Parallel Stochastic Gradient Descent

Michael McKinsey, Phi Thuan Au, Yashas Salankimatt, Bora Oztekin

CSCE 435 - Parallel Computing

What is gradient descent?

Iterative numerical optimization process conducted by moving in the opposite direction of the gradient (direction of greatest change) until convergence

Sequential Algorithm

 Randomly initialize weights in linear equation

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_n x_n + b$$

 Iteratively update weights in the opposite direction of the gradient for each sample

Algorithm 1: Gradient Descent

Result: Write here the result Initialize at step t = 0 to $\mathbf{w}(0)$; for t = 0, 1, 2, ... do Compute the gradient; $\mathbf{g}_t = \nabla E_{in}(\mathbf{w}(t))$; $\mathbf{v}_t = -\mathbf{g}_t$; $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \mathbf{v}_t$;

 $w(t+1) = w(t) + \eta * sample loss gradient$

end

Parallel Algorithm

 Randomly initialize weights in linear equation

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_n x_n + b$$

 Iteratively update weights in the opposite direction of the gradient for the entire epoch

Algorithm 2: Parallel Gradient Descent

```
Result: Write here the result
Initialize at step t = 0 to \mathbf{w}(0);
for t = 0, 1, 2, ... do
     Each t here, unlike in sequential, has seen all samples;
     \mathbf{v_t} = 0;
     for s = 0, 1, 2, ... do
           Compute the gradient for all samples in parallel;
          \mathbf{g}_{ts} = \nabla E_{in}(\mathbf{w}(t));
         \mathbf{v}_{ts} = -\mathbf{g}_t;
          \mathbf{v}_t = \mathbf{v}_t + \mathbf{v}_{ts};
     end
     \mathbf{w}(t+1) = \mathbf{w}(t) + \eta \frac{\mathbf{v}_t}{|S|};
end
```

$$w(t+1) = w(t) + \eta * (grad 1 + grad 2 + grad 3 + ...)$$

Parallel Algorithm

- Introduces permutation invariance since there is no randomness to the sequence used to update the weights
 - Can stabilize training process and possibly provide a speedup to convergence

Message Passing Interface (MPI): Results (Strong Scaling)

(284k, 16 nodes, 4 cores/node, 8 GB/node, 0.01 LR, 15 Epochs)

Message Passing Interface (MPI): Results (Weak Scaling)

(~4.5k Each, 16 nodes, 4 cores/node, 8 GB/node, 0.01 LR, 15 Epochs)

Message Passing Interface (MPI): Analysis & Findings

- Based on the empirical results of the experimentation with the MPI implementation, the parallel implementation of Stochastic Gradient Descent scaled with benefit up to 64 processes.
- While each increase in process count resulted in a reduction in total time, the overhead of interprocess communication yielded diminishing returns starting at 8 processes.

CUDA: Results

Weak Scaling: Execution Time (s) vs. Problem Size

CUDA: Analysis & Findings

- Using a one-layer logistic regression mitigates the benefit from parallelism since there are not as many learnable parameters.
- With a very large dataset, different batching techniques may affect model performance. This may be an added benefit of using a GPU over a CPU.
- CUDA memory management for 2D arrays is quite difficult; therefore, we used the common practice of allocating large 1D arrays with i*N + j indexing.

Thank you!