Practice Questions on CPU Scheduling Algorithm

1. Let us consider the set of 5 processes with their arrival time and burst time as given below:

Process Id	Arrival time	Burst time
P1	3	1
P2	1	4
Р3	4	2
P4	0	6
P5	2	3

- a. If the CPU scheduling policy is SJF non-preemptive, calculate the average turn-around time and average waiting time.
- b. If the CPU scheduling policy is SJF preemptive, calculate the average turn-around time, average waiting time and response time.
- 2. Given below are the set of 5 processes with their arrival time and burst time

Process Id	Arrival time	Burst time
P1	0	7
P2	1	5
Р3	2	3
P4	3	1
P5	4	2

a. If the CPU scheduling policy is shortest remaining time first, calculate the average turn-around time, average waiting time and response time.

3. Consider the set of 6 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	5	5
P2	4	6
Р3	3	7
P4	1	9
P5	2	2
P6	6	3

- a. If the CPU scheduling policy is Round Robin with time quantum = 2, calculate the average turn-around time, average waiting time and response time.
- 4. Four processes to be executed on a single processor system arrived at time 0 in the order A, B, C, D. Their CPU burst time requirements are 4, 1, 8, 1 time units respectively. What will be the completion time of A under round robin scheduling with time slice of one time unit? Show the Gant Chart.
- 5. Consider the arrival time and burst time of five different processes as given below

Process Id	Arrival time	Burst time
	0	5
P2	1	3
Р3	2	1
P4	3	2
P5	4	3

If the CPU scheduling policy is Round Robin with time quantum = 3 unit, calculate the average turn-around time, average waiting time and response time.

6. Consider following values for the arrival time, burst time and associated priority for 5 different processes.

Process Id	Arrival time	Burst time	Priority
P1	0	4	2
P2	1	3	3
Р3	2	1	4
P4	3	5	5
P5	4	2	5

- a. If the CPU scheduling policy is priority non-preemptive, calculate the average turn-around time and average waiting time with. (Lower number represents higher priority)
- b. If the CPU scheduling policy is priority preemptive, calculate the average turn-around time, average waiting time and response time. (Higher the number, higher the priority)
- 7. Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	3	4
P2	5	3
Р3	0	2
P4	5	1
P5	4	3

If the CPU scheduling policy is FCFS, calculate the average turn-around time and average waiting time.