764. Largest Plus Sign

Description

You are given an integer [n]. You have an $[n] \times [n]$ binary grid [grid] with all values initially $[n] \times [n]$ element of the array [mines] is defined as $[mines[i] = [x_i, y_i]]$ where $[grid[x_i][y_i] == 0]$.

Return the order of the largest axis-aligned plus sign of 1 's contained in grid. If there is none, return 0.

An **axis-aligned plus sign** of 1 's of order k has some center <code>grid[r][c] == 1</code> along with four arms of length <code>k - 1</code> going up, down, left, and right, and made of 1 's. Note that there could be 0 's or 1 's beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1 's.

Example 1:

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	0	1	1

```
Input: n = 5, mines = [[4,2]]
Output: 2
Explanation: In the above grid, the largest plus sign can only be of order 2. One of them is shown.
```

Example 2:


```
Input: n = 1, mines = [[0,0]]
Output: 0
Explanation: There is no plus sign, so return 0.
```

Constraints:

- 1 <= n <= 500
- 1 <= mines.length <= 5000
- \bullet 0 <= x_i , y_i < n
- All the pairs (x i , y i) are unique.