278920

Exercise 8

Exercise 1: Analysis of Datasets

1 Wine Dataset

<pre>winered_data = pd.read_csv('winequality-red.csv', delimiter = ';')</pre>												
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	0.307692	0.186275	0.216867	0.308282	0.106825	0.149826	0.373550	0.267785	0.254545	0.267442	0.129032	6
1	0.240385	0.215686	0.204819	0.015337	0.118694	0.041812	0.285383	0.132832	0.527273	0.313953	0.241935	6
2	0.413462	0.196078	0.240964	0.096626	0.121662	0.097561	0.204176	0.154039	0.490909	0.255814	0.338710	6
3	0.326923	0.147059	0.192771	0.121166	0.145401	0.156794	0.410673	0.163678	0.427273	0.209302	0.306452	6
4	0.326923	0.147059	0.192771	0.121166	0.145401	0.156794	0.410673	0.163678	0.427273	0.209302	0.306452	6

Size and columns

```
: print("Shape of Red Wine dataset: {s}".format(s=wineData.shape))
 print("Column headers/names: {s}".format(s = list(wineData)))
 Shape of Red Wine dataset: (1599, 12)
Column headers/names: ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol', 'quality']
  wineData.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 1599 entries, 0 to 1598
 Data columns (total 12 columns):
  fixed acidity
                                 1599 non-null float64
  volatile acidity
                                1599 non-null float64
  citric acid
                                 1599 non-null float64
 residual sugar
                                1599 non-null float64
                                1599 non-null float64
  chlorides.
 free sulfur dioxide 1599 non-null float64
total sulfur dioxide 1599 non-null float64
 density
                                 1599 non-null float64
                                 1599 non-null float64
  pН
                                  1599 non-null float64
  sulphates
  alcohol
                                  1599 non-null float64
                                  1599 non-null int64
  quality
  dtypes: float64(11), int64(1)
 memory usage: 150.0 KB
```

Plot for Quality Count

Correlation for HeatMap Plot

fixed acidity	1	-0.26	0.67	0.11	0.094	-0.15	-0.11	0.67	-0.68	0.18	-0.062	0.12
volatile acidity	-0.26	1	-0.55	0.0019	0.061	-0.011	0.076	0.022	0.23	-0.26	-0.2	-0.39
citric acid	0.67	-0.55	1	0.14	0.2	-0.061	0.036	0.36		0.31	0.11	0.23
residual sugar	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	-0.086	0.0055	0.042	0.014
chlorides	0.094	0.061	0.2	0.056	1	0.0056	0.047	0.2	-0.27	0.37	-0.22	-0.13
free sulfur dioxide	-0.15	-0.011	-0.061	0.19	0.0056	1	0.67	-0.022	0.07	0.052	-0.069	-0.051
total sulfur dioxide	-0.11	0.076	0.036	0.2	0.047	0.67		0.071	-0.066	0.043	-0.21	-0.19
density	0.67	0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.34	0.15	-0.5	-0.17
pН	-0.68	0.23		-0.086	-0.27	0.07	-0.066	-0.34	1	-0.2	0.21	-0.058
sulphates	0.18	-0.26	0.31	0.0055	0.37	0.052	0.043	0.15	-0.2	1	0.094	0.25
alcohol	-0.062	-0.2	0.11	0.042	-0.22	-0.069	-0.21	-0.5	0.21	0.094	1	0.48
quality	0.12	-0.39	0.23	0.014	-0.13	-0.051	-0.19	-0.17	-0.058	0.25		
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	Ŧ	sulphates	alcohol	quality

correlation['quality'].sort_values(ascending=False)

: quality 1.000000 alcohol 0.476166 sulphates 0.251397 citric acid 0.226373 fixed acidity 0.124052 residual sugar 0.013732 free sulfur dioxide -0.050656 рΗ -0.057731 chlorides -0.128907 density -0.174919 total sulfur dioxide -0.185100 volatile acidity -0.390558 Name: quality, dtype: float64

It can be observed that, the 'alcohol, sulphates, citric_acid & fixed_acidity' have maximum corelation with response variable 'quality'.

This means that, they need to be further analysed for detailed pattern and corelation exploration. Hence, only these 4 variables are analysed in detail.

good Wine Ratings

bad

Fixed Acidity

6

average

Fixed Acidity in different types of Wine ratings

2 MovieLens 100k dataset

df.head()

	user_id	item_id	rating	timestamp	year	month
214	259	255	4	1997-09-20 05:05:10	1997	9
83965	259	286	4	1997-09-20 05:05:27	1997	9
43027	259	298	4	1997-09-20 05:05:54	1997	9
21396	259	185	4	1997-09-20 05:06:21	1997	9
82655	259	173	4	1997-09-20 05:07:23	1997	9

df.describe()

	user_id	item_id	rating	year	month
count	100000.00000	100000.000000	100000.000000	100000.00000	100000.000000
mean	462.48475	425.530130	3.529860	1997.47116	6.823180
std	266.61442	330.798356	1.125674	0.49917	4.316246
min	1.00000	1.000000	1.000000	1997.00000	1.000000
25%	254.00000	175.000000	3.000000	1997.00000	2.000000
50%	447.00000	322.000000	4.000000	1997.00000	9.000000
75%	682.00000	631.000000	4.000000	1998.00000	11.000000
max	943.00000	1682.000000	5.000000	1998.00000	12.000000

Distribution of Ratings:

Plot counts of each rating with respect to frequency and percentage.

How consistent are the average ratings over time?

This average ratings were fairly consistent around 3.5. The lack of large changes over time will simplify modeling a little bit.

No_of_Movies and No_of_Users over time

New users seen in the dataset look fairly linear over time, although the number of movies start out withover 1000 already in the system.

Distribution of ratings per User

In the plot above, we can learn, for example, that 40% of all users rated 50 or less movies, and 90% of movies have 169 or less ratings. In general, we seen that a large fraction of movies and users have few ratings associated with them, but a few movies and users have many more ratings.

The main thing to take from this though is that the matrix of possible ratings is quite sparse, and that we need to use models that deal with this lack of data.

Exercise 2: Implement basic matrix factorization (MF) technique for recommender systems

```
class st():
    def init (solf,R,K=0,item fact_reg=0.0,user_fact_reg=0.0,item_bias_reg=0.0,user_bias_reg=0.0,verbose=False):
        solf.K = R
        solf.K = N
        solf.K =
```

optimize the hyper-parameters i.e. λ regularization constant, α learning rate, k latent dimensions.

```
k = [5, 20, 40]
lamda = [0.001, 0.000001, 0.01]
alpha = [0.00001, 0.0001, 0.001]
lamda.sort()
alpha.sort()
best_params = {}
best_params['k'] = k[0]
best_params['reg'] = lamda[0]
best_params['rate'] = alpha[0]
best_params['train_mse'] = np.inf
best_params['test_mse'] = np.inf
best_params['model'] = None
for fact in k:
    for reg in lamda:
        for rate in alpha:
            print('\nK: {}'.format(fact))
            print('Lamda: {}'.format(reg))
            print('Alpha: {}'.format(rate))
            ##3-Fold Cross Validation
            for i in range(0, len(folds)):
```

Compute the test RMSE (averaged across the 3-folds).

Plot of Iterations vs Train and Test MSE for the Best model using Matrix Factorisation

Exercise 3: Recommender Systems using matrix factorization libmf/sckit-learn

```
model_NMF = NMF(n_components=fact,alpha=reg,l1_ratio=0.01,verbose=True,max_iter =10, solver = 'cd')
w=model_NMF.fit_transform(train_data)
h=model_NMF.components_
pred=np.dot(w,h)
mselist.append(get_rmse(pred,test_data))
```

Plot of Iterations vs Test MSE for the Best model using built in NMF Function

Surprise package using SVD

```
gs2 = GridSearchCV(SVD, param_grid1, measures=['rmse'], cv=3)
gs2.fit(data)
algo = gs2.best_estimator['rmse']
print(gs2.best_score['rmse'])
print(gs2.best_params['rmse'])
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3, verbose=True)
```

Plot of Iterations vs Test MSE for the Best model using built in SVD Function

The main difference that I noticed between recommender systems using Matrix factorisation class and built in functions is that the builtin functions like NMF, SVD by surprise are faster in computations than the matrix factorisation class.