## Math 113 Theorems.

- 1. **Prop.** The relation  $\equiv \pmod{n}$  is an equivalence relation.
- 2. **Prop.**  $\mathbb{Z}/n\mathbb{Z}$  has exactly n elements.
  - (a) **Prop 0.** If  $i \in [j]$ , then  $j \in [i]$  (in  $\mathbb{Z}/n\mathbb{Z}$ ).
  - (b) **Prop 1.** If  $[i] \cap [j] \neq \emptyset$ , then [i] = [j].
  - (c) **Prop 2.** If  $i \neq j$  and  $0 \leq i, j \leq n-1$ , then  $[i] \cap [j] = \emptyset$ .
  - (d) **Prop 3.** Every  $x \in \mathbb{Z}$  belongs to one of  $[0], \ldots, [n-1]$ .
- 3. **Prop.** Addition is correctly (well-defined) defined on  $\mathbb{Z}/n\mathbb{Z}$  by [a] + [b] = [a+b].
- 4. **Prop 3.17.** The identity element in any group is unique.
- 5. **Prop 3.18.** The inverse is unique for any element q in a group G.
- 6. **Prop 3.19.** For any  $a, b \in G$ , where G is a group,  $(a \star b)^{-1} = b^{-1}a^{-1}$ .
- 7. **Prop 3.20.** For any  $g \in G$ , where G is a group, then  $(g^{-1})^{-1} = g$ .
- 8. **Theorem 5.1.**  $S_n$  is a group with n! elements where the binary operation is the composition of maps.
- 9. **Prop 5.8.** Let  $\sigma$  and  $\tau$  be two disjoint cycles in  $S_X$ . Then,  $\sigma \tau = \tau \sigma$ .
- 10. **Theorem 5.9.** Every permutation in  $S_n$  can be written as the product of disjoint cycles.
- 11. **Prop 5.12.** Any permutation of a finite set containing at least 2 elements can be written as the product of transpositions.
- 12. **Lemma 5.14.** If the identity is written as the product of r transpositions, id  $= \tau_1 \dots \tau_r$ , then r is even.
- 13. **Theorem 5.15.** If a permutation  $\sigma$  can be expressed as the product of an even number of transpositions, then any other product of transpositions equaling  $\sigma$  must also contain an even number of transpositions. Similarly, in the case of when  $\sigma$  is odd.
- 14. **Prop 3.30.** A subset H of G is a subgroup iff:
  - (a)  $e \in G$  also satisfies  $e \in H$ .
  - (b) If  $h_1, h_2 \in H$ , then  $h_1 h_2 \in H$ .
  - (c) If  $h \in H$ , then  $h^{-1} \in H$ .
- 15. **Prop 3.31.** Let H be a subset of a group G. Then, H is a subgroup of G iff  $H \neq \emptyset$  and if  $g, h \in H$ , then  $gh^{-1} \in H$ .

- 16. **Theorem 4.3.** Take a group G and an element  $a \in G$ . Consider a cyclic subgroup  $\langle a \rangle$ . Then,  $\langle a \rangle$  is a minimal subgroup of G such that a is in it (minimality: if H is a subgroup of G and  $a \in H$ , then  $\langle a \rangle$  is a subgroup of H).
- 17. **Theorem 4.9.** Every cyclic group is abelian.
- 18. **Prop 11.4.** Let  $\phi: G \to H$  be a homomorphism. Then:
  - (a)  $\phi(e_G) = e_H$ .
  - (b)  $\phi(g^{-1}) = (\phi(g))^{-1}$  for all  $g \in G$ .
  - (c) If  $K \leq G$ , then  $\phi(K) := \{\phi(k) \mid k \in K\}$  is a subgroup of H.
  - (d)  $\phi(G) := {\phi(g) \mid g \in G}$  (the image of  $\phi$ ) is a subgroup of H.
  - (e) If  $M \leq H$ , then  $\phi^{-1}(M) := \{g \in G \mid \phi(g) \in M\}$  is a subgroup of G.
- 19. **Lemma 6.3.** Let G be a group and H, a subgroup. Let  $g_1, g_2 \in G$ . Then, the following are equivalent:
  - (a)  $g_1 H = g_2 H$ .
  - (b)  $Hg_1^{-1} = Hg_2^{-1}$ .
  - (c)  $g_1H \subseteq g_2H$ .
  - (d)  $g_2 \in g_1 H$ .
  - (e)  $g_1^{-1}g_2 \in H$ .
- 20. Theorem 6.4. Left H-cosets partition G.
- 21. **Lagrange's Theorem.** If G is a finite group and H is a subgroup of G, then  $|G| = |H| \cdot [G:H]$ , or  $[G:H] = \frac{|G|}{|H|}$ .
- 22. Cor. If G is a finite group and H is a subgroup of G, then |H| divides |G|.
- 23. Cor. 6.13. If G is a finite group and  $H \leq G$  and  $G \geq H \geq K$ , then  $[G:K] = [G:H] \cdot [H:K]$ .
- 24. **Prop.**  $(\langle (123...n)\rangle, \circ)$  is isomorphic to  $(\mathbb{Z}/n\mathbb{Z}, +)$ .
- 25. **Theorem 9.7.** and **9.8** If  $G = (G, \star)$  is cyclic, then if:
  - (a) G finite, then G is isomorphic to  $(\mathbb{Z}/n\mathbb{Z}, +)$ .
  - (b) G infinite, then G is isomorphic to  $(\mathbb{Z}, +)$ .
- 26. **Prop.** Assume G is abelian. Then every subgroup of G is normal.
- 27. **Prop.** Take  $G = \mathbb{Z}$ ,  $H = n\mathbb{Z}$ ,  $a, b \in \mathbb{Z}$ . Then  $aH \odot bH$  gives  $(a + n\mathbb{Z}) \odot (b + n\mathbb{Z}) = (a + b) + n\mathbb{Z}$  is correctly defined.
- 28. **Theorem.** Let G be a group and H a normal subgroup. Then  $\odot$  (as in the above Prop.) defines a group structure on G/H, where G/H is called a quotient (factor) group.

- 29. **Prop.** Let  $\phi: G \to K$  be a homomorphism. Then,  $\ker \phi$  is a normal subgroup of G, with  $\ker \phi \subseteq G$ .
- 30. **First Isomorphism Theorem.** Let  $\phi : G \to H$  be a homomorphism. Then  $G/\ker \phi \cong \operatorname{Im}\phi$  and denote  $\Phi : G/\ker \phi \to \operatorname{Im}\phi$  with  $g \cdot \ker \phi \mapsto \phi(g)$ .
- 31. **Theorem 9.27.** If G is an internal direct product of H and K (with  $H, K \leq G$ ), then,  $G \cong H \times K$ , where G represents an internal direct product and  $H \times K$  represents an external direct product.
- 32. Fundamental Theorem of Finite Abelian Groups. Every finite abelian group G is isomorphic to one of the following form:  $G \cong \mathbb{Z}/p_1^{a_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_m^{a_m}\mathbb{Z}$  for  $p_1, \ldots, p_m$  primes and  $a_1, \ldots, a_m \in \mathbb{Z}_{>0}$ .
- 33. Cor. Any abelian group with 6 elements is isomorphic to  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ .
- 34. **Prop.** If G is a finite group with p elements (where p is prime), then  $G \cong \mathbb{Z}/p\mathbb{Z}$ .
- 35. **Prop.** If |G| = 4, then G is abelian.
- 36. **Prop.** If for any  $a \in G$ ,  $a^2 = e_G$ , then G is abelian.
- 37. **Prop.** Sym(cube)  $\cong S_4$ , so there are 24 symmetries of the cube, looking at the symmetry of the set of all 4 long diagonals inside the cube.
- 38. **Prop.** Let G be a group and X a set. Then, for each  $x \in X$ , we have  $\operatorname{Stab}_G(x) \leq G$ .
- 39. **Prop.** If G acts on a set X and both G and X are finite, then  $|G| = |\operatorname{Stab}_G(x)| \cdot |\operatorname{orb}(x)|$  for all  $x \in X$ .
- 40. **Prop.** If G acts on X, then G acts by bijection, i.e.  $\{x \mid x \in X\} = \{g \circ x \mid x \in X\}$  (in bijection for any  $g \in G$ ).
- 41. **Prop.** For any sets A, B (that contain identity), with  $A \xrightarrow{\psi} B$  and  $A \xleftarrow{\phi} B$  with  $\phi \circ \psi = \mathrm{id}_A$  and  $\psi \circ \phi = \mathrm{id}_B$ , then both  $\phi$  and  $\psi$  are bijections.
- 42. **Prop.** The two definitions of actions are equivalent, i.e.  $\{\Phi : G \times X \to X\}$  (with properties 1 and 2 as in the (equivalent) definition of G acting on X) is equal to the set  $\{\phi : G \to \operatorname{Sym}(X)\}$ , where  $\phi$  is a homomorphism.
- 43. Cayley's Theorem. Every group is isomorphic to a subgroup of  $S_n$ .
- 44. **Lemma.** Let  $\lambda: G \to \operatorname{Sym}(G)$  with be the left regular action of a group G on G. Then,  $\lambda$  is injective.
- 45. **Burnside's Lemma.** Let G be a finite group with G acting on a finite set X. The number of G-orbits in X is  $\frac{1}{|G|} \cdot \sum_{g \in G} |X^g|$ , where  $|X^g|$  is the number of elements in X fixed by the action of  $g \in G$ .
- 46. **Theorem.** The set of normal subgroups in G is equal to the set of all  $\ker \phi$  where  $\phi: G \to H$  is a homomorphism.

- 47. **Prop.**  $\ker \phi$  is an ideal in R for any ring homomorphism  $\phi: R \to S$ .
- 48. BELOW ARE ADDITIONAL THMS FOR MT2
- 49. **Prop 16.8.** Let R be a ring with  $a, b \in R$ . Then:
  - (a) a0 = 0a = 0.
  - (b) a(-b) = (-a)b = -ab.
  - (c) (-a)(-b) = ab.
- 50. **Prop 16.10.** Let R be a ring and S a subset of R. Then S is a subring of R iff:
  - (a)  $S \neq \emptyset$ .
  - (b)  $rs \in S$  for all  $r, s \in S$ .
  - (c)  $r s \in S$  for all  $r, s \in S$ .
- 51. **Prop. 16.15. Cancellation Law.** Let D be a commutative ring with identity. Then D is an integral domain iff for all nonzero elements  $a \in D$  with ab = ac, we have b = c.
- 52. **Theorem 16.16.** Every finite integral domain is a field.
- 53. **Lemma 16.18.** Let R be a ring with identity. If 1 has order n, then the characteristic of R is n.
- 54. **Theorem 16.19.** The characteristic of an integral domain is either prime or zero.
- 55. **Prop. 16.22.** Let  $\phi: R \to S$  be a ring homomorphism. Then:
  - (a) If R is a commutative ring, then  $\phi(R)$  is a commutative ring.
  - (b)  $\phi(0) = 0$ .
  - (c) Let  $1_R$  and  $1_S$  be the identities for R and S, respectively. If  $\phi$  is onto, then  $\phi(1_R) = 1_S$ .
  - (d) If R is a field and  $\phi(R) \neq \{0\}$ , then  $\phi(R)$  is a field.
- 56. Theorem 16.25. Every ideal in the ring of integers  $\mathbb{Z}$  is a principal ideal.
- 57. **Prop. 16.27.** The kernel of any ring homomorphism  $\phi: R \to S$  is an ideal in R.
- 58. First Ring Isomorphism Theorem. Take  $\psi: R \to S$  a ring homomorphism. Then  $\ker \psi$  is an ideal of R and  $R/\ker \psi \cong \operatorname{Im}\psi$ , and let  $\Psi: R/\ker \psi \to \operatorname{Im}\psi$  with  $r+\ker \psi \mapsto \psi(r)$ .
- 59. **Prop.** If T is a field, then its only ideas are  $\{0\}$  and T.

- 60. **Theorem 16.35.** R/I is a field iff I is a maximal ideal in R.
- 61. **Prop.** For a given ring, the set of its units and the set of its zero divisors are disjoint.
- 62. **Prop.** R/I is a field if I is a maximal ideal.
- 63. **Prop.** R/I is an integral domain iff I is a prime ideal.
- 64. **Division Algorithm.** Let  $a, b \in \mathbb{Z}$ , with b > 0. Then there it exists unique integers q, r such that a = bq + r, where  $0 \le r < b$ .
- 65. **Theorem 2.10.** Let a, b be nonzero integers. Then there exists integers r, s such that gcd(a, b) = ra + sb and gcd(a, b) is unique.
- 66. Fundamental Theorem of Arithmetic. Let  $n \in \mathbb{Z}$  with n > 1. Then  $n = p_1 \cdots p_k$  where  $p_i$  is prime. This factorization is unique.
- 67. **Theorem 17.6.** If  $a(x), b(x) \in F[x]$ , then theer exists unique  $q(x), r(x) \in F[x]$  such that:
  - (a) a(x) = q(x)b(x) + r(x).
  - (b)  $\deg(r(x)) < \deg(b(x))$ .
- 68. Cor. 17.8. If F is any field, then  $\alpha \in F$  is a zero of  $f(x) \in F[x]$  iff  $(x \alpha) \mid f(x)$ .
- 69. Cor. 17.9. If F is any field and  $f(x) \in F[x]$  has degree n, then f(x) has at most n zeros in F.