FCC RADIO TEST REPORT FCC ID: 2AC43S60

Product: Mobile Phone

Trade Name: N/A

Model Name: S60

Serial Model: S50, S70, S80

Prepared for

Shenzhen Jinhuima Technology Co. LTD
B13 Building, Yintian Industrial Zone, Xixiang Town, Baoan District, Shenzhen,
China

Prepared by

Shenzhen STONE Testing Technology Co.,Ltd.
F/6, Bldg.12, Zhongxing Industrial City, Chuangye Rd., Nanshan District Shenzhen P.R. China

Page 2 of 86 Report No.: STT-DG20140820558F1

TEST RESULT CERTIFICATION

Applicant's name...... Shenzhen Jinhuima Technology Co. LTD

Address B13 Building, Yintian Industrial Zone, Xixiang Town, Baoan

District, Shenzhen, China

Manufacture's Name...... Shenzhen Jinhuima Technology Co. LTD

Address...... B13 Building, Yintian Industrial Zone, Xixiang Town, Baoan

District, Shenzhen, China

Product description

Product name...... Mobile Phone

Model and/or type

S60

reference Serial Model:

S50, S70, S80

Standards..... FCC Part15.247

Test procedure ANSI C63.4-2003

This device described above has been tested by STT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STT, this document may be altered or revised by STT, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests Aug 17, 2014 ~ Aug 25, 2014

Date of Issue Aug 26, 2014

Test Result.....Pass

Eric Wang Testing Engineer

(Eric Wang)

Jerry You Technical Manager :

(Jerry You)

Authorized Signatory:

(Jack yu)

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	9
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	9
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 10
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	11
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3 . EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13
3.1.2 TEST PROCEDURE 3.1.3 DEVIATION FROM TEST STANDARD	14 14
3.1.4 TEST SETUP	14
3.1.5 EUT OPERATING CONDITIONS	14
3.1.6 TEST RESULTS	15
3.2 RADIATED EMISSION MEASUREMENT	17
3.2.1 RADIATED EMISSION LIMITS 3.2.2 TEST PROCEDURE	17 18
3.2.3 DEVIATION FROM TEST STANDARD	18
3.2.4 TEST SETUP	19
3.2.5 EUT OPERATING CONDITIONS	20
3.2.6 TEST RESULTS (BELOW 30 MHZ) 3.2.7 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	21 22
3.2.8 TEST RESULTS (ABOVE 1000 MHZ)	23
4 . NUMBER OF HOPPING CHANNEL	33
4.1 APPLIED PROCEDURES / LIMIT	33
4.1.1 TEST PROCEDURE	33
4.1.2 DEVIATION FROM STANDARD 4.1.3 TEST SETUP	33 33
4.1.4 EUT OPERATION CONDITIONS	33
4.1.5 TEST RESULTS	34
5 . AVERAGE TIME OF OCCUPANCY	35
5.1 APPLIED PROCEDURES / LIMIT	35

Table of Contents

	Page
5.1.1 TEST PROCEDURE 5.1.2 DEVIATION FROM STANDARD	35 35
5.1.3 TEST SETUP	36
5.1.4 EUT OPERATION CONDITIONS	36
5.1.5 TEST RESULTS	37
6 . HOPPING CHANNEL SEPARATION MEASUREMENT	43
6.1 APPLIED PROCEDURES / LIMIT	43
6.1.1 TEST PROCEDURE	43
6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP	43
6.1.4 EUT OPERATION CONDITIONS	43 43
6.1.5 TEST RESULTS	43
7 . BANDWIDTH TEST	50
7.1 APPLIED PROCEDURES / LIMIT	50
7.1.1 TEST PROCEDURE	50 50
7.1.2 DEVIATION FROM STANDARD	50
7.1.3 TEST SETUP	50
7.1.4 EUT OPERATION CONDITIONS	50
7.1.5 TEST RESULTS	51
8 . PEAK OUTPUT POWER TEST	57
8.1 APPLIED PROCEDURES / LIMIT	57
8.1.1 TEST PROCEDURE	57
8.1.2 DEVIATION FROM STANDARD	57
8.1.3 TEST SETUP	57
8.1.4 EUT OPERATION CONDITIONS 8.1.5 TEST RESULTS	57 58
9 . 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	64
9.1 DEVIATION FROM STANDARD	64
9.2 TEST SETUP 9.3 EUT OPERATION CONDITIONS	64 64
9.4 TEST RESULTS	65
	84
10 . ANTENNA REQUIREMENT	_
10.1 STANDARD REQUIREMENT	84
10.2 EUT ANTENNA	84
11 . EUT TEST PHOTO APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	85

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(c)	Radiated Spurious Emission	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.205	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACILITY

Shenzhen STONE Testing Technology Co.,Ltd.

Add.: F/6, Bldg.12, Zhongxing Industrial City, Chuangye Rd., Nanshan District Shenzhen P.R.

China

FCC Registration No.: 323508; IC Registration No.: 11043A

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone		
Model Name	S60		
Serial Model	S50, S70, S80		
Model Difference	All the models are the same circuit and RF module, except model name.		
	The EUT is a Mobile Phone		
	Operation Frequency:	2402~2480 MHz	
	Modulation Type:	BT(1Mbps): GFSK	
		BT EDR(2Mbps):∏/4-DQPSK	
		BT EDR(3Mbps): 8-DPSK	
	Bit Rate of Transmitter	1Mbps/2Mbps/3Mbps	
	Number Of Channel	79 CH	
Product Description	Antenna Designation:	Please see Note 3.	
•	Output	BT(1Mbps):1.876dBm	
	Power(Conducted):	BT EDR(2Mbps):1.402dBm	
		BT EDR(3Mbps): 1.807dBm	
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.		
Channel List	Please refer to the Note	2.	
	Model:JS-009		
Adapter	Input: 100-240V~50/60Hz, 0.2A		
	Output: 5V , 0.8A		
Battery	DC 3.7V, 2000mAh		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	N/A	PIFA Antenna	N/A	0	BT Antenna

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00
Mode 2	CH39
Mode 3	CH78
Mode 4	Link Mode

For Conducted Emission		
Final Test Mode	Description	
Mode 4	Link Mode	

For Radiated Emission			
Final Test Mode Description			
Mode 1 CH00			
Mode 2	CH39		
Mode 3	CH78		

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The EUT use new battery.
- (3)The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software Version	Test program: Broadcom		
Frequency	2402 MHz 2441 MHz 2480 MHz		
Parameters(1/2/3Mbps)	DEF DEF DEF		

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission Test

Radiated Spurious Emission Test

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Mobile Phone	N/A	S60	N/A	EUT
E-2	Adapter	N/A	JS-009	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.8m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Naui	Radiation rest equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibratio n period
1	Spectrum Analyzer	Agilent	E4407B	MY4510804 0	2014.07.06	2015.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2014.06.07	2015.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2014.07.06	2015.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	620026441 6	2014.06.07	2015.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2014.06.07	2015.06.06	1 year
6	Horn Antenna	EM	EM-AH-101 80	2011071402	2014.07.06	2015.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2014.07.06	2015.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2013.12.22	2014.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2014.06.08	2015.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2014.07.06	2015.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619. 05	2014.07.06	2015.07.05	1 year

Conduction Test equipment

	Conduction rect equipment						ı
Item	Kind of Equipment	Manufactu rer	Type No.	Serial No.	Last calibration	Calibrated until	Calibratio n period
1	Test Receiver	R&S	ESCI	101160	2014.06.06	2015.06.05	1 year
2	LISN	R&S	ENV216	101313	2014.08.24	2014.08.23	1 year
3	LISN	EMCO	3816/2	00042990	2014.08.24	2014.08.23	1 year
4	4 50Ω Coaxial Anritsu Switch		MP59B	620026441 7	2014.06.07	2015.06.06	1 year
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2014.06.07	2015.06.06	1 year
6	Absorbing clamp	R&S	MOS-21	100423	2014.06.08	2015.06.07	1 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A	(dBuV)	Class B	(dBuV)	Standard
TREQUENCT (MITZ)	Quasi-peak	Average	Quasi-peak	Average	Stariuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

EUT:	Mobile Phone	Model Name :	S60
Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
nest voltage .	DC 5V form Adapter AC 120V/60Hz	Test Mode :	Mode 4

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
0.1499	47.29	11.65	58.94	66	-7.06	QP
0.1499	32.99	11.65	44.64	56	-11.36	AVG
0.8699	23.07	10.41	33.48	46	-12.52	AVG
0.8739	35.41	10.41	45.82	56	-10.18	QP
7.00	28.62	10.68	39.3	50	-10.7	AVG

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
- 3. N/A means All Data have pass Limit

EUT:	Mobile Phone	Model Name :	S60
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
lest voltage .	DC 5V form Adapter AC 120V/60Hz	Test Mode :	Mode 4

							_
Freq.	Reading	Factor	Measurement	Limit	Over	Detector	
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector	
0.1499	31.89	11.5	43.39	56	-12.61	AVG	
0.1539	45.02	11.03	56.05	65.78	-9.73	QP	
0.7217	23.21	10.4	33.61	46	-12.39	AVG	_
0.7338	34.92	10.41	45.33	56	-10.67	QP	
5.32	29.38	10.67	40.05	50	-9.95	AVG	

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 N/A means All Data have pass Limit

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class A (dBu	V/m) (at 3M)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	PEAK	AVERAGE	
Above 1000	80	60	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	1 MHz / 1 MHz for Dook 1 MHz / 10Hz for Average
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (BELOW 30 MHZ)

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				N/A
				N/A

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.7 TEST RESULTS (BETWEEN 30M - 1000 MHZ)

EUT:	Mobile Phone	Model Name :	S60
Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode:	TX
Test Voltage :	DC3.7V		

Polar Frequency		Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
Vertical	134.25	25.43	11.42	36.85	43.5	-6.65	QP
Vertical	235.63	26.53	9.45	35.98	43.5	-7.52	QP
Vertical	334.62	25.74	14.35	40.09	46	-5.91	QP
Vertical	398.91	20.16	19.16	39.32	46	-6.68	QP
Vertical	581.34	19.53	22.64	42.17	46	-3.83	QP
Vertical	665.56	16.29	24.1	40.39	46	-5.61	QP
Horizontal	56.15	21.25	13.95	35.2	40	-4.8	QP
Horizontal	97.15	26.36	10.12	36.48	43.5	-7.02	QP
Horizontal	225.46	25.16	13.56	38.72	46	-7.28	QP
Horizontal	411.3	20.44	17.67	38.11	46	-7.89	QP
Horizontal	526.52	18.32	22.15	40.47	46	-5.53	QP
Horizontal	659.16	16.33	24.27	40.6	46	-5.4	QP

3.2.8 TEST RESULTS (ABOVE 1000 MHZ)

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010hPa	Test Mode:	TX
Test Mode :	DC3.7V		

Low Channel (2402 MHz)-Above 1G							
4804.45	64.26	-3.64	60.62	74	-13.38	Pk	Vertical
4804.45	49.16	-3.64	45.52	54	-8.48	Av	Vertical
7206.16	61.25	-0.95	60.3	74	-13.7	Pk	Vertical
7206.16	47.89	-0.95	46.94	54	-7.06	Av	Vertical
4804.46	61.54	-3.64	57.9	74	-16.1	Pk	Horizontal
4804.46	46.668	-3.64	43.028	54	-10.972	Av	Horizontal
7206.33	50.44	-0.96	49.48	74	-24.52	Pk	Horizontal
7206.33	44.25	-0.96	43.29	54	-10.71	Av	Horizontal
		Mid Cha	annel (2441 MHz)- <i>A</i>	Above 1G			
4882.55	63.54	-3.67	59.87	74	-14.13	Pk	Vertical
4882.55	50.13	-3.67	46.46	54	-7.54	Av	Vertical
7324.23	56.54	-0.82	55.72	74	-18.28	Pk	Vertical
7324.23	46.63	-0.82	45.81	54	-8.19	Av	Vertical
4882.77	61.53	-3.67	57.86	74	-16.14	Pk	Horizontal
4882.77	48.42	-3.67	44.75	54	-9.25	Av	Horizontal
7324.83	58.62	-0.82	57.8	74	-16.2	Pk	Horizontal
7324.83	48.53	-0.82	47.71	54	-6.29	Av	Horizontal
		High Ch	annel (2480MHz)- A	Above 1G			
4960.43	64.54	-3.59	60.95	74	-13.05	Pk	Vertical
4960.43	51.17	-3.59	47.58	54	-6.42	Av	Vertical
7440.36	60.6	-0.68	59.92	74	-14.08	Pk	Vertical
7440.36	49.47	-0.68	48.79	54	-5.21	Av	Vertical
4960.71	62.26	-3.59	58.67	74	-15.33	Pk	Horizontal
4960.71	49.42	-3.59	45.83	54	-8.17	Av	Horizontal
7440.62	55.62	-0.68	54.94	74	-19.06	Pk	Horizontal
7440.62	46.52	-0.68	45.84	54	-8.16	Av	Horizontal

Note: Mode 1Mbps is the worst mode.

Conducted Spurious Emissions at Antenna Port:

CH00 -1Mbps

CH39 -1Mbps

CH78 -1Mbps

CH00 -2Mbps

CH39 -2Mbps

CH78 -2Mbps

CH00 -3Mbps

CH39 -3Mbps

CH78 -3Mbps

4. NUMBER OF HOPPING CHANNEL

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS	

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	= the frequency band of operation
RB	RBW =100kHz
VB	VBW ≥ RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100kHz, VBW=100kHz, Sweep time = Auto.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	S60
Temperature :	25 ℃	Relative Humidity:	60%
Pressure:	1015 hPa	Test Voltage :	DC 3.7V
Test Mode :	Hopping Mode		

Number of Hopping Channel	79
---------------------------	----

Page 35 of 86 Report No.: STT-DG20140820558F1

5. AVERAGE TIME OF OCCUPANCY

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

5.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. A Period Time = (channel number)*0.4
 - DH1 Time Slot: Reading * (1600/2)*31.6/(channel number) DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)

 - DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

5.1.2 DEVIATION FROM STANDARD

No deviation.

Page 36 of 86 Report No.: STT-DG20140820558F1

5.1.3 TEST SETUP

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH5,2DH5,3DH5		

Data Packet	Frequency	Plus Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2441MHz	2.938	0.313	0.4
2DH5	2441MHz	2.925	0.312	0.4
3DH5	2441MHz	2.925	0.312	0.4

Page 39 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature :	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH3,2DH3,3DH3		

		Plus	Dwell	
Data Packet	Frequency	Duration	Time	Limits (s)
- donot		(ms)	(s)	` ′
DH3	2441MHz	1.713	0.274	0.4
2DH3	2441MHz	1.663	0.266	0.4
3DH3	2441MHz	1.675	0.268	0.4

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH1,2DH1,3DH1		

Data Packet	Frequency	Plus Duration (ms)	Dwell Time (s)	Limits (s)
DH1	2441MHz	0.425	0.153	0.4
2DH1	2441MHz	0.425	0.153	0.4
3DH1	2441MHz	0.425	0.153	0.4

6. HOPPING CHANNEL SEPARATION MEASUREMENT

6.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

6.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.1.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa Test Voltage : DC 3.7V		
Test Mode :	CH00 / CH39 /CH78 (1Mbps Mode)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.005	Complies
2441 MHz	1.013	Complies
2480 MHz	1.006	Complies

Ch. Separation Limits: >20dB bandwidth

EUT:	Mobile Phone	Model Name :	S60
Temperature :	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /CH78 (2Mbps Mode)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.013	Complies
2441 MHz	1.005	Complies
2480 MHz	1.006	Complies

Ch. Separation Limits: >2/3 of 20dB bandwidth

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /CH78 (3Mbps Mode)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.005	Complies
2441 MHz	1.005	Complies
2480 MHz	1.005	Complies

Ch. Separation Limits: >2/3 of 20dB bandwidth

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C			
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247 (a)(1)	Bandwidth	(20dB bandwidth)	2400-2483.5	PASS

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78 (1Mbps)		

Frequency	20dB Bandwidth (kHz)	Result
2402 MHz	912.137	PASS
2441 MHz	934.030	PASS
2480 MHz	924.915	PASS

Page 53 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78(2Mbps)		

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.137	PASS
2441 MHz	1.108	PASS
2480 MHz	1.100	PASS

Page 55 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78(3Mbps)		

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.112	PASS
2441 MHz	1.115	PASS
2480 MHz	1.098	PASS

Page 57 of 86 Report No.: STT-DG20140820558F1

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

,,, ,,, , <u></u>				
	FCC Part15 (15.247) , Subpart C			
Section Test Item Limit Frequency Range (MHz)		Frequency Range (MHz)	Result	
15.247 (b)(i)	Peak Output Power	0.125 w or 1w	2400-2483.5	PASS

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 TEST RESULTS

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage : DC 3.7V	
Test Mode :	CH00/ CH39 /CH78 (1M/2M/3Mbps Mode)		

		1Mbps		
Test Channel	Frequency	Peak Output Power	LIMIT	
iest Griannei	(MHz)	(dBm)	(dBm)	
CH00	2402	1.467	30	
CH39	2441	1.867	30	
CH78	2480	1.876	30	
	2Mbps			
CH00	2402	1.304	20.96	
CH39	2441	1.402	20.96	
CH78	2480	1.32	20.96	
	3Mbps			
CH00	2402	1.301	20.96	
CH39	2441	1.807	20.96	
CH78	2480	1.711	20.96	

Min Search

More

1 of 2

Pk-Pk Search

Span 6 MHz

Sweep 5 ms (401 pts)

#VBW 1 MHz

M1 S2 S3 FC

AA

Center 2.48 GHz

#Res BW 1 MHz

Min Search

More

1 of 2

Pk-Pk Search

Span 10 MHz

Sweep 4 ms (401 pts)

#VBW 3 MHz

S3 FC

AA

Center 2.48 GHz

#Res BW 3 MHz

1 of 2

#VBW 3 MHz

Sweep 4 ms (401 pts)

#Res BW 3 MHz

9. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

9.1 DEVIATION FROM STANDARD

No deviation.

9.2 TEST SETUP

9.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.4 TEST RESULTS

EUT:	Mobile Phone	Model Name :	S60
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result
	1Mbps Non-hopp	ping	
Left-band	Left-band 43.52		Pass
Right-band	44.14	20	Pass
	2Mbps Non-hopp	oing	
Left-band	42.63	20	Pass
Right-band	43.55	20	Pass
	3Mbps Non-hopp	oing	
Left-band	44.17	20	Pass
Right-band	45.52	20	Pass
	1Mbps hopping	g	
Left-band	46.62	20	Pass
Right-band	44.66	20	Pass
	2Mbps hopping	g	
Left-band	43.37	20	Pass
Right-band	44.17	20	Pass
	3Mbps hopping	g	
Left-band	42.62	20	Pass
Right-band	42.48	20	Pass

Page 66 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature:	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2402 1Mbps	Polarization :	Н

	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
	(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
	2390	57.52	-13.06	44.46	54	-9.54	peak
00.0	dBuV/m						_
						Limit: — AVG: —	
					~~^	AYU: —	
					/ \		
					- / 		
60					/	1	
					\(\sigma^{\cdot \cdot \c		
				Mm	<i>J</i> [®]	А	
	. 4 4 600	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a day M	mulliman	*	Mayny	
	Prophysical Company	a ha Addra Artha Wharry	W//W/lin.mM	'V		IN M	_
20.0							

Page 67 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2402 1Mbps	Polarization :	V

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
2390	53.66	-13.06	40.6	54	-13.4	peak
	!		!			-
100.0 dBuV/m					Limit:	
					AVG:	
				ſ	~	
				/		
				. [_	
60				\sim		
				, N	1	
		1 ,	myaha Andra Mahaka	My	V.	Www
morphi	MMMMMM		Makala Dar to All Alle . A.			, wh
20.0			7.W.S			
2387.000			(MHz)			2407.000

Page 68 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2480 1Mbps	Polarization :	Н

	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
	(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
	2483.5	62.3	-12.78	49.52	54	-4.48	peak
Į							

Page 69 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2480 1Mbps	Polarization :	V

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
2483.5	53.97	-12.78	41.19	54	-12.81	peak

Page 70 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2402 2Mbps	Polarization :	Н

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
2390	51.49	-13.06	38.43	54	-15.57	peak
						<u> </u>
	1					
						ļ.
100.0 dBuV/m						
					Limit: AVG:	
				ſ	My	
					_	
					-\	
60						
				\mathcal{N}	h _a	
					- Jun-1	
			, , <i> </i>	w/ww	, γ	www
	manan Man	1 1	, Mrymy			* * * * * * * * * * * * * * * * * * * *
harrow	A44	.,				
20.0						
20.0			(MHz)			

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2402 2Mbps	Polarization :	V

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
2390	49.62	-13.06	36.56	54	-17.44	peak
100.0 dBuV/m			 		!	-
100.0 dBuv/m					Limit:	_
					AVG:	
					[]	
60						
				$\overline{\mathcal{A}}$		
				. Aw	M	money
		1	h hamme	Annul .		oww.
mymm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
20.0						
2387.000			(MHz)			2407.000

Page 72 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2480 2Mbps	Polarization :	Н

Freq.	Reading	Factor	Measurement	Limit	Over	Detector	
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector	
2483.5	61.81	-12.78	49.03	54	-4.97	peak	

Page 73 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2480 2Mbps	Polarization :	V

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
2483.5	56.59	-12.78	43.81	54	-10.19	peak

EUT:	Mobile Phone	Model Name :	S60
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2402 3Mbps	Polarization :	Н

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
2390	47.42	-13.06	34.36	54	-19.64	peak
100.0 dBuV/r	n					
					Limit: AVG:	
					MM	
					}	
					- \	
60						
				ph/	-V	
				- (
				pww	W.	N
		1 /	$\mathcal{N}_{\mathcal{A}}$	<i>}</i> "	,	w.Mr./
L.M.M.	mmm	Munny	V Sm V			
*						
20.0			(MHz)			2407.000
2387.000			···,			2407.000

Page 75 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature:	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2402 3Mbps	Polarization :	V

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
2390	47.26	-13.06	34.2	54	-19.8	peak
100.0 dBuV/n	n					
					Limit:	_
					AVG:	
					Tory	
					<u>'</u>	
				/		
_						
60						
					$\overline{}$	
				W _{wx} .		
				MW	M.	Monday
		1. M (M .		J ***	v	W.M.W.
~~~W	ymu MM	ypa My ray	ww. Adala.			
I V			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
20.0			(MHz)			
2387.000			(MIIZ)			2407.000

Page 76 of 86 Report No.: STT-DG20140820558F1

EUT:	Mobile Phone	Model Name :	S60
Temperature :	<b>20</b> ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2480 3Mbps	Polarization :	Н

	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
	(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
	2483.5	59.08	-12.78	46.3	54	-7.7	peak
ļ							
Ĺ							



EUT:	Mobile Phone	Model Name :	S60
Temperature:	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	2480 3Mbps	Polarization :	V

Freq.	Reading	Factor	Measurement	Limit	Over	Detector
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
2483.5	55.01	-12.78	42.23	54	-11.77	peak
					ļ	ļ
.0 dBuV/m						
					Liı	mit: —
					AV	/G: —
		m				
		/ \				
		/ /				
1						
		1				
		/ \				
	N					
	N					
	Ν					
	N					
	N		\ Л.			
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
			WM &	M. M.	6 .	
mm.m.			W.	m man	Valennagen	w
			M	~~~~~~	Ammun	n
	mm		W in the second	mmm	M. Marine	w
			Mi	mmm	Ammun	w.~~~w
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			W in the second	m man	Ammun	www.m.m
	mm		Mi	mmm	VM	Warman Mal

Note: Test method to see chapter 3.2 . When PK value is lower than the Average value limit, average didn't record.

1Mbps: Band Edge, Left Side

1Mbps: Band Edge, Right Side

2Mbps: Band Edge, Left Side

2Mbps: Band Edge, Right Side

3Mbps: Band Edge, Left Side

3Mbps: Band Edge, Right Side

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is Built-in antenna. It comply with the standard requirement.

11. EUT TEST PHOTO

Radiated Measurement Photos

Conducted Measurement Photos

