

Análise Matemática

Derivadas 1

Licenciatura em Engenharia Informática

Departamento de Matemática Instituto Superior de Engenharia do Porto

1º Semestre 22-23

Análise Matemática 1/26

Sumário

- Derivada de uma Função Real de Variável Real
 - Teorema da derivada da função composta
 - Teorema da derivada da função inversa
 - Derivadas de ordem superior

Função Composta

Definição

Sejam $g:A\to B$ e $f:C\to D$ duas funções tais que o contradomínio de g é um subconjunto do domínio de f, $g(A)\subset C.$

Desta forma, qualquer que seja o $x \in A$, a sua imagem g(x) está no domínio de f e existe $f(g(x)) \in D$.

Podemos definir uma nova função de A com valores em D:

$$\begin{array}{cccc} A & \to & & g(A) \subset C & \to D \\ x & \mapsto & g(x) & \longmapsto & f(g(x)) \end{array}$$

Análise Matemática 3 / 26

Função Composta

Damos o nome de f composta com g, e designamos por $f\circ g$, à função definida por $f\circ g:A\to D$, da seguinte forma

$$(f \circ g)(x) = f(g(x)), \quad \forall x \in A.$$

Análise Matemática 4/26

Esquema gráfico

O domínio de $f \circ g$ é definido por:

$$D_{f \circ q} = \{ x \in \mathbb{R} : \ x \in D_q \ \land \ g(x) \in D_f \}$$

Isabel Figueiredo (ipf) Isabel Mendes Pinto (irm)

Esquema gráfico

A máquina $f\circ g$ é composta pela máquina g (primeiro) e depois pela máquina f

Isabel Figueiredo (ipf) | Isabel Mendes Pinto (irm)

Análise Matemática 6/26

Esquema gráfico

• Seja $f(x) = \sqrt{x}$ e $g(x) = x^2 + 1$. Determine a função composta $f \circ g$.

Como $f \circ g = f(g(x))$, temos:

lsabel Figueiredo (ipf) - Isabel Mendes Pinto (irm)

Análise Matemática 7/26

Derivada da função composta

Podemos calcular derivadas de funções que são soma, produto ou quociente de funções elementares.

Ainda não tratamos funções mais complexas, como por exemplo $\cos(\sqrt{x})$ sem aplicar diretamente a definição de derivada.

Análise Matemática 8/26

Derivada da função composta

Teorema de derivada da função composta

Sejam f e g duas funções reais tais que $D_f\subseteq D_g'$. Se g é derivável no ponto x e f é derivável no ponto y=g(x), então a função composta $f\circ g$ é derivável em x. Temos

$$(f \circ g)'(x) = (f(g(x)))' = f'(g(x))g'(x)$$

Isabel Figueiredo (ipf) - Isabel Mendes Pinto (irm)

Análise Matemática 9/26

Derivada da função composta

Teorema de derivada da função composta

Usando a notação de Leibniz, consideramos y=f(u) e u=g(x), ambas funções diferenciáveis, temos

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
(1)

Podemos agora **generalizar** todas as fórmulas de derivação das funções elementares.

Isabel Figueiredo (ipf) - Isabel Mendes Pinto (irm)

Análise Matemática 10 / 26

Exemplo 🖾

Exemplo 11

Considere a função $f(x) = \cos \sqrt{x^2 - 3}$.

- 11.1 Escreva a função f como decomposição de outras funções;
- 11.2 Calcule a sua derivada, usando o teorema da derivada da função composta.

Análise Matemática 11/26

Exemplo 11

Considere a função $f(x) = \cos \sqrt{x^2 - 3}$.

- 11.1 Escreva a função f como decomposição de outras funções;
- 11.2 Calcule a sua derivada, usando o teorema da derivada da função composta.

Resolução:

11.1 Seja $y=\cos\sqrt{x^2-3}$. Uma decomposição possível é: $y=\cos(u),\ u=\sqrt{v}$ e $v=x^2-3$.

Isabel Figueiredo (ipf) | Isabel Mendes Pinto (irm)

Exemplo 11 (cont.):

11.2 Neste caso temos:

$$y \rightarrow u \rightarrow v \rightarrow x$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dx}$$

Ou seja,
$$\frac{dy}{dx} = -\sin(u) \times \frac{1}{2\sqrt{v}} \times 2x$$

Agora temos de escrever o resultado em função da variável independente:

$$\frac{dy}{dx} = -\frac{\dot{x}}{\sqrt{x^2 - 3}} \sin(\sqrt{x^2 - 3}).$$

Isabel Figueiredo (ipf) Isabel Mendes Pinto (irm)

Análise Matemática 12 / 26

Função Inversa

Viu-se, anteriormente, que uma função f diz-se **injetiva** se não admitir o mesmo valor em pontos distintos do seu domínio, i.e.,

$$\forall x_1 \neq x_2 \in D_f \Rightarrow f(x_1) \neq f(x_2)$$

Geometricamente, isto equivale a dizer que toda a reta horizontal interseta o gráfico da função f no máximo num ponto.

Isabel Figueiredo (ipf) - Isabel Mendes Pinto (irm)

Função Inversa

Dada uma função injetiva y = f(x), designa-se por função inversa de f, e escreve-se f^{-1} , à função $x = f^{-1}(y)$ onde,

$$D_{f^{-1}} = D_f' \quad \land \quad D_{f^{-1}}' = D_f$$

Nota: Não confundir a função inversa de f(x), denotada por $f^{-1}(x)$ com inverso algébrico de f(x), denotado por $[f(x)]^{-1}=\frac{1}{f(x)}$.

Isabel Figueiredo (ipf) Isabel Mendes Pinto (irm)

Análise Matemática 14/26

Derivada da função inversa

Teorema de derivada da função inversa

Sejam f uma função real de variável real, injetiva num intervalo $I \subseteq D_f$ e f^{-1} a função inversa de f quando restringida ao intervalo $I, f^{-1}: f(I) \to I$.

Se f é derivável num ponto x interior ao intervalo I e $f'(x) \neq 0$, então f^{-1} é derivável no ponto y = f(x) e tem-se:

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

15/26

Análise Matemática

Derivada da função inversa

Teorema de derivada da função inversa

Usando a notação de Leibniz, consideramos y=f(x) e que admite função inversa, então podemos escrever a derivada da sua função inversa do seguinte modo:

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$

Podemos agora **generalizar** todas as fórmulas de derivação das funcões elementares.

Análise Matemática 16/26

Exemplo 12

Usando o teorema da derivada da função inversa, mostre que:

12.1
$$(\arcsin(x))' = \frac{1}{\sqrt{1-x^2}};$$

12.2
$$(\arctan(x))' = \frac{1}{1+x^2}$$
.

Isabel Figueiredo (ipf) Isabel Mendes Pinto (irm)

Análise Matemática 17 / 26

Resolução Exemplo 12:

12.1 Seja $y=\arcsin(x)$ com $-1\leq x\leq 1$, cuja função inversa é, $x=\sin(y)$ $\left(-\frac{\pi}{2}\leq y\leq \frac{\pi}{2}\right)$.

Usando o teorema da derivada da função inversa, vem:

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \iff \frac{dy}{dx} = \frac{1}{\cos(y)} = (*)$$

No intervalo
$$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \ \Rightarrow \ \cos(y) > 0$$

Pela fórmula fundamental da trigonometria tem-se $\cos(y) = +\sqrt{1-\sin^2(y)}$, logo substituindo em (*) obtemos:

Isabel Figueiredo (ipf) | Isabel Mendes Pinto (irm)

Análise Matemática 18/26

Exemplo 12 (cont.):

12.1

$$(*) = \frac{1}{\sqrt{1 - \sin^2(y)}} = \frac{1}{\sqrt{1 - x^2}}$$

Generalizando, $y = \arcsin(u)$ em que u = u(x) a expressão da derivada da função em ordem à variável x, é obtida associando a regra anterior à da função composta.

$$\frac{d}{dx}\left(\arcsin(u)\right) = \frac{d}{du}\left(\arcsin(u)\right) \times \frac{du}{dx} = \frac{1}{\sqrt{1 - u^2}} \times \frac{du}{dx}$$

19 / 26

Análise Matemática

Exemplo 12 (cont.):

12.2 Seja $y=\arctan(x) \ \forall x \in \mathbb{R}$, cuja função inversa é, $x=\tan(y) \ \left(-\frac{\pi}{2} < y < \frac{\pi}{2}\right)$.

Aplicando o teorema da derivada da função inversa, obtém-se:

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \iff \frac{dy}{dx} = \frac{1}{\sec^2(y)} = (*)$$

Pela fórmula fundamental da trigonometria tem-se $1 + \tan^2(y) = \sec^2(y)$, logo substituindo em (*) obtemos:

$$(*) = \frac{1}{1 + \tan^2(y)} = \frac{1}{1 + x^2}$$

Isabel Figueiredo (ipf) Isabel Mendes Pinto (irm)

Exemplo 12 (cont.):

12.2 Generalizando, $y = \arctan(u)$ em que u = u(x) a expressão da derivada da função em ordem à variável x, é obtida associando a regra anterior à da função composta.

$$\frac{d}{dx}\left(\arctan(u)\right) = \frac{d}{du}\left(\arctan(u)\right) \times \frac{du}{dx} = \frac{1}{1+u^2} \times \frac{du}{dx}$$

Isabel Figueiredo (ipf) Isabel Mendes Pinto (irm)

Análise Matemática 21/26

1. Usando o teorema da derivada da função inversa, calcule $\frac{dx}{dy}$ da função $y=\arccos(2x)+1$.

Análise Matemática 22/26

• Seja f uma função real de variável real derivável e com função derivada f'(x).

Se a função f' é derivável num ponto x=a interior a $D_f'\subseteq D_f$, então dizemos que a função f é duas vezes derivável no ponto x=a.

Esta derivada denota-se por f''(x) e designa-se por segunda derivada da função f em x=a.

$$\underbrace{\frac{d}{dx}}_{\text{derivada da}} \underbrace{\left(\frac{df}{dx}\right)}_{\text{1a derivada}} = \underbrace{\frac{d^2f}{dx^2}}_{\text{2a derivada}}$$

E assim, **sucessivamente**, podemos definir a derivada de qualquer ordem superior a 2.

Análise Matemática 23 / 26

Definição

Sejam f uma função real de variável real e $n\in\mathbb{N}$. Diz-se que f é uma função n-vezes derivável no ponto x=a, se a função f for n-1 vezes derivável numa vizinhança do ponto x=a e se existir o limite

$$f^{(n)}(a) = \lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a)}{x - a}.$$

Análise Matemática

24 / 26

$$\mathsf{Seja} \ y = f(x)$$

- Derivada de 1^a ordem: y'; f'; $\frac{dy}{dx}$; $\frac{df}{dx}$;
- Derivada de 2^a ordem: y'' = (y')'; f'' = (f')'; $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right); \frac{d^2f}{dx^2} = \frac{d}{dx} \left(\frac{df}{dx}\right);$
- Derivada de 3^a ordem: y''' = (y'')'; f''' = (f'')'; $\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2}\right); \frac{d^3f}{dx^3} = \frac{d}{dx} \left(\frac{d^2f}{dx^2}\right);$

Isabel Figueiredo (ipf) Isabel Mendes Pinto (irm)

Análise Matemática 25 / 26

■ Derivada de 4^a ordem: $y^{(4)}$; $f^{(4)}$; $\frac{d^4y}{dx^4}$; $\frac{d^4f}{dx^4}$;

•

■ Derivada de ordem n:

$$y^{(n)} = (y^{(n-1)})'; \ f^{(n)} = (f^{(n-1)})'; \quad \frac{d^n y}{dx^n} = \frac{d}{dx} \left(\frac{d^{(n-1)} y}{dx^{(n-1)}}\right);$$
$$\frac{d^n f}{dx^n} = \frac{d}{dx} \left(\frac{d^{(n-1)} f}{dx^{(n-1)}}\right)$$

Isabel Figueiredo (ipf) Isabel Mendes Pinto (irm)

Análise Matemática 26 / 26