Esercizio 1 (2020-10-27)

Sia data una CPU con processore a **4 GHz** e **8 CPI** (Clock Per Instruction) che adoperi indirizzi da 32 bit e memoria strutturata su due livelli di cache (L1, L2), il cui setup è come segue:

L1 è una cache set-associativa a 4 vie con 8 set e blocchi da 4 word; adopera una politica di rimpiazzo LRU.

L2 è una cache direct-mapped con 4 linee e blocchi da 16 word.

1) Supponendo che all'inizio nessuno dei dati sia in cache, indicare quali degli accessi in memoria indicati di seguito sono HIT o MISS in ciascuna delle due cache. Per ciascuna MISS indicare se sia di tipo Cold Start (Cold), Capacità (Cap) o Conflitto (Conf). Utilizzare la tabella

sottostante per fornire i risultati ed indicare la metodologia di calcolo più in basso.

	Address	800	824	828	832	790	1640	836	848	1240	1244	1248	1252
	Block#	50	51	5 I	5 Z	49	102	5z	53	ヲヲ	アァ	78	78
	Index	2	3	3	4	1	6	4	5	5	5	6	6
L1	Tag	6	6	6	6	6	ΙZ	6	6	9	9	9	9
	HIT/MISS	4122	WISZ	HIT	WIZZ	W122	W122	HIT	WIZZ	4122	HIT	WIZZ	HIT
	Miss type	COLD	COLD		COLD	COLD	COLD		COLD	COLI		COLD	
	Block#	12	12		13	12	25		13	19		19	
	Index	0	9		1	0	1		1	3		3	
L2	Tag	3	3		3	3	6		3	l ₁		4	
	HIT/MISS	W122	HIT		MISS	HIT	4122		MISS	MISS		HIT	
	Miss type	COLV		·	COLD		COLD		CONF	COLD		·	·

2) Calcolare le dimensioni in bit (compresi i bit di controllo ed assumendo che ne basti uno per la LRU) delle due cache: (a) L1 e (b) L2.

3) Assumendo che gli accessi in **memoria** impieghino **200 ns**, che gli **hit** nella cache **L1** impieghino **2 ns** e gli **hit** nella cache **L2** impieghino **40 ns**, calcolare (a) il **tempo totale** per la sequenza di accessi, (b) il tempo **medio** per la sequenza di accessi, e (c) **quante istruzioni** vengono svolte nel tempo medio calcolato.

(2) L1				
BLOCCO	128 +	L2		
V.bit	1 +	BLOCCO	512 +	
bit LRU	1 +	V.bit	1 +	
TAG	25:	TAG	24 = .	
LINEA	155 X	LINEA	537 ×	
N° LINEE · VIE	32 =	Nº LINEE	4 =	L1+L2
TOTALE	4,96 bit	† TOTALE	2148 bit =	2644 bit
3				
TOT =	200.5 +	2 . 4 + 40 . 3	= 1128 MS	
T. MEDIO =	1128/12.	= 94 M S		
		= 376 C.C.		
ISTR. MEDI	E = 376/	8 = 47 ISTR	V 2 10 NI	

Esercizio 3 (2020-09-11)

Considerare l'architettura MIPS a ciclo singolo nella figura in alto (ed in allegato). Si sospetta che la CPU abbia un **guasto**. In particolare, si ha il dubbio che la Control Unit sia malfunzionante e che pertanto produca il segnale di controllo **RegWrite** attivo se e solo se **non** è attivo il segnale **Jump**: RegWrite = not(Jump).

- Si assume che:
- MemToReg = 1 solo per le istruzioni di tipo load, altrimenti valga 0 (ossia, mai "don't care", X)
- RegDst = 1 solo per le istruzioni di tipo R, altrimenti valga 0 (ossia, mai "don't care" X)
- MemRead = 1 solo per le istruzioni di tipo load, altrimenti valga 0 (ossia, mai "don't care" X)
- Branch = 1 solo per le istruzioni di salto condizionato, altrimenti valga 0 (ossia, mai "don't care" X)
- 1) Completare la tabella sottostante ipotizzando che ci sia il guasto. Per evidenziare i segnali errati a causa del guasto, aggiungere un punto esclamativo accanto: es., 1! laddove il segnale corretto (ossia, senza guasto) sia 0, e 0! laddove il segnale corretto sia 1.

	RegDst	ALUSrc	MemToReg	RegWrite	MemRead	MemWrite	Branch	Jump	ALUOp1	ALUOp0
Tipo R		O	0	ı	Q	0	0	٥	1	0
lw	0	×		_		0	Q	Q	0	0
sw	0	×	٥	1!	0	1	0	Q	0	0
beq	Q	X	O	1!	0	0	1	O	0	1
j	0	Χ	0	0	0	0	0	1	Х	Х

2) Realizzare un programma che scriva in **\$s0** il valore **0xFFFFFFF se il guasto occorre**. **Altrimenti**, \$s0 deve contenere il valore **0**. Spiegare con commenti il malfunzionamento atteso.

ADD SEED S ADD S LI SVO, SYSCAL	\$51,\$1 \$50,\$2 \$50,\$	0 , EN	ID //			•			100	MAL	FUN Z	10 N	ante,	5CA	IVERA'	5v :
BEQ S ADD S LI SVO, SYSCAL	\$50, \$2 \$50, \$					•						_				
LI \$VO. SYSCAL	, 10	ZERO,	0×F	'FFFF1			+ 0	, E`	PERC							
LI \$VO.	, 10				4FF			SCI TRA	370 370	E	, 32	1, 6	0 0	7 7	30MM	A
	LL															
FUN 2101	MA:															
ADD S		\$2E00	\$ 2	ER O												
L1 340,																
SYSCAL					#											
					#											
					#											
					+											
					#											

