Part III Local Fields 2014

Part III Local Fields 2014

Contents

1	Introduction	1				
2	p-adic numbers	3				
3	Valuations					
	3.1 Valuations	7				
	3.2 Examples of DVR's continued	10				
	3.3 The Teichmuller map	10				
4	Dedekind domains	13				
	4.1 Dedekind domains	13				
	4.2 Localisation	13				
5	Relative extensions	15				

vi *CONTENTS*

Introduction

These are lecture notes for the 2014 Part III Local Fields course taught by Dr. Tom Fisher

The recommended books are:

- Cassels
- Serre
- \bullet Koblitz

Generated: May 22, 2015, 12:34:22 (Z)

p-adic numbers

Definition 2.0.1 (Absolute value). An **absolute value** on a field K is a function $|\cdot|: K \to \mathbf{R}$ such that

- 1. $|x| \ge 0$ and $|x| = 0 \iff x = 0$.
- 2. |xy| = |x||y|.
- 3. $|x+y| \le |x| + |y|$.

Example 2.0.2. 1. $K \subset \mathbb{C}, |a + bi|_{\infty} = \sqrt{a^2 + b^2}.$

2. K any field, |x| = 0 if x = 0 and |x| = 1 otherwise, this is called the **trivial** absolute value.

Remark 2.0.3. 1. If $x^n = 1$ then |x| = 1 and hence finite fields can only be given the trivial absolute value.

2. In particular |-1|=1 and so |x|=|-x| for all $x\in K$.

A valued field $(K, |\cdot|)$ becomes a metric space with d(xy,) = |x-y|, and hence a topological space, i.e. open sets are unions of open balls $B(x, r) = \{y \in K : |x-y| < r\}$.

Exercise 2.0.4. Show that the functions $+, \cdot : K \times K \to K$ and $|\cdot| : K \to \mathbf{R}$ are continuous with respect to this topology.

Example 2.0.5. Let $K = \mathbf{Q}$, p be a prime and $0 < \alpha < 1$. For $x \in \mathbf{Q}^*$ let $\nu_p(x) = r$ where $x = p^r u/v$ and $p \nmid uv$. Then the p-adic absolute value if given by

$$|x|_p = \begin{cases} 0 & x = 0, \\ \alpha^{\nu_p(x)} & \text{otherwise.} \end{cases}$$

Usually we take $\alpha = 1/p$. In this case we get the inequality $|x+y|_p \le \max\{|x|_p, |y|_p\}$, this is the **ultrametric triangle inequality**.

Definition 2.0.6 ((non-)Archimidean absolute values). Absolute values are called **non-archimidean** if this inequality holds, otherwise they are called **archimidean**.

Recall that if R is any ring then there exists a unique ring homomorphism $\mathbf{Z} \to R$.

Lemma 2.0.7. $|\cdot|$ is non-archimidean if and only if |n| is bounded for all $n \in \mathbb{Z}$.

Proof. $(\Rightarrow) |n| \le \max\{|1|\} = 1$. (\Leftarrow) Suppose $|n| \le B$ for all $n \in \mathbf{Z}$ then

$$|x+y|^m = \left| \sum_{r=0}^m \binom{m}{r} x^{m-r} y^r \right| \le \sum_{r=0}^m \left| \binom{m}{r} \right| |x|^{m-r} |y|^r \le (m+1) B \max\{|x|^m, |y|^m\}.$$

Now letting $m \to \infty$ we get that $|x+y| \le \max\{|x|, |y|\}$.

Corollary 2.0.8. All absolute values on fields of characteristic p are non-archimidean.

Example 2.0.9. 1. $K = \mathbf{Q}$, $p = 5 \mid \cdot \mid = \mid \cdot \mid_5$. Let $a_1 = 3, a_2 = 33, a_3 = 33$, etc. So $a_n \equiv a_m \pmod{5^n}$ for all $m \geq n$. Then $|a_n - a_m|_5 \leq 5^{-n}$ for all $m \geq n$ and so $(a_n)_{n \geq 1}$ is a Cauchy sequence. Now $a_n = \frac{10^n - 1}{3}$ so $|a_n - \frac{1}{3}| = 5^{-n} \to 0$ as $n \to \infty$ i.e. $a_n \to -\frac{1}{3}$ w.r.t. $|\cdot|_5$

2. We'll construct (a_n) such that for all $n \geq 1$

$$\begin{cases} a_n^2 + 1 \equiv 0 \pmod{5^n} \\ a_{n+1} \equiv a_n \pmod{5^n} \end{cases}$$

Take $a_1 = 2$. Suppose a_n is chosen and it satisfies $a_n^2 + 1 = 5^n c$. $(a_n + 5^n b)^2 + 1 \equiv a_n^2 + 1 + 2 \cdot 5^n a_n b \equiv 5^n (c + 2ba_n) \pmod{5^{n+1}}$. We solve for b s.t. $2ba_n + c \equiv 0 \pmod{5}$. Since $(2a_n, 5) = 1$ this is always possible. Now put $a_{n+1} = a_n + 5^n b$. Condition (ii) implies that a_n is Cauchy. Suppose it converges and $a_n \to l \in \mathbf{Q}$. Then $|l^2 + 1|_5 \leq |a_n^2 + 1|_5 + |a_n^2 - l^2|_5$, both of these terms tend to 0 which gives $l^2 = -1$ a contradiction. This shows that \mathbf{Q} is not complete under $|\cdot|_5$.

Definition 2.0.10. \mathbf{Q}_p is the completion of \mathbf{Q} w.r.t. $|\cdot|_p$. Note that \mathbf{Q}_p has $+,\cdot,|\cdot|_p$ as they extend from \mathbf{Q} by continuity. It is easy to check that $(\mathbf{Q}_p,|\cdot|_p)$ is a non-archimidean valued field.

Definition 2.0.11. $\mathbf{Z}_p = \{x \in \mathbf{Q}_p : |x|_p \le 1\}.$

Lemma 2.0.12. Z is dense in \mathbb{Z}_p , in particular \mathbb{Z}_p is the completion of **Z** w.r.t. $|\cdot|_p$.

Proof. $\mathbf{Q} \cap \mathbf{Z}_p = \{x \in \mathbf{Q} : |x|_p \leq 1\} = \{\frac{a}{b} \in \mathbf{Q} : p \nmid b, a, b \in \mathbf{Z}\} = \mathbf{Z}_{(p)}.$ Let $\frac{a}{b} \in \mathbf{Z}_{(p)}$ i.e. $a, b \in \mathbf{Z}, p \nmid b$. For each $n \geq 1$ we can pick $y_n \in \mathbf{Z}$ s.t. $by_n \equiv 1 \pmod{p^n}$ implying $by_n \to_p 1$ as $n \to \infty$. This implies that $ay_n \to \frac{a}{b}$ as $n \to \infty$. Hence \mathbf{Z} is dense in $\mathbf{Z}_{(p)}$.

Now for \mathbf{Q} is dense in \mathbf{Q}_p and $\mathbf{Z}_p \subset \mathbf{Q}_p$ being open give that $\mathbf{Q} \cap \mathbf{Z}_p$ is dense in \mathbf{Z}_p .

The global situation is as follows. $[K:\mathbf{Q}]<\infty$ $\mathcal{O}_K=$ integral closure of \mathbf{Z} in K. \mathcal{O}_K need not be a UFD.

The local situation is as follows. $[K: \mathbf{Q}] < \infty \mathcal{O}_K = \text{integral closure of } \mathbf{Z}_p \text{ in } K. \mathcal{O}_K \text{ is always a UFD! In fact it is a DVR. } K \text{ number field } \mathfrak{p} \subset \mathcal{O}_K \text{ a prime ideal } 0 < \alpha < 1. \text{ For } x \in K^* \ v_{\mathfrak{p}}(x) = \text{ power of } \mathfrak{p} \text{ in the factorisation of } x\mathcal{O}_K. \text{ Define }$

$$|x|_p = \begin{cases} \alpha^{v_p(x)} & \text{if } x \neq 0 \\ 0 & \text{otw} \end{cases}$$

 $|\cdot|_{\mathfrak{p}}$ is an absolute value on K. $K_{\mathfrak{p}}$ is the completion of K w.r.t. $|\cdot|_{\mathfrak{p}}$. Note that for a suitable choice of $\alpha |\cdot|_{\mathfrak{p}}$ extends $|\cdot|_{\mathfrak{p}}$ on \mathbb{Q} (where $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$).

Remark 2.0.13. $[K_{\mathfrak{p}}: \mathbf{Q}_p] \leq [K: \mathbf{Q}]$. Every finite extension of \mathbf{Q}_p arises as the completion of some number field. Proofs later.

Lemma 2.0.14. Let $|\cdot|_1$ and $|\cdot|_2$ be non-trivial absolute values on a field K then TFAE:

- 1. $|\cdot|_1$ and $|\cdot|_2$ define the same topology on K.
- 2. $|x|_1 < 1 \iff |x|_2 < 1$.
- 3. $|x|_2 = |x|_1^c \text{ for some } c > 0.$

If these conditions hold we say that $|\cdot|_1$ and $|\cdot|_2$ are equivalent.

Proof. 1) \Longrightarrow 2) $|x|_1 < 1 \iff x^n \to 0 \text{ as } n \to \infty \text{ w.r.t. } |\cdot|_1 \iff x^n \to 0 \text{ w.r.t.} |\cdot|_2 \text{ iff } |x|_2 < 1.$

2)
$$\Longrightarrow$$
 3) Pick $a \in K^*$ with $|a|_1 < 1$. Let $x \in K^*m, n \in \mathbf{Z}n > 0$.

Definition 2.0.15. A place of K is an equivalence class of absolute values on K.

Theorem 2.0.16. A non-trivial absolute value on \mathbf{Q} is equivalent to either $|\cdot|_{\infty}$ or $|\cdot|_p$ for some prime p.

Proof. First let $|\cdot|$ be archimidean. Let a,b>1 be integer. Write b^n in base a

$$b^n = c_m a^m + \dots + c_1 a + c_0$$

where $0 \le c_i < a$ and $m \le n \log_a b$. Let $B = \max\{c : 0 \le c < a\}$ then $|b^n| \le (m+1)B \max\{|a|^m,1\}$. This implies $|b| \le ((n \log_a b + 1)B)^{\frac{1}{n}} \max(|a|^{\frac{m}{n}},1)$ taking the limit as $n \to \infty$ gives that $|b| \le \max(|a|^{\log_a b},1)$. Since $|\cdot|$ is archimidean we may pick an integer b > 1 s.t. |b| > 1. Applying the above inequality for any integer a > 1 we get $|b| \le |a|^{\log_a b}$. So |a| > 1. Swapping a and b in the inequality we get $|a| \le |b|^{\log_b a}$. So

$$\frac{\log|a|}{\log a} = \frac{\log|b|}{\log b} = \lambda.$$

Then $|a| = a^{\lambda}$ for all $a \in \mathbf{Z}_{\geq 1}$ implying $|\cdot| \sim |\cdot|_{\infty}$.

Now for non-archimidean $|\cdot|$. The ultrametric law implies that $|n| \leq 1$ for all $n \in \mathbb{Z}$, $|\cdot|$ being non-trivial implies that |u| < 1 for some $n \in \mathbb{Z}_{>1}$. Writing $n = p_1^{e_1} \cdots p_k^{e_k}$ we get |p| < 1 for some p. Suppose that |p| < 1 and |q| < 1 for $p \neq q$. Write 1 = rp + sq so that $1 = |rp + sq| \leq \max < 1$ a contradiction. So $|p| = \alpha$ for some p and $|\cdot|$ is 1 for all other primes. Hence $|\cdot| \sim |\cdot|_p$.

Remark 2.0.17. If $(K, |\cdot|)$ is archimidean then $\operatorname{char}(K) = 0$ and so $\mathbf{Q} \subset K$. Ostrowski then implies that restriction of $|\cdot|$ to \mathbf{Q} is equivalent to $|\cdot|_{\infty}$. so if K is complete then it contains a copy of \mathbf{R} .

Fact: If $(K, |\cdot|)$ is complete and archimidean then $K = \mathbf{R}$ or $K = \mathbf{C}$ and $|\cdot| \sim |\cdot|_{\infty}$ (see Cassels).

From now on we take K non-archimidean.

Lemma 2.0.18. Let $(K, |\cdot|)$ be non-archimidean. Then

- 1. |x| > |y| implies |x + y| = |x|.
- 2. $|x_1 + \cdots + x_n| \le \max\{|x_i|\}$ with equality only.
- 3. If $(K, |\cdot|)$ is complete then $\sum_{n=1}^{\infty} a_n$ converges iff $a_n \to 0$.

Proof. 1. $|x+y| \le \max(|x|, |y|) = |x| \le \max(|x+y|, |y|) = |x+y|$.

2. Ultrametric + induction. Apply (i) with $x = x_1$ and $y = x_1 + \cdots + x_n$.

3. Let $s_n = \sum_{i=0}^n a_i$, if $s_n \to l$ then $a_n = s_n - s_{n-1} \to 0$ as $n \to \infty$, conversely for $m \ge n$ we have $s_m - s_n = |a_{n+1} + \dots + a_m| \le \max_{i=n+1,\dots,m}(|a_i|) < \max_{i>n} |a_i| \to 0$ as $n \to \infty$ so s_n is Cauchy, hence convergent.

For $x \in L$ r > 0 we let $B(x,r) = \{y \in K : |x-y| < r\}$ and $\overline{B}(x,r) = \{y \in K : |x-y| \le r\}$.

Lemma 2.0.19. 1. If $y \in B(x,r)$ then B(x,r) = B(y,r).

- 2. If $y \in \bar{B}(x,r)$ then $\bar{B}(x,r) = \bar{B}(y,r)$.
- 3. B(x,r) is both open and closed.
- 4. $\bar{B}(x,r)$ is both open and closed.
- 5. K is totally disconnected (i.e. the only connected subsets are singletons).

Proof. 1. Ultrametric.

- 2. Ultrametric.
- 3. B(x,r) is open, it is closed since if $y \notin B(x,r)$ then $B(x,r) \cap B(y,r) = \emptyset$ as they are not the same ball.
- 4. $\bar{B}(x,r)$ is closed since if $y \in \bar{B}(x,r)$ then $B(y,r/2) \subset \bar{B}(y,r) = \bar{B}(x,r)$.
- 5. Given any $x, y \in K$ distinct, let r = |x y|/2 > 0 then B(x, r) and its complement are open sets, one containing x, the other y.

Valuations

3.1 Valuations

Let K be a field.

Definition 3.1.1 (Valuations, discrete, normalised, valuation ring, units maximal ideal). $v: K^* \to \mathbf{R}$ is called a valuation if

- 1. v(xy) = v(x) + v(y)
- $2. \ v(x+y) \ge \min(v(x), v(y)).$

Fix some $0 < \alpha < 1$, then a valuation v determines a non-archimidean absolute value, via

$$|x| = \begin{cases} \alpha^{v(x)} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Conversely given some $|\cdot|$ we can put $v(x) = \log |x|/\log \alpha$. We ignore the trivial valuation. We say two valuations v_1, v_2 are equivalent if for some $c \in \mathbf{R}_{>0}v_1(x) = cv_2(x)$ for all $x \in K^*$. The image $v(K^*)$ is a subgroup of \mathbf{R} . If it is discrete (i.e. isomorphic to \mathbf{Z}) we say that v is a discrete valuation, we say it is normalised if $v(K^*) = \mathbf{Z}$. We let $\mathcal{O}_v = \{x \in K : v(x) \leq 1\}$ be the valuation ring. $\mathcal{O}_v^* = \{x \in K : v(x) = 1\}$ is its unit group. $m = \{x \in K : |x| < 1\}$ is a maximal ideal. $k = \mathcal{O}_v/m$ is the residue field.

Remark 3.1.2. 1. $m = \mathcal{O}_v \setminus \mathcal{O}_v^*$ so m is the unique maximal ideal, hence \mathcal{O}_v is a local ring.

- 2. Let $x, y \in K^*$, then $x\mathcal{O}_v \subset y\mathcal{O}_v \iff x/y \in \mathcal{O}_v \iff |x/y| \le 1 \iff |x| \le |y|$.
- 3. If $0 \neq x \in m$ then $K = \mathcal{O}_v[1/x] = \operatorname{Frac}(\mathcal{O}_v)$.
- 4. \mathcal{O}_v is integrally closed in K. This is as if $x \in K$ satisfies $x^n + \cdots + a_0 = 0$ with $a_i \in \mathcal{O}_v$ then $|x^n| \leq \max_{i=0,\dots,n-1} |a_i x^i| \leq \max(1,|x|^{n-1})$ which implies $|x| \leq 1$ i.e. $x \in \mathcal{O}_v$.

Lemma 3.1.3. *TFAE:*

- 1. v is discrete.
- 2. \mathcal{O}_v is a PID.
- 3. \mathcal{O}_v is a Noetherian.

4. m is principal.

Proof. Note that $x\mathcal{O}_v \subset u\mathcal{O}_v \iff |x| \leq |y|$. For i) \implies ii) Take $I \subset \mathcal{O}_v$ and pick $a \in I$ with $|a| = \max\{|x| : x \in I\}$ equivalently $v(a) = \min\{v(x) : x \in I\}$. This minimum exists as v is discrete. Then $I = a\mathcal{O}_v$. ii) \implies iii) is clear. For iii) \implies iv) assume $m = x_1\mathcal{O}_v + \dots + x_n\mathcal{O}_v$ wlog $|x_1| \geq \dots \geq |x_n|$ then $m = x_1\mathcal{O}_v$. For iv) \implies i) Write $m = \pi\mathcal{O}_v$ and let $c = v(\pi) > 0$. If $x \in K^*$ with v(x) > 0 then $x \in m$ and so $v(X) \geq c$ and therefore v is discrete.

Definition 3.1.4 (DVR). A DVR is a PID with exactly one non-zero prime ideal.

Lemma 3.1.5. 1. If v is discrete then \mathcal{O}_v is a DVR.

- 2. Let R be a DVR, then there exists a discrete valuation on K = Frac(R) s.t. $R = \mathcal{O}_v$ with v unique up to normalisation.
- *Proof.* 1. \mathcal{O}_v is a local ring, lemma 2.1 implies that \mathcal{O}_c is a PID, this gives that \mathcal{O}_v is a DVR
 - 2. Let R be a DVR with prime element π . Every $x \in R \setminus \{0\}$ can be written as $u\pi^m$ with $u \in R^*$, $m \ge 0$. Every $x \in K^*$ can be written as $u\pi^m$ with $u \in R^*$, $m \in \mathbf{Z}$. We define $v \colon K^* \to \mathbf{Z}$ by $u\pi^m \mapsto m$, this is a discrete valuation with $\mathcal{O}_v = R$.

Example 3.1.6. $\mathbf{Z}_{(p)} = \{x \in \mathbf{Q} : |x|_p \le 1\}$ is a DVR with field of fractions \mathbf{Q} . $\mathbf{Z}_{(p)} = \{x \in \mathbf{Q}_p : |x|_p \le 1\}$ is a DVR with field of fraction \mathbf{Q}_p . In both of these examples the residue field is \mathbf{F}_p .

For the rest of this section let $v \colon K^* \to \mathbf{Z}$ be a normalised discrete valuation. Additionally pick $\pi \in K^*$ with $v(\pi) = 1$ so that $m = \pi \mathcal{O}_v$ (π is called the uniformiser).

Lemma 3.1.7 (Hensel's lemma (version 1)). Assume K is complete w.r.t. v and let $f \in \mathcal{O}[x]$. Suppose that the reduction $\bar{f} \in k[x]$ has a simple root in k i.e. there exists $a \in \mathcal{O}$ s.t. $f(a) \equiv 0 \pmod{\pi}$ (i.e |f(a)| < 1) and $f'(a) \not\equiv 0 \pmod{\pi}$ (i.e |f'(a)| = 1). Then there exists a unique $x \in \mathcal{O}$ s.t. f(x) = 0 and $x \equiv a \pmod{\pi}$.

Proof. Follows from version 2 of Hensel's Lemma .

Lemma 3.1.8 (Hensel's lemma (version 2)). Assume K is complete w.r.t. v and let $f \in \mathcal{O}[x]$. Suppose that there exists $a \in \mathcal{O}$ s.t. $|f(a)| < |f'(a)|^2$). Then there exists a unique $x \in \mathcal{O}$ s.t. f(x) = 0 and |x - a| < |f'(a)|.

Proof. Let r = v(f'(a)). We construct a sequence $(x_n) \in \mathcal{O}$ s.t.

- 1. $f(x_n) \equiv 0 \pmod{\pi^{n+2r}}$,
- 2. $x_{n+1} \equiv x_n \pmod{\pi^{n+r}}$.

We put $x_1 = a$. Let $n \ge 1$ and suppose x_n satisfies 1, i.e. $f(x_n) = c\pi^{n+2r}$ for some $c \in \mathcal{O}$. We'll put $x_{n+1} = x_n + b\pi^{n+r}$ for some $b \in \mathcal{O}$. We have that

$$f(X+Y) = f_0(X) + f_1(X)Y + f_2(X)Y^2 + \cdots$$

for some $f_i \in \mathcal{O}[X]$. We have $f_0 = f$, $f_1 = f'$. $f(x_{n+1}) = f(x_n + b\pi^{n+r}) \equiv f(x_n) + f'(x_n)b\pi^{n+r} \pmod{\pi^{n+2r+1}}$ But $x_n \equiv a \pmod{\pi^{r+1}}$ which implies that $f'(x_n) \equiv f'(a) \pmod{\pi^{r+1}}$, implying $f'(x_n) = u\pi^r$ for some $u \in \mathcal{O}^*$. Note that this argument shows that if $x \in \mathcal{O}$ and |x-a| < |f'(a)| then |f'(a)| = |f'(x)|. Therefore $f(x_{n+1}) \equiv c\pi^{n+2r} + u\pi^r b\pi^n \pmod{\pi^{n+2r+1}} \equiv (c+ub)\pi^{n+2r} \pmod{\pi^{n+2r+1}}$. Taking b = -c/u

3.1. VALUATIONS 9

(note $b \in \mathcal{O}$) gives that $f(x_{n+1}) \equiv 0 \pmod{\pi^{n+2r+1}}$, so the first property holds for n+1. The second property implies that (x_n) is Cauchy and the first gives that $x = \lim_{n \to \infty} x_n$ is a root of f. Note that $x_n \equiv a \pmod{\pi^{n+1}}$ for all n implies that $x \equiv a \pmod{\pi^{r+1}}$ and so |x-a| < f'(a)|.

To see uniqueness suppose x and y both satisfy the above note . Assume moreover that $s=x-y\neq 0$. The inequalities |x-a|<|f'(a)| and |y-a|<|f'(a)| together imply that |s|<|f'(a)|. Now $0=f(y)=f(x+s)=f(x)+f'(x)s+\cdots$ and therefore $|f'(x)s|<|s|^2$ and so $|f'(a)|=|f'(x)|\leq |s|$ which contradicts the above. \square

Remark 3.1.9. In the proof of Hensel's lemma $x_{n+1} = x_n - f(x_n)/f'(x_n)$ which is as in the Newton-Raphson method.

Remark 3.1.10. Uniqueness in Hensel's . We saw that every element of K^* is of the form $u\pi^r$ for some $u \in R^*$ and $m \in \mathbf{Z}$. If $R = \mathcal{O}_v$ for some valuation $v \colon K^* \to \mathbf{R}$ then $v(x) \geq 0$ for all $x \in R$. So if $u \in R^*$ then v(u) = 0. In particular $v(u\pi^m) = mv(\pi)$, i.e. v is uniquely determined by $v(\pi)$ so it is unique if we normalise it.

Lemma 3.1.11. Let $A \subset \mathcal{O}_v$ be a set of coset representatives for $k = \mathcal{O}_v/m$. Then every $x \in \mathcal{O}_v$ can be written uniquely as

$$x = \sum_{n=0}^{\infty} a_n \pi^n$$

with $a_n \in A$.

Proof. There exists a unique $a_0 \in A$ s.t. $x \equiv a_0 \pmod{\pi}$. So $x = a_0 + \pi x_1$ for some $x_1 \in \mathcal{O}_v$. There now exists a unique $a_1 \in A$ s.t. $x_1 \equiv a_1 \pmod{\pi}$. So $x = a_0 + \pi a_1 + \pi^2 x_2$ for some $x_2 \in \mathcal{O}_v$. We may continue this process. Letting $s_N = \sum_{n=0}^{\infty} a_n \pi^n$ we get $v(x - s_N) > N$. This gives that $s_N \to x$ as $N \to \infty$. So $x = \lim_{N \to \infty} s_N = \sum_{n=0}^{\infty} a_n \pi^n$. Uniqueness is clear.

Remark 3.1.12. K being complete is equivalent to every sequence $\sum_{n=0}^{\infty} a_n \pi^n$ converging. One direction is trivial the other is an exercise.

Proposition 3.1.13.

$$\mathbf{Q}_p^*/(\mathbf{Q}_p^*)^2 \cong \begin{cases} (\mathbf{Z}/2\mathbf{Z})^2 & \text{if } p \neq 2, \\ (\mathbf{Z}/2\mathbf{Z})^3 & \text{if } p = 2. \end{cases}$$

- Proof. 1. Assume $p \neq 2$. For $b \in \mathbf{Z}_p^*$ we have $b \in (\mathbf{Z}_p^*)^2 \iff \bar{b} \in (\mathbf{F}_p^*)^2$ (applying Hensel's lemma to $f(x) = x^2 b$). Therefore $\mathbf{Z}_p^*/(\mathbf{Z}_p^*)^2 \stackrel{\sim}{\to} \mathbf{F}_p^*/(\mathbf{F}_p^*)^2 \cong \mathbf{Z}/2\mathbf{Z}$. But $\mathbf{Q}_p^* \cong \mathbf{Z}_p^* \times \mathbf{Z}$ via the map $up^r \mapsto (u, r)$. Therefore $\mathbf{Q}_p^*/(\mathbf{Q}_p^*)^2 \cong \mathbf{Z}_p^*/(\mathbf{Z}_p^*)^2 \times \mathbf{Z}/2\mathbf{Z} \cong (\mathbf{Z}/2\mathbf{Z})^2$. We have coset reps 1, p, u, pu where u is a non-square mod p.
 - 2. Let p=2. Take $b \in \mathbf{Z}_2^*$ with $b \equiv 1 \pmod 8$, let $f(x)=x^2-b$. Then $|f(1)| \le 2^{-3} < 2^{-2} = |f'(1)|^2$. Hensel's lemma now gives us that f has a root in \mathbf{Z}_2 . So $\mathbf{Z}_2^* \to (\mathbf{Z}/8\mathbf{Z})^* \cong (\mathbf{Z}/2\mathbf{Z})^2$. Clearly $(\mathbf{Z}_2^*) \subset \ker$. We just checked that $\ker \subset (\mathbf{Z}_2^*)^2$. Therefore $\mathbf{Z}_2^*/(\mathbf{Z}_2^*)^2 \cong (\mathbf{Z}/2\mathbf{Z})^2$. Hence $\mathbf{Q}_2^*/(\mathbf{Q}_2^*)^2 \cong (\mathbf{Z}/2\mathbf{Z})^3$. We have coset reps $2^a(-1)^b 5^c$ where $a, b, c \in \{0, 1\}$.

Corollary 3.1.14. \mathbf{Q}_p (for $p \neq 2$) has exactly 3 quadratic extensions. \mathbf{Q}_2 has exactly 7.

3.2 Examples of DVR's continued

Example 3.2.1. Let k be any field, K = k(t), $v_0(t^n p(t)/q(t)) = n$, where $p, q \in k[t]$ and $p(0), q(0) \neq 0$. Then $\mathcal{O} = \{f(t) = p(t)/q(t) : f(0) \text{ is defined i.e. } q(0) \neq 0\}$. And $\mathcal{O}^* = \{f(t) = p(t)/q(t) : f(0) \text{ is defined and non-zero}\}$. $m = \{f(t) : f(0) = 0\}$. $\mathcal{O}/m \cong k$ via the map $f \mapsto f(0)$. Likewise for other $a \in k$, $v_a((t - a)^n p(t)/q(t)) = n$, where $p, q \in k[t]$ and $p(a), q(a) \neq 0$, this is the order of zero/pole at t = a. We also have $v_\infty(p(t)/q(t)) = v_0(p(1/\epsilon)/q(1/\epsilon)) = \deg(q) - \deg(p)$.

Remark 3.2.2. 1. If $k = \bar{k}$ then these are the only valuations on K = k(t) with $v(k^*) = 0$.

2. K = k(t) is the function field of \mathbf{P}^1 . Similar examples arise for any smooth point of an algebraic curve/Riemann surface.

Example 3.2.3. K = k(t) = the field of Laurent power series

$$= \left\{ \sum_{n \ge n_0} a_n t^n : a_n \in k \right\}.$$

We have $v(\sum a_n t^n) = \min\{n : a_n \neq 0\}$. Then $\mathcal{O} = k[[t]] = \text{ring of power series in } t$. We get $m = \{f \in k[[t]] : f(0) = 0\}$ and we have $\mathcal{O}/m = k$.

Lemma 3.2.4. 1. $k[[t]]^* = \{\sum_{n=0}^{\infty} a_n t^n : a_0 \neq 0\}.$

- 2. k((t)) is a field and v extends to v_0 on k(t).
- 3. k[[t]] is the completion of k[t] w.r.t. v_0 .
- 4. k(t) is the completion of k(t) w.r.t. v_0 .

Proof. 1. Let $\sum_{n=0}^{\infty} a_n t^n \in k[[t]]$ with $a_0 \neq 0$. We solve for b_n such that

$$\left(\sum_{n=0}^{\infty} a_n t^n\right) \left(\sum_{n=0}^{\infty} b_n t^n\right) = 1.$$

- 2. By (i) we have $k((t)) = \operatorname{Frac} k[[t]]$. In particular k((t)) is a field containing k[t] so $k(t) \subset k((t))$. If $f(t) = t^n p(t)/q(t)$ with $p, q \in k[t]$ and $p(o), q(o) \neq 0$ then by (i) $p, q \in k[[t]]^*$ so $v(f) = n = v_0(f)$.
- 3. Let f_1, f_2, \ldots be a Cauchy sequence in k[[t]]. Then given r there exists N s.t. for all $m, n \geq N$ we have $f_m \equiv f_n \pmod{t^{n+1}}$. Let $c_r =$ coefficient of t^r in f^N . Then $f_n \to g$ where $g = \sum_{r=0}^{\infty} c_r t^r$ and therefore k[[t]] is complete. But $k[t] \subset k[[t]]$ is a dense subset, therefore k[[t]] is the completion of k[t].
- 4. Likewise.

3.3 The Teichmuller map

Definition 3.3.1 (Teichmuller representatives). Let k be complete w.r.t. a discrete valuation v. Suppose that the residue field k is finite, say |k| = q. Let $f(x) = x^q - x \in \mathcal{O}[X]$. Each $\alpha \in k$ is a simple root of $\bar{f} \in k[x]$. Hensel's lemma implies that there is a unique $a \in \mathcal{O}$ s.t. $a^q = a$ and $a \equiv \alpha \pmod{\pi}$. The $a \in \mathcal{O}$ constructed here is the **Teichmuller representative** for $\alpha \in k$.

Lemma 3.3.2. The map $[\cdot]: k \to \mathcal{O}$ given by $\alpha \mapsto a$ is multiplicative.

Proof. Let $\alpha, \beta \in k$ we have $([\alpha][\beta])^q = [\alpha]^q [\beta]^q = [\alpha][\beta]$ and $[\alpha][\beta] \equiv \alpha\beta \pmod{\pi}$ giving $[\alpha\beta] = [\alpha][\beta]$.

Example 3.3.3. $\mu_{p-1} \subset \mathbf{Z}_p^*$.

Theorem 3.3.4. Let K be field complete w.r.t. a discrete valuation v. If char K > 0 and k is finite then $K \cong k(t)$.

Proof. char(K) = char(k) = p and $|k| = q = p^l$. Let $\alpha, \beta \in k$ so we have $([\alpha] + [\beta])^q = [\alpha]^q + [\beta]^q = [\alpha] + [\beta]$ and hence $[\alpha + \beta] = [\alpha] + [\beta]$. Therefore the Teichmuller map $k \hookrightarrow K$ is a field embedding. By lemma 2.3

$$K = \left\{ \sum_{n \ge n_0}^{\infty} a_n \pi^n : a_n \in k \right\} \xrightarrow{\sim} k((t))$$

via the map $\pi \mapsto t$.

Dedekind domains

4.1 Dedekind domains

Definition 4.1.1 (Dedekind domains). A **Dedekind domain** is a ring R that is

- 1. an integral domain,
- 2. Noetherian,
- 3. integrally closed,
- 4. has all non-zero prime ideals maximal (Krull dimension ≤ 1).

Example 4.1.2. Any PID is a Dedekind domain.

The ring of integers of a number field is a Dedekind domain.

Theorem 4.1.3. Let R be a Dedekind domain. Then every non-zero ideal $I \subset R$ can be written uniquely as a product of prime ideals $I = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$.

Proof. Omitted.

Remark 4.1.4. If R is a PID then the above theorem follows from PID implying UFD.

Theorem 4.1.5. R is a DVR if and only if it is a Dedekind domain with exactly one non-zero prime.

Proof. \implies is clear since being a PID implies being Dedekind.

4.2 Localisation

Let R be an integral domain and $p \subset R$ a prime ideal. Let $S = R \setminus p$ and $S^{-1}R = \{\frac{r}{s}: r \in R, s \in S\} \subset \operatorname{Frac} R$. This is a local ring with maximal ideal $S^{-1}p$. R being Dedekind implies $S^{-1}R$ is, and hence $S^{-1}R$ is a DVR by the above theorem

Theorem 4.2.1. Let \mathcal{O}_K be a Dedekind domain, $K = \operatorname{Frac} \mathcal{O}_K$ and L/K a finite field extension. Then take \mathcal{O}_L to be the integral closure of \mathcal{O}_K in L, then \mathcal{O}_L is a Dedekind domain.

Proof. That \mathcal{O}_L is a domain is clear.

It is also clear that it is integrally closed.

To see it is Noetherian we suppose that L/K is a separable and write n = [L : K]. There are n distinct embeddings $\sigma_1, \ldots, \sigma_n \colon L \to \bar{K}$. The trace form $L \times L \to K$ given by $(x,y) \mapsto \operatorname{tr} xy$ is a non-degenerate K-bilinear form. (Using primitive element and expressing as a Vandermonde determinant) Let x_1, \ldots, x_n be a basis for L as K-vector space. Clearing denominators allows us to take $x_i \in \mathcal{O}_L$. Let y_1, \ldots, y_n be the dual basis w.r.t. the trace form. Let $z \in \mathcal{O}_L$ then $z = \sum_{j=1}^n \lambda_j y_j$ for some $\lambda_i \in K$, giving that $\lambda_i = \operatorname{tr}_{L/K}(x_i z) \in \mathcal{O}_K$. So $\mathcal{O}_L \subset y_1 \mathcal{O}_K + \cdots + y_n \mathcal{O}_K$. \mathcal{O}_K being noetherian gives that \mathcal{O}_L is a f.g. \mathcal{O}_K -module and so $a\mathcal{O}_L$ is noetherian too.

Now to see that all non-zero primes are maximal we fix P a non-zero prime of \mathcal{O}_L . Then taking $p = P \cap \mathcal{O}_K$ we have a prime of \mathcal{O}_K . We can find $x \in p \setminus 0$ so that $0 \neq N_{L/K}(x) \in P \cap \mathcal{O}_K = p$. \mathcal{O}_K being Dedekind gives p maximal and so $k = \mathcal{O}_K/p \hookrightarrow \mathcal{O}_L/P$ gives that \mathcal{O}_L/P is a f.d. k-algebra. But \mathcal{O}_L/P is an integral domain and so applying rank-nullity to x gives \mathcal{O}_L/P is a field.

Lemma 4.2.2. If R is a Dedekind domain and $K = \operatorname{Frac} R$ with an absolute value $|\cdot|$ on K with $|x| \leq 1$ for all $x \in R$ then $|\cdot| \sim |\cdot|_p$ for some prime p of R.

Proof. Lemma 1.1 implies $|\cdot|$ is non-archimidean. Let $p=\{x\in R: |x|<1\}$, this is a prime ideal. Localising at $R\smallsetminus p$ gives a DVR by Theorem 3.2 this has valuation v_p . Take $\pi\in p\smallsetminus p^2$ so we can write $x\in K^*$ as $x=u\pi^r$ where $|u|_p=1$ and $r\in \mathbf{Z}$. To prove $|\cdot|\sim|\cdot|_p$ we need to show that $|\pi|<1$ (which is true as $\pi\in p$) and also that |u|=1. We have $|u|_p\leq 1$ which gives $u\in S^{-1}R$ so u=r/s for $r\in R, s\in R$ we know $|r|\leq 1$ and |s|=1 so $|u|\leq 1$. We can do the same for u^{-1} to get |u|=1. \square

Theorem 4.2.3. \mathcal{O}_K is a Dedekind domain, $K = \operatorname{Frac} \mathcal{O}_K$, L/K finite field extension, \mathcal{O}_L integral closure of \mathcal{O}_K in L. Let $p \subset \mathcal{O}_K$ be a prime ideal, then $p\mathcal{O}_L = P_1^{e_1} \cdots P_r^{e_r}$ for distinct primes P_i . Then the absolute values on L extending $|\cdot|_p$ on K are (up to equivalence) $|\cdot|_{P_1}, \ldots, |\cdot|_{P_r}$.

Proof. \mathcal{O}_L is Dedekind. Take $x \in K^*$ we have $v_{P_i}(x) = e_i v_p(x)$ so $|\cdot|_{P_i}$ is equivalent to an absolute value extending $|\cdot|_p$. Now let $|\cdot|$ be any such absolute value on L, it will be non-archimidean by . $\mathcal{O}_K \subset \{x \in L : |x| \leq 1\}$ so taking integral closures in L we get $\mathcal{O}_L \subset \{x \in L : |x| \leq 1\}$. Lemma 3.4 gives that $|\cdot| \sim |\cdot|_P$ for some prime $P \subset \mathcal{O}_L$. But $|\cdot|$ extends $|\cdot|_p$ so $P \cap \mathcal{O}_K = p$ giving $P = P_i$ for some i.

Corollary 4.2.4. The non-archimidean places of a number field K are $|\cdot|_p$ for p a prime of \mathcal{O}_K .

Relative extensions

Definition 5.0.1 (Norms). Let V be a vector space over K. A **norm** on v is a map $\|\cdot\|:V\to\mathbf{R}$ s.t.

- 1. $||v|| \ge 0$ with equality iff v = 0.
- $2. \|\lambda v\| = |\lambda| \|v\|$
- 3. $||v + w|| \le ||v|| + ||w||$.

Theorem 5.0.2. Let K be complete $|\cdot|$ on K. If $\dim_K V < \infty$ then any two norms on V are equivalent and V is complete (w.r.t. any one of them).

Proof. WLOG $V = K^d$ and we will show every norm is equivalent to $\|\cdot\|_{\sup}$, the proof is via induction on d. For $d = 1\|v\| = c\|v\|_{\sup}$ for some c > 0 and the result is clear.

For general d we let e_1, \ldots, e_d be the standard basis, so

$$||x|| = \left\| \sum_{i=1}^{d} x_i e_i \right\| \le \left(\sum_{i=1}^{d} ||e_i|| \right) \max_{1 \le i \le d} |x_i|.$$

Let $S = \{v \in V | ||v||_{\sup} = 1\}$ (the equation implies that $||\cdot|| : S \to \mathbf{R}_{\geq 0}$ is continuous w.r.t. $||\cdot||_{\sup}$ but we don't know S is compact).

We now claim that there exists $\epsilon > 0$ s.t. $\|x\| > \epsilon$ for all $x \in S$. To see this suppose otherwise, i.e. that there exists a sequence $(x^{(n)})$ in S with $\|x^{(n)}\| \to 0$ as $n \to \infty$. For at least one $1 \le i \le d\|x^{(n)}\|_{\sup} = |x_i^{(n)}|$ for infinitely many n. WLOG this is i = d and we may pass to a subsequence and multiply through by $\lambda \in K$ with $|\lambda| = 1$ to ensure $x_d^{(n)} = 1$ i.e. $x^{(n)} = y^{(n)} + e_d$ for some $y^{(n)} \in \langle e_1, \dots, e_{d-1} \rangle$. But as $x^{(n)} \to 0$ w.r.t. $\|\cdot\|$ we have that $x^{(n)}$ is Cauchy and hence so is $y^{(n)}$ w.r.t. $\|\cdot\|$. This implies that $y^{(n)} \to y$ w.r.t. $\|\cdot\|$ (since K^{d-1} is complete by the induction hypothesis) for some $y \in \langle e_1, \dots, e_{d-1} \rangle$ but $y^{(n)} = x^{(n)} - e_d \to -e_d$ w.r.t. $\|\cdot\|$ therefore $y = -e_d \notin \langle e_1, \dots, e_{d-1} \rangle$ a contradiction, proving the claim.

Now let $x \in Vx \neq 0$ and $\|\cdot\|_{\sup} = |x_i|$ for some $1 \leq i \leq d$. $x/x_i \in S$ son $\|x/x_i\| > \epsilon$ implying $\|x\| > \epsilon |x_i| = \epsilon \|x\|_{\sup}$. This together with the above equation give that $\|\cdot\|$ and $\|\cdot\|_{\sup}$ are equivalent, K complete implies that V is complete w.r.t. $\|\cdot\|_{\sup}$. \square

Theorem 5.0.3. $(K, |\cdot|)$ complete L/K finite extension. If $|\cdot|_1, |\cdot|_2$ absolute values on L extending ab on K then $|\cdot|_1 = |\cdot|_2$ and L is complete w.r.t. $|\cdot|_1$.