Additional Mathematics

Chapter 1: Binomial Theorem Problems

Preparwd by: Trevor Jimu

Problems

1. Use the binomial theorem to expand these.

(a)
$$(1-x)^3$$

(b)
$$(2x-1)^4$$

(c)
$$(3-x)^5$$

(d)
$$(2-3x)^4$$

2. Use the binomial theorem to expand these.

(a)
$$\left(2 + \frac{1}{r}\right)^5$$

(b)
$$\left(\frac{2}{x} - 1\right)^4$$

(c)
$$\left(x^2 + \frac{1}{x^2}\right)^6$$

(d)
$$(x + \frac{1}{x})^8$$

3. Find the coefficient of the term indicated in square brackets in the binomial expansion of these.

(a)
$$(2+3x)^{12}$$
 $[x^4]$

(b)
$$(1-2x)^{14}$$
 $[x^8]$

(c)
$$(3+2x)^{10}$$
 $[x^5]$

(d)
$$(2x-1)^9$$
 $[x^7]$

(e)
$$\left(x - \frac{1}{x}\right)^{12}$$
 $[x^4]$

(f)
$$\left(x^2 - \frac{1}{x}\right)^{16}$$
 $\left[x^{13}\right]$

4. (a) Expand $(2-3x)^6$ as far as the term in x^3 .

(b) Use the result to find the coefficient of x^2 in the expansion of $(1+2x)(2-3x)^6$.

5. (a) Find the expansion, in ascending powers of x, as far as the term in x^3 , of $(1-2x)^8$.

1

(b) Use the result to find the coefficient of x^3 in the expansion of $(2-3x)(1-2x)^8$.

- 6. The binomial expansion of $(a-x)^n$, where n > 0, in ascending powers of x, is $531441 2125764x + 3897234x^2 + ...$ Find the value of a and the value of n.
- 7. Find the coefficient of x^2 in the expansion of $(2-x)^4(1+x)^3$.
- 8. Find the term independent of x in the expansion of $\left(x^2 \frac{2}{x}\right)^9$.
- 9. Find the term independent of x in the expansion of $\left(x + \frac{3}{x^2}\right)^{12}$.
- 10. In the expansion of $(a+x)^n$, the coefficients of x and x^2 are equal. Express n in terms of a.
- 11. The first three terms in the expansion of $(1 + ax)^n$ are $1 14x + 84x^2$. Find the value of a and the value of n.