Status of nuclear optical potentials and future prospects

Anthony Tropiano

August 6, 2019

Introduction

- Nuclear reactions play a key role in answering questions such as the origin of heavy elements in the universe, fundamental symmetries, and the limits of nuclear stability
- Facilities seek to produce exotic isotopes and measure new data to better understand these areas

Fig. 1: Chart of nuclides with neutron number, N, counted horizontally and proton number, Z, counted vertically.

(Figure from H. Hergert.)

Introduction

- For example, the Facility for Rare Isotope Beams (FRIB) will target neutron-rich isotopes to study the rapid neutron-capture process (rprocess)
- The r-process is responsible for the formation of roughly half the atomic nuclei past iron on the periodic table

Fig. 1: Chart of nuclides with neutron number, N, counted horizontally and proton number, Z, counted vertically. (Figure from H. Hergert.)

Introduction

 Critical to understand nuclear reactions since facilities must use reactions to produce and study short-lived exotic nuclei

Fig. 1: Chart of nuclides with neutron number, N, counted horizontally and proton number, Z, counted vertically.

(Figure from H. Hergert.)

Nuclear scattering

- Projectile-nucleus scattering is a quantum many-body problem
 - An incident particle interacts with A nucleons (protons and neutrons) in a target nucleus
- Difficulties of nuclear many-body systems:
 - Often non-perturbative
 - ii. Computational difficulty of the problem drastically increases with α

- Can introduce a complex potential to model the effective projectile-nucleus interaction in scattering experiments
- These potentials are called optical potentials

$$U(\mathbf{r}) = V(\mathbf{r}) + iW(\mathbf{r})$$

• Properties of $U(\mathbf{r})$:

- Can introduce a complex potential to model the effective projectile-nucleus interaction in scattering experiments
- These potentials are called optical potentials

$$U(\mathbf{r}) = V(\mathbf{r}) + iW(\mathbf{r})$$

- Properties of U(r):
 - i. Non-Hermitian

- Can introduce a complex potential to model the effective projectile-nucleus interaction in scattering experiments
- These potentials are called optical potentials

$$U(\mathbf{r}) = V(\mathbf{r}) + iW(\mathbf{r})$$

- Properties of U(r):
 - i. Non-Hermitian
 - ii. Gives non-unitary S-matrix

- Can introduce a complex potential to model the effective projectile-nucleus interaction in scattering experiments
- These potentials are called optical potentials

$$U(\mathbf{r}) = V(\mathbf{r}) + iW(\mathbf{r})$$

- Properties of U(r):
 - i. Non-Hermitian
 - ii. Gives non-unitary S-matrix
 - iii. For W < 0, gives an absorptive potential meaning a loss of flux

$$U(\mathbf{r}) = V(\mathbf{r}) + iW(\mathbf{r})$$

 Analogous to a complex index of refraction for describing light absorption/refraction in absorbing materials

$$U(\mathbf{r}) = V(\mathbf{r}) + iW(\mathbf{r})$$

- Analogous to a complex index of refraction for describing light absorption/refraction in absorbing materials
- Optical potentials simplify nuclear scattering by giving an effective projectile-nucleus interaction that accounts for absorption of incident particles (inelastic scattering)

 A + 1 particle system consisting of incident nucleon and target nucleus of mass number A described by Schrödinger equation

$$\mathcal{H}\Psi = E\Psi$$

where the total Hamiltonian is

$$\mathcal{H}(r_0, ..., r_A) = H_A(r_1, ..., r_A) + T_0 + V(r_0, ..., r_A)$$

$$\mathcal{H}(r_0, ..., r_A) = H_A(r_1, ..., r_A) + T_0 + V(r_0, ..., r_A)$$

The nuclear Hamiltonian satisfies the Schrödinger equation

$$H_A \psi_i = \epsilon_i \psi_i$$

for wave functions ψ_i and energies ϵ_i where i=0 is the ground state

The optical potential is given by

$$V_{opt}(\boldsymbol{r_0}) = V_{00} + \boldsymbol{V_0} \frac{1}{E - \boldsymbol{H} + i\eta} \boldsymbol{V_0^{\dagger}}$$

where
$$V_{ij} = \langle \psi_i | V | \psi_j \rangle$$
, $H_{ij} = T_0 \delta_{ij} + V_{ij} + \epsilon_i \delta_{ij}$ for $i, j > 0$, and $\mathbf{V}_0 = (V_{01}, V_{02}, ...)$

• $\eta \to 0^+$ to ensure only outgoing waves are present in exit channels

• The optical potential is given by $V_{opt}(\bm{r_0}) = V_{00} + \bm{V}_0 \frac{1}{E-\bm{H}+i\eta} \bm{V}_0^\dagger$ Inelastic scattering

where
$$V_{ij} = \langle \psi_i | V | \psi_j \rangle$$
, $H_{ij} = T_0 \delta_{ij} + V_{ij} + \epsilon_i \delta_{ij}$ for $i, j > 0$, and $\mathbf{V}_0 = (V_{01}, V_{02}, ...)$

• $\eta \to 0^+$ to ensure only outgoing waves are present in exit channels

$$V_{opt}(\boldsymbol{r_0}) = V_{00} + \boldsymbol{V_0} \frac{1}{E - \boldsymbol{H} + i\eta} \boldsymbol{V_0^{\dagger}}$$

• V_{opt} is complex, energy dependent, and non-local

$$V_{opt}(\boldsymbol{r_0}) = V_{00} + \boldsymbol{V_0} \frac{1}{E - \boldsymbol{H} + i\eta} \boldsymbol{V_0^{\dagger}}$$

- V_{opt} is complex, energy dependent, and non-local
- Cannot be evaluated for realistic systems

General form of phenomenological optical potential

$$V_{opt}(r,E) = V_C(r) - V_V(E)f(x_0) + (\frac{\hbar}{m_{\pi}c})^2 V_{SO}(E) \sigma \cdot l \frac{1}{r} \frac{d}{dr} f(x_{SO}) - i[W_V(E)f(x_W) - 4W_D(E) \frac{d}{dx_D} f(x_D)]$$

Woods-Saxon form factors:

$$f(x_i) = \frac{1}{1 + e^{x_i}}$$

where $x_i = (r - R_i)/a_i$ for nuclear radii and diffusivity parameters R_i and a_i

General form of phenomenological optical potential

$$V_{opt}(r,E) = V_C(r) - V_V(E)f(x_0) + (\frac{\hbar}{m_{\pi}c})^2 V_{SO}(E) \boldsymbol{\sigma} \cdot \boldsymbol{l} \frac{1}{r} \frac{d}{dr} f(x_{SO}) - i[W_V(E)f(x_W) - 4W_D(E) \frac{d}{dx_D} f(x_D)]$$

• Obtained by χ^2 minimization fitting scattering observables with radii and diffusivity parameters

Fig. 2: Potential well depths as a function of laboratory energy E for each of the terms above including an imaginary spin-orbit term, W_{SO} . (A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 213 (2003).)

- Ambiguity in fitting
 - Several sets of parameters can give a good fit
 - Heavily dependent on data sets used

- Ambiguity in fitting
 - Several sets of parameters can give a good fit
 - Heavily dependent on data sets used
- Cannot extend to exotic nuclei where no data are present

- Ambiguity in fitting
 - Several sets of parameters can give a good fit
 - Heavily dependent on data sets used
- Cannot extend to exotic nuclei where no data are present
- No reliable way to quantify uncertainty in phenomenological optical potentials

Microscopic approaches

- Microscopic optical potentials are models based off realistic nuclear structure inputs
- Can overcome shortcomings of phenomenological models (e.g. predictive power, uncertainty quantification)

Microscopic approaches

Microscopic nuclear structure has made enormous progress in

the past decade

Fig. 3: Binding energies for A-body nuclei within 5% of the experimental value calculated from *ab initio* methods. (Figure from G. Hagen.)

- Basic idea is to express the optical potential $\it U$ in terms of the NN $\it T$ -matrix and nuclear density
- Define projection operators P and Q which project onto elastic and inelastic channels, respectively
- Apply the spectator expansion to the optical potential

$$U = \sum_{i=1}^{A} \tau(0,i) + \sum_{i\neq j}^{A} \tau(0,i)QG_0(E)\tau(0,j) + \cdots$$

$$U = \sum_{i=1}^{A} \tau(0,i) + \sum_{i \neq j}^{A} \tau(0,i) QG_0(E)\tau(0,j) + \cdots$$

where

$$G_0(E) = \frac{1}{E - \mathcal{H}_0 + i\eta}$$
, \mathcal{H}_0 non-interacting projectile-nucleus Hamiltonian

$$\tau(0,i) = V(0,i) + V(0,i)G_0(E)Q\tau(0,i) = \hat{\tau}(0,i) - \hat{\tau}(0,i)G_0(E)P\tau(0,i)$$

$$\hat{\tau}(0,i) = V(0,i) + V(0,i)G_0(E)\hat{\tau}(0,i)$$

$$U = \sum_{i=1}^{A} \tau(0,i) + \sum_{i\neq j}^{A} \tau(0,i)QG_0(E)\tau(0,j) + \cdots$$

Ordered by projectile-target interactions

$$U \approx \sum_{i=1}^{A} \tau(0,i)$$

- Ordered by projectile-target interactions
- Take first term in spectator expansion

$$U \approx \sum_{i=1}^{A} \tau(0, i)$$

- Ordered by projectile-target interactions
- Take first term in spectator expansion
- Make impulse approximation
 - Assume $\hat{\tau}(0, i)$ is the free NN T-matrix
- Valid when the energy of the incident projectile is much larger than the binding energy of the struck nucleon (E > 100 MeV)

 Write optical potential in momentum-space in terms of the NN T-matrix and nuclear density

$$U(\boldsymbol{q},\boldsymbol{K};E) = \sum_{\alpha=p,n} \int d^3P \, \eta(\boldsymbol{P},\boldsymbol{q},\boldsymbol{K}) \hat{\tau}_{\alpha}(\boldsymbol{k},\boldsymbol{k}') \rho_{\alpha}(\boldsymbol{P} - \frac{(A-1)\boldsymbol{q}}{2A},\boldsymbol{P} + \frac{(A-1)\boldsymbol{q}}{2A})$$

where
$$q = k' - k$$
, $K = \frac{1}{2}(k + k')$, and

$$\boldsymbol{P} = \frac{1}{2}(\boldsymbol{p} + \boldsymbol{p}')$$

Fig. 4: Diagram of the single scattering term in the spectator expansion. (M. Burrows, et al., Phys. Rev. C **99**, 044603 (2019).)

 Write optical potential in momentum-space in terms of the NN T-matrix and nuclear density

$$U(\boldsymbol{q},\boldsymbol{K};E) = \sum_{\alpha=p,n} \int d^3P \, \eta(\boldsymbol{P},\boldsymbol{q},\boldsymbol{K}) \hat{\tau}_{\alpha}(\boldsymbol{k},\boldsymbol{k}') \rho_{\alpha}(\boldsymbol{P} - \frac{(A-1)\boldsymbol{q}}{2A},\boldsymbol{P} + \frac{(A-1)\boldsymbol{q}}{2A})$$

- η relates the NN zero-momentum frame to the NA zero-momentum frame
- ho_{lpha} represents the one-body density matrix

Fig. 4: Diagram of the single scattering term in the spectator expansion. (M. Burrows, et al., Phys. Rev. C **99**, 044603 (2019).)

- Multiple-scattering approach at first order describes experiments well for 100 < E < 200 MeV up to 60 degrees in center-of-mass frame
- At larger angles, three-nucleon forces (3NF's) become important
- Difficult to implement 3NF's

Fig. 5: Cross section for elastic proton scattering from ⁴He using the multiple-scattering approach. (M. Burrows, et al., Phys. Rev. C **99**, 044603 (2019).)

- The optical potential for scattering states is identified with single particle self-energy
- This approach calculates the nucleon self-energy in nuclear matter using interactions derived from chiral effective field theory (χ^{EFT})

- χ^{EFT} gives a low-energy description of the nuclear force involving proton, neutron, and pion degrees of freedom
- Nucleons interact via pion exchanges (long-range) and contact forces (short-range)
- Requires a regularization procedure to separate the high- and low-energy physics via a momentum-space cutoff

- Compute first- and second-order contributions to the nucleon self-energy Σ with effective potentials V_{2N}^{eff} derived from χ^{EFT}
- V_{2N}^{eff} consist of an NN potential with an effective, medium-dependent NN interaction (depends on 3NF)

Fig. 6: First- and second-order contributions to the nucleon self-energy where the solid lines indicate nucleon propagators and the wavy lines indicate the in-medium, antisymmetrized NN interaction. (T. R. Whitehead, et al., Phys. Rev. C **100**, 014601 (2019).)

- Optical potential given in terms of Σ
- Well-suited to describe low-energy scattering
- Momentum-space cutoff of the EFT limits the capability of this approach $E < 200 \; \text{MeV}$

Fig. 7: Cross section for elastic scattering of protons from calcium isotopes at several lab energies. Blue lines correspond to microscopic cross sections and green lines correspond to a phenomenological model. (T. R. Whitehead, et al., Phys. Rev. C **100**, 014601 (2019).)

Summary

 Nuclear optical potentials play an important role in modeling nuclear reactions

Summary

- Nuclear optical potentials play an important role in modeling nuclear reactions
- Phenomenological models are constrained by scattering data and work well where data are available
 - Ambiguity in fitting
 - Lack predictive power
 - No means for uncertainty quantification

Summary

- Nuclear optical potentials play an important role in modeling nuclear reactions
- Phenomenological models are constrained by scattering data and work well where data are available
 - Ambiguity in fitting
 - Lack predictive power
 - No means for uncertainty quantification
- Microscopic methods use NN interactions from nuclear structure as inputs in computing optical potentials
 - Extends to reactions involving rare isotopes
 - Offers a means to quantify theoretical uncertainty estimates

Outlook

- Currently microscopic approaches struggle in precision across kinematic ranges or nuclei
 - Can be used to guide phenomenological models
 - Necessary to understand what components are key in computing microscopic models

Outlook

- Currently microscopic approaches struggle in precision across kinematic ranges or nuclei
 - Can be used to guide phenomenological models
 - Necessary to understand what components are key in computing microscopic models
- Need to further understand uncertainty quantification in optical potentials to reliably compare different models

Outlook

- Currently microscopic approaches struggle in precision across kinematic ranges or nuclei
 - Can be used to guide phenomenological models
 - Necessary to understand what components are key in computing microscopic models
- Need to further understand uncertainty quantification in optical potentials to reliably compare different models
- Can use renormalization group (RG) methods to investigate scheme dependence in factorization of nuclear structure from the scattering probe

Extras

Nuclear scattering

- Projectile-nucleus scattering is a quantum many-body problem
 - An incident particle interacts with A nucleons (protons and neutrons) in a target nucleus
- Difficulties of nuclear many-body systems:
 - i. Often non-perturbative
 - ii. Computational difficulty of the problem drastically increases with α
- Optical potentials simplify the problem by giving an effective projectile-nucleus interaction that accounts for absorption of incident particles (inelastic scattering)

 Compute first- and second-order contributions to the nucleon self-energy

$$\Sigma_{2N}^{(1)}(q;k_f) = \sum_{i} \langle \boldsymbol{q}\boldsymbol{h}_i | V_{2N}^{eff} | \boldsymbol{q}\boldsymbol{h}_i \rangle n_i$$

$$\Sigma_{2N}^{(2a)}(q,\omega;k_f) = \frac{1}{2} \sum_{ijk}^{l} \frac{\left| \langle \boldsymbol{p}_i \boldsymbol{p}_k | V_{2N}^{eff} | \boldsymbol{q} \boldsymbol{h}_j \rangle \right|^2}{\omega + \epsilon_j - \epsilon_i - \epsilon_k + i\eta} \bar{n}_i n_j \bar{n}_k$$

The optical potential is given by

$$U_{N}(E; k_{f}^{p}, k_{f}^{n}) = V_{N}(E; k_{f}^{p}, k_{f}^{n}) + iW_{N}(E; k_{f}^{p}, k_{f}^{n})$$

$$V_{N}(E; k_{f}^{p}, k_{f}^{n}) = Re\Sigma_{N}(q, E(q); k_{f}^{p}, k_{f}^{n})$$

$$W_{N}(E; k_{f}^{p}, k_{f}^{n}) = \frac{M_{N}^{k*}}{M} Im\Sigma_{N}(q, E(q); k_{f}^{p}, k_{f}^{n})$$

where N= p, n and $\frac{M_N^{k*}}{M}=[1+\frac{M}{k}\frac{\partial}{\partial k}V_N\big(k,E(k)\big)]^{-1}$ defines the effective k-mass