Pradyumnan R

JNCASR

July 2, 2024

- 1 Direct Simulation Monte Carlo
- 2 Existing Literature
- **3** 1D Fourier Flow using SPARTA
- **4** References

- 1 Direct Simulation Monte Carlo General information The algorithm
- 2 Existing Literature
- 3 1D Fourier Flow using SPARTA
- 4 References

- Direct Simulation Monte Carlo
 General information
 The algorithm
- 2 Existing Literature
- 3 1D Fourier Flow using SPARTA
- 4 References

References

General Information

 The DSMC method is used whenever the Knudsen number is of the order of 1. For example, it is used in MEMS and Space Shuttle re-entry aerodynamics

- The DSMC method is used whenever the Knudsen number is of the order of 1. For example, it is used in MEMS and Space Shuttle re-entry aerodynamics
- It models fluid flows using probabilistic simulation molecules to solve the Boltzmann equation

General Information

- The DSMC method is used whenever the Knudsen number is of the order of 1. For example, it is used in MEMS and Space Shuttle re-entry aerodynamics
- It models fluid flows using probabilistic simulation molecules to solve the Boltzmann equation
- DSMC is better at describing the non-equilibrium behaviour of gases than most continuum models such as Navier-Stokes through higher fidelity[2]

- Direct Simulation Monte Carlo General information The algorithm
- 2 Existing Literature
- 3 1D Fourier Flow using SPARTA
- 4 References

References

• The state of a system is given by the positions and velocities of the particles $\{\vec{r_i}, \vec{v_i}\}$ where $i=1,2,3,\cdots,N$ and N is the number of particles

- The state of a system is given by the positions and velocities of the particles $\{\vec{r_i}, \vec{v_i}\}$ where $i=1,2,3,\cdots,N$ and N is the number of particles
- Each DSMC particle represents F_N particles in physical space with approximately the same positions and velocities

- The state of a system is given by the positions and velocities of the particles $\{\vec{r_i}, \vec{v_i}\}$ where $i=1,2,3,\cdots,N$ and N is the number of particles
- Each DSMC particle represents F_N particles in physical space with approximately the same positions and velocities
- The evolution of the system is integrated in time steps τ lesser than the mean collision time

00000000

The algorithm

- The state of a system is given by the positions and velocities of the particles $\{\vec{r_i}, \vec{v_i}\}$ where $i = 1, 2, 3, \dots, N$ and N is the number of particles
- Each DSMC particle represents F_N particles in physical space with approximately the same positions and velocities
- The evolution of the system is integrated in time steps τ lesser than the mean collision time
- Without external forces like gravity, the particles are said to move balistically, i.e., $\vec{r_i}(t+\tau) = \vec{r_i}(t) + \vec{v_i}(t)\tau$

00000000

The algorithm

- The state of a system is given by the positions and velocities of the particles $\{\vec{r_i}, \vec{v_i}\}$ where $i = 1, 2, 3, \dots, N$ and N is the number of particles
- Each DSMC particle represents F_N particles in physical space with approximately the same positions and velocities
- The evolution of the system is integrated in time steps τ lesser than the mean collision time
- Without external forces like gravity, the particles are said to move balistically, i.e., $\vec{r_i}(t+\tau) = \vec{r_i}(t) + \vec{v_i}(t)\tau$
- If a particle reaches a boundary, it's position and velocity are reset accordingly

The algorithm (boundary collisions)

Fig. 1: Various types of boundary collisions

 The specular boundary collision is simply the preservance of the angle between the normal and the particle trajectory just before and after collision

Pradyumnan R JNCASR

Existing Literature

The algorithm (boundary collisions)

Fig. 1: Various types of boundary collisions

- The specular boundary collision is simply the preservance of the angle between the normal and the particle trajectory just before and after collision
- Diffuse boundary collisions are when there is a degree of randomness (α) in the specularity of the collision

00000000

The algorithm

 After all particles are moved, they are put into cells within which they randomly collide based on collision rates and probabilities obtained from the kinetic theory of gases

- After all particles are moved, they are put into cells within which they randomly collide based on collision rates and probabilities obtained from the kinetic theory of gases
- The dimension of each collision cell is no longer than a mean free path. All particles in a cell are collision candidates, regardless of their actual trajectories

- After all particles are moved, they are put into cells within which they randomly collide based on collision rates and probabilities obtained from the kinetic theory of gases
- The dimension of each collision cell is no longer than a mean free path. All particles in a cell are collision candidates, regardless of their actual trajectories
- For the hard spheres collision model, the collision probability for the pair of particles i and j is proportional to their relative speed,

$$P_{coll}[i,j] = \frac{|\vec{v}_i - \vec{v}_j|}{\sum_{m=1}^{N_c} \sum_{n=1}^{m-1} |\vec{v}_m - \vec{v}_n|}$$

 N_c is the number of particles in the cell

0000000

The algorithm

 The double summation in the denominator can be computationally intensive, so a technique called rejection sampling is used to select collision pairs

$$v_r > v_{r_{max}} \cdot \mathcal{R} \text{ for } \mathcal{R} \in [0, 1]$$

00000000

The algorithm

 The double summation in the denominator can be computationally intensive, so a technique called rejection sampling is used to select collision pairs

$$v_r > v_{r_{max}} \cdot \mathcal{R} \text{ for } \mathcal{R} \in [0, 1]$$

• The total number of hard sphere collisions given in a cell during a time 'au' is given by

$$M_{coll} = \frac{1}{2}(N_c - 1)F_N f_{coll} \tau = \frac{N_c(N_c - 1)F_N \pi d^2 \langle v_r \rangle \tau}{2V_c}$$

where f_{coll} is the collision frequency given by KTG, d is the diameter of the cell and V_c is the volume of the cell

- Direct Simulation Monte Carlo
- 2 Existing Literature

DSMC on petaflop supercomputers and beyond [2] Effect of slip on vortex shedding from a circular cylinder in a gas flow [1]

- 3 1D Fourier Flow using SPARTA
- 4 References

- Direct Simulation Monte Carlo
- 2 Existing Literature DSMC on petaflop supercomputers and beyond [2] Effect of slip on vortex shedding from a circular cylinder in a gas flow [1]
- 3 1D Fourier Flow using SPARTA
- 4 References

0000000

SPARTA

Fig. 2: Grid Hierarchy in SPARTA

DSMC is inherently parallel.
 It has three kinds of elements: particles, grid cells and surfaces

SPARTA

Fig. 2: Grid Hierarchy in SPARTA

- DSMC is inherently parallel.
 It has three kinds of elements: particles, grid cells and surfaces
- Grid cells are indexed hierarchically using bits.
 Cells store information about everything within them

SPARTA

Fig. 2: Grid Hierarchy in SPARTA

- DSMC is inherently parallel.
 It has three kinds of elements: particles, grid cells and surfaces
- Grid cells are indexed hierarchically using bits.
 Cells store information about everything within them
- Each processor owns ghost cells that extend beyond its domain to minimize MPI calls during the run

14 / 30

OSMC on petaflop supercomputers and beyond [2

SPARTA

Fig. 3: GPU Parallelisation in SPARTA

 A typical simulation has about 20 particles per grid cell for adequate collision statistics

SPARTA

Fig. 3: GPU Parallelisation in SPARTA

- A typical simulation has about 20 particles per grid cell for adequate collision statistics
- GPU parallelisation is seen to be more efficient for larger problems (Figure 3)

DSMC on petaflop supercomputers and beyond [

SPARTA

Fig. 3: GPU Parallelisation in SPARTA

- A typical simulation has about 20 particles per grid cell for adequate collision statistics
- GPU parallelisation is seen to be more efficient for larger problems (Figure 3)
- Performance per GPU decreases but the aggregate performance increases

Effect of slip on vortex shedding from a circular cylinder in a gas flow [1]

- Direct Simulation Monte Carlo
- Existing Literature DSMC on petaflop supercomputers and beyond [2] Effect of slip on vortex shedding from a circular cylinder in a gas flow [1]
- 3 1D Fourier Flow using SPARTA
- 4 References

Key Takeaways

 The relation between Knudsen number, Mach number and Reynold's number for gases is given by

$$\mathit{Kn} = rac{\mathit{Ma}}{\mathit{Re}} \sqrt{rac{\gamma \pi}{2}}$$

Fig. 4: Vortex Shedding Setup

The relation between Knudsen number. Mach

Knudsen number, Mach number and Reynold's number for gases is given by

$$\mathit{Kn} = rac{\mathit{Ma}}{\mathit{Re}} \sqrt{rac{\gamma \pi}{2}}$$

 The simulation given in Figure 4 was simulated using both DSMC and COMSOL Multiphysics

Fig. 4: Vortex Shedding Setup

Boundary Conditions

 The outlet boundary conditions by DSMC are the inlet boundary condition (Figure 5 img whereas CFD applies zero pressure and zero viscous stress

Fig. 5: Inlet boundary conditions at outlet

Boundary Conditions

- The outlet boundary conditions by DSMC are the inlet boundary condition (Figure 5 img whereas CFD applies zero pressure and zero viscous stress
- The inlet is at Ma = 0.3, Re
 = 100 and Kn = 0.0048

Fig. 5: Inlet boundary conditions at outlet

Comparing Results from DSMC and CFD

Direct Simulation Monte Carlo

Fig. 6: Left: DSMC and Right: CFD

Figure 6 illustrates the agreement between DSMC and CFD.

Comparing Results from DSMC and CFD

Fig. 6: Left: DSMC and Right: CFD

- Figure 6 illustrates the agreement between DSMC and CFD.
- As the Reynold's number decreases, the slip increases.

1D Fourier Flow using SPARTA

- Direct Simulation Monte Carlo
- 2 Existing Literature
- 3 1D Fourier Flow using SPARTA

Knudsen number fixed at 0.1 Knudsen number fixed at 0.02 Visualising the fluctuations in the solution

4 References

- Direct Simulation Monte Carlo
- 3 1D Fourier Flow using SPARTA Knudsen number fixed at 0.1

The problem and the simulation details

 The setup of the simulation is given by Figure 11. The gas used is Argon

Fig. 7: Simulation Setup

The problem and the simulation details

- The setup of the simulation is given by Figure 11. The gas used is Argon
- The simulation parameters are given below [3]

$$\lambda = 10^{-4} m \qquad \Delta t = 10^{-8} s$$

Fig. 7: Simulation Setup

$$N = 1.682 \times 10^{14}$$
 $t_o = 71 \, \text{ns}$

The results at 20 particles per grid cell

 The temperature profile in Figure 8 clearly resembling a linear profile

Fig. 8

The results at 20 particles per grid cell

- The temperature profile in Figure 8 clearly resembling a linear profile
- A clear distinction can be seen from the expected continuum solution due to rarefraction effects

Fig. 8

The results at 100 particles per grid cell

 The temperature profile in Figure 9 clearly resembling a linear profile

Fig. 9

The results at 100 particles per grid cell

- The temperature profile in Figure 9 clearly resembling a linear profile
- A clear distinction can still be seen from the expected continuum solution due to rarefraction effects

Fig. 9

The results at 100 particles per grid cell

- The temperature profile in Figure 9 clearly resembling a linear profile
- A clear distinction can still be seen from the expected continuum solution due to rarefraction effects
- However the statistical fluctuations are much less pronounced

Fig. 9

The results at 100 particles per grid cell but with twice the resolution

00000000000

 The temperature profile in Figure 10 clearly resembling a linear profile

Fig. 10

The results at 100 particles per grid cell but with twice the resolution

- The temperature profile in Figure 10 clearly resembling a linear profile
- A clear distinction can still be seen from the expected continuum solution due to rarefraction effects

Fig. 10

The results at 100 particles per grid cell but with twice the resolution

- The temperature profile in Figure 10 clearly resembling a linear profile
- A clear distinction can still be seen from the expected continuum solution due to rarefraction effects
- The deviation from the analytical solution doesn't reduce by resolving the grid. We can safely infer that the deviation is not a numerical error

Fig. 10

Pradvumnan R **JNCASR** 24 / 30

1D Fourier Flow using SPARTA

- Direct Simulation Monte Carlo
- 3 1D Fourier Flow using SPARTA

Knudsen number fixed at 0.02

The problem and the simulation details

 The setup of the simulation is given by Figure 11. The gas used is Argon

Fig. 11: Simulation Setup

The problem and the simulation details

- The setup of the simulation is given by Figure 11. The gas used is Argon
- The simulation parameters are given below [3]

$$\lambda = 10^{-4} m \qquad \Delta t = 10^{-8} s$$

Fig. 11: Simulation Setup

$$N = 8.41 \times 10^{14}$$
 $t_o = 71 ns$

Existing Literature

The results at 100 particles per grid cell

Fig. 12

 The temperature profile in Figure 12 clearly resembling a linear profile

The results at 100 particles per grid cell

Fig. 12

- The temperature profile in Figure 12 clearly resembling a linear profile
- Here, the simulation closely resembles the analytical solution.

The results at 100 particles per grid cell

Fig. 12

- The temperature profile in Figure 12 clearly resembling a linear profile
- Here, the simulation closely resembles the analytical solution.
- We can conclude that the closer the Knudsen number is to zero, the simulation will agree more with the analytical solution

- 3 1D Fourier Flow using SPARTA

Visualising the fluctuations in the solution

Visualising the fluctuations in the solution

Fluctuations as a function of the number of particles per grid cell

• Let's visualize the fluctuations of the solution for different number of particles per grid cell using a few videos.

1D Fourier Flow using SPARTA

- Direct Simulation Monte Carlo
- 3 1D Fourier Flow using SPARTA
- 4 References

1D Fourier Flow using SPARTA

beyond.

- [1] Michail A Gallis and John R Torczynski. Effect of slip on vortex shedding from a circular cylinder in a gas flow.
 - Physical Review Fluids, 6(6):063402, 2021.
- [2] Steve J Plimpton, SG Moore, A Borner, AK Stagg, TP Koehler, JR Torczynski, and MA Gallis. Direct simulation monte carlo on petaflop supercomputers and

Physics of Fluids, 31(8), 2019.

[3] DJ Rader, MA Gallis, JR Torczynski, and W Wagner. Dsmc convergence behavior for fourier flow. In AIP Conference Proceedings, volume 762, pages 473–478.

American Institute of Physics, 2005.