Introduction to CONVERGE

Welcome to IC Engine Training

- For those who are new to CONVERGE or CONVERGE Studio for internal combustion (IC) engine modeling
- Focus on setting up an IC engine case and analyzing the results
- The plan for today and tomorrow
 - Introduction to Convergent Science and CONVERGE
 - Engine-specific surface preparation
 - Case setup
 - Post-processing

Including hands-on practice in CONVERGE Studio

IC Engine Training Topics (two days)

- Introduction to CONVERGE
- Engine sector surface preparation utilities
- Preparing the piston and valves for motion
- File overview and case setup
- Boundaries
- Regions
- Initialization and mapping
- Grid control

- Turbulence
- Spray
- Combustion
- Sources
- CHT
- VOF
- Advanced engine modeling
 - Multi-cycle simulations
 - Multi-cylinder simulations
 - o Engine knock
- Post-processing

A Brief History of Convergent Science (1/2)

- 1997: Graduate students at the University of Wisconsin Madison found Convergent Science (as Convergent Thinking LLC)
- 2001: Start developing CONVERGE to address CFD bottlenecks
- 2008: Sell first CONVERGE licenses
- 2012: Open Texas office
- 2013: Sign IDAJ as Asian distributor (Japan, China, Korea)

A Brief History of Convergent Science (2/2)

- 2014: Move headquarters to a 40,000 square foot building in Madison, Wisconsin
- 2014: Merge with Ignite3D to form Convergent Science GmbH (Linz, Austria)
- 2014: Hold first CONVERGE user conference
- 2015: Open Detroit office

Convergent Science Offices and Distributors

Convergent Science Today

- Most US, European, and Asian automotive and engine companies are using CONVERGE
- Use of CONVERGE in other industries is rapidly increasing

CONVERGE IS USED WORLDWIDE

What is CONVERGE?

- CONVERGE is a computational fluid dynamics (CFD) modeling program
 CFD uses numerical methods and algorithms to solve and analyze problems involving fluid flow
- The CONVERGE package includes

pre-processor, including Polygonica* and Sculptor* post-processor, including a license for EnSight

solver utilities

^{*}separate licenses may be required

CONVERGE Collaborators

What are some applications for CONVERGE?

Internal Combustion Engines

Gas Turbines

Pumps and Compressors

Biomedical Engineering

Exhaust Aftertreatment

What makes CONVERGE better? (1/2)

- Automated meshing at runtime
 - o No user meshing
 - CONVERGE automatically increases mesh resolution in key areas (Adaptive Mesh Refinement [AMR])
 - With automated meshing, you can run simulations with more cycles and larger geometries
- User-friendly pre- and post-processor
 - Set up the geometry and input files
 - Visualize simulation results

What makes CONVERGE better? (2/2)

- Automated geometry or parameter optimization (genetic algorithms [GAs])
- Accurate physical models
 - Combustion, turbulence, spray, sources, etc.
- Detailed chemistry with large mechanisms

What can CONVERGE do? (1/3)

- Customize, repair, or edit surface geometry
- Steady-state or transient simulations
- Simulations with large, moving/changing, and complex surface geometries
- Advanced spray models
- Conjugate heat transfer (CHT)

What can CONVERGE do? (2/3)

- Combustion (multi-component fuel, non-premixed, fuel injection)
- Detailed chemistry (SAGE)
- Simplified combustion models (G-Equation, ECFM3Z, etc.)
- Chemistry mechanism reduction
- GT-SUITE coupling
- 2-stroke and rotary engines
- Engine knock analysis

What can CONVERGE do? (3/3)

- Multi-phase flow simulations
 - Cavitation
 - oIncompressible/compressible flows
 - Condensation/evaporation
- Complex mixing simulations (realistic turbulence)
- Fluid-structure interaction (FSI)
- User-defined functions (UDFs)

• Diesel Engine Validation

Authors' affiliations: Caterpillar Inc., Sandia National Laboratories (ASME ICEF 2013-19129)

Gasoline Direct Injection Engine Validation

GDI with 0% EGR (21 simulation cycles, 500 experimental cycles)

GDI with 18% EGR (21 simulation cycles, 500 experimental cycles)

Authors' affiliation: Argonne National Laboratory (ASME ICEF 2014-5607)

Gasoline Direct Injection Engine Validation

Researchers' affiliation: FORD

Gasoline Pre-Chamber Engine Validation

Authors' affiliation: MAHLE Powertrain LLC (SAE 2015-01-0386)

Dual-Fuel Engine Validation

60% Premixed Natural Gas, 40% Direct Injected Diesel

93% Premixed Natural Gas,7% Direct Injected Diesel

Authors' affiliation: GE (ASME ICEF 2015-1077)

• IC Engine Aftertreatment: SCR

Gas Velocity and Droplet Weber Number

Realistic and Accurate Spray and Turbulence Modeling

Authors' affiliation: Argonne National Laboratory (Atomization and Sprays, 23(10): 925-955 (2013))

Emissions Modeling

Diesel Soot

NG+Diesel DF Unburned HC

Authors' affiliation: GE (ASME ICEF2015-1077)

Abnormal Combustion (Lube Oil Autoignition)

Lube oil autoignition

Authors' affiliation: Prometheus Applied Technologies (CIMAC 2013, paper #37)

Abnormal Combustion (End Gas Auto-ignition / Knock)

Red temperature iso-surface: Flame is shown using the

Black H₂O₂ iso-surface

while end gas auto-ignition is shown using the

Metal Thermal Analysis using CHT

What is the CONVERGE workflow?

CONVERGE Studio

- Prepare geometry
- Set up input files
- Export surface and input files

CONVERGE solver

 Execute simulation in serial or parallel using local cluster or cloud computing

CONVERGE Studio

- Visualize 2D results
- Run Post Convert tool
- Launch Ensight

How do I set up a case in CONVERGE Studio?

2 Import input (*.in) and data (*.dat) files if available

amr.in initialize.in boundary.in inputs.in combust.in liquid.dat events.in post.in embedded.in species.in gas.dat turbulence.in

Repair and prepare geometry

Configure input files in Case Setup

Case Setup

Case Setup

5 Export input and data files

amr.in initialize.in boundary.in inputs.in combust.in liquid.dat engine.in post.in events.in species.in embedded.in surface.dat gas.dat turbulence.in

What post-processing tasks can I do in CONVERGE Studio?

- Create and export 2D plots
- Calculate values such as apparent heat release and engine work
- Post-convert data for 3D visualization
- Launch EnSight for 3D visualization

Do you have questions about CONVERGE?

- Contact the Support Team at support@convergecfd.com
- Download documentation at convergecfd.com
 - Getting Started Guide
 - CONVERGE Manual + Release Notes
 - o CONVERGE Studio Manual + Release Notes
 - CONVERGE UDF Manual
 - Quick Setup Guides
 - PDF + set(s) of input and data files
- Watch videos at convergecfd.com
 - o Complete cases (channel flow, port fuel injected engine) from pre- to post-processing
 - Miscellaneous videos

Advanced Training Topics

Scheduled on request

- Sealing: 2-stroke or rotary engines
 FSI
- Heat transfer mapping
- UDF
- GA optimization
- GT-SUITE coupling
- Radiation modeling

- Advanced combustion modeling
- CHT
- Engine aftertreatment
- Advanced pre- and post-processing
- Gas turbine combustion

THANK YOU! CONVERGECFD.COM

