Estructuras diferenciables sobre una superfície topológica

Norberto Fernández de la Higuera 10/10/2020

1 Introducción

Teorema A. Toda variedad topológica tiene una estructura diferenciable.

Teorema B. Todo homeomorfismo entre variedades diferenciables es isotópico a un difeomorfismo.

Corolario 1. (Teorema clásico de Munkres) Toda variedad topológica tiene una única estructura diferenciable salvo difeomorfismos.

2 Resultados previos

Teorema 1. (de "alisamiento de asas") Sea S una variedad diferenciable, entonces:

- 1. Un embebimiento $\mathbb{R}^2 \to S$ puede isotoparse a un embebimiento diferenciable entorno al origen, quedando fijo fuera de un entorno mayor al anterior.
- 2. Un embebimiento $D^1 \times \mathbb{R} \to S$ que es diferenciable entorno a $\partial D^1 \times \mathbb{R}$ puede isotoparse a un embebimiento diferenciable entorno a $D^1 \times 0$, quedando fijo fuera de un entorno mayor al anterior y cercano a $\partial D^1 \times \mathbb{R}$
- 3. Un embebimiento $D^2 \to S$ que es diferenciable entorno a ∂D^2 puede isotoparse a un embebimiento diferenciable en todo D^2 , quedando fijo en un entorno pequeño de ∂D^2 .

Corolario 2. El teorema anterior sigue siendo cierto para un abierto de \mathbb{R}^2 en vez de para todo \mathbb{R}^2 .

3 Demostración del Teorema A

Teorema A. Toda variedad topológica tiene una estructura diferenciable.

Demostración. Sea S una variedad topológica sin borde, podemos coger un sistema coordenado de cartas finito. Vamos a construir por inducción una estuctura diferenciable $U_n = \bigcup_{i \leq n} h_i(\mathbb{R}^2)$, que por ser un sistema coordenado su límite debe de ser S, probando así el resultado. Cabe destacar que cada U_i contiene a todos los anteriores.

La inducción empieza tomando una carta cualquiera del sistema. Si se considera la variedad U_1 con el atlas $\{(h_1, U_1)\}$ (un subconjunto abierto de una variedad es una variedad), h_1 es diferenciable para ésta de forma trivial (se compone con la inversa y queda la identidad en \mathbb{R}^2).

Una vez arrancada la inducción, suponiendo cierto para el paso n-1 vamos a extender la diferenciabilidad de U_{n-1} a U_n . Sea $W = h_n^{-1}(U_{n-1}) = h_n^{-1}(U_{n-1} \cap h_n(V_n))$, que es un abierto de \mathbb{R}^2 por ser h_n un homeomorfismo entre V_n y su imagen (V_n es el abierto donde se define h_n como carta para la variedad S).

Tenemos $W \subset V_n$ abierto en \mathbb{R}^2 , por el **Hecho 1** sabemos que existe una triangulación geométrica suya y que al ser abierto (no tiene borde) al ir acercándose al borde los triángulos tienden a ser puntos. Queremos aplicar el "Teorema de suavizado de asas" en los vértices de los triángulos, seguidamente en los lados y finalmente en el interior de cada uno (aplicar los 3 apartados del teorema de forma consecutiva), pero para ello es necesario partir de un embebimiento de \mathbb{R}^2 :

1. Para cada vértice p, elegimos una bola abierta lo suficientemente pequeña de forma que sus cierres no se corten (lo hacemos para todos los vértices de 1 vez), $B(p, \varepsilon_p)$ que es difeomorfo a \mathbb{R}^2 ($f_p : \mathbb{R}^2 \to B$ difeomorfismo, con $f_p(0) = p$). Tomamos $g = h_n \circ f_p : \mathbb{R}^2 \to h_n(W)$, que es un embebimiento por serlo $h_n : B \to h_n(W)$ (h_n restringida a B en vez de W) y en particular, f_p .

Aplicamos el apartado 1 del Teorema y obtenemos una \widehat{g} isotópica a la primera, que es diferenciable en O (entorno abierto del origen, con $0 = f_p^{-1}(p)$) y además queda fija fuera de otro entorno un poco mayor $O' \supset O$, con $\overline{f_p(O_p)} \subset B$. Si tomamos $h'_n|_B = \widehat{g} \circ f_p^{-1}$ y $h'_n|_{W-B} = h_n$, está bien definida porque en $B - f_p(O_p)$ al aplicar f_p^{-1}

nos lleva a $\mathbb{R}^2 - O_p$, que es donde $\widehat{g} = g = h_n|_B \circ f_p$, es decir: $h'_n|_{\partial B} = \widehat{g} \circ (f_p^{-1}|_{\partial B}) = g \circ (f_p^{-1}|_{\partial B}) = h_n$, por lo que la función a trozos está bien definida, es diferenciable entorno a p y no se altera fuera de B.

Éste paso se puede realizar de forma simultánea para todos los vértices, obteniendo así una h'_n que es diferenciable entorno a todos los vértices y se mantiene h_n fuera de un entorno de cada vértice, algo mayor que el anterior (entornos con cierres disjuntos). Es por ello que para no cargar demasiado la notación se llamará a esa nueva función h_n .

- 2. Se busca de igual modo la forma de llevar un entorno de cada segmento a \mathbb{R}^2 con un difeomorfismo, aplicar el 2^0 apartado del teorema y de forma similar deshacer el embebimiento para obtener la h_n (manteniendo la notación).
- 3. Buscamos finalmente una curva dentro del "esqueleto" de entornos de los lados de los triángulos que junto con su componente interior sea difeomorfa a la bola cerrada unidad, aplicar el 3^{er} apartado del teorema y así obtener una h_n diferenciable en todo W.

Cabe destacar que en el borde de W la aplicación se queda intacta, ya que todo el rato se está trabajando en el interior de W (es abierto) y en todo paso de la "suavización" de h_n siempre se deja inalterado el espacio complemento de un entorno mayor al aquel donde se obtiene la diferenciabilidad. Es por ello que se puede extender el h_n obtenido a todo \mathbb{R}^2 , porque está bien definido.

4 Demostración del Teorema B

5 Hechos