Лекция 22 от 22.02.2016

Деление многочленов с остатком

Пусть F — поле, $\mathbb{F}[x]$ — множество всех многочленов от переменной x с коэффициентами из \mathbb{F} .

Теорема. Пусть G(x), $H(x) \in \mathbb{F}[x]$ — ненулевые многочлены, тогда существует единственная пара Q(x), $R(x) \in \mathbb{F}(x)$ такая, что:

1.
$$G(x) = Q(x) \cdot H(x) + R(x)$$
;

2.
$$\deg R(x) < \deg H(x)$$
 unu $R(x) = 0$.

Доказательство. Аналогично делению рациональных чисел с остатком.

Рассмотрим важный частный случай: H(x) = x - a.

Теорема (Безу). *Если* G(x), $Q(x) \in \mathbb{F}[x]$ — ненулевые многочлены, $a \in \mathbb{F}$, то R = G(a) u G(x) = Q(x)(x-a) + R.

Доказательство.

$$G(x) = Q(x) \cdot H(x) + R(x)$$

$$H(x) = (x - a) \Rightarrow \deg R < \deg(x - a) \Rightarrow \deg R = 0$$

Подставим x = a:

$$G(a) = Q(a)(a - a) + R = 0 + R = R \Rightarrow G(a) = R.$$

Теорема. Многочлен степени п в поле комплексных чисел имеет п комплексных корней.

Доказательство. По основной теореме алгебры каждый многочлен $G(x) \in \mathbb{C}[x]$ степени больше 1 имеет корень. Тогда $G(x) = (x-a_1)G_1(x)$, где a_1 — корень многочлена G(x). В свою очередь, многочлен $G_1(x)$ также имеет корень, и тогда $G(x) = (x-a_1)G_1(x) = (x-a_1)(x-a_2)G_2(x)$. Продолжая по индукции, получаем, что $G(x) = (x-a_1)(x-a_2)\dots(x-a_n)b_n$, где b_n — коэффициент при старшем члене.

Также мы получаем следующее представление:

$$b_n x^n + b_{n-1} x^{n-1} + \ldots + b_0 = b_n (x - a_1)^{k_1} \ldots (x - a_s)^{k_s}$$

Определение. Кратностью корня a_i называется число k_i такое, что в многочлене $b_n(x-a_1)^{k_1} \dots (x-a_s)^{k_s}$ множитель $(x-a_i)$ имеет степень k_i .

Собственные значения и характеристический многочлен

Определение. Пусть V- конечномерное векторное пространство над полем \mathbb{F} . Рассмотрим линейный оператор $\varphi:V\to V$. Тогда характеристический многочлен φ имеет вид:

$$\chi_{\varphi}(t) = (-1)^n \det(\varphi - tE) = (-1)^n \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix} =$$

$$= (-1)^n (t^n (-1)^n + \dots) = t^n + c_{n-1} t^{n-1} + \dots + c_0$$

Упражнение. Доказать, что:

$$c_{n-1} = -tr\varphi;$$

$$c_0 = (-1)^n \det \varphi.$$

Утверждение. λ — собственное значение линейного оператора φ тогда и только тогда, когда $\chi_{\varphi}(\lambda) = 0$.

Доказательство.
$$\lambda$$
 — собственное значение $\Leftrightarrow \exists v \neq 0 : \varphi(v) = \lambda v \Leftrightarrow (\varphi - \lambda E)v = 0 \Leftrightarrow \text{Ker } (\varphi - \lambda E) \neq \{0\} \Leftrightarrow \det(\varphi - \lambda E) = 0 \Leftrightarrow \chi_{\varphi}(\lambda) = 0.$

Утверждение. Если $\mathbb{F} = \mathbb{C}$ $u \dim V > 0$, то любой линейный оператор имеет собственный вектор.

Доказательство. Пусть $\varphi: V \to V$ — линейный оператор. У него существует характеристический многочлен $\chi_{\varphi}(x)$. Тогда по основной теореме алгебры у $\chi_{\varphi}(x)$ есть корень t_0 — собственное значение φ , следовательно существует и собственный вектор v_0 с собственным значением t_0 . \square

Пример. Для линейного оператора $\varphi = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (поворот на 90° градусов против часовой стрелки относительно начала координат) характеристический многочлен имеет вид $\chi_{\varphi}(x) = t^2 + 1$.

 $\Pi_{pu} \mathbb{F} = \mathbb{R} \Rightarrow coбственных значений нет.$

 $\Pi pu \ \mathbb{F} = \mathbb{C} \Rightarrow coбcmвенные значения \pm i.$

Геометрическая и алгебраическая кратности

Определение. Пусть λ — собственное значение φ , тогда $V_{\lambda} = \{v \in V \mid \varphi(v) = \lambda v\}$ — собственное подпространство, то есть пространство, состоящее из собственных векторов с собственным значением λ и нуля.

Определение. $\dim V_{\lambda}$ — геометрическая кратность собственного значения λ .

Определение. Если $k-\kappa$ ратность корня характеристического многочлена, то $k-\alpha$ лгебраическая кратность собственного значения.

Утверждение. Геометрическая кратность не больше алгебраической кратности.

Доказательство. Зафиксируем базис u_1, \ldots, u_p в пространстве V_{λ} , где $p = \dim V_{\lambda}$. Дополним базис u_1, \ldots, u_p до базиса $u_1, \ldots, u_p, u_{p+1}, \ldots, u_n$ пространства V. Матрица линейного оператора φ будет выглядеть следующим образом:

$$A_{\varphi} = \begin{pmatrix} \lambda E & A \\ \hline 0 & B \end{pmatrix}, \quad \lambda E \in M_p, A \in M_{n-p}$$

Тогда характеристический многочлен будет следующим:

$$\chi_{\varphi}(t) = (-1)^n \det(A_{\varphi} - t) = \begin{pmatrix} \lambda - t & 0 & A \\ & \ddots & A \\ \hline 0 & \lambda - t & \\ \hline & 0 & b - tE \end{pmatrix} = (-1)^n (\lambda - t)^p \dim(B - tE)$$

Как видим, $\chi_{\varphi}(t)$ имеет корень кратности хотя бы p, следовательно, геометрическая кратность, которая равна p по условию, точно не превосходит алгебраическую.

Пример. Рассмотрим линейный оператор $\varphi = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

 $V_2 = \langle e_1 \rangle \Rightarrow$ геометрическая кратность равна 1.

 $\chi_{\varphi}(t)=(t-2)^2\Rightarrow$ алгебраическая кратность равна 2.

Сумма и прямая сумма нескольких подпространств

Определение. Пусть $U_1, \ldots, U_k \subseteq V$ — векторные пространства. Суммой нескольких пространств называется $U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$.

Упражнение. $U_1 + \ldots + U_k - nodnpocmpancmeo$.

Определение. Сумма пространств называется прямой, если $u_1 + \ldots + u_k = 0$ тогда и только тогда, когда $u_1 = \ldots = u_k = 0$. Обозначение: $U_1 \oplus \ldots \oplus U_k$.

Упражнение. Если $v \in U_1 \oplus \ldots \oplus U_k$, то существует единственный такой набор $u_1 \in U_1, \ldots, u_k \in U_k$, что $v = u_1 + \ldots + u_k$.

Теорема. Следующие условия эквивалентны:

- 1. Сумма $U_1 + ... + U_k n$ рямая;
- 2. Если e_i базис U_i , то $e = e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$;
- 3. $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.

Доказательство.

 $(1)\Rightarrow (2)$ Пусть мы имеем прямую сумму $U_1\oplus\ldots\oplus U_k$. Покажем, что $e_1\cup\ldots\cup e_k$ — базис $U_1\oplus\ldots\oplus U_k$. Возьмем вектор $v\in U_1\oplus\ldots\oplus U_k$ и представим его в виде суммы $v=u_1+\ldots+u_k$, где $u_i\in U_i$. Такое разложение единственное, так как сумма прямая. Теперь представим каждый вектор этой суммы в виде линейной комбинации базиса соответствующего пространства:

$$v = (c_1^1 e_1^1 + \dots + c_{s_1}^1 e_{s_1}^1) + \dots + (c_1^k e_1^k + \dots + c_{s_k}^k e_{s_k}^k)$$

Здесь e_j^i это j-ый базисный вектор в e_i , базисе U_i . Соответственно, c_j^i это коэффициент перед данным вектором.

Если $e \neq e_1 \cup \ldots \cup e_k$, то существует какая-то еще линейная комбинация вектора v через эти же векторы:

$$v = (d_1^1 e_1^1 + \ldots + d_{s_1}^1 e_{s_1}^1) + \ldots + (d_1^k e_1^k + \ldots + d_{s_k}^k e_{s_k}^k)$$

Вычтем одно из другого:

$$0 = v - v = ((d_1^1 - c_1^1)e_1^1 + \ldots + (d_{s_1}^1 - c_{s_1}^1)e_{s_1}^1) + \ldots + ((d_1^k - c_1^k)e_1^k + \ldots + (d_{s_k}^k - c_{s_k}^k)e_{s_k}^k)$$

Но по определению прямой суммы, ноль представим только как сумма нулей, то есть d^i_j должно равняться c^i_j . А это значит, что не существует никакой другой линейной комбинации вектора v. Что нам и требовалось.

 $(2) \Rightarrow (1)$ Пусть $e = e_1 \cup \ldots \cup e_k$ — базис $U_1 + \ldots + U_k$. Тогда представим 0 в виде суммы векторов из данных пространств: $0 = u_1 + \ldots + u_k$, где $u_i \in U_i$. Аналогично прошлому пункту, разложим векторы по базисам:

$$0 = (c_1^1 e_1^1 + \dots + c_{s_1}^1 e_{s_1}^1) + \dots + (c_1^k e_1^k + \dots + c_{s_k}^k e_{s_k}^k)$$

Но только тривиальная комбинация базисных векторов дает ноль. Следовательно, $u_1 = \ldots = u_k = 0$, и наша сумма по определению прямая.

 $(2)\Rightarrow (3)$ Пусть $e=e_1\cup\ldots\cup e_k$ — базис $U_1+\ldots+U_k$. Тогда:

$$\dim(U_1 + \ldots + U_k) = \dim(e) = \dim(e_1) + \ldots + \dim(e_k) = \dim(U_1) + \ldots + \dim(U_k).$$

 $(3) \Rightarrow (2) \text{ Пусть } \dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k.$

Векторы е порождают сумму, следовательно, из е можно выделить базис суммы:

$$\dim(U_1 + \ldots + U_k) \leqslant \dim(\mathbb{e}) \leqslant \dim(\mathbb{e}_1) + \ldots + \dim(\mathbb{e}_k) = \dim U_1 + \ldots + \dim U_k.$$

Но по условию $\dim(U_1+\ldots+U_k)=\dim U_1+\ldots+\dim U_k$. Тогда $\dim(U_1+\ldots+U_k)=\dim(\mathbb{P})$, и \mathbb{P} это базис $U_1+\ldots+U_k$.