■ NetApp

ネットワークをセットアップします Cloud Volumes ONTAP

NetApp June 17, 2022

This PDF was generated from https://docs.netapp.com/ja-jp/cloud-manager-cloud-volumes-ontap/aws/reference-networking-aws.html on June 17, 2022. Always check docs.netapp.com for the latest.

目次

ネ	マットワークをセットアップします	1
	Cloud Volumes ONTAP in AWS のネットワーク要件	1
	での HA ペアの AWS 転送ゲートウェイのセットアップ 複数の AZ · · · · · · · · · · · · · · · · · ·	2
	HAペアを共有サブネットに導入します1	3
	AWS のセキュリティグループルール	4

ネットワークをセットアップします

Cloud Volumes ONTAP in AWS のネットワーク要件

Cloud Manager は、 IP アドレス、ネットマスク、ルートなど、 Cloud Volumes ONTAP 用のネットワークコンポーネントのセットアップを処理します。アウトバウンドのインターネットアクセスが可能であること、十分な数のプライベート IP アドレスを利用できること、適切な接続が確立されていることなどを確認する必要があります。

一般的な要件

AWS では、次の要件を満たす必要があります。

Cloud Volumes ONTAP ノードのアウトバウンドインターネットアクセス

Cloud Volumes ONTAP ノードでは、ネットアップ AutoSupport にメッセージを送信するために、アウトバウンドインターネットアクセスが必要です。ネットアップ AutoSupport は、ストレージの健全性をプロアクティブに監視します。

Cloud Volumes ONTAP から AutoSupport メッセージを送信できるように、ルーティングポリシーとファイアウォールポリシーで次のエンドポイントへの AWS HTTP/HTTPS トラフィックを許可する必要があります。

- https://support.netapp.com/aods/asupmessage
- \ https://support.netapp.com/asupprod/post/1.0/postAsup

NAT インスタンスがある場合は、プライベートサブネットからインターネットへの HTTPS トラフィックを許可する着信セキュリティグループルールを定義する必要があります。

"AutoSupport の設定方法について説明します"。

HA メディエータのアウトバウンドインターネットアクセス

HA メディエータインスタンスは、AWS EC2 サービスへのアウトバウンド接続を持っている必要があります。これにより、ストレージのフェイルオーバーを支援できます。接続を提供するには、パブリック IP アドレスを追加するか、プロキシサーバを指定するか、または手動オプションを使用します。

手動オプションには、 NAT ゲートウェイまたはターゲットサブネットから AWS EC2 サービスへのインターフェイス VPC エンドポイントを指定できます。 VPC エンドポイントの詳細については、を参照してください "AWS ドキュメント: 「Interface VPC Endpoints 」(AWS PrivateLink)"。

プライベート IP アドレス

必要な数のプライベート IP アドレスが Cloud Manager から Cloud Volumes ONTAP に自動的に割り当てられます。ネットワークに十分な数のプライベート IP アドレスがあることを確認する必要があります。

Cloud Volumes ONTAP に対して Cloud Manager が割り当てる LIF の数は、シングルノードシステムと HA ペアのどちらを導入するかによって異なります。LIF は、物理ポートに関連付けられた IP アドレスです。

シングルノードシステムの IP アドレス

Cloud Manager は、1つのノードシステムに6つのIPアドレスを割り当てます。

- クラスタ管理 LIF
- ノード管理 LIF
- ・クラスタ間 LIF
- ・NAS データ LIF
- ・iSCSI データ LIF
- Storage VM 管理 LIF

Storage VM 管理 LIF は、 SnapCenter などの管理ツールで使用されます。

HAペアの IP アドレス

HA ペアには、シングルノードシステムよりも多くの IP アドレスが必要です。次の図に示すように、これらの IP アドレスは異なるイーサネットインターフェイスに分散されています。

HA ペアに必要なプライベート IP アドレスの数は、選択する導入モデルによって異なります。A_SILE_AWS アベイラビリティゾーン(AZ)に導入する HA ペアには 15 個のプライベート IP アドレスが必要です。一方、 _multiple_AZs に導入する HA ペアには、13 個のプライベート IP アドレスが必要です。

次の表に、各プライベート IP アドレスに関連付けられている LIF の詳細を示します。

単一の AZ にある HA ペアの LIF

LIF	インターフェイス	ノード	目的
クラスタ管理	eth0	ノード 1	クラスタ全体(HA ペア)の管理。
ノード管理	eth0	ノード 1 とノード 2	ノードの管理。
クラスタ間	eth0	ノード 1 とノード 2	クラスタ間の通信、バックアップ、レプリ ケーション。
NAS データ	eth0	ノード 1	NAS プロトコルを使用したクライアント アクセス。
iSCSI データ	eth0	ノード 1 とノード 2	iSCSI プロトコルを使用したクライアント アクセス。
クラスタ接続	Eth1	ノード 1 とノード 2	ノード間の通信およびクラスタ内でのデータの移動を可能にします。
HA 接続	eth2	ノード 1 とノード 2	フェイルオーバー時の 2 つのノード間の通 信。
RSM iSCSI トラフィック	eth3	ノード 1 とノード 2	RAID SyncMirror iSCSI トラフィック、および 2 つの Cloud Volumes ONTAP ノードとメディエーター間の通信。
メディエーター	eth0	メディエーター	ストレージのテイクオーバーとギブバック のプロセスを支援するための、ノードとメ ディエーターの間の通信チャネル。

複数の AZ にまたがる HA ペア用の LIF です

LIF	インターフェイス	ノード	目的
ノード管理	eth0	ノード 1 とノード 2	ノードの管理。
クラスタ間	eth0	ノード 1 とノード 2	クラスタ間の通信、バックアップ、レプリ ケーション。
iSCSI データ	eth0	ノード 1 とノード 2	iSCSI プロトコルを使用したクライアント アクセス。また、ノード間でのフローティ ング IP アドレスの移行も管理します。
クラスタ接続	Eth1	ノード 1 とノード 2	ノード間の通信およびクラスタ内でのデータの移動を可能にします。
HA 接続	eth2	ノード 1 とノード 2	フェイルオーバー時の 2 つのノード間の通 信。
RSM iSCSI トラフィック	eth3	ノード 1 とノード 2	RAID SyncMirror iSCSI トラフィック、および 2 つの Cloud Volumes ONTAP ノードとメディエーター間の通信。

LIF インターフェイス		ノード	目的
メディエーター eth0			ストレージのテイクオーバーとギブバック のプロセスを支援するための、ノードとメ ディエーターの間の通信チャネル。

複数のアベイラビリティゾーンに導入すると、いくつかの LIF が関連付けられます "フローティング IP アドレス"AWS のプライベート IP 制限にはカウントされません。

セキュリティグループ

Cloud Manager ではセキュリティグループを作成する必要がないため、セキュリティグループを作成する必要はありません。自分で使用する必要がある場合は、を参照してください "セキュリティグループのルール"。

データ階層化のための接続

EBS をパフォーマンス階層として使用し、 AWS S3 を容量階層として使用する場合は、 Cloud Volumes ONTAP が S3 に接続されていることを確認する必要があります。この接続を提供する最善の方法は、 S3 サービスへの vPC エンドポイントを作成することです。手順については、を参照してください "AWS のドキュメント: 「 Creating a Gateway Endpoint"。

vPC エンドポイントを作成するときは、 Cloud Volumes ONTAP インスタンスに対応するリージョン、 vPC 、およびルートテーブルを必ず選択してください。S3 エンドポイントへのトラフィックを有効にする発信 HTTPS ルールを追加するには、セキュリティグループも変更する必要があります。そうしないと、 Cloud Volumes ONTAP は S3 サービスに接続できません。

問題が発生した場合は、を参照してください "AWS のサポートナレッジセンター:ゲートウェイ VPC エンドポイントを使用して S3 バケットに接続できないのはなぜですか。"

ONTAP システムへの接続

AWSのCloud Volumes ONTAP システムと他のネットワークのONTAP システムの間でデータをレプリケートするには、AWS VPCと他のネットワーク(社内ネットワークなど)の間にVPN接続が必要です。手順については、を参照してください "AWS ドキュメント: 「 Setting Up an AWS VPN Connection"。

CIFS 用の DNS と Active Directory

CIFS ストレージをプロビジョニングする場合は、 AWS で DNS と Active Directory をセットアップするか、オンプレミスセットアップを AWS に拡張する必要があります。

DNS サーバは、 Active Directory 環境に名前解決サービスを提供する必要があります。デフォルトの EC2 DNS サーバを使用するように DHCP オプションセットを設定できます。このサーバは、 Active Directory 環境で使用される DNS サーバであってはなりません。

手順については、を参照してください "AWS ドキュメント: 「Active Directory Domain Services on the AWS Cloud: Quick Start Reference Deployment"。

vPC共有

9.11.1リリース以降では、VPCを共有するAWSでCloud Volumes ONTAP HAペアがサポートされます。VPC共有を使用すると、他のAWSアカウントとサブネットを共有できます。この構成を使用するには、AWS環境をセットアップし、APIを使用してHAペアを導入する必要があります。

"共有サブネットにHAペアを導入する方法について説明します"。

複数の AZ にまたがる HA ペアに関する要件

複数の可用性ゾーン(AZS)を使用する Cloud Volumes ONTAP HA 構成には、 AWS ネットワークの追加要件が適用されます。HA ペアを起動する前に、作業環境の作成時に Cloud Manager でネットワークの詳細を入力する必要があるため、これらの要件を確認しておく必要があります。

HA ペアの仕組みについては、を参照してください "ハイアベイラビリティペア"。

可用性ゾーン

この HA 導入モデルでは、複数の AZS を使用してデータの高可用性を確保します。各 Cloud Volumes ONTAP インスタンスと、 HA ペア間の通信チャネルを提供するメディエータインスタンスには、専用の AZ を使用する必要があります。

サブネットが各アベイラビリティゾーンに存在する必要があります。

NAS データおよびクラスタ / SVM 管理用のフローティング IP アドレス

複数の AZ に展開された HA configurations では、障害が発生した場合にノード間で移行するフローティング IP アドレスを使用します。VPC の外部からネイティブにアクセスすることはできません。ただし、その場合は除きます "AWS 転送ゲートウェイを設定します"。

フローティング IP アドレスの 1 つはクラスタ管理用、 1 つはノード 1 の NFS/CIFS データ用、もう 1 つはノード 2 の NFS/CIFS データ用です。SVM 管理用の 4 つ目のフローティング IP アドレスはオプションです。

SnapCenter for Windows または SnapDrive を HA ペアで使用する場合は、 SVM 管理 LIF 用にフローティング IP アドレスが必要です。

Cloud Volumes ONTAP HA 作業環境を作成するときに、 Cloud Manager でフローティング IP アドレスを入力する必要があります。Cloud Manager は、システムの起動時に IP アドレスを HA ペアに割り当てます。

フローティング IP アドレスは、 HA 構成を導入する AWS リージョン内のどの VPC の CIDR ブロックに も属していない必要があります。フローティング IP アドレスは、リージョン内の VPC の外部にある論理 サブネットと考えてください。

次の例は、 AWS リージョンのフローティング IP アドレスと VPC の関係を示しています。フローティング IP アドレスはどの VPC の CIDR ブロックにも属しておらず、ルーティングテーブルを介してサブネットにルーティングできます。

AWS region

Cloud Manager は、 iSCSI アクセス用と、 VPC 外のクライアントからの NAS アクセス用 に、自動的に静的 IP アドレスを作成します。これらの種類の IP アドレスの要件を満たす必要はありません。

外部からのフローティング IP アクセスを可能にする中継ゲートウェイ VPC

必要に応じて、 "AWS 転送ゲートウェイを設定します" HA ペアが配置されている VPC の外部から HA ペアのフローティング IP アドレスにアクセスできるようにします。

ルートテーブル

Cloud Manager でフローティング IP アドレスを指定すると、フローティング IP アドレスへのルートを含むルーティングテーブルを選択するよう求められます。これにより、 HA ペアへのクライアントアクセスが可能になります。

vPC(メインルートテーブル)内のサブネットのルートテーブルが1つだけの場合、 Cloud Manager はそのルートテーブルにフローティング IP アドレスを自動的に追加します。ルーティングテーブルが複数ある場合は、 HA ペアの起動時に正しいルーティングテーブルを選択することが非常に重要です。そうしないと、一部のクライアントが Cloud Volumes ONTAP にアクセスできない場合があります。

たとえば、異なるルートテーブルに関連付けられた2つのサブネットがあるとします。ルーティングテー

ブル A を選択し、ルーティングテーブル B は選択しなかった場合、ルーティングテーブル A に関連付けられたサブネット内のクライアントは HA ペアにアクセスできますが、ルーティングテーブル B に関連付けられたサブネット内のクライアントはアクセスできません。

ルーティングテーブルの詳細については、を参照してください "AWS のドキュメント:「Route Tables"。

ネットアップの管理ツールとの連携

複数の AZ に展開された HA 構成でネットアップ管理ツールを使用するには、次の 2 つの接続オプションがあります。

- 1. ネットアップの管理ツールは、別の VPC とに導入できます "AWS 転送ゲートウェイを設定します"。 ゲートウェイを使用すると、 VPC の外部からクラスタ管理インターフェイスのフローティング IP ア ドレスにアクセスできます。
- 2. NAS クライアントと同様のルーティング設定を使用して、同じ VPC にネットアップ管理ツールを導入できます。

HA 構成の例

次の図は、複数の AZ にまたがる HA ペアに固有のネットワークコンポーネントを示しています。 3 つのアベイラビリティゾーン、 3 つのサブネット、フローティング IP アドレス、およびルートテーブルです。

コネクタの要件

コネクタがパブリッククラウド環境内のリソースやプロセスを管理できるように、ネットワークを設定します。最も重要なステップは、さまざまなエンドポイントへのアウトバウンドインターネットアクセスを確保することです。

ネットワークでインターネットへのすべての通信にプロキシサーバを使用している場合は、 [設定]ページでプロキシサーバを指定できます。を参照してください "プロキシサーバを使用するようにコネクタを設定します"。

ターゲットネットワークへの接続

コネクタには、 Cloud Volumes ONTAP を導入する VPC および VNet へのネットワーク接続が必要です。

たとえば、企業ネットワークにコネクタを設置する場合は、 Cloud Volumes ONTAP を起動する VPC または VNet への VPN 接続を設定する必要があります。

アウトバウンドインターネットアクセス

Connector では、パブリッククラウド環境内のリソースとプロセスを管理するためにアウトバウンドインターネットアクセスが必要です。

エンドポイント	目的	
\ https://support.netapp.com	ライセンス情報を取得し、ネットアップサポートに AutoSupport メッセージを送信するため。	
\ https://*.cloudmanager.cloud.netapp.com	Cloud Manager 内で SaaS の機能やサービスを提供できます。	
¥ https://cloudmanagerinfraprod.azurecr.io ¥ https://*.blob.core.windows.net	をクリックして、 Connector と Docker コンポーネントをアップグレードします。	

での HA ペアの AWS 転送ゲートウェイのセットアップ 複数のAZ

へのアクセスを有効にするために、 AWS 転送ゲートウェイを設定します HA ペアの 1つ "フローティング IP アドレス" HA ペアが存在する VPC の外部から

Cloud Volumes ONTAP HA 構成が複数の AWS アベイラビリティゾーンに分散されている場合は、 VPC 内からの NAS データアクセス用にフローティング IP アドレスが必要です。これらのフローティング IP アドレスは、障害の発生時にノード間で移行できますが、 VPC の外部からネイティブにアクセスすることはできません。 VPC の外部からのデータアクセスはプライベート IP アドレスで提供されますが、自動フェイルオーバーは提供されません。

クラスタ管理インターフェイスとオプションの SVM 管理 LIF にもフローティング IP アドレスが必要です。

AWS 転送ゲートウェイを設定すると、 HA ペアが配置された VPC の外部からフローティング IP アドレスに アクセスできるようになります。つまり、 VPC の外部にある NAS クライアントとネットアップの管理ツールからフローティング IP にアクセスできます。

以下に、トランジットゲートウェイによって接続された 2 つの VPC の例を示します。HA システムは 1 つの VPC に存在し、クライアントはもう一方の VPC に存在します。その後、フローティング IP アドレスを使用して NAS ボリュームをクライアントにマウントできます。

VPC 1 (10.160.0.0/20)

以下に、同様の構成を設定する手順を示します。

手順

- 1. "トランジットゲートウェイを作成し、 VPC をに接続します ゲートウェイ"。
- 2. VPC とトランジットゲートウェイルートテーブルを関連付ける。
 - a. *VPC サービスで、 *Transit Gateway Route Tables * をクリックします。
 - b. ルートテーブルを選択します。
 - C. [*Associations] をクリックし、[Create associations] を選択します。
 - d. 関連付ける添付ファイル(VPC)を選択し、* 関連付けの作成 * をクリックします。
- 3. HA ペアのフローティング IP アドレスを指定して、転送ゲートウェイのルートテーブルにルートを作成します。

フローティング IP アドレスは、 Cloud Manager の Working Environment Information ページで確認できま

す。次に例を示します。

NFS & CIFS access from within the VPC using Floating IP

Auto failover Cluster Management : 172.23.0.1 Data (nfs,cifs) : Node 1: 172.23.0.2 | Node 2: 172.23.0.3 Access SVM Management : 172.23.0.4

次の図は、中継ゲートウェイのルートテーブルを示しています。このルートには、 2 つの VPC の CIDR ブロックへのルートと、 Cloud Volumes ONTAP で使用される 4 つのフローティング IP アドレスが含まれます。

- 4. フローティング IP アドレスにアクセスする必要がある VPC のルーティングテーブルを変更します。
 - a. フローティング IP アドレスにルートエントリを追加します。
 - b. HA ペアが存在する VPC の CIDR ブロックにルートエントリを追加します。

次の図は、 VPC 1 へのルートとフローティング IP アドレスを含む VPC 2 のルートテーブルを示しています。

5. フローティング IP アドレスへのアクセスが必要な VPC へのルートを追加して、 HA ペアの VPC のルーティングテーブルを変更します。

VPC 間のルーティングが完了するため、この手順は重要です。

次の例は、 VPC 1 のルートテーブルを示しています。フローティング IP アドレスへのルートと、クライアントが配置されている VPC 2 へのルートが含まれます。フローティング IP は、 HA ペアの導入時に Cloud Manager によってルートテーブルに自動的に追加されます。

6. フローティング IP アドレスを使用して、ボリュームをクライアントにマウントします。

Cloud Manager で正しい IP アドレスを確認するには、ボリュームを選択して * Mount command * をクリックします。

7. NFS ボリュームをマウントする場合は、クライアント VPC のサブネットと一致するようにエクスポート ポリシーを設定します。

"ボリュームを編集する方法について説明します"。

- 。関連リンク*
- 。"AWS におけるハイアベイラビリティペア"
- 。 "Cloud Volumes ONTAP in AWS のネットワーク要件"

HAペアを共有サブネットに導入します

9.11.1リリース以降では、VPCを共有するAWSでCloud Volumes ONTAP HAペアがサポートされます。VPC共有を使用すると、他のAWSアカウントとサブネットを共有できます。この構成を使用するには、AWS環境をセットアップし、APIを使用してHAペアを導入する必要があります。

を使用 "vPC共有"Cloud Volumes ONTAP HA構成は、次の2つのアカウントに分散されます。

- ・ネットワークを所有するVPC所有者アカウント(VPC、サブネット、およびルーティングテーブル)。
- EC2インスタンスが共有サブネット(2つのHAノードとメディエーターを含む)に導入されている参加者 アカウント

複数のアベイラビリティゾーンにまたがって導入されているCloud Volumes ONTAP HA構成の場合は、HAメディエーターからVPC所有者アカウントのルーティングテーブルに書き込むための特定の権限が必要です。メディエーターで想定できるIAMロールを設定して、これらの権限を指定する必要があります。

手順

- 1. IAMロールを作成します。
 - a. Cloud Volumes ONTAP のEC2インスタンスを導入する参加者アカウントのIAMコンソールに移動します。

- b. [アクセス管理]で、[役割]、[役割の作成*]の順にクリックし、手順に従って役割を作成します。 必ず次の手順を実行してください。
 - 信頼されるエンティティのタイプ * で、 * AWS アカウント * を選択します。
 - 別のAWSアカウント*を選択して、VPC所有者アカウントのIDを入力します。
 - 「STS: AssumeRole」権限を含むIAMロールにポリシーを関連付けます。

例:

```
"Version": "2012-10-17",

"Statement": {
    "Effect": "Allow",
    "Action": "sts:AssumeRole",
    "Resource": "arn:aws:iam::account-id:role/Test*"
}
```

- a. IAMロールのロールARNをコピーして、HAペアの導入時にAPI要求に貼り付けることができるようにします。
- 2. VPC所有者アカウントのサブネットを参加者アカウントと共有します。

この手順は、HAペアを共有サブネットに導入するために必要です。

"AWSドキュメント:サブネットを共有"

VPC所有者アカウントで、Cloud Volumes ONTAP のセキュリティグループを作成します。

"Cloud Volumes ONTAP のセキュリティグループルールを参照してください"。HAメディエーターのセキュリティグループを作成する必要はありません。クラウドマネージャーがそれを実現します。

4. APIを使用して新しいCloud Volumes ONTAP 作業環境を作成し、「haParams」オブジェクトの「"haassereRoleArn"」フィールドを渡します。

```
"haParams": {
    "assumeRoleArn":
"arn:aws:iam::642991768967:role/mediator_role_assume_fromdev"
}
```

"Cloud Volumes ONTAP APIについて説明します"

AWS のセキュリティグループルール

Cloud Manager で作成される AWS セキュリティグループには、コネクタと Cloud

Volumes ONTAP が正常に動作するために必要なインバウンドとアウトバウンドのルールが含まれています。テスト目的でポートを参照したり、独自のセキュリティグループを使用したりする場合に使用します。

Cloud Volumes ONTAP のルール

Cloud Volumes ONTAP のセキュリティグループには、インバウンドルールとアウトバウンドルールの両方が必要です。

インバウンドルール

定義済みセキュリティグループのインバウンドルールの送信元は 0.0.0.0/0 です。

プロトコル	ポート	目的		
すべての ICMP	すべて	インスタンスの ping を実行します		
HTTP	80	クラスタ管理 LIF の IP アドレスを使用した System Manager Web コンソールへの HTTP アクセス		
HTTPS	443	クラスタ管理 LIF の IP アドレスを使用した System Manager Web コンソールへの HTTPS アクセス		
SSH	22	クラスタ管理 LIF またはノード管理 LIF の IP アドレスへの SSH アクセス		
TCP	111	NFS のリモートプロシージャコール		
TCP	139	CIFS の NetBIOS サービスセッション		
TCP	161-162	簡易ネットワーク管理プロトコル		
TCP	445	NetBIOS フレーム同期を使用した Microsoft SMB over TCP		
TCP	635	NFS マウント		
TCP	749	Kerberos		
TCP	2049	NFS サーバデーモン		
TCP	3260	iSCSI データ LIF を介した iSCSI アクセス		
TCP	4045	NFS ロックデーモン		
TCP	4046	NFS のネットワークステータスモニタ		
TCP	10000	NDMP を使用したバックアップ		
TCP	11104	SnapMirror のクラスタ間通信セッションの管理		
TCP	11105	クラスタ間 LIF を使用した SnapMirror データ転送		
UDP	111	NFS のリモートプロシージャコール		
UDP	161-162	簡易ネットワーク管理プロトコル		
UDP	635	NFS マウント		
UDP	2049	NFS サーバデーモン		
UDP	4045	NFS ロックデーモン		

プロトコル	ポート	目的	
UDP	4046	NFS のネットワークステータスモニタ	
UDP	4049	NFS rquotad プロトコル	

アウトバウンドルール

Cloud Volumes 用の事前定義済みセキュリティグループ ONTAP は、すべての発信トラフィックをオープンします。これが可能な場合は、基本的なアウトバウンドルールに従います。より厳格なルールが必要な場合は、高度なアウトバウンドルールを使用します。

基本的なアウトバウンドルール

Cloud Volumes ONTAP 用の定義済みセキュリティグループには、次のアウトバウンドルールが含まれています。

プロトコル	ポート	目的
すべての ICMP	すべて	すべての発信トラフィック
すべての TCP	すべて	すべての発信トラフィック
すべての UDP	すべて	すべての発信トラフィック

高度なアウトバウンドルール

発信トラフィックに厳格なルールが必要な場合は、次の情報を使用して、 Cloud Volumes ONTAP による発信通信に必要なポートのみを開くことができます。

source は、 Cloud Volumes ONTAP システムのインターフェイス (IP アドレス) です。

サービス	プロトコル	ポート	ソース	宛先	目的
Active Directory	TCP	88	ノード管理 LIF	Active Directory フォ レスト	Kerberos V 認証
	UDP	137	ノード管理 LIF	Active Directory フォレスト	NetBIOS ネームサービス
	UDP	138	ノード管理 LIF	Active Directory フォレスト	NetBIOS データグラムサービス
	TCP	139	ノード管理 LIF	Active Directory フォレスト	NetBIOS サービスセッション
	TCP およ び UDP	389	ノード管理 LIF	Active Directory フォレスト	LDAP
	TCP	445	ノード管理 LIF	Active Directory フォレスト	NetBIOS フレーム同期を使用した Microsoft SMB over TCP
	TCP	464	ノード管理 LIF	Active Directory フォレスト	Kerberos V パスワードの変更と設定(SET_CHANGE)
	UDP	464	ノード管理 LIF	Active Directory フォレスト	Kerberos キー管理
	TCP	749	ノード管理 LIF	Active Directory フォレスト	Kerberos V Change & Set Password (RPCSEC_GSS)
	TCP	88	データ LIF (NFS 、CIFS 、iSCSI)	Active Directory フォレスト	Kerberos V 認証
	UDP	137	データ LIF (NFS 、CIFS)	Active Directory フォレスト	NetBIOS ネームサービス
	UDP	138	データ LIF (NFS 、CIFS)	Active Directory フォレスト	NetBIOS データグラムサービス
	TCP	139	データ LIF (NFS 、CIFS)	Active Directory フォレスト	NetBIOS サービスセッション
	TCP およ び UDP	389	データ LIF (NFS 、 CIFS)	Active Directory フォレスト	LDAP
	TCP	445	データ LIF (NFS 、 CIFS)	Active Directory フォレスト	NetBIOS フレーム同期を使用した Microsoft SMB over TCP
	TCP	464	データ LIF (NFS 、CIFS)	Active Directory フォレスト	Kerberos V パスワードの変更と設定(SET_CHANGE)
	UDP	464	データ LIF (NFS 、 CIFS)	Active Directory フォレスト	Kerberos キー管理
	TCP	749	データ LIF (NFS 、 CIFS)	Active Directory フォレスト	Kerberos V Change & Set Password (RPCSEC_GSS)

サービス	プロトコル	ポート	ソース	宛先	目的
AutoSupp ort	HTTPS	443	ノード管理 LIF	support.netapp.com	AutoSupport (デフォルトは HTTPS)
	HTTP	80	ノード管理 LIF	support.netapp.com	AutoSupport (転送プロトコルが HTTPS から HTTP に変更された場合のみ)
S3 への バックア ップ	TCP	5010	クラスタ間 LIF	バックアップエンド ポイントまたはリス トアエンドポイント	S3 へのバックアップ処理とリスト ア処理 フィーチャー(Feature)
クラスタ	すべての トラフィ ック	すの トフィク	1つのノード上のす べての LIF	もう一方のノードの すべての LIF	クラスタ間通信(Cloud Volumes ONTAP HA のみ)
	TCP	3000	ノード管理 LIF	HA メディエータ	ZAPI コール(Cloud Volumes ONTAP HA のみ)
	ICMP	1.	ノード管理 LIF	HA メディエータ	キープアライブ(Cloud Volumes ONTAP HA のみ)
DHCP	UDP	68	ノード管理 LIF	DHCP	初回セットアップ用の DHCP クラ イアント
DHCP	UDP	67	ノード管理 LIF	DHCP	DHCP サーバ
DNS	UDP	53	ノード管理 LIF とデ ータ LIF (NFS 、 CIFS)	DNS	DNS
NDMP	TCP	1860 0 ~ 1869 9	ノード管理 LIF	宛先サーバ	NDMP コピー
SMTP	TCP	25	ノード管理 LIF	メールサーバ	SMTP アラート。 AutoSupport に使用できます
SNMP	TCP	161	ノード管理 LIF	サーバを監視します	SNMP トラップによる監視
	UDP	161	ノード管理 LIF	サーバを監視します	SNMP トラップによる監視
	TCP	162	ノード管理 LIF	サーバを監視します	SNMP トラップによる監視
	UDP	162	ノード管理 LIF	サーバを監視します	SNMP トラップによる監視
SnapMirr or	TCP	1110 4	クラスタ間 LIF	ONTAP クラスタ間 LIF	SnapMirror のクラスタ間通信セッションの管理
	TCP	1110 5	クラスタ間 LIF	ONTAP クラスタ間 LIF	SnapMirror によるデータ転送
syslog	UDP	514	ノード管理 LIF	syslog サーバ	syslog 転送メッセージ

HA Mediator 外部セキュリティグループのルール

Cloud Volumes ONTAP HA Mediator 用に事前定義された外部セキュリティグループには、次のインバウンドルールとアウトバウンドルールが含まれています。

インバウンドルール

インバウンドルールの送信元は 0.0.0.0/0 です。

プロトコル	ポート	目的
SSH	22	HA メディエータへの SSH 接続
TCP	3000	コネクタからの RESTful API アクセス

アウトバウンドルール

HA メディエータの定義済みセキュリティグループは、すべての発信トラフィックを開きます。これが可能な場合は、基本的なアウトバウンドルールに従います。より厳格なルールが必要な場合は、高度なアウトバウンドルールを使用します。

基本的なアウトバウンドルール

HA Mediator 用の定義済みセキュリティグループには、次のアウトバウンドルールが含まれます。

プロトコル	ポート	目的
すべての TCP	すべて	すべての発信トラフィック
すべての UDP	すべて	すべての発信トラフィック

高度なアウトバウンドルール

発信トラフィックに厳格なルールが必要な場合は、次の情報を使用して、 HA メディエータによる発信通信に必要なポートだけを開くことができます。

プロトコル	ポート	宛先	目的
HTTP	80	コネクタの IP アドレス	メディエーターのアップグレードをダウンロー ドします
HTTPS	443	AWS API サービス	ストレージのフェイルオーバーを支援します
UDP	53	AWS API サービス	ストレージのフェイルオーバーを支援します

ポート 443 および 53 を開く代わりに、ターゲットサブネットから AWS EC2 サービスへのインターフェイス VPC エンドポイントを作成できます。

HA構成の内部セキュリティグループに関するルール

Cloud Volumes ONTAP HA構成用に事前定義された内部セキュリティグループには、次のルールが含まれています。このセキュリティグループを使用すると、HAノード間、メディエーターとノード間の通信が可能になります。

Cloud Manager は常にこのセキュリティグループを作成します。独自のオプションはありません。

インバウンドルール

事前定義されたセキュリティグループには、次の着信ルールが含まれています。

プロトコル	ポート	目的
すべてのトラフィッ ク	すべて	HA メディエータと HA ノード間の通信

アウトバウンドルール

定義済みのセキュリティグループには、次の発信ルールが含まれます。

プロトコル	ポート	目的
すべてのトラフィッ ク	すべて	HA メディエータと HA ノード間の通信

コネクタのルール

コネクタのセキュリティグループには、インバウンドとアウトバウンドの両方のルールが必要です。

インバウンドルール

プロトコル	ポート	目的
SSH	22	コネクタホストへの SSH アクセスを提供します
HTTP	80	クライアント Web ブラウザからローカルユーザインターフェイスへの HTTP アクセス、および Cloud Data Sense からの接続を提供します
HTTPS	443	クライアント Web ブラウザからローカルへの HTTPS アクセスを提供します ユーザインターフェイス
TCP	3128	AWS ネットワークで NAT やプロキシを使用していない場合に、 Cloud Data Sense インスタンスにインターネットアクセスを提供します

アウトバウンドルール

コネクタの事前定義されたセキュリティグループは、すべての発信トラフィックを開きます。これが可能な場合は、基本的なアウトバウンドルールに従います。より厳格なルールが必要な場合は、高度なアウトバウンドルールを使用します。

基本的なアウトバウンドルール

コネクタの事前定義されたセキュリティグループには、次のアウトバウンドルールが含まれています。

プロトコル	ポート	目的
すべての TCP	すべて	すべての発信トラフィック

プロトコル	ポート	目的
すべての UDP	すべて	すべての発信トラフィック

高度なアウトバウンドルール

発信トラフィックに固定ルールが必要な場合は、次の情報を使用して、コネクタによる発信通信に必要なポートだけを開くことができます。

送信元 IP アドレスは、コネクタホストです。

サービス	プロトコル	ポート	宛先	目的
API コールと AutoSupport	HTTPS	443	アウトバウンドイン ターネットおよび ONTAP クラスタ管 理 LIF	API が AWS や ONTAP、クラウド データ検知、ランサ ムウェアサービス、 ネットアップへの AutoSupport メッセ ージの送信を呼び出 します
API コール	TCP	3000	ONTAP HA メディエ ーター	ONTAP HA メディエ ーターとの通信
	TCP	8088	S3 へのバックアッ プ	S3 へのバックアッ プを API で呼び出し ます
DNS	UDP	53	DNS	Cloud Manager による DNS 解決に使用されます
クラウドデータの意 味	НТТР	80	Cloud Data Sense インスタンス	Cloud Volumes ONTAP に最適なク ラウドデータ

著作権情報

Copyrightゥ2022 NetApp、Inc. All rights reserved.米国で印刷されていますこのドキュメントは著作権によって保護されています。画像媒体、電子媒体、および写真複写、記録媒体などの機械媒体など、いかなる形式および方法による複製も禁止します。 テープ媒体、または電子検索システムへの保管-著作権所有者の書面による事前承諾なし。

ネットアップの著作物から派生したソフトウェアは、次に示す使用許諾条項および免責条項の対象となります。

このソフトウェアは、ネットアップによって「現状のまま」提供されています。ネットアップは明示的、または商品性および特定目的に対する適合性の暗示的保証を含み、かつこれに限定されないいかなる暗示的な保証も行いません。ネットアップは、いかなる場合でも、間接的、偶発的、特別、懲罰的、またはまたは結果的損害(代替品または代替サービスの調達、使用の損失、データ、利益、またはこれらに限定されないものを含みますが、これらに限定されません。) ただし、契約、厳格責任、または本ソフトウェアの使用に起因する不法行為(過失やその他を含む)のいずれであっても、かかる損害の可能性について知らされていた場合でも、責任の理論に基づいて発生します。

ネットアップは、ここに記載されているすべての製品に対する変更を随時、予告なく行う権利を保有します。 ネットアップによる明示的な書面による合意がある場合を除き、ここに記載されている製品の使用により生じ る責任および義務に対して、ネットアップは責任を負いません。この製品の使用または購入は、ネットアップ の特許権、商標権、またはその他の知的所有権に基づくライセンスの供与とはみなされません。

このマニュアルに記載されている製品は、1つ以上の米国特許、その他の国の特許、および出願中の特許によ特許、その他の国の特許、および出願中の特許。

権利の制限について:政府による使用、複製、開示は、 DFARS 252.227-7103 (1988 年 10 月)および FAR 52-227-19 (1987 年 6 月)の Rights in Technical Data and Computer Software (技術データおよびコンピュータソフトウェアに関する諸権利)条項の(c) (1)(ii)項、に規定された制限が適用されます。

商標情報

NetApp、NetAppのロゴ、に記載されているマーク http://www.netapp.com/TM は、NetApp、Inc.の商標です。 その他の会社名と製品名は、それを所有する各社の商標である場合があります。