Elementary Cryptosystems

1. The General Cryptographic Model

Definition. A cryptosystem is an ordered five-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ where

- P is a finite set of plaintexts;
- \bullet \mathcal{C} is a finite set of cryptotexts;
- K is a finite set of keys;
- $\mathcal{E} = \{E_k : \mathcal{P} \to \mathcal{C}\}$ and $\mathcal{D} = \{D_k : \mathcal{C} \to \mathcal{P}\}$ are sets of enciphering transformations and deciphering transformations indexed by the elements of \mathcal{K} with the property $D_k(E_k(x)) = x$ for every $x \in \mathcal{P}$ and every $k \in \mathcal{K}$.

Sometimes we require also the property $E_k(D_k(x)) = x$ for every $x \in \mathcal{P}$ and every $k \in \mathcal{K}$.

2. Some Symmetric Cryptosystems

2.1. Simple substitution

Caesar's cipher

I C A M E I S A W I C O N Q U E R E D L F D P H L V D Z L F R Q T X H U H G
$$\mathcal{P}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{26}$$

$$E_k(x) = x + k \pmod{26},$$

$$D_k(y) = y - k \pmod{26}.$$

For Caesar we have k=3

Encoding: $A \rightarrow 0, B \rightarrow 1, C \rightarrow 2, \ldots, Z \rightarrow 25$.

Lecture 1: Elementary Cryptosystems -

affine cipher

$$\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26},$$
 $\mathcal{K} = \{k = (a, b) \in \mathbb{Z}_{26}^* \times \mathbb{Z}_{26}\},$
 $|\mathcal{K}| = \varphi(26) \cdot 26 = 12 \cdot 26 = 312,$
 $E_k(x) = ax + b \pmod{26},$
 $D_k(y) = a^{-1}(y - b) \pmod{26}.$

Example: For k = (7,3) we have

$$E_k(x) = 7x + 3$$
, and $D_k(y) = 7^{-1}(y - 3) = 15(y - 3) = 15y - 19 = 15y + 7$.

Thm 1. Let $a \neq 0$, b and $m \neq 0$ be integers and consider the congruence (*) $ax \equiv b \pmod{m}$. Then

- (i) (*) has a solution iff gcd(a, m) divides b;
- (ii) if (*) has a solution it has exactly $d = \gcd(a, m)$ different solutions;
- (iii) if x_0 is a solution to (*) and m=m'd then all solutions are given by $x=x_0+km'$, where $k=0,1,\ldots,d-1$.

general simple substitution

$$\mathcal{P} = \mathcal{C} = \mathcal{X} = \{A, \dots, Z\},$$

$$\mathcal{K} = S_{\mathcal{X}}$$

$$E_{\pi}(x) = \pi(x)$$
;

$$D_{\pi}(y) = \pi^{-1}(y)$$
.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z T U R I N G M A C H E B D F J K L O P Q S V W X Y Z

PEARLHARBOUR KNTOBATOUJSO

2.2. Playfair

С	R	Y	Р	Τ
О	Ш	Ζ		G
M	Α	В	D	F
Н	K	L	Q	S
U	V	W	X	Z

Plaintext: CR YP TO GR AP HY Cryptotext: RY PT CG ET DR LC

2.3. Vigenére

- $m \in \mathbb{Z}^+$
- $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}^m$, $\mathcal{K} = \mathbb{Z}_{26}^m$
- ullet Let (x_1,\ldots,x_m) be a message and let $k=(k_1,\ldots,k_m)$ be a key.
- Enciphering:

$$E_k(x_1, \dots, x_m) = (x_1 + k_1 \pmod{26}, \dots, x_m + k_m \pmod{26}).$$

• Deciphering:

$$D_k(y_1, \dots, y_m) = (y_1 - k_1 \pmod{26}, \dots, y_m - k_m \pmod{26}).$$

Example.

Plaintext: THIS CRYPTOSYSTEM IS NOT SECURE

Key: CIPHER

Cryptotext: VPXZGIAXIVWPUBTT...

Lecture 1: Elementary Cryptosystems -

2.4. Hill's cipher

$$\mathcal{P}=\mathcal{C}=\mathbb{Z}_{26}^m$$
, $m\in\mathbb{N}$ -fixed.

 $\mathcal{K}=$ the invertible m imes m matrices over \mathbb{Z}_{26}

$$E_k(x) = xK \pmod{26},$$

$$D_k(y) = yK^{-1} \pmod{26}.$$

Example.

$$K = \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix}, K^{-1} = \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix}$$

$JULY \longrightarrow (9, 20, 11, 24)$

$$(9,20) \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} = (3,4) \to DE$$

$$(11,24) \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} = (11,22) \to LW$$

$$(3,4) \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix} = (9,20) \to JU$$

$$(11,22) \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix} = (11,24) \to LY$$

Example.

$$K = \begin{pmatrix} 9 & 5 & 0 \\ 0 & 1 & 3 \\ 5 & 18 & 2 \end{pmatrix}, K^{-1} = \begin{pmatrix} 0 & 12 & -5 \\ -5 & -6 & 9 \\ -7 & 11 & -3 \end{pmatrix}$$

LONDON $\longrightarrow (11, 14, 13, 3, 14, 13)$

$$(11,14,13) \begin{pmatrix} 9 & 5 & 0 \\ 0 & 1 & 3 \\ 5 & 18 & 2 \end{pmatrix} = (8,17,16) \to ISQ$$

$$(3,14,13) \begin{pmatrix} 9 & 5 & 0 \\ 0 & 1 & 3 \\ 5 & 18 & 2 \end{pmatrix} = (14,13,16) \to ODQ$$

$$(8,17,16) \begin{pmatrix} 0 & 12 & -5 \\ -5 & -6 & 9 \\ -7 & 11 & -3 \end{pmatrix} = (11,14,13) \to LON$$

$$(14,3,16) \begin{pmatrix} 0 & 12 & -5 \\ -5 & -6 & 9 \\ -7 & 11 & -3 \end{pmatrix} = (3,14,13) \to DON$$

2.5. One time pad

- ullet Alice wishes to send Bob n messages which are zero or one.
- ullet Sometime earlier Alice and Bob met and flipped an unbiased coin n times.
- They both recorded the sequence of random tosses as a string $k \in \{H, T\}^n$.
- Alice encrypts her messages m_1, \ldots, m_n as follows:

$$c_i = E(m_i) = \begin{cases} m_i, & \text{if } k_i = H, \\ m_i \oplus 1, & \text{if } k_i = T. \end{cases}$$

- ullet Alice then sends the cryptograms c_1,\ldots,c_n to Bob.
- Bob can decrypt easily by

$$m_i = D(c_i) = \begin{cases} c_i, & \text{if } k_i = H, \\ c_i \oplus 1, & \text{if } k_i = T. \end{cases}$$

- The cryptogram reveals no new information about the message.
- The key should be at least as long as the plaintext.
- This holds even if the opponent has unlimited computing power.

2.6. Permutation ciphers

Let $\mathcal{X} = \{a, b, \dots, z\}$ and let $m \geq 2$ be a fixed integer.

Let
$$\mathcal{P} = \mathcal{C} = \mathcal{X}^m$$
.

Let $\mathcal{K} = S_m$ (here S_m is the symmetric group acting on $\{1, \ldots, m\}$).

Given a key $\pi \in \mathcal{K}$, the enciphering and deciphering transformations are given by

$$E_{\pi}(x_1, x_2, \dots, x_m) = (x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(m)})$$

$$D_{\pi}(y_1, y_2, \dots, y_m) = (y_{\pi^{-1}(1)}, y_{\pi^{-1}(2)}, \dots, y_{\pi^{-1}(m)}),$$

where π^{-1} is the inverse to π .

Example 1. Let m=10 and let the key be

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 6 & 9 & 2 & 5 & 8 & 1 & 4 & 10 & 7 \end{pmatrix} = (1 \ 3 \ 9 \ 10 \ 7)(2 \ 6 \ 8 \ 4)(5).$$

Clearly, $\pi^{-1} = (1\ 7\ 10\ 9\ 3)(2\ 4\ 8\ 6)(5)$

and the plaintext

THISISTHEW INTEROFOUR DISCONTENT is enciphered to

I S E H I H T S W T T O U N R O I E R F S N N I O E D C T T

The parameter m is kept secret and can be considered as a part of the key

The general permutation cipher can be considered as a specil case of the Hill cipher.

Set $\mathcal{X}=\mathbb{Z}_{26}$. With every permutation we associate a permutation matrix $K=(k_{ij})_{m imes m}$

$$k_{i,j} = \begin{cases} 1 & \text{if } i = \pi(j), \\ 0 & \text{otherwise.} \end{cases}$$

Clearly,

$$K_{\pi}^{-1} = K_{\pi^{-1}} = K_{\pi}^{T}.$$

so in the example above

We have

$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10})K = (x_3, x_6, x_9, x_2, x_5, x_8, x_1, x_4, x_{10}, x_7),$$

the permutation of the symbols in any block can be obtained by multiplication by a suitable permutation matrix.

We cause different euristics:

1) Use a $n \times m$ table:

Τ	Н	I	S	I	S
Т	Н	Ε	W	Ι	N
Т	E	R	0	F	0
U	R	D	Ι	S	С
0	N	Т	Ε	N	Т

So the cryptotext is TTTUO HHERN IERDT SWOIE IIFSN SNOCT.

The key is the pair (n, m). In this case k = (5, 6).

This is ageneral permutation with key

$$\pi = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & \dots & 29 & 30 \\ 1 & 7 & 13 & 19 & \dots & 24 & 30 \end{array}\right).$$

2) Use forbidden fields in the table.

Т		Н	Ι	S	Ι
S	T	Н		Е	W
Ι	N	T	Е	R	
0	F		0	U	R
D	Ι	S	С		0
	N	T	Е	N	Т

The cryptotext is TSIOD TNFIN HHTST IEOCE SERUN IWROT.

3) Another possibility: columnar transposition using a codeword.

Take e.g. TABLE.

The cryptotext is HTNFI TIHTO SEIWR ROTSE EUCNT SIODN.

2.7. Stream Ciphers

Idea: Use the key k to generate a sequence z_1, z_2, z_3, \ldots called a called a key sequence that is used further to encipher the plaintext:

$$y = y_1 y_2 y_3 \dots = E_{z_1}(x_1) E_{z_2}(x_2) E_{z_3}(x_3) \dots$$

The element z_i is obtained as the value of some function that depends on the key k and the first i-1 plaintexts

$$z_i = f_i(k, x_1, \dots, x_{i-1}).$$

The enciphering transformations are indexed not by the elements of K, but by the elements of the key sequence z_i .

Def. A stream cipher is an ordered 7-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{L}, \mathcal{F}, \mathcal{E}, \mathcal{D})$, where \mathcal{P} and \mathcal{C} are the sets of plaintexts and ciphertexts, respecitively, \mathcal{K} is the keyset, \mathcal{L} is the alphabet of the key stream, and \mathcal{F} is a sequence of functions f_1, f_2, f_3, \ldots , where

$$f_i: \mathcal{K} \times \mathcal{P}^{i-1} \to \mathcal{L}.$$

For every $z \in \mathcal{L}$ there exist an enciphering rule $E_z \in \mathcal{E}$ and a deciphering rule $D_z \in \mathcal{D}$:

$$E_z: \mathcal{P} \to \mathcal{C}, \quad D_z: \mathcal{C} \to \mathcal{P},$$

which satisfy $D_z(E_z(x)) = x$ for every $x \in \mathcal{P}$.

The diffrence from the general definition of a cryptosystem is that the enciphering and deciphering transformations depend on the key sequence and not directly on the key k.

Block ciphers can be considered as a special case of stream ciphers with $z_i=k$ for all $i\geq 1$.

A stream cipher is said to be sinchronous if the key sequence z_1, z_2, z_3, \ldots does not depend on the plaintext, i.e. $f_i : \mathcal{K} \to \mathcal{L}$.

A stream cipher for which the key sequence depends on the plaintext is called asynchronous.

A stream cipher is called periodic with period d if $z_{i+d} = z_i$ for all $i \ge 1$.

Some times we may the existence of a preperiod, i.e. $z_{i+d} = z_i$ for all $i \geq n_0$.

In the case of Vigenère's cipher with key $k=(k_1,\ldots,k_m)$ we have a sinchronous cipher with $z_{jm+i}=k_i, i=1,\ldots,m$, for $j=1,2,\ldots$. Here, the enciphering and the deciphering transformations indexed with z are $E_z(x)=x+z$ and $D_z(y)=y-z$, addition and multipliction are performed in \mathbb{Z}_{26} .

Very often stream ciphers are used with binary alphabets, i.e. $\mathcal{P} = \mathcal{C} = \mathcal{L} = \mathbb{Z}_2$. In this case enciphering and deciphering are identical and consist in addition modulo 2:

$$E_z(x) = x \oplus z, \ D_z(y) = y \oplus z.$$

The picture below represents such a cipher.

A possible option to create a (sinchronous) key stream is to use a linear recurrence sequence over \mathbb{Z}_2 Let the first m terms of the sequence be fixed:

$$z_0 = b_0, z_1 = b_1, \dots, z_{m-1} = b_{m-1}$$

and let it satisfy the following recurrence equation:

$$z_{i+m} = c_0 z_i \oplus c_1 z_{i+1} \oplus \ldots \oplus c_{m-i} z_{i+m-1},$$

where c, c_1, \ldots, c_{m-1} be some suitably chosen constants from \mathbb{Z}_2 .

W.l.o.g. we assume that $c_0=1$; otherwise the recurrence equation is of smaller order than m.

The key is of length 2m and consists of the bits $b_0, b_1, \ldots, b_{m-1}$ and $c_0, c_1, \ldots, c_{m-1}$, where $(b_0, \ldots, b_{m-1}) \neq (0, \ldots, 0)$.

For a suitable choice of c_0, \ldots, c_{m-1} , the sequence (z_i) has period $2^m - 1$, which is the maximal period that can be achieved.

Linear feedback shift register (LFSR)

A linear feedback shift register consists of m cells $S_0, S_1, \ldots, S_{m-1}$

Each cell contains a binary symbol $\{0,1\}$.

A LFSR works in discrete moments of time: $t, t+1, t+2, \ldots$

Initially the cells S_0, \ldots, S_{m-1} contain the m-tuple (b_0, \ldots, b_{m-1}) .

At each step (moment of time) the register performs the following operations:

- 1) outputs the content of the cell S_0 ;
- 2) the content of each of the cells S_1, \ldots, S_{m-1} is moved to the cell to the right, i.e. $S_{i-1} \leftarrow S_i$, $i=1,\ldots,m-1$;

3) the new value of S_{m-1} is given by $S_{m-1} \leftarrow \sum_{j=0}^{m-1} c_j S_j$.

Denote by $S_i(t)$ the content of S_i in moment t.

The work of the shift register can be described by

$$S_i(t+1) = S_{i+1}(t), i = 0, ..., m-2, S_{m-1}(t+1) = c_0 S_0(t) + c_1 S_1(t) + ... + c_{m-1} S_{m-1}(t).$$

Example 2. Consider a LFSR with m=4 that generates a sequence satisfying the recurrence equation $z_{i+4}=z_i\oplus z_{i+1}$.

If the LFSR contains initially $(b_0, b_1, b_2, b_3) = (1, 0, 0, 0)$, then its work is described by the table below.

t	S_0	S_1	S_2	S_3
0	1	0	0	0
0 1	0	0	0	1
2	0	0	1	0
2 3 4 5	0	1	0	0
4	1	0	0	1
5	0	0	1	1
6	0	1	1	0
6 7	1	1	0	1
8 9	1	0	1	0
9	0	1	0	1
10	1	0	1	1
11	0	1	1	1
12	1	1	1	1
13	1	1	1	0
_ 14	1	1	0	0
15	1	0	0	0
:		:	:	:

The first column contains the sequence generated by the register. It has period 15 which is the largest possible period for a register of this size.

$$(1,0,0,0,1,0,0,1,1,0,1,0,1,1,1),1,0,0,0,1,0,0,\dots$$

The LFSR that uses the equation

$$z_{i+4} = z_{i+3} + z_{i+2} + z_{i+1} + z_i$$

generates only a sequence of period 5 for every initial vector.

t	S_0	S_1	S_2	S_3
0	1	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	1	1	0
4	1	1	0	0
5	1	0	0	0
:	:	:	:	÷

2.8. Autokey

The next cipher is an example for an asynchronous stream cipher The alleged author is Vigenère.

The idea is to use the plaintext as a stream cipher.

Let $m \geq 1$ be a positive integer. Take

$$\mathcal{P} = \mathcal{C} = \mathcal{L} = \mathbb{Z}_{26}, \ \mathcal{K} = \mathbb{Z}_{26}^m$$

If the plaintext is $x_0x_1x_2...$, and $K=k_0k_1...k_{m-1}$, then we set $z_i=k_i$ for $i=0,1,\ldots,m-1$ and $z_i=x_{i-m}$ for $i\geq m$.

The enciphering and deciphering transformations are given by $E_z(x) = x + z \pmod{26}$ and $D_z(y) = y - z \pmod{26}$.

Example 3. Consider an Autokey-cipher with m=3, and key-word MAY= (14,0,24).

Plaintext: thepathoftherighteous.

Ciphertext: FHCIHXWOYAVJKPKYBKVNW:

t	h	е	p	a	t	h	0	f	t	h	е	r	i	g	h	t	е	
m	a	У	t	h	е	p	a	t	h	0	f	t	h	е	r	i	g	
19	7	4	15	0	19	7	14	5	19	7	4	17	8	6	7	19	4	1
12	0	24	19	7	4	15	0	19	7	14	5	19	7	4	17	8	6	
5	7	2	18	7	23	22	14	24	0	21	9	10	15	10	24	1	10	2
F	Η	С	I	Н	X	W	0	Y	Α	V	J	K	Р	K	Y	В	K	,

The deciphering is obvious.

We recover the first three letters using the key.

For the remaining letters we use the plaintext already recovered.

ciphertext	key sequence	deciphering	plaintext
	sequence		
F	M	5 - 12 = 19	t
H	A	7 - 0 = 7	h
C	Y	2 - 24 = 4	е
I	T	8 - 19 = 15	р
H	Н	7 - 7 = 0	a
X	E	23 - 4 = 19	t
W	Р	22 - 15 = 7	h
<u>:</u>	÷	÷	: