18.312: Algebraic Combinatorics

Lionel Levine

Notes by: Andrew Geng

Lecture 7

Lecture date: Feb 24, 2011

1 Partially ordered sets

1.1 Definitions

Definition 1 A partially ordered set (poset for short) is a set P with a binary relation $R \subseteq P \times P$ satisfying all of the following conditions.

- 1. (reflexivity) $(x, x) \in R$ for all $x \in P$
- 2. (antisymmetry) $(x,y) \in R$ and $(y,x) \in R \implies x = y$
- 3. (transitivity) $(x,y) \in R$ and $(y,z) \in R \implies (x,z) \in R$

In analogy with the order on the integers by size, we will write $(x,y) \in R$ as $x \leq y$ (or equivalently, $y \geq x$). We will use x < y to mean that $x \leq y$ and $x \neq y$. When there are multiple posets in play, we can disambiguate by using the name of the poset as a subscript, e.g. $x \leq_P y$.

Remark 2 The word "partial" indicates that there's no guarantee that all elements can be compared to each other—i.e. we don't know that for all $x, y \in P$, at least one of $x \le y$ and $x \ge y$ holds. A poset in which this is guaranteed is called a totally ordered set.

Partially ordered sets can be visualized via *Hasse diagrams*, which we now proceed to define.

Definition 3 Given x, y in a poset P, the interval [x, y] is the poset $\{z \in P \mid x \le z \le y\}$ with the same order as P.

Definition 4 "y covers x" means $[x,y] = \{x,y\}$. That is, no elements of the poset lie strictly between x and y (and $x \neq y$).

Definition 5 The Hasse diagram of a partially ordered set P is the (directed) graph whose vertices are the elements of P and whose edges are the pairs (x, y) for which y covers x. It is usually drawn so that elements are placed higher than the elements they cover.

1.2 Examples

- 1. **n** (handwritten as \underline{n}) is the set [n] with the usual order on integers.
- 2. The Boolean algebra B_n is the set of subsets of [n], ordered by inclusion. $(S \leq T \text{ means } S \subseteq T)$.

Figure 1: Hasse diagrams of B_2 and B_3

3. $D_n = \{\text{all divisors of } n\}, \text{ with } d \leq d' \iff d \mid d'.$

Figure 2: $D_{12} = \{1, 2, 3, 4, 6, 12\}$

- 4. $\Pi_n = \{\text{partitions of } [n]\}, \text{ ordered by refinement.}^{-1}$
- 5. Generalizing B_n , any collection P of subsets of a fixed set X is a partially ordered set ordered by inclusion. For instance, if X is a vector space then we can take P to be the set of all linear subspaces. If X is a group, we can take P to be the set of all subgroups or the set of all normal subgroups.

¹A partition of a set X is a set of disjoint subsets of X whose union is X. We say that a partition σ refines another partition τ (so, in the example, $\sigma \leq \tau$) if every $\sigma_i \in \sigma$ is a subset of some $\tau_{j(i)} \in \tau$.

2 Maps between partially ordered sets

Definition 6 A function $f: P \to Q$ between partially ordered sets is order-preserving if $x \leq_P y \Rightarrow f(x) \leq_Q f(y)$.

Definition 7 Two partially ordered sets P and Q are isomorphic if there exists a bijective, order-preserving map between them whose inverse is also order-preserving.

Remark 8 For those familiar with topology, this should look like the definition of homeomorphic spaces—spaces linked by a continuous bijection whose inverse is also continuous. A continuous bijection can fail to have a continuous inverse if the topology of the domain has extra open sets; and an order-preserving bijection between posets can fail to have a continuous inverse if the codomain has extra order information.

2.1 Examples

- 1. $D_8 \simeq 4$
- 2. $D_6 \simeq B_2$

Figure 3: Hasse diagrams of isomorphic posets

3 Operations on partially ordered sets

Given two partially ordered sets P and Q, we can define new partially ordered sets in the following ways.

- 1. (Disjoint union) P + Q is the disjoint union set $P \sqcup Q$, where $x \leq_{P+Q} y$ if and only if one of the following conditions holds.
 - $x, y \in P$ and $x \leq_P y$
 - $x, y \in Q$ and $x \leq_Q y$

The Hasse diagram of P+Q consists of the Hasse diagrams of P and Q, drawn together.

- 2. (Ordinal sum) $P \oplus Q$ is the set $P \sqcup Q$, where $x \leq_{P \oplus Q} y$ if and only if one of the following conditions holds.
 - $x \leq_{P+Q} y$
 - $x \in P$ and $y \in Q$

Note that the ordinal sum operation is not commutative. In $P \oplus Q$, everything in P is less than everything in Q.

3. (Cartesian product) $P \times Q$ is the Cartesian product set, $\{(x,y) \mid x \in P, y \in Q\}$, where $(x,y) \leq_{P \times Q} (x',y')$ if and only if both $x \leq_P x'$ and $y \leq_Q y'$.

The Hasse diagram of $P \times Q$ is the Cartesian product of the Hasse diagrams of P and Q.

Example 9
$$B_n \simeq \underbrace{\mathbf{2} \times \cdots \times \mathbf{2}}_{n \ times}$$

Proof: Define a candidate isomorphism

$$f: \mathbf{2} \times \cdots \times \mathbf{2} \to B_n$$

 $(b_1, \cdots, b_n) \mapsto \{i \in [n] \mid b_i = 2\}.$

It's easy to show that f is bijective. To check that f and f^{-1} are order-preserving, just observe that each of the following conditions is equivalent to the ones that come before and after it.

- $(b_1, \dots, b_n) \leq (b'_1, \dots, b'_n)$
- $b_i \leq b'_i$ for all i
- $\{i \mid b_i = 2\} \subseteq \{i \mid b'_i = 2\}$
- $f((b_1, \dots, b_n)) \le f((b'_1, \dots, b'_n))$

Example 10 If $k = p_1 \cdots p_n$ is a product of n distinct primes, then $D_k \simeq B_n$.

The proof of Example 10 is similarly easy, using the isomorphism $f: D_k \to B_n$ defined by $\prod_{i \in S} p_i \mapsto S$.

4. P^Q is the set of order-preserving maps from Q to P, where $f \leq_{P^Q} g$ means that $f(x) \leq_P g(x)$ for all $x \in Q$.

The notation P^Q can be motivated by a basic example.

Example 11

$$P = \overbrace{1 + \dots + 1}^{n}$$

$$Q = \overbrace{1 + \dots + 1}^{n^{k}}$$

$$P^{Q} \simeq \overbrace{1 + \dots + 1}^{n^{k}}$$

Perhaps more importantly, the following properties hold (the proof is the 15th homework problem).

$$P^{Q+R} \simeq P^Q \times P^R$$
$$(P^Q)^R \simeq P^{Q \times R}$$

Example 12 The partially ordered set 2² is isomorphic to 3.

Proof: The order-preserving maps are specified by $f_1(1) = f_1(2) = 1$, $f_2 = id$, and $f_3(1) = f_3(2) = 2$; so $f_1 \leq f_2 \leq f_3$. \square

4 Graded posets

Definition 13 A chain of a partially ordered set P is a totally ordered subset $C \subseteq P$ —i.e. $C = \{x_0, \dots, x_\ell\}$ with $x_0 \leq \dots \leq x_\ell$. The quantity $\ell = |C| - 1$ is its length and is equal to the number of edges in its Hasse diagram.

Definition 14 A chain is maximal if no other chain strictly contains it.

Definition 15 The rank of P is the length of the longest chain in P.

Definition 16 P is graded if all maximal chains have the same length.

Figure 4: Hasse diagram of a poset that is not graded

Definition 17 A rank function on a poset P is a map $r: P \to \{0, \dots, n\}$ for some n, satisfying the following properties.

- 1. r(x) = 0 for all minimal x (i.e. there is no y < x).
- 2. r(x) = n for all maximal x.
- 3. r(y) = r(x) + 1 whenever y covers x.

Lemma 18 P is graded of rank $n \iff there \ exists \ a \ rank \ function \ r: P \to \{0, \cdots, n\}.$

Example 19 B_n is graded, and cardinality is a rank function on B_n .

Proof:

 \Rightarrow : If P is graded of rank n, define $r(x) = \#\{y \in C \mid y < x\}$ where C is a maximal chain containing x. To check that this is well-defined, we need to show that it is independent of C.

So suppose C and C' are maximal chains containing x. Write

$$C = C_0 \sqcup \{x\} \sqcup C_1$$
$$C' = C'_0 \sqcup \{x\} \sqcup C'_1$$

where $C_0 = \{y \in C \mid y < x\}$ and $C_0' = \{y \in C' \mid y < x\}$. If $|C_0| \neq |C_0'|$, then assuming without loss of generality that $|C_0| > |C_0'|$, the chain $C_0 \cup x \cup C_1'$ would have length greater than n. P being graded of rank n disallows this, so $|C_0| = |C_0'| = r(x)$.

This establishes that r(x) is well-defined. It is easy to see by maximality of the chains involved that r is indeed a rank function.

 \Leftarrow : Given a rank function $r: P \to \{0, \dots, n\}$ and a maximal chain $C = \{x_0, \dots, x_\ell\}$, we observe that

- $-x_0$ is minimal (otherwise C could be extended by anything less than x_0),
- $-x_{\ell}$ is maximal (otherwise C could be extended by anything greater than x_{ℓ}), and
- $-x_{i+1}$ covers x_i (otherwise the element between them could be inserted into C).

Then $r(x_0) = 0$, $r(x_\ell) = n$, and $r(x_{i+1}) = r(x_i) + 1$ for $i = 0, 1, ..., \ell - 1$, so we see that $\ell = n$.

Remark 20 If a rank function exists, it is in fact uniquely defined.

Corollary 21 Any interval in a graded poset is graded.

Proof: For $[x,y] \subset P$, use the rank function $r_{[x,y]}(z) = r_P(z) - r_P(x)$. \square

5 Lattices

Definition 22 A poset L is a lattice if every pair of elements x, y has

- a least upper bound $x \vee y$ (a.k.a. join), and
- a greatest lower bound $x \wedge y$ (a.k.a. meet);

i.e.

$$z \ge x \lor y \iff z \ge x \text{ and } z \ge y$$

 $z < x \land y \iff z < x \text{ and } z < y.$

Example 23 B_n is a lattice. The meet and join can be explicitly specified as

$$S \cap T = S \wedge T \qquad \qquad S \cup T = S \vee T,$$

and this can serve as a mnemonic for the symbols.

Figure 5: Hasse diagram of part of a lattice

