Digital System Design Course

Circuitos secuenciales básicos

- Los *circuitos secuenciales básicos* son de propósito general:
 - * Circuitos lógicos que no se diseñan: ICs
 - > Latches
 - > Flop-flops
 - Registros
 - > Registros de desplazamiento
 - Contadores

Tipos de flip-flops

- ☐ Flip-flop S-R basado en *latches S-R*, modo nivel
- ☐ Flip-flop J-K basado en *latches S-R*, modo nivel
- ☐ Flip-flop D basado en *latches D*, modo flanco
- ☐ Flip-flop J-K basado en *flip-flop D*, modo flanco
- ☐ Flip-flop T basado en *flip-flop D*, modo flanco
- ☐ Flip-flop T basado en *flip-flop J-K*, modo flanco

☐ Consideraciones:

- * Dos latches S-R en serie conforman un *flip-flop S-R master/slave*
- ❖ El nivel lógico transferido a la salida del *flip-flop* sobre el *flanco de caída* de la *señal C* depende de la última señal de Set o Clear del latch master, mientras la señal C estaba en alto
- * El *flip-flop S-R master/slave* no es realmente *conmutado en el flanco*. Este *es un latch* que sigue a sus entradas durante todo el intervalo que la señal C permanece en alto, pero que cambia sus salidas únicamente cuando la señal C va abajo, *y refleja el último nivel atrapado*
- * Los *flip-flops* con este tipo de comportamiento, son algunas veces llamados *flip-flops* que *conmutan* por *pulso o nivel*: pulse–triggered flip-flops

Símbolo y diagrama lógico: Flip-flop S-R master/slave

* Diagrama lógico: FF-SR a nivel de compuertas

* Tabla de verdad: FF-SR

S	R	CLK	Q	\overline{Q}
X	X	0	Q	\overline{Q}
0	0	7	Q	\overline{Q}
0	1		0	1
1	0	5	1	0
1	1		Indefi.	Indefi.

❖ Diagrama de timing: FF-SR funcionamiento

- (1) Aislar: maestro/esclavo
- (2) Entrar datos: maestro
- (3) Inhabilitar: entradas
- (4) Transferir datos: maestro/eslavo

❖ Diagrama de timing: FF-SR

☐ Flip-flop S-R master/slave con set y reset: *Símbolo*

☐ Flip-flop S-R master/slave con set y reset: *Tabla de verdad*

\overline{Sd}	\overline{Rd}	S	R	CLK	Q	\bar{Q}
0	1	X	X	X	1	0
1	0	X	X	X	0	1
1	0	X	X	0	Q	\overline{Q}
1	1	0	0	<u> </u>	Q	\overline{Q}
1	1	0	1	5	0	1
1	1	1	0		1	0
1	1	1	1	<u></u>	Indefi	Indefi.

Diagrama lógico

- □Consideraciones.
 - * Las entradas J y K no necesitan estar activadas al final del pulso de disparo para que la salida del flip flop cambie. (1)
 - ❖ El problema que surge cuando S y R son activadas simultáneamente es solucionado con un flip − flop J −K master slave. Las entradas J y K son análogas a S y R.

- ❖ El Flip − Flop J −K puede atrapar: gating, en las entradas S y R del latch master, los niveles lógicos 1S y 0S, permitiendo que la salida del flip − flop cambie aunque K y J no estén activadas en el final del flanco del pulso de disparo; este comportamiento es conocido como Catching de 1S y OS.
- ❖ Debido al comportamiento de Catching de 1S y 0S, las entradas J y K de un flip − flop J − K master/slave deben ser mantenidas válidas durante todo el intervalo en que C es 1.

☐ Flip-flop J-K master/slave: *Símbolo*

☐ Flip-flop J-K master/slave: *Diagrama lógico*

* Tabla de verdad

J	K	CLK	Q	\overline{Q}
X	X	0	Q	\overline{Q}
0	0		Q	\overline{Q}
0	1		0	1
1	0	5	1	0
1	1		\overline{Q}	Q

Diagrama de timing: FF J-K master/slave

- □Flip Flop D. Disparado por flanco
 - *El flip –flop D disparado en el flanco positivo, se implementa con un par de latches D.

* El flip –flop D muestrea o atrapa la información presente en su entrada D únicamente en el flanco de subida de la señal de control C / CK.

* El latch master está habilitado y sigue la señal de la entrada cuando CLK está bajo.

*Cuando CLK está alto el master está inhabilitado y su salida es transferida al latch slave. El latch slave está habilitado mientras la señal CK está alta, pero solamente cambia en el comienzo de este intervalo, debido a que el master esta inhabilitado y no cambia durante el resto del intervalo.

❖El comportamiento funcional del flip – flop D se muestra en el diagrama de Timing.

□(1) El master está habilitado.

El slave está inhabilitado.

- ☐ Símbolo y diagrama lógico: Flip–flop D
 - FFD conmutado por flanco (edge triggered)

☐ Diagrama lógico: nivel de compuertas

☐ Tabla de verdad

D	CK	Q	\overline{Q}
0		0	1
1		1	0
X	0	Q	\overline{Q}
X	1	Q	\overline{Q}

➤ Diagrama de Timing: FF - D

Diagrama lógico: nivel de compuertas

☐ Flip-flop D con preset y clear: *Símbolo*

Diagrama lógico: nivel de puertas

☐Parámetros de Timing

*Todos los atrasos de propagación son medidos a partir del flanco de subida del reloj: CK, puesto que ésto es lo que únicamente causa un cambio en la salida.

*El flip – flop D activado por flanco tiene definida una ventana de tiempos: setup y hold time, tiempo establecimiento y mantenimiento. Esta ventana ocurre alrededor del flanco de disparo de CK.

* Si los requerimientos para los tiempos de setup y hold time no se cumplen, la salida del flip-flop usualmente iría a un estado estable aunque, impredecible, 0 ó 1. En algunos casos, sin embargo la salida oscilaría o iría a un estado metaestable, es decir, a un estado intermedio entre 0 y 1.

□Parámetros de timing: FF-D

□ *Símbolo:* FF-JK

* Tabla de verdad: FF-JK

J	K	CK	Q	\overline{Q}
X	X	0	Q	$\overline{\mathcal{Q}}$
X	X	1	Q	\overline{Q}
0	0	_	Q	\overline{Q}
0	1		0	1
1	0		1	0
1	1		\overline{Q}	Q

☐ Diagrama lógico: FF-JK implementado con un FF-D

* Diagrama de timing: FF-JK conmutado en el flanco

- Consideraciones
 - ❖ El *flip-flop T (Toggle)* cambia de estado en cada flanco positivo o flanco negativo de la señal del reloj
 - ❖ La frecuencia de la señal de salida Q del flip-flop T es exactamente la mitad de la frecuencia de la señal de entrada T
 - ❖ El flip-flop T es frecuentemente usado en contadores y divisores de frecuencia

Símbolo: FF-T

Tabla de verdad: FF-T

T	Q	\overline{Q}
0	Q	\overline{Q}
1	Q	\overline{Q}
	\overline{Q}	Q

❖ Diagrama de timing: FF-T

* Flip-flop T implementado con un flip-flop D

❖ Flip-flop T implementado con un flip-flop JK

Consideraciones

- * En muchas aplicaciones el flip-flop T no necesita ser conmutado en cada ciclo de reloj, es decir, en cada flanco
- ❖ El *flip-flop T con enable* cambia o conmuta de estado en el flanco del reloj, únicamente si la *señal enable* está habilitada

Símbolo: FF-T con enable

❖ Diagrama de timing: FF-T con enable

* Flip-flop T con enable implementado con un flip-flop D

* Flip-flop T con enable implementado con un flip-flop JK

