Optimization Assignment 1

Kim Paolo Laberinto 2021-02-xx

1 Q3.

1.1 Objective Function Definition

$$L = \sum_{i} (y_{\text{data}} - y_{\text{model}})^2$$

$$L = \sum_{i} (y_{\text{data}} - x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i})^2$$

$$\nabla L =$$

1.2 Hooke-Jeeves

2 Q4. (Graduate Student)

Let V be the vector space of polynomial functions from $\mathbb{R} \to \mathbb{R}$ which have degree less than or equal to 2.

That is, for all $a, b, c \in \mathbb{R}$ the following polynomial p(x) is in V

$$p(x) = a + bx + cx^2$$

2.1 Proving B_1 and B_1 are both a basis of V

2.1.1 Proof: B_1 is Linearly Independent

- Implication of only way to get 0 vector.

2.1.2 Proof: B_1 spans V

- Show all $v \in V$ can be represented in basis

- 2.1.3 Proof: B_2 is Linearly Independent
- **2.1.4** Proof: B_2 spans V
- **2.2** Transformation between B_1 and B_2
- 2.3 D derivative operator
- 2.3.1 Proof: D is linear
- **2.3.2** Matrix Representation of D in the bases B_1 and B_2
- 3 Q5. (Graduate Student)
- 3.1 x in full \mathbb{R}^3 standard basis
- **3.2** Coordinates of x in B_X
- 3.3 Coordinates of y in B_Y using L ($c_y = Lc_x$)
- 3.4 y in full \mathbb{R}^4 standard basis
- 4 Q6. (Graduate Student)

Let $f: \mathbb{R}^4 \to \mathbb{R}$ be defined as $f(x) = ||Ax - b|| + \lambda ||Cx|| + \gamma ||Eb||$ where $A, C, E \in \mathbb{R}^{4 \times 4}, x, b \in \mathbb{R}^4$ and $\lambda, \gamma \in \mathbb{R}$.

Let D denote the differential operator.

$$Df(x) = D (||Ax - b|| + \lambda ||Cx|| + \gamma ||Eb||)$$

$$= D (||Ax - b||) + \lambda D (||Cx||) + \gamma D (||Eb||) \quad \text{[using linearity of D]}$$

$$= D (||Ax - b||) + \lambda D (||Cx||) + 0$$

$$= D (||Ax - b||) + \lambda D (||Cx||)$$

$$= \frac{(Ax - b)^T A}{||Ax - b||} + \lambda \frac{(Cx)^T C}{||Cx||} \quad \text{[using derivations from next sections]}$$

4.1 $D(\|Cx\|)$

$$D\left(\|Cx\|\right) = D\left(\sqrt{(Cx)^T(Cx)}\right)$$

$$= D\left(\left((Cx)^T(Cx)\right)^{\frac{1}{2}}\right)$$

$$= \frac{1}{2}\left((Cx)^T(Cx)\right)^{-\frac{1}{2}}D\left((Cx)^T(Cx)\right) \quad \text{[using Chain Rule]}$$

$$= \frac{1}{2\sqrt{(Cx)^T(Cx)}}D\left((Cx)^T(Cx)\right)$$

$$= \frac{1}{2\|Cx\|}D\left((Cx)^T(Cx)\right)$$

$$= \frac{\left((Cx)^TD(Cx)\right) + \left((Cx)^TD(Cx)\right)}{2\|Cx\|} \quad \text{[using Product Rule]}$$

$$= \frac{2\left((Cx)^TD(Cx)\right)}{2\|Cx\|}$$

$$= \frac{2\left((Cx)^TC(Cx)\right)}{2\|Cx\|}$$

4.2
$$D(||Ax - b||)$$

$$\begin{split} D\left(\|Ax - b\|\right) &= D\left(\sqrt{(Ax - b)^T (Ax - b)}\right) \\ &= D\left(\left((Ax - b)^T (Ax - b)\right)^{\frac{1}{2}}\right) \\ &= \frac{1}{2}\left((Ax - b)^T (Ax - b)\right)^{\frac{-1}{2}} D\left((Ax - b)^T (Ax - b)\right) \quad \text{[using Chain Rule]} \\ &= \frac{1}{2\sqrt{(Ax - b)^T (Ax - b)}} D\left((Ax - b)^T (Ax - b)\right) \\ &= \frac{1}{2\|Ax - b\|} D\left((Ax - b)^T (Ax - b)\right) \\ &= \frac{\left((Ax - b)^T D (Ax - b)\right) + \left((Ax - b)^T D (Ax - b)\right)}{2\|Ax - b\|} \quad \text{[using Product Rule]} \\ &= \frac{2(Ax - b)^T D (Ax - b)}{2\|Ax - b\|} \\ &= \frac{2(Ax - b)^T A}{2\|Ax - b\|} \\ &= \frac{(Ax - b)^T A}{\|Ax - b\|} \end{split}$$