Permit Numbers 36644, PSD-TX-903, and N-007

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	aminant <u>Emission Rates *</u>	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
N-1	Recycle Ethane Cracking Furnace	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	24.16 1.12 23.25 1.51 0.57	79.37 4.89 101.85 6.61 2.51
N-2	Fresh Feed Cracking Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	35.34 1.61 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68
N-3	Fresh Feed Cracking Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	35.34 1.61 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68
N-4	Fresh Feed Cracking Heater	NO_{x} (7) SO_{2} (7) CO (7) PM_{10} (7) VOC (7)	35.34 1.61 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68
N-5	Fresh Feed Cracking Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	35.34 1.61 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
N-6	Fresh Feed Cracking Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	35.34 1.61 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68
N-7	Fresh Feed Cracking Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	35.34 1.61 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68
N-8	Fresh Feed Cracking Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	35.34 1.61 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68
N-9	Fresh Feed Cracking Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	35.34 1.61 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68
N-10	Catalyst Regeneration Effluent	VOC (7)	<0.001	<0.001
N-11	Reactor Regeneration Effluent	VOC (7)	<0.001	<0.001
N-12	DP Reactor Feed Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	5.01 0.22 0.69 0.38 0.17	13.71 0.95 3.02 1.64 0.74
N-13	DP Reactor Regeneration	NO _x (7)	1.73	1.42

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
	Heater	SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	0.07 0.24 0.13 0.06	0.10 0.31 0.17 0.08
N-14	Supplemental Boiler	NO_{x} SO_{2} CO PM_{10} VOC	13.6 1.24 15.6 1.58 1.58	20.1 0.92 23.2 2.35 2.35
N-20A	GTG HRSG Unit 1 GE Frame 6B 310.4 MMBtu/hr Duct Burner (with SCR)	NO_x SO_2 CO VOC PM_{10} NH_3	15.3 4.46 53.9 3.85 5.48 7.61	30.2
N-20B	GTG HRSG Unit 2 GE Frame 6B 310.4 MMBtu/hr Duct Burner (with SCR)	NO_x SO_2 CO VOC PM_{10} NH_3	24.1 4.46 53.9 3.85 5.48 7.61	30.2

Emission Points N-14, N-20A, and N-20B are subject to the following combined annual emission cap for the specified pollutants:

N-14, N-20A, N-20B	Annual Emission Cap	SO ₂	NO _x CO VOC PM ₁₀	18.5	179 429 33 49
N-15	Flare		VOC (7) NO _x (7) CO (7) SO ₂ (7)	5.23 0.45 3.30 0.03	5.02 1.27 9.21 0.14

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission I	
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
N-18	Decoking Drum	CO (7)	720.00	27.88
	-	PM ₁₀ (7)	78.73	3.04
N-19	Thermal Oxidizer	VOC (7)	0.024	0.107
14 13	memai Oxidizei	NO _x (7)	0.24	0.107
		CO (7)	0.51	1.86
		SO ₂ (7)	0.08	0.28
		PM ₁₀ (7)	0.04	0.13
N. 04 A	Fire Down Discal France (6)	\(\coc\((7)\)	1.00	0.010
N-21A	Fire Pump Diesel Engine (6)	VOC (7)	1.26	0.016
		NO _x (7)	15.81	0.21
		CO (7)	3.41	0.04
		SO ₂ (7)	1.05	0.014
		PM ₁₀ (7)	1.12	0.015
N-21B	Fire Pump Diesel Engine (6)	VOC (7)	1.26	0.016
		NO _x (7)	15.81	0.21
		CO (7)	3.41	0.04
		SO ₂ (7)	1.05	0.014
		PM ₁₀ (7)	1.12	0.015
TK-2501	IFR Spent Caustic	VOC (7)	0.26	1.03
TK-8001	IFR WW Equalization	VOC (7)	0.37	0.66
11(0001	Trever Equalization	(1)	0.01	0.00
TI/ 0101	CED Contomicated	VOC (7)	<0.001	<0.001
TK-8101	EFR Contaminated Stormwater	VOC (7)	<0.001	<0.001
TK-7702	Sulfuric Acid Tank	H ₂ SO ₄	<0.001	<0.001
	Canano / tola Tank	SO ₃	< 0.001	< 0.001

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
F-1	Fugitives (4)	VOC (7)	2.06	9.10
F-2	Cooling Tower	VOC (5) (7) Benzene PM ₁₀ (7)	12.6 0.45 1.9	55.19 1.99 2.76
F-4	Benzene/Toluene Process	VOC (7)	0.25	1.12
COG-AMM-1	Ammonia Fugitives: Storage Tank and Vaporizer(4)	NH ₃	0.01	0.06
COG-AMM-2	Ammonia Fugitives: GTG/HRSG Unit 2 SCR Ammonia Injection System(4)	NH_3	<0.01	0.001
COG-AMM-3	Ammonia Fugitives: GTG/HRSG Unit 1 SCR Ammonia Injection System(4)	NH₃	<0.01	0.002

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - PM_{10} particulate matter (PM) equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.
 - CO carbon monoxide
 - H₂SO₄ sulfuric acid
 - SO₃ sulfur trioxide
 - NH₃ ammonia

Permit Numbers 36644, PSD-TX-903, and N-007 Page 5

- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- (5) The VOC emissions rates from the cooling tower are <u>12.6</u> pounds per hour and <u>55.19</u> tons per year, including benzene. The VOC emission rates are for total VOC.
- (6) Emissions from the Fire Pump Diesel Engines are based on <u>26</u> hours per year operation. Non-emergency fire pump operations shall only occur between the hours of 8:00 a.m. and 5:00 p.m. (one engine at any one time).
- (7) These emissions are permitted under PSD or Nonattainment review in addition to State.

* Emission rates are based on and the facilities are limited by the following maximum operating schedule:
Hrs/day Days/weekWeeks/year or <u>8,760</u> Hrs/year. N-14, N-20A, and N-20B
must operate according to the annual emission cap which may not allow for 8,760 hours of operation for all
three emission points simultaneously.

Dated August 8, 2002