0.0.1 Re-framed Crow Search Algorithm (Re-framed CSA)

Objectives:

Objective Problem	
$f(\mathbf{x}_i)$	fitness of \mathbf{x}_i .
n	the dimension of the search space.
$[lb_{\mathbf{x}}, ub_{\mathbf{x}}]$	the interval of objective variable ${\bf x}$, in our cases, it is defined in the IOHprofiler, $[lb_{\bf x},ub_{\bf x}]=[-5,+5].$
Objective Solution	
\mathbf{x}_i	it can be imagined as one individual in Swarm-Intelligence Algorithms, $\mathbf{x}_i \in R^n$.

Parameters:

T	maximum iteration, the budget in our cases, in our case, it is defined in IOHprofiler.
M	population size, $M=50$.
\mathbf{x}_{i_p}	the memory position \mathbf{x}_{i_p} for one individual \mathbf{x}_i .
w_1	awareness probability, $w_1 = 0.1$, $w_1 \in [0,1]$.
w_2	flight length, $w_2 = 2$, $w_2 \in (0, +\infty)$.

• Functions:

- Initialization Process:

(1) Initialize $\mathbf{x}_i(t=0)$:

$$\mathbf{x}_i(t=0) = \mathcal{U}(lb_{\mathbf{x}}, ub_{\mathbf{x}})$$
 1

(2) Initialize $\mathbf{x}_{i_p}(t=0)$:

$$\mathbf{x}_{i_n}(t=0) = \mathbf{x}_i(t=0), i=1...M$$

- Optimization Process:
 - (1) Update $\mathbf{x}_i(t+1)$ to generate $\hat{\mathbf{x}}_i(t+1)$:

$$\hat{\mathbf{x}}_i(t+1) = \begin{cases} \mathbf{x}_i(t) + r \times w_2 \times (\mathbf{y}_j(t+1) - \mathbf{x}_i(t)) &, r > w_1 \\ \mathcal{U}(lb_{\mathbf{x}}, ub_{\mathbf{x}}) &, \text{o.w} \end{cases}$$

(2) Dealing with outliers C:

$$\mathbf{x}_{i,n}^{\mathsf{fixed}}(t+1) = \left\{ \begin{array}{l} \mathbf{x}_{i,n}(t) &, \quad \mathbf{x}_{i,n}(t+1) < lb_{\mathbf{x}} \; \mathsf{or} \; \mathbf{x}_{i,n}(t+1) > ub_{\mathbf{x}} \\ \mathbf{x}_{i,n}(t+1) &, \quad \mathsf{o.w} \end{array} \right. \tag{4}$$

(3) Select $\mathbf{x}_i(t+1)$ from $\hat{\mathbf{x}}_i(t+1)$:

$$\mathbf{x}_i(t+1) = \hat{\mathbf{x}}_i(t+1)$$

(4) Optimize $\mathbf{x}_{i_p}(t)$ to generate $\mathbf{x}_{i_p}(t+1)$:

$$\mathbf{x}_{i_n}(t+1) = \mathbf{Min}(\{\mathbf{x}_{i_n}(t), \mathbf{x}_i(t+1)\})$$

Algorithm 1 Re-framed CSA with population size M; search space $n, [lb_{\mathbf{x}}, ub_{\mathbf{x}}]$; stop condition T; initialization method $Init_{\mathbf{x}}$, optimization method $Opt_{\mathbf{x}}$, treatment C of outliers, and selection S to objective solutions; initialization method $Init_{\Delta}$ and optimization method Opt_{Δ} to step-size Δ .

- 1: $t \leftarrow 0$
- 2: $Init_{\mathbf{x}}(t=0), M \text{ as Eq.1}$

▶ Initialization Process

- 3: *f*
- 4: $Init_{\Delta}$: $\mathbf{x}_{i_p}(t=0)$ as Eq.2
- 5: while termination criteria are not met do
- 6: $Opt_{\mathbf{x}}, C \to \hat{\mathbf{x}}_i(t+1)$ as Eq.3, C as Eq.4
- 7: $f(\hat{\mathbf{x}}_i(t+1))$
- 8: $S \to \mathbf{x}_i(t+1)$ according to Eq.5 \triangleright Selection
- 9: $t \leftarrow t + 1$
- 10: Opt_{Δ} : $\mathbf{x}_{i_n}(t+1)$ as Eq.6
- 11: end while