Table of Contents

Please click on the link to jump to specific section

- 1. Overview
- 2. Business Objectives
- 3. Understanding Data
- 4. Identification of variables and data types
- 5. Fixing the rows and columns
- 6. Missing value treatment
- 7. Outlier treatment
- 8. Standardising values
- 9. Categorical Unordered Univariate Analysis
- 10. Categorical Ordered Univariate Analysis
- 11. Numerical Bivariate and Multivariate Analysis
- 12. Categorical Bivariate and Multivariate Analysis
- 13. Correlation Analysis

EDA Credit Case study Overivew

Risk analytics in banking and financial services and understand how data is used to minimise the risk of losing money while lending to customers

Two types of risks are associated with the bank's decision:

- If the applicant is likely to repay the loan, then not approving the loan result in a loss of business to the company
- If the applicant is not likely to repay the loan, i.e., he/she is likely to default, then approving the loan may lead to a financial loss for the company

Below information can be taken from loan application

- 1. The client with payment difficulties
- 2. All other cases

Four types of decisions that could be taken by client/company

- 1. Approved
- 2. Cancelled
- 3. Refused
- 4. Unused offer

Business Objectives

- 1. Identify the variable which are strong indicator of default
- 2. These variable will be utilized in portfolio and risk assessment

Understanding Data

- 1. 'application_data.csv' contains all the information of the client at the time of application. The data is about whether a client has payment difficulties.
- 2. 'previous_application.csv' contains information about the client's previous loan data. It contains the data whether the previous application had been Approved, Cancelled, Refused or Unused offer.
- 3. 'columns_description.csv' is data dictionary which describes the meaning of the variables

Identification of variables and data types

In [1845]:

```
1 # Filtering out the warnings
2 import warnings
3 warnings.filterwarnings('ignore')
```

In [1846]:

```
# All library imports
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
```

In [1847]:

```
# Reading csv and assign to variable
# For simplicity, let's call dataframes as 'application_df' and 'prev_application'
application_df = pd.read_csv('application_data.csv')
prev_application_df = pd.read_csv('previous_application.csv')
```

In [1848]:

```
1 application_df.head()
```

Out[1848]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OV
0	100002	1	Cash loans	М	N	_
1	100003	0	Cash loans	F	N	
2	100004	0	Revolving loans	М	Υ	
3	100006	0	Cash loans	F	N	
4	100007	0	Cash loans	М	N	

5 rows × 122 columns

```
In [1849]:
```

```
prev_application_df.head()
```

Out[1849]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AM
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	

5 rows × 37 columns

```
In [1850]:
```

```
1 application_df.shape
```

Out[1850]:

(307511, 122)

In [1851]:

```
1 prev_application_df.shape
```

Out[1851]:

(1670214, 37)

In [1852]:

```
1 application_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

In [1853]:

prev_application_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1670214 entries, 0 to 1670213
Data columns (total 37 columns):

Data #	columns (total 37 columns): Column	Non-Null Count	Dtype
0	SK ID PREV	1670214 non-null	int64
1	SK_ID_CURR	1670214 non-null	int64
2	NAME CONTRACT TYPE	1670214 non-null	object
3	AMT ANNUITY	1297979 non-null	float64
4	AMT APPLICATION	1670214 non-null	float64
5	AMT_CREDIT	1670213 non-null	float64
6	AMT DOWN PAYMENT	774370 non-null	float64
7	AMT GOODS PRICE	1284699 non-null	float64
8	WEEKDAY_APPR_PROCESS_START	1670214 non-null	object
9	HOUR_APPR_PROCESS_START	1670214 non-null	int64
10	FLAG_LAST_APPL_PER_CONTRACT	1670214 non-null	object
11	NFLAG_LAST_APPL_IN_DAY	1670214 non-null	int64
12	RATE_DOWN_PAYMENT	774370 non-null	float64
13	RATE_INTEREST_PRIMARY	5951 non-null	float64
14	RATE_INTEREST_PRIVILEGED	5951 non-null	float64
15	NAME_CASH_LOAN_PURPOSE	1670214 non-null	object
16	NAME_CONTRACT_STATUS	1670214 non-null	object
17	DAYS_DECISION	1670214 non-null	int64
18	NAME_PAYMENT_TYPE	1670214 non-null	object
19	CODE_REJECT_REASON	1670214 non-null	object
20	NAME_TYPE_SUITE	849809 non-null	object
21	NAME_CLIENT_TYPE	1670214 non-null	object
22	NAME_GOODS_CATEGORY	1670214 non-null	object
23	NAME_PORTFOLIO	1670214 non-null	object
24	NAME_PRODUCT_TYPE	1670214 non-null	object
25	CHANNEL_TYPE	1670214 non-null	object
26	SELLERPLACE_AREA	1670214 non-null	int64
27	NAME_SELLER_INDUSTRY	1670214 non-null	object
28	CNT_PAYMENT	1297984 non-null	float64
29	NAME_YIELD_GROUP	1670214 non-null	object
30	PRODUCT_COMBINATION	1669868 non-null	object
31	DAYS_FIRST_DRAWING	997149 non-null	float64
32	DAYS_FIRST_DUE	997149 non-null	float64
33	DAYS_LAST_DUE_1ST_VERSION	997149 non-null	float64
34	DAYS_LAST_DUE	997149 non-null	float64
35	DAYS_TERMINATION	997149 non-null	float64
36	NFLAG_INSURED_ON_APPROVAL	997149 non-null	float64
dtvpe	es: float64(15), int64(6), ob	ject(16)	

dtypes: float64(15), int64(6), object(16)

memory usage: 471.5+ MB

In [1854]:

```
1 # Numerical values
```

2 application_df.describe(include=[np.number])

Out[1854]:

	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	АМТ
count	307511.000000	307511.000000	307511.000000	3.075110e+05	3.075110e+05	307
mean	278180.518577	0.080729	0.417052	1.687979e+05	5.990260e+05	27
std	102790.175348	0.272419	0.722121	2.371231e+05	4.024908e+05	14
min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	10
25%	189145.500000	0.000000	0.000000	1.125000e+05	2.700000e+05	16
50%	278202.000000	0.000000	0.000000	1.471500e+05	5.135310e+05	24!
75%	367142.500000	0.000000	1.000000	2.025000e+05	8.086500e+05	34
max	456255.000000	1.000000	19.000000	1.170000e+08	4.050000e+06	258

8 rows × 106 columns

In [1855]:

```
1 # Numerical and categorical values
2 application_df.describe(include='all')
```

Out[1855]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CA
count	307511.000000	307511.000000	307511	307511	30751
unique	NaN	NaN	2	3	
top	NaN	NaN	Cash loans	F	
freq	NaN	NaN	278232	202448	20292
mean	278180.518577	0.080729	NaN	NaN	Na
std	102790.175348	0.272419	NaN	NaN	Na
min	100002.000000	0.000000	NaN	NaN	Na
25%	189145.500000	0.000000	NaN	NaN	Na
50%	278202.000000	0.000000	NaN	NaN	Na
75%	367142.500000	0.000000	NaN	NaN	Na
max	456255.000000	1.000000	NaN	NaN	Na

11 rows × 122 columns

In [1856]:

- 1 # Numerical values
- 2 prev_application_df.describe(include=[np.number])

Out[1856]:

	SK_ID_PREV	SK_ID_CURR	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DOV
count	1.670214e+06	1.670214e+06	1.297979e+06	1.670214e+06	1.670213e+06	
mean	1.923089e+06	2.783572e+05	1.595512e+04	1.752339e+05	1.961140e+05	
std	5.325980e+05	1.028148e+05	1.478214e+04	2.927798e+05	3.185746e+05	
min	1.000001e+06	1.000010e+05	0.000000e+00	0.000000e+00	0.000000e+00	
25%	1.461857e+06	1.893290e+05	6.321780e+03	1.872000e+04	2.416050e+04	
50%	1.923110e+06	2.787145e+05	1.125000e+04	7.104600e+04	8.054100e+04	
75%	2.384280e+06	3.675140e+05	2.065842e+04	1.803600e+05	2.164185e+05	
max	2.845382e+06	4.562550e+05	4.180581e+05	6.905160e+06	6.905160e+06	

8 rows × 21 columns

In [1857]:

- 1 # Numerical and Categorical values
- 2 prev_application_df.describe(include='all')

Out[1857]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATIOI
count	1.670214e+06	1.670214e+06	1670214	1.297979e+06	1.670214e+0
unique	NaN	NaN	4	NaN	Nai
top	NaN	NaN	Cash loans	NaN	Nai
freq	NaN	NaN	747553	NaN	Nai
mean	1.923089e+06	2.783572e+05	NaN	1.595512e+04	1.752339e+0
std	5.325980e+05	1.028148e+05	NaN	1.478214e+04	2.927798e+0
min	1.000001e+06	1.000010e+05	NaN	0.000000e+00	0.000000e+0
25%	1.461857e+06	1.893290e+05	NaN	6.321780e+03	1.872000e+0
50%	1.923110e+06	2.787145e+05	NaN	1.125000e+04	7.104600e+0
75%	2.384280e+06	3.675140e+05	NaN	2.065842e+04	1.803600e+0
max	2.845382e+06	4.562550e+05	NaN	4.180581e+05	6.905160e+0

11 rows × 37 columns

In [1858]:

```
1 application_df.dtypes
```

Out[1858]:

SK ID CURR int64 TARGET int64 NAME CONTRACT TYPE object CODE GENDER object FLAG OWN CAR object . . . AMT REQ CREDIT BUREAU DAY float64 AMT REQ CREDIT BUREAU WEEK float64 AMT REQ CREDIT BUREAU MON float64 AMT REQ CREDIT BUREAU QRT float64 AMT REQ CREDIT BUREAU YEAR float64 Length: 122, dtype: object

In [1859]:

```
# since we are unable to see all columns
for column in application_df:
    print(column,'\t', application_df[column].dtypes)
```

```
SK ID CURR
                  int64
TARGET
         int64
NAME CONTRACT TYPE
                          object
CODE GENDER
                 object
FLAG_OWN_CAR
                 object
FLAG OWN REALTY
                          object
CNT CHILDREN
                  int64
AMT INCOME TOTAL
                          float64
AMT CREDIT
                  float64
AMT ANNUITY
                  float64
AMT GOODS PRICE
                          float64
NAME TYPE SUITE
                          object
NAME INCOME TYPE
                          object
NAME EDUCATION TYPE
                          object
NAME FAMILY STATUS
                          object
NAME HOUSING TYPE
                          object
REGION POPULATION RELATIVE
                                  float64
DAYS BIRTH
                 int64
DAYS EMPLOYED
                 int64
                          -- . - 4
```

```
In [1860]:
```

```
# since we are unable to see all columns
 2
    for column in prev_application_df:
 3
        print(column,'\t', prev application df[column].dtypes)
SK ID PREV
                  int64
SK ID CURR
                  int.64
NAME CONTRACT TYPE
                          object
AMT ANNUITY
                  float64
AMT APPLICATION
                          float64
AMT CREDIT
                  float64
AMT DOWN PAYMENT
                          float64
                          float64
AMT GOODS PRICE
WEEKDAY APPR PROCESS START
                                  object
HOUR APPR PROCESS START
                                  int64
FLAG_LAST_APPL_PER_CONTRACT
                                  object
NFLAG LAST APPL IN DAY
                          int64
RATE DOWN PAYMENT
                          float64
RATE INTEREST PRIMARY
                          float64
                                  float64
RATE INTEREST PRIVILEGED
NAME CASH LOAN PURPOSE
                          object
NAME CONTRACT STATUS
                          object
DAYS DECISION
                  int64
NAME PAYMENT TYPE
                          object
CODE REJECT REASON
                          object
NAME TYPE SUITE
                          object
NAME CLIENT TYPE
                          object
NAME GOODS CATEGORY
                          object
NAME PORTFOLIO
                 object
NAME PRODUCT TYPE
                          object
CHANNEL TYPE
                 object
SELLERPLACE AREA
                          int64
NAME SELLER INDUSTRY
                          object
CNT PAYMENT
                  float64
NAME YIELD GROUP
                          object
                          object
PRODUCT COMBINATION
DAYS FIRST DRAWING
                          float64
DAYS_FIRST_DUE
                  float64
DAYS LAST DUE 1ST VERSION
                                  float64
```

Fixing the rows and columns

NFLAG INSURED ON APPROVAL

float64

From the observation, **application_df** has 124 columns, of which there are many irrelevant columns that may not be required for analysis and are off the objective of the analysis. In this section we will remove such columns first and then we will remove the rows which are insufficient for analysis

float64

Example: EXT_SOURCE_1, EXT_SOURCE_2, EXT_SOURCE_3 and so on

float64

```
In [1861]:
```

DAYS LAST DUE

DAYS TERMINATION

```
# marking irrelevant columns (mostly 0 or no information) and removing it
irrelevant_columns = [i for i in range (41,122,1)]
application_df.drop(application_df.columns[irrelevant_columns], axis=1, inplace=
```

In [1862]:

```
# verification
print(application_df.shape)
application_df.head()
```

(307511, 41)

Out[1862]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OV
0	100002	1	Cash loans	М	N	
1	100003	0	Cash loans	F	N	
2	100004	0	Revolving loans	М	Υ	
3	100006	0	Cash loans	F	N	
4	100007	0	Cash loans	M	N	

5 rows × 41 columns

In [1863]:

```
prev_application_df.head()
```

Out[1863]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AM [*]
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	

5 rows × 37 columns

In [1864]:

```
1 application_df['AMT_GOODS_PRICE'] = application_df['AMT_GOODS_PRICE'].apply(lambd)
```

```
In [1865]:
```

```
application_df['AMT_GOODS_PRICE']
Out[1865]:
           351000.0
          1129500.0
1
2
           135000.0
3
           297000.0
           513000.0
            . . .
307506
           225000.0
307507
           225000.0
307508
           585000.0
307509
           319500.0
307510
           675000.0
Name: AMT_GOODS_PRICE, Length: 307511, dtype: float64
```

Missing value treatment

In [1866]:

```
# finding null values through out the dataframe
application_df.isnull().sum()
```

Out[1866]:

SK_ID_CURR	0
TARGET	0
NAME_CONTRACT_TYPE	0
CODE_GENDER	0
FLAG_OWN_CAR	0
FLAG_OWN_REALTY	0
CNT_CHILDREN	0
AMT_INCOME_TOTAL	0
AMT_CREDIT	0
AMT_ANNUITY	12
AMT_GOODS_PRICE	278
NAME_TYPE_SUITE	1292
NAME_INCOME_TYPE	0
NAME_EDUCATION_TYPE	0
NAME FAMILY STATUS	0
NAME HOUSING TYPE	0
REGION POPULATION RELATIVE	0
DAYS BIRTH	0
DAYS_EMPLOYED	0
DAYS REGISTRATION	0
DAYS ID PUBLISH	0
OWN CAR AGE	202929
FLAG MOBIL	0
FLAG EMP PHONE	0
FLAG WORK PHONE	0
FLAG CONT MOBILE	0
FLAG PHONE	0
FLAG EMAIL	0
OCCUPATION TYPE	96391
CNT FAM MEMBERS	2
REGION RATING CLIENT	0
REGION RATING CLIENT W CITY	0
WEEKDAY APPR PROCESS START	0
HOUR APPR PROCESS START	0
REG_REGION_NOT_LIVE_REGION	0
REG REGION NOT WORK REGION	0
LIVE REGION NOT WORK REGION	0
REG CITY NOT LIVE CITY	0
REG CITY NOT WORK CITY	0
LIVE CITY NOT WORK CITY	0
ORGANIZATION TYPE	0
dtype: int64	U
acype. Incor	

In [1867]:

```
1 application_df.shape
```

Out[1867]:

(307511, 41)

In [1868]:

```
# from the above 2 cells, we can see that column 'OCCUPATION_TYPE' and 'OWN_CAR_
#significantly amount of null value

# let's inspect 'OWN_CAR_AGE': Age of client's car
application_df['OWN_CAR_AGE'].isna().sum()
```

Out[1868]:

202929

In [1869]:

```
# seems like nan is for the clients who never own car, we may create new column
# useful to derive more insights
application_df['HAS_OWN_CAR'] = np.where(application_df['OWN_CAR_AGE'].isnull(),
```

In [1870]:

```
1 # verification
2 application_df[application_df['HAS_OWN_CAR']==False]
```

Out[1870]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FL#
0	100002	1	Cash loans	М	N	
1	100003	0	Cash loans	F	N	
3	100006	0	Cash loans	F	N	
4	100007	0	Cash loans	М	N	
5	100008	0	Cash loans	М	N	
307506	456251	0	Cash loans	М	N	
307507	456252	0	Cash loans	F	N	
307508	456253	0	Cash loans	F	N	
307509	456254	1	Cash loans	F	N	
307510	456255	0	Cash loans	F	N	

202929 rows × 42 columns

In [1871]:

```
1 # let's inspect 'OCCUPATION_TYPE'
2 application_df['OCCUPATION_TYPE'].isna().sum()
```

Out[1871]:

96391

```
In [1872]:
 1 application df['OCCUPATION TYPE'].unique()
Out[1872]:
array(['Laborers', 'Core staff', 'Accountants', 'Managers', nan,
       'Drivers', 'Sales staff', 'Cleaning staff', 'Cooking staff', 'Private service staff', 'Medicine staff', 'Security staff', 'High skill tech staff', 'Waiters/barmen staff',
       'Low-skill Laborers', 'Realty agents', 'Secretaries', 'IT staf
f',
       'HR staff'], dtype=object)
In [1873]:
 1 # from the above observation, null values are significantly high,
 2 # seems like the client refrain to tell information, low chances of human error
 3 # let's call all those null values as 'Others'
 4 application df['OCCUPATION TYPE'].fillna('Others', inplace=True)
In [1874]:
 1 # verification
   application df['OCCUPATION TYPE'].isna().sum()
Out[1874]:
0
In [1875]:
 1 application df['OCCUPATION TYPE'].unique()
Out[1875]:
array(['Laborers', 'Core staff', 'Accountants', 'Managers', 'Others',
        'Drivers', 'Sales staff', 'Cleaning staff', 'Cooking staff',
       'Private service staff', 'Medicine staff', 'Security staff',
       'High skill tech staff', 'Waiters/barmen staff',
       'Low-skill Laborers', 'Realty agents', 'Secretaries', 'IT staf
f',
       'HR staff'], dtype=object)
In [1876]:
 1 # let's inspect column 'NAME TYPE SUITE': Who was accompanying client when he wa
 2 application df['NAME TYPE SUITE'].unique()
Out[1876]:
array(['Unaccompanied', 'Family', 'Spouse, partner', 'Children',
        'Other A', nan, 'Other B', 'Group of people'], dtype=object)
In [1877]:
   application_df['NAME_TYPE_SUITE'].isna().sum()
Out[1877]:
1292
```

278

```
In [1878]:
```

```
# value is insignificantly low; let's see what are the most used values because
    application_df['NAME_TYPE_SUITE'].value_counts()
Out[1878]:
Unaccompanied
                   248526
Family
                    40149
Spouse, partner
                    11370
Children
                     3267
Other B
                     1770
Other A
                      866
Group of people
                      271
Name: NAME_TYPE_SUITE, dtype: int64
In [1879]:
    # most of the applications has 'NAME TYPE SUITE' as 'Unaccompanied', so let's fi
   application df['NAME TYPE SUITE'].fillna('Unaccompanied', inplace=True)
In [1880]:
    # verification
   application_df['NAME_TYPE_SUITE'].unique()
Out[1880]:
array(['Unaccompanied', 'Family', 'Spouse, partner', 'Children',
       'Other_A', 'Other_B', 'Group of people'], dtype=object)
In [1881]:
   application df['NAME TYPE SUITE'].isna().sum()
Out[1881]:
In [1882]:
   # let inspect Column 'AMT_GOODS_PRICE': For consumer loans it is the price of the
   application df['AMT GOODS PRICE'].isna().sum()
Out[1882]:
```

In [1883]:

application_df[application_df['AMT_GOODS_PRICE'].isna() & application_df['TARGET

Out[1883]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FL#
7880	109190	1	Revolving loans	F	N	
41099	147593	1	Revolving loans	F	N	
50540	158525	1	Revolving loans	F	N	
56002	164897	1	Revolving loans	F	N	
69461	180561	1	Revolving loans	F	N	
78786	191335	1	Revolving loans	F	N	
86000	199789	1	Revolving loans	F	N	
86005	199794	1	Revolving loans	F	N	
124770	244697	1	Revolving loans	F	N	
152898	277210	1	Revolving loans	F	N	
153801	278254	1	Revolving loans	F	N	
186634	316367	1	Revolving loans	М	N	
190113	320433	1	Revolving loans	F	N	
210718	344187	1	Revolving loans	F	N	
214803	348904	1	Revolving loans	F	N	
226725	362616	1	Revolving loans	F	N	
229877	366256	1	Revolving loans	М	N	
249616	388813	1	Revolving loans	F	N	
253126	392897	1	Revolving loans	М	N	
260704	401702	1	Revolving loans	F	N	
270616	413674	1	Revolving loans	F	N	

21 rows × 42 columns

In [1884]:

1 # only 21 clients are having difficulty in paying loans and all of the loans are
2 # that is why there no value for AMT_GOODS_PRICE

```
In [1885]:
```

```
1 # let's inspect AMT_ANNUITY
2 application_df[application_df['AMT_ANNUITY'].isnull()]
```

Out[1885]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FL#
47531	155054	0	Cash loans	М	N	
50035	157917	0	Cash loans	F	N	
51594	159744	0	Cash loans	F	N	
55025	163757	0	Cash loans	F	N	
59934	169487	0	Cash loans	М	Υ	
75873	187985	0	Cash loans	М	Υ	
89343	203726	0	Cash loans	F	Υ	
123872	243648	0	Cash loans	F	N	
207186	340147	0	Cash loans	М	N	
227939	364022	0	Cash loans	F	N	
239329	377174	0	Cash loans	F	N	
241835	379997	0	Cash loans	F	N	

12 rows × 42 columns

```
In [1886]:
```

```
#since only insignificant amount of null values, so dropping off those
application_df = application_df[~application_df['AMT_ANNUITY'].isnull()]
```

In [1887]:

```
1 # verification
2 application_df['AMT_ANNUITY'].isnull().sum()
```

Out[1887]:

0

In [1888]:

```
1 # inspecting prev_application_df
2 prev_application_df.shape
```

Out[1888]:

(1670214, 37)

In [1889]:

```
prev_application_df.isnull().sum()
```

Out[1889]:

SK_ID_PREV	0
SK_ID_CURR	0
NAME_CONTRACT_TYPE	0
AMT_ANNUITY	372235
AMT_APPLICATION	0
AMT_CREDIT	1
AMT_DOWN_PAYMENT	895844
AMT_GOODS_PRICE	385515
WEEKDAY_APPR_PROCESS_START	0
HOUR_APPR_PROCESS_START	0
FLAG_LAST_APPL_PER_CONTRACT	0
NFLAG_LAST_APPL_IN_DAY	0
RATE_DOWN_PAYMENT	895844
RATE_INTEREST_PRIMARY	1664263
RATE_INTEREST_PRIVILEGED	1664263
NAME_CASH_LOAN_PURPOSE	0
NAME_CONTRACT_STATUS	0
DAYS_DECISION	0
NAME_PAYMENT_TYPE	0
CODE_REJECT_REASON	0
NAME_TYPE_SUITE	820405
NAME_CLIENT_TYPE	0
NAME_GOODS_CATEGORY	0
NAME_PORTFOLIO	0
NAME_PRODUCT_TYPE	0
CHANNEL_TYPE	0
SELLERPLACE_AREA	0
NAME_SELLER_INDUSTRY	0
CNT_PAYMENT	372230
NAME_YIELD_GROUP	0
PRODUCT_COMBINATION	346
DAYS_FIRST_DRAWING	673065
DAYS_FIRST_DUE	673065
DAYS_LAST_DUE_1ST_VERSION	673065
DAYS_LAST_DUE	673065
DAYS_TERMINATION	673065
NFLAG_INSURED_ON_APPROVAL	673065
dtype: int64	

In [1890]:

value is insignificantly low; let's see what are the most used values because
prev_application_df['NAME_TYPE_SUITE'].value_counts()

Out[1890]:

Unaccompanied	508970
Family	213263
Spouse, partner	67069
Children	31566
Other_B	17624
Other_A	9077
Group of people	2240
	_

Name: NAME_TYPE_SUITE, dtype: int64

```
In [1891]:
```

```
# most of the applications has 'NAME_TYPE_SUITE' as 'Unaccompanied', so let's fi
prev_application_df['NAME_TYPE_SUITE'].fillna('Unaccompanied', inplace=True)
```

In [1892]:

```
1 # verification
2 prev_application_df['NAME_TYPE_SUITE'].unique()
```

Out[1892]:

In [1893]:

```
1 prev_application_df['NAME_TYPE_SUITE'].isnull().sum()
```

Out[1893]:

0

In [1894]:

```
# since most of the data missing from columns RATE_INTEREST_PRIMARY and RATE_INT
hence droping those columns
```

3 prev_application_df.drop(columns=['RATE_INTEREST_PRIMARY','RATE_INTEREST_PRIVILE

In [1895]:

```
1 prev_application_df.head()
```

Out[1895]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AM
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	

5 rows × 35 columns

In [1896]:

```
# since most of the data missing from columns
2
   #DAYS FIRST DRAWING
3
   #DAYS FIRST DUE
   #DAYS LAST DUE 1ST VERSION
4
   #DAYS LAST DUE
5
   #DAYS TERMINATION
7
   #NFLAG INSURED ON APPROVAL
8
   # hence droping these columns
9
   prev application df.drop(columns = ['DAYS FIRST DRAWING', 'DAYS FIRST DUE', 'DAYS
10
11
                                     'DAYS LAST DUE', 'DAYS TERMINATION', 'NFLAG INS
                            inplace = True)
12
```

In [1897]:

```
prev_application_df.head()
```

Out[1897]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AM [*]
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	

5 rows × 29 columns

In [1898]:

```
# AMT_DOWN_PAYMENT and RATE_DOWN_PAYMENT are missing significantly and cannot be
# hence dropping those columns
prev_application_df.drop(columns = ['AMT_DOWN_PAYMENT', 'RATE_DOWN_PAYMENT'],
inplace = True)
```

In [1899]:

```
1 prev_application_df.head()
```

Out[1899]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AM [*]
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	

5 rows × 27 columns

In [1900]:

prev_application_df.isnull().sum()

Out[1900]:

SK_ID_PREV	0
SK_ID_CURR	0
NAME_CONTRACT_TYPE	0
AMT_ANNUITY	372235
AMT_APPLICATION	0
AMT_CREDIT	1
AMT_GOODS_PRICE	385515
WEEKDAY_APPR_PROCESS_START	0
HOUR_APPR_PROCESS_START	0
FLAG_LAST_APPL_PER_CONTRACT	0
NFLAG_LAST_APPL_IN_DAY	0
NAME_CASH_LOAN_PURPOSE	0
NAME_CONTRACT_STATUS	0
DAYS_DECISION	0
NAME_PAYMENT_TYPE	0
CODE_REJECT_REASON	0
NAME_TYPE_SUITE	0
NAME_CLIENT_TYPE	0
NAME_GOODS_CATEGORY	0
NAME_PORTFOLIO	0
NAME_PRODUCT_TYPE	0
CHANNEL_TYPE	0
SELLERPLACE_AREA	0
NAME_SELLER_INDUSTRY	0
CNT_PAYMENT	372230
NAME_YIELD_GROUP	0
PRODUCT_COMBINATION	346
dtype: int64	

```
In [1901]:
   prev application df.shape
Out[1901]:
(1670214, 27)
In [1902]:
    # Columns AMT ANNUITY, AMT GOODS PRICE, CNT PAYMENT are almost 20% null
 2
    # removing those rows
 3
 4
    prev_application_df = prev_application_df[~prev_application_df['AMT_ANNUITY'].is
    prev application df = prev application df[-prev application df['AMT GOODS PRICE'
    prev application df = prev application df['CNT PAYMENT'].is
In [1903]:
   # verification
   prev application df.isnull().sum()
Out[1903]:
SK ID PREV
                                0
                                0
SK ID CURR
NAME CONTRACT TYPE
                                0
AMT ANNUITY
                                0
AMT APPLICATION
                                0
AMT CREDIT
                                0
AMT GOODS PRICE
                                0
WEEKDAY APPR PROCESS START
                                0
HOUR_APPR_PROCESS_START
                                0
FLAG LAST APPL PER CONTRACT
                                0
NFLAG LAST APPL IN DAY
                                0
NAME CASH LOAN PURPOSE
                                0
NAME CONTRACT STATUS
                                0
                                0
DAYS DECISION
NAME PAYMENT TYPE
                                0
CODE REJECT REASON
                                0
NAME_TYPE_SUITE
                                0
NAME CLIENT TYPE
                                0
NAME GOODS CATEGORY
                                0
NAME PORTFOLIO
                                0
NAME PRODUCT TYPE
                                0
CHANNEL TYPE
                                0
SELLERPLACE AREA
                                0
NAME SELLER INDUSTRY
                                0
                                0
CNT PAYMENT
NAME YIELD GROUP
                                0
PRODUCT COMBINATION
dtype: int64
In [1904]:
   prev application df.shape
Out[1904]:
(1246320, 27)
```

```
In [1905]:
```

```
1 application_df.shape
```

```
Out[1905]:
```

(307499, 42)

Outlier treatment

Let's try to find outliers for below columns

from application df

- AMT_INCOME_TOTAL
- AMT_CREDIT
- AMT ANNUITY
- AMT_GOODS_PRICE

from prev_application_df

- AMT_ANNUITY
- AMT CREDIT
- AMT_GOODS_PRICE

In [1906]:

```
# let's inspect column AMT_INCOME_TOTAL from application_df
application_df.AMT_INCOME_TOTAL.describe().apply("{0:.2f}".format)
```

Out[1906]:

```
      count
      307499.00

      mean
      168797.23

      std
      237127.37

      min
      25650.00

      25%
      112500.00

      50%
      146997.00

      75%
      202500.00

      max
      117000000.00
```

Name: AMT_INCOME_TOTAL, dtype: object

In [1907]:

```
plt.figure(figsize=[20,5])
sns.boxplot(application_df.AMT_INCOME_TOTAL)
plt.show()
```


In [1908]:

```
1 application_df.AMT_INCOME_TOTAL.quantile([0.05,0.10,0.5,0.7,0.85, 0.9,0.95, 0.99
```

Out[1908]:

```
0.05
         67500.0
0.10
         81000.0
0.50
        146997.0
0.70
        180000.0
        234000.0
0.85
        270000.0
0.90
0.95
        337500.0
0.99
        472500.0
Name: AMT_INCOME_TOTAL, dtype: float64
```

In [1909]:

```
application_df[application_df.AMT_INCOME_TOTAL>337500].describe()
```

Out[1909]:

	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_
count	14035.000000	14035.000000	14035.000000	1.403500e+04	1.403500e+04	140
mean	278022.099394	0.058140	0.477948	4.727078e+05	1.002075e+06	4490
std	102949.543339	0.234017	0.759432	1.024482e+06	5.366317e+05	224
min	100010.000000	0.000000	0.000000	3.375450e+05	4.500000e+04	35:
25%	189469.500000	0.000000	0.000000	3.600000e+05	5.925600e+05	308
50%	277411.000000	0.000000	0.000000	4.050000e+05	9.000000e+05	421
75%	368321.000000	0.000000	1.000000	4.500000e+05	1.306008e+06	548
max	456240.000000	1.000000	5.000000	1.170000e+08	4.050000e+06	2580;

8 rows × 29 columns

```
In [1910]:
```

```
1 application df[(application df.AMT INCOME TOTAL>3375000.0) & (application df.TAF
```

Out[1910]:

SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG

12840 114967 1 Cash loans F N

1 rows × 42 columns

In [1911]:

```
# from the above, we can remove clients above 95% as they are high earner and or
difficulty paying the Installment
application_df = application_df[~(application_df.AMT_INCOME_TOTAL>3375000)]
```

In [1912]:

```
#verification
plt.figure(figsize=[20,5])
sns.boxplot(application_df.AMT_INCOME_TOTAL)
plt.show()
```


In [1913]:

```
# let's inspect column AMT_CREDIT from application_df
application_df.AMT_CREDIT.describe().apply("{0:.2f}".format)
```

Out[1913]:

count	307486.00	
mean	599006.65	
std	402475.60	
min	45000.00	
25%	270000.00	
50%	513531.00	
75%	808650.00	
max	4050000.00	
Name:	AMT_CREDIT, dtype:	object

In [1914]:

```
plt.figure(figsize=[20,5])
sns.boxplot(application_df.AMT_CREDIT)
plt.show()
```


In [1915]:

1 application_df.AMT_CREDIT.quantile([0.05,0.10,0.5,0.7,0.85, 0.9,0.95, 0.99])

Out[1915]:

0.05	135000.0
0.10	180000.0
0.50	513531.0
0.70	755190.0
0.85	1024740.0
0.90	1133748.0
0.95	1350000.0
0.99	1854000.0

Name: AMT_CREDIT, dtype: float64

In [1916]:

application_df[(application_df.AMT_CREDIT>1854000.0) & (application_df.TARGET ==

Out[1916]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FL#
678	100784	1	Cash loans	F	N	
5069	105925	1	Cash loans	F	Υ	
8940	110403	1	Cash loans	М	Υ	
10149	111813	1	Cash loans	М	N	
11474	113359	1	Cash loans	F	N	

295674	442560	1	Cash loans	М	Υ	
297164	444280	1	Cash loans	М	Υ	
299225	446646	1	Cash loans	М	Υ	
301841	449691	1	Cash loans	F	Υ	
305180	453583	1	Cash loans	М	Υ	

124 rows × 42 columns

In [1917]:

application_df[(application_df.AMT_CREDIT>1854000) & (application_df.TARGET ==0)

Out[1917]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FL#
189	100219	0	Cash loans	М	N	
337	100389	0	Cash loans	М	Υ	
341	100393	0	Cash loans	М	Υ	
441	100508	0	Cash loans	F	Υ	
485	100559	0	Cash loans	F	Υ	
307055	455739	0	Cash loans	F	N	
307095	455785	0	Cash loans	F	Υ	
307165	455868	0	Cash loans	F	Υ	
307214	455922	0	Cash loans	М	Υ	
307422	456155	0	Cash loans	F	N	

2950 rows × 42 columns

In [1918]:

```
# Although only 124 clients with extremly high credit, are having difficulty pays
# these are the credit amount, shouldn't be imputed
```

In [1919]:

```
# let's inspect column AMT_ANNUITY from application_df
application_df.AMT_ANNUITY.describe().apply("{0:.2f}".format)
```

Out[1919]:

```
      count
      307486.00

      mean
      27106.19

      std
      14485.40

      min
      1615.50

      25%
      16524.00

      50%
      24903.00

      75%
      34596.00

      max
      258025.50
```

Name: AMT_ANNUITY, dtype: object

In [1920]:

```
plt.figure(figsize=[20,5])
sns.boxplot(application_df.AMT_ANNUITY)
plt.show()
```


In [1921]:

```
1 # let's inspect column AMT_GOODS_PRICE from application_df
2 application_df.AMT_GOODS_PRICE.describe().apply("{0:.2f}".format)
```

Out[1921]:

```
      count
      307208.00

      mean
      538376.64

      std
      369427.12

      min
      40500.00

      25%
      238500.00

      50%
      450000.00

      75%
      679500.00

      max
      4050000.00
```

Name: AMT_GOODS_PRICE, dtype: object

In [1922]:

```
plt.figure(figsize=[20,5])
sns.boxplot(application_df.AMT_ANNUITY)
plt.show()
```


In [1923]:

```
# AMT_GOODS_PRICE and AMT_ANNUITY are the factor that may affect the credit with
further analysis will be done in multivariate analysis section
# hence keeping all the records even outliers at this point of time
```

Standardising values

```
In [1924]:
1  # Rounding off all the numerical values to 2 decimal and transforming FLAGS to
In [1925]:
1  application_df['AMT_INCOME_TOTAL'] = application_df['AMT_INCOME_TOTAL'].apply(lambda in [1926]:
1  application_df['AMT_CREDIT'] = application_df['AMT_CREDIT'].apply(lambda in [1927]:
1  application_df['AMT_ANNUITY'] = application_df['AMT_ANNUITY'].apply(lambda in [1928]:
1  application_df['AMT_GOODS_PRICE'] = application_df['AMT_GOODS_PRICE'].apply(lambda in [1929]:
1  prev_application_df['AMT_ANNUITY'] = prev_application_df['AMT_ANNUITY'].apply(lambda in [1930]:
1  prev_application_df['AMT_CREDIT'] = prev_application_df['AMT_CREDIT'].apply(lambda in [1930]:
```

```
In [1931]:
 1 prev_application_df['AMT_GOODS_PRICE'] = prev_application_df['AMT_GOODS_PRICE'].
In [1932]:
    application df['FLAG OWN CAR'].unique()
Out[1932]:
array(['N', 'Y'], dtype=object)
In [1933]:
   application_df['FLAG_OWN_CAR'] = application_df['FLAG_OWN_CAR'].apply(lambda x
In [1934]:
   application_df['FLAG_OWN_CAR'].unique()
Out[1934]:
array([False, True])
In [1935]:
    application_df['FLAG_OWN_CAR'].dtype
Out[1935]:
dtype('bool')
In [1936]:
   application df['FLAG OWN REALTY'].unique()
Out[1936]:
array(['Y', 'N'], dtype=object)
In [1937]:
    application_df['FLAG_OWN_REALTY'] = application_df['FLAG_OWN_REALTY'].apply(lambda
In [1938]:
   application df['FLAG OWN REALTY'].unique()
Out[1938]:
array([ True, False])
In [1939]:
    application_df['FLAG_OWN_CAR'].dtype
Out[1939]:
dtype('bool')
```

```
In [1940]:
   application_df['FLAG_OWN_REALTY'].unique()
Out[1940]:
array([ True, False])
In [1941]:
    application df['AGE'] = application df['DAYS BIRTH'].apply(lambda x: round(abs(x
In [1942]:
 1 application df['AGE']
Out[1942]:
0
          26
1
          46
2
          52
3
          52
          55
          . .
307506
          26
307507
          57
307508
          41
307509
          33
307510
Name: AGE, Length: 307486, dtype: int64
```

Categorical Unordered Univariate Analysis

Unordered variable in application df

- TARGET
- CODE_GENDER
- FLAG OWN CAR
- FLAG_OWN_REALTY
- NAME_FAMILY_STATUS

In [1943]:

```
1 application_df['TARGET'].value_counts()
Out[1943]:
0   282662
1   24824
Name: TARGET, dtype: int64
```

```
In [1944]:
    application_df['TARGET'].value_counts(normalize=True)
Out[1944]:
     0.919268
     0.080732
1
Name: TARGET, dtype: float64
In [1945]:
    application df['TARGET'].value counts(normalize=True).plot.barh()
    plt.show()
 1
 0
          0.2
                           0.6
                                    0.8
 0.0
In [1946]:
   application_df['CODE_GENDER'].value_counts()
Out[1946]:
       202437
F
       105045
М
Name: CODE_GENDER, dtype: int64
In [1947]:
   application_df['CODE_GENDER'].value_counts(normalize=True)
Out[1947]:
F
       0.658362
```

0.341625

0.000013

Name: CODE_GENDER, dtype: float64

М

XNA

In [1948]:

```
application_df['CODE_GENDER'].value_counts(normalize=True).plot.barh()
plt.show()
```


In [1949]:

```
1 application_df['FLAG_OWN_CAR'].value_counts()
```

Out[1949]:

False 202912 True 104574

Name: FLAG OWN CAR, dtype: int64

In [1950]:

```
application_df['FLAG_OWN_CAR'].value_counts(normalize=True)
```

Out[1950]:

False 0.659906 True 0.340094

Name: FLAG_OWN_CAR, dtype: float64

In [1951]:

```
application_df['FLAG_OWN_CAR'].value_counts(normalize=True).plot.barh()
plt.show()
```


In [1952]:

```
application_df['FLAG_OWN_REALTY'].value_counts()
```

Out[1952]:

True 213303 False 94183

Name: FLAG_OWN_REALTY, dtype: int64

In [1953]:

```
application_df['FLAG_OWN_REALTY'].value_counts(normalize=True)
```

Out[1953]:

True 0.6937 False 0.3063

Name: FLAG_OWN_REALTY, dtype: float64

In [1954]:

```
application_df['FLAG_OWN_REALTY'].value_counts(normalize=True).plot.barh()
plt.show()
```


In [1955]:

```
1 application_df['NAME_FAMILY_STATUS'].value_counts()
```

Out[1955]:

Married	196417
Single / not married	45438
Civil marriage	29771
Separated	19770
Widow	16088
Unknown	2

Name: NAME_FAMILY_STATUS, dtype: int64

In [1956]:

```
1 application_df['NAME_FAMILY_STATUS'].value_counts(normalize=True)
```

Out[1956]:

Married	0.638784
Single / not married	0.147773
Civil marriage	0.096821
Separated	0.064296
Widow	0.052321
Unknown	0.000007

Name: NAME_FAMILY_STATUS, dtype: float64

In [1957]:

```
application_df['NAME_FAMILY_STATUS'].value_counts(normalize=True).plot.barh()
plt.show()
```


Categorical Ordered Univariate Analysis

Ordered variable in application_df

NAME_EDUCATION_TYPE

In [1958]:

```
1 application_df['NAME_EDUCATION_TYPE'].value_counts()
```

Out[1958]:

Secondary / secondary speci	lal 2	218382
Higher education		74849
Incomplete higher		10276
Lower secondary		3815
Academic degree		164
Name: NAME_EDUCATION_TYPE,	dtype:	int64

In [1959]:

```
plt.figure(figsize=[10,10])
application_df['NAME_EDUCATION_TYPE'].value_counts(normalize=True).plot.pie(titl
plt.show()
```

Distribution by Education type

Numerical Bivariate and Multivariate Analysis

In [1960]:

```
1 # AMT_INCOME_TOTAL float64
2 # AMT_CREDIT float64
3 # AMT_ANNUITY float64
4 # AMT_GOODS_PRICE
5 application_df.dtypes
```

Out[1960]:

SK_ID_CURR	int64
TARGET	int64
NAME_CONTRACT_TYPE	object
CODE_GENDER	object
FLAG_OWN_CAR	bool
FLAG OWN REALTY	bool
CNT CHILDREN	int64
AMT_INCOME_TOTAL	float64
AMT CREDIT	float64
AMT ANNUITY	float64
AMT_GOODS_PRICE	float64
NAME_TYPE_SUITE	object
NAME INCOME TYPE	object
NAME EDUCATION TYPE	object
NAME FAMILY STATUS	object
NAME HOUSING TYPE	object
REGION POPULATION RELATIVE	_
DAYS BIRTH	int64
DAYS_EMPLOYED	int64
DAYS_REGISTRATION	float64
DAYS_ID_PUBLISH	int64
OWN CAR AGE	float64
FLAG MOBIL	int64
FLAG EMP PHONE	int64
FLAG WORK PHONE	int64
FLAG CONT MOBILE	int64
FLAG PHONE	int64
FLAG_EMAIL	int64
OCCUPATION TYPE	object
CNT FAM MEMBERS	float64
REGION RATING CLIENT	int64
REGION RATING CLIENT W CITY	int64
WEEKDAY_APPR_PROCESS_START	
HOUR_APPR_PROCESS_START	int64
REG_REGION_NOT_LIVE_REGION	int64
REG REGION NOT WORK REGION	int64
LIVE REGION NOT WORK REGION	int64
REG CITY NOT LIVE CITY	int64
REG CITY NOT WORK CITY	int64
LIVE CITY NOT WORK CITY	int64
ORGANIZATION TYPE	object
HAS OWN CAR	bool
AGE	int64
dtype: object	
-	

In [1961]:

```
plt.figure(figsize=[10, 5])
plt.scatter(application_df['AMT_ANNUITY'], application_df['AMT_INCOME_TOTAL'])
plt.show()
```


In [1962]:

```
plt.figure(figsize=[10, 5])
plt.scatter(application_df['AMT_GOODS_PRICE'], application_df['AMT_CREDIT'])
plt.show()
```



```
In [1963]:
```

```
sns.pairplot(data=application_df, vars=['AMT_ANNUITY','AMT_GOODS_PRICE','AMT_CRE
plt.show()
```


Correlation Analysis

```
In [1964]:
```

```
1 application_df[['AMT_ANNUITY','AMT_GOODS_PRICE','AMT_CREDIT']].corr()
```

Out[1964]:

	AMT_ANNUITY	AMT_GOODS_PRICE	AMT_CREDIT
AMT_ANNUITY	1.000000	0.775237	0.770295
AMT_GOODS_PRICE	0.775237	1.000000	0.986968
AMT CREDIT	0.770295	0.986968	1.000000

Correlation heatmap

In [1965]:

1 sns.heatmap(application_df[['AMT_ANNUITY','AMT_GOODS_PRICE','AMT_CREDIT']].corr(

Out[1965]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f99f1115190>

In [1966]:

let's analyse TARGET vs AMT_INCOME_TOTAL
application_df.groupby('TARGET')['AMT_INCOME_TOTAL'].aggregate(["mean", "median")

Out[1966]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f99f058ba60>

In [1967]:

```
# parallel graph
fig = px.parallel_categories(application_df, dimensions=['NAME_CONTRACT_TYPE','N
color="AGE", color_continuous_scale=px.colors.sequential.Infernc
labels={'NAME_CONTRACT_TYPE':'Contract type', 'NAME_EDUCATION_TY
fig.show()
```


Conclusion from above

- Most of the contract types are Cash loans
- Most of the application are from Married and Single/not married categories
- · Single/ not married with lower education are having difficulties
- Older applicants are having less difficulties and tends to apply for cash loans