IMIĘ I NAZWISKO Tomasz Piotrowski NR INDEKSU 200524 DATA 24.04.2014

PROJEKTOWANIE ALGORYTMOW I METODY SZTUCZNEJ INTELIGENCJI

Problem komiwojażera

1. Wstęp

Problem komiwojażera formułowany jest następująco: dane jest n miast, a każde dwa z nich połączone są drogą o pewnej długości. W jednym z miast znajduje się komiwojażer, który chce odwiedzić wszystkie miasta w taki sposób, aby w każdym mieście znaleźć się dokładnie jeden raz, a na koniec wędrówki powrócić do miejsca startowego. Naszym celem jest znalezienie najkrótszej możliwej trasy dla komiwojażera.

2. Rozwiązanie

Roziwiązanie problemu komiwojażera polega na wyznaczeniu w grafie cyklu Hamiltona o minimalnej sumie wag krawędzi. Pierwszym nasuwającym się rozwiązaniem jest policzenie wszystkich możliwych kombinacji. Czyli permutacji bez powtorzeń. Jednak złożoność obliczeniowa tego algorytmu jest wykładnicza.

3. Problem NP-trudny

Oznacza to, że żadne szybkie (wielomianowe) rozwiązanie nie jest znane i bardzo możliwe, że w ogóle nie istnieje. Ponieważ algorytm znajdujący zawsze najlepszą drogę posiada zbyt dużą złożoność czasową należy zastosować algorytm przybliżony, którego czas wykonywania jest znacznie krótszy. Jednak algorytm takie nie zawsze znajduja optymalne rozwiazanie. Stworzona przez nie trasa może być znacznie 'dłuższa' od najkrótszej. Stosowanie algorytmów przybliżonych wynika z konieczności wyboru pomiedzy szybkościa znajdowania a 'jakościa' znalezionego rozwiazan.

4. Algorytm najkrótszej lokalnie ścieżki

W programie w celu rozwiązania problemu zaimplementowany został algorytm "najkrótszej loalnie ścieżki". Działanie tego algorytmu wygląda następująco:

- 1.wybieramy miasto początkowe,
- 2.do listy dodajemy to miasto (z jeszcze niedodanych), które jest najbliżej ostatniego dodanego do listy
- 3. jeśli lista miast do wyboru jest pusta dodajemy na koniec miasto początkowe; jeśli nie wracamy do punktu drugiego, koniec algorytmu

5. Test działania algorytmu

W celu przetestowania działania algorytmu stworzony został graf zawierający 11 wierzchołków reprezentujących miasta Polski. Miasta zostały polaczone scieżkami o wagach odpowiadających odległości między miastami.

117	XX7 1		G: 1	0.1.4
Warszawa	Wrocław	Antonin	Sieradz	Ostrów
74	81	10	55	10
Skierniewice	Antonin	Ostrów	Kalisz	Antonin
61	10	30	30	41
Łódź	Ostrów	Kalisz	Ostrów	Kalisz
64	30	55	10	55
Sieradz	Kalisz	Sieradz	Antonin	Sieradz
55	55	64	81	64
Kalisz	Sieradz	Łódź	Wrocław	Łódź
30	64	61	85	61
Ostrów	Łódź	Skierniewice	Opole	Skierniewice
10	61	74	111	74
Antonin	Skierniewice	Warszawa	Łódź	Warszawa
81	74	301	61	301
Wrocław	Warszawa	Krakow	Skierniewice	Krakow
85	301	196	74	196
Opole	Krakow	Opole	Warszawa	Opole
196	196	85	301	85
Krakow	Opole	Wrocław	Krakow	Wrocław
414	244	171	414	171
Poznań	Poznań	Poznań	Poznań	Poznań
326	171	137	177	120
Warszawa	Wrocław	Antonin	Sieradz	Ostrów
dlugosc trasy:				
1322	1206	1174	1344	1168

6. Wnioski

Na podstawie tablli można stwierdzić że długość wyznaczonej trasy w tym algorytmie zależna jest od wierzchołka początkowego z którego trasa zostaje wyznaczona. Różnice W długości trasy w porównaniu do całej drogi nie są duże. Różnica mędzy maksymalną dług wyznaczonej trasy i minimalną wynosi 221.

W celu wyzaczenia dokładniejeszej trasy można użyć algorytmów genetycznych. Algorytmy te wzorowane są na zjawiskach zachodzących w przyrodzie dokładniej ewolucji biologicznej. Wynik przez nie uzyskany również nie zawsze jest najlepszy z możliwych jednak jest dobrym kompromism między czasem działania a jakością wyniku.