Dream to Control: Learning Behaviors by Latent Imagination

Francesco Spena 1911090

Outline

- Idea Paper
- World Models
- Environment
- Dimension State Space
- Transition Model
- Reward Model
- Dreamer
- Results

Idea of the Paper

- World Model Architecture
- **Dreamer:** An agent that learns behaviors by propagating value gradients through imagined trajectories in the latent space of the world model.

World Models

- Type of architecture with an internal representation of the world to simulate experiences
- Three main components:
 - Representation Model: Transform high-dimensional observations into a latent space.
 - **Transition Model:** Predict the state s_{t+1} given (s_t, a_t) .
 - **Reward Model:** Predict the reward r_t given the state s_t .

Are they all necessary in our case? NO!

Environment: Acrobot

- Description: Classic Dynamic Control Problem
- **Agent:** Manipulator with 2 revolute joints
- Goal: Reach a specific height
- Dimension state space: 6
- Dimension action space: 3 (1, -1, 0 torque)

Dimension of the state space

• We can represent the state without ambiguity with:

$$\cos(\theta_1) \quad \sin(\theta_1) \quad \cos(\theta_2) \quad \sin(\theta_2) \quad \dot{\theta}_1 \quad \dot{\theta}_2$$

Direct Kinematics:

$$\begin{cases} x_e = l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2) \\ y_e = -l_1 \cos(\theta_1) - l_2 \cos(\theta_1 + \theta_2) \end{cases}$$

Dimension of the state space (2)

Compute the time derivative of the direct kinematics:

$$\begin{cases} \dot{x}_e = l_1 \dot{\theta}_1 \cos(\theta_1) + l_2 (\dot{\theta}_1 + \dot{\theta}_2) \cos(\theta_1 + \theta_2) \\ \dot{y}_e = l_1 \dot{\theta}_1 \sin(\theta_1) + l_2 (\dot{\theta}_1 + \dot{\theta}_2) \sin(\theta_1 + \theta_2) \end{cases}$$

Dynamic Model:

$$M(\theta) \begin{pmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{pmatrix} + C(\theta, \dot{\theta}) \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix} + G(\theta) = \begin{pmatrix} 0 \\ \tau_2 \end{pmatrix}$$

We update the angles and the angular velocities as:

$$\begin{cases} \dot{\theta}_1' = \dot{\theta}_1 + \ddot{\theta}_1 \triangle t \\ \dot{\theta}_2' = \dot{\theta}_2 + \ddot{\theta}_2 \triangle t \\ \theta_1' = \theta_1 + \dot{\theta}_1' \triangle t \\ \theta_2' = \theta_2 + \dot{\theta}_2' \triangle t \end{cases} \Rightarrow \begin{cases} \cos(\theta_1') = \cos(\theta_1 + \dot{\theta}_1' \triangle t) \\ \sin(\theta_1') = \sin(\theta_1 + \dot{\theta}_1' \triangle t) \\ \cos(\theta_2') = \cos(\theta_2 + \dot{\theta}_2' \triangle t) \\ \sin(\theta_2') = \sin(\theta_2 + \dot{\theta}_2' \triangle t) \end{cases}$$

Transition Model

• Neural Network capable of predicting s_{t+1} given (s_t, a_t) :

$$s_{t+1} = f_{\theta}(s_t, a_t)$$

• Small State: MLP with 2 hidden layers with 128 units + Rel U activation function.

Reward Model

• Neural Network capable to predicting r_t given s_t :

$$r_t = f_{\theta}(s_t)$$

• **Small Action Space: MLP** with 2 hidden layers with 32 units + ReLU activation function.

Dreamer

- Based on actor-critic schema.
- Main steps:
 - Collect Experiences
 - Imagine trajectories (implicit in V_{λ})
 - Update Critic and Discount Model
 - Update Actor
- Actor: Policy Model MLP with 1 hidden layer with 128 units
 + ELU activation function.
- **Critic:** Value Model **MLP** with 3 hidden layers with (128,64,32)-units + ReLU activation function.

Results: Mean Square Error

Original Loss Function:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (V(s_i) - y_i)^2$$

Results: Regularization Based Loss

Stabilization of the training phase:

$$L = MSE + \lambda ||\theta||_2$$

Reward: MSE VS Regularization

MSE Loss

Reward: MSE VS Regularization

Regularization Loss

Dreamer VS PPO

Dreamer with KL VS PPO

- KL divergence measure the difference between the distribution of the actor and some target.
- Limited exploration!

Video Demonstration

10 seconds

5 seconds