

Práctico 3 - Poset Reticulados - Retículos

```
Ejercicio 1
Ejercicio 2
Ejercicio 3 (no completado)
     (a)
     (b)
    (c)
Ejercicio 4
   (a)
   (b)
Ejercicio 5
Ejercicio 6
   (a)
   (b)
Ejercicio 7
Ejercicio 8 (no completado)
   (a)
   (b)
   (C)
Ejercicio 9 (no completado)
Ejercicio 10 (no completado)
Ejercicio 11
Ejercicio 12 (con completado)
```


Ejercicio 13

Considere el reticulado L2. Encuentre $v \lor x$, $s \lor v y u \lor v$.

- $v \lor x = \sup\{v, x\} = t$
- $s \lor v = \sup\{s, v\} = 1$
- $u \lor v = \sup\{u, v\} = 1$

Ejercicio 2

Demuestre que en todo poset reticulado se cumple $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$.

Es la demostración de la desigualdad distributiva

$$egin{aligned} xee(y\wedge z)&\leq (xee y)\wedge(xee z)\ \{a\leq b\wedge c\leftarrow a\leq \ y\ a\leq c\}\ xee(y\wedge z)&\leq xee y\ y\ xee(y\wedge z)\leq xee z\ x\leq xee y\ y\ \lambda\ z\leq xee y\ y\ \lambda\ z\leq x\ ee z\ y\ x\wedge z\leq x\ ee z\ y\ y\wedge z \leq x\ v\wedge z\ y\wedge z \leq x\ v\wedge z\ y\ y\wedge z \leq x\ v\wedge z\ y\ y\wedge z \leq x\ v\wedge z\ y\wedge z \leq x\ v\wedge z \leq x\ v\wedge$$

Vemos que cada hipotesis se cumple, asi que queda demostrado

Ejercicio 3 (no completado)

Determine cuales de los siguientes mapeos f de P a Q son isomorfismos. En caso de no

serlo determine que es lo que falla.

$$P = Q = (Z, \leq) y f(x) = x + 1.$$

$$P = Q = (Z, \leq) y f(x) = 2x.$$

$$P = Q = (P({a, b, c}, \subseteq) y f(A) = Ac.$$

Determine si se dan los isomorfismos indicados.

(a)

(D6,
$$|$$
) ~= (P({a, b}), \subseteq).

Usamos el siguiente mapeo:

- $f(6) \to \{a, b\}$
- $f(2) \to \{a\}$
- $f(3) \to \{b\}$
- $f(1) \rightarrow \{\emptyset\}$

Necesitamos demostrar dos cosas para que sea un isomorfismo:

- f es biyectiva
- para todo x, $y \in P$,
 - $\circ \quad \mathsf{X} \leq \mathsf{V} \iff \mathsf{f}(\mathsf{X}) \leq \mathsf{f}(\mathsf{V})$

Para que sea biyectivo debemos demostrar que es inyectivo y sobreyectivo:

Inyectivo:

Entonces para que este mapeo sea inyectivo, necesitamos verificar que si f(x)=f(y), entonces x=y

Ahora revisamos:

- Si $f(x) = \emptyset$, entonces x=1 porque el único elemento que se mapea a \emptyset es 1.
- Si $f(x)=\{a\}$, entonces x=2.

- Si f(x)={b}, entonces x=3.
- Si f(x)={a,b}, entonces x=6.

Ya que no hay ningún par distinto $x \neq y$ y $x^*I = y$ tal que f(x) = f(y), el mapeo es **inyectivo**.

Sobreyectivo:

Un mapeo f:A→B es sobreyectivo si no queda ningún elemento de B sin ser "alcanzado" por f.

En nuestro caso el mapeo que analizamos es $f:D6 \rightarrow P(\{a,b\})$, y queremos verificar que cada subconjunto de $\{a,b\}$ tiene una preimagen en el conjunto de divisores de 6.

Podemos ver que no hay ningún subconjunto de {a,b} que se quede sin ser "alcanzado" por f, lo que significa que f es sobreyectivo.

Por ultimo demostraremos la preservación de orden

La preservación del orden significa que si un elemento x es menor que otro elemento y en D6 (con respecto a la divisibilidad |), entonces su imagen bajo f también debe respetar el orden de inclusión en $P({a,b})$.

Observando nuestro mapeo, vemos que cada relación de divisibilidad en D6 respeta el orden de inclusión en P({a,b}), el mapeo **preserva el orden**.

Por lo tanto como se cumple la biyectividad y como preserva el orden, podemos concluir que es un isomorfismo.

Hacemos el siguiente mapeo:

•
$$f(1) \rightarrow \{\emptyset\}$$

•
$$f(2) \to \{a\}$$

•
$$f(3) \rightarrow \{c\}$$

•
$$f(5) \to \{b\}$$

•
$$f(6) \rightarrow \{a, c\}$$

•
$$f(10) \rightarrow \{a, b\}$$

•
$$f(15) \rightarrow \{b, c\}$$

•
$$f(30) \rightarrow \{a, b, c\}$$

Ejercicio 5

Demuestre que si $f: (P, \le) \to (Q, \le')$ es isomorfismo entonces f-1 también lo es.

Sabemos que f es un isomorfismo, entonces podemos afirmar que f es biyectiva (inyectiva y sobreyectiva) y ademas preserva el orden.

1. Inyectividad

•
$$f^{-1}(x) = f^{-1}(y)$$
?

- Sabemos que f(x) = f(y), por lo tantao x = y.
- $f(f^{-1}(x)) = f(f^{-1}(y))$ aplicamos f de ambos lados
- x = y ya que f es inyectiva

2. Sobreyectividad

- como f es sobreyectivo, para todo $y \in Q \exists x \in P \mid f(x) = y$
- esto implica que $f^{-1}(y) = x$
- Por lo tanto f^{-1} es sobreyectivo

3. Preservación del orden

Suponga que $f: (P, \leq) \rightarrow (Q, \leq')$ es un isomorfismo de posets.

(a)

Si $m \in P$ es minimal, entonces f (m) es minimal.

```
egin{aligned} & 	ext{si } m \in P 	ext{ es minimal } 
ightarrow f(m) 	ext{ es minimal } \ & 	ext{ definicion de minimal } \ & 	ext{ } \forall a \in P : 	ext{ si } a \leq m \rightarrow a = m \ & 	ext{ como f es un isomorfismo } \ & 	ext{ si } f(a) \leq f(m) \rightarrow a = m \ & 	ext{ como f es biyectiva } \ & 	ext{ } f(a) \leq f(m) \rightarrow f(a) = f(m) \ & 	ext{ definicion de minimal } \ & 	ext{ } f(m) 	ext{ es minimal } \end{aligned}
```

(b)

Probar que si Q tiene algún minimal, entonces P tiene un minimal (Ayuda: usar f-1).

Demostración anterior y cambiamos la ultima parte:

Determine cuantos isomorfismos hay de $(P(\{a, b, c\}), \subseteq)$ en sı mismo...

Dado que los átomos del poset son los subconjuntos de un solo elemento $\{a\}$, $\{b\}$, $\{c\}$, un isomorfismo debe permutar estos átomos, entonces como hay 3 átomos, 3! = 6, la cantidad de isomorfismo son 6.

Ejercicio 8 (no completado)

(a)

Defina una función biyectiva f del reticulado (L3, \leq 3) en el reticulado (L4, \leq 4) que preserve el orden, es decir, tal que x \leq 3 y = \Rightarrow f (x) \leq 4 f (y).

(b)

Compruebe que no se cumple $x \le 3$ y $\Leftarrow = f(x) \le 4$ f (y). La función f es un ejemplo que muestra que preservación del orden no implica isomorfismo.

(c)

Pruebe también que f no preserva supremo ni ínfimo.

Ejercicio 9 (no completado)

Sea $(L, \emptyset, \emptyset)$ un retículo. Demostrar que $x \otimes (y \otimes z) = z \otimes (y \otimes x)$.

Ejercicio 10 (no completado)

(del teórico) Sea $(L, \emptyset, \emptyset)$ un retículo y considere la relación de orden parcial definida por $x \leq y \iff x \otimes y = y$. Probar que $x \otimes y$ es cota superior del conjunto $\{x, y\}$.

Ejercicio 11

Decida, y fundamente, cuales de los reticulados L1, L2, L3 y L4 son complementados.

Recordemos que es un retículo complementado:

Un reticulado es complementado si para cada elemento x en el reticulado, existe un elemento y tal que:

$$x \land y=0$$
 y $x \lor y=1$

Recordemos a L1, L2, L3, Y L4

- L1 → Es complementado ya que:
 - o Para el elemento a:
 - Vemos que sup{a, c} = 1
 - Y ademas inf{a, c} = 0
 - Por lo tanto c es el complemento de a
 - Para el elemento b:
 - Observamos que sup{b, e} = 1
 - Y ademas el inf{b, e} = 0
 - Por lo tanto e es el complemento de b
 - Para el elemento c:
 - Por simetría, visto anteriormente que c es el complemento de a, a es el complemento de c.
 - Para el elemento d:
 - EL $\sup\{d, 1\} = 1$
 - \blacksquare El inf{d, 1} = 0
 - Para el elemento e:
 - Por simetría de b, b es el complemento de e.
 - Para el elemento 1:
 - El complemento es 0.
 - Para el elemento 0:
 - El complemento es 1.

Por lo tanto como todos los elementos tienen un complemento, L1 es complementado.

- L2 → Es complementado ya que:
 - Para el elemento s:
 - Vemos que sup{s, u} = 1
 - Y ademas inf{s, u} = 0
 - Por lo tanto u es el complemento de s
 - Para el elemento t:
 - Observamos que sup{t, x} = 1
 - Y ademas el inf{t, x} = 0
 - Por lo tanto x es el complemento de t
 - Para el elemento u:
 - Por simetría, visto anteriormente s es el complemento de u
 - Para el elemento v:
 - EL sup{v, u} = 1
 - El inf{v, u} = 0
 - Para el elemento w:
 - EL sup{w, s} = 1
 - El inf{w, s} = 0
 - Para el elemento x:
 - Por simetria el complemento de x es t
 - Para el elemento 0:
 - El complemento es 1.
 - Para el elemento 1:
 - El complemento es 0.

Por lo tanto como todos los elementos tienen un complemento, L2 es complementado.

- L3 → No es complementado ya que:
 - no hay supremos
- L4 → No es complementado ya que:
 - Los elementos I y k, no tienen complemento.

Ejercicio 12 (con completado)

Supongamos que un poset P tiene la siguiente propiedad: para todo subconjunto S de

P se tiene que sup(S) existe (en particular existe sup(P) y sup(\emptyset)). Demostrar que inf(S)

existe para cualquier S.

Ejercicio 13

¿Para que valores n se tiene que Dn se incrusta en L3?

Recordemos que significa que Dn se incrusta en L3:

Dados dos retículos $\mathbf{L} = (L, \vee, \wedge)$ y $\mathbf{L}' = (L', \vee', \wedge')$ decimos que \mathbf{L} se incrusta en \mathbf{L}' sii existe un subreticulado \mathbf{S} de \mathbf{L}' isomorfo \mathbf{L} .

Entonces podemos ver que d6, d10, d14 se incrustan en l3.