AEM 668 Project 3

Structural-Mode Analysis and Control of Airplane

Learning Objective

This project is intended to introduce structural-mode analysis and control for elastic aerospace vehicle dynamics in the context of dampening the modal displacement.

Dynamical System

Consider an elastic airplane with the following geometric, mass, and structural-mode data

Vehicle Length	l_f	143 ft	Weight	W	288,000 lb at MSL
C.g. location	l_{cg}	88.42 ft	Cockpit location	x_{cp}	63.4 ft
from nose			from c.g.		
Wing	S_w	1,950 ft ²	Inertias	I_{xx}	$1.5 \times 10^5 \text{ sl-ft}^2$
Geometry	\bar{c}_w	15.3 ft		I_{yy}	$7.0 \times 10^6 \text{ sl-ft}^2$
	b_w	70 ft		I_{zz}	$7.1 \times 10^6 \text{ sl-ft}^2$
	Λ_w	65°		I_{xz}	$-5.27 \times 10^4 \text{ sl-ft}^2$
Mode 3 Generalized Mass	M	184 sl-ft ³	Mode 3 Frequency	ω	12.6 rad/sec
Mode 3 Displacement at x_{cl}	$v_Z(x_{cp})$	0.32 ft	Mode 3 Shape	$v_Z'(x_{cp})$	-0.027 rad

where modes 1 and 2 are the implicit rigid-body modes, the phugoid and the short-period and mode 3 can be understood as the elastic-body *first fuselage bending mode*.

Consider the following trimmed coordinated, straight-and-level flight condition for cruise, i.e., $\bar{\gamma} = \bar{\beta} = \bar{\phi} = 0$

Altitude	\bar{h}	5000 ft	Mach number	M_{∞}	0.6
Airspeed	$\bar{v}_{\infty} = \bar{u}$	659 ft/s	Angle of Attack	$\bar{\alpha}$	0°
Lift Coefficient	$ar{C}_L$	0.340	Drag Coefficient	\bar{C}_D	0.028

with longitudinal stability and control derivatives

State/Input	X_{ullet}	Z_{ullet}	M_{ullet}	Ξ
и	-0.013	-0.1001	0.003	0
α	19.45	-283.3	-3.445	-1075
$\dot{\alpha}$	0	0	-0.1035	0
$\mid q$	-1.913	16.55	-3.136	-79.44
δ_e	14.83	-42.22	-5.346	-923.0

δ_f	0.742	2.11	3.376	89.53
$\mid \stackrel{\circ}{\eta}$	0	-2.812	-0.0663	4.219
$\dot{\eta}$	0	-0.0968	-0.00372	-0.3502

where one can assume a linear aerodynamic and propulsive force and moment model as

$$\Delta X = X_u \Delta u + X_\alpha \Delta \alpha + X_q \Delta q + X_{\delta_e} \Delta \delta_e + X_{\delta_f} \Delta \delta_f \tag{1}$$

$$\Delta Z = Z_u \Delta u + Z_\alpha \Delta \alpha + Z_q \Delta q + Z_{\delta_e} \Delta \delta_e + Z_{\delta_f} \Delta \delta_f + Z_\eta \eta + Z_{\dot{\eta}} \dot{\eta}$$
 (2)

$$\Delta M = M_u \Delta u + M_\alpha \Delta \alpha + M_{\dot{\alpha}} \Delta \dot{\alpha} + M_q \Delta q + M_{\delta_e} \Delta \delta_e + M_{\delta_f} \Delta \delta_f + M_\eta \eta + M_{\dot{\eta}} \dot{\eta}$$
 (3)

and

$$\Xi = \frac{Q}{\mathcal{M}} = \Xi_{\alpha} \Delta \alpha + \Xi_{q} \Delta q + \Xi_{\delta_{e}} \Delta \delta_{e} + \Xi_{\delta_{f}} \Delta \delta_{f} + \Xi_{\eta} \eta + \Xi_{\dot{\eta}} \dot{\eta} = \ddot{\eta} + 2\zeta \omega \dot{\eta} + \omega^{2} \eta \tag{4}$$

with $\zeta = 0.01$.

Here δ_e is the *elevator input* for steering the airplane and δ_f is the *fin input* for dampening the structural-mode experienced at the cockpit. For this project, the elevator and fin actuators can be modeled as first-order systems with bandwidths as 50 rad/s. For this airplane, the cockpit, x_{cp} , experiences an acceleration modeled as

$$\Delta a_{Z_{cp}} = \bar{u}\Delta\dot{\alpha} - \bar{u}\Delta q - x_{cp}\Delta\dot{q} + \nu_Z(x_{cp})\ddot{\eta}$$
 (5)

First, for designing a passive *structural-mode controller* (*SMC*) with a feedback controller, $K_{P-SMC}(s)$, as

$$\delta_{e,a} = -K_{P-SMC}(s)\Delta a_{Z_{cp}} = -K_{P-SMC,p} \left(\frac{s^2 + 2\zeta_n \omega_n s + \omega_n^2}{s^2 + 2\zeta_{id}\omega_n s + \omega_n^2} \right) \Delta a_{Z_{cp}}$$
 (6)

where $K_{P-SMC,p} > 0$ is the proportional gain, ω_n is the *notch filter*'s center frequency, ζ_n is the notch filter's zero damping, and $\zeta_{id} \gg \zeta_n$ increases the damping ratio about the notch filter's center frequency. This passive SMC can be modeled as the following block diagram.

Second, for designing a active *structural-mode controller* (SMC) with a feedback controller, $K_{A-SMC}(s)$, as

$$\delta_{f,c} = -K_{A-SMC}(s)\Delta a_{Z_{cp}} = -K_{A-SMC,p} \left(\frac{s}{s+\omega_{h-p}}\right) \left(\frac{\omega_{l-p}}{s+\omega_{l-p}}\right) \Delta a_{Z_{cp}} \tag{7}$$

where $K_{A-SMC,p} > 0$ is the proportional gain, ω_{h-p} is the high-pass filter corner frequency, ω_{l-p} is the low-pass filter corner frequency and $\omega_{h-p} < \omega_{l-p}$ implies the band-pass filter design for this SMC. Here the high-pass filter approximates the integration of the acceleration at the cockpit, $a_{Z_{cp}}$, to obtain the velocity at the payload and the low-pass filter causes the δ_f to ignore low-frequency vertical accelerations. This active SMC can be modeled as the following block diagram.

Project Assignment and Deliverables

For this project, determine in MATLAB/Simulink:

- a) Determine, label, and output to the command window the open-loop longitudinal modal characteristics for the phugoid, short-period, and structural modes of the vehicle including:
 - (a) eigenvalues;
 - (b) natural frequencies;
 - (c) damping ratios; and
 - (d) comments on the meaning of the values.
- b) Output the frequency responses of the cockpit vertical acceleration versus the two inputs, i.e., $\frac{\Delta a_{Z_{CP}}(j\omega)}{\Delta \delta_{e,c}(j\omega)}, \text{ and } \frac{\Delta a_{Z_{CP}}(j\omega)}{\Delta \delta_{f,c}(j\omega)}.$ • Comment on the ability of the control surfaces to excite the different modes.

 - Compare their magnitudes for the different modes.
- c) Output the root locus plot of $K_{P-SMC,p}$ for the passive SMC, $K_{P-SMC}(s)$.
 - Choose ω_n and ζ_n to match the structural-mode natural frequency and damping ratio and $\zeta_{id} = 30\zeta_n$ to notch out the vibration effects of the elevator control input.
 - Use the rlocus MATLAB function.
 - Comment on the ability of the passive SMC and the effects of choosing a proportional gain too high.
- d) Output the root locus plot of $K_{A-SMC,p}$ for the active SMC, $K_{A-SMC}(s)$.
 - Choose $\omega_{A-SMC,l-p}$ above the structural-mode frequency and $\omega_{A-SMC,h-p}$ below the structural-mode frequency to actuate the fin as additional dampening for the structuralmode.
 - Use the rlocus MATLAB function.
 - Comment on the ability of the active SMC and the effects of choosing a proportional gain too high.
- e) Design an passive and active SMC, and
 - $K_{P-SMC,p}$;
 - ω_n ;
 - ζ_n ;
 - *ζ*_{*id*};
 - $K_{A-SMC,p}$;
 - $\omega_{A-SMC,l-p}$;
 - $\omega_{A-SMC,h-p}$;
 - output the frequency response of the closed-loop systems
 - determine, label, and output to the command window the closed-loop modal characteristics for the phugoid, short-period, elastic mode, actuators, and both choices of SMC with your choice of proportional gains that stabilize the system, include:
 - eigenvalues;
 - natural frequencies;
 - damping ratios; and
 - comments on the changes in these values from the open-loop system.