Y V 7 II

Apellido y Nombre:

- 1) Hallar la valuación de la fórmula heta para todas las interpretaciones posibles e identificar las interpretaciones donde $I \models \theta$. (Usar reglas de prioridad.) (10p) $\theta = p \Rightarrow p \land q \Rightarrow p \land p \lor q \land r$
- 2) Dadas las siguientes sucesiones definidas por recurrencia:

<i>i</i>).	$\int a_0 = 0,$	$a_1 = 4$,	$a_2 = 12$			$(ii) \begin{cases} a_0 = 7 \\ a_n = a_{n-1} + 4n si n \ge 1 \end{cases}$
1)	$a_n + a_{n-1}$	$-a_{n-2}$	$a_{n-3} = 0$	si	$n \ge 3$	$\begin{cases} a_n = a_{n-1} + 4n & si n \ge 1 \end{cases}$

- a) Hallar los 5 primeros términos de la sucesión de cada una. (10p)
- Resolver la ecuación de recurrencia asociada a la sucesión dada en i) (20p) b)
- C) Encontrar una expresión no recursiva de la sucesión ii). (10p)
- Determinar la estructura algebraica del par (A ,+) justificando cada paso,

 $A = \{x/x = 2k, k \in Z\}$ y la operación "+" definida: x + y = 2.x(20p)

- 4) Probar que en un álgebra de Boole: $\forall a, b \in A : (a+b) \cdot (a+b') = a$ (10p)
- 5) Dada la función booleana mediante la siguiente tabla:
 - a) Simplificar usando mapas de Karnaugh. (10p)
 - b) Construir el diagrama de compuertas de la función simplificada. (10p)

X	У	4	u	1
1	1	1	1	1
1 1 1	1	1	0	1
	1	0	1	0
1	1	0	0	1
1 1 1	0	1	1	0
1	0	1	0	1
1	0	0	1	0
1	0	0	0	1
0	1	1	1	0
0	1	1	0	1
0	1	0	1	1
0	1	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	0	1	0
0	0	0	0	- 1

22/09/23 Primer Parcial de Lógica y Matemática Computacional Profesor: Apellido y Nombre:

Tema 2

- 1) Hallar la valuación de la fórmula heta para todas las interpretaciones posibles e identificar las interpretaciones donde $I = \theta$. (Usar reglas de prioridad.) (10p) $\theta = p \land r \Rightarrow p \Rightarrow \neg r \lor \neg p \lor q$
- Dadas las siguientes sucesiones definidas por recurrencia:

$$i) \begin{cases} a_0 = 0, & a_1 = 7, & a_2 = 10 \\ a_n - a_{n-1} - a_{n-2} + a_{n-3} = 0 & si \quad n \ge 3 \end{cases} ii) \begin{cases} a_0 = 5 \\ a_n = a_{n-1} + 3n & si \quad n \ge 1 \end{cases}$$

- Hallar los 5 primeros términos de la sucesión de cada una. (10p)
- Resolver la ecuación de recurrencia asociada a la sucesión dada en i) (20p)
- Encontrar una expresión no recursiva de la sucesión ii). (10p)
- 3) Determinar la estructura algebraica del par (A ,+) justificando cada paso,

$$A = \{x/x = 2k, k \in Z\}$$
 y la operación "+" definida: $x + y = 2.y$ (20p)

- 4) Probar que en un álgebra de Boole: $\forall a, b \in A : (a+b') \cdot (a+b) = a$ (10p)
- 5) Dada la función booleana mediante la siguiente tabla:
 - a) Simplificar usando mapas de Karnaugh. (10p)
 - b) Construir el diagrama de compuertas de la función simplificada. (10p)

Х	У	Z	u	f
1	1	1	1	1
1	1	1	0	0
1	1	0	1	0
1	1	0	0	0
1	0	1	1	1
1	0	1	0	1
1	0	0	1	. 1
1	0	0	0	1
0	1	1	1	0
0	1	1	0	0
0	1	0	1	1
0	1	0	0	0
0	0	1	1	1
0	0	1	0	1
0	0	0	1	1
0	0	0	0	1

Apellido y Nombre:

- 1) Hallar la valuación de la fórmula θ para todas las interpretaciones posibles e identificar las interpretaciones donde $I \models \theta$. (Usar reglas de prioridad.) (10p) $\theta = p \Rightarrow p \land q \lor r \Rightarrow p \land p \lor q$
- 2) Dadas las siguientes sucesiones definidas por recurrencia:

<i>i</i>) <	$\int a_0 = 0,$	$a_1 = 3$,	$a_2 = 14$				$a_0 = 3$		
	$a_n + a_{n-1}$	$-a_{n-2}$	$a_{n-3}=0$	si	$n \ge 3$	$\{a\}$	$a_0 = 3$ $a_0 = a_{n-1} + 8n$	si	$n \ge 1$

- a) Hallar los 5 primeros términos de la sucesión de cada una. (10p)
- b) Resolver la ecuación de recurrencia asociada a la sucesión dada en i) (20p)
- c) Encontrar una expresión no recursiva de la sucesión ii). (10p)
- 3) Determinar la estructura algebraica del par (A ,+) justificando cada paso, siendo:

$$A = \{x/x = 2k, k \in Z\}$$
 y la operación "+" definida: $x + y = 3.x$ (20p)

- 4) Probar que en un álgebra de Boole: $\forall x, y \in A : (x+y) \cdot (x+y') = x$ (10p)
- 5) Dada la función booleana mediante la siguiente tabla:
 - a) Simplificar usando mapas de Karnaugh. (10p)
 - b) Construir el diagrama de compuertas de la función simplificada. (10p)

Х	У	Z	u	1 -
1	1	1	1	0
1	1	1	0	, 1
1	1	0	1	1
1	1	0	0	1
1	0	1	1	0
1	0	1	0	1
1	0	0	1	0
0	0	0	0	1
	1	1	1	1
0	1	1	0	1
0	1	0	1	0
0	1	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	0	1	0
0	0	0	0	1

Tema 4

V V 7 11 f

22/09/23 Primer Parcial de Lógica y Matemática Computacional Apellido y Nombre: Profesor:

- 1) Hallar la valuación de la fórmula θ para todas las interpretaciones posibles e identificar las interpretaciones donde $I \models \theta$. (Usar reglas de prioridad.) (10p) $\theta = p \land r \Rightarrow p \lor r \Rightarrow \neg r \lor \neg p \lor q$
- 2) Dadas las siguientes sucesiones definidas por recurrencia:

$$i) \begin{cases} a_0 = 0, & a_1 = 9, & a_2 = 14 \\ a_n - a_{n-1} - a_{n-2} + a_{n-3} = 0 & si \quad n \ge 3 \end{cases} \quad ii) \begin{cases} a_0 = 2 \\ a_n = a_{n-1} + 6n & si \quad n \ge 1 \end{cases}$$

- a) Hallar los 5 primeros términos de la sucesión de cada una. (10p)
- b) Resolver la ecuación de recurrencia asociada a la sucesión dada en i) (20p)
- c) Encontrar una expresión no recursiva de la sucesión ii). (10p)
- 3) Determinar la estructura algebraica del par (A ,+) justificando cada paso, siendo:

$$A = \{x/x = 2k, k \in Z\}$$
 y la operación "+" definida: $x + y = 3.y$ (20p)

- 4) Probar que en un álgebra de Boole: $\forall x, y \in A: (x+y') \cdot (x+y) = x$ (10p)
- 5) Dada la función booleana mediante la siguiente tabla:
 - a) Simplificar usando mapas de Karnaugh. (10p)
 - b) Construir el diagrama de compuertas de la función simplificada. (10p)

	-	1		
1	1	1	1	0
1	1	1	0	0
1	1	0	1	1
1	1	0	0	0
1	0	1	1	1
1	0	1	0	1
1	0	0	1	1
1	0	0	0	1
0	1	1	1	1
0	1	1	0	0
0	1	0	1	0
0	1	0	0	0
0	0	1	1	1
0	0	1	0	1
0	0	0	1	1
0	0	0	0	1
	0			

x y z u