253 Shers Xu 1205525 HW1 P VK-H1-VK-V 1 (a) = ht [1/2 ht] + ht O(ht) = Vt + O(ht) VK+1, L-V K-1, b = = 1/2 [V/L + Vx hr + 21/hr + Og(hr)] - Zhar [Kr - Vx hx + = har + OB (hx3)] $0 = 0 + 0 = \sqrt{x} + 0 \cdot (h_x^2)$ 01= a. 0, so Ext = Vt + O2 (ht) + a Vx + O1 (hx) = O2 (ht) + O1(h2) = O (ht, h2) Since V++aVx=0 Stability (w) VK, It) = aht. VK-1, L + VK, L - aht. VK+1, L So $e_{(j)}^{(j)} \exp(ijkhx) = \lambda e_{(j)}^{(j)} \exp[ij(khx)] + e_{(j)}^{(j)} \exp[ij(khx)] - \lambda e_{(j)}^{(j)} \exp[ij(khx)] + \sum_{\substack{a=aht\\2x}} (k+1)hx$ So $e_{(j)}^{(j)} = \lambda \exp(ijhx) + \sum_{\substack{a=aht\\2x}} (ijhx) + \sum_{\substack{a=aht\\2x}} (ijhx)$ $(\theta = 1 + 12)$ Son θ . $(\theta = 1 + 12)$ $(\theta = 1 + 12)$ when $\theta = 1 + 12$ unstable

ŀ

```
(6) () V12, 64 - VK, 6
                Valxx, ti) 1 +2 Vitl(x, ti) ht to Vitt (xx, ti). ht +O(ht
                  ( VkH, ltj - VKH, LH)
             = Zhx VK, L + Vx k, L hx + Ykktht + Zi Vxx kt ha + III Vxt K L hrht
                   tiVet Kult + 31 Vxxx his + 21 Vxxx his ht + 21 Vxtt hx ht + 31 Vxxx his ht
                are concelled = to [ Vx hx + Vxt hxht + 3] Vxxx hx + 21 Vxtt hx ht ]
                + O2(ha, ht ha, ht ha, ht) +
                       VK+1, 6-VK+, 6
                 = 2hx [ Vyx + Vx hx + \frac{1}{2} Vxxx h\frac{1}{2}] \ - \frac{1}{2hx} [ Vyx - Vx hx + \frac{1}{2} Vxxx h\frac{1}{2}] + \frac{1}{2hx} D_8(h\frac{1}{2}).
                 = hx [ Vx hx + = [ Vxxx h] + O3(h) =
            Now we combine everything:
               Ty= V+ + = Vtt ht + 5 Vttt ht + O(h)
02=2.02
                   +avx + を Vxt ht. + を Vxxx hま + な Yxtt ht + Oz (hま, ht h子, ht hx, ht) + Oz (hま)
0/3= 0 03
                  = (V++aVx) + = ht (Vtt +aVxt) + O4 (ht) + O5 (ht, ht)
                     06(h3, hthr. hthx, ht) (
             We know V++avx=0, V++ +avxt=(V++avx)+=0+=0
               So Txt = O4 (ht) + O6 (h3, ht h3, ht h3, ht h) + O(ht, h3)
```

253 Sheng Xu HWI P3 @ Sterbility For C-N. = aht / 1 + Vk. 1+ + aht / 1. 1+ = aht / + Vk. 1 - aht / 4hx / 2 + 1. 1+ - aht / 4hx / 2 + 1. 1+ - aht / 4hx / 2 + 1. 1+ - aht / 4hx / 2 + 1. 1+ - aht / 4hx / 2 + 1. 1+ - aht / 4hx / 2 + 1. 1+ - aht / 4hx / 2 + 1. 1+ - aht / 4hx / 2 + 1. 1+ - aht / 4hx / 2 + 1. 1+ - aht / 2 + 1. 1+ So $S(j) = \frac{1 - iz\lambda Sin\theta}{1 + iz\lambda Sin\theta}$ $(\lambda - \frac{aht}{4hr} > 0)$ 50 |3(j) = | unconditionally stable I Add one step jumped: - \ e(j) exp [ij(x+1)hr]+ e(j) exp[ij(khr]+\ e(j) exp[ij(k+1)hr]
= \ Q.(j) exp [ij(k+1)hr]+ e(j) exp[ij(khr]-\ e(j) exp[ij(k+1)hr]

Problem 2 Sum_up Sheng Xu

	Discontinuous	C ⁰	C∞
FSCT	Unstable	Unstable	Unstable
	05 0 03 02 03 04 05 08 07 0B 09 1	2 0 01 02 03 04 05 08 07 08 09 1	10"
1 st Upwind	Stable with dissipation	Stable with dissipation	Stable
CFL	0.5 0.4 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	09 00 00 00 00 00 00 00 00 00 00 00 00 0	08 04 02 03 04 05 08 07 08 09 1
1 st Upwind	Unstable	Unstable	Unstable
non-CFL	8 6 6 7 08 09 1	0.01 52 03 04 05 98 07 09 09 1	108
Crank-Nich	Stable with Dispersion	Stable with dissipation	Stable
olson	0.5 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9	09 00 00 00 04 03 00 00 01 02 03 04 05 06 06 07 08 08 07 08 09 08 08 08 08 08 08 08 08 08 08 08 08 08	08 06 04 05 08 07 08 09 1
BSCT	Stable with Dispersion	Stable with Dispersion	Stable
	05 04 03 04 05 06 07 00 09	030 000 000 000 000 000 000 000 000 000	08 04 05 08 07 08 09 1

Functions	Discontinuous		Co		C [∞]
	F=0	when -1≤ x <-0.5	F=2x+2	when x≤ -0.5	cos(3x)
		0≤ x < 0.5	F=-2x	when -0.5≤x<0	
	F=0.5	when -0.5≤ x < 0	F=2x	when 0≤x<0.5	
		0.5≤x<1	F=2-2x	when 0.5≤ x≤1	

Conclusion:

All stable methods exhibit certain dissipation with C^{∞} functions. FSCT and First Order Upwind method without CFL are never stable.

For Discontinuity and C^1 functions, both implicit methods(C-N and BSCT) exhibits dispersion, making pictures less smooth. BSCT is more effected in C^1 function, while C-N is more effected in Discontinuity function.