_ '

A very little bit about Time Series Analysis

- Given a time series, can we tell if it is chaotic (deterministic) or stochastic (produced by a non-deterministic process)? Yes
- The idea is to invert the procedure we used to generate orbits of the logistic function—use the orbits (i.e., the data) to generate the function!

 $\bullet \;$ We used a function like this to determine $x_{n+1},$ the next x value, given $x_n,$ the current x value.

© David P. Feldman and SFI

http://hornacek.coa.edu/dave

Real Data

• Suppose we have some real data:

 $x_1 = 14$

 $x_2 = 24$ $x_3 = 52$

A_3 - 3.

 $x_4 = 61$ $x_5 = 42$

• Plot it as follows:

- ullet The idea is that we're plotting x_{n+1} vs. x_n .
- Do this for lots and lots of data.

© David P. Feldman and SFI

http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2005: Time Series Analysis

Determinism vs. Stochasticity

• If the data is deterministic, the plot will look like this:

- ullet For a given x_n there is just one x_{n+1} .
- If the data is from a non-deterministic source, the plot will look like this:

ullet For a given x_n there can be many x_{n+1} 's.

SFI CSSS, Beijing China, July 2005: Time Series Analysis

Time Series Conclusion

- This sort of approach is a powerful and successful technique for analyzing experimental data.
- There's much, much more to it than this, however.
- $\bullet \ \ \text{For more, see, e.g.,}$
 - Kantz and Schreiber, Nonlinear Time Series Analysis.
 Cambridge. 1999.
 - Abarbanel. Analysis of Observed Chaotic Data. Springer-Verlag. 1996.
 - Bradley, Time-series analysis. www.cs.colorado.edu/ ~lizb/papers/ida-chapter.html. 1998.