4.1

16.

 $|A1\times A2\times A3|=|A1|\times |A2|\times |A3|=n1\cdot n2\cdot n3$, So $A1\times A2\times A3$ has $n1\cdot n2\cdot n3$ elements.

18.

Project(select Employees[Department = Public Relations or Research])][Employee ID, Last Name]

24.

No, Since $0 \notin A_1$ and $0 \notin A_2$

30.

eg.

(a)P={
$$A_1$$
, A_2 }, A_1 ={ $x|x=6*k, k \in N$ }, A_2 ={ $x|x=6*k+3, k \in N$ }

(b)
$$P=\{A_1, A_2\}, A_1=\{x|x=9*k, k\in N\}, A_2=\{x|x=9*k+3, k\in N\}$$

$$A_3 = \{x | x = 9*k+6, k \in N\}$$

31.

$$\{\{1\}, \{2\}, \{3\}\}, \{\{1\}, \{2, 3\}\}, \{\{2\}, \{1, 3\}\}, \{\{3\}, \{1, 2\}\}, \{\{1, 2, 3\}\}.$$

33. 3. There are three 2-element partitions listed in the solution to Exercise 31.

34. 7.
$$S(4,2) = S(3,1) + 2*S(3,2) = 7$$
, consistent.

35. 6.
$$S(4,3) = S(3,2) + 3*S(3,3) = 6$$
.

36. 15. According to 34, S(4,2)=7, so S(5,2)=2*S(4,2)+S(4,1)=15.

Let $(x, y) \in A \times (B \cup C)$. Then $x \in A$, $y \in B \cup C$. Hence $(x, y) \in A \times B$ or $(x, y) \in A \times C$. Thus $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$. Let $(x, y) \in (A \times B) \cup (A \times C)$. Then $x \in A$, $y \in B$ or $y \in C$. Hence $y \in B \cup C$ and $(x, y) \in A \times (B \cup C)$. So, $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$.

38.

 $B \cap C=\{7\},$ $A \times (B \cap C)=\{(1,7),(2,7),(4,7)\}$ $A \times B=\{(1,2),(1,5),(1,7),(2,2),(2,5),(2,7),(4,2),(4,5),(4,7)\}$ $A \times C=\{(1,1),(1,3),(1,7),(2,1),(2,3),(2,7),(4,1),(4,3),(4,7)\}$ $(A \times B) \cap (A \times C)=\{(1,7),(2,7),(4,7)\}$ So, $A \times (B \cap C) = (A \times B) \cap (A \times C).$

39.

Let $\{B_1, B_2, \ldots, B_m\}$ be a partition of B. Form the set $\{B_1 \cap A, B_2 \cap A, \ldots, B_m \cap A\}$. Delete any empty intersections from this set. The resulting set is a partition of A. If $a \in A$, then $a \in B$. We know that as an element of B, a is in exactly one of the B_i and hence in exactly one of the $B_i \cap A$.

40.

即 1.证明 $A \times B$ 的每个元素属于 P 的某个集合; 2.如果 Ai*Bi 和 Aj*Bj 是 P 中不同的元素,那么 Ai*Bi \cap $Aj*Bj=\emptyset$ 。

对于任意(a_p,b_q) \in $A \times B$,由于 P_1 是 A 的一个划分,则存在 A_i ($1 \le i$ $\le k$),使得 $a_p \in A_i$,同理存在 B_j ($1 \le j \le m$),使得 $b_q \in B_j$,所以,对于任意(a_p,b_q) \in $A \times B$,存在 $A_i \times B_j$,使得(a_p,b_q) \in $A_i \times B_j$ 假设存在(a_p,b_q) \in $A_i \times B_j$ 且(a_p,b_q) \in $A_r \times B_s$ ($1 \le i,r \le k$, $1 \le j$, $s \le m$, $i \ne r$ or $j \ne s$)

则 $a_p \in A_i$,且有 $a_p \in A_r$,这与 P1 是 A 的划分相矛盾,因此并没有元素 同时属于任意两个不同的 $A_i \times B_i$, $A_r \times B_s$

综上, $P = \{A_i \times B_i, 1 \le i \le k, 1 \le j \le m\}$ 是 $A \times B$ 的划分。

4.2

20.

1. 必要性

假设 $R(A1 \cap A2) = R(A1) \cap R(A2)$,

则 $R(a) \cap R(b)=R(a \cap b)$,因为 $a \neq b$,所以 $R(a) \cap R(b)=R(a \cap b)=R(\emptyset)=\{$ } 反证法: 假设 $R(a) \cap R(b) \neq \{$ },则设 $x \in R(a) \cap R(b)$,因为 $R(a) \cap R(b)=R(a \cap b)$,所以 $x \in R(a \cap b)$,这与 $a \cap b=\emptyset$,矛盾,即证结论。 2.充分性

任取 y ∈ R(A₁ ∩ A₂),则存在 x ∈ A₁ ∩ A₂满足 xRy,又有 x ∈ A₁, x ∈ A₂,所以 y ∈ R(A₁)且 y ∈ R(A₂),所以 y ∈ R(A₁) ∩ R(A₂),所以 R(A₁ ∩ A₂)⊆ R(A₁) ∩ R(A₂)。 任取 y ∈ R(A₁) ∩ R(A₂),则有 y ∈ R(A1)且 y ∈ R(A2),假设 a ∈ A1, b ∈ A2,使 得 y=R(a),且 y=R(b),若 a ≠ b,则 R(a) ∩ R(b) = { },这与 y ∈ R(A₁)且 y ∈ R(A₂)矛盾,所以 a=b,所以 a ∈ A1 ∩ A2,y ∈ R(A₁ ∩ A₂),所以 R(A₁) ∩ R(A₂) ⊆ R(A₁ ∩ A₂)

所以 $R(A1 \cap A2) = R(A1) \cap R(A2)$ 综上,结论得证。

25.

 $R = \{(1, 2), (2, 2), (2, 3), (3, 4), (4, 4), (5, 1), (5, 4)\}.$

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

26.

$$R=\{(1,2), (1,3), (1,4), (2,2), (2,3), (4,1), (4,4), (4,5)\}$$

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

28.

vertex	1	2	3	4	5
in-degree	1	2	2	2	1
out-degree	3	2	0	3	0

32.

对 M_R 中的每一行以及每一列,若这一行或列对应的点不属于 B,则删除这一行或列,剩余的矩阵即为 R 在 B 上的矩阵。

34.

$$(a)R(a_k) = \{a_q | m_{kq} = 1, n \ge q \ge 1\}$$

36.

|S| = 3*2 = 6

则 S 上的关系有 26=64 种

4.3

18.

所以 a_{ij} =1 当且仅当 b_{ij} =1 所以 $M_{R \cup S} = M_R V M_S$

19.

 $x_i \ R^* \ x_j$ if and only if $x_i = x_j$ or $x_i \ R^n \ x_j$ for some n. The i, jth entry of \mathbf{M}_{R^*} is 1 if and only if i = j or the i, jth entry of \mathbf{M}_{R^n} is 1 for some n. Since $R^{\infty} = \bigcup_{k=1}^{\infty} R^k$, the i, jth entry of M_{R^*} is 1 if and only if i = j or the i, jth entry of $M_{R^{\infty}}$ is 1. Hence $\mathbf{M}_{R^*} = \mathbf{I}_n \vee \mathbf{M}_{R^{\infty}}$.

20. 1, 2, 4, 3, 5, 6, 4.

21. 1, 7, 5, 6, 7, 4, 3.

27.

结合有向图可看出矩阵 M_R . M_R 表示 i 到 j 距离为 2 的道路条数。

设 M_k =[x_{ij}], M_k 在位置(i,k)上为 1, x_{ik} = 1, M_k 在位置(k,j)上为 1, x_{kj} =1,设 M_R . M_R =[m_{ij}]

 $m_{ij}=\sum_{k=1}^{n}x_{ik}.x_{kj}$, 当 $x_{ik}=x_{kj}=1$ 时,i 到 j 有一条距离为 2 的道路。 所以 $M_R.M_R$ 表示距离为 2 的道路条数。

28.

 $(M_R)^n$ 表示在关系 R 的有向图中长度为 n 的道路条数。

证明:设P(n)是断言,对于n>=2,上面命题成立。

基础步骤,由 27 题证明知,P(2)为真。

归纳步骤, 现在证明: 若 P(k)为真, 则 P(k+1)为真 (k>=2)

P(k)为真,即 $(M_R)^k$ 表示在 R 的有向图上长度为 k 的道路条数。

设
$$(M_R)^k = [m_{ii}]$$
, $M_R = [n_{ii}]$, $(M_R)^{k+1} = [x_{ii}]$

则 $x_{ij} = \sum_{p=1}^{t} m_{ip} . n_{pj}$ (t 为矩阵 M_R 的宽度)

 $m_{ip} . n_{pj}$ 表示 i 经过长度为 k 的道路到达 p,再从 p 经过长度为 1 的道路到达 j 的道路条数。

所以 x_{ij} 表示所有在 R 的有向图上长度为 k+1 的道路条数。 命题得证。

30.

(a) 通过基础步骤证明在长度为 2 的情况下,断言是正确的。 $M_R^2=M_R\circ M_R$ 然后归纳步骤中扩展到已知 $M_R^k=M_R\circ M_R\circ ...\circ M_R$ (k 个因子成立) 去证明 $M_R^{k+1}=M_R\circ M_R\circ ...\circ M_R$ (k+1 个因子成立)

(b) 中心思想是如果 $y_{is} = 1$ 和 $m_{sj} = 1$,则 $x_{ij} = 1$

31.

Suppose each vertex has out-degree at least one. Choose a vertex, say v_i . Construct a path R v_i , v_{i+1} , v_{i+2} , This is possible since each vertex has an edge leaving it. But there are only a finite number of vertices so for some k and j, $v_j = v_k$ and a cycle is created.

32.

33.

The essentials of the digraph are the connections made by the arrows. Compare the arrows leaving each vertex in turn to pairs in R with that vertex as first element.

4.4

	reflexive	irreflexive	symmetric	asymmetric	antisymmetric	transitive
14.	√	×	√	×	×	×
16.	√	×	√	×	×	√
18.	×	×	√	×	×	×
20.	√	×	√	×	×	√
22.	√	×	√	×	×	√

31.

Let R be transitive and irreflexive. Suppose a R b and b R a. Then a R a since R is transitive. But this contradicts the fact that R is irreflexive. Hence R is asymmetric.

32.

Transitive.

If R on A is transitive, suppose aRb, bRc, cRd, dRe, then aRc, cRe.

If aRb, bRc, then aR^2c ; Similarly, if cRd, dRe, then cR^2e ; If aRc, cRe, then aR^2e .

Therefore, if aR^2c , cR^2e , then aR^2e .

Therefore, R^2 is transitive.

33.

Let $R \neq \{ \}$ be symmetric and transitive. There exists $(x, y) \in R$ and $(y, x) \in R$. Since R is transitive, we have $(x, x) \in R$, and R is not irreflexive.

34.

If R on A is symmetric, suppose aRb, bRc, then bRa, cRb.

If aRb, bRc, then aR^2c ; Similarly, if bRa, cRb, then cR^2a ;

Therefore, if aR^2c , then cR^2a .

Therefore, R^2 is symmetric.

(Outline) Basis step: n = 1 P(1): If R is symmetric, then R^1 is symmetric is true.

Induction step: Use P(k): If R is symmetric, then R^k is symmetric to show P(k+1). Suppose that $a \ R^{k+1} \ b$. Then there is a $c \in A$ such that $a \ R^k \ c$ and $c \ R \ b$. We have $b \ R \ c$ and $c \ R^k \ a$. Hence $b \ R^{k+1} \ a$.

36. $A = \mathbb{Z}^+$, aRb if and only if a = b.

38.

- (a) $\{(a,b),(b,c),(a,c)\}$ (b) $\{(a,a),(b,b),(c,c),(d,d)\}$
- $(0) \{(a,a),(b,b),(c,c),(a,b)\}$

40.

Let p: R is transitive, q: for all $n \ge 1$, $R^n \subseteq R$.

1. Prove $p \Rightarrow q$ is true.

用归纳法证.

2. Prove $q \Rightarrow p$ is true.

用反证法证.

4.5

19.

- (a) R is reflexive because $a^2 + b^2 = a^2 + b^2$. R is clearly symmetric. R is transitive because if $a^2 + b^2 = c^2 + d^2$ and $c^2 + d^2 = e^2 + f^2$, certainly $a^2 + b^2 = e^2 + f^2$.
- (b) The equivalence classes of A/R are circles with center at (0, 0), including the circle with radius 0.

20.

首先选择一个元素 a, R(a) = {a, b, c, e} 再选择在 A 中但不在 R(a)中的一个元素 d, R(d) = {d} R(a)并 R(d) = A 所以 $A/R = \{\{a,b,c,e\},\{d\}\}$

22.

(a)

证自反性。 因为 a+b=a+b, 所以(a,b)R(a,b), 自反性成立;

证对称性。 若有(a,b)R(c,d)则 a+b=c+d则同时有(c,d)R(a,b)成立。即对称性成立;

证传递性。 若有(a,b)R(c,d) 且(c,d)R(e,f) 则 a+b=c+d=e+f ,则(a,b)R(e,f)成立,传递性成立。

综上,关系R是一个等价关系。

(b)取A中元素(1,1), $R(1,1) = \{(1,1)\}$

取 A 中元素(1,2), $R(1,2) = \{(1,2),(2,1)\}$

取 A 中元素(1,3), $R(1,3) = \{(1,3),(3,1),(2,2)\}$

取 A 中元素(1,4), $R(1,4) = \{(1,4),(4,1),(2,3),(3,2)\}$

取 A 中元素(2,4), $R(2,4) = \{(2,4),(4,2),(3,3)\}$

取 A 中元素(3,4), $R(3,4) = \{(3,4),(4,3)\}$

取 A 中元素(4,4), $R(4,4) = \{(4,4)\}$

 $A/R = \{R(1,1),R(1,2),R(1,3),R(1,4),R(2,4),R(3,4),R(4,4)\} = \{\{(1,1)\},\{(1,2),(2,1)\},\\ \{(1,3),(3,1),(2,2)\}, \{(1,4),(4,1),(2,3),(3,2)\}, \{(2,4),(4,2),(3,3)\}, \{(3,4),(4,3)\},\\ \{(4,4)\}\}$

23.

Let R be reflexive and circular. If a R b, then a R b and b R b, so b R a. Hence R is symmetric. If a R b and b R c, then c R a. But R is symmetric, so a R c, and R is transitive.

Let R be an equivalence relation. Then R is reflexive. If a R b and b R c, then a R c (transitivity) and c R a (symmetry), so R is also circular.

因为对 A 上任意元素 a, 有 a R1 a, a R2 a, 所以有 a R1∩R2 a, 即 R1∩R2 在 A 上自反性成立。

对 A 上任意元素 a, b, 有 a R1 b, a R2 b, 并且均有 b R1 a, b R2 a 即对于 a R1∩R2 b 均有 b R1∩R2 a, 即 R1∩R2 在 A 上对称性成立。

对 A 上任意元素 a, b, c,有 a R1 b, b R1 c, a R2 b, b R2 c,并且均有 a R1 c, a R2 c。即对于 a R1∩R2 b, b R1∩R2 c,均有 a R1∩R2 c。即 R1∩R2 在 A 上 传递性成立。

即如果 R1,R2 是在集合 A 上的等价关系,则 R1∩R2 也是集合 A 上的一个等价关系。

27.

If z is even (or odd), then R(z) is the set of even (or odd) integers. Thus, if a and b are both even (or odd), then $R(a) + R(b) = \{x \mid x = s + t, s \in R(a), t \in R(b)\} = \{x \mid x \text{ is even}\} = R(a + b)$. If a and b have opposite parity, then $R(a) + R(b) = \{x \mid x = s + t, s \in R(a), t \in R(b)\} = \{x \mid x \text{ is odd}\} = R(a + b)$.

28.

(12 题中的等价关系: $A \in Z^+x Z^+$ (a,b) R (c,d) 当且仅当 b=d) 设 a = (m,k1) b = (p,k2) R(a) = $\{(1,k1),(2,k1),(3,k1),....\}$ R(b) = $\{(1,k2),(2,k2),(3,k2),....\}$ 由于定义 R(a)+R(b) = $\{x \mid x = s + t, s \in R(a), t \in R(b)\}$ 所以 R(a)+R(b) = $\{(2,k1+k2),(3,k1+k2),(4,k1+k2),....\}$ 而 a+b = (m+p,k1+k2) 所以 R(a+b) = R(a)+R(b)

(1, 2) R (2, 4) and (1, 3) R (1, 3), but ((1, 2) + (1, 3)) R ((2, 4) + (1, 3)) so the set R((a, b)) + R((a', b')) is not an equivalence class.