19.06.2012 Abgabe: 26.06.2012

10.00 Uhr, Tutorenfächer

Aufgabenblatt 9

zur Analysis II

28. Stetigkeit und Existenz partieller Ableitungen

(8 Punkte)

Zeigen Sie, dass die Funktion

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{für } x^2 + y^2 > 0\\ 0 & \text{für } x^2 + y^2 = 0 \end{cases}$$

in jedem Punkt partielle Ableitungen erster Ordnung besitzt, jedoch im Ursprung (0,0) nicht stetig ist.

29. Parametrisierung des Torus

(3+3+2 Punkte)

(i) Welche Art von Kurve γ im \mathbb{R}^3 wird durch die Abbildung

$$\gamma \colon \mathbb{R} \longrightarrow \mathbb{R}^3, \quad \varphi \mapsto (a + b\cos\varphi, 0, b\sin\varphi),$$

für a > b > 0 beschrieben.

(ii) Rotieren Sie diese Kurve entgegen dem Uhrzeigesinn um die x_3 -Achse. Bezeichnen Sie den Rotationswinkel mit ϑ . Sie erhalten so eine Funktion $f \colon \mathbb{R}^2 \to \mathbb{R}^3$ vermöge $(\varphi, \vartheta) \mapsto f(\varphi, \vartheta)$.

Die durch f dargestellte Fläche T im \mathbb{R}^3 nennt man einen Torus.

(iii) Skizzieren Sie T, ferner die Kurven $\varphi\mapsto f(\varphi,0)$ sowie $\vartheta\mapsto f(0,\vartheta)$ und schließlich die Vektoren

$$\frac{\partial f}{\partial \vartheta}\left(\varphi,\vartheta\right), \quad \frac{\partial f}{\partial \varphi}\left(\varphi,\vartheta\right)$$

an einem Punkt $f(\varphi, \vartheta)$ ihrer Wahl.

30. Niveauflächen am Torus

(2+2+4 Punkte)

Für $x_1 > 0$, sei

$$h(x_1, x_3) := (x_1 - a)^2 + x_3^2 - b^2$$

die beschreibende Funktion eines Kreises in der $[x_1, x_3]$ -Ebene im \mathbb{R}^3 mit Radius b > 0 und Mittelpunkt (a, 0, 0), wobei b < a.

- (i) Setzen Sie diese Funktion rotationssymmetrisch um die x_3 -Achse auf den ganzen \mathbb{R}^3 fort, und bezeichnen Sie diese neue Funktion mit g.
- (ii) Sei f die Funktion aus Aufgabe 29. Zeigen Sie, dass

$$f(\mathbb{R}^2) = \{x \in \mathbb{R}^3 : g(x) = 0\}.$$

Dies besagt, dass T die Niveaufläche der Funktion g für den Wert 0 ist.

(iii) Berechnen Sie den Gradienten $\nabla g(x)$ für alle $x\in\mathbb{R}^3\setminus\{(0,0,0)\}.$ Zeigen Sie

$$\nabla g(x) \neq 0$$
 für alle $x \in T$

sowie

$$\nabla g(x) \cdot \frac{\partial f}{\partial \vartheta} \left(\varphi, \vartheta \right) = \nabla g(x) \cdot \frac{\partial f}{\partial \varphi} \left(\varphi, \vartheta \right) = 0$$

für alle $(\varphi, \vartheta) \in \mathbb{R}^2$ und $x = f(\varphi, \vartheta)$. Dies besagt, dass der Gradient von g senkrecht zur Niveaufläche T ist.