- > # Лабортаорная работа 2. Ряды Фурье > # Выполнил студент группы 153503 Киселёва Е.А.
- > # Вариант 10
- > restart;
 - # Задание 1.
 - # Для 2π -периодической кусочно-непрерывной функции f(x) по ее аналитическому определению на главном периоде получите разложение в тригонометрический ряд Фурье. Убедитесь в правильности результата, проведя расчеты в системе Maple.
 - # Создайте пользовательскую процедуру-функцию, осуществляющую построение тригонометричсекого ряда Фурье для произвольной функции, удовлетворяющей теореме Дирихле.
 - # Постройте в одной системе координат на промежутке [3 π ,
 - $[3\ \pi]$ графики частичных сумм $S_1(x)$, $S_3(x)$, $S_7(x)$ ряда и его суммы S(x)
 - . Сравните полученный результат с графиком порождающей функции на главном периоде.
 - # Анимируйте построение графиков сумм ряда, взяв в качестве параметров порядковый номер частичной суммы.

$$\begin{array}{l} -\pi - x \ , \ -\pi \leq x < 0; \\ \pi \ \ 0 \leq x < \pi. \\ f := piecewise(-\operatorname{Pi} \leq x < 0, -\operatorname{Pi} - x, 0 \leq x < \operatorname{Pi}, \operatorname{Pi}); \\ f := unapply(f, x): \\ plot(f(x), x = -\operatorname{Pi} ..\operatorname{Pi}, y = -\operatorname{Pi} ..\pi, discont = true); \end{array}$$

$$f := \begin{cases} -\pi - x & -\pi \le x \text{ and } x < 0 \\ \pi & 0 \le x \text{ and } x < \pi \end{cases}$$

>
$$a0 := simplify \left(\frac{1}{Pi} \cdot (int(-Pi - x, x = -Pi ..0) + int(Pi, x = 0 ..Pi)) \right);$$

$$an := simplify \left(\frac{1}{Pi} \cdot (int((-Pi - x) \cdot \cos(n \cdot x), x = -Pi ..0) + int(Pi \cdot \cos(n \cdot x), x = 0 ..Pi)) \right)$$

$$assuming n :: posint;$$

$$bn := simplify \left(\frac{1}{Pi} \cdot (int((-Pi - x) \cdot \sin(n \cdot x), x = -Pi ..0) + int(Pi \cdot \sin(n \cdot x), x = 0 ..Pi)) \right)$$

$$assuming n :: posint;$$

$$a0 := \frac{1}{2} \pi$$

$$an := \frac{(-1)^n - 1}{\pi n^2}$$

$$bn := -\frac{(-1)^n - 2}{n}$$

$$(1)$$

> SumFourierSeries :=
$$\mathbf{proc}(f, k)$$

local $a0$, an , bn , n ;
 $a0 := simplify(int(f(x), x = -\pi..\pi)/\pi)$;
 $assume(n::posint)$;

```
an := simplify (int(f(x) * cos(n * x), x = -\pi..\pi)/\pi);

bn := simplify (int(f(x) * sin(n * x), x = -\pi..\pi)/\pi);

return 1/2 * a\theta + sum(an * cos(n * x) + bn * sin(n * x), n = 1..k)

end proc:
```

> $plot([SumFourierSeries(f, 1), SumFourierSeries(f, 3), SumFourierSeries(f, 7), SumFourierSeries(f, 1000)], x = -3\pi..3 \pi, legend = ["s1", "s3", "s7", "s"], discont = true);$

> $plot(SumFourierSeries(f, infinity), x = -3 \pi... 3 \pi, legend = ["s"], discont = true);$

 \rightarrow plots[animate](plot, [SumFourierSeries(f, k), x = -Pi ..Pi], k = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

> restart;

Задание 2

Разложите в ряд Фурье x_2 — периодическую функицю y = f(x), заданную ан промежутке $\cdot (0, x_1)$ формулой y = ax + b, а на $[x_1, x_2]$ — формулой y = c.

Убедитесь в правильности результата проведя расчеты в системе Maple.

Модифицируйте созданную ранне процедуру.

Постройте в одной системе координат графики частичных сумм $S_1(x), S_3(x),$

 $S_7(x)$ ряда и его суммы S(x) на промежтуке $[-2x_1, 2x_2]$

. Сравните полученный результат с графиком порождающей функции на главном периоде.

Анимируйте процесс построение графиков сумм ряда, взяв в качестве параметра порядковый номер частичной суммы.

2.10.
$$a = 0.5$$
, $b = 3$, $c = -2$, $x_1 = 2$, $x_2 = 6$

$$f := piecewise \left(0 < x < 2, \frac{1}{2} \cdot x + 3, 2 \le x \le 6, -2\right);$$

 $f := unapply(f, x) :$
 $plot(f(x), x = 0 ... 6, discont = true);$

$$> l := 3$$
:

$$a0 := simplify \left(\frac{1}{l} \cdot int(f(x), x = 0 ... 2 \cdot l) \right);$$

$$an := simplify \left(\frac{1}{l} \cdot int \left(f(x) \cdot \cos \left(\frac{\pi \cdot n \cdot x}{l} \right), x = 0 ... 2 \cdot l \right) \right) \text{ assuming } n :: posint;$$

$$bn := simplify \left(\frac{1}{l} \cdot int \left(f(x) \cdot \sin \left(\frac{\pi \cdot n \cdot x}{l} \right), x = 0 ... 2 \cdot l \right) \right) \text{ assuming } n :: posint;$$

$$a0 := -\frac{1}{3}$$

$$an := \frac{3}{2} \frac{4 \sin\left(\frac{2}{3}\pi n\right)\pi n + \cos\left(\frac{2}{3}\pi n\right) - 1}{\pi^2 n^2}$$

$$bn := -\frac{1}{2} \frac{12 \cos\left(\frac{2}{3} \pi n\right) \pi n - 10 \pi n - 3 \sin\left(\frac{2}{3} \pi n\right)}{\pi^2 n^2}$$
 (2)

> SumFourierSeriesModify := $\mathbf{proc}(f, k, x1, x2)$ local a0, an, bn, n, l; l := 1/2 * x2 - 1/2 * x1; a0 := simplify(int(f(x), x = 0..2 * l)/l); assume(n::posint); an := $simplify(int(f(x) * \cos(\pi * n * x/l), x = 0..2 * l)/l)$; bn := $simplify(int(f(x) * \sin(\pi * n * x/l), x = 0..2 * l)/l)$; return $1/2 * a0 + sum(an * \cos(\pi * n * x/l) + bn * \sin(\pi * n * x/l), n = 1..k)$ end proc:

> four := plot([SumFourierSeriesModify(f, 1, 0, 6), SumFourierSeriesModify(f, 3, 0, 6), SumFourierSeriesModify(f, 7, 0, 6), SumFourierSeriesModify(f, 1000, 0, 6)], $x = -3 \cdot \text{Pi} ... 3 \cdot \text{Pi}$, discont = true, color = [red, green, blue, yellow]): func := plot(f(x), x = -10 ... 10, discont = true, color = black, thickness = 4): plots[display](four, func);

> plots[animate](plot, [SumFourierSeriesModify(f, k, 0, 6), x = -Pi...Pi], k = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

- > # Задание 3
 - # Для графически заданной на промежутке функции как комбинации квадратиной и линейной постройте три разложения в тригонометрический ряд Фурье, считая, что функция определена:1) на полном периоде,2)на полупериоде(является четной),3)на полупериоде(является нечетной).
 - # Убедитесь в правильности результата, проведя расчеты в системе Maple
 - # Постройте графики сумм полученных рядов на промежутке, превышающем длину заданного в 3 раза. Сравните с графиками порождающих их функций.

#НА ПОЛНОМ ПЕРИОДЕ

restart;

$$f := piecewise \left(0 \le x \le 2, -\frac{3 \cdot (x-1)^2}{2}, 2 \le x \le 5, \frac{1}{2} \cdot x - \frac{5}{2} \right);$$

$$f := unapply(f, x) :$$

$$plot(f(x), x = 0 ...5, discont = true);$$

$$f := \begin{cases} -\frac{3}{2} (x-1)^2 & 0 \le x \text{ and } x \le 2 \\ \frac{1}{2} x - \frac{5}{2} & 2 \le x \text{ and } x \le 5 \end{cases}$$

>
$$l := \frac{5}{2}$$
:
 $a0 := simplify \left(\frac{2}{5} \left(int \left(-\frac{3}{2} (x-1)^2, x=0..2 \right) + int \left(\frac{1}{2} x - \frac{5}{2}, x=2..5 \right) \right) \right);$
 $an := simplify \left(\frac{2}{5} \left(int \left(\left(-\frac{3}{2} (x-1)^2 \right) \cdot \cos \left(\frac{2 \cdot \text{Pi} \cdot n \cdot x}{5} \right), x=0..2 \right) + int \left(\left(\frac{1}{2} x - \frac{5}{2} \right) \cdot \cos \left(\frac{2 \cdot \text{Pi} \cdot n \cdot x}{5} \right), x=2..5 \right) \right) \right) \text{assuming } n :: posint;$
 $bn := simplify \left(\frac{2}{5} \left(int \left(\left(-\frac{3}{2} (x-1)^2 \right) \cdot \sin \left(\frac{2 \cdot \text{Pi} \cdot n \cdot x}{5} \right), x=0..2 \right) + int \left(\left(\frac{1}{2} x - \frac{5}{2} \right) \cdot \sin \left(\frac{2 \cdot \text{Pi} \cdot n \cdot x}{5} \right), x=2..5 \right) \right) \right) \text{assuming } n :: posint;$
 $S := k \rightarrow \frac{a0}{2} + sum \left(an \cdot \cos \left(\frac{2 \cdot \text{Pi} \cdot n \cdot x}{5} \right) + bn \cdot \sin \left(\frac{2 \cdot \text{Pi} \cdot n \cdot x}{5} \right), n=1..k \right);$
 $plot(S(1000), x=-10..10, discont = true);$
 $\#plots[animate](plot, [S(n, x), x=-5..10], n=[seq(i, i=1..10)]);$

$$a0 := -\frac{13}{10}$$

$$an := -\frac{5}{4} \frac{7 \pi n \cos\left(\frac{4}{5} \pi n\right) + 5 \pi n - 15 \sin\left(\frac{4}{5} \pi n\right)}{\pi^{3} n^{3}}$$

$$bn := -\frac{1}{4} \frac{6 \pi^{2} n^{2} + 35 \pi n \sin\left(\frac{4}{5} \pi n\right) + 75 \cos\left(\frac{4}{5} \pi n\right) - 75}{\pi^{3} n^{3}}$$

$$S := k \to \frac{1}{2} a0 + \sum_{n=1}^{k} \left(an \cos\left(\frac{2}{5} \pi n x\right) + bn \sin\left(\frac{2}{5} \pi n x\right)\right)$$

#НА ПОЛУПЕРИОДЕ (ЯВЛЯЕТСЯ ЧЕТНОЙ)

$$f := piecewise \left(-5 \le x < -2, -\frac{1}{2} \cdot x - \frac{5}{2}, -2 \le x \le 0, -\frac{3 \cdot (-x-1)^2}{2}, 0 \le x \le 2, -\frac{3 \cdot (x-1)^2}{2}, 2 < x \le 5, \frac{1}{2} \cdot x - \frac{5}{2} \right);$$

f := unapply(f, x) : plot(f(x), x = -5 ...5, discont = true);

$$f := \begin{cases} -\frac{1}{2} x - \frac{5}{2} & -5 \le x \text{ and } x < -2 \\ -\frac{3}{2} (-x - 1)^2 & -2 \le x \text{ and } x \le 0 \\ -\frac{3}{2} (x - 1)^2 & 0 \le x \text{ and } x \le 2 \\ \frac{1}{2} x - \frac{5}{2} & 2 < x \text{ and } x \le 5 \end{cases}$$

$$Sk := k \rightarrow \frac{a0}{2} + sum\left(an \cdot \cos\left(\frac{\text{Pi} \cdot n \cdot x}{5}\right), n = 1 ...k\right) :$$

$$plot(Sk(1000), x = -10 ...10, discont = true);$$

$$a0 := -\frac{13}{10}$$

$$an := \frac{5 (-1)^n \pi n - 35 \pi n \cos\left(\frac{2}{5} \pi n\right) - 30 \pi n + 150 \sin\left(\frac{2}{5} \pi n\right)}{\pi^3 n^3}$$

$$bn := 0$$

$$S := k \to \frac{1}{2} a0 + \sum_{n=1}^k \left(an \cos\left(\frac{1}{5} \pi n x\right) + bn \sin\left(\frac{1}{5} \pi n x\right)\right)$$

> restart; #НА ПОЛУПЕРИОДЕ (ЯВЛЯЕТСЯ НЕЧЕТНОЙ)

$$f := piecewise \left(-5 \le x < -2, \frac{1}{2} \cdot x + \frac{5}{2}, -2 \le x \le 0, \frac{3 \cdot (-x-1)^2}{2}, 0 \le x \le 2, -\frac{3 \cdot (x-1)^2}{2}, 0 \le x$$

$$2 < x \le 5, \frac{1}{2} \cdot x - \frac{5}{2};$$

$$f := unapply(f, x) :$$

$$plot(f(x), x = -5 ...5, discont = true);$$

$$f := \begin{cases} \frac{1}{2} x + \frac{5}{2} & -5 \le x \text{ and } x < -2 \\ \frac{3}{2} (-x - 1)^2 & -2 \le x \text{ and } x \le 0 \\ -\frac{3}{2} (x - 1)^2 & 0 \le x \text{ and } x \le 2 \\ \frac{1}{2} x - \frac{5}{2} & 2 < x \text{ and } x \le 5 \end{cases}$$

$$a0 := 0;$$

 $an := 0;$

$$bn := simplify \left(\frac{2}{5}\left(int\left(\left(-\frac{3}{2}\left(x-1\right)^2\right)\cdot\sin\left(\frac{\mathbf{Pi}\cdot n\cdot x}{5}\right), x=0..2\right) + int\left(\left(\frac{1}{2}x-\frac{5}{2}\right)\right)\right)$$

$$\cdot \sin\left(\frac{\mathbf{Pi}\cdot n\cdot x}{5}\right), x=2..5\right)\right) \text{ assuming } n :: posint;$$

$$S := k \to \frac{a\theta}{2} + sum\left(an \cdot \cos\left(\frac{\mathbf{Pi}\cdot n\cdot x}{5}\right) + bn \cdot \sin\left(\frac{\mathbf{Pi}\cdot n\cdot x}{5}\right), n=1..k\right);$$

$$Sk := k \to sum\left(bn \cdot \sin\left(\frac{\mathbf{Pi}\cdot n\cdot x}{5}\right), n=1..k\right):$$

$$plot(Sk(1000), x=-10..10, discont=true);$$

$$a\theta := 0$$

$$an := 0$$

$$bn := \frac{-3\pi^2 n^2 - 35\pi n \sin\left(\frac{2}{5}\pi n\right) - 150\cos\left(\frac{2}{5}\pi n\right) + 150}{\pi^3 n^3}$$

$$S := k \to \frac{1}{2} a\theta + \sum_{n=1}^{k} \left(an\cos\left(\frac{1}{5}\pi nx\right) + bn\sin\left(\frac{1}{5}\pi nx\right)\right)$$