API for a ERTMS/ETCS onboard model

Niklas Schaffrath
Principal Key Expert
Software Architecture

Siemens Rail Automation

Operating system

- provides runtime environment
- provides communication means
- provides infrastructure functions

Functional Subsystems

- Only the ETCS onboard at its external interfaces is defined
- Idea of a white box architecture with subsystem
- Interfaces between kernel and subsystem are not defined
- split of responsibility between kernel and subsystem?

Structure of the ERTMS/ETCS functions

Functional Interfaces

TSI CCS

BG evaluation Data display

•

.

Infrastructure

Data storage Configuration Subsystem control

•

anocia

Product

specific

Diagnosis NTCs

IF based on functional split

Generic IF (e.g. system image)

Not considered

Application Logic

Best practice:

- cyclic execution model
- Communication with timed data streams

Cycle time

 $t_{min} \le reaction_time / 2$ ETCS: reaction_time $\approx 1s$ at external interfaces With 200ms for input/output operations each -> $t_{min} \le 300ms$ -> 200ms ($1s = 5*t_{min}$)

Maximum Balise Frequency 8/s
-> with t_{min} = 100ms only one Balise/cycle has to be evaluated

The runtime system

Application

cycle (indata, var outdata)

runtime environment

Connects to subsystem

- from/to data stream
- platform depended

Native OS

Cross cutting concerns

Error reaction

The state "system failure" is usually heterogeneous represented in the application and the platform

Debug diagnosis

Data output for testing and debugging (≠ product feature self diagnosis)

Summary

Runtime framework

- cycle (indata, var outdata)
- (init)
- abort
- Debug

Input / Output data structures based on subsystem definition & functional analysis