

ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: JANUARY 2021

(Academic Session: 2020 – 21)

Name of the Program:	B.Tech in Computer Science and	Semester:	VII
	Engineering		
Paper Title :	Number Theory	Paper Code:	SMA44101
Maximum Marks :	40	Time duration:	3 hrs.
Total No of questions:	8	Total No of Pages:	1
(Any other information for the student may be mentioned here)			

Instructions:

Attempt any three questions from **Section A** (each carrying 4 marks); any **Two Questions** from **Section B** (each carrying 10 marks). **Section C** is Compulsory (carrying 8 marks).

	Section A (Attempt any Three) $3 \times 4 = 12$	
1	Using the digraphic cipher that sends the plaintext block P_1 , P_2 to the ciphertext block C_1 , C_2 , with	4
	$C_1 \equiv 8P_1 + 9P_2 \pmod{26}$	
	$C_2 \equiv 3P_1 + 11P_2 \pmod{26}$	
	encrypt the message DO NOT SHOOT THE MESSENGER.	
2	Solve the following congruence $3x^2 + 9x + 7 \equiv 0 \pmod{13}$.	4
3	Decipher the message: RTOLKTOIK, which was encrypted by the transformation, $C \equiv 3P + 24 \pmod{26}$.	4
4	Factor 247 using the Pollard Rho method with polynomial $f(x) = x^2 + 1$ and initial guess $x_0 = x^2 + 1$	4
	1.	
	Section B (Attempt any Two) $2 \times 10 = 20$	
5	(_F ,)	5+5
5	i) Use Gauss's lemma to compute the Legendre symbol $\left(\frac{5}{19}\right)$.	5+5
5	i) Use Gauss's lemma to compute the Legendre symbol $\left(\frac{5}{19}\right)$.	5+5 5+5
	i) Use Gauss's lemma to compute the Legendre symbol $\left(\frac{5}{19}\right)$. ii) For any positive integer k, there are infinitely many primes of the form $4k + 1$.	
	 i) Use Gauss's lemma to compute the Legendre symbol (⁵/₁₉). ii) For any positive integer k, there are infinitely many primes of the form 4k + 1. i) Using the Generalized Quadratic Reciprocity Law, determine whether the congruence x² ≡ 231 (mod 1105) is solvable. ii) Show that the only prime p for which 3p+1 is a perfect square is p= 5. 	
	 i) Use Gauss's lemma to compute the Legendre symbol (⁵/₁₉). ii) For any positive integer k, there are infinitely many primes of the form 4k + 1. i) Using the Generalized Quadratic Reciprocity Law, determine whether the congruence x² ≡ 231 (mod 1105) is solvable. ii) Show that the only prime p for which 3p+1 is a perfect square is p= 5. Using the Diffie-Hellman key agreement protocol, find the common key that can be used by 	
6	 i) Use Gauss's lemma to compute the Legendre symbol (⁵/₁₉). ii) For any positive integer k, there are infinitely many primes of the form 4k + 1. i) Using the Generalized Quadratic Reciprocity Law, determine whether the congruence x² ≡ 231 (mod 1105) is solvable. ii) Show that the only prime p for which 3p+1 is a perfect square is p= 5. 	5+5
6	 i) Use Gauss's lemma to compute the Legendre symbol (⁵/₁₉). ii) For any positive integer k, there are infinitely many primes of the form 4k + 1. i) Using the Generalized Quadratic Reciprocity Law, determine whether the congruence x² ≡ 231 (mod 1105) is solvable. ii) Show that the only prime p for which 3p+1 is a perfect square is p= 5. Using the Diffie-Hellman key agreement protocol, find the common key that can be used by 	5+5
6	 i) Use Gauss's lemma to compute the Legendre symbol (⁵/₁₉). ii) For any positive integer k, there are infinitely many primes of the form 4k + 1. i) Using the Generalized Quadratic Reciprocity Law, determine whether the congruence x² ≡ 231 (mod 1105) is solvable. ii) Show that the only prime p for which 3p+1 is a perfect square is p= 5. Using the Diffie-Hellman key agreement protocol, find the common key that can be used by two parties with keys k₁ = 27 and k₂ = 31 when the modulus is p= 103 and the base r=5. 	5+5