MathMunition: Equation Siege

Software Engineering COMP 4110
University of Massachusetts Lowell
Fall 2023

By: Aidan Javidpour, Joel Keaton, Anthony Kitowicz, Erson Ramirez Mendoza, Leon Zeltser

Instructor: Dr. James Daly

Project Overview

The Problem

 Linear equations taught in 7th and 8th grade according to Massachusetts Department of Education

- Drilling problems in classwork and homework is boring

- Create a game to make learning fun

What is MathMunition?

- Inspired by Brick Breaker and 2D platform games

- Fire cannon at a medieval castle by entering linear equations in slope intercept form (y = mx + b)

- Teaches students linear equations

Methodology

- Y-intercept is decided randomly, student will have to calculate a slope to destroy a specific block

- Fun and interactive to help the user get excited for the subject

Time constraint to help players solve equations efficiently

Technology

- Using Unity game engine

Coded in C#

 Art, music, and sound effects are made by the team

Architecture

- Scenes hold sprites such as buttons, blocks, or cannons

- Scripts control the behavior of the objects

- Data stored in game files using PlayerPrefs class

Hardware Requirements

- Need a working mouse and keyboard

- Windows device needed to use downloadable version

- Everyone can play the browser version also on the website

How to Play

- Executable version (Windows only) on website

- Browser version on website

- https://jojojo8359.github.io/SWE-Project/

Overview of Features

Level Layout

- Castle on one side of the screen, one cannon on the other (on the y-axis)
- Space on top to enter equation
- One block in the castle is the target, if destroyed the player wins
- Player has limited amount of time to complete level,
 based on difficulty

Gameplay

- Player enters a linear equation to fire cannon

Player enters slope, y-intercept has been decided randomly

- That equation becomes the trajectory of the cannonball

 Cannonball travels until hitting block or ground or flying off the screen

Other Features

- Three difficulties (easy, medium, hard)

- Get a score based on how many blocks destroyed

- High scores from every level and difficulty are saved

Future Work

- More levels and randomly generate level layouts
- Ability to pause, save, and quit level
- Scratchpad so the player can do quick calculations
- Add more themes
- Extend it beyond linear equations

Domain Research

Domain Research

- Massachusetts Department of Education requires that linear equations are taught in 7th or 8th grade
 - "In grade 7, instructional time should focus on four critical areas: [...] (2) developing understanding of operations with rational numbers and working with expressions and linear equations"
 - "In grade 8, instructional time should focus on three critical areas: (1) formulating and reasoning about expressions and equations, including [...] solving linear equations"

Constraints

- Limited time to work on prototype
 - Were not able to implement all features we planned on having

- Team was unfamiliar with tools, needed to learn them

Game is written in English, no support for other languages

Sequence Diagrams

Menu Diagram

Gameplay Diagram

Demonstration

Main Menu

Help Screen

About Screen

Options Screen

Difficulty Select Screen

Level Select Screen

Gameplay - UI

Enter Equation Time Remaining: **@1:26** × + 4 Points: 1800 fire! Return to Main Menu

Gameplay (Continued)

Enter Equation Time Remaining: **00:28** X +-3 Points: 5000 fire! Return to Main Menu

Scenario #1 - Win The Game

Gameplay #2 - Cannon Flip

Senario #2 - Time Runs Out & Game Lost

High Score Screen

Final Notes

Acknowledgements

Thank you to Dr. James Daly and other students for their feedback on early versions of this project.

Massachusetts Department of Elementary and Secondary Education, "Massachusetts Mathematics Curriculum Framework — 2017." Massachusetts Department of Elementary and Secondary Education, 2017. https://www.doe.mass.edu/frameworks/math/2017-06.pdf.

Thank You

Questions?