EES Ver. 10.444: #0301: for use by Mechanical and Aerospace Engineering, Ohio State University - Columbus, OH

"ME-5427 Introduction to Turbomachinery" "Zhaoyi Jiang(.1364)"

"HW1 P2"

"Exit" p=1.5[bar]

t=195[c] v2=350*cos(70)

rho=density(steam,p=p,t=t)

A=(40-2.1)*25

m_dot=rho*v2*A*convert(mm^2,m^2)

SOLUTION

Unit Settings: SI C bar kJ mass deg

A = 947.5 [mm²] ρ = 0.6999 [kg/m³] $\dot{m} = 0.07939 \text{ [kg/s]}$ t = 195 [C]

p = 1.5 [bar] v2 = 119.7 [m/s]

EES Ver. 10.444: #0301: for use by Mechanical and Aerospace Engineering, Ohio State University - Columbus, OH

"ME-5427 Introduction to Turbomachinery" "Zhaoyi Jiang(.1364)"

"HW1 P3"

"Inlet"

p1=84[bar] t1=532[c] v1=266[m/s] h1=enthalpy(steam,p=p1,t=t1) h01=h1+0.5*v1^2*convert(j,kj) s1=entropy(steam,p=p1,t=t1)

"Exit"

p2=0.4[bar] t2=82[c] v2=50[m/s] h2=enthalpy(steam,p=p2,t=t2) h02=h2+0.5*v2^2*convert(j,kj) s2s=s1 h2s=enthalpy(steam,p=p2,s=s2s)

"Work"

w_dot=h01-h02

"Efficiency"

eta=(h1-h2)/(h1-h2s)

SOLUTION

Unit Settings: SI C bar kJ mass deg

$\eta = 0.7234$	h01
h1 = 3474 [kj/kg]	h2 :
p1 = 84 [bar]	p2 :
s2s = 6.8 [kj/kg-k]	t1 =
v1 = 266 [m/s]	v2 :

h01 = 3509 [kj/kg] h2 = 2648 [kj/kg] p2 = 0.4 [bar] t1 = 532 [C] v2 = 50 [m/s] h02 = 2650 [kj/kg] h2s = 2333 [kj/kg] s1 = 6.8 [kj/kg-k] t2 = 82 [C] \dot{w} = 859.7 [kj/kg]

EES Ver. 10.444: #0301: for use by Mechanical and Aerospace Engineering, Ohio State University - Columbus, OH

"ME-5427 Introduction to Turbomachinery" "Zhaoyi Jiang(.1364)"

"HW1 P4"

"Inlet"

t1=293[k] p1=1[bar] v1=50[m/s] h1=enthalpy(air,t=t1) h01=h1+0.5*v1^2*convert(j,kj) s1=entropy(air,h=h1,p=p1) t01=temperature(air,h=h01) p01=pressure(air,h=h01,s=s1)

"Exit"

t2=295[k] p2=1[bar] v2=150[m/s] h2=enthalpy(air,t=t2) s2=entropy(air,h=h2,p=p2) h02=h2+0.5*v2^2*convert(j,kj) t_02=temperature(air,h=h02) p02=pressure(air,h=h02,s=s2)

SOLUTION

Unit Settings: SI K bar kJ mass deg

h01 = 294.7 [kj/kg] h2 = 295.4 [kj/kg] p1 = 1 [bar] s2 = 5.689 [kj/kg-k] t2 = 295 [K] v2 = 150 [m/s] h02 = 306.7 [kj/kg] p01 = 1.015 [bar] p2 = 1 [bar] t01 = 294.2 [c] to2 = 306.2 [c] h1 = 293.4 [kj/kg] p02 = 1.139 [bar] s1 = 5.682 [kj/kg-k] t1 = 293 [K] v1 = 50 [m/s]

Problem 4

EES Ver. 10.444: #0301: for use by Mechanical and Aerospace Engineering, Ohio State University - Columbus, OH

"ME-5427 Introduction to Turbomachinery" "Zhaoyi Jiang(.1364)"

"HW1 P5"

"Inlet"

p01=2.5[bar] t01=500[k] h01=enthalpy(air,t=t01) s01=entropy(air,p=p01,t=t01) s01=s1

"Exit"

p2=1.5[bar] s1=s2 h02=h01 h2=enthalpy(air,s=s2,p=p2) $v2=(2*(h02-h2)*convert(kj,j))^{(0.5)}$ t2=temperature(air,h=h2)

"Speed"

M=v2/soundspeed(air,t=t2) "Subsonic"

"M dot"

omega=15*convert(cm^2,m^2) rho=density(air,p=p2,t=t2) m dot=omega*rho*v2

SOLUTION

Unit Settings: SI K bar kJ mass deg

h01 = 503.4 [kj/kg]	h02 = 503.4 [kj/kg]	h2 = 434.9 [kj/kg]
M = 0.889	$\dot{m} = 0.6695 \text{ [kg/s]}$	$_{\odot} = 0.0015 \text{ [m}^2\text{]}$
p01 = 2.5 [bar]	p2 = 1.5 [bar]	$\rho = 1.206 [kg/m^3]$
s01 = 5.96 [kj/kg-k]	s1 = 5.96 [kj/kg-k]	s2 = 5.96 [kj/kg-k]
t01 = 500 [K]	t2 = 433.1 [k]	v2 = 369.9 [m/s]

Problem -5

