Math 5604 Homework 5 and 6

Jacob Hauck

April 7, 2024

Problem 1.

Consider the IVP

$$y'' + x^{2}y = (x^{2} - 4)\sin(2x), x > 0$$
$$y(0) = 0, y'(0) = 2.$$

In order to solve this IVP numerically, we rewrite it as a system of ODEs by defining z = y'. Then we can equivalently solve

$$y' = z$$

$$z' = -x^{2}y + (x^{2} - 4)\sin(2x)$$

$$y(0) = 0, z(0) = 2.$$

For all numerical solutions, we approximation $y(x_n)$ and $z(x_n)$ by y^n and z^n at the points $\{x_n\}_{n=0}^N$, which are evenly spaced on [0,1] by $k=\frac{1}{N}$.

(a) As the BDF2 method is a two-step method, we need to obtain y^1 and z^1 before we can start the main iteration. For this we can use the backward Euler method, which has second-order local truncation error to match the second-order global truncation error of the BDF2 method. This leads to the following implicit scheme

$$y^{n+1} = \frac{1}{3} \left[4y^n - y^{n-1} + 2kz^{n+1} \right]$$

$$z^{n+1} = \frac{1}{3} \left[4z^n - z^{n-1} + 2k(-x_{n+1}^2 y^{n+1} + (x_{n+1}^2 - 4)\sin(2x_{n+1})) \right]$$

$$n = 1, 2, \dots, N-1$$

$$y^1 = y^0 + kz^1$$

$$z^1 = z^0 + k(-x_1^2 y^1 + (x_1^2 - 4)\sin(2x_1))$$

$$y^0 = 0$$

$$z^0 = 2.$$

Since the original equation is linear, we can easily solve the implicit equations above to obtain the following equivalent, explicit scheme

$$z^{n+1} = \frac{\frac{1}{3} \left[4z^n - z^{n-1} + 2k \left[-\frac{1}{3} x_{n+1}^2 (4y^n - y^{n-1}) + (x_{n+1}^2 - 4) \sin(2x_{n+1}) \right] \right]}{1 + \frac{4k^2}{9} x_{n+1}^2} \qquad n = 1, 2, \dots, N-1$$

$$y^{n+1} = \frac{1}{3} \left[4y^n - y^{n-1} + 2kz^{n+1} \right] \qquad n = 1, 2, \dots, N-1$$

$$z^1 = \frac{z^0 + k(-x_1^2 y^0 + (x_1^2 - 4) \sin(2x_1))}{1 + k^2 x_1^2}$$

$$y^1 = y^0 + kz^1$$

$$y^0 = 0$$

$$z^0 = 2.$$

(b) In Table 1 are the errors and convergences rates of the method from part (a). The table shows that the method empirically has convergence rate of 2, as expected theoretically.

\overline{h}	Error	Rate
1/8	8.457332e-02	-
1/16	2.133647e-02	1.986881
1/32	5.319670e-03	2.003913
1/64	1.325627e-03	2.004662
1/128	3.307156e-04	2.003012
1/256	8.258288e-05	2.001677

Table 1: Errors at t = 1 with convergence rates using the BDF2 method in (a)

(c) Since the TR-BDF2 method is a one-step method, we can apply the method immediately to obtain the following implicit scheme

$$y_*^{n+1} = y^n + \frac{k}{4} \left[z^n + z_*^{n+1} \right]$$

$$z_*^{n+1} = z^n + \frac{k}{4} \left[-x_n^2 y^n + (x_n^2 - 4) \sin(2x_n) - x_{n+1/2}^2 y_*^{n+1} + (x_{n+1/2}^2 - 4) \sin(2x_{n+1/2}) \right]$$

$$y_*^{n+1} = \frac{1}{3} \left[4y_*^{n+1} - y^n + kz^{n+1} \right]$$

$$z_*^{n+1} = \frac{1}{3} \left[4z_*^{n+1} - z^n + k \left[-x_{n+1}^2 y_*^{n+1} + (x_{n+1}^2 - 4) \sin(2x_{n+1}) \right] \right]$$
for $n = 0, 1, \dots, N - 1$, and
$$y_*^0 = 0$$

$$z_*^0 = 2.$$

where $x_{n+1/2} = x_n + \frac{k}{2}$. As in part (a), we can solve this scheme to obtain an equivalent explicit scheme

$$z_*^{n+1} = \frac{z^n + \frac{k}{4} \left[-x_n^2 y^n + (x_n^2 - 4)\sin(2x_n) - x_{n+1/2}^2 \left(y^n + \frac{k}{4} z^n \right) + (x_{n+1/2}^2 - 4)\sin(2x_{n+1/2}) \right]}{1 + \frac{k^2}{16} x_{n+1/2}^2}$$

$$y_*^{n+1} = y^n + \frac{k}{4} \left[z^n + z_*^{n+1} \right]$$

$$z^{n+1} = \frac{\frac{1}{3} \left[4z_*^{n+1} - z^n + k \left[-\frac{x_{n+1}^2}{3} \left[4y_*^{n+1} - y^n \right] + (x_{n+1}^2 - 4)\sin(2x_{n+1}) \right] \right]}{1 + \frac{k^2}{9} x_{n+1}^2}$$

$$y^{n+1} = \frac{1}{3} \left[4y_*^{n+1} - y^n + kz^{n+1} \right]$$
for $n = 0, 1, \dots, N - 1$, and
$$y^0 = 0$$

$$z^0 = 2.$$

(d) In Table 2 are the errors and convergences rates of the method from part (c). The table shows that the method empirically has convergence rate of 2, as expected theoretically.

Problem 2.

h	Error	Rate
1/8	5.161865e- 04	-
1/16	1.369409e-04	1.914339
1/32	3.531733e- 05	1.955105
1/64	8.970516 e-06	1.977114
1/128	2.260645 e-06	1.988456
1/256	5.674363e-07	1.994204

Table 2: Errors at t = 1 with convergence rates using the TR-BDF2 method in (c)

Consider the BVP

$$y'' + x^2y = (x^2 - 4)\sin(2x), \qquad 0 < x < \pi$$
$$y(0) = 0, \qquad y'(\pi) + 2y(\pi) = 2.$$

For all numerical solutions, we approximation $y(x_n)$ by y_n at the points $\{x_n\}_{n=0}^N$, which are evenly spaced on [0,1] by $h=\frac{1}{N}$.

(a) Using the centered difference method to approximate y'' on the interior of the domain, we get the following scheme for the interior points $y_1, y_2, \dots y_{N-1}$

$$\frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} + x_n^2 y_n = (x_n^2 - 4)\sin(2x_n), \qquad n = 1, 2, \dots, N - 1.$$

The left boundary condition gives the discrete condition $y_0 = 0$, but the right boundary condition involves the first order derivative y'; to approximate this with a centered difference, we would need a point $x_{N+1} = x_N + h$ outside of the domain (assuming that y' can be continuously extended, giving us the approximation $y_{N+1} \approx y(x_{N+1})$). By enforcing the differential equation at the point x_N , we can obtain another equation involving the point x_{N+1} , which we can combine with the boundary condition to eliminate the need for information at x_{N+1} , as follows:

$$\frac{y_{N+1}-y_{N-1}}{2h}+2y_N=2 \qquad \text{(right boundary condition)}$$

$$\frac{y_{N+1}-2y_N+y_{N-1}}{h^2}+x_N^2y_N=(x_N^2-4)\sin(2x_N) \qquad \text{(equation at } x_N)$$

Eliminating y_{N+1} gives

$$\frac{2y_N - 2y_{N-1} + h^2 \left[-x_N^2 y_N + (x_N^2 - 4)\sin(2x_N) \right]}{2h} + 2y_N = 2.$$

Substituting the explicit condition $y_0 = 0$ into the n = 1 equation and collecting all our equations together, we obtain the scheme

$$\left(x_1^2 - \frac{2}{h^2}\right)y_1 + \frac{1}{h^2}y_2 = (x_1^2 - 4)\sin(2x_1)$$

$$\frac{1}{h^2}y_{n-1} + \left(x_n^2 - \frac{2}{h^2}\right)y_n + \frac{1}{h^2}y_{n+1} = (x_n^2 - 4)\sin(2x_n), \qquad n = 2, 3, \dots, N - 1$$

$$-\frac{1}{h}y_{N-1} + \left(\frac{1}{h} - \frac{hx_N^2}{2} + 2\right)y_N = 2 - \frac{h}{2}(x_N^2 - 4)\sin(2x_N).$$

We can write this system of equations in matrix-vector form Ay = b, where

$$A = \begin{bmatrix} x_1^2 - \frac{2}{h^2} & \frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & x_2^2 - \frac{2}{h^2} & \frac{1}{h^2} \\ & \frac{1}{h^2} & x_3^3 - \frac{2}{h^2} & \frac{1}{h^2} \\ & & \ddots & \\ & & \frac{1}{h^2} & x_{N-1}^2 - \frac{2}{h^2} & \frac{1}{h^2} \\ & & & -\frac{1}{h} & \frac{1}{h} - \frac{hx_N^2}{2} + 2 \end{bmatrix},$$

where empty entries are assumed to be 0, and

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \qquad b = \begin{bmatrix} (x_1^2 - 4)\sin(2x_1) \\ (x_2^2 - 4)\sin(2x_2) \\ \vdots \\ (x_{N-1}^2 - 4)\sin(2x_{N-1}) \\ 2 - \frac{h}{2}(x_N^2 - 4)\sin(2x_N) \end{bmatrix}.$$

(b) In Table 3 are the L^2 and L^{∞} errors of the scheme in part (a). Based on the table, the L^{∞} convergence rate is 2, and the L^2 convergence rate is 2, which is not surprising, considering that the L^2 norm is controlled by the L^{∞} norm.

h	L^2 error	L^2 rate	L^{∞} error	L^{∞} rate
$\frac{\pi}{8}$	1.390671e-01	-	1.280149e-01	-
$\pi/16$	3.008754 e-02	2.208543	2.905806e-02	2.139301
$\pi/32$	7.185263e- 03	2.066053	$6.987220 \mathrm{e}\text{-}03$	2.056148
$\pi/64$	1.771640 e - 03	2.019956	1.727129e-03	2.016342
$\pi/128$	4.411467e-04	2.005755	4.305031e-04	2.004281
$\pi/256$	1.101543e-04	2.001732	1.075450e-04	2.001083

Table 3: Centered difference – L^2 and L^{∞} errors with convergence rates

(c) Using the centered difference method to approximate y'' on the interior of the domain, we get the following scheme for the interior points $y_1, y_2, \dots y_{N-1}$

$$\frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} + x_n^2 y_n = (x_n^2 - 4)\sin(2x_n), \qquad n = 1, 2, \dots, N - 1.$$

The left boundary condition gives the discrete condition $y_0 = 0$, but the right boundary condition involves the first order derivative y'; to approximate this with a second-order, one-sided method, we recall from class that, for a function u(t),

$$u'(t) = \frac{-3u(t) + 4u(t+k) - u(t+2k)}{2k} + \mathcal{O}(h^2).$$

Taking u = y, k = -h, and $t = \pi$, this implies that

$$y'(\pi) = \frac{3y(\pi) - 4y(\pi - h) + y(\pi - 2h)}{2h} + \mathcal{O}(h^2).$$

This leads to the second-order, one-sided discretization of the right boundary condition

$$\frac{3y_N - 4y_{N-1} + y_{N-2}}{2h} + 2y_N = 2.$$

Combining the left boundary condition with the first interior equation, we have the scheme

$$\left(x_1^2 - \frac{2}{h^2}\right)y_1 + \frac{1}{h^2}y_2 = (x_1^2 - 4)\sin(2x_1)$$

$$\frac{1}{h^2}y_{n-1} + \left(x_n^2 - \frac{2}{h^2}\right)y_n + \frac{1}{h^2}y_{n+1} = (x_n^2 - 4)\sin(2x_n), \qquad n = 2, 3, \dots, N - 1$$

$$\frac{1}{2h}y_{N-2} - \frac{2}{h}y_{N-1} + \left(2 + \frac{3}{2h}\right)y_N = 2.$$

This system of equations can be written in matrix-vector form Ay = b, where

$$A = \begin{bmatrix} x_1^2 - \frac{2}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & x_2^2 - \frac{2}{h^2} & \frac{1}{h^2} \\ & \frac{1}{h^2} & x_3^2 - \frac{2}{h^2} & \frac{1}{h^2} \\ & & \ddots & \\ & & \frac{1}{h^2} & x_{N-1}^2 - \frac{2}{h^2} & \frac{1}{h^2} \\ & & \frac{1}{2h} & -\frac{2}{h} & 2 + \frac{3}{2h} \end{bmatrix},$$

where blank entries are assumed to be 0, and

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \qquad b = \begin{bmatrix} (x_1^2 - 4)\sin(2x_1) \\ (x_2^2 - 4)\sin(2x_2) \\ \vdots \\ (x_{N-1}^2 - 4)\sin(2x_{N-1}) \\ 2 \end{bmatrix}.$$

(d) In Table 4 are the L^2 and L^{∞} errors of the scheme in part (a). Based on the table, it seems that the L^{∞} convergence rate is 2, and the L^2 convergence rate is 2 (using a few smaller step sizes showed that this is really the case).

h	L^2 error	L^2 rate	L^{∞} error	L^{∞} rate
$\pi/8$	2.398297e+00	-	1.973108e+00	_
$\pi/16$	6.160323 e-01	1.960932	5.126718e-01	1.944362
$\pi/32$	2.046375 e-01	1.589936	1.730366e-01	1.566958
$\pi/64$	5.924954e-02	1.788195	5.028926e-02	1.782755
$\pi/128$	1.555935 e - 02	1.929022	1.322982 e-02	1.926457
$\pi/256$	3.943064 e-03	1.980393	3.355599e-03	1.979151

Table 4: One-sided difference – L^2 and L^{∞} errors with convergence rates

Problem 3.

Consider the boundary-value problem

$$\varepsilon y'' - x^2 y' - y = 0,$$
 $0 < x < 1$
 $y(0) = 1,$ $y(1) = 1,$

where $\varepsilon > 0$.

(a) We approximation $y(x_n)$ by y_n at the points $\{x_n\}_{n=0}^N$, which are evenly spaced on [0,1] by $h=\frac{1}{N}$. To handle the boundary conditions, we simply set $y_0=1$ and $y_N=1$. At the interior points, we can use central difference approximations of the derivatives to obtain the equations

$$\varepsilon \frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} - x_n^2 \frac{y_{n+1} - y_{n-1}}{2h} - y_n = 0, \qquad n = 1, 2, \dots, N - 1.$$

Combining the boundary conditions with the first and last of these equations, we obtain the scheme

$$\left(\frac{\varepsilon}{h^2} - \frac{x_1^2}{2h}\right) y_2 - \left(\frac{2\varepsilon}{h^2} + 1\right) y_1 = -\left(\frac{\varepsilon}{h^2} + \frac{x_1^2}{2h}\right) \qquad \text{(left BC)}$$

$$-\left(\frac{2\varepsilon}{h^2} + 1\right) y_{N-1} + \left(\frac{\varepsilon}{h^2} + \frac{x_{N-1}^2}{2h}\right) y_{N-2} = -\left(\frac{\varepsilon}{h^2} - \frac{x_{N-1}^2}{2h}\right) \qquad \text{(right BC)}$$

$$\left(\frac{\varepsilon}{h^2} - \frac{x_n^2}{2h}\right) y_{n+1} - \left(\frac{2\varepsilon}{h^2} + 1\right) y_n + \left(\frac{\varepsilon}{h^2} + \frac{x_n^2}{2h}\right) y_{n-1} = 0, \qquad n = 2, 3, \dots, N-2.$$

We can write these equations in matrix-vector form Ay = b, where

$$A = \begin{bmatrix} -\frac{2\varepsilon}{h^2} - 1 & \frac{\varepsilon}{h^2} - \frac{x_1^2}{2h} \\ \frac{\varepsilon}{h^2} + \frac{x_2^2}{2h} & -\frac{2\varepsilon}{h^2} - 1 & \frac{\varepsilon}{h^2} - \frac{x_2^2}{2h} \\ & \frac{\varepsilon}{h^2} + \frac{x_3^3}{2h} & -\frac{2\varepsilon}{h^2} - 1 & \frac{\varepsilon}{h^2} - \frac{x_3^2}{2h} \\ & & \ddots & \\ & \frac{\varepsilon}{h^2} + \frac{x_{N-2}^2}{2h} & -\frac{2\varepsilon}{h^2} - 1 & \frac{\varepsilon}{h^2} - \frac{x_{N-2}^2}{2h} \\ & & \frac{\varepsilon}{h^2} + \frac{x_{N-1}^2}{2h} & -\frac{2\varepsilon}{h^2} - 1 \end{bmatrix},$$

where blank entries are assumed to be 0, and

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{N-1} \end{bmatrix}, \qquad b = \begin{bmatrix} -\left(\frac{\varepsilon}{h^2} + \frac{x_1^2}{2h}\right) \\ 0 \\ \vdots \\ 0 \\ -\left(\frac{\varepsilon}{h^2} - \frac{x_{N-1}^2}{2h}\right) \end{bmatrix}.$$

- (b) In Figure 1 is the "exact" solution for $\varepsilon = .05$ and h = 1/2048.
- (c) In Table 5 are the L^2 and L^{∞} errors (computed using the reference solution from (b)) with $\varepsilon = .05$. From the table, it appears that the centered difference method has a convergence rate of 2 in L^{∞} and 2 in L^2 , just as it did on Problem 2.

h	L^2 error	L^2 rate	L^{∞} error	L^{∞} rate
1/8	3.165290 e-02	-	8.748680e-02	-
1/16	8.790978e-03	1.848242	2.969501e-02	1.558845
1/32	2.151545 e-03	2.030651	6.755169 e-03	2.136157
1/64	5.296685 e-04	2.022211	1.719463e-03	1.974034
1/128	1.314261e-04	2.010838	4.260417e-04	2.012891
1/256	3.243077e-05	2.018817	1.051005e-04	2.019226

Table 5: Centered difference method with $\varepsilon = .05 - L^2$ and L^{∞} errors with convergence rates

Figure 1: "Exact" solution when $\varepsilon = 0.05$, computed using step size h = 1/2048

Figure 2: "Exact" solution when $\varepsilon = 0.001$, computed using step size h = 1/2048

- (d) In Figure 2 is the "exact" solution for $\varepsilon = .05$ and h = 1/2048.
- (e) In Table 6 are the L^2 and L^{∞} errors (computed using the reference solution from (b)) with $\varepsilon = .05$. From the table, it appears that the centered difference method has a convergence rate of 2 in L^{∞} and 2 in L^2 , just as it did for $\varepsilon = 0.05$. The errors, however, are generally greater in this case than they were in the case of $\varepsilon = 0.05$, and the convergence rate doesn't settle down until the step size is already fairly small. This is likely due to the rapid change in the solution near x = 1 when ε is small (compare Figures 1 and 2, which show the $\varepsilon = 0.05$ and $\varepsilon = 0.001$ solutions).

h	L^2 error	L^2 rate	L^{∞} error	L^{∞} rate
1/8	3.125412e-01	-	7.051292e-01	-
1/16	2.042101e-01	0.613992	6.540523 e-01	0.108482
1/32	9.560864 e-02	1.094841	4.827786e-01	0.438044
1/64	3.146971e-02	1.603177	2.490745 e-01	0.954784
1/128	7.745967e-03	2.022447	8.247853e-02	1.594487
1/256	1.785043e-03	2.117486	1.853421 e-02	2.153828

Table 6: Centered difference method with $\varepsilon = 0.005 - L^2$ and L^{∞} errors with convergence rates