PREFERENCE STRUCTURING

ANTISYMMETRY

$$\times \leq f'$$
 and $\times' \leq \times =) \times = \times'$

STRICT DOMINANCE

$$\times = \times' \leftarrow \int f(x) c f(x')$$

NON DEMINATED SOLUTIONS

$$\times_{ND} = \left\{ \times \epsilon \times : \not\exists \times' \in \times | \times' < \times \right\}$$

1) LEXICO GRAPHIC CRDER

$$f \leq f' \leftarrow > (f_{ii} \wedge \langle f'_{ii} \rangle) \text{ or }$$

$$((f_{ii} \wedge \langle f'_{ii} \rangle) \text{ AND } (f_{ii} \wedge \langle f'_{ii} \rangle)) \text{ or }$$

((\fir_ = \fir_) \fir\ \(\fir\ \)

AND

(\fir\ = \fir\ \(\fir\ \)

(\fir\ = \fir\ \fir\ \)

K	C05*	TIME
Yn	10	24
	10	<i>3</i> C
×3	10	28
×n	15	4
×s	7 C	<i>L</i> ₁
×6	30	A

COST TIMES

L CIMPALT) X

WHERE (71, 172... Tr) 15 A PERMITATION OF P

LET (17, 17, 17, 2) BE (2, 1)

WHITH X4 PRECERCO X5 (4)

WE MAVE X(6) 4 X(7) (X(5) 4 X(7) 4 X(3) 4 X(2)

LEXICOCINEM ONSER WITH ASPINITION
LOVE L

THE SET

(LEXICOCINEM ONSER WITH ASPINITION

LEVEL

LEXICOCINEM ONSER

THE SET

(LEXICOCINEM ONSER WITH ASPINITION

LEVEL

LEXICOCINEM ONSER

THE SET

(LEXICOCINEM ONSER WITH ASPINITION

LEVEL

LEXICOCINEM ONSER

where $(i_n, ..., i_p)$ BE A PERMUTATIVEN OF $P \sim (1, 2...p)$

Fa=Glef: fire z & Ve Eplans?

EX FIND COST &= 18

	Exmi	Ple N.	ov a recr	14 x x x x x x x x x x x x x x x x x x x
_	K	C05*	T1ME	/ 4× 1 × 3 × × 2 × 5
_	Yn	10	24	
	×2	10	3 _C	
	×3	10	28	•
	×4	15	4	
	×s	70	h	
	×6	30	1	

(3) Utolia Points

antother example in case we need to care about pollution or gived cost

UPTOPIA POINT

Es. Na	vigator Tom	Tom
X	Cost	time
λ_{e_0}	10	24
Xe	10	3,6
×(3)	J. D.	28
× (4)	15	4
X (E)	20	4
X	30	1
86	10	1 (

$\int_{\ell}^{0} = m$	în X	$f_{e}(x)$	l ep
we have a	٠,	/ C	T

 $f \prec f \iff d(f; f^{\circ}) \leq d(f, f^{\circ})$ where: d(f)f') is a distance junda

Utopia point) = \(\left(\frac{1}{2}\left(\frac{1}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}\left(\frac{1}{2}\left(\frac{1}2\left

	Es. Navigator Fom Tom Cost time			d (fin fort
$\widehat{\mathbb{A}}$	λ_{e_0}	10	24	0
	Xe)	10	36	0
\bigcirc	X(3)	10	28	0
	× (4)	15	4	0.25
	Y CE 1	20	4	115
	X	30	1 _	1

) hhang cach cost den costideal

-> consider max - ming = 1 => 30 - 10 = 20 > 1

Es. Mavigator Form Tom dy i go)

Compared (g; g°) beetweentime & cost, we see that cost you can get the number much smaller

min $d(g(x))) = \sqrt{[1](x)} - 10]^{r} + (g_{2}(x))^{-1} = C_{p}(x)$ Mahattan distance in mosth

This uses for general indicator point

Suppose you has a problem.

Xpinite

Igits weak proble m you can result with graph.

A) is dominant solution

XND = {A}

v; F > R (value gonction)

f \(\) \

BORDA'S COUNT: French revolution

8	B (x)
A	5 Vay Xno mex B(gos)
B	4 xe x
C	3
P	2
E	O> weakness basel on break order
	arach.

