

Netzwerkkommunikation

- Kommunikation = Senden / Empfangen von Daten zwischen PCs
- Teilaufgaben sind:
 - Erkennen der Daten
 - Aufteilen in Blöcken
 - Hinzufügen nötiger Informationen (Absender, ...
 - Informationen für Fehlerkorrektur
 - Übergabe an das Netzwerk
- Dafür gibt es Methoden: Protokolle, Normungen

Geron Robert, 2015 NVS, HTL Wiener Neustadt

Protokolle - Aufgabe des Protokolls

- Protokolle: Regeln und Methoden für die Kommunikation
- Unterschiedliche Protokollen
 - Jedes Protokoll hat andere Zielsetzungen
 - Dadurch Vor- und Nachteile
- Protokolle arbeiten in unterschiedlichen OSI-Schichten (Schicht bestimmt Aufgabe)
- Mehrere Protokolle arbeiten in einer Protokollsammlung (Protokoll-Stack) zusammen

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Protokolle – Arbeitsweise eines Protokolls

- Sendende PC
 - Aufteilen der Daten in kleinere Einheiten (Pakete)
 - Hinzufügen von Adressinformationen
 - Aufbereitung der Daten für die eigentliche Übertragung durch die Netzwerkkarte und Medium
- Empfangende PC
 - Nimmt Pakete vom Medium
 - Entfernt die zusätzlichen Informationen
 - Setzt die Nutzdaten zusammen
 - Übergibt die Daten in brauchbarer Form an die Anwendung

Geron Robert, 2015 NVS, HTL Wiener Neustadt

Protokoll-Stacks

- In der Vergangenheit mehrere Protokoll-Stacks durchgesetzt, so z.B.:
 - IBM Systems Network Architecture (SNA)
 - Digital DECNet
 - Novell Netware (IPX/SPX)
 - Apple AppleTalk
 - NetBeui
 - Internet-Protokollsammlung TCP/IP

Beron Robert, 2015 NVS, HTL Wiener Neustadt

OSI-Modell - 7-Schichten-Modell

- Jede Schicht
 - besitzt eine bestimmte Aufgabe
 - arbeitet mit der darunter und darüber liegenden zusammen
 - baut auf die Standards/Aufgaben der darunterliegenden Schicht auf
- Schichten werden top/down bzw. buttom/up abgearbeitet.

Beron Robert, 201

Beziehung zwischen den Schichten

OSI-Modell ⇒Anwendungsschicht **7**

- Bildet den Zugang für Anwendungen zu Netzwerkdiensten
- Bietet Dienste, die Anwendungen direkt unterstützen
 (z.B. Dateitransfer, Datenbankzugriff, E-Mail, ...)
- Behandelt den:
 - allgemeinen Netzwerkzugang,
 - die Flusskontrolle
 - und die Fehlerbehebung
- Engl: Application Layer

Beron Robert, 2015

NVS, HTL Wiener Neustadt

- Übersetzt die Daten in ein für alle Computer verständliches Zwischenformat
- Trägt Verantwortung für:
 - Protokollumwandlung,
 - Datenverschlüsselung,
 - Änderung des Zeichensatzes,
 - Erweiterung von Grafikbefehlen
 - Datenkompression, um die Anzahl der zu übertragenden Bits zu verringern
- Engl: Presentation Layer

NVS, HTL Wiener Neustadt

OSI-Modell ⇒ Sitzungsschicht **⑤**

- Ermöglicht den Anwendungen eine Verbindung aufzubauen, zu verwenden und zu beenden
- Erkennt die Namen von Ressourcen
- Synchronisiert Benutzeraufgaben, indem Prüfpunkte in den Datenfluss eingefügt werden
- Steuert den Dialog zwischen den Computern und legt fest, welche Station wann, wie lange sendet.
- Engl: Session Layer

Beron Robert, 2015

NVS, HTL Wiener Neustadt

- Sorgt für fehlerfreie Übertragung der Pakete in der richtigen Reihenfolge (ohne Verluste und Duplikate)
- Aufteilung bzw. Zusammenfassung von Paketen
- · Beim Empfänger schickt eine Empfangsbestätigung
- Sorgt für die Flusssteuerung, Fehlerbehebung
- Engl: Transport Layer

eron Robert, 2015 NVS, HTL Wiener Neustadt

OSI-Modell ⇒ Vermittlungsschicht **3**

- Adressierung der Nachrichten
- Übersetzung der logischen Adressen, Namen in das physische Gegenstück
- Legt die Route fest
- Festlegung des Übertragungsweges auf Grund der Priorität und der Netzwerkbedingungen
- Engl: network layer

Beron Robert, 2015

NVS, HTL Wiener Neustadt

- Verpackt die "Rohbits" in Datenrahmen
 - Datenrahmen sind definierte logische Anordnungen zur Aufnahme der Nutzdaten
 - Steuerdaten enthalten Informationen über das Routing und Segmentierung der Pakete
- CRC für Fehlerkorrekturdaten
- Ist für die fehlerfreie Übertragung der Rahmen über die Bitübertragungsschicht verantwortlich

eron Robert, 2015 NVS, HTL Wiener Neustadt

- Wartet auf eine Bestätigung des Empfängers
- Nicht bestätigte / fehlerhafte Rahmen werden wiederholt
- Engl: data link layer

- · Legt fest, wie das Medium
 - an die Netzwerkkarte angeschlossen ist
 - Anzahl der Steckkontakte
 - und deren Funktion)
- · Verantwortlich für die Übertragung
- Festlegung der zeitlichen Dauer eines Bits
- Zuordnung eines Bits einem elektrischen oder optischen Impuls
- Engl. Bezeichnung: physical layer

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Paketadressierung

- Meisten Pakete sind für einen einzelnen Computer bestimmt
- Jede Netzwerkkarte empfängt alle(!) Pakete
- Rundsendungen (Broadcast´s) werden von allen empfangen
- Adressinformationen der Pakete werden in den Vermittlungsknoten für die Auswahl der Route herangezogen

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Das Projekt 802-Modell - IEEE

- Definiert Netzwerkstandards für die physischen Komponenten eines Netzwerks (Schnittstellenkarte, Verkabelung)
- Die Standards decken mehrere Bereiche ab:
 - Netzwerkkarten
 - Komponenten für WANs
 - Komponenten für TP- und Koaxialverkabelung
- Legt fest, wie Netzwerkkarten auf das Medium zugreifen

Beron Robert, 2015

NVS, HTL Wiener Neustad

IEEE 802-Kategorien

- 802.1 Internetworking
- 802.2 Logical Link Control (LLC)
- 802.3 Ethernet
- 802.5 Token Ring-LAN
- 802.8 Glasfaserübertragungstechnologie
- 802.10 Netzwerksicherheit
- 802.11 Drahtlose Netzwerke (a, b, g, n, ...)

LLC- und MAC-Tei der Sicherungsschicht

7. Anwendugnsschicht 6. Darstellungsschicht

4. Transportschicht

3. Vermittlungsschicht

1. Bitübertragungsschicht

2. Sicherungsschicht

LLC (Logical Link Control)-Teilschicht

- Verwaltet die Datenverbindung und definiert logische Schnittstellenpunkte
- Standards in 802.2 definiert

MAC (Media Access Control)-Teilschicht

- Beschreibt den Zugriff der Netzwerkkarte auf die Bitübertragungsschicht
- Tauscht Informationen direkt mit der Netzwerkkarte aus
- Trägt Verantwortung für fehlerfreie Übertragung

LLC-Teilschicht

MAC- Teilschicht

LLC- und MAC-Teil der Sicherungsschicht

Erweiterung eines Netzwerks

- · Gründe für die Erweiterung
 - Überwindung physikalischer Grenzen

Bsp: 10BASET mehr als 500 m

Segmentierung einer Kollision-Domäne

Collision-Domain: ist jener Bereich in dem es zu Kollisionen kommen kann. Hängt von der Technologie und den Komponenten ab

Sicherheitsgründe (SchülerInnen, Verwaltung, ...)

eron Robert, 2015 NVS, HTL Wiener Neustadt

Erweitern eines Netzwerks

- Repeater und Hubs
- Brücken
- Switches
 - Layer 2 Switches
 - Layer 3 Switches
- Router
 - Software oder Hardware Router
- Gateways

Beron Robert, 2015

NVS, HTL Wiener Neustadt

Repeater, Hubs — Layer 1 Überträgt Daten an alle verbundenen Computer überträgt Daten an alle verbundenen Computer in einer Sterntopologie Hub

Arbeitsweise von Repeater/Hubs (OSI-Layer 1)

- Arbeiten als reine Signal-Verstärker
- Eingangssignal wird aufgefrischt und an alle Ausgabeports hinausgeschickt
- Sind für die Netzwerktechnik
 - Transparent
 - Müssen nicht konfiguriert werden!
 - Keine Segmentierung des Netzwerks
 - Heutzutage überholt

Reron Robert 2015

NVS, HTL Wiener Neustad

Brücken (durch Switch verdrängt) – OSI Layer 2

Beron Robert, 201

NVS, HTL Wiener Neustadt

Arbeitsweise einer Bridge

- Arbeiten auf OSI Layer 2
 - Können MAC-Adressen von PC speichern
 - Zu Beginn Eingangssignal an alle Ausgänge
 - Nach einer Lernphase wird das Eingangssignal nur mehr an jenen Port weitergeleitet an dem der Empfänger-PC angeschlossen ist.
- Für die Netzwerktechnik
 - Keine Konfiguration
 - Heute durch Switches verdrängt
 - Segmentierung des Netzwerks

Reron Robert 2015

NVS, HTL Wiener Neustad

Switches (Punkt zu Punkt) - OSI Layer 2

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Arbeitsweise eines Switch

- Arbeitet auf Layer 2 des OSI Modells
- Microsegmentierung des Netzes, d.h.
 Kommunikation ist eine Punkt zu Punkt Verbindung

 ⇒ reduzierte Anzahl an Kollisionen
- Für die Netzwerktechnik
 - i.d.R keine Konfiguration
 - Managed / unmanaged Switches
 - Stackable / unstackable Switches
 - Leistung: 10 Mbps bis 1Gbps+

Router – OSI Layer 3

Arbeitsweise von Router

- Arbeiten auf OSI-Layer 3
- Leiten Pakete
 - von einem IP-Segment in ein anderes weiter
 - Oder an anderen Router weiter
- Für die Netzwerktechnik
 - Müssen konfiguriert werden
 - IP-Adresse, ...
 - Routertabellen
 - Hard- und Softwarelösungen
 - Routerprotokolle: RIP, OSPF, ...

Reron Robert 2015

NVS, HTL Wiener Neustad

Gateways – OSI Layer 7

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Arbeitsweise von Gateway

- Arbeiten auf OSI-Layer 7, dh. Alle Schichte werden durchlaufen
- Bei proprietären Systemen verwendet idR Softwarelösungen
 - Windows + Netware
 - Ethernet + Token Ring

Beron Robert, 2015 NVS, HTL Wiener Neustac

VPN – Virtual private Network

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Technologien - Arbeitsplatz der Zukunft Bring your own Collaboration

Was ist TCP/IP?

- Die Grundlage des Internet
- Routing fähiges Protokoll
- Offenes Protokoll (nicht proprietär)
 - Von keinem Hersteller abhängig
 - Genormt mittels RFC (request for comment)
 - Jeder kann einen Vorschlag einbringen
- Eine Familie von mehr als 300 Teilprotokollen
 - ARP, ICMP, FTP, HTTP, SMTP, IP, TCP, UDP,

Geron Robert, 2015 NVS, HTL Wiener Neustadt

• TCP/IP-Protokollsuite

- TCP und UDP
- IP
 - ICMP
 - IGMP
 - -ARP
- TCP/IP-Dienstprogramme

Geron Robert, 2015 NVS, HTL Wiener Neustadt

Klassenbasierte IP-Adressierung - IPv4

- IP-Adressen ist eine eindeutige Kennung
- Besteht aus 4 Oketten (4 * 8 Bit)
- IP-Adressen werden dezimal angegeben Bsp.:

192.168.10.10

Beron Robert, 2015

NVS, HTL Wiener Neustadt

IP-Adressierung

- Für die Kommunikation ist wichtig:
 - Ob der Komm-Partner im selben Segment ist oder nicht!
- Aus diesem Grund benötigt jeder Client zusätzlich
 - Subnet Mask
 - Default Gateway (default Router)

eron Robert, 2015 NVS, HTL Wiener Neustadt

Aufgabe der Subnet Mask

- Teil die IP Adresse in zwei Teile auf:
 - Netzwerkkennung

Anzahl der Hostkennungen: 2ⁿ - 2

Beron Robert, 2015

IP-Adressklassen

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Warum 2ⁿ-2?

- Zwei Host-Adressen dürfen nicht vergeben werden.
 - Alle Host-Bit = 0 Netzwerk-Adresse
 - Alle Host-Bit = 1 Broadcast-Adresse des Segments

Beron Robert, 2015 NVS, HTL Wiener Neustadt

IP-Adressierung mit Subnetzen (Segmente)

- Subnetting eines Netzwerkes
- Subnetze
- Subnetzmasken
- Bestimmen von lokalen Hosts und von Remotehosts

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Subnet Mask – Subnetting (65534 Hosts)

Verschiebung der Subnet-Mask um 8 Bit nach rechts!

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Subnet Mask – Subnetting (254 Hosts)

Verschiebung der Subnet-Mask um 16 Bit (2 Byte) nach rechts!

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Supernetting

Supernetting wird beim Aufbau von Routertabellen verwendet!

Beron Robert, 2015 NVS, HTL Wiener Neustadt

HTL Wiener Neustadt

HTL Wiener Neustadt

Ipconfig – IP Konfigurationsdaten

```
CX VWWindows\system32\cmd.exe

U:\Users\robert>\ipconfig /all

Windows-IP-Konfiguration

Hostname . : ultimate
Primäres DNS-Suffix : beron at
Knotentyp . : Hubrid

IP-Routing aktiviert : Nein
UNS-Proxy aktiviert : Nein
DNS-Suffixsuchliste : beron at

Wedienstatus . : Headium getrennt

Uerbindungsspezifisches DNS-Suffix:
Beschreibung . : Intel(R) PRO/Wireless 3945ABG-Netzwerkverbindung

Plusikalische Adresse : 60-13-62-E1-BD-03
DNAttiviert : Ja

Ethernet-Adapter LAN-Verbindung:

Uerbindungsspezifisches DNS-Suffix: beron at
Beschreibung : Intel(R) PRO/100 UE-Netzwerkverbindung

Uerbindungsspezifisches DNS-Suffix: beron at
Beschreibung : Intel(R) PRO/100 UE-Netzwerkverbindung

DV-Netzwerkverbindung:

Uerbindungsspezifisches DNS-Suffix: beron at
Beschreibung endresse : Intel(R) PRO/100 UE-Netzwerkverbindung

DWCP-aktiviert : Ja

IPV4-Adresse : 192.168.0.108 (Bevorzugt)

Submetzmaske : 255.255.255.0

Leass erhalten : Freitag 23 Februar 2007 19:09:13
Leass eläuft ab : Sanstag 3 Härz 2007 19:09:13
Leas eläuft ab : Sanstag 3 Härz 2007 19:09:13
DNS-Server : 192.168.0.1

DNS-Server : 192.168.0.1

Iunneladapter LAN-Uerbindung* 4:
```

Beron Robert, 2015 NVS, HTL Wiener Neustadt

- Zuweisung von IP-Adressen mit Hilfe von CIDR
- Verfügbare Hostkennungen
- Optimieren der Zuweisung von IP-Adressen
- IP-Adresse mit einer Slash-Notation

10.217.112.0/20

Geron Robert, 2015 NVS, HTL Wiener Neustadt

Beron Robert, 2015 NVS, HTL Wiener Neustadt