```
In [1]: import time
    import math
    import operator
    import pandas as pd
    import numpy as np

#import plotting libraries
    import matplotlib.pyplot as plt
    from pandas.plotting import scatter_matrix
    import matplotlib
    import seaborn as sns
    sns.set(style='white',color_codes=True)
    sns.set(font_scale=1.5)
```

1.Import Data

In [2]: df_test=pd.read_csv('real_estate_test.csv')
 df_test.head()

Out[2]:	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state s	tate_ab	city	place	type	fe	emale_age_mean f	emale_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	married	married_snp	separated	divorced
	0 255504	NaN	140	163	26	Michigan	MI	Detroit	Dearborn Heights City	CDP		34.78682	33.75000	21.58531	416.48097	1938.0	0.70252	0.28217	0.05910	0.03813	0.14299
	1 252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City	City		44.23451	46.66667	22.37036	532.03505	1950.0	0.85128	0.64221	0.02338	0.00000	0.13377
	2 276314	NaN	140	15	42	Pennsylvania	PA	Pine City	Millerton	Borough		41.62426	44.50000	22.86213	453.11959	1879.0	0.81897	0.59961	0.01746	0.01358	0.10026
	3 248614	NaN	140	231	21	Kentucky	KY	Monticello	Monticello City	City		44.81200	48.00000	21.03155	263.94320	1081.0	0.84609	0.56953	0.05492	0.04694	0.12489
	4 286865	NaN	140	355	48	Texas	TX C	orpus Christi	Edroy	Town		40.66618	42.66667	21.30900	709.90829	2956.0	0.79077	0.57620	0.01726	0.00588	0.16379

5 rows × 80 columns

Out[3]:	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type .	female_age_mean	female_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	married	married_snp	separated	divorced
	0 267822	NaN	140	53	36	New York	NY	Hamilton	Hamilton	City	44.48629	45.33333	22.51276	685.33845	2618.0	0.79046	0.57851	0.01882	0.01240	0.08770
	1 246444	NaN	140	141	18	Indiana	IN	South Bend	Roseland	City	36.48391	37.58333	23.43353	267.23367	1284.0	0.52483	0.34886	0.01426	0.01426	0.09030
	2 245683	NaN	140	63	18	Indiana	IN	Danville	Danville	City	42.15810	42.83333	23.94119	707.01963	3238.0	0.85331	0.64745	0.02830	0.01607	0.10657
	3 279653	NaN	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	47.77526	50.58333	24.32015	362.20193	1559.0	0.65037	0.47257	0.02021	0.02021	0.10106
	4 247218	NaN	140	161	20	Kansas	KS	Manhattan	Manhattan City	City	24.17693	21.58333	11.10484	1854.48652	3051.0	0.13046	0.12356	0.00000	0.00000	0.03109

5 rows × 80 columns

In [4]: df_test.columns

Out[4]: Index(['UID', 'BLOCKID', 'SUMLEVEL', 'COUNTYID', 'STATEID', 'state', 'state_ab', 'city', 'place', 'type', 'primary', 'zip_code', 'area_code', 'lat', 'lng', 'ALand', 'AWater', 'pop', 'male_pop', 'female_pop', 'rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50', 'universe_samples', 'used_samples', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median', 'family_stdev', 'family_sample_weight', 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt', 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_median', 'male_age_stdev', 'male_age_sample_weight', 'male_age_samples', 'female_age_mean', 'female_age_median', 'female_age_stdev', 'female_age_sample_weight', 'female_age_samples', 'pct_own', 'married', 'married_snp', 'separated', 'divorced'], dtype='object')

In [5]: df_train.columns

```
Out[5]: Index(['UID', 'BLOCKID', 'SUMLEVEL', 'COUNTYID', 'STATEID', 'state',
                'state_ab', 'city', 'place', 'type', 'primary', 'zip_code', 'area_code',
                'lat', 'lng', 'ALand', 'AWater', 'pop', 'male_pop', 'female_pop',
                'rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight',
                'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25',
                'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50',
                'universe_samples', 'used_samples', 'hi_mean', 'hi_median', 'hi_stdev',
                'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median',
                'family_stdev', 'family_sample_weight', 'family_samples',
                'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev',
                'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean',
                'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight',
                'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                'hs_degree_male', 'hs_degree_female', 'male_age_mean',
                'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                'male_age_samples', 'female_age_mean', 'female_age_median',
                'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                'pct_own', 'married', 'married_snp', 'separated', 'divorced'],
              dtype='object')
```

In [6]: df_test.shape

Out[6]: (11709, 80)

In [7]: df_train.shape

Out[7]: (27321, 80)

In [8]: df_test.describe()

Out[8]:	UIE	BLOCKID	SUMLEVEL	COUNTYID	STATEID	zip_code	area_code	lat	Ing	ALand	female_age_mean	female_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	married	married_snp	separated	divorced
	count 11709.000000	0.0	11709.0	11709.000000	11709.000000	11709.000000	11709.000000 1	11709.000000 1	11709.000000 1	170900e+04	11613.000000	11613.000000	11613.000000	11613.000000	11613.000000	11587.000000	11625.000000	11625.000000	11625.000000	11625.000000
	mean 257525.004783	NaN	140.0	85.710650	28.489196	50123.418396	593.598514	37.405491	-91.340229	095500e+08	40.111999	40.131864	22.148145	550.411243	2233.003186	0.634194	0.505632	0.047960	0.019346	0.099191
	std 21466.372658	NaN	0.0	99.304334	16.607262	29775.134038	232.074263	5.625904	16.407818	7.624940e+08	5.851192	7.972026	2.554907	280.992521	1072.017063	0.232232	0.139774	0.038693	0.021428	0.048525
	min 220336.000000	NaN	140.0	1.000000	1.000000	601.000000	201.000000	17.965835	-166.770979 8	3.299000e+03	15.360240	12.833330	0.737110	0.251910	3.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	25% 238819.000000	NaN	140.0	29.000000	13.000000	25570.000000	404.000000	33.919813	-97.816561	.718660e+06	36.729210	34.750000	21.270920	363.225840	1499.000000	0.492500	0.422020	0.020890	0.004500	0.064590
	50% 257651.000000	NaN	140.0	61.000000	28.000000	47362.000000	612.000000	38.618093	-86.643344	1.835000e+06	40.196960	40.333330	22.472990	509.103610	2099.000000	0.687640	0.525270	0.038680	0.013870	0.094350
	75% 276300.000000	NaN	140.0	109.000000	42.000000	77406.000000	787.000000	41.232973	-79.697311	3.204540e+07	43.496490	45.333330	23.549450	685.883910	2800.000000	0.815235	0.605660	0.065340	0.027910	0.128400
	max 294333.000000	NaN	140.0	810.000000	72.000000	99929.000000	989.000000	64.804269	-65.695344	5.520166e+10	90.107940	90.166670	29.626680	4145.557870	15466.000000	1.000000	1.000000	0.714290	0.714290	0.362750

8 rows × 74 columns

In [9]: df_train.describe()

Out[9]:	UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	zip_code	area_code	lat	Ing	ALand	female_age_mean	female_age_median	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	married	married_snp	separated	divorced
	count 27321.000000	0.0	27321.0	27321.000000	27321.000000	27321.000000	27321.000000	27321.000000	27321.000000	2.732100e+04	27115.000000	27115.000000	27115.000000	27115.000000	27115.000000	27053.000000	27130.000000	27130.000000	27130.000000	27130.000000
	mean 257331.996303	NaN	140.0	85.646426	28.271806	50081.999524	596.507668	37.508813	-91.288394	1.295106e+08	40.319803	40.355099	22.178745	544.238432	2208.761903	0.640434	0.508300	0.047537	0.019089	0.100248
	std 21343.859725	NaN	0.0	98.333097	16.392846	29558.115660	232.497482	5.588268	16.343816	1.275531e+09	5.886317	8.039585	2.540257	283.546896	1089.316999	0.226640	0.136860	0.037640	0.020796	0.049055
	min 220342.000000	NaN	140.0	1.000000	1.000000	602.000000	201.000000	17.929085	-165.453872	4.113400e+04	16.008330	13.250000	0.556780	0.664700	2.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	25% 238816.000000	NaN	140.0	29.000000	13.000000	26554.000000	405.000000	33.899064	-97.816067	1.799408e+06	36.892050	34.916670	21.312135	355.995825	1471.000000	0.502780	0.425102	0.020810	0.004530	0.065800
	50% 257220.000000	NaN	140.0	63.000000	28.000000	47715.000000	614.000000	38.755183	-86.554374	4.866940e+06	40.373320	40.583330	22.514410	503.643890	2066.000000	0.690840	0.526665	0.038840	0.013460	0.095205
	75% 275818.000000	NaN	140.0	109.000000	42.000000	77093.000000	801.000000	41.380606	-79.782503	3.359820e+07	43.567120	45.416670	23.575260	680.275055	2772.000000	0.817460	0.605760	0.065100	0.027488	0.129000
	max 294334.000000	NaN	140.0	840.000000	72.000000	99925.000000	989.000000	67.074017	-65.379332	1.039510e+11	79.837390	82.250000	30.241270	6197.995200	27250.000000	1.000000	1.000000	0.714290	0.714290	1.000000

8 rows × 74 columns

In [10]: df_test.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11709 entries, 0 to 11708 Data columns (total 80 columns): Non-Null Count Dtype # Column --------0 UID 11709 non-null int64 1 BLOCKID 0 non-null float64 2 SUMLEVEL 11709 non-null int64 COUNTYID 11709 non-null int64 4 STATEID 11709 non-null int64 11709 non-null object 5 state state_ab 11709 non-null object 6 11709 non-null object 7 city 11709 non-null object 8 place 11709 non-null object 9 type 11709 non-null object 10 primary 11709 non-null int64 11 zip_code 12 area_code 11709 non-null int64 13 lat 11709 non-null float64 11709 non-null float64 14 lng 15 ALand 11709 non-null int64 11709 non-null int64 16 AWater 17 pop 11709 non-null int64 18 male_pop 11709 non-null int64 19 female_pop 11709 non-null int64 20 rent_mean 11561 non-null float64 21 rent_median 11561 non-null float64 22 rent_stdev 11561 non-null float64 11561 non-null float64 23 rent_sample_weight 11561 non-null float64 24 rent_samples 25 rent_gt_10 11560 non-null float64 11560 non-null float64 26 rent_gt_15 11560 non-null float64 27 rent_gt_20 11560 non-null float64 28 rent_gt_25 29 rent_gt_30 11560 non-null float64 11560 non-null float64 30 rent_gt_35 31 rent_gt_40 11560 non-null float64 11560 non-null float64 32 rent_gt_50 33 universe_samples 11709 non-null int64 11709 non-null int64 34 used_samples 35 hi_mean 11587 non-null float64 36 hi_median 11587 non-null float64 37 hi_stdev 11587 non-null float64 11587 non-null float64 38 hi_sample_weight 11587 non-null float64 39 hi_samples 11573 non-null float64 40 family_mean 41 family_median 11573 non-null float64 11573 non-null float64 42 family_stdev 43 family_sample_weight 11573 non-null float64 44 family_samples 11573 non-null float64 45 hc_mortgage_mean 11441 non-null float64 46 hc_mortgage_median 11441 non-null float64 47 hc_mortgage_stdev 11441 non-null float64 48 hc_mortgage_sample_weight 11441 non-null float64 49 hc_mortgage_samples 11441 non-null float64 50 hc_mean 11419 non-null float64 51 hc_median 11419 non-null float64 11419 non-null float64 52 hc_stdev 53 hc_samples 11419 non-null float64 54 hc_sample_weight 11419 non-null float64 11489 non-null float64 55 home_equity_second_mortgage 56 second_mortgage 11489 non-null float64 57 home_equity 11489 non-null float64 58 debt 11489 non-null float64 11489 non-null float64 59 second_mortgage_cdf 60 home_equity_cdf 11489 non-null float64 61 debt_cdf 11489 non-null float64 62 hs_degree 11624 non-null float64 63 hs_degree_male 11620 non-null float64 64 hs_degree_female 11604 non-null float64 65 male_age_mean 11625 non-null float64 11625 non-null float64 66 male_age_median 11625 non-null float64 67 male_age_stdev 11625 non-null float64 68 male_age_sample_weight 69 male_age_samples 11625 non-null float64 70 female_age_mean 11613 non-null float64 71 female_age_median 11613 non-null float64 11613 non-null float64 72 female_age_stdev 73 female age sample weight 11613 non-null float64 74 female_age_samples 11613 non-null float64 11587 non-null float64 75 pct_own 76 married 11625 non-null float64 77 married_snp 11625 non-null float64 78 separated 11625 non-null float64 79 divorced 11625 non-null float64 dtypes: float64(61), int64(13), object(6) memory usage: 7.1+ MB

In [11]: df_train.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27321 entries, 0 to 27320
Data columns (total 80 columns):
                               Non-Null Count Dtype
# Column
---
                               -----
0 UID
                               27321 non-null int64
1
   BLOCKID
                               0 non-null
                                             float64
    SUMLEVEL
                               27321 non-null int64
    COUNTYID
                               27321 non-null int64
   STATEID
                               27321 non-null int64
                               27321 non-null object
5
    state
   state_ab
                               27321 non-null object
6
                               27321 non-null object
   city
                               27321 non-null object
8
   place
                               27321 non-null object
9 type
                               27321 non-null object
10 primary
                               27321 non-null int64
11 zip_code
12 area_code
                               27321 non-null int64
13 lat
                               27321 non-null float64
                               27321 non-null float64
14 lng
15 ALand
                               27321 non-null float64
                               27321 non-null int64
16 AWater
17 pop
                               27321 non-null int64
18 male_pop
                               27321 non-null int64
                               27321 non-null int64
19 female_pop
20 rent_mean
                               27007 non-null float64
21 rent_median
                               27007 non-null float64
22 rent_stdev
                               27007 non-null float64
                               27007 non-null float64
23 rent_sample_weight
                               27007 non-null float64
24 rent_samples
                               27007 non-null float64
25 rent_gt_10
                               27007 non-null float64
26 rent_gt_15
                               27007 non-null float64
27 rent_gt_20
                               27007 non-null float64
28 rent_gt_25
29 rent_gt_30
                               27007 non-null float64
30 rent_gt_35
                               27007 non-null float64
                               27007 non-null float64
31 rent_gt_40
32 rent_gt_50
                               27007 non-null float64
33 universe_samples
                               27321 non-null int64
34 used samples
                               27321 non-null int64
35 hi_mean
                               27053 non-null float64
                               27053 non-null float64
36 hi_median
37 hi_stdev
                               27053 non-null float64
                               27053 non-null float64
38 hi_sample_weight
                               27053 non-null float64
39 hi_samples
                               27023 non-null float64
40 family_mean
41 family_median
                               27023 non-null float64
                               27023 non-null float64
42 family_stdev
43 family_sample_weight
                               27023 non-null float64
                               27023 non-null float64
44 family_samples
45 hc_mortgage_mean
                               26748 non-null float64
46 hc_mortgage_median
                               26748 non-null float64
47 hc_mortgage_stdev
                               26748 non-null float64
48 hc_mortgage_sample_weight
                               26748 non-null float64
49 hc_mortgage_samples
                               26748 non-null float64
                               26721 non-null float64
50 hc_mean
51 hc_median
                               26721 non-null float64
52 hc_stdev
                               26721 non-null float64
53 hc_samples
                               26721 non-null float64
                               26721 non-null
54 hc_sample_weight
                                             float64
                              26864 non-null
55 home_equity_second_mortgage
                                             float64
56 second_mortgage
                               26864 non-null
                                             float64
57 home equity
                               26864 non-null float64
58 debt
                               26864 non-null float64
                               26864 non-null float64
59 second_mortgage_cdf
                               26864 non-null float64
60 home_equity_cdf
61 debt_cdf
                               26864 non-null float64
62 hs_degree
                               27131 non-null float64
63 hs_degree_male
                               27121 non-null float64
64 hs_degree_female
                               27098 non-null float64
65 male_age_mean
                               27132 non-null float64
                               27132 non-null float64
66 male_age_median
67 male_age_stdev
                               27132 non-null float64
68 male_age_sample_weight
                              27132 non-null float64
                              27132 non-null float64
69 male_age_samples
                              27115 non-null float64
70 female_age_mean
71 female_age_median
                              27115 non-null float64
                              27115 non-null float64
72 female_age_stdev
73 female_age_sample_weight 27115 non-null float64
                              27115 non-null float64
74 female_age_samples
                              27053 non-null float64
75 pct_own
76 married
                              27130 non-null float64
77 married_snp
                             27130 non-null float64
78 separated
                             27130 non-null float64
79 divorced
                             27130 non-null float64
dtypes: float64(62), int64(12), object(6)
memory usage: 16.7+ MB
```

2. Figure out the primary key and look for the requirement of indexing

12/26/22, 1:46 PM Real_Estate_Project

3. Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

BLOCKID can be dropped, since it is 100% missing values

```
In [17]: #percentage of missing values in test set
          missing_list_test=df_test.isnull().sum() *100/len(df_train)
          missing values df test=pd.DataFrame(missing list test,columns=['Percentage of missing values'])
          missing_values_df_test.sort_values(by=['Percentage of missing values'],inplace=True,ascending=False)
          missing_values_df_test[missing_values_df_test['Percentage of missing values']>0][:10]
```

:/26/22, 1:46 PM			Real_Estate_Project
Out[17]:	Percentag	ge of missing values	
	BLOCKID	42.857143	
	hc_samples	1.061455	
	hc_mean	1.061455	
	hc_median	1.061455	
	hc_stdev	1.061455	
	hc_sample_weight	1.061455	
	hc_mortgage_mean	0.980930	
	hc_mortgage_stdev	0.980930	
	hc_mortgage_sample_weight	0.980930	
	hc_mortgage_samples	0.980930	
BLOCKID can	be dropped, since it is 43%missing va	lues	
In [18]:	<pre>#since SUMLEVEL does not have an df_train.drop(columns=['BLOCKID'</pre>		and no variance therefore we will droppeed it. ce=True)
	<pre>#since SUMLEVEL does not have an df_test.drop(columns=['BLOCKID',</pre>		and no variance therefore we will droppeed it. e=True)
In [20]:	df_train.head(1)		
Out[20]:	COUNTYID STATEID stat	te state_ab city	place type primary zip_code area_code female_age_mean female_age_median female_age_stdev female_age_sample_weight female_age_samples pct_own married married_snp separated divorced
	UID		
	267822 53 36 New Yor 1 rows × 77 columns	rk NY Hamilton	Hamilton City tract 13346 315 44.48629 45.33333 22.51276 685.33845 2618.0 0.79046 0.57851 0.01882 0.0124 0.0877
In [21]:	<pre>df_test.head(1)</pre>		
Out[21]:		e state_ab city	place type primary zip code area code female age mean female age median female age stdev female age sample weight female age samples pct own married married snp separated divorced
	UID 255504 163 26 Michiga 1 rows × 77 columns	n MI Detroit I	Dearborn Heights City CDP tract 48239 313 34.78682 33.75 21.58531 416.48097 1938.0 0.70252 0.28217 0.0591 0.03813 0.14299
In [22]:	<pre>#Imputing missing values with me missing_train_cols=[] for col in df_train.columns: if df_train[col].isna().sum(missing_train_cols.appen print(missing_train_cols)</pre>) !=0:	
	<pre>_median', 'family_stdev', 'famil' 'second_mortgage', 'home_equity'</pre>	y_sample_weight', , 'debt', 'second_	ample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_30', 'rent_gt_35', 'rent_gt_50', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_mean', 'hc_samples', 'hc_mortgage_samples', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_stdev', 'male_age_sample_weight', 'male_age_samples', 'female_age_mean', 'female_age_media , 'female_age_samples', 'pct_own', 'married', 'married_snp', 'separated', 'divorced']
In [23]:	<pre>#Imputing missing values with me missing_test_cols=[] for col in df_test.columns: if df_test[col].isna().sum() missing_test_cols.append print(missing_test_cols)</pre>	!=0:	
	<pre>_median', 'family_stdev', 'famil' 'second_mortgage', 'home_equity'</pre>	y_sample_weight', , 'debt', 'second_	ample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_30', 'rent_gt_35', 'rent_gt_50', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_stdev', 'hc_sample_weight', 'home_equity_second_mortgage', mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_stdev', 'male_age_sample_weight', 'male_age_samples', 'female_age_mean', 'female_age_media , 'female_age_samples', 'pct_own', 'married', 'married_snp', 'separated', 'divorced']
In [24]:	<pre>#Missing cols are all numerical for col in df_train.columns: if col in (missing_train_col</pre>	.s):].mean(),inplace=True)
In [25]:	<pre>#Missing cols are all numerical for col in df_test.columns: if col in (missing_test_cols</pre>	·):	mean(),inplace=True)
In [26]:	<pre>df_train.isna().sum().sum()</pre>		
Out[26]:	0		
In [27]:	<pre>df_train.isna().sum().sum()</pre>		
Out[27]:	0		
	vert/html/Real_Estate_Project.ipynb?download=fa	ılse	

12/26/22, 1:46 PM Real Estate Project

Exploratory Data Analysis (EDA):

Perform debt analysis. You may take the following steps:

a) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent.

```
In [29]: !pip install pandasql
         Collecting pandasql
           Using cached pandasql-0.7.3.tar.gz (26 kB)
          Requirement already satisfied: numpy in d:\anaconda\lib\site-packages (from pandasql) (1.21.5)
          Requirement already satisfied: pandas in d:\anaconda\lib\site-packages (from pandasql) (1.4.2)
          Requirement already satisfied: sqlalchemy in d:\anaconda\lib\site-packages (from pandasql) (1.4.32)
          Requirement already satisfied: pytz>=2020.1 in d:\anaconda\lib\site-packages (from pandas->pandasql) (2021.3)
          Requirement already satisfied: python-dateutil>=2.8.1 in d:\anaconda\lib\site-packages (from pandas->pandasql) (2.8.2)
          Requirement already satisfied: six>=1.5 in d:\anaconda\lib\site-packages (from python-dateutil>=2.8.1->pandas->pandasql) (1.16.0)
          Requirement already satisfied: greenlet!=0.4.17 in d:\anaconda\lib\site-packages (from sqlalchemy->pandasql) (1.1.1)
         Building wheels for collected packages: pandasql
           Building wheel for pandasql (setup.py): started
           Building wheel for pandasql (setup.py): finished with status 'done'
           Created wheel for pandasql: filename=pandasql-0.7.3-py3-none-any.whl size=26784 sha256=cb144b49e56a0834c47d1cbec46553e6175f70d60cfb1cb1ab1e47a22c6fdb3f
           Stored in directory: c:\users\chinm\appdata\local\pip\cache\wheels\63\e8\ec\75b1df467ecf57b6ececb32cb16f4e86697cbfe55cb0c51f07
          Successfully built pandasql
          Installing collected packages: pandasql
          Successfully installed pandasql-0.7.3
In [30]: from pandasql import sqldf
         q1 = "select place,pct_own,second_mortgage,lat,lng from df_train where pct_own >0.10 and second_mortgage <0.5 order by second_mortgage DESC LIMIT 2500;"
         pysqldf = lambda q: sqldf(q, globals())
         df_train_location_mort_pct=pysqldf(q1)
In [31]: df_train_location_mort_pct.head()
Out[31]:
                    place pct_own second_mortgage
                                                       lat
                                                                Ing
         0 Worcester City 0.20247
                                          0.43363 42.254262 -71.800347
             Harbor Hills 0.15618
                                          0.31818 40.751809 -73.853582
               Glen Burnie 0.22380
                                          0.30212 39.127273 -76.635265
         3 Egypt Lake-leto 0.11618
                                          0.28972 28.029063 -82.495395
         4 Lincolnwood 0.14228
                                          0.28899 41.967289 -87.652434
In [32]: import plotly.express as px
          import plotly.graph_objects as go
In [34]: fig = go.Figure(data=go.Scattergeo(
              lat = df_train_location_mort_pct['lat'],
              lon = df_train_location_mort_pct['lng']),
          fig.update_layout(
              geo=dict(
                 scope = 'north america',
                 showland = True,
                 landcolor = "rgb(212, 212, 212)",
                 subunitcolor = "rgb(255, 255, 255)",
                 countrycolor = "rgb(255, 255, 255)",
                  showlakes = True,
                 lakecolor = "rgb(255, 255, 255)",
                 showsubunits = True,
                 showcountries = True,
                 resolution = 50,
                 projection = dict(
                     type = 'conic conformal',
                     rotation_lon = -100
                  lonaxis = dict(
                     showgrid = True,
                     gridwidth = 0.5,
                     range= [ -140.0, -55.0 ],
                     dtick = 5
                 lataxis = dict (
                     showgrid = True,
                     gridwidth = 0.5,
                     range= [ 20.0, 60.0 ],
                     dtick = 5
             title='Top 2,500 locations with second mortgage is the highest and percent ownership is above 10 percent')
          fig.show()
```

12/26/22, 1:46 PM Real_Estate_Project

Top 2,500 locations with second mortgage is the highest and percent ownership is above 10 percent

Use the following bad debt equation: Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage c) Create pie charts to show overall debt and bad debt

```
In [35]: df_train['bad_debt']=df_train['second_mortgage']+df_train['home_equity']-df_train['home_equity']-df_train['home_equity']-df_train['bad_debt'],hins=[0,0.10,1], labels=['less than 50%', "50-100%'])
df_train_groupby(['bins']).size().plot(kind='pie',subplots=True,startangle=90, autopct='%1.17%')
plt. show()
sdf_plot.pie(subplots=True,figsize=(8, 3))

less@than 50%
47.0%
53.0%
50-100%
```

Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities

```
In [37]: cols=[]
          df_train.columns
Out[37]: Index(['COUNTYID', 'STATEID', 'state', 'state_ab', 'city', 'place', 'type',
                 'primary', 'zip_code', 'area_code', 'lat', 'lng', 'ALand', 'AWater',
                 'pop', 'male_pop', 'female_pop', 'rent_mean', 'rent_median',
                 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10',
                 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35',
                 'rent_gt_40', 'rent_gt_50', 'universe_samples', 'used_samples',
                 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                 'family_mean', 'family_median', 'family_stdev', 'family_sample_weight',
                 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median',
                 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples',
                 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight',
                 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                 'hs_degree_male', 'hs_degree_female', 'male_age_mean',
                 'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                 'male_age_samples', 'female_age_mean', 'female_age_median',
                 'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                 'pct_own', 'married', 'married_snp', 'separated', 'divorced',
                 'bad_debt', 'bins'],
               dtype='object')
```

12/26/22, 1:46 PM Real_Estate_Project

```
In [38]: #Taking Hamilton and Manhattan cities data
    cols=['second_mortgage','home_equity','debt','bad_debt']
    df_box_hamilton=df_train.loc[df_train['city'] == 'Hamilton']
    df_box_manhattan=df_train.loc[df_train['city'] == 'Manhattan']
    df_box_city=pd.concat([df_box_hamilton,df_box_manhattan])
    df_box_city.head(4)
```

Out[38]:		COUNTYID	STATEID	state	state_ab	city	place	type	primary	zip_code	area_code	female_age_stdev	female_age_sample_weight	female_age_samples	pct_own	married	married_snp	separated	divorced	bad_debt	bins
	UID																				
	267822	53	36	New York	NY	Hamilton	Hamilton	City	tract	13346	315 .	22.51276	685.33845	2618.0	0.79046	0.57851	0.01882	0.01240	0.08770	0.09408	less than 50%
	263797	21	34	New Jersey	NJ	Hamilton	Yardville	City	tract	8610	609 .	24.05831	732.58443	3124.0	0.64400	0.56377	0.01980	0.00990	0.04892	0.18071	50-100%
	270979	17	39	Ohio	ОН	Hamilton	Hamilton City	Village	tract	45015	513 .	22.66500	565.32725	2528.0	0.61278	0.47397	0.04419	0.02663	0.13741	0.15005	50-100%
	259028	95	28	Mississippi	MS	Hamilton	Hamilton	CDP	tract	39746	662 .	22.79602	483.01311	1954.0	0.83241	0.58678	0.01052	0.00000	0.11721	0.02130	less than 50%

4 rows × 79 columns

```
In [39]: plt.figure(figsize=(10,5))
    sns.boxplot(data=df_box_city,x='second_mortgage', y='city',width=0.5,palette="Set3")
    plt.show()
```


In [40]: plt.figure(figsize=(10,5))
 sns.boxplot(data=df_box_city,x='home_equity', y='city',width=0.5,palette="Set3")
 plt.show()

In [41]: plt.figure(figsize=(10,5))
 sns.boxplot(data=df_box_city,x='debt', y='city',width=0.5,palette="Set3")
 plt.show()

In [42]: plt.figure(figsize=(10,5))
 sns.boxplot(data=df_box_city,x='bad_debt', y='city',width=0.5,palette="Set3")
 plt.show()

Manhattan has higher metrics compared to Hamilton

Create a collated income distribution chart for family income, house hold income, and remaining income

sns.distplot(df_train['hi_mean'])
plt.title('Household income distribution chart')
plt.show()

D:\anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:
 'distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

In [44]: sns.distplot(df_train['family_mean'])
 plt.title('Family income distribution chart')
 plt.show()

D:\anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).


```
In [45]: sns.distplot(df_train['family_mean']-df_train['hi_mean'])
    plt.title('Remaining income distribution chart')
    plt.show()
```

D:\anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

Income distribution almost has normality in its distrbution

Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):

```
In [46]: #plt.figure/(figsizer/25,18))
fig.(axl,ax).axl) axplt.subplots(3,1)
sms.distplot(if_train['pop'],ax-axl)
sms.distplot(if_train['pop'],ax-axl)
sms.distplot(if_train['pop'],ax-axl)
sms.distplot(if_train['mail_pop'],ax-axl)
sms.distplot(if_train['mail_pop'],ax-axl)
sms.distplot(if_train['mail_pop'],ax-axl)
sms.distplot(if_train['mail_pop'],ax-axl)
sms.distplot(if_train['mail_pop'],ax-axl)
sms.distplot(if_train['pop'],ax-axl)
sms.distplot(if_trai
```


a) Use pop and ALand variables to create a new field called population density

Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age c) Visualize the findings using appropriate chart type

```
In [55]: df_train['age_median']=(df_train['male_age_median'])/2 df_test['age_median']=(df_test['male_age_median']+df_test['female_age_median'])/2

In [56]: df_train[['male_age_median', 'female_age_median', 'male_pop', 'female_pop', 'age_median']].head()

Out[56]: male_age_median female_age_median male_pop female_pop age_median
```

UID					
267822	44.00000	45.33333	2612	2618	44.666665
246444	32.00000	37.58333	1349	1284	34.791665
245683	40.83333	42.83333	3643	3238	41.833330
279653	48.91667	50.58333	1141	1559	49.750000
247218	22.41667	21.58333	2586	3051	22.000000

```
In [57]: sns.distplot(df_train['age_median'])
   plt.title('Median Age')
   plt.show()
   # Age of population is mostly between 20 and 60
   # Majority are of age around 40
   # Median age distribution has a gaussian distribution
   # Some right skewness is noticed
```

D:\anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

In [58]: sns.boxplot(df_train['age_median'])
 plt.title('Population Density')
 plt.show()

D:\anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning:

Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.

In [59]: df_train['pop'].describe()

Analyze the married, separated, and divorced population for these population brackets

1. Very high population group has more married people and less percantage of separated and divorced couples 2. In very low population groups, there are more divorced people

Visualize using appropriate chart type

low 0.584894 0.593135 0.015833 0.011195 0.075348 0.070045

high 0.503359 0.335660 0.008141 0.002500 0.039030 0.010320

medium 0.655737 0.618710 0.005003 0.004120 0.065927 0.064890

very high 0.734740 0.734740 0.004050 0.004050 0.030360 0.030360

very high

Name: pop_bins, dtype: int64

Please detail your observations for rent as a percentage of income at an overall level, and for different states.

```
In [67]: rent_state_mean=df_train.groupby(by='state')['rent_mean'].agg(["mean"])
         rent_state_mean.head()
Out[67]:
             state
          Alabama 774.004927
            Alaska 1185.763570
           Arizona 1097.753511
          Arkansas 720.918575
         California 1471.133857
In [68]: income_state_mean=df_train.groupby(by='state')['family_mean'].agg(["mean"])
         income_state_mean.head()
Out[68]:
             state
          Alabama 67030.064213
            Alaska 92136.545109
           Arizona 73328.238798
          Arkansas 64765.377850
         California 87655.470820
In [69]: rent_perc_of_income=rent_state_mean['mean']/income_state_mean['mean']
         rent_perc_of_income.head(10)
         state
         Alabama
                                 0.011547
         Alaska
                                 0.012870
         Arizona
                                 0.014970
         Arkansas
                                 0.011131
         California
                                 0.016783
         Colorado
                                 0.013529
                                 0.012637
         Connecticut
         Delaware
                                  0.012929
         District of Columbia
                                 0.013198
                                 0.015772
         Florida
```

Name: mean, dtype: float64

12/26/22, 1:46 PM

In [70]: #overall level rent as a percentage of income
sum(df_train['rent_mean'])/sum(df_train['family_mean'])

Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

1.High positive correaltion is noticed between pop, male_pop and female_pop 2.High positive correaltion is noticed between rent_mean,hi_mean, family_mean,hc_mean

1. The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables. 2. Each variable is assumed to be dependent upon a linear combination of the common

12/26/22, 1:46 PM Real_Estate_Pro

factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data. Following are the list of latent variables:

```
In [75]: !pip install factor_analyzer
         Collecting factor_analyzer
          Downloading factor_analyzer-0.4.1.tar.gz (41 kB)
          Installing build dependencies: started
          Installing build dependencies: finished with status 'done'
           Getting requirements to build wheel: started
          Getting requirements to build wheel: finished with status 'done'
            Preparing wheel metadata: started
             Preparing wheel metadata: finished with status 'done'
         Requirement already satisfied: numpy in d:\anaconda\lib\site-packages (from factor analyzer) (1.21.5)
         Collecting pre-commit
          Downloading pre_commit-2.20.0-py2.py3-none-any.whl (199 kB)
         Requirement already satisfied: pandas in d:\anaconda\lib\site-packages (from factor_analyzer) (1.4.2)
         Requirement already satisfied: scipy in d:\anaconda\lib\site-packages (from factor_analyzer) (1.7.3)
         Requirement already satisfied: scikit-learn in d:\anaconda\lib\site-packages (from factor_analyzer) (1.0.2)
         Requirement already satisfied: pytz>=2020.1 in d:\anaconda\lib\site-packages (from pandas->factor_analyzer) (2021.3)
         Requirement already satisfied: python-dateutil>=2.8.1 in d:\anaconda\lib\site-packages (from pandas->factor_analyzer) (2.8.2)
         Requirement already satisfied: six>=1.5 in d:\anaconda\lib\site-packages (from python-dateutil>=2.8.1->pandas->factor_analyzer) (1.16.0)
         Requirement already satisfied: toml in d:\anaconda\lib\site-packages (from pre-commit->factor_analyzer) (0.10.2)
         Collecting identify>=1.0.0
          Downloading identify-2.5.9-py2.py3-none-any.whl (98 kB)
         Requirement already satisfied: pyyaml>=5.1 in d:\anaconda\lib\site-packages (from pre-commit->factor_analyzer) (6.0)
         Collecting cfgv>=2.0.0
          Downloading cfgv-3.3.1-py2.py3-none-any.whl (7.3 kB)
         Collecting nodeenv>=0.11.1
          Downloading nodeenv-1.7.0-py2.py3-none-any.whl (21 kB)
         Collecting virtualenv>=20.0.8
          Downloading virtualenv-20.17.1-py3-none-any.whl (8.8 MB)
         Requirement already satisfied: setuptools in d:\anaconda\lib\site-packages (from nodeenv>=0.11.1->pre-commit->factor_analyzer) (61.2.0)
         Collecting distlib<1,>=0.3.6
          Downloading distlib-0.3.6-py2.py3-none-any.whl (468 kB)
         Collecting platformdirs<3,>=2.4
          Downloading platformdirs-2.6.0-py3-none-any.whl (14 kB)
         Requirement already satisfied: filelock<4,>=3.4.1 in d:\anaconda\lib\site-packages (from virtualenv>=20.0.8->pre-commit->factor_analyzer) (3.6.0)
         Requirement already satisfied: threadpoolctl>=2.0.0 in d:\anaconda\lib\site-packages (from scikit-learn->factor_analyzer) (2.2.0)
         Requirement already satisfied: joblib>=0.11 in d:\anaconda\lib\site-packages (from scikit-learn->factor_analyzer) (1.1.0)
         Building wheels for collected packages: factor-analyzer
          Building wheel for factor-analyzer (PEP 517): started
          Building wheel for factor-analyzer (PEP 517): finished with status 'done'
          Created wheel for factor-analyzer: filename=factor_analyzer-0.4.1-py2.py3-none-any.whl size=42070 sha256=9196c13f91cc75f43672a9027543d91ff299790e41bea972b3cc5cb4c5b7111a
          Stored in directory: c:\users\chinm\appdata\local\pip\cache\wheels\6d\32\bd\460a71becd83f7d77152f437c2fd451f5c87bc19cfcdbfcd24
         Successfully built factor-analyzer
         Installing collected packages: platformdirs, distlib, virtualenv, nodeenv, identify, cfgv, pre-commit, factor-analyzer
         Successfully installed cfgv-3.3.1 distlib-0.3.6 factor-analyzer-0.4.1 identify-2.5.9 nodeenv-1.7.0 platformdirs-2.6.0 pre-commit-2.20.0 virtualenv-20.17.1
         • Highschool graduation rates • Median population age • Second mortgage statistics • Percent own • Bad debt expense
In [76]: from sklearn.decomposition import FactorAnalysis
         from factor_analyzer import FactorAnalyzer
In [77]: #pip install factor_analyzer
In [78]: fa=FactorAnalyzer(n_factors=5)
         fa.fit_transform(df_train.select_dtypes(exclude= ('object','category')))
         fa.loadings_
```

```
Out[78]: array([[-1.12589169e-01, 1.95646471e-02, -2.39331085e-02,
                  -6.27632640e-02, 4.23474734e-02],
                 [-1.10186765e-01, 1.33506216e-02, 2.79651248e-02,
                 -1.49825865e-01, 1.10838805e-01],
                [-8.28678643e-02, 5.16372375e-02, -1.36451870e-01,
                 -4.98918621e-02, -1.04024841e-01],
                [ 1.80961144e-02, 1.92013754e-02, 5.81329911e-03,
                  2.64842754e-02, -6.12442613e-03],
                [ 9.02324752e-02, -9.72544302e-02, -6.54601348e-02,
                 -1.33145902e-01, -1.48594599e-01],
                [-1.07335694e-02, -4.12376817e-02, 1.45853485e-01,
                  8.80433300e-03, 1.08227566e-01],
                [-4.28796983e-02, -2.09780216e-02, 3.66726852e-02,
                 -9.45597414e-02, 5.91380522e-02],
                [-2.44243060e-03, -1.53245408e-02, -2.68300863e-03,
                  -4.52473036e-02, 2.37240647e-02],
                [ 7.92164330e-02, 9.57453327e-01, -8.71151629e-02,
                  -6.59923762e-03, -3.97273199e-02],
                [ 7.39808202e-02, 9.18750524e-01, -1.08834839e-01,
                 -2.79371580e-02, -3.93153658e-02],
                [ 8.06598890e-02, 9.47839215e-01, -6.08006500e-02,
                  1.53627099e-02, -3.86977286e-02],
                [ 7.70052111e-01, 9.84675379e-03, -3.71249730e-02,
                  1.14949036e-01, -1.23784689e-01],
                [ 7.18615870e-01, 6.24980470e-03, -4.59787391e-02,
                  1.09109686e-01, -1.35301914e-01],
                [ 7.07647228e-01, 2.46625391e-02, -1.00860835e-02,
                  1.04472482e-01, 7.72381149e-02],
                [-1.34545482e-01, 3.36809304e-01, -4.87894972e-01,
                 -4.15446259e-02, 3.17608557e-01],
                 [ 2.31079711e-01, 4.37729793e-01, -6.40209208e-01,
                 -2.52310994e-02, 3.47216241e-01],
                [-4.52068102e-02, 3.51263840e-02, 3.07536975e-02,
                  4.44793493e-01, -1.63273402e-01],
                 [-2.50717052e-02, 1.70166793e-02, 4.57227185e-02,
                  6.76083880e-01, -1.55256757e-01],
                 [-3.90694451e-02, -1.67460878e-02, 8.13962799e-02,
                  8.36389142e-01, -9.18259833e-02],
                [-5.14161961e-02, -3.57207140e-02, 1.10795178e-01,
                  9.25123762e-01, -4.44866488e-02]
                [-6.08590014e-02, -4.41860614e-02, 1.35794017e-01,
                  9.53019900e-01, -2.21548635e-02]
                [-4.57771192e-02, -5.25526120e-02, 1.41019867e-01,
                  9.32702618e-01, -5.84369519e-07],
                [-4.19486075e-02, -5.90387636e-02, 1.28851776e-01,
                  8.87316670e-01, 1.05894303e-02],
                [-2.47894677e-02, -7.29670547e-02, 9.41510379e-02,
                  7.79023652e-01, 2.95352817e-02],
                [ 2.12258458e-01, 4.65992344e-01, -6.14495945e-01,
                 -2.47660022e-02, 3.66644543e-01],
                [ 2.33057252e-01, 4.47057849e-01, -6.28263424e-01,
                 -2.71547728e-02, 3.43419633e-01],
                [ 7.85157101e-01, 4.91249252e-02, 1.44540484e-01,
                 -2.05217631e-01, -1.54523366e-01],
                [ 7.10324888e-01, 4.99730434e-02, 1.32239990e-01,
                 -2.19171866e-01, -2.10505580e-01],
                [ 8.61780947e-01, 4.35044827e-02, 1.65839098e-01,
                 -1.19850814e-01, 3.16733580e-02],
                [-2.23443271e-01, 8.46259550e-01, -4.61177184e-02,
                  6.88599251e-02, 2.27742322e-01],
                [ 1.43837558e-01, 9.53197416e-01, 2.27887461e-02,
                 -4.57890454e-02, 1.00796451e-01],
                [ 8.30286504e-01, 3.42026000e-02, 1.61106001e-01,
                 -2.04570331e-01, -7.48710468e-02],
                 [ 7.94476573e-01, 2.83818589e-02, 1.51219547e-01,
                 -2.07681492e-01, -9.12497145e-02],
                [ 8.11481641e-01, 4.32314878e-02, 1.43645560e-01,
                 -1.07778260e-01, 5.79540090e-02],
                 [-3.37741909e-01, 8.64927624e-01, 3.58933716e-02,
                  9.07183972e-02, 4.46327258e-02],
                [ 5.03572647e-02, 9.35515353e-01, 1.51475405e-01,
                  -2.51501245e-02, -9.34471652e-02],
                [ 9.78242259e-01, -3.31490292e-02, -1.05261174e-01,
                  4.50364278e-02, 7.37362139e-02],
                [ 9.59137182e-01, -3.90023003e-02, -1.20630334e-01,
                  4.52591426e-02, 6.64877184e-02],
                [ 8.14087200e-01, 2.23057300e-03, 7.66518549e-02,
                  2.02747473e-02, 1.27634839e-01],
                [-4.15353990e-01, 7.18339587e-01, 3.40068068e-01,
                 -7.18402763e-02, -2.77950522e-01],
                [7.64912665e-02, 7.24900629e-01, 2.74193203e-01,
                 -4.83952627e-02, -3.52988286e-01],
                [ 9.10390829e-01, -5.36541209e-02, -4.68641801e-02,
                 -7.64182945e-04, 1.63870438e-01],
                [ 8.73011859e-01, -5.30302299e-02, -5.89943093e-02,
                 -1.58989714e-03, 1.52417538e-01],
                [ 7.55087682e-01, -3.56133752e-03, 5.39542598e-02,
                  4.24181558e-03, 2.58043493e-01],
                [-1.23469887e-01, 6.07438129e-01, 6.33039230e-01,
                 -2.14798834e-02, 2.47973916e-01],
                [-3.42866889e-01, 5.59526271e-01, 5.88212998e-01,
                 -2.51533562e-02, 2.18419877e-01],
```

12/26/22, 1:46 PM

```
1.09243763e-01, -6.61660849e-01],
[-1.37306756e-01, -2.17250639e-02, -1.58408936e-01,
  1.25156196e-01, -6.71630798e-01],
[ 2.45096195e-01, -2.54584574e-02, -2.66691493e-02,
  9.53148481e-02, -6.42510821e-01],
[ 2.03988665e-01, 7.85172846e-02, -3.01656227e-01,
  2.28379497e-02, -6.29223348e-01],
[ 1.08926078e-01, -6.34332397e-02, -3.36565155e-02,
 -9.49480488e-02, 6.81473836e-01],
[-2.63787634e-01, -6.43281165e-03, -3.58792108e-02,
 -9.37962462e-02, 6.47816991e-01],
[-2.15717052e-01, -7.36588970e-02, 3.50113236e-01,
 -1.95201638e-02, 6.36783756e-01],
[ 3.94306152e-01, 6.09565683e-02, 2.55337862e-01,
 -2.20362100e-01, -1.84248078e-01],
[ 4.07877889e-01, 6.27256506e-02, 2.23926902e-01,
 -2.10028730e-01, -1.71989214e-01],
[ 3.53156880e-01, 5.36715651e-02, 2.69603564e-01,
 -2.16933217e-01, -1.80072063e-01],
[ 2.33537266e-01, -4.91732975e-02, 8.14450794e-01,
  9.36688907e-02, 3.27131938e-01],
[ 2.40298207e-01, -3.38140127e-02, 8.31496967e-01,
  7.52417525e-02, 2.46323604e-01],
[-6.71839458e-02, 6.58504508e-02, 5.86207669e-01,
  8.72955131e-02, 9.12541341e-02],
[ 5.59835538e-02, 8.17918702e-01, -1.78458349e-01,
 -1.55949421e-02, -3.34299756e-02],
[ 7.16426394e-02, 9.23428542e-01, -1.07142694e-01,
 -2.78635363e-02, -4.35991136e-02],
[ 1.92496950e-01, -4.75870411e-02, 8.03173200e-01,
  1.43492711e-01, 3.33862159e-01],
[ 1.87644438e-01, -3.29941019e-02, 8.58024513e-01,
  1.31329962e-01, 2.55679735e-01],
[-1.02263658e-01, 6.03984282e-02, 4.72982273e-01,
  7.36848442e-02, 1.12273914e-01],
[ 6.14776643e-02, 8.77962758e-01, -1.50410287e-01,
  2.20991054e-02, -4.17158193e-02],
[ 7.83728221e-02, 9.54508804e-01, -5.91095897e-02,
 1.64800957e-02, -4.32591005e-02],
[-3.24381874e-02, 1.11167162e-01, 7.84467391e-01,
 -4.37718597e-02, -2.80931234e-01],
[ 1.76682388e-01, 1.90494238e-01, 5.61405491e-01,
-1.20746166e-01, -1.32570792e-01],
[-6.37386620e-02, -7.03047918e-02, -2.68934066e-01,
 1.28589794e-01, 1.88507864e-01],
[-1.56051271e-01, -7.08033942e-02, -1.45964501e-01,
  1.24253736e-01, 1.46293121e-01],
[-3.56716298e-01, -5.29910747e-02, 1.47771609e-01,
  2.87196191e-02, 1.13159582e-01],
[ 2.42173836e-01, -2.86199110e-02, -3.25958426e-02,
  1.05027818e-01, -6.55406061e-01],
[ 3.50196743e-01, -1.05016404e-02, -3.95274112e-01,
  5.92876795e-02, 2.91651787e-01],
[ 2.25671548e-01, -3.42672769e-02, 8.92876631e-01,
```

[-1.60867224e-01, -1.53062632e-02, -1.57026591e-01,

Data Modeling: Linear Regression

1.12426812e-01, 2.67065205e-01]])

1.Build a linear Regression model to predict the total monthly expenditure for home mortgages loan. Please refer 'deplotment_RE.xlsx'. Column hc_mortgage and owner costs of specified geographical location. Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage_mean.

```
In [79]: df_train.columns
         Index(['COUNTYID', 'STATEID', 'state', 'state_ab', 'city', 'place', 'type',
Out[79]:
                 'primary', 'zip_code', 'area_code', 'lat', 'lng', 'ALand', 'AWater',
                 'pop', 'male_pop', 'female_pop', 'rent_mean', 'rent_median',
                 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10',
                 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35'
                 'rent_gt_40', 'rent_gt_50', 'universe_samples', 'used_samples',
                 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                 'family_mean', 'family_median', 'family_stdev', 'family_sample_weight',
                 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median',
                 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples',
                 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight',
                 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                 'hs_degree_male', 'hs_degree_female', 'male_age_mean',
                 'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                 'male_age_samples', 'female_age_mean', 'female_age_median',
                 'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                 'pct_own', 'married', 'married_snp', 'separated', 'divorced',
                 'bad_debt', 'bins', 'pop_density', 'age_median', 'pop_bins'],
               dtype='object')
In [81]: df_train['type'].unique()
          type_dict={'type':{'City':1,
                             'Urban':2,
                             'Town':3,
                             'CDP':4,
```

```
'Village':5,
                             'Borough':6}
         df_train.replace(type_dict,inplace=True)
In [82]: df_train['type'].unique()
         array([1, 2, 3, 4, 5, 6], dtype=int64)
         df_test.replace(type_dict,inplace=True)
In [84]: df_test['type'].unique()
         array([4, 1, 6, 3, 5, 2], dtype=int64)
         feature_cols=['COUNTYID','STATEID','zip_code','type','pop', 'family_mean',
                   'second_mortgage', 'home_equity', 'debt', 'hs_degree',
                    'age_median','pct_own', 'married','separated', 'divorced']
In [86]: x_train=df_train[feature_cols]
         y_train=df_train['hc_mortgage_mean']
In [87]: x_test=df_test[feature_cols]
         y_test=df_test['hc_mortgage_mean']
In [88]: from sklearn.preprocessing import StandardScaler
         from sklearn.linear_model import LinearRegression
         from sklearn.metrics import r2_score, mean_absolute_error,mean_squared_error,accuracy_score
In [89]: x_train.head()
                 COUNTYID STATEID zip_code type pop family_mean second_mortgage home_equity
Out[89]:
                                                                                               debt hs_degree age_median pct_own married separated divorced
            UID
                                              1 5230 67994.14790
         267822
                                                                          0.02077
                                                                                      0.08919 0.52963
                                                                                                       0.89288
                                                                                                                44.666665 0.79046 0.57851
                                                                                                                                            0.01240 0.08770
         246444
                                              1 2633 50670.10337
                                                                          0.02222
                                                                                      0.04274 0.60855
                                                                                                       0.90487
                                                                                                                34.791665 0.52483 0.34886
                                                                                                                                            0.01426 0.09030
         245683
                                              1 6881
                                                      95262.51431
                                                                          0.00000
                                                                                      0.09512 0.73484
                                                                                                       0.94288
                                                                                                                           0.85331 0.64745
                                                                                                                                            0.01607 0.10657
                                                                                                                                            0.02021 0.10106
         279653
                                              2 2700 56401.68133
                                                                          0.01086
                                                                                      0.01086 0.52714
                                                                                                                 49.750000 0.65037 0.47257
                                              1 5637 54053.42396
         247218
                                                                          0.05426
                                                                                      0.05426 0.51938
                                                                                                       1.00000
                                                                                                                22.000000 0.13046 0.12356
                                                                                                                                            0.00000 0.03109
In [90]: | sc=StandardScaler()
         x_train_scaled=sc.fit_transform(x_train)
         x_test_scaled=sc.fit_transform(x_test)
```

Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.

```
In [91]: linereg=LinearRegression()

Out[91]: LinearRegression()

In [92]: y_pred=linereg.predict(x_test_scaled)

In [93]: print("Overall R2 score of linear regression model", r2_score(y_test,y_pred))
print("Overall RMSE of linear regression model", np.sqrt(mean_squared_error(y_test,y_pred)))

Overall R2 score of linear regression model 0.7348210754610929
Overall RMSE of linear regression model 323.10188949846344
```

Run another model at State level. There are 52 states in USA.

The Accuracy and R2 score are good, but still will investigate the model performance at state level

```
Real_Estate_Project
             x_train_scaled_nation=sc.fit_transform(x_train_nation)
             x_test_scaled_nation=sc.fit_transform(x_test_nation)
             linereg.fit(x_train_scaled_nation,y_train_nation)
             y_pred_nation=linereg.predict(x_test_scaled_nation)
             print("Overall R2 score of linear regression model for state,",i,":-" ,r2_score(y_test_nation,y_pred_nation))
             print("Overall RMSE of linear regression model for state,",i,":-" ,np.sqrt(mean_squared_error(y_test_nation,y_pred_nation)))
             print("\n")
         State ID- 20
         Overall R2 score of linear regression model for state, 20 :- 0.6046603766461807
         Overall RMSE of linear regression model for state, 20 :- 307.9718899931473
         State ID- 1
         Overall R2 score of linear regression model for state, 1 :- 0.8104382475484617
         Overall RMSE of linear regression model for state, 1 :- 307.8275861848434
         State ID- 45
         Overall R2 score of linear regression model for state, 45 :- 0.7887446497855252
         Overall RMSE of linear regression model for state, 45 :- 225.69615420724134
In [96]: # To check the residuals
In [97]: residuals=y_test-y_pred
         residuals
Out[97]:
         255504
                 281.969088
         252676 -69.935775
         276314 190.761969
         248614 -157.290627
         286865
                 -9.887017
         238088
                 -67.541646
                 -41.578757
         242811
         250127 -127.427569
         241096 -330.820475
         287763 217.760642
         Name: hc_mortgage_mean, Length: 11709, dtype: float64
In [98]: plt.hist(residuals) # Normal distribution of residuals
         (array([6.000e+00, 3.000e+00, 2.900e+01, 7.670e+02, 7.823e+03, 2.716e+03,
                3.010e+02, 4.900e+01, 1.200e+01, 3.000e+00]),
          array([-2515.04284233, -1982.92661329, -1450.81038425, -918.69415521,
                  -386.57792617, 145.53830287, 677.65453191, 1209.77076095,
                 1741.88698999, 2274.00321903, 2806.11944807]),
          <BarContainer object of 10 artists>)
         8000
         6000
         4000
         2000
                   -2000 -1000 0 1000 2000 3000
In [99]: sns.distplot(residuals)
```

D:\anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

<AxesSubplot:xlabel='hc_mortgage_mean', ylabel='Density'>

In [100... plt.scatter(residuals,y_pred) # Same variance and residuals does not have correlation with predictor # Independance of residuals

Out[100]: <matplotlib.collections.PathCollection at 0x2dc4ea81880>

In []:

22/22