МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Компьютерные науки и прикладная математика» Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» І семестр Задание 3

«Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Недосекин А.А.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [а, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в хорошей рекомендованной области точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью ε * 10^k , где ε - машинное эпсилон аппаратно типа для реализованного вещественного данной ЭВМ. подбираемый коэффициент, обеспечивающий экспериментально приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное є и обеспечивать корректные размеры генерируемой таблицы. Вариант 8:

Ряд Тэйлора:

$$-\frac{1}{5} - \frac{2x}{5^2} - \frac{4x^2}{5^3} - \dots - \frac{2^{n-1}x^{n-1}}{5^n}$$

Функция:

$$\frac{1}{2x-5}$$

Значения а и b: 0.0 и 2.0

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum\nolimits_{n = 0}^k {\frac{{{f^{(n)}}(a)}}{{n!}}(x - a)^n} = f(a) + f^{(1)}(a)(x - a) + \frac{{f^{(2)}}(a)}{{2!}}(x - a)^2 + \ldots + \frac{{f^{(k)}}(a)}{{k!}}(x - a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего

вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float $-1.19 * 10^{-7}$, double $-2.20 * 10^{-16}$, long double $-1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать, просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \epsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной
n	int	То самое число N, на которое нужно разбить отрезок
LDBL_EPSILON	Long double	машинное эпсилон 1.0842e-19
step	Long double	Разница между текущим и предыдущем значениями переменной
X	Long double	Переменная, для которой производятся вычисления
taylor(int n, long double x)	Long double	Значение ряда Тейлора для функции
function(long double x)	Long double	Значение функции

i int	Счетчик числа итераций
-------	------------------------

Исходный код программы: Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – число разбиений отрезка на равные части.

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное c помощью формулы Тейлора, A_2 — значение, вычисленное c помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены c точностью K знаков после запятой.

Протокол исполнения

```
#include <stdio.h>
#include <math.h>
#include <float.h>
long double taylor(int n, long double x){
  long double result = 0;
  for (int i = 0; i \le n; ++i){
     result -= powl(2, (n - 1)) * powl(x, (n - 1)) / powl(5, n);
  }
  return result;
}
long double function(long double x){
  return (1 / (2*x - 5));
}
int main(){
  long double a = 0.0;
  long double b = 2.0;
  int n = 100;
  printf("Machine epsilon is equal to: %Lg\n\n",
LDBL_EPSILON);
```

```
printf("
           Table of values of Taylor series and standard
function\n'');
printf("_____
                  ____\n'');
 printf("| x | sum of Taylor series | f(x) function value | number
of iterations|\n'');
printf("_____
        _____\n'');
 long double x = 0;
 long double step = (b - a) / n;
 long double func = 1;
 int i = 0;
 while (fabsl(func) > LDBL EPSILON && (i < 100) && (i < n))
   i += 1;
   x += step;
    func = function(x);
    printf("| %.3Lf | %.20Lf | %.19Lf | %d
                                          |n'', x,
taylor(i, x), func, i);
  }
printf("_____
                        _\n'');
 return 0;
}
```

RESULT Machine epsilon is equal to: 1.0842e-19

Table of values of Taylor series and standard function

x sum of Taylor series f(x) function value number of iter	atio	ns
0.020 -0.400000000000000001 -0.2016129032258064516	1	
0.040 -0.0096000000000000000000000000000000000	2	, I
0.060 -0.00046080000000000000 -0.2049180327868852459	3	i
0.080 -0.00003276800000000000 -0.2066115702479338843	4	i
0.100 -0.00000307200000000000 -0.20833333333333333333333	5	ĺ
0.120 -0.00000035672555520000 -0.2100840336134453781	6	ĺ
0.140 -0.00000004934556712960 -0.2118644067796610169	7	
0.160 -0.00000000791648371999 -0.2136752136752136752	8	
0.180 -0.0000000144440827262 -0.2155172413793103448	9	
0.200 -0.0000000029527900160 -0.2173913043478260870		10
 0.220 -0.0000000006684023424 -0.2192982456140350877 		11
0.240 -0.0000000001659422259 -0.2212389380530973451		12
0.260 -0.0000000000448289021 -0.2232142857142857143		13
0.280 -0.0000000000130904793 -0.2252252252252252		14
0.300 -0.00000000000041085391 -0.22727272727272727		15
0.320 -0.0000000000013792039 -0.2293577981651376147		16
0.340 -0.00000000000004930887 -0.2314814814814814815		17
0.360 -0.0000000000001870449 -0.2336448598130841122		18
0.380 -0.000000000000000000000000000000000		19
0.400 -0.000000000000000017343 -0.2380952380952380952		20

0.420 -0.00000000000000141136 -0.2403846153846153846	21
0.440 -0.000000000000000065845 -0.2427184466019417476	22
0.460 -0.000000000000000000000000000000000	23
0.480 -0.00000000000000016402 -0.2475247524752475247	24
0.500 -0.00000000000000000000000000000000	25
0.520 -0.000000000000000000000000000000000	26
0.540 -0.000000000000000000000000000000000	27
0.560 -0.00000000000000001660 -0.2577319587628865979	28
0.580 -0.000000000000000000000000000000000	29
0.600 -0.0000000000000000058 -0.2631578947368421053	30
0.620 -0.00000000000000000436 -0.2659574468085106383	31
0.640 -0.000000000000000000000000000000000	32
0.660 -0.000000000000000000000000000000000	33
0.680 -0.0000000000000000153 -0.2747252747252747253	34
0.700 -0.0000000000000000115 -0.2777777777777778	35
0.720 -0.000000000000000000000000000000000	36
0.740 -0.000000000000000000000000000000000	37
0.760 -0.000000000000000057 -0.2873563218390804597	38
0.780 -0.000000000000000000000000000000000	39
0.800 -0.00000000000000000011 -0.2941176470588235294	40
	0.440 -0.000000000000000005845 -0.2427184466019417476

0.820 -0.000000000000000000000000000000000	41
0.840 -0.00000000000000000033 -0.3012048192771084337	42
0.860 -0.000000000000000000000000000000000	43
0.880 -0.000000000000000000000000000000000	44
0.900 -0.00000000000000000000000000000000	45
0.920 -0.000000000000000000000000000000000	46
0.940 -0.000000000000000000000000000000000	47
0.960 -0.000000000000000000000000000000000	48
0.980 -0.000000000000000000000000000000000	49
1.000 -0.000000000000000000000000000000	50
1.020 -0.000000000000000000000000000000000	51
1.040 -0.000000000000000000000000000000000	52
1.060 -0.000000000000000000000000000000000	53
1.080 -0.000000000000000000000000000000000	54
1.100 -0.00000000000000000000000000000000	55
1.120 -0.000000000000000000000000000000000	56
1.140 -0.000000000000000000000000000000000	57
1.160 -0.0000000000000000116 -0.3731343283582089551	58
1.180 -0.0000000000000000147 -0.378787878787878787	59
 1.200 -0.00000000000000000000000000000000	60

1.220 -0.00000000000000000250 -0.39062499999999999999999	61
1.240 -0.00000000000000000335 -0.3968253968253968252	62
1.260 -0.000000000000000000455 -0.4032258064516129030	63
1.280 -0.000000000000000000000000000000000	64
1.300 -0.00000000000000000000000000000000	65
1.320 -0.000000000000000001254 -0.4237288135593220337	66
1.340 -0.00000000000000001813 -0.4310344827586206894	67
1.360 -0.000000000000000000000000000000000	68
1.380 -0.00000000000000003963 -0.4464285714285714283	69
1.400 -0.00000000000000005988 -0.45454545454545454545454	70
1.420 -0.000000000000000000178 -0.4629629629629629627	71
1.440 -0.00000000000000014268 -0.4716981132075471695	72
1.460 -0.00000000000000022490 -0.4807692307692307689	73
1.480 -0.000000000000000000000000000000000	74
1.500 -0.0000000000000058215 -0.4999999999999999999999999999999999999	75
1.520 -0.000000000000000005563 -0.5102040816326530608	76
1.540 -0.0000000000000158949 -0.52083333333333333333	77
1.560 -0.0000000000000000267837 -0.5319148936170212761	78
1.580 -0.000000000000000457143 -0.5434782608695652169	7 9
1.600 -0.00000000000000000000000000000000	80

1.620 -0.00000000000001383070 -0.5681818181818181813	81
1.640 -0.00000000000002450863 -0.5813953488372093017	82
1.660 -0.00000000000004396345 -0.5952380952380952375	83
1.680 -0.00000000000007981759 -0.6097560975609756091	84
 1.700 -0.000000000014664833 -0.624999999999999999999999999999999999999	85
1.720 -0.0000000000027262551 -0.6410256410256410249	86
1.740 -0.0000000000051275190 -0.6578947368421052623	87
 1.760 -0.0000000000097553161 -0.6756756756756756748	88
 1.780 -0.0000000000187720605 -0.69444444444444445	89
 1.800 -0.0000000000365311690 -0.7142857142857142847	90
 1.820 -0.00000000000718856098 -0.7352941176470588224	91
 1.840 -0.0000000001430191027 -0.75757575757575746	92
 1.860 -0.0000000002876523454 -0.78124999999999999999999999999999999999999	93
 1.880 -0.0000000005848072876 -0.8064516129032258050	94
1.900 -0.0000000012016525243 -0.8333333333333333333	95
 1.920 -0.0000000024952705039 -0.8620689655172413776	96
 1.940 -0.0000000052357790634 -0.8928571428571428553	97
 1.960 -0.0000000111000074597 -0.9259259259259259240	98
 1.980 -0.0000000237737554738 -0.9615384615384615363	99
 2.000 -0.0000000514351584024 -0.999999999999999999999999999999999999	100

...Program finished with exit code 0 Press ENTER to exit console.

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд_Тейлора