Sujet 1

Questions de cours :

- **1.** Soit $B = (u_1, u_2, \dots, u_n)$ une base de E. Ecrire la décomposition d'un vecteur $v \in E$ dans la base B.
- 2. Soit $f: E \to E$ un endomorphisme. Ecrire la définition de Mat_B(f).

Exercice 1:

Soient $\overrightarrow{v_1} = (1, 0, 0), \overrightarrow{v_2} = (5, -2, 2) \text{ et } \overrightarrow{v_3} = (-1, 1, 2).$

- **1.** Montrer que $B_v = (v_1, v_2, v_3)$ forme une base de R^3 .
- 2. Ecrire la matrice de passage de la base canonique à la base B_v puis celle de B_v à la base canonique.
- 3. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire de matrice dans la base canonique

$$A = \begin{pmatrix} 1 & 3 & -2 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

Déterminer la matrice B de f dans la base By.

4. Calculer B^n pour tout n > 0, puis A^n .

Exercice 2:

E désigne un espace vectoriel sur R rapporté à une base $B = (e_1, e_2, e_3)$.

Pour tout réel a, on considère l'endomorphisme f_a de E défini par :

$$f_a(\overrightarrow{e_2}) = \overrightarrow{0}$$
 et $f_a(\overrightarrow{e_1}) = f_a(\overrightarrow{e_3}) = \overrightarrow{ae_1} + \overrightarrow{e_2} - \overrightarrow{ae_3}$

- 1. Déterminer une base de Im(f_a).
- **2.** Montrer que $\overrightarrow{e_2} \in \operatorname{Ker}(f_a)$ et $\overrightarrow{e_1} \overrightarrow{e_3} \in \operatorname{Ker}(f_a)$.
- 3. Ecrire la matrice A de f_a dans la base B. Calculer A^2 . En déduire sans calcul f_a o f_a .
- **4.** On pose $\overrightarrow{e_1}' = f_a(\overrightarrow{e_1})$, $\overrightarrow{e_2}' = \overrightarrow{e_1} \overrightarrow{e_3}$ et $\overrightarrow{e_3}' = \overrightarrow{e_3}$.
- 5. a) Montrer que B' = $(\overrightarrow{e_1}', \overrightarrow{e_2}', \overrightarrow{e_3}')$ est une base de E.
 - b) Donner la matrice A' de fa dans cette base.
 - c) Ecrire la matrice de passage de B à B'. On la note P.
 - d) Donner la formule reliant A, A' et P.

Question de cours:

- 1. Ecrire la définition de deux matrices semblables.
- **2.** Quelles propriétés portant sur les opérations matricielles a-t-on avec les matrices semblables ?

Exercice 1:

Soit E un espace vectoriel de dimension 3 muni d'une base $B = (\vec{i}, \vec{j}, \vec{k})$.

Soit
$$A = \begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}$$
 la matrice de l'endomorphisme f dans la base B.

On note $\overrightarrow{u} = 2\overrightarrow{i} - \overrightarrow{j}$, $\overrightarrow{v} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ et $\overrightarrow{w} = \overrightarrow{k}$.

- 1. Déterminer f(u), f(v) et f(w).
- **2.** Montrer que B' = $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base de E.
- 3. Déterminer P la matrice de passage de B à B'.
- **4.** Ecrire la matrice D de f dans la base B'.
- **5.** Rappeler l'expression reliant A, D et P. Calculer Aⁿ.
- **6.** Justifier que f est un automorphisme de E et donner la matrice de f⁻¹ dans la base B.

Exercice 2:

Soit $f: R_2[X] \to R^3, P \mapsto (P(1), P'(1), P(0))$

- 1. Rappeler la base canonique de $R_2[X]$ puis calculer l'image par f de chacun des vecteurs de la base canonique.
- 2. Montrer que f est linéaire.
- **3.** Déterminer Ker(f).
- **4.** Déterminer une base de Im(f).
- **5.** On admet que f est bijective. Montrer qu'il existe un unique polynôme $P \in R_2[X]$ tel que P(1) = P'(1) = 1 et P(0) = 0. Déterminer ce polynôme.

Sujet 3

Questions de cours :

- Soit f : E→E un endomorphisme.
 Ecrire les relations de changement de base pour f.
- 2. Ecrire la définition du noyau de f
- 3. Ecrire la définition de l'image de f.

Exercice 1:

Soit $A = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$. Soit f l'application définie sur $M_2(R)$ par f(M) = AM - MA.

- **1.** Démontrer que f est un endomorphisme de $M_2(R)$.
- **2.** Déterminer le noyau de f : on donnera une base et la dimension.
- **3.** Déterminer l'image de f : : on donnera une base et la dimension.
- **4.** Donner la matrice A de f dans la base canonique.
- **5.** Justifier que f n'est pas un automorphisme de $M_2(R)$.
- **6.** Retrouver son noyau par calcul matriciel.

Exercice 2:

On désigne par E l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 2.

On note B la base $(\overrightarrow{e_0}, \overrightarrow{e_1}, \overrightarrow{e_2})$ de E où pour tout réel x, on a

$$\vec{e}_0$$
 (x) = 1, \vec{e}_1 (x) = x et \vec{e}_2 (x) = x².

On considère l'application, notée f, qui à toute fonction polynomiale P appartenant à E, associe la fonction polynomiale Q définie par :

$$\forall x \in R, Q(x) = 2xP(x) - (x^2 - 1)P'(x).$$

- 1) a) Montrer que f est un application linéaire.
- b) Montrer que f est un endomorphisme de E.
- c) Ecrire $f(\overrightarrow{e_0})$, $f(\overrightarrow{e_1})$ et $f(\overrightarrow{e_2})$ comme combinaisons linéaires de $\overrightarrow{e_0}$, $\overrightarrow{e_1}$, $\overrightarrow{e_2}$. En déduire la matrice A de f dans la base B.
- 2) a) Vérifier que $\text{Im}(f) = \text{vect}(\overrightarrow{e_1}, \overrightarrow{e_0} + \overrightarrow{e_2})$ et donner la dimension de Im(f).
- b) Déterminer Ker(f).