Ch 6.2: Shrinkage - Ridge regression Lecture 16 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Oct 17, 2022

Announcements

Last time:

Subset selection

This time:

Ridge regression

Announcements:

- HW #5 due tonight
- Be sure to make note of people you worked with and resources you used.

Section 1

Last time

Subset selection

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- Select a single best model from among M₀,...,M_p using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R².

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the null model, which contains no predictors.
- 2. For $k = 0, \ldots, p-1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the best among these p-k models, and call it \mathcal{M}_{k+1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the best among these k models, and call it \mathcal{M}_{k-1} . Here best is defined as having smallest RSS or highest \mathbb{R}^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Ways to approximate test score

$$C_p = rac{1}{n}(\mathrm{RSS} + 2d\hat{\sigma}^2)$$
 $\mathrm{AIC} = rac{1}{n}(\mathrm{RSS} + 2d\hat{\sigma}^2)$
 $\mathrm{BIC} = rac{1}{n}(\mathrm{RSS} + \log(n)d\hat{\sigma}^2)$
adjusted $R^2 = 1 - rac{\mathrm{RSS}/(n-d-1)}{\mathrm{TSS}/(n-1)}$
Cross-Validation

Dr. Munch (MSU-CMSE)

Section 2

Ridge Regression

Goal

- Fit model using all p predictors
- Aim to constrain (regularize) coefficient estimates
- Shrink the coefficient estimates towards 0

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

Ridge regression

Before:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)$$

After:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Example from the Credit data

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Same Setting, Different Plot

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2 \qquad \|\beta\|_2 = \sqrt{\sum_{j=1}^{p} \beta_j^2}$$

Dr. Munch (MSU-CMSE

Scale equivavariance (or lack thereof)

Scale equivariant: Multiplying a variable by c (cX_i) just returns a coefficient multiplied by 1/c ($1/c\beta_i$)

Solution: Standardize predictors

$$\widetilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{ij} - \overline{x}_{i})^{2}}}$$

Coding

Dr. Munch (MSU-CMSE

Bias-Variance tradeoff

Squared bias (black), variance (green), and test mean squared error (purple) for simulated data.

More Bias-Variance Tradeoff

Squared bias (black), variance (green), and test mean squared error (purple) for simulated data.

Advantages of Ridge

Ridge vs. Least Squares:

Ridge vs. Subset Selection:

Next time

10	М	Oct 3	Leave one out CV	5.1.1, 5.1.2	
11	W	Oct 5	k-fold CV	5.1.3	
12	F	Oct 7	More k-fold CV,	5.1.4-5	
13	М	Oct 10	k-fold CV for classification	5.1.5	HW #4 Due
14	W	Oct 12	Resampling methods: Bootstrap	5.2	
15	F	Oct 14	Subset selection	6.1	
16	М	Oct 17	Shrinkage: Ridge	6.2.1	HW #5 Due
17	W	Oct 19	Shrinkage: Lasso	6.2.2	
18	F	Oct 21	[No class, Dr Munch out of town]		
	M	Oct 24	No class - Fall break		
19	W	Oct 26	Dimension Reduction	6.3	
20	F	Oct 28	More dimension reduction; High dimensions	6.4	HW #6 Due
	М	Oct 31	Review		
	W	Nov 2	Midterm #2		

Dr. Munch (MSU-CMSE) Mon, Oct 17, 2022