

having adenine at the 11th position from its 5' end. We measured the ΔT_m ($^{\circ}$ C.) values are relative to control ODN22 essentially as described (Jones "JOC" 58:2983 1993). The results are shown in Table II.

TABLE II

Thermal Denaturation Data for 9-Modified Phenoxazine ODNs
Target DNA (33)/RNA (31): 5'-AAA-AAG-AGA-GGG-AGA (SEQ ID NO. 21, 22)
Target DNA (34)/RNA (32): 5'-AAA-AAG-AGA-GAG-AGA (SEQ ID NO. 23, 24)

ODN	test base	31	ΔT_m		33	ΔT_m		34	ΔT_m (33-34)
			32	(31-32)		34	(33-34)		
22	C (control)	61.5	—	42.5	19.0	50.5	—	32.0	18.5
23	D (control)	65.0	3.5	44.5	20.5	54.0	3.5	33.0	21.0
24	(60) (control)	66.5	5.0	50.0	16.5	57.0	6.5	44.5	12.5
25	(55)	73.5	12.0	56.0	17.5	63.5	13.0	44.0	19.0
26	(57)	77.5	16.0	52.0	25.5	68.5	18.5	43.0	25.5
27	(59)	74.0	12.5	51.0	23.0	—	—	—	—
28	(58)	73.5	12.0	52.5	21.0	—	—	—	—
29	(61)	70.5	9.0	55.0	15.5	—	—	—	—
30	(65)	61.5	0	44.0	17.5	—	—	—	—

* ΔT_m relative to ODN22.

This data demonstrates the enhancement in melting point afforded by oligonucleotides containing invention bases. 25 The increased ΔT_m (31-32) and ΔT_m (33-34) values obtained with invention bases (57), (58) and (59) indicate that these invention bases have an increased binding specificity compared to 5-methylcytosine or 5-(1-propynyl) 30 cytosine.

EXAMPLE 5

Increased potency of gene expression inhibition. We made a 20-mer phosphorothioate-linked DNA oligonucleotide, 5' TCC-CGC-XTG-TGA-CAT-CGA-TT 3' (SEQ ID NO. 25), where X was a structure (57) base. The oligonucleotide was complementary to the 3' untranslated region of the c-raf mRNA. A control oligonucleotide had the same sequence except that the X base was replaced with cytosine. Each oligonucleotide was tested to determine its potency at inhibiting expression c-raf gene expression essentially as described (Monia "Nature Med" 2:668-675 1996, WO 97/32604). Briefly, a range of concentrations of each oligonucleotide was transfected into A549 small lung carcinoma cells on two consecutive days, followed by preparing cell extracts 48 hours after the first transfection. Immunoblot assay for c-raf protein expression showed the control oligonucleotide reduced c-raf protein expression with an IC_{50} of about 20 nM. The test oligonucleotide containing the structure (57) base in place of cytosine was at least 20-fold more potent and had an IC_{50} of less than 1 nM.

Similar assays using an oligonucleotide containing about 8-18 bases that are complementary to raf or c-raf, e.g., the oligonucleotide sequence used in this example or a shortened version thereof, is accomplished in a similar manner

using invention oligonucleotides containing 1, 2 or 3 invention bases having an R^2 moiety that increases binding affinity compared to a control oligonucleotide containing cytosine.

We claim:

1. A compound having the structure (1):

(1)

and tautomers, solvates and salts thereof, wherein R¹ is an oligonucleotide, a protecting group, a linker or —H; R² is A(Z)_{x1}, wherein A is a spacer and Z independently is a label bonding group optionally bonded to a detectable label, but R² is not amine, protected amine, nitro or cyano; R²⁷ is independently —CH=—, —N=—, —C(C₁₋₈ alkyl)= or —C(halogen)=, but no adjacent R²⁷ are both —N=—, or two adjacent R²⁷ are taken together to form a ring having the structure,

where R^a is independently —CH=—, —N=—, —C(C₁₋₈ alkyl)= or —C(halogen)=, but no adjacent R^a are both —N=—; R³⁴ is —O—, —S— or —N(CH₃)—; and X1 is 1, 2 or 3.

2. The compound of claim 1 wherein R² is —R^{2C}—R^{2D}, 65 wherein R^{2C} is a short spacer chain and R^{2D} is a hydrogen bond donor moiety or a moiety having a net positive charge of at least about +0.5 at pH 6-8 in aqueous solutions.

79

3. The compound of claim 1 wherein R² is
 $-R^6-(CH_2)_tNR^5C(NR^5)(NR^3)_2, -R^6-CH_2-CHR^{31}-$
 $N(R^3)_2, -R^6-(R^7)_v-N(R^3)_2, -R^6-(CH_2)_t-N(R^3)_2,$
 $-(CH_2)_{1-2}-O-(CH_2)_t-N(R^3)_2,$

(40)

R³ is independently —H, —CH₃, —CH₂CH₃, —(CH₂)_wN(R³³)₂ or a protecting group, or both R³ together are a protecting group, or when R² is —R⁶—(CH₂)_tN(R³)₂, one R³ is —H, —CH₃, —CH₂CH₃, a protecting group or —(CH₂)_wN(R³³)₂ and the other R³ is —H, —CH₃, —CH₂CH₃, —(CH₂)_wN(R³³)₂, —CH(N[R³³])₂—N(R³³)₂,

(48)

(49)

80

-continued

(50)

R⁵ is independently H or a protecting group; R⁶ is independently —S—, —NR⁵—, —O— or —CH₂—;

R⁷ is independently linear alkyl having 1, 2, 3 or 4 carbon atoms optionally substituted with one —CH=CH—, —C≡C— or —CH₂—O—CH₂— moiety, or R⁷ is cyclic alkyl having 3, 4 or 5 carbon atoms, wherein one of the linear alkyl carbon atoms is optionally substituted with a single —CH₃, —CN, =O, —OH or protected hydroxyl, provided that the carbon atoms in any —CH=CH— or —CH₂—O—CH₂— moiety are not substituted with =O, —OH or protected hydroxyl;

R⁸ is linear alkylene having 1 or 2 carbon atoms wherein one alkylene carbon atom is optionally substituted with a single —CH₃, —CN, =O, —OH or protected hydroxyl, or R⁸ is absent;

R²⁸ is independently —CH₂—, —CH(CH₃)—, —CH(OCH₃)—, —CH(OR⁵)— or —O—, but both are not —O—;

R²⁹ is independently —N—, —N(CH₃)—, —CH—, —C(CH₃)—, but both are not —N(CH₃)—;

R³⁰ is —H or —N(R³)₂;

R³¹ is the side chain of an amino acid;

R³³ is independently —H, —CH₃, —CH₂CH₃ or a protecting group;

R³⁵ is H, C₁—C₄ alkyl or a protecting group;

R³⁶ is —H, —CH₃, —CH₂CH₃, a protecting group or an optionally protected monosaccharide;

t is 1, 2, 3 or 4, but when R⁶ is —O—, —S— or —NR⁵—, t is 2, 3 or 4;

v is independently 0, 1 or 2; and

w is independently 1 or 2.

4. The compound of claim 3 wherein R² is —CH₂—(CH₂)_tNR⁵—(CH₂)_wN(R³)₂, —S—(CH₂)_tNR⁵—(CH₂)_wN(R³)₂, —O—(CH₂)_tNR⁵—(CH₂)_wN(R³)₂, —O—(CH₂)_tO—(CH₂)_wN(R³)₂, —R⁶—CH₂—CHR³¹—N(R³)₂, —R⁶—(R⁷)_v—N(R³)₂, —R⁶—(CH₂)_t—NR⁵C(NR⁵)(NR³)₂, or —CH₂—(CH₂)_tNR⁵C(NR⁵)(NR³)₂.

5. The compound of claim 4 wherein t is 2.

6. The compound of claim 5 wherein R³ independently is —H, —CH₃ —C₂H₅ or a protecting group.

7. The compound of claim 6 wherein R² is —O—(CH₂)₂—NH₂, —O—(CH₂)₃—NH₂, —O—(CH₂)₂—N(CH₃)₂, —O—(CH₂)₃—N(CH₃)₂, —O—(CH₂)₂—NHCH₃, —O—(CH₂)₃—NHCH₃, —O—CH₂—CH(CH₃)—NH₂, —CH₂—O—(CH₂)₂—NH₂, —CH₂—O—(CH₂)₃—NH₂ or —(CH₂)₂—O—(CH₂)₂—NH₂.

8. The compound of claim 3 wherein t is 2 or 3.

9. The compound of claim 1 wherein R¹ comprises —H, an optionally protected monosaccharide, hydroxyl, phosphate or hydrogen phosphonate.

10. The compound of claim 1 wherein R¹ is optionally protected 2'-deoxy-R²¹-substituted ribose, 2'-deoxyribose or ribose, wherein R²¹ is H, —OH, halogen or a moiety that enhances the nuclease stability of an oligonucleotide containing the optionally protected 2'-deoxy-R²¹-substituted ribose, 2'-deoxyribose or ribose.

11. The compound of claim 1 having the structure designated by the numbers selected from the group consisting of (104), (105), (133), (134), (111), (112), (113), (115), (135), (136), (137), (138), (139), (120), (121), (121A), (143), (122), (123), (125), or (126):

5

(111)

(104)

(105) 20

(133)

25

(112)

30

(134)

35

(113)

40

55

(114)

60

83
-continued

84

-continued

(135)

5

(136)

10

(137)

15

20

25

30

35

40

45

50

65

(120)

(143)

(122)

85

-continued

wherein

 R^1 is an optionally protected monosaccharide; R^{24} is $-OH$; R^5 is independently $-H$ or a protecting group; R^6 is $-O-$, $-S-$, $-NH-$ or $-CH_2-$, R^{21} is H , $-OH$, halogen or a moiety that enhances the nuclease stability of an oligonucleotide; R^{24} is a halogen; R^{27} is independently $-CH=$, $-N=$, $-C(C_1-C_8$ alkyl)= or $-C(halogen)=$, but no adjacent R^{27} are

65

86

both $-N=$, or two adjacent R^{27} are taken together to form a ring having the structure,

10 where R^a is independently $-CH=$, $-N=$, $-C(C_1-C_8$ alkyl)= or $-C(halogen)=$, but no adjacent R^a are both $-N=$;

 R^{34} is $-O-$, $-S-$ or $-N(CH_3)-$;
15 R^{37} is $-O-$, $-CH_2-$ or $-CF_2-$;

R^{47} is $-O-$ or $-S-$;

R^{50} is $-CH_2-$, $-C(O)-$, $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_2-NR^5-(CH_2)_2-$, $-(CH_2)_2-S-(CH_2)_2-$, $-CH(N(R^5)_2)-$, $-CH(COOR^5)-$ or $-C(CH_3)-$, $-C(C_2C_5)-$ but adjacent moieties are not $C(O)$;

20 R^{52} is $-(CHR^{52A})-(R^{52B})-CHR^{52A}-$, $-CHR^{52A}-O-CHR^{52A}-$, $-CHR^{52A}-NR^5-CHR^{52A}-$, C_1-C_{10} alkylene optionally substituted with 1 or 2 moieties selected from the group consisting of C_1-C_6 alkyl, $-OR^5$, $=O$, $-NO_2$, $-N_3$, $-CN$, $-COOR^5$, or $-N(R^5)_2$, wherein any heteroatom is separated from the nitrogen atoms that R^{52} is linked to by one methylene and one or more $-CIIR^{52A}-$;

25 R^{52A} is $-H$ or C_1-C_6 alkyl;

R^{52B} is a bond;

R^{59} is $-R^6-R^{60}-$;

30 R^{60} is $-(CH_2)_{z3}-(R^{61})_{z1}-(CH_2)_{z2}-$;

R^{61} is $-O-$, $-S-$, $-NR^5-$, $-C(O)-$, $-CH_2-O-$ CH_2- , $-CH_2-NR^5-CH_2-$ or CH_2-S-CH_2- ;

$Z1$ is 0 or 1;

35 $Z2$ is 1, 2 or 3;

$Z3$ is 1, 2 or 3;

Y is 1, 2, 3 or 4;

CBZ is carboxybenzoyl;

Fmoc is 9-fluorenylmethoxycarbonyl;

iPr is isopropyl; and

Ac is acetyl.

40 12. The compound of claim 1 wherein R^1 is an oligonucleotide having the structure (2):

45 50 (2)

wherein

D is —OH, protected —OH, an oligonucleotide coupling group or a solid support; 5
D¹ is an oligonucleotide coupling group, —OH, protected —OH or a solid support, wherein D¹ is bonded to one 2' or 3' position in the oligonucleotide of structure (2) and the adjacent 2' or 3' position in structure (2) is substituted with R²¹, provided that D and D¹ are not both an oligonucleotide coupling group or they are not 10 both a solid support;

R⁴ is independently a phosphodiester linkage or a phosphodiester substitute linkage, wherein R⁴ is bonded to one 2' or 3' position in the structure (2) oligonucleotide 15 and the adjacent 2' or 3' position in structure (2) is substituted with R²¹;

R²¹ is independently —H, —OH, halogen or a moiety that enhances the oligonucleotide against nuclease cleavage; 20

R³⁷ is independently —O—, —CH₂—, —CF₂—;

n is an integer from 0 to 98; and

B independently is a purine or pyrimidine base or a protected derivative thereof, provided that at least one 25 B is a base of structure (3)

13. The compound of claim 12 wherein R⁴ is independently 3'-O—P(S)(S)—O-5', 3'-O—P(S)(O)—O-5', 3'-O—P(O)(O)—O-5', 3'-O—P(Me)(O)—O-5', 3'-NH—P(O)(O)—O-5', 3'-S—CH₂—O-5', 2'-S—CH₂—O-5', 3'-O—CH₂—O-5', 2'-O—CH₂—O-5', 3'-O—P(Me)(S)—O-5', 45 3'-CH₂—N(CH₃)—O-5', 2'-CH₂—N(CH₃)—O-5', or 3'-R³⁸—P(N₂)(O)—O-5', wherein

R³⁸ independently is —O—, —CH₂— or —NH—;

R³⁹ is a protecting group; 50

R⁴⁰ independently is hydrogen, a protecting group, C₁—C₁₂ alkyl optionally substituted with one, or two —O—, —C(O)—, —OC(O)—, —C(O)O—, —OR⁴², —SR⁴³, —C(O)NR³⁹, —C(O)N(R⁴¹)₂, —NR⁴¹, —N(R⁴¹)₂, halo, —CN, or —NO₂ moieties, or both R⁴⁰ together with the nitrogen atom to which they are attached form

-continued

or both R⁴⁰ together are a protecting group;

R⁴¹ independently is hydrogen, a protecting group, alkyl (C₁—C₄ or both R⁴¹ together are a protecting group;

R⁴² is hydrogen or a protecting group;

R⁴³ is C₁—C₆ alkyl or a protecting group; and R⁴⁵ is —H, a counter ion or

R⁴⁶ is alkyl containing 1—8 carbon atoms.

14. The compound of claim 12' wherein R² is —R⁶—(CH₂)_tNR⁵C(NR³)₂, —R⁶—CH₂—CHR³¹—N(R³)₂, —R⁶—(R⁷)_v—N(R³)₂, —R⁶—(CH₂)_t—N(R³)₂, —(CH₂)₁₋₂—O—(CH₂)_t—N(R³)₂,

(40)

(41)

(42)

(43)

(44)

89

-continued

R³ is independently —H, —CH₃, —CH₂CH₃, —(CH₂)_w—N(R³³)₂ or a protecting group, or both R³ together are a protecting group, or when R² is —R⁶ —(CH₂)_w—N(R³)₂, one R³ is —H, —CH₂CH₃, a protecting group or —(CH₂)_w—N(R³³)₂ and the other R³ is —H, —CH₃, —CH₂CH₃, —(CH₂)_w—N(R³³)₂, —CH(N[R³³]₂—N(R³³)₂,

R⁵ is independently H or a protecting group;
R⁶ is independently —S—, —NR⁵—, —O— or —CH₂—;
R⁷ is independently linear alkyl having 1, 2, 3 or 4 carbon atoms optionally substituted with one —CII=CII—, —C≡C— or —CH₂—O—CH₂— moiety, or R⁷ is cyclic alkyl having 3, 4 or 5 carbon atoms, wherein one of the linear alkyl carbon atoms is optionally substituted with a single —CH₃, —CN, =O, —OH or protected hydroxyl, provided that the carbon atoms in any —CH=CH— or —CH₂—O—CH₂— moiety are not substituted with =O, —OH or protected hydroxyl;
R⁸ is linear alkylene having 1 or 2 carbon atoms wherein one alkylene carbon atom is optionally substituted with a single —CH₃, —CN, =O, —OH or protected hydroxyl, or R⁸ is absent;
R²⁸ is independently —CH₂—, —CH(CH₃)—, —CH(OCH₃)—, —CH(OR⁵)— or —O—, but both are not —O—;

(45)

90
R²⁹ is independently —N—, —N(CH₃)—, —CH—, —C(CH₃)—, but both are not —N(CH₃)—;

R³⁰ is —H or —N(R³)₂;
R³¹ is the side chain of an amino acid;

R³³ is independently —H, —CH₃, —CH₂CH₃ or a protecting group;

R³⁵ is H, C₁—C₄ alkyl or a protecting group;

R³⁶ is —H, —CH₃, —CH₂CH₃, a protecting group or an optionally protected monosaccharide;

t is 1, 2, 3 or 4, but when R⁶ is —O—, —S— or —NR⁵—, t is 2, 3 or 4;

v is independently 0, 1 or 2; and

w is independently 1 or 2.

(46)
10

15. The compound of claim 14 wherein R² is —CH₂—(CH₂)_w—N(R³)₂, —NR⁵—(CH₂)_w—N(R³)₂, —S—(CH₂)_w—N(R³)₂, —O—(CH₂)_w—N(R³)₂, —O—(CH₂)_w—NR⁵C(NR⁵)(NR³)₂, —(CH₂)_{1,2}—O—(CH₂)_w—N(R³)₂, —R⁶—CH₂—CHR³¹—N(R³)₂, —R⁶—(R⁷)_t—N(R³)₂, —R⁶—(CH₂)_v—NR⁵C(NR⁵)(NR³)₂, or —CH₂(CH₂)_w—NR⁵C(NR⁵)(NR³)₂.

16. The compound of claim 15 wherein t is 2 or 3.

17. The compound of claim 16 wherein R³ independently is —H, —CH₃, —C₂H₅ or a protecting group.18. The compound of claim 17 wherein R² is —O—(CH₂)₂—NH₂, —O—(CH₂)₃—NH₂, —O—(CH₂)₂—N(CH₃)₂, —O—(CH₂)₃—N(CH₃)₂, —O—(CH₂)₂—NHCH₃, —O—(CH₂)₃—NHCH₃, —O—CH₂—CH(CH₃)—NH₂, —CH₂—O—(CH₂)₂—NH₂, —CH₂—O—(CH₂)₃—NH₂ or —(CH₂)₂—O—(CH₂)₂—NH₂.19. The compound of claim 12 wherein R²¹ is independently —H, —OH, halogen, protected hydroxyl, —O-methyl, —O-ethyl, —O-n-propyl, —O-allyl, —O—(CH₂)₂OH, —O—(CH₂)₃OH, —O—(CH₂)₂F, —O—(CH₂)_wR⁶⁵, —O—(CH₂)₂—[O—(CH₂)₂]R⁶⁵, —O—(CH₂)_r—O—(CH₂)_r—O—(CH₂)_r—R⁶⁵, —NH-methyl, —NH-ethyl, —NH-n-propyl, —NH—(CH₂)₂OH, —NH—(CH₂)₃OH, —NH—(CH₂)_wR⁶⁵, —S-methyl, —S-ethyl, —S-n-propyl, —S-allyl, —S—(CH₂)₂OH, —S—(CH₂)₃OH, —S—(CH₂)₂F, —S—(CH₂)_wR⁶⁵, or —S—(CH₂)₂—[O—(CH₂)₂]R⁶⁵, whereinR⁶⁵ is —H, —F, —OH, —OCH₃, —NH₂, —SH, protected hydroxyl, protected amino or protected thiol; r is 1, 2, 3 or 4; and s is 2, 3, 4, 5, 6, 7 or 8.20. The compound of claim 19 wherein R²¹ is independently —H, —OH, —F, protected hydroxyl, —OCH₃, —O—CH₂CH₃, —O—CH₂CH₂OH, —O—CH₂CH₂F, —O—CH₂CH₂CH₃, —O—CH₂CH₂CH₂OH, —O—CH₂CH₂CH₂F, —O—CH₂CF₂H, —O—CH₂CF₃ or —O—CH₂CH₂—O—CH₃.

21. The compound of claim 12 wherein B independently are selected from the group consisting of a base of structure (3), guanosine, adenine, thymine, uracil, cytosine, 5-methylcytosine, 5-(1-propynyl)uracil, 5-(1-propynyl)cytosine, 5-(1-butynyl)uracil therefor 5-(1-butynyl)cytosine.

22. The compound of claim 12 wherein D¹ is H-phosphonate, a methylphosphonamidite, a β-cyanoethylphosphoramidite or a phosphoramidite.

45

50

55

23. A compound having the structure (4)

and tautomers, solvates and salts thereof wherein,

R¹, R² and R²⁷ have the meanings given in claim 1;

R²⁴ is a halogen;

R²⁵ is —SH, —OH, =S or =O.

24. The compound of claim 23 wherein R¹ is —H or an optionally protected monosaccharide.

25. The compound of claim 24 wherein the optionally protected monosaccharide is 2'-deoxy-R²¹-substituted ribose, wherein R²¹ is H, —OH, halogen or a moiety that enhances the nuclease stability of an oligonucleotide containing the optionally protected 2'-deoxy-R²¹-substituted ribose, 2'-deoxyribose or ribose.

26. The compound of claim 25 wherein R²¹ is —H, —OH, —F, protected hydroxyl, —OCH₃, —O—CH₂CH₃, —O—CH₂CH₂OH, —O—CH₂CH₂F, —O—CH₂CH₂CH₃, —O—CH₂CH₂CH₂OH, —O—CH₂CH₂CH₂F, —O—CH₂CF₂H, —O—CH₂CF₃ or —O—CH₂CH₂O—CH₃.

27. The compound of claim 1 having the structure (1):

and tautomers, solvates and salts thereof, wherein

(4)

R¹ is a protecting group, an oligonucleotide, a nucleic acid, a polysaccharide, an optionally protected monosaccharide, hydroxyl, phosphate, hydrogen phosphonate, halo, azido, protected hydroxyl, or —H; R² is A(Z)_{X1}, but R² is not amine, protected amine, nitro or cyano;

R⁵ is H or a protecting group;

R²⁷ is independently —CH=, —N=, —C(C₁—C₈ alkyl)= or —C(halogen)=, but no adjacent R²⁷ are both —N=, or two adjacent R²⁷ are taken together to form a ring having the structure,

R³⁴ is —O—, —S— or —N(CH₃)—;

R^a is independently —CH=, —N=, —C(C₁—C₈ alkyl)= or —C(halogen)=, but no adjacent R^a are both —N=;

A is a backbone chain of 2–16 carbon atoms, any 1, 2 or 3 of which are optionally replaced with N, O or S atoms, wherein the backbone chain is optionally substituted independently with 1, 2 or 3 of the following: C₁—C₈ alkyl, —OR⁵, =O, —NO₂, —N₃, —COOR⁵, —N(R⁵)₂, or —CN groups, C₁—C₈ alkyl substituted with —OH, =O, —NO₂, —N₃, —COOR⁵, —N(R⁵)₂, or —CN groups, or any of the foregoing in which —CH₂— is replaced with —O—, —NH— or —N(C₁—C₈ alkyl);

X1 is 1, 2 or 3;

Y is H, 2-hydroxypyridine, N-hydroxysuccinimide, p-nitrophenyl, acylimidazole, maleimide, trifluoroacetate, an imido, a sulfonate, an imine 1,2-cyclohexanedione, glyoxal or an alpha-halo ketone; and

Z independently is —NH₂, —CHO, —SH, —CO₂Y, OY.

28. The compound of claim 27 wherein Z is bonded to a detectable label.

29. The compound of claim 27 wherein R¹ is an oligonucleotide.

30. The compound of claim 27 wherein R¹ is an optionally protected monosaccharide.

* * * * *