

Amortized Analysis

Cost of an operation

Worst-case average behavior

Operations: $O_1, O_2, O_3, \dots, O_n$

$$\frac{1}{n} \sum_{i=1}^{n} \cos(o_i) = AVG$$

Worst-case Average:

$$\forall o_1, o_2, o_3, \dots, o_n$$

$$\frac{1}{n} \sum_{i=1}^n \text{cost}(o_i) = \text{AVG} \le \text{BOUND}$$

$$\sum_{i} \cot(o_i) \le n \cdot \text{BOUND}$$

Aggregate

Accounting

Potential Functions

Aggregate

push:

pop: O(1)

multi-pop: $\Theta(k)$

Worst Case:
$$n \times \Theta(n) = \Theta(n^2)$$

Aggregate:
$$\Theta(n)$$

Aggregate (binary counter)

Decimal	Binary	_	Basic operation: flip a bit
1	000001		
2	000010		Worst Case:
3	000011		$\Theta(nk)$
4	000100		
5	000101		Aggregate:
	• • •		$\Theta(n)$
n	fedc <u>ba</u>	→k bits	

The Stack

push:
cost=\$2

pop: cost=\$0

multi-pop: cost=\$0

n operations cost \$(2n); O(1) amortized cost

Decimal	Binary	
1	000001	
2	000010	
3	000011	
4	000100	
5	000101	
	• • •	
n	fedcba	

Potential Functions

actual cost

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 amortized cost potential after i-1 operations

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

actual cost = amortized cost
$$-\Phi(D_n) + \Phi(D_0)$$

Potential Functions (examples)

 $\Phi(\text{stack}) = \# \text{ of items on stack}$

$$\Phi(D_0) = 0$$

$$\Phi(D_n) \ge \Phi(D_0) \ge 0$$

amort(pop)=actual(pop)+#(after)-#(before)

The Stack

amort(push)=actual(push)+#(after)-#(before)

Potential Functions (examples 2)

$$\Phi(\text{counter}) = \# \text{ of } 1 \text{ bits}$$

$$\Phi(D_0) = 0$$

$$\Phi(D_n) \ge 0$$

$$amort(0->1)=actual(0->1)+\#(after)-\#(before)$$

amort(1->0)=actual(1->0)+#(after)-#(before)

insert: O(1)

insert/double: O(size)

Aggregate

$$n + \sum_{j=1}^{\lfloor \lg n \rfloor} 2^{j-1} \le n + 2n = 3n$$

\$3/insertion

Potential

 $\Phi(T) = 2*(\# \text{ of items in table})$ (size of the table)