<u>PYTHON – INTERMEDIATE TO ADVANCED</u> <u>COURSE OUTLINE (4 Days)</u>

DURATION: 32 Hours

LAB SETUP DETAILS

OPERATING SYSTEM: Windows 7/10 or Any flavours of UNIX (Linux, HP-UX, Ubuntu, Solaris or MAC OS). PYTHON Supports Multiplatform.

RAM: 4GB RAM

HARD DISK SPACE: 100GB

SOFTWARES:

NOTE: In Flavours of UNIX, Python v3 will be installed by default and the packages will be installed during the training session.

- a) Python v3.8 or higher http://www.python.org/downloads
- b) Anaconda Python http://www.continuum.io/downloads

PRE-REQUISITES

The Trainee should have undergone 'PYTHON – BASICS TO INTERMEDIATE' Training.

Objective(s) Unit

DAY 1

•	Iterators				

What is Generator

Generator Syntax

Iterators and Generators

- Communication with Generator
- Iterables Vs Iterators
- Generators in the Standard Library
- When To Write Generators

Design Patterns OVerview

Singleton Factory

Structural

- **Understanding Decorators**
- **Decorator Syntax**
- Where Decorators are used
 - Why You Should Write Decorator
 - When To Write Decorators
 - Writing Decorators
 - Yield as consumer

Co-routiine

Decorators

- Python co-routine to process log
- solving producer and consumer problems
 - **Defining the Class**
 - The '__init__' and '__str__' methods
 - Creating the Object
 - The 'self' parameter
 - **Private and Public Attributes**
 - Concept of Encapsulation
 - Concept of Polymorphism
 - Concept of Inheritance
 - Types of Inheritance Single, Multiple, Multilevel and Hierarchial
 - Magic Methods
 - Method and Operator Overloading

Day 2

Data Structures

Classes and Objects

- linked lists,
- trees
- graphs,

- and their associated algorithms.
- Why use threads?
- Threads are different
- Variables are shared
- Python threads modules
- The threading module
- The queue module
- The python thread manager
- Debugging threaded programs
- About GIL (Global Interpreter Lock)
- Why socket
- Create socket
- Server and Client communication
- Send and Receive data
- Transfer file contents using sockets
- Using requests
- Get and Post data using request librarary
- using SSL communication in requests library Web scrapping using Beautiful soup
- Using the scrapped contents

Day 3

- Overview
- Pandas Data Structure
- Hierarchical Indexing
- Querying Data in Pandas
- Pandas Data Aggregation
- Pandas Data Merging with Data Frame
- Overview
- Ndarray
- **Basic Operations**
- Indexing, Slicing, and Iterating
 - Conditions and Boolean Arrays
 - **Shape Manipulation**
 - Array Manipulation
 - **General Concepts**

Scraping

Consume Rest API/Web

Threads and

Scoket

Multiprocesses

Pandas

Numpy

- Structured Arrays
- Reading and Writing Array Data on Files

Scikit-Learn • •	Overview Standardizing Data Normalizing Data Performing Linear Regression Supervised Learning with Scikit-Learn
Python DataScience • •	Linear Regression Logistic Regression K Means Support Vector Machines Decision Tree
Day 4 •	
• Neura Networks	Introduction to Neural Networks Introduction to Perceptron Neural Network Activation Functions Cost Functions Gradient Descent Backpropagation Manual Neural Network Classification Task
Convolution Neural networks	Introduction to Convolutional Neural Network Section CNN Theory CNN Project
TensoiFlow	Introduction to TensorFlow TensorFlow Graphs Variables and Placeholders TensorFlow - A Neural Network TensorFlow Regression Example TensorFlow Classification Example