

Assunto: Funções e suas propriedades Professor: Fabricio Alves Oliveira

Essa lista deverá ser entregue resolvida no dia da primeira prova.

(1) A figura abaixo mostra o gráfico de três funções f, g e h.

- (i) Determine, para cada uma das funções:
 - (a) O domínio;
 - (b) A imagem;
 - (c) As raízes;
 - (d) Os intervalos em que a função é positiva e os intervalos em que a função é negativa;
 - (e) Os intervalos em que a função é crescente, decrescente ou constante.
- (ii) Determine, caso estejam definidos, os valores de f(-3), f(-1), f(0) e $f(\frac{5}{2})$.
- (iii) Determine, caso estejam definidos, os valores de g(1) e g(2).
- (iv) Determine, caso estejam definidos, os valores de h(-4), h(0) e h(2).
- (v) O que ocorre com o valor de g(x) quando x é muito pequeno? E quando o valor de x é muito grande?
- (vi) O que ocorre com o valor de g(x) quando x se aproxima de 1?
- (2) Considere a função real $f(x) = \frac{x+2}{x^2+1}$. Determine:

(b)
$$f(-1)$$

(c)
$$f(2)$$

(d)
$$f(2a)$$
 (e) $f(x^2 + 1)$

(f)
$$f(a + 2b)$$

(3) Determine o domínio das seguintes funções:

(a)
$$f(x) = 4x^4 - 2x^3 + 2$$

$$(b) f(x) = \frac{4}{x-1}$$

$$(c) f(x) = \frac{x}{x+2}$$

$$(d) f(x) = \sqrt{x - 2}$$

(e)
$$f(x) = \sqrt[3]{x^2 - x}$$

(f)
$$f(x) = \frac{3x+1}{\sqrt{x-3}}$$

$$(g) f(x) = \frac{\sqrt{x+1}}{x}$$

(h)
$$f(x) = \frac{3x-4}{x^2+6}$$

(i)
$$f(x) = \frac{2}{x^3 + 4x}$$

$$(a) \ f(x) = 4x^4 - 2x^3 + 2$$

$$(b) \ f(x) = \frac{4}{x - 1}$$

$$(c) \ f(x) = \frac{x}{x + 2}$$

$$(d) \ f(x) = \sqrt{x - 2}$$

$$(e) \ f(x) = \sqrt[3]{x^2 - x}$$

$$(f) \ f(x) = \frac{3x + 1}{\sqrt{x - 3}}$$

$$(g) \ f(x) = \frac{\sqrt{x + 1}}{x}$$

$$(h) \ f(x) = \frac{3x - 4}{x^2 + 6}$$

$$(i) \ f(x) = \frac{2}{x^3 + 4x}$$

$$(j) \ f(x) = \sqrt{x - 1} + \sqrt{3 - x}$$

$$(k) \ f(x) = \sqrt{1 - \sqrt{x}}$$

$$(l) \ f(x) = \sqrt{x^2 + 5}$$

$$(k) f(x) = \sqrt{1 - \sqrt{x}}$$

$$(1) f(x) = \sqrt{x^2 + 5}$$

(4) Considere a função $f: \mathbb{R} - \{2\} \to \mathbb{R}$, definida por $f(x) = 5 + \frac{3}{x+2}$. Determine:

- (a) f(-5)
- (b) f(1)
- (c) O elemento do domínio cuja imagem é igual a -1.
- (5) Seja f uma função definida por $f(x) = \frac{x+a}{4x+b}$, sendo a e b constantes reais. Sabendo que f(0) = -3 e $f(1) = \frac{4}{3}$, determine:
- (a) Os valores de a e b;
- (b) O domínio da função;
- (c) O elemento do domínio cuja imagem vale $-\frac{2}{5}$.
- (6) Determine o "maior" conjunto domínio D(f) de modo que $Im(f) \subset D(g)$. Em seguida determine a função composta $q \circ f$ nos seguintes casos:

(a)
$$f(x) = x + 3 e g(x) = \frac{2}{x + 2}$$

(b)
$$f(x) = x^2 e g(x) = \sqrt{x-1}$$

- (7) Nas funções reais f e g, definidas por $f(x) = x^2 + 2$ e g(x) = x 3, obtenha as leis que definem:
 - (a) $f \circ g$
- (b) $g \circ f$ (c) $f \circ f$ (d) $g \circ g$
- (8) (a) Considere as funções f(x) = 3x 5 e $(f \circ g)(x) = x^2 3$. Determine a lei da função g.
- (b) Considere as funções q(x) = 3x 2 e $(f \circ q)(x) = 9x^2 3x + 1$. Determine a lei da função f.
- (9) Considere uma função que tem a propriedade f(x+1) = 2f(x) + 1, para todo $x \in \mathbb{R}$. Sabendo que f(1) = -5, calcule:
- (a) f(0)
- (b) f(2)
- (c) f(4)
- (10) Para um número real fixo α , a função $f(x) = \alpha x 2$ é tal que f(f(1)) = -3. Determine o valor de α .
- (11) Considere o gráfico da função $f:[0,6]\to\mathbb{R}$ representado abaixo.

- Com base nesse gráfico, marque para as alternativas a seguir (V) Verdadeira ou (F) Falsa e justifique as falsas.
-) f é decrescente no intervalo [2, 6].
-) O conjunto dos números $x \in [0, 6]$ tais que $f(x) \le 0$ é o intervalo [4, 6].
-) $(f \circ f \circ f)(2) = 2$.
-) O número real $1+\sqrt{2}$ pertence ao conjunto imagem da função f.

- (12) Determine, em cada caso, se a função é par, impar ou nenhuma das duas.
 - (a) $f(x) = 2x^4 3x^2 + 1$ (b) $f(x) = 5x^3 7x$ (c) f(x) = |x| (d) $f(x) = \frac{x-3}{x^2+1}$

- (13) Demonstre que se f e g são funções ímpares, então:
- $(\mathfrak{a})~(\mathfrak{f}+\mathfrak{g})$ e $(\mathfrak{f}-\mathfrak{g})$ são também funções ímpares;
- (b) $f \cdot g = \frac{f}{g}$ são funções pares.
- (14) Determine se cada função abaixo é injetora, sobrejetora, bijetora ou nenhuma delas.
- (a) $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 2x + 1
- (b) $q: \mathbb{R} \to \mathbb{R}$ definida por $q(x) = x^2 9$
- (c) $h: \mathbb{R} \to \mathbb{R}_+$ definida por h(x) = |x-1|
- (d) $s: \mathbb{R} \{0\} \to \mathbb{R}$ definida por $s(x) = \frac{1}{x}$
- (15) Os conjuntos A e B têm, respectivamente, \mathfrak{m} e \mathfrak{n} elementos. Considera-se uma função $\mathfrak{f}: A \to B$. Qual a condição sobre m e n para que f possa ser injetora? E para f ser sobrejetora? E bijetora?
- (16) Prove que as funções abaixo são bijetoras e obtenha a função inversa. Em seguida represente o gráfico da função e da sua inversa em um mesmo plano cartesiano. (Utilize o GeoGebra para conferir os esboços dos gráficos.)
 - (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = 6x 3$
 - $(b) \ q: \mathbb{R} \to \mathbb{R}, q(x) = \frac{4x-1}{5}$
 - (c) $r: \mathbb{R} \to \mathbb{R}, r(x) = \sqrt[3]{2x+4}$
 - (d) $p : \mathbb{R} \to \mathbb{R}, p(x) = (x-4)^3 + 6$
 - (e) $g: \mathbb{R} \{-1\} \to \mathbb{R} \{2\}, g(x) = \frac{2x+3}{x+1}$
 - (f) $s: \mathbb{R}_+ \to \mathbb{R}_+, s(x) = \sqrt{x}$
- (17) A lei seguinte mostra a relação entre a projeção do valor (v), em reais, de um equipamento eletrônico e o seu tempo de uso (t), em anos:

$$v(t) = 1800 \left(1 - \frac{t}{20}\right).$$

- (a) Qual o valor desse equipamento novo?
- (b) Qual é a desvalorização, em reais, do equipamento no seu primeiro ano de uso?
- (c) Com quantos anos de uso o aparelho estará valendo R\$1260,00?
- (18) Um terreno no formato de um triângulo retângulo isósceles será cercado. A cerca usada para cercar os lados adjacentes ao ângulo reto custam R\$20,00 o metro. Já a cerca usada para cercar o terceiro lado custa R\$50,00 o metro. Expresse o custo total da cerca em função do comprimento deste terceiro lado do terreno.
- (19) Uma livraria consegue vender 300 livros de um determinado autor a R\$40,00 cada. Para cada R\$1,00 a mais no preço unitário há uma queda de 5 unidades na quantidade de livros vendida. Expresse o valor total vendido em função do número de reais a mais no preço original de cada livro.
- (20) Uma lata cilíndrica deve ter um volume de 24π cm³. O preço do material usado para o fundo e a tampa da lata é 3 centavos por centímetro quadrado e o preço do material usado para o lado é 2 centavos por centímetro quadrado. Expresse o custo do material necessário para construir uma lata em função do raio.

Respostas

(1)

(i)

Função f:

(a) $]-3, \frac{5}{2}]$ (b) [-2, 2]

(c) x = 0 e x = 2

(d) positiva:]-3,0[ou $]2,\frac{5}{2}]$ negativa:]0,2[

(e) crescente: $\left[1, \frac{5}{2}\right]$ decrescente: [-1, 1]constante:]-3,-1] Função q: $(\alpha)~\mathbb{R}-\{1\}$

(b) $\mathbb{R} - \{2\}$ (c) x = 2

(d) positiva: $]-\infty,1[$ ou $]2,+\infty[$ negativa:]1,2[

(e) crescente: $]1, +\infty[$ decrescente: $]-\infty,1[$ constante: não possui Função h:

(a) $\mathbb{R} - \{-4, 2\}$

(b) ℝ

(c) x = 0

(d) positiva: $]-4,0[,]2,+\infty[$ negativa: $]-\infty, -4[,]0, 2[$ (e) crescente: não possui

decrescente: em todo seu domínio

constante: não possui

(ii)
$$f(-3) = \nexists$$
, $f(-1) = 2$, $f(0) = 0$, $f(\frac{5}{2}) = \frac{3}{2}$

(iii)
$$g(1) = \nexists, g(2) = 0$$

(iv)
$$h(-4) = 3$$
, $h(0) = 0$, $h(2) = 3$

(v) Quando o valor de x é muito pequeno, o valor de q(x) tende a $+\infty$. Quando o valor de x é muito grande, o valor de g(x) se aproxima de 2.

(vi) Quando x se aproxima de 1 por valores menores que 1, g(x) se aproxima de 2. Quando x se aproxima de 1 por valores maiores que 1, g(x) tende a $-\infty$.

(2)

- (a) 2

- (b) $\frac{1}{2}$ (c) $\frac{4}{5}$ (d) $\frac{2\alpha+2}{4\alpha^2+1}$ (e) $\frac{x^2+3}{x^4+2x^2+2}$ (f) $\frac{\alpha+2b+2}{\alpha^2+4b^2+4\alpha b+1}$

(3)

- (a) \mathbb{R}
- (b) $\{x \in \mathbb{R} \mid x \neq 1\}$
- (c) $\{x \in \mathbb{R} \mid x \neq -2\}$
- $(d) \; \{x \in \mathbb{R} \mid x \geq 2\}$
- (e) ℝ
- $(f)\; \{x\in \mathbb{R}\;|\; x>3\}$
- (g) $\{x \in \mathbb{R} \mid x \ge -1 \text{ e } x \ne 0\}$
- (h) \mathbb{R}
- (i) $\{x \in \mathbb{R} \mid x \neq 0\}$
- (j) $\{x \in \mathbb{R} \mid 1 \le x \le 3\}$
- $(k) \{ x \in \mathbb{R} \mid 0 \le x \le 1 \}$
- (l) \mathbb{R}
- (4) (a) 4
- (b) 6
- $(c) -\frac{5}{2}$

- $(\alpha)~\alpha=3~\mathrm{e}~b=-1$
- (b) $\{x \in \mathbb{R} \mid x \neq \frac{1}{4}\}$
- (c) -1

(6)

- (a) $D(f) = \{x \in \mathbb{R} \mid x \neq -5\} \text{ e } (g \circ f)(x) = \frac{2}{x+5}$
- (b) $D(f) = \{x \in \mathbb{R} \mid x \le -1 \text{ ou } x \ge 1\} \text{ e } (g \circ f)(x) = \sqrt{x^2 1}$
- (7) (a) $x^2 6x + 11$
- (b) $x^2 1$ (c) $x^4 + 4x^2 + 6$
- (d) x 6

(8) (a)
$$g(x) = \frac{x^2+2}{3}$$

- (b) $f(x) = x^2 + 3x + 3$
- (9) (a) -3
- (b) -9
- (c) -33

- **(10)** 1
- (11) F-V-V-V
- (12)
 - (a) Par
- (b) Ímpar
- (c) Par
- (d) Não é par e não é ímpar

- (14)
 - (a) bijetora
 - (b) nenhuma delas
 - (c) sobrejetora
 - (d) injetora
- (15) injetora: $\mathfrak{m} \leq \mathfrak{n},$ sobrejetora: $\mathfrak{m} \geq \mathfrak{n},$ bijetora: $\mathfrak{m} = \mathfrak{n}$
- (16)
 - (a) $f^{-1}(x) = \frac{x+3}{6}$
 - (b) $q^{-1}(x) = \frac{5x+1}{4}$
 - (c) $r^{-1}(x) = \frac{x^3}{2} 2$
 - (d) $p^{-1}(x) = \sqrt[3]{x-6} + 4$
 - (e) $g^{-1}(x) = \frac{-x+3}{x-2}$
 - (f) $s^{-1}(x) = x^2$
- (17) (a) 1800 reais
- (b) 90 reais
- (c) 6 anos

- (18) $c(x) = (20\sqrt{2} + 50)x$
- $(19) \ v(x) = -5x^2 + 100x + 12000$
- (20) $c(r) = \frac{6\pi(r^3+16)}{r}$