Author: Muhammad Bilal Prediction using Supervised ML Problem Statement: Predict the percentage of an student based on the no. of study hours. What will be predicted score if a student studies for 9.25 hrs/ day? Importing all libraries

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.metrics import mean_absolute_error

link = "http://bit.ly/w-data" data = pd.read_csv(link) print("Data imported successfully") print(data)

importing data

Checking for missing values

data.isna().sum

Plotting the Data

data.plot(x='Hours', y='Scores', style='o') plt.title('Hours vs Percentage')

plt.xlabel('Hours Studied') plt.ylabel('Percentage Score')

plt.show()

x=data.iloc[:,:-1].values

In [4]: #splitting training and testing data y=data.iloc[:,1].values

x_train, x_test, y_train, y_test= train_test_split(x, y, train_size=0.08, test_size=0.20, random_state=0) from sklearn.linear_model import LinearRegression linearRegressor= LinearRegression()

y_predict= linearRegressor.predict(x_train) regressor = LinearRegression() In [6]: regressor.fit(x_train, y_train) print ("Training complete.") Training complete.

linearRegressor.fit(x_train,y_train)

#plotting the regression line In [16]: line = regressor.coef_*x+regressor.intercept_ #plotting for the test data plt.title('Hours vs Percentage') plt.xlabel('Hours Studied')

> [9.2] [5.5][8.3] [2.7] [7.7][5.9] [4.5][3.3] [1.1][8.9] [2.5] [1.9] [6.1][7.4] [2.7] [4.8] [3.8] [6.9][7.8]]

In [9]:

In [10]:

plt.scatter(x,y) plt.plot(x, line); plt.show() Hours vs Percentage 80

plt.ylabel('Percentage Score')

Percentage Score 60 20 Hours Studied x = data.iloc[:,:-1].valuesy = data.iloc[:,-1].values print(x) print(y) [[2.5] [5.1] [3.2] [8.5] [3.5] [1.5]

[21 47 27 75 30 20 88 60 81 25 85 62 41 42 17 95 30 24 67 69 30 54 35 76

 x_{train} , x_{test} , y_{train} , y_{test} = $train_{test}$, y_{test} , y_{test} = 0.40, $train_{test}$, y_{test}

[[5.1] [7.7] [3.3]

print(x_train) print(x_test)

[2.7] [5.5][2.7] [8.5] [2.5] [4.8] [8.9]

[1.1]]

print(y_train) print(y_test)

In [11]:

Testing and Training

from sklearn.model_selection import train_test_split

[8.3] [9.2]

[6.1] [3.5]

[4.5]] [[1.5] [3.2] [7.4] [5.9] [3.8] [1.9][7.8] [6.9]

> print('Predicted data\n' , y_pred) Predicted data [15.9477618 32.77394723 74.344523

> > 15.947762

32.773947

59.497889

38.712601

19.906864

78.303625

69.395645

11.988659

Out[12]: LinearRegression()

Predicted values Actual values Out[17]:

df = pd.DataFrame({'Predicted values':y_pred, 'Actual values':y_test})

25.84551793 59.49788879 38.71260091

74.344523 69 25.845518 30

62

35

24

86

76 17

20

27

[47 85 42 81 88 67 30 25 60 30 75 21 54 95 41]

from sklearn.linear_model import LinearRegression

19.90686425 78.30362545 69.39564493 11.98865934]

predicted values and actual values

[20 27 69 30 62 35 24 86 76 17]

regressor = LinearRegression() regressor.fit(x_train, y_train)

y_pred = regressor.predict(x_test)

In [22]: plt.scatter(x_train, y_train, color='BLUE') plt.plot(x_train, regressor.predict(x_train), color='BLACK') plt.xlabel("Number of hours studied ") plt.ylabel("Scores") plt.title("Training Data Set") Out[22]: Text(0.5, 1.0, 'Training Data Set') Training Data Set 90 80 70 60 50 40 30 20

Number of hours studied

plt.plot(x_train, regressor.predict(x_train), color='black')

plt.scatter(x_test, y_test, color='blue')

plt.xlabel("Hours studied")

plt.ylabel("Scores") plt.title("Test Set")

Out[23]: Text(0.5, 1.0, 'Test Set')

hours = 9.25

90 80 70 60 Š 50 40 30 20

print("No of Hours = {}".format(hours)) print("Predicted Score = {}".format(own_pred[0])) No of Hours = 9.25

Predicted Score = 92.65537184734602

Prediction for 9.25 hours

own_pred = regressor.predict([[hours]])

From the above test we can predict that if a student studies for 9.25 hrs/day then he/she might score 92.66