Complex Numbers Problems 221-230

Shiv Shankar Dayal February 8, 2024

221. Find the common roots of the equation $z^3+2z^2+2z+1=0$ and $z^{1985}+z^{100}+1=0$.

Solution:
$$z^3+2z^2+2z+1=0 \Rightarrow (z+1)(z^2+z+1)=0 \Rightarrow z=-1,\omega,\omega^2.$$

If
$$z=-1, z^{1985}+z^{100}+1=-1+1+1=1\neq 0$$
, if $z=\omega, z^{1985}+z^{100}+1=\omega^2+\omega+1=0$ and if $z=\omega^2, z^{1985}+z^{100}+1=\omega+\omega^2+1=0$.

Hence ω and ω^2 are the common roots.

222. If $z_1+z_2+z_3=\alpha, z_1+z_2\omega+z_3\omega^2=\beta$ and $z_1+z_2\omega^2+z_3\omega=\gamma$, express z_1,z_2,z_3 in terms of α,β,γ . Hence prove that $|\alpha|^2+|\beta|^2+|\gamma|^2=3(|z_1|^2+|z_2|^2+|z_3|^2)$.

Solution: Adding all equations $\alpha+\beta+\gamma=3z_1\Rightarrow z_1=\frac{\alpha+\beta+\gamma}{3}$. Similarly, multiplying second equatin with ω and third equation with ω^2 , and then adding we have $z_3=\frac{\alpha+\beta\omega+\gamma\omega^2}{3}$. Similarly, $z_2=\frac{\alpha+\beta\omega^2+\gamma\omega}{3}$.

$$\begin{split} |\alpha|^2 &= \alpha \overline{\alpha} = (z_1 + z_2 + z_3)(\overline{z_1} + \overline{z_2} + \overline{z_3}), |\beta|^2 = \beta \overline{\beta} = (z_1 + z_2 \omega + z_3 \omega^2)(\overline{z_1} + \overline{z_2} \omega^2 + \overline{z_3} \omega) \text{ and } \\ |\gamma|^2 &= \gamma \overline{\gamma} = (z_1 + z_2 \omega^2 + z_3 \omega)(\overline{z_1} + \overline{z_2} \omega + \overline{z_3} \omega^2) \left[: \overline{\omega} = \omega^2 \ \& \ \overline{\omega^2} = \omega \right] \\ \Rightarrow |\alpha|^2 + |\beta|^2 + |\gamma|^2 &= 3(|z_1|^2 + |z_2|^2 + |z_3|^2) + z_1[\overline{z_2}(1 + \omega + \omega^2) + \overline{z_3}(1 + \omega + \omega^2)] + z_2[\overline{z_1}(1 + \omega + \omega^2) + \overline{z_2}(1 + \omega + \omega^2)] \\ \Rightarrow |z_3[\overline{z_1}(1 + \omega + \omega^2) + \overline{z_2}(1 + \omega + \omega^2)] &= 3(|z_1|^2 + |z_2|^2 + |z_3|^2) = \text{R.H.S.} \end{split}$$

223. If n is an odd integer greater than 3, but not a multiple of 3, prove that $x^3 + x^2 + x$ is a factor of $(x+1)^n - x^n - 1$.

Solution: Let $f(x)=(x+1)^n-x^n-1$. $x^3+x^2+x=0 \Rightarrow x(x^2+x+1)=0 \Rightarrow x=0, \omega, \omega^2$. So for x^3+x^2+x to be a factor of $f(x), f(0)=0, f(\omega)=0, f(\omega^2)=0$.

$$f(0)=1^n-1=0, f(\omega)=(\omega+1)^n-\omega^n-1=-\omega^{2n}-\omega^n-1\ [\because n \text{ is odd.}\]=-(1+\omega^n+\omega^{2n})=0.$$
 Similarly, $f(\omega^2)=0.$ Hence proved.

224. If n is an odd integer greater than 3, but not a multiple of 3, prove that $(x+y)^n - x^n - y^n$ is divisible by $xy(x+y)(x^2+xy+y^2)$.

Solution: Let $f(x,y) = (x+y)^n - x^n - y^n$, $xy(x+y)(x^2 + xy + y^2) = 0 \Rightarrow x = 0, y = 0, x = -y, y = x\omega, y = x\omega^2$. When x = 0, f(x, y) = 0; y = 0, f(x, y) = 0; $y = -x \Rightarrow f(x, y) = -x^n - (-x)^n = 0$ [$\because n = 2m + 1 \ \forall \ m \in \mathbb{I}$], y = 0 $xw \Rightarrow f(x,y) = [x^n(1+\omega)^n - x^n - x^n\omega^n] = -x^n\omega^{2n} - x^n - x^n\omega^n = 0$, and similarly when $y = x\omega^2$, f(x,y) = 0. Hence proved.

225. If
$$|z_1|=|z_1|=\cdots=|z_n|=1$$
, prove that $|z_1+z_2+\cdots+z_n|=\left|\frac{1}{z_1}+\frac{1}{z_2}+\cdots+\frac{1}{z_n}\right|$.

$$\begin{split} & \textbf{Solution: R.H.S.} = \left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right| = \left| \frac{\overline{z_1}}{|z_1|^2} + \frac{\overline{z_2}}{|z_2|^2} + \dots + \frac{\overline{z_n}}{|z_n|^2} \right| \\ & = |\overline{z_1} + \overline{z_2} + \dots + \overline{z_n}| = |\overline{z_1 + z_2 + \dots + z_n}| = |z_1 + z_2 + \dots + z_n| = \text{L.H.S.} \end{split}$$

226. If
$$\alpha, \beta \in \mathbb{C}$$
, show that $|\alpha + \sqrt{\alpha^2 - \beta^2}| + |\alpha - \sqrt{\alpha^2 - \beta^2}| = |\alpha + \beta| + |\alpha - \beta|$.

 $\begin{array}{l} \text{Solution: For any two complex numbers z_1 and z_2, we know that $|z_1+z_2|^2+|z_1-z_2|^2=2|z_1|^2+2|z_2|^2$.} \\ z_1=\alpha+\sqrt{\alpha^2-\beta^2} \text{ and } z_2=\alpha-\sqrt{\alpha^2-\beta^2}. \\ \text{Now } (|z_1|+|z_2|)^2=|z_1|^2+|z_2|^2+2|z_1||z_2|=2|\alpha|^2+2|\alpha^2-\beta^2|+2|\beta|^2=|\alpha+\beta|^2+|\alpha-\beta|^2+2|\alpha+\beta||\alpha-\beta| \\ =(|\alpha+\beta|+|\alpha-\beta|)^2\Rightarrow |z_1|+|z_2|=|\alpha+\beta|+|\alpha-\beta|=\text{R.H.S.} \end{array}$

227. If $z_1=a+ib$ and $z_2=c+id$ are complex numbers such that $|z_1|=|z_2|=1$ and $\Re(z_1\overline{z_2})=0$, then show that the pair of complex numbers $\omega_1=a+ic$ and $\omega_2=b+id$ satisfy i. $|\omega_1|=1$ ii. $|\omega_2|=1$ iii. $\Re(\omega_1\overline{\omega_2})=0$.

Solution:

$$|z_1|=|z_1|=1\Rightarrow a^2+b^2=c^2+d^2=1, z_1\overline{z_2}=ac+bd+i(bc-ad): \Re(z_1\overline{z_2})=0\Rightarrow ac+bd=0\Rightarrow \frac{a}{d}=-\frac{b}{c}=k \text{ (say)}. \ \ \, (a+bd)=-kc.$$

228. Prove that
$$\left|\frac{z_1-z_2}{1-\overline{z_1}z_2}\right|<1$$
 if $|z_1|<1,|z_2|<1$.

$$\begin{split} & \textbf{Solution: Given, } \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right| < 1 \Leftrightarrow \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|^2 < 1 \Leftrightarrow |z_1 - z_2|^2 < |1 - \overline{z_1} z_2|^2 \\ & \Leftrightarrow (z_1 - z_2) \overline{(z_1 - z_2)} < (1 - \overline{z_1} z_2) \overline{(1 - \overline{z_1} z_2)} \Leftrightarrow (z_1 - z_2) \overline{(z_1 - \overline{z_2})} < (1 - \overline{z_1} z_2) ((1 - z_1 \overline{z_2})) \\ & \Leftrightarrow |z_1|^2 + |z_2|^2 > 1 + |z_1|^2 |z_2|^2 \Leftrightarrow 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2 > 0 \Leftrightarrow (1 - |z_1|^2) (1 - |z_2|^2) > 0 \\ & \Leftrightarrow (1 - |z_1|) (1 - |z_2|) > 0 \end{split}$$
 which is true as $|z_1| < 1$ and $|z_2| < 1$.

229. Let $z_1=10+6i$ and $z_2=4+6i$. If z is any complex number such that the argument of $\frac{z-z_1}{z-z_2}$ is $\frac{\pi}{2}$, then prove that $|z-7-9i|=3\sqrt{2}$.

230. Find all complex numbers z for which $\arg\left(\frac{3z-6-3i}{2z-8-6i}\right)=\frac{\pi}{4}$ and |z-3+i|=3.

Solution: Let
$$z = x + iy$$
 then $\frac{3z - 6 - 3i}{2z - 8 - 6i} = \frac{x - 6 + i(3y - 3)}{2x - 8 + i(2y - 6)}$.

Rationalizing
$$\frac{6x^2+6y^2-36x-24y+66+i(12x-12y-12)}{(2x-8)^2+(2y-6)^2}=a+ib$$
 (let)

$$\arg(a+ib) = \tfrac{\pi}{4} \Rightarrow 6x^2 + 6y^2 - 36x - 24y + 66 = 12x - 12y - 12 \Rightarrow x^2 + y^2 - 8x - 2y + 13 = 0. \text{ Also given, } |z-3+i| = 3 \Rightarrow x = -2y + 6.$$

Substituting this in previously obtained equation, we have

$$5y^2 - 10y + 1 = 0 \Rightarrow y = 1 \pm \frac{2}{\sqrt{5}} \Rightarrow x = 4 \mp \frac{4}{\sqrt{5}}$$
. Hence we have our z .