UNIVERSITY OF JAFFNA FACULTY OF ENGINEERING

Assignment Test 02- June 2023

Multi-Variable Calculus

MC 3010

Reading Time: 05 Minutes

Writing Time: 90 Minutes

Permitted Materials: Calculators; Mathematical tables

1. Write a parametric representation of the curve given by:

$$(y-5)(z+5) = 1, x = 1$$

- 2. Write the velocity of a particle moving with position: $\mathbf{r}(t) = (\cosh t, \sinh t, t)$
- 3. Write the length of the semicircle defined by

$$\mathbf{r}(t) = (2\cos t, 2\sin t, t), \ t \in [0, \pi]$$

- 4. Write a tangent vector to the curve: $\mathbf{r}(t) = (\cos t, \sin t), \ t \in [0, \pi]$ at the point $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$
- 5. Write both components of the acceleration of the curve: $\mathbf{r}(t) = (2\cos t, 2\sin t, t)$.
 - (a) The tangential acceleration
- (b) The normal acceleration
- 6. Write the work done by the force field: $\mathbf{F}(x,y) = (x \sin y, y)$ on the particle that moves along the parabola $y = x^2$ from (-1,1) to (2,4).
- 7. Obtain ∇f , where f(x, y) is given by:

$$f(x,y) = \frac{1}{x+y}$$
 at $(1,-2)$

Give its components, its direction, and its magnitude at the point specified.

8. Consider the level surface given by:

$$f(x, y, z) = z - \frac{x}{y}$$

At the point P = (2, 1, 2) on the surface find the normal vector and the equation for the tangent plane.

9. use the total differential to approximate the change in the function $z = f(x, y) = \sqrt{4 - x^2 - y^2}$ as (x, y) changes from (1, 1) to (1.01, 0.97).

- 10. Find all 2-nd partials of $f(x, y) = \cos(x^2 + y^2)$

- (a) $\frac{\partial^2 f}{\partial x^2}$ (b) $\frac{\partial^2 f}{\partial y^2}$ (c) $\frac{\partial^2 f}{\partial x \partial y}$ (d) $\frac{\partial^2 f}{\partial y \partial x}$
- 11. A rectangular container is required to have total surface area S, and a volume as large as possible. Find its dimensions:
 - (a) if it has a lid,
 - (b) if it does not have a lid.
- 12. Find all stationary points of $f(x,y) = 2x^3 + 6xy^2 3y^3 150x$ and classify them.

Points	Classification of stationary points									
	$\frac{\partial^2 f}{\partial x^2}$	$\frac{\partial^2 f}{\partial y^2}$	$\frac{\partial^2 f}{\partial x \partial y}$	Δ	Classification					
(5,0)										
(-5,0)										
(3,4)										
(-3,-4)										

- 13. Sketch the region of integration for the integral $\int_0^\infty \int_{\frac{1}{4}y^{-2}}^{y^{-2}} x^2 y e^{-x^2 y^2} dx dy$ and write an equivalent integral with the order of integration reversed.
- 14. Evaluate the following integral by first converting to polar coordinates.

$$\int_0^{\sqrt{2}} \int_1^{\sqrt{4-y^2}} \frac{1}{\sqrt{1+x^2+y^2}} \, dx dy$$

15. Evaluate the following integral by first converting to polar coordinates.

$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2}+y^{2}} \, dy dx$$

- 16. A washer has inner radius r_1 and outer radius r_2 . The thickness of the washer is given by $f(x,y) = ae^{-b(x^2+y^2)}$. What is the average thickness of the washer?
- 17. If Z = f(x,y) and $Z = \sqrt{9 x^2 y^2}$, write the total differential, dz
- 18. Calculate the divergence of the velocity vector field v defined by

$$v = \cos(x)\cosh(y) \ i + \sin(x)\sinh(y) \ j$$

19.	Calculate th	ne curl o	the	velocity	vector	field	v defined	by
			7	$y = (x^2 +$	$-u^2 + z$	$(2^2)^{\frac{1}{2}}$	xi + yi +	(zk)

——— End of Examination ———