AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions of claims in the application.

Claim 1 (currently amended) A process for the preparation of a compound of the formula

$$R_{9}O^{-X}$$
 Y
 R_{3}
 R_{4}
 R_{4}
 $R_{5})_{n}$
 R_{7}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{5}
 R_{7}
 R_{1}
 R_{1}
 R_{1}
 R_{2}

and, where appropriate, their tautomers, in each case in the free form or salt form, in which

either [

1 X is CH or N, Y is OR, and Z is O, or [

] X is N, Y is NHR₈ and Z is O, S or S(=0):

 R_1 is C₁-C₄alkyl;

is H, C₁-C₄alkyl, halogeno-C₁-C₄alkyl, C₃-C₆cycloalkyl or C₁-C₄alkoxymethyl; R_2

R₃ and R₄ independently of one another are H, C₁-C₄alkyl, C₁-C₄alkoxy, OH, CN, NO₂, a (C₁-C₄alkyl)₃-Si group, where the alkyl groups can be identical or different, halogen, (C₁-C₄alkyl)S(=O)_m, (halogeno-C₁-C₄alkyl)S(=O)_m, halogeno-C₁-C₄alkyl or halogeno-C₁-C₄alkoxy;

 R_5 is C₁-C₆alkyl, halogeno-C₁-C₆alkyl, C₁-C₆alkoxy, halogeno-C₁-C₆alkoxy, C₁-C₆alkylthio, halogen-C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, halogeno-C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, halogeno-C₁-C₆alkylsulfonyl, C₁-C₆alkoxy-C₁-C₆alkyl, halogeno-C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkylthio-C₁-C₆alkyl, halogeno-C₁-C₆alkylthio-C₁-C₆alkyl, C₁-C₆alkyl, halogeno-C₁-C₆alkyl, halogeno-C₁-C₆-alkylsulfinyl-C₁-C₆alkyl, C₁-C₆-alkylsulfonyl-C₁-C₆alkyl, halogeno-C₁-C₆-alkylsulfonyl-C₁-C₆alkyl, C₁-C₆-alkylcarbonyl, halogeno-C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, halogeno-C₁-C₆-alkoxycarbonyl, C₁-C₆-alkylaminocarbonyl, C₁-C₄-alkoxyiminomethyl; di(C₁-C₆alkyl)-aminocarbonyl, where the alkyl groups can be identical or different; C1-C6-alkylaminothiocarbonyl; di(C1-C6alkyl)aminothiocarbonyl, where the alkyl groups Mo6168D2

- 3 -

can be identical or different; C_1 - C_6 -alkylamino, di(C_1 - C_6 alkyl)-amino, where the alkyl groups can be identical or different; halogen, NO_2 , CN, SF_5 , thioamido, thiocyanatomethyl; an unsubstituted or mono- to tetrasubstituted C_1 - C_4 alkylenedioxy group, where the substituents are selected from the group consisting of C_1 - C_4 alkyl and halogen; or QR_6 , where, if n is greater than 1, the radicals R_5 can be identical or different;

- is C₂-C₆alkenyl or C₂-C₆ alkynyl, which are unsubstituted or substituted by 1 to 3 halogen atoms; (C₁-C₄alkyl)₃Si, where the alkyl groups can be identical or different; CN or an unsubstituted or mono- to pentasubstituted C₃-C₆cyclo-alkyl, aryl or heterocyclyl group, where the substituents are selected from the group consisting of halogen, C₁-C₆alkyl, halogeno- C₁-C₆alkyl, C₁-C₆alkoxy, halogeno-C₁-C₆alkoxy, phenoxy, naphthoxy and CN;
- A [either] is a direct bond, C_1 - C_{10} alkylene, -C(=O)-, -C(=S)- or halogeno- C_1 - C_{10} alkylene and R_7 is a radical R_{10} , [] or \underline{A} is C_1 - C_{10} alkylene, -C(=O)-, -C(=S)- or halogeno- C_1 - C_{10} alkylene and R_7 is OR_{10} , $N(R_{10})_2$, where the radicals R_{10} can be identical or different, or - $S(=O)_qR_{10}$;
- R₈ is H or C₁-C₄alkyl;
- R₉ is methyl, fluoromethyl or difluoromethyl;
- is H; an unsubstituted or substituted C₁-C₆alkyI, C₂-C₆alkenyl or C₂-C₆alkynyl group, where the substituents are selected from the group consisting of halogen; (C₁-C₄alkyl)₃Si, where the alkyl groups can be identical or different; C₃-C₆cyclo-alkyl, which is unsubstituted or substituted by halogen; C₁-C₆alkoxycarbonyl, which is unsubstituted or substituted by halogen; unsubstituted or substituted aryl, where the substituents are selected from the group consisting of halogen, halogeno-C₁-C₄alkyl and CN; a (C₁-C₆alkyl)₃Si group, where the alkyl groups can be identical or different; C₃-C₆cycloalkyl, which is unsubstituted or substituted by halogen; C₁-C₆alkoxycarbonyl which is unsubstituted or substituted by halogen; or an unsubstituted or substituted aryl or heterocyclyl group, where the substituents are selected from the group consisting of halogen and halogeno-C₁-C₄alkyl;

Q is a direct bond, C_1 - C_8 alkylene, C_2 - C_6 alkenylene, C_2 - C_6 alkynylene, O, $O(C_1$ - C_6 alkylene), $(C_1$ - C_6 alkylene)O, $S(=O)_p$, $S(=O)_p$, $S(=O)_p$ (C_1 - C_6 alkylene)S($=O)_p$;

m is 0, 1 or 2;

n is 0, 1, 2, 3, 4 or 5;

p is 0, 1 or 2; and

q is 0, 1 or 2,

and the C=N double bond marked with E has the E configuration, which comprises

a1) reacting [either] a compound of the formula

$$\begin{array}{c|c} & & & \\ & & & \\ R_2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

in which A, R_2 , R_5 , R_7 and n are as defined for formula (I) and the C=N double bond marked with E has the E configuration, or a [possible] tautomer thereof, in each case in the free form or in salt form, with a compound of the formula

$$R_9O$$
 X
 Y
 X_1
 X

in which X, Y, Z, R_3 , R_4 and R_9 are as defined for formula (I) and X_1 is a leaving group, or a tautomer thereof, in each case in the free from or in salt form, [ΘI]

wherein the compound of formula (II) is obtained by

[a2) reacting a compound of the formula

$$R_2 = \frac{N^{O} A^{R_7}}{\|E\|} (R_5)_n \qquad (IV).$$

in which A_1 R_{21} R_{5} R_{2} and n are as defined for formula (I) and the C=N double bond marked with E has the E configuration, or a possible tautomer thereof, in each case in the free form or in the salt form, with a compound of the formula

Mo6168D2

$$R_9O^X$$
 Y ONH₃CI (V),

in which X_1 , Y_2 , Z_3 , R_4 and R_0 are as defined for formula (I), or, if appropriate, a tautomer thereof, in each case in the free form or in salt form, or]

b1) reacting a compound of the formula

$$R_2 \xrightarrow{\parallel E} (R_5)_n \quad \text{(VI)},$$

in which R_2 , R_5 and n are as defined for formula (I) and the C=N double bond marked with E has the E configuration, or a [possible] tautomer thereof, in each case in the free form or in salt form, with a compound of the formula

$$R_7$$
- A - X_2 (VII),

in which A and R_7 are as defined for formula (I) and X_2 is a leaving group, [and either further reacting the] to form a compound [thus obtainable,] of the formula (IV) [, for example according to method a2), or]

$$R_2 = \frac{N_1 - R_7}{\|E\|} (R_5)_n \qquad (IV),$$

in which A, R₂, R₅, R₇ and n are as defined for formula (I) and the C=N double bond marked with E has the E configuration, or a tautomer thereof, and b2) further reacting [it] the compound of the formula (IV) with hydroxylamine or a salt thereof [and further reacting] to form the compound [thus obtainable,] of the formula (II), [for example according to method a1), or]

(c) reacting a compound of the formula

$$R_2$$
 R_5 R_5 R_5

in which R2, R5 and n are as defined for formula (I),

Mo6168D2

or a possible tautomer thereof, in each case in the free form or in salt form, with a C_1 - C_6 alkyl-nitrite and further reacting the compound thus obtainable, of the formula (VI), for example according to method b)].

Claims 2-22 (canceled)

Mo6168D2

Claim 23 (currently amended) A process according to claim [22] $\underline{1}$, wherein a compound of the formula (VII) in which X_2 is halogen is used.

Claim 24 (currently amended) A process according to claim [22] 1, wherein a compound of the formula (VII) in which X₂ is chlorine is used.

Claim 25 (currently amended) A process according to claim [22] 1, wherein the reaction of the compound of the formula (VI) with the compound of the formula (VII) is carried out in the presence of a base.

Claim 26 (original) A process according to claim 25, wherein the reaction is carried out in the presence of a base selected from the group consisting of alkali metal and alkaline earth metal hydroxides, hydrides, amides, alkanolates, acetates, carbonates, dialkylamides and alkylsilylamides.

Claim 27 (original) A process according to claim 26, wherein the base is potassium carbonate.

Claim 28 (currently amended) A process according to claim [22] 1, wherein the reaction of the compound of the formula (VI) with the compound of the formula (VII) is carried out in the presence of a solvent or diluent or of a mixture thereof.

Claim 29 (original) A process according to claim 28, wherein the solvent is selected from the group consisting of acetonitrile and propionitrile.

7
Claim 30 (currently amended) A process according to claim [29] 28, wherein the reaction is carried out in acetonitrile.

- 7 -

10

Claim 31 (currently amended) A process according to claim [22] 1, wherein the reaction of the compound of the formula (VI) with the compound of the formula (VII) is carried out in a temperature range from about 10° to about 80°.

Claim 32 (currently amended) A process according to claim [22] 1, wherein the duration of the reaction of the compound of the formula (VI) with the compound of the formula (VII) is between about 0.5 and about 2 hours.

Claims 33-71 (canceled)