Отчёт по заданию курса

«Суперкомпьютерное моделирование и технологии»

Моисеев Дмитрий Александрович

Октябрь 2025 — Декабрь 2025

Содержание

1	Математическая постановка задачи	2
2	Численный метод решения	2
3	Программная реализация (OpenMP)	3
4	Результаты OpenMP-версии	4
5	Заключение OpenMP	4

1 Математическая постановка задачи

В трёхмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z]$$

для $t \in (0,T]$ требуется найти решение волнового уравнения:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \Delta u.$$

Начальные условия:

$$u(x, y, z, 0) = \varphi(x, y, z),$$
 $\frac{\partial u}{\partial t}(x, y, z, 0) = 0.$

Граничные условия (вариант 3: x-1-й род, y- периодические, z-1-й род).

$$u(0, y, z, t) = u(L_x, y, z, t) = 0,$$

 $u(x, 0, z, t) = u(x, L_y, z, t),$
 $u(x, y, 0, t) = u(x, y, L_z, t) = 0.$

Аналитическое решение:

$$u(x, y, z, t) = \sin\left(\frac{\pi x}{L_x}\right) \sin\left(\frac{2\pi y}{L_y}\right) \sin\left(\frac{3\pi z}{L_z}\right) \cos(a_t t),$$

где

$$a_t = \frac{\pi}{2} \sqrt{\frac{1}{L_x^2} + \frac{1}{L_y^2} + \frac{9}{L_z^2}}, a^2 = \frac{1}{4}.$$

2 Численный метод решения

Используется равномерная сетка:

$$x_i = ih_x$$
, $y_j = jh_y$, $z_k = kh_z$, $t_n = n\tau$,

где $h_x = L_x/N, h_y = L_y/N, h_z = L_z/N.$

Разностная схема:

$$\frac{u_{i,j,k}^{n+1} - 2u_{i,j,k}^n + u_{i,j,k}^{n-1}}{\tau^2} = a^2 \Delta_h u_{i,j,k}^n,$$

где семиточечный аналог оператора Лапласа:

$$\Delta_h u_{i,j,k}^n = \frac{u_{i+1,j,k}^n - 2u_{i,j,k}^n + u_{i-1,j,k}^n}{h_x^2} + \frac{u_{i,j+1,k}^n - 2u_{i,j,k}^n + u_{i,j-1,k}^n}{h_y^2} + \frac{u_{i,j,k+1}^n - 2u_{i,j,k}^n + u_{i,j,k-1}^n}{h_z^2}.$$

Для начальных слоёв:

$$u_{i,j,k}^0 = \varphi(x_i, y_j, z_k), \qquad u_{i,j,k}^1 = u_{i,j,k}^0 + \frac{a^2 \tau^2}{2} \Delta_h \varphi(x_i, y_j, z_k).$$

3 Программная реализация (OpenMP)

Программа написана на C++11. Алгоритм решения задачи выглядит так:

1. Задание геометрии и параметров: выбрать $N, L_x = L_y = L_z = L, T, N_t$, скорость a (для $a^2 = 1/4$ берём a = 0.5); шаги $h_x = L_x/N$ (аналогично h_y, h_z), $\tau = T/N_t$. Проверить условие устойчивости (CFL) При увеличении N пропорционально увеличивать N_t для сохранения CFL:

$$a \tau \sqrt{\frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2}} \le 1.$$

- 2. Выделение памяти: создать три массива $(N+1)^3$ двойной точности для слоёв времени в кольцевом буфере u[3]; индексация $idx(i,j,k,N)=i(N+1)^2+j(N+1)+k$.
- 3. **Инициализация** u^0 : $u^0_{ijk} = u_{\text{ан}}(x_i, y_j, z_k, 0)$. Применить граничные условия (см. п. 5b).
- 4. Инициализация u^1 (2-й порядок по времени):

$$u_{ijk}^{1} = u_{ijk}^{0} + \frac{a^{2}\tau^{2}}{2} \Delta_{h} u_{\text{aH}}(x_{i}, y_{j}, z_{k}, 0),$$

где Δ_h — семиточечный лапласиан. Применить граничные условия.

- 5. Основной цикл по времени для $n=1,\ldots,N_t-1$:
 - (a) Обновление внутренних узлов $1 \le i, j, k \le N 1$ (явная схема):

$$u_{ijk}^{n+1} = 2u_{ijk}^n - u_{ijk}^{n-1} + a^2\tau^2 \Delta_h u_{ijk}^n.$$

(b) Граничные условия (вариант 3):

по y — nepuoduka (призрачные слои): $u_{i,0,k}=u_{i,N-1,k},\,u_{i,N,k}=u_{i,1,k};$ по x и z — $\mathcal{L}upuxne$ u=0 на $i\in\{0,N\}$ и $k\in\{0,N\}$. Порядок: сначала периодика по y, затем обнуление по x,z.

(с) Диагностика: вычислить погрешности

1

6. Вывод результатов: время работы, значения погрешностей.

Распараллеливание (OpenMP). Основные тройные циклы распараллелены:

```
// обновление слоя
#pragma omp parallel for collapse(3)
for (int i=1;i<N;++i) for (int j=1;j<N;++j) for (int k=1;k<N;++k) { ... }
// метрики ошибок
#pragma omp parallel for collapse(3) reduction(max:err_inf) { ... }
```

Число потоков задаётся переменной окружения OMP_NUM_THREADS.

Вычисление погрешности:

$$\varepsilon = \max_{i,j,k} |u_{i,j,k}^n - u_{\text{аналит}}(x_i, y_j, z_k, t_n)|.$$

4 Результаты ОрепМР-версии

Вариант 3

Эксперименты проводились на вычислительном кластере IBM Polus. Размеры сетки: $N=128,256.\ L=1, T=0.001, N_t=20$ Время выполнения усреднялось по 5 запускам для каждой конфигурации.

N потоков	N^3	T (сек)	S (ускорение)	δ (погрешеость)
1	128^{3}	4.635001	1.00	1e-04
2	128^{3}	2.522893	1.84	1e-04
4	128^{3}	1.240660	3.74	1e-04
8	128^{3}	0.928058	4.99	1e-04
16	128^{3}	0.813130	5.70	1e-04
32	128^{3}	0.554325	8.36	1e-04
1	256^{3}	53.312445	1.00	2e-04
2	256^{3}	17.041407	3.13	2e-04
4	256^{3}	10.245951	5.20	2e-04
8	256^{3}	6.239249	8.54	2e-04
16	256^{3}	4.918441	10.84	2e-04
32	256^{3}	3.356135	15.89	2e-04

5 Заключение ОрепМР

Увеличение количества потоков приводит к существенному сокращению времени вычислений. Полученное ускорение близко к линейному до 8 потоков, что подтверждает эффективность распараллеливания. Отклонение от идеального ускорения объясняется накладными расходами на управление потоками и ограничениями подсистемы памяти (особенно заметными при 16–32 потоках).

Для более крупной задачи (256^3) масштабирование лучше на всём диапазоне потоков: ускорение достигает порядка $S\approx 16$ на 32 потоках (эффективность около 50%), а на 2–8 потоках наблюдается умеренное суперлинейное ускорение за счёт улучшения кэшлокальности.

Отдельно стоит обратить внимание, что оценка погрешности в норме L^{∞} практически не зависит от числа потоков, но при переходе к более тонкой сетке может выглядеть больше. Это связано с эффектом экстремума (большее число узлов повышает вероятность «поймать» худшую точку) и накоплением фазовой ошибки.