Practice Problems II - 02

Practice problems are supposed to help you digest the content of the lecture. It is important that you manage to <u>solve</u> them <u>on your own</u>. Before you write your solutions, you may of course ask questions, and discuss things. In order to prepare for the exam, already now, try to explicitly write down your solutions – <u>clearly and easy to read</u>. Apply <u>definitions</u> properly, and give <u>explanations</u> for what you are doing. That will help you to understand them later when you prepare for the final exam.

I. Model & Solve in Time Domain

Consider the second order ode

$$M\ddot{x} + f_v \dot{x} + Kx = 0,$$

 $Mx + J_vx + Kx = 0$

where M = 4 kg, $f_v = 0$, and $K = 100 \frac{N}{m}$. In order to find the solution set, start by finding the characteristic exponents, i.e., use an exponential ansatz $x(t) = e^{\lambda t}$.

- a) What are the relevant values of λ ... including their units?
- b) In order to specify a concrete solution for such a second order ode, we need two initial values, usually x_0 and \dot{x}_0 . Here, we start the system at $x_0 = 10 \ m$ with an initial speed $\dot{x}_0 = 0$. Write and sketch the solution.

II. Laplace Transforms & Solve in Frequency Domain

a) Find the Laplace transform of the equation

$$M\ddot{x} + f_v \dot{x} + Kx = 0$$

for the parameters and initial values mentioned in problem 2.

- b) Solve for X(s).
- c) Based on your solution, also find the solution in time domain, and compare.

f(t)	$F(s) = \mathcal{L}\{f(t)\}(s)$
f(t)	$\int_{0}^{\infty} f(t) e^{-st} dt$
e^{-at}	$\frac{1}{s+a}$
$\delta(t)$	1
$\frac{d}{dt}f(t)$	$sF(s)-f_0$
$\frac{d^2}{dt^2}f(t)$	$-sf_0 - \dot{f}_0 + s^2 F(s)$

Hint: For complex values of λ , the rules for exponentials remain intact: In particular, $e^{\lambda t} = e^{(\sigma + j\omega)t} = e^{\sigma t}e^{j\omega t}$, also Euler's formula says: $e^{j\omega t} = \cos \omega t + j\sin \omega t$.