Learning Machine Learning

Pt

October 16, 2020

Contents

1	Glossary	2
	1.1 Odds and Logit	2
2	Loss Functions and Objective Functions	2
	2.1 Minimum Square Loss (MSE)	2
	2.2 Cross-Entropy/Log Loss	2
	2.3 Maximum (Log-)Likelihood	2
3	Probability	9
	3.1 Basis	
	3.2 Conditional Indipendent	9
	3.3 Distributions	
	3.3.1 Bernoulli distribution	•
4	Matrix	3
	4.1 Differentiate/Derivation	٠
5	Normalization	3
	5.1 Scale	•

1 Glossary

1.1 Odds and Logit

In Binary Classification Problem, the probability of label = 1 divided by the probability of label = 0 is called **Odds**.

$$y = P(label = 1)$$
$$odds = \frac{y}{1 - y}$$

Further, take the logarithm of both sides, we got Log Odds/Logit:

$$logit = \ln \frac{y}{1 - y}$$

2 Loss Functions and Objective Functions

2.1 Minimum Square Loss (MSE)

2.2 Cross-Entropy/Log Loss

For Binary Classification Problem. Given that x_i is one of the sample training data, y_i is the corresponding label, then

$$\hat{y_i} = \sigma(h(x_i|\theta)) \in \mathbb{R}$$

$$\mathcal{L}(y_i, \hat{y_i} \mid \theta) = \begin{cases} -\log(\hat{y_i}) & y_i = 1\\ -\log(1 - \hat{y_i}) & y_i = 0 \end{cases}$$

Compress into one equation, then

$$\mathcal{L}(y_i, \hat{y_i} \mid \theta) = -[y_i * \log(\hat{y_i}) + (1 - y_i) * \log(1 - \hat{y_i})]$$

More generally, for Multi-Classification Problem, given that

- x_i is one of the sample training data, which will be classified into one of k categories,
- $y_i \in \mathbb{R}^k$ is the **One-Hot Representation** of the corresponding label

the Cross-Entropy Loss is

$$\hat{y_i} = softmax(h(x_i|\theta)) \in \mathbb{R}^k$$

$$\mathcal{L}(y_i, \hat{y_i} \mid \theta) = -\sum_{i=1}^{n} y_i[j] * log_2(\hat{y_i}[j])$$

2.3 Maximum (Log-)Likelihood

Given the probability of a series of accidents A_i , $i \in 1, 2, ..., k$ is $P(A_i)$, then we want to **maximize** the probability that all of these accidents happen, thus

$$\max\{\prod_{i=0}^{k} P(A_i)\}$$

To simplify, we can take the logarithm of both sides, then

$$\max\{\ln\sum_{i=0}^k P(A_i)\}$$

which is namely Maximum (Log) Likelihood. While the Loss Function derived from above is natually:

$$\mathcal{L}(y_i, \hat{y} \mid \theta) = -\ln \sum_{i=0}^{k} P(A_i)$$

which we want to **Minimize**.

3 Probability

3.1 Basis

- Priori Probability: the probability which can be empirically inferred
- Posterior Probability: after A happening, sought the probability of the reason of A
- Bayesian Equation

3.2 Conditional Indipendent

$$p(A \mid C) * p(B \mid C) = p(AB \mid C)$$

3.3 Distributions

3.3.1 Bernoulli distribution

Defined as is the discrete probability distribution of a random variable which takes the value 1 with probability p and the value 0 with probability q = 1 - p. Denote B(1, p) as Bernoulli distribution, then

$$Given X \sim B(1, p)$$

$$E(x) = p;$$

$$D(x) = p(1 - p);$$

4 Matrix

4.1 Differentiate/Derivation

$$Y = A \cdot X \cdot B$$
$$\frac{\partial Y}{\partial X} = A^T \cdot B^T$$
$$\frac{\partial Y}{\partial X^T} = B \cdot A$$

Another scenario,

$$Y = X^T \cdot A \cdot X$$

$$\frac{\partial Y}{\partial X} = (A + A^T) \cdot X$$

5 Normalization

5.1 Scale

Given $p \in \mathbb{R}^k$, where p is the result of *Dot-Product* in *Dot-Product Attention Mechanism*, in order to counteract gradient vanishing in softmax, scale p by

$$p_{norm} = \frac{p}{\sqrt{k}}$$

Given that $x \in \mathbb{R}^k$ is one of the record of the datasets, which is a **real-valued input vector**, in order to make *Gradient Descent* faster and more efficient, we'd better scale the value of input features to $-1 \le x_i \le 1$, or at least the scale of different input features is similar.

$$\bar{x_i} = \frac{x_i - \mu}{max(x_i) - min(x_i)}$$

where μ is the mean value of x_i over the datasets;