Penalised regression models

Garyfallos Konstantinoudis

Mar 5, 2024

Overview

Penalised regression

- Ridge regression
- Lasso
- Elastic net
- Tuning the different parameters

Examples in R and applications

The linear model

$$y = \alpha + x\beta + \epsilon$$

- y: Outcome, response, dependent variable with dimension: $n \times 1$
- x: Regressors, exposures, covariates, input, explanatory, or independent variables with dimension: $n \times p$
- ϵ : Residuals, error
- α : Intercept
- β : Regression coefficients, vector of length p

Classical regression

- The ordinary least squares $\hat{\beta}_{OLS}$ is defined as: $\hat{\beta}_{OLS} = \underbrace{(x^t x)^{(-1)}}_{p \times p} \underbrace{x^t}_{p \times n} \underbrace{y}_{n \times 1}$
- The residual sum of squares (RSS) is minimised by the ordinary least squares estimate:

$$\begin{split} RSS(\alpha,\beta) &= \epsilon_1^2 + \ldots + \epsilon_i^2 + \ldots + \epsilon_n^2 = \sum_{i=1}^n \epsilon_i^2 \\ &= \sum_{i=1}^n \left(y_i - \hat{y}_i\right)^2 = \sum_{i=1}^n \left(y_i - (\alpha + \beta x_i)\right)^2 \end{split}$$

Residual sum of squares (RSS)

• Note $\sum_{i=1}^{n} \epsilon_i = 0$

Classical regression and high-dimensional data

• When n << p the ordinary least squares cannot be computed because $\underbrace{(x^t x)}_{p \times p}$ is singular (rank n)

Bias-variance trade-off

- The ordinary least squares estimate is best linear unbiased estimator (BLUE).
- BEST (smallest variance) among UNBIASED (zero bias) estimators.
- When considering high-dimensional data, the OLS estimate has a high variability. (dramatically different over different samples).
- We rather prefer an estimate that is biased (towards a sensible option, e.g. the Null), but is precise, (ie has low variance).

Idea

Tip

Control the estimates' variance by not allowing the to be too big. Constraints on how big they get. Does it remind you anything?

Motivation for penalised least squares

Minimise RSS but with penalty

$$\underset{\alpha,\beta}{\operatorname{argmin}} = \underbrace{RSS(\alpha,\beta)}_{\text{Residual Sum of Squares}} + \underbrace{\lambda f(\beta)}_{\text{penalty}}$$

- Residual Sum of Squares: $RSS(\alpha,\beta) = \sum_{i=1}^n \left(y_i (\alpha + \beta x_i)\right)^2$
- Penalty term as a function of the regression coefficients β : $f(\beta)$
- Regularization parameter: λ
- The intercept is not penalised

Motivation for penalised least squares

The penalty introduces a bias, so why do it?

- Which variables do we include? Only those for which it is worth to take the penalty.
- Occam's razor: It induces sparsity and favours models with lower complexity (Lasso and elastic net).
- Regularizes the inversion of $x^t x$ (Ridge regression).

Different penalty terms define different methods

$$\underset{\alpha,\beta}{argmin} = RSS(\alpha,\beta) + \lambda f(\beta)$$

• Ridge regression: L2 penalty: $\lambda f(\beta) = \lambda \sum_{j=1}^p \beta_j^2$

• Lasso regression: L1 penalty: $f(\beta) = \lambda \sum_{j=1}^p \left|\beta_j\right|$

• Elastic net regression: L1 + L2 penalty:

$$\lambda f(\beta) = \lambda_1 \sum_{j=1}^{p} \left| \beta_j \right| + \lambda_2 \sum_{j=1}^{p} \beta_j^2$$

Ridge regression

Ridge regression uses the L2 norm as penalty:

$$\underset{\alpha, \hat{\beta}_{Ridge}}{argmin} = \underbrace{RSS(\alpha, \beta)}_{\text{Residual Sum of Squares}} + \lambda \underbrace{\sum_{j=1}^{p} \beta_{j}^{2}}_{\text{penalty}}$$

Interpretation:

- The Ridge regression coefficient $\hat{\beta}_{Ridge}$ is a biased estimate, but has a reduced variance compared to $\hat{\beta}_{OLS}$.
- There is no intrinsic model selection in Ridge regression, all p variables will have $\hat{\beta}_{Ridge} \neq 0$.
- Minimise the RSS while forcing β not to be very large.

Ridge regression: Geometric interpretation

Ridge regression

$$\sum (Y_i - \alpha - \beta_1 x_i - \dots)^2$$
 subject to $||\beta||_2^2 \leq c^2$

$$F(\alpha,\beta,\lambda) = \sum (Y_i - \alpha - \beta_1 x_i - \dots)^2 + \lambda (\beta_1^2 + \beta_2^2 + \dots - c^2)$$

How can we solve it?

- Partial derivatives
- Numerical solution using different values for λ . Note $\lambda \geq 0$: $argmin\{F(\alpha,\beta,\lambda)\} = RSS(\alpha,\beta) + \lambda \sum_{j=1}^p \beta_j^2$

When λ : $\lambda = 0$, then OLS, when $\lambda >> 0$, then $\beta = 0$

The ridge regression estimate is available in closed form

$$\hat{\beta}_{Ridge} = \underbrace{(x^t x + \lambda I)^{(-1)}}_{p \times p} \underbrace{x^t}_{p \times n} \underbrace{y}_{n \times 1}$$

where I is a $p \times p$ diagonal matrix with ones on the diagonal and zero on the off-diagonal

$$x^tx + \lambda I = n\begin{bmatrix} cov(x_1) & cov(x_{12}) & cov(x_{13}) \\ cov(x_{21}) & cov(x_2) & cov(x_{23}) \\ cov(x_{31}) & cov(x_{23}) & cov(x_3) \end{bmatrix} + \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

This resembles the OLS estimate apart from $+\lambda I$.

Lasso regression

$$\underset{\hat{\alpha}, \hat{\beta}_{Lasso}}{argmin} = \underbrace{RSS(\alpha, \beta)}_{\text{Residual Sum of Squares}} + \lambda \underbrace{\sum_{j=1}^{p} \left|\beta_{j}\right|}_{\text{penalty}}$$

Interpretation:

- The Lasso regression coefficient $\hat{\beta}_{Lasso}$ is a biased estimate, but has a reduced variance compared to $\hat{\beta}_{OLS}$.
- There is an intrinsic model selection in Lasso regression, as it sets certain variables exactly to $\hat{\beta}_{Lasso} = 0$, and thus excludes them from the model.
- When two variables are highly correlated, Lasso includes only one (at random) and not both.

Lasso regression: Geometric interpretation

Ridge and lasso: Induced shrinkage

Ridge and lasso: Bayesian interpretation

Elastic net

$$\underset{\hat{\alpha}, \hat{\beta}_{\text{Elastic net}}}{argmin} = \underbrace{RSS(\alpha, \beta)}_{\text{Residual Sum of Squares}} + \underbrace{\lambda_1 \sum_{j=1}^p \left|\beta_j\right| + \lambda_2 \sum_{j=1}^p \beta_j^2}_{\text{penalty}}$$

- The Elastic net regression coefficient $\hat{\beta}_{\text{Elastic net}}$ is a biased estimate, but has a reduced variance compared to $\hat{\beta}_{OLS}$
- There is an intrinsic model selection in Lasso regression, as it sets certain variables exactly to $\hat{\beta}_{\text{Elastic net}} = 0$, and thus excludes them from the model.
- When two variables are highly correlated, Elastic net includes both (Grouping property).

Elastic net regression: reparametrization

$$\underset{\hat{\alpha},\hat{\beta}_{\text{Elastic net}}}{argmin} = \underbrace{RSS(\alpha,\beta)}_{\text{Residual Sum of Squares}} + \lambda \left[\alpha \left| \left| \beta \right| \right|_1 + (1-\alpha) \left| \left| \beta \right| \right|_2^2 \right]$$

- α can be seen as a mixing parameter
- When $\alpha = 0$ ridge regression

- When $\alpha = 1$ lasso regression
- How can we select the optimal λ and α ?

Elastic net: Geometric interpretation

How to tune the regularisation parameter?

$$\underset{\alpha,\beta}{argmin} = RSS(\alpha,\beta) + \lambda f(\beta)$$

 λ is the regularisation parameter

- $\lambda = 0$: No regularisation
- Small λ : Minimal regularisation
- Large λ : Strong regularisation
- How to choose the optimal λ ?
- Cross-validation

Prediction using penalised regression

- Regularized regression is an ideal tool for prediction.
- We can define a prediction rule $\hat{f}(x)$ using the penalised regression coefficients:

$$\hat{y} = \hat{f}(x) = \alpha + x\hat{\beta}_{Penalised}$$

where $\hat{\beta}_{\text{Penalised}}$ are the p regularized coefficients.

- Since Lasso and Elastic net force some $\hat{\beta}_{\text{Penalised}}$ to zero, variables with $\hat{\beta}_{\text{Penalised}} = 0$ are excluded from the model and do not contribute to the prediction rule.
- In contrast in Ridge regression variables contribute to $\hat{f}(x)$.

Penalised regression in R: glmnet()

```
glmnet(x, y, family, alpha,
   nlambda = 100,
   lambda.min.ratio = ifelse(nobs < nvars, 0.01, 0.0001),
   lambda = NULL, standardize = TRUE, intercept = TRUE
)</pre>
```

Input

- y: Outcome or response
- x: Predictors, formatted as.matrix(x)

Generalised linear models included

• family = gaussian, binomial, poisson, multinomial, cox, mgaussian

Penalised regression in R: glmnet()

```
glmnet(x, y, family,
    alpha,
    nlambda = 100, lambda.min.ratio = ifelse(nobs < nvars, 0.01, 0.0001), lambda = NULL,
    standardize = TRUE, intercept = TRUE
)</pre>
```

Penalised regression models

- Ridge regression: alpha = 0
- Lasso regression: alpha = 1
- Elastic net: 0 < alpha < 1

Regularisation parameter:

• Perform cross-validation

Penalised regression in R: glmnet()

```
glmnet.out <- glmnet(x, y, family, alpha)</pre>
```

Values:

- Intercept: glmnet.out\$a0
- Regression coefficient estimates: glmnet.out\$beta
- Regularisation parameters used: glmnet.out\$lambda

Functions:

- Cross-validation: cv.glmnet()
- Regression coefficients: coef(glmnet.out)
- Prediction: predict(glmnet.out, newx)

Penalised regression in R: glmnet()

For more details on glmnet, see the useful vignette:

http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html

Other packages in R

- lm.ridge in the MASS package
- lars in the lars package
- penalized in the penalized package

Diabetes data

- y: quantitative measure of disease progression
- x: predictor matrix
 - clinical parameters: age, sex, bmi
 - map: blood pressure
 - tc: total cholesterol
 - ldl: low-density lipoprotein
 - hdl: high-density lipoprotein
 - tch: total cholesterol over hdl
 - ltg: triglycerides

Diabetes data

```
library(lars)
library(dplyr)
library(glmnet)

data(diabetes)
x <- as.matrix(diabetes$x)
y <- diabetes$y

head(x)</pre>
```

```
ldl
               age
                            sex
                                         bmi
                                                        map
                                                                       tc
 \hbox{\tt [1,]} \quad 0.038075906 \quad 0.05068012 \quad 0.06169621 \quad 0.021872355 \quad -0.044223498 \quad -0.03482076 
[2,] -0.001882017 -0.04464164 -0.05147406 -0.026327835 -0.008448724 -0.01916334
[3,] 0.085298906 0.05068012 0.04445121 -0.005670611 -0.045599451 -0.03419447
 \begin{bmatrix} 4, \end{bmatrix} -0.089062939 -0.04464164 -0.01159501 -0.036656447 \quad 0.012190569 \quad 0.02499059 
[5,] 0.005383060 -0.04464164 -0.03638469 0.021872355 0.003934852 0.01559614
[6,] -0.092695478 -0.04464164 -0.04069594 -0.019442093 -0.068990650 -0.07928784
               hdl
                             tch
                                           ltg
                                                          glu
[1,] -0.043400846 -0.002592262 0.019908421 -0.017646125
[2,] 0.074411564 -0.039493383 -0.068329744 -0.092204050
[3,] -0.032355932 -0.002592262 0.002863771 -0.025930339
[4,] -0.036037570 0.034308859 0.022692023 -0.009361911
[5,] 0.008142084 -0.002592262 -0.031991445 -0.046640874
[6,] 0.041276824 -0.076394504 -0.041180385 -0.096346157
```

Ridge regression and diabetes data

```
library(lars)
  library(dplyr)
  library(glmnet)
  data(diabetes)
  x <- as.matrix(diabetes$x)</pre>
  y <- diabetes$y
  cbind(
    lm(y \sim x) \%>\% coef(),
    glmnet(x, y, family = "gaussian", alpha = 0, lambda = 0.1) %>% coef(),
    glmnet(x, y, family = "gaussian", alpha = 0, lambda = 1) %>% coef()
11 x 3 sparse Matrix of class "dgCMatrix"
(Intercept) 152.13348 152.133484 152.133484
age
             -10.01220
                        -9.358965
                                    -6.698824
            -239.81909 -238.769510 -233.325125
sex
             519.83979 520.713588 520.019917
bmi
             324.39043 323.548886 319.639206
map
tc
            -792.18416 -666.737488 -320.594626
             476.74584 377.500940 103.343333
ldl
hdl
             101.04457 45.579036 -104.230542
tch
             177.06418 161.855769 124.122091
             751.27932 703.885551 568.507179
ltg
glu
              67.62539 68.277472 71.865726
```

Lasso regression and diabetes data

```
cbind(
  lm(y ~ x) %>% coef(),
  glmnet(x, y, family = "gaussian", alpha = 1, lambda = 0.1) %>% coef(),
  glmnet(x, y, family = "gaussian", alpha = 1, lambda = 40) %>% coef()
)
```

11 x 3 sparse Matrix of class "dgCMatrix"

```
s0
                                         s0
(Intercept) 152.13348 152.133484 152.13348
            -10.01220
                        -5.789635
age
sex
            -239.81909 -234.457334
bmi
            519.83979 522.819506
                                  93.58588
            324.39043 320.347881
map
tc
           -792.18416 -534.397332
ldl
            476.74584 271.305848
hdl
            101.04457
                       -9.067565
tch
            177.06418 146.255119
            751.27932 655.715819 33.43273
ltg
              67.62539
                        66.410644
glu
```

Elastic regression and diabetes data

```
cbind(
    lm(y \sim x) \%>\% coef(),
    glmnet(x, y, family = "gaussian", alpha = 0.5, lambda = 0.1) %>% coef(),
    glmnet(x, y, family = "gaussian", alpha = 0.5, lambda = 40) %>% coef()
  )
11 x 3 sparse Matrix of class "dgCMatrix"
                                s0
                                          s0
(Intercept) 152.13348 152.133484 152.13348
             -10.01220
                         -7.373073
age
            -239.81909 -236.908421
sex
bmi
             519.83979 521.524719 308.42812
map
             324.39043 321.784878 53.18902
tc
            -792.18416 -570.166854
ldl
             476.74584 302.943444
hdl
             101.04457
                         .
tch
             177.06418 144.752485
ltg
             751.27932 669.554762 267.61977
              67.62539
                         67.483126
glu
```

Example: Breast cancer data

• y: benign or aggressive tumor (binary)

Benign	Aggressive	Total
185	121	306

- x: gene expression of p = 22,283 genes
- n = 306: sample size
- Truly big data $n \ll p$

Breast cancer data and glm()

```
load("assets/JAMA2011_breast_cancer")
severity <- data_bc$rcb
x <- data_bc$x

glm.out <- glm(severity ~ as.matrix(x), family = "binomial")
glm.out$converged</pre>
```

Takes a lot of time and eventually you will get a warning that the algorithm did not converge!

Breast cancer data and lasso

```
s0
0.3236629
  lasso.out$beta %>% summary()
22283 x 1 sparse Matrix of class "dgCMatrix", with 6 entries
1 1662 1 -0.004526658
2 4752 1 0.058374857
3 9133 1 -0.009686168
4 9235 1 0.026345145
5 12416 1 -0.002190472
6 19988 1 -0.025081473
Breast cancer data and elastic net
  enet.out <- glmnet(x = as.matrix(x), y = severity,
                      family = "binomial", alpha = 0.5, lambda = 0.003)
  sum(abs(enet.out$beta) > 0)
[1] 486
  enet.out \leftarrow glmnet(x = as.matrix(x), y = severity,
                      family = "binomial", alpha = 0.5, lambda = 0.26)
  sum(abs(enet.out$beta) > 0)
[1] 6
  enet.out$a0
       s0
0.7666402
  enet.out$beta %>% summary()
```

```
22283 x 1 sparse Matrix of class "dgCMatrix", with 6 entries
i j x
1 1662 1 -0.007657373
2 4752 1 0.027947534
3 9133 1 -0.006866718
4 9235 1 0.007115454
5 12416 1 -0.001404657
6 19988 1 -0.014191285
```

Take away: Penalised regression models

- Regularized regression approaches minimise the residual sum of squares and an additional penalty function.
- Different penalties imply different approaches:

Ridge regression: L2Lasso regression: L1

- Elastic net regression: L1 + L2

Take away: Penalised regression models

- Penalized regression approaches are biased, they **underestimate** the size of the true effect.
- But they reduce the variance of the estimate and the prediction rule.
- Lasso and Elastic net perform an intrinsic model selection.
- The regularisation parameter λ can be chosen using cross-validation.

Questions?