Dr. D. Y. Patil Institute of Technology, Pimpri, Pune – 411018 Department of Electronics and Telecommunication

Subject: Digital Communication Class: TE (E&TC)

ASSIGNMENT	' 1: Random Proce	sses & Noise
------------	-------------------	--------------

One	ASSIGNMENT 1. Kandom 1	Mapping	1	Manning	Level of
Que.	Question	with CO	Mapping with PO	Mapping with PSO	
No.	Wilest and the different manualist of months	with CO	with PO	with PSO	Learning
1	What are the different properties of random process? A wide sense stationary random process $X(t)$ is applied to the input of LTI system with impulse response $h(t) = 3e^{-2t} u(t)$. Find the mean value of output $Y(t)$ of the system if $E[X(t)] = 2$.	CO1	1	1	2
2	A random process is expressed as $X(t)$ = A cos $(\omega t + \Phi)$ where ω and Φ are constants and A is a random variable. Determine whether $X(t)$ is wide sensed stationary (WSS) process.	CO1	2	1	2
2	If the random process X (t) \square is real, then process that its power spectrum is real. Also verify that $S_{xx}(-\omega) = S_{xx}(\omega)$.	CO1	2	1	2
3	The random process $X(t)$ is WSS. It is applied to an LTI system having an impulse response $4e^{-3t}$ u(t). Find the mean value of output Y (t) of the system if $E[X(t)]=3$.	CO1	2	1	2
4	Define random process. What is Time averages associated with random process?	CO1	2	1	1
5	Consider the random process $X(t)=A$ cos $(2\pi f_c t + \Phi)$ where Φ is a random variable uniformly distributed over $(-\pi, \pi)$. Show that $X(t)$ is ergodic in both mean and autocorrelation.	CO1	2	1	2
6	Show that the random process $X(t)$ = A cos $(2\pi f_c t + \Phi)$ where Φ is a random variable uniformly distributed over $(0, 2\pi)$ is a wide sense stationary process.	CO1	2	1	2
7	If the random process is WSS then prove that $Rxx(-\tau)=Rxx(\tau)$.	CO1	2	1	2
8	The random variable X has a uniform distribution over a $0 \le X \le 2$. Find the mean and mean square value for the random process $V(t)=6e^{Xt}$.	CO1	2	1	2
9	Derive an equation of PSD for ON-OFF signalling.	CO1	2	1	2
10	Explain narrowband noise and represent an narrowband noise in terms of inphase and quadrature components.	CO1	2	1	2

11	What is power spectral density? Derive the expression of PSD When a random process is transmitted through a LTI filter.	CO1	3	1	3
12	Classify and explain different types of random processes.	CO1	3	1	5
13	State any four properties of Power Spectral Density.	CO1	3	1	1
14	Define the following terms: Autocorrelation Function ii)Autocovariance Function	CO1	3	1	1
15	If a white Gaussian noise is passed through a ideal low pass filter find the autocorrelation function of the filtered noise. Assume passband amplitude response of filter H (f) = 1 and cutoff frequency W Hz.	CO1	3	1	4

