1	We claim:
2	
3	
4	1. An apparatus for supporting an injector head on a platform comprising:
5	-a base frame mounted to the platform, said base frame having a first bracket and a
6	second bracket attached thereto;
7	-a x-axis frame having a first pivot point and a second pivot point, and wherein said
8	first pivot point is pivotly connected to said first bracket and said second pivot point is pivotly
9	connected to said second bracket so that said x-axis frame is movable along an x axis, and wherein
10	said x-axis frame has a third bracket and a fourth bracket;
11	-a z-axis frame having a third pivot point and a fourth pivot point, and wherein said
12	third pivot point is pivotly connected to said third bracket and said fourth pivot point is pivotly
13	connected to said fourth bracket, and wherein said upper frame is movable along a z-axis;
14	-a sliding frame assembly operatively positioned within said z-axis frame, and
15	wherein said sliding frame assembly has a plurality of rods and wherein the injector head is
16	operatively connected to said rods;
17	-a top plate attached to said z-axis frame so that a cavity is formed, and wherein
18	said sliding frame assembly is contained within said cavity.
19	
20	2. The apparatus of claim 1 wherein said sliding frame assembly comprises a sliding layer and an
21	adapter frame and wherein said adapter frame is operatively connected with said rods.

3. The apparatus of claim 2 wherein said injector head is connected to a riser wherein said 1 2 platform is a floating platform. 3 4. The apparatus of claim 3 further comprising an x-axis biasing means for biasing said x-axis 4 5 frame along the x-axis. 6 7 5. The apparatus of claim 4 further comprising a z-axis biasing means for biasing said z-axis frame 8 along the z-axis. 9 10 6. The apparatus of claim 5 wherein said sliding layer comprises a fabric so that the fabric slides 11 on the surface of said z-axis frame. 12 13 7. The apparatus of claim 6 further comprising locking means for locking said sliding frame 14 assembly. 15 8. The apparatus of claim 7 wherein said x-axis biasing means comprises: a first hydraulic cylinder 16 attached to said base frame and a first piston extending from said first hydraulic cylinder, said first 17 18 piston being attached to said x-axis frame. 19 20 9. The apparatus of claim 8 wherein said z-axis biasing means comprises: a second hydraulic 21 cylinder attached to said x-axis frame and a second piston extending from said second hydraulic 22 cylinder, said second piston being attached to said z-axis frame.

2	-a base frame mounted to a track stack structure, said base frame having a first
3	bracket and a second bracket attached thereto;
4	-a x-axis frame having a first pivot point and a second pivot point, and wherein said
5	first pivot point is pivotly connected to said first bracket and said second pivot point is pivotly
6	connected to said second bracket so that said x-axis frame is movable along a x-axis, and wherein
7	said x-axis frame has a third bracket and a fourth bracket;
8	-a z-axis frame having a third pivot point and a fourth pivot point, and wherein said
9	third pivot point is pivotly connected to said third bracket and said fourth pivot point is pivotly
10	connected to said fourth bracket, and wherein said z-axis frame is movable along a z-axis;
11	-a sliding frame assembly operatively positioned within said z-axis frame, and
12	wherein said sliding frame assembly has a plurality of rods and wherein the injector head is
13	operatively connected to said rods;
14	-a top plate attached to said z-axis frame so that a cavity is formed, and wherein
15	said sliding frame assembly is contained within said cavity;
16	-motion restriction means for restricting the x-axis frame movement along the x-
17	axis and the z-axis frame movement along the z-axis.
18	
19	11. The apparatus of claim 10 wherein said sliding frame assembly comprises a sliding pad and an
20	adapter frame operatively connected with said rods.
21	
22	12. The apparatus of claim 10 wherein said sliding frame assembly comprises a fabric so that the

10. An apparatus for supporting a coiled tubing injector head comprising:

fabric slides on a top surface of said z-axis frame. 13. The apparatus of claim 12 wherein said injector head is connected to a riser and wherein said base frame is connected to a floating platform. 14. The apparatus of claim 13 wherein said motion restriction means comprises an x-axis biasing means for biasing said x-axis frame along the x-axis. 15. The apparatus of claim 14 wherein said motion restriction means further comprises a z-axis biasing means for biasing said z-axis frame along the z-axis. 16. The apparatus of claim 15 further comprising locking means for locking said sliding frame assembly. 17. The apparatus of claim 16 wherein said x-axis biasing means comprises: a first hydraulic cylinder attached to said base frame and a first piston extending from said first hydraulic cylinder, said first piston being attached to said x-axis frame. 18. The apparatus of claim 17 wherein said z-axis biasing means comprises: a second hydraulic cylinder attached to said x-axis frame and a second piston extending from said second hydraulic cylinder, said second piston being attached to said z-axis frame.

2	therefrom, the method comprising:
3	-providing an apparatus comprising: a base frame mounted to the platform structure, said
4	base frame having a first bracket and a second bracket attached thereto; a x-axis frame having a
5	first pivot point and a second pivot point, and wherein said first pivot point is pivotly connected to
6	said first bracket and said second pivot point is pivotly connected to said second bracket so that
7	said x-axis frame is movable along an x axis, and wherein said x-axis frame has a third bracket and
8	a fourth bracket; a z-axis frame having a third pivot point and a fourth pivot point, and wherein
9	said third pivot point is pivotly connected to said third bracket and said fourth pivot point is pivotly
10	connected to said fourth bracket, and wherein said z-axis frame is movable along the z axis;
11	-moving the platform due to wave action;
12	-pivoting the x-axis frame about the first and second pivot point;
13	-pivoting the z-axis frame about the third and fourth pivot point.
14	
15	20. The method of claim 19 wherein said apparatus has a sliding frame assembly operatively
16	associated with said z-axis frame, and wherein the method further comprises:
17	-moving the sliding frame assembly in a lateral plane in response to the platform movement.
18	
19	21. The method of claim 20 further comprising:
20	-restricting the movement of said x-axis frame along the x-axis.
21	
22	22. The method of claim 21 further comprising:

19. A method for compensating for the movement of a floating platform having a riser extending

l

l	-restricting the movement of said z-axis frame along the z-axis.
2	
3	23. An apparatus for use on a platform comprising:
4	-a base frame mounted to the platform;
5	-a x-axis frame pivotly mounted to said base frame so that said x-axis frame is
6	movable along an x axis;
7	-a z-axis frame pivotly mounted to said x-axis frame, and wherein said upper frame
8	is movable along a z-axis.
9	
10	24. The apparatus of claim 23 further comprising:
11	-a sliding frame assembly operatively positioned within said z-axis frame, and
12	wherein said sliding frame assembly has a plurality of rods and wherein an injector head is
13	operatively connected to said rods.
14	
15	25. The apparatus of claim 24 further comprising:
16	-a top plate attached to said z-axis frame so that a cavity is formed, and wherein
17	said sliding frame assembly is contained within said cavity.