FACULTY OF ARTS AND SCIENCE University of Toronto

FINAL EXAMINATION, April 2010 MAT 237 Y1Y, Advanced Calculus

Examiners: I. Graham R. Stanczak

Last Name:	Student #
First Name:	

- (a) TIME ALLOWED: 3 h
- (b) NO AIDS ALLOWED.
- (c) WRITE SOLUTIONS ON THE SPACE PROVIDED. USE THE REVERSE SIDE OF THE PAGE TO CONTINUE IF NECESSARY.
- (d) DO NOT REMOVE ANY PAGES. THERE ARE 16 PAGES INCLUDING THIS ONE.

MARKER'S REPORT

Question	Mark
1	/12
2	/13
3	/14
4	/11
5	/11
6	/8
7	/12
8	/ 8
9	/11
TOTAL	/100

	ra .
	-

1. [12 marks, 4 marks each part] Let $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$.

(a) Show that f is continuous at (0,0).

(b) Show, using the definition, that the directional derivative of f at (0, 0) in any direction $\mathbf{u} = (u_1, u_2)$ exists.

			-
			`

1. (c) Verify whether or not f is differentiable at (0, 0).

			•

2.(a) [4 marks] Find an equation for the tangent plane Π to the surface given by the equation $2xy^2 = 2z^2 - xyz$ at the point P(2,-3,3) and verify that the plane Π and the y-axis intersect at the point Q(0,-1,0).

(b) [6 marks] Evaluate
$$\int_{C} \mathbf{F} \cdot d\mathbf{x}$$
 if $\mathbf{F}(x, y, z) = \frac{z}{1 + xz}\mathbf{i} + y\mathbf{j} + \frac{x}{1 + xz}\mathbf{k}$ and C is the line segment from Q to P .

			•
			-

2. (c) [3 marks] Is the vector field \mathbf{F} of part (b) conservative on the open ball $B(\mathbf{0},1)$? Justify your answer.

3. (a) [9 marks, 3 marks each part] Consider the set $S = \{(x, y, z) \in \mathbb{R}^3 : z^2 - x^2 - y^2 = 1\}$. (i) Is S compact? Explain very shortly.

(ii) Is S connected? Why or why not?

(iii) The set S describes a smooth surface in \mathbb{R}^3 . An ant moves up along the path being the intersection of S and the plane z = x + 1 and parametrized by setting y = t. At what rate is his distance from the z-axis changing at the point (2,2,3)?

		-

3. (b) [5 marks] Suppose that w = f(u, v) is a differentiable function of $u = \frac{x}{y}$ and $v = \frac{z}{y}$. Then $x \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} + z \frac{\partial w}{\partial z} = m$, where m is a constant. Find m.

		•

4. (a) [4 marks] Suppose $S \subset \mathbb{R}^n$ is compact, $f: S \to \mathbb{R}$ is continuous, and f(x) > 1 for every $x \in S$. Show that there is a number c > 1 such that $f(x) \ge c$ for every $x \in S$.

(b) [7 marks] Let $f(x, y, z) = x^3 + y^2 + az^3 - 3az^2 - xy - y + 9$ where a is a non-zero constant. Find all points (if any) at which f has a local minimum. (continue your solution on the next page)

4. (b) Continue your solution

		•
		•

5. (a) [4 marks] Knowing that the volume of the unit ball is $\frac{4}{3}\pi$ show, using the change of variables, that the volume of an elliptic ball $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ is $\frac{4}{3}\pi(abc)$.

			•

5.(b) [7 marks] Find the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ that passes through the point (1, 2, 3) such that the elliptic ball bounded by this ellipsoid has the smallest volume.

		•	

6.(a) [4 marks] A hole is bored through a sphere, the axis of the hole being a diameter of the sphere. The volume of the solid remaining is given by the iterated integral

$$V = 2 \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{1}^{\sqrt{4-z^2}} r \, dr \, dz \, d\theta$$

Determine the radius of the hole and the radius of the sphere.

(b) [4 marks] Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ that is Riemann integrable on $[0,1] \times [0,1]$ but the iterated integral $\int_0^1 \int_0^1 f(x,y) \, dy \, dx$ does not exist.

- 7. [12 marks, 4 marks each part] Let the transformation **G** from the uv-plane to the xy-plane be defined by $(x, y) = (u + v, u^2 v)$. Let D be the region bounded by the u-axis, the v-axis, and the line u + v = 2.
- (a) Near what points in the uv-plane is it possible to express u and v locally as functions of x and y?

(b) Find and sketch the image region G(D).

		•
		•

7. (c) Compute the integral $\iint_{G(D)} \frac{dx \, dy}{\sqrt{1 + 4x + 4y}}.$

		•
		•

8. [8 marks] Find the total mass of a spherical shell of radius a and negligible thickness having density at each point equal to the linear distance of the point from a single fixed point on the sphere.

			j
			•

9. (a) [4 marks] Prove or disprove the statement "If S is the level set of a C^1 function f(x, y, z) and $\nabla f \neq \mathbf{0}$, then the flux of ∇f across S is never zero".

(b) [7 marks] Let $\mathbf{F}(x, y, z) = y^3 \mathbf{i} - x^3 \mathbf{j} + z^3 \mathbf{k}$. Let S be the surface $x^2 + y^2 + z^4 = 5$, $z \ge 1$ oriented by the upward pointing normal. Evaluate $\iint_{\mathbb{R}^n} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$.

Remark: Direct evaluation is difficult. S is a portion of a "deformed sphere" centered at the origin, so try to make use of either Stokes or Gauss theorem.

		•