

DEFICIT SCHEDULER

Performance evaluation of computer systems and networks

Francesca Pezzuti, Marta Sanguinetti, Alessio Vivani

OMNET++ MODEL

Inter-arrival time

Vacation

QUEUEING THEORY

Simplifications:

• no vacations $\rightarrow E[t_S] = \frac{1}{\mu} = S_t$

Mean performance indexes:

•
$$E[N] = \frac{\rho}{1-\rho} = \frac{\frac{\lambda}{\mu}}{1-\frac{\lambda}{\mu}} = \frac{S_t}{I_t - S_t I_t}$$

•
$$E[R] = \frac{E[N]}{\overline{\lambda}} = \frac{1}{\mu - \lambda} = \frac{S_t I_t}{I_t - S_t}$$

M/M/1

CTMC

Stability condition

$$\lambda < \mu$$

WARMUP PERIOD

CONSTANT CASE

In this case we used **constant values** for inter-arrival time (I_t) , service time (S_t) and vacation (V) and we found out the **stability condition** was:

$$I_t \ge V \cdot \frac{S_t}{Q} + S_t$$

CONSTANT CASE - SIMULATIONS

CHART LEGEND

- Case: $I_t < V \cdot \frac{S_t}{Q} + S_t$

Q=0.3MS

Q=3MS

Q=30MS

EXPONENTIAL CASE

FACTORS								
Q	I_t	S_t	V	I_tS_t	I_tV	S_tV	I_tS_tV	
0.1 <i>S</i> _t	0.38%	2.04%	95.29%	0.0%	0.36%	1.17%	0.0%	
0.5 <i>S</i> _t	3.34%	18.65%	65.74%	1.28%	2.7%	7.12%	1.02%	
1 <i>S</i> _t	4.48%	33.83%	48.39%	2.37%	2.59%	6.87%	1.31%	
5 <i>S</i> _t	12.11%	61.26%	11.72%	10%	1.38%	2.30%	1.15%	
10 <i>S</i> _t	15.96%	62.25%	5.67%	13.96%	0.61%	0.87%	0.56%	

Tuning $2^k r$ analysis Data analysis

EXPONENTIAL CASE

From the data analysis we observed that almost every case could be fitted to an exponential model, which we transformed into a linear model.

EXPONENTIAL CASE

Q	FACTOR	Initial Model	Linear model	R^2
0.1 <i>S</i> _t	V	$y = 0.0137e^{558.88x}$	y = 558,88x - 4,2881	0,99875496
$0.5 S_t$	V	$y = 0.0118e^{350.1x}$	y = 350,1x - 4,4355	0,979680008
1 <i>S</i> _t	V	$y = 0.0121e^{293.65x}$	y = 293,65x - 4,4114	0,999270512
1 <i>S</i> _t	S_t	$y = 0.0096e^{240.41x}$	y = 240,41x - 4,6422	0,996240496
1 <i>S</i> _t	$V + S_t$	$y = 0.0022e^{266.04x}$	y = 266,04x - 6,1372	0,989121491
$5S_t$	S_t	$y = 0.0034e^{352.67x}$	y = 352,67x - 5,6813	0,987409707
5 <i>S</i> _t	S_t/I_t	$y = 0.0044e^{3140.1x}$	y = 3140,1x - 5,4198	0,981626638
10 <i>S</i> _t	I_t	$y = 2E-06x^{-2,166}$	y = -2,1656x - 13,316	0,958509257
10 <i>S</i> _t	S_t	$y = 0.0028e^{390.98x}$	y = 390,98x - 5,8954	0,977938511
10 <i>S</i> _t	S_t/I_t	$y = 0.004e^{3017.3x}$	y = 3017,3x - 5,5222	0,968857788

Tuning $> 2^k r$ analysis

Data analysis

CONCLUSIONS

Depending on how the ratio $\frac{S_t}{Q}$ changes the system will behave in different ways:

- If it's close to one, the mean response time will mostly depend on V and \mathcal{S}_t
 - The more it gets smaller than one, the more it will be affected by V
 - When it gets bigger than one, V will be less meaningful, while \mathcal{S}_t and I_t become more significant