

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Sistemas de Controle II ELT331

AULA 12 – Sistemas de Fase Mínima e não Mínima e Erros Estacionários

Prof. Tarcísio Pizziolo

12. Sistemas de Fase Mínima e Não Mínima

Sistemas de Fase Mínima:

A Função de Transferência NÃO possui PÓLOS e/ou ZEROS no semiplano direito do plano s. Exemplo: $G_1(jw) = K \frac{(1+jwT_1)}{(1+jwT_2)}$

Sistemas de Fase Não Mínima:

A Função de Transferência **POSSUI ZEROS** no semiplano direito do plano s. Exemplo: $G_2(jw) = K \frac{(1 - jwT_1)}{(1 + jwT_2)}$

Característica de Módulo:

Estes dois sistemas possuem as mesmas características de Módulo para $|G_1(jw)| = |G_2(jw)| = K \frac{\sqrt{1 + w^2 T_1^2}}{\sqrt{1 + w^2 T_2^2}}$ as suas Funções de Transferência.

Característica de Ângulo:

A gama de valores para o Ângulo de Fase da Função de Transferência para os sistemas de Fase Mínima é menor em relação aos sistemas de Fase Não Mínima.

12. Sistemas de Fase Mínima e Não Mínima

Dadas as duas Funções de Transferência $G_1(jw)$ e $G_2(jw)$, analisemos o **Módulo** e o **Ângulo**:

$$G_1(jw) = K \frac{(1+jwT_1)}{(1+jwT_2)}$$
 e $G_2(jw) = K \frac{(1-jwT_1)}{(1+jwT_2)}$

A localizações dos pólos e zeros no plano s serão:

-90°

-180°

 $\varphi_2(w) = tg^{-1}(-wT_1) - tg^{-1}(wT_2)$

ara o Sistema de Fase Mínima G₁ menores em relação stema de Fase Não Mínima G₂ ara todas as frequências.

Conclusões

- Para sistemas de Fase Mínima, a inclinação da curva de Módulo em dB, quando ω → ∞, é igual a -20(p q)/década onde p e q são os graus dos polinômios do numerador e do denominador da Função de Transferência. Esta condição também se aplica aos sistemas de Fase Não-Mínima.
- Para sistemas de Fase Mínima, o Ângulo de Fase quando $\omega \to \infty$ torna-se -90°(p q), e para os sistemas de Fase Não Mínima o Ângulo de Fase quando $\omega \to \infty$ torna-se -2tg⁻¹(∞) \to -180°.
- Sistemas de Fase Não Mínima são encontrados em circuitos elétricos em Ponte, Termômetros de Bulbo, Aeronaves, Barcos, etc...

Conclusões

- Um zero à direita do plano s contribui com atraso de fase, da mesma forma que um pólo à esquerda atrasa a fase. A presença de zero no semi-plano direito do plano s resulta em uma fase mais negativa que o caso de não existir zero à direita, ou ainda com localização de zero à esquerda, pois este último adianta a fase.
- Os sistemas de fase não mínima correspondem a uma defasagem mais acentuada em relação à defasagem mínima.
- O significado do termo Fase Mínima deve ser entendido como sendo a menor variação possível de fase para uma dada curva de módulo de um sistema.

Relação entre o Tipo de Sistema e a Curva do Ganho (dB)

Considere um sistema de controle com realimentação unitária negativa representado pelo Diagrama de Blocos a seguir.

As constantes de Erro Estático de Posição, Velocidade e Aceleração descrevem o comportamento na faixa de baixas frequências dos Tipos 0, 1 e 2, respectivamente.

Para um dado sistema, apenas uma das constantes de Erro Estático é finita e significativa.

O tipo de sistema determina a inclinação da curva de Ganho (dB) em baixas frequências.

A informação relativa ao Erro Estático de uma sistema de controle para uma dada entrada pode ser determinada a partir da observação da região de baixas frequências da curva de Ganho em dB.

Erros Estáticos de Posição, Velocidade e Aceleração

Entrada Degrau Unitário

Constante de Erro Estático de Posição:
$$K_P = \lim_{s\to 0} [G(s)]$$

Erro Estático de Posição:
$$e_{ss} = \frac{1}{1 + K_{P}}$$

Entrada Rampa Unitária

Constant e de Erro Estático de Velocidade:
$$K_v = \lim_{s \to 0} [sG(s)]$$

Erro Estático de Velocidade:
$$e_{ss} = \frac{1}{K_{y}}$$

Entrada Parabólica Unitária

Constante de Erro Estático de Aceleração:
$$K_a = \lim_{s\to 0} [s^2G(s)]$$

Erro Estático de Aceleração:
$$e_{ss} = \frac{1}{K}$$

Erros Estacionários em Termos do Ganho K

Tipo do Sistema	Entrada Degrau r(t) = 1	Entrada Rampa r(t) = t	Entrada Parabólica r(t) = (0,5)t ²
0	$\mathbf{e}_{\mathrm{ss}} = \frac{1}{1 + \mathbf{K}}$	∞	8
1	0	$e_{ss} = \frac{1}{K}$	∞
2	0	0	$e_{ss} = \frac{1}{K}$

Determinação do Erro Estático

Seja o sistema de controle a seguir.

Suponha que a Função de Transferência de Malha Aberta seja:

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1)\cdots(T_m s + 1)}{s^N(T_1 s + 1)(T_2 s + 1)\cdots(T_p s + 1)}$$

ou

$$G(j\omega) = \frac{K(T_aj\omega + 1)(T_bj\omega + 1)\cdots(T_mj\omega + 1)}{(j\omega)^N(T_1j\omega + 1)(T_2j\omega + 1)\cdots(T_pj\omega + 1)}$$

Determinação do Erro Estático de Posição

Um exemplo de Gráfico do Ganho (dB) para um sistema do

Sabendo-se que:
$$K_P = \lim_{w \to 0} G(jw) \Longrightarrow K_P = K$$

O Módulo de |G(jw)| em baixas frequências é igual a $K = K_p$, então, a assíntota de baixa frequência é uma reta horizontal onde $G(dB) = 20log_{10}K_p$. Determina-se K_p e: $erro_{ss} = \frac{1}{1 + T_c}$

Considere a seguinte função de transferência:

$$G(s) = \frac{25}{s^2 + 4s + 25}$$

Construa o diagrama de Bode para essa função de transferência.

$$G(s) = \frac{\operatorname{num}(s)}{\operatorname{den}(s)}$$

```
num = [0 0 25];
den = [1 4 25];
bode(num,den)
title('Diagrama de Bode de G(s) = 25/(s^2 + 4s + 25)')
```

Determinar o Erro em Regime Permanente para uma entrada Degrau Unitária.

Determinação do Erro Estático de Velocidade

Um exemplo de Gráfico do Ganho (dB) para um sistema do

Tipo N = 1 é dado por: G(dB) $G(dB) = \frac{K_v}{\int_{-\infty}^{\infty} \frac{K_v}{\int_{-\infty}^{\infty}}} = \frac{K_v}{\int_{-\infty}^{\infty}}$ -20 dB/década

$$G(j\omega) = \frac{K(T_aj\omega + 1)(T_bj\omega + 1)\cdots(T_mj\omega)}{(j\omega)(T_1j\omega + 1)(T_2j\omega + 1)\cdots(T_pj\omega)}$$

Como $K_v = \lim_{w \to 0} (jw)G(jw)$; tem-se para baixas frequências:

$$G\left(j\underset{\to 0}{\overset{\cdot}{w}}\right) = \frac{K_{v}}{j\underset{\to 0}{\overset{\cdot}{w}}}$$

Determinação do Erro Estático de Velocidade

Definindo uma frequência $w = w_1$ na interseção do prolongamento de -20 dB/década com o eixo de 0 dB, temos que:

$$20 \log_{10} |G(jw_1)| = 0 \Rightarrow 20 \log_{10} \left| \frac{K_v}{jw_1} \right| = 0 \Rightarrow K_v = w_1$$

$$erro_{ss} = \frac{1}{K_v} \Rightarrow erro_{ss} = \frac{1}{w_1}$$

Trace o diagrama de Bode.

$$G(s) = \frac{9(s^2 + 0.2s + 1)}{s(s^2 + 1.2s + 9)}$$

```
num = [0\ 9\ 1.8\ 9];
den = [1\ 1.2\ 9\ 0];
bode(num,den)
title('Diagrama de Bode de G(s) = 9(s^2 + 0.2s + 1)/[s(s^2 + 1.2s + 9)]')
```

Determinar o Erro em Regime Permanente para uma entrada Rampa Unitária.

Determinação do Erro Estático de Aceleração

Um exemplo de Gráfico do Ganho_{Ka} (dB) para um sistema do

Tipo N = 2 é dado por: $G(dB) = \frac{G(j \frac{W}{30})}{40 \frac{G}{G}(dB)} = \frac{\frac{G}{3}}{\frac{G}{3}}$

$$G(j\omega) = \frac{K(T_aj\omega + 1)(T_bj\omega + 1)\cdots(T_mj\omega + 1)}{(j\omega)^2(T_1j\omega + 1)(T_2j\omega + 1)\cdots(T_pj\omega + 1)}$$

Como $K_a = \lim_{w\to 0} (jw)^2 G(jw)$; tem-se para baixas frequências:

$$G\left(j\underset{\to 0}{w}\right) = \frac{K_a}{\underbrace{jw^2}_{\to 0}}$$

Determinação do Erro Estático de Aceleração

Definindo uma frequência $w = w_a$ na interseção do prolongamento de -40 dB/década com o eixo de 0 dB, temos que:

$$20\log_{10}|G(jw_a)| = 0 \Rightarrow 20\log_{10}\left|\frac{K_a}{jw_a^2}\right| = 0 \Rightarrow K_a = w_a^2$$

$$erro_{ss} = \frac{1}{K_a} \Rightarrow erro_{ss} = \frac{1}{w_a^2}$$

Considere a seguinte função de transferência:

G(s) =
$$\frac{200(s+1)}{s^2(s+2)(s^2+2s+4)}$$

Construa o diagrama de Bode para essa função de transferência.

$$G(s) = \frac{\text{num}(s)}{\text{den}(s)}$$
 den = [1 4 8 8 0 0];
bode(num,den)
Title('Diagrama de Bode de G(s)=200(s+1)/[s²(s+2)(s²+2s+4)]

Determinar o Erro em Regime Permanente para uma entrada Parabólica Unitária.

