Department: Computer Science and Engineering		
Course Title: Database Laboratory	Course Code: CS57L	
Credits(L:T:P): 0:0:1.5	Core/Elective: Core	
Type of Course: Practical	Total Lecture Hours: 42	
CIE Marks: 50		

Pre-requisite: Data structures and algorithms

Course Outcomes: After completion of the course, students are able to:

CO1:	Design and populate the database based on problem type.
CO2:	Demonstrate data manipulation operations for a database schema with integrity and key constraints.
CO3:	Analyze the normalization level given any schema design.
CO4:	Efficient retrieval and manipulation of database through procedures and functions.
CO5:	Select techniques and tools to design and implement a database suitable for any organization.

Unit	Course Content	No.of
No.		Hours
1.	Data Definition Language (DDL) commands in RDBMS	08
	i. Design and implement record insertion, deletion, search, update operation using file based approach.	
	ii. Consider the database schemas given below. The primary keys are underlined and	
	the data types are specified. Create and insert tuples for each database satisfying the	
	defined constraints.	
	A. Insurance database	
	PERSON (driver id#: string, name: string, address: string)	
	CAR (regno: string, model: string, year: int)	
	ACCIDENT (report_number: int, acc_date: date, location: string)	
	OWNS (driver id#: string, regno: string)	
	PARTICIPATED(driver id#:string, regno:string, report_number: int,	
	damage_amount: int)	
	B. Order processing database	
	Customer (Cust#: int, cname: string, city: string)	
	Order (order#: int, odate: date, cust#: int, order-amt: int)	
	Order-item (order#: int, Item#: int, qty: int)	

	Item (item#: int, unitprice: int)		
	Shipment (order#: int, warehouse#: int, ship-date: date)		
	Warehouse (warehouse#:int, city: string)		
	warehouse (warehousen.mt, erty. string)		
	C. Student enrollment in courses and books adopted for each course		
	STUDENT (regno: string, name: string, major: string, bdate: date)		
	COURSE (course#: int, cname: string, dept: string)		
	ENROLL(regno:string, course#: int,sem: int,marks: int)		
	BOOK-ADOPTION (course#: int, sem: int, book-ISBN: int)		
	TEXT (book-ISBN: int, book-title: string, publisher: string, author: string)		
2.	Data Manipulation Language (DML) and Data Control Language (DCL)	08	
	Write valid DML statements to retrieve tuples from the unit 1 databases. The query		
	may contain appropriate DML and DCL commands such as:		
	i. Select with		
	 %like, between, where clause 		
	Group by		
	Group by having		
	Order by		
	Set Operations		
	Exists and not exists		
	- Aggregate functions		
	Join operations		
	ii. Grant and revoke permission		
3.	Design of tables by normalization and dependency analysis	08	
3.	Normalize all the unit 1 databases by considering the database schemas, primary keys	00	
	and dependency.		
4.	Procedures and Functions	08	
	i. Views: creation and manipulating content.	- 0	
	ii. Procedures: creation and execution of database procedures that accepts		
	input parameters and processes the records based on the input parameter.		
	iii. Functions: Practice declaring, defining and invoking a function that		
	computes and returns the maximum, minimum, average of values.		
	iv. Triggers: creation and execution of database triggers on every insert,		
	delete and update operation.		
5.	Case study	10	
	The students have to select and implement one database case study from day to day	-	
	situations using SQL/MySQL on Windows/LINUX operating System.		

Text Books:

- 1. Elmasri and Navathe: Fundamentals of Database Systems, 7th Edition, Pearson Education, 2016.
- 2. Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw-Hill, 2015.

Reference Books:

- 1. Silberschatz, Korth and Sudharshan: Data base System Concepts, 6th Edition, Mc-GrawHill, 2016.
- 2. C.J. Date, A. Kannan, S. Swamynatham: An Introduction to Database Systems, 8th Edition, Pearson Education, 2016.

Web Resources:

- 1. http://nptel.ac.in/courses/106106093/
- 2. https://nptel.ac.in/courses/106/104/106104135/