Deep Learning

The "deep" in deep learning

- Deep learning:
 - puts an emphasis on learning successive layers of increasingly meaningful representations,
 - How many layers contribute to a model of the data is called the depth of the model. (tens or even hundreds)
 - Also named as layered representations learning and hierarchical representations learning.

Deep Neural Network

• Deep: more hidden layers

Deep Neural Network

 You can think of a deep network as a multistage information-distillation operation, where information goes through successive filters and comes out increasingly purified (that is, useful with regard to some task).

The Deeper the Better?

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei.

ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.

Two Phases of Deep Learning

• There are two phases in deep learning:

How to Train the NNs

- Input some examples
- Calculate the output
 - Forward propagation

- Measure the errors between the outputs and answers
- Update the weights in NN
 - Back propagation

Forward Propagation

- After a neural network is trained, it is deployed to run inference to classify, recognize, and process new inputs without updating parameters.
- The inference(predict) processing is also known as "forward propagation."

How deep learning works?

- The specification of what a layer does to its input data is stored in the layer's weights, which in essence are a bunch of numbers.
- The transformation implemented by a layer is *parameterized* by its weights (or *parameters*).
- In this context, *learning* means finding a set of values for the weights of all layers in a network, such that the network will correctly map example inputs to their associated targets.

Problem

- Causing problems:
 - A deep neural network can contain tens of millions of parameters.
 - Finding the correct value for all of them may seem like a daunting task, especially given that modifying the value of one parameter will affect the behavior of all the others!

Method

- To control the output of a neural network, you need to be able to measure how far this output is from what you expected.
- This is the job of the *loss function* of the network, also called the *objective function*.
- The loss function takes the predictions of the network and the true target (what you wanted the network to output) and computes a distance score, capturing how well the network has done on this specific example.

Loss Function

- Before mentioning backward propagation, we have to know about loss function, **gradient**, and **gradient descent** first.
- Loss function is a criterion that evaluates the performance of neural networks.
 It qualifies the agreement between the predicted output and the ground truth output.
- Neural networks calculate the loss of training data and find a set of parameters at the minimum value of loss function.
- There are two commonly used loss functions:
 - Mean square error.
 - Cross-entropy error.

Loss Function

Feedback and Backpropagation algorithm

 Deep Learning model uses this loss score as a feedback signal to adjust the value of the weights a little, in a direction that will lower the loss score for the current example.

• This adjustment is the job of the *optimizer*, which implements what's called the *Backpropagation* algorithm: the central algorithm in deep learning.

Mean Square Error

• Mean square error (MSE) is a measure of the quality of an estimator: The difference between the estimators and what is estimated, is always non-negative, and values closer to zero are better.

$$E = \frac{1}{k} \sum_{k} (y_k - t_k)^2$$

$$t_k = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad y_k = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} \longrightarrow E = 0.16$$

Training data (one-hot encoding)

Outputs of the network

Cross-Entropy

Cross-entropy measures the difference between two probability distributions. If outputs approximate to corresponding labels, the result of cross-entropy is close to zero.

$$E = -\sum_{k} t_k \log y_k$$

$$t_k = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad y_k = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} \longrightarrow E = 0.736$$

Training data (one-hot encoding)

Outputs of the network

Training loop

- Training loop:
 - Initially, the weights of the network are assigned random values, so the network merely implements a series of random transformations.
 - Naturally, its output is far from what it should ideally be, and the loss score is accordingly very high.
 - But with every example the network processes, the weights are adjusted a little in the correct direction, and the loss score decreases.
- The training loop repeated a sufficient number of times
- A network with a minimal loss is one for which the outputs are as close as they can be to the targets: a trained network.

Updating Weights

- The only layer with the answer is the output layer
 - The only layer we can know the errors
- We need to update the weights from the output layer to hidden layers
- Solution: Back-propagation

Forward Propagation

$$net_{h_1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1$$

 $= 0.04 * 0.1 + 0.12 * 0.5 + 0.40 * 1$
 $= 0.464$
 $out_{h_1} = \frac{1}{1 + e^{-net_{h_1}}} = \frac{1}{1 + e^{-0.464}}$
 $= 0.613962657$
 $out_{h_2} = 0.611114647$

Forward Propagation

$$net_{o_1} = w_5 * out_{h_1} + w_6 * out_{h_2} + b_2 * 1$$

$$= 0.24 * 0.613962657 + 0.32 * 0.611114647 + 0.36 * 1$$

$$= 0.702907725$$

$$out_{o_1} = \frac{1}{1 + e^{-net_{o_1}}} = \frac{1}{1 + e^{-0.702907725}}$$

$$= 0.668832137$$

$$out_{o_2} = 0.657941101$$

The Errors of Outputs

$$E_{total} = \sum_{i=1}^{n} \frac{1}{2} (target - output)^2$$

$$E_{o_1} = \frac{1}{2}(target - output)^2$$
$$= \frac{1}{2}(0.05 - 0.668832137)^2$$
$$= 0.191476607$$

The total error for the neural network is the sum of these errors:

$$E_{total} = E_{o_1} + E_{o_2} = 0.191476607 + 0.042649200 = 0.234125807$$

Updating Weights

- The only layer with the answer is the output layer
 - The only layer we can know the errors
- We need to update the weights from the output layer to hidden layers
- Solution: Back-propagation

Gradient Descent

- Neural networks will find the best solution of parameters in the training phase while minimizing the loss function.
- □ In most cases, these parameters cannot be solved analytically, but they can be approximated well with iterative optimization algorithms like gradient descent.
- □ If we want to **minimize the loss function**, the parameters are updated to the negative direction of differential value (**gradient or slope**).

Gradient Descent

- Gradients in deep learning can be calculated by : $\frac{\partial L}{\partial W}$
 - *L* is the loss function.
 - W is all weights in a neural network.
- If there are only two weights in loss function:

Learning Rate

- □ **Learning rate** decides how far the step is to the next position on the loss function.
- ☐ It is also a kind of hyper-parameter determined by humans. Thus we have to set the value carefully.

Critical Point

- □ A **local minimum** of a function is a point where the function value is smaller than the nearby points.
- A global minimum is a point where the function value is smaller than at all other feasible points.

Backward Propagation

 When the loss function has been calculated. We can apply it to backward propagation, utilizing the gradients and learning rate to update the weight.

Different Way to Optimize Neural Networks

- Stochastic Gradient Descent (SGD)
 - Update the weights at each input example instead of update the weight after each epoch
- Add momentums on gradient descent

•
$$v_{t+1} = \lambda v_t - (1 - \lambda) * \frac{\partial E_{total}}{\partial w_1}$$

• $w_1^+ = w_1 + \eta * v_{t+1}$

Output layer

Output layer

Output layer

 out_{o_1}

Output layer

$$\frac{\partial E_{total}}{\partial w_{5}} = \frac{\partial E_{total}}{\partial out_{o_{1}}} * \frac{\partial out_{o_{1}}}{\partial net_{o_{1}}} * \frac{\partial net_{o_{1}}}{\partial w_{5}}$$

$$\frac{\partial E_{total}}{\partial w_5} = 0.618832137 * 0.337664274 * 0.613962657 = 0.128292105$$

Learning rate
$$w_5^+ = w_5 - \eta * \frac{\partial E_{total}}{\partial w_5}$$

$$= 0.15 - 0.5 * 0.128292105$$

$$= 0.858539475$$

$$w_6^+ = 0.238117666$$

$$w_7^+ = 0.300177638$$

$$w_8^+ = 0.300084039$$

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h_1}} * \frac{\partial out_{h_1}}{\partial net_{h_1}} * \frac{\partial net_{h_1}}{\partial w_1}$$

$$\begin{split} \frac{\partial E_{total}}{\partial w_{1}} &= \frac{\partial E_{total}}{\partial out_{h_{1}}} * \frac{\partial out_{h_{1}}}{\partial net_{h_{1}}} * \frac{\partial net_{h_{1}}}{\partial w_{1}} \\ \frac{\partial E_{total}}{\partial out_{h_{1}}} &= \frac{\partial E_{o_{1}}}{\partial out_{h_{1}}} + \frac{\partial E_{o_{2}}}{\partial net_{h_{1}}} \\ \frac{\partial E_{o_{1}}}{\partial out_{h_{1}}} &= \frac{\partial E_{o_{1}}}{\partial net_{o_{1}}} * \frac{\partial net_{o_{1}}}{\partial out_{h_{1}}} \\ \frac{\partial E_{o_{1}}}{\partial net_{o_{1}}} &= \frac{\partial E_{o_{1}}}{\partial out_{o_{1}}} * \frac{\partial out_{o_{1}}}{\partial net_{o_{1}}} \end{split}$$

$$\frac{\partial E_{o_1}}{\partial net_{o_1}} = \frac{\partial E_{o_1}}{\partial out_{o_1}} * \frac{\partial out_{o_1}}{\partial net_{o_1}} = 0.618832137 * 0.337664274 = 0.208957504$$

$$\begin{split} net_{o_1} &= w_5 * out_{h_1} + w_6 * out_{h_2} + b_2 * 1 \\ &\frac{\partial net_{o_1}}{\partial out_{h_1}} = w_5 = 0.24 \\ \\ &\frac{\partial E_{o_1}}{\partial out_{h_1}} = \frac{\partial E_{o_1}}{\partial net_{o_1}} * \frac{\partial net_{o_1}}{\partial out_{h_1}} = 0.208957504 * 0.24 = 0.050149801 \end{split}$$

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h_1}} * \frac{\partial out_{h_1}}{\partial net_{h_1}} * \frac{\partial net_{h_1}}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial out_{h_1}} = \frac{\partial E_{o_1}}{\partial out_{h_1}} + \frac{\partial E_{o_2}}{\partial net_{h_1}}$$

$$b_1$$

$$E_{o_1}$$

$$b_2$$

$$E_{total} = E_{o_1} + E_{o_2}$$

$$\frac{\partial E_{o_1}}{\partial out_{h_1}} = 0.050149801, \qquad \frac{\partial E_{o_2}}{\partial out_{h_1}} = -0.018404176$$

$$\frac{\partial E_{total}}{\partial out_{h_1}} = \frac{\partial E_{o_1}}{\partial out_{h_1}} + \frac{\partial E_{o_2}}{\partial net_{h_1}} = 0.050149801 + (-0.018404176) = 0.031745625$$

Backward Propagation to Update w1

Hidden layer

$$net_{h_1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1$$

$$\frac{\partial net_{h_1}}{\partial w_1} = i_1 = 0.1$$

Backward Propagation to Update w1

Hidden layer

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h_1}} * \frac{\partial out_{h_1}}{\partial net_{h_1}} * \frac{\partial net_{h_1}}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial w_1} = 0.031745625 * 0.237012513 * 0.1 = 0.000752411$$

$$w_1^+ = w_1 - \eta * \frac{\partial E_{total}}{\partial w_1}$$

$$= 0.04 - 0.5 * 0.0000752411$$

$$= 0.039623795$$

$$w_2^+ = 0.118118973$$

$$w_3^+ = 0.159635010$$

$$w_4^+ = 0.078175051$$

How to Design A Good Neural Network Model

The Hyper Parameters

- Dimensions
 - The number of neurons in each layer
 - Can be different in each layer
- Numbers of layers
 - How depth is your model
- Activation function
 - Linear: ReLu
 - Non-linear: Sigmoid, tanh
- The bias in each layer

How Many Random Variables in Neural Networks

- Consider a neural network
 - 10 layers
 - 100 nodes in each layer
 - 1 bias in each layer
- 1 layer has 10100 parameters
 - 100*100+100
- 10 layers has 101000 parameters
 - 10100*10

The More Random Variables The Better?

- More random variables can represent more latent information
- Too many random variables will lead overfitting
 - Too fit to some special cases

Overfitting & Underfitting

How to Prevent Overfitting

- Decrease your random variables
 - Decrease your dimensions or layers
 - May incur some errors
- Increase your training data
 - Very difficult in practice
- **Dropout** some variables
 - Let some variables not be trained in the training phase
 - Still in use in the testing phase

How Much Training Data We Need

- 10~30 times data to train random variables
 - we need 1010000 ~ 3030000 data to train 101000 variables
- Few data may not be able to train a good model
 - Some variables may not be trained well

More Hyper Parameters

- Learning rate
 - How many updates of the weight via gradients
- Batch size
 - How many input data in each iteration
- Epoch [epək]
 - How many times of passing the training data in the model

A training dataset

The Difference Between Iteration and Epoch

One epoch

The History of AI

What Can Deep Learning Do?

- Image recognition
 - Deep learning can reach a high accuracy that humans cannot accomplish.
- Game

- AlphaGo
- The computer can learn by itself and even better than humans.
- There are more and more applications of deep learning.

Learning

Algorithms

Learning Algorithms

Supervised Learning

Supervised learning requires a labeled dataset.

The network can learn from it to make inferences or predictions of the problem.

Unsupervised Learning

Unsupervised learning is the opposite of supervised learning. There is **no labeled dataset** in unsupervised learning.

Reinforce Learning

Reinforce learning model will learn to react to the environment by itself, with a system composed of reward, state, and action.

Basic Model of Neural Network

• Basic convolutional neural network (CNN):

Advanced Model of Neural Network

- Long short-term memory (LSTM):
 - LSTM enables RNN to remember inputs over a long time.

• It also solves the problem such as vanishing gradient and exploding gradient.

Advanced Model of Neural Network

- Generative adversarial network (GAN) :
 - GAN is a potential network that can generate image/voice/text data.

Basic GAN architecture includes two networks. The generator and the discriminator.

Advanced Model of Neural Network

- Deep Q network (DQN):
 - The mission of DQN is to find an optimized **policy(strategy)** for winning more rewards.
 - In DQN, we will put the agent in the environment. It will learn better policy during interacting with the environment.

Applications

• Image segmentation :

• Object detection :

• Speech recognition :

Applications

• Language translation :

• Generate text/image/voice :

• Self-Driving System:

ILSVRC

- ImageNet Large Scale Visual Recognition Challenge.
- Deep models first perform good performance in commercial applications.

Era of deep learning is beginning.

Break through human recognition performance⁵⁷

Introduction to Keras

Python framework for ANN

- TensorFlow 網路聲量最高
- Keras 則是支援TensorFlow的更高階函數庫(Meta Framework),可以用很簡潔的程式碼完成一個 Neural Network 模型,非常適合入門學習。

Introduction to Keras

- Keras (https://keras.io).
- deep-learning framework for Python that provides a convenient way to define and train almost any kind of deep-learning model
- key features:
 - It allows the same code to run seamlessly on CPU or GPU.
 - It has a **user-friendly API** that makes it easy to quickly prototype deep-learning models.
 - It has built-in support for **convolutional networks** (for computer vision), **recurrent networks** (for sequence processing), and any combination of both.
 - It supports arbitrary network architectures: multi-input or multi-output models, layer sharing, model sharing, and so on. This means Keras is appropriate for building essentially any deep-learning model, from a generative adversarial network to a neural Turing machine.
- permissive MIT license, which means it can be freely used in commercial projects. compatible with Python from 2.7 to 3.9

Google web search interest

Keras

- Keras is a model-level library, providing high-level building blocks for developing deep-learning models.
- It doesn't handle low-level operations such as tensor manipulation and differentiation.
- Instead, it relies on a specialized, well-optimized tensor library to do so, serving as the backend engine of Keras.
- Rather than choosing a single tensor library and tying the implementation of Keras to that library, Keras handles the problem in a modular way

Tensorflow GPU

- Via Tensorflow (or Theano, or CNTK), Keras is able to run seamlessly on both CPUs and GPUs.
- When running on CPU, TensorFlow is itself wrapping a low-level library for tensor operations called **Eigen** (http://eigen.tuxfamily.org).
- On GPU, TensorFlow wraps a library of well-optimized deeplearning operations called the NVIDIA CUDA Deep Neural Network library (cuDNN).

安裝系統

- 安裝 <u>Anaconda</u>: 它包含 Python 及常用的套件(Packages), 例如NumPy、Pandas等
- 安裝 Tensorflow:可以選擇CPU或GPU版,安裝CPU版, 直接在 DOS下,輸入 pip install tensorflow。
- 安裝 Keras:在 DOS 下,輸入 pip install keras。
- 測試環境
 - import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello))
- 那 IDE:記事本、NodePad++、PyCharm, VS 2017
 Community版本,
- Jupyter Notebook

Developing with Keras: a quick overview

- Typical Keras workflow
 - **Define your training data**: input tensors and target tensors.
 - Define a network of layers (or model) that maps your inputs to your targets.
 - Sequential class (only for linear stacks of layers, which is the most common network architecture by far)
 - Functional API (for directed acyclic graphs of layers, which lets you build completely arbitrary architectures)
 - Configure the learning process by choosing a loss function, an optimizer, and some metrics to monitor.
 - Iterate on your training data by calling the fit() method of your model.

Example

Using the Sequential class model:

```
from keras import models from keras import layers

model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(784, )))

#用 model 物件的 add 方法,新增一個輸入為 784 維、輸出為 32 維(等同於 unit 的數量),

#並使用 relu 啟動函數的輸入層和隱藏層 (Keras 的最開頭一層具有一般神經網路輸入層和隱藏層的功能,
#詳細請參考 3-1-1 節的小編補充,將在後續 3-4-3 節開始實作)

model.add(layers.Dense(10, activation='softmax'))

#用 model 物件的 add 方法,新增輸出為 10 維(10 unit),並使用 softmax 啟動函數的輸出層

model 物件的 add 方法,新增輸出為 10 維(10 unit),並使用 softmax 啟動函數的輸出層
```

Functional API

Using the functional API:

```
input_tensor = layers.Input(shape=(784, ))
#建立一個 input_tensor 物件,輸入層 shape為 784 維的張量
x = layers.Dense(32, activation='relu')(input_tensor)
#建立 x 物件,使用 input_tensor 物件,並使用 relu 啟動函數輸出一個 32 維張量的輸入層
output_tensor = layers.Dense(10, activation='softmax')(x)
#建立 model 物件,使用 models.Model 方法,且輸入層為 input_tensor 物件,輸出層為 output_tensor 物件
model = models.Model(inputs=input_tensor, outputs=output_tensor)
#建立一個 output_tensor 物件,使用 x 物件,並使用 softmax 啟動函數輸出一個 10 維張量的輸出層
```

Setting training parameters

```
from keras import optimizers #從 keras 套件中匯入optimizers 模組
model.compile(optimizer=optimizers.RMSprop(lr=0.001),
           #使用 model.compile 方法,對訓練模型進行設定。
           #使用 RMSProp 優化器並將學習率定為 0.001
           loss='mse',
           #使用 mean squared error 損失函數
           metrics=['accuracy'])
#量測時使用 accuracy 準確度評估模型
model.fit(input tensor, target tensor, batch size=128, epochs=10)
#使用 model.fit() 進行訓練, 傳入輸入資料、標籤資料 (標準答案)、
#一次訓練週期所使用的資料筆數 batch_size、和訓練週期次數 epochs
```

Layers

- The fundamental data structure, is a data-processing module that takes as input one or more tensors and that outputs one or more tensors,
- Layers have a state: the layer's weights, one or several tensors learned with stochastic gradient descent, which together contain the network's knowledge.
- Different layers are appropriate for different tensor formats and different types of data processing.

Example of layers

- For instance,
 - <u>Simple vector data</u>, stored in 2D tensors of shape (samples, features), is often processed by *densely connected* layers, also called *fully connected* or *dense* layers (the Dense class in Keras).
 - <u>Sequence data</u>, stored in 3D tensors of shape (samples, timesteps, features), is typically processed by recurrent layers such as an LSTM layer.
 - <u>Image data</u>, stored in 4D tensors, is usually processed by 2D convolution layers (Conv2D).
- Layer compatibility: refers that every layer will only accept input tensors of a certain shape and will return output tensors of a certain shape.

Keras example

from keras import layers
layer = layers.Dense(32, input_shape=(784,))

- input 2D tensors where the first dimension is 784 (axis 0, the batch dimension, is unspecified).
- This layer will return a tensor where the first dimension has been transformed to be 32 (outputs).

```
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(32, input_shape=(784,)))
model.add(layers.Dense(32))
```

• The second layer didn't receive an input shape argument—instead, it automatically inferred its input shape as being the output shape of the layer that came before. (input:32, output:32)

Loss functions and optimizers: keys to configuring the learning process

Loss function (objective function)

- The quantity that will be minimized during training.
- It represents a measure of success for the task at hand.
- For multiple output, these loss are combined to a single scalar.

Optimizer

- Determines how the network will be updated based on the loss function.
- It implements a specific variant of stochastic gradient descent (SGD).

For instance(*),

- use binary crossentropy for a two-class classification problem,
- categorical crossentropy for a many-class classification problem,
- Mean squared error (MSE) for a regression problem,
- connectionist temporal classification (CTC) for a sequence-learning problem

Handwritten Digit Recognition

Handwritten digit recognition

- ▶ 3-nearest-neighbor classifier (stored images) = 2.4% error
- ▶ Shape matching based on computer vision = 0.63% error
- ► 400-300-10 unit MLP = 1.6% error
- ► LeNet 768-192-30-10 unit MLP = 0.9% error
- ▶ Boosted neural network = 0.7% error
- ► Support vector machine = 1.1% error
- Current best: virtual support vector machine = 0.56% error
- ▶ Humans $\approx 0.2\%$ error

A first look at a neural network

- A neural network that uses the Python library Keras to learn to classify handwritten digits.
- To classify grayscale images of handwritten digits (28×28 pixels) into their 10 categories (0 through 9).
- Input: image -> output: digit (0-9)
- The National Institute of Standards and Technology (the NIST in MNIST)
 MNIST dataset, a classic in the machine-learning community,
- 60,000 training images, plus 10,000 test images,
- The "Hello World" of deep learning.
- In machine learning, a category in a classification problem is called a class. Data points are called samples.
- The class associated with a specific sample is called a label.

Loading the MNIST dataset in Keras

Two sets of example

- **train_images** and **train_labels** form the *training set*, the data that the model will learn from.
- The model will then be tested on the test set, test_images and test_labels.
- The images are encoded as Numpy arrays, and the **labels** are an array of digits, ranging from 0 to 9.
- The images and labels have a one-to-one correspondence.

Code example

Import keras

```
In [1]: import keras
    keras.__version__

Using TensorFlow backend.
Out[1]: '2.2.4'
```

- 導入(import)要使用的函式庫,包括 NumPy(矩陣運算)、Keras、matplotlib (繪圖)。
- 從網路載入 MNIST 資料集,請 Keras 自動分為『訓練組』及『測試組』資料, MNIST 是由 AI 大師 Yann LeCun 所建立的手寫阿拉伯數字資料集(Dataset)。

```
另一個範例
# 導入函式庫
import numpy as np
from keras.models import Sequential
from keras.datasets import mnist
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.utils import np_utils # 用來後續將 label 標籤轉為 one-hot-encoding
from matplotlib import pyplot as plt
# 載入 MNIST 資料庫的訓練資料,並自動分為『訓練組』及『測試組』
(X_train, y_train), (X_test, y_test) = mnist.load_data()
```

Example code (Jupyter Notebook)

```
In [3]:
        train images.shape
Out[3]: (60000, 28, 28)
In [4]:
        len(train labels)
Out[4]:
        60000
In [5]: train_labels #標籤是 0-9 之間的數字, 資料型別為 uint8
Out[5]: array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)
        Let's have a look at the test data:
In [6]:
        test images.shape
Out[6]:
        (10000, 28, 28)
        len(test labels)
In [7]:
Out[7]:
        10000
In [8]:
        test labels
Out[8]: array([7, 2, 1, ..., 4, 5, 6], dtype=uint8)
                                                            78
```

The Network Architecture

- The core building block of neural networks is the *layer*, a dataprocessing module that you can think of as a filter for data.
- Most of deep learning consists of **chaining together simple layers** that will implement a form of progressive *data distillation*.
- Dense layers, which are densely connected (also called *fully connected*) neural layers.
- The second (and **last**) layer is a 10-way *softmax* layer, which means it will return an array of 10 probability scores (summing to 1).

```
from keras import models
from keras import layers

28*28

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
```

- 建立最簡單的線性模型(Sequential),就是一層層往下執行,沒有分叉(If), 也沒有迴圈(loop),這裡只設一層隱藏層(Dense)。
- 執行模型評估,計算模型參數預測新資料了。

#建立簡單的線性執行的模型

$$CrossEntropy = -\sum_i (L_i \cdot \log(S_i))$$

```
# 建立簡單的線性執行的模型
                                                 另一個範例
model = Sequential()
# Add Input layer, 隱藏層(hidden layer) 有 256個輸出變數
model.add(Dense(units=256, input_dim=784, kernel_initializer='normal', activat
ion='relu'))
# Add output layer
model.add(Dense(units=10, kernel initializer='normal', activation='softmax'))
# 編譯: 選擇損失函數、優化方法及成效衡量方式
model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['acc
uracy'])
```

Compilation Step

- A loss function 損失函數(crossentropy)
 - How the network will be able to measure its performance on the training data, and thus how it will be able to steer itself in the right direction.
- An optimizer 優化方法(adam) $\frac{CrossEntropy}{i} = -\sum_{i}(L_i \cdot \log(S_i))$
 - The mechanism through which the network will update itself based on the data it sees and its loss function. (weight updating method)
- Metrics to monitor during training and testing 成效衡量方式 (accuracy)

DNN 處理流程

- 建立model: 確立Input格式、要經過幾層處理、每一層要作甚麼處理,
- 確立目標及求解方法:以compile函數定義損失函數(loss)、優化函數 (optimizer)及成效衡量指標
- 訓練:以compile函數進行訓練,指定訓練的樣本資料(x,y),並撥一部分資料作驗證,還有要訓練幾個週期、訓練資料的抽樣方式。
- 評估(Evaluation):訓練完後,計算成效。
 - # 進行訓練,訓練過程會存在 train_history 變數中
 train_history = model.fit(x=x_Train_norm, y=y_TrainOneHot, validation_split=0.
 2, epochs=10, batch_size=800, verbose=2)
- 預測(Prediction):經過反覆訓練,有了可信模型後,我們就可將系統上線使用了。
 - # 顯示訓練成果(分數)
 scores = model.evaluate(x_Test_norm, y_TestOneHot)

Keras 模型類別

- Sequential Model (順序式模型):
 - 就是一種簡單的模型,單一輸入、單一輸出,按順序 一層(Dense)一層的由上往下執行。
 - Sequential model 線性堆疊
 - Input_shape:size/none
 - 2D: input dim

```
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
```

```
from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])
```

- Functional API :
 - 支援多個輸入、多個輸出,

Loss Function

- 均方誤差 MSE (mean_squared_error) 最小平方法(Least Square) 的目標函數
 - 預測值與實際值的差距之平均值
 - 變化

- $\sum \left(\hat{y}^2 y^2\right)/N$
- mean_absolute_error \
 mean_absolute_percentage_error \
 mean_squared_logarithmic_error
- Hinge Error (hinge)
 - 是一種單邊誤差,不考慮負值,適用於『支援向量機』 (SVM)的最大間隔分類法(maximum-margin classification),

$$\ell(y) = \max(0, 1 - t \cdot y)$$

Loss Function

Cross Entropy

$$D = -\sum_i (L_i \cdot \log(S_i))$$

- Categorical_crossentropy 多分類損失函數
 - 當預測值與實際值愈相近,損失函數就愈小,反之差 距很大,就會更影響損失函數的值
 - 變形
 - sparse_categorical_crossentropy
 - binary_crossentropy

$$L(\mathbf{w}) \ = \ rac{1}{N} \sum_{n=1}^N H(p_n,q_n) \ = \ - rac{1}{N} \sum_{n=1}^N \ \left[y_n \log \hat{y}_n + (1-y_n) \log (1-\hat{y}_n)
ight]$$

Activation Functions

• Relu

- · 整流線性單位函數(Rectif 稱修正線性單元
- F(x)=max (0, x)

• Softmax [0,1]

- · pdf 機率函數
- 多分類時使用

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for j = 1, ..., K .

Activation Functions

sigmoid

• 值介於[0,1]之間,且分布兩極化,大部分不是0,

tanh

- 與sigmoid類似,但值介於[-1,1]之間
- 即傳導有負值。

$$f(x)= anh(x)=rac{2}{1+e^{-2x}}-1$$

權重初始化 kernel_initializer

Kernel_initializer and bias_initializer

- Zeros():全部為0的矩陣。//initializers.Zeros()
- Ones():全部為1的矩陣。//initializers.Ones()
- **Const()**:全部為固定常數的矩陣 initializers.Constant(**value**=0)
- Identity:對角線為1的矩陣
- TruncatedNormal :
 - 裁掉極端值常態分配的隨機亂數,參數為N倍標準差。
- RandomNormal:常態分配初始化
 - initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
- RandomUniform : 均匀分配初始化
 - keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)
 下界與上界間平均分配

優化函數(Optimizer)

- 隨機梯度下降法(Stochastic Gradient Descent, SGD)
 - 就是利用偏微分,逐步按著下降的方向,尋找最佳解。
 - Learning Rate (Ir):
 - 逼近最佳解的學習速率,速率訂的太小,計算最佳解的時間花費較長,訂的太大,可能會在最佳解兩旁擺盪,找不到最佳解。

momentum :

- 更新的動能,一開始學習速率可以大一點,接近最佳解時, 學習速率步幅就要小一點,
- 一般訂為 0.5, 不要那麼大時, 可改為 0.9。

decay :

• 每次更新後,學習速率隨之衰減的比率。

優化函數(Optimizer)

- · Adam:一般而言,比SGD模型訓練成本較低
 - · Ir: 逼近最佳解的學習速率,預設值為 0.001。
 - beta_1:一階矩估計的指數衰減因子,預設值為 0.9。
 - beta_2: 二階矩估計的指數衰減因子,預設值為 0.999。
 - *epsilon*:為一大於但接近 0 的數,放在分母,避免產生除以 0 的錯誤,預設值為1e-08。
 - · decay:每次更新後,學習速率隨之衰減的比率。

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \frac{\partial L_t}{\partial W_t}$$
$$v_t = \beta_1 v_{t-1} + (1 - \beta_2) (\frac{\partial L_t}{\partial W_t})^2$$

優化函數比較

Hidden Layer and Parameters of Dense

Keras:

 全連階層(Dense)、Activation layer、Dropout、Flatten、Reshape、 Permute、RepeatVector、Lambda、ActivityRegularization、 Masking。

Dense

- output = activation(dot(input, kernel) + bias) // y = g(x * W + b)
 - units: 輸出矩陣的維數,愈大表示分類更細,擬合度愈高,雖然準確率提高,但也要防止過度擬合(Overfit)。
 - activation: 若未設定,即簡化為y=x*W+b
 - use_bias: 是否使用偏差項(Bias),若未設定或為 False,即簡 化為 y = g(x * W)。
 - kernel_initializer: 權重(W)的初始值。
 - bias_initializer: 偏差項(Bias)的初始值。

Parameters of Dense (cont.)

- kernel_regularizer:
 - 權重(W)正規化(或稱正則項)函數,
 - 對權重矩陣加上懲罰性函數(Penalty),以防止過度擬合(overfit)。
- bias_regularizer:
 - 偏差項(Bias)的正規化函數。
- activity_regularizer:
 - 輸出(y)的正規化函數。
- kernel_constraint:
 - 針對權重(W)加上限制條件,
- bias_constraint:
 - 針對偏差項(Bias)加上限制條件,

Before training – data preprocessing

- Preprocess the data by reshaping it into the shape the network expects and scaling it so that all values are in the [0, 1] interval.
- Training images were stored in an array of shape (60000, 28, 28) of type uint8 with values in the [0, 255] interval.
- We transform it into a float32 array of shape (60000, 28 * 28)
 with values between 0 and 1.

(# of images, Size of image)

```
train_images = train_images.reshape((60000, 28 * 28))
#reshape 是 NumPy 陣列的 method

train_images = train_images.astype('float32') / 255

Change to real value within [0, 1]

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype('float32') / 255
```

Prepare Labels

```
from keras.utils import to_categorical

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
```

```
from keras.utils.np utils import *
1
2
3
    b = [0,1,2,3,4,5,6,7,8]
4
    b = to categorical(b, 9)
5
    print(b)
6
7
8
    [[1. 0. 0. 0. 0. 0. 0. 0. 0.]
9
     [O. 1. O. O. O. O. O. O. O.]
10
     [0. 0. 1. 0. 0. 0. 0. 0. 0.]
11
     [0. 0. 0. 1. 0. 0. 0. 0. 0.]
12
     [0. 0. 0. 0. 1. 0. 0. 0. 0.]
13
     [0. 0. 0. 0. 0. 1. 0. 0. 0.]
14
     [0. 0. 0. 0. 0. 0. 1. 0. 0.]
15
     [0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 1. \ 0.]
16
17
     [0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 1.]]
```

2022/9/12

Preparing the labels and train (fit)

- train the network, by calling fit method—we fit the model to its training data:
- Two quantities are displayed during training: the loss of the network over the training data, and the accuracy of the network over the training data.
- It reaches an accuracy of 0.989 (98.9%) on the training data.

Test data

- The test-set accuracy turns out to be 97.8%—that's quite a bit lower than the training set accuracy.
- This gap between training accuracy and test accuracy is an example of overfitting: the fact that machine-learning models tend to perform worse on new data than on their training data.

```
Using TensorFlow backend.
2.3.1
(60000, 28, 28)
60000
[5 0 4 ... 5 6 8]
(10000, 28, 28)
10000
[7 2 1 ... 4 5 6]
Epoch 1/5
Epoch 2/5
Epoch 3/5
Epoch 4/5
Epoch 5/5
10000/10000 [=============== ] - 1s 63us/step
test acc: 0.980400025844574
```

Compile 編譯模型

compile(self, optimizer, loss, metrics=None, loss_weights=None,
sample_weight_mode=None, weighted_metrics=None,
target_tensors=None)

Optimizer

• 優化器,為預定義優化器名或優化器對象,

Loss

• 損失函數,為預定義損失函數名或一個目標函數,

Metrics

- 列表,包含評估模型在訓練和測試時的性能的指標,
- 典型用法是metrics=['accuracy']

Fit訓練參數設定

進行訓練, 訓練過程會存在 train_history 變數中
train_history = model.fit(x=x_Train_norm, y=y_TrainOneHot, validation_split=0.
2, epochs=10, batch_size=800, verbose=2)

- X:輸入數據。如果模型只有一個輸入,那麼X的類型是numpy array,如果模型有多個輸入,那麼X的類型應當為list,list的元素是對應於各個輸入的numpy array。如果模型的每個輸入都有名字,則可以傳入一個字典,將輸入名與其輸入數據對應起來。
- y:標籤, numpy array。如果模型有多個輸出,可以傳入一個numpy array的list。如果模型的輸出擁有名字,則可以傳入一個字典,將輸出名與其標簽對應起來。
- batch_size:整數,指定進行梯度下降時每個batch包含的樣本數。 訓練時一個batch的樣本會被計算一次梯度下降,使目標函數優化一 步。
- callbacks: list,其中的元素是keras.callbacks.Callback的對象。這個 list中的回調函數將會在訓練過程中的適當時機被調用,

Fit Parameters

epochs :

• 整數,訓練終止時的epoch值,訓練將在達到該epoch值時停止, 當沒有設置initial_epoch時,它就是訓練的總輪數,否則訓練的總 輪數為epochs - inital_epoch

verbose :

• 日誌顯示, 0為不在標準輸出流輸出日誌信息, 1為輸出進度條記錄, 2為每個epoch輸出一行記錄

validation_split

- 0~1之間的浮點數,用來指定訓練集的一定比例數據作為驗證集。
- 驗證集將不參與訓練,並在每個epoch結束後測試的模型的指標, 如損失函數、精確度等。
- validation_split的劃分在shuffle之後,因此如果你的數據本身是有序的,需要先手工打亂再指定validation_split,否則可能會出現驗證集樣本不均勻。

validation_data

形式為(X,y)或(X,y,sample_weights)的tuple,是指定的驗證集。此參數將覆蓋validation spilt。

Evaluate

evaluate(self, x, y, batch_size=32, verbose=1,
sample_weight=None)

```
# 顯示訓練成果(分數)
scores = model.evaluate(x_Test_norm, y_TestOneHot)
```

- x:輸入數據,與fit一樣,是numpy array或numpy array的list
- y:標籤, numpy array
- batch size:整數,含義同fit的同名參數
- verbose:含義同fit的同名參數,但只能取O或1
- sample_weight: numpy array,含義同fit的同名參數

Other instructions

Predict

- predict(self, x, batch_size=32, verbose=0)
- · 本函數按batch獲得輸入數據對應的輸出,
- 函數的返回值是預測值的numpy array

train_on_batch

- train_on_batch(self, x, y, class_weight=None, sample_weight=None)
- 本函數在一個batch的數據上進行一次參數更新
- 函數返回訓練誤差的標量值或標量值的list,與evaluate的情形相同。

test_on_batch

- test_on_batch(self, x, y, sample_weight=None)
- predict_on_batch
 - predict on batch(self, x)

Python code

```
# 將 training 的 input 資料轉為2維
X train 2D = X train.reshape(60000, 28*28).astype('float32')
X test 2D = X test.reshape(10000, 28*28).astype('float32')
x Train norm = X train 2D/255
x Test norm = X test 2D/255
# 進行訓練,訓練過程會存在 train history 變數中
train_history = model.fit(x=x_Train_norm, y=y_TrainOneHot, validation_split=0.
2, epochs=10, batch size=800, verbose=2)
#顯示訓練成果(分數)
scores = model.evaluate(x Test norm, y TestOneHot)
print()
print("\t[Info] Accuracy of testing data = {:2.1f}%".format(scores[1]*100.0))
# 預測(prediction)
X = x \text{ Test norm}[0:10,:]
predictions = model.predict classes(X)
# get prediction result
print(predictions)
```

```
# 顯示 第一筆訓練資料的圖形,確認是否正確 plt.imshow(X_test[0]) plt.show()
```

