Syntax and Semantics of V^-

Roger Burtonpatel

October 22, 2023

1 Syntax

We present a grammar of V^- :

Programs	P	::=	$\{d\}$	definition
Definitions	d	::=	${\tt val}\ x = ealph$	bind name to expression
Expressions	e_{lpha}	::= 	x,y,z if [$g_{lpha}\left\{ \left[\left] g_{lpha} ight\} ight\}$ fi $K\{e_{lpha}\}$ e_{lpha_1} e_{lpha_2}	names if-fi value constructor application function application
Guarded Expressions	g_{lpha}	::= 		terminating α intermediate expression existential equation
Values	v	::=	$K\{v\}$	value constructor application
Value Constructors	K	::= 	:: [] #x A-Zx [- +](0 - 9)+	cons empty list name beginning with # name beggining with capital letter signed integer literal

A *name* is any token that is not an integer literal, does not contain whitespace, a bracket, or parenthesis, and is not a value constructor name or a reserved word.

2 Refinement ordering on environments

$$\rho \subseteq \rho'$$
 when $dom \rho \subseteq dom \rho'$
and $\forall x \in dom \rho : \rho(x) \subseteq \rho'(x)$

3 Forms of Judgement for V^- :

Metavariables				
θ	a value produced from evaluating α .			
eq	equation			
reject	equation rejection			
r	$\vartheta \mid \mathbf{reject}$: a result of ϑ or rejection			
ρ	environment: $name \rightarrow \mathcal{V}_{\perp}$			
$\rho\{x\mapsto y\}$	environment extended with name x mapping to y			
\mathcal{T}	Context of all temporarily stuck equations (a sequence)			
e_{α}	An expression			
g_{lpha}	A guarded expression			
<	Inability to compile to a decision tree; a compile time error			

Sequences				
$ \begin{array}{c} \varepsilon \\ S_1 \cdot S_2 \\ x \cdot S_2 \end{array} $	the empty sequence Concatenate sequence S_1 and sequence S_2 Cons x onto sequence S_2			

Expressions

An expression in core Verse evaluates to produce possibly-empty sequence of values. In V^- , values depend on the form of abstract expression α . If α is a Verse-like expression, ϑ will be a value sequence. If it is an ML-like expression, it will be a single value.

A guarded expression evaluates to produce a **result**. A result is either a possibly-empty sequence of values or reject.

$$r ::= \vartheta \mid \mathbf{reject}$$

$$\rho; \mathcal{T} \vdash \alpha \Downarrow r \text{ (EVAL-EXPR)}$$

$$\rho; \mathcal{T} \vdash g_{\alpha} \Downarrow r \text{ (EVAL-GUARDED-EXPR)}$$

If a guarded expression cannot be evaluated without producing logical variables at runtime, it cannot be expressed as a decision tree. This notation indicates this failure (think of \in as a fallen tree), which results in a compile-time error.

$$\rho: \mathcal{T} \vdash q_{\alpha} \Downarrow r \leadsto \in \text{(NoTree)}$$

4 Sequences

The trivial sequence is ε . Sequences can be concatenated with infix \cdot . In an appropriate context, a value like x stands for the singleton sequence containing x.

$$\varepsilon \cdot ys \equiv ys$$
$$ys \cdot \varepsilon \equiv ys$$
$$(xs \cdot ys) \cdot zs \equiv xs \cdot (ys \cdot zs)$$

5 Rules (Big-step Operational Semantics) for V^- :

Evaluating Guarded Expressions

Evaluating simple parts of guarded expressions

(EVAL-ARROWEXPR)
$$\frac{\rho; \varepsilon \vdash \alpha \Downarrow \vartheta}{\rho; \varepsilon \vdash \to \alpha \Downarrow \vartheta}$$
(EVAL-EXISTS)
$$\frac{\rho\{x \mapsto \bot\}; \mathcal{T} \vdash g_{\alpha} \Downarrow r}{\rho; \mathcal{T} \vdash \exists x. \ g_{\alpha} \Downarrow r}$$
(EVAL-EXPSEQ)
$$\frac{\rho; \ \mathcal{T} \vdash ealph \Downarrow \vartheta \qquad \rho; \ \mathcal{T} \vdash g_{\alpha} \Downarrow r}{\rho; \mathcal{T} \vdash ealph; \ g_{\alpha} \Downarrow r}$$

Shifting an equation to the context

(G-MOVE-TO-CTX)
$$\frac{\rho; eq \cdot \mathcal{T} \vdash g_{\alpha} \Downarrow r}{\rho; \mathcal{T} \vdash eq; \ g_{\alpha} \Downarrow r}$$

Evaluating with different types of equations

$$(G-EQEXPS) \begin{array}{c} x, \ y \ \text{are distinct and fresh} \\ \hline (G-EQEXPS) \ \frac{\rho\{x\mapsto \bot, \ y\mapsto \bot\}; x=e_{\alpha_1}\cdot y=e_{\alpha_2}\cdot x=y\cdot \mathcal{T}\cdot \mathcal{T}'\vdash g_\alpha \Downarrow r}{\rho; \mathcal{T}\cdot e_{\alpha_1}=e_{\alpha_2}\cdot \mathcal{T}'\vdash g_\alpha \Downarrow r} \\ \hline \\ (G-EQNAMEEXP) \ \frac{\rho; \ \mathcal{T}\vdash ealph \Downarrow \vartheta \qquad \rho\{x\mapsto \vartheta\}; \mathcal{T}\cdot \mathcal{T}'\vdash g_\alpha \Downarrow r'}{\rho; \mathcal{T}\cdot x=ealph\cdot \mathcal{T}'\vdash g_\alpha \Downarrow r'} \\ \hline \end{array}$$

$$(G\text{-EqNames-Vals-Succ}) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \vartheta, \ \rho(y) = \vartheta \\ \rho; \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r \\ \hline \rho; \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r \end{array}$$

$$(G-EQNAMES-VALS-FAIL) \quad \begin{aligned} x, \ y &\in \operatorname{dom} \rho \\ \rho(x) &= \vartheta, \ \rho(y) = \vartheta' \\ \frac{\vartheta \neq \vartheta'}{\rho; \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow \mathbf{reject}} \end{aligned}$$

$$(G-EQNAMES-BOTS-FAIL) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \bot, \ \rho(y) = \bot \\ x, \ y \ \operatorname{do} \ \operatorname{not} \ \operatorname{appear} \ \operatorname{in} \ \mathcal{T}, \ \mathcal{T}' \\ \hline \rho; \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r \leadsto \boldsymbol{\in} \end{array}$$

$$(G-EQNAMES-BOTVAL-SUCC) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \bot, \ \rho(y) = \vartheta \\ \rho\{x \mapsto \vartheta\}; \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r' \\ \hline \rho; \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r' \end{array}$$

(G-VCON-SINGLE-FAIL)
$$\frac{K \neq K'}{\rho; \mathcal{T} \cdot K = K' \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow \mathbf{reject}}$$

(G-VCON-SINGLE-SUCC)
$$\frac{\rho; \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}{\rho; \mathcal{T} \cdot K = K \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}$$

(G-VCON-MULTI-FAIL)
$$\frac{K \neq K'}{\rho; \mathcal{T} \cdot K(e_{\alpha_1}, \dots e_{\alpha_n}) = K'(e'_{\alpha_1}, \dots e'_{\alpha_n}) \cdot \mathcal{T}' \vdash g_\alpha \Downarrow \mathbf{reject}}$$

(G-VCON-MULTI-ARITY-FAIL)
$$\frac{n \neq m}{\rho; \mathcal{T} \cdot K(e_{\alpha_1}, \dots e_{\alpha_n}) = K(e'_{\alpha_1}, \dots e'_{\alpha_m}) \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow \mathbf{reject}}$$

$$(\text{G-Vcon-Multi-Succ}) \quad \frac{\rho; [e_{\alpha_i} = e'_{\alpha_i} \mid 1 \leq i \leq n] \cdot \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}{\rho; \mathcal{T} \cdot K(e_{\alpha_1}, \dots e_{\alpha_n}) = K(e'_{\alpha_1}, \dots e'_{\alpha_n}) \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}$$

Evaluating General Expressions

(IF-FI-SUCCESS)
$$\frac{\rho; \mathcal{T} \vdash g_{\alpha} \Downarrow r \Downarrow \vartheta}{\rho; \ \mathcal{T} \vdash \text{IF} \left[g_{\alpha} \square \dots \right] \text{FI} \Downarrow \vartheta}$$

(IF-FI-REJECT)
$$\frac{\rho; \mathcal{T} \vdash g_{\alpha} \Downarrow \mathbf{reject} \qquad \rho; \ \mathcal{T} \vdash \mathrm{IF} \ [\ \dots\] \ \mathrm{FI} \Downarrow \vartheta}{\rho; \ \mathcal{T} \vdash \mathrm{IF} \ [\ g_{\alpha} \ \square \ \dots\] \ \mathrm{FI} \Downarrow \vartheta}$$

(VCON-EMPTY)
$$\frac{}{\rho; \ \mathcal{T} \vdash K \Downarrow K}$$

(VCON-MULTI)
$$\frac{\rho; \ \mathcal{T} \vdash e_{\alpha_i} \Downarrow \vartheta_i \qquad 1 \leq i \leq n}{\rho; \ \mathcal{T} \vdash K(e_{\alpha_1}, \dots e_{\alpha_n}) \Downarrow K(\vartheta_1, \dots \vartheta_i)}$$