Figure 1.

UMP

Figure 2.

Figure 3

Figure 4.

Control.

Row A

Compound B.

1 uM

16 uM

50 uM

100 uM

500 uM

Row B

r ...

Figure 6.

HPLC profile of soybean cells treated with ¹⁴C-carbamyl aspartate alone (control) for 48 hours.

HPLC profile of soybean cells treated with ¹⁴C-carbamyl aspartate plus 100 uM compound B for 48 hours.

Figure 7.

Figure 8.

Figure 9.

Conversion of 14C-orotate to UMP 30 MAT in corn shoot tissue with increasing concentrations of PRPP

Figure 10.

Figure 11.

Inhibition of the conversion of 14C-orotate to UMP with increasing concentrations of barbiturate. 0.27 85.00 80.00 65.00 Inhibition of the conversion of 14C-orotate to UMP 2 with increasing concentrations of pyrazole aldehyde. 0.27 50.00 10.00 00.09 40.00 30.00 20.00 moitididni %

Figure 12.

Figure 13.

Comparing amount of 14C-DHO conversion to orotate 30 MAT in fresh soybean microsomal prep.

Comparing amount of 14C-DHO converted to carbamoyl aspartate between treatments 30 MAT.

Figure 14.

Figure 15.

Figure 16.

Table 1

_

	Scientific Name	Common Name	Bayer Code
	Abutilon theoprasti	velvetleaf	АВИТН
	Ambrosia artemisiifolia	common ragweed	AMBEL
Broadleaf weeds	Galium aparine	catchweed bedstraw	GALAP
	Sesbania exaltata	hemp sesbania	SEBEX
	Solanum nigrum	black nightshade	SOLNI
	Avena fatua	wild oats	AVEFA
	Bromus tectorum	downy brome	BROTE
Grass weeds	Digitaria sanguinalis	large crabgrass	DIGSA
	Echinochloa crus-galli	barnyardgrass	вснсе
	Setaria viridis	green foxtail	SETVI
	Sorhum halapense (seed-ling)	johnsongrass	SORHAS
	Glycine max	soybean, Williams var.	GLXMAW
	Orysa sativa	rice, Tebonnet var.	ORYSAT
Crops	Triticum aestivum	winter wheat, Riband var.	TRZAWR
	Zea mays	field corn	ZEAMX

Table 2.

Concentration of the herbicide (μM)

Treatment	500	250	125	63	31	16	7.8	3.9
Compound B	8	70	29	29	50	50	25	25
Compound B + 100 µM Uracil	50	30	3C	0	0	0	0	0
Compound B + 100 µM Uridine	29	50	30	т.	0	0	0	0
Compound B + 100 µM UMP	29	50	30	H	0	0	0	0
Compound B + 100 µM AMP	8	70	29	5C	25	5C	2C	5C
Compound B + 100 µM Adenine	8	7C	29	5C	25	5C	25	50
Compound B + 100 µM Cytosine	8	7.0	9	5C	50	25	25	25
Compound B + 100 µM Guanine	80	70	29	29	50	2C	25	50
Compound B + 100 µM Thymine	8	7C	29	29	25	5 C	25	50
Compound B + 100 µM Xanthine	8	70	29	29	2 C	5C	50	5C

Table 3 Percent Inhibition

			% inhil	inhibition	
Compound	structure	GH SETVI injury (1 kg/ha post)	Miniscreen Hydroponic injury (re- xylem in- yersal)	1	uracil re- versal
control		0	0	0	
barbiturate		NT	0	L _N	
Д		70	(0) 09	70	YES
U	ZI O ZI	09	80 (50)	75	PARTIAL

	r e						
	uracil re versal		YES		YES	YES	
inhibition	Hydroponic xylem in-jury.	bition	9		25	65	
lidni %	reen (re-	s inhil	40 (0)		(0)	55 (0)	
	GH SETVI injury (1 kg/ha post)				50	50	
	structure			HON	H ₃ C _N CH ₃	 CH ₃	OH OH OH
	Compound		D		ជា	Ēt,	

	uracil re- versal	ON	ON
% inhibition	Hydroponic xylem in- jury.	20	0
idni %	Miniscreen Hydroponic injury (re- xylem inversal) jury.	0	0
	GH SETVI injury (1 kg/ha post)	0	0
	structure	NT O Z Z	CH ₃ Cl CH ₃ Cl CH ₃ Cl CH ₃
	Compound	ъ	н

			s inhi	% inhibition	
Compound	structure	GH SETVI injury (1 kg/ha post)	Miniscreen Hydroponic injury (re- xylem in- versal)	Hydroponic xylem in- jury.	uracil re- versal
	N N N N N N N N N N N N N N N N N N N	0	0	0	ON
	HNOH	0	0	0	NO

Miniscreen data in parenthesis is the extent of uracil reversal at 50 uM tested compound. Notes: NA denotes that compound was not tested.

Table 4
Percent Inhibition

Compound	structure	\$ inhibiti- \$ inhibi- tion tion (350 μ) tion (350 μ) Miniscreen on SETVI activity	-	uracil re- versal
ধ	ID N N N N N N N N N N N N N N N N N N N	70	70	YES
×	AT O THE PERSON NAMED IN T	09	80	YES
1	E E V	0.9	08	YES

% inhibiti- % inhibi- uracil re-	tion @50 μM versal GH activity Miniscreen on SETVI	CH ₃ S50 YES	CI 60 80 YES	CH ₃ 10 YES
structure			ZIO	
Compound		Σ	Z	0

uracil re- versal	YES	YES	YES
% inhibi- u tion @50 μM v Miniscreen activity	X 80	08	70
% inhibiti- % tion tion GH activity N on SETVI	30	40	40
structure	ZI O ZI	T O CH3	O= [†] Z O ZI O Z Z
Compound	Ф	Q	_α

uracil re- versal	YES	YES
% inhibi- tion @50 µM Miniscreen activity	0 8	70
% inhibiti- tion GH activity on SETVI	50	20
structure	ZI O ZI	HO NT O
Compound	ω	E⊣

TO .		inhibiti- on activity SETVI	* inhibi- tion @50 µM Miniscreen activity 80 60	uracil reversal YES YES YES
	ZI O ZI ZI			

	structure	% inhibiti-		uracil re-
			Lion was km Miniscreen activity	
	F	70	50	YES
	N N N N N N N N N N N N N N N N N N N			
	NT NH OH	50	70	YES
	NH ONH	0	30	YES