CPT Lecture Notes 3: Differentiable Functions

Levent Ülkü

August 29, 2019

Reminders: For any $n \in \mathbb{N}$, any $x, y \in \mathbb{R}^n$ and any $\varepsilon > 0$

$$d(x,y) = \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{1/2} \text{ and } B(x,\varepsilon) = \left\{z \in \mathbb{R}^n : d(x,z) < \varepsilon\right\}$$

Let $S \subseteq \mathbb{R}^n$. S is open if for every $x \in S$ there is some $B(x, \varepsilon) \subset S$. S is closed if its complement is open. S is bounded if there exist numbers $a_i, b_i, i = 1, ..., n$, such that $S \subset \times_{i=1}^n [a_i, b_i]$. S is compact if and only if it is closed and bounded. S is convex if $tx + (1-t)x' \in S$ whenever $t \in [0,1]$ and $x, x' \in S$. Let $f:S \to \mathbb{R}^m$ and $x \in S$. Then f is continuous at x if for every $\varepsilon > 0$ there is some $\delta > 0$ such that $f(x') \in B(f(x), \varepsilon)$ whenever $x' \in B(x, \delta) \cap S$. We say that f is continuous if it is continuous at each $x \in S$.

Let $S \subseteq \mathbb{R}$, $x \in S$ and $f : S \to \mathbb{R}$. Then f is differentiable at x if

$$\lim_{u\to 0}\frac{f(x+u)-f(x)}{u}$$

exists. In this case the derivative of f at x is equal to this limit and it is denoted f'(x).

In other words, f is differentiable at x if there is some $y \in \mathbb{R}$ such that for every $\varepsilon > 0$ there exists some $\delta > 0$ such that

$$\{x+u\in B_\delta(x)\cap S \text{ and } u\neq 0\}\Rightarrow \left|\frac{f(x+u)-f(x)}{u}-y\right|<\varepsilon$$

and in this case y = f'(x).

Let $S \subseteq \mathbb{R}^n$, $x \in S$ and $f : S \to \mathbb{R}$. The *j*th partial derivative of f at x is

$$D_j f(x) := \lim_{u \to 0} \frac{f(x + ue_j) - f(x)}{u}$$

if this limit exists.

If $D_j f(x)$ exists for all j = 1, ..., n, then the gradient of f at x is the vector

$$\nabla f(x) := \begin{vmatrix} D_1 f(x) \\ \vdots \\ D_n f(x) \end{vmatrix} \in \mathbb{R}^n.$$

If $S \subseteq \mathbb{R}^n$ and $f: S \to \mathbb{R}^m$ then for each $x \in S$ we will write

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \in \mathbb{R}^m.$$

Let $S \subseteq \mathbb{R}^n$, $x \in S$ and $f: S \to \mathbb{R}^m$. Suppose that $D_i f_j(x)$ exists for all i and j, then the Jacobian of f at x is the $m \times n$ matrix

$$J_f(x) := \begin{bmatrix} D_1 f_1(x) & \cdots & D_n f_1(x) \\ \vdots & & \vdots \\ D_1 f_m(x) & \cdots & D_n f_m(x) \end{bmatrix}_{m \times n} = \begin{bmatrix} \nabla f_1(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{bmatrix}$$

Now we will define differentiability of a function $f: S \to \mathbb{R}^m$ where $S \subseteq \mathbb{R}^n$. We must make sure that our definition overlaps with the earlier definition of differentiability when m = n = 1. For any vector x, ||x|| is the *norm* of x, i.e., the distance of x to 0.

Let $S \subseteq \mathbb{R}^n$. Then $f: S \to \mathbb{R}^m$ is differentiable at $x \in S$ if the following two conditions hold:

- 1. $D_j f_i(x)$ exists for all i and j,
- 2. we have

$$\lim_{u\to 0} \frac{\|f(x+u) - f(x) - J_f(x)u\|}{\|u\|} = 0.$$

The second condition in the definition holds if and only if for every $\varepsilon > 0$ there is some $\delta > 0$ such that whenever $x + u \in B_{\delta}(x) \cap S$ and $u \neq 0_{n \times 1}$ we have

$$\frac{\|f(x+u)-f(x)-J_f(x)u\|}{\|u\|}<\varepsilon.$$

When m = 1 = n, the first condition implies the second, but in general this is not true.

Example: Let $S = \mathbb{R}^2$, $f: S \to \mathbb{R}$ and

$$f(x_1, x_2) = \begin{cases} x_1^3/(x_1^2 + x_2^2) & \text{if } (x_1, x_2) \neq (0, 0), \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to compute $D_1f(0,0)=1$ and $D_2f(0,0)=0$. So the first condition in the definition of differentiability holds at (0,0). Let us look at the second condition. At x=(0,0) for any $u=(u_1,u_2)\neq (0,0)$ we have

$$\frac{\|f(x+u)-f(x)-J_f(x)u\|}{\|u\|} = \frac{\left|\frac{u_1^3}{u_1^2+u_2^2}-u_1\right|}{(u_1^2+u_2^2)^{1/2}}$$

and letting u=(1/k,1/k) we see that this expression does not converge to zero. So the second condition fails and f is not differentiable at (0,0) even though its partials are well defined.

In the previous example $D_1 f(x)$ is not continuous at x = (0,0).

Theorem: Suppose $S \subseteq \mathbb{R}^n$, $x \in S$ and $f: S \to \mathbb{R}^m$. Suppose that for each i and j, $D_j f_i(x)$ exists and that $x \mapsto D_j f_i(x)$ is continuous on S. Then f is differentiable at x.

Theorem: (Implicit Function Theorem) Let $F: \mathbb{R}^2 \to \mathbb{R}$. Suppose that $D_1F(x,y)$ and $D_2F(x,y)$ exist and are continuous in an open U containing $(a,b) \in \mathbb{R}^2$. Suppose that F(a,b) = 0 and that $D_2F(a,b) \neq 0$. Then there exists $\varepsilon > 0$ and $g: B_\varepsilon(a) \to \mathbb{R}$ such that g(a) = b, F(x,g(x)) = 0 for all $x \in B_\varepsilon(a)$ and

$$g'(a) = \frac{-D_1 F(a,b)}{D_2 F(a,b)}.$$

Example: Let $F(x, y) = x^2 + y^2 - 2$. Then (a, b) = (1, 1) is a vector for which the result works, but $(2^{1/2}, 0)$ is not.

In higher dimensions we would like to come up, at least locally, with the map

$$(x_1,...,x_n) \mapsto \begin{bmatrix} g_1(x_1,...,x_n) \\ \vdots \\ g_m((x_1,...,x_n) \end{bmatrix} \in \mathbb{R}^m$$

when we have a system of equations of the form

$$F_1(x_1, ..., x_n, y_1, ..., y_m) = 0$$

 \vdots
 $F_m(x_1, ..., x_n, y_1, ..., y_m) = 0$

and the Implicit Function addresses this problem.

Theorem: (Implicit Function Theorem) Suppose $F: \mathbb{R}^{n+m} \to \mathbb{R}^m$ is differentiable in an open set U containing $(a,b) \in \mathbb{R}^{n+m}$ and suppose that the entries of $J_F(x,y)$ are continuous at each $(x,y) \in U$. Let $A_{m \times n}$ and $B_{m \times m}$ be defined by $J_F(a,b)$ as follows:

$$A = \begin{bmatrix} D_{1}F_{1}(a,b) & \cdots & D_{n}F_{1}(a,b) \\ \vdots & & \vdots \\ D_{1}F_{m}(a,b) & \cdots & D_{n}F_{m}(a,b) \end{bmatrix}$$

$$B = \begin{bmatrix} D_{n+1}F_{1}(a,b) & \cdots & D_{n+m}F_{1}(a,b) \\ \vdots & & \vdots \\ D_{n+1}F_{m}(a,b) & \cdots & D_{n+m}F_{m}(a,b) \end{bmatrix}$$

and suppose that F(a,b)=0 and B is nonsingular. Then there exists $\varepsilon>0$ and $g:B_{\varepsilon}(a)\to\mathbb{R}^m$ such that g(a)=b, F(x,g(x))=0 for all $x\in B_{\varepsilon}(a)$ and $J_g(a)=-B_{m\times m}^{-1}A_{m\times n}$.

Theorem: (Inverse Function Theorem) Suppose that $f: \mathbb{R}^m \to \mathbb{R}^m$ is differentiable in an open set U containing $b \in \mathbb{R}^m$. Suppose that the partials of f are continuos on U. Suppose that f(b) = a and $J_f(b)$ is nonsingular. Then there exists some $\varepsilon > 0$ and some $g: B_{\varepsilon}(a) \to \mathbb{R}^m$ such that g(a) = b, f(g(x)) = x for all $x \in B_{\varepsilon}(a)$ and g is differentiable at a with $J_g(a) = J_f(b)^{-1}$.

Proof: Define $F: \mathbb{R}^{2n} \to \mathbb{R}^n$ as F(x,y) = x - f(y) and note that F is differentiable with continuos partials at each $(x,y) \in \mathbb{R}^n \times U$ and that

$$J_F(x,y) = [I: -J_f(y)].$$

Now use the Implicit Function Theorem with A = I.

Theorem: (Weierstrass Theorem) Let $S \subseteq \mathbb{R}^n$ be compact and let $f: S \to \mathbb{R}$ be continuous. Then there exists x' and x'' in S such that for all $x \in S$, $f(x') \le f(x) \le f(x'')$.

Theorem: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ attains its maximum or minimum on an open set U at some $x \in U$. If $D_i f(x)$ exists, then $D_i f(x) = 0$.

Proof: (Sketch for n=1) Suppose that f attains a maximum at x and that f is differentiable at x. Pick $\{u_k\}$ be a sequence such that $u_k>0$ and $x\pm u_k\in U$ for each k and $u_k\to 0$. Note that such a sequence exists since U is open and $x\in U$. Now for each k we have

$$\frac{f(x+u_k)-f(x)}{u_k} \le 0 \le \frac{f(x-u_k)-f(x)}{-u_k}$$

and therefore letting $k \to \infty$ we get f'(x) = 0. Similarly if x is a minimizer. \blacksquare

Theorem: (Rolle's Theorem) Suppose $f:[a,b] \to \mathbb{R}$ is continuous at each $x \in [a,b]$ and that f is differentiable at each $x \in (a,b)$. Furthermore suppose that f(a) = 0 = f(b). Then there exists some $c \in (a,b)$ such that f'(c) = 0.

Proof: Applying Weierstrass Theorem, we know that f attains its maximum and minimum on [a,b]. Let x' be the minimizer and x'' be the maximizer on [a,b]. There are three cases to consider. Case 1: f(x') = f(x'') = 0. Then let $c = \frac{a+b}{2}$. Case 2: $f(x'') \neq 0$. Then $x'' \in (a,b)$ which is open and by the previous result f'(x'') = 0. Case 3: $f(x') \neq 0$. Then $x' \in (a,b)$ which is open and by the previous result f'(x') = 0.

Theorem: (Mean Value Theorem) Suppose that $f:[a,b] \to \mathbb{R}$ is continuous at each $x \in [a,b]$ and that f is differentiable at each $x \in (a,b)$. Then there exists $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proof: Let $g:[a,b] \to \mathbb{R}$ be given by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then the conditions of Rolle's theorem are satisfied and g'(c) = 0 for some $c \in (a, b)$. Then $f'(c) = \frac{f(b) - f(a)}{b - a}$ and the proof is complete.

Theorem: (Mean Value Theorem) Let U be an open set in \mathbb{R}^n containing a and b. Suppose that $(1-t)a+tb\in U$ whenever $t\in [0,1]$. Suppose that $f:U\to \mathbb{R}$ is differentiable at each $x\in U$. Then there exists $t'\in (0,1)$ such that $\nabla f(c')\cdot (b-a)=f(b)-f(a)$ where c'=(1-t')a+t'b.

Proof: Define $g:[0,1]\to\mathbb{R}$ by g(t)=f((1-t)a+tb). Then g satisfies the conditions of the one dimensional Mean Value Theorem above. Furthermore g(0)=f(a) and g(1)=f(b) and there exists t' such that g'(t')=f(b)-f(a). Since

$$g'(t') = \sum_{i=1}^{n} D_{i}f((1-t')a+tb)(b_{i}-a_{i})$$

= $\nabla f((1-t')a+tb) \cdot (b-a)$

the proof is complete.

Let U be open in \mathbb{R}^n and let $f:U\to\mathbb{R}$. The Hessian of f at $x\in U$ is the $n\times n$ matrix

$$H_f(x) := \begin{bmatrix} D_1 D_1 f(x) & \cdots & D_n D_1 f(x) \\ \vdots & & \vdots \\ D_1 D_n f(x) & \cdots & D_n D_n f(x) \end{bmatrix}$$

Theorem: Suppose U is open in \mathbb{R}^n , $f:U\to\mathbb{R}$ and $x\mapsto D_iD_jf(x)$ is continuous at each $x\in U$ for every i and j. Then $H_f(x)$ is symmetric for each $x\in U$.

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x_1, x_2) = \begin{cases} \frac{x_1^3 x_2 - x_1 x_2^3}{x_1^2 + x_2^2} & \text{if } (x_1, x_2) \neq (0, 0) \\ 0 & \text{if } (x_1, x_2) = (0, 0) \end{cases}$$

Then it is straightforward to check that $D_2D_1f(0,0)=-1 \neq 1=D_1D_2f(0,0)$. The problem here is that $x\mapsto D_iD_jf(x)$ is not continuous at (0,0).

Theorem: Suppose $U \subseteq \mathbb{R}^n$ is an open set containing a and b and $f: U \to \mathbb{R}$. Furthermore suppose that U contains (1-t)a+tb for each $t \in [0,1]$. Suppose that both f and ∇f are differentiable on U. Then there is some $t' \in (0,1)$ such that

$$f(b) = f(a) + \nabla f(a) \cdot (b-a) + \frac{1}{2}(b-a)^T H_f(c')(b-a)$$

where c'=(1-t')a+t'b.

Proof: Let $g:[0,1] \to \mathbb{R}$ be defined by

$$\begin{array}{lcl} g(t) & = & f(b) - f((1-t)a + tb) - [\nabla f((1-t)a + tb) \cdot (b-a)](1-t) \\ & - [f(b) - f(a) - \nabla f(a) \cdot (b-a)](1-t)^2 \end{array}$$

so that the conditions of Rolle's Theorem are satisfied. (Note that g(0)=0=g(1).) Then there is some t' such that g'(t')=0. Let c'=(1-t')a+t'b. Since

$$\begin{split} g'(t') &= -\nabla f(c') \cdot (b-a) \\ &- \{ (-1) \nabla f(c') \cdot (b-a) + (1-t') (b-a)^T H_f(c') (b-a) \} \\ &- \{ f(b) - f(a) - \nabla f(a) \cdot (b-a) \} (-1) 2 (1-t') \end{split}$$

we get the desired result by rearranging g'(t') = 0.

Let $S \subseteq \mathbb{R}^n$ be convex.

A function $f: S \to \mathbb{R}$ is convex if for all $t \in [0, 1]$ and for all $x, x' \in S$, we have $f((1-t)x + tx') \leq (1-t)f(x) + tf(x')$.

A function $f: S \to \mathbb{R}$ is strictly convex if for all $t \in (0,1)$ and for all $x, x' \in S$ such that $x \neq x'$ we have f((1-t)x+tx') < (1-t)f(x)+tf(x').

Note that a strictly convex function is convex.

Theorem: Suppose that $U \subseteq \mathbb{R}^n$ is open and convex and that

 $f:U\to\mathbb{R}$ is differentiable. Then

- 1. f is convex if and only if $f(x') \ge f(x) + \nabla f(x) \cdot (x' x)$ for each $x, x' \in U$.
- 2. f is strictly convex if and only if $f(x') > f(x) + \nabla f(x) \cdot (x' x)$ for each $x, x' \in U$ such that $x \neq x'$.

Proof: $(1,\Rightarrow)$ Let f be convex. Pick $x,x'\in U$. Define $g:\mathbb{R}\to\mathbb{R}$ by g(t)=f((1-t)x+tx'). Note that g is differentiable, with $g'(t)=\nabla f((1-t)x+tx')\cdot (x'-x)$. For all $t\in (0,1]$ we have $f((1-t)x+tx')\leq (1-t)f(x)+tf(x')$. Rearranging, we get

$$\frac{f((1-t)x+tx')-f(x)}{t} \le f(x')-f(x).$$

The LHS of this inequality is precisely (g(t)-g(0))/t. Taking limit as $t\to 0$ we get $g'(0)\le f(x')-f(x)$. It follows that $\nabla f(x)\cdot (x'-x)+f(x)\le f(x')$ just as we desired.

(1, \Leftarrow) Pick $x, x' \in U$ and $t \in [0, 1]$. Let x'' = (1 - t)x + tx'. Since U is convex, $x'' \in U$ and we have

$$f(x) \geq f(x'') + \nabla f(x'')(x - x'')$$

$$f(x') \geq f(x'') + \nabla f(x'')(x' - x'')$$

so that

$$(1-t)f(x)+tf(x')\geq f(x'').$$

Hence f is convex.

 $(2,\Rightarrow)$ Let f be strictly convex. Pick distinct $x,x'\in U$. Since strict convexity implies convexity, we know by (1) that $f(x')\geq f(x)+\nabla f(x)\cdot (x'-x)$. So we need to show that $f(x')\neq f(x)+\nabla f(x)\cdot (x'-x)$. Pick $t\in (0,1)$ and suppose, towards a contradiction, that $f(x')=f(x)+\nabla f(x)\cdot (x'-x)$. Then

$$(1-t)f(x) + tf(x') = f(x) + t(f(x') - f(x))$$

$$= f(x) + t[\nabla f(x) \cdot (x' - x)]$$

$$= f(x) + \nabla f(x) \cdot (\underbrace{(1-t)x + tx'}_{=:x'' \in U} - x)$$

$$\leq f(x) + f(x'') - f(x)$$

$$= f(x'')$$

$$= f((1-t)x + tx')$$

where the weak inequality is by convexity of f. This contradicts strict convexity and the proof is complete.

(2, \Leftarrow) Pick $x \neq x'$ and $t \in (0,1)$. Let x'' = (1-t)x + tx' and note that $x'' \in U \setminus \{x, x'\}$. Proceed as in $(1, \Leftarrow)$ above. \blacksquare