A Study of the T(1) Transition of Poly[bis(trifluoroethoxy)phosphazene] (PBFP) Using Solid-State Nuclear Magnetic Resonance Spectroscopy

by

Scott G. Young and Joseph H. Magill

MATERIALS SCIENCE AND ENGINEERING

University of Pittsburgh Pittsburgh, Pennsylvania 15261

S DTIC S ELECTE D MAY 1 2 1989 D

this document has been approved to public release and sales in

89 5 12 008

A Study of the T(1) Transition of Poly[bis(trifluoroethoxy)phosphazene] (PBFP) Using Solid-State Nuclear Magnetic Resonance Spectroscopy

by

Scott G. Young and Joseph H. Magill

School of Engineering University of Pittsburgh Pittsburgh, PA 15261

This document has been approved for pable release and sale; imdistribution is animated.

SECURITY CLASSIFICATION OF THIS PAGE	REPORT DOCUM	ENTATION	PAGE		
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	·		
None			None		
2a. SECURITY CLASSIFICATION AUTHORITY None	{	3 . DISTRIBUTION	/AVAILABILITY OF R	EPORT	
2b. DECLASSIFICATION / DOWNGRADING SCHEDU None	LE	Uni	Limited		
4 PERFORMING ORGANIZATION REPORT NUMBE	R(S)		ORGANIZATION REPO	•	S)
ONR # 11	İ	ONR I	000014-85-K-03	358	
6a. NAME OF PERFORMING ORGANIZATION		7a. NAME OF MO	ONITORING ORGANIZ	ATION	
University of Pittsburgh	(If applicable)	Office o	of Naval Resea	rch	
6c. ADDRESS (City, State, and ZIP Code)		76. ADORESS (Cit	ry, State, and ZIP Coo	de)	
848 Benedum Engineering Hall School of Engineering			th Quincy Aver	nue	
Univ. of Pittsburgh, Pgh.,	PA 15261	Arlingto	on, VA 22217		
8a. NAME OF FUNDING/SPONSORING	1	9. PROCUREMEN	T INSTRUMENT IDEN	TIFICATION N	UMBER
ORGANIZATION Office of Naval Research	(If applicable)				
8c. ADDRESS (City, State, and ZIP Code)	L	10. SOURCE OF I	FUNDING NUMBERS		
800 North Quincy Avenue		PROGRAM		ASK	WORK UNIT
Arlington, VA 22217	}	ELEMENT NO.	NO.	NO.	ACCESSION NO.
11. TITLE (Include Security Classification)				1	
A Study of the T(1) Transiti	on of Polylbis(t	rifluoroeth	oxy)phosphaze	ne] Using	Solia
State NMR Spectroscopy 12. PERSONAL AUTHOR(S)					
S. G. You	ing and J. H. Mag	ill			
13a. TYPE OF REPORT 13b. TIME C FROM	OVERED 1 985 TO	4. DATE OF REPO 1989 /	ORT (Year, Month, Da 5 / 4	y) 15. PAGE	COUNT 14
16. SUPPLEMENTARY NOTATION		"	11	:	
То	be published in	Macromolec	ules in 1989.		
17. COSATI CODES	18. SUBJECT TERMS (CO	ontinue on revers	e if necessary and in	dentify by blo	ck number)
FIELD GROUP SUB-GROUP	-				٠.,
;			in equilib	rice un u	, Th
19 ABSTRACT (Continue on reverse if necessary					
In situ solid state variable					
Poly[bis(trifluoroethoxy)phospha T(1). A single mobile ordered 2					
there is a 3D phase in agreeme					
side chains exhibit similar mob	ility on either side	of the 2D	₹3D transitio	on. The a	ctivation
energies associated with the CF kJ/mole. The spin lattice relax	12 and Cr3 side gro	oups are ECI	To (17.3 KJ/mo	ole and EC	F ₃ 13.7
respectively. The crystallinity					
upon annealing conditions and te				5-4 CF3	
Key words: Solid State NMR; p	olyphosphazene: co	nformations	l mobility acti	vation ene	rgies and
relaxation times. Nuclear Mag				hour = "	
phospha gene. 1 Hole		<u> </u>	11. CHZ 2		
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS		21. ABSTRACT S	ECURITY CLASSIFICAT	TION	
22a NAME OF RESPONSIBLE INDIVIDUAL Dr. Kenneth J. Wynne		226 TELEPHONE 202-696-	(Include Area Code)	22c. OFFICE	SYMBOL
		<u> </u>			

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>(</u>	No. Copies	<u>!</u>
Office of Naval Research Attn: Code 413 800 N. Quincy Street Arlington, Virginia 22217	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529
Or. Bernard Douda Naval Weapons Support Center Code 5042 Crane, Indiana 47522	1	Naval Weapons Center Attn: Or. Ron Atkins Chemistry Division China Lake, California 93555
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Washington, D.C. 20360	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112
OTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1	Accession For MTIS GRA&I DTIC TAB Unannounced Justification
		By

Avail and/or Special

Dist

A STUDY OF THE T(1) TRANSITION OF POLY[BIS(TRIFLUOROETHOXY)PHOSPHAZENE] (PBFP) USING SOLID-STATE NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Scott G. Young and Joseph H. Magill*

School of Engineering University of Pittsburgh Pittsburgh, PA 15261

Background

Considerable interest has been developed in thermotropic polymers generally over the past decade or more.¹⁻³ In semicrystalline polyphosphazenes three transitions have been established: glass temperature T_o , thermotropic (mesophase) transition T(1), and melting transition, T_m. Whenever the side group chemistry is altered these parameters scale linearly⁴ in a plot of $(T_m-T_g)/(T_m-T(1))$ against $T(1)/T_m$. The first order transitions T(1)and T_m are well known for PBFP,³ typically T(1)~85°C and T_m ~242°C. T_g lies well below these transitions at -66°C approximately. Interestingly, there is a significant change in the location and magnitude of the T(1) transition whenever polyphosphazenes are heated and cooled. In PBFP specifically crystallized from solution, samples are usually spherulitic. Small angle X-ray measurements made on crystal mats formed at room temperature, indicate that lamellae of ~140 Å are obtained. The crystallinity of these specimens is surprisingly low (< 50%) and the crystal structure is monoclinic. When heated through T(1) the sample undergoes some form of chain extension. The thermotropic state is comprised of molecules hexagonally packed in arrays or domains. In this condition they have considerable fluidity as creep and other measurements substantiate.⁵ The interchain spacing has been assessed by X-ray and electron

^{*}also Materials Science and Engineering Department

diffraction⁶ which confirms the hexagonal arrangement in the 2D δ -state.^{6, 7} Whenever PBFP is cooled from the molten state it returns very rapidly to the 2D hexagonally packed phase and finally crystallizes into a 3D orthorhombic structure below $T(1)^{**}$ (i.e., different from the original monoclinic form). Apparently the transformation occurs through relatively small displacements or translations in the chain direction so as to allow growth to occur laterally with an Avrami⁸ n=2. The crystallinity of PBFP returned to room temperature is much higher than the starting specimen and the location and enthalpy of the T(1) transition is increased substantially upon thermal cycling. The chain packing and the resultant 3D ordering shows that T(1) and $\Delta H[T(1)]$ asymptotically approach an upper limit in PBFP and in other polyphosphazenes.³ Dilatometry measurements⁵ clearly indicates the first order nature of T(1) and T_m as well as a significant volume change (~6%) that is associated with material expansion and enhanced mobility that occurs at both of these temperatures.

Wide-line nuclear magnetic resonance (NMR) and X-ray measurements were made on PBFP about a decade ago.⁹ It was reported that the thermotropic state of this polymer is involved with rapidly rotating chains in a hexagonal lattice that exhibited both lateral order and longitudinal disorder. This condition or state was attributed to the onset of rapid side group and backbone chain motions.

Now that solid-state NMR has emerged as a technique for studying local molecular dynamics and conformational changes through decoupling side group and main chain motions, its application to polyphosphazenes is not surprising. The first high-resolution solid-state NMR study of polyphosphazenes was reported only one year ago by Crosby and Haw. ¹⁰ ³¹P magic-angle spinning (MAS) NMR was used to examine the hydrolysis and cross-linking of poly(dichlorophosphazene). The molecular dynamics of poly(dimethyloxyphosphazene) (PBMP) and poly(diethoxyphosphazene) (PBEP) was studied using ³¹P MAS and ¹³C cross-polarization (CP)/MAS NMR at various temperatures. The results from this investigation indicate that the main chains of PBEP and PBMP are undergoing large-amplitude anisotropic motions above their respective glass transition temperatures. Crosby and Haw concluded that ³¹P MAS and ¹³C

^{**}After the first thermal cycle through T(1), the 3D orthorhombic phase dominates below T(1).

CP/MAS NMR can be used to study molecular dynamics in phosphazene polymers.

More recently Tonelli and coworkers^{11, 12} investigated the phase transitions of poly[bis(p-ethylphenoxy)phosphazene (PBEPP). They used ³¹P MAS/dipolar decoupling (DD) at several temperatures and found a sudden decrease in line width corresponding to the crystal - liquid crystal transition which occurred above 100°C. They concluded that considerable backbone motion occurs whenever PBEPP passes into the thermotropic phase. From the spin-lattice relaxation times, T₁, of the carbon atoms on the side group, they reported that the side chains were also mobile in the thermotropic phase. According to this work, short spin-lattice relaxation times observed only for the protonated aromatic carbons in the 3D crystal indicate that phenyl rings are mobile and rotating about their 1,4-axes even below the T(1) transition.

Experimental

Solution crystallized poly[bis(trifluoroethoxy)phosphazene], PBFP ($M_w = 300.000$ and $M_w/M_n = 2.3$), was studied in our laboratory using ^{31}P and ^{13}C MAS variable temperature NMR. ^{1}H decoupling was used for ^{13}C but not for ^{31}P . The spectra were recorded between room temperature and $100^{\circ}C$ on a Brüker MSL 300 NMR spectrometer. Magic angle sample spinning was performed at speeds of 2.0 - 4.0 kHz. The samples were spun in aluminum oxide rotors with teflon end caps. ^{31}P spectra were recorded at $10^{\circ}C$ intervals from $20^{\circ}C$ to $100^{\circ}C$ which was the upper limit of this equipment. The sample was then cooled at 10° intervals and spectra were recorded at each interval. This procedure was repeated to ensure reproducibility.

Figure 1a shows selected ³¹P NMR spectra for PBFP obtained during the heating process at 20°C, 60°C, and 100°C and Figure 1b provides spectra recorded during the cooling process at 80°C, 50°C, and 20°C. Below the T(1) transition there are two peaks corresponding to the amorphous*** and crystalline regions respectively. As the polymer is heated through T(1) and cooled down again to room temperature the peak area corresponding to the crystalline region increases, in accordance with DSC and X-ray measurements. The relative areas of the crystalline and amorphous peaks are listed in

^{****}Amorphous in this context is presumed to be structure that is less than 3D order.

Table 1 as a function of thermal history.

The ³¹P chemical shift referenced against H₃PO₄ (0 ppm) of the amorphous phase decreases as the temperature increases. A small increase in the ³¹P chemical shift occurs just before the T(1) transition temperature is reached corresponding to a change in conformation as the chain backbone extends. This change is affected by the coexisting crystalline phase. The decrease in magnitude of the chemical shift suggests that the nuclei are becoming more shielded as the temperature is increased during the transformation into the 2D thermotropic phase. The magnitude of the chemical shift increases with thermal cycling as the state of the material alters.

The temperature dependence of the ³¹P line width of the amorphous phase during the first heating cycle is shown in Figure 2. Note that the line width sharpens as more thermal energy enters the sample, except at temperatures just before the T(1) transition. The increase in the line width which occurs just before T(1) is reached is is probably due to reorganization taking place before this transition. Cooling after the heating cycle results in an increase in the spectral line width that is measured at room temperature. During the second heating the spectral line width drops to a minimum value before peaking at approximately 75°C, as compared to 50°C that is observed for the first heating cycle. An enhancement of 3D ordering occurs upon cycling the sample as the results in Table 1 indicate.

¹³C MAS ¹H decoupled NMR spectra of PBFP obtained at 23°C and 100°C were almost identical except for a small decrease in line width of the single peak which is consistent with the enhanced mobility of the CH₂ portion of the side group in [-N=P(OCH₂CF₃)₂-]_x. As the sample passes through the T(1) transition it occupies a larger volume according to dilatometry results made on PBFP. It therefore follows that the side chains have mobility even in the 3D phase of PBFP. The fluorine atoms on the end carbon atom split the signal into a quartet as anticipated from their chemical structure. Furthermore, ¹³C spin-lattice relaxation measurements made through T(1) for the CH₂ and CF₃ side groups on PBFP are 1.7 seconds and 3.5 seconds respectively. The corresponding activation energies associated with these groups are estimated to be E_{CH₂}~17.3 kJ/mol and E_{CF₂}~13.7 kJ/mol.

Since the upper temperature limit for in situ spinning in our Bruker spectrometer was limited to 100°C, the PBFP sample was annealed at 200°C outside of the instrument and slowly cooled to room temperature again. The ³¹P MAS NMR plot of line width vs. temperature of this sample is shown in Figure 3. The spectral line width measured at room temperature is now much broader than it was before annealing. However, as the specimen temperature is increased stepwise in 10°C intervals to 100°C, the line width sharpens. This behavior is more pronounced (three to four times), but it is still consistent with the trend found before annealing. The increased line width observed at 30°C is due to the inherently higher crystallinity, which now suppresses the mobility of the phosphorus-nitrogen backbone below T(1). These results are in accord with the observations of Sun and Magill³ who found that annealing and thermal cycling of PBFP and other polyphosphazenes also increases their crystallinity. Solution ³¹P NMR was performed on the PBFP sample to determine if the chemical structure was altered due to annealing. A sharp singlet at -6.9 ppm before and after annealing indicated that no chemical change had occurred.

In conclusion, these preliminary results serves to show that solid-state variable temperature NMR is a useful technique that can be used to study in situ molecular chain dynamics, chain conformation, and specimen crystallinity, in accordance with the morphology of PBFP. Two distinct crystalline and amorphous regions are clearly exhibited by the chain backbone below T(1). A single highly mobile ordered 2D phase exists above T(1) in line with our other solid state observations and properties. The -OCH₂CF₃ side branches of the polymer exhibit mobility below the T(1) transition and appear to have a similar mobility and conformation on either side of the T(1) transition. The crystalline-amorphous ratio in PBFP assessed by solid-state NMR is strongly dependent upon annealing conditions and temperature of measurement.

Acknowledgments

The authors thank Professor George Marcelin for use of the NMR facilities, Dr. F. T. Lin for performing the solution NMR, the National Science Foundation (Polymers Program), and the Office of Naval Research (Chemistry Division) for support of the work.

References

- Singler, R. E., Schneider, N. S., and Hagnauer, G. L., Polymer Eng. Sci., 1975, 15, 321.
- 2. Allcock, H. R., Sci. Prog., 1980, 66, 355.
- 3. Sun, D. C. and Magill, J. H., Polymer, 1987, 28, 1243.
- 4. Kojima, M. and Magill, J. H. in "Morphology of Polymers", B. Sedlacek, ed., Walter de Gruyter & Co., New York, 1986.
- 5. Masuko, M., Simeone, R. L., Magill, J. H., and Plazek, D. J., Macromolecules, 1984, 17, 2857.
- 6. Kojima, M. and Magill, J. H., Die. Makromol. Chemie, 1985, 186, 649.
- 7. Schneider, N. S. and Desper, C. R. in "Liquid Crystalline Order", A. Blumstein, ed., Chap. 9, Academic Press, New York, 1978.
- Ciora, R. J., Sun, D. C., and Magill, J. H., Proceedings Sixteenth North
 American Thermal Analysis Society, Washington, D. C., Sept. 27-30 1987,
 p. 325.
- 9. Alexander, M. N., Desper, C. R., Sagalyn, P. L., and Schneider, N. S., Macromolecules, 1977, 10, 721.
- 10. Crosby, R. C. and Haw, J. F., Macromolecules, 1987, 20, 2324.
- 11. Tonelli, A. E., Gomez, M. A., Tanaka, H., and Schilling, F. C., Polymer Preprints, 1988, 29, 440.
- 12. Tanaka, H., Gomez, M. A., Tonelli, A. E., Chichester-Hicks, S. V., and Haddon, R. C., *Macromolecules*, 1988, 21, 2301.

LIST OF FIGURES

Figure 1a	³¹ P NMR spectra of PBFP at 20°C, 60°C, and 100°C
	during heating.
Figure 1b	³¹ P NMR spectra of PBFP at 80°C, 50°C, and 20°C
	during cooling from 100°C.
Figure 2	³¹ P MAS line width from the amorphous phase of
	PBFP during heating and cooling (first thermal
	cycle).
Figure 3	³¹ P MAS line width of PBFP during heating and
	cooling after annealing at 200°C.

Figure 1a

Figure 1b

Figure 2

Figure 3

LIST OF TABLES

Table 1 Percent crystallinity of PBFP assessed from relative areas of the amorphous and crystalline ³¹P peaks.

Table 1

Temperature (°C)	Crystallinity	Amorphous	
1 st Heating			
20	25% 75%		
30	25%	75%	
40	16%	84%	
50	9%	91%	
1 st Cooling			
50	35%	65%	
40	48%	52%	
30	50%	50%	
20	54%	. 46%	
2 nd Heating			
30	52%	48%	
40	41%	59%	
50	14%	86%	
2 nd Cooling			
60	23%	77%	
40	35%	65%	
24	54%	46%	