1

- 1. (a) State without proof the First Isomorphism Theorem.
 - (b) Prove or disprove the statement: the product group of two simple groups is simple.

 [Hint. Firstly state the definition of a simple group.]

Ans.

(a) (4 marks) Bookwork.

Common mistakes/inaccuracies: Many students didn't write down how the (injective) homomorphism $\overline{\phi}$ is defined, which is also a key part of the theorem. A few students said that $\overline{\phi}$ is bijective (or isomorphism).

(b) (4 marks) The statement is false. Let G_1 and G_2 be simple groups. Then they are non-trivial groups. Now $\{e\} \times G_2$ is a non-trivial proper subgroup of $G_1 \times G_2$. Direct checking, one sees that $\{e\} \times G_2$ is normal in $G_1 \times G_2$. Hence $G_1 \times G_2$ is not simple.

Common mistakes/inaccuracies: Some student said a simple group is a group without non-trivial proper subgroups. Some student said a simple group is a group without non-trivial normal subgroups.

2. Let $i = \sqrt{-1} \in \mathbb{C}$ and

$$I = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, a = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ and } j = \begin{pmatrix} i \\ -i \end{pmatrix}, k = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Define $D_4 := \{I, a, a^2, a^3, b, ba, ba^2, ba^3\}$ and $Q := \{I, j, j^2, j^3, k, jk, jk^2, jk^3\}$. Under matrix multiplication, we know (and you may take for granted) that both D_4 and Q are groups.

- (a) Verify that D_4 is not isomorphic to Q.
- (b) In Assignment 2, Part I, Q1 & Q2, we showed that D_4 is isomorphic to the group G generated by two generators x, y satisfying (1) $x^4 = e$, (2) $y^2 = e$ and (3) $xy = yx^3$, where e is the identity element of G. Similarly, (we know and you may take for granted that) Q is also isomorphic to a group generated by two generators x and y satisfying three relations with identity e. Find the three relations that determine Q.

[Hint. Some relations are the same as the determining relations (1), (2), (3) of G.]

(c) Find a subgroup of D_4 which is not normal in D_4 . Justify your answer.

Ans.

(a) (4 marks) By direct checking, Q has only one element (j^2) of order 2, while D_4 has two elements $(a^2$ and b) of order 4. Thus they are not isomorphic.

2

Common mistakes/inaccuracies: Some students defined a function from D_4 and Q and showed that this function is not an isomorphism. Then they concluded that D_4 is not isomorphic to Q. This cannot serve as a justification!

(b) (4 marks) $x^4 = e$, $xy = yx^3$ and $x^2 = y^2$.

Common mistakes/inaccuracies: Many students took $x^4 = y^4 = e$. This doesn't work because both D_4 and Q fulfil these relations! Some students took $y^2 = -e$. Note that the group generated by x, y is abstract (i.e. not matrices), -e is not well-defined.

(c) (4 marks) Let $H = \langle b \rangle$. Then $aHa^{-1} = \{I, ba^2\} \not\subset H$. Thus H is a non-normal subgroup of D_4 .

Common mistakes/inaccuracies: Some students picked the subgroup $\{I, a, a^2, a^3\}$ $(=\langle a\rangle)$ and tried to show that it is not normal. One should know it's not a right target from the index $[D_4, \langle a\rangle] = 2!$

- 3. (a) Let G be a p-group of order p^n . Show that for every $1 \le r \le n$, G has a normal subgroup of order p^r . [Hint. Mimic the proof for Theorem 7.2.4 which yields "Assume G is a p-group of order p^n . Then, for any $1 \le r \le n$, there exists a subgroup of G of order p^r ."]
 - (b) Give an example to illustrate that a p-group may have a non-normal subgroup.

Ans.

(a) (12 marks) We apply induction on n. When n = 1, G (of order p) has only two subgroups: the trivial subgroup and the whole group G. Both are normal subgroups.

Let n > 1. Assume for all $1 \le m < n$, the statement holds for all groups of order p^m .

Suppose G is a group of order p^n . As G is a p-group, its center Z is non-trivial.

Thus Z is an abelian p-group. By Cauchy's theorem, Z contains an element a of order p.

Then $\langle a \rangle$ is a normal subgroup of G and of order p.

Define $G' := G/\langle a \rangle$. Then G' is a p-group of order p^{n-1} .

By induction assumption, for $1 \leq \ell \leq n-1$, G' has a normal subgroup H'_{ℓ} of order p^{ℓ} .

Set $H_{\ell} := \pi^{-1}(H'_{\ell})$ where $\pi : G \to G'$ is the natural projection.

As π is a homomorphism and H'_{ℓ} is normal subgroup of G', $H_{\ell} \triangleleft G$.

Moreover, $|H_{\ell}| = p^{\ell+1}$ as $H_{\ell}/\langle a \rangle = H'_{\ell}$.

Thus for $2 \le r \le n$, G contains a normal subgroup of order p^r .

Together with $H_1 := \langle a \rangle$. We complete the proof.

Common mistakes/inaccuracies: Some students could not present the induction argument properly even though they are able to apply the necessary ingredients and ideas.

(b) (4 marks) D_4 is a 2-group of order 2^3 . By Qn 2 (c), we know it has a non-normal subgroup.

Final remark. Some students commented that there was no bookwork in Test 1. Test 2 has more bookwork but the performance is slightly worse. For your information, the final exam consists of a good number of bookwork type questions. Bookwork is not limited to lecture notes, but also includes assignments and tutorials.