Università degli Studi Roma Tre Anno Accademico 2009/2010 AL2 - Algebra 2

Esercitazione 4

Lunedì 23 Novembre 2009

http://www.mat.uniroma3.it/users/pappa/CORSI/AL2_09_10/AL2.htm domande/osservazioni: dibiagio@mat.uniroma1.it

1. (Dikranjan - Aritmetica e Algebra - es. 9.1) Provare che un anello A è privo di divisori destri dello zero se, e solo se, è privo di divisori sinistri dello zero.

Soluzione:

Supponiamo A privo di divisori sinistri dello zero. Sia $a \in A$ non nullo, allora se $\exists b \in A$ tale che ba = 0 si deve avere b = 0, altrimenti b sarebbe un divisore sinistro dello zero. Perciò A è privo di divisori destri dello zero. Il viceversa è analogo.

2. (Dikranjan - Aritmetica e Algebra - es. 9.15)

Siano I_1 , I_2 due ideali sinistri (risp. destri) di un anello A. Provare che $I_1 + I_2 := \{i_1 + i_2 \mid i_1 \in I_1, i_2 \in I_2\}$ è un ideale sinistro (risp. destro) di A.

Soluzione:

Prima di tutto verifichiamo che I_1+I_2 è un sottogruppo di (A,+): siccome I_1 e I_2 sono non vuoti anche I_1+I_2 è non vuoto; siano poi $i_1+i_2, j_1+j_2 \in I_1+I_2$, allora $i_1+i_2-j_1-j_2=i_1-j_1+i_2-j_2$, con $i_1-j_1\in I_1$ e $i_2-j_2\in I_2$ (dato che I_1 e I_2 , per def. di ideale , sono sottogruppi di (A,+)), quindi $i_1+i_2-j_1-j_2\in I_1+I_2$.

Verifichiamo poi che $\forall a \in A, \forall i_1+i_2 \in I_1+I_2$ si ha $a(i_1+i_2) \in I_1+I_2$ (risp. $(i_1+i_2)a \in I_1+I_2$). Infatti $a(i_1+i_2)=ai_1+ai_2 \in I_1+I_2$ perché I_1 e I_2 sono ideali sinistri (risp. $(i_1+i_2)a=i_1a+i_2b \in I_1+I_2$ perché I_1 e I_2 sono due ideali destri)

3. Sia $n \in \mathbb{N}^+$. Dimostrare che ogni ideale bilatero dell'anello $M_n(\mathbb{R})$ è banale.

Soluzione:

Se n=1 allora $M_1(\mathbb{R})=\mathbb{R}$ che è un campo e quindi è privo di ideali non banali.

Sia $n \geq 2$. Siano $1 \leq i, j \leq n$, sia E(i,j) la matrice i cui elementi sono tutti nulli, salvo $E(i,j)_{ij} = 1$. Sia J un ideale bilatero di $M_n(\mathbb{R})$, non nullo. Allora esiste $M \in M_n(\mathbb{R})$ tale che $M \neq 0, M \in J$. Quindi esistono $1 \leq i, j \leq n$ tali che $M_{ij} \neq 0$. Allora per ogni $1 \leq h \leq n$, $\frac{1}{M_{ij}}E(h,i)ME(j,h) = E(h,h)$, quindi $E(h,h) \in J$. Ma allora $Id = \sum_{h=1}^{n} E(h,h) \in J$, quindi $J = M_n(\mathbb{R})$.

4. Siano I=(n), J=(m) ideali di \mathbb{Z} . Dimostrare che

- (a) $I \cap J = (mcm(n, m))$.
- (b) I + J = (MCD(n, m)).

Soluzione:

- (a) Sia $x \in I \cap J$, allora n|x e m|x, quindi mcm(n,m)|x, cioè $x \in (mcm(n,m))$. Viceversa sia $x \in (mcm(n,m))$, allora mcm(n,m)|x da cui n|x e m|x, quindi $x \in I \cap J$.
- (b) Sia $x \in I + J$, allora x = an + bm e quindi MCD(n,m)|x, perciò $x \in (MCD(n,m))$. Viceversa: dati n,m esiste un'identità di Bezout, quindi esistono $a,b \in \mathbb{Z}$ tali che MCD(n,m) = an + bm, quindi $MCD(n,m) \in I + J$, da cui $(MCD(n,m)) \subseteq I + J$.
- 5. (Dikranjan Aritmetica e algebra esercizio 9.23)

Sia A un anello commutativo unitario e a un elemento di A.

- (a) Dimostrare che se a è nilpotente allora 1 + a è invertibile.
- (b) Dimostrare che se a è nilpotente e u è invertibile allora u+a è invertibile.
- (c) Dimostrare che l'insieme N(A) di tutti gli elementi nilpotenti di A è un ideale.
- (d) Calcolare $N(\mathbb{Z}_{p^n})$ dove p è un primo e $n \in \mathbb{N}^+$

Soluzione:

- (a) Per definizione esiste $n \in \mathbb{N}$ tale che $a^n = 0$. Allora si verifica facilmente che $1 a + a^2 a^3 + \ldots + (-1)^{n-1}a^{n-1}$ è l'inverso di 1 + a
- (b) $u + a = u(1 + u^{-1}a)$. Per il punto precedente $(1 + u^{-1}a)$ è invertibile, e quindi anche $u(1 + u^{-1}a)$ è invertibile.
- (c) Siano $a,b \in N(A)$, quindi $\exists n,m \in \mathbb{N}$ tali che $a^n=0,\,b^m=0$. Allora $(a+b)^{n+m-1}=\sum_{k=0}^{n+m-1}\binom{n+m-1}{k}a^k(-b)^{n+m-1-k}=0$, dato che se k < n allora $n+m-1-k \geq m$. Quindi N(A) è un sottogruppo di A. Inoltre per ogni $x \in A$ $(ax)^n=a^nx^n=0$, perciò N(A) è effettivamente un ideale.
- (d) Sia $[i] = [i]_{p^n} \in N(A)$, allora esiste $m \in \mathbb{N}$ tale che $[i]^m = 0$, cioè $p^n|i^m$, da cui $p|i^m$ e quindi p|i. Viceversa, se p|i allora $[i]^n = 0$ e quindi $[i] \in N(A)$. Dunque $N(A) = \{[i]_{p^n} \mid 0 \le i \le p^n 1 \text{ e } p|i\}$. Ad esempio $N(\mathbb{Z}_9) = \{[0], [3]\}$.