q-теорема Куммера

Обозначим $\Phi_n(q)$ — многочлены деления круга, т.е. такие, что $\prod_{d|n} \Phi_d = [n].$

Лемма 1.
$$[n]! = \prod_{d \leq n} \Phi_d^{\lfloor \frac{n}{d} \rfloor}$$
.

Доказательство. Заметим, что [n]! разбивается на множители, каждый из которых разбивается на Φ_d , и каждый множитель вида Φ_d входит в следующие q-числа и только в них: $[d], [2d], \ldots, [\lfloor \frac{n}{d} \rfloor d]$.

Теорема 2.
$$Q_{n+m}^n=\prod_{d\leq m+n}\Phi_d^{\lfloor\frac{m+n}{d}\rfloor-\lfloor\frac{m}{d}\rfloor-\lfloor\frac{n}{d}\rfloor}.$$
 Доказательство. Очевидно из 1.

Лемма 3. $\Phi_d(1)$ равно p, если $d=p^n$, и 1 в противном случае.

Доказательство. Посмотрим на $[p^{N+1}] = [p^N] \Phi_{p^{N+1}}$. Левая часть в точке q=1 равна p^{N+1} , а левый множитель — p^N , значит, правая часть равна p. С другой стороны, если m не степень простого и равно $\prod_i p_i^{\alpha_i}$, то [m] делится на произведение $[p_i^{\alpha_i}]$, которое равно m в точке q=1, значит, $\Phi_m(1)=1$.

Теорема 4 (Куммер). Степень вхождения p в C_{n+m}^n равно количеству переносов при сложении n и m в столбик в p-ричной системе исчисления.

Доказательство. Применим 2 и подставим q=1. Тогда по 3 степень вхождения p в это выражение равна количеству множителей вида Φ_{p^k} , которое равно количеству переносов.

Лемма 5 (q-числа Каталана). Q_{2n}^n делится на [n+1].

Доказательство. Заметим, что для всех d|n+1 выполняется $\lfloor 2\frac{n}{d} \rfloor > 2\lfloor \frac{n}{d} \rfloor$. Действительно, при увеличении n на 1 левое выражение увеличится на 1, правое на 2, и они оба станут равны $2\frac{n+1}{d}$ (и, соответственно, друг другу). Отсюда и следует утверждение задачи.