

Quanti domini di collisione sono presenti nella rete A ? (cerchiali) Quanti domini di broadcast sono presenti nella rete A ?

Quanti domini di collisione sono presenti nella rete B? perché?

Si supponga che lo switch sia appena stato acceso e che i frame transitati siano stati (nell'ordine)

- mittente 08-00-2B-54-94-12 → destinatario 08-00-2B-34-F2-99
- mittente 08-00-2B-34-F2-99 → destinatario 08-00-2B-74-88-F2
- mittente 08-00-2B-34-F2-99 → destinatario 08-00-2B-54-94-12
- mittente 00-00-0C-78-93-11 → destinatario FF-FF-FF-FF-FF
- mittente 08-00-2B-54-94-12 → destinatario 08-00-2B-33-AB-AA
- mittente 08-00-2B-74-88-F2 → destinatario 00-00-0C-78-93-11

Si costruisca la MAC TABLE dello switch (in base ai frame transitati)					
PORTA	SCHEDE DI RETE COLLEGATE (interfacce)				
Α					
В					
С					
D					
L					

- 1. a quali interfacce verrà inviato il frame 1?
- 2. a quali interfacce verrà inviato il frame 2?
- 3. a quali interfacce verrà inviato il frame 3?
- 4. a quali interfacce verrà inviato il frame 4?
- 5. a quali interfacce verrà inviato il frame 5?
- 6. a quali interfacce verrà inviato il frame 6?

Se la velocità è 10 Mbps le due reti sono correttamente progettate? Perché?

In una rete Ethernet a 10Mbps 2 nodi stanno cercando di trasmettere ma nei primi 3 tentativi si sono verificate collisioni. Secondo l'algoritmo di regressione binaria esponenziale cosa potrebbero fare a questo punto i 2 nodi ? Spiegare cosa potrebbe accadere scrivendo formule e compilando tabelle.

4 32 bit — → 32 bit — →								
DSAP							SSAP	
SSAP				le	en	LLC-DSAP		
control	vers.	HLEN	service type	total I	ength	identif	ication	DM fragm. FF offset
fragm.offset	time to live protocol header checksum		so	source address				
source addr	dr. destination address			n address		source port		dest. port
dest. port	sequence number					ack. number		
ack. number	hlen	(unus	ed)RCSSYI	windo	w size	chec	ksum	urgent ptr.
urgent ptr.								
	Ш							

schema imbustamento
multiplo

(

frame catturato

, | |

00	25	53	DC	88	F9	00	90
4B	92	CA	СВ	08	00	XX	XX
XX	45	00	00	28	83	E9	40
00	40	06	1F	04	CO	A8	01
4A	AD	C2	28	2E	06	38	00
50	75	5D	82	42	76	69	0C
47	50	10	40	C7	56	52	00
00							

	Indirizzo MAC del mittente in esadecimale	
	Indirizzo MAC del destinatario in esadecimale	
	Indirizzo IP del mittente in esadecimale e in decimale	
	Indirizzo IP del destinatario in esadecimale e in esadecimale	
l		

In un sistema di accesso multiplo simile al Wi-Fi a 50 Mb/s si trasmette un pacchetto MAC lungo complessivamente 2.000 byte. Nell'ipotesi che il segnale RTS sia di 20 byte, CTS ed ACK siano lunghi 14 byte, il SIFS duri 10 microsecondi e il DIFS 30 microsecondi. Inoltre la trasmissione di ogni trama MAC, anche quelle di servizio, è preceduta da un preambolo di livello fisico di 144 bit e da da un header di livello PLCP di 48 bit, entrambi questi preamboli trasmessi alla velocità di 2 Mb/s. Si calcoli

- Il tempo di trasmissione della trama MAC DATI + preamboli di livello fisico
- Il tempo intercorrente fra l'inizio del RTS e la fine della trasmissione dell'ACK
- La massima velocità di trasmissione (bit/s) di una sorgente di un flusso di pacchetti.

- a. Payload MAC= 16000/50= 320 micros
- b. Payload RTS = 160/50=3,2 micros
- c. Payload CTS=payload ACK= 112/50=2,24 micros
- d. Preamboli = 192/2=96 micros
- e. SIFS=10 micros
- f. DIFS=30 micros

- a. Trama MAC= a+d = 416 micros
- b. b+d+e+c+d+e+a+d+e+c+d+f == 771,68 micros
- c. 16000/771,68=20,73 Mb/s