Project - 5 (DATASET: Online Retail):

The transactions made by a UKbased, registered, non-store online retailer between December 1, 2010, and December 9,2011, are all included in the transnational datasetknown as online retail. The company primarily offersone-of-a-kindgifts for every occasion. The company has a large number of wholesalers as clients. Company Objective Using the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [1]:

#IMPORTING NECESSARY LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]:

```
#Reading the data set
df=pd.read_csv(r"C:\Users\mural\Downloads\online retail.csv")
df
```

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0
541909	rows × 8 co	lumns					
4							•

DATA CLEANING AND PREPROCESSING

In [3]:

df.head()

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdon
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdon
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdon
4								

In [4]:

df.tail()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0
1)

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

- 0. 00.	00-0		
#	Column	Non-Null Count	Dtype
0	InvoiceNo	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	540455 non-null	object
3	Quantity	541909 non-null	int64
4	InvoiceDate	541909 non-null	object
5	UnitPrice	541909 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	541909 non-null	object
dtype	es: float64(2), int64(1), obje	ct(5)

memory usage: 33.1+ MB

In [6]:

```
df.describe()
```

Out[6]:

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

In [7]:

```
# Checking for null values
df.isnull().sum()
```

Out[7]:

InvoiceNo	0
StockCode	0
Description	1454
Quantity	0
InvoiceDate	0
UnitPrice	0
CustomerID	135080
Country	0
dtype: int64	

In [8]:

```
df.dropna(inplace=True)
```

```
In [11]:
```

```
df['InvoiceNo'].value_counts()
Out[11]:
InvoiceNo
          542
576339
579196
          533
580727
          529
578270
          442
573576
          435
554155
            1
570248
            1
545414
            1
545418
            1
565192
            1
Name: count, Length: 22190, dtype: int64
In [12]:
df['CustomerID'].value_counts()
Out[12]:
CustomerID
17841.0
           7983
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
15070.0
              1
15753.0
              1
17065.0
              1
16881.0
               1
16995.0
Name: count, Length: 4372, dtype: int64
In [13]:
df['Quantity'].value_counts()
Out[13]:
Quantity
          73314
 1
 12
          60033
 2
          58003
          37688
 6
 4
          32183
 828
               1
 560
               1
-408
               1
 512
               1
-80995
Name: count, Length: 436, dtype: int64
```

In [14]:

```
plt.scatter(df["CustomerID"],df["Quantity"])
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[14]:

Text(0, 0.5, 'Quantity')

In [15]:

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[15]:

```
▼ KMeans
KMeans()
```

In [16]:

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[16]:

array([0, 0, 0, ..., 5, 5, 5])

In [17]:

```
df["cluster"]=y_predicted
df.head()
```

Out[17]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdon
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdon
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdon
4								•

In [19]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="orange")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="purple")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[19]:

Text(0, 0.5, 'Quantity')

In [20]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[20]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	Unite Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdon
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	Unite Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdon
4								•

```
In [21]:
```

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df
```

Out[21]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	0.500074	09-12-2011 12:50	0.85	0.056219
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	0.500037	09-12-2011 12:50	2.10	0.056219
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	0.500025	09-12-2011 12:50	4.15	0.056219
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	0.500025	09-12-2011 12:50	4.15	0.056219
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	0.500019	09-12-2011 12:50	4.95	0.056219
406829	rows × 9 co	lumns					
4							>

K-MeansClustering

In [22]:

```
km=KMeans()
```

In [23]:

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[23]:

```
array([3, 3, 3, ..., 1, 1, 1])
```

In [24]:

```
df["New Cluster"]=y_predicted
df.head()
```

Out[24]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	Unite Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdon
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	Unite Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdon
4								•

In [25]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="orange")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="purple")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[25]:

Text(0, 0.5, 'Quantity')

In [26]:

```
km.cluster_centers_
```

Out[26]:

In [27]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[27]:

Text(0, 0.5, 'Quantity')

In [28]:

```
k_rng=range(1,10)
sse=[]
```

```
In [29]:
```

```
for k in k rng:
km=KMeans(n_clusters=k)
km.fit(df[["CustomerID","Quantity"]])
sse.append(km.inertia )
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n init` expl
icitly to suppress the warning
```

warnings.warn(

[33847.22708730174, 8593.16785431243, 3752.028137352341, 2018.32753197836 88, 1286.7654501526517, 868.9847602905056, 672.465994059463, 504.01120362 08818, 398.06892209931203]

Out[29]:

Text(0, 0.5, 'Sum of Squared Error')

For the given dataset we use K-means Clustering and done the groupingbased on the given data. In the above dataset we will take customer id andquantity based on that we make the clusters. When the K-value is low errorrate is more and the K-value is high error rate is very high. So, finally we canConclude the above dataset is bestfit for K-Means.

In []:		