dECMT

digital Experimental
Cancer Medicine Team

Overview

Where we are?

Multidisciplinary team, freedom to operate, focussed on decision Science R&D and and patient benefit

We operate at the intersection between patients, science, technology and the clinic.

Experimental Cancer Medicine

- Digital methods for supporting clinical trials.
- Personalised treatments.
- Evolving clinical decision-making.

Experimental Cancer Medicine

	Phase II	Phase III	Phase IV
Phase I 20-80	100-300 participants	1,000-3,000 participants	Thousands of participants
participants Up to several months	Up to (2) years	One (1) - Four (4) years	One (1) year +
Studies the safety of medication/treatment	Studies the efficacy	Studies the safety, efficacy and dosing	Studies the long-term effectiveness; cost effectiveness
70% success rate	33% success rate	25-30% success rate	70-90% success rate

AI@dECMT

- Agile AI-supported biomarker discovery and clinical validation.
- Measurable impact on patient's lives.
- AI: Safe, Explainable & Ethical (SEE).
- Technology clinical trials as a first-class citizen.

The Gap

Strategy – Focal Points

Discovery & Validation

Strategy – Focal Points

Research

Agile Biomarker
Discovery & Validation

Strategy – Focal Points

Discovery & Validation

Project Portfolio

Portfolio of Digital Tools

Data interpretation

PROACT In-trial patient insight about an experimental medicine

Data acquisition

IN-HOME (nephro-oncology)

Improve kidney injury detection:

- in-home sampling
- data-driven algorithms

Data science and research

NOTION Study

Early detection of immune toxicity

REACT®

Advanced visualisations for real-time clinical decisions

eSOURCE

Digital solution for data acquisition in early phase trials

Ophthalmo-oncology

Al/machine learning enhanced retinal monitoring

eTARGET

Virtual molecular tumour board: supports decision making

Treatment tracker

Giving patients back control over their time in hospital

IMATCH

Digital science to develop rapid monitoring capabilities and early-warning systems

Building Data Rich Clinical Trials (CCE-DART)

- Adaptive treatment decisions over the course of the trial;
- Longitudinal analysis of molecular data collected prospectively and enabling intermediate tumor response assessment and early treatment response predictive markers;
- Incorporation of <u>novel complex multi-layer integrated biomarkers</u> to better stratify patients based on a systems cancer view perspective;
- new statistical methodologies facilitating a more precise calculation of sample size as well as seamless designs;
- infrastructure to collect and share real world data for retrospective/ prospective validation and data mining, with emphasis in supporting <u>new analytical algorithms (including AI-based models)</u>;
- new imaging techniques to assess treatment efficacy (i.e. beyond RECIST1.1);
- <u>standardized</u> procedures for data representation and analysis optimizing the use of modern technological platforms;

Recommended Action and Predicted COVID-19 Severity

https://coronet.manchester.ac.uk/

Longitudinal characterisation of haematological and biochemical parameters in cancer patients prior to and during COVID-19 reveals features associated with outcome, ESMO Open, 2021.

Establishment of CORONET; COVID-19 Risk in Oncology Evaluation Tool to identify cancer patients at low versus high risk of severe complications of COVID-19 infection upon presentation to hospital, medRXiv, 2021.

Patient in Whole Cohort

https://coronet.manchester.ac.uk/

- Not admitted
- Admitted, no oxygen required
- Admitted, oxygen supplied
- Admitted, oxygen supplied, death attributed to COVID-19

Hide Information

The plot shows all patients used for training of the CORONET model. Each dot represents an individual patient. The colour corresponds to their true outcome. The location on the X-axis is determined by the CORONET score based on the individual's data.

Patient in Whole Cohort

https://coronet.manchester.ac.uk/

- Not admitted
- Admitted, no oxygen required
- Admitted, oxygen supplied
- Admitted, oxygen supplied, death attributed to COVID-19

Hide Information

The plot shows all patients used for training of the CORONET model. Each dot represents an individual patient. The colour corresponds to their true outcome. The location on the X-axis is determined by the CORONET score based on the individual's data.

Important Features Contributing to the Model Prediction for Your Patient

The score recommends overall to: consider admission.

- Cytokine Release Syndrome
- Predicting/Detecting Toxicity Effects
 e.g. Acute Kidney Injury
 OCT scans

SARS-CoV-2/Oncology

Toxicity Monitoring

Molecular Tumour Boards (MTBs)

Explainable & Knowledge-based Al

Patient with prostate cancer, R130STOP mutation in *PTEN* gene AI Model recommends clinical trial NCT02975934

because:

- o R130STOP causes loss of PTEN function COSMIC database
- o PTEN protein is involved in homologous recombination repair KEGG pathway
- o Loss of PTEN function causes a defect in homologous recombination repair source
- o A defect in homologous recombination repair makes cells sensitive to DNA double strand breaks source
- o Inhibition of the DNA base excision repair pathway blocks DNA single strand break repair KEGG pathway
- o Blockage of DNA single strand break repair leads to creation of DNA double strand breaks source
- PARP1 is part of the DNA single strand break repair pathway <u>KEGG pathway</u>
- -> PARP1 inhibition might be effective in this patient.
- o No PARP inhibitors are approved in the UK for treatment of prostate cancer.
- o Rucaparib inhibits PARP1 NCI thesaurus
- o Rucaparib is approved in the UK for treatment of ovarian, fallopian tube and peritoneal cancers NICE
- § (Rucaparib is well-tolerated)
- o NCT02975934 includes rucaparib AACT
- o NCT02975934 is currently recruiting AACT
- o NCT02975934 has open sites in the UK AACT
- o NCT02975934 is enrolling patients with prostate cancer AACT

Key Message

- Engaged clinical (oncology) partners.
- Access to experts and to data*.