Computer Networks

Link Layer

Jianping Pan Fall 2022

ARTEMIS

STUDENT CHALLENGES

Review

- Application layer: messages
 - HTTP, DNS
- Transport layer: segments
 - TCP, UDP
- Network layer: packets
 - IP, ICMP; RIP, OSPF, BGP
- Link layer: frames

11/16/22

CSc 361

Q: end-to-end, hop-by-hop?

Link layer services

- Services provided by physical layer
 - bit delivery (recall: access networks)
 - hertz, baud, symbol-per-second, bit-per-second
- Services provided to network layer
 - frame control: framing
 - error control: how to deal with bit errors

 Today's topics
 - flow control: fast sender vs slow receiver
 - medium access control (with shared medium)

11/16/22

CSc 361

Q: Nyquist's Limit, Shannon's Limit

Frame control

- Character count
 - count error, and error propagation

11/16/22

Q: Pascal vs C strings

Byte-oriented framing

Byte stuffing

11/16/22 CSc 361

Bit-oriented framing

- Flag: 01111110
 - data transparency: bit stuffing
 - sender: insert a 0 after 5 1's
 - receiver: remove a 0 after 5 1's
 - (a) 011011111111111111110010
 - (b) 01101111101111101010 Stuffed bits
 - (c) 0110111111111111111110010 CSc 361

Error control

- Hamming distance of codeword a and b
 - number of *pairwisely* different bits XOR) 01010101
 - number of bit flips needed to turn a to b
- Hamming distance of codeword set $\{a_i\}$
 - minimal distance btw a_i and a_i , where i != j
- e bit errors
 - to detect: minimal Hamming distance e+1
 - to correct: minimal Hamming distance 2e+1

11/16/22

Parity check

- Parity bit
 - even or odd parity
 - i.e., the number of 1's
 - e.g., 10101; check bit: 1 (even)
 - Q: Hamming distance?
 - detect 1-bit error
- 2-d parity
 - correct 1-bit error

 $d_{1,1}$

11/16/22

10

parity

Hamming code

Hamming code

- check bits
 - at bit 1, 2, 4, 8
- data bits
 - at bit 3, 5, 6, 7, 9, 10, 11
- e.g, 1001000
- correct 1-bit error
- Hamming code block
 - correct up to block length

Review: Internet checksum

- Checksum: widely used in upper layers
 - e.g., TCP checksum with pseudo header
 - optional UDP checksum with pseudo header
 - IP header checksum
- One's complement of one's complement sum
 - checksum generation
 - checksum verification
- When does checksum fail?

Cyclic Redundancy Check

- CRC: widely used in lower layers
 - e.g., IEEE 802.3 CRC-32-Ethernet
 - ITU-T X.25 CRC-16-CCITT
- Polynomial representation
 - message: M(x); generator: G(x) of order r
 - remainder: $R(x)=M(x)^2$ % G(x)
 - CRC generation: $T(x) = M(x)^2$ XOR R(x)
 - i.e., T(X) is G(x) divisible
 - error: E(x) detected if not G(x) divisible

13

CRC Example

Want:

$$D \cdot 2^r XOR R = nG$$

equivalently:

$$D \cdot 2^r = nG XOR R$$

equivalently:

if we divide D² by G, want remainder R

R = remainder
$$\left[\frac{D \cdot 2^r}{G}\right]$$

11/16/22

CSc 361

Q: parity check's G(x)?

Error recovery

- Positive acknowledgment
 - cumulative acknowledgment
 - acknowledge packet x: acknowledge packets 1..x
 - when timeout, go-back-N
 - selective acknowledgment
 - acknowledge packet x: packet x is received OK
 - when timeout, selective repeat
- Negative acknowledgment
 - report: x is corrupted or missing

This lecture

- Link layer
 - framing
 - error control
 - error detecting, error correcting, error recovery
- Explore further
 - Information and Coding Theory
 - 1850s-1940s: check digit; 1940s-1960s: checksum
 - 1960s: Reed-Solomon; 1970s: LDPC codes
 - 1980s: Turbo codes; 1990s: Space-time code
 - · 2000s: Polar code CSc 361

Next lectures

- Flow control and LLC protocols
 - sliding window (1-bit, GBN, SR)
 - read K&R4: Computer Networking
 - Chapter 5 (except 5.7 and 5.8)
 - newer editions: Chapter 6 (Link Layer)