ESC201 Assignment 2

Topics

Superposition, Nodal/Mesh analysis, Thevenin/Nortan equivalent, Power, Transient analysis, Steady state.

Questions

1. Determine I_x , I_y and V_z using superposition:

- 2. Determine the power supplied by the 5V source using
 - (a) Mesh analysis
 - (b) Nodal analysis
 - (c) Superposition principle
 - (d) Thevenin's equivalent circuit between terminals A and B.

3. Use Thevenin's theorem to determine i_0 .

4. Determine current i through 2Ω resistor by building Thevenin's equivalent for the rest of the circuit.

5. Find Voltage V_L across the load resister R_L , and the current I_L flowing through the load resistor R_L , in the below circuit, by using Norton's Theorem. Where R_L = 1.5 Ω .

6. Find the Norton resistance R_N , and the Norton current I_N , at the terminals A - B.

7. Determine the power dissipated in the 10Ω resistor in the following circuit

- 8. A practical current source provides 10W to 250Ω load and, 20W to 80Ω load. A resistance R_L with voltage v_L across it, and with current i_L through it, is connected to the source. Find the values of R_L , v_L , and i_L if,
 - (a) $v_L.i_L$ is maximum.
 - (b) v_L is maximum.
 - (c) i_L is maximum.
- 9. Determine the value of R_L in the below circuit, such that maximum power is delivered into R_L . Calculate the value of the maximum power.

10. For the circuit shown below, determine the voltage across the 2K resistor (vertical) as a function of time after the switch is opened at t=0.

11. Find $v_c(t)$ for $t \ge 0$ in the following circuit if the capacitor voltage is zero for $t \le 0$.

12. Assuming that the capacitor does not have any initial charge, determine the voltage across the capacitor V(t) as a function of time after the switch is closed at t=0.

13. In the following circuit the switch S1 is closed and S2 is left open for a long time. At t=0, S1 is opened and S2 is closed. Determine the current, i_5 , through the 5Ω resistor for all time

