

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

SEMESTER 2 EXAMINATION 2014/2015

STAT 40380/40390 Bayesian Analysis

Professor Gary McGuire
Professor Tom Fearn
Professor Nial Friel*

Time Allowed: 2 hours

Instructions for Candidates

Full marks for *four* complete questions. Marks are indicated for each question.

Instructions for Invigilators

Non-programmable calculators are permitted.

- 1. Suppose that we take a Bayesian approach to make inference for a continuously varying unknown parameter θ in a statistical model, given a vector $y = (y_1, \dots, y_n)$ of independent identically distributed observations.
- (a) Discuss briefly the interpretation of the prior density $\pi(\theta)$ for θ . Indicate how it may be used to incorporate prior belief about about this parameter, and discuss the use of informative and noninformative prior distributions.

[6 marks]

- (b) Suppose that each observation y_i has density function $f(y_i|\theta)$. What is the definition of the likelihood function $L(y|\theta)$ [5 marks]
- (c) Describe carefully how the posterior distribution $\pi(\theta|y)$ is determined from the prior density and the likelihood function. [6 marks]
- (d) Describe carefully how, given the posterior distribution of θ , you would determine an equi-tailed 95% credible interval for θ . Give the interpretation of this interval, and contrast it with that of a 95% confidence interval for θ obtained using classical statistical techniques. [8 marks]

[Total 25 marks]

- 2. An insurance company assumes that motor insurance claims arise as a Poisson process with rate λ per week. The company would like to carry out a Bayesian estimation of λ . It collects data over a 25 week period observing a total of 130 claims.
- (a) Previous experience suggests the use of a gamma prior distribution, Ga(20, 5), for λ . What is the posterior distribution for λ ? [8 marks]
- (b) Compare the mean and standard deviation of the prior to that of the posterior and comment briefly. [4 marks]
- (c) Use the normal approximation to the gamma distribution to determine a 95% credible region for λ based on its posterior distribution. [4 marks]
- (d) For a given λ , what is the probability (under the insurance company's assumption) that, in a given period of 1 week, there will be no claims?

[4 marks]

(e) Write down an expression for the predictive probability, under the above posterior distribution, that, in a given period of 1 week, there will be no claims? (Note, you do not need to evaluate this probability). [6 marks]

[Total 26 marks]

3. A model is defined as being in the 2-parameter exponential family if the likelihood can be written as proportional to:

$$h(\theta,\phi)^n \exp\left[\sum t(x_i)\psi(\theta,\phi) + \sum u(x_i)\chi(\theta,\phi)\right]$$

for parameters (θ, ϕ) , data x_1, \ldots, x_n and functions h, t, u, ψ and χ .

(a) Show that the Gamma $Ga(\theta, \phi)$ distribution is a member of the 2-parameter exponential family with $\sum t(x_i) = \sum \log x_i$ and $\sum u(x_i) = \sum x_i$.

[5 marks]

- (b) What role do t and u play in estimating the parameters of the distribution? [4 marks]
- (c) What is a conjugate prior distribution? Show that the prior distribution defined by:

$$p(\theta, \phi) \propto h(\theta, \phi)^{\nu} \exp \left[\tau \psi(\theta, \phi) + \omega \chi(\theta, \phi)\right]$$

with constants ν, τ and ω , is conjugate for the two-parameter exponential family. [4 marks]

(d) Find the form of the conjugate prior for the Gamma distribution with parameters (θ, ϕ) .

[3 marks]

(e) Some observations are made to give n = 5, $\sum x_i = 12$ and $\log(\prod x_i) = 3$. With $\nu = -4$, $\tau = -2$, and $\omega = -2$, write out the posterior distribution up to a constant.

[3 marks]

(f) Hence show that the marginal posterior distribution for $\theta | x$ is:

$$p(\theta|\boldsymbol{x}) \propto \frac{\theta e^{\theta}}{10^{\theta}}$$

(Hint: remember $\Gamma(y+1)/\Gamma(y)=y$ if y>0)

[6 marks]

[Total 25 marks]

4. Write short notes on three of the following topics.	
(a) Convergence and convergence diagnostics for MCMC.	[8 marks]
(b) Conjugacy in Bayesian models.	[8 marks]
(c) Summarising posterior distributions.	[8 marks]
(d) Methods for finding posterior modes.	[8 marks]
	[Total 24 marks]

Probability distributions

Normal distribution

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right]$$
$$\mathbb{E}(x) = \mu, \ Var(x) = \sigma^2$$

Binomial distribution

$$P(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$\mathbb{E}(x) = np, \ Var(x) = np(1-p)$$

Beta distribution

$$p(x|\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$
where $B(\alpha,\beta) = \int_0^1 t^{\alpha-1}(1-t)^{\beta-1} dt$

$$\mathbb{E}(x) = \frac{\alpha}{\alpha+\beta}, \ Var(x) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

Poisson distribution

$$p(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

$$\mathbb{E}(x) = \lambda, \ Var(x) = \lambda.$$

Gamma distribution

$$p(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x)$$
where $\Gamma(u) = \int_0^{\infty} t^{u-1} \exp(-t) dt$

$$\mathbb{E}(x) = \frac{\alpha}{\beta}, \ Var(x) = \frac{\alpha}{\beta^2}$$