⑩ 日本国特許庁 (JP)

①特許出願公開

型公開特許公報(A)

昭59—218728

⑤Int. Cl.³H 01 L 21/265

識別記号

庁内整理番号 6851-5F 砂公開 昭和59年(1984)12月10日

発明の数 1 審査請求 未請求

(全 5 頁)

図半導体基体への不純物導入方法

顧 昭58--93219

愛出 願 昭58(1983) 5 月26日

⑩発 明 者 佐藤則忠

20特

横須賀市長坂2丁目2番1号株

式会社富士電機総合研究所內

⑫発 明 者 関康和

横須賀市長坂2丁目2番1号株

式会社富士電機総合研究所內

⑫発 明 者 石渡統

横須賀市長坂2丁目2番1号株式会社富士電機総合研究所内

①出 願 人 株式会社富士電機総合研究所

横須賀市長坂2丁目2番1号

①出 願 人 富士電機製造株式会社

川崎市川崎区田辺新田1番1号

個代 理 人 弁理士 山口巌

明細書

- 発明の名称 半導体基体への不純物導入方法
 特許請求の範囲
- 1) 真空容器内に収容した半導体基体を所定の温度に加熱し、前配容器内に不純物を含むふん田気中でグロー放塩を発生させ、次いで不活性ふん田気中でグロー放塩を発生させることを特徴とする半導体基体への不純物導入方法。
- 3. 発明の詳細な説明
 - 【発明の腐する技術分野】

本発明は半導体基体にドナーまたはアクセプタとしての不利物を導入して基体と不純物農産が異なる所定の事態形の領域を形成する方法に関する。
「従来技術とその問拠点」

この他の半導体的域を形成するためには、熱拡散、エピタキシャル成長、イオン注入などが知られている。これらの方法は、いずれも半導体基体に800~1250での熱処理を加える必要がある。このような高温限処理は半導体基体中に結晶欠陥が生じ、また重金属元素が熱処理炉から半導体基

体中に拡散するため、キャリアーのライフタイムを低下させてしまりほかに、10kg-cm以上の高 比抵抗を有するシリコンの場合は、その結晶中に 含まれる酸素がドナー化するため、比抵抗が低下 するなどの欠点があり、母材結晶本来の特性を維 特することは困難である。

このような欠点は、熱処理温度を低くすれば解決するが、従来技術を用いて、単に温度を低くするだけでは、形成される半導体領域の不純物機度及び拡散深さのばらつきが大きくなり、再現性も悪くなる。例えば、熱拡散法ではドーパント不純物の半導体基体中での拡散係数が低下し、8000 に以下の熱拡散は不可能に近い。

そのほかに、深さ 0.2 m以下 の極 海半導体領域 を 母材 の半導 体表面 に形成 する こと は 値 め て 困難 で ある。 例えば、 イオン注入法でこの 極 海 半導体 領域 を 形成 する ために は、 加速 電圧 30 ke V 以下 に するか、 半導体 基体 表面 に 酸 化 膜を 初め に 形成し、 その酸 化 膜を 通 して トーバント 不 純物 の イオンを 注入 する 必要 が ある。 しか し 加速 電圧 を 低く

するにつれてイオン電流が得られにくく、表面不納物改度を高くすることが困難であり、酸化膜を通して注入する場合は酸化膜厚のはらつきが極寒半導体領域の表面濃度と拡散深さに影響を及ぼし、いずれも実用的ではない。とくに、極海半導体領域に表面源度10²⁰ 原子/cd以上の不純物注入層を得ることは不可能である。

このような欠点は、例えば、比抵抗 10 kΩ:- cm 以上の高純度高比抵抗シリコンを用いて半導体放射線検 出架子を製作する場合、高温熱処理が原因 て、半導体基体のキャリアライフタイムが低下し、 その結果 SN 比が懸くなり、あるいは形成される 表面トービング領域が少くとも 5 μm以上の深さを 有するため、放射線に対して不感領域となるこの 領域が厚くなるなどの問題がある。

一方、最近工業的に在目されている非晶質半導体に不純物を導入した領域を形成することについては、すでに種々の方法が開示されている。例えばほう素をトーヒングするために最も一般的に行われる方法はモノンラン(SiH4)とジボラン(B2H6)

侵入した不純物を電気的に活性な不純物に変換するととにより上記の目的を達成する。

[発明の寒施例]

第1図は、本発明を実施するための反応槽の概略図で、真空容器1、質極2a,2b、半導体基体3、 真空排気系4、ドーパント不納物を含むガスポン ペ5aと不活性ガスポンペ 5b、及びこれらのガス の圧力と流盤を調整するための調整回路6、グロ 一放電用 DC 電源7a、半導体基体加熱用電源7b、 グロー放電時のガス圧力を調整するための真空パルプ8、及び真空計9から構成されている。

まず、真怨排気系4により、真空容器1内を排 気し、約1×10⁻⁷ Torrの真空にしたのち、真空 パルプ8を絞り、真空排気系4の排気速度を下げると同時に、真空容器1に不械物ガスを調整回路 6を通して導入し、公知のやり方で電極2a,2b 間に低圧を印加してグロー放電を発生させると電 極2a上に配倒した半導体基体3にその不純物を 含む半導体領域が形成される。次に、アルゴンな よの不活性ガスムん既気中でさらにグロー放電を を同時に反応格内に流入させ、クロー放電を発生させて任う繋がドーピングされた非晶質シリコンを得るものである。しかしこの方法では、 薄い脂は形成できるものの、 任う業を 1021 原子/ ピリ上非晶質シリコン中に導入することは不可能に近く、その比抵抗も低くならない。また二つのガスを同時に流入させる際、ガス流量比の制御が困難で再現性が悪いという欠点があつた。

[発明の目的]

本発明は、これに対して半導体基体を高温に加熱することなく、基体中に改くて装画不純物 設度の高い所定の導電形の半導体領域を再現性よく形成できる不削物導入方法を提供することを目的とする。

[発明の要点]

本発明は真空容器内に収容した半導体整体を所定の温度に加熱し、その容器内に不納物を含むなん囲気中でグロー放電を発生させることにより半導体基体装面に不納物侵入層を形成し、次いて不活性ガスふん囲気中でグロー放電を発生させ先に

発生させると、先に侵入した不純物は、グロー放 電時間との経過と共に格子間位置から置換型位置 におきかわり、電気的に活性な不純物が増加する。

第2 図はシリコン単結晶基板上に任う素を導入 した場合の一例で、この路条件は下記の通りであ Z .

(1) 不純物導入条件

半導体基体:シリコン、 n型、比抵抗10~

30kΩ-cm、鏡面仕上げ

基 体 温 度:300℃

逆机

ドーパント不純物ガス : 水素で 1000 ppm にし

たジポラン希釈

グロー放電時の圧力: 2.0 Torr

放電パワー: DC 400~600V, 0.6 mA/cm²

電極間距離:50mm

放 短 時 間: 60分

(2) 電気的活性化条件

不活性ガス: アルゴン

グロー放電時の圧力: 0.1 Torr

放電パワー: DC 600V, 0.6 mA/cm²

基体温度:100~300℃

放 電 時 間: 120~36J分

第2図の曲線10はIMAで求めた不純物濃度分布であり、このうち電気的に活性な不純物の澱度分布を拡がり抵抗で求めたものが曲線11であ

1000 ppm に希釈したブオスフ イン

クロー放覧時の圧力: 2.0 Torr

放電バワー: DC 600, 0.6 mA/cm²

電極間距離: 50 mm

放 電 時間:60分

(2) 電気的活性化条件: 第2 図について示した条件と同じ

第3図の曲線20はIMAで求めた導入りん没度分布であり、曲線21は拡がり抵抗で求めた電気的に活性なりんの改度分布である。また曲線22、23はさらにアルゴン中でのグロー放電により電気的活性化を120分,240分行つたある。すなわち、第2図と同様な結果が得られ、放電時間と共に電気的に活性なりん設度が増加する。

とのようなアルゴンふん囲気中でのグロー放電 はスパッタリングと呼ばれ、イオン化したアルゴ ンイオンを、例えばシリコン表面に衝突させると シリコン原子がはじき飛ばされ新しい原子層が路 る。シボランの分解により生じ、シリコン単結晶の中に侵入したほう案の大部分はシリコン単結晶の格子間位置に入り、格子の位置に入る態換型のほう案原子が少く、その結果電気伝導度においる。 曲線12,13,14は、このシリコンウェハを、さらにアルゴンスはんの思気中で、それぞれ120分,240分, はんりの分のである。 これより、グロー放電の映画を変えて任意の表面。

第3図は、別の実施例を示すもので、第2図と 相違する点は、ほう素の代りにりんを拡散させた 点で、n型の半導体領域が形成できる。その条件 を次に示す。

(1) 不純物導入条件

半導体基体: シリコスp型、比抵抗 10~30 k Ω - cm 殷面仕上げ

反 応 為 度: 300 C

域が得られることがわかる。

トーパント不納物ガス: マナファインを 水梨で

出するので、結晶表面の潜浄化に用いられるものである。しかし、本発明で用いたグロー放電条件は従来のスパッタリング法になっため、シリコとをしたがほかがあるよりも、ためも、シリコン表面に侵入したがあるよりも、から、シリコン表面の位にフックオンされ、しかも、シリコン表面の位にでである。とのに決してあるためも気になるためものにはないがある。

上記の実施例では、ほう素およびりんにつついては、たが、アンチモン、ひれ、ガリウム、、アルミニウムなど不純物を同様に導入した半導体にからいて、アルゴン、ヘリウムなどの不危性ガスかんは、もちろんな気のには増加する。そのほかに、光彼出外子などに使用する非晶質シリコン被膜上に、ほりをにためての不純物ガス雰囲気でグロー放電を行りと、よりには

抵抗の不納物脂を有する pn 構造の極薄非晶質膜 も容易に得られる。

[発明の効果]

この発明は、例えば300 U以下の低温度で、 単結晶や非晶質半導体基体中にドーパント不純物 を導入させる方法である。先ず不純物がカスふん囲 気中でグロー放質を発生させて不純物を導入し、 ついてアルゴンなどの不活性ガスふん囲気中でクロー放電を行うと、上記のように電気的に任意の 表面不純物度は10¹⁶~10²²原: 子/dの任意の 範囲で、しかも1500Å。以下の深さの不純物導入 層が得られる。

すなわち、熱拡散法やイオン注入法では不可能 な極薄で裝所不純物凝度の高い半導体領域が得ら れ、放射線検出素子に適用した場合は、 pn 接合 層のような放射線に対して不感層の領域を薄くで きるばかりでなく、低温処理工程のため結晶本来 の特性を保持するので、 S N 比を高め、 エネルギー分解能力を向上させることができる。

非晶質シリコンを用いた光検出素子では、不純

物ドーピング層を形成する際、従来のようにシランガスとドーパントガスとを最適混合比で反応槽内に送るための操作が不要になり、ドーパントガスのみを流してグロー放電及び不活性ガス中のグロー放電を発生させれば良いため、従来法では不可能に近いような低比抵抗不純物ドーピング層で、しかも極薄層が得られる。

プレーナ型索子やMOSIC 素子では、酸化酸の 汚染、接合際さの変動など、高温熱処理工程によ り生じる特性の変化が少くなるなどの効果が上記 した簡単な装置でも容易に得られる。とくに熱拡 散法やイオン注入法では不可能な複尊拡散層で高 い表面濃度の半導体領域が形成できる。

4、図面の簡単な説明

第1図は本発明を実施するための反応装置の一例の概略構成図、第2図はドーパント不純物としてほう素を拡散した場合の凝度分布を示すプロファイル 級図、第3図はドーパント不純物としてりんを拡散した場合の凝度分布を示すプロファイル線図である。

1 …… 真空容器、 2 a, 2 b …… 電極、 3 …… 半 導体基体、 4 …… 真空排気系、 5 a……ドーパント ガスポンペ、 5 b……不活性ガスポンペ、 7 a …… グ ロー放電用電源、 7 b……基体加熱用電源。

化理人作理士 山 口

第1四

