PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-062686

(43) Date of publication of application: 28.02.2002

(51)Int.Cl.

G03G 9/087

G03G 5/06

G03G 9/08

G03G 15/04

(21)Application number : 2000-249144

(71)Applicant: MITSUBISHI CHEMICALS CORP

(22) Date of filing:

21.08.2000

(72)Inventor: ISHIKAWA TOMOKO

JO USEI

(54) METHOD FOR FORMING IMAGE AND DEVICE FOR IMAGE FORMATION (57) Abstract:

PROBLEM TO BE SOLVED: To provide a method and a device for image formation in which images of high gradation and high resolution can be obtained even in a fast and low temperature fixing process.

SOLUTION: In the method for forming images by using at least a photoreceptor, exposure device and toner, the photoreceptor has a photosensitive layer prepared by laminating a charge generating layer containing Y-type oxytitanium phthalocyanine and a charge transfer layer. The photoreceptor is subjected to digital image exposure with ≥600 dots/inch recording dot density by the exposure device. The electrostatic latent image formed by the above image exposure is developed by using a capsule toner prepared by a polymerization method.

LEGAL STATUS

[Date of request for examination]

01.04.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

3 特許令報 噩 K 22 (18) 日本国物研庁 (JP)

(11)特許出關公開番号

8

	381	80/6					
2H076		15/04				311	
2H068	311	80/6				371	
2H005	371	90/9	G03G				
デーマコート。(参考)			FI			裁別配号	
(43)公開日 平成14年2月28日(2002.2.2	平成14年2月	(43)公開日					
(P2002-62686A)	(P2002-						
-62686	特開2002-62686			:	:		
				-	5		:

5/08 9/08 5/04

G03G (51) Int Q.

審査開決 未開次 間次項の数11 01 (全26 頁)

(21) 出版每号	特取2000-249144(P2000-249144)	(71) 出國人 00005968	899200000
			三菱化学株式会社
(22) 出算日	平成12年8月21日(2000.8.21)		東京都千代田区九の内二丁目5番2号
		(72) 発明者	石川 智子
			神疾川珠徵茂市育業区鴨志田町1000番地
			三整化学株式会社教政器合研究所内
		(72) 発明者	多小
			神疾川原樹英市青葉区鴨志田町1000番地
			三菱化学株式会社徵英語合研究所内
		(74)代理人 100103997	100103997
			弁理士 投谷川 現町
			最時间に統へ

国像形成方法及び国像形成绘图 (54) [発明の名称]

(21) [要約]

異、高解像度の画像を得ることが出来る画像形成方法及 【雰囲】 高温、低温定益プロセス下においても高階 び装置を提供する。

インチ以上のデジタル保露光を行い、この保露光で形成 |解決手段|| 少なくとも配光体、配光接置、及びトナ -を用いる画像形成方法において、散略光体が、Y型オ と、電荷移動層が積層した感光層を有し、散露光装置! よって散略光体に対し配録ドット密度が600ドット/ キシチタニウムフタロシアニンを合有する配荷発生層

された静電階像の現像において、瓜合法によって得られ たカプセルトナーを用いることを特徴とする画像形成方

|特許闘水の範囲|

された静電潜像の現像において、重合法によって得られ たカプセルトナーを用いることを特徴とする画像形成方 と、電荷移動層が積層した感光層を有し、眩露光装置に インチ以上のデジタル像露光を行い、この像露光で形成 【睛水項1】 少なくとも感光体、露光装置、及びトナ ーを用いる画像形成方法において、眩惑光体が、V 型オ よって散感光体に対し記録ドット密度が600ドットノ キシチタニウムフタロシアニンを含有する電荷発生層

せてなる分散液中で凝集粒子を形成し凝集粒子分散液を 徴粒子を分散させてなる徴粒子分散液を添加混合して前 トナーが、少なくとも樹脂粒子を分散さ 記録集粒子に前記徴粒子を付着させて付着粒子を形成す 関製する工程 (A1工程)、前配凝集粒子分散液中に、

円形度=粒子投影面積と同じ面積の円の周長/粒子投影像の周長 5.工程(A.2.工程)、及び、前記付着粒子を加熱して酸 *

【請求項6】 微粒子が、その体積平均粒径が1µm以 【請求項5】 樹脂粒子が、その体積平均粒径が1 μm 以下である簡求項2又は3に配載の画像形成方法。

【請求項1】 配録ドット密度が1200ドット/イン 【醇水項8】 トナーが、フロー式粒子分析装置による が全粒子数の15%以下である請求項1乃至7に配載の **粒径0. 6μm~2. 12μmの粒子の測定値 (個数)** チ以上である請求項1乃至6に記載の画像形成方法。 画像形成方法。

の範囲の波長の単色光で行われる顔水項1乃至8に記載 [請求項9] デジタル像露光が、530~850nm の画像形成方法。

3を満たすものである請求項1乃至9に記載の画像形成 トナーの体積平均粒径(DA)と個数 平均粒径 (DN) との関係が、1、0≤DV/DN≤1. [請水項10]

【醇水項11】 少なくとも略光体、露光装置、及びト 記録ドット密度が600ドット/インチ以上のデジタル 像露光を行うものであり、眩トナーが重合法によって得 られたカプセルトナーであることを特徴とする画像形成 と、電荷移動層が積層した感光層を有し、散露光装置が ナーを備えた画像形成装置であって、散感光層がY型オ キシチタニウムフタロシアニンを含有する電荷発生層

[発明の詳細な説明]

記録法等により形成される静電潜像を現像剤により現像 [発明の属する技術分野] 本発明は、電子写真法、静電 する画像形成方法及び画像形成装置に関する。 0001

画像情報を可視化する方法は、現在各種の分野で広く利 50 [従来の技術] 電子写真法等のように、静電荷像を経て [0002]

*合する工程(A3工程)を含む製造方法によって得られ たものである精水項1に記載の画像形成方法。 【荫水項3】 トナーが、少なくとも樹脂粒子を分散さ 合して前配トナー芯材に前配徴粒子を付落させて付益粒 合しトナー芯材を得る工程(B2工程)、及び前配トナ **一芯材に微粒子を分散させてなる微粒子分散液を添加限** 子を形成する工程(B3工程)を含む製造方法によって せてなる分散液中で凝集粒子を形成し凝集粒子分散液を 開製する工程 (B1工程)、前配凝集粒子を加熱して融 得られたものである間水項1に配載の画像形成方法。

【荫水項4】 トナーの体積平均粒径が3~8μmであ り、下記式(1)より求められた値の50%における器 積粒度値に相当する50%円形度が0.9~1である購 水項1乃至3に配載の画像形成方法。

[数1]

転写工程、定着工程等を経て前配静電荷像が可視化され 路光工程等を経て感光体上に静虹荷像を形成し、トナー 用されている。前配電子写真法においては、帯電工程、 粒子を含有する現像剤を用いて前配静配荷像を現像し、 ន

トナー粒子又は非磁性トナー粒子を含有してなる1成分 スなどの権型剤等と共に溶験配換し、冷却後にこの溶験 製造する方法である。なお、前配限牌粉砕法により製造 されたトナー粒子には、流動性やクリーニング性等を改 善する目的で、さらに必要に応じてその数面にさらに無 [0003]ところで、前記現像剤には、トナー粒子及 びキャリア粒子を含有してなる2成分系現像剤と、磁性 系現像剤とが知られている。前配現像剤におけるトナー 粒子は、通常、現棋粉砕法により製造される。この脱模 視線物を微粉砕し、これを分級して所留のトナー粒子を 粉砕法は、熱可塑性樹脂等を顔料、帯配制御剤、ワック 機及び/又は有機の微粒子が添加されたりする。 ģ

ものの、意図的にこれらを所留の程度に制御することは 困難である。また、特に粉砕性の高い材料を用いて前記 内での種々の剪断力等の機械力等により、さらに微粉化 粒子の場合、通常、その形状は不定型であり、その装面 組成は均一でない。使用材料の粉砕性や粉砕工程の条件 により、トナー粒子の形状や装面組成は微妙に変化する 混練粉砕法により製造されたトナー粒子の場合、現像機 されたり、その形状が変化されたりすることがしばしば 起こる。その結果、前記2成分系現像剤においては、微 粉化されたトナー粒子がキャリア要面へ固着して前配現 像剤の帯電劣化が加速されたり、前配1成分系現像剤に おいては、粒度分布が拡大し、微粉化されたトナー粒子 [0004] 前記混模粉砕製法により製造されるトナー が飛散したり、トナー形状の変化に伴い現像性が低下

【0005】トナー粒子の形状が不定型である場合、流 し、画質の劣化が生じたりするという問題が生ずる。

3

のようなトナーをクリーニング処理により回収して再び いう問題がある。これらの問題を防ぐため、さらに流動 動性助剤を添加しても減動性が十分でなく、使用中に剪 時的に流動性が低下したり、現像性、転写性、クリーニ ング性等が悪化したりするという問題がある。また、こ 現像機に戻して再利用すると、画質の劣化が生じ易いと **感光体上への風点の発生や流動性助剤の粒子飛散を招く** 断力等の機位力により、前配成動性助剤の微粒子がトナ **-粒子における凹部へ移動してその内部への埋没し、経** 性助剤の量を増加することも考えられるが、この場合、 という問題が生ずる。

し、トナー粒子を得る方法である。この乳化瓜合凝集法 散液を作成し、一方、分散煤に着色剤を分散させた着色 び安面組成を意図的に制御したトナーを製造する手段と して、特開昭63-282752号公報や特開平6-2 50439号公報において、乳化皿合凝集法が提案され ている。前記乳化瓜合凝集法は、乳化瓜合により樹脂分 **例分散液を作成し、これらを混合してトナー粒径に相当** する凝集粒子を形成した後、加熱することによって融合 によると、加熱温度条件を選択することにより、トナー 【0006】このような事情の下、近年、粒子の形状及 8状を不定形から球形まで任意に制御することができ

にトナーの粒子表面の構造及び組成を制御することは困 ミングが発生したり、流動性付与のために用いた外添剤 な混合状態にある凝集粒子を融合するので、トナーにお **聴である。特に凝集粒子が犨型剤を含有する場合は、融** 合した後のトナー粒子の表面に韓型剤が存在し、フィル ける内部から要面にかけての組成が均一になり、意図的 【0007】しかし、この乳化皿合凝集法の場合、均一 がトナーの内部へ塩没してしまうことがある。

前配離型剤は、トナー粒子安面に露出すると値々の問題 [0008] 電子写真プロセスにおいて、様々な機械的 ストレス下でトナーの性能を安定に維持・発揮させるに り、トナー粒子の安面硬度を高めたり、トナー粒子安面 を招き得るが、定着時におけるトナーの性能を考慮する 【0009】近年、高画質化への要求が高まっている。 と、トナー粒子の袰面近傍に存在することが望ましい。 の平滑性をより高めたりすることが必要となる。なお、 は、トナー粒子安面に整型剤が露出するのを抑制した

高精細画像、特に階調性や解像力を向上させようとする 考えられる。これには、ピーム径を絞り、出力パルス数 ることにならない。また、これを解決する方法として光 エネルギー自体を大きくすることも考えられるが、これ 一つの方法として、像露光時のドット数を増やすことが と、1ドットを露光するのに要する時間が短くなる。こ のような場合、従来の配光体では感度が不十分で、1ド ットの再現性が劣化するため、階調性や解像力が向上す を増やすことになるが、このような高密度記録になる

場合には、高密度記録で各ドットの軽光時間が短い場合 【0010】上述の課題を解決する方法として、特開平 タニルフタロシアニンを感光層の光導電性物質として用 いる方法が開示されており、このオキシチタニルフタロ シアニンを用いることによって、高略度、高ァヤ十分な でも、十分なドット再現性が実現できることが示されて . 541A) に対するX線回折のブラッグ角20が2 7. 2 ± 0. 2。に強いピークを示す結晶型のオキシチ 光応答性を示す感光体を実現でき、この感光体を用いる 3-37678号公報には、CuKa特性X線 (波長

細密充填されないため、画像濃度がでにくかったり、画 を同時に実現することは困難である。高画質と高信頼性 付着が均一にならず、特に画像の端部において乱れを生 [0011] 同公報には、平均粒径が8μm以下の小粒 **蚤のトナーを併用することが配載されている。微少なド** までは、単に小径化を図っても、前配粒度分布における 数粉闕のトナーの存在により、キャリアや感光体の汚染 小粒径トナーであっても、ポリマーに着色剤、帯電制御 刺等を混合し、次いで溶融混練し、その後押し出し、粉 な不定形トナーでは、形状のばらつきのため潜像上への ずる傾向にあった。また、不定形トナーでは、潜像上に ためにはトナーを小粒径化することが有効であるが、実 祭にはトナーが小粒径というだけでは上述の課題は必ず しも十分に解決されない。従来のトナーの粒度分布のま やトナー飛散の問題が著しくなり、高画質と高信頼性と とを同時に実現するためには、トナーの小粒径化と同時 砕、分极する事で製造される粉砕トナーに見られるよう ットが集まった状態で形成される潜像を忠実に再現する に粒度分布をシャーブ化することが必要になる。また、 像濃度にばらつきが生じる場合があった。

【0012】さらに、トナーが小粒径になる程、転写工 程でトナー粒子にかかるクーロン力に比べて、トナー粒 子の電子写真感光体への付着力(鏡像力やファンデルワ **一が感光体上に残る(転写残トナーが増加する)傾向が ールス力など)が大きくなり、結果として転写時にトナ** 6、高密度、高精細な画像を忠実に再現するには限界が あった。従って、小粒径トナーを用いた場合であって

[0013]

既光体と組み合わせて用いることにより、髙精細、萵画 質画像が得られる画像形成方法及び画像形成装置を提供 [発明が解決しようとする課題] 本発明は、前記従来に るとともに、このトナーを特定の電荷発生剤を含有する トナー粒子の装面から内部に至る構造及び組成を制御す おける諸問題を解決することを目的とする。本発明は、 することを目的とする。

とも昭光体、露光装置、及びトナーを用いる画像形成方 【課題を解決するための手段】本発明の要旨は、少なく [0014]

では感光層に光疲労などの問題を生じる。

た感光層を有し、数露光装置によって散感光体に対し記 おいて、重合法によって得られたカプセルトナーを用い 去において、數感光体が、Y型オキシチタニウムフタロ 録ドット密度が600ドットノインチ以上のデジタル像 **露光を行い、この像露光で形成された静電谐像の現像に** シアニンを含有する電荷発生層と、電荷移動層が積層し ることを特徴とする画像形成方法に存する。 【0015】また、本発明の別の要旨は、少なくとも感 光体、露光装置、及びトナーを備えた画像形成装置であ って、眩眩光体がY型オキシチタニウムフタロシアニン を含有する電荷発生層と、電荷移動層が積層した感光層 インチ以上のデジタル像露光を行うものであり、散トナ **一が重合法によって得られたカプセルトナーであること** を有し、眩露光装置が記録ドット密度が600ドット/ を特徴とする画像形成装置に存する。

び、それに用いられる画像形成装置の概要を、フルカラ [発明の実施の形態] まず、本発明の画像形成方法及 [0016]

用する電子写真記録装置について説明するが、この一例 電子写真記録装置の一実施態様の要部構成の概略図であ 転写装置5、クリーニング装置6、及び定着装置7を有 一画像形成方法の一例である非磁性1成分系トナーを使 に限定されるものではない。図1は本発明に用いられる り、膨光体1、帯電装置2、露光装置3、現像装置4、

で帯電装置2、露光装置3、現像装置4、転写装置5及 帯電器、ローラー帯電器などよりなり、感光体1の表面 の感光面にLED、レーザー光などで露光を行って感光 【0017】 感光体1は、例えばアルミニウムなどの導 感光層を形成したものである。感光体1の外周面に沿っ を所定電位に均一帯電する。 露光装置3は、膨光体1 体1の感光面に静電潜像を形成するものである。 帯電袋 **電体により形成され、外周面に感光導電材料を塗布して** [0018] 帯電装置2は、例えば周知のスコロトロン び、クリーニング装置らがそれぞれ配置されている。 置としては、接触帯電によるものが好ましい。

リッジなどの容器からトナーを補給することができるも ず)を付帯させてもよく、補給装置にはボトル、カート 【0019】現像装置4は、アジテータ42、供給ロー ラー43、現像ローラー44、規制部材45からなり、 じ、現像装置にはトナーを補給する補給装置(図示せ その内部にトナーTを貯留している。また、必要に応

る。供給ローラー43は、貯留されているトナーを担持 50 ーラー44は、感光体1と供給ローラー43との間に配 置されている。現像ローラー44は、感光体1及び供給 び現像ローラー44は、回転駆動機構によって回転され [0020] 供給ローラー43は導配性スポンジ等から なるもので、現像ローラー44に当接している。現像ロ ローラー43に各々当接している。供給ローラー43及

は、供給ローラー43によって供給されるトナーを担持 して現像ローラー44に供給する。現像ローラー44 して既光体1の要面に接触させる。

アルミニウム、ニッケルなどの金属ロール、又は金属ロ **ールにシリコン樹脂、ウレタン樹脂、フッ紫樹脂などを** 被覆した樹脂ロールなどからなる。現像ロール袋面は、 [0021] 現像ローラー44は、鉄、ステンレス鋼、 必要に応じ平滑加工したり、粗面加工したりしてもよ

ム、銅、真鉛、リン脊銅などの金属プレード、金属プレ 【0022】規劃部材45は、シリコーン樹脂やウレタ ン樹脂などの樹脂プレード、ステンレス鋼、アルミニウ (一般的なプレード模圧は5~500g/cm) されて おり、必要に応じトナーとの母接帯覧によりトナーに帶 る。この規制部材45は、現像ローラー44に当接し、 **ードに樹脂を被覆したプレード等により形成されてい** ばね等によって現像ローラー44側に所定の力で押圧 気を付与する機能を具備させてもよい。

[0024] 転写装置5は、臨光体1に対向して配置さ よりなる。この転写装置5は、トナーの帯電電位とは逆 極性で所定電圧値(転写電圧)を印加し、略光体1に形 【0023】アジテーター42は、回転駆動機構によっ に、トナーを供給ローラー43頃に放送する。アジテー れた転写チャージャー、転写ローラー、転写ベルトなど 【0025】クリーニング被回6は、ウレタン苺のブレ タは、羽根形状、大きさ簪を違えて複数散けてもよい。 ード、ファーブラシなどのクリーニング部材からなり、 てそれぞれ回転されており、トナーを投掉するととも 成されたトナー像を配録紙Pに転写するものである。

お、本発明に用いられるトナーのようにトナーの球形度 が高い場合には、転写性が高く、クリーニング装置を備 で掻き落とし、残留トナーを回収するものである。な えていなくてもよい。

感光体 1 に付着している残留トナーをクリーニング部材

[0026] 定務裝置7は、上部定務部材71と下部定 **着部材72とからなり、上部又は下部の定着部材の内部** ス、アルミニウムなどの金属紫管にシリコンゴムを被覆 した定権ロール、更にテフロン(登録商標)樹脂で披夏 した定落ロール、定着シートなどが公知の熱定着部材を 使用することができる。更に、定締部材には離型性を向 上させる為にシリコンオイル等の離型剤を供給してもよ い。また、上都定着部材と下部定着部材にはパネ等によ には加熱鞍畳13を有している。 定着部材はステンレ

【0027】用紙P上に転写されたトナーは、所定温度 に加熱された上部定権部材7.1と下部定権部材7.2の間 を通過する際、トナーが宿殿状態まで熱加熱され、通過 後冷却されて配録紙P上にトナーが定着される。 り強制的に圧力を加わえる機構としてもよい。

[0028] 以上のように構成された電子写真現像模置 では、次のようにして画像の配路が行われる。即ち、ま

3

ず感光体1の安面(感光面)は、帯電装置2によって所 荷覧されたのちの略光体1の略光面を記録すべき 画像に 応じて露光装置3によって露光し、膨光面に静電潜像を 形成する。そして、その感光体 1 の感光面に形成された **宛の電位(例えば−600V)に帯電される。続いて、** 9 配替像の現像を現像装置4で行う。

同低性であり、負極性)に摩擦帯電されて、現像ローラ **沿されるトナーを現像ブレード45により薄層化される** [0029] 現像模置4は、供給ローラー43により供 とともに、所定の極性 (ここでは略光体1の帯電電位と -44に担持し、撤送して配光体1の表面に接触させ

形成される。そしてこのトナー像は、転写数置5によっ て用紙Pに転写される。この後、竪光体1の竪光面は転 **写されずに残留しているトナーがクリーニング装置6で** 除去される。配貸紙P上の転写後トナーは定着装置7を 【0030】現像ローラー44からいわゆる反転現像法 により感光体1の表面に静気潜像に対応するトナー像が 面過させて熱定着することで、最終的な画像が得られ [0031] 次に本発明に用いられるトナーについて説 は大別して乳化塩合凝集法と、懸濁重合法があり、どち 明する。本発明においては、トナーとして、瓜合法によ り得られたカプセルトナーを用いる。ここで、重合法に 界面によって2層に分かれた構造を有した(カプセル的 な構造を有した)トナーであり、すなわち中心部の組成 らの方法で得られたトナーであっても構わない。また、 カプセルトナーとは、トナーの投層部と中心部があり、 と、玻層部の組成が異なるトナーである。

着色剤は、その構造により帯電性に影響を与えることが の化学構造に起因する帯電均一性の低下を抑えることが できる。また、通常カプセルトナーは中心部が相対的に **財化点が低く、安層部が相対的に軟化点が高く設計され** は、低酸点ワックスを含有するトナーにおいて散低酸点 って、定着特性を向上させることができる。この様なカ されている。また、別の好ましいカプセルトナーの一憩 プセルトナーは例えば特開平5-314573号に開示 ワックスが安層部には存在しないものであり、これによ あるが、猫色刺を喪層部に有さないことにより、猪色剤 様としては、着色剤が要層部に存在しないものである。 [0032] 好ましいカブセルトナーの一感様として

色剤分散液、帯電制御剤分散液、ワックス分散液等を混 合し、温度、塩濃度、pH等を適宜制御することによっ [0033] 乳化重合凝集法では、樹脂粒子分散液に着 は、疫面に界面括性剤勢が残存する。これらを除去する ため適宜酸洗浄、アルカリ洗浄、水洗浄等を実施しても てこれらを凝集しトナーを製造する。得られたトナー

[0034] 懸濁血合法では、重合性単量体に着色剤、

イスパーザー等の分散機を用いて分散処理を行い、この しくは4~10μmの粒径を有するように提枠速度、時 トナーを製造する。生成したトナー粒子を洗浄し、濾過 組成物100低畳部に対して水300~3000塩畳部 を分散媒体として使用するのが好ましい。また、瓜合温 **度は、40℃以上、好ましくは50~90℃の温度に設** 帝電制御剤、ワックス等を混合し、ホモジナイザー、デ 分散処理後の単量体組成物を、分散安定剤を含有する水 **系媒体の中で通常の複粋機、ホモミキサー、ホモジナイ** ザー等を用いて分散し、好ましくは単畳体組成物の液滴 により回収し、乾燥する。懸濁重合法では、通常単量体 が所盤のトナー粒子サイズ、一般に30μm以下、好ま 聞を開整し遺粒する。その後重合性単畳体を重合させて 定して重合を行う。

ム、木酸化マグネシウム等が挙げられる。それぞれ単独 [0035] 懸濁安定剤を用いる場合には、重合後にト ナーを酸洗浄する事により容易に除去できる、水中で中 性又はアルカリ性を示すものを選ぶことが好ましい。さ が好ましい。これらを満足する懸濁安定剤としては、リ ン酸カルシウム、リン酸マグネシウム、水酸化カルシウ 5。これらの懸濁安定剤は、ラジカル重合性単量体に対 らに、粒度分布の狭いトナーが得られるものを選ぶこと で、あるいは2種以上組み合わせて使用する事ができ して1~10瓜畳部使用する事ができる。

2, 2' ーナゾピスイン (2, 4ージメチル) パレロニ キサイド、又はレドックス系開始剤などを使用する事が 開始剤が好ましく、懸濁重合法ではアゾ系開始剤が好ま [0036] 乳化重合凝集法及び懸濁重合法に用いられ **園以上組み合わせて使用する事ができる。倒えば、過硫** トリル、ペンゾイルパーオキサイド、ラウロイルパーオ できる。これらの内、乳化塩合凝集法ではレドックス系 5.肛合関始剤としては、公知の風合関始剤を1 種又は2 酸カリウム、2, 2, -アゾピスインブチロニトリル、 8

[0037] 本発明に用いられるカプセルトナーは、上 配方法によりトナーを製造した後に、更に樹脂徴粒子分 ワックス徴粒子分散液等を添加しトナー表面を被覆する て、中心部と表層部の組成が異なるように製造し、カブ 個々の一次粒子の親水性・疎水性を変化させておく等し か、あるいは、上配方法によりトナーを製造する際に、 散液、着色刺微粒子分散液、带電制御剤微粒子分散液、 セル構造を持つトナーとする。

[0038] 次に、重合法により得られるカプセルトナ 夜を添加混合して前配凝集粒子に前配微粒子を付着させ て付着粒子を形成する工程(A2工程)、及び、前配付 so 強粒子を加熱して融合する工程 (A3工程)を含む製造 も樹脂粒子を分散させてなる分散液中で凝集粒子を形成 し凝集粒子分散液を調製する工程 (A1工程)、前配凝 **塩粒子分散液中に、微粒子を分散させてなる微粒子分散** - の好ましい一実施態様としては、トナーが、少なくと

[0039] (A1工程) A1工程は、分散液中で凝集 方法によって得られたものであるトナーが挙げられる。 位子を形成し凝集粒子分散液を調製する工程である。

ピニル基を有するエステル類の単独低合体又は共重合体 ピル、アクリル酸n-ブチル、アクリル酸ラウリル、ア りル酸ラウリル、メタクリル酸2ーエチルヘキシル苺の パラクロロスチレン、ローメチルスチレン箏のスチレン リル酸メチル、アクリル酸エチル、アクリル酸nープロ クリル酸2-エチルヘキシル、メタクリル酸メチル、メ 【0040】前記分散液は、少なくとも樹脂粒子を分散 させてなるものである。前記樹脂としては、例えば熱可 類の単独重合体又は共重合体(スチレン系樹脂);アク タクリル酸エチル、メタクリル酸nープロピル、メタク 塑性結落樹脂などが挙げられ、具体的には、スチレン、

ルエチルケトン、ピニルインプロペニルケトン梅のピニ 脂) ; エチレン、プロピレン、ブタジエン、インプレン ーテル樹脂等の非ビニル組合系樹脂、及びこれらの非ビ どが挙げられる。これらの樹脂は、1種単独で使用して ン系樹脂);エポキシ樹脂、ポリエステル樹脂、ポリウ ニル箱合系樹脂とビニル系単畳体とのグラフト重合体な レタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエ 等のオレフィン類の単独風合体又は共風合体(オレフィ ルケトン類の単独重合体又は共重合体(ビニル系樹 もよいし、2種以上を併用してもよい。

る場合には、前記ピニル系単量体をイオン性界面活性剤 電解質と共に水中に微粒子分散し、その後、加熱又は咸 【0041】これらの樹脂の中でも、スチレンーアクリ 脂、エポキシ系樹脂が特に好ましい。前配少なくとも樹 して調製される。前配樹脂粒子における樹脂が、前配ど ニル基を有するエステル類、前記ピニルニトリル類、前 記ピニルエーテル類、前記ピニルケトン類等のピニル系 単量体の単独重合体又は共重合体(ビニル系樹脂)であ 中で乳化重合やシード重合等することにより、ピニル系 単量体の単独低合体又は共低合体(ピニル系樹脂)製の 樹脂粒子をイオン性界面活性剤に分散させてなる分散液 が関裂される。前記樹脂粒子における樹脂が、前配ビニ イザー等の分散機を用いてイオン性界面活性剤や高分子 ル酸エステル共重合体、スチレンーメタクリル酸エステ ル共重合体、又はこれら樹脂のアクリル酸共宜合体等の スチレン系樹脂、飽和もしくは不飽和ポリエステル系樹 脂粒子を分散させてなる分散液は、例えば以下のように ル系単畳体以外の樹脂である場合には、散樹脂が、水へ **数樹脂を駭油性溶剤に溶解させ、この溶液を、ホモジナ** の溶解度が比較的低い油性溶剤に溶解するのであれば、

脂以外の樹脂製の樹脂粒子をイオン性界面括性剤に分散 9

させてなる分散液が鋼製される。

が、例えば、回転剪断型ホモジナイザーやメデイアを有 【0042】前配分散の手段としては、特に刨限はない するボールミル、サンドミル、ダイノミルなどのそれ自 体公知の分散装置が挙げられる。

ド乳化重合を行って得た、ワックス内包型の樹脂粒子 【0043】また、本発明に用いられる樹脂粒子は、ワ ックスエマルジョンの存在下で前配したモノマー類のシ であってもよい。

ル、及びその部分エステル体、オレイン酸アミド、ステ [0044] 樹脂粒子としてワックス内包の樹脂粒子を 具体的には低分子畳ポリエチレン、低分子畳ポリプロピ パラフィンワックス、ペヘン酸ペヘニル、モンタン酸エ ステル、ステアリン酸ステアリル等の長假脂肪族為を有 用いる場合、シードとして用いられるワックスは、公知 するエステル系ワックス、木添ひまし油カルナパワック ス等の植物系ワックス、ジステアリルケトン等の長鎖ア ルキル基を有するケトン、アルキル基を有するシリコー ン、ステアリン政等の高級脂肪酸、長銀脂肪酸アルコー **ル、ペンタエリスリトール等の長鎖脂肪酸多価アルコー** のワックス類の任意のものを使用することができるが、 レン、共五合ポリエチレン等のオレフィン系ワックス、 アリン酸アミド等の高級脂肪酸アミド、等が例示され

ブチルエーテル等のビニルエーテル類の単独重合体又は

(ピニル系樹脂) ; ピニルメチルエーテル、ピニルイン

リル等のピニルニトリル類の単独瓜合体又は共宜合体

井氳合体(ピニルAA樹脂):ピニルメチルケトン、ピニ

(ピニル系樹脂) :アクリロニトリル、メタクリロニト

[0045] これらのワックスの中で定着性を改善する ためにより好ましいのは、融点が100℃以下のワック スであり、更に好ましいワックスの融点は40~90℃ 融点が100℃を越えると定権温度低減の効果が乏しく の範囲、特に好ましいのは50~80℃の範囲である。

ックスを公知のカチオン界面活性剤、アニオン界面活性 **剤、ノニオン界面活性剤の中から選ばれる少なくともひ** とつの乳化剤の存在下で乳化して得られる。これらの界 面括性剤は2種以上を併用してもよい。カチオン界面活 ド、ドデシルアンモニウムプロマイド、ドデシルトリメ ロライド、ドデシルピリジニウムプロマイド、ヘキサデ ンルトリメチルアンモニウムプロマイド、苺があげられ [0046] 本発明で用いるワックス微粒子は、上配ワ チルアンモニウムプロマイド、ドデシルビリジニウムク 性剤の具体倒としては、ドデシルアンモニウムクロライ なる傾向にある。

【0047】また、アニオン界面括性剤の具体例として 等の脂肪酸石けん、硫酸ドデシルナトリウム、ドデシル ペンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウ は、ステアリン酸ナトリウム、ドデカン酸ナトリウム、

【0048】さらに、ノニオン界面括性剤の具体倒とし ては、ポリオキシエチレンドデシルエーテル、ポリオキ ム等があげられる。

シエチレンヘキサデシルエーテル、ポリオキシエチレン

圧して骸油性溶剤を蒸散させることにより、ピニル系樹

3

シード重合して得られる樹脂粒子の平均粒径が大きくな 微粒子の平均粒径が上配範囲より巻しく大きい場合には り、その結果、それを用いて粒度分布の揃った小粒径ト ックス含有量が低くなりすぎるためワックスの効果が低 um、特に0.05~0.8 μmのものが好適に用いら ラックUPAを用いて砌定することができる。 ワックス ナーを製造することが困難になる傾向があるので、トナ また、ワックス微粒子の平均粒径が上配範囲より著しく 小さい場合には、シード狙合後の狙合体一次粒子中のワ / コルフェニルエーテル、ポリオキシエチレンラウリル エーテル、ポリオキシエチレシソルピタンモノオレアー [0049] ワックス微粒子の平均粒径は、0.01μ m-3μmが好ましく、さらに好ましくは0.03~1 れる。なお、平均粒径は、例えば日機袋社製マイクロト **-として高解像度を要求される用途には不適当である。** トエーテル、モノデカノイルショ糖、苺があげられる。

ても良いし、予め水や界面活性剤などと混合、調整した 乳化液として添加することもできる。界面括性剤として は、前配の界面括性剤から1種叉は2種以上の併用系が [0050] ワックス微粒子分散液の存在下でシード乳 るモノマー (酸性極性益を有するモノマーもしくは塩基 性官能基有するモノマー)、及び、その他のモノマーと を添加する中により、ワックスを含有する分散液内で重 合を進行させる。この際、モノマー同士は別々に加えて も良いし、予め複数のモノマー混合しておいて添加して 化瓜合をするに当たっては、好ましくは、極性基を有す も良い。更に、モノマー添加中にモノマー組成を変更す ることも可能である。また、モノマーはそのまま添加し

良く、またこれらの添加方法の組み合わせであっても得 乳化剤を一定量ワックス微粒子分散液に添加してもかま 前、モノマーと同時添加、モノマー添加後のいずれでも わない。また重合関始剤の添加時期は、モノマー添加 【0051】シード乳化瓜合を進行するにあたっては、

る静電荷像現像用トナーの粒径分布が広くなったり、遊 い。前配平均粒径が1μmを越えると、最終的に得られ 一方、前配平均粒径が前配範囲内にあると前配欠点がな い上、トナー間の偏在が減少し、トナー中の分散が良好 となり、性能や情頼性のパラツキが小さくなる点で有利 [0052] 前配樹脂粒子の平均粒径としては、通常] 整粒子の発生が生じ、性能や信頼性の低下を招き易い。 μm以下であり、0.01~1μmであるのが好まし

[0053] 本発明においては、後述のA2工程におけ 合は、前配分散液中にさらに着色剤を分散させておく必 である。なお、前期平均粒径は、例えばマイクロトラッ る微粒子分散液として着色刺微粒子分散液を用いない場 クUPAなどを用いて砌定することができる。

見がある。なお、その場合、樹脂粒子を分散させてなる 50

分散液中に着色刻を分散させてもよいし、樹脂粒子を分 散させてなる分散液に、着色剤を分散させてなる分散液 を混合してもよい。

リルメタン系染料、モノアゾ系、ジスアゾ系、結合アゾ アゾ系染餌料、マゼンタとしてキナクリドン、モノアゾ 系染顔料、シアンとしてフタロシアニンブルーをそれぞ れ用いるのが好ましい。これらの着色刺は、1 種単独で 含有される着色剤は、従来より重合トナーに用いられる **聞としては、カーボンブラック、アニリンブルー、フタ** ロシアニンブルー、フタロシアニングリーン、ハンザイ エロー、ローダミン系染顔料、クロムイエロー、キナク **系染顔料など、公知の任意の染顔料を単独あるいは混合** して用いることができる。フルカラートナーの場合には イエローとしてベンジジンイエロー、ホノアンが、結合 【0054】本発明に用いられる潜色剤微粒子分散液に 公知のものがいずれも使用できるが、これらの具体的な リドン、スンジジンイエロー、ローズベンガル、トリア 使用しても良いし、2種以上を併用しても良い。

[0055] 溶色剤微粒子分散液は、上配の溶色剤を前 を越えると、最終的に得られる静電荷像現像用トナーの ラッキが小さくなる点で有利である。なお、前期平均粒 朝の平均粒径としては、通常1μm以下であり、0.0 1~1μmであるのが好ましい。前配平均粒径が1μm や個類性の低下を招き易い。一方、前配平均粒径が前配 **英田内にあると前記欠点がない上、トナー間の傷在が減** 少し、トナー中の分散が良好となり、性能や倡頼性のパ 記の界面活性剤の存在下で乳化して得られる。前配着色 **位径分布が広くなったり、遊離粒子の発生が生じ、性能 隆は、例えばマイクロトラックUPAなどを用いて勘定** することができる。

[0056] 前記分散液中で、前記着色剤微粒子と前記 樹脂粒子とを併用する場合には、その組み合わせとして は、特に制限はなく、目的に応じて適宜自由に選択する ことができる。

[0057]なお、本発明においては目的に応じて、前 もよい。なお、その場合、樹脂粒子を分散させてなる分 を分散させてなる分散液に、その他の粒子を分散させて 体、情剤、研磨材などのその他の成分が分散させていて 散液中にその他の粒子を分散させてもよいし、樹脂粒子 配分散液に、ワックス、内添剤、帯電側御剤、無機粒 なる分散液を混合してもよい。

[0058] 前記ワックスとしては、シードとして用い られるワックスとして前述したものを用いることができ

ト、マグネタイト、還元鉄、コパルト、ニッケル、マン ガン苺の金属、合金、又はこれら金属を含む化合物など 【0059】 前配内添剤としては、例えば、フェライ の磁性体などが挙げられる。

[0060] 前配帯電制御剤としては、例えば、4級ア ンモニウム塩化合物、ニグロシン系化合物、アルミ、

時や融合時の安定性に影響するイオン強度の制御と廃水 ン系顔料、ヒドロキシナフタレン系化合物などが挙げら れる。なお、本発明における帯電制御剤としては、凝集 **汚染減少の点で、水に溶解しにくい素材のものが好まし** 鉄、クロムなどの錯体からなる染料、トリフェニルメタ

アルミナ、チタニア、炭酸カルシウム、炭酸マグネシウ ム、リン酸カルシウム、酸化セリウム等の通常トナー表 ド、オレイン酸アミド等の脂肪酸アミド、ステアリン酸 亜鉛、ステアリン酸カルシウムなどの脂肪酸金属塩が挙 面の外添剤として使用される総ての粒子が挙げられる。 【0061】前記無機粒体としては、例えば、シリカ、 前記滑剤としては、例えば、エチレンピスステアラミ げられる。前記研磨材としては、例えば、前述のシリ カ、アルミナ、酸化セリウムなどが挙げられる。

しく、1時間以上4時間以下がさらに好ましい。

い。一方、前配平均粒径が前配範囲内にあると前配欠点 がない上、トナー間の偏在が減少し、トナー中の分散が 良好となり、性能や信頼性のパラツキが小さくなる点で 有利である。なお、前期平均粒径は、例えばマイクロト 【0062】前配その他の成分の平均粒径としては、通 常1μm以下であり、0.01~1μmであるのが好ま しい。前記平均粒径が1μmを越えると、最終的に得ら れる静電荷像現像用トナーの粒径分布が広くなったり、 遊離粒子の発生が生じ、性能や信頼性の低下を招き易 ラックUPAなどを用いて勘定することができる。

し、2種以上を併用してもよい。本発明においては、前 例えば、蒸留水、イオン交換水等の水、アルコール類な どが挙げられる。これらは、1種単独で使用してもよい 【0063】前配分散液における分散媒としては、例え 界面活性剤としては、前記の界面活性剤から1種又は2 記水系媒体に界面活性剤を添加混合しておいても良い。 ば水系媒体などが挙げられる。前配水系媒体としては、 **種以上の併用系が選択される。**

配着色剤や磁性体をも分散させる場合、前配分散液にお 50瓜量%以下であればよく、2~40瓜畳%程度であ 【0064】前記分散液における前記樹脂粒子の含有量 としては、前配磁集粒子が形成された際の凝集粒子分散 液中において、50重盘%以下であればよく、5~40 ける前記着色剤あるいは磁性体の含有量としては、前記 **重量%程度であるのが好ましい。また、前配分散液に前** 疑集粒子が形成された際の凝集粒子分散液中において、 るのが好ましい。

集粒子分散液中において、0.01~20塩塩%程度で [0065] さらに、前配分散液に前配その他の成分を も分散させる場合、前配分散液における前配その他の成 分の含有量としては、前記凝集粒子が形成された際の凝 あり、0.5~15重量%程度が好ましい。

集を行う方法とがある。加温して凝集を行う場合に、凝 1)加温して凝集を行う方法と、2)電解質を加えて凝 [0066] 前記凝集粒子の調整法としては、例えば、

8

範囲 (但し、Tgは樹脂のガラス転移温度) であり、T し、ステップワイズに昇温しても良い。保持時間は、T g-20℃~Tgの範囲で30分以上8時間以下が好ま **集温度としては具体的には、Tg−20℃−Tgの温度** g-10℃~Tg-5℃の範囲が好ましい。上記温度範 囲であれば、虹解質を用いることなく好ましいトナー粒 径に凝集させることができる。粒度分布の良好な凝集粒 子を製造するには、凝集温度は所定の温度で通常少なく とも30分保持することにより所留の粒径のトナー粒子 とする。所定の温度までは一定速度で昇温しても良い

囲に保って電路質添加を行うと良い。また、乾解質添加 終了後の反応温度は、通常、Tg+20℃以下が好まし 0℃である。反応温度がT8+20℃よりも高い場合に は、所望の粒径に制御することが難しく、粗粉ができや [0067] 次に、電解質を添加して鷸集粒子を製造す る場合に用いられる電解質としては、有機塩、無機塩の 質の添加量は、虹解質の循環によっても変わるが、通常 なり、凝集反応後も1μm以下の微粉が残ったり、得ら れた凝集粒子の体徴平均粒径が3μm以下となる傾向に 急速で制御の効かない凝集となりやすく、得られた凝集 粒子の中に25μm以上の粗粉が混じったり、凝集体の [0068] 電解質を添加する場合の温度は、通常5~ 60℃の範囲で行う。30℃以上に加熱して凝集反応の **速度を上げても良いが、あまり加熱すると急速な凝集が** 起こり、粒径制御が困難となったり、得られた粒子の嵩 密度が低くなることがあるので、現合分散液の温度は4 0℃以下に保つことが好ましく、より好ましくは5~3 0℃の温度範囲、更に好ましくは10~25℃の温度範 い。より好ましい温度範囲は、Tgー10℃~Tg+1 いずれでも用いることができ、具体的には例えば、Na は瓜合体固形分100瓜最部に対して0.01~100 CI, KCI, LiCI, Na2SO4, K2SO4, Li 瓜量部、好ましくは0. 1~50瓜畳部、より好ましく 0. 01部より少ないときには、磁쑜反応の進行が強く 形状がいびつで不定形のものになるなどの傾向にある。 04, ZnSO4, A12 (SO4) 3, Fe2 (SO4) 3, ある。電解質添加型が100瓜量部より多いときには、 CH3CO2Na、C6H5SO3N等が挙げられる。電解 は0. 1~25瓜豊部で用いられる。既解質浴加量が 2504, MgC12, CaC12, MgS04, CaS

【0069】反応は、所盤の温度で少なくとも10分以 も良い。pHの値は使用する乳化剤の種類、量、目標と するトナーの粒径によって適宜選択すればよいが、アニ 上保持し、より好ましくは20分以上保持することによ り所留の粒径のトナー粒子とする。所留の温度までは一 定速度で昇温しても良いし、ステップワイズに昇温して 6、カチオン系界面括性剤を用いる場合には、p H 8~ オン系界面活性剤をメインに用いる場合にはpH2~

6

ことするのが好ましい。

特に制限はないが、通常、得ようとする静電荷像現像用 前記制御は、例えば、温度と前記投辞混合の条件とを適 以上の第1工程により、静電荷像現像用トナーの平均粒 径とほぼ同じ平均粒径を有する凝集粒子が形成され、散 宜設定・変更することにより容易に行うことができる。 凝集粒子を分散させてなる凝集粒子分散液が開製され [0070] 形成される凝集粒子の平均粒径としては、 トナーの平均粒径と同じ程度になるように制御される。

[0071] (A2工程) A2工程は、前配凝集粒子分 散液中に、微粒子を分散させてなる微粒子分散液を添加 **混合して前配凝集粒子に前配徴粒子を付着させて付着粒** 子を形成する工程である。

どを用いて測定することができる。

機能粒子、着色刺微粒子、ワックス微粒子、内添刺微粒 [0072] 前記微粒子としては、樹脂含有微粒子、無

徴粒子は、上述の樹脂の少なくとも1種を100重量% くとも1種を含有してなる微粒子である。前配樹脂含有 合有してなる樹脂微粒子であってもよいし、上述の樹脂 の少なくとも1種と、上近の猪色剤、無機粒体、ワック ス、内添剤及び葡電制御剤の少なくとも1種とを含有し 【0073】前記樹脂含有微粒子は、上述の樹脂の少な てなる複合微粒子であってもよい。

てなる微粒子である。前配帯電制御刺微粒子は、上述の **添刺微粒子は、上述の内添剤の少なくとも1値を含有し** 帯電制御剤の少なくとも1種を含有してなる微粒子であ 粒子は、上述の着色剤の少なくとも1種を含有してなる 微粒子である。前配ワックス微粒子は、上述のワックス [0074] 前記無機微粒子は、上述の無機粒体の少な くとも1種を含有してなる徴粒子である。前記着色刺微 の少なくとも1種を含有してなる微粒子である。前配内

と、前配樹脂粒子と前配着色剤とを凝集させてなる凝集 粒子の表面に、樹脂含有微粒子の階が被覆形成されるの **始色初の毺類による帯電特性の差を生じにくくすること** て、TBの高い樹脂を選択すれば、熱保存性と定着性と は、例えば多色の静電荷像現像用トナーを製造する場合 ができる。また、前記樹脂含有微粒子における樹脂とし を両立した静電荷像現像用トナーを製造することができ 子、帯電制御刺微粒子が好ましい。前配樹脂含有微粒子 で、前記着色剤による帯電器動への影響を最少化でき、 [0075] これらの微粒子の中でも、樹脂含有微粒 に好適に用いられる。前記樹脂含有微粒子を使用する

査することができる。前記無段徴粒子を用い、これを前 [0076] 前記樹脂含有微粒子 (樹脂と着色剤との複 より複雑な階層構造を有する静電荷像現像用トナーを製 合粒子)を用い、これを前配凝集粒子に付着させると、 記録集粒子に付着させると、第3工程における融合後

電荷像現像用トナーの粒径分布が広くなったり、遊離粒 方、前配平均粒径が前配範囲内にあると前配欠点がない 上、微粒子による層構造を形成する点で有利である。な 前配平均粒径が1μmを越えると、最終的に得られる静 お、前記平均粒径は、例えばマイクロトラックUPAな に、この無機微粒子による層でカプセル化された構造を 【0011】前記微粒子の平均粒径としては、通常1μ 有する静電荷像現像用トナーを製造することができる。 m以下であり、0.01~1μmであるのが好ましい。 子の発生が生じ、性能や信頼性の低下を招き易い。一

【0078】前記微粒子の体積としては、得られる静電 荷像現像用トナーの体積分率に依存し、得られる静電荷 に付着・凝集せず、前記微粒子による新たな凝集粒子が 形成されてしまい、得られる静電荷像現像用トナーの組 成分布や粒度分布の変動が著しくなり、所留の性能が得 の体徴の50%を越えると、前記微粒子が前記凝集粒子 い。前記微粒子の体積が得られる静電荷像現像用トナー 象現像用トナーの体積の50%以下であるのが好まし られなくなることがある。

[0079] 前記微粒子分散液においては、これらの微 位子を1種単独で分散させてもよいし、2種以上を併用 して分散させてもよい。後者の場合、併用する微粒子の 組み合わせとしては、特に制限はなく、目的に応じて適 宜選択することができる。

は、例えば上述の水系媒体などが挙げられる。本発明に おいては、前配水系媒体に上述の界面活性剤の少なくと 0080] 前記徴粒子分散液における分散媒として も1種を添加混合しておくのが好ましい。

ると、静電荷像現像用トナーの内部から安面にかけての 集粒子の含有量は、通常40重量%以下である。前配微 【0081】 前記徴粒子分散液における前記徴粒子の含 有量としては、通常5~60重量%であり、好ましくは 10~40瓜量%である。前配合有量が前配範囲外であ 構造及び組成の制御が十分でないことがある。また、凝 集粒子が形成された際における、凝集粒子分散液中の凝 位子分散液は、上述の界面活性剤と、上述の分散装置に よって得ることができる。

[0082] A2工程においては、A1工程において調 製された凝集粒子分散液中に、前配微粒子分散液を添加 現合して、前記凝集粒子に前記微粒子を付着させて付着 粒子を形成する。前配微粒子は、前配凝集粒子から見て 所たに追加される粒子に散当するので、本発明において は「追加粒子」と称されることがある。

記憶粒子(追加粒子)を添加混合することにより、微小 の粒度分布をシャーブにすることができる。なお、複数 [0083] 前配添加混合の方法としては、特に制限は なく、例えば、徐々に連続的に行ってもよいし、複数回 に分割して段階的に行ってもよい。このようにして、前 な粒子の発生を抑制し、得られる静電荷像現像用トナー

向上させることができ、しかも、A3工程における融合 とができると共に、融合時の安定性を高めるための界面 それらの添加量を最少限度に抑制することができ、コス 回に分割して段階的に添加混合を行うと、前配凝集粒子 の表面に段階的に前配徴粒子による層が積層され、静電 衛像現像用トナーの粒子の内部から外部にかけて構造変 化や組成勾配をもたせることができ、粒子の表面硬度を 時において、粒度分布を維持し、その変動を抑制するこ 活性剤や塩基又は酸等の安定剤の添加を不要にしたり、 トの削減や品質の改善が可能となる点で有利である。

液は、静置されていてもよいし、ミキサー等により穏や [0084] 前記凝集粒子に前記微粒子を付着させる条 付着の際、前配凝集粒子と前配微粒子とを含有する分散 かに攪拌されていてもよい。後者の場合の方が、均一な 温度である。Tg+20℃以下の温度で加熱すると、前 果、形成される付着粒子が安定し易くなる。処理時間と しては、前記温度に依存するので一概に規定することは できないが、通常5分~2時間程度である。 なお、前配 A 1 工程における樹脂粒子の樹脂のTg+20℃以下の 件としては、以下の通りである。即ち、過度としては、 配級集粒子と前配徴粒子とが付着し易くなり、その結 付着粒子が形成され易い点で有利である。

現像用トナーを得ることができ、静電荷像現像用トナー もよい。前者の場合、前配凝集粒子の表面に前配微粒子 後者の場合、複雑かつ精密な階層構造を有する静配荷像 [0085] 本発明において、このA2工程が行われる 回数としては、1回であってもよいし、複数回であって 後者の場合、前配凝集粒子の表面に前配徴粒子(追加粒 子)による層が2層以上順次形成される。したがって、 (追加粒子) による層が1層のみ形成されるのに対し、 に所望の機能を付与し得る点で有利である。

と前記鋳脂含有徴粒子とをこの順で付着させる組み合わ せが好ましい。他に、前記樹脂含有微粒子と前配無機微 粒子と前配無機微粒子とをこの順に付着させる組み合わ 選択することができる。ワックス又は着色剤はトナー要 粒子とをこの順に付着させる組み合わせ、前記離型刺微 [0086] A2工程が複数回行われる場合、前配凝集 粒子に対し、最初に付着させる微粒子と、次以降に付着 く、静電荷像現像用トナーの用途、目的等に応じて適宜 層部に存在しないことが好ましいので、前配凝集粒子に 対し、例えば、前記離型刺微粒子と前記樹脂含有微粒子 とをこの順で付落させる組み合わせ、前記着色剤微粒子 させる徴粒子とは、いかなる組み合わせであってもよ **む、などが砕ましい。**

する。このため、前記ワックス徴粒子の露出を抑制しつ 存在するため、前記ワックス徴粒子は、静電荷像現像用 トナーの粒子表面に鴛出せず、皺粒子表面の近傍に存在 【0087】前配ワックス微粒子と前配樹脂含有微粒子 とをこの順で付着させる組み合わせの場合、静配荷像現 像用トナーの粒子の最表面に前配樹脂含有微粒子の層が

脂、ポリエステル樹脂、シリコーン樹脂苺の樹脂粒子

現像用トナーの粒子の最表面に前配樹脂含有微粒子の層 つ、定着時においてはワックス微粒子を有効に作用させ ることができる。前記着色刺微粒子と前記樹脂合有微粒 子とをこの順で付着させる組み合わせの場合、静電荷像 が存在するため、前配着色刺微粒子は、静配荷像現像用 トナーの粒子表面に露出しない。このため、着色剤によ る帯戦挙動への影響を抑えられる。

とをこの順に付着させる組み合わせを採用すると、静電 [0088] 前記樹脂含有微粒子と前配無機微粒子とを るため、眩無微微粒子の層によりカプセル化された構造 粒子分散液と、硬度の高い樹脂含有微粒子や無機微粒子 この順に付落させる組み合わせの場合、静電荷像現像用 トナーの粒子の最表面に、無機微粒子による層が存在す を有する静電荷像現像用トナーが製造される。ワックス 荷像現像用トナーの最表面に硬質のシェルを形成するこ とができる。

[0089] A2工程が複数回行われる場合、前配徴粒 子を添加混合する毎に、前配徴粒子と前配凝染粒子とを 含有する分散液を、Al工程における樹脂粒子の樹脂の い。このようにすると、遊離粒子の発生を抑制すること ガラス転移点以下の温度で加熱する態様が好ましく、こ の加熱の温度が段階的に上昇される憩様がより好まし ができる点で有利である。

A1工程で関製された凝集粒子に、前配微粒子が複数回 れた凝集粒子に前配徴粒子を付着させてなる付着粒子が 2 工程において、前配凝集粒子に、適宜選択した微粒子 を付着させることにより、所留の特性を有する静電荷像 【0091】(A3工程)A3工程は、前配付着粒子を [0090] 以上のA2工程により、A1工程で開製さ 付着させてなる付着粒子が形成される。したがって、A 現(象用トナーを自由に散計し、製造することができる。 形成される。なお、第2工程を複数回行った場合には、 加熱して融合する工程である。

[0092] 前配加熱の温度としては、付着粒子に含ま れる樹脂のガラス転移点温度一散樹脂の分解温度であれ ばよい。したがって、前記加熱の温度は、前配樹脂粒子 の樹脂の種類に応じて異なり、一概に規定することはで きないが、一般的には付着粒子に含まれる樹脂のガラス 転移点温度~180℃である。なお、前配加熱は、それ 前配融合の時間としては、前配加熱の温度が高ければ短 い時間で足り、前記加熱の温度が低ければ及い時間が必 要である。即ち、前記融合の時間は、前記加熱の温度に 依存するので一概に規定することはできないが、一般的 には30分~10時間である。本発明においては、第3 工程の終了後に得られた静電荷像現像用トナーを、適宜 の条件で洗浄、乾燥等することができる。なお、得られ チタニア、炭酸カルシウム等の無機粒体や、ピニル系樹 た静電荷像現像用トナーの表面に、シリカ、アルミナ、 自体公知の加熱装置・器具を用いて行うことができる。

9

を、乾砕状態で動類力を臼加して浴却してもよい。 これ ちの無礙粒体や樹脂粒子は、減動性助剤やクリーニング 助加等の外添剤として機能する。

[0093] 以上のA3工程により、前配凝集粒子 (母 位子)の疫面に前配徴粒子(追加粒子)が付着したまま の状態で、A2工程で関製された付着粒子が融合され、 本発明に用いられるトナーが製造される。

[0094] 本発明に用いられる好ましい低合法によっ が、少なくとも樹脂粒子を分散させてなる分散液中で凝 集粒子を形成し凝集粒子分散液を開製する工程(B1工 程)、前配凝集粒子を加熱して融合しトナー芯材を得る に前記憶粒子を付着させて付着粒子を形成する工程(B 3工程)を含む製造方法によって得られたものであるト 工程(B2工程)、及び前配トナー芯材に微粒子を分散 させてなる徴粒子分散液を添加混合して前配トナー芯材 **て侮られるトナーの別の一虫枯鯨様としては、トナー** ナーが掛げられる。

剤、ワックス、またそれらを分散するために用いられる 散液を調整した後、一旦、樹脂のTg以上の温度により 加熱することによってこれを融合し、ほぼトナー粒子に 近い大きさと円形度の粒子(トナー芯材)を作製してお [0096] (B2工程) B2工程は、前配凝集粒子を 融合するのであるが、B1~B3工程では、凝集粒子分 いて、これに更に樹脂等の微粒子を追加混合してトナー [0095] (B1工程) B1工程は、分散液中で凝集 | ~ A 3 工程では、凝集粒子分散液を調整した後、これ を加熱によって融合することなく、次の樹脂等の微粒子 を追加限合して凝集粒子に付着させ、そしてこれを加熱 位子を形成し凝集粒子分散液を開製する工程であり、上 加熱して融合しトナー芯材を得る工程である。上述のA 乳化剤(界面活性剤)等は、上述のものが用いられる。 述のA1工程と同様であり、B1工程で用いられる樹 脂、また、必要に応じて用いられる着色剤、荷鷺刨御 芯材に傲粒子が付着したものを製造する。

3.3工程で用いられる傲粒子は、上述のA2工程で用い # [0097] (B3工程) B3工程は、B2工程で得ら れたトナー芯材に、樹脂等の微粒子を追加混合してトナ 一芯材に徴粒子が付着したものを作製する工程である。

の場合1となる。安面形状が複雑になるほど円形度の値 は小さくなる。本発明に用いられるトナーは、この円形 [0102] 本発明におけるトナーの50%円形度は、 トナー粒子の凹凸の度合いを示し、トナーが完全な球形 度が、0. 9~1であることが好ましく、0. 95~1 であることが更に好ましい。

-は、上記コールターカウンターで耐定した体積平均粒 50 【0103】また、本発明においては、トナーの粒子径 を規定する方法として、ペックマン・コールター株式会 マルチサイザーIIを用いる。本発明に用いられるトナ 社製の精密粒度分布測定装置コールター・カウンター

好ましくは、これを更に加熱融合して、一定の粒径と粒 *られる傲粒子と同様である。また、B3工程で得られた 粒子は、このままトナー粒子として使用しても良いが、 **仮分布のトナーとして用いる。**

明の静電荷像現像用トナーの製造方法におけるA2工程 [0098] 本発明に用いられるトナーは、前記凝集粒 てなる構造を有する。前記微粒子の層は、1層であって もよく、2層以上であってもよく、その数は、前配本発 子を芯粒子とし、その表面を前配燈粒子の層が铍覆され あるいはB3工程を行った回数と同じである。

【0099】 前記トナーは、その内部から表面にかけて **沓を有し、しかもその変化が所望の範囲に制御されてい** り製造されるので、視線粉砕法等により製造される場合 の組成、物性等が連続的又は不連続的に変化している構 るので、現像性、転写性、定益性、クリーニング性等の **指特性に優れる。また、前配間性能を安定に発揮・維持** は、前配本発明の静電荷像現像用トナーの製造方法によ と異なり、その平均粒径が小さく、しかもその粒度分布 するので、信頼性が高い。前配静電荷像現像用トナー がシャープである。

質またはそれらの表面に樹脂コーティングを施したもの [0100] 本発明に用いられるトナーは2成分系現像 よい。2成分系現像剤として用いる場合、キャリアとし や磁性キャリア等公知のものを用いることができる。横 脂コーティングキャリアの被覆樹脂としては一般的に知 られているスチレン系樹脂、アクリル系樹脂、スチレン ン樹脂、フッ紫樹脂、またはこれらの混合物等が利用で 法として、東亜医用電子製フロー式粒子像分析装置FP IA-2000にてトナーを測定し、下配式(I)より 水められた値の50%における累積粒度値に相当する円 **刺又は非磁性1成分系現像剤のいずれの形態で用いても** ては、鉄粉、マグネタイト粉、フェライト粉等の磁性物 アクリル共宜合系樹脂、シリコーン樹脂、変性シリコー きる。本発明においては、トナーの形状を定量化する方 形度を50%円形度と定義する。

径 (Dv) が3~9 μmであることが好ましく、4~8 μmであることが更に好ましい。 円形度=粒子投影面積と同じ面積の円の周長/粒子投影像の周長

【0104】また、トナーの粒度分布としてはシャープ 均粒径 (Dy) と個数平均粒径 (DN) の関係が、1.0 なもののほうが着色剤や帯電制御剤等均一に分布して帯 電性が均一となりやすく好ましい。具体的には、体積平 ≦Dy/Dy≤1. 3を消たすものが好ましい。

粒子を測定するには、東亜医用電子製フロー式粒子像分 [0105] また、0.6μm~2.12μmの穀粕な 析装置FPIA-2000を用いる。フロー式粒子像分 析装置による 0.6 μm~2.12μmの粒子の測定値

(13)

キング層等の中間層や、保護層など、電気特性、機械特 り、少なくとも、導電性支持体と電荷発生層、電荷移動 層から成る。電荷発生層と電荷移動層は、通常は、配荷 発生層の上に電荷移動層が積層された構成をとるが、逆 の構成でも良い。また、これらの他に、接着層、ブロッ 性の改良のための層を設けても良い。導電性支持体とし ては周知の電子写真感光体に採用されているものがいず ぃ。これは、微細な粒子が一定量より少ないことを意味 しているが、微細な粒子が少ない場合には、トナーの流 く、8 %以下が特に好ましい。また、散微粒子の割合の 下限は特になく、微粒子が全く存在しないのが敷も好ま **電荷発生層と電荷移動層が積層された積層型感光体であ** (個数) が全粒子数の15%以下であるトナーが好まし 動性が向上し、婚色剤や帯電制御剤御神均一に分布して帯 靍位が均一となりやすい。また、0.6 μm~2.12 〃mの微粒子数は、全粒子数の10%以下が更に好まし しいが、それは製造上困難であり通常1%以上である。 る。本発明に用いられる感光体は、導電性支持体上に、 [0106] 次に本発明で用いられる磁光体を説明す れも使用できる。

ニウム、ステンレス、銅等の金属ドラム、シートあるい 分子電解質等の導電性物質を適当なパインダーとともに げられる。また、酸化スズ、酸化インジウム等の導電性 [0107] 導電性支持体は、具体的には倒えばアルミ 金属酸化物で導電処理したプラスチックフィルムやベル る。更に、金属粉末、カーボンブラック、ヨウ化鋼、高 盤布して導電処理したプラスチックフィルム、ブラスチ 末、カーボンブラック、炭紫繊維等の導配性物質を含有 し、導電性となったプラスチックのシートやドラムが挙 ックドラム、紙、紙管等が挙げられる。また、金属粉 はこれらの金属箔のラミネート物、蒸槍物が挙げられ

テル等のビニル化合物の宜合体及び共宜合体、ポリビニ スエーテル、フェノキシ衛脂、けい紫樹脂、エポキシ樹 に対し、5~500重畳部、好ましくは20~300重 物、色素、電子受容性化合物等を含んでいても良い。電 ルアセタール、ポリカーボネート、ポリエステル、ポリ 脂等が挙げられる。オキシチタニウムフタロシアニンと パインダーポリマーとの割合は、特に制限はないが、一 股には、オキシチタニウムフタロシアニン100重畳部 リル酸エステル、ピニルアルコール、エチルピニルエー [0108] 電荷発生層は、少なくともパインダーポリ は、電荷発生剤としてオキシチタニウムフタロシアニン 酢酸ビニル、塩化ビニル、アクリル酸エステル、メタク アミド、ポリウレタン、セルロースエステル、セルロー 荷発生層に用いられるパインダーとしては、スチレン、 マー、及び電荷発生剤を含んでおり、本発明において が用いられる。これに、必要に応じ有機光導配性化合 **量部のパインダーポリマーを使用する。**

【0109】本発明の特徴の一つは、電荷発生剤とし

て、特定の結晶型であるY型オキシチタニウムフタロシ アニンを用いることにある。本発明に用いられるY型オ キシチタニウムフタロシアニンは、CuKa級によるX **娘回折においてブラッグ角(20±0.2)27.3°** に明瞭な回折ピークを示すものである。

~258頁 (同刊行物ではY型と称されている) に示さ れたものであり、27.3°に最大回折ピークを示すこ 56号公報の第1図、特開昭64-17066号公報の 第1図、特開昭63-20365号公報の第1図、電子 とが特徴である。また、この結晶型オキシチタニウムフ 、24.2。に回折ピークを示す。本明細審では、本 発明に用いられる結晶型オキシチタニウムフタロシアニ 【0111】回折ピークの強度は、結晶性、試料の配向 【0110】この結晶型オキシチタニウムフタロシアニ (同公報では11型と称されている)、特開平2-82 写真学会誌第92卷 (1990年発行) 第3号第250 ンを、学術発費での呼称に従いY型と呼ぶこととする。 ンは、例えば特開昭62-61094号公報の第2図 タロシアニンは27.3。以外に通常7.4。、9.

性、及び測定法により変化する場合があるが、粉末試料 に薄膜法あるい平行法とも呼ばれる)により測定された 場合、試料の状態によっては27.3。が最大回折ピー のX級回折を行う場合に通常用いられるブラッグーブレ ンターノの集中法による調定では、Y型結晶は27. 3 * に最大回折ピークを有する。また、薄膜光学系(一般 クとならない場合があるが、これは結晶粉末が特定の方 向に配向しているためと考えられる。

[0112] 本発明においては、感度を開節する尊の目 タロシアニン系化合物とのみ混合するのであれば、電荷 発生剤中のY型オキシチタニウムフタロシアニンの割合 フタロシアニン系化合物以外の配荷発生剤とも現合する のであれば、電荷発生剤中のY型オキシチタニウムフタ ロシアニンの割合は通常40低最%以上であり、60% 好ましくは 0. 1~2μmである。電荷発生層から電荷 キャリアーが注入される。鬼荷移動層は、キャリアーの 的で、Y型オキシチタニウムフタロシアニン以外の配荷 B型オキシチタニウムフタロシアニン等のチタン含有フ は通常30重量%以上であり、50%重量以上が好まし く、10 重畳%以上が更に好ましい。また、チタン合有 **重量以上が好ましく、80重量%以上が更に好ましい。** [0113] 配荷発生層の殿厚は、0.05~5μm、 発生剤を現合して用いても良いが、視合する場合には、 電荷発生物質がa型オキシチタニウムフタロシアニン、

【0114】電荷移動層は、少なくともパインダー及び 電荷移送剤を含んでおり、これに、必要に応じ、酸化防

注入効率と移動効率の高いキャリアー移動媒体を含有す

添加剤が含まれていても良い。配荷移送剤としては、ポ リーNーピニルカルパゾール、ポリスチリルアントラセ 止剤、均虧剤、可塑剤、流動性付与剤、衆傷剤等の各種

特開2002-62686 (P2002-62686A)

尊体、フェニレンジアミン誘導体、Nーフェニルカルバ うな電気供与性盐、あるいはこれらの量換基を有する芳 ゾール誘導体、スチルベン誘導体、ヒドラゾン化合物な ンのような複索環化合物や組合多環芳香族化合物を側鎖 体、トリフェニルアミンのようなトリアリールアミン腺 I)、式 (IV)、又は式 (V) で扱される原子団を有 ル、トリアゾール、カルパゾール等の複素環化合物、ト どが挙げられ、特に、置換アミノ茲やアルコキシ基のよ **酢族環基が置換した電子授与性の大きい化合物が挙げら** に有する高分子化合物、低分子化合物としては、ピラゾ リン、イミダゾール、オキサゾール、オキサジアゾー リフェニルメタンのようなトリアリールアルカン誘導 れる。これらの内、分子内に式(1 1)、式(1 1 する化合物が好ましい。

Ξ [0115]

3

【0116】電荷移動剤として好ましい化合物の具体例 (A-14) は式 (II) で表される原子団を有する化 物であり、 (D−1) ~ (D−3) は式 (V) で敷され を以下に示す。なお、下配の具体例の内、 (A-1)~ 合物であり、 (B-1) ~ (B-8) は式 (III) で (C-5) は式 (IV) で表される原子団を有する化合 表される原子団を有する化合物であり、 (C-1) ~ る原子団を有する化合物である。

[0118]

(12)

$$\begin{array}{c} 29 \\ 140 \\$$

(A-7)

(A-14)

[485]

[0120]

[469]

[0124]

(2)

セタール、ポリカーポネート、ポリエステル、ポリスル は、上記電荷移動剤(キャリアー移動媒体)との相溶性 が良く、強膜形成後にキャリアー移動媒体が結晶化した り、相分離することのないポリマーが好ましく、それら クリル酸エステル、メタクリル酸エステル、ブタジエン 梅のピニル化合物の重合体及び共重合体、ポリピニルア の倒としては、スチレン、酢酸ピニル、塩化ピニル、ア **ーポリマーが用いられる。パインダーポリマーとして**

ずしも明確ではないが、瓜合法により得られたカプセル

トナーは、比較的円形に近く、凹凸が少ない等の形状を 有するため、ドット面積の小さい潜像を完全に再現する 【0130】また更に、このようなトナーは比較的粒形 個体内での潜電部位の局在化、及びそれに伴う個体間の **帯電量のばらつきが起いりにくく、その結果、どの粒子**

ように現像することが良好となるものと推定される。

が揃っているために、粒子の形が異なることによる粒子

(C-E)

本発明の画像形成方法が上記の効果を発揮する理由は必

にも好ましく使用できる

も磁光体上にほぼ均一な力で付着するので、潜像を忠爽

に再現するものと考えられる。

[0131] しかも、上記のオキシチタニウムフタロシ 光体が商略度を示すので、600dpi以上とドット数

アニンを感光体の電荷発生物質として用いることで、思

嵒部に対し50~3000重盘部、好ましくは10~1 を用いることができる。このような添加剤としては、周 【0127】キャリアー移動媒体が高分子化合物の場合 は、特にパインダーポリマーを用いなくても良いが、可 とう性の改良等で混合することも行われる。低分子化合 物の場合は、成蹊性のため、パインゲーポリマーが用い られ、その使用畳は、通常キャリアー移動媒体100重 盤膜の機械的強度や、耐久性向上のための種々の添加剤 知の可盟剤や、種々の安定剤、流動性付与剤、架橋剤等 000国最都の範囲である。電荷移動層にはこの他に、

と、530~850nmの光を発する露光装置が好まし い。更に具体的には、532nm付近、635nm付

合わせて用いると、潜像上へのトナーの付着が良好にな* 場合に、重合法によって得られたカプセルトナーと組み 【0129】上近のトナー、臨光体、定着装置、及び路 後の現像において、600dpi以上とドット数が多い 光装置を用いて画像を形成する際、感光体のドット鴛光

(奥施例) 以下奥施例により本発明を更に具体的に説明 するが、本発明はその要旨を越えない限り、以下の奥施 一は、上近のB1~B3工程により製造されたものであ 列に限定されるものでない。なお、奥楠例におけるトナ [0132]

[0133]

(トナー芯材)

スチレンノブチルアクリレート/アクリル酸=59/39/2のモノマー混合 物をドデシルベンゼンスルホン酸ナトリウムで乳化し、過酸化水素を開始剤とし ·樹脂粒子分散液

·着色刺微粒子分散液

シアン顔料(銅フタロシアニン)分散物(固形分濃度35wt%)

パラフィンワックス(日本精蝋製 LUVAX-1266)分散物:(固形分

ホン、ポリフェニレンオキサイド、ポリウレタン、セル 盾、けい紫樹脂、エポキシ樹脂等が挙げられる。なかで ら、離形性、耐久性を考慮すると、ポリカーポネート又 [0126] 更に、電荷移動層には必要に応じパインダ ロースエステル、セルロースエーテル、フェノキシ樹 はポリエステルを含む樹脂が好ましい。

が増えて各ドットの路光時間が短くなってもなお十分な

高速、高解像度、低温定券の画像形成装置に有効に適用 できる。従って、本発明の画像形成方法は、1200d

トナー濃度で現像することができる。更に、より小型、

【0128】次に、感光体に潜像を形成するために露光 りデジタル露光を行う装置が用いられるが、上記のY型 を行う露光装置としては、レーザー光、LED光等によ オキシチタニウムフタロシアニンの吸光度を考慮する が挙げられる。

(1-0)

[4F10]

ある。更にまた、100~150℃の低温定療装置であ

る場合に特に有効である。そして、これらにより、省エ

ネルギーを選成することができる。

Lである場合に特に有効であり、また、配子写真感光体

効であり、電子写真感光体の回転速度が1. 5回/秒以 の内径が2 5 mm以下のドラムである場合に特に有効で

p i 以上の解像度を有する画像を形成する場合に特に有

近、650 nm付近、780 nm付近、830 nm付近 の光を発する露光装置が好ましい。

イ)トナー芯材-1 (乳化瓜合凝集法トナー)

て乳化重合した樹脂粒子分散液 (Mw54000、樹脂丁g40℃、樹脂濃度2

0 w t %)

ワックス徴粒子分散液 **農度25wt%**)

(22)

* るので、高階闘、高解像度の潜像を忠実に再現できるも

100~160℃の低温定格袋置を備えた画像形成袋置

のである。さらに、トナーの低温定着性が良好なため、

(S

· 帝既即匈海叔叔和少依物

4, 4' -メチレンピス [2 - [N - (4 -クロロフェニル) アミド] -3 -

ヒドロキシナフタレン] 分散物 (固形分濃度 5 w t %)

*時間保持した後冷却し、凝集トナースラリー(固形分機 [0135] [表2] でpHを7に開整して粒径成長を止め、更に60℃で1キ 分で昇遣して体積平均粒径が5.5μmとなったところ 3. 5に関整した後、時々粒子径を固定しながら1七/ [0134] 上配の分散液混合物を提拌しながらpH

ロ)トナー芯材-2(慰询組合法トナー)

・メチレン

・ブチルアクリレート

・シアニラスソナン

0.4部

・分散剤 (楠本化成製 ディスパロン)

[0136] 上配の各成分を常法により混合分散してモ 25部、ポリアクリル酸ナトリウム 0.05部、塩化 カルシウム 200部、脱塩水 300部の混合分散液 ノマー混合物を調整した。別に、リン酸三カルシウム

を用意しておき、これに上記のモノマー現合物を添加し 連過、水洗浄、乾燥を行い、Mw33000、樹脂Tg 40℃、体積平均粒径6.9μmの懸濁瓜合トナーを得 て懸濁液を調整し、常法により懸濁重合して、酸洗浄、 た(これをトナー芯材Bとする)。

・ブチルアクリレート ・メヤレン

・ンプロラスンガン

・カーポンプラック (三菱化学製 MA100S)

・パラフィンワックス(日本精蝋製 LUVAX-1266)5部

・分散剤(楠本化成製 ディスパロン)

· 瓜合開始剤 (柏光純凝製 V-65)

イ) 樹脂微粒子分散液一1(パラフィンワックス内包化 [0139] (樹脂微粒子分散液)

始剤として、スチレン/ブチルアクリレート/アクリル して、Mw14000、樹脂Tg65℃、体積平均粒径 0. 2 μm、樹脂濃度20wt%のパラフィンワックス 内包化樹脂微粒子分散液を得た(これを、樹脂微粒子分 パラフィンワックス (日本特徴製 LUVAX-126 6)10部の微粒子をシードとして、ドデシルベンゼン スルホン酸ナトリウムを乳化剤として、過酸化水紫を開 酸=15:23:2のモノマー混合物90部を乳化瓜合

[0140] ロ) 樹脂微粒子分散液ー2 (エステルワッ クス内包化微粒子分散液)

放液Aとする)

エステルワックス (日本油脂製 ユニスターM2222 ンスルホン酸ナトリウムを乳化剤として、過酸化水器を 開始剤として、スチレン/ブチルアクリレート/アクリ SL)10部の額粒子をシードとして、ドヂシルベンゼ

V酸=12:26:2のモノマー混合物 9 0 部を乳化瓜

12部

度22%)を得た(これをトナー芯材Aとする)

39.48

4部 ・カーポンプラック (三菱化学製 MA100S) ・パラフィンワックス (日本精頻製 LUVAX-1266) 5部

· 瓜合開始剤 (和光純藻製 V-65)

58

上述のトナー芯材-2において、モノマー混合物の組成 を下記に変更した以外は、トナー芯材ー2と同様に懸濁 瓜合して、Mw32000、樹脂Tg50℃、体積平均 ※ [0137] ハ) トナー芯材ー3 (懸濁風合法トナー)

粒径8.2μmの懸濁重合トナーを得た(これをトナー 芯材 C とする)。

[0138]

[表3]

合して、Mw69000、樹脂Tg60℃、体徴平均粒 32.6部 0.48 1.5脚 6.7 忠 4

径0. 24 μm、樹脂濃度20wt%のエステルワック ス内包化樹脂微粒子分散液を得た(これを、樹脂微粒子 分散液 Bとする)

[0141] ハ) 樹脂微粒子分散液-3 (微粒子分散

(ダイソー製 DAP-SPHD-E)のエマルジョン ジアリルフタレートーアクリル酸エステル共宜合樹脂 (樹脂丁g90℃、体積平均粒径0.1μm) (これ

を、樹脂微粒子分散液にとする) [0142] (トナーの製造)

1) ht- (T1)

容器に取り、25℃で平羽根機件機で300回転/分で 機辞しながら、トナー芯材A 100部を徐々に添加し 財脂酸粒子分散液A 50部、脱塩水 600部を反応 て、分散液に白濁がなくなるまで反応させた。続いて、 て均一分散した。次に、攪拌下pHを3.0に調整し

一芯材に樹脂微粒子を固着させた後、濾過、水洗、乾燥

反応温度を35℃に昇温して2時間反応を継続し、トナ

(24)

ノストナーを得た。トナー 1 0 0 部に対して、**疎水性の 表面処理をしたシリカを1部混合攪拌し、現像用トナー**

を得た (これをトナーT1とする)。 [0143] D) b7- (T2)

してトナーを得た。トナー 100部に対して、疎水性の 反応温度を60℃に昇温して2時間反応を継続し、トナ **一芯材に樹脂徴粒子を固着させた後、違過、水洗、乾燥 要面処理をしたシリカを1部混合攪拌し、現像用トナー** 容器に取り、25℃で平羽根挽拌機で300回転/分で 鬼拝しながら、トナー芯材B 100部を徐々に添加し 樹脂徵粒子分散液A 50部、脱塩水 600部を反応 て、分散液に白濁がなくなるまで反応させた。続いて、 て均一分散した。次に、攪拌下pHを3. 0に調整し を得た (これをトナーT2とする)。

一芯材に樹脂徴粒子を固着させた後、濾過、水洗、乾燥 して樹脂粒子固着トナーを得た。トナー100部に対し 容器に取り、25℃で平羽根機枠機で300回転/分で 機样しながら、トナー芯材C 100部を徐々に添加し 反応温度を60℃に昇過して2時間反応を推続し、トナ **跗脂微粒子分散液因 50部、脱塩水 600部を反応** て、分散液に白濁がなくなるまで反応させた。続いて、 て、疎水性の表面処理をしたシリカを1部混合機辞し、 て均一分散した。次に、提拌下pHを3. 0に調整し 現像用トナーを得た(これをトナーT3とする)。 [0144] N) ht- (T3)

したシリカを1都混合攪拌し、現像用トナーを得た(こ p H 2. 0に調整して、分散液に白濁がなくなるまで反 応させた。反応温度を段階的に60℃まで昇温し、60 **でにて2時間反応して、樹脂微粒子を固落させた後、室** を得た。トナー100部に対して、疎水性の表面処理を 機拌しながら、トナー芯材A 100部を徐々に添加し 反応温度を40℃に昇温して2時間反応を継続し、トナ 温まで冷却した。続いて、濾過、水洗、乾燥してトナー 容器に取り、25℃で平羽根機拌機で300回転/分で た。続いて、樹脂微粒子分散液D 50部を添加して、 樹脂微粒子分散液A 50部、脱塩水 600部を反応 て、分散液に白濁がなくなるまで反応させた。続いて、 て均一分散した。次に、撹拌下 p Hを3.0 に関数し 一芯材に樹脂微粒子を固着させた後、室温まで冷却し [0145] =) トナー (T4)

乾燥してトナーを得た。トナー100部に対して、疎水 分で機件しながら、トナー芯材A 100部を徐々に衒 加して均一分散した。次に、攪拌下pHを3.0に調整 反応容器に取り、25℃で平羽根機拌機で300回転/ 樹脂徴粒子分散液C 27.5部、脱塩水 600部を して、分散液に白濁がなくなるまで反応させた。続い て、反応温度を40℃に昇温して2時間反応を継続し、 トナー芯材に樹脂微粒子を固着させた後、濾過、水洗、 [0146]ホ)トナー(T5) れをトナーT4とする)。

性の疫面処理をしたシリカを1部混合機件し、現像用ト ナーを得た (これをトナーT5とする)。

ポリエステル樹脂 (Tg=60℃、Sp=135℃、1 [0147] <) ++- (T6)

的、荷電制御剤として4-4.メチレンピス〔2 ー〔N 対して、疎水性の表面処理をしたシリカを1部混合機枠 **%験権)94節に、ピグメントブルー15:3を40%** フタレン]、1部を溶融現牌した後、粉砕分扱して、体 稚平均径7.8μm、個数平均径5.8μm、50%円 形度0.94のシアントナーを得た。トナー100部に **- (4-クロロフェニル) アミド] - 3 - ヒドロキシナ** し、現像用トナーを得た(これをトナーT6)とする。 含有する前配ポリエステル樹脂のマスターパッチ10 [0148] (既光体の製造)

(オキシチタニウムフタロシアニンの製造例) 常法に従 gに、1,2-ジクロロエタン300gを加え、窟道下 模回折においてブラッグ角(20±0.2°)27.3 析出させて違取し、十分水洗いを繰り返し(所鈕により アンモニア水苺の希アルカリ水を使用)アモルファス状 し、メタノール洗浄後、乾燥して、CuKa綴によるX って合成したオキシチタニウムフタロシアニン100g を2 k gの濃硫酸に溶解し、20リットルの水にあけて 態のウェットペーストを得た。このウェットペースト2 で3時間撹拌を行なった。メタノールで希釈して違過 * に最大回折ピークを有する結晶を得た。

なる腹厚20 m の配荷移動器を積層し、積層型感光層 [0149] (感光体の製造-1) 上記製造例で製造し たオキシチタニウムフタロシアニン4部、ポリピニルブ タノン300部と共に、サンドグラインダーミルで8時 Φ)に浸漬位布により塗布し、既厚0.2μmの電荷発 生層を形成した。次いで、キャリア移動媒体として4ー (2, 2ージフェニルエテニル) -N, Nージフェニル ペンゼンアミンを100部とポリカーボネート萄脂 (三 数ガス化学社製 ユーピロン 2200)100部から チラール2部を、4ーメトキシー4ーメチルー2ーペン 間分散した。これを、アルミニウムドラム (30mm を有する電子写真感光体を得た(これをPC1とす

使用したアルミニウムドラムの代わりに安面がアルミ森 **強布の代わりにコーター雄布機を使用した以外は感光体** 【0150】 (磨光体の製造-2) 膨光体の製造-1で **着層になっているポリエステルフィルムを使用し、優談** (PC1) と同様に製造し、シート状感光体を得た (こ れをPC2とする)。 ę

[0151] (歴光体の製造-3) 竪光体の製造-1に おいて、オキシチタニウムフタロシアニンとしてA型を 用いた以外は、感光体の製造―1と同様にして積層型感 光層を有する電子写真感光体を得た(これをPC3とす

50 [0152] (感光体の製造ー4) 感光体の製造ー2に

33

*プリント画像上に直径50 mの孤立ドットの再現性に

用いた以外は、感光体の製造-2と同様に製造し、シー

おいて、オキシチタニウムフタロシアニンとしてB型を

ト状感光体を得た (これをPC4とする)。

A:再現性極めて良好

より評価した。

geprestoN4-612IIに搭載した(600 体PC1及びPC3をCASIO社製Color Pa dpiの鮃鱼)。また、感光体PC2及びPC4ついて [0153] (評価法) 以上のようにして得られた感光

0154]以下の軒価を実施した。 た (1200dpiの解値)。

は、テクトロニクス社製Phaser560Jに搭載し

(A) 路算体

ような画像モードを有したプリントローラを接続し、プ 面像濃度が構点の面積率で10段階の濃度を判別できる リント画像が何段路まで判別できるかを評価した。

プリント画像上に1mmあたり等間隔の縦線をもうけて (B) 解像度-1

評価した。600dpiでは、6本、9本、12本もう けて評価した。12000dpiでは、17本、20 本、23本もうけて軒価した。

[0155] (C) 解像度-2

[0157]

用せずに評価した。

0 mm/s、ニップ幅は4 mmで、シリコンオイルを使

校置の加熱ローラは35mmφ、プロセススピード12

部1数 (600dp1だの配信)

	<u>†</u> 1	トナーの光体	附属性 (判別可能)	保険度 オイルレス (判別可能) -2 定着置度	解像度 -2	オイルレス 定替題度
英牌例 1	T 1	PC1	9段階まで	13本生で	· ¥	- 110~165°C
实施例2	T 2	PC1	9段階まで	12本年で	4	115~160°C
東衛23	13	PC1	9段階まで	13本家で	4	105~160°C
安施例4	7.4	PC1	9 数据また	12本まで	4	120~166°C
突拖916	T 6	PC1	9段階まで	12本まで	∢	110~160°C
比較例1	T 6	PC1	9 段階まで	12本まで	œ	120~150°C
比较例2	11	PC3	9段階まで	9 段階まで 12本まで	Д	110~165°C

第2枚(1200dp1での評価) ※ ※ [班5]

[0158]

	<u>‡</u> 1	- b	附詞性 (判別可能)	解像度 - 1 解像度 定賃盈度値 (判別可能) - 2	解像度 -2	龙着温度幅
英語例 6	Ξ.	PC2	10段限まで	2 3本まで	Α	110~165°C
实施例7	12	PC2	10処暦まで	23本まで	<	115~160°C
突推918	Т 3	PC2	10段階また	23本まで	<	105~160°C
英施例9	T 4	PC2	10段階まで	23本まで	<	120~165°C
实施例10	7.5	PC2	10段階まで	20本家で	ш	110~160°C
比較例3	T 8	PC2	10段階まで	20本東で	o	120~150°C
比较的4	T 1	P C 4	9段階まで	20本まで	ပ	110~165°C

(92)

20

イエロー現像槽 マゼンク現像槽

シアン現像槽

ブラック現像槽

を用いた感光体と、上述の第1工程、第2工程及び第3

工程を含む製造方法により得られたトナーを用い、配録 ドット密度600dpi以上のמ光を行う事により、商 **階関、高解像度の画像が得らることができる。また、本**

発明は、小型、高速、低温定着の電子写真装置に有利に 適用できる。

クリーニング装置

転写装置

|図面の簡単な説明| [0160]

[図1] 本発明に用いられる画像形成装置の一例の概略

装置 (シャープ社製複写機 J X - 8 2 0 0 用定着機) に

て加熱ローラの表面温度を100℃から190℃まで変 化させ、定着ニップ部に散送し、排出されたときの定着 状態を観察した。定着時に加熱ローラにトナーのオフセ 既に接着している温度領域を定着温度領域とする。定着

上記の各装置にて現像工程まで行い、未定着のトナー像

【0 1 5 6】 (D) オイルレス定権温度領域

C:解像力不充分

B:良好

を担持した記録紙を取り出し、次に、別に用意した定着

供給ローラ 現像ローラ

43

7ジテータ

4 2

定着装置

[図2] 本発明に用いられるタンデム型フルカラー画像

形成装置の一例の主要構成部の概略図である。

上部定婚部材 下部定着部材

7 1

7 2

規制部材

4 5

加熱裝置

トナー 記錄紙

[符号の説明] 极光体

ットが生じず、定着後の記録板上のトナーが十分に記録

帯電装置 露光装置

現像槽

[図1]

[図2]

フロントページの概念

Fターム(参考) 2H005 AAII AAI3 AAI5 AB03 AB06

CA03 EA05 EA10 2H068 AA19 BA39 FC05

2H076 AB09 DA36

so 【発明の効果】上述した特定のチタニルフタロシアニン