Topics Covered in Todays Class

Unit 1:

- Characteristics of the Database Approach
- Advantages of Using the Database Approach
- When not to use a DBMS

- Self-describing nature of a database system.
- 2. Insulation between programs and data, and data manipulation.
- 3. Support of **multiple views** of the data.
- 4. Sharing of data and multi-user transaction processing

1. Self-describing nature of a database system

What will be your description of the data stored in the following tables?

1BM14CS001	Aditya	3	WP
1BM14CS002	Bharath	3	DS

1BM14CS001	1000
1BM14CS002	1000

1BM14CS001	S
1BM14CS002	В

1. Self-describing nature of a database system.

Student_Details

USN	Name	Sem	Sub
1BM14CS001	Aditya	3	WP
1BM14CS002	Bharath	3	DS

Student_ExamFee_Details

USN	Amount
1BM14CS001	1000
1BM14CS002	1000

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	В

Self-describing nature of a database system.

Student_Details

USN	Name	Sem	Sub
1BM14CS001	Aditya	3	WP
1BM14CS002	Bharath	3	DS

Student_ExamFee_Details

Amount	
1000	
1000	

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	В

Column_name	Data_Type	Belongs_to
USN	Char(10)	Student_Details
Name	Char(30)	Student_Details
Sem	Integer	Student_Details
Sub	Char(2)	Student_Details
Amount	Float	Student_ExamFee_Details
Grade	Char(1)	Student_Grade_Details

Catalog

Information stored in catalog is called **meta-data** which Describes the structure Of primary database

2. Insulation between programs and data, and data manipulation.

File Approach

student.txt

```
1BM14CS001 Aditya LA,Java,DBMS,OS,DC
1BM14CS002 Baharth DBMS,OS,DC
```

```
fp=fopen("student.txt","r");
while(fscanf(fp,"%s %s %s",USN,name,subjects)!=EOF)
{
printf("USN: %s Name: %s Subjects: %s",USN,name,subjects);
}
```

What will be the Output of the above program statements?

2. Insulation between programs and data, and data manipulation.

File Approach

student.txt

```
Aditya 1BM14CS001 LA,Java,DBMS,OS,DC
Baharth 1BM14CS002 DBMS,OS,DC
```

```
fp=fopen("student.txt","r");
while(fscanf(fp,"%s %s %s",USN,name,subjects)!=EOF)
{
printf("USN: %s Name: %s Subjects: %s",USN,name,subjects);
}
```

What will be the Output of the above program statements?

2. Insulation between programs and data, and data manipulation.

DBMS Approach

student

USN	Name	Subjects
1BM14CS001	Aditya	LA, Java, DBMS,OS,DC
1BM14CS002	Bharath	DBMS, OS, DC

select USN, Name, Subjects from student;

SQL **query** to retrieve and display table information

1BM14CS001 Aditya LA, Java, DBMS, OS, DC 1BM14CS002 Bharath DBMS, OS, DC

2. Insulation between programs and data, and data manipulation.

DBMS Approach

student

Name	USN	Subjects
Aditya	1BM14CS001	LA, Java, DBMS,OS,DC
Bharath	1BM14CS002	DBMS, OS, DC

select USN, Name, Subjects from student;

SQL **query** to retrieve and display table information

1BM14CS001 Aditya LA, Java, DBMS, OS, DC 1BM14CS002 Bharath DBMS, OS, DC

3. Support of multiple views of the data

Student database

Student_Details Name Sem Sub

00.1	· · · · · · ·		
1BM14CS001	Aditya	3	WP
1BM14CS002	Bharath	3	DS

Student ExamFee Details

USN

USN	Amount
1BM14CS001	1000
1BM14CS002	1000

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	В

Accounts Section

1BM14CS001 Aditya 3 WP 1000 1BM14CS002 Bahart 3 DS 1000

1BM14CS001 Aditya 3 WP S 1BM14CS002 Bahart 3 DS B

4. Sharing of data and multi-user transaction processing

Train	Reserv	ation	Data	base
-------	--------	-------	------	------

Source	Destination	Train Name	Start Time	Start Date	Number of Seats Availability
Bangalore	Mysore	Chamundi Express	18:15	14-1-2016	2

Train Ticket Booking Software

□ Self-describing nature of a database system:

- A DBMS catalog stores the description of a particular database (e.g. data structures, types, and constraints)
- The description is called meta-data.
- This allows the DBMS software to work with different database applications.
- Insulation between programs and data, and data manipulation:
 - Called program-data independence.
 - Allows changing data structures and storage organization without having to change the DBMS access programs.
 - A data model is used to hide storage details and present the users with a conceptual view of the database.
 - Programs refer to the data model constructs rather than data storage details

Support of multiple views of the data:

Each user may see a different view of the database, which describes only the data of interest to that user.

□ Sharing of data and multi-user transaction processing:

- Allowing a set of concurrent users to retrieve from and to update the database.
- Concurrency control within the DBMS guarantees that each transaction is correctly executed or aborted
- Recovery subsystem ensures each completed transaction has its effect permanently recorded in the database
- OLTP (Online Transaction Processing) is a major part of database applications. This allows hundreds of concurrent transactions to execute per second.

Advantages of Using the Database Approach

- 1. Controlling redundancy in data storage and in development and maintenance efforts.
- Restricting unauthorized access to data.
- 3. Providing **persistent storage** for program Objects (data structures provided by DBMS & the programming languages were incompatible)
- 4. Providing Storage Structures (e.g. indexes) for **efficient Query Processing**
- Providing backup and recovery services.
- 6. Providing **multiple** interfaces to **different classes of users**.
- 7. Representing **complex relationships** among data.
- 8. Enforcing **integrity constraints** on the database.
- Drawing inferences and actions from the stored data using deductive and active rules

Understanding integrity constraints on the database

Database Catalog for following database tables

Column_name	Data_Type	Belongs_to
USN	Char(10)	Student_Details
Name	Char(30)	Student_Details
Sem	Integer	Student_Details
Sub	Char(2)	Student_Details
Amount	Float	Student_ExamFee_Details
Grade	Char(1)	Student_Grade_Details

Which of the following tables data storage is correct as per the above catalog definition ?

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	В

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	8

Understanding **integrity constraints** on the database

Student_Details

USN	Name	Sem	Sub
1BM14CS001	Aditya	3	WP
1BM14CS002	Bharath	3	DS

What is wrong in the following table data as per the **Student_Details** table ?

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	В
1BM14CS003	С

Understanding drawing of "inferences and actions" from the stored data

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	В
1BM14CS003	С
1BM14CS004	S
1BM14CS005	F
1BM14CS006	S

Using the above table data, Can you **infer**How many Students have scored **S grade** and What are their USN's?

Understanding drawing of "inferences and actions" from the stored data

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	В
1BM14CS003	С
1BM14CS004	S
1BM14CS005	F
1BM14CS006	S

Catalog

Column_name	Data_Type	Constraint
USN	Char(10)	
Grade	Char(1)	Should not be empty

Using the above Catalog information, Can you tell Whether the following insert action on Student_Grade_Details table is **Right or Wrong**?

insert into **Student_Grade_Details** values (1BM14CS007);

When not to use a DBMS?

When not to use a DBMS

- Main inhibitors (costs) of using a DBMS:
 - High initial investment and possible need for additional hardware.
 - Overhead for providing generality, security, concurrency control, recovery, and integrity functions.
- When a DBMS may be unnecessary:
 - If the database and applications are simple, well defined, and not expected to change.
 - If access to data by multiple users is not required.

Activity - Questionnaire

- 1. What are the four main Characteristics of DBMS?
- 2. What is the meaning of "Catalog" w.r.t DBMS?

Topics Covered in Todays Class

Unit 1: Database System Concepts and Architecture

- Data Models, Schemas and instances
- Three Schema Architecture and Data Independence
- Database language and interfaces
- The Database System Environment

Case Study 1

For example Say Ramu, who is staying in Basvangudi area has a empty land plot of 30x40 feet area. He wants to construct a house in this site. He is going to discuss this issue with you. But you are computer science student. How you will guide Ramu to resolve his issue.

Case Study 1

High level view of house Building Architecture

Middle level view

Civil Engineer

Quantity of cement, brick, mud, iron, wood....etc to be used.

Low level view

Building Constructor

Case Study 2

Principal BMS College of Engineering

Dear Student,

I need an software application to keep track of student Information and Department information. You should build a software which will help me to carry out the operations, such as display, insertion, deletion and updating of Student and department information. For each Student USN, Name, Semester and Department name to be stored. For each Department its name and HOD name to be stored. Provide your design plan for developing this application software.

Objective of todays class

Understanding the basic terminologies and definitions involved in building Architecture of Database Systems.

In this regard, First we will understand Data Models, Schemas and Instances

Data Models

Data Abstraction generally refers to the suppression of details of data organization and storage and the highlighting of the essential features for improved understanding of data.

Data Model:

- A set of concepts to describe the structure of a database, the operations for manipulating these structures, and certain constraints that the database should obey.
- Data Models provides the necessary means to achieve data abstraction.

Categories of Data Models

Conceptual (high-level, semantic) data models:

- Provide concepts that are close to the way many users perceive data.
 - (Also called *entity-based* or *object-based* data models.)

□ Implementation (representational) data models:

- Provide concepts that fall in between high and low level, used by many commercial DBMS implementations (e.g. relational data models used in many commercial systems).
- Physical (low-level, internal) data models:
 - Provide concepts that describe details of how data is stored in the computer. These are usually specified in an ad-hoc manner through DBMS design and administration manuals

Categories of Data Models

Conceptual (high-level)

Implementation (Representational)

USN	Name	Sem	Dep CSE	
1BM14CS001	Aditya	3		
1BM14IS002	Bharath	3	ISE	

Dep	HOD
CSE	Dr. H S Guruprasad
ISE	Dr. Gowrishankar

Physical (low-level)

Schemas, Instance and Database State

- Database Schema:
 - The *description* of a database.
 - Includes descriptions of the database structure, data types, and the constraints on the database.
 - Schema Diagram:
 - An *illustrative* display of (most aspects of) a database schema
- Database State:
 - The actual data stored in a database at a particular moment in time. This includes the collection of all the data in the database.
 - Also called database instance (or occurrence or snapshot).
 - The term instance is also applied to individual database components, e.g. record instance, table instance, entity instance

Schemas, Instance and Database State

Schema Diagram

Student

Department

Dep	HOD
-----	-----

Database State at time "X"

	USN	N Name Se			
	1BM14CS001	Aditya	3	CSE	
1	1BM14IS002	Bharath	3	ISE	

Database Instance

Database State at time "Y"

Database Instance

Three-Schema Architecture

- Defines DBMS schemas at three levels:
 - Internal schema at the internal level to describe physical storage structures and access paths (e.g indexes).
 - Typically uses a physical data model.
 - Conceptual schema at the conceptual level to describe the structure and constraints for the whole database for a community of users.
 - Uses a conceptual or an implementation data model.
 - External schemas at the external level to describe the various user views.
 - Usually uses the same data model as the conceptual schema.

The three-schema architecture

Data Independence

Logical Data Independence:

 The capacity to change the conceptual schema without having to change the external schemas and their associated application programs.

Physical Data Independence:

 The capacity to change the internal schema without having to change the conceptual schema.

Review on Your Own

- Database language and interfaces
- The Database System Environment

Data Definition language and Interfaces

- DBMS Languages
 - Data Definition Language (DDL)
 - Storage Definition Language (SDL)
 - View Definition language (VDL)
 - Data manipulation Language (DML)
- Data Interfaces
 - Menu-based
 - Form-Based
 - Graphical User Interface
 - Natural language Interface
 - Speech Input and Output
 - Interfaces for Parametric users
 - Interfaces for DBA

The Database System Environment

Activity - Questionnaire

1. Mention three different levels in Three-Schema Architecture

Thanks for Listening

Student database

Student_Details

USN	Name	Sem	Sub	
1BM14CS001	Aditya	3	WP	
1BM14CS002	Bharath	3	DS	

Student_ExamFee_Details

USN	Amount		
1BM14CS001	1000		
1BM14CS002	1000		

Student_Grade_Details

USN	Grade
1BM14CS001	S
1BM14CS002	В

Accounts Section

1BM14CS001 Aditya 3 WP 1000 1BM14CS002 Bahart 3 DS 1000

1BM14CS001 Aditya 3 WP S 1BM14CS002 Bahart 3 DS B

Categories of Data Models

USN	Name	Sem	Dep
1BM14CS001	Aditya	3	CSE
1BM14IS002	Bharath	3	ISE

Dep	HOD
CSE	Dr. H S Guruprasad
ISE	Dr. Gowrishankar

0000000:	1d6c	b639	0000	0000	0000	0000	0000	0000	.1.9
0000010:	0000	0005	38af	6135	8000	0000	0000	0000	8.a5
0000020:	0000	0000	0021	0000	002£	0000	0000	0000	//
0000030:	0006	0000	0040	0000	0000	0000	0004	0000	8
0000040:	0000	tttt	tttt	0000	tttt	tttt	0000	0000	
0000050:	0001	0000	0000	009e	0000	0000	009e	0000	
0000060:	0000	tttt	tttt	0000	tttt	tttt	0000	0000	
0000070:	0000	0000	0003	0000	0000	tttt	tttt	0000	
0000080:	ffff	ffff	0000	0000	0001	0000	0002	0026	
0000090:	0000	0002	0026	0000	0000	0000	0000	ECEC	
00000a0:	ffff	0000	ffff	ffff	0000	0000	0002	aaff	
:00000000	tttt	tttt	TTTT	TTTT	CCCC	tttt	tttt	0000	
00000c0:	0000	0000	0000	0000	0000	0000	0000	0000	
00000d0:	0000	0000	0000	0000	0000	0000	0000	0000	
00000e0:	0000	0000	0000	0000	0000	0000	0000	0000	*************

USN	Name	Sem	Dep
1BM14CS001	Aditya	3	CSE
1BM14IS002	Bharath	3	ISE
1BM14CS002	Chandan	3	CSE