Estudio Experimental de la Ley de Hooke

Objetivo

- 1. Demostrar que la elongación de un resorte es directamente proporcional a la fuerza aplicada.
- 2. Deducir la ecuación de la Ley de Hooke a partir de los datos experimentales.

Materiales

- Un resorte con constante elástica conocida o desconocida.
- Porta pesas.
- Conjunto de masas calibradas (50 g, 100 g, 200 g, etc.).
- Regla o cinta métrica (precisión de 1 mm).
- Soporte universal con base.
- Gancho para sujetar el resorte.
- Cronómetro (opcional, para explorar oscilaciones adicionales).

Marco teórico breve

La Ley de Hooke establece que, dentro del límite elástico, la elongación Δx de un resorte es directamente proporcional a la fuerza F aplicada:

$$F = k \cdot \Delta x$$

donde:

- F: Fuerza aplicada (en Newtons).
- k: Constante elástica del resorte (en N/m).
- Δx : Elongación del resorte (en metros).

El propósito de esta práctica es comprobar esta relación experimentalmente y determinar k.

Procedimiento

1. Montaje inicial:

- o Ensambla el soporte universal y cuelga el resorte del gancho.
- $\circ~$ Fija la regla verticalmente junto al resorte para medir su longitud inicial (L_0) sin carga (entiéndase con el porta pesas colocado pero sin masas) y anota su valor.

2. Carga progresiva:

- o Coloca el porta pesas en el extremo inferior del resorte.
- \circ Añade una masa calibrada al portapesas y mide la nueva longitud del resorte $L_{_1}.$ Calcula la elongación $\Delta x=L_{_1}-L_{_0}.$
- \circ Repite el procedimiento agregando masas progresivamente, asegurándose de registrar la masa total, la longitud L_1 y la elongación Δx para cada caso.

3. Fuerza aplicada:

• Calcula la fuerza F ejercida para cada masa utilizando la relación $F = m \cdot g$, donde $g = 9.81 \, m/s^2$.

4. Límite elástico:

 Asegúrate de no sobrepasar el límite elástico del resorte (observa si no regresa a su posición inicial al retirar las masas).

Tabla de datos

Masa	Fuerza (F=m·g)	Longitud	Elongación (Δx=L−L0)

Análisis de resultados

1. Gráfica fuerza vs. elongación:

- Representa gráficamente F (eje y) vs. Δx (eje x).
- o Ajusta los datos a una línea recta y determina su pendiente.

2. Cálculo de la constante elástica:

• La pendiente de la gráfica $(F/\Delta x)$ corresponde a la constante elástica del resorte (k).

3. Comprobación de proporcionalidad:

• Verifica si los datos experimentales confirman la relación lineal $F = k \cdot \Delta x$.

Conclusiones

- Evalúa si los resultados son consistentes con la Ley de Hooke.
- Determina el valor experimental de k y compáralo con el valor teórico (si se conoce).
- Explica posibles errores experimentales (lecturas imprecisas, deformación permanente del resorte, etc.).

Preguntas para reflexionar

- 1. ¿Qué ocurre si se sobrepasa el límite elástico del resorte
- 2. ¿Se te ocurre alguna otra?