

Chiraag Gohel

Introductio

Methods

Results

Automated Prior Elicitation for Bayesian Metabolomics Analysis

JSM 2025 | Flexible Prior Elicitation for Bayesian Analysis

Chiraag Gohel

The Rahnavard Lab, The George Washington University

2025-08-06

Chiraag Gohel

Introduction

Methods

Results

Introduction

What is metabolomics?

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

Introduction

Methods

Figure 1: From Human Metabolome Technologies

Effect size drives biological insight

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

Introduction

Methods

Traditional testing lacks power

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

Introduction

Methods

Prior work

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

Introduction

Methods

Figure 3: Zhang, E. et al. (2025), "LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization," arXiv.

Chiraag Gohel

Introductio

Methods

Results

Methods

Prior elicitation framework overview

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

Introduction

Methods

Result

Metabolite Context Enrichment: HMDB database integration for biological context (pathways, functions, disease associations)

Multi-Model LLM Support: OpenAl (GPT-4o, O3), Google (Gemini 2.0/2.5), with caching and fallback mechanisms

Qualitative-to-Numerical Mapping: Conservative/moderate strength mappings with magnitude-driven effect sizes and confidence-calibrated uncertainties

Hierarchical Rayasian Modeling: LLM informed metabolite grouping with

LLM prior elicitation process

Automated
Prior Elicitation
for Bayesian
Metabolomics
Analysis

Chiraag Gohel

Introduction

Methods

Result

Step 1: LLM analyzes metabolite + study context

LLM(metabolite, condition) $\{d_j, m_j, c_j, r_j\}$

where d_j {increase, decrease, unchanged} is predicted direction, m_j {small, moderate, large} is predicted magnitude, c_j (0,1) is confidence level, and r_j is a string representing the rationale.

Step 2: Map qualitative predictions to numerical priors

$$\begin{aligned} & \underset{j}{\text{LLM}} = f\left(m_{j}, d_{j}\right) \\ & \underset{j}{\text{LLM}} = f\left(c_{j}\right) \end{aligned}$$

Step 3: Use as informative priors in Bayesian model $_{j}$ $N(_{j}^{\mathsf{LLM}},_{j}^{\mathsf{LLM}})$

Prior Elicitation for Bayesian

Metabolomics Analysis

Priors

LLM Priors: $_{i}$ $N(_{i}^{LLM},_{i}^{LLM})$

where $_{i}^{LLM}$ and $_{i}^{LLM}$ are derived from LLM predictions:

Chiraaq Gohel

Methods

 $m_i \{0.08, 0.15, 0.25\}$ for {small, moderate, large}

Conservative Mapping

 $f(c_i)$ {0.5, 0.7, 0.9} for {high, med, low} confidence **Moderate Mapping** m_i {0.12, 0.22, 0.35} for {small, moderate, large}

 $f(c_i)$ {0.3, 0.5, 0.7} for {high, med, low} confidence

 $\begin{aligned} & \underset{j}{\text{LLM}} = m_j \ \text{sign}(d_j) \\ & \underset{i}{\text{LLM}} = f(c_i) \end{aligned}$

(1)

(2)

LLM-Informed Hierarchical Prior

Automated
Prior Elicitation
for Bayesian
Metabolomics
Analysis

Chiraag Gohel

Introducation.

Methods

Result

Group metabolites by LLM predictions and use intelligent pooling:

$$\begin{array}{ccc} \text{Group means}_g & N(_g^{\text{LLM}}, 3.0) \\ & & & \\ & &$$

where group g is mapped to $\frac{\text{LLM}}{g}$ as follows:

$$\begin{aligned} &0.1, & \text{if } g = \text{decrease}, \\ &\frac{\text{LLM}}{g} = \{0.0, & \text{if } g = \text{unchanged}, \\ &+0.1, & \text{if } g = \text{increase}. \end{aligned}$$

Modelina

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraaq Gohel

Methods

All Bayesian models use the same log-link GLM structure with different prior specifications:

 $y_{ij} N(ij, \frac{2}{i})$ $\log(ij) = i + i x_i$

(4)

(3)

 $N(\log(y_i + 1), 1.0)$

(5)

 $_i$ HalfNormal(0.5)(6)

where y_{ij} is abundance for sample i and metabolite j, $x_i \{0,1\}$ is group indicator, i represents the natural log fold change (InFC) for metabolite i, and is a small constant to avoid log(0).

Simulation Study

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

Introducti

Methods

Poculte

Chiraag Gohel

Introduction

Methods

Results

LLM-informed priors improve recovery

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

milloddict

Methods

Results

_...

n / true\o

LLM Informed estimators are finite-sample efficient

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

Introduction

Methods

Summary

Automated Prior Elicitation for Bayesian Metabolomics Analysis

Chiraag Gohel

Method

Results

LLM Prior Elicitation Works: Automated biological knowledge extraction via LLMs produces informative priors for Bayesian metabolomics analysis.

Mapping Strategy Matters: Magnitude-driven effect sizes and confidence-calibrated uncertainties are crucial for translating qualitative LLM insights into effective numerical priors.

Added Context May Not Matter: Including biological context from the HMDB in LLM prompts did not significantly improve prior performance in this study.

Performance is Model Agnostic: Different LLMs (OpenAI, Google) yielded similar results, indicating robustness across models.

Practical Impact: Method particularly valuable for small sample studies (n=5-20) where traditional statistical approaches struggle with high-dimensional metabolomics data.

Future Directions: Integration of other databases, alongside more sophisticated mapping approaches and historical data.