QCM n° 12

QCM - cocher une case si la phrase qui suit est correcte.

\Box A admet r v \Box A admet r v \Box Toute famille	Soit A une matrice de rang ecteurs colonnes linéaireme ecteurs lignes linéairement e contenant r vecteurs colon e contenant r vecteurs ligne	nt indépendants. indépendants. nnes de A est libre.		
Question n°2	Combien vaut la matrice (I	$E_{12} + E_{21})^2$?		
$\square \ 2E_{11}$	$\square \ 2E_{22}$	$\Box E_{12} + E_{21}$	$\Box E_{11} + E_{22}$	
Question n°3 S Les coefficients de l'	Soit M la matrice dont tous M^2 valent	les coefficients valent 0 s	ur la diagonale et 1 ailleurs.	
\square 0 sur la diagonale et $n-1$ ailleurs \square $n-2$ sur la diagonale et $n-1$ ailleurs			\square $n-1$ sur la diagonale et $n-2$ ailleurs \square $n-2$ sur la diagonale et n ailleurs	
-	Soit A, B deux matrices car peut quand même être inve		pas inversibles, laquelle des	
$\Box AB$	$\square \ 2A$	$\Box A + B$	\Box tA	
	Soit u un endomorphisme d' \mathscr{B} et A' la matrice de u dan	_		
$\Box A' = PA$ $\Box A' = AP^{-1}$		$\Box A' = PAP^{-1}$ $\Box A' = P^{-1}AP$		
	Soit A une matrice carrée endre le rang de A est	réelle de taille 4 telle q	ue $A^2 = 0$. L'ensemble des	
$\square \{0\}$	\square $\{0,1\}$	$\square \ \{0,1,2\}$	$\Box \{0,1,2,3\}$	

linéaires $(S_1) AX = B$ $\square (S_1)$ et (S_2) n' $\square (S_1)$ n'a pas de $\square (S_1)$ n'a pas de	B_1 et $(S_2) AX = B_2$. I ont pas de solution e solution et (S_2) a un e solution et (S_2) a un	Laquelle des situations suiv ne infinité de solutions	considere les deux systemes vantes est impossible?		
☐ Le produit de ☐ Deux permuta ☐ S_n contient $\binom{r}{2}$ ☐ S_n contient 3	tions à supports disjo $\binom{n}{2}$ transpositions. $\binom{n}{3}$ 3-cycles.	ts non disjoints est un cycl ints commutent. un nombre d'orbites impair			
	$\mathcal{M}_n(\mathbb{R})$, il existe au p Soit σ la permutation	$(t^2) = -1.$ $t \mapsto \det(tA + I) \text{ est polynomial}$ where $t \mapsto \det(tA + I)$ is a polynomial $t \mapsto t$. The polynomial $t \mapsto t$ is a polynomial $t \mapsto t$.	miale de degré n . que $A-\lambda I$ soit non inversible , définie par $\sigma(k)=k+1$ et		
o(n) = 1. Quelle est s	□ -1	$\Box (-1)^n$	$\Box \ (-1)^{n-1}$		
Question n°11 S	Soit $\sigma \in S_n$ telle que α	$\sigma^2 = \text{Id. Alors } \sigma \text{ possède for}$	prcément un point fixe		
\square si n est pair \square si n est impair		_	\square si la signature de σ vaut 1 \square dans tous les cas		
	Soit $\mathscr{B} = (e_1, e_2, \dots, e_n)$ x selon le vecteur e_1		ectoriel E et x un vecteur de		
$\Box \det (e_1, x, x, \dots, x)$ $\Box \det (e_1, e_2 + x, \dots, e_n + x)$			$\Box \det(x, e_2, \dots, e_n)$ $\Box \det_{\mathscr{B}}(x + e_1, e_2, \dots, e_n)$		
-	t on calcule les détern		s les permutations possibles enues. Combien de résultats		
□ 1	\square 2	$\Box n$	\square n !		