一、是非题(正确的用"√",错误的用"			
一、是非题(正确的用"√",错误的用"×")(共10小题,每题1分) 1、溶解度大的物质			7
电离度一定大, 由离底上,	(,	
2、根据化学计量方程式可以写出该反应的速率方程和标准平衡常数的表达式。 3、一个反应的ΔG数值越负,其自发进行的倾向基本。	,	,	
3、一个反应的AG 数值越负,其自发进行的倾向越大,反应速度越快。	(
和人親化铵, 将使氨水的解离度和 pu 传 # **	,	,	
5、同离子效应和盐效应均使难溶性盐的溶解度减小。		,	
6、在相同温度下,AcCl在维水和。	()	
6、在相同温度下,AgCl 在纯水和 0.1 mol·L·¹HCl 溶液中的 K [⊖] 相同。	()
7、有气体参加的平衡反应,改变总压不一定使平衡发生移动,而改变任一气体的 破坏平衡	的分压	,则一	一定
破坏平衡。		()
8、配制缓冲溶液时, 共轭酸碱对浓度越大缓冲能力越强。		()
9、在测试标准电极电势中,标准氢电极一定用来作负极。		(1
10、由于CaCO ₃ 分解是吸热的,所以它的标准摩尔生成焓为负值。		()
二、选择题(共20小题,每题2分,共40分)		(,
1 、在一定条件下,如果某反应的 $\Delta_r G_m$ $\Theta(298.15K)$ 为零,则该反应			
(A) 能自发进行 (B) 不能自发进行			
(C) 处于平衡状态 (D) 属于何种情况(自发或平衡)	难以	判别	
	74.51	, 1,11	
2、下列有关氧化还原反应和原电池的叙述中,错误的是			
(A) 从理论上讲,凡是氧化还原反应都可以设计成原电池;			
(B) 只要原电池的两极的电极电势不相等,就能产生电动势;			
(C) 电对相同的两个半电池,不能发生氧化还原反应,也不能组成原电池	旦;		
(D) 在一个原电池中, 总是电极电势高的电对作正极, 电极电势低的作为	负极。		
3、难溶电解质 AB_2 的饱和溶液中, $c(A^{2+})=x \text{ mol·L}^{-1}$, $c(B^-)=y \text{ mol·L}^{-1}$,则 K_{sp} (A) $xy^2/2$ (B) $2xy$ (C) xy^2 (D) $4xy^2$)值为	J
、反应: 4NH ₃ (g)+5O ₂ (g)=4NO(g)+6H ₂ O(l), 在298.15K时 $\Delta_r H_m^\theta$ =-1166 H	(J·mo	l ⁻¹ , J	则该加
(A) 任何温度都自发 (B) 任何温度都非自发			

	5、将	(C) 高温时反) 5 mol N ₂ (a) 和	应自发 (D 5 mol H ₂ (g) 混合生) 低温的 e 成 1 mol]	NH3(g) 时,反应	$N_2(g) + 3H_2(g) =$	= 2NH ₃ (g) 的
		反应进度等于				(D) 0.5 mol	
	(A) 5 mol	(B) 2 mol	(C)	1 mol	(D) 0.5 mos	8℃,则该HA。
	6、水	的凝固点常数为	(B) 2 mol 5 1.86 °C ·kg · mol · l ,	0.1mol·kg	HAc 水溶液的]凝回尽力	
	的	解离度为				D. 99%	
	A	2.5%	B、1%	C. 10			.799 V,判断氧
	7、己	知 E ⁰ (Mn ²⁺ /M	$B = -1.185 \text{ V}, E^{0}$	(Cu ²⁺ /Cu	(1) = 0.342 V, E	, (NR 11-8	
		別的强弱顺序是			+ A = +		
			$^{2+}> Cu^{2+}$ (B) $^{3+}> Mn^{2+}$ (D) (
				Cu > 1411			
1	8. Fy		共轭酸碱对的是				
		(A) $H_2AsO_4^-$	与 AsO ₄ 3-	(B)	H ₃ O ⁺ 与OH ⁻		
		(C) H ₃ O+与	H ₂ O	(D)	PO ₄ ³ - 与H ₃ PO	O ₄	+ LL /77 W/
9	、根据	居实验测试获得	得:某基元反应:	速率常数	$k=1.5\times10^2 \text{ mol}^{-1}$	1·L·s ⁻¹ , 试判断	该反应的级数
	(A)	一级;	(B) 二级;	(C)	三级;	(D) 零级	. •
10	、一个	气相反应 mA	(g) + nB(g)	=qC(g),	达到平衡时		
	(A)	$\Delta_{\rm r}G_{\rm m}^{\Theta}=0$		((B) $Q=1$		
	(C)	$Q=K^{\Theta}$			(D) 反应物分日	压和等于产物分	压和
11	、己知	298K 时,Mi	$nO_2(s) \rightarrow MnO(s) + -$	1O ₂ (g)的.	$\triangle_{\mathbf{r}}H_{\mathbf{m}}^{\Theta}(1)=134.$	8kJ • mol ⁻¹ ,	
1	√nO₁(s)+Mn(s)→2M	nO(s)的△ _r H [⊕] _m (2)	= - 250.4	kJ•mol ⁻¹ ,则/	^fH [⊕] (MnO₂s)	为.
1						•	,,,
	(A)	-385.2 kJ·mo	ol ⁻¹	(B)	385.2 kJ·mol	1	
	(C)	-520.0 kJ·mo	1-1	(D)	520.0 kJ·mol	-1	
2.	对于可	可逆反应,若	要用加热的方法	加快反应	速率,容易取	得明显效果的	是
	(A)	活化能较小的	的反应	(E	3). 活化能较力	、 的反应	
	(C)	气体计量系数	数之和为0的反应	I) Ĭ) 未使用催化	剂的反应	
	下列表	示全部是状态	於函数的是				
	IN INC.						

11.

12,

13、

	(C) G, H, U, Q (B) P, H, U, W
	14、 欲配制 pH=6 的缓冲溶液, 应选用下列何种试剂与它的共轭酸 (碳) (A) NH ₂ OH (K _b Θ=1×10-8)
	(A) NH ₂ OH (K _b =1×10-8) (R) (R)
	(C) HNO ₂ ($K_a^{\Theta} = 5.1 \times 10^{-4}$) (B) NH ₃ H ₂ O ($K_b^{\Theta} = 1.8 \times 10^{-5}$)
	(D) HCOOH (K ^e _{a=1.8×10⁻⁴)}
	15、己知 K\$(Ag2CO3)=8.1×10 ⁻¹² , K\$(Ag2C2O4)=3.4×10 ⁻¹¹ , 欲使 Ag2CO3 转化为 Ag2C2O4
	(A) $c(C_2O_4^{2^-}) < 4.2 c(CO_3^{2^-})$ (B) $c(C_2O_4^{2^-}) < 0.24 c(CO_3^{2^-})$
	(C) $c(C_2O_4^{2-}) > 0.24 c(CO_3^{2-})$ (D) $c(C_2O_4^{2-}) > 4.2 c(CO_3^{2-})$.
	16、25℃时,某浓度为 c 的弱电解质 HA,体积为 1L,其解离度为a,为了使其解离度达到 2a。
	下列办法正确的是:
	(A) 升高温度至 50°C (B) 加入蒸馏水,溶液体积为 4L
	(C) 加入浓度 c 的 HA 溶液至体积为 $4L$ (D) 加入相同弱电解质,使其浓度为 $4c$
	17、己知反应: A + 2B → G + 3D, 下列正确的是
	(A) $\frac{dc_A}{dt} = \frac{dc_G}{dt}$ (B) $-\frac{dc_A}{dt} = \frac{dc_D}{3dt}$
	(C) $\frac{dc_A}{dt} = \frac{dc_B}{dt}$ (D) $-\frac{dc_B}{2dt} = \frac{dc_D}{dt}$
	(C) $\frac{dc_A}{dt} = \frac{dc_B}{dt}$ (D) $-\frac{dc_B}{2dt} = \frac{dc_D}{dt}$
	フィー TO (1 PO) -1.4×10-16, 其溶解度为
	8、已知 K\$ (Ag ₃ PO ₄) =1.4×10 ⁻¹⁶ ,其溶解度为 (C) 1.2×10 ⁻⁸ D. 8.3×10 ⁻⁵ (A) 1.1×10 ⁻⁴ (B) 4.8×10 ⁻⁵ (C) 1.2×10 ⁻⁸ D. 8.3×10 ⁻⁵
	(A) 1.1×10 ⁻⁴ (B) 4.8×10 ⁻⁵ (B) 4.8×10 ⁻⁶ (B) 4
1	(A) 1.1×10 ⁻⁴ (B) 4.8×10 ⁻⁵ (C) 1.2×10 ⁻⁶ (C) 1
	与为: V^{θ} (CdS) / K_{w}^{θ} (PbS);
	(A) K_{sp}^{θ} (PbS) / K_{sp}^{θ} (CdS); (B) K_{sp} (PbS) · K_{sp}^{θ} (CdS) 1/2
	K^{θ} (PLS) K^{θ} (CdS);
	(C) K_{sp}^{θ} (PDS) K_{sp}^{θ} $K_{1}^{\theta} = 1.3 \times 10^{14}$
	F 反应 C(s)+CO ₂ (g) = 2CO(g)
20	0、已知在 1123 K 的, $CO(g)+Cl_2(g)$ $COCl_2(g)$ $COCl_2(g)$ $COCl_2(g)$ $COCl_2(g)$ $COCl_2(g)$
	$CO(g)^{+C(2)g)}$
	则反应 $2\text{COCl}_2(g)$ \Longrightarrow $C(s)+CO_2(g)+2\text{Cl}_2(g)$ 的 K_3^{θ}
	则反应 2COCI2(g)、

(A) U, G, ΔH, S

	A、4.8×10 ⁹ B、2.1×10 ⁻¹⁰	C, 7.6×10 ⁻⁵ D,	1.3×10 ⁻¹²
	三、填空题 (共7题,每空1 分,共15 分) 1、浓硫酸溶于水过程中: ΔH0, ΔS0,	AG 0 (填"<"或">"或"="),
	2、在饱和 H ₂ S 溶液中, c(S ²)的浓度接近		
	3、 已知: E ^s Au ^{s+} 136V Au ⁺ Au,		
	则 E^{θ} (Au ⁺ /Au)=,在酸性溶液中	, Au+发生岐化反应	(填"能"或"不能")
	将氧化还原反应: 2Au ³⁺ +3Fe=2Au+3Fe ²⁺	设计成一个原电池,用符号	
	原电池的标准电动势为 $_{}$ (已知: E^{\prime}		100000
	、在浓度均为0.01mol·L ⁻¹ 的Cl ⁻ 、CrO ₄ ² 和I 离 ————————————————————————————————————	中先后生成沉淀的现象称为	J
	(己知 K_{sp}^{θ} (AgCl)=1.8×10 ⁻¹⁰ ; K_{sp}^{θ} (Ag ₂ CrO ₄)=	1.12×10 ⁻¹² , K_{sp}^{θ} (AgI)=8.5	×10 ⁻¹⁷) 。
5,	已知: $pK_b^{\theta}(NH_3\cdot H_2O)=4.74$, 则 $NH_3\cdot NH_4$ +缓	冲溶液的缓冲范围是	•
0, [已知反应: $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$, 其	523 K 时 $K^{\theta} = 2.33 \times 10^{-3}$; 548 K 时,
7、等	= 5.42 ×10 ⁴ 。该反应是 热反应。 译体积 0.01 mol·L ⁻¹ 的AgNO₃溶液与0.02 mol·L ⁻¹ 电。	系统加压平衡向 的 KCI溶液,混合制备A	方向移动。 AgCl 溶胶,该胶粒带
四、问	可答题(共3题,共11分)		
1. (43	分)冬季建筑施工中,为了保证施工质量常在以下几种盐,NaCl. CaCl 和 Kol. at Intern	E浇铸混凝土时加入小量	卦米 为44.0.4 m
给你	以下几种盐,NaCl、CaCl2和 KCl,选择哪-	一种比较理想,说明你的	理由。
2、(4分)100g铁粉在25℃溶于盐酸生成氯化亚锡 如果该反应在烧杯中发生;(2)如果反应在密 简述理由。-	(FeCl ₂)。	
多? 简	前述理由。_	^加	况相比,哪个放热较
3、(3分)	在含 CI 、Br 、I 三种离子的混合溶液。 ,,在常用的氧化剂 KClO3 和 H2O3 中。进	中 次体 5 - 4 - 1	
使 CI ⁻ 氧化	V , E^{θ} (Br ₂ / Br ⁻)= 1.087V, E^{θ} (Cl. / Cl.	P哪一种给你 A	,「氧化为 I ₂ ,而不
)=0.536V	V , E^{θ} (Br ₂ / Br ⁻)= 1.087V, E^{θ} (Cl ₂ / C	门=1 350以 下	求? 己知: $E^{\theta}(I_2/I)$
		1.558V, E' (ClO ₃ -	/ ClO ₂ -)= 1.210V ,

 $E^{\theta} (H_2O_2/H_2O) = 1.776V_{\circ}$

五、计算题(共3题, 共24分)

1、(8分)

$\Delta_1 H_m^\theta / k J \cdot mol^{-1}$	Cu(s)	O ₂ (g)	CuO(s)	Cu ₂ O(s)
$S_m^\theta / J \cdot k^{-1} \cdot mol^{-1}$	0	0	-157.3	-168.6
$\Delta_1 G_m^\theta / k J = -1$	33.150	205.138	42.63	93.14
$\Delta_{\rm f}G_{\rm m}^{\rm g}/{\rm kJ}\cdot{\rm mol}^{-1}$	0	0	-129.7	-146.0

- (1) 金属铜在空气中的反应为: $Cu(s)+1/2O_2(g) \rightarrow CuO(s)$ 计算在 373.15K, $p(O_2)=21.0$ kPa 时反应的吉布斯函数变。
- (2) 当加热金属铜超过一定温度后,黑色 CuO 转变为红色 Cu_2O 求标准状态下该反应自发进行的温度条件。 $2CuO(s) \rightarrow Cu_2O(s) + 1/2O_2(g)$
- 2、(8分)298K 时,用 MnO₂和盐酸反应制备 Cl₂,已知 E⁶(MnO₂/Mn²⁺)=1.224V,E⁶(Cl₂/Cl⁻)=1.358V。
 - (1) 在标准状态下,能否生成 Cl₂?
 - (2) 当 HCl 的浓度达多大时, 方可制取 Cl₂? 用计算说明。(其它物质均处于标准状态)
- 3、(8分) 某工厂废液中含有 Pb^{2+} 和 Cr^{3+} ,经测定 $c(Pb^{2+})=3.0\times10^{-2}$ $mol\cdot L^{-1}$, $c(Cr^{3+})=2.0\times10^{-2}$ $mol\cdot L^{-1}$,若向其中逐渐加入 NaOH(忽略体积变化)将其分离,试计算说明:
 - (1) 哪种离子先被沉淀?
 - (2) 若分离这两种离子,溶液的 pH 值应控制在什么范围?

(己知: K_{sp}^{θ} (Pb(OH)₂)=1.4×10⁻¹⁵, K_{sp}^{θ} (Cr(OH)₃)=6.3×10⁻³¹)