Functional electronic circuits

Laboratory work 3 «Design of control path functional blocks»

- 1. Develop the device that performs the arithmetic operation according to the variant. The control unit should be implemented as FSM. The size of operands is 32 bit.
- 2. Develop a testbench of the device and test the device.
- 3. Calculate the calculation time if clock frequency is 100MHz.
- 4. Draw the interface of your block and FSM according to the control logic.
- 5. Put results in the report. The report should consist:
 - 5.1. Student Name and Student ID
 - 5.2. The picture with FSM and table of transition
 - 5.3. The timing diagram with simulation results
 - 5.4. Code of the testbench and the device.
- 6. Upload the report by this form: https://forms.yandex.ru/u/6279e3f58fd3854abe62b5d0/

Variants

Variant	Function	Constraints
1	$y = a^2 + \sqrt[3]{b}$	Number of adders: 1
		Number of multipliers: 2
2	$y = a^3 + \sqrt[2]{b}$	Number of adders: 2
		Number of multipliers: 1
3	$y = \sqrt{a^2 + b^2}$	Number of adders: 1
		Number of multipliers: 2
4	$y = \sqrt{a + \sqrt[3]{b}}$	Number of adders: 2
		Number of multipliers: 1
5	$y = 3a + 2 \cdot \sqrt[3]{b}$	Number of adders: 1
		Number of multipliers: 2
6	$y = a \cdot b + a^3$	Number of adders: 2
	3	Number of multipliers: 1
7	$y = a \cdot \sqrt{b}$	Number of adders: 1
		Number of multipliers: 2
8	$y = a \cdot \sqrt[3]{b}$	Number of adders: 2
		Number of multipliers: 1
9	$y = \sqrt[3]{a} + \sqrt{b}$	Number of adders: 1
	- ,	Number of multipliers: 2
10	$y = \sqrt[3]{a + \sqrt[2]{b}}$	Number of adders: 2
	g v i v o	Number of multipliers: 1

Appendix. Arithmetic algorithms

Multiplication

N – size of operands. For example, N = 32 for 32 bit operands.

Square root

N- size of operands. For example, N=32 for 32 bit operands.

Cubic root

N- size of operands. For example, N=32 for 32 bit operands.

