Appendix 1

Instructions for the Reproduction of the Results in the Paper

First, go to https://github.com/millanp95/DeLUCS and clone the repository. Then run the series of commands for each test.

Test #1:

- python build dp.py --data path='../data/Vertebrata/Test Files'
- 2. python get_pairs.py --data_path='../data/Vertebrata/Test Files/train.p'
 --k=6 --modify='mutation' --output='../data/Vertebrata/Test
 Files/testing data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Vertebrata/Test Files'
 --out dir='../data/Vertebrata/Test Files'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Vertebrata/Test Files/testing data.p' --method='Supervised' --k=6
- python EvaluateComparison.py --data_path='../data/Vertebrata/Test
 Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Vertebrata/Test Files/train.p' --method='GMM' --k=6 --k=6

Test #2:

- 1. python build dp.py --data path='.../data/Fish/Test Files/Actinopterygii'
- 2. python get_pairs.py --data_path='../data/Fish/Test
 Files/Actinopterygii/train.p' --k=6 --n_mimics=8 --modify='mutation'
 --output=../data/Fish/Test Files/Actinopterygii/testing data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Actinopterygii'
 --out dir='../data/Fish/Test Files/Actinopterygii'

- python EvaluateComparison.py --data_path='../data/Fish/Test
 Files/Actinopterygii/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='.../data/Fish/Test Files/Actinopterygii/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Actinopterygii/train.p' --method='GMM' --k=6

Test #3:

- 1. python build dp.py --data path='../data/Fish/Test Files/Neopterygii'
- 2. python get_pairs.py --data_path='../data/Fish/Test
 Files/Neopterygii/train.p' --k=6 --modify='mutation'
 --output=../data/Fish/Test Files/Neopterygii/testing data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Neopterygii'
 --out dir='../data/Fish/Test Files/Neopterygii'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Fish/Test
 Files/Neopterygii/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Neopterygii/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Neopterygii/train.p' --method='GMM' --k=6

Test #4:

- 1. python build dp.py --data path='.../data/Fish/Test Files/Ostariophysi'
- 2. python get_pairs.py --data_path='../data/Fish/Test
 Files/Ostariophysi/train.p' --k=6 --n_mimics=8 --modify='mutation'
 --output=../data/Fish/Test Files/Ostariophysi/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Ostariophysi'
 --out dir='../data/Fish/Test Files/Ostariophysi'

Comparison Models:

- python EvaluateComparison.py --data_path='./data/Fish/Test Files/Ostariophysi/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Fish/Test
 Files/Ostariophysi/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Ostariophysi/train.p' --method='GMM' --k=6

Test #5:

- 1. python build_dp.py --data_path='../data/Fish/Test Files/Cypriniformes'
- 2. python get_pairs.py --data_path='../data/Fish/Test
 Files/Cypriniformes/train.p' --k=6 --n_mimics=8 --modify='mutation'
 --output=../data/Fish/Test Files/Cypriniformes/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Cypriniformes' --out_dir='../data/Fish/Test Files/Cypriniformes'

- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cypriniformes/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cypriniformes/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cypriniformes/train.p' --method='GMM' --k=6

Test #6:

- 1. python build dp.py --data path='../data/Fish/Test Files/Cyprinidae'
- 2. python get pairs.py --data path='../data/Fish/Test Files/Cyprinidae/train.p' --k=6 --n_mimics=8 --modify='mutation' --output=../data/Fish/Test Files/Cyprinidae/testing data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Fish/Test Files/Cyprinidae' --out dir='../data/Fish/Test Files/Cyprinidae'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cyprinidae/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cyprinidae/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Fish/Test Files/Cyprinidae/train.p' --method="GMM" --k=6

Test #7:

- python build_dp.py --data_path='../data/Bacteria/Test Files'
 python get_pairs.py --data_path='../data/Bacteria/Test Files/train.p' --k=6 --modify='mutation' --output='../data/Bacteria/Test Files/testing_data.p'
- 3. python EvaluateDeLUCS.py --data dir='../data/Bacteria/Test Files' --out dir='../data/Bacteria/Test Files'

Comparison Models:

- python EvaluateComparison.py --data path='../data/Bacteria/Test Files/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Bacteria/Test Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data path='../data/Bacteria/Test Files/train.p' --method='GMM' --k=6

Test #8:

- 1. python build_dp.py --data_path='../data/ProteoBacteria/Test Files'
- 2. python get_pairs.py --data_path='../data/ProteoBacteria/Test Files/train.p' --k=6 --modify='mutation' --output='../data/ProteoBacteria/Test Files/testing data.p'
- 3. python EvaluateDeLUCS.py --data dir='.../data/ProteoBacteria/Test Files' --out dir='../data/ProteoBacteria/Test Files'

- python EvaluateComparison.py --data_path='../data/ProteoBacteria/Test Files/testing data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/ProteoBacteria/Test Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/ProteoBacteria/Test Files/train.p' --method='GMM' --k=6

Test #9:

- 1. python build_dp.py --data_path='../data/Influenza-A/Test Files'
- 2. python get_pairs.py --data_path='../data/Influenza-A/Test Files/train.p'
 --k=6 --modify='mutation' --output='../data/Influenza-A/Test
 Files/testing data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Influenza-A/Test Files'
 --out_dir='../data/Influenza-A/Test Files'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Influenza-A/Test
 Files/testing data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Influenza-A/Test Files/train.p' --method='k-means++' --k=6
- python EvaluateComparison.py --data_path=../data/Influenza-A/Test Files/train.p' --method='GMM' --k=6

Test #10:

- 1. python build dp.py --data path='../data/Dengue/Test Files'
- 2. python get_pairs.py --data_path='../data/Dengue/Test Files/train.p' --k=6 --modify='mutation' --output='../data/Dengue/Test Files/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/Dengue/Test Files'
 --out dir='../data/Dengue/Test Files'

Comparison Models:

- python EvaluateComparison.py --data_path='../data/Dengue/Test Files/testing_data.p' --method='Supervised' --k =6
- python EvaluateComparison.py --data_path='../data/Dengue/Test Files/train.p'
 --method='k-means++' --k=6
- python EvaluateComparison.py --data_path='../data/Dengue/Test Files/train.p'
 --method='GMM' --k=6

Test #11:

- 1. python build_dp.py --data_path='../data/HBV/Test Files'
- 2. python get_pairs.py --data_path='../data/HBV/Test Files/train.p' --k=6 --modify='mutation' --output='../data/HBV/Test Files/testing_data.p'
- 3. python EvaluateDeLUCS.py --data_dir='../data/HBV/Test Files' --out_dir='../data/HBV/Test Files'

- 1. python EvaluateComparison.py --data_path='../data/HBV/Test
 Files/testing data.p' --method='Supervised' --k =6
- 2. python EvaluateComparison.py --data_path='../data/HBV/Test Files/train.p'
 --method='k-means++' --k=6
- 3. python EvaluateComparison.py --data_path='../data/HBV/Test Files/train.p'
 --method='GMM' --k=6

DeLUCS computational pipeline for running your own dataset:

1. Build the dataset:

```
python build dp.py --data path=<PATH sequence folder>
```

- o Input: Folders with the sequences in FASTA format
- Output: file in the form (label, sequence, accession)

If the true label is unknown then place ALL the sequences in the same folder

2. Compute the mimics.

```
python get_pairs.py --data_path=<PATH_dataset> --k=6 --modify='mutation'
--output=<PATH output file>
```

- o Input: file in the form (label, sequence, accession)
- Output: file in the form of (pairs, x test, y test).
- 3. Train the model.

If the true labels are unknown for your dataset and you want to use DeLUCS as a clustering tool without the assessment by means of the Hungarian algorithm, run:

```
python TrainDeLUCS.py --data_dir=<PATH_of_computed_mimics> --out_dir=<OUTPURDIR>
```

- o Input: file in the form of (pairs, x test).
- Output: Cluster assignment for each sequence in x test.

If the "ground truth" is known for your dataset and you want to train DeLUCS and then evaluate its performance by means of the Hungarian algorithm, run:

```
python EvaluateDeLUCS.py --data_dir=<PATH_computed_mimics> --out_dir=<OUTPURDIR>
```

- Input: file in the form of (pairs, x test, y test).
- Output: Image with the confusion matrix.