tirst order linear differential equations.

1.3.4.a) $x' + \frac{1}{t} \cdot x = 0$. Here $1 = (0, \infty)$

This is a first order linear homogenous differential equations with variable coefficient alt) = $\frac{1}{5}$ ds = $\ln|t|$

Method 1: (integrating factor method)
Here $\mu(t) = e^{\ln t t}$ is an integrating factor of the equation $\Rightarrow x' + \frac{1}{t} \cdot x = 0. \quad | .t \quad \Rightarrow D \cdot x' \cdot t + x = 0$

Notice that (x.t) = x.t +x

Integrateing with respect to $t = D \propto t = C$, CER Thus, the general solution is $x = \frac{C}{t}$, $C \in \mathbb{R}^{n}$

of variables method) Method 2: (separaction

We look for solutions (non-mull). We write the eg es:

We reparate the dependent variable a from the inde-pendent variable t:

We integrate the above equation (we look for phinuitives for each side of the equation.

Infx(t) = - lult + C. , luc

 $m|x(t)| = m|f| = x(t) = \frac{c}{t}$, cergeneral solution

1.3.2.c) $x' + \frac{2t}{1+t^2} x = 3.$

Notice that the equation is a first order linear nonhomogenous differential equation with variable coefficient a(t) = 2t 142

The nonhomogenous part is f(t) = 3.

Let $A(t) = \int_0^t a(s)ds = \int_{1+b^2}^{t-2s} ds = \ln(1+t^2)$

Method 1: (integrating factor method)

the integrating factor of the given equation is: $\mu(t) = e^{A(t)} = e^{\ln(1+t^2)} = 1+t^2$

Let the equation:

 $x' + \frac{2t}{1+t^2} \cdot x = 3$ | $\cdot (1+t^2)$

 $-\infty$. (1+t2) + 2t.x = 3(1+t2)

Notice that: $\left[x \cdot (1+t^2) \right] = x^{\prime} \cdot (1+t^2) + x \cdot 2t$

 $=P\left[x.(1+t^2)\right]'=3(1+t^2)$

Now we integrate with respect to t, the above of. $\Rightarrow x \cdot (1+t^2) = 3t + t^3 + C \Rightarrow x = \frac{3t + t^3}{1+t^2} + \frac{C}{1+t^2}$ Thus, the general solution of the given equation: $x(t) = \frac{C}{1+t^2} + \frac{3t+t^3}{1+t^2}$, CER. Method 2: (suparation of variables method 4 hagrange method) st1: We write the linear homog eg associated: $x' + \frac{2t}{1+t^2} \cdot x = 0. = \frac{dx}{dt} = -\frac{2t}{1+t^2} \cdot x \quad (x' = \frac{dx}{dt})$ We reparate the variables: $\frac{dx}{x} = -\frac{2t}{1+t^2}$ dt We integrate: \ \frac{dx}{x} = - \frac{12t}{1+t^2} \dt =D lu/x1 = - lu/1+t2/+ luic The general solution of the homopenous équation. Me look for $l \in C^1(\mathbb{R})$ s.t. $\chi_p = l(t) \cdot \frac{1}{1+t^2}$ $x_p' = e'(t) \cdot \frac{1}{1+t^2} + e(t) \cdot \left(-\frac{2t}{(1+t^2)^2}\right)$ Replace xp, xp in the equation: $e'(t) \cdot \frac{1}{1+t^2} - e(t) \cdot \frac{2t}{1+t^2} + \frac{2t}{1+t^2} \cdot e(t) \cdot \frac{1}{1+t^2} = 3$ this terms always cancel out =De'(t). 1/12 = 3 => e'(t) = 3(1+t2) / Solt $= 9 \cdot (1 + 1) = 3t + 1^3 = 9 \times p = (3t + 1^3) \cdot \frac{1}{1 + 1^2}$ $x = \frac{x_h + x_p}{x}, cer$ $x = \frac{c}{1+t^2} + \frac{3t + t^3}{1+t^2}, cer$ - the general solution of the given equation Method 3: (direct application of Prop 2.16).

Prop 2.16. The general solution of the first order limear menhanogenous differential equation (4) is: $x(t) = C \cdot e^{-A(t)} + \int_{t}^{t} e^{-A(t) + A(s)} f(s) \cdot ds, \quad c \in \mathbb{R}.$ Here $A(t) = \int_{t+s^2}^{t} ds = \int_{t}^{t} e^{-A(t) + A(s)} f(s) \cdot ds$, $e^{-A(t) + A(s)} f(s) \cdot ds$, $e^{-A(t) + A(s)} f(s) \cdot ds$. $f(t) = 3, \quad f_0 = 0.$ $f(t) = 3, \quad f_0 = 0.$ f(t) = 3

= $\frac{C}{1+t^2} + \frac{3t+t^3}{1+t^2}$, CER.

- the general solution of the given nonhomogenous equation.

 $t \in (0, \infty)$ 1.3.2. d) $x' - \frac{2}{x}x = t^2 sin(2t) - 4t^3$ · first order linear nonhomogenous equation • the variable coefficient: $a(t) = -\frac{2}{t}$ • the nonhomogenous part: $f(t) = t^2$. $sin(2t) - 4t^3$. · 1 = (0,00) - + · A(t) = \(a(s) ds = -2 lot Method 1: (integrating factor method) • the integrating factor: $\mu(t) = e^{A(t)} = e^{-2\ln t} = \frac{1}{t^2}$. multiply the equation with the integrating factor: 2-2-x=+2-/sim(2t)-4+3/. 12 x. = min(2t) - 4t enotice that the left hand side of the above equation can be written: $\left(x \cdot \frac{1}{t^2} \right) = x \cdot \frac{1}{t^2} - x \cdot \frac{2}{t^3}$ Soft (2) $(x. \pm 2)' = 1/3 \sin(2t) - 4t$ x. 1/2 = ((sim2t -4t) dt $x \cdot \frac{1}{4^2} = -\frac{1}{2} \cos 2t - \frac{2}{4} \frac{t^2}{2} + c$ $x = \left(-\frac{1}{2}\cos 2t - 2t^2\right) \cdot t^2 + c \cdot t^2$

 $x = C \cdot t^2 - \frac{t^2}{2} \cdot \cos 2t - 2t^4$, $c \in \mathbb{R}$

Method2 (separation of variables method & Zagrange method)

st1: first we solve the linear homogenous eq. associated $x' - \frac{2}{t} \cdot x = 0 \qquad =) \frac{dx}{dt} = \frac{2}{t} \cdot x$ We reparate the variables and integrate: de = = = t dt =) lu/xl=2lu/tl+luc, CER = D x = c. t2 - the general solution of the homogenous equation. st2: opply the Lagrange method.

We look for a particular solution: xp = e(t).t2

=> xp' = e'(t).t² + 2t.e(t). Replace xp, xp in the nonhomogenous equation. $e'(t).t^2 + 2t. e(t) - \frac{2}{t}. e(t).t^2 = t^2 \sin(2t) - 4t^3$ cancellal out $e'(t) = (t^2 sin(2t) - 4t^3) \cdot t^{-2}$ Q'(t) = Min2t - 4t $Q(t) = \int (mn2t - 4t) dt = -\frac{1}{2} cos 2t - 2t^2$ $= P \propto p = -\frac{t^2}{2} \cdot \cos 2t - 2t^4$ (pouticular solution) 18t3: · General solution of the nonhomogenous equation x=xx+xp $x = c \cdot t^2 - t^2 \cdot cos 2t - 2t^4$, $c \in \mathbb{R}$

Method 3 (direct application of Prop 2.16)

: general solution of the nonhomogenous equation:

x(t) = C.e - A(t) + (e - A(t) + H(s)), f(s) ds, CER · here A(t) = -2 lut f(t) = t2. sin (2t) - 4t3

=D $x(t) = c \cdot e^{2ht} + \int_{e}^{t} 2ht - 2ht \cdot (s^2 \cdot sin(2s) - 4s^3) ds$ $x(t) = C \cdot t^2 + t^2 \cdot \int \frac{1}{J^2} (s^2 \cdot sin(2s) - 4s^3) ds$

 $x(t) = C \cdot t^2 + t^2 \cdot \int_{0}^{t} (1 + t^2) ds$

 $\operatorname{relt}) = C \cdot t^2 - \frac{t^2}{2} \cos 2t - 2t^4, \quad \operatorname{CeiR}.$

- general solution of the given monhouog. eg.

1.3.4. Find the general solution of $x'-x=e^{t-1}$.

Justify the result in two ways.

• here alt = -1, $f(t) = e^{t-1}$, i := R $A(t) = \int_{-\infty}^{t} -ds = -t$

Method1: (integrating factor method):

· the integrating factor: $\mu(t) = e^{A(t)} = e^{-t}$ $x'-x=e^{t-1}$ | e^{-t} se'. e - t - x. e - t = e-1

(sc.e-t) = e-1

 $= 3 \propto = C \cdot e^{t} + t \cdot e^{t-1}$ x.e = e -1. + + C

Method 2: (separation of variables method & Lagrange method)

st1: x-x=0 , xh = 6 = $\frac{dx}{x} = -att$ de - x =) lu | x | z + lu C =Pog= c.et

st2: xp = ? , $xp = \ell(t) \cdot e^t$ xp= 9'(t).et + 9(t).et = et-1

=Dxp = t.et-1

15+3: x=-25h+26p x = c.et + t.et-1, ceR

general solution of the equation.

Method 3: (with proposition 2.16 from the Zecture) $x(t) = C \cdot e^{-A(t)} + \int_{t}^{t} e^{-A(t)} + A(s) f(s) ds, \quad CER$ R: Method 4. (with the characteristic equation method)

Notice that the equation can be seen as linear diffe-vential equation with constant coefficients:

St1: We solve the homogenous ep: x'-x=0 with the characteristic method: 1-1=0. =) 1=1 =) xh=e.C st2: Flint: we look for xp = a e t (since flt) = e'.et)

=) xp = a.et + a.tet = a.et + a.tet - atet = et.et xp = tet-1

8+3 : x = xn+xp

1.3.5.a) x''-x''=0.

Here we notice we have only the derivative of x, then we have only the derivative of x, which we make the change of variable:

(1) y = x'' = y' = x'''(1) y = x''' = y' = x'''

We obtain a first order leauation:

y'-y=0. (first order linear homogenous).

differential equation)

We use here the separation of variables method:

dy = y | separate the vaniables =)

dy = dt | integrate

My = t + hu C

y=c.et

We replace y in (1): $x'' = c.e^{t}$ We find x by two successive integrations out

=Dx'= Clet + K2 / Soft

, CI, CZ, C3 ER x = cret + c2. t + c3

- general solution of the equation

Remark: Notice that the above equation is a linear differential equation with constant coefficients. We solve this equation with the characteristic equation) method. =D 13-12=0 (the characteristic equation)

=) $x_1 = e^{ot} = 1$ $x_2 = te^{ot} = t$, and $x_3 = e^{it} = e^{t}$ =D 21=12=0 , 13=1

= C1+c2t+ C3.e 1 =D x= C1. x4+C2 x2+ C3 x3

CIRCLES ER.

1.3.5.b) $x'' = \frac{2}{t}x'$

• here the change of variable is: x'=y=)x''=y'=> $y'=\frac{2}{t}$. $y'=\frac{2}{t}$. $y'=\frac{2}{t}$.

dy = 2.y - (separate the variables)

dy = = = dt - (integrate the equation)

July = 2 helt + In C

M = 45.C

 $-x'-t^2.c$

 $x = c + \frac{13}{3} + R_2$

 $x(t) = c_1 \cdot t^3 + \epsilon_2 \qquad , c_1, \epsilon_2 \in \mathbb{R}.$