Study of Radon background in the SuperNEMO detector

Lahaie.A¹ On behalf SuperNEMO collaboration

¹University of Bordeaux, CNRS, LP2i Bordeaux, UMR 5797, F-33170 Gradignan, France

The goal of the SuperNEMO experiment is the search for neutrinoless double-beta decay $(0\nu\beta\beta)$, the observation of which would prove that the neutrino is a Majorana particle. As $0\nu\beta\beta$ is a hypothetical and extremely rare process, it is essential to have the lowest level of background possible. ^{222}Rn is a gaseous isotope which could emanate from the detector materials or diffuse from the air of the laboratory into the detector, and its daughter isotope 214Bi with $Q_{\beta}=3.27$ MeV can contribute to the double-beta background. The ^{222}Rn activity inside the SuperNEMO tracker demonstrator module must be significantly reduced down to 0.15 mBq/m3. This poster will detail anti-radon strategies used in SuperNEMO and present the status of the ^{222}Rn analysis based on first data compared to simulation using the topology of the ^{214}Bi - ^{214}Po decay event, i.e. one electron followed by a delayed alpha.