

# Open Metering System Specification

**Alternative Physical Layers for OMS** 

Annex O to
Volume 2 Primary Communication
Issue 4.5.1

**RELEASE B (2022-12)** 



## **Document History**

| Version | Date       | Comment                                                                              | Editor                   |  |  |  |  |
|---------|------------|--------------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| A 0.1.0 | 2011-01-26 | Action #30-03 Overview about possible frequencies and their technical specifications | P. M. Evjen              |  |  |  |  |
| A 0.2.0 | 2011-04-13 | Further specification of frequencies                                                 | P. M. Evjen              |  |  |  |  |
| A 0.3.0 | 2011-05-23 | Action #32-19; example definition PHY for 433 MHz; 2 tables for better reading       | P. M. Evjen              |  |  |  |  |
| A 0.5.0 | 2012-03-27 | Action #33-07 revision,based on the discussion during meeting #37  P. M. Evjen       |                          |  |  |  |  |
| A 0.6.0 | 2012-05-16 | Actions #37-08 to #37-11; Modulation hub, approval referencies                       | P. M. Evjen              |  |  |  |  |
| A 0.6.1 | 2012-05-31 | Action #38-16, comments D. Matussek; action #38-17                                   | P. M. Evjen              |  |  |  |  |
| A 0.7.0 | 2012-09-26 | Action #39-14                                                                        | P. M. Evjen              |  |  |  |  |
| A 0.8.0 | 2012-10-19 | Editorial changes                                                                    | P. M. Evjen              |  |  |  |  |
| A 1.0.0 | 2012-10-19 | Action #39-15                                                                        | P. M. Evjen              |  |  |  |  |
| A 1.0.1 | 2013-04-02 | Editorial changes and fitted into OMS template                                       | A. Bolder                |  |  |  |  |
| A 1.0.1 | 2013-05-15 | Editorial changes due to to-do list AG1 #43                                          | A. Bolder                |  |  |  |  |
| A 1.0.2 | 2013-05-17 | Editorial changes as Annex to OMSS Vol. 2                                            | A. Bolder                |  |  |  |  |
| A 1.0.3 | 2013-06-26 | Inclusion of Mode C1 and C2                                                          | D. Matussek, P. M. Evjen |  |  |  |  |
| A 1.0.4 | 2013-07-18 | Distinguation uplink/downlink                                                        | D. Matussek, U. Pahl     |  |  |  |  |
| A 1.0.5 | 2013-08-21 | Editorial changes acc to DIN 820-2                                                   | A. Bolder                |  |  |  |  |
| A 1.0.6 | 2013-09-04 | Corrections during meeting OMS AG1#46                                                | A. Bolder                |  |  |  |  |
| A 1.0.7 | 2013-09-26 | Corrections during meeting OMS-AG1#47                                                | U. Pahl                  |  |  |  |  |
| A 1.0.8 | 2013-10-15 | New note on bandwidth                                                                | P. M. Evjen, U. Pahl     |  |  |  |  |
| A 1.1.0 | 2014-01-17 | Update of Notes according P.M.Evjen                                                  | U. Pahl                  |  |  |  |  |
| A 1.1.1 | 2014-01-25 | Release A                                                                            | U. Pahl                  |  |  |  |  |
| B 1.1.2 | 2022-12    | Introduction of term "OMS end-device", as in OMS-S2; general editorial lookover      | A. Bolder                |  |  |  |  |
|         |            | Copyright remark added to front page<br>Editorial changes                            | A. Reissinger            |  |  |  |  |
|         |            | Release B                                                                            |                          |  |  |  |  |

OMS GROUP 2/7

## Open Metering System Specification Vol. 2 – Annex O RELEASE B (2022-12)



## List of tables

| Table 1 – PHY frequencies and radio parameters | 5 |
|------------------------------------------------|---|
| Table 2 – Country specific limitations         | 7 |

OMS GROUP 3/7



### O.1 OMS frequencies for non-868 MHz countries

Countries being members of CEPT (e.g. EU, EEA and more) shall use the frequencies (and channel parameters) specified in [EN 13757-4:2013] (here defined as PHY\_A). These frequencies are based on CEPT/ERC/REC 70-03 (except Russia). Other countries where these frequencies are not allowed shall use the alternative frequencies (and channel parameters) defined as PHY\_B to PHY\_E in Table 1. All other parameters shall follow EN 13757-4.

As OMS only uses modes S, T and C, alternative frequencies for the other modes of [EN 13757-4:2013] are not defined.

OMS GROUP 4/7



Table 1 – PHY frequencies and radio parameters

| Band                                                        | PHY_A            |                  |                            | PHY_B                 |                  |                            | PHY_C                        | PHY_D                   |                  |                            | PHY_E              |                  |                  | Unit    |
|-------------------------------------------------------------|------------------|------------------|----------------------------|-----------------------|------------------|----------------------------|------------------------------|-------------------------|------------------|----------------------------|--------------------|------------------|------------------|---------|
|                                                             | 868 MHz          |                  |                            | 433 MHz               |                  |                            | 915 MHz                      | 15 MHz 868 MHz (Russia) |                  | 865 MHz                    |                    |                  |                  |         |
| Mode                                                        | S                | Т                | С                          | S                     | Т                | С                          | _                            | S                       | Т                | С                          | S                  | T                | С                |         |
| Frequency (uplink) <sup>a</sup>                             | 868,3            | 868,95           | 868,95                     | 433,5                 | 434,475          | 434,475                    | 902 – 928<br>FH <sup>b</sup> | 868,95                  | 868,95           | 868,95                     | 865,5              | N/A <sup>c</sup> | N/A <sup>c</sup> | MHz     |
| Frequency (downlink) d                                      | 868,3            | 868,3            | 869,525                    | 433,5                 | 433,5            | 433,5                      | 902 – 928<br>FH <sup>b</sup> | 868,95                  | 868,95           | 868,95                     |                    |                  |                  | MHz     |
| Frequ. accuracy (uplink) <sup>a</sup>                       | 60               | 60               | 25                         | 60                    | 60               | 25                         | TBD                          | 60                      | 60               | 25                         | 40                 |                  |                  | ± ppm   |
| Frequ. accuracy (downlink) d                                | 25               | 25               | 25                         | 25                    | 25               | 25                         | TBD                          | 25                      | 25               | 25                         | 25                 |                  |                  | ± ppm   |
| Chip rate (uplink) <sup>a</sup>                             | 32,768           | 100              | 100                        | 32,768                | 100              | 100                        | TBD                          | 32,768                  | 100              | 100                        | 32,768             |                  |                  | kchip/s |
| Chip rate (downlink) d                                      | 32,768           | 32,768           | 50                         | 32,768                | 32,768           | 50                         | TBD                          | 32,768                  | 32,768           | 50                         | 32,768             |                  |                  | kchip/s |
| Chip rate tolerance (TX)                                    | 1,5 %            | 10 %             | 100 ppm                    | 1,5 %                 | 1 %              | 100 ppm                    | TBD                          | 1,5 %                   | 1 %              | 100 ppm                    | 1,5 %              |                  |                  |         |
| Chip rate tolerance (RX)                                    | 2 %              | 12 %             | 100 ppm                    | 2 %                   | 1 %              | 100 ppm                    | TBD                          | 2 %                     | 1 %              | 100 ppm                    | 2 %                |                  |                  |         |
| FSK deviation<br>for uplink<br>(min/typ/max) <sup>e</sup>   | 40/50/80         | 40/50/80         | 33,75/45/<br>56,25         | 40/50/60 <sup>†</sup> | 40/50/60         | 33,75/45/<br>56,25         | TBD                          | 40/50/60                | 40/50/60         | 33,75/45/<br>56,25         | 25/35/45           |                  |                  | ± kHz   |
| FSK deviation<br>for downlink<br>(min/typ/max) <sup>e</sup> | 40/50/80         | 40/50/80         | GFSK<br>18,75/25/<br>31,25 | 40/50/60 <sup>f</sup> | 40/50/60         | GFSK<br>18,75/25/<br>31,25 | TBD                          | 40/50/60                | 40/50/60         | GFSK<br>18,75/25/<br>31,25 | 25/35/45           |                  |                  | ± kHz   |
| Bandwidth (uplink) <sup>a</sup>                             | 600 <sup>g</sup> | 500 <sup>g</sup> | 500 <sup>g</sup>           | 600 <sup>h</sup>      | 500 <sup>h</sup> | 500 <sup>h</sup>           | TBD                          | 500 <sup>g</sup>        | 500 <sup>g</sup> | 500 <sup>g</sup>           | 200 <sup>g i</sup> |                  |                  | kHz     |
| Bandwidth (downlink) d                                      | 600 <sup>g</sup> | 600 <sup>g</sup> | 250 <sup>g</sup>           | 600 <sup>h</sup>      | 600 <sup>h</sup> | 250 <sup>h</sup>           | TBD                          | 500 <sup>g</sup>        | 500 <sup>g</sup> | 250 <sup>h</sup>           | 200 <sup>h i</sup> |                  |                  | kHz     |
| Output power (uplink) a                                     | 25               | 25               | 25                         | 10                    | 10               | 10                         | TBD                          | 25                      | 25               | 25                         | 1000               |                  |                  | mW      |
| Output power (downlink) d                                   | 25               | 25               | 500                        | 10                    | 10               | 10                         | TBD                          | 25                      | 25               | 25                         | 1000               |                  |                  | mW      |

OMS GROUP 5/7

#### Open Metering System Specification Vol. 2 – Annex O RELEASE B (2022-12)



- Uplink: OMS end-device to communication partner
  Frequency Hopping used to meet FCC regulations
  A 100 kchip/s channel is not feasible due to 200 kHz channel bandwidth
  Downlink: Communication partner to OMS end-device
- Measured as rms value for PN9 sequence in the centre of the chip
- Receiver acceptance window must be wider to ensure interoperability with KNX specifying 48/60/80 kHz
- The given signal bandwidth is identical with the max. bandwidth of this sub-band (refer to Regulatory reference in Table 2)
- The given signal bandwidth is smaller than the bandwidth of this sub-band (refer to Regulatory reference in Table 2).
- Measured as 20 dB bandwidth

**OMS GROUP** 6/7



The maximum allowed output power and duty-cycle is country specific, as shown in Table 2.

Table 2 - Country specific limitations

| Country                                                                                | Frequency band | Max<br>Power | Duty<br>Cycle      | Note / Regulatory reference                                                                                                    |  |  |  |
|----------------------------------------------------------------------------------------|----------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Europe<br>(All EU-<br>countries +<br>EEA)                                              | PHY_A          | 25 mW        | -                  | ERC/REC 70-03                                                                                                                  |  |  |  |
| Australia                                                                              | PHY_B          | 25 mW        | 1,0 % <sup>a</sup> | AS/NZS 4268:2003<br>433,05 to 434,79 MHz / 25 mW allowed,<br>915 – 928 MHz / 3 mW allowed                                      |  |  |  |
| Brazil                                                                                 | PHY_B          | 10 mW        | 1,0 % <sup>a</sup> | Annex to resolution 365, of 10 May 2004.<br>Article 9, paragraph 5<br>433 – 435 MHz: Max 10 mW <i>EIRP</i>                     |  |  |  |
| India                                                                                  | PHY_E          | 1 W          | 1,0 % <sup>a</sup> | Ministry of Communications and Information technology, G.S.R. 564(E). 865 – 867 MHz, 1 W or 4 W <i>ERP</i> , 200 kHz bandwidth |  |  |  |
| New Zealand                                                                            | PHY_B          | 25 mW        | 1,0 % <sup>a</sup> | AS/NZS 4268:2003<br>433,05 to 434,79 MHz / 25 mW allowed,<br>915 – 928 MHz / 3 mW allowed                                      |  |  |  |
| Russia                                                                                 | PHY_D          | 25 mW        | 0,1 %              | ERC/REC 70-03<br>Only parts of the European 868-MHz-Band<br>are allowed                                                        |  |  |  |
| <sup>a</sup> The duty cycle is not a regulatory limit, but a system requirement in OMS |                |              |                    |                                                                                                                                |  |  |  |

#### O.1.1 Notes

- PHY\_B 433 MHz band is typically from 433,05 to 434,790 MHz.
- PHY\_B T mode channel is placed in the upper half of the band, avoiding the centre frequency where most SAW based devices operate. Also, it is one half of the frequency of the 868 MHz channel for easy implementation.
- PHY C is reserved for use in USA and countries with similar regulations.
- PHY\_D is defined for Russia, as only the 868,7 869,2 MHz sub-band is license free.

KNX-RF has specified 433,500 MHz (S-mode). This specification is already approved in KNX, and this frequency is selected due to interoperation with KNX.

In the USA, the 270 – 470 MHz band can be used under certain conditions. Periodic signalling is not allowed. The maximum output power is -14 dBm *EIRP* at 433 MHz, but the output power can be increased for packet lengths less than 100 ms, by up to 20 dB at 10 ms. But there is also a limitation with regard to periodic transmissions. The 902 – 928 MHz band can be used with maximum output power -1 dBm *EIRP* if no spreading techniques are used, as for regular FSK modulation. Increased output power is only allowed using Frequency Hopping Spread Spectrum (FHSS) or Direct Sequence Spread Spectrum (DSSS) or other digital modulation with a BW above 500 kHz. PHY\_C is hence reserved for using the 902 – 928 MHz band with Frequency Hopping. Frequency Hopping is the preferred spreading technique, to keep the hardware implementation as similar to the 868 MHz implementation as possible. Only one mode (or hop set) will be defined for 915 MHz.

OMS GROUP 7/7