BST Application Range Tree 邓俊辉 deng@tsinghua.edu.cn

顺藤摸瓜

Coherence

❖ For each query, we

- need to repeatedly search

DIFFERENT y-lists,

- but always with

the SAME key

BBST<BBST<T>> --> BBST<List<T>>

- ❖ Each y-search is just
 - a 1D query without further recursions
- ❖ So it not necessary
 - to store each canonical subset
 - as a BBST
- ❖ Instead, a sorted y-list simply works

Links Between Lists

❖ We can **CONNECT** all the different lists

into a **SINGLE** massive list

❖ Thus, once a parent y-list is searched,

we can get, in O(1) time,

the entry for child y-list by

following the link between them

Using Coherence

- ❖ To answer a 2D range query, we will
 do an ∅(logn) search
 - on the y-list for the LCA
- ❖ Thereafter, while descending the x-tree, we can

keep track of the position of y-range

in each successive list in O(1) time

❖ This technique is called

Fractional Cascading

❖ For each item in A_v,

we store two pointers to

the item of NLT value

❖ Hence for any y-query with q_v,

in A_L and A_R resp.

once we know its entry in $A_{\rm V}$, we can determine its entry in either $A_{\rm L}$ or $A_{\rm R}$ in O(1) additional time

Construction By 2-Way Merging

- ❖ Let V be an internal node in the x-tree
 with L/R its left/right child resp.
- **\diamondsuit** Let A_v be the y-list for v and A_L/A_R be the y-lists for its children
- ❖ Assuming no duplicate y-coordinates, we have
 - A_{ν} is the disjoint union of A_{L} and A_{R} , and hence
 - A_v can be obtained by merging A_L and A_R (in linear time)

Complexity

- ❖ An MLST with fractional cascading is called a range tree
- \diamondsuit A y-search for root is done in $O(\log n)$ time
- ❖ To drop down to each next level, we can get, in O(1) time, the current y-interval from that of the prior level
- ❖ Hence, each 2D orthogonal range query
 - can be answered in $\mathcal{O}(r + \log n)$ time
 - from a data structure of size $\mathcal{O}(n \cdot \log n)$,
 - which can be constructed in $\mathcal{O}(n \cdot \log n)$ time

Beyond 2D

Unfortunately, the trick of fractional cascading
can ONLY be applied to

the LAST level the search structure

- \clubsuit Given a set of n points in \mathcal{E}^d , an orthogonal range query
 - can be answered in $\mathcal{O}(r + \log^{d-1} n)$ time
 - from a data structure of size $\mathcal{O}(n \cdot \log^{d-1} n)$,
 - which can be constructed in $\mathcal{O}(n \cdot \log^{d-1} n)$ time

