WEEK 11: DEEP LEARNING AND INTRODUCTION TO INFOVIS

Dr. Kai Li School of Information Sciences University of Tennessee, Knoxville Spring 2025

Review / Overview

- Last week:
 - Clustering
- This week:
 - (Very briefly) Deep learning
 - Intro to data/information visualization
- Any questions about the previous weeks or assignments?

Deep learning vs. machine learning

- Deep learning uses neural network, a technology to simulate how human brain works.
- This technology creates hidden layers in the process to transform the data and achieve the best performance.
 - The hidden layers are NOT totally invisible to us in many models, but they are still black boxes because how they are decided is unknown.

Artificial neural networks (ANN)

- ANN is a foundational deep learning model to implement the idea of deep learning.
- It is the foundation to many other more advanced DL models, such as CNN and RNN.
- It is also able to support major statistical models, such as regression and classification.

Demonstration

- Instead of directly using IVs to predict outcome, the model creates various hidden nodes (H1-8).
- B nodes stand for bias in each step.

A summary

- Deep learning is not well supported by R. Python would be much more useful (faster and with more models and options)!
- For ANN@R, the implementation is not really that different from other statistical models.
- We can consider using deep learning if we are primarily focused on prediction rather than inference.

Information visualization

 Please consider taking our new 590 class (Information visualization) in the Fall semester if you are interested in this topic.

What is data visualization?

- In InfoVis, data is transformed to intuitive and meaningful graphical representations.
 - The transformation is a creative process in which designers translate data into geometric shapes and give meanings to it.
 - Data visualization is far beyond just a technical topic: we need to consider data, users, design, and storytelling.
- The ultimate criteria is whether a graph conveys the intended message to the viewers effectively.

David McCandless
InformationisBeautiful.net

taken from new book. //informationisbeautiful.net/visualfind cut more / what-Knowledge is Beautiful-//informationisbeautiful.net/visualfind cut more / whatmakes-a-good-data-visualization/

Story in data visualization

- The basic requirement: a good visualization is one that can effectively convey the message to its readers.
- Less is more!

History of data visualization

- The history is strongly paralleled with that of statistics.
- https://www.datavis.ca/

Type of visualization

- Each type of visualization (1) can support different types of data values and stories and (2) will create different outcomes.
- For example, we can have visualization types based on the minimum number of categories required by the graph:
 - 1-D: pie chart, histogram...
 - 2-D: bar chart, line chart, scatter plot... (using both x- and y-axis)
 - 3-D:
- The selection of the type of visualization to use is a critical first step.

1- to 3-dimensional data and visualization

ID	Name	Width	Height	Weight	Value
1	ABC	100	100	103	100
2	DEF	105	95	97	90

Most of the popular visualization types uses x- and y-axes and hence are 2-d graph.

1D 2D 3D

That said, we can include other variables to the graph to add more information!

Visual features in data visualization

- Does a feature support the following type of data?
 - Numeric
 - Categorical
 - Time
- What is the best type of data supported by each feature?

Visual cues in data visualization

- How well can we use each of the features to map:
 - Numeric
 - Categorical
 - Time
- Numeric values are ideally only used in x- and y-axis, if possible!
 - Or, we can categorize the values.

How many visual features are used in this graph? And what data type does each pattern represent?

Analysis of the previous graph

- X-axis: Year (Datetime)
- Y-axis: Rising or falling (Categorical)
- Color: The extent to which one market changes in a given year (Categorical) *
- Order of the y-axis: The order based on the amount of change of a market in a given year (Ordinal)

For example: which graph tells the story better?

Problem with pie chart

- We can much more effectively and accurately observe the differences along the two axes (xand y-) than those in the angle or area.
 - If there is a key value we want to compare,
 we should present it in one of the two axes.
 - Table below shows the ranking of effectiveness of "pre-attentive features":
 - 1. Position along a common scale
 - 2. Position on identical but nonaligned scales (e.g., small multiples)
 - 3. Length
 - 4. Angle, Slope
 - 5. Area
 - 6. Volume, Density, Color Saturation
 - 7. Color hue

Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. *Journal of the American Statistical Association*, 79(387), 531-554.

Pie Chart: Pitfalls

https://viz.wtf/

- Pie chart (or donut chart) is based on three assumptions:
 - 1. Categories should be mutuallyexclusive;
 - 2. All categories of the population are ideally included;
 - 3. Ratios of all categories should be added up to 100%.
- If any assumption is violated, the data is better visualized in bar chart.
- Not to say that it is less effective!

Cognitive science behind visualization

- Many important visualization principles are supported by cognitive science.
- For example, even though color is a very effective preattentive feature, it is much more useful to distinguish categories than comparing numbers.

Magical number of seven

- Our short memory can only deal with a limited number of items.
- What can we do if we are dealing with a very large number of categories?
- https://www.data-toviz.com/caveat/spagh etti.html

What can we do to reduce the number of categories?

- Report the most important categories
- Combine categories
- Using small multiples

A comparison of bar, line, and scatterplot

- Bar chart:
 - Category (x) + Numeric (y)
 - To compare categories (<u>normally need to be sorted by the value</u>)
- Line chart:
 - Nominal/Datetime (x) + Numeric (y)
 - Can compare categories + lines
 - It is more frequently used for timeline data.
- Scatterplot:
 - Numeric (x + y)
 - To show the distribution, correlation, and scatter

Paying attention to details

What different stories can the latter two graphs tell?

Why including extra information?

- The inclusion of extra variables can add important information to our story and make the story more interesting.
- But we will talk about what features are available next week under the Grammar of Graphics model.

