• case $N_e \neq \text{const}$, no resonance • case $N_e \neq \text{const}$, resonance

In this section we perform several numerical experiments, with the normalization chosen as $\epsilon_0 = \mu_0 = 1$, $\omega = c = 1$. Also, we set $m_e = 1$ and e = -1. From this it follows that $w_c = -B_0$ and $w_p^2 = N_e$. We consider the following two cases:

Limiting Amplitude and Limiting Absorption Princi-

For every fixed absorption rate ν , in the time domain we choose the boundary

0.1

ple

conditions of the form

$$\partial_t H|_{x=-L} = -\partial_x E_y|_{x=-L} = G\sin(t), \ G \in \mathbb{R},$$

$$\partial_t H|_{x=H} = 0,$$
(1)

and zero initial conditions, and in the frequency domain

$$\partial_x \hat{E}_y \Big|_{x=-L} = G,$$
 $\partial_x \hat{E}_y \Big|_{x=0} = 0.$

 $\partial_x \hat{E}_y \Big|_{x=H} = 0.$ We compute the solution $\mathbf{E}^{\nu}(t)$ for large t in the time domain (the solution

computed numerically at the time step n is denoted by \mathbf{E}_n^{ν}), and the solution $\hat{\mathbf{E}}^{\nu}$ in the frequency domain. Our goal is to check whether

nain. Our goal is to check whether
$$\lim_{t \to +\infty} \mathbf{E}^{\nu}(t) = \Im\left(\hat{\mathbf{E}}^{\nu} \exp(it)\right).$$

No-Resonance Case 0.1.1

We choose the parameters so that in the frequency domain, for the limiting

We choose the parameters so that in the frequency domain, for amplitude problem,
$$\hat{E}_2$$
 satisfies the Airy equation (??).

We choose the parameters so that in the frequency domain, for the problem,
$$\hat{E}_2$$
 satisfies the Airy equation (??).

we set
$$\omega_c = 0$$
 (thus $\delta(x) = 0$), $\omega = 1$ (hence $\alpha(x) = 1 - N_e(x)$), choose the

domain as [-0.5, 10] and set the electron density $N_e(x) = 1 + x$. Importantly, $N_e(x) > 0$ on the whole interval. The boundary conditions in (1) are chosen

as G = Ai'(0.5). In all the experiments in this section the CFL number was chosen to be equal to 0.5.

First let us fix $\nu = 1e - 2$. To demonstrate that the limiting amplitude principle indeed holds, we fix a point $x = x_c$ inside the domain (-L, H) and plot the dependence of the solution $E_2^{\nu}(x_c,t)$, $\hat{E}_2^{\nu}(x_c)e^{it}$ on time t for a range

of $t \gg 1$ in Figure ??. In Figure 1 (left figure) we compare this solution to the computed $\hat{E}_2^{\nu}e^{it}$, for

fixed values of t. Both solutions appear to be in close agreement. The computed L_2 error

error
$$\mathcal{E}(t) = \|\Im\left(\hat{E}_{y}^{\nu} \exp(it)\right) - E_{y}^{\nu}(t)\|_{L_{2}(-L;H)}. \tag{2}$$

Figure show the solutions at fixed time steps for $\nu = 1e - 4$. As before, to

for
$$\nu = 1e - 2$$
 did not exceed $1.1e - 3$ for values of $t \in (28501, 30000)$.

demonstrate that the limiting amplitude principle indeed holds, we fix a point

fixed moment of times. In the right figure the dependence of the error (2) on time for $\nu=10^{-4}$ is demonstrated. We can see that the error is decreasing.

 $x = x_c$ inside the domain (-L, H) and plot the dependence of the solution $E_2^{\nu}(x_c, t)$ on time t for a range of $t \gg 1$. The error (2) for $\nu = 1e - 4$ at the time

interval [228000.05, 240000.05] does not exceed 2.8e-4. One of our observations was that for smaller ν one requires more time steps to achieve the limiting amplitude solution, c.f. e.g. Figure 1. We were not able to obtain the limiting amplitude solution for $t < 3 \cdot 10^4$, unlike in the case of $\nu = 10^{-2}$. For example, for $\nu = 1e - 6$ we were not able to reach the limiting amplitude solution even on the time interval $t \le 1.92e6$, see Figure 2.

0.1.2 Resonance Case

For the resonance case, we choose the parameters as given in Table ??. Since

Parameter	Value
L	5
H	19
ω_c	$\sqrt{0.5}$
$N_e(x)$	$ \begin{cases} 0.25, & x < -0.5, \\ \frac{1+x}{2}, & x \ge -0.5, x \le 9 \\ 5, & x > 9. \end{cases} $
G as in (1)	0.11

 $\alpha(x) = (1 - 2N_e(x)), \ \alpha(0) = 0.$ Clearly, $\delta(0) \neq 0$ (resonance case).

The results for $\nu = 1e - 2$ (chosen as a parameter both in frequency and

Table 1: Parameters for numerical simulations in Section 0.1.2

Figure 2: In the upper figure we plot the dependence of the solution $E_2^{\nu}(x_c, t)$ on time t, with $\nu = 10^{-4}$ and $x_c = 0.45$. In the lower figure we show the solution for $\nu = 10^{-6}$ at the same point x_c , for larger times. As we can see, for $\nu = 10^{-4}$ the limiting amplitude solution was reached for large t. For $\nu = 10^{-6}$ we were not able to obtain the limiting amplitude solution even for $t \approx 1.9e6$.

t

1.92

 $\cdot 10^{6}$

-0.4

1.9198

time domain) are shown in Figure ??.