ML Assignment 1 Report - Red and Blue

- Vidhish Trivedi IMT2021055
- Barath S Narayan IMT2021524
- Vikas Kalyanapuram IMT2021040
- Teaching Assistant In-charge: Sarthak Harne

Dataset Description

Kaggle Competition Link: Canadian Hospital Re-admittance Challenge | Kaggle

We were provided with a dataset containing records of patients who were admitted to hospitals in Canada. It presents us with demographic as well as diagnostic information for each record corresponding to a visit (encounter).

The aim of the challenge was to predict whether a patient would be *readmitted* within 30 days, after 30 days, or not at all.

Readmission of a patient generally indicates incorrect diagnosis or prescription, resulting in the risk of side effects and wastage of resources for both the hospital and the patient. Predicting readmission can prevent this.

Description of Columns

Column Name	Description
enc_id	Unique identifier of an encounter
patient_id	Unique identifier of a patient
race	Race of the person
gender	Gender of the person
age	Age of the person grouped in 10-year intervals
weight	Weight in pounds
admission_type_id	Integer identifier corresponding to 9 distinct values
discharge_disposition_id	Integer identifier corresponding to 29 distinct values
admission_source_id	Integer identifier corresponding to 21 distinct values
time_in_hospital	Integer number of days between admission and discharge
payer_code	Integer identifier corresponding to 23 distinct values
medical_specialty	Integer identifier of a specialty of the admitting physician, corresponding to 84 distinct values
num_lab_procedures	Number of lab tests performed during the encounter
num_procedures	Number of procedures (other than lab tests) performed during the encounter
num_medications	Number of distinct generic names administered during the encounter
number_outpatient	Number of outpatient visits of the patient in the year preceding the encounter
number_emergency	Number of emergency visits of the patient in the year preceding the encounter
number_inpatient	Number of inpatient visits of the patient in the year preceding the encounter

Column Name	Description
diag_1	The primary diagnosis (coded as first three digits of ICD9)
diag_2	Secondary diagnosis (coded as first three digits of ICD9)
diag_3	Additional secondary diagnosis (coded as first three digits of ICD9)
number_diagnoses	Number of diagnoses entered to the system
max_glu_serum	Indicates the range of the result or if the test was not taken
A1Cresult	Indicates the range of the result or if the test was not taken
Columns corresponding to drug dosage	describe if there was any change in a given drug's dosage for this encounter. ["metformin", "repaglinide", "nateglinide", "chlorpropamide", "glimepiride", "acetohexamide", "glipizide", "glyburide", "tolbutamide", "pioglitazone", "rosiglitazone", "acarbose", "miglitol", "troglitazone", "tolazamide", "examide", "citoglipton", "insulin", "glyburide-metformin", "glipizide-metformin", "glimepiride- pioglitazone", "metformin-rosiglitazone", "metformin-pioglitazone"]
change	Indicates if there was a change in diabetic medications (either dosage or generic name)
diabetesMed	Indicates if there was any diabetic medication prescribed
readmission_id	Days to inpatient readmission (label)

Exploratory Data Analysis

Correlation matrix for numerical columns, and admission_type_id, admission_source_id, discharge_disposition_id, and readmission_id.

Plots to show how readmission_id is distributed across different grouped categories of diag_1, diag_3.

Percentage of Readmission IDs in Various Groupings of diag_1

% of Total Count of Readmission Id for each Diag 1. Color shows details about Readmission Id. The view is filtered on Exclusions (Diag 1, Readmission Id), which keeps 63 members. Percents are based on each column of the table.

Percentage of Readmission IDs in Various Groupings of diag_2

% of Total Count of Readmission Id for each Diag 2. Color shows details about Readmission Id. The data is filtered on Exclusions (Diag 1, Readmission Id), which keeps 63 members. The view is filtered on Exclusions (Diag 2, Readmission Id), which keeps 195 members. Percents are based on each column of the table.

Percentage of Readmission IDs in Various Groupings of diag_3

% of Total Count of Readmission Id for each Diag 3. Color shows details about Readmission Id. The data is filtered on Exclusions (Diag 1, Readmission Id) and Exclusions (Diag 2, Readmission Id). The Exclusions (Diag 3, Readmission Id) filter keeps 63 members. The Exclusions (Diag 2, Readmission Id) filter keeps 195 members. The view is filtered on Exclusions (Diag 3, Readmission Id) and Diag 3. The Exclusions (Diag 3, Readmission Id) filter keeps 331 members. The Diag 3 filter excludes 536. Percents are based on each column of the table.

Distribution of Readmission Id with Age

Distribution of readmission_id across patient_id

Distribution of readmission_id across genders

Gender

Race

A1Cresult

MaxGluSerum

• Tools used for plotting were Tableau and Seaborn.

Data Processing

Dropping Columns

Column Dropped	Reason
payer_code	39.55% null values, does not affect readmission of a patient
weight	96.84% null values
max_glu_serum	94.77% null values
A1Cresult	83.32% null values
patient_id	Replaced with a new column to reflect the frequency of patient_id in data
Columns corresponding to drug dosage	Dropped after introducing 4 new columns to reflect the count of <i>Up</i> , <i>Down</i> , <i>No</i> , and <i>Steady</i> for each encounter_id
diag_1, diag_2, diag_3	Dropped after experimenting with various sub-groupings of these columns and dropping the rest. No significant improvement was observed in validation score.

Dropping null rows

We initially considered dropping rows corresponding to null values in *race*, *diag_1*, *diag_2*, and *diag_3* as they had 2.27%, 0.02%, 0.34%, and 1.38% null values respectively. We observed that this did not improve our validation score, when compared with imputing values.

Imputing

For all categorical columns, null values were imputed with a new category, denoted by "0".

For all numerical columns, none of them were observed to have null values.

Prior to this, we experimented by imputing with mode, the validation accuracy decreased slightly, prompting us to rethink our strategy.

Outlier Detection

We tried outlier detection on the numerical columns, ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_diagnoses']

It was observed that removing these outliers improved the validation score but did not generalize well to unseen data when submitted to Kaggle. We believe this is due to the fact that number of rows in the validation set decreased, leading to a higher validation score.

The definition for upper and lower whiskers is as follows:

Grouping Columns

Diagnosis Columns (diag_1, diag_2, diag_3)

Grouping Function

```
def change_diagnosis(value):
   if value >= 1 and value <= 139:
       return "D1"
   elif value <= 239:</pre>
       return "D2"
   elif value <= 279:
      return "D3"
   elif value <= 289:
      return "D4"
   elif value <= 319:
      return "D5"
    elif value <= 389:</pre>
       return "D6"
   elif value <= 459:</pre>
       return "D7"
   elif value <= 519:
       return "D8"
   elif value <= 579:
       return "D9"
   elif value <= 629:
      return "D9"
   elif value <= 679:
      return "D10"
   elif value <= 709:
      return "D11"
   elif value <= 739:
       return "D12"
   elif value <= 759:</pre>
      return "D13"
   elif value <= 779:
       return "D14"
   elif value <= 799:</pre>
      return "D15"
   elif value <= 999:
      return "D16"
    elif value == 1000:
      return "D17"
    else:
      return "D0"
```

This grouping strategy followed the standard ICD9 Codes. These categorical values were later one-hot encoded. However, it was later noticed that this grouping did not increase the validation score on Kaggle, we decided to drop the 3 columns. This provided a significant boost in terms of training time.

Age variable

In order to deal with the categorical variable age which has values like [0-10), [10-20) and so on, we tried the following approaches:

• We tried label encoding the variable. Label encoding captures the inherent order of the age categories. The label encoding would assign consecutive numerical values, such as 0 for [0-10), 1 for [10-20), 2 for [20-30), and so on. This maintains the natural order, allowing the algorithm to understand and leverage the ordinal nature of the data.

```
label_encoder = LabelEncoder()
df["age"] = label_encoder.fit_transform(df["age"])
```

We also tried an average-based approach to convert the column to a numerical variable:

```
def change age(value):
   if(value == '[0-10)'):
       return 5
   elif(value == '[10-20)'):
       return 15
   elif(value == '[20-30)'):
      return 25
   elif(value == '[30-40)'):
      return 35
   elif(value == '[40-50)'):
      return 45
   elif(value == '[50-60)'):
       return 55
   elif(value == '[60-70)'):
       return 65
   elif(value == '[70-80)'):
       return 75
   elif(value == '[80-90)'):
      return 85
   elif(value == '[90-100)'):
      return 95
```

However we noticed that both these approaches led to a very similar validation score as well as accuracy on Kaggle. Hence, we continued with the Label Encoding approach.

Feature Engineering

Counting Changes in Drug Dosage

The different drugs have 4 possible values: Up, Down, Steady, and No.

We decided to introduce 4 new columns, each of which counts the number of Up's, Down's, Steady's and No's for each row across all rows. We then drop all the columns that corresponds to drugs.

This was done in order to capture the *change* in these columns, since they were very sparse to begin with (most values were No).

```
drugs_cols = ["metformin", "repaglinide", "nateglinide", "chlorpropamide", "glimepiride",
   "acetohexamide", "glipizide", "glyburide", "tolbutamide", "pioglitazone", "rosiglitazone", "acarbose",
   "miglitol", "troglitazone", "tolazamide", "examide", "citoglipton", "insulin", "glyburide-metformin",
   "glipizide-metformin", "glimepiride-pioglitazone", "metformin-rosiglitazone", "metformin-pioglitazone"]

def count_up(row):
    return sum([1 for col in drugs_cols if row[col] in ['Up']])

def count_down(row):
    return sum([1 for col in drugs_cols if row[col] in ['Down']])
```

```
def count_steady(row):
    return sum([1 for col in drugs_cols if row[col] in ['Steady']])

def count_no(row):
    return sum([1 for col in drugs_cols if row[col] in ['No']])

# Apply the function row-wise

df['count_up'] = df.apply(count_up, axis=1)

df['count_down'] = df.apply(count_down, axis=1)

df['count_steady'] = df.apply(count_steady, axis=1)

df['count_no'] = df.apply(count_no, axis=1)

df.drop(drugs_cols, axis=1, inplace=True)
```

Grouping Numerical values for inpatient / outpatient / emergency

For the number_outpatient, number_emergency and number_inpatient, we tried adding the three values and assigning a new column called num_visits.

```
df['num_visits'] = df["number_outpatient"] + df["number_inpatient"] + df["number_emergency"]
df.drop(["number_outpatient", "number_inpatient", "number_emergency"],axis=1, inplace = True)
```

However we noticed that this approach led to a very similar validation score to when the three columns existed individually. Hence, we stuck with the 3 original columns.

Frequency for patient_id

• Train Data: We introduced a new column called f_patient_id which counts the number of visits for a given patient_id and assigns that number to all rows that corresponds to that patient_id.

```
df['f_patient_id'] = df['patient_id'].copy(deep=True)
cnt_dict = df['patient_id'].value_counts()
for i in df['patient_id']:
   idx = df[df['f_patient_id'] == i].index
   df.loc[idx, 'f_patient_id'] = cnt_dict[i]
df.drop(['patient_id'], axis=1, inplace=True)
```

• **Test Data:** For the test data, in f_patient_id, we added the number of visits for that patient_id, from the train and test data and assign it to that column,

```
cnt_dict_1 = test_df['patient_id'].value_counts()
test_df['f_patient_id'] = test_df['patient_id'].copy(deep=True)
for i in test_df['patient_id']:
    idx = test_df[test_df['f_patient_id'] == i].index
    if cnt_dict.get(i) != None and cnt_dict[i] != 0:
        test_df.loc[idx, 'f_patient_id'] = cnt_dict_1[i] + cnt_dict[i]
    else:
        test_df.loc[idx, 'f_patient_id'] = cnt_dict_1[i]
```

Model Selection and Training

Logistic Regression, KNN Classifier, and Decision Tree Classifier

In our initial attempt to train a model, we made use of *logistic regression, KNN classifier, and Decision Tree Classifier*. We observed that logistic regression and KNN classifier returned poor results and the decision tree classifier returned considerably better results. After tweaking the hyper parameters for a while, the team decided to switch to an ensemble method, *Random Forest Classifier*.

Random Forest Classifier

Based on the observations from previous assumptions, we tried using random forest classifier to classify the given data. The results obtained were a significant improvement over decision trees after tuning the hyper parameters, but the accuracy score still seemed below par (about 0.57). Our next approach was to try various boosting techniques to see if they generalize better.

XGBoost Classifier, CatBoost Classifier

Both models gave significantly better results on the validation set as well as on Kaggle, which were further improved by hyper parameter tuning. The reason they were not chosen as the final model was only due to LGBM Classifier giving slightly better results.

LGBMClassifier - Final Model Used

We finally decided to make use of LGBM classifier from our set of boosting methods. This model with tuned hyper parameters gave the best results on Kaggle, as well as an validation score on par with XGBoost and CatBoost.

2-Model and 3-Model Approaches

Having tried various single model setups, we tried 2 different strategies involving multiple models to improve the prediction accuracy.

The first was creating a 2-model setup. The first model was created to predict whether the <code>readmission_id</code> was zero or not. The reason for this choice was that the percentage of records where readmission id was zero is around 10% which is very less. Once a record is classified to have a non-zero <code>readmission_id</code>, it is sent to another model which was trained to choose between <code>readmission_id</code> 1 or 2. This model was trained only on data which has <code>readmission_id</code> 1 or 2. The 2 model setup was an interesting strategy for the problem but the 1 / 2 classifier struggled to classify records correctly, reducing the accuracy of the whole setup. This was the reason why this strategy was dropped.

The 3-model setup trains 3 different models to predict whether a data point has a particular <code>readmission_id</code> or not. This way the 3 models predict a particular class with a certain probability. Once the models predict the class with a probability, the <code>readmission_id</code> is considered to be the class with maximum probability. This is also a good setup but this idea failed due to the poor accuracy of the classifier for <code>readmission_id</code> 1. The class 1 classifier could not find the necessary features to predict class 1 correctly leading to records with <code>readmission_id</code> as class 1 to be classified as class 2. This decreased the accuracy of the overall setup (0.708 on Kaggle). Hence we decided to drop both the strategies.

Hyper parameter Tuning

Grid Search and Cross Validation

In an attempt to discover the best hyperparameters for some of the above models, we used the RandomCV and GridSearchCV cross validation methods. The returned hyper parameter values did improve the validation score slightly, but after carefully considering the tradeoff in training time, we decided to use only select hyper parameter values.

RandomCV

```
from sklearn.model_selection import RandomizedSearchCV
# Create the random grid
random_grid = {'n_estimators': [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)],
                'max_features': ['log2', 'sqrt', 'none'],
                'max_depth': [int(x) for x in range(1, 13)],
                'min_samples_split': [x for x in range(2, 100, 5)],
                'min_samples_leaf': [x for x in range(3, 15)],
                'bootstrap': [True, False],
                'criterion': ['gini', 'entropy', 'log_loss'],
                'oob_score': [True, False],
                'class_weight': ['balanced', 'balanced_subsample']}
# Use the random grid to search for best hyperparameters
# First create the base model to tune
rf = RandomForestClassifier()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf_random = RandomizedSearchCV(estimator = rf, param_distributions = random_grid, n_iter = 100, cv = 3,
verbose=2, random_state=0, n_jobs = -1, scoring='accuracy')
# Fit the random search model
rf_random.fit(X_train, Y_train)
print(rf_random.best_params_)
```

GridSearchCV

```
from sklearn.model_selection import GridSearchCV
# Create the parameter grid based on the results of random search
param_grid = {
    'bootstrap': [True],
    'max depth': [80, 90, 100, 110],
    'max_features': [2, 3],
    'min_samples_leaf': [3, 4, 5],
    'min_samples_split': [8, 10, 12],
    'n_estimators': [100, 200, 300, 1000]
}
# Create a based model
rf = RandomForestClassifier()
# Instantiate the grid search model
grid_search = GridSearchCV(estimator = rf, param_grid = param_grid, cv=3, n_jobs=-1, verbose = 2)
# # Fit the grid search to the data
# grid search.fit(X train, Y train)
print(grid_search.best_params_)
best_grid = grid_search.best_estimator_
```

Validation

In addition to using Grid Search cross validation as described above, we used accuracy_score and f1_score metrics to gauge the performance of our model.

We also made use of confusion_matrix to understand which classes were being wrongly classified, and made strides to improve predictions based on these insights.

Lastly, for some of the models described earlier, we also made use of the predict_proba method to interpret the predicted probabilities of each class, for each test point.

Final Results

Model		esult on aggle	Approach		
KNN Classifier	0.	528	-		
Random Forest Classifier	0.	564	One-Hot Encoding after grouping diags		
Random Forest Classifier	0.	566	One-Hot Encoding after grouping diags, admission_source_id, admission_type_id, discharge_disposition_id		
Random Forest Classifier	0.	574	Hyper Parameter Tuning		
Random Forest Classifier	0.	576	Dropping select drug dosage columns where majority of values belong to one category		
Random Forest Classifier	0.	578	Added outlier detection		
XGB Classifier	0.584	Dropped all	diags, no groupings for ids		
XGB Classifier	0.598	Keep enc_id	, patient_id		
LGBM Classifier	0.604	Switched to	LGBM classifier		
LGBM Classifier	0.609	Hyper Param	neter Tuning		
LGBM Classifier	0.608	Hyper Param	neter Tuning		
LGBM Classifier	0.637	Use frequen	Use frequency of patient_id as a column		
LGBM Classifier	0.643	Hyper Param	neter Tuning		
LGBM Classifier	0.648	test_patient_	_id_freq = train_patient_freq		
LGBM Classifier	0.721		_id_freq = train_patient_freq + test_patient_freq. Count Up, Down, No, and rately in drug dosage columns		
LGBM Classifier	0.725	Hyper Param	neter Tuning		

Best Accuracy with 3-model approach: 0.708 on Kaggle.

Best Accuracy (Overall) = 0.725 on Kaggle