Lista de exercícios de Introdução à Redes Booleanas Probabilisticas

Gustavo Estrela de Matos

19 de dezembro de 2017

Exercício 1. Dada a rede booleana abaixo:

(1) Monte a matriz de interação.

 \mathbf{R} :

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

(2) Para cada gene, encontre sua expressão booleana

R:

Para x_1 :

Para x_2 :

_	car ca ca Z.	•			
	$x_2(t)$	$x_1(t)$	$x_4(t)$	$x_2(t+1)$	
	0	0	0	0	
	0	0	1	0	
	0	1	0	1	
	0	1	1	0	Portanto, $x_2(t+1) = x_1(t)\bar{x}_2(t)\bar{x}_4(t)$
	1	0	0	1	$+\bar{x}_1(t)x_2(t)\bar{x}_4(t)$
	1	0	1	0	$+x_1(t)x_2(t)\bar{x}_4(t)$
	1	1	0	1	
	1	1	1	1	$+ x_1(t)x_2(t)x_4(t)$

Para x_3 :

$x_3(t)$	$x_2(t)$	$x_3(t+1)$	
0	0	0	
0	1	1	Portanto, $x_3(t+1) = x_2(t) + x_3(t)$
1	0	1	
1	1	1	

Para x_4 :

-	ara w4.			
	$x_4(t)$	$x_3(t)$	$x_4(t+1)$	
	0	0	0	
	0	1	1	Portanto, $x_4(t+1) = x_3(t) + x_4(t)$
	1	0	1	
	1	1	1	

Exercício 2. Monte a tabela de probabilidade condicional para a rede do exercício 1 usando o modelo de PBNs de α s e β s

R:

Para x_1 :

$x_1(t)$	$x_3(t)$	$P(x_1(t+1) = 0 x_1(t), x_3(t))$	$P(x_1(t+1) = 1 x_1(t), x_3(t))$
X	1	$\frac{e^{eta}}{e^{eta}+e^{-eta}}$	$rac{e^{-eta}}{e^{eta}+e^{-eta}}$
0	0	$\frac{1}{1+e^{-\alpha}}$	$\frac{e^{-\alpha}}{1+e^{-\alpha}}$
1	0	$\frac{e^{-\alpha}}{1+e^{-\alpha}}$	$\frac{1}{1+e^{-\alpha}}$

Para x_2 :

Para x_3 :

$x_3(t)$	$x_2(t)$	$P(x_3(t+1) = 0 x_2(t), x_3(t))$	$P(x_3(t+1) = 1 x_2(t), x_3(t))$
X	1	$rac{e^{-eta}}{e^{eta}+e^{-eta}}$	$rac{e^{eta}}{e^{eta}+e^{-eta}}$
0	0	$\frac{1}{1+e^{-\alpha}}$	$\frac{e^{-\alpha}}{1+e^{-\alpha}}$
1	0	$\frac{e^{-\alpha}}{1+e^{-\alpha}}$	$\frac{1}{1+e^{-\alpha}}$

Para x_4 :

$x_4(t)$	$x_3(t)$	$P(x_4(t+1) = 0 x_3(t), x_4(t))$	$P(x_4(t+1) = 1 x_3(t), x_4(t))$
X	1	$rac{e^{-eta}}{e^{eta}+e^{-eta}}$	$rac{e^{eta}}{e^{eta+e^{-eta}}}$
0	0	$\frac{1}{1+e^{-\alpha}}$	$\frac{e^{-\alpha}}{1+e^{-\alpha}}$
1	0	$\frac{e^{-\alpha}}{1+e^{-\alpha}}$	$\frac{1}{1+e^{-\alpha}}$

Exercício 3. Mostre a tabela de transição de estados para a PBN do último exercício

R:

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	Γ 0.82	0.041	0.041	2.04e-03	0.041	2.04e-03	2.04e-03	1.02e-04	0.041	2.04e-03	2.04e-03	1.02e-04	2.04e-03	1.02e-04	1.02e-04	5.06e-067
0001	0.043	0.86	2.14e-03	0.043	1.06e-04	2.14e-03	5.30e-06	1.06e-04	2.14e-03	0.043	1.06e-04	2.14e-03	5.30e-06	1.06e-04	2.64e-07	5.30e-06
0010	1.11e-04	0.045	2.24e-03	0.9	5.55e-06	2.24e-03	1.11e-04	0.045	2.76e-07	1.11e-04	5.55e-06	2.24e-03	1.38e-08	5.55e-06	2.76e-07	1.11e-04
0011	1.17e-04	0.047	2.34e-03	0.95	2.89e-07	1.17e-04	5.81e-06	2.34e-03	2.89e-07	1.17e-04	5.81e-06	2.34e-03	7.17e-10	2.89e-07	1.44e-08	5.81e-06
0100	1.06e-04	5.30e-06	0.043	2.14e-03	2.14e-03	1.06e-04	0.86	0.043	5.30e-06	2.64e-07	2.14e-03	1.06e-04	1.06e-04	5.30e-06	0.043	2.14e-03
0101	1.11e-04	2.24e-03	0.045	0.9	2.76e-07	5.55e-06	1.11e-04	2.24e-03	5.55e-06	1.11e-04	2.24e-03	0.045	1.38e-08	2.76e-07	5.55e-06	1.11e-04
0110	2.89e-07	1.17e-04	1.17e-04	0.047	5.81e-06	2.34e-03	2.34e-03	0.95	7.17e-10	2.89e-07	2.89e-07	1.17e-04	1.44e-08	5.81e-06	5.81e-06	2.34e-03
0111	6.08e-06	2.45e-03	2.45e-03	0.99	1.51e-08	6.08e-06	6.08e-06	2.45e-03	1.51e-08	6.08e-06	6.08e-06	2.45e-03	3.74e-11	1.51e-08	1.51e-08	6.08e-06
1000	1.06e-04	5.30e-06	5.30e-06	2.64e-07	0.043	2.14e-03	2.14e-03	1.06e-04	2.14e-03	1.06e-04	1.06e-04	5.30e-06	0.86	0.043	0.043	2.14e-03
1001	2.04e-03	0.041	1.02e-04	2.04e-03	1.02e-04	2.04e-03	5.06e-06	1.02e-04	0.041	0.82	2.04e-03	0.041	2.04e-03	0.041	1.02e-04	2.04e-03
1010	2.89e-07	1.17e-04	5.81e-06	2.34e-03	1.17e-04	0.047	2.34e-03	0.95	7.17e-10	2.89e-07	1.44e-08	5.81e-06	2.89e-07	1.17e-04	5.81e-06	2.34e-03
1011	1.11e-04	0.045	2.24e-03	0.9	5.55e-06	2.24e-03	1.11e-04	0.045	2.76e-07	1.11e-04	5.55e-06	2.24e-03	1.38e-08	5.55e-06	2.76e-07	1.11e-04
1100	2.76e-07	1.38e-08	1.11e-04	5.55e-06	1.11e-04	5.55e-06	0.045	2.24e-03	5.55e-06	2.76e-07	2.24e-03	1.11e-04	2.24e-03	1.11e-04	0.9	0.045
1101	2.64e-07	5.30e-06	1.06e-04	2.14e-03	5.30e-06	1.06e-04	2.14e-03	0.043	5.30e-06	1.06e-04	2.14e-03	0.043	1.06e-04	2.14e-03	0.043	0.86
1110	1.51e-08	6.08e-06	6.08e-06	2.45e-03	6.08e-06	2.45e-03	2.45e-03	0.99	3.74e-11	1.51e-08	1.51e-08	6.08e-06	1.51e-08	6.08e-06	6.08e-06	2.45e-03
1111	L2.89e-07	1.17e-04	1.17e-04	0.047	5.81e-06	2.34e-03	2.34e-03	0.95	7.17e-10	2.89e-07	2.89e-07	1.17e-04	1.44e-08	5.81e-06	5.81e-06	2.34e-03

Exercício 4. Faça um programa que recebe n>0, α , β e a matriz de que representa a rede e devolva a matriz de transição.

Exercício 5. Faça um programa que recebe n>0, uma probabilidade de inversão de bits p e a matriz de que representa a rede e devolva a matriz de transição.

Exercício 6. Faça um programa que receba a matriz de transição e devolva a matriz estacionária.

Exercício 7. Faça um programa que receba a matriz de transição e devolva as probabilidades de fluxo.

Exercício 8. Faça um programa que receba n>0, α , β e a matriz que representa a rede e devolva a matriz de fluxo total.

Exercício 9. Reproduza os resultados do paper "Generating Boolean networks with a prescribed attractor structure".

Exercício 10. Considere um modelo de rede Booleana para representar a saúde de um paciente que descreve o estado de dois genes. Suponha que os estados 00 e 10 correspondem respectivamente ao paciente no estado saudável e doente. Dadas os diagramas abaixo, que representam respectivamente a dinâmica dos genes quando o paciente não faz tratamento e quando faz, dê a tabela de planejamento para uma janela de tempo de tamanho 3.

Primeiro, escolhemos o custo dos estados finais do sistema afim de encontrar políticas que reduzem este custo.

$$\begin{array}{c|cc} X & C_3(X) \\ \hline 00 & 10 \\ 01 & 10000 \\ 10 & 10000 \\ 11 & 5000 \\ \end{array}$$

Definimos μ_i como uma variável que indica se houve tratamento no tempo i, e também definimos uma função J_i com os custos parciais no tempo i.

$$J_i(X_i, \mu = 1) = 20 + 10 * i + E[J_{i+1}(X_{i+1})|X_i, \mu = 1]$$

$$J_i(X_i, \mu = 0) = 10 + E[J_{i+1}(X_{i+1})|X_i, \mu = 0]$$

$$J_i(X_i) = min\{J_i(X_i, \mu = 0), J_i(X_i, \mu = 1)\}$$

Também definimos $J_3(X)=C_3(X)$ e $u_i^*(X_i)$ como 1 se $J_i(X_i,\mu=0)>J_i(X_i,\mu=1)$ e como 0 caso contrário.

Desta maneira, temos que:

• No tempo i=2

$$\begin{split} J_2(00,\mu=0) &= 10+1.0*J_3(00) = 20\\ J_2(00,\mu=1) &= 40+1.0*J_3(10) = 10040\\ \text{portanto, } J_2(00) &= 20 \text{ e } \mu_2^*(00) = 0\\ \\ J_2(01,\mu=0) &= 10+1.0*J_3(10) = 10010\\ J_2(01,\mu=1) &= 40+0.7*J_3(10)+0.3*J_3(11) = 8540\\ \text{portanto, } J_2(01) &= 8450 \text{ e } \mu_2^*(01) = 1\\ \\ J_2(10,\mu=0) &= 10+1.0*J_3(10) = 10010\\ J_2(10,\mu=1) &= 40+0.7*J_3(00)+0.3*J_3(01) = 3047\\ \text{portanto, } J_2(10) &= 3047 \text{ e } \mu_2^*(10) = 1\\ \\ J_2(11,\mu=0) &= 10+0.5*J_3(01)+0.5*J_3(00) = 5015\\ J_2(11,\mu=1) &= 40+1*J_3(11) = 5040 \end{split}$$

portanto, $J_2(11) = 5015$ e $\mu_2^*(11) = 0$

• No tempo i=1

$$\begin{split} J_1(00,\mu=0) &= 10+1.0*J_2(00) = 30\\ J_1(00,\mu=1) &= 30+1.0*J_2(10) = 3077\\ \text{portanto, } J_1(00) &= 30 \text{ e } \mu_1^*(00) = 0\\ \\ J_1(01,\mu=0) &= 10+1.0*J_2(10) = 3057\\ J_1(01,\mu=1) &= 30+0.7*J_2(10)+0.3*J_2(11) = 3667.4\\ \text{portanto, } J_1(01) &= 3057 \text{ e } \mu_1^*(01) = 0\\ \\ J_1(10,\mu=0) &= 10+1.0*J_2(10) = 3057\\ J_1(10,\mu=1) &= 30+0.7*J_2(00)+0.3*J_2(01) = 2579\\ \text{portanto, } J_1(10) &= 2579 \text{ e } \mu_1^*(10) = 1\\ \\ J_1(11,\mu=0) &= 10+0.5*J_2(01)+0.5*J_2(00) = 4245\\ J_1(11,\mu=1) &= 30+1*J_2(11) = 5045\\ \text{portanto, } J_1(11) &= 4245 \text{ e } \mu_1^*(11) = 0 \end{split}$$

• No tempo i=0

$$\begin{split} J_0(00,\mu=0) &= 10+1.0*J_1(00) = 40 \\ J_0(00,\mu=1) &= 20+1.0*J_1(10) = 2599 \\ \text{portanto,} \ J_0(00) &= 40 \text{ e } \mu_0^*(00) = 0 \\ \\ J_0(01,\mu=0) &= 10+1.0*J_1(10) = 2589 \\ J_0(01,\mu=1) &= 20+0.7*J_1(10)+0.3*J_1(11) = 3098.8 \\ \text{portanto,} \ J_0(01) &= 2589 \text{ e } \mu_0^*(01) = 0 \\ \\ J_0(10,\mu=0) &= 10+1.0*J_1(10) = 2589 \\ J_0(10,\mu=1) &= 20+0.7*J_1(00)+0.3*J_1(01) = 958.1 \\ \text{portanto,} \ J_0(10) &= 958.1 \text{ e } \mu_0^*(10) = 1 \\ \\ J_0(11,\mu=0) &= 10+0.5*J_1(01)+0.5*J_1(00) = 1553.5 \\ J_0(11,\mu=1) &= 20+1*J_1(11) = 4265 \\ \text{portanto,} \ J_0(11) &= 1553.5 \text{ e } \mu_0^*(11) = 0 \end{split}$$

Portanto, a tabela de planejamento é dada por:

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{matrix} 00 \\ 01 \\ 10 \end{matrix}$$