This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1 Claim 1 (previously presented): A multi-tone signal 2 communications method for communicating information using N tones, where N is a positive integer greater than one, 3 4 ' the method comprising: 5 generating N analog signals, each one of the N analog signals corresponding to a different one of the N 6 7 tones, wherein each of the N analog signals includes a 8 periodic signal representing a symbol to be transmitted 9 during said symbol transmission period; 10 separately generating N signal prefixes, one 11 signal prefix being generated for each one of the N 12 analog signals from the one of the N periodic signals included in the corresponding one of the N analog 13 signals, each of the N signal prefixes including multiple 14 15 parts and wherein the step of separately generating N signal prefixes includes, for each one of the N analog 16 17 signals: i) generating a first cyclic prefix part from the 18 included periodic signal representing the current symbol; 19 20 and 21 ii) generating a second prefix part from the 22 included periodic signal representing the preceding 23 symbol and from the first cyclic prefix part; and 24 transmitting the N analog signals into a 25 communications channel using M antennas, where M is an
 - Claim 2 (original): The method of claim 1, wherein M=N.

integer and where 1<M<N.

- Claim 3 (original): The method of claim 1, further
- 2 comprising the step of:
- 3 separately amplifying each of the N analog
- 4 signals prior to transmitting said N analog signals.
- Claim 4 (previously presented): The method of claim 3,
- 2 wherein each of said N analog signals has a duration
- 3 corresponding to at least a symbol transmission period.
- Claim 5 (original): The method of claim 4, wherein the N
- 2 periodic signals and signal prefixes are generated in the
- 3 passband.
- Claim 6 (previously presented): The method of claim 4,
- 2 wherein each of the N analog signals has a duration
- 3 corresponding to multiple symbol transmission periods.
- Claim 7 (canceled)
- Claim 8 (previously presented): The method of claim 1,
- 2 wherein the step of generating a second prefix part
- 3 includes cyclically extending the periodic signal
- 4 representing the included preceding symbol and cyclically
- 5 extending the first cyclic prefix part to correspond to
- 6 the same time period; and
- 7 combining and attenuating the cyclically
- 8 extended portion of the first cyclic prefix part and the
- 9 cyclically extended portion to the included periodic
- signal representing the preceding symbol.

1 Claim 9 (previously presented): A multi-tone signal 2 communications method for communicating information using N tones, where N is a positive integer greater than one, 3 the method comprising: 4 5 generating N analog signals, each one of the N 6 analog signals corresponding to a different one of the N 7 tones and wherein each of said N analog signals has a 8 duration corresponding to at least a symbol transmission period and wherein each of the N analog signals includes 9 a periodic signal representing a symbol to be transmitted 10 11 during said symbol transmission period; 12 separately generating N signal prefixes, one signal prefix being generated for each one of the N 13 14 analog signals from the one of the N periodic signals 15 included in the corresponding one of the N analog 16 signals; separately amplifying each of the N analog 17 signals prior to transmitting said N analog signals; and 18 transmitting the N analog signals into a 19 20 communications channel using M antennas, where M is an 21 integer and where $1 < M \le N$, 22 wherein each of the N signal prefixes includes 23 multiple parts and wherein the step of separately generating N signal prefixes includes, for each one of 24 25 the N analog signals: 26 generating a first cyclic prefix part from the included periodic signal representing the current symbol; 27 28 and 29 generating a second prefix part to be a 30 periodic signal, the beginning of the generated second

- 31 prefix part having the same phase as the end of the
- 32 periodic signal representing the preceding symbol and the
- 33 end of the generated second prefix part having the same
- 34 phase as the beginning of the first cyclic prefix part.
- Claim 10 (original): The method of claim 6, wherein each
- of the N periodic signals is a sinusoidal wave.
- Claim 11 (original): The method of claim 6, wherein each
- of the N periodic signals is a square wave.
- Claim 12 (previously presented): A multi-tone signal
- 2 communications method for communicating information using
- N tones, where N is a positive integer greater than one,
- 4 the method comprising:
- 5 generating in parallel, for each one of the N
- 6 tones, a separate periodic signal including at least one
- 7 high order harmonic signal component that is different
- 8 from the fundamental frequency signal component of said
- 9 tone, wherein the generated periodic signal includes a
- 10 square wave; and
- II transmitting the generated N periodic signals
- into a communications channel.
- Claim 13 (original): The method of claim 12, wherein the
- 2 periodic signal generated for each of the N tones,
- 3 includes multiple high order harmonic signal components.
- 1 Claim 14 (canceled)

- 1 Claim 15 (original): The method of claim 12, further
- 2 comprising:
- 3 generating, in parallel, for each one of the N
- 4 tones, a separate periodic signal prefix.
- Claim 16 (original): The method of claim 15, wherein the
- 2 step of generating a separate periodic signal prefix for
- geach one of the N tones includes, for each one of the N
- 4 generated prefixes:
- 5 generating a cyclic prefix portion; and
- 6 generating a continuity signal portion, the
- 7 continuity signal portion being generated as a function
- 8 of a previously generated periodic signal and the current
- 9 generated periodic signal.
- 1 Claim 17 (original): The method of claim 15, further
- 2 comprising, for each one of the N tones, combining in the
- 3 passband, the periodic signal corresponding to the one of
- 4 the N tones with the corresponding one of the N periodic
- 5 signal prefixes.
- Claim 18 (previously presented): A multi-tone signal
- 2 communications method for communicating information using
- 3 at least N tones, where N is a positive integer greater
- 4 than one, the method comprising:
- 5 separately generating, for each one of the N
- 6 tones, a passband periodic signal representing a symbol,
- 7 at least some of the N generated passband periodic
- 8 signals include a high order harmonic signal component in
- 9 addition to a fundamental frequency signal component, the

- 10 high order harmonic signal component having a frequency
- which is higher than the frequency of the fundamental
- 12 signal component; and
- transmitting the N generated passband periodic
- 14 signals.
- Claim 19 (original): The method of claim 18, wherein the
- 2 passband periodic signals for each one of the N tones are
- 3 generated in parallel; and
- 4 wherein the step of transmitting the N
- 5 generated passband periodic signals includes broadcasting
- 6 different ones of said N passband periodic signals using
- 7 different antennas.
- Claim 20 (original): The method of claim 18, comprising:
- 2 combining at least some of the N generated
- 3 passband periodic signals prior to transmission.
- 1 Claim 21 (canceled)
- Claim 22 (previously presented): The method of claim 18,
- 2 wherein each of the N generated periodic signals is a
- 3 square wave.
- Claim 23 (original): The method of claim 18, further
- 2 comprising:
- 3 generating, a separate prefix for each of the N
- 4 generated passband periodic signals; and

2

combining, prior to transmission, each one of 5 the separate prefixes with the corresponding one of the ${\tt N}$ 6 generated passband periodic signals. 7 Claim 24 (original): The method of claim 23, wherein the I prefixes for each of the N passband periodic signals are 2 generated in parallel. Claim 25 (original): The method of claim 23, wherein the 1 step of combining each one of the separate prefixes with 2 the corresponding one of the N generated passband periodic signals includes: 4 prepending the generated prefix to the 5 corresponding one of the N generated passband periodic 6 7 signals. Claim 26 (original): The method of claim 23, wherein 1 generating a separate prefix for each of the N generated 2 passband periodic signals includes, for each separate 3 4 prefix: 5 generating a first cyclic prefix part; and generating a second prefix part, the second prefix 6 part being generated using a different generation 7 technique than the first prefix part. Claim 27 (canceled):

Claim 28 (currently amended): The method of claim 27, A

periodic signal processing method, the method comprising:

3	generating a multi-part prefix from a first
4	periodic signal, the step of generating a multi-part
5	prefix from the first periodic signal including:
6	performing a cyclic extension operation on
7	the first periodic signal to generate a cyclic
8	<pre>prefix portion;</pre>
9	wherein generating a continuity prefix portion
10	includes:
11	processing the cyclic prefix portion to
12	generate the a continuity prefix portion from
13	the cyclic prefix portion; and
14	appending the cyclic prefix portion to the
15	end of the continuity prefix portion.
1	Claim 29 (currently amended): The method of claim 27 28,
2	wherein-generating a continuity prefix portion includes:
3	A periodic signal processing method, the method
4	comprising:
5	generating a multi-part prefix from a
6	first periodic signal, the step of generating a
7	multi-part prefix from the first periodic
8	signal including:
9	performing a cyclic extension
10	operation on the first periodic signal to
11	generate a cyclic prefix portion;
12	processing a preceding periodic
13	signal to generate the a continuity prefix
14	portion from the preceding periodic signal; and

15	appending the cyclic prelix policion
16	to the end of the continuity prefix portion.
1	Claim 30 (currently amended): The method of claim 27,
2	wherein generating a continuity prefix portion includes:
3	A periodic signal processing method, the method
4	comprising:
5	generating a multi-part prefix from a first
6	periodic signal, the step of generating a multi-part
7	prefix from the first periodic signal including:
8	performing a cyclic extension
9	operation on the first periodic signal to
10	generate a cyclic prefix portion;
11	processing the cyclic prefix portion and a
12	preceding periodic signal to generate the a
13	continuity prefix portion from both the cyclic
14	prefix portion and the preceding periodic
15	signal; and
16	appending the cyclic prefix portion to the
17	end of the continuity prefix portion.
1	Claim 31 (original): The method of claim 30, wherein
2	said processing of the cyclic prefix portion and a
3	preceding periodic signal includes:
4	performing a cyclic extension operation on the
5	cyclic prefix portion to generate a first cyclic
6	extension;
7	performing another cyclic extension operation
8	on the preceding periodic signal to generate a second
9	cyclic extension, the first and second cyclic extensions

corres	sponding to a signal time period which is the same
for bo	oth the first and second cyclic extensions; and
	combining the first and second cyclic
extens	sions corresponding to said signal time period to
genera	ate said continuity prefix portion, the step of
combin	ning the first and second cyclic extensions
includ	ling:
	windowing the combined cyclic extensions
	using an attenuating window.
Claim	32 (original): The method of claim 31, wherein
each c	of said cyclic extension operations includes copying
a port	cion of the signal upon which said cyclic extension
operat	cion is performed.
Claim	33 (currently amended): The method of claim 27, A
period	dic signal processing method, the method comprising:
	generating a multi-part prefix from a first
perio	dic signal, the step of generating a multi-part
prefi	x from the first periodic signal including:
	performing a cyclic extension
	operation on the first periodic signal to
	generate a cyclic prefix portion;
	generating a continuity prefix
	portion;
	appending the cyclic prefix portion
	to the end of the continuity prefix portion;
	and
	wherein the continuity prefix portion has a
freque	ency which is different from the frequency of the

first per	lodic signal but has a phase at the point where
the cycli	c prefix portion is appended to the continuity
prefix po	rtion that is the same as the phase of the
beginning	of the cyclic prefix portion.
Claim 34	(currently amended): The method of claim 27 , \underline{A}
periodic	signal processing method, the method comprising:
	generating a multi-part prefix from a first
periodic	signal, the step of generating a multi-part
prefix fr	om the first periodic signal including:
	performing a cyclic extension
	operation on the first periodic signal to
	generate a cyclic prefix portion;
	generating a continuity prefix
	portion;
	appending the cyclic prefix portion
	to the end of the continuity prefix portion;
	and
	wherein the continuity prefix portion has a
nhase at	the beginning of the continuity prefix portion
	the same as the phase of the end of a preceding
periodic	
periodic	signal.
Claim 35	(currently amended): The method of claim 27, A
	signal processing method, the method comprising:
periodic	generating a multi-part prefix from a first
neriodic	signal, the step of generating a multi-part

	performing a cyclic extension
	operation on the first periodic signal to
	generate a cyclic prefix portion;
****	generating a continuity prefix
	portion;
•	appending the cyclic prefix portion
	to the end of the continuity prefix portion;
	<u>and</u>
	wherein the first periodic signal is one of N
per	iod signals corresponding to N different tones of a
mul	ti-tone signal, where N is a positive integer greater
tha	n one, the method further including: comprising:
	generating for each of the N periodic signals,
oth	er than the first periodic signal, a separate multi-
par	t prefix from a corresponding one of the N periodic
sig	nals, thereby generating N-1 multi-part signal
pre	fixes in addition to the multi-part prefix generated
fro	m the first periodic signal.
Cla	im 36 (original): The method of claim 35, further
com	prising:
	prepending each of the generated N-1 multi-part
pre	fixes and the generated multi-part prefix generated
fro	m the first periodic signal to the corresponding ones
of	the N periodic signals from which the multi-part
pre	fixes were generated.
Cla	im 37 (original): The method of claim 36, further
com	prising the step of:

3	filtering each of the N periodic signals with
4	prepended multi-part prefixes in parallel; and
5	transmitting the filtered N periodic signals
6	with prepended multi-part prefixes into a communications
7	channel.
1	Claim 38 (original): The method of claim 37, wherein the
2	step of transmitting the filtered N periodic signals with
3	prepended multi-part prefixes includes broadcasting
4	different ones of the N periodic signals using different
5 .	antennas.
1	Claim 39 (original): The method of claim 38, further
2	comprising:
3	allowing the N broadcast periodic signals to
4	combine in the communications channel to form an N tone
5	OFDM signal.
1	Claim 40 (canceled)
1	Claim 41 (previously presented): A method of
2	sequentially transmitting symbols in a multi-tone signal
3	communication system using N tones per symbol period,
4	wherein the N tones remain the same for multiple symbol
5	periods, the time period in which the N tones remain the
6	same being a dwell, the method comprising:
7	for each symbol transmission period of the
8	dwell:
9	rotating a constellation of symbols from
10	which consequeive symbols are transmitted using

11

11	one of said N tones by a fixed amount and which
12	is a function of the duration of a multi-part
13	prefix to be transmitted and with the selected
14	symbol, wherein said fixed amount by which the
15	constellation of symbols is rotated is a
16	function of the tone frequency used;
17	selecting a symbol to be transmitted from
18	a constellation of symbols to be transmitted.
19	using a signal corresponding to one of said N
20	tones; and
21	transmitting N signals corresponding to
22	each one of the N tones of the multi-tone
23	signal, each one of the N signals being
24	transmitted on a corresponding one of a first
25	plurality of antennas, the antenna being used
26	to transmit signals corresponding to a
27	particular tone during the dwell remaining the
28	same throughout the dwell.
*	
1	Claim 42 (original): The method of claim 41, further
2	comprising the step of:
3	for each symbol transmission period of a second
4	dwell:
5	transmitting N signals corresponding to each one of
6	the N tones of the multi-tone signal, each one of the N
7	signals being transmitted on a corresponding one of a
8	second plurality of antennas, the antenna being used to

during the second dwell remaining the same throughout the second dwell, the second plurality of antennas including

transmit signals corresponding to a particular tone

- 12 at least one antenna which is different from the antennas
- included the first plurality of antennas.
- Claim 43 (canceled)
- Claim 44 (previously presented): The method of claim 41,
- wherein the rotation of the constellation during each of
- 3 the plurality of symbol transmission period has a
- 4 cumulative rotational effect on the constellation from
- 5 which symbols are selected causing the rotation of the
- 6 symbols in one symbol transmission period to effect the
- 7 constellation from which symbols are selected during the
- 8 next symbol transmission period.
- Claim 45 (previously presented): The method of claim 41,
- 2 wherein the rotation of the constellation during each of
- 3 the plurality of symbol transmission periods is by a
- 4 fixed additive amount which does not effect the position
- 5 of the symbols in the constellation from which the next
- 6 symbol is selected.
- 1 Claims 46-50 (canceled)
- 1 Claim 51 (previously presented): A system for generating
- 2 and transmitting signals corresponding to an N tone
- 3 multi-tone signal, where N is a positive integer greater
- 4 than 1, the system comprising:
- N periodic signal generator circuits for
- 6 generating periodic signals, each periodic signal
- 7 corresponding to a different tone one of the N tones of

N.

```
the multi-tone signal, wherein each of the N periodic
8
9
      signal generator circuits includes a square wave
      generator, each one of said N periodic signals including
10
      a square wave having a frequency component corresponding
11
      to one of said N tones of the multi-tone signal; and
12
                N prefix generator circuits for independently
13
      generating periodic signal prefixes, each one of the N
14
      prefix generator circuits being coupled to a different
15
      corresponding one of the N periodic generator circuits.
16
      Claim 52 (original): The system of claim 51, further
1
2
      comprising:
3
                N filters for independently filtering the N
      periodic signals including prefixes generated by the N
4
      prefix generator circuits, each one of the N filters
5
      being coupled to a different corresponding one of the N
6
      prefix generator circuits.
7
      Claim 53 (original): The system of claim 52, further
 1
2
      comprising:
                 a plurality of M antennas, where M is an
3
      integer and where 1 < M < N, each of the N filters being
 4
      coupled to a single one of the M antennas and each one of
 5
      the M antennas being coupled to at least one of the N
6
7
      filters.
      Claim 54 (original): The system of claim 53, wherein M =
 I
```

1	Claim 33 (original): The system of claim 34, wherein M
2	N, the system further comprising, at least one analog
3	combing circuit for combining signals from a subset of
4	said N filters into a signal filter and for coupling each
5	filter in the subset of said N filters one of said M
6	antennas.
1	Claim 56 (canceled)
1	Claim 57 (original): The system of claim 51, wherein
2	each of the N prefix generator circuits generates a
3	separate prefix, each one of the N separate prefixes
4	having the same duration.
1 .	Claims 58-60 (canceled)
1	Claim 61 (currently amended): The apparatus of claim 60,
2	wherein said means for generating a multi-part prefix
3	includes:
4	A communications apparatus, comprising:
5	a periodic signal generator module for
6	generating a first periodic signal; and
7	a prefix generation module for generating a
8	multi-part prefix from a first periodic signal, the
9	prefix generation module including:
10	means for performing a cyclic
11	extension operation on the first periodic
12	signal to generate a cyclic prefix
13	portion:

14	means for processing the cyclic
15	prefix portion to generate \underline{a} the
16	continuity prefix portion from the cyclic
17	prefix portion; and
18	means for appending the cyclic
19	prefix portion to the end of the
20	continuity prefix portion.
21	

Claim 60 62 (currently amended): The apparatus of claim 60, wherein said means for generating a multi-part prefix includes: A communications apparatus, comprising:

a periodic signal generator module for generating a first periodic signal; and a prefix generation module including:

means for generating a multipart prefix from a first periodic signal
by performing a cyclic extension operation
on the first periodic signal to generate a
cyclic prefix portion;

means for processing a preceding periodic signal to generate the a continuity prefix portion from the preceding periodic signal; and means for appending the cyclic prefix portion to the end of the continuity prefix portion.