Α32 – Κωδικοποίηση

Φυλλάδιο Ασκήσεων 4

Ασκηση 4.1 Έστω $\alpha=(a_1,\ldots,a_n)\in (\mathbb{F}_q^*)^n$, $a_i\neq a_j$ για $i\neq j,v=(v_1,\ldots,v_n)\in (\mathbb{F}_q^*)^n$, $a\in \mathbb{F}_q^*$ και $b\in \mathbb{F}_q$. Ονομάστε $\alpha'=(aa_1+b,\ldots,aa_n+b)$. Δείξτε ότι $\mathrm{GRS}_k(\alpha,v)=\mathrm{GRS}_k(\alpha',v)$. Υπόδειξη: Για κάθε $f\in \mathbb{F}_q[X]_{< k}$ βρείτε $g\in \mathbb{F}_q[X]_{< k}$, τέτοιο ώστε $f(a_j)=g(aa_j+b)$ για $j=1,\ldots,n$.

Άσκηση 4.2 Έστω C ο GRS κώδικας με πίνακα βάσης

$$G = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{k-1} & a_2^{k-1} & \cdots & a_n^{k-1} \end{pmatrix}$$

και C_1 ο κώδικας με πίνακα βάσης

$$G_1 = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{k-1} & a_2^{k-1} & \cdots & a_n^{k-1} \end{pmatrix}.$$

- (i) Δείξτε ότι κάθε k-1 στήλες του G_1 είναι γραμμικώς ανεξάρτητες.
- (ii) Υπολογίστε τις παραμέτρους του C_1^{\perp} και δείξτε ότι είναι MDS, άρα και ο C_1 είναι MDS.

Άσκηση 4.3 Έστω C ένας [n,k,d]-κώδικας πάνω από το \mathbb{F}_q και $G\in\mathbb{F}_q^{k\times n}$ ένας πίνακας βάσης του. Έστω $R\subseteq [n]$ ένα υποσύνολο δεικτών με $|R|=r\geq n-d+1$. Θεωρήστε την προβολή στις συντεταγμένες του R:

$$\pi: \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^r, \quad \pi(x_i)_{i \in [n]} = (x_i)_{i \in R}$$

και ονομάστε $C' = \pi(C)$.

- (i) Δείξτε ότι ο C' έχει διάσταση k.
- (ii) Δείξτε ότι ο πίνακας $G' \in \mathbb{F}_q^{k \times r}$ που αποτελείται από τις στήλες του G που αντιστοιχούν στο σύνολο R, είναι πίνακας βάσης του C' (και άρα έχει τάξη k).
- (iii) Περιγράψτε πώς μπορείτε να διορθώσετε έως d-1 ereasures: Αν σας δοθεί ένα διάνυσμα του (c_1,\ldots,c_n) του C, στο οποίο έχουν σβηστεί $t\leq d-1$ συντεταγμένες, περιγράψτε πώς μπορείτε να βρείτε τις σβησμένες συντεταγμένες.

Ασκηση 4.4 Θα κατασκευάσουμε ένα secret sharing scheme βασισμένο σε ένα q-αδικό [n,k,d] κώδικα C με πίνακα βάσης G. Το μυστικό είναι το $s \in \mathbb{F}_q$.

1. Επιλέγουμε $(w_2,\dots,w_k)\in\mathbb{F}_q^{k-1}$ τυχαία και θέτουμε $w=(s,w_2,\dots,w_k).$

- 2. Υπολογίζουμε το διάνυσμα του κώδικα $c = (c_1, \dots, c_n) = wG$.
- 3. Τα μερίδια είναι τα c_1, \ldots, c_n .

Για την παρακάτω ανάλυση, θεωρήστε τον κώδικα C_1 με πίνακα βάσης G_1 που αποτελείται από της k-1 τελευταίες γραμμές του G (όλες εκτός της πρώτης γραμμής).

- (i) Δείξτε ότι για οποιοδήποτε $R\subseteq [n]$ με $|R|\ge n-d+1$, το σύνολο μεριδίων $\{c_j:j\in R\}$ αρκεί για να υπολογίσετε το μυστικό.
- (ii) Δείξτε ότι για οποιοδήποτε $R\subseteq [n]$ με $|R|\le d_1^\perp-1$, το σύνολο μεριδίων $\{c_j:j\in R\}$ δεν δίνει καμία πληροφορία για το μυστικό, όπου d_1^\perp είναι η ελάχιστη απόσταση του C_1^\perp .
- (iii) Όταν ο C είναι ένας GRS με πίνακα βάσης τον

$$G = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{k-1} & a_2^{k-1} & \cdots & a_n^{k-1} \end{pmatrix},$$

τι παρατηρήτε για τις τιμές n-d+1 και $d_1^\perp-1$;

(iv) Τι εικάζετε ότι συμβαίνει για κώδικες οι οποίοι δεν είναι GRS και για σύνολα μεριδίων με $d_1^\perp \leq r \leq n-d$ μερίδια;