Artificial Neural Networks

What we will cover

- History of them
- How they are different
- How Neural Networks work

Foundations

- It came from neuroscience in the early 40's.
- Neural Networks use tendrils and neurons to process information.
- First form was Hebbian learning.

First Perceptron

- Perceptrons were first created in 1958
- It was made from copper wires.
- No mass progress made for 40 years.

Modern Perceptrons / Neural Networks

- They use numerical representations.
- Made up of 6 parts.
- Considered 'Black Box' models.
- Uses Hidden Layers.

Output Layers

$$C_0 = \sum_{j=0}^{n_L-1} (a_j^{(L)} - y_j)^2$$

- Target variables.
- The number of output neurons is based on the number of target variables or 'classes' in out data.

Probabilities are between 0 and 1.

Weights and Biases

- It is how we connect neurons and control values in our network.
- Updating weight values is how neural networks learn.
- Biases adjust how the model fits the data.

Activation Functions

- Determine how the neurons fire and function.
- They are applied after every layer.
- Biases affect the activation value inside activation functions.

ReLU

Clipping function.

Zero when negative, otherwise linear.

Sigmoid

- Squishes values between zero and one.
- Causes Exploding and Vanishing Gradients.

TanH

- Zero Centered.
- Less prone to exploding and vanishing gradients.
- Squishes numbers from -1 to +1.

Dead Neurons

- Dead neurons kill other neurons later on in the network even if live neurons are connected to them.
- Once a neuron dies it stops the training process for itself and every neuron after it.

Output layer

- Uses a softmax or linear output.
- Softmax is used for discrete classes.
- Linear is used for continuous variables and regression.

Neural Network Example

- Black = -1
- White = 1
- Gray = 0
- Classificationshould be class 8

Actual Neural Networks

"Non-Deep" Feedforward Neural Network

Hidden Layer

Deep Neural Network

Equations used in Deep Learning

Neuron Weight function.
Dropout.

Activation Function.

Normalization.

Output Function.

Regularization.

Back Propagation.

Optimizers.

Loss Function.

Neuron Weight Function

- Where $\hat{y} = A_n$ and $z = A_{in}$
- $A_{in} = A_n * W_n + B$
- $\bullet A_{\text{in}} = (A_1 * W_1) + (A_2 * W_2) + (A_3 * W_3) + B$

Feed Forward Network

- Only travels in one direction.
- Weights are updated by hand.

Perceptrons

- Most basic form of neural networks.
- Doesn't use biases.
- Many perceptrons added together create modern day neural networks.

