# Working with Oracle SQL

Chapter 1:

What Is Structured Query Language?

# Chapter Objectives

In this chapter, we will discuss:

- The role of SQL
- Concepts of data modeling
- The course environment
- SQL Developer
- SQLPLUS

# **Chapter Concepts**



#### What Is SQL?

Designing a Database

The Course Environment

Using SQL Developer

Using sqlplus

**Chapter Summary** 

# The Role of SQL

- SQL is a common interface between client and database server
- SQL is the interface between the application program and the database
  - SQL stands for Structured Query Language
  - But, SQL is really a data sublanguage, which is more like an access method than a complete programming language



# The Role of SQL (continued)

- Application programs may be:
  - 3GL programs
  - 4GL or application generator programs
  - Report generator programs
  - End-user point-and-click programs
  - Spreadsheets
  - Any frontend tool with SQL interface capability
  - Stored PL/SQL procedures
- Your ability to produce real-world programs will depend on your ability to write SQL statements

#### **Result-Oriented**

- SQL is a result-oriented language
  - Specify the desired result rather than step-by-step instructions of what to do
- Example:
  - If we have this table:
  - Then this query against the Scott schema:

• Will produce this result:



| DEPTNO | DNAME      | LOC      |
|--------|------------|----------|
| 10     | ACCOUNTING | NEW YORK |
| 20     | RESEARCH   | DALLAS   |
| 30     | SALES      | CHICAGO  |
| 40     | OPERATIONS | BOSTON   |



| DEPTNO | DNAME    |
|--------|----------|
| 20     | RESEARCH |

# **SQL** Standard

- SQL is the standard language for relational databases
  - Unfortunately, different products implement commands differently
  - This course will adhere to the standards where possible
    - Some topics will be non-standard but will be indicated as such
- SQL functionality has evolved significantly over the years



# **Chapter Concepts**

What Is SQL?



**Designing a Database** 

The Course Environment

Using SQL Developer

Using sqlplus

**Chapter Summary** 

# Logical Data Model

- Provides a level of abstraction from physical database design by representing data in terms of "logical" or business entities and the relationships between them
- Represents business information and rules
- Provides the input to physical database design
- Comprised of four critical elements
  - Entities
  - Attributes
  - Relationships
  - Candidate keys

# Entity

- An object of importance
  - A uniquely identifiable person, place, thing, action, concept, object, or event about which information needs to be known or held
- Represented as a soft box
- Example:



#### Attribute

- A fact that is a nondecomposable unit of information about an entity
  - Qualify, identify, classify, quantify, or express the state of an entity
- Example:
  - employee id, last name, and first name are attributes of the employees entity
- Further defined by indicating whether or not it is mandatory
  - That is, if it must exist for every occurrence of an entity
- Example:
  - employee id is mandatory, whereas phone number is not required

# Attribute Datatype

- Each attribute is further qualified by a datatype
- Common datatypes are NUMBER, CHAR, and DATE
  - NUMBER represents numerical values, CHAR represents character strings, and DATE represents dates

# Relationship

- Association between two entities
- Defined by a verb or a preposition connecting two entities
- Both ends must be named
- Example:



# Relationship Cardinality

- Cardinality defines the expected number of related occurrences for each entity
- Most common cardinality is one to many (1:M)
- Example:
  - Department may have many employees, while each employee must represent one and only one department
- Indicates the parent entity (at the "one" end) and the child entity (at the "many" end)
- Example:
  - Departments is the parent and employees is the child

# Relationship Optionality

- Defines coexistence of the two entities
- Defined at both ends of the relationship to indicate if a parent can exist without a child and if the child can exist without a parent
- Example:
  - Department may or may not have employees, whereas an employee must belong to a department

# Reading Relationships

- Relationships are read in both directions
  - Cardinality and optionality are both included

| EACH | Entity1 | MAY  | Relationship | ONE AND ONLY ONE | Entity2 |
|------|---------|------|--------------|------------------|---------|
|      |         | MUST |              | ONE OR MORE      |         |

- Examples:
  - Each department may have one or more employees
  - Each employee must belong to one and only one department



# Recursive Relationship

- A relationship from an entity onto itself
- Captures a hierarchical structure, such as a reporting tree in an organization
- For example, a recursive relationship captures the fact that each employee may be managed by another employee
  - Each employee may manage one or more employees
  - Each employee may be managed by one and only one employee



# Candidate Key

- An attribute or a minimal set of attributes that uniquely identify a specific row
- Examples:
  - employee id uniquely identifies a employee
  - A combination of first\_name, last\_name, and phone\_number uniquely identify an employee

# Transforming a Logical Data Model to a Database Design

Concepts in the logical model are mapped to database structures

| Logical       | Physical              |
|---------------|-----------------------|
| Entity        | Table                 |
| Attribute     | Column                |
| Candidate key | Primary or unique key |
| Relationship  | Foreign key           |

• Tables and columns are usually a simple mapping from entities and attributes

# Primary and Unique Keys

- A unique key has the same definition as a candidate key: a column or a minimum set of columns that uniquely identifies a specific row
- A primary key has the same definition as a unique key but with two further restrictions
  - It must be composed of mandatory columns
  - Only one primary key is allowed for each table
- Once the primary key is selected from a valid list of candidate keys, the remaining candidate keys are mapped to unique keys
- Example:
  - employee id will be selected as a primary key because it is mandatory
  - The combination of first\_name, last\_name, and phone\_number will become a unique key

# Foreign Key

- By definition, a relationship copies candidate key columns of a parent table to a child table
- Foreign key enforces this relationship using two rules
  - Values in the relationship columns of the child table exist in the parent table
  - Cannot change values in the parent table that are referenced in the child table
- Example:
  - Foreign key corresponding to the department employee relationship has these rules
    - The value of department id in the employee table must previously exist in the departments table
    - The value of department id in the departments table cannot be modified if it is used in the employees table

# **Chapter Concepts**

What Is SQL?

Designing a Database





Using SQL Developer

Using sqlplus

**Chapter Summary** 

#### Course Exercises

- The exercises in this course all use standard Oracle user accounts
- When an Oracle Database is created, Oracle optionally embeds several users with populated schemas
  - These can then be used for training and demonstrating various features
- For experience in using multiple accounts, two of these user accounts (HR and SCOTT) have been selected for use
  - In each exercise, be careful to connect to the appropriate account
- The implication is that the students of this course can then go back and practice the lab exercises at any time without needing special setups from ROI

# ER Diagram—HR Account



# ER Diagram—SCOTT Account



# **Conventions for Command Syntax**

• The following command syntax is used in this course:

| Feature         | Example               | Explanation                               |
|-----------------|-----------------------|-------------------------------------------|
| Uppercase       | CREATE                | Reserved word; enter exactly as spelled   |
| Lowercase       | column_name           | Substitute an appropriate value           |
| Three periods   | role_name,, role_name | Items may be repeated any number of times |
| Square brackets | [NOT NULL]            | Optional item                             |
| Vertical bar    | ON   OFF              | Alternative item; use one or the other    |

# **Chapter Concepts**

What Is SQL?

Designing a Database

The Course Environment



**Using SQL Developer** 

Using sqlplus

**Chapter Summary** 

# SQL Developer

- Oracle SQL Developer is a graphical tool used to work with a database
  - Simplifies basic tasks for DBAs and developers
  - Released in 2006
- Developed in Java
  - Runs on Windows, Linux, and Mac OS X
- Supports Oracle 9i and later
- Key concepts
  - Connections
  - Object Navigator
  - SQL Worksheet

#### Connections

- Each connection is configured for a single Oracle user
  - Uses standard Oracle database authentication
- Can also connect to third party databases
  - Access, SQL Server, MySQL
- All connections are listed in the Connections window
  - Drill down each connection to view the objects to which the user has access
- Create a new connection using the icon (+) at the top of the Connections window
  - Requires information about the server, such as user, password, server name

# Object Navigator and Details

- Expanding a Connection node exposes the Object Navigator
  - Automatically connects if not connected yet
- First level under the connection is a list of object types such as tables, views, and indexes
- Next level contains a list of objects
  - Example: table names (departments, employees, ...)
- When an object is selected, specific information is displayed
  - Information varies by object type
  - Selected by clicking an object in the Object Navigator
- Tables have the following commonly used tabs:
  - Columns—displays the structure of the table (columns, datatypes, etc.)
  - Data—displays the data from the table
  - SQL—includes the SQL to create the object

# SQL Worksheet

- SQL Worksheet allows you to enter SQL and PL/SQL statements
  - Also supports some SQL\*Plus commands
- Top window is a SQL statement editor
  - Supports both DML and DDL statements
  - Examples: creating tables, inserting data, selecting data
- Bottom windows display results
- Key components
  - Editor
  - Results window
  - Script Output window

#### Editor

- Used for writing SQL statements and executing scripts
  - Oracle keywords are highlighted automatically
  - Supports standard file operations such as open, save, and print
  - The Eraser icon clears the contents of the Editor
- To pull in a column or a table, drag it from the Object Navigator
  - For tables, a SQL statement is created automatically
- To format the statement, right-click in the Editor and select Format SQL
- To recall a previous command, click SQL History icon
  - History is maintained even if you close SQL Developer

#### Results Window

- Displays output from a single SELECT statement
  - Execute using Execute Statement icon or <F9> function key
- If multiple statements exist in the editor, only the one where the cursor is located will be executed
  - The line where the cursor exists is highlighted
  - Each statement must end with a semicolon, otherwise an error is displayed
- To sort data by one column, double-click the column heading
  - Once for ascending, a second time for descending
  - To sort by multiple columns, use an ORDER BY clause
- Right-click in the Results window to use the following features:
  - Auto Fit to format column widths
  - Count Rows to get the total number of records returned
  - Single Record View to view a single record at a time

# Script Output Window

- Displays results of all commands in the editor
  - Execute using Run Script icon or <F5> function key
- Each statement in the editor is executed one after another
- For each statement, all results are displayed one after another
  - In contrast, the Results Window displays results of only one statement and only 50 rows at a time
  - Number of rows can be changed in Preferences Worksheet Parameters
- Use icons at the top of the Script Output Window to:
  - Clear the contents of the window
  - Save the contents to a file
  - Print the contents

# **Exporting Data**

- Data can be exported from the Results Window and the Table Data Tab
  - Right-click in the Results Window and select Export Data
- Export Data pop-up provides the following features:
  - Output to a File or the Clipboard
  - Choose a file format such as TEXT, CSV, XML, HTML, XLS
  - Select the columns to include:
    - Default is ALL
  - Enter a WHERE clause to restrict the results
- The Apply button generates the file

# Exercise 1.1: Using SQL Developer



• Please complete this exercise in your Exercise Manual

**20** min

# **Chapter Concepts**

What Is SQL?

Designing a Database

The Course Environment

Using SQL Developer



**Chapter Summary** 

#### sqlplus

- SQL\*Plus is primarily a command-line application, but, despite its lack of "flash," it is a
  workhorse tool used daily by database administrators, developers, and yes, even end
  users.
- SQL\*Plus is essentially an interactive query tool with some scripting capabilities.
  - You can enter a SQL statement, such as a SELECT query, and view the results.
  - You can execute data definition language (DDL) statements to create tables and other objects.
  - DBAs can use SQL\*Plus to start up, shut down, and otherwise administer a database.
  - You can even enter and execute PL/SQL code.

# **Chapter Concepts**

What Is SQL?

Designing a Database

The Course Environment

Using SQL Developer

Using sqlplus



#### Chapter Summary

In this chapter, we have discussed:

- The role of SQL
- Concepts of data modeling
- The course environment
- SQL Developer
- The Fidelity Development Environment