WHAT IS CLAIMED IS:

1	1. A method for annealing a semiconductor substrate, the method
2	comprising:
3	turning on at least one heat source;
4	heating a semiconductor substrate in a chamber;
5	turning off the at least one heat source;
6	cooling the semiconductor substrate in the chamber;
7	wherein
8	the heating a semiconductor substrate includes raising a temperature of
9	the semiconductor substrate from a first temperature value to a second temperature value;
10	the cooling the semiconductor substrate includes lowering the
11	temperature of the semiconductor substrate from the second temperature value to a third
12	temperature value;
13	the heating a semiconductor substrate includes absorbing an energy
14	from the at least one heat source by the semiconductor substrate;
15	the cooling the semiconductor substrate includes flowing a first gas in
16	a vicinity of at least one wall of the chamber, flowing a second gas in a vicinity of the at least
17	one heat source, and flowing a third gas in a vicinity of the semiconductor substrate;
18	a first temperature of the first gas is lower than the second temperature
19	value;
20	a second temperature of the second gas is lower than the second
21	temperature value;
22	a third temperature of the third gas is lower than the second
23	temperature value.
24	
1	2. The method of claim 1 wherein the first temperature, the second
2	temperature, and the third temperature each is lower than the third temperature value.
1	3. The method of claim 2 wherein the first temperature, the second
2	temperature, and the third temperature each equals -10°c.
1	4. The method of claim 1 wherein the first gas, the second gas, and the
2	third gas each comprise at least one selected from a group consisting of nitrogen and helium.

2	temperature of the semiconductor substrate at the second temperature value.
1	6. The method of claim 1 wherein the semiconductor substrate comprises
2	a source region and a drain region, the source region including a source LDD region, the
3	drain region including a drain LDD region.
1	7. A method for annealing a semiconductor substrate, the method
2	comprising:
3	heating a semiconductor substrate in a chamber;
4	cooling the semiconductor substrate in the chamber;
5	wherein
6	the heating a semiconductor substrate includes raising a temperature of
7	the semiconductor substrate from a first temperature value to a second temperature value;
8	the cooling the semiconductor substrate includes lowering the
9	temperature of the semiconductor substrate from the second temperature value to a third
10	temperature value;
11	the heating a semiconductor substrate includes absorbing an energy
12	from at least one heat source by the semiconductor substrate;
13	the cooling the semiconductor substrate includes flowing a first gas in
14	a vicinity of at least one wall of the chamber, flowing a second gas in a vicinity of the at least
15	one heat source, and flowing a third gas in a vicinity of the semiconductor substrate;
16	a first temperature of the first gas is lower than the third temperature
17	value;
18	a second temperature of the second gas is lower than the third
19	temperature value;
20	a third temperature of the third gas is lower than the third temperature
21	value.
1	8. The method of claim 7 wherein the first temperature, the second
2	temperature, and the third temperature each equals -10°c.
1	9. The method of claim 7 wherein the first gas, the second gas, and the
2	third gas each comprise at least one selected from a group consisting of nitrogen and helium.

The method of claim 1, the method further comprising maintaining the

5.

1

1	10. The method of claim 7, the method further comprising maintaining the
2	temperature of the semiconductor substrate at the second temperature value.
1	11. The method of claim 7 wherein the semiconductor substrate comprises
2	a source region and a drain region, the source region including a source LDD region, the
3	drain region including a drain LDD region.
1	12. A method for annealing a semiconductor substrate, the method
2	comprising:
3	heating a semiconductor substrate in a chamber;
4	cooling the semiconductor substrate in the chamber;
5	wherein
6	the heating a semiconductor substrate includes raising a temperature of
7	the semiconductor substrate from a first temperature value to a second temperature value;
8	the cooling the semiconductor substrate includes lowering the
9	temperature of the semiconductor substrate from the second temperature value to a third
10	temperature value;
11	the heating a semiconductor substrate includes absorbing an energy
12	from at least one lamp by the semiconductor substrate;
13	the cooling the semiconductor substrate includes flowing a first gas in
14	a vicinity of the at least one lamp, and flowing a second gas in a vicinity of the
15	semiconductor substrate;
16	a first temperature of the first gas is lower than the third temperature
17	value;
18	a second temperature of the second gas is lower than the third
19	temperature value.
1	13. The method of claim 12 wherein the first temperature and the second
2	temperature each equals -10°c.
1	14. The method of claim 12 wherein the first gas, the second gas, and the
2	third gas each comprise at least one selected from a group consisting of nitrogen and helium.
1	15. A method for annealing a semiconductor substrate, the method
2	comprising:

3	turning on at least one heat source;
4	heating a semiconductor substrate in a chamber, the semiconductor substrate
5	including a source region and a drain region, the source region including a source LDD
6	region, the drain region including a drain LDD region;
7	turning off the at least one heat source;
8	cooling the semiconductor substrate in the chamber;
9	wherein
10	the heating a semiconductor substrate includes raising a temperature of
11	the semiconductor substrate from a first temperature value to a second temperature value;
12	the cooling the semiconductor substrate includes lowering the
13	temperature of the semiconductor substrate from the second temperature value to a third
14	temperature value;
15	the heating a semiconductor substrate includes absorbing an energy
16	from the at least one heat source by the semiconductor substrate;
17	the cooling the semiconductor substrate includes flowing a first gas in
18	a vicinity of at least one wall of the chamber, flowing a second gas in a vicinity of the at least
19	one heat source, and flowing a third gas in a vicinity of the semiconductor substrate;
20	a first temperature of the first gas is lower than the second temperature
21	value;
22	a second temperature of the second gas is lower than the second
23	temperature value;
24	a third temperature of the third gas is lower than the second
25	temperature value.
1	16. The method of claim 15 wherein the first temperature, the second
2	temperature, and the third temperature each is lower than the third temperature value.
1	17. The method of claim 16 wherein the first temperature, the second
2	temperature, and the third temperature each equals -10°c.
1	18. The method of claim 15 wherein the first gas, the second gas, and the
2	third gas each comprise at least one selected from a group consisting of nitrogen and helium.
1	19. The method of claim 15, the method further comprising maintaining
2	the temperature of the semiconductor substrate at the second temperature value

- 1 20. The method of claim 15 wherein the first temperature value equals the
- 2 third temperature value.