Package 'ETRep'

September 27, 2025

Type Package

Title Analysis of Elliptical Tubes Under the Relative Curvature Condition

Version 1.2.2

Maintainer Mohsen Taheri Shalmani < Mohsen Taheri Shalmani @gmail.com>

Description Analysis of elliptical tubes with applications in biological modeling. The package is based on the references: Taheri, M., Pizer, S. M., & Schulz, J. (2024) `The Mean Shape under the Relative Curvature Condition." Journal of Computational and Graphical Statistics doi:10.1080/10618600.2025.2535600 and arXiv doi:10.1080/10618600.2025.2535600 and arXiv doi:10.1043. Mohsen Taheri Shalmani (2024) `Shape Statistics via Skeletal Structures", PhD Thesis, University of Stavanger, Norway doi:10.13140/RG.2.2.34500.23685. Key features include constructing discrete elliptical tubes, calculating transformations, validating structures under the Relative Curvature Condition (RCC), computing means, and generating simulations. Supports intrinsic and non-intrinsic mean calculations and transformations, size estimation, plotting, and random sample generation based on a reference tube. The intrinsic approach relies on the interior path of the original non-convex space, incorporating the RCC, while the non-intrinsic approach uses a basic robotic arm transformation that disregards the RCC.

License MIT + file LICENSE

```
URL https://github.com/MohsenTaheriShalmani/Elliptical_Tubes
```

Depends R (>= 4.0.0)

Author Mohsen Taheri Shalmani [aut, cre] (ORCID:

<https://orcid.org/0000-0003-4044-8507>),
::m Sabula [out]

Jörn Schulz [aut], Stephen M. Pizer [aut]

Encoding UTF-8

LazyData true

Imports rgl, shapes, Morpho, matlib, RSpincalc, rotations, Rvcg, fields, truncnorm, htmlwidgets

RoxygenNote 7.3.3

NeedsCompilation no

Repository CRAN

Date/Publication 2025-06-05 06:10:02 UTC

2 .etrep_open3d

Contents

.etrep_open3d
.etrep_show3d
.onLoad
check_Tube_Legality
colon3D
create_Elliptical_Tube
elliptical_Tube_Euclideanization
intrinsic_Distance_Between2tubes
intrinsic_mean_tube
intrinsic_Transformation_Elliptical_Tubes
nonIntrinsic_Distance_Between2tubes
nonIntrinsic_mean_tube
nonIntrinsic_Transformation_Elliptical_Tubes
plot_Elliptical_Tube 13
simulatedColons
simulate_etube
tube_A
tube_B
tube Surface Mesh

 $.etrep_open3d$

Open an rgl device with fallback to WebGL

Description

This function tries to open a native rgl window. If that fails (e.g. on macOS without OpenGL) it falls back to an off-screen device suitable for rendering with rglwidget().

Usage

```
.etrep_open3d(show_widget = TRUE, ...)
```

Arguments

show_widget logical; if TRUE and native OpenGL is not available, a message is displayed suggesting to use etrep_show3d().additional arguments passed to [rgl::open3d()].

Value

Device ID returned by [rgl::open3d()].

.etrep_show3d 3

. (etrep.	_show3d	
٠,	etiep.	_SHOW5u	

Display current rgl scene in the browser

Description

Saves the current rgl scene to a temporary HTML file and opens it in the system's default browser.

Usage

```
.etrep_show3d(width = 800, height = 600)
```

Arguments

```
width, height size of the viewer in pixels.
```

Value

The path to the HTML file (invisible).

 $.\,\mathsf{onLoad}$

Package startup hook

Description

This special function is called automatically when the ETRep package is loaded. It ensures that 'rgl' uses the off-screen WebGL device ('useNULL = TRUE') on macOS and other headless environments, so that package installation and examples do not fail with an OpenGL error.

Usage

```
.onLoad(libname, pkgname)
```

Arguments

libname Character string; the path to the package library.

pkgname Character string; the name of the package.

If the user has not already set 'options(rgl.useNULL)', this function sets it to 'TRUE' to suppress the typical warning: "rgl.init failed, will use the null device".

4 colon3D

check_Tube_Legality Check the Legality of an Elliptical Tube (ETRep)

Description

Checks the validity of a given ETRep based on the Relative Curvature Condition (RCC) and principal radii such that forall i a_i>b_i.

Usage

```
check_Tube_Legality(tube)
```

Arguments

tube

List containing ETRep details.

Value

Logical value: TRUE if valid, FALSE otherwise.

References

Taheri, M., Pizer, S. M., & Schulz, J. (2024). "The Mean Shape under the Relative Curvature Condition." arXiv. doi:10.48550/arXiv.2404.01043

Taheri Shalmani, M. (2024). "Shape Statistics via Skeletal Structures." University of Stavanger. doi:10.13140/RG.2.2.34500.23685

Examples

```
# Load tube
data("colon3D")
check_Tube_Legality(tube = colon3D)
```

colon3D

Data

Description

A colon sample as an elliptical tube.

Usage

colon3D

Format

A list containing the information of an e-tube

Source

Generated and stored in the package's 'data/' folder.

create_Elliptical_Tube

```
create_Elliptical_Tube
```

Create a Discrete Elliptical Tube (ETRep)

Description

Constructs a discrete elliptical tube (ETRep) based on specified parameters.

Usage

```
create_Elliptical_Tube(
  numberOfFrames,
  method,
  materialFramesBasedOnParents = NA,
  initialFrame = diag(3),
  initialPoint = c(0, 0, 0),
  EulerAngles_Matrix = NA,
  ellipseResolution = 10,
  ellipseRadii_a,
  ellipseRadii_b,
  connectionsLengths,
  plotting = TRUE
)
```

Arguments

 $number Of Frames \quad Integer, specifies \ the \ number \ of \ consecutive \ material \ frames.$

method String, either "basedOnEulerAngles" or "basedOnMaterialFrames", defines the

material frames method.

 ${\tt materialFramesBasedOnParents}$

Array (3 x 3 x numberOfFrames) with pre-defined material frames.

initialFrame Matrix 3 x 3 as the initial frame

initialPoint Real vector with three elemets as the initial point

EulerAngles_Matrix

Matrix of dimensions numberOfFrames x 3 with Euler angles to define material

ellipseResolution

Integer, resolution of elliptical cross-sections (default is 10).

ellipseRadii_a Numeric vector for the primary radii of cross-sections.

ellipseRadii_b Numeric vector for the secondary radii of cross-sections.

connectionsLengths

Numeric vector for lengths of spinal connection vectors.

plotting Logical, enables plotting of the ETRep (default is TRUE).

Value

List containing tube details (orientation, radii, connection lengths, boundary points, etc.).

References

Taheri, M., Pizer, S. M., & Schulz, J. (2024). "The Mean Shape under the Relative Curvature Condition." arXiv. doi:10.48550/arXiv.2404.01043

Taheri Shalmani, M. (2024). "Shape Statistics via Skeletal Structures." University of Stavanger. doi:10.13140/RG.2.2.34500.23685

Examples

```
numberOfFrames<-15
EulerAngles_alpha<-c(rep(0,numberOfFrames))</pre>
EulerAngles_beta<-c(rep(-pi/20,numberOfFrames))</pre>
EulerAngles_gamma<-c(rep(0,numberOfFrames))</pre>
EulerAngles_Matrix<-cbind(EulerAngles_alpha,</pre>
                           EulerAngles_beta,
                           EulerAngles_gamma)
tube <- create_Elliptical_Tube(numberOfFrames = numberOfFrames,</pre>
                                method = "basedOnEulerAngles",
                                EulerAngles_Matrix = EulerAngles_Matrix,
                                 ellipseResolution = 10,
                                 ellipseRadii_a = rep(3, numberOfFrames),
                                 ellipseRadii_b = rep(2, numberOfFrames),
                                 connectionsLengths = rep(4, numberOfFrames),
                                 plotting = FALSE)
# Plotting
## Not run:
 plot_Elliptical_Tube(tube = tube,plot_frames = FALSE,
                       plot_skeletal_sheet = TRUE,
                       plot_r_project = FALSE,
                       plot_r_max = FALSE, add = FALSE)
## End(Not run)
```

elliptical_Tube_Euclideanization

Convert an ETRep to a Matrix in the Convex Transformed Space.

Description

Convert an ETRep to a Matrix in the Convex Transformed Space.

Usage

```
elliptical_Tube_Euclideanization(tube)
```

Arguments

tube

A list containing the details of the ETRep.

Value

An n*6 matrix, where n is the number of spinal points, representing the ETRep in the transformed Euclidean convex space.

Examples

```
#Example
# Load tube
data("tube_A")
Euclideanized_Tube<- elliptical_Tube_Euclideanization(tube = tube_A)</pre>
```

intrinsic_Distance_Between2tubes

Calculating the intrinsic distance between two ETReps

Description

Calculating the intrinsic distance between two ETReps

Usage

```
intrinsic_Distance_Between2tubes(tube1, tube2)
```

Arguments

tube1 List containing ETRep details.tube2 List containing ETRep details.

Value

Numeric

References

Taheri, M., Pizer, S. M., & Schulz, J. (2024). "The Mean Shape under the Relative Curvature Condition." arXiv. doi:10.48550/arXiv.2404.01043

Taheri Shalmani, M. (2024). "Shape Statistics via Skeletal Structures." University of Stavanger. doi:10.13140/RG.2.2.34500.23685

```
# Load tubes
data("tube_A")
data("tube_B")
intrinsic_Distance_Between2tubes(tube1 = tube_A, tube2 = tube_B)
```

8 intrinsic_mean_tube

Description

Computes the intrinsic mean of a set of ETReps. The computation involves transforming the non-convex hypertrumpet space into a convex space, calculating the mean in this transformed space, and mapping the result back to the original hypertrumpet space.

Usage

```
intrinsic_mean_tube(tubes, type = "sizeAndShapeAnalysis", plotting = TRUE)
```

Arguments

tubes List of ETReps.

type String, "ShapeAnalysis" or "sizeAndShapeAnalysis" (default is "sizeAndSha-

peAnalysis").

plotting Logical, enables visualization of the mean (default is TRUE).

Value

List representing the mean ETRep.

References

Taheri, M., Pizer, S. M., & Schulz, J. (2024). "The Mean Shape under the Relative Curvature Condition." arXiv. doi:10.48550/arXiv.2404.01043

Taheri Shalmani, M. (2024). "Shape Statistics via Skeletal Structures." University of Stavanger. doi:10.13140/RG.2.2.34500.23685

```
#Example 1
# Load tubes
data("tube_A")
data("tube_B")
intrinsic_mean<-
  intrinsic_mean_tube(tubes = list(tube_A, tube_B),
                      plotting = FALSE)
# Plotting
## Not run:
plot_Elliptical_Tube(tube = intrinsic_mean,
                     plot_frames = FALSE,
                     plot_skeletal_sheet = FALSE,
                     plot_r_project = FALSE,
                     plot_r_max = FALSE,
                     add = FALSE)
## End(Not run)
#Example 2
```

Description

Performs an intrinsic transformation from one ETRep to another, preserving essential e-tube properties such as the Relative Curvature Condition (RCC) while avoiding local self-intersections.

Usage

```
intrinsic_Transformation_Elliptical_Tubes(
  tube1,
  tube2,
  type = "sizeAndShapeAnalysis",
  numberOfSteps = 5,
  plotting = TRUE,
  colorBoundary = "blue"
)
```

Arguments

tube1 List containing details of the first ETRep.

tube2 List containing details of the second ETRep.

type String defining the type of analysis as sizeAndShapeAnalysis or shapeAnalysis numberOfSteps Integer, number of transformation steps.

plotting Logical, enables visualization during transformation (default is TRUE).

colorBoundary String defining the color of the e-tube

Value

List containing intermediate ETReps.

References

Taheri, M., Pizer, S. M., & Schulz, J. (2024). "The Mean Shape under the Relative Curvature Condition." arXiv. doi:10.48550/arXiv.2404.01043

Taheri Shalmani, M. (2024). "Shape Statistics via Skeletal Structures." University of Stavanger. doi:10.13140/RG.2.2.34500.23685

Examples

```
# Load tubes
data("tube_A")
data("tube_B")
numberOfSteps <- 10</pre>
transformation_Tubes<-
  intrinsic_Transformation_Elliptical_Tubes(
    tube1 = tube_A, tube2 = tube_B,
    numberOfSteps = numberOfSteps,
    plotting = FALSE)
# Plotting
## Not run:
for (i in 1:length(transformation_Tubes)) {
  plot_Elliptical_Tube(tube = transformation_Tubes[[i]],
  plot_frames = FALSE,plot_skeletal_sheet = FALSE
  ,plot_r_project = FALSE,
  plot_r_max = FALSE,
  add = FALSE)
}
##
## End(Not run)
```

nonIntrinsic_Distance_Between2tubes

Calculating the non-intrinsic distance between two ETReps

Description

Calculating the non-intrinsic distance between two ETReps

Usage

```
nonIntrinsic_Distance_Between2tubes(tube1, tube2)
```

Arguments

tube1 List containing ETRep details.tube2 List containing ETRep details.

Value

Numeric

References

Taheri, M., Pizer, S. M., & Schulz, J. (2024). "The Mean Shape under the Relative Curvature Condition." arXiv. doi:10.48550/arXiv.2404.01043

Taheri Shalmani, M. (2024). "Shape Statistics via Skeletal Structures." University of Stavanger. doi:10.13140/RG.2.2.34500.23685

Examples

```
# Load tubes
data("tube_A")
data("tube_B")
intrinsic_Distance_Between2tubes(tube1 = tube_A, tube2 = tube_B)
```

nonIntrinsic_mean_tube

Compute Non-Intrinsic Mean of ETReps

Description

Calculates the non-intrinsic mean of a set of ETReps. This method utilizes a non-intrinsic distance metric based on robotic arm non-intrinsic transformations.

Usage

```
nonIntrinsic_mean_tube(tubes, type = "sizeAndShapeAnalysis", plotting = TRUE)
```

Arguments

tubes List of ETReps.

type String, "ShapeAnalysis" or "sizeAndShapeAnalysis" (default is "sizeAndSha-

peAnalysis").

plotting Logical, enables visualization of the mean (default is TRUE).

Value

List representing the mean ETRep.

```
plot_r_max = FALSE,
                     add = FALSE)
## End(Not run)
#Example 2
data("simulatedColons")
nonIntrinsic mean<-
  nonIntrinsic_mean_tube(tubes = simulatedColons,
                         plotting = FALSE)
# Plotting
## Not run:
plot_Elliptical_Tube(tube = nonIntrinsic_mean,
                     plot_frames = FALSE,
                     plot_skeletal_sheet = FALSE,
                     plot_r_project = FALSE,
                     plot_r_max = FALSE,
                     add = FALSE)
## End(Not run)
```

nonIntrinsic_Transformation_Elliptical_Tubes

Non-Intrinsic Transformation Between Two ETReps

Description

Performs a non-intrinsic transformation from one ETRep to another. This approach is inspired by robotic arm transformations and does not account for the Relative Curvature Condition (RCC).

Usage

```
nonIntrinsic_Transformation_Elliptical_Tubes(
  tube1,
  tube2,
  type = "sizeAndShapeAnalysis",
  numberOfSteps = 4,
  plotting = TRUE,
  colorBoundary = "blue",
  add = FALSE
)
```

Arguments

tube1 List containing details of the first ETRep.tube2 List containing details of the second ETRep.

type String defining the type of analysis as sizeAndShapeAnalysis or shapeAnalysis

 $number {\tt OfSteps} \quad Integer, number of transformation steps.$

plotting Logical, enables visualization during transformation (default is TRUE).

colorBoundary String defining the color of the e-tube add Logical, enables overlay plotting

plot_Elliptical_Tube 13

Value

List containing intermediate ETReps.

References

Taheri, M., Pizer, S. M., & Schulz, J. (2024). "The Mean Shape under the Relative Curvature Condition." arXiv. doi:10.48550/arXiv.2404.01043

Taheri Shalmani, M. (2024). "Shape Statistics via Skeletal Structures." University of Stavanger. doi:10.13140/RG.2.2.34500.23685

Examples

```
# Load tubes
data("tube_A")
data("tube_B")
numberOfSteps <- 10</pre>
transformation_Tubes<-
  nonIntrinsic_Transformation_Elliptical_Tubes(
    tube1 = tube_A, tube2 = tube_B,
    numberOfSteps = numberOfSteps,
    plotting = FALSE)
# Plotting
## Not run:
for (i in 1:length(transformation_Tubes)) {
  plot_Elliptical_Tube(tube = transformation_Tubes[[i]],
  plot_frames = FALSE,plot_skeletal_sheet = FALSE
  ,plot_r_project = FALSE,
  plot_r_max = FALSE,
  add = FALSE)
## End(Not run)
```

Description

Plots a given ETRep with options for boundary, material frames, and projection visualization.

Usage

```
plot_Elliptical_Tube(
   tube,
   plot_boundary = TRUE,
   plot_r_max = FALSE,
   plot_r_project = TRUE,
   plot_frames = TRUE,
   frameScaling = NA,
   plot_spine = TRUE,
   plot_normal_vec = FALSE,
```

14 simulatedColons

```
plot_skeletal_sheet = TRUE,
  decorate = TRUE,
  colSkeletalSheet = "blue",
  colorBoundary = "blue",
  add = FALSE
)
```

Arguments

tube List containing ETRep details.

plot_boundary Logical, enables plotting of the boundary (default is TRUE).

plot_r_max Logical, enables plotting of max projection size (default is FALSE).

plot_r_project Logical, enables plotting of projection along normals (default is TRUE).

plot_frames Logical, enables plotting of the material frames (default is TRUE).

frameScaling Numeric, scale factor for frames.

plot_spine Logical, enables plotting of the spine.

plot_normal_vec

Logical, enables plotting of the normals.

plot_skeletal_sheet

Logical, enables plotting of the surface skeleton.

decorate Logical, enables decorate the plot

colSkeletalSheet

String, defining the color of the surface skeleton

colorBoundary String, defining the color of the e-tube add Logical, enables overlay plotting

Value

Graphical output.

Examples

simulatedColons

Data

Description

Simulated samples of e-tubes, modeled after a reference structure resembling a colon.

Usage

simulatedColons

simulate_etube 15

Format

Five simulated samples of elliptical tubes, modeled after a reference structure resembling a colon.

Source

Generated and stored in the package's 'data/' folder.

simulate_etube

Simulate Random Elliptical Tubes (ETReps)

Description

Generates random samples of ETReps based on a reference tube with added variation.

Usage

```
simulate_etube(
  referenceTube,
  numberOfSimulation,
  sd_v = 10^-10,
  sd_psi = 10^-10,
  sd_x = 10^-10,
  sd_a = 10^-10,
  sd_b = 10^-10,
  rangeSdScale = c(1, 2),
  plotting = TRUE
)
```

Arguments

referenceTube List containing ETRep information as the reference.
numberOfSimulation
Integer, number of random samples.

sd_vStandard deviations for various parameters.sd_psiStandard deviations for various parameters.sd_xStandard deviations for various parameters.sd_aStandard deviations for various parameters.sd_bStandard deviations for various parameters.

rangeSdScale Numeric range for random scaling.

plotting Logical, enables visualization of samples (default is FALSE).

Value

List of random ETReps.

16 tube_A

References

Taheri, M., Pizer, S. M., & Schulz, J. (2024). "The Mean Shape under the Relative Curvature Condition." arXiv. doi:10.48550/arXiv.2404.01043

Taheri Shalmani, M. (2024). "Shape Statistics via Skeletal Structures." University of Stavanger. doi:10.13140/RG.2.2.34500.23685

Examples

```
# Load tube
data("colon3D")
#Set Parameters
sd_v<-sd_psi<-1e-03
sd_x<-sd_a<-sd_b<-1e-04
numberOfSimulation<-4
random_Tubes<-
  simulate_etube(referenceTube = colon3D,
                 numberOfSimulation = numberOfSimulation,
                 sd_v = sd_v
                 sd_psi = sd_psi,
                 sd_x = sd_x,
                 sd_a = sd_a,
                 sd_b = sd_b,
                 rangeSdScale = c(1, 2),
                 plotting = FALSE)
# Plotting
## Not run:
plot_Elliptical_Tube(random_Tubes[[1]], add = FALSE)
plot_Elliptical_Tube(random_Tubes[[2]], add = TRUE)
plot_Elliptical_Tube(random_Tubes[[3]], add = TRUE)
plot_Elliptical_Tube(random_Tubes[[4]], add = TRUE)
## End(Not run)
```

tube_A

Data

Description

A tube with 204 elliptical cross-sections.

Usage

tube_A

Format

A list containing the information of an e-tube with 204 elliptical cross-sections

Source

Generated and stored in the package's 'data/' folder.

tube_B

tube_B Data

Description

A tube with 204 elliptical cross-sections.

Usage

tube_B

Format

A list containing the information of an e-tube with 204 elliptical cross-sections

Source

Generated and stored in the package's 'data/' folder.

tube_Surface_Mesh

Create surface mesh of a tube

Description

Create surface mesh of a tube

Usage

```
tube_Surface_Mesh(
  tube,
  meshType = "quadrilateral",
  plotMesh = TRUE,
  color = "blue",
  decorate = TRUE
)
```

Arguments

tube List containing ETRep details.

meshType String, either "quadrilateral" or "triangular" definig the type of mesh.

plotMesh Logical, enables plotting of the mesh (default is TRUE).

color String, defining the color of the mesh (default is 'blue').

decorate Logical, enables decorating the plot (default is TRUE).

Value

An object from rgl::mesh3d class

18 tube_Surface_Mesh

```
## Not run:
quad_mesh<-tube_Surface_Mesh(tube = ETRep::tube_B,</pre>
                             meshType = "quadrilateral",
                             plotMesh = TRUE,
                             decorate = TRUE,
                             color = "orange")
# draw wireframe of the mesh
rgl::wire3d(quad_mesh, color = "black", lwd = 1)  # add wireframe
# Display in browser
ETRep:::.etrep_show3d(width = 800, height = 600)
tri_mesh<-tube_Surface_Mesh(tube = ETRep::tube_B,</pre>
                            meshType = "triangular",
                            plotMesh = TRUE,
                            decorate = TRUE,
                            color = "green")
# draw wireframe of the mesh
rgl::wire3d(tri_mesh, color = "black", lwd = 1)  # add wireframe
# Display in browser
ETRep:::.etrep_show3d(width = 800, height = 600)
## End(Not run)
```