ABSTRACT ALGEBRA II RINGS AND FIELDS

MARIO L. GUTIERREZ ABED

THE FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN

Let D be an integral domain that we wish to enlarge to a field of quotients F^1 . Then we take the Cartesian product

$$D \times D^* = \{(a, b) \mid a, b \in D, b \neq 0\}.$$

Note that $D \times D^*$ still cannot be our desired field F, as it's indicated by the fact that, with $D = \mathbb{Z}$ for instance, different pairs of integers such as (2,3) and (4,6) can represent the same rational number. What we need to do then is partition $D \times D^*$ into equivalence classes:

We say that two elements (a, b) and (c, d) in $D \times D^*$ are equivalent (which we denote by $(a, b) \sim (c, d)$) if and only if ad = bc.

This relation \sim is in fact an equivalence relation, as can easily be shown. Hence we now define our field F to be the set of all equivalence classes [(a,b)] for $(a,b) \in D \times D^*$, where an element (a_1,b_1) is a representative of the equivalence class $[(a,b)] \iff (a_1,b_1) \sim (a,b)$ (i.e. $\iff a_1b=b_1a$).

Now we need to define the binary operations of addition and multiplication on our newly constructed field F:

Lemma. For $[(a,b)],[(c,d)] \in F$, the equations

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)]$$
 and $[(a,b)][(c,d)] = [(ac,bd)]$

give well-defined operations of addition and multiplication, respectively, on F.

Remark: Note that with these operations defined on F, the following are true:

- Addition in F is commutative and associative.
- [(0,1)] is an identity element for addition in F.
- [(-a,b)] is an additive inverse for [(a,b)] in F.
- \bullet Multiplication in F is both associative and commutative.
- The distributive laws hold in F.
- [(1,1)] is a multiplicative identity element in F.
- If $[(a,b)] \in F$ is not the additive identity element, then $a \neq 0$ in D and [(b,a)] is a multiplicative inverse for [(a,b)].

¹The entire construction can be found on pages 190-194, Fraleigh's. Here I simply state some of the key steps.

Thus we have constructed a field F starting with an integral domain D. Our last step is just to show that F can be regarded as containing D:

Lemma. The map $i: D \longrightarrow F$ given by i(a) = [(a,1)] is an isomorphism from D onto a subring of F.

Proof. For $a, b \in D$, we have

$$i(a + b) = [(a + b, 1)].$$

Also,

$$i(a) + i(b) = [(a, 1)] + [(b, 1)]$$

$$= [(a1 + 1b, 1)]$$

$$= [(a + b, 1)]$$

$$\implies i(a + b) = i(a) + i(b).$$
 (Homomorphic property for addition)

Furthermore, we have that i(ab) = [(ab, 1)] and

$$i(a)i(b) = [(a, 1)][(b, 1)]$$

= $[(ab, 1)]$
 $\implies i(ab) = i(a)i(b)$. (Homomorphic property for multiplication)

Clearly our map i is surjective, hence we only need to show that it is also injective in order to conclude our proof:

$$i(a) = i(b)$$

$$\Rightarrow [(a, 1)] = [(b, 1)]$$

$$\Rightarrow (a, 1) \sim (b, 1)$$

$$\Rightarrow a1 = b1$$

$$\Rightarrow a = b$$
(Injectivity checked)

Thus i is an isomorphism of D with i[D], which is a subdomain of F.

Remark: Since [(a,b)] = [(a,1)][(1,b)] = [(a,1)]/[(b,1)] = i(a)/i(b) clearly holds in $i[D] \subset F$, and i[D] is isomorphic to D, we have now proven the following theorem:

Theorem. Any integral domain D can be enlarged to (or embedded in) a field F such that every element of F can be expressed as a quotient of two elements of D. (Such a field F is called a **field** of quotients of D.)

The next theorem shows that every field containing D contains a subfield which is a field of quotients of D, and that any two fields of quotients of D are isomorphic:

Theorem. Let F be a field of quotients of D and let L be any field containing D. Then there exists a map $\psi \colon F \longrightarrow L$ that gives an isomorphism of F with a subfield of L such that $\psi(a) = a$ for all $a \in D$.

Corollary 1. Every field L containing an integral domain D contains a field of quotients of D.

Corollary 2. Any two fields of quotients of an integral domain D are isomorphic.

RINGS OF POLYNOMIALS

Theorem. The set $\mathcal{R}[x]$ of all polynomials in an indeterminate x with coefficients in a ring \mathcal{R} is a ring under polynomial addition and multiplication. If \mathcal{R} is commutative, then so is $\mathcal{R}[x]$, and if \mathcal{R} has unity $1 \neq 0$, then 1 is also unity for $\mathcal{R}[x]$.

Remark: As a result of this theorem, we have that $\mathbb{Z}[x]$ is the ring of polynomials in the indeterminate x with integral coefficients, $\mathbb{Q}[x]$ the ring of polynomials in x with rational coefficients, and so on...

Example: In $\mathbb{Z}_2[x]$, we have

$$(x+1)^2 = (x+1)(x+1) = x^2 + (1+1)x + 1 = x^2 + 1.$$
and
$$(x+1) + (x+1) = (1+1)x + (1+1) = 0x + 0 = 0.$$

The following theorem is quite simple and rather obvious but it is <u>extremely important</u> for further studies of field theory:

Theorem (The Evaluation Homomorphisms for Field Theory). Let F be a subfield of a field E, let α be any element of E, and let x be an indeterminate. The map $\phi_{\alpha} \colon F[x] \longrightarrow E$ defined by

$$\phi_{\alpha}(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1\alpha + \dots + a_n\alpha^n$$

is a homomorphism of F[x] into E. Also, $\phi_{\alpha}(x) = \alpha$, and ϕ_{α} maps F isomorphically by the identity map, i.e. $\phi_{\alpha}(a) = a$ for $a \in F$. The homomorphism ϕ_{α} is called the **evaluation** at α .

FACTORIZATION OF POLYNOMIALS OVER A FIELD

Theorem (Division Algorithm for F[x]). Let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$
 and $g(x) = b_0 + b_1 x + \dots + b_m x^m$

be two elements of F[x], with a_n and b_m both nonzero elements of F and m > 0.

Then there are unique polynomials $q(x), r(x) \in F[x]$ such that f(x) = g(x)q(x) + r(x), with either r(x) = 0 or the degree of r(x) is less than the degree m of g(x).

Corollary (Factor Theorem). An element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if x - a is a factor of f(x) in F[x].

Corollary. If G is a finite subgroup of the multiplicative group $\langle F^*, \cdot \rangle$ of a field F, then G is cyclic. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.

Definition. A nonconstant polynomial $f(x) \in F[x]$ is **irreducible** over F if f(x) cannot be expressed as a product g(x)h(x) of two polynomials $g(h), h(x) \in F[x]$ both of lower degree than the degree of f(x). Otherwise if this condition is not met we say that f(x) is **reducible** over F.

<u>Example:</u> Let us show that $f(x) = x^3 + 3x + 2$ in $\mathbb{Z}_5[x]$ is irreducible over \mathbb{Z}_5 . If f(x) factored into polynomials of lower degree, then there would exist at least one linear factor of the form x - a for some $a \in \mathbb{Z}_5$. But then f(a) would be 0 by the *Factor Theorem*. However

$$f(0) = 2$$
, $f(1) = 1$, $f(-1) = -2$, $f(2) = 1$, and $f(-2) = -2$,

showing that f(x) has no zeroes in \mathbb{Z}_5 . Thus f(x) is irreducible over \mathbb{Z}_5 .

Theorem (Reducibility of Quadratic and Cubic Polynomials). Let $f(x) \in F[x]$, and let f(x) be of degree 2 or 3. Then f(x) is reducible over F if and only if it has a zero in F.

Proof. (\Rightarrow) Let f(x) be reducible over F so that f(x) = g(x)h(x), where both $\deg(g(x))$ and $\deg(h(x))$ are $< \deg(f(x))$. Then, since f(x) is either quadratic or cubic, we must have that either g(x) or h(x) is of degree 1. Now, WLOG, take $\deg(g(x)) = 1$. Then except for a possible factor in F, g(x) is of the form $x - \alpha$. Hence $g(\alpha) = 0$, which in turn implies that $f(\alpha) = 0 \cdot h(x) = 0$, so f(x) has a zero in F.

 (\Leftarrow) This direction is trivial, since by a previous corollary we already know that if $f(\alpha) = 0$ for $\alpha \in F$, then $x - \alpha$ is a factor of f(x), thus f(x) is indeed irreducible over F.

Theorem 1. If $f(x) \in \mathbb{Z}[x]$, then f(x) factors into a product of polynomials of lower degrees r and s in $\mathbb{Q}[x]$ if and only if it has such a factorization with polynomials of the same degrees r and s in $\mathbb{Z}[x]$.

Corollary. If $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ is in $\mathbb{Z}[x]$ with $a_0 \neq 0$, and if f(x) has a zero in \mathbb{Q} , then it has a zero m in \mathbb{Z} , and m must divide a_0 .

Proof. If f(x) has a zero a in \mathbb{Q} , then f(x) has a linear factor x - a in $\mathbb{Q}[x]$ by the Factor Theorem. But then, by the above theorem, f(x) has a factorization with a linear factor in $\mathbb{Z}[x]$, so for some $m \in \mathbb{Z}$, we must have

$$f(x) = (x - m)\left(x^{n-1} + \dots - \frac{a_0}{m}\right)$$

Thus a_0/m is in \mathbb{Z} , so m divides a_0 .

Example 1: Let us use Theorem 1 to show that

$$f(x) = x^4 - 2x^2 + 8x + 1$$

viewed in $\mathbb{Q}[x]$ is irreducible over \mathbb{Q} .

If f(x) has a linear factor in $\mathbb{Q}[x]$, then it has a zero in \mathbb{Z} , and by the corollary to Theorem 1, this zero would have to be a divisor in \mathbb{Z} of 1, i.e. ± 1 . But f(1) = 8 and f(-1) = -8, thus such factorization is impossible.

If on the other hand f(x) factors into quadratic factors in $\mathbb{Q}[x]$, then by Theorem 1, it has a factorization

$$(x^2 + ax + b)(x^2 + cx + d)$$

in $\mathbb{Z}[x]$. Equating coefficients of powers of x, we find that we must have

$$bd = 1$$
, $ad + bc = 8$, $ac + b + d = -2$, and $a + c = 0$

for integers $a, b, c, d \in \mathbb{Z}$. From bd = 1, we see that either b = d = 1 or b = d = -1. In any case, b = d and from ad + bc = 8, we deduce that d(a + c) = 8. But this is impossible since a + c = 0. Thus we may conclude that a factorization into quadratic polynomials is also impossible and thus f(x) is irreducible over \mathbb{Q} .

Theorem (Eisenstein Criterion). Let $p \in \mathbb{Z}$ be a prime. Suppose that $f(x) = a_0 + \cdots + a_n x^n$ is in $\mathbb{Z}[x]$, and $a_n \not\equiv 0 \mod p$, but $a_i = 0 \mod p$ for all i < n, with $a_0 \not\equiv 0 \mod p^2$. Then f(x) is irreducible over \mathbb{Q} .

Example: Take $f(x) = 25x^5 - 9x^4 - 3x^2 - 12$ and notice that for p = 3, we have

- 3 ∤ 25
- $3 \mid -9, -3, -12$
- $3^2 = 9 \nmid -12$.

Hence we have by the *Eisenstein Criterion* that $f(x) = 25x^5 - 9x^4 - 3x^2 - 12$ is irreducible over \mathbb{Q} .

Corollary. The polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible over \mathbb{Q} for any prime p. This polynomial $\Phi_p(x)$ is known as the p^{th} cyclotomic polynomial.

Theorem. If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in F[x] into a product of irreducible polynomials, the irreducible polynomials being unique expect for order and for unit (that is, nonzero constant) in F.