Student:	
	Grupa:
	ianuarie 2011

Problema 1. Pentru ce valori ale lui $n, m \in \mathbb{N}$ $(n, m \ge 1)$ graful $K_{n,m}$ este eulerian?

Problema 2. Să se construiască o funcție care să recunoască un graf P_3 -free. La intrare aceasta va primi un graf $G = (\{1, ..., n\}, E)$ reprezentat cu ajutorul listelor de adiacență și va returna true sau false. Stabiliți complexitatea timp a algoritmului folosit.

Problema 3. Fie R=(G,s,t,c) o rețea. Spunem că fluxurile x^1 şi x^2 în rețeaua R sunt ortogonale dacă $\forall ij \in E$ avem $x^1_{ij} \cdot x^2_{ij} = 0$. Demonstrați că dacă x^1 şi x^2 sunt ortogonale atunci $x^1 + x^2$ este flux în R. Există x^1 şi x^2 fluxuri de valoare maximă şi ortogonale ?

Problema 4. Dați exemplu de o problemă de decizie ${\bf P}$ pe grafuri care este NP-completă, dar dacă se consideră restricția lui ${\bf P}$ pe clasa grafurilor bipartite este polinomială.

Dați exemplu de o problemă de decizie $\mathbf{P_1}$ pe grafuri care este NP-completă și care rămâne NP-completă chiar dacă se consideră restricția sa pe clasa grafurilor bipartite.

Argumentare! (se pot folosi referințe la rezultate din curs).

Problema 5.

Determinați numărul fețelor unui graf plan cu n vârfuri, m muchii și k componente conexe.

Student:	
	Grupa:
	ianuarie 2011

Problema 1. Determinați toți arborii cu cel puțin două vârfuri care sunt grafuri bipartite complete.

Problema 2. Fie G = (V, E) un graf reprezentat cu ajutorul listelor de adiacență. Să se arate că se poate testa dacă există un circuit în G care să conțină o muchie $e \in E$ dată, în timpul O(|V| + |E|).

Problema 3. O rețea generalizată (de fluxuri) R = (G, s, t, c) diferă de una uzuală prin faptul că funcția de capacitate este definită și pentru noduri $c: V(G) \cup E(G) \to \mathbf{R}_+$. Un flux într-o astfel de rețea satisface condițiile uzuale (nenegativ, subcapacitar, se conservă în orice nod diferit de intrare și ieșire) și în plus $\forall v \in V(G) - \{s,t\}$: $\sum_{wv \in E(G)} x_{wv} \leq c(v)$. Arătați că se poate determina un flux de valoare maximă într-o astfel de rețea, construind o rețea uzuală R' și rezolvând problema fluxului maxim în R'.

Problema 4. Fie G = (V, E) un graf conex şi $c : E \to \mathbf{R}$ o funcție de cost pe mulțimea muchiilor sle. Se cunoaște un arbore parțial de cost minim T al lui G. Descrieți un algoritm de complexitate O(n) (unde n = |G|) care să determine un arbore parțial de cost minim în graful G' obținut din G prin adăugarea unei noi (care nu era în G) muchii e de cost C.

Problema 5. Există grafuri 6-regulate planare? Justificați răspunsul.

Student:	
	Grupa:
	ianuarie 2011

Problema 1. Este adevărat că graful complementar al lui $K_{3,3}$ este $2K_3$?

Problema 2. Descrieți un algoritm de complexitate O(|V(G)| + |E(G)|) care să testeze dacă graful G, dat prin listele de adiacență, are sau nu circuite de lungime impară.

Problema 3. Demonstrați că următoarea problemă de decizie aparține lui **P**: **Intrare :** O rețea R = (G, s, t, c) și o valoare reală $v_0 > 0$. **Întrebare:** Există în R un flux de valoare v_0 ?

Problema 4. Demonstrați că un graf bipartit de ordin impar nu este hamiltonian.

Problema 5. Fie G un graf planar C_3 -free (fără circuite de lungime trei) cu m>2 muchii și $n\geq 3$ vârfuri. Demonstrați că $m\leq 2n-4$.

Student:	
	Grupa:
	ianuarie 2011

Problema 1. Există grafuri G cu 6 vârfuri cu proprietatea că G este izomorf cu complementarul său ? (justificare)

Problema 2. Construiți o funcție care primind la intrare un graf G reprezentat cu ajutorul matricei de adiacență, să returneze numărul de triunghiuri (subgrafuri izomorfe cu C_3) ale lui G.

Problema 3. Modificați algoritmul de tip preflux pentru obținerea eficientă a unui flux de valoare prestabilită v_0 într-o rețea dată. Pentru algoritmul obținut se va analiza complexitatea timp și se va argumenta corectitudinea.

Problema 4. Fie v un vârf de grad impar într-un graf G. Demonstrați că există în G un vârf $u \neq v$, de grad impar, astfel încât u să poată fi accesat din v printr-un drum.

Problema 5.

Demonstrați că dacă o muchie e face parte din orice arbore parțial al unui graf conex G, atunci G-e nu-i conex.

Student:	
	Grupa:
	ianuarie 2011

Problema 1. Există grafuri G neconexe cu proprietatea că G este izomorf cu complementarul său ? (justificare)

Problema 2. Arătați că dacă $\delta(G) \geq k$, atunci în graful G, reprezentat prin listele de adiacență, se poate construi din orice vârf $v \in V(G)$ un drum de lungime cel puțin k, în timp O(k + |E(G)|).

Problema 3. Fie D=(V,E) un digraf, $s\in V$ și o funcție reală de cost $a:E\to \mathbf{R}$ cu proprietatea că nu D nu are circuite C cu a(C)<0. Se aplică algoritmul lui Bellman, Ford, Moore și se determină pentru fiecare $v\in V$, u_v costul minim al unui drum de la s la v. Demonstrați că funcția $\overline{a}:E\to \mathbf{R}$, prin $\forall ij\in E$ $\overline{a}(ij)=a(ij)+u_i-u_j$, satisface proprietatea că $\overline{a}(ij)\geq 0$, $\forall ij\in E$.

Problema 4. Fie rețeaua R=(G,s,t,c) cu proprietatea că $c(ij)\in\{0,1\}$ pentru orice arc $ij\in E(G)$. Descrieți un algoritm care să determine un flux x^* de valoare maximă în R cu proprietatea că

$$|\{ij\in E(G)|x_{ij}^*>0\}|=\min_{x\text{ flux de valoare maximă în }R}|\{ij\in E(G)|x_{ij}>0\}|.$$

Notă: Astfel de fluxuri au fost folosite în aplicațiile combinatoriale ale problemelor de flux.

Problema 5.

Fie G un graf eulerian. Demonstrați că se pot orienta muchiile lui G astfel încât orice vârf al digrafului obținut să aibă gradul interior egal cu gradul exterior.

Student:	
	Grupa:
	ianuarie 2011

Problema 1. Determinați toți arborii T cu mai mult de un vârf cu proprietatea că T este izomorf cu complementarul său.

Problema 2.

Fie T=(V,E) un arbore (reprezentat cu ajutorul listelor de adiacență) cu $n\geq 3$ vârfuri. Descrieți un algoritm de complexitate timp O(n) care să determine două vârfuri $x,y\in V$ astfel ca $xy\not\in E$ iar circuitul format în T+xy să aibă lungime maximă.

Problema 3. Fie G=(S,T;E) un graf bipartit. Construiți o rețea R astfel încât rezolvând problema fluxului maxim pe R să se decidă dacă graful bipartit dat are sau nu cuplaj perfect.

Problema 4. Demonstrați că dacă s-ar putea determina în timp polinomial dacă un digraf are sau nu un drum hamiltonian, atunci s-ar putea determina în timp polinomial dacă un graf bipartit are sau nu un circuit hamiltonian.

Problema 5.

Demonstrați că orice graf conex are un mers închis în care fiecare muchie apare cel puțin o dată și cel mult de 2 ori.