一、给定如下网络,采用DINIC算法找到最大流。

DINIC算法

输入: 网络(G, s, t, c) 输出: G中的最大流 for 每条边(u,v)∈E 2. f(u,v)←0 3. end for 初始化剩余图,设R=G 5. 查找R的层次图L 6. while t 为L中的顶点 u←s 8. p←u 9. while outdegree(s) > 0 { 开始阶段} 10. while $u \neq t$ 11. if outdegree(u) > 0 then {前进} 12. 设(u,v)为L中的一条边 13. p← v 14. u← v 15. else {退出} 16. 删除 u和L中所有的邻接边 从 p的末尾删除u 17. 将u设为p中的最后一个顶点 18. 19. (u可能是t) 20. end if

21. if u = t then {增值} 设△为p中的 瓶颈容量,用 22. △增值p当前的流,在剩余 23. 24. 图和层次图中调整p的容量, 删除饱和边,设u是p中从s 25. 26. 可到达的最后顶点,注意u 27. 可能是S 28.end if 29.end while 30.从当前剩余图R计算新的层次图L 31.end while

用瓶颈容量更新流, 得到剩余图

用瓶颈容量更新流, 得到剩余图

用瓶颈容量更新流, 得到剩余图

最后的层次图中s不能到达t,因此有最大流

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

- (1) 把上述形式转成标准型的线性规划问题。
- (2) 用单纯型法求解z的最大值,并且给出z最大时各个变量的值。

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

(1) 把上述形式转成标准型的线性规划问题。

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 + x_3 = 4$
 $2x_1 + 3x_2 + x_4 = 6$
 $x_i \ge 0$ $(i = 1,2,3,4)$

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

(2) 用单纯型法求解z的最大值,并且给出z最大时各个变量的值。

		1	3	0	0		
		x1	x2	x 3	x4	RHS	Ratio
0	x 3	2	1	1	0	4	4/2
0	x4	2	3	0	1	6	6/2
检验数		3	2	0	0		

当前基本可行解: (0, 0, 4, 6), z=0

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

(2) 用单纯型法求解z的最大值,并且给出z最大时各个变量的值。

		1	3	0	0		
		x1	x2	x 3	x4	RHS	Ratio
0	x1	1	1/2	1/2	0	2	2/(1/2)
0	x4	0	2	-1	1	2	2/2
检验数		0	1/2	-3/2	0		

当前基本可行解: (2, 0, 0, 2), z=6

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

(2) 用单纯型法求解z的最大值,并且给出z最大时各个变量的值。

		1	3	0	0		
		x1	x2	x 3	x4	RHS	Ratio
0	x1	1	0	3/4	-1/4	3/2	
0	x2	0	1	-1/2	1/2	1	
检验数		0	0	-5/4	-1/4		

当前基本可行解: (3/2, 1, 0, 0), z=13/2

三、使用递推法求解递推方程:

$$\begin{cases}
T(n) = T(n-1) + n^2 \\
T(1) = 1
\end{cases}$$

三、使用递推法求解递推方程:

$$\begin{cases}
T(n) = T(n-1) + n^2 \\
T(1) = 1
\end{cases}$$

$$T(n) = T(n-1) + n^{2}$$

$$= T(n-2) + (n-1)^{2} + n^{2}$$

$$= T(n-3) + (n-2)^{2} + (n-1)^{2} + n^{2}$$

$$= \cdots$$

$$= 1^{2} + 2^{2} + \cdots + (n-1)^{2} + n^{2}$$

$$= n \times (n+1) \times (2n+1)/6$$