4. Subgradients

- definition
- subgradient calculus
- optimality conditions via subgradients
- directional derivative

Basic inequality

recall basic inequality for convex differentiable f:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

- ullet first-order approximation of f at x is global lower bound
- $\nabla f(x)$ defines non-vertical supporting hyperplane to $\operatorname{\mathbf{epi}} f$ at (x, f(x))

$$\begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \forall (y, t) \in \mathbf{epi} f$$

(epi f denotes the epigraph of f). what if f is not differentiable?

Subgradient of a function

definition: g is a subgradient of a convex function f at $x \in \operatorname{dom} f$ if

$$f(y) \ge f(x) + g^T(y - x) \quad \forall y \in \operatorname{dom} f$$

 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

properties

- $f(x) + g^{T}(y x)$ is a global lower bound on f
- g defines non-vertical supporting hyperplane to $\mathbf{epi} f$ at (x, f(x))

$$\begin{bmatrix} g \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \forall (y, t) \in \mathbf{epi} f$$

ullet if f is convex and differentiable, then $\nabla f(x)$ is a subgradient of f at x

applications

- algorithms for nondifferentiable convex optimization
- optimality conditions, duality for nondifferentiable problems

Example

$$f(x) = \max\{f_1(x), f_2(x)\}\$$

 f_1 , f_2 convex and differentiable; $x \in \mathbf{R}$

- subgradients at x_0 form line segment $[\nabla f_1(x_0), \nabla f_2(x_0)]$
- if $f_1(\hat{x}) > f_2(\hat{x})$, subgradient of f at \hat{x} is $\nabla f_1(\hat{x})$
- if $f_1(\hat{x}) < f_2(\hat{x})$, subgradient of f at \hat{x} is $\nabla f_2(\hat{x})$

Subdifferential

subdifferential of f at $x \in \operatorname{\mathbf{dom}} f$ is the set of all subgradients of f at x

notation: $\partial f(x)$

properties

• $\partial f(x)$ is a closed convex set (possibly empty)

proof: $\partial f(x)$ is an intersection of halfspaces

$$\partial f(x) = \left\{ g \mid f(x) + g^T(y - x) \le f(y) \ \forall y \in \operatorname{dom} f \right\}$$

• if $x \in \operatorname{int} \operatorname{dom} f$ then $\partial f(x)$ is nonempty and bounded

Examples

absolute value f(x) = |x|

Euclidean norm $f(x) = ||x||_2$

$$\partial f(x) = \frac{1}{\|x\|_2} x$$
 if $x \neq 0$, $\partial f(x) = \{g \mid \|g\|_2 \leq 1\}$ if $x = 0$

Monotonicity

subdifferential of a convex function is a monotone operator:

$$(u-v)^T(x-y) \ge 0 \quad \forall u \in \partial f(x), \ v \in \partial f(y)$$

proof: by definition

$$f(y) \ge f(x) + u^{T}(y - x), \qquad f(x) \ge f(y) + v^{T}(x - y)$$

combining the two inequalities shows monotonicity

Examples of non-subdifferentiable functions

the following functions are not subdifferentiable at x=0

• $f: \mathbb{R} \to \mathbb{R}$, $\operatorname{dom} f = \mathbb{R}_+$

$$f(x) = 1$$
 if $x = 0$, $f(x) = 0$ if $x > 0$

• $f: \mathbb{R} \to \mathbb{R}$, $\operatorname{dom} f = \mathbb{R}_+$

$$f(x) = -\sqrt{x}$$

the only supporting hyperplane to epi f at (0, f(0)) is vertical

Subgradients and sublevel sets

if g is a subgradient of f at x, then

$$f(y) \le f(x) \implies g^T(y-x) \le 0$$

nonzero subgradients at \boldsymbol{x} define supporting hyperplanes to sublevel set

$$\{y \mid f(y) \le f(x)\}$$

Outline

- definition
- subgradient calculus
- optimality conditions via subgradients
- directional derivative

Subgradient calculus

weak subgradient calculus: rules for finding one subgradient

- sufficient for many algorithms for nondifferentiable convex optimization
- ullet if you can evaluate f(x), you can usually compute a subgradient

strong subgradient calculus: rules for finding $\partial f(x)$ (all subgradients)

- some algorithms, optimality conditions, etc., need whole subdifferential
- can be quite complicated

we will assume that $x \in \mathbf{int} \operatorname{dom} f$

Some basic rules

(suppose all f_i are convex unless otherwise stated)

differentiable functions: $\partial f(x) = {\nabla f(x)}$ if f is differentiable at x

nonnegative combination

if $h(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x)$ with $\alpha_1, \alpha_2 \geq 0$, then

$$\partial h(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x)$$

(r.h.s. is addition of sets)

affine transformation of variables: if h(x) = f(Ax + b), then

$$\partial h(x) = A^T \partial f(Ax + b)$$

Pointwise maximum

$$f(x) = \max\{f_1(x), \dots, f_m(x)\}\$$

define $I(x) = \{i \mid f_i(x) = f(x)\}$, the 'active' functions at x

weak result: to compute a subgradient at x,

choose any $k \in I(x)$, and any subgradient of $f_k(x)$

strong result

$$\partial f(x) = \mathbf{conv} \bigcup_{i \in I(x)} \partial f_i(x)$$

- ullet convex hull of the union of subdifferentials of 'active' functions at x
- if f_i 's are differentiable, $\partial f(x) = \mathbf{conv}\{\nabla f_i(x) \mid i \in I(x)\}$

example

$$f(x) = \max_{i=1,\dots,m} a_i^T x + b_i$$

the subdifferential is a polyhedron $\partial f(x) = \mathbf{conv}\{a_i \mid i \in I(x)\}$

example

$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^n} s^T x$$

Pointwise supremum

$$f(x) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(x)$$

with $f_{\alpha}(x)$ convex for every α

weak result: to find a subgradient at x,

- find any β for which $f(x) = f_{\beta}(x)$ (assuming supremum is achieved)
- choose any $g \in \partial f_{\beta}(x)$

(partial) strong result: define $\mathcal{I}(x) = \{\alpha \in \mathcal{A} \mid f_{\alpha}(x) = f(x)\}$

$$\mathbf{conv} \bigcup_{\alpha \in \mathcal{I}(x)} \partial f_{\alpha}(x) \subseteq \partial f(x)$$

equality requires some technical conditions

Example: maximum eignenvalue

$$f(x) = \lambda_{\max}(A(x)) = \sup_{\|y\|_2=1} y^T A(x)y$$

where
$$A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$$
, $A_i \in S^k$

how to find *one* subgradient at \hat{x} ?

- choose any unit eigenvector y associated with $\lambda_{\max}(A(\hat{x}))$
- the gradient of $y^T A(x) y$ at \hat{x} is a subgradient of f:

$$(y^T A_1 y, \dots, y^T A_n y) \in \partial f(\hat{x})$$

similarly can find a subgradient of $\|A(x)\| = \sigma_{\max}(A(x))$

Expectation

$$f(x) = \mathbf{E} h(x, u)$$

with h convex in x for each u, expectation is over random variable u weak result: to find a subgradient at x

- for each u, choose any $g_u \in \partial_x h(x,u)$ (so $u \mapsto g_u$ is a function)
- then, $g = \mathbf{E} g_u \in \partial f(x)$

proof: by convexity of h and definition of g_u ,

$$h(y, u) \ge h(x, u) + g_u^T(y - x) \quad \forall y$$

therefore

$$f(y) = \mathbf{E} h(y, u) \ge \mathbf{E} h(x, u) + \mathbf{E} g_u^T(y - x) = f(x) + g^T(y - x)$$

(will use this in stochastic gradient methods)

Optimal value function

define h(y) as the optimal value of

minimize
$$f_0(x)$$

subject to $f_i(x) \le u_i, i = 1, ..., m$

 $(f_i \text{ convex}; \text{ variable } x)$

if strong duality holds and $\hat{\lambda}$ is an optimal dual variable, then

$$h(u) \ge h(\hat{u}) - \sum_{i=1}^{m} \hat{\lambda}_i (u_i - \hat{u}_i)$$

i.e., $-\hat{\lambda}$ is a subgradient of h at y

Composition

$$f(x) = h(f_1(x), \dots, f_k(x))$$

with h convex nondecreasing, f_i convex

weak result: to find a subgradient at x,

- find $z \in \partial h(f_1(x), \dots, f_k(x))$ and $g_i \in \partial f_i(x)$
- then $g = z_1g_1 + \cdots + z_kg_k \in \partial f(x)$

reduces to standard formula for differentiable h, f_i proof:

$$f(y) = h(f_1(y), \dots, f_k(y))$$

$$\geq h(f_1(x) + g_1^T(y - x), \dots, f_k(x) + g_k^T(y - x))$$

$$\geq h(f_1(x), \dots, f_k(x)) + z^T(g_1^T(y - x), \dots, g_k^T(y - x))$$

$$= f(x) + g^T(y - x)$$

Outline

- definition
- subgradient calculus
- optimality conditions via subgradients
- directional derivative

Optimality conditions — unconstrained

 x^* minimizes f(x) if and only

$$0 \in \partial f(x^{\star})$$

proof: by definition

$$f(y) \ge f(x^*) + 0^T (y - x^*)$$
 for all $y \iff 0 \in \partial f(x^*)$

Example: piecewise linear minimization

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

optimality condition

$$0 \in \mathbf{conv}\{a_i \mid i \in I(x^*)\}$$
 $(I(x) = \{i \mid a_i^T x + b_i = f(x)\})$

in other words, there is a λ with

$$\lambda \succeq 0, \qquad \mathbf{1}^T \lambda = 1, \qquad \sum_{i=1}^m \lambda_i a_i = 0, \qquad \lambda_i = 0 \text{ for } i \notin I(x^*)$$

these are the KKT conditions for the equivalent LP

minimize
$$t$$
 maximize $b^T\lambda$ subject to $Ax + b \leq t\mathbf{1}$ subject to $A^T\lambda = 0$
$$\lambda \succeq 0, \quad \mathbf{1}^T\lambda = 1$$

Optimality conditions — constrained

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

from Lagrange duality

if strong duality holds, then x^{\star} , λ^{\star} are primal, dual optimal if and only if

- 1. x^* is primal feasible
- 2. $\lambda^{\star} \succeq 0$
- 3. $\lambda_i^{\star} f_i(x^{\star}) = 0 \text{ for } i = 1, \dots, m$
- 4. x^* is a minimizer of

$$L(x, \lambda^*) = f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x)$$

Karush-Kuhn-Tucker conditions (if $dom f_i = R^n$)

conditions 1, 2, 3 and

$$0 \in \partial L_x(x^*, \lambda^*) = \partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*)$$

this generalizes the condition

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*)$$

for differentiable f_i

Outline

- definition
- subgradient calculus
- optimality conditions via subgradients
- directional derivative

Directional derivative

the directional derivative of f at x in the direction y is defined as

$$f'(x;y) = \lim_{\alpha \searrow 0} \frac{f(x+\alpha y) - f(x)}{\alpha}$$

(if the limit exists)

properties (for convex f)

- if $x \in \mathbf{int} \operatorname{dom} f$, then f'(x; y) exists for all y
- homogeneous in y: $f'(x; \lambda y) = \lambda f'(x; y)$ for $\lambda \ge 0$

y is a **descent direction** for f at x if f'(x;y) < 0

Descent directions and subgradients

- if f is differentiable, then $-\nabla f(x)$ is a descent direction (if $\nabla f(x) \neq 0$)
- if f is nondifferentiable, then -g, with $g \in \partial f(x)$, is **not** always a descent direction

example: $f(x_1, x_2) = |x_1| + 2|x_2|$

 $g=(1,2)\in\partial f(1,0)$, but y=(-1,-2) is not a descent direction at (1,0)

Directional derivative for convex f

equivalent definition: can replace lim with inf

$$f'(x;y) = \inf_{\alpha>0} \frac{f(x+\alpha y) - f(x)}{\alpha}$$
$$= \inf_{t>0} \left(tf(x+\frac{1}{t}y) - tf(x) \right)$$

proof:

- the function h(y) = f(x+y) f(x) is convex in y with h(0) = 0
- its perspective th(y/t) is nonincreasing in t (an exercise from EE578), hence

$$f'(x;y) = \lim_{t \searrow 0} th(y/t) = \inf_{t > 0} th(y/t)$$

consequences of expressions

$$f'(x;y) = \inf_{\alpha>0} \frac{f(x+\alpha y) - f(x)}{\alpha}$$
$$= \inf_{t>0} \left(tf(x+\frac{1}{t}y) - tf(x) \right)$$

- f'(x;y) is convex in y (partial minimization of convex fct in y,t)
- f'(x;y) defines a lower bound on f in the direction y:

$$f(x + \alpha y) \ge f(x) + \alpha f'(x; y)$$
 for $\alpha \ge 0$

Directional derivative and subdifferential

for convex f and $x \in \mathbf{int} \operatorname{dom} f$

$$f'(x;y) = \sup_{g \in \partial f(x)} g^T y$$

- \bullet generalizes $f'(x;y) = \nabla f(x)^T y$ for differentiable functions
- the directional derivative is the *support function* of the subdifferential

proof

1. suppose $g \in \partial f(x)$, i.e., $f(x + \alpha y) \geq f(x) + \alpha g^T y$ for all α , y; then

$$f'(x;y) = \lim_{\alpha \searrow 0} \frac{f(x+\alpha y) - f(x)}{\alpha} \ge g^T y$$

this shows that

$$f'(x;y) \ge \sup_{g \in \partial f(x)} g^T y$$

2. suppose $g \in \partial_y f'(x;y)$; then for all $v, \lambda \geq 0$,

$$\lambda f'(x; v) = f'(x; \lambda v) \ge f'(x; y) + g^T(\lambda v - y)$$

taking $\lambda \to \infty$ we get $f'(x; v) \ge g^T v$, and therefore

$$f(x+v) \ge f(x) + f'(x;v) \ge f(x) + g^T v$$

this means that $g \in \partial f(x)$, and from 1, $f'(x;y) \geq g^T y$ taking $\lambda = 0$ we see that $f'(x;y) = g^T y$

Subgradients and distance to sublevel sets

if f is convex, f(y) < f(x), $g \in \partial f(x)$, then for small t > 0,

$$||x - tg - y||_2 < ||x - y||_2$$

- -g is descent direction for $||x y||_2$, for any y with f(y) < f(x)
- negative subgradient is descent direction for distance to optimal point

proof:

$$||x - tg - y||_{2}^{2} = ||x - y||_{2}^{2} - 2tg^{T}(x - y) + t^{2}||g||_{2}^{2}$$

$$\leq ||x - y||_{2}^{2} - 2t(f(x) - f(y)) + t^{2}||g||_{2}^{2}$$

$$< ||x - y||_{2}^{2}$$

References

- L. Vandenberghe, Lecture notes for EE236C Optimization Methods for Large-Scale Systems (Spring 2011 and Spring 2014), UCLA.
- J.-B. Hiriart-Urruty, C. Lemaréchal, *Convex Analysis and Minimization Algorithms* (1993), chapter VI.
- Yu. Nesterov, *Introductory Lectures on Convex Optimization. A Basic Course* (2004), section 3.1.