

CLAIM AMENDMENTS

Please amend the claims as follows:

1. - 61.(canceled)

1 **62.(new)** A method of processing colloidal size polytetrafluoroethylene resin
2 particles by plug flow in an unmelted state while in a hydrostatic coalescible condition to
3 produce biaxially-planar oriented structures comprising the steps of:

- 4 a. releasing said colloidal size polytetrafluoroethylene resin particles from
5 coagulated dispersion aggregates at high shear in a solvent to create a
6 mixture, wherein said particles are approximately 5 to 10 microns in size
7 and said solvent is capable of wetting polytetrafluoroethylene surfaces;
8 b. subjecting said mixture to high shear mixing;
9 c. filtering said mixture to retain approximately 17 to 20 percent liquid to form
10 a hydrostatic pressure coalescible filter cake;
11 d. uniaxially paste extruding said filter cake composition to produce a uniaxial
12 planar oriented polytetrafluoroethylene structure containing approximately
13 17 to 20 percent lubricant;
14 e. applying a means of re-orienting said uniaxially planar oriented
15 polytetrafluoroethylene structure containing approximately 17 to 20 percent
16 lubricant approximately 90 degrees to the initial uniaxial extrusion
17 direction.

·1 **63.(new)** The method of claim **62** wherein the means of re-orienting is rolling.

1 **64.(new)** The method of claim **62** wherein the means of re-orienting is
2 calendering.

1 **65.(new)** The method of claim **62** wherein the means of re-orienting is
2 blowing.

1 **66.(new)** The method of claim **62** wherein the means of re-orienting is re-extrusion.

1 **67.(new)** The method of claim **62** wherein said biaxial planar oriented polytetrafluoroethylene structure is a sheet.

1 **68.(new)** The method of claim **62** wherein biaxial planar oriented polytetrafluoroethylene structure is a tube.

1 **69.(new)** The method of claim **68** further comprising steps after step f of:
2 g. slitting said biaxial planar oriented polytetrafluoroethylene tubular structure; and
3 h. laying open said structure to form a sheet.

1 **70.(new)** The method of claim **62** further comprising the step after step b of:
2 c. adding solid particulates approximately less than 25 microns in size during mixing to consist of up to 90 percent of a total solids volume.

1 **71.(new)** A biaxially planar oriented structure formed by releasing said colloidal size polytetrafluoroethylene resin particles from coagulated dispersion aggregates at high shear in a solvent to create a mixture, wherein said particles are approximately 5 to 10 microns in size and said solvent is capable of wetting polytetrafluoroethylene surfaces; subjecting said mixture to high shear mixing; adding solid particulates approximately less than 25 microns in size during mixing to consist of up to 90 percent of a total solids volume; filtering said mixture to retain approximately 17 to 20 percent liquid to form a hydrostatic pressure coalescible filter cake; uniaxially pasting extruding said filter cake composition to produce a uniaxial planar oriented polytetrafluoroethylene structure containing approximately 17 to 20 percent lubricant; applying a means of re-orienting said uniaxially planar oriented polytetrafluoroethylene

12 structure containing approximately 17 to 20 percent lubricant approximately 90 degrees to
13 the initial uniaxial extrusion direction wherein:
14 said means of re-orienting is rolling.

1 **72.(new)** A biaxially planar oriented structure formed by releasing said
2 colloidal size polytetrafluoroethylene resin particles from coagulated dispersion
3 aggregates at high shear in a solvent to create a mixture, wherein said particles are
4 approximately 5 to 10 microns in size and said solvent is capable of wetting
5 polytetrafluoroethylene surfaces; subjecting said mixture to high shear mixing; adding
6 solid particulates approximately less than 25 microns in size during mixing to consist of
7 up to 90 percent of a total solids volume; filtering said mixture to retain approximately 17
8 to 20 percent liquid to form a hydrostatic pressure coalescible filter cake; uniaxially paste
9 extruding said filter cake composition to produce a uniaxial planar oriented
10 polytetrafluoroethylene structure containing approximately 17 to 20 percent lubricant;
11 applying a means of re-orienting said uniaxially planar oriented polytetrafluoroethylene
12 structure containing approximately 17 to 20 percent lubricant approximately 90 degrees to
13 the initial uniaxial extrusion direction wherein:
14 said means of re-orienting is calendering.

1 **73.(new)** A biaxially planar oriented structure formed by releasing said
2 colloidal size polytetrafluoroethylene resin particles from coagulated dispersion
3 aggregates at high shear in a solvent to create a mixture, wherein said particles are
4 approximately 5 to 10 microns in size and said solvent is capable of wetting
5 polytetrafluoroethylene surfaces; subjecting said mixture to high shear mixing; adding
6 solid particulates approximately less than 25 microns in size during mixing to consist of
7 up to 90 percent of a total solids volume; filtering said mixture to retain approximately 17
8 to 20 percent liquid to form a hydrostatic pressure coalescible filter cake; uniaxially paste
9 extruding said filter cake composition to produce a uniaxial planar oriented
10 polytetrafluoroethylene structure containing approximately 17 to 20 percent lubricant;
11 applying a means of re-orienting said uniaxially planar oriented polytetrafluoroethylene
12 structure containing approximately 17 to 20 percent lubricant approximately 90 degrees to
13 the initial uniaxial extrusion direction wherein:

14 said means of re-orienting is re-extrusion.

1 **74.(new)** The biaxially planar oriented structure of claim 71 further
2 comprising at least one electrically conductive particulate.

1 **75.(new)** The biaxially planar oriented structure of claim 74 wherein:
2 said at least one electrically conductive particulate is from a group of carbon,
3 graphite and ceramic oxides.

1 **76.(new)** The biaxially planar oriented structure of claim 71 further
2 comprising:
3 inert particles.

1 **77.(new)** The biaxially planar oriented structure of claim 72 further
2 comprising:
3 inert particles.

1 **82.(new)** The method of claim 67 wherein said means of re-orienting is
2 rolling, further comprising a step after step b of:

- c. adding solid particulates approximately less than 25 microns in size during mixing to consist of up to 90 percent of a total solids volume; and further comprising a step after step f of:
 - g. laminating said biaxial planar oriented polytetrafluoroethylene structure by compression.

1 **83.(new)** The method of claim 67 wherein said means of re-orienting is
2 calendering, further comprising the step after step b of adding solid particulates
3 approximately less than 25 microns in size during mixing to consist of up to 90 percent of
4 a total solids volume, further comprising the step after step f of laminating said biaxial
5 planar oriented polytetrafluoroethylene structure by compression.

1 **84.(new)** The method of claim **67** wherein said means of re-orienting is re-
2 extrusion, further comprising the step after step b of adding solid particulates
3 approximately less than 25 microns in size during mixing to consist of up to 90 percent of
4 a total solids volume, further comprising the step after step f of laminating said biaxial
5 planar oriented polytetrafluoroethylene structure by compression.

1 **85.(new)** The method of claim **82** wherein said compression is at a pressure
2 ranging from 100 to 1,000 psi.

1 **86.(new)** The method of claim **83** wherein said compression is at a pressure
2 ranging from 100 to 1,000 psi.

1 **87.(new)** The method of claim **84** wherein said compression is at a pressure
2 ranging from 100 to 1,000 psi.

1 **88.(new)** The method of claim **82** further comprising a step after step h of:
2 i. applying heat up to 300 degrees Centigrade to plasticize and assist the
3 forming and shaping of the sheet.

1 **89.(new)** The method of claim **83** further comprising a step after step h of:
2 i. applying heat up to 300 degrees Centigrade to plasticize and assist the
3 forming and shaping of the sheet.

1 **90.(new)** The method of claim **84** further comprising a step after step h of:
2 i. applying heat up to 300 degrees Centigrade to plasticize and assist the
3 forming and shaping of the sheet.

5 method of claim 62; then dried and sintered as in 77; said
6 diaphragms have exceptional flex fatigue life of the order of 10 times
7 that of diaphragms that are not biaxially planar oriented.

1 **96.(new)** Porous biaxially planar oriented polytetrafluoroethylene matrix
2 structures employing the principles of claim 70 employing the
3 fabrication methods of claims 63, 64, 66, 67 and 68 and 82 - 90
4 wherein the particulate components are fugitive and added during
5 claim 70 as part c; said fugitive pore formers are removable by
6 dissolving in water (such as sodium chloride), chemical reaction
7 (such as hydrochloric acid on calcium carbonate) or by thermal
8 decomposition during sintering (such as methyl methacrylate);
9 porosities of up to 90 percent are possible.

1 **97.(new)** Biaxially planar oriented porous structures of claim 96 comprising at
2 least one fugitive pore former.

1 **98.(new)** Biaxially planar oriented porous structures of claim 96 containing a
2 ceramic oxide, carbon or graphite (all electrically conductive materials).

1 **99.(new)** The method of claims 96 and 97 wherein the fugitive pore former
2 additive particle size determines the resulting pore size.

1 **100.(new)** A porous membrane structure of biaxially planar oriented
2 polytetrafluoroethylene of claim 96 wherein the structure contains polymeric particulate
3 additives.

1 **101.(new)** An asymmetric porous structure of biaxially planar oriented
2 polytetrafluoroethylene accomplished during steps d and e of claim 62 employing two
3 different particle size fugitive pore formers as in claims 97 - 99 added in steps d and e of
4 claim 62; processing said composition according to claim 66; concluded by sintering said
5 structure as in claim 91; removing fugitive pore former by leaching or chemical reaction
6 as in claim 96.

1 **102.(new)** Product of 62 biaxially planar oriented with tensile strengths in all
2 planar dimensions essentially equal.

1 **103.(new)** Product of 62 containing solid particulate material homogeneously
2 dispersed and free of a multiplicity of discrete lamellae oriented parallel to faces of
3 processed structure, which may act as planar faults between lamellae.

1 **104.(new)** Improvement of at least 20 percent in the burst strength of biaxially
2 planar oriented tubing processed according to claim 68.

1 **105.(new)** Product made according to claims 82 - 90 and formed by claims 92 -
2 95, which posses exceptional form and dimensional stability as formed as well as after
3 sintering; shrinkages in the plane of the surface range from 1 to 4 percent; the major
4 shrinkage occurs in thickness, which has little influence on product shape.

1 **106.(new)** Product made according to claim 62 possessing excellent resistance
2 to tear, and a constant rate of elongation with no detectable yield to failure in tension.