Find the lines of regression and coefficient of correlation from the following table:

<u> </u>									
X	3	4	6	7	10				
Y	9	11	14	15	16				

- 5. a) The probability density function p(x) of a random variable is given by $p(x) = y_0 e^{-|x|}$, $-\infty \le x \le \infty$. Find the value of y_0 .
 - b) If the 10 percent of the bolts produced by a machine are defective, find the probability that out of 5 bolts chosen at random at least two will be defective.
 - c) Write the procedure to test significance and goodness of fit using χ^2 method.
 - d) Prove that the mean deviation from mean of a normal distribution is approximately ⁴/₅ times of standard deviation.

OR

The nine items of a sample have the values: 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of these differ significant from the assumed mean 47.5. $(t_{0.05} = 2.31 \text{ for } v = 8)$.

Roll No

B.E. - 401

Total No. of Questions :5]

B.E. IV Semester

Examination, June 2014

Engineering Mathematics - III (Common for all Branches)

Time: Three Hours

Maximum Marks: 70

- **Note:** i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.
- 1. a) Show that the function $\frac{1}{2}\log(x^2+y^2)$ is harmonic. 2
 - b) Evaluate the integral $\int_C \frac{z^2 z + 1}{z 1} dz$, where C is the circle |z| = 1.
 - c) Find Cauchy Riemann equations in polar form. 3
 - d) Find the analytic function $f(z) = u + iv \text{ if } u v = (x v)(x^2 + 4xy + y^2)$ 7

RF-401 PTO

OR

Evaluate the integral $\int_0^\infty \frac{\cos ax}{x^2 + 1} dx$.

- a) Determine the Newton Raphson iterative formula to find the kth root of N.
 - b) Find a real root of the equation $x \log_{10} x = 1.2$ by regulafalsi method correct to one decimal place. 2
 - c) Find a real root of the equation $3x = \cos x + 1$ by iterative method correct to two decimal places.
 - d) Apply Crout's factorization method to solve the system of equations:

$$x-y=0$$

$$-2x+4y-2z=-1$$

$$-y+2z=1.5$$

OR

Apply Gauss-Seidel iteration method to solve the system of equations:

$$20x+y-2z=17$$

$$3x+20y-z=-18$$

$$2x-3y+20z=1.5$$

- 3. a) Prove that: $e^x = \left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$
 - b) Derive Newton's forward interpolation formula.
 - c) Evaluate the integral $\int_0^{0.6} e^{-x^2} dx$ by Simpson $\frac{1}{3}$ rule. 3

d) Apply Newton's divided difference formula to find the value of f(9) from the following table: 7

x	5	7	11	13	17				
f(x)	150	392	1452	2368	5202				
OR									

OR

Find $\frac{dy}{dx}$ at x=1.1 from the following table:

 x
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0

 y
 0
 0.128
 0.544
 1.296
 2.432
 4.000

4. a) Find by Taylor's series method the value y(0.1) correct to three decimal places from the differential equation:

$$\frac{dy}{dx} = x^2 y - y, y(0) = 1$$
.

- Write the working rule of Runge-Kutta method of fourth order for the numerical solution of differential equation.
- c) If θ is the angle between the two regression lines show that:

$$\tan\theta = \frac{1-r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}.$$

d) Using modified Euler's method, find the value of y (0.3) from the equation:

$$\frac{dy}{dx} = x + y$$
, $y(0) = 1$.

OR

7