Math 325 Problem Set 4 Solutions

12. [Lay, p.164, # 16.7(f) (sort of)] Show that if $0 \le x < 1$ then for any $\epsilon > 0$ there is an $n \in \mathbb{N}$ so that $x^n < \epsilon$. [Hint: Suppose not! Then look at lower bounds for $A = \{x^n : n \in \mathbb{N}\}$.] Conclude that for every $m \in \mathbb{N}$ with $m \ge n$ we have $|x^m| = x^m < \epsilon$, so $x^n \to 0$ as $n \to \infty$.

Suppose not! Suppose there is an $\epsilon > 0$ so that $\epsilon \le x^n$ for all n. Then the set $A = \{x^n : n \in \mathbb{N}\}$ is bounded below by ϵ , so it has a greatesst lower bound λ . We then have $0 < \epsilon \le \lambda$, so $0 < \lambda$, and if $\lambda < \mu$ then there is an n with $x^n < \mu$ (since μ cannot be a lower bound for A. But since 0 < x < 1 we have 1/x > 1 (since otherwise $1/x \le 1$ so either x < 0 (which is false) or, multiplying through by x > 0 $1 \le 1 \cdot x = x$, which is also false). So $\mu = \lambda/x > \lambda$,m so $x^n < \lambda/x$ for som n, implying that $x^{n+1} < \lambda$ (by multiplying by x > 0 on both sides), a contradiction. So our supposition is false; there must be an n so that $x^n < \epsilon$.

13. [Lay, p.165, # 16.13] (The 'Squeeze Play' Theorem) Suppose that $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, and $(c_n)_{n=1}^{\infty}$ are sequences with $a_n \leq b_n \leq c_n$ for all n. Suppose further that $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$. Show that $\lim_{n \to \infty} b_n = L$.

We want, for $\epsilon > 0$, and N so that $n \ge N$ implies $|b_n - L| < \epsilon$; that is $-\epsilon < b_n - L < \epsilon$, i.e., $L - \epsilon < b_n < L + \epsilon$.

What we know is that there is an N_1 so that $n \ge N_1$ implies that $|a_n - L| < \epsilon$, which (as above) gives $L - \epsilon < a_n$. There is also an N_2 so that $n \ge N_2$ implies that $|c_n - L| < \epsilon$, which gives $c_n < L + \epsilon$.

So if we take $N = \max\{N_1, N_2\}$, then $n \ge N$ implies $L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$, so $L - \epsilon < b_n < L + \epsilon$, yielding $|b_n - L| < \epsilon$.

So for every $\epsilon > 0$ there is an N so that $n \geq N$ implies $|b_n - L| < \epsilon$, so $b_n \to L$ as $n \to \infty$, as desired.

14. Show, from the definition of limit (i.e., no limit theorems!) that

(a)
$$\lim_{n \to \infty} \frac{2n+1}{3n+2} = \frac{2}{3}$$

We have
$$|a_n - L| = \left| \frac{2n+1}{3n+2} - \frac{2}{3} \right| = \left| \frac{(3)(2n+1) - (2)(3n+2)}{(3)(3n+2)} \right| = \frac{6n+3-6n-4}{9n+6} = \left| \frac{-1}{9n+6} \right| = \frac{1}{9n+6} < \frac{1}{9n},$$

since $9n+6 > 9n > 0$, so $\frac{1}{9n+6} < \frac{1}{9n}$.

So we can show that, for a given $\epsilon > 0$, then $|a_n - L| < \epsilon$, provided that $\frac{1}{9n} < \epsilon$, which we can arrange by making n large enough; we need $n > \frac{1}{9\epsilon}$, but since we can find

an $N \in \mathbb{N}$ so that $N > \frac{1}{9\epsilon}$, then $n \geq N$ implies that $n \geq N > \frac{1}{9\epsilon}$, so $\frac{1}{9n} < \epsilon$, so $|a_n - L| = \frac{1}{9n+6} < \frac{1}{9n} < \epsilon$, as desired.

(b)
$$\lim_{n \to \infty} \frac{n^2 + n - 2}{2n^2 + n - 1} = \frac{1}{2}$$

$$|b_n - M| = \left| \frac{n^2 + n - 2}{2n^2 + n - 1} - \frac{1}{2} \right| = \left| \frac{2(n^2 + n - 2) - (1)(2n^2 + n - 1)}{(2)(2n^2 + n - 1)} \right|$$
$$= \left| \frac{2n^2 + 2n - 4 - 2n^2 - n + 1}{(2)(2n^2 + n - 1)} \right| = \left| \frac{n - 3}{4n^2 + 4n - 2} \right|.$$

But if $n \ge 3$ then $n-3 \ge 0$ and $4n^2+4n-2 \ge 4n^2+12=2=4n^2+10 \ge 10>0$, so $\left|\frac{n-3}{4n^2+4n-2}\right|=\frac{n-3}{4n^2+4n-2}<\frac{n}{4n^2+4n-2}<\frac{n}{4n^2}=\frac{1}{4n}$, since $0\le n-3< n$ and $4n-2\ge 0$ so $0<4n^2\le 4n^2+4n-2$; making the numerator a larger positive number, and making the denomenator a smaller positive number, yields a larger quotient.

So, as before, for any $\epsilon > 0$, we can make $|b_n - M| < \epsilon$ (when $n \geq 3$) by making $\frac{1}{4n} < \epsilon$; this we can do when $n \geq N$ for an integer $N \in \mathbb{N}$ with $N \geq 3$ and $\frac{1}{4N} < \epsilon$, i.e., $N > \frac{1}{4\epsilon}$. (Choosing an $M \in \mathbb{N}$ with $M > \frac{1}{4\epsilon}$ and setting N = M + 3, for example, works.)

So for every $\epsilon > 0$ we can find an N so that $n \ge N$ implies $\left| \frac{n^2 + n - 2}{2n^2 + n - 1} - \frac{1}{2} \right| < \epsilon$, so $\frac{n^2 + n - 2}{2n^2 + n - 1} \to \frac{1}{2}$.

15. Show that if $a_n \geq 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} (-1)^n a_n = L$, then L = 0.

The alternative is that L > 0 or L < 0. If for the sake of clarity we call $(-1)^n a_n = b_n$, then $b_n \to L$ and L > 0 implies, from class, that eventually $b_n > 0$, since eventually $|b_n - L| < L/2$, so $-L/2 < b_n - L$, so $0 < L/2 = L - L/2 < b_n$. So eventually every term in the sequence must be positive. But the terms in this sequence with odd index are $(-1)a_n = -a_n \le 0$, a contradiction.

But $b_n \to L$ and L < 0 leads to a similar contradiction; eventually $|b_n - L| < -L/2$, so $b_n = L < -L/2$ and $b_n < L - L/2 = L/2 < 0$. But since the terms with even index are $(-1)^2 a_n = a_n/geq$, this again is a contradiction.

So since L > 0 and L < 0 both lead to a contradiction, by trichotomy the only possibility we have is that L = 0, as desired.