LINEAR PROGRAMMING MODELING EXAMPLES: Feed Mix Problem

Feed Mix Problem

An agricultural mill produces a different feed for cattle, sheep, and chickens by mixing the following raw ingredients: corn, limestone, soybeans, and fish meal.

These ingredients contain the following nutrients: vitamins, protein, calcium, and crude fat in the following quantities:

	Nutrient, k					
Ingredient, i	Vitamins	Protein	Calcium	Crude Fat		
Corn	8	10	6	8		
Limestone	6	5	10	6		
Soybeans	10	12	6	6		
Fish Meal	4	18	6	9		

constraints

The mill has (firm) contracts for the following demands:

```
Demand (kg) Cattle Sheep Chicken d_j 10,000 6,000 8,000
```

There are limited availabilities of the raw ingredients:

Supply (kg)	Corn	Limestone	Soybeans	Fish Meal
s _i	6,000	10,000	4,000	5,000

The different feeds have "quality" bounds per kilogram:

	Vita	Vitamins		Protein		Calcium		Crude fat	
	min	max	min	max	min	max	min	max	
Cattle	6		6		7		4	8	
Sheep	6		6		6		4	8	
Chicken	4	6	6		6		4	8	

The above values represent bounds: l_{jk} and u_{jk}

costs and objective

Cost per kg of the raw ingredients is as follows:

	Corn	Limestone	Soybeans	Fish meal
cost/kg, c _i	20¢	12¢	24¢	12¢

Formulate problem as a linear program whose solution yields desired feed production levels at minimum cost.

Conceptually:

- 1. What decisions are we making?
- 2. What is our objective?
- 3. Uncontrollable inputs?
- 4. Types of constraints?
- 5. Important assumptions?

Mathematically, define:

- 1. Sets, indices
- 2. Decision variables
- 3. Parameters
- 4. Objective
- 5. Constraints

PAUSE THE VIDEO

```
sets and indices
    i \in I
            ingredients { corn, limestone, soybeans, fish meal }
            products { cattle, sheep, chicken feeds }
    j \in J
            nutrients { vitamins, protein, calcium, crude fat }
    k \in K
parameters
            demand for product j (kg)
   d_i
            supply of ingredient i (kg)
   S_i
            lower bound on number of nutrients of type k
            per kg of product j
            upper bound on number of nutrients of type
   \boldsymbol{u}_{jk}
            k per kg of product j
            cost per kg of ingredient i
    C_i
            number of nutrients k per kg of ingredient i
    a_{ik}
```

decision variables

 x_{ij} amount (kg) of ingredient i used to produce product j

$$\min \sum_{i \in I} \sum_{j \in J} c_i x_{ij}$$

minimize cost

s.t.
$$\sum x_{ij} = d_j \quad \forall j \in J \quad \text{demand constraint of product } j$$

$$\sum_{i \in I} x_{ij} \le s_i \quad \forall i \in I \quad \text{supply constraints for ingredient } i$$

$$\sum_{i=1}^{n} a_{ik} x_{ij} \ge l_{jk} d_j \quad \forall j \in J, k \in K$$

$$x_{ij} \geq 0 \quad \forall i \in I, j \in J \quad \text{non-negativity}$$

generalization of feed mix problem gives blending problems

Raw Materials	Qualities	Blended commodities
corn, limestone, soybeans, fish meal	protein, vitamins, calcium, crude fat	feed
butane, catalytic reformate, heavy naphtha	octane, volatility, vapor pressure	gasoline
pig iron, ferro-silicon, carbide, various alloys	carbon, manganese, chrome content	metals
≥ 2 raw ingredients	≥ 1 quality	≥ 1 commodity

AMPL code for the feed mix blending problem

```
reset;

options solver cplex;

set I;  # ingredients
set J;  # products
set K;  # nutrients
```

```
#demand for product j (kg)
param d{J};
#supply of ingredient i (kg)
param s{I};
#lower/upper bound on nutrient k for product j
(per kg)
param 1{J,K};
param u{J,K} default Infinity;
#cost of ingredient (per kg in cents)
param c{I};
#qty of nutrients k per ingredient (per kg)
param a{I,K};
                                               11
```

```
#amt of ingredient i to produce product j
var x\{I,J\} >= 0;
#load data file
data models/feedMix.dat;
#objective
minimize cost:
    sum {i in I, j in J} x[i,j]*c[i];
```

```
subject to demand {j in J}:
   sum {i in I} x[i,j] = d[j];
subject to supply {i in I}:
    sum {j in J} x[i,j] <= s[i];</pre>
subject to lowerB {j in J, k in K}:
  sum {i in I} a[i,k]*x[i,j] >= l[j,k]*d[j];
subject to upperB {j in J, k in K}:
  sum {i in I} a[i,k]*x[i,j] <= u[j,k]*d[j];</pre>
```

```
data;
set I := corn limestone soybeans fishmeal;
set J := cattle sheep chicken;
set K := vitamins protein calcium fat;
#supply and cost of each ingredient
param:
             6000
                    .20
  corn
  limestone 10000 .12
           4000 .24
  soybeans
   fishmeal 5000
                    .12;
```

param a:

	vitamins	protein	calcium	fat	:=
corn	8	10	6	8	
limeston	e 6	5	10	6	
soybeans	10	12	6	6	
fishmeal	4	18	6	9;	

```
#lower and upper bounds on nutrients
param:
                            u
  [cattle,*] vitamins 6
              protein 6
              calcium
                            8
              fat
           vitamins 6
  [sheep,*]
              protein 6
              calcium 6
              fat
                            8
  [chicken,*] vitamins 4
                            6
              protein
                        6
                       6
              calcium
                            8;
              fat
```