## Boolean and POS/SOP

Dr. Noori Kim

### Boolean algebra

- George Boole (/ˈbuːl/; 2 Novembei 1815 – 8 December 1864)
- An English mathematician, educator, philosopher and logician.
- Worked in the fields of differential equations and algebraic logic
- Best known as the author of The Laws of Thought (1854) which contains Boolean algebra.



#### **Boolean Axioms**

| Number | Axiom             | Dual           | Name         |
|--------|-------------------|----------------|--------------|
| A1     | B = 0 if B ≠ 1    | B = 1 if B ≠ 0 | Binary Field |
| A2     | 0 = 1             | <u>1</u> = 0   | NOT          |
| A3     | 0 • 0 = 0         | 1 + 1 = 1      | AND/OR       |
| A4     | 1 • 1 = 1         | 0 + 0 = 0      | AND/OR       |
| A5     | 0 • 1 = 1 • 0 = 0 | 1+0=0+1=1      | AND/OR       |

**Dual:** Replace: • with +

0 with 1

<sup>\*</sup>Do note that Axiom and Dual are not equivalent, but each of them is true.

#### Boolean Theorems of One Variable

| Number | Theorem                      | Dual                               | Name         |  |
|--------|------------------------------|------------------------------------|--------------|--|
| T1     | B • 1 = B                    | B + 0 = B                          | Identity     |  |
| T2     | B • 0 = 0                    | B + 1 = 1                          | Null Element |  |
| T3     | B • B = B                    | B + B = B                          | Idempotency  |  |
| T4     | <b>=</b> B                   |                                    | Involution   |  |
| T5     | $B \bullet \overline{B} = 0$ | $B + \overline{B} = 1$ Complements |              |  |

**Dual:** Replace: • with +

0 with 1

#### Boolean Theorems of Several Vars

| #   | Theorem                                                                                                 | Dual                                                                                 | Name           |
|-----|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|
| T6  | $B \bullet C = C \bullet B$                                                                             | B+C=C+B                                                                              | Commutativity  |
| T7  | $(B \bullet C) \bullet D = B \bullet (C \bullet D)$                                                     | (B + C) + D = B + (C + D)                                                            | Associativity  |
| T8  | $B \bullet (C + D) = (B \bullet C) + (B \bullet D)$                                                     | B + (C•D) = (B+C) (B+D)                                                              | Distributivity |
| Т9  | B • (B+C) = B                                                                                           | B + (B•C) = B                                                                        | Covering       |
| T10 | $(B \bullet C) + (B \bullet \overline{C}) = B$                                                          | $(B+C) \bullet (B+\overline{C}) = B$                                                 | Combining      |
| T11 | $(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$ | $(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$<br>$(B+C) \bullet (\overline{B}+D)$ | Consensus      |

Axioms and theorems are useful for simplifying equations.

## De Morgan's laws

In electrical and computer engineering, De Morgan's laws are commonly written as:

$$\overline{A \cdot B} \equiv \overline{A} + \overline{B}$$

and

$$\overline{A+B} \equiv \overline{A} \cdot \overline{B},$$

#### where:

- · is a logical AND,
- + is a logical OR,
- the overbar is the logical NOT of what is underneath the overbar.



Augustus De Morgan 1806–1871

## Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals** 

Implicant: product of literals

$$A \bullet \overline{B} \bullet C$$
,  $\overline{A} \bullet \overline{C}$ ,  $B \bullet C$ 

Literal: variable or its complement

$$A, \overline{A}, B, \overline{B}, C, \overline{C}$$

## Simplifying Boolean Equations

#### Example 1:

$$Y = A \cdot \overline{B} + A \cdot B$$
  
 $Y = A$  T10: Combining

or

$$= A \bullet (B + \overline{B})$$
 T8: Distributivity

$$= A \bullet (1)$$
 T5': Complements

$$= A$$
 T1: Identity

### Simplifying Boolean Equations

#### Example 2:

```
Y = A \cdot B' \cdot C + A \cdot B \cdot C + A' \cdot B \cdot C

= A \cdot B' \cdot C + A \cdot B \cdot C + A \cdot B \cdot C + A' \cdot B \cdot C T3': Idempotency

= (A \cdot B' \cdot C + A \cdot B \cdot C) + (A \cdot B \cdot C + A' \cdot B \cdot C) T7': Associativity

= A \cdot C + B \cdot C T10: Combining
```

## Simplifying Boolean Equations

#### Example 3:

$$Y = (A + B \cdot C)(A + D \cdot E)$$

Apply T8' first when possible:  $W+X\bullet Z = (W+X) \bullet (W+Z)$ 

Make:  $X = B \cdot C$ ,  $Z = D \cdot E$  and rewrite equation

$$Y = (A+X) \bullet (A+Z)$$

substitution (X=B•C, Z=D•E)

$$= A + X \bullet Z$$

T8': Distributivity

$$= A + B \cdot C \cdot D \cdot E$$

substitution

or

$$Y = A \cdot A + A \cdot D \cdot E + A \cdot B \cdot C + B \cdot C \cdot D \cdot E$$
 T8: Distributivity

$$= A + A \cdot D \cdot E + A \cdot B \cdot C + B \cdot C \cdot D \cdot E$$
 T3: Idempotency

$$= A + A \bullet B \bullet C + B \bullet C \bullet D \bullet E$$
 T9': Covering

$$= A + B \cdot C \cdot D \cdot E$$
 T9': Covering

This is called *multiplying out* an expression to getsum-of-products (SOP) form.

#### A sidebar: a common mistake

$$\bar{A} \cdot \bar{B} + A \cdot B = ??$$

$$\bar{A}\bar{B} + AB = ??$$

$$\overline{A \cdot B} + A \cdot B = 1$$

Are they same?

$$\overline{A \cdot B} ??? \overline{A} \cdot \overline{B}$$
 $\overline{A \cdot B} \neq \overline{A} \cdot \overline{B}$ 

#### **Boolean AND Logic gates**

 A simplified Boolean expression uses the fewest gates possible to implement a given expression.



- A•B+A• (B+C)+B• (B+C)
  - (distributive law)
    - AB+AB+AC+BB+BC
  - -(BB=B)
    - AB+AB+AC+B+BC
  - -(AB+AB=AB)
    - AB+AC+B+BC
  - -(B+BC=B)
    - AB+AC+B
  - -(AB+B=B)
    - B+AC



## POS/SOP

 Can implement <u>ANY</u> truth table with AND, OR, NOT.

| C | D                     |
|---|-----------------------|
| 0 | 0                     |
| 1 | 0                     |
| 0 | 1                     |
| 1 | 0                     |
| 0 | 0                     |
| 1 | 1                     |
| 0 | 0                     |
| 1 | 0                     |
|   | 0<br>1<br>0<br>1<br>0 |



1. AND combinations that yield a "1" in the truth table.

2. OR the results of the AND gates.

#### Standard Forms of Boolean Expressions

- All Boolean expressions, regardless of their form, can be converted into either of <u>two</u> <u>standard forms</u>:
  - The sum-of-products (SOP) form
  - The product-of-sums (POS) form

## Sum-of-Products (SOP)

### The Sum-of-Products (SOP) Form

- Two or more product terms are summed by Boolean addition.
  - Examples:

$$AB + ABC$$

$$ABC + CDE + \overline{B}C\overline{D}$$

$$\overline{A}B + \overline{A}B\overline{C} + AC$$

– Also:

$$A + \overline{A}\overline{B}C + BC\overline{D}$$

- In an SOP form, a single overbar cannot extend over more than one variable; however, more than one variable in a term can have an overbar:
  - example:  $\overline{A}\overline{B}\overline{C}$  is OK!

■ But not:  $\overline{ABC}$ 

**Boolean OK** 

## Implementation of an SOP

$$X = AB + BCD + AC$$

- AND/OR implementation
- NAND/NAND implementation





#### The Standard SOP Form

- A standard SOP expression is one in which all the variables in the domain appear in each product term in the expression.
  - Example:  $A\overline{B}CD + \overline{A}\overline{B}C\overline{D} + AB\overline{C}\overline{D}$
- Standard SOP expressions are important in:
  - Constructing truth tables
  - The Karnaugh map simplification method

#### Converting Product Terms to Standard SOP

 Convert the following Boolean expression into standard SOP form:

$$A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$$

## Product-of-Sums (POS)

### The Product-of-Sums (POS) Form

- Two or more sum terms are multiplied:
  - Examples:

$$(\overline{A} + B)(A + \overline{B} + C)$$

$$(\overline{A} + \overline{B} + \overline{C})(C + \overline{D} + E)(\overline{B} + C + D)$$

$$(A + B)(A + \overline{B} + C)(\overline{A} + C)$$

– Also:

$$\overline{A}(\overline{A} + \overline{B} + C)(B + C + \overline{D})$$

- In a POS form, <u>a single</u>
   overbar cannot extend
   over more than one
   variable; however,
   more than one variable
   in a term can have an
   overbar:
  - example:  $\overline{A} + \overline{B} + \overline{C}$  is OK!
  - But not:  $\overline{A+B+C}$

## Implementation of a POS

$$X=(A+B)(B+C+D)(A+C)$$

OR/AND implementation



#### The Standard POS Form

- A <u>standard</u> POS expression is one in which *all* the variables in the domain appear <u>in each sum term</u> in the expression.
  - Example:  $(\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + \overline{B} + C + D)(A + B + \overline{C} + D)$
- Standard POS expressions are important in:
  - Constructing truth tables
  - The Karnaugh map simplification method

# Converting a Sum Term to Standard POS (example)

 Convert the following Boolean expression into standard POS form:

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

\_\_\_\_\_

## SOP/POS conversion

## Converting SOP Expressions to Truth Table Format

 Develop a truth table for the standard SOP expression

$$\overline{A}\overline{B}C + A\overline{B}\overline{C} + ABC$$

| Ιr | nput | CS. | Output | Product                     |
|----|------|-----|--------|-----------------------------|
| A  | В    | С   | X      | Term                        |
| 0  | 0    | 0   | 0      |                             |
| 0  | 0    | 1   | 1      | $\overline{A}\overline{B}C$ |
| 0  | 1    | 0   | 0      |                             |
| 0  | 1    | 1   | 0      |                             |
| 1  | 0    | 0   | 1      | $A\overline{B}\overline{C}$ |
| 1  | 0    | 1   | 0      |                             |
| 1  | 1    | 0   | 0      |                             |
| 1  | 1    | 1   | 1      | ABC                         |

## Converting POS Expressions to Truth Table Format

 Develop a truth table for the standard SOP expression

$$(A+B+C)(A+\overline{B}+C)(A+\overline{B}+\overline{C})$$
$$(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+C)$$

| Inputs |   | CS . | Output | Sum                                 |
|--------|---|------|--------|-------------------------------------|
| A      | В | С    | X      | Term                                |
| 0      | 0 | 0    | 0      | (A+B+C)                             |
| 0      | 0 | 1    | 1      |                                     |
| 0      | 1 | 0    | 0      | $(A + \overline{B} + C)$            |
| 0      | 1 | 1    | 0      | $(A+\overline{B}+\overline{C})$     |
| 1      | 0 | 0    | 1      |                                     |
| 1      | 0 | 1    | 0      | $(\overline{A} + B + \overline{C})$ |
| 1      | 1 | 0    | 0      | $(\overline{A} + \overline{B} + C)$ |
| 1      | 1 | 1    | 1      |                                     |

# Determining Standard Expression from a Truth Table (example)

|   | O/P |   |   |
|---|-----|---|---|
| A | В   | С | X |
| 0 | 0   | 0 | 0 |
| 0 | 0   | 1 | 0 |
| 0 | 1   | 0 | 0 |
| 0 | 1   | 1 | 1 |
| 1 | 0   | 0 | 1 |
| 1 | 0   | 1 | 0 |
| 1 | 1   | 0 | 1 |
| 1 | 1   | 1 | 1 |

• There are <u>four 1s</u> in the output and the corresponding binary value are 011, 100, 110, and 111.  $011 \rightarrow \overline{A}BC$ 

$$011 \rightarrow ABC$$

$$100 \rightarrow A\overline{B}\overline{C}$$

$$110 \rightarrow AB\overline{C}$$

$$111 \rightarrow ABC$$

$$X = \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

There are four 0s in the output and the corresponding binary value are 000, 001, 010, and 101.

$$000 \rightarrow A + B + C$$

$$001 \rightarrow A + B + \overline{C}$$

$$010 \rightarrow A + \overline{B} + C$$

$$101 \rightarrow \overline{A} + B + \overline{C}$$

$$X = (A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+\overline{C})$$

## The Karnaugh Map

## What is K-Map

- An array of cells in which each cell represents a binary value of the input variables.
- Simplification of a given expression is simply a matter of properly grouping the cells.
- K-maps can be used for expressions with 2+ variables: 3 and 4 variables will be discussed to illustrate the principles.

## The 3 Variable K-Map

There are 8 cells as shown:



## **Grey Code**

| Decimal | Binary | Gray | Gray as decimal |
|---------|--------|------|-----------------|
| 0       | 000    | 000  | 0               |
| 1       | 001    | 001  | 1               |
| 2       | 010    | 011  | 3               |
| 3       | 011    | 010  | 2               |
| 4       | 100    | 110  | 6               |
| 5       | 101    | 111  | 7               |
| 6       | 110    | 101  | 5               |
| 7       | 111    | 100  | 4               |

## Gray code by bit width

| •     |       |
|-------|-------|
| 2-bit | 4-bit |
| 00    | 0000  |
| 01    | 0001  |
| 11    | 0011  |
| 10    | 0010  |
|       | 0110  |
|       | 0111  |
| 3-bit | 0101  |
| 000   | 0100  |
| 001   | 1100  |
| 011   | 1101  |
| 010   | 1111  |
| 110   | 1110  |
| 111   | 1010  |
| 101   | 1011  |
| 100   | 1001  |
|       | 1000  |
|       |       |

## The 4-Variable K-Map

| CD<br>AB | 00                                                 | 01                                      | 11                           | 10                                      |
|----------|----------------------------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|
| 00       | $\overline{A}\overline{B}\overline{C}\overline{D}$ | $\overline{A}\overline{B}\overline{C}D$ | $\overline{A}\overline{B}CD$ | $\overline{A}\overline{B}C\overline{D}$ |
| 01       | $\overline{A}B\overline{C}\overline{D}$            | $\overline{A}B\overline{C}D$            | $\overline{A}BCD$            | $\overline{A}BC\overline{D}$            |
| 11       | $AB\overline{C}\overline{D}$                       | $AB\overline{C}D$                       | ABCD                         | $ABC\overline{D}$                       |
| 10       | $A\overline{B}\overline{C}\overline{D}$            | $A\overline{B}\overline{C}D$            | $A\overline{B}CD$            | $A\overline{B}C\overline{D}$            |

## Cell Adjacency



### K-Map SOP Minimization

- The K-Map is used for simplifying Boolean expressions to their minimal form.
- A minimized SOP expression contains the fewest possible terms with fewest possible variables per term.
- Generally, a minimum SOP expression can be implemented with <u>fewer logic gates</u> than a standard expression.

# Mapping a Standard SOP Expression (full example)



# Practice $\overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$

| C<br>AB | 0 | 1 |
|---------|---|---|
| 00      |   |   |
| 01      |   |   |
| 11      |   |   |
| 10      |   |   |

#### **Practice**

# $\overline{A} + A\overline{B} + AB\overline{C}$

| C<br>AB | 0 | 1 |
|---------|---|---|
| 00      |   |   |
| 01      |   |   |
| 11      |   |   |
| 10      |   |   |

#### K-Map Simplification of SOP Expressions

- After an SOP expression has been mapped, we can do the process of minimization:
  - Grouping the 1s
  - Determining the minimum SOP expression from the map

# Grouping the 1s





# Determining the Minimum SOP Expression from the Map



## K-Map **POS** Minimization

- The approaches are similar to SOP except that
  - with <u>POS expression</u>, 0s representing the standard sum terms placed on the K-map.

### Mapping a Standard POS



### Mapping a Standard POS/SOP

$$(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)$$

POS: 000,001,010,011,110 → missing 100,111,101 : SOP



|                      | Α | В | С | F |  |  |
|----------------------|---|---|---|---|--|--|
|                      | 0 | 0 | 0 | 0 |  |  |
|                      | 0 | 0 | 1 | 0 |  |  |
|                      | 0 | 1 | 0 | 0 |  |  |
|                      | 0 | 1 | 1 | 0 |  |  |
|                      | 1 | 0 | 0 | 1 |  |  |
|                      | 1 | 0 | 1 | 1 |  |  |
|                      | 1 | 1 | 0 | 0 |  |  |
|                      | 1 | 1 | 1 | 1 |  |  |
| $A(\overline{B}+C)$  |   |   |   |   |  |  |
| /)                   |   |   |   |   |  |  |
| $A\overline{B} + AC$ |   |   |   |   |  |  |
|                      |   |   |   |   |  |  |





### Summary: Standard vs. Non-standard?

C+A)

#### Non standard SOP 1. Non standard POS

$$A\overline{B} + AC$$

#### 2. Convert 1 to Standard SOP

$$AB'+AC = AB'(C+C')+AC(B+B')$$
  
=  $AB'C+AB'C'+ABC+AB'C$ 

3. Standard SOP

=AB'C'+ABC+AB'C

$$A\overline{B}\overline{C} + ABC + A\overline{B}C$$

$$A(\overline{B}+C)$$

#### 2. Convert 1 to Standard POS

A(B'+C)=A(B'+C+A'A)=A(B'+C+A')(B'+C+A)=(A+BB')(B'+C+A')(B'+C+A)=(A+B)(A+B')(B'+C+A')(B'+C+A)=(A+B+CC')(A+B'+CC')(B'+C+A')(B'+C+A)=(A+B+C)(A+B'+C)(A+B+C')(A+B'+C')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A')(B'+C'+A'

=(A+B+C)(A+B+C')(A+B'+C)(A+B'+C')(A'+B'+C)

3. Standard POS

 $(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}^8+C)$