

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Podstawy Automatyki

Informatyka Stosowana, rok II

Charakterystyki częstotliwościowe podstawowych obiektów dynamicznych

Cel ćwiczenia: zapoznanie się z charakterystykami częstotliwościowymi (odpowiedziami obiektu na wymuszenie sinusoidalne) podstawowych obiektów dynamicznych.

Ćwiczenie ma być wykonane drogą symulacji w środowisku MATLAB. Należy zbadać odpowiedzi obiektów takich jak:

• obiekt inercyjny I rzędu
$$G(s) = \frac{k}{Ts+1}$$

• obiekt inercyjny II rzędu
$$G(s) = \frac{k}{T_1 T_2 s^2 + (T_1 + T_2) s + 1}$$

• obiekt oscylacyjny II rzędu
$$G(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1}$$

• obiekt całkujący z inercją I rzędu
$$G(s) = \frac{k}{T_i s(Ts+1)}$$

• obiekt różniczkujący rzeczywisty
$$G(s) = \frac{T_d s}{T s + 1}$$

• obiekt inercyjny I rzędu z opóźnieniem
$$G(s) = \frac{e^{-s\tau}}{Ts+1}$$

na wymuszenie sinusoidalne postaci: $A \sin(\omega t)$.

$$u = A_1 \sin(\omega t)$$
OBIEKT
$$y = A_2 \sin(\omega t + \varphi)$$

dla częstotliwości ω zmieniającej się w zakresie $[0, \infty)$, gdzie A jest amplitudą a ω fazą.

1. Zapis transmitancji w MATLABIE

Transmitancja jest reprezentowana przez dwa wektory, zawierające współczynniki jej licznika i mianownika (w kolejności od najwyższej potęgi "s"). Sposób zapisu powyższych obiektów jest podany w tabeli:

Transmitancja	Zapis licznika transmitancji	Zapis mianownika transmitancji
$G(s) = \frac{k}{Ts+1}$	licz = [0,k]	mian = [T,1]
$G(s) = \frac{k}{T_1 T_2 s^2 + (T_1 + T_2) s + 1}$	licz = [0,0,k]	mian = [T1*T2 ,T1+T2 ,1]
$G(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1}$	licz = [0,0,k]	mian = [T^2,2*ksi*T,1]

$G(s) = \frac{k}{T_i s(Ts+1)}$	licz = [0,0,k]	mian = [T*Ti , Ti , 0]
$G(s) = \frac{T_d s}{Ts + 1}$	licz = [Td,0]	mian = [T,1]
$G(s) = \frac{e^{-s\tau}}{Ts+1}$	zob. poprzednie ćwiczenie	zob. poprzednie ćwiczenie

Uwaga: należy stosować zapis z użyciem zmiennych symbolicznych (T, k, itp.) po wcześniejszym nadaniu im konkretnych wartości liczbowych.

2. Wyznaczanie charakterystyk częstotliwościowych

Do wyznaczania charakterystyk częstotliwościowych należy wykorzystać następujące funkcje:

- bode(licz, mian); charakterystyka amplitudowa i fazowa (wykres Bodego)
- nyquist(licz, mian); charakterystyka amplitudowo fazowa (wykres Nyquista)

Jeżeli funkcje te nie zawierają argumentów wyjściowych (tak jak powyżej) to automatycznie generowany jest wykres odpowiedniej charakterystyki.

W przypadku wykresu Bodego, jeżeli funkcja ma argumenty wyjściowe postaci:

to otrzymuje się wektory amplitudy (A) i fazy (F) dla częstotliwości zdefiniowanej w wektorze *omega*. Wektor *omega* powinien zawierać częstotliwości w skali logarytmicznej – można go łatwo utworzyć za pomocą funkcji LOGSPACE:

```
omega = logspace(D1, D2, N);
```

która generuje wektor N równomiernie rozłożonych punktów (w skali logarytmicznej) pomiędzy dekadami 10^{D1} a 10^{D2} (np. DI = -2, D2 = 2).

Aby otrzymać A w decybelach należy podstawić:

$$A db = 20*log10(A);$$

Wykres w skali logarytmicznej na osi x tworzy się za pomocą funkcji SEMILOGX:

```
semilogx(omega,A db);
```

W przypadku wykresu Nyquista, jeżeli funkcja ma argumenty wyjściowe postaci:

```
[Re,Im] = nyquist(licz, mian);
```

otrzymuje się wektory części rzeczywistych (Re) i urojonych (Im) transmitancji widmowej dla częstotliwości z zakresu $[0,\infty)$.

Można je narysować następująco:

```
plot(Re(:), Im(:));
```

Uwaga: otrzymamy w ten sposób wykres charakterystyki amplitudowo – fazowej jedynie dla dodatnich czestotliwości.

3. Sprawozdanie

W sprawozdaniu należy zamieścić rysunki charakterystyk częstotliwościowych dla każdego z wymienionych obiektów (tak jak na przykładowym rysunku poniżej). W jednym oknie graficznym mają się znaleźć trzy wykresy (wykres Nyquista i para wykresów Bodego). Do tego celu trzeba wykorzystać funkcję subplot. Dla obiektu oscylacyjnego należy wykonać wykresy dla współczynnika tłumienia ξ większego i mniejszego od 1. Cały program powinien być zrealizowany w jednym m-pliku.

Dodatkowo, należy zinterpretować uzyskane wykresy, tzn. wyjaśnić jakie informacje o obiekcie można odczytać z wykresów Bodego i Nyquista.

Charakterystyki częstotliwościowe dla obiektu inercyjnego II rzędu.