Cachin paper:

Let P_X be a probability mass function with support χ , where X is a discrete random variable taking the values in χ . The *entropy* of X is

$$H(X) = E(-\lg P_X),$$

where $E(\cdot)$ is the expected value (weighted average) function; that is,

$$H(X) = -\sum_{x \in \chi} P_X(x) \lg P_X(x). \tag{1}$$

Intuitively, the entropy of X is a measure of the number of bits of uncertainty in X. For example, suppose χ is the set of all n-bit strings, and $P_X(x) = 1/2^n$ for any $x \in \chi$; that is, every n-bit string is equally likely to be pulled from P_X . This would represent a distribution of maximum uncertainty, and it is straightforward to show that Eqn. (1) evaluates to n in this case. In fact, $H(X) = \lg|\chi|$ is an upper bound for H, where $|\chi|$ denotes the cardinality of χ .

The *minimum entropy* of a distribution P_X is defined as

$$H_{\infty}(X) = \min_{x \in \mathcal{X}} \{-\lg P_X(x)\}$$
 (2)

This can be understood as a measure of uncertainty for the "most probable" element in χ according to P_X . For example, if there is some element x_0 with $P_X(x_0)=1$, then $H_\infty(X)=0$ (there is no uncertainty in X). Suppose the most probable element x_0 has probability $P_X(x_0)=1/2$. Intuitively, the uncertainty is unity; that is, we can guess that the next value of X will be X_0 to within a single coin flip. Indeed, evaluating Eqn. (2) for such a distribution shows that $H_\infty(X)=1$.

Hopper paper:

Give the warden W access to M(h), which returns draws from \mathcal{C}_h^b , and an oracle \mathcal{O} . The oracle \mathcal{O} is either SE_k or a function $O(\cdot, \cdot)$, where O(m, h) simply returns draws from $\mathcal{C}_h^{|\mathsf{SE}_k(m,h)|}$. The warden also has access to randomness r. The warden's advantage against the steganographic secrecy under chosen hiddentext attack for channel \mathcal{C} of stegosystem S is defined by Hopper et. al to be

$$\mathbf{Adv}_{\mathsf{S},\mathcal{C}}^{\mathsf{ss\text{-}cha-}\mathcal{C}}(W) = \left| \Pr_{k,r,M,\mathsf{SE}} \left[W_r^{M,\mathsf{SE}_k(\cdot,\cdot)} \mathsf{accepts} \right] - \Pr_{r,M,O} \left[W_r^{M,O(\cdot,\cdot)} \mathsf{accepts} \right] \right|.$$

A stegosystem S is $(t, q, \ell, \varepsilon)$ -steganographically secret under chosen hiddenttext attack for channel \mathcal{C} (SS-CHA- \mathcal{C}) if, for any warden W making at most q queries totaling at most ℓ bits of hiddentext, and running in time at most t,

$$\mathbf{Adv}_{S.\mathcal{C}}^{\text{ss-cha-}\mathcal{C}}(W) \leq \varepsilon;$$

that is, the stegosystem S is insecure if the warden W can (with high probability) distinguish between the output of $SE_k(m,h)$ and draws from $C_h^{|SE_k(m,h)|}$, even when given access to C_h^b through M.

A stegosystem S is (t,q,ℓ,ε) -universsally steganographically secret under chosen hiddenttext attack for channel $\mathcal C$ (USS-CHA- $\mathcal C$) if it is (t,q,ℓ,ε) -SS-CHA- $\mathcal C$ for any channel $\mathcal C$ that satisfies $H_\infty\left(\mathcal C_h^b\right)>1\forall h$ drawn from $\mathcal C$.