JP8073444A

MicroPatent Report

BENZODIAZEPINE DERIVATIVE

[71] Applicant: FUJISAWA

PHARMACEUTICAL CO; NIPPON

CATALYTIC CHEM IND

[72] Inventors: SATO YOSHINARI; SAKANE KAZUO; MITSUI

HITOSHI; KATSUMI IKUYO; ...

[21] Application No.: NA

[22] Filed: 19940902

[43] Published: 19960319

[30] Priority: JP JP1994210012A 19940902

Go to Fulltext

[57] Abstract:

PURPOSE: To obtain the subject new compound as a medicine having selective cholecystokinin-B antagonistic activity, useful for treating anorexia, irritable intestine syndrome, anxiety, schizophrenia, etc.

CONSTITUTION: This compound, a benzodiazepine derivative, is expressed by formula I (R¹ is an aryl; R² is an aryl; R³ is a lower al-kylthio (lower) alkyl, lower alkoxy (lower) alkyl, arylsulfinyl (lower) alkyl, etc.), e.g. N-[(3RS)-2,3- dihydro-5-(2-fluorophenyl)--1-(phenylsulfinylmethyl)-2-oxo-1H-1,4-benzodiazepin-3- yl]-N'-(3-methylphenyl)urea. The compound of formula I is obtained by reaction between a compound of formula II, reactive derivative at its amino group therefrom, or salt thereof and a compound of formula HOOC-NH-R², reactive derivative therefrom, or salt thereof, in a solvent (e.g. THF) under

cooling or heating. COPYRIGHT: (C)1996,JPO&Japio

[52] US Class:

[51] Int'l Class: A61P002520 A61P002504 A61K003155 A61P000100 C07D024324 A61P004300 A61K0031551 A61P002518

[52] ECLA:

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-73444

(43)公開日 平成8年(1996)3月19日

(51) Int.Cl. ⁶ C 0 7 D 243/24 A 6 1 K 31/55	酸別記号 509 AAE AAH AAN ACJ	庁内整理番号	FΙ				技術表示箇所
		審査請求	未請求		OL	(全 17 頁)	最終頁に続く
(21)出願番号	特願平6-210012		(71)出	類人 000005 藤沢薬		株式会社	
(22)出顧日	平成6年(1994)9	月2日	(71) 出	質人 000004 株式会	628 社日本	触媒	3丁目4番7号 4丁目1番1号
			(72)発明	明者 佐藤	良也	7-1-9	1101010
			(72)発明	明者 坂根 川西市		山形15	
			(72)発明	明者 三井 茶良県	-	郡上牧町上牧	4-6
			(74)代	型人 弁理士	植木	人一	最終頁に続く

(54) 【発明の名称】 ベンゾジアゼピン誘導体

(57)【要約】

【目的】 選択的コレシストキニン-B拮抗作用を有する新規なベングジアゼピン誘導体を提供する。

【構成】 式(I):

【化1】

N NH-C-NH-R²

[式中、R¹ は1個以上の適当な置換基によって置換されていてもよいアリール基、R² は1個以上の適当な置換基によって置換されていてもよいアリール基、R³ は低級アルキルチオ(低級)アルキル基、低級アルコキシ(低級)アルキル基、アリールスルフィニル(低級)アルキル基等、で示される基をそれぞれ意味する]で示される化合物及び医薬として許容されるその塩類。

【特許請求の範囲】

【請求項1】 式(I):

【化1】

[式中、R¹ は 1 個以上の適当な置換基によって置換されていてもよいアリール基、

R² は1個以上の適当な置換基によって置換されていて もよいアリール基、

R³ は低級アルキルチオ(低級)アルキル基、低級アルコキシ(低級)アルキル基、アリールスルフィニル(低級)アルキル基、

式:

【化2】

(式中、R4 はアリール基、

 R^5 はカルボキシ基、保護されたカルボキシ基またはピロリジニルカルボニル基をそれぞれ意味する)で示される基、または式:

【化3】

(式中、 R^6 は低級アルキル基またはアリール基、 R^7 は水素、カルボキシ基、保護されたカルボキシ基、 または少なくとも1 個の窒素原子を有している複素架橋 環カルボニル基、

Aは低級アルキレン基をそれぞれ意味する)で示される 基をそれぞれ意味する]で示される化合物及び医薬とし て許容されるその塩類。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、選択的コレシストキニンーB (CCK-B) 拮抗作用を有する新規なベングジアゼピン誘導体及び医薬として許容されるその塩類に関するものである。

[0002]

【発明の目的】この発明の目的は、選択的CCK-B拮抗剤として有用な新規な化合物を提供することにある。 具体的には、食欲調節系の障害(例えば、食欲不振等)、腸管平滑筋機能亢進に関する疾患(例えば、過敏性腸症候群、括約筋痙縮等)、不安、精神病(例えば、精神分裂病等)等の予防薬及び/または治療薬として、 更には鎮痛薬としても有用な新規ベンゾジアゼピン誘導 体及び医薬として許容されるその塩類を提供することで ある。

[0003]

【発明の構成】この発明のベンゾジアゼピン誘導体は、 下記式(1)

[0004]

【化4】

【0005】 [式中、 R^1 は1個以上の適当な置換基によって置換されていてもよいアリール基、 R^2 は1個以上の適当な置換基によって置換されていてもよいアリール基、 R^3 は低級アルキルチオ(低級)アルキル基、低級アルコキシ(低級)アルキル基、アリールスルフィニル(低級)アルキル基、式:

[0006]

【化5】

【0007】(式中、 R^4 はアリール基、 R^5 はカルボキシ基、保護されたカルボキシ基またはピロリジニルカルボニル基をそれぞれ意味する)で示される基、または式:

[0008]

【化6】

【0009】(式中、R⁶ は低級アルキル基またはアリール基、R⁷ は水素、カルボキシ基、保護されたカルボキシ基、または少なくとも1個の窒素原子を有している複素架橋環カルボニル基、Aは低級アルキレン基をそれぞれ意味する)で示される基をそれぞれ意味する]で示される化合物及び医薬として許容されるその塩類である。

[0010]

【発明の構成の説明】目的化合物 (1) の医薬として許容される好適な塩類は常用の無毒性の塩類であり、その様な例としては、例えばアルカリ金属塩 (例えばナトリウム塩、カリウム塩等)、アルカリ上類金属塩 (例えばカルシウム塩、マグネシウム塩等)、アンモニウム塩、有機塩基塩 (例えばトリメチルアミン塩、トリエチルアミン塩、ピリジン塩、ピコリン塩、ジシクロヘキシルア

ミン塩、N, N'ージベンジルエチレンジアミン塩等)、有機酸塩(例えばギ酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩等)、無機酸塩(例えば塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩等)、アミノ酸との塩(例えばアルギニン塩、アスパラギン酸塩、グルタミン酸塩等)等が含まれる。この明細書の上記及び後記の説明において、この発明の範囲内に包含される種々の定義の好適な例及び具体例を、以下詳細に説明する。

【0011】好適な「アリール基」としては、フェニ ル、ナフチル等が挙げられる。「1個以上の適当な置換 基によって置換されていてもよいアリール基」中の好適 な「置換基」としては、ヒドロキシ、保護されたヒドロ キシ(例えば、以下に記載のアシルオキシ等)、ニト ロ、低級アルコキシ(例えば、メトキシ、エトキシ、プ ロポキシ、イソプロポキシ、ブトキシ、第三級ブトキ シ、ペンチルオキシ、第三級ペンチルオキシ、ヘキシル オキシ等)、アミノ、保護されたアミノ (例えば、以下 に記載のアシルアミノ等)、低級アルキル (例えばメチ ル、エチル、プロピル、イソプロピル、ブチル、イソブ チル、第二級ブチル、第三級ブチル、ペンチル、第三級 ペンチル、ヘキシル等)、ハロゲン (例えば塩素、臭 素、フッ素、ヨウ素等)等が挙げられる。上記「アシル オキシ」及び「アシルアミノ」中の好適な「アシル基」 としては脂肪族アシル、及び芳香環または複素環を含む アシルが挙げられる。

【0012】上記アシル基の好適な例としては、低級ア ルカノイル(例えば、ホルミル、アセチル、プロピオニ ル、ブチリル、イソブチリル、バレリル、イソバレリ ル、ピバロイル、オキサリル、スクシニル等); 低級ア ルコキシカルボニル(例えば、メトキシカルボニル、エ トキシカルボニル、プロポキシカルボニル、1-シクロ プロピルエトキシカルボニル、イソプロポキシカルボニ ル、ブトキシカルボニル、第三級ブトキシカルボニル、 ペンチルオキシカルボニル、ヘキシルオキシカルボニル 等) : 低級アルカンスルホニル (例えばメシル、エタン スルホニル、プロパンスルホニル、イソプロパンスルホ ニル、ブタンスルホニル等);アレーンスルホニル (例 えばベンゼンスルホニル、トシル等);アロイル(例え ばベンゾイル、トルオイル、キシロイル、ナフトイル、 フタロイル、インダンカルボニル等);アル(低級)ア ルカノイル(例えばフェニルアセチル、フェニルプロピ オニル等);アル(低級)アルコキシカルボニル(例え ばベンジルオキシカルボニル、フェネチルオキシカルボ ニル等)等が挙げられる。「低級」とは、特に指示がな い限り、炭素原子数1~6個を意味するものとする。

【0013】好適な「低級アルキルチオ(低級)アルキル基」としては、例えばメチルチオメチル、メチルチオ エチル、メチルチオプロピル、エチルチオメチル、エチ ルチオエチル、エチルチオプロビル等が挙げられる。好 適な「低級アルコキシ (低級) アルキル基」としては、 例えばメトキシメチル、メトキシエチル、メトキシプロ ピル、エトキシメチル、エトキシエチル、エトキシプロ ピル等が挙げられる。

【0014】好適な「アリールスルフィニル(低級)アルキル基」としては、例えばフェニルスルフィニルメチル、フェニルスルフィニルエチル、フェニルスルフィニルプロピル、ナフチルスルフィニルメチル、ナフチルスルフィニルメチル、ナフチルスルフィニルボールプロピル等が挙げられる。好適な「保護されたカルボキシ基」としては、エステル化されたカルボキシ基」については下記のものを参照すればよい。

【0015】エステル化されたカルボキシ基のエステル

部分の好適な例としては、例えばメチルエステル、エチ ルエステル、プロピルエステル、イソプロピルエステ ル、ブチルエステル、イソブチルエステル、第三級ブチ ルエステル、ペンチルエステル、ヘキシルエステル等の 低級アルキルエステルが挙げられ、それらは1個以上の 適当な置換基によって置換されていてもよく、その様な 例としては、低級アルカノイルオキシ(低級)アルキル エステル「例えば、アセトキシメチルエステル、プロピ オニルオキシメチルエステル、ブチリルオキシメチルエ ステル、バレリルオキシメチルエステル、ピバロイルオ キシメチルエステル、ヘキサノイルオキシメチルエステ ル、1-(または2-)アセトキシエチルエステル、1 - (または2-または3-) アセトキシプロピルエステ ル、1-(または2-または3-または4-)アセトキ シブチルエステル、1-(または2-)プロピオニルオ キシエチルエステル、1-(または2-または3-)プ ロピオニルオキシプロピルエステル、1-(または2) 一) ブチリルオキシエチルエステル、1 – (または2) -) イソブチリルオキシエチルエステル、1- (または 2-) ピパロイルオキシエチルエステル、1- (または 2-) ヘキサノイルオキシエチルエステル、イソプチリ ルオキシメチルエステル、2-エチルブチリルオキシメ チルエステル、3、3-ジメチルプチリルオキシメチル エステル、1-(または2-)ペンタノイルオキシエチ ルエステル等] ;低級アルカンスルホニル (低級) アル キルエステル (例えば2-メシルエチルエステル等): モノ (またはジまたはトリ) ハロ (低級) アルキルエス テル (例えば、2-ヨードエチルエステル、2, 2, 2 ートリクロロエチルエステル等);低級アルコキシカル ボニルオキシ (低級) アルキルエステル 「例えば、メト キシカルボニルオキシメチルエステル、エトキシカルボ ニルオキシメチルエステル、プロポキシカルボニルオキ シメチルエステル、第三級プトキシカルボニルオキシメ チルエステル、1-(または2-)メトキシカルボニル オキシエチルエステル、1-(または2-)エトキシカ

ルボニルオキシエチルエステル、1-(または2-)イ ソプロポキシカルボニルオキシエチルエステル等];フ タリジリデン(低級)アルキルエステル;または(5-低級アルキルー2-オキソー1、3-ジオキソールー4 ーイル) (低級) アルキルエステル [例えば、 (5ーメ チルー2-オキソー1、3-ジオキソールー4-イル) メチルエステル、(5-エチル-2-オキソ-1,3-ジオキソールー4ーイル) メチルエステル、(5ープロ ピルー2-オキソー1、3-ジオキソールー4-イル) エチルエステル等];低級アルケニルエステル(例えば ビニルエステル、アリルエステル等);低級アルキニル エステル(例えば、エチニルエステル、プロピニルエス テル等):1個以上の適当な置換基によって置換されて いてもよいアル (低級) アルキルエステル [例えば、ベ ンジルエステル、4-メトキシベンジルエステル、4-ニトロベンジルエステル、フェネチルエステル、トリチ ルエステル、ベンズヒドリルエステル、ビス(メトキシ フェニル) メチルエステル、3,4-ジメトキシベンジ ルエステル、4-ヒドロキシ-3,5-ジ第三級プチル ベンジルエステル等];1個以上の適当な置換基によっ て置換されていてもよいアリールエステル(例えば、フ ェニルエステル、4-クロロフェニルエステル、トリル エステル、第三級ブチルフェニルエステル、キシリルエ ステル、メシチルエステル、クメニルエステル等);フ タリジルエステル等が挙げられる。好適な「低級アルキ ル基」としては上述したものを参照すればよい。

【0016】「少なくとも1個の窒素原子を有している 複素架橋環カルボニル基」における好適な「複素架橋 環」としては、窒素の他、酸素、硫黄等の様なヘテロ原 子を含む架橋環基が含まれる。上記「少なくとも1個の 窒素原子を有している複素架橋環カルボニル基」の好ま しい例としては、例えば(2-アザビシクロ[2.2. 1] ヘプトー2ーイル) カルボニル、(2ーアザビシク ロ[2.2.2] オクトー2ーイル) カルボニル、(2 ーアザビシクロ [2.2.1] ヘプトー5ーエンー2ー イル) カルボニル、(2-アザビシクロ[2.2.2] オクトー5ーエンー2ーイル) カルポニル、(2,5-ジアザビシクロ[2.2.1] ヘプト-2-イル) カル ボニル、(2,5-ジアザビシクロ[2,2,2]オク トー2ーイル) カルボニル、(2,5-ジアザビシクロ [2. 2. 1] ヘプト-5-エン-2-イル) カルボニ ル、(2,5-ジアザビシクロ[2.2.2]オクトー 5-エン-2-イル) カルボニル、(3-アザビシクロ [3. 2. 1] オクトー3ーイル) カルボニル、(3-アザビシクロ[3.2.2] ノン-3-イル) カルボニ ル、(6-アザビシクロ[3.2.1]オクトー6ーイ ル) カルボニル、(6-アザビシクロ[3.2.2] ノ ンー6ーイル) カルボニル、(3,6ージアザビシクロ [3. 2. 1] オクトー3ーイル) カルボニル、(3, 6-ジアザビシクロ[3.2.2] ノン-3-イル) カ

ルボニル、(3,6-ジアザビシクロ[3,2,1]オ クトー6ーイル) カルボニル、(3,6ージアザビシク ロ[3.2.2] ノン-6-イル) カルボニル、(3-アザビシクロ[3,2,1]オクトー6ーエンー3ーイ ル) カルボニル、(3-アザビシクロ[3.2.2]ノ ンー6ーエンー3ーイル) カルボニル、(6ーアザビシ クロ[3.2.1] オクトー2ーエンー6ーイル) カル ボニル、(6-アザビシクロ[3.2.2] ノン-2-エンー6ーイル) カルボニル、(3,6ージアザビシク ロ「3.2.1]オクトー6ーエンー3ーイル)カルボ ニル、(3,6-ジアザビシクロ[3.2.2] ノンー 6-エン-3-イル) カルボニル、(3,6-ジアザビ シクロ [3.2.1] オクト-2-エン-6-イル) カ ルボニル、(3,6-ジアザビシクロ[3.2.2]ノ ン-2-エン-6-イル) カルボニル等が挙げられる。 【0017】好適な「低級アルキレン基」としては、例 えば炭素数1~6個を有する直鎖または分枝鎖のものが 挙げられ、その様な例としては例えばメチレン、エチレ ン、トリメチレン、テトラメチレン、ペンタメチレン、

【0018】目的化合物(1)の好ましい例は以下の通りである。R¹が、少なくとも1個以上のハロゲンを有していてもよいアリール基であり、R²が、少なくとも1個以上の低級アルキル基を有していてもよいアリール基であり、R³が、低級アルキルチオ(低級)アルキル基、低級アルコキシ(低級)アルキル基、アリールスルフィニル(低級)アルキル基、式:

ヘキサメチレン等が挙げられる。

【0019】 【化7】

【0020】(式中、 R^4 はアリール基、 R^5 はカルボキシ基、エステル化されたカルボキシ基またはピロリジニルカルボニル基をそれぞれ意味する)で示される基、または式:

【0021】 【化8】

【0022】 (式中、R⁶ は低級アルキル基またはアリール基、R⁷ は水素、カルボキシ基、エステル化されたカルボキシ基または(3ーアザビシクロ [3.2.2] ノンー3ーイル)カルボニル基、Aは低級アルキレン基をそれぞれ意味する)で示される基である。この発明の目的化合物(I)の製造法を以下に詳述する。

<u>製造法1</u>:

[0023]

【化9】

またはそのアミノ基における 反応性誘導体もしくはそれらの 塩類

【0024】(式中、 R^1 、 R^2 及び R^3 は前に走義 U^{**} の複数、ジベンジルリン酸、ハロゲン化リン酸等)、ジアルた通りである)。化合物(I)またはその塩類は、化合 キル亜リン酸、亜硫酸、チオ硫酸、アルカンスルホン酸 物(II)またはそのアミノ基における反応性誘導体もし (例えばメタンスルホン酸、エタンスルホン酸等)、硫 くはそれらの塩類を、化合物(III)またはその反応性 酸、炭酸アルキル、脂肪族カルボン酸(例えばピバル 誘導体もしくはそれらの塩類と反応させることによって 酸、ペンタン酸、イソペンタン酸、2-xチル酪酸、ト 製造することができる。

【0025】化合物(II)のアミノ基における好適な反応性誘導体としては、化合物(II)をアルデヒド、ケトン等のカルボニル化合物と反応させることによって得られるシッフ塩基型イミノ化合物またはそのエナミン型互変異性体;化合物(II)をN、Nービス(トリメチルシリル)アセトアミド、Nートリメチルシリルアセトアミド等のシリル化合物と反応させることによって得られるシリル誘導体;化合物(II)を三塩化リンやホスゲン等と反応させることによって得られる誘導体等が含まれる。

【0026】化合物(III)の好適な反応性誘導体としては、酸ハライド、酸無水物、活性アミド、活性エステル、イソシアネート等が挙げられる。その好適な例としては酸クロリド、酸アジド;置換されたリン酸(例えばジアルキルリン酸、フェニルリン酸、ジフェニルリン

キル亜リン酸、亜硫酸、チオ硫酸、アルカンスルホン酸 (例えばメタンスルホン酸、エタンスルホン酸等)、硫 酸、炭酸アルキル、脂肪族カルボン酸(例えばピバル 酸、ペンタン酸、イソペンタン酸、2-エチル酪酸、ト リクロロ酢酸等)または芳香族カルボン酸(例えば安息 香酸等)の様な酸との混合酸無水物:対称酸無水物:イ ミダゾール、4置換イミダゾール、ジメチルピラゾー ル、トリアゾールまたはテトラゾールとの活性アミド; または活性エステル(例えばシアノメチルエステル、メ トキシメチルエステル、ジメチルイミノメチル [(CH $_{3})_{2}$ N⁺=CH-] エステル、ビニルエステル、プロパ ルギルエステル、フェニルエステル、pーニトロフェニ ルエステル、2, 4-ジニトロフェニルエステル、トリ クロロフェニルエステル、ペンタクロロフェニルエステ ル、メシルフェニルエステル、フェニルアゾフェニルエ ステル、フェニルチオエステル、pーニトロフェニルチ オエステル、ロークレシルチオエステル、カルボキシメ チルチオエステル、ピラニルエステル、ピリジルエステ ル、ピペリジルエステル、8-キノリルチオエステル 等)、またはN-ヒドロキシ化合物(例えばN、N-ジ メチルヒドロキシルアミン、1-ヒドロキシ-2-(1H) ーピリドン、N-ヒドロキシこはく酸イミド、<math>N-ヒドロキシベンゾトリアゾール、N-ヒドロキシフタルイミド、<math>1-ヒドロキシ-6-クロロー1H-ベンゾトリアゾール等)とのエステル、式: $R^2-N=C=O$ (式中、 R^2 は上述した通りである)で示されるイソシアネート等が含まれる。

【0027】これらの反応性誘導体は化合物(III)の 種類によって適宜選択される。化合物(II)及び(III))の好適な塩類としては、化合物(I)の塩類として 例示した様なものを挙げることができる。

【0028】この反応は、水、アセトン、ジオキサン、アセトニトリル、クロロホルム、塩化メチレン、塩化エチレン、テトラヒドロフラン、酢酸エチル、N, Nージメチルホルムアミド、ピリジン、あるいは反応に悪影響を及ぼさない他の有機溶媒等の常用の溶媒中で、通常行なわれる。これら常用の溶媒は水と混合して使用してもかまわない。

【0029】化合物(III)を遊離酸もしくはその塩類 の形態で上記反応に使用する際には、N, N'ージシク ロヘキシルカルボジイミド、N-シクロヘキシル-N' ーモルホリノエチルカルボジイミド、Nーシクロヘキシ ルーN'-(4-ジエチルアミノシクロヘキシル) カル ボジイミド、N, N' -ジエチルカルボジイミド、N, N'ージイソプロピルカルボジイミド、N-エチルー N'-(3-ジメチルアミノプロピル) カルボジイミ ド、N, N-カルボニルビス- (2-メチルイミダゾー ル)、N, N'ーカルボニルジイミダゾール、ペンタメ チレンケテンーNーシクロヘキシルイミン、ジフェニル ケテン-N-シクロヘキシルイミン、エトキシアセチレ ン、1-アルコキシ-1-クロロエチレン、トリアルキ ル亜リン酸、ポリリン酸エチル、ポリリン酸イソプロピ ル、オキシ塩化リン(塩化ホスホリル)、三塩化リン、 塩化チオニル、塩化オキサリル、トリフェニルホスフィ ン、2-エチルー7-ヒドロキシベンズイソオキサゾリ ウム塩、2-エチル-5- (m-スルホフェニル) イソ オキサゾリウム水酸化物の分子内塩、1-(p-クロロ ベンゼンスルホニルオキシ) -6-クロロ-1H-ベン プトリアプール、N, N-ジメチルホルムアミドを塩化 チオニル、ホスゲン、オキシ塩化リン等と反応させるこ とによって得られる通称ビルスマイヤー試薬等の常用の 縮合剤の存在下に反応を実施するのが好ましい。

【0030】この反応は、アルカリ金属炭酸水素塩、トリ (低級) アルキルアミン、ピリジン、N-(低級) アルキルホリン、N, N-ジ (低級) アルキルベンジルアミン等の様な無機塩基もしくは有機塩基の存在下に行なうこともできる。反応温度監禁に限定されず、通常、冷却下ないし加熱下に行なわれる。

【0031】化合物(III)またはその反応性誘導体、 もしくはそれらの塩類は、後述する製造例と実質的に同 じ方法で製造することができる。

製造法2A:

[0032]

【化10】

(N)

(Ia)

またはその塩類

【0033】(式中、 R^1 、 R^2 及び R^4 は前に定義した通りであり、 R^5 は保護されたカルボキシ基を意味する)。化合物(Ia)またはその塩類は、化合物(IV)またはその塩類をカルボキシ保護基の脱離反応に付すことによって製造することができる。化合物(IV)及び(Ia)の好適な塩類としては化合物(I)の塩類と同じものが挙げられる。

【0034】この反応は通常、加水分解、還元等の様な 常法によって行われる。

(i) 加水分解:加水分解は、酸または塩基の存在下に 行うのが好ましい。好適な塩基としては、上述した塩基 (例えば水酸化ナトリウム等)が挙げられる。

【0035】好適な酸としては、有機酸(例えばギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、ベンゼンスルホン酸、pートルエンスルホン酸等)及び無機酸(例えば塩酸、臭化水素酸、硫酸、リン酸等)等が挙げられる。

【0036】トリハロ酢酸(例えばトリクロロ酢酸、トリフルオロ酢酸等)等の様なルイス酸を用いた酸性加水

分解は、通常例えば陽イオン捕捉剤 (例えばフェノール、アニソール等) の添加によって促進される。

【0037】この反応は通常、水、塩化メチレン、アルコール(例えばメタノール、エタノール等)、テトラヒドロフラン、ジオキサン、アセトン等の様な反応に悪影響を及ぼさない常用の溶媒中、またはそれらの混合物中で行なわれる。液状の塩基または酸も溶媒として使用することができる。反応温度は特に限定されず、通常冷却下ないし加熱下に行なわれる。

【0038】(ii)還元:還元方法は、化学還元及び接触還元等の常法に従って行なわれる。上記化学還元に用いられる好適な還元剤は、金属(例えば亜鉛、亜鉛アマルガム等)またはクロム化合物塩(例えば塩化第一クロム、酢酸第一クロム等)と、有機酸(例えばギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、pートルエンスルホン酸)または無機酸(例えば塩酸、臭化水素酸等)とを組合せたものである。

【0039】また、上記接触還元に用いられる好適な触媒としては、パラジウム系触媒(例えばパラジウム海綿、パラジウム黒、酸化パラジウム、パラジウムー炭、コロイドパラジウム、パラジウムー硫酸パリウム、パラジウムー炭酸パリウム、水酸化パラジウムー炭等)、ニッケル系触媒(例えば還元ニッケル、酸化ニッケル、ラネーニッケル等)、白金系触媒(白金板、白金海綿、白金黒、コロイド白金、酸化白金、白金線等)等の様な常用の触媒が挙げられる。この還元は、中性付近で反応を行うのが好ましい。

【0040】この反応は、通常水、アルコール(例えばメタノール、エタノール、プロパノール等)、ジオキサン、テトラヒドロフラン、酢酸、緩衝溶液(例えばリン酸塩緩衝液、酢酸塩緩衝液等)等の様な反応に悪影響を及ぼさない常用の溶媒中、またはそれらの混合物中で行なわれる。反応温度は特に限定されないが、通常冷却下ないし加熱下に行なわれる。脱離反応は、脱離すべきカルボキシ保護基の種類によって選択することができる。製造法2B:

[0041]

【化11】

(V) またはその塩類

[0043] 【化12】

$$H = C - COOH$$

$$N = N$$

$$NH - C - NH - R^{2} + HN$$

$$(VI)$$

(Ia)

またはそのイミノ基に おける反応性誘導体 もしくはそれらの塩類

またはそのカルボキシ基における 皮**応性誘**導体もしくはそれらの 塩類

(Le)

【0044】(式中、R¹、R²及びR⁴は前に定義した通りである)。化合物(Ie)またはその塩類は、化合物(Ia)またはその丸ルボキシ基における反応性誘導体もしくはそれらの塩類を、化合物(VI)またはそのイミノ基における反応性誘導体もしくはそれらの塩類と反応させることによって製造することができる。化合物(Ia)のカルボキシ基における好適な反応性誘導体としては、上記製造法1で例示したのと同じものが挙げられる

【0045】上記化合物 (VI) のイミノ基における好適な反応性誘導体としては、上記製造法1で例示したアミノ基における反応性誘導体の中から適当に選択することができる。化合物 (Ia) 、 (VI) 及び (Ic) の好適な塩類としては、化合物 (I) で例示したものを参照すればよい。この反応は、通常塩基の存在下あるいは常用の縮合剤の存在下に行われる。

【0046】好適な塩基としては、アルカリ金属水素化物(例えば水素化ナトリウム、水素化カリウム等)、アルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム等)、アルカリ土類金属水酸化物(例えば水酸化マグネシウム、水酸化カルシウム等)、アルカリ金属

炭酸塩 (例えば炭酸ナトリウム、炭酸カリウム等)、アルカリ土類金属炭酸塩 (例えば炭酸マグネシウム、炭酸カルシウム等)、アルカリ金属炭酸水素塩 (例えば炭酸水素塩 (例えば炭酸水素力リウム等)、アルカリ金属酢酸塩 (例えば酢酸ナトリウム、酢酸カリウム等)、アルカリ土類金属リン酸塩 (例えばリン酸マグネシウム、リン酸カルシウム等)、アルカリ金属水素リン酸塩 (例えばリン酸水素ニカリウム、リン酸水素ニカリウム、リン酸水素ニカリウム、リン酸水素ニカリウム、リン酸水素ニカリウム、リメチルアミン、トリエチルアミン等)、ピコリン、Nーメチルアミン、トリエチルアミン等)、ピコリン、Nーメチルピロリジン、Nーメチルモルよしては、上記製造法1で例示したものと同じものが挙げられる。

【0047】この反応は、通常アルコール(例えばメタノール、エタノール等)、ベンゼン、N, N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、あるいは反応に悪影響を及ぼさない他の溶媒中に行われる。この反応温度は特に限定されないが、通常は冷却ないし加熱下に行われる。

製造法3B:

[0048]

【化13】

(Ib)

またはそのイミノ基に おける反応性誘導体 もしくはそれらの塩類

またはそのカルボキシ基における 反応性誘導体もしくはそれらの

塩類

$$\begin{array}{c}
CO-N \\
CH \\
A-C-R^6 \\
N \\
NH-C-NH-R^2
\end{array}$$
(Id)

(式中、R¹、R²、R⁶ 及びAは前に定義した通りで あり、

[0049]

【化14】

またはその塩類 3Aと実質的に同じ反応である。化合物 (Ib) 、 (VII)及び(Id)の好適な塩類としては化合物(I)で例 示したものを参照すればよい。次に、出発物質の製造法 を以下に説明する。

製造法A

[0051]

【化15】

る複素架橋環式基を意味する)。この反応は上記製造法

またはその塩類

【0052】 (式中、R¹ 、R³ 及びXは前に定義¹ た は その 塩類 通りであり、R9 は保護されたアミノ基を意味する)。 化合物(X) またはその塩類は、化合物(VIII) または その塩類を化合物(IX)またはその塩類と反応させるこ とによって得られる。詳細には、後述する製造例1及び 製造例6-2を参照すればよい。

製造法B

[0053]

【化16】

$$\mathbb{R}^{3} \circ \mathbb{R}^{5}$$

またはその塩類

(II)

またはその塩類 【0054】(式中、R¹ 、R³ 及びR⁹ は前に定義し た通りである)。化合物(II)またはその塩類は、化合 物(X) またはその塩類を、アミノ保護基の脱離反応に 付すことにより得られる。詳細には、後述する製造例2 -2、6-3及び7-4を参照すればよい。

製造法C

【0055】 【化17】

またはその塩類

(X.) またはその塩類

またはその塩類 【0056】(式中、 R^1 、 R^3 及び R^9 は前に定義した通りである)。化合物(X)またはその塩類は、化合物(II)またはその塩類をアミノ保護反応に付すことにより得られる。詳細には、後述する製造例6-1を参照すればよい。

【0057】目的化合物(I)及び医薬として許容されるその塩類は、選択的CCK-B拮抗剤である。更に、目的化合物(I)及び医薬として許容されるその塩類はガストリン拮抗作用を有し、潰瘍、胃液分泌過多、ゾリンジャー・エリソン(Zollinger -Ellison)症候群等の治療薬及び/または予防薬としての有用性も期待される。

【0058】目的化合物(I)の有用性を明らかにするため、その代表的化合物の薬理活性を以下に示す。

[1] 試験化合物: N- [(3RS) -2, 3-ジヒドロ-1-(2-メチルチオエチル) -5-(2-フルオロフェニル) -2-オキソー1H-1, 4-ベンゾジアゼピン-3-イル] -N'-(3-メチルフェニル) 尿素 [以下、試験化合物という]

[II] 試験: [¹²⁵ I] CCK-8のモルモット大脳皮質膜への結合

【0059】試験方法

モルモットを断頭して殺した後、大脳皮質を取り出し、 少量の50mMトリス塩酸緩衝液(pH7.4)に入れ て細かく切り刻んだ。これを20容量の緩衝液に入れ、 ガラスーテフロンホモゲナイザーでホモジナイズした。 得られた細片を30000 ×g(16000rpm)で10分間遠心分離した。この様にして得られたペレットを、ガラスーテフロンホモゲナイザーを用いて上記緩衝液中に再度懸濁させ、30000 ×gで10分間遠心分離した。この洗浄工程を更に2回繰り返した。この様にして得られた最終ペレット(膜)を下記に示すインキュベーション液中に、最終タンパク質濃度が4mg/mlとなる様に懸濁し、膜標品とした。これら一連の操作は、全て0~4℃で行った。

インキュベーション液の組成:

10mM HEPES (pH6. 5)

5 mM MgCla

1mM EGTA

130mM NaCl

0. 25mg/m1 バシトラシン

得られた膜標品は凍結保存(−80℃)し、使用時に融 解して用いた。

【0060】 (ii) レセプター結合検定

膜標品(タンパク質400 μ g を含有)は、上記試験化合物(1×10^{-6} M)を含有する、あるいは含有しない、 $50 \, \mathrm{p} \, \mathrm{M}^{125} \, \mathrm{I} - \mathrm{CC} \, \mathrm{K} - 8$ を含むインキュベーション液($500 \, \mu$ I)の含有プラスチック試験管内で、 37° で 60 分間振とうしながらインキュベートした。非特異的結合を測定するために、 $1 \, \mu \, \mathrm{M}$ の $\mathrm{CC} \, \mathrm{K} - 8$ を加えた。夫々の測定は $2 \, \mathrm{D}$ ずつ行った。反応混合物をワットマンG F / B / ガラスフィルターで濾過することにより反応を止めた。フィルターを $0.1 \, \mathrm{M} \, \mathrm{B} \, \mathrm{SA}$ (牛血清アルブミン)含有 $50 \, \mathrm{mM}$ トリス塩酸緩衝液($\mathrm{pH} \, 7.4$)で洗浄した後、フィルターの放射能をカウントした。全結合量から非特異的結合量を差し引くことにより、特異的結合量を算出した。試験化合物の効果は、特異的な $125 \, \mathrm{I} - \mathrm{CC} \, \mathrm{K} - 8$ 結合の阻害率(%)で評価した。

【0061】<u>試験結果</u>

阻害率 (%):98.5

この目的化合物 (I) 及び医薬として許容されるその塩類は、カプセル、マイクロカブセル、錠剤、顆粒、粉末、トローチ、シロップ、エアロゾル、吸入剤、溶液、注射液、懸濁液、エマルジョン等の様な常用の医薬組成物の形態で、ヒトを含む哺乳動物に適用することができる。

【0062】この発明の医薬組成物は、種々の有機質担体もしくは無機質担体等の医薬として許容される担体を含むものであってもよい。その様な担体としては賦形剤(例えばショ糖、デンプン、マンニット、ソルビット、ラクトース、グルコース、セルロース、タルク、リン酸カルシウム、炭酸カルシウム等)、結合剤(セルロース、メブルセルロース、ヒドロキシプロピルセルロース、ポリプロピルピロリドン、ゼラチン、アラビアゴム、ポリエチレングリコール、ショ糖、デンプン等)、

崩壊剤(例えばデンプン、カルボキシメチルセルロース、カルボキシメチルセルロースのカルシウム塩、ヒドロキシプロピルデンプン、ナトリウムグリコールデンプン、炭酸水素ナトリウム、リン酸カルシウム、クエン酸カルシウム等)、滑沢剤(例えばステアリン酸マグネシウム、タルク、ラウリル硫酸ナトリウム等)、芳香剤(例えばクエン酸、メントール、グリシン、オレンジ粉末等)、防腐剤(例えば安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等)、安定剤(例えばイエン酸、クエン酸ナトリウム、酢酸等)、懸濁剤(例えばメチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等)、分散剤、水性希釈剤(例えば水等)、ベースワックス(例えばカカオ脂、ポリエチレングリコール、白色ワセリン等)が挙げられる。

【0063】この発明の薬剤の投与量は、剤型の種類、治療の種類、投与方法、患者の年齢や体重、患者の症状等を考慮して適宜決定されるものであるが、有効成分を、通常1回当たりの投与量で0.01mg/kgから50mg/kgの範囲内で1日当たり1~4回投与される。

【0064】以下の製造例及び実施例は、この発明をより詳細に示すことを目的として提供されるものである。 製造例1

水素化ナトリウム (鉱油の60%懸濁液, 0.22g) のN, N-ジメチルホルムアミド (20ml) 懸濁液を 氷冷中で冷却しながら、これに (3 R S) -2.3-ジ ヒドロー5-(2-フルオロフェニル)-3-フタルイ ミドー1H-1, 4ーベンゾジアゼピン-2ーオン (2.00g)を窒素雰囲気中で少しずつ加えた。この 混合液を同一条件で0.5時間攪拌した後、室温で更に 2時間攪拌した。得られた混合液を氷浴中で冷却し、こ れにヨウ化ナトリウム(O.82g)、及びベンゼンス ルフェン酸クロロメチル (0.87g) のN, N-ジメ チルホルムアミド (5 m l) 溶液を順次、少しずつ加え た。この混合液を同一温度で1時間攪拌した後、室温で 更に一晩攪拌した。この反応混合液に、酢酸(0.5 g) を氷浴で冷却しながら加え、減圧濃縮して得られた 残渣をシリカゲル充填のカラムクロマトグラフィー(溶 出液:クロロホルム) で精製すると、無色の固形結晶と して (3RS) - 2, 3 - ジヒドロ - 5 - (2 - フルオロフェニル) -1-フェニルスルフィニルメチル-3-フタルイミド-1H-1, 4-ベンゾジアゼピン-2-オン (2.03g) が得られた。

NMR (CDCl₃, δ) : 5.23 (1H, ω), 5.51 (1H, m), 5.96 (1H, s), 7.00 \sim 7.60 (13H, m), 7.76 (2H, m), 7.9 2(2H, m)

【0065】製造例2-1

製造例1と実質的に同じ方法で下記化合物(無色の固形 結晶)を得た。 (3RS) - 2, 3-ジヒドロ-5-(2-7ルオロフェニル) -1-(2-メチル-2-プロペニル) -3-フタルイミド-1 H-1, 4-ベングジアゼピン-2-オン

NMR (DMS0-d₆, δ) : 1.50 (3H, s), 4.47 (1H, d, J=15Hz), 4.72 (1H, s), 4.77 (1H, d, J=15Hz), 4.80 (1H, s), 5.78 (1H, s), 7.2 \sim 8.1 (12H, m)

【0066】製造例2-2

(3RS) - 2, $3 - \cancel{9} + \cancel{1} + \cancel{1} = -5 - (2 - 7) + \cancel{1} = 7$ ェニル) -1- (2-メチル-2-プロペニル) -3-フタルイミド-1H-1, 4-ベンゾジアゼピン-2-オン (860mg) のテトラヒドロフラン (30ml) 溶液を室温で攪拌しながら、これにヒドラジン1水和物 (89mg) のテトラヒドロフラン溶液 (3ml) を滴 下した。この混合液を室温で3時間攪拌した後、溶媒還 流温度で更に1時間攪拌し、得られた沈殿物を濾過して 濾液を濃縮した。これに酢酸エチル (200ml) を加 えて残渣を溶解した後、1N塩酸(100ml)で抽出 した。得られた水層を炭酸ナトリウムで中和した後、酢 酸エチルで抽出した。得られた有機層を無水硫酸ナトリ ウムで乾燥させ、溶媒を留去すると、無色の化合物とし て (3RS) - 3 - アミノ - 2, 3 - ジヒドロ - 5 -(2-フルオロフェニル) -1- (2-メチル-2-プ ロペニル) -1H-1, 4-ベンゾジアゼピン-2-オ ン (380mg) が得られた。

NMR (DMSO- d_6 , δ) : 1.48 (3H, s), 4.41 (1H, s), 4.43 (1H, d, J=15Hz), 4.67 (1H, s), 4.73 (1H, s), 4.74 (1H, d, J=15Hz), 7.0~7.8 (8H, m)

【0067】製造例3

製造例1及び製造例2-2と実質的に同じ方法で下記の 粗製化合物を得た。この粗製物を予備的薄層クロマトグラフィーにかけると1個のスポットが得られたことから、それ以上精製することなく次の反応に用いた。 (3RS)-3-アミノ-2,3-ジヒドロ-5-(2-フルオロフェニル)-1-(2-メチルチオエチル)-1H-1,4-ベンゾジアゼピン-2-オン

【0068】製造例4

製造例1及び製造例2-2と実質的に同じ方法で下記の 粗製化合物を得た。この粗製物を予備的薄層クロマトグ ラフィーにかけると1個のスポットが得られたことか ら、それ以上精製することなく次の反応に用いた。 (3RS)-3-アミノ-2,3-ジヒドロ-1-(2 -エトキシエチル)-5-(2-フルオロフェニル)-1H-1,4-ベンゾジアゼピン-2-オン

【0069】製造例5

製造例1及び製造例2-2と実質的に同じ方法で下記化 合物を得た。

(3RS) - 3 - 7 = 2 - 2 - 3 - 3 + 5 + 6 - 6 - 2 - 7 -

NMR (CDC1₃, δ): 2.20 ~2.80 (2H, b), 4.58 (1 H, s), 4.80(1H, d, J=16Hz), 5.12 (1H, s), 5.39 (1 H, d, J=16Hz), 5.47 (1H, s), 6.96 (13H, m)

【0070】製造例6-1

 $(3RS) - 3 - 7 \le 1 - 2, 3 - 3 \le 1 \le 1 - 5 - (2)$ -フルオロフェニル) -1H-1, 4-ベンゾジアゼピ ン-2-オン (7.66g)、トリエチルアミン (9. 31g) と触媒量のヒドロキシルアミン塩酸塩の塩化メ チレン (200ml) 懸濁液を室温で攪拌しながら、こ れにジー第三級ブチル ジカーボネート (9.3 lg) の塩化メチレン (5 m l) 溶液を滴下した。この混合液 を同一条件で4.5時間攪拌した後、溶媒を留去して得 られた残渣を酢酸エチルに溶解し、水で数回洗浄した。 これを硫酸マグネシウムで乾燥させた後、溶媒を減圧留 去して結晶を得た。この結晶にジエチルエーテルを加え て処理した後、濾過して集め、エーテルで洗浄して減圧 乾固すると、白色結晶状粉末として(3RS)-3-第 三級ブトキシカルボニルアミノー2, 3-ジヒドロー5 - (2-フルオロフェニル) - 1 H - 1, 4 - ベンゾジ アゼピン-2-オン(10.13g)が得られた。

mp: 205~206 ℃

I R ($\not \exists \not \exists \neg \nu$) : 3330, 3180, 3060, 1700 (sh), 1670, 1605, 1510, 1481, 1450, 1397, 1365, 1330, 127 0, 1250, 1220, 1170, 1060, 1010, 958, 891, 819, 77 2, 756, 677 cm⁻¹

NMR (CDCl₃, δ) : 1.49 (9H, s), 5.33 (1H, d, J= 8.5Hz), 6.40(1H, d, J=8.5Hz), 6.95 \sim 7.75 (8H, m), 8.89 (1H, s)

Mass (m/z): 370 (M^++1) , 314, 253

【0071】製造例6-2

(3RS) - 3-第三級プトキシカルボニルアミノー 2, 3-ジヒドロ-5-(2-フルオロフェニル)-1H-1, $4-\kappa \sim 7$ ~ 7 ~ 7 ~ 7 ~ 7 ~ 1 ~ 1 mg) を乾燥ジメチルホルムアミド (10ml) に溶解 した後、氷冷下で攪拌しながら、水素化ナトリウム (9) 2 mg) を少しずつ数回に分けて添加した。添加終了 後、室温で30分間攪拌し、水素ガスの発泡が終了して いることを確認した後、再び氷冷した。この溶液に、α ープロモフェニル酢酸メチル(純度:97%,566. 8 mg) のジメチルホルムアミド (1 m l) 溶液を滴下 した。滴下終了後、氷冷下で30分間攪拌した。更に室 温で3時間攪拌し、析出した結晶を濾取し、水洗後乾燥 した。得られた結晶状粉末をクロロホルムに溶解した 後、シリカゲル充填のカラムクロマトグラフィー(溶出 液:クロロホルム)で精製した。目的物を含む画分を合 わせて溶媒を減圧留去すると、泡状物質として、(3R S) -1- (α-メトキシカルボニルベンジル) -3-第三級プトキシカルボニルアミノー2、3-ジヒドロー 5- (2-フルオロフェニル) -1H-1, 4-ベンゾ ジアゼピン-2-オン(865.4mg)が得られた。

この化合物はそれ以上精製することなく、次の反応に用いた。

IR $(\mathcal{T}_{\mathcal{T}}\mathcal{N}_{\Delta})$: 3400, 1745, 1710, 1682, 1605, 1482, 1448, 1370, 1262, 1213, 1160, 754 cm⁻¹ NMR (CDCl₃, δ): 4.46, 4.48 (9H, each s), 3.68, 3.86 (3H, each s), 5.41, 5.45 (1H, each d, J=each 8.4Hz). 5.90.6.17 (1H, each s), 6.40, 6.51 (1H, each d, J=each 8.4Hz), 6.95 \sim 7.75 (13H, m) Mass (m/z): 518 (M^++1)

【0072】製造例6-3

 $(3RS) - 1 - (\alpha - \lambda + + シカルボニルベンジル)$ -3-第三級プトキシカルボニルアミノ-2,3-ジヒ ドロ-5-(2-フルオロフェニル)-1H-1,4-ベンゾジアゼピンー2ーオン(0.85g)のメタノー ル(16m1)溶液を室温で攪拌しながら、これに4N 塩化水素の酢酸エチル (6 m l) 溶液を加え、同一条件 で4時間攪拌した。溶媒を減圧留去して得られた残渣 に、水と酢酸エチルを激しく攪拌しながら加えた。この 混液に炭酸水素ナトリウム飽和水溶液を加えてpH8に 調整した。分離した有機層を水で洗浄した後、硫酸マグ ネシウムで乾燥させ、溶媒を減圧留去すると非晶質の $(3RS) - 1 - (\alpha - メトキシカルボニルベンジル)$ -3-アミノ-2, 3-ジヒドロ-5-(2-フルオロ フェニル) -1H-1, 4-ベンゾジアゼピン-2-オ ンのジアステレオマー混合物 (592.7mg) が得ら れた。この化合物はそれ以上精製することなく、次の反 応に用いた。

NMR (CDCl₃, δ) : 2.32 (2H, broad), 3.74, 3.87 (3 H, each s), 4.64 (1H, broad), 5.91, 6.25 (1H, each s), 7.0 \sim 7.7(13H, m)

 $Mass (m/z) : 418 (M^++1)$

【0073】製造例7-1

ジエトキシホスホリル酢酸エチル(12.45g)のテトラヒドロフラン(120ml)溶液を氷浴で氷冷下、攪拌しながら、これに水素化ナトリウム(鉱油の60% 懸濁液、2.23g)を少しずつ加えた。添加終了後、この混液を室温で0.5時間攪拌した後、アセトフェノン(6.07g)を滴下しながら加え、更に攪拌しながら2.5時間還流した。この反応混液からテトラヒドロフランを減圧留去して得られた残渣に、水と酢酸エチルを激しく攪拌しながら加えた。分離した有機層と、水層からの抽出物を合わせて、水で2回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去すると黄色の油状物が得られた。これを減圧下で蒸留して精製すると、無色の油状物として3-フェニル-2-プテン酸エチルのE-Z混合物(8.21g)が得られた。

b p : 115~120 ℃/7 ~8.a.Hg

E: Z=11:1 (NMR分析による)

IR (Neat): 1710, 1624, 1440, 1340, 1270, 1160, 1040, 870, 764, 690 cm⁻¹

NMR (CDCl₃, δ): 1.04, 1.32 [3H(1:11), each t, J=8.6Hz], 2.17, 2.58 [3H(1:11), each d, J=1.5Hz, 1.3Hz], 3.99, 4.21 [2H(1:11), each q, J=8.6Hz], 5.9 1, 6.13[1H(1:11), each q, J=1.5Hz, 1.3Hz], 7.1-7.5 (5H, m)

 $Mass (m/z) : 191 (M^++1)$

【0074】製造例7-2

3-フェニルー2-ブテン酸エチルのE-Z混合物 (1.90g) とN-ブロモこはく酸イミド (2.14g) の四塩化炭素 (50ml) 溶液に、触媒量の過酸化 ベンゾイル (60mg) を加えた。この混液を攪拌しながら10時間湿流した。

【0075】この様にして得られた沈殿物を濾去した後、得られた濾液と洗浄液を合わせて溶媒を留去すると油状物が得られた。この油状物をシリカゲル充填のカラムクロマトグラフィー(溶出液:nーヘキサン)で精製した。所望の化合物を含む画分を合わせ、溶媒を減圧留去すると、無色の油状物として4ーブロモー3ーフェニルー2ープテン酸エチルのEーZ混合物(NMR分析によれば約10:1の混合物,1.67g)が得られた。IR(Neat):1705,1620,1574,1490,1445,1365,1340,1281,1215,1170,1140(sh),1046,1017,879,766,690 cm⁻¹

NMR (CDC1₃, δ): 1.32, 1.34 [3H(1:10), each t, J=7.1Hz], 4.21, 4.26 [2H(1:10), each q, J=7.1Hz], 4.98 (2H, s), 6.14, 6.21 [1H(1:10), t, s, J=1.3Hz], 7.25 \sim 7.6 (5H, m)

 $Mass (m/z) : 269 (M^+), 271 (M^++2)$

【0076】製造例7-3

製造例6-2と実質的に同じ方法で下記化合物(非晶質)を得た。

(3RS) - 1 - (E-2-フェニル-3-エトキシカルボニル-2-プロペニル) - 3 - 第三級プトキシカルボニルアミノ-2, 3-ジヒドロ-5-(2-フルオロフェニル) - 1H-1, 4-ベンゾジアゼピン-2-オン

I R $(\mathcal{I}\mathcal{I}\mathcal{N}\Delta, \text{ cm}^{-1})$: 3410, 1701, 1672, 1624, 1 605, 1490, 1448, 1368, 1214, 1170, 1020, 750 NMR $(\text{CDC1}_3, \delta)$: 1.35 (3H, t, J=7.1Hz), 1.45 (9H, s), 4.28(2H, q, J=7.1Hz), 5.19 (1H, d, J=8.5Hz), 6.07 (2H, ABq, J=16.5Hz, 59.8Hz), 6.16 (1H, s), 6.45 (1H, d, J=8.5Hz), 6.84 \sim 7.7 (13H, m)

Mass (m/z): 558 (M⁺+1) 【0077】製造例7-4

(3RS) -1-(E-2-フェニルー3-エトキシカルボニルー2-プロペニル) -3-第三級プトキシカルボニルアミノー2,3-ジヒドロー5-(2-フルオロフェニル) -1H-1,4-ベンゾジアゼピン-2-オン(1.82g)のトリフルオロ酢酸(20ml)溶液を氷浴中で冷却しながら0.5時間攪拌した後、室温で

更に1時間攪拌した。トリフルオロ酢酸を減圧留去して得られた残渣を酢酸エチルに溶解した後、炭酸水素ナトリウム飽和水溶液で洗浄し、更に水で洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去して固形物を得た。これをジイソプロピルエーテルで処理した後、濾過して集めると、白色の結晶状粉末として、(3RS)-1-(E-2-フェニルー3-エトキシカルボニルー2-プロペニル)-3-アミノー2、3-ジヒドロー5-(2-フルオロフェニル)-1H-1、4-ベンソジアゼピン-2-オン(1.36g)が得られた。この化合物はそれ以上精製することなく、次の反応に用いた

mp: 151~153 ℃

IR (ヌジョール): 3380, 3300, 1703, 1677, 1624, 1604, 1575, 1460 (sh), 1448, 1370, 1180, 1038, 887, 770, 760, 700 cm⁻¹

NMR (CDC1₃, δ): 1.36 (3H, t, J=7.1Hz), 2.45 (2H, s), 4.29 (2H, q, J=7.1Hz), 4.42 (1H, s), 6.11 (2H, ABq, J=16.7Hz, 49.9Hz), 6.17 (1H, s), 6.55 \sim 7.7 (13H, m)

 $M a s s (m/z) : 458 (M^++1)$

【0078】実施例1

製造例2-2と実質的に同じ方法で(3RS)-3-アミノ-2、3-ジヒドロ-5-(2-フルオロフェニル)-1-フェニルスルフィニルメチル-1H-1、4ーベングジアゼピン-2-オンを得、次いでこれを精製することなく実施例4と実質的に同じ方法で処理することにより下記化合物を得た。

N-[(3RS) -2, 3-ジヒドロ-5-(2-フルオロフェニル) -1-フェニルスルフィニルメチル-2 -オキソ-1H-1, 4-ベングジアゼピン-3-イル] -N'-(3-メチルフェニル) 尿素

mp: 194~195 ℃

I R (KBr) : 3344, 1681, 1648, 1560, 1485 cm⁻¹ NMR (DMSO-d₆, δ) : 2.23 (3H, s), 5.27 (1H, d, J=7.0Hz), 5.44 (1H, d, J=13Hz), 5.89 (1H, d, J=13Hz), 6.73 (1H, d, J=7.0Hz), 7.08 \sim 7.82 (17H, m), 8.90 (1H, s)

【0079】実施例2

実施例4と実質的に同じ方法で下記の粗製物を得た。これをシリカゲル充填のフラッシュクロマトグラフィー [溶出液(クロロホルム:酢酸エチル=10:1)]で 精製し、クロロホルムージイソプロピルエーテルから結 晶化させると、白色の固形物が得られた。

N-[(3RS)-2,3-ジヒドロ-5-(2-フルオロフェニル)-1-(2-メチル-2-プロペニル) -2-オキソ-1H-1,4-ベングジアゼピン-3-イル]-N'-(3-メチルフェニル) 尿素

mp: 196 ~197 ℃

IR (KBr): 3330, 1679, 1649, 1612, 1560, 1486,

1449 cm⁻¹

NMR (DMSO- d_6 , δ) : 2.24 (3H, s), 4.47 (1H, d, J=17Hz), 4.71 (1H, s), 4.78 (1H, d, J=17Hz), 4.78 (2H, s), 5.30 (1H, d, J=10Hz), 6.74 (1H, d, J=9Hz), 7.0~7.8(12H, m), 9.00 (1H, s)

【0080】実施例3

実施例4と実質的に同じ方法で下記化合物を得た。

N-[(3RS)-2,3-ジヒドロ-1-(2-メチルチオエチル)-5-(2-フルオロフェニル)-2-オキソ-1H-1,4-ベンゾジアゼピン-3-イル]-N'-(3-メチルフェニル)尿素

m p : 233 ~236 ℃

I R (KBr) : 3311, 1674, 1643, 1561, 1491 cm⁻¹ NMR (DMSO-d₆, δ) : 1.96(3H, s), 2.23(3H, s), 2.4 3 (1H, m), 2.50 (1H, m), 4.00 (1H, m), 4.45 (1H, m), 5.25 (1H, d, J=6.0Hz), 6.73 (1H, d, J=6.0Hz), 7.08 \sim 7.80 (12H, m), 8.94 (1H, s)

 $Mass (m/z) : 476 (M^{+})$

C₂₆H₂₅FN₄O₂S: (理論値) C. 65.53%, H. 5.29%, N. 1 1.76%

(実測値) C. 64.93%, H. 5.25%, N. 11.51%

【0081】実施例4

(3RS) -3-アミノー2, 3-ジヒドロー1-(2-エトキシエチル) -5-(2-フルオロフェニル) -1H-1, 4-ベンゾジアゼピンー2-オン(400mg) の乾燥塩化メチレン(20ml)溶液に、3-メチルフェニルイソシアネート(172mg)の乾燥塩化メチレン(5ml)溶液を窒素雰囲気下、室温で滴下しながら加えた。この混液を室温で一晩攪拌した後、得られた沈殿物を濾取して集め、粗製物を得た。これを塩化メチレンとジイソプロピルエーテルの混液から再結晶させて精製すると、無色の結晶状固形物が得られた。これを 減圧乾固すると、N-[(3RS)-2,3-ジヒドロー1-(2-エトキシエチル)-5-(2-フルオロフェニル)-2-オキソー1H-1,4-ベングジアゼピン-3-イル]-N'-(3-メチルフェニル)尿素(340mg)が得られた。

mp: 220~222 ℃ (分解)

I R (KBr) : 3310, 1674, 1644, 1614, 1489 cm⁻¹ NMR (DMSO-d_G, δ) : 0.90 (3H, t, J=7Hz), 2.24 (3 H, s), 3.27(2H, m), 3.40 (2H, t, J=5Hz), 3.98 (1H, m), 4.40 (1H, m), 5.26 (1H, d, J=10Hz), 6.74 (1H, d, J=10Hz), 7.08~7.80 (12H, m), 8.98 (1H, s)

【0082】実施例5

実施例4と実質的に同じ方法で下記化合物を得た。 N-[(3RS)-2,3-ジヒドロ-5-(2-フルオロフェニル)-1-(2-フェニル-2-プロペニル)-2-オキソー1H-1,4-ベンゾジアゼピン-3-イル]-N'-(3-メチルフェニル) 尿素mp:205~207℃ I R (KBr): 3314, 1678, 1650, 1614, 1561, 1492, 1450, 1211 cm⁻¹

NMR (DMSO-d₆, δ) : 2.14 (3H, s), 4.90 (1H, d, J=18Hz), 5.10 (1H, s), 5.30 (1H, d, J=8Hz), 5.42 (1 H, d, J=18Hz), 5.48 (1H, s), 6.74 (1H, d, J=8Hz), 6.92 \sim 7.85 (17H, m), 8.95 (1H, s)

Mass (m/z) : 520 (M+2), 412 (M+-106) ${\rm C_{32}H_{27}FN_4O_2} \ : \ (理論値) \ C. \ 74.11\% \ , \ H. \ 5.25\%, \ N. \ 1 \\ 0.80\%$

(実測値) C. 73.75%, H. 5.31%, N. 10.61%

【0083】実施例6

実施例4と実質的に同じ方法で、下記のジアステレオマー混合物(NMR分析によれば4:1~5:1, 白色の結晶状粉末)を得た。

 $N-[(3RS)-2,3-ジヒドロ-1-(\alpha-メトキシカルボニルベンジル)-5-(2-フルオロフェニル)-2-オキソー<math>1H-1,4-$ ベングジアゼピン-3-イル]-N'-(3-メチルフェニル) 尿素

mp: 208~212 ℃ (分解)

IR (ヌジョール, cm⁻¹) : 3310, 1746, 1678, 1645, 1610, 1560, 1488, 1450, 1374, 1210, 1165, 770, 724, 690

NMR (CDCl₃, δ): 1.43, 1.67 (3H, each s), 3.6 8, 3.82 (3H, each s), 5.70, 5.73 (1H, each d, J=8.1 Hz), 5.93 \sim 6.13 (1H, each s), 6.8 \sim 7.75 (19H, m) M a s s (m/z): 551 (M⁺+1)

【0084】実施例7

mp: 251~253.5 ℃

IR (ヌジョール): 3300, 1700, 1670, 1641, 1610, 1560, 1510, 1490, 1459 (sh), 1447, 1375, 1295, 1215, 1185, 1025, 880, 772, 750 (sh), 695 cm⁻¹

NMR (DMSO-d₆, δ) : 1.30 (3H, t, J=7.1Hz), 2.23 (3H, s), 4.25 (2H, q, J=7.1Hz), 5.14 (1H, d, J=8.4 Hz), 5.95 (2H, ABq, J=15.7Hz, 29.8Hz), 6.19 (1H, s), 6.41 (1H, t, J=6.1Hz), 6.74 (1H, d, J=6.2Hz), 7.0 \sim 7.65 (16H, m), 8.91 (1H, s)

 $Mass (m/z) : 591 (M^++1)$

【0085】実施例8

N-[(3RS)-2, 3-ジヒドロ-1-(α -メトキシカルボニルベンジル)-5-(2-フルオロフェニル)-2-オキソー1H-1, 4-ベングジアゼピン-3-イル]-N'-(3-メチルフェニル)尿素(535.6mg)のジアステレオマー化合物を、メタノール(22ml)とテトラヒドロフラン(8ml)の混液に

懸濁した懸濁液を室温で攪拌しながら、これに1N水酸化ナトリウム(3.6ml)を加えた。この混液を同一条件下で一晩攪拌した後、1N水酸化ナトリウム(1.2ml)を加えて更に8時間攪拌した。

【0086】この反応混液からメタノールとテトラヒドロフランを減圧留去して水溶液を得た。この溶液に2N塩酸を加えて酸性にした後、酢酸エチルで2回抽出した。この抽出物を水で洗浄し、硫酸マグネシウムで乾燥させた後、溶媒を減圧留去すると油状物が得られた。これをシリカゲル充填のカラムクロマトグラフィー[溶出液:クロロホルムとメタノール(20:1)の混液]で精製した。所望の化合物を含む画分を合わせた後、溶媒を減圧留去すると、オレンジ色の粉末として、N-

[(3RS) -2, 3-ジヒドロ-1-(α -カルボキシベンジル) -5-(2-フルオロフェニル) -2-オキソ-1H-1, 4-ベンゾジアゼピン-3-イル] -N'-(3-メチルフェニル) 尿素のジアステレオマー混合物 (NMR分析によれば10:1, 358.6mg) が得られた。

mp: 236~236.5 ℃ (分解)

IR (ヌジョール): 3320, 1650, 1605, 1550, 1375, 1214, 750,692 cm⁻¹

NMR (DMSO-d₆, δ) : 1.90, 2.24 (3H, each s), 5. 32 (1H, d, J=8.6Hz), 5.79, 6.17 (1H, each s), 6.7 \sim 8.0 (19H, m), 8.98, 9.13 (1H, each s)

【0087】実施例9

実施例7で得た化合物を用い、実施例8と実質的に同じ 方法で下記化合物(結晶状粉末)を得た。

mp: 217~218 ℃ (分解)

IR (ヌジョール) : 3300, 2800 ~2300 (br), 1670, 1638, 1609,1550, 1490, 1448, 1375, 1321, 1215, 11 60, 765,690 cm⁻¹

NMR (DMSO- d_6 , δ) : 2.23 (3H, s), 5.15 (1H, d, J=8.4Hz), 6.06 (2H, ABq, J=15.9Hz, 14.9Hz), 6.09 (1 H, t, J=6.8Hz), 6.21 (1H, s), 6.73 (1H, d, J=7.0H z), 6.7~7.6 (16H, m), 8.03 (1H, d, J=8.4Hz), 9.01 (1H, s)

 $Mass (m/z) : 563 (M^++1)$

【0088】実施例10

N-[(3RS) -2, 3-ジヒドロ-1-(α -カルボキシベンジル) -5-(2-フルオロフェニル) -2 -オキソ-1H-1, 4-ベングジアゼピン-3-イル] -N'-(3-メチルフェニル) 尿素(188.5 mg)とピロリジン(30mg)の溶液を室温で攪拌し ながら、これに1-ヒドロキシベンプトリアゾール(5 6. 9 mg) $\sqrt{1 - x + y - 3 - (3 - y + y + y + z)}$ ノ) プロピルカルボジイミドの塩酸塩(80.7mg) 及びトリエチルアミン (42.6mg) を順次加えた。 この混液を同一条件下で一晩攪拌した後、80℃で更に 1時間攪拌した。この様にして得られた反応混液を水の 中に注ぎ、炭酸水素ナトリウム飽和水溶液でpH8に調 整した。この混液を酢酸エチルで2回抽出し、得られた 抽出物を水で洗浄した後、硫酸マグネシウムで乾燥させ た。溶媒を減圧留去して得られた残渣をシリカゲル充填 のカラムクロマトグラフィー (溶出液:クロロホルム) で精製した。所望の化合物を含む両分を合わせて溶媒を 留去すると、油状物 (163.8mg) が得られた。こ の油状物をシクロヘキサンで処理すると、白色の結晶状 粉末として、N-[(3RS)-2, 3-ジヒドロ-1 - [α- (1-ピロリジニルカルボニル) ベンジル] -5- (2-フルオロフェニル) -2-オキソ-1H-1, 4-ベンゾジアゼピン-3-イル] -N'-(3-メチルフェニル)尿素のジアステレオマー混合物(NM R分析によれば15:1,85mg)が得られた。

mp: 182~183.5 ℃

IR (ヌジョール) : 3325, 1650, 1608, 1549, 1481, 1372, 1326, 1210, 770, 750, 695 cm⁻¹

NMR (DMSO-d₆, δ) : 1.82 (4H, br), 2.24 (3H, s), 2.96 (1H, br), 3.56 (3H, br), 5.31 (1H, d, J=8.5Hz), 6.43 (1H, s), 6.76 (1H, d, J=8.5Hz), 7.05 \sim 7.75 (17H, m), 8.98 (1H, s)

 $Mass (m/z) : 590(M^{+}+1)$

【0089】実施例11

実施例10と実質的に同じ方法で下記化合物を得た。 N-[(3RS)-2,3-ジヒドロ-1-[E-2-フェニル-3-(3-アザビシクロ[3.2.2]ノン-3-イル)カルボニル-2-プロペニル]-5-(2-フルオロフェニル)-2-オキソー1H-1,4-ベンソジアゼピン-3-イル]-N'-(3-メチルフェニル) 尿素

mp: 170.5~172 ℃

IR (ヌジョール) : 3300, 1673, 1641, 1610, 1560, 1450, 1375, 1212, 765, 690 cm⁻¹

NMR (DMSO-d₆, δ): 1.62 (8H, br d), 1.99 (1H, br s), 2.09 (1H, br s), 2.23 (3H, s), 3.3~3.45 (1 H, m), 3.5 ~3.7 (2H, m), 3.9 ~4.05 (1H, m). 5.13(1 H, d, J=8.4Hz), 5.52(2H, ABq, J=15.9Hz, 87.3Hz), 6.2 7 (1H, t, J=6.2Hz), 6.57 (1H, s), 6.73 (1H, d, J=6.2Hz), 6.95~7.65 (15H, m), 7.85 (1H, d, J=6.2Hz), 8.92 (1 H, s)

 $Mass (m/z) : 670 (M^++1)$

フロントページの続き

(51) Int. Cl. ⁶ 識別記号 庁内整理番号 F I A 6 1 K 31/55 A E D

技術表示箇所

(72)発明者 勝見 育代

大阪市福島区海老江1-6-13

(72)発明者 佐藤 裕一

吹田市中の島町4-52