Statistiques mathématiques : cours 5

Guillaume Lecué

16 septembre 2016

Aujourd'hui

Comparaison d'estimateurs

Optimalité de l'EMV

Borne de Cramer-Rao

Approche non-asymptotique de comparaison d'estimateurs

Comparaison d'estimateurs dans les modèles paramétriques dominés

Modèle d'échantillonnage dominé paramétrique : on observe

$$X_1,\ldots,X_n \overset{i.i.d.}{\sim} \mathbb{P}_{\theta}, \ \theta \in \Theta \subset \mathbb{R}^d$$

où
$$\mathbb{P}_{\theta} = f(\theta,.).\mu$$

Plusieurs estimateurs : moments, Z- et M-estimateurs, EMV

Question: Quel estimateur choisir? comment comparer des estimateurs?

Vitesse de convergence et régions de confiance

 $\widehat{ heta}_n$ estimateur de heta. Il y a deux types de résultats :

▶ vitesse de convergence non-asymptotique : à *n* fixé

$$\mathbb{E}\left[\|\widehat{\theta}_n - \theta\|^2\right] \le c_n(\theta)^2, \text{ (où } c_n(\theta) \downarrow 0)$$

• vitesse de convergence asymptotiques : quand $n \longrightarrow +\infty$,

$$v_n(\widehat{\theta}_n - \theta) \stackrel{d}{\longrightarrow} Z_{\theta}, \ (\text{où } v_n^{-1} \downarrow 0)$$

Ces deux résultats permettent de construire des intervalles / régions de confiance (non-asymptotique / asymptotique).

<u>Idée</u> : La taille de ces régions de confiance caractérise la qualité d'estimation de θ par $\widehat{\theta}_n$

Régions de confiance : définition formelle

Définition

Dans le modèle d'échantillonnage $\{\mathbb{P}_{\theta}: \theta \in \Theta\}$ pour $\Theta \subset \mathbb{R}^d$. Soit $\alpha \in (0,1)$. Pour tout $n \geq 1$, on considère un sous-ensemble observable $\mathcal{C}_{n,\alpha} = \mathcal{C}_{n,\alpha}(X_1,\ldots,X_n)$ de \mathbb{R}^d . $\mathcal{C}_{n,\alpha}$ est appelé :

1. région de confiance de niveau $1-\alpha$ quand

$$\forall \theta \in \Theta : \mathbb{P}_{\theta} \left[\theta \in \mathcal{C}_{n,\alpha} \right] \geq 1 - \alpha$$

2. région de confiance de niveau asymptotique $1-\alpha$ quand

$$\forall \theta \in \Theta : \liminf_{n \to \infty} \mathbb{P}_{\theta} \left[\theta \in \mathcal{C}_{n,\alpha} \right] \geq 1 - \alpha.$$

Comparaison d'estimateurs

Etant donné un modèle $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ (pour des données d'échantillonnage) comment construire le meilleur estimateur? Dans quel sens?

- Intuitivement: $\widehat{\theta}_n$ fournit une précision d'estimation de θ optimale si on peut lui associer une région de confiance de longueur / volume minimale (à un niveau $1-\alpha$ donné).
- ▶ Différence entre point de vue asymptotique et non-asymptotique. Dans ce cours, nous étudions le point de vue asymptotique :
 - vitesse de convergence asymptotique
 - variance asymptotique

et on donne une brève initiation à la notion d'optimalité en non-asymptotique.

Approche asymptotique

<u>Hypothèse</u> : $\theta \in \Theta \subset \mathbb{R}$ et on se restreint aux <u>estimateurs</u> $\widehat{\theta}_n$ <u>asymptotiquement normaux</u> :

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, v(\theta))$$

(théorèmes limites pour les Z-,M-estimateurs, EMV, plug-in) Intuitivement : on a

$$\widehat{ heta}_n pprox heta + \sqrt{rac{oldsymbol{v}(heta)}{n}} \mathcal{N}(0,1)$$

Donc la variance asymptotique mesure :

- 1. I'''incertitude'' de l'estimation de θ par $\widehat{\theta}_n$
- 2. la taille des région de confiance asymptotique

efficacité asymptotique

Définition

Soit $\widehat{\theta}_{n,1}$ et $\widehat{\theta}_{n,2}$ deux estimateurs asymptotiquement normaux de variance asymptotique respectives $v_1(\theta)$ et $v_2(\theta)$. On dit que $\widehat{\theta}_{n,1}$ est plus efficace que $\widehat{\theta}_{n,2}$ quand :

$$v_1(\theta) \le v_2(\theta)$$
 pour tout $\theta \in \Theta$

Un estimateur est asymptotiquement efficace s'il n'éxiste pas d'autre estimateur (dans la classe considérée) plus efficace que lui.

- on ne compare que les estimateurs asymptotiquement normaux (de vitesse de convergence en $1/\sqrt{n}$)
- lacktriangle cela exclut les estimateurs pathologique comme $\widehat{ heta}_n= heta_0$

Efficacité asymptotique de l'EMV

Rappels : régularité d'un modèle statistique et information

► <u>Cadre</u> : modèle d'échantillonnage dominé paramétrique

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathbb{P}_{\theta} = f(\theta, .).\mu \text{ pour } \theta \in \Theta \subset \mathbb{R}$$

► Hypothèse : la quantité

$$\mathbb{I}(heta) = \mathbb{E}_{ heta} \left[\left(\partial_{ heta} \log f(heta, X_1)
ight)^2
ight]$$

est bien définie. C'est l'information de Fisher du modèle $\big\{\,\mathbb{P}_{\theta}, \theta \in \Theta\big\}$ en $\theta.$

Définition

La famille de densités $\{f(\theta,\cdot), \theta \in \Theta\}$, par rapport à la mesure dominante μ , et $\Theta \subset \mathbb{R}$ ouvert, est régulière si

- $\{f(\theta,\cdot)>0\}=\{f(\theta',\cdot)>0\},\ \mu$ -p.p. $\forall \theta,\theta'\in\Theta$
- μ -p.p. $\theta \mapsto f(\theta, \cdot)$, $\theta \mapsto \log f(\theta, \cdot)$ sont \mathcal{C}^2
- $\blacktriangleright \ \forall \theta \in \Theta, \exists \mathcal{V}_{\theta} \subset \Theta \ t.q. \ pour \ a \in \mathcal{V}_{\theta}$

$$|\partial_a^2 \log f(a,x)| + |\partial_a \log f(a,x)| + (\partial_a \log f(a,x))^2 \le g(x)$$

$$où \int_{\mathbb{R}} g(x) \sup_{a \in \mathcal{V}(\theta)} f(a, x) \mu(dx) < +\infty$$

L'information de Fisher est non-dégénérée :

$$\forall \theta \in \Theta, \ \mathbb{I}(\theta) > 0.$$

Résultat principal

Theorem

Dans le modèle d'échantillonnage dominé (pour $\Theta \subset \mathbb{R}$) tel que $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ est régulier on a :

► l'EMV est asymptotiquement normal :

$$\sqrt{n} \left(\widehat{\theta}_{\mathsf{n}}^{\;\mathsf{mv}} - \theta \right) \overset{d}{\longrightarrow} \mathcal{N} \left(0, \frac{1}{\mathbb{I}(\theta)} \right)$$

Si $\widehat{\theta}_n$ est un Z-estimateur associé à ϕ "régulière", càd tel que $\widehat{\theta}_n$ est a.n. de variance asymptotique

$$v(heta) = rac{\mathbb{E}_{ heta}[\phi(heta,X)^2]}{ig(\mathbb{E}_{ heta}[\partial_{ heta}\phi(heta,X)]ig)^2} \; extit{alors} egin{equation} orall heta \in \Theta, \;\; v(heta) \geq rac{1}{\mathbb{I}(heta)} \end{equation}$$

Donc l'EMV est <u>asymptotiquement efficace</u> parmi les Z-estimateurs réguliers

Preuve de l'éfficacité asymptotique de l'EMV parmi les Z-estimateurs réguliers

Soit $\widehat{\theta}_n$ un Z-estimateur régulier associé à la fonction $\phi,$ alors, sa variance asymptotique vaut

$$u_{\phi}(\theta) = \frac{\mathbb{E}_{\theta}\left[\phi(\theta, X)^{2}\right]}{\left(\mathbb{E}_{\theta}\left[\partial_{\theta}\phi(\theta, X)\right]\right)^{2}}$$

A montrer : pour toute fonction ϕ (regulière) :

$$\frac{\mathbb{E}_{\theta}\left[\phi(\theta,X)^{2}\right]}{\left(\mathbb{E}_{\theta}\left[\partial_{\theta}\phi(\theta,X)\right]\right)^{2}}\geq\frac{1}{\mathbb{I}(\theta)}$$

Preuve de l'inégalité (1/2)

▶ Par construction de ϕ , on a $\forall \theta \in \Theta, \mathbb{E}_{\theta} \phi(\theta, X) = 0$ alors

$$F'(\theta) = 0$$
 où $F(\theta) = \mathbb{E}_{\theta} \left[\phi(\theta, X) \right] = 0$

càd

$$0 = \int_{\mathbb{R}} \left[\partial_{\theta} \phi(\theta, x) f(\theta, x) + \phi(\theta, x) \partial_{\theta} f(\theta, x) \right] \mu(dx)$$
$$= \int_{\mathbb{R}} \left[\partial_{\theta} \phi(\theta, x) f(\theta, x) + \phi(\theta, x) \partial_{\theta} \log f(\theta, x) f(\theta, x) \right] \mu(dx)$$

Conclusion

$$oxed{\mathbb{E}_{ heta}\left[\partial_{ heta}\phi(heta, X)
ight] = - \mathbb{E}_{ heta}\left[\phi(heta, X)\partial_{ heta}\log f(heta, X)
ight]}$$

Preuve de l'inégalité (2/2)

▶ On a

$$\mathbb{E}_{\theta} \left[\partial_{\theta} \phi(\theta, X) \right] = - \mathbb{E}_{\theta} \left[\phi(\theta, X) \partial_{\theta} \log f(\theta, X) \right]$$

► Cauchy-Schwarz :

$$\left(\mathbb{E}_{\theta}\left[\partial_{\theta}\phi(\theta,X)\right]\right)^{2} \leq \mathbb{E}_{\theta}\left[\phi(\theta,X)^{2}\right]\mathbb{E}_{\theta}\left[\left(\partial_{\theta}\log f(\theta,X)\right)^{2}\right],$$

c'est-à-dire

$$oxed{v_{\phi}(heta) = rac{\mathbb{E}_{ heta}\left[\phi(heta, X)^2
ight]}{\left(\mathbb{E}_{ heta}\left[\partial_{ heta}\phi(heta, X)
ight]
ight)^2} \geq rac{1}{\mathbb{I}(heta)}}$$

Information de Fisher et résultats non-asymptotiques : borne de Cramer-Rao

Borne de Cramer-Rao

Soit Z une observation de l'expérience $(\mathfrak{Z}, \mathcal{Z}, \{\mathbb{P}_{\theta} : \theta \in \Theta\})$ où

- 1. Θ est un ouvert de \mathbb{R}
- 2. $\mathbb{P}_{\theta} = f(\theta, \cdot).\mu$ (modèle dominé par μ)
- 3. le modèle $\{\mathbb{P}_{\theta}:\theta\in\Theta\}$ est régulier et on note l'information de Fisher par :

$$\mathbb{I}(\theta) = \mathbb{E}_{\theta} \left[(\partial_1 \log f(\theta, Z))^2 \right]$$

Alors pour tout estimateur $\hat{ heta}$, on a

$$\mathbb{E}_{ heta}\left(\hat{ heta} - heta
ight)^2 \geq rac{(1 + b'(heta))^2}{\mathbb{I}(heta)} + b(heta)^2$$

où $b(\theta) = \mathbb{E}_{\theta} \, \hat{\theta} - \theta$ est le bias de $\hat{\theta}$.

En particulier, si l'estimateur $\hat{\theta}$ est sans biais alors son risque quadratique est plus grand que $\mathbb{I}(\theta)^{-1}$.

Mise en perspective de Cramer-Rao

La résultat de l'efficacité asymptotique de l'EMV parmi les Z-estimateurs réguliers dit que si $\widehat{\theta}_n$ est un Z-estimateur régulier alors

$$\widehat{ heta}_n pprox heta + \sqrt{rac{v_\phi(heta)}{n}} \mathcal{N}(0,1) \; ext{où} \; v_\phi(heta) \geq rac{1}{\mathbb{I}(heta)}$$

alors, intuitivement,

$$\mathbb{E}_{\theta}\left(\widehat{\theta}_{n} - \theta\right)^{2} \approx \frac{\nu_{\phi}(\theta)}{n} \geq \frac{1}{n\mathbb{I}(\theta)} = \frac{1}{\mathbb{I}(\theta|\mathcal{E}^{n})}$$

On retrouve donc la version "asymptotique" de Cramer-Rao pour les Z-estimateurs réguliers (qui sont "asymptotiquement sans biais" car consistant).

 $\underline{\text{Rem.}}$: Il y a équivalence entre le principe d'incertitude d'Heisenberg et la borne de Cramer-Rao.

Preuve de Cramer-Rao

On note:

- $ightharpoonup R_{ heta}(\hat{ heta}) = \mathbb{E}_{ heta}\left(\hat{ heta} heta
 ight)^2$: le risque quadratique de $\hat{ heta}$
- $lackbox{b}(heta) = \mathbb{E}_{ heta}\,\hat{ heta} heta$: le biais de $\hat{ heta}$
- $\ell(\theta, z) = \log f(\theta, z)$: le score de θ en z

Montrer que :

- 1. $R_{\theta}(\hat{\theta}) = b(\theta)^2 + \text{var}_{\theta}(\hat{\theta})$ (décomposition bias/variance)
- 2. $\mathbb{E}_{\theta} \partial_{\theta} \ell(\theta, Z) = 0$
- 3. $b'(\theta) = \mathbb{E}_{\theta}[\hat{\theta}\partial_{\theta}\ell(\theta, Z)] 1$
- 4. $1 + b'(\theta) = \mathbb{E}_{\theta} \left[(\hat{\theta} \mathbb{E}_{\theta} \, \hat{\theta}) \partial_{\theta} \ell(\theta, Z) \right]$
- 5. en déduire la borne de Cramer-Rao

Approche non-asymptotique de comparaison d'estimateurs

Risque quadratique

Définition

Soit Z une observation de l'expérience $(\mathfrak{Z}, \mathcal{Z}, \{\mathbb{P}_{\theta} : \theta \in \Theta\})$ pour $\Theta \subset \mathbb{R}$.

1. Soit $\hat{\theta} = \hat{\theta}(Z)$ un estimateur. On appelle risque quadratique de $\hat{\theta}$ au point $\theta \in \Theta$:

$$\mathcal{R}(\widehat{\theta}_n, heta) = \mathbb{E}_{ heta}\left[\left(\widehat{ heta} - heta
ight)^2
ight]$$

2. Soient $\hat{\theta}_1, \hat{\theta}_2$ deux estimateurs. On dit que $\hat{\theta}_1$ est préférable au sens du risque quadratique à $\hat{\theta}_2$ quand

$$\forall \theta \in \Theta, \ \mathcal{R}(\widehat{\underline{\theta}_1}, \theta) \leq \mathcal{R}(\widehat{\underline{\theta}_2}, \theta)$$

Absence d'optimalité (1/3)

$$\forall \theta \in \Theta, \ \mathcal{R}\big(\theta^\star, \theta\big) \leq \inf_{\widehat{\theta}} \mathcal{R}\big(\,\widehat{\theta}_n, \theta\big) \, \ref{eq:theta_n}.$$

Proposition

 $Si \Theta = \{\theta_1, \theta_2\}$ et s'il n'existe pas d'événement observable $A \in \mathcal{Z}$ tel que, simultanément :

$$\mathbb{P}_{\theta_1}\left[A
ight] = 0 \;\; ext{et} \;\; \mathbb{P}_{\theta_2}\left[A
ight] = 1,$$

(on dit que \mathbb{P}_{θ_1} et \mathbb{P}_{θ_2} ne sont pas étrangères), alors il n'existe pas d'estimateur optimal

Absence d'optimalité (2/3)

▶ Preuve : Pour tout estimateur θ^* , on a

$$\max \left\{ \mathcal{R}(\boldsymbol{\theta^{\star}}, \theta_1), \mathcal{R}(\boldsymbol{\theta^{\star}}, \theta_2) \right\} > 0 \tag{\star}$$

Supposons θ^* estimateur optimal et $\mathcal{R}(\theta^*, \theta_1) > 0$. Alors $\hat{\theta}^{\text{trivial}} := \theta_1$ vérifie

$$0 = \mathcal{R}(\hat{ heta}^{ ext{trivial}}, heta_1) < \mathcal{R}(heta^{\star}, heta_1)$$
 contradiction!

ceci contredit l'optimalité de θ^{\star}

Absence d'optimalité (3/3)

Preuve de (*) : si
$$\mathcal{R}(\theta^{\star}, \theta_1) = \mathcal{R}(\theta^{\star}, \theta_2) = 0$$
, alors
$$\theta^{\star} = \theta_1 \ \mathbb{P}_{\theta_1} - \text{p.s.} \quad \text{et} \quad \theta^{\star} = \theta_2 \ \mathbb{P}_{\theta_2} - \text{p.s.}.$$

Soient

$$A = \{z \in \mathfrak{Z} : \theta^*(z) = \theta_1\} \text{ et } B = \{z \in \mathfrak{Z} : \theta^*(z) = \theta_2\}$$

Alors $\mathbb{P}_{\theta_1}[A] = 1$ et donc $\mathbb{P}_{\theta_2}[A] > 0$. Aussi, $\mathbb{P}_{\theta_2}[B] = 1$. Donc $A \cap B \neq \emptyset$. Alors il existe $z_0 \in \mathfrak{F}$ tel que $\theta_1 = \theta^*(z_0) = \theta_2$: contradiction!

Notions d'optimalité non-asymptotique

▶ Différentes notions existent. Deux exemples extrêmes :

Définition (Admissibilité et critère minimax)

Un estimateur θ* est admissible s'il n'existe pas d'estimateur θ̂ préférable à θ* càd tel que, pour un point θ₀ ∈ Θ,

$$\mathcal{R}(\hat{\theta}, \theta_0) < \mathcal{R}(\theta^*, \theta_0).$$

• Un estimateur θ^* est minimax si

$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathcal{R}(\boldsymbol{\theta}^{\star}, \boldsymbol{\theta}) = \inf_{\boldsymbol{\hat{\theta}}} \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathcal{R}(\boldsymbol{\hat{\theta}}, \boldsymbol{\theta})$$

- ▶ Admissibilité : permet d'éliminer des estimateurs absurdes (mais pas tous : $\widehat{\theta}_n = \theta_0$)
- Minimaxité : notion très robuste mais conservatrice

exemple : propriété minimax de la moyenne empirique

$$\underline{\mathsf{cadre}}: X_1, \dots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, 1) \ \mathsf{pour} \ \theta \in \mathbb{R}$$

1. la moyenne empirique \bar{X}_n est sans biais et vérifie :

$$\mathcal{R}(\bar{X}_n,\theta)=\frac{1}{n}$$

2. soit $\widehat{\theta}_n$ un estimateur sans biais; par Cramer-Rao, on a :

$$\mathcal{R}(\widehat{\theta}_n, heta) \geq \frac{1}{n}$$

La moyenne empirique est donc minimax parmi les estimateurs sans biais

