Mathematik für Biologie

Uni Bern

HS 2015

Contents

1	Erste Woche		
	1.1	Lineares Wachstum	1
	1.2	Exponentielles Wachstum	3

1 Erste Woche

1.1 Lineares Wachstum

Bsp: Ein Baum wächst 20cm pro Jahr.

rekursiv (indirekte Berechnung): H(x) = H(x-1) + 20

explizit (direkte Berechnung): $H(x) = 20 \cdot x$

 $x, n \in \mathbb{N}$, wobei H(x) die Höhe des Baums nach x Jahren in cm.

 $H_n = H(n) = 20 \cdot n$

Allgemeines diskretes lineares Wachstums Modell (WM):

rekursiv: $N_n = N_{n-1} + a$

explizit: $N_n = N_0 + a \cdot n$

 $a \in \mathbb{R}, n \in \mathbb{N}$

a > 0: N_n zunehmend

a < 0: N_n abnehmend

a = 0: N_n konstant

 $N: \mathbb{N} \to \mathbb{R}$ Folge (ist eine Funktion / Abbildung)

Vom rekursiven zum expliziten:

$$N_{n+1} = N_n + 1a = N_{n-1} + a + a = N_{n-1} + 2a = N_{n-2} + a + 2a = N_{n-2} + 3a = \dots = N_0 + (n+1)a$$

Beispiel (Dolbearsche Gesetz)

$$T_n = 1/7n + 40/9$$

 T_n : Temperatur gemessen in °C

n: die Anzahl der Zirplaute in einer Minute

$$n = 7$$
: $T = \dots = 5.\overline{4}$

$$n = 14$$
: $T = \dots = 6.\overline{4}$

...

$$n = 105$$
: $T = \dots = 19.\overline{4}$

Bereich: 5°C - 30°C

Beispiel: Gewicht einer Insektenlarve zu jeder vollen Stunde:

$$G(n) = 0.01n + 1, n \in \mathbb{N}$$

$$G(t) = 0.01t + 1, t \in \mathbb{R} +$$

Allgemeines kontinuierliches lineares Wachstums Modell (WM):

$$N_t = N_0 + t \cdot a, t \in \mathbb{R} +$$

Wachstumsrate (Wachstum relativ) zur Gesamtgrösse)

diskret:
$$r_n = \frac{N_{n+1} - N_n}{N_n} = \frac{a}{N_n} = \frac{a}{N_0 + n \cdot a}$$

$$N_{n+1} - N_n = \frac{N_{n+1} - N_n}{(n+1) - n}$$

kontinuierlich:
$$r = \frac{N'(t)}{N(t)} = \frac{(N_0 + t \cdot a)'}{N_0 + t \cdot a} = \frac{a}{N_0 + t \cdot a}, t \in \mathbb{R} +$$

$$\frac{N(t{+}\Delta t){-}N(t)}{(t{+}\Delta t){-}t}$$

1.2 Exponentielles Wachstum

Beispiel (Zellteilung)

Eine Zelle teile sich zweimal pro Stunde

N(n): die Anzahl Zellen nach n Stunden

$$N_0 = 1, N_1 = 4, N_2 = 16, N_3 = 64, \dots$$

rekursiv: $N_n = 4N_{n-1}, n = 1, 2, 3, 4, ...$

explizit:
$$N_n = 4(4N_{n-2}) = 4^2N_{n-2} = \dots = 4^nN_0 = 4^n$$

Allgemeines diskretes exponentielles Wachstums Modell (WM):

rekursiv: $N_n = b \cdot N_{n-1}, b \in \mathbb{R}+$

0 < b < 1: N_n abnehmend

b > 1: N_n zunehmend

b = 1: N_n konstant

 $b=\frac{N_n}{N_{n-1}}\frac{\leftrightarrow y}{\leftrightarrow x}$ Gleichung einer Gerade durch den Ursprung mit Steigung b

explizit: $N_n = b^n \cdot N_0, b \in \mathbb{R}+$

$$log(N_n) = log(b^n \cdot N_0)$$

$$log(N_n) = log(b^n) + log(N_0)$$

$$log(N_n) = n \cdot log(b) + log(N_0)$$

In der log Skala erscheint exponentielles Wachstum linear

Zellteilung:

$$log(N_n) = n \cdot log(4) + log(1)$$

$$log(N_n) = n \cdot log(4)$$