Class 7: Machine Learning 1

Kevin Tan (PID: A16774162)

Today we will start out multi-part exploration of some key meachine learning methods. We will being with clustering - findings groupings of like data, and then dimensionallity reduction

Clustering

Let's start with "k-means" clustering The main function in base R for this is k-means()

```
# make up some data
hist(rnorm(100000, 3))
```

Histogram of rnorm(1e+05, 3)


```
tmp <- c(rnorm(30, -3), rnorm(30, +3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


Now let's try out kmeans()

```
km <- kmeans(x, centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 -2.979572 3.124148
2 3.124148 -2.979572
```

Clustering vector:

Within cluster sum of squares by cluster:

[1] 51.38598 51.38598 (between_SS / total_SS = 91.6 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

- [1] "kmeans"
 - Q. How many points in each cluster

km\$size

- [1] 30 30
 - Q. What component of your results object details cluster assignment/membership?

km\$cluster

- - Q. What are centers/mean values of each cluster

km\$centers

x y 1 -2.979572 3.124148

- 2 3.124148 -2.979572
 - Q. Make a plot of your data showing your clustering results

```
plot(x, col=c("red","blue"))
```



```
plot(x, col=km$cluster)
points(km$centers, col="green", pch=15, cex=3)
```


Q. Runkmeans() again and cluster into 4 groups and plot the results.

```
km_new <- kmeans(x, 4)
plot(x, col=km_new$cluster)</pre>
```


Hierarchical Clustering

This form of clustering aims to reveal the structure in your data by progressively grouping points into a ever smaller number of clusters

The main function in base R for this is called hclust(). This function does not take our input data directly but wants a "distance matrix" that details how dis-similar all our input points are to each other.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

The print out above is not very useful (unlick that from kmeans) but there is a useful plot() method.

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get my main result (my cluster membership vector) I need to "cut" my tree using the function cutree()

```
grps <- cutree(hc, h=10)
grps</pre>
```

```
plot(x, col=grps)
```


Principal Component Analysis (PCA)

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)</pre>
```

Q1. How many rows and columns are in the dataset?

dim(x)

[1] 17 5

head(x, 6)

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

dim(x)

[1] 17 4

Faster method to change row names:

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approch to solving the row-names problem do you prefer

I prefer the second method, since it is much shorter, requiring only 1 line of code. It is also more well-defined, since running the first version multiple times will keep shifting the row header column

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3. Changing what optional arguemtn results in a stacked barplot?

Changes besides to False or deleting this argument

```
barplot(as.matrix(x), col=rainbow(nrow(x)))
```


The so-called "pairs" plto can be useful for small datasets

```
pairs(x, col=rainbow(10), pch=16)
```


So, the pairs plot is useful for small datasets but it can be lot of work to interpret and gets intractable for larger datasets.

so PCA to the rescue...

The main function to do PCA in base R is called prcomp(). This function wants thr transpose of our data in this case.

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

```
$class
[1] "prcomp"
```

```
pca$x
```

```
PC2
                 PC1
                                        PC3
                                                       PC4
          -144.99315
                       -2.532999 105.768945 -4.894696e-14
England
Wales
          -240.52915 -224.646925 -56.475555
                                             5.700024e-13
Scotland
                      286.081786 -44.415495 -7.460785e-13
           -91.86934
N.Ireland 477.39164
                      -58.901862
                                  -4.877895
                                            2.321303e-13
```

A major PCA result visualization is called a "PCA Plot" (aka a score plot, biplot, PC1 vs PC2 plot, ordination plot)

Another important output from PCA is called the "loadings" vector or the "rotation" component - this tells us how much the original variables (the foods in this case) contribute to the new PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	-0.090972715
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	-0.039901917
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.016719075
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	0.030125166
Processed_Veg	-0.036488269	-0.045451802	0.05289191	-0.013969507
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.184072217
Cereals	-0.047702858	-0.212599678	-0.35884921	0.191926714
Beverages	-0.026187756	-0.030560542	-0.04135860	0.004831876
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.103508492
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.316290619
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001847469

PCA looks to be a super useful method for gaining some insight into high-dimensional data that is difficult to examine in other ways.