Spike inference from calcium imaging using sequential Monte Carlo methods

Joshua Vogelstein¹ and Liam Paninski²

¹joshuav@jhu.edu, Johns Hopkins University ²liam@stat.columbia.edu, Columbia University

Reference: Vogelstein JT, Watson BO, Packer AM, Yuste R, Jedynak B, Paninski L. Spike inference from calcium imaging using sequential Monte Carlo methods. Biophysical Journal. *in press*.

Support for JTV was provided by NIDCD DC00109.

LP is supported by an NSF CAREER award and by an Alfred P. Sloan Research Fellowship.

background

- the neural signal of interest is a spike train, i.e., a sequence of binary events, $n_t \in \{0, 1\} \forall t \in (0, T)$
- the observed signals are nonlinear and non-Gaussian functions of the spike trains
- often, the relationship between some external covariates (e.g., a movie) and the resulting spike train is of interest
- one could simultaneously observe an ensemble of neurons using new imaging technologies
- given ensemble spike trains, one would like to learn the connection matrix governing activity
- learning the connection matrix of ensembles of neurons has remained elusive, as neither the experimental technology nor the analytical tools were available...until now

definition of terms

States	
$\overline{}$	fluorescence
$[\mathrm{Ca}^{2+}]_t$	intracellular calcium concentration
n_t	spike
Parameters	
α	scale
eta	offset
σ_F	measurement noise scale
a	"decay" of calcium
A	jump size due to spike
d	baseline of calcium
σ_c	calcium noise scale
λ	probability of spiking
Other	
$S(\cdot)$	Hill Equation: $S(x) = x^m/(x^m + k_d)$
$arepsilon_{\cdot,t}$	standard normal random variable
Δ	time step size
$\mathcal{B}(n_t;\lambda)$	Bernoulli random variable, $n_t = 1$ w.p. λ and 0 o.w.
T	total number of steps

a simple model

$$F_t = \alpha S([\operatorname{Ca}^{2+}]_t) + \beta + (S([\operatorname{Ca}^{2+}]_t) + \sigma_F)\varepsilon_{F,t}$$
$$[\operatorname{Ca}^{2+}]_t = a[\operatorname{Ca}^{2+}]_{t-1} + An_t + d + \sigma_c\sqrt{\Delta}\varepsilon_{c,t}$$
$$n_t \sim \mathcal{B}(n_t; \lambda\Delta)$$

a simple schematic

goals and approach

• Given the above model, we would like to find $P(n_t|F_{0:T},\theta) \quad \forall t \in (0,T) \text{ and}$

$$\widetilde{\theta} = \underset{\theta}{\operatorname{argmax}} \int P(n_{0:T}|F_{0:T}, \theta') \ln P(n_{0:T}, F_{0:T}|\theta) dn_{0:T}$$
where $\theta = \{\alpha, \beta, \sigma_F, a, d, A, \sigma_c, \lambda\}$

- we use a forward-backward smoother to estimate the E-step of an EM algorithm, and gradient ascent to maximize all the parameters in the M-step.
- we develop an optimal one observation ahead sampler, $P_{\theta}(\{n, [\operatorname{Ca}^{2+}]\}_t | \{n, [\operatorname{Ca}^{2+}]\}_{t-1}, F_t)$ to sample efficiently.

particle filter outperforms optimal linear filter in simulations

particle filter outperforms optimal linear filter in real data with ground truth

a less simple model: intermittent observations, parametric neural model

$$F_t = \alpha S([\operatorname{Ca}^{2+}]_t) + \beta + (S([\operatorname{Ca}^{2+}]_t) + \sigma_F)\varepsilon_{F,t}, \quad t \in \mathcal{T}_o \subseteq (0, T)$$
$$[\operatorname{Ca}^{2+}]_t = a[\operatorname{Ca}^{2+}]_{t-1} + An_t + d + \sigma_c \sqrt{\Delta}\varepsilon_{c,t}$$
$$n_t \sim \mathcal{B}(n_t; f(\mathbf{k}'\mathbf{x}_t))$$

- observations occur at a subset of time steps
- $f(\cdot)$ is a link function that is both convex and log-concave
- k is a linear filter
- x_t is the time-varying input to the neuron, including external covariates and spike histories

a less simple schematic

superresolution: array of results upon subsampling in temporal domain

main result on real data with ground

an even less simple model: an ensemble of N neurons

$$F_{i,t} = \alpha_i S([\operatorname{Ca}^{2+}]_{i,t}) + \beta_i + (S([\operatorname{Ca}^{2+}]_{i,t}) + \sigma_{i,F}) \varepsilon_{F_i,t}$$

$$[\operatorname{Ca}^{2+}]_{i,t} = a_i [\operatorname{Ca}^{2+}]_{i,t-1} + A_i n_{i,t} + d_i + \sigma_{c_i} \sqrt{\Delta} \varepsilon_{c_i,t}$$

$$n_{i,t} \sim \mathcal{B}(n_{i,t}; f(\mathbf{k}_i' \widetilde{\mathbf{x}}_t))$$

• note that $\tilde{\boldsymbol{x}}_t$ is augmented relative to \boldsymbol{x}_t , as it also includes the impact of other neurons (and \boldsymbol{k}_i reflects this change as well)

why is this hard

- this is a high-dimensional inference problem (the number of hidden states scales linearly with N)
- ullet we are interested in inferring the connection matrix, where the # of elements in this matrix scales quadratically with N
- we use SMC to generate a good proposal distribution in the context of a blockwise gibbs-metropolis sampler
- ullet we condition samples on both previous spiking history of neuron i, and future spiking of all other neurons
- \bullet all computations are recursive, so our algorithm is linear in T
- probability of acceptance tends to 1 as the number of particles increases and/or coupling terms are weak
- other people have been thinking along similar lines (e.g., Neal et al. 2003; Andrieu et al., submitted)

pseudocode for a SMC Metropolis

- 1: for each neuron do
- 2: generate N-1 particles, sampling according to $P(\cdot|\{n, [\operatorname{Ca}^{2+}]\}_{i,t-1}^{(l)}, \{n, [\operatorname{Ca}^{2+}]\}_{i,t-1}, F_t)$
- add current path to population of particles to obtain a restricted space and compute appropriately normalized transition probabilities
- 4: use standard forward-backward sampling algorithm to sample z from this augmented space
- 5: compute q(z), probability of sampling z using forward-backward recursion
- 6: compute probability of acceptance r = [q(y)(p(z)]/[q(z)p(y)] where y is the current path, and p(z) is the posterior
- 7: end for

summary

- we use particle filters to infer spike trains from nonlinear and non-Gaussian observations of neural activity
- we can incorporate a parametric model governing spiking activity to refine our inferences
- using this model, we can obtain superresolution
- all the parameters may be estimated using a very short sequence of observations (and does not ever require obtaining ground truth)
- in weakly-coupled ensembles of neurons, we propose a novel scheme to infer the connection matrix, in which the sampler takes advantage of the spike trains from all the neurons