

Mikrocomputer-Technik

Teil 3: Parallel-I/O

Studiengang Technische Informatik (BA) Prof. Dr.-Ing. Alfred Rożek

nur für Lehrzwecke Vervielfältigung nicht gestattet

MCT49: Teil3 24.05.2007 Folie: 1 © Prof. Dr.-Ing. Alfred Rożek TFH Berlin

Beispiel: PIO-Karte für den PC

Centronics-Schnittstelle₁

PIO - Parallel Input/Output Controller (8255)

Dieser Baustein kontrolliert die Ein- und Ausgabe über die parallele Schnittstelle.

- Centronics-Schnittstelle 36-poliger Stecker, 18 Signalleitungen, 18 Masseleitungen
- IBM-Schnittstelle 25-poliger Stecker, 18 Signalleitungen, 7 Masseleitungen
- Maximale Kabellänge: 5 m

Ursprünglich nur für die Druckausgabe entwickelt (unidirektional), wird die parallele Schnittstelle heute auch zur bidirektionalen Kommunikation benutzt. (IEEE 1284)

Bsp.: Scanner, ZIP-Laufwerk, Kopplung zweier Computer

Centronics-Schnittstelle₂

36-pol. Canon-Steckverbindung

25-pol. AMP-Steckverbindung (female)

Anschlußbuchsen der **Centronics-Schnittstelle**

Timing-Diagramm der Centronics-Schnittstelle mit Dreidraht-Handshake

TFH-Berlin

Centronics-Schnittstelle₃

Blockdiagramm der Centronics Schnittstelle

Quelle: Messmer, PC-Hardware

MCT49: Teil3 24.05.2007 Folie: 5 © Prof. Dr.-lng. Alfred Rożek TFH Berlin

Centronics-Schnittstelle₄

Pin-Nr. 25-polig	Pin-Nr. 36-polig	Signal- Bezeichnung	Transfer- Richtung	aktiver Pegel	Bedeutung/Funktion
1	1	Strobe	PC-Gerät	Low	Daten sind gültig
2	2	DI	PC-Gerät	High	Datenbit 0
3	3	D2	PC-Gerät	High	Datenbit 1
4	4	D3	PC-Gerät	High	Datenbit 2
5	5	D4	PC-Gerät	High	Datenbit 3
6	6	D5	PC-Gerät	High	Datenbit 4
7	7	D6	PC-Gerät	High	Datenbit 5
8	8	D7	PC-Gerät	High	Datenbit 6
9	9	D8	PC-Gerät	High	Datenbit 7
10	10	Acknowledge	Gerät-PC	Low	Daten wurden übernommen
11	11	Busy	Gerät-PC	High	nicht empfangsbereit für neue Daten
12	12	Paper Error	Gerät-PC	High	kein Papier
13	13	Select	Gerät-PC	High	Drucker ist ON-LINE
14	14	Auto Feed	PC-Gerät	Low	bei jedem CR ein LF einfügen
-	15, 16	GND oder NC		-	Masse oder nicht benutzt
-	17	Chassis-GND		-	Gehäuse-Masse
-1.	18	External +5V	Gerät-PC	-	+ 5V extern
19-25	19-30	GND	-	-	einzelne Signal- Masseleitungen
16	31	Reset oder Init	PC-Gerät	Low	Geräte-Initialisierung
15	32	Error oder Fault	Gerät-PC	Low	Drucker-Störung
18	33	Extern GND oder NC	Gerät-PC	•	Masse oder nicht belegt
	34	NC	-	-	keine Verbindung
-	35	+ 5V oder NC	-	-	+ 5 V oder nicht belegt
17	36	Select In	PC-Gerät	Low	On-Line schalten

Pin-Belegung der IBM- und der Centronics Schnittstelle

Signale und ihre Bedeutungen

Centronics-Schnittstelle₅

Adresse	Größe	Aufbau	Inhalt	Bedeutung
		76543210		
40:08	Wort		Basisadresse LPT1	z.B. Eintrag = 78 03
40:0A	Wort		Basisadresse LPT2	z.B. Eintrag = 78 02
40:0C	Wort		Basisadresse LPT3	z.B. Eintrag = BC 03
40:0E	Wort		Basisadresse LPT4	Nur PC/XT (z.B. Eintrag = BC 02)
40:11	Byte	xx	installierte Hardware	Zahl der parallelen Schnittstellen (00=0, 01=1, 10=2, 11=3)
40:78	Wort	z.B. 14H	Zeitüberschreitung LPT1	Time-out-Wert in Sekunden (z.B. 20s)
40:79	Wort	z.B. 14H	Zeitüberschreitung LPT2	Time-out-Wert in Sekunden (z.B. 20s)
40:7A	Wort	z.B. 14H	Zeitüberschreitung LPT3	Time-out-Wert in Sekunden (z.B. 20s)
40:7B	Wort	z.B. 14H	Zeitüberschreitung LPT4	Time-out-Wert in Sekunden (z.B. 20s)

BIOS-Datenbereich für die parallele Schnittstelle

Centronics-Schnittstelle

TFH Berlin MCT49: Teil3 24.05.2007 Folie: 8 © Prof. Dr.-Ing. Alfred Rożek

Centronics-Schnittstelle₇

Registerbelegung (Bidir- Modus)

	Data Register (= Basisaddresse)				
Bit	Pin- Name	Pin	Funktion		
0- 7	D0- D7	2- 9	Ein- bzw. Ausgänge		

	Status Register (= Basisaddresse + 1)			
Bit	Pin- Name	Pin	Funktion	
3	/ERROR	15	Eingang	
4	SELECTIN	13	Eingang	
5	PAPEREND	12	Eingang	
6	/ACK	10	Interruptfähiger Eingang (L- >H)	
7	BUSY	11	Invertierender Eingang	

	Control Register (= Basisaddrese + 2)				
Bit	Pin- Name	Pin	Funktion		
0	/STROBE	1	Invertierender Ausgang		
1	/AUTOFD	14	Invertierender Ausgang		
2	/INIT	16	Ausgang		
3	/SELECT	17	Invertierender Ausgang		
4	-	-	Interrupt: 0=aus, 1=an		
5	-	-	D0- D7: 0=Ausgang, 1=Eingang		

Parallelport-Anschlussbelegung

Einfaches Anschlussbeispiel

http://www.linux-magazin.de/Artikel/ausgabe/1999/10/IO/parport_s.gif

Ing Alfred Beziek

Centronics-Schnittstelle₈

Statusregister:

Steuerregister:

Belegung des Statusund Steuerregisters

Quelle: Messmer, PC-Hardware

Standard IEEE-1284

Betriebsarten

◆ Compatible

Standardisierte Centronics Schnittstelle, max. 150 kByte/s, wird teilweise auch SPP (Standard Printer Port) genannt, wie beispielsweise im BIOS-Setup.

◆ Nibble

Definiert die Mindestanforderungen an ein IEEE-1284 kompatibles Gerät. Lediglich vier Leitungen sind als Rückkanal definiert. Max. 50 kByte/s

◆ Byte

Wurde bereits bei der Micro-Channel-Architektur (PS/2) standardmäßig verwendet. Die Daten werden im Gegensatz zum Nibble Mode byteweise über das Datenregister (Basisadresse) ausgetauscht. Bidirektional.

♦ EPP (Enhanced Parallel Port)

Wurde von den Firmen Intel, Xircom und Zenith entwickelt und ist die gebräuchlichste IEEE-1284 Implementierung. Es können bidirektional sowohl Daten als auch Adressen (max. 256) übertragen werden. Die Übertragungsbreite beträgt maximal 2 Mbyte/s bei einer typischen Kabellänge von 5m.

◆ ECP (Extended Capability Mode Port)

Wurde durch eine Microsoft- und Hewlett-Packard Initiative in IEEE-1284 implementiert. Der ECP unterstützt eine einfache Datenkomprimierung nach RLE (Run Length Encodes). Besitzt einen 16kByte großen FIFO mit DMA- und Interrupt-Fähigkeit. Die maximale Datenübertragungsrate liegt bei 2MByte/s. Bidirektional sowohl für Daten als auch für Kommandos.

Enhanced Parallel Port Data Write Cycle

Enhanced Parallel Port Address Write Cycle

TFH-Berlin

Basisboard für den ADNP

Parallel-I/O (ADNP)

© Prof. Dr.-Ing. Alfred Rożek

MCT49: Teil3