MAT157 Problem Set 2

Nicolas Coballe

September 25, 2021

1. a) $\forall x \in F, \exists y \in F : \forall z \in F, z \neq x, xy = 1 \implies yz \neq 1$

The negation:

 $\exists x \in F, \ \forall y \in F: \exists z \in F, z \neq x, xy = 1 \text{ and } yz = 1$

Plain English:

There exists an element x that for all y such that there exists z with $z \neq x$, xy = 1 and yz = 1

b) Let a(x) be the angle sum of polygon x and let H be the set of all hyperbolic octagons.

 $\forall x \in H, \ a(x) > \pi$

The negation:

 $\exists x \in H, \ a(x) \leq \pi$

Plain English:

There exists a hyperbolic octagon with an angle sum less than or equal to π .

c) Let Q be the set of all flavors of quarks, c(x) be the charge of quark x, and m(x) be the mass of quark x.

$$\forall x, y \in Q, c(x) = c(y) \text{ and } m(x) = m(y)$$

The negation:

 $\exists x, y \in Q, c(x) \neq c(y) \text{ op } m(x) \neq m(y)$

Plain English:

There exists two flavors of quarks that do not have the same charge or the same mass.

d) Let S be the set of students in this class, H be the set of all homework assignments, L be the set of all lectures, h(x,y) be student x does homework y, l(x,y) be student x goes to lecture y, and f(x) be the percentage that student x gets on the final exam.

 $\forall x \in S : h(x, y), \forall y \in H \text{ and } l(x, z), \forall z \in L \implies f(x) \ge 50$

The negation:

 $\exists x \in S : (h(x,y), \forall y \in H \text{ and } l(x,z), \forall z \in L) \text{ and } f(x) < 50$

Plain English:

There exists a student who does all the homework and all the assignments but scores less than 50 percent on the final exam.

2. a)

Proof.

$$\Rightarrow$$
If $a = b$ then $|a - b| = |a - a| = 0 < \epsilon$.

 \leftarrow

We will take the contrapositive. If $a \neq b$ then $\exists x \in \mathbb{R} \setminus \{0\}$ such that b = a + x. Thus, $|a - b| = |a - (a + x)| = |x| > \epsilon$

Proof.

b) Assume that for all rational numbers $x, a \ge x$ or $x \ge b$. Let a = 0 and b = 2, giving us a < b. Consider x = 1. Clearly x is rational, but a < x and x < b. This contradicts our assumption that for all rational numbers $x, a \ge x$ or $x \ge b$