

Sharif University of Technology

Department of Computer Engineering

Low Power Digital System Design

On-chip Interconnects (Cont.)

A. Ejlali

Comparison between Minimally Encoded and LWC

Symbol	Minimally Encoded		2-LWC		1-LWC	
	Codewords	# Trans.	Codewords	# Trans.	Codewords	# Trans.
0	0000	0.5	00000	0	000000000000000	0
1	0001	1.5	00001	1	000000000000001	1
2	0010	2.5	00010	1	000000000000010	1
3	0011	1.5	00011	2	000000000000100	1
4	0100	2.5	00100	1	000000000001000	1
5	0101	3.5	00101	2	00000000010000	1
6	0110	2.5	00110	2	00000000100000	1
7	0111	1.5	11000	2	00000001000000	1
8	1000	1.5	01000	1	00000010000000	1
9	1001	2.5	01001	2	000000100000000	1
10	1010	3.5	01010	2	000001000000000	1
11	1011	2.5	10100	2	000010000000000	1
12	1100	1.5	01100	2	000100000000000	1
13	1101	2.5	10010	2	001000000000000	1
14	1110	1.5	10001	2	0100000000000000	1
15	1111	0.5	10000	1	1000000000000000	1
Average		2		1.5625		0.9375

• This result has been obtained for serial interconnects but it also holds for parallel interconnects.

Redundancy in LWC

• Low power encoding by adding redundancy in the form of extra bus lines.

• *M*-LWC:

- *N*=Length of M-LWC codewords
- *K*=Length of minimally encoded codewords

$$\sum_{i=0}^{M} \binom{N}{i} \ge 2^K \qquad R = \frac{N-K}{K}$$

Optimal LWC

• A perfect *M*-LWC satisfies

$$\sum_{i=0}^{M} \binom{N}{i} = 2^{K}$$

• a semiperfect M-LWC consists of all possible codewords with weight $\leq M$ -l and only some with weight M, and satisfies

$$\sum_{i=0}^{M} \binom{N}{i} > 2^{K}$$

• Perfect and semiperfect limited weight codes are optimal in the sense that any other code with the same length cannot have better statistical properties for low power.

Bus-Invert vs. LWC

- Bus-Invert
 - Level Signaling
 - One-to-many context dependent coding
 - Parallel interconnects

• LWC

- Transition Signaling
- One-to-one context independent coding
- Both parallel and serial interconnects

References

M.R. Stan, et. al., "Low-Power Encodings for Global Communication in CMOS VLSI", IEEE Transactions on VLSI, 1997.

M.R. Stan and W.P. Burleson. "Limited-Weight

Codes for Low Power I/O", IEEE/ACM International Workshop on Low Power, 1994.