BIOLOGY REVISION

NOTES

FOR AQA GCSE (9-1)
SIMPLE, CLEAR & MEMORABLE

PAPER 2

Ronaldo Butrus

CONTENTS

5 HOME	OSTASIS AND RESPONSE	6
5.1 F	IOMEOSTASIS	6
5.2 T	THE HUMAN NERVOUS SYSTEM	6
5.2.1	Structure and function	6
5.2.2	The brain	7
5.2.3	The eye	8
5.2.4	Control of body temperature	10
5.3 F	IORMONAL COORDINATION IN HUMANS	10
5.3.1	Human endocrine system	10
5.3.2	Control of blood glucose concentration	11
5.2.4	Maintaining water and nitrogen balance in the body	12
5.3.4	Hormones in human reproduction	13
5.3.5	Contraception	14
5.3.6	The use of hormones to treat infertility	16
5.3.7	Negative feedback	16
5.4 F	PLANT HORMONES	17
5.4.1	Control and coordination	17
5.4.2	Use of plant hormones	17
6 INHERI	TANCE, VARIATION AND EVOLUTION	18
6.1 F	REPRODUCTION	18
6.1.1	Sexual and asexual reproduction	18
6.1.2	Meiosis	18
6.1.3	Advantages of sexual and asexual reproduction	19
6.1.4	DNA and the genome	19
6.1.5	DNA structure	20
6.1.6	Genetic inheritance	21
6.1.7	Inherited disorders	22
6.2 V	ARIATION AND EVOLUTION	23
6.2.1	Variation	23
6.2.2	Evolution	23
6.2.3	Selective breeding	24
6.2.4	Genetic engineering	25
6.2.5	Cloning	25
6.3 T	THE DEVEVELOPMENT OF UNDERSTANDING OF GENETICS AND EVOLUTION	ON 26

Contents

6.3.1	Theory of evolution	26
6.3.2	Speciation	26
6.3.3	The understanding of genetics	27
6.3.4	Evidence for evolution	27
6.3.5	Fossils	27
6.3.6	Extinction	28
6.3.7	Resistant bacteria	29
6.4 CL	ASSIFICATION OF LIVING ORGANISMS	30
7 ECOLOG	SY	31
7.1 AD	PAPTATIONS, INTERDEPENDENCE AND COMPETITION	31
7.1.1	Communities	31
7.1.2	Abiotic factors	31
7.1.3	Biotic factors	31
7.1.4	Adaptations	32
7.2 OF	RGANISATION OF AN ECOSYSTEM	33
7.2.1	Levels of organisation	33
7.2.2	How materials are cycled	33
7.2.3	Decomposition	34
7.2.4	Impact of environmental change	34
7.3 BI	ODIVERSITY AND THE EFFECT OF HUMAN INTERACTION ON ECOSYSTEMS.	35
7.3.1	Biodiversity	35
7.3.2	Waste management	35
7.3.3	Land use	35
7.3.4	Deforestation	36
7.3.5	Global warming	36
7.3.6	Maintaining biodiversity	36
7.4 TR	OPHIC LEVELS IN AN ECOSYSTEM	37
7.4.1	Trophic levels	37
7.4.2		
	Pyramids of biomass	37
7.4.3	Pyramids of biomass Transfer of biomass	
_	•	37
_	Transfer of biomass	37 38
7.5 FC	Transfer of biomass	37 38 38
7.5 FC 7.5.1	Transfer of biomass ODD PRODUCTION Factors affecting food security	37 38 38
7.5 FC 7.5.1 7.5.2	Transfer of biomass ODD PRODUCTION Factors affecting food security Farming techniques	37 38 38 38

USING THIS BOOK

This is **Higher Tier** only material – this means you will only need to revise this if you are sitting the higher tier Biology paper.

This is **Biology (separate science)** only material – this means you will only need to revise this if you are sitting the triple award separate science Biology paper (**8462**).

This is **Higher Tier** and **Biology** (separate science) only material – this means you will only need to revise this if you are sitting the higher tier Biology paper (8462).

THIS IS A SPECIFICATION CHAPTER

1.1 THIS IS A SPECIFICATION TOPIC

1.1.1 This is a specification subtopic

Chapter 5 – Homeostasis and Response

5 HOMEOSTASIS AND RESPONSE

5.1 HOMEOSTASIS

- Homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes.
- Homeostasis controls:
 - blood glucose concentration
 - body temperature
 - water levels
- Homeostatic automatic control mechanisms may involve nervous or chemical responses.
- A stimulus (plural stimuli) is a change in the environment.
- The Central Nervous System (CNS) consists of the brain and spinal cord.
- All control mechanisms include:
 - receptors: cells which detect stimuli and send information to coordination centres
 - coordination centres: organs which receive and process information from receptors
 - effectors: muscles or glands which bring about responses which restore optimum levels

5.2 THE HUMAN NERVOUS SYSTEM

5.2.1 Structure and function

 The nervous system enables humans to react to their surroundings and to coordinate their behaviour.

stimulus → receptor → coordinator → effector → response

- From stimulus to response:
 - stimulus detected by receptor
 - receptor sends information along neurones as electrical impulses to the CNS
 - CNS receives and processes information, coordinates response of effectors, and sends electrical impulses to effectors
 - effectors receive information and respond

- In the reflex arc:
 - receptor produces electrical impulse
 - impulse received moves along sensory neurone
 - sensory neurone releases neurotransmitter chemicals across synapse (empty space) between itself and the relay neurone in the spinal cord
 - impulse received moves along relay neurone
 - relay neurone releases neurotransmitter chemicals across synapse between itself and the motor neurone in the spinal cord
 - impulse received moves along motor neurone
 - effector receives impulse and produces a response

stimulus \rightarrow receptor \rightarrow sensory neurone \rightarrow relay neurone (in CNS) \rightarrow motor neurone \rightarrow effector \rightarrow response

- Importance of reflex actions:
 - automatic and rapid (do not involve thought process from brain)
 - protect from danger

5.2.2 The brain

- The brain controls complex behaviour.
- It is made of billions of interconnected neurones and has different regions that carry out different functions.
- Parts of the brain:
 - cerebral cortex: consciousness, memory, intelligence and language
 - **cerebellum:** muscular activity and balance
 - medulla: unconscious activities, e.g. breathing

- Difficulties of investigating brain function and treating brain damage and disease:
 - complexity of brain
 - delicacy of brain
 - drugs often cannot reach brain due to thick surrounding membranes
 - surgery is difficult as not all functions are understood
- Neuroscientists have been able to map the regions of the brain to particular functions by:
 - studying patients with brain damage
 - electrically stimulating different parts of the brain
 - using MRI scanning techniques

5.2.3 The eye

The eye is a sense organ containing receptors sensitive to light intensity and colour.

- Parts of the eye:
 - retina: contains receptor cells which detect light intensity and colour
 - **optic nerve:** transmits impulses (of image) from eye to brain
 - sclera: tough white outer layer that protects eyeball
 - cornea: transparent section of sclera at front which is curved to slightly refract light
 - iris: controls size of pupil and thereby how much light enters the eye
 - ciliary muscles: control suspensory ligaments
 - **suspensory ligaments:** control thickness of lens
- Accommodation is the process of changing the shape of the lens to focus on near or distant objects.
- To focus on a near object:
 - ciliary muscles contract
 - suspensory ligaments loosen
 - lens is thicker and refracts light rays strongly
- To focus on a distant object:
 - ciliary muscles relax
 - suspensory ligaments pulled tight
 - lens is thinner and only slightly refracts light rays
- To adapt to dim light:
 - muscular iris makes pupil larger
 - more light enters eye as light-sensitive receptor cells are not detecting enough light
- To adapt to bright light:
 - muscular iris makes pupil smaller
 - less light enters eye so light-sensitive receptor cells are not damaged

- Two common defects of the eye in which rays of light do not focus on the retina:
 - myopia (short sightedness): light rays focused in front of retina
 - hyperopia (long sightedness): light rays focused behind retina
 - generally these defects are treated with spectacle lenses which refract the light rays so that they focus on the retina
 - new technologies now include:
 - hard and soft contact lenses
 - laser eye surgery to change the shape of the cornea
 - replacement lens in the eye
- Myopia (short sightedness):
 - lens too thick or eyeball too long
 - light focused in front of retina
 - concave lens spreads light rays from distant objects

- Hyperopia:
 - lens too thin or eyeball too short
 - light focused behind retina
 - convex lens brings together light rays from nearby objects

Chapter 5 – Homeostasis and Response

5.2.4 Control of body temperature

- Body temperature is monitored and controlled by the thermoregulatory centre in the brain.
- Receptors are found in the:
 - thermoregulatory centre: contains receptors sensitive to blood temperature
 - skin: contains temperature receptors and sends nervous impulses to the thermoregulatory centre
- If the body temperature is too high:
 - **blood vessels dilate (vasodilation):** more blood flows near the skin, which turns red and emits radiation to the surroundings
 - sweat produced from sweat glands: as sweat evaporates it transfers energy from the skin to the surroundings
- If the body temperature is too low:
 - blood vessels constrict (vasoconstriction): less blood flows near the skin so less radiation is emitted
 - **sweating stops:** less evaporation of sweat
 - **skeletal muscles contract (shiver):** contractions require energy from respiration, an exothermic reaction which transfers energy to the body

5.3 HORMONAL COORDINATION IN HUMANS

5.3.1 Human endocrine system

- A hormone is a large chemical molecule produced in an endocrine gland that coordinates a specific organ's functioning.
- The endocrine system is made up of glands which secrete hormones directly into the bloodstream to its target organ where it produces an effect.
- The pituitary gland in the brain is a 'master gland' which secretes several hormones into the blood in response to body conditions.
- Pituitary hormones stimulate the secretion of other hormones by other glands to bring about effects.

5.3.2 Control of blood glucose concentration

- Blood glucose concentration is monitored and controlled by the pancreas.
- If blood glucose concentration is too high:
 - the pancreas secretes insulin
 - in liver and muscle cells excess glucose is converted into glycogen for storage
 - this causes glucose to move from the blood into the cells
- If blood glucose concentration is too low:
 - the pancreas secretes glucagon
 - in liver and muscle cells glycogen is converted into glucose
 - amino acids/lipids are broken down into glucose
- Glucagon interacts with insulin in a negative feedback cycle to control blood glucose levels in the body:
 - if the blood glucose is too high, insulin is released
 - if the blood glucose is too low, glucagon is released
 - this continues to keep the blood glucose level constant
- Type 1 diabetes:
 - a disorder in which the pancreas fails to produce sufficient insulin
 - treated with insulin injections
 - it is a genetically inherited disorder
- Type 2 diabetes:
 - a disorder where body cells no longer respond to insulin produced by the pancreas
 - treated by a carbohydrate-controlled diet and an exercise regime
 - obesity is a risk factor

5.2.4 Maintaining water and nitrogen balance in the body

- Uncontrolled loss of water, ions and urea:
 - **exhalation:** water leaves body via lungs
 - **sweat:** water, ions and urea lost from skin
- Controlled loss of water, ions and urea:
 - kidney function: excess water, ions and urea removed in urine
- If body cells lose or gain too much water by osmosis they do not function effectively.
- The digestion of proteins from the diet results in excess amino acids which need to be excreted safely.
- In the liver these amino acids are deaminated to form ammonia, which is toxic.
- Ammonia is immediately converted to urea for safe excretion.
- The kidneys produce urine by filtration of the blood and selective reabsorption of useful substances such as glucose, some ions and water.
- Antidiuretic hormone (ADH) and negative feedback:
 - controls water level in body by acting on kidney tubules
 - released by pituitary gland when blood concentration is too high
 - this causes more water reabsorption in the kidney tubules
- **Kidney dialysis** is the process of artificially performing the function of the kidney by connecting a patient to a dialysis machine:
 - tube connected to vein via arm
 - blood flows along tube into machine
 - semi-permeable membrane separates patient's blood and dialysing fluid (fluid containing same concentrations of components as healthy blood plasma)
 - harmful/excess substances diffuse through the membrane into the dialysing fluid

Advantages	Disadvantages
- cleans blood to ensure functioning	- light-headedness
- treatment is not every day	- lifestyle affected (up to 4hrs twice a week)
- reduced risk of death	- risk of infection

- **Kidney transplants** involve the replacement of a damaged kidney with that of a donor.

Advantages	Disadvantages		
- improved quality of life (no more	- major surgical procedure with risks of		
dialysis)	infection and damage to other organs		
- reduced risk of death	- immunosuppressant drugs must be		
	taken for the rest of patient's life		
	- patient more prone to infection due to		
	immunosuppressant drugs		

5.3.4 Hormones in human reproduction

- During puberty reproductive hormones cause secondary sex characteristics to develop.
- Testosterone, in males:
 - produced in the testes
 - stimulates sperm production
 - stimulates the development of secondary sex characteristics
- Oestrogen, in females:
 - produced in the ovary
 - involved in ovulation and the menstrual cycle
- Hormones in the menstrual cycle:
 - follicle stimulating hormone (FSH) causes the maturation of eggs in the ovary
 - luteinising hormone (LH) stimulates ovulation
 - oestrogen stimulates the development of the lining of the uterus
 - progesterone maintains the lining of the uterus
- Interaction of hormones in the menstrual cycle:

*inhibits means stops

- FSH secreted by the pituitary gland:
 - stimulates the maturation of eggs
 - stimulates the production of oestrogen
- oestrogen secreted by the ovaries:
 - stimulates the development of the lining of the uterus
 - inhibits the release of FSH
 - stimulates the production of LH
- LH secreted by the pituitary gland:
 - stimulates the release of a mature egg from the ovary
 - thereby stimulates the release of progesterone after ovulation
- progesterone secreted by the empty egg follicle:
 - maintains the lining of the uterus if the egg is fertilised so that the embryo can be implanted there
 - otherwise progesterone does not maintain the lining of the uterus so the menstrual cycle restarts
 - inhibits the release of FSH and LH

5.3.5 Contraception

- Fertility can be controlled by hormonal and non-hormonal methods of contraception.
- Hormonal methods:
 - oral contraceptives:
 - contain small amounts of oestrogen and progesterone
 - these hormones inhibit the production of FSH and LH
 - these hormones stop the lining of the uterus developing
 - these hormones keep the cervix's mucus thick to stop sperm getting through
 - easy to use as it does not require a doctor
 - relatively effective at preventing egg maturation and ovulation
 - must be taken regularly
 - risk factor for raised blood pressure, thrombosis, breast cancer
 - injection, implant or skin patch:
 - slowly release progesterone
 - progesterone inhibits the production of FSH and LH, and therefore the maturation and release of eggs for a specified period of time
 - contraceptive injection prevents egg release
 - contraceptive implant is 99.95% effective at preventing ovulation
 - contraceptive patch can be used without a doctor
 - contraceptive injection only lasts 12 weeks
 - contraceptive implant must be performed by a doctor
 - contraceptive patch only lasts a week
- Non-hormonal methods:
 - **barrier methods** such as condoms/diaphragms:
 - prevent the sperm reaching the egg
 - no side effects
 - condoms do not need medical advice
 - protect against STDs
 - condoms may get damaged and let sperm through
 - diaphragms must be fitted by a doctor
 - intrauterine devices:
 - contain copper to prevent implantation
 - some contain progesterone to thicken the mucus of the cervix to stop sperm getting through
 - extremely effective at preventing implantation
 - may cause period problems
 - may cause infections
 - spermicidal agents:
 - kill or disable sperm
 - readily available
 - not very effective; some sperm survive
 - abstaining from intercourse during maturation
 - sperm cannot fertilise egg when it is in the oviduct
 - does not use artificial methods of contraception (ethical)
 - very unreliable in terms of knowing when to stop abstaining

Chapter 5 – Homeostasis and Response

- **surgical methods** for sterilisation:
 - vasectomy in males (sperm ducts are cut and tied)
 - tubal ligation in females (oviducts cut or tied)
 - permanent contraception with no risk of human error
 - women require general anaesthetic for the surgery

5.3.6 The use of hormones to treat infertility

- In Vitro Fertilisation (IVF) treatment is a modern reproductive technology used to treat infertility.
- In IVF:
 - a mother is given FSH and LH to stimulate the maturation of several eggs (she may be able to then become pregnant normally)
 - the eggs are collected from the mother and fertilised by sperm from the father in the laboratory
 - the fertilised eggs develop into embryos
 - one or two embryos are inserted into the mother's uterus
- Disadvantages of IVF:
 - very emotionally and physically stressful
 - low success rates
 - can lead to multiple births, which are a risk to both the babies and the mother

5.3.7 Negative feedback

- Thyroxine: (is controlled by negative feedback)
 - produced in the thyroid gland
 - stimulates basic metabolic rate
 - plays an important role in growth and development
- Adrenaline: (is **not** controlled by negative feedback)
 - produced in the adrenal glands in times of fear or stress
 - increases heart rate
 - boosts delivery of oxygen and glucose to brain and muscles
 - prepares body for 'flight or fight' situations

Negative feedback diagram for thyroxine:

TSH (thyroid stimulating hormone) is produced in the pituitary gland:

5.4 PLANT HORMONES

5.4.1 Control and coordination

- Plants produce hormones to coordinate and control growth and responses to:
 - **light** (phototropism)
 - gravity (gravitropism/geotropism)
- Unequal distributions of auxin cause unequal growth rates in plant roots and shoots.
- Gibberellins are important in initiating seed germination.
- Ethene controls cell division and ripening of fruits.

5.4.2 Use of plant hormones

- Plant growth hormones are used in agriculture and horticulture.
- Auxins are used:
 - as weed killers
 - as rooting powders
 - for promoting growth in tissue culture
- Ethene is used in the food industry to control ripening of fruit during storage and transport.
- Gibberellins can be used to:
 - end seed dormancy
 - promote flowering
 - increase fruit size

Chapter 6 – Inheritance, Variation and Evolution

6 INHERITANCE, VARIATION AND EVOLUTION

6.1 REPRODUCTION

6.1.1 Sexual and asexual reproduction

- Gametes are sex cells:
 - in animals: sperm and eggin plants: pollen and egg
- Asexual reproduction:
 - offspring produced by mitosis
 - involves only one parent
 - does **not** involve fusion of gametes
 - **no** mixing of genetic information leads to genetically identical offspring
- Sexual reproduction:
 - gametes produced by meiosis
 - involves two parents
 - involves the fusion of male and female gametes
 - mixing of genetic information leads to variety in offspring

6.1.2 Meiosis

- Meiosis is the division of cells in reproductive organs to form gametes.
- In meiosis:
 - genetic information is copied
 - cell divides twice to form four gametes, each with a single set of chromosomes (23 haploid)
 - all gametes are genetically different from each other
- The male and female gametes fuse together at fertilisation to restore the normal number of chromosomes (46 diploid).
- New cells divide by mitosis, increase in number and differentiate.

6.1.3 Advantages of sexual and asexual reproduction

Advantages of sexual reproduction	Advantages of asexual reproduction
- produces variation in offspring	- only one parent needed
- if environment changes variation gives a	- more time and energy efficient as do not
survival advantage by natural selection	need to find a mate
- natural selection can be speeded up by	- faster than sexual reproduction
humans in selective breeding to increase	- many identical offspring can be produced
food production	when conditions are favourable

- Some organisms reproduce by both methods depending on the circumstances:
 - malarial parasites: asexually in the human host / sexually in the mosquito
 - fungi: asexually in the spores / sexually to give variation in unfavourable conditions
 - plants: asexually by runners (e.g. strawberry plants) or bulb division (e.g. daffodils) / sexually to produce seeds

6.1.4 DNA and the genome

- The nucleus of a cell contains genetic material, composed of 23 pairs of chromosomes, therefore 46 in total.
- Each chromosome is composed of a chemical called DNA.
- DNA is a polymer made of two strands in a double helix.
- A gene is a small section of DNA which codes for a particular sequence of amino acids to make a specific protein.
- The genome for an organism is the entire genetic material of that organism.
- Importance of the human genome:
 - searching for genes linked to different diseases
 - understanding and treating inherited disorders
 - tracing human migration patterns from the past

6.1.5 DNA structure

- DNA is a polymer made from four different nucleotides.
- Each nucleotide consists of a common sugar and phosphate group with one of four different bases attached to the sugar.
- DNA contains four bases: A, C, G and T
- A sequence of three bases is the code for a particular amino acid.
- The order of bases controls the order in which amino acids are assembled to produce a particular protein.
- The long strands of DNA consist of alternating sugar and phosphate sections.
- Attached to each sugar is one of the four bases.

- In the complementary strands:
 - a C is always linked to a G on the opposite strand and
 - a T is always linked to an A on the opposite strand.
- Protein synthesis:
 - a template is produced by the DNA
 - proteins are synthesised on ribosomes according to the template
 - carrier molecules bring specific amino acids to add to the growing protein chain in the correct order
 - when the protein chain is complete it folds up to form a unique shape
 - this unique shape enables the proteins to do their job as enzymes, hormones or forming structures in the body such as collagen
- Mutations occur continuously.
- Most do not alter the protein, or only alter it slightly so that its appearance or function is not changed.
- A few mutations code for an altered protein with a different shape.
- An enzyme may no longer fit the substrate binding site or a structural protein may lose its strength, so the mutation has altered its activity.
- Non-coding parts of the DNA can switch genes on and off, so variations in these areas of DNA may affect how genes are expressed.

6.1.6 Genetic inheritance

Definitions:

gamete: sex cell

- **chromosome**: strand of DNA

- gene: small section of DNA coding for a specific characteristic

- allele: a (different) form of a gene

- dominant allele: always expressed, even if only one copy is present

- recessive allele: only expressed if two copies are present

- homozygous: an organism with identical alleles for a characteristic

- heterozygous: an organism with different alleles for a characteristic

- genotype: genetic makeup of an organism for a characteristic

- **phenotype:** expression of genotype of an organism for a characteristic

- Dominant alleles are shown in capitals, e.g. B or P
- Recessive alleles are shown in lowercase, e.g. b or p
- Where there are two dominant alleles, e.g. BB, B is expressed.
- Where there is one dominant alleles, e.g. Bb, B is expressed.
- Where there are two recessive alleles, e.g. bb, b is expressed
- Most characteristics are a result of the interaction of multiple genes rather than a single gene, so a genetic cross does not always determine an organism's characteristic.

Punnett Square B – black hair		Homo- zygous		Punnett Squar H – long hair	е	Hetero- zygous	
b – brown hair		b	b	h – short hair		Н	h
Hetero- zygous	В	Bb	bb	Hetero-	Н	НН	Hh
	b	Bb	bb	zygous	h	Hh	hh
Genotype ratio	Bb : bb 2 : 2 (so 1 : 1)		Genotype ratio	HH: Hh: hh 1:2:1			
Phenotype ratio	black : brown 2 : 2 (so 1 : 1)		Phenotype ratio	long : short 3 : 1			
Probability of black hair	$\frac{2}{4} = 50\%$		Probability of long hair	$\frac{3}{4} = 75\%$			
Probability of brown hair	$\frac{2}{4}$ = 50%			Probability of short hair	$\frac{1}{4} = 25\%$		

Chapter 6 – Inheritance, Variation and Evolution

6.1.7 Inherited disorders

- Inherited disorders are caused by the inheritance of certain alleles:
 - polydactyly: having extra fingers or toes, caused by a dominant allele
 - cystic fibrosis: cell membrane disorder, caused by a recessive allele

Punnett Square P – polydactyly		Homo- zygous		Punnett Squar C – no cystic fit	rosis	Homo- zygous	
p – no polydao	tyly	р	р	c – cystic fibrosis		С	С
Hetero-	Р	Pp	pp	DEVELOPE AND SOCIETY		Сс	Сс
zygous	р	pp	pp	zygous	С	Сс	Сс
Genotype ratio	Pp:	Pp : pp 3 : 1		Genotype ratio	Cc : other 4 : 0		
Phenotype ratio	polydactyly : no polydactyly 3 : 1		Phenotype ratio	no c.f. : c.f. 0 : 4			
Probability of polydactyly	$\frac{3}{4} = 75\%$		Probability of c.f.	$\frac{0}{4} = 0\%$			
Probability of no polydactyly	$\frac{1}{4} = 25\%$		Probability of no c.f.	$\frac{4}{4}$ = 100%			

- Arguments for embryo scanning:
 - could reduce healthcare costs for foetus once born
 - could avoid life of pain and suffering
- Arguments against embryo scanning:
 - expensive
 - risk of miscarriage
 - can five false positive or negative result
 - no cures for genetic disorders
 - prompts decisions on termination

6.2 VARIATION AND EVOLUTION

6.2.1 Variation

- Variation describes the differences in the characteristics of individuals in a population.
- Variation is caused by:
 - inherited genes (genetic)
 - conditions of development (environmental)
 - a combination of genes and the environment
- The genome can interact with the environment to influence the development of the phenotype of an organism:
- E.g. skin colour may darken in sunny climates
- E.g. a genetic tendency to be underweight may be overcome by too much junk food
- There is usually extensive genetic variation within a population of species.
- Mutations are changes in the DNA code in which:
 - most have no effect on the phenotype
 - some influence phenotype
 - very few determine phenotype
- In organisms, mutations:
 - occur continuously
 - rarely lead to a new phenotype
 - if one is suited to an environmental change it can lead to a relatively rapid change in the species by survival of the fittest

6.2.2 Evolution

- Evolution is a change in the inherited characteristics of a population over time through a process of natural selection which may lead to the formation of a new species.
- The theory of evolution states that all species evolved from simple life forms that first developed three billion years ago.
- Survival of the fittest:
 - species show wide range of phenotype
 - individuals with characteristics most suited to the environment survive and breed
 - individuals with less suited characteristics become extinct
 - the 'useful' alleles are passed on to the next generation
- If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.

Chapter 6 – Inheritance, Variation and Evolution

6.2.3 Selective breeding

- Selective breeding is the process by which humans breed plants and animals for particular genetic characteristics.
- Also known as artificial selection, it has been done for thousands of years.
- Selective breeding in detail:
 - parents with desired characteristic chosen from mixed population
 - they are bred together
 - offspring with the desired characteristic are bred together
 - this continues over many generations until all offspring show the desired characteristic(s)
- Characteristics include:
 - disease resistance in food crops
 - animals which produce more meat or milk
 - domestic dogs with a gentle nature
 - large or unusual flowers
- However, selective breeding can lead to inbreeding:
 - closely related animals are bred
 - they have similar genetic characteristics
 - a specific disease could wipe out the whole population
 - an undiscovered defect could be in all the population

6.2.4 Genetic engineering

- Genetic engineering is the process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic.
- Uses of genetic engineering:
 - plant crops have been genetically engineered to be resistant to diseases or to produce bigger better fruits
 - bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes

Benefits	Risks
- improved growth rate of organisms	- effects of eating GM crops not fully explored
- increased food value of GM crops	- effects on populations of wild flowers and
- crops well-suited to different climates	insects
- GM crops can release pesticides	- GM crops are infertile
- possibility of overcoming inherited disorders	- fears of human engineering

- In genetic engineering:
 - enzymes are used to isolate the required gene
 - gene is inserted into a vector, such as a bacterial plasmid or virus
 - vector is used to insert gene into required cells
 - gene is replicated and transferred to cells of organism at an early stage in their development
 - organism develops with desired characteristics

6.2.5 Cloning

Tissue culture

- using small groups of cells from part of a plant to grow identical new plants
- important for preserving rare plant species or commercially in nurseries

Cuttings

- an older, but simple, method
- used by gardeners to produce many identical plants from a parent plant

Embryo transplant

- splitting apart cells from a developing animal embryo before they become specialised
- then transplanting the identical embryos into host mothers

Adult cell cloning

- nucleus removed from unfertilised egg cell
- nucleus from adult body cell inserted into egg cell
- electric shock stimulates egg cell to divide to form an embryo
- these embryo cells contain the same genetic information as the adult cell
- when the embryo has developed into a ball of cells, it is inserted into the womb of an adult female to continue its development

6.3 THE DEVEVELOPMENT OF UNDERSTANDING OF GENETICS AND EVOLUTION

6.3.1 Theory of evolution

- Charles Darwin, as a result of observations on a round the world expedition, backed by years of experimentation and discussion linked to developing knowledge of geology and fossils, proposed the theory of evolution by natural selection:
 - individual organisms within a particular species show a **wide range of variation** for a characteristic
 - individuals with characteristics **most suited to the environment** are more likely to **survive to breed successfully**
 - the **characteristics** that have enabled these individuals to survive are then **passed** on to the next generation
- Darwin published his ideas in *On the Origin of Species* (1859).
- There was much controversy surrounding these new ideas.
- The theory of evolution by natural selection was only gradually accepted because:
 - the theory challenged the idea that God made all the animals and plants that live on Earth
 - there was **insufficient evidence** at the time the theory was published to convince many scientists
 - the **mechanism of inheritance and variation was not known** until 50 years after the theory was published
- Jean-Baptiste Lamarck's theory was:
 - changes occur in an organism during its lifetime
 - these can be inherited (although now we know that this cannot occur)

6.3.2 Speciation

- Alfred Russel Wallace independently proposed the theory of evolution by natural selection.
- He published joint writings with Darwin in 1858 which prompted Darwin to publish *On the Origin of Species* (1859) the following year.
- Wallace worked worldwide gathering evidence for evolutionary theory.
- He is best known for his work on warning colouration in animals and his theory of speciation.
- Alfred Wallace did much pioneering work on speciation but more evidence over time has led to our current understanding of the theory of speciation.
- Speciation occurs by the following steps:
 - isolation: where two populations of a species become separated
 - genetic variation between the two populations
 - **natural selection** operates differently on the two populations
 - **speciation:** the two populations become so different that they can no longer successfully interbreed (to produce fertile offspring)

6.3.3 The understanding of genetics

- In the mid-19th century Gregor Mendel carried out breeding experiments on plants.
- One of his observations was that the inheritance of each characteristic is determined by 'units' that are passed on to descendants unchanged.
- In the late 19th century behaviour of chromosomes during cell division was observed.
- In the **early 20th century** it was observed that chromosomes and Mendel's 'units' behaved in similar ways.
- This led to the idea that the 'units', now called genes, were located on chromosomes.
- In the **mid-20**th **century** the structure of DNA was determined and the mechanism of gene function worked out.

6.3.4 Evidence for evolution

- The theory of evolution by natural selection is now widely accepted.
- Evidence for Darwin's theory of evolution:
 - characteristics are passed on to offspring in genes
 - fossil record shows evolution
 - antibiotic resistance in bacteria

6.3.5 Fossils

- Fossils are the 'remains' of organisms from millions of years ago, which are found in rocks.
- Ways of fossilization:
 - parts of organisms have not decayed due to absence of required conditions
 - parts of organism replaced by minerals during decay
 - preserved traces of organism, such as footprints, burrows and rootlet traces
- The fossil record is incomplete (and scientists speculate) because:
 - early forms of life were soft-bodied, leaving few traces behind
 - traces were destroyed by geological activity
- We can learn from fossils how much or how little different organisms have changed as life developed on Earth.
- More recent fossils are nearer to the surface and will look more like modern organisms' skeletons.

Chapter 6 – Inheritance, Variation and Evolution

6.3.6 Extinction

- Extinctions occur when there are no remaining individuals of a species still alive.
- Factors which may contribute to extinction:
 - new predators
 - new diseases
 - successful competition
 - climate change
 - loss of habitat
 - catastrophic events, e.g. asteroid impact (cause mass extinctions)

6.3.7 Resistant bacteria

- Bacteria can evolve rapidly because they reproduce at a fast rate.
- Constant mitosis provides more opportunities for random mutation.
- How antibiotic resistant bacteria evolve:
 - mutations produce new strains
 - some strains are resistant to antibiotics, so are not killed
 - resistant strains survive and reproduce, increasing the population
 - resistant strain spreads because people are not immune to it
 - there is no effective treatment
- MRSA (Methicillin-resistant Staphylococcus aureus) is a type of bacteria that is resistant to antibiotics, and can be deadly due to no effective treatment.
- The development of new antibiotics is expensive and slow, so it is unlikely to keep up with the emergence of new antibiotic resistant strains.
- To reduce the rate of development of antibiotic resistant strains:
 - doctors should **not provide antibiotics inappropriately** (e.g. for virus)
 - patients should complete their course of antibiotics so all bacteria are killed (and none survive and mutate)
 - antibiotics are not used for agricultural purposes

6.4 CLASSIFICATION OF LIVING ORGANISMS

- Carl Linnaeus classified living things into groups depending on their structure and characteristics.
- Linnaeus classified things into:
 - kingdom
 - phylum
 - class
 - order
 - family
 - genus
 - species
- He named organisms by the binomial system of genus and species.
- E.g. in *Homo sapien:* Homo is the genus and *sapien* is the species.
- New models of classification were proposed due to the development of evidence of internal structures, enabled by:
 - improvements in microscopes
 - better understanding of biochemical processes
- Carl Woese developed a three-domain system due to evidence available from chemical analysis, the domains being:
 - archaea: primitive bacteria in extreme environments
 - bacteria: true bacteria
 - eukaryota: protists, fungi, plants, animals (cells having nuclei)
- Evolutionary trees are a method used by scientists to show the relation between organisms, using:
 - classification data for living organisms
 - fossil data for extinct organisms

7 ECOLOGY

7.1 ADAPTATIONS, INTERDEPENDENCE AND COMPETITION

7.1.1 Communities

- Levels of organisation in an ecosystem:
 - **organism** (individual)
 - **population** (of one species)
 - **community** (all organisms of habitat)
 - ecosystem (interaction between community and environment)
- An ecosystem is the interaction of a community of living organisms (biotic) with the non-living (abiotic) parts of their environment.
- Organisms require a supply of materials from their surroundings and other organisms to survive and reproduce.
- **Interdependence** describes how a species depends on other species for food, shelter, pollination, and seed dispersal.
- If one species is removed it can affect the whole community.
- A **stable community** is one where all the species and environmental factors are in balance so that population sizes remain fairly constant.
- Competition means obtaining resources when there are not enough for all:
 - animals compete for food, mates and territory
 - plants compete for light, space, water and mineral ions

7.1.2 Abjotic factors

- Abiotic factors are non-living factors, including:
 - **light intensity:** affects photosynthesis (plant growth) and distribution
 - **temperature:** affects photosynthesis and distribution
 - moisture levels: affects the ability for plants to grow at all
 - soil pH / mineral content: distribution + low pH inhibits decay
 - wind intensity and direction: tree shape, transpiration rates
 - carbon dioxide levels: affects photosynthesis
 - oxygen levels for aquatic animals: affects distribution (fish need O₂)

7.1.3 Biotic factors

- Biotic factors are living factors, including:
 - availability of food: affect survival and reproduction
 - **new predators:** defenceless species can be wiped out
 - **new pathogens:** non-resistant species can be wiped out
 - outcompetition: population gets low enough to disallow reproduction

Chapter 7 – Ecology

7.1.4 Adaptations

- **Adaptations** are features that enable an organism to survive in the conditions in which they normally live.
- Types of adaptations:
 - **structural:** physical features, e.g. sharp teeth, or vibrant petals
 - **behavioural:** active features, e.g. dancing to attract mates
 - functional: processual, e.g. producing venom
- Typical animal adaptations:
 - **thick fur** for insulation
 - camouflaged skin
 - large feet as not to sink into snow/sand
 - long eyelashes to protect from sand (camels)
 - low SA:V ratio to reduce heat loss
 - high SA:V ratio to increase heat loss
- Typical plant adaptations:
 - thick stem to hold water
 - widespread roots to absorb as much water as possible
 - wax cuticle to prevent water loss
 - tightly curled leaves to prevent water loss
 - few/many stomata to decrease/increase water loss
- **Extremophiles** are organisms that live in environments that are very extreme, such as at high temperature, pressure, or salt concentration.
- Bacteria living in deep sea vents are extremophiles, living in little light and high pressure.

7.2 ORGANISATION OF AN ECOSYSTEM

7.2.1 Levels of organisation

- A food chain is a representation of feeding relationships within a community.
- All food chains begin with a **producer** which synthesises molecules, usually a green plant or alga which makes glucose by photosynthesis.
- Producers are eaten by primary consumers.
- Primary consumers are eaten by secondary and tertiary consumers.
- How to determine the distribution and abundance of a species in an ecosystem:
 - transect: a measured line by which species are counted at intervals
 - quadrat: a square frame outlining a sample area in which species are counted
- Predators are consumers that kill and eat other animals.
- Prey are those that are killed and eaten.
- In a stable community the number of predators and prey rise and fall in cycles, called cyclic fluctuation:
 - prey population increases
 - lots of food is available for predators, so predator population increases
 - eventually there will be a shortage of prey for predators
 - some predators will die of starvation, so predator population decreases
 - prey are not at so much risk any more, so the cycle restarts

7.2.2 How materials are cycled

- All materials in the living world are recycled to provide the building blocks for future organisms.
- The carbon cycle returns carbon from organisms to the atmosphere as carbon dioxide to be used by plants by photosynthesis.
- The water cycle provides fresh water for plants and animals on land before draining into the seas. Water is continuously evaporated and precipitated.
- The role of microorganisms in cycling materials:
 - detritivores are organisms that eat dead plant/animal material and produce waste
 - bacteria and fungi decompose the detritivores and their waste
 - this returns carbon dioxide from the carbon sink to the atmosphere
 - nutrients, including mineral ions, are returned to the soil for plants to absorb

Chapter 7 - Ecology

7.2.3 Decomposition

- Factors affecting the rate of decay of biological material:
 - temperature: enzymes in decomposers have a warm optimum temperature
 - water: moisture makes it easier for microorganisms to digest their food
 - availability of oxygen: most decomposers respire aerobically so oxygen is needed
- Gardeners and farmers try to provide optimum conditions for rapid decay of waste biological material.
- The compost produced is used as a natural fertiliser for growing garden plants or crops.
- Anaerobic decay produces methane gas.
- Biogas generators can be used to produce methane gas as a fuel.

7.2.4 Impact of environmental change

- Environmental changes affect the distribution of species in an ecosystem, including:
 - temperature
 - availability of water
 - composition of atmospheric gases
- The changes may be:
 - seasonal: temperate regions experience significant seasonal changes every year
 - **geographic:** changes in soil structure, pH, altitude in a region
 - caused by human interaction: deforestation, water pollution, air pollution

7.3 BIODIVERSITY AND THE EFFECT OF HUMAN INTERACTION ON ECOSYSTEMS

7.3.1 Biodiversity

- Biodiversity is the variety of all the different species of organisms on earth, or within an
 ecosystem.
- A great biodiversity ensures the stability of ecosystems by reducing the dependence of one species on another for food, shelter and the maintenance of the physical environment.
- The future of the human species on Earth relies on us maintaining a good level of biodiversity.
- How human activity affects biodiversity:
 - waste: plastic in the oceans kills species / digging for landfill destroys habitats
 - deforestation: destroys habitats / endangers certain tree species
 - global warming: polar animals cannot hunt without ice / seas could flood habitats

7.3.2 Waste management

- Increasingly more resources are being used due to:
 - rapid growth in the human population
 - an increase in the standard of living mean
- Pollution kills plants and animals, which can reduce biodiversity.
- Unless waste and chemical materials are properly handled, more pollution will be caused.
- Pollution can occur:
 - in water: from sewage, fertiliser or toxic chemicals
 - in air: from smoke and acidic gases
 - on land: from landfill and toxic chemicals

7.3.3 Land use

- Humans reduce the amount of land available for other animals and plants by building, quarrying, farming and dumping waste.
- Peat bog destruction:
 - peat is used to produce garden compost
 - destructing peat bogs reduces the area of the habitat and the biodiversity
 - the decay or combustion of peat releases CO₂ into the atmosphere

Chapter 7 – Ecology

7.3.4 Deforestation

- Large-scale deforestation in tropical areas is aimed to:
 - provide land for cattle and rice fields
 - grow crops for biofuels
- Negative implications of deforestation:
 - habitats destroyed
 - loss of biodiversity
 - release of CO₂ in the atmosphere (global warming)
 - loss of rural scenery

7.3.5 Global warming

- Levels of carbon dioxide and methane in the atmosphere are increasing, which contributes to global warming.
- Biological consequences of global warming:
 - loss of habitat: rising sea levels flood low-lying areas
 - changes in distribution: animals permanently migrate north/south
 - changes in migration patterns: seasons change, so organisms' migration changes
 - reduced biodiversity: species cannot cope with temperatures so become extinct
- The scientific consensus of global warming is based on systematic reviews of thousands of peer reviewed publications.
- Evidence is uncertain/incomplete because:
 - little data is available for over a century ago
 - some data is irrelevant

7.3.6 Maintaining biodiversity

- Scientists and concerned citizens have put in place programmes to reduce the negative effects of humans on ecosystems and biodiversity.
- Programmes include:
 - breeding programmes for endangered species
 - protection and regeneration of rare habitats
 - reintroduction of field margins and hedgerows in agricultural areas where farmers grow only one type of crop
 - reduction of deforestation and carbon dioxide emissions by some governments
 - recycling resources rather than dumping waste in landfill
- Negative human interactions in an ecosystem:
 - dumping waste in landfill
 - dumping plastic in the oceans
 - deforestation
 - releasing toxic chemicals into oceans/soil

7.4 TROPHIC LEVELS IN AN ECOSYSTEM

7.4.1 Trophic levels

- Trophic levels can be represented by numbers, starting at level 1 with plants and algae.
- Further trophic levels are numbered subsequently according to how far the organism is along the food chain.
- Trophic levels:
 - Level 1 (producers): plants and algae make their own food
 - Level 2 (primary consumers): herbivores eat plants/algae
 - Level 3 (secondary consumers): carnivores that eat herbivores
 - Level 4 (tertiary consumers): carnivores that eat other carnivores
 - Apex predators are carnivores with no predators.
- Decomposers break down dead plant and animal matter by secreting enzymes into the environment.
- Small soluble food molecules then diffuse into the microorganism.

7.4.2 Pyramids of biomass

 Pyramids of biomass can be constructed to represent the relative amount of biomass in each level of a food chain.

7.4.3 Transfer of biomass

- Producers are mostly plants and algae which transfer about 1% of the incident energy from light for photosynthesis.
- Only approximately 10% of the total biomass from each trophic level is transferred to the level above it.
- Reasons for losses of biomass:
 - not all ingested material is absorbed, some is egested as faeces
 - some absorbed material is lost as waste, such as carbon dioxide and water in respiration and water and urea in urine (large amounts of glucose used in respiration)

7.5 FOOD PRODUCTION

7.5.1 Factors affecting food security

- Food security is having enough food to feed a population.
- Suitable methods must be found to feed all people on Earth.
- Biological factors which are threatening food security include:
 - the increasing birth rate has threatened food security
 - changing diets in developed countries mean scarce food resources are transported around the world
 - new pests and pathogens that affect farming
 - environmental changes that affect food production, such as widespread famine occurring in some countries if rains fail
 - the cost of agricultural inputs
 - conflicts that have arisen in some parts of the world which affect the availability of water or food

7.5.2 Farming techniques

- The efficiency of food production can be improved by restricting energy transfer from food animals to the environment, by:
 - limiting their movement
 - controlling the temperature of their surroundings
- Some animals are fed high protein foods to increase growth.

7.5.3 Sustainable fisheries

- Fish stocks in the oceans are declining.
- It is important to maintain fish stocks at a level where breeding continues or certain species may disappear altogether in some areas.

7.5.4 Role of biotechnology

- Modern biotechnology techniques enable large quantities of microorganisms to be cultured for food.
- The fungus *Fusarium* is useful for producing mycoprotein, a protein-rich food suitable for vegetarians:
 - the fungus is grown on glucose syrup
 - in aerobic conditions
 - biomass is harvested and purified
- A genetically modified bacterium produces human insulin.
- When harvested and purified this is used to treat people with diabetes.
- GM crops could provide more food or food with an improved nutritional value such as golden rice.

BIOLOGY PAPER 2

5 HOMEOSTASIS AND RESPONSE
 6 INHERITANCE, VARIATION AND EVOLUTION
 7 ECOLOGY