valid argument form tre ger any p and q Modus Panens p n (p -> q) -> q premised P -> a P Vantology
i. 9 3 conclusion (never gaise) Argument · seque of proposito - propositions are called premises - last statement is the conclusion - voild is permised imply conclusion

· argument forces - abel no mather what we put in it · plerere rue are simple argunent Jomes Inference role Stepa P -> 9 Stepz Deguner Your Stepn $(r N S) \rightarrow q$. . Conclusion

Premises Assumption of p -> (MS) ((1 s) - q) Modus Poners $(\Gamma \cap S)$ Modus Peners $\left(\rho_{\Lambda}\Lambda\rho_{L}\Lambda-\Lambda\rho_{n}\right)\rightarrow q$

Modus tollers Hypotheneal Sylogism

Addition Simplification PNG Report

Universal instantation A 20 (20) 2 - P(c) Universal generalization P(c) for an arbitry c i. Ve P(x) Existential generalization P(C) for some element C 3 20 P(SC)

Mattemathical proof prover:	
: Iroth table	
Theorem: prover:	
- de la milo	
CI S (MMS	
- de Jamilo - axioms - other theorems - vleo of inference	
Olo Col morere o	
Axiam: giver on me	

Informal	Cush	3		
-> more	vors			
			11	
Lenma:	" help	ma hee	erem"	
Corollory:				
	-			
Conseche				

Prove Measur toprue toe (P(sc) -> Q(x)) prive P(c) - Q(c) for an orbitrary c. then U. Generalisation -> 7x

Pramy p->q · torial pool il we know q hue · Vacuous proof if pis false

P -> 9 Proof by contraposition 79-27 Proof by contradiction $(= \neg (p \neg q))$ Assume phog to show pog then Show theat $(p \land \neg q) \rightarrow (r \land \neg r)$ Imposible. e.g n2 is an odd wreger then nis odd @) n2 is an odd integer and n is even. (2) p2 = 2k.41 n= 2k1 3 n2=4k/2

Proof by cores (pr Vpz V... Vpn) -> q use the gast that (p, Vp2 V... Vpn) -> g = (P1-)a) N (P2-)g) N (Pn-)g)

|xy| = |x1.6 x/3), 0 Car be He serve x > 0 / y < 0x (0, 4)0 x(0,y(0)

(N_{N}) r Q !	XOIM		Δ								
_														
_		\		\wedge										
()	(100\	2 (X	290	Mc	her	le						
		O		0	l				_					
/-		7		\bigcirc		()		$\overline{}$		01	1			
	(×)	She	1ll	1	700	30			DC	(se j			
	_													
	_		$\sim 10^{-1}$		(1,0		2,0	\sim 0	\sim	9	مرماء			
	9	_	1621		100	-,), 1		٥٤	- P	017	<i>S</i> 10	110	ı
				1					1				- (_\
	M	N	onc	con h	nce	1 re	_	(She	, ,	7	$\int_{\mathcal{L}}$	PC	\mathfrak{L}'
								(,				C) (
								16	LIU:	w sh		CO)(h c	\ \
	,				0							C) I C)
	hse	en	lp	DS	لان									
				V										
		\		dena	n		0	(DC)						
) (_ < 1	NO W			1,5		/					
		ı						\ \	G					
	(2)) (Un'i (jær	M	1	()	1 (ر	1 4	1				
				V					_	-)				