Álgebra /Álgebra II Clase 5 -Sistemas de ecuaciones lineales 3

FAMAF / UNC

26 de marzo de 2024

En esta clase veremos:

- Qué operaciones hacer para transformar un sistema cualquiera en otro donde las ecuaciones se resuelven fácilmente.
- Cómo saber si el sistema tiene o no tiene solución y en el caso de tener solución, si tiene una o infinitas.

Todo se hará sistemáticamente pasando de sistemas de ecuaciones a matrices y reduciendo, vía el algoritmo de Gauss-Jordan, la matriz del sistema a una matriz MERF.

Definición

Una matriz A de $m \times n$ se llama reducida por filas o MRF si

- (a) la primera entrada no nula de una fila de A es 1. Este 1 es llamado 1 principal.
- (b) Cada columna de A que contiene un 1 principal tiene todos los otros elementos iguales a 0.

Ejemplo

Las siguientes matrices son MRF:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 3 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix};$$

Ejemplo

Las siguientes matrices, no son MRF:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} \text{ no cumple (a), } \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \text{ no cumple (b).}$$

Definición

Una matriz A de $m \times n$ es escalón reducida por fila o MERF si, es MRF y

- c) todas las filas cuyas entradas son todas iguales a cero están al final de la matriz, y
- d) en dos filas consecutivas no nulas el 1 principal de la fila inferior está más a la derecha que el 1 principal de la fila superior.

Ejemplo

Las siguientes matrices son MERF:

Ejemplo

Las siguientes matrices son MRF, pero no MERF:

Las siguientes matrices, no son MRF:

En general una matriz escalón reducida por fila (MERF) tiene la siguiente forma

Го	 1	*	0	*	*	0	*	*
0	 0		1	*	*	0	*	*
:	:		:	* *		:		:
0	 0		0			1	*	*
0	 0		0		• • •	0		0
:	:		:			:		:
0	 0		0			0		0

Ejemplo

Sea Id_n la matriz $n \times n$ definida

$$[\operatorname{Id}_n]_{ij} = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j, \end{cases} \quad \text{o bien} \quad \operatorname{Id}_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Llamaremos a Id_n la *matriz identidad* $n \times n$. Observar que Id_n es una matriz escalón reducida por fila.

Observación

Es muy fácil obtener la solución de un sistema AX = Y donde A es una MERF.

Ejemplo

La solución del sistema AX = Y con

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{e} \quad Y = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

es
$$(x_1, x_2, x_3) = (-1, 0, 1)$$
.

En efecto, si escribimos explícitamente el sistema la solución queda determinada automáticamente:

$$\begin{cases} x_1 &= -1 \\ x_2 &= 0 \\ x_3 &= 1 \end{cases}$$

Ejemplo

El conjunto de soluciones del sistema AX = Y con

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -\frac{1}{3} \end{bmatrix} \quad \mathbf{e} \quad Y = \begin{bmatrix} 1 \\ -\frac{1}{3} \end{bmatrix}$$

es

$$\left\{ \left(-2x_3+1,\,\frac{1}{3}x_3-\frac{1}{3},\,x_3\right)\mid x_3\in\mathbb{R}\right\}.$$

En efecto, si escribimos explicitamente el sistema:

$$\begin{cases} x_1 + 2x_3 &= 1 \\ x_2 - \frac{1}{3}x_3 &= -\frac{1}{3} \end{cases} \implies \begin{cases} x_1 &= -2x_3 + 1 \\ x_2 &= \frac{1}{3}x_3 - \frac{1}{3} \end{cases}$$

Teorema

Toda matriz m \times n sobre $\mathbb K$ es equivalente por fila a una matriz escalón reducida por fila.

Idea de la demostración

- P1. Nos ubicamos en la primera fila.
- P2. Si la fila es 0 y no es la última, pasar a la fila siguiente y de nuevo P2.
- P3. Si la fila no es 0,
 - P3.1 si el primera entrada no nula está en la columna k y su valor es c, dividir la fila por c (ahora la primera entrada no nula vale 1),
 - P3.2 con operaciones elementales del tipo $F_r + tF_s$ hacer 0 todas las entradas en la columna k (menos la de la columna actual).
- P4. Si la fila no es la última, pasar a la fila siguiente e ir a P2.
- P5. Intercambiando las filas, ponemos los 1 principal de forma escalonada y las filas nulas al final.

Observación

La demostración del teorema anterior nos da un algoritmo para encontrar MERF.

Método de Gauss

Sea AX = Y el sistema de ecuaciones lineales. El *método de Gauss* consiste en llevar a cabo los siguientes pasos:

- \circ Escribir [A|Y] la matriz extendida del sistema
- Reducimos la matriz $[A|Y] \rightsquigarrow [R|Z]$ de tal forma que R sea MERF (para ello utilizamos el algoritmo $P1 \cdots P5$).
- El sistema RX = Z tiene soluciones fáciles de encontrar.

Claramente la parte más importante del método de Gauss es utilizar el algoritmo P1····P5, que llamaremos el *algoritmo de Gauss-Jordan* o *eliminación de Gauss-Jordan*.

Algoritmo de Gauss-Jordan

Sea A una matriz $m \times n$. Repitamos el algoritmo:

- P1. Nos ubicamos en la primera fila.
- P2. Si la fila es 0 y no es la última, pasar a la fila siguiente y de nuevo P2.
- P3. Si la fila no es 0,
 - P3.1 si el primera entrada no nula está en la columna k y su valor es c, dividir la fila por c (ahora la primera entrada no nula vale 1),
 - P3.2 con operaciones elementales del tipo $F_r + tF_s$ hacer 0 todas las entradas en la columna k (menos la de la columna actual).
- P4. Si la fila no es la última, pasar a la fila siguiente e ir a P2.
- P5. Intercambiando las filas, ponemos los 1 principal de forma escalonada y las filas nulas al final.

La matriz que se obtiene es una MERF.

Ejemplo

Aplicaremos el algoritmo de Gauss-Jordan a la siguiente matriz:

$$A = \left[\begin{array}{rrrr} 1 & 0 & 2 & 1 \\ 1 & -3 & 3 & 2 \\ 2 & -3 & 5 & 3 \end{array} \right]$$

Como la primera fila es no nulo, pasamos a P3:

$$A \xrightarrow{F_2 - F_1} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & -3 & 1 & 1 \\ 2 & -3 & 5 & 3 \end{bmatrix} \xrightarrow{F_3 - 2F_1} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & -3 & 1 & 1 \\ 0 & -3 & 1 & 1 \end{bmatrix}$$

Por P4 pasamos a trabajar con la fila 2 y pasamos a P2. Como la fila no es nula hacemos P3.1

Ahora P3.2:

$$\stackrel{F_3+3F_2}{\longrightarrow} \left[\begin{array}{cccc} 1 & 0 & 2 & 1 \\ 0 & 1 & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & 0 \end{array} \right]$$

Esta última matriz es una MERF. En este caso, no hizo falta usar P5, es decir permutar filas.

Ejemplo del método de Gauss

A continuación explicaremos en 3 pasos el método de Gauss para resolver el sistema de ecuaciones

$$AX = Y$$
.

Ejemplificaremos los pasos con el sistema

$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & -3 & 3 \\ 2 & -3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 (E)

Primer paso: Matriz ampliada

Armar la matriz ampliada:

$$A' = [A|Y],$$

es decir, le agregamos a A una columna igual a Y.

En nuestro caso, la matriz ampliada del sistema (E) es

$$\left[\begin{array}{ccc|c}
1 & 0 & 2 & 1 \\
1 & -3 & 3 & 2 \\
2 & -3 & 5 & 3
\end{array}\right]$$

Observar que esta matriz es igual a la del ejemplo anterior.

Segundo paso: reducir la matriz ampliada (Gauss-Jordan)

 \circ Usar operaciones elementales por filas para transformar la matriz ampliada A' en una matriz B' de la forma

$$B' = [B|Z]$$

donde B es una MERF y Z es una columna.

En el ejemplo:

$$A' = \left[\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 1 & -3 & 3 & 2 \\ 2 & -3 & 5 & 3 \end{array}\right] \xrightarrow{F_2 - F_1} \left[\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 0 & -3 & 1 & 1 \\ 2 & -3 & 5 & 3 \end{array}\right] \xrightarrow{F_3 - 2F_1} \left[\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 0 & -3 & 1 & 1 \\ 0 & -3 & 1 & 1 \end{array}\right]$$

$$\stackrel{-\frac{1}{3}F_2}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 0 & 1 & -\frac{1}{3} & -\frac{1}{3} \\ 0 & -3 & 1 & 1 \end{array} \right] \stackrel{F_3-3F_2}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 0 & 1 & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & 0 \end{array} \right] = B'$$

Tercer paso: despejar y describir el conjunto de soluciones

- Escribir explicitamente el sistema BX = Z.
- o Despejar en cada ecuación la incognita correspondiente al 1 principal.
- Describir el conjunto de soluciones. Hay tres opciones: tener sólo una solución; infinitas, parametrizadas por las incognitas que no corresponden a 1's principales; no tener solución.

En el ejemplo:

$$BX = Z \leadsto \left\{ \begin{array}{ll} x_1 + 2x_3 = 1 \\ x_2 - \frac{1}{3}x_3 = -\frac{1}{3}x_3 \end{array} \right. \leadsto \left. \begin{array}{ll} x_1 = -2x_3 + 1 \\ x_2 = \frac{1}{3}x_3 - \frac{1}{3}x_3 \end{array} \right.$$

Tercer paso (continuación)

Entonces el conjunto de soluciones del sistema AX = Y es

$$\left\{ \left(-2x_3+1,\,\frac{1}{3}x_3-\frac{1}{3},\,x_3\right)\mid x_3\in\mathbb{R}\right\}.$$

Por ej., si $x_3 = 1$, entonces (-1, 0, 1) es una solución del sistema.

Ejemplo

Resolver el sistema de ecuaciones:

(E)
$$\begin{cases} x_2 - x_3 + x_4 = 1 \\ 2x_3 + x_4 = 3 \\ x_1 + x_2 - x_4 = 1 \\ x_1 + 2x_2 - x_3 = 2 \end{cases}$$

Solución

El conjunto de soluciones es

$$\mathsf{Sol}(E) = \left\{ \left[\frac{5}{2}x_4 - \frac{3}{2}, -\frac{3}{2}x_4 + \frac{5}{2}, -\frac{1}{2}x_4 + \frac{3}{2}, x_4 \right] \mid x_4 \in \mathbb{R} \right\}$$

Reducimos la matriz ampliada siguiendo al pie de la letra el algoritmo:

$$A' = \left[\begin{array}{cccc|c} 0 & 1 & -1 & 1 & 1 \\ 0 & 0 & 2 & 1 & 3 \\ 1 & 1 & 0 & -1 & 1 \\ 1 & 2 & -1 & 0 & 2 \end{array} \right] \xrightarrow{F_3 - F_1} \left[\begin{array}{cccc|c} 0 & 1 & -1 & 1 & 1 \\ 0 & 0 & 2 & 1 & 3 \\ 1 & 0 & 1 & -2 & 0 \\ 1 & 0 & 1 & -2 & 0 \end{array} \right]$$

Si reescribimos las ecuaciones a partir de B', obtenemos

$$(E') \begin{cases} x_2 + \frac{3}{2}x_4 = \frac{5}{2} \\ x_3 + \frac{1}{2}x_4 = \frac{3}{2} \\ x_1 - \frac{5}{2}x_4 = -\frac{3}{2} \end{cases}$$

Si despejamos respecto a x_4 , obtenemos

$$x_1 = \frac{5}{2}x_4 - \frac{3}{2}, \qquad x_2 = -\frac{3}{2}x_4 + \frac{5}{2}, \qquad x_3 = -\frac{1}{2}x_4 + \frac{3}{2},$$

que es la solución del sistema.

Soluciones de los sistemas de ecuaciones lineales

¿Cómo saber si el sistema tiene o no tiene solución? ¿Una o infinitas? Si BX = Z. depende de la forma de la MERF B y de Z.

Asumamos que $B \in \mathbb{R}^{m \times n}$ y $Z \in \mathbb{R}^{m \times 1}$ donde

$$B = \begin{bmatrix} 0 & \cdots & 1 & * & 0 & * & * & 0 & * & * \\ 0 & \cdots & 1 & * & 0 & * & * & 0 & * & * \\ 0 & \cdots & 0 & \cdots & 1 & * & * & 0 & * & * \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & \cdots & 1 & * & * \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & \cdots & 0 \end{bmatrix} \quad y \quad Z = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_r \\ z_{r+1} \\ \vdots \\ z_m \end{bmatrix}$$

Si k_1, \ldots, k_r son las columnas que contienen 1 principales, el sistema BX = Z tiene la siguiente forma

$$\begin{cases} x_{k_{1}} + \sum_{j \neq k_{1}, \dots, k_{r}} b_{1j} x_{j} &= z_{1} \\ x_{k_{2}} + \sum_{j \neq k_{1}, \dots, k_{r}} b_{2j} x_{j} &= z_{2} \\ \vdots & \vdots & \vdots \\ x_{k_{r}} + \sum_{j \neq k_{1}, \dots, k_{r}} b_{rj} x_{j} &= z_{r} \\ 0 &= z_{r+1} \\ \vdots & \vdots \\ 0 &= z_{m} \end{cases}$$
(1)

Teorema

El sistema BX = Z tiene solución si y sólo si $z_{r+1} = z_{r+2} = \cdots z_m = 0$.

Teorema

Sea AX = Y un sistema de m ecuaciones lineales y n incógnitas con coeficientes en \mathbb{K} y sea [B|Z] la matriz escalón reducida por fila equivalente por fila a [A|Y] cuyo sistema asociado es (1). Entonces, el sistema tiene solución si y solo si $z_{r+1} = \cdots = z_m = 0$ y en ese caso las soluciones son:

donde las x_j con $j \neq k_1, \ldots, k_r$ son variables libres y pueden tomar cualquier valor en \mathbb{K} .

Demostración

$$(\Rightarrow)$$

El sistema
$$BX = Z$$
 tiene solución $\Rightarrow z_{r+1} = z_{r+2} = \cdots z_m = 0$.

Si el sistema tiene solución entonces $z_{r+1} = z_{r+2} = \cdots z_m = 0$, pues si alguno de estos z's fuera no nulo tendriamos un absurdo.

$$\begin{cases} x_{k_1} + \sum_{j \neq k_1, \dots, k_r} b_{1j} x_j &= z_1 \\ x_{k_2} + \sum_{j \neq k_1, \dots, k_r} b_{2j} x_j &= z_2 \\ \vdots & \vdots & \vdots \\ x_{k_r} + \sum_{j \neq k_1, \dots, k_r} b_{rj} x_j &= z_r \\ \vdots & \vdots & \vdots \\ 0 &= z_i \neq 0 \\ \vdots &\vdots &\vdots \end{cases}$$

$$(\Leftarrow)$$

Si $z_{r+1}=z_{r+2}=\cdots z_m=0 \; \Rightarrow \;$ el sistema $BX=Z$ tiene solución.

Si $z_{r+1}=z_{r+2}=\cdots z_m=0$, obtenemos

$$\begin{cases} x_{k_1} &= -\sum_{j \neq k_1, \dots, k_r} b_{1j} x_j + z_1 \\ x_{k_2} &= -\sum_{j \neq k_1, \dots, k_r} b_{2j} x_j + z_2 \\ \vdots &\vdots \\ x_{k_r} &= -\sum_{j \neq k_1, \dots, k_r} b_{rj} x_j + z_r \end{cases}$$

Entonces, con cualquier asignación de valores a los x_j donde $j \neq k_1, \dots, k_r$ se obtiene una solución del sistema.

Teorema

Supongamos que el sistema tiene solución y la cantidad de 1 principales es igual a la cantidad de incognitas. Entonces el sistema BX = Z tiene una única solución, la cual es X = Z.

Demostración

En este caso, el sistema BX = Z tiene la siguiente forma

$$\begin{cases} x_1 & = & z_1 \\ x_2 & = & z_2 \\ \vdots & & \vdots \\ x_n & = & z_n \\ 0 & = & z_{n+1} \\ & \vdots & \vdots \\ 0 & = & z_m \end{cases}$$

y la solución queda determinada explícitamente.

Teorema

Supongamos que el sistema tiene solución y hay más incognitas que 1 principales. Entonces el sistema BX = Z tiene infinitas soluciones de la forma

$$\begin{array}{ll} x_{k_1} &= z_1 - \sum_{j \neq k_1, \dots, k_r} b_{1j} x_j \\ x_{k_2} &= z_2 - \sum_{j \neq k_1, \dots, k_r} b_{2j} x_j \\ \vdots \\ x_{k_r} &= z_r - \sum_{j \neq k_1, \dots, k_r} b_{rj} x_j \end{array}$$

y los x_j con $j \neq k_1, \ldots, k_r$ pueden tomar cualquier valor real.

Demostración

Como existe al menos un $j \neq k_1, \ldots, k_r$, variando los x_j donde $j \neq k_1, \ldots, k_r$ obtenemos infinitas soluciones. \square