

PVsyst - Simulation report

Grid-Connected System

Project: Kopellis_ Fixed

Variant: 500 kW Fixed Sheds on ground

System power: 501 kWp

Thessaloniki/Livadákion - Greece

PVsyst TRIAL

PVsyst TRIAL

Author

PVsyst V7.2.15

VC1, Simulation date: 07/06/22 15:05 with v7.2.15

Project: Kopellis_ Fixed

Variant: 500 kW Fixed

Project summary

Geographical Site

Thessaloniki/Livadákion

Greece

Situation

Latitude 40.52 °N Longitude

Altitude Time zone 22.97 °E 4 m

UTC+2

Project settings

Albedo

0.20

Meteo data

Thessaloniki/Livadákion

Meteonorm 8.0 (1994-2006), Sat=14% - Synthetic

System summary

Grid-Connected System

PV Field Orientation

horizontal plane

System information

PV Array

Nb. of modules Pnom total

Sheds on ground

Near Shadings Linear shadings

945 units

501 kWp

User's needs

Unlimited load (grid)

Inverters

Nb. of units Pnom total Pnom ratio

2 units 450 kWac

1.113

Results summary

Produced Energy

695.0 MWh/year

Specific production

1388 kWh/kWp/year Perf. Ratio PR

89.05 %

Table of contents —	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Horizon definition	5
Near shading definition - Iso-shadings diagram	6
Main results	7
Loss diagram	8
Special graphs	9

PVsyst V7.2.15

VC1, Simulation date: 07/06/22 15:05 with v7.2.15

Project: Kopellis_ Fixed

Variant: 500 kW Fixed

General parameters

Grid-Connected System Sheds on ground

PV Field Orientation

Orientation Sheds configuration Models used

horizontal plane Nb. of sheds 935 units Transposition Perez Sizes Diffuse Perez. Meteonorm

Sheds spacing 1 16 m Circumsolar separate Collector width 1.13 m

Ground Cov. Ratio (GCR) 97.9 %

Shading limit angle

0.0° Limit profile angle

Horizon **Near Shadings** User's needs Average Height Linear shadings Unlimited load (grid)

PV Array Characteristics

PV module Inverter Manufacturer Manufacturer Generic Generic

Model JKM530M-72HL4-BDVP Model SG250HX

(Custom parameters definition) (Custom parameters definition)

530 Wp 225 kWac Unit Nom. Power Unit Nom. Power Number of PV modules 945 units Number of inverters 2 units Nominal (STC) 501 kWp Total power 450 kWac 500-1500 V Modules 35 Strings x 27 In series Operating voltage

At operating cond. (50°C) Max. power (=>30°C) 250 kWac

Pmpp 457 kWp Pnom ratio (DC:AC) 1.11 995 V U mpp

460 A I mpp

Total PV power Total inverter power

Nominal (STC) 501 kWp 450 kWac Total power Total 945 modules Number of inverters 2 units Module area 2437 m² Pnom ratio 1.11

Cell area 2247 m²

Array losses

Array Soiling Losses Thermal Loss factor DC wiring losses

Loss Fraction 1.5 % Module temperature according to irradiance Global array res. 24 mΩ 1.0 % at STC

29.0 W/m²K Loss Fraction Uc (const)

Uv (wind) 0.0 W/m2K/m/s

Module Quality Loss Module mismatch losses

Loss Fraction 0.0 % Loss Fraction 0.6 % at MPP

IAM loss factor

Incidence effect (IAM): User defined profile

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	1.000	1.000	1.000	0.989	0.967	0.924	0.729	0.000

System losses

Auxiliaries loss

Proportionnal to Power 4.0 W/kW

0.0 kW from Power thresh.

PVsyst V7.2.15

VC1, Simulation date: 07/06/22 15:05 with v7.2.15

Project: Kopellis_ Fixed

Variant: 500 kW Fixed

AC wiring losses

Inv. output line up to MV transfo

Inverter voltage 800 Vac tri
Loss Fraction 0.21 % at STC

Inverter: SG250HX

Wire section (2 Inv.) Copper 2 x 3 x 240 mm 2 Average wires length 70 m

AC losses in transformers

MV transfo

Grid voltage 20 kV

Operating losses at STC

Nominal power at STC 493 kVA Iron loss (24/24 Connexion) 0.49 kW Loss Fraction 0.10 % at STC Coils equivalent resistance $3 \times 12.98 \text{ m}\Omega$ Loss Fraction 1.00 % at STC

PVsyst TRIAL

PVsyst TRIAL

Variant: 500 kW Fixed

PVsyst V7.2.15

VC1, Simulation date: 07/06/22 15:05 with v7.2.15

Horizon definition

Horizon from PVGIS website API, Lat=39°37"58', Long=22°13"41', Alt=153m

Average Height	7.4 °	Albedo Factor	0.00
Diffuse Factor	0.97	Albedo Fraction	100 %

Horizon profile

Azimuth [°]	-180	-173	-165	-158	-143	-135	-128	-120	-113	-105	-98	-90
Height [°]	1.9	3.4	4.6	5.7	7.3	6.5	4.6	4.2	5.3	6.1	5.7	5.3
Azimuth [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	0	8
Height [°]	4.6	4.2	3.4	3.1	2.3	1.9	0.4	1.1	1.5	1.1	1.1	3.4
Azimuth [°]	15	23	38	45	135	143	150	158	165	173	180	
Height [°]	6.5	11.5	11.5	14.9	14.9	8.0	8.0	5.3	1.9	1.5	1.9	

Sun Paths (Height / Azimuth diagram)

Variant: 500 kW Fixed

Near shadings parameter

Perspective of the PV-field and surrounding shading scene

Variant: 500 kW Fixed

PVsyst V7.2.15 VC1, Simulation date: 07/06/22 15:05 with v7.2.15

Main results

System Production

Produced Energy

695.0 MWh/year

Specific production Performance Ratio PR

1388 kWh/kWp/year 89.05 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	52.6	29.21	4.95	52.6	49.1	25.16	24.22	0.919
February	76.4	39.36	6.71	76.3	72.6	36.80	35.66	0.933
March	118.0	57.36	9.91	117.9	113.4	56.52	54.89	0.929
April	150.3	77.02	13.73	150.3	145.3	71.04	69.00	0.917
May	195.0	84.41	19.52	194.9	188.7	89.63	87.06	0.892
June	218.4	75.24	24.54	218.4	212.2	98.20	95.32	0.871
July	214.7	82.15	27.83	214.7	208.1	95.29	92.50	0.860
August	194.0	76.29	27.71	193.9	187.6	86.28	83.82	0.863
September	144.2	53.93	21.67	144.1	138.9	65.88	63.94	0.886
October	94.1	43.87	16.53	94.1	89.6	43.89	42.53	0.903
November	57.9	29.79	11.46	57.8	54.6	27.29	26.29	0.908
December	43.4	24.96	6.66	43.3	40.6	20.68	19.79	0.912
Year	1559.1	673.58	15.99	1558.3	1500.7	716.67	695.02	0.891

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation T_Amb **Ambient Temperature**

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** E_Grid PR

Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Variant: 500 kW Fixed

VC1, Simulation date: 07/06/22 15:05 with v7.2.15

Variant: 500 kW Fixed

Power injected into grid [kW]