Introduction to Project Management

Chapter 6 Managing Project Scheduling

Information Systems Project Management: A Process and Team Approach, 1e Fuller/Valacich/George

What is Project Scheduling?

- The process of:
 - defining project activities
 - determining their sequence
 - estimating their duration
- Scheduling activities are part of project time management

Sequencing

Requires:

- Identification of any project technical constraints
- Safety or efficiency considerations
- Environmental politics
- Availability of required resources
- Completion of prerequisite processes

preduslov

Scheduling Process Steps

- 1. Creating a work breakdown structure (WBS) to identify required project components
- 2. Defining the activities needed to complete each of these components
- 3. Determining the most efficient sequencing order of these components

Schedule Development & Usage

- Schedule developed during initiation or planning stage
- Followed and updated during the execution stage
- Used for project tracking during control stage

Top 5 Project Management Challenges

- 1. Lack of clarity in scope of the project
- 2. Shifting organizational priorities
- 3. Project changes not well managed
- 4. A lack of project management skills
- 5. Training of project sponsors

Project Schedule Modifications

- Why?
 - Business environment changes
 - Internal change of strategic objectives
 - External reaction to competitor actions
 - New technologies become available
 - Reaction to unforeseen events

Cone of Uncertainty

Cone of Uncertainty from Boehm

Ten Unmyths of Project Estimation

- 1. Accurate estimates are possible
- Objective of estimating is to determine the end date
- 3. Estimate and commitment are the same
- 4. Project estimate is dependent on the size of the final system
- 5. Historical data is an accurate indicator of productivity

Ten Unmyths of Project Estimation (cont.)

- Productivity is an accurate indicator of project duration
- System size can be determined by the projected number of lines of code
- 8. Function points can be used to determine system size
- Assigning more resources will speed up development of system
- 10. A defect-free system is possible given adequate time © 2008 Prentice Hall 6-10

Project Scheduling

Impacted by:

- Technologies
 - New and sophisticated software
 - Advancements in networking and web capabilities
- Team processes
 - Resource availability
 - Resource allocation
 - Resource assignment
- Scheduling creation and execution
 - Developed early
 - Followed/monitored/changed throughout project
 - Assist in determination of progress

Computer System Components

Main unit

Product Breakdown Structure

(Bill of Materials - BOM)

Work Breakdown Structure (WBS)

- Illustrates project scope
- Describes project subcomponents as:
 - Activities (verbs) "install new plumbing"or
 - Deliverables (noun) "new plumbing"

WBS Inputs

- Project scope management plan
- Project scope statement
 - Identifies deliverables
 - Major steps required to complete the project
- Experience with similar past projects
- Organizational process assets
 - Guidelines, organizational policies, procedures

WBS Techniques

- Decomposition participation includes:
 - Project team
 - Customers
 - Subject matter experts
- Major project deliverables identified
- Codes assigned to each WBS component
 - Level 0 project itself
 - Level 1 major deliverables
 - Level 2 individual components of each deliverable
 - Etc.
 - Final level work package

Work Package

- Lowest level of WBS
- Should contain activities that are short in duration (1 or 2 weeks)
- Work package activities can be completed by an individual or a small team
- All work packages should be similar in size or effort needed
- Provides input to scheduling and budget development

WBS Numbering System

WBS for ERP System

Three Decomposition Approaches

- Top-Down traditional method
- Bottom-up used for unique projects
- Rolling Wave greater decomposition occurs as project components becomes more defined over time

Rolling Wave Planning

WBS Tools

- Templates
- Software
 - MS Visio displays WBS in hierarchical form
 - MS Project WBS displayed in tabular format (Gantt Chart)

Gantt Chart View of Microsoft Project

WBS Outputs

- WBS Dictionary
 - Description of each component
 - Who is responsible for development
 - Statement of Work (SOW)
 - Important milestones
 - Estimate of costs and required resources

Outcome of WBS Development

 Possible update of project scope statement and scope management plan

Scope Baseline

- Purpose: to determine and measure any deviations during project execution
- Components of Scope Baseline
 - Project scope statement
 - WBS
 - WBS Dictionary

Activity Definition

- Work packages broken down into discrete activities and attributes required to produce project deliverables
- Activity Definition includes:
 - Activity description
 - Resource requirements
 - Logical predecessor or successor activities

Required Inputs, Tools and Techniques Used, and Resulting Outputs During Activity Definition

Inputs

- .1 Enterprise environmental factors
- .2 Organizational process assets
- .3 Project scope statement
- .4 Work breakdown structure
- .5 WBS dictionary
- .6 Project management plan

Tools & Techniques

- .1 Decomposition
- .2 Templates
- .3 Rolling wave planning
- .4 Expert judgment
- .5 Planning component

Outputs

- .1 Activity list
- .2 Activity attributes
- .3 Milestone list
- .4 Requested changes

How Much Activity Detail Is Required?

- Can be performed by one person or a well-defined group
- Has a single, clearly identifiable deliverable
- Has a known method or technique
- Has well-defined predecessor and successor steps
- Is measurable so that the level of completion can be determined
- Has a short duration hours or days in length

Activity Tools & Techniques

- Templates
- Documentation from similar past projects
- Rolling wave planning can be applied

Activity Output

- Activity list
- Activity attributes
 - Description
 - Assumptions and constraints
 - Leads and lags
 - Logical relationships
 - Predecessor and successor activities
- Milestones
- Requested changes to project scope statement and WBS

Activity Sequencing

- Network diagram: a schematic display that illustrates the various activities (or tasks) in a project as well as their sequential relationships
- Sequential or parallel activity development

Required Inputs, Tools and Techniques Used, and Resulting Outputs During Activity Sequencing

Inputs

- .1 Project scope statement
- .2 Activity list
- .3 Activity attributes
- .4 Milestone list
- .5 Approved change requests

Tools & Techniques

- .1 Precedence Diagramming Method (PDM)
- .2 Arrow Diagramming Method (ADM)
- .3 Schedule network templates
- .4 Dependency determination
- .5 Applying leads and lags

Outputs

- .1 Project schedule network diagrams
- .2 Activity list (updates)
- .3 Activity attributes (updates)
- .4 Requested changes

Possible Sequencing Constraints

- Technical requirements and specifications
- Safety and efficiency
- Preferences and policies
- Resource availability

Network Diagram

Network Diagramming Methods

- Precedence diagramming method (PDM)
- Boxes and arrows
 - Boxes represent project activity (called nodes)
 - > Arrows represent relationships among activities
- Arrow diagramming method (ADM) or Activity on Arrow (AOA)
 - > Arrows represent project tasks or activities
 - > Boxes represent milestones

Task Relationships

Arrow Diagramming Method (ADM)

Activities' duration are in days; A = 2 indicates that activity A has a duration of 2 days

Network Diagram in Microsoft Project

Additional Activity Type & Time Relationships

- Mandatory dependencies
 - Related activities that cannot be performed in parallel
- Discretionary dependencies
 - Relationships of activities based on preference of the project manager
- External dependencies
 - Relationship of project activities and external events

Additional Activity Type & Time Relationships (cont.)

Lead Time

Time required by one task before another task can begin

Lag Time

 Amount of time delay between the completion of one task and the start of the successor

Questions?

