Discrete. Spring '20 Quiz 7. Name																		_ Ti:	me_						
A	В	\mathbf{C}	D	\mathbf{E}	F	G	H	I	J	K	$\mid L \mid$	M	N	О	P	Q	R	$\mid S \mid$	T	U	V	W	X	Y	\mathbf{Z}
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26 = 0

1. Consider the sequence $a_n = (n^2 + 3) \mod 5$; starting at n = 1. Use it to encrypt the word ZIPPY. Your answer will be the new word.

i	letter	std. number	$ a_i $		
1	Z				
_2	I				
3	Р				
4	Р				
5	Y				

2. Consider the sequence $a_n = 2n$; starting at n = 1. It has been used to encrypt a message, and the encrypted message is REYA. Use the same sequence to decrypt and find the original word.

$_{i}$	letter	std. number	a_i		
1	R				
2	E				
3	Y				
4	A				

3. Consider the BBS (Blum Blum Shub) sequence $a_n = (a_{n-1})^2 \mod pq$; with $a_0 = 3$ (that is, k = 3) and with p = 5, q = 5. Starting at n = 1, use this sequence to encrypt the binary number 110011. Your answer will be the new binary number. You may use either method from class.

i	bit	$ a_i $	
1	1		
2	1		
3	0		
4	0		
5	1		
6	1		