MODULAR SQUARE ROOTS

- Square Roots mod m: For x, a, m integers and m > 0, x is a square root of $a \mod m$ provided $x^2 \equiv a \mod m$.
- Dan Shanks' observation about square roots mod p:
 - \spadesuit p an odd prime $\Rightarrow p-1=s\cdot 2^e$ with s odd and e>0.

 - $\spadesuit a^{(s+1)/2}$ is almost the square root of a (mod p)
 - - $\spadesuit a^s \pmod{p}$ is a 2^e th root of unity (mod p)
 - $\spadesuit a^s \pmod{p}$ is a fudge factor which can be updated.
- The Shanks-Tonelli algorithm: It updates both the initial guess x and the fudge factor a^s until the f.f. $\equiv 1 \pmod{p}$.

THE SHANKS-TONELLI ALGORITHM

- **1. BEGIN** with an integer a and a prime p > 2, relatively prime to a. Calculate $a^{(p-1)/2} \pmod{p}$. Now $a^{(p-1)/2} \equiv 1$ or $-1 \pmod{p}$.
- **2.** IF $a^{(p-1)/2} \equiv -1 \pmod{p}$, then a has no square root \pmod{p} . Say so, and EXIT quietly.
- **3.** IF $a^{(p-1)/2} \equiv 1 \pmod{p}$, then we're in business. Write $p-1 = s \cdot 2^e$ with s odd and e positive.
- **4. FIND** a number n such that $n^{(p-1)/2} \equiv 1 \pmod{p}$ —that is, a nonsquare \pmod{p} .
 - **5. INITIALIZE** these variables (all congruences are mod p):

 $x \equiv a^{(s+1)/2}$ (first guess at the square root)

 $b \equiv a^s$ (first guess at the fudge factor)

 $g \equiv n^s$ (powers of g will update both x and b)

r=e (exponent will decrease with each update of the algorithm). Note that $x^2\equiv ba\pmod p$.

Now: WHILE m > 0

- **6. FIND** the least integer m such that $0 \le m \le r-1$ and $b^{2^m} \equiv 1 \pmod{p}$. That is, find m such that $\operatorname{ord}_p(b) = 2^m$.
- 7. IF m = 0, we're done. RETURN the value of x and EXIT triumphantly.
 - 8. IF m > 0, UPDATE the variables:

replace
$$x$$
 by $x \cdot g^{2^{r-m-1}}$
replace b by $b \cdot g^{2^{r-m}}$
replace g by $g^{2^{r-m}}$
replace r by m .

end WHILE

WHY DOES IT TERMINATE?

- \heartsuit Old value of b satisfies $b^{2^{m-1}} \not\equiv 1 \pmod{p}$, but ...
- \spadesuit ... new value of b satisfies $b^{2^{m-1}} \equiv 1 \pmod{p}$, so:
- \heartsuit The value of m decreases with each update.
- \heartsuit Reason: for old b, m minimal $\Rightarrow b^{2^{m-1}} \equiv -1 \pmod{p}$
- \heartsuit Also, $g^{2^{r-1}} \equiv -1 \pmod{p}$
- \heartsuit Hence, $\left(b\cdot g^{2^{r-m}}\right)^{2^{m-1}}\equiv b^{2^{m-1}}g^{2^{r-1}}\equiv 1\pmod p$
- \heartsuit But $b \cdot g^{2^{r-m}}$ is the new value of b (see \spadesuit)
- \heartsuit So, the new value of m is less than the old value of m.

AN EXAMPLE

THE SQUARE ROOT OF 2 MOD 113

SET UP: $a = 2, p = 113, p - 1 = 7 \cdot 2^4, e = 4, s = 7, (p - 1)/2 = 56, (s + 1)/2 = 4$

BEGIN: $2^{56} \equiv 1 \pmod{113}$; we're in business.

FIND $n: 3^{56} \equiv -1 \pmod{113}$, so n = 3.

INITIALIZE: $x = a^{(s+1)/2} = 2^4 \equiv 16 \pmod{113}$; $b = a^s = 2^7 \equiv 15 \pmod{113}$;

 $g = n^s = 3^7 \equiv 40 \pmod{113};$

r = e = 4.

FIND ord_p(b) = 2^m : $b^2 = 225 \equiv -1, b^4 \equiv 1 \pmod{113}$. Hence $b^{2^2} \equiv 1 \pmod{113}$, and so m = 2.

 $m \neq 0$, so **UPDATE**:

 $x = xg^{2^{r-m-1}} = 16 \cdot 40^{2^{4-2-1}} = 16 \cdot 1600 \equiv 16 \cdot 18 \equiv 62 \pmod{113};$ $b = bg^{2^{r-m}} = 15 \cdot 40^4 \equiv 15 \cdot (-15) \equiv 1 \pmod{113};$

 $g = g^{2^{r-m}} \equiv -15 \pmod{113};$

r = m = 2.

Since b = 1, $\operatorname{ord}_p(b) = 1 = 2^0$; hence m = 0 and we're done: **RETURN** the current value of x, namely 62. Sure enough, $62^2 = 3844 = 2 + 34 \cdot 113 \equiv 2 \pmod{113}$, and so 62 is a square root of 2 mod 113.