LP06: Premier principe de la thermodynamique

Thibault Hiron-Bédiée

Niveau : Première année de CPGE

Prérequis : Gaz parfait, travail mécanique, notion de système et d'équilibre thermodynamique, transformations classiques en thermodynamique.

Extrait du programme de CPGE

Notions et contenus	Capacités exigibles
Thème 3 : l'énergie — conversions et transferts (PCSI)	
3.3. Premier principe. Bilans d'énergie	
Premier principe de la thermodynamique.	Définir un système fermé et établir pour ce système un bi- lan énergétique faisant intervenir travail et transfert ther- mique.
	Utiliser le premier principe de la thermodynamique entre deux états voisins.
	Exploiter l'extensivité de l'énergie interne.
	Distinguer le statut de la variation de l'énergie interne du statut des termes d'échange.
	Calculer le transfert thermique sur un chemin donné connaissant le travail et la variation de l'énergie interne.
Enthalpie d'un système. Capacité thermique	Exprimer le premier principe sous forme de bilan d'en-
à pression constante dans le cas du gaz parfait	thalpie dans le cas d'une transformation monobare avec
et d'une phase condensée incompressible et	équilibre mécanique dans l'état initial et dans l'état final.
indilatable.	Exprimer l'enthalpie $H_m(T)$ du gaz parfait à partir de l'énergie interne.
	Justifier que l'enthalpie H_m d'une phase condensée peu compressible et peu dilatable peut être considérée comme une fonction de l'unique variable T .
	Citer l'ordre de grandeur de la capacité thermique mas-
	sique de l'eau liquide.
Enthalpie associée à une transition de phase :	Exploiter l'extensivité de l'enthalpie et réaliser des bi-
enthalpie de fusion, enthalpie de vaporisation,	lans énergétiques en prenant en compte des transitions
enthalpie de sublimation.	de phases.
	Mettre en œuvre un protocole expérimental
	de mesure d'une grandeur thermodynamique
	énergétique (capacité thermique, enthalpie de fu-
	sion, etc.).

1 Description des transformations thermodynamiques d'un système

1.1 Échanges d'énergie

Caractéristiques des échanges cf Dunod 2021 PCSI, Chap 23, 2. (p 879)

1.1.1 Travail mécanique

Rappel de la définition du travail vu en mécanique.

Définition des forces de pression et de leur travail (Dunod suite de ce qui précède)

1.1.2 Transfert thermique

Définition d'après le Dunod Chap 23, 3.

1.2 Énergie d'un système

Évoquer rapidement l'énergie cinétique déjà vue en mécanique. Présenter l'énergie interne d'un système macroscopiquement au repos (cf Dunod Chap 23, 5. p. 839)

1.3 Variables d'état, grandeurs d'échange

Meyer p. 150 pour la différence. Aussi, définitions au 3.2 Chap 22 du Dunod PCSI

2 Premier principe de la thermodynamique

2.1 Énoncé

Conservation de l'énergie. Expression sur l'ensemble d'une transformation.

Donner aussi l'expression différentielle.

Dunod Chap 24, 1.2. p. 900

2.2 Une nouvelle fonction d'état : l'enthalpie

Définition et expression différentielle.

2.3 Capacités thermiques d'un corps

Définition globale de la notion de capacité thermique.

Expliciter les capacités thermiques à volume et pression constante à partir des différentielles de U et H.

3 Applications

3.1 Mesure d'une capacité thermique à pression constante

Si temps OK, présentation du principe de la calorimétrie (source... Dunod éventuellement pour le vocabulaire et être sûr de ne rien oublier avec le stress...)

Cette partie et la suivante se trouvent dans le Dunod, Chap 24, 3.

3.2 Mesure d'une enthalpie de changement d'état

Définition de l'enthalpie de changement d'état, justifier pourquoi c'est une enthalpie. On ne remonte pas à la relation de Clapeyron.

Manip: mesure de l'enthalpie de fusion du diazote.

3.3 Détente de Joule-Gay Lussac

On trouve une présentation succinte p. 94 du Perez (chap 6, IV.3). L'enjeu ici est de bien présenter le système.