2. The canonical isomorphism of Proposition 33.16 holds under more general conditions. Namely, that K is a commutative ring with identity and that the E_i are finitely-generated projective K-modules (see Definition 35.7). See Bourbaki, [25] (Chapter III, §11, Section 5, Proposition 7).

We prove another useful canonical isomorphism that allows us to treat linear maps as tensors.

Let E and F be two vector spaces and let $\alpha \colon E^* \times F \to \operatorname{Hom}(E,F)$ be the map defined such that

$$\alpha(u^*, f)(x) = u^*(x)f,$$

for all $u^* \in E^*$, $f \in F$, and $x \in E$. This map is clearly bilinear, and thus it induces a linear map $\alpha_{\otimes} \colon E^* \otimes F \to \operatorname{Hom}(E, F)$ making the following diagram commute

$$E^* \times F \xrightarrow{\iota_{\otimes}} E^* \otimes F$$

$$\downarrow^{\alpha_{\otimes}}$$

$$\operatorname{Hom}(E, F)$$

such that

$$\alpha_{\otimes}(u^* \otimes f)(x) = u^*(x)f.$$

Proposition 33.17. If E and F are vector spaces (not necessarily finite dimensional), then the following properties hold:

- (1) The linear map $\alpha_{\otimes} \colon E^* \otimes F \to \operatorname{Hom}(E, F)$ is injective.
- (2) If E is finite-dimensional, then $\alpha_{\otimes} \colon E^* \otimes F \to \operatorname{Hom}(E,F)$ is a canonical isomorphism.
- (3) If F is finite-dimensional, then $\alpha_{\otimes} \colon E^* \otimes F \to \operatorname{Hom}(E,F)$ is a canonical isomorphism.

Proof. (1) Let $(e_i^*)_{i\in I}$ be a basis of E^* and let $(f_j)_{j\in J}$ be a basis of F. Then we know that $(e_i^*\otimes f_j)_{i\in I, j\in J}$ is a basis of $E^*\otimes F$. To prove that α_{\otimes} is injective, let us show that its kernel is reduced to (0). For any vector

$$\omega = \sum_{i \in I', j \in J'} \lambda_{ij} \, e_i^* \otimes f_j$$

in $E^* \otimes F$, with I' and J' some finite sets, assume that $\alpha_{\otimes}(\omega) = 0$. This means that for every $x \in E$, we have $\alpha_{\otimes}(\omega)(x) = 0$; that is,

$$\sum_{i \in I', j \in J'} \alpha_{\otimes}(\lambda_{ij} e_i^* \otimes f_j)(x) = \sum_{j \in J'} \left(\sum_{i \in I'} \lambda_{ij} e_i^*(x)\right) f_j = 0.$$