Exercises for Chapter 3

- 1. i) For an AR(1) process with characteristic polynomial $\phi(x) = 1 \phi_1 x$, what is the stationary condition for ϕ_1 ? What is the causal condition for ϕ_1 ?
 - ii) For an AR(2) process with characteristic polynomial $\phi(x) = 1 \phi_1 x \phi_2 x^2 = (1 r_1 x)(1 r_2 x)$, what is the stationary conditions for r_1 and r_2 ? What is the causal conditions for r_1 and r_2 ?
 - iii) Show that if the AR(2) process in ii) is causal, then it is necessarily that $\phi_1 + \phi_2 < 1$, $\phi_1 \phi_2 > -1$ and $|\phi_2| < 1$.
- 2. Consider a causal AR(2) process $Z_t = \alpha Z_{t-1} + \beta Z_{t-2} + a_t$, where $\text{Var}(Z_t) = 4$ and $\sigma_a^2 = 2$. Find $\alpha \rho_1 + \beta \rho_2$ where ρ_1 and ρ_2 are lag 1 and 2 autocorrelations, respectively.
- 3. Consider the model $Z_t = \theta Z_{t-1} + a_t + \alpha a_{t-1} + \beta a_{t-2}$ where α, β, θ are constants and $a_t \sim WN(0, \sigma_a^2)$.
 - (a) What is the name of this model?
 - (b) Give the conditions for $\{Z_t\}$ to be i)stationary, ii) causal iii) invertible.
 - (c) Using i) $(1-x)^{-1} = \sum_{j=0}^{\infty} x^j$ and ii) first principle, find the stationary solution of $\{Z_t\}$ for the case $|\theta| < 1$.
 - (d) Find the stationary solution of $\{Z_t\}$ for the case $|\theta| > 1$.
 - (e) Let $|\theta| < 1$. Find the variance and autocorrelation function of $\{Z_t\}$.
- 4. Consider the stationary process $Z_t = \mu + \phi Z_{t-1} + a_t$, where $a_t \sim WN(0, \sigma_a^2)$, and $|\phi| < 1$. Find $E(Z_t)$ and $Cov(Z_t, Z_{t-k})$ for $k = 0, 1, 2, \ldots$.
- 5. Consider the process $Z_t = 0.5Z_{t-1} 0.06Z_{t-2} + a_t$. Find the values of ψ_j , j = 0, 1, 2, 3... if the process is written in the form of general linear model

$$Z_t = \sum_{j=0}^{\infty} \psi_j a_{t-j} .$$

6. Find the AR and MA representations of the following process:

$$Z_t + 0.6Z_{t-2} = a_t + 0.5a_{t-1}, \quad a_t \sim WN(0, \sigma^2).$$

7. Consider the process

$$Z_t = 0.6Z_{t-1} + a_t - 0.2a_{t-1}, \quad a_t \sim WN(0, 4).$$

- (a) Using Yule-Walker equations, find the ACVF and ACF of $\{Z_t\}$.
- (b) Find $Var(\sum_{t=1}^{4} Z_t)$.
- 8. Identifying each of the following models as a specific ARIMA model, determine whether it is stationary, causal, or invertible.

1

- i) $(1-B)Z_t = (1-1.5B)a_t$
- ii) $(1-1.1B)Z_t = (1-1.7B+0.72B^2)a_t$
- iii) $(1 0.6B)Z_t = (1 1.2B + 0.2B^2)a_t$
- iv) $(1 0.5B 0.5B^2)Z_t = (1 1.2B + 0.2B^2)a_t$
- v) $Z_t = 0.4Z_{t-1} + 0.45Z_{t-2} + a_t + a_{t-1} + 0.25a_{t-2}$
- vi) $Z_t = 1.25Z_{t-1} 0.25Z_{t-2} + a_t$
- 9. Consider the process $Z_t = 0.5Z_{t-1} 0.06Z_{t-2} + a_t$, $a_t \sim WN(0, 1)$. Find the ACF $\rho(k)$ for k=0,1,2,3,4...
- 10. Consider an MA(∞) process $Z_t = a_t + C(a_{t-1} + a_{t-2} + \cdots)$, where C is a fixed constant, $E(a_t) = 0$, and $Var(a_t) = \sigma_a^2$.
 - (a) Is Z_t weakly stationary?
 - (b) Let $W_t = Z_t Z_{t-1}$. Show that $\{W_t\}$ is a stationary MA(1) model.
 - (c) Find the autocorrelation function of $\{W_t\}$.