(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-34581 (P2003-34581A)

(43)公開日 平成15年2月7日(2003.2.7)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C 0 4 B 35/584

F16C 33/30

F 1 6 C 33/30

3 J 1 O 1

C 0 4 B 35/58

102K 4G001

審査請求 有

請求項の数9 OL (全 14 頁)

(21)出願番号

特願2001-223534(P2001-223534)

(22)出顧日

平成13年7月24日(2001.7.24)

(71)出顧人 000003078

株式会社東芝

東京都港区芝浦一丁目1番1号

(72)発明者 小松 通秦

神奈川県横浜市磯子区新杉田町8番地 株

式会社束芝横浜事業所内

(74)代理人 100078765

弁理士 波多野 久 (外1名)

最終頁に続く

(54) 【発明の名称】 窒化けい素製耐摩耗性部材およびその製造方法

(57)【要約】

【課題】高強度、高靭性特性に加えて、特に転がり特性 が優れた耐摩耗性部材およびその製造方法を提供する。

【解決手段】焼結助剤として希土類元素を酸化物に換算 して2~10質量%, MgAl2O4スピネルを2~7 質量%. 炭化けい素を1~10質量%, Ti, Zr, H f, W, Mo, Ta, NbおよびCrからなる群より選 択される少なくとも1種を酸化物に換算して5質量%以 下含有し、気孔率が1%以下であり、3点曲げ強度が9 00MPa以上であり、破壊靭性値が6.3MPa・m 1/2 以上である窒化けい素焼結体から成ることを特徴 とする窒化けい素製耐摩耗性部材である。なお上記Mg A 1 2 O 4 スピネルに代えて、MgOとA 1 2 O 3 との 混合物を用いても同様な作用効果が得られる。

スラスト型転がり摩耗試験装置

2 耐摩耗性部材 3 転動鋼球 駆動回転軸

潤滑油 転動ホール

9 軸受鋼板

20

【特許請求の範囲】

【請求項1】 焼結助剤として希土類元素を酸化物に換算して2~10質量%, MgAl2O4スピネルを2~7質量%, 炭化けい素を1~10質量%, Ti, Zr, Hf, W, Mo, Ta, NbおよびCrからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下含有し、気孔率が1%以下であり、3点曲げ強度が900MPa以上であり、破壊靭性値が6.3MPa・m^{1/2}以上である窒化けい素焼結体から成ることを特徴とする窒化けい素製耐摩耗性部材。

【請求項2】 焼結助剤として希土類元素を酸化物に換算して2~10質量%,酸化マグネシウムを1~2質量%,酸化アルミニウムを2~5質量%,炭化けい素を1~10質量%, Ti, Zr, Hf, W, Mo, Ta, NbおよびCrからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下含有し、気孔率が1%以下であり、3点曲げ強度が900MPa以上であり、破壊靭性値が6.3MPa・m^{1/2} 以上である窒化けい素焼結体から成ることを特徴とする窒化けい素製耐摩耗性部材。

【請求項3】 前記窒化けい素焼結体の粒界相に存在する凝集偏析の幅の最大値が5μm以下であることを特徴とする請求項1または2記載の窒化けい素製耐摩耗性部材。

【請求項4】 前記窒化けい素焼結体の粒界相に存在する凝集偏析の幅の平均値が2μm以下であることを特徴とする請求項1または2記載の窒化けい素製耐摩耗性部材。

【請求項5】 前記窒化けい素焼結体からなる板状の耐摩耗性部材の上面に設定した直径40mmの軌道上に直径が9.35mmである3個のSUJ2製転動鋼球を配置し、この転動鋼球に39.2MPaの荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素製耐摩耗性部材の表面が剥離するまでの回転数で定義される転がり寿命が1×10⁷回以上であることを特徴とする請求項1または2記載の耐摩耗性部材。

【請求項6】 前記窒化けい素焼結体の圧砕強度が200MPa以上であり、この窒化けい素焼結体からなる耐摩耗性部材から直径が9.35mmである3個の転動ボールを調製する一方、SUJ2製鋼板の上面に設定した直径40mmの軌道上に上記3個の転動ボールを配置し、この転動ボールに5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素焼結体製転動ボールの表面が剥離するまでの時間で定義される転がり疲労寿命が400時間以上であることを特徴とする請求項1または2記載の耐摩耗性部材。

【請求項7】 酸素を1.5質量%以下、α相型窒化けい素を90質量%以上含有し、平均粒径が1.0μm以 50

下の窒化けい素粉末に、希土類元素を酸化物に換算して2~10質量%,MgAl2O4スピネルを2~7質量%,炭化けい素を1~7質量%,Ti,Hf,Zr,W,Mo,Ta,Nb,Crからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下添加した原料混合体を成形して成形体を調製し、得られた成形体を非酸化性雰囲気中で温度1600℃以下で焼結することを特徴とする窒化けい素製耐摩耗性部材の製造方法。

【請求項8】 酸素を1.5質量%以下、α相型窒化けい素を90質量%以上含有し、平均粒径が1.0μm以下の窒化けい素粉末に、希土類元素を酸化物に換算して2~10質量%,酸化マグネシウムを1~2質量%,酸化アルミニウムを2~5質量%,炭化けい素を1~7質量%,Ti,Hf,Zr,W,Mo,Ta,Nb,Crからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下添加した原料混合体を成形して成形体を調製し、得られた成形体を非酸化性雰囲気中で温度1600℃以下で焼結することを特徴とする窒化けい素製耐摩耗性部材の製造方法。

【請求項9】 焼結後、前記窒化けい素焼結体に対し、30MPa以上の非酸化性雰囲気中で温度1600℃以下で熱間静水圧プレス(HIP) 処理を実施することを特徴とする請求項7または8記載の窒化けい素製耐摩耗性部材の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は窒化けい素を主成分とする耐摩耗性部材およびその製造方法に係り、特に1600℃以下の低温度で焼結した場合においても、従来の窒化けい素焼結体と同等以上の緻密さと窒化けい素焼結体本来の機械的強度に加えて、優れた耐摩耗性、特に転がり寿命特性を発揮でき、耐久性に優れた転がり軸受け部材として好適な窒化けい素製耐摩耗製部材およびその製造方法に関する。

[0002]

【従来の技術】従来の窒化けい素焼結体の焼結組成としては窒化けい素ー希土類酸化物一酸化アルミニウム系、窒化けい素ー希土類酸化物一酸化アルミニウム一酸化チタニウム系等が知られている。上記焼結組成における希土類酸化物等の焼結助剤は、焼結中にSiー希土類元素-A1-〇-N等からなる粒界相(液相)を生成させ、焼結体を緻密化し高強度化するために添加されている。

【0003】従来の窒化けい素焼結体は窒化けい素原料粉末に上記のような焼結助剤を添加物として加えて成形し、得られた成形体を焼成炉を使用して1700~1900程度の高温で所定時間焼成する方法で量産されている。

[0004]

【発明が解決しようとする課題】しかしながら、上記従

来の製造方法においては、焼結温度が1700~1900℃と極めて高いため、焼成炉およびその付属機器の耐熱仕様を高度化する必要があり、製造設備費が高騰する上に、連続式の製造プロセスを採用することが困難であり、窒化けい素焼結体の製造コストが大幅に上昇するとともに量産性が低下する問題点があった。

【0005】また、上記従来方法によって製造された窒化けい素焼結体では、曲げ強度や破壊靭性値、耐摩耗性が向上しているものの充分ではなく、特に優れた摺動特性を必要とする転がり軸受け部材としての耐久性については不十分であり、さらなる改良が要請されている。

【0006】近年、精密機器用部材としてのセラミックス材料の需要が増加しており、このような用途においては、高硬度で軽量で耐摩耗性が優れるというセラミックスの特長が、高耐食性と低熱膨張性という性質とともに利用されている。特に、高硬度と耐摩耗性との観点から、軸受などの摺動部を構成する耐摩耗性部材としての用途も急速に拡大している。

【0007】しかしながら、軸受などの転動ボールをセラミックス製耐摩耗性部材で構成した場合、転動ボールが高い応力レベルで繰り返し接触しながら転動したときに、耐摩耗性部材の転がり寿命が未だ十分ではなく、短期間の運転により耐摩耗性部材の表面が剥離したり、割れを生じてしまうため、軸受を装着した機器に振動を生じたり、損傷を引き起こす事故が発生し易く、いずれにしても機器構成部品材料としての耐久性および信頼性が低いという問題点があった。

【0008】本発明は上記のような課題要請に対処するためになされたものであり、特に1600℃以下の低温度で焼結して製造した場合であっても、従来の窒化けい素焼結体と同等以上の緻密さと窒化けい素焼結体本来の高い機械的強度に加えて、耐摩耗性、とりわけ転がり寿命特性が優れた転がり軸受部材として好適な窒化けい素製耐摩耗性部材およびその製造方法を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明者は上記目的を達成するため、従来の窒化けい素焼結体を製造する際に、一般的に使用されていた窒化けい素原料粉末の種類、焼結助剤や添加物の種類および添加量、焼成条件を種々変えて、それらの要素が焼結体の特性に及ぼす影響を実験により確認した。

【0010】その結果、微細な窒化けい素原料粉末に希土類酸化物、 $MgAl_2O_4$ スピネルまたは酸化マグネシウムと酸化アルミニウムとの混合物、炭化けい素、Ti, Hf, Zr, W, Mo, Ta, Nb, Cr から成る群より選択される少なくとも1種を所定量添加した原料混合体を調製したときに、焼結性が大幅に改善され、1600 C以下の低温度で焼結したときに、さらには焼結した後に所定の条件で熱間静水圧プレス(HIP)処理 50

したときに、従来の窒化けい素焼結体と同等以上の緻密性および高い機械的強度に加えて、優れた耐摩耗性、特に転がり寿命特性が優れた転がり軸受部材として好適な窒化けい素製耐摩耗性部材が得られることが判明した。 【0011】本発明は上記知見に基づいて完成されたま

【0011】本発明は上記知見に基づいて完成されたも のである。

【0012】すなわち、本発明に係る窒化けい素製耐摩耗性部材は、焼結助剤として希土類元素を酸化物に換算して2~10質量%,MgAl2O4スピネルを2~7質量%,炭化けい素を1~10質量%,Ti,Zr,Hf,W,Mo,Ta,NbおよびCrからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下含有し、気孔率が1%以下であり、3点曲げ強度が900MPa以上であり、破壊靭性値が6.3MPa・m1/2以上である窒化けい素焼結体から成ることを特徴とする。

【0013】また上記添加成分としてのMgAl2O4 スピネルの代りに、酸化マグネシウムと酸化アルミニウムとの混合物を添加した場合においても、同等の作用効果が得られる。すなわち、本発明に係る他の窒化けい素製耐摩耗性部材は、焼結助剤として希土類元素を酸化物に換算して2~10質量%,酸化マグネシウムを1~2質量%,酸化アルミニウムを2~5質量%,炭化けい素を1~10質量%,Ti,Zr,Hf,W,Mo,Ta,NbおよびCrからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下含有し、気孔率が1%以下であり、3点曲げ強度が900MPa以上であり、破壊靭性値が6.3MPa・ $m^{1/2}$ 以上である窒化けい素焼結体から成ることを特徴とする。

【0014】さらに、上記窒化けい素製耐摩耗性部材において、前記窒化けい素焼結体の粒界相に存在する凝集偏析の幅の最大値が 5μ m以下であることが好ましい。【0015】また、前記窒化けい素焼結体の粒界相に存在する凝集偏析の幅の平均値が 2μ m以下であることが好ましい。

【0016】窒化けい素原料混合体を焼結すると、焼結助剤や添加物成分化合物が液相となって粒界相が形成される。この粒界相における液相成分が凝集偏析して粗大になると焼結体の機械的強度が低下し、特に耐摩耗性部材とした場合に転がり特性が低下してしまう。そのため、粒界相における凝集偏析部の最大幅は 5μ m以下とすることが好ましく、また凝集偏析部の幅の平均値は 2μ m以下となるような微細な組織構造を有することが好ましい。

【0017】また、上記耐摩耗性部材を構成する窒化けい素焼結体の三点曲げ強度は900MPa以上であり、破壊靭性値は6.3MPa・m^{1/2} 以上となる。この窒化けい素焼結体からなる耐摩耗性部材の上面に設定した直径40mmの軌道上に直径が9.35mmである3個のSUJ2製転動鋼球を配置し、この転動鋼球に3

9. 2MPa の荷重を印加した状態で回転数 1200r pm の条件下で回転させたときに、上記室化けい素製耐摩耗性部材の表面が剥離するまでの回転数で定義される転がり寿命が 1×10^7 回以上である耐摩耗性部材とすることも可能である。

【0018】さらに、上記窒化けい素焼結体の圧砕強度が200MPa以上であり、この窒化けい素焼結体からなる耐摩耗性部材から直径が9.35mmである3個の転動ボールを調製する一方、SUJ2製鋼板の上面に設定した直径40mmの軌道上に上記3個の転動ボールを配置し、この転動ボールに5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素焼結体製転動ボールの表面が剥離するまでの時間で定義される転がり疲労寿命が400時間以上である耐摩耗性部材とすることも可能である。

【0019】また、本発明に係る耐摩耗性部材において、前記窒化けい素焼結体はTi, Hf, Zr, W, Mo, Ta, Nb, Crからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下含有する。【0020】さらに、前記窒化けい素焼結体からなる耐摩耗性部材が転がり軸受け部材であるときに、特に優れた摺動特性および耐久性を発揮させることが可能である。

【0021】また本発明に係る窒化けい素製耐摩耗性部材の製造方法は、酸素を1.5質量%以下、 α 相型窒化けい素を90質量%以上含有し、平均粒径が 1.0μ m以下の窒化けい素粉末に、希土類元素を酸化物に換算して $2\sim10$ 質量%,MgAl2O4スピネルを $2\sim7$ 質量%,炭化けい素を $1\sim7$ 質量%,Ti, Hf, Zr, W, Mo, Ta, Nb, Crからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下添加した原料混合体を成形して成形体を調製し、得られた成形体を非酸化性雰囲気中で温度1600℃以下で焼結することを特徴とする。

【0022】上記製造方法において、上記添加成分としてのMgAl2O4スピネルの代りに、酸化マグネシウムと酸化アルミニウムとの混合物を添加した場合においても、同等の作用効果が得られる。すなわち、本発明に係る窒化けい素製耐摩耗性部材の他の製造方法は、酸素を1.5質量%以下、 α 相型窒化けい素を90質量%以上含有し、平均粒径が1.0 μ m以下の窒化けい素粉末に、希土類元素を酸化物に換算して2~10質量%,酸化マグネシウムを1~2質量%,酸化アルミニウムを2~5質量%,炭化けい素を1~7質量%,Ti, Hf, Zr, W, Mo, Ta, Nb, Crからなる群より選択される少なくとも1種を酸化物に換算して5質量%以下添加した原料混合体を成形して成形体を調製し、得られた成形体を非酸化性雰囲気中で温度1600℃以下で焼結することを特徴とする。

【0023】また焼結後、前記窒化けい素焼結体に対し、30MPa以上の非酸化性雰囲気中で1600℃以下の温度で熱間静水圧プレス(HIP)処理を実施することが好ましい。

【0024】上記製造方法によれば、耐摩耗性部材を構成する窒化けい素焼結体を調製する際に、希土類元素酸化物,MgAl2O4スピネルまたは酸化マグネシウムと酸化アルミニウムとの混合体,炭化けい素,Ti, Hf, Zr等の化合物を添加しているため、MgAl2O4スピネルが酸化イットリウムなどの希土類酸化物と共に窒化けい素原料粉末と反応して低融点の液相を生成して焼結促進剤として機能し、1600度以下の低温での緻密化を可能とするとともに結晶組織において粒成長を抑止する機能を果し窒化けい素焼結体の組織構造を微細化し機械的強度を向上させる。

【0025】また炭化けい素は単独に粒子分散し、窒化けい素焼結体の転がり寿命特性を顕著に改善する一方、Ti, Hf, Zr などの化合物は希土類酸化物等の焼結促進剤としての機能を促進するとともに、Si Cと同様に結晶組織において分散強化の機能を果し、窒化けい素焼結体の機械的強度を向上させる。その結果、窒化けい素結晶組織中に希土類元素等を含む微細な粒界相が形成され、その粒界相中の凝集偏析部の幅の最大値が 5μ m以下であり、さらには幅の平均値が 2μ m以下と微細になり、最大気孔径が 0.4μ m以下であり、気孔率が1.0%以下、三点曲げ強度が室温で900 M Pa以上であり、破壊靭性値が6.3 M Pa·m $^{1/2}$ 以上であり、圧砕強度が200 M Pa以上の機械的特性に優れた窒化けい素製耐摩耗性部材が得られる。

【0026】本発明方法において使用され、耐摩耗性部材を構成する窒化けい素焼結体の主成分となる窒化けい素粉末としては、焼結性、曲げ強度、破壊靭性値および転がり寿命を考慮して、酸素含有量が1.7質量%以下、好ましくは $0.7\sim1.5$ 質量%である α 相型窒化けい素を90質量%以上、好ましくは $92\sim97$ 質量%合有し、平均粒径が 1.0μ m以下、好ましくは $0.4\sim0.8\mu$ m程度の微細な窒化けい素粉末を使用することが好ましい。

[0027] なお、窒化けい素原料粉末としては α 相型 のものと β 相型のものとが知られているが、 α 相型の窒化けい素原料粉末では焼結体とした場合に強度が不足し 易い傾向がある一方、 β 相型の窒化けい素原料粉末では高温度焼成が必要であるが、 γ スペクト比が高い窒化けい素結晶粒子が複雑に入り組んだ高強度の焼結体が得られる。しかるに、本発明においては α 相型原料粉末を 1 600 γ 以下の低温度で焼成して窒化けい素焼結体としているため、 α 相型と β 相型の窒化けい素結晶粒子が混在する焼結体が得られる。そして、 α 相型の結晶粒子が β 相型中に少量混在することによって、実質的複合材料的な構成となり焼結体の強度および靭性値が改善される

のである。

【0028】本発明方法において、 a相型窒化けい素粉 末の配合量を90質量%以上の範囲に限定した理由は、 90質量%以上の範囲で焼結体の曲げ強度、破壊靭性値 および転がり寿命が格段に向上し、窒化けい素の優れた 特性が顕著となるためである。一方、焼結性を考慮する と、97質量%までの範囲とする。好ましくは92~9 5質量%の範囲とすることが好ましい。

【0029】その結果、窒化けい素の出発原料粉末とし ては、焼結性、曲げ強度、破壊靭性値、転がり寿命を考 慮して、酸素含有率が1.7質量%以下,好ましくは 0. 7~1. 5質量%であり、α相型窒化けい素を90 質量%以上含有し、平均粒径が1.0 μm以下、好まし くは0.4~0.8μm程度の微細な窒化けい素粉末を 使用することが好ましい。

【0030】特に平均粒径が0.7μm以下の微細な原 料粉末を使用することにより、少量の焼結助剤であって も気孔率が1.0%以下の緻密な焼結体を形成すること が可能である。この焼結体の気孔率はアルキメデス法に より容易に計測できる。

【0031】また本発明に係る耐摩耗性部材を構成する 窒化けい素焼結体に含有される全酸素量は4.5質量% 以下に抑制することが好ましい。この焼結体の全酸素量 が4. 5質量%を超えると結晶粒界相中の最大気孔径が 大きくなり疲労破壊の起点となり易く、耐摩耗性部材の 転がり(疲労)寿命が低下する。好ましくは4.0質量 %以下とする。

【0032】なお、上記のように規定する「焼結体の全 酸素量」とは、窒化けい素焼結体を構成している酸素の 全量を質量%で示したものである。したがって、酸素が 30 窒化けい素焼結体中に金属酸化物や酸窒化物等として存 在している場合は、その金属酸化物(および酸窒化物) 量ではなく、その金属酸化物(および酸窒化物)中の酸 素量に着目したものである。

【0033】さらに本発明に係る耐摩耗性部材を構成す る窒化けい素焼結体の粒界相中の最大気孔径は 0. 4 μ m以下とすることが好ましい。この最大気孔径が 0. 4 μmを超えると、特に疲労破壊の起点となり易く、耐摩 耗性部材の転がり (疲労) 寿命が低下する。好ましくは 2 μ m以下とする。

【0034】また窒化けい素原料粉末に焼結助剤として 添加する希土類元素としては、Y, Ho, Er, Yb, La, Sc, Pr, Ce, Nd, Dy, Sm, Gdなど の酸化物もしくは焼結操作により、これらの酸化物とな る物質が単独で、または2種以上の酸化物を組み合せた ものを含んでもよい。これらの焼結助剤は、窒化けい素 原料粉末と反応して液相を生成し、焼結促進剤として機 能する。

【0035】上記焼結助剤の添加量は、酸化物換算で原 料粉末に対して2~10質量%の範囲とする。この添加 50 Ti, Hf, Zr, W, Mo, Ta, Nb, Crを、酸

量が2質量%未満の場合は、焼結体の緻密化あるいは高 強度化が不十分であり、特に希土類元素がランタノイド 系元素のように原子量が大きい元素の場合には、比較的 低強度で比較的に低熱伝導率の焼結体が形成される。一 方、添加量が10質量%を超える過量となると、過量の 粒界相が生成し、気孔の発生量が増加したり、強度が低 下し始めるので上記範囲とする。特に同様の理由により 3~8質量%とすることが望ましい。

【0036】また、本発明において添加成分として使用 するMgAl2 〇4 スピネルは、酸化イットリウム等の 希土類酸化物と共に窒化けい素原料粉末と反応して低融 点の液相を生成し焼結促進剤として機能し、1600℃ 以下の低温での焼結体の緻密化を可能にすると共に、結 晶組織において粒成長を制御する機能を果し、窒化けい 素焼結体の機械的強度を向上させる成分である。また、 焼結時にα相型窒化けい素からβ相型窒化けい素へ変化 する転移温度を低下させて、低温で緻密化が進行するた め焼結後における結晶組織にある程度の α 相型窒化けい 素相を残存せしめて、焼結体の強度および破壊靭性値を 向上させる。

【0037】上記MgAl204スピネルの代りに酸化 マグネシウム(MgO)と酸化アルミニウム(A12 O 3) との混合体を使用した場合においても同等な作用効 果が得られる。この場合におけるMg〇の添加量は、1 ~2質量%の範囲とされる。添加量が1質量%未満では 焼結体の緻密化が不十分である一方、2質量%を超える ように過量になる場合には焼結体の強度や耐摩耗性部材 としての転がり寿命特性が低下する。

【0038】また、Al2O3の添加量は、2~5質量 %の範囲とされる。添加量が2質量%未満では焼結体の 緻密化が不十分である一方、5質量%を超えるように過 量になる場合には焼結体の強度や耐摩耗性部材としての 転がり寿命特性が低下する。

【0039】また本発明において添加成分として使用す る炭化けい素(SiC)は、結晶組織において単独に粒 子分散して窒化けい素焼結体の転がり寿命を著しく改善 する機能を果するとともに、Si3 N4 焼結体の曲げ強 度および破壊靭性値などの機械的強度を向上させるため に1~10質量%の範囲で添加される。

【0040】この炭化けい素の添加量が1質量%未満の 場合においては添加効果が不十分である一方、10質量 %を超える過量となる場合には焼結体の緻密化が不十分 となり焼結体の曲げ強度の低下が起こるため、添加量は 1~10質量%の範囲とされるが、好ましくは3~7質 量%の範囲とする。特に3.5~6質量%とすることが 望ましい。

【0041】なお、上記炭化けい素にはα型とβ型とが 存在するが、双方とも同一の作用効果を発揮する。

【0042】また本発明において他の添加成分として、

化物、炭化物、窒化物、けい化物、硼化物として5質量%以下の範囲で添加する。これらの化合物は、上記希土類元素の焼結促進剤としての機能を促進すると共に、焼結時にα相型窒化けい素からβ相型窒化けい素へ変化する転移温度をさらに低下させる上に、結晶組織において分散強化の機能を果しSi3N4焼結体の機械的強度を向上させるものであり、特に、Ti, Zr, Hfの化合物が好ましい。これらの化合物の添加量が酸化物換算で0.3質量%未満の場合においては添加効果が不十分である一方、5質量%を超える過量となる場合には焼結体

【0043】また上記Ti, Zr, Hf等の化合物は窒化けい素セラミックス焼結体を黒色系に着色し不透明性を付与する遮光剤としても機能する。

の機械的強度や転がり寿命の低下が起こるため、添加量

は5質量%以下の範囲とする。特に0.5~3質量%と

することが望ましい。

【0044】また焼結体の気孔率は耐摩耗性部材の転がり寿命および曲げ強度に大きく影響するため1.0%以下となるように製造する。気孔率が1.0%を超えると、疲労破壊の起点となる気孔が急増して耐摩耗性部材の転がり寿命が低下するとともに、焼結体の強度低下が起こる。

【0045】本発明に係る耐摩耗性部材を構成する窒化けい素焼結体は、例えば以下のようなプロセスを経て製造される。すなわち前記所定の微細粒径を有し、また酸素含有量が少ない微細な窒化けい素粉末に対して所定量の焼結助剤、MgAl2O4スピネルまたはMgOとAl2O3との混合体、炭化けい素、有機バインダ等の必要な添加剤およびTi等の化合物を加えて原料混合体を調製し、次に得られた原料混合体を成形して所定形状の成形体を得る。原料混合体の成形法としては、汎用の金型プレス法、ドクターブレード法のようなシート成形法などが適用できる。

【0046】上記金型プレス法で成形体を形成する場合において、特に焼結後において気孔が発生し難い粒界相を形成するためには、原料混合体の成形圧力を120MPa以上に設定することが必要である。この成形圧力が120MPa未満である場合には、主として粒界相を構成する成分となる希土類元素化合物が凝集した箇所が形成され易い上に、十分に緻密な成形体となり得ず、クラ40ックの発生が多い焼結体しか得られない。

【0047】上記粒界相の凝集した箇所(偏析部)は疲労破壊の起点となり易いため、耐摩耗性部材の寿命耐久性が低下してしまう。一方、成形圧力を200MPaを超えるように過大にした場合、成形型の耐久性が低下してしまうので、必ずしも製造性が良いとは言えない。そのため、上記成形圧力は120~200MPaの範囲が好ましい。

【0048】上記成形操作に引き続いて、成形体を非酸 化性雰囲気中で温度600~800℃、または空気中で 50 温度400~500℃で1~2時間加熱して、予め添加 していた有機バインダ成分を十分に除去し、脱脂する。

【0049】次に脱脂処理された成形体を窒素ガス、水素ガスやアルゴンガスなどの不活性ガスを充填した非酸化性雰囲気中で1600℃以下の温度で0.5~10時間、常圧焼結または加圧焼結を行う。加圧焼結法としては、雰囲気加圧焼結、ホットプレス、HIP処理など各種の加圧焼結法が用いられる。

【0050】また上記焼結後、得られた窒化けい素焼結体に対し、さらに30MPa以上の非酸化性雰囲気中で温度1600℃以下で熱間静水圧プレス(HIP)処理を実施することにより、疲労破壊の起点となる焼結体の気孔の影響をより低減できるため、さらに改善された耐摩耗特性および転がり寿命特性を有する耐摩耗性部材が得られる。

【0051】上記製法によって製造された窒化けい素製耐摩耗性部材は全酸素量が4.5質量%以下で気孔率が1.0%以下、最大気孔径が 0.4μ m以下であり、また三点曲げ強度が常温で900MPa以上と機械的特性にも優れている。

【0052】また、圧砕強度が200MPa以上、破壊 靭性値が $6.3MPa \cdot m^{1/2}$ 以上である窒化けい素 製耐摩耗性部材を得ることもできる。

【0053】本発明に係る耐摩耗性部材およびその製造方法によれば、所定量の希土類元素、MgAl2O4スピネルまたは酸化マグネシウムと酸化アルミニウムとの混合物、炭化けい素、Ti、Hf、Zr、等の化合物を添加した原料混合体を調製しているため、焼結性が大幅に改善され、1600℃以下の低温度で焼結した場合においても、従来の窒化けい素焼結体と同等以上の緻密性および高い機械的強度に加えて、優れた耐摩耗性、特に転がり寿命特性が優れた転がり軸受部材として好適な窒化けい素製耐摩耗性部材が得られる。

【0054】換言すると、本発明に係る耐摩耗性部材では、所定の焼結助剤を用いると共に焼結温度を1600 ℃以下にすることにより、窒化けい素結晶粒子の粒成長 を抑制することができる。粒成長を抑制することができ るので、窒化けい素結晶粒子同士により形成される3重 点が小さくなり粒界相の幅を小さくすることができるの である。

【0055】また、焼結温度を1600℃以下と低くすることにより、焼結時に形成される粒界相の幅を小さくすると共に、粒界相成分(または粒界相中の不純物)が揮発する(またはガスとして系外へ排出される)ことを防止していることから、気孔の発生が抑制されて最大気孔径を極微小化することが可能であり、転がり寿命特性および耐久性が優れた耐摩耗性部材が得られる。そのため、この耐摩耗性部材を転がり軸受部材として使用して軸受部を調製した場合には、長期間に亘って良好な転動特性を維持することが可能であり、動作信頼性および耐

久性に優れた回転機器を提供することができる。また、 他の用途としては、エンジン部品、各種治工具、各種レ ール、各種ローラなど耐摩耗性を要求される様々な分野 に適用可能である。

[0056]

【発明の実施の形態】次に本発明の実施形態を以下に示す実施例を参照して具体的に説明する。

【0057】実施例1~3

実施例 1 として、酸素量が 1. 3質量%であり、 α 相型 窒化けい素 9 7%を含む平均粒径 0. 55μ mの Si3 N 4 (窒化けい素)原料粉末 8 6質量%に、焼結助剤として平均粒径 0. 9μ mの Y2 O 3 (酸化イットリウム)粉末を 5質量%と、平均粒径 0. 5μ mの M g A 1 2 O 4 スピネル粉末 5質量%と、平均粒径 0. 8μ mの β 相型 Si C (炭化けい素)を 5質量%と、平均粒径 0. 6μ mの Zr O 2 (酸化ジルコニウム)粉末を 1質量%を添加し、エチルアルコール中で粉砕媒体として窒化けい素製ボールを用いて 9 6 時間湿式混合したのち乾燥して原料混合体を調製した。

【0058】次に得られた原料粉末混合体に有機バイン 20 ダを所定量添加し調合造粒粉としたのち、130MPa の成形圧力でプレス成形し、曲げ強度測定用サンプルとして50mm×50mm×厚さ5mmの成形体と、転がり寿命測定用サンプルとして直径80mm×厚さ6mmの成形体とを多数製作した。次に得られた成形体を450℃の空気気流中において4時間脱脂したのち、0.7 MPaの窒素ガス雰囲気中にて温度1550℃で6時間焼結して実施例に係る窒化けい素焼結体製耐摩耗性部材を調製した。

【0059】一方、実施例1で得られた焼結体に対して 窒素ガス雰囲気中で圧力100MPaにて温度1500 ℃で1時間加熱する熱間静水圧プレス(HIP)処理を 実施することにより、実施例2に係る窒化けい素製耐摩 耗性部材を調製した。

【0060】また、実施例3として、MgAl2O4スピネル粉末の代替として平均粒径0.5μmのMgO(酸化マグネシウム)粉末を1.5質量%と平均粒径0.8μmのAl2O3(酸化アルミニウム)粉末を3.5質量%とを添加した点以外は実施例2と同一条件で処理することにより実施例3に係る窒化けい素製耐摩40耗性部材を調製した。

【0061】比較例1~4

比較例1としてSiC粉末を添加しない点以外は実施例1と同一条件で処理することにより比較例1に係る窒化けい素製耐摩耗性部材を調製した。

【0062】また、比較例2として比較例1で得られた 焼結体を温度1500℃の窒素ガス雰囲気中で100M Paの加圧力を作用させるHIP処理を1時間実施する ことにより、比較例2に係る窒化けい素製耐摩耗性部材 を調製した。 【0063】さらに比較例3として、MgAl2O4スピネル粉末に代えて平均粒径0.8μmのAl2O3粉末を5質量%添加した点以外は実施例1と同一条件で処理して比較例3に係る窒化けい素製耐摩耗性部材を調製した。

【0064】さらに、比較例4として酸素量が1.7質量%であり、α相型窒化けい素を91%含む平均粒径1.5μmのSi3N4(窒化けい素)原料粉末を使用した点以外は実施例2と同一条件で処理することにより比較例4に係る窒化けい素製耐摩耗性部材を調製した。【0065】こうして得られた各実施例および比較例に係る各窒化けい素製耐摩耗性部材について気孔率、粒界相中の凝集偏析の幅の最大値および平均値、室温での3点曲げ強度、マイクロインデンテーション法における新原方式による破壊靭性値および転がり寿命を測定して表

【0066】なお、焼結体の気孔率はアルキメデス法によって測定する一方、粒界相中の凝集偏析の幅の最大値および平均値は、焼結体の観察断面の中から、単位面積100μm×100μmを任意の3個所選択しSEM等の拡大写真(倍率5000倍程度)により測定し、その中から最も大きな凝集偏析幅を計測した。具体的には結晶粒子間の3重点領域に外接する最小円の直径として測定した。

1に示す結果を得た。

【0067】また、窒化けい素焼結体中の凝集偏析幅の 平均値は観察視野の20箇所における偏析幅の平均値と して算出した。

【0068】なお、SEM等の拡大写真で確認すると、 凝集偏析は通常の粒界相より色が濃く映し出される(例 えば、白黒写真の場合、窒化けい素結晶粒子が黒色、粒 界相が白色に映し出され、凝集偏析では白色が濃く映し 出される)ので区別は可能である。また、必要に応じて EPMAにて希土類元素の存在を確認すると希土類元素 の濃度が通常の粒界相より色濃く映し出されるので、こ の方法によっても区別可能である。

【0069】また、三点曲げ強度については焼結体から $3 \,\mathrm{mm} \times 40 \,\mathrm{mm} \times \mathbb{P}$ $24 \,\mathrm{mm}$ の曲げ試験片を作成し、スパン(支点距離)を $30 \,\mathrm{mm}$ とし、荷重の印加速度を $30 \,\mathrm{mm}$ が $30 \,\mathrm{mm}$ に設定した条件で測定した。

【0070】また各耐摩耗性部材の転がり特性は、図1に示すようなスラスト型転がり摩耗試験装置を使用して測定した。この試験装置は、装置本体1内に配置された平板状の耐摩耗性部材2と、この耐摩耗性部材2上面に配置された複数の転動鋼球3と、この転動鋼球3の上部に配置されたガイド板4と、このガイド板4に接続された駆動回転軸5と、上記転動鋼球3の配置間隔を規制する保持器6とを備えて構成される。装置本体1内には、転動部を潤滑するための潤滑油7が充填される。上記転動鋼球3およびガイド板4は、日本工業規格(JIS 4805)で規定される高炭素クロム軸受鋼(SU

J 2)で形成される。上記潤滑油7としては、パラフィン系潤滑油(40℃での粘度: $67.2 \text{mm}^2/S$)やタービン油が使用される。

【0071】本実施例に係る板状の耐摩耗性部材の転が り寿命は、耐摩耗性部材2の上面に設定した直径40m mの軌道上に直径が9.35mmである3個のSUJ2 製転動鋼球を配置し、タービン油の油浴潤滑条件下で、 この転動鋼球3に439.2MPaの荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素製耐摩耗性部材2の表面が剥離するまでの回転数を転がり寿命として測定した。各測定結果を下記表1に示す。

14

[0072]

【表1】

	HIMIDIMI	7KII \	`	132.13		
試料	気孔率	液相(粒界 海集傷析(相)の の幅(μm)	三点曲げ強度	破壞靭性値	転がり寿命
	(96)	平均值	最大性	(MPa)	(MPa-m ^{1/2})	(<u>a</u>)
実施例 1	0.2	0.5	1	990	6.6	5×10 ⁷
実施例 2	0.02	0.6	1.5	1100	6.9	>1×10 ⁸
実施例 3	0.02	0.6	1.5	1080	6.9	$>1 \times 10^{8}$
比較例 1	0.2	3	6	900	6.1	2×10 ⁶
比較例 2	0.02	3.5	6.5	1020	6.2	6×10 ⁸
比較例 3	3.2	2.5	5.5	800	5.8	4×10 ⁵
H BO COM A	13	3	6	875	6.0	1 × 10 ⁶

【0073】上記表1に示す結果から明らかなように各実施例に係る窒化けい素製耐摩耗性部材においては、所定の添加成分が含有されて形成されているため、気孔の発生が抑制されて最大凝集偏析幅が微小化されており、強度特性が良好であり、転がり寿命および耐久性に優れた窒化けい素製耐摩耗性部材が得られた。また、表1には示されていないが、各実施例に係る耐摩耗性部材の粒界相中における最大気孔径は0.4 μ m以下であった。【0074】一方、SiC成分を含有しない比較例1においては、液相成分の凝集偏析が大きくなり、強度特性

【0075】一方、比較例2のように焼結体にHIP処理を実施しても、SiC成分を含有しない場合は三点曲 げ強度は高いが、凝集偏析の低減効果が十分ではなく、 転がり寿命が低下した。

および転がり寿命が低下した。

【0076】また、MgAl2O4 スピネル粉末に代えてAl2O3 粉末のみを添加した比較例3においては、焼結を十分に実施しても気孔率が大きく、また凝集偏析幅も大きくなるため、強度および転がり寿命が共に低下することが判明した。

【0077】さらに酸素含有量が高い窒化けい素粉末を使用した比較例4においては、酸素成分による気孔の発生量が大きく気孔率が大きくなり、凝集偏析幅も増加したため曲げ強度および転がり寿命が低下した。

【0078】次に本発明に係る耐摩耗性部材を軸受材の 転動ボールに適用した場合について以下の実施例および 比較例を参照して具体的に説明する。

【0079】実施例1B~3Bおよび比較例1B~4B 前記実施例1~3および比較例1~4において作成した 調合造粒粉をそれぞれ金型に充填加圧して球状の予備成 形体を調製した。さらに各予備成形体を100MPaの 成形圧でラバープレス処理を実施することにより、圧砕 強度測定用および転がり寿命測定用サンプルとしての直 径11mmの球状成形体をそれぞれ調製した。

【0080】次に各球状成形体について、それぞれ対応 50

する実施例または比較例と同一条件で脱脂・焼結し処理して緻密な焼結体を得た。さらに得られた焼結体を研摩加工して直径が9.52mmであり、表面粗さが0.01μmRaであるボール状に形成することにより、それぞれ実施例1B~3Bおよび比較例1B~4Bに係る耐摩耗性部材としての軸受用転動ボールを調製した。なお、上記表面粗さは、触針式表面粗さ測定器を使用し、転動ボールの赤道上を測定して求めた中心線平均粗さ(Ra)として測定した。

【0081】また上記のようにして調製した各実施例および比較例に係る耐摩耗性部材としての転動ボールについて、気孔率, 粒界相中の凝集偏折幅の最大値および平均値, 室温での圧砕強度, 破壊靭性値および転がり疲労寿命を測定した。

【0082】なお、転がり疲労寿命は、図1に示すスラスト型転がり摩耗試験装置を使用して測定した。ここで前記実施例1等においては評価対象が平板状の耐摩耗性部材2であり、この耐摩耗性部材2の表面を転動するボールはSUJ2製転動鋼球3であったが、本実施例1B~2Bおよび比較例1B~3Bの窒化けい素製転動ボール8を評価対象とするため、耐摩耗性部材2の代わりにSUJ2製の軸受鋼板9を配置した。

【0083】そして各転動ボールの転がり疲労寿命は、上記のように各耐摩耗性部材から直径が9.52mmである3個の転動ボール8を調製する一方、SUJ2製鋼板9の上面に設定した直径40mmの軌道上に上記3個の転動ボール8を配置し、タービン油の油浴潤滑条件下でこの転動ボール8に5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmの条件下で回転させたときに、上記窒化けい素焼結体製転動ボール8の表面が剥離するまでの時間として転がり疲労寿命を測定した。測定結果を下記表2に示す。

[0084]

【表2】

試料	気孔率	液相(粒素 凝集偏析:	H相)の の幅(μm)	圧砕強度	破壞靭性値	転がり寿命
	(%)	平均值	最大權	(MPa)	(MPa·m1/2)	(hr)
実施例 1B	0.2	0.5	1	220	6.6	>400
実施例 2B	0.02	0.5	1.5	270	6.8	>400
実施例 3B	0.02	0.7	1.5	260	6.9	>400
比較例 1B	0.2	3	6	200	6.1	250
比較例 2B	0.02	3.5	6.5	240	6.2	300
比較例 3B	3.4	2.5	5.5	185	5.8	100
比較例 4B	1.3	3	6	190	6.0	200

【0085】上記表2に示す結果から明らかなように各実施例に係る窒化けい素製転動ボールにおいては、所定の添加成分を添加して形成されているため、気孔の発生が抑制されて粒界相の凝集偏析幅が微小化されており、圧砕強度が高く、転がり疲労寿命が400時間を超え耐久性に優れた窒化けい素製転動ボールが得られた。

【0086】一方、SiCを含有しない比較例1Bにおいては、気孔の残存が多く、圧砕強度および転がり疲労寿命が低下した。

【0087】一方、比較例2Bのように焼結後にHIP 処理してもSiCを含有しない場合には、気孔径の縮小 化効果はあるが転がり疲労寿命が低下した。

【0088】また、Al2O4スピネルに代えてAl2O3のみを含有させた比較例3Bにおいては、焼結を十分に実施しても気孔率が大きくなるため、圧砕強度および転がり疲労寿命が共に低下することが判明した。

【0089】さらに酸素含有量が多い原料粉末を使用した比較例4Bにおいては、酸素成分による液相成分および気孔の発生量が多く、気孔率, 圧砕強度, 破壊靭性値および転がり疲労寿命がいずれも不十分であった。

【0090】なお、上記各実施例に係る窒化けい素製転動ボールの転がり疲労寿命を測定する際に、直径9.52mmの転動ボールを3個使用したが、他の直径を選択するとともに配置個数を変えた場合においても、その荷重条件や転動条件に応じた転がり特性が得られることが確認されている。

【0091】次に前記実施例以外の組成または処理条件によって調製した板状の耐摩耗性部材について以下の実施例および比較例を参照して具体的に説明する。

【0092】実施例4~35

実施例4~35として実施例1において使用した窒化け

い素原料粉末と、Y2 O3 粉末と、MgAl2 O4 スピネル粉末と、Si C粉末と、表3~4に示すように平均粒径0.9~1.0 μ mの各種希土類酸化物粉末の他に、平均粒径0.5 μ mのMgO粉末と、平均粒径1.0 μ mのAl2O3 粉末の他に平均粒径0.4~0.5 μ mの各種化合物粉末を表3~4に示す組成比となるように調合して原料混合体をそれぞれ調製した。

【0093】次に得られた各原料混合体を実施例1と同一条件で成形脱脂処理した後、表3~4に示す条件で焼結を実施し、さらにHIP処理することにより、それぞれ実施例4~35に係る窒化けい素製耐摩耗性部材を製造した。

【0094】比較例5~14

一方比較例 $5\sim1$ 4 として表 $3\sim4$ に示すように、 Y_2 O 3 などの希土類酸化物, M g A 1_2 O 4 スピネル, S i C 等の各種添加物を過少量に添加したり、または過量に添加して各比較例用の原料混合体をそれぞれ調製した。

【0095】次に得られた各原料混合体を実施例4と同一条件で成形脱脂処理した後、表 $3\sim4$ に示す条件で焼結し、さらにHIP処理することにより、それぞれ比較例 $5\sim14$ に係る窒化けい素製耐摩耗性部材を製造した。

【0096】こうして製造した各実施例および比較例に係る各窒化けい素製耐摩耗性部材について、実施例1と同一条件で気孔率、粒界相中の凝集偏析幅の最大値および平均値、室温での三点曲げ強度、破壊靭性値および円板の転がり寿命を測定して下記表3~4に示す結果を得た

[0097]

【表3】

用権の	気をり事金	<u>@</u>	6×10'	× 10°	>1 × 10	۷1 × 10	>1×10	>1 × 10 ⁸	>1 × 10 ⁸	×1 × 10	×108	>1 × 10 ⁸	>1 × 10 ⁸	×10ª	>1 × 10 ⁸	× ا × ا 0	۷ × 10 ⁸	>1 × 10 ⁸	× 10 م	>1 × 10	ŀ	5 × 10′	>1 × 10 ⁸	>1 × 10°	>1 × 10	>1 × 10	>1 × 10	>1 × 10 ^a	>1 × 10	8×10°	1×10°	2×10°	8 × 10°	2×10°	5×10°
事件数件を		(MPa.m1/2)	8.8	6.9	6.5	6.5	9.9	6.8	9.6	8.8	6.8	6.5	6.8	8.9	6.7	6.8	6.8	8.8	6.7	0.7		6.9	6.8	7.0	6.5	6.5	6.7	6.7		5.9	5.8	6.4		5.8	6.3
日本後げる時		(MPa)	1050	91	1035	1000	980	900	1050	1125	1110	1000	1100	1090	1040	1085	1040	1040	1000	1130		1050	1020	1100	1070	1050	1080	1010	1050	890	880	890	8	820	890
素種)の	(m //) 📑	最大值	2	1.5	1	2.5	2.5	1	2	1	-	-	1.5	-	-	-	-	-	-	-		-	1.5	1.5	-	1.5	-	-	1.5	1.5	4	-	2	-	1.5
液相(粒界相)の	被集価布の	平均值	-	9.0	0.4	1.5	1.5	0.5	1	0.5	0.4	0.4	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.3	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.7	2	0.5	-	0.3	0.7
# #		\$	0.0	0.02	0.02	0.08	0,02	0.08	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	10.0		0.2	0.01	0.01	0.01	0.0	0.01	0.01	<u>0</u>	0.2	0.05	1.5	0.0	- 5:	0.02
HIP##	過度×年間×円力	(°C) × (hr) × (MPa)	1500×1×100	1500×1×100	1500×1×100	1500×1×100	1500×1×100	1500×1×100	1500×1×100	1500×1×100	1500×1×100	1500×1×100	1500 × 1 × 100	1500×1×100	1500 × 1 × 100	1500 × 1 × 100	1500×1×100	$1500 \times 1 \times 100$	1500 × 1 × 100	1500×1×100		なし	1500×1×100	1500×1×100	1500×1×100	$1500 \times 1 \times 100$	1500×1×100	1500 × 1 × 100	$1500 \times 1 \times 100$	$1500 \times 1 \times 100$	1500×1×100	$1500 \times 1 \times 100$	1500×1×100	1500×1×100	1500×1×100
免酪条本	御展×発館×円か	(°C) × (hr) × (MPa)	1550 × 6 × 0.01	1550 × 6 × 0.01	1550 × 8 × 0.01	$1600 \times 6 \times 0.01$	1600 × 8 × 0.01	$1600 \times 6 \times 0.01$	1550 × 6 × 0.01	$1550 \times 6 \times 0.01$	$1550 \times 6 \times 0.01$	1550 × 6 × 0.01	1550 × 8 × 0.01	$1550 \times 6 \times 0.01$	$1550 \times 6 \times 0.01$	1550 × 6 × 0.01	1550 × 6 × 0.01	$1550 \times 6 \times 0.01$	1550 × 6 × 0.01	$1550\times6\times0.01$		1600 × 6 × 0.01	1550 × 6 × 0.01	1550 × 8 × 0.01	1550 × 8 × 0.01	$1550\times 6\times 0.01$	1550 × 6 × 0.01	1550 × 6 × 0.01	1550 × 6 × 0.01	1550 × 8 × 0.01	1550 × 6 × 0.01	1550 × 6 × 0.01	1550 × 6 × 0.01	$1550 \times 6 \times 0.01$	1550×6×0.01
П	\$									-	2	2	2	2	2	2	2	2	2	-	-					L		L	_	L	_		L		1
	有政化									Ti02	TiO2	TiO2	ZrO2	ξ	ΑC	MO2C	Ta ₂ 05	Nb ₂ 05	Cr,03	TiO ₂	2102	Ti0 ₂ Zr0 ₂													Ti02
%	Sic		1	2	10	۳	8	6	5	2	5	5	5	2	2	5	2	5	5	S.		S.	2	5	2	2	2	2	25	2	25	s	2	15	2
成(質量	MgAI ₂ O ₄	スピネル	5	5	2	2	5	2	7	2	5	5	5	2	2	S	2	2	2	9		9	5	S.	5	2	3	2	3	2	2	-	6	2	5
單位	12.		2	5	9	2	2	2	2	5	5	2	5	5	5	5	2	2	က	s		ß	25	<u></u>	-	-	_	_	_	-	2	┺	┺	2	2
単	希土類		Y203	Y ₂ O ₃	Y203	γ,0,	Υ,Ο,	۲,03	Y,03	Y203	Y ₂ O ₃	γ,0,	Y,03	Y ₂ O ₃	Y,0,	γ,0,	۲,0	۷,0	γ,0,	Y ₂ O ₃		Y ₂ O ₃	ÇeO,	Ę,,	Nd,O,	Sm,O,	Н, О,	У _Б ,0,	т	Т	Т	Т	, 6, , 7	Т	Y ₂ O ₃
	Si ₃ N ₄		68	85	8	8	85	ಽ	8	84	8	8	æ	8	8	8	8	æ	æ	8		8	88	ļ.,	⊢	↓_	╄	8	╀	╀	15	8	- -	╄	├
	菜		4	2	9	~	80	ြ	2	=	2	2	4	2	9	=	2	19	L_	2		22	2	24	25	92	2	2	2	2	上		1_	1_	2
	耳								₩.					罹	!		_	40	Ē	: 										_	÷	1	\$ 6		

【0098】 【表4】

Г	-		Τ_	Τ_	Ι_	Ι	<u> </u>		Τ-		Τ_	_	Т	1
8	を を の	9	^	√1 × 10	>1 × 10 ⁸	>1 × 10	>1 × 10	•	4×10	_	2×10	7×10 ⁶	4×10	5 × 10 ⁶
	表基的存储	(MPs-m1/2)	6.9	6.6	6.7	7.0	6.9		8.8		6.2	6.2	6.5	6.4
	世紀と祖氏三	(MPa)	1100	1070	1080	1120	1110		1000		980	906	850	890
(本無物)の	液集価値の幅(μm)	最大量	1	1.5	1.5	1.5	-		-		-	2	-	3.5
(A) 現状	放棄無行	平均值	0.3	0.5	9,0	8.0	9.0		0.3		0.5	0.8	0.5	1.8
	新孔母	(%)	0.01	0.01	10.0	0.01	0.01		0.3		1.5	0.01	1.2	0.01
HIPM	線度×時間×圧力	$(^{\circ}C) \times (hr) \times (MP_a) (^{\circ}C) \times (hr) \times (MP_a)$	1500 × 1 × 100	1500 × 1 × 100	1500×1×100	1500 × 1 × 100	1500×1×100		が		1500 × 1 × 100	1500 × 1 × 100	1500×1×100	1500 × 1 × 100
統領教存	組度×時間×圧力	$(^{\circ}C) \times (hr) \times (MPa)$	$1550\times 6\times 0.01$	1550 × 6 × 0.01	$1550\times6\times0.01$	1550 × 6 × 0.01	$1550\times6\times0.01$		1550 × 6 × 0.01		1550 × 6 × 0.01	1550 × 6 × 0.01	1550×6×0.01	$1550\times6\times0.01$
	\$						-	-	1	1				
_	小位号						Ţ0,	ZrO ₂	Ti02	ZrO_2				
の質量の	Sic		2	20	S	9	S		S		5	2	2	2
	MrO	•	2	-	2	2	<u>.</u> 75.		1.5		-	2	0.5	4
世	Al ₂ O ₃		2	5	4	4	3.5		3.5		-	7	6	2
菜		_	2	2	2	2	ĸ		2		5	ď	S.	S
Ľ	SisN, 各共組織技術		۲٬٥,	Y ₂ O ₃	Y ₂ O ₃	ړ0ځ	Y203		Y ₂ O ₃		Y ₂ O ₃			
	Si ₃ N ₄		98	8	48	98	83		æ		88	≅	86.5	8
	菜		စ္က	8	32	8	34		35		Ξ	2	2	-
	115			₽K		摇		髩			퐈	松	<u>E</u>	
				_										

【0099】上記表3~4に示す結果から明らかなように、所定量の希土類元素を含み、各種添加物の含有量を

規定した原料成形体を焼結し、焼結後に必要に応じてHIP処理を実施して製造された各実施例に係る耐摩耗性部材においては、気孔の発生が抑制されて粒界相の凝集偏析幅が微小化されており、強度特性が良好であり、大部分の転がり寿命が10⁸回を超えており、耐久性に優れた窒化けい素製耐摩耗性部材が得られている。

【0100】一方、比較例5~14で示すように、希土 類成分などの各種添加物の添加量を本発明で規定する範 囲外とした焼結体では、十分な焼結処理やHIP処理を 実施しても、転動ボールの転がり寿命が低く、焼結体の 気孔率、凝集偏析幅、三点曲げ強度、破壊靭性値等のい ずれかの特性において本発明で規定する特性要件が満た されていないことが確認できる。

【0101】次に上記実施例4~25 および比較例5~ 14に係る耐摩耗性部材を軸受材の転動ボールに適用した場合について以下の実施例および比較例を参照して具体的に説明する。

【0102】<u>実施例4B~35Bおよび比較例5B~1</u> 4B

20 前記実施例4~35および比較例5~14において作成した調合造粒粉をそれぞれ金型に充填加圧して球状の予備成形体を調製した。さらに各予備成形体を100MPaの成形圧でラバープレス処理を実施することにより、圧砕強度測定用および転がり寿命測定用サンプルとしての直径11mmの球状成形体をそれぞれ調製した。

【0103】次に各球状成形体について、実施例1と同一条件で脱脂処理を行った後に、表5~6に示す焼結条件およびHIP条件で処理し、さらに得られた焼結体を研摩加工して直径が9.52mmであり、表面粗さが0.01μmRaであるボール状に形成することにより、それぞれ実施例4B~35Bおよび比較例5B~14Bに係る耐摩耗性部材としての軸受用転動ボールを調製した。なお、上記表面粗さは、触針式表面粗さ測定器を使用し、転動ボールの赤道上を測定して求めた中心線平均粗さ(Ra)として測定した。

【0104】また上記のようにして調製した各実施例および比較例に係る耐摩耗性部材としての転動ボールについて、気孔率、粒界相中の凝集偏析幅、圧砕強度、破壊靭性値および転がり疲労寿命を実施例1Bと同様にして測定した。測定結果を下記表5~6に示す。

[0105]

【表5】

22 21 配がり帯色 × × 8 ×400 × 400 ×400 >400 × 400 × 400 >400 × 8 >400 ×400 ×400 ×400 \$ >400 >400 × 408 ×400 × 400 \$ 295 8888 ×400 **¥** 200 \$ Ś 張模数件值 6.9 6.8 6.8 6.8 6.9 0. 6.5 6.5 5.9 5.8 6.4 5.8 6.3 8.8 6.7 6.7 6.8 6.5 9.9 8.9 9.9 8.8 6.7 田中省県 225 270 245 25 230 235 195 200 201 27 195 240 260 270 240 260 245 240 28 230 220 230 液粒(粒卵柏)の緑薬瘍杯の値(μm) 最大值 .. 5 ī. 5. 2.5 2.5 平均值 0.5 0.5 0.6 9 0.5 0.5 00 9.0 0.5 0.5 03 0.5 0.5 0.5 0.5 0.5 6 9.0 5 0.5 0.5 9. 9.4 0.5 9. 外孔部 0.05 0.05 0.02 0.08 0.0 0.0 80.0 9 0.0 0.0 0.0 9 0.2 5 0.0 <u>0</u> 0.01 0.0 9 0.5 38 60 0.0 90 00 0.0 $1500 \times 1 \times 100$ $1500 \times 1 \times 100$ C) x (hr) x (MPa) 500 × 1 × 100 $1500 \times 1 \times 100$ $1500 \times 1 \times 100$ 1500 × 1 × 100 1500 × 1 × 100 1500 × 1 × 100 1500 × 1 × 100 $1500 \times 1 \times 100$ $500 \times 1 \times 100$ $1500 \times 1 \times 100$ 500 × 1 × 100 $1500 \times 1 \times 100$ $1500 \times 1 \times 100$ 1500 × 1 × 100 1500 × 1 × 100 1500 × 1 × 100 $1500 \times 1 \times 100$ 1500 × 1 × 100 1500 × 1 × 100 $1500 \times 1 \times 100$ 1500×1×100 1500 × 1 × 100 $1500 \times 1 \times 100$ 1500 × 1 × 100 $1500 \times 1 \times 100$ 過度×韓間×圧力 $1500 \times 1 \times 100$ 1500 × 1 × 100 500 × 1 × 100 $1500 \times 1 \times 100$ なし $1550\times 6\times 0.01$ $^{\circ}C) \times (hr) \times (MPa)$ $1550 \times 6 \times 0.01$ $1550 \times 6 \times 0.01$ $550 \times 6 \times 0.01$ 1550 × 6 × 0.01 随便×時面×圧力 $1550 \times 6 \times 0.01$ $1600 \times 6 \times 0.01$ 1550 × 6 × 0.01 $1550 \times 6 \times 0.01$ $1550\times6\times0.01$ $1550 \times 6 \times 0.01$ $1550\times6\times0.01$ 1550 × 8 × 0.01 1600 × 6 × 0.01 1550 × 6 × 0.01 $550 \times 6 \times 0.01$ $1550 \times 6 \times 0.01$ $550 \times 6 \times 0.01$ 1550 × 6 × 0.01 $1550 \times 6 \times 0.01$ $1550 \times 6 \times 0.01$ $550 \times 6 \times 0.01$ $1550\times 6\times 0.01$ $1600 \times 6 \times 0.01$ $1600\times6\times0.01$ $1550 \times 6 \times 0.01$ $1550 \times 6 \times 0.01$ $1550 \times 6 \times 0.01$ $550 \times 6 \times 0.01$ $1550 \times 6 \times 0.01$ $1550 \times 6 \times 0.01$ $1550 \times 6 \times 0.01$ ~ 有再化 102 1 1<u>0</u> TiO₂ 270, Ę Zro, o L ZrO2 Ę, 6 S ≷ Sic 5 ഹ 2 വ വ S G S ഹ ß c S S က S MgA1204 スピネル 본 S S S ഹ S 2 땣 希土類酸化物 **転動ボール状耐磨耗性部材** S ю Dy₂O₃ Sm,O, Nd₂O₃ Ho₂O₃ Yb_2O_3 ۲, آئ ر ک ٧,٥ Er₂O ر ک õ ≺ ۲,03 ζ, O ر کر Ç Ç ٥,′ ر,′ Y203 Y,0, , o Y203 ر ک ر ک Y₂O₃ ۰۵٬۲ ر ک 20، γ,0 တ် က ر ک ٥,۲ Si 3R 28 8 8 ဆ 82 8 83 8 8 8 83 89 75 89 င္တ 83 83 8 83 83 8 8 83 ᄧ 83 83 9 8 82 8 82 28B 258 27B 8 10B 11B 13B 89 88 98 208 22B 238 248 26B 29B **6**B 12B 48 89 28 78 8B 98 **8** 8 82 9B 68 88 戜

[0106]

誓

【表6】 40

<u>e</u>

煜

胀

	本書 ボールの	表がり事の	m ^{1/2}) (hr)	9	9	7 >400	0 × 004×	9 >400		8 × 504		2 225	2 280	5 245	
	2042044		(MPa·m ^{1/2})	6.9	9	6.7	7.0	6		8.8		6.2	6.2	6.5	
	學院改立		(MPa)	270	260	260	280	270		225		190	205	180	
	F相)の	凝集偏析の幅(μm)	最大概	1	1.5	1.5	1.5	_		_	-	-	2	-	
			平均值	0.3	0.5	0.0	9.0	0.4		0.3		0.5	0.8	0.5	
-	# #	<u> </u>	æ	0.01	0.01	0.01	0.01	0.01		0.3		1.5	0.01	1.2	L
	工作 本条 可 工	過度×時間×圧力	(°C) x (hr) x (MPa)	$1500\times1\times100$	$1500\times1\times100$	$1500\times1\times100$	$1500\times1\times100$	$1500 \times 1 \times 100$		なし		1500×1×100	1500×1×100	$1500\times1\times100$	
	桑斯米 辛	調度×時間×圧力	$(^{\circ}C) \times (hr) \times (MPa)$	$1550\times6\times0.01$	$1550\times6\times0.01$	$1550\times6\times0.01$	$1550\times6\times0.01$	$1550 \times 6 \times 0.01$		$1550\times6\times0.01$		$1550\times6\times0.01$	$1550\times6\times0.01$	$1550\times 6\times 0.01$	
		\$ tb (\$,,,					-	-	1	-				
	(\$	<u> </u>					TiO2	Zr0 ₂	TiO2	ZrO2				
	(質量%	0.0		2	5	2	3	5		2		5	2	2	L
	成	77	29	2	-	2	2	1.5		1.5		-	2	0.5	
	#	78.47.48 AL.O.	22.	2	2	4	4	3.5		3.5		-	7	3	L
	菜	# 1. 4.	212	5	5	5	5	2		2		5	5	5	L
たらまがい ノアセス 同り手 不らに ロック	K		E F	Y ₂ O ₃	Y,03	Y,03	Υ,03	Y,03		Y203		Υ203	Υ,03		
		Z		86	84	84	86	83		83		88	81	86.5	L
		就		308	318	32B	33B	348		35B		118	12B	13B	L
į		芦			BK		粨		₹ <u></u>			坮	数	<u>E</u>	_

【0107】上記表5~6に示す結果から明らかなように、所定量の希土類元素を含み、MgAl2O4スピネル、SiCなどの各種添加物の含有量を規定した原料成形体を焼結し、必要に応じてHIP処理を実施して製造された各実施例に係る転動ボールにおいては、気孔の発生が抑制されて粒界相中の凝集偏析が微小化されており、圧砕強度特性が良好であり、転がり疲労寿命がいずれも400時間を超えており、耐久性に優れた窒化けい素製転動ボールが得られている。

【0108】一方、比較例5B~14Bで示すように、

希土類成分などの各種添加物の添加量が本発明で規定する範囲外とした焼結体では、十分な焼結処理およびHIP処理を実施しても、転動ボールの転がり疲労寿命が低く、焼結体の気孔率、凝集偏析幅、三点曲げ強度等のいずれかの特性において本発明で規定する特性要件が満たされていないことが確認できる。

[0109]

【発明の効果】以上説明の通り、本発明に係る耐摩耗性 部材およびその製造方法によれば、所定量の希土類元 50 素、MgAl2O4スピネルまたは酸化マグネシウムと 酸化アルミニウムとの混合物、炭化けい素、Ti、Hf、Zr、等の化合物を添加した原料混合体を調製しているため、焼結性が大幅に改善され、1600℃以下の低温度で焼結した場合においても、従来の窒化けい素焼結体と同等以上の緻密性および高い機械的強度に加えて、優れた耐摩耗性、特に転がり寿命特性が優れた転がり軸受部材として好適な窒化けい素製耐摩耗性部材が得

【0110】また、気孔の発生が抑制されて最大気孔径を極微小化することが可能であり、転がり寿命特性およ 10 び耐久性が優れた耐摩耗性部材が得られる。そのため、この耐摩耗性部材を転がり軸受部材として使用して軸受部を調製した場合には、長期間に亘って良好な転動特性を維持することが可能であり、動作信頼性および耐久性に優れた回転機器を提供することができる。

【図面の簡単な説明】

【図1】本発明に係る耐摩耗性部材の転がり寿命特性を 測定するためのスラスト型転がり摩耗試験装置の構成を 示す断面図。

26

【符号の説明】

- 1 装置本体
- 2 耐摩耗性部材
- 3 転動鋼球
- 4 ガイド板
- 5 駆動回転軸
- 6 保持器
- 7 潤滑油
- 8 転動ボール(窒化けい素製)
- 9 軸受鋼板(SUJ2製)

【図1】

フロントページの続き

られる。

F ターム(参考) 3J101 AA01 BA10 BA70 DA20 EA44

EA80 FA15 FA31

4G001 BA01 BA03 BA06 BA08 BA12

BA13 BA14 BA22 BA32 BA73

BB01 BB03 BB06 BB08 BB12

BB13 BB14 BB22 BB32 BC13

BC43 BC52 BC54 BD11 BD12

BD14 BD16 BE02 BE26 BE33