

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A process for preparing crystalline parahydroxybenzoic acid anhydride, comprising the step of precipitating and isolating parahydroxybenzoic acid in an aqueous solvent at a temperature equal to or above the transition temperature of parahydroxybenzoic acid.
2. (currently amended): The process for preparing crystalline parahydroxybenzoic acid anhydride according to claim 1, wherein the precipitating and isolating step is performed at a temperature which is in the range from the transition temperature to said the transition temperature + 30°C.
3. (original): A process for preparing crystalline parahydroxybenzoic acid anhydride, comprising the step of precipitating and isolating parahydroxybenzoic acid with acid from a solution of parahydroxybenzoate in an aqueous solvent at a temperature equal to or above the transition temperature of parahydroxybenzoic acid.
4. (original): A process for preparing crystalline parahydroxybenzoic acid anhydride, comprising the steps of: precipitating parahydroxybenzoic acid in an aqueous solvent with acid, heating the parahydroxybenzoic acid precipitates to dissolve the same, and re-precipitating and isolating the parahydroxybenzoic acid at a temperature equal to or above the transition temperature of parahydroxybenzoic acid.

5. (currently amended): A process for preparing crystalline parahydroxybenzoic acid anhydride, comprising the steps of:

providing a suspension of parahydroxybenzoic acid monohydrate in an aqueous solvent;
preparing a solution of parahydroxybenzoic acid in an aqueous solvent by heating the
suspension; and
precipitating crystalline parahydroxybenzoic acid anhydride by keeping said solution at a
temperature equal to or above the transition temperature of parahydroxybenzoic acid; and
isolating the crystalline parahydroxybenzoic acid anhydride at a temperature equal to or
above the transition temperature of parahydroxybenzoic acid.

6. (currently amended): A process for preparing crystalline parahydroxybenzoic acid anhydride, comprising the steps of:

providing preparing a suspension of parahydroxybenzoic acid monohydrate in an
aqueous solvent,
changing parahydroxybenzoic acid monohydrate to parahydroxybenzoic acid anhydride
by heating the suspension to a temperature equal to or above the transition temperature of
parahydroxybenzoic acid, and
isolating the crystalline parahydroxybenzoic acid anhydride at a temperature equal to or
above the transition temperature of parahydroxybenzoic acid.

7. (currently amended): The process for preparing crystalline parahydroxybenzoic acid anhydride according to ~~any one of claims 1 to 6~~ claim 1, 2, 3, 4, 5 or 6, wherein the aqueous solvent is water and the transition temperature of parahydroxybenzoic acid is 52 to 54°C.

8. (currently amended): Crystalline parahydroxybenzoic acid anhydride, wherein the specific surface area of particles that can pass through a 100 mesh (150 μm) sieve and can not pass through a 140 mesh (106 μm) sieve is equal to or less than $0.3 \text{ m}^2/\text{g}$.

9. (original): The crystalline parahydroxybenzoic acid anhydride according to claim 8, wherein the angle of repose is equal to or less than 45° .

10. (original): The crystalline parahydroxybenzoic acid anhydride according to claim 8 or 9, wherein the compression ratio calculated according to the following formula is equal to or less than 10%: $(\text{packed bulk density}-\text{aerated bulk density})/\text{packed bulk density} \times 100$.