

1 1. A receiver comprising:

2 a bank of correlators for receiving a signal that is a linear combination of a
3 set of signature signals that has undergone some distortion; and

4 a correlation shaper operating on a vector output from the bank of
5 correlators.

6 2. The receiver of claim 1, wherein the bank of correlators is a decorrelator receiver.

7 3. The receiver of claim 1, wherein the bank of correlators is a matched filter
8 receiver.

9 4. The receiver of claim 1, wherein the correlation shaper is a whitening
10 transformation.

11 5. The receiver of claim 4, wherein the whitening transformation is determined by
12 minimizing the mean squared error between the vector output from the bank of
13 correlators and an output vector from the correlation shaper.

14 6. The receiver of claim 1, wherein the correlation shaper is comprised of a
15 transformation, the transformation being determined by minimizing the mean
16 squared error between the vector output from the bank of correlators and an
17 output vector of the correlation shaper.

18 7. The receiver of claim 1, wherein the correlation shaper is chosen so that a
19 covariance matrix of an output vector of the correlation shaper has the property
20 that the second and subsequent rows are permutations of the first row.

21 8. The receiver of claim 7, wherein the correlation shaper is also chosen by
22 minimizing the mean squared error between the vector output from the bank of
23 correlators and the output vector from the correlation shaper.

24 9. The receiver of claim 1, wherein the correlation shaper is a subspace whitening
25 transformation.

1 10. The receiver of claim 9, wherein the subspace whitening transformation is
2 determined by minimizing the mean squared error between the vector output from
3 the bank of correlators and an output vector from the correlation shaper.
4 11. The receiver of claim 6, wherein the transformation is performed on a subspace.
5 12. The receiver of claim 1, wherein the correlation shaper is chosen so that a
6 covariance matrix of a representation of an output vector from the correlation
7 shaper in the space in which it lies has the property that the second and
8 subsequent rows are permutations of the first row.
9 13. The receiver of claim 12, wherein the correlation shaper is determined by
10 minimizing the mean squared error between the vector output from the bank of
11 correlators and the output vector from the correlation shaper.
12 14. The receiver of claim 1, wherein the bank of correlators cross-correlates the
13 received signal with a set of orthogonal signals.
14 15. The receiver of claim 14, wherein the set of orthogonal signals is determined by
15 minimizing the least-squares error between the set of orthogonal signals and the
16 set of signature signals.
17 16. The receiver of claim 14, wherein the set of orthogonal signals is determined by
18 minimizing the least-squares error between the set of orthogonal signals and a set
19 of decorrelator signals.
20 17. The receiver of claim 1, wherein the bank of correlators cross-correlates the
21 received signal with a set of geometrically uniform signals.
22 18. The receiver of claim 17, wherein the set of geometrically uniform signals is
23 determined by minimizing the least-squares error between the set of geometrically
24 uniform signals and the set of signature signals.
25 19. The receiver of claim 17, wherein the set of geometrically uniform signals is
26 determined by minimizing the least-squares error between the set of geometrically
27 uniform signals and a set of decorrelator signals.
28 20. The receiver of claim 1, wherein the bank of correlators cross-correlates the
29 received signal with a set of projected orthogonal signals.

1 21. The receiver of claim **20**, wherein the set of projected orthogonal signals is
2 determined by minimizing the least-squares error between the set of projected
3 orthogonal signals and the set of signature signals.

4 22. The receiver of claim **20**, wherein the set of projected orthogonal signals is
5 determined by minimizing the least-squares error between the set of projected
6 orthogonal signals and a set of decorrelator signals.

7 23. The receiver of claim **1**, wherein the bank of correlators cross-correlates the
8 received signal with a set of projected geometrically uniform signals.

9 24. The receiver of claim **23**, wherein the set of projected geometrically uniform
10 signals is determined by minimizing the least-squares error between the set of
11 projected geometrically uniform signals and the set of signature signals.

12 25. The receiver of claim **23**, wherein the set of projected geometrically uniform
13 signals is determined by minimizing the least-squares error between the set of
14 projected geometrically uniform signals and a set of decorrelator signals.

15 26. The receiver of claim **1**, further comprising a bank of detectors operating on the
16 output from the correlation shaper.

17 27. A method for processing signals in a multi-signature system comprising the steps
18 of:
19 receiving a signal that is a linear combination of a set of signature signals
20 that has undergone some distortion;
21 processing the received signal to obtain a vector output; and
22 shaping the correlation of the vector output.

23 28. The method of claim **27**, wherein shaping the correlation of the vector output
24 further comprises the step of performing a whitening transformation on the vector
25 output.

1 29. The method of claim 28, wherein performing the whitening transformation further
2 comprises the step of minimizing the mean squared error between the vector
3 output and an output vector from the whitening transformation.

4 30. The method of claim 27, wherein shaping the correlation of the vector output
5 further comprises the step of performing a transformation on the vector output,
6 wherein the transformation is determined by minimizing the mean squared error
7 between the vector output and an output vector of the transformation.

8 31. The method of claim 27, wherein shaping the correlation of the vector output
9 further comprises the step of performing a transformation of the vector output
10 such that the covariance matrix of the vector output of the transformation has the
11 property that the second and each subsequent row is a permutation of the first.

12 32. The method of claim 31, wherein performing the transformation further comprises
13 the step of minimizing the mean squared error between the vector output and the
14 output vector from the transformation.

15 33. The method of claim 27, wherein shaping the correlation of the vector output
16 further comprises the step of performing a subspace whitening transformation on
17 the vector output.

18 34. The method of claim 33, wherein performing the subspace whitening
19 transformation further comprises the step of minimizing the mean squared error
20 between the vector output and an output vector from the subspace whitening
21 transformation.

22 35. The method of claim 27, wherein shaping the correlation of the vector output
23 further comprises the step of performing a transformation of the vector output
24 such that the covariance matrix of the representation of the output vector of the
25 transformation on the space in which it lies has the property that the second and
26 each subsequent row is a permutation of the first.

1 **36.** The method of claim **35**, wherein performing the transformation further comprises
2 the step of minimizing the mean squared error between the vector output and the
3 output vector from the transformation.

4 **37.** The method of claim **27**, wherein shaping the correlation of the vector output
5 further comprises the step of cross-correlating the received signals with a set of
6 orthogonal signals.

7 **38.** The method of claim **37**, further comprising the step of minimizing the least-
8 squares error between the signature signals and the set of orthogonal signals.

9 **39.** The method of claim **37**, further comprising the step of minimizing the least-
10 squares error between the set of orthogonal signals and a set of decorrelator
11 signals.

12 **40.** The method of claim **27**, wherein shaping the correlation of the vector output
13 further comprises the step of cross-correlating the received signal with a set of
14 geometrically uniform signals.

15 **41.** The method of claim **40**, further comprising the step of minimizing the least-
16 squares error between the signature signals and the set of geometrically uniform
17 signals.

18 **42.** The method of claim **40**, further comprising the step of minimizing the least-
19 squares error between the set of geometrically uniform signals and a set of
20 decorrelator signals.

21 **43.** The method of claim **27**, wherein shaping the correlation of the vector output
22 further comprises the step of shaping the correlation of the vector output on a
23 subspace by cross-correlating the received signals with a set of projected
24 orthogonal signals.

25 **44.** The method of claim **43**, further comprising the step of minimizing the least-
26 squares error between the set of projected orthogonal signals and the signature
27 signals.

1 45. The method of claim 43, further comprising the step of minimizing the least-
2 squares error between the projected orthogonal signals and a set of decorrelator
3 signals.

4 46. The method of claim 27, wherein shaping the correlation of the vector output
5 further comprises the step of shaping the correlation of the vector output on a
6 subspace by cross-correlating the received signal with a set of projected
7 geometrically uniform signals.

8 47. The method of claim 46, further comprising the step of minimizing the least-
9 squares error between the projected geometrically uniform signals and the
10 signature signals.

11 48. The method of claim 46, further comprising the step of minimizing the least-
12 squares error between the projected geometrically uniform signals and a set of
13 decorrelator signals.