Reinforcement learning: notes

Jerry Tworek

Contents

1	I General notation		1
	1.1	Markov decision processes	1
	1.2	Policies	2
	1.3	Policy identities	2
		cy gradient methods	4
	$\angle . \bot$	Trust region policy optimization	4

1 General notation

1.1 Markov decision processes

Definition 1.1.1. Markov Decision Process

A Markov Decision Process (**MDP**) is a tuple $(S, A, p, p_0, R, \gamma)$, where:

- S is a set of states $s \in S$.
- \mathcal{A} is a set of actions. Abusing notation a bit, we define $\mathcal{A}(s): \mathcal{S} \to \mathcal{A}$ as a set of actions available in state $s \in \mathcal{S}$.
- p(s'|s, a) is a probability distribution of transition from state $s \in \mathcal{S}$ to state $s' \in \mathcal{S}$ due to action $a \in \mathcal{A}$.
- $p_0(s)$ is a probability distribution of initial state after action $a \in \mathcal{A}$.
- $\mathcal{R}: \mathcal{S} \to \mathbb{R}$ is a reward function.
- $\gamma \in [0,1]$ is a discount factor.

Definition 1.1.2. Trajectory

An **MDP** trajectory is an alternating sequence of states, actions and rewards, a singular realization of an **MDP** process. More formally, let's define a transition as a tuple of $(s, a, r, s') \in \mathcal{S} \times \mathcal{A} \times \mathbb{R} \times \mathcal{S}$. Then, a trajectory h is a sequence of transitions $h_t = (s_t, a_t, r_t, s'_t)$ such, that $s'_t = s_{t+1}$, $r_t = \mathcal{R}(s'_t)$ for all n. Trajectories can be both finite and infinite. In various contexts we'll use notation of s'_t and s_{t+1} fully interchangeably when discussing trajectories. $T(h) \in \mathbb{N} \cup \{\infty\}$ denotes a length of a trajectory.

We consider various sets of trajectories for a given MDP:

- H_n is a set of trajectories of length n
- $H = \bigcup_{n \in \mathbb{N}} H_n$ is a set of all finite trajectories
- H^{∞} is a set of all infinite trajectories
- $H^* = H \cup H^{\infty}$ is a set of all possible trajectories both finite and infinite
- H(s) is a set of trajectories such, that $s_0 = s$
- H(s, a) is a set of trajectories such, that $s_0 = s$ and $a_0 = a$.

Definition 1.1.3. Return

A return G_t following time t for given trajectory h is a sum of discounted rewards received from time t:

$$G_t = \sum_{k=t}^{T} \gamma^{k-t} r_k = \sum_{k=0}^{T-t} \gamma^k r_{t+k} = r_t + \gamma G_{t+1}$$

1.2 Policies

Definition 1.2.1. Policy

A policy π is a probability distribution $\pi(a|s)$ for each state $s \in \mathcal{S}$ and action $a \in \mathcal{A}(s)$.

Implicitly, for a given MDP policy π also defines a probability distribution on H^* where

$$\pi(h) = p_0(s_0) \cdot \pi(a_0|s_0) \cdot p(s_1|a_0, s_0) \cdot \pi(a_1|s_1) \cdot \dots$$

Most of the time, when we write expectation \mathbb{E}_{π} we mean expectation by this probability measure of π on H^* .

Definition 1.2.2. State value

A state-value $V:\mathcal{S}\to\mathbb{R}$ is an expected return we get following policy π from state s:

$$V_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t | s_t = s \right]$$

We also define value of a policy $V(\pi)$ to be an expected return of a policy for a random trajectory sampled from a distribution of π on H^* .

$$V_{\pi} = \mathbb{E}_{\pi} [G_0] = \mathbb{E}_{p_0(s_0)} V_{\pi}(s_0)$$

Definition 1.2.3. Action value

An action-value $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is an expected return we get following policy π from state s after choosing action a:

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t | s_t = s, a_t = a \right]$$

Definition 1.2.4. Advantage

An advantage of a state-action pair is a difference:

$$A_{\pi}(s,a) = Q_{\pi}(s,a) - V_{\pi}(s)$$

Definition 1.2.5. Discounted visitation frequencies

For every state $s \in \mathcal{S}$ we can count how many times on average (discounted) we visit state in each trajectory:

$$dvf_{\pi}(s) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s) = \sum_{t=0}^{T} \gamma^{t} \mathbb{1}_{\{s_{t} = s\}}$$

1.3 Policy identities

Below I'll prove a few useful identities we'll be referring through subsequent sections.

Lemma 1.3.1.

$$Q_{\pi}(s, a) = \mathbb{E}_{p(s'|s, a)} \left[\mathcal{R}(s') + \gamma V_{\pi}(s') \right]$$

Proof.

$$\begin{aligned} Q_{\pi}(s, a) &= \mathbb{E}_{\pi} \left[G_{t} | s_{t} = s, a_{t} = a \right] \\ &= \mathbb{E}_{\pi} \left[\mathcal{R}(s'_{t}) + \gamma G_{t+1} | s_{t} = s, a_{t} = a \right] \\ &= \mathbb{E}_{\pi} \left[\mathcal{R}(s'_{t}) | s_{t} = s, a_{t} = a \right] + \mathbb{E}_{\pi} \left[\gamma G_{t+1} | s_{t} = s, a_{t} = a \right] \\ &= \mathbb{E}_{p(s'|s,a)} \left[\mathcal{R}(s'_{t}) \right] + \mathbb{E}_{p(s'|s,a)} \mathbb{E}_{\pi} \left[\gamma G_{t+1} | s_{t} = s, a_{t} = a, s_{t+1} = s' \right] \\ &= \mathbb{E}_{p(s'|s,a)} \left[\mathcal{R}(s'_{t}) \right] + \mathbb{E}_{p(s'|s,a)} \gamma \mathbb{E}_{\pi} \left[G_{t+1} | s_{t+1} = s' \right] \\ &= \mathbb{E}_{p(s'|s,a)} \left[\mathcal{R}(s'_{t}) \right] + \mathbb{E}_{p(s'|s,a)} \gamma V_{\pi}(s') \\ &= \mathbb{E}_{p(s'|s,a)} \left[\mathcal{R}(s') + \gamma V_{\pi}(s') \right] \end{aligned}$$

Lemma 1.3.2.

$$A_{\pi}(s, a) = \mathbb{E}_{p(s'|s,a)} \left[\mathcal{R}(s') + \gamma V_{\pi}(s') - V_{\pi}(s) \right]$$

Proof. Follows straight from lemma 1.3.1.

$$A_{\pi}(s, a) = Q_{\pi}(s, a) - V_{\pi}(s)$$

$$= \mathbb{E}_{p(s'|s, a)} \left[\mathcal{R}(s') + \gamma V_{\pi}(s') \right] - V_{\pi}(s)$$

$$= \mathbb{E}_{p(s'|s, a)} \left[\mathcal{R}(s') + \gamma V_{\pi}(s') - V_{\pi}(s) \right]$$

Theorem 1.3.1. For two policies π and π' , we have the identity

$$V_{\pi'} = V_{\pi} + \mathbb{E}_{\pi'} \left[\sum_{t=0}^{T} \gamma^t A_{\pi}(s_t, a_t) \right]$$

Proof. Follows from lemma 1.3.2 and a telescoping sum of state-values.

$$\mathbb{E}_{\pi'} \left[\sum_{t=0}^{T} \gamma^{t} A_{\pi}(s_{t}, a_{t}) \right] = \mathbb{E}_{\pi'} \left[\sum_{t=0}^{T} \gamma^{t} \left(r_{t} + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_{t}) \right) \right]$$

$$= \mathbb{E}_{\pi'} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right] - \mathbb{E}_{\pi'} \left[\sum_{t=0}^{T} \gamma^{t} \left(V_{\pi}(s_{t}) - \gamma V_{\pi}(s_{t+1}) \right) \right]$$

$$= \mathbb{E}_{\pi'} \left[G_{0} \right] - \mathbb{E}_{\pi'} \left[V_{\pi}(s_{0}) \right]$$

$$= \mathbb{E}_{\pi'} \left[G_{0} \right] - \mathbb{E}_{p_{0}(s_{0})} \left[V_{\pi}(s_{0}) \right]$$

$$= V_{\pi'} - V_{\pi}$$

2 Policy gradient methods

2.1 Trust region policy optimization

Let's rewrite the equation for a policy-value using states instead of frequencies:

$$V_{\pi'} = V_{\pi} + \mathbb{E}_{\pi'} \left[\sum_{t=0}^{T} \gamma^t A_{\pi}(s_t, a_t) \right]$$
 (2.1.1)

$$= V_{\pi} + \sum_{t=0}^{T} \gamma^{t} \left[\mathbb{E}_{\{s_{t}=s, a_{t}=a \mid \pi'\}} A_{\pi}(s_{t}, a_{t}) \right]$$
 (2.1.2)

$$= V_{\pi} + \sum_{t=0}^{T} \gamma^{t} \left[\sum_{s \in S} \sum_{a \in A} A_{\pi}(s, a) \pi'(a|s) \mathbb{P}(s_{t} = s|\pi') \right]$$
(2.1.3)

$$= V_{\pi} + \sum_{s \in \mathcal{S}} \left[\sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s | \pi) p \sum_{a \in \mathcal{A}} A_{\pi}(s, a) \pi'(a | s) \right]$$
(2.1.4)

$$= V_{\pi} + \sum_{s \in \mathcal{S}} \left[\operatorname{dvf}_{\pi'}(s) \sum_{a \in \mathcal{A}} A_{\pi}(s, a) \pi'(a|s) \right]$$
 (2.1.5)

We are considering policy update $\pi \to \pi'$, and want to make sure that $V_{\pi'} \geq V_{\pi}$. We can see from that if for every state $s \in \mathcal{S}$ we have $\sum_{a \in \mathcal{A}} A_{\pi}(s, a) \pi'(a|s) > 0$ then policy has indeed improved.

Since eq. (2.1.5) is hard to optimize directly, we introduce a local approximation

$$L_{\pi}(\pi') = V_{\pi} + \sum_{s \in S} \left[\operatorname{dvf}_{\pi}(s) \sum_{a \in A} A_{\pi}(s, a) \pi'(a|s) \right]$$
 (2.1.6)

TRPO paper claims that $L_{\pi}(\pi')$ matches $V_{\pi'}$ up to first order, that is, for a parametrized policy π_{θ} we have:

$$L_{\pi\theta}(\pi_{\theta}) = V_{\pi\theta} \tag{2.1.7}$$

$$\nabla_{\theta} L_{\pi_{\theta'}}(\pi_{\theta})|_{\theta=\theta'} = \nabla_{\theta} V_{\pi_{\theta}}|_{\theta=\theta'} \tag{2.1.8}$$

Definition 2.1.1. Variation divergence

For two probability distributions p and q, their Variation divergence $D_{TV}(p||q)$ is:

$$D_{TV}(p||q) = \frac{1}{2} \sum_{i} |p_i - q_i|$$
 (2.1.9)

For policies π and π' we define Max variation divergence to be

$$D_{TV}^{\max}(\pi, \pi') = \max_{s} D_{TV}(\pi(\cdot|s)||\pi'(\cdot|s))$$
 (2.1.10)

Theorem 2.1.1. Let $\alpha = D_{TV}^{\max}(\pi, \pi')$. Then the following holds:

$$V_{\pi'} \ge L_{\pi}(\pi') - \frac{4\varepsilon\gamma}{(1-\gamma)^2}\alpha^2 \tag{2.1.11}$$

where $\varepsilon = \max_{s,a} |A_{\pi}(s,a)|$

Theorem 2.1.2. Following relationship holds between variation divergence and KL-divergence:

$$D_{KL}(p||q) \ge D_{TV}(p||q)^2$$
 (2.1.12)

Theorem 2.1.3. The following holds:

$$V_{\pi'} \ge L_{\pi}(\pi') - CD_{KL}^{\max}(\pi, \pi')$$
 (2.1.13)

where $C = \frac{4\varepsilon\gamma}{(1-\gamma)^2}$

Notation 2.1.1.

$$V_{\theta} = V_{\pi_{\theta}}$$

$$L_{\theta}(\theta') = L_{\pi_{\theta}}(\pi_{\theta'})$$

$$D_{KL}(\theta||\theta') = D_{KL}(\pi_{\theta}, \pi_{\theta'})$$

By maximizing objective

$$\operatorname{maximize}_{\theta'} \left[L_{\pi}(\pi') - CD_{KL}^{\max}(\pi, \pi') \right] \tag{2.1.14}$$

we would guarantee monotonically improving policy, but the step size would be very small. Instead authors propoze a *trust-region update*:

$$\text{maximize}_{\theta'} L_{\pi}(\pi') \tag{2.1.15}$$

subject to
$$D_{KL}^{\max}(\pi, \pi') \le \delta$$
 (2.1.16)

For practical purposes we estimate $D_{KL}^{\max}(\pi, \pi')$ by

$$\overline{D}_{KL}^{\pi}(\theta, \theta') = \mathbb{E}_{s \sim \pi} \left[D_{KL}(\pi(\cdot|s), \pi'(\cdot|s)) \right]$$