

Außenstelle Dortmund Dienstleistungszentrum 10

Amateurfunkprüfungen **Hilfsmittel**

BNetzA Referat 225

Hinweis:

Die Formelsamlung weicht aufgrund der Berichtigung offenbarer Unrichtigkeiten in folgenden Punkten von dem veröffentlichten Fragenkatalog der 3. Auflage März. 2024 ab:

- Seite 15 Abschnitt Strahlungsleistung und Gewinn von Antennen; Formel zum Parabolspiegelgewinn
 Seite 17 Abschnitt Reflexion; Formel zum Stehwellenverhältnis
 Seite 21 Abschnitt Spezifischer Widerstand; Ersetze Zink durch Zinn

Amateurfunkverordnung Anlage 1

Nutzungsbedingungen für die im Frequenzplan für den Amateurfunkdienst und den Amateurfunkdienst über Satelliten ausgewiesenen Frequenzbereiche

Auf der Grundlage des § 6 Satz 1 des Amateurfunkgesetzes vom 23. Juni 1997 (BGBI. I S. 1494), das zuletzt durch Artikel 53 des Gesetzes vom 23. Juni 2021 (BGBI. I S. 1858) geändert worden ist, werden im Folgenden die technischen und betrieblichen Rahmenbedingungen für die Nutzung von Frequenzen des Amateurfunkdienstes und des Amateurfunkdienstes über Satelliten festgelegt:

- (1) Fernbediente und automatisch arbeitende Amateurfunkstellen im Sinne von § 13 Absatz 1 und 2 dieser Verordnung dürfen nur auf den Frequenzen betrieben werden, die in der Rufzeichenzuteilung für diese Amateurfunkstellen ausgewiesen werden. Die maximal zulässige Strahlungsleistung für fernbediente oder automatisch arbeitende terrestrische Amateurfunkstellen beträgt oberhalb von 30 MHz 50 Watt ERP (ausgenommen Remote-Betrieb). Im Fall von fortgesetzter wechselseitiger Beeinflussung kann die Bundesnetzagentur eine Absenkung der Leistung anordnen. Der Betrieb von Linkstrecken ist von dieser Regelung ausgenommen und kann in Frequenzbereichen oberhalb von 1 GHz in besonders begründeten Fällen mit einer Strahlungsleistung von bis zu maximal 1 000 Watt ERP beantragt werden. Der Inhaber der Rufzeichenzuteilung muss sicherstellen, dass fernbediente Amateurfunkstellen jederzeit abgeschaltet werden können
- (2) Die belegte Bandbreite einer Amateurfunk-Aussendung ist entsprechend dem Stand der Technik auf das für die verwendete Sendeart notwendige Ausmaß zu beschränken. Die Mittenfrequenz der Amateurfunk-Aussendungen ist so zu wählen, dass die belegte Bandbreite innerhalb des dem Amateurfunk zugewiesenen Frequenzbereichs liegt. Der Vorrang des Funkverkehrs bereits belegter Frequenzen sowie der Vorrang des Amateurfunkdienstes über Satelliten und Aussendungen von Weltraumfunkstellen des Amateurfunkdienstes ist zu beachten.
- (3) Die Funkdienste werden nach primären und sekundären Funkdiensten unterschieden. Ein primärer Funkdienst ist ein Funkdienst, dessen Funkstellen Schutz gegen Störungen durch Funkstellen sekundärer Funkdienste verlangen können, auch wenn diesen bereits Frequenzen zugeteilt sind. Schutz vor Störungen durch Funkstellen des gleichen oder eines anderen primären Funkdienstes können nur die Funkstellen verlangen, denen die Frequenzen früher zugeteilt wurden. Ein sekundärer Funkdienst ist ein Funkdienst, dessen Funkstellen weder Störungen bei den Funkstellen eines primären Funkdienstes verursachen dürfen noch Schutz vor Störungen durch solche Funkstellen verlangen können. Dies ist unabhängig davon, wann die Frequenzzuteilung an Funkstellen des primären Funkdienstes erfolgt. Schutz vor Störungen durch Funkstellen des gleichen oder eines anderen sekundären Funkdienstes kann die Funkstelle verlangen, der die Frequenz früher zugeteilt wurde.
- (4) In den Frequenzbereichen gemäß Buchstabe A gelten die Regelungen des Frequenzplans und zusätzlich die besonderen Nutzungsbestimmungen nach den Buchstaben A und B.

A Tabellarische Übersicht

Lfd. Nr.	Frequenzbereiche		Status ¹	Leistung ² für Ir Amateurfunkdiens			quenzbereiche und maximale nhaber einer Zulassung zum st mit Berechtigungsumfang der					Zusätzliche Nutzungs- bestimmungen gemäß B				
1	2		3	Klasse A 4		Klass	Klasse N		Klasse N		7 geniais b					
1	135,7 – 137,8	kHz	S	1		ERP	5			0		1	2	10		
2	472 – 479	kHz	S	1		ERP						1	_	10		
3	1 810 - 1 850	kHz	P	750		PEP	100 W	DED				3				
4	1 850 - 1 890	kHz	S	75		PEP	75 W					3	10	12	15	
5	1 890 - 2 000	kHz	S	10		PEP	10 W					3	10	15	13	
6	3 500 - 3 800	kHz	P	750		PEP	100 W					3	10	13		
7	5 351,5 - 5 366,5	kHz	S			ERP	100 00	FEF				3				
8	7 000 - 7 200	kHz	P	750		PEP						3	13			
9	10 100 - 10 150	kHz	S	150		PEP						1	10	12		
10	14 000 - 14 350	kHz	P	750		PEP						3	13	12		
11	18 068 - 18 168	kHz	' Р	750		PEP						3	13			
12	21 000 - 21 450	kHz	P	750		PEP	100 W	DED				3	13			
13	24 890 – 24 990	kHz	' Р	750			100 VV	1 L1				3	13			
14	28 – 29,7	MHz	P	750		PEP	100 W	DED	10	۱۸/	ERP	4	13			
15	50 - 50,4	MHz	S	750		PEP	100 00	FEF	10	vv	LINE	5	16			
16	50,4 – 52	MHz	S	25		PEP						5	16			
17	144 – 146	MHz	P	750		PEP	75 W	DED	6 1	۱۸/	ERP	6	13			
18	430 – 440	MHz	P	750		PEP	75 W		-		ERP	7	13			
19		MHz	S	750		PEP	75 W		0, 1	VV	ERF	8	11	17		
20		MHz	S	750			75 W					8	11	17		
21	1 250 - 1 260 1 260 - 1 300	MHz	S	750		PEP	75 W					8	11	13	17	
22	2 320 - 2 400	MHz	S	750		PEP		PEP				9	17	13	17	
23	2 400 - 2 450	MHz	S	75 75		PEP		PEP				9	13	17		
23	3 400 - 3 475	MHz	S	75 75		PEP		PEP				9	17	17		
	5 650 - 5 670	MHz	S	75 75		PEP						9	13	17		
						PEP		PEP						17		
26 27	5 670 - 5 725 5 725 - 5 755	MHz MHz	S	75 75		PEP		PEP				9	17 17			
28	5 725 - 5 755 5 755 - 5 830	MHz	S S	75 75		PEP		PEP				9	17			
29	5 830 - 5 850	MHz	S	75 75		PEP		PEP				9	17			
30	10 – 10,4	GHz	S	75 75		PEP		PEP				9	17			
31	10,4 – 10,45		S	75 75		PEP		PEP				9	17			
32	10,45 – 10,45	GHz	S	75 75		PEP		PEP				9	13	17		
33	24 – 24,05			75 75		PEP		PEP				13	17	17		
34	24 – 24,05 24,05 – 24,25		P S	75 75		PEP		PEP				9	17			
35	47 – 47,2	GHz	P	75 75		PEP		PEP				13	17			
36	76 – 77,5	GHz	S	75 75		PEP		PEP				9	13	17		
37	77,5 - 78	GHz	S	75 75		PEP		PEP				9	13	17		
38	77,5 – 78 78 – 79	GHz	S	75 75		PEP		PEP				9	13	17		
39	78 – 79 79 – 81	GHz	S	75 75		PEP		PEP				9	13	17		
40	122,25 – 123	GHz	S	75 75		PEP		PEP				9	17	17		
41	134 – 136	GHz	P	75 75		PEP		PEP				9	13	17		
42	136 – 141	GHz	S	75 75		PEP		PEP				9	13	17		
43	241 – 248	GHz	S	75 75		PEP		PEP				13	17	17		
44	248 – 250	GHz	P	75 75		PEP		PEP				13	17			
45	> 246 - 250 > 275	GHz		13	v v	LF	3 44	. LF				14	17			
40	/ 2/3	GHZ	_		_							14	1/			

B Zusätzliche Nutzungsbestimmungen

- 1. Maximal zulässige belegte Bandbreite einer Amateurfunk-Aussendung: 800 Hz.
- 2. Die Betriebsorte sind bei der Bundesnetzagentur schriftlich oder elektronisch anzuzeigen. Die Sendeantenne ist gegenüber anderen Anlagen ausreichend zu entkoppeln. Werden Störungen bei Primärfunkdiensten auch in benachbarten Frequenzbereichen verursacht, ist der Betrieb einzustellen.
- 3. Maximal zulässige belegte Bandbreite einer Amateurfunk-Aussendung: 2,7 kHz.
- 4. Maximal zulässige belegte Bandbreite einer Amateurfunk-Aussendung unterhalb 29 MHz: 7 kHz, oberhalb 29 MHz: 40 kHz.
- 5. Amateurfunk-Aussendungen dürfen weder schädliche Störungen beim Rundfunkempfang verursachen noch Schutz vor Aussendungen des Rundfunkdienstes beanspruchen. Amateurfunk-Aussendungen im Frequenzband 50 52 MHz dürfen keine funktechnischen Störungen an Windprofilmessradaren verursachen. Sie können keinen Schutz vor Aussendungen dieser Radargeräte beanspruchen. Es sind ausschließlich Aussendungen mit horizontaler Polarisation zulässig. Die Nutzung ist auf ortsfeste Amateurfunkstellen beschränkt. Der Inhaber einer Rufzeichenzuteilung nach § 13 für eine 50-MHz-Bake muss sicherstellen, dass die entsprechende Funkbake jederzeit auf telefonische Anforderung abgeschaltet werden kann.
- 6. Maximal zulässige belegte Bandbreite einer Amateurfunk-Aussendung: 40 kHz.
- 7. Maximal zulässige belegte Bandbreite einer Amateurfunk-Aussendung: 2 MHz; bei amplitudenmodulierten Fernsehaussendungen: 7 MHz.
- 8. Maximal zulässige belegte Bandbreite einer Amateurfunk-Aussendung: 2 MHz; bei amplitudenmodulierten oder digitalen Fernsehaussendungen: 7 MHz und bei frequenzmodulierten Fernsehaussendungen: 18 MHz.
- 9. Maximal zulässige belegte Bandbreite einer Amateurfunk-Aussendung: 10 MHz; bei Fernsehaussendungen: 20 MHz.
- 10. Der Betrieb von fernbedienten Amateurfunkstellen mit Ausnahme von Amateurfunkstellen im Remote-Betrieb ist nicht gestattet. Amateurfunk-Wettbewerbe (Contestbetrieb) dürfen in diesem Frequenzbereich nicht durchgeführt werden.
- 11. Im Teilbereich von 1 247 1 263 MHz ist die abgestrahlte Leistung auf maximal 3,05 Watt ERP beschränkt. Der Betrieb von fernbedienten und automatisch arbeitenden Amateurfunkstellen ist in diesem Bereich nicht zulässig.
- 12. Maximal zulässige Strahlungsleistung für automatisch arbeitende Amateurfunkstellen: 50 Watt ERP.
- 13. Die Frequenzbereiche 7 000 7 100 kHz, 14 000 14 250 kHz, 18 068 18 168 kHz, 21 000 21 450 kHz, 24 890 24 990 kHz, 28 29,7 MHz, 144 146 MHz, 24 24,05 GHz, 47 47,2 GHz, 134 136 GHz und 248 250 GHz können auch für den Amateurfunkdienst über Satelliten genutzt werden; der Amateurfunkdienst über Satelliten ist dabei primärer Funkdienst.

Die Frequenzbereiche 435 – 438 MHz, 1 260 – 1 270 MHz, 2 400 – 2 450 MHz, 5 650 – 5 670 MHz, 5 830 – 5 850 MHz, 10,45 – 10,50 GHz, 76 – 81 GHz, 136 – 141 GHz und 241 – 248 GHz können auch für Amateurfunkdienst über Satelliten genutzt werden; der Amateurfunkdienst über Satelliten ist dabei sekundärer Funkdienst.

In den Frequenzbereichen 435 – 438 MHz, 1 260 – 1 270 MHz, 2 400 – 2 450 MHz und 5 650 – 5 670 MHz sind andere sekundäre Funkdienste gegenüber dem Amateurfunkdienst über Satelliten bevorrechtigt. Weltraumfunkstellen des Amateurfunkdienstes über Satelliten, die in diesen Frequenzbereichen arbeiten, müssen über geeignete Vorrichtungen verfügen, die es im Fall von Störungen erlauben, die Amateurfunk-Aussendungen dieser Weltraumfunkstellen zu steuern, damit Störungen bei anderen Funkdiensten in diesen Frequenzbereichen sofort beseitigt werden können.

Die Nutzung der Frequenzbereiche 1 260 - 1 270 MHz und 5 650 - 5 670 MHz ist auf die Senderichtung Erde – Weltraum und im Frequenzbereich 5 830 - 5 850 MHz auf die Senderichtung Weltraum – Erde beschränkt.

- 14. Die Frequenzbereiche 444 453 GHz, 510 546 GHz, 711 730 GHz, 909 926 GHz, 945 951 GHz und Frequenzen oberhalb von 956 GHz können durch den Amateurfunkdienst genutzt werden. Amateurfunkstellen können keinen Schutz vor Störungen durch andere Frequenznutzungen beanspruchen. Die Nutzungsbedingungen legt die Bundesnetzagentur fest und veröffentlicht sie in ihrem Amtsblatt.
- 15. Abweichend von den besonderen Nutzungsbestimmungen ist an Wochenenden bei Nutzung der Frequenzbereiche 1 850 1 890 kHz und 1 890 2 000 kHz die Verwendung einer Sendeleistung von maximal 750 Watt PEP durch Inhaber einer Zulassung zur Teilnahme am Amateurfunkdienst mit dem Berechtigungsumfang der Klasse A und die Verwendung einer Sendeleistung von maximal 100 Watt PEP durch Inhaber einer Zulassung zur Teilnahme am Amateurfunkdienst der Klasse E zugelassen. An Wochenenden dürfen abweichend von der zusätzlichen Nutzungsbestimmung Nummer 10 Amateurfunk-Wettbewerbe (Contestbetrieb) durchgeführt werden.
- 16. Maximal zulässige belegte Bandbreite einer Amateurfunk-Aussendung: 12 kHz.
- 17. Linkstrecken fernbedienter oder automatisch arbeitender Amateurfunkstellen können in besonders begründeten Fällen mit einer Strahlungsleistung von bis zu 1 000 W ERP betrieben werden."

¹ P: Amateurfunkdienst ist primärer Funkdienst, S: Amateurfunkdienst ist sekundärer Funkdienst gemäß Frequenzverordnung vom 27. August 2013 (BGBI. I S. 3326), die zuletzt durch Artikel 1 der Verordnung vom 3. Juni 2021 (BGBI. I S. 1372) geändert worden ist. Die mit "P" gekennzeichneten Frequenzbereiche können gleichzeitig auch anderen primären Funkdiensten zugewiesen sein.

² PEP: Spitzenleistung (§ 2 Nr. 7); ERP: effektive Strahlungsleistung (§ 2 Nr. 8)

Auszug aus der Amtsblatt-Verfügung 61/2024 (Amtsblatt 11/2024 vom 12.06.2024, S. 708 ff.)

Rufzeichenplan für den Amateurfunkdienst in Deutschland

Die Verfügung Nr. 53/2024 (Amtsblatt 8/2024 vom 24.4.2024, Seite 392 ff.) wird aufgehoben und durch diese Verfügung ersetzt.

Gemäß § 10 Absatz 3 der Dritten Verordnung zur Änderung der Amateurfunkverordnung zum Gesetz über den Amateurfunk (Amateurfunkverordnung - AFuV) vom 27.05.2024 (2024 BGBl. 2024 I Nr. 175 vom 04.06.2024) veröffentlicht die Bundesnetzagentur hiermit den ab 24.06.2024 gültigen Rufzeichenplan für den Amateurfunkdienst in Deutschland.

Die Rufzeichen werden gemäß dem Amateurfunkgesetz (AFuG) und der Amateurfunkverordnung (AFuV) entsprechend diesem Rufzeichenplan zugeteilt.

Deutsche Amateurfunkrufzeichen bestehen aus einem 2-buchstabigen Präfix (DA - DR ohne DE und DI), einer Ziffer (0-9) und einem meist 2- oder 3-buchstabigen Suffix.

Bei der Rufzeichenbildung werden die Ziffern 0-9 und die 26 Buchstaben des Alphabets (ohne Ä, Ö, Ü und ß) verwendet.

Für Klubstationen gemäß § 2 Nr. 3 AFuV gibt es auch Klubstationsrufzeichen mit 1-buchstabigen oder 4- bis 7-stelligen Suffixen gemäß den Nr. 0 bis 4. Für Kurzzeitzulassungen ausländischer Funkamateure werden Rufzeichen gemäß Nr. 5 verwendet.

1. Rufzeichen mit 2- oder 3-buchstabigen Suffixen

Rufzeichen mit einem 2- oder 3-buchstabigen Suffix werden gemäß der nachfolgenden Tabelle zugeteilt. Soweit nicht anders angegeben, ist die Rufzeichenreihe mit den Suffixen AA bis ZZZ betroffen. Die Rufzeichenreihe DP ist für Rufzeichen mit exterritorialem Standort vorgesehen. Für Angehörige der Gaststreitkräfte werden keine speziellen Rufzeichenreihen vorgesehen.

Rufzeichenreihe	Verwendungszweck	Klasse
DAØ	KS	Α
DA1	PZ	Α
DA2	PZ	Α
DA4	SZ	Е
DA5	SZ	Α
DA6	PZ	E
DA7	KS	E
DA8	KS	N
DBØ	RL / FB, (KS auslaufend)	Α
DB1 – DB9	PZ	А
DCØ – DC9	PZ, (KS auslaufend)	Α
DDØ – DD9	PZ, (KS auslaufend)	Α
DFØ	KS, (RL / FB auslaufend)	Α
DF1 – DF9	PZ	Α
DGØ – DG9	PZ, (KS auslaufend)	А
DHØ – DH9	PZ, (KS auslaufend)	А
DJØ – DJ9	PZ	Α
DKØ	KS, (RL / FB auslaufend)	Α
DK1 – DK9	PZ	Α
DLØ	KS, (RL / FB auslaufend)	Α
DL1 – DL9	PZ	Α
DMØ	RL / FB	Α
DM1 – DM9	PZ	Α
DNØ	KS (auslaufend)	Е
DN1 – DN6	AB (auslaufend)	Α
DN7 – DN8	AB (auslaufend)	E
DN9	PZ	N
DOØ	RL / FB, (KS auslaufend)	E
DO1 – DO9	PZ	Е
DPØ – DP1	KS, RL / FB, SZ	A
DP2 DP8	KS, RL / FB, SZ KS, RL / FB, SZ	E N
DR1 DR2	KSB KSB	A E
DR3	KSB	N E
DR4	KSO	A
DR5	KSO	E
DR6	KSO	N N

Abkürzungen:

- PZ = Personengebundene Rufzeichenzuteilung(en) gemäß § 3 Abs. 1 und Abs. 3 Nr. 1 AFuG
- KS = Rufzeichenzuteilungen für Klubstationen
- RL = Rufzeichenzuteilungen für Relaisfunkstellen
- FB = Rufzeichenzuteilungen für Funkbaken
- SZ = Rufzeichenzuteilungen für besondere experimentelle Studien nach § 16 Absatz 2 AfuV
- AB = Ausbildungsrufzeichen gültig bis 31.12.2028, Neuzuteilungen nur bis zum 23.06.2025
- KSB = Klubstationsrufzeichen für Angehörige der Berechtigten, die nach der Digitalfunkrichtlinie BOS oder der Funkrichtlinie Funkanwendungen BOS (BOS-Funkrichtlinie) als BOS-Berechtigte anerkannt sind
- KSO = Klubstationsrufzeichen für Notfunkgruppen privatrechtlicher Organisationen

2. Rufzeichen mit 1-buchstabigen Suffixen für Klubstationen

Soweit nicht anders angegeben, ist die Rufzeichenreihe den Suffixen A bis Z betroffen

Rufzeichenreihe	Verwendungszweck	Klasse
DAØ	KS	Α
DA1	KS	Α
DA2 – DA3	KS	Α
DA4	SZ (als Klubstationen)	E
DA5	SZ (als Klubstationen)	Α
DA6	KS	Е
DA7	KS	Е
DA8	KS	N
DA9	KS	Е
DBØ – DD9	KS	Α
DFØ – DH9	KS	Α
DJØ – DM9	KS	Α
DNØ	KS	E
DOØ – DO9	KS	Е
DPØ – DP1	KS (mit exterritorialem Standort)	Α
DP2	KS (mit exterritorialem Standort)	Е
DP3 – DP7	KS	Α
DP8	KS (mit exterritorialem Standort)	N
DP9	KS	Α
DQØ – DR9	KS	Α

Abkürzungen wie bei Nr. 1

3. Rufzeichen mit 4- bis 7-stelligen Suffixen für Klubstationen

Bei zulässigen besonderen allgemeinen Anlässen können entsprechend der Tabelle in Nr. 0 auch Klubstationsrufzeichen befristet zugeteilt werden, die anstelle des 1-buchstabigen Suffixes ein aus 4 bis 7 Zeichen bestehendes Suffix haben. Das letzte Zeichen im Suffix muss immer ein Buchstabe sein. Zeichen sind dabei die Ziffern und Buchstaben gemäß Nr. 9.

Zulässige besondere allgemeine Anlässe sind ausschließlich:

- a) Ereignisse mit Bezug zum Amateurfunk, Jubiläumsveranstaltungen von Amateurfunkvereinen und -verbänden, Amateurfunkmessen
- b) Ein geplantes Treffen von Funkamateuren, bei dem mindestens eine Amateurfunkstelle auf freiem Gelände errichtet wird (sog. Fieldday)
- c) Ein Wettbewerb mit mindestens drei Funkamateuren
- d) Eine öffentliche Veranstaltung mit Bezug zu aktuellen oder historischen sportlichen, kulturellen, künstlerischen, technischen, literarischen Ereignissen oder Persönlichkeiten mit überregionaler, nationaler oder internationaler Bedeutung, die durch eine Amateurfunkstelle begleitet wird
- e) Aktionen zur Nachwuchsförderung für Funkamateure die glaubhaft dargelegt werden kann, dass Funkbetrieb in ausreichendem Umfang und durch mehrere Funkamateure durchgeführt werden soll.

Für Anlässe, die geeignet sind, gegen die guten Sitten zu verstoßen oder das friedliche Zusammenleben der Gesellschaft, der Völker und Konfessionen nachhaltig zu stören und zu beschädigen, wird kein Rufzeichen erteilt. Suffixe, die in einem engeren Sinn in einen politischen Zusammenhang gebracht werden können oder vordergründig kommerziellem Interesse dienen, werden nicht zugeteilt.

Die Befristung des Sonderrufzeichens ist abhängig von der Zeitspanne für die das Rufzeichen benötigt wird, längstens jedoch ein Jahr (vgl. Nr. 8). Die besonderen Anlässe bzw. Aktivitäten entsprechend der vorgenannten Bedingungen a – e sowie die gewünschte Zeitspanne sind detailliert im Antrag anzugeben.

4. Klubstationsrufzeichen für Angehörige der öffentlichen Not-, Katastrophenschutz- und Rettungsdienste sowie für Notfunkgruppen

Die Rufzeichenreihen DR1AA bis DR3ZZZ sind ausschließlich für Angehörige der Berechtigten, die nach der Digitalfunkrichtlinie BOS oder der Funkrichtlinie Funkanwendungen BOS (BOS-Funkrichtlinie) als BOS-Berechtigte anerkannt sind. Ein geeigneter Nachweis ist bei der Antragsstellung zu erbringen.

Die Rufzeichenreihen DR4AA bis DR6ZZZ sind ausschließlich für Klubstationen von Notfunkgruppen privatrechtlicher Organisationen vorgesehen. Ein geeigneter Nachweis über die Zugehörigkeit zu einer Notfunkgruppe ist bei der Antragsstellung zu erbringen.

Die Kenntlichmachung gilt nur für den Funkverkehr zwischen Funkamateuren in Not- und Katastrophenfällen. Die Klubstationen müssen uneingeschränkt sämtliche amateurfunkrechtlichen Vorgaben erfüllen. Ob die Nutzung des Amateurfunkdienstes in Not- und Katastrophenfällen mit den Besonderheiten des jeweiligen Dienstes zu vereinbaren ist, ist nicht Gegenstand der Zuteilung dieser Klubstationsrufzeichen. Die Entscheidung obliegt jedem Antragssteller in eigener Verantwortung unter Beachtung der für den jeweiligen Dienst geltenden Regelungen.

5. Kurzzeitzulassungen für ausländische Funkamateure

Rufzeichen für Kurzzeitzulassungen für ausländische Funkamateure ohne Wohnsitz in Deutschland bestehen aus dem Heimatrufzeichen mit vorangestellten "DL/" bei Klasse A und vorangestelltem "DO/" bei Klasse E.

6. Kennungen zum Betrieb von leistungsschwachen Sendern

Zulässige Kennungen zum Betrieb von leistungsschwachen Amateurfunksendern zu Peilzwecken gemäß § 11 Abs. 2 AFuV sind: MO, MOE, MOI, MOS, MOH sowie MO5.

7. Nicht zulässige Rufzeichen

Rufzeichen, die im Widerspruch zu § 2 Nr. 1 oder 2 AFuG stehen oder irreführend sein könnten, werden nicht vergeben. Hierzu zählen beispielsweise Rufzeichen, die international festgelegte Not-, Dringlichkeits- oder Sicherheitszeichen (SOS, XXX, TTT, YYY, DDD, JJJ, MAYDAY, PAN) oder Q-Gruppen (QOA bis QUZ) beinhalten.

Ferner werden Rufzeichen mit Suffixen, die mit verfassungswidrigen Organisationen in Verbindung gebracht werden oder gegen die guten Sitten verstoßen, nicht vergeben.

8. Befristung von Rufzeichenzuteilungen

Rufzeichenzuteilungen können nach § 10 Abs. 2 Satz 2 AFuV befristet werden. Unbeschadet dieser Regelung werden die folgenden Rufzeichenzuteilungen befristet erteilt:

Rufzeichenzuteilung	Befristung
RL, FB und SZ	bis zu 5 Jahren
KS mit 1-buchstabigem Suffix	bis zu 5 Jahren
KS mit 4- bis 7-stelligem Suffix	max. 1 Jahr (nicht verlängerbar)
Rufzeichenzuteilungen für Gaststreitkräfte	bis zu 5 Jahren
PZ für Kurzzeitzulassungen für ausländische Funkamateure ohne Wohnsitz in Deutschland	3 Monate
Rufzeichenzuteilungen für nichtdeutsche Staatsan- gehörige (außer EU- und EWR-Bürgern) mit Wohnsitz in Deutschland	maximal bis zum Ende der Gültigkeitsdauer der Auf- enthaltserlaubnis; liegt eine unbegrenzte Aufent- haltserlaubnis vor, so erfolgt die Befristung analog zu deutschen Staatsangehörigen

Abkürzungen wie bei Nr. 1.

9. International gebräuchliche Rufzeichenzusätze

International gebräuchliche Rufzeichenzusätze im Sinne von § 11 Abs. 3 AFuV, die an das Rufzeichenende angehängt werden können, sind:

- beim Betrieb einer beweglichen Amateurfunkstelle in einem Landfahrzeug oder an Bord eines Wasserfahrzeugs auf Binnengewässern das Zeichen "/m", bei Sprechfunkverkehr das Wort "mobil".
- b) beim Betrieb einer Amateurfunkstelle an Bord eines Wasserfahrzeuges, das sich auf See befindet, das Zeichen "/mm", bei Sprechfunkverkehr die Wörter "maritim mobil",
- c) beim Betrieb einer Amateurfunkstelle an Bord eines Luftfahrzeugs das Zeichen "/am", bei Sprechfunkverkehr die Wörter "aeronautisch mobil",
- d) beim Betrieb einer tragbaren oder vorübergehend ortsfest betriebenen Amateurfunkstelle das Zeichen "/p", bei Sprechfunkverkehr das Wort "portabel",
- e) aus betrieblichen Gründen notwendige Zusätze, die vom Rufzeichen mit einem Bindestrich "-" oder einem Schrägstrich "/" getrennt werden.

Bezüglich der Rufzeichenzusätze für Ausbildungsfunkbetrieb und Remotebetrieb wird auf die Nr. 10 und 11 verwiesen.

Beispiel: Ein Funkamateur betreibt Ausbildungsfunkbetrieb mit einer portablen Funkstelle. In diesem Fall ist der Zusatz "/t" vor dem Zusatz "/p" zu verwenden also "/tp".

10. Ausbildungsfunkbetrieb

Ausbildungsfunkbetrieb findet gemäß § 12 Abs. 3 AFuV unter Anwendung des personengebundenen Rufzeichens oder des Rufzeichens für das Betreiben einer Amateurfunkstelle als Klubstation statt.

Sofern unter Anwendung eines Rufzeichens Ausbildungsfunkbetrieb durchgeführt wird, ist das Zeichen "/T", bei Sprechfunkverkehr das Wort "Trainee", verpflichtend an das verwendete Rufzeichen anzufügen.

Ausbildungsrufzeichen der Rufzeichenreihe DN1AA bis DN8ZZZ werden ab dem 24.06.2025 nicht mehr zugeteilt. Zugeteilte Ausbildungsrufzeichen der vorgenannten Reihe behalten bis zum 31.12.2028 ihre Gültigkeit.

11. Remotebetrieb

Remotebetrieb findet gemäß § 13a AFuV unter Anwendung des personengebundenen Rufzeichens oder des Rufzeichens für das Betreiben einer Amateurfunkstelle als Klubstation statt.

Sofern unter Anwendung eines Rufzeichens Remotebetrieb durchgeführt wird, kann das Zeichen "/R", bei Sprechfunkverkehr das Wort "/Remote" an das verwendete Rufzeichen angefügt werden.

Sofern der Rufzeichenzusatz "/R" verwendet wird, ist er an den unter Nr. 10 verpflichtend vorgeschriebenen Rufzeichenzusatz "/T" anzufügen.

Beispiel: Ein Funkamateur betreibt Ausbildungsfunkbetrieb mit einer Remote-Funkstelle. In diesem Fall ist der verpflichtende Zusatz "/T" vor dem freiwilligen Zusatz "/R" zu verwenden also "/TR".

Jens Vogt, 225-2

IARU Bandplan 2m

	Frequency Segment	Max.	Preferred Mode and Usage						
	144,000-144,025 MHz	2,7 kHz	All mode	Sattelite downlink only					
	144,025-144,100 MHz	500 Hz	Telegraphy	144,050 MHz Telagraphy calling 144,100 MHz Random MS					
	144,100-144,150 MHz	500 Hz	MGM, Telegra- phy	144,110-144,160 MHz CW and MGM EME					
	144,150-144,400 MHz	2,7 kHz	MGM, Telegra- phy, SSB	144,195–144,205 MHz Random MS SSB 144,300 MHz SSB Centre of activity					
	144,400-144,490 MHz	500 Hz	MGM, Telegra- phy	Beacons exclusive					
	144,491-144,493 MHz	500 Hz	MGM	Experimental MGM, Personal weak signal MGM Beacons					
	144,500-144,794 MHz	20 kHz	All mode	144,500 MHz Image mode centre (SSTV, Fax,) 144,600 MHz Data Centre of activity (MGM, RTTY,) 144,750 MHz ATV Talk back					
144-146 MHz	144,794-144,9625 MHz	12 kHz	MGM Digital Communicati- on	144,8000 MHz APRS 144,8125 MHz DV internet voice gateway 144,8250 MHz DV internet voice gateway 144,8375 MHz DV internet voice gateway 144,8500 MHz DV internet voice gateway 144,8625 MHz DV internet voice gateway					
	144,975-145,194 MHz	12 kHz	FM/Digital Voice	Repeater input exclusive					
	145,194-145,206 MHz	12 kHz	FM/Digital Voice	Space Communication					
	145,206–145,5625 MHz 12 kHz FM/Dig Voice		FM/Digital Voice	145,2375 MHz FM Internet Voice Gateway 145,2875 MHz FM Internet Voice Gateway 145,3375 MHz FM Internet Vocie Gateway 145,3750 MHz digital voice calling 145,5000 MHz FM calling					
	145,575-145,7935 MHz	12 kHz	FM/Digital Voice	Repeater output exclusive					
	145,794-145,806 MHz	12 kHz	FM/Digital Voice	Space Communication					
	145,806-146,000 MHz	12 kHz	All mode	Sattelite exclusive					

IARU Bandplan 70cm

	Frequency Segment	Max.	Preferred Mode an	nd Usage
	430,000-431,975 MHz	20 kHz	All mode	430,025-430,375 MHz FM repeater output (1,6 MHz shift) 430,400-430,575 MHz digital communications 430,600-430,925 MHz digital communications repeater channels 430,925-431,025 MHz multimode channels 431,050-431,825 MHz Repeater input channel freqs 7,6 MHz shift 431,625-431,975 MHz Repeater input channels (1,6 MHz shift)
	432,000-432,100 MHz	500 Hz	MGM, Telegra- phy	432,050 MHz Telegraphy Centre of activity
	432,100-432,400 MHz	2,7 kHz	MGM, Telegra- phy, SSB	432,200 MHz SSB centre of activity 432,350 MHz Microwave talkback centre of acitivity 432,370 MHz Meteo Scatter centre of activity
	432,400-432,490 MHz	500 Hz	MGM, Telegra- phy	Beacons Exclusive
	432,191-432,193 MHz	500 Hz	EMGM	Experimental MGM
MHz	432,500-432,975 MHz	12 kHz	All mode	432,500 MHz New APRS frequency 432,600–432,9875 Repeater Input Region 1 Standard, 25 kHz spacing, 2 MHz shift (Channel freq 432,600–432,975 MHz)
430-440 MHz	433,000-433,375 MHz	12 kHz	FM, Digital Voice Repeaters	Repeater Input Region 1 Standard, 25 kHz spacing, 1,6 MHz shift
43	433,400-433,575 MHz	12 kHz	FM, Digital Voice	433,400 MHz SSTV (FM/AFSK) 433,450 MHz Digital Voice calling 433,500 MHz FM calling
	433,600-434,000 MHz	none	All mode	433,625–433,775 MHz Digital communications channels 434,000 MHz Centre frequency of digital experiments
	434,000-434,594 MHz	12 kHz	All mode, ATV	434,450-434,575 MHz Digital communications channels
	434,594-434,981 MHz	12 kHz	All mode	434,600-434,9875 MHz Repeater Output (12,5 kHz spacing 1,6 MHz or 2 MHz shift)
	435,000-436,000 MHz	none	Sattelite service	
	436,000-438,000 MHz	none	Sattelite service, DATV/data	DATV/data centre of activity
	438,000-440,000 MHz	none	All mode	438,025–438,175 MHz Digital communication channels 438,200–438,525 MHz Digital communication repeater channels 438,550–438,625 MHz Multi mode 438,650–439,425 MHz Repeater output channels (7,6 MHz shift) 439,800–439,975 MHz Digital communication link channels

Formelsammlung

		Zehnerpotenz	Symbol	Präfix
10^{-12}	=	0,000 000 000 001	p	Piko
10^{-9}	=	0,000 000 001	n	Nano
10^{-6}	=	0,000 001	μ	Mikro
10^{-3}	=	0,001	m	Milli
10^{-2}	=	0,01	С	Zenti
10^{-1}	=	0,1	d	Dezi
10 ⁰	=	1	-	-
10 ¹	=	10	da	Deka
10 ²	=	100	h	Hekto
10 ³	=	1000	k	Kilo
10 ⁶	=	1 000 000	M	Mega
10 ⁹	=	1 000 000 000	G	Giga
10 ¹²	=	1 000 000 000 000	T	Tera

Zwe	Zweierpotenzen Bit							
2^0	=	1	0					
2^1	=	2	1					
2^2	=	4	2					
2^3	=	8	3					
2^4	=	16	4					
2^5	=	32	5					
2^6	=	64	6					
2^7	=	128	7					
28	=	256	8					
2^9	=	512	9					
2^{10}	=	1024	10					
2^{11}	=	2048	11					
2^{12}	=	4096	12					

Widerstände

Ohmsches Gesetz

$$U = R \cdot I$$
 $R = \frac{U}{I}$ $I = \frac{U}{R}$

Innenwiderstand

$$R_{\rm i} = \frac{\Delta U}{\Delta I}$$

Widerstand von Drähten

$$R = \frac{\rho \cdot l}{A_{\rm Dr}} \qquad \quad A_{\rm Dr} = \frac{d^2 \cdot \pi}{4} = r^2 \cdot \pi$$

l: Drahtlänge

 $A_{\rm Dr}$: Drahtquerschnitt ρ : Spezifischer Widerstand in Ω mm²/m (Tabelle am Ende der Formelsammlung)

Farbe	Wert	Multiplikator							
Silber	-	10^{-2}	=	0,	01 ±10%				
Gold	-	10^{-1}	=	0,	1 ±5 %				
Schwarz	0	10 ⁰	=	1	-				
Braun	1	10 ¹	=	10	±1%				
Rot	2	10 ²	=	100	±2 %				
Orange	3	10 ³	=	1000	-				
Gelb	4	10^4	=	10 000	-				
Grün	5	10 ⁵	=	100 000	±0,5 %				
Blau	6	10 ⁶	=	1000000	±0,25 %				
Violett	7	10 ⁷	=	10 000 000	±0,1%				
Grau	8	10 ⁸	=	100 000 000	-				
Weiß	9	10 ⁹	=	1 000 000 000	-				
Keine	-			-	±20 %				

Widerstände in Reihenschaltung

$$R_{\rm G} = R_1 + R_2 + R_3 + \dots + R_{\rm N}$$

Bei 2 Widerständen gilt

$$R_{\rm G} = R_1 + R_2$$

Widerstände in Parallelschaltung

$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$$

Bei 2 Widerständen gilt

$$R_{\rm G} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Spannungsteiler (unbelastet)

$$U_{\rm G} = U_1 + U_2$$

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

$$U_{\rm G} = U_1 + U_2$$
 $\frac{U_1}{U_2} = \frac{R_1}{R_2}$ $\frac{U_2}{U_{\rm G}} = \frac{R_2}{R_1 + R_2}$

Stromteiler

$$I_{G} = I_{1} + I$$

$$I_{\rm G} = I_1 + I_2$$
 $\frac{I_2}{I_1} = \frac{R_1}{R_2}$

Vorzugsreihen für die Nennwerte von Widerständen und Kondensatoren

Reihe Toleranz

Werte

E6	20%			1			1	,5			2	,2			3	,3			4	,7			6,	8	
E12	10%		1	1	,2	1	,5	1	,8	2	,2	2	,7	3	,3	3	,9	4	,7	5	,6	6,	,8	8,	,2
E24	5%	1	1,1	1,2	1,3	1,5	1,6	1,8	2	2,2	2,4	2,7	3	3,3	3,6	3,9	4,3	4,7	5,1	5,6	6,2	6,8	7,5	8,2	9,1

Leistung

$$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$$

$$U = \frac{P}{I} = \sqrt{P \cdot R}$$

$$I = \frac{P}{U} = \sqrt{\frac{P}{R}}$$

Arbeit/Energie

$$W = P \cdot t$$

Wirkungsgrad

$$\eta = \frac{P_{\rm ab}}{P_{\rm zu}} = \frac{P_{\rm ab}}{P_{\rm zu}} \cdot 100 \% \qquad \qquad P_{\rm ab} = P_{\rm zu} - P_{\rm V}$$

$$P_{\rm ab} = P_{\rm zu} - P_{\rm V}$$

Wechselspannung

Effektiv- und Spitzenwerte bei Sinusförmiger Wechselspannung

$$\hat{U} = U_{\rm eff} \cdot \sqrt{2} \qquad \qquad U_{\rm SS} = 2 \cdot \hat{U}$$

$$U_{\text{CC}} = 2 \cdot \hat{U}$$

Kreisfrequenz

$$\omega = 2 \cdot \pi \cdot f$$

Periodendauer

$$T = \frac{1}{f} \qquad f = \frac{1}{T}$$

Scheinwiderstand

$$Z = \sqrt{R^2 + X^2}$$

Z: Scheinwiderstand X: Blindwiderstand

Induktivität/Spule

Induktiver Blindwiderstand

$$X_{\rm L} = \omega \cdot L$$

Induktivitäten in Reihenschaltung

$$L_G = L_1 + L_2 + L_3 + ... + L_N$$

Induktivitäten in Parallelschaltung

$$\frac{1}{L_{\rm G}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_{\rm N}}$$

Induktivität der Ringspule

$$L = \frac{\mu_0 \cdot \mu_{\rm r} \cdot N^2 \cdot A_{\rm S}}{l_{\rm m}}$$

Induktivität einer langen Zylinderspule

$$L = \frac{\mu_0 \cdot \mu_{\rm r} \cdot N^2 \cdot A_{\rm S}}{1}$$

Induktivität von Ringkernspulen

Auch für mehrlagige Spulen

$$L = N^2 \cdot A_{\rm L}$$

Magnetische Feldstärke in einer Ringspule

$$H = \frac{I \cdot N}{l_m}$$

Magnetische Flussdichte

$$B_{\mathbf{m}} = \mu_r \cdot \mu_0 \cdot H$$

Transformator/ Übertrager

Übersetzungsverhältnis

$$\ddot{u} = \frac{N_{\rm P}}{N_{\rm S}} = \frac{U_{\rm P}}{U_{\rm S}} = \frac{I_{\rm S}}{I_{\rm P}} = \sqrt{\frac{Z_{\rm P}}{Z_{\rm S}}}$$

Belastbarkeit von Wicklungen

$$I = S \cdot A_{\mathrm{Dr}} \text{ mit } S \approx 2.5 \frac{\mathrm{A}}{\mathrm{mm}^2}$$

Kapazität/Kondensator

Kapazitiver Blindwiderstand

$$X_{\rm C} = \frac{1}{\omega \cdot C}$$

Kondensatoren in Reihenschaltung

$$\frac{1}{C_G} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

Kondensatoren in Parallelschaltung

$$C_G = C_1 + C_2 + C_3 + \dots + C_N$$

Elektrische Feldstärke im homogenen Feld

$$E = \frac{U}{d}$$

Kapazität eines Kondensators

$$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$$

A: Kondensatorplattenfläche

d: Plattenabstand

 $\epsilon_{\rm r}$: Relative Dielektrizitätszahl

(Tabelle am Ende der Formelsammlung)

Filter

RC-Tiefpass / RC-Hochpass

$$f_{\rm g} = \frac{1}{2 \cdot \pi \cdot R \cdot C}$$

$$f_{\rm g} = \frac{R}{2 \cdot \pi \cdot L}$$

 f_g : Grenzfrequenz (Frequenz am -3 dB-Punkt)

Schwingkreis

Es gilt

Reihenschwingkreis

Parallelschwingkreis

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

$$B = \frac{R_s}{2 \cdot \pi \cdot L}$$

$$B = \frac{1}{2 \cdot \pi \cdot R_{\rm p} \cdot C}$$

Im Resonanzfall $X_C = X_L$ gilt

$$Q = \frac{f_0}{B} = \frac{X_{\rm L}}{R_{\rm s}}$$

$$Q = \frac{f_0}{B} = \frac{R_p}{X_L}$$

Transistor

Für Gleichstrom gilt

$$B = \frac{I_{\rm C}}{I_{\rm B}}$$

$$B = \frac{I_{\rm C}}{I_{\rm R}} \qquad I_{\rm E} = I_{\rm C} + I_{\rm B}$$

Für Wechselstrom gilt

$$v_{\rm I} = \beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}}$$
 $v_{\rm U} = \beta = \frac{\Delta U_{\rm CE}}{\Delta U_{\rm BE}}$ $v_{\rm P} = \beta^2 = v_{\rm U} \cdot v_{\rm I}$

$$v_P = \beta^2 = v_U \cdot v_I$$

B: Gleichsstromverstärkung

 β : Wechselstromverstärkung

ZF und Spiegelfrequenzen

Um die Darstellung übersichtlich zu halten, wird der Fall $f_{ZF} = f_E + f_{OSZ}$ nicht betrachtet.

Zwischenfrequenz

$$f_{\text{ZF}} = |f_{\text{E}} - f_{\text{OSZ}}| = \begin{cases} f_{\text{OSZ}} - f_{\text{E}} & \text{wenn } f_{\text{E}} < f_{\text{OSZ}} \\ f_{\text{E}} - f_{\text{OSZ}} & \text{wenn } f_{\text{E}} > f_{\text{OSZ}} \end{cases}$$

$$f_{\text{ZF}} : \text{Zwischenfrequenz}$$

$$f_{\text{E}} : \text{Eingangsfrequenz}$$

$$f_{\text{OSZ}} : \text{Oszillatorfrequenz}$$

Spiegelfrequenz

$$f_{S} = 2 \cdot f_{OSZ} - f_{E} = \begin{cases} f_{OSZ} + f_{ZF} = f_{E} + 2 \cdot f_{ZF} & \text{wenn } f_{E} < f_{OSZ} \\ f_{OSZ} - f_{ZF} = f_{E} - 2 \cdot f_{ZF} & \text{wenn } f_{E} > f_{OSZ} \end{cases}$$

Pegel

Leistungs und Spannungspegel

$$\begin{split} p &= 10 \cdot \log_{10} \left(\frac{P}{1 \, \text{mW}} \right) \text{dBm} \\ p &= 10 \cdot \log_{10} \left(\frac{P}{1 \, \text{W}} \right) \text{dBW} \\ u &= 20 \cdot \log_{10} \left(\frac{P}{0,775 \, \text{V}} \right) \text{dBu} \end{split}$$

Verstärkung/Gewinn

$$g = 10 \cdot \log_{10} \left(\frac{P_2}{P_1}\right) dB$$
 $g = 20 \cdot \log_{10} \left(\frac{U_2}{U_1}\right) dB$

Dämpfung/Verluste

$$a = 10 \cdot \log_{10} \left(\frac{P_1}{P_2} \right) \mathrm{dB} \qquad \qquad a = 20 \cdot \log_{10} \left(\frac{U_1}{U_2} \right) \mathrm{dB}$$

Leistungsverhältnis Spannungsverhältnis

-20 dB	0,01	0,1
-10 dB	0,1	0,32
-6 dB	0,25	0,5
-3 dB	0,5	0,71
-1 dB	0,79	0,89
0 dB	1	1
1 dB	1,26	1,12
3 dB	2	1,41
6 dB	4	2
10 dB	10	3,16
20 dB	100	10

P₁: Eingangsleistung
P₂: Ausgangsleistung
U₁: Eingangsspannung
U₂: Ausgangsspannung

Strahlungsleistung und Gewinn von Antennen

ERP

$$p_{\text{ERP}} = p_{\text{S}} - a + g_{\text{d}}$$
$$P_{\text{ERP}} = P_{\text{S}} \cdot 10^{\frac{g_{\text{d}} - a}{10 \text{dB}}}$$

Feldstärke im Fernfeld einer Antenne

$$E = \frac{\sqrt{30\,\Omega \cdot P_{\text{A}} \cdot G_{\text{i}}}}{d} = \frac{\sqrt{30\,\Omega \cdot P_{\text{EIRP}}}}{d}$$

Gilt für Freiraumausbreitung ab $d>\frac{\lambda}{2\cdot\pi}$ $P_{\rm A}$: Leistung an der Antenne

Gewinn von Antennen

$$G_{\rm i} = G_{
m d} \cdot 1{,}64$$
 $g_{\rm i} = g_{
m d} + 2{,}15\,{
m dB}$ $G = 10^{rac{g}{10{
m dB}}}$

EIRP

$$\begin{split} p_{\rm EIRP} &= p_{\rm ERP} + 2,15\,{\rm dB} \\ P_{\rm EIRP} &= P_{\rm ERP} \cdot 1,64 = P_{\rm S} \cdot 10^{\frac{g_{\rm d} - a + 2,15\,{\rm dB}}{10\,{\rm dB}}} \end{split}$$

Halbwellendipol

$$G_i = 1,64$$
 $g_i = 2,15 \, dB$

 $\lambda/4$ -Vertikalantenne mit Bodenreflexion

$$G_{\rm i} = 3,28$$
 $g_{\rm i} = 5,15 \, {\rm dB}$

Parabolspiegelantenne

$$g_i = 10 \cdot \log_{10} \left[\left(\frac{\pi \cdot d}{\lambda} \right)^2 \cdot \eta \right] dB$$

Rauschen

Thermisches Rauschen

$$\begin{aligned} &P_{\text{R}} = k \cdot T_{\text{K}} \cdot B \\ &\Delta p_{\text{R}} = 10 \cdot \log_{10} \left(\frac{B_1}{B_2}\right) \text{dB} \\ &U_{\text{R}} = 2 \cdot \sqrt{P_{\text{R}} \cdot R} \end{aligned}$$

P_R: Rauschleistung

 $\Delta p_{\mathbb{R}}$: Pegelunterschied der Rauschleistungen in B_1 und

 B_2 z. B. in dB

Signal-Rausch-Verhältnis (SNR)

$$\mathsf{SNR} = 10 \cdot \log_{10} \left(\frac{P_\mathsf{S}}{P_\mathsf{N}} \right) \mathsf{dB} = 20 \cdot \log_{10} \left(\frac{U_\mathsf{S}}{U_\mathsf{N}} \right) \mathsf{dB}$$

Shannon-Hartley-Gesetz für AWGN-Kanal

$$C = \frac{B}{1 \text{ Hz}} \cdot \log_2 \left(1 + \frac{P_S}{P_N} \right) \frac{\text{bit}}{\text{s}}$$

Rauschzahl

$$F = \frac{\left(\frac{P_{S}}{P_{N}}\right)_{Eingang}}{\left(\frac{P_{S}}{P_{N}}\right)_{Ausgang}}$$

$$a_{F} = 10 \cdot \log_{10} (F)$$

$$a_{F} = SNR_{Eingang} - SNR_{Ausgang}$$

 $P_{\rm S}$: Signalleistung $U_{\rm N}$: Rauschspannung $P_{\rm N}$: Rauschleistung $U_{\rm S}$: Signalspannung

C: Maximale Datenübertragungsrate

B : Bandbreite in Hz

Logarithmus zur Basis 2

$$\log_2(x) = \frac{\log_{10}(x)}{\log_{10}(2)}$$

Amplitudenmodulation

Modulationsgrad

$$m = \frac{\hat{U}_{\text{mod}}}{\hat{U}_{\text{T}}}$$

Bandbreite

$$B = 2 \cdot f_{\text{mod max}}$$

\hat{U}_{mod}

Frequenzmodulation

Modulationsindex

$$m = \frac{\Delta f_{\rm T}}{f_{\rm mod}}$$

 $\Delta f_{\rm T}$: Frequenzhub

Carson-Bandbreite

$$B \approx 2 \cdot (\Delta f_{\rm T} + f_{\rm mod \; max})$$

Ungefähre FM-Bandbreite B enthält etwa 99 % der Gesamtleistung des Signals

Wellenlänge und Frequenz

Lichtgeschwindigkeit

$$c = f \cdot \lambda$$
 $f = \frac{c}{\lambda}$ $\lambda = \frac{c}{f}$

Im Freiraum gilt

$$c = c_0 \approx 3 \cdot 10^8 \, \frac{\text{m}}{\text{s}} \approx 300\,000\,000 \, \frac{\text{m}}{\text{s}}$$

$$f[{
m MHz}] pprox rac{300}{\lambda \, [{
m m}]} \qquad \quad \lambda \, [{
m m}] pprox rac{300}{f[{
m MHz}]}$$

Verkürzungsfaktor von HF-Leitungen

$$k_{\rm v} = \frac{l_{\rm G}}{l_{\rm E}} = \frac{1}{\sqrt{\epsilon_{\rm r}}} = \frac{c}{c_0}$$

 $l_{\rm G}$: mechanische Länge $l_{\rm E}$: elektrische Länge

Reflexion

Stehwellenverhältnis (SWR, SWV, VSWR)

$$s = \frac{U_{max}}{U_{min}} = \frac{U_v + U_r}{U_v - U_r} = \frac{\sqrt{P_v} + \sqrt{P_r}}{\sqrt{P_v} - \sqrt{P_r}} = \frac{1 + |\textbf{r}|}{1 - |\textbf{r}|}$$

$$s = \frac{R_2}{Z}$$
 wenn $R_2 > Z$ und $s = \frac{Z}{R_2}$ wenn $R_2 < Z$

Reflexionsfaktor

$$|r| = \frac{s-1}{s+1} = \left| \frac{R_2 - Z}{R_2 + Z} \right| = \frac{|U_r|}{|U_v|} = \sqrt{\frac{P_r}{P_v}}$$

Rücklaufende Leistung

$$P_{\rm r} = P_{\rm v} \cdot |r|^2$$

An R₂ abgegebene Leistung

$$P_{\rm ab} = P_{\rm v} \cdot \left(1 - \left|r\right|^2\right)$$

 $U_{
m V}$: Spannung der hinlaufenden Welle $U_{
m r}$: Spannung der rücklaufenden Welle Z : Wellenwiderstand der HF-Leitung

 R_2 : reeller Abschlusswiderstand der HF-Leitung

 $P_{\rm v}$: vorlaufende Leistung

 $P_{\rm r}$: rücklaufende (reflektierte) Leistung

 $P_{\rm ab}$: Leistung an R_2

Wellenwiderstand

HF-Leitungen

$$Z = \sqrt{\frac{L'}{C'}}$$

Koaxiale Leitungen

$$Z = \frac{60 \,\Omega}{\sqrt{\epsilon_{\rm r}}} \cdot \ln\left(\frac{D}{d}\right)$$

D: Innendurchmesser Außenleiter *d*: Durchmesser des Innenleiters

Symmetrische Zweidrahtleitungen (a/d > 2,5)

$$Z = \frac{120 \,\Omega}{\sqrt{\epsilon_{\rm r}}} \cdot \ln\left(\frac{2 \cdot a}{d}\right)$$

a: Mittenabstand der Leiterd: Durchmesser der Leiter

Viertelwellentransformator

$$Z = \sqrt{Z_{\rm E} \cdot Z_{\rm A}}$$

Z: erforderlicher Wellenwiderstand einer $\lambda/4$ -Transformationsleitung

Weitere Formeln

Höchste brauchbare Frequenz

$$MUF \approx \frac{f_{c}}{\sin{(\alpha)}} \qquad f_{opt} = MUF \cdot 0.85$$

 $f_{
m opt}$: Optimale Arbeitsfrequenz

Empfindlichkeit von Messsystemen

$$E_{\rm MESS} = \frac{R_{\rm i}}{U_{\rm i}} = \frac{1}{I_{\rm i}}$$

 $E_{
m MESS}$: Empfindlichkeit in $\frac{\Omega}{
m V}$ $U_{
m i}$: Spannung am System bei Vollausschlag : Strom durch das System bei Vollausschlag

Relativer maximaler Fehler

$$F_{\rm W} = \pm \frac{G}{100} \cdot \frac{W_{\rm E}}{W_{\rm M}}$$

: relativer maximaler Fehler (in %)

: Genauigkeitsklasse des Messinstruments $W_{\rm E}$: Endwert des Messbereichs W_M : abgelesener Wert (Ist-Wert)

Abtasttheorem

$$f_{\text{abtast}} > 2 \cdot f_{\text{max}}$$

 $f_{
m abtast}$: Abtastrate

 f_{\min} : Minimale Frequenz $f_{
m max}$: Maximale Frequenz

für Nicht-Basisband-Signale

$$f_{\rm abtast} > 2 \cdot (f_{\rm max} - f_{\rm min})$$
 wenn $f_{\rm abtast} < f_{\rm min}$ oder $f_{\rm abtast} > f_{\rm max}$

Datenübertragungs-/Symbolrate

$$C = R_{\rm S} \cdot n$$

: Datenübertragungsrate in Bit/s

: Symbolrate in Baud

: Symbolgröße in Bit/Symbol

Formelzeichen, Konstanten und Tabellen

Sofern bei der jeweiligen Formel nicht anders angegeben, gilt:

A	Querschnitt, Fläche	g	Verstärkungsmaß/Gewinn (z.B. in dB)				
A_{Dr}	Drahtquerschnitt	g _d	Gewinn bezogen auf den Halbwellendipol (z.B. in dB)				
A_{Fe}	Eisenkernquerschnitt	gi	Gewinn bezogen auf den isotropen Strahler				
$A_{ m L}$	Induktivitätskonstante (z.B. in nH)	3 1	(z. B. in dB)				
$A_{ m S}$	Querschnittsfläche der Spule	GPSDO	GPS Disciplined Oscillator (GPS-synchronisierter Oszillator)				
a	Dämpfungsmaß (z. B. in dB)	Н	magnetische Feldstärke				
$a_{ m F}$	Rauschzahl gemessen mit Eingangsabschluss bei 290 K (z. B. in dB)	I	Stromstärke				
AWGN	Additive White Gaussian Noise (Additives	$I_{ m B}$	Basisgleichstrom				
	weißes gaußsches Rauschen)	$I_{\rm C}$	Kollektorgleichstrom				
B, B_1, B_2	Bandbreiten	$I_{ m E}$	Emittergleichstrom				
$B_{\mathbf{m}}$	magnetische Flussdichte	$I_{ m G}$	Gesamtstrom				
C	Kapazität	$I_{ m P}$	Primärstromstärke				
<i>C'</i>	Kapazitätsbelag (Kapazität pro Meter)	$I_{ m S}$	Sekundärstromstärke				
$C_{\rm G}$	Gesamtkapazität	I_1 , I_2	Teilströme				
$C_1, C_2, C_3,$ C_n	Teilkapazitäten	k	Boltzmann-Konstante, $k = 1.38 \cdot 10^{-23} \frac{\text{W s}}{\text{K}}$				
c c	Phasengeschwindigkeit	$k_{ m v}$	Verkürzungsfaktor				
c_0	Vakuumlichtgeschwindigkeit, $c_0 = 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$	L	Induktivität				
d	Abstand, Entfernung	L'	Induktivitätsbelag (Induktivität pro Meter)				
E	elektrische Feldstärke	L_{G}	Gesamtinduktivität				
EIRP	äquivalente isotrope Strahlungsleistung	$L_1, L_2, L_3,$	Teilinduktivitäten				
ERP	äquivalente (effektive) Strahlungsleistung	L_n	Länge				
e	Eulersche Zahl, e = 2,718	1	Länge				
F	Rauschzahl (Eingangsabschluss bei 290 K)	l _m	mittlere Feldlinienlänge Höchste brauchbare Frequenz bei der				
f	Frequenz	MUF	Ausbreitung elektromagnetischer Wellen				
$f_{\rm c}$, $f_{\rm k}$, $f_{ m krit}$,	Höchste Frequenz, bei der senkrecht in die		infolge ionosphärischer Brechung				
$f_{ m oF2}$	Ionosphäre eintretende Strahlung von der gegebenen Region noch gebrochen wird	m	Modulationsindex				
$f_{ m E}$	eingestellte Empfangsfrequenz	N	Windungszahl				
$f_{ m g}$	Grenzfrequenz	$N_{ m P}$	Primärwindungszahl				
$f_{ m mod}$	Modulationsfrequenz	$N_{ m S}$	Sekundärwindungszahl				
$f_{ m modmax}$	höchste Modulationsfrequenz	$N_{ m V}$	Windungszahl pro Volt				
$f_{ m opt}$	optimale Frequenz	OCXO	Oven-Controlled Crystal Oscillator (Quarzoszillator mit Quarzofen)				
f_{OSZ}	Oszillatorfrequenz	P	Leistung				
f_{S}	Spiegelfrequenz	P_{R}	Rauschleistung				
$f_{ m ZF}$	Zwischenfrequenz	$P_{\rm S}$	Senderleistung				
f_0	Resonanzfrequenz	$P_{\rm ERP}$	ERP Strahlungsleistung				
G	Gewinnfaktor	P_{EIRP}	EIRP Strahlungsleistung				
G_{d}	Gewinnfaktor bezogen auf den	$P_{ m V}$	Verlustleistung				
	Halbwellendipol	P_{ab}	abgegebene Leistung				
$G_{\mathbf{i}}$	Gewinnfaktor bezogen auf den isotropen Strahler	P_{zu}	zugeführte Leistung				

ρ_S Pegel der Senderleistung (z. B. in dBm) v_U Wechselspannungsverstärkung ρ_{ERP} Pegel der ERP Strahlungsleistung (z. B. in dBm) v_P Leistungsverstärkung für Wechselstrom dBm) ρ_{ERP} Pegel der EIRP Strahlungsleistungen (z. B. in dBm) v_P Voltage-Controlled Oscillator (Spannungsgesteuerter Oszillator) in dBm)PEPPeak Envelope Power (Hüllkurvenspitzenleistung) W Arbeit/Energie R Blindwiderstand X Blindwiderstand R Widerstand X_C kapazitiver Blindwiderstand R_G Gesamtwiderstand X_C kapazitiver Blindwiderstand R_G Innenwiderstand Z Wellenwiderstand R_1 , R_2 , R_3 Teilwiderstände Z Wellenwiderstand R_n Z Eingangsscheinwiderstand R_n Z Eingangsscheinwiderstand R_n Z Feldwellenwiderstand des freien Raumes, R_n Serieller Verlustwiderstand Z Feldwellenwiderstand des freien Raumes, R Stromdichte Z Primärer ScheinwiderstandSNRSignal-Rausch-Verhältnis (z. B. in dB) Z Primärer Scheinwiderstand SWV Stehwellenverhältnis oder Welligkeit Z Sekundärer Scheinwiderstand SWV Stromänderung SWV Stromänderung SWV Z Kollektorstromänderung Z Spannungsänderung
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PEIRPPegel der EIRP Strahlungsleistungen (z. B. in dBm)VCOVoltage-Controlled Oscillator (Spannungsgesteuerter Oszillator) in dBm)PEPPeak Envelope Power (Hüllkurvenspitzenleistung) X Blindwiderstand Q Güte X_C kapazitiver Blindwiderstand R Widerstand X_L induktiver Blindwiderstand R_G Gesamtwiderstand XO Crystal Oscillator (Quarzoszillator) R_l Innenwiderstand Z Wellenwiderstand R_1 Innenwiderstande Z_A Ausgangsscheinwiderstand R_n Z_R Eingangsscheinwiderstand R_n Z_R Eingangsscheinwiderstand R_n Preldwellenwiderstand des freien Raumes, R_n Z_R Feldwellenwiderstand des freien Raumes, R_n Stromdichte Z_R Primärer ScheinwiderstandSNRSignal-Rausch-Verhältnis (z. B. in dB) Z_R Primärer ScheinwiderstandSWV, VSWR Z_R Sekundärer Scheinwiderstand Z_R Sekundärer Scheinwiderstand<
PEPPeak Envelope Power (Hüllkurvenspitzenleistung)WArbeit/Energie Q Güte X_C kapazitiver Blindwiderstand R Widerstand X_L induktiver Blindwiderstand R_G Gesamtwiderstand XO Crystal Oscillator (Quarzoszillator) R_i Innenwiderstand Z Wellenwiderstand R_1, R_2, R_3 Teilwiderstände Z_A Ausgangsscheinwiderstand R_n Z_E Eingangsscheinwiderstand R_n Z_E Eingangsscheinwiderstand des freien Raumes, R_s serieller Verlustwiderstand Z_{F0} Feldwellenwiderstand des freien Raumes, R_s serieller Verlustwiderstand Z_{F0} Feldwellenwiderstand des freien Raumes, S Stromdichte Z_{F0} Primärer ScheinwiderstandSNRSignal-Rausch-Verhältnis (z. B. in dB) Z_P Primärer Scheinwiderstand S Sekundärer Scheinwiderstand S Sekundärer Scheinwiderstand S Svromänderung S Stromänderung T Periodendauer ΔI_C Kollektorstromänderung T Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔU Spannungsänderung
Q Güte X_C kapazitiver Blindwiderstand R Widerstand X_L induktiver Blindwiderstand R_G Gesamtwiderstand X_L induktiver Blindwiderstand R_G Gesamtwiderstand X_C Crystal Oscillator (Quarzoszillator) R_i Innenwiderstand Z Wellenwiderstand R_1, R_2, R_3, R_3 Teilwiderstände Z_A Ausgangsscheinwiderstand R_n paralleler Verlustwiderstand Z_E Eingangsscheinwiderstand R_p paralleler Verlustwiderstand Z_F0 Feldwellenwiderstand des freien Raumes, R_S serieller Verlustwiderstand Z_F0 Feldwellenwiderstand des freien Raumes, S Stromdichte Z_F0 Primärer ScheinwiderstandSNRSignal-Rausch-Verhältnis (z. B. in dB) Z_P Primärer Scheinwiderstand SWV , VSWRStehwellenverhältnis oder Welligkeit Z_S Sekundärer Scheinwiderstand SWV , VSWR ΔI Stromänderung T Periodendauer ΔI_C Kollektorstromänderung T_K Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔI_C Kollektorstromänderung
R Widerstand $X_{\rm L}$ induktiver Blindwiderstand $R_{\rm G}$ GesamtwiderstandXOCrystal Oscillator (Quarzoszillator) R_i Innenwiderstand Z Wellenwiderstand R_1, R_2, R_3, R_3 Teilwiderstände $Z_{\rm A}$ Ausgangsscheinwiderstand $R_{\rm n}$ $Z_{\rm E}$ Eingangsscheinwiderstand $R_{\rm p}$ paralleler Verlustwiderstand $Z_{\rm E}$ Feldwellenwiderstand des freien Raumes, $R_{\rm s}$ serieller Verlustwiderstand $Z_{\rm F0}$ Feldwellenwiderstand des freien Raumes, S Stromdichte $Z_{\rm F0} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 120\pi\Omega$ SNRSignal-Rausch-Verhältnis (z. B. in dB) $Z_{\rm P}$ Primärer Scheinwiderstand S , SWR, Stehwellenverhältnis oder Welligkeit $Z_{\rm S}$ Sekundärer ScheinwiderstandSWV, VSWR ΔI Stromänderung T Periodendauer $\Delta I_{\rm B}$ Basisstromänderung $T_{\rm K}$ Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔU Spannungsänderung
$R_{\rm G}$ Gesamtwiderstand XO Crystal Oscillator (Quarzoszillator) R_i Innenwiderstand Z Wellenwiderstand $R_1, R_2, R_3, Teilwiderstande$ R_n Ausgangsscheinwiderstand R_n Eingangsscheinwiderstand R_n Feldwellenwiderstand R_n Feldwellenwiderstand R_n Feldwellenwiderstand des freien Raumes, R_n Serieller Verlustwiderstand R_n Feldwellenwiderstand des freien Raumes, R_n Feldwellenwiderstand des freien Raumes, R_n Stromdichte SNR Signal-Rausch-Verhältnis (z. B. in dB) R_n Primärer Scheinwiderstand R_n Stehwellenverhältnis oder Welligkeit R_n Sekundärer Scheinwiderstand R_n Stromänderung R_n Stromänderung R_n Periodendauer R_n Periodendauer R_n Ausgangsscheinwiderstand R_n Feldwellenwiderstand des freien Raumes, R_n Feldwellenwiderstand des freien Raumes
R_i Innenwiderstand Z Wellenwiderstand R_1, R_2, R_3, R_3 Teilwiderstände Z_A Ausgangsscheinwiderstand R_n Paralleler Verlustwiderstand Z_E Eingangsscheinwiderstand Z_E Eingangsscheinwiderstand Z_E Feldwellenwiderstand des freien Raumes, Z_E Stromdichte Z_E Primärer Scheinwiderstand Z_E Primärer Scheinwiderstand Z_E Stromdichte Z_E Stromdichte Z_E Primärer Scheinwiderstand Z_E Sekundärer Scheinwiderstand Z_E Sekundärer Scheinwiderstand Z_E Suromänderung Z_E Stromänderung Z_E Periodendauer Z_E Sekundärer Scheinwiderstand Z_E Stromänderung Z_E Stromänderung Z_E Stromänderung Z_E Stromänderung Z_E Spannungsänderung Z_E Spannungsänderung Z_E Spannungsänderung
R_1, R_2, R_3, R_3 Teilwiderstände Z_A Ausgangsscheinwiderstand Z_E Eingangsscheinwiderstand Z_E Eingangsscheinwiderstand Z_E Eingangsscheinwiderstand Z_E Feldwellenwiderstand des freien Raumes, Z_E Z_E Feldwellenwiderstand des freien Raumes, Z_E
R_n Z_E Eingangsscheinwiderstand R_p paralleler Verlustwiderstand Z_{F0} Feldwellenwiderstand des freien Raumes, R_s serieller Verlustwiderstand Z_{F0} Feldwellenwiderstand des freien Raumes, r Reflexionsfaktor $Z_{F0} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 120\pi\Omega$ S StromdichteSNRSignal-Rausch-Verhältnis (z. B. in dB) Z_P Primärer Scheinwiderstand s , SWR, SVW, VSWRStehwellenverhältnis oder Welligkeit Z_S Sekundärer Scheinwiderstand SWV , VSWR ΔI Stromänderung T Periodendauer ΔI_B Basisstromänderung T_K Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔU Kollektorstromänderung
$R_{\rm P}$ paralleler Verlustwiderstand $Z_{\rm E}$ Eingangsscheinwiderstand $R_{\rm S}$ serieller Verlustwiderstand $Z_{\rm F0}$ Feldwellenwiderstand des freien Raumes, r Reflexionsfaktor $Z_{\rm F0} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 120\pi\Omega$ S Stromdichte $Z_{\rm P}$ Primärer ScheinwiderstandSNRSignal-Rausch-Verhältnis (z. B. in dB) $Z_{\rm P}$ Primärer Scheinwiderstand s , SWR, Stehwellenverhältnis oder Welligkeit $Z_{\rm S}$ Sekundärer ScheinwiderstandSWV, VSWR ΔI Stromänderung T Periodendauer $\Delta I_{\rm B}$ Basisstromänderung $T_{\rm K}$ Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔU Spannungsänderung
Feldwellenwiderstand des freien Raumes, $R_{\rm S}$ serieller Verlustwiderstand T Reflexionsfaktor T Reflexionsfaktor T Reflexionsfaktor T Stromdichte T Periodendauer T Periodendauer T Periodendauer T Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 Stromanderung T Spannungsänderung T Spannungsän
r Reflexionsfaktor $Z_{F0} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 120\pi\Omega$ S StromdichteSNRSignal-Rausch-Verhältnis (z. B. in dB) Z_P Primärer Scheinwiderstand s , SWR, SWV, VSWRStehwellenverhältnis oder Welligkeit SWV, VSWR Z_S Sekundärer Scheinwiderstand ΔI Stromänderung T Periodendauer ΔI_B Basisstromänderung T_K Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔU Spannungsänderung
SStromdichteSNRSignal-Rausch-Verhältnis (z. B. in dB) Z_P Primärer Scheinwiderstands, SWR,Stehwellenverhältnis oder Welligkeit Z_S Sekundärer ScheinwiderstandSWV, VSWR ΔI StromänderungTPeriodendauer ΔI_B Basisstromänderung T_K Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔI_C Kollektorstromänderung
SNR Signal-Rausch-Verhältnis (z. B. in dB) Z_P Primärer Scheinwiderstand s , SWR, Stehwellenverhältnis oder Welligkeit Z_S Sekundärer Scheinwiderstand SWV, VSWR ΔI Stromänderung ΔI_B Basisstromänderung T_K Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔU Spannungsänderung
S_{N} Stehwellenverhältnis oder Welligkeit S_{N} Sekundärer Scheinwiderstand S_{N} SwV, S_{N} Stehwellenverhältnis oder Welligkeit S_{N} Sekundärer Scheinwiderstand S_{N} SwV, S_{N} Stromänderung S_{N} Stromänderung S_{N} Basisstromänderung S_{N} Temperatur in Kelvin bezogen auf den absoluten Nullpunkt S_{N} Spannungsänderung S_{N} Spannungsänderung
SWV, VSWR ΔI Stromänderung ΔI_B Basisstromänderung T_K Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔU Spannungsänderung
T Periodendauer $\Delta I_{\rm B}$ Basisstromänderung $T_{\rm K}$ Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ΔU Spannungsänderung
absoluten Nullpunkt T_0 ΔU Spannungsänderung
$(T_0 = 0 \text{ K} = -273,15 ^{\circ}\text{C}; \text{d. h. } 20 ^{\circ}\text{C} \approx 293 \text{K})$ t Zeit Kollektor-Emitter-Spannungsänderung
TCXO Temperature Compensated Crystal $\Delta U_{ m BE}$ Basis-Emitter-Spannungsänderung
Oscillator (Temperaturkompensierter $lpha$ Abstrahlwinkel der Antenne (Höhenwinkel)
Quarzoszillator) eta Wechselstromverstärkung
U Spannung ϵ_0 elektrische Feldkonstante,
U _{eff} Effektivspannung
$U_{\rm G}$ Gesamtspannung $\epsilon_0 = \frac{1}{\mu_0 \cdot \epsilon_0^2} = 0,885 \cdot 10^{-11} \frac{\rm As}{\rm V m}$
$U_{\rm P}$ Primärspannung Primärspannung an R $\epsilon_{\rm r}$ relative Dielektrizitätszahl
octanians parameters and the second s
U_1, U_2 Teilspannungen μ_0 magnetische Feldkonstante,
\hat{U} Spitzenspannung $\mu_0 = \frac{4\pi}{10^7} \frac{\text{V s}}{\text{A m}} = 1,2566 \cdot 10^{-6} \frac{\text{H}}{\text{m}}$
$U_{ m mod}$ Amplitude der Modulationsspannung
\hat{U}_{T} Amplitude der HF-Trägerspannung μ_{r} relative Permeabilität (Luft $pprox$ 1)
u Pegel der Spannung (z. B. in dBu) $ ho$ spezifischer elektrischer Widerstand
\ddot{u} Übersetzungsverhältnis ω Kreisfrequenz

Spezifischer Widerstand in $\Omega \text{mm}^2/\text{m}$

Material	Wert
Kupfer	0,018
Aluminium	0,028
Gold	0,022
Silber	0,016
Zinn	0,11
Eisen	0,1
Messing	0,07

Relative Dielektrizitätszahl

Material	Wert
Luft (trocken)	1,00059
Voll-PE (Polyäthylen)	2,29
Schaum-PE	1,5
PTFE (Teflon)	2,0

Kabeldämpfungsdiagramm Koaxialkabel

Dämpfung gebräuchlicher Koaxleitungen in Abhängigkeit von der Betriebsfrequenz für eine Länge von 100 m