-চিৎ, পরিচর্য-চিৎ, জ্যোণ-চিৎ প্রভৃতি নির্মাণে এর প্রয়োগ আছে।

বৌধায়ন গুলহতে সম্পাত্যটি নিয়ন্ত্ৰণে উল্লিখিত আছে: "যদি তুমি বর্গক্ষেত্রের সমান ক্ষেত্রকল বিশিষ্ট বৃত্ত অঙ্কন করিতে চাও তাহা হইলে বর্গক্ষেত্রের কেন্দ্রে উহার কর্নের অর্থ পরিমাণ ব্যাদার্থ লইয়া পূর্ব-পশ্চিম বরাবর রেখা স্পর্শ করিয়া বৃত্তাক্ষন কর। অতঃপর বর্গক্ষেত্রের বহিঃস্থ রেখার এক-তৃতীয়াংশ পর্যন্ত ব্যাদার্থ লইয়া বৃত্তাক্ষন কর।"

ABCD একটি বর্গক্ষেত্র, O কেন্দ্র (কর্গন্ধরের ছেদবিন্দু)। OA সংযুক্ত করা হলো। O-কে কেন্দ্র করে OA ব্যাসার্ধ নিয়ে বৃত্তাক্ষন করা হলো। এই বৃত্ত পূর্ব-পশ্চিম বরাবর রেখা EW-কে P বিন্দুতে ছেদ করল। PR-কে এমন ভাবে ভাগ

করা হলো যেন  $QR = \frac{1}{3} PR$  হয়। এবার O-কে কেন্দ্র করে  $QR = \frac{1}{3} PR$  হয়। এবার O-কে কেন্দ্র করে  $QR = \frac{1}{3} PR$  হয়।



<u> 6िज</u>−8

শুলস্থে দ-এর মান সম্পর্কে কোন স্পষ্ট উল্লেখ নাই। কিন্তু নানান জ্যামিতিক অঙ্কন থেকে প্রমাণিত হয় প্রাচীন কালে ভারতীয় গণিতজ্ঞরা বৃত্তের পরিদীমা ও ব্যাসের অন্তপাত সম্পর্কে সম্পূর্ণ অবহিত ছিলেন। আমরা জ্ঞানি, r ব্যাসার্ধ বিশিষ্ট বৃত্তের ক্ষেত্রফল সং ?। স্থতরাং বৃত্তাকার কোন যজ্ঞবেদীর ক্ষেত্রফল নির্ণয়ে দ-এর মান নির্ণয় অপরিহার্য হয়ে পড়ে।

উপরের চিত্রে AB=2a হলে,  $OQ=\frac{a}{3}\left(2+\sqrt{2}\right)$ 

অতএব  $\pi=18(3-2\sqrt{3})$ । এখানে  $\pi$ -এর মান 3.088।  $\pi$ -এর মানটি নির্ভুল নয়, স্থুল মান। যজ্ঞবেদী নির্মাণে এই মান যথেষ্ট বলে গণ্য হতো মনে হয়।

# ।। छत्रपूर्व धकक ॥

এককের প্রয়োজনীয়তার কথা না বললেও চলে। আধুনিক বিজ্ঞানে কত প্রকারের এককই না প্রচলিত আছে। এ-সবই স্কল্ম পরিমাপের জন্ম। প্রাচীন যুগে ভারতীয় গণিতজ্ঞরাও বিজ্ঞান-দশ্মত উপায়ে দঠিক পরিমাপ করার জন্ত নানা প্রকার একক আবিদ্ধার করেছিলেন। এককগুলির নাম থেকে মনে হয় মান্থরের অঙ্গ-প্রত্যান্ধের দলে এদের ঘনিষ্ঠ সম্পর্ক ছিল। যেমন,—'পুরুষ' একক সম্বন্ধে মহাবীর বর্ধমানের সংসার ত্যাগের মূহুর্তের এক বিবরণ পাওয়া যায়। ভদ্রবাহুর কল্পত্রে আছে,—"দেই কালে দেই সময়ে (মহাবীর) হেমন্তের প্রথম মাসে প্রথম পক্ষে অগ্রহায়ণের কৃষ্ণপক্ষে দশ্মী তিথিতে পূর্বাভিম্থিনী ছায়ার এক "পৌরুষী" পরিপূর্ণ হইলে স্প্রত্তর নামক দিবসে বিজয় নামক মূহুর্তে চন্দ্রপ্রভা নামক শিবিকায় আরোহণ করিয়া সংসার ত্যাগ করিলেন।" এক পৌরুষী বা পুরুষ সমান লাড়ে তিন হাত বা পুরুষের দৈর্ঘ্যের সমান বা উপর্বাহু পুরুষের দৈর্ঘ্যের সমান বলা হয়েছে। আঙ্কুলি, পদ, ব্যাম প্রভৃতি এককগুলি মান্থবের অঙ্গ-প্রত্যাঙ্গই স্টেতি করে। নিম্নে একটি সংক্ষিপ্ত তালিকা দেওয়া হলো:

5% অঙ্গুলি=1 পদ=1 প্রক্রম

12 बङ्गान=1 श्रांदम्

24 অঙ্গুলি=1 অরংনি=1 হাত=18 ইঞ্চি=1শয়

96 অঙ্গুল=1 ব্যাম=1 পিশিল

104 অঙ্গুলি=1 অক

120 অঙ্গুলি=1 পুরুষ

5 শয় বা হাত =1 পুরুষ

8 যব = 1 অঙ্গ লি

1 প্রক্রম=2 পদ (ইষ্টি যজ্ঞের ক্ষেত্রে)

= 3 পদ (পৌষ যজ্ঞের ক্ষেত্রে)

=2 ব পদ ( সোম যজ্জের ক্ষেত্রে )

=5 পদ ( সাগ্রিক যজ্ঞের ক্ষেত্রে )

এই এককগুলির কোন সর্বভারতীয় রূপ ছিল কিনা বলা যায় না। মনে হয় অঞ্চলভেদে কিছু কিছু পার্থক্য ছিল।

# ॥ গুৰুসূত্ৰে পণিত।।

ভারতীয় গণিতজ্ঞরা যুক্তি-তর্কের ভাষাগত দিকটির প্রতি বিশেষ আগ্রহ বোধ করেননি। গণিতে যে দিকটির প্রতি তাঁরা বিশেষ আগ্রহী ও উৎসাহী ছিলেন, সে দিকটি হচ্ছে জটিল গাণিতিক পথ। সম্ভবত এই কারণেই তবকারগণ সমকোণী ত্রিভূজের বাহগুলিকে মূলদ রাশির দ্বারা প্রকাশ করেছেন। a, b ও c সমকোণী ত্রিভূজের তিনটি বাহু হলে এদের সম্পর্ক a²+b²=c²-এই সমীকরণ দ্বারা প্রকাশ করা ধার। শুলুস্ত্রে এই সমীকরণের কোন সাধারণ বীজ পাওয়া ধার না। কিন্তু এমন কতকগুলি উদাহরণ পাওয়া ধার যেখানে ওই সমীকরণের ধর্মটি প্রযুক্ত হয়েছে। শুলুস্ত্রে নিম্নরণ বাহুবিশিষ্ট সমকোণী ত্রিভূজের উদাহরণ পাওয়া ধার:—

- (1) a=3, b=4, c=5
- (2) a=5, b=12, c=13
- (3) a=7, b=24, c=25
- (4) a=8, b=15, c=17
  - (5) a=12 b=35, c=37

সোত্রমণি বেদীতে  $5\sqrt{3}$ ,  $12\sqrt{3}$ ,  $13\sqrt{3}$  এবং অশ্বমেধ বেদী নির্মাণে  $15\sqrt{2}$ ,  $36\sqrt{2}$  এবং  $39\sqrt{2}$  বাহুবিশিষ্ট সমকোণী ত্রিভূজাঙ্কনের পরিচয় পাওয়া যায়।

# ।। अयूनन तामि ।।

শুলুম্বে মুন্দ রাশির পরিচয়ও পাওয়া যায়। কোন বিশেষ প্রকার বেদীর বৃহতীকরণ থেকেই মুন্দ রাশির ব্যবহার প্রয়োজন হয়েছিল। যেমন,— দৌত্রমণি বেদী ত্রিভুজাকার; কিন্তু এই বেদীর ক্ষেত্রফল 5, 12, 13 বাছবিশিষ্ট ত্রিভুজের তিনগুণ।

 $\sqrt{2}$ ,  $\sqrt{3}$  প্রভৃতি অমূলদরাশিকে গুলুস্ত্রে 'করণী' বলা হয়েছে।  $\sqrt{2}=$  দ্বিকরণী,  $\sqrt{3}=$  ত্রি-করণী,  $\frac{1}{\sqrt{3}}=$  তৃতীয় করণী,  $\frac{1}{\sqrt{}}=$  সপ্তম কয়ণী।

বিভিন্ন যজ্ঞবেদীর ক্ষেত্রফল নির্ণয় থেকে করণী সংক্রান্ত নান। প্রক্রিয়ার বিষয় অবগত হওয়া যায়। বৌধায়ন, আপস্তম ও কাত্যায়নের শুল্মতে ছি-করণী (√2)-এর আসন্ন মান পাওয়া যায়। সেই প্রাচীনকালে করণীর আসন্ন মান নির্ণয় গণিতের ইতিহাসে একটি আশ্চর্যজ্ঞনক ঘটনা বলে চিহ্নিত হবার দাবী রাখে।

$$\sqrt{2}=1+\frac{1}{3}+\frac{1}{3.4}-\frac{1}{3.4.34}$$

এখানে, √2 = 1.4142156; √2-এর সঠিক মান 1.4142। কিন্তু কোন্
পদ্ধতি অবলম্বনে প্রাচীন ভারতীয় গণিতজ্ঞরা এই অত্যাশ্চর্য ঘটনা সংঘটিত

করতে সমর্থ হয়েছিলেন তার কোন ইঙ্গিত গুলস্ত্রে নাই। অবশ্র ভারতীয় ও পাশ্চাত্য পণ্ডিতগণ এর সম্ভাব্য ব্যাখ্যা দেবার চেষ্টা করেছেন। দ্বি-করণীর আসম মান নির্ণয়ে সম্ভাব্য একটি পদ্ধতি বিবৃত করা হলো।

একক বাহুবিশিষ্ট ঘূটি বর্গক্ষেত্রের মধ্যে একটিকে তিনটি সমান ক্ষেত্রকল বিশিষ্ট আয়তক্ষেত্রে বিভক্ত করে প্রথম ও বিতীয়টিকে 1 ও 2 দ্বারা চিহ্নিত করা হলো। তৃতীয় আয়তক্ষেত্রকে তিনটি বর্গক্ষেত্রে বিভক্ত করে প্রথমটিকে 3 দ্বারা এবং অপর ঘূটিকে সমান চারটি করে অংশে বিভক্ত করে 4, 5, 6, 7, এবং 8, 9, 10, 11 দ্বারা চিহ্নিত করা হলো। এই এগারোটি খণ্ডকে নিম্নরূপ চিত্রের স্থায় অপর বর্গক্ষেত্রে সংযোজিত করা হলো।

| 4 5 6 | 17 | 79 |   |   |                  |
|-------|----|----|---|---|------------------|
| 1     | 3  | 8  |   |   |                  |
|       |    | 9  |   |   | 3                |
|       | 2  | 10 | 1 | 2 | 4<br>5<br>6<br>7 |
|       |    | n  |   |   | 0 10             |

এরকম করার ফলে একটি নতুন ক্ষেত্র পাওয়া ষাবে যার চিহ্নিত ছোট্ট বর্গক্ষেত্রটির জন্মই সমগ্র ক্ষেত্রটি বর্গক্ষেত্র হতে পারবে না। এখন নতুন ক্ষেত্রের বাছর পরিমাপ  $1+\frac{1}{3}+\frac{1}{3\cdot 4}$ এবং চিহ্নিত বর্গক্ষেত্রের ক্ষেত্রফল। চিত্র থেকে দেখা যাচ্ছে নবতম বর্গক্ষেত্রটি প্রথমে নেওয়া বর্গক্ষেত্রদরের সমষ্টি অপেক্ষা  $\left(\frac{1}{3\cdot 4}\right)^2$  অধিক।

$$2x\left(1+\frac{1}{3}+\frac{1}{3.4}\right)-x^{9}=\left(\frac{1}{3.4}\right)^{3}$$
  
বা,  $x=\frac{1}{3.4.34}[x^{9}$  উপেক্ষা করে ]

প্রত্যেক বর্গক্ষেত্রের কর্ণ 
$$\sqrt{2}$$
 স্থাতবাং  $\sqrt{2}=1+\frac{1}{3}+\frac{1}{3.4}-\frac{1}{3.4.34}$ 

বর্তমানে একজন পাশ্চাত্য গবেষক করণীর এই আদন্ধ মান নির্ণয়ের ক্ষতিত্ব ব্যবিলনীয়দের প্রাপ্য বলে মন্তব্য করেছেন। দ্বি-করণীর আদন্ধ মান নির্ণয় ব্যবিলনে বহু শতান্ধী পূর্বে হয়েছিল সত্য, কিন্তু কেবল প্রাচীনত্বই অভাত্য দেশের মৌলিকতা বিনষ্ট করে না।

আজ নিঃসংশয়ে প্রমাণিত হয়েছে প্রাচীন ভারতীয় গণিতজ্ঞরা সর্বপ্রথম অমূলদ রাশি ব্যবহার করেন। অবশু গ্রীসেও অমূলদ রাশির প্রচলন ছিল। কিন্তু 
√2, √3 ইত্যাদি অমূলদ রাশির মূলদ রাশিতে আসন্ন মান প্রকাশ করার কোন পদ্ধতি তাঁরা জানতেন না। অমূলদ রাশি ছারা পাটীগাণিতিক সমস্থার সমাধান পৃথিবীর আর কোন দেশে দেখতে পাওয়া ষায় না। পীথাগোরাস প্রথম এই রাশির ব্যবহার করলেও একথা সব সময় মনে রাখতে হবে ষে ভ্রকারগণ তাঁর বহু বছ শতাকী পূর্ববর্তী। অমূলদ রাশির ধারণা ও এ-সম্পর্কীয় তত্ত্ব অভি আধুনিক, —ডেডিকিগু, ক্যান্টর প্রভৃতি গণিতজ্ঞদের অবদান। আমরা গর্ব করতে পারি এই বলে যে, অস্তত্ত তিন হাজার বছর পূর্বে আমাদের দেশের গণিতজ্ঞরা এই সম্পর্কে স্কুম্পষ্ট ধারণা ও গণিতের সর্বক্ষেত্রে তার ব্যবহার করেছিলেন।

#### ।। ক্ষেত্ৰফল ও আয়তন।।

শুলুসূত্রে জ্যামিতিক ক্ষেত্রফল এবং সামতলিক ও অক্যান্স বস্তুর ক্ষেত্রফল ও আয়তনের স্তুত্র পাওয়া যায়।

- (1) ত্রিভুজের ক্ষেত্রফল= 🖁 × ভূমি × উচ্চতা
- (2) সামস্তবিকের ক্ষেত্রফল = ভূমি × উচ্চতা
- (3) ট্রাপিজিয়ামের ক্ষেত্রফল 🖟 × সমান্তরাল বাছরুরের সমষ্টি × উচ্চতা
- (4) চোঙের ক্ষেত্রফল = ভূমি × উচ্চতা

### ॥ গুল্বসূত্রের ভাষ্যকারগণ।।

শুল্পত্ত্বের অনেক ভাষ্ম আছে,—এমন কি একই শুল্পত্ত্বের একাধিক ভাষ্মও আছে। কিন্তু এ-সব গ্রন্থের রচনাকাল নির্ণয় এক অসম্ভব ব্যাপার। নিম্নে কয়েকজন ভাষ্মকাবের সংক্ষিপ্ত পরিচয় দেওয়া হলো।

### ।। दोशायन छच्युव ।।

এই স্তত্তান্থে তৃ'জন ভাস্তকারের নাম পাওয়া যায়,—দারকানাথ ও । ভেঙ্কটেশব। দারকানাথের শুল-ভাস্তানির নাম শুল্ব-দীপিকা। প্রথম ঝার্যভটের গ্রন্থ থেকে তিনি উদ্ধৃতি দিয়েছেন। অনুমিত হয় তিনি আর্যভটের পরবর্তী কোন সময়ে বর্তমান ছিলেন। শুলস্ত্রের বর্গের বৃত্তরূপ ও এর বিপরীত প্রতিজ্ঞা থেকে প্রাপ্ত ফলের সমালোচনা করে উদাহরণের সাহায্যে তিনি দেখিয়েছেন যে আর্যভটের ফল অনেক বেশী স্কল্প ও নিভূল। শুলস্ত্রে স্ক-এর মান নির্ণয়ের স্থ্র সংশোধিত করে দ্বারকানাথ নিম্নরূপ স্থ্রটি দিয়েছেন:—

$$\mathbf{r} = \left\{ a + \frac{a}{3} (\sqrt{2} - 1) \right\} \left( 1 - \frac{1}{18} \right)$$
 এই স্ত্ৰ থেকে

#=3·141109....পা ওয়া যায়।

ভেন্ধটেশ্ব দীক্ষিতের ভাষ্য গ্রন্থের নাম শুল্ব-মীমাংসা। তাঁর সম্বন্ধে কিছুই জানা যায় না।

### ।। কাড্যায়ন গুল্বসূত্ৰ।।

এখানেও ত্ৰ'জন ভায়কারের নাম পাওয়া যায়,—রাম বা রামচন্দ্র ও মহীধর। রামচন্দ্রের ভায়ের নাম শুল্ল-স্ক্র-রজি এবং মহীধরের ভায়ের নাম শুল্ল-স্ক্র-বিবরণ। বর্তমান লক্ষো-এর নিকটবর্তী নৈমিশবাদী রামচন্দ্রের গ্রন্থে শ্রীধরাচার্যের ত্রিশতিকার উদ্ধৃতি আছে, যদিও তাঁর গ্রন্থে দমকোণী ত্রিভুজাঙ্কনের এক নতুন পদ্ধতি আছে। তা হলেও তাঁর ক্রতিত্ব অন্তর। √2-এর সপ্তম দশমিক স্থান পর্যন্ত নিভূলি মান নির্ণয়ের জন্মই তিনি বিখ্যাত।

$$\sqrt{2}=1+\frac{1}{3}+\frac{1}{3.4}-\frac{1}{3.4,34}-\frac{1}{3.4,34,33}+\frac{1}{3.4,34,34}$$

অর্থাৎ √2=1·414213502। অনুমিত হয় রামচন্দ্র হয়তো গুলকার কর্তৃক অহুস্তে পদ্ধতি জানতেন। কিন্তু তিনি সেরূপ কোন ইঞ্চিত দেননি।

মহীধরের রচনাকার্য 1589 থ্রীস্টাব্দ বলে জানতে পারা যায়। তাঁর ভাষাটি রামচন্দ্রের ভাষ্যের উপর প্রতিষ্ঠিত। তিনি অন্যান্ত বিষয়ের উপর সতেরোখানি গ্রন্থ রচনা করেন।

#### ।। वाश्ख्य ७व्यूव ॥

এই গ্রন্থের ভাষ্যকারের সংখ্যা সর্বাধিক। চারন্ধন বিখ্যাত ভাষ্যকার গাণিতিক প্রতিভার পরিচয় দিয়ে এই গ্রন্থের গৌরব বৃদ্ধি করেছেন। এঁদের মধ্যে গার্গ নৃদিংহ দোমস্থতের পুত্র গোপালনের কোন পরিচয় পাওয়া যায় না। ভাঁর গ্রন্থের নাম আপস্তম্বীয়-শুল্প-ভাষ্য।

অরবিন্দ স্বামী আপস্তম্বের শ্রেতিস্ত্রেরও ভাস্থ রচনা করেন। তা ছাড়া তিনি আরো কয়েকটি গ্রন্থের রচন্মিতা ছিলেন বলে জানা যায়। তিনি আর্যভটের পরবর্তী। তাঁর রচনাকাল সম্বন্ধে নিশ্চিতরূপে কিছু বলা না গেলেও তিনি পঞ্চম থেকে অষ্টম শতাব্দীর মধ্যে কোন সময়ে বর্তমান ছিলেন বলে অনুমিত হয়। তিনি বৃত্তচাপের ক্ষেত্রফলের যে হত্ত দিয়েছেন তা কোন গণিত গ্রন্থে দেখতে পাওয়া যায় না। কেবল শ্রীধরাচার্যের পর এই হত্তটি আরো হক্ষ ও শুদ্ধরূপে দেখতে পাওয়া যায়। এর ভাষ্য গ্রন্থের নাম শুল্প প্রদীপকা।

কপদিখামীর ভাষাগ্রন্থের নাম শুল-ব্যাখ্যা। ইনি সম্ভবত দাদশ শতানীর পূর্ববর্তী। গণিতজ্ঞ শূলপাণি, হেমাদ্রি ও নীলকণ্ঠ এঁর গ্রন্থ থেকে উদ্ধৃতি দিয়েছেন। শূলপানির রচনাকাল মোটাম্টি 1150 খ্রীন্টান্দ এবং হেমাদ্রি দেবগিরির রাজা মহাদেবের (1260 – 71) মন্ত্রী ছিলেন।

স্থলররাজ সম্ভবত যোড়শ শতাব্দীর চতুর্থপাদে বর্তমান ছিলেন। গুল্ব-প্রদীপ এঁর রচিত গ্রন্থ। ইনি দ্বারকানাথের গ্রন্থ থেকে উদ্ধৃতি দিয়েছেন।

#### ।। মানৰ গুল সূত্ৰ।।

বারানদীর বাদিনা নারদের পুত্র শিবদাস হচ্ছেন এই শুল্বস্থতের বিখাতি ভাষ্যকার। শিবদাসের কনিষ্ঠ ভ্রাতা শঙ্করভট্ট ছিলেন মৈত্রায়ণী শুল্বের ভাষ্যকার। উভয় ভ্রাতার প্রস্থে রামচন্দ্রের প্রস্থের উদ্ধৃতি দেখতে পাওয়া যায়। শিবদাস দ্বিতীয় ভাস্বরের প্রস্থ থেকে ত্রৈবাশিক নিয়মটি উদ্ধৃত করেছেন। বিখ্যাত ভাষ্যকার দায়নাচার্যের উদ্ধৃতি তাঁর প্রস্থে থাকায় তিনি চতুর্দশ শতান্দীর পরবর্তী বলে অন্থমিত হন। শুল্বগাঠ সম্বন্ধে শিবদাসের মন্তব্যটি প্রণিধানযোগা। তিনি বলেছেন গণিত-পাঠ সমাপ্ত করে শুল্বপাঠ করা উচিত। স্বন্থথায় শুল্ব প্রকৃত জ্ঞানার্জন সম্ভব নয়।

দ্বিতীয় ও তৃতীয় অধ্যায়ে বৈদিক যুগের গণিত সম্বন্ধে আলোচনা করা হলো।
কিন্তু এ যুগের বিপুলায়তন গ্রন্থাদির আলোচনা ও বিক্ষিপ্ত গাণিতিক তথ্যাদি
পরিবেশন এক তৃঃসাধ্য ব্যাপার। লেথক অকপটে তাঁর সীমিত জ্ঞান স্বীকার
করে পরবর্তী কোন স্বযোগ্য উত্তরাধিকারীর অপেক্ষা করছেন।

Lacy remardance supplies to a time of the party of

# চতুৰ্থ অখ্যায়

"The transfer of a mathematical way of thought to the rest of our intellectual effort is in a sense, an application of mathematics. Precise numerical answer is not usually required and may not even be constsient with the input and output structure of a model."

Cambridge Report.

# লেখন ও প্রাচীন সংখ্যা

ভারতবর্ষে কবে লিখিতরপের আবিষ্কার হয়েছিল আজ আর তা নিশ্চিত करत वना मन्डव वरन मरन रम्र ना। अन्नाविध आविष्कृ क मर्वालका श्राहीन निर्ण হচ্ছে ব্রান্ধী ও থরোষ্ঠা লিপি। থরোষ্ঠা লিপির বিদেশী উৎস সম্পর্কে মতভেদ নাই। কিন্তু ব্ৰাহ্মী লিপি সম্পৰ্কে বিতৰ্ক আছে। অধিকাংশ পাশ্চাতা মনীধী এই निभित्र विकास छे९एम विश्वामी। छात्रा वान्त बान्ती निभित्र छे९म इएक रमभीय-निशि। रम या रहांक, এই निशित्र প্রাচীন নিদর্শন হচ্ছে, আশোকের সময় কালের। এখন প্রশ্ন,—ভারতে কি তাহলে খ্রীস্টপর্ব চতর্থ শতান্দীর পর্বে কোন লিপির প্রচলন ছিল না ? পণ্ডিতবা বলেন বৈদিক যুগ থেকেই ভারতে লিখিত রূপের প্রচলন ছিল। বশিষ্ট ধর্মসূত্রে এর ইঞ্চিত আছে। এই গ্রন্থের প্রথম শ্লোকটি অন্ত কোন প্রাচীন গ্রন্থের উদ্ধৃতি বলে পণ্ডিতরা মনে করেন। সর্বাপেক্ষা প্রাচীন গ্রন্থ — ঋরেদে 'আট' সংখ্যাটির উল্লেখ আছে। ''সহজ্রাণি দদাতো অষ্টকর্ণ্যা:"-"কর্ণে অষ্ট-চিহ্নিত এক হাজার গাভী আমাকে দাও।" ঋরেদের এই উদ্ধৃ তিটি তথনকার যুগে সংখ্যার লিখিতরূপ নির্দেশ করে। এখনো পলীগ্রামে গোরুর কানে ও শরীরের অন্ত অংশে লোহা পুড়িয়ে ছেঁকা দিয়ে চিহ্ন দেওয়ার বীতি আছে। অবশ্য যদিও অন্ত কারণে দেওয়া হয়, তবুও এর মধ্যে আমরা দেই ম্প্রাচীন ঋর্যেণীয় ঐতিহের ও রীতির অন্তবর্তন দেখতে পাই। এছাডাও বৈদিক যুগে যে লেখার প্রচলন ছিল ঋগেদে তার অনেক প্রমাণ আছে। এ-প্রসঙ্গে স্বামী মহাদেবানন্দ গিরির Vedic Culture গ্রন্থ থেকে একটু দীর্ঘ উদ্ধ তি দেওয়া হলো: It is suggested by many persons that in the Vedic

Age the art of writing was unknown; hence the Vedas were committed to memory and thus handed down orally from generation to generation but Riks 6.53.7 and 8 clearly refer to the existence of a script, vide "Ārikha kikira krinu". Letters of the alphabet are mentioned in Rik 10. 13. 3. Rik 10. 71 sukta is about the learning of lauguages and the knowledge Absolute." সপ্তম প্রাক্তপূর্বান্দের পাণিনির ব্যাকরণে 'ঘৰনানি' 'লিপিকার' 'লিবিকার' শবগুলিও সেকালে লেখার প্রচলনের সাক্ষ্য দেয়।

বর্তমানে ব্রাহ্মীলিপির বিদেশী উৎস শ্বীকার করা হয়না। মহেঞাদড়ো ও হরপ্পায় আবিষ্কৃত শীলমোহর ও প্রত্নলিপি তিন হাজার খ্রীস্টপূর্বান্ধে ভারতে প্রচলিত লিখিত রূপের সাক্ষ্য বহন করে বলে মনে করা হয়।

### ॥ প্রাচীন ভারতীয় সংখ্যা॥

প্রথম অধ্যায়ে প্রাগৈতিহাসিক মহেজোদড়ো ও হরপ্লায় প্রাপ্ত শীলমোহর ও প্রত্বলিপিতে সংখ্যার কথা আলোচিত হয়েছে। সিন্ধু-লিপিতে এক থেকে বারো অথবা তেরো পর্যন্ত সংখ্যার নম্না পাওয়া গেলেও, কুড়ি, ত্রিশ, চল্লিশ প্রভৃতি বড় বড় সংখ্যা তাঁরা কেমনভাবে লিখতেন, তার কোন পরিচয় আমাদের জানা নাই। সিন্ধুসভ্যতা থেকে অশোকের সময় পর্যন্ত প্রায় 2700 বছরের ব্যবধান। স্ফদীর্ঘ এই মধ্যবর্তী সময়কার কোন লিখিত রূপের আবিষ্কার আজও সম্ভব হয়ি। এই স্থযোগের সময়বহার করে তাই অনেক পাশ্চাত্য পণ্ডিত বলেন অস্তম শতাকীর পূর্বে এ-দেশে লিখিতরূপের প্রচলন ছিলনা। কিন্তু তা না মানার যথেষ্ট কারণ আছে।

# ॥ ব্রাহ্মীলিপির ভারতীয় উৎস ॥

বিদেশী নানা প্রাচীন লিপির সঙ্গে কিছু কিছু সাদৃশ্য থাকার ফলে পাশ্চান্ত্য পণ্ডিতদের অধিকাংশই ব্রাহ্মীলিপির বিদেশী উৎস সমর্থন করেন। কিন্তু কিঞ্চিৎ সাদৃশ্যের জন্মই এই মতবাদ স্বীকার করা যায় না। এই সম্পর্কে পণ্ডিত ভগবান লাল ইন্দ্রজীর মতবাদটি গ্রহণযোগ্য বলে মনে হয়। তাঁর মতে চার হাজার বছর পূর্বে ভারতীয়রা লেখা-শিল্পে পারঙ্গম ছিলেন। খ্রীস্টপূর্ব তু' হাজার বছর পূর্বে ভারতীয়রা 10° সংখ্যাটির ব্যবহার করেছেন, আবার 10° পর্যন্ত সংখ্যার নামকরণও দেখতে পাওয়া যায়। এ-সব থেকে প্রমাণিত হয় যে ভারতে অতি

প্রাচীনকালে পাটীগণিতের যথেষ্ট সমৃদ্ধি ঘটেছিল। লিখিত রূপের প্রচলন না থাকলে এটা যে সম্ভব নয়, এ-অনুমান অসম্ভব নয়। ব্রাহ্মণ্য, বৌদ্ধ ও ছৈন সব ধর্মগ্রন্থেই স্পষ্টিকর্তা ব্রহ্মা সংখ্যা লিখন ও ব্রাহ্মীলিপির জনক বলে অভিহিত হয়েছেন। ব্রাহ্মী শব্দের মধ্যে ব্রহ্মা বা ব্রাহ্মণের সম্পর্ক থাকা মোটেই অসম্ভব নয়।

# ।। খরোষ্ঠা ও ব্রাক্ষীলিপিতে সংখ্যা।।

সম্রাট অশোক ও তাঁর পরবর্তীকালের অধিকাংশ প্রত্নলিপিই ছু'প্রকার লিপিতে লেখা,—খরোপ্তী ও ব্রাহ্মী। খরোপ্তী লিপির বিস্তার কাল খ্রীন্টপূর্ব চতুর্থ শতাব্দী থেকে খ্রীস্তীয় তৃতীয় শতাব্দী পর্যন্ত। সম্রাট অশোকের থরোপ্তী প্রত্নলিপিতে মাত্র চারটি সংখ্যা পাওয়া যায়। উল্ব রেখার দ্বারা এখানে সংখ্যা প্রকাশ করা হয়েছে:



চিত্র—10 খরোপ্তী লিপি
শক্ত, পার্থিয়ান ও কুষাণ-যুগে আরো উন্নত ধরনের সংখ্যা ব্যবহার দেখা-যায় :

| 1    | 2 3         | 4<br>X    | 5<br>IX    | 6<br>IIX  | 7<br>IIIX  | 3<br>XX    |
|------|-------------|-----------|------------|-----------|------------|------------|
| 10 2 | 20          | 40 33     | 50<br>'33  | 60<br>333 | 70<br>'333 | 80<br>3333 |
|      | 9.<br>15351 | 100<br>[] | 200<br>ŽII |           | 00<br>     | .23        |

চিত্র—11 শক-পার্থিয়ান-কুষাণ যুগের সংখ্যা
এখানে সংখ্যার ক্রমবিকাশের ধারাটি লক্ষ্যণীয়। অশোকের প্রত্নলিপিতে

বেখানে 4 সংখ্যাটি চারটি উলম্ব রেখার দ্বারা প্রকাশ করা হয়েছিল, শক-পাথিয়ান মুগে সেই সংখ্যাটি ক্রশ-চিহ্ন (+) দ্বারা প্রকাশিত হয়েছে। চারটি উলম্ব রেখার ক্রশ-চিহ্নে রূপান্তরের কোন মুক্তিসঙ্গত কারণ জানতে পারা যায় না। হয়তো চার দিক নির্দেশের মধ্যে চার-এর ইঙ্গিত আছে, বা সহজ্ঞ সরলীকরণ। চার সংখ্যার পর যোগের নিয়ম অহুস্তত হয়েছে আট পর্যন্ত। কিন্তু 'নয়' কেমন ছিল তার কোন ইঙ্গিত পাওয়া যায় না। অহুমান করা হয় যোগের নিয়মটি 'নয়' পর্যন্ত অহুস্তত হয়েছিল। তা হলে এই সংখ্যাটি 1xx-চিহ্ন দ্বারা প্রকাশিত হয়ে থাকরে। অবশ্র এ-সবই অহুমান। হয় তো 'নয়' সংখ্যার জন্ত কোন পৃথক চিহ্ন থাকতেও পারে।

ভারতে ব্রাক্ষীলিপির বছল প্রচলন ছিল, আর এই লিপি থেকেই বর্তমানের ভারতীয় লিপিসমূহের উদ্ভব। এই লিপির অতি প্রাচীন নিদর্শন এথনো আবিষ্কৃত হয়নি। নিমের লিপিগুলি খ্রীস্টপূর্ব তৃতীয় শতান্ধীর:

চিত্ৰ—12 খ্ৰীস্তপূৰ্ব তৃতীয় শতাকীর বাহ্মীসংখ্যা

এরপর প্রাচীন সংখ্যার নিদর্শন মধ্যভারতের নানাঘাট পর্বতে পাওয়া যায়। সাতবাহন বংশের রাজা বেদিশ্রী কর্তৃক পথিকদের বিশ্রামের জন্ম এই পর্বতগাত্তে একটি গুহা নির্মিত হয়। এখানকার শিলালিপিতে বিভিন্ন যজ্ঞে প্রদত্ত উপহার সামগ্রীর তালিকা আছে। নানাঘাট সংখ্যাগুলি নিম্নরূপ:

চিত্ৰ—13 নানাঘাট সংখ্যা

বোছাই-এর নাসিক জেলায় প্রাপ্ত এক শিলালিণিতে খ্রীষ্টীয় প্রথম বা দ্বিতীয় শতান্দীর সংখ্যাগুলি নিমুক্ত :

| 1 de la | 2<br>= 1 | 3   | 4<br>¥4 | 5<br>P3 |
|---------------------------------------------|----------|-----|---------|---------|
| 64                                          | 7        | 844 | 2       | Q(O(    |

চিত্ৰ—14 নাসিক সংখ্যা

#### পঞ্চম অধ্যায়

"The history of mathematics is important also as a valuable contribution to the history of civilization... Mathematical and physical researches are a reliable record of intellectual progress."

-F. Cajori

# জৈন গণিত

জৈন ধর্মে গণিতের একটি বিশিষ্ট স্থান ছিল। ধর্মের অপরিহার্য অঙ্গ হিসাবে গণিতানুশীলন পরিগণিত হতো। জৈন ধর্মের সর্ব প্রথম তীর্থক্কর ঋষভদেব বাহাত্তর কলার প্রধান হিদাবে গণিতের নাম উল্লেখ করেছেন। অরিষ্টনেমী ও মহাবীর বর্ধমানের শিক্ষা-সূচীতে গণিতের নাম পাওয়া যায়, অবতারণায় আমরা এ-সম্পর্কে উল্লেখ করেছি। কিন্তু গণিতের প্রতি জৈনদের আগ্রহ, উৎসাহ ও আকর্ষণ থাকলেও, এমন কি জ্ঞানের এই শাখায় তাঁদের মৌলিক গবেষণা ও আবিষ্কার থাকলেও, আজু আর দে-সবের পথক কোন গ্রন্থ নাই। জৈন ধর্মাবলম্বী মহাৰীরের ন্যায় কোন গণিত গ্রন্থ আর কোন জৈনদের দ্বারা লিখিত হয়নি, অথবা লিখিত হলেও তা কালের গ্রাস থেকে রক্ষা পায়নি। জৈনদের গণিত সম্পর্কে আকর্ষণ ও গাণিতিক উপাদান তাঁদের বিশাল আগম শাস্তাদিতে ছডিয়ে আছে। গণিতজ্ঞ মহাবীরের বিবৃতি থেকে জানতে পারা যায় যে, তাঁর গণিত-সার-সংগ্রহ একটি সক্ষলন গ্রন্থ। তাঁর পূর্ববর্তী মধান ঋষিরা যে অদীম গাণিতিক জ্ঞান সঞ্চয় করেছিলেন, তিনি সেখান থেকেই তাঁর গ্রন্থের উপাদান সংগ্রহ করেছেন। স্থতবাং বুঝতে অস্কবিধা হয় না এক সময় জৈন আচার্যরা বিশাল গাণিতিক জ্ঞানের অধিকারী ছিলেন এবং হয়তো এ সম্পর্কে গ্রন্থ রচনাও করেছিলেন।

#### ॥ সংখ্যাতত্ত্ব।।

জৈন গণিতে সংখ্যা তিন ভাগে বিভক্ত: (1) সংখ্যাত বা সংখ্যের,
(2) অসংখ্যাত বা অসংখ্যের এবং (3) অনস্ত। বে সংখ্যা অক্ষ দ্বারা প্রকাশ
করা যায় তা-ই সংখ্যাত বা সংখ্যেয়। একক থেকে আরম্ভ করে আঠাশটি অক্ষ

নিয়ে যে সংখ্যা হয় তা সংখ্যাত বা সংখ্যেয়। এর অতিরিক্ত সংখ্যাকে অসংখ্যাত বা অসংখ্যেয় বলা হয়। অসংখ্যেয় সংখ্যা দ্বারা প্রকাশ করা যায় না, —উপমা দ্বারা প্রকাশ করতে হয়। যেমন, পল্যোপম ও সাগরোপম। কিন্তু অসংখ্যাত বা মনংখ্যেয় অনস্ত বা অসীম নয়। অসংখ্যেয় সীমার অন্তরিক্ত, তখন তাকে আর উপমার দ্বারাও প্রকাশ করা যায় না,—তখন অনস্ত সংখ্যার আবির্ভাব। সংখ্যাত, অসংখ্যাত ও অনস্তের আবার তিন প্রকার করে বিভাগ আছে,—জ্বয়ত, অধম ও উৎকৃষ্ট। তিন প্রকার সংখ্যার আবার কোন কোনটির প্রবিভাগ আছে।

অনন্ত পাঁচ প্রকার: (1) একতো অনন্তং (2) দিধানন্তং (3) দেশবিস্তারনন্তং (4) সর্ববিস্তারনন্তং (5) শাশ্বতানন্তং ।

উত্তরাধায়ন হত্তে 'অনেগৰাসাণ্টয়া' বা নব্যুত্বর্ষের উল্লেখ আছে। টীকা-কারের মতে নব্যুত্বর্ষের তাৎপর্য হচ্ছে অসংখ্য বৎসর। কারণ, চুবানী লক্ষ বংসরে এক পূর্বাঙ্গ; এই পূর্বাঙ্গকে চুবানী লক্ষ দিয়ে গুণ করিলে এক পূর্ব হয়। পূর্বকে চুবানী লক্ষ দিয়ে গুণ করলে এক নবভাঙ্গ হয়। এক নবভাঙ্গকে চুবানী লক্ষ দিয়ে গুণ করলে এক নযুত হয়। অর্থাৎ জৈন গণিতে সংখ্যাতত্ত্বে চুবানী লক্ষ গুণোত্তর পদ্ধতি নামে এক নতুন পদ্ধতি প্রচলিত ছিল বলে মনে হয়। ভারতীয় গণিতে এই পদ্ধতির প্রয়োগ আর কোথাও দেখা যায় না।

দশগুণোত্তর স্থানিক-মান পদ্ধতিতে সংখ্যা-লিখন প্রণালী ছাড়া অল্প কোন পদ্ধতি জৈন-যুগে প্রচলিত ছিল কি না জানা যায় না। বৈদিক যুগে প্রত্যেক সংখ্যার পৃথক পৃথক নাম ছিল। কিন্তু জৈন-যুগে একাধিক সংখ্যা যুক্ত করে সংখ্যার নামকরণ করা হয়েছে। যেমন,—এক, দশ, শত, সহস্র, দশ-সহস্র, কোটি, দশ-কোটি, শত-কোটি। ঐগুলি যথাক্রমে 1, 10, 100, 1000, 10 000, 10 00 000, 107, 108 এবং 10°। একাধিক সংখ্যা যুক্ত করে সংখ্যা গঠনের পিছনে বিশাল বিশাল সংখ্যা গঠনের ইতিহাদ আছে।

আজ পর্যস্ত বিশেব কোথাও জৈন ও বৌদ্ধদের মত বৃহৎ সংখ্যার ব্যবহার ও নামকরণ দেখা যায় না। একটি সংখ্যেয় বাশি কত বড় ? জৈন গণিতজ্ঞ বলেন, "পৃথিবীর স্থায় ব্যাস বিশিষ্ট একটি পাত্রে একটি একটি করে গণনা করে সরিষা দারা পূর্ণ কর। অন্তর্জপভাবে স্থল ও সমৃদ্রের স্থায় পাত্রগুলি পূর্ণ কর। তবৃত্ত সংখ্যেয় রাশি গঠন সম্ভব নয়।" খ্রীস্তীয় প্রথম শতাব্দীর বৌদ্ধগ্রন্থ ললিতা—বিস্তারে 10°৪ পর্যন্ত সংখ্যার নাম আছে। কচ্চায়নের পালি ব্যাকরণে 10°4০

সংখ্যাকে অসংখ্যেয় বলা হয়েছে। বর্তমানে 10100-কে 'গোগুল' বলে। জৈন ও বৌদ্ধ গণিতজ্ঞরা তারো অনেক উপরে। নিমে জৈনদের সময় সম্পর্কে ধারণার ত্ৰপ্ৰকটি দৃষ্টান্ত দেওয়া হলে:

- এক পূর্বি—75600, 000, 000, 000 বৎসর।
- (2) এক শীর্ষ প্রহেলিকা—(8, 400 000) \*\* পূর্বি। এই সংখ্যাটিতে 194টি অঙ্ক আছে !!

বিংশ শতাব্দীতে ক্যাণ্টর অনস্ত তত্ত্বে আবিষ্কারক। নতুন সংখ্যার আবিন্ধার হলো আলেফ-জিরো (Alef-Zero)। এ-ও এক বৃহৎ সংখ্যা—অনস্ত সংখ্যা নামে পরিচিত। কিন্তু জৈন গণিতজ্ঞদের দৃষ্টি বেন আরো স্থানুর প্রসারিত। A Concise History of Science in India প্রন্থে S. N. Sen বলেছেন, "The highest numerable number of the Jainas reminds us of the Alef-Zero of modern mathematics, and the Jaina imagination clearly went much farther than that."

# ॥ গণিতের বিষয়বস্তু॥

খ্রীষ্ট্রীয় প্রথম শতাব্দীর জৈন গ্রন্থ স্থানাজ-মৃত্রে গণিতের বিষয়বস্তুর উল্লেখ আছে। জৈন গণিতজ্ঞদের মতে গণিতের বিষয়বস্ত দৃশটি,—পরিকর্ম, ব্যবহার, ब्रष्णू, त्रांनि, कला जर्तन, यावर-छावर, वर्ग, घन, वर्ग-वर्ग छ विकल्ल । देजन গ্রন্থে এই গাণিতিক পরিভাষার সঠিক অর্থ পাওয়া যায় না। কিন্তু গণিতের বৈশিষ্ট্য তার সর্বজনীনভায়। তাই পরবর্তীকালের গণিতজ্ঞরা ভিন্ন ধর্মাবলম্বী राम ७ এक रे পরিভাষা ব্যবহার করায় এদের অর্থ নির্ণয় সম্ভব হয়েছে। অর্থগুলি नियुक्तभ :

- (1) পরিকর্ম—প্রাথমিক চার নিয়ম।
  - (2) ব্যবহার—প্রযুক্তি পাটীগণিত।
  - (3) कला जवर्ग—ভश्नांश्या।
  - (4) রজ্ব—তথ বা জামিতি।
  - (5) রাশি—ভূপ, শশু পরিমাপ বিষয়ক সামতলিক ও ঘন বস্তু সম্পর্কিত পরিমিতি।
- (6) বর্গ বর্গ।
- (7)
- धन—धन। ৰগ'-বগ'—উচ্চতর ঘাত বিষয়ক সমস্থা এবং বর্গমূল। (8)

- (9) যাবং-ভাবং—অজ্ঞাত রাশি। জৈন গণিতে ঠিক কি অর্থে এই শব্দটি
  ব্যবহৃত হয়েছে সে-সম্বন্ধে নিশ্চিত কিছু বলা যায় না। ভবে
  বীক্ষগাণিতিক অর্থে যে ব্যবহৃত হয়েছে সে বিষয়ে নিংসন্দেহ।
  অজ্ঞাত রাশি দ্বারা পাটিগাণিতিক সমস্তা সমাধানে ব্যবহৃত হয়েছে
  বলেও মনে করা হয়।
- (10) বিকল্প—জৈন গণিতে সমবায় ও বিকাস অর্থে ব্যবহৃত হয়েছে।

### ॥ পরিকর্ম-প্রাথমিক চার নিয়ম॥

উমাস্বাতির গ্রন্থে গুণ ও ভাগের তুই প্রকার পদ্ধতি দেখতে পাওয়া যায়। একটি বর্তমানে প্রচলিত পদ্ধতির অমুরূপ এবং অগুটি উৎপাদক সম্বলিত। উৎপাদকের সাহায্যে গুণনের পদ্ধতি ব্রহ্মপ্তপ্ত ও পরবর্তী গণিতজ্ঞদের গ্রন্থে দেখা যায়। শ্রীধরের ব্রিশতিকায় উৎপাদকের সাহায্যে ভাগহার দেখা যায়।

# ॥ कना जवर्ग—छग्नाश्य ॥

অপ্রকৃত ভগ্নাংশের আদন্ত মান নির্ণয়ে জৈন গণিতজ্ঞরা চমৎকার দৃষ্টান্ত স্থাপন করেছেন। যথনই কোন অপ্রকৃত সংখ্যার ভগ্নাংশটি 1-এর চেয়ে কম হয়েছে, তথনই তাঁরা দেই অংশটি উপেক্ষা করেছেন; আবার যথন ভগ্নাংশটি  $\frac{1}{2}$  এর অধিক হয়েছে, তথন তাঁরা ভগ্নাংশটিকে 1-এর সামিল করে নিয়েছেন। উদাহরণস্বরূপ,  $\frac{218079}{630178}$  এর স্থলে 315089 এবং 3 8314 $\frac{553404}{630628}$ -এর স্থলে

318315 ধরে নেওয়া হয়েছে।

# । রজ্জু—জ্যামিতি ।।

বৈদিক যুগের ভাষ জৈন যুগেও 'রজ্জু' শব্দটি জ্যামিতি অর্থে ব্যবহৃত হয়েছে। জৈন জ্যামিতির কয়েকটি পারিভাষিক শব্দ হলো 'সমচক্রবাল-বৃত্ত' (বৃত্ত), 'ব্যাসার্ধ,' 'জীব' (জ্যা), 'ধহুপৃষ্ঠ' (চাপ), 'সম-চতুর্ত্র্র্য' (বর্গ), 'চতুর্গ্র্র্য' (চতুর্ভূ জি) 'আয়ত' (আয়তক্ষেত্র), 'ত্রাত্র্য' (ত্রিভূজ), 'প্রতর' (সমতল), 'ঘন-ত্র্র্র্য' (ত্রিভূজ) প্রতর' (গালক) প্রভৃতি।

ভত্তার্থাধিগম-সূত্র ভাষ্টে বৃতীয় পরিমিতির অনেকগুলি সূত্র প্রদন্ত আছে ৷ এখানে কয়েকটির উল্লেখ করা হলো:

- (1) বৃত্তের পরিধি—√10×বাাস
- (2) বুত্তের ক্ষেত্রফল— 🕹 × পরিধি × ব্যাদ

- (3) জ্যা=√4শর (ব্যাস-শর)
- (4) শর=½ [ব্যাস-√(ব্যাস)²-(জ্যা)²]
- (5) অর্থবৃত্ত অপেক্ষা ক্ষুত্রতর চাপ —√ (শর)<sup>2</sup> +(জ্যা)<sup>2</sup>
- (6)  $\sqrt{91} = \frac{(\sqrt{3})^2 + \frac{1}{6} (\sqrt{91})^2}{\sqrt{3}}$

এথানে 'শর' শদের অর্থ উচ্চত।।

### ॥ ম-এর আসল্ল মান॥

প্রায় 2000 বছর ধরে জৈন গণিতজ্ঞরা স্থ-এর আদম মান  $\sqrt{10}$  ধরে এদেছেন।
খ্রীস্টপূর্ব পঞ্চম শতানী থেকে খ্রীষ্টীয় পঞ্চদশ শতানী পর্যন্ত এই মান ব্যবহারের উল্লেখ পাওয়া যায়। সূর্য-প্রজ্ঞতি-তে স্থ-এর ছটি মান হলো 3 এবং  $\sqrt{10}$ । কিন্তু গ্রন্থকার প্রথম মানটি বর্জন করে দ্বিতীয় মানটি গ্রহণ করেছেন। সম্ভবত খ্রীস্টপূর্ব পঞ্চম শতান্দীর পূর্বে স্থ—3 প্রচলিত ছিল এবং পরবর্তীকালে গণিতের প্রারো উম্নতির ফলে ওই মানটি বর্জিত হয়।

# ॥ জম্বু-দীপ বা পৃথিবী বিষয়ে ধারণা।।

জৈন চিন্তাধারায় জম্ব্দীপ বা পৃথিবী বুতাকার এবং ছয়টি সমান্তরাল পর্বতের দারা সাতটি অংশে বিভক্ত। পৃথিবীর ব্যাস 100,000 যোজন, পরিধি 316227 ষোজন 3 গব্যতি 128 ধয় 1 3½ অমুলির কিছু বেশী এবং ক্ষেত্রফল 7905694150 যোজন 1 গব্যতি 1515 ধনু 60 অমুলি। অইম শতাব্দীর বিখ্যাত জৈন গণিতক্ত ও জ্যোতিবিদ লল্লাচার্য তাঁর শিশ্বধীর্দ্ধিদ নামক গ্রন্থে বলেছেন পৃথিবীর পৃষ্ঠফল 2856338557 যোজন। দাদশ শতাব্দীর শ্রেষ্ঠ গণিতক্ত ও জ্যোতিবিদ দিতীয় ভাস্কর লল্লাচার্য নির্ণীত ফলের শতাংশও বাস্তব পৃষ্ঠফল নয় বলে তীর সমালোচনা করেছেন। কিন্তু ভাস্করের এই মত মেনে নেওয়া ষায় না। কারণ, লল্লাচার্য ব্যবহৃত একক ও ভাস্কর ব্যবহৃত এককের মধ্যে পার্থক্য থাকা তেমন বিচিত্র নয়। সেন-মুগে লক্ষ্মণ সেনের সময় জমি পরিমাণের জন্ম 'নয়' ব্যবহৃত হতো। ঐতিহাসিকরা অমুমান ক-রন বিজয় সেনের হাতের মাপের দৈর্ঘ ওই যুগে ব্যবহৃত হয়েছে। এই দৃষ্টিতে বিচার করলে লল্লের ফলের দঙ্গে ভাস্করের ফলের পর্যক্ত হয়েছে। এই দৃষ্টিতে বিচার করলে লল্লের ফলের দক্ষে ভাস্করের ফলের পর্যক্ত হয়েছে। এই দৃষ্টিতে বিচার করলে লল্লের ফলের সক্ষে

### ॥ जूहक ॥

জৈন সাহিত্যে স্ফকের নামকরণের চমৎকার দৃষ্টাস্ত দেখতে পাওয়া যায়।
গ্রীপ্তায় পঞ্চম শতাব্দীর অন্ধ্যাগ দার-মৃত্তে ঘাত ও বর্গমূলের নাম প্রথম বর্গ,
দ্বিতীয় বর্গ, তৃতীয় বর্গ,...., এবং প্রথম বর্গমূল, দ্বিতীয় বর্গমূল প্রভৃতি দেখতে
পাওয়া যায়। বর্তমান গাণিতিক চিহ্নে এদের নিম্নরূপে প্রকাশ করা যায়:

- (1) প্রথম বর্গ=(a)-a²
- (2) দ্বিতীয় বৰ্গ-{(a)2}2-a4
- প্ৰথম বৰ্গমূল √a a<sup>1/2</sup>
- (2) দ্বিতীয় বর্গমূল $-\sqrt{(\sqrt{a})} = a^{\frac{1}{4}}$
- (3) তৃতীয় বর্গম্ল √{√(√a)} a<sup>1/8</sup>

উত্তরাধায়ন স্ত্রের বিবৃতি থেকে জানতে পারা যায় ঘাতের নামকরণে বর্গ, ঘন, বর্গ-বর্গ ( চতুর্থ ঘাত ), ঘন-বর্গ ( যাছ ঘাত ), ঘন-বর্গ-বর্গ ( ছাদশ ঘাত ) এবং মূল নির্ণয়ের ক্ষেত্রে তৃতীয় বর্গ-মূল-ঘন =  $\{(a^{\frac{1}{2}})^3\}^8 - a^{\frac{3}{8}}$  ব্যবহৃত হয়েছে।

অনুযোগ-ছার-ছত্রে একটি বিবৃতি থেকে দেখা যায় প্রথম বর্গমূল  $\times$  দিভীয় বর্গমূল  $\times$  দিভীয় বর্গমূল হন  $\times$  দেখা যায় প্রথম বর্গমূল  $\times$  দিভীয় বর্গমূল হন  $\times$  দেখা হার প্রথম বর্গমূল  $\times$  দিভীয় বর্গমূল  $\times$  দেখাটি বর্গ বর্গের ভাল করা হয়েছে। এই বৃহৎ সংখ্যাটি বর্গ বর্গের ও প্রথম বর্গের গুণফল অর্থাৎ  $2^{2^6}\times 2^{2^6}-2^{64}\times 2^{32}-79$ , 228, 162, 514, 264, 337, 593, 543, 950, 336 !!! এখানে আরো বলা হয়েছে যে, সংখ্যাটি  $2^{96}$  ছারা বিভাজ্য। স্থতরাং এই তথ্য থেকে আমরা স্থতক-সূত্র পাই:

(1)  $a^m \times a^n - a^{m+n}$  Gq: (2)  $(a^m)^n - a^{mn}$ 

# ॥ विकल्ल-नगराञ्च विकान ॥

ভারতীয় গণিতের সমবায় ও বিফাসের ধারণার প্রাচীনত্ব অবিসংবাদিত। বৈদিক যুগে ছন্দের বৈচিত্র্য হুজনে এই ধারণার প্রয়োগ পরিলক্ষিত হয়। কিন্তু কৈন গণিতজ্ঞরাই এই বিষয়টি গণিতের অন্তর্ভুক্ত করে বিশেষভাবে আলোচনা করেছেন। মহাবীরাচার্যের গণিত-দার-দংগ্রহে সমবায় ও বিফাসের হুত্ত দেখতে পাওয়া যায়। কিন্তু তাঁর পূর্বেও এ-বিষয়ে হুত্ত রচিত হয়েছিল বলে মনে করা হয়। ভগবতী-সূত্র, অন্থযোগ-দার-সূত্র ও জন্তু-দীপ-প্রজ্ঞান্তি-তে সমবায়ের ধারণা আছে। হুক্রান্তের রসভেদ বিকল্লাধ্যায়ে ছয়টি রস থেকে 1, 2, 3 প্রভৃতি

করে নিয়ে 63টি সমবায় গঠনের কথা বলা হয়েছে। সমবায় অর্থে বিকল্প শব্দটি জৈনদেরও পূর্ববর্তী। পিঙ্গলের ছন্দস্থতে এই বিষয়ের আলোচনা আছে। কিন্তু ছটিল শ্লোকের অক্টোপাশ থেকে মৃক্ত হওয়া যেন আরো জটিল। দশম শতাকীর পিঙ্গলের তাব্যকার হলায়ুধের ব্যাখ্যা থেকে বিষয়টি স্পষ্ট হয়। হলায়ুধের ব্যাখ্যা:

শীর্ষে একটি বর্গক্ষেত্র অঙ্কনের পর তার নিম্নে ছটি বর্গক্ষেত্র এমনভাবে এজন কর যাতে তাদের অর্ধাংশ প্রথম বর্গক্ষেত্রের নিম্নে থাকে। অতঃপর তার নিম্নে তিনটি,—তার নিমে চারটি প্রভৃতি বর্গক্ষেত্র একই নিম্নমে অঙ্কন কর যতক্ষণ না আকাঞ্ছিত পিরামিড প্রস্তুত হয়। শীর্ষ বর্গক্ষেত্রে 1 বদাও এবং প্রত্যেক স্তরের প্রাস্তীয় বর্গক্ষেত্রে 1 বদাও। অক্যান্ত বর্গক্ষেত্রে ঠিক তার উপরের বর্গক্ষেত্রেছয়ের যোগক্ষন বদাও। এইভাবে যে চিত্র অঙ্কিত হবে ভার নাম "মেক্ক প্রস্তর্গণ।



চিত্র—15 মেক্-প্রস্তর

চিত্রটি থেকে এই স্থাটি পাওয়া যায় :  $n_{+1}C_r = nC_r + nC_{r-1}$ । পাশ্চাত্য গণিতের ইতিহাসে এই চিত্রটি 'পাসকালের ত্রিভুজ' নামে পরিচিত। কিন্তু 'মেরুপ্রস্তর' পাসকালের ত্রিভুজের চেয়ে সহজ। মেরু-প্রস্তরের ধারণা পাসকালের হ'হাজার বছর পূর্বেকার, হলায়ুধের ব্যাখ্যাই তো কমপক্ষে ছ'শ বছর পূর্বের।

বিভিন্ন জৈন প্রস্থে প্রাপ্ত সমবায় ও বিত্যাদের স্তত্ত্তলি আধুধিক পরিভাষায় নিমন্ত্রপ :

(1) 
$$nC_1-n$$
; (2)  $nC_2-\frac{n(n-1)}{1.2}$ ; (3)  $nC_3$ 

$$-\frac{n(n-1)(n-2)}{1.2.3}$$

(1) nP<sub>1</sub>-n; (2) nP<sub>3</sub>-n(n-1); (3) nP<sub>3</sub>-n(n-1) (n-2)।
। ত্ব'জন অগণিতজ্ঞ জৈন আচার্বের জীবনী।

ভদ্রবাহ ও উমাস্বাতী গণিতজ্ঞ ছিলেন কিনা জানা যায় না। কিন্তু তাঁদের গ্রন্থে যে-সব গাণিতিক উপাদান ছড়িয়ে আছে তা থেকে এমন অন্থমান করা যায় যে গণিতে তাঁরা একেবারে অজ্ঞ ছিলেন না। ভ্রুত কেবলিন ভদ্রবাহ নিঃসন্দেহে উমাস্বাতীর পূর্ববর্তী।

### ভদ্ৰবাহ্

ভদ্রবান্থ ছিলেন 'শ্রুত কেবলিন' অর্থাৎ সমগ্র জৈনশান্ত্র তাঁর মূথস্থ ছিল। মগধ্যে অধিবাসী ভদ্রবান্থ গৃহী ছিলেন না,—ছিলেন দিগম্বর সন্ম্যাসী। সংসারের সহিত কোন সম্পর্ক না থাকায় তাঁর বাস্তব জীবনের কোন কাহিনী জানা যায় না।

একটি কিংবদন্তী অন্থদারে মৌর্য সম্রাট চক্রগুপ্তের রাজস্বকালে মগধে দীর্ঘ বারো বছর ধরে এক ভয়ঙ্কর তুভিক্ষ হয়। মহাজ্ঞানী ও জ্যোতির্বিদ ভত্রবাছ নাকি পূর্বেই গণনা করে ভাবী তু:সময়ের বিষয় অবগত হন। সে-কারণে তিনি অসংখ্য শিশুসহ দক্ষিণ ভারতের কন্নড় দেশে গমন করেন এবং সেখানে উপনিবেশ স্থাপন করেন।

তিনি গণধর ছিলেন এবং সমাট চক্রপ্তথ তাঁর অন্তরঙ্গ শিষ্য ছিলেন। চক্রপ্তথ নাকি শেষ বয়সে "প্রাবণ বেলগোলা" পর্বতে জৈনধর্মান্থমোদিত 'সল্লেখনা' (অনশন ত্রত) অবলম্বন করে নশ্বর দেহ ত্যাগ করেন। এখনো এই 'প্রাবণ বেলগোলা' পর্বতে অসংখ্য জৈন মন্দির ও শিলালিপি জৈন অভ্যুদয়ের সাক্ষ্য বহন করে চলেছে। ঐতিহাসিক সত্য যে, দশম শতাকী পর্যন্ত ভারতের এই অঞ্চলে নানা বংশের নুপতিরা জৈনধর্মাবলম্বী ছিলেন।

ভদ্রবাহর দক্ষিণ ভারত গমনকালে অনেক শিষ্যই তাঁর দক্ষে যাননি। কিন্তু ছর্ভিক্ষের প্রকোপে এই জৈনরা তাঁদের আচার-অফুণ্ঠান অক্ষা রাথতেও পারেন নি। খেতবন্তু পরিধান এই সময় থেকেই এক শ্রেণীর জৈনদের মধ্যে প্রচলিত হয়। ফলে. জৈনধর্মের তুটি শাখা.—দিগম্বর ও খেতাম্বরের স্চনাও শুরু হয়।

ভদ্রবাহুর নির্বাণ-স্থান ও নির্বাণ-বিবরণ কিছু পাওয়া যায় না। হেমচন্দ্রের পরিশিষ্ট পর্বের মতে শ্রীবীর নির্বাণের 170 বছর পরে ভদ্রবাহুর পরিনির্বাণ হয়েছিল। জৈনদের নিকট ভদ্রবাহু উত্তরাধ্যয়ন সূত্র ও কল্পসূত্রের লেখক হিসাবে অধিক পরিচিত। কিন্তু তিনি নিজে কোন গ্রন্থ রচনা করেছিলেন বলে মনে হয়না। কারণ ভদ্রবাহুর সময়ে ভারতে কোন লিপি প্রচলিত ছিল বলে জানা যায় না। সম্রাট অণোকের সময় থরোপ্ঠী ও ব্রাহ্মীলিপির প্রচলন ছিল বটে, কিন্তু তার পূর্বের কোন লিপির অন্তিত্ব এখনো জানা যায় নি। তাছাড়া গণধর ক্রন্ত কেবলিন ভদ্রবাহু যিনি সমৃদ্য় জৈনগ্রন্থ মৃথস্থ করে রেখেছিলেন, তাঁর পক্ষে কোন গ্রন্থ রচনা বাহুল্য মনে করাই স্থাভাবিক। তাঁর নামে প্রচলিত গ্রন্থসমূহ হয়তো তাঁর মৃথনিংস্ত বাণী অবলম্বনে পরবর্তী কালে কোন শিষ্য বা প্রশিষ্যের রচনা।

### ॥ উমাস্বাতী॥

উমাস্বাতী নামের সঙ্গে তাঁর পিতা ও মাতার নাম ছড়িত আছে বলে মনে করা হয়। এরপ বলা হয়, তাঁর পিতার নাম স্বাতী ও মাতার নাম উমা। অস্থান্ত অনেক জৈন আচার্যদের সময়-কাল নিয়ে বিতর্ক থাকলেও উমাস্বাতীর সময় নিয়ে কোন সংশয় নাই। তিনি 150 এইপূর্বান্ধে ন্যায়োধিকায় জন্মগ্রহণ করেন। এই স্থানটি কুন্তমপুরের অন্তর্গত। ভারতীয় গণিতের ইতিহাদে কুন্তমপুর একটি স্মরণীয় নাম। এথানেই আচার্য আর্যভট জন্মগ্রহণ করেন। মনে হয়, খ্রীষ্টীয় শতান্দীর প্রারম্ভ কাল থেকেই কুন্তমপুর উচ্চতর গণিত শিক্ষার একটি প্রধান কেন্দ্রে পরিণত হয় এবং পরবর্তী কয়েক শতান্দী ধরে এথানে গণিতের গবেষণা ও অধ্যাপনা চলতে থাকে।

ভদ্রবাহর মত উমাস্বাতীও গণিতজ্ঞ ছিলেন কিনা বলা যায় না। কিন্তু তাঁর রচিত 'ভত্বার্থাধিগম-সূত্র' ভাষ্যে প্রচুর গাণিতিক উপাদান আছে। অন্তান্ত গ্রন্থ থেকে অনেক গাণিতিক স্বত্র উদ্ধৃত করলেও গণিতে তাঁর ব্যুৎপত্তি ছিল না, এমন কথা বলা যায় না।

এই অধ্যায়ের আলোচনা থেকে এই ইক্ষিত পাওয়া যায় যে, ভারতীয় গণিতের উন্নতি ও সংস্কার সাধনে জৈনদের বিশিষ্ট অবদান আছে। এক সময় তাঁদের গাণিতিক প্রতিভা অন্য ধর্মে ও মতে বিশ্বাসী গণিতজ্ঞদের মৃশ্ব করেছিল। জৈনদের আবিষ্কৃত গাণিতিক পরিভাষা পরবর্তীকালের গণিতজ্ঞরা নির্দ্ধিায় গ্রহণ করেছেন। জৈন ধর্ম উদ্ভবের মৃলে ব্রাহ্মণ ও ক্ষত্রিয় বিরোধ থাকলেও উভয় ধর্মের গণিতজ্ঞদের মধ্যে কোন বিরোধ ছিলনা। গণিতের সর্বন্ধনীনতার এমন মহৎ দৃষ্টান্ত আর অন্য কোথাও দেখা যায় কিনা সন্দেহ।

क्रमांथ बहावीर व्यक्तिक र एवमार्टे । विश्व स्थापन व्याप केराइ द्वापन हिंग See apply the terms of their secretarian and a secretarian and a secretarian

50

### my his trace was and its offering that he is a straight toward the states

"No subject loses more than mathematics by an attempt to dissociate it from its history."

# বকশালী পাণ্ডুলিপি

বাংলা সাহিত্যে 'শ্রীকৃষ্ণকীর্তন' গ্রন্থথানি যেমন বিষ্ণুপুরের নিকটবর্তী কোন এক গ্রামের একটি বাডীর গোয়ালঘরের মাচা থেকে আবিষ্কৃত হয়েছিল, তেমনি 'বকশালী পাণ্ডলিপি' নামাঞ্চিত গণিত গ্রন্থটিও পেশোয়ারের নিকট একটি গ্রামের ক্বকের খননের ফলে আকম্মিকভাবে আবিষ্কৃত হয়েছিল। ভুর্জরুক্ষের বছলে লিখিত এই গ্রন্থখনি 1881 থ্রীষ্টান্দে আবিষ্ণত হয়। সমগ্র গণিত গ্রন্থটি উদ্ধার করা সম্ভব হয়নি,—মাত্র সত্তরটি পাতা, তাও আবার কয়েকটি শতছিল অবস্থায় পাওয়া গেছে। ভারতের জলবায়ু এবং বিখ্যাত বল্মীক গ্রন্থটির কতথানি গ্রাস করেছে, তা আর আজ জানা বাবে না। হায়, বদি সমগ্র গ্রন্থটি অক্ষত অবস্থায় পাওয়া যেত। তা হ'লে হয়তো আমরা প্রাচীন ভারতীয় গণিতের ইতিহাসের লুপ্ত অধ্যায়গুলি সংযোজিত করে একটি ক্রমিক বিবরণ দিতে পারতাম। গ্রন্থটি গাথা ভাষায় সারদা লিপিতে লিখিত।

কোলক্রক, ম্যাক্সমূলার প্রভৃতি পাশ্চাত্য মনীধীরা প্রাচীন ভারতের সংস্কৃতি বিষয়ে শ্রমদাধা গবেষণা করে যেমন বিশ্বজোড়া খ্যাতি অর্জন করেছেন, তেমনি ভারতবাদীর সপ্রশংস শ্রদ্ধাও পেয়েছেন। কিন্তু 'বকশালী পাণ্ডুলিপি'-র অনুবাদক জি. আর. ক্যে ( Kaye ) সাহেব যেন সচেতনভাবে ভারতীয় কৃতিত্বের প্রকৃত মুল্যায়ন না করে তা বিকৃত ও নিম্নমান করার প্রচেষ্টা করেছেন। শ্রদের ড: রমেশচন্দ্র মন্থ্যদার তাঁর 'প্রাচীন ভারতে বিজ্ঞানচর্চা' গ্রন্থে এই মনোভাবের বিষয়ে বলেছেন, "এককালে ইউরোপীয় পণ্ডিভগণের একটি বন্ধমূল ধারণা ছিল যে হিন্দুরা বৈজ্ঞানিক যে সমৃদয় তথা জানিত তাহার প্রায় সকলই विदिन हरेट निश्चिमाहिन। छाँशामित मटि धौनरे हिन नमूनम छान বিজ্ঞানের উৎস এবং ইহার নিকটই ভারতবর্ষ বিশেষভাবে ঋণী ছিল।......

গ্রীকেরা যে ইহার ( ত্রিকোণীমিতির সাইন ) ব্যবহার জানিত এরপ কোন প্রমাণ অতাবধি আবিষ্ণত হয় নাই। কিন্তু প্রাচীন ভারতে ইহার প্রচলন ছিল। তথাপি ইউরোপীয় কোনো কোনো পণ্ডিতের ধারণা যে হিন্দুরা গ্রীকগণের নিকট হইতেই ইহা শিক্ষা করিয়াছিল।" উদ্ধৃতিটি আর দীর্ঘ না করে এক কথায় বলা যায় যে, এখনো অনেক পাশ্চাত্য পণ্ডিত ভারতীয় ক্বতিত্বের প্রকৃত নিরপেক্ষ মূল্যায়ন করতে কার্পণ্য বোধ করেন।

এই পাণ্ড্রলিপি কোন, সময়ে রচিত বা কে এই গ্রন্থের রচয়িতা, এ সম্পর্কে কিছুই জানা যায় না। তবে দেশীবিদেশী অনেক পণ্ডিত এর উদ্ভব-কাল খ্রীষ্টীয় তৃতীয় বা চতুর্থ শতান্ধী বলে মনে কবেন। কিন্তু ক্যে সাহেব অত প্রাচীনতা স্বীকার করেন না। তিনি এর ভাষা ও লিপির উপর শাণিতযুক্তির ছুরি চালিয়ে একে খ্রীষ্টীয় দ্বাদশ শতান্ধীতে নামিয়ে নিয়ে এসেছেন। এ-বিষয়ে প্রাচীন ভারতীয় গণিতে বিশেষজ্ঞ স্থপণ্ডিত ড: বিভৃতিভূষণ দত্তের মভটি প্রণিধানযোগ্য। তিনি বলেন, কোন প্রত্যক্ষ প্রমাণ না থাকায় ভাষা ও লিপির দ্বারা উদ্ভব-কাল নির্ণয় না করে ঐতিহাসিক ভিত্তির উপর নির্ভর করতে হবে। এই গ্রন্থের গাণিতিক রীতি, পদ্ধতি, সাংকেতিক চিহ্ন ও পরিভাষার উপর ভিত্তি স্থাপন করে তিনি এর রচনাকাল খ্রীষ্টীয় তৃতীয় শতান্ধী বলে মনে করেন।

এই গ্রন্থটি পূর্ববর্তী কোন গ্রন্থের অন্থলিপি বা করণ গ্রন্থ (ভাষ্য)। গ্রন্থ রচনার বৈশিষ্ট্য, নানা বিষয়ের বিস্তারিত আলোচনা, পুনক্রজি, পূর্ববর্তী আলোচনার উল্লেখ প্রভৃতি থেকে অন্তত তা-ই মনে হয়। গ্রন্থটিতে পাঁচ ধরনের হস্তলিপি আছে। কোন ভ্রান্থণ গণিতজ্ঞ এর লেখক। তাঁর পিতার নাম ছজক। তিনি তাঁর পুত্র বশিষ্ঠ ও পরবর্তী বংশধরদের জন্য এই গ্রন্থ লিখেছিলেন। কিন্তু ছজক পুত্র এই গ্রন্থের প্রকৃত রচচিতা নন,—অন্থলিপিকার মাত্র।

বকশালী পাঞ্বলিপির যুগে গাণিতিক পরিভাষা তথনো স্ক্রন-স্তরে। তাই এতে ব্যবহৃত শবগুলি তথনো সাধারণীকৃত হয়নি। দে কারণে পরবর্তীকালের গণিতজ্ঞরা এদর শব্দ ব্যবহার করেননি। ভগ্নাংশের সমহরে পরিবর্তনের নাম 'সর্বণন'। কিন্তু পাঞ্বলিপিতে এর স্থলে 'সদৃশ করণ' বা 'হরসাম্যকরণ' ব্যবহৃত হয়েছে। গাণিতিক সমস্তাকে 'আস' না বলে 'স্থাপন', কথনো কথনো 'আস' বা 'আস-স্থাপন' বলা হয়েছে। সাধারণত 'জ্রোণী-'কে জ্রোটী বলা হয়,

কিন্ত এখানে 'বর্ণ,' 'পার্থ' ও 'রূপণ করণ' বলা হয়েছে। ভারতীয় গণিতজ্ঞদের প্রিয় বিষয় একঘাত অনির্ণেয় সমীকরণের কোন উল্লেখ এখানে নাই। কুটকের সম্পূর্ণ অমুপস্থিতি থেকে মনে হয় এই পাণ্ড্রলিপির রচনাকাল আর্যভটের পূর্বে। অবশ্য এ-সবই অমুমান। পাশ্ত্রলিপির খণ্ডিত অংশে যে 'কুট্টক' ছিলনা, একথা নিশ্চিত করে বলা যায় না।

### ॥ সঙ্কলন গ্ৰন্থ ॥

STORE TO SEE STATE STATE STATE STATE STATE STATE STATE STATE

এটি একটি সক্ষলন গ্রন্থ। 'আর্যভানীয়া', 'ব্রহ্মাস্ফুটসিদ্ধান্ত' প্রভৃতির সক্ষে
এর কোন মিল নাই। এতে আছে গাণিতিক নিয়ম, তার উদাহরণ ও
সমাধান। পাগুনলিপির উদ্ধারক্বত অংশে পাটীগণিত ও বীজগণিতের
আলোচনা দেখা ধায়,—মাত্র কয়েকটি জ্যামিতি ও পরিমিতির উল্লেখ
আছে। অন্থমিত হয় খণ্ডিত অংশে জ্যামিতি ও পরিমিতির পূর্ণ আলোচনা ছিল।
এই গ্রন্থে শৃদ্ধালাবদ্ধ কোন আলোচনা দেখতে পাওয়া ধায় না,—একই পরিচ্ছেদে
ভিন্ন ভিন্ন বিষয়ের অবতারণা ফুর্লভ নয়। পাটীগণিতের ভয়াংশ, বর্গমূল,
লাভক্ষতি, অদক্ষা ও বৈরাশিক বোধ হয় ছজক-পুত্র তাঁর পুত্র ও বংশধরদের
গণিত শিক্ষার পাঠ্যতালিকার অস্তভু ভি করা বিবেচনা করেছিলেন। বীজগণিতের
সরল ও সহসমীকরণ, ছিঘাত সমীকরণ, সমাস্তর ও গুণোত্তর শ্রেণী বিষয়ে
আলোচনা আমাদের বিশ্বয় উদ্রেক করে।

### ॥ অজ্ঞাত রাশির সঙ্কেত ॥

পঞ্চম অধ্যায়ে জৈন গণিতে 'যাবং-ভাৰং'-এর অর্থ বীজগণিত বলে বলা হয়েছে। কিন্তু ভারতীয় গণিতের ইতিহাদে 'যাবং-ভাবং' অজ্ঞাত রাশির অর্থে ব্যবহৃত হতে দেখা যায়। ঠিক কখন থেকে এই অর্থ প্রচলিত হলো, তা বলা যায় না। প্রীষ্টীয় চতুর্থ শতান্ধীতে অমর সিংহ 'অমরকোমে' যাবং-ভাবং-এর অর্থ দিয়েছেন 'মান' বা 'রানি'। বকশালী-পাণ্ড্রলিপিতে 'যাবং-ভাবং'-এর ছলে 'যদৃচ্ছা' শব্দ ব্যবহৃত হতে দেখা যায়। অজ্ঞাত রাশির সক্ষেত্ত হিসাবে শৃত্য (0) ব্যবহৃত হয়েছে। "যদৃচ্ছা বিত্তসে শৃত্য ছানে শৃত্য ব্যবহারের দৃষ্টান্ত আরো পারবর্তীকালের। প্রীধ্রাচার্য ও ভাক্তরাচার্যও অজ্ঞাত রাশির সক্ষেত হিসাবে

শৃত্যের ব্যবহার করেছেন ;—পাটাগণিতে অজ্ঞাত রাশির ক্ষেত্রে শৃত্য (0) ব্যবহারের বহুল দৃষ্টান্ত দেখা যায়। 'ত্রিশন্তিকা'-র নিমু উদাহরণটি লক্ষ্য করার মতঃ

সক্ষেত্টির অর্থ: কোন সমান্তর শ্রেণীর প্রথম পদ 20, সাধারণ অন্তর অজ্ঞাত ( দে-কারণ 0 ব্যবহৃত হয়েছে ), পদসংখ্যা 7 এবং সমষ্টি 245।

সঠিক ও যথার্থ সঙ্কেতের অভাবে পাণ্ড্লিপির অনেক সমীকরণ দ্বার্থক হয়ে উঠেছে। প্রসঙ্গটি সম্পূর্ণ আয়ন্ত করে তবে সম্ভোষজনক উত্তর দেওয়া সন্তব। উদাহরণস্বরূপ,—

(1) 
$$\frac{0}{1} = \frac{5}{1} = \frac{x}{1} + \frac{5}{1} = x + 5$$
, which we satisfies a simple of  $x = 0$ .

এখানে হুটি অংশে হুটি সমীকরণ আছে:

(1) 
$$\sqrt{x+5}=S$$
; (2)  $\sqrt{x-7}=t$ 

একই সমীকরণে ছটি করে শৃত্য, ছটি করে অজ্ঞাত রাশি বোঝাছে। '0'—এই সক্ষেত্রে ছটি অর্থ: (1) অজ্ঞাত রাশি, আবার (2) শৃত্যের নীচে '1' দিয়ে বোঝানো হচ্ছে যে এই শৃত্যটি প্রকৃত শৃত্য নয়।

# । ১/১/১৪ টোল জাজার ।। ॥ ঋণাত্মক চিহ্ন ॥

প্রাচীন ভারতীয় গণিতে পাটীগাণিতিক প্রক্রিয়া বোঝাতে সংস্কৃত বর্ণমালার 'বর্ণ' বা সম্পূর্ণ শব্দ ব্যবহার পরিলক্ষিত হয়। আলোচ্য পাণ্ডুলিপিতে যোগ বোঝাতে 'মু', বর্গমূল বোঝাতে 'মু' প্রভৃতি বর্ণ ব্যবহৃত হয়েছে। কিন্তু ঋণাত্মক রাশি বোঝাতে '+' চিহ্নের ব্যবহারের কোন প্রাচীন ইতিহাস জানতে পারা যায় না। অন্তান্ত গণিত গ্রন্থে বিন্দু (') দিয়ে ঋণাত্মক চিহ্ন স্ফিত হয়েছে। খুব সম্ভব '+' চিহ্নের সঙ্গে বাহ্মী-লিপির চারিত্র্যিক বৈশিষ্ট্য থেকে থাকবে। এই প্রসঙ্গে ড: সি. এন. শ্রীনিবাসিয়েলারের মন্তব্যটি উদ্ধৃত করা গেল: "The origin of the symbol + for subtraction may be through the

word kshaya since kṣa in the Brahmi characters or in the Bakshāli characters differs from the symbol + in only having a little flourish at the lower end of the vertical line. ড: বিভৃতি ভূষণ দত্ত বলেন সংস্কৃত 'ক্ষয়'-এর বিবর্তনে + চিছের উৎপত্তি; ড: হর্ণেল বলেন সংস্কৃত 'কনিয়ন' বা 'কুয়ন' শব্দ থেকে এদেছে।

# ॥ বকশালী পাণ্ডুলিপির সর্বশ্রেষ্ঠ অবদান॥

বকশালী পাণ্ডুলিপির অনেক বৈশিষ্ট্য। তাই গণিতের ইতিহাদে এর গুরুত্ব ষর পরিসরে পাণ্ডলিপির সব বৈশিষ্ট্যগুলির আলোচনা সম্ভব নয়। এখানে আমরা দ্বিঘাত করণীর আসন্ন মান নির্ণয়ের স্থত্তটি সম্পর্কে আলোচনা করব। এই স্ত্রটির বৈশিষ্ট্য এই যে এটি অন্তর কোথাও এমন স্বস্পষ্টভাবে পাওয়া যায় না। অবশ্য কোন কোন গণিতজ্ঞ বলেন স্ত্রটির অস্তিত্ব শুল্ব-যুগেও পরিলক্ষিত হয়। ঐপ্রীয় দ্বিতীয় শতকের গ্রীক গণিতজ্ঞ হীরনের স্তব্রের দঙ্গে এর মিল দেখতে পাওয়া যায়। কিন্তু ভারতে এটি স্বাধীনভাবেই আবিষ্কৃত হয়েছে। গ্রীকদের সঙ্গে কোন কিছুর মিল বা সাদৃত্য দেখলেই তা গ্রীকদের কাছ থেকে গ্রহণ করা হয়েছে, এমন ধারণা কল্পনা-প্রস্থত ছাড়া কিছুই নয়। 'প্রাচীন ভারতে বিজ্ঞানচর্চা' প্রন্থে ড: রমেশচন্দ্র মজুমদার এ-প্রদক্ষে বলেছেন: "ভিন্ন ভিন্ন জাতির মধ্যে ভাবের ও চিন্তার আদান-প্রদান আবহমান কাল হইতে প্রচলিত। ..... কোনো হুই দেশে কোনো বিষয়ে সাদৃত্য দেখিলেই তাহা যে ভাব বিনিময়ের ফল মাত্র একথা দিদ্ধান্ত করা চলে না। কারণ অমুরূপ পরিবেশের ফলে বিভিন্ন দেশে স্বতন্ত্রভাবে একই প্রকারের চিন্তা ও আবিষ্কার সম্ভব হইয়াছে ইহা অনায়াসেই অন্নমান করা যাইতে পারে।" যাই হোক,—পাণ্ডলিপির যুগ হীরনের পূর্ববর্তী বলে অনেক গণিতজ্ঞ মনে করেন।

পুত্র: অ-বর্গ সংখ্যার ক্ষেত্রে নিকটতম বর্গ-সংখ্যা বিয়োগ কর। ভাগশেষ নিকটতম বর্গদংখ্যার দ্বিগুণ করে ভাগ কর: এই সংখ্যার বর্গের অর্ধেককে আসম বর্গমূল ও ভাগশেষের সমষ্টি দ্বারা ভাগ করে বিয়োগ করলে নিভূলি বর্গমূল পাওয়া যায়।

আধুনিক গাণিতিক সঙ্কেতে স্ত্রটি এ রকম:

$$\sqrt{A} = \sqrt{a^2 + r} = a + \frac{r}{2a} - \frac{\left(\frac{r}{2a}\right)^2}{2\left(a + \frac{r}{2a}\right)}$$

এবার একটি উদাহরণের সাহায্যে স্ত্রটির প্রয়োগ দেখানো যাক।

Similarle : 
$$\sqrt{41-6+\frac{5}{2.6}} - \frac{\left(\frac{5}{2.6}\right)^2}{2\left(6+\frac{5}{2.6}\right)} = 6+\frac{5}{12} - \frac{\left(\frac{5}{12}\right)^3}{2\left(6+\frac{5}{12}\right)}$$

$$\sqrt{105} - \sqrt{10\frac{5}{10} + 5} - 10 + \frac{5}{20} - \frac{\left(\frac{5}{20}\right)^3}{2\left(10 + \frac{5}{20}\right)}$$

প্রথম উদাহরণে আদর বর্গদংখ্যা=6, ভাগশেষ-5।

কয়েক প্রকার অঙ্কের গণনায় ক্রটি ও যাথার্থ নির্ধারণের জন্ম এই স্থত্তের সম্প্রদারিত রূপের প্রয়োগ পাণ্ডুলিপিতে দেখতে পাওয়া যায়। সেই স্কুর অতীতে ভারতীয় গণিতজ্ঞরা যে এ ধরনের চিন্তা করেছিলেন ভারতেও আজ অবাক লাগে।

সমান্তর শ্রেণীর সমষ্টি নির্ণয়ের স্ত্রটি পাণ্ডুলিপির আর একটি বিশিষ্ট অবদান। यि কোন সমান্তর শ্রেণীর প্রথম পদ a, সাধারণ অন্তর d, পদসংখ্যা n হয়, তা হলে পাণ্ড লিপি অমুদারে,  $S=\{\frac{1}{2}(n-1)d+a\}n$ 

### ॥ ভগ्नाःम ॥

ভগ্নাংশের ধারণা প্রাচীন ভারতীয় গণিতে অতি পুরাতন ঘটনা। ঋর্থেদে ভগাংশের বহু উল্লেখ আছে,—নানা সমস্তায় ভারতীয় গণিতজ্ঞরা এর প্রয়োগও করেছেন। পাণ্ড লিপির যুগেও ভগ্নাংশের ব্যবহার দেখা যায়। এ-যুগে ভগ্নাংশের যোগ-ক্রিয়া সম্পন্ন করার জন্ম সদৃশ বা সম-হরের প্রচলন ছিল। প্রাচীন সভ্য অন্তান্ত দেশেও এই একই প্রক্রিয়া পরিলক্ষিত হয়। পাও লিপি থেকে ত্'একটি উদাহরণ প্রদত্ত হলো: करीयात कर वनस्य हिया । य हिन

#### উদাহরণ:

যোগ কর: 3, 11, 11, 11, 11

नियम :-- मन् मम् कियर ,-- मन् म रद्य পदिश् क्रा राना।

120 90 80 75 72 60 '60' (0' 60' 60

এরপর উত্তর লেখা হয়েছে,  $\frac{437}{60}$ 

#### উদাহরণ :

যোগ কর: 1/2, 1/3, 3/4, 3/8

(সদৃশম্ ক্রিয়তে)  $\frac{30}{60}$  ,  $\frac{20}{60}$  ,  $\frac{45}{60}$  ,  $\frac{36}{60}$ 

এবার উত্তর লেখা হয়েছে  $\frac{131}{60}$ 

# ।। কম্বেকটি অঙ্কের উদাহরণ।।

প্রাচীন ভারতের গণিত-গ্রন্থস্থে একই ধরনের কক্ষ দেখা যায়। এটি বোধ হয় গণিতজ্ঞদের সংরক্ষণশীল চরিত্রের একটি বৈশিষ্ট্য। শ্রীধর, পৃথুদকস্বামী, মহাবীর, ভাস্করাচার্য প্রভৃতির গ্রন্থে একই প্রকার অক্ষের অস্থবর্তন দেখা যায়। দিতীয় ও তৃতীয় শতান্ধীর অক্ষ দাদশ শতান্ধীর গণিত গ্রন্থে প্রায় অবিকৃত রূপে উপস্থাপিত হয়েছে, এমন ঘটনা অপ্রতৃত্ব নয়। বকশালী পাণ্ড লিপির অক্ষও ভাস্করাচার্য তাঁর লীলাবতীতে পরিবেশন করেছেন। নিম্নিধিত অক্ষটিতে ভাস্কর তিনজনের পরিবর্তে চারজন এবং জন্তুর পরিবর্তে মূল্যবান পাথরের উল্লেখ করেছেন।

#### 1. উদাহরণ ঃ

তিনব্যক্তি যথাক্রমে 7টি অশ্ব, 9টি হয় \* এবং 10টি উটের মালিক। যদি প্রত্যেকে একটি করে জম্ভ পরস্পরের মধ্যে বিনিময় করে, তা হলে প্রত্যেকেই সমান ধনী হয়। প্রত্যেকটি জম্ভর মূল্য কত ?

প্রদত্ত সর্তাহসারে, প্রত্যেকে সমান ধনী হলে প্রথম ব্যক্তি 5টি অশ্ব 1টি হয় ও 1টি উটের মালিক; দ্বিতীয় ব্যক্তি 7টি হয়, 1টি অশ্ব ও 1টি উটের মালিক এবং তৃতীয় ব্যক্তি ৪টি উট, 1টি অশ্ব ও 1টি হয়-এর মালিক হবে।

এখন যদি  $x_1, x_2$  এবং  $x_3$  যথাক্রমে একটি অশ্ব, একটি হয় এবং একটি উটের মূল্য হয়, তা হ'লে

প্রথম ব্যক্তির সম্পদের মূল্য = 
$$5x_1+x_2+x_3...(1)$$
দ্বিতীয় " " =  $7x_2+x_3+x_1....(2)$ 
তৃতীয় " " =  $8x_3+x_2+x_1....(3)$ 
প্রদেত্ত সর্তাহ্ণদারে (1), (2) এবং (3) পরস্পার সমান ।
মতবাং  $5x_1+x_2+x_3=7x_2+x_3^2+x_1=8x_3^2+x_2+x_1$ 
দতএব  $5x_1+x_2+x_3=7x_2+x_3^2+x_1....(4)^3$ 
 $7x_2+x_3+x_1=8x_3+x_2^2+x_1....(5)$ 

- (4) সমীকরণ থেকে  $4x_1=6x_2$  পাওয়া যায় এবং (5) নং সমীকরণ থেকে  $6x_2=7x_3$  পাওয়া যায়।
  - (4) এবং (5) থেকে পাওয়া যায়।  $4x_1 6x_2 = 7x_3 = K \text{ ( মনে করা হলো )}$

এখন  $x_1$ ,  $x_2$  এবং  $x_3$ -এর সাংখ্যিক মান প্রেতে হলে K এর মান হবে 4, 6 ও 7-এর ল. সা. গু-র যে কোন গুণিতক। 4, 6 ও 7 এর ল. সা. গু 84। বকশালী পাগুলিপিতে K-এর মান  $84 \times 2 = 168$  ধরা হয়েছে।

হতবাং 
$$4x_1 = 6x_2 = 7x_3 = 168$$
  
 $\therefore x_1 = 42, x_2 = 28$  এবং  $x_3 = 24$ 

[ \*অখ ও হয় সমার্থক। পার্থকা কেবল অখ হয়-এর চেয়ে উন্নত ।

### 2. উদাহরণ ঃ

পাঁচজন ব্যবসায়ী একটি মণি ক্রয় করল। যদি মণিটির মূল্য প্রথম ব্যবসায়ীর টাকার অর্ধেক ও অবশিষ্টদের মোট টাকার সমান হয়, অথবা দ্বিতীয় ব্যবসায়ীর টাকার এক তৃতীয়াংশ ও অবশিষ্টদের মোট টাকার সমান হয়, অথবা তৃতীয় ব্যবসায়ীর টাকার এক চতুর্থাংশ ও অবশিষ্টদের মোট টাকার সমান হয়, অথবা চতুর্থ ব্যবসায়ীর টাকার এক-পঞ্চমাংশ ও অবশিষ্টদের মোট টাকার সমান হয়, অথবা পঞ্চম ব্যবসায়ীর টাকার এক ষষ্ঠাংশ ও অবশিষ্টদের মোট টাকার সমান হয়, তাহলে মণিটির মূল্য কত ? আর প্রত্যেক ব্যবসায়ীর কাছে কত করে টাকা আছে ?

এখন পাঁচ জন ব্যবসায়ীর টাকার পরিমাণ বথাক্রমে  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$  ও  $x_5$  এবং মণির মূল্য p হলে সর্ভাহ্নসারে,—

$$\frac{1}{2}x_1 + x_2 + x_3 + x_4 + x_5 = x_1 + \frac{1}{2}x_2 + x_3 + x_4 + x_5 = x_1 + x_2 + \frac{1}{4}x_3 + x_4 + x_5 = x_1 + x_2 + x_3 + \frac{1}{2}x_4 + x_5 = x_1 + x_2 + x_3 + x_4 + \frac{1}{6}x_5 = p$$

1নং উদাহরণের মত 
$$\frac{1}{2}x_1 = \frac{2}{3}x_2 = \frac{3}{4}x_3 = \frac{4}{5}x_4 = \frac{5}{6}x_5 = q$$

অতএব, 
$$x_1 = 2q$$
,  $x_2 = \frac{3}{2}q$ ,  $x_3 = \frac{4}{3}q$ ,  $x_4 = \frac{5}{4}q$ ,  $x_5 = \frac{6}{5}q$ 

উপবের যে কোন সমীকরণে  $x_1, x_2, x_3$  প্রভৃতির মান বসালে আমরা p-এর মান পাই। প্রথম সমীকরণে বসালে

$$\frac{1}{2} \times 2q + \frac{3}{2}q + \frac{4}{3}q + \frac{5}{4}q + \frac{6}{5}q - p$$

$$\frac{60q + 90q + 80q + 75q + 72q}{60} - p$$

PARTY BOYS HER BURNE

অথবা,  $\frac{377}{60}q-p$ 

উত্তরটি অথণ্ড সংখ্যায় **হলে** q=60 হবে। অভএব p=377

 $x_1 = 120, x_2 = 90, x_3 = 80, x_4 = 75 \text{ ags } x_5 = 72$ 

# তিন্তুত প্ৰায় হৈ প্ৰায়েল ।। অপ্ৰকৃত নিয়ম।। এই কে লাইকাৰী ক্ষা

ইংবাজীতে এই পদ্ধতিব নাম Regula Falsi, Rule of False Position প্রভৃতি। এটি ভারতীয় গণিতজ্ঞদের স্বতন্ত্র ও মৌলিক আবিষ্কার। ইউরোপে এই নিয়মটি আরবদের দারা বাহিত হয়ে গণিতের সমস্তা সমাধানে এক বিশিষ্ট স্থান অধিকার করে। প্রাচ্য ও পাশ্চাত্য গণিতে এই পদ্ধতি বছদিন পর্যন্ত জনপ্রিয় পদ্ধতি ছিল। তারপর বীজগণিতের প্রয়োগ ও নানা সাক্ষেতিক চিহ্নের আবিষ্কারের পর এর গুরুত্ব অনেকথানি হ্রাস পেয়েছে। তবুও স্কুলের নিম্ন শ্রেণীতে যেখানে বীজগণিত অনহুমোদিত দেখানে এই পদ্ধতি এখনো প্রয়োগ করা হয়। নবম শতাব্দীর জৈন গণিতজ্ঞ মহাবীরের 'গণিত সার সংগ্রহে এই পদ্ধতির বহুল প্রয়োগ আছে। পাণ্ডুলিপির যুগে এই পদ্ধতির প্রচলন থেকে মনে হয় ভারতে এটি খ্রীষ্টপূর্ব শতাব্দীর কোন সময়ে আবিষ্ণত হয়ে থাকবে।

এখনো পাটীগণিতের অক্ষ সমাধানে,—ফুদকষা, লাভ ক্ষতি, ভগ্নাংশ বিষয়ক অঙ্ক প্রভৃতিতে এই অপ্রকৃত নিয়ম বা Regula Falsi-র বছল প্রয়োগ করা হয়। সেই স্থবিখ্যাত অন্ধ, কোন বাঁশের এত অংশ জলে, এত অংশ কাদায় ও এতথানি উপরে থাকলে বাঁশটির উচ্চতা কত? অথবা কোন ব্যক্তি তার মাসিক আয়ের এত অংশ গৃহধরচ বাবদ, এত অংশ বাড়ী ভাড়া, এত অংশ লেখাপড়া প্রভৃতিতে খবচ করার পর তার মাদে এত টাকা জমলে, তার মাদিক আয় কত ? এইদব অঙ্কে আমরা এই অপ্রকৃত পদ্ধতির প্রয়োগই করে থাকি। এ-সব অঙ্কে সাধারণত আমরা একটি অপ্রকৃত দংখ্যা ধরে নিয়ে অঙ্ক কষে প্রাকৃত উত্তর বার করি। বাঁশের অঙ্কটির ক্ষেত্রে সাধারণত আমরা 1 ধরি ও মাসিক আয়ের অক্ষের ক্ষেত্রে 100 টাকা ধরি। কিন্তু প্রকৃত পক্ষে বাঁশের উচ্চতা 1 নয়, বাজিটির মাসিক আয়ও 100 টাকা নয়। খুনী মত

একটি অপ্রকৃত উত্তর ধরে নিয়ে অঙ্ক কধার এই পদ্ধতিকে তাই অপ্রকৃত নিয়ম পদ্ধতি বলা যেতে পারে।

বকশালী পাণ্ড লিপিকে প্রাচীন ভারতীয় গণিতের একটি লুপ্ত অধ্যায় বলা বেতে পারে। এর ঐতিহাসিক মূল্য অপরিদীম। আর্যভটের পূর্ববর্তী যুগের গাণিতিক নমূনা একমাত্র এখানেই আছে। এই পাণ্ডলিপির গুরুত্ব সম্পর্কে ডঃ প্রনিবাসিয়েন্সার বলেন,—"The date of the mathematics contained in the Bakhshāli manuscript is therefore far more important than the date of Ms. itself, but a precise estimate of the former date may be posible only when further such manuscripts come to light."

जिल्ला अधिकारण मात्र अधिकार अधिकार विकास । वहा

अवस्था आकार करा हम । अन्य नवाकीर रेखन शिवक सहस्थित 'मधिक स्रोत सहवाक' कर स्थावित करने रहतास महिल भीवर्गिनेय पूरा कर स्वास्ति रहताल स्थात स्था क्षा कार्याल की विकास सन्तर्भात कार्याला

्याची शामित्रीयात्रक वर्ष मार्गायाः प्रश्नित्र मार्गायाः प्रश्नित्र मार्ग्याच्या यस स्वाहित्य वर्ष स्वकृति विश्व से शिवध्यात शिक्षेत्र स्वाह्म स्वति। यस स्वाहित्य वर्ष त्रीयात्रित्यक स्वाह्म सार्थात्र स्वाहित्य स्वाहित्य स्वाहित्य स्वाहित्य स्वाहित्य स्वाहित्य

नक सामा है करा। इ.स. व्यक्तिया मिन चाहरू १०० हेन्या नहा। चेता वाड

# নি চালার বাল সভানে আক্ষান প্রস্কৃতি আন্তর্গালী কালালিক কালালিক কালালিক কালালিক কালালিক কালালিক কালালিক কালালিক প্রসাধনিক কালালিক বালালিক কালালিক কালালিক

লাভ করা করে বিষয় কুলা হলে বাংলাভার প্রকাশ করা হলে হার্কা করা করে বাংলাভার বিষয় বিষয় বিষয় বিষয় বিষয় বিষয়

"No mathematician should ever allow himself to forget that mathematics, more than any other art or science, is a youngman's game."

-G. H. Hardy.

# ন্দ্ৰভাগ সামৰ ক্ষিত্ৰ বাব আৰ্থভট হয় এই বিশ্ব বাব আৰ্থভট

আর্যন্তট নামটির সঙ্গে সকলেই পরিচিত। ভারতীয় বিজ্ঞানীরা যে প্রথম ক্রিম্টেপগ্রহ উৎক্ষেপণ করে বিশ্বের প্রশংসা অর্জন করেছেন, তার নাম দেওয়া হয়েছে 'আর্যন্তট'। প্রাচীন ভারতের একজন প্রেষ্ঠ জ্যেতির্বিদ ও গণিতজ্ঞের নামের সঙ্গে এই ক্রন্তিম উপগ্রহটির নাম যুক্ত হওয়ায় ভারতবাসী মাত্র সকলেই আনন্দিত হবেন। বিজ্ঞানী, সাহিত্যিক, রাজনীতিক ও পগুত মনীষীদের শ্বতি বক্ষার জন্ম সরকার ও বেসরকারী নানা সংস্থা অনেক কিছু করছেন। কিন্তু হথের বিষয়, প্রাচীন ভারতের বিজ্ঞানী, গণিতজ্ঞ ও সাহিত্যিকদের শ্বতি রক্ষার তেমন বিশেষ আয়োজন নাই। ব্যক্তি নামে দেশে নানা শিক্ষা-প্রতিষ্ঠান গড়ে উঠছে, স্থানের নামকরণে, রাস্তার নামকরণেও ব্যক্তির নাম জড়িত হচ্ছে। কিন্তু প্রায় সর্বত্রই আমাদের দেশের অসামান্য প্রতিভাধরদের নাম উপেক্ষিত হচ্ছে।

আর্থভট নামটি কোন কোন পত্ত-পত্তিকায় ও সাধারণ মাছ্যের কাছে 'আর্থভট্ট' নামেলিথিত ও উচ্চারিত হচ্ছে। এই ভুল লেখা ও উচ্চারণ কম পরিতাপের বিষয় নয়। এই ভুলের পিছনে ছটি কারণ থাকতে পারে: প্রথমত নামের সঙ্গে 'ভট্ট' যুক্ত অনেক নাম পাওয়া যায়। ব্রহ্মবিভাবিদ, সিদ্ধান্ত-তন্ত্র-গণিত-ফলসংহিতার স্থপিতে, বিখ্যাত মীমাংসা লেখক কুমারিল ভট্ট, শ্বতি চণ্ডিকা গ্রন্থের লেখক দেবলভট্ট, আদিশ্ব প্রবর্তিত এবং কনৌজ থেকে আগত পঞ্চব্রাহ্মণের অ্যতম বেণীসংহার রচিয়তা নারায়ণ ভট্ট, স্থবিখ্যাত যত্ত্ভট্ট প্রভৃতি কয়েকটি উদাহবণ। দিতীয়ত ভট্ট-এর সঙ্গে আমরা অধিক পরিচিত বলে 'ভট' উচ্চারণে স্বস্তি পাইনা, বা উচ্চারণে বাধাপ্রাপ্ত হই। যা হোক, ভট্ট উচ্চারণ না করে কেন আমরা 'ভট' উচ্চারণ করব তার কারণটি ড: নীহার রঞ্জন রায়ের 'বাঙালীরা

ইভিহাস' গ্রন্থ থেকে উদ্ ত করা হলো: "ব্রহ্মবৈবর্তপুরাণেই ভট্ট ব্রাহ্মণ নামে আর এক নিম্ন বা পতিত' শ্রেণীর ব্রাহ্মণের খবর পাওয়া যাইতেছে; স্থত পিতা এবং বৈশ্য মাতার সন্তানরাই ভট্ট ব্রাহ্মণ এবং অন্য লোকদের যশোগান করাই ইংগদের উপজীবিকা। ইংগরা নিঃসন্দেহে বর্তমান কালের ভাট ব্রাহ্মণ।"

ভারতীয় গণিতের ইতিহাদে ক্রম পরম্পরায় তথ্য সন্ধিবেশিত করে প্রাচীন ভারতের গাণিতিক উৎকর্ষ ও সমৃদ্ধি দেখানো না গেলেও ব্রুতে অস্থবিধা হয় না, স্থাব অতীতে এ-দেশের গণিতজ্ঞরা নানা বিষয়ে অসাধ্য সাধন করেছিলেন। বেদ, বেদাঙ্গ, বৌদ্ধ ও জৈন বিশাল গ্রন্থরাজ্ঞি এ-বিষয়ে আমাদের বিক্ষিপ্ত সংবাদ সরবরাহ করে। সত্য কথা, খ্রীষ্টীয় পঞ্চম শতান্ধীর পূর্ববর্তী সময়ের গণিতজ্ঞান আমাদের অতি অল্ল। তবুও গণিত বিষয়ে যতটুকু জানা যায়, গণিতজ্ঞানে সম্পর্কে আমরা প্রায় কিছুই জানি না। নিঃসন্দেহে এটি ভারতীয় ঐতিছা। ভারতীয় মনীধীরা তাঁদের বিষয় সম্পর্কে ক্ষম আলোচনা করেছেন, কিন্তু নিজেদের ব্যক্তিজীবন সম্পর্কে কিছুই বলেননি। এ-দেশে বসওয়েলের বড় অভাব। ফলে, বছ গ্রন্থ আজও অনামান্ধিত রয়ে গেছে। ভারতের গর্ম 'আর্যভটীয়'-ও হারিয়ে গেছে। জানিনা কোন্ পুণোর ফলে তার একটিমাত্র অন্থলিপ আবিষ্কৃত হয়েছে! পৃত্তিত প্রবর ভাউ দাজী এ-জন্ত সমগ্র ভারত-বাসীর তথা বিশ্ববাদীর কৃতজ্ঞতাভাজন হয়ে থাকবেন। 1864 খ্রীষ্টান্ধে তিনি আর্যভটের সর্বশ্রেষ্ঠ কীর্তি 'আর্যভটীয়' গ্রন্থের একটি অন্থলিপি সংগ্রহ করেন।

গুথুযুগ ভারতবর্ষের ইতিহাসে খুর্ণ-যুগ। এই যুগে বিহারের অন্তর্গত কুমুমুপুরে, ঐতিহাসিক পাটলিপুত্র বা পাটনায় 476 প্রীষ্টান্দে আর্যভট জন্মগ্রহণ করেন। বিজ্ঞান ও সাহিত্যে গুগুরুগ ইতিহাসের একটি গৌরবোজ্জন অধ্যায়। এই যুগ-সন্ধিক্ষণ আর্যভটের আয় প্রতিভাসম্পন্ন জ্যোতিবিদ ও গণিতজ্ঞের পক্ষেবে অমুক্ল হ্য়েছিল, এ-বিষয়ে কোন সন্দেহ নেই। আর্যভট মাত্র তেইশ বছর বিয়সে তাঁর বিখ্যাত গ্রন্থ 'আর্যভটীয়' রচনা করেন। এই সময় পাটলিপুত্রের সিংহাসনে আসীন ছিলেন বুজ্গুপ্ত এবং তাঁর সিংহাসনে আরোহণের বছরই আর্যভট জন্মগ্রহণ করেন। 'আর্যভটীয়' গ্রন্থে তিনি জন্ম তারিখ উল্লেখ করেছেন:

ষষ্ঠয়নানাং ষষ্ঠির্যদা ব্যতীতাক্সমুল্চ যুগপাদাঃ।
তাথিকা বিংশতিরকান্তদেহ মম জন্মনোহতীতাঃ।

উপবের শ্লোকটি বিশ্লেষণ করলে পাওয়া যায় কলিযুগের 3600 বছর অতিক্রান্ত

হলে আর্যভটের বয়স ছিল 23 বছর। অর্থাৎ তিনি 476 এটাজের 21শে মার্চ জন্মগ্রহণ করেন। তাঁর জন্মস্থান সম্পর্কে তিনি যা বলেছেন, তা হচ্ছে:

# আর্ঘভটিস্থিহ নিগদতি কুস্তমপুরেইভ্যটিতং জ্ঞানম্।।

কিন্ত সপ্তম শতাকীর 'আর্যভটীয়' গ্রন্থের বিখ্যাত ভায়কার প্রথম ভাস্কর তাঁর লেখায় আর্যভটকে 'জম্মক' বলেছেন। ফলে পরবর্তী যুগের কোন কোন ভায়কার যেমন নীলকণ্ঠ বলেছেন আর্যভট অম্মক জনপদের অধিবাদী। অম্মক খুব সম্ভব দান্ধিণাত্যের কোন প্রদেশ ;—কেরল হওয়ার সম্ভাবনাই বেনী। দান্ধিণাত্যের কোন কোন ভায়কার তাই আর্যভটীয়-কে 'অম্মক-ফুট-ভল্ল' নামেও অভিহিত করেছেন। আর একটি লক্ষ্য করার বিষয় হচ্ছে, আর্যভটীয় গ্রন্থের বহু ভায় এবং এই গ্রন্থের উপর রচিত অম্মান্ত গ্রন্থের দান্ধিণাত্যের কেরল রাজ্য থেকেই পাওয়া গেছে। আবার আর্যভটীয় পদ্ধতিতে কিছু কিছু পঞ্জিকা ব্যবহারের রীতি এখনো এই রাজ্যে দেখতে পাওয়া যায়। স্থতরাং এ-সব তথ্য থেকে এরূপ অম্মান করা বেতে পারে হয়তো আর্যভট কেরল রাজ্যের অধিবাদী ছিলেন এবং কুস্মপুরে অধ্যয়ন, অধ্যাপনা ও গ্রন্থরচনা করে থাকবেন। কিন্তু পণ্ডিত কুণাশক্ষর শুক্র মহাশয় মনে করেন আর্যভট কুস্মপুরেরই অধিবাদী এবং দে সম্ভাবনা অধিক বলে মনে হয়।

# ।। আর্যভট সমস্তা ।।

বাংলা সাহিত্যে যেমন চণ্ডীদাস-বিভাপতি সমস্থা আছে, তেমনি গণিতের ইতিহাসেও আর্থন্ড সমস্থা আছে। একই নামধারী অন্তত ত্'জন আর্থন্ডটের নাম ভারতীয় গণিতে আছে। একজন আর্থন্ডট কুস্থমপুর নিবাসী ও 'আর্থন্ডটীয়' গ্রন্থের রচিয়িতা আর একজন হচ্ছেন 'মহা-সিদ্ধান্ত' গ্রন্থের লেখক আর্থন্ডট। এই গ্রন্থের সর্বত্র প্রথম জনকে আর্যন্ডট ও দিতীয় জনকে দিতীয় আর্যন্ডট বলে উল্লেখ করব। আর্যন্ডট পঞ্চম শতাব্দীর, আর দিতীয় আর্থন্ডট দশম শতাব্দীর—উভ্যের মধ্যে 500 বছরের ব্যবধান।

অলবিকণী তাঁর ইতিহাস গ্রন্থে চুজন আর্যভটের উল্লেখ করেছেন,—একজন কুস্বমপুর-নিবাসী, অপরজন তাঁরও পূর্ববর্তী। অলবিকণীর মতে আর্যভটীয় গ্রন্থের লেখক পূর্ববর্তী আর্যভটের অন্নরণকারী। অলবিকণীর কথা সত্য হলে আমরা তিনজন আর্যভটের নাম পাচ্ছি। কিন্তু তাঁর কথা মেনে নেওয়ায় অস্ববিধা আছে।

কারণ তাঁর গ্রন্থের সব বিবরণ নিভূল ও ক্রেটম্ক নয়,—এমন কি অনেক অসম্বতিও আছে।

কিন্তু দিতীয় আর্যভট তাঁব গ্রন্থের স্চনায় একটি শ্লোকে বিল্লান্তি স্টি করেছেন। তিনি বলেছেন 'রদ্ধ আর্যভটের' সিদ্ধান্তগুলি খুব প্রাচীন এবং দীর্ঘ সময়ের ব্যবধানে তাঁর গ্রন্থে নানা ধরনের ভূল-ক্রুটির অন্তপ্রবেশ ঘটেছে। সে জন্মই তিনি নিজের ভাষায় গ্রন্থ রচনা করেছেন। দিতীয় আর্যভট কথিত 'রদ্ধ আর্যভট' যদি পঞ্চম শতান্দীর আর্যভট হন, তাহলে তাঁর গ্রন্থের সঙ্গে আর্যভটীয় গ্রন্থের দাদৃশ্য থাকা প্রয়োজন। কারণ স্থচনায় পূর্ববর্তী আর্যভটের ভূল-ক্রুটি সংশোধনের কথা বলা হয়েছে। কিন্তু আর্যভটীয় ও মহা-সিদ্ধান্তের মধ্যে কোন সাদৃশ্য দেখা যায় না। এমন কি উভয় গ্রন্থের প্রাথমিক নীতিও ভিন্ন প্রকৃতির। এই তথ্য থেকে দিদ্ধান্ত করা যার হয়তো দিতীয় আর্যভটের পূর্ববর্তী কোন এক আর্যভট ছিলেন, কিন্তু তিনি 'আর্যভটীয়' গ্রন্থের লেখক নন। তাহলে কি তৃতীয় কোন আর্যভট ছিলেন ?

তৃতীয় আর্যভটের অস্তিত্ব ব্রহ্মগুপ্তের ঘূটি উক্তি থেকে সম্ভাবনাময় করে তোলে। সপ্তম শতাব্দীতে ব্রহ্মগুপ্ত 'ব্রহ্ম-ক্ষুট-সিদ্ধান্ত' গ্রন্থে কুষ্ণমপুর নিবাদী আর্যভটের তীব্র সমালোচনা করে বলেন যে, আর্যভট তাঁর গ্রন্থে প্রচলিত স্বীকৃত মতবাদ অগ্রাহ্ম করে নিজন্থ মতবাদ প্রচার করেছেন। কিন্তু পরবর্তী কালে তিনি 'থণ্ড-খাছক' গ্রন্থে আর্যভটের প্রশংসা করে শ্রন্ধা জানিয়েছেন। কিন্তু থণ্ড-খাছকের গ্রহাবস্থানের সঙ্গে আর্যভটীয় গ্রন্থের যথেষ্ট পার্থক্য আছে। তা হলে কি ব্রহ্মগুপ্ত প্রশংসিত আর্যভট কুষ্ণমপুর নিবাদী আর্যভট নন? ঘূর্ভাগ্যবশতঃ তিনি কোন্ আর্যভটের প্রশংসা করেছেন তার উল্লেখ করেননি। পরবর্তীকালের ভান্থকারগণ এই অসক্ষতির ব্যাখ্যা স্বরূপ বলেছেন বৃদ্ধ বয়ণ্ডপ্ত তাঁর ভূল বুঝতে পেরে কুষ্ণমপুর নিবাদী আর্যভটের প্রশংসা করেছেন। যা হোক, সমস্ভাটি যে তিমিরে সে তিমিরেই রইল। প্রত্যক্ষ প্রমাণ আবিদ্ধৃত হলে তথন হয়তো এ-সমস্ভার সমাধান হবে।

# আর্যভটীয় গ্রন্থের সংক্ষিপ্ত পরিচয়

আর্যভটীয় গণিত ও জ্যোতিরিজ্ঞান বিষয়ক গ্রন্থ। মাত্র 121টি শ্লোকে সংক্ষিপ্তাকারে গ্রন্থটি রচিত। নিঃসন্দেহে গ্রন্থটি জটিল এবং স্থানে স্থানে তুর্বোধ্য। পতঞ্জলির যোগ-দর্শনের মত এই গ্রন্থটি চারটি পাদে বিভক্ত।

প্রথম পাদের নাম গীভিকা-পাদ। মোট 13টি শ্লোকের মধ্যে দশটি শ্লোক গীতিকা ছন্দে রচিত। এটি 'দশগীভিকা' নামেও পরিচিত। এখানে মূল সংজ্ঞা ও জ্যোতির্বিজ্ঞানে ব্যবহৃত তালিকা দেওয়া হয়েছে, বৃহত্তর কাল মানের এককের সংজ্ঞা, বৃত্তীয় এককের সংজ্ঞা আলোচিত হয়েছে।

43,20,000 বছর পর্যায়ক্রমে পৃথিবীর ঘূর্ণন, সূর্য, চন্দ্র ও অক্যান্ত গ্রহদের আবর্তনের দংখ্যা প্রদন্ত হয়েছে এবং পৃথিবী, সূর্য, চন্দ্র ও অন্তান্ত গ্রহদের ব্যাদ নির্ণয় করাও হয়েছে, আর দাইন-পার্থক্যের তালিকা এই পাদের অন্তভম লক্ষণীয় বৈশিষ্ট্য।

দিতীয় পাদের নাম 'গণিত-পাদ'। মোট শ্লোক সংখ্যা 33। এখানে তিনি বর্গ, বর্গমূল, ঘন, ঘনমূল, ত্রিভুজ, ট্রাপিজিয়াম প্রভৃতির ক্ষেত্রফল, বৃত্ত, পিরামিডের আয়তন, সমাস্তর শ্রেণী, শ্রেণীর সমষ্টি নির্ণয়, স্থদক্ষা, ত্রৈরাশিক-নিয়ম, ভগ্নাংশ, ত্রিকোণমিতির সাইন-তালিকা প্রস্তুতি, দ্বিঘাত সমীকরণ, একঘাত অনির্ণেশ্ব সমীকরণ প্রভৃতি বিষয়ে আলোচনা করেছেন।

তৃতীয় পাদের নাম 'কালজিয়া-পাদ'। এখানে মোট 25টি শ্লোকে নানান সময়ের একক এবং স্থা, চন্দ্র ও গ্রহদের প্রকৃত অবস্থান বিষয়ে আলোচনা মাছে। এখানে বছরের মাস, দিন প্রভৃতিতে বিভাগ ও বিভিন্ন ধরনের বছর, মাস, দিনের আলোচনা আছে।

50টি শ্লোকে 'গোল-পাদ'-এ জ্যোতির্বিজ্ঞান বিষয়ক আলোচনার অবতারণা করা হয়েছে। গোলীয় জ্যোতির্বিজ্ঞানের নানান সমস্থার নিয়ম এখানে প্রদত্ত হয়েছে। গ্রহণ ও গ্রহ-দর্শন সম্পর্কিত গণনা ও লৈখিক চিত্রের অবতারণা এই পাদের অন্যতম বৈশিষ্ট্য।

সংক্ষেপে আর্যভটীয় গ্রন্থের কয়েকটি বিষয়বস্তুর উল্লেখ করা হলো। আমরা পূর্বেই উল্লেখ করেছি, অনির্ণেয় সমীকরণ ভারতীয় গণিতজ্ঞদের একটি প্রিয় বিষয়। আর্যভটের পর অক্যান্স গণিতজ্ঞরা এ-বিষয়ে আরো গবেষণা করেন এবং 'কুটক' অধ্যায়ে এ-বিষয়ে সবিশেষ আলোচনা করেন। জ্যামিতিক সম্পান্ত, শ্রেণী প্রভৃতি কয়েকটি বিষয়ের উপর আর্যভটের বিশেষ অবদান নাই। মনে হয় তাঁর পূর্ব থেকেই এ-সব বিষয় এমন বিকশিত হয়ে উঠেছিল যে, তিনি আর এ-বিষয়ে অগ্রসর হননি। কৈন-গণিত, বকশালী পাণ্ডুলিপি আবিজ্ঞারের পর অস্তুত তাই মনে হয়। কিন্তু যে-সব বিষয়ে আর্যভটের বিশেষ ক্বতিত্ব রয়েছে, তা হছে ক্র-এর মান নির্ণক, সাইন-তালিকা প্রস্তুতি, একঘাত অনির্ণেয় সমীকরণের সমাধান পদ্ধিতি ও

বর্ণমালার সাহায্যে সংখ্যা প্রকাশের পদ্ধতি। এই পদ্ধতিতে প্রতি সংখ্যাকে তার পূর্ববর্তী সংখ্যার দশগুণ হিসাবে ধরা হয়েছে। এক (1), দশ (10), শত (100), সহম্র (1000) এভাবে 10? পর্যন্ত সংখ্যার কথা আছে।

মাঝে মাঝে এমন মৌলিক ও স্থদ্বপ্রদারী আবিষ্কার হয়, যার মূল্যায়ন তথন সম্ভব হয় না। ফলে আবিষ্কারকের কপালে জুটে অশেষ লাঞ্চনা। বিজ্ঞান জগতে গ্যালেলিও তার প্রকৃষ্ট উদাহরণ। আর ক্যান্টর তো পাগল হবার উপক্রম হয়ে-ছিলেন। আর্যভট-প্রতিভার বিশায়কর অবদান "আর্যভটীয়া" ও "গণক-চক্র-চূড়ামণি" ব্রহ্মগুপ্তের ছারা তীব্র সমালোচিত হয়েছিল।

#### ॥ ऋ-खत्र मान ॥

জ্যোতির্বিজ্ঞানের গণনায়  $\pi$  একটি অপরিহার্য গ্রুবক। দে-কারণে ভারতীয় গণিতের ইতিহাদে  $\pi$  এর মান নির্ণয় একটি অতীব গুরুত্বপূর্ণ বিষয়। ভারতে বৈদিক যুগ ও তার পূর্ববর্তী দময় থেকেই  $\pi$  এর ধারণা প্রচলিত ছিল। শুলুস্ত্রেও জৈন গণিতে এ-বিষয়ে কিছু আলোচনা করা হয়েছে। বিভিন্ন দময়ে  $\pi$  এর মান 3,  $\sqrt{10}$  ও 3.0883 ধরা হয়েছে। কিন্তু গণিতজ্ঞরা যত ক্ষ্মতর গণনার বিষয় চিন্তা করেছেন, ততই  $\pi$  এর ক্ষ্মতর মানের প্রয়োজন হয়েছে। দপ্তম শতান্ধীতে ব্রহ্মগুপ্ত  $\pi$  এর সুল ও ক্ষ্মযান হিদাবে যথাক্রমে 3 ও  $\sqrt{10}$  ধরেছেন। এবং ব্যবহারিক ক্ষেত্রে  $\pi$  এর মান 3 ধরেছেন। কিন্তু দশমিক চতুর্য স্থান পর্যস্ত শুদ্দ মান নির্ণয়ের ফ্বতিত্ব আর্যভটের। পঞ্চম শতান্ধীর বিশ্বগণিতের ইতিহাসে এই ক্ষতিত্বের নজির আর কারো নেই। আর্যভট গণিত-পাদের দশম শ্লোকে এই ক্ষতিয়েছেন:

# চতুরবিকং শতমষ্টগুণং দাষ্টিগুথা সহস্রাণাম্। অযুত্তপাবিদ্যগুণ্যাসনো বৃত্তপরিণাহঃ॥

100-এর সঙ্গে 4 যোগ করে 8 দিয়ে গুণ করে 62,000 যোগ কর। এই ফলটি 20,000 ব্যাস-বিশিষ্ট বৃত্তের আহ্মানিক পরিধি হবে। অক্ষে প্রকাশ করলে,

$$\pi = \frac{9 \text{ fal4}}{4117} = \frac{8(100+4)+62000}{20000} = 3.1416$$

স-এর আসর মানটি অবশুই ভগ্নাংশে ছিল। কারণ ভারতে দশমিকের প্রচলন অনেক পরবর্তীকালের ঘটনা। আর্যভট এই মান নির্ণয় বৃত্তের পাদ বিভাজন খারা করেছিলেন বলে মনে করা হয়। পরবর্তীকালের গণিতজ্ঞরা  $\pi$ -এর আসন্ন মান দিয়েছেন ভগ্নাংশে— $\frac{3927}{1250}$ । এরূপ মনে করা হয় যে, তাঁরা এটি আর্যভটের কাছ থেকে গ্রহণ করেছেন। আবার এরূপ অনুমানও করা হয় যে খ্যাং আর্যভট হয়তো কোন লুপ্ত সূর্য-সিদ্ধান্ত থেকে মানটি পেয়েছিলেন।

বিতীয় আর্যভটের 'মহা-সিদ্ধান্ত' ও ভাস্করের 'লীলাবভী'-তে ক্ল-এর মান

22
7 দেখা যায়। মধ্যযুগে দক্ষিণ ভারতীয় জ্যোতির্বিদ, গণিতজ্ঞ ও ভাস্করারগণ

ক্ল-এর আরো শুদ্ধ মান নির্ণয় করেছেন, ক্ল-3'141592653।

 $\pi$ -এর আর্যভটীয় মানটি সম্পর্কে কোন কোন গণিত-ইতিহাসকার বলেন—এই মানটির উদ্ভব গ্রীসে। কিন্তু বিখ্যাত গ্রীক গণিতজ্ঞ আর্কিমিডিস  $\pi$ -এর মান  $3\frac{1}{7}$  থেকে  $3\frac{10}{71}$  বলেছেন অর্থাৎ  $\frac{22}{7}$  হচ্ছে **আর্কিমিডিস** নির্ণীত মান। অন্ত কোন গ্রীক গণিতজ্ঞ পৃথক আর কোন মান দেননি,—এক **টলেমী** ছাড়া।

# বর্গমূল ও ঘনমূল

বর্গমূল নির্ণয়ের ইতিহাস অতি প্রাচীন। জৈন গণিতে বৃহৎ বৃহৎ সংখ্যার বর্গমূল নির্ণয়ের অন্তিছ্য আছে। কিন্তু আর্যভটই প্রথম বর্গমূল নির্ণয়ের পদ্ধতি স্থাপটভাবে ব্যক্ত করেন যা জৈন গণিতজ্ঞরা করেননি। এই বৈশিষ্ট্য ছাড়াও তাঁর পদ্ধতির একটি ঐতিহাদিক গুরুত্ব আছে। শৃত্যসহ দশগুণোত্তর পদ্ধতিতে স্থানিক-মান দ্বারা সংখ্যা লিখনের অন্তিছ তাঁর বর্গমূল নির্ণয়ের পদ্ধতি থেকেই প্রমাণিত হয়। এ থেকে অন্থমিত হয়, সংখ্যা-লিখনের এই পদ্ধতি বহু পূর্বে প্রচলিত। ব্রহ্মগুপ্ত, মহাবীর, প্রীধর, ভাস্করাচার্য, কমলাকর প্রভৃতি গণিতজ্ঞরা আর্যভট প্রদর্শিত বর্গমূল নির্ণয়ের নিয়ম ব্যাখ্যা ও উদাহরণদহ আলোচনা করেছেন। বর্গমূল ও ঘনমূল নির্ণয়ের আধুনিক পদ্ধতি যোড়শ শতাব্দীর আগে পাশ্চাত্যে দেখা যায়নি। ক্যাটানিও (1546 খ্রাঃ) এবং কাটালভি ( 1613 খ্রাঃ) তাঁদের প্রস্থে এই পদ্ধতির আলোচনা করেছেন। কিন্তু প্রাচীন সভ্যতা ও সংস্কৃতিতে সমৃদ্ধ চীনদেশে এই তুই পদ্ধতির প্রয়োগ খ্রীষ্টায় প্রথম শতাব্দীতে দেখতে পাওয়া যায়। চীনা ভাষায় বর্গমূলের নাম "থাই ফ্যাং" এবং ঘনমূলের নাম "থাই লি ফ্যাং"। যা হোক, বর্গমূল নির্ণয়ের আধুনিক পদ্ধতি মহান

গণিতজ্ঞ আর্যভটের অবদান। গণিত পাদের চতুর্থ শ্লোকটিতে বর্গমূল নির্ণয়ের স্থাটি নিম্নরূপ:

# ভাগং হরেদ ্বর্গালিত্যং দ্বিগুণেন বর্গমূলেন। বর্গাদ্বরে গুলেন লবং স্থানান্তরে মূলম্।।

ঘনমূল নির্ণয়ের প্রাচীন কোন ইতিহাস জানতে পারা যায় না। অন্নমান করতে কট্ট হয় না আর্যভট-পূর্ব মূগে কোন-না-কোন প্রকারে এই পদ্ধতির অস্তিত্ব ছিল; হয়তো আর্যভটই প্রথম এই পদ্ধতির বিস্তৃত ব্যাখ্যা ও নিয়ম দেন। আর্যভটের পর প্রাচীন ভারতের অন্ত গণিতজ্ঞরা এই পদ্ধতির উদাহরণসহ উল্লেখ করেছেন।

আর্থভট যে সংখ্যাটির ঘনমূল নির্ণয় করতে হবে তার ডান দিক থেকে সংখ্যাটিকে ঘন-, প্রথম অঘন- এবং দ্বিতীয় অঘন-স্থানে ভাগ করে তিনটি করে জোড়া করেছেন। এভাবে সর্বশেষ ঘন-স্থান থেকে নিকটতম ঘন-সংখ্যাটি নির্ণয় করে প্রথম ঘনমূল নির্ণয় করেছেন। এ-পর্যন্ত আর্যভটের সঙ্গে আমাদের বর্তমান পদ্ধতির কোন অমিল নাই। ঘনমূল সম্পর্কিত গণিত-পাদের পঞ্চম শ্লোকটি উদ্ধত করা হলো:

# অঘনাদ্ ভজেদ্ দিতীয়াৎ ত্রিগুণেন ঘনস্য মূলবর্গেন। বর্গ স্ত্রিপূর্বগুণিতঃ শোধ্যঃ প্রথমাদ্ ঘনশ্চ ঘনাৎ।।

ভাবান্থবাদ:—( সর্বশেষ ঘন-স্থান থেকে নিকটতম বৃহত্তম ঘন বিয়োগ করে),
দ্বিতীয় অঘন-স্থানকে প্রাপ্ত ঘনমূলের বর্গের তিনগুণ দ্বারা ভাগ করতে হবে;
তারপর প্রথম অঘন-স্থান থেকে পূর্বভাগফলের বর্গ দ্বারা পূর্বঘনমূলের তিনগুণ
বিয়োগ করতে হবে। তারপর ঘন-স্থান থেকে পূর্বভাগফলের ঘন বিয়োগ করতে
হবে। এভাবে পদ্ধতির পুনরার্তি করে মূল নিণীত হবে।

আর্থিভট কর্তৃক প্রদত্ত স্থাটির বিশ্লেষণ করলে ঘনমূল নির্ণয়ের পদ্ধতির চারটি পর্যায় পাওয়া যায়:

- (1) সর্বশেষ ঘন-স্থানের নিকটতম বুহত্তম ঘন নির্ণয়
  ( এখানে আমরা প্রথম ঘনমূল-অঙ্কটি পাই )
- (2) দ্বিতীয় অঘন-স্থানকে প্রথম ঘনমূল-অক্ষটির বর্গের তিনগুণ দ্বারা ভাগ
- (3) প্রথম অঘন-স্থান থেকে পূর্বভাগফলের বর্গ দ্বারা পূর্ব ঘনমূলের তিনগুণ দ্বারা বিয়োগ

# (4) ঘন-স্থান থেকে পূর্বভাগফলের ঘন বিয়োগ

ষদিও চারটি সোপানে পদ্ধতিটি বিশ্লেষিত হলো, কিন্তু প্রকৃতপক্ষে এটির তিনটি সোপান। কারণ চতুর্থ সোপানে আমরা প্রথম সোপানের পুনরাবৃত্তি দেখতে পাচ্ছি।

এবার একটি উদাহরণের সাহায্যে পদ্ধতিটির প্রয়োগ দেখানো যাক।

:. নির্ণেয় ঘনমূল - 523

### ॥ প্রগতি॥

ভারতীয় গণিতে প্রগতির ইতিহাস অতীব প্রাচীন। 'তৈত্তিরীয় সংহিতা', 'বাজদেনীয় সংহিতা', 'পঞ্চবিংশ ব্রাহ্মণ' ও অহ্যায় বৈদিক গ্রন্থে সমান্তর শ্রেণীর অন্তিত্ব পরিলক্ষিত হয়। গ্রাষ্টপূর্ব পঞ্চম শতান্দীর 'বৃহদ্দেবতা' গ্রন্থে 2+3+4+ ......+1000=500499—এই সমান্তর শ্রেণীর সমষ্টি দেখতে পাওয়া যায়। প্রগতির প্রাচীন নাম 'শ্রেটী-ব্যবহার'। উল্লিখিত গ্রন্থাদিতে শ্রেণীর সমষ্টির নিভূল গণনা আছে বটে, কিন্তু কোন সাধারণ নিয়ম উল্লিখিত হয়নি। কৈন-গণিত ও বকশালী পাণ্ড্লিপিতে শ্রেণী সম্পর্কিত সমস্যা এবং তার নিয়ম আছে। কিন্তু আর্যন্তট শ্রেণীর সমষ্টি, মধ্যক, পদসংখ্যা নির্ণয়ের নিভূল নিয়ম ব্যক্ত করে ভারতীয় গণিতের গোরব বৃদ্ধি করেছেন।

প্রগতিতে এই পারিভাষিক শব্দ সমূহ প্রায়শই ব্যবহৃত হয়। প্রথম পদ—
আদি, মুথ, বদন; সাধারণ অন্তর—চয়, প্রচয়, উত্তর; মধাপদ—মধ্য; শেষপদ—অন্তঃ; পদসংখ্যা—পদ, গচ্ছ; শ্রেণীর সমষ্টি—ফল, গণিত, সর্বধন,
সঙ্কলিত।

সমান্তর শ্রেণীর আংশিক সমষ্টি নির্ণয়ে নিম্নরূপ স্থাটি গণিতপাদের উনিশতম শ্লোকটিতে দেখা যায়:

# ইষ্টং ব্যেকং দলিভং সপূর্বমুত্তরগুণং সমুথমধ্যম্। ইষ্টগুণিতমিষ্টঘনং তথবাছত্তং পদার্থহত্ম্।।

ভাবাহ্নবাদ: —প্রদত্ত পদসংখ্যার 1 প্রাদ করে, 2 দ্বারা ভাগ করে, পূর্বপদসংখ্যা ( যদি থাকে ) যোগ করে, সাধারণ অন্তর দ্বারা গুণ করার পর প্রথম পদটি যোগ করলে সমান্তর শ্রেণীর মধ্যক পাওয়া যাবে। এবং এই মধ্যককে প্রদত্ত পদসংখ্যা দ্বারা গুণ করলে প্রদত্ত পদসংখ্যার সমষ্টি পাওয়া যাবে। অপর পক্ষে, প্রথম ও শেষপদের সমষ্টিকে পদসংখ্যার অর্ধ দ্বারা গুণ করলে শ্রেণীর সমষ্টি নির্ণীত হবে।

আধুনিক বীজগাণিতিক সঙ্কেতে প্রকাশ করলে,— a+(a+d)+(a+2d)+..... সমান্তর শ্রেণী হলে,  $(a+pd)+(a+p+1d)+.....+\{a+(p+n-1)d\}$  এই n পদের,

(1) সামস্তরীয় মধ্যক
$$-a+\left(\frac{n-1}{2}+p\right)d$$

(2) সমষ্টি 
$$=n\left\{a+\left(\frac{n-1}{2}+p\right)d\right\}$$
 এখানে প্রথম পদ— $a$ , সাধারণ অন্তর $=d$ ,  $n$ —পদসংখ্যা। আবার, প্রথম পদ— $A$  এবং শেষপদ— $L$  হলে, সমান্তর ভেণীর সমষ্টি $=\frac{1}{2}\left(A+L\right)$ 

বিংশতম শ্লোকটিতে পদসংখ্যা নির্ণয়ের স্ত্র প্রদত্ত হয়েছে। গচ্ছোহণ্টোত্তরগুণিতাদ্, বিগুণান্ত্যতরবিশেষবর্গ য়ুভাৎ। মূলং বিশুণাদ্যনং স্বোত্তরভজিতং সরূপার্বম্।।

'শ্রেণীর দমষ্টিকে দাধারণ অন্তরের ৪ গুণ দিয়ে গুণ কর এবং তার সঙ্গে প্রথম পদের দ্বিগুণ ও দাধারণ অন্তরের বিমোগফলের বর্গকে যোগ করে ঐ যোগফলের বর্গমূল নাও। এর থেকে প্রথম পদের দ্বিগুণকে বাদ দাও। এরপর ঐ প্রাপ্ত ফলকে দাধারণ অন্তর দিয়ে ভাগ কর এবং ঐ ভাগফলে 1 যোগ কর। এবার দ্বশেষ প্রাপ্ত এই ফলের অর্থেক নাও।" (জ্ঞান ও বিজ্ঞান)

যদি a+(a+d)+(a+2d)+(a+3d)+....n পর্যন্ত শ্রেণীর দুমটি s হয়, তা হলে,

$$n = \frac{1}{2} \left[ \frac{\sqrt{8ds + (2a - d)^2} - 2a}{d} + 1 \right]$$

এক প্রকার স্বাভাবিক সংখ্যার শ্রেণীকে আর্যভট 'উপচিডি' বলেছেন।

1+2+3+4+...+n—এই শ্রেণীটির প্রথম পদ 1 এবং সাধারণ অন্তর 1 বলে
আর্যভট এর নাম দিয়েছেন "একোন্তরাদি-উপচিডি"। আবার, 1+(1+2)

+(1+2+3)+....., এই শ্রেণীটির নাম দিয়েছেন 'চিভিঘন'। 'আর্যভটীয়'
গ্রন্থে এই শ্রেণীটির সমষ্টির হু'রকম স্তর পাওয়া যায়:

(1) 
$$\frac{n(n+1)(n+2)}{6}$$
 eq. (2)  $\frac{(n+1)^3-(n+1)}{6}$ 

এ-ছাড়া স্বাভাবিক সংখ্যার বর্গ ও ঘন-সমষ্টি আর্যভট দিয়েছেন। বলা হয়, এই অভেদ নির্ণয়ে ভিনিই পথিক্যং।

(1) 
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6} n(n+1) (2n+1)$$

(2) 
$$1^{3} + 2^{3} + 3^{3}_{23} + \dots + n^{3} = (1 + 2 + 3 + \dots + n)^{2}_{2}$$

$$= \left\{ \frac{n(n+1)}{2} \right\}^{2}$$

উপরের ত্'প্রকার শ্রেণীর নাম আর্যভটের মতে 'বগ'চিভিঘন' এবং 'ঘন-চিভিঘন। অবশ্র 'আর্যভটীয়' গ্রন্থের বিখ্যাত ভাষ্যকার প্রথম ভাস্কর ওই শ্রেণী ছটির নামকরণ করেছেন যথাক্রমে "বর্গ'সঙ্কলনা" এবং ''ঘনসঙ্কলনা''।

# ॥ সাইন-এর উদ্ভব ও ক্রমবিকাশ ॥

5) DIS 818 OF U.S. S.W.) 156 1 158

সাইন-তালিকা প্রস্তুতি আর্যভটের গাণিতিক প্রতিভার আর এক অন্য সাধারণ দৃষ্টান্ত। এ বিষয়ে মৌলিক আবিকারের কৃতিত্ব সম্পূর্ণভাবে তাঁর প্রাণ্য কিনা ঠিক বলা যায় না। আর কি পদ্ধতিতে তিনি এই তালিকা প্রস্তুত করেছিলেন, তা-ও অসমাধানিত রয়ে গেছে। অবশ্ব পরবর্তীকালের ভাষ্যকারদের স্তুত্র অবলম্বন করে তু'একজন বিশেষজ্ঞ সম্ভাব্য পদ্ধতি বর্ণনা করার চেষ্টা করেছেন। তুরাই ও জটিল এই পদ্ধতিটি আর এথানে বিবৃত হলো না। কিন্তু আমরা এখানে সাইন-এর উদ্ভব ও ক্রমবিকাশ সম্বন্ধে সংক্ষিপ্ত আলোচনা করব। চিত্রে O বৃত্তের কেন্দ্র, PAP' বৃত্তের চাপ এবং A মধ্যবিন্দু। PAP'-কে ভারতীয় গণিতে 'ধহু' বলা হয় এবং PNP' ধহুকের ছিলা বা জ্যা। কালক্রমে



PN জ্যা, অর্ধ-জ্যা বা জীব-তে পরিণত হয়। ভারতীয় গণিতে PN-ই 'সাইন'
— যদি POA— গুল, তা হলে জ্যা গূ—PN— r Sin গুল বিল্যানার্ধ)।
অর্থাৎ আধুনিক গণিতের সাইন-কে ব্যাসার্ধ দিয়ে গুণ করলে 'ভারতীয় সাইন'
পাওয়া যায়।

वर्जमान मार्रेन-এর উদ্ভব 'क्या' मलि থেকে। আমরা জানি শব্দের অর্থান্তর ঘটে। ফলে কোন কোন শব্দ তার ব্যুৎপত্তিগত অর্থ হারিয়ে সম্পূর্ণ ভিন্ন অর্থে ব্যবহৃত হতে দেখা যায়। বাংলা ভাষায় 'দারুণ' তেমনি একটি শব্দ। শব্দটির ব্যুৎপত্তিগত অর্থ 'কাষ্ঠ' বা 'কাঠ'। কিন্তু বর্তমানে 'দারুণ' শব্দটি আমরা কি অর্থে ব্যবহার করি তা আর ব্রিয়ের বলার অপেক্ষা রাখে না। 'জ্যা'-এর এক অর্থান্তরের ইতিহাদ থেকে কেমনভাবে দাইনের উৎপত্তি হলো দেদিকে দৃষ্টি দেওয়া যাক। 'জ্যা'-এর একটি প্রতিশব্দ হচ্ছে 'জীব'। আরবদের হাতে পড়ে 'জীব' হয় 'জিব', পরে আবার পরিবর্তিত হয়ে 'জৈব' হয়। আরবী অনুরূপ উচ্চারণযুক্ত অন্ত একটি শব্দের অর্থ হচ্ছে 'হদয়'। পরবর্তীকালে রোমানরা ভুলক্রমে জিব

→ৈজব,-এর হদয় অর্থটি গ্রহণ করে। অর্থান্তরের স্তরগুলি দাড়াল: জ্যা>জীব

> জৈব্ > হাদয় > সাইনাস (Sinus)। 'সাইনাস' থেকেই উদ্ভব হলো বর্তমান 'সাইন'। গণিতের ইতিহাসে এমন ঘটনা বিরল।

# ॥ একঘাত অনির্দের সমীকরণ ॥

কোন একঘাত সমীকরণে তৃটি অজ্ঞাত রাশি থাকলে একটির যে কোন মান ধরে অপরটির মান নির্ণয় করা যায়।

2x-y=1 সমীকরণটিতে x এবং y ছুটি অজ্ঞাত রাশি। x-এর ভিন্ন ভিন্ন মান ধরলে y-এরও ভিন্ন ভিন্ন মান পাওয়া যায়। উদাহরণ স্বরূপ, x=1, y=1; x=2, y=3; x=4, y=7 ইত্যাদি।

স্তরাং দেখা যাচ্ছে, অজ্ঞাতরাশি ছটির অসংখ্য মান ছারা সমীকরণটি সিদ্ধ হয়। এরূপ যে সমীকরণের অসংখ্য বীজ থাকে, তাকে অনির্দেষ সমীকরণ বলে।

বিশুদ্ধ গণিতে আর্যভটের এক মহৎ অবদান হচ্ছে একঘাত অনির্ণের সমীকরণের সমাধান পদ্ধতির উদ্ভাবন। কোন্ সমস্থার সম্মুখীন হয়ে তিনি এই সমীকরণের সমাধান আবিষ্কার করেন এবং এরূপ সমাধান পদ্ধতি বিষয়ে পরে বিস্তৃত আলোচনা করা হবে।

# ॥ কয়েকটি জ্যামিতিক সূত্র ॥

একথা স্বীকার্য, ভারতীয় জ্যামিতি গণিতধর্মী,—পাটীগাণিতিক প্রয়োগ পদ্ধতির মধ্যেই ভারতীয় গণিতজ্ঞদের আনন্দ। আর্যভট জ্যামিতির উপপাছ ও সম্পাছ বিষয়ে বিশেষ আলোচনা করেন নি। তাঁর 'আর্যভটীয়' গ্রন্থে মাত্র কয়েকটি বিষয়ে স্থ্রাকারে ইঙ্গিত দিয়েছেন। তিনি উক্ত গ্রন্থে সদৃশ ব্রিভূজের বাহুগুলির অমুপাত বিষয়ে আলোচনা করেছেন, শঙ্কু ও ছায়া সম্পর্কিত সমস্থার বিশেষ প্রয়োগও করেছেন। তথাকথিত পীথাগোরাদের উপপাছটি স্থ্রাকারে আর্যভট বলেছেন: "য়ইম্চব ভূজাবর্গঃ কোটিবর্গম্চ কর্ণবর্গ ঃ সঃ"। অর্থাৎ ভূজ ও কোটির বর্গ ষা কর্ণের বর্গও তাই।

ত্রিভূজের ক্ষেত্রফলের স্ত্র:—

विञ्कला कलमतीतः मयमनत्काणि चुकार्ध मध्वर्गः।

এখানে 'সমদলকোটি'-র অর্থ নির্ণয়ে জটিলতা আছে। বর্তমান ভাষায় স্থ্রটি,— ব্রিভুজের ক্ষেত্রফল— 🖁 🗙 ভূমি 🗙 উচ্চতা। বৃত্তের ক্ষেত্রফলের স্ত্র :— সমপ্রিণাহস্থার্থং বিষ্ণস্তার্থহতমেব রত্তকন্ম।

বুত্তের ক্ষেত্রফল $-\frac{1}{2} \times$ পরিধি  $\times$  ব্যাদার্ধ। দ্রীপিজিয়ামের ক্ষেত্রফল $-\frac{1}{2}$  h (a+b); a,b= দমান্তরাল বাহু, h-উচ্চতা। গোলকের ক্ষেত্রফল $-\pi r^2 \times \sqrt{\pi r^2} = \pi r^3 \sqrt{\pi}$ ; r= ব্যাদার্ধ।

# দ্রা হয়। এক বার্টার আর্বভট ॥

আর্থন্ডট কেবলগাত্র গবেষণা, আবিদ্ধার ও উদ্ভাবনের ক্ষেত্রেই নিজেকে নিয়েজিত রাখেন নি। সর্বদা স্থযোগ্য শিশ্বমগুলীর মাঝে যে তিনি গণিত ও জ্যোতিষের জ্ঞান বিতরণ করতেন, এ-বিষয়ে সন্দেহ নাই। সপ্তম শতানীর মধ্যে সমগ্র উত্তর ভারতে আর্থন্ডটের প্রদর্শিত নীতি ও পথে 'আর্থন্ডটীয় গোষ্ঠা' গড়ে উঠে। কলে আর্থন্ডটের জনপ্রিয়তা এতখানি ছড়িয়ে পড়ে যে ব্রহ্মগুর 'খণ্ড-খাত্বক' গ্রন্থ লিখে নিজেকে প্রতিষ্ঠিত করার প্রয়াস পান। কুষ্মপুর আচার্যরূপে আর্থন্ডটকে পেয়েই তৎকালে গণিত ও জ্যোতিষ চর্চার সর্বশ্রেষ্ঠ কেক্ষেপরিণত হয়। আচার্য আর্থন্ডটের তত্ত্ব ও ব্যাখ্যাই শতান্ধীর পর শতান্ধী ধরে শিশ্ব পরম্পরা প্রচারিত হয়েছে এবং আর্থন্ডটীয় গ্রন্থের উপর সংস্কৃত ও আঞ্চলিক ভাষায় বহু টীকা-ভাষ্য রচিত হয়েছে। এ-সব থেকেই জানতে পারা যায় তিনিকী অসামান্থ প্রতিভার অধিকারী ছিলেন।

আর্যভটের প্রধান ও প্রিয় শিয় ছিলেন প্রথম ভাস্কর (629 খু:)। গুরুর আবিদ্ধৃত তত্ত্বের ব্যাখ্যা রচনা ও প্রচারে তাঁর অবদান অসামাত ; অতা শিয় লাউদেব জ্যোতির্বিজ্ঞানে অসামাত্য জ্ঞানের অধিকারী হওয়ায় সর্বসিদ্ধান্তগুরুর সম্মান লাভ করেছিলেন। রোমক ও স্র্থ-সিদ্ধান্তের ব্যাখ্যাকার হিসাবে তিনি খ্যাতি অর্জন করেছিলেন। বরাহমিহির এই গণিতক্ত সম্বন্ধে উচ্চ ধারণা পোষণ করতেন। অক্যাত্য শিয়্যদের মধ্যে প্রভাকরের নাম উল্লেখযোগ্য।

thouse a second in supplied the second second in the part of the second

The state of the s

and the same of the second second

# অষ্ট্ৰম অধ্যায়

THE RESIDENCE OF THE STREET STATES OF THE PROPERTY OF THE PROP मारक करता कि शक्त हुने किहा महाक्षेत्र के किहा किहा किहा है।

"In mathematics, it is even more important to be able to ask questions -A. H. Read. than to be able to answer them."

मार्थित । अधिक विकास कार्या विवास व বরাহমিহিরের সময়কাল ধরা হয় এটিয় ষষ্ঠ শতাকী। তাঁর বিখ্যাত 'পঞ্চসিদ্ধান্তিকা' গ্রন্থের রচনা কাল 505 এই রাজ বলে মনে করা হয়। বরাহমিহির জৈন ধর্মাবলম্বী ছিলেন। কিন্তু জৈন ধর্মাবলম্বী আর একজন বরাহমিহিবের নাম পাওয়া যায়। তিনি জ্যোতিষ শাল্পে স্থপণ্ডিত ছিলেন, এবং তাঁকে গণধর ভদ্রবাহর কনিষ্ঠ ভ্রাতা বলে উল্লেখ করা হয়েছে। এ-বিষয়ে খেতাম্বর সম্প্রদায়ের মধ্যে একটি কাহিনী প্রচলিত আছে। স্থপতিত বদস্ত কুমার চট্টোপাধ্যায় কর্তৃক অন্দিত 'কল্পসূত্ৰ' গ্ৰন্থ থেকে কাহিনীটি উদ্বৃত করা হলোঃ

"তাঁহারা (খেতাম্বর) বলেন, প্রতিষ্ঠান (গোদাবরী তীরস্থিত পৈথানা) নগর-বাদী ভদ্রবান্থ ও বরাহমিহির তৃই সহোদর ছিলেন। ভদ্রবান্ধর গুরু যশোভদ্র তদীয় শিশু সম্ভূতবিজয় ও ভদ্রবাহকে আচার্যপদে প্রতিষ্ঠিত করায় বরাহমিহির কুদ্ধ হইয়া জৈনধর্ম ত্যাগ করেন। 'রহৎ সংহিতা' নামক বিখ্যাত জ্যোতিব শাজের গ্রন্থ রচনা কবিয়া বরাহমিহির বিদর্ভ দেশে বিখ্যাত পণ্ডিত বলিয়া স্পরিচিত ছিলেন। সেই দেশের অশিক্ষিত জনগণের মনোহরণ করিবার জন্ম তিনি প্রচার করিলেন দে, স্থাদেবের আহ্বানে তিনি [বরাহমিহির] দৌর বথে আরোহণ করিয়া সমগ্র ব্রহ্মাণ্ড এবং সকল গ্রহ-নক্ষত্র দেখিয়া আদিয়াছেন। এই প্রচার কার্যের ফলে ঐ দেশের রাজা বরাহমিধিরের প্রতি আরুষ্ট হন, এবং তাঁথার পরামর্শক্রমে উক্ত দেশের জৈনদিগকে রাজ্য হইতে বিতাড়িত করেন। জৈনদিগের এই হর্দশা দেখিয়া ভদ্রবাহু তাঁহার অলৌকিক জ্যোতিষ শান্তের জ্ঞান দারা তর্ক যুদ্ধে তাঁহার সহোদর বরাহমিহিরকে পরাজিত করেন। ক্ষোতে ও জোধে বরাহমিহির পঞ্চত্ত লাভ করিয়া একটি 'ছৃষ্টব্যস্তর'অর্থাৎ অনিষ্টকারী অপদেবতারূপে আবিভূতি হইয়া জৈনদের ঘরে ঘরে নানাবিধ রোগের বীজ ছড়াইয়া দেন।" 'ভাদ্রবাহবী সংহিতা' অবলম্বনে এই কাহিনীর মধ্যে সত্যতা আছে বলে পণ্ডিতর। মনে করেন না। যা হোক, আমাদের আলোচ্য বরাহমিহির ষষ্ঠ শতাকীতে বর্তমান ছিলেন। যদিও 'রহৎ সংহিতা' নামে তাঁর একটি জ্যোতিষ শাস্তের গ্রন্থ আছে, তবুও ইনি ভশ্রবাহর কল্লিত সহোদর নন।

বরাহমিহিরের ব্যক্তি-জীবন সম্বন্ধে বিশেষ কিছু জানা যায় না। তবে 'রহজ্জাতক' গ্রন্থের উপসংহারে সামান্ত একটু উল্লেখ আছে। একটি শ্লোক থেকে জানতে পারা যায়:

"আদিত্যদাসতনগৃত্তদবাপ্তবোধঃ কাপিথকে সৰিত্লৰ বরপ্রসাদঃ।" অর্থাৎ আদিত্যদাস তাঁর পিতা এবং তাঁর কাছে জ্ঞানলাভ করেন। কপিথ নামক স্থানে স্থাদেবকে সম্ভাই করে তিনি বর লাভ করেন। জন্মস্থান সম্পর্কে এটুকু জানা যায় যে, তিনি অবস্তীনগরের অধিবাসী ছিলেন। কেউ কেউ বলেন, তিনি মগধের অধিবাসী ছিলেন এবং পরবর্তীকালে উজ্জ্ঞিনীতে এসে গ্রন্থ রচনা করেন।

গণিতজ্ঞ হিসাবে বরাহমিহিরের তেমন নাম নাই। এমন কি জ্যোতিষশাস্ত্রে কোন মৌলিক অবদান বা আবিষ্কার নাই। তাঁর থ্যাতি জ্যোতিষশাস্ত্রেইতিহাসকার হিসাবে। অবশু এটা আমাদের কম পাওনা নয়। কারণ তথনকার ও পূর্ববর্তী মুগের জ্যোতিষকার ও গণিতজ্ঞদের বিষয়ে নানান ইঞ্চিত আমরা এই ইতিহাসকারের রচনা থেকেই জানতে পারি। বরাহমিহির কোন মৌলিক আবিষ্কার নাই করুন, কিন্তু পঞ্চ-সিদ্ধান্তিকার তায় জ্যোতিষ গ্রন্থ রচনা থেকে নিঃসন্দেহে প্রমাণিত হয় তিনি মৌলিক প্রতিভার অধিকারী ছিলেন।

পঞ্চ-সিদ্ধান্তিকা প্রন্থে পাঁচখানি জ্যোতির্বিজ্ঞান সংক্রান্ত প্রন্থের সার সংক্রান্ত তাছের সার সংক্রান্ত তাছের। এগুলি পৌলিশ সিদ্ধান্ত, রোমক সিদ্ধান্ত, বানিষ্ঠ সিদ্ধান্ত, সোর সিদ্ধান্ত ও পৈতামহ সিদ্ধান্ত। বরাহমিহিরের মতে এই পাঁচখানি সিদ্ধান্তর মধ্যে সৌরসিদ্ধান্তই সর্বপ্রেষ্ঠ ও নির্ভুল, আর পৈতামহ ও বানিষ্ঠ সিদ্ধান্ত নর্বাপ্রেম্বানিকৃষ্ট। 'বৃহজ্ঞাতক' ও 'বৃহৎসংহিতা' নামে ঘুটি জ্যোতির গ্রন্থের রচয়িতাও তিনি। এই ঘুই গ্রন্থে জ্যোতিরিজ্ঞান বিষয়ে—সময় নির্ধারণ, গ্রহদের অবস্থান, গ্রহণ প্রভৃতি সম্বন্ধে আলোচনা আছে। তাঁর জ্যোতিষ গ্রন্থাদিতে ও হোরা শান্তে গ্রীক প্রভাব বিভ্যান। সে-কারণ তাঁর গ্রন্থে গ্রীক পারিভাবিক শব্দের প্রাচুর্য দেখা যায়।

আর্যভট আবিষ্ণত তত্ত্ব ও তথ্য যদি পরবর্তীকালে সমর্থিত হতো, তা হলে ভারতীয় গণিত ও জ্যোতিষের ইতিহাস হয়তো অন্ত বকম হতো। বিশেষ করে জ্যোতির্বিজ্ঞান বিষয়ক নতুন আবিষ্ণারের জন্ম তিনি কঠোর ভাবে সমালোচিত হন। "বরাহমিহির আর্যভটের 'ভূ-জ্ঞমণবাদ' সমর্থন করেননি। বরাহমিহিরের পঞ্চদিছাস্তিকায় মেষরাশির আদিবিন্দু থেকেই নক্ষত্রচক্রের হুচনা লক্ষ্য করা যায়। আর্যভটের আর্যভটীয়তেও মেষ রাশির আদি বিন্দুতেই বর্ষ গণনার হুত্রপাত। এমন হওয়া সম্ভব যে, বরাহমিহির আর্যভট অবলম্বনেই মেষ রাশির আদিবিন্দুতে নক্ষত্র চক্রের প্রারম্ভ নির্দিষ্ট করেন।" (—ভারতীয় জ্যোতির্বিজ্ঞানের ইতিহাস)।

#### ॥ প্রথম ভান্ধর।।

ভারতীয় গণিতে ত্'জন ভাস্করের নাম পাওয়া যায়। আলোচ্য ভাস্কর প্রীষ্টীয় সপ্তম শতান্দীর প্রথম পাদে বর্তমান ছিলেন। ইনি গণিতের ইতিহাদে প্রথম ভাস্কর নামে পরিচিত। বিতীয় ভাস্কর যিনি অসামান্ত প্রতিভাধর গণিতজ্ঞ ও জ্যোতির্বিদ ছিলেন, তিনি বাদশ শতান্দীতে বর্তমান ছিলেন। ইনি সাধারণত ভাস্কর নামেই পরিচিত।

কুষ্মপুর নিবাসী আর্যভটের প্রিয় শিশ্ব প্রথম ভাস্করের গণিতে মৌলিকঅবদান বেশী না থাকলেও তাঁর গুরুর মত ও পথ অবলম্বনে তিনি যে কৃতিত্বের
যাক্ষর রেখে গেছেন, তাতেই তাঁর নাম কালের গ্রাস এড়িয়ে যাবার পক্ষে যথেই।
হয়তো প্রতিভাধর এই তরুণ ছাটেটি গুরুর অলৌকিক প্রতিভাগ্ন এমনভাবে
প্রভাবিত ও সমাচ্ছন্ন হয়েছিলেন যে, তাঁর আর মৌলিকতা প্রকাশের স্থযোগ
ঘটেনি। আর্যভটের শিশ্বরা গুরুর প্রতি এমন ভক্তি ও শ্রদ্ধা পোষণ করতেন যে,
তাঁরা তাঁকে 'ভগবান' বা 'প্রভু' নামে সম্বোধন করতেন। এ-সম্পর্কে প্রথম
ভাস্কর কিরূপ শ্রদ্ধা ও ভক্তি পোষণ করতেন দে সম্বন্ধে 'মহা-ভাস্করীয়' গ্রন্থে
তিনি লিখেছেন, "None except Āryabhaṭa has been able to know
the motion of the heavenly bodies. Others merely move in the
ocean of utter darkness of ignorance (Āryabhatiya; K. S.
Shukla).

প্রথম তাস্কর তিনখানি গ্রন্থ রচনা করেন,—'মহা-ভাস্করীয়', 'লমু-ভাস্করীয়' এবং 'আর্যভটীয়' গ্রন্থের উপর স্থবিখ্যাত টীকা 'আর্যভটীয় সূত্রভাষ্ণ' বা 'আর্যভটীয় তল্পভাষ্ণ'। 'মহা-ভাস্করীয়' গ্রন্থটি আর্যভটীয় গ্রন্থের জ্যোতির্বিজ্ঞান সম্পর্কিত তিনটি অধ্যায় অবলম্বনে আট অধ্যায়ে বিভক্ত ভাষ্য। এখানে অনির্ণেশ্ব সমীকরণ, স্থান, কাল, দিক, গোলীয় ত্রিকোণমিতি, স্থ্গগ্রহণ, চক্রগ্রহণ, গ্রহদের

উদয় ও অন্ত, জ্যোতির্বিজ্ঞান সম্বন্ধীয় গ্রুবক, তিথি ও বিবিধ বিষয়ের উদাহরণ-সহ আলোচনা পরিলক্ষিত হয়। শ্রীঅরূপরতন ভট্টাচার্য 'প্রাচীন ভারতে জ্যোতির্বিজ্ঞান' গ্রন্থে মহা-ভাস্করীয়-এর বৈশিষ্ট্য সম্বন্ধে আরো বলেছেন: "এটিতে দিন রাত্রির দৈর্ঘ্য এবং এক বর্ষে অধিমাস নির্ণয়ের প্রক্রিয়া সংক্রান্ত আলোচনা আছে। গ্রন্থটিতে গ্রহদের অবস্থান নির্দেশ সঠিক কিনা ভার নিরূপণের প্রক্রিয়াও লক্ষ্য করা যায়। গ্রন্থটিতে গ্রহকর্ম বিষয়ের বিবরণ আছে। এ বিষয়টি প্রথম আর্যন্তিটের আর্যন্তিটীয়তে প্রায় অনালোচিত।"

'লঘু-ভাস্করীয়'-ও আটটি অধ্যায়ে বিভক্ত। এটি মহা-ভাস্করীয় গ্রন্থের সংক্ষিপ্ত সংস্করণ। নবীন শিক্ষার্থীদের তুরুহ জ্যোতির্বিজ্ঞানে প্রবেশের সহজ্বস পথ।

একথা সত্য, আর্যন্তট অনির্ণেয় সমীকরণের আবিষ্ণারক। কিন্তু এর সম্পূর্ণ রূপ, পদ্ধতির স্বস্পষ্ট ব্যাখ্যা এবং জ্যোতির্বিজ্ঞানে প্রয়োগ সন্তব হয়েছে প্রথম ভাস্করের বিভূত গবেষণার জন্মই। এমন কি 'দিচ্ছেদগ্র' নামে তিনি এর একটি নতুন পদ্ধতির উদ্ভাবনও করেন। গণিতে এটিই তাঁর সর্বশ্রেষ্ঠ অবদান।

প্রথম ভাস্কর কেবলমাত্র গণিতজ্ঞ ও জ্যোতিবিদ ছিলেন না, জ্ঞানের অগ্যান্ত শাথায় তাঁর গভীর পাণ্ডিত্য ছিল। 'আর্যভটীয় স্থ্রভাষ্য গ্রন্থে নানা বিষয়ের উদ্ধৃতি তাঁর প্রতিভার বহুমূথীতা প্রমাণ করে। দেখানে ব্যাকরণ, বেদান্ত থেকে উদ্ধৃতি আছে, আর আছে মীমাংসা, অর্থশান্ত, মহুস্থৃতি প্রভৃতি থেকে।

বিক্ষিপ্ত নানা উল্লেখ থেকে মনে হয় ভাস্করের পশ্চিম ভারতের সৌরাষ্ট্র ও দক্ষিণ ভারতের কেরলের সঙ্গে পরিচয় ছিল। সম্ভবত তিনি ওই ত্র'জায়গার কোন এক জায়গায় জন্মগ্রহণ করে থাকবেন। হটি জায়গার উল্লেখ থেকে মনে হয় তিনি একটি জায়গা থেকে উঠে গিয়ে অন্য জায়গায় বসবাদ করে থাকবেন। যতদ্ব জানা যায় 629 থ্রীষ্টান্দে সৌরাষ্ট্রের বলভী-তে তিনি আর্যভটীয় স্বভাস্থ বচনা করেন।

things to the second the second secon

# নবম অধ্যায়

"The history of mathematics may be instructive as well as agreeable; it may not only remind us of what we have, but may also teach us how to increase our store."

−F. Cajori.

#### বন্ধগুপ্ত

মৃষ্টিমেয় যে কয়জন ভারতীয় গণিতজ্ঞ দেশ-বিদেশে প্রভূত খ্যাতি অর্জন করেছিলেন, এমন কি বিদেশী সভ্যতা ও সংস্কৃতিতে অসামায় অবদান রেথে গেছেন তাঁদের মধ্যে ত্রহ্মগুপ্তের নাম সর্বপ্রথম করতে হয়। জর্জ সার্টন এই গণিতজ্ঞ সম্বন্ধে বলেছেন, "One of the greatest scientists of his race and the greatest of his time." সপ্তম শতান্দীর বিশ্বগণিতের ইতিহাসে এমন মৌলিক প্রতিভা খুব কমই দেখা যায়।

সোভাগ্যের বিষয় ব্রহ্মগুপ্ত তাঁর 'ব্রহ্ম-ক্ষ্কুট-সিদ্ধান্ত' গ্রন্থে বংশপরিচয়, আবির্ভাবকাল এবং গ্রন্থ প্রণয়নকাল সম্পর্কে কিছু উল্লেখ করেছেন। শ্লোক ছটি উদ্ধৃত করা হলো:

শ্রীচাপবংশভিলকে শ্রীব্যাঘ্রমুখে নৃপে শকনৃপালাৎ
পঞ্চাশংসংযুক্তির্বর্ষশতৈঃ পঞ্চতিরতীতৈঃ।
ব্রাহ্মস্ফুটসিদ্ধান্তঃ সজ্জনগণিতজ্ঞ গোলবিংপ্রীতৈয়
ব্রিংশদর্মেণ কুতো জিমুুু মুতব্রদ্ধান্তঃ ।

— অর্থাৎ চাপবংশীয় রূপ ব্যাত্তম্থের রাজত্বকালে 550 শকে মাত্র ত্রিশ বৎসর বয়সে গণিত ও গোলবিদগণের প্রীতির জন্ম জিফুর পুত্র ব্রহ্মগুপ্ত ব্রহ্মত্ত্বিদিদ্ধান্ত ব্রচনা করেন।

উদ্ভ শ্লোকটি থেকে জানতে পারা যায়, ব্রহ্মগুপ্তের জন্মকাল 598 এটাজ। তাঁর পিতার নাম জিফুগুপ্ত। অলবিকনীর মতে মূলতান ও অহিলওয়ার নামক স্থানের মধ্যবর্তী ভিল্লমাল নামক স্থানে ব্রহ্মগুপ্ত জন্মগ্রহণ করেন। বৃহ্লারের মতে গুজরাটের উত্তর দীমান্তবর্তী ভীনমাল বা শ্রীমালই হচ্ছে অলবিরুণী কথিত ভিল্লমাল। পূর্ব প্রচলিত ব্রহ্ম-দিদ্ধান্তের উৎকর্ষ দাধন করে যুগোপযোগী গ্রন্থ প্রণয়ন করেন বলে ব্রহ্মগুপ্ত তাঁর গ্রন্থের নাম দেন 'ব্রহ্ম-স্ফুট-সিদ্ধান্ত'।

# ॥ ব্রহ্ম-ফুট-সিদ্ধান্তের সংক্ষিপ্ত পরিচয়॥

আর্যভটীয়-এর মত এই গ্রন্থটি ক্ষুদ্র নয়। এতে মোট অধ্যায় চবিবশ,—অবশ্র ধ্যান-গ্রহ অধ্যায়টি বাদ দিলে। অলবিরুণী এই অধ্যায়টি বর্জন করার কথা বলেন। "কারণ হিসেবে তিনি উল্লেখ করেন যে, অধ্যায়টিতে বিভিন্ন প্রশ্নাবলীর গাণিতিক ममाधात्व कार बरुमाननिर्धव প्रकिष्टा निष्ठ वाम ।" या दाक,-এতে मारे শ্লোক সংখ্যা 1,022। প্রথম দশটি অধ্যায়ে জ্যোতির্বিজ্ঞানের প্রধান বিষয়গুলি আলোচিত হয়েছে। - গ্রহদের গড় গতি ও প্রকৃত গতি, স্থান-কাল-দূরত্ব সম্পর্কিত সমস্তা, সুর্যগ্রহণ, চন্দ্রগ্রহণ, গ্রহদের উদয় ও অন্ত সম্পর্কিত আলোচনাই অধ্যায়-গুলির বিষয়বস্তা। বাইশ সংখ্যক অধ্যায়ে জ্যোতির্বিজ্ঞানে বাবহৃত যন্ত্রপাতির কথা বলা হয়েছে। একাদশ অধ্যায়টি জ্যোতির্বিজ্ঞানের ইতিহাসে বিশেষ স্থান দখল করে আছে। কারণ, এই 'তন্ত্র-পরীক্ষাধ্যায়'-এ অন্তান্ত জ্যোতির্বিজ্ঞান সম্বন্ধীয় মতের আলোচনা আছে। আর্থভট, লাট, প্রীদেন, বিফুচক্র ও প্রায় কর্তক প্রচারিত বিভিন্ন মতবাদ এই অধ্যায়ে সমালোচিত হয়েছে। এমন আজু-নির্ভরশীল ও দৃঢ় সমালোচনা প্রাচীন ভারতীয় গণিতের ইতিহাসে আর কোথাও দেখা যায় না। ব্রহ্মগুপ্তের ন্যায় প্রতিভাসম্পন্ন জ্যোতির্বিদ ও গণিতজ্ঞের পক্ষেই ওইরূপ সমালোচনা সম্ভব। বেদাঙ্গের যুগ-পদ্ধতি সম্পূর্ণ উপেক্ষা করে, জৈনদের তুই সূর্য, তুই চন্দ্র প্রভৃতি উদ্ভট কল্পনার তীব্র সমালোচনা এখানে দেখা যায়। তিনি আর্যভটের 'রাহু-কেতু ভত্তু' উপেক্ষা করে বলেন ষে, গ্রহণ হওয়ার কারণ চন্দ্র ও পৃথিবী কর্তৃক ছায়া বিস্তাব। অলৌকিক প্রতিভাশালী ব্যক্তিরা বোধ হয় কিছটা বক্ষণশীল হন। আইনস্টাইন তার এক উদাহরণ। ব্রহ্মগুপ্ত দে-কারণে বোধ করি আর্ঘভটের "ভু-ভ্রমণবাদ" স্বীকার করেননি।

প্রস্থাটর অধিকাংশ স্থান ছড়ে আছে জ্যোতির্বিজ্ঞান। মাত্র সাড়ে চারটি অধ্যায় গণিতের জন্ম নির্দিষ্ট হয়েছে। ঘাদশ ও অষ্টাদশ অধ্যায়ে যথাক্রমে গণিত ও কুট্টকের আলোচনা আছে। প্রচলিত প্রথা ও রীতি অমুসারে গণিতে পাটীগণিত, শ্রেণী, জ্যামিতি প্রভৃতির সংমিশ্রণ আছে। কুট্টক অধ্যায়ে আছে বীজগণিতের আলোচনা।

মান্থবের প্রকাশের প্রথম ভাষা কবিতা। বিশ্ব সাহিত্যের ইতিহাসে পত্মের আবির্ভাব গত্মের অনেক আগে। এই ঐতিহাসিক দিকটি বিচার করলে ভারতীয় রীতি কোন ব্যতিক্রম নয়। প্রাচীন ভারতে জ্ঞানের প্রায় দব বিষয়ই ছন্দাকারে রচিত হয়েছে। অবশ্র এর অহ্ন কারণ থাকলেও রীতি ও ঐতিহ্যের যে অহ্নবর্তন আছে, এ-বিষয়ে সন্দেহ নাই। 'আর্যভটীয়' গ্রন্থের হ্যায় 'ল্লক্ষ-স্ফুট-সিদ্ধান্ত'-ও ঘনপিনদ্ধ ছন্দে রচিত বলে এর ব্যাখ্যা সহচ্ছ নয়। নবম শতাব্দীতে পৃথুদকস্বামী এর ভাষ্ম রচনা করেন। বহু উদাহরণের সাহায়ের ক্রমগুপ্তের গাণিতিক নিয়ম ও ফলের ব্যাখ্যা করে গ্রন্থটি বোঝার পথ হ্মগম করেন। কিন্তু এরূপ সন্দেহ করা হয়, উদাহরণগুলি পৃথুদকস্বামীর না ব্রন্মগুপ্তের। সেকালের রীতি ও ঐতিহ্য অহ্নযায়ী গুকর বিহ্না ও শিক্ষা শিষ্ম পরস্পরায় বাহিত হতো। হ্মতরাং এমন শিদ্ধান্ত করা সমীচীন হবে না যে ব্রন্মগুপ্তের ব্যাখ্যা ও উদাহরণ শিষ্ম পরস্পরায় পৃথুদকস্বামীর নিকট পৌহায়নি। তাছাড়া ব্রন্মগুপ্তের হ্যায় প্রতিভাশালী গণিতজ্ঞ তাঁর আবিষ্কৃত নিয়ম ও স্থাদি উপযুক্ত উদাহরণের সাহায়ে ব্যাখ্যা করেননি,—এরপ কল্পনা করা যায় না।

#### ॥ ব্রহ্মগুপ্তের অবদান॥

বৃষ্ণ প্রকাশ করব।

পাটীগণিতে ব্রহ্মগুপ্তের উল্লেখযোগ্য বিশেষ অবদান নাই। কিন্তু বীঞ্চগণিতে ব্যয়েছে তাঁর প্রতিভার উজ্জ্বল স্বাক্ষর। তথাকথিত 'পেলিয়ান সমীকরণ' নামে খ্যাত দ্বিঘাত অনির্ণেয় সমীকরণের বীজ নির্ণয়ে তাঁর ক্বতিত্ব সর্বাধিক। কিন্তু বিষয়টি সাধারণ পাঠকের পক্ষে জটিল হবে বলে এ-বিষয়ে বিস্তারিত আলোচনা করা গেল না। অন্যত্ত আমহা এ-বিষয়ের সামান্ত অবভারণা করব।

#### A. দ্বিঘাত সমীকরণ

শুৰুষত্ত্ৰে ও বকশালী পাণ্ড্লিপিতে দ্বিঘাত দমীকরণের পরিচয় পাওয়া যায়। কিন্তু দেখানে এই দমীকরণ দমাধানের কোন স্ত্রে খুঁজে পাওয়া যায় না। বকশালী পাণ্ড্লিপিতে স্ত্রিটি থাকলেও দমাধান পদ্ধতির কোন বিবরণ নাই। আর্যন্তিট ও ব্রহ্মগুপ্ত স্থাদকষ। অক্ষে এই সমীকরণের সমাধান সম্পর্কে তাঁদের জ্ঞানের পরিচয় দিয়েছেন। নিম্নের স্থাদকষা অঙ্কটি ব্রহ্মগুপ্ত কর্তৃক গৃহীত দ্বিণাত সমীকরণ সংক্রান্ত একটি উদাহরণ।

উদাহরণ ঃ সমহাবে 500 টাকার 4 মাসের স্থদ 10 মাসের জন্ম ধার দেওয়া হলে মোট স্থদ 78 টাকা হয়। মাসিক স্থদের হার নির্ণয় কর।

500 টাকার 4 মাদের স্কদ x হলে,

সর্তামুসারে, হুদের মাসিক হার  $\frac{1}{20}x\%$ 

ফুডুরাং, 
$$\frac{x^2}{200} + x = 78$$

$$41, \quad x^2 + 200x - 15600 = 0$$

$$x = \frac{-200 \pm \sqrt{(7.00^{\circ} + 4.15600)}}{2}$$

$$= \frac{-200 \pm 320}{2} = \frac{120}{2} = 60$$

∴ মাদিক স্তদের হাব 
$$\frac{1}{20} \times 60 = 3\%$$

# B. ত্ব'একটি সূত্ৰ

ভারতে দশমিকের প্রচলন অনেক পরবর্তীকালের ঘটনা। কিন্তু প্রাচীন কাল থেকে ভগ্নাংশ-বিষয়ের ধাবণা প্রচলিত ছিল। স্বাভাবিকভাবেই ভগ্নাংশ-ঘটিত স্থুত্রের প্রয়োজন অমুভূত হতে গাকে। এ-বিষয়ে ভগ্নাংশ প্রক্রিয়া সহজ ও সরল করার ব্যাপারে ব্রহ্মগুপ্তের স্তুত্র আছে।

 $\frac{a}{b}$  এই আকাদের ভগ্নাংশকে সহজ ও সবল করার ব্রহ্মগুপ্ত প্রদর্শিত স্তাটি নিষ্কপ :

$$\frac{a}{b} = \frac{a}{b+h} + \left(\frac{a}{b+h}\right)\frac{h}{b}$$

উদাহরণ ঃ (i) 
$$\frac{1920}{93} = \frac{1920}{93+3} + \left(\frac{1920}{93+3}\right)\frac{3}{93}$$

$$= \frac{20}{96} + \frac{2920}{96} + \frac{1920}{96} \cdot \frac{3}{93} = 20\frac{60}{93}$$
এখানে  $h = 3$  ধরা হয়েছে।

(2) 
$$\frac{9999}{97} - 101 + \frac{202}{97} - 101 + 2\frac{2.4}{97} - 103\frac{8}{97}$$

agrica  $h = 2$  agr 4 agr exists 1

(3) কোন সংখ্যার বর্গ নির্ণয়ের সূত্র ঃ

x² = (x-y) (x+y)+y²

डेमार्जन १

এই নিয়মটি গ্রীকদের জানা ছিল। গ্রীক গণিতে এই স্থাট 'নিকোম্যাকাস সূত্র' নামে পরিচিত। নিকোম্যাকাদ খ্রীষ্টীয় প্রথম শতাব্দীতে বর্তমান ছিলেন।

আর্থভটের ন্থায় ব্রহ্মগুপ্তও শ্রেণী বিষয়ে আলোচনা করেছেন। ব্রহ্মগুপ্ত স্থাভাবিক সংখ্যা শ্রেণীর নাম দিয়েছেন 'একোডরমেকাড'। অবশু ইতিমধ্যেই আমরা জেনেছি সমাস্তর ও গুণোত্তর শ্রেণী ভারতীয় গণিতে অতি প্রাচীন। প্রাচীনতম এই ধারাটি মধ্যযুগ পর্যন্ত হিল। মধ্যযুগের অল্ল খ্যাতিসম্পন্ন গণিতজ্ঞরা এ-বিষয়ে উচ্চতর গবেষণা করে এক অভ্তপূর্ব সাফ্ল্য লাভ করেছিলেন। মধ্যযুগের ধারাটি যদি রাজনৈতিক কারণে অবল্প্ত না হতো, তা হলে ভারতীয় গণিত তথা ভারতীয় মণীষার এমন অধঃপতন ঘটত না। ব্রহ্মগুপ্ত স্থাভাবিক বর্গ-সংখ্যা ও ঘন-সংখ্যার সমষ্টি নির্ণয়ের স্ত্রে নিম্নরূপ দিয়েছেন:

(1) 
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(2) 
$$1^3+2^3+3^3+\dots+n^3=\left[\frac{n(n+1)}{2}\right]^2$$

সমান্তর শ্রেণীর আলোচনায় আর্যভটের চেয়ে ব্রহ্মগুপ্ত যেন আরো স্পষ্ট। শেষপদ, মধ্যপদ ও সমষ্টি নির্ণয়ের ক্ষেত্রে তাঁর ব্রহ্মফুটসিদ্ধান্তের গণিতাধ্যায়ে। 17 নং স্ত্র নিয়ন্ত্রপ:

# भन्दमक्रीनमुखत्रश्रिक्ष भः मृज्योतिनां २ छात्रमम्। आनियुजाछात्रनार्वः महासनः भन्छननः भनिष्म्।।

অর্থাৎ "প্রথম পদ, সাধারণ অন্তর এবং পদসংখ্যা জানা থাকলে শেষ পদ কত সংখ্যা এবং যে কোন সংখ্যক পদের সমষ্টি নির্ণয় করা যেতে পারে। পদ সংখ্যা থেকে এক বিয়োগ করে ঐ বিয়োগফলকে সাধারণ অন্তর দিয়ে গুল করে তারপর প্রথম পদ যোগ করলে শেষ পদ পাওয়া যাবে। এই শেষ পদের সঙ্গে প্রথম পদ আবার যোগ দিয়ে তুই দিয়ে ভাগ দিলে মধ্য পদ পাওয়া যাবে। এই মধ্য পদকে পদসংখ্যা দিয়ে গুল করলে সমগ্র পদের সমষ্টি পাওয়া যাবে। এই মধ্য পদকে পদসংখ্যা দিয়ে গুল করলে সমগ্র পদের সমষ্টি পাওয়া যাবে।" (প্রাচীন ভারতে গণিতচর্চা)

এখন, সমান্তর শ্রেণীর প্রথম পদ—a, সাধারণ অন্তর—b হলে,

- (1) শেষভম পদ বা n-ভম পদ—a+(n-1) b
  - (2) ਸ਼ਖ਼기어দ=== {2a+(n-1)b}
    - (3)  $\forall n = \frac{n}{2} \{2a + (n-1)b\}$

ভারতীয় গণিতজ্ঞদের গুণোত্তর শ্রেণীর সমষ্টি নির্ণয়ের স্থাটি বর্তমানে প্রচলিত স্থাটির অম্বরূপ নয়,—একটু তফাৎ আছে। বর্তমানে আমরা  $a+ar+ar^2+\cdots$  n পর্যন্ত সমষ্টি নির্ণয়ের ক্ষেত্রে  $\frac{a(r^n-1)}{r-1}$  স্থাটি ব্যবহার করি। কিন্তু ভারতীয় গণিতজ্ঞরা  $r^n$ -এব স্থালে N ব্যবহার করেছেন। অর্থাৎ ভারতীয় স্থাটি  $\frac{a(N-1)}{r-1}$ । ব্রহ্মগুপ্তের বিখ্যাত ভায়কার স্থপিতিত পৃথুদক্ষামীর ব্যাখ্যা থেকে জানতে পারা যায় N-সঙ্কোতের অর্থ হচ্ছে  $(r^n)$ । কিন্তু গুণোত্তর শ্রেণীর এই স্থাটি স্বয়ং ভায়কারের উদ্ভাবিত না ব্রহ্মগুপ্তের—এ বিষয়ে সঠিক কিছু বলা যায় না।

"গণিতজ্ঞদের রাজপুত্র" গাউদ পাটীগাণিতিক সমাধানে আনন্দ পেতেন। ভারতীয় গণিতজ্ঞরাও সর্বত্র পাটীগাণিতিক প্রয়োগ পদ্ধতির মধ্যে আনন্দ পেতেন। তাই, গুণোত্তর শ্রেণীর সমষ্টি নির্ণয়ের পদ্ধতির মধ্যে পাটীগণিতের চলিত-নিয়ম লক্ষ্য করা যায়। প্রথমে নিয়মটি ও পরে একটি উদাহরণ দিয়ে ভারতীয় গণিতজ্ঞরা N-অর্থে বে ' $r^n$ ' বোঝাতেন সেটি বুঝে নেওয়ার চেষ্টা করব।

নিয়ম 8—কোন গুণোত্তর শ্রেণীর পদসংখ্যা n যুগা হলে, একটি স্তম্ভে  $\frac{n}{2}$  লিখে ঠিক তার পাশের অহা একটি স্তম্ভে বর্গ বোঝার জহা 'S' (Square) লিখতে হবে, এবং n অযুগা হলে একটি স্তম্ভে (n-1) লিখে ঠিক তার পাশে অহা একটি স্তম্ভে গুণ বোঝাবার জহা 'm' (multiply) লিখতে হবে। পদসংখ্যা যুগা অথবা অযুগা হলে যথাক্রমে 2 দারা ভাগ এবং 1 বিয়োগ দারা যতক্ষণ পর্যস্ত প্রথম পদ বা 1-সংখ্যায় পোঁছানো না যায়, ততক্ষণ এই পদ্ধতির পুনরার্ত্তি করতে হবে। অতংপর উপ্রক্রমে m-স্থানে 'r' দারা গুণ এবং 'S'-স্থানে বর্গ করে একেবারে শেষপদে পোঁছতে হবে।

ধরা যাক, কোন গুণোত্তর শ্রেণীর পদসংখ্যা (n)—29—অযুগা। স্থতরাং উপরের নিয়মাল্লসারে,—

| SERVE PARTY        | व्यथम खड          | ছিতায় স্তম্ভ             |
|--------------------|-------------------|---------------------------|
|                    | 29-1              | $m=r\times r^{28}=r^{99}$ |
| NEW REST           | UPS LAND AND STOR | S=(r14)9-r98              |
| ¥ 11 × 15          | PHYSICAL STREET,  | $S=(r^7)^2-r^{14}$        |
| 481313             | 7-1               | $m=r\times r^6=r^7$       |
|                    | THE REPORT AND    | $S=(r^3)^2-r^6$           |
|                    | 3-1               | $m=r\times r^2=r^3$       |
|                    | 4                 | $S=(r)^2-r^2$             |
|                    | 1 川東河             |                           |
| <del>স্</del> তরাং | $N-r^{20}-r^n$    | A 1817 (822.5) 272        |

# ॥ প্রাচীন উৎস ও ঐতিহাসিক উপাদান॥

পাটাগণিতের অঙ্কের বিভিন্ন প্রকার উদাহরণের সঙ্গে আমরা প্রায় স্বাই পরিচিত। কিন্তু ভারতেও অবাক লাগে :দেই একই উদাহরণ বহু বহু শতানী ধরে প্রায় অবিকল চলে আসছে। পার্থক্য কেবল এককে। প্রাচীন ভারতীয় গণিতের এই দিকটি বেশ চিত্তাকর্ষক। এমন কি, যে ঐতিহাসিক উপাদানের জ্ঞে আমরা হত্তে হয়ে চিঠিপত্র-দলিদ-দস্তাবেজ, লিপিমালা, শিলালিপি, প্রত্নতন্ত্র, দাহিত্য, ধর্ম প্রভৃতিতে অমুসন্ধান চালাই, তার উপাদান প্রাচান ভারতের কিছু কিছু অল্কের উদাহরণের মধ্যে নিহিত আছে, এ-কথা আমাদের ঐতিহাসিকদের মনে উদয় হয় না। আমাদের মনে হয়, গণিতের ভায় অতি বাস্তব বিষয়ের উদাহরণগুলি ঐতিহাসিকদের অনেক প্রামাণিক উপাদান যোগাতে পারে। কিস্তু সে-কথা থাক। আমরা এথানে ব্রহ্মগুপ্তের গ্রন্থ থেকে ঘুটি উদাহরণ দিয়ে বর্তমানে প্রচলিত অক্কের প্রাচীনতা দেখাব।

- 1. উদাহরণ: চারটি নল যথাক্রমে 1 দিন, টু দিন, টু দিন ও টু দিনে একটি চৌবাচ্চা পূর্ণ করতে পারে। নলগুলি এক সঙ্গে খুলে দিলে কখন চৌবাচ্চাটি পূর্ণ হবে ?
- 2. উদাহরণ: চারটি বিভালরে সম-সংখ্যক ছাত্র অধ্যয়ন করে। কোন
  প্জাম্প্রান উপলক্ষ্যে নিমন্ত্রিত হয়ে বিভালয়গুলি থেকে  $\frac{1}{5}$  অংশ,  $\frac{1}{5}$  অংশ
  ও  $\frac{1}{5}$  অংশ একত্রিত হলো। প্রভারে বিভালয় থেকে আগত ছাত্রদের সঙ্গে
  বথাক্রমে 1, 2, 3 ও 4 যোগ করলে 87 হয়। আবার ওই সংখ্যাগুলি বিয়োগ
  করলে 67 হয়। তা হ'লে প্রভারে বিভালয় থেকে ক'জন করে ছাত্র এসেছিল ?

ছটি অন্ধই অতি সহজ। সেজন্ত সমাধান করা হলো না। আমাদের বক্তব্য উপরের অন্ধ ছটির মত উদাহরণ এখনো পাটীগণিতের উদাহরণক্রপে ব্যবহার করা হয়। প্রায় তেরো-চৌদ্দ শ' বছর ধরে বংশ পরম্পরায় আমরা একই ধরনের অন্ধ ক্যে আসছি। সেই Tradition সমানে চলেছে, কোথাও কোন পরিবর্তন হয়নি,—এম. ওয়াজেদ আলীর কথাটি বার বার মনে পড়ে।

### ॥ জ্যামিতি॥

বৈদিক গ্রন্থে ত্রিভূজের উল্লেখ আছে, শুবস্ত্রে ত্রিভূজ বিষয়ক আলোচনা আছে। কিন্তু জৈন গণিতজ্ঞরা ত্রিভূজ সম্পর্কে বিশেষ আগ্রহী ছিলেন না। আর্যভট ত্রিভূজের ক্ষেত্রফলের স্ত্র দিয়েছেন এবং সমকোণী ত্রিভূজের ধর্ম বিষয়ে তিনি সম্পূর্ণ অবহিত ছিলেন। কিন্তু ত্রিভূজ বিষয়ক আরো বিস্তৃত আলোচনা আমরা ত্রন্ধগুরের গ্রন্থে দেখতে পাই। কিন্তু আশ্চর্ষের বিষয় ত্রন্ধগুরু ত্রিভূজকে "একবাহ হীন চত্বর্ভূজ" বলে বর্ণনা করেছেন। তাঁর স্ত্রেটি নিয়ন্ত্রপ:

স্থলকলং বিচতুত্ব জবাহপ্রতিবাহযোগদলঘাতঃ। স্থজযোগার্ধংচতুষ্টয়ভুজোনঘাতাৎ পদং স্কাম্।। অর্থাৎ a, b, c ও d কোন চতুভূ জৈর বাহু হলে, স্থুল ক্ষেত্রফল= $\frac{a+c}{2}$ .  $\frac{b+d}{2}$  এবং ত্রিভূজের স্থুল ক্ষেত্রফল= $\frac{\sqrt{a}}{2}$ .  $\frac{a}{2}$  অপর বাহুদ্বরের সমষ্টি  $\frac{a}{2}$   $\frac{a}{2}$ .

কিন্তু শ্লোকের শেষাংশ থেকে ত্রিভূজের ক্ষেত্রফলের স্ক্ষাত্রম মান পা ওয়া যায়।

ক্ষেত্রফল= $\sqrt{s(s-a)\ (s-b)\ (s-c)}$ , এথানে, s= মর্ধপরিদীমা=  $\left(\frac{a+b+c}{2}\right)$ 

প্রমাণ ব্যতিরেকে তিনি মূলদ সমদ্বিবাহু ত্রিভুজের সমাধান নিম্নরূপ দিয়েছেন :

কৃতিযুতিরসদৃশরাখোবাহর্ঘাতী দিসংগুণো লম্বঃ। কৃত্যন্তর্মসদৃশয়োদিগুণং দিসমতিভুক ভ্মিঃ।।

অর্থাৎ m ও n তটি অসম মূলদ রাশি হলে, সমন্বিবাহু তিভুজের বাহু  $m^2+n^2$ , ভূমি  $m^2-n^2$  এবং উচেতা 2mn হবে। এই স্তুত্ত থেকে সমকোণী তিভুজের বাহুগুলির পরিমাপ ভূজ $=m^2-n^2$ , কোটি=2mn এবং অতিভূজ $=m^2+n^2$  পাওয়া যায়।

ব্রহ্মফুট সিদ্ধান্তের বাইশতম অধ্যায়ের পঁয়ত্রিশতম স্লোকে ব্রহ্মগুপ্ত সমকোণী ত্রিভুদ্ধের বাহর পরিমাণ নির্ণয়ের সাধারণ স্ত্র দিয়েছেন। 'a' যদি সমকোণ সংলগ্ধ একটি বাছ হয়, তা হলে বাছ তিনটির পরিমাপ হবে, a,  $\frac{1}{2}\left(\frac{a^2}{m}-m\right)$  এবং  $\frac{1}{2}\left(\frac{a^2}{m}+m\right)$ , m যে-কোন একটি মূলদ্বাশি।

উপরের আলোচনা থেকে দেখা যাচ্ছে সমকোণী ত্রিভুজের অতিভুজ বাদে অন্ত ছটি বাহুর যে-কোন একটি প্রদন্ত হলে ত্রিভুজের তিনটি বাহুর পরিমাপ জানা যায়। আবার, অতিভুজ প্রদন্ত হলে বাহুগুলির পরিমাপ কিভাবে নির্ণীত হবে সেপদ্ধতিও ব্রহ্মগুপ্তের অজ্ঞানা ছিল না। কিন্তু প্রত্যক্ষভাবে এই স্ত্রটি পাওয়া যায় না। মহাবীরাচার্য বাহুত্রয়ের পরিমাপ দিয়েছেন c,  $\frac{2mnc}{m^2+n^2}$  এবং  $\frac{m^2-n^2}{m^2+n^2}$  . c

কিস্তু স্ত্রটি মহাবীবের মৌলিক আবিষ্কার নয়। ব্রহ্মগুপ্তের সমকোণী ত্রিভূচ্বের বাছত্তমের পরিমাপ নির্ণয়ের সাধারণ স্ত্র থেকেই এই স্ত্রটি পাওয়া যায়। কিন্তু "History of Theory of Numbers"-এর গ্রন্থকার ডিকসন উপরের স্ত্র হুটির আবিষ্ণারের সর্ব ক্ষৃতিত্ব ফিবোনাচ্চি (Fibonacci) ও ভিয়েটাকে (Vieta) প্রদান করেছেন। প্রথম জন ব্রয়োদশ ও দিতীয় জন যোড়শ শতান্ধীতে বর্তমান ছিলেন। সপ্তম শতান্ধীর ব্রহ্মগুপ্ত এ দের কত পূর্ববর্তী সেক্থা ব্রিয়ে বলার প্রয়োজন নাই। তবে মনে হয়, ডিকসন ভারতীয় জ্যামিতি সম্বন্ধে বিশেষ অবহিত ছিলেন না।

# ॥ একটি সম্পাত ॥

বে ছটি স্থ বিষয়ে আলোচনা হলো তার পরিপ্রেক্ষিতে ব্রহ্মগুপ্ত একটি সম্পাত্যের অবতারণা করেছেন। এটি একটি অমুসিদ্ধান্ত বলে পরিগণিত হতে পারে।

সমস্থা ঃ ছটি বাহুর ছেদবিন্দুগামী উচ্চতাদ্হ এমন একটি ত্রিভুজ অঙ্কন কর যার বাহুগুলিকে মূলদ্বাশিতে প্রকাশ করা যায়।



চিত্রে ABC ঈপ্সিত ত্রিভুজ। তুটি সমকোণী ত্রিভুজকে পাশাপাশি স্থাপন করা হয়েছে যাদের একটি বাহু প্রদন্ত মূলদ্রাশি x। ABD এবং ADC তুটি সমকোণী ত্রিভুজান্ধনের ঘারাই এরূপ সম্ভব।

ব্ৰমণ্ডৱের হত্ত অফুদারে,—  $AB = \frac{1}{2} \left( \frac{x^2}{a} + a \right), BD = \frac{1}{2} \left( \frac{x^2}{a} - a \right),$   $AC = \frac{1}{2} \left( \frac{x^2}{b} + b \right), DC = \frac{1}{2} \left( \frac{x^2}{b} - b \right)$ 

ম্ভরাং 
$$BC = BD + DC = \frac{1}{2} \left( \frac{x^2}{a} - a \right) + \frac{1}{2} \left( \frac{x^3}{b} - b \right)$$

$$= \frac{1}{2} \left( \frac{x^3}{a} + \frac{x^2}{b} - a - b \right)$$

এখানে a এবং b যে-কোন মূলদরালি, ত্রহ্মগুপ্ত কথিত 'ঐচ্ছিক' রালি এবং ম হচ্ছে 'ইষ্ঠ' অর্থাৎ প্রদত্ত মূলদরালি।

12 একক উচ্চতা বিশিষ্ট কোন ত্রিভুজ অঙ্কন করতে হলে, বাহুত্রর 13, 14, 15 অথবা 13, 4 ও 15 একক বিশিষ্ট হবে। লক্ষণীয়, সপ্তদশ শতাব্দীর আগে ইউরোপীয় গণিতে এ ধরনের সমস্তা ও তার সমাধান নাই।

# ॥ ठजूजू ज ॥

চতুর্ভ সংক্রান্ত গবেষণার ক্ষেত্রে প্রাচীন ভারতে হুটি গোপ্তী দেখা যায়।
একদল চতুর্ভু জ বলতে বৃষ্ণতেন বৃত্তের চারটি জ্যা ছারা সীমাবদ্ধ ক্ষেত্র, আর মহ্য
দল বর্তমানে প্রচলিত ধারণা পোষণ করতেন। বেশীর ভাগ ভারতীয় গণিতজ্ঞ প্রথম
মতাহ্নসারী। এঁদের মধ্যে ব্রহ্মগুপ্ত, শ্রীধর, মহাবীর এবং পরবর্তীকালের আর্যভটীয়
গোপ্তী আছেন। আর্যভট কোন্ মতাহ্নসারী দে-সম্বন্ধে স্কুম্প্র্ট কিছু না বলা
গেলেও তিনি প্রথম দলভুক্ত হবেন বলেই মনে হয়। দ্বিতীয় দলে আছেন দ্বিতীয়
আর্যভট এবং ভাস্করাচার্য। দ্বিতীয় আর্যভট সর্বপ্রথম ব্রহ্মগুপ্ত কর্তৃক প্রদন্ত বৃত্তে
অন্তর্লিখিত চতুর্ভু জের ক্ষেত্রফল নির্ণয়ের স্ত্রের ষাথার্থ বিষয়ে দন্দেহ প্রকাশ
করেন। যদিও এটা ঘুর্ভাগ্যজনক, তিনি ব্রহ্মগুপ্তের তত্বের দঠিক মর্মার্থ উপলব্ধি
করতে পারেননি, তবুও গণিতে চতুর্ভু জ সম্পর্কীয় গ্রেষণার স্ত্রপাত হয়।

বৃত্তে অন্তর্লিখিত চতুভূ জৈর ক্ষেত্রে ব্রহ্মগুপ্তের বিশায়কর অবদান আছে। কিছ ভাঁর পত্তে কোথাও 'অন্তর্লিখিড' শন্দি ব্যবহৃত হয়নি। তাঁর গথেষণা, পত্ত এবং পরবর্তীকালের গণিতজ্ঞদের স্বত: ফুর্ত স্বীকৃতি থেকে মনে হয় এই উল্লেখের কোন প্রয়োজন ছিল না। খুব সম্ভব, তাঁর সময়ে চতুভূ জি বলতে বৃত্তে অন্তর্লিখিত চতুভূ জই বোঝানো হতো। দিতীয় আর্যভটের পর থেকে বা তাঁর কিছু পূর্ববর্তী সময় থেকে সম্ভবত এই ধারণার পরিবর্তন হয়ে থাকবে। ফলে ব্রহ্মগুপ্তের তত্ত্ব প্রশংসা ও নিন্দা এই উভয়ই কুড়োতে থাকে। যাই হোক,—ভারতীয় গণিতে বুত্তে অন্তর্লিখিত চতুভূ দ্বৈর চুটি তত্ত্ব ব্রহ্মগুপ্তের সর্বশ্রেষ্ঠ অবদান।

- (1) ভুজযোগার্ধচতুষ্টয়ভুজোনঘাতাং পদং সৃক্ষাম্।। a, b, c এবং d বুবে অন্তর্লিখিত চতুভূজের বাহু হলে, এর ক্ষেত্রকল  $A=\sqrt{(s-a)\ (s-b)\ (s-c)\ (s-d)}$  ;  $s=\frac{a+b+c+d}{2}$
- (2) কর্নৈপ্রিভভুজঘাতৈক্যমুভয়থাতোগ্যভাজিভং গুণয়েৎ। যোগেন ভুজপ্রভিভুজবধয়োঃ কর্নো পদে বিষমে।।

বুত্তে অন্তর্লিখিত চতুভূ জৈর বাহগুলির দৈর্ঘ্য a,b,c ও d হলে এবং x এবং y উহাদের কর্ণ হলে, উপরের স্থত্ত থেকে লেখা যায়,

$$x = \sqrt{\frac{(ab + cd) (ac + bd)}{ad + bc}}$$

$$94 \quad y = \sqrt{\frac{(ad+bc)(ac+bd)}{ab+cd}}$$

এ-সম্পর্কে ব্রহ্মগুপ্তের দিদ্ধান্তটি বিশায়কর: তিনি বলেন, বৃত্তে অন্তর্গিখিত সকল চতুর্ভু জৈর বাহু, কর্ণ, লম্ব, ক্ষেত্রফল, এখন কি, পরিলিখিত বৃত্তের ব্যাস পর্যন্ত মূলদরাশি দারা প্রকাশ করা যায়। এ-ধরনের চতুর্ভু জ "ব্রহ্মগুপ্তের চত্ত্র্ভুজ" নামে থ্যাত।

এ-বিষয়ে ব্রহ্মগুপ্তের তৃতীয় অবদান হচ্ছে ঘটি সমকোণী ত্রিভূজের 'ভূজ' ও 'কোটি'-কে পরস্পারের অতিভূজের গুণনের দারা বিষমবাহু চতুভূ জের বাহু নির্ণয়। তাঁব স্থাটি নিয়ব্দ :

# জাত্যদয়কোটিভুজাঃ পরকর্ণগুণাঃ ভুজাশ্চতুর্বিষমে। অবিকো ভুমৃ থং হীনো বাহদ্বিতয়ং ভুজাবয়ো।।

অর্থাৎ দুটি 'জাত'-র কোটি ও ভুজকে পরস্পরের অতিভুজ দারা গুণ করে বিষম চতুভূ জের বাহু পাওয়া যাবে। 'অধিক'টি ভূমি, 'হীন'-টি সম্মুখীন বাহু এবং অক্স দুটি পার্শ্ব বাহু।

পূর্ব পৃষ্ঠার স্থত্রটি থেকে এটা প্রতিপন্ন হয় যে, চতুভূ জ অঙ্কনে ছটি সমকোণী। ত্রিভূক্ত অপরিহার্য।



চিত্ৰ—18

ধরা যাক, ছটি সমকোণী ত্রিভূজের বাহগুলি যথাক্রমে (a,b,c) এবং  $(\alpha,\beta,\gamma)$  এবং এদের বাহগুলি  $c^2=a^2+b^2$  এবং  $\gamma^2=\alpha^2+\beta^2$  এরপ্রসম্ভূত ।

চিত্রে BOC এবং COD ত্রিভুজ হুটি অঙ্কন করা হলে। এবং এদের বাহুগুলি যথাক্রমে  $(a \times a, a \wedge b, a \times c)$ । BD-র অপর দিকে DOA এবং AOB হুটি ত্রিভুজ অঙ্কন করা হলে। এবং এদের বাহুগুলি যথাক্রমে  $(b \times b, b \wedge b)$ । ব্রুত্রাং ABCD চতুভু জের বাহুগুলি  $(c \wedge b, a \wedge b, b \wedge c)$ । এখানে কর্ণহয় পরস্পর সমকোণে ছেদ করেছে।

এটি ব্ৰহ্মগুপ্তের চতুভূজ।

এখন যদি (3, 4, 5) এবং (5, 12, 13) বাহুবিশিষ্ট সমকোণী ত্রিভুজ দারা চতুভুজি অন্ধন করা যায়, তাহলে চতুভুজির বাহুগুলি হবে 60, 39, 25, ও 52 একক বিশিষ্ট।

### ॥ ট্রাপিজিয়াম ॥

বৈদিক ও জৈন ধর্মে ট্রাপিজিয়ামের বিশিষ্ট স্থান ছিল। বিশেষ করে সমছিবাছ ট্রাপিজিয়ামের অনুশীলন উভয় ধর্মেই দেখতে পাওয়া যায়। তারপর জ্যোতি-বিজ্ঞানে গণিতের প্রয়োগ পদ্ধতির ব্যাপকতার অরণ্যে এটি হারিয়ে যায় বটে, কিন্তু ভারতীয় গণিতের সব য়্রেই এর কিছু-না-কিছু অনুশীলন হয়েছে। আর্ষভট ট্রাপিজিয়াম বিষয়ে মাত্র একটি স্ত্র দিয়েছেন, ত্রহ্মগুপ্ত এর ক্ষেত্রফল সম্বন্ধে নীরব। কিন্তু তিনি এর অন্ত জ্যামিতিক ধর্মের ইঙ্গিত দিয়েছেন। ত্রহ্ম-ক্ট্-সিলাস্তের ছাদশ অধ্যায়ের তেইশতম ক্লোকটিতে এই ধর্মের আভাস আছে। পৃথুদকস্বামী ত্রহ্মগুপ্ত কর্তৃক ব্যবহৃত 'জ্ববিষম'-এর ব্যাখ্যা করে বলেছেন শব্দটি 'বর্গ', 'আয়তক্ষেত্র' এবং 'সমদ্বিবাছ ট্রাণিজিয়াম' অর্থে প্রযোজ্য। ডঃ টি. এ. সরস্বতী আন্মার মতে 'অবিষম'-র অর্থ "ছটি কর্ণ জসম নয়" (having the two diaভ্রতারীয় not unequal) হতে পারে। যাই হোক, ত্রহ্মগুপ্তের স্ত্র অবলম্বনে
সম্বিবাছ ট্রাণিজিয়ামের কর্ণ নির্বন্ন করা যায়।



চিত্ৰ—19

ধরা যাক, ABCD টাপিজিয়ামের বাহুর দৈর্ঘ্য a, b, c ও d  $DE \perp AB$  এবং B ও D যুক্ত করা হলো। তাহলে,  $BD^{2} = DE^{2} + BE^{2} = AD^{2} - AE^{2} + BE^{2}$ 

$$-d^{2}-\left\{\frac{(a-c)}{2}\right\}^{\frac{2}{4}}+\left\{\frac{(a+c)}{2}\right\}^{\frac{\alpha}{2}}$$

 $-d^2 + ac$ 

-bd+ac[::b=d]

যে চতুভূ জের বিপরীত ঘটি বাহু সমান, সে-বিষয়ে ত্রহ্মগুপ্ত কর্তৃক প্রদক্ত বাছগুলির পরিমাপ c,  $\frac{1}{2}\left(\frac{a^2}{k}-k\right)+b$ , c, এবং  $\frac{1}{2}\left(\frac{a^2}{k}-k\right)-b$ 



ADL ত্রিভুন্ধের বাহুত্রর c, a, এবং b। ব্রহ্মগুপ্তের সমকোণী ত্রিভুন্ধ সংক্রান্ত পুত্র অনুসারে ALC সমকোণী ত্রিভুজের একটি বাহু প্রদত্ত হলে, তিনটি বাহুর: পরিমাপ হবে a,  $\frac{1}{2}\left(\frac{a^2}{k}-k\right)$  এবং  $\frac{1}{2}\left(\frac{a^2}{k}+k\right)$ । স্থতরাং  $LC=\frac{1}{2}\left(\frac{a^2}{k}-k\right)$ ,  $AC=rac{1}{2}\left(rac{a^2}{k}+k
ight)$ । অন্ধরণে  $DM=rac{1}{2}\left(rac{a^2}{k}-k
ight)$ । অতএব AB এবং CDবাহুম্বরের দৈর্ঘ্য নির্ণয় সম্ভব। এখন, বৃদি AL ।। BM হয়, তাহলে ABCD একটি সমদ্বিৰাছ টাপিজিয়াম বলে গণ্য হয়।

# ।। এক নতুন তত্ত্বের দিশারী।।

বন্দ-ক্ট-সিদ্ধান্ত ছাড়া বন্ধগুপ্ত বিশুদ্ধ জ্যোতিবিজ্ঞানের উপর 'থও থাতক' নামে আর একটি গ্রন্থ রচনা করেন। এটি তাঁর পরিণত বয়সের রচনা। 587 শকাবে বা 665 এটাবে 67 বৎসর বয়দে তিনি এটি রচনা করেন। জ্যোতি-বিজ্ঞানের দিক থেকে এই গ্রন্থটির মূল্য অপরিদীম। আর্থভট সাইন-ভালিকা প্রস্তুত করেছিলেন। ব্রহ্মগুপ্ত এই সাইন-তালিকা থেকে মধ্যবর্তী সাইন-কোণ নির্গয়ের এক অভিনব পদ্ধতি বিষয়ে তাঁর 'খণ্ড খাত্তক' প্রন্থের নবম অধ্যায়ে আলোচনা করেছেন। এ-বিষয়ে তিনি যে স্ত্রটি দিয়েছেন তা প্রায় এক হাজার বছর পরে নিউটন প্রভৃতি গণিতজ্ঞরা আবিষ্কার করেন। পদ্ধতিটি প্রক্ষেপ তত্ত্ব (Theory of Interpolation) বলে অভিহিত হতে পারে। কিন্তু ত্থেব বিষয়, পরবর্তীকালের কোন গণিতজ্ঞের দৃষ্টি এর প্রতি নিবদ্ধ হয়নি। ভাস্করের ছায় প্রতিভাশালী গণিতজ্ঞের দৃষ্টি নিবদ্ধ হলে নিশ্চয় তন্তটি সম্পূর্ণতা লাভ করতে পারত। এমন কি মধ্যযুগের দক্ষিণ ভারতীয় গণিতজ্ঞরা যাঁরা আধুনিক গণিতের অনেক উচ্চতর গবেষণা করে গেছেন তাঁরাও হয়তো এক অভিনব সাফল্য লাভ করতে পারতেন।

# ॥ বিদ্বান সর্বত্র পূজ্যতে ॥

"গণক-চক্র-চূড়ামণি" ব্রহ্মগুপ্ত কেবল খদেশেই পৃদ্ধিত হতেন না, বিদেশেও তাঁর সম্মান ও শ্রদ্ধার আসনটি ছিল সংবৃক্ষিত। খলিফা অল-মনস্থর নামে বিখ্যাত আরব স্থলতান টাইগ্রীস নদীর তীরে বাগদাদ নগরীতে জ্ঞান-বিজ্ঞান শিক্ষার কেব্র প্রতিষ্ঠা করেন। তাঁর আমন্ত্রণে কল্প নামে উজ্জ্বিনীর এক পণ্ডিত গণিতজ্ঞ 770 থ্রীষ্টাব্দে বাগদাদে গিয়ে আরবদের ভারতীয় জ্যোতির্বিজ্ঞান ও পাটাগণিত শিক্ষা দেন। স্থলতানের আদেশে 796 বা 806 থ্রীষ্টাব্দে মৃহম্মদ ইবন ইবাহিম অল্ক্জারী কর্তৃক ব্রহ্ম-ম্কুট-সিদ্ধান্ত আরবী ভাষায় অন্দিত হয় 'সিন্দ্ হিন্দ্ 'বা 'ছিন্দ্-সিন্দ্,' নামে। ইয়াকুব ইবন তারিখ্ 'থণ্ড থাত্যক' গ্রন্থটি 'আর কন্দ' বা 'আলকন্দ' নামে অন্দিত করেন। ভারতীয়দের পক্ষে এটা কম গোরবের নয়।

# ॥ সংযোজন॥

### ॥ বররুচি।।

আর্থভট-পূর্ব কোন গণিতজ্ঞের নাম প্রায় আমরা জানি না। কিন্তু ভারতের দক্ষিণে স্বদ্র কেরালা রাজ্যে তৃ'একজন জ্যোতির্বিজ্ঞানীর নাম পাওয়া যায় বাদের একজন অন্তত আর্যভট-পূর্ব যুগে বর্তমান ছিলেন। তিনি হচ্ছেন কেরালার জ্যোতির্বিজ্ঞান ঐতিহ্যের জনক প্রথম বরক্রচি। এরপ মনে করা হয় তিনি সম্ভবত প্রীপ্রীয় চতুর্থ শতাব্দীর প্রথমার্ধে বর্তমান ছিলেন। এই সময় তাঁর প্রথম সন্তানের জন্ম ও মৃত্যু দিন থেকে অনুমিত হয়। অনুমিত সময় হচ্ছে যথাক্রমে 343 ও 378 প্রীষ্টার্ম। 248টি চক্র-বাক্যের রচয়িতা হিসাবে বরক্রচির পরিচয়। এই চক্র-বাক্যগুলি "বরক্রচি বাক্য" নামে জনপ্রিয়। তাছাড়া 'কটপয়ির্মি' পদ্ধতির প্রচারক হিসাবেও তাঁর খ্যাতি আছে।

## ॥ হরিদ্ত ॥ 🖟 🗧 🖂 🖽

বৃদ্ধগুরে পর ভারতীয় গণিত ও জ্যোতির্বিজ্ঞানের ইতিহাসে যদি আর কারো নাম করতে হয়, তাঁর নাম হরিদত্ত। তিনি সম্ভবত 650 থেকে 700 প্রীষ্টাব্দে বর্তমান ছিলেন। জ্যোতির্বিজ্ঞানে তাঁর সর্বশ্রেষ্ঠ খ্যাতি 'পরহিত' পদ্ধতির উদ্ভাবনের জন্ম। কেরালার ঐতিহ্য থেকে জানতে পারা যায় মালাবার উপকূলের তিরুনাভে অন্তর্মিত ছাদশ বর্ষীয় 'মহামঘ' উৎসবের দিনে এই পদ্ধতির উদ্বোধন হয় এবং সেদিন ছিল কলিষ্গের 3785 বর্ষ বা 683 প্রীষ্টান্ধ। 'শকাব্দ-সংস্কার' বা 'ভটসংস্কারের' প্রবর্তক হিসাবেও তাঁর খ্যাতি আছে। 'গ্রহচারনিবন্ধন' ও 'মহামার্গনিবন্ধন' নামে তৃটি গ্রন্থের রচয়িতা তিনি। কিন্তু দ্বিতীয় গ্রন্থটি এখনো আবিষ্কৃত হয়নি,—প্রথমটি থেকে দ্বিতীয়টির নাম জানতে পারা যায়।

#### ॥ औधतारार्य॥

আর্যভানীর পদ্ধতির সংস্কার দারা হ্রিদন্ত 'পরহিত' পদ্ধতির উদ্ভাবনের জন্ম বিখ্যাত হলেওকতথানি মৌলিক গাণিতিক প্রতিভার অধিকারী ছিলেন সে-বিষয়ে আমরা কিছুই জানি না। হরিদন্তের পর প্রকৃত মৌলিক গাণিতিক প্রতিভার অধিকারী ছিলেন শ্রীধর। তাঁর সময়কাল নিয়ে পণ্ডিত মহলে বিতর্কের অবকাশ আছে। 750 থেকে 991 খ্রীষ্টান্দের কোন সময়ে তিনি বর্তমান ছিলেন বলে ধরা হয়। ড: কে. এস. শুকু মনে করেন তিনি ৪50 থেকে 950 খ্রীষ্টান্দের মধ্যে বর্তমান ছিলেন। ড: টি. এ. সরস্বতী আম্মা মনে করেন তিনি মহাবীরের পূর্ববর্তী।

শ্রীধর বিখ্যাত 'পাটীগণিত-সার' গ্রন্থের রচয়িতা। এই গ্রন্থে মোট তিনশ' ক্লোক আছে। সে-জন্ম একে 'ত্রিশতিকা'-ও বলা হয়। ব্রহ্মগুপ্ত ও পরবর্তী-কালের গণিতজ্ঞরা ষে-সব বিষয় পাটীগণিতের অন্তর্ভুক্ত করেছেন, তিনিও তাঁর ব্যতিক্রম নন। গুণনের ক্ষেত্রে 'প্রভ্যুৎপন্ন' নামে একটি নতুন শব্দ তিনি ব্যবহার করেছেন। তাঁর গ্রন্থে গুণনের 'কপাট-সন্ধি' পদ্ধতির বিস্তৃত আলোচনা আছে।

শ্রীধর একখানি বীজগণিত গ্রন্থেরও রচয়িতা ছিলেন। কিন্ত হুর্ভাগ্যের বিষয় দে-গ্রন্থটি বর্তমানে অবলুপ্ত। যদি এই গ্রন্থটির কোন দিন বাংলা সাহিত্যের শ্রীকৃষ্ণ-কীর্তনের মত বা বকশালী পাঞ্লিপির মত হঠাৎ আবিষ্কার হয়, তাহলে ব্রহ্মপ্তপ্ত থেকে মহাবীর পর্যন্ত মধ্যবর্তী হ'ল বছরের গণিতের ইতিহাদের ধারাবাহিকতা খুঁজে পাওয়া যাবে। ভাস্করাচার্যকে ধন্যবাদ, তিনি স্থানে স্থানে শ্রীধরের

গাণিতিক প্রতিভার প্রতি সম্মান দেখিয়ে তাঁর কাছে ঋণ স্বীকার করেছেন এবং নিজ মত দৃঢ় ও স্পষ্ট করার জন্ম হ'এক জায়গায় শ্রীধরের হারিয়ে যাওয়া বীজগণিত থেকে উদ্ধৃতি দিয়েছেন। শ্রীধরের বীজগণিতের টুকরো টুকরো খবর ভাস্করের সৌজভাই পাওয়া যায়। ছিঘাত সমীকরণের বীজ নির্ণয়ের পদ্ধৃতি সামরা অন্যত্র আলোচনা করব।

এখানে ত্রি-শতিকার একটি অঙ্ক উদাহরণম্বরূপ উল্লেখ করা হলো:

এক বারবনিতার সঙ্গে তার প্রিয়তমের প্রেম-কলহে একটি মুক্তামালার একতৃতীয়াংশ মেঝেতে এবং এক-পঞ্চমাংশ শ্যায় পড়ে গেল। এক-ষঠাংশ
বারবনিতাটি রক্ষা করল, কিন্তু এক-দশমাংশ তার প্রিয়তমের কবলে গেল। যদি

6টি মুক্তা তথনো মালায় ঝুলতে থাকে, তা হলে কটি মুক্তা দিয়ে মালাটি নিমিত
হয়েছিল ?

মালায় মৃক্তার সংখ্যা x হলে, সর্তাহ্যবায়ী,— $x - (\frac{1}{8}x + \frac{1}{6}x + \frac{1}{6}x + \frac{5}{10}x) = 6$  বা,  $x - \frac{24x}{30} = 6$ 

₹1, x-30

এই অন্ধটি সমাজ-ইতিহাসের উপাদান হিসাবে পরিগণিত হতে পারে। অষ্টম-নবম শতাব্দীর ইতিহাস সম্পর্কে স্কুম্পষ্ট মস্তব্য রাখার পক্ষে গণিতের এই উদাহরণটি নিঃদন্দেহে প্রামাণিক। নাগর-জীবনের এমন বাস্তব চিত্র কি খুব বেশী লভা ?

শ্রীধর ট্রাপিজিয়ামের অর্থে 'চতুরশ্রা' শব্দটি ব্যবহার করেছেন। অবশ্র শব্দটি 'বর্গ' এবং 'আয়তক্ষেত্র' বোঝাতেও তিনি ব্যবহার করেছেন। তিনি বর্গ ও আয়তের ক্ষেত্রকল দিয়েছেন ভূমি ও উচ্চতার গুণফল। অস্ত চতুভূজির ক্ষেত্রে ক্ষেত্রকল—

রু (ভূমি+সম্মুখীন বাহু)× উচ্চতা। ট্রাপিজিয়ামের আর একটি নাম দিয়েছেন "য়জু-বয়ন-চতুর্বাহু"।

শ্রেণীর চিত্রের দাহায্যে উপস্থাপনা শ্রীধরের অগ্যতম একটি বৈশিষ্ট্য। সমন্বিবাহ ট্রাপিজিয়ামের দাহায্যে দমান্তর শ্রেণীর উপস্থাপনা শ্রীধরের ত্রিশতিকার 'শ্রেণীক্ষেত্রে' আছে। ট্রাপিজিয়ামের উচ্চতা নির্ণয়ের পদ্ধতিটি শ্রীধরের নিজস্ব আবিজার। কারণ, ভারতীয় কোন গণিতজ্ঞ আর এরপ পদ্ধতির কথা বলেননি।

#### ॥ (भाविन्म श्रामिन्।।

800 থেকে 850 খ্রীষ্টাব্দের মধ্যে আর যে খ্যাতনামা ভারতীয় গণিতজ্ঞ বর্তমান ছিলেন, তাঁর নাম গোবিন্দস্থামিন্। তিনি বিখ্যাত রাজজ্ঞোতিবী শঙ্করনারায়ণের শুরু ছিলেন। গোবিন্দস্থামিন্ গণিতে তেমন কোন অদাধারণ সাফল্য লাভ করেননি। কিন্তু তিনি ছিলেন প্রথম ভাস্করের পরম ভক্ত এবং আর্যভটীয় পদ্ধতি প্রচাবের অগ্রতম সমর্থক। 'মহাভাস্করীয়' গ্রন্থের উপর তাঁর 'ভায়' রচনার মধ্যে গণিতের অনেক নতুন তথ্য আছে বলে মনে করা হয়। 'গোবিন্দক্রতি' নামে তাঁর মৌলিক গ্রন্থ পরবর্তীকালের গণিত ও জ্যোতির্বিজ্ঞানের উপর প্রভাব বিস্তার করে। পরবর্তীকালের গণিতক্ত ও জ্যোতির্বিদদের রচনা থেকে এ-কথা জানতে পারা যায়। কিন্তু আজও ওই গ্রন্থটি আবিষ্কৃত হয়নি।

## क्षा क्षेत्र क्षेत्र है ।। श्रह्मत्वादांश्व ।। वह कर्ना है है है है

শঙ্করনারায়ণ ছিলেন গোবিন্দখামিনের শিশ্ব। তিনি সম্ভবত 825 থেকে 900 ঞ্জীষ্টাব্দে বর্তমান ছিলেন। কারণ তিনি ছিলেন বোরাখীর চের (Cera) বংশীয় রাজা রবিবর্মার রাজজ্যোতিষী। শঙ্করনারায়ণ কোরাপুরীর অধিবাদী ছিলেন। গণিতে তাঁর বিশেষ অবদান সম্পর্কে কিছু জানতে পারা ষায় না। তিনি 869 ঞ্জীয়ব্দে 'লঘ্ভাস্করীয়" গ্রন্থের উপর একটি ভাশ্ব রচনা করেন। কিন্তু তাঁর সময় রাজকীয় অর্থাস্কুল্যে কেরালায় একটি মানমন্দির প্রতিষ্ঠিত হয়। এটিই বোধ করি সবিশেষ উল্লেথযোগ্য।

e विद्याहरू : करी slos एक प्रवाध के प्राथम क्षेत्र है के स्वीधिक

वीमन गाउसका देखा राधा र वर्षण १०१४ - ६१७) इराज प्रशासन रहे की प्रकार केव्यून द्विकार प्रमास १९१४ वर्षा मेगी मान निर्मे शिवक शुक्त क कराइस कर्मामा करिया कि व्याप स्थाप केवियक परिस्था मानी प्रमास उसन परिस्था कर्मामा हिस्स हिस्स विकास विवस्था परिस्था करियोगा प्रमास वास विवस्था कार्या स्थाप स्थापका वर्षण भागा विवस स्थापन विवस्था करियोगा कर्मा विस्तर देश व अपनिष्याम् । विभिन्न भागान सम्बद्धारिक । अपने अपने

"Mathematicians are like Frenchman; whatever you say to them, they translate into their own language, and forthwith it is something entirely new."

-Goethe.

## ॥ মহাবীরাচার্য ॥

ভারতীয় গণিতের ইতিহাসে মহাবীরের অন্ততম প্রধান বৈশিষ্ট্য হচ্ছে তিনিই সম্ভবত প্রথম গণিতজ্ঞ যিনি বিশুদ্ধগণিত ছাড়া অন্ত কোন বিষয় তাঁর গ্রন্থে লিপিবদ্ধ করেননি। নবম শতাব্দী পর্যন্ত প্রধান অপ্রধান সব গণিতজ্ঞই ছিলেন জ্যোতির্বিদ ও গণিতজ্ঞ। তাঁদের গ্রন্থের বেশীর ভাগ অংশে জ্যোতির্বিজ্ঞানের আলোচনাই লক্ষ্য করা যায়। কিন্তু একমাত্র ব্যত্তিক্রম মহাবীর।

জৈন ধর্মাবলম্বী মহাবীর জৈন ঐতিহ্য অমুসারে গণিতের চর্চা করেছেন। মাত্র অর্থশতাধিক বৎসর পূর্বে তাঁর 'গণিত-সার-সংগ্রহ' আবিষ্কৃত হয়। দক্ষিণ ভারত ছাড়া ভারতের অন্ত কোথাও এই গ্রন্থটির উল্লেখ পাওয়া যায় না। ভাস্কর ও উত্তর-পশ্চিম ভারতের কোন গণিতজ্ঞ এই গ্রন্থের উল্লেখ করেননি। 'গণিত-সার-সংগ্রহ' এম. রঙ্গাচার্য কর্তৃক সম্পাদিত ও ইংরাজীতে অনুদিত হয়ে প্রথম প্রকাশিত হয়। দক্ষিণ ভারতে এই গ্রন্থের বহুল প্রচার ছিল। কানাড়ী ও তেলেগু ভাষার এই গ্রন্থের অনুবাদ ও ভাষ্য পাওয়া যায়।

মহাবীর নবম শতাব্দীর সর্বশ্রেষ্ঠ গণিতজ্ঞ। তিনি রাজদরবারে সম্মানের আসন পেয়েছেন; রাজা অমোঘবর্ষ নুপতৃঙ্গ (814—877) হয়তো স্থনামধন্য এই গণিতজ্ঞের উজ্জ্বল প্রতিভার নিদর্শন পেয়ে আনন্দিত চিত্তে তাঁকে প্রস্কৃত করতেন। জানিনা, জৈন ধর্মাবলম্বী এই গণিতজ্ঞ পার্থিব কোন সম্মান ও প্রস্কার গ্রহণ করে গর্ববাধ করতেন কি না! কিন্তু জৈন ঐতিহ্যের পরিপ্রেক্ষিতে বলা বায়, গণিতের ন্থায় বিমূর্ত বিষয়ের ধ্যানধারণায় সর্বদা যিনি ময় ধাকতেন, তিনি রাজ সম্মানের লোভ পোষণ করতেন না। হয়তো রাজা অমোঘবর্ষ নুপতৃষ্ক তাঁর

দরবারের সম্মান বৃদ্ধি করার জন্মই এই গণিতাচার্যকে রাজ্বসভায় উপস্থিত হবার অন্তরোধ জানাতেন।

## ।। গণিত-সার-সংগ্রহের সংক্ষিপ্ত পরিচয় ॥

850 এই প্রাম্বার 'গণিত-সার-সংগ্রহ' রচনা করেন। এই গ্রন্থটি মোট নয়টি অধ্যায়ে বিভক্ত। শ্রীধর ছাড়া মহাবীরের মত আর কোন ভারতীয় গণিতজ্ঞ বিশুদ্ধ গণিত গ্রন্থ বচনা করেননি। আর্যভট ও ব্রহ্মগুপ্তের মত তিনিও উপাস্থ দেবতার প্রার্থনা জানিয়ে গ্রন্থ রচনা শুরু করেছেন। কিন্তু এখানে মহাবীরের দেবতা কোন ব্রাহ্মণা দেবতা নন। তাঁর দেবতা জৈন ধর্মের প্রবর্তক মহাবীর। আর্যভট ও ব্রহ্মগুপ্তের মত তাঁর গ্রন্থে অতি প্রাথমিক পাটীগাণিতিক প্ৰক্ৰিয়া যোগ-বিয়োগের কোন আলোচনা নাই। এতে বৰ্গ, ৰৰ্গমূল, ঘন ও ঘনমূল নির্ণয়, সমান্তর ও গুণোত্তর শ্রেণীর সমষ্টি নির্ণয়, একক-ভগ্নাংশ বিষয়ে বিভৃত আলোচনা, ত্রৈরাশিক, বীজগণিতের দ্বিঘাত ও অনির্ণেয় সমীকরণ প্রভৃতি বিষয়ে আলোচনা আছে। পাটীগাণিতিক প্রক্রিয়ায় তিনি সর্বত্র দশগুণোত্তর স্থানিক-মান ব্যবহার করেছেন এবং বিভিন্ন প্রক্রিয়াগুলির নামকর্ণ করেছেন। কোন সংখ্যার চিব্বিশটি অঙ্ক পর্যন্ত নামকরণের পরিচয় তাঁর গ্রন্থে পাওয়া যায়। আর্যভট প্রবর্তিত বর্ণমালার সাহায্যে সংখ্যা প্রকাশের ব্যবহারও তাঁর গ্রন্থে দেখতে পাওয়া যায়। মহাবীরের জৈন ও ব্রাহ্মণ্য উভয় প্রকার গণিতে ব্যুৎপত্তি ছিল। যে শ্রেণীর প্রথম কয়েকটি পদ নাই তার নাম দিয়েছেন 'ব্যুংকলিড'। ভগ্নাংশিক প্রক্রিয়ায় ল, সা. গু-র বাবহার মহাবীবের প্রতিভার এক উজ্জল দৃষ্টান্ত। তিনি ল, সা. গু-র নাম দিয়েছেন 'নিরুদ্ধ'। পরিমিতিতে ব্রহ্মগুপ্ত প্রভৃতির ভায় সমান প্রতিভার স্বাক্ষর রেখেছেন, এমন কি কোন<sup>্</sup>কোন বিষয়ে তিনি অগ্রণীর ভূমিকাও নিয়েছেন। তাঁর গ্রন্থে শৃক্ত (0) সম্পর্কিত সূত্র দেখতে পাওয়া যায় এবং ঋণাত্মক বাশির গুণন প্রক্রিয়াও লক্ষ্য করা যায়। কিন্তু তাঁর শৃত্য (0) ছারা ভাগের সিদ্ধান্তটি ত্রুটিপূর্ণ। তিনি বলেছেন কোন সংখ্যাকে শৃশু দারা ভাগ করলে সংখ্যাটি অপরিবর্তিত থাকে।

## ॥ আচার্য মহাবীরের অবদান।।

সত্য কথা বলতে কি, গণিতে মহাবীরের কোন মৌলিক অবদান নাই। তাঁর গাণিতিক প্রতিভার অজনাত্মক দিকটির পরিচয় গণিত-সার-সংগ্রহে দেখতে পাওয়া যায় না। কিন্তু এ-বিষয়ে কোন সন্দেহ নাই যে তিনি পূর্ববর্তী গণিতজ্ঞদের আবিষ্কৃত নানা স্তত্র ও ফল নিজ প্রতিভার কষ্টিপাধরে যাচাই করে কিছু কিছু পরিবর্তন ও পরিবর্ধন করে সংস্থার করেছেন এবং কোন কোন ক্লেত্রে 'বিশেষ' (particular) থেকে 'সাধারণ' (general)-এ পৌছেছেন। এখানেই মহাবীরের প্রধান কৃতিত। I HEND THE PROPERTY OF WASHINGTON

## ক্ষ্মীত ক্ষাৰ্থক প্ৰতিষ্ঠা প্ৰাৰ্থক প্ৰতিষ্ঠা প্ৰতিষ্ঠা প্ৰতিষ্ঠা কৰিছে কৰা কৰিছে কৰিছে কৰিছে কৰিছে কৰিছে কৰিছ

'গণিত-সার-সংগ্রহ' পাটীগণিত ও বীজগণিতের অঙ্কের আকর গ্রন্থ। নানা প্রকার চিত্তাকর্ষক অঙ্ক এখানে আছে। বহু প্রাচীনকাল থেকে প্রচলিত অঙ্কের দৃষ্টান্তেরও অভাব নাই। মনে হয়, 'গণিত-দার-সংগ্রহ' একটি সক্ষলন গ্রন্থ। আধুনিক পাঠ্যপুস্তকের মত গ্রন্থটিতে আলোচনার একটি স্থশৃঞ্জল পদ্ধতি লক্ষ্য করা যায়। কয়েকটি নমুনা প্রদত্ত হলো:

1. উদাহরণ: কোন আসলের 5, 7 ও 9 মাসে স্থদাসল বথাক্রমে 50, 58 ও 60 হলে, স্থদ নির্ণয় কর।

্রি অস্কৃতির-সমাধানে 
$$\frac{a}{b} - \frac{c}{d} - \frac{a-c}{b-d}$$
 অভেদের সাহায্য গ্রহণ করা যায়  $]$ 

2. উদাহরণ: মোট 8520-কে বিভিন্ন অংশে প্রতি মাদে শতকরা 3, 5 ও 8 হারে খাটানো হলো। 5 মাদ পরে আদলগুলি থেকে তাদের স্কদ্ বাদ দিলে, আসলগুলি সমান হয়। আসল নির্ণিয় কর।

अधिकता कार्याचार प्रकाशक करानीत

$$x, y \in z$$
 আসল হলে, প্রদত্ত সর্তামুদারে,  $x+y+z=8520\cdots(1)$  এখন,  $x$ -এর  $5$  মাদের হৃদ $\frac{3}{20}x$   $y$  এর  $_n$   $_n$   $_1$   $_2$   $_3$   $_4$   $_7$   $_2$   $_4$   $_2$   $_4$   $_5$   $_5$   $_5$   $_5$  হ হ্বাং  $x-\frac{3}{20}x-y-\frac{1}{4}y-z-\frac{2}{5}z$  বা  $\frac{17}{20}x-\frac{3}{4}y-\frac{3}{5}z=k$ 

the sensite minus the fa

(1) নং সমীকরণ থেকে k-এর মান পা প্রয়া বায় 2040

$$\begin{array}{c} x=2400 \\ y=2720 \\ z=3400 \end{array}$$

3. উদাহরণ: কোন সংখ্যাকে 7 দারা ভাগ, 3 দারা গুণ এবং বর্গ করার পর 5 যোগ করে  $\frac{3}{4}$  ছারা ভাগ ও অর্থ করে বর্গমূল নিলে 5 হয় ?

এ ধরনের অঙ্কের নিয়ম 'আর্যভটীয়' গ্রন্থে দেওয়া আছে। খুব সম্ভব আর্যভটের পূর্ব থেকে এ ধরনের অঙ্ক ভারতে প্রচলিত ছিল। আর্যভটের স্থতটি:

#### গুণকারা ভাগহরা ভাগহরান্তে ভবন্তি গুণকারাঃ। যঃ ক্ষেপঃ সোহপচয়োহপচয়ঃ ক্ষেপশ্চ বিপরীতে।।

একই নিয়ম ও পদ্ধতি বর্ণনা ব্রহ্মগুপ্তের পর থেকে প্রায় সব গণিতজ্ঞরা করে গেছেন। মহাবীর কর্তৃক প্রদত্ত নিয়মটি অমুবাদ করে দেওয়া र्ला।

নিয়ম ঃ শেষ থেকে শুক করে গুণ-স্থানে ভাগ, ভাগ-স্থানে গুণ, যোগ-স্থানে বিয়োগ, বিয়োগ-স্থানে যোগ, বর্গ-স্থানে বর্গমূল করে ঈপ্সিত সংখ্যা পাওয়া যায়।

17894681 × 441 = 12345654

অঙ্কটি প্রাথমিক স্তরের, তবুও কষে দেখানো হলো।

- $(5)^2 = 25$ (1)
- (2)  $25 \times 2 = 50$
- 50×3=30 100010001=5×61153641
- (4) 30-5=25 0000000 as x 25 15 25 45 (1)
- $\sqrt{25} 5$
- (6)  $5 \div 3 = \frac{5}{3}$ (7)  $\frac{5}{3} \times 7 = \frac{35}{3} = 11\frac{2}{3}$

## $\therefore$ নির্ণেয় সংখ্যা $-11rac{2}{3}$

4. উদাহরণঃ এক ব্যক্তি বাড়ীতে কিছু আম নিয়ে এলো। জোষ্ঠ পুত্র

একটি আম নিয়ে অবশিষ্টের অর্ধেক নিল; অতঃপর কনিষ্ঠ পুত্রও তাই করল। অবশিষ্ট আম বাড়ীর অন্তান্তরা নিলে ব্যক্তিটি কতগুলি আম নিয়ে এসেছিল ?

এই অঙ্কটি অনির্ণের সমীকরণের এক চিত্তাকর্ষক দৃষ্টাস্ত। এ ধরনের অঙ্কের নির্দিষ্ট কোন উত্তর পাওয়া যায় না,—অসংখ্য উত্তর হতে পারে। '৮' আমের সংখ্যা এবং '৮' অক্যান্সরা পেয়ে থাকলে অনির্ণেয় সমীকরণটি হয়, ৮—4x+3

এখন, ত্রুএর ঐচ্ছিক মান ধরে yএর অসংখ্য মান পাওয়া যায়। যেমন, x=1, 2, 3......ধরলে y=7, 11, 15...হয়।

## ॥ माना-अनन ("Garland product")॥

নিম্নলিখিত গুণফলসমূহ লক্ষ্য করলে দেখা যায় সেগুলি যেন মালার মত সজ্জিত আছে। তাই এদের মাল্য-গুণন বা 'Garland product' বলা হয়। মজার কথা এই যে ডান দিক বা বাম দিক যে-দিক থেকেই পড়া যাক না কেন সংখ্যার অঙ্কগুলি অপরিবর্তিত থাকে। উনিশ শতকের ঘিতীয় দশকে প্রকাশিত রবার্ট মে-এর 'অঙ্ক পুস্তকং'-এ বেশ মজার এক ধরনের মাল্য-সংখ্যা দেখতে পাওয়া যায়।

- (1) 139×109=15151
- (2) 12345679×9=111, 111, 111
  - (3) 152207×73=111, 11, 111
  - (4) 27994681 × 441 12345654321
  - (5) 333333666667 × 33=11000011000011
  - (6) 14287143×7-100010001
  - (7) 142857143×7-1000000001
  - (8)  $11011011 \times 91 = 1002002001$

#### ।। একক ভগ্নাংশ।।

এই লেখকের 'গণিতের কথা ও কাহিনী'-তে মিশরীয় একক-ভগ্নাংশের সামান্য আলোচনা আছে। তাই সে-বিষয়ে এথানে আর আলোচনা করা হলো না। ভগ্নাংশের প্রসঙ্গ ঋথেদে আছে, এমন কি প্রাগৈতিহাসিক মহেঞ্জোদড়ো ও হরপ্পা সভ্যতার 'ওজন' এবং 'স্কেল' থেকে প্রমাণিত হয়েছে খ্রীষ্টপূর্ব তিন হাজার বছর পূর্বেও ভারতে ভগ্নাংশের প্রচলন ছিল। ঋগ্নেদ 'অর্থ', 'জিপাদ' প্রভৃতি শব্দ  $\frac{1}{2}$ '  $\frac{3}{4}$  স্ফচিত করে। প্রাচীন গুরুস্ত্রে পঞ্চদশ-ভাগ $=\frac{1}{15}$ , সপ্ত-ভাগ $=\frac{1}{7}$ । আবার কথনো 'ভাগ'-এর উল্লেখ না করেই ভগ্নাংশ বোঝানো হয়েছে। জি-অষ্টম $=\frac{3}{8}$ , দ্বি-সপ্তম $=\frac{2}{7}$  প্রভৃতি। বর্তমানে ভগ্নাংশ রাশি পড়ার প্রচলিত রীতি সম্পূর্ণ ভারতীয় ঐতিহ্ অন্থুদারী।

একক-ভগ্নাংশ বিষয়ে মহাবীর যে আগ্রহ দেখিয়েছেন ভেমনটি অন্ত কোন ভারতীয় গণিতজ্ঞ দেখাননি। একক-ভগ্নাংশের ভারতীয় নাম "রূপাংশক রাশি" অর্থাৎ যে রাশির লব একক।

1. 1-কে 'n'-সংখ্যক একক ভগ্নাংশে পরিণত কর।

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{n-2}} + \frac{1}{2 \cdot 3^{n-2}}$$

সূত্র ৪— একক লব বিশিষ্ট বিভিন্ন রাশির সমষ্টি 1 হলে হরগুলিকে 1 থেকে শুরু করে ক্রমাগত 3 ঘারা গুণ করতে হবে যার প্রথম ও অন্তঃহরকে যথাক্রমে 2 এবং  $\frac{2}{3}$  ঘারা গুণ করতে হবে।

মহাবীরের ভাষায় স্ত্রটি নিম্নরপ:

"রূপাংশকরাশীনাং রূপাছাস্ত্রিগুণিতা হরা ক্রমশ:। ভিত্তা ছিছিত্রংশাভ্যস্তাবাদিমচরমৌ ফলে রূপে।।"

1-কে 5টি একক ভগ্নাংশে পরিণত করতে হলে প্রথম পদ= $\frac{1}{2}$ , শেষ পদ  $-\frac{1}{2 \cdot 3^5 - \frac{1}{2}} = \frac{1}{2 \cdot 27} - \frac{1}{54}$  এবং মধ্যবতী রাশিগুলি হবে  $\frac{1}{3}$ ,  $\frac{1}{3^2}$  এবং  $\frac{1}{3^2}$ হতরাং  $1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{3^3} + \frac{1}{3^3} + \frac{1}{54}$   $= \frac{1}{3} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$ 

2. যে-কোন ভগ্নাংশকে একক ভগ্নাংশে পরিণত কর।

 $rac{p}{q}$  প্রদত্ত ভগ্নাংশ ( p < q) হলে, i এমন একটি ঐচ্ছিক রাশি যে  $rac{q+i}{p}$  একটি অথও রাশি এবং তা r-এর সমান হলে,

 $\frac{p-1}{q-r}+\frac{1}{r\cdot q}$ । পুনরায়  $\frac{1}{rq}$  রাশিতে পূর্বোক্ত পদ্ধতি প্রয়োগ করে পরবর্তী পদ পাওয়া বাবে। এভাবে পদ্ধতিটির পুনরাবৃত্তির দারা সমগ্র একক ভগ্নাংশ নির্ণয় করা যায়।

সূত্র ঃ প্রদন্ত ভগ্নাংশের হর কোন ঐচ্ছিক রাশির সঙ্গে যুক্ত করে লব 
বারা সম্পূর্ণরূপে বিভাজ্য হলে একক ভগ্নাংশের প্রথম পদ পাওয়া যায়।
ঐচ্ছিক রাশিকে পূর্বের ভাগফল ও হরের গুণফল দ্বারা ভাগ করে প্রাপ্ত
ভগ্নাংশে পূর্বোক্ত পদ্ধতি প্রয়োগ করে পরবর্তী একক-ভগ্নাংশ পাওয়া যায়।
সমগ্র একক-ভগ্নাংশটি না পাওয়া পর্যন্ত এই পদ্ধতির পুনরার্ত্তি ঘটবে।

উদাহরণ ৪ 7-কে একক ভগ্নাংশে পরিণত কর।

পূর্বোক্ত নিয়মে প্রথম পদ
$$=\frac{8+6}{7}-2\rightarrow \frac{1}{2}$$

" " বিতীয় পদ=
$$\frac{8+1}{3}$$
 —  $3 \rightarrow \frac{1}{3}$ 

" তুতীয় পদ = 
$$\frac{1}{3.8} = \frac{1}{24}$$
 াচ  $\frac{1}{8}$  কল ১ বিনালক

$$2 = 3 + \frac{7}{8} - \frac{1}{2} + \frac{1}{3} + \frac{1}{24}$$

একক ভগ্নাংশ সম্পর্কিত আরো কয়েকটি স্ত্র গণিত-নার-সংগ্রহে দেখতে পাওয়া বায়। 1-কে অযুগ্ম সংখ্যক একক ভগ্নাংশে প্রকাশ, প্রদন্ত একক ভগ্নাংশকে দ-সংখ্যক ভগ্নাংশে প্রকাশ বার লবগুলি হবে  $a_1$ ,  $a_2$ ,  $a_3$ .......... $a_r$ , কোন একক ভগ্নাংশকে ঘৃটি একক ভগ্নাংশের সমষ্টিব্ধণে প্রকাশ প্রভৃতি।

পূর্বেই উল্লেখ করা হয়েছে, মহাবীরই প্রথম ভারতীয় গণিতজ্ঞ যিনি ল. সা. গু. বা নিরুদ্ধ-এর সাহায্যে ভগ্নাংশ-প্রক্রিয়ার সংক্ষিপ্ত পদ্ধতির কথা বলেছেন। নিরুদ্ধের সংজ্ঞা: "The product of the common factors of denominators and their resulting quotients is called Niruddha."

## ॥ কয়েকটি সূত্র॥

মহাবীর চতুত্তলকের আয়তন নির্ণয়ের হুটি স্থত্ত দিয়েছেন। একটি স্থুল ও অপরটি স্ক্র। স্ত্রটি উদ্ধৃত করা হলো:

# चुकक् जिमनघन ७ पम भाग निवस् । विश्व प्राप्त विश्व । विश्व प्राप्त विश्व प्राप्त विश्व प्राप्त विश्व ।।

অর্থাৎ প্রান্তিকীর বর্গের অর্ধ করার পর ঘন করে দশ ধারা গুণ করে বর্গমূল করে নয় ধারা ভাগ করলে স্থুল আয়তন পাওয়া যাবে। আর একে তিন ধারা গুণ ও দশের বর্গমূল ধারা ভাগ করলে সক্ষম আয়তন পাওয়া যাবে।

মুভরাং স্থুল আয়তন 
$$=\frac{\sqrt{\left(\frac{a^3}{2}\right)^3.10}}{9} = \frac{\sqrt{10.a^3}}{18\sqrt{2}}$$

মুজ্ব আয়তন  $=\frac{\sqrt{10.a^3}}{18\sqrt{2}}.$ 

মুজ্ব আয়তন  $=\frac{\sqrt{10.a^3}}{18\sqrt{2}}.$ 

( এখানে  $a=$  চতুস্তলকের প্রাভিকী ]

চতুস্তলকের ন্যায় গোলকের আয়তন নির্ণয়েরও হৃটি স্ত্র গণিত-সার-সংগ্রহে দেখতে পাওয়া যায়।

> ব্যাসার্ধঘনার্ধগুণা নব গোল ব্যাবহারিকং ফলম্। তদ্দশমাংশং নবগুণমশেষসূক্ষাং ফলং ভবতি।।

অর্থাৎ ব্যাসাধের ঘন-র অর্থেককে নয় দ্বারা গুণ করলে স্থুল আয়তন পাওয়া বার এবং একে নয়-দশমাংশ দ্বারা গুণ করলে স্থন্ম আয়তন পাওয়া বায়।

স্থল আয়তন
$$-r^3$$
.  $\frac{9}{2} = \frac{3}{2}\pi r^3$  [ যেহেতু  $\pi = 3$  মহাবীরের মতে ] স্থল আয়তন $-r^3$ .  $\frac{9}{2}$ .  $\frac{9}{10} = \frac{81r^3}{20}$ 

মহাবীর π—√10 সৃদ্ধ মনে করেন বলে, সৃদ্ধ আয়তন=1°3πr<sup>3</sup> মহাবীর কর্তৃক নির্ণীত গোলকের আয়তন বর্তমানে প্রচলিত আয়তন ৡπr³এর প্রায় কাছাকাছি।

ইতিমধ্যে সমবার ও বিস্থাদের প্রাচীনত্বের রূপরেখা তুলে ধরা হয়েছে।
নি:দন্দেহে জৈন গণিতজ্ঞরা এ-বিষয়ে বেশী আগ্রহী ছিলেন,—"মেরু-প্রস্তর"
তাঁদের রচনা। কিন্তু সমবায়ের সাধারণ স্থতটির জন্ম আমরা মহাবীরের নিকট
খণী। সে-কারণে বিশ্বগণিতের ইতিহাসে তাঁর স্থান অবশ্বাই নির্দিষ্ট হবে।
সমবায়ের সাধারণ স্ত্র:

$$nCr = \frac{n(n-1)(n-2) \dots (n-r+1)}{1. 2. 3. 4......r}$$

## র মুক্তর প্রাক্তি । জ্যামিতি ।। তার বিদ্যালয় স্থানি ।

জ্যামিতিতে মহাবীরের উল্লেখযোগ্য অবদান তেমন কিছু নাই বললেই চলে। পূর্ববর্তী গণিতজ্ঞদের পথ অমুদরণ ছাড়া মহাবীর আর কিছু করেননি। উল্লেখ-ষোগা ব্যতিক্রম উপবৃত্ত প্রসঙ্গের উত্থাপন। ব্রহ্মগুপ্তের মত তিনিও বৃত্তের অন্তর্লিখিত চতুর্ভু জের ক্ষেত্রফলের স্থত্র দিয়েছেন। এবং তিনিও চতুর্ভু জটি বৃত্তের অন্তলিথিত কিনা উল্লেখ করেননি। মহাবীর পাঁচ প্রকার চতুভুজের উল্লেখ করেছেন :

- 'সম'—চারটি বাহুই সমান অর্থাৎ বর্গক্ষেত্র ও রম্বস।
- 'দ্বি-দ্বিসম'—বিপরীত বাছ্যুগল সমান অর্থাৎ আয়তক্ষেত্র ও সামস্তরিক। 2.
- "দ্বিসম'—ছটি বাহু সমান অর্থাৎ সম্বিবাছ ট্রাপিজিয়াম। 3.
- 'ত্রিসম'—তিনটি বাতু সমান অর্থাৎ তিন বাতু সমান বিশিষ্ট ট্রাপিজিয়াম। 4.
- 'বিষম'—বুতের অন্তর্লিথিত চতুভুজ।

মহাবীর ট্রাপিজিয়ামের ক্ষেত্রফলের স্থত্ত দিয়েছেন,—

$$A=\sqrt{(s-a)(s-b)(s-c)s-d}$$
  
[s—অর্ধপরিদীমা]

এবং A= 1/2 (ভূমি + সমূখীন বাহু ) × উচ্চতা। বুত্তের অন্তর্লিখিত চতুভূ জৈর ক্ষেত্রফল $-\sqrt{(s-a)(s-b)(s-c)(s-d)}$ এরপ চতুর্ভু জের ক্ষেত্রফল্ল কলং প্রুতিগুণার্ধ্য — 1 × d1 × d2 [d1, d = 46]

মহাবীর কর্তৃক প্রদত্ত বৃত্তের অন্তর্লিখিত চতুভু জের পরিব্যাদের স্ত্রটি ব্ৰহ্মগুপ্ত অপেকা স্পষ্ট।

ভিভূজের ক্ষেত্রে মহাবীরের বিস্তৃত আলোচনা আছে। তিনি ত্রিভূজকে তিন শ্রেণীতে বিভক্ত করেছেন, BATTER FRANKS & WINER TO THE

- (1) 'স্ম'—সমবাহু তিভুজ।
- (2) 'দ্বিসম'—সমন্বিবাহ ত্রিভুজ।
- (3) 'বিষম' (scalene)—বিষমবাহু ত্তিভুজ চিত্ৰ কৰিব বিষয়বাহু ত্রিভুলের ক্ষেত্রফলের ত্'রকম স্ত্রই গণিত-সার-সংগ্রহে দেখতে পাওয়া যায়।
  - $(1) \quad A = \sqrt{s(s-a)(s-b)(s-c)}$
  - (2) A=1× 写和× উ旸 [5]

が、「外世」がませる。その時 /

সমবাহ তিভুজের স্থূল স্বেত্ফল $-rac{a}{2}.a-rac{a^2}{2}$ 

এবং স্ক্র ক্ষেত্রফল—  $\frac{\sqrt{3}}{4}a^2$ 

সমদ্বিবাছ ত্রিভুজের ভূমি ও বাহু নির্ণয়ের স্ত্র থেকে জানতে পারা যায় বে, এর উচ্চতা ভূমিকে সমদিখণ্ডিত করে। তাঁর পরিব্যাদের স্ত্রটি,

মহাবীর দর্বপ্রথম ত্রিভুজে অন্তর্লিথিত বৃত্তের এবং ব্যাদের কথা বলেন। কিন্তু অস্তঃকেন্দ্রটি ত্রিভুজের কোণগুলির সমন্বিথণ্ডের উপর অবস্থিত হবে কিনা, এ-বিষয়ে কিছু জানতে পারা যায় না।

তিন বা ততোধিক সমবৃত্ত পরস্পার স্পার্শ করে যে স্থান সীমাবদ্ধ করে, তার ক্ষেত্রফল নির্ণয়ের স্থ্র গণিত-সার-সংগ্রহে দেখতে পাওয়া যায়। অবশ্র নারায়৽ পণ্ডিতও অমুদ্রপ সূত্র দিয়েছেন।



(कारक शाक्ति) एक अर्थ के किन्**ट**िक किन् d यि वृद्धत वामि इश,

তা হলে চারটি সময়ত কর্তৃক সীমাবদ্ধ স্থানের ক্ষেত্রফল $-d^3-\frac{\pi d^3}{4}$ 

আবার, ভিনটি রভের ক্ষেত্রে অহরণ সীমাবদ্ধ স্থানের ক্ষেত্রফল — ব্যাস-বাহ বিশিষ্ট সমবাহু ত্রিভুজের ক্ষেত্রফল — 🖁 🗙 (যে কোনো বুত্তের ক্ষেত্রফল)



চিত্ৰ—22

ভারতীয় গণিতে মহাবীর সর্বপ্রথম উপর্ত্তের পবিধি ও ক্ষেত্রফল নির্ণয়ের প্রয়াস পান। অবশু ভ্যামিতির এই বিশেষ দিকটিতে প্রীক গণিতজ্ঞরা বহুদ্র অগ্রসর হতে পেরেছিলেন। এ-বিষয়ে আ্যাপেলোনিয়াসের নাম সর্বাপ্রগণ্য। সেই তুলনায় মহাবীর যে খুব ক্ষতিত্বপূর্ণ কিছু করেছিলেন তা বোধ হয় না। তবে ভারতীয় গণিতে যে এ-বিষয়ে তাঁর স্থান সর্বপ্রথম, সন্দেহ নাই। যাই হোক, তিনি উপবৃত্তকে 'আয়তর্ত্ত' বলে আখ্যাত করেন। a ও b উপবৃত্তের প্রধান অক্ষ ও উপাক্ষ হলে অর্থাৎ 'আয়াম' ও 'ব্যাস' হলে,

পরিধি=
$$2\left(a+\frac{b}{2}\right)$$

এবং ক্ষেত্ৰফল — পরিষি  $\times \frac{b}{4} = \frac{1}{4}b$ .  $2(a + \frac{b}{2}) - \frac{1}{2}b(a + \frac{b}{2})$ 

কিন্তু তাঁর এই স্ত্র দুটি গুদ্ধ নয়। এ-বিষয়ে গ্রীক গণিতজ্ঞ অ্যাপোলোনিয়াদের তুলনা মেলা ভার। অধ্যাপক এম. রঙ্গাচার্য a ও b-কে অর্ধ-অক্ষ (Semi-axes) ধরে পরিধি সম্পর্কিত স্ত্রটি সংশোধন করেছেন।

পরিথি-√24b³+16a³,

আবার, e যদি উৎকেন্দ্র হয়, ভাহলে  $b^2=a^2(1-e^2)$  বসিয়ে এবং  $\sqrt{10}=\pi$ লিখে স্ত্রটির আর একটি রূপ পাওয়া যায়,—

পরিধি = 
$$2\pi a \left(1 - \frac{3}{5}e^{\alpha}\right)^{\frac{1}{2}}$$

একথা সত্য, ভারতীয় গণিতের তিন মহারথী আর্ঘভট-ব্রন্মগুপ্ত-ভাস্করের প্রতিভার সঙ্গে মহাবীরের তুলনা চলে না। কিন্তু তিনি ছিলেন নবম-দশম শতাব্দীর শ্রেষ্ঠ গণিতজ্ঞ এবং ত্-একটি ক্ষেত্রে নতুন পথের প্রবর্তক।

#### এতির বি দেশ বিক্রাণ ॥ সংযোজন ॥ উন্নারবিক্রাণর বিভিন্ন

খ্রীষ্টীয় যুগে ষে-দব জৈন ধর্মগ্রন্থ লিখিত হয়েছে, তাতে গণিত বিষয়ে আলোচনা দেখা যায়। বেশীর ভাগ গ্রন্থই মহাবীরের কাছাকাছি সময়ে রচিত হয়েছে। 'ধবলা-টীকা'-র বচয়িতা বীরদেন বাষ্ট্রকুট বংশীয় বাজা জগতুঙ্গদেবের সমসাময়িক ছিলেন। তাহলে দেখা যাচ্ছে বীরদেন মহাবীরের কিছু পূর্ববর্তী। ধবলা টীকায় গণিত বিষয়ে নানা আলোচনা দেখা যায়। গ্রন্থটি অষ্টম শতাব্দীতে লিখিত বলে অহুমান করা হয়। 'ত্রিলোক-প্রজ্ঞপ্তি' নামে আর একটি গ্রন্থ অন্তত দশম শতানীর পূর্ববর্তী বলে ধরা হয়। এই গ্রন্থের প্রথম চারটি "মহাধিকার"-এ অনেক গাণিতিক হুত্র দেখতে পাওয়া যায়,—জ্যামিতির বুত্ত, ট্রাপিজিয়াম ও চোঙ সম্পর্কিত এবং বীজগণিতে শ্রেণী সম্পর্কিত। নেমিচন্দ্রের 'ত্রিলোকসার' ও 'গোম্মভসার' গ্রন্থ তুটিতেও প্রাচীন জৈন গণিতের নানান পরিচয় রয়েছে।

বার্দেন ল-এর মান নিম্নরপ দিয়েছেন:

व्यानश (याज्यक्षिण्डः (याज्यनविष्टः विक्रमक्रीयर्जक्यः । ব্যাসং ত্রিগুণিতং সৃশ্বাদপি ভদ্ভবেৎ সৃশ্বম্।। গণিতের ভাষায়, আৰু চন্দ্ৰ কলে কলে প্ৰাণ্ড কলি কলি কলি কলি

$$\pi = \frac{16d+16}{113} + 3d$$
,  $d = 3$ ांत्र।

ড: টি.এ. সরম্বতী 16-এর উপস্থিতি অযোক্তিক বলেছেন। তিনি বলেন

16 না থাকলে 
$$\pi = \frac{355}{113}$$

#### া। দিতীয় আর্যভট ।।

আর্থভট সমস্থা আলোচনার সময় আমরা এই আর্থভটের উল্লেখ করেছি। ইনি সেই আর্থভট বিনি "বৃদ্ধ আর্থভট"-এর জ্যোতির্বিজ্ঞান সম্বন্ধীয় প্রস্থের সংস্থার করার অভিপ্রায়ে "মহাসিদ্ধান্ত" রচনা করেন। কিন্তু তাঁর উদ্দেশ্য সফল হয়নি; নতুন কিছু তিনি করতে পারেন নি। কেবল গতাহুগতিক ঐতিহ্নের অন্তুসরণ করেছেন মাত্র।

তাঁর 'মহা-সিদ্ধান্ত' বা 'আর্যসিদ্ধান্ত' বা 'আর্যভটসিদ্ধান্ত' অষ্টাদশ অধ্যায়ে বিভক্ত। প্রথম অধ্যায়ে মধ্যগতি এবং দর্বশেষ অধ্যায়ে ভারতীয় গণিতজ্ঞদের অতি প্রিয় বিষয় অনির্ণেয় সমীকরণ সম্বন্ধে আলোচনা আছে। এমন কি দ্বিতীয় আর্যভট এই সমীকরণের সংস্কার করে সমাধানের একটি সংক্ষিপ্ত পদ্ধতিরও উল্লেখ করেছেন। সে কারণে তাঁর কুট্টকাধ্যায় সার্থক হয়েছে বলা যেতে পারে। তাঁর অম্বনগতি সংক্রাপ্ত চিস্তার উল্লেখ গ্রন্থের গুরুত্ব বৃদ্ধি করেছে। আর্যভটের তায় তিনিও বর্ণমালার সাহায্যে সংখ্যা প্রকাশের এক কৌশল উদ্ভাবন করেন। অবশু তুই আর্যভটের এই পদ্ধতির মধ্যে যথেষ্ট পার্থক্য আছে।

তাঁর গ্রন্থে প্রচলিত গাণিতিক বিষয়গুলিই আলোচিত হয়েছে। পাটা-গাণিতিক প্রক্রিয়া,—প্রাথমিক চার নিয়ম, শ্নের ব্যবহার, বর্গমূল ও ঘনমূল, ভগ্নাংশ, ত্রৈরাশিক ও দ্বিঘাত সমীকরণ প্রভৃতির আলোচনা দেখা যায়।

তিনি তাঁর পূর্ববর্তী গণিতজ্ঞদের এবং শ্রীধরের ট্রাপিজিয়ামের উচ্চতা নির্ণয় বিষয়ক প্রত্যের তীব্র সমালোচনা করেন। প্রফুতপক্ষে এই সমালোচনা যথার্থ না হলেও এতে কাকতালীয়ের মতো ফল ফলেছিল। একটি কর্ণ প্রদন্ত হলে সামস্করিক ও রম্বদের দ্বিতীয় কর্ণ নির্ণয়ের প্রত্ত তিনি দিয়েছেন,—

## সমচতুরজেহর্ণসমে বাভীষ্টশ্রবণ বর্গোনাং। সর্বভুজবর্গযোগমূলং কর্ণো বিতীয়ঃ স্যাৎ।।

অর্থাৎ বাহগুলির বর্গের সমষ্টি থেকে কর্ণের বর্গ বিয়োগ করে বর্গমূল করলে বছদ ও সামস্ভবিকের দ্বিতীয় কর্ণ পাওয়া যাবে।

ABCD সামন্তবিকের (চিত্র-23) CE এবং DF উচ্চতা, এবং AC ও BD ছটি কর্ণ।

এখন, AC<sup>2</sup>=AE<sup>2</sup>+CE<sup>2</sup>=(AB+BE)<sup>2</sup>+BC<sup>2</sup>—BE<sup>2</sup> BD<sup>2</sup>=BF<sup>2</sup>+DF<sup>2</sup>=(AB-BE)<sup>2</sup>+BC<sup>2</sup>—BE<sup>2</sup>  $AC^{2}+BD^{3}=(AB+BE)^{3}+(AB-BE)^{2}+2BC^{2}-2BE^{3}$   $=2AB^{2}+2BE^{2}+2BC^{3}-2BE^{2}$   $=2AB^{3}+2BC^{2}$ 



চিত্ৰ—23

 $AC^{9}=2AB^{9}+2BC^{9}-BD^{9}$ 

বা AC=√2AB\*+2BC\*-BD\*, যথন BD=প্রথম কর্ণ।
আবার, BD\*=2AB\*+2BC\*-AC\*

বা, BD=√2AB°+2BC°-AC°, যথন AC= সপর কর্ণ।

দ্বিতীয় আর্যভট রম্বদের ক্ষেত্রফল দিয়েছেন—

প্রতিঘাতঃ সমচতুরজে অর্ধিতঃ ফলং স্থাৎ।

d1 वदः d, कर्न हत्न,

 $A=\frac{1}{3}$ ,  $d_1$ ,  $d_2$ 

্রপানে, রম্বদের কর্ণন্বয় যে পরস্পর সমকোণে ছেদ করে তার প্রমাণ রয়েছে।

## প্রবিদ্যালয় প্রসূত্র প্রসূত্র প্রসূত্র প্রসূত্র প্রসূত্র ।। শ্রীপতি ।।

শ্রীপতি দিতীয় আর্যভটের পরবর্তী গণিতজ্ঞ ও জ্যোতির্বিদ। সম্ভবত তিনি
দশম শতাব্দীর শেষ ভাগ অথবা একাদশ শতাব্দীর প্রথম ভাগে বর্তমান ছিলেন।
তাঁর পিতার নাম নাগদেব এবং পিতামহের নাম ভট্টকেশব। তিনি সম্ভবত
কাশ্মীরের অধিবাসী এবং অলবিক্রনীর ভারতজ্ঞমণের সময় জীবিত ছিলেন বলে
অন্তমিত হয়।

তাঁর রচিত মোট চারখানি গ্রন্থের নাম পাওয়া ষায়। তিনখানি জ্যোতিবিজ্ঞান বিষয়ক ও একখানি গণিত সম্পর্কিত। "ৰীকোটিকরন" গ্রন্থটি প্রথম আর্যভটের-আর্যভটীয় অবলম্বনে রচিত এবং লল্লের নির্দেশ অমুদারে সংশোধিত। এটির রচনাকাল 1039 খ্রীষ্টাক। 'ফ্রবমানস' গ্রন্থটি মুঞ্জালের 'ল্যুমানস' অবলম্বনে প্রণয়ন করা হয়েছে। এটির প্রণয়নকাল 1056 খ্রীষ্টাক। গণিতভিলকের বিষয়বস্তু গণিত। শ্রীপতির 'সিদ্ধান্তশেশর' গ্রন্থটি 1039 খ্রীষ্টান্দে প্রণীত।'' (প্রাচীন ভারতে জ্যোতির্বিজ্ঞান)। জয়োদশ শতাকীতে সিংহতিলক মুরী 'গণিত তিলক'-এর একটি ভাষ্ম রচনা করেন। শ্রীপতি গণিত-তিলকে বীজগণিত ও জ্যামিতি অস্তর্ভুক্ত করেনান।

দ্বিতীয় আর্যভট ও প্রীপতি কোন, দর্ডে ত্রিভুজ ও চতুভুঁজ অফন সম্ভব দে-সম্বন্ধে অবহিত ছিলেন। প্রীপতি তাঁর সিদ্ধান্তশেখরে এই সর্তের সরাসরি উল্লেখ করেছেন, কিন্তু তিনি ত্রিভুজের উল্লেখ করেননি।

#### চতুতু জাস্নামথিলত্ম বা স্থাদবক্রবাহোরধিকা (ৎ) ভুজাচ্চেৎ। উনস্সমো বেতরবাহুযোগো জ্বেয়ং তদক্ষেত্রমূদারধীভিঃ।।

—চতুভূ জৈর সরল বাহুগুলির সমষ্টি বৃহত্তমটির চেয়ে ছোট বা সমান হলে,
জানীরা জানেন যে এটি সীমাবদ্ধ ক্ষেত্র নয়।

দিদ্ধান্তশেখর গ্রন্থে 'ভুজ' প্রদন্ত হলে কিভাবে মূলদ সমকোণী ত্রিভুজের 'কোটি' ও 'অভিভুজ' নির্ণয় করতে হবে তার স্থাও দিয়েছেন। উক্ত গ্রন্থে বৃত্তে অন্তর্লিখিত চতুভূ জের আলোচনাও আছে।

শ্রীপতির পর আর কোন উল্লেখযোগ্য ভারতীয় গণিতজ্ঞের নাম পাওয়া যায়
না। তবে দক্ষিণ ভারতের কেরালা রাজ্যে ভাস্করের পূর্ববর্ত্তী কোন কোন
জ্যোতিবিজ্ঞানীর নাম পাওয়া যায়। কিন্তু গণিতে বা জ্যোতিবিজ্ঞানে তাঁদের
উল্লেখযোগ্য বিশেষ অবদান নাই। তবুও নি:সন্দেহে এটুকু বলা যায় ওই সময়
দক্ষিণ ভারতে জ্যোতিবিজ্ঞানের চর্চা অব্যাহত ছিল এবং তার সঙ্গে গণিতের চর্চাও
হতো।

#### একাদশ অধ্যায়

"Gentleman", he said, 'that is surely true, it is absolutely paradoxical; we cannot understand it, and we don't know what it means, but we have proved it, and therefore, we know it must be the truth."

-Kasner and Newman.

#### ॥ ভান্ধরাচার্য॥

ভারতীয় গণিতের ইতিহাদে 'ত্রুয়ী'-র অক্সতম ভাস্কর বা দ্বিতীয় ভাস্কর।
তাঁর পিতার নাম মহেশ্বর উপাধ্যায়। তিনি ছিলেন বেদবিদ ও দৈবজ্ঞ। দক্ষিণ
ভারতের সহ্থ পর্বতের পাদদেশে বিজ্ঞভ্বিড় অর্থাৎ বিজ্ঞাপুর নামক স্থানে 1114
গ্রীষ্টাব্দে ভাস্কর জন্মগ্রহণ করেন। বাল্যকালে ভাস্কর পিতার নিকট বিভাশিক্ষা
লাভ করেন। বেদজ্ঞ, শ্বৃতি ও জ্যোতিষ শাল্পে হ্বনিপুণ পিতার নিকট পাঠ গ্রহণ
ক'রে ক্রমে ভাস্কর জ্ঞানের নানান বিভাগে ক্বৃতিত্ব অর্জন করেন। কিন্তু 'লীলাবতী'
সম্পর্কে একটি উপকথা ছাড়া ভাঁর ব্যক্তি-জীবন সম্বন্ধে কিছু জ্ঞানা যায় না।

ভাস্করের অগতম শ্রেষ্ঠ কার্তি 'সিদ্ধান্ত-শিরোমণি'। আর্যভটীয়-এর খায় এটি কোন গবেষণামূলক গ্রন্থ নয়। প্রকৃতপক্ষে গ্রন্থটি পাঠাপুস্তক শ্রেণীর অস্তর্ভুক্ত হতে পারে। সিদ্ধান্ত-শিরোমণি চারটি অধ্যায়ে বিভক্ত,—লীলাবতী, বীজ-গণিত, গ্রহণগণিত ও গোলাধ্যায়। লীলাবতী অংশে পাটীগাণিতিক আলোচনা, বীজগণিতে কুট্টক, বর্গ-প্রকৃতি প্রভৃতির আলোচনা আছে। অগ্রন্থটি অধ্যায়ে জ্যোতিরিজ্ঞানের কথা আছে। গোলাধ্যায়ের একটি অংশে নিঃসর্গ প্রকৃতির বর্ণনা আছে এবং দেখানে ভাস্কর নিজেকে 'স্কৃকরি' বলে আখ্যাত করেছেন। এই প্রাকৃতিক বর্ণনার মধ্যে গতাহ্বগতিক সংস্কৃত-কাব্য-রীতির অম্বর্তন দেখা যায়; মাঝে মাঝে হ'এক জারগায় মহাকরি কালিদাসের কাব্যোৎকর্ষ শ্বরণ করিয়ে দেয়।

সবিনয়ে ভাস্কর জানিয়েছেন 'সিদ্ধান্ত-শিরোমণি' রচনায় তাঁর বিশেষ মৌলিকতা নাই। পূর্ববর্তী গণিতাচার্যদের গ্রন্থ থেকে এ-গ্রন্থের উপাদান সংগৃহীত হয়েছে এবং তাঁর ভূমিকা কেবলমাত্র সঙ্কলকের। আচার্য ভাস্করের উল্লেখ থেকেই আমরা শ্রীধর ও পদ্মনাভের বীজগণিত বিষয়ে অবগত হই। তা না হলে বীজগাণিতিক হিসাবে রাঢ়ের শ্রীধরের নামটুকুও জানতে পারতাম না, আর পদ্মনাভ তো অবলুপ্ত হয়ে গেছেন! তাঁর পরিচয়টুকু আজ ভাস্করের কুপায় আমরা পেয়েছি, কিন্তু শ্রীধরের বীজগণিত ও পদ্মনাভের গ্রন্থ অবলুপ্ত হওয়ায় ভাস্কর এঁদের কাছে কতটুকু ঋণী তার মূল্যায়ন আজ সন্তব নয়।

প্ৰবৰ্তী গণিতাচাৰ্যদের ভাস্কর সবিনয়ে শ্রন্ধা জানিয়েছেন। কিন্তু কেন যে নবম শতানীর শ্রেষ্ঠ গণিতজ্ঞ মহাবীরের নাম উল্লেখ করেননি, দে বিষয়ে কিছু বলা যায় না। গণিত-সার-সংগ্রহের অনেক অঙ্ক ভাস্কর গ্রহণ করেছেন। কিন্তু সভাসতাই অঙ্কগুলি মহাবীরের গ্রন্থ থেকে সংগৃহীত কিনা নিশ্চিত করে কিছু বলা যায় না। কারণ, আমরা ইভিমধ্যেই উল্লেখ করেছি, প্রাচীনকাল থেকে বহু অঙ্ক প্রায় অবিকল চলে আসছে। হয়তো ভাস্কর এই ঐতিহ্য অন্ত্যমরণ করে থাকবেন। তা হলেও যিনি ত্রন্ধগুও, শ্রীধর ও পদ্মনাতের গণিত বিষয়ে সম্যক অবগত ছিলেন, তিনি কিভাবে মাত্র আড়াইশ বছর পূর্ববর্তী মহাবীর বিষয়ে কিছু জানতেন না—এটি বড় আশ্রুর্জনক ঘটনা। অথচ উভয়েই দক্ষিণ ভারতের অধিবাদী ছিলেন। তবে কি মধ্যযুগে বৌদ্ধ ও জৈন ধর্মের বিক্বত অবস্থাটি তার মনঃপুত ছিল না? কিন্তু গোলাধ্যায়ের একস্থানে জৈন গণিতজ্ঞ ও জ্যোতির্বিদ লল্লের যুক্তি যে-ভাবে খণ্ডন করেছেন, ভাতে জৈন গণিত বিষয়ে তার ধারণা উচ্চ ছিল বলেই মনে হয়।

বিনয়বশত ভায়র 'নিদ্ধান্ত-শিরোমণি'-কে সক্ষলন গ্রন্থ বললেও ওই গ্রন্থের গুকুত্ব ও বৈশিষ্ট্য কিছুমাত্র ক্ষ্ম হয় না। তিনি যেভাবে সহজ্ঞ ও স্থান্তর ভাষায় জটিল গাণিতিক স্থা ও তথা স্থানিপুণভাবে ব্যাখ্যা করেছেন, তথ্যসমূহ এমন স্থানিকল্পিতভাবে বিশ্বাস করেছেন, তেমনটি আর কোথাও দেখা যায় না। তা ছাড়া গণিতে তিনি অনেক নতুন অধ্যায়ের স্ট্রনাও করেছেন এবং পূর্ববতী অনেক স্থা ও পদ্ধতির উয়তি ও সংস্কার করে গণিতে সাধারণীকরণের গুকুত্ব এনেছেন। সভাই ভাস্কর আপন প্রতিভাষ ভাস্কর।

#### ।। नौनावठी-छेशकाहिनी।।

সিদ্ধান্ত-শিরোমণির লীলাবতী অধ্যায়ের নামকরণ বিষয়ে একটি কাহিনী প্রচলিত আছে। তবে ওই-কাহিনীর কোন ঐতিহাসিক পটভূমি আছে কি না তার প্রামাণিক উৎস আমাদের জানা নাই। এরপ প্রচলিত আছে লীলাবতী ভাস্করের কন্তার নাম। ভাগ্যবিড়ম্বিত স্নেহের কন্তার নাম গ্রন্থটির সঙ্গে জড়িত করে ভাস্কর সামান্ত সান্থনা পেয়ে থাকলে তেমন আশ্চর্য হবার কিছু নাই। কাহিনীটি বিবৃত করা হলো:

ভাস্কর ছিলেন শ্রেষ্ঠ জ্যোতির্বিদ ও গণিতজ্ঞ, আবার শ্রেষ্ঠ দৈবজ্ঞও। ক্যার ঠিকুজি গণনা করে তিনি জানতে পারলেন তার বিবাহিত-জীবন অতি স্বল্প। কিন্তু উপায় কি ? তবে কি ক্যার বিবাহ দেবেন না ? অসম্ভব। সমাজে অন্চাক্যা রাথা বিধি নয়,—সামাজিকতায় কলক্ষ-স্বরূপ। এই চরম বিপদ থেকে উদ্ধার পাবার জন্ম তিনি জ্যোতিষের স্ক্ষ্ম গণনায় মনোনিবেশ করলেন। একটি পথ তিনি খুঁজে পেলেন। যদি ক্যার বিবাহ একটি নির্দিষ্ট দিনের নির্দিষ্ট মূহুর্তে দেওয়া যায়, তা হলে এই ঘোর তুর্বিপাক থেকে রক্ষা পাওয়া যাবে।

ক্রমে কন্তা বয়স্থা হয়ে উঠল, এবং যথারীতি তিনি তার বিবাহের আয়োজন করলেন। সঠিক ও যথার্থ মৃহুর্তটি জানবার জন্ত তিনি একটি যন্ত্র আবিকার করলেন। নিউটনের স্থা-ঘড়ি ও জল-ঘড়ির মত এটি একটি বালুকা-ঘড়ি। একটি পাত্রে বালুকা রেখে তার নীচে ছিন্ত দিয়ে বালুকা পড়তে দেওয়া হলো। জন্ত একটি পাত্রে বালুকা-ঘড়ি থেকে বালি জমা হতে থাকল।

সব আয়োজন সম্পূর্ণ,—ভাস্কর কর্তৃক বিধির বিধান পাল্টে দেওয়ার মত আয়োজন সম্পূর্ণ। কিন্তু তা কি সম্ভব ?

Man proposes, God disposes—বিধির বিধান খণ্ডনের কোন উপায় মান্থবের হাতে নাই। লীলাবতীর ক্ষেত্রেও দে-নিয়মের কোন ব্যতিক্রম হলো না। যবনিকার অন্তরালে বিধাতার মৃচকি হাসি কি ভাস্কর লক্ষ্য করেছিলেন ?

বিবাহের পূর্ব দিন। অসামাত্ত পিতার নির্মিত এই কাল নির্ধারণের বালুকাঘড়ি দেখার জন্ত লীলাবতী কৌতৃহলী হলো। হার! বালিকা লীলাবতী, কেন
তোমার এমন কৌতৃহল হলো? সালঙ্কারা লীলাবতী রুঁকে পড়ল কেমন করে
বালুকা-কণা ধীরে ধীরে ছিদ্রপথে বহির্গত হচ্ছে। কালপুরুষ এই স্থযোগ নিলেন।
লীলাবতীর অজ্ঞাতে খনে পড়ল কুন্ত একটি মুক্তাথগু। সঙ্গে সঙ্গে ঘড়ির
বালুকা-কণার হারিয়ে গেল। ঘড়ি আর স্ক্র সময় নির্দেশ করল না। বিবাহ
অভত মৃহুর্তেই অন্তর্গতি হলো স্বার অজ্ঞাতে। আর বিধাতাও তাঁর কার্যটি
সিদ্ধি করলেন।

লীলাবতী বিধবা হয়ে পিতৃগৃহে ফিরে এলো। তাস্করের মাথায় আকাশ ভেঙে পড়ল। হয়তো সাময়িকভাবে নিজ প্রতিভা ও গণনার প্রতি আস্থা হারিয়ে ফেলেছিলেন। কিন্তু প্রতিভাবান পুরুষেরা বিপদে কাতর হলেও আত্মহারা হন না। অন্তমান করা যায় অন্তসন্ধানে যথন সব ব্যাপার জানলেন, তথন হয়তো কপালে করাঘাত করে বলে উঠেছিলেন,—"বিধির বিধান!"

লীলাবতী নাটকের পরবর্তী দৃশ্য সম্ভবত এরকম ছিল: গণিতাচার্য ভাস্কর কন্যাকে সম্বেহে নিজের কাছে রেখে পাঠদান করেছিলেন। লীলাবতীও গণিতে যথেষ্ট পারদর্শিনী হয়ে পিতার স্থনাম অক্ষ্ম রেখেছিল।

এ-কাহিনীর কোন ঐতিহাসিক ভিত্তি আছে বলে মনে হয় না। বরং আভ্যন্তরীণ টুকরো টুকরো তথ্য থেকে মনে হয় লীলাবতী একটি কাল্পনিক নাম। এমন কি এ-নামের গ্রন্থও অপ্রতুল নয়। নেমিচন্দ্র তাঁর ব্যাকরণ গ্রন্থের নাম দিয়েছিলেন 'লীলাবভী'।

#### ॥ नौनावजीत विষয়বস্তা।।

পাটাগণিত এ-অংশের আলোচ্য বিষয় হলেও ভারতীয় রীতি ও ঐতিহ্ন অফুযায়ী জ্যামিতি,—বিশেষত সমকোণী ত্রিভুজ সংক্রান্ত সমস্তা ও কিছু কিছু পরিমিতি এখানে আলোচিত হয়েছে। পাটাগণিতের ছাত্ররা যাতে বীজ্বগাণিতিক সমাকরণের সঙ্গে পরিচিত হতে পারে সেহেত্ এখানে কুটুকের অবভারণা করা হয়েছে, তবে সংক্ষিপ্তাকারে। একঘাত অনির্ণেয় সমীকরণের আলোচনাও এই অধ্যায়ে দেখা যায়।

ভাস্কর স্বয়ং লীলাবতীর কোন বিভাগ করেন নি। কিন্তু পরবর্তীকালের ভায়কারগণ লীলাবতীর বিষয়বস্তকে তেরোটি অধ্যায়ে বিভক্ত করেছেন। অধ্যায়গুলি (1) পরিভাষা; (2) সঙ্কলিত ব্যবকলিত, বর্গ, বর্গমূল, ঘন, ঘনমূল শৃত্য-পরিকর্ম; (3) ব্যস্তবিধি, তৈরাশিক; (4) মিশ্র-ব্যবহার; (5) শ্রেড়ী-ব্যবহার; (6) ক্ষেত্র-ব্যবহার; (7) খাত-ব্যবহার; (8) চিভি; (9) ক্রচ-ব্যবহার; (10) রাশি-ব্যবহার; (11) ছায়া-ব্যবহার; (12) কুটুক, ও (13) অস্কপাশ-ব্যবহার।

#### ॥ বীজগণিতের বিভাগ ॥

বীজগণিত অংশ এগারোটি অধ্যায়ে বিভক্ত। অধ্যায়গুলি,—(1) ঘন-বিবরণ, (2) শৃত্য-বিবরণ, (3) বর্ণ বিবরণ, (4) করণী-বিবরণ, (5) কুটুক-বিবরণ, (6) বর্গ-বিবরণ (7) একর্ণ-বিবরণ, (8) মধ্যমাহরণ, (9) অনেকবর্ণ-সমীকরণ, (10) অনেকবর্ণ-মধ্যমাহরণ ও (11) ভাবিতা।

## ॥ সমবায় ও বিতাস॥

জৈন গণিতে সমবায় ও বিক্তাদ 'ৰিকল্প' নামে পরিচিত। মহাবীর সমবায়ের দাধারণ স্থা দিয়েছেন। তাস্কর লীলাবতীর 'অঙ্কপাশ-ব্যবহার' অধ্যায়ে এ-বিষয়ে আলোচনা করেছেন। তাস্করের ক্লতিত্ব এই ষে, তিনি বিষয়টির স্থাস্পষ্ট ধারণা দিয়েছেন এবং সাধারণ স্থা প্রদান করেছেন।

ভাস্কর দর্বপ্রথম r-সংখ্যক বস্তুর মধ্যে k, l, প্রভৃতি ভিন্ন প্রকার বস্তু হলে তাদের বিস্থাদ নির্ণয়ের স্থ্র দিয়েছেন—  $\frac{r!}{k!l!\dots}$ 

উদাহরণ ৪ 5টি অঙ্ক হারা গঠিত কোন সংখ্যার অঙ্ক-সমষ্টি 13, শৃ্যকে সংখ্যা হিসাবে না ধরলে কডগুলি সম্ভাব্য সংখ্যা গঠন করা যায় ?

এই অঙ্কটি সমাধানের একটি সাধারণ স্থত্ত ভাস্কর দিয়েছেন। কিন্তু কোন প্রমাণ দেননি।

যদি কোন সংখ্যার অঙ্ক-সংখ্যা n,s সমষ্টি এবং 9+n>s হলে মোট অঙ্ক-সংখ্যার স্তঞ্চি s=1 Cn=1

মুড্রাং 
$$s_{-1}C_{n-1} = \frac{(s-1) (s-2)...(s-n+1)}{(n-1)!}$$

$$= \frac{(s-1)!}{(s-n)! (n-1)!}$$

এই পত্তে উপরের অঙ্ক থেকে n ও s-এর মান বদালে উত্তরটি 495 হয়।

## ॥ ভান্ধরীয় গণিতে শূগ্য—0 ॥

গণিতে শৃত্যের উৎপত্তি, তাৎপর্য ও ব্যবহার সম্পর্কে আমরা পৃথক অধ্যায়ে আলোচনা করব। এখানে শৃত্যের তাৎপর্য ও ব্যবহার বিষয়ে ভাস্করের ধারণার সঙ্গে পরিচিত হওয়া যাক।

ব্রহ্মগুপ্ত যোগ, বিয়োগ ও গুণন প্রক্রিয়ায় শৃত্যের প্রয়োগ দেখিয়েছেন। মহাবীর শৃত্য দারা ভাগে ত্রুটিপূর্ণ সিদ্ধান্ত করেছেন। কিন্তু ভাস্কর ভূল করেন নি। কারণ, আধুনিক গণিতের অনস্ত বিষয়ে ধারণা তাঁর অনেকথানি সচ্ছ ছিল। তিনি বলেছেন কোন বাশিকে শৃত্য খারা ভাগ করলে ভাগফল অনম্ভ হয়। তাঁর প্রাদঙ্গিক স্ত্রটি এরপ:

যোগে থংক্ষেপ সমং বর্গাদৌ থং থভাজিতো রাশি:। থহর: সাং
স্বন্ধণ: খং থণ্ডণশ্চিন্ত্যশ্চ শেষবিৰোঁ। শৃত্যে গুণকে জাতে খং হারশ্চেদ্
পুনতদা রাশি। অবিকৃত এব জেয়ন্তথৈব থেনোনিতফ যুতঃ।

অর্থাৎ কোন রাশির সঙ্গে শৃত্য যোগ করলে একই থাকবে। শৃত্যের সঙ্গে গুণে শৃত্য হবে; শৃত্য বারা ভাগ অশেষ হবে। শৃত্যের বেদায় শৃত্য হলেও শৃত্য গুণনত্মণে থেকে যাবে; শৃত্য ভাজকরণে ধরলে অবিকৃত রাশি যা উহ্য আছে, তা অপরিবর্তিত থাকবে।

ভাস্কর প্রদন্ত হটি উদাহরণে  $\frac{a \times o}{b \times o} = \frac{a}{b}$  দেখা যায়। বলা বাছলা এখানে শৃত্যকে অপরিমেয় ক্ষতম হাশি হিসাবে ধারণা করা হয়েছে। আধুনিক গাণিতিক সঙ্কেতে লেখা যায়,—

$$Lt \\
\epsilon \to 0 \quad \frac{a \times \epsilon}{b \times \epsilon} = \frac{a}{b}$$

নিউটন ও লিবনিজের পাঁচল' বছর পূর্বে ভাস্করের পক্ষে অপরিমেয় কৃদ্রতম বাশির (Infinitesimal) চিহ্ন ব্যবহার করা সপ্তব ছিল না, আর তিনি তা করেন নি। কিন্তু সন্দেহ নাই তাঁর এ-সম্পর্কে ধারণা ছিল।

বীজগণিতাংশে শৃত্য ও অনস্ত বিষয়ে তাস্কর আলোচনা করেছেন।  $\infty \pm k = \infty$ —এই বিবৃতির বর্ণনায় তিনি বলেছেন বিশ্বের স্পজন-কালে সমস্ত শক্তির অধিকারী
শ্রীভগবান কোটি কোটি জীবের স্পষ্ট করেন এবং প্রালয়-কালে সমস্ত জীব তাঁর
দেহে লীন হয়। কিন্তু ভাতে সেই সর্বশক্তিমানের কিছুমাত্র পরিবর্তন হয় না।
ক্যান্টরের আটশ' বছর আগে অনস্ত বিষয়ে এ-ধারণা বিশ্বয়ের বৈকি।

#### ॥ कत्रशी॥

a,b,c ও d মূলদ রাশি হলে,  $a+\sqrt{b}$  এবং  $a+\sqrt{b}+\sqrt{c}+\sqrt{d}$ - এর বর্গমূল নির্গয়ের ব্যাখ্যা দিয়েছেন ভাস্কর, দ্বিভীয় ক্ষেত্রে সর্বদা সম্ভব নয় বলে ইন্দিভ করেছেন। এরকম একটি উদাহরণ দিয়েছেন  $10+\sqrt{32}+\sqrt{24}+\sqrt{8}$ ।

1. जेमारूत्र १ विजुर्जत वारुषस 🗸 13, र् ५ वर क्लिकन 4 रतन তার ভূমি কত ?

ভাস্কর উত্তর দিয়েছেন 4 ; অন্য একটি উত্তর 2√5 দেননি।

2. উদাহরণ : ত্রিভুজের বাহুদ্ম  $\sqrt{10}-\sqrt{5}$ ,  $\sqrt{6}$  এবং ভূমি  $\sqrt{18}-1$ হলে ভার উচ্চতা কত ? ভাস্করের উত্তর 🗸 2 – 1

## ।। কয়েকটি উদাহরণ।।

স্জনশীল বদ-দাহিত্য প্রষ্টারাই বে উচ্চ কল্পনার অধিকারী, আর কেউ নয়, এমন কথা বলা যায় না। আমাদের মনে হয়, জ্ঞানের বিভিন্ন শাথায় যাঁরা অসামাত্ত ফুতিত প্রদর্শন করেছেন, তাঁরা স্বাই বড় কাল্পনিক ছিলেন। প্রথমে একটি ভাব আদে; তাকে কল্পনার বঙে রাঙিয়ে প্রকৃষ্ট রূপ-দান করাই প্রতিভাব অন্ততম প্রধান কাজ। ভাস্কর একদিকে যেমন ছিলেন কুশাগ্রতীক্ষ্ণ বৃদ্ধিসম্পন্ন গণিতজ্ঞ ও জ্যোতির্বিদ, অন্তদিকে তেমনি ছিলেন উচ্চ কাৰ্যপ্রতিভাসম্পন্ন বুসুস্রই। লীলাবতীতে এমন কতকগুলি অঙ্ক আছে যাব কাব্যসৌন্দর্য উপেক্ষা করা যায় না। এফ. ক্যান্ধরি এই অক্তগুলি সম্পর্কে বলেছেন "pleasing poetic garb". লীলাবতী চিত্তাকর্ষক ও আনন্দজনক অঙ্কের জন্ম বিখ্যাত। মনে হয় আচার্য ভাস্কর এই সভাটি বিখাস করতেন "It is only amusing oneself that one can learn".

1. উদাহরণ: বালে মরালকুলমূল দলনিসপ্ত ভীরে বিলাস ভরমন্থরগাণয়পশাস্ कूर्वश्वाकित कलक्श कलक्श्मयुगाम् (मयर जल वनयतानकून अयाग्या।

—বালিকা! একদল রাজহংদের বর্গমূলের মু অংশ একটি দীঘির তীরে বিচরণ করছে, অবশিষ্ট ছটি জলে কেলি করছে। রাজহংসের সংখ্যা কত ? রাজহংসের সংখ্যা x হলে, সর্তাহ্নসাবে,

$$\frac{7}{2}\sqrt{x+2-x}$$

এই দ্বিঘাত সমীকরণটি সমাধান করলে x-এর অথগু মান 16 পা ওয়া বায়।

2. উদাহরণ: একগুচ্ছ পদ্মফুলের মধ্য থেকে এক-তৃতীয়াংশ, একপঞ্চমাংশ ও এক-ষঠাংশ যথাক্রমে ভগবান শিব, বিষ্ণু ও সূর্যকে অর্ঘ্য প্রদান
করা হলো এবং দেবী ভবানীর উদ্দেশ্যে এক-চতুর্থাংশ নিবেদিত হলো।
অবশিষ্ট 6টি ফুল পূজনীয় আচার্যকে প্রদান করা হলে, পদ্মফুলের সংখ্যা
কত ?

এই অফটির সমাধানে ভাস্কর 'ইষ্টকর্ম' পদ্ধতির গুরুত্ব সম্পর্কে আলোচনা করেছেন। এথানে অজ্ঞাত সংখ্যাটি x ধরে সমাধান করা হলো।

পদাফ্লের সংখ্যা x হলে, সর্ভান্থসারে,

$$x - \left(\frac{x}{3} + \frac{x}{5} + \frac{x}{6} + \frac{x}{4}\right) = 6$$

$$\frac{x}{20} - 6$$

3. উদাহরণ: এক বাঁক মক্ষিকার অর্ধের বর্গমূল এবং ৡ অংশ মালতী পুষ্প বনে মধু সংগ্রহে গেল; একটি মক্ষিকা পদ্মফুলের স্থান্ধে প্রলুব্ধ হয়ে সন্ধ্যাকালে পদ্মফুলের মধ্যে আবদ্ধ হওয়ায় মক্ষিরাণীটি সেথানে শুণগুণ করে বেড়াতে লাগল। হে ভয়ে, মক্ষিকার সংখ্যা কত ।

উত্তর—72]

4. উদাহরণ ৪ 100 (টাকার) 1 মাসের স্থদ 5 (টাকা) হলে 16 (টাকার) 12 মাসের স্থদ কভ ় স্থদ ও আসল প্রদন্ত হলে সময় নির্ণয় কর; সময় ও স্থদ প্রদন্ত হলে আসল নির্ণয় কর।

#### ञ्चन निर्गश्र ३

অন্ধটি ক্ষতে ছটি পক্ষের কথা বলা হয়েছে,—'প্রমাণ-পক্ষ' ও 'ইচ্ছা-পক্ষ'। 'প্রমাণ-পক্ষে' কোন অজ্ঞাত রাশি থাকে না, কিন্তু 'ইচ্ছা-পক্ষে' অজ্ঞাত রাশি থাকে। প্রদত্ত অন্ধটিতে,

প্রমাণ-পক্ষঃ 100 1 মাস 5 (ফল) ইচ্ছা-পক্ষঃ 16 12 মাস '0' বা x উপরোক্ত তুটি পক্ষকে নিম্নরূপ ছকে সাজানোর বীতি ছিল:

| 100 | 16 |
|-----|----|
| 1 0 | 12 |
| 5   | 0  |

প্রথম পক্ষে 5 ( ফল ), কিন্তু দিতীয় পক্ষে নাই। স্বতরাং তারা প্রতিস্থাপিত হবে:

| 100 | 16 |
|-----|----|
| 1 6 | 12 |
| 0   | 5  |

ছকটির দ্বিতীয়ার্ধের বৃহত্তম সংখ্যা $-16 \times 12 \times 5 - 960$  এবং প্রথমার্ধের অপেকারুত ক্ষুদ্রতম সংখ্যা $-100 \times 1 - 100$ 

$$\therefore \quad \sqrt[8]{7} = \frac{960}{100} - \frac{48}{5} - \left| \frac{48}{5} \right|$$

#### সময় নির্ণয়:

এখানে, প্রমাণ-পক্ষ: 100 1 মাদ 5
ইচ্ছা-পক্ষ: 16 0 বা x 48

পূর্বের মত ছকে সাজিয়ে:

| 100 | 16  |
|-----|-----|
| 1   | 0   |
| 5   | 485 |

পূৰ্বের স্থায় পক্ষান্তর ক'রে,—

| 100 | 16 |
|-----|----|
| 1   | 0  |
| 485 | 5  |

এবার হরের পরিবর্তন ক'রে,—

| 100 | 16 |
|-----|----|
| 1   | 0  |
| 48  | 55 |

প্রথমার্থের বৃহত্তর সংখ্যা—100×1×48—4800
বিতীয়ার্থের ক্ষুত্রতর সংখ্যা—16×5×5—400

$$\therefore$$
 निर्लंब नमस  $=\frac{4800}{400} = \frac{|4800|}{|400|} = 12$  मान

ত্রৈরাশিক, পঞ্চরাশিক প্রভৃতিতে ব্যবহৃত পরিভাষা ও নিয়ম সম্পর্কে অক্যত্র

বিস্তারিত আলোচনা করা হবে। এখানে ভাস্কর কর্তৃক প্রদন্ত স্ত্রটি বিবৃত করা হলো:

> পঞ্চসপ্ত নবরাশিকাদিকেৎত্যোত্য পক্ষনয়নং ফলচ্ছিদাম্। সংবিধায় বছরাশিজে বধে অল্পরাশিবধভাজিতে ফলম্।।

ভাষার্থ ৪ পঞ্চরাশিক, সপ্তরাশিক, নবরাশিক বা ততোধিক রাশির ক্ষেত্রে 'ফল' ও 'ছিদ'-কে পরস্পারের পক্ষ থেকে মধ্যে স্থাপন করে বৃহত্তর সংখ্যাকে ক্ষুত্রতর সংখ্যা স্বারা ভাগ করে ঈব্সিত ফল পাওয়া যায়।

5. উদাহরণ ঃ যদিসম ভুবি বেগুছিত্রিপাণিপ্রমাণে।
গণক পবনবেগাদেকদেশে সভগ্নঃ
ভুবিনৃপমিত হস্তেমংগলগ্নং তদ্রগ্রং
কথ্যকভিষু মূলাদেষভগ্নঃ করেষু।

অর্থাৎ সমতলে একটি 32 ( ফুট ) বাঁশ ঝড়ে তেঙে পাদদেশ থেকে 16 ( ফুট ) দুরে মাটি স্পর্শ করল। তে গণক, বাঁশটি কত উচ্চে ভেঙেছিল ?

অঙ্কটি খুবই সহজ। স্কুল গণিতের দাহাঘ্যেই কষা যায়। বলা বাছল্য, এটি সমকোণী ত্রিভূজের ধর্মের প্রয়োগ মাত্র।

#### ্রাপ্ত বিভাগ বিভাগ ।। পরিমিতি॥

গণিতের অঙ্গস্বরূপ পরিমিতির আলোচনাও ভাস্কর করেছেন। লীলাবতীর 201-তম শ্লোকটিতে বৃত্তের ক্ষেত্রফল, গোলকের পৃষ্ঠফল ও ঘনফলের স্থত্র প্রাদত্ত হয়েছে:

- (1) রভের ক্ষেত্রফল=পরিধি $\times \frac{d}{4} = \frac{\pi d^2}{4} = \pi r^2$  এখানে, d=ব্যাস ও r=ব্যাসার্ধ
- (2) গোলকের পৃষ্ঠফল=বৃত্তের ক্ষেত্রফল $\times 4 = 4 \times \pi r^2 = 4\pi r^2$
- (3) গোলকের ঘনফল=পৃষ্ঠফল $\times \frac{2r}{6} = \frac{4}{3}\pi r^3$

লীলাবতীর 217-তম শ্লোকে প্রিজম, চোঙ, পিরামিড ও শঙ্কু সম্পর্কীয় স্ত্রেও দেখতে পাওয়া যায়।

- (1) যে পিরামিডের ভূমি আয়তক্ষেত্র, তার আয়তন= $\frac{a \times b \times h}{3}$ । এথানে, a, b ও h যথাক্রমে দৈর্ঘ্য, প্রস্থ ও উচ্চতা।
  - (2) শঙ্কুর আয়তন= $\pi \frac{d^2}{4}$ .  $\frac{h}{3}$

### প্রাণাদ্ধ হয় হয় হয় । জ্যামিতি।। সাম্পর্ক বিভাগ করে করে বিভাগ

জ্যামিতিতে বৃত্ত ও গোলক বিষয়ে ভাস্করের উল্লেখযোগ্য অবদান আছে।
ত্রিভুজ, ট্রাপিজিয়াম ও চতুভুজ বিষয়ে তাঁর তেমন লক্ষণীয় অবদান নেই বললেই
চলে। তবে সমকোণী ত্রিভুজ ও সদৃশ ত্রিভুজের প্রাত্যহিক সমস্তা ও জ্যোতিবিজ্ঞানে প্রয়োগ লক্ষণীয়। ইতিমধ্যে তাঁর বৃত্তের ক্ষেত্রফল ও গোলকের পৃষ্ঠকল
ও ঘনফলের স্ত্র বিবৃত হয়েছে। আবো কয়েকটি বিষয়ের বৈশিষ্ট্যের উল্লেখ করা
যাক।

#### া ত্রিভূজ।

প্রক্ষতপক্ষে, ত্রিভুজ বিষয়ে ভাস্কর পূর্বস্থরী ব্রহ্মগুপ্ত, শ্রীধর ও মহাবীরের দিদ্ধান্তর প্রায় কোন পরিবর্তন করেননি। এমন কি, ত্রিভুজের যে পরিলিখিত বৃত্ত থাকতে পারে এ-কথা ভাস্করের অজ্ঞাত ছিল। কিন্তু তিনি সমকোণী ত্রিভুজের সাংখ্যিক সমাধানে সমকোণ সন্নিহিত একটি বাহু প্রদত্ত হলে অপর বাহুত্বয় নির্ণয়ের এক নতুন পদ্ধতি দিয়েছেন। লীলাবতীর 141-তম শ্লোক থেকে জানতে পারা যায়, a প্রদত্ত ভুজ এবং m যে-কোন ঐচ্ছিক রাশি হলে,

কোটি—
$$\frac{2am}{m^2-1}$$
, এবং কর্ণ ( অতিভুজ )— $\frac{2am^2}{m^2-1}$  –  $a$ 

ত্রিভূক্ত বিষয়ে ভাস্কর অতিভূজের উপর বর্গ উপপাত্যের সাংখ্যমানে প্রমাণ দিয়ে তাঁর প্রতিভার উল্লেখযোগ্য স্বাক্ষর রেথেছেন। 'বীজগণিত' অধ্যায়ে এ-বিষয়ে স্ত্রেটি হচ্ছে:

দোঃ কোট্য়ন্তরবর্গেণ দিছো ঘাতঃ সমস্বিতঃ। বর্গযোগসমঃ দ স্থাদ্দয়োরব্যক্তয়োর্যথা।।

হুটি বীজগাণিতিক রাশির মত ভুজ ও কোটির অস্তবের বর্গের সহিত উভয়ের গুণফলের দ্বিগুণ যুক্ত করলে উভয়ের বর্গের সমষ্টির সমান হবে। ভাস্করের কাছ থেকে আমরা স্ত্রটির ব্যাখ্যা পাইনি। : স্থন্দর ব্যাখ্যা ও উদাহরণ পাই ভাষ্যকার রুফ ও গণেশের কাছ থেকে।



ABC সমকোণী ত্রিভুজ। উপরের চিত্রের মত চারটি সমান ও সদৃশ সমকোণী ত্রিভুজের অতিভুজ বর্গের একটি বাহু হিসাবে ধরা হলো। তা হলে দেখতে পাওয়া বাচ্ছে, কেক্সে ভুজ ও কোটির অন্তরের দৈর্ঘ্য বিশিষ্ট একটি বর্গক্ষেত্র উৎপন্ন হয়েছে।

প্রত্যেক ত্রিভূজের ক্ষেত্রফল —  $\frac{1}{2}$  × ভূজ × কোটি

স্থান্তরাং চারটি ত্রিভূজের ক্ষেত্রফল — 2 × ভূজ × কোটি

স্থান্তরাং চারটি ত্রিভূজের ক্ষেত্রফল — 2 × ভূজ × কোটি

:. বৃহত্তর বর্গ=( ভুজ-কোটি) ;+2×ভুজ×কোটি =( ভুজ ) \*+( কোটি ) \*

এই প্রমাণটিকে ভারতীয় জ্যামিতিতে 'জ্যামিতিক-বীজগণিতীয়' (geometrico-algebraical) প্রমাণ হিসাবে গণ্য করা বেতে পারে।

#### ॥ ট্রাপিজিয়াম ॥

বৈদিক ও জৈন গণিতে ট্রাপিজিয়ামের উচ্চ আদন ছিল। কিন্তু জ্যোতিবিজ্ঞানের ক্রমোন্নতির সঙ্গে সঙ্গে এর আর দে-আদনটি রইল না। কিন্তু তা বলে
এ-বিষয়ে গবেষণা একেবারে পরিত্যক্ত হয়নি। যুগ যুগ ধরে ট্রাপিজিয়াম বিষয়ে
গণিতজ্ঞরা নানা সিদ্ধান্ত করে এর বিভিন্ন ধর্মের উল্লেখ করেছেন। ভাস্কর সর্ব প্রথম ট্রাপিজিয়ামের স্থনির্দিষ্ট নামকরণ করেছেন 'সমলম্বচত্তুর্ভু জ্ঞ'। আর ট্রাপিজিয়াম অক্ষনের সর্বও লীলাবতীর 185-তম শ্লোকে দেখতে পাওয়া যায়: ট্রাপিজিয়ামের একটি ভির্যক বাহু ও সম্মুখীন বাহুর সমষ্টি ক্ষুদ্রভর ভির্যক বাহু ও ভূমির সমষ্টি অপেক্ষা ক্ষুদ্রভর হবে।

#### ॥ वृख ॥

ভাস্কর কর্তৃক প্রদন্ত বুত্তের ক্ষেত্রফলের স্থাটি পূর্বে উলিখিত হয়েছে। কিন্তু বুত্তের চাপের পরিপ্রেক্ষিতে জ্যা নির্ণয়ের স্থাটি পূর্বস্থরীদের চেয়ে অনেক স্থা, যদিও স্থুল বলে ভাস্কর উল্লেখ করেছেন। বুত্তের পরিধি C, ব্যাদ d এবং চাপ ব-এর জ্যা c হলে,

$$c = \frac{4d (C-a)a}{5C^2/4 - (C-a)a}$$

#### ॥ ত্রিকোণমিতি॥

প্রাচীন ভারতীয় গণিতে ত্রিকোণমিতি পৃথক বিষয় হিসাবে অনুশীলিত হয়নি, জ্যোতির্বিজ্ঞানের প্রয়োজনেই এর উদ্ভব। জ্যোতির্বিজ্ঞান চর্চা ভারতে অভি প্রাচীনকাল থেকে চলে আদছে। বিশুক গাণিতিক চিস্তার চেয়ে এর জনপ্রিয়তা ছিল সর্বাধিক। সামতলিক ও গোলীয় ত্রিকোণমিতি আবিভূতি হলো কেবলমাত্র জ্যোতির্বিজ্ঞান চর্চার জন্ম। সাইন-ভালিকার উদ্ভব হলো গ্রহ-উপগ্রহ, নক্ষত্রাদির অবস্থান ও গতি-নির্ণয়ে সম্ভাব্য নিভূলতা আনম্বনে। আর্যভট ত্রিকোণমিতির আবিষ্কারক নন। কারণ, তাঁরও পূর্বে ক্র্য-দিদ্ধান্তে এ-বিষয়ের আলোচনা ও ব্যবহার আছে। বরাহমিহির পৌলিশ-দিদ্ধান্তে (RSin 30)², (RSin 45)² এবং (RSin 60)²-এর মান দিয়েছেন যথাক্রমে  $R^2/4$ ,  $R^2/2$  এবং  $3R^2/4$ । আর্যভট, ব্রহ্মগুপ্ত, বরাহমিহির, লাল, দ্বিতীয় আর্যভট প্রভৃতি গণিতজ্ঞদের রচনায় কিছু-না-কিছু ত্রিকোণমিতির পরিচয় পাওয়া যায়। ভাস্করের সিদ্ধান্ত-শিরোমণির গোলাধ্যায়ে নিম্নলিখিত স্ত্রগুলি দেখতে পাওয়া যায়।

- (1)  $\sin (A \pm B) \sin A \cos B \pm \cos A \sin B$
- (2) Sin  $\frac{A-B}{2} = \frac{1}{2} \sqrt{[(\sin A + \sin B)^2 + (\cos A \cos B)^3]}$
- (3) Sin 18° =  $\frac{\sqrt{5}-1}{4}$ . R
- (4) Sin  $36^{\circ} = \sqrt{\frac{5R^{\circ} \sqrt{5R^{\circ}}}{8}}$ ,  $R = 3 \cos 3$  division

#### ॥ কলন (Calculus) ।।

প্রাচীন ভারতীয় গণিতজ্ঞদের গ্রন্থগুলি পাঠ কবলে দেখা যায় যে, তাঁরা প্রায় একই বিষয়দম্বের অন্থর্তন করে কেউ কেউ পূর্বস্বীদের দিন্ধান্তের দামান্ত কিছু সংস্কার ও পরিবর্তন করেছেন মাত্র। এমন কি উত্তরস্বীরা পূর্বস্বীদের কোন কোন দিন্ধান্তের কঠোর সমালোচনাও করেছেন। যেমন, আর্যভটের ভ্-ভ্রমণবাদ উত্তরস্বীদের হারা তীব্র সমালোচিত হয়। হিতীয় আর্যভট ও ভাস্কর, ব্রন্ধগুণ্ড কর্তৃক আবিষ্কৃত রুদ্ধে অন্তর্গিথিত চতুভু জি বিষয়েও সমালোচনা করেন। কিন্তু ব্রন্ধপ্রপ্রের 'প্রক্ষেপতত্ত্ব' কারো দৃষ্টি আকর্ষণ করেন। তেমনি ভাস্করের অন্তর্ককান সম্পর্কীয় ধারণাটিও অন্তর্কেই বিনষ্ট হয়েছে। মধ্যযুগের গণিতজ্বা গণিতে সন্দেক উচ্চতের গবেষণা করে নিউটন, লিবনিন্ধ, গাউদ প্রভৃতির পূর্বস্বীরূপে সম্মানিত হবার অধিকারী বটে, কিন্তু তাঁরাও ব্রন্ধগুণ্ড ও ভাস্করের ছটিনতুন তত্বের প্রতি কেন উদাসীন ছিলেন, তার কারণ নির্ণয় প্রায় অসম্ভব। গ্রীক গণিতে সমাকলনের ধারণা দেখতে পাওয়া যায়। ভাস্করও একই পদ্ধতিতে গোলকের ক্ষেত্রফল ও ঘনফল নির্ণয় করেন।

কিন্তু ভাস্করের বিশায়কর গাণিতিক প্রতিভার একটি নিদর্শন অন্তর কলন
( Differential Calculas)-এর শ্বরূপ আবিষ্কার। এই ধারণাটির জন্ম
বিশাগণিতে তাঁর পথিকুং-এর সম্মান পাওয়া উচিত। গ্রহের প্রাত্যহিক গতি
নিধারণের জন্ম তিনি 'তৎকালিকা' পদ্ধতি প্রয়োগ করেছেন,—দিনকে অতি
ক্রুসংখ্যা মৃহুর্তে ভাগ করে প্রতি ঘৃটি মৃহুর্তে গ্রহাবস্থানের তুলনা করেছেন।
'তৎকালিক' গতি বলতে বোঝায় সেই মৃহুর্তের গতি।

এ-বিষয়ে সাইন অপেক্ষকের অন্তর-কলন সম্পর্কে তিনি সম্পূর্ণ অবহিত ছিলেন বলে মনে করা হয়। তাঁর স্বত্তিঃ

विवार्षण काणि जालन जिजाहत: कनः कार्यास्त्राखार।

আধুনিক অন্তর-কলনের ভাষায়:---

 $d(\sin\theta) = \cos d\theta$ 

Limit বা দীমা ছাড়া অন্তর-কলনের উন্নতি দম্ভব নয়। অথচ এই ধারণাটি
নিউটন ও লিবনিজের পরবর্তীকালের। নিউটনের পাঁচণ বছর আগে অন্তর-কলনের ধারণা যে বিশ্বের কোন গণিতজ্ঞের মনে স্থান পেতে পারে, এ-কথা
দে-যুগের পরিপ্রেক্ষিতে ভাবলে স্তম্ভিত হতে হয়। অবশ্য গ্রীক গণিতে যে এ-ধারণা ছিল না, তা নয়। কিন্তু ভাস্করের ধারণা যেন আরো প্রাই,—আরো পরিচ্ছন।

### ॥ সিদ্ধান্ত-শিরোমণির জনপ্রিয়তা॥

বন্ধ-ক্ট-সিদ্ধান্তের পর আর যদি কোন ভারতীয় গণিতগ্রন্থ বিশেষ জনপ্রিয়তা লাভ করে থাকে, তাহলে সিদ্ধান্ত-শিরোমণির নাম করতে হয় সর্বাগ্রে। বিভিন্ন সময়ে লিখিত গ্রন্থাটির বহু পাণ্ড্লিপি ভারতে সর্বত্র আবিষ্কৃত হয়েছে এবং গ্রন্থাটির বিভিন্ন অংশের ভাষ্ম রচনাও বহু হয়েছে। আরুল ফজল লীলাবতী অংশের পার্শী ভাষায় অহুবাদ করেন এবং বীজ্গণিত অংশের অহুবাদ করেন উত্তা-উল্লা রুশহুদি।

## সংযোজন

## া নারায়ণ পগুত ।।

প্রখ্যাত ও অন্নখ্যাত গণিতজ্ঞ ও জ্যোতির্বিজ্ঞানী হিদাবে অস্তত সাত-আটজন নারায়ণ পাওয়া যায়। আর্যভট সমস্তার মত এ-সমস্তা অত জটিল না হলেও বিভ্রান্তিকর। এঁদের মধ্যে নারায়ণ পণ্ডিতের গাণিতিক প্রতিভা উপেক্ষণীয় নয়।

নারায়ণ পণ্ডিতের পিতার নাম বুসিংহ দৈবজ্ঞ। চতুর্দশ শতাব্দীতে ফিরোজ শাহের (1351-88 খ্রীঃ) রাজত্বকালে ইনি বর্তমান ছিলেন। পাটীগণিত ও বীজগণিত বিষয়ে এঁর ছটি গ্রন্থ আছে,—'গণিত কৌমুদী' এবং 'বীজগণিতা-বতংশ'। পূর্বস্থরী ভাস্কর কর্তৃক ইনি যে বহুল পরিমাণে প্রভাবিত হয়েছিলেন দে বিষয়ে সন্দেহ নাই। কারণ, এঁকে সঠিকভাবে আর্যভটীয়-গোপ্তীর অন্তর্ভু ক্তি করা যায় না। 'গণিত কৌমুদী' গ্রন্থে তাঁর যুগের গণিত বিষয়ক জ্ঞানের বিস্তৃত ও পূর্ণ আলোচনা আছে। বীজগণিত গ্রন্থটি তাঁর প্রতিভার সাক্ষ্য বহন করে। এটি ছটি অংশে বিভক্ত। প্রথম ভাগে চিহ্ন-স্ত্রে, পাটীগণিতে শৃত্যের ব্যবহার, অজ্ঞাত রাশির প্রক্রিয়া, করণী, চূর্ণন, বর্গ-প্রকৃতি, চক্রবাল-পদ্ধতির আলোচনা আছে। দ্বিতীয় ভাগে সবল সমীকরণ প্রভৃতির আলোচনা দেখা যায়। ত্ব'একটি ক্ষেত্র ছাড়া সর্বত্রই তিনি পূর্বস্থীদের অন্তর্থন করেছেন।

শ্রেণী বিষয়ক আলোচনায় তাঁর বৈশিষ্ট্যের ছাপ দেখা যায় না। এমন কি

স-এর মান নির্ণয়ের ক্ষেত্রে তাঁর ব্যর্থতা বিশ্বিত করে।

নারায়ণ সংখ্যার বর্গ নির্ণয়ের নিম্নরূপ স্থা দিয়েছেন :  $A^2 = (a+b)^2 = (a-b)^2 + 4ab$ 

#### ্রিলিক জান্তা । **শূক্ত —**0। লাভিক্র জান্তার

terms the whole was also bear

নারায়ণ শৃত্যের তাৎপর্য ও তার প্রক্রিয়ায় সম্পূর্ণ অবহিত ছিলেন। 'গণিত কৌম্দী'-তে তিনি বলেছেন, ষেহেতু পাটীগণিতে শৃগ্য ছারা ভাগ স্বীক্ষত নয়, সেহেতু তিনি এখানে আলোচনা করছেন না। বীজগণিতে শৃগ্য ছারা ভাগের প্রয়োগ আছে বলে তিনি বীজগণিতে এ-সম্পর্কে আলোচনা করেন।

গুণের যাথার্থ নির্ণয়ের স্ত্র দিয়েছেন নারায়ণ। কোন গুণফলের সত্যতা নির্ণয়ে তাঁর নিয়মটি খুব কার্যকরী। চার নিয়মের যাথার্থ নির্ণয় বিষয়ে এই লেখকের 'গণিতের কথা ও কাহিনী'-তে উদাহরণসহ আলোচনা আছে।

বৃত্তে অন্তলিখিত ছটি উপপাতে তাঁর উল্লেখযোগ্য অবদান আছে। কিন্তু এ-বিষয়ে আলোচনার আগে ত্রিভুজ ও ট্রাপিজিয়াম সম্বন্ধে ত্'একটি কথা বলা দরকার। নারায়ণ পূর্বস্থবীদের ত্রিভুজ বিষয়ক সব গবেষণাই লিপিবদ্ধ করেছেন, তবে আবো বিস্তৃতভাবে। ত্রিভুজের ক্ষেত্রফল নির্ণয়ের একটি নতুন স্ত্র উল্লেখ করা হলো;

#### চত্রাহহদয়হতং ত্রিভুজভুজানাং বরং গণিতম্

— ত্রিভুজের বাহুত্ররের গুণফলকে পরিব্যাসাধের চতুগুণ ছারা ভাগ করলে ক্ষেত্রফল পাওয়া যায়।

মতবাং, 
$$A=\frac{a}{2}$$
, উচ্চতা $=\frac{a}{2}$ .  $\frac{bc}{2r}-\frac{abc}{4r}$ 

গোলকের ঘনফল=পৃষ্ঠতলের ক্ষেত্রফল 
$$imes rac{ ext{diff}}{6} = rac{4.3 \cdot r^3}{3} = rac{4\pi r^3}{3}$$

[ atten = 3]

DO DI -BE TO - CHI'DE

নারায়ণ প্রথম শ্রেণীর গণিতজ্ঞের সম্মান না পেলেও অস্তত বুত্তে অন্তর্লিথিত চতুভূজির উপপাত্তের উন্নতিসাধনে তাঁর এমন হু'একটি আবিষ্কার আছে যার মূলা অপরিসীম। এ-বিষয়ে তিনি ব্রহ্মগুপ্তের চেয়েও কয়েক পদ অর্থাসর হতে পেরেছেন, এটা কম গৌরবের নয়। তাঁর 'কর্ণক্রয়' উপপাতটি হলো:

# সর্বচতুর্বাহনাং মুখস্ম পরিবর্তনে যদা বিহিতে। কর্ণস্তদা তৃতীয়ঃ পর ইতি কর্ণত্রয়ং ভবতি।।

—কোন চতুভূ জ ক্ষেত্রের উপর ও পার্শ্বের বাছ পরস্পর বিনিময় করে তৃতীয় কর্ণ পাওয়া যায়। স্থতরাং কর্ণ তিনটি।

কর্ণজন্মীর সাহায্যে বৃত্তে মস্তলিখিত চতুভূজের ক্ষেত্রফল নির্ণয়ের প্রেটি কাঁর একটি নতুন আবিষ্কার।

#### ष्ट्रिश्वनद्यात्र विভट्क जिक्ष्वाट्डाश्यवा श्राविष्

—কর্ণত্রয়ীর গুণফলকে পরিব্যাদের দ্বিগুণ দ্বারা ভাগ করলে ক্ষেত্রফল পাওয়া যায়।



हिंद**—25** 

চতুভূ জৈর ক্ষেত্রকল্
$$= \triangle ACD + \triangle ACB$$

$$= \frac{AC. \ AD. \ CD}{4r} + \frac{AC. \ BC. \ AB}{4r}$$

$$= \frac{AC}{4r} \left[ \ BC'. \ AD + DC'. \ AB \right]$$

[ এখানে r-পরিব্যাদার্ধ ]

[ এখানে, C'= শীর্ষবিন্দু, DC এবং BC প্রস্পার বিনিময় ছারা ] টলেমীর উপপাত্ত অন্তুলারে,

BC'. AD+DC'. AB=AC'. BD

্ৰ.চতুত্ব 
$$ABCD = \frac{AC}{4r}(AC'.BD)$$

$$= \frac{AC.AC'.BD}{2d}$$

নারায়ণ পরিব্যাদার্ধের স্থত্ত দিয়েছেন.—





চিত্ৰ—26

বিভূষ 
$$ADB$$
 থেকে,  $r = \frac{AD. BD}{2p_1}$ 

এবং ত্রিভূজ ACB থেকে,  $r = \frac{AC. BC}{2p_2}$ 

$$\therefore r_{4}^{2} = \frac{AD. BD. AC. BC}{4p_{1}p_{2}}$$

আবার, চতুভূ জের ক্ষেত্রফলের পরিপ্রেক্ষিতে পরিব্যাসার্ধের একটি স্থত্র পাওয়া যায়:

### ।। দ্বাদশ অধ্যায় ॥

THE TOP IN THE HERE WAS A THE

"The early history of the mind of men with regard to mathematics leads us to point out our own errors; and in this respect it is well to pay attention to the history of mathematics."

—De Morgan

### ॥ ভাষ্যকার-পরিচয় ॥

থ্রীষ্টীয় পঞ্চম শতাব্দী থেকে বাদশ শতাব্দী পর্যন্ত ভারতীয় গণিতের স্বর্ণ-মুগ। ইউরোপে এই সময়টি ছিল গাণিতিক অবক্ষয়ের মুগ। আর্যভট, ব্রহ্মগুপু, শ্রীধর, মহাৰীর ও ভাশ্বরের সঙ্গে তুলনীয় এমন গণিতজ্ঞ ইউরোপের গণিতের ইতিহাসে দেখতে পাওয়া যায় না। কিন্তু পঞ্চদশ শতাব্দীর পর যেথানে ইউরোপে গাণিতিক আবিষ্কারের বতা বয়ে গেছে, দেখানে ভারতে দেখা গেছে চরম ছদিন। দক্ষিণ ভারতের কয়েকজন গণিতজ্ঞের কিছু আবিষ্কার ছাড়া সারা ভারতে যেন গণিত-চর্চা হয়নি বললেই চলে। কেন এরপ অবক্ষয় হলো, তার চুটি কারণ নির্দেশ করা ষেতে পারে: (1) মধাযুগ বিশ্ব-ইতিহাদে অন্ধকারময় যুগ বলে কথিত। মনে হয়, এই যুগ-বৈশিষ্টোর অনিবার্য ফলশ্রুতি হিদাবে ভারতীয় গণিতের অবক্ষয় | ইউরোপ এই যুগ-বৈশিষ্ট্যের কবলে পড়েছিল। কিন্তু রেসেশার প্রেরণায় নতুন উদ্দীপনা ও চেতনা পেয়ে অন্ধকার থেকে আলোয় আসতে পেরেছিল। ভারত পারেনি। পারেনি,—কারণ (2) দশম শতাব্দীর পর মুসলমান-মাক্রমণে এ-দেশের সামাজিক, রাজনৈতিক, অর্থনৈতিক ইত্যাদি সকল বিষয়েরই স্থিতিশীলতা সম্পূর্ণ বিনষ্ট হয়ে গিয়েছিল। ভারতীয় মনীযা প্রধানত রক্ষণাত্মক দৃষ্টিভঙ্গি লাভ করায় নব নব স্পষ্টির অন্ত্রুল পরিবেশ পান্ননি। উত্তরভারত অপেক্ষা দক্ষিণভাৱত অপেক্ষাকৃত নিকপদ্ৰৰ অঞ্চল বলে চতুৰ্দশ-পঞ্চদশ-বোড়শ শতাকীতে শেখানে গণিত-চর্চার কেন্দ্র গড়ে উঠেছিল।

ভারতীয় গণিতে দক্ষিণ ভারতের অবদান কম নয়। প্রথম ভাস্কর, মহাবীর,

ভাস্কর প্রভৃতি অতি উচ্চপ্রেণীর গণিতজ্ঞদের জন্মস্থান দক্ষিণ ভারতে। আর্যভটের দক্ষিণ ভারতে জন্ম নিয়ে বির্তক আছে। আর আধুনিক যুগের বিশুদ্ধ গণিতের এক বিশ্বয়কর প্রতিভা রামান্থজমের জন্মস্থান দক্ষিণ ভারতেই। জল, বায়ু, মাটি ও ওই অঞ্চলের মানদিক প্রবণতা খুব দন্তব গাণিতিক প্রতিভা বিকাশের অনুকূলে। বাংলার মাটি যেমন কাব্যপ্রতিভা বিকাশের অনুকূল, পাঞ্জাব যেমন কাব্যপ্রতিভা বিকাশের অনুকূল, পাঞ্জাব যেমন কাব্যপ্রতিভা বিকাশের অনুকূল, বিকাশের অনুকূল, তারভারক্ষ তীর্থজ্ঞীও তার আর এক উজ্জ্লল দৃষ্টান্ত।

গাণিতিক প্রতিভার বিকাশ ও বৈশিষ্ট্যে কোন আঞ্চলিক তথা ভৌগলিক পরিবেশের প্রভাব আছে কি না, এ-সম্পর্কে বিতর্ক আছে। গণিতজ্ঞ ও মনোবিদরাও এ-বিষয়ে নিশ্চিত করে কিছু বলতে পারেন না। তবে প্রখ্যাত জার্মান গণিতজ্ঞ ফেলিক্স ক্লেইন (Felix Klein) গাণিতিক প্রতিভার বৈশিষ্ট্য সম্পর্কে একটি স্থন্দর মন্তব্য করেছেন। তিনি বলেন,—"It would seem as if a strong naive space intuition were an attribute of the Teutonic raze, while the critical, purely logical sense is more developed in the Latin and Hebrew races."

### ॥ शृशूक्कश्रामी ॥

endergrading (6) established (7) The grade extension (6) experiences with

প্রধানত ভায়কার হিদাবে এঁর খ্যাতি। ইনি নবম শতাকার দ্বিতীয়ার্থে বর্তমান ছিলেন। পিতার নাম মধুস্থান প্রভিট্ট। ইনি ব্রহ্মগুপ্তের বিখ্যাত ভায়কার। ব্রহ্ম-ফুট-সিদ্ধান্ত ও খণ্ডখাতকের উপর এঁর ভায়ই প্রামাণিক গ্রন্থ হিদাবে ধরা হয়। আর্যভটের ভূ-ভ্রমণবাদ সমর্থন করে ইনি মৌলিক প্রতিভার পরিচয় দিয়েছেন। এমন কি, তাঁর ভায়ে যে-সব উদাহরণ দেখতে পাওয়া যায়, তার অনেকগুলি তাঁর নিজন্ম বলে মনে করা হয়। বিখ্যাত গণিতজ্ঞ প্রীপতির গ্রন্থে পৃথুদক্ষামীর উল্লেখ আছে। এ থেকে অন্তমিত হয়, তিনি শ্রীপতির পূর্বে বর্তমান ছিলেন।

পঞ্চদশ ও বোড়শ শতাকী এই ত্'ল বছর ধরে ভারতীয় গণিতজ্ঞরা প্রধানত ভাষ্যরচনায় ব্যাপৃত ছিলেন। তবে তারই মধ্যে যে কোন মৌলিক আবিষ্কার হয়নি, একথা বলা যায় না। যথাস্থানে আমরা আধুনিক উচ্চতর গণিতের কয়েকটি আবিষ্কারের পূর্বাভাগ দেবার চেষ্টা করব।

### ।। পর্মেশ্বর।।

চতুর্দশ-পঞ্চদশ শতাব্দীর শ্রেষ্ঠ ভাষ্মকার পরমেশ্ব। ইনি থুব সম্ভব 1360 এটাবে কেরালার দক্ষিণ মালাবারের 'আলভুর' গ্রামে জন্মগ্রহণ করেন। তাঁর গোত্তের নাম ছিল ভৃগু। তাঁর ব্যক্তি-জীবনের কিছু পরিচয় পাওয়া ষায় না। তাঁর গুরুর নাম ক্রন্দ। নারায়প ও মাধব নামে আরো ছ'জন গুরুর নাম জানতে পারা যায়।

পরমেশ্বর প্রায় 30 খানি গ্রন্থের রচয়িতা। তাঁর মৌলিক রচনার যেমন অভাব নাই, তেমনি আর্যভট, প্রথম তাস্কর ও ভাস্করের উপর মূল্যবান ভাষ্ম-গ্রন্থেও অভাব নাই। জ্যোতির্বিজ্ঞানে 'দৃক'-পদ্ধতি আবিদ্ধারে তাঁর মৌলিক প্রতিভার পরিচয় পাওয়া যায়। পর্যবেক্ষণ ও গণনার মধ্যে সামঞ্জক্ত বিধানের উদ্দেশ্যে এই পদ্ধতির উদ্ভব। অবশ্য 'পরহিত'-পদ্ধতির সংস্কাবের মধ্যে এই পদ্ধতির স্ত্রে নিহিত আছে। 55 বছর ধরে অনলদ পর্যবেক্ষণ ও গরেষণা ক'রে তিনি এই পদ্ধতি 1431 খ্রীষ্টান্দে লোকগোচরে আনেন। নিমে তাঁর কয়েকটি গ্রন্থের নাম দেওয়া হলো:

(1) দৃপ্গণিত, (2) গোলদীপিকা, (3) গ্রহণমণ্ডণ, (4) ভটদীপিকা, (5) লঘুভান্ধরীয়, (6) কর্মদীপিকা, (7) সিদ্ধান্ত-দীপিকা (8) লঘুমানদের ভাষ্য, বিবরণ প্রভৃতি।

পরমেশবের গাণিতিক ও জ্যোতিবৈজ্ঞানিক প্রতিভার প্রকৃত উত্তরাধিকারী হয়ে উঠেছিলেন তাঁর পুত্র দামোদর। তাঁর দম্বন্ধে বিশেষ কিছু জানা যায় না। প্রিয় শিশু নীলকণ্ঠের লেখা থেকে জানা যায় গণিত ও জ্যোতিবিজ্ঞানে তাঁর ব্যুৎপত্তি ছিল। তাঁর লেখার কিছু কিছু উদ্ধৃতি কেবল নীলকণ্ঠের গ্রন্থে পাওয়া যায়।

## नीनकर्थ (नामञ्जाको ( अथम नीनकर्थ )

শৈব নীলকণ্ঠ কেরালার শ্রীকৃণ্ডপুর বা শ্রীকৃণ্ডগ্রামের অধিবাদী ছিলেন। তাঁর 'সিদ্ধান্তদর্পণ' গ্রন্থ থেকে জানা যায় তিনি 1443 খ্রীষ্টাম্বে জন্মগ্রহণ করেছিলেন। দীর্ঘদিন প্রায় শতবর্ষ পর্যন্ত জীবিত ছিলেন। নীলকণ্ঠের পদবী সোময়াজী, সোমস্বৃত্ব, সোমস্বৃত্বন প্রভৃতি। তিনি ছিলেন গার্গ-গোত্রীয় ভট্ট ব্রাহ্মণ। পিতাক

নাম জাতবেদ, খুল্লতাতের নামও তাই। কনিষ্ঠ ল্রাতার নাম শঙ্কর। তাঁর দ্বীর নাম আর্যা এবং রাম ও দক্ষিণামূর্তি নামে তাঁর হুটি পুত্র ছিল। কনিষ্ঠ পুত্র বহু শাস্ত্রে অপণ্ডিত ছিলেন। আর্যভটীয় ভায়ের বহু স্থানে তিনি কনিষ্ঠ ল্রাতা শক্ষরের উল্লেখ করেছেন। নেতৃনারায়ণ ছিলেন নীলকণ্ঠের প্রধান পৃষ্ঠপোষক। এমন কি আর্যভটীয় ভায় রচনার প্রেরণা তিনি তাঁর কাছ থেকেই পেয়েছিলেন। নেতৃনারায়ণ ও তাঁর পরিবারের কেরালার ইতিহাদে প্রদিদ্ধি আছে। বিদান ও বিশ্বোৎসাহী হিসাবে এই পরিবার বিখ্যাত।

নীলকণ্ঠের প্রথম গুরু রবি। তাঁর কাছে তিনি বেদান্ত ও প্রাথমিক জ্যোতি-র্বিজ্ঞানের পাঠ নেন। কিন্তু প্রকৃত জ্যোতির্বিজ্ঞান শিক্ষা করেন দৃগ্,গণিতের আবিষ্কারক পরমেশ্বের পুত্র দামোদরের কাছে। এমন কি ছোটবেলায় গুরুগৃহে তিনি গুরুর গুরু পরমেশ্বের কাছেও সামান্ত পাঠ গ্রহণ করার সৌভাগ্য লাভ করেন।

শুধু গণিত ও জ্যোতিবিজ্ঞান নয়, জ্ঞানের বিভিন্ন শাথায় তাঁর অসাধারণ বৃৎপত্তি ছিল। দে কারণে তাঁকে ভারতীয় দর্শন ও সংস্কৃতির ক্ষেত্রে "ষড়-দর্শনী-পারলত" বলে আথ্যাত করা হয়েছে। মীমাংসা, ছল্পুত্ত, ব্যাকরণ, অভিধান, পুরাণ প্রভৃতি গ্রন্থ থেকে উদ্ধৃতি তাঁর রচনায় আছে। বেদাঙ্গ-জ্যোতিষ থেকে শুক্ করে আর্যভাটীয়, পঞ্চদিদ্ধান্তিকা, বৃহজ্ঞাতক, বৃহৎসংহিতা, স্র্যদিদ্ধান্ত, সিদ্ধান্ত-শেথর, লঘুমানস প্রভৃতি গ্রন্থের সঙ্গে তাঁর ঘনিষ্ট পরিচয় ছিল। গোবিন্দেয়ামিন, পরমেশ্বর, দামোদর, মাধব প্রভৃতির গ্রন্থ থেকে উদ্ধৃতিসমূহ নিঃসল্লেহে প্রমাণ করে নীলকণ্ঠ ছিলেন অসাধারণ জ্ঞানের অধিকারী।

নীলকণ্ঠ রচিত সব প্রস্থের আবিষ্কার এখনো সম্ভব হয়নি। এখানে কয়েকটির উল্লেখ করা হলো: (1) গোলসার, (2) সিদ্ধান্তদর্পণ, (3) ছায়াগণিত, (4) তন্ত্রসার সংগ্রহ, (5) মহাভায় ( আর্যভটীয়-ভায় ), (6) গ্রহণ নির্বয়, (7) গ্রহণাদিগ্রন্থ প্রভৃতি।

নীলকণ্ঠ আর্যভটীয়-ভাষ্যের নাম দিয়েছেন মহাভাষ্য। সত্যই এটিকে মহাভাষ্য বলাই যুক্তিযুক্ত। কারণ, জটিল ও তুর্বাহ আর্যভটীয় প্রস্থের এমন বিস্তৃত ব্যাখ্যা বোধ হয় আর নাই। উদাহরণস্বরূপ আর্যভট পরিধি ও ব্যাদের অনুপাতটি কেন 'আসন্ন' বলে অভিহিত করেছিলেন তার ব্যাখ্যা প্রসঙ্গে নীলকণ্ঠ বলছেন: "প্রকৃত মানের পরিবর্তে কেন এখানে আসন্ন মান দেওয়া হয়েছে? আমি ব্যাখ্যা করব। কারণ প্রকৃত মান দেওয়া যাবে না। যে-মানে ব্যাস

পরিমাপ করলে ভাগশেষ থাকে না, সে-মানে পরিধি পরিমাপ করলে নিশ্চিত ভাগশেষ থাকে। একইভাবে যে-এককে পরিধি পরিমাপ করলে ভাগশেষ থাকে না, সে-এককে ব্যাস পরিমাপ করলে আবার ভাগশেষ থাকে। প্রক্রিয়াটির বার বার সম্পাদনে আমরা ক্ষুত্তম ভাগশেষ পেতে পারি বটে, কিন্ত ভাগশেষহীন হবে না। ইতি ভাবঃ।"

আর্থভট বৃত্তের ক্ষেত্রফলের স্ত্র দিয়েছেন  $\frac{1}{2}$ . পরিধি,  $\frac{\sinh 7}{2}$ । কিন্তু কিভাবে আর্থভট এই দিদ্ধান্তে এলেন তার বিস্তৃত ব্যাখ্যা পাওয়া যায় নীলকণ্ঠের ভাষ্টে।



উপরের চিত্রের মত একটি বৃত্তকে বহু স্চ্যুকারক্ষেত্রে বিভক্ত করা যেতে পারে। এই স্চ্যুকারক্ষেত্রের সংখ্যা যতই বৃদ্ধি করা হবে, ততই ত্রিভুজসমূহের ভূমি সরলরেখায় পরিণত হবে। এখন, এরূপ ক্ষুদ্র ঘূটি স্চীকে পরস্পর উপ্টো ভাবে স্থাপন করলে একটি আয়তক্ষেত্র উৎপন্ন হবে যার একটি বাহু বৃত্তের ব্যাসার্থের সমান হবে, আর স্টীর ভূমি হবে অন্য একটি বাহু। এভাবে বৃত্তিকৈ কতকগুলি ক্ষুদ্র ক্ষুদ্র আয়তক্ষেত্রের সমষ্টিরূপে গণ্য করা যেতে পারে। এভাবে একটি মাত্র আয়তক্ষেত্র গঠিত হবে যার একটি বাহু বৃত্তের অর্ধ-পরিদীমা এবং অন্য বাহুটি বৃত্তের ব্যাসার্ধ। এই যুক্তির দ্বারা বৃত্তের ক্ষেত্র্যেল স্ত্র হয়—

রু পরিদীমা × রু ব্যাস।

## ॥ কয়েকটি পরিবারের কথা।।

চতুর্দশ শতানীর আর হ'জন ভাষ্মকার হচ্ছেন গদাধর ও ভদীয় ভ্রাতা বিষ্ণু। এঁরা ছিলেন গুজরাটের অধিবাদী। গদাধর ভাস্করের লীলাবতী ও বীজগণিতের ভাষ্য রচনা করেন এবং বিষ্ণৃ শ্রীধরের গণিতের ন্যায় 'গণিত-সার' রচনা করেন। এই গ্রন্থে ত্রিশতিকার অনেক উদ্ধৃতি দেখতে পাওয়া যায়।

ষোড়শ শতান্দীতে উত্তর, পশ্চিম ও মধ্যভারতে গণিত ও জ্যোতির্বিজ্ঞান-চর্চার কেন্দ্ররূপে কয়েকটি আন্ধান পরিবারের উল্লেখ পাওয়া যায়। এঁবা প্রধানত ভাষ্য, ব্যাখ্যা ও টীকা রচনার মধ্যেই নিজেদের নিয়োজিত রেথেছিলেন।

জ্ঞানরাজ গোদাবরী ও বিদর্ভের সঙ্গমন্থলে পার্থপুরে 1503 খ্রীষ্টাব্দে জন্মগ্রহণ করেন। জ্যোতির্বিজ্ঞানের সঙ্কলন গ্রন্থ 'সিদ্ধান্ত স্থান্দর'-এর রচয়িতা হিদাবে তাঁর সমধিক খ্যাতি। তাস্করের বীজগণিতের উপরেও তাঁর ভাষ্ম আছে। জ্ঞানরাজের স্থযোগ্য পুত্র সূর্যদাসও তাস্করের বীজগণিতের উপর ভাষ্ম রচনা করেন। 'গণিতামৃতকৃপিকা' নামে একটি পাটীগণিত গ্রন্থের রচয়িতাও তিনি। জ্ঞানরাজের শিষ্য প্রন্ধিরাজও জ্যোতির্বিজ্ঞানের ভাষ্য রচনা করেন।

ষোড়শ শতালীর আরব সাগর তীরবর্তী নন্দীগ্রাম নিবাসী এক ব্রাহ্মণ পরিবারের নাম ভারতীয় গণিতের ইতিহাসে অবশুই শ্বরণীয়। এই পরিবারের গণেশ দৈবজ্ঞ ছিলেন সত্যকার মৌলিক গাণিতিক প্রতিভার অধিকারী। তাঁর রচিত ভাস্করের লীলাবতী ভাষ্য 'রুদ্ধিবিলাসিনী' পাটীগণিতের একটি ক্লাসিক গ্রন্থ হিসাবে বিবেচিত হয়। গণেশের পিতার নাম কেশব ও এক ভাতৃপ্রুত্তের নাম স্পিংহ। উভয়েরই জ্যোতির্বিজ্ঞানে অবদান আছে। তাঁর এক ভাগিনা লক্ষ্মীদাসও জ্যোতির্বিজ্ঞানে পারদ্শী ছিলেন।

মহারাষ্ট্রের অন্তর্গত গোদাবরীর উত্তর তীরস্থ গোলগ্রামের আর এক ব্রাহ্মণ পরিবার জ্যোতির্বিজ্ঞানচর্চার পীঠস্থানরপে থ্যাতি অর্জন করেছিল। গণেশের শিষ্য দিবাকর ছিলেন এই পরিবারের শীর্ষে। দিবাকরের পাঁচ পুত্র হ্বযোগ্য পিতার তত্বাবধানে অধ্যয়ন করে গণিত ও জ্যোতির্বিজ্ঞানে যথেষ্ট ব্যুৎপত্তি লাভ করেন। দিবাকরের পাঁচ পুত্রের নাম,—কৃষ্ণ, বিষ্ণু, মল্লারি, কেশব ও বিশ্বনাথ। এঁরা সকলেই, বিশেষ করে মল্লারী ও বিশ্বনাথ কালক্রমে ভাষ্যকার হিসাবে প্রসিদ্ধিলাভ করেন। কয়েক পুক্ষ ধরে এই পরিবারের ঐতিহ্ অক্ষ্ম ছিল। ক্লফের পুত্র মৃসিংহ এবং নুনিংহের চারপুত্র দিবাকর, কমলাকর, গোপীনাথ ও রঙ্গনাথ এই গাণিতিক ঐতিহ্ বহন করে পরিবারের মৃথ উজ্জল করেন। দিদ্ধান্ত-তত্ত্ব-বিবেকের গ্রন্থকার কমলাকর ভারতীয় গণিত ও জ্যোতির্বিজ্ঞানে প্রভৃত অধিকার অর্জন করা ছাড়াও আরবীয় ও পারদীয় জ্যোতির্বিজ্ঞানে ইথিই ত্থাপন করে

তিনি ভাস্করের সমালোচনা করেন। রঙ্গনাথ 'মিভভাষিণী' নামে লীলাবতীক ভাষ্য রচনা করেন।

পূর্বপুক্ষদের বৃত্তি অবলম্বন করে মধ্যপ্রদেশের ইলাচপুর নিবাসী বল্লাল আর একটি পারিবারিক গাণিতিক ঐতিহ্ন স্থাপন করেন। কীতিবান পাঁচ পুত্রের পিতা বল্লাল গোলগ্রাম-নিবাসী দিবাকরের মতই ভাগ্যবান ছিলেন। তাঁর পাঁচ পুত্রের মধ্যে কৃষ্ণ দৈবজ্ঞ ও রঙ্গনাথ গণিত ও জ্যোভিবিজ্ঞানে অধিক খ্যাভি অর্জন করেন। কৃষ্ণ দৈবজ্ঞ ছিলেন দিবাকরের পুত্র বিষ্ণুর শিষ্ম। তিনি জাহাঙ্গীরের দরবারে প্রধান জ্যোতিবীর আদন অলম্বত করতেন। তান্ধরের বীজগণিতের উপর 'নবাক্ল্র'ও লীলাবতীর উপর 'কল্পভাবতার' টীকা রচনা করেন। রঙ্গনাথ স্থ্য দিলাস্তের উপর 'গৃঢ়ার্থপ্রকাশ' নামে এক সহজ ও স্থন্দর বিবর্ধ প্রকাশ করে খ্যাভি অর্জন করেন। রঙ্গনাথের পুত্র মুনীশ্বর ছিলেন ভান্ধরের একজন প্রধান অন্ধরাগী ও সমর্থক। 'মরীচি' নামে দিলাস্ত্রশিরোমণির একথানি টীকা ও 'পাটীসার' নামে একথানি পাটীগণিত বিষয়ক গ্রন্থ রচনা করেন। কমলাকর ভান্ধরের জ্যোভিবিজ্ঞান সম্পর্কে তীব্র সমালোচনা করায় ভিনি প্রভিবাদ করেন।

উপরের আলোচনা থেকে কিছুটা স্পষ্ট হয়েছে যে, ভারতীয় ঐতিহ্ন ও রীতি অহ্যায়ী জ্ঞান গুরু থেকে শিশ্র এবং পিতা থেকে পুত্রের মাধ্যমে বাহিত হয়ে চলে আসছে। ড: কে. ভি. শর্মা তাঁর A History of the Kerala School of Hindu Astronomy গ্রন্থে এই ঐতিহ্ন বিষয়ে চমৎকার আলোচনা করেছেন। জ্যোদশ শতান্দী থেকে সপ্তদশ শতান্দী পর্যন্ত এরকম একটি ধারা হছে: গোবিন্দ ভট্টতির (1237—95) → শিশ্র: পরমেশ্বের পিতামহ (13-14 শতান্দী) → নাতি ও শিশ্র: পরমেশ্বর (1360—1455) → পুত্র: দামোদর (পঞ্চদশ শতান্দী) → শিশ্য: নীলকণ্ঠ সোময়াজী (1443—1545) → শিশ্য: জেণ্ঠাদেব (1500—1600) → শিশ্য: অচ্যুত্ত পিশারতি (1500—1621)।

### ॥ সোয়াই জয় সিং॥

গণিতের ইতিহাদে পৃষ্ঠপোষক হিদাবে রাজরাজড়াদের স্থান আছে বটে, কিন্তু কোন রাজ-রাজড়া গাণিতিক আবিদার করেছেন এমনটি দেখা যায় না। দিরাকুজের রাজা হীরন ও তাঁর পূত্র গেলন বিশ্ববন্দিত গ্রীক গণিতজ্ঞ ও বিজ্ঞানী আর্কিমিডিসের পৃষ্ঠপোষক ছিলেন। মিশরে আলেকজান্ত্রিয়া বিশ্ববিভালয়ের প্রতিষ্ঠা ও গাণিতিক গবেষণায় উৎসাহদাতা ছিলেন টলেমী-রা; রাশিয়াক

সমাজী ক্যাথারিণ ছিলেন অয়লাবের স্থায় গণিতজ্ঞের পৃষ্ঠণোষক; জার্মানীর ফার্ছিনাগু ছিলেন গাউদের শিক্ষা ও কর্মজীবনের উৎদাহদাতা; আরু নেপোলিয়ান তো ল্যাণজাদ, মার্সেনে, লেজেগুর প্রমুখ গণিতজ্ঞদের সমাদর ও আফুকুল্য করতেন। এইরকম আবো গণিতজ্ঞ রাজাহুকুল্য পেয়েছেন,—আমাদের দেশেও এর ব্যতিক্রম নাই। ইতিপূর্বে আমরা মহাবীবের কথা বলেছি; মধ্যযুগে দক্ষিণ ভারতে কেরালা রাজ্যের অনেক জ্যোতির্বিদ ও গণিতজ্ঞ রাজাহুকুল্য পেয়েছেন। এমন কি, ম্সলমান শাসনকর্তারাও অনেকে হিল্-ম্সলমান নির্বিশেষ গণিতজ্ঞ ও জ্যোতির্বিদদের সমাদর করেছেন। অন্ত দেশের কথা জানি না, কিন্তু ভারতে হিন্দু রাজা-রাজভাদের মধ্যে গণিতজ্ঞ ও জ্যোতির্বিদের অভাব দেখা যায় না। অবশু এই প্রসদে একটি কথা আমাদের অরণ রাখতে হবে যে, যে কয়েকজন রাজা-মহারাজা গণিত ও জ্যোতির্বিজ্ঞান চর্চা করেছেন, তাঁরা কেউই তেমনবিশ্বরকর কিছু আবিজার করতে পারেন নি। মনে হয়, একদিকে গণিত ও জ্যোতির্বিজ্ঞান চর্চা, আর অপর দিকে রাজ্যশাসন ও যুদ্ধ ইত্যাদি পরিচালনা,— এই তুই মেকর মধ্যে সমতা স্থাপন করা একান্তই অসন্তব। অন্তত জন্ম সিং-এর গাণিতিক গবেষণা ও রাষ্ট্রনৈতিক জীবন থেকে এরপাই মনে হয়।

### ॥ জয় সিং-এর জীবনের সংক্ষিপ্ত পরিচয় ॥

উল্লেখ্যের বিখ্যাত সেনাপতি জয় সিং-এর নাম সর্বজনবিদিত। দাবিণাতা থেকে প্রত্যাবর্তনের পর 1667 এটাবেল তার মৃত্যু হয়। তথন আমাদের আলোচা জয় সিং-এর জয় হয়নি। আমাদের আলোচা জয় সিং য়িনি সোয়াই জয় সিং নামে অধিক পরিচিত, তিনি 1686 এটাবে জয়এহণ করেন। আর মাত্র তেরো বছর বয়দে 1699 এটাবেল অমরের সিংহাদনে আরোহণ করেন। বাজা হিসাবে পূর্ণ মর্যাদায় প্রতিষ্ঠিত হতে তার সময় লেগেছিল, এবং প্রথম দিকে বহু বাধা-বিল্লের সম্মুখীন হতে হয়েছিল। উরল্লেভবের মৃত্যুর পর 1708 এটাবে তিনি সমগ্র রাজ্যের অধিকার লাভ করে প্রতিষ্ঠিত হন। শাসনকর্তা, সৈয়্যাধান্দ ও পত্তিত হিসাবে তিনি খ্যাতি লাভ করেন। রাষ্ট্রনীতিতে প্রথব জ্ঞান ও বুদ্বিমন্তার জয়্য তিনি ওই সময়ে ম্যাকিয়াভিলি নামে অভিহিত হতেন। 1719 এটাবেল দিল্লীর সম্রাট মৃহম্মদ শাহ কর্তৃক আগ্রা ও মালবের শাসনকর্তারূপে নিযুক্ত হন। তার প্রতিষ্ঠিত নতুন রাজধানীর নাম জয়দগর বা জয়পুর। বলা বাহল্য,

তাঁর নাম অমুসারেই এই নামকরণ হয়। তাঁর সময়ে জয়পুর বিভাচর্চার কেন্দ্রে পরিণত হয়। এখানে তিনি একটি মানমন্দির প্রতিষ্ঠা করেন। জ্যোতির্বৈজ্ঞানিক গবেষণার ক্ষেত্রে মানমন্দিরের গুরুত্থের কথা না বললেও চলে।

অতি অল্প বয়স থেকেই জয়সিং গণিত ও জ্যোভিবিজ্ঞানে আকৃষ্ট হন, এবং সম্ভবত জগন্নাথ পণ্ডিতের প্রভাব তাঁর উপর থ্বই কার্যকরী ছিল। যাই হোক, অবিরাম অধ্যয়নের মধ্য দিয়ে তিনি জ্যোতির্বিজ্ঞানের নীতি ও নিয়মাদি আয়ন্ত করেন। জ্যোতির্বিজ্ঞানের প্রচলিত সারণী ক্রটিপূর্ণ বলে তিনি স্বয়ং এই ক্রটি সংশোধন ও সংস্কারে মনোনিবেশ করেন। এই প্রসঙ্গে তাঁর প্রভিষ্ঠিত দিল্লী মানমন্দিরে সাত বছর যাবং নক্ষত্র ও প্রহাদি পর্যবেক্ষণ ও গবেষণা সবিশেষ উল্লেখযোগ্য। যুদ্ধ, রাজ্যশাসন আর সেই সময়কার বিক্ষুক্ক ও অশান্ত আবহাওয়ায় কীভাবে তিনি এই সময় পেয়েছিলেন ভাবলে অবাক হতে হয়।

প্রকৃত সত্যায়ুদ্দ্ধান ও জ্ঞানার্জনের ক্ষেত্রে তাঁর গোঁড়ামি ছিল না, আর তিনি বিশেষ কোন গোষ্ঠাভুক্ত ছিলেন না। হিন্দু, মুসলমান ও ইউরোপীয় জ্ঞানীগুণীদের অমুসরণ ও তাঁদের উৎকৃষ্ট পদ্ধতি গ্রহণে তাঁর বিন্দুমাত্র বিধা ছিল না। গ্রীক, ইউরোপীয় ও আরবী-ফার্সী বহু গ্রন্থ তিনি সংগ্রহ করেছিলেন, এবং কিছু কিছু সংস্কৃত ও ফার্সী অমুবাদ করিয়েছিলেন বিশেষজ্ঞদের দিয়ে। তাঁর রাজসভায় ইউরোপীয় পণ্ডিত ও বিশেষজ্ঞদের আমন্ত্রণ ছিল। ভারতের প্রধান প্রধান গাঁচটি শহরে মানমন্দির প্রতিষ্ঠা তাঁর উজ্জ্বল কীর্ত্তি। জয়পুর, মথুরা, বারাণসী, উজ্জ্বিনী ও দিল্লীতে যে-সব বৃহদাকার জ্যোতিবৈজ্ঞানিক যন্ত্রপাতি আছে, সেই প্রসঙ্গে উড বলেন "monuments that irradiate a dark period of Indian History."\*

## 

জ্যোতির্বিজ্ঞানের তাত্ত্বিক ও পরীক্ষালক গবেষণার মধ্যে শেষেরটির প্রতি জয় সিং-এর বিশেষ আগ্রহ ও অফ্রাগ দেখা যায়। জ্যোতির্বৈজ্ঞানিক যন্ত্রপাতি নির্মাণে তিনি কেবল পারদর্শিতাই দেখাননি,—এ-বিষয়ে তাঁর স্বভাবজাত প্রবণতা ছিল বলে মনে হয়। তিনি যে-সব যন্ত্রপাতি নির্মাণ করেছিলেন, তাতে পূর্ব প্রচলিত যন্ত্রপাতির সংস্কার ও উন্নতিসাধন অবশ্রুই আছে, কিন্তু কেবলমাত্র নকল

<sup>\*</sup> Annals and Antiquities of Rajast' han—(Vol-II)—J. Tod.

করা বা অন্নকরণ করার প্রবৃত্তি ছাড়া মৌলিকতা বা প্রতিভার স্বাক্ষর কিছু নাই বললে সত্যের অপলাপ করা হয়। একথা সত্য, তাঁর উপর ইসলামিক জ্যোতি-বিজ্ঞানের প্রভাব দেখা যায়। কিন্তু ইসলামিক প্রভাব কেবলমাত্র জয় সিং-এর উপর কেন, পাশ্চাত্য জ্যোতির্বিজ্ঞানীদের উপরেও দেখা যায়। ইস্তানবৃদ্দ মানমন্দিরের আলোচনা প্রসঙ্গে ডঃ সৈয়দ হোসেন নাসির বলেন,—

".....it is of great importance in that most likely it is. to some extent on the basis of the Istanbul observatory as well as the earlier ones of Samarqund and Maraghah that the first major observatories of the West such as those of Brahe and Kepler were constructed and supplied with similar instruments." \* বন্ধতপক্ষে, মধাযুগে জ্যোতিবৈজ্ঞানিক গবেষণা ও যন্ত্ৰাদি নির্মাণের ক্ষেত্রে মুসলমান পণ্ডিতদের অবদান অস্বীকার করা যায় না। কম-বেশী ইউরোপ ও ভারত তাঁদের কুতিত্বে আকৃষ্ট হয়েছিলেন। কিন্তু প্রাচীন ভারতীয় গণিত ও জ্যোতিরিজ্ঞানের অগতম সমালোচক জি. আর. ক্যে সাহেবের মস্তব্য পড়লে মনে হয় যেন তিনি জয় দিং-এর প্রতিভার মৌলিকতা আমল দিতে চান না। তিনি বলেন,—"The instruments themselves are evolved from the types used by the Muslims, and Jai Singh's inspiration was avowedly of Muslim origin.' \*\* ক্যে সাহেবের গ্রন্থটি প্ডলে মনে হয় रान जा कि:- अत र जा िर्देखानिक खानगमा नवरे जात्रव, श्रीक छ रेडेरां भीम পতিতদের কাছ থেকে পাওয়া, আর ভারতে জ্যোতির্বিজ্ঞানের কোন ঐতিহুই নেই। তাঁর মতে ভারতীয় জ্যোতির্বিজ্ঞানীরা "derived the fundamentals... of their astronomical science from the greeks."\*\*\* ভারতীয় জ্যোতির্বিজ্ঞানে যে গ্রীক প্রভাব নেই, তা নয়। কিন্তু ঋণ্ডেছ-বেদাঙ্গজ্যোতিব-সূর্য। সিদ্ধান্ত-আর্যভট-বরাহমিহির-ব্রহ্মগুপ্ত-ভাস্করের দেশের জ্যোতির্বিজ্ঞানীরা গ্রীকদের কাছ থেকে জ্যোতির্বিজ্ঞানের সার কথা শিখেছিলেন বললে বোধ করি শিশুদের 🕾 হাসি পাবে।

LONG TENT : BY SING OF CALL

<sup>\*</sup> Islamic Science-Seyyed Hossein Nasr, Page-114

<sup>\*\*</sup> The Astronomical observations of Jai Singh-G. R. Kaye,
Page-88

<sup>\*\*\*</sup> The Astronomical observations of Jai Singh-G. R. Kaye,
Page-84

ভারতীয় জ্যোতিরিজ্ঞানে ষল্লের ব্যবহার প্রাচীনকাল অর্থাৎ ঋরেদের মুগ থেকেই দেখা যায়। ঋগেদে অতিমূনি ভুরীয় যন্তের সাহায্যে গ্রহণের প্রকৃত রহস্ত উল্লোচন করেছিলেন। অথববেদে শঙ্কু যন্তের উল্লেখ আছে, বেদাঙ্গ জ্যোতিবে ঘটীযন্ত্র ও শঙ্কু-র সাহায্যে সময় পরিমাপ হতো। প্রাচীন ভারতের জ্যোতিৰ্বিজ্ঞান সম্পৰ্কিত গ্ৰন্থগুলিতে ষন্ত্ৰাদি বিষয়ে ধাবাবাহিক আলোচনা আছে। जुत्रीस, घीराख, जनयब वा कथानयब, मङ्ग, ठळ, ठाथ, वसू, यश्च, भीर्ठ, कर्जती. ফলকষত্ত্র, স্বরংবহ্যন্ত্র এবং গোল্যন্ত্র ভাদের কয়েকটির নাম। আমাদের মনে रुष, চক্রমন্ত্র ও ফলক্ষত্র খুব সন্তব যন্ত্ররাজ বা অ্যাফৌলাব-এর (Astrolabe) পূর্বরূপ। এই সম্পর্কে S. N. Sen বলেন,— Bhāskara II describes a versatile Phalaka Yantra which is essentially a circle or Cakra which possibly served the propose of an astrolabe\* এই मन উল্লেখ থেকে অস্তত এইটুকু বোঝা যাচ্ছে যে, জ্যোতিৰ্বিজ্ঞানে যন্ত্ৰণাতি ব্যবহারের বীতি ও ঐতিহ্য ভারতে অতি প্রাচীন। স্থতরাং, জর দিং যন্ত্রণাতি নির্মাণের শুদ্ধ 'inspiration' আরবদের কাছ থেকে পেয়েছিলেন, স্থপাচীন ভারতীয় ঐতিহ্ বীতি ও সংস্কৃতি ছারা প্রভাবিত হননি, এমন কি ভাস্কর কর্তৃকও প্রভাবিত হননি, —একথা মেনে নেওয়া কষ্টকর। জয়সিং-এর মানমন্দির সম্পর্কে মস্তব্য করতে গিয়ে ড: নাদিবও স্বীকার করেছেন ভাতে 'elements of Hindu astronomy' আছে। জয় সিং কর্তৃক বিশালকায় ষন্ত্রাদির নাম:

- (1) সম্রাট যন্ত্র: ভারতের চারটি শহর দিলী, জয়পুর, বারাণসী ও ভিজ্ঞায়িনীতে এই যন্ত্র নির্মিত হয়।
  - (2) জয় প্রকাশ : তুইটি শহর জয়পুর ও দিলীতে নির্মিত হয়।
  - (3) রাম যন্ত্র: এটিও হুইটি শহর জয়পুর ও দিলীতে নির্মিত হয়।
  - (4) দিগংশযন্ত: তিনটি শহর বারাণদী, উজ্জায়নী ও জয়পুরে স্থাপিত হয়।
  - (5) দক্ষিণোহত্তি যন্ত্ৰ: এটিও তিনটি শহর জয়পুর, বারাণদী ও উজ্জ্বিনীতে আছে।
  - (6) নাজ্বলয় যন্ত্র: জয়পুর, উজ্জয়িনী ও বারাণদীতে স্থাপিত হয়।
  - (7) রতি ষষ্ঠাংশক: দিল্লী ও জয়পুরে নিমিত হয় ।
  - (8) মিশ্র যন্ত্র: কেবলমাত্র দিল্লীতে স্থাপিত হয়।

<sup>\*</sup> A Concise History of Science in India—D. M. Bose, S. N. Sen, & B. V. Subbarayappa, Page—125

- (9) রানি বলয়: কেবলমাত্র জয়পুরে স্থাপিত হয়।
- (10) কপাল: কেবলমাত্র জয়পুরে স্থাপিত হয়।

জয় দিং নির্মিত ও উদ্ভাবিত সব যন্ত্রাদির বর্ণনা এখানে দেওয়া সম্ভব নয়।
কেবলমাত্র একটি যন্ত্র বিষয়ে আমরা সংক্ষেপে আলোচনা করব। বুহদাকার যন্ত্রাদির
মধ্যে সন্ত্রাট যন্ত্র শ্রেষ্ঠ। প্রক্বতপক্ষে, এটি একটি সম-সময় নির্দেশক স্থ্যিড়ি
('equal hour sundial')। ভারতের চারটি প্রধান শহর দিল্লী (1710-24),
জয়পুর (1734), বারাণসী (1680-1737) ও উজ্জয়িনীতে (1728-34) নির্মিত
হয়। এই যন্ত্রের আকার সব জায়গায় একই রকম হলেও, মাত্রাগুলি কিন্তু সমান
নয় অর্থাৎ দৈর্ঘ্য-প্রস্থ-উচ্চতায় পার্থক্য আছে। সবচেয়ে বড়টি জয়পুরে নির্মিত
হয়, আর সবচেয়ে ছোটটি বারাণসীতে। জয়পুরে নির্মিত যন্ত্রটির উচ্চতা
75 ফুট র ইঞ্চি এবং বারাণদীতে নির্মিত যন্ত্রটির উচ্চতা 16ফুট 11ট্র ইঞ্চি। যারা
ভ্রমণপ্রেমী তারা প্রায় সবাই দিল্লী ও বারাণসীর মানমন্দিরে এই যয়টি দেখে
থাকবেন। এমন কি, অনেকেই যে এই যন্ত্রের উচ্চ চুড়ায় আরোহণ করেছেন,
তাতে সন্দেহ নাই। কিন্তু কেবল দেখলে এই যন্ত্রের গুরুছ বোঝা যায় না, উপযুক্ত
গাইড' থাকলে সন্তর। অথবা দামাত্র পড়াগুলনা করলে বোঝা যায়।\* আমরা
এখানে প্রথমে যয়টির একটি স্কেচ ও পর পৃষ্ঠায় জ্যামিতিক চিত্র দিয়েছি। ছিত্রীয়
চিত্রটি অবলম্বনে অতি সংক্রেপে এর প্রধান প্রধান অংশের বিবরণ দেওয়া হলো:



সমাট যন্ত্র একটি নিরক্ষবৃত্তীয় ঘড়িবিশেষ (equinoctial dial)। এর

ধ বিস্তারিত বিবরণ Kaye-এর Astronomical observations of Jai Singh, Page—33-58 দ্বাইবা।

সমকোণী শঙ্কুর অতিভুক্ত পৃথিবীর অক্ষের সমান্তরাল এবং শঙ্কুর উভর দিকে বৃত্তের পাদ (Quadrant) আছে যা নিরক্ষীয় তলের সহিত সমান্তরাল। প্রত্যেক পাদের প্রাস্ত ডিগ্রী, মিনিট ও সেকেণ্ডে অংশান্ধিত। কিন্তু জয় সিং-এর সময় ঘটি ও পল\*-এ অংশান্ধিত ছিল। শঙ্কুর প্রত্যেক প্রান্তে তৃটি করে ট্যানজেন্ট স্কেল (tangent scale) আছে।



দ্বিতীয় জ্যামিতিক চিত্রের পরিপ্রেক্ষিতে বিভিন্ন শহরে নির্মিত সম্রাট যন্ত্রের মাত্রাগুলি নিমরূপ:

| স্থান         | উচ্চতা  |        | ভূমি     | অতি-<br>ভুজ | ব্যাসার্ধ | भारमज<br><b>क्ष</b> ष्ट | কোণের<br>আসন্ন<br>মান |  |
|---------------|---------|--------|----------|-------------|-----------|-------------------------|-----------------------|--|
|               | AC'     | AC'    | BC       | AB          | GH-<br>EF | GE                      | ∠ABC                  |  |
| <b>मिल्ली</b> | 60'4"   | 68'0"  | 113'6"   | 128'6"      | 49'6"     | 773"                    | 28°37′                |  |
| জয়পুর        | 75'3''  | 89'9"  | 146'11'' | 174'0       | 49'10"    | 9'33"                   | 26°53′                |  |
| বারাণসী       | 16'113" | 23′3¾″ | 35'10"   | 39'81''     | 9'13"     | 5′10′′                  | 25°14′                |  |
| উজ্জারনী      | 18'6'   | 22'0"  | 43'6"    | 47'6"       | 9'1"      |                         | 25°10′                |  |

ষন্তবাজ বা আত্রোলাব প্রকৃতপকে মুদলমান জ্যোতির্বিদ্যা আবিষার

<sup>\* 1</sup> পল=24 সেকেও; 1 ঘটি=60 পল=24 মিনিট

করেননি। আরবী ভাষায় এই যদ্ভের অন্তিত্ব তৃতীয় থেকে নবম শতান্দীর মধ্যে দেখা যায়। মাশালাহের গ্রন্থের প্রভাবেই চদার The Conclusions of the Astrolabe লেখেন। আলী ইবন ঈশা, অলবিকণী, নাদির অল-দীন অল-তৃষী প্রম্থ গণিতজ্ঞ ও জ্যোতির্বিদরাও অ্যাস্ট্রোলাব সম্পর্কে গ্রন্থাদি রচনা করেন। বজ্ঞত মুসলমান জ্যোতির্বিদরাই এই যন্ত্রতির ক্ষ্মতা ও সৌন্দর্য আনেন বলে অন্তমান করার কারণ আছে। জয় দিং এই যন্ত্র নির্মাণ করেন এবং তা আকারে বৃহৎ। খুব সম্ভব জয় দিং ভারতীয় ও ইসলামিক প্রভাবের সংমিশ্রণ ঘটাতে চেয়েছিলেন। আদশ শতান্দীতে ভাল্কর এই যন্ত্র ব্যবহার করেছিলেন, এবং চতুর্দশ শতান্দীতে মহেন্দ্র স্থরী গ্রন্থ রচনা করেছিলেন। কেবল জ্যোতির্বিজ্ঞান সংক্রাম্ভ তথ্যাদি নির্ণয় নয়, এই যন্ত্রের সাহায্যে সময় পরিমাপ, পাহাড়ের উচ্চতা এবং কুপের গভীরতা পর্যন্ত নির্ণয় করা যায়।

জ্ঞান-বিজ্ঞানের ষে-কোন শাখায় উন্নতি তথা গবেষণা ও আবিষ্কার করতে গেলে পূর্ববর্তী ও সমসাময়িকদের গবেষণা ও আবিষ্কার সম্বন্ধে অবহিত হতে হয়। জন্ম সিং এ-বিষয়ে সম্পূর্ণ সচেতন ছিলেন। এটাই বোধ করি তাঁর আধুনিক বিজ্ঞান মানদিকতা ও বিজ্ঞান সচেতনতার এক প্রকৃষ্ট উদাহরণ। জ্ঞানের ক্ষেত্রে তাঁর গোঁড়ামি না থাকার ইউক্লিড, হিপারকাস, টলেমী প্রমুখ গ্রীক গণিতজ্ঞ ও জ্যোতির্বিদ এবং ইসলামিক জ্যোতির্বিদ নাসির অল-দীন অল-তুষী, উলুঘ বেগ, মৌলানা চাদ প্রভৃতির গ্রন্থাদি অধ্যয়ন ও তথ্যাদি সংগ্রহ করেছিলেন। বিশেষজ্ঞদের দিয়ে টলেমীর অ্যালমাজেস্ট-এর অনুবাদ করেন এবং নাম দেন সম্রাট সিদ্ধান্ত। উলুঘ বেগের জীজ-এর সংশোধন করেন। প্রসক্তমে 'জীজ' শক্তির উৎপত্তি বিষয়ে একটি তথ্য পরিবেশন না করে পারা গেল না। 'The word Zij entered into Arabic from Pahlvi and into Pahlvi from Sanskrit. It means originally 'straight lines' and is connected with the lines created on a field when the field is ploughed with the help of a cow or a bull.' \* যাই হোক, ইউরোপীয় পণ্ডিতদের মধ্যে de la Hire, Flamsteed ও Napier-এর সঙ্গেও তাঁর পরিচয় ছিল। তাঁর রাজসভায় জগলাথ পণ্ডিত, মৃহমাদ শরীফ, মৃহমাদ মৃহদি, ফাদার আঁতে স্ত্রোবেল, ফাদার ক্লন বোভিয়ের, ডন পেড়ো ডি সিলভা প্রম্থ পণ্ডিতগণ সমাদৃত इर्डन।

<sup>\*</sup> Islamic Science—S. H. Nasr, Page—98

জন্ম সিং-এর কৃতিত্ব ও অবদানের কথা বলতে গেলে দেই সময়ের ঐতিহাসিক পটভূমির কথা বিশেষভাবে স্মরণ করতে হয়। তাঁর সময় ছিল ভারতের ইতিহাদে অধঃপতন, অবকর ও অন্থিরতার যুগ। ঔরক্ষজেবের মৃত্যুর পর কিভাবে বিশাল মোঘল দামাজ্য তাদের ঘরের মত ভেঙে গেল, তা কারো অজানা নয়। এই যুগে ভারতীয় সভাতা ও সংস্কৃতির ধ্বংস্তুপের উপর দাঁড়িয়ে কোন মৌলিক গবেষণা সম্ভব নয়। কিন্তু তিনি যা কবেছিলেন, তার তুলনা হয় না। তাঁর সময়ে ইউরোপে আধুনিক বিশ্বের ধারণা গড়ে উঠছিল সত্য। তথন কোপারনিকাস, কেপলার, গ্যালেলিও ও নিউটনের তত্ত্ব ও তথ্যাদি ক্রমশ বিজ্ঞানী ও জ্যোতিবিদ-দের মনে সংক্রমিত হচ্ছিল সন্দেহ নাই। কিন্তু তথন ইউরোপ তাত্ত্বিক ও ব্যবহারিক তুই দিক থেকেই এরূপ গবেষণার অন্তুক্ল ছিল, বিশেষত শাসনকর্তাদের আফুকুলা ছিল,—যদিও কোপারনিকাদ ও গ্যালেলিও তাঁদের দৌরকেন্দ্রিক পরিকল্পনার জন্ম নিগৃহীত হয়েছিলেন। 1743 এইানে জয় দিং-এর মৃত্যু হয়। টভ-এর ভাষায় "his wives, concubines, and Scions expired with him on his funeral pyre".\* এতে অনেকে মজা পেডে পারেন বটে, কিন্ত দিল্লী, জন্মপুর, ৰারাণদী, উজ্জ্বিনী ও মথুরার মানমন্দির এখনো বিরাজ করছে, তাঁর বিজ্ঞানকে জীবিত রেখেছে।

### ।। তুল'ভ তিনখানি গ্ৰন্থ ॥

ভাস্করের পর ভারতীয় গণিতে আর নতুন কিছু হয়নি, কেবল চর্বিত-চর্বণ হয়েছে মাত্র বললে ভুল হবে। আমাদের দৌভাগ্য যে, এমন তিনটি গ্রন্থ আবিষ্কৃত হয়েছে যাদের গাণিতিক মূল্য অপরিদীম। এই প্রদক্তে 'যুক্তিভাষা', 'করণ পদ্ধতি' ও 'নদর তুমালা'-র নাম উল্লেখযোগ্য। চারখানি গ্রন্থ আবিষ্কারের জন্ম আমরা Charles M. Whish-এর নিকট ঋণী। উপরোক্ত তিনখানি ছাড়া অন্মটি 'তন্ত্রসংগ্রহ'। এই গ্রন্থগুলিতে আধুনিক গণিতের এমন উচ্চতর গবেষণা লিপিবদ্ধ আছে যা আমাদের বিশ্বিত করে এবং আমরা গর্বিত হই এই ভেবে যে, নিউটন-লিবনিজ্ব-গাউদের গাণিতিক ধারণা এ-দেশের গণিতজ্ঞরা কয়েক শতাক্রা পূর্বে উপলব্ধি করে উচ্চতর গবেষণা করেছিলেন। কিন্তু তবুও আমাদের মোহভঙ্গ হয়নি। আমাদের ঐতিহ্য, রীতি-নীতি ও সংস্কৃতির প্রতি এখনো আমরা তেমন শ্রেমানিল নই। এখনো আমরা আমাদের নিজন্ব ধারাটি হ্রদয়ঙ্গম করে আধুনিকী-

<sup>\*</sup> Annals and Antiquities of Rajasthan-(vol-II)-J. Tod, Page-368

করণ করতে অগ্রসর হইনি। অধ্যাপক দি. টি. রাজাগোপাল ও তাঁর ছাত্র-সহকর্মীদের ধন্যবাদ যে, তাঁরা অক্লান্ত পরিশ্রম করে এইদর ভারতীয় গণিতজ্ঞদের ফদল আধুনিক গাণিতিক ভাষায় আমাদের কাছে উপস্থাপিত করেছেন। এই প্রসঙ্গে টি. এদ. কুপ্লরশাস্ত্রী, টি. এ. দরস্বতী ও আর. দি. গুপ্তের নাম উল্লেখ-যোগ্য।

### ॥ যুক্তিভাষা বা গণিত ক্যায় সংগ্রহ বা গণিত যুক্তিভাষা ॥

এই অমূল্য গ্রন্থটির রচয়িতা হিসাবে জ্যেষ্ঠদেৰকে ধরা হয়। জ্যেষ্ঠদেৰ
1500—1610 খ্রীষ্টান্দে বর্তমান ছিলেন। তিনি এই গ্রন্থে গণিত ও জ্যোতিবিজ্ঞান বিষয়ে আলোচনা করেছেন। ড: টি. এ. দরস্বতী যুক্তিভাষার গুরুত্ব
দম্পর্কে বলেছেন: "The chief merit of the yuktibhāṣā is that it
preserves for us the rationales and proofs developed in the
school, whereas the other schools either did not have them or
did not preserve them." যুক্তিভাষায় নিয়লিথিত উচ্চতর স্বর্গুলি দেখতে
পাওয়া যায়:—

(1) 
$$f(x+\theta) = f(x) + \theta f'(x) + \frac{\theta^2}{2!} f''(x)$$
...

Taylor series নামে বিখ্যাত এই স্থ্ৰেটর আবিষ্কর্তা মাধব।

(2) 
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$4 < \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

সাইন ও কোসাইন শ্রেণী-র স্থা এটি মাধবের ভাষায় নিয়রূপে ব্যক্ত হয়েছে:

নিহত্য চাপবর্গেণ চাপম্ তত্তকলানি চ।
হরেৎ সম্লয়ুপ্রগেল্পিজ্যাবর্গ হতৈঃ ক্রমাৎ।।
চাপম্ ফলানি চাথোধোন্তভোগ্য পর্পরি ত্যজেৎ।
জীবাল্ডে, সংগ্রহো 'ইস্থৈব বিদ্বান-ইত্যাদিনা কৃতঃ।।
নিহত্য চাপবর্গেণ রূপম্ তত্তংফলানি চ।
হরেদ্ বিম্লয়ুথ্বৈপ ব্রিজ্যাবর্গ হতৈঃ ক্রমাৎ।।

কিন্ত ব্যাসদলেনৈৰ দিল্পেনান্তম্ বিভাজ্যতাম্। ফলান্তধোৰঃ ক্রমশো ন্তাসোপযুপরি ভ্যক্তেং।। শরাক্তি, সংগ্রহো ক্তেও ন্তেনন্ত্রী-ভ্যাদিনা কৃতঃ।

মাধবের ক্ত অবলম্বন করে অনেকেই আধুনিক গাণিতিক পরিভাষার সাইন ও কোসাইন শ্রেণীর রূপ দিয়েছেন। 'গণিত জগং' পত্রিকায় ডঃ অমূল্যকুমার বাগের একটি প্রবন্ধ বাংলা ভাষায় প্রকাশিত হয়। অবশু ডঃ বাগের মূল প্রবন্ধটি Indian Journal of History of Science (May, 1976, vol—11)-এ প্রকাশিত হয়েছিল। আমরা এখানে ডঃ বাগের প্রবন্ধটি 'গণিত জগং' থেকে ঈষং পরিবর্তিত রূপে উদ্ধৃত করলাম।

কুন্ত চাপ s এবং ব্যাসার্ধ r-এর জন্ম বদি n-তম জীবা ও শর-কে  $t_n$  এবং  $t_n^*$  দিয়ে প্রকাশ করা হয়, তা হলে—

$$t_n = \frac{S^{2n}s}{(2^{2}+2)(4^{2}+4)(6^{2}+6)...[(2n)^{2}+2n]r^{2n}}$$
(n=1, 2, 3,...)

$$\therefore t_1 = \frac{s^3}{3! r^2}, t_2 = \frac{s^5}{5! r^4}, \dots$$

তা হলে মাধব কর্তৃক বিবৃত নিয়মান্ত্রযায়ী,—

জীবা=
$$(s-t_1)+(t_2-t_3)+(t_4-t_5)+.....$$

$$=s-\frac{s^3}{3+r^2}+\frac{s^5}{s+r^4}.....(1)$$

$$t_n^1 = \frac{s^{2n}r}{(2^2-2)(4^2-4)\cdots[(2n)^2-2n]r^{2n}}$$

$$(n=1, 2, 3, ......)$$

$$\therefore t_{1}^{1} = \frac{s^{2}}{2 \mid r}, t_{2}^{1} = \frac{s^{4}}{4 \mid r^{3}}, \dots$$

$$\therefore \quad \forall \mathbf{a} = (r - t_{1}^{1}) + (t_{2}^{1} - t_{8}^{1}) + \dots$$

$$-r-\frac{s^2}{2|r}+\frac{s^4}{4|r^3}.....(2)'$$

(1) ও (2)-এ s-rx বদালে, আমর। নিউটন আবিষ্কৃত শ্রেণী ছুটি পাই,

Sin 
$$x=x-\frac{x^3}{3!}+\frac{x^5}{5!}$$
...  
Gevelopment of the second of the se

নিউটন কর্তৃক আবিষ্কৃত উপবোক্ত স্থত্ত তুটির আবিষ্কারকও দঙ্গমগ্রামের মাধব। ইনি থুব সম্ভব 1340—1425 থ্রীষ্টান্দে বর্তমান ছিলেন। মাধব গ্রেপরী-লিবনিজের এই স্তাটিও আবিষ্কার করেন:

$$5 \uparrow \% \tan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots (|x| \le 1)$$

লিবনিজ π এর নিম্নরূপ মান দিয়েছেন:

$$\frac{\pi}{4} = \hat{1} - \frac{1}{3} + \frac{1}{5} - \dots$$

পাই (ম)-এর অন্তর্রপ মানটিও মাধব কর্তৃক আবিদ্ধৃত হয় এবং **যুক্তিভাষা** গ্রান্থে দেখতে পাওয়া যায়। ক্রিয়াকর্মকরী গ্রন্থে এই উদ্ধৃতি দেখা যায়:

ব্যাসে বারিধে-নিহতে রূপছতে ব্যাস সাগরাভিহতে

जि-मतापि-विषयमश्थाा-छक्तम् अगम् श्वम् शृथक क्रमार कूर्यार।

অর্থাৎ ব্যাদকে 4 দারা গুণ কর। তাথেকে পর পর ব্যাদের চতুগুণের অযুগ্ম দংখ্যা (3,5 ইত্যাদি) দারা ভাজিত ভাগফলগুলি যথাক্রমে বিয়োগ ও যোগ কর।

यि कान वृत्ख्व পविधि C रुष, अवर नाम D रुष, जा रुल,

$$C (i. e. \pi D) = 4D - \frac{4D}{3} + \frac{4D}{5} \cdots$$

$$\exists i, \quad \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} \cdots$$

### ॥ করণ পদ্ধতি॥

এই গ্রন্থটির রচয়িত। এক অজ্ঞাত দোময়াজি। তিনি খুব সম্ভব ত্রিচুবের অস্তর্গত শিবপুরমের পুতৃমান বা পুতৃবান পরিবারভুক্ত ছিলেন। গ্রন্থটি দশটি অধ্যায়ে বিভক্ত। সম্ভবত এটি 1732 থ্রীষ্টাব্দে রচিত হয়। 'করণ-সন্ধৃতি' পুতৃমান সোময়াজির সর্বাপেক্ষা জনপ্রিয় গ্রন্থ হলেও তিনি অভাভ বিষয়ে গ্রন্থ রচনা করেন। পূর্ববর্তী গণিতজ্ঞদের আবিষ্কৃত স্বত্র ও পদ্ধতির আলোচনার জভ যুক্তিভাষার ভায় এবও গুরুত্ব আছে। করণ পদ্ধতিতে  $\pi = \frac{31,415,926.536}{10,000,000,000}$  এই গ্রন্থে কেমন করে ক্রমিক বিভাজনের সাহায্যে  $\pi$ -এর আসন্ন মান পাওয়া যায় ভার আলোচনা আছে।  $\pi$ -এর মানগুলি হবে—

<u>3</u> 22 333 355 67783 68138 প্রভৃতি

### ॥ जप्तत्रव्याला ॥

রাজকুমার শঙ্কর বর্মা এই গ্রন্থটির রচয়িতা। তিনি 1800—1838 এইান্দেবর্তমান ছিলেন। গ্রন্থটি ছটি অধ্যায়ে বিভক্ত। সর্বশেষ প্লোক থেকে জানা যায় এটি 1823 এইান্দে রচিত হয়। বিখ্যাত 'পরহিত' পদ্ধতি উদ্ভাবনের কারণটিও এই গ্রন্থে লিপিবদ্ধ আছে। ভুধু তাই নয়, তারিখটির জন্মও আমরা এই গ্রন্থটির নিকট ঋণী।

প্রাচীন ভারতীয় গণিতের প্রায় সব ঐতিহাসিকই এরপ মত পোষণ করেন যে, ভাস্করের পর অর্থাৎ 1150 এটানের পর ভারতে গণিতচর্চা হয়নি বললেই চলে। কথাটি সর্বাংশে সত্য না হলেও ঐতিহাসিকদের এই দিন্ধান্তে বিশেষ দোষারোপ করা যায় না। কারণ, ঐতিহাসিকরা সাধারণত প্রাপ্ত গ্রন্থ, টীকা, ভাষ্য ইত্যাদির পরিপ্রেক্ষিতেই সবকিছু বিচার করেন। মধ্যযুগে স্কৃত্ব দক্ষিণভারতে যে-সব গাণিতিক গবেষণা হয়েছিল, তা প্রধানত সংস্কৃত ভাষায়, আর অংশত আঞ্চলিক ভাষায়। আধুনিক উচ্চ শিক্ষিত ব্যক্তিরা অনেকেই সংস্কৃত জানেন না, আর আঞ্চলিক ভাষায় কোন-কিছু লেখা বা পড়া তো অনেকের মতে পগুপ্রম মাত্র। এ-হেন পরিস্থিতিতে মধ্যযুগের ভারতীয় গণিতের অনেক-কিছু অনালোকিত ও অনালোচিত অবস্থায় পড়ে আছে। এইসব মূল্যবান পাণ্ড্লিপি ও রচনাগুলি পরিপ্রম করে সম্পাদনা, অন্থবাদ ও আধুনিক গণিতের ভাষায় রূপ দেওয়া একান্ত প্রয়োজন। আমাদের মনে হয়, এতে সংস্কৃত পণ্ডিত সমাজের এক গুরু দায়িত্ব ও কর্তব্য আছে। সংস্কৃত ও গণিত বিভাগের একান্ত সহযোগিতায় এই গুরুত্বপূর্ণ কাজটি সম্পন্ন হতে পারে।

সংস্কৃত পণ্ডিত সমাজের প্রতি আমাদের প্রত্যাশা তাঁরা যেন গুধুমাত্র অন্ত্রার, বেদাস্ত বা কাব্য-সাহিত্যের গবেষণায় নিজেদের ও ছাত্র-ছাত্রীদের উদ্বৃদ্ধ না করে প্রাচীন ভারতীয় গণিতের অবহেলিত ও উপেক্ষিত দিকটির প্রতি যথায়ধ নজর দেন, সাহিত্য-বিজ্ঞান সব শ্রেণীর মাছুষের জিজ্ঞাসা মেটাবার প্রয়াস পান।

প্রাচীন ভারতীয় গণিতের অনেক মূলাবান সম্পদ এখনো লোক্চক্ষ্র অস্তবালে এ-বিষয়ে পণ্ডিত ও যোগ্য ব্যক্তিদের যেমন সে-সব অমুবাদ, আধুনিক গণিতের ভাষায় প্রকাশ ও সম্পাদনার দায়িত্ব আছে, তেমনি আবার শিক্ষিত জনসাধারণ যাঁদের বাক্স-ভোরদ-সিন্দৃক ও বাজে কাগজের বন্তার মধ্যে এখনো হন্তলিখিত পাণ্ডলিপি বন্দী হয়ে আছে এবং যা অবলুপ্ত হয়ে যাবার সন্তাবনাই বেশী, তাঁরা যদি উপযুক্ত ব্যক্তির হাতে সমর্পণ করে প্রকাশে সাহায়া করেন, তা হলে আমাদের জাতির গৌরব বৃদ্ধি পায়। কেরালার গণিত ও জ্যোতিরিজ্ঞান সম্পর্কে বলতে নিয়ে ড: কে. ভি. শর্মা লিখেছেন,—'A Competent and critical analysis, in terms of modern mathematics, of the writings of Kerala astronomers and mathematicians, written in Malayalam script, may be expected to throw light on the advances, down the centuries, made in these disciplines, in one remote corner of India.' ড: শর্মার এই উক্তি কেবল কেরালার ক্ষেত্রেই প্রযোজ্য নয়, ভারতের সর্বত্র যেথানে যা এথনো অনাবিষ্কৃত অবস্থায় পড়ে আছে, তা প্রকাশ পেলে আমাদের গৌরব নি:সন্দেহে বুদ্ধি পাবে বলে আমাদের বিশ্বাস। বিশেষ করে, সোয়াই জয় সিং-এর জ্যোতির্বিজ্ঞানে ও গণিতে প্রেরণার উৎস, তাঁর গবেষণার বিস্তারিত তথ্যাদি এবং জগন্নাথ পণ্ডিতের কর্মকৃতি ইত্যাদির সঠিক মল্যায়ন সম্ভব হবে।

COLUMN TO RECEIVE TO SEE THE TOTAL TO THE TOTAL TOTAL TOTAL TO THE TOTAL TOTAL

### ॥ ত্রোদশ অধ্যায়॥

SECURIOR WITH SECURIOR PROPERTY STATE OF THE SECURIOR SEC

"It is India that gave us the ingenious method of expressing all numbers by means of symbols, each symbol receiving a value of position, as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit..."—L. Hogben

### ॥ দশগুণোত্তর স্থানিক-মান পদ্ধতি।।

স্থানিক মান আবিজ্ঞার সংখ্যা লিখনে ভারতের সর্বশ্রেষ্ঠ অবদান। মাত্র দশটি অক্ক,—এক থেকে নর এবং শৃত্য ধারা সংখ্যা-লিখন-প্রণালী মানব-মনীধার সর্বশ্রেষ্ঠ অবদান বলে নিঃসন্দেহে গণ্য হওয়ার যোগ্য। এই পদ্ধতি যেমন সহজ্ঞ, তেমনি সরল। যাবতীয় সংখ্যা-লিখন অক্ষের স্থানিক-মান ধারা সম্ভব। এই পদ্ধতি বর্তমানে বিশ্বের সর্বত্র প্রচলিত। আজ আমরা যে পদ্ধতিতে সংখ্যা লিখি, বিশ্বের ভাবং শিশুরা আজ যে পদ্ধতিতে সংখ্যা-লিখন শিক্ষা করে, তা আমাদের প্রাচীন গণিতজ্ঞদের আবিজ্ঞার। প্রাচীনকালে বিশ্বের নানা স্থানে যে সংখ্যা-লিখন প্রণালী প্রচলিত ছিল, আজ আর সে-সব কথা কেউ জানে না; গণিতের ইতিহাসে কেবল তারা অস্তিষ্ট্রকু বজার রেখেছে মাত্র।

আঞ্চলিক ভাষা ও লিপি উদ্ভবের ফলে আজ ভারতের বিভিন্ন রাজ্যে সংখ্যালিখনের নানা প্রকার লিপি দেখতে পাওয়া ষায়। একাদশ শতাকীতেও লিপি
পার্থক্য ছিল। এ-বিষয়ে অলবিরুণী লিখেছেন, "As in different parts of
India, the letters have different shapes, the numerical signs, too,
which are called aṅka, differ." লিপি-পার্থক্য স্বাভাবিক কারণেই
ঘটেছে। কিন্তু গণিতের মূল নীতি বদলায় নি। সংখ্যা-লিখনে দশগুণোত্তর
স্বানিক-মান পদ্ধতির কোন ব্যতিক্রম দেখতে পাওয়া যায়নি ভারতে।

দশগুণোত্তর পদ্ধতিতে স্থানিক-মান দ্বারা সংখ্যা-লিখনের প্রচলন ঐপ্তীয় ষষ্ঠ শতান্দী থেকে দশম শতান্দীর শিলালিপিতে দেখতে পাওয়া যায়। 346 সম্বৎ অর্থাৎ 595 শতান্দীর গুর্জর দানপত্তে, 646 এপ্তানের বেলহারি শিলালিপি, 972 শতাকীর অয়োঘবর্ষের দানপত্তে এই রীতির প্রচলন প্রমাণ করে। ভারতের বাইরে দক্ষিণ-পূর্ব এশিয়ায় এই পদ্ধতিব প্রচলন খ্রীষ্টীয় সপ্তম শতাব্দীর শিলালিপিতে দেখতে পাওয়া যায়। নীচের চিত্তে ভার নমুনা দেখানো হলো:



#### চিত্ৰ-29

উপরের চিত্র থেকে জানা ষায়, সপ্তম শতান্ধীতে ভারতের বাইরে বিন্দু (') ও রভাকার শূন্য (0) সমেত দশগুণোত্তর পদ্ধতিতে স্থানিক-মান দারা সংখ্যালিখন প্রচলিত ছিল। প্রীবিজয়, স্থমাত্রা, কম্বোডিয়া, জাভা (অর্থাৎ বর্তমান
ইন্দোনেশিয়া, থাইল্যাণ্ড, মালয়েশিয়া, ইত্যাদি) প্রভৃতি দেশে এই পদ্ধতির
নিদর্শন দেখতে পাওয়া যায়।

আজ আর আমাদের জানার কোন উপাদান বা সাক্ষ্য নাই কে বা কারা এই বিশ্বয়কর আবিষ্কার করেছিলেন। কোন এক প্রতিভাধর ঋষি? বা দেশের কোন গণিত-সমিতি? সঠিক উত্তর আমাদের জানা নাই। কিন্তু অভারধি যে-সব উপাদান ও সাক্ষ্য প্রমাণাদি আবিষ্কৃত হয়েছে, তাদের নিরিথে বলা যায়, ভারতে এই পদ্ধতি অস্ততপক্ষে প্রথম শতাব্দী থেকে তৃতীয় শতাব্দীর মধ্যে আবিষ্কৃত ও প্রচলিত হয়েছিল। কিন্তু এ-সব অমুমান। তব্ও ঋয়েদ ও অর্থবিদের সংখ্যা-নামগুলি বিচার করলে মনে হয় ভারতে দশগুণোত্তর পদ্ধতিতে সংখ্যা-লামগুলি বিচার করলে মনে হয় ভারতে দশগুণোত্তর পদ্ধতিতে সংখ্যা-লিখন ও স্থানিক-মানের বাবহার বহু প্রাচীনকাল থেকেই প্রচলিত ছিল।

দশটি অন্ধ দিয়ে সংখ্যা-লিখন মহাকাব্য-প্রাণ ইত্যাদি প্রায় সব গ্রন্থেই দেখতে পাওয়া যায়। এ-সম্পর্কে মহাভারত, পিঙ্গলের ছন্দসূত্র, বিষ্ণুপুরাণ, অগ্নিপুরাণ, বায়ুপুরাণ ও জৈন আগমশাস্ত্র, অর্থশাস্ত্র প্রভৃতির নাম করা যেতে পারে। দশগুণোত্র সংখ্যা-লিখন প্রণালীর গুরুত্ব ভারতীয়রা বেশ ভালভাবেই বুঝতেন। বায়ুপুরাণে একে ব্রন্ধার আবিষ্কার বলে উল্লেখ করা হয়েছে—

এষা সংখ্যাকৃতা সংখ্যা ঈশ্বরেণ স্বয়ন্তুবা।
গণনা বিনির্ত্তিষা সংখ্যা ত্রাহ্মী চ মাসুষী।।
মহাতারতেও এই পদ্ধতির অসংখ্য পরিচয় লিপিবদ্ধ আছে। এমন কি,—

আধুনিক কম্পুটার বিজ্ঞানের অতি ক্রত গণনার ইতিহাসের পরিচয়ও নল ও ঝতুপর্ণ রাজার এক কাহিনী থেকে জানতে পারা যায়। এ-বিষয়ে লেখকের "গণিতের ললিত পাঠে" সামাত্ত আলোচনা আছে। যাই হোক,—পাণ্ডবদের বনবাসকালে তুর্ঘোধন প্রভৃতিরা গরু দেখার ছল করে পাণ্ডবদের তৃঃখ-তুর্দশা দেখার জন্ত গিয়েছিলেন। তারই বর্ণনা প্রসঙ্গে বেদবাস এই কথা লিখলেন,—

দদর্শ স তদা গাবঃ শতশোহথ সহস্রশঃ।
অইয়েলকৈ শ্চ তাঃ সক্রশিঃ লক্ষয়ামাস পার্থিবঃ।।
অস্কয়ামাস বংসাংশ্চ জঞ্জে চোপস্তাস্থপি।
বালবংসাশ্চ যা গাবঃ কা (? ক) লয়ামাস তা অপি।
অথ স স্মারণং কৃতা লক্ষয়িতা তিহায়নান্।
রতো গোপালকৈঃ প্রীতো ব্যহরং কুরুনন্দন।।

অন্তবাদ: "তথন তিনি শতে শতে ও হাজারে হাজারে গরু দেখিলেন। অক্ষ ( অক্ষৈ: ) এবং চিহ্ন (লক্ষৈ:) দ্বারা রাজা সেই সকলের পরিচয় জানিলেন। অনম্ভর নৃতন বৎসসমূহকে অক্ষিত করিলেন। তন্মধ্যে দমনার্হ ও বালবৎসসমূহকে পৃথকভাবে গণনা করিলেন। তিন বৎসর বয়য় গোসমূহের সংখ্যাও বিশেষভাবে লক্ষ্য করিলেন। এইরূপে স্মারণ করিয়া কুরুনন্দন গোপালকগণ পরিবেষ্টিত হইয়া স্কুটিত্তে বিচরণ করিতে লাগিলেন।"

শুক্র বজুর্বেদেও এমনি সংখ্যার পরিচয় পাওয়া যায়। দৃষ্টান্ত থকর সামাত্ত একটু উদ্ধৃতি ও অন্তবাদ দেওয়া যাক:

"বসবস্তরোদশাক্ষরেণ ত্রোদশং তোমমুদজয়ংস্তয়্বজেষং রুজাশ্চতু-দশাক্ষরেণ চতুর্দশং স্তোমমুদজয়ংস্তয়্মজেষমাদিত্যাঃ পঞ্চদশাক্ষরেণ পঞ্চদশং স্তোমমুদজয়ংস্তয়্মজেষমদিতিঃ ধোড়শাক্ষরেণ ধোড়শং স্তোমমুদজয়ত্ত-মুজ্জেষং প্রজাপতিঃ সপ্তদশাক্ষরেণ সপ্তদশং স্তোমমুদজয়তয়ুজ্জেষং।"

অমুবাদ: "বহুগণ তথাদেশ অক্ষর ছন্দে ত্রোদেশ স্তোম জয় করেছেন, আমিও দে স্তোম জয় করব। ক্রদ্রেনগণ চতুর্দশ অক্ষর ছন্দে চতুর্দশ স্তোম জয় করেছেন, আমিও তা জয় করব। আদিত্য দেবগণ পঞ্চদশ অক্ষর ছন্দে পঞ্চদশ স্তোম জয় করেছেন, আমিও তা জয় করব। প্রজাপতি সপ্তদশ অক্ষর ছন্দে সপ্তদশ স্তোম জয় করেছেন, আমিও সে ছন্দে স্তোম জয় করব।" [বিজন বিহারী গোস্বামী]

মহাকবি কালিদাসের 'কুমারসম্ভবম্'-এ শতকিয়া গণনার একটি চিত্র দেখতে

পাওয়া যায়। যদিও এখানে দশগুণোত্তর পদ্ধতির কোন ইক্সিত নাই, তব্ও এই দাবলীল গণনার মধ্যে দশগুণোত্তর পদ্ধতি অহুসরণ করা হয়েছে বলে মনে হয়। অবশু যদি মহেশ্বননন্দন কার্তিকেয় নিতান্ত শিশু না হতেন, তা হলে হয়ভো মহাকবি দশগুণোত্তর পদ্ধতির ক্রমটি অহুসরণ করতেন। প্রাদক্ষিক শ্লোকটি উদ্ধ ত হলো:

একো নব ছো দশ পঞ্চ সপ্তেত্যজীগণরাত্মমুখং প্রসার্থ। মহেশ কঠোরগজদন্তপঙ্জিং ভদস্কগঃ শৈশবমৌদ্ধামৈশিঃ।।

অমুবাদ: "মহেশ্বনন্দন কথনো পিতার ক্রোড়ে গিয়া বালম্বলভ সৌন্দর্ঘ বিস্তার করিতে করিতে তদীয় কঠন্তিত ভূজনগণের দশনপঙ্জি এক, নয়, ছই, দশ, পাঁচ, সাত এইরপ গণনা করিতেন।"

হায় মহাকবি, আপনি যদি কার্তিককে সাপের দাঁত গুণতে না দিয়ে পিতার কলাক্ষের মালা গুণতে দিতেন! তা হলে হয়তো দশগুণোত্তর পদ্ধতি প্রচলন সময়ের একটা নির্দিষ্ট ও প্রামাণ্য সাল-তারিখ আমরা পেয়ে যেতাম। কিন্তু "পণ্ডিতেরা বিবাদ করে লয়ে তারিখ-সাল"। তা-ই হচ্ছিল বছকাল। যাই হোক, আদ্ধ আমাদের যে-কোন সংখ্যা-লিখনে কোন অস্থবিধা হয় না। অতি সহজ্ব সরল এই পদ্ধতিটির গুরুত্বও আদ্ধ আর অনুভূত হয় না। উনবিংশ শতান্দীর অন্তত্ম শ্রেষ্ঠ গণিতজ্ঞ লাপল্যাস এ-প্রসঙ্গে বলেন: "The idea of expressing all quantities by nine figures (digits) whereby is imperted to them both an absolute value and one by position is so simple that this very simplicity is the reason for our not being sufficiently aware how much admiration it deserves."

## ॥ সংখ্যা শব্দ পদ্ধতি ॥

খ্রীষ্টায় শতানীর প্রারম্ভকাল থেকে ভারতে এক প্রকার সংখ্যা লিখন প্রদৃতি প্রচলিত ছিল। এতেও দশগুণোত্তর স্থানিক মান পদ্ধতির প্রয়োগ আছে। কিন্তু ওই রীতিতে অক্ষে সংখ্যা প্রকাশ করা হয় না; বস্তু, প্রাণীর নাম বা ধারণা-বিশেষ ছারা সংখ্যা প্রকাশ করা হয়। বেমন, 'চন্দ্র', 'পৃথিবী', ছারা 1, 'ক্ষেত্র' ছারা 2, আবার শৃত্য (0) বোঝাবার জন্তু 'আকাশ', 'সম্পূর্ণ' ব্যবহৃত হতো। গণিত, জ্যোতিবিজ্ঞান, ছন্দশাস্ত্র প্রভৃতিতে এই রীতির

প্রচলন দেখা যায়। গণিত, জ্যোতির্বিজ্ঞান গ্রন্থাদি ছন্দে লিখিত হতো বলে এই পদ্ধতিতে বড় বড় সংখ্যা-লিখনের বেশ স্থবিধা ছিল। মধ্যযুগের বাংলা সাহিত্যে কবিরা জন্মতারিখ ও রচনাকাল বোঝাবার জন্ম এই পদ্ধতি অন্স্মবে করেছেন।

সংখ্যা প্রকাশে বিভিন্ন শব্দের মাত্র করেকটি প্রদন্ত হলো:

- 0= শ্ভা, থ, গগন, অম্বর, আকাশ, অভ্র, ব্যোম, অনন্ত, পূর্ণ ইত্যাদি।
- 1= वाहि, मंगी, हेम्पू, विस्तृ, ठल, कला, धवा, त्याम, मंगोळ हेजाहि।
- 2= বম, বমল, অধিন, দর্শ, লোচন, নেত্র, অক্রি, দৃষ্টি, চক্ষ্, নয়ন, বাহু, কর, কর্ণ, কুচ, ওঠ, জান্ত, মুগল, কুটুম ইন্ড্যাদি।
- 3= রাম, গুণ, ত্রিগুণ, লোক, ত্রিজগৎ, ভুবন, কাল, ত্রিকাল, হরনেত্র, অগ্নি, অনল, বৈশ্বানর, তপন, ফুশাফ, রত্ন ইত্যাদি।
- 4= বেদ, জ্রুতি, সম্দ্র, সাগর, জলধি, কেন্দ্র, বর্গ, আশ্রম, যুগ, বন্ধু, গতি ইত্যাদি।
- 5= বাণ, শর, শান্ত্র, সায়ক, ভূত, পর্ব, পাণ্ডব, তত্ত্ব, ভাব, ইন্দ্রিয় ইত্যাদি।
- 6= রস, অঙ্গ, কার, রাগ, ঋতু, অনি, দর্শন, কারক, কুমারবদন, লেখ ইত্যাদি।
- 7= পর্বত, সলিল, অচল, অদ্রি, নগ, গিরি, ঋষি, মৃনি, অত্রি, হুর, ধাতু, অহু, কলত্র, দ্বীপ, মাতৃকা ইত্যাদি।
- 8= वस, नाग, व्हि, गड़, निंह, वस्टूर, मर्भ, यक्रन देखानि।
- 9= অঙ্ক, নন্দ, গ্রহ, ছিন্ত, নিধি, ছার, কেশব, হুর্গা, পদার্থ ইত্যাদি।
- 10= দিশ, দিক, দিশা, আশা, অঙ্গুলি, ককৃত, রাবণশির, অবতার ইত্যাদি।

এই পদ্ধতি ব্যবহারের ইতিহাদ খুব প্রাচীন। সংহিতা, উপনিষদ, বেদাঙ্গ-জ্যোতিষ, শ্রোভ স্তা প্রভৃতিতে এই পদ্ধতির দৃষ্টান্ত পাওয়া যায়। পৌলিশ-সিদ্ধান্তের একটি উদ্ধৃতিতে এক বৃহৎ সংখ্যা নিম্নরূপে লিপিয়ন্দ্র হয়েছে:

খ-খ-অষ্ট-মূনি-রাম-অশ্বি-নেত্র-অষ্ট-শর-রাত্তিপাঃ=1582237800

এখানে, খ=0 অষ্ট=8, ম্নি=7, রাম=3, শ্বি=2, নেত=2, শ্ব=5 এবং রাত্তিপা:=1

[ অম্ব্রাপে, নগ-নিলীয়ুথ-বাণ-ভুজন্তম ৰক্তি-রসেয়ু-গজাখিন

ভান এবং বাম উভয় দিক থেকেই লিখন পদ্ধতির প্রচলন দেখা যায়। কিন্তু কালক্রমে ভান দিক থেকে বাম দিকে সংখ্যা-লিখনই সর্বসমত পদ্ধতিরূপে স্বীকৃত হয়। খুব সম্ভব দশগুণোত্তর স্থানিক মান পদ্ধতির সঙ্গে সামঞ্জশু বিধানের উদ্দেশ্যেই এ রকম হয়। আর এর ফলে অঙ্কনাম বামভো গভি-র উদ্ভব।

## ॥ সংখ্যা বর্ণ পদ্ধতি ॥

CONTRACTOR OF THE PROPERTY OF THE PARTY OF T

সংস্কৃত বর্ণমালার সাহায্যে সংখ্যা প্রকাশের ইতিহাস প্রাচীন। পঞ্চম শতাব্দীর পূর্বে এর ব্যবহার দেখা না গেলেও সপ্তম শতাব্দীতে এই পদ্ধতির বহুল প্রচলন দেখা যায়। ভারতের অন্ততম শ্রেষ্ঠ গণিতজ্ঞ আর্থভট এই পদ্ধতির বৈজ্ঞানিক রূপদান করেন।

সংখ্যা-শব্দ পদ্ধতি অতি প্রাচীন। এই পদ্ধতির নানান অস্থবিধা থেকেই অন্থর্মপ একটি নতুন পদ্ধতির প্রয়োজনীয়তা অবশুস্তাবী হয়ে উঠেছিল। বৈজ্ঞানিক, গাণিতিক রচনা এবং তার স্তুলমূহের সোষ্ঠির দংক্ষিপ্ততার উপর বছল পরিমাণে নির্ভরশীল। পুরাত্তন সংখ্যা-শব্দ পদ্ধতিতে এই সংক্ষিপ্ততা বজায় রাখা যেত না। ছল্দে লিখিত বৈজ্ঞানিক ও গাণিতিক গ্রন্থে সংখ্যা প্রকাশের জন্ম অনেক সময় একাধিক শ্লোকের প্রয়োজন হয়ে পড়ত। সংখ্যা-বর্ণ আবিষ্কার এই অস্থবিধা দ্বীকরণে প্রভূত সাহায্য করেছিল। কিন্তু এই পদ্ধতির অন্য অস্থবিধাও আছে। যা হোক, এই পদ্ধতির অন্যরূপ পদ্ধতি গ্রীস ও আরবেও প্রচলিত ছিল। গ্রীকরা এন।  $\beta$  স্থান এই পদ্ধতির অন্যরূপ পদ্ধতি গ্রীস ও আরবেও প্রচলিত ছিল। গ্রীকরা এন। কিন্তু গ্রীক ও আরবদের মতে ভারতে এই পদ্ধতি সাধারণের মধ্যে প্রচলিত ছিল না; গণিতজ্ঞ ও বিজ্ঞানীদের মধ্যেই প্রচলিত ছিল।

আর্যভট তাঁর আর্যভটার গ্রন্থের 'দশগীতিকা' অধ্যায়ে সংখ্যা-বর্ণ ব্যবহারের পুত্র দিয়েছেন :

## ৰৰ্গাক্ষরাণি বৰ্গেহবৰ্গেহবৰ্গাক্ষরাণি কাৎ ন্মে যঃ। খদ্বিনক্ষে স্বরা নৰ বর্গেহবর্গে নবাস্তঃবর্গে বা।।

"অর্থাৎ ক থেকে বর্গাক্ষরবর্গ (স্থান), (ষ থেকে) অবর্গাক্ষর অবর্গ (স্থানে বসবে যাতে) ঙ্ ও ম মিলে ষ (হয়)। নয়টি বর্গ ও নয়টি অবর্গ (মিলে) শৃত্যোপলক্ষিত আঠারটি স্থানে স্বর্বর্গ থাকবে। পরের স্থানগুলি এই প্রকার।"
পূর্বেই উল্লেখ করা হয়েছে আর্যভটের ক্ষুদ্র গ্রন্থটি মোটেই সহন্ধ নয়। এমন

কি অনেক পণ্ডিতও এই গ্রন্থের সব শ্লোকের সম্যক অর্থ ও ব্যাখ্যা বুঝতে পারেন না। উপরের শ্লোকটি তেমন একটি তুর্বোধ্য বলে মনে হতে পারে। তাই,— জটিলতার মধ্যে না গিয়ে আর্যভট আবিষ্কৃত সংখ্যা-বর্ণ পদ্ধতির সামান্ত আলোচনা করা যাক।

এই পদ্ধতিতে 'ক' থেকে 'ম' পর্যন্ত স্পর্শবর্ণগুলির মান যথাক্রমে 1 থেকে 25 পর্যন্ত ধরা হয়। আর 'য' থেকে 'হ' পর্যন্ত অবগাঁয় বর্ণগুলির মান যথাক্রমে 30, 40, 50, 60, 70, 80, 90 ও 100 ধরা হয়। স্বরবর্ণগুলি 10-এর ঘাতে প্রকাশিত হয়। 'য' থেকে 'হ' পর্যন্ত অবর্গ-স্থানগুলি 'অ' থেকে 'ঔ' পর্যন্ত নয়টি স্বরবর্ণ দ্বারা নির্দ্ধিত হয়।

আর্যভটের মতে দীর্ঘ ও হ্রম্ব স্বরবর্ণে কোন প্রভেদ থাকবে না। "অসম্পূক্ত স্বরবর্ণের সংখ্যা খ্যাপনের অধিকার নেই। এরা শুধু অক্ষস্থান এবং বর্গ ও অবর্গ-স্থান নির্দেশের জন্মে ব্যবহাত হয়ে থাকে।" (প্রা. ভা. গ. চ.)

এবার এর একটি তালিকা দেওয়া যাক:

## 

উপরে অ—অবর্গ-স্থান, ব—বর্গ-স্থান। মোট আঠারো স্থান, নয়টি বর্গ-স্থান ও নয়টি অবর্গ-স্থানে ভাগ করা হয়েছে। অমৃশ্য-স্থানে 'ক' থেকে 'ম' পর্যস্ত হয় । ব্যবহৃত হয় এবং 'ম' থেকে 'হ' পর্যস্ত অবর্গ বর্ণগুলি অবর্গ-স্থানে ব্যবহৃত হয়। প্রথম 'বর্গ-অবর্গ' জোড় বারা প্রথম বর্গ ও অবর্গ স্থান হটি গঠিত হয়েছে। অম্বর্গপভাবে অস্থান্ত স্থানগুলি গঠিত হয়েছে। প্রথম জোড়ের একক-দশক স্থান অ-বায়, বিতীয় জোড়ের শতক-সহজ্র স্থান ই-বারা নির্দ্ধপিত হয়েছে। এইভাবে অস্থান্ত জোড়গুলিও অপর স্বর্বর্ণর বারা নির্দ্ধপিত হয়। লক্ষণীয়, স্থান-নির্দেশ ছাড়া স্বর্বর্ণগুলির নিজস্ব কোন মান নাই। কোন সংখ্যা-বর্ণে স্বর্বর্ণ সংযুক্তির তাৎপর্য হচ্ছে দশগুণোত্তর পদ্ধতি অমুসারে সে-বর্ণের স্থান নিরূপণ করা। ছ-একটি উদাহরণ নিয়ে ব্যাপায়ট আর একটু পরিস্কার করা যাক:

'দ্ব' বর্ণটি বিল্লেখন করলে ( च+ঝ ) পাওরা যার। আচার্য আর্যভটের সংখ্যা
-বর্ণ পদ্ধতি অফুসরণ করলে বলা যার, এখানে ঘ-এর মান 4 এবং ঝ স্বরবর্ণ ছার।
নিয়ুত-স্থান স্থাচিত হচ্ছে।

হুতরাং ম=4×106

অম্ব্রপে খ্যুস্=2+10\*+3×10°+4×10°=4,320,000

কারণ, খ্যন্থ=খ্+উ+য+উ+য+খ=2×10<sup>4</sup>+3×10<sup>5</sup>+4×10<sup>6</sup>
[ এখানে খ=2, উ=10000, য=3, উ=100000, ঘ=4, এবং খ=
1000000 ]

বৃহৎ বৃহৎ সংখ্যা অতি সংক্ষেপে প্রকাশ করাই এই পছতির অন্যতম বৈশিষ্ট্য ও স্থাবিধা। কিন্তু একটি অস্থাবিধার জন্ম এই পছতি কথনো জনপ্রিয়তা অর্জনকরতে পারেনি। বাপ রে—বাপ! কার সাধ্য সংখ্যা প্রকাশের জন্ম যে অর্থহীন শব্দ গঠিত হয় তার উচ্চারণ করে!!! দৈত্য-দানব-রাক্ষমাদির দম্ভপঙ্ ক্তিও এরকম কোন কোন শব্দ উচ্চারণকালে রক্ষা পারে কিনা সন্দেহ। যেমন, এই শক্টি,—cha ya gi yi ngu shu chchlr—চ য় গি য়ি ও ও ও ছল্।

### । কটপয়ধি পদ্ধতি॥

এটিও সংখা-লিখনের আর একটি সাঙ্কেতিক পদ্ধতি। খুর সম্ভব আর্যন্তটি এই পদ্ধতি জানতেন। দক্ষিণ ভারতে এই পদ্ধতির বছল প্রচলন দেখা যায়। কিংবদন্তী অন্থযায়ী চতুর্থ শতাদ্দীর প্রথম বরক্ষচি এই পদ্ধতির আবিষ্কারক। তাঁর 'চক্র-বাক্য' বা 'বরক্ষচি-বাক্য' এই পদ্ধতিতে রচিত। পরহিত্ত পদ্ধতির আবিষ্কারক হরিদন্ত তাঁর 'গ্রহচার নিবন্ধ' গ্রন্থে এই পদ্ধতি ব্যবহার করেন। প্রথম ভাস্কর 'লম্বুভাক্ষরীয়'-তে এর সার্থক প্রয়োগও দেখিয়েছেন। আর্যভটের পদ্ধতির মত এটিও ভারতের সর্বত্র জনপ্রিয়তা অর্জন করতে পারেনি। সামান্ত পরিবর্তনসহ এই পদ্ধতির কমপক্ষে চারটি প্রকারভেদ দেখতে পাওয়া যায়। বর্তমান লেখকের সণিতের কথা ও কাহিনীতে, ও গণিতের ললিত পাঠে তৃটি রূপের সংক্ষিপ্ত আলোচনা আছে।

এই পদ্ধতিতে সংস্কৃত বর্ণমালার ব্যঞ্জনবর্ণ ও পঞ্চমবর্ণ দ্বারা যথাক্রমে 1 থেকে

9 এবং 0 ( শূন্ম ) স্থৃচিত করা হয়। এই পদ্ধতিতেও স্বর্বর্ণের কোন মান নাই

এবং তার খুনী মত ব্যবহার চলতে পারে; যুক্তাক্ষরের মানটি গৃহীত হয়।

আর্যভটীয় পদ্ধতির সঙ্গে এর একটি বিশেষ পার্থক্য যে, এথানে অর্থহীন শব্দের পরিবর্তে অর্থবহ শব্দ গঠিত হয়। এথানেও ডান দিক থেকে লেথার বাতি ছিল। যেমন,—

ভবতি=ভ-ব-তি=446=644, এখানে, ভ=4, ব=4 এবং ত=6

ভত্বলোকে=6431=1346 "অঙ্ক নাম্বাম তো গতি"-র অনুদরণ এখানেও দেখা বার।

## ॥ यूज्ञ—0 ॥

শৃত্য আবিষ্ণার বিশ্বগণিতের শ্রেষ্ঠতম আবিষ্ণার বললে বোধ হয় অত্যক্তি হয় না। সামাত্য এই একটি চিহ্ন গণিতের উন্নতি ও সমৃদ্ধিতে কি অসাধারণ ভূমিকা গ্রহণ করেছিল তার প্রকৃত মূল্যায়ন সন্তব তথনই যথন আমরা শৃত্য আবিষ্কার-পূর্ব গণিতের অবস্থাটি অরণ কবি। আজ নি:সন্দেহে প্রমাণিত হয়েছে অসামাত্য এই আবিষ্কার ভারতেই হয়েছিল, এবং ভারতীয় গণিতজ্ঞ ও দার্শনিকরা এ-বিষয়ে সমান ভূমিকা নিয়েছিলেন। এ-প্রসঙ্গে অধ্যাপক হলস্টেডের মন্তবাটি অরণ করা বেতে পারে: "The importance of the creation of the Zeromark can never be exaggerated. This giving to airy nothing, not merely a local habitation and a name, a picture, a symbol, but helpful power, is the characteristic of the Hindu race whence it sprang. It is like coining the Nirvana into dynamos. No single mathematical creation has been more potent for the general on-go of intelligence and power." [মোটা হরফ লেখকের]

ৰীষ্টপূৰ্ব বিতীয় শতাৰীর পিঙ্গলের ছন্দস্তে শৃশু ব্যবহারের উল্লেখ পাওয়া বায়। তবে পিঙ্গল বিয়োগ অর্থে শৃশু ব্যবহার করেছেন, হয়তো দে-সময় শৃশু সংখ্যা-রূপে পরিগণিত হয়নি। কিন্তু এ-বিষয়ে সন্দেহ নাই যে ভারতীয়রা সেই প্রাচীন কাল থেকে শৃশের সঙ্গে পরিচিত ছিলেন।

বকশালী পাণ্ডুলিপির উদাহরণের মধ্যে শৃতের বাবহার দেখা যায়; পৌলিশের দিলান্তে শৃতা বাবহার আছে। পৌলিশ দিলান্তে শৃতাকে সংখ্যা হিসাবে গণ্য করা হয়েছে বলে ধারণা করা হয়। ষঠ শতান্ধীর জিনভজগণি বিশাল সংখ্যার (224, 400, 000 000) উল্লেখ করে বলেছেন 'বাইশ, চুয়াল্লিশ এবং আটটি শৃত্ত'' এবং 3,200,400,000 000-এই সংখ্যার ক্ষেত্রে 'বিল্লিশ, ছটি শৃত্ত', চার, আটটি শৃত্ত' বলায় এই দিলান্ত করা যায় ওই সময় শৃতা অর্থে 'কিছুনা' বোঝাতনা। অপরপক্ষে, শৃত্তা তথন সাংখ্যাক রূপও পেয়েছিল। জিনভজ্ব প্রদত্ত পাটীগণিতের একটি প্রক্রিয়া থেকে আরো প্রমাণিত হয় শৃত্তা তথন সংখ্যা হিসাবে ব্যবহৃত হতো। যেমন,— 241960 407150 —241960 40715। আর্থই-শিত্তা প্রথম ভান্তর তাঁর 'মহাভান্ধরীয়'গ্রন্থে শৃত্তা ছারা বিয়োগের বিষয় আলোচনা করেছেন। স্কতরাং অনুমান করা যায়, প্রীন্তীয় শতান্ধীর প্রারম্ভকাল

থেকেই ভারতে শৃত্যের ব্যবহার ছিল এবং এর সাংখ্যিক রূপটিও তাঁদের অজ্ঞাত ছিলনা।

শৃংখ্যর ক্রমবিকাশে এর তুটি রূপ দেখা যায়: একটি বিন্দু (°) রূপ ও অপরটি রজীয় রূপ (০)। বকশালী পাণ্ডুলিপিতে বিন্দুর্রপটি (°) দেখা যায়; তবরুর বাসবদজায় শৃংখ্যর এই রূপটিই বর্ণিত হয়েছে। আবার পাটাগণিতে পঞ্চরাশিক ও সপ্তরাশিক প্রভৃতি অস্কের ক্রেক্তে অজ্ঞাতবাশির পরিবর্তে শৃংখ্যর বৃত্তীয় রূপটি (০) দেখা যায়। ভাষ্করের স্থাকষণ অস্কেও এটি দেখা যায়। খ্রীষ্টায় সপ্তম শতান্দীর বহির্ভারতের শিলালিপিতেও শৃংখ্যর বিন্দু ও বৃত্তীয় নিশ্বী পরিলক্ষিত হয়। কালক্রমে বিন্দু দ্বারা ঋণাত্মক সংখ্যা স্থাচিত হতো বলে বোধ হয় শৃংখ্যর এই রূপটি পরিতাক্ত হয় এবং বৃত্তীয় রূপটি শীক্ষতি লাভ করে।\*

এই অধ্যায়ে ভারতে সংখ্যা-লিখনের বিভিন্ন পদ্ধতি ও শৃত্যের ক্রমবিকাশের ধারাটি সংক্ষেপে বণিত হলো। প্রাচীন ভারতে আরো কয়েক প্রকার সংখ্যা-লিখন পদ্ধতি প্রচলিত ছিল। কিন্তু তার মধ্যে দশগুণোত্তর রীতিতে স্থানিক-মান পদ্ধতিই সর্বজনীনতা লাভ করেছে। অন্য পদ্ধতিগুলির ঐতিহাসিক তাৎপর্য ছাড়া আর কিছু অবশিষ্ট নাই। তবুও এই সব পদ্ধতির সঙ্গে পরিচিত হয়ে আমরা প্রাচীন ভারতীয় গণিতজ্ঞদের চিন্তা-ভাবনা ও মনীবার সঙ্গে পরিচিত হই।

从李维。往几

শূল্যের গাণিতিক ও অন্তান্ত তাৎপর্য অফীদশ অধ্যায়ে ক্রফরা।

# চতুর্দশ অথার

"Arithmetic has been the queen and the hand maiden of the Sciences from the days of the astrologers of Chaldea and the high priests of Egypt to the present days of relativity, quanta, and the adding machine."

-Kasner and Newman

## ॥ পাটীগণিতের বিষয়বস্তু॥

CAN STRUCTURE OF STREET OF STREET STREET STREET STREET

বৈদিক সভ্যভার উন্মেষকাল থেকেই ভারতে পাটীগণিতের উন্তর । "বৈদিক স্থিমিগ গণিত বলিতে দাধারণতঃ পাটীগণিত ও জ্যোতিষকে বৃঝিতেন।" কিন্তু পাটীগণিত বিষয়ে পৃথক গ্রন্থ রচনা অনেক পরবর্তী কালে হয়েছে। প্রাচীনতম যে গ্রন্থটিতে পাটীগণিত বিষয়ে আলোচনা আছে, তা হলো বকশালী পাণ্ড্লিপি। আর্যভট ও ব্রহ্মগুপ্ত এ-বিষয়ে কোন পৃথক গ্রন্থ রচনা করেননি। জ্যোতির্বিজ্ঞানের আলোচনা প্রদক্ষে পাটীগণিতের কিছু নিয়ম ও পদ্ধতির সংক্ষিপ্ত অবতারণা করেছেন মাত্র। শ্রীধরের পর থেকে পাটীগণিত বিষয়ক গ্রন্থ রচিত হয়েছে। জিশভিকা, গণিত-সার-সংগ্রন্থ, গণিত-ভিলক, লীলাবভী, গণিত-কৌমুদী, পাটী-সার প্রভৃতিতে পাটীগণিতের মালোচনা আছে। এ-সব গ্রন্থে বন্ধাপ্তর কথিত কুড়িটি 'পরিকর্ম' ও আটাট 'ব্যবহার' নানা ধরনের অঙ্কের উদাহরণের সাহায্যে দেখানো হয়েছে। তালিকাটি অবশ্য নব্ম শত্নীক্ষর ভাষ্যকার পৃথুদকস্বামাক্ষত ব্রহ্মগ্রপ্তর নয়।

### ॥ পরিকর্ম॥

(1) সংকলিত (যোগ), (2) ব্যবকলিত (বিয়োগ), (3) গুণন, (4) ভাগাহার, (5) বর্গ, (6) বর্গমূল, (7) ঘন, (8) ঘনমূল, (9—13) পঞ্চ-জাতি, (14) ত্রৈরাশিক, (15) ব্যন্ত-ত্রেরাশিক, (16) পঞ্চরাশিক, (17) সপ্তরাশিক, (18) নব রাশিক, (19) একাদশ রাশিক, (20) ভাগু ও প্রতিভাগ্ত।

### প্রতিষ্ঠান কর্মান বিশ্ব বিশ্র বিশ্ব বিশ্র

(1) মিশ্রক (মিশ্রণ), (2) শ্রেটা (শ্রেণী), (3) ক্ষেত্র, (4) খাত, (5) চিতি, (6) ক্রাকচিক, (7) রাশি, ও (8) ছায়।

ভাস্করের লীলাবতী ও বীজগণিতের বিভিন্ন অধ্যান্তের পরিচয় প্রদক্ষে উপরোক্ত বিষয়গুলির বেশীর ভাগের সঙ্গে ইতিমধ্যে আমাদের পরিচয় ঘটেছে। স্থতরাং দেখা যাচ্ছে, স্থানুর প্রাচীনকাল থেকে ভারতীয় গণিতে বিষয়বস্তুর একটি ঐতিহ্য আছে। অবশ্য প্রতিভাধর স্ক্রমশীল গণিতজ্ঞদের গ্রন্থে তৃ'একটি সংযোজনও লক্ষ্য করা যায়।

### ॥ প্রাথমিক চার নিয়ম॥

ষধন কালি-কলম-কাগজ আবিষ্ণুত হয়নি, তথনও মান্ব্য গাণিতিক গণনা করেছে। বিখ্যাত গ্রীক গণিতজ্ঞ আর্কিমিডিদ রোমান দৈল্লদের হাতে নিহত হবার সময় মাটিতে জ্যামিতিক চিত্র অক্ষন করে গাণিতিক সমস্যা সমাধানে বিভারে ছিলেন,—একথা অনেকের জানা। প্রাচীন কালে ভারতেও ধুলোর সাহায্যে মাটিতে বা কাঠখণ্ডের উপর গাণিতিক গণনা করা হতো। তাই এক সময় ভারতীয় গণিতে গণনা অর্থে ''ধূলি-কর্ম'' বোঝাত। পাটীগণিত হাট পদের সমষ্টি,—পাটী+গণিত। পাটী শশ্বের অর্থ কাঠখণ্ড (বোর্ড) আর গণিতের অর্থ গণনা। পাঠশালায় পড়ার সোঁভাগ্য খাদের হয়েছিল, তাঁদের পাটী' শস্বটি অপরিচিত নয়। একগুছে তালপাতার পাটী নিয়ে তারস্বরে অ, আ, ক, খ ও একে চন্দ্র, চয়ের পক্ষ লেখা ও পড়ার কথা তাঁদের আজ্ঞ মনে পড়তে পারে।

যোগ-বিয়োগ-গুণ-ভাগ প্রাথমিক চার নিয়ম। কিন্তু ভারতীয় গণিতে আটটি প্রাথমিক নিয়ম স্বীক্ষত। অবশু প্রাচীন গ্রন্থসমূহে এ-সব নিয়মের উল্লেখ নাই। আর্যভট ছটি নিয়মের বর্ণনা করেছেন,—বর্গমূল ও ঘনমূলের। ব্রহ্মগুণ্ডের ঘনমূলের নিয়ম-পদ্ধতি দিয়েছেন। কোথাও কোথাও অতি সংক্ষেপে যোগ-বিয়োগের উল্লেখ থাকলেও কোন গণিতগ্রন্থে এদের বিস্তৃত আলোচনা নাই। গুণনের অনেক পদ্ধতির উল্লেখ থাকলেও বিস্তৃত আলোচনা নাই। ভাগ, বর্গ, বর্গমূল, ঘন ও ঘনমূল সম্বন্ধেও একই কথা বলা যেতে পারে। এর প্রধান কারণ এগুলি এমনি প্রাথমিক পর্যায়ের যে, আর্যভটীয় বা ব্রহ্ম-স্ফুট-সিদ্ধান্তের মত

প্রান্থে এদের আলোচনার স্থযোগ থাকে না। হায়, পাঠশালার ছেলেদের জন্য রচিত যদি কোন গ্রন্থ পাওয়া যেত।

সমস্ত গাণিতিক প্রক্রিয়াই হুটি প্রক্রিয়া যোগ-বিয়োগের রূপ-বৈচিত্রা ব্যতিরেকে আর কিছুই নয়। মহাভাঙ্করীয় প্রণেডা প্রথম ভাঙ্করের মতে পাটীগণিতে চারটি প্রাথমিক নিয়ম স্বীকৃত হলেও সব প্রক্রিয়াগুলিকে হুটি শ্রেণী 'ক্রাস' ও 'রিদ্ধি'-রূপে বিভক্ত করা যায়। প্রথম ভাঙ্করের এই সংশ্লেষণী মন্তব্য বিশেষরূপে লক্ষ্য করার মত। বস্তুত, এই মন্তব্যটির মধ্যে ভারতীয় গণিতজ্ঞানের মনীষার চরম উৎকর্ষের পরিচয় নিহিত আছে বললে অত্যক্তি হয় না।

### ॥ (यात्रा ॥

যোগ-প্রক্রিয়ার উল্লেখ অতি প্রাচীন কোন গণিত বা জ্যোতিষ গ্রন্থে নাই।
কিন্তু যোগ অর্থে সর্বত্রই অনেকগুলি পারিভাষিক শব্দ ব্যবহৃত হয়েছে। যেমন,—
সঙ্কলিতা, সঙ্কলন, মিঞান, সন্মেলন, সংযোজন, প্রক্রেপণ, মুতি ইত্যাদি।
দশ্ম শতাব্দীর দ্বিতীয় আর্যভট প্রকৃত প্রতিভাসম্পন্ন ছিলেন না বলেই হয়তো এই
অতি প্রাথমিক প্রক্রিয়ার সংজ্ঞা নির্মণণ করে থাকবেন। তিনি বলেছেন, বহু
সংখ্যাকে একীকরণের নাম যোগ। তাঁব সংজ্ঞাটি নিয়ন্ত্রপঃ

সংখ্যাবতাং वद्यनात्यकीकत्रगः छत्तव मङ्गलिखम्।

ভাষ্কর এই প্রক্রিয়াটি সম্পন্ন করার জন্ম একই স্থানের অঙ্কগুলিকে প্রভাক্ষ বা বিপরীত পদ্ধতিতে যোগ করতে বলেছেন। তাঁর স্বত্তঃ

"कार्याः क्रमाङ्क मर्डाश्यवाद्यार्शा"

অর্থাৎ "সংখ্যাগুলির যোগ তাহাদের স্থানের অন্নসারে গ্রহণ করিতে হইবে।" ভাস্কর যোগের উদাহরণ দিয়েছেন সভ্য, কিন্তু প্রভাক্ষ বা বিপরীত পদ্ধতির অর্থ ও ব্যাখ্যা দেন নি। পরবতীকালের বিখ্যাত ভাষ্যকার গঙ্গাধর এর আভাদ দিয়ে বলেছেন:

"অঙ্কনাম্ বামতোগতিরিতি বিতর্কেণ একস্থানাদি যোজনম্ ক্রমঃ উৎক্রমস্ত অন্তঃস্থানাদি যোজনম্।"

এই উদ্ তাংশ থেকে জানা যাচ্ছে, প্রত্যক্ষ ও বিপরীতের অর্থ যথাক্রমে ক্রম

### ॥ প্রত্যক্ষ বা ক্রম পদ্ধতি॥

এই পদ্ধতির সঙ্গে বর্তমানে প্রচলিত যোগ-পদ্ধতির কোন পার্থক্য নাই। এই পদ্ধতিতে প্রক্রিয়াটি ডানদিক থেকে শুরু হয়। প্রথমে একক-স্থান-এর অন্ধ্রুলি যোগ করে যোগফল লেখা হয়; তারপর দশক-স্থান-এর অন্ধ্রুলি যোগ করে যদি একক-স্থানের অন্ধ্রের যোগফলে দশক-স্থানের কোন অন্ধ্র থাকে তা-ও যোগ করে লেখা হয়। অর্থাৎ এটিই যোগ-প্রক্রিয়ার আধুনিক পদ্ধতি।

### ॥ বিপরীত বা উৎক্রম পদ্ধতি॥

একে বিপরীত বা উৎক্রম পদ্ধতি বলার কারণ এই পদ্ধতিতে ভামদিক থেকে যোগ করার পরিবর্তে বামদিক থেকে শুরু করা হয়। এই পদ্ধতিতে অস্ত্য-স্থানের অঙ্কসমূহ যোগ করে নীচে লেখা হয়। তারপর পরবর্তী স্থানের অঙ্কসমূহ যোগ করে পূর্ব ফলটি সংশোধিত করা হয়। যেমন,—মনে করা যাক, অস্ত্য-স্থানের অঙ্কসমষ্টি 18 এবং পরবর্তী স্থানের অঙ্কসমষ্টি 11 হলে, অস্ত্য-স্থানের সমষ্টি সংশোধিত করে 18-এর জায়গায় 19 লেখা হবে। ৪ মুছে 9 লেখা তথনকার দিনে তেমন কঠিন ছিল না। কারণ, প্রাচীন ভারতে কাগজ-ফলমে লেখার প্রচলন ছিল না; ধূলা অথবা চকখড়ি দিয়ে পাটাতে লেখার প্রচলন ছিল।

### ॥ विद्यार्थ ॥

দিতীয় আর্থভট, ভাস্কর ও জ্ঞানরাজপুত্র স্থানাদ বিয়োগের প্রক্রিয়ার উল্লেখ করেছেন। কিন্তু স্থানাদই প্রক্রিয়াটির বিস্তারিত ব্যাখ্যা ও আলোচনা করেছেন। তিনি মনে করেন, এই প্রক্রিয়ায় বিপরীত পদ্ধতিটি সহজ। বিয়োগ অর্থে ব্যুৎকলিত, ব্যুৎকলন, শোধন, পাতন, অন্তর ইত্যাদি পারিভাষিক শন্ধ ব্যবহৃত হতে দেখা যায়। দিতীয় আর্থভট বিয়োগের এরূপ সংজ্ঞা দিয়েছেন,—

### यजभाखः मर्वस्नार जदनावकिनज्य जू स्मयकः स्मयम्।

অর্থাৎ 'সর্বধন' থেকে কিছু সংখ্যা নিয়ে নেওয়াকেই বিয়োগ বলে এবং অবশিষ্টকে 'শেষ' বলে। বলা বাছন্য, 'শেষ' মানে বিয়োগফল।

### ॥ প্রত্যক্ষ পদ্ধতির একটি উদাহরণ।।

স্থানাস (1000 – 360) এই উদাহরণট নিয়ে ব্যাখ্যাম্বরূপ বলেছেন ষেহেতু

0-থেকে 6 বিয়োগ করা যায় না, সেহেতু 0-ম্বানে 10 ধরে নিতে হবে। কারণ,
একক-স্থান থেকে উধর্ব ক্রমে সব অঙ্কাই 10-এর গুণিতক।

### ॥ खनन ॥

ভারতীয় গণিতে গুণন-প্রক্রিয়ার অস্তত সাত প্রকার পদ্ধতি প্রচলিত ছিল। বিশ্বপ্র গোমৃত্রিকা, ভেদ, থণ্ড ও ইষ্ট এই চার ধরনের পদ্ধতির কথা বলেছেন। ভাদ্ধর পাঁচ প্রকারের উল্লেখ করেছেন। গুণনের এতগুলি পদ্ধতি আবিদ্ধৃত হওয়ার কারণ বোধ হয় এই যে, গুণন-পদ্ধতিতে জটিলতা বেনী, আর ভুলের সম্ভাবনাও বেনী। প্রাচীন ভারতে গুণন অর্থে হনন, বহ, ক্ষয় ইত্যাদি শব্দের ব্যবহার পরিলক্ষিত হয়। আর্যভট, ব্রহ্মগুশু, শ্রীধর ও তাঁদের উত্তরস্থীরা অনেকেই হনন' শন্টি গুণন অর্থে ব্যবহার করেছেন। প্রাচীন বৈদিক সাহিত্য 'গুণন', শুশুস্ত্রে 'অভ্যান', আর বকশালী পাণ্ডুলিপিতে 'পরক্ষারকৃত্ক' শন্ধগুলিও দেখা যায়।

### ॥ গোমূত্রিকা পদ্ধতি॥

আচার্য ব্রহ্মগুপ্ত কেন যে এই পদ্ধতির এরপ নামকরণ করেছিলেন, তার কোন সঙ্গত কারণ ও তাৎপর্যপূর্ণ অর্থ খুঁজে পাওয়া যায় না। গোম্ত্রের অর্থ অতি স্পষ্ট। কিন্তু পদ্ধতিটির সঙ্গে এর কি গভীর সম্পর্ক থাকতে পারে বলা তু:সাধ্য। এই পদ্ধতিতে অবশ্য যে ছক ব্যবহৃত হয়, তা সর্পিলাকার গোম্ত্রের মত। কিন্তু বাইরের আকার দেখে একটি পদ্ধতির নামকরণ হয়েছে বলে মনে হয় না। প্রাচীন ভারতীয় গণিতের ঐতিহাসিকরাও এ-বিষয়ে কিছু আলোকপাত করেননি,—কিইংরেজী কি বাংলায় কোন আলোচনা নাই। ডঃ প্রদ্বীপকুমার মজুমদার তার প্রোচীন ভারতে গণিতচর্চা গ্রেছে একইভাবে বলেছেন, "গোম্ত্রিক বলতে গরুর মৃত্রের মত ইতন্ততঃ বিক্ষিপ্তাকারে যে পদ্ধতিতে গুণ করা হয় তাকে গোম্ত্রিক পদ্ধতি বলা হয়।" কিন্তু আমার মনে হয় ঐতিহাসিকদের এই ধারণাটি ঠিক নয় চকেটিলার অর্থশান্তে 'গোম্ত্রু' শদ্ধি আছে। এ-বিষয়ে আলোচনা শেষ অধ্যাক্ষেপ্তরৈয়।

এবার এই পদ্ধতিতে কিভাবে গুণ করা হয়, তার একটি উদাহরণ দেওয়া যাক ১ উদাহরণ ঃ 1132×123

এই পদ্ধতিতে নিমুদ্ধপ ছক ব্যবহৃত হতো:

| 1 1    |                        | 2           | 1    | 1  | 1 | 3 | 2 |   |   |   |  |
|--------|------------------------|-------------|------|----|---|---|---|---|---|---|--|
| 2      |                        | 3 2         |      | HE |   |   | 2 |   |   |   |  |
| 3      | T.                     | 1 3         | 2    |    |   |   | 3 | 3 | 9 | 6 |  |
| হৃতবাং | নির্ণেয় গুণ্ <b>য</b> | ্<br>শ্ৰ=13 | 9236 |    | 1 | 3 | 9 | 2 | 3 | 6 |  |

## 🕬 স্থানিক জিলাল 🗀 ॥ ইষ্টপদ্ধতি।।

ব্রহ্মগুপ্ত কথিত এই পদ্ধতিকে বীজগাণিতিক পদ্ধতি বলা যেতে পারে। এই পদ্ধতিতে স্ববিধামত কোন ঐচ্ছিক রাশি যোগ বা বিয়োগ করে গুণফল নির্ণয় করা হয়। ব্রহ্মগুপ্ত এই পদ্ধতির সংজ্ঞায় বলেছেন,—

গুণয়ো রাশিগু পকাররাশিনেষ্টাবিকোনকেন গুণঃ। গুণয়োষ্টবধো ন যুভো গুণকেহভ্যবিকোনকে কার্যঃ।।

ভাৰান্ত্ৰাদ ঃ গুণকের সঙ্গে কোন ইষ্টরাশি যোগ বা বিয়োগ করে তা দিয়ে গুণাকে গুণ করবে। তারপর ওই ইষ্টরাশি দ্বারা গুণ করে মাগের ফলে যোগ বা বিয়োগ করবে।

#### উদাহরণ ঃ

- (1)  $145 \times 15 = 145 \times (15+5) 145 \times 5 = 2900 725 = 2175$
- (2)  $145 \times 15 = 145 \times (15 5) + 145 \times 5 = 1450 + 725 = 2175$

## ॥ আংশিক গুণন পদ্ধতি।।

সপ্তম শতাকী থেকে এই পদ্ধতির প্রয়োগ দেখা যায়। গুণা বা গুণকের হুই বা ততোধিক আংশিক বিভান্ধন দ্বারা এই পদ্ধতিতে গুণন-প্রক্রিয়া সম্পন্ন করা হয়। বর্তমানে এই পদ্ধতি বীজগণিত, ত্রিকোণমিতি ইত্যাদিতে বছল ব্যবহৃত হয়। আসলে এটি আধুনিক গণিতের বিচ্ছেদ নিয়ম।

#### উদাহরণ ঃ

- (1)  $12 \times 135 = (4+8)135 = 4 \times 135 + 8 \times 135 = 1620$
- (2)  $11 \times 144 = (6+3+2)144 = 6 \times 144 + 3 \times 144 + 2 \times 144$ = 864 + 432 + 288 = 1584

## া কপার্ট-সন্ধি পদ্ধতি ॥

ব্রহ্মগুপ্ত গুণনের চার প্রকার পদ্ধতির কথা বলেছেন বটে, কিন্তু এই পদ্ধতির কথা বলেননি। অথচ এটি সাধারণ মাস্ক্ষের কাছে ছিল একটি জনপ্রিয় পদ্ধতি। এমনকি ভারতের বাইরে আরব জগতেও এর জনপ্রিয়তা ছিল। আলখোয়ারিজমি, অল কলসাদী প্রভৃতি আরব গণিতজ্ঞদের গ্রন্থেও এই পদ্ধতিটি দেখতে

পাওয়া যায়। আরবে এই পদ্ধতিটি 'অল অমল অল হিন্দি', 'তারিখ অল হিন্দি' নামে পরিচিত ছিল। শ্রীধর ও দিতীয় আর্যভটের গ্রন্থে পদ্ধতিটি দেখতে পাওয়া যার। শ্রীধরাচার্য এই পদ্ধতির সংজ্ঞার বলেছেন যে, গুণকের নীচে গুণ্য বসিয়ে পরপর প্রভ্যক্ষ বা বিপরীত পদ্ধতিতে গুণককে সরিয়ে গুণকল নির্ণয় কবার নাম কপাট-সন্ধি পদতি। শ্রীধরের দঙ্গে শ্রীপতির বেশ মিল আছে। শ্রীপতির সংজ্ঞাটি এরূপ:

বিত্যস্ত গুণ্য গুণ্কাখ্যরাশে—রধঃ কপাট্রয় সন্ধি যুক্ত্যা উৎসার্য-২ন্যাত ক্রমশো হলুলোমং, বিলোম মাহো-উভভৎস্থমের।

দ্বিতীয় আর্যভট বলেছেন, গুণোর শেষ বা অস্তা অক্ষ দারা পরপর গুণ করার নাম কপাট-সন্ধি।

এই পদ্ধতির প্রয়োগে ঘটি বিষয়ে সতর্ক থাকতে হয়,—(i) গুণ্য ও গুণকের আপেক্ষিক অবস্থান ও (ii) গুণোর অঙ্ক মৃছে দেই স্থানে গুণফলের অঙ্কের সংস্থাপন।

উদাহরণ ঃ

145×15

এই পদ্ধতিতে অঙ্কগুলির (গুণা ও গুণকের) অবস্থান নিমুদ্ধপ:

- (a) গুণোর প্রথম অঙ্ক 5 দারা গুণকের অঙ্কগুলি গুণ করা হলো। স্থতরাং 5×5-25; 25-এর 5-কে গুণকের 5-এর নীচে বদানো হলো, আর হাতে 2 থাকল। আবার 5×1=5; এবার 5-এর সঙ্গে হাতের 2 যোগ করলে 7 হয়। অত এব গুণকের 5-কে 'হনন' করে তার জায়গায় 7 বদল। 5 মুছে 7 বসানো দে-যুগে যে অস্থবিধান্তনক ছিলনা তা আগেই বলা হয়েছে। এখানে '→' চিহু ষারা গুণ্য ও গুণকের **নতুন অবস্থান** দেখানো হয়েছে।
- (b) দ্বিতীয় ধাপে গুণকটিকে একম্বর বামদিকে দরিয়ে নতুন অবস্থানটি সাজিয়ে নিতে হবে।

$$\begin{array}{c}
 15 \\
 1475 \longrightarrow 1675
 \end{array}$$

15 1475—→1675 (c) ঠিক আগের মত আবার গুণ করে 4×5=20 হলো; হাতে থাকল 2।

পুনবায়  $4 \times 1 - 4$ , আর হাভের 2 যোগ করে 6 হলো। এই 6 গুণাের 4-কে 'হনন' করে তার স্থান দথল করল।

(d) গুণকটিকে আবার একঘর বামদিকে সরালে নতুন অবস্থান হবে:

(e) পূর্বের মত  $1 \times 5 - 5$ ; 5 + 6 = 11। অতএব 6 মৃছে তার জারগার 1 বসালে 1 হাতে থাকে। আবার  $1 \times 1 - 1$ , 1 + 1 = 2; স্কতরাং এই 2 বামদিকে বসল। এবার গুণাকে 'হনন' করে কেবল 2175 লেখা হলো।

অপরিচয়স্ত্রে পদ্ধতিটি দীর্ঘ ও ক্লান্তিকর বলে মনে হতে পারে। কিন্তু আদলে তা নয়। সামান্ত অভ্যাস করলেই সব জলের মত পরিষ্কার হয়ে যায়। পাষ্কাল তো তাই বলেছেন, 'habit is the second nature." কপাট-সন্ধি প্রণালী থেকে একটি জিনিস পরিষ্কার বোঝা যাচ্ছে 'গুণন' অর্থে কেন প্রাচীন ভারতীয় গণিতজ্ঞরা 'হনন', 'বব', 'ক্লয়' ইত্যাদি শব্দ ব্যবহার করতেন।

# ॥ কপাট-সন্ধি ( দিতীয় প্রকার )॥

এই পদ্ধতি সত্যিকার কপাট-সন্ধি কিনা নিশ্চিত করে কিছু বলা যায় না। গণিত-মঞ্জরী'-র লেখক গণেশ কিন্তু এটিকে কপাট-সন্ধি বলে অভিহিত করেছেন। ভুধু আমাদের দেশে নয়, বিদেশেও এই পদ্ধতি প্রভূত জনপ্রিয়তা অর্জন করেছিল, —ইউরোপেও এই পদ্ধতির প্রচলন দেখা দিয়েছিল। এর উন্তর ও প্রচার সম্পর্কে D. E. Smith তাঁর History of Mathematics-এ বলেছেন,—"It was likely developed in India, for it appears in Ganesh's commentary on the Līlāvati and in other Hindu works. From India it seems to have moved northward to China, appearing there in an arithmetic of 1593. It also found its way into Arab and Persian works, where it was the favourite method for many generations."

গণেশ কত 'গণিত-মঞ্জরী''-তে পদ্ধতিটির নিমন্ত্রপ স্থা পাওয়া যায় : গুণ্যে যতগুলি অন্ধ আছে ততগুলি ঘর কাট (উল্লয়ভাবে) এবং গুণকে যতগুলি অন্ধ আছে ততগুলি ঘর কাট (অনুভূমিকভাবে)। তির্মক রেথা দার। ঘরগুলি বিভক্ত কর। গুণকের অঙ্কগুলি দার। গুণ্যের প্রতিস্থানের अक ७१ करत कलछिनि छिर्यक घरत छाशन कत। छिर्यक-रतथा-शरथत উভয় দিক যোগ করলে গুণফল পাওয়া যায়।

উদাহরণ 8 125×15



ভানদিক থেকে: প্রথম অক=5; দ্বিতীয় অক=5+2+0=7; তৃতীয় অক্ক=2+1+5=8 এবং অস্তা অক্ক=1। স্থতবাং গুণফল=1875। গণেশের লীলাবতী ভাষ্য 'রুদ্ধিৰিলাসিনী'-তেও স্ত্রটি দেখতে পাওয়া যায়।

## ॥ স্থান-খণ্ড পদ্ধতি॥

স্থান খণ্ডিত করে অর্থাৎ গুণ্য বা গুণকের অঙ্কের স্থানচ্যুতি দারা গুণন প্রক্রিয়াটি সম্পন্ন হয় বলে এই পদ্ধতির এরক্ম নাম। ভারতে সপ্তম শতাব্দীর আগে থেকেই এই পদ্ধতির প্রচলন ছিল। এই পদ্ধতিতে গুণ্য ও গুণকের অকের বিস্থাস নানা বকম হতে পারে। এখানে তিনটি ভিন্ন ভিন্ন প্রকার দেখানো হলো। উদাহরণ ៖ 125×15

0

## The same type of the same of t

প্রাথমিক চার নিয়মের মধ্যে ভাগ-প্রক্রিয়া যে নি:দন্দেহে জটিল, তা আর বলার অপেক্ষা রাখে না। এতে যোগ-বিয়োগ-গুণ এই তিনটি প্রক্রিয়ার প্রয়োগ আছে। ইউরোপে পঞ্চদশ শতাব্দীর শেষভাগ পর্যন্ত এই প্রক্রিয়াটি কিরুপ জটিল ও কঠিন বলে বিবেচিত হতো তার বর্ণনা Smith তাঁর গ্রন্থে দিয়েছেন,—"The operation of division was one of the most difficult operations in the ancient logistica, and even in the 15th century it was commonly looked upon in the commercial training of the Italian boy as a hard matter." टेंगेनीय बानरकंत्र शक्क श्रीकिशि ये कि कठिन है रहांक না কেন, ভারতীয় বালকেরা কমপক্ষে সতেরো-আঠারো শ'বছর আগে এটি তেমন কঠিন বলে বিবেচনা করত না। জৈন ধর্মগ্রন্থ 'ভত্তার্থাবিগমসূত্র'-এ সাধারণ গুণিতকের অপদারণ দারা ভাগ-প্রক্রিদার উল্লেখ পাওয়া যায়। বকশালী পাণ্ডলিপিতে প্রক্রিয়াটির বিস্তারিত বিবরণ না ধাকলেও এ-সমর ভারতীয় গণিতজ্ঞদের এটি অজানা ছিল বলে মনে হয় না। আর্যভট ও ব্রহ্মগুপ্ত অবশ্য এ-বিষয়ে কিছু বলেননি। কিন্তু তাঁদের বর্গমূল ও ঘনমূল নির্ণয়ের স্থত্ত থেকে নি:সন্দেহে প্রমাণিত হয় প্রাথমিক এই নিয়মটি বিশেষভাবে উল্লেখ করার কোন প্রয়োজন চিল না।

ভারতীয় গণিতে ভাগ প্রক্রিয়ার বিস্তারিত বিবরণ শ্রীধরের পর থেকে প্রায় সব গণিতজ্ঞরাই দিয়েছেন। শ্রীধর তাঁর ত্রিশতিকায় বর্তমান পদ্ধতির স্থায় সাধারণ গুণিতক অপসারণের পর ভাজাকে ভাজক দ্বারা ভাগের উল্লেখ করেছেন; মহাবীর ঠিক একই কথা বলেছেন। তাঁর 'গণিত সার সংগ্রহ'-এ ভাজ্যের নিমে ভাজক বদিয়ে গুণিতক অপসারণ দ্বারা ভাগ প্রক্রিয়া সম্পন্ন করার কথা বলা হয়েছে। এ বিষয়ে তাঁর স্ত্রিট:

## বিক্তস্য ভাজ্যমানং তস্যাবঃত্থেন ভাগাহারেণ। সদৃশাপবর্তাবিধিনা ভাগং কৃতা ফলং প্রদেৎ।।

দিতীয় আর্যভট, ভাস্কর ও নারায়ন পণ্ডিত তো এই পদ্ধতির বিস্তৃত ব্যাখ্যা বিবৃত করেছেন। আর ভাগাহার যে গুণনের বিপরীত প্রক্রিয়া এই সত্যটিও তাঁদের অজানা ছিল না।

ষোগ-বিয়োগ-গুণের মত প্রাসীন ভারতে ভাগেরও অনেক পারিভাষিক

শব্দ ছিল। ভাগের অর্থে ভাগহার', 'ভাজন', 'ছেদন,' 'হরণ', প্রভৃতি শব্দগুলি ব্যবহৃত হতে দেখা যায়। ভারতীয় গণিতজ্ঞরা ভাগশেষকে বলেছেন 'লব্ধি'।

গুণনের 'কপাট দন্ধি' পদ্ধতির সঙ্গে কিছুটা মিল আছে এমন একটি ভাগহার পদ্ধতি নিয়ে প্রাচীন ভারতে বাবহৃত এই প্রক্রিয়ার সাথে একট্ পরিচয় করে নেওয়া যাক।

উদাহরণ **ঃ** 1620÷12

- a) 1620 1 12 ভাগফল-রেখা
- b) বাম থেকে প্রক্রিয়া শুক: 1×1-1, এবং 1-1-0; স্থতরাং ভাজ্যের 1 মুছে নতুন ভাজ্য হলো 620। আবার 2×1-2, এবং 6-2-4; এবার নতুন ভাজ্যের (620) 6 মুছে অর্থাৎ 'হরণ' করে 4 বদানো হলো।
  - b)-প্রক্রিয়াটির পর ভাষ্ক্য-ভাষ্ককের নত্ন অবস্থান হলো:

12

c) এবার ভাজককে ডানদিকে এক-ঘর সরাতে হবে। তাহলে নতুন অবস্থান হলো:

> 4 2 0 <u>1</u> 1 2 ভাগফল রেখা

d) এখন 42-কে 12 ঘারা ভাগ করলে ভাগফল 3 হয়; এই 3 গেল ভাগফল-রেখায় এবং 42-কে 'হরণ' করে তার জায়গায় ভাগশেষ অর্থাৎ 'লব্ধি' 6 বসল। ফলে পরিবর্তিত ভাজ্য-ভাজক অবস্থান হলো:

60 13 ভাগফ্ল-রেখা

e) আগের মতে৷ আবার ভাজককে এক-ঘর ডানদিকে দরিয়ে পরবর্তী নতুন অবস্থান পাওয়া গেল:

6 0 1 2 ভাগফল-রেখা

f) এখন 60-কে 12 দার। ভাগ করলে 5 পাওয়া যায়, এবং তা গেল ভাগফল-রেখায়। আর 60 এর 'হরণ' সম্পূর্ণ হলো বলে ভাজ্য-ভাজক গেল মুছে। অতএব, ভাগফল পাওয়া গেল—135। পুনক্তি হলেও বলতে হয়, আপাত প্রক্রিয়াট ছাটল বলে মনে হতে পারে।
কিন্তু হাল্লাভাবে না পড়ে যদি একটু মনোযোগ দিয়ে প্রক্রিয়াটি বুবো নে ওয়ার চেষ্টা
করা যায়, তা হলে তেমন ছাটল বলে মনে হবে না। অবশ্য অভাবধি আবিষ্কৃত
ও লভ্য প্রাচীন ভারতের গণিতগ্রন্থগুলির কোনটাই থুব প্রাথমিক পর্যায়ের নয়।
সে বকম কোন গ্রন্থ বা টীকা-ভান্ত আবিষ্কৃত হলে প্রক্রিয়াটির আরো সাবলীল
ব্যাখ্যা পাওয়া যাবে বলে মনে হয়।

#### ॥ ज्यारम ॥

ইতিপূর্বে পাঠক-পাঠিকার ভগ্নাংশের দাথে সামান্ত পরিচয় হরেছে। প্রাচীন ভারতের বিভিন্ন গ্রন্থাদি ও গণিতজ্ঞদের আলোচনায় আমরা ভগ্নাংশ নিয়ে কিছু আলোচনা করেছি। বহু প্রাচীনকালে ঋথেদ ও তার পরবর্তী মূগ থেকেই ভারতে ভগ্নাংশের ব্যবহার প্রচলিত ছিল। অবশ্য প্রাচীন সভ্য দেশ মিশর, ব্যাবিলন, চীনেও ভগ্নাংশের ব্যবহার দেখা যায়। ভারতে ঋথেদে ভগ্নাংশ সম্পর্কিত অনেক শব্দ দেখা যায়। যেমন, ত্রিপদ, শফ, কুর্চ, ত্রি-অষ্ট ইত্যাদি; বেদাঙ্গ জ্যোভিষে "কলা দশ সবিংশ নাড়িকা স্থাদ্"-এর মধ্যে  $10\frac{1}{20}$  ভগ্নাংশটি বোঝানো হয়েছে। গুরুস্ত্রে ভগ্নাংশের বহুল অন্তিম্ব আছে। এমন কি, জৈন গ্রন্থাদিতেও ভগ্নাংশের বহু উল্লেখ দেখতে পাওয়া যায়। 'স্র্যপ্রজ্ঞান্তি'-তে  $2\frac{42^2}{183}$ '  $4\frac{51\frac{1}{8}}{183}$  ইত্যাদি ভগ্নাংশগুলি দেখতে পাওয়া যায়। জিনভজগণি

প্রাকৃতভাষার মাধ্যমে 241960 40715 ভগ্নাংশটি এভাবে প্রকাশ করেছেন,—

"কল লথ্ক ছগং ইয়াল সহস্সা গৰ সরা সঠ হিয়া। স্থানেবণেউ অংসং চউ স্থান সন্ত এগ পণ। ছেউ চউ এটুঠ তিগ গৰ ছগা য বাহে স উত্তরদ্ধস্য।" (প্রা. ভা. গ. চ.)

উপরের সামান্য আলোচনা থেকে বলা যায়, এবং নিংসন্দেহেই বলা যায়

থ্রীষ্টপূর্ব শতকে ভারতে ভগ্নাংশের বেশ ভাল রকমই প্রচলন ছিল। কিন্তু তা
থাকলেও, এর গাণিতিক রুপটি তখন তেমন স্পষ্ট ছিল না। ভগ্নাংশের প্রকৃত
গাণিতিক রূপ ধরা পড়ে খ্রীষ্টীয় পঞ্চম শতান্দী থেকে অর্থাৎ আর্যভটের পর থেকে।
বন্ধপ্তপ্ত, শ্রীপ্তর, ভাস্কর ইত্যাদি গণিতজ্ঞরা এ-বিষয়ে আলোচনা করেছেন,
ব্রেশুপ্তপ্ত, শ্রীপ্তর, প্রক্রিয়ার বর্ণনাও করেছেন। ব্রহ্মগুপ্ত ও ভাস্কর চার ধরনের
শ্রেণীবিভাগ করেছেন, প্রক্রিয়ার বর্ণনাও করেছেন। ব্রহ্মগুপ্ত ও ভাস্কর চার ধরনের

ভগ্নাংশের কথা বললেও শ্রীধর ও মহাবীর কিন্তু ছ'ধরনের ভগ্নাংশের কথা বলেছেন। এই প্রকারগুলি হলো: (a) ভাগ, (b) প্রভাগ, (c) ভাগাপবাহ, (d) ভাগামুবন্ধ, (e) ভাগমাতৃ ও (f) ভাগ-ভাগ। এবার ছ'টি বিভাগের সংক্ষিপ্ত খালোচনা করা যাক।

#### ॥ जाता ॥

বস্তুত এই শ্রেণীর ভগ্নাংশের সঙ্গে আমরা দবাই থুব ছোটবেনা থেকেই পরিচিত। এমন কি এর প্রক্রিয়াটিও আমাদের দবার জানা। আধুনিক গণিতের ভাষায় এই ভগ্নাংশটির রূপ এরকম:

# \* ± c ± e ± ......

এই ভগ্নাংশিক প্রক্রিয়াটি ছ-ব্রক্মভাবে করা বেতে পারে: (a) সমহরে পরিণত করে, আর (b) প্রথম লব × দ্বিতীয় হর ± দ্বিতীয় লব × প্রথম হর এ-ভাবে।

## ॥ প্রভাগ॥

হই বা ততোধিক ভগ্নাংশিক বাশির মধ্যে 'এর' থাকলে, তাকে 'প্রভাগ' শ্রেণীর ভগ্নাংশ বলে। এটির যে এখনো প্রচলন আছে, তা আর না বললেও চলে। এই শ্রেণীর ভগ্নাংশের গাণিতিক রূপ এরকম:

# a oa c oa e f

এই প্রক্রিয়া সম্পন্ন করতে হলে লবে লবে এবং হরে হরে গুণ করতে হয়। ভাস্কর এই প্রক্রিয়ার স্থা দিয়েছেন :—

লবালঘাশ্চ হরাহরদ্রা ভাগপ্রভাগেয়ু সবর্ণনং স্যাৎ।

## ॥ ভাগাপৰাহ ॥

কোন অথগু সংখ্যা থেকে খণ্ডসংখ্যা বিয়োগ করার প্রক্রিয়া হচ্ছে 'ভাগাপবাহ'। আধুনিক গণিতের ভাষায় বলা যায়  $\left(a-\frac{b}{c}\right)$  হচ্ছে ভাগাপবাহের

গাণিতিক রূপ। এই ভগ্নাংশটি নিয়ে ব্রহ্মগুপ্তের পর প্রায় সব গণিতজ্ঞই আলোচনা করেছেন।

### ্লাভাগানুবন্ধ ।। ভাগানুবন্ধ ।।

শ্রীধরাচার্য থেকে শুরু করে প্রায় সব গণিতজ্ঞই এ-বিষয়ে আলোচনা করেছেন।

শব্দ ভাস্করের আলোচনা অধিকতর বিস্তারিত বলে মনে হয়। 'ভাগাস্থবদ্ধ'
হু'রকমের হতে পাবে,—

(1) 
$$\frac{a}{b} + \frac{c}{d}$$
  $a = \frac{a}{b} + \frac{e}{f}$   $a = \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{a}{b} + \frac{a}{b} + \dots$ 

(2) 
$$\left(\mathbf{a} + \frac{\mathbf{b}}{\mathbf{c}}\right)$$

এর প্রক্রিয়াটি ভাস্করের ভাষায় হৃদ্দরভাবে ব্যক্ত হয়েছে। বঙ্গায়বাদ এরূপ:
''ষে কোন পূর্ণসংখা। হরের ছারা গুণ করিলে লবটি যোগ চিহ্ন বা বিয়োগ
চিহ্ন যুক্ত হয়, যদি অংশগুলি তাহার সহিত যোগ বা বিয়োগ করা হয়। কিন্তু
হিহার কোন অংশ ছারা যদি বাশিটি বর্দ্ধিত বা দ্রাস প্রাপ্ত হয়, তবে ভয়াংশের
যোগে বা বিয়োগে নিম্প্তিত হয়কে হয়ের ছারা গুণ করিতে হয় এবং লবকে বর্দ্ধিত
বা হ্রাস প্রাপ্ত হরের ছারা গুণ করিতে হয়।'' (অক্কভাবনা, প্রথম সংখ্যা ১৯৩২)

## ॥ ভাগমাতৃ ও ভাগ-ভাগ॥

এই তৃটি শ্রেণীর ভগ্নাংশের বিষয়ে শ্রীধর ও মহাবীরের আলোচনা সবিশেষ শুরুত্বপূর্ব। ভাগ-ভাগের গাণিতিক রূপ :  $rac{a}{b} \div rac{c}{d}$ 

# ।। ভগ্নাংশের নিয়ম সমূহের সংক্ষিপ্ত পরিচয়

আর্যভটের গ্রন্থে ভগ্নাংশের যোগ-বিয়োগ-গুণের উল্লেখ দেখতে পাওয়া না গেলেও ব্রহ্মগুপ্তের পর এ-বিষয়ে ভারতীয় গণিতজ্ঞরা আলোচনা করতে ভোলেননি। কেবল প্রাথমিক চার নিয়মই নয়, বর্গ, বর্গমূল, ঘন, ঘনমূল নিয়েও আলোচনা আছে। যোগ-বিয়োগ সম্পর্কিত নিয়মটি ভাস্করের ভাষায়,

যোগোহন্তরং তুল্যহরাংশকানাং কল্প্যহরোরূপমহাররাশেঃ।।
''অর্থাৎ ভগ্নাংশে যোগ অথবা বিয়োগে সমান হর গ্রহণ করতে হয়। যার

ভাগফল নেই দেরপ রাশির এক বলিরা হর কল্পনা করতে হয়।\*
(প্র.ভা. গ. চ.)

ভগ্নাংশের গুণন সম্পর্কে ব্রহ্মগুপ্ত ও ভাস্করাচার্য প্রায় একই বকম সংজ্ঞা দিয়েছেন। উভয়েই বলেছেন যে, তুই বা ততোধিক ভগ্নাংশিক বাশির লবগুলির গুণফলকে হবগুলির গুণফল দিয়ে ভাগ করতে হবে। মনে করা যাক,  $\frac{a}{b}$ ,  $\frac{c}{d}$  ও  $\frac{e}{f}$  এই ভগ্নাংশিক বাশিগুলি দেওয়া আছে। তা হলে এদের গুণফল হবে,—

$$\frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{c}}{\mathbf{d}} \times \frac{\mathbf{e}}{\mathbf{f}} = \frac{\mathbf{a} \times \mathbf{c} \times \mathbf{e}}{\mathbf{b} \times \mathbf{d} \times \mathbf{f}}$$

ত্রৈরাশিক বিষয় আলোচনা কালে আর্যভট ভগ্নাংশিক ভাগের কথা বলেছেন। আরও স্পষ্ট করে বলেছেন ব্রহ্মগুপ্ত, ভাস্কর প্রমুথ গণিতজ্ঞরা। ভাস্করের সংজ্ঞাটি নিম্মরূপ:

ছেদং লবঞ্চ পরিবর্ত্ত্যহরত্ম শেষঃ কার্য্যোহণ ভাগহরেণ গুণনাবিধিক।
ভাবানুবাদ: লবের দঙ্গে হরের পরিবর্তন করে গুণের নিয়ম মেনে গুণ করতে হবে।

গণিতের ভাষায় প্রকাশ করলে,—

$$\frac{p}{q} \div \frac{r}{s} - \frac{p}{q} \times \frac{s}{r} - \frac{ps}{qr}$$

এখানে 1-লবকে হরে, ৪-হরকে লবে পরিণত করে গুণ করা হলো।

ভগ্নাংশের বর্গ, ঘন, বর্গমূল ও ঘনমূল বার করার আধুনিক পাটীগাণিতিক পদ্ধতির সঙ্গে প্রাচীন গণিতজ্ঞদের প্রায় কোন পার্থক্য নাই। বর্গ ও ঘন নিণ্য়ের ক্ষেত্রে ভাস্করের স্ত্র:

वर्ण करा धनावित्यो जूबरनी विषयः । हात्राश्यास्त्रस्य अरम ह अम अभिरेक।

ভাবাম্বাদ: বর্গ বা ঘন বার করতে হলে লব ও হর উভয়ের বর্গ বা ঘন নির্ণয় করতে হবে। বর্গমূল বার করতে হলে লব ও হর উভয়ের বর্গমূল নির্ণয় করতে হবে।

## ॥ পঞ্চদশ অথ্যায়॥

"Hindu Mathematics starts where Alexandrian Mathematics left off"

—L. Hogben

# ্ৰা বৰ্গ॥ বৰ্গ॥

ভারতীয় গণিতজ্ঞরা অতি প্রাচীনকাল থেকেই 'বর্গ'-এর গাণিতিক রূপের চেয়ে এর জ্যামিতিক রূপের সহিত অধিক পরিচিত ছিলেন। শুলস্ত্রে এমন কয়েকটি বেদী-নির্মাণের বিষয় আলোচিত হয়েছে, যা থেকে এরপ ধারণা স্বাভাবিক-ভাবেই করা যায়। আর্যভট বর্গ নির্ণয়ের স্কুস্পাই সংজ্ঞা দেননি সত্যা, কিন্তু পদ্ধতিটি ভার অজানা ছিল বলে মনে হয় না। এ বিষয়ে তাঁর স্থ্রটি হচ্ছে:

## বর্গ 8 সমচভুরতাঃ ফলং চ সদৃশ্বয়স্য সংবর্গ 8।

অর্থাৎ সমকর্ণদহ সমবাহু চতুভু জ ও উহার ক্ষেত্রফলকে বর্গ বলে। এবং হটি সম্বাশির গুণফলকেও বর্গ বলে।

নিঃসন্দেহে স্ত্তির প্রথমাংশে বর্গের জ্যামিতিক রূপ ও দ্বিতীয়াংশে গাণিতিক রূপের কথা বলা হয়েছে। আবার প্রসিদ্ধ ভাষ্মকার পরমেশ্বরের মতে দ্বিতীয়াংশে বর্গ-নির্ণয়ের তাৎপর্য নিহিত আছে। ব্রহ্মগুরু, পৃথুদকস্বামী, শ্রীধর, মহাবীর, শ্রীপতি প্রমুখ গণিতজ্ঞরা বর্গের সংজ্ঞায় যে খুব বেশী কিছু নতুনত্ব দেখাতে পেরেছেন, তা মনে হয় না। আচার্য আর্যভটের চেয়ে এঁরা বর্গ-নির্ণয় পদ্ধতির ব্যাখ্যা ও বিশ্লেষণ ছাড়া আরু বেশী অগ্রসর হতে পারেননি।

বন্ধগুপ্ত বর্গ করার একটি স্থত্ত দিয়েছেন তাঁর ব্রহ্ম-স্ফুট-সিদ্ধান্ত গ্রন্থে। স্ত্তিরি প্রথমাংশে আমরা অতি পরিচিত বীজগাণিতিক স্ত্র,—(a+b)° = a° + 2ab+b° পাই। তাঁর সংশ্লিষ্ট স্ত্তিটি হচ্ছে:

রাশের নং দ্বিগুণং বহুতর গুণ মূনকৃতিযুতং বগ'ঃ।

ভাৰাত্মবাদ ৪ যে রাশির বর্গ করতে হবে তাকে হই বা তার চেয়ে বেশী

অংশে খণ্ড কর। প্রথম বাশির বর্গ কর; প্রথম রাশির দ্বিগুণের সঙ্গে দ্বিতীয় রাশি গুণ কর; তারণর শেষের রাশির বর্গ করে সব রাশিগুলি যোগ কর।

উপবোক্ত শ্লোকটির দ্বিতীয়াংশে আর একটি পদ্ধতি পাওয়া যায়। তাঁর স্ত্রটিঃ

## রাশেরিপ্রযুভোনাবধঃ কৃতিবৈপ্তকৃতিযুক্তঃ।

ভাৰান্থবাদঃ প্রদত্ত বাশির সঙ্গে 'ইষ্ট' (অন্ত্মিত) বাশি যোগ এবং বিয়োগ করার পর উভয় ফলকে গুণ করে 'ইষ্ট' রাশির বর্গ যোগ কর।

আধুনিক বীজগণিতের ভাষায় প্রকাশ করলে,—

- (1) 15°=(15+5) (15-5)+5°=20 × 10+25=225 এথানে অচুমিত বাশি=5
- (2)  $45^2 = (45+5)(45-5)+5^2 = 50 \times 40+25=2025$

বলা বাহুল্য, এট পাটীগাণিতিক পদ্ধতি নয়,—বীজগাণিতিক পদ্ধতি। ভাস্করও বর্গ নিয়ে আলোচনা করেছেন, এবং একটু বিশদভাবেই করেছেন। কিন্তু তিনিও ব্রহ্মগুপ্তের পথই অন্তুসরণ করেছেন। 'অঙ্ক ভাবনা' প্রবন্ধ থেকে তাঁর এই সম্পর্কিত আলোচনা ও অন্তুবাদ দেওয়া হলো:

"সমিঘিণাতঃ কৃতিরুচ্যতেহত্ত স্থাপ্যোহস্ত্য বর্ণো দিশুণাস্ত্য বিদ্নাঃ। স্বস্থোপরিষ্ঠাচ্চ তথা পরেইক্লাস্ত্যক্তান্ত্য মুংসার্য্য পুনশ্চ রাশি॥ খণ্ডদ্বয়স্য স্যাভিহতিদ্বিনিদ্নৌ তৎ খণ্ডবগৈ ক্যয়্তা কৃতিবা। ইর্ষ্ঠোনযুগ্রাশি ববঃ কৃতিঃ স্যাদিষ্টস্য বর্ণেন সমন্বিভো বা।"

প্রথম ভাস্কর 'বগ্ন' অথবা 'বগ্ন-নির্ণয়' অর্থে 'বগ্ন', 'করণী', 'কৃডি', 'বর্গন' এবং 'যাবকরণ' শব্দ ব্যবহার করেছেন। 'করণী', 'বর্গন' এবং 'যাবকরণ' শব্দের প্রচলন বেশী দেখা যায় না। প্রাচীন জৈন গণিতে অজ্ঞাত রাশি '৯' বোঝাতে 'যাবং-ভাবং'-এর ব্যবহার দেখা যায়; খাবার অন্তত্র 'যা' অন্তর্মণ অর্থে ব্যবহৃত হয়েছে। 'যা' হয়তো 'যাবং-ভাবং'-এর সংক্ষিপ্ত রূপ এবং 'ব'-এর উৎপত্তি 'বগ্ন' থেকে হয়ে থাকবে। প্রাচীন ভারতীয় গণিতে বর্গের পরিবর্তে অনেক ক্ষেত্রে 'কৃতি' শব্দের ব্যবহার পরিলক্ষিত হয়।

বর্গ-নির্ণয় পদ্ধতি নিয়ে ব্রহ্মগুপ্তের পর থেকে যে অনেক গণিতজ্ঞই আলোচনা করেছেন, তার আভাস আমরা ইতিপূর্বেই পেয়ছি। কিন্তু দে আলোচনায় বীজগাণিতিক পদ্ধতির প্রভাবই দেখা যায়। এখানে বিখ্যাত জৈন গণিতজ্ঞ মহাবীরাচার্যের পদ্ধতিটি উদাহরণস্বরূপ দেখানো হলো। বলা বাহুল্য, এটি সম্পূর্ণ পাটীগাণিতিক পদ্ধতি। তাঁর নিয়মটির সারমর্ম নিয়রূপ:

যে-সংখ্যার বর্গ নির্ণয় করতে হবে তার অস্তা অক্ষটির বর্গ করে ঠিক দেই অক্ষটির উপরে লিখতে হবে, অস্তা-অক্ষটি বিগুণিত করে অস্তান্ম অক্ষণ্ডলি গুণ করতে হবে। অবশিষ্ট অক্ষণ্ডলি ডান দিকে পর পর এক-ঘর দরিয়ে পূর্বের মত গুণন-প্রক্রিয়া সম্পন্ন করে বর্গ-সংখ্যা পাওয়া যাবে।

অন্ত্য বা প্রথম অর্থাৎ ৰাম-ডান উভয় দিক থেকেই বর্গ-নির্ণয় শুরু করা ষেতে পারে। এথানে অস্ত্য-অঙ্ক থেকে শুরু করে পদ্ধতিটি বিশ্লেষিত হলো।

উদাহরণ ৪ বর্গ নির্ণয় কর 135

(a) এথানে প্রদত্ত সংখ্যা 135-এর অন্ত্য-সংখ্যা—1; স্থতবাং 1°=1;
এই 1-কে বর্গ-সংখ্যা 1-এর উপর লেখা হলো,—

1 1 3 5

(b) অস্ত্য-অক্ষ 1-এর দ্বিগুণ—2×1=2; এই 2-কে 5-এর নীচে লিখে এ-কে:ুমুছে দেওয়া হলো। তা হলে নতুন অবস্থান হলো,—

 $a=\infty$  . Let a=0 be a=0.

<sup>(</sup>c) এবার 2 দারা 35-কে গুণ করে (35×2=70) গুণফলের অকগুলি নিজ

নিজ স্থানের উপরে লেখা হলো অর্থাৎ একক-স্থানে 0 এবং দশক-স্থানে 7; তা

1 7 0

এখানেই পদ্ধতিটি সম্পূর্ণ হলো বলে মনে করা ষেতে পারে। পরের সোপান-গুলি কেবলমাত্র পূর্বতী সোপানসমূহের পুনরাবৃত্তি মাত্র।

(d) 35-কে এক-ঘর ডানদিকে সরিয়ে অবস্থান হলো.—

170

3 5

(e) এখানে অস্ত্য-অঙ্ক 3; স্বতরাং 3৭=9; 9 যথাস্থানে স্থাপিত হলে 3 মুছে গেল। এবং নতুন অবস্থান,—

179

5

আবার, অস্ত্য-অঙ্কের দ্বিগুণ—3×2=6; পরের অঙ্ক 5-এর নীচে লিংখি নতুন অবস্থান,—

179

5

এখন,  $5 \times 6 = 30$ ; 5-এর উপরে 0 এবং 9-এর দঙ্গে 3 যুক্ত হরে 1820 হলো। এথানে দ্বিতীয় পর্যায় শেষ হলো এবং তৃতীয় শুরু বলতে হবে। পূর্বের স্থায় 5-কে ভানদিকে এক-ঘর সরিয়ে নতুন অবস্থান পাওয়া গেল,—

1820

5

আবার, সেই পুনরাবৃত্তি। 5°=25; 25-এর 5 গেল 5-এর মাথার, আর 2 যুক্ত হলো 0-এর সঙ্গে। ফলে 18225 পাওরা গেল।

এখন আর বর্গ-সংখ্যার (প্রদন্ত সংখ্যা) কোন অক্ত অবশিষ্ট নাই। স্থতরাং প্রক্রিয়াটি সম্পন্ন হলো এবং নীচের 5 মুছে নির্ণেয় বর্গ সংখ্যা=18225 পাওয়া গেল।

প্রথম ভাস্কর দে-যুগে প্রচলিত এই পদ্ধতির সমালোচনা করেছেন। তিনি

বলেন এখানে 1 থেকে 9 পর্যস্ত সংখ্যার বর্গ ব্যবহাত হয়, অথচ কিন্ধপে এই বর্গ-সংখ্যা পাওয়া যাবে তার কোন উত্তর প্রাচীন গণিতজ্ঞরা দেননি।

পূর্বেই উল্লেখ করা হয়েছে যে, ব্রহ্মগুপ্ত, মহাবীর, ভাস্কর, নারায়ণ প্রমুখ গণিভজ্ঞরা  $(a+b)^2=a^2+2ab+b^2$  স্থাটির স্পষ্ট উল্লেখ করেছেন। আরো পরবর্তীকালে 'যুক্তিভাষা' গ্রন্থে এই স্থাটির জ্যামিতিক প্রমাণ দেখতে পাওয়া যায়:



চিত্র  $ABCD^3(a+b)$ -বাছ বিশিষ্ট একটি বর্গক্ষেত্র। বাছগুলির সমাস্তরাল সরলরেখা অঙ্কন করে ঘূটি বর্গক্ষেত্র  $a^2$ , ও  $b^2$ , এবং ঘূটি আয়তক্ষেত্রে পাওয়া গেল। আয়তক্ষেত্রের বাছা ঘূটি a এবং b। ফুতরাং এই জ্যামিতিক চিত্র থেকেই প্রমাণিত হয়  $(a+b)^2=a^2+2ab+b^2$ ; এবং এই পদ্ধতিতেই নিয়ম-নীতির সম্প্রদারণ ঘটিয়ে  $(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc$  স্ত্রেটিও প্রমাণ করা যায়।

## ॥ वर्शमृन ॥

ভারতে বর্গ মূল নির্ণয়ের পদ্ধতি অতি প্রাচীন। 'মূল' শব্দটি খ্রীষ্টীয় প্রথম শতাকীর জৈনগ্রন্থ 'অনুযোগদারসূত্র'-এ দেখতে পাওয়া যায়। সংস্কৃতে 'মূল' শব্দের অর্থ উদ্ভিদ বা গাছের শিকড় + মূলের অন্ত অর্থ কারণ, ভিত্তি ইত্যাদি। বর্গ শূলের প্রকৃত অর্থ বর্গ -কারণ, উৎস বা বর্গ ক্ষেত্রের বাহ। ব্রহ্মগুপ্ত বর্গ মূলের

সংজ্ঞায় বলেছেন 'কৃতি' যা থেকে বগ' উৎপন্ন হয়। লক্ষ্যণীয়, যোড়শ শতাব্দীক পূর্বে পাশ্চান্টো এই পদ্ধতির আবির্ভাব হয়নি। চতুর্থ শতাব্দীর আলেকজান্দ্রিয়ার থিজনের গ্রন্থে একটি পদ্ধতি দেখা যায় বটে, কিন্তু তা ভারতীয় পদ্ধতি থেকে সম্পূর্ণ পৃথক। অনেক পাশ্চাতা পণ্ডিত যে ভারতীয় পদ্ধতিতে গ্রীক প্রভাব লক্ষ্য করেন, ভা একান্ডই পক্ষপাত্র্ছই বলে মনে করার যথেই কারণ আছে। এই প্রসঙ্গে এম. এন. দেন A Concise History of Science in India গ্রন্থে গণিত অধ্যায়ে বলেছেন,—"In Europe, these modern methods do not appear before Catanio (A. D. 1546). Cataldi (A. D. 1613), the author of the Trattato, was one of the first writers to use similar methods in their entirety. In the fourth century A. D., Theon of Alexandria, the noted conmentator of Ptolemy's Almagest, gave a method for approximate extraction of square roots of sexagesimal fraction, but it was approximate, algebraical and different from the Hindu method."

প্রাচীন ভারতীয় যে গণিতপ্রস্থে বর্গ মূল নির্ণয়ের স্থুত্ত চোখে পড়ে, তা হচ্ছে আর্যভারে আ**র্যভারিয়।** তাঁর স্থুত্তি নিয়ন্ত্রণ:

ভাগং হরেদবর্গান্নিত্যং দ্বিগুণেন বর্গমূলেন। বর্গাদ্বর্গে গুদ্ধে লব্ধং স্থানান্তরে মূলম্।।

ভাৰান্ত্ৰাদ । যুগ্ম-স্থানে সৰ্বদা মূলের বিগুণ দ্বারা ভাগ করতে হবে; অযুগ্ম-স্থানে সৰ্বদা বিয়োগ করে ভাগফল পূর্বতী মূল-রেথার বদিয়ে বগ মূল নিণীত হবে।

ভাষ্যকার পরমেশ্বর এই পদ্ধতি স্থন্দরভাবে ব্যাখ্যা করেছেন। তিনি প্রাদত্ত সংখ্যাকে বর্গ ও অবর্গ হৃটি শ্রেণীতে ভাগ করে বর্গ মূল নির্ণয় কিভাবে করতে হবে তার বর্ণনা দিয়েছেন। সাধারণত অযুগা ও যুগা-স্থান উল্লেম্ব ও অনুভূমিক রেখা দারা চিহ্নিত করে বর্গ মূল নির্ণয় করা হয়।

উদাহরণ ৪ বর্গ মূল নির্ণয় কর:

(a) নিকটতম বগ'-অঙ্ক বিয়োগ 6 3 5 0 4 ( মূল=2 (2°=4)

: নির্ণেয় বর্গ মূল — 252

প্রদীপ কুমার মজুমদার তাঁর 'প্রাচীন ভারতে গণিতচর্চা' গ্রন্থে ভাস্করের পদ্ধতিতে বর্গ মূল নির্ণয় করার যে উদাহরণ দিয়েছেন তা স্পষ্ট নয়। আমাদের মনে হয়, ড: মজুমদার ভাস্করের সংজ্ঞা ও ব্যাখ্যার সঙ্গে মিলিয়ে উদাহরণটি স্পষ্ট করলে ভাল করতেন। বস্তুভপক্ষে, তাঁর ব্যাখ্যাত পদ্ধতিটি সম্পূর্ণ আধুনিক বীজগাণিতিক পদ্ধতি বলে মনে হয়, এবং পূর্বস্থরীদের থেকেও বিচ্ছিন্ন বলে মনে করা যেতে পারে।

#### ।। घन ७ घनमून ।।

ভারতীয় গণিতে ঘন ও ঘনমূল কত প্রাচীন দে-সম্পর্কে সঠিক করে কিছু বলা যায় না। তবে আর্যভট-এর গ্রন্থে এব স্তব্ধ আছে, এবং পরবর্তী প্রায় দব গণিতজ্ঞই এ-বিষয়ে স্তব্ধ ও উদাহরণ দিয়ে আলোচনা করেছেন। ইতিপূর্বে ঘনমূল নির্ণয়ের স্তব্ধ ও পদ্ধতি নিয়ে দামান্ত আলোচনা করা হয়েছে। আর্যভটীয়-প্রাস্থে ঘনমূল স্ত্বের তায়ে ঘন-নির্ণয়ের স্তব্ধও পাওয়া যায়। সংশ্লিষ্ট স্ব্রুটির প্রথম দিকে পাটীগাণিতিক স্বরূপ ও শেষ দিকে জ্যামিতিক স্বরূপের আভাস-ইঙ্গিত পাওয়া যায়:

## मृन्वप्रदर्शा घनख्या द्वाप्रत्याखिः मार्।

অর্থাৎ সমান তিনটি রাশির ক্রমিক গুণফল এবং দ্বাদশ প্রান্তিকী ঘনবস্তকে ঘন বলে। ব্রহ্মগুপ্ত আধুনিক বীজগণিতের ঘন-নির্ণয়ের স্থতটির কথা বলেছেন। তাঁর স্ত্র:

স্থাপ্যোহস্তঘনোহস্তকৃতিন্ত্ৰিগুণোন্তর সংগুণা চা ততপ্ৰথমাৎ। উত্তরকৃতিরস্তাগুণা ত্রিগুণাচোত্তর ঘনশ্চ ঘন।।

ভাৰাসুবাদ ঃ ঘুটি বাশির সমষ্টির ঘন-নির্ণয়ের ক্ষেত্রে প্রথম ও দিতীয় বাশিকে বর্থাক্রমে অস্তাদংজ্ঞক ও উত্তরদংজ্ঞক ধরতে হবে। অস্তার ঘন, অস্তাের বর্গের সঙ্গে উত্তর গুণ এবং তাকে তিন গুণ করে যােগ কর; আবার অস্তাের সঙ্গে উত্তরের বর্গ গুণ কর, এবং তাকে তিনগুণ করে যােগ কর। শেষে উত্তরের ঘনও যােগ কর।

আধুনিক বীজগণিতের ভাষায় উপরের স্ত্রটি প্রকাশ করলে দাঁড়ায়,—  $(a+b)^3 - a^3 + 3a^2b + 3ab^2 + b^3$ 

ভাস্কর আর একটি স্ত্রে  $(a+b)^3 = a^3 + b^3 + 3ab$  (a+b)-এর কথা স্পষ্ট করে বলেছেন। তাঁর প্রাদঙ্গিক সূত্রটি :

"থণ্ডাভ্যাং বাহভোৱানিন্তিভ্নঃ থণ্ড ঘনৈক্যযুক্।"

অর্থাৎ "( অথবা ) সেই সংখ্যার তিন গুণকে ইহার ছুইটি খণ্ডের দ্বারা গুণ করিতে হইবে। ঐ খণ্ডগুলির ঘন বাহির করিয়া যোগ করিতে হুইবে।"

(প্রা. ভা. গ. চ.)

প্রথম ভাস্কর আগের মত ভারতীয় গণিতজ্ঞদের সমালোচনা করে বলেছেন যে, তাঁরা 1 থেকে 9 পর্যন্ত সংখ্যার ঘন কিরুপে নির্ণয় করতে হবে তার কোন উত্তর দেননি।

মহাবীরাচার্য অবশ্য ঘন-নির্ণয়ের আর একটি বীজগাণিতিক স্থ্র দিয়েছেন :  $x^3 = x(x+y)(x-y) + y^2(x-y) + y^3$ 

# ॥ ত্রৈরাশিক॥

( অমুপাত ও সমামুপাত)

আধুনিক অমুপাত ও সমামুপাতের অন্ধ প্রাচীন ভারতীয় গণিতে 'বৈরাশিক' নামে পরিচিত ছিল। বকশালী পাণ্ডুলিপিতে এই নিয়মের ব্যবহার দেখা যায়; আর্যভট থেকে শুকু করে সব গণিতজ্ঞই এ-বিষয়ে স্ত্র দিয়ে আলোচনা করেছেন। জটিল সমামুপাতের অন্ধগুলি পঞ্চরাশিক, সপ্তরাশিক, নবমরাশিক ও একাদশ-

রাশিক হিসাবে চিহ্নিত হতো। ব্রহ্মগুপ্তের পর জ্ঞটিল সমান্থণাতের অক্ষগুলির প্রাচুর্য দেখা যায়।

দেশ-বিদেশের সব গণিতজ্ঞই ত্রৈরাশিকের উচ্ছু দিত প্রশংসা করেছেন। কারণ, এই নিয়মে বাস্তবে প্রয়োজ্য নানা প্রকার অক্ষের সমাধান খুব সহজে করা যায়। ভারতীয় গণিতজ্ঞরা মনে করতেন গণিতে অপারদর্শীও এই নিয়মে সহজে সমস্তা সমাধান করতে সক্ষম। বরাহমিহির লিখেছেন, সূর্য যদি বছরে একবার ঘোরে, তা হলে একথণ্ড চকথড়ির সাহায্যে একজন অজ্ঞব্যক্তিও নির্দিষ্ট দিনে সূর্য কতবার যুরবে অতি সহজে এই নিয়মে নির্ণয় করতে পারবে।

ইউবোপে এই নিয়মটি স্বৰ্ণ নিয়ম (Golden Rule) নামে আখ্যাত হয়েছে। পাটীগণিতে এই নিয়মের ভূমিকা ও গুরুত্ব সম্পর্কে সব দেশের গণিতজ্ঞরাই সম্পূর্ণ অবহিত ছিলেন। যোড়শ শতাকার বিখ্যাত ইংরেজ গণিতজ্ঞ ববার্ট রেকর্ড (Robert Recorde) বলেন, "the rule of proportions which for his excellency is called the Golden Rule" (Smith). অপর এক ইংরেজ গণিতক্ষ বলেন, "and indeed it might be so termed; for as gold transcends all other Metals, so doth this Rule all others in Arithmetick" (Smith). প্রাচীন ভারতের অন্তম শ্রেষ্ঠ গণিতক্ষ ভাস্কর বলেন,—

অন্তি তৈরাশিকং পাটী বাজং চ বিমলা মতি:।
কিমজাতং স্বর্দ্ধিনামতো মন্দার্থমুচ্যতে।।
বর্গং বর্গপদং ঘনং ঘনপদং সন্ত্যজ্য যদ্গণ্যতে।
তৎ তৈরাশিকমেব ভেদ বছলং নাখুৎ ততো বিঘতে।।

অমুবাদ ঃ "ত্রৈরাশিকই পাটাগণিত, বিমল মতিই বাজগণিত। স্থবৃদ্ধি ব্যক্তিগণের কি অজ্ঞাত আছে ? সেইজন্ম অল্লবৃদ্ধি বাজ্তিগণের বোধের নিমিত্ত বলা হইতেছে। বর্গ, বর্গ মূল, বন, ঘনমূল ব্যতীত যাহা কিছু গণিত হয়, সকলই নানা ভেদ বিশিষ্ট ত্রৈরাশিক ভিন্ন কিছুই নছে।" (রাধাবল্লভ দেবশর্মা কৃত অমুবাদ)

ভাস্করের মতে ত্রৈরাশিকই পাটীগণিতের সার,—নির্যাস। এই পদ্ধতিতে তিনটি বাশির ব্যবহার হয় বলে একে ত্রৈরাশিক বলা হয়। এই তিনটি রাশি হচ্ছে প্রমাণ, ফল ও ইচ্ছা। প্রাচীন ভারতের গণিতজ্ঞরা প্রায় স্বাই একই ধরনের স্ত্র দিয়েছেন এ-সম্পর্কে। আচার্য আর্যভটের স্ত্র নিম্নরণ:

তৈরাশিকফলরাশিং তমথেচ্ছারাশিনা হতং কৃছা। লব্ধং প্রমাণভজিতং তত্মানিচ্ছাফনমিনং স্যাৎ।। অর্থাৎ ত্রৈরাশিক নিয়মে 'ফল' ও 'ইচ্ছা'-র 'গুণফলকে 'প্রমাণ' দ্বারা ভাগ করলে 'ইচ্ছাফল' পাওয়া যায়।

উদাহরণ: যদি A সংখ্যক পুস্তকের মূল্য P টাকা হয়, ভা হলে R-সংখ্যক পুস্তকের মূল্য কত ?

এথানে, A='প্ৰমাণ', P='ফল' ও R='ইচ্ছা'

মুভরাং ইচ্ছাফল $=rac{P imes R}{A}$  টাকা।

ত্রৈরাশিক বিষয়ে আর একটিমাত্র স্থতের উল্লেখ করা যাক। এই স্থতটির ম্রষ্টা হচ্ছেন ব্রহ্মগুপ্ত। তিনি যে প্রায় আর্যভটেরই অনুসরণ করেছেন তা দেখাবার জন্মেই স্থতটি উদ্ধৃত হলো:

তৈরাশিকে প্রমাণং ফলমিচ্ছাছন্তরের সদৃশরাশি। ইচ্ছাফলেন গুণিডা প্রমাণভক্তা ফলং ভবতি।।

অমুবাদ ঃ ত্রৈরাশিকে প্রমাণ ও ইচ্ছা সদৃশ; এছটি ও ইচ্ছা-সম্পর্কিত ফল ভিন্ন প্রকার। ফলকে ইচ্ছা দিয়ে গুণ করে প্রমাণ দিয়ে ভাগ করলে ইচ্ছা-সম্পর্কিত ফল লাভ হয়।

'বৌগিক সমাত্মপাতের ক্ষেত্রে পঞ্চরাশিক, সপ্তরাশিক ইত্যাদি নিয়মের প্রয়োগ হয়। ভাস্কর ব্যস্ত-ত্রৈরাশিকের প্রয়োগ সম্পর্কে বলেছেন যে, এটি ত্রৈরাশিক নিয়মের বিপরীত প্রক্রিয়া। খুব সম্ভব ব্যস্ত-ত্রৈরাশিকের কথা সর্বপ্রথম ব্রহ্মগুঞ্চা বলেন। তাঁর স্ত্র:

ব্যস্ত ছৈরাশিকফলমিচ্ছাভজ: প্রমাণফলঘাডঃ। তৈরাশিকাদিয়ু ফলং বিষমেম্বেকাদশান্তেয়ু।।

অনুবাদ: "প্রমাণ এবং ইচ্ছার মধ্যে ষেটি ভিন্ন জাতীর তাকে প্রমাণ দিয়ে গুণ করে ইচ্ছা দিয়ে ভাগ দিলে বাস্ত ত্রৈবাশিক পাওয়া যায়।" (প্রা. ভা. গ. চ. )

পঞ্চবাশিক, সপ্তরাশিক ইত্যাদি অর্থাৎ বহুরাশিক সম্বন্ধে আর্যভটের গ্রন্থে কম্পষ্ট কোন স্বত্ত পাওয়া যায় না। কিন্তু প্রধান আর্যভট-অন্তরাগী প্রথম ভান্তর তা স্বীকার করেন না। তাঁর মতে আর্যভট কৃত তৈরোশিক স্ত্তের মধ্যেই বহুরাশিকের নিয়মের আভাস আছে, আর্যভট পৃথকভাবে দিতে বাহুল্যবোধ করেছেন। কারণ, পঞ্চরাশিক তুটি তৈরোশিক দিয়ে, সপ্তরাশিক তিনটি তৈরোশিক দিয়ে, সম্বাধান করা যায়। অবশ্র ব্রদ্ধিপ্ত, শ্রীধর, ভান্তর, মহাবীর প্রম্থ গণিতজ্ঞরা

এদের স্ত্রাদি দিয়েছেন, এবং ব্রহ্মগুপ্তের বিখ্যাত ভাষ্যকার পৃথুদকস্বামী উদাহরণ নিয়ে আলোচনাও করেছেন।

তিনি একটি উদাহরণ দিয়ে বলেছেন যদি তিনমাসে একশ টাকার স্থদ দশ টাকা হয়, তা হলে পাঁচ মাদে যাট টাকার স্থদ কত ?

সমাধান ৪

$$\frac{3}{100} \begin{vmatrix} 5 \\ 60 \end{vmatrix}$$
 ভারপর  $\frac{3}{100} \begin{vmatrix} 5 \\ 60 \\ 10 \end{vmatrix}$   $\frac{5}{60}$   $\frac{5}{100} \begin{vmatrix} 5 \\ 60 \\ 10 \end{vmatrix}$   $\frac{5}{100} \begin{vmatrix} 5 \\ 60 \end{vmatrix}$ 

বিশ্বগণিতে ভারতীয়দের অগ্রতম শ্রেষ্ঠ অবদান ত্রৈরাশিক ইত্যাদি। এই
নিয়মের উচ্জল্যে বিশ্বের অগ্যান্ত গণিতজ্ঞরা এমন অভিভূত হয়েছিলেন যে, মূল
নামটি পর্যন্ত বিদেশী ভাষায় প্রায় অবিকৃত আছে। Smith তাঁর গণিতের
ইতিহাসে এর উদ্ভব সম্পর্কে বলেছেন,—"The Mercantile Rule of Three seems to have originated among the Hindus......the name is also found among the Arab and medieval Latin writers."

<sup>\*</sup> था. छा. ग. ह.-थनी शक्यात यज्यात ।

## ষোড়শ অধ্যায়

BY MIN SERVICE SERVICE STREET

"Both the form and the spirit of arithmetic and Algebra of modern times are essentially Indian and not Grecian."

—F. Cajori

## বীজগণিত

পূর্ববর্তী অধ্যায়গুলিতে বিভিন্ন যুগের গণিতজ্ঞদের জীবন ও অবদান বিষয়ক আলোচনার বীজগণিতিক ধারণার অন্প্রবেশ ঘটেছে। তবুও এই অধ্যায়ে বীজগণিত সম্পর্কে ভারতীয় গণিতজ্ঞদের ধারণার একটি মোটাম্টি স্থশুলা আলোচনার অবতারণা করা হলো। আমাদের বিশ্বাস, অনিবার্যভাবে পূর্ব-আলোচিত তথ্যের পুনরাবৃত্তি ঘটলেও পাঠক-পাঠিকা এ-সম্পর্কে একত্র সমাবেশিত তথ্যসমূহের ভিত্তিতে একটি স্পষ্ট ধারণা গড়ে তুলতে পারবেন।

গণিতের বিভিন্ন শাখা ও নানা বিষয়ের মত বীজগণিতের উদ্ভবকাল সম্পর্কেও নিশ্চিত করে কিছু বলা যায় না। তবে শুল্বযুগে যে এই বিষয়টির অস্তিত্ব পূর্ণ মাত্রায় ছিল দে-বিষয়ে সন্দেহ করার অবকাশ নাই। ভারতে সম্ভবত বাজগণিতের অস্তিত্ব জ্যামিতির মধ্যে নিহিত ছিল। অর্থাৎ নানা জ্যামিতিক সমস্ভার সমাধান করতে গিয়েই বীজগণিতের উদ্ভব হয়ে থাকবে। এ-বিষয়ে ভ: টি. এ. সরস্বতীর মস্তব্য: ".......The basis and inspiration for the whole of Indian mathematics is geometry." শূলস্ত্রের আলোচনায় দেখা গেছে, ভারতীয় গণিতজ্ঞরা জ্যামিতির সাংখ্যিক তথা পাটীগাণিতিক দিকটির প্রতি সর্বাধিক আরুই ছিলেন, আর নানা প্রকার জ্যামিতিক বেদী ও অগ্নি-নির্মাণে সমীকরণ সমাধান তো অপরিহার্য ছিল। প্রদন্ত একটি বাহু দ্বারা কোন বর্গক্ষেত্রের সমান আয়তক্ষেত্র অন্ধনে  $ax - c^2$  ধরনের সমীকরণ সমাধান জানতেই হতো। মহাবেদী ও শ্বেণ-চিতি নির্মাণে সমীকরণ সমাধানই ছিল একমাত্র হাতিয়ার। মহাবেদী নির্মাণে নিয়ন্ত্রপ সমীকরণ সমাধান করতে হতো:

$$36x \times \frac{(24x+30x)}{2} - 36 \times \frac{(24+30)}{2} + m$$

$$\boxed{4, 972x^2 = 972 + m}$$

$$41, \ x = \sqrt{1 + \frac{m}{972}}$$

আবার, ভোগ-চিতি নির্মাণে নীচের সমীকরণটির সাক্ষাৎ পাওয়া যায়:

$$2x \times 2x + 2\left\{x + \left(x + \frac{x}{5}\right)\right\} + x \times \left(x + \frac{x}{10}\right) = 7\frac{1}{3} + m$$

উল্লেখযোগ্য যে, এ তৃ-ধরণের সমীকরণের সমাধান শতপথ ভ্রাহ্মণ-এ দেখা।

এ-সব তথ্য থেকে অন্নমান করা যায় যে, ঋগ্রেদীয় যুগের পূর্বেই ভারতে বীষ্ণগণিতের উদ্ভব হয়েছিল; পণ্ডিতরা অন্নমান করেন যে, অন্তত খ্রীষ্টপূর্ব ছ-হাজার অন্ধ এর উৎপত্তিকাল।

গণিতে বীজগণিতের ভূমিকা ও গুরুত্ব সম্পর্কে গণিতজ্ঞদের মধ্যে দ্বিমত নাই। ভারতীয় গণিতজ্ঞরা এ-বিষয়ে সম্পূর্ণ অবহিত ছিলেন; তাই পাটাগণিত ও বীজগণিতের পৃথক পৃথক স্বরূপ উপলব্ধি করেছিলেন। ব্রহ্মগুপ্ত বলেছেন, বিদ্বৎ সমাজে তিনিই গণিতাচার্য আখ্যা পান যিনি চূর্ণন, শৃত্য, ধনাত্মক, ঋণাত্মক, অজ্ঞাতরাশি, মধ্যপদের অপনয়ন, একঘাত সমীকরণ, বর্গ-প্রকৃতি বিষয়ে পারক্ষম। স্বয়ং ব্রহ্মগুপ্ত বর্গ-প্রকৃতি বা দ্বিঘাত অনির্দেশ্ব সমীকরণ-এর বীজ নির্ণয়ে অসামাত্য পরাকাষ্ঠা দেখিয়েছেন। এই সম্পর্কিত তাঁর শ্লোকটি:

প্রায়েণ যত: প্রশ্নাঃ কৃট্টাকারাদৃতে ন শক্যন্তে।
জ্ঞাতুং বক্ষামি ততঃ কুট্টাকারং সহ প্রশ্নৈঃ।।
কুট্টকখর্ণধনাব্যক্তমধ্যহরণৈকবর্ণভাবিত কৈঃ।
আচার্যস্তন্ত্রবিদাং জ্ঞাতৈর্বর্গপ্রকৃত্যা চ।।

বীজগণিতের স্বরূপ ও প্রকৃতি সম্পর্কে ভাস্করের ধারণা আরো স্পষ্ট। পাটাগণিত ও বীলগণিতের পার্থক্য সম্পর্কে তাঁর উক্তি:

দিবিধগণিতমুক্তং ব্যক্তমব্যক্তসংজ্ঞং ব্যক্তং পাটীগণিতং অব্যক্তং বীজগণিতং ।

অর্থাৎ গণিত ত্-প্রকার,—বাক্ত ও অব্যক্ত। অব্যক্ত গণিতই বীজগণিত।
জ্যোতিবিদ ও জ্যোতিষীদের পার্থক্য বিষয়ে ভাস্কর একটি তুলনামূলক
আলোচনা করেছেন। এবং এই প্রসঙ্গে তিনি বলেছেন:

দ্বিবিধগণিত মুক্তং ব্যক্তমব্যয়ুক্তং
তদবগমননিষ্ঠঃ শব্দশান্তে পটিষ্ঠঃ।
যদি ভবতি তদেদং জ্যোতিষং ভূরিভেদং
প্রপঠিতুমধিকারী সোহত্যখা নামধারী।।

অন্নবাদ: "ব্যক্তগণিত (পাটীগণিত) ও অব্যক্তগণিত (বীজগণিত) নামক বিবিধ গণিত শাস্ত্রে অভিজ্ঞ এবং শব্দশাস্ত্রে (ব্যাকরণে) পঠীয়ান ব্যক্তিই বহুভেদ বিশিষ্ট এই জ্যোতিষশাস্ত্র পাঠ করিবার অধিকারী, অন্তথা কেবল জ্যোতিষী নাম-ধারী হইয়া থাকে।"

ভাস্কর অন্তত্ত্ব বলেছেন, 'বিমলমতি'-ই বীজগণিত। 'বিমলমতি' বলতে ভাস্কর খুব সম্ভব বিষয়টি উচ্চবৃদ্ধিদম্পন্ন মাহুষের বোধগম্য—এই ইঙ্গিত করেছেন। আর অব্যক্ত বলতে তিনি চিহ্নও সক্ষেত্রে সাহাষ্যে অজ্ঞাতরাশি সম্পর্কে আলোকপাত করেছেন বলে মনে হয়।

ভারতে বীজগণিতের স্থচনা প্রায় চার হাজার বছর আগে হলেও, আর্যভট-ব্রহ্মগুপ্তের পর এই শাখার বিকাশ ও সমৃদ্ধি অষ্টম শতাকাতে হয়েছিল। অষ্টম শতাকীর আগে 'বীজগণিত' শক্ষটি কোথাও ব্যবহৃত হয়নি। ব্রহ্মগুপ্তের বিখ্যাত ভায়কার চতুর্বেদাচার্য পৃথুদক্ষামী এই নামটি প্রথম ব্যবহার করেন বলে জানা যায়।

## ॥ চিহ্ন ও সঙ্কেত ॥

উপযুক্ত চিহ্ন ও দক্ষেত ব্যতিবেকে গণিতের বিকাশ ও সমৃদ্ধি দন্তব নর।

এডওয়ার্ড কাসনাবের একটি মন্তব্য এ-বিষয়ে শ্ববণ করা যেতে পারে। "Mathematics is the Science in which one uses easy words for hard ideas." আধুনিক গণিতে বর্ণমালার বর্ণ ও বিভিন্ন প্রকার চিহ্ন মাদরে স্থান পেরেছে। প্রাচীন ভারতেও গণিতজ্ঞরা দক্ষেত ও চিহ্নের গুরুত্ব উপলব্ধি করেছিলেন। বেশীর ভাগ ক্ষেত্রে তাঁরা সংস্কৃত শব্দের প্রথম অক্ষর ব্যবহার কয়েছেনে। যেমন,—যোগ বা যুক্ত বোঝাতে 'মু', বিয়োগ বোঝাতে 'ম'ইতাদি। বিয়োগ ও ভাগের সক্ষেতে একটা শৃদ্ধালা দেখা যায়; কিন্তু অক্যত্র কথনো কথনো পূর্ণশব্দ বা কিছুই ব্যবহার করা হতোনা। অক্ষের প্রকৃতি ও প্রসক্ষ থেকে প্রক্রিয়াটি বুঝে নিতে হতো।\* বকশালী পাঞ্লিপি থেকে কয়েকটি উদাহরণ দেওয়া হলো:

(1) 
$$\frac{0}{1}$$
  $\frac{5}{1}$   $=\frac{x}{1} + \frac{5}{1}$ 

আধুনিক বাজগণিতের ভাষায়,  $\sqrt{x+5}=m$  এবং  $\sqrt{x-7}=n$ 

- (3) 127 =12-7=5 [ এখানে বিন্দু (.) দ্বারা বিয়োগ বোঝানো হয়েছে।]
  - (4) 3 3 3 3 3 3 3 10 ত 3×3×3×3×3×3×3×10

    [ এখানে 'ত' ছারা তুণ বোঝানো হয়েছে।]

উপরের বিশেষ দক্ষেত ও চিহ্নাদি আধুনিক বাজগণিতের ভাষায় প্রকাশ করলে,—

$$x \left(1 + \frac{3}{2}\right) + \left\{2x\left(1 + \frac{3}{2}\right) - \frac{5x}{2}\right\} + \left\{3x\left(1 + \frac{3}{2}\right) - \frac{7x}{2}\right\} + \left\{4x\left(1 + \frac{3}{2}\right) - \frac{9x}{2}\right\}$$

এখানে পাণ্ড্লিপির '+'=বিয়োগ ও 'গু'=গুণ, এই সঙ্কেত ও চিহ্ন ব্যবস্থাত হয়েছে।

## ॥ অজ্ঞাত রাশি॥

অজ্ঞাত রাশি অর্থে জৈন গণিতে 'যাবং-ভাবং' ব্যবহৃত হতো; পাণুলিপির
যুগে অজ্ঞাতরাশি অর্থে '0', 'যদূল্ছা', 'বাঞ্চা', 'কামিক' প্রভৃতি শব্দ ব্যবহৃত হতে
দেখা যায়। আর্যভট 'শুলিকা' শব্দটি অজ্ঞাতরাশির অর্থে গণিতপাদের ত্রিশতম শ্লোকে ব্যবহার করেছেন। এ-বিষয়ে তাঁর শ্লোকটি:

> গুলিকান্তরেণ বিভজেদ্ দয়োঃ পুরুষয়োন্ত রূপকবিশোষম্। লব্ধং গুলিকামূল্যং যদ্যর্থকৃতং ভবতি তুল্যম্।।

প্রথম ভাস্কর বলেছেন, 'গুলিকা' ও 'যাবং-তাবং' সমার্থক। অবশ্র আর্যভট

অজ্ঞাতরাশি বোঝানোর জন্ম 'বর্ণ' (রঙ) ব্যবহারও করেছেন। ব্রহ্মগুপ্তও 'বর্ণ' ব্যবহার করেছেন। কিন্তু তাঁর 'বর্ণ' রঙ না আন্ত কিছু বোঝা কঠিন। বর্ণমালার বর্ণের কথা বলাও সম্ভব বলে মনে হয়। যা হোক, প্রাচীন ভারতে অজ্ঞাত রাশি বোঝানোর জন্ম আরো অনেক শব্দ ব্যবহৃত হতে দেখা যায়। যেমন,—কালিকা, নীলক, পাটলক, লোহিতক, হীরতক, শ্বেতক, চিত্রক, কপিলক, পিঙ্গলক, ধূন্রক, পীতক, শ্বলক, আমলক, মেচক ইত্যাদি। বলা বাছলা, এগুলি সবই বর্ণভোতেক। এ-সম্পর্কে প্রীপতি সিদ্ধান্ত শেশবর গ্রন্থে বলেছেন,—

যাবভাৰৎ কালকো নীলকাদ্যা
বৰ্ণাঃ কল্প্যা নূনমব্যক্তমানে।
তেমাং তুল্যা ভাস্বভঃ স্বোট্গমাহি
সবৰ্গঃ সাদ্ধাবিতং চাপমানম্।।

মমার্থ হচ্ছে, "অব্যক্ত বাশির মান,—যাবং-ভাবং, কালক, নীলক প্রভৃতি কল্পনা করিবে।....." (প্রা. ভা. গ. চ.)

শ্রীধরের **ত্রিশতিকা-**য় একটি সমাস্তর শ্রেণীতে এরূপ সঙ্কেত ব্যবহার পরিলক্ষিত হয়:

## | আদি 20 | উ 0 | গচ্ছঃ 7 | গণিতম্ 245 |

এখানে, আদি প্রথম পদ, গচ্ছঃ পদসংখ্যা, গণিতম্ সমষ্টি এবং উ জিতর। কিন্তু বেখানে একাধিক অজ্ঞাতরাশি ব্যবস্থত হয়েছে সেথানে 'প্র', 'দ্ব', 'ভূ' বথাক্রমে প্রথম, দ্বিতীয়, তৃতীয় প্রভৃতির সংক্ষিপ্ত রুপটি ব্যবস্থত হতে দেখা বায়।

## ।। সহগ ।।

'সহগ'-র বিশেষ উল্লেখ প্রাচীন কোন গ্রন্থে দেখতে পাওরা যায় না। ব্রহ্মগুপ্ত মাত্র একবার 'সহগ' শব্দটি ব্যবহার করেছেন, এবং মনে হয় ভাতে তিনি সংখ্যা বোঝাতে চেয়েছেন। কিন্তু তিনি বহুবার 'গুণক' বা 'গুণকার' শব্দ ব্যবহার করেছেন। যেমন,—"গুণক গুণাদিষ্ট যুত ... ", "গুণকে প্রথমং" ইত্যাদি। পৃথুদকস্বামী 'শ্রহ্ম' ও ভাস্কর 'রূপ' অর্থে 'সহগ' বোঝাতে চেয়েছেন।

## ত্ৰিক প্ৰকৃতিৰ প্ৰকৃতি ।। যাত ॥

একথা সত্য ঘাত বা শক্তি-র উল্লেখ জৈনগ্রন্থে দেখতে পাওরা যায়। বেমন, ভদ্রবাহুর উত্তরাধ্যয়ন সূত্র গ্রন্থে দিতীয় ঘাতকে বর্গ, তৃতীয় ঘাতকে ঘন, চতুর্থ ঘাতকে বর্গ-বর্গ ইত্যাদি বলা হয়েছে। এমন কি, অমুযোগদার সূত্র গ্রন্থেও পূর্ণসংখ্যা ও ভগ্নাংশের ঘাতের উল্লেখ আছে। কিন্তু ওইসব গ্রন্থে এর বৈজ্ঞানিক নামকরণের অভাব দেখা যায়। এ-বিষয়ে যিনি সর্বাধিক ক্ষৃতিত্ব দেখিয়েছেন তিনি হচ্ছেন ব্রহ্মগুপ্ত। -'গত' প্রভায় যুক্ত করে নামকরণে নতুনত্ব আনা তাঁর গাণিতিক প্রতিভার আর এক উজ্জ্বল দৃষ্টাস্ত। যেমন,—পঞ্চঘাত-কে তিনি বলেছেন 'পঞ্চগত'; এরপ অভ্যন্তও-'গত' প্রভায় যুক্ত হওরা পরিলক্ষিত হয়।

ভারতীয় গণিতে বর্গের সক্ষেতে 'ব' এবং ঘন-র সক্ষেতে 'ঘ' দেখা যায়।
চতুর্থ ঘাত বোঝাতে 'ব-ব', ষষ্ঠ ঘাতে 'ঘ-ব' দেখা যায়। ছই বা ততোধিক
রাশির গুণফল বোঝাতে 'ভা',—'ভাবিত'-র সংক্ষিপ্ত রূপের ব্যবহারও অপ্রতুল
নয়। বর্গ মূল বোঝাতে ভাস্কর করণীর সংক্ষিপ্তরূপ 'ক' ব্যবহার করেছেন।
যেমন,—

ক 9 क 450 क 75 क 54 $-\sqrt{9}+\sqrt{450}+\sqrt{75}+\sqrt{54}$  আবার, বগ'মূল অর্থে 'মৃ' ব্যবহারও দেখা যায়। যেমন,—

$$\begin{bmatrix} 11 & \sqrt{5} & \sqrt{4} \\ 1 & \sqrt{1} & \sqrt{1} \end{bmatrix} = \sqrt{11+5} = 4$$

## ॥ ধ্রুবক রাশি ॥

ঞ্চৰক বা ঞ্চৰক বাশি ৰোঝাতে একাধিক শব্দ ব্যবহৃত হতে দেখা যায়। বকশালী পাণ্ড্লিপিতে 'দৃষ্ণ' ও প্ৰবতীকালে 'দৃষ্ণ'-এর পরিবর্তে 'রূপ' শব্দটি প্রাধান্ত পায়। যেমন,—

যাৰ 0 যা 10 র 8=x3.0+x.10-8

## क्षेत्र व विकास विकास विकास विकास मुखे ॥ १ वर्षी ११६ वर्षी विकास

বীজগাণিতিক চিহ্ন সম্পর্কে প্রাচীন কোন গ্রন্থে বিশেষ উল্লেখ পাওয়া যায় না। কিন্তু ব্রহ্মগুপ্তের চিহ্ন সম্পর্কিত স্ত্র থেকে অন্তমিত হয় তাঁর পূর্বে এর অন্তিও ছিল। ব্রহ্মগুপ্ত বলেছেন, তুটি ধনরাশির সমষ্টি ধনরাশি, তুটি ঋণরাশির সমষ্টি ঋণরাশি, এবং ধনরাশি ও ঋণরাশির সমষ্টি উভয়ের অস্তর। আচার্য বৃদ্ধপ্রের উত্তরস্থরীরা সন্দেহাতীত চিত্তে এই স্ত্র মেনে নিয়েছেন। মহাবীর, ভাষ্ণর, শ্রীপতি, নারায়ণ প্রমুখ গণিতজ্ঞরা নতুন কিছু সংযোজনের অবকাশ পাননি। এ প্রসঙ্গে শ্রীণতির সিদ্ধান্তশেখর থেকে উদ্ধৃতি দেওয়া যাক ঃ

ঐক্যং যুতো স্যাৎ জ্ঞন্তরাঃ স্বয়োশ্চ ধনপ্রোরস্তরমেব যোগঃ। সংশোধ্যমানং স্বয়ুগং তথর্ণং ধনং ভবেহজুবদত্ত যোগঃ॥

অর্থাৎ ছটি ধনরাশির বা ঋণরাশির যোগ হয়। একটি ধন অপরটি ঋণ হলে তাদের অন্তর হবে যোগ। বিযোজ্য ধন হলে বিয়োগের জায়গায় ঋণ হবে, আর এরূপ ঋণরাশি ধন হবে। তদনন্তর এদের যোগ হবে।

আধুনিক গাণিতিক চিহ্ন ও দক্ষেতে স্ত্রগুলি:

- (i) 2a+a=3a ( धनवानि + धनवानि = धनवानि )
- (ii) -2a-a=-3a (  $\frac{1}{2}$  (  $\frac{1}{2}$  )  $\frac{1}{2}$  (  $\frac{1}{2}$  )  $\frac{1}{2}$
- (iii) 2a-a=a (ধনরাশি+ঝণরাশি=অন্তর)

#### ।। বিষোগ।।

বীজগণিতে বিয়োগ করার দময় একটি রাশির চিহ্ন পরিবর্তন করা হয়। ব্রহ্মগুপ্ত, মহাবীর, শ্রীপতি, ভাস্কর, নারায়ণ প্রম্থ এই একই নিয়ম ব্যবহার করেছেন। মহাবীর গণিত-সার-সংগ্রহ-এ বলেছেন, ধনরাশিকে বিয়োগ করলে ঋণরাশি হয়, আর ঋণরাশির ক্ষেত্রে ধনরাশি হয়। ভাস্করও একই কথা বলেছেন। কেবল ভিনি বলেছেন বিয়োগ-প্রক্রিয়ায় অতঃপর পূর্বের ন্যায় যোগ করতে হবে। এখানে আচার্য ব্রহ্মগুপ্তের নিয়মটি উদ্ধৃত হলো:

# बनत्साव निम्नम्नदसार्वनर्गदसात्रस्त त्र प्रत्येक प्रथम् । सन्देशक प्रस्तिक प्रस्तिक

অন্থবাদ: বৃহৎ থেকে কৃদ্র বিয়োগ করলে ধনাত্মক, ধনাত্মক থেকে ঋণাত্মক বিয়োগ করলে ধনাত্মক, আবার কৃদ্র থেকে বৃহৎ বিয়োগ করলে বিপরীত অর্থাৎ ঋণাত্মকটি ধনাত্মক ও ধনাত্মকটি ঋণাত্মক হবে। ঋণাত্মক থেকে ধনাত্মক বিয়োগ অথবা ধনাত্মক থেকে ঋণাত্মক বিয়োগ দিতে গেলে যোগ করতে হয়। ( প্রা. ভা. গ. চ. )

বর্তমান গাণিতিক চিহ্ন ও সঙ্কেন্তে স্ত্রগুলি:

a 9 b इंडि धनतानि इतन,

আবার, a ধনরাশি ও b ঋণরাশি হলে.

# ॥ छनन ॥

গুণনের নিয়ম সম্পর্কে ভারতীয় গণিতজ্ঞদের মধ্যে কোন দ্বিমত নাই। ব্রহ্ম-গুপ্ত, ভাস্কর, মহাবীর, শ্রীপতি প্রম্থ গণিতজ্ঞ একই কথা বলেছেন। ভাস্কর তাঁর সিদ্ধান্ত-শিরোমণি-র বীজগণিত অংশে বলেছেন, চুটি ধনসংখ্যা বা ঋণসংখ্যার গুণফল ধনসংখ্যা এবং ধনসংখ্যা ও ঋণসংখ্যার গুণফল ঋণসংখ্যা। পণিতের ভাষায়,—

- (i)  $+a \times +b = ab$ , (ধনসংখ্যা $\times$ ধনসংখ্যা=ধনসংখ্যা
- (ii)  $-a \times -b = +ab$ , ( अनिरः था।  $\times$  अनिरः था। = धनमः था। )
- (iii)  $+a \times -b = -ab$ , (ধনসংখ্যা  $\times$  ঋণসংখ্যা =ঋণসংখ্যা )
  - (iv)  $-a \times +b = -ab$ , ( अलमः चा  $\times$  ४नमः चा = अलमः चा )

গুণনের নিয়ম সম্পর্কে আচার্য ব্রহ্মগুপ্তের মতটি খুবই উল্লেখবোগ্য। তিনি বলেছেন তুটি সম-অজ্ঞাত রাশির গুণফল হবে বর্গ, তিন বা ততোধিক সম-অজ্ঞাত রাশির গুণফল হবে সহগ ও ঘাত অনুসারে। অসম-অজ্ঞাতরাশির গুণফল হবে ভাবিত' অর্থাৎ পরস্পারের গুণনের ঘারা। ভাস্কর ও নারায়ণের গ্রন্থে একই নিয়ম দেখা যায়। স্থ্রের আকারে প্রকাশ করলে,—

- (i)  $a \times a = a^2$
- (iii)  $a \times 2b \times 3c = 6abc$

## 

ভাগ সম্পর্কে আলোচনা ব্রহ্মগুপ্তের সময় থেকেই দেখা যায়। তিনি ব্রহ্মস্ফুট-সিদ্ধান্তে এ-বিষয়ে স্ত্রও দিয়েছেন। তাঁর স্ত্রটি নিয়ন্ত্রণ:

ধনভক্তং ধনমূণস্বতমূণং ধনং ভবতি থং থভজং থম্। সার্ক্ত স্থানিক ভক্তমূণেন ধনমূণং ধনেন ক্তমূণমূণং ভবতি।।

এই স্তব্রে আধুনিক রূপ হচ্ছে:

(1) 
$$a \div b = \frac{a}{b}$$
; (2)  $-a \div -b = \frac{a}{b}$ ; (3)  $-a \div b = \frac{-a}{b}$ ;

$$(4) \quad a \div -b = \frac{-a}{b}$$

আচার্য ভাস্করও ভাগের নিয়ম ক্ষমরভাবে বিবৃত করেছেন। তিনি বলেন, অজ্ঞাতরাশি যাই হোক না কেন ভাজককে পৃথক পৃথকভাবে গুণ করে এবং প্রতিক্ষেত্রে ভাজ্য থেকে বিয়োগ করে যখন কোন অবশিষ্ট থাকবে না, তথন বিভিন্ন সোপানের ভাগফলই প্রকৃত ভাগফল নির্ণয় করেব।

a=ভান্ধ্য, b=ভান্ধক ও Q ভাগফল হলে যদি  $q_1,\,q_2,\,q_3$  ইত্যাদি বিভিন্ন সোপানের ভাগফল হয়, ভা হলে,—

$$Q=q_1+q_2+q_3+....$$

ভারতীয় গণিতে আটটি প্রাথমিক নিয়ম হিসাবে স্বীকৃত। কিন্তু বীজগণিতে যন ও ঘনমূল প্রাথমিক নিয়মব মধ্যে পড়ে না বলে এখানে হ'টি প্রাথমিক নিয়ম হিসাবে স্বীকৃত। কিন্তু ভাস্কর ঘন ও ঘনমূল বীজগণিতের অন্তর্ভুক্ত করেছেন। বেশীর ভাগ ভারতীয় গণিতজ্ঞ ঘন ও ঘনমূল প্রাথমিক নিয়মের অন্তর্ভুক্ত করেনি সম্ভবত একটি কারণে যে, বর্গ ও ঘন-র মধ্যে বিশেষ পার্থক্য নাই এবং এদের মধ্যে সম্পর্কটিও স্বম্পষ্ট। ব্রহ্মগুরের পর প্রায় দব গণিতজ্ঞই  $(a+b)^2=a^3+3a^2b+3ab^2+b^3$  বা  $a^3+b^2+3ab$  (a+b) স্ব্রুটি পাটীগণিত্তের অন্তর্ভুক্ত করেছেন। মধ্যযুগের 'ক্রিয়াকর্মকারী' গ্রন্থে এই স্ব্রের যে জ্যামিতিক প্রমাণ দেখা যায় তাতে এর পাটীগাণিতিক স্বর্গাই প্রকটিত হয়েছে।

উদযাতন ও অবঘাতন সম্পর্কে প্রায় সব ভারতীয় গণিতজ্ঞই আলোচনা করেছেন। ব্রহ্মগুপ্তের মতে ধনাত্মক ও ঋণাত্মক রাশির বর্গ করা যায়; মহাবীর বলেন, ধনাত্মক বা ঋণাত্মক রাশির বর্গ হবে ধনাত্মক। আর এদের বর্গমূলও ধনাত্মক বা ঋণাত্মক হবে। কিন্তু ঋণাত্মক রাশির বর্গমূল হবে না।

এ প্রদক্ষে  $x^2+1=0$  এই সমীকরণের বীজ নির্ণয় নিয়ে যে সব বিতর্ক বছদিন ধরে গণিতে চলেছিল, আর কিভাবে কাল্পনিক রাশি i-এর উৎপত্তি হলো
তা খ্বই চিত্তাকর্ষক। কিন্তু মহাবীর সেই নবম-দশম শতাকীতে তাত্ত্বিকভাবে
স্বশাঘ্যক রাশির বর্গমূল স্বীকার করেছিলেন, একথা ভাবলে তাঁর গাণিতিক
প্রতিভার উজ্জল্যে মুগ্ধ হতে হয়।

ভাস্কর বীজগাণিতিক যোগ-বিয়োগের ক্ষেত্রে প্রক্রিয়ার বর্ণনা দিতে গিয়ে বলেছেন যে একই 'জাতি' অর্থাৎ সদৃশ রাশির ক্ষেত্রে এটা সম্ভব, আর ভিন্ন 'জাতি'-র ক্ষেত্রে এই প্রক্রিয়া পৃথক পৃথকভাবে সম্পন্ন করতে হবে। তাঁর সংশ্লিষ্ট স্ত্র:

যোগোইতরং তেষু সমানজাত্যোধিভিন্ন জাত্যোশ্চ পৃথক্ স্থিতিশ্চ।। আধুনিক গণিতের ভাষায় প্রকাশ করলে,—

- (i) a+2a+3a=6a
- (ii) a+2b+3a+b+c=4a+3b+c

## ।। সমীকরণ।।

বীজগণিত শিক্ষণের মূল উদ্দেশ্য সমীকরণ গঠন। ত্রৈরাশিক ষেমন পাটী-গণিতের সার, সমীকরণ তেমনি বীজগণিতের সার। যে জাতি প্রাচীনকালে জ্ঞান-বিজ্ঞানের নানান শাখায় বিশ্বয়কর উন্নতি করেছিল, তারা যে গাণিতিক সমশ্যা সমাধানে বীজগাণিতিক সমীকরণের সহজ পথটি আবিষ্কার করবে, তাতে বিশ্বয়ের কিছু নাই। তৈন গণিতে বীজগাণিতিক সমীকরণের বিভিন্ন শ্রেণী-বিভাগ পরিলক্ষিত হয়। খ্রীষ্টীয় তৃতীয় শতাঝীর স্থানাল স্ত্র-এ সরল, বিঘাত, ত্রিঘাত ও চতুর্ঘাত সমীকরণের নাম পাওয়া যায়। কিন্তু একথা নিশ্চয় করে বলা যায় না, খ্রীষ্টপূর্ব শতাঝীতে ভারতীয় গণিতজ্ঞরা এই শ্রেণী-বিভাগ সম্পর্কে সম্পূর্ণ সচেতন ছিলেন কিনা। কিন্তু আচার্য ব্রহ্মগুপ্তের সময় থেকে যে ভারতীয় গণিতজ্ঞরা এ-বিষয়ে সম্পূর্ণ অবহিত ছিলেন এবং শ্রেণীকরণ স্থমম্পন্ন করেছিলেন, এ-সম্বন্ধে ছিমত নাই। সমীকরণ অর্থে 'সম-করণ', 'সমী-করণ', 'সদৃশী-করণ' শব্দ ব্যবহৃত হতে দেখা যায়।

বকশালী পাণ্ডুলিপি ও আর্থভটীয় গ্রন্থে সমীকরণ দেখা যায়। আর্যভট সমাধান পদ্ধতি নিয়ে আলোচনা করলেও শ্রেণীবিভাগ সম্বন্ধে কিছু বলেননি। এ-বিষয়ে ত্রন্ধগুপ্ত অনেকথানি অগ্রসর বলে মনে হয়। কিন্তু তিনি অক্সাতরাশির মাত্রার উপর নির্ভব করে শ্রেণী বিভাগ করেননি; অপরপক্ষে, অক্সাতরাশির সংখ্যার উপর ভিত্তি করে সমীকরণের তিনটি বিভাগ করেছেন:

- (i) একবর্ণ সমীকরণ (Equation with one unknown)
- (ii) অনেকবর্ণ সমীকরণ (Equation with several unknowns)
  - (iii) ভাবিত (Equation involving products of unknowns)

একবর্ণ সমীকরণ আবার ছু-ভাগে বিভক্ত: রৈথিক সমীকরণ (Linear Equation) ও অব্যক্তবর্গ সমীকরণ (Quadratic equations)।

ব্রহ্মগুন্থের পর থেকে ভাস্কর পর্যন্ত মধ্যবভীকালে তেমন উজ্জল ও মহা-প্রতিভাধর গণিতজ্ঞের আবির্জাব না হলেও, গণিতচর্চা যে অব্যাহত ছিল তাতে সন্দেহ নাই। এই পাঁচল' বছরে এমন অনেক জ্যোতির্বিদ ও গণিতজ্ঞের পরিচয় পাওয়া যায় যাঁরা সমীকরণ নিয়ে পূর্বাচার্যদের পথে ব্যাপক গবেষণা করেছিলেন। পৃথুদক্ষামী ব্রহ্মগুপ্ত বণিত তিন প্রকার সমীকরণ ছাড়াও আর এক প্রকারের নাম সংযোজিত করেছেন,—"মধ্যমাহরণ" (Equation with one, two or more unknowns in their second and higher powers.)

ভারতীয় গণিতে দমীকরণের সংজ্ঞা ও দমাধান পদ্ধতি নিয়ে আলোচনার আগে প্রাচীনকালে দমীকরণ কিভাবে লেখা হতো, দে-সম্পর্কে সামান্ত আলোচনা করা বাক।

## ॥ म्योक्त्रव-(नथन ॥

প্রাচীন ভারতীয় গণিতে সমীকরণ লেখার পদ্ধতি সাধারণভাবে 'আস' নামে অভিহিত হতো। বকশালী পাণ্ডুলিপিতে রাশিগুলিকে প্রাথমিক চার নিয়মের সাহায্যে পর পর লিথে একই পদ্ধ ক্তিতে সমান-চিহ্ন (=) না দিয়ে চরম পদ্টি লেখা হতো। নীচের সমীকরণটি উদাহরণস্বরূপ গ্রহণ করা যেতে পারে।

0 | 2 1 | 3 3 | 12 | 4 | 平町 300

আধুনিক চিহ্ন ও সঙ্কেতে,—

 $x+2x+3\times 3x+12\times 4x=300$ 

গণিতের অগ্রগতির সঙ্গে সঙ্গে সমীকরণ লেখার পদ্ধতির পরিবর্তন হয়েছে।
বকশালী পাণ্ড্লিপির রূপটি রক্ষিত হয়নি, সমান-চিহ্নের (=) আবির্ভাব ঘটেনি
বটে, কিন্তু সমীকরণের ঘটি পক্ষকে পরস্পরের নীচে সংস্থাপিত করার রীতি
প্রবর্তিত হয়েছে। নতুন পদ্ধতিতে সদৃশগদগুলি পরস্পরের নীচে সংস্থাপিত হয়ে
শ্র্য-চিহ্ন (0) ছারা কোন পদের অমুপস্থিতি স্টিত করল। সপ্তম শতান্ধী থেকে
এই পদ্ধতির প্রচলন দেখা যায়। পৃথুদকস্বামীকৃত একটি সমীকরণ দিয়ে এই
পদ্ধতিটি দেখানো হলো:

## या व 0 या 10 का 8 या व 1 या 0 का 1

[ এথানে যা— অজ্ঞাতরাশি, ব—বর্গ, র—গ্রুবক ]

আধুনিক গাণিতিক সঙ্কেত-চিহ্নে সমীকরণটি,—

$$x^2.0+x.10-8=x^3.1^2+x.0+1$$

 $\sqrt{3}$ ,  $10x - 8 = x^2 + 1$ 

 $\sqrt{3}$ ,  $x^3 - 10x + 9 = 0$ 

এই পদ্ধতি নি:সন্দেহে বৈজ্ঞানিক পদ্ধতি। এর বৈশিষ্টাগুলি লক্ষ্য করার মত। সমীকরণটিতে অজ্ঞাতরাশির পদগুলি অধ্যক্ষমে সজ্জিত হয়েছে; সহগণ্ডলি অজ্ঞাতরাশির পরে বনেছে এবং চরম বা প্রথক রাশিটি শেষে স্থাপিত হয়েছে। এই প্রসঙ্গে Smith তাঁর History of Mathematics প্রস্কে বলেছেন,—"The Hindu method was better than the Chinese, and in this respect was the best that has ever been suggested......such a plan shows at a glance the similar terms one above another, and permits of easy transposition."

## ।। একবর্ণ সমীকরণ।।

একমাত্রার সরল সমীকরণকে প্রধানত তিনভাগে ভাগ করা যায়: (a) একটি অজ্ঞাত রাশি বিশিষ্ট একমাত্রার সরল সমীকরণ, (b) তৃটি অজ্ঞাত রাশি বিশিষ্ট একমাত্রার সরল সমীকরণ এবং (c) তিন বা ততোধিক অজ্ঞাত রাশি বিশিষ্ট একমাত্রার সরল সমীকরণ।

একটি অজ্ঞাত রাশি বিশিষ্ট একমাত্রার সরল সমীকরণ সমাধানের অনেক রকম পদ্ধতির কথা প্রাচীন ভারতীয় গণিতজ্ঞদের গ্রন্থে দেখতে পাওয়া যায়। গুলমুগে এ-ধরনের সমীকরণের অস্তিত্ব পরিলক্ষিত হয়। জৈন গণিতে যাবৎ-ভাবৎ-এর কথা পূর্বেই আলোচিত হয়েছে। প্রীষ্টীয় শতান্ধীর প্রারম্ভকালে সমস্তাকারে এবকম সমীকরণ দেখা যায়। বকশালী পাঙুলিপিতেও সমস্তাকারে এ-ধরনের সমীকরণ আছে। একটি উদাহরণ:

চার ব্যক্তির মধ্যে 132 টাকা এরপভাবে ভাগ করে দাও ষেন দিতীয় ব্যক্তি প্রথম ব্যক্তির দিগুণ, তৃতীয় দিতীয়ের তিনগুণ ও চতুর্থ তৃতীয়ের চারগুণ পায়। সমীকরণের আকারে প্রকাশ করলে,—

x+2x+6x+24x=132
বা, 33x=132

স্থতরাং, প্রথম ব্যক্তি 4 টাকা, দ্বিতীয় ব্যক্তি 8 টাকা, তৃতীয় ব্যক্তি 24 টাকা এবং চতুর্থ ব্যক্তি 96 টাকা পায়।

ax+c=bx+d-এই ধরনের সমীকরণ নিয়ে আর্যভট, ব্রহ্মগুপ্থ, শ্রীপতি, ভাস্কর প্রম্থ আলোচনা করেছেন। আর্যভটের এই সম্প্রকিত স্ত্র 'গুলিকান্তরেণ' ইত্যাদি আমরা উদ্ধৃত করেছি। তাঁর স্ত্রটির আধুনিক গাণিতিক রূপ:

ax+c=bx+d

all al,  $x = \frac{d-c}{a-b}$  where the state of the state o

শ্রীপতির সিদ্ধান্ত শেখর গ্রন্থে পক্ষান্তর করার নিয়ম দেখতে পাওয়া যায়। তাঁর পদ্ধতি:

অব্যক্ত বিশ্লেষহৃতে প্রতীপরূপান্তরেহ্ব্যক্তমিতী ভবেতাম্।
স্যাহ্বা মুভোনহৃতভক্ত মিচ্ছেতদাহ্ন্সপক্ষে বিহিতে তথৈব।

অম্বাদ ৪ "একবর্ণ সমীকরণ স্থলে প্রথম ও দ্বিতীয় পক্ষের বর্ণকে যোগ বা বিয়োগ করিয়া একপক্ষে আনয়ন করিবে এবং রূপরাশিকে ঐভাবে অন্তপক্ষে লইয়া যাইবে; অভংপর অব্যক্তের রূপরাশি দ্বাবা ব্যক্ত রাশিকে ভাগ করিলে অব্যক্ত মান পাওয়া যাইবে।"

## ।। ইপ্টকর্ম-পদ্ধতি।।

একটি মাত্র অজ্ঞাত বাশি সমন্বিত একঘাত সমীকরণের একটি নতুন পদ্ধতির আবিষ্কারক হচ্ছেন ভাস্কর। ভাস্কর এই পদ্ধতির নাম দিয়েছেন 'ইষ্টকর্ম'। লীলাবতী-তে সংজ্ঞা ও উদাহরণ দেখতে পাওয়া যায়। একটি ঐচ্ছিক সংখ্যা ধবে এ-ধরনের সমীকরণ সমাধান করাই রীতি।

ভারত নিয়মটি বিবৃত করে বলেছেন, একটি ঐচ্ছিক সংখ্যা ধরে সমস্থার

সর্তান্ত্রসারে চার নিয়মের সাহায়ে যে ফল পাওয়া যাবে, জ্ঞাতরাশি ও ঐচ্ছিক বাশির গুণফলকে পূর্বফল দারা ভাগ করলে ঈব্দিত ফল পাওয়া যাবে।

এই পদ্ধতিতে সমাধান করতে গিয়ে ভাস্কর ঘটি উদাহরণ দিয়েছেন,—একটি
সম্পূর্ণ গণিত-ভাবনাযুক্ত এবং অপরটি কাব্যরসমণ্ডিত একটি মনোরম সমস্থা।
শেষের উদাহরণটি সম্পর্কে ত্-একটি কথা বলার আছে। প্রাচীন ভারতীয় গণিতে
যে-সব সরস কাব্যগুণমণ্ডিত অক্ষ দেখা যায়, তা থেকে মনে হয়, সে-য়ুগে
গণিতচর্চা কেবলমাত্র বিশেষজ্ঞদের মধ্যে সামাবদ্ধ ছিল না, দাধারণ মাছুষের মধ্যে
গণিতের স্কুদ্র প্রসারী ফল প্রলম্বিত করার জন্ম গণিতজ্ঞরা চিন্তা করতেন, এবং
গণিতকে রমণীয় করে ভোলার জন্ম দার্থক প্রয়াস চালাতেন। গণিতের বিখ্যাত
ঐতিহাসিক ক্যাজরির মন্তব্যটি প্রসঙ্গক্রমে শ্বরণযোগ্য: "The pleasing
poetic garb in which all arithmetical problems are clothed is
due to the Indian practice of writing all school books in verse,
and especially to the fact that those problems, propounded as
puzzles, were a favourite social amusement." কেবলমাত্র
পাটীগাণিতিক সমস্থার ক্ষেত্রেই নয়, বাজগাণিতিক সমস্থার ক্ষেত্রেও উক্তিটি
সমভাবে প্রযোজ্য।

উদাহরণ ৪ "একটি হস্তীর দল হইতে ইহার তৃতীয়াংশ হইতে অর্ধেক বন
মধ্যে বিচরণ করিতেছিল। ইহার সপ্তমাংশের সহিত একের ষষ্ঠাংশ নদীতে
জলপান করিতে গিয়াছিল। ইহার অষ্টমাংশের সহিত পদ্মবনে থেলা করিতে
গিয়াছিল। দলপতিকে তিনটি হন্থিনীর সহিত দেখা গেল। সেই দলে কতগুলি
হস্তী ছিল ?" (অক্কভাবনা)\*

হস্তী-সংখ্যা= \* ধর্লে নিম্নরূপ বীজগাণিতিক সমাকরণ পাওয়া যায় :

$$x = \frac{1}{5}x + \frac{1}{5}x + \frac{1}{5}x + \frac{1}{5}x + \frac{1}{5}x + 6$$

$$41, \quad x - \frac{57x}{60} = 6$$

$$\frac{x}{20} = 6$$

$$= 120$$

200 (20 J) . FOR SA - 24

<sup>\*</sup> প্রদাপ কুমার মজুমদারের 'প্রাচীন ভারতে গণিতচর্চা' থেকে নেওয়া হয়েছে পৃ:--212।

## ।। আনুমানিক পদ্ধতি।। (Regula Falsi)

জ্ঞাত রাশির বিভিন্ন মান জন্তমান করে ax+b=0—এ-ধরনের সমীকরণ সমাধান অতি প্রাচীন। স্থানাজস্ত্র-এ এই পদ্ধতির পরিচয় লিপিবদ্ধ আছে। আরবদের মাধ্যমে যেমন দশগুণোন্তর স্থানিক-মান পদ্ধতিতে সংখ্যা-লিখন, শৃত্য এবং গণিত ও জ্যোতির্বিজ্ঞানের নানা বিষয় পাশ্চাত্যে প্রচারিত হয়, এই পদ্ধতিও ঠিক তেমনিভাবে ইউরোপে প্রচারিত হয়েছিল। অনেক পাশ্চাত্য গণিতজ্ঞ এই পদ্ধতির প্রতি বিশেষভাবে আরুষ্ট হন। বস্তুত এখানে False শক্টির আভিধানিক অর্থ অভিপ্রেত নয় বলে তারা তার ব্যাখ্যাও করতে থাকেন। যোড়শ শতাব্দীর ইংরেজ গণিতজ্ঞ রবার্ট রেকর্ড তাঁর Ground of Artes গ্রন্থেক কবিতার মাধ্যমে এই পদ্ধতির ব্যাখ্যাও প্রশংসা করেন:

"Suche falsehode is so good a grounde,

That truth by it will soone be founde."\*

সত্যি কথা বলতে কি, গণিতে False বলে কিছু থাকতে পারে না। সত্যেক অমুসন্ধান করাই গণিতের লক্ষ্য ও উদ্দেশ্য। False শব্দ বিভ্রান্তি সৃষ্টি করতে পারে বলে বেকার (Humphrey Baker) নিমুরূপ ব্যাখ্যা দেন:

"The Rule of falsehoode is so named not for that it teacheth anye deceyte or falsehoode, but that by fayne numbers taken at all adventures, it teacheth to finde out the true number that is demaunded, and this of all the vulgar Rules which are in practice is ye most excellence."\*\*

এবার একটি উদাহরণের সাহায্যে এই পদ্ধতির প্রয়োগ দেখানো যাক। মনে করা যাক, 3x-9=0—এই সমীকরণটি সমাধান করতে হবে। এখন, অজ্ঞাত-রাশি x-এর ছটি আতুমানিক মান  $g_1$  ও  $g_2$  ধরা হলো; তার ফলে 3x-9, এই রাশির ছটি ফল  $f_1$  ও  $f_2$  পাওয়া গেলে,

$$x = \frac{f_1 g_2 - f_2 g_1}{f_1 - f_2} \neq 0 \neq 1$$

এখন ধরা যাক, g1=1 9 g2=2

<sup>\*</sup> History of Mathematics (Vol-It)-D, E. Smith, Page-439

<sup>\*\*</sup> History of Mathematics (Vol-II)-D. E. Smlth, Page-441

○1 ( 
$$\mathbf{r}$$
,  $\mathbf{f_1} = 3.1 - 9 = 3 - 9 = -6$   
 $\mathbf{f_2} = 3.2 - 9 = 6 - 9 = -3$   
 $\therefore \mathbf{z} = \frac{-6 \times 2 - 1 \times (-3)}{-6 - (-3)} = \frac{-12 + 3}{-6 + 3} = \frac{-9}{-3} = 3$ 

### ॥ তুইটি অজ্ঞাত রাশি বিশিষ্ট একঘাত সমীকরণ।।

এ-ধরনের সমীকরণ প্রাচীন ভারতীয় গণিতে 'সংক্রমণ' বলে অভিহিত হয়েছে। বলা বাহুল্য, 'সংক্রমণ' ছারা প্রায় সব গণিতজ্ঞই সংক্রামিত হয়েছেন। বেমন,—ব্রহ্মগুপু, শ্রীধর, ভাস্কর, শ্রীপতি প্রমুখ। কিন্তু ব্রহ্মগুপু ছাড়া আর সব গণিতজ্ঞই বিষয়টি পাটাগণিতের অন্তভু ক্তি করেছেন। পঞ্চদশ শতান্ধীর বিখ্যাত ভাষাকার গঙ্গাধর 'সংক্রমণ' অর্থে তৃটি অজ্ঞাত রাশির সমষ্টি ও অন্তর থেকে উদ্ভূত সমস্রার প্রতি দৃষ্টি নিক্ষেপ করেছেন। তাঁর মতে x+y=2 এবং x-y=b ধরনের সমস্রাই সংক্রমণের আলোচা বিষয়। ব্রহ্মগুপু এই সমীকরণের সমাধান পদ্ধতি সম্পর্কে আধুনিক একটি পদ্ধতির বিষয় স্ক্রপষ্টরূপে বাক্ত করেছেন। তিনি বলেন, যোগ ও বিয়োগ ছারা প্রতিক্ষেত্রে 2 দ্বারা ভাগ করলেই অক্তাত রাশিছয়ের মান পাওয়া যায়। তাঁর স্বত্নটি:

### যোগোহন্তর যুভহীনে। দ্বিতঃ সংক্রমন্তরবিভক্তং বা।

মহাবীর এ-বিষয়ে যে উদাহবণ দিয়েছেন, তা একটু অন্ত ধরনের। তাঁর সমীকরণ হুটি ও সমাধান নিমুরূপ:

$$ax+by=s$$

$$bx+ay=t$$

$$x=\frac{as-bt}{a^2-b^2}, y=\frac{at-bs}{a^2-b^2}$$

## ।। তিনটি অজ্ঞাত রাশি বিশিষ্ট একঘাত সমীকরণ।।

এ-ধরনের সমীকরণের দৃষ্টান্তের ইতিহাসও থুর প্রাচীন। অনুমিত হয়, অন্তত খ্রীষ্টায় শতান্দীর প্রারম্ভকাল থেকেই ভারতীয় গণিতজ্ঞদের চিন্তা-ভাবনায় এরকম সমস্যা স্থান পেয়েছিল। বকশালী পাণ্ড্লিপি থেকে শুকু করে আর্যন্তট, ব্রহ্মগুপ্ত প্রভৃতিদের লেথায় এ-ধরনের সমস্যা পরিলক্ষিত হয়।

সমস্যা ৪ তিন-বাজ্ঞি কিছু পরিমাণ সম্পদের মালিক। প্রথম ও দিতীরের

একত্তে 13, দ্বিতীয় ও তৃতীয়ের 14 এবং প্রথম ও তৃতীয়ের 15 হলে প্রত্যেকের সম্পদ কত ?

তিন ব্যক্তির সম্পদের পরিমাণ যথাক্রমে x, y ও z হলে, সর্ভাম্বসারে,

$$x+y=13.....(1)$$
  
 $y+z=14....(2)$   
 $z+x=15....(3)$ 

বকশালী পাণ্ড্লিপিতে আত্মানিক পদ্ধতি-তে (Regula Falsi) এর সমাধান দেওয়া আছে।

#### ॥ দ্বিঘাত সমীকরণ।।

দিখাত সমীকরণের অন্তিত্ব ইউক্লিডের এলিমেন্টস প্রস্থের জ্যামিতিক সমস্থার মধ্যে থাকলেও তা মাত্র প্রীষ্টপূর্ব 300 বছরের। কিন্তু ভারতে এর অন্তিত্ব বৈদিক যুগের গণিতজ্ঞদের মধ্যে দেখা যায়। শুল-মুগে বেদী-নির্মাণের ক্ষেত্রে ax²+bx=c এবং ax²=c, এই তু-ধরনের দিঘাত সমীকরণ সমাধান অপরিহার্য ছিল। পাণ্ডুলিপির যুগেও এর অনস্তিত্ব ছিল না। আর প্রাচীন ভারতের তুই শীর্ষস্থানীয় গণিতজ্ঞ আর্যভট ও ব্রহ্মগুপ্ত এই সমীকরণ সমাধান বিষয়ে সম্পূর্ণ অবহিত ছিলেন-ই। আর্যভটীয় গ্রন্থে অবশ্য এর সমাধান পদ্ধতির কোন বিস্তারিত আলোচনা নাই। নানা প্রসঙ্গ থেকে মনে হয় আর্যভট এর বিস্তারিত আলোচনা বাহুল্যবোধ করেছেন। তিনি সমাস্তর শ্রেণীর পদসংখ্যা নির্ণয় করতে গিয়ে অজ্ঞাত রাশিটি নির্ণয়ের কথা বলেছেন। তাঁর স্বেটি:

गटम्हा २ द्विष्ठ वाष्ट्र । विष्ठ वाष्ट्र विष्य वर्ष यु । यु विष्ठ वाष्ट्र विष्ठ वाष्ट

মর্মার্থ ৪ দাধারণ অন্তবের ৪ গুণ দিয়ে দমষ্টিকে গুণ কর। প্রথম পদের বিগুণের সঙ্গে দাধারণ অন্তর বিয়োগ করে বিয়োগ ফলের বর্গ কর। প্রথমোক্ত গুণফলের সঙ্গে এই বর্গ যোগ কর। মূল গ্রহণ করে প্রথম পদের বিগুণ বিয়োগ করে দাধারণ অন্তর দিয়ে ভাগ কর। তারপর দমগ্র ফলের সঙ্গে 1 যোগ করে অর্ধ নাও।

এখন, n-তম পদের সমষ্টি s হলে, এবং a = প্রথম পদ ও b = সাধারণ অস্তর হলে, আর্যভটের স্ত্রটি নিমুরূপে লেখা যায়:

$$n = \frac{1}{2} \left\{ \sqrt{\frac{8bs + (2a - b)^{2} - 2a}{b} + 1} \right\}$$

আবার, কোন কোন স্থাদ নির্বয় অক্ষের ক্ষেত্রে  $tx^2 + px - Ap = 0$  স্মীকরণ সমাধান প্রয়োজন হয়। আর্যভটীয় গ্রন্থে এই সমীকরণ সমাধানের যে প্রত্তেদেওয়া আছে তা এরকম:

यृनकनश ज्ञानपृनश्चनपर्वयूनकृष्टियुक्षम् । ज्ञानश्चनार्दानश्चनाव्यव्यस्यम्बद्धम्यम् ।।

এখন প্রতি p টাকায় x স্ক্ল হলে এবং t মাদে স্থদাসল A হলে আর্যভটেব স্ত্র থেকে লেখা যায়,—

ব্রহ্মগুপ্ত সমাধান-পদ্ধতির হুটি স্ত্র দিংছেনে। তার একটি স্ত্র এখানে উদ্ধৃত হলো:

বৰ্গচতুত ণিতানাং রূপনাং মধ্যবৰ্গসহিতানাম্। মূলং মধ্যেনোনং বৰ্গদিগুণোদ্ধৃতং মধ্যঃ।।

অর্থাৎ চরম পদটিকে অজ্ঞাতরাশির বর্গের সহগের চারগুণের সহিত গুণ করে মধ্যের সহগের বর্গ যোগ কর। অতঃপর মূল করে অজ্ঞাতরাশির ( মধ্যের ) সহগ বিয়োগ কর। তারপর অজ্ঞাতরাশির বর্গের সহগ দ্বিগুণ করে ভাগ কর।

সন্দেহ নাই, ব্রহ্মগুপ্ত  $ax^2+bx+c=0$  এই আকারের সমীকরণের কথাই বলেছেন। স্থতরাং স্ত্রাম্যায়ী,—

$$x = \frac{\sqrt{4ac + b^2} - b}{2a}$$

'গণক-চক্ত-চূড়ামণি'-র দ্বিতীয় স্থেরের তেমন অভিনবত্ব নাই। প্রথম স্ত থেকেই এটি পাওয়া যায়,—

$$x = \frac{\sqrt{ac + \left(\frac{b}{2}\right)^2}}{a} - \frac{b}{2}$$

পরবর্তীকালে শ্রীধরাচার্য ব্রহ্মগুপ্তের প্রথম স্ত্রটি নির্ণয়ের একটি পদ্ধতি বর্ণনা করেছেন। বর্তমান স্কুলগণিতে অনেক দময় এটি শ্রীধরাচার্যের প্রণালী বা পদ্ধতি নামে পরিচিত। কিন্তু প্রকৃতপক্ষে স্ত্রটির উদ্ভাবক হচ্ছেন ব্রহ্মগুপ্ত। শ্রীধরের বীজগণিত আজ অবলুপ্ত। ভাস্কর, জ্ঞানরাজ ও স্র্যদাসের উদ্ধৃতি থেকে স্ত্রটি জানা বায়:

#### চতুরাহতবর্গদমৈ রূপৈঃ পক্ষরমৃ ওণয়েৎ। অব্যক্তবর্গরূপৈয়ু ক্রেণি পক্ষো তভো মূলম্।।

অর্থাৎ সমীকরণের উভয়পক্ষকে বর্গ-অক্তাত রাশির (x²) সহগের চতুগুর্ব স্থারা গুণ কর এবং উভয়পক্ষে অক্সাত-বাশির সহগের বর্গ যোগ করে বর্গ মূল নির্ণয় কর।

(i) 
$$ax^2 + bx = c$$
 স্মীকরণ স্মাধানের ক্ষেত্রে  $ax^3 + bx = c$ 

$$\overline{a}$$
,  $4a \times ax^2 + 4a \times bx = 4a \times c$ 

$$4a^2x^2 + 4abx = 4ac$$

$$4a^2x^2 + 4abx + b^2 = 4ac + b^2$$

$$\sqrt{(2ax+b)^2} = 4ac+b^2$$

$$31, \quad 2ax+b=\pm\sqrt{4ac+b^2}$$

$$7, \ 2ax = -b \pm \sqrt{b^2 + 4ac}$$

$$41, \quad x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$$

(ii) ax2+bx+c=0 अरे नमीकत्रावत कार्ज,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

দ্বিঘাত সহসমীকরণ নিয়েও ভারতীয় গণিতজ্ঞরা ব্যাপক আলোচনা করেছেন। এই সম্পর্কে আর্যভট, ব্রহ্মগুপ্ত, শ্রীধর, ভাস্কর, শ্রীপতি প্রমূথের নাম করা যেতে পারে।

আর্ষভট x-y=a ও xy=b এই স্মাক্রণ তুটির স্মাধান করে বলেছেন,

$$x = \frac{1}{2} \left[ \sqrt{a^2 + 4b} + a \right], \quad y = \frac{1}{2} \left[ \sqrt{a^2 + 4b} - a \right]$$

মহাবীর x+y=a, xy=b এই সমীকরণের সমাধান দিয়েছেন,—

$$x = \frac{1}{2} \left[ a + \sqrt{a^2 - 4b} \right], \quad y = \frac{1}{2} \left[ a - \sqrt{a^2 - 4b} \right]$$

তাঁর আর এক ধরনের সমীকরণ, x?+y²=c, xy=b-এর সমাধান,—

$$x = \frac{1}{2} \left[ \sqrt{c+2b} + \sqrt{c-2b} \right], y = \frac{1}{2} \left[ \sqrt{c+2b} - \sqrt{c-2b} \right]$$

'বিষমকর্ম' বলে এক প্রকার সমীকরণ ভারতীয় গণিতে দেখতে পাওলা যায়। এগুলিকে বিশেষ পদ্ধতিতে সমাধান করতে হয়। এখানে হাট উদাহরণ দেখানো হলো:

(i) 
$$x^2 - y^2 = m$$
 (ii)  $x^2 - y^2 = m$   $x - y = n$   $x + y = p$ 

এদের স্মাধান নিম্নরপ:

(i) 
$$x = \frac{1}{2} \left( \frac{m}{n} + n \right)$$
,  $y = \frac{1}{2} \left( \frac{m}{n} - n \right)$ 

(ii) 
$$x=\frac{1}{2}\left(p+\frac{m}{p}\right)$$
,  $y=\left(p-\frac{m}{p}\right)$ 

আচার্য আর্যভটের একটি স্থত্ত দিয়ে আরে। এক ধরণের সমীকরণ সমাধান করা যায়। স্তটে:

> সম্পর্কত্ত হি বর্গাদ্ বিশোধরেদের বর্গসম্পর্কম্। যন্তব্য ভবতার্য বিভাগ্ গুণকারসংবর্গম্।।

অর্থাৎ ছটি উৎপাদকের সমষ্টির বর্গ থেকে তাদের বর্গের সমষ্টি বিয়োগ করে অন্তরকে অর্ধ কর। তাহলে ছটি উৎপাদকের গুণফল পাবে।

বীজগণিতের ভাষায়, 
$$x \times y = \frac{(x+y)^3 - (x^2+y^3)}{2}$$

এই পুত্র থেকে 
$$x^2+y^2-c$$
,  $x+y=a$  সমীকরণের সমাধান,—
$$x-\frac{1}{2}\left[a+\sqrt{2c-a^2}\right], \quad y-\frac{1}{2}\left[a-\sqrt{2c-a^2}\right]$$

#### া দিঘাত সমীকরবের ছটি বীজ।।

দিঘাত সমীকরণের হুটি বীজ সম্বন্ধে ভারতীয় গণিতজ্ঞরা সম্পূর্ণ অবহিতে ছিলেন। এ-বিষয়ে যে তাঁরা ডায়োফ্যান্টাসকেও অতিক্রম করে পেছেন, তা অবশ্য পাশ্চাত্য পণ্ডিতরা স্বীকার করেন। পদ্মনাভের একটি উদ্ধৃতি দিয়ে ভাষ্কর বলেছেন, দ্বিগাত সমীকরণের হুটি বীজ আছে; একটি ধনাত্মক, অপরটি ঋণাত্মক। কিন্তু ঋণাত্মক বীজ্ঞটি তিনি গ্রহণ করেন নি। কারণ এটি অবাস্তব। ব্রহ্মগুপ্তের মতও একই ধরনের; তিনিও ঋণাত্মক বীজ্ঞটি অবাস্তবতার জন্ম গ্রহণ করেননি।

ভাস্কর কর্তৃক উদ্ধ ত পদ্মনাভের মতটি এরকম:

### ৰ্যক্ত পক্ষস্য চেন্দুল্মন্যপক্ষণ্রপতঃ অল্পং ধনর্গগং কৃত্বা দ্বিধোৎ পদ্ধতে মিতি।।

ভারতীয় গণিতক্ষদের ঋণাত্মক বাঁজ গ্রহণ না করার পিছনে যে কারণ ছিল, তা একটি উদাহরণের সাহাযো আরো স্পষ্ট করা যাক।

উদাহরণ ৪ এক দল বানরের এক-পঞ্চমাংশ থেকে 3 বিয়োগ করলে যে সংখ্যা হয়, তার বগ'-সংখ্যক বানর একটি গুহায় প্রবেশ করল। এখন যদি একটি বানর গাছে থাকে, তাহলে কয়টি বানর ছিল ?

বানরের সংখ্যা ৯ ধরে প্রদত্ত সর্ত থেকে,

$$x = \left(\frac{1}{5}x - 3\right)^{2} + 1$$
বা,  $x^{2} - 55x + 250 = 0$ 
বা,  $(x - 5)(x - 50) = 0$ 
 $\therefore x = 5$  অথবা  $50$ 

কিন্তু ভাস্কর x=5 বীজটি গ্রহণ করেননি তার অবাস্তবতার জন্ম। অক্টের্ফ সর্তাহ্বসারে  $\frac{1}{5}$  অংশ= $5 \times \frac{1}{5} = 1$ , এবং 1 থেকে 5 বিয়োগ করা যায় না। সেজন্ম ভাস্কর অপর বীজ x=50 গ্রহণ করেছেন।

গণিত-সার-সংগ্রহ-এর নানা উদাহরণ থেকেও বোঝা যায় মহাবীর ছিঘাত স্মীকরণের যে দুটি বীজ আছে তা জানতেন।

বস্তুত, সমস্থাই আবিষ্ণাবের মূল উৎস। পাটাগাণিতিক নানা সমস্থাব সমাধানের অন্বেষণেই ভারতে বীজগণিতের উৎপত্তি। এ-বিষয়ে এফ. ক্যাজরি, হাঙ্কেলের মত উদ্ভূত করে যা বলেছেন, তা প্রণিধানযোগ্য: "Indeed, if one understands by algebra the application of arithmetical operations to complex magnitudes of all sorts, whether rational or irrational numbers or space magnitudes, then the learned Brahmins of Hindostan are the real inventors of algebra."

#### ॥ একটি বিভৰ্ক ॥

একঘাত সমীকরণ, বিঘাত সমীকরণ সমাধানে ভারত অন্ত দেশ বিশেষ করে গ্রীদের কাছে ঋণী কিনা এই নিয়ে পণ্ডিত মহলে বেশ বিতক আছে। পাশ্চাত্য পণ্ডিতরা অনেকে প্রাচীন ভারতীয় গণিতে ব্যবস্থাত ত্ব-একটি শব্দের ভারাতাত্ত্বিক বিচার করে এই বিতর্কের স্থাষ্ট করেছেন। এমন একটি শব্দ হচ্ছে 'রূপক'। এই শব্দটি আর্যভটের, ব্রহ্মগুপ্তের গ্রন্থাদিতে দেখতে পাওয়া যায়। ইতিপূর্বে আর্যভটের "শুলিকাস্তরেণ" স্ত্রেটি উদ্ধৃত হয়েছে, আর ওই শ্লোকেও এই শব্দটি আছে। এটি একটি মুদ্রার একক। এই এককটি কৌটিল্যের অর্থশাস্ত্রেও দেখতে পাওয়া যায়। কৌটিল্যের অর্থশাস্ত্র আর্যভটের ন'শ' বছর আগে রচিত। কিন্তু পাশ্চাত্য অনেক পণ্ডিত এটিতে গ্রীক প্রভাব লক্ষ্য করেছেন।

এম. ক্যাণ্টরের মত গণিতের ঐতিহাসিক পর্যন্ত একদাত বা দ্বিঘাত সমীকরণ সমাধানে গ্রীক প্রভাব আছে বলে মনে করেন,—বিশেষ করে ভায়োফাান্টাসের প্রভাব। অবশ্য রূপক সহয়ে প্রথম ভাস্কর বলেছেন এটি মৃদ্রা,—দিনার। কিন্তু এতে রূপক শব্দ গ্রীক প্রভাবিত বলা চলে না। তা হলে কি কোটিল্যের আগে থেকেই গ্রীক প্রভাব ভারতে বিস্তার করেছিল? কিন্তু ইতিহাস তো সে সাক্ষ্য দেয় না।

বরং আমাদের মনে হয় আর্থভট কর্তৃক ব্যবহাত রূপক বোধ হয় কোটিল্যের পূর্ববর্তী কোন প্রাচীন গণিতগ্রন্থের নিদর্শন। যাই হোক,—গণিতের ঐতিহাসিক ক্যাজ্বরি একঘাত ও দ্বিঘাত সমীকরণ সম্বন্ধে যে মন্তব্য করেছেন, সেটি বোধ হয় ভারতীয় গণিতজ্ঞদের সম্বন্ধে প্রকৃত মূল্যায়ন। তিনি ক্যাক্টরের মন্তব্যে সন্দেহ প্রকাশ করে বলেছেন: "Even if it be true that the Indians borrowed from the Greeks, they deserve great credit for improving and generalising the solutions of linear and quadratic equations."

### 

ইতিপূর্বে প্রগতি বা শ্রেণী সম্পর্কে কিছু কিছু আলোচনা আমরা করেছি। এখানে অতি সংক্ষেপে আর একটু আলোচনা করা হলো।

প্রাচীন ভারতীয় সাহিত্যে নানাভাবে শ্রেটী বা শ্রেণীর উল্লেখ পাওয়া যায়। অথব্বেদ, তৈতিরীয় সংহিতা, বাজসেনীয় সংহিতা, রহৎদেবতা, কল্পসূত্র ইত্যাদিতে শ্রেণীর উল্লেখ দেখা যায়। এসব গ্রন্থে যে ধরনের শ্রেণী দেখা যায় তা সবই সমান্তর শ্রেণী। বেদ গ্রন্থ সমূহে নানা ধরনের সংখ্যার উল্লেখ আছে। এখানে অথববৈদের 19শ কাণ্ডের দ্বিতীয় স্ত্র থেকে একটু উদ্ধৃতি দেওয়া হলো।
যে তে রাত্রি নৃচক্ষসো দ্রষ্টারো নবতির্নব।
অশীতিঃ সস্তাষ্টা উতো তে সপ্ত সপ্ততিঃ।

অশীতিঃ সন্ত্যষ্টা উতো তে সপ্ত সপ্তভিঃ।।

য়ষ্ট্রিশ্চ ষট্ চ রেবভি পঞ্চাশং পঞ্চ স্থারা।

চড়ারশ্চড়ারিংশচ্চ ত্রয়ন্ত্রিংশচ্চ বাজিনি।।

দ্বৌ চ তে বিংশতিশ্চ তে রাত্র্যেকাদশাবমাঃ।

ভেভিনো অন্ত পায়ভিত্ব পাহি ছহিতদিবঃ।।

অমুবাদ ৪ "হে বাত্রি, ভোমার মহিমার স্রষ্টা, মান্থবের কর্মকলের জ্ঞাতা যে নিরানক্রই (99), অষ্টাশী (88) এবং দাতান্তর (77) জন গণদেবতা আছে, ভাদের দাথে আমাদের রক্ষা কর। হেধনপ্রদে রাত্রি, ভোমার ছেবটি (66) গণদেবতা আছে, হে অথপ্রাপিকে, ভোমার যে পঞ্চার (55) গণদেবতা আছে, যে চুয়াল্লিশ (44) গণদেবতা আছে এবং হে অরবতি, ভোমার যে ভেত্রিশ (33) সংখ্যক গণদেবতা আছে, তাদের দাথে আমাদের রক্ষা কর। হে রাত্রি, যে আবিংশতি (22) গণদেবতা ভোমার মহিমার ক্রষ্টা আছে এবং যে নিকৃষ্ট এগার (11) সংখ্যক দেবতা ভোমার ব্যাপ্তির্দ্ধিক গণদেবতার সাথে আমাদের রক্ষা কর।" (অথব্বনেদ—হরফ, বিজন বিহারী গোস্বামী, সংখ্যা লেখকের)

অহবাদের মধ্যে সংখ্যাগুলি আমাদের লক্ষ্য করার বিষয়। এই সংখ্যা-গুলির,—99, 88, 77, 66, 55, 44, 33, 22, 11-এর দিকে তাকালে আমরা দেখি এগুলি সমান্তর শ্রেণী গঠন করেছে, এবং এদের সাধারণ অন্তর = 11.

তৈতিরীয় সংহিতায় সংখাগুলি এভাবে সালানো আছে:

1, 3, 5, 7 ... 19, 29, 39 ... 99

2, 4, 6, 8, 10, ..... 20

বৃহৎদেবতা ও কল্পত্তে কেবলমাত্র সমাস্তব শ্রেণীর অন্তিত্বই নাই,—এর সমষ্টি পর্যন্ত দেওয়৷ আছে। কিন্তু ছংখের বিষয়, এথানে সমষ্টি নির্ণয়ের স্থত্তের কোন হদিস নাই। যেমন, ভদ্রবাহুর কল্পত্তে নিম্নরূপ শ্রেণী ও সমষ্টি দেখা যায়:

1+2+3+4+5+...+8192=16383

শ্রেণী বিষয়ে স্বষ্ঠ আলোচনা বকশালী পাণ্ড্লিপির যুগ থেকে দেখা যায়। আর্যভট এ-বিষয়ে অনেক স্ত্র দিয়েছেন। ইতিপূর্বে দ্বিঘাত সমীকরণে আমরা ত্ব-একটি আলোচনা করেছি। এখানে, একটিমাত্র স্ত্র উদ্ধৃত হলোঃ

#### ইষ্ট্যং ব্যেকং দলিতং সপূর্বমৃত্তরগুণং সমুখমধ্যম্। ইষ্টগুণিভমিষ্ট্রনং তথবাদ্যন্তং পদার্শ হতম্॥

ভাবায়বাদ ঃ পদসংখ্যা থেকে 1 বাদ দাও, 2 দিয়ে ভাগ কর। এবার আগের পদসংখ্যা যোগ কর; সাধারণ অন্তর দিয়ে গুণ কর; প্রথম পদ যোগ কর। তাহলে এই ফল সমান্তর মধ্যক হবে। একে পদসংখ্যা দিয়ে গুণ করলে সমগ্র শ্রেণীর সংখ্যাসমূহ পাওয়া যাবে। অথবা প্রথম পদ এবং শেষ পদ এই উভয়ের যোগফলকে পদসংখ্যার অর্ধেক দিয়ে গুণ করলে শ্রেণীর সংখ্যার যোগফল পাওয়া যায়।

ধরা যাক, শ্রেণীটি a+(a+d)+(a+2d)+...

তাহলে  $(a+pd)+(a+p+1d)+...+\{a+(p+n-1)\ d\}$  এই শ্রেণীর সমান্তর মধ্যক হবে

$$a+\left(\frac{n-1}{2}+\dot{p}\right)d$$
;

আবার n-তম পদের সমষ্টি হবে

$$n\left\{a+\left(\frac{n-1}{2}+p\right)d\right\}$$

विश्वाय (कार्य 8 p=0 हाल,

মধ্যক=
$$a+\frac{n-1}{2}$$
.  $d$ 

আর শ্রেণী সমষ্টি=
$$n\left\{a+\frac{n-1}{2}.\ d\right\}$$

শ্রেণী-বিষয়ক আলোচনায় ব্রহ্মগুপ্ত ও ভাস্কর আরো স্থশৃঙ্খল ও আরো স্পাষ্ট।
এ-বিষয়ে আচার্য ব্রহ্মগুপ্তের স্ত্রটি অবশ্রুই উল্লেখ করতে হয়:

#### পদমেকহীনমুত্তরশুণিতং সংযুক্তমাদিনাইত্যধনম্। আদিযুতান্ত্যধনার্থ মধ্যধনং পদশুণনং গণিতম্।

"অর্থাৎ প্রথম পদ, সাধারণ অন্তর এবং পদসংখ্যা জানা থাকলে শেষপদ কত সংখ্যা, মধ্যপদ কত সংখ্যা এবং যে কোন সংখ্যক পদের সমষ্টি নির্ণয় করা যেতে পারে। পদসংখ্যা থেকে এক বিয়োগ করে ঐ বিয়োগফলকে সাধারণ অন্তর দিয়ে গুল করে তারপর প্রথমপদ যোগ করলে শেষপদ পাওয়া যাবে। এই শেষপদের সঙ্গে প্রথমপদ আবার যোগ দিয়ে তারপর তুই দিয়ে ভাগ দিলে মধ্যপদ পাওয়া যাবে। এই মধ্যপদকে পদসংখ্যা দিয়ে গুণ করলে সমগ্র পদের সমষ্টি পাওয়া যাবে।" (প্রা. ভা. গ. চ.)

আধুনিক বীঞ্চগণিতের চিহ্ন ও সঙ্কেতে উপরের স্ত্রটি প্রকাশ করলে,—

$$t_n=a+(n-1)b$$
;  $t_k=\frac{2a+(n-1)b}{2}$ 

$$S_n = \frac{n}{2} \left\{ 2a + (n-1) b \right\}$$

বলা বাহুল্যা, এথানে  $t_n=n$ -তম পদ ; a=প্রথম পদ, b=সাধাব $^\circ$  অন্তর ;  $t_k=$ মধ্যম পদ এবং  $S_n=n$ -সংখ্যক পদের সমষ্টি।

গুণোত্তর শ্রেণীর উল্লেখ পিঞ্চলের ছক্ষসূত্র গ্রন্থে দেখতে পাওয়া যায়। ইতি-পূর্বে আমরা এ-বিষয়ে সামান্ত আলোচনা করেছি। এখানে মহাবীরের গণিত-সার-সংগ্রহ থেকে একটিমাত্র স্থতের উল্লেখ করা হলো।

> গুণধনমাদিবিভক্তং বংপদ নিতবধসমং স এব চয়ঃ। গচ্ছপ্রমণ্ডণপ্রস্কৃতং গুণিতং ভবেং প্রভবঃ॥

আধুনিক বীজগাণিতিক ভাষায় এর মর্মার্থ,

(i) 
$$\frac{a(r^n-1)}{r-1} \div a = \frac{r^n-1}{r-1}$$

(ii) 
$$\frac{r^n-1}{r-1}-1=\frac{r^n-r}{r-1}$$

(iii) 
$$a = \frac{a(r^n - 1)}{r - 1} \times \frac{r - 1}{r^n - 1}$$

এ ছাড়া মহাবীর গুণোত্তর শ্রেণীর সমষ্টি নির্ণয়ের স্থত্তও দিঙ্গেছেন। ভাস্করের আলোচনাও উল্লেখ করার মত।

বস্তুতপক্ষে শ্রেণী বিষয়ক সব আলোচনা এখানে সম্ভব নয়। আগ্রহী পাঠক-পাঠিকারা ভারতীয় গণিতের ইতিহাস সম্পর্কিত গ্রন্থাদি পড়তে পারেন । কিছুটা কৌত্হল জাগিয়ে ভোলার জন্মই এখানে সামান্ত আলোচনা করা হলো।

# সপ্তদশ অখ্যায়

tura distanta (est della esta della contra d

"Some of the most brilliant of Hindoo discoveries in indeterminate analysis reached Europe too late to exert the influence they would have exerted, had they come two or three centuries earlier."

—F. Cajori

the special profession and also dispersioned retrieve

### ॥ कूछेक ॥

আধুনিক অনির্ণের সমাকরণ ভারতীয় গণিতে কুটুক নামে অভিহিত।
সাধারণভাবে কুটুক নাম বাবহৃত হলেও আরো কয়েকটি নাম দেখা যায়।
যেমন,—প্রথম ভায়র তাঁর মহাভাষ্ণরীয় গ্রন্থে কুটুকার, কুটুক বা কুটু বলেছেন।
ব্রহ্মগুপুও একই কথা বলেছেন, আর মহাবীর কুটুকার বলেছেন। কিন্তু প্রথম
ভায়র সর্বপ্রথম অনির্ণের সমীকরণের পরিভাষা ব্যবহার করেন। 'কুটুক' শন্দের
অর্থ ভাঙা বা চূর্ণ করা। এই পদ্ধতিতে ক্রমিক ভাগহার বা কুদ্র কুদ্র বিভান্ধন
হয় অর্থাৎ বিতত ভগ্নাংশের প্রয়োগ হয় বলে এরকম নামকরণ হয়ে থাকবে।

ভন্ধত্তে অনির্ণের সমীকরণের অন্তিত্ব পরিলক্ষিত হয়। n-সংখ্যক বর্গক্ষেত্রের সমান ক্ষেত্রকল বিশিষ্ট একটি বর্গক্ষেত্র অস্কনের সমস্রার মধ্যে এই অনির্ণের সমীকরণ সমাধানের বীজ নিহিত আছে বলে মনে হয়। স্থ্রকার কাত্যায়ন সমস্রাটির চিত্রাক্ষনের যে স্ত্র দিয়েছেন, তাতে  $x^2 + y^2 - z^2 - 2$  অনির্ণের সমীকরণ সমাধান অপরিহার্য ছিল। কিন্তু এই সমীকরণটির সমাধানের কোন ইন্সিত বা আতাদ গুলুস্ত্রে দেখতে পাওয়া যায় না। মহর্ষি বৌধায়নের গুলুস্ত্রেও একঘাত অনির্ণের সমীকরণঘটিত সমস্রা দেখা যায়। যেমন, গার্হপত্য-বেদী নির্মাণের সঙ্গে এই সমস্রা জড়িত।

কেবলমাত্র গণিত ও জ্যোতির্বিজ্ঞানেই নয়, ধর্মীয় অমুষ্ঠানে বেদী নির্মাণের ক্ষেত্রেও এব অপরিসীম গুরুত্ব থাকায় ভারতীয় গণিতজ্ঞরা অনির্ণেয় দমীকরণের দমাধানের ক্ষেত্রে মহৎ কুভিত্ব স্থাপন করতে সমর্থ হয়েছিলেন। সে-কারণে বোধহয় এই বিষয়টি গণিতে একটি পূথক শাথা হিসাবে আলোচিত হবার যোগ্যভা

অর্জন করে। যেমন,—পরবর্তীকালে ভাষ্যকার দেবরাজ 'কুটুকার-শিরোমণি' নামে একটি গ্রন্থই রচনা করেন।

নিঃসন্দেহে বিষয়টি বীজগণিতের অস্তর্ভুক্ত। কিন্তু ভাস্কর এটি পাটাগণিতের অস্তর্ভুক্ত করেন সন্তবত একটি কারণে যে, তিনি গণিতের এই অতীব গুরুত্বপূর্ণ বিষয়টি পাটাগণিতের ছাত্রদের কাছে আগে থেকেই পরিচিত করাতে চেয়েছিলে।

### ॥ একদাত অনির্ণেয় সমীকরণের শ্রেণী বিভাগ ॥

সাধারণত  $by=ax\pm c$  এই সমীকরণকে একঘাত অনির্ণেয় সমীকরণ বলাহয়। আর্যভট a,b,c ধনাত্মক পূর্ণদংখ্যা ধরে by=ax+c সমীকরণটি সমাধানকরেন, এবং একঘাত সহসমীকরণেও প্রয়োগ করেন।

এ ধরণের সমীকরণকে তিনভাগে ভাগ করা যায়:

(i) কোন সংখ্যা (N)-কে প্রদন্ত ছটি বাশি  $a \cdot 9 \cdot b$  দ্বারা ভাগ করলে ছটি প্রদন্ত অবশেষ (ভাগশেষ)  $R_1$  এবং  $R_2$  পাওয়া দাবে। এই প্রক্রিয়া থেকে স্থামরা পাই,—

$$N=ax+R_1=by+R_2^{"}$$
্বা,  $by-ax=R_1^{"}-R_2^{"}$   
এখন,  $R_1 \sim R_2=c$  হলে,  $by-ax=\pm c$ 

(ii) এমন কোন একটি রাশি (x) নির্ণয় করতে হবে যাকে অন্য একটি প্রদক্ত রাশি ব দিয়ে গুণ করলে ওই গুণফলের আর একটি প্রদক্তরাশি γ যোগ বা বিয়োগের পর তৃতীয় কোন রাশি β দিয়ে ভাগ করলে নি:শেষে বিভাজ্য হবে। গাণিতিক ভাষায়,—

$$y = \frac{4x \pm 7}{\beta}$$

(iii) এই প্রকার সমীকরণের আকার  $by + ax = \pm c$ 

প্রথম ভাস্কর কুট্টক-কে ছ-ভাগে ভাগ করেছেন,—সাগ্র কুট্টাকার, আর নিরপ্র কুট্টাকার। তিনি আবার উদাহরণ দিয়ে এই ছ-ধরনের সমীকরণ বুঝিয়ে দিয়েছেন। প্রথম ভাস্করের ভাস্তকার গোবিন্দ্র্যামী আবার 'মহাভাস্করীয়' প্রস্থের টীকায় এ-বিষয়ে আরো স্পষ্ট আলোচনা করেছেন।

#### ।। আর্বভট ও একঘাত অনির্ণেয় সমীকরণ।।

আর্যভটের পূর্বে ভারতে অনির্ণেষ্ট সমীকরণের অন্তিত থাকলেও এই অনন্ত গণিতজ্ঞ ও জ্যোতির্বিদই এই সমীকরণের সমাধান পদ্ধতি আবিষ্কার করেন। জ্যোতির্বিজ্ঞানে আর্যভটের অনেক মৌলিক অবদান আছে সত্য, কিন্তু বিশুদ্ধ গণিতে এটি তাঁর সর্বশ্রেষ্ঠ আবিষ্কার বলে ত্বীকৃত হওয়ার যোগ্য।

আর্থভটীয় প্রস্থে এই সম্পর্কিত মাত্র ছটি শ্লোক দেখা যায়। কিন্তু এ-ছটির অন্তর্নিহিত অর্থ খুব জটিল ও ছরহ। শব্দার্থ নিয়ে পণ্ডিতদের মধ্যে বিতর্ক আছে। আচার্য আর্থভট তাঁর শিশ্রদের শিক্ষাদান করার সময় এই শ্লোকের সহজ ও সরল ব্যাখ্যা করে থাকবেন এবং তাঁরে শিশ্রবাও গুরু প্রদত্ত ব্যাখ্যা প্রদান করে তাঁদের শিশ্রদের জটিলতা দ্ব করে থাকবেন। কিন্তু উত্তরাধিকারস্ত্রে প্রাপ্ত দে-ব্যাখ্যা আজ অবলুপ্ত। ভারতীয় গণিতের বিখ্যাত ঐতিহাসিক ডঃ বি. বি. দত্ত আর্যভটের একান্ত অন্তর্যাগ্রী প্রথম ভান্তরন্তত পদ্ধতি অবলম্বন করে এই সমীকরণ সমাধানের যে রূপরেখা দিয়েছেন, আমরাও মূলত সেই পথ অন্ত্র্যারণ করে এই জটিল বিষয়টি অতি সংক্ষেপে আলোচনা করব। উৎসাহী পাঠক-পাঠিকাদের কৌতৃহল নিবৃত্তির জন্ম আচার্য আর্যভটের শ্লোক ছটি ও তাঁর ইংরেজী অন্ত্রাদ দেওয়া হলো:

অধিকাগ্রভাগহারং ছিদ্যাদৃনাগ্রভাগহারেণ।
শেষপরস্পরভক্তং মতিগুণমগ্রান্তরে ক্ষিপ্তম্ ।।
অধউপরিগুণিভমন্ত্যযুগুণাগ্রচ্ছেদভাজিতে শেষম্ ।
অধিকাগ্রচ্ছেদগুণং দিচ্ছেদাগ্রমধিকাগ্রযুত্ম্ ।।

ইংরেজী অনুবাদ & Divide the divisor corresponding to the greater remainder by the divisor corresponding to the smaller remainder. (Discard the quotient). Divide the remainder obtained (and the divisor) by one another (until the number of quotients of mutual division is even and the final remainder is small enough). Multiply the final remainder by an optional number and to the product obtained add the difference of the remainders (corresponding to the greater and smaller divisors; then divide this sum by the last divisor of the mutual division.

The optional number is to be so chosen that this division is exact. Now place the quotients of the mutual division one below the other in a column; below them write the optional number and underneath it the quotient just obtained. Then reduce the chain of numbers which have been written down one below the other, as follows): Multiply by the last but one number (in the bottom) the number just above it and then add the number just below it (and then discard the lower number). (Repeat this process until there are only two numbers in the chain). Divide (the upper number) by the divisor corresponding to the smaller remainder, then multiply the remainder obtained by the divisor corresponding to the greater remainder. and then add the greater remainder: the result is the dvicchedagra (i.e., the number answering to the two divisors). (This is also the remainder corresponding to the divisor equal to the product of the two divisors).

[ Āryabhatīya of Āryabhata by Shukla & Sarma ] আর্যভটের শ্লোক হুটির জটিলতা ও হুব্ধহতা বোঝানোর জন্মই কেবল ইংরেজী

অমুবাদটি দেওয়া হলো। বন্ধনীগুলি লক্ষ্য করলেই বোঝা যায় টীকা-ভাগ্ত ব্যতিরেকে এই শ্লোকের মর্ম উদ্ধার করা সম্ভব নয়। যা হোক,—এবার আমরা একটি দমদ্য। উদাহরণস্বরূপ নিয়ে আর্যভটের পদ্ধতি বুঝে নেওয়ার প্রয়াদ পাব। বলা হয়, নিম্নরণ সমদ্যা দ্যাধান করতে গিয়ে আচার্য অনির্ণেয় স্মীকরণ স্মাধান করেন।

সমস্যাঃ কোন্ সংখ্যা (N)-কে প্রদত্ত হৃটি রাশি a ও b ছারা ভাগ করলে  $R_1$  ও  $R_2$  ভাগশেষ পাওয়া যায়  $\gamma$ 

সমন্যার বীজগাণিতিক রু-,—

 $N=ax+R_1=by+R_2$ 

a ও b-এর নাম 'ভাগহার' এবং R1 ও R2-এর নাম 'অগ্র'।

এখন,  $R_1 - R_2 = c$  হলে,

at an galli escassica) ca her bei by=ax+c, यथ्न  $R_1>R_2$ 

আবার, ax=by+c, যথন  $R_5>R_1$  c অর্থাৎ  $R_1\sim R_2$ -এর পারিভাষিক নাম অগ্রান্তর,—ভাগশেষ তৃটির অন্তর।
মহাবীর, দ্বিভীয় আর্যভট, ভাস্কর উপরের সমীকরণের  $y=\frac{ax\pm c}{b}$  আকার বা
রূপটি গ্রহণ করেছেন। এথানে a= ভাজ্য', b-ভার', c= 'ক্লেপ' বা
ভিজ্ঞেপ', x= 'গুণ' এবং y= 'ফল'। প্রাচীন ভারতীয় গণিতজ্ঞরা একবাক্যে
সবাই স্বীকার করেছেন যে, a ও b পরস্পার মৌলিক হবে।

উদাহরণ ঃ সমাধান কর: 137x+10=60y

প্রথম সোপান ঃ  $x \cdot y \cdot y \cdot u$ র সহগকে যথাক্রমে ভাজা ও ভাজক করে গ: সা. গু. পদ্ধতিতে ভাগ করা হলো :

$$\begin{array}{c|c}
60 & 137 & 2 \\
\hline
17 & 60 & 3 \\
\hline
51 & 9 & 17 & 1 \\
\hline
8 & 9 & 1
\end{array}$$

দ্বিতীয় সোপান ঃ প্রাপ্ত ভাগফলগুলি নিমুর্প বল্লীতে দার্জানো হলো :

ভূতীয় সোপান ঃ প্রথম ভাগফলটি উপেক্ষা করলে ভাগফলের সংখ্যা হয় 3; এবার একটি আমুমানিক সংখ্যা নির্ণয় করতে হবে অর্থাৎ এমন একটি 'গুণক' নির্ণয় করতে হবে যাকে সর্বশেষ ভাগশেষ দ্বারা গুণ করে প্রদন্ত সমীকরণের 'চরম পদ'-টি বিয়োগ করলে ফলটি উপান্তা ভাগশেষ অর্থাৎ শেষ ভাগশেষের আগেরটির দ্বারা বিভাজ্য হয়।

এথানে শেষ ভাগশেষ=1, উপাস্ত্য ভাগশেষ=8; স্থতবাং  $8\times 1=1\times 18$  =10; এথানে আতুমানিক সংখ্যা=18 এবং নির্ণীত ভাগফল=1

চতুর্থ সোপান ঃ প্রথম ভাস্করের হত্তে অবলম্বনে নিমুদ্ধণ সারণী করা হলো :

2 2 2 2 297 3 3 3 130 130

> 1 1 37 37 1 19 19

ভণক——→18 18

নিণীত ভাগফল→1

কিভাবে তালিকাটি বা সারণী প্রস্তুত করা হলো তার সামান্ত ব্যাখ্যা দেওয়া যাক। 'শুণক' 18-কে ঠিক তার উপরের সংখ্যা 1 দ্বারা গুণ ও নীচের সংখ্যা 1 যোগ করে পরবর্তী স্তম্ভের (18×1+1)=19 সংখ্যাটি পাওয়া গেল; অহুরূপে (19×1+18)=37 তৃতীয় স্তম্ভের সংখ্যাও পাওয়া গেল। এভাবে সর্বশেষ হুছের 297 সংখ্যাটি নির্ণীত হয়েছে।

মুভবাং x=140, y=297

এখন, 130-কে 60 দিয়ে ভাগ করে ভাগশেষ 10, এবং 297-কে 137 দিয়ে ভাগ করে ভাগশেষ 23 পাওয়া যায়। স্থভরাং x=10, y=23

কিন্তু এই বীজ সাধারণ (general) নয়; x=10+60m, y=23+137m হচ্ছে সাধারণ বীজ।

এতক্ষণ যে পদ্ধতির বর্ণনা দেওয়া হলো তার সামাত্র পরিবর্তন করে সমীকরণের সরল বীজ সহজে নির্ণয় করা যায়। মনে করা যাক, ভাগশেষ=8

প্রথম ভাগফলকে উপেক্ষা করলে ভাগফল-সংখ্যাটি 'যুগ্ম' হয়। স্থতরাং 'শুণক' 1 ধরলে  $8 \times 1 + 10 = 18 = 9 \times 2$  অর্থাৎ 18 সংখ্যাটি 9 দ্বারা বিভাজ্য এবং নির্ণীত ভাগফল=2

আগের মত সারণী করলে,—

2 2 2 23

3 3 10 10

1 3 3 3

গুণক—→1 1

নিণীত ভাগফল--->2

বলা বাহুল্য, সারণীর অন্তান্ত অঙ্কগুলি পূর্ব-নিয়মে নিণীত হয়েছে। অতএব, x=10, y=23-প্রাদত্ত অনির্ণেয় সমীকরণের স্বল্ল বীজ।

ব্রমণ্ডর, মহাবীর, ভাস্কর, শ্রীপতি, নারায়ণ প্রমুখ গণিতজ্ঞদের হাতে এই সমীকরণের সমাধান পদ্ধতির প্রভূত উন্নতিসাধন পরিলক্ষিত হয়। প্রথম ভাস্কর এই সমীকরণ সমাধানের নিয়ম খুবই সহজ ও সরল ভাবে ব্যাখ্যা করেন। মূলত তিনি আর্যভটের অক্ষমরণ করেছেন, তবে তিনি যে ধরনের সমীকরণের কথা বলেছেন তা হলো  $\frac{ax-b}{b}=y$ ; y=ধনাত্মক পূর্ণসংখ্যা। তাঁর মহাভাস্করীয়া গ্রন্থে নিয়রপ প্র বা নিয়ম পাওয়া যায়:

ভাজ্যং অসেতৃপরি হারমঘশ্চ তস্য খণ্ডয়াৎ পরস্পরমধাে বিনিধায় লক্ষ্।
কেনাহতােহয়মপনীয় যথাস্য শেষং ভাগং দদাভি পরিস্তদ্ধমিভি প্রচিন্তাম্।
আপ্তাং মভিং ভাং বিনিধায় বল্ল্যাং নিত্যং হধােহধঃ ক্রমশশ্চ লক্ষ্।
মত্যা হতং স্যাতৃপরিস্থিতং যলকেন যুক্তং পরতশ্চ ভদ্বং।
হারেণ ভাজ্যো বিধিনাে পরিস্থাে ভাজ্যেন নিত্যং ভদধঃস্থিতশ্চ।
অহর্গনােহস্মিন্ ভগনাদয়শ্চ ভদা ভবেদ্যস্য সমীহিতং যং।

ভাবানুবাদ ঃ বৃহত্তর অবশিষ্টের পরিপ্রেক্ষিতে ভাজককে অন্তর্রপে ক্ষুত্তর অবশিষ্টের ভাজক ঘারা ভাগ কর। ক্রমিক ভাগ-ক্রিয়ায় প্রাপ্ত ভাগদল সমূহ শৃঞ্জালাকারে সজ্জিত (বল্লীতে) কর। সর্বশেষ অবশিষ্টকে এমন একটি ঐচ্ছিক রাশি ঘারা গুণ কর যাতে গুণদলে অবশিষ্টান্তর যোগ বা বিয়োগ করে উপাস্তা অবশেষ ঘারা সম্পূর্ণরূপে বিভাজা হয়; শৃঞ্জালাকারে সজ্জিত ভাগদল সমূহের নীচে ঐচ্ছিক রাশি ও নির্ণীত ভাগদল পর পর স্থাপন কর। উপাস্তা সংখ্যাটিকে পূর্ববর্তী সংখ্যা ঘারা গুণ করার পর পরবর্তী সংখ্যা যোগ করে পরবর্তী স্তম্ভের উপাস্তা সংখ্যা পাওয়া যায়। অনুরূপে ফুটি সংখ্যা না পাওয়া পর্যন্ত এই নি মের পুনরাবৃত্তি হবে। এবং পার্থিত অহর্গণ পাওয়া যাবে।

#### ॥ একঘাত অনির্ণেয় সহসমীকরণ॥

এ-ধরনের সমীকরণ নিয়ে আর্যভট, প্রথম ভাস্কর, ব্রহ্মগুপ্ত, ভাস্কর, শ্রীপতি প্রমুখ গণিতজ্ঞরা আলোচনা করেছেন। এঁরা নিম্নরূপ সমীকরণগুলির সমাধান করেছেন:

(1) 
$$a_1x+b_1y+c_1z+d_1w=\omega$$

$$a_2x+b_2y+c_2z+d_2w=\omega$$

$$a_3x+b_3^3y+c_3z+d_3w=\omega$$

$$a_4x+b_4y+c_4z+d_4w=\omega$$



- (3)  $\beta y_1 = \alpha_1 x \pm \gamma_1$  $\beta y_2 = \alpha_2 x \pm \gamma_2$  $\beta y_3 = \alpha_3 x \pm \gamma_3$  $\beta y_4 = \alpha_4 x \pm \gamma_4$ 
  - (4)  $\beta_1 y_1 = \alpha_1 x \pm \gamma_1$   $\beta_2 y_2 = \alpha_2 x \pm \gamma_2$  $\beta_3 y_3 = \alpha_3 x \pm \gamma_2$
  - (5)  $x \pm \alpha = s^2$  $x \pm \beta = t_2$
- (1) নং ধরনের সমীকরণের স্থন্দর উদাহরণ ভাস্করের গ্রন্থে দেখতে পাওয়া যায়।

উদাহরণ ঃ "চার বণিকের যথাক্রমে পাঁচ, তিন, ছয় ও আটটি করে ঘোড়া; ছই, সাত, চার ও একটি করে উট; আট, ছই, এক ও তিনটি করে গাধা এবং সাত, এক, ছই ও একটি করে বৃষ আছে। সকলের ধন সমান হলে ঘোড়া প্রভৃতির মূল্য কত ?" (প্রা. ভা. গ. চ.)

(2) নং ধরনের সমীকরণ সমাধান আর্যভটের পদ্ধতিতে আছে; প্রথম ভাস্কর ও ব্রহ্মগুপ্তও এ নিয়ে আলোচনা করেছেন। প্রথম ভাস্করের একটি উদাহরণ দেখানো হলো।

উদাহরণ ঃ কোন্ সংখ্যাকে ৪ খারা ভাগ করলে 5 ভাগশেষ থাকে, 9 খারা ভাগ করলে 4 ভাগশেষ থাকে, 7 খারা ভাগ করলে 1 ভাগশেষ থাকে ?

वना वांछ्ना, मःशांषि N हत्न, मभौकवनश्चनि এक्रथ हत्-

$$N=8x+5=9y+4=7z+1$$

(3) নং ধরনের দমীকরণের ভারতীয় গণিতে বিশেষ নাম আছে। তার নাম বিংশ্লিষ্ট কুটুক'। ভাস্করের একটি উদাহরণ:

কোন সংখ্যাকে 5 দারা গুণ করে 63 দিয়ে ভাগ করলে 7 ভাগশেষ থাকে; আবার ওই সংখ্যার 10 গুণ করে 63 দিয়ে ভাগ করলে 14 ভাগশেষ থাকে?

অৰ্থাৎ 
$$63y_1 = 5x - 7$$
  
 $63y_2 = 10x - 14$ 

(4) ও (5) নং ধরনের সমীকরণ নিয়ে মহাবীর, শ্রীপতি, তাস্কর, ব্রহ্মগুপ্ত প্রমুথ গণিতজ্ঞরা আলোচনা করেছেন। ব্রহ্মগুপ্ত  $x\pm a=u^2$  ও  $x\pm b=v^2$  সমীকরণছয়ের সমাধান নিয়রূপ করেছেন,—

$$x = \left\{ \frac{1}{2} \left( \frac{a-b}{m} \pm m \right)^2 \mp a \right\}, \quad x = \left\{ \frac{1}{2} \left( \frac{a-b}{m} \mp m \right)^2 \mp b \right\}$$
 এখানে,  $m =$ ্ষে-কোন পূর্বসংখ্যা।

#### ॥ বর্গ-প্রকৃতি॥

প্রাচীন ভারতীয় গণিতে হিঘাত অনির্ণেয় সমীকরণ  $Nx^2 \pm c = y^2$  'বর্গ-প্রকৃতি' নামে আখ্যাত। এই সমীকরণে কোন বর্গ-সংখ্যাকে গুণক হারা গুণকরে কোন ঐচ্ছিক রাশির সঙ্গে যোগ করার পর বর্গমূল নির্ণয় করা হয়।

 $Nx^2+1=y^2$  এই শ্রেণীর একটি মৌল সমীকরণ। এই সমীকরণের বর্গ-প্রকৃতি নামকরণের উদ্ভব সম্পর্কে বিভিন্ন গণিতজ্ঞদের মত ও ব্যাখ্যা থেকে বলা যায় যে, গণিতে এই শাখার গণনার মীতি হচ্ছে একটি সংখ্যা বা সংখ্যাসমূহ নির্ণয় করা যার প্রকৃতি এমন যে তার বর্গ বা বর্গসমূহ কয়েকটি নির্দিষ্ট প্রক্রিয়ার পর একটি বা কয়েকটি বর্গের স্থায় সংখ্যা উৎপন্ন করে।

 $Nx^2+1=y^2$  এই সমীকরণে সহগ N-কে প্রকৃতি বলা হয় এবং N একটি অথণ্ড ধনরাশি।  $Nx^2\pm c=y^2$  এই সমীকরণে x=কনিষ্ঠপদ, y=জ্যেষ্ঠ পদ, N=গুণক এবং c=ঐচ্ছিক রাশি বা প্রকেশ।

বর্গ-প্রকৃতির সংক্ষিপ্ত আলোচনায় আমরা ত্-একটি পরিভাষা ও সংজ্ঞার কথা আগে আলোচনা করব।

কনিষ্ঠপদ বা আভ্যন্ত ৪ যে-সংখ্যার বর্গ ঐচ্ছিক রাশি দারা গুণনের পর অন্য একটি ঐচ্ছিক রাশির যোগ বা বিয়োগ দারা বৃদ্ধি বা হ্রাদ পেয়ে বর্গমূল নির্ণীত হয়, তাকে কনিষ্ঠপদ বলে।

জ্যেষ্ঠ মূলঃ শুক্তান্ম প্রক্রিয়ায় যে বর্গমূল নির্ণীত হয়, তাকে 'অভামূল' বা জ্যেষ্ঠমূল বলে। উদ্বর্ভক ঃ যদি উভয় প্রকার মূলের কোন সাধারণ গুণক থাকে, তাকে উদ্বর্ভক বলে।

অপবর্তক ৪ যদি উভয় মূল দারা বিভান্ধ্য কোন সংখ্যা থাকে, তাকে অপবর্তক বলে।

আচার্য ব্রহ্মগুপ্ত তাঁর ব্রহ্মস্ট্টিদদান্ত গ্রন্থে বর্গ-প্রকৃতি নিয়ে আলোচনা করেছেন। এ-বিষয়ে তাঁর একটি উপাত্ত হলো:

यून १ हिर्दिष्ठे वर्गाम् ७ १ कथा निष्ठे यूख विशेषाकः ।

আছিবধা ৩ १ কथा ।

অজববৈক্য প্রথম প্রক্ষেপ ক্ষেপ্রধতুল্য ।

প্রক্ষেপশোধক্ষতে মূলে প্রক্ষেপক্ষেপ ।।

"অর্থাৎ ইষ্ট বর্গ কৈ গুণক দিয়ে গুণ করার পর অন্য ইষ্ট যোগ বা বিয়োগ কর।
তারপর মূলাকর্ষণ কর। এইভাবে ত্বার কর। প্রথম তৃটি বীজের গুণফলকে
প্রকৃতি (N) দিয়ে গুণ করে দিতীয় বীজন্মরের গুণফল যোগ কর। তা হলে
(নতুন) দিতীয় বীজ পাওয়া যাবে। প্রথম তৃটি বীজ এবং দিতীয় তৃটি বীজের
বজ্ঞ গুণন করে তারপর যোগ কর। তা হলে (নৃতন) দিতীয় বীজ পাওয়া
যাবে। প্রথম তৃটি বীজ এবং দিতীয় তৃটি বীজের বজ্ঞ গুণন করে তারপর যোগ
কর। তা হলে প্রথম (নৃতন) বীজ পাওয়া যাবে। সংশ্লিষ্ট ক্ষেপটি পূর্বের
ক্ষেপদ্যের গুণফল হবে।" (প্রা. ভা. গ. চ.)

ধরা যাক,  $k \in k'$ -এর স্থবিধাজনক মানের জন্ম ( $\alpha$ ,  $\beta$ ) ও ( $\alpha'$ ,  $\beta'$ )  $Nx^2+k=y^2$  ও  $Nx^2+k'=y^2$  সমীকরণ তৃটির এক প্রস্থ বীজ। বন্ধান্ত থের উপাত্ত অমুসারে  $Nx^2+kk'=y^2$ -এর বীজ হবে.—

 $y=\beta\beta'\pm N\alpha\alpha'$ 

#### ॥ ठक्वांन ॥

খুব সম্ভব 'চক্রবাল' পদ্ধতির আবিষ্কারক হচ্ছেন ভাস্কর। কারণ, এই পদ্ধতি তাঁর পূর্বে দেখা যায়নি।  $Nx^2+1=y^2$  সমীকরণে N অবর্গ সংখ্যা হলে, এই সমীকরণের সাধারণ ধনাত্মক অথও সমাধান করতে একটি সাহায্যকারী সমীকরণের প্রয়োজন। এই সমীকরণিট  $Na^2+k=b^2$ , এখানে  $a \cdot b$  ধনাত্মক পূর্ণসংখ্যা, এবং  $k=\pm 1$ ,  $\pm 2$  এবং  $\pm 4$ 

ভাস্কর  $67x^2+1=y^2$  ও  $61x^2+1=y^2$ , এই সমীকরণ ঘটি চক্রবাল পদ্ধতিতে অতি সংক্ষেপে ও সহজে সমাধান করেছেন। বিশেষ করে শেষের সমীকরণটির একটি ঐতিহাসিক তাৎপর্য আছে। এই সমীকরণটির সমাধানের জন্ত নাকি বিখ্যাত ফরাসী গণিতজ্ঞ ফেরমা ফেঁসিলেকে চ্যালেঞ্জ করেন। আর এই সমীকরণটির ক্র ও y-এর যে ক্ষুত্রতম বীজ পাওয়া যায়, তা যথাক্রমে নয় ও দশ অঙ্কবিশিষ্ট রাশি। ল্যাগরেঞ্জের পদ্ধতিতে এর সমাধান আরো জটিল। বাই হোক, ক্র ও y-এর ক্ষুত্রতম বীজ ঘৃটি যথাক্রমে 226, 153, 980 এবং 1, 766, 319, 049.

#### ॥ ত্বটি ঐতিহাসিক অপলাপ ॥

আমরা ইতিমধ্যেই লক্ষ্য করেছি ভারতে একঘাত অনির্ণেয় সমীকরণ খবই প্রাচীন। অনেক আগে থেকে এর অস্তিত্ব আছে, এবং যুগক্রম পরম্পরায় গণিতজ্ঞরা এ-বিষয়ে আরুষ্ট হ'য়ে সাধারণ সমাধান দেবার প্রয়াস পেয়েছেন। বিষয়ে যিনি প্রথম সাফল্য অর্জন করেন, তিনি নি:সন্দেহে আর্যভট। কিন্ত গণিতের ইতিহাসে এট "ভায়োফ্যাণ্টীয় সমীকরণ" নামে খ্যাত। আমাদের মনে হয়, ভারতীয় গণিতে অজ্ঞতার জন্ম ঐতিহানিকদের এই ক্রটি ঘটেছে। প্রদক্ষত উল্লেখযোগ্য, ডায়োফ্যান্টাস খ্রীষ্টায় ততীয় শতান্দীতে বর্তমান ছিলেন। তা ছাড়া তিনি যে ধরনের সমীকরণ নিয়ে আলোচনা করেছেন, সেইটি এর এক বিশেষ রূপ। সাধারণীকরণের সব ফুডিঅই ভারতীয় গণিতজ্ঞদের প্রাপ্য.— বিশেষ করে আর্যভটই দর্বপ্রথম স্মষ্ঠ আলোচনার স্তর্গাত করেন। গ্রীক ও ভারতীয় অনির্ণেয় সমীকরণের প্রকৃতি ও স্বরূপ বিষয়ে ক্যাঞ্চরি বলেন,—"The Hindoo indeterminate analysis differs from the Greek not only in method, but also in aim." তाই, আমাদের প্রভাব এই সমীকরণের প্রকৃত নামকরণ করা উচিত 'আর্যভটীর সমীকরণ'। তা হলে একদিকে যেমন ঐতিহাদিক অপলাপ বা ত্রুটি সংশোধিত হয়, তেমনি প্রকৃত আবিষ্ণারক ও পথিরুৎ যোগ্য সমাদর ও সম্মান লাভ করেন।

আর একটি অপলাপ ছিঘাত অনির্ণেয় সমীকরণকে কেন্দ্র করে। ইউরোপে
এই সমীকরণ 'পেলীয় সমীকরণ' নামে অভিহিত। এই ক্রটি অবশু লিওনার্দ অয়লারের ভুলেই ঘটেছে। সপ্তদশ শতান্দীতে ড: পেল (Pell) তাঁর একটি বীজগণিত গ্রন্থে এই সমীকরণের উল্লেখ করেছেন। এ-বিষয়ে এফ. ক্যাজরির প্রস্তাব হচ্ছে এব প্রফ্লত নাম হওয়া উচিত 'হিন্দু-সমস্যা' (Hindoo problem)। ডঃ শ্রীনিবাসিয়েঙ্গার প্রস্তাব করেছেন, এর নাম হওয়া উচিত 'ব্রহ্মাণ্ডপ্ত-ভাঙ্কর সমীকরণ'। ডঃ শ্রীনিবাসিয়েঙ্গার প্রস্তাব অধিকতর যুক্তিযুক্ত বলে মনে হয়। কারণ, ব্রহ্মগুপ্ত এই সমীকরণের সমাধান পদ্ধতির আবিষ্কারক হলেও ভাস্কর এর প্রভৃত উন্নতিসাধন করেন ও সাধারণীকরণের মধ্যে আনেন। তা হলেও আমাদের প্রস্তাব এই সমীকরণ 'ব্রহ্মণ্ডপ্ত সমীকরণ':নামে আখ্যাত হোক। কারণ, প্রথম সম্মান আবিষ্কারক ও পথিক্তং-এর প্রাপ্য।

A BANGE OF THE STATE OF THE STA

what street waters the growth of the said the same and the said

#### ॥ অষ্টাদশ অধ্যায়॥

"The invention of Sunya or 'O' liberated the human intellect from the prison bars of the counting-frame."

-L. Hogben.

#### ॥ भृग्रा।

বিশ্ব-গণিতের ইতিহাসে অগ্রতম শ্রেষ্ঠ হুটি ঘটনা,—দশগুণে।ত্তর স্থানিক-মান পদ্ধতিতে সংখ্যা-লিখন ও শৃত্য আবিষ্কার। বস্তুত, একে মানব-মনীধার শ্রেষ্ঠ ফদল না বলে আজ আর উপায় নাই। কিন্তু হুর্ভাগ্যের বিষয়,—কে, কবে এবং কোথায় এই আবিষ্কার করেছিলেন, তার কোন লিখিত প্রমাণ আজও আমাদের হস্তুগত হয়নি। তবে এই মহন্তম হুটি আবিষ্কার যে ভারতীয় হিন্দুরা করেছিলেন, আজ আর দে বিষয়ে দ্বিমত নাই। গণিতে কোন-না-কোন আবিষ্কারের পিছনে থাকে স্থুক্তাই কোন সমস্তা বা ঘটনা। বিশেষ করে জটিল সমস্তাগুলির সমাধানের একটি জমবিকাশ দেখা যায়। কিন্তু 'শৃত্য' আবিষ্কার কোন সমস্তাকে কেন্দ্র করে হয়েছিল, দে-সম্পর্কে নিশ্চিত করে কিছু বলা যায় না। এর আবিষ্কারে দার্শনিকদের অবদান বেশী না গণিতজ্ঞদের কৃতিত্ব বেশী, এ-সম্বন্ধে বেদবাক্যম্বরূপ কিছু বলা যায় না।

।। শুত্যের প্রাচীনতা ও দার্শনিক তাৎপর্য।।

অধিকাংশ পাশ্চাত্য গণিতের ঐতিহাসিকরা শৃগু আবিষ্কারে ভারতীয় মনীষার উচ্চুসিত প্রশংসা করলেও, তাঁরা সবাই এই আবিষ্কারের উদ্ভব-কাল প্রীষ্টীয় শতানীর ঘটনা বলে মনে করেন। আগেই উল্লেখ করা হয়েছে যে, এ-বিষয়ে আমাদের কোন লিখিত প্রমাণ নাই। তা হলেও প্রাচীন ভারতীয় কাব্য-দর্শন-সাহিত্য প্রভৃতিতে শৃগ্যের উল্লেখ থেকে মনে হয় শৃগু আবিষ্কার প্রীন্টপূর্ব শতানীর ঘটনা।

এটিপূর্ব চতুর্থ শতাব্দীতে কোটিলোর 'অর্থশাস্ত্র'-এ শ্রের উল্লেখ দেখতে পাওয়া যায়। ওই গ্রন্থে 'শৃত্য-নিবেশন', 'শৃত্যপাল', 'শৃত্য-স্থান' ইত্যাদি শব্দের

ব্যবহার থেকে মনে হয় বিষ্ণুগুপ্তের সময় "শৃত্য"-এর প্রচলন যথেই ছিল। শুধ্ ভাই নয়, 'শৃত্যপাল' শব্দের অর্থ থেকে মনে হয় ভারতীয় গণিতজ্ঞরা অজ্ঞাতরাশি বোঝাতে শৃত্যের ব্যবহার কোটিলোর যুগের বহু পূর্ব থেকেই করে আদছেন। 'শক্ষালী পাণ্ডুলিপি'-তেও যে এর প্রমাণ আছে, তার দৃষ্টান্ত তো আগেই দেওয়া ক্ষেছে। জঃ রাধাগোবিল বদাক 'শৃত্য-নিবেশন' ও 'শৃত্যপাল' শব্দ ছটির অর্থ বাধাক্রমে "শৃত্য বা কর্ষণাদির অযোগ্য ভূমিতে ক্ষ্যকাদির নিবাদাদির বচনা" এবং শৃত্ত্বকালে প্রবৃত্ত রাজার অন্তুপন্থিতিতে শৃত্য রাজধানীর পালক" বলেছেন। বস্তুত প্রথানে গাণিতিক শৃত্যের দঙ্গে কোটিলোর ধারণার অমিল নাই।

অধ্যাপক হলস্টেড শৃশুকে নির্বাণ-এর সঙ্গে তুলনা করেছেন। সভাই তুলনাটি েবেমন দার্থক তেমনি তাৎপর্যপূর্ণ। ভগবান বুদ্ধের নির্বাণতত্ত্বের সঙ্গে এর সম্পূর্ণ সামৃত আছে বলে মনে হয়। জানি না, বুদ্দদেব তাঁর নির্বাণের ধারণা এই ৰাশিতিক শৃত্য থেকেই পেয়েছিলেন কিনা। তথাগত নিৰ্বাণের ধারণা সম্পর্কে প্রায়ই বলতেন, "ঠাঁহার অতি গভীর অহুভূতিতে তিনি যে অদ্বের ( অর্থাৎ দেশ-কালের অতীত সত্তার) সন্ধান পান, তা তর্ক দ্বারা বুঝা যায় না, কেবল বোধিতে েবোধগম্য হয়।" (ভারতীয় ও পাশ্চাত্য দর্শন—ড: সতীশচন্দ্র চট্টোপাধ্যায়) এই ৰাৱণার উপর নির্ভর করে পরবর্তীকালে বিখ্যাত বৌদ্ধ দার্শনিক নাগার্জুন তাঁর "সুঅবাদ' তত্ব প্রতিষ্ঠা করেন। 'সুঅবাদ' বলতে সাধারণত "জগতে কোন স্বস্থ নাই, সবই শৃত্য ও নিরুপাক্ষ বা অসৎ পদার্থ" বুঝায়। বস্তুর প্রকৃত সত্তার স্মনির্বচনীয়তাই শূন্তবাদের মূলকথা। গাণিতিক শূন্ত এক হিদাবে অনির্বচনীয়, —ভাবাদ্ব প্রকাশ প্রায় অদন্তব বললেই চলে। কাব্য-সাহিত্যেও শৃত্যের বিন্দু अपि नका कवा यात्र। स्वजूत वामवनजा, वानजाहेत कानम्बती, श्रीहार्यत <del>্রীন্যদ্চরিতে 'শৃত্য বিন্দু'-</del>র উল্লেখ আছে। কাদ্দ্ববীর নায়ক তো যৌবনে স্থাবার 'বিস্মৃত্য' খেলতেন। প্রাচীন দার্শনিক ও কবিদের এই সব উদাহরণ েখকে মনে হয়, এটিপূর্ব শতাকীতে অস্তত বৃদ্ধের পূর্বেই শৃত্যের আবির্ভাব হয়ে वाकरव।

#### ।। শৃত্যের গাণিতিক তাৎপর্য।।

এ-কথা সত্য, মানব-সভাতা ও সংস্কৃতির গতিতে শৃত্য অভ্তপূর্ব ত্বরৎ স্পত্তী
ক্ষরেছিল,—মানব-মনীবার মৃক্তি দিয়েছিল। দশগুণোত্তর পদ্ধতিতে সংখ্যাক্রিখনের স্থবিধার মধ্যেই ভারতীয় গণিতজ্ঞরা শৃত্যের ব্যবহার দীমিত বাধেননি,

এর গাণিতিক প্রয়োজন মেটানোর জন্ম তাঁদের দর্বোৎকৃষ্ট মনীষা নিয়োজিত করেছিলেন। প্রাচীন ভারতীয় গণিতজ্ঞরা শৃন্মের দার্শনিক তাৎপর্য উপলব্ধি করার দক্ষে দক্ষে গণিতের ব্যবহারিক দিকটির প্রতি দৃষ্টি রেথে একে সংখ্যা হিসাবে গণ্য করেছেন। আর্যভট কর্তৃক প্রদন্ত বর্গন্দ ও ঘনমূল নির্ণয়ের স্থেরে মধ্যে শৃন্মের ব্যবহারিক দিকটি পরিক্ষ্ট হয়েছে; ব্রহ্মগুপ্ত শৃন্মের সহিত মৌলিক প্রক্রিয়াগুলির সম্বন্ধের উল্লেখ করেছেন; ব্রহ্মগুপ্তর উত্তরস্থনীরা মৌলিক প্রক্রিয়াগুলিতে শৃন্মের ব্যবহার বিষয়ে আরো স্কর্ল্পষ্ট মন্তব্য করে এর তাৎপর্য বাজক করেছেন। এমন কি, পাটীগণিত ও বীজ্গণিতে শৃন্মের পৃথক পৃথক তাৎপর্যের উল্লেখ থেকে মনে হয়, তাঁরা এ-বিষয়ের সম্পূর্ণ অবহিত ছিলেন।

### ॥ শৃত্যের পাটীগাণিতিক তাৎপর্ব ॥

শৃত্য বিষয়ে স্থাপি আলোচনা ব্ৰহ্মগুপ্তের ব্রহ্মফুটিনিদ্ধান্তে পাওয়া যায়। এসম্পর্কে স্ব্রাদিও আছে। ভারতীয় গণিতজ্ঞরা শৃত্যের দ্বারা যোগ, বিয়োগ ও
গুণের বিষয় স্থন্দর আলোচনা করেছেন, কিন্তু ভাগ সম্পর্কে তেমন স্বষ্ঠ ও স্থাপ্তী
আলোচনা নাই বললেই চলে। তবে পাটীগণিতে ও বীজগণিতে যে শৃত্যের
ব্যবহার একটু ভিন্ন প্রকার, তাতে সন্দেহ নাই। তাই গণিত-কৌম্দীর লেখক
নারায়ন পণ্ডিত বলেছেন, পাটীগণিতে শৃত্যের দ্বারা ভাগের কোন অর্থ হয় না,
সেজত্য এখানে আলোচিত হলো না। কিন্তু যেহেতু বীজগণিতে এর অর্থ হয়,
তাই সেখানে উল্লেখ করা হলো। দ্বিতীয় আর্যভট তাঁর মহা-সিদ্ধান্ত গ্রন্থে
বলেছেন, শৃত্যুকে কোন সংখ্যার সঙ্গে যুক্ত করলে সংখ্যাটি অপরিবর্তিত থাকে,
এবং বিয়োগের ক্ষেত্রেও এই নিয়্মটি প্রযোজ্য। শৃত্য দ্বারা গুণের ফল হবে শৃত্য।
ব্রহ্মগুপ্ত একই কথা বলেছেন। এ-সব তথ্য থেকে এটা অতি স্পান্ট যে, ভারতীয়
গণিতজ্ঞরা শৃত্যের পাটীগাণিতিক তাৎপর্য দম্বন্ধে সম্পূর্ণ অবহিত ছিলেন।

### ॥ শূত্যের বীজগাণিতিক তাৎপর্য।।

্ এ-সম্পর্কে ব্রহ্মগুপ্তের ধারণা ও স্থ্রাদি উল্লেখ করার মৃত। তাঁর যোগের স্থাট নিমুরূপ:

ধনরোর্ধনমূণমূণয়োর্ধনর্গয়োরস্তরং সমকৈ থম্।
ঝণবৈষক্যং চ ধনমূণধনশূতয়োঃ শৃতয়োঃ শৃতয়াঃ শৃতম্।।
"অর্থাং ধনাত্মক রাশিগুলির যোগ ধনাত্মক, ঋণাত্মক রাশিগুলির যোগ

ঋণাত্মক।.....ধনাত্মক এবং ঋণাত্মক একই রাশির যোগ শৃত্ত হবে। ঋণাত্মক বাশির সঙ্গে শৃত্ত যোগ করলে ঋণাত্মক হবে। ধনাত্মক রাশির সঙ্গে শৃত্ত যোগ করলে ধনাত্মক হবে। তুটি শৃত্ত যোগ করলে শৃত্ত হবে।" (প্রা. ভা. গ. চ.)

আধুনিক গণিতের ভাষায়,--

a-a=0; a+0=+a; -a-0=-a; 0+0=0

গুণনের ক্ষেত্রে শৃত্যের ব্যবহার সম্পর্কে তিনি বলেছেন, শৃত্য ও ধনবাশি, শৃত্য ও ঋণরাশি:এবং শৃত্য ও শৃত্যের গুণফল সর্বদা শৃত্য হবে। তাঁর স্তর :

भ्गिर्ग रहा । अबन रहा । अभृग रहा वी वब श्मिम्।

অর্থাৎ  $a \times 0 = 0$ ;  $-a \times 0 = 0$ ;  $0 \times 0 = 0$ 

ভাগ সম্পর্কেও ব্রহ্মগুপ্তের স্বম্পষ্ট ধারণা ছিল। এ-সম্পর্কে তাঁর মন্তব্য হচ্ছে, শৃত্য বারা শৃত্যকে ভাগ করলে ভাগফল শৃত্য হয় ; ধনরাশি বা ঋণরাশিকে শৃত্য বারা ভাগ করলে ভাগফল হয় 'ভচ্ছেদ' অথবা শৃত্য অথবা লব হরকে ত্র বারা প্রকাশ করতে হবে। আচার্য ব্রহ্মগুপ্ত  $\frac{\pm a}{0}$  কে 'খ-ছেদ' বলেছেন। এ-বিষয়ে তাঁর সূত্রটি উদ্ধৃত হলো।

ধনভক্তং ধনমৃণস্বতমৃণং ধনং ভবতি খং খভক্তংথমৃ ভক্তমৃণেন ধনমৃণং ধনেন স্বতমৃণমৃণং ভবতি। খোদ্ধতমৃণং ধনং বা তচ্ছেদং খমৃণধনবিভক্তং বা ঋণধনয়োৰ্বৰ্গঃ স্বং খং খস্ম পদং কৃতিৰ্যত তথ।

ষোগ-বিয়োগ-গুণ-ভাগ বিষয়ে ভাস্করের ব্যাখ্যাও ব্রহ্মগুপ্ত অমুসারী। তবে
শূন্যরূপী ভাজকের ক্ষেত্রে ভাঁর মত বিশেষভাবে দক্ষ্য করার মত। তিনি
বলেছেন, শৃশু ঘারা ভাগ অশেষ হয় ; শৃশ্যের ক্ষেত্রে শৃশু হলেও শৃশু গুণকরূপে
থাকবে; আর শৃশুকে ভাজকরূপে ধরলে অবিকৃত রাশি যা উছ্ আছে তা
অপরিবর্তিত থাকবে।

কোন সংখ্যাকে শৃত্য দ্বারা ভাগের ক্ষেত্রে মহাবীরের একটি ভুল সিদ্ধান্ত আছে। তিনি বলেছেন, কোন সংখ্যাকে শৃত্ত দিয়ে ভাগ করলে সংখ্যাটির কোন পরিবর্তন হবে না।

### ॥ শূতা ও ইপসিলন।।

আধুনিক অতি অতি ক্জ মান একটি গ্রীক বর্ণ ইপদিলনের ( ে) সাহায্যে

প্রকাশ করার রীতি আছে। এ-ষে কত ছোট, তা কেবল কল্পনার সাহায্যেই করা যায়। বান্তবিকপক্ষে, কথনো কথনো শৃশ্য ও ইপদিলনকে পুথক করা বেশ মুস্কিলের। প্রাচীন ভারতীয় গণিতে ইপদিলনের স্পষ্ট উল্লেখ না পাওয়া গেলেও বন্ধ প্রপ্তের একটি উক্তি খেকে ধারণা করা যায় যে, হয়তো এই গণিতাচার্যের খূত্যের অতি ক্ষু মান সম্পর্কে ধারণা ছিল। তিনি a÷0 এবং 0÷a এর ভাগফল তুটিকে  $\frac{a}{0}$  এবং  $\frac{0}{a}$  এই আকারে রেখে দেবার পরামর্শ দিয়েছেন। কিন্তু তিনি কেন এরূপ আকারে রেখে দেবার পরামর্শ দিয়েছেন, তার কোন ব্যাখ্যা বা যুক্তি দেননি। সর্ববিষয়ে অতি সংক্ষিপ্ততা অবলম্বন করে স্থাম গুলীতে সম্রদ্ধ খ্যাতি অর্জন করার প্রবণতার ফলে প্রাচীন ভারতের গণিতের অনেক বিষয় রহস্তমণ্ডিত রয়ে গেছে, এবং তা নিয়ে পণ্ডিতদের মধ্যে বিতর্কের স্ষ্টি হয়েছে।

ষাই হোক, ব্ৰহ্মগুপ্ত আমাদের বৃহস্তের মধ্যে কেললেও আচার্য ভান্ধর কিন্তু শৃত্যের অতি কুদ্রতম মান (€) সম্পর্কে আমাদের কিছুটা স্বম্পষ্ট ধারণা দিয়েছেন। তিনি a×o='থ-গুণ' বলেছেন; গুণফলটির মান শূন্য বলেননি। তা ছাড়া জ্যোতির্বিজ্ঞানের নানা গাণিতিক গণনা থেকে মনে হয় তিনি ৰ সম্পর্কে অবহিত ছিলেন। তাঁর এ-সম্পর্কিত সূত্র:

থহর: স্যাৎ অগুণঃ থং থণ্ডণশ্চিন্ত্যশ্চ।

।। শূহা ও অনন্ত ॥ জৈন গণিতজ্ঞদের কাল ও সংখ্যা বিভাগের বিভিন্ন তত্ত্ব থেকে মনে হয় অনন্ত (∞) সহল্পে তাঁদের ধারণা ছিল। ভাক্ষর শৃত্য ছারা বিভাজিত কোন সংখ্যার ভাগফল 'খ হর' বলেছেন। অর্থাৎ  $\frac{a}{a}$ ='খ-হর'। ব্রহ্মগুপ্ত কথিত 'খ-ছেদ' ও 'থ-হর' সমার্থক বলে মনে হয়। আচার্য ভাষ্করের মতে এই খ-হরের সঙ্গে কোন-কিছু যোগ বা বিয়োগ করলে ভার মানের কোন পরিবর্তন হয় না। এ-বিষয়ে ভাস্কবের ব্যাখ্যা দার্শনিক মনের পরিচায়ক ও ভারতীয় ঐতিহাহুদারী। তিনি বলেছেন, অনম্ভ শ্রীভগবানের মধ্যে অসংখ্য জীবের জন্ম ও ধ্বংস হচ্ছে; কিন্তু তাতে তাঁর কোন পরিবর্তন স্থচিত করে না। অর্থাৎ অনন্ত বা অসীমে কোন-কিছু যোগ-বিয়োগে কিছু আসে যায় না। এই মন্তব্য থেকে স্পষ্টই মনে হয় ভান্ধর  $\frac{a}{a}$   $\Rightarrow$   $\infty$  , এবং  $\infty \pm k = \infty$  বলেই জানতেন। ভাস্করোত্তর যুগের ভাশ্যকার গণেশ মন্তব্য করেছেন  $\frac{a}{o}$  অনির্দিষ্ট, অদীম, অনন্তবাশি । কারণ, এই বাশিটি যে কত বড় তা নিরূপণ করা যায় না । ভাশ্যকার কৃষ্ণ বলেছেন, এ-ক্ষেত্রে ভাগফল কত বড় তা নির্দিষ্ট করা যায় না বলে অনন্ত বলে ধরে নিতে হবে ।

মধ্যযুগের গণিতজ্ঞরা শৃত্যের নানা বৈশিষ্ট্য সম্পর্কে অবহিত ছিলেন। কিন্তু উপযুক্ত চিহ্ন ও সঙ্কেতের অভাবে এর সঠিক ব্যাখ্যা সম্ভব হয়নি। বেমন,—

আধুনিক গণিতে  $\frac{Lt}{\epsilon \to o} \frac{a.\epsilon}{\epsilon} = a$ , এই সম্পর্কটি বুঝতে আমাদের কোন অম্ববিধা হয় না। কিন্তু ভাষ্করের সময় এরূপ কোন প্রতীক ও চিহ্ন না থাকায়, তিনি অক্সভাবে এই একই গাণিতিক ধারণা কাজে লাগিরেছেন। উদাহরণস্বরূপ ভাস্করের একটি অক্স উদ্ধৃত হলো:

উদাহরণ ঃ কঃ খণ্ডণে। নিজার্দ্ধয়ুক্ত স্ত্রিভিশ্চ গুণিতে থহাভস্ত্রিষষ্ঠিঃ। অর্থাৎ কোন সংখ্যাকে শৃত্য দিয়ে গুণ করে সংখ্যাতির অর্ধেক যোগ করে তার তিনগুণকে শৃত্য দিয়ে ভাগ করলে 63 হবে ?

ভাষ্ণরের পদ্ধতি ৪ "অজতো বাশিস্তস্ত গুণ: 0। সার্দ্ধংক্ষেপ: 🔒 গুণ: 13। হব। 0 দৃখং। 63। ততো বক্ষ্যমাণেন বিশোম বিধিনা ইষ্টকর্মণা বা লক্ষো বাশি: 14।"

অর্থাৎ একটি অজ্ঞাতরাশি নেওয়া হলো, একে শৃত্য ছারা গুণ করে 🖟 যোগ করা হলো; এবার একে 3 দিয়ে গুণ করা হলো, শৃত্য দিয়ে ভাগ করা হলো। এখন রাশিটি 63। বিপরীত প্রণালী বা সাধারণ নিয়ম অমুধারী রাশিটি 14 হবে।

আধুনিক গণিতের ভাষায় অঙ্কটি প্রকাশ করলে,—

$$\frac{x \times 0 + \frac{x \times 3}{2}}{0} = 63$$

ভাস্কর x-এর মান দিয়েছেন 14

স্পষ্টত এথানে শৃত্যকে শৃত্য হিসাবে গণ্য করা হয় নি। নি:সন্দেহে এথানে 0=∈ বা অন্তর্মপ ধারণা।

### ॥ আধুনিক কবির ভাষায় শৃত্য।।

শৃত্যের কত না বৈচিত্রা! গণিজ্ঞদের কাছে এর এক রূপ, দার্শনিকদের কাছে আবার আব এক রূণ। কবি-সাহিত্যিকদের ভাষায় রসঘন রূপের প্রকাশ ঘটে।

কবিগুরু রবীন্দ্রনাথ একবার ভারতী' পত্রিকায় 'শৃত্য' নামে একটি কাব্যরসমণ্ডিত প্রবন্ধ লেখেন। শৃত্তের নানা আলোচনার শেষে 'মিষ্টাল্ল ইতরে জনা' করা বাক না কেন। কবির ভাষায়,—

"এক একজন লোক আছে তাহারা যতক্ষণ একলা থাকে ততক্ষণ কিছুই নতে একটা শৃন্য (৽) মাত্র; কিন্ত একের সহিত যথনি যুক্ত হয় তথনি দশ (১০) হইয়া পড়ে। একটা আশ্রর পাইলে তাহারা কি না করিতে পারে। সংসারে শত সহস্র শূতা আছে বেচারীদের সকলেই উপেক্ষা করিয়া থাকে—তাহার একমাত্র কার্ত্ সংসাবে আদিয়া তাহারা উপযুক্ত 'এক' পাইল না। কাজেই তাহাদের অভিত না থাকার মধ্যেই হইল। এই সকল শৃত্তদের এক মহা দোষ যে, পরে বদিলে ইহার। ১-কে ১০ করে বটে কিন্তু আগে বদিলে দশমিকের নিয়ম অফুদারে ১-কে তাহাত্ব শতাংশে পরিণত করে (•০১) অর্থাৎ ইহারা অন্তের দ্বারা চালিত হুইলেই চমৎকারু কান্ধ করে বটে, কিন্তু অগ্যকে চালনা করিলে সমস্ত মাটি করে। ইহারা চমৎকার দৈল্য যে মন্দ দেনাপতিকেও জিতাইয়া দেয় কিন্তু এমন খারাপ দেনাপতি যে ভাল নৈতাদেরও হারাইয়া দেয়। স্ত্রী-মর্যাদা অনভিজ্ঞ গোঁয়ারগণ বলেন, স্ত্রীলোকেরা এই শৃত্য। ১-এর সহিত যতক্ষণ ভাহারা যুক্ত না হয় ততক্ষণ ভাহারা শৃত্য। কি 🐷 ১-এর সহিত বিধিমতে যুক্ত হইলে সে ১-কে এমন বলীয়ান করিয়া তুলে যে সে দশের কাজ করিতে পারে। কিন্তু এই শৃত্যগণ যদি ১-এর পূর্বে চড়িরা বদেক তবে এই ১-বেচারীকে তাহার শতাংশে পরিণত করেন। দ্রৈণ পুরুষদের এক नाम 's > 1" all tages and the state of the same of the same of the

বলা বাহুল্য, এখানে ক্ষুত্ৰম সংযোজনও নিপ্ৰয়োজন। তবে স্ত্ৰীলোক সম্বজ্জ যে একটি কথা মাছে ''দেবাং ন জানন্তি কৃতঃ মন্থ্যাং", এটি বোধ হয় শৃতদের ক্ষেত্ৰেও প্ৰযোজ্য।

## ॥ ভাষ্যতত্ত্ব ও ভারতীয় গণিতের কা**ল**।।

প্রমাণপঞ্জীর অভাবে ভারতীয় গণিতের প্রাচীনতা বিষয়ে অনেক জায়গায় সংশয়ের অবকাশ আছে। এই সংশয় থেকে মৃক্তি পাবার যে খুব বেশী সন্তাৰনা আছে, তা মনে হয় না। কিন্তু ভারতীয় গণিতে ব্যবহৃত বিশেষ বিশেষ শব্দের বৈজ্ঞানিক ভাষাতাত্ত্বিক বিশ্লেষণ করলে অনেক জায়গায় সংশয়ের অবসান হতে পাবে বলে মনে হয়। এ-বিষয়ে স্থামগুলী একটু ভেবে দেখতে পাবেন। আবার, প্রাচীন ভারতীয় গণিতে ব্যবহৃত অনেক পারিভাষিক শব্দের ষ্থামথ ব্যাখ্যাক

এখন ত্রহ হয়ে পড়েছে। কিন্তু ভারতীয় সাহিত্য, কাব্য, দর্শন, বিজ্ঞান প্রভৃতি গ্রন্থে ব্যাপক, দীর্ঘ ও শ্রমনীল গবেষণা চালালে এরও সমাধান হতে পারে। যেমন—ভারতীয় গণিতে 'গোমৃত্রিকা' পদ্ধতি নামকরণের সার্থকতা থুঁজে পাওয়া যায় না। গণিতের ঐতিহাসিকরা কেবল ছুল অর্থ গোমৃত্রের হ্যায় তির্যক বলেছেন। কিন্তু আমাদের মনে হয়, এই অর্থ একান্তই ছুল,—এর আরো কৌন গভীরতর ব্যুৎপত্তিগত অর্থ থাকতে পারে। কৌটলাের অর্থশালে গোমৃত্রিকা-এর উল্লেখ আছে, এবং যে অর্থ দেখানে ব্যবহৃত হয়েছে, গণিতে ব্যবহৃত শক্টির সঙ্গেতার ব্যুৎপত্তিগত মিল মাছে বলে মনে হয়। অর্থশালে গোমৃত্রিকা 'বিভিন্নাকারে ব্যুহনির্মাণ' অর্থে ব্যবহৃত। গণিতে এই অর্থে ব্যবহৃত হতে পারে। কিন্তু মনে রাখতে হবে ব্যুহ্তচনা এলােমেলাভাবে হয় না,—গোমৃত্রিকার স্থল আকারের মত হয়।

আর্থনভাতা যে মিশ্র সভাতা, এতে ঐতিহাসিকদের মধ্যে বিশেষ মত পার্থক্য নাই। আর্থ পূর্ব বিভিন্ন ভাষাগোপ্তীর সভ্যতা, সংস্কৃতি ও ঐতিহু স্বীকরণ করে ভারতীয় আর্থনভাতার বিকাশ। তাই আর্থভাষার মধ্যে নানা গোপ্তীর ভাষার অমপ্রবেশ ঘটেছে, বহু শব্দ অমপ্রবিষ্ট হয়ে এই ভাষার সমৃদ্ধি ঘটিয়েছে। সাধারণের চোথে সে-সর শব্দ ধরা না পড়লেও কিছু কিছু শব্দ ভাষাভাত্তিকদের দৃষ্টি আকর্ষণ করেছে। আচার্য স্থনীতিকুমার, জাঁ পশিলুদ্ধি ও সিলভাঁয় লেভি প্রমুখের অষ্ট্রো-এশীয় ভাষাগোপ্তীর শব্দ বিষয়ে গবেষণা এ-বিষয়ে উল্লেখযোগ্য। জাঁ পশিলুদ্ধির Vigesimal Numeration in India এবং Bengali Numeration and Non-Aryan Substratum প্রবন্ধ ঘটি বিশেষভাবে স্মরণীয়।

প্রথম প্রবন্ধে পশিলুন্ধি ভারতে বিংশতি-ভিত্তিক সংখ্যা গণনার মূল উৎদ নির্ণয় করার প্রয়াস পেয়েছেন। তাঁর মতে মাছ্যের অঙ্গ-প্রত্যক্ষের উপর ভিত্তি করে বিংশতি-ভিত্তিক গণনার উদ্ভব। মাছ্যের হাতে-পায়ে প্রত্যেকটিতে পাঁচটি করে আঙ্বল মিলে কুড়ি (20) সংখ্যাটির আবির্ভাব। দে-কার্নে 20 ও মানুষ সমার্থক, এবং 20-র উপর ভিত্তি করেই অষ্ট্রে-এশীয় গোপ্তিভৃত ভাষাভাষীদের উচ্চত্রব সংখ্যা-গণনা রচিত হয়েছে।

পান ও থড়-এর হিদাব রাখার ব্যাপারে এই পদ্ধতির আশ্চর্যজনক সাদৃশ্য দেখতে পাওয়া যায়। যেমন,—পণ=এক আনা=4 পয়সা=80 কড়ি=80। অস্ট্রো-এনীয় গোষ্ঠীর সাঁওতালী ভাষায় 'পণ' শব্দের অর্থ 80। 'বার পণ গাছি' =160 আঁটি ধানবীজ। এখানে, 'বার'=2, 'পণ'=80। আবার

সাঁওতালীতে 'পণ'—4, 'পণ' 20 র চতুগু ৭ হিদাবে হয় বলে ভাষাতাত্ত্বিকদের মত। এ কারণে সংক্ষিপ্ততার জন্ম ৪) কে 4 বলে মনে করা হতো। সাঁওতালী 'পণ'-এর সঙ্গে আমাদের 100-এর কোন পার্থক্য নাই। 4 এবং 20-র গণনা রীতি থেকেই পণ-এর প্রবর্তন হয়েছে বলে অন্থমিত হয়।

সাঁওতালী গণনায় দেখা যায়, পণ=80, 20 গণ্ডা=1 পণ, এবং গণ্ডা=4; নি:দন্দেহে 4-দংখ্যাটি এই পদ্ধতিতে একটি বিশিষ্ট স্থান অধিকার করে আছে। বেমন,—

সংস্কৃতে গগুক শব্দের অর্থ চার কৌড় বিশিষ্ট মুদ্রা। ইন্দো-ইউরোপীয় ভাষায় কৌড়ির মৃদ্রা হিদাবে ব্যবহারের বীতি নাই। ভারত মহাদাগর ও চীন সাগরের মধ্যবর্তী অঞ্চলের অধিবাদীদের মধ্যে এরূপ বীতির প্রচলন ছিল। এই তথ্য থেকে পশিলুম্বি সিদ্ধান্ত করেছেন 'গণ্ডা' অর্ফো-এশীয় শব্দ। স্থতরাং এরূপ বলা যেতে পারে, ভারতীয় গণিতে 'গণ্ডা' বা গণ্ডকের ব্যবহার এর স্ম্প্রোচীনতা প্রতিপন্ন করছে।

অজ্ঞাতরাশি মর্থে প্রাচীন ভারতীয় গণিতে 'ষাবৎ-ভাবৎ'-এর ব্যবহার দেখা গৈছে। এই শব্দটিও অন্ট্রো-এশীয় ভাষাগোষ্ঠীর অন্তর্ভু ক্ত বলে মনে করা বেতে পারে। কারণ, ইন্দো-ইউরোপীয়-ভাষায় কেবলমাত্র ব্যঞ্জনবর্ণের পরিবর্তন ঘটিয়ে এরূপ শব্দছৈত গঠন লক্ষ্য করা যায় না। অধিকল্ক, এটি অন্ট্রো-এশীয় বৈশিষ্ট্য। দিলভাঁা লেভির এই গবেষণা থেকে এরূপ প্রতিপন্ন হয় যে, ভারতীয় গণিত কেবলমাত্র আর্থসভ্যতার ফদল নয়, এতে আর্থপূর্ব সভ্যতার অবদানও আছে।

আচার্য হনীতি কুমারের গবেষণা থেকে জানা যায় যে, অনেক বাংলা, হিন্দী, পাঞ্জাবী প্রভৃতি শব্দের উৎস অন্ট্রো-এশীয় ভাষা,—কোল বা মৃণ্ডা থেকে। সংস্কৃত বিংশ সংখ্যার বাংলা রূপ বিস, বিশ ও কুজ়ি। পশিলুফি দেখিয়েছেন, সংস্কৃত কোটি থেকে কুজ়ি-র উদ্ভব হয়নি,—হয়েছে অন্ট্রো-এশীয় ভাষা থেকে। বাংলা ভাষায় বিংশ ভি-ও গণ্ডা-ভিত্তিক সংখ্যা গণনা এখনো দেখা যায়। পলীবাংলার আশিক্ষিত জনসাধারণ বিশেষ করে মহিলারা এখনো তেইশ বোঝেন না, কিন্তু এক কুজ়ি ভিন বোঝেন, এবং দশ বোঝেন না, ছ গণ্ডা ছই বোঝেন।

4-সংখ্যার যে বৈশিষ্ট্য দেখানো হয়েছে, তা কেবল অন্ট্রো-এশীয় ভাষাগোষ্ঠীর বৈশিষ্ট্যই নয়, ভারতীয়-আর্য ভাষায় একক ব্যবহারেও অহুরূপ রীতি দেখা যায়। এখানে কৌটিলাের অর্থশাস্ত্র থেকে একটি এককের তালিকা দেওয়া হলাে ই

| ৪ পরমাণু=1 বিপ্রুট                           | 8 যবমধ্য=1 অভুল     |
|----------------------------------------------|---------------------|
| (=2×4)                                       | $(=2\times4)$       |
| 8 বিপ্রুট=1 দিক্ষা                           | 4 অপুল=1 ধন্ত্ৰহ    |
| (=2×4)                                       | ৪ অঙ্গুল=1 ধনুমু টি |
| 8 লিকা=1 যুকামধ্য                            | (=2×4)              |
| (=2×4) · · · · · · · · · · · · · · · · · · · | 12 অঙ্ল=1 বিতন্তি   |
| 8 যুকামধ্য=1 ধ্বমধ্য                         | (=3×4)              |
| (=2×4)                                       | 24 অসুল1= অর্জি     |
|                                              | (=6×4)              |
|                                              |                     |

বিংশতি-ভিত্তিক সংখ্যা গণনার এককও অর্থশালে দেখা যায়:

40 হন্ত=1 ব্ৰজ্জু (=2×20) 80 হন্ত=1 পরিদেশ (=4×20) 120 হন্ত=1 নিবর্তন (=6×20)

পরিতাপের বিষয়, এরপ ভাষাতাত্ত্বিক বিশ্লেষণ ও গবেষণা বেশীদ্র অগ্রাসর হয় নি। এমন কি, ভারতীয় সভ্যতা কতথানি অনার্থ সভ্যতার কাছে ঋণী, এ-বিষয়ে ঐতিহাসিক গবেষণা আমাদের নিরাশ করেছে। বিদেশী পণ্ডিতরা বার বার আমাদের দৃষ্টি আরুই করেছেন, কিন্তু আমরা শ্রামবিম্থ, ভাগচাষের ফলল পেতেই আগ্রহী। কেবল তাই নয়, আমাদের স্থ্রাচীন সভ্যতা যা অনার্থ সভ্যতার কাছে অনেকাংশে ঋণী শ্বীকার করলে 'জাত' যাবার ভয়ে আমরা অনেকেই নির্বাক। এ-বিষয়ে মনশ্বী দিলভাা লেভির মন্তর্বাটি শ্ররণযোগ্যঃ The daring and skill of these men she was unable to appreciate before and she continued to ignore all that she owed to them."

অনার্থ-আর্থ সভ্যতার সমগ্র ফদলই হচ্ছে আমাদের সংস্কৃতি,—উত্তরাধিকার।
কেবল কৌতুহল নয়, জানার জন্যই জানা নয়, আআ্বার সংস্কারের জন্যও তা জানার
দরকার আছে। তাই ঐতরেয় ব্রাহ্মণে বলা হয়েছে,—আজ্বনংস্কৃতির্বাব
শিল্পানি....আজ্বানং সংস্কৃত্ততে। একটি জাতির উন্নতি, সমৃদ্ধি ও ঐশর্থ বৃদ্ধি
পায় তার উত্তরাধিকার, কুলশীল, তার চর্যা ও চর্চার মধ্যে। এই প্রদক্ষে ডঃ
নীহাররঞ্জন রায় বলেছেন,—"....মাহুষ যথন তার নিজের কালের প্রশ্ন, সমস্তা
ও দায়-দায়িত্বের সংস্থানি হয়, তথন স্বভাবতই দে তার প্রেরণা, উত্তর ও সমাধান
থোঁজে তার অতীতের উত্তরাধিকারের মধ্যে। তার ভেতর দে কিছু প্রেরণা,
কিছু উত্তর নিশ্চয়ই পেতে পারে, কিল্প পুরোপুরি কিছুতেই নয়, কারণ অতীত
কিছুতেই একই রূপে ও আকৃতিতে পুনরাবর্তিত হয় না; কালধর্মের নিয়মেই তা
নয়।...যাই হোক, এ ইলিতটি পরিষ্ক র য়ে, প্রভারনটি মানব-য়ংশকে, প্রত্যেকটি
কালকেই পরীক্ষা-নিরীকা করে দেখতে হয় তার কুল ব। উত্তরাধিকারকে...।...এই
শীলাচরণই মাহুষের উত্তরাধিকার বা অতীত, অন্তার্থে কুল-চেতনার পরিচয়,
বর্তমান-চেতনার পরিচয়, ভারী কাল স্টের ক্ষমভার পরিচয়।"

(1) 3等型的資金計畫(2) 25 (2) (2)

এল. হগবেন বলেছেন,—গণিতের ইতিহাদ হচ্ছে মানবদভাতার দর্পন (The history of mathematics is the mirror of civilization.)। আমাদের তৈরী এই ক্ষুদ্র দর্পনে ভারতীয় দভাতা ও সংস্কৃতির একটি রূপরেখা দেবার প্রয়দ পেয়েছি মাত্র। শুধু তাই নয়,—মাজকের প্রোপুরি বিজ্ঞান-নির্ভৱ দভাতার যুগে যে গণিতের বিশেষ গুরুত্ব ও মর্থাদা আছে, তা অস্বীকার করার উপায় নাই। পঞ্চাশের দশকের পর বাংলাদেশে যেন গণিতের প্রতি আগ্রহ ও ভালবাদার অভাব বেশী করে দেখা দিয়েছে। শিক্ষিত ব্যক্তিমাত্রেই জানেন জ্ঞান-বিজ্ঞানের দব শাখায় গণিতের অবাধ অধিকার ও বিচরণ। একথা দত্যা, আগের চেম্নে এখন গণিত বহুল পরিমাণে বিমূর্ত—বাস্তবের দক্ষে এর ছোঁয়া আর নাই বললেই চলে। কিন্তু দেটাই তো মামুম্বের অনভাদাধারণ ক্ষমতার গৌরব। এই গৌরব ও মর্যাদার দিকটি আমাদের দেশের শ্রেষ্ঠ গণিতাচার্যরা সম্যকর্মপেই উপলব্ধি করেছিলেন। অবশ্ব তথন আজকের মত বিশুদ্ধ গণিতের চর্চা ব্যাপকভাবে হয়নি, আর দে-যুগের পরিপ্রেক্ষিতে তা সন্তব্ধ ছিল না। ভারতে গণিতের চর্চ মূল্ত

<sup>\*</sup> কৃষ্টি কালচার সংস্কৃতি—ডা: নীহাররঞ্জন রায়, পু—33

জ্যোতির্বিজ্ঞানকে কেন্দ্র করে। বে-দেশের সমাজ-রাষ্ট্র ধর্মীয় নীতির অন্ধ্রশাসনে পরিচালিত হতো, সে-দেশে যে জ্যোতিষ তথা জ্যোতির্বিজ্ঞান বিশেষ মর্যাদা পাবে, তাতে আশ্চর্যের কিছু নাই।

সিদ্ধান্ত-শিরোমণি র গণিতাধ্যায়ে আচার্য ভান্ধর জ্যোতিষের প্রশংদা করে একটি তুলনামূলক আলোচনা করেছেন; তিনি মান্নবের দেহের দঙ্গে বেদ সহায়ক শাস্তাদির তুলনা করেছেন। আমরা তাঁর কথাই তু-একটি পরিবর্তন করে বলতে পারি,—

मक्नाञ्चः सूथः 'शिवजः' हक्क्यी

माज्यकः निरुक्तः ह कन्नः करत्री।

या जू मिक्नाण त्वमण मानिका

भामभन्नप्रदेश हन्म व्यक्तित्र् देवः।।

त्वमहक्कः कित्नमः ग्रुजः 'शिवजः'

सूथाजा हान्नगरमार मा जिल्लाहिनः

गरस्राजारभी जरेतः कर्णनामा मिन्नि
गरस्राजारभी जरेतः वर्णनामा मिन्नि
गरस्राजारभी जरेतः वर्णनामा मिन्नि
गरस्राजारभी जरेतः वर्णनामा मिन्नि
गरस्राजारभी जरेतः। विश्वश्वतः ।।।

যো 'গণিতং' বেন্তি নর: স সম্যগ্-ধন্মার্থ কামাল্ল'ভতে যশক।।

অন্থবাদ ৪ ব্যাকরণাদি শত্তশান্ত বেদের মুখ, গণিতকে চক্ষ্, যজ্ঞোপকরণ ক্রথাদি-জ্ঞাপক নিক্ষক্ত শান্ত কর্ণ, যজ্ঞ-পদ্ধতি-জ্ঞাপক কর্মান্ত হত্ত্বয়, বর্ণোচ্চারণ ভেদ-জ্ঞাপক শিক্ষা বেদের নাসিকা এবং ছন্দ-শান্তকে বেদের পদ্বয় নামে প্রাচীন জ্ঞানীরা নির্দেশ করেছেন।

গণিত বেদের চক্ষ্মরপ। এইজন্য এই ছয়ট অঙ্কের মধ্যে গণিতই প্রধান। বেহেতু কর্ণ নাসিকাদি অপর অঙ্ক সকল থাকলেও চক্ষ্মীন ব্যক্তি অকিঞ্চিৎকর হয়। বিনি সমাকরূপে গণিত জানেন তিনি ধর্ম, অর্থ, কাম ও যশ লাভ করেন।\*

আমাদের বিশ্বাস প্রাচীন ভারতের গণিত এখনো শেব হয়নি। এর মধ্যে নানা সম্পদ্ধ ঐশ্বর্যা এখনো ইন্সিতে-আভাদে অস্পাষ্ট্ররণে ব্যক্ত হয়ে আছে।

<sup>\*</sup> মূল সংস্কৃত অংশে জ্যোতিষ হলে 'গণিত' লেখা হয়েছে এবং সেরূপ অনুবাদ করা হয়েছে।

SCHOOL STREET, STREET

প্রকৃত পণ্ডিত ও স্থীমণ্ডলী এসব বহুন্সের বার উদ্যাটন করতে পারেন, কোন কোন পাশ্চাত্য গণিতের ঐতিহাসিকও একথা স্বীকার করেন। এই প্রসঙ্গে A Concise History of Mathematics-এর লেখক D. J. Struik বলেছেন,—"Ancient India may still yield many more Mathematical treasures." আমরাও সেই treasure-এর প্রতীক্ষা করছি যা মানব-দভ্যতার উন্নতি ও সমুদ্ধিতে সহায়তা করবে এবং আমাদের গৌরব বৃদ্ধি করে অনেক ভুল-ভ্রান্তি ও বিতর্কের অবসান ঘটাবে।

-21 107 2 01 20

# প্রাচীন ভারতীয় গণিতের কয়েকটি পারিভাষিক শব্দ

| সংস্কৃত               | वारना                           | ইংরেজী                |
|-----------------------|---------------------------------|-----------------------|
| অংশ                   | বৃত্তের 360 ভাগের এক ভাগ        | Degree                |
| 3                     | চতুভু জের শীর্ষবিন্দু           | An upper vertex of a  |
|                       | (- lette de prosecut 3/c 6 )    | quadrilateral         |
| <b>অ</b> গ্ৰ          | প্ৰাস্ত্য বা শেষ ; অবশিষ্ট বা   | Tip or end; residue   |
|                       | ভাগশেষ                          | or remainder          |
| অগ্রান্তর             | ভাগশেষ পার্থক্য                 | residue difference    |
| অঘন                   | चन नम्र                         | Non-cube              |
| অধিকাগ্ৰ              | বৃহত্তর ভাগশেষ                  | Greater remainder     |
| <u>অধিকাগ্রভাগহার</u> | বৃহত্তর ভাগশেষের পরিপ্রেক্ষিতে  | Divisor correspond-   |
|                       | ভাজক                            | ing to greater re-    |
|                       |                                 | mainder               |
| অন্থলোম               | ঘড়ির কাঁটার বিপরীত দিক         | Anticlockwise         |
| <b>অন্ত</b> র         | ছইটি রাশির পার্থক্য             | Difference between    |
|                       |                                 | two quantities        |
| অন্ত্যপদ              | শেষপদ                           | Last term in a series |
| অপচয়                 | বিয়োজ্য                        | Subtractive           |
| অক্সয়ারজ্জু          | আয়তক্ষেত্র বা বগক্ষেত্রের কর্ণ | The diagonal chord    |
|                       |                                 | of a rectangle or a   |
|                       |                                 | square                |
| আবাধা, অবধা,          | ভূমির উপর তির্থক বাহুর অভিলম্ব  | The projection of     |
| / বধা                 |                                 | any slanting side on  |
|                       |                                 | the horizontal        |
| অভ্যাদ                | खनन                             | Multiplication        |
| অব্দ                  | 108                             | 10 <sup>8</sup>       |
| অবগ'                  | ক-বগ', চ-বগ' ইত্যাদি নয়        |                       |
| वामि, वामियन          | প্রথম পদ                        | First term            |
| আয়ত,আয়তচতৃভূ        | স্বায়তক্ষেত্র                  | Rectangle             |
| <b>শায়তবৃত্ত</b>     | উপবৃত্ত                         | Ellipse               |

| সংস্কৃত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | वांश्ना ।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ইংরেজী               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| আয়াম                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | দৈৰ্ঘ্য বা প্ৰস্থ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Length or breadth    |
| আয়ামকেত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trapezium            |
| আসর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approximate          |
| ইচ্ছা, ইচ্ছারাশি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ত্রৈরাশিকের একটি ঈন্সিত রাশি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Requisition, one of  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | three quantities in  |
| \$1 10 KSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e sind a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the rule of three.   |
| ইচ্ছাফল                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fruit corresponding  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to icchā             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Given number         |
| উৎদেধ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Height               |
| উত্তর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Common difference    |
| <b>उनी</b> हो                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | উত্তর-দক্ষিণ রেখা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North-South line     |
| উপচিতি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | সাধারণ শ্রেণী                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A series in general  |
| উভয়ত প্রয়ুগ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | দ্বিদমদ্বিবাছ ত্রিভূজ; বন্ধদ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Double isosceles     |
| STATES OF THE PARTY OF THE PART | DESCRIPTION OF THE PROPERTY OF | triangle; Rhombus    |
| ঊনাগ্ৰ-ছেদ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ক্ষুত্রতর ভাগশেষের পরিপ্রেক্ষিত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Divisor correspond-  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ত প্ৰাৰ্থ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing to smaller       |
| STATE SWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to got pre-pre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | remainder            |
| উধ্ব'ভজা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | উচ্চতা বা উল্লম্ব বাহু                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Altitude or vertical |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | side                 |
| খু <b>ড়</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | সমরেথ কেত্র                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rectilinear figure   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ঋণাত্ম হ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Negative Quantity    |
| करवी                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | সমরেখ কেত্রের বাহু; বগ কেত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The side of a recti- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ৰা আয়তক্ষেত্ৰের বাহ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | linear figure; the   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The riving michael succe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | side of a square or  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | asila Mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rectangle            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | কৰ্ণ ; অতিভূজ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Diagonal or hypo-    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | econdo Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tenuse `             |

| সংস্কৃত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | वाश्ला                             | ইংরেজী                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | সমকোণী ত্রিভূজের লম্ব              | The perpendicular      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inche de la company                | side of a right-angled |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | triangle               |
| কোটিজ্যা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | চাপের কোসাইন-জ্যা                  | R cos of the angle     |
| <b>किन्</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | কোণ                                | Angle                  |
| ক্ষ্ম জ্বানি হৈ বিষয়                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ঋণ, ঋণাত্মক                        | Minus, negative        |
| ्रक्व व्यवस्था                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | বদ্ধকত                             | Closed figure          |
| ক্ষেত্রগণিত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | জ্যামিতি                           | Geometry               |
| ক্ষেত্ৰবিভাগ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | দেশ বিভাজন                         | Division of space      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ক্ষেত্ৰফল, কালি                    | Area                   |
| (THY INTEREST AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | Additive quantity      |
| 4 con times an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | Sky; Zero              |
| श्रेष्ठ अपूर्ण हो स्वाउत                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | Number of terms        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | গণিত; ক্ষেত্রফল; জ্যোতি-           | Mathematics; area;     |
| endaron A ; store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | বিজ্ঞানের গণনা                     | Astronomical cal-      |
| besidence and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | culations              |
| গ্রাদ ১                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | পরস্পর ছেদী হুইটি বুত্তের          | The common por-        |
| THE 12 sobries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | সাধারণ অংশ                         | tion of two inter-     |
| leditan an eladi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iv en vyt is c                     | secting circles.       |
| গুণকার                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | গুণক                               | Multiplier             |
| গুলিকা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | অজাত বাশি                          | A thing of unknown     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | value                  |
| গোল এ ০ স্থান                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | Circle; sphere         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | चन देश १ १० १ है। इस १ १० १० १० १० | Cube of a number       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | কঠিন গোলক সম্প্রস্থাত চ            | Solid sphere           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | স্বাভাবিক সংখ্যার ঘনভোণীর          | Sum of the series of   |
| A STATE OF THE STA |                                    | cubes of natural       |
| noud to length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | numbers                |
| খনফল ৯৯৪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | আয়তন                              | Volume                 |

| সংস্কৃত          | वांश्ला विश्व                 | ইংরেজী                       |
|------------------|-------------------------------|------------------------------|
| ঘনমূল প্ৰ        | ঘনসূল                         | Cube root                    |
| ঘাটক্ষেত্র       | চিত্রাকারে গুণফল              | Diagrammatic re-             |
|                  |                               | presentation of              |
|                  |                               | multiplication pro-          |
|                  |                               | duct                         |
| চক্              | বৃত্ত                         | Circle                       |
| চত্রশ্র          | চতুভু জ                       | Quadrilateral                |
| চতুষোণ           | চতুভু জ                       | Quadrilateral                |
| চাপ, কাম্ক, ধনুস | চাপ                           | Arc                          |
| চাপজ্যার্থ       | A                             | R Sine                       |
| চাপক্ষেত্র       | থণ্ড, অংশ                     | Segment                      |
| চিতি             | স্বাভাবিক সংখ্যার সমষ্টি      | Sum of a series of           |
|                  |                               | natural numbers              |
| চিতিখন           |                               | Sum of a series \(\Sigma\)En |
| চিতিবগ           | স্বাভাবিক সংখ্যার বর্গের সম্ব | Square of the sum            |
|                  |                               | of a series of natural       |
|                  |                               | numbers                      |
| ছেদ              | <b>रुत</b>                    | Denominator                  |
| জীবা             |                               | R Sine                       |
| <b>জ</b> গু      | মূলদ ত্রিভুজ বা আয়তক্ষেত্র   | Rational triangle or         |
| 2                |                               | rectangle                    |
| <b>ভা</b> ত্য    | মূলদ সমকোণী ত্রিভূজ           | A rational right-            |
|                  |                               | angled triangle.             |
| তিৰ্যঙ্ মানী     | চতুভুজের আড়াআড়িস্বিত        | Transverse side of           |
|                  | বাহু                          | a quadrilateral              |
| ত্রিজ্যা         | ব্যাসার্ধ; পরিধির এক          | Radius; one fourth           |
|                  | চতুৰ্থাংশ                     | of the circumference.        |
| ত্রিভূঞ          | ত্রিভূ <b>জ</b>               | Triangle                     |
| <u> विमम</u>     | সমবাহু ত্রিভুজ; সমান তিনটি    | Equilateral triangle;        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ইংরেজী                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| সংস্কৃত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | বাংলা                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | বাহু বিশিষ্ট ট্রাপিজিয়াম                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | trapezium with        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s | three sides equal.    |
| ত্যুসর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ত্রিভূজ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Triangle              |
| বৈরাশিক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>ত্রৈরাশিক</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rule of three         |
| एन                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | वर्ष                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Half                  |
| ৰাবিষমভুজ বা দাবিষম                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Triangle              |
| 44 Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | সংযুক্ত; ধনাত্মক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Additive, positive    |
| 47 Waterotel the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | চাপ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arc                   |
| नव                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gnomon                |
| ना vibral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | বৈথিক দৈর্ঘ্যের একক                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A unit of linear      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | measure equal to      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | we a transfer of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | four cubits           |
| নিযুত ক্রান্তর স্বর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105                   |
| निवराभव                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | সঠিক, যথার্থ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exact                 |
| PIT TO AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | বগ মূল; বুতের পাদ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Square root; quad-    |
| Laurent waren a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | শ্রেণীর পদ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rant of a circle;     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | term of a series      |
| পরকর্ণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | বুত্তে অন্তর্লিখিত চতুভূ জৈব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The third diameter    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | তৃতীয় কর্ণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of a cyclic Quadrila- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | teral.                |
| পরিদাহ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | পরিধি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Circumference         |
| পরিধি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | পরিধি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Circumference         |
| পরিম ওল                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | উপবৃত্ত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ellipse               |
| পার্থ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | সন্নিহিত বাহু                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adjacent side         |
| পার্খমানী                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | চতুভূ জের সন্নিহিত বাহ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The adjacent side     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of a quadrilateral.   |
| প্রতিলোম                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ঘড়ির কাঁটার দিকে                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | clockwise             |
| প্রমাণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ত্রৈরাশিকের যুক্তি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Argument in the       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 331110111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rule of three.        |
| THE RESERVE OF THE PARTY OF THE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tuic of three.        |

| সংস্কৃত                                         | বাংলা শিশ্প                   | ইংরেজী                 |
|-------------------------------------------------|-------------------------------|------------------------|
| প্রযুত                                          | 100                           | 108                    |
| পৃষ্ঠফল                                         | পৃষ্ঠফল                       | Surface area           |
| প্রয়ুগ                                         | ত্রিভুঙ্গ, সমন্বিবাহ ত্রিভুঞ্ | Triangle, an isos-     |
|                                                 |                               | celes triangle.        |
| <b>यन</b> ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | আসলের স্থদ                    | Interest on principal  |
| ফলবালি প্রান্ত্র                                | ত্রৈরাশিকের একটি রাশি         | One of the three       |
|                                                 | out 1                         | quantities in the rule |
| dicular state to the                            | 19点。 医医上侧束部 功率                | of three.              |
| ভাগ : ২০০২ ১৪৫                                  | ভাগ প্ৰস্তুত ক্লেছিক          | Degree                 |
| ভাগহরণ আগ্রহত                                   | ভাগ                           | Division               |
| ভাগহার                                          | ভাজক                          | Divisor                |
| ছ                                               | ভূমি                          | Base                   |
| মণ্ডল                                           | বৃত্ত                         | Circle                 |
| মতি "                                           | ঐচ্ছিক সংখ্যা                 | Optional number        |
| মধ্য                                            | কেন্দ্ৰ; মধ্যকঃ; গড়          | Centre; middle term    |
| 49100                                           |                               | of a series; mean.     |
| মৃথ                                             | ভোণীর প্রথম পদ,               | First term in a        |
|                                                 | সন্মুখীন ৰাছ                  | series; face side.     |
| মূল সামে কি বাধান                               | বগ মূল; আসল                   | Square root; prin-     |
|                                                 |                               | cipal                  |
| मृनकन वर्षा । वर्षा                             | च्या विकास स्थापीत व्यक्त     | Interest               |
| द्रष्ण्य भागानात                                | প্রিদীমা                      | Perimeter              |
| क establishment                                 | প্রস্থ                        | Breadth                |
| বাশিও সংগ্রেম্বর্গ কল                           | চিহ্ন; রাশি; বারো             | Sign; quantity;        |
| -allibeug to all                                | ode Priest to de A            | twelve                 |
| রূপ                                             | এক                            | One                    |
| नव कार्यक्रिया                                  | লম্ব ; উচ্চতা ;উলম্ব          | Perpendicular; alti-   |
|                                                 | niol / Land                   | tude; vertical         |

| সংস্কৃত             | ৰাংলা                     | ইংরেজী                |
|---------------------|---------------------------|-----------------------|
| বলয়াকার ক্ষেত্র    | বিং-এর মতো ক্ষেত্র        | Figure shaped like    |
| 1518 028            |                           | a ring.               |
| বিমদ্ফল             | আয়তন                     | Volume                |
| বিকন্ত              | <b>াদ</b>                 | Diameter              |
| বিবর                | পাৰ্থক্য                  | Difference            |
| বিশেষ               | পাৰ্থক্য                  | Difference            |
| বিষম চক্ৰবাল        | উপবৃত্ত                   | Ellipse               |
| বিষম                | বিষমবাহু চতুভু জ ; বুত্তে | A quadrilateral with  |
| 207                 | অন্তৰ্লিখিত চতুভূৰ        | unequal sides; a      |
| A Set in            | a                         | cyclic quadrilateral  |
| বিস্তার             | रेमर्चा                   | Length                |
| বিস্থৃতি            | ব্যাস ,                   | Diameter              |
| বৃতি                | পরিশীমা                   | Perimeter             |
| বৃত্ত               | বৃত্ত                     | Circle                |
| বেধ                 | গভীরতা                    | Depth                 |
| ব্যাস               | ব্যাস                     | Diameter              |
| <i>ব্যা</i> সার্থ   | ব্যাদার্ধ                 | Radius                |
| MR COLLEGE WORLD BY | * **                      | Gnomon                |
| শৃঙ্গাটক            | ত্রিভুজ; চতুস্তলক         | Triangle; tetra-      |
|                     |                           | hedron                |
| শ্রেটাকেত্র         | চিত্রাকারে গাণিভিক শ্রেণী | Diagrammatical re-    |
|                     | উপস্থাপন                  | presentation of a     |
|                     |                           | mathematical series.  |
| শোণী                | ত্রিভুজ বা চতুভুজের       | A lower vertex of a   |
| •                   | নিমভাগের শীর্ষবিশ্ব       | triangle or quadrila- |
|                     |                           | teral.                |
| यम अ                | চতুন্তৰ                   | Tetrahedron           |
| সংবগ                | গুণন                      | Multiplication        |
| সমচতুরপ্র           | বগ                        | Square                |

| সংস্কৃত          | বাংলা                                           | ইংরেজী                                          |
|------------------|-------------------------------------------------|-------------------------------------------------|
| <b>সমদলকো</b> টি | ত্রিভূবের উচ্চতা                                | Altitude of a triangle                          |
| সমপরিণাহ         | বৃত্তের পরিধি                                   | Circumference of a circle.                      |
| সমর্ভ            | বৃত্ত সমান্ত বিশ্ব                              | Circle                                          |
| সম্পর্ক          | সমষ্টি                                          | Sum                                             |
| সর্বধন           | শ্রেণীর সমষ্টি                                  | Sum of a series                                 |
| স বৰ্ণছ          | সমহরে পরিণত করা                                 | Reduction to com-<br>mon denominator            |
| সমচতুভু জ        | বগ'; বছস                                        | Square; Rhombus                                 |
| সমবাহু           | সমবাহু                                          | Equilateral figure                              |
| স্মলম্ব          | ষে চত্ভু জৈব উচ্চতাসমূহ<br>সমান ; ট্রাপি জিয়াম | A quadrilateral with equal altitudes; Trapezium |
| সমচক্রবাল        | বৃত্ত নালনাল কৰিব স                             | Circle of the Other                             |
| সম্পাত           | ছেদ বিশ্ব                                       | Point of intersection                           |
| হৃদয় বা হৃৎ বা  |                                                 |                                                 |
| হৃদয়বজ্জ        | পরিব্যাসার্ধ                                    | Circum-radius.                                  |

विঃ सः এ ছাড়াও গ্রন্থমধ্যে আবো বছ শব্দ ব্যবহৃত হয়েছে।

## ।। নির্বাচিত গ্রন্থপঞ্জী।।

[ কয়েকটি গ্রন্থের প্রকাশকের নাম ভুলে যাওয়ায় মার্জনাপ্রার্থী। ]

- 1. वर्षि तम-विका विहानी शाकामी, हत्रक श्रवामनी, कनकाला, ১৯१৮
- 2. ज्यर्वरवरम ভाরতীয় সংস্কৃতি—নারায়ণচন্দ্র ভট্টাচার্য, কলকাতা।
- 3. অলবেরুণী—প্রেমময় দাশগুপ্ত, ফার্মা কেএলএম প্রা: লি:, কলকাতা।
- আলবেরুণীর ভারততত্ত্ব—আবু মহামেদ হবিবুলাহ, বাংলাদেশ।
  - 5. আমাদের জ্যোতিষী ও জ্যোতিষ (১ম + ২য়) যোগেশচন্দ্র রার বিভানিধি।
    - 6. খাথেদ সংহিতা ( ১ম + ২য় )—রমেশচন্দ্র দত্ত।
- 7. ঝথেদ-পরিতোষ ঠাকুর, হরফ প্রকাশনী, কলকাতা।
- 8. ঝাথেদ ও নক্ষত্ৰ—বেলাবাদিনী গুহ ও অহনা গুহ।
  - 9. কুমারসম্ভবম্—বহুমতী প্রকাশন, কলকাতা।
- 10. কৌটিলীয় অর্থশান্ত (১ম+২য়)—রাধাগোবিন্দ বসাক, জেনারেল প্রিক্টার্স এও পাবলিশার্স প্রাইভেট লি., কলকাতা।
  - 11. গণিত শাল্পের ইতিহাস—কান্ধী মোতাহার হোদেন, বাংলাদেশ।
  - 12. গণিতের কথা ও কাহিনী—নন্দলাল মাইতি, আলফা-বিটা প্রা. লি., কলকাতা।
  - 13. গণিতের ললিত পাঠ—নন্দলাল মাইতি, প্রোগ্রেসিভ বুক ফোরাম, কলকাতা।
  - 14. প্রাগৈতিহাদিক মহেন্-জো-দড়ো-কুঞ্জবিহারী গোস্বামী, ক. বি.।
  - 15. প্রাচীন ভারতে গণিতচর্চা—প্রদীপকুমার মজুমদার, গ্রন্থমেলা, কলকাতা।
  - 16. প্রাচীন ভারতে গণিওচিস্তা—রমাতোষ সংকার, র্যাভিক্যাল বুক ক্লাব, কলকাতা।
  - প্রাচীন ভারতে বিজ্ঞানচর্চা—রমেশচক্র মজুমদার, বিশ্বভারতী।
  - প্রাচীন ভারতে জ্যোতিরিজ্ঞান—অরূপরতন ভট্টাচার্য, ক. বি.।
  - প্রাচীন ভারতীয় সভ্যতার ইতিহাস—প্রফুল্লচন্দ্র ঘোষ।
  - 20. প্রাচ্য ও পাশ্চাত্য দর্শনের ইতিহাস—সর্বপল্লী বাধাকৃষ্ণন।

- 21. পৃথিবীর ইতিহাস ( ১-৮ )—হুর্গাদাস লাহিড়ী।
- 22. পৌরাণিক অভিধান—স্থীরচন্দ্র দরকার, এম. দি. দরকার জ্যা ও দক্ষ প্রা. লি., কলকাতা।
- 23. পুরাণ ও বিজ্ঞান—স্বামী প্রত্যগাত্মানন্দ সরস্বতী, সংস্কৃত কলেজ, কলকাতা।
- 24. বঙ্গ প্রসঙ্গ—স্থশীল বায়, কলকাতা।
- 25. বাঙালীর ইতিহাস—নীহাররঞ্জন রায়, লেথক সমবায় সমিতি, কলকাতা।
- 26. বাংলার ইতিহাস (১ম+২য়)—রাখালদাস বন্দ্যোপাধ্যায়, নবভারত পাবলিশার্স, কলকাতা।
- 27. বাংলাদেশের ইতিহাস (১ম)—রমেশ5ন্দ্র মজুমদার, জেনারেল প্রিন্টার্স।
- 28. বাংলা ভাষাতত্ত্বের ভূমিকা—স্থনীতিকুমার চট্টোপাধ্যায়, ক. বি.।
- 29. বাংলা দাহিত্যের ইতিবৃত্ত ( ১ম+২য়+৩য় )—অদিতকুমার
  বন্দ্যোপাধ্যায় ।
- 30. বাংলা সাহিত্যের ইতিহাস—স্বকুমার দেন।
- 31. বীজগণিতম্—রাধাবল্লভ দেবশর্মা।
- 32. বিজ্ঞানের ইতিহাস ( ১ম + ২য় )—সমরেক্রনাথ দেন, ইণ্ডিয়ান আাদো-সিয়েশন ফর দি কালটিভেশন অব সায়েন্স, যাদবপুর।
- 33. বেদ ও বিজ্ঞান—স্বামী প্রত্যগাত্মানন্দ সরস্বতী, সংস্কৃত ক**লেজ**, কলকাতা।
- 34. ভারতীয় ও পাশ্চাতা দর্শন—দতীশচন্দ্র চট্টোপাধাায়, ক. বি.।
- 35. ভাষা গণিত—দাধন দাশগুপ্ত, প্রত্যের প্রকাশ, হাওড়া।
- 36. মৌর্য যুগের ভারতীয় সমাজ—নারায়ণচক্র বন্দ্যোপাধ্যায়, ক. বি.।
- বজুর্বেদ—বিজনবিহারী গোস্বামী, হরফ প্রকাশনী, কলকাতা।
- 38. সভ্যতা ও ধর্মের ক্রমবিকাশ ( ১ম+২য় )—হুর্গাশঙ্কর।
- 39. দামবেদ-পরিতোষ ঠাকুর, হরফ প্রকাশনী, কলকাতা।
- 40. দিদ্ধান্ত-শিরোমণি— রাধাবল্লভ দেবশর্মা।
- 41. সিদ্ধান্ত-শিরোমণি—বিমলাপ্রদাদ সিদ্ধান্ত সরস্বতী।
- 42. नोनांवजी—রাধাবল্লভ দেবশর্মা।
  - 43. कृष्टि कान हार मः इंडि—नी हारदक्षन राम, कि छाना, कनका छ।

# ॥ বাংলা পত্তিকায় প্রকাশিত প্রবন্ধ ॥

- 1. জ্ঞান ও বিজ্ঞান ( জুন—1975 )—বঙ্গায় বিজ্ঞান পরিষদ।
- 2. ধাঁধা—কলকাতা।
- 3. সাহিত্য পরিষদ পত্তিকা:

### **७:** वि. वि. मख:

- (a) শন্ধ-সংখ্যা প্রণালী—35 তম বর্ষ, 1ম সংখ্যা।
- (b) অক্ষর-সংখ্যা প্রণালী—36তম বর্ষ।
- (c) জ্যামিতিশান্তে প্রাচীন হিন্দুর নাম ও তাহার প্রদার—37তম বর্ষ।
- (d) নাম দংখ্যা—37-তম বর্ষ।
- (e) জৈন সাহিত্যে নাম সংখ্যা—37-তম বর্ষ।
- (f) অন্ধণাং বামতো গতি: —37-তম বর্ষ।
- (g) মহাভারতে দশাক্ষ সংখ্যা—41-তম বর্ষ।
- (h) মহাভারতে স্থানীয় মান তত্ত-43-তম বর্ষ।
- (i) বীরশ্রেষ্ঠ অজ্বনের বয়দ—44-তম বর্ষ।
- (j) দশাক্ষ দংখ্যা প্রণালীর উদ্ভাবন কাল—46-তম বর্ষ। যোগেশচন্দ্র রায় বিভানিধি:
  - (a) আদ্ধিক শব্দ—36-তম বর্ষ। সারদাকান্ত গঙ্গোপাধ্যায়:
  - (a) স্থানীয় মান অন্ন্যাবে সংখ্যালিখনের প্রচলিত সক্ষেত্টির উদ্ভাবন কাল —43-তম বর্ষ।

অনামাঙ্কিত লেথক:

- (a) অঙ্ক ভাবনা—প্রথম বর্ষ, প্রথম সংখ্যা। পর্ষদ বার্তা: নন্দলাল মাইতি
  - (i) म्हिन्द्र मःथा, 1979
  - (ii) মার্চ সংখ্যা, 1981
  - (iii) এপ্রিল সংখ্যা, 1981

# ।। मः क्रु ७ ७ है र दब्बी धान्य ।।

1. Aryabhatīya of Āryabhata—Critically edited with introduction, notes, comments and translation by

- K. S. Shukla and K. V. Sarma; Indian Science Academy, New Delhi, 1976.
- Āryabhaṭa—Indian Mathematician and Astronomer
   —K. S. Shukla.
- 3. Apastamba-Sulba-Sutra—Edited and translated by Satya Prakash and R. S. Sharma, New Delhi, 1968.
- 4. Artha Śāstra of Kautilya—Edited and translated by R. Shamasastry, Mysore, 1951.
- 5. A Concise History of Mathematics—Florian Cajori, 1893.
- 6. A Concise History of Science in India—Bose, Sen & Subbarayappa; INSA, New Delhi, 1971.
- 7. A Historical View of Hindu Astronomy-J. Bently.
- 8. Bakhshāli Manuscript—Edited by Kaye, Archaeological Survey of India, New Imperial Series, No. 43, pts. I and II, Calcutta; pt III, Delhi, 1933.
- 9. Baudhāyana Śulba-Sūtra—With Thibaut's Tr, ed. by
  Satya Prakash and R. S. Sharma, New Delhi, 1968.
  - 10. (Tr. of Bijganita): Algebra with Arithmetic and Mensuration Translated from the Sanskrit of Brahmagupta and Bhāscara, by H. T. Colebrooke, 1872
  - 11. Bijganitavatamsat—K. S. Shukla, Akhil Bharatiya Sanskrit Parishad, Lucknow.
  - 12. A Concise History of Mathematics—D. J. Struik,
    Dover Publications, N. Y., 1967
  - 13. An Advanced History of India—Mazumder, Roychowdhuri & Dutta.
  - 14. Cambridge History of India. ed. by E. J. Rapson
  - 15. Cultural Heritage of India-Ramakrishna Mission.

- 16. Geometry in Ancient and Mediaval India—T. A. Saraswati, Motilal Banarsidass, New Delhi, 1979
  - 17. Golasara of Nilkanta—Ed. K. V. Sharma, Vishve-svarananda Institute, Hoshiarpur, 1970
- 18. Grahanamandan of Paramesvara—Ed. K. V. Sharma, V. V. Institute, 1965
  - 19. History of Hindu Mathematics—B. B. Dutta & A. N. Singh, Asia Publishing House, Bombay.
    - 20. History of Kerala Astronomy-K. V. Sharma, V. V. Institute, 1972
  - 21. History of Ancient Indian Mathematics—C. N. Srinivasienger, World Press, Calcutta, 1967
  - 22. History of Mathematics (vol. I+II). D. E. Smith,
    Dover, N. Y., 1958
    - 23. History and Culture of Indian People (vol-I), R. C. Mazumder, C. U.
    - 24. Indian Philosophy (vol. I)-S. Radhakrishnan, London.
  - 25. Indian Culture (Kamala Lecture)—Hirendranath Datta, C. U.
    - Islamic Science—S. H. Nasr, World of Islamic Festival Publishing Company, 1976
    - 27. Khandakhadyaka—Ed. by P. C. Sengupta, C. U., 1941
    - 28. Mahābhāskarīya of Bhāskara I—Ed. by K. S. Shukla, L. U.
    - 29. Mathematics in Western Culture-M. Kline, Penguine.
    - 30. Mathematics from Ancient to Modern Times—M. Kline, Oxford, N. Y.
    - Mathematics and Imagination—Kasner and Newman,
       G. Bell & sons, London, 1950

- 32. Men of Mathematics—E. T. Bell, Simon & Schauster,
  N. Y., 1965
- 33. Pre-Aryan and Pre-Dravidian in India—Sylvain Levis,

  Jean Przyluski V Joles Bloch, translated by P. C.

  Bagchi, C. U., 1959
- 34. Patiganita of Sridhara—Ed. by K. S. Shukla, L. U., 1959
- 35. Rasigolasphutaniti of Acyuta-ed. by K. V. Sharma.
- 36. Surya Siddhanta—Burgess, translated by P.L. Ganguli, C. U.
- 37. Siddhantadarpana of Nilkanta-ed. by K. V. Sharma.
- 38. Siddhanta Sekhara of Sripati—ed. by Babua Misra, C. U.
- 39. Studies in Antiquities-H. C. Roychowdhuri, C. U.
- 40. Science and Scientists of Ancient India—O. P. Jaggi,
  Atmaram & Sons, New Delhi.
- 41. The Origin of Bengali Script—R. D. Banerji, Nababharat Prakashan, Calcutta.
- 42. The Indus Civilization-M. Wheeler, London.
- 43. The Science of Sulba-B. B. Datta, C. U.
- 44. The Astronomical observatories of Jai Singh—G. R. Kaye, Archaeological Survey of India.
- 45. Thoughts on the nature of Mathematics—J. N. Kapoor, Atmaram & Sons, New Delhi.
- 46. Vedic Culture-Mahadevananda Giri, C. U.
  - 47. Vedanga Jautisha-R. Shamshastry

#### ARTICLES IN JOURNALS

- 1. A. K. Bag:
- (a) Al-Bīrūnī on Indian Arithmetic, IJHS, Vol-10,.
  1973

(b) The method of Integral Solution of Indeterminate equations of the type  $By=Ax\pm c$  in ancient and medieval India—IJHS, Vol—12, 1977

### 2. B. B. Datta :

- (a) The present mode of expressing numbers—IHQ (III), 1927.
  - (b) The Scope and development of the Hindu Maths— IHQ, 1929.
  - (c) Elder Aryabhața's methods rule for the solution of indeterminate equation of the first degree—Bull, Cal. Math. Soc., Vol—24, 1932
  - (d) Testimony of early Arab writers on the origin of our numerals—BCMS, Vol—24, 1932
  - (e) The Hindu method of testing Arithmetical operation—JASB, Vol—23, 1927
    - (f) Hindu value of π-JASB, Vol-22
  - (g) The Jain School Mathematics—BCMS, Vol—21, 1929
  - (h) The Bakhshali Mathematics—BCMS, Vol-21
    - (i) The Hindu solution of the general Pellian equation
       BCMS, Vol—19, 1928
  - (j) Early History of the Arithmetic of Zero and Infinity in India—BCMS, Vol—18.
  - (k) Two Āryabhaṭas of Albiruni—BCMS, Vol—17,
    - (I) The Algebra of Nāsāyaṇa—The Jain Atiquary, Vol—19, 1933.

#### 3. B. S. Jain 1

On the Ganitasāra Samgraha of Mahavira (C. 850 AD)

### 4. B. S. Jain & Ram Behari.

Some Mathematical Contribution of arcient Indian mathematicians as given in the works of Bhāskarācarya—IJHS, Vol—12, 1977.

- G. Chakraborty:
- (i) On the Hindu treatment of Fractions—JDL, Vol—24, 1934
- (ii) Surd in Hindu Mathematics-JDL, Vol-24, 1934
- (iii) Growth and development of progressive series in India, JDL, Vol—24, 1934
- (iv) The Hindu terms of area JDL, Vol-24, 1934.

### 5. G. R. Kaye:

- (i) Reference of Indian mathematics in certain Medieval works—JPAS, 1911
- (ii) The Bakshali Manscript-JPAS, vol-8, 1912

### 6. S. K. Ganguli:

- (i) Was Aryabhata indebted to the Greeks for his alphabetic system of expressing numbers? BCMS, Vol—17
- (ii) The Source of the Indian solution of the so called Pellian equation—BCMS, Vol—19, 1928
- (iii) Did the Babylonians and Mayas of Central Americans posses place value arithmetic notation? BCMS, Vol-22

#### 7. N. K. Mazumder:

- (i) Manava Sulba Sutram-JDL, Vol-8, 1922
- (ii) Aryabhata's Rule in relation to Indeterminate equation of the first degree—BCMS, Vol—3, 1911-12
- 8. S. R. Das:
  - (i) The origin and development of numerals—IHQ (iii) 1927
- 9. P. K. Mazumdar:
  - (i) Ganita Kaumudi and the Continued Fraction—IJHS, Vol—13, 1978

#### 10. N. B. Misra :

- (i) Remarks on Kaye's article, Modern Review.
- 11. R. N. Mukherjee:
  - (i) Background to the discovery of the symbol for zero—IJHS, Vol—12, 1977
- 12. P. C. Sengupta:
  - (i) Aryabhata's lost work—3CMS, Vol—22, 1930
  - (ii) The Aryabhatiyam-Translation, JDL, Vol-16, 1927

বিঃ দঃ এ ছাড়া আরো বহু প্রবন্ধের সহায়তা গ্রহণে ঋণ হীকার করি যা এখানে উল্লেখ করা সম্ভব হলো না। এজন্ম সুধীমগুলীর মার্জনাপ্রাধী।

॥ अ॥

অন্ধ পুস্তকং—১০২

অন্তল্পত বাশি—৪৫, ৫৩, ১৯১-১৯২

অথ্ব বেদ—৪, ২০৯, ২১০

অর্থশাল্প—১৬৬, ২০৯, ২২৫, ২৩২, ২৩৪

অনস্তল—৪২, ৪৩, ৪৪, ২২৯-২৩০

অনির্গের সমীকরণ (কুট্টক)—১৫,৬৫,
১১০, ২১৩-২২৪

অন্থোগ-দার-স্ত্র—৪৭, ১৮১, ১৯৩ অপ্রকৃত নিয়ম ( আন্থমানিক পদ্ধতি)

(Regula Falsi)—৫৯, ২০১
অপ্রকৃত ভগ্নাংশ—৪৫
আাপোলোনিয়াস—১০৮
অমর কোষ—৫৩
অমর কিংহ—৫৩
অমূলদরাশি—১৫, ৩২, ৬৪
অরপরতন ভট্টাচার্য—৭৮
অল কলসাদী—১৬৭
অলবিরুণী—৬৩, ৭৯,৮০, ১১১, ১৪৫
১৫২

আালমাজেন ১৪৫ অল হাসার—১৬৭ আগস্ট্রেলাব—১৪২, ১৪৪, ১৪৫ অয়লার—১৩৯, ২২৩

।। **আ ।।** আইনফাইন—৮॰ আর্কিমিডিস—৬৭, ১৩৮ আগম—৫ আপস্তম্বীয়-শুল্ব-ভাষা-৩৫ वावन क्षन->२० वायाज्य-१६, १२, २७, २४, ७७, ४६ व्याद्रगाक-२, ७, 8 আর্যভট (প্রথম)—৩৪, ৩৫, ৩৬, ৬১-98. 99. 60, 63, 60, 66, 62, 22, 20, 23, 300, 332, 326, 329, 302, 300, 308, 369, set, 362, 366, 393, 399, sto. ste, sas, sag, 202, २०७, २०४, २०७, २०३, २>8, 256. 256. 252, 220, 229 আর্ঘভট ( দিতীয় )—১৩, ৬৩, ৬৪, ৬৭, ba, ১১°, ১১১, ১১२, ১२७, ১२९, 568, 568, 566, 595, 229 वार्यकीय-१७, ७२, ७७, ७४, ७७, १३, 90, 99, 65, 500, 550, 500, 360, 362, 360, 329, 208, 201. 239 আর্যভটীয় স্ত্রভাষ্য বা আর্যভটীয় তব্ৰভাষ্য—৭৭, ৭৮, ১১২ আর্যদিদ্ধান্ত—১১• আল খোয়াবিজমি—১৬৭ वानी इंतन नेग:->80

আলেফ-জিরো—৪৪

॥ है॥

ইউক্লিড—২০, ২১, ২৭, ১৩৭, ১৪৫, এস. এন. সেন—৪৪, ১৪২, ১৮২

208

ইপদিলন—২২৮, ২২৯ ইয়াকুব ইবন তারিখ—৯৪

॥ छ ॥

উত্তরাধ্যয়ন স্থ্য—৬, ৪৭, ৫০, ১৯৩ উত্তা-উল্লা-কৃষ্ছদি—১২৮ উপনিষদ—২, ৩, ৪ উপবৃত্ত—১০৮ উপান্দ—৬ উমাসাতী—৪৫, ৪৯, ৫০

the partitions

উলুঘ বেগ—১৪৫

ঋথ্যেদ—৩, ১৩, ১৭, ২৩, ২৪, ৩৭, ৫৬, ১০৩, ১৪২, ১৭৩, ঋষভদেব—৭, ৪২

11 411

11911

একক ভগ্নাংশ—১০২ একঘাত অনির্ণেদ্ধ দমীকরণ—৬৫, ৭৩, ২১৪-২২১

এডওয়ার্ড কাসনার-১৯০

এফ কাাজবি—৮, ৪২, ৭৯, ১১৯, ১৮৮, ২০১, ২০৮, ২০৯, ২১৩, ২২২

এম. বঙ্গাচার্য—৯৮, ১০৮

वन. र्गटरन-१०२, १११, २२०, २८०,

**जित्मिक्म—२०, २०8** 

এম. ওয়াজেদ আলী—৮৬

|| 本 ||

কন্ধ ( গণিতজ্ঞ )—৯৪

কচ্চায়ন—৪৩

क्रेपश्चि—३८, ১৫३

কপৰ্দিস্বামী—৩৬

কণাটদন্ধি—১৫

কমলাকর—৬৭, ১৩৭

করণপদ্ধতি ->৪৬, ১৪৯, ১৫০

कद्रनी-१८, ७२, ७८, ১১৮

করবিন্দস্থামী—৩৫

কর্ণতায় সম্পাত—১৩০

কর্ণের উপর বর্গ—২৭

कर्महौिषका-: 08

কলন—১২৭

কল<del>্ল</del>—৪, ৫, ৬

কলভাৰতার—১৫৮

कन्नरूष—७, ১२, ७১, ६०, ६६, २०३,

230

कां पश्यो—२२७

কাল্পনিক রাশি—১৯৬

कानिमाम-२७, ১১৩

काणाञ्चन-२०,२১,२२,७२,७६,२১७

কাশ্যপ সংহিতা—:•

ক্রিয়াকর্মকারী-১৯৬

कृष्ट्रिक-७८, ১১७, २५७-२२८

কুটকার-শিরোমণি—২১৪

कृष- ३२६, १७१, ३५६, २७०

কৃষ্ণ বজুর্বেদ্দ—৩
কেপলার—১৪৬
কে. ভি. শর্মা—১৫১, ২১৬
কে. এম. শুক্র—৭৭, ৯৫, ২১৬
ক্লেইন—১৩৩
কেশব—১৩৪, ১৩৭
কোপারনিকাস—১৪৬
কোলক্রক—৫১
ক্যাটালিভ—৬৭
ক্যান্ট্রব—৩৪, ৪৪, ৬৬, ১১৮
ক্যান্ট্রব (এম.)—২০৯
ক্যে—৫১, ৫২, ১৪১

11 4 11

খাই ফ্যাং—৬৭ খাই দি ফ্যাং—৬৭ খণ্ডথাত্তক—৬৪, ৭৪, ৯৭, ৯৪, ১১৩ খবোষ্ঠী—১১, ৩৭, ৩৯, ৫০

গণিত কৌম্দী—১২৮, ১২৯, ১৬২, ২২৭

গণিত তিলক—১১২, ১৬২
গণিত বিভা—৬
গণিত মঞ্জরী—১৬৯
গণিতামৃত কুপিকা—১৩৭
গণিতদার—১৩৭
গণিত-দার-দংগ্রহ—৪২, ৪৭, ৫৯, ১৮-

300, 338, 362, 393, 388, 232 श्रामाध्य-१७७ গঙ্গাধর-১৬৪, ২০৩ गर्नम- ১२१, ১७१, ১७३-১१०, २७० গাউস—১২৭, ১৩৯, ১৪৬ গোটে—৯৮ গ্যালেলিও—৬৬, ১৪৬ গোৰিন্দস্বামিন-৯৭, ১৩৫, २১৪ গোবিন্দক্তি—৯৭ গোশ্বত সার—১০৯ গোলকের ক্ষেত্রফল—৭৪, ১২৩ গোলকের ঘনফল—১২৩ গোলদীপিকা—১৩৪ গোলসার—১৩৫ গ্রহণ নির্ণয়—১৩৫ গ্রহণ মণ্ডন—১৩৪

॥ घ॥

ঘন—৪৪, ৬৫, ১৮৩-১৮৪, ১৯৬ ঘনমূল—৬৫, ৬৭-৬৯, ১৬৩, ১৮৩-১৮৪

11 5 11

চতুভূজি—৮৯, ৯৬, ১০৬, ১১২, ১২৯, ১৩০ চতুভূজের ক্ষেত্রফল—১৩০ চতুস্তলক—১০৪-১০৫ চার্লদ এম. উইশ—১৪৬ চদার—১, ১৪৫ চোডের ক্ষেত্রফল—৩৪, ১০৯ চন্দ্ৰ-প্ৰজপ্তি—৬

11 5 110 - 10 7 3 3 3 5

ঠাণংগ—৬

11 5 11

ছন্দ—৪-৬, ৬৫ ছন্দস্ত্ত্ত্ৰ—৫, ১৫, ১৬, ৪৮, ১০৫, ২১২ ছায়াগণিত—১৩৫

11 5 11

জগন্নাথ পণ্ডিত—১৪৫

জর্জ সার্টন—৭৯

জন্মুনীপ-প্রজ্ঞপ্তি—৬, ৪৭

জিন চরিত—৫

জিন ভস্রগণি—১৭৩

জীজ—১৪৫

জন্ম সিং—১৩৮-১৪৫

কৈন গণিত—৪২-৫০, ৬৫-৬৭, ৬৯, ১৯৭

জ্ঞানবাজ—১৩৭

॥ है॥

টড—১৪০, ১৪৬
টলেমী—৬৭, ১৩৮, ১৪৫
টি. এ. সরস্বতী—১৫, ২২, ২৮, ৯২, ৯৬, ১০৯, ১৮৮
টাপিজিয়াম—১৯, ২৬, ২৭, ৬৫, ৯২, ১০৬, ১০৯, ১২৫
টাপিজিয়ামের কেব্রফল—৩৪, ৭৪

11 5 11

ভানৎসিগ—১২
ভারোফ্যান্টাস—২০৭, ২০৯, ২২৩
ভি. মরগ্যান—১৩২
ভি. জে. স্ট্রইক—২৩৭
ভিকসন—৮৮
ভি. ই. স্মীধ—১৬৯, ১৭১, ১৮৫, ১৮৭, ১৯৯
ভি. লা. আয়ার—১৪৫
ভেডিকিণ্ড—৩৪

11 5 11 18 - 11 1 1 1 1

তন্ত্র নংগ্রহ—১৪৬
তথার্থাধিগমস্ত্র ভাষ্য—৪৫, ৫০, ১৭১
তিলক—৩
তৈত্তিরীয় সংহিতা—১২, ১৪, ২৩, ২৯,
০২০৯, ২১০
ত্রিকোণমিতি—১৭, ২৩, ৬৫, ১২৬
ত্রিভুজ—১৯, ২৩, ৬৫, ১০৬
ত্রিভুজ (সমকোণী)—৩২, ৩৫
ত্রিভুজর ক্ষেত্রফল—৩৪, ৭৩, ৮৭, ১০৬,
১০৭, ১২৯
ত্রিলোক-প্রস্তাপ্তি—১০৯
ত্রিলোক-প্রস্তাপ্তি—১০৯

ত্তিশতিকা—৩৫, ৫৪, ৯৫, ৯৬, ১৬৭, ১৬২, ১৭১, ১৯২ ত্তৈরাশিক—৬৬, ৬৫, ১৮৪-১৮৭

11 2 11

थिखन—३७२ थिदा—२७

11 7 11

দক্ষিণ—১৮, ২৪, ২৬, ২৭, ২৯
দশগুণোত্তর স্থানিক মান পদ্ধতি—১৫২১৫৫, ২২৫
দামোদর—১৩৪, ১৩৫
দিবাকর—১৩৭
দেবলভট্ট—৬১
দেবলভট্ট—৬১
দারকানাথ—৩৪-৩৬
দ্বিঘাত সমীকরণ—১৫, ৬৫, ৮১-৮২,

দিপদ উপপাত্য— হ দৃগ্গণিত— ১৩৪

2.8-5.2

11 4 11

ধবলা-টীকা—১০৯ ধীকোটিকরণ—১১২ ধুন্ধিবাজ—১৩৭ ধ্রুবমানস—১১২

।। न ।। নাগার্জুন—২২৬ নবাস্ক্র—১৩৮
নবেন্দ্রক্মার মজ্মদার—২১
নারায়ণ পণ্ডিত—১২৮-১৩১, ১৭১, ১৯৪,
১৯৫, ২১৯, ২২৭
নারায়ণ ভট্ট—৬১
নাসির অল-দীন অল-তৃষী—১৪৫
নিউটন—৯৩, ১১৫, ১১৮, ১২৭, ১৪৬
নিকোম্যাকাস—৮৩
নিফক্ত—৬
নীলকপ্ত—৩৬
নীহাররঞ্জন রায়—৬১, ২৩৫
নেপিয়ার—১৪৫
নৈষ্ট্রতি—২২৬
নুসিংচ—১৩৭

া। প।।
পতঞ্জলি—৫, ১৯, ২২
পরমেশ্বর—১৩৪, ১৩৫, ১৭৭, ১৮২
পরহিত—৯৫, ১৩৪
পশিলুফ্কি—২৩২, ২৩৩
পদ্মনাভ—১১৪
পঞ্চবিংশ বাহ্মণ—১২, ১৪, ৬৯
পঞ্চবিংশ বাহ্মণ—১২, ১৪, ৬৯
পঞ্চবিহ্মান্তিকা—৭৫, ৭৬, ১৩৫
পরিব্যানার্থের স্থ্রে—১৩১
পাই ( ল )—৩০, ৬৫, ৬৬
পাটীসার—৯৫, ১৩৮, ১৬২
পাটীগণিতের বিষয়বস্ত্ব—১৬২-১৭৬
পাস্কাল—১৬, ৪৮, ১৬৯

পিরামিড—৬৫
পিঙ্গল—১৫, ১৬, ২১২
পীথাগোরাস—২৪, ২৭, ৩৪, ৭৩
পোলিয়ান সমীকরণ—৮১,২২৩
প্রেটে'—১৭
পৈতামহ সিদ্ধান্ত—৭৬
পৌলিশ সিদ্ধান্ত—৭৬, ১২৬
প্রগতি—১৪, ১৫, ৬৯, ৭০, ২০৯-২১২
প্রক্ষেপ তত্ত্—৯৩, ১২৭
প্রদার মজ্মদার—১৬৬, ১৮০
প্রত্যায়—৮০
প্রভাকর—৭৪
পৃথ্দকস্বামী—৫৭, ৮১, ৯২, ১৩৩, ১৬২, ১৭৭, ১৯০, ১৯২, ১৯৮

#### 11 季 11

ক্লামন্ত্ৰীভ—১৪৫
ফিবোনাচ্চি—৮৮
ফেবুমা—২২৩
ফেবিদে—২২৩

#### 11 4 11

বকশালী পাণ্ড্লিপি—৫১-৬০, ৬৫, ৬৯, ৮১, ৯৫, ১৬২, ১৬৬, ১৭১, ১৮৪, ১৯০, ১৯৭-১৯৯, ২০৩, ২১০, ২২৬ ব্যক্তি—৯৪, ১৫৯ ব্যাহ্মিহ্যি—৭৪, ৭৫-৭৭, ১২৬, ১৮৫ বর্গ—৪৪, ৬৫, ৮৩, ৯৬, ১২৯,

বর্গ-প্রকৃতি—১১৩, ২২১-২২৪ বর্গমূল—৬৫-৬৮, ১৬৩, ১৮১-১৮৩ बह्मान-३७५ वस् अ বশিষ্ট ধর্মস্থত্ত—৩৭ বাজসেনীয় সংহিতা—৬৯, ২০৯ বাণভট্য—২২৬ বাশি ইসিদ্ধান্ত-৭৬ বাসবদত্তা—২২৬ ৰাৎস্থায়ন— বিবর্ণ—১৩৪ विकृष्डिक्ष म्ह-२७, ६२, ६४, २३६ विशाम->८, ১७, ८८, ८१, ১১१ বিশ্বনাথ-১৩৭ বিষ্ণ-১৩৬, ১৩৭ वीषगनिख->१, २७, ১৮৮-२)२ বীজগণিতাবতংশ—ং৮ वीवरमन->०२ वृद्धिविनामिनी->७१, ১१० বৃহ্লার- ৭৯ वुश्रर्क--२৮ বেকার-২০২ ८वमांक−8, ১२, ७२ विनाम ब्लाजिय-३७०, ३१७ विशिश्न- १३-२१, २१, २४, ७२, २४७ वृत्त->०, ७६, १२, ১२७ ব্রুরের ক্ষেত্রফল—৪৫, ৭৫, ১৩৬ বুহজ্জাতক-৭৬, ১৩৫ वृह्दाद्वा-> १, ७३, २०३, २०० বৃহৎ সংহিতা- ৭৫, ৭৬, ১৩৫

ব্রহ্মগুপু—১৩, ৪৫, ৬৪, ৬৬, ৬৭, ৭৪,
৭৯-৯৫, ৯৯, ১০৬, ১১৪, ১১৭,
১২৬, ১৬২, ১৬৬, ১৬৭, ১৭১,
১৭৩, ১৭৭, ১৮৪, ১৮৬, ১৮৯, ১৯২১৯৭, ২০০, ২০৩-২০৫, ২০৭, ২০৯,
২১১, ২১৩, ২১৯-২২২, ২২৭, ২২৯
ব্রহ্ম-ফুট-দিদ্ধান্ত—৫৩, ৬৪, ৭৯-৮১,
৯৫, ১২৮, ১৩৩, ১৬৩, ১৭৭, ১৯৫,

ব্ৰাহ্মণ—২, ৪, ১২-১৪, ২৩ ব্ৰাহ্মী—১১, ৩৭-৪•, ৫• ব্যাকরণ—৪, ৬

।। ভ ।।
ভগবানলাল ইন্দ্ৰজী—ও৮
ভগবতী স্ত্ৰ—৪৭
ভগ্নাংশ—১৪, ৪৫, ৫৬
ভটদীপিকা—১৩৪
ভটদংস্কার—২৫
ভদ্ৰবাত্—৬, ৪৯, ৫০, ৭৫, ৭৬, ৮২,

৮০, ১৯০, ২১০
ভাউদান্ধী—৬২
ভাত্তবাহরী সংহিতা—৭৬-৭৮
ভারতীকৃষ্ণ তীর্থজী—১৩০
ভিনটাবনিজ—০, ৪
ভিয়েটা—৮৮
ভূ-ভ্রমণবাদ—১২৭, ১৩০
ভাস্কর (প্রথম)—৭১, ৭৪, ১৩২,
১৩৪, ১৬৪, ১৮০, ২১৩, ২১৪,

२७६, २५२, २२०

ভাস্কর ( বিতীয় )— ১৫, ৩৬, ৪৬, ৫৩,
৫৭, ৬৭, ৭৭, ৮৯, ৯৪-৯৬, ৯৮,
১১৩-১২৮, ১৩২-১৩৪, ১৩৬, ১৬৪,
১৭১, ১৭৩-১৭৬, ১৭৮, ১৮৪, ১৮৫,
১৮৯, ১৯২-১৯৭, ২০০, ২০৬,
২০৮, ২১১, ২১৪, ২১৭, ২১৯-২২২,
২২৮-২৩০, ২৩৬

ভেঙ্কটেশ্ব—৩৪, ৩৫

#### ॥ य ॥

महावीद->८, ६२, ६१, ६१, ६२, ७१, ٢٩, ٤٥, ٥٤, ٥٤-١٥٥, ١١8, ١١٩, ١٥٥, ١٥٥, ١٩٥, ١٩٥, ١٠٥, 328, 326, 200, 206, 232, 239, 525 552 মহাভাষ্য—১৩৫ মহা-ভাস্করীয়— ৭৭, ৭৮, ৯৭, ১৬৪, 250, 258, 250 মহামার্গনিবন্ধন-৯৫ महानिकाल-७७, ७४, ७१, ১১०, २२१ यदीि -> ७৮ মল্লারি—১৩৭ মহীধর—৩৫ মাধ্ব—১৩৫ মানৰ—২১-২২ यांना खनन- ३०२ गाक्रिगृनाव--, () गारक->•

মাাকিয়াভিলি-১৩৯

মার্সেনে—১৩৯ মিতভাষিণী-১৩৮ गीमांशा—१७० मुनीयत-१७৮ मुक्षांन->>२ मृहस्मान हेवन हेवांहिम अल-क्षांदी->8 मृहमान मृहिन-180 মৃহমাদ শরীফ-১৪৫ मुनमतानि->१, ७२, ७४ মেকপ্রস্থর—১৬, ৪৮ মৈত্রায়নী—৩৬ योगांना ठांन->80

।। य।।

বত্ভটু—৬১ যশোভ্ড- ৭৫ যুক্তিভাষ্-১৪৬, ১৪৭-১৪৯, ১৮১

॥इ॥

त्रवार्षे द्वकर्ड—३४१, २०२ ববার্ট মে--১০২ রুদভেদ—৪৭ রঘুবংশ—২৬ वक्नाथ-309, 306 ववीक्तांथ--२०১ বম্বন-১১০, ১১১ বাধাগোবিন্দ বৃদাক-২২৬ वरमणहत्त मञ्जूमनाव-e>. ce वां यहन्य- ००

রামায়ণ—২১ বামাকুজন—১৩০ वीष ( Read )—१¢ রোমক সিদ্ধান্ত—৭৪, ৭৬ রোস—১১

ল. সা. গু.—১১ नहार्गर्य-8७, ১১२, १১8, ১১৫, ১.७, 326 ললিতা বিস্তার—৪৩ লমু ভাস্করীয়—৭৭, ৭৮, ৯৭, ১৩৪ লঘু মানস—১১২, ১৩৫ লঘু মানদের ভাষ্য—১৩৪ नचीनाम-309 नां हेर्पर-18. ४० ল্যাপলাস—১৩৯ नागरवडा-२२७ निवनिष-১১৮, ১२१, ১৪৬ नौनावडी—७१, ১১७, ১১৪, १১১७, -339, 330, 320, 326, 306, 306, 542, 590, 200 লেজেগ্রাব—১০৯ লৈখিক চিত্ৰ—৬৫

₹\$3-0, 25 শক্ষর নারায়ণ—৯৭ শঙ্কর ভট্ট—৩৬ শতপথ বান্ধণ—১৩, ১৪,১৮৮
শিবদাস—২০
শিক্তাশীবৃদ্ধিদ—৪৬
শীর্ষ প্রেহেলিকা—১৩, ৪৪
শুলুফ্ত্র—৫, ১২, ১৪, ১৫, ১৭-৩৬, ৬৬,
৮১, ৮৬, ১০৩, ১৬৬, ১৭৩, ১৮৮,

শুল-পত্ত-বৃদ্ধি—৩৮
শুল-প্রদীপিকা—৩৬
শুলপাণি—৩৬
শুলপাণি—৩৬

২২৬-২৩১ শ্রেনচিতি—১৫, ২৪, ২৫, ১৮৮, ১৮৯ শ্রীকৃষ্ণকীর্তন—৫১, ৯৫

শ্রীনিবাসিয়েঙ্গার—৫৪, ৬০, ২২৪

শ্রীপতি—১১**১-**১১২, ১৩৩, ১৬৮, ১৭৭, ১৯২, ১৯৪, ২০০, ২০৩, ২১৯, ২২১

শ্রীধরাচার্য—৩৫, ৩৬, ৪৫, ৫৩, ৫৭, ৬৭, ৮৯, ৯৫-৯৬, ৯৯, ১১০, ১১৪, ১৩২, ১৩৭, ১৬৬, ১৬৮, ১৭১, ১৭৫, ১৭৭, ১৯২, ২০৬, ২০৫, ২০৬

শ্রীদেন—৮•

खेश्व-२२७

শ্রেণী—১৪, ১৫, ৫৩, ৫৬, ৬৫, ৬৯, ৭০, ৮৩-৮৫, ৯৬, ১০৯, ২০৯-২১২ শ্রেণত স্ব্রু—৩৫ 11711

সদরত্ন মালা—১৪৬, ১৫০ সমবায়—৫, ১৫, ১৬, ৪৭, ৪৮, ১০৫, ১১৭

সমান্তর শ্রেণী—শ্রেণী স্রষ্টব্য
সাইন-তালিকা— ৭১-৭৩, ৯৩, ১২৬
সাইন-পার্থক্য—৬৫
সামন্তরিকের ক্ষেত্রফল—৩৪, ১১০
সায়নাচার্য—৩৬
সিদ্ধান্ত দর্পন—১৩৪, ১৩৫
সিদ্ধান্ত দর্পন—১৩৪, ১৩৫
সিদ্ধান্ত-শিরোমনি—১১৩, ১১৪, ১২৮, ১৬৮, ২৩৬
সিদ্ধান্ত-শ্রন্থর—১১২, ১৩৫, ১৯৪, ২০০
সিদ্ধান্ত-শ্রন্থর—১৩৭
সিদ্ধান্ত-শ্রন্থর—১৩৭

স্থানজ্য লোভ—২০২, ২০৯ স্থানক্ষা—৬৫, ৮২ স্থানীভিকুমার চট্টোপাধ্যায়—২৩২, ২৩৩ স্থাবন্ধ—২২৬

ফুল্বরাজ—৩৬ ফুল্রুড্—৪৭ ফুচক ফুল্র—৪৭ ফুল্রের সংজ্ঞা—৪

স্থানাস—১৩৭, ১৬৫ স্থা-প্ৰজ্ঞাপ্তি—৬, ৪৬, ১৭৩ সূৰ্য সিদ্ধান্ত—৬৭, ৭৪, ১২৭

তুর্য সিদ্ধান্ত—৬৭, ৭৪, ১২৬, ১৩৫, ১৩৮ সৌর সিদ্ধান্ত—৭৬ সৈম্বদ্ধ হোসেন নাসির—১৪১, ১৪২ সংখ্যা বর্ণ পদ্ধতি—১৫৭-১৫৯
নংখ্যা শব্ধ পদ্ধতি—১৫৫-১৫৭
নংহিতা—২, ৩, ৪, ১২, ১৪, ২০
সিংহতিলক স্থনী—১১২
স্বীকার্য—২২, ২৩
স্বতঃসিদ্ধ—২০, ২১, ২২, ২৩
স্থানান্ধ স্বত্ত—৬, ১৯৭, ২০২
স্থানী মহাদেবানন্ধ গিবি—৩৭
॥ হ ॥

THE RESERVE OF THE PARTY OF THE

र्टन न-११

হরিদন্ত—১৫, ১৫৯
হলন্টেড—১৬০, ২২৬
হলায়্ধ—১৬, ৪৮
হার্ডি—৬১
হিপারকাস—১৪৫
হীরন—৫৫, ১৩৮
হেমচন্দ্র—৪৯
হেমান্দ্র—৩৬

वादन-२०४