MATH 3940-1 Numerical Analysis for Computer Scientists

Problem Set 3: Nonlinear Equations

Note: You can use Octave or Matlab for the questions that says to use Matlab.

1. Let
$$g(x) = \frac{x^2}{4} + \frac{5x}{4} - 3$$
.

- (a) Solve the equation x = g(x).
- (b) Perform 3 iterations of the fixed point method starting with $p_0 = -3.5$.
- (c) Do you expect fixed point method to converge with an initial approximation $p_0 = -3.5$? Justify your answer using the condition of convergence.
- (d) Use Matlab to perform 40 iterations of fixed point method to solve x = g(x), starting with $p_0 = -3.5$, and a tolerance of 10^{-5} . Do you get the expected convergence/divergence as your answer in part (c)?
- (e) Do you expect fixed point method to converge with an initial approximation $p_0 = -0.25$? Justify your answer using the condition of convergence.
- 2. Given the equation $x^3 + x^2 3x 3 = 0$.
 - (a) Use the Matlab built-in function to find all roots of the above equation.
 - (b) Use Matlab to perform 25 iterations of the fixed point method for each of the following functions, starting with $p_0 = 1$ and a tolerance of 10^{-5} . In the case of convergence, mention the number of iterations when the convergence is achieved.

(i)
$$g_1(x) = \sqrt{\frac{3+3x-x^2}{x}}$$

(ii)
$$g_2(x) = -1 + \frac{3x+3}{x^2}$$

(iii)
$$g_3(x) = \frac{x^3 + x^2 - x - 3}{2}$$
.

- 3. Consider the equation: $x^3 + 2x = 1$.
 - (a) Can we use bisection method to find a solution of the equation starting with the interval [0,1]? Justify your answer using the conditions of convergence.
 - (b) Using hand calculations, perform 3 iterations of the bisection method starting with the interval [0, 1].
 - (c) Using hand calculations, perform 2 iterations of the method of false position starting with the interval [0, 1].
 - (d) Using hand calculations, perform 3 iterations of the secant method starting with the initial values $p_0 = 0$ and $p_1 = 1$.

- 4. Consider the equation: $x 2^{-x} = 0$
 - (a) Use the Matlab built-in function to find the root near 0.
 - (b) Use Matlab to perform 20 iterations of the bisection method with initial values a = 0, b = 1 and tolerance 10^{-5} .
 - (c) Use Matlab to perform 20 iterations of the method of false position with initial values a = 0, b = 1, tolerance $= 10^{-5}$ and epsilon $= 10^{-10}$.
 - (d) Use Matlab to perform 20 iterations of the secant method starting with the initial values $p_0 = 0$, $p_1 = 1$, tolerance= 10^{-5} and epsilon= 10^{-10} .
 - (e) Use Matlab to perform 20 iterations of Newton's method with the initial approximation $p_0 = 1$, tolerance= 10^{-5} and epsilon= 10^{-10} .
 - (f) Based on your results from parts (b) (e), which method is more successful. Explain your answer using the convergence rates.
- 5. Consider the equation: $x \cos x = x$
 - (a) Using hand calculations find the exact solution(s) in the interval $[-\pi, \pi]$.
 - (b) Using hand calculations, perform 2 iterations of Newton's method starting with the initial approximation $p_0 = 1$.
 - (c) Use Matlab to perform 15 iterations of Newton's method with the initial approximation $p_0 = 1$, tolerance= 10^{-5} and epsilon= 10^{-7} .