Atributos de Calidad y Perspectivas

1. Realidad de las empresas

Información

- Ausencia de información consolida
- Múltiples fuentes de datos

Tecnología

- Múltiples especificaciones y plataformas para diseñar aplicaciones corporativas (J2EE, .NET, CCM)
 - Múltiples modelos de seguridad (MULTIPLE SIGN ON)
- Soportar infraestructura legada (¿Si cambiamos la palabra soportar por explotar? ¿Generar valor alrededor de los datos almacenados en estos sistemas?)

Desarrollo de software

- Tiempos de desarrollo cada vez más extensos (ciclos de desarrollo de 18 meses). Replicaciones innecesarias de datos (Como mantener coherentes las réplicas?)
- Portales, visión unificada e integrada de clientes y proveedores
- Soportar las cadenas de valor y procesos corporativos
- Modelo único de datos (Piedra angular)
- Empresas de **Tiempo Real** (Infraestructura 100% integrada, a nivel interno y externo)
- Flexibilidad y rápida adaptación a cambios del entorno (Negocio, Tecnología, etc)

Resultados Obtenidos → Standish Group Report

Que tan exitosos son los proyectos de software?

18% de los proyectos son cancelados antes de terminarlos

51% de los proyectos tienen sobrecostos, se entregan tarde, o no cumplen con las expectativas

2. Diagnóstico del problema

- Problemas técnicos
 - → Resolver problemas que no existen
 - → Requerimientos y especificaciones incompletas
 - → Visión del problema centrada en tecnología
 - → Nuevas tecnologías
- Problemas del cliente
 - →Poco acompañamiento y compromiso del cliente
 - → Cambios constantes de requerimientos y especificaciones
 - → Expectativas irreales
 - → Carencia de recursos
 - →Objetivos de negocio poco claros
- Problemas en administración de los proyectos
 - → Mala planeación
 - → Mala gerencia de proyectos
 - → Cronogramas de tiempos irreales

3. Atributos de calidad

Atributo de calidad: característica de un componente o sistema

- Ejemplos
 - Funcionalidad: aunque es el más importante no es el único
 - Disponibilidad
 - Usabilidad: ofrecer las operaciones para cancelar, deshacer, o reutilizar datos previamente ingresados.
 - Eficiencia-Desempeño
- Cantidad de comunicación entre componentes
- Funcionalidad ofrecida por cada componente
- Localización de recursos compartidos
 - Mantenibilidad
- · Determinada por la forma como se divide la funcionalidad
- Un sistema es mantenible(modificable) si un cambio involucra el menor número posible de elementos
 - Portabilidad
- · Aislar dependencia del sistema

Los atributos de calidad deben ser diseñados y evaluados en la definición de una arquitectura

La arquitectura por si sola no puede lograr satisfacer los atributos de calidad, se deben considerar los detalles (implementación)

Los atributos de calidad

 No se logran de forma aislada: el cumplimiento de uno afecta otros (e.g., portabilidad y eficiencia)

Clases de atributos de calidad

- Sistema: disponibilidad, mantenibilidad, desempeño, usabilidad
- Negocio
 - time to market: tiempo para desarrollar vs. la oportunidad de venderlo
 - Costo/beneficio: construir una arquitectura flexible es más costosa que una arquitectura rígida
 - Tiempo de vida del producto
 - Segmento objetivo
- Arquitectura
- integridad conceptual: visión que unifica el diseño del sistema en todos sus niveles
- Problemas para definir Atributos de calidad
 - el sistema es modificable con respecto a un conjunto de cambios pero no modificable con respecto a otros. El sistema es seguro con respecto a cierto

tipo de ataques pero no es seguro contra TODO. Entonces que quiere decir que el sistema sea modificable o que sea seguro?

- Sobre qué atributo específicamente se discute. Ejemplo: una falla del sistema concierne la disponibilidad, la seguridad, usabilidad? En muchos casos es un resultado de problemas en varios atributos.
- Vocabulario cambia según el atributo. Ejemplo: desempeño evento, seguridad – ataque, disponibilidad – falla
- El vocabulario cambia dependiendo de las fuentes bibliográficas: por ejemplo performance, latencia se usan de manera indistinta en muchos casos

4. Escenarios de Calidad

- Permiten detallar en qué condiciones y de que manera debe cumplirse un atributo de calidad
- Son casos concretos en los que podremos evidenciar si el sistema cumple o no con un atributo de calidad
- Permite centrarse en lo que concierne el atributo y no en los términos utilizados

Escenario de desempeño

- Fuente: Quién produce el estímulo para el escenario
- Estímulo: Qué estimulo es el que va a ocurrir para evidenciar el atributo
- Artefacto: Qué parte del sistema va a recibir el estímulo
- Ambiente: Bajo qué condiciones está el sistema o artefacto al recibir el estímulo
- Respuesta: Qué tipo de respuesta esperamos que el sistema tenga al estímulo (Deseablemente, esta define cómo el sistema cumple el atributo de calidad). Responde a la pregunta: Cómo vamos a observar que si se cumplió el atributo?

• Medida: Cómo vamos a medir si se cumplió o no el escenario de calidad. La medida debe poder medirse objetivamente

Ejercicio Escenarios:

- Escoja un atributo de calidad relevante para el caso de su proyecto
- Plantee un escenario de calidad completo

Atributos de calidad y Vistas

- Qué relación cree usted que existe entre las vistas y los atributos de calidad?
- Es posible definir nuevas vistas para cada atributo de calidad?
- Los atributos son ORTOGONALES a las vistas
- La seguridad es un aspecto que se puede evaluar para la vista funcional, de información, operativa, etc.
- Es necesario complementar las vistas con aspectos de los atributos de calidad

5. Perspectivas Arquitecturales

"Una perspectiva de Arquitectura es una colección de actividades, tácticas y pautas que se utilizan para garantizar que un sistema exhibe un conjunto particular de calidad relacionados con propiedades que requieren la consideración a través de un número de vistas de arquitectura del sistema"

La metodología propuesta guía el proceso de diseño de la arquitectura para garantizar que un sistema exhiba una o más atributos de calidad relevantes para los stakeholders.

Las más relevantes:

- Seguridad
- Desempeño y escalabilidad
- Disponibilidad y recuperabilidad
- Evolución

Perspectiva	Atributo Deseado	
Accesibilidad	Uso por parte de personas con discapacidades	
Disponibilidad y Recuperación	Habilida del sistema de estar operacional y recuperarse ante fallas	
Desarrollo	Habilidad del sistema de ser diseñado, implementado, etc.	
Evolucion	Flexibilidad de ser modificado	
Internacional.	Independencia de un lenguaje particular	
Localización	No dependencia de la ubicación física de sus componentes	
Desempeño y Escalabilidad	Habilidad del sistema de funcionar dentro de sus parámetros aceptables de desempeño y manejar incrementos en el volumen de procesamiento	
Regulación	Conformidad con leyes nacionales e internacionales	
Seguridad	Habilidad de controlar, monitorear y auditar quién puede ejecutar acciones y sobre cuáles recursos	
Usabilidad	Facilidad de los usuarios para interactuar con el sistema	

• Estructura de las perspectivas

Elemento	Descripción
Aplicabilidad	Cuáles de las vistas se ven impactadas por la perspectiva?
Concerns	atributos o propiedades de calidad que cubre la perspectiva
Actividades	pasos para aplicar la perspectiva a la vista
Tácticas Arquitecturales	aproximaciones comunes para lograr cumplir con el atributo de calidad
Problemas	Aspectos en los que comúnmente se pueden tener problemas para lograr el atributo
Lista de chequeo	listas para revisar que se han abordado todos los aspectos relevantes de la perspectiva
Otras fuentes	Referencias a otras fuentes sobre el atributo de calidad

- Perspectivas y vistas
 El objetivo de aplicar una perspectiva a una vista es encontrar y/o definir:

 Cómo la arquitectura va a cumplir un atributo de calidad?
- Posibles mejoras al diseño para cumplir con el atributo

 Otros artefactos que podrán ayudar a validar que el sistema si cumple con un atributo

Aplicabilidad de perspectivas a vistas

Vista/Perspectiva	Seguridad	Desempeño y escalabilidad	Disponibilidad y resilience	Evolución
Funcional	Medio	Medio	Bajo	Alto
Información	Medio	Medio	Bajo	Alto
Concurrencia	bajo	Alto	Medio	Medio
Desarrollo	Medio	Bajo	Bajo	Alto
Despliegue	Alto	Alto	Alto	Bajo
Operacional	Medio	Bajo	Medio	Bajo

a. <u>Ejemplo – Perspectiva de Seguridad</u>

- Calidad Deseada
 - La habilidad del sistema para controlar, monitorear y auditar quíen puede desempeñar cuáles acciones sobre los recursos y la habilidad de detectar y recuperarse de fallas en los mecanismos de seguridad
- Concerns
 - Políticas, amenazas, disponibilidad, detección, recuperación y auditoría
- Actividades
 - Identificar recursos sensitivos
 - Definir políticas de seguridad
 - Identificar amenazas al sistema
 - Diseñar la implementación de seguridad
 - Evaluar los riesgos de seguridad
- Tácticas Arquitecturales
 - Aplicar principios conocidos de seguridad
 - Usar mecanismos de identificación y autenticación
 - Asegurar la integridad y protección de la información
 - Asegurar mecanismos de auditoría
 - Proteger la disponibilidad
 - Integrar tecnologías de seguridad
- Problemas y mal uso
 - El sistema no esta diseñado en caso de fallas
 - Tecnología de seguridad nunca antas probada
 - La seguridad es problema del desarrollador

Ejemplo – Perspectiva Seguridad

Vista	Aplicabilidad
Funcional	Permite ver cuáles elementos funcionales deben ser protegidos
Información	Ayuda a detectar los datos sensibles a la seguridad
Concurrencia	Permite detectar cuáles elementos del sistema necesitan ser aislados y ejecutados en diferentes procesos de ejecución
Desarrollo	Determina las actividades que se deben tener en cuenta durante el desarrollo del sistema (Secure Lifecycle, Threat Modeling, Touchpoints)
Despliegue	Determina hardware y software de seguridad requerido para la instalación del sistema
Operacional	Determina requerimientos de seguridad durante la implementación del sistema

b. <u>Ejemplo – Perspectiva Usabilidad</u>

- Calidad Deseada
 - Facilidad con la que las personas que interactúan con el sistema pueden trabajar Efectivamente
- Concerns
 - Usabilidad de la interface de usuario
- Usuario Final
- Usuario Interno
 - El proceso de navegación por el sistema debe ser simple, entendible y consistente
 - Calidad de la información
 - Alineamiento con políticas de trabajo de la organización
 - Alineamiento con las habilidades y conocimientos de los usuarios
 - Considerar otros atributos tales como desempeño desde el punto de vista de la percepción del usuario
 - Facilidad en el cambio de las interfaces de Usuario
- Actividades
 - Identificar todos los lugares donde las personas pueden interactuar con el sistema (touchpoints)
 - Entender como los usuarios interactúan con el sistema en cada punto
- Consultas predefinidas
- Filtros / Reportes / Análisis de información
 - Entender las capacidades de los usuarios
 - Entender el contexto en el que el sistema va a ser usado
- Uso interno por personal especializado
- Expuesto al público general

- Tácticas Arquitecturales
 - Separar la implementación de la interfaz de usuario del procesamiento de negocio
 - Uso de componentes para presentación
- Problemas y mal uso
 - No tener en cuenta las características de los usuarios
 - No tener en cuenta otras perspectivas
 - Crear interfaces sobrecargadas
 - Suponer solo un tipo de acceso al sistema
 - No cumplir guías de presentación de la organización
 - Mezclar la implementación de la presentación y lógica de negocio
- Lista de chequeo para captura de requerimientos
 - Identificar todos los puntos de contacto
 - Identificar todos los tipos de usuarios
 - Tener claridad del uso (ocasional, regular, transaccional, etc.) para cada punto de contacto
 - Que necesidades de soporte y mantenimiento va a requerir su sistema
 - Entiende las capacidades, experiencia y habilidades de los usuarios del sistema
 - Existen estándares corporativos de presentación
- Lista de chequeo para la Definición de Arquitectura
 - Para aplicaciones web y móviles, ha considerado la variación en ancho de banda, capacidades de hardware (resolución) y software de despliegue (rendering)
 - La interface de usuario está alineada con los procesos de negocio que automatizan?
 - Si el sistema esta expuesto al público general tiene las aprobaciones necesarias para el uso del material de la empresa (logos)

Ejemplo - Perspectiva Usabilidad

Vista	Aplicabiliad
Funcional	La estructura funcional indica donde están las interfaces externas y donde las necesidades de usabilidad se deben considerar. No se debe esperar un gran impacto.
Información	La calidad de la información puede tener un gran impacto en la usabilidad del sistema
Concurrencia	No se prevee un impacto significativo
Desarrollo	Impacta el desarrollo en terminos guias, estándares, patrones de desarrollo
Despliegue	No se prevee un impacto significativo
Operacional	Usabilidad de los adminsitradores del sistema

- <u>Más ejercicios</u>
 Describa los requerimientos de usabilidad del proyecto que están desarrollando en el semestre
- Defina un escenario de calidad