```
In [1]: #import libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Out[18]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	pop	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	pop	73	3074	106880	1	41.903221	12.495650
1533	1534	sport	51	3712	115280	1	45.069679	7.704920
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
1535	1536	pop	51	2223	60457	1	45.481541	9.413480
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
1537	1538	pop	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

In [21]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	int64
1	model	1538 non-null	object
2	engine_power	1538 non-null	int64
3	age_in_days	1538 non-null	int64
4	km	1538 non-null	int64
5	previous_owners	1538 non-null	int64
6	lat	1538 non-null	float64
7	lon	1538 non-null	float64
8	price	1538 non-null	int64

dtypes: float64(2), int64(6), object(1)

memory usage: 108.3+ KB

```
In [22]: data.isna().sum()
Out[22]: ID
                                 0
                                 0
           model
           engine_power
                                 0
                                 0
           age_in_days
                                 0
           previous_owners
                                 0
                                 0
           lat
           lon
                                 0
           price
                                 0
           dtype: int64
In [24]: | data.describe()
Out[24]:
                           ID
                               engine_power age_in_days
                                                                        previous_owners
                                                                                                  lat
                                                                    km
            count 1538,000000
                                 1538.000000
                                              1538.000000
                                                            1538.000000
                                                                             1538.000000 1538.000000 1
            mean
                   769.500000
                                   51.904421
                                              1650.980494
                                                           53396.011704
                                                                                1.123537
                                                                                            43.541361
                   444.126671
                                    3.988023
                                              1289.522278
                                                           40046.830723
                                                                                0.416423
                                                                                            2.133518
              std
             min
                      1.000000
                                   51.000000
                                              366.000000
                                                            1232.000000
                                                                                1.000000
                                                                                            36.855839
             25%
                   385.250000
                                   51.000000
                                              670.000000
                                                           20006.250000
                                                                                1.000000
                                                                                            41.802990
             50%
                   769.500000
                                   51.000000
                                              1035.000000
                                                           39031.000000
                                                                                1.000000
                                                                                            44.394096
             75%
                   1153.750000
                                   51.000000
                                              2616.000000
                                                           79667.750000
                                                                                1.000000
                                                                                            45.467960
             max 1538.000000
                                   77.000000
                                              4658.000000
                                                          235000.000000
                                                                                4.000000
                                                                                            46.795612
In [25]: data.columns
Out[25]: Index(['ID', 'model', 'engine_power', 'age_in_days', 'km', 'previous_owners',
                   'lat', 'lon', 'price'],
                  dtype='object')
```

EDA and visualization

In [26]: sns.pairplot(data)

Out[26]: <seaborn.axisgrid.PairGrid at 0x1c5832ced60>

In [27]: | sns.distplot(data['price'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[27]: <AxesSubplot:xlabel='price', ylabel='Density'>

In [31]: | sns.heatmap(data1.corr())

Out[31]: <AxesSubplot:>

model building

```
In [33]: x = data1[['engine_power', 'age_in_days', 'km', 'previous_owners',
                 'lat', 'lon']]
          y = data1['price']
In [34]: from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.4)
In [36]: | from sklearn.linear_model import LinearRegression
          lr = LinearRegression()
          lr.fit(x_train,y_train)
Out[36]: LinearRegression()
In [37]: |print(lr.intercept_)
          8465.045963572862
In [38]:
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
          coeff
Out[38]:
                          Co-efficient
                            4.392938
             engine_power
              age_in_days
                           -0.881429
                           -0.018256
                      km
          previous_owners
                           12.283227
                           49.516277
                     lon
                           11.348332
```

```
In [39]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[39]: <matplotlib.collections.PathCollection at 0x1c5879e7fd0>

In [40]: print(lr.score(x_test,y_test))

0.8466888818934549

In []: