

CS 224

Fall 2023-2024

Lab 4 Preliminary Report

Hüseyin Uzun

21702559

Section 3

14.11.2023

Part 1-b)

Location	Machine Instruction	
8'h00	32'h20020005	ADDI \$v0, \$zero, 5
8'h04	32'h2003000c	ADDI \$v1, \$zero, 12
8'h08	32'h2067fff7	ADDI \$a3, \$v1, 0xFFF7
8'h0c	32'h00e22025	OR \$a0, \$a3, \$v0
8'h10	32'h00642824	AND \$a1, \$v1, \$a0
8'h14	32'h00a42820	ADD \$a1, \$a1, \$a0
8'h18	32'h10a7000a	BEQ \$a1, \$a3, 40
8'h1c	32'h0064202a	SLT \$a0, \$v1, \$a0
8'h20	32'h10800001	BEQ \$a0, \$zero, 4
8'h24	32'h20050000	ADDI \$a1, \$zero, 0
8'h28	32'h00e2202a	SLT \$a0, \$a3, \$v0
8'h2c	32'h00853820	ADD \$a3, \$a0, \$a1
8'h30	32'h00e23822	SUB \$a3, \$a3, \$v0
8'h34	32'hac670044	SW \$a3, 44(\$v1)
8'h38	32'h8c020050	LW \$v0, 50(\$zero)
8'h3c	32'h08000011	J 44
8'h40	32'h20020001	ADDI \$v0, \$zero, 1
8'h44	32'hac020054	SW \$v0, 54(\$zero)
8'h48	32'h08000012	J 48

Part 1-c)

PC = PC + 4

Part 1-d)

Part 1-e)

Instruction	Op5:0	RegWrite	RegDst	AluSrc	Branch	MemWrite	MemtoReg	ALUOp1:0	Branch2	lui
R-type	000000	1	1	0	0	0	0	10	0	0
lw	100011	1	0	1	0	0	1	00	0	0
SW	101011	0	X	1	0	1	X	00	0	0
beq	000100	0	X	0	1	0	X	01	0	0
bge	011110	1	X	0	X	0	0	XX	1	0
lui	001111	1	0	0	0	0	1	XX	0	1

Part 1-f)

addi \$v0, \$zero, 5

addi \$s2, \$zero, 2

slt \$s2, \$s2, \$v0

addi \$v1, \$zero, 12

addi \$a3, \$v1, 1624

or \$a0, \$a3, \$v0

and \$a1, \$v1, \$a0

```
bge $a1, $a3, 48
lui $s3, 1024
sw $a3, 8($v1)
lw $v0, 8($zero)
sub $a1, $a3, $s2
beq $a1, $a3, 0
j 32
Part 1-g)
module imem
module mips
 logic
           memtoreg, pcsrc, zero, alusrc, regdst, regwrite, jump, bge, lui;
 controller c (instr[31:26], instr[5:0], zero, memtoreg, memwrite, pcsrc,
               alusrc, regdst, regwrite, jump, alucontrol, bge, lui);
 datapath dp (clk, reset, memtoreg, pcsrc, alusrc, regdst, regwrite, jump,
                alucontrol, zero, pc, instr, aluout, writedata, readdata, bge, lui);
module controller(input logic[5:0] op, funct,
           input logic
                         zero,
           output logic
                         memtoreg, memwrite,
           output logic
                        pesre, alusre,
           output logic
                         regdst, regwrite,
           output logic
                         jump,
           output logic[2:0] alucontrol
             output logic bge, lui);
 maindec md (op, memtoreg, memwrite, branch, alusrc, regdst, regwrite,
               jump, aluop, bge, lui);
```

```
module maindec (input logic[5:0] op,
               output logic memtoreg, memwrite, branch,
               output logic alusrc, regdst, regwrite, jump,
               output logic[1:0] aluop
                  output logic bge, lui);
  assign {regwrite, regdst, alusrc, branch, memwrite,
         memtoreg, aluop, jump, bge, lui} = controls;
 always_comb
  case(op)
   6'b000000: controls <= 11'b11000010000; // R-type
   6'b100011: controls <= 11'b10100100000; // LW
   6'b101011: controls <= 11'b00101000000; // SW
   6'b000100: controls <= 11'b00010001000; // BEQ
   6'b001000: controls <= 11'b10100000000; // ADDI
   6'b000010: controls <= 11'b00000000100; // J
   6'b011110: controls <= 11'b10000000010; // BGE
   6'b001111: controls <= 11'b10000100001; // LUI
   default: controls <= 11'bxxxxxxxxxxx; // illegal op
  endcase
endmodule
module datapath (input logic clk, reset, memtoreg, pcsrc, alusrc, regdst,
          input logic regwrite, jump,
               input logic[2:0] alucontrol,
          output logic zero,
               output logic[31:0] pc,
            input logic[31:0] instr,
          output logic[31:0] aluout, writedata,
            input logic[31:0] readdata
            input logic bge,lui);
```

```
logic bgeout;

// next PC logic

bge #(32) bge_logic( srca, srcb, bgeout );

mux2 #(32) branch2mux( pcsrc, bgeout, branch2, pcsrc2 );

module bge #(parameter WIDTH = 32)

(input logic[WIDTH-1:0] c1, c2,

output logic bge);

assign bge = (c1 >= c2);

endmodule
```