## PCA On Stock Price

## Group2: Yaxin Li, Blake Hillier, Joe Puhalla January 2020

This project analyzes the relationships multiple stock prices have on each other. We pulled 100 stocks from Bloomberg using daily data from January 2020 back until the 1970's-1980's depending on the stock. We then randomly selected three stocks from the list below, removing rows until each stock had the same amount of data, and then applied the PCA method to the data to find the singular values. This was repeated until we had 33 combinations with no stock used twice.

The 100 stocks are:

| abt                  | adp  | aep                  | aig                   | axp                  | ba                   | bac                  | bax                  | bdx                  | bk                    |
|----------------------|------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|
| bmy                  | bp   | $\operatorname{cat}$ | $\operatorname{cl}$   | clx                  | $\operatorname{cmi}$ | cop                  | $\operatorname{cpb}$ | csx                  | $\operatorname{cvs}$  |
| cvx                  | d    | de                   | dhr                   | duk                  | eix                  | $\operatorname{emr}$ | es                   | $\operatorname{etn}$ | $\operatorname{etr}$  |
| $\operatorname{exc}$ | fdx  | fitb                 | $\operatorname{gd}$   | ge1                  | $_{ m gis}$          | glw                  | $\operatorname{gpc}$ | gww                  | hal                   |
| hban                 | hpq  | hsy                  | hum                   | ibm1                 | iff                  | intc                 | ip                   | $_{ m jnj}$          | jpm                   |
| k                    | klac | kmb                  | ko                    | $_{ m kr}$           | 1                    | leg                  | lhx                  | lly                  | lnc                   |
| mkc                  | mlhr | mmm                  | mo                    | $\operatorname{mrk}$ | msi                  | $\operatorname{mtb}$ | nem                  | $\operatorname{nsc}$ | $\operatorname{ntrs}$ |
| omc                  | pcar | peg                  | pep                   | $_{ m pfe}$          | pg                   | pnw                  | ppg                  | ppl                  | rtn                   |
| shw                  | slb  | so                   | $\operatorname{spgi}$ | $\operatorname{tgt}$ | tmo                  | $\operatorname{tsn}$ | $_{\mathrm{txn}}$    | unp                  | usb                   |
| utx                  | vfc  | wba                  | wfc                   | whr                  | $\operatorname{wmb}$ | wy                   | xel                  | xom                  | xrx                   |





Once we obtained all the singular values, we plotted them to determine the number of clusters for KMeans.

Singular values for each combination

Singular Values per Set of Stocks

18 17 16 15 14 13 12 11

We then applied KMeans to the data with K=2.

Each color represents a different cluster