

日 新 月 開 開

第十一讲 对冲、投保和分散化

沈德华 南开大学金融学院 dhs@nankai.edu.cn

CONTENT

目 录

6 保险合约的基本特征

1 使用远期和期货合约对冲风险

2 金融性担保

2 运用互换合约对冲汇率风险

- 8 利率的最高限价与最低限价
- 通过针对负债配比资产对冲缺口风险
- 9 作为保险的期权

4 最小化对冲成本

10 分散化原理

5 投保与对冲

11 分散化与保险成本

Use forward and futures contracts to hedge risk

使用远期和期货合约对冲风险

■ 对冲是通过放弃盈利的机会来减少损失的可能性

远期合约

- 在某个时刻,双方达成协议,在将 来按预定价格交换某些东西所签订 的合约
- 远期合约的要素与术语
 - ✓ 远期价格: 确定的成交价格
 - ✓ 现货价格: 即时交割的市场价格
 - ✓ 面值: 合约确定的交易数量乘以 远期价格
 - ✓ 多头(购买方)与空头(出售方)

期货合约

- 在有组织的期货交易所交易的标准 化远期合约
- 交易所介于买卖双方之间,买卖双方单独与交易所订立合约
- 标准化: 期货合约的条款一致
 - ✓ 交割的数量与质量
 - ✓ 时间与地点
 - ✓ 价格的波动幅度

农妇与面点师的例子

■ 农妇和面点师通过签订远期合约来减少买卖双方的风险

- J是一位农妇,有10万蒲式耳小麦将在一个月后收获
- M是一位面点师, 需要为来年生产面包而购买小麦
- 农妇与面点师的小麦远期合约如下:

✓ 远期价格: 1蒲式耳小麦=\$2

✓ 交割时间:成交日(11月24日)后1个月,即12月24日

✓ 交割地点: 某码头

✓ 合约数量: 10万蒲式耳小麦

■ 一个月后:

- ✓ 农妇锁定了收益 (规避了小麦价格下跌的风险)
- ✓ 面点师锁定了成本 (规避了小麦价格上涨的风险)

期货合约为何更方便

- 远期合约的交割难题
 - 方便的时间与合适的地点
- 期货交易所在买卖双方之间扮演中介角色
- 期货合约中可避免这种交割难题
 - ◆ 大部分合约用现金清算,只有一小部分实物交割

用期货合约规避价格风险			
	交割日小麦的现货价格(美元)		
	每蒲式耳	每蒲式耳	每蒲式耳
农妇的交易	1.50 (1)	2.00 (2)	2.50 (3)
出售小麦给批发商可获收益	150 000	200 000	250 000
	支付给农妇		农妇支付
期货合约现金流	50 000	0	50 000
总收益	200 000	200 000	200 000
	交割日小麦的现货价格 (美元)		
	每蒲式耳	每蒲式耳	每蒲式耳
面点师的交易	1.50 (1)	2.00 (2)	2.50 (3)
向供应商购买小麦的成本	150 000	200 000	250 000
	面点师支付		支付给面点师
期货合约现金流	50 000	0	50 000
总支出	200 000	200 000	200 000

注: 期货价格为每蒲式耳2.00美元,数量为10万蒲式耳。

风险与风险转移的三个论点

第一点

一项交易是减少风险还 是增加风险,取决于操 作的具体情况

第二点

虽然在交易后回顾时, 交易双方有一方获利而 另一方亏损,但是减少 风险对双方都是有利的

第三点

即使整体产出或整体风险没有发生变化,对风险承担方式的再分配也增进了人们的福利

Use swap contracts to hedge currency risk

- - 运用互换合约对冲汇率风险
 - 互换合约:双方相互交换一定期限内一定间隔的一系列现金流
 - 互换费用根据协议本金(名义金额)而定
 - 合约签订时并不立即支付货币
 - 当今实践中,大多数互换合约交换的是商品、货币或证券的收益
 - 互换是比较优势理论在金融领域最生动的运用

○ 比较优势理论

- 比较优势 (Comparative Advantage) 理论是英国著名经济学家大卫•李嘉图 (David Ricardo) 提出的
- 李嘉图的比较优势理论不仅适用于国际贸易,而且适用于所有的经济活动
- 只要存在比较优势,双方就可通过适当的分工和交换使双方共同获利
- 根据比较优势理论,只要满足以下两种条件,就可进行互换
 - ✓ 双方对对方的资产或负债均有需求
 - ✓ 双方在两种资产或负债上存在比较优势

○ 货币互换以规避外汇风险

- 假设你是一个美国人,但你在德国工作,未来10年你每年有10万欧元的收入
 - 此时, 你面临着外汇风险 (汇率波动风险)
- 你可以与银行(或其他交易对手)签订一个互换合约,按照现在约定的远期汇率,使用未来的欧元现金流交换一系列未来的美元现金流
 - 约定的远期汇率: 1欧元=1.5美元
- 关于互换合约的现金流
 - ✓ 若一年后的清算日,市场汇率: 1欧元=1.4美元,则交易对手应支付你1万美元
 - ✓ 若一年后的清算日,市场汇率: 1欧元=1.6美元,则你应支付交易对手1万美元
- 互换合约相当于一系列的远期合同

通过针对负债配比资产 对冲缺口风险

Hedge the gap risk by matching assets with liabilities

通过针对负债配比资产对冲缺口风险

● 通过针对负债配比资产对冲缺口风险

- 假设有一家保险公司向客户出售担保投资合约
 - ✓ 客户一次性支付\$783.53
 - ✓ 保险公司承诺5年后偿付\$1000
 - ✓ 暗含该客户每年的收益率为5%
- 保险公司如何才能规避风险,实现自己的承诺

保险公司也可将保费投资于股票组合,但将会面临缺口风险,即5年后,股票的价格可能低于向客户承诺的1000美元

通过针对负债配比资产对冲缺口风险

● 通过针对负债配比资产对冲缺口风险

■ 如果一家银行拥有赚取<mark>浮动利率</mark>的短期<mark>存款</mark>这项客户 负债,那么恰当的对冲工具是

● 浮动利率债券或者"滚动"短期债券策略

投资于长期固定利率债券,同时签订一项互换 合约,使在债券上获得的固定利率与浮动利率 互换

最小化对冲成本

Minimizing hedging costs

最小化对冲成本

最小化对冲成本

■ 当存在多于一种对冲风险的途径时,应选择成本最低的风险规避方法

- 假设你拥有资本10万美元,现在正在投资3%的一年期债券
- 你计划一年后用这笔资金购买一套日本东京公寓,商定价格为1030万日元

案例

- 你面临的风险: 日元对美元汇率风险
- 处理方法
 - ✓ 与银行签订一个日元远期合约
 - ✓ 让东京的房主以固定的美元价格(10.3万美元)出售
- 必须考虑两种方法各自的交易成本

投保与对冲

Insurance and hedging

○ 投保与对冲

- 保险是支付保费成本以消除损失的风险,同时保留获益的可能
- 远期合约等形式的风险规避是放弃潜在的收益来消除损失的风险

案例

- J是一位农妇,有10万蒲式耳小麦将在一个月后收获
- 农妇对于所面临的价格风险可以采取以下措施
 - ✓ 不采取任何措施减少价格风险
 - ✓ 与面点师签订远期合约规避风险
 - ✓ 购买保险,保险费为2万美元
- 3种方案没有哪一种能在所有情况下都优于其他两种
- 风险管理的核心问题: 不能预知未来的价格

6

投保与对冲

Hedging v. Insuring

保险合约的基本特征

Basic characteristics of insurance contracts

保险合约的基本特征

6

保险合约的基本特征

■免赔条款和赔付限额

- ✓ 免赔条款是那些看起来在保险的范围之内,但被特别排除在外的损失
- ✓ 赔付现额是对保险合同所针对的特定损失赔偿的额度

■免赔额

✓ 免赔额是被保险人在接受保险人的赔付之前必须自己支付的数额,能够激励被保险人 控制损失

■赔付比例

✓ 赔付比例是指保险人需要承担一定比例的损失

金融性担保

Financial guarantees

金融性担保

金融性担保

- 信用风险: 指与你签订合约的另一方违约的风险
- 贷款担保要求担保人承诺在借款人无力偿还时保证支付贷款限额
- 信用卡发行机构对消费者使用信用卡的支付向商家提供担保
- 母公司通常对子公司的债务提供担保
- 政府对住宅抵押贷款/农业贷款/学生贷款/小企业贷款或大企业贷款,以及其他的政府 贷款提供担保

利率的最高限价与最低限价

The maximum and minimum price of interest rate

利率的最高限价与最低限价

- 利率的最高限价与最低限价
 - 利率风险取决于经济主体的立场,即你是借款者还是贷款者
 - 贷款人 (如存款人/银行) 的浮动利率资产面临利率下跌风险
 - ✓ 利率下限:保证最低的利率水平
 - 借款人 (如借入可变利率抵押贷款) 将面临利率上升的风险

✓ 利率上限:保证最高的利率水平

作为保险的期权

An option as insurance

作为保险的期权

● 作为保险的期权

■ 期权: 将来以一定价格买入或卖出某种资产的权利

- 与远期合约等的比较
 - ✓ 期权也可规避未来的损失风险
 - ✓ 远期合约的买卖方的权利与义务是统一的;而期权 合约中的权利与义务被分解,即期权买方是权利方, 而卖方是义务方

作为保险的期权

● 相关概念

■ 买入期权/看涨期权:未来有权以一定价格买入标的物的期权

■ 卖出期权/看跌期权:未来有权以一定价格卖出标的物的期权

■ 执行价格/协议价格: 期权合约中确定的固定价格

■ 到期日: 执行期权合约的最后一天

■ 期权费 (保险费): 期权的价格

■ 欧式期权:期权只能在到期日执行

■ 美式期权:期权可以在到期日及到期日前的任何一天执行

分散化原理

The principle of decentralization

○ 分散化原理

■ <mark>分散化</mark>:将投资分散于多种风险资产,而不是全部集中于一种资产

■ 分散化原则表明,通过分散持有风险资产,有时人们可以在不减少预期收益率的情况下,减少整体风险暴露程度

"不要将所有的鸡蛋放在一个篮子里"

分散化原理

○ 不相关风险的分散化

- 从预期收益和标准差的角度看收益收益的概率分布
- <u>预期收益</u> = [(收益的概率) × (可能收益)]之和

$$E(r) = \sum_{i=1}^{n} P_i r_i$$

■ 标准差=[(概率)×(可能的收益-预期收益)的平 方]之和的平方根

$$\sigma = \sqrt{\sum_{i=1}^{n} P_i [r_i - E(r)]^2}$$

■ 投资组合的标准差 = 预期收入

分散化效果图

6

可分散风险与不可分散风险

■ 可分散风险: 也称为非系统性风险,可以通过增加股票数量消除的投资组合的波动性

■ 不可分散风险: 也称为系统性风险: 无论 股票数目如何增加仍存在的波动性

图 11-3 按照时间和股票数量计算的超额标准差

分散化与保险成本

Diversification and the cost of insurance

分散化与保险成本

○ 分散化与保险成本

■ 对一个既定规模的投资组合,风险分散化的程度越高,对投资组合整体的价值损失保险的成本越低

■ 分散化的投资组合中的各种投资产品,其风险可以部分的相互抵消

