ساختمان داده ها

تحلیل زمان متوسط اجرای الگوریتم مرتب سازی سریع

> مدرس: غیاثیشیرازی دانشگاه فردوسی مشهد

QuickSort


```
QUICKSORT(A, p, r)
```

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 QUICKSORT(A, p, q 1)
- 4 QUICKSORT(A, q + 1, r)

Partitioning

```
PARTITION(A, p, r)
1 x = A[r]
2 i = p - 1
  for j = p to r - 1
if A[j] \le x
           i = i + 1
            exchange A[i] with A[j]
   exchange A[i + 1] with A[r]
   return i+1
```

مر بانوله یافه

	5	17	3	9	13	4	6	15	2	7	1
	3	4	2)	15	17	9	13	6	15	7
	2	-	3	4	5	9	13	6	15	7	17
		2	3	4	5	6	7	9	13	15	17
	1	2	3	4	5	6	7	9	13	15	17
							X ¿				
-	_	+	1	+)	+	7				

ترتب نهایی $Z_1 \langle Z_2 \langle Z_3 \langle \dots \langle Z_n \rangle$ وربی از و زیم سال می لوندی $\frac{1}{3}$ $\frac{1}$ $Z_i < Z_k < Z_j$ $\int Z_k$ بعزا) ادلین عفر از کے رعزا/فحد - <= 32 - (6) (+) (=

$$\begin{aligned} & \left\{ - C_{i} \right\} = T = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n} \sum_{j=1}^{n} I_{ij} \\ & \left\{ - C_{i} \right\} = \sum_{i=1}^{n}$$

$$P\left(\frac{z_{j}}{z_{j}}, \frac{z_{i}}{z_{i}}\right) = \frac{2}{j-i+1}$$

$$E[T] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$E[T] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{(j-i+1)}$$

$$E[T] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{(j-i+1)}$$

$$(2 \sum_{i=1}^{n} \sum_{k=2}^{n} \frac{1}{k})$$

$$(2 \sum_{i=1}^{n} \sum_{k=2}^{n} \frac{1}{k})$$

$$(2 \sum_{i=1}^{n} \int_{R} dn)$$

$$(2 \sum_{i=1}^{n} \int_{R} dn) = 2 n \ln(n)$$

$$(2 \sum_{i=1}^{n} \int_{R} dn) = 2 n \ln(n)$$

$$(3 \sum_{i=1}^{n} \int_{R} dn) = 2 n \ln(n)$$

$$(4 \sum_{i=1}^{n} \int_{R} dn) = 2 n \ln(n)$$

$$(4 \sum_{i=1}^{n} \int_{R} dn) = 2 n \ln(n)$$