One of the most fundamental theorems in number theory is the famous Euclid's division lemma:

Theorem 1. Let $q \in \mathbb{N}$. Each natural number n has a unique representation of the form

$$n = m \cdot q + r$$

with $m, r \ge 0$ and r < q.

Proof. For the cases q = 1, n = 1 resp. q > 1, n = 1 the unique solutions with m = 1, r = 0 resp. m = 0, r = 1 are implied.

We first proof the existence of the representation by induction over n. So let us assume for some r < q we have

$$n = m \cdot q + r$$

Then n+1 can be written as

$$n+1 = m \cdot q + r$$

If r + 1 < q we are done. If r + 1 = q, we can write

$$n+1 = (m+1) \cdot q$$

For proving uniqueness, assume

$$n = m_1 \cdot q + r_1 = m_2 \cdot q + r_2$$

Without loss of generality assume $m_2 > m_1$. Then

$$(m_2 - m_1) \cdot q + r_2 - r_1 = 0$$

This yields,

$$q \leq (m_2 - m_1) \cdot q = r_1 - r_2$$

which results in the contradiction $r_1 \geq q$. We conclude, $m_1 = m_2$. From

$$m_1 \cdot q + r_1 = m_1 \cdot q + r_2$$

we finally see $r_1 = r_2$.

Lemma 2. Let $a, b, p \in \mathbb{N}$ with p being a prime number. The product $a \cdot b$ is divisible by p if and only if either a or b is divisible by p.

Proof. If either a or b is divisible by p it is clear that then its product is divisible by p as well.

In case a = b = 1 the statement is trivially true. We proceed by induction on the value of each factor, that is, we assume the statement is true for all numbers a', b' with a' < a and b' < b.

Assume $a \cdot b$ is divisible by p but none of a or b is. Then for some unique positive r_1 , r_2 we have

$$a = m_1 \cdot p + r_1$$
$$b = m_2 \cdot p + r_2$$

with

$$r_1, r_2$$

This yields,

$$a \cdot b = (m_1 m_2 q + r_1 m_2 + m_1 r_2) \cdot p + r_1 \cdot r_2$$

with $r_1 \cdot r_2 > 0$. Moreover, by divisibility assumption, there must be $m \in \mathbb{N}$ with

$$r_1 \cdot r_2 = m \cdot p$$

Since $r_1 < a$ and $r_2 < b$, by inductive assumption either r_1 or r_2 must be divisible by p. But this contradicts (1) and thus we must drop the assumption of neither a nor b not being divisible by p.

Lemma 3. Let p be a prime number. A product of natural numbers is divisible by p if and only if at least one of its factors is divisible by p.

Proof. This can be seen by induction on the length of the product and application of the previous lemma. For instance, $a \cdot b \cdot c = (a \cdot b) \cdot c$. \square

The previous lemma can be used to proof the following theorem.

Theorem 4. Each natural number n greater than 1 has a unique prime decomposition.

Proof. The statement is trivially fulfilled in case if n is any prime number. So let us suppose n is not a prime number and the statement is fulfilled by induction for all natural numbers below of n. Then there are some $a, b \in \mathbb{N}$ such that $n = a \cdot b$ and a, b > 1. Since obviously a, b < n, both have a prime decomposition which leads altogether to a prime decomposition of n.

The uniqueness of such a decomposition can be seen as follows: Assume

$$n = p_1^{m_1} \cdot p_2^{m_2} \cdots p_i^{m_i}$$

and

$$n = q_1^{k_1} \cdot q_2^{k_2} \cdots q_j^{k_j}$$

where $\{p_1, p_2, \ldots, p_i\}$ and $\{q_1, q_2, \ldots, q_j\}$ are sets of primes. Without loss of generality let us assume that $p_1 \notin \{q_1, q_2, \ldots, q_j\}$, then since n is divisible by p_1 , the product $q_1^{k_1} \cdot q_2^{k_2} \cdots q_j^{k_j}$ must it be as well. The lemma implies that at least one factor must be divisible by p_1 , but this contradicts the q's being prime numbers. Since p_1 has been chosen arbitrarily, this shows

$$\{p_1, p_2, \dots, p_i\} = \{q_1, q_2, \dots, q_j\}$$

Therefore we may assume to have two decompositions of the form

$$p_1^{m_1} \cdot p_2^{m_2} \cdots p_i^{m_i} = p_1^{k_1} \cdot p_2^{k_2} \cdots p_i^{k_i}$$

By repeatedly applying the lemma we observe the l.h.s must be divisible k_1 times by p_1 and that the only factor allowing this is $p_1^{m_1}$. This implies $m_1 \geq k_1$. The same argumentation we can do with the remaining prime numbers and moreover by interchanging the role of the l.h.s and r.h.s. This finally yields $m_1 = k_1, \ldots, m_i = k_i$.

Theorem 5. There are infinitely many prime numbers.

Proof. To the contrary assume the set of primes is finite and given by $P := \{p_1, p_2, \dots, p_n\}$. Consider the number

$$q := p_1 \cdot p_2 \cdots p_n + 1$$

By theorem 1, q is not divisible by any of the p_i 's. Nor can q be a prime number since it would be greater than all of the p_i 's. By theorem 4 there must exist some prime number p that divides q. As mentioned $p \notin P$ in contradiction to the assumption. So we conclude, there must exist infinite many primes.

Theorem 6. The prime decomposition of a non-prime natural number n with n > 1 contains a prime number p with

$$p \le |\sqrt{n}|$$

Proof. Assume $n = p_1 \cdot p_2 \cdots p_m$ being a prime decomposition with possible repetitions in the prime number $[p_1, \ldots, p_m]$. There cannot be two factors p_i, p_j with

$$p_i, p_j > \lfloor \sqrt{n} \rfloor$$

since otherwise $p_i \cdot p_j > n$.

Theorem 7. Each prime number greater than 3 is of the form either 6n-1 or 6n+1.

Proof. Just note, 6n + 2, 6n + 4 are divisible by 2 and 6n + 3 by 3. So, only 6n + 1 or 6n + 5 possibly can be prime.