STA302/1001 Practice Exam

- Please use $\alpha = 0.05$ for all statistical tests, and keep at least three decimal digits in all your numerical calculations.
- 1. Use not more than 2 sentences to answer each of the following questions.
 - (a) Once an outlier is detected, we should always remove it from the data and re-do the analysis. Comment.
 - (b) A data point cannot simultaneously be an outlier and has high leverage value. True or false? (No need to give reasons.)
 - (c) If Box-Cox transformation suggests us to transform the response variable Y to $Y^{1.97}$, we may want to consider the transformation Y^2 instead. Why?
 - (d) Suppose we want to use multiple linear regression to predict the probability of heart attack for a patient. Do you see any major problem(s) with this?
 - (e) Is ordinary least squares a special case of weighted least squares? Why?
 - (f) When fitting simple linear regression, why is it necessary to look at diagnostic plots even when \mathbb{R}^2 is large?
- 2. Each of the four diagnostic plots in Figure 1 indicates different potential problems commonly encountered in regression modeling. For each plot state **all** of the potential problems and suggest remedial methods.
- 3. We want to fit a simple linear regression model $y = \beta_0 + \beta_1 x$ to the following data set. We know SXX = 4168.82 and SXY = 15924.51.

					42						
у	68.4	87.2	110.0	168.0	173.0	170.0	178.0	180.0	192.0	307.0	316.0

- (a) Obtained the OLS estimates for β_0 and β_1 .
- (b) Estimate E(Y|X=60). Attach a 95% confidence interval to your estimate.
- (c) Construct the corresponding ANOVA table and test for the significance of the simple linear regression model.
- 4. A common statistical tool for speech analysis is sine-cosine regression, from which amplitudes and frequencies of each harmonic can be extracted. Let Y_t , t = 1, ..., n be a speech signal, where t denotes time (Y is the response and t is the predictor). A simple regression model is

$$Y_t = a_0 + \sum_{k=1}^K a_k \sin(w_k t) + \sum_{k=1}^K b_k \cos(w_k t) + e_t,$$
(1)

where $K, a_0, \ldots, a_K, b_0, \ldots, b_K, w_1, \ldots, w_k$ are unknown model parameters and e_1, \ldots, e_t are iid errors. Here K is the number of harmonics, a_k 's and b_k 's are their amplitudes, while w_k 's are the frequencies. Note that, if c is a constant, $\frac{d \sin(cx)}{dx} = c \cos(cx)$ and $\frac{d \cos(cx)}{dx} = -c \sin(cx)$.

- (a) The parameter K in (1) cannot be estimated using OLS. Why? Can you suggest some method for estimating its value?
- (b) Consider the following simpler version of (1):

$$Y_t = 3 + b\cos(4t) + e_t.$$

Derive the OLS estimator for b.

Figure 1: Some diagnostic plots.

(c) Consider yet another simpler version:

$$Y_t = 3 + 2\cos(wt) + e_t.$$

Show that the OLS estimator for w does not have a closed-form. Describe how you would estimate its value in practice.

- 5. This question is about using the mean-shift model for testing outliers. Suppose we have a data set $(x_1, y_1), \ldots, (x_n, y_n)$ of size n that is well modeled by simple linear regression. Before conducting any statistical analysis, we have reasons to suspect that y_4 and y_7 are outliers. In fact, we have strong reasons to suspect that the mean shifts (i.e., the magnitudes of the outlier) for y_4 and y_7 are δ and 2δ respectively. Describe how you would estimate δ and test if $\delta = 0$. In answering this question you should describe the model that you need to fit (define new variable(s) if necessary), state H_0 , H_1 , the test statistics, the degrees of freedom involved and so on.
- 6. Suppose Y is a response variable and X_1 and X_2 are predictor variables. The values of Y, X_1 and X_2 are collected for n = 100 subjects and the following regression model was fitted:

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$$
(2)

Some R outputs and diagnostic plots are given below.

Call:
lm(formula = y ~ x1 + x2)

Residuals:

Min 1Q Median 3Q Max -1.06908 -0.28984 0.01082 0.29508 1.07586

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5393 0.1014 15.187 < 2e-16 ***
x1 0.7445 0.1772 4.202 5.89e-05 ***
x2 0.7962 0.0465 17.121 < 2e-16 ***

Residual standard error: 0.4766 on 97 degrees of freedom Multiple R-squared: 0.8033, Adjusted R-squared: 0.7992 F-statistic: 198.1 on 2 and 97 DF, p-value: < 2.2e-16

Figure 2: Some diagnostic plots.

Denote the model matrix as \mathbf{X} , and $(\mathbf{X}'\mathbf{X})^{-1}$ is

- (a) Let $\theta = 2\beta_1 \beta_0$ and hence $\hat{\theta} = 2\hat{\beta}_1 \hat{\beta}_0$. First approximate $Var(\hat{\theta})$ and then test if $\theta = 0$ against $\theta \neq 0$.
- (b) Estimate the variance of $\hat{\beta}_1/\hat{\beta}_2$.
- (c) Briefly comment on the diagnostic plots Figures 2(b) to 2(d).

- (d) Residuals from Figure 2(a) seem to form a curvature. Can we use the lack-of-fit test to confirm this? Why?
- (e) In order to test the existence of the curvature, a second model was fitted and the R outputs are given below. Conduct the corresponding test.

Call

```
lm(formula = y ~ x1 + x2 + I(x1^2))
```

Residuals:

```
Min 1Q Median 3Q Max -1.04242 -0.31034 0.02720 0.25530 1.03528
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3072 0.1426 9.166 9.19e-15 ***
x1 2.1412 0.6401 3.345 0.00117 **
x2 0.7912 0.0456 17.353 < 2e-16 ***
I(x1^2) -1.3944 0.6151 -2.267 0.02564 *
```

Residual standard error: 0.4667 on 96 degrees of freedom Multiple R-squared: 0.8133, Adjusted R-squared: 0.8075 F-statistic: 139.4 on 3 and 96 DF, p-value: < 2.2e-16