1. Introduction

Welcome to Predicting Job Offer Probability project!

This is a tool which define the probability of a student receiving a job offer

2. Model Overview

I used Random Forest Classifier with (max_depth = 2, min_samples_split = 2, n_estimators = 100) to predict the likelihood for each student

3. Data Preparation

3.1. By checking the balance of this dataset shown that it's balanced according to the following chart:

3.2. By checking the dataset information and its features, determined that there are no missing values, but there is only **two duplicate** rows and one **categorical feature** (skills feature).

So to prepare this dataset for feeding it to the model I did the following:

- Remove duplicates
- Handle categorical feature using get_dummies function

 Applying feature scaling using StandardScaler package, so the all features will be in the same range which is good for training

4. Training Process

As the random forest algorithm has different parameters, I tried different values for the following parameters to get highest accuracy:

- Max Depth [2, 4, 8, 16, 32, 64]
- Min Samples split [2,10, 30, 50, 100, 200, 300, 700]
- N estimators [100,200,400,500]

After comparison between each values and plotting the results of these values as following:

1. Max Depth values' results plotting shown that best value in validation is (2)

2. Min Sample Split values' result shown that best value in validation = (2).

3. N_estimators values' results shown that the best value in validation = 100

So I fit the model using the following parameters values:

- max_depth: 2

- min_samples_split: 2

- n_estimators: 100

5. Evaluation

- With this model and its parameters, I got accuracy = 51.35%
- According to this accuracy , I used **KFolds** method to evaluate the model and got higher accuracy but the accuracy increased for $0.05\,\%$ ONLY (Got accuracy = 51.4%)

6. Conclusion

According to K-fold method there is an **underfitting**, this is also shown in the graphs that applying different parameters in random-forest such as (min_samples_split, n_estimators, ..). Those graphs show that the accuracy of the training set is higher than the validation set which tells us that there is an **underfitting**. Future work we can use less number of features to avoid underfitting