

Public key cryptography - basic concepts. Encryption and key transport

Applied Cryptography – Spring 2024

Simona Samardjiska

March 11, 2024

Institute for Computing and Information Sciences Radboud University

Outline

Public Key Cryptography

Security of Pubic Key Cryptographic Schemes

Public Key Encryption (PKE)

Public Key Cryptography

• Recall our favorite characters, Alice and Bob

- Recall our favorite characters, Alice and Bob
 - They communicate over a public channel using symmetric cryptography

- Recall our favorite characters, Alice and Bob
 - They communicate over a public channel using symmetric cryptography
- while our favorite malicious character, Eve
 - Can listen to the traffic (passive)

- Recall our favorite characters, Alice and Bob
 - They communicate over a public channel using symmetric cryptography
- while our favorite malicious character, Eve
 - Can listen to the traffic (passive)
 - Can modify the traffic (active)

- Recall our favorite characters, Alice and Bob
 - They communicate over a public channel using symmetric cryptography
- while our favorite malicious character, Eve
 - Can listen to the traffic (passive)
 - Can modify the traffic (active)

- Symmetric cryptography provides
 - Confidentiality: Eve cannot learn anything about data
 - Message Authenticity: Eve cannot manipulate the data

- Recall our favorite characters, Alice and Bob
 - They communicate over a public channel using symmetric cryptography
- while our favorite malicious character, Eve
 - Can listen to the traffic (passive)
 - Can modify the traffic (active)

- Symmetric cryptography provides
 - Confidentiality: Eve cannot learn anything about data
 - Message Authenticity: Eve cannot manipulate the data
- What can be a problem in this scenario?

 Alice and Bob have not agreed on a joint key yet, but they want to communicate securely

- Alice and Bob have not agreed on a joint key yet, but they want to communicate securely
 - They want to exchange symmetric keys over the public channel, first

- Alice and Bob have not agreed on a joint key yet, but they want to communicate securely
 - They want to exchange symmetric keys over the public channel, first
- Eve can impersonate Alice to Bob or/and Bob to Alice

- Alice and Bob have not agreed on a joint key yet, but they want to communicate securely
 - They want to exchange symmetric keys over the public channel, first
- Eve can impersonate Alice to Bob or/and Bob to Alice
 - so Alice will never admit she send that angry message to Bob

- Alice and Bob have not agreed on a joint key yet, but they want to communicate securely
 - They want to exchange symmetric keys over the public channel, first
- Eve can impersonate Alice to Bob or/and Bob to Alice
 - so Alice will never admit she send that angry message to Bob

- Public key cryptography provides
 - Key Exchange: Eve can not learn the key

- Alice and Bob have not agreed on a joint key yet, but they want to communicate securely
 - They want to exchange symmetric keys over the public channel, first
- Eve can impersonate Alice to Bob or/and Bob to Alice
 - so Alice will never admit she send that angry message to Bob

- Public key cryptography provides
 - Key Exchange: Eve can not learn the key

- Alice and Bob have not agreed on a joint key yet, but they want to communicate securely
 - They want to exchange symmetric keys over the public channel, first
- Eve can impersonate Alice to Bob or/and Bob to Alice
 - so Alice will never admit she send that angry message to Bob

- Public key cryptography provides
 - Key Exchange: Eve can not learn the key
 - Entity Authentication: Eve cannot impersonate the parties
 - Non-repudiation: The parties can not repudiate the messages

Core Functionalities

Public Key Encryption (PKE)

- Uses public key to transform data into ciphertext
- Only with the knowledge of the private key, one can retrieve data back

Core Functionalities

Public Key Encryption (PKE)

- Uses public key to transform data into ciphertext
- Only with the knowledge of the private key, one can retrieve data back

Digital Signatures

- Uses private key of signer to sign the message
- Anyone can verify the signature using the public key of the signer and the message

Core Functionalities

Public Key Encryption (PKE)

- Uses public key to transform data into ciphertext
- Only with the knowledge of the private key, one can retrieve data back

Digital Signatures

- Uses private key of signer to sign the message
- Anyone can verify the signature using the public key of the signer and the message

Key Encapsulation Mechanism (KEM) and Key Exchange (KEX)

- Goal is to obtain a shared symmetric key
- KEM (simplified)
 - encrypt symmetric key with public key of receiver
 - receiver decrypts symmetric key with his private key
- KEX a protocol to agree on a shared symmetric key
 - comes in different flavors and constructions (Diffie-Hellman-style, from KEMs, etc.)

Versatility of Public Key Cryptography

Examples of other, more subtle flavors of Public Key Cryptography

- Group/ring, blind signatures
- Commitments
- Identification schemes
- Secret Sharing schemes
- Threshold encryption
- Homomorphic Encryption
- Identity-based cryptography
- Attribute-based cryptography
- Credential schemes
- Functional Encryption
- Multiparty computation
- Digital cash/cryptocurrency

Versatility of Public Key Cryptography

Examples of other, more subtle flavors of Public Key Cryptography

- Group/ring, blind signatures
- Commitments
- Identification schemes
- Secret Sharing schemes
- Threshold encryption
- Homomorphic Encryption
- Identity-based cryptography
- Attribute-based cryptography
- Credential schemes
- Functional Encryption
- Multiparty computation
- Digital cash/cryptocurrency

Examples of real-world protocols employing Public Key Cryptography

- Secure messaging protocols
- SSL/TLS (https, ftps)
- SSH (sftp, scp)
- IPsec (IKE)
- OpenVPN, Wireguard
- IEEE 802.11
- DNSSEC
- EMV
- Electronic voting
- ...

Which building blocks are used in pratice?

- PKEs, KEMs, Digital Signatures
- Commitments, Identification schemes
- Protocols for authentication and key-exchange

Which building blocks are used in pratice?

- PKEs, KEMs, Digital Signatures
- Commitments, Identification schemes
- Protocols for authentication and key-exchange

How do we formalize their security?

- security models
- security games and reductions

Which building blocks are used in pratice?

- PKEs, KEMs, Digital Signatures
- Commitments, Identification schemes
- Protocols for authentication and key-exchange

How do we formalize their security?

- security models
- security games and reductions

Which instantiations are standardized by standardization bodies?

• are they provably secure or ad-hoc

Which building blocks are used in pratice?

- PKEs, KEMs, Digital Signatures
- Commitments, Identification schemes
- Protocols for authentication and key-exchange

How do we formalize their security?

- security models
- security games and reductions

Which instantiations are standardized by standardization bodies?

• are they provably secure or ad-hoc

In which real-world protools and products are they used, and how?

TLS, IPsec, DNSSEC, . . .

Which building blocks are used in pratice?

- PKEs, KEMs, Digital Signatures
- Commitments, Identification schemes
- Protocols for authentication and key-exchange

How do we formalize their security?

- security models
- security games and reductions

Which instantiations are standardized by standardization bodies?

• are they provably secure or ad-hoc

In which real-world protools and products are they used, and how?

• TLS, IPsec, DNSSEC, ...

Which practical problems arise in practice?

- complexity of availability, versioning, updates, following standards etc.
- policies, management, distribution of public/private keys, etc.

Which building blocks are used in pratice?

- PKEs, KEMs, Digital Signatures
- Commitments, Identification schemes
- Protocols for authentication and key-exchange

How do we formalize their security?

- security models
- security games and reductions

Which instantiations are standardized by standardization bodies?

are they provably secure or ad-hoc

In which real-world protools and products are they used, and how?

• TLS, IPsec, DNSSEC, ...

Which practical problems arise in practice?

- complexity of availability, versioning, updates, following standards etc.
- policies, management, distribution of public/private keys, etc.

Prudent practices for future deployment?

- reflections on mistakes made
- how not to repeat them in the future

Security of Pubic Key

Cryptographic Schemes

Provable security + Cryptanalysis

from a hard problem

Reductionist proof from a hard problem

Best algorithms for solving the hard problem

Reductionist proof from a hard problem Best algorithms for solving the hard problem (Treated in Cryptology)

Hardness assumptions

Hard problems

Hard problems:
No efficient (polynomial time)
algorithm exists

Hardness assumptions - different flavors

A computational problem generated with security parameter λ is hard if, given as input a problem instance, the probability of finding a correct solution in polynomial time is negligible in λ (negl(λ)).

A computational problem generated with security parameter λ is hard if, given as input a problem instance, the probability of finding a correct solution in polynomial time is negligible in λ ($negl(\lambda)$).

Example: Computational Diffie-Hellman Problem (CDH)

Given: $g, g^a, g^b \in \mathbb{G}$, where \mathbb{G} – general cyclic group

Find: g^{ab}

A computational problem generated with security parameter λ is hard if, given as input a problem instance, the probability of finding a correct solution in polynomial time is negligible in λ ($negl(\lambda)$).

Example: Computational Diffie-Hellman Problem (CDH)

Given: $g, g^a, g^b \in \mathbb{G}$, where \mathbb{G} – general cyclic group

Find: g^{ab}

A decisional problem generated with s. p. λ is hard if, given as input a problem instance with a target Z, the advantage of correctly guessing in polynomial time whether it is a positive instance is $negl(\lambda)$.

A computational problem generated with security parameter λ is hard if, given as input a problem instance, the probability of finding a correct solution in polynomial time is negligible in λ ($negl(\lambda)$).

Example: Computational Diffie-Hellman Problem (CDH)

Given: $g, g^a, g^b \in \mathbb{G}$, where \mathbb{G} – general cyclic group

Find: g^{ab}

A decisional problem generated with s. p. λ is **hard** if, given as input a problem instance with a target Z, the advantage of correctly guessing in polynomial time whether it is a positive instance is $negl(\lambda)$.

Example: Decisional Diffie-Hellman Problem (DDH)

Given: $g, g^a, g^b, Z \in \mathbb{G}$, where \mathbb{G} – general cyclic group

Decide: $Z \stackrel{?}{=} g^{ab}$

A computational problem generated with security parameter λ is hard if, given as input a problem instance, the probability of finding a correct solution in polynomial time is negligible in λ ($negl(\lambda)$).

Example: Computational Diffie-Hellman Problem (CDH)

Given: $g, g^a, g^b \in \mathbb{G}$, where \mathbb{G} – general cyclic group

Find: g^{ab}

A decisional problem generated with s. p. λ is hard if, given as input a problem instance with a target Z, the advantage of correctly guessing in polynomial time whether it is a positive instance is $negl(\lambda)$.

Example: Decisional Diffie-Hellman Problem (DDH)

Given: $g, g^a, g^b, Z \in \mathbb{G}$, where \mathbb{G} – general cyclic group

Decide: $Z \stackrel{?}{=} g^{ab}$

Remark: For a problem with computational and decisional version, if one can solve the computational version, then they can solve the decisional version as well.(The decisional version is "easier".)

⇒ Assuming the decisional version to be hard is a **stronger assumption**.

A computational problem generated with security parameter λ is hard if, given as input a problem instance, the probability of finding a correct solution in polynomial time is negligible in λ ($negl(\lambda)$).

Example: Computational Diffie-Hellman Problem (CDH)

Given: $g, g^a, g^b \in \mathbb{G}$, where \mathbb{G} – general cyclic group

Find: g^{ab}

A decisional problem generated with s. p. λ is hard if, given as input a problem instance with a target Z, the advantage of correctly guessing in polynomial time whether it is a positive instance is $negl(\lambda)$.

Example: Decisional Diffie-Hellman Problem (DDH)

Given: $g, g^a, g^b, Z \in \mathbb{G}$, where \mathbb{G} – general cyclic group

Decide: $Z \stackrel{?}{=} g^{ab}$

Remark: For a problem with computational and decisional version, if one can solve the computational version, then they can solve the decisional version as well.(The decisional version is "easier".)

⇒ Assuming the decisional version to be hard is a **stronger assumption**.

• **Security reduction** - **proof** that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)

- **Security reduction** proof that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)
- Security model an abstraction that captures a multiple of different real-world attacks, in a
 form of an interactive game between adversary (probabilistic polynomial time) and challenger

- Security reduction proof that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)
- Security model an abstraction that captures a multiple of different real-world attacks, in a
 form of an interactive game between adversary (probabilistic polynomial time) and challenger
 - what information the adversary can query
 - when can that information be queried
 - how does the adversary win

- Security reduction proof that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)
- Security model an abstraction that captures a multiple of different real-world attacks, in a
 form of an interactive game between adversary (probabilistic polynomial time) and challenger
 - what information the adversary can query
 - when can that information be queried
 - how does the adversary win
- Proof by contradiction

- **Security reduction** proof that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)
- Security model an abstraction that captures a multiple of different real-world attacks, in a
 form of an interactive game between adversary (probabilistic polynomial time) and challenger
 - what information the adversary can query
 - when can that information be queried
 - how does the adversary win
- Proof by contradiction
 - We know (believe) that a mathematical problem is hard (hardness assumption)

- **Security reduction** proof that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)
- Security model an abstraction that captures a multiple of different real-world attacks, in a
 form of an interactive game between adversary (probabilistic polynomial time) and challenger
 - what information the adversary can query
 - when can that information be queried
 - how does the adversary win
- Proof by contradiction
 - We know (believe) that a mathematical problem is hard (hardness assumption)
 - <u>Assume</u> there is an adversary that <u>breaks the scheme</u> and show that using this adversary, we can solve the mathematical problem (<u>break the assumption</u>)

- **Security reduction** proof that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)
- Security model an abstraction that captures a multiple of different real-world attacks, in a
 form of an interactive game between adversary (probabilistic polynomial time) and challenger
 - what information the adversary can query
 - when can that information be queried
 - how does the adversary win
- Proof by contradiction
 - We know (believe) that a mathematical problem is hard (hardness assumption)
 - <u>Assume</u> there is an adversary that <u>breaks the scheme</u> and show that using this adversary, we can solve the mathematical problem (<u>break the assumption</u>)
 - Conclude that our assumption must be **wrong** ⇒ There is no such adversary!

- **Security reduction** proof that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)
- Security model an abstraction that captures a multiple of different real-world attacks, in a
 form of an interactive game between adversary (probabilistic polynomial time) and challenger
 - what information the adversary can query
 - when can that information be queried
 - how does the adversary win
- Proof by contradiction
 - We know (believe) that a mathematical problem is hard (hardness assumption)
 - <u>Assume</u> there is an adversary that <u>breaks the scheme</u> and show that using this adversary, we can solve the mathematical problem (<u>break the assumption</u>)
 - Conclude that our assumption must be wrong ⇒ There is no such adversary!

$$p \Rightarrow q, \neg q$$
 $\neg p$

- **Security reduction** proof that breaking a scheme implies breaking the hardness assumption (solving a hard mathematical problem)
- Security model an abstraction that captures a multiple of different real-world attacks, in a
 form of an interactive game between adversary (probabilistic polynomial time) and challenger
 - what information the adversary can query
 - when can that information be queried
 - how does the adversary win
- Proof by contradiction
 - We know (believe) that a mathematical problem is **hard** (hardness assumption)
 - <u>Assume</u> there is an adversary that <u>breaks the scheme</u> and show that using this adversary, we can solve the mathematical problem (<u>break the assumption</u>)
 - Conclude that our assumption must be **wrong** ⇒ There is no such adversary!

 $p \Rightarrow q$, $\neg q$ Remark: A security reduction does not show that a scheme is secure, but only as secure as the hardness assumption!

- The virtual "players" that interact with the adversary
 - Challenger creates an instance of the real cryptographic scheme, following its algorithms, and interacts with the adversary by answering queries about the scheme
 - Simulator creates an instance of a <u>simulated</u> scheme, produced from the hard problem.
 The Simulator wants the adversary to break this scheme with the same advantage as the real scheme

- The virtual "players" that interact with the adversary
 - Challenger creates an instance of the real cryptographic scheme, following its algorithms, and interacts with the adversary by answering queries about the scheme
 - Simulator creates an instance of a <u>simulated</u> scheme, produced from the hard problem.
 The Simulator wants the adversary to break this scheme with the same advantage as the real scheme
- Can the adversary figure out it is a simulation?
 - For the adversary, the simulated scheme should be indistinguishable from the real one
 - ullet \Rightarrow the **attack** on the simulated scheme should be indistinguishable from the real one

- The virtual "players" that interact with the adversary
 - Challenger creates an instance of the real cryptographic scheme, following its algorithms, and interacts with the adversary by answering queries about the scheme
 - Simulator creates an instance of a <u>simulated</u> scheme, produced from the hard problem.
 The Simulator wants the adversary to break this scheme with the same advantage as the real scheme
- Can the adversary figure out it is a simulation?
 - For the adversary, the simulated scheme should be indistinguishable from the real one
 - \Rightarrow the attack on the simulated scheme should be indistinguishable from the real one
- The attack

- The virtual "players" that interact with the adversary
 - Challenger creates an instance of the real cryptographic scheme, following its algorithms, and interacts with the adversary by answering queries about the scheme
 - Simulator creates an instance of a <u>simulated</u> scheme, produced from the hard problem.
 The Simulator wants the adversary to break this scheme with the same advantage as the real scheme
- Can the adversary figure out it is a simulation?
 - For the adversary, the simulated scheme should be indistinguishable from the real one
 - ullet \Rightarrow the **attack** on the simulated scheme should be indistinguishable from the real one
- The attack
 - Computational attack the adversary will spit out an answer that in a reduction can be used to solve a hard computational problem

- The virtual "players" that interact with the adversary
 - Challenger creates an instance of the real cryptographic scheme, following its algorithms, and interacts with the adversary by answering queries about the scheme
 - Simulator creates an instance of a <u>simulated</u> scheme, produced from the hard problem.
 The Simulator wants the adversary to break this scheme with the same advantage as the real scheme
- Can the adversary figure out it is a simulation?
 - For the adversary, the simulated scheme should be indistinguishable from the real one
 - \Rightarrow the attack on the simulated scheme should be indistinguishable from the real one
- The attack
 - Computational attack the adversary will spit out an answer that in a reduction can be used to solve a hard computational problem
 - Decisional attack the adversary will spit out a <u>decision</u> that in a reduction can be used to solve a hard decisional problem

A high level view of security reduction

Security reduction - reduction cost and reduction lost

- Adversary breaks scheme in (t, ϵ) (read: "in time t and non-negligible advantage ϵ ")
- \Rightarrow Simulator needs (t', ϵ') to solve the hard problem

$$t'=t+T, \qquad \epsilon'=rac{\epsilon}{L}$$

T - reduction cost (time cost), L- reduction (security) loss

Security reduction - reduction cost and reduction lost

- Adversary breaks scheme in (t, ϵ) (read: "in time t and non-negligible advantage ϵ ")
- \Rightarrow Simulator needs (t', ϵ') to solve the hard problem

$$t'=t+T, \qquad \epsilon'=rac{\epsilon}{L}$$

T - reduction cost (time cost), L- reduction (security) loss

- Tight security reduction L constant (or sub-linear) in the number of queries
- Loose security reduction L at least linear in the number of queries
 - k-bit security loss if $L = 2^k$

Security reduction - reduction cost and reduction lost

- Adversary breaks scheme in (t, ϵ) (read: "in time t and non-negligible advantage ϵ ")
- \Rightarrow Simulator needs (t', ϵ') to solve the hard problem

$$t'=t+T, \qquad \epsilon'=rac{\epsilon}{L}$$

T - reduction cost (time cost), L- reduction (security) loss

- Tight security reduction L constant (or sub-linear) in the number of queries
- Loose security reduction L at least linear in the number of queries
 - k-bit security loss if $L = 2^k$
 - \bullet the parameters need to be increased to add additional k bits of security
 - Example:
 - The underlying problem has 128 bits of security, the reduction has loss of 12 bits,
 - ullet \Rightarrow the scheme can be claimed to have only 116 bits of security
 - A vastly overlooked/ignored issue in public-key cryptography

Public Key Encryption (PKE)

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Public Key Encryption

 $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encryption algorithm (probabilistic): Takes message $M \in \mathcal{M}$ and random $r \in \mathcal{R}$ and outputs $C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)$
- Decryption algorithm (deterministic): Takes as input a secret key sk and ciphertext C, and outputs either a message $M' = \text{Dec}(\text{sk}, C) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid ciphertext.

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Public Key Encryption

 $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encryption algorithm (probabilistic): Takes message $M \in \mathcal{M}$ and random $r \in \mathcal{R}$ and outputs $C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)$
- Decryption algorithm (deterministic): Takes as input a secret key sk and ciphertext C, and outputs either a message $M' = \text{Dec}(\text{sk}, C) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid ciphertext.

Correctness: For all $M \in \mathcal{M}$, $Pr[\mathsf{Dec}(\mathsf{sk}, C) = M : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{KGen}(1^{\lambda}), C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)] \geqslant 1 - \delta$

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Public Key Encryption

 $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encryption algorithm (probabilistic): Takes message $M \in \mathcal{M}$ and random $r \in \mathcal{R}$ and outputs $C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)$
- Decryption algorithm (deterministic): Takes as input a secret key sk and ciphertext C, and outputs either a message $M' = \text{Dec}(\text{sk}, C) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid ciphertext.

 $\textbf{Correctness:} \ \, \mathsf{For} \ \, \mathsf{all} \ \, M \in \mathcal{M}, \ \, Pr[\mathsf{Dec}(\mathsf{sk}, C) = M : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{KGen}(1^\lambda), C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)] \geqslant 1 - \delta$

• (Negligible) **Decryption error** (δ) is also allowed (not all schemes have it)

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Public Key Encryption

 $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encryption algorithm (probabilistic): Takes message $M \in \mathcal{M}$ and random $r \in \mathcal{R}$ and outputs $C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)$
- Decryption algorithm (deterministic): Takes as input a secret key sk and ciphertext C, and outputs either a message $M' = \text{Dec}(\text{sk}, C) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid ciphertext.

- (Negligible) **Decryption error** (δ) is also allowed (not all schemes have it)
- Passive attacker (eavesdropper) too weak security for PKE

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Public Key Encryption

 $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encryption algorithm (probabilistic): Takes message $M \in \mathcal{M}$ and random $r \in \mathcal{R}$ and outputs $C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)$
- Decryption algorithm (deterministic): Takes as input a secret key sk and ciphertext C, and outputs either a message $M' = \text{Dec}(\text{sk}, C) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid ciphertext.

- (Negligible) **Decryption error** (δ) is also allowed (not all schemes have it)
- Passive attacker (eavesdropper) too weak security for PKE Why?

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Public Key Encryption

 $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encryption algorithm (probabilistic): Takes message $M \in \mathcal{M}$ and random $r \in \mathcal{R}$ and outputs $C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)$
- Decryption algorithm (deterministic): Takes as input a secret key sk and ciphertext C, and outputs either a message $M' = \text{Dec}(\text{sk}, C) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid ciphertext.

- (Negligible) **Decryption error** (δ) is also allowed (not all schemes have it)
- Passive attacker (eavesdropper) too weak security for PKE Why?
- Active attacker can craft messages to encrypt as much as they want Always possible!

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Public Key Encryption

 $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encryption algorithm (probabilistic): Takes message $M \in \mathcal{M}$ and random $r \in \mathcal{R}$ and outputs $C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)$
- Decryption algorithm (deterministic): Takes as input a secret key sk and ciphertext C, and outputs either a message $M' = \text{Dec}(\text{sk}, C) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid ciphertext.

- (Negligible) **Decryption error** (δ) is also allowed (not all schemes have it)
- Passive attacker (eavesdropper) too weak security for PKE Why?
- Active attacker can craft messages to encrypt as much as they want Always possible!
 - encryption only requires the public key!

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a Public Key Encryption

 $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- **Key-generation algorithm** (probabilistic): $(pk, sk) \leftarrow KGen(1^{\lambda})$
- Encryption algorithm (probabilistic): Takes message $M \in \mathcal{M}$ and random $r \in \mathcal{R}$ and outputs $C \leftarrow \mathsf{Enc}(\mathsf{pk}, M, r)$
- Decryption algorithm (deterministic): Takes as input a secret key sk and ciphertext C, and outputs either a message $M' = \text{Dec}(\text{sk}, C) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid ciphertext.

- (Negligible) **Decryption error** (δ) is also allowed (not all schemes have it)
- Passive attacker (eavesdropper) too weak security for PKE Why?
- Active attacker can craft messages to encrypt as much as they want Always possible!
 - encryption only requires the public key!
 - What more could the attacker do?

Baseline security: indistinguishability under chosen-plaintext attacks (IND-CPA)

A PKE scheme Π is called IND-CPA-secure if any PPT adversary ${\cal A}$ has only negligible advantage

$$extit{Adv} = \mathsf{Pr}\left(\mathsf{Exp}^{\mathsf{ind-cpa}}_{\Pi(1^k)}(\mathcal{A}) = 1
ight) - 1/2 = \mathit{negl}(k)\,.$$

in the following $\operatorname{Exp}^{\operatorname{ind-cpa}}_{\Pi(1^k)}(\mathcal{A})$ game (experiment):

Challenger		Adversary
$(pk, sk) \leftarrow KGen() \xrightarrow{pk} \xrightarrow{M_i} \xrightarrow{Enc(pk, M_i)}$		
	∠ M _i	<i>M</i> ; for number of <i>i-</i> s
	,	
$b \stackrel{\$}{\leftarrow} \{0,1\}$	(M_0^*, M_1^*)	M_0^*, M_1^*
$C \leftarrow Enc(pk, M_b^*)$		
	<b'< td=""><td><i>b</i>′</td></b'<>	<i>b</i> ′
Return 1 iff $b=b^\prime$ other	erwise 0.	

• A deterministic PKE can never be IND-CPA! Why?

- A deterministic PKE can never be IND-CPA! Why?
 - (A deterministic PKE always gives the same ciphertext for the same message.)

- A deterministic PKE can never be IND-CPA! Why?
 - (A deterministic PKE always gives the same ciphertext for the same message.)
 - **Answer**: A can always query the encryption oracle for the messages M_0^* , M_1^* and compare to the challenge ciphertext
 - ⇒ For IND-CPA we need probabilistic encryption!

- A deterministic PKE can never be IND-CPA! Why?
 - (A deterministic PKE always gives the same ciphertext for the same message.)
 - **Answer**: A can always query the encryption oracle for the messages M_0^* , M_1^* and compare to the challenge ciphertext
 - ullet \Rightarrow For IND-CPA we need probabilistic encryption!

- A deterministic PKE can never be IND-CPA! Why?
 - (A deterministic PKE always gives the same ciphertext for the same message.)
 - **Answer**: A can always query the encryption oracle for the messages M_0^* , M_1^* and compare to the challenge ciphertext
 - ⇒ For IND-CPA we need probabilistic encryption!

- Active attacker
 - can craft messages to encrypt as much as they want Always possible!

- A deterministic PKE can never be IND-CPA! Why?
 - (A deterministic PKE always gives the same ciphertext for the same message.)
 - **Answer**: A can always query the encryption oracle for the messages M_0^* , M_1^* and compare to the challenge ciphertext
 - ⇒ For IND-CPA we need probabilistic encryption!

- Active attacker
 - can craft messages to encrypt as much as they want Always possible!
 - can craft ciphertexts and use the decryption algorithm as an oracle to obtain the plaintexts

- A deterministic PKE can never be IND-CPA! Why?
 - (A deterministic PKE always gives the same ciphertext for the same message.)
 - **Answer**: A can always query the encryption oracle for the messages M_0^* , M_1^* and compare to the challenge ciphertext
 - ⇒ For IND-CPA we need probabilistic encryption!

- Active attacker
 - can craft messages to encrypt as much as they want Always possible!
 - · can craft ciphertexts and use the decryption algorithm as an oracle to obtain the plaintexts
 - access switched off before target ciphertext is given to the attacker
 - unlimited access, before and after the target ciphertext is made available (of course the target ciphertext can not be queried)

A PKE scheme Π is called IND-CCA-secure (IND-CCA2-secure) if any PPT adversary $\mathcal A$ has only negligible advantage $Adv = \mathbf{Pr}\left(\mathsf{Exp}_{\Pi(1^k)}^{\mathsf{ind-cca}}(\mathcal A) = 1\right) - 1/2 = \mathit{negl}(k)\,.$

in the following $\operatorname{Exp}^{\operatorname{ind-cca}}_{\Pi(1^k)}(\mathcal{A})$ game (experiment):

	Adversary
pk	
M _i or C _i	M_i or C_i for number of i -s
$Enc(pk, M_i)$ or $Dec(pk, C_i)$,
(M_0^*, M_1^*)	$\mathcal{M}_0^*,\mathcal{M}_1^*$
	7770 , 7771
M_i or C_i	(only in IND-CCA2 game)
$Enc(pk, M_i)$ or $Dec(pk, C_i)$	(omy m miz con z game)
, b'	<i>b'</i>
	$ \begin{array}{c} M_i \text{ or } C_i \\ \hline \text{Enc}(pk,M_i) \text{ or } \text{Dec}(pk,C_i) \\ \hline (M_0^*,M_1^*) \\ \hline C \\ \hline M_i \text{ or } C_i \\ \hline \text{Enc}(pk,M_i) \text{ or } \text{Dec}(pk,C_i) \\ \hline \end{array} $

Recall textbook RSA (for more info see I2C slides):

Textbook RSA:

KeyGen:

- **1** Choose two primes p, q s.t. $|p| \approx |q|$
- **2** Compute N = pq and $\phi(N) = (p-1)(q-1)$
- **3** Choose a random $e < \phi(N)$, s.t. $gcd(e, \phi(N)) = 1$
- **4** Compute d such that $ed = 1 \pmod{\phi(N)}$
- **6** Output public key pk = (N, e) and private key sk = d

Encrypt:

Compute ciphertext as $C \leftarrow M^e \pmod{N}$

Decrypt:

Decrypt ciphertext as $M \leftarrow C^d \pmod{N}$

Passive (Meet-in-the-middle) attack:

• Let $C = M^e \pmod{N}$, and Eve knows that $M < 2^{\ell}$ (for example PIN, short password)

Passive (Meet-in-the-middle) attack:

- Let $C=M^e$ (mod N), and Eve knows that $M<2^\ell$ (for example PIN, short password)
- With non-negligible probability $M=M_1\cdot M_2$ with $M_1,M_2<2^{\ell/2}$

Passive (Meet-in-the-middle) attack:

- Let $C = M^e \pmod{N}$, and Eve knows that $M < 2^{\ell}$ (for example PIN, short password)
- With non-negligible probability $M=M_1\cdot M_2$ with $M_1,M_2<2^{\ell/2}$
 - For ℓ of length 40 to 64 bits, probability that the plaintext can be factored in factors of approx. equal size is 18%-50%

Passive (Meet-in-the-middle) attack:

- Let $C = M^e \pmod{N}$, and Eve knows that $M < 2^{\ell}$ (for example PIN, short password)
- With non-negligible probability $M=M_1\cdot M_2$ with $M_1,M_2<2^{\ell/2}$
 - For ℓ of length 40 to 64 bits, probability that the plaintext can be factored in factors of approx. equal size is 18%-50%
- RSA is multiplicative: $C = M_1^e \cdot M_2^e \pmod{N}$

Passive (Meet-in-the-middle) attack:

- Let $C = M^e \pmod{N}$, and Eve knows that $M < 2^{\ell}$ (for example PIN, short password)
- With non-negligible probability $M=M_1\cdot M_2$ with $M_1,M_2<2^{\ell/2}$
 - For ℓ of length 40 to 64 bits, probability that the plaintext can be factored in factors of approx. equal size is 18%-50%
- RSA is multiplicative: $C = M_1^e \cdot M_2^e \pmod{N}$

So:

 \bullet Eve builds a sorted database $\{1^e, 2^e, \dots (2^{\ell/2})^e\}$ (mod N)

Passive (Meet-in-the-middle) attack:

- Let $C = M^e \pmod{N}$, and Eve knows that $M < 2^{\ell}$ (for example PIN, short password)
- With non-negligible probability $M=M_1\cdot M_2$ with $M_1,M_2<2^{\ell/2}$
 - For ℓ of length 40 to 64 bits, probability that the plaintext can be factored in factors of approx. equal size is 18%-50%
- RSA is multiplicative: $C = M_1^e \cdot M_2^e \pmod{N}$

- Eve builds a sorted database $\{1^e, 2^e, \dots (2^{\ell/2})^e\}$ (mod N)
- ullet And searches for $\mathbf{c}=C/i^{\mathbf{e}}$, $i\in\{1,2,...2^{\ell/2}\}$ in the database

Passive (Meet-in-the-middle) attack:

- Let $C = M^e \pmod{N}$, and Eve knows that $M < 2^{\ell}$ (for example PIN, short password)
- With non-negligible probability $M=M_1\cdot M_2$ with $M_1,M_2<2^{\ell/2}$
 - For ℓ of length 40 to 64 bits, probability that the plaintext can be factored in factors of approx. equal size is 18%-50%
- RSA is multiplicative: $C = M_1^e \cdot M_2^e \pmod{N}$

- Eve builds a sorted database $\{1^e, 2^e, \dots (2^{\ell/2})^e\}$ (mod N)
- ullet And searches for $\mathbf{c}=C/i^{\mathbf{e}}$, $i\in\{1,2,...2^{\ell/2}\}$ in the database
- c is by design of the shape j^e , and will show up in at most $2^{\ell/2}$ trials!

Passive (Meet-in-the-middle) attack:

- Let $C = M^e \pmod{N}$, and Eve knows that $M < 2^{\ell}$ (for example PIN, short password)
- With non-negligible probability $M=M_1\cdot M_2$ with $M_1,M_2<2^{\ell/2}$
 - For ℓ of length 40 to 64 bits, probability that the plaintext can be factored in factors of approx. equal size is 18%-50%
- RSA is multiplicative: $C = M_1^e \cdot M_2^e \pmod{N}$

- Eve builds a sorted database $\{1^e, 2^e, \dots (2^{\ell/2})^e\}$ (mod N)
- And searches for $\mathbf{c} = C/i^e$, $i \in \{1, 2, ... 2^{\ell/2}\}$ in the database
- c is by design of the shape j^e , and will show up in at most $2^{\ell/2}$ trials!
- \Rightarrow Message $M = i \cdot j$ recovered!
- \Rightarrow Message recovery in time and space cost of $\tilde{\mathcal{O}}(2^{\ell/2})$ (factors polynomial in ℓ neglected)

Active (Oracle) attack:

• Suppose Eve wants to find out the message from the ciphertext $C = M^e \pmod{N}$, that was previously sent to Alice

Active (Oracle) attack:

• Suppose Eve wants to find out the message from the ciphertext $C = M^e \pmod{N}$, that was previously sent to Alice

So:

• Eve picks a random $R \overset{\$}{\leftarrow} \mathbb{Z}_N^*$ and computes $C' = C \cdot R^e \pmod{N}$

Active (Oracle) attack:

• Suppose Eve wants to find out the message from the ciphertext $C = M^e \pmod{N}$, that was previously sent to Alice

- Eve picks a random $R \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and computes $C' = C \cdot R^e \pmod{N}$
- Eve sends C' to Alice

Active (Oracle) attack:

• Suppose Eve wants to find out the message from the ciphertext $C = M^e \pmod{N}$, that was previously sent to Alice

- Eve picks a random $R \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and computes $C' = C \cdot R^e \pmod{N}$
- Eve sends C' to Alice
- Alice decrypts and sends to Eve: $M' \leftarrow C'^d \pmod{N} = (M^e R^e)^d \pmod{N} = MR \pmod{N}$

Active (Oracle) attack:

• Suppose Eve wants to find out the message from the ciphertext $C = M^e \pmod{N}$, that was previously sent to Alice

- Eve picks a random $R \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and computes $C' = C \cdot R^e \pmod{N}$
- Eve sends C' to Alice
- Alice decrypts and sends to Eve: $M' \leftarrow C'^{d} \pmod{N} = (M^{e}R^{e})^{d} \pmod{N} = MR \pmod{N}$
 - Alice does not notice anything, because for her MR is just a random element of \mathbb{Z}_N^* , in no way connected to M

Active (Oracle) attack:

• Suppose Eve wants to find out the message from the ciphertext $C = M^e \pmod{N}$, that was previously sent to Alice

- Eve picks a random $R \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and computes $C' = C \cdot R^e \pmod{N}$
- Eve sends C' to Alice
- Alice decrypts and sends to Eve: $M' \leftarrow C'^{d} \pmod{N} = (M^{e}R^{e})^{d} \pmod{N} = MR \pmod{N}$
 - Alice does not notice anything, because for her MR is just a random element of \mathbb{Z}_N^* , in no way connected to M
- \Rightarrow Message recovery in 1 oracle query!

Active (Oracle) attack:

• Suppose Eve wants to find out the message from the ciphertext $C = M^e \pmod{N}$, that was previously sent to Alice

So:

- Eve picks a random $R \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and computes $C' = C \cdot R^e \pmod{N}$
- Eve sends C' to Alice
- Alice decrypts and sends to Eve: $M' \leftarrow C'^{d} \pmod{N} = (M^{e}R^{e})^{d} \pmod{N} = MR \pmod{N}$
 - Alice does not notice anything, because for her MR is just a random element of \mathbb{Z}_N^* , in no way connected to M
- ullet \Rightarrow Message recovery in 1 oracle query!

Conclussion:

- We need some sort of randomization of the message! (we need IND-CPA)
- The adversary should not be able to construct valid ciphertexts! (we need IND-CCA)

Summary

Today:

- Public Key Cryptography a Recap
- Security of PKC
- Security of Public Key Encryption and Key Encapsulation

Summary

Today:

- Public Key Cryptography a Recap
- Security of PKC
- Security of Public Key Encryption and Key Encapsulation

Next time:

- Security of Public Key Encryption and Key Encapsulation (contd.)
- Security of Digital Signatures