Using machine learning in chat box for heart disease prediction

COMP4105 Lingyun Yang -20341447

05/25/2022

Overview

- Background Introduction
- Project Object
- Experiment
 - Chat box building
 - Model building and parameter optimization
- Model Evaluation
- Feature work & Conclusion

Background Information

- According the CDC and NHS England reports, heart disease is one of the deadly disease with high incidence[1].
- The median number of waiting time in NHS England was 11.5 weeks[2].
- Such long wait times may miss the best prevention and treatment period for early-stage patients.

Project Object

Heart disease prediction model

 Help possible high-risk groups to prevent heart disease by building a heart disease prediction model

Experiment

Key Approach

• collect data using simple conversations and apply machine learning methods KNN and SVC to build the model.

Experiment

Chat Box design

- Design and group questions based on the answer type: binary, numerical, categorical etc.
- NLTK toolkit to tokenize the answer and tagging each word.
- If there is an target word in the answer, then convert it into the correct format to be used as input to the model to make predictions.
- Error handling: If user's answer out of the restricted answer, ask the user answer this question again;

ask question loop:

question = random pick from unknown list

#get the input from user, tokenize and tag answer
answer = get input from user
tokenize answer and tag them

Match the target key word from tagged answer
targetAns = matched [tagged word list]
if the tagged word list includes "bye":
 break the loop and say bye to user
else:
 if(matched):
 remove question from unknown list
 transfer matched key words to right format

continue loop

Experiment

K_NN Model and optimization

- KNN manipulates the training data and classifies the new test data using distance measures and then classifies the data based on the majority vote.
- No pre-defined statistical methods to find the best K.
- Randomly pick a K value and start the computing.
- Iterate over all possible K values.

Model Experiment

K_NN Model, Confusion matrix

• Set the K = 6 and calculate the confusion metrics.

Model Experiment

SVC Model, Confusion matrix

- Support Vectors Classifier attempts to identify the optimal hyperplane for classifying data by optimising the distance between sample points and the hyperplane.
- C is the mistake term's penalty parameter. It regulates the trade-off between a smooth decision boundary and the proper classification of training points.
- Set Parameter range of C [0.1,1,10,1000]. The best C is 0.1 with an accuracy of 0.7875. And get the confusion matrix.

Model Evaluation

Evaluation Metrics

4	SVM←	KNN←
Accuracy	0.7875↩	0.8438←
Precision ~	0.1818↩	0.7500
Recall ←	0.0741←	0.11114
AUC <	0.4684←	0.63314

- Accuracy is ratio of properly predicted observations to the total number of observations $Accuracy = \frac{TP+TN}{TP+FP+FN+TN}$
- Precision is the ratio of correctly predicted positive observations to the total predicted positive observation

$$Precision = \frac{TP}{TP+FP}$$
.

 Recall actually calculates how many of the Actual Positives that model capture through labeling it as Positive

$$Recall = \frac{TP}{TP + FN}$$

Model Evaluation

ROC and **AUC**

- ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds
- AUC stands for "Area under the ROC Curve." That is, AUC measures the entire twodimensional area underneath the entire ROC.

Future work

Chat box

- More user-friendly
- More robust

More interactive between users and chat agent.

Reducing error sensitivity of chat box.

Prediction Model

- Minimising Data bias
- Improve accuracy rate

Select an almost equal number of positive and negative instances

More training samples

Reference

- [1] PYTLAK, K. 2022. Personal Key Indicators of Heart Diseas. kaggle.com/datasets/kamilpytlak/....
- [2] BAKER, C. 2022. NHS Key Statistics: England, February 2022.
- [3] Stephanie Stephensh.(March 2018). Worth the Wait? 15 Ways to Reduce Patient Wait Times. healthecareers.com/articles/healthcare-news...
- [4] PRIYANKA SHARMA.(2019). Heart Disease Prediction in Python. machinemantra.in....
- [5] Amnah khatun.(March 2018). Chatbot: the Next Big Thin. chatbotsmagazine.com/....
- [6] Tavish Srivastava. (March 2018). Introduction to k-Nearest Neighbors: A powerful Machine Learning Algorithm (with implementation in Python & R). analyticsvidhya.com/blog/....

Thanks!