Classical Mechanics TFY 4345 - Exercise 7

1. Inertia tensor.

A very thin rectangular slab has been placed in the xyz-coordinate system such that the origin is in one of the slab corners and the sides are along the x- and y-axes. The corresponding side lengths are a and b. Since the slab is very thin, we can assume that z = 0 throughout.

- (a) Evaluate the individual elements of the inertia tensor.
- (b) Set a = b and solve the principal moments of inertia and the corresponding principal axes.

2. Rotating tilted slab (Exam Aug. 2018)

A very thin rectangular slab (see figure) rotates with an angular velocity ω around its diagonal. The side lengths of the slab are a and b and the mass is m. The principal moments of inertia are $ma^2/12$, $mb^2/12$ and $m(a^2+b^2)/12$; the principal axes 1 and 2 go along the same directions as slab edges and 3 is perpendicular to the slab plane and goes through the slab center.

- (b) What is the angle between L and ω ?
- (c) What is the rotational kinetic energy T_{rot} ?

3. Cone rolling on a plane (Exam Dec. 2016).

Figure: A solid cone rolls without slipping on a flat horizontal plane (xy-plane). The momentary line of contact with the plane is OA. The angle between the x-axis and the line OA is φ . The rolling induces rotation of the cone around the principal symmetry axis of the cone (x_3 - axis in the figure). Dimensions of the cone: height (H), radius (R) and cone half-angle (α). Notice that these are related by: $\frac{R}{H} \tan (\alpha)$.

We shall consider the motion of a solid cone that is rolling on surface (xy-plane) without slipping.

- a) The center of mass of the cone is situated on the symmetry axis x_3 , at a distance ℓ from the origin O. Calculate the velocity of the center of mass, $V_{\rm cm}$, as a function of ℓ , α and $\dot{\varphi}$. Here $\dot{\varphi}$ is the time derivative of φ .
- b) Explain why the angular velocity vector $\vec{\omega}$ of the rolling cone is directed along the line OA. Show that $|\vec{\omega}| = \frac{\cos{(\alpha)}}{\sin{(\alpha)}} \dot{\phi}$.
- c) Find the components of $\vec{\omega}$ along the principal axes (symmetry axes) of the cone.
- d) The principal moment of inertia of the cone (for rotation around the point O) is: $I_1 = I_2 = \frac{3}{20} m(R^2 + 4H^2)$ and $I_3 = \frac{3}{10} mR^2$, where m is the mass of the cone. Calculate the kinetic energy of the cone as a function of m, H, α and ϕ .