1 目的

2端子対回路の入出力特性が F 行列により表現できることを理解する.

2 理論

図 1 に示す 2 つの端子対からなる回路を考える.入力端子対 1,1' の電圧,電流 V_1,I_1 は,出力端子対 2,2' の電圧,電流 V_2,I_2 により

$$\left[\begin{array}{c} V_1 \\ I_1 \end{array}\right] = \left[\begin{array}{cc} A & B \\ C & D \end{array}\right] \left[\begin{array}{c} V_2 \\ I_2 \end{array}\right]$$

と表される. この式中の2行2列の行列

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]$$

を F 行列とよび,この行列の各要素 A,B,C,D を 4 端子定数とよぶ.4 端子定数 A は出力端子対 2,2' を 開放した時の入力電圧 V_1 と出力電圧 V_2 の比

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0}$$

と定義される. また, B は出力端子対 2,2' を短絡した時の入力電圧 V_1 と出力電流 I_2 の比

$$B = \left. \frac{V_1}{I_2} \right|_{V_2 = 0}$$

であり,C は出力端子対 2,2' を開放した時の入力電流 I_1 と出力電圧 V_2 の比

$$C = \left. \frac{I_1}{V_2} \right|_{I_2 = 0}$$

であり,D は出力端子対 2,2' を短絡した時の入力電流 I_1 と出力電流 I_2 の比

$$D = \left. \frac{I_1}{I_2} \right|_{V_2 = 0}$$

である.

図 2 のように 2 端子対回路を縦続接続すると、全体の回路の F 行列は各々の回路の F 行列の積で表される。 すなわち

$$\left[\begin{array}{c} V_1 \\ I_1 \end{array}\right] = \left[\begin{array}{cc} A & B \\ C & D \end{array}\right] \left[\begin{array}{c} V_3 \\ I_3 \end{array}\right]$$

とすると、

$$\left[\begin{array}{c} V_1 \\ I_1 \end{array}\right] = \left[\begin{array}{cc} A_1 & B_1 \\ C_1 & D_1 \end{array}\right] \left[\begin{array}{c} V_2 \\ I_2 \end{array}\right]$$

$$\left[\begin{array}{c} V_2 \\ I_2 \end{array}\right] = \left[\begin{array}{cc} A_2 & B_2 \\ C_2 & D_2 \end{array}\right] \left[\begin{array}{c} V_3 \\ I_3 \end{array}\right]$$

図1 2端子対回路

図 2 2 端子対回路の縦続接続

より

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] = \left[\begin{array}{cc} A_1 & B_1 \\ C_1 & D_1 \end{array}\right] \left[\begin{array}{cc} A_2 & B_2 \\ C_2 & D_2 \end{array}\right]$$

と表される.

R,L,C,M 以外の素子を含まない回路では,F 行列の行列式 AD-BC の値は 1 となる.また,入力端子と出力端子を入れ替えた回路の F 行列は,A と D を入れ替えたものとなる.

3 実験

3.1 F 行列の測定方法

3.1.1 4 端子定数 A, C の測定

図 3 のように回路の接続を行い、 V_1 の絶対値 $|V_1|$ 、 V_2 の絶対値 $|V_2|$ 、 V_{10} の絶対値 $|V_{10}|$ 、 V_1 と V_2 の位相差 θ_A 、 V_{10} と V_2 の位相差 θ_C をオシロスコープを用いて測定する。 R_{10} は電流を求めるための抵抗であり、十分小さい値であることが望ましい。この実験では 10Ω 程度に設定する。波形が読み取りにくいときは、 R_{10} の値を適宜、大きくする。測定結果より

$$|A| = \frac{|V_1|}{|V_2|}$$

$$\arg A = \theta_A$$

$$|C| = \frac{\frac{|V_{10}|}{R_{10}}}{|V_2|} = \frac{|V_{10}|}{|V_2|R_{10}}$$

$$\arg C = \theta_C \pm \pi$$

が求められる.

3.1.2 4 端子定数 B, D の測定

図 4 のように回路の接続を行い, V_1 の絶対値 $|V_1|$, V_{10} の絶対値 $|V_{10}|$, V_{20} の絶対値 $|V_{20}|$, V_1 と V_{20} の位相差 θ_B , V_{10} と V_{20} の位相差 θ_D をオシロスコープを用いて測定する。 R_{10} , R_{20} は電流を求めるための抵抗であり、十分小さい値であることが望ましい.この実験では 10Ω 程度に設定する.波形が読み取りにくいときは, R_{10} , R_{20} の値を適宜,大きくする.測定結果より

$$|B| = \frac{|V_1|}{\frac{|V_{20}|}{R_{20}}} = \frac{|V_1| R_{20}}{|V_{20}|}$$

$$\arg B = \theta_B$$

$$|D| = \frac{\frac{|V_{10}|}{R_{10}}}{\frac{|V_{20}|}{R_{20}}} = \frac{|V_{10}| R_{20}}{|V_{20}| R_{10}}$$

$$\arg D = \theta_D \pm \pi$$

図3 4端子定数 A, C の測定

図4 4端子定数 B,Dの測定

3.2 被測定回路と測定手順

被測定回路を図 5,6,7 に示す。抵抗,コンデンサの値は $R=1.0\,\mathrm{k}\Omega$, $C=1.0\,\mu\mathrm{F}$ とし、周波数 f は $f=1\,\mathrm{kHz}$ とする。被測定回路 2 は被測定回路 1 の入力端子と出力端子を入れ換えたものである。また, 被測定回路 3 は被測定回路 1 と被測定回路 2 を縦続接続したものである。以下の順に測定を行う。

- 1. 図 5 の被測定回路 1 について、4 端子定数 (A_1, B_1, C_1, D_1) を測定より求める.
- 2. 図 6 の被測定回路 2 について、4 端子定数 (A_2, B_2, C_2, D_2) を測定より求める.
- 3. 図 7 の被測定回路 3 について、4 端子定数 (A_3, B_3, C_3, D_3) を測定より求める.

図 5 被測定回路 1

図 6 被測定回路 2

図7 被測定回路3

3.3 使用機器

- 1. RC 発信機(ケンウッド AG-203A)
- 2. DSO (Tektronix TBS1022)
- 3. ブレッドボード

4 結果

測定值

被測定回路1

4 端子定数 A, C の測定

$$|V_1| = 8.10 \,\mathrm{V}$$

 $|V_2| = 1.15 \,\mathrm{V}$
 $|V_{10}| = 80.00 \,\mathrm{mV}$
 $\theta_A = 85.50^\circ$
 $\theta_C = 82.80^\circ$

$$|A| = \frac{|V_1|}{|V_2|} = 7.04$$

$$|C| = \frac{\frac{|V_{10}|}{R_{10}}}{|V_2|} = \frac{|V_{10}|}{|V_2|R_{10}} = 6.96 \times 10^{-3}$$

4端子定数 B,D の測定

$$|V_1| = 7.50 \,\mathrm{V}$$

 $|V_{10}| = 80.00 \,\mathrm{mV}$
 $|V_{20}| = 78.00 \,\mathrm{mV}$
 $\theta_B = 0.00^\circ$
 $\theta_D = 0.00^\circ$

$$|B| = \frac{|V_1|}{\frac{|V_{20}|}{R_{20}}} = \frac{|V_1|R_{20}}{|V_{20}|} = 961.54$$

$$|D| = \frac{\frac{|V_{10}|}{R_{10}}}{\frac{|V_{20}|}{R_{20}}} = \frac{|V_{10}|R_{20}}{|V_{20}|R_{10}} = 1.03$$

被測定回路 2

4 端子定数 A, C の測定

$$|V_1| = 3.00 \,\mathrm{V}$$

 $|V_2| = 3.00 \,\mathrm{V}$
 $|V_{10}| = 190.00 \,\mathrm{mV}$
 $\theta_A = 0.00^\circ$
 $\theta_C = 90.00^\circ$

$$|A| = \frac{|V_1|}{|V_2|} = 1.00$$

$$|C| = \frac{\frac{|V_{10}|}{R_{10}}}{|V_2|} = \frac{|V_{10}|}{|V_2|R_{10}} = 6.33 \times 10^{-3}$$

4端子定数 B,D の測定

$$|V_1| = 2.70 \,\mathrm{V}$$

 $|V_{10}| = 185.00 \,\mathrm{mV}$
 $|V_{20}| = 34.00 \,\mathrm{mV}$
 $\theta_B = 0.00^\circ$
 $\theta_D = 86.40^\circ$

$$|B| = \frac{|V_1|}{\frac{|V_{20}|}{R_{20}}} = \frac{|V_1| R_{20}}{|V_{20}|} = 794.12$$

$$|D| = \frac{\frac{|V_{10}|}{R_{10}}}{\frac{|V_{20}|}{R_{20}}} = \frac{|V_{10}| R_{20}}{|V_{20}| R_{10}} = 5.44$$

被測定回路3

4 端子定数 A, C の測定

$$|V_1| = 7.20 \text{ V}$$

 $|V_2| = 620.00 \text{ mV}$
 $|V_{10}| = 80.00 \text{ mV}$
 $\theta_A = 86.40^\circ$
 $\theta_C = 82.80^\circ$

$$|A| = \frac{|V_1|}{|V_2|} = 11.61$$

$$|C| = \frac{\frac{|V_{10}|}{R_{10}}}{|V_2|} = \frac{|V_{10}|}{|V_2|R_{10}} = 12.90 \times 10^{-3}$$

4端子定数 B,D の測定

$$|V_1| = 7.40 \text{ V}$$

 $|V_{10}| = 80.00 \text{ mV}$
 $|V_{20}| = 14.00 \text{ mV}$
 $\theta_B = 90.00^\circ$
 $\theta_D = 90.00^\circ$

$$|B| = \frac{|V_1|}{\frac{|V_{20}|}{R_{20}}} = \frac{|V_1| R_{20}}{|V_{20}|} = 5.29 \times 10^3$$
$$|D| = \frac{\frac{|V_{10}|}{R_{10}}}{\frac{|V_{20}|}{R_{20}}} = \frac{|V_{10}| R_{20}}{|V_{20}| R_{10}} = 5.71$$

5 考察

5.1 理論値との比較

被測定回路 1,2,3 の 4 端子定数 (A,B,C,D) の測定値を理論値と比較して議論する.このためには,各測定回路での F 行列の理論式を求め,その値を計算する必要がある.

理論值

被測定回路 1

$$A_1 = \frac{V_1}{V_2} = \frac{V_1}{\frac{Z_2}{Z_1 + Z_2}} V_1 = 1 + \frac{Z_1}{Z_2} = 1 + j\omega RC = 1 + j6.28 = 6.36 \angle 80.95^{\circ}$$

$$B_1 = \frac{V_1}{I_2} = \frac{V_1}{\frac{V_1}{Z_1}} = Z1 = R = 1.00 \times 10^3 = 1.00 \times 10^3 \angle 0.00^{\circ}$$

$$C_1 = \frac{I_1}{V_2} = \frac{I_1}{Z_2 I_1} = \frac{1}{Z_2} = j\omega C = j6.28 \times 10^{-3} = 6.28 \times 10^{-3} \angle 90.00^{\circ}$$

$$D_1 = \frac{I_1}{I_2} = 1 = 1.00 \angle 0.00^{\circ}$$

被測定回路 2

被測定回路1の入出力を入れ替えたものであるので

$$A_2 = 1.00 \angle 0.00^{\circ}$$

 $B_2 = 1.00 \times 10^3 \angle 0.00^{\circ}$
 $C_2 = 6.28 \times 10^{-3} \angle 90.00^{\circ}$
 $D_2 = 6.36 \angle 80.95^{\circ}$

被測定回路3

被測定回路1と被測定回路2の縦続接続であるので

$$\begin{bmatrix} A_3 & B_3 \\ C_3 & D_3 \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} = \begin{bmatrix} A_1A_2 + B_1C_2 & A_1B_2 + B_1D_2 \\ C_1A_2 + D_1C_2 & C_1B_2 + D_1D_2 \end{bmatrix}$$
$$= \begin{bmatrix} 12.60 \angle 85.45^{\circ} & 12.72 \times 10^3 \angle 80.95^{\circ} \\ 12.56 \times 10^{-3} \angle 90^{\circ} & 12.60 \angle 85.45^{\circ} \end{bmatrix}$$

実験によって算出した値と、理論値の比較を行ったものを次の表 1, 表 2, 表 3, 表 4, 表 5, 表 6 に示す

表 1 被測定回路 1 における F 行列の大きさの理論値と測定値の比較

大きさ	理論値	測定値	相対誤差率 [%]
A	6.36	7.04	10.69
B	1000.00	961.54	-3.85
C	0.01	0.01	10.83
D	1.00	1.03	3.00

表 2 被測定回路 1 における F 行列の偏角の理論値と測定値の比較

偏角	理論値	測定値	相対誤差率 [%]
$ heta_A$	80.95	85.50	5.62
θ_B	0.00	0.00	0.00
θ_C	90.00	82.80	-8.00
θ_D	0.00	0.00	0.00

表 3 被測定回路 2 における F 行列の大きさの理論値と測定値の比較

大きさ	理論値	測定値	相対誤差率 [%]
A	1.00	1.00	0.00
B	1000.00	794.12	-20.59
C	0.01	0.01	0.80
D	6.36	5.44	-14.47

表 4 被測定回路 2 における F 行列の偏角の理論値と測定値の比較

偏角	理論値	測定値	相対誤差率 [%]
θ_A	0.00	0.00	0.00
θ_B	0.00	0.00	0.00
θ_C	90.00	90.00	0.00
$ heta_D$	80.95	86.40	6.73

表 5 被測定回路 3 における F 行列の大きさの理論値と測定値の比較

 大きさ	理論値	測定値	相対誤差率 [%]
A	12.60	11.61	-7.86
B	12720.00	5290.00	-58.41
C	0.01	0.01	2.71
D	12.60	5.71	-54.68

表 6 被測定回路 3 における F 行列の偏角の理論値と測定値の比較

偏角	理論値	測定値	相対誤差率 [%]
$ heta_A$	85.45	86.40	1.11
θ_B	80.95	90.00	11.18
θ_C	90.00	82.80	-8.00
θ_D	85.45	90.00	5.32

被測定回路 1 における F 行列の大きさと偏角は、理論値と測定値の相対誤差率が $-8.00\% \sim 10.69\%$ に 収まる結果となった。本実験で使用しているコンデンサは誤差が $\pm 10\%$ 含んでいることを考慮するとうまく測定できたと判断できる。

被測定回路 2 における F 行列の大きさは,理論値と測定値の相対誤差率が $-20.59\% \sim 0.80\%$ に収まる結果となった.これは,コンデンサの誤差を踏まえたとしても,相対誤差率が大きい結果となった. F 行列の大きさ |B||D| を調べる際に, V_1,V_{10},V_{20} を計測するが,その際にオシロスコープの画面を直接読み取ったため誤差が発生したと考えられる.また,F 行列の偏角は,理論値と測定値の相対誤差率が $0.00\% \sim 6.73\%$ に収まる結果となった.これは,コンデンサの誤差が $\pm 10\%$ 含んでいることを考慮するとうまく測定できたと判断できる.

被測定回路 3 における F 行列の大きさは,理論値と測定値の相対誤差率が $-58.68\% \sim 2.71\%$ に収まる結果となった.これは,コンデンサの誤差を踏まえたとしても,相対誤差率が大きい結果となった. F 行列の大きさ |B||D| を調べる際に, V_1,V_{10},V_{20} を計測するが,その際にオシロスコープの画面を直接読み取ったため誤差が発生したと考えられる.また,F 行列の偏角は,理論値と測定値の相対誤差率が $-8.00\% \sim 11.18\%$ に収まる結果となった.これは,コンデンサの誤差が $\pm 10\%$ 含んでいることを考慮するとうまく測定できたと判断できる.

5.2 入出力端子を入れ替えた場合の関係

被測定回路 1,2 の 4 端子定数の測定値より、入力端子と出力端子を入れ換えた場合の関係式

$$A_2 = D_1, B_2 = B_1, C_2 = C_1, D_2 = A_1$$

が成り立っているかどうかを検討する.

$$A_2 = D_1$$

$$1.00 = 1.03$$

$$B_2 = B_1$$

$$794.12 = 961.54$$

$$C_2 = C_1$$

$$6.33 \times 10^{-3} = 6.96 \times 10^{-3}$$

$$D_2 = A_1$$

$$5.44 = 7.04$$

5.3 自然回路としての関係式

被測定回路 1,2,3 の 4 端子定数 (A,B,C,D) の測定値より

$$AD - BC = 1$$

が成り立っているかどうか検討する.

被測定回路1

$$A_1D_1 - B_1C_1 = 0.65$$

被測定回路 2

$$A_2D_2 - B_2C_2 = 0.41$$

被測定回路3

$$A_3D_3 - B_3C_3 = -1.95$$

5.4 縦続接続

被測定回路3は被測定回路1,2を縦続接続したものである. 縦続接続の場合の関係式

$$\left[\begin{array}{cc} A_3 & B_3 \\ C_3 & D_3 \end{array}\right] = \left[\begin{array}{cc} A_1 & B_1 \\ C_1 & D_1 \end{array}\right] \left[\begin{array}{cc} A_2 & B_2 \\ C_2 & D_2 \end{array}\right]$$

が成り立っているかどうか検討する.

$$A_3 = A_1 A_2 + B_1 C_2 = 13.22$$

$$B_3 = A_1 B_2 + B_1 D_2 = 10.89 \times 10^3$$

$$C_3 = C_1 A_2 + D_1 C_2 = 13.48 \times 10^{-3}$$

$$D_3 = C_1 B_2 + D_1 D_2 = 11.13$$

参考文献

[1] 電子システム工学基礎実験テキスト