Concrete Semantics for Pushdown Analysis

The Essence of Summarization

J. lan Johnson and David Van Horn {ianj,dvanhorn}@ccs.neu.edu
Northeastern University
Boston, MA, USA

Pushdown analysis is easy

Pushdown analysis is easy

You should model your analyses concretely

Pushdown analysis is easy

You should model your analyses concretely

Analyses are derivable [Might & Van Horn 2010]

Start: Concrete machine semantics

Analyses are derivable [Might & Van Horn 2010]

- Start: Concrete machine semantics
- Simple transforms: Put semantics in right form

Analyses are derivable [Might & Van Horn 2010]

- Start: Concrete machine semantics
- Simple transforms: Put semantics in right form
- Analysis: finitize addresses

```
(define (sqr x) (* x x))
(sqrt (+ (sqr y) (sqr z)))
```

```
(define (sqr x) (* x x))
(sqrt (+ (sqr y) (sqr z)))
```

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
02
             Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
             while W \neq \emptyset
03
04
                 remove (\tilde{\zeta}_1, \tilde{\zeta}_2) from W
05
                  switch \tilde{\zeta}_2
06
                      case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
07
                          for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
08
                      case \tilde{\zeta}_2 of Call
09
                          for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
10
                              Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
11
                              insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in Callers
12
                              for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Update (\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4)
13
                      case \tilde{\zeta}_2 of Exit-CEval
                          if \tilde{\zeta}_1 = \mathcal{I}(pr) then
14
15
                              Final (\tilde{\varsigma}_2)
16
                          else
17
                               insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Summary
18
                              for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
19
                              for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
20
                      case \tilde{\zeta}_2 of Exit-TC
21
                          for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
22
                              Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
23
                              insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
24
                              for each (\tilde{\zeta}_3, \tilde{\zeta}_4) in Summary Propagate (\tilde{\zeta}_1, \tilde{\zeta}_4)
             Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
25
                 if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
             Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
26
                 \tilde{\varsigma}_1 of the form ([(\lambda_{l_1}(u_1 \ k_1) \ call_1)], \tilde{d}_1, h_1)
                 \tilde{\varsigma}_{2} of the form ([(f \ e_{2} \ (\lambda_{\gamma_{2}} \ (u_{2}) \ call_{2}))^{l_{2}}], \ tf_{2}, \ h_{2})
27
                 \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3\ k_3)\ call_3)] , \hat{d}_3,\ h_2)
                 \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], tf_4, h_4)
29
                 \hat{\mathbf{d}} \leftarrow \bar{A}_u(e_4, \gamma_4, tf_4, h_4)
30
                 tf \leftarrow \begin{cases} tf_2[f \mapsto \{ \llbracket (\lambda_{l_3}(u_3 \ k_3) \ call_3) \rrbracket \}] & S_?(l_2, f) \\ tf_2 & H_?(l_2, f) \lor Lam_?(f) \end{cases}
31
                 \tilde{\zeta} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
32
                 Propagate (\tilde{\zeta}_1, \tilde{\zeta})
33
             Final(\tilde{\varsigma}) \triangleq
                 \tilde{\zeta} of the form ([(ke)^{\gamma}], tf, h)
34
35
                 insert (halt, A_u(e, \gamma, tf, h), \emptyset, h) in Final
```

Figure 8: CFA2 workset algorithm

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
02
             Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
03
            while W \neq \emptyset
04
                 remove (\tilde{\zeta}_1, \tilde{\zeta}_2) from W
05
                 switch \tilde{\zeta}_2
                                                                                                                                                                           \mathcal{F}'(M) = f, where
06
                      case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
                                                                                                                                                                                   M = (Q, \Gamma, \delta, q_0)
07
                         for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
08
                      case \tilde{\zeta}_2 of Call
                                                                                                                                                      f(G, G_{\epsilon}, \Delta G, \Delta H) = (G', G'_{\epsilon}, \Delta G', \Delta H' - H), where
09
                         for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
                                                                                                                                                                   (S, \Gamma, E, s_0) = G
                              Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
10
                                                                                                                                                                            (S, H) = G_{\epsilon}
11
                              insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in Callers
12
                              for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Update (\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4)
                                                                                                                                                                     (\Delta S, \Delta E) = \Delta G
13
                      case \tilde{\zeta}_2 of Exit-CEval
                                                                                                                                                                 (\Delta E_0, \Delta H_0) = \bigcup_{s \in \Delta S} sprout_M(s)
                          if \tilde{\zeta}_1 = \tilde{I}(pr) then
14
15
                              Final (\tilde{\varsigma}_2)
                                                                                                                                                                 (\Delta E_1, \Delta H_1) = \bigcup addPush_M(G, G_{\epsilon})(s, \gamma_+, s')
16
                          else
17
                              insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Summary
18
                              for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
                                                                                                                                                                 (\Delta E_2, \Delta H_2) = \bigcup addPop_M(G, G_\epsilon)(s, \gamma_-, s')
19
                              for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
                                                                                                                                                                                      (s, \gamma_{-}, s') \in \Delta E
20
                      case \tilde{\zeta}_2 of Exit-TC
                                                                                                                                                                 (\Delta E_3, \Delta H_3) = \bigcup addEmpty_M(G, G_{\epsilon})(s, s')
21
                         for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
22
                              Propagate (\zeta_3, \zeta_3)
23
                              insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
                                                                                                                                                                 (\Delta E_4, \Delta H_4) = \bigcup addEmpty_M(G, G_{\epsilon})(s, s')
24
                              for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Propagate (\tilde{\varsigma}_1, \tilde{\varsigma}_4)
                                                                                                                                                                                         (s,s') \in \Delta H
            Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
                                                                                                                                                                                    S' = S \cup \Delta S
                 if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
25
                                                                                                                                                                                   E' = E \cup \Delta E
            Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
                                                                                                                                                                                   H' = H \cup \Delta H
26
                 \tilde{\varsigma}_1 of the form ([(\lambda_l, (u_1 \ k_1) \ call_1)], \tilde{d}_1, h_1)
                                                                                                                                                                                \Delta E' = \Delta E_0 \cup \Delta E_1 \cup \Delta E_2 \cup \Delta E_3 \cup \Delta E_4
                 \tilde{\varsigma}_{2} of the form ([(f \ e_{2} \ (\lambda_{\gamma_{2}} \ (u_{2}) \ call_{2}))^{l_{2}}], \ tf_{2}, \ h_{2})
                 \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \hat{d}_3, h_2)
                                                                                                                                                                                \Delta S' = \{s' : (s, g, s') \in \Delta E'\}
                 \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], tf_4, h_4)
29
                                                                                                                                                                               \Delta H' = \Delta H_0 \cup \Delta H_1 \cup \Delta H_2 \cup \Delta H_3 \cup \Delta H_4
                 \hat{\mathbf{d}} \leftarrow \bar{A}_u(e_4, \gamma_4, tf_4, h_4)
30
                                                                                                                                                                                   G' = (S \cup \Delta S, \Gamma, E', q_0)
                 tf \leftarrow \begin{cases} tf_2[f \mapsto \{ [(\lambda_{l_3}(u_3 \ k_3) \ call_3)] \}] & S_?(l_2, f) \\ tf_2 & H_?(l_2, f) \lor Lam_?(f) \end{cases}
31
                                                                                                                                                                                  G'_{c} = (S', H')
                                                                                                                                                                               \Delta G' = (\Delta S' - S', \Delta E' - E').
                 \tilde{\zeta} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
32
                 Propagate (\tilde{\zeta}_1, \tilde{\zeta})
33
                                                                                                                                                   Figure 3. The fixed point of the function \mathcal{F}'(M) contains the
```

Dyck state graph of the rooted pushdown system M.

Figure 8: CFA2 workset algorithm

insert (halt, $\bar{A}_u(e, \gamma, tf, h)$, \emptyset , h) in Final

 $Final(\tilde{\varsigma}) \triangleq$

34

35

 $\tilde{\zeta}$ of the form ([(ke) $^{\gamma}$], tf, h)

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
02
             Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
03
             while W \neq \emptyset
04
                  remove (\tilde{\zeta}_1, \tilde{\zeta}_2) from W
05
                  switch \tilde{\zeta}_2
                                                                                                                                                                              sprout_{(O, \Gamma, \delta)}(s) = (\Delta E, \Delta H), where
06
                       case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
                                                                                                                                                              \Delta E = \left\{s \overset{\epsilon}{\rightarrowtail} q : s \overset{\epsilon}{\rightarrowtail} q \in \delta \right\} \cup \left\{s \overset{\gamma_+}{\rightarrowtail} q : s \overset{\gamma_+}{\rightarrowtail} q \in \delta \right\}
07
                           for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
08
                       case \tilde{\zeta}_2 of Call
09
                           for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
                                                                                                                                                              \Delta H = \left\{ s \rightarrowtail q : s \stackrel{\epsilon}{\rightarrowtail} q \in \delta \right\}.
                               Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
10
11
                               insert (\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3) in Callers
12
                               for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Update (\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4)
                                                                                                                                                                               (\Delta S, \Delta E) = \Delta G
                       case \tilde{\zeta}_2 of Exit-CEval
13
                                                                                                                                                                         (\Delta E_0, \Delta H_0) = \bigcup_{s \in \Delta S} sprout_M(s)
                           if \tilde{\zeta}_1 = \tilde{I}(pr) then
14
15
                               Final (\tilde{\varsigma}_2)
                                                                                                                                                                         (\Delta E_1, \Delta H_1) = \bigcup addPush_M(G, G_{\epsilon})(s, \gamma_+, s')
16
                           else
17
                               insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Summary
18
                               for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
                                                                                                                                                                         (\Delta E_2, \Delta H_2) = \bigcup addPop_M(G, G_\epsilon)(s, \gamma_-, s')
19
                               for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
                                                                                                                                                                                               (s,\gamma_-,s')\in\Delta E
20
                       case \tilde{\zeta}_2 of Exit-TC
                                                                                                                                                                         (\Delta E_3, \Delta H_3) = \bigcup addEmpty_M(G, G_\epsilon)(s, s')
21
                           for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
22
                               Propagate (\zeta_3, \zeta_3)
23
                               insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
                                                                                                                                                                         (\Delta E_4, \Delta H_4) = \bigcup addEmpty_M(G, G_{\epsilon})(s, s')
24
                               for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Propagate (\tilde{\varsigma}_1, \tilde{\varsigma}_4)
                                                                                                                                                                                                  (s,s') \in \Delta H
             Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
                                                                                                                                                                                             S' = S \cup \Delta S
                  if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
25
                                                                                                                                                                                            E' = E \cup \Delta E
             Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
                                                                                                                                                                                            H' = H \cup \Delta H
26
                  \tilde{\varsigma}_1 of the form ([(\lambda_l, (u_1 \ k_1) \ call_1)], \tilde{d}_1, h_1)
                                                                                                                                                                                         \Delta E' = \Delta E_0 \cup \Delta E_1 \cup \Delta E_2 \cup \Delta E_3 \cup \Delta E_4
                 \tilde{\varsigma}_{2} of the form ([(f \ e_{2} \ (\lambda_{\gamma_{2}} \ (u_{2}) \ call_{2}))^{l_{2}}], \ tf_{2}, \ h_{2})
                 \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \hat{d}_3, h_2)
                                                                                                                                                                                         \Delta S' = \{s' : (s, g, s') \in \Delta E'\}
                  \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], tf_4, h_4)
29
                                                                                                                                                                                        \Delta H' = \Delta H_0 \cup \Delta H_1 \cup \Delta H_2 \cup \Delta H_3 \cup \Delta H_4
                  \hat{\mathbf{d}} \leftarrow \hat{\mathcal{A}}_{u}(e_4, \gamma_4, tf_4, h_4)
30
                                                                                                                                                                                            G' = (S \cup \Delta S, \Gamma, E', q_0)
                 tf \leftarrow \begin{cases} tf_2[f \mapsto \{ [(\lambda_{l_3}(u_3 \ k_3) \ call_3)] \}] & S_?(l_2, f) \\ tf_2 & H_?(l_2, f) \lor Lam_?(f) \end{cases}
31
                                                                                                                                                                                           G'_{c} = (S', H')
                                                                                                                                                                                        \Delta G' = (\Delta S' - S', \Delta E' - E').
                  \tilde{\zeta} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
32
                  Propagate (\tilde{\zeta}_1, \tilde{\zeta})
33
                                                                                                                                                           Figure 3. The fixed point of the function \mathcal{F}'(M) contains the
             Final(\tilde{\varsigma}) \triangleq
                                                                                                                                                           Dyck state graph of the rooted pushdown system M.
```

Figure 8: CFA2 workset algorithm

insert (halt, $\bar{A}_u(e, \gamma, tf, h)$, \emptyset , h) in Final

 $\tilde{\zeta}$ of the form ([(ke) $^{\gamma}$], tf, h)

34

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
02
              Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
03
             while W \neq \emptyset
04
                   remove (\tilde{\zeta}_1, \tilde{\zeta}_2) from W
05
                   switch \tilde{\zeta}_2
                                                                                                                                                                                      sprout_{(O,\Gamma,\delta)}(s) = (\Delta E, \Delta H), where
06
                        case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
07
                            for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
                                                                                                                                                                      \Delta E = \left\{s \overset{\epsilon}{\rightarrowtail} q : s \overset{\epsilon}{\rightarrowtail} q \in \delta \right\} \cup \left\{s \overset{\gamma_+}{\rightarrowtail} q : s \overset{\gamma_+}{\rightarrowtail} q \in \delta \right\}
08
                        case \tilde{\zeta}_2 of Call
09
                            for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
                                                                                                                                                                      \Delta H = \left\{ s \mapsto q : s \stackrel{\epsilon}{\mapsto} q \in \delta \right\}.
                                 Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
10
                                 insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in Callers
11
12
                                 for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4)
                                                                                                                                                                        addPush_{(G, \Gamma, \delta)}(G, G_{\epsilon})(s \stackrel{\gamma_{+}}{\hookrightarrow} q) = (\Delta E, \Delta H), \text{ where }
                        case \tilde{\zeta}_2 of Exit-CEval
13
                            if \tilde{\zeta}_1 = \tilde{I}(pr) then
                                                                                                                                                                            \Delta E = \left\{ q' \stackrel{\gamma_{-}}{\mapsto} q'' : q' \in \overrightarrow{G}_{\epsilon}[q] \text{ and } q' \stackrel{\gamma_{-}}{\mapsto} q'' \in \delta \right\}
14
15
                                 Final (\tilde{\varsigma}_2)
16
                            else
                                                                                                                                                                           \Delta H = \left\{ s \mapsto q'' : q' \in \overrightarrow{G}_{\epsilon}[q] \text{ and } q' \stackrel{\gamma_{-}}{\mapsto} q'' \in \delta \right\}.
17
                                 insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Summary
18
                                 for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
                                 for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
19
                                                                                                                                                                                                         (s,\gamma_-,s')\in\Delta E
20
                        case \tilde{\zeta}_2 of Exit-TC
                                                                                                                                                                                  (\Delta E_3, \Delta H_3) = \bigcup addEmpty_M(G, G_{\epsilon})(s, s')
21
                            for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
22
                                 Propagate (\zeta_3, \zeta_3)
23
                                 insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
                                                                                                                                                                                  (\Delta E_4, \Delta H_4) = \begin{bmatrix} \end{bmatrix} addEmpty_M(G, G_{\epsilon})(s, s')
24
                                 for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Propagate (\tilde{\varsigma}_1, \tilde{\varsigma}_4)
                                                                                                                                                                                                           (s,s') \in \Delta H
             Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
                                                                                                                                                                                                      S' = S \cup \Delta S
                   if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
25
                                                                                                                                                                                                     E' = E \cup \Delta E
             Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
                                                                                                                                                                                                     H' = H \cup \Delta H
26
                   \tilde{\varsigma}_1 of the form ([(\lambda_l, (u_1 \ k_1) \ call_1)], \tilde{d}_1, h_1)
                                                                                                                                                                                                 \Delta E' = \Delta E_0 \cup \Delta E_1 \cup \Delta E_2 \cup \Delta E_3 \cup \Delta E_4
                   \tilde{\zeta}_{2} of the form ([(f e_{2} (\lambda_{\gamma_{2}} (u_{2}) call_{2}))<sup>t<sub>2</sub></sup>], tf_{2}, h_{2})
                  \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \hat{d}_3, h_2)
                                                                                                                                                                                                  \Delta S' = \{s' : (s, g, s') \in \Delta E'\}
                   \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], tf_4, h_4)
29
                                                                                                                                                                                                 \Delta H' = \Delta H_0 \cup \Delta H_1 \cup \Delta H_2 \cup \Delta H_3 \cup \Delta H_4
                   \hat{\mathbf{d}} \leftarrow \hat{\mathcal{A}}_{u}(e_4, \gamma_4, tf_4, h_4)
30
                                                                                                                                                                                                     G' = (S \cup \Delta S, \Gamma, E', q_0)
                  tf \leftarrow \begin{cases} tf_2[f \mapsto \{[(\lambda_{l_3}(u_3 \ k_3) \ call_3)]]\}] & S_?(l_2, f) \\ tf_2 & H_?(l_2, f) \lor Lam_?(f) \end{cases}
31
                                                                                                                                                                                                    G'_{c} = (S', H')
                                                                                                                                                                                                 \Delta G' = (\Delta S' - S', \Delta E' - E').
                   \tilde{\zeta} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
32
                   Propagate (\tilde{\zeta}_1, \tilde{\zeta})
33
                                                                                                                                                                  Figure 3. The fixed point of the function \mathcal{F}'(M) contains the
             Final(\tilde{\varsigma}) \triangleq
                                                                                                                                                                  Dyck state graph of the rooted pushdown system M.
```

Figure 8: CFA2 workset algorithm

insert (halt, $\bar{A}_u(e, \gamma, tf, h)$, \emptyset , h) in Final

 $\tilde{\zeta}$ of the form ([(ke) $^{\gamma}$], tf, h)

34

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
02
               Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
03
               while W \neq \emptyset
04
                    remove (\tilde{\zeta}_1, \tilde{\zeta}_2) from W
05
                    switch \tilde{\zeta}_2
                                                                                                                                                                                                   sprout_{(O, \Gamma, \delta)}(s) = (\Delta E, \Delta H), where
06
                         case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
07
                              for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
                                                                                                                                                                                 \Delta E = \left\{ s \overset{\epsilon}{\rightarrowtail} q : s \overset{\epsilon}{\rightarrowtail} q \in \delta \right\} \cup \left\{ s \overset{\gamma_+}{\rightarrowtail} q : s \overset{\gamma_+}{\rightarrowtail} q \in \delta \right\}
08
                         case \tilde{\zeta}_2 of Call
09
                              for each \bar{\zeta}_3 in succ(\bar{\zeta}_2)
                                                                                                                                                                                 \Delta H = \left\{ s \mapsto q : s \stackrel{\epsilon}{\mapsto} q \in \delta \right\}.
                                   Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
10
                                   insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in Callers
11
12
                                   for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4)
                                                                                                                                                                                   addPush_{(G, \Gamma, \delta)}(G, G_{\epsilon})(s \stackrel{\gamma_{+}}{\hookrightarrow} q) = (\Delta E, \Delta H), \text{ where }
                         case \tilde{\zeta}_2 of Exit-CEval
13
                              if \tilde{\zeta}_1 = \tilde{I}(pr) then
14
                                                                                                                                                                                       \Delta E = \left\{ q' \stackrel{\gamma_{-}}{\mapsto} q'' : q' \in \overrightarrow{G}_{\epsilon}[q] \text{ and } q' \stackrel{\gamma_{-}}{\mapsto} q'' \in \delta \right\}
15
                                   Final (\tilde{\varsigma}_2)
16
                              else
                                                                                                                                                                                       \Delta H = \left\{ s \mapsto q'' : q' \in \overrightarrow{G}_{\epsilon}[q] \text{ and } q' \stackrel{\gamma_{-}}{\mapsto} q'' \in \delta \right\}.
17
                                   insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Summary
18
                                   for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
19
                                   for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
                                                                                                                                                                                addEmpty_{(G, \Gamma, \delta)}(G, G_{\epsilon})(s'' \mapsto s''') = (\Delta E, \Delta H), \text{ where }
20
                         case \tilde{\zeta}_2 of Exit-TC
21
                              for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
                                                                                                                                                                                      \Delta E = \{s'''' \stackrel{\gamma_-}{\mapsto} q : s' \in \overleftarrow{G}_{\epsilon}[s''] \text{ and } s'''' \in \overrightarrow{G}_{\epsilon}[s'''] \text{ and }
22
                                   Propagate (\zeta_3, \zeta_3)
                                                                                                                                                                                                                             s \stackrel{\gamma_+}{\mapsto} s' \in G
23
                                   insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
24
                                   for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Propagate (\tilde{\varsigma}_1, \tilde{\varsigma}_4)
                                                                                                                                                                                     \Delta H = \{s \mapsto g : s' \in \overleftarrow{G}_{\epsilon}[s''] \text{ and } s'''' \in \overrightarrow{G}_{\epsilon}[s'''] \text{ and }
              Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
                                                                                                                                                                                                                        s \stackrel{\gamma_+}{\rightarrowtail} s' \in G
                    if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
25
                                                                                                                                                                                               \cup \left\{ s' \rightarrowtail s''' : s' \in \overleftarrow{G}_{\epsilon}[s''] \right\}
              Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
26
                    \tilde{\varsigma}_1 of the form ([(\lambda_l, (u_1 \ k_1) \ call_1)], \tilde{d}_1, h_1)
                                                                                                                                                                                               \cup \left\{ s'' \rightarrowtail s'''' : s'''' \in \overrightarrow{G}_{\epsilon}[s'''] \right\}
                    \tilde{\zeta}_{2} of the form ([(f e_{2} (\lambda_{\gamma_{2}} (u_{2}) call_{2}))<sup>t<sub>2</sub></sup>], tf_{2}, h_{2})
                    \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \hat{d}_3, h_2)
                                                                                                                                                                                               \cup \left\{s' \rightarrowtail s'''' : s' \in \overleftarrow{G}_{\epsilon}[s''] \text{ and } s'''' \in \overrightarrow{G}_{\epsilon}[s'''] \right\}.
                    \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], \ tf_4, \ h_4)
29
                    \hat{\mathbf{d}} \leftarrow \hat{\mathcal{A}}_{u}(e_4, \gamma_4, tf_4, h_4)
30
                                                                                                                                                                                                                 G' = (S \cup \Delta S, \Gamma, E', a_0)
                    tf \leftarrow \begin{cases} tf_2[f \mapsto \{[(\lambda_{l_3}(u_3 \ k_3) \ call_3)]\}] \ S_?(l_2, f) \end{cases}
31
                                                                                                                                                                                                                 G'_{*} = (S', H')
                                                                                                                  H_7(l_2, f) \vee Lam_7(f)
                                                                                                                                                                                                              \Delta G' = (\Delta S' - S', \Delta E' - E').
                    \tilde{\varsigma} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
32
                    Propagate (\tilde{\zeta}_1, \tilde{\zeta})
33
                                                                                                                                                                            Figure 3. The fixed point of the function \mathcal{F}'(M) contains the
              Final(\tilde{\varsigma}) \triangleq
                                                                                                                                                                             Dyck state graph of the rooted pushdown system M.
```

Figure 8: CFA2 workset algorithm

insert (halt, $\bar{A}_u(e, \gamma, tf, h)$, \emptyset , h) in Final

 $\tilde{\zeta}$ of the form ([(ke) $^{\gamma}$], tf, h)

34

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
02
                Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
03
                while W \neq \emptyset
04
                      remove (\tilde{\zeta}_1, \tilde{\zeta}_2) from W
05
                      switch \tilde{\zeta}_2
                                                                                                                                                                                                              \hat{f}((\hat{P}, \hat{E}), \hat{H}, \hat{\sigma}) = ((\hat{P}', \hat{E}'), \hat{H}', \hat{\sigma}''), \text{ where }
06
                            case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
07
                                for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
                                                                                                                                                                                                      \hat{T}_{+} = \left\{ (\hat{\psi} \stackrel{\hat{\phi}_{+}}{\rightarrowtail} \hat{\psi}', \hat{\sigma}') : \hat{\psi} \stackrel{\hat{\sigma}}{\underset{\hat{\phi}_{\perp}}{\longleftarrow}} (\hat{\psi}', \hat{\sigma}') \right\}
08
                            case \tilde{\zeta}_2 of Call
09
                                for each \bar{\zeta}_3 in succ(\bar{\zeta}_2)
                                      Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
10
                                                                                                                                                                                                        \hat{T}_{\epsilon} = \left\{ (\hat{\psi} \stackrel{\epsilon}{\rightarrowtail} \hat{\psi}', \hat{\sigma}') : \hat{\psi} \stackrel{\hat{\sigma}}{\rightharpoondown} (\hat{\psi}', \hat{\sigma}') \right\}
                                      insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in Callers
11
12
                                      for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4)
                                                                                                                                                                                                        \hat{T}_{-} = \big\{ (\hat{\psi}^{\prime\prime} \overset{\hat{\phi}_{-}}{\rightarrowtail} \hat{\psi}^{\prime\prime\prime}, \hat{\sigma}^{\prime}) : \hat{\psi}^{\prime\prime} \overset{\hat{\sigma}}{\underset{z^{\prime\prime}}{\longrightarrow}} (\hat{\psi}^{\prime\prime\prime}, \hat{\sigma}^{\prime}) \text{ and }
                            case \tilde{\zeta}_2 of Exit-CEval
13
                                 if \tilde{\zeta}_1 = \mathcal{I}(pr) then
14
15
                                      Final (\tilde{\varsigma}_2)
                                                                                                                                                                                                                                                                \hat{\psi} \stackrel{\hat{\phi}_+}{\mapsto} \hat{\psi}' \in \hat{E} and
16
                                 else
                                                                                                                                                                                                                                                                \hat{\psi}' \mapsto \hat{\psi}'' \in \hat{H}
17
                                      insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Summary
18
                                      for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
                                                                                                                                                                                                         \hat{T}' = \hat{T}_{+} \cup \hat{T}_{\epsilon} \cup \hat{T}_{-}
19
                                      for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
20
                            case \tilde{\zeta}_2 of Exit-TC
                                                                                                                                                                                                         \hat{E}' = \{\hat{e} : (\hat{e}, \bot) \in \hat{T}'\}
21
                                for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
                                                                                                                                                                                                        \hat{\sigma}'' = \left| \left\{ \hat{\sigma}' : (-, \hat{\sigma}') \in \hat{T}' \right\} \right|
22
                                      Propagate (\zeta_3, \zeta_3)
23
                                      insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
                                                                                                                                                                                                        \hat{H}_{\epsilon} = \left\{ \hat{\psi} \rightarrowtail \hat{\psi}^{\prime\prime} : \hat{\psi} \rightarrowtail \hat{\psi}^{\prime} \in \hat{H} \text{ and } \hat{\psi}^{\prime} \rightarrowtail \hat{\psi}^{\prime\prime} \in \hat{H} \right\}
24
                                      for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Propagate (\tilde{\varsigma}_1, \tilde{\varsigma}_4)
                Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
                                                                                                                                                                                                   \hat{H}_{+-} = \{\hat{\psi} \mapsto \hat{\psi}''' : \hat{\psi} \stackrel{\phi_+}{\mapsto} \hat{\psi}' \in \hat{E} \text{ and } \hat{\psi}' \mapsto \hat{\psi}'' \in \hat{H} \}
                      if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
25
                Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
                                                                                                                                                                                                                                               and \hat{\psi}'' \stackrel{\hat{\phi}_{-}}{\mapsto} \hat{\psi}''' \in \hat{E} }
26
                      \tilde{\varsigma}_1 of the form ([(\lambda_l, (u_1 \ k_1) \ call_1)], \tilde{d}_1, h_1)
                                                                                                                                                                                                         \hat{H}' = \hat{H}_{\epsilon} \cup \hat{H}_{+-}
                      \tilde{\zeta}_2 of the form ([(f e_2 (\lambda_{\gamma_2} (u_2) call_2))^{l_2}], tf_2, h_2)
                     \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \hat{d}_3, h_2)
                                                                                                                                                                                                        \hat{P}' = \hat{P} \cup \{\hat{\psi}' : \hat{\psi} \stackrel{g}{\mapsto} \hat{\psi}'\}.
                      \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], \ tf_4, \ h_4)
29
                      \hat{\mathbf{d}} \leftarrow \hat{\mathcal{A}}_{u}(e_4, \gamma_4, tf_4, h_4)
30
                                                                                                                                                                                                                                    G' = (S \cup \Delta S, \Gamma, E', q_0)
                      tf \leftarrow \begin{cases} tf_2[f \mapsto \{[(\lambda_{l_3}(u_3 \ k_3) \ call_3)]\}] \ S_?(l_2, f) \end{cases}
31
                                                                                                                                                                                                                                    G'_{c} = (S', H')
                                                                                                                             H_7(l_2, f) \vee Lam_7(f)
                                                                                                                                                                                                                                \Delta G' = (\Delta S' - S', \Delta E' - E').
                      \tilde{\varsigma} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
32
                      Propagate (\tilde{\zeta}_1, \tilde{\zeta})
33
                                                                                                                                                                                            Figure 3. The fixed point of the function \mathcal{F}'(M) contains the
                Final(\tilde{\varsigma}) \triangleq
                                                                                                                                                                                            Dyck state graph of the rooted pushdown system M.
                      \tilde{\zeta} of the form ([(ke)^{\gamma}], tf, h)
34
```

Figure 8: CFA2 workset algorithm

insert (halt, $\bar{A}_u(e, \gamma, tf, h)$, \emptyset , h) in Final

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
02
             Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
03
             while W \neq \emptyset
04
                 remove (\tilde{\zeta}_1, \tilde{\zeta}_2) from W
05
                  switch \tilde{\zeta}_2
06
                      case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
07
                          for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
08
                      case \tilde{\zeta}_2 of Call
09
                          for each \bar{\zeta}_3 in succ(\bar{\zeta}_2)
                               Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
10
                               insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in Callers
11
12
                               for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4)
                      case \tilde{\zeta}_2 of Exit-CEval
13
                          if \tilde{\zeta}_1 = \mathcal{I}(pr) then
14
15
                               Final (\tilde{\varsigma}_2)
16
                          else
17
                               insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Summary
18
                               for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
19
                               for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
20
                      case \tilde{\zeta}_2 of Exit-TC
21
                          for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
22
                               Propagate (\zeta_3, \zeta_3)
23
                               insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
24
                               for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Propagate (\tilde{\varsigma}_1, \tilde{\varsigma}_4)
             Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
25
                 if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
             Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
26
                 \tilde{\varsigma}_1 of the form ([(\lambda_l, (u_1 \ k_1) \ call_1)], \tilde{d}_1, h_1)
                  \tilde{\zeta}_2 of the form ([(f e_2 (\lambda_{\gamma_2} (u_2) call_2))^{l_2}], tf_2, h_2)
                 \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \hat{d}_3, h_2)
                 \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], \ tf_4, \ h_4)
29
                 \hat{\mathbf{d}} \leftarrow \hat{\mathcal{A}}_{u}(e_4, \gamma_4, tf_4, h_4)
30
                 tf \leftarrow \begin{cases} tf_2[f \mapsto \{[(\lambda_{l_3}(u_3 \ k_3) \ call_3)]]\}] & S_?(l_2, f) \\ tf_2 & H_?(l_2, f) \lor Lam_?(f) \end{cases}
31
                  \tilde{\varsigma} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
32
                 Propagate (\tilde{\zeta}_1, \tilde{\zeta})
33
             Final(\tilde{\varsigma}) \triangleq
                 \tilde{\zeta} of the form ([(ke)^{\gamma}], tf, h)
34
```

insert (halt, $\bar{A}_u(e, \gamma, tf, h)$, \emptyset , h) in Final

Figure 8: CFA2 workset algorithm

35

Figure 3. The fixed point of the function $\mathcal{F}'(M)$ contains the Dyck state graph of the rooted pushdown system M.

 $\Delta E = \emptyset$ and $\Delta H = \left\{ s \mapsto q : s' \in \overline{G}_{\epsilon}[s''] \text{ and } s \stackrel{\gamma_+}{\mapsto} s' \in G \right\}$

$$\hat{f}((\hat{P},\hat{E}),\hat{H},\hat{\sigma}) = ((\hat{P}',\hat{E}'),\hat{H}',\hat{\sigma}''), \text{ where }$$

$$\hat{T}_{+} = \left\{ (\hat{\psi} \xrightarrow{\hat{\phi}_{+}} \hat{\psi}',\hat{\sigma}') : \hat{\psi} \xrightarrow{\hat{\sigma}_{+}} (\hat{\psi}',\hat{\sigma}') \right\}$$

$$\hat{T}_{\epsilon} = \left\{ (\hat{\psi} \xrightarrow{\epsilon} \hat{\psi}',\hat{\sigma}') : \hat{\psi} \xrightarrow{\hat{\sigma}_{+}} (\hat{\psi}',\hat{\sigma}') \right\}$$

$$\hat{T}_{-} = \left\{ (\hat{\psi}'' \xrightarrow{\hat{\phi}_{-}} \hat{\psi}''',\hat{\sigma}') : \hat{\psi}'' \xrightarrow{\hat{\sigma}_{+}} (\hat{\psi}''',\hat{\sigma}') \right\}$$

$$\hat{T}_{-} = \left\{ (\hat{\psi}'' \xrightarrow{\hat{\phi}_{-}} \hat{\psi}'''',\hat{\sigma}') : \hat{\psi}'' \xrightarrow{\hat{\sigma}_{+}} (\hat{\psi}''',\hat{\sigma}') \right\}$$

$$\hat{T}_{-} = \left\{ (\hat{\psi}'' \xrightarrow{\hat{\phi}_{-}} \hat{\psi}'''',\hat{\sigma}') : \hat{\psi}'' \xrightarrow{\hat{\sigma}_{+}} (\hat{\psi}''',\hat{\sigma}') \right\}$$

$$\hat{\psi} \xrightarrow{\hat{\psi}_{+}} \hat{\psi}' \in \hat{E} \text{ and }$$

$$\hat{\psi}' \mapsto \hat{\psi}'' \in \hat{H}$$

$$\hat{T}' = \hat{T}_{+} \cup \hat{T}_{\epsilon} \cup \hat{T}_{-}$$

$$\hat{E}' = \left\{ \hat{e} : (\hat{e}, -) \in \hat{T}' \right\}$$

$$\hat{\sigma}'' = \bigsqcup \left\{ \hat{\sigma}' : (-, \hat{\sigma}') \in \hat{T}' \right\}$$

$$\hat{T}' = \left\{ \hat{\psi} \mapsto \hat{\psi}'' : \hat{\psi} \mapsto \hat{\psi}' \in \hat{H} \text{ and } \hat{\psi}' \mapsto \hat{\psi}'' \in \hat{H} \right\}$$

$$\hat{H}_{+-} = \left\{ \hat{\psi} \mapsto \hat{\psi}''' : \hat{\psi} \mapsto \hat{\psi}' \in \hat{E} \text{ and } \hat{\psi}' \mapsto \hat{\psi}'' \in \hat{H} \right\}$$

$$\hat{H}_{+-} = \left\{ \hat{\psi} \mapsto \hat{\psi}''' : \hat{\psi} \mapsto \hat{\psi}' \in \hat{E} \text{ and } \hat{\psi}' \mapsto \hat{\psi}'' \in \hat{E} \right\}$$

$$\hat{H}' = \hat{H}_{\epsilon} \cup \hat{H}_{+-}$$

$$\hat{P}' = \hat{P} \cup \left\{ \hat{\psi}' : \hat{\psi} \mapsto \hat{\psi}' \right\}.$$

$$addPop_{\{O, \Gamma, E\}}(G, G_{\epsilon})(s'' \mapsto q) = (\Delta E, \Delta H), \text{ where}$$

```
Summary, Callers, 17
02
               Seen, W
03
              while W
04
05
                    switch
                                                                                                                                                                                        \hat{f}((\hat{P}, \hat{E}), \hat{H}, \hat{\sigma}) = ((\hat{P}', \hat{E}'), \hat{H}', \hat{\sigma}''), where
06
                         case
07
                                                                    ucc(\tilde{\varsigma}_2) Propagate (\tilde{\varsigma}_2)
                                                                                                                                                                                 \hat{T}_{+} = \left\{ (\hat{\psi} \stackrel{\hat{\phi}_{+}}{\rightarrowtail} \hat{\psi}', \hat{\sigma}') : \hat{\psi} \stackrel{\hat{\sigma}}{\underset{\hat{\phi}_{+}}{\longleftarrow}} (\hat{\psi}', \hat{\sigma}') \right\}
08
09
10
11
12
                                          of Exit-CEval
13
                            if \zeta_1 = \tilde{\mathcal{I}}(pr) then
14
                                  Final (\tilde{\varsigma}_2)
15
16
17
                                             \operatorname{Pt} (\tilde{\varsigma}_1, \tilde{\varsigma}_2) in Summ
                                  for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4, \tilde{\varsigma}_1) in Calle
18
                                                                                                                                                                                    \hat{T}' = \hat{T}_{+} \cup \hat{T}_{\epsilon} \cup \hat{T}_{-}
19
                                  for each (\tilde{\zeta}_3, \tilde{\zeta}_4,
20
                         case \tilde{\zeta}_2 of Exit-TC
                                                                                                                                                                                                 \{\hat{e} : (\hat{e}, _{-}) \in \hat{T}'\}
21
                             for each \tilde{\zeta}_3 in su
22
23
                                                                                                                                                                                                               \hat{\psi}'': \hat{\psi} \mapsto \hat{\psi}' \in \hat{H} and
24
                                              ach (\tilde{\varsigma}_3,
              Propagate (\tilde{\zeta}_1)
                   if (\tilde{\varsigma}_1, \tilde{\varsigma}_2)
                                                       in Seen the
25
              Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2,
26
                    \tilde{\zeta}_1 of the form
                    \tilde{\zeta}_2 of the form
                   \tilde{\zeta}_3 of the form
29
                    \tilde{\zeta}_4 of the form
30
                                     A_u(e_4, \gamma_4,
                                                                                                                                                                           2dPop_{(O,\Gamma,\delta)}(G,G_{\epsilon})(s'' \stackrel{\gamma_{-}}{\mapsto} q) = (\Delta E, \Delta H), where
31
                                                                                                                                   \vee Lam_{?}(f)
                                                                                                                                                                          \Delta E = \emptyset and \Delta H = \left\{ s \mapsto q : s' \in \overleftarrow{G}_{\epsilon}[s''] \text{ and } s \stackrel{\gamma_+}{\mapsto} s' \in G \right\}
32

    call<sub>2</sub>)

33
                                                                                                                                                                       Figure 3. The fixed point of the function \mathcal{F}(M) contains the
              Final(\tilde{\zeta})
                                                                                                                                                                       Dyck state graph of the rooted pushdown system M.
34
                    \tilde{\zeta} of the f
```

Figure 8: CFA2 workset algorithm

35

insert (had

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
02
             Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
03
             while W \neq \emptyset
04
                  remove (\tilde{\zeta}_1, \tilde{\zeta}_2) from W
05
                  switch \tilde{\zeta}_2
06
                      case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
07
                          for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
08
                      case \tilde{\zeta}_2 of Call
09
                          for each \bar{\zeta}_3 in succ(\bar{\zeta}_2)
                               Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
10
11
                               insert (\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3) in Callers
12
                               for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Update (\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4)
                      case \tilde{\zeta}_2 of Exit-CEval
13
                           if \tilde{\zeta}_1 = \mathcal{I}(pr) then
14
15
                               Final (\tilde{\varsigma}_2)
16
                           else
17
                               insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Summary
18
                               for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
19
                               for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
20
                      case \tilde{\zeta}_2 of Exit-TC
21
                          for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
22
                               Propagate (\zeta_3, \zeta_3)
23
                               insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
24
                               for each (\tilde{\varsigma}_3, \tilde{\varsigma}_4) in Summary Propagate (\tilde{\varsigma}_1, \tilde{\varsigma}_4)
             Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
25
                  if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
             Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
26
                  \tilde{\varsigma}_1 of the form ([(\lambda_l, (u_1 \ k_1) \ call_1)], \tilde{d}_1, h_1)
                  \tilde{\zeta}_2 of the form ([(f e_2 (\lambda_{\gamma_2} (u_2) call_2))^{l_2}], tf_2, h_2)
                  \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \hat{d}_3, h_2)
                  \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], \ tf_4, \ h_4)
29
                  \hat{\mathbf{d}} \leftarrow \hat{\mathcal{A}}_{u}(e_4, \gamma_4, tf_4, h_4)
30
                 tf \leftarrow \begin{cases} tf_2[f \mapsto \{[(\lambda_{l_3}(u_3 \ k_3) \ call_3)]]\}] & S_?(l_2, f) \\ tf_2 & H_?(l_2, f) \lor Lam_?(f) \end{cases}
31
                  \tilde{\varsigma} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
32
                  Propagate (\tilde{\zeta}_1, \tilde{\zeta})
33
             Final(\tilde{\varsigma}) \triangleq
                  \tilde{\zeta} of the form ([(ke)^{\gamma}], tf, h)
34
```

Figure 8: CFA2 workset algorithm

insert (halt, $\bar{A}_u(e, \gamma, tf, h)$, \emptyset , h) in Final

$$\hat{f}((\hat{P},\hat{E}),\hat{H},\hat{\sigma}) = ((\hat{P}',\hat{E}'),\hat{H}',\hat{\sigma}''), \text{ where }$$

$$\hat{T}_{+} = \left\{ (\hat{\psi} \overset{\hat{\phi}_{+}}{\mapsto} \hat{\psi}',\hat{\sigma}') : \hat{\psi} \overset{\hat{\sigma}_{-}}{\not{\phi}_{+}} (\hat{\psi}',\hat{\sigma}') \right\}$$

$$\hat{T}_{\epsilon} = \left\{ (\hat{\psi} \overset{\hat{\phi}_{-}}{\mapsto} \hat{\psi}'',\hat{\sigma}') : \hat{\psi} \overset{\hat{\sigma}_{-}}{\not{\phi}_{-}} (\hat{\psi}',\hat{\sigma}') \right\}$$

$$\hat{T}_{-} = \left\{ (\hat{\psi}'' \overset{\hat{\phi}_{-}}{\mapsto} \hat{\psi}''',\hat{\sigma}') : \hat{\psi}'' \overset{\hat{\sigma}_{-}}{\not{\phi}_{-}} (\hat{\psi}''',\hat{\sigma}') \right\}$$

$$\hat{T}' = \hat{I}_{+} \cup \hat{T}_{\epsilon} \cup \hat{T}_{-}$$

$$\hat{E}' = \left\{ \hat{e} : (\hat{e}, -) \in \hat{T}' \right\}$$

$$\hat{\sigma}'' = \bigsqcup \left\{ \hat{\sigma}' : (-, \hat{\sigma}') \in \hat{T}' \right\}$$

$$\hat{H}_{\epsilon} = \left\{ \hat{\psi} \mapsto \hat{\psi}'' : \hat{\psi} \mapsto \hat{\psi}' \in \hat{H} \text{ and } \hat{\psi}' \mapsto \hat{\psi}'' \in \hat{H} \right\}$$

$$\hat{H}_{+-} = \left\{ \hat{\psi} \mapsto \hat{\psi}''' : \hat{\psi} \mapsto \hat{\psi}' \in \hat{E} \text{ and } \hat{\psi}' \mapsto \hat{\psi}'' \in \hat{H} \right\}$$

$$\hat{H}' = \hat{H}_{\epsilon} \cup \hat{H}_{+-}$$

$$\hat{P}' = \hat{P} \cup \left\{ \hat{\psi}' : \hat{\psi} \overset{g}{\mapsto} \hat{\psi}' \right\}.$$

$$addPop_{(Q,\Gamma,\delta)}(G,G_{\epsilon})(s'' \overset{\gamma_{-}}{\mapsto} q) = (\Delta E, \Delta H), \text{ where }$$

$$\Delta E = \emptyset \text{ and } \Delta H = \left\{ s \mapsto q : s' \in \overleftarrow{G}_{\epsilon}[s''] \text{ and } s \overset{\gamma_{+}}{\mapsto} s' \in G \right\}$$

Figure 3. The fixed point of the function $\mathcal{F}'(M)$ contains the Dyck state graph of the rooted pushdown system M.

• Start: Concrete machine semantics

- Start: Concrete machine semantics
- Simple transform: memoize functions

- Start: Concrete machine semantics
- Simple transform: memoize functions
- Simple transform: store functions' calling contexts

- Start: Concrete machine semantics
- Simple transform: memoize functions
- Simple transform: store functions' calling contexts
- Analysis: finitize addresses

• M : Context → ℘(Value)

- M : Context → ℘(Value)
- Context = CES

- M : Context → ℘(Value)
- Context = CES
- New continuation frame: rt(ctx : Context)

- M : Context → ℘(Value)
- Context = CES
- New continuation frame: rt(ctx : Context)
- Eliminate frame = add value to M

- M : Context → ℘(Value)
- Context = CES
- New continuation frame: rt(ctx : Context)
- Eliminate frame = add value to M
- Function calls bypass if next CES in M

• Ξ : Context $\rightarrow \wp(Kont)$

- Ξ : Context $\rightarrow \wp(Kont)$
- Store up to rt/mt in Ξ on call

- Ξ : Context $\rightarrow \wp(Kont)$
- Store up to rt/mt in Ξ on call
- Return to all calling contexts after memoizing

- Ξ : Context $\rightarrow \wp(Kont)$
- Store up to rt/mt in Ξ on call
- Return to all calling contexts after memoizing
- Bypassing via memo still stores continuation

Store in rt:N/A

Contexts

```
Store in rt:\sigma_1 Contexts \langle (f \ y) \ \rho_1 \ \sigma_1 \rangle (let* (... [n1 •] ...)
```

$Store\ in\ rt:\sigma_2$ Contexts $\langle (f\ y)\ \rho_1\ \sigma_1\rangle\ (let^*\ (...\ [n1\ \bullet]\ ...)\ ...)$ $\langle x\ \rho_1\ \sigma_2\rangle\ (let^*\ (...\ [app\ (\lambda\ (f\ y)\ \bullet)]\ ...)\ ...)$

```
\langle (f y) \rho_1 \sigma_1 \rangle 1
```

Store in rt:02

Contexts

Memo

```
\langle (f y) \rho_1 \sigma_1 \rangle 1
\langle x \rho_1 \sigma_2 \rangle 1
```

Store in rt:01

```
\langle (f \ y) \ \rho_1 \ \sigma_1 \rangle \ (let* (... [n1 •] ...) ...) 
 <math>\langle x \ \rho_1 \ \sigma_2 \rangle \ (let* (... [app (\lambda (f \ y) •)] ...) ...)
```

```
(let* ([id (\lambda (x) x)] Store:\sigma_3 [app (\lambda (f y) (f y))] fo id [n1 (app id 1)] [n2 (app id 2)]) (+ n1 n2)) \chi_0 1

Memo
((f y) \rho_1 \sigma_1 1

\langle (x \rho_1 \sigma_2 ) 1
```

Store in rt:N/A

```
\langle (f \ y) \ \rho_1 \ \sigma_1 \rangle \ (let* (... [n1 •] ...) ...) 
 <math>\langle x \ \rho_1 \ \sigma_2 \rangle \ (let* (... [app (\lambda (f \ y) •)] ...) ...)
```

Store in rt:04

```
(let* ([id (\lambda (x) x)] Store:\sigma_5 [app (\lambda (f y) (f y))] f_0, f_1 id [n1 (app id 1)] [n2 (app id 2)]) (+ n1 n2)) x_0 1

Memo ((f y) \rho_1 \sigma_1) 1 y_1 2 x_2 1
```

Store in rt:05

```
(let* ([id (\lambda (x) x)]
                                                       Store: 5
            [app (\lambda (f y) (f y))]
                                                       f_0, f_1 id
            [n1 (app id 1)]
                                                       y<sub>0</sub> 1
           [n2 (app id 2)])
   (+ n1 n2)
                                                       X0 1
                                                       n10 1
Memo
\langle (f y) \rho_1 \sigma_1 \rangle 1
                                                      y<sub>1</sub> 2
\langle x \rho_1 \sigma_2 \rangle 1
                                                      X<sub>1</sub> 2
\langle (f y) \rho_4 \sigma_4 \rangle 2
```

Store in rt: 05

```
\langle (f \ y) \ \rho_1 \ \sigma_1 \rangle \ (let* (... [n1 •] ...) ...)
\langle x \ \rho_1 \ \sigma_2 \rangle \ (let* (... [app (\lambda (f \ y) •)] ...) ...)
\langle (f \ y) \ \rho_4 \ \sigma_4 \rangle \ (let* (... [n2 •]) ...)
\langle x \ \rho_5 \ \sigma_5 \rangle \ (let* (... [app (\lambda (f \ y) •)] ...) ...)
```

```
(let* ([id (\lambda (x) x)]
                                                     Store: 5
           [app (\lambda (f y) (f y))]
                                                     f_0, f_1 id
           [n1 (app id 1)]
                                                     y<sub>0</sub> 1
           [n2 (app id 2)])
   (+ n1 n2)
                                                     X0 1
                                                     n10 1
Memo
\langle (f y) \rho_1 \sigma_1 \rangle 1
                                                     y<sub>1</sub> 2
\langle x \rho_1 \sigma_2 \rangle 1
                                                     X_1 2
\langle (f y) \rho_4 \sigma_4 \rangle 2
\langle x \rho_5 \sigma_5 \rangle 2
                                                     Store in rt: 04
Contexts
\langle (f y) \rho_1 \sigma_1 \rangle (let* (... [n1 \bullet] ...) ...)
\langle x \rho_1 \sigma_2 \rangle (let* (... [app (\lambda (f y) •)] ...) ...)
\langle (f y) \rho_4 \sigma_4 \rangle (let* (... [n2 •]) ...)
\langle x \rho_5 \sigma_5 \rangle (let* (... [app (\lambda (f y) \bullet)] ...) ...)
```

Store: 06

```
      fo, f1
      id

      y0
      1

      x0
      1

      n10
      1

      y1
      2

      x1
      2

      n20
      2
```

Store in rt:N/A

Contexts

 $\langle x \rho_5 \sigma_5 \rangle$

 $\langle x \rho_1 \sigma_2 \rangle$ 1

 $\langle (f y) \rho_4 \sigma_4 \rangle 2$

We can extend the analogy

We can extend the analogy

Everyone's favorite: delimited composable control

(F doesn't contain a reset)

Naive doesn't cut it

$$σ$$
 \sqcup [a \mapsto {rt(e, ρ, σ')}]

Naive doesn't cut it


```
Summary, Callers, TCallers, EntriesEsc, Escapes, Final ← ∅
02
          Seen, W \leftarrow \{(\bar{I}(pr), \bar{I}(pr))\}
          while W \neq \emptyset
03
04
            remove (\zeta_1, \zeta_2) from W
05
              switch \zeta_2
06
                case \S_2 of Entry
07
                   for the \zeta_3 in succ(\zeta_2), Propagate(\zeta_1, \zeta_3, false)
08
                    \tilde{\zeta}_2 of the form ([(\lambda_l(uk) call)], \tilde{d}, h)
09
                    if H_2(k) then
10
                       insert 52 in EntriesEsc
11
                       for each \zeta_1 in Escapes that calls k, Propagate (\zeta_2, \zeta_3, true)
12
                case Q of CApply, Inner-CEval
13
                    for the \zeta_3 in succ(\zeta_2), Propagate(\zeta_1, \zeta_3, false)
14
                case Q of Call
15
                    for each \zeta_3 in succ(\zeta_2)
16
                       Propagate (\bar{\zeta}_3, \bar{\zeta}_1, \text{ false})
17
                        insert (\tilde{\varsigma}_1, \ \tilde{\varsigma}_2, \ \tilde{\varsigma}_3) in Callers
18
                       for each (\zeta_3, \zeta_4) in Summary, Update(\zeta_1, \zeta_2, \zeta_3, \zeta_4)
19
                case \tilde{\varsigma}_2 of Exit-Ret
20
                    if \zeta_1 = \bar{I}(pr) then Final(\zeta_2)
21
                    else
22
                        insert (\tilde{\varsigma}_1, \tilde{\varsigma}_2) in Summary
23
                       for each (\zeta_3, \zeta_4, \zeta_1) in Callers, Update (\zeta_3, \zeta_4, \zeta_1, \zeta_2)
24
                       for each (\tilde{\varsigma}_1, \tilde{\varsigma}_1, \tilde{\varsigma}_1) in TCallers, Propagate(\tilde{\varsigma}_1, \tilde{\varsigma}_2, false)
25
                case & of Exit-Esc
26
                    if (\zeta_1, \zeta_2) not in Summary then
27
                       insert & in Escapes
28
                        \zeta_2 of the form ([(k e)], tf, h)
29
                       for each \tilde{\varsigma}_1 in EntriesEsc over def_{\lambda}(k), Propagate (\tilde{\varsigma}_1, \tilde{\varsigma}_2, \text{ true})
30
                    else if \zeta_1 = \bar{I}(pr) then Final(\zeta_2)
31
32
                       for each (\zeta_3, \zeta_4, \zeta_1) in Callers, Update (\zeta_3, \zeta_4, \zeta_1, \zeta_2)
33
                       for each (\bar{\zeta}_3, \bar{\zeta}_4, \bar{\zeta}_1) in TCallers, Propagate(\bar{\zeta}_3, \bar{\zeta}_2, \text{true})
34
                case \tilde{\varsigma}_2 of Exit-TC
35
                    for each \zeta_1 in succ(\zeta_2)
                       Propagate(\tilde{\varsigma}_{i}, \tilde{\varsigma}_{i}, false)
36
37
                        insert (\zeta_1, \zeta_2, \zeta_3) in TCallers
38
                       8 - 0
39
                       for each (\zeta_3, \zeta_4) in Summary
40
                          insert (\zeta_1, \zeta_4) in S
41
                           Propagate(\tilde{\varsigma}_1, \tilde{\varsigma}_4, false)
42
                        Summary ← Summary ∪ S
          Propagate(\bar{\zeta}_1, \bar{\zeta}_2, esc) \triangleq
43
             if esc then insert (\bar{\zeta}_1, \bar{\zeta}_2) in Summary
             if (\zeta_1, \zeta_2) not in Seen then insert (\zeta_1, \zeta_2) in Seen and W
44
          Update (\zeta_1, \zeta_2, \zeta_3, \zeta_4) \triangleq
45
            \tilde{\zeta}_1 of the form ([(\lambda_{l_1}(u_1 \ k_1) \ call_1)], \hat{d}_1, h_1)
             \tilde{\zeta}_{2} of the form ([(f e_{2} (\lambda_{\gamma_{2}} (u_{2}) call_{2}))^{l_{2}}], tf_{2}, h_{2})
46
             \ddot{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \ \mathring{d}_3, \ h_2)
\ddot{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], \ tf_4, \ h_4)
47
48
49
              \hat{d} \leftarrow \hat{A}_u(e_4, \gamma_4, tf_4, h_4)
             tf \leftarrow \begin{cases} tf_2[f \mapsto \{[(\lambda_{l_3}(u_3 k_3) \ call_3)]\}] & S_7(l_2, f) \\ tf_2 & H_2(l_2, f) \lor Lam_7(f) \end{cases}
50
             \tilde{\varsigma} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
51
52
             Propagate($\tilde{\circ}_1, \tilde{\circ}_1 false)
          Final(\bar{c}) \triangleq
53
             \zeta of the form ([(k e)], tf, h)
             insert (halt, \tilde{A}_u(e, \gamma, tf, h), \emptyset, h) in Final
54
```

Figure 8: CFA2 workset algorithm

```
Summary, Callers, TCallers, EntriesEsc, Escapes, Final ← ∅
02
         Seen, W \leftarrow \{(\bar{I}(pr), \bar{I}(pr))\}
         while W \neq \emptyset
03
04
            remove (\zeta_1, \zeta_2) from W
05
             switch \zeta_2
06
                case \S_2 of Entry
07
                   for the \zeta_3 in succ(\zeta_2), Propagate(\zeta_1, \zeta_3, false)
08
                    \zeta_2 of the form ([(\lambda_l(uk) call)], d, h)
09
                    if H_2(k) then
                       insert & in EntriesEsc
10
                       for each \zeta_1 in Escapes that calls k, Propagate (\zeta_2, \zeta_3, \text{true})
11
12
                case Q of CApply, Inner-CEval
13
                   for the \zeta_3 in succ(\zeta_2), Propagate(\zeta_1, \zeta_3, false)
14
                case Q of Call
15
                   for each \zeta_3 in succ(\zeta_2)
16
                       Propagate (\bar{\zeta}_3, \bar{\zeta}_1, \text{ false})
17
                       insert (\tilde{\varsigma}_1, \ \tilde{\varsigma}_2, \ \tilde{\varsigma}_3) in Callers
18
                       for each (\zeta_3, \zeta_4) in Summary, Update(\zeta_1, \zeta_2, \zeta_3, \zeta_4)
19
                case \tilde{\varsigma}_2 of Exit-Ret
20
                   if \zeta_1 = \bar{I}(pr) then Final(\zeta_2)
21
                    else
22
                       insert (\tilde{\varsigma}_1, \tilde{\varsigma}_2) in Summary
23
                       for each (\zeta_3, \zeta_4, \zeta_1) in Callers, Update (\zeta_3, \zeta_4, \zeta_1, \zeta_2)
24
                       for each (\tilde{\varsigma}_1, \tilde{\varsigma}_1, \tilde{\varsigma}_1) in TCallers, Propagate(\tilde{\varsigma}_1, \tilde{\varsigma}_2, false)
25
                 case & of Exit-Esc
                   if (\zeta_1, \zeta_2) not in Summary then
26
27
                       insert & in Escapes
28
                       \zeta_2 of the form ([(k e)], tf, h)
29
                       for each \bar{\varsigma}_1 in EntriesEsc over def_{\lambda}(k), Propagate (\bar{\varsigma}_1, \bar{\varsigma}_2, \text{ true})
30
                    else if \zeta_1 = \bar{I}(pr) then Final(\bar{\zeta}_2)
31
                      for each (\zeta_3, \zeta_4, \zeta_1) in Callers, Update (\zeta_3, \zeta_4, \zeta_1, \zeta_2)
32
33
                       for each (\bar{\zeta}_3, \bar{\zeta}_4, \bar{\zeta}_1) in TCallers, Propagate(\bar{\zeta}_3, \bar{\zeta}_2, \text{true})
34
                case \tilde{\varsigma}_2 of Exit-TC
35
                   for each \zeta_1 in succ(\zeta_2)
36
                       Propagate(G, G, false)
37
                       insert (\zeta_1, \zeta_2, \zeta_3) in TCallers
38
                       8 - 0
39
                       for each (\zeta_3, \zeta_4) in Summary
40
                          insert (\zeta_1, \zeta_4) in S
41
                          Propagate(\tilde{\varsigma}_1, \tilde{\varsigma}_4, false)
42
                       Summary ← Summary ∪ S
          Propagate(\bar{\zeta}_1, \bar{\zeta}_2, esc) \triangleq
43
             if esc then insert (\bar{\zeta}_1, \bar{\zeta}_2) in Summary
             if (\zeta_1, \zeta_2) not in Seen then insert (\zeta_1, \zeta_2) in Seen and W
44
          Update(\zeta_1, \zeta_2, \zeta_3, \zeta_4) \triangleq
45
            \tilde{\zeta}_1 of the form ([(\lambda_{l_1}(u_1 \ k_1) \ call_1)], \hat{d}_1, h_1)
             \tilde{\zeta}_{2} of the form ([(f e_{2} (\lambda_{\gamma_{2}} (u_{2}) call_{2}))^{l_{2}}], tf_{2}, h_{2})
46
             \ddot{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \ \mathring{d}_3, \ h_2)
\ddot{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], \ tf_4, \ h_4)
47
48
49
             \hat{d} \leftarrow \hat{A}_u(e_4, \gamma_4, tf_4, h_4)
                          \begin{cases} tf_2[f \mapsto \{[(\lambda_{l_3}(u_3 \ k_3) \ call_3)]\}] & S_7(l_2, f) \\ tf_2 & H_7(l_2, f) \end{cases}
50
                                                                             H_2(l_2, f) \vee Lam_2(f)
             \tilde{\varsigma} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \ \tilde{d}, \ tf, \ h_4)
51
52
             Propagate($\tilde{\circ}_1, \tilde{\circ}_1 false)
          Final(\bar{c}) \triangleq
53
             \zeta of the form ([(k e)], tf, h)
             insert (halt, \tilde{A}_u(e, \gamma, tf, h), \emptyset, h) in Final
54
```

Figure 8: CFA2 workset algorithm

The AAM way

Break circularity with indirection

Approximation tuning: alloc

$$\sigma \sqcup [a \mapsto \{rt(e, \rho, \sigma')\}]$$

Approximation tuning: alloc

Approximation tuning: **alloc**

```
C ::= halt | K∘C

C ::= halt | ♯ (ctx)
```

```
C ::= halt | κ∘C

C ::= halt | ♯ (ctx)

ctx ::= ⟨e, ρ, σ⟩ | ⟨κ, ν, σ⟩
```

The new context

Prompts treated just like function calls

The new context

Prompts treated just like function calls

call
$$\langle K, V, \sigma, K, C \rangle$$

$$\downarrow \qquad \qquad \langle K, \#(ctx), V, \sigma \rangle$$
with $ctx = (K, V, \sigma)$

$$\Xi' = \Xi \sqcup [ctx \mapsto \{\langle K, C \rangle\}]$$

Approximate contexts mean all instantiations from **E**

Approximate contexts mean all instantiations from **E**

$$\langle rt(e, \rho, a), C, v \rangle$$

Approximate contexts mean all instantiations from **=**

```
\langle \text{rt}(e, \rho, a), C, v \rangle \mapsto \langle \kappa, C, v \rangle
where \kappa \in \bigcup \{\Xi(e, \rho, \sigma) : \sigma \in \Xi(a)\}
```

Approximate contexts mean all instantiations from **=**

```
\langle \text{rt}(e, \rho, a), C, v \rangle \mapsto \langle \kappa, C, v \rangle
where \kappa \in \bigcup \{\Xi(e, \rho, \sigma) : \sigma \in \Xi(a)\}
M' = M \sqcup \bigsqcup_{\sigma \in \Xi(a)} [(e, \rho, \sigma) \mapsto \{v\}]
```

• Design: Model abstract mechanisms concretely

- Design: Model abstract mechanisms concretely
- Pushdown: Memo and local continuation tables

- Design: Model abstract mechanisms concretely
- Pushdown: Memo and local continuation tables
- Works for control operators / GC (not shown)

- Design: Model abstract mechanisms concretely
- Pushdown: Memo and local continuation tables
- Works for control operators / GC (not shown)

https://github.com/ianj/pushdown-shift-reset

Thank you

Garbage collection

Read root addresses of κ through Ξ

$$\mathscr{T}(\mathsf{rt}(\mathsf{e},\ \mathsf{\rho},\ \mathsf{\sigma})) = \bigcup \{\mathscr{T}(\mathsf{\kappa}) : \mathsf{\kappa} \in \Xi(\mathsf{e},\ \mathsf{\rho},\ \mathsf{\sigma})\}$$