CIS 833 – Information Retrieval and Text Mining Lecture 21

Query Expansion

November 12, 2015

Credits for slides: Allan, Arms, Manning, Lund, Noble, Page.

Planning

- PageRank implementation: last assignment (due Dec 1st)
- Final exam: November 19th or December 3rd?
- Project presentation: finals week (during the exam time)
- Project report: by the end of the finals week

How Do We Augment the User Query?

- A thesaurus provides information on synonyms and semantically related words and phrases.
- Manual thesaurus
 - E.g. MedLine: physician, syn: doc, doctor, MD, medico
- Global Analysis: (static; of all documents in collection)
 - Automatically derived thesaurus
 - (co-occurrence statistics)
 - Refinements based on query log mining
 - Common on the web
- Local Analysis: (dynamic)
 - Analysis of documents in result set

Statistical Thesaurus

- Existing human-developed thesauri are not easily available in all languages.
- Human thesuari are limited in the type and range of synonymy and semantic relations they represent.
- Semantically related terms can be discovered from statistical analysis of corpora.

Automatic Thesaurus Generation

- Attempt to generate a thesaurus automatically by analyzing the collection of documents
- Fundamental notion: similarity between two words
- Definition 1: Two words are similar if they co-occur with similar words.
- Definition 2: Two words are similar if they occur in a given grammatical relation with the same words.
 - You can harvest, peel, eat, prepare, etc. apples and pears, so apples and pears must be similar.
- Co-occurrence based is more robust, grammatical relations are more accurate.

Co-occurrence Thesaurus

- Simplest way to compute a thesaurus is based on term-term similarities in $C = AA^T$ where A is term-document matrix.
- $w_{i,j}$ = (normalized) weight for (t_i, \mathbf{d}_j) simplest case could be frequency

Co-occurrence Matrix

What does *C* contain if *A* is a term-doc incidence (0/1) matrix?

 c_{ij} : Correlation factor between term i and term j

$$C_{ij} = \sum_{d_k \in D} w_{ik} \times w_{jk}$$

For each t_i , pick terms with high values in C

Automatic Thesaurus Generation Example

word	ten nearest neighbors
absolutely	absurd whatsoever totally exactly nothing
bottomed	dip copper drops topped slide trimmed slig
captivating	shimmer stunningly superbly plucky witty:
doghouse	dog porch crawling beside downstairs gazed
Makeup	repellent lotion glossy sunscreen Skin gel p
mediating	reconciliation negotiate cease conciliation p
keeping	hoping bring wiping could some would other
lithographs	drawings Picasso Dali sculptures Gauguin l
pathogens	toxins bacteria organisms bacterial parasit ϵ
senses	grasp psyche truly clumsy naive innate awl

Normalized Association Matrix

- Frequency based correlation factor favors more frequent terms.
- Normalize association scores:

$$S_{ij} = \frac{C_{ij}}{C_{ii} + C_{jj} - C_{ij}}$$

 Normalized score is 1 if two terms have the same frequency in all documents.

Metric Correlation Matrix

- Association correlation does not account for the proximity of terms in documents, just co-occurrence frequencies within documents.
- Metric correlations account for term proximity.

$$c_{ij} = \sum_{k_u \in V_i} \sum_{k_v \in V_j} \frac{1}{r(k_u, k_v)}$$

 V_i : Set of all occurrences of term i in any document. $r(k_u, k_v)$: Distance in words between word occurrences k_u and k_v (∞ if k_u and k_v are occurrences in different documents).

Normalized Metric Correlation Matrix

Normalize scores to account for term frequencies:

$$S_{ij} = \frac{C_{ij}}{\left| V_i \right| \times \left| V_j \right|}$$

Query Expansion with Correlation Matrix

- For each term i in query, expand query with the n terms, j, with the highest value of c_{ij} (s_{ij}).
- This adds semantically related terms in the "neighborhood" of the query terms.

Automatic Thesaurus Generation Discussion

- Quality of associations is usually a problem.
- Term ambiguity may introduce irrelevant statistically correlated terms.
 - "Apple computer" → "Apple red fruit computer"
- Problems:
 - False positives: Words deemed similar that are not
 - False negatives: Words deemed dissimilar that are similar
- Since terms are highly correlated anyway, expansion may not retrieve many additional documents.

Automatic Local Analysis

- At query time, dynamically determine similar terms based on analysis of top-ranked retrieved documents.
- Base correlation analysis on only the "local" set of retrieved documents for a specific query.
- Avoids ambiguity by determining similar (correlated) terms only within relevant documents.
 - "Apple computer" →"Apple computer Powerbook laptop"

Global vs. Local Analysis

- Global analysis requires intensive term correlation computation only once at system development time.
- Local analysis requires intensive term correlation computation for every query at run time (although number of terms and documents is less than in global analysis).
- But local analysis gives better results.

Global Analysis Refinements

 Only expand query with terms that are similar to all terms in the query.

$$sim(k_i,Q) = \sum_{k_i \in Q} c_{ij}$$

- "fruit" not added to "Apple computer" since it is far from "computer."
- "fruit" added to "apple pie" since "fruit" close to both "apple" and "pie."
- Use more sophisticated term weights (instead of just frequency) when computing term correlations.

Query Expansion Conclusions

- Expansion of queries with related terms can improve performance, particularly recall.
- However, must select similar terms very carefully to avoid problems, such as loss of precision.

Text Classification

Textbook Material

- Next Text Classification
 - Chapter 13: Text Classification and Naïve Bayes
 - Chapter 14: Vector Space Classification
 - Chapter 15: Support Vector Machines

Relevance Feedback

- In relevance feedback, the user marks a number of documents as relevant/nonrelevant.
- We then try to use this information to return better search results.
- Suppose we just tried to learn a filter for nonrelevant documents.
- This is an instance of a text classification problem:
 - Two "classes": relevant, nonrelevant
 - For each document, decide whether it is relevant or nonrelevant
- The notion of classification is very general and has many applications within and beyond information retrieval.

Standing Queries

- The path from information retrieval to text classification:
 - You have an information need, say:
 - MacBook Pro
 - You want to rerun an appropriate query periodically to find new news items on this topic
 - You will be sent new documents that are found
 - i.e., it's classification not ranking
- Such queries are called standing queries
 - Long used by "information professionals"
 - A modern mass instantiation is Google Alerts

Other Text Classification Examples:

Many search engine functionalities use classification

Assign labels to each document or web-page:

- Labels are most often topics such as Yahoo-categories
 e.g., "finance," "sports," "news>world>asia>business"
- Labels may be genres
 - e.g., "editorials" "movie-reviews" "news"
- Labels may be opinion on a person/product
 - e.g., "like", "hate", "neutral"
- Labels may be domain-specific
 - e.g., "interesting-to-me": "not-interesting-to-me"
 - e.g., "contains adult language": "doesn't"
 - e.g., language identification: English, French, Chinese, ...
 - e.g., search vertical: about Linux versus not
 - e.g., "link spam": "not link spam"

Categorization/Classification

- Given:
 - A description of an instance, *x* ∈ *X*, where X is the *instance language* or *instance space*.
 - Issue: how to represent text documents.
 - A fixed set of classes:

$$C = \{c_1, c_2, ..., c_J\}$$

- Determine:
 - The category of x: $c(x) \in C$, where c(x) is a classification function whose domain is X and whose range is C.
 - We want to know how to build classification functions ("classifiers").

Classification Methods

- Supervised learning of a document-label assignment function
 - Many systems partly rely on machine learning
 - Relevance Feedback (Rocchio)
 - k-Nearest Neighbors (simple, powerful)
 - Naive Bayes (simple, common method)
 - Support-vector machines (newer, more powerful)
 - ... plus many other methods
 - No free lunch: requires hand-classified training data
 - But data can be built up (and refined) by amateurs
 - CrowdSource
 - Amazon Mechanical Turk: https://www.mturk.com/mturk/welcome
 - CrowdFlower: http://crowdflower.com/
 - Herd It: http://herdit.org/blog/
- Note that many commercial systems use a mixture of methods

Closer Look at Classification

 Classification task: Learning how to label correctly new instances from a domain based on a set of previously labeled instances

Learning to Classify

- A training example is an instance $x \in X$, paired with its correct category c(x):
 - $\langle x, c(x) \rangle$ for an unknown classification function, c.
- Given a set of training examples, *D*,
- Find a hypothesized classification function, *h*(*x*), such that:

$$\forall \langle x, c(x) \rangle \in D : h(x) = c(x)$$

Consistency

Sample Category Learning Problem

- Instance language: <size, color, shape>
 - size ∈ {small, medium, large}
 - $\bullet \ \ \mathsf{color} \in \{\mathsf{red}, \, \mathsf{blue}, \, \mathsf{green}\}$
 - shape ∈ {square, circle, triangle}
- *C* = {positive, negative}

D:

Example	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative

General Learning Issues

- Many hypotheses are usually consistent with the training data.
- Bias
 - Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy (% of instances classified correctly).
 - Measured on independent test data.
- Training time (efficiency of training algorithm).
- Testing time (efficiency of subsequent classification).

Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis that does not generalize.
- Occam's razor.
 - Finding a *simple* hypothesis helps ensure generalization.

Learning Algorithms

- Relevance Feedback (Rocchio)
- k-Nearest Neighbors (simple, powerful)
- Naive Bayes (simple, common method)
- Support-vector machines (new, more powerful)
- ... plus many other methods

Using Relevance Feedback (Rocchio)

- Use standard TF/IDF weighted vectors to represent text documents (normalized by maximum term frequency).
- For each category, compute a prototype vector by summing the vectors of the training documents in the category.
- Assign test documents to the category with the closest prototype vector based on cosine similarity.

Rocchio Properties

- Does not guarantee a consistent hypothesis.
- Forms a simple generalization of the examples in each class (a *prototype*).
- Prototype vector does not need to be averaged or otherwise normalized for length since cosine similarity is insensitive to vector length.
- Classification is based on similarity to class prototypes.

Learning Algorithms for Classification Tasks

- Relevance Feedback (Rocchio)
- k-Nearest Neighbors (simple, powerful)
- Naive Bayes (simple, common method)
- Support-vector machines (new, more powerful)
- ... plus many other methods