Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе №1

Дисциплина: Низкоуровневое программирование

Тема: Машина Тьюринга-Поста

Вариант: 10

Выполнил студент гр. 3530901/00002	(подпись) Сергеева Е. С)
Принял преподаватель	_(подпись) Степанов Д. С	
	« » 2021	г

Санкт-Петербург

Задача

Построить машину Тьюринга, которая переводит число из десятичной системы счисления в двоичную.

Алфавит

0,1, 2, 3, 4, 5, 6, 7, 8, 9, * (вспомогательный символ).

Начальное и конечное состояния

Число записано в десятичной системе счисления. Головка должна находиться на первом символе первого числа.

После остановки машины головка должна находиться на первом символе числа в двоичной системе счисления.

Алгоритм

Из записанного числа вычитается 1, после головка сдвигается влево до начала числа, ставит дополнительный символ на месте пробела, чтобы отделить число в десятичной системе счисления от числа в двоичной, после сдвигается еще влево и ставит 1 на месте пробела. После головка возвращается к десятичному числу, из него вычитается 1. Далее головка движется к двоичному и к нему прибавляется 1. Это происходит до тех пор, пока на месте десятичного числа не окажется ноль (в случае однозначного десятичного числа) или нули.

Диаграмма состояний

На диаграмме пробел обозначен буквой «В», а буквой «Ѕ» обозначен момент, когда символ на ленте перезаписывается, головка не двигается, и работа программы завершается.

Рис. 1 Диаграмма состояний

Описание работы

- 1) Двигаясь вправо, каретка доходит до последней цифры десятичного числа, переходит к пробелу, после возвращается к последней цифре.
- 2) Эта цифра уменьшается на 1, если она была равна 0, то меняется на 9 и каретка сдвигается влево и шаг 2 повторяется.
- 3) Каретка проходит до первой цифры числа, если встречает пробел, то меняет его на вспомогательный символ и сдвигается влево.
- 4) А) Если каретка встречает пробел, то заменяет его на 1 и сдвигается вправо.
 - Б) Если встречает 0, то заменяет его на 1 и сдвигается вправо.
 - В) Если встречает 1, то заменяет на 0 сдвигается влево и шаг 4 повторяется.
- 5) Если каретка встречает цифры от 1 до 9, то машина переходит к шагу 1, если 0 или вспомогательный символ, то сдвигается вправо, если пробел, то сдвигается влево.
- 6) В конце вместо десятичного числа останутся 0-и, их заменяем на пробелы, двигаясь влево. Когда каретка дойдет до вспомогательного символа, заменяем его на пробел и заканчиваем работу.

Пример выполнения программы на симуляторе

Перевод числа 103 в двоичную систему счисления.

Рис. 2 Начальные условия

Рис. 3 Результат работы машины

Вывод

В данной работе я познакомилась с принципом работы машины Тьюринга и общими правилами реализации алгоритмов на ней на примере перевода числа из десятичной системы счисления в двоичную.