Evaluating Statistical Methods for Nuclear Forensics Analysis

Preliminary Examination

Arrielle Opotowsky

University of Wisconsin-Madison

29 January 2018

Outline

- 2 Literature Review
 Nuclear Forensics
 Statistical Models
 Algorithms for Prediction
 ML Model Assessment
 ML Model Validation
 Computational Tools

- 3 Demonstration
 Training Data
 Reactor Parameter Prediction
 ML Model Validation
- Research Proposal
 Experiment 1
 Experiment 2
 Experiment 3
 Method Comparison
- Summary

Research Overview

How does the ability to determine forensic-relevant spent nuclear fuel attributes using machine learning techniques degrade as less information is available?

Determine

The inverse problem: given end measurements, calculate the model parameters that created them

Information

Nuclide vectors, measurements of isotope ratios

Forensic-relevant Attributes

Reactor type, enrichment, cooling time, burnup

Machine Learning Techniques

Creating statistical models (not physical)

Degrade

Model prediction performance

Less Information

Error in nuclide vectors, fewer measurements, etc

Figure 1: Definitions of terms within the main research question

Nuclear Security and Forensics

Figure 2: 24 years of incidents: HEU (12), Pu (2), Pu-Be neutron sources (4) [Obtained from: https://www.iaea.org/sites/default/files/17/12/itdb-factsheet-2017.pdf]

- FY2016 DHS DNDO budget: 0.3 bill
- FY2016 DOE NNSA nonpro budget : 1.6 bill

Needs in Nuclear Forensics

Figure 3: Typical techincal nuclear forensics workflow

Material-specific:

- Measurement needs
- Measurement techniques
- Forensic signatures

Challenges:

- Rapid characterization
- Forensics databases
 - Multidimensional
 - Inconsistent uncertainties
 - International cooperation

Computational Methods

Figure 4: Nuclear forensics research: physical, experimental, and computational

Computational Methods

Figure 5: Comparison of two different computational approaches

Statistical Methods

Figure 6: Workflow of a methodology using statistical models

- Training data: large set of SNF measurements
 - Labels (e.g., burnup)
 - Features (e.g., nuclide concs)
 - Instances (individual SNF recipe)
- Statistical learner
 - Machine learning algorithms
 - Algorithm parameters
 - Predict label of new instance
- Model evaluation
 - Diagnostic curves
 - Learning curves
 - Validation curves
 - Prediction error
 - Bias versus variance
 - Generalizability

Statistical Methods

Figure 7: Illustration of data set modularity

Outline

- Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics Statistical Models

Algorithms for Prediction
ML Model Assessment
ML Model Validation

Computational Tools Previous Work

- 3 Demonstration
 Training Data
 Reactor Parameter Prediction
 ML Model Validation
- 4 Research Proposal
 Experiment 1
 Experiment 2
 Experiment 3
- Summary

Nuclear Forensics Investigations

Post-detonation

- Collection: debris, swipe samples
- Characterization: rapid analysis of isotope ratios
- Goals
 - Inverse problem: reconstruct weapon design/yield
 - Safety: informing disaster response
- Data evaluation

Nuclear Forensics Investigations

Post-detonation

- Collection: debris, swipe samples
- Characterization: rapid analysis of isotope ratios
- Goals
 - Inverse problem: reconstruct weapon design/yield
 - Safety: informing disaster response
- Data evaluation

Pre-detonation

- Collection: depends on intercepted material
- Characterization: non-destructive and destructive
- Goals:
 - Inverse problem: material chain of custody
 - Safety: material handling and security
- Data evaluation

Nuclear Forensics as an Inverse Problem

Necessary to determine the quality of prediction Use Bayes' Framework:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

Machine Learning

machine vs. statistical (domain knowledge-¿none) supervised and unsupervised clustering, dimensionality reduction classification, regression – discrete and continuous variables

Supervised Regression

Figure 8: Schematic of a representative prediction workflow

Linear Models

Objective: minimize error over all training data wrt their labels

$$F(\mathbf{X}) = \beta_0 + \sum_{j=1}^{p} x_j \beta_j$$

Figure 9: How regularization might affect the generalizability of an ML model

Nearest Neighbor Methods

Objective: minimum distance between test sample and training instance(s)

$$Y(\boldsymbol{X}) = \frac{1}{k} \sum_{x_i \in N_k(\boldsymbol{X})} y_i$$

Input Feature (x)

Figure 10: Illustration of the regularization effects by choosing k

Support Vector Machines

Figure 11: Classification with SVM and regression with SVR

Support Vector Regression with Many Dimensions

Objective: minimize margin width and outliers

$$\begin{aligned} \min \ & \frac{1}{2} \|w\|^2 + C \sum_i \xi_i \\ \text{subject to} : \ & |y_i - (w\phi(x_i) + b)| \leq \varepsilon + \xi_i \\ \text{where} : & w = \sum_i \alpha_i y_i \phi(x_i) \\ \text{and} : & K(x_i, x_j) = \phi(x_i) \phi(x_j) = e^{\gamma \|x_i - x_j\|^2} \end{aligned}$$

Figure 12: Diagram showing the use of the kernel trick with SVR

Dimensionality Reduction

Manual via domain knowledge or some measure PCA Factor Analysis ICA

Sources of Error

Figure 13: Bias and variance comprise the prediction error

Types of Error

Figure 14: Diagram explaining the concept of k-fold cross-validation

Error Metrics

L1, L2: absolute error and squared error

Others: r2 score, percent error

Used for model prediction error and optimization of algs in obj funcs

Training Set Size: Learning Curves

Figure 15: Learning curves for three training scenarios: high bias, balanced bias and variance, and high variance

Model Complexity: Validation Curves

Figure 16: Validation curve showing different fitness of models

Model Comparison

Probabilities	Calculation Method and Example		
	Given: M = BWR U-oxide with burnup = x GWd/MTU		
P(D M) Prior	This is true: D = nuclide vector with Pu-239 = $y\%$		
Prior	With: z% probability		
	Calc'd from: ORIGEN simulations in training set		
	Given: No direct information on D		
P(M)	This is true: M = BWR U-oxide with burnup = x GWd/MTU		
Likelihood	With: z% probability		
	Calc'd from: Machine-learned model prediction		
	Given: No direct information on M		
P(D)	This is true: D = nuclide vector with Pu-239 = y%		
Marginal L.	With: z% probability		
	Calc'd from: Summation of training set instances		
	Given: D = nuclide vector with Pu-239 = y%		
P(M D)	This is true: M = BWR U-Ox with burnup = x GWd/MTU		
Posterior	With: z% probability		
	Calc'd from: All quantities above		

$$\textit{Posterior} = \frac{\textit{Likelihood} * \textit{Prior}}{\textit{Marginal Likelihood}}$$

Table 1: Bayes

Computational Tools

cite stuff

- Training Data : SCALE/ORIGEN-ARP
- Statistics Toolkit : scikit-learn (python)
- Information Reduction
 - Gamma energies: ORIGEN
 - Computational gamma spectra: GADRAS

Pre-detonation Materials of Interest

UOC UOX powder SNF Reprocessed SNF

Statistical Methods Employed

get images Factor Analysis SFCOMPO extension Dayman paper on prediction ability wrt info reduction

Outline

- 1 Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools
Previous Work

3 Demonstration

Training Data
Reactor Parameter Prediction
MI Model Validation

4 Research Proposal

Experiment 1

Experiment 2

Experiment 3

Method Comparison

Summary

Proposed Experiment Methodology

Figure 17: Workflow of the experiments with tools used for each step

Training Set

ORIGEN Rxtr	Rxtr Type	Enrichment
CE14x14	PWR	2.8
CE16x16	PWR	2.8
W14x14	PWR	2.8
W15x15	PWR	2.8
W17x17	PWR	2.8
S14x14	PWR	2.8
VVER440	PWR	3.60
VVER440_3.82	PWR	3.82
VVER440_4.25	PWR	4.25
VVER440_4.38	PWR	4.38
VVER1000	PWR	2.8
GE7x7-0	BWR	2.9
GE8x8-1	BWR	2.9
GE9x9-2	BWR	2.9
GE10x10-8	BWR	2.9
Abb8x8-1	BWR	2.9
Atrium9x9-9	BWR	2.9
SVEA64-1	BWR	2.9
SVEA100	BWR	2.9
CANDU28	PHWR	0.711
CANDU37	PHWR	0.711

PWR

BWR

DIVID

Independent Testing Set

CE16x16

GE7x7-0

CE7v7 0

Reactor	Type	Enrichment	Cooling Time
CANDU28	PHWR	0.711	{1m, 7d, 30d, 1y}
CANDU28	PHWR	0.711	{3m, 9d, 2y}
CE16x16	PWR	2.8	{1m, 7d, 30d, 1y}

CE16x16 PWR 3.1 {7d, 9d} GE7x7-0 **BWR** 2.9 {1m, 7d, 30d, 1y}

2.9

2.8

33 / 55

{3m, 9d, 2y}

{3m, 9d, 2y}

(24 04)

Information Reduction

Random error here gamma not implemented here

Algorithm Parameters

Algorithm	Parameter	Value
Nearest	<i>n</i> -neighbors	1
Neighbor Regression	Weights	uniform
	Distance Metric	L2: Euclidian Distance
Ridge Regression	Regularization, α	1.0
	Normalization	False
	Stopping Tolerance	0.001
	Kernel	Radial Basis Function
	Gamma, γ	0.001
Support Vector Regression	С	1000
	Epsilon, $arepsilon$	0.1
	Stopping Tolerance	0.001

Table 5: caption

Initial Results

Algorithm	Error Origin	MAPE	RMSE [MWd/MTU]
Nearest Neighbor Regression	Testing Set	9.82	812.43
	5-fold Cross-Validation	2.24	421.41
Ridge Regression	Testing Set	15.68	1049.66
	5-fold Cross-Validation	0.08	13.08
Support Vector Regression	Testing Set	12.28	769.97
	5-fold Cross-Validation	2.08	188.07

Table 6: caption

ML Model Prediction with Reduced Information

Figure 18: caption

SVR Learning Curve

add in example LCs for comparison add in NN or Ridge LC (They look the same)

TrainSize

SVR Validation Curve

add in example VCs for comparison add in NN or Ridge VC (They look the same)

T 11 0

Outline

- 1 Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools
Previous Work

- 3 Demonstration Training Data Reactor Parameter Prediction ML Model Validation
- Summary

Experiment 1
Experiment 2
Experiment 3
Method Comparison

Research Proposal Preparations

Previous Work -¿ SFCOMPO-based Finalizing set of algorithms computational resources

Statistical Learning with Direct Isotopics

Goals: Understand limits of simplest scenario

- Usefulness of statistical methods for reactor parameter prediction
- 2 Best performing methods

Variables

- 1 the complexity of the ML algorithm used,
- g feature reduction, and
- **3** different subsets of the decision space.

Statistical Learning with Direct Isotopics

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Manual preprocessing (feature reduction): speed, accuracy
- Reduction of decision space should help: PWR vs. BWR?

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Statistical preprocessing: PCA, ICA
- New materials: Pu, UOC, Post-detonation (urban canyon [1])

Statistical Learning with Gamma Spectra

Goals: Understand limits of real-world scenario

- Level of reduction in reactor parameter prediction
- Best performing methods

Variables

- 1 the complexity of the ML algorithm used,
- g feature reduction (implicit), and
- **3** quality of training and/or testing data set.

Statistical Learning with Gamma Spectra

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Indirect isotopics = implicit feature reduction: less accurate
- Higher quality gamma spectra will yield better results

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Further manual or statistical preprocessing
- Add isotope identification step

Statistical Learning with Reprocessed Fuel

Goals: Probe prediction performace in reprocessing scenario

- Experiment with both direct and indirect isotopics
- Presh evaluation of preprocessing
- 8 Best performing methods for materials with multiple sources

Variables

- the complexity of the ML algorithm used,
- 2 quality of training data set, and
- 3 type of preprocessing for feature reduction.

Statistical Learning with Reprocessed Fuel

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Reduced information will provide less accurate results
- ICA may outperform PCA, but factor analysis may outperform components analysis [4, 5, 6, 8, 7, 2, 3]

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Manual preprocessing
- Results may be interesting even if prediction fails
- Ensemble methods or other creative solutions [8, 7]

Probability Distributions

Include uncertainty for measures of confidence, posterior probs become prob distribs

C: constant given by marginal likelihood

d: training data set m: model parameters

 $P(\mathbf{d}|\mathbf{m})$: likelihood distribution function

P(m): prior probability distribution

 $P(\mathbf{m}|\mathbf{d})$: posterior probability distribution

$$P(\mathbf{m}|\mathbf{d}) = C * P(\mathbf{d}|\mathbf{m}) * P(\mathbf{m})$$

Integrate over prob densities to get prob distrib

m: range of predicted model parameters

d is a set of nuclide vectors

$$\rho(\mathbf{x}) = \prod_{i} \rho(x_{i})$$

$$P(\mathbf{m}) = \int_{\mathbf{m}} \rho(\mathbf{d}) d\mathbf{d}$$

$$P(\mathbf{m}) = \int_{\mathbf{m}} \rho(\mathbf{d}) d\mathbf{d}$$

Likelihood distribution function:

$$P(\boldsymbol{d}|\boldsymbol{m}) = \int_{\boldsymbol{d},\boldsymbol{m}} \rho(\boldsymbol{d}|\boldsymbol{m}) d\boldsymbol{m}$$

But, we infer them...

Ŵ

Estimating Density Functions

estimate rho, have a 'sense' or try different prior probability distributions are given by the model space, e.g., reactor parameters as predicted from the ML models. [?] Note: This implies the posterior is now only dependent on the likelihood.

likelihood function: the training phase provides the maximum likelihood distribution through the use of CV, since the results are reported as a mean error with a standard deviation (which can be converted to accuracy for likelihood) [?]

MLE is not this simple for other methods that do not employ CV [?, ?]

Posterior Odds

citations plz

calc a non-normalized posterior probability distribution, $P(m_i|d)$ then do it for a model obtained from a different algorithm, $P(m_j|d)$

relative posterior probability distribution : posterior odds $B_{ij} = \frac{\rho(d|m_i)}{\rho(d|m_i)}$: Bayes factor.

$$\frac{P(m_i|d)}{P(m_j|d)} = B_{ij} \frac{P(m_i)}{P(m_j)}$$

Likelihood Strength	Probability	In <i>B_{ij}</i>	
Inconclusive	< 0.750	< 1.0	
Weak	0.750	1.0	
Moderate	0.923	2.5	
Strong	0.993	5.0	

Table 9: Model comparison using likelihood strength

posterior probabilities calculated from $|InB_{ij}|$ Summarize:

Given a mean-squared error and its standard deviation from using CV with any alg, get MLE

Outline

- 1 Introduction
 Motivation
 Methodology
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools
Provious Work

3 Demonstration
Training Data
Reactor Parameter Prediction

4 Research Proposa

Experiment 1

Experiment 2

Experiment 3

Method Comparison

5 Summary

Introduction
Literature Review
Demonstration
Research Proposal
Summary

Summary

Summarize

References I

[1] Kenneth G.W. Inn, Jacqueline Mann, Jeffrey Leggitt, JoAnne Buscaglia, Simon Jerome, John Molloy, and William Pramenko.

Nuclear forensic reference materials for attribution of urban nuclear terrorism, 2015.

Presentation for NIST.

- [2] Andrew Jones, Phillip Turner, Colin Zimmerman, and J.Y. Goulermas.
 Machine learning for classification and visualisation of radioactive substances for nuclear forensics.
 - In Techniques and Methods for Safeguards, Nonproliferation and Arms Control Verification Workshop, Portland, Oregon, May 2014.
- [3] Andrew E. Jones, Phillip Turner, Colin Zimmerman, and John Y. Goulermas. Classification of spent reactor fuel for nuclear forensics.

Analytical Chemistry, 86:5399–5405, 2014.

References II

[4] G. Nicolaou.

Determination of the origin of unknown irradiated nuclear fuel.

Journal of Environmental Radioactivity, 86:313–318, 2006.

[5] G. Nicolaou.

Identification of unknown irradiated nuclear fuel through its fission product content

Journal of Radioanalytical and Nuclear Chemistry, 279(2):503-508, 2009.

[6] G. Nicolaou.

Discrimination of spent nuclear fuels in nuclear forensics through isotopic fingerprinting.

Annals of Nuclear Energy, 72:130-133, Oct 2014.

Technical Note

References III

- [7] Martin Robel and Michael J. Kristo.
 Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.
 Journal of Environmental Radioactivity, 99(11):1789–1797, November 2008.
- [8] Martin Robel, Michael J. Kristo, and Martin A. Heller. Nuclear forensic inferences using iterative multidimensional statistics. In Proceedings of the Institute of Nuclear Materials Management 50th Annual Meeting, Tuscon, AZ, USA, Jul 2009. Institute of Nuclear Materials Management. LLNL-CONF-414001.