Foundation Calculus and Mathematical Techniques (CELEN037)

Problem Sheet 1

Topic 1: Derivatives using First Principles

1. Use First Principles to find the derivative of the following functions

(i)
$$y = (x+2)^2$$

(ii)
$$y = e^{3x-2}$$

(iii)
$$y = \cos 2x$$

(iv)
$$y = \sqrt{x^2 + 1}$$

2. Use First Principles to find the gradient of the curve $y = x^2 - \frac{3}{x}$ at point x = 1.

Topic 2: The Sum and Difference Rules

3. Use the Sum and Difference Rules to find the derivative of the following functions

(i)
$$y = x^5 - 5^x - 5^5$$

(ii)
$$y = \frac{3\sin x \cdot \cos x + 6\cot x - 2\sin x}{\cos x}$$

Topics: Derivatives

(iii)
$$y = \frac{\sqrt{x} + 1 + \sqrt[5]{x}}{\sqrt[3]{x}}$$

(iv)
$$y = 2x^3 + \sqrt{x} + \left(\frac{x^3 + 2x}{x^2}\right)$$

4. Consider the hyperbolic functions $\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right)$ and $\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)$. Find $\frac{d}{dx} (\cosh x) + \frac{d}{dx} (\sinh x)$.

Topic 3: The Product Rule

5. Use the Product Rule to find the derivative of the following functions

(i)
$$y = x^e e^{-x}$$

$$(ii) \quad y = \frac{1}{2}\sin 2x$$

(iii)
$$y = x \cdot \sec x \cdot \ln x$$

(iv)
$$y = \sqrt{x} \cdot e^x \cdot \cos x$$

6. Let
$$y = x^2 + 2x \cdot \cot x$$
. Find $\frac{dy}{dx}$.

Topic 4: The Quotient Rule

7. Use the Quotient Rule to find the derivative of the following functions

(i)
$$y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

(ii)
$$y = \frac{x^3 - 4x^2 + 2x}{x^2 - x}$$

(iii)
$$y = \frac{x}{1 + \cot x}$$

(iv)
$$y = 1 + x + x^2 + x^3 + \cdots$$
 $(|x| < 1)$

8. Let
$$y = \sqrt{\frac{1+\cos 2x}{1-\cos 2x}}$$
, where $\frac{\pi}{2} < x < \pi$. Find $\frac{dy}{dx}$

Answers

1. (i)
$$2x + 4$$

(ii)
$$3e^{3x-2}$$

(iii)
$$-2\sin 2x$$

(iii)
$$-2\sin 2x$$
 (iv) $\frac{x}{\sqrt{x^2+1}}$

3. (i)
$$5x^4 + 5^x \ln 5$$

(iii)
$$\frac{1}{6}x^{-\frac{5}{6}} - \frac{1}{3}x^{-\frac{4}{3}} - \frac{2}{15}x^{-\frac{17}{15}}$$

(ii)
$$3\cos x - 6\csc x \cdot \cot x - 2\sec^2 x$$

(iv)
$$6x^2 + \frac{1}{2\sqrt{x}} - \frac{2}{x^2} + 1$$

4.
$$e^a$$

(ii)
$$\cos 2x$$

(iii)
$$\sec x \cdot (\ln x + x \cdot \tan x \cdot \ln x + 1)$$

(iv)
$$e^x \left(\frac{\cos x}{2\sqrt{x}} + \sqrt{x} \cdot \cos x - \sqrt{x} \cdot \sin x \right)$$

6.
$$2(x + \cot x - x \cdot \csc^2 x)$$

7. (i)
$$-\frac{4e^{2x}}{(e^{2x}-1)^2}$$

(ii)
$$\frac{x^2 - 2x + 2}{(x-1)^2}$$

7. (i)
$$-\frac{4e^{2x}}{\left(e^{2x}-1\right)^2}$$
 (ii) $\frac{x^2-2x+2}{(x-1)^2}$ (iii) $\frac{1+\cot x+x\cdot\csc^2 x}{(1+\cot x)^2}$

(iv)
$$\frac{1}{(1-x)^2}$$

8.
$$\csc^2 x$$