GYASI BAWUAH, MBA, MS.

(C) 469-315-4951

(E) kgbawuah@yahoo.com

• Open to Relocation and can travel more than 50% of the time.

Summary of Skills:

Machine Learning Algorithms, Data Visualization with Tableau, Data Analytics

- Using Tableau to create action driven, meaningful, and insightful reports and dashboards that tell a complete story about a set of data, while identifying trends and opportunities to support business strategy and competitive advantage.
- Using R statistical software to perform time series forecasting analytics, developing models that give perspectives about future expectations, and eliminating/minimizing guess works that may have financial implications.
- Using Python programing to develop predictive models to determine the likelihood of future outcomes based on historical, internal or external data.
- Using Python for text mining and Natural Learning Processing (NLP) to mine or transform unstructured texts and blending with structured data to provide insights and analysis.
- Using IBM Cognos Report Studio to create, distribute, and automate a wide range of professional reports.
- Coordinating with and working closely with different experts to undertake business projects.
- Analyzing complex business problems, researching them, and providing intelligent suggestions, and recommendations.
- ❖ Making presentations to higher officials, peers, and large audiences.

Job History

Data Analyst

American Century Investments (Contractor), Kansas City, MO: October 2017 – Present Resources: Tableau, Microsoft Access, R, Python, SQL, Microsoft Excel.

- Used Tableau to develop automated versions of our daily, weekly, and monthly Net Investment reports for company-wide distributions, cutting down production time and manual validations which frequently led to errors.
- ❖ Led an initiative to develop and maintain time series forecasting models to statistically approximate our monthly and year-end Net Investment performances to aid financial planning, and product development.
- Developed and maintains quarterly performance dashboards for town hall meetings.
- Developed and maintains executive dashboards for Board of Directors in Kansas City (MO), Mountain View (CA).
- ❖ Developed and maintains Month in Review (MIR) reports and commentaries that are distributed to Board of Directors, Executive Management, and all managers.
- Redesigns Excel or SAS based reports into visually appealing and interactive dashboards in Tableau
- Research data trends and variations in business metrics to provide insights, while explaining dramatic changes or outliers.
- ❖ Provide ad hoc reports to support a wide range of users across the organization.
- ❖ Leading an initiative to develop a predictive model using internal and external data to explain factors that can determine whether the annual Net Investment would be positive or negative.

HR Analyst

Sprint Connect LLC, Overland Park, KS: January 2017 – September 2017 Resources: Tableau, R, Python, IBM Cognos, Microsoft Excel, UltiPro.

- ❖ Managed the Human Resource Information System (HRIS).
- ❖ Performed daily and weekly audits on employees' time card records and liaised with managers and the payroll team to address actual or potential pay errors.
- ❖ Developed employee headcount dashboards and time-off reports to provide the HR Vice President with daily/weekly/monthly state of the business.
- ❖ Developed Time & Attendance and payroll reports that were distributed to the payroll team and all managers across the organization.
- ❖ Developed store-level performance reports and dashboards that were distributed to the operations team and all store managers across our 15 business States.
- ❖ Led an initiative to develop a predictive model that explained critical factors that were causing our high attrition rate, to help HR reform its hiring, reward and compensation policies.
- ❖ Led an initiative to design and implement workflow systems that streamlined the company's timeoff requests, hiring, terminations, and changes.
- ❖ Led an initiative to develop a fraud-detection report that targeted certain non-exempt employees who were gaming the Time & Attendance system.
- ❖ Troubleshot the Time & Attendance system for employees.

HR Support Specialist

Waddell & Reed, Mission, KS: December 2015 – December 2016 Resources: Tableau, IBM Cognos, Microsoft Excel.

- Supported the management of the Human Resource Information System (HRIS).
- Performed daily and weekly audits on employees' time card records and liaised with managers and the payroll team to address actual or potential pay errors.
- ❖ Maintained employee master data for over 1000 employees and contractors.
- ❖ Provided ad hoc reports for all managers across the organization.
- Provided the benefits teams with employee enrolment reports and open-enrolment activities.
- Developed employee headcount, hiring, changes, and termination dashboards and reports for HR.
- ❖ Developed training documents for all managers and non-managers.
- ❖ Troubleshot the Time & Attendance system for employees.

Training & Development Consultant

TriWest Healthcare Alliance (Contractor), Olathe, KS: September 2015 – December 2015

- ❖ Led with a team that set up new business locations in Kansas City, Nashville, and Sacramento. Provided health insurance and technology training to new employees.
- Developed training and evaluation materials.

Training & Development Consultant

Convergys Corporations, Olathe, KS: September 2013 – August 2015

- Provided health insurance and technology training to new and existing employees.
- Developed training and evaluation materials.

Data Analyst

Government of Ghana, Ghana, MO: May 2011 – December 2012 Resources: SPSS, Microsoft Excel.

- ❖ Created HR dashboard to help the Director of HR monitor employee headcount.
- Developed employee attendance reports for 27 agencies and departments.
- ❖ Supported Finance with planning and forecasting models and analytics.
- ❖ Maintained employee master data for over 1000 employees.
- Provided all directors and supervisors with ad hoc fund management reports.

Education

Master of Science: Business Intelligence & Data Analytics Rockhurst University- May 2018.

Master of Business Administration (MBA): Management Information Systems & Quality Management Park University- December 2016.

Bachelor of Arts (BA): Psychology University of Ghana- May 2011.

Sample Projects Attached:

* Tableau Dashboards

* R Statistical Software: Forecasting Analytics

Python Programming: Modeling

Gyasi Bawuah Data/Report Analyst

Top 10 Clients' Assets as a % of Total Asset

Top10_AUM	Total AUM	
\$67,421,464	\$134,274,017	50.2%

	Redemption Rate	Purchase Rate
2014	-23.2%	20.8%
2015	-20.8%	20.9%
2016	-22.1%	22.8%
2017	-22.5%	16.9%
2018	-17.3%	11.8%

Complex

Sales Strategy

Sales Strategy	
ONE CHOICE TARGET DATE	\$23,274,788
GLOBAL GROWTH STRATEGIES	\$17,534,166
U.S. VALUE YIELD	\$14,016,188
U.S. PREMIER LARGE CAP GROWTH STRATEGIES	\$12,378,032
U.S. MID CAP VALUE	\$11,048,673
U.S. LARGE CAP GROWTH	\$8,211,699
ONE CHOICE TARGET RISK	\$5,312,317
U.S. CORE FIXED INCOME STRATEGIES	\$5,200,009
NON-U.S. GROWTH STRATEGIES	\$5,164,455
U.S. OPPORTUNISTIC MID CAP GROWTH	\$5,051,352

Markoting Disc

	Marketing Disc	
	Marketing Discipline	
)	Multi-Asset Strategies	\$36,448,383
	Global Value	\$34,419,983
	U.S. Growth	\$32,678,832
	Global & Non-U.S. Growth	\$29,464,702
	Bond	\$24,084,799
	Disciplined Equity	\$6,830,149
	Money Market	\$4,055,326
	AC Alternatives	\$873,420
	AC ETFs	\$19,065

Gyasi Bawuah, Data & Report Analyst.

BY CHANNEL - WEEKLY

Channel S	Sub Channel	Purchases	Redemptions	Net Investment	Acquisitions	Exch/Tran	Net Flows	AUM
DIRECT	MONEY MARKET	15,165	(16,373)	(1,209)	0	3,112	1,903	3,610,949
	LONG TERM	18,396	(29,514)	(11,117)	0	(14,696)	(25,813)	36,203,424
SUB TOTAL		33,561	(45,887)	(12,326)	0	(11,584)	(23,910)	39,814,373
INTERMEDIARY	/ BANKS	16,511	(49,930)	(33,419)	0	(252)	(33,671)	5,246,762
	INDEPENDENT RECORDKEEPERS	43,088	(83,582)	(40,494)	0	0	(40,494)	7,153,193
	INSURANCE COMPANIES	92,535	(322,820)	(230,285)	0	(263)	(230,547)	27,394,321
	MULTI CHANNEL FIRMS	129,579	(315,939)	(186,360)	0	4,502	(181,858)	39,257,665
	WEALTH MANAGERS	78,162	(113,737)	(35,574)	0	4,627	(30,947)	24,157,534
SUB TOTAL		359,875	(886,008)	(526,133)	0	8,614	(517,518)	103,209,474
GLOBAL INSTITUTIONAL	APAC L	4	(563)	(559)	0	0	(559)	4,883,780
	EMEA	0	(1,274)	(1,274)	0	0	(1,274)	11,598,673
	NOMURA	967	(6,790)	(5,824)	0	0	(5,824)	1,405,597
	NORTH AMERICA INSTITUTIONAL	8,634	(38,775)	(30,140)	0	0	(30,140)	9,153,058
SUB TOTAL		9,605	(47,402)	(37,797)	0	0	(37,797)	27,041,107
CORPORATE MO	ONEY	16,906	(15)	16,891	0	4	16,895	542,760
GRAND TOTA	AL	419,947	(979,312)	(559,365)	0	(2,965)	(562,330)	170,607,715

Gyasi Bawuah, Data & Report Analyst.

YEAR TO DATE

WEEKLY NET INVESTMENT REPORT Report as of July 8, 2018 (in thousands)

Net Investment F	For Week Ending:	Top Positive We	eks	Top Negative Week	S	
				1 April 16, 2018	(\$	999,214
July 8, 2018	(\$576,256)	¹ May 07, 2018	\$332,095	² May 21, 2018	(\$	983,059
	(+010,000)			3 June 11, 2018		928,474
		² February 19, 2018	\$57,852	4 February 05, 2018	(\$	657,905
Net Investment Thr	rough July 11, 2018			5 July 02, 2018	(\$	576,256
WEEK TO DATE	(\$701,304)	455.00		\$332.1M	Number of W	Veeks
MONTH TO DATE	(\$701,304)	\$57.9M	(\$10.7M) \$0M	(\$63.3M)	Positives	2
QUARTER TO DATE.	(\$701,304)	V		$\Gamma \setminus I \setminus I \setminus I$	Negatives	2
		(\$657.9M)	\ /	′ \/ \/		

TOD	CLIENTS	DV CT	ATECV.	1	2010
TOP	CLIENTS	BYSIL	2A I EG Y :	JIIIV X	7018

(\$7,960,913)

268508315	ONE CHOICE TARGET DATE	\$14,677
148292437	EMERGING MARKETS	\$13,899
148292437	U.S. LARGE CAP VALUE	\$8,824
953794907	NON-U.S. GROWTH STRATEGIES	\$7,305
496024876	U.S. SMALL CAP VALUE	\$6,667
148292437	U.S. REAL ESTATE SECURITIES	\$5,857
292727559	EMERGING MARKETS	\$5,350

BOTTOM CLIENTS BY STRATEGY: July 8, 2018

28

Total

792249262	U.S. LARGE CAP GROWTH	(\$153,714)
148292437	U.S. DISCIPLINED LARGE CAP CORE STR	(\$54,017)
148292437	U.S. LARGE CAP GROWTH	(\$47,545)
188584208	ONE CHOICE TARGET DATE	(\$44,345)
148292437	U.S. VALUE YIELD	(\$29,771)
148292437	ONE CHOICE TARGET DATE	(\$25,045)
394723802	U.S. VALUE YIELD	(\$21,263)
923757791	NON-U.S. CONCENTRATED GROWTH ST	(\$21,000)
582328309	ONE CHOICE TARGET DATE	(\$14,109)
200752288	ONE CHOICE TARGET DATE	(\$13,293)
212762832	NON-U.S. AGGREGATE FIXED INCOME	(\$12,384)
292727559	U.S. CORE PLUS FIXED INCOME	(\$10,720)
394723802	U.S. BALANCED - CORE - 60-40 STRATEGI	(\$8,891)
488508343	U.S. MID CAP VALUE	(\$7,663)
141544804	U.S. VALUE STRATEGIES	(\$7,102)
900997905	U.S. MID CAP VALUE	(\$7,100)
141544804	ONE CHOICE TARGET DATE	(\$6,364)
582328309	U.S. OPPORTUNISTIC MID CAP GROWTH	(\$6,090)
953794907	U.S. VALUE YIELD	(\$5,468)
272138297	ONE CHOICE TARGET DATE	(\$5,430)
697186470	U.S. VALUE YIELD	(\$5,348)
697186470	ONE CHOICE TARGET DATE	(\$5,161)

Gyasi Bawuah, Data & Report Analyst.

Complex Long Term (\$B)

Gyasi Bawuah Data/Report Analyst

Business Problem:

Determining Factors That Can Predict Future Net Investments

Importing Libraries

```
In [2]: import pandas as pd
   import numpy as np
   from sklearn import preprocessing
   import matplotlib.pyplot as plt
   plt.rc("font", size=14)
   from sklearn.linear_model import LogisticRegression
   from sklearn.cross_validation import train_test_split
   import seaborn as sns
   sns.set(style="white")
   sns.set(style="white")
   import warnings
   warnings.simplefilter('ignore', DeprecationWarning)
```

Reading data and viewing last 5 rows

ut[3]:		Net Investment	Month	Year	Company	Performance	
	1127	-2.731277e+08	June	2018	GRE	Negative	
	1128	-8.243304e+07	June	2018	MAS	Negative	
	1129	-1.787312e+08	June	2018	NAT	Negative	
	1130	-1.160424e+08	June	2018	NOR	Negative	
	1131	1.873374e+07	June	2018	WEL	Negative	

Exploratory Data Analysis

2013.27193

<pre>In [5]: data.groupby('Company').mean()</pre>					
Out[5]:		Net Investment	Year		
	Company				
	AME	-8.952422e+06	2013.27193		
	ASH	2.614420e+08	2013.27193		
	CAN	3.015271e+08	2013.59434		
	CHA	-5.611691e+07	2013.27193		
	FID	1.416172e+08	2013.27193		
	GRE	-7.925305e+07	2013.27193		
	MAS	7.389197e+07	2013.27193		
	NAT	-1.552214e+08	2013.27193		

1.255051e+08

3.594165e+07 2013.27193

NOR

WEL

```
In [6]: %matplotlib inline
    pd.crosstab(data.Month,data.Performance).plot(kind='bar')

plt.title('Net Investment Performance By Month')
    plt.xlabel('Net Investment')
    plt.ylabel('Performance')
```

Out[6]: Text(0,0.5,'Performance')

In [9]: table=pd.crosstab(data.Performance,data.Year)
 table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', stacked=F
 alse)

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x1a0a9568fd0>


```
In [10]:plt.scatter(data.Company, data['Net Investment'])
    plt.xlabel('Clients')
    plt.ylabel('Net Investment')
    plt.title('Net Investment Performance by Clients')
    plt.show()
```


Shuffling Data

```
In [11]: from sklearn.utils import shuffle
       df = shuffle(data, random_state=0)
       df.head()
Out[11]:
            Net Investment Month Year Company Performance
        14 4.123465e+08
                        February 2009 MAS
                                                  Positive
        957 5.615290e+07
                         January 2017 GRE
                                                  Negative
        495 1.227206e+07 March 2013 CHA
                                                 Negative
        608 -1.056607e+07 February 2014 MAS
                                                 Negative
        529 -1.851401e+08 June 2013 NAT
                                                  Negative
```

Transforming Categorical data- Performance

```
In [12]:from sklearn import preprocessing
       le_dep = preprocessing.LabelEncoder()
       df['Performance'] = le_dep.fit_transform(df['Performance'])
       df.head()
Out[12]:
            Net Investment Month Year Company Performance
        14 4.123465e+08 February 2009 MAS
        957 5.615290e+07 January 2017 GRE
        495 1.227206e+07 March 2013 CHA
                                                0
        608 -1.056607e+07
                        February 2014 MAS
                                                0
        529 -1.851401e+08
                         June
                                 2013 NAT
```

Normalizing data, adding dummy variables

```
In [13]:# perform data transformation. Creates dummies of any categorical featur
e
    for col in df.columns[1:]:
        attName = col
        dType = df[col].dtype
        missing = pd.isnull(df[col]).any()
        uniqueCount = len(df[attName].value_counts(normalize=False))
        # discretize (create dummies)
        if dType == object:
            df = pd.concat([df, pd.get_dummies(df[col], prefix=col)], axis=1
        )
            del df[attName]

df.shape
      df.describe()
```

Out[13]:

:	Net Investment	Year	Performance	Month_April	Month_August	Month_		
count	1.132000e+03	1132.000000	1132.000000	1132.000000	1132.000000	1132.000		
mean	6.235974e+07	2013.302120	0.628975	0.087456	0.078622	0.079505		
std	5.054662e+08	2.744446	0.483293	0.282627	0.269267	0.270645		
min	-1.742728e+09	2009.000000	0.000000	0.000000	0.000000	0.000000		
25%	-1.123984e+08	2011.000000	0.000000	0.000000	0.000000	0.000000		
50%	0.000000e+00	2013.000000	1.000000	0.000000	0.000000	0.000000		
75%	1.440988e+08	2016.000000	1.000000	0.000000	0.000000	0.000000		
max	3.122466e+09	2018.000000	1.000000	1.000000	1.000000	1.000000		
8 rows	0.1227000.00 2010.00000 1.00000 1.00000							

Splitting data into Training and Testing sets

```
In [14]:X = df.iloc[:,1:]
y = df.iloc[:,0]

X_train, X_test, y_train, y_test = train_test_split(X.values, y.values, test_size=.2, random_state=0)

print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)

(905, 24)
(227, 24)
(905,)
(227,)
```

Testing for significance- General Linear Model: Linear Regression

```
In [16]:import statsmodels.api as sm
       logit_model=sm.GLM(y,X)
       result=logit_model.fit()
       print(result.summary())
       warnings.simplefilter('ignore', DeprecationWarning)
                       Generalized Linear Model Regression Results
       Dep. Variable:
                          Net Investment No. Observations:
                                   GLM Df Residuals:
       Model Family:
                                Gaussian Df Model:
                                                                            22
       Link Function:
                               identity Scale:
                                                          2.1237716304858653e+17
       Method:
                                   IRLS
                                         Log-Likelihood:
                                                                        -24176.
                        Wed, 25 Jul 2018 Deviance:
       Date:
                                                                     2.3553e+20
       Time:
                               02:24:02 Pearson chi2:
                                                                       2.36e+20
       No. Iterations:
       ______
                        coef std err
                                             z P>|z| [0.025 0.975]
                   -2.938e+07 5.84e+06 -5.028 0.000 -4.08e+07 -1.79e+07
                    2.252e+08 3.31e+07
2.684e+10 5.35e+09
       Performance
                                           6.805
                                                      0.000
                                                              1.6e+08
                                                                         2.9e+08
                                          5.015
       Month April
                                                      0.000
                                                             1.64e+10
                                                                        3.73e+10
      Month_August 2.686e+10 5.35e+09
Month_December 2.685e+10 5.35e+09
                                           5.020
                                                      0.000
                                                             1.64e+10
                                                                        3.73e+10
                                            5.018
                                                      0.000
                                                             1.64e+10
                                                                        3.73e+10
       Month_February 2.683e+10 5.35e+09
                                            5.013
                                                      0.000
                                                              1.63e+10
                                                                        3.73e+10
       Month_January
                    2.682e+10 5.35e+09
                                            5.011
                                                      0.000
                                                              1.63e+10
                                                                        3.73e+10
       Month_July
                     2.688e+10 5.35e+09
                                            5.023
                                                      0.000
                                                              1.64e+10
                                                                        3.74e+10
       Month_June
                     2.686e+10 5.35e+09
                                            5.018
                                                      0.000
                                                              1.64e+10
                                                                        3.73e+10
       Month_March
                  2.682e+10 5.35e+09
                                            5.011
                                                      0.000
                                                              1.63e+10
                                                                        3.73e+10
       Month_May
                     2.684e+10 5.35e+09
                                            5.014
                                                      0.000
                                                              1.63e+10
                                                                        3.73e+10
       Month_November 2.686e+10 5.35e+09
                                            5.021
                                                      0.000
                                                              1.64e+10
                                                                        3.73e+10
       Month_October
                     2.686e+10 5.35e+09
                                            5.020
                                                      0.000
                                                              1.64e+10
                                                                        3.73e+10
       Month_September 2.686e+10 5.35e+09
                                            5.020
                                                      0.000
                                                              1.64e+10
                                                                        3.73e+10
       Company_AME
                     3.214e+10 6.42e+09
                                                      0.000
                                                                        4.47e+10
                                            5.006
                                                              1.96e+10
       Company_ASH
                     3.241e+10 6.42e+09
                                                      0.000
                                            5.048
                                                              1.98e+10
                                                                         4.5e+10
       Company_CAN
                     3.247e+10 6.42e+09
                                            5.055
                                                      0.000
                                                              1.99e+10
                      3.21e+10 6.42e+09
       Company_CHA
                                            4.998
                                                      0.000
       Company_FID
                     3.229e+10 6.42e+09
                                            5.029
                                                      0.000
                                                              1.97e+10
                                                                        4.49e+10
                     3.207e+10 6.42e+09
       Company_GRE
                                            4.995
                                                      0.000
                                                              1.95e+10
       Company_MAS
                     3.223e+10 6.42e+09
                                            5.019
                                                      0.000
                                                              1.96e+10
                                                                        4.48e+10
       Company_NAT
                      3.2e+10 6.42e+09
                                            4.983
                                                      0.000
                                                              1.94e+10
                                                                        4.46e+10
                                                                        4.49e+10
       Company_NOR
                     3.228e+10 6.42e+09
                                            5.027
                                                      0.000
                                                              1.97e+10
                     3.219e+10 6.42e+09
                                                      0.000
                                                             1.96e+10
                                                                       4.48e+10
       Company_WEL
                                            5.013
```

Examining Residuals

```
In [20]:from sklearn.linear_model import LinearRegression
In [21]:lm = LinearRegression().fit(X_train, y_train)
    predicted = lm.predict(X_test)

In [22]:plt.scatter(lm.predict(X_train), lm.predict(X_train) - y_train, c='b', s
    =20, alpha=.5)
    plt.scatter(lm.predict(X_test), lm.predict(X_test) - y_test, c='r', s=20
    )
    plt.hlines(y=0, xmin=0, xmax=90)
    plt.title('Residual Plot Using Training (blue) and Test(red) data')
    plt.ylabel('Residuals')
```


Forecasting Net Investment

Gyasi Bawuah June 26, 2018

```
# Inspecting data
head(data)
## # A tibble: 6 x 2
## period amount
##
    <chr>
                       <dbl>
## 1 January 2009 575813585.
## 2 February 2009 61854663.
## 3 March 2009 85156112.
## 4 April 2009 812932894.
## 5 May 2009 306970550.
## 6 June 2009 131232131.
tail(data)
## # A tibble: 6 x 2
## period
                         amount
##
    <chr>
                          <dbl>
## 1 December 2017 -785015506.
## 2 January 2018 -693605732.
## 3 February 2018 -887923022.
## 4 March 2018 -830313339.
## 5 April 2018 -1648021940.
## 6 May 2018 -1122416825.
summary(data)
                          amount
## period
## Length:113 Min. :-2.159e+09
## Class :character 1st Qu.:-3.931e+08
## Mode :character Median : 6.185e+07
##
                       Mean :-7.665e+06
##
                       3rd Qu.: 4.003e+08
##
                       Max. : 2.163e+09
# Creating Net Investment dataframe for timeseries
df = data$amount
head(df)
## [1] 575813585 61854663 85156112 812932894 306970550 131232131
# Installing and Importing Timeseries and Forecasting Libraries
library('timeSeries')
## Loading required package: timeDate
library('forecast')
# Creating Timeseries object
df_ts = ts(df, frequency = 12, start = c(2009))
plot(df_ts, main='Net Investment Since January 2009', xlab='Date', ylab='Net Investment', col=
'red')
```

Net Investment Since January 2009

Testing Assumptions- Autocorrelation
acf(df_ts)

Series df_ts

Decomposing timeseries object

decom = decompose(df_ts)
plot(decom)

Decomposition of additive time series


```
#Simple Exponential Smoothing: HoltWinters
fit1 = HoltWinters(df_ts, seasonal = c('additive'))
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = df_ts, seasonal = c("additive"))
##
## Smoothing parameters:
  alpha: 0.1881403
##
   beta: 0.03031403
##
##
   gamma: 0.4325693
##
plot(fit1)
```

Holt-Winters filtering


```
fit1$SSE
## [1] 4.695584e+19
# Ploting Forecasts

forecast1 = forecast(fit1)
plot(forecast1, col='red', xlab='Date', ylab='Net Investment')
```

Forecasts from HoltWinters


```
# Forecasting the next 12 months
head(forecast1$lower, 12)
##
                 80%
                             95%
##
    [1,] -1590199105 -2051658888
    [2,] -1734764328 -2204813917
##
    [3,] -2095483053 -2574467260
    [4,] -2082948945 -2571207837
##
    [5,] -2047066308 -2544934860
##
    [6,] -1934849270 -2442657079
##
    [7,] -2315564519 -2833635585
##
    [8,] -2109330132 -2637982684
##
  [9,] -2239737711 -2779284094
## [10,] -2177504894 -2728251494
## [11,] -2471733419 -3033980633
## [12,] -2639813616 -3213855851
accuracy(forecast1)
                               RMSE
                                                     MPE
                                                             MAPE
                                                                       MASE
##
                       ME
                                          MAE
## Training set -82528026 681842548 483011491 -55.18751 216.5697 0.7567846
                      ACF1
## Training set -0.0777671
```