Recommender Systems

Brian Mann

June 30, 2016

Objectives

Today's objectives:

- Describe primary approaches to recommender systems
- Build a recommender using collaborative filtering and similarity
- ► Build a recommender using collaborative filtering and matrix factorization

Agenda

Today's plan:

- 1. Overview of types of recommender systems
- 2. Collaborative filtering with similarity
- 3. Collaborative filtering with matrix factorization
- 4. Best practices
- 5. Appendix

References

A couple references, from the machine learning perspective:

- Mining of Massive Datasets
- Recommender Systems: An Introduction
- Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space
- ► Matrix Factorization Techniques for Recommender Systems
- Amazon.com recommendations: Item-to-Item Collaborative Filtering
- ► Dato/GraphLab documentation & blog

Introduction

Recommendation business problem

Recommendation problem takes several forms:

- Goal of recommender:
 - predict missing ratings
 - May be sufficient to just predict a subset of items with high expected rankings
 - May be sufficient to just predict general trends, such as trending news
- Long-tail:
 - Scarcity \Rightarrow brink & mortar stocks items based on average user
 - ► Online ⇒ cater to individual, not average user ⇒ stock everything, both popular and long tail
- Often described as personalization
- Examples: Movies (Netflix), Products (Amazon), Music (Pandora), and News articles (CNN)

Approaches to recommender systems

There are several approaches to building a recommender:

- ► Content-based: recommend based on properties/characteristics
- Collaborative filtering (CF): recommend based on similarity
- ► Hybrid: Content-based + Collaborative filtering
- Applications:
 - Product recommendations
 - Movie recommendations
 - News articles

Data

Typically, data is a *utility* (*rating*) matrix, which captures user preferences/well-being:

- User rating of items
- User purchase decisions for items
- Unrated are coded as 0 or missing
- ▶ Most items are unrated ⇒ matrix is sparse
- Use recommender:
 - Determine which attributes users think are important
 - Predict ratings for unrated items
 - Better than trusting 'expert' opinion

Types of data

Data can be:

- Explicit:
 - User provided ratings (1 to 5 stars)
 - User like/non-like
- Implicit:
 - ▶ Infer user-item relationships from behavior
 - More common
 - Example: buy/not-buy; view/not-view
- ➤ To convert implicit to explicit, create a matrix of 1s (yes) and 0s (no)

Example: explicit utility matrix

Example 9.1 in Mining of Massive Datasets:

_							
	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
В	5	5	4				
C				2	4	5	
D		3		5	1		3

Example: implicit utility matrix

Based on example 9.1 in Mining of Massive Datasets:

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	1			1	1		
В	1	1	1				
C				1	1	1	
D		1		1	1		1

Collaborative filtering using similarity

Overview of CF using similarity

Use similarity to recommend items:

- Make recommendations based on similarity:
 - Between users
 - ▶ Between items
- Similarity measures:
 - Pearson
 - Cosine
 - Jaccard

Types of collaborative filtering

Two types of similarity-based CF:

- User-based: predict based on similarities between users
 - Performs well, but slow if many users
 - Use item-based CF if $|Users| \gg |Items|$
- Item-based: predict based on similarities between items
 - ► Faster if you precompute item-item similarity
 - ▶ Usually $|Users| \gg |Items| \Rightarrow item-based CF$ is most popular
 - Items tend to be more stable:
 - Items often only in one category (e.g., action films)
 - Stable over time
 - Users may like variety or change preferences over time
 - ► Items usually have more ratings than users ⇒ items have more stable average ratings than users

Collaborative filtering recipe

Compute predictions by similarity:

- 1. Normalize (demean) utility matrix
- 2. Reduce dimensionality: SVD, NMF, or UV (optional)
- 3. Compute similarity of users or items
- 4. Predict ratings for unrated items
- 5. Add prediction to average rating of user/item

Note:

- ▶ Precompute utility matrix for each user it is relatively stable
- Only compute predictions at runtime

Review: measuring similarity

Example 9.1 in Mining of Massive Datasets:

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
В	5	5	4				
C				2	4	5	
D		3		5	1		3

- ▶ What is the Jaccard distance between A & B? A & C?
- ▶ What is the Cosine distance between A & B? A & C?
- See text for examples with normalization and rounding

Choosing a similarity measure

Chose the appropriate similarity measure for your data:

- Cosine:
 - Use for ratings (non-Boolean) data
 - Treat missing ratings as 0
 - Cosine + de-meaned data is the same as Pearson
- Jaccard:
 - Use only Boolean (e.g., buy/not buy) data
 - Loses information with ratings data

Then compute *similarity matrix* of pair-wise similarities between items (users)

Predict ratings from similarity

Predict using a similarity-weighted average of ratings:

$$\hat{r}_{ui} = \frac{\sum\limits_{j \in I_u} similarity(i,j) \cdot R_{uj}}{\sum\limits_{j \in I_u} similarity(i,j)}$$

where

- $ightharpoonup \hat{r}_{ui}$ is user u's predicted rating for item i
- ▶ $I_u \equiv$ set of items rated by u
- ▶ R_{uj} is utility matrix, i.e., $R_{uj} \equiv$ user u's rating of item j
- ⇒ Compute similarity between items!

Check for mastery

How would you modify the prediction formula below for a user-based recommender?

$$\hat{r}_{ui} = \frac{\sum\limits_{j \in I_u} similarity(i,j) \cdot R_{uj}}{\sum\limits_{j \in I_u} similarity(i,j)}$$

Hint: should you compute similarity between users or items?

Recommend best items

Recommend items with highest predicted rating:

- ▶ Sort predicted ratings \hat{r}_{ui}
- Optimize by only searching a neighborhood which contains the n items most similar to i
- ▶ Beware:
 - Consumers like variety
 - Don't recommend every Star Trek film to someone who liked first film
 - Best to offer several different types of item

Dimensionality reduction (optional)

May use SVD or similar method to reduce dimension:

```
U, Sigma, VT = np.linalg.svd(m_ratings)
# Set n_top_eig to capture most of the variance
m_sigma = np.mat(np.eye(n_top_eig) * Sigma[:n_top_eig])
m_new_ratings = m_ratings.T * U[:, :n_top_eig] * m_sigma.I
```

See Application of Dimensionality Reduction in Recommender System – A Case Study

Collaborative filtering using matrix factorization

Collaborative filtering using matrix factorization

Predict ratings from *latent factors*:

- \triangleright Compute latent factors q_i and p_u via matrix factorization
- Latent factors are unobserved user or item attributes:
 - Describe some user or item concept
 - Affect behavior
 - Example: escapist vs. serious, male vs. female films
- ▶ Predict rating: $\hat{r}_{ui} = q_i^T p_u$
- Assumes:
 - Utility matrix is product of two simpler matrices (long, thin):
 - ▶ ∃ small set of users & items which characterize behavior
 - Small set of features determines behavior of most users
- ► Can use NMF, UV, or SVD

Review: SVD

Q: What is SVD?

Q: How do you compute it? (optional)

Q: How do you compute the variance in the data that a factor explains?

Q: What do the different matrices in decomposition represent?

Q: How can you use it to reduce dimensions?

Review: NMF

Q: What is NMF?

Q: How do you compute it?

Q: What do the different matrices in decomposition represent?

SVD vs. NMF

SVD:

- Must know all ratings i.e., no unrated items
- Assumes can minimize squared Frobenius norm
- ▶ Very slow if matrix is large & dense

NMF:

- Can estimate via alternating least squares (ALS) or stochastic gradient descent (SGD)
- Must regularize
- ► Can handle big data, biases, interactions, and time dynamics

Using NMF in recommendation systems

NMF is a 'best in class' option for many recommendation problems:

- Includes overall, user, & item bias as well as latent factor interactions
- Can fit via SGD or ALS
- ▶ No need to impute missing ratings
- Use regularization to avoid overfitting
- ► Can handle time dynamics, e.g., changes in user preferences
- Used by winning entry in Netflix challenge

NMF problem formulation

To factor the utility matrix:

$$\underset{\{q_i,p_u\}}{\operatorname{argmin}} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - q_i^T p_u)^2 + \lambda (\|q_i\|^2 + \|p_u\|^2)$$

where

- $ightharpoonup \mathcal{K} \equiv \mathsf{all}\ (u,i)$ in the training set with known ratings
- $ightharpoonup \lambda$ is amount of regularization
- $ightharpoonup r_{ui}$ is user u's rating of item i
- $ightharpoonup p_u$ is latent factor for user u
- q_i is latent factor for item i

NMF problem formulation with bias

Should account for bias:

$$\underset{\{q_i, p_u, \mu, b_u, b_i\}_{\{u, i\} \in \mathcal{K}}}{\operatorname{argmin}} \sum_{\{q_i, p_u, \mu, b_u, b_i\}_{\{u, i\} \in \mathcal{K}}} (r_{ui} - \mu - b_u - b_i - q_i^\mathsf{T} p_u)^2 + \lambda (\|q_i\|^2 + \|p_u\|^2 + b_u^2 + b_i^2)$$

where

• μ : overall bias (average rating)

 \triangleright b_u : user bias

▶ *b_i*: item bias

Estimating NMF

Two methods to estimate NMF factors:

- Stochastic gradient descent (SGD):
 - Easier and faster than ALS
 - Must tune learning rate
 - Sometimes called 'Funk SGD' after originator
- Alternating least squares (ALS):
 - ▶ Use least squares, alternate between fixing q_i and p_u
 - Available in Spark/MLib
 - ► Fast if you can parallelize
 - Better for implicit (non-sparse) data
- Beware of local optima!

NMF ProTips

To get best performance with NMF:

- Model bias (overall, user, and item)
- ▶ Model time dynamics, such as changes in user preferences
- Add side or implicit information to handle cold-start
- See Matrix Factorization Techniques for Recommender Systems

Building a recommender with NMF

Use GraphLab:

- Supports many types of recommenders
- Provides (near) best in class performance
- Reasonable licensing terms
- To improve performance, focus on:
 - Data collection and quality
 - Cold-start problem
 - Feature engineering

Best practices

Overview:

Will discuss:

- Cold-start problem
- Evaluation
- GraphLab ProTips
- ▶ (GraphLab) model selection

The cold-start problem

Difficult to build a recommender without ratings:

- Cold-start problem:
 - Need utility matrix to recommend
 - ► Can ask users to rate items
 - ▶ Infer ratings from behavior, e.g., viewing an item
- Must also handle new users and new items
- Approaches:
 - Use ensemble of (bad) recommenders until you have enough ratings
 - Use content-based recommender
 - Exploit implicit, tag, and other side data
 - Use ItemSimilarityModel until you have enough rating data

Evaluation issues

Choose right evaluation criteria:

- Historically, used RMSE or MAE
- ▶ But, only care about predicting top *n* items
 - Should you compute metric over all missing ratings in test set?
 - No need to predict items undesirable items well
- Precision at n: percentage of top n predicted ratings that are 'relevant'
- Recall at n: percentage of relevant items in top n predictions
- Lift or hit rate are more relevant to business

Evaluation issues

Evaluation is difficult:

- Performance of recommender should be viewed in context of user experience (UX)
- ightharpoonup \Rightarrow run A/B test on entire system
- Cross validation is hard:
 - What do you use for labels because of missing data?
 - ▶ Users choose to rate only some items ⇒ selection bias
 - Not clear how to fix this bias, which is always present
- ▶ Beware of local optima ⇒ use multiple starts

Cross-validation

Cross-validation (for item-based recommender):

- Randomly sample ratings to use in training set
- Split on users
- Be careful if you split temporally
- Do not split on items

Recommender issues

Building a production recommender is also challenging:

- Part of entire UX
- Should consider:
 - Diversity of recommendations
 - Privacy of personal information
 - Security against attacks on recommender
 - Social effects
 - Provide explanations
- ► See Recommender systems: from algorithms to user experience

GraphLab ProTips

GraphLab provides best in class performance:

- Start with MatrixFactorizationModel:
 - Switch to LinearRegressionModel if too slow
 - ▶ Switch to FactorizationModel if need interactions
- Focus on cold-start and side information to obtain best performance
- Tune settings with
 graphlab.toolkits.model_params_search()
- Compare models with graphlab.recommender.util.compare_models()

GraphLab ProTips

Select model based on data and business metric:

- For best ranking performance:
 - Use ItemSimilarityModel, MatrixFactorizationModel, or FactorizationModel
 - Set ranking_regularization $\in (0,1)$
 - With implicit data, add rating column of 1s and set unobserved_rating_value=0
- For best ratings prediction with real ratings:
 - Use MatrixFactorizationModel, FactorizationModel, or LinearRegressionModel
 - LinearRegressionModel uses user & item features and user
 & item popularity bias
 - ▶ Matrix models add user & item latent factors
 - FactorizationModel adds interaction between latent and side features

Dato documentation

Dato's documentation is excellent:

- Documentation
- ▶ Basic example
- Million song example:

Computational

Computation tips:

- Compute offline:
 - Matrix factorization
 - Similarity matrix
 - User/item neighborhoods (via clustering)
- Compute predicted ratings/rankings live

Summary

You should now be able to explain:

- Content-based vs. collaborative filtering recommenders?
- Item-based vs. user-based CF?
- Compute measures of similarity (Jaccard, Pearson, cosine)?
- State which GraphLab recommender model is right for which problem?
- ▶ Describe how to tune and evaluate a recommender?
- Explain how to overcome the cold-start problem

Appendix: similarity measures

Similarity measures

Recommenders use distance to quantify similarity:

- Cosine similarity:
 - ► $cosine(x, y) = cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$ ► $similarity(x, y) = \frac{1}{2} + \frac{1}{2} \cdot cosine(x, y)$

 - Same as Pearson if you de-mean data
 - Treat blanks as 0
- Jaccard distance:
 - ► Jaccard index: $J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| |A \cap B|}$
 - ▶ Jaccard distance: $d_1(A, B) = 1 J(A, B)$
 - Use for binary data
 - Loses information with non-Boolean data
 - Example:
 - ▶ Let $U_k \equiv \{i \in \text{ Users } | R_{ik} \neq 0 \}$, i.e. user i rated item k ▶ $similarity(a,b) = J(U_a,U_b) = \frac{|U_a \cap U_b|}{|U_a \cup U_b|}$

Other distance measures

Two other measures of similarity:

- ► Similarity:
 - ▶ Constructed from Euclidean distance so *similarity*(x, y) \in (0, 1)
 - $initial similarity(x,y) = \frac{1}{1 + \|\mathbf{x} \mathbf{y}\|}$
- ▶ Pearson correlation: $pearson(x, y) = \frac{cov(x, y)}{\sigma(x) \cdot \sigma(y)}$
 - ► Renormalize to be in (0,1): $similarity(x, y) = \frac{1}{2} + \frac{1}{2} \cdot pearson(x, y)$
 - Use Numpy corrcoef()

Appendix: matrix factorization

Review: matrix factorization (1/4)

Use matrix factorization to predict ratings:

- Discover latent factors, unobserved characteristics which determine behavior
- Reduce dimension
- Consider: SVD, UV, or NMF
- Avoid PCA (why?)

Review: SVD (2/4)

Decompose rating matrix, M, into $U \cdot \Sigma \cdot V^T$

- \blacktriangleright U: $m \times d$ unitary matrix, represents user latent factors
- Σ:
 - $d \times d$ diagonal matrix of singular values
 - $ightharpoonup \Sigma^2$ is the variance of each factors
- ▶ V^T:
 - $ightharpoonup d \times n$ matrix
 - Transpose of item latent factors
- ► Keep only factors which explain the top ~90% of variance
- Caveat: doesn't work with missing values

Review: UV (3/4)

Decompose rating matrix, M, into $U \cdot V$

- ightharpoonup U: $m \times d$ unitary matrix, represents user latent factors
- \triangleright $V: d \times n$ matrix
- Can fit via stochastic gradient descent or alternating least squares (ALS)
- Use regularization to avoid overfitting

$U \cdot V$ decomposition

M is an m by n matrix

- ▶ $M \approx U \cdot V$, U is m by d and V is d by n
- ▶ Use entries from $U \cdot V$ to predict missing ratings
- ▶ Fit by minimizing RMSE of $M U \cdot V$:
 - Has multiple local optima
 - Use multiple starts & algorithms

► Start from
$$\sqrt{\frac{\operatorname{ave}\left(\{m_{ij} \in M | m_{ij} \neq 0\}\right)}{d}}$$

- Perturb for other starts
- Vary path for visiting elements during optimization
- Compute via ALS or update rule
 - ▶ Minimize RMSE of $\sum (m_{ij} (U \cdot V)_{ij})^2$
 - Overfitting
 - Use (stochastic) gradient descent to optimize

Review: NMF (4/4)

Non-negative matrix factorization :

- Includes overall, user & item bias as well as latent factor interactions
- Can fit via stochastic gradient descent or alternating least squares (ALS)
- Use regularization to avoid overfitting
- Used by winning entry in Netflix challenge

Appendix: content-based recommenders

Overview of content-based recommenders

Use features to determine similarity:

- Recommend based on item properties/characteristics
- 1. Construct item *profile* of characteristics
- 2. Construct item features:
 - Text: use TF-IDF and use top N features or features over a cutoff
 - ▶ Images: use tags only works if tags are frequent & accurate
- 3. Compute document similarity: Jaccard, Cosine
- 4. Construct user profile

Item profile

- Consists of (feature, value) pairs
- ▶ Consider setting feature to 0 or 1
- Consider how to scale non-Boolean features

User profile

- Describes user preferences (utility matrix)
- Consider how to aggregate item features per user:
 - Compute "weight" a user puts on each feature
 - ► E.g., "Julia Roberts" feature = average rating for films with "Julia Roberts"
- Normalize: subtract average utility per user
 - ► E.g., "Julia Roberts" feature = average rating for films with "Julia Roberts" average rating

Content-based recommendations

- Compute (cosine) distance between user profile and item profiles
- May want to bucket items first using random-hyperplane and locality-sensitivity-hashing (LSH)
- ML approach:
 - ▶ Use random forest or equivalent to predict on a per-user basis
 - Computationally intensive usually only feasible for small problems