0 Amendment

Response to
$$25\%$$
; (-1)

This is my corrective action. (0)

1 Overview

1.1 Goal

Objective: Build / Compare Two Factor-Based L/S Allocation Models (1)

Beta (β) Constraints (2)

First Strategy
$$(S_{\{1\}})$$
: Target Beta $\beta_T \in [-0.5, 0.5]$ (3)

Second Strategy
$$(S_{\{2\}})$$
: Target Beta $\beta_T \in [-2, 2]$ (4)

$$S_{\{1\}} \cong \text{Value-at-Risk Utility (Robust Optimization)}$$
 (5)

$$S_{\{1\}} \Leftarrow \text{Information Ratio}$$
 (6)

Post optimization, I compare model outcomes while evaluating estimator length se

[covariance matrix $\Sigma \wedge \text{expected returns } \mu$] across market regimes (8)

1.2 Reallocation

Portfolio Allocation
$$\{P_t\} \Leftarrow \text{`03-01-2007'} \sim \text{`03-31-2024'}$$
 (9)

$$P_t \quad orall \, t \in \{t_0, t_1, t_2, \dots, t_n\} \quad ext{where} \quad t_0 = ext{03-01-2007}, \quad t_n = ext{03-31-2024} \quad (10)$$

$$t_i = t_{i-1} + 7 \text{ days} \quad \text{for} \quad i = 1, 2, \dots, n$$
 (11)

1.3 Performance Evaluation

The performance / risk profiles are sensitive to the target Beta and the market en

Low Beta
$$\Rightarrow$$
 Decorrelation; (16)

High Beta
$$\equiv$$
 Antithesis. (17)

5/16/24, 4:41 PM fe630-fpr-html-v51

Portfolio Characteristics:

• Return:
$$\mu$$
 (18)

• Volatility (Vol):
$$\sigma$$
 (19)

• Skewness (Skew) :
$$\mathbb{E}\left[\left(\frac{x-\mu}{\sigma}\right)^3\right] = \frac{\mu_3}{\sigma^3} = \frac{\kappa_3}{\kappa_2^{3/2}}$$
 (20)

• Sharpe Ratio :
$$\frac{\mathbb{E}[R_a - R_b]}{\sigma_a} = \frac{\mathbb{E}[R_a - R_b]}{\sqrt{\mathbb{V}(R_a - R_b)}}$$
 (22)

1.4 Simplification

Look-Back μ Estimators :

• Long-Term Estimator (LTE) : LT
$$\Rightarrow$$
 LB \in {180 Days} (23)

• Mid-Term Estimator (MTE) :
$$MT \Rightarrow LB \in \{90 \text{ Days}\}\$$
 (24)

• Short-Term Estimator (STE) :
$$ST \Rightarrow LB \in \{40 \text{ Days}, 60 \text{ Days}\}\$$
 (25)

Term-Structure for Covariance
$$\Sigma \wedge \text{Expected Return } \mu$$
. (26)

1.5 Synthesis

$$S_{40}^{90} \equiv \hat{oldsymbol{\Sigma}} \Rightarrow 40 ext{ Days } \wedge \hat{oldsymbol{\mu}} \Rightarrow 90 ext{ Days}$$
 (30)

Objective:

2 Strategy

Theory \& Math

2.1 Strategic Formulation

Consider two strategies:

$$\begin{cases}
\max_{\omega \in \mathbb{R}^n} \rho^T \omega - \lambda \sqrt{\omega^T \Sigma \omega} \\
-0.5 \le \sum_{i=1}^n \beta_i^m \omega_i \le 0.5 \\
\sum_{i=1}^n \omega_i = 1, \quad -2 \le \omega_i \le 2,
\end{cases}$$
(34)

and

$$\left(\text{Strategy II} \right) \quad \begin{cases} \max_{\omega \in \mathbb{R}^n} \ \frac{\rho^T \omega}{\text{TEV}(\omega)} - \lambda \sqrt{\omega^T \Sigma \omega} \\ \\ -2 \leq \sum_{i=1}^n \beta_i^m \omega_i \leq 2 \\ \\ \sum_{i=1}^n \omega_i = 1, \quad -2 \leq \omega_i \leq 2, \end{cases}$$
 (35)

- $\Sigma \equiv \text{covariance matrix between security returns (FF3FM)};$
- $eta_i^m = rac{ ext{Cov}(r_i, r_M)}{\sigma^2(r_M)} \equiv ext{Beta of security } S_i ext{ (CAPM) s.t.}$ $eta_P^m = \sum_{i=1}^n eta_i^m \omega_i \equiv ext{Porfolio Beta};$
- TEV(ω) = $\sigma(r_P(\omega) r_{SPY}) \equiv$ Tracking Error Volatility; trivial derivation (reader exercise):

$$\sigma(r_P(\omega) - r_{\mathrm{SPY}}) = \sqrt{\omega^{\mathsf{T}} \Sigma \omega - 2\omega^{\mathsf{T}} \mathrm{Cov}(r, r_{\mathrm{SPY}}) + \sigma_{\mathrm{SPY}}^2}.$$
 (36)

2.2 Fama-French Three-Factor Model (FF3FM)

Definition:
$$(37)$$

$$r_i = r_f + \beta_i^3 (r_M - r_f) + b_i^s r_{\text{SMB}} + b_i^v r_{\text{HML}} + \alpha_i + \epsilon_i$$
 (38)

 $\mathbb{E}[\epsilon_i] = 0;$ \therefore

$$\rho_i = r_f + \beta_i^3 (\rho_M - r_f) + b_i^s \rho_{\text{SMB}} + b_i^v \rho_{\text{HML}} + \alpha_i$$
(39)

5/16/24, 4:41 PM fe630-fpr-html-v51

Estimated Coefficient Vector: (40)

$$(\hat{\boldsymbol{\beta}}_i^3, \hat{\boldsymbol{b}}_i^s, \hat{\boldsymbol{b}}_i^v)^{\mathsf{T}} \Leftarrow y_i = \rho_i - r_f \tag{41}$$

$$= \hat{\beta}_i^3(\rho_M - r_f) + \hat{\beta}_i^s r_{\text{SMB}} + \hat{b}_i^v \rho_{\text{HML}} + \epsilon_i$$
 (43)

$$\beta_i^m \neq \beta_i^3$$
 | estimated via separate regression / computed directly. (44)

2.3 Executive Summary Formulation

1. Objective
$$\equiv$$
 Maximize Returns w/Risk. (47)

2. Constraints:

- The portfolio's beta must be between -0.5 and 0.5. (48)
- The sum of the weights assigned to each asset in the portfolio must equal 1.
- Each individual weight can range from -2 to 2. (50)

Strategy II
$$(51)$$

1. Objective \equiv Maximize Returns Relative to Tracking Error Volatility (TEV).

2. Constraints:

- The portfolio's beta must be between -2 and 2. (53)
- The sum of the weights assigned to each asset in the portfolio must equal 1.
- Each individual weight can range from -2 to 2. (55)

3 Assumptions

3.1 Setup

1. Reallocation: '03-01-2007' \sim '03-31-2024' (57)

5/16/24, 4:41 PM

fe630-fpr-html-v51 2. Input Construction: (58) ${\rm LT~LB~Period}: n_{\rm LT} = 120 ~|~ \Sigma_s ~\wedge~ \mu_s ~|~ {\rm LT} \equiv S_{120}$ (59) ${
m MT~LB~Period}: n_{
m LT} = 90 \;\mid\; \Sigma_s \;\wedge\; \mu_s \;\mid\; {
m MT} \equiv S_{90}$ (60) ${\rm ST\; LB\; Period}: n_{\rm LT} = 40 \;\mid\; \Sigma_s \;\wedge\; \mu_s \;\mid\; {\rm MT} \equiv S_{40}$ (61)3. $\beta_T \in \{0,1\}$ (62)4. $\lambda \in \{0.10, 0.50\}$ (63)3.2 Period Analysis Period Stratification: (64)Period $1 \equiv \text{Pre-Subprime}$ (65)Period $2 \equiv \text{Subprime}$ (66)Period $3 \equiv Post-Subprime$ (67)Period $4 \equiv \text{COVID}$ (68)Period $5 \equiv \text{Post-Covid}$ (69)3.3 BackTesting Definition: Historical Data⇒ Performance (70)Logistical Considerations:

 $BackTest \neq Forecasts \Rightarrow Snooping Bias / P-Hacking$ (71)

Weekly Rebalance (72)

 $\{t_i\}_{i=1}^n$: (73) For the initial date t_1 , use the prior 60 days of historical data to estimate input Store the portfolio weights: ω_{t_1} .

For each subsequent date t_{i+1} , roll the historical data window by 5 days, re-est Store the new portfolio weights: $\omega_{t_{i+1}}$.

. Repeat this process until the target date t_n is reached.