3. Elastic Wave Equation

M. Ravasi ERSE 210 Seismology

Elastic wave propagation

- **P-waves or compressional:** displacement longitudinal to propagation (like acoustic waves)

- **S-waves or shear:** displacement transverse to propagation (due to shearing of medium, not possible in acoustic media)

Stresses

$$au = egin{bmatrix} oldsymbol{t}(oldsymbol{i}_\chi) \ oldsymbol{t}(oldsymbol{i}_\chi) \ oldsymbol{t}(oldsymbol{i}_Z) \end{bmatrix}$$

Strains

Hooke's law

$$\tau_{ij} = C_{ijkl} \, \varepsilon_{kl} = \frac{1}{2} C_{ijkl} \, (\partial_l u_k + \partial_k u_l)$$

Compliance or Elasticity tensor

Isotropic Hooke's law

$$\tau_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + 2\mu \ \varepsilon_{ij}$$
Lamè parameters

Elastic velocities

P-wave velocity
$$lpha = \sqrt{rac{\lambda + 2\mu}{
ho}}$$

S-wave velocity
$$\beta = \sqrt{\frac{\mu}{\mu}}$$

Elastic wave equation constituents

- Principle of Inertia
$$\rho \frac{\partial^2 u_i}{\partial t^2} = \partial_j \tau_{ij} + f_i$$

Hooke's law

$$\tau_{ij} = C_{ijkl} \, \varepsilon_{kl}$$

Isotropic Elastic wave equation

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \nabla \lambda (\nabla \cdot \mathbf{u}) + \nabla \mu \cdot [\nabla \mathbf{u} + \nabla \mathbf{u}^T] + (\lambda + 2\mu) \nabla \nabla \cdot \mathbf{u} - \mu \nabla \times \nabla \times \mathbf{u}$$

Helmoltz decomposition theorem

Solenoidal or rotational potential

Irrotational or central potential

Potential elastic wave equations

$$\nabla \cdot (WE)$$

- **P-wave:**
$$\nabla \cdot (WE) \rightarrow \nabla^2 \phi - \frac{1}{\alpha^2} \frac{\partial^2 \phi}{\partial t^2}$$

$$\nabla \times (WE)$$

- S-wave:
$$\nabla \times (WE) \rightarrow \nabla^2 \Psi - \frac{1}{\beta^2} \frac{\partial^2 \Psi}{\partial t^2}$$

Compressional waves

Source: https://web.ics.purdue.edu/~braile/edumod/waves/Pwave.htm

Shear waves (transverse SV)

Source: https://web.ics.purdue.edu/~braile/edumod/waves/Swave.htm