Graded Assignment 3 Report

Data						
Workbook	Class Assignment 3	Class Assignment 3 - KNN Classifier - Student Use Dataset-1.xlsx				
Worksheet	Original Data	Original Data				
Range	\$A\$1:\$F\$151	\$A\$1:\$F\$151				
# Records in the input data	150	150				
Variables						
# Selected Variables	6	6				
Selected Variables	Species_No	Petal_width	Petal_length	Sepal_width	Sepal_length	Species_nar
Imputer Parameters						
Variable	Species_No	Petal_width	Petal_length	Sepal_width	Sepal_length	Species_nar
Reduction Type	NONE	MEAN	MEAN	NONE	NONE	NONE
# Records Treated	0	1	1	0	0	0
Missing Value Code						
# Output Records	150	150				
#Records Deleted	0					

Part C) There were two records that had missing values. One in the petal length and the other in petal width, using the missing data handling feature and replaced the missing values using the mean to replace the missing values. No dummy values are needed as there are no categorical predictor entries.

Part D) For this data mining task, KNN will be used to predict what class of Iris based on the 4 predictors. Different partitioning will be used and compared along with different K values for nearest neighbors.

Part E-H)

With a 60/40, and 80/20 partition was used along with varying k values which are tabulated in table of models tab. I then ran another partitioning with 60/40 split with a search of nearest neighbors between 1 and k (maxed to 10 in XLMiner). Above is the screenshot of the results of that model for the different k values and the misclassification percentages. According to that table a 60/40 split would be the best model to use (given that is the lowest k value greater than 3 which was stated as requirement in instructions). The k values that have a zero misclassification may suffer from overfitting and a separate score tab will be run to determine .

Scoring results k = 4 which is output 4 tab

1	Scoring					
5		Record ID 💌	Prediction: Species_name 💌	PostProb: Setosa ▼	PostProb: Verginica ▼	PostProb: Versicolor ▼
5		Record 1	Setosa	1	0	0
7		Record 2	Setosa	1	0	(
3		Record 3	Setosa	1	0	(
9		Record 4	Setosa	1	0	0
)		Record 5	Setosa	1	0	0
1		Record 6	Setosa	1	0	0
2		Record 7	Setosa	1	0	0
3		Record 8	Setosa	1	0	0
4		Record 9	Setosa	1	0	0
5		Record 10	Setosa	1	0	0
6		Record 11	Versicolor	0	0.25	0.75
7		Record 12	Versicolor	0	0	1
8		Record 13	Versicolor	0	0.25	0.75
9		Record 14	Versicolor	0	0	1
)		Record 15	Verginica	0	1	C
1		Record 16	Verginica	0	1	0
2		Record 17	Verginica	0	1	0
3		Record 18	Verginica	0	1	Q
5						
↓ → ···	Scoring_N	learestNeigh	bor1 STDPartition3 KN	INC_Output3 KNN	NC_TrainingScore3 K	(NNC_ValidationScore

Scoring results k = 5 which is output 2 tab

Scoring

23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
43	

46

Record ID	Prediction: Species_name	PostProb: Setosa	PostProb: Verginica	PostProb: Versicolor
Record 1	Setosa	1	0	0
Record 2	Setosa	1	0	0
Record 3	Setosa	1	0	0
Record 4	Setosa	1	0	0
Record 5	Setosa	1	0	0
Record 6	Setosa	1	0	0
Record 7	Setosa	1	0	0
Record 8	Setosa	1	0	0
Record 9	Setosa	1	0	0
Record 10	Setosa	1	0	0
Record 11	Versicolor	0	0.2	0.8
Record 12	Versicolor	0	0	1
Record 13	Versicolor	0	0.4	0.6
Record 14	Versicolor	0	0	1
Record 15	Verginica	0	1	0
Record 16	Verginica	0	1	0
Record 17	Verginica	0	1	0
Record 18	Verginica	0	1	0

Looking at the highlighted models, I would choose k = 4 as the best model as some of the other models had perfect accuracy which led me to believe that the model might be overfitting on the training data but could also be that the model saw all examples in the training data and was able to correctly classify those in the validation set. Looking at the second scoring results (which is from the lowest k value result), the results are similar to the k = 4 model. Looking at the other models, the ones that had perfect classification I thought that those models were overfitting at first, but the dataset is small so it might be possible that the model is not overfitting because all unique training examples were seen so validation classified correctly.