We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let $X \subseteq V(G)$ be a subset given by Lemma 2.4. We pass on to $\Gamma = G[X]$. The graph Γ has $N \ge \alpha n/128$ vertices, and for $\beta = \alpha n/(8N)$ and d = t/4, the following holds:

- (i) Γ is a (β, d) -expander, and
- (ii) for every partition $V(\Gamma) = R \cup A \cup B$ with $|R| \le \alpha N/16$ and $|A|, |B| \ge \beta N/4$, there is an edge in Γ between A and B.

Let $K = 25/\alpha^2$ (the constant in the upper bound on the size of T in Lemma 3.3). Consider the family \mathcal{P} of all ordered partitions $V(\Gamma) = D \cup \left(\bigcup_{i=1}^k W_i\right) \cup U$, where $k \geq 0$ (this can be a different number for different partitions), such that the following holds:

- (P1) For every $i \in [k]$: $|W_i| = \sqrt{\frac{2KN \log N}{d}} =: \ell$ and $\Gamma[W_i]$ is connected,
- (P2) for every two distinct $i, i' \in [k]$, there is an edge in Γ between W_i and $W_{i'}$, and
- (P3) $|D| \le \alpha N/(32d)$ and $|N_{\Gamma}(D) \cap U| < d|D|/2$.

The first two properties imply that K_k is a minor of Γ .

By taking $D = \emptyset$, k = 0 and $U = V(\Gamma)$, we have that \mathcal{P} is not empty. Consider a partition $V(\Gamma) = D \cup \left(\bigcup_{i=1}^k W_i\right) \cup U$ in \mathcal{P} which maximises |D|, tie-breaking by taking one which further maximises k. We prove that then necessarily

$$k \ge \frac{\alpha N}{64\ell} =: q.$$

As $q = \Theta(\sqrt{nt/\log n})$, this establishes the theorem. Suppose, towards a contradiction, that this is note the case. That is, k < q. Then

$$|W| = \left| \bigcup_{i=1}^{k} W_i \right| < \alpha N/64,$$

from which we conclude $|U| \geq N/2$, with room to spare.

The property (P3) in the proof of Theorem 1.4 is identical to the one used here, and the only property of W used in the proof of Claim 3.1 and Claim 3.2 is the upper bound on |W|, which is identical to the one used here. Therefore, same as in the proof of Theorem 1.4, the following holds:

- For every $i \in [k]$ we have $|N_{\Gamma}(W_i) \cap U| \ge d|W_i|/2$, and
- $\Gamma[U]$ is a connected $(\beta/2, d/2)$ -expander.

Now we can finish the proof using Lemma 3.3. For each $i \in [k]$, set $U_i = N_{\Gamma}(W_i) \cap U$. Then $|U_i| \geq d\ell/2 =: s$. For $k < i \leq q$, take $U_i \subseteq U$ to be an arbitrary set of size s. Apply Lemma 3.3 with sets U_1, \ldots, U_q , which we indeed can do as qs > 2|U| and $|U|/s > \log |U|$, where the former follows from $d \geq t_0(\alpha)/4$ and the latter follows from $d \leq \sqrt{n}$. We obtain a subset $T \subseteq U$ of size

$$|T| \le K \frac{|U|}{s} \log \left(\frac{qs}{|U|} \right) \cdot \frac{\log |U|}{\log d} \le \ell,$$