UBC ASTR 102 Formula Sheet

Formulae

```
D = \frac{ad}{206,265}
d = \text{distance}, D = \text{diameter}, a = \text{angular size (arcseconds)}
c = \lambda \nu
\lambda = \text{wavelegth}, \nu = \text{frequency}
F = \sigma T^4
F = \text{energy flux (power per unit surface area)},
T = temperature
\lambda_{max} (in nm) = (3.0 × 10<sup>6</sup> K nm) / T (in K)
E = h\nu = \frac{hc}{\Lambda}
E = energy
\begin{array}{l} \frac{1}{\lambda} = R \left( \frac{1}{n^2} - \frac{1}{m^2} \right) \\ n = \text{final state}, \ m = \text{initial state} \\ \frac{\Delta \lambda}{\lambda_0} = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{v_r}{c} \\ \lambda_0 = \text{original wavelength}, \ v_r = \text{radial velocity} \end{array}
negative v_r = source is approaching
F = ma
F = \text{force (N)}, m = \text{mass (kg)}, a = \text{acceleration (ms}^{-2})
F = \frac{Gm_1m_2}{m^2}
r = \text{distance between } m_1 \text{ and } m_2
E_k = \frac{1}{2} m v^2
E_k = \bar{\text{kinetic energy}}
E_p = mgh
E_p = potential energy
U = -\frac{GMm}{}
U = \text{gravitational potential energy for object in orbit}
v_{esc} = \sqrt{\frac{2GM}{r}}
v_{esc} = escape velocity, M = larger mass
L = 4\pi\sigma T^4 R^2
L = \text{Luminosity (Watts)}, R = \text{radius}
E = mc^2
d (parsecs) = \frac{1}{p} (arcseconds)
d = \text{distance}, p = \text{parallax angle}
v_t = 4.74 \mu d
v_t = \text{transverse (tangential) velocity (kms}^{-1}),
\mu = \text{proper motion (arcsec/year)}, d = \text{distance (parsec)}
v = \sqrt{v_t^2 + v_r^2}
b = \text{apparent brightness (Wm}^{-2})
\frac{L_1}{L_2} = \left(\frac{d_1}{d_2}\right)^2 = \frac{b_1}{b_2}
\frac{b_1}{b_2} (ratio of brightness of stars) = (2.512)^{\Delta m}
\Delta m = difference in apparent magnitude of stars
m_2 - m_1 = 2.5 \log_{10} \left( \frac{b_1}{b_2} \right)
m_1, m_2 = \text{apparent magnitudes}, b_1, b_2 = \text{brightness}
m - M = 5 \log d - 5
m = \text{apparent magnitude}, M = \text{absolute magnitude}
d = \text{distance in parsecs.}
```

 $\frac{b_V}{b_B}, \frac{b_B}{b_U} = \text{color ratios (lower is hotter)}$ $M_1 + M_2 = \frac{a^3}{P^2}$ (Kepler's 3^{rd} law for binary stars) a = orbital separation (in AU), P = orbital period (in years) $\frac{L}{L_{\odot}} \simeq \left(\frac{M}{M_{\odot}}\right)^{3.5}$ $\tau_{MS}\simeq \left(\frac{M}{M_{\odot}}\right)\left(\frac{L_{\odot}}{L}\right)$ Gyr τ_{MS} = main sequence lifetime, Gyr = Giga year $E = fMc^2$ Energy derived from H->He conversion $f = 7 \times 10^{-4}$ $L = \frac{E}{t}$ L is Luminosity, t is time $Lt = fMc^2$ $t = \frac{fMc^2}{L} \propto \frac{M}{L} \propto \frac{M}{M^{3.5}} \propto M^{-2.5}$

Constants

c (speed of light)	$3 \times 10^8 \text{ ms}^{-1}$
σ (Stefan-Boltzmann constant)	$5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$
h (Planck's constant)	$6.626 \times 10^{-34} \text{ Js}$
R (Rydberg constant)	$1.097 \times 10^7 \text{ m}^{-1}$
G (Newton's constant)	$6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$
g (gravity)	$9.8 \; {\rm ms}^{-2}$

Conversions

	0 ==0
1 degree	60 arcminutes
1 arcminute	60 arcseconds
1 lightyear	$9.46 \times 10^{12} \text{ km}$
1 AU	$1.5 \times 10^{11} \text{ m}$
1 parsec	3.26 lightyears
1 m	10^9 nm
1 Gyr	10^9 years

Chemical Processes

proton proton chain triple alpha process

Diagrams

Blackbody spectrum Cumulative Luminosity Temperature and Density from the core HR diagram

Miscellaneous 1

- absolute magnitude: apparent magnitude a star would have if it were located exactly 10 parsecs from Earth
- 10% of the mass of the star will be converted from H to He while it is on the main sequence.
- emission nebulae glow because UV knocking off electrons, which then recombine, and release photons in the visible spectrum.

- dark nebulae is caused due to dust, required for star formation, don't block infrared.
- reflection nebula contain fine grains of dust, they scatter short wavelength blue light efficiently, causing a reddening effect on stars.
- Protostars are initial stars formed in dark nebulae.
- Larger protostars take a shorter amount of time to reach the main sequence.
- planet $< 0.012 M_{\odot} < \text{brown dwarf} < 0.08 M_{\odot} < \text{main}$ sequence stars $< 200 M_{\odot}$
- high mass stars burn through their fuel first
- open clusters held together by gravitational forces
- stellar association fast moving cluster, mostly O, B stars (OB association)
- · globular clusters large, old clusters
- CO helps predict star formation
- A red dwarf is a main-sequence star with less than about 0.4 solar masses. Helium star.
- End of H fusion: core starts to cool, pressure in the core starts to decrease, the core compresses/shrinks, the temperature to increase again, and outer layers will expand.
- In red giants with a mass less than about 2 to 3 $M\odot$ but still more than $0.4 M\odot$, helium fusion begins explosively and suddenly, in what is called the helium flash.
- If the core is contracting (no fusion): Core temperature goes up, Heat transfers to the outer layers, The outer layers expand, (Low mass: Luminosity increases)
- If the core is expanding (fusion): Core temperature goes down, Less heat to the outer layers, The outer layers shrink (Low mass: Luminosity decreases)

brown dwarf spectral classes

convection

Miscellaneous 2

L. T. Y

violet light	$400 \ nm$
red light	$700 \ nm$
blue shift	approaching (short λ)
red shift	receding (longer λ)
L_{\odot}	Luminosity of the sun
M_{\odot}	Mass of the sun
layers of sun	Thermonuclear $->$ radiative $->$ converge
m-M	Distance modulus (apparent - absolute)
OBAFGKM	current ordering of stars (hot to cold)