Extracurricular Materials

Probabilistic Transformer

Deciphering transformers with a probabilistic syntactic model

Kewei Tu (joint work with Haoyi Wu)

ShanghaiTech University

NLP: the past and the present

- Once upon a time...
 - NLP ≈ probabilistic modeling of explicit linguistic structures (e.g., syntactic structures)
 - √ Mathematically well-founded, interpretable (white-box)
 - √ Linguistically principled
- Since the deep learning revolution...
 - NLP → pretrained transformers
 - ✓ Great performance!!
 - X Black-box!
 - Control Linguistically murky

This work

- We propose probabilistic transformers
 - A (non-neural) probabilistic syntactic model
 - Yet, its computation graph is strikingly similar to a transformer!
- Goal?
 - A white-box transformer, which may...
 - ...benefit the analysis and extension of transformers
 - …inspire future research of more interpretable & linguistically more principled neural models
 - ...bridge the gap between traditional statistical NLP (incl. decades of syntax research) and modern neural NLP

Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
 - Extensions
- Similarities to transformers
- Experiments

Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
 - Extensions
- Similarities to transformers
- Experiments

Markov Random Fields (MRF)

- MRF = undirected graph + potential functions
 - ▶ For each clique (or max clique), define a potential function
 - A joint probability is proportional to the product of potentials

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

where $\psi_C(\mathbf{x}_C)$ is the potential over clique C and

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

is the normalization coefficient (aka. partition function).

Conditional Random Fields (CRF)

An extension of MRF where everything is conditioned on an input

$$P(\mathbf{y}|x) = \frac{1}{Z(x)} \prod_{C} \psi_{C}(\mathbf{y}_{C}, x)$$

where $\psi_C(y_C, x)$ is the potential over clique C and

$$Z(x) = \sum_{\mathbf{y}} \prod_{C} \psi_{C}(\mathbf{y}_{C}, x)$$

is the normalization coefficient.

Factor Graph

 A factor graph explicitly shows the potential functions (aka factors) in an MRF/CRF

Inference over MRF/CRF

- Inference
 - Some variables are known (evidence)
 - Some variables are latent (we want to marginalize them)
 - Some variables are what we care about (query)
- Exact inference is hard or even intractable in general
- Iterative algorithms for approximate inference
 - Mean-field Variational Inference
 - Loopy Belief Propagation
 - **...**

Inference over MRF/CRF

- Iterative algorithms for approximate inference
- At each iteration:
 - Compute an intermediate vector (e.g., a discrete distribution) for each random variable...
 - ...based on the vectors from the previous iteration
 - ...following a fixed graph structure
 - ...using fixed model parameters
 - ...in a fully differentiable way

Inference can be unfolded as a Graph Neural Network!

Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
 - Extensions
- Similarities to transformers
- Experiments

Dependency parsing

 Identify binary relations (i.e., dependencies) between words that form a tree

- Head-selection: a simplification of dependency parsing
 - Identify the parent word (i.e., dependency head) of each word
 - No tree constraint

Our CRF: head selection over latent word representation

h channels, allowing Unary Factors Ternary Factors multiple dependency structures $H_i \in \{1, \dots, n\}$: index of the dependency head of word i Z_i : a discrete variable, representing property of word *i* in the input Ternary factor: sentence compatibility between Unary factor: Z_i and Z_j if word j is compatibility of Z_i the dependency head and word i of word i ($H_i = j$)

Iteratively recompute marginal distribution $Q(\cdot)$ of each variable

Initialize $Q(Z_i)$

- Iteratively recompute marginal distribution $Q(\cdot)$ of each variable
- Initialize $Q(Z_i)$
- Repeat
 - Recompute $Q(H_i)$

Iteratively recompute marginal distribution $Q(\cdot)$ of each variable

See paper for all the math

- Initialize $Q(Z_i)$
- Repeat
 - Recompute $Q(H_i)$
 - Recompute $Q(Z_i)$

- Iteratively recompute marginal distribution $Q(\cdot)$ of each variable
- Initialize $Q(Z_i)$
- Repeat
 - Recompute $Q(H_i)$
 - Recompute $Q(Z_i)$
- Q(Z_i) can be seen
 as a contextual
 representation of
 word i

Further refinements

- Entropic Frank-Wolfe algorithm
 - Generalization of MFVI
- Rank decomposition of ternary factor

$$T(Z_i, Z_j) = \sum_r U(Z_i, r) \times V(Z_j, r)$$

- Dependency root
- Incorporating word distance in ternary factors
- ...

Learning

- Inference can be unfolded as a Graph Neural Network
- Learning can be done by back-propagation
 - Model parameters: unary & ternary factors
 - Objective function: MLM, downstream tasks, ...

Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
 - Extensions
- Similarities to transformers
- Experiments

- We compare the computation graph of MFVI on our CRF with transformers
 - Assumption: symmetric ternary factors
- Roughly speaking:

Our intermediate distributions $Q(H_i)$ over dependency heads

Self-attention scores in a transformer

Our intermediate distributions $Q(Z_i)$ over latent word representations

Intermediate word embeddings in a transformer

Single-Channel Update vs. Scaled Dot-Product Attention

Multi-Channel Update vs. Multi-Head Attention

Full Model Comparison

Differences

- Feed-forward
- Residual connection
- Post layer norm
- No parameter sharing

- vs. No feed-forward
- vs. Adding input

VS.

- vs. Softmax before each layer
 - Similar to pre-LN
 - Layer-wise parameter sharing
 - Similar to Universal Transformer, ALBERT, ...

Feed-forward layer

Adding m global topic variables in our CRF

belongs to topic j ($G_i = j$)

Feed-forward layer

MFVI computation graph

Feed-forward layer

Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
 - Extensions
- Similarities to transformers
- Empirical evaluation

Empirical evaluation

- Masked Language Modeling (MLM)
- Part-of-Speech Tagging (POS)
- Named Entity Recognition (NER)
- Classification (CLS)
- Syntactic Test

Empirical evaluation

Task	Dataset	Metric	Transformer	Probabilistic Transformer
MLM	PTB BLLIP	Perplexity	58.43 ± 0.58 101.91 ± 1.40	62.86 ± 0.40 123.18 ± 1.50
POS	PTB UD	Accuracy	96.44 ± 0.04 91.17 ± 0.11	96.29 ± 0.03 90.96 ± 0.10
NER	CoNLL-2003	F1	74.02 ± 1.11	75.47 ± 0.35
CLS	SST-2 SST-5	Accuracy	$82.51 \pm 0.26 40.13 \pm 1.09$	82.04 ± 0.88 42.77 ± 1.18
Syntactic Test	COGS	Sentence-level Accuracy	82.05 ± 2.18	84.60 ± 2.06

- In most cases, our best model is about 1/5~1/2 in size of the best transformer.
- For larger datasets, our models clearly underperform transformers.

Inferred dependency structures (MLM)

Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
 - Extensions
- Similarities to transformers
- Empirical evaluation
- Summary

Summary

- Probabilistic transformers: a white-box transformer
 - A purely probabilistic syntactic model
 - Approximate inference using mean field variational inference
 - Its computation graph is very similar to a transformer
- We hope our work could:
 - benefit the analysis and extension of transformers
 - inspire future research of more interpretable & linguistically more principled neural models
 - bridge the gap between traditional statistical NLP (incl. decades of syntax research) and modern neural NLP

Summary

- Paper
 - https://aclanthology.org/2023.findings-acl.482/
- Code
 - https://github.com/whyNLP/Probabilistic-Transformer

Thank you!

Q&A