Does $\sum_{n=1}^{\infty} \frac{2 + \cos \pi n}{n}$ diverge, converge absolutely, or converge conditionally?

Solution

The terms of the series $\sum_{n=1}^{\infty} \frac{2+\cos\pi n}{n}$ are positive. Note, in fact, that

$$\cos(\pi n) \ge -1$$

so by adding 2 to both sides,

$$2 + \cos(\pi n) \ge 1$$

thus

$$\frac{2+\cos(\pi n)}{n} \geq \frac{1}{n}$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by the *p*-test, the series $\sum_{n=1}^{\infty} \frac{2 + \cos \pi n}{n}$ dinverges by the Direct Comparison Test.