《微积分A2》第二十三讲

教师 杨利军

清华大学数学科学系

2020年05月09日

Cauchy 积分判别法

Theorem

定理:设函数 f(x) 在区间 $[a, +\infty)$ 上非负连续,且单调下降(不必严格),则如下级数和广义积分

$$\sum_{k=k_0}^{+\infty} f(k) \quad \text{for} \quad \int_a^{+\infty} f(x) dx$$

同时收敛或同时发散, 这里 $k_0 \geq a$.

注: 上述定理通常称为Cauchy 积分判别法.

例子

例: 考虑如下级数的收敛性

$$\sum_{n=2}^{+\infty} \frac{1}{n^p (lnn)^q}.$$

解:记上述级数的一般项为 un,即

$$u_n = \frac{1}{n^p (lnn)^q}.$$

<u>情形一</u>: p > 1, $q \in \mathbb{R}$ 任意. 取 $\varepsilon > 0$ 充分小, 使得 $p - \varepsilon > 1$.

令

$$v_n = \frac{1}{n^{p-\varepsilon}},$$

则级数 $\sum_{n=2}^{+\infty} v_n$ 收敛, 且

例子续一

$$\frac{u_n}{v_n} = \frac{\frac{1}{n^p(lnn)^q}}{\frac{1}{n^{p-\varepsilon}}} = \frac{1}{n^\varepsilon(lnn)^q} \to 0, \quad n \to +\infty.$$

由比较判别法的极限形式可知级数 $\sum_{n=2}^{+\infty} u_n$ 收敛.

情形二: p < 1, $q \in \mathbb{R}$ 任意. 取 $\varepsilon > 0$ 充分小, 使得 $p + \varepsilon < 1$.

令 $v_n = \frac{1}{n^{p+\epsilon}}$, 则级数 $\sum_{n=2}^{+\infty} v_n$ 发散, 且

$$\frac{u_n}{v_n} = \frac{\frac{1}{n^p(lnn)^q}}{\frac{1}{n^{p+\varepsilon}}} = \frac{n^\varepsilon}{(lnn)^q} \to +\infty, \quad n \to +\infty.$$

由比较判别法的极限形式可知级数 $\sum_{n=2}^{+\infty} u_n$ 发散.

例子续二

情形三: p=1. 考虑如下广义积分

$$\int_2^{+\infty} \frac{dx}{x (\ln x)^q} = \int_{\ln 2}^{+\infty} \frac{dy}{y^q}.$$

显然上述广义积分当q>1 时收敛, 当 $q\leq 1$ 时发散. 根据

Cauchy 积分判别法可知, 级数

$$\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^q}$$

当q > 1 时收敛, 当 $q \le 1$ 时发散.

例子续三

总结: 级数

$$\sum_{n=2}^{+\infty} \frac{1}{n^p (\ln n)^q}$$

- i) 当 p > 1, q 任意时, 收敛;
- ii) 当p < 1, q 任意时, 发散;
- iii) 当 p = 1, q > 1 时, 收敛;
- iv) 当 p = 1, $q \le 1$ 时, 发散.

解答完毕.

例子

课本第239页例5.2.3: 考虑如下级数的收敛性

$$\sum_{k=1}^{+\infty} \Big(2\sqrt{k+1} - \sqrt{k+2} - \sqrt{k}\Big).$$

若收敛,考虑求其和. (注: 这里级数的一般项与课本相差一个符号)

解: 记级数的一般项为 $u_k = 2\sqrt{k+1} - \sqrt{k+2} - \sqrt{k}$. 不难证明 $u_k > 0$, $\forall k > 1$. 故这是一个正项级数. 对 u_k 作如下分解

$$u_k = (\sqrt{k+1} - \sqrt{k}) - (\sqrt{k+2} - \sqrt{k+1}) = v_k - v_{k+1}$$

其中 $v_k = \sqrt{k+1} - \sqrt{k}$. 考虑级数的部分和 $S_n = \sum_{k=1}^n u_k$.

例子续一

$$S_n = (v_1 - v_2) + (v_2 - v_3) + (v_3 - v_4) + \dots + (v_n - v_{n+1})$$

$$= v_1 - v_{n+1} = (\sqrt{2} - \sqrt{1}) - (\sqrt{n+2} - \sqrt{n+1}), \ \forall n \ge 1.$$

由于

$$\sqrt{n+2}-\sqrt{n+1}=\frac{1}{\sqrt{n+1}+\sqrt{n+2}}\to 0,\quad n\to+\infty,$$

故 $S_n \rightarrow \sqrt{2} - 1$. 这说明级数收敛, 且其和为 $\sqrt{2} - 1$.

例子续二

收敛性问题另解: 分析一般项 uk 的阶. 将 uk 表示如下

$$\begin{split} u_k &= 2\sqrt{k+1} - \sqrt{k+2} - \sqrt{k} = \sqrt{k} \left[2\Big(1 + \frac{1}{k}\Big)^{\frac{1}{2}} - \Big(1 + \frac{2}{k}\Big)^{\frac{1}{2}} - 1 \right] \\ \text{回忆展式} \, (1+x)^p &= 1 + px + \frac{p(p-1)}{2}x^2 + O(x^3), \ |x| < 1. \ \text{因此} \\ \left(1 + \frac{1}{k}\right)^{\frac{1}{2}} &= 1 + \frac{1}{2}\frac{1}{k} + \frac{1}{2}\frac{1}{2}\Big(\frac{1}{2} - 1\Big)\Big(\frac{1}{k}\Big)^2 + O\Big(\frac{1}{k^3}\Big) \\ &= 1 + \frac{1}{2k} - \frac{1}{9k^2} + O\Big(\frac{1}{k^3}\Big), \end{split}$$

例子续三

$$\begin{split} \left(1+\frac{2}{k}\right)^{\frac{1}{2}} &= 1+\frac{1}{2}\frac{2}{k}+\frac{1}{2}\frac{1}{2}\Big(\frac{1}{2}-1\Big)\Big(\frac{2}{k}\Big)^2 + O\Big(\frac{1}{k^3}\Big) \\ &= 1+\frac{1}{k}-\frac{1}{2k^2}+O\Big(\frac{1}{k^3}\Big). \end{split}$$

由此得

$$\begin{split} u_k &= \sqrt{k} \Bigg[2 \Big(1 + \frac{1}{k} \Big)^{\frac{1}{2}} - \Big(1 + \frac{2}{k} \Big)^{\frac{1}{2}} - 1 \Bigg] \\ &= \sqrt{k} \Bigg[2 \Big(1 + \frac{1}{2k} - \frac{1}{8k^2} \Big) - \Big(1 + \frac{1}{k} - \frac{1}{2k^2} \Big) - 1 + O\Big(\frac{1}{k^3} \Big) \Bigg] \end{split}$$

例子续四

$$= \sqrt{k} \Bigg[\frac{1}{4k^2} + O\Big(\frac{1}{k^3}\Big) \Bigg] = \frac{1}{4k^{\frac{3}{2}}} + O\Big(\frac{1}{k^{\frac{5}{2}}}\Big).$$

若取 $v_k = \frac{1}{k^3}$, 则级数 $\sum v_k$ 收敛, 且

$$\frac{u_k}{v_k} = \frac{1}{4} + O\Big(\frac{1}{k}\Big) \to \frac{1}{4}, \quad k \to +\infty.$$

由比较判别法的极限形式可知, 级数 $\sum u_k$ 收敛. 解答完毕.

注: 相比较而言, 第一种解法要好得多. 但能做这种分解的级数属个别情形.

第二种分析方法虽然由点麻烦, 但具有普遍意义.

D'Alembert 比值判别法(ratio tests)

$\mathsf{Theorem}$

定理: 设∑un 为正项级数. 若极限

$$\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}$$

存在, 记作 ρ (允许 $\rho = +\infty$), 则

- 1) 若 $0 \le \rho < 1$, 则级数收敛;
- 2) 若 $\rho > 1$, 则级数发散.

 \underline{i} : 当 $\rho=1$ 时, 级数收敛和发散都可能. 例如对级数 $\sum_{n=1}^{\infty}$ 和级数 $\sum_{n=1}^{\infty}$ 而言, 均有极限 $\rho=1$. 它们一个收敛, 一个发散.

例一

例一: 考虑如下级数的收敛性

$$\sum_{n=1}^{+\infty} \frac{n!}{3^n}$$

解: 记级数的一般项为 un,则

$$\frac{u_{n+1}}{u_n} = \frac{\frac{(n+1)!}{3^{n+1}}}{\frac{n!}{3^n}} = \frac{n+1}{3} \to +\infty.$$

故根据定理知级数发散. 解答完毕.

例二

例二: 考虑如下级数的收敛性

$$\sum_{n=1}^{+\infty} \frac{n!}{n^n}. \qquad (*)$$

解: 记级数的一般项为 un,则

$$\frac{u_{n+1}}{u_n} = \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \left(\frac{n}{n+1}\right)^n = \frac{1}{\left(1+\frac{1}{n}\right)^n} \to \frac{1}{e} < 1.$$

故由比值判别法知级数(*) 收敛. 解答完毕.

定理证明

 \underline{u} : 情形 ρ < 1. 取 $\mathbf{r} \in (\rho, 1)$. 由于 $\frac{\mathbf{u}_{n+1}}{\mathbf{u}_n} \to \rho$ < \mathbf{r} , 故存在正整数 \mathbf{N} , 使得

$$\frac{u_{n+1}}{u_n} < r, \quad \forall n \geq N.$$

于是 $u_{n+1} < ru_n < r^2u_{n-1} < \cdots < r^{n-N+1}u_N, \, \forall n \geq N.$ 由于 $r \in (0,1)$,故级数

$$\sum_{n=N}^{+\infty} r^{n-N+1}u_N = u_N r^{1-N} \sum_{n=N}^{+\infty} r^n$$

收敛. 于是级数 $\sum_{n=N}^{+\infty} u_n$ 收敛, 从而级数 $\sum_{n=1}^{+\infty} u_n$ 收敛.

证明续

情形
$$\rho > 1$$
. 由于 $\frac{u_{n+1}}{u_n} \to \rho$, 故存在正整数 N, 使得 $\frac{u_{n+1}}{u_n} > 1$, $\forall n \geq N$. 于是 $u_{n+1} > u_n > \cdots > u_N > 0$, $\forall n \geq N$. 这表明 $u_n \not\to 0$. 因此级数 $\sum u_n$ 不收敛. 证毕.

比值判别法的加强版

Theorem

定理: 设∑u_n 为正项级数.

- 1) 若 $\overline{\lim}_{n \to +\infty} \frac{u_{n+1}}{u_n} < 1$, 则级数收敛;
- 2) 若 $\underline{\lim}_{n\to+\infty} \frac{u_{n+1}}{u_n} > 1$, 则级数发散.

证明大意: 只证1). 2) 的证明类似. 记 $q=\overline{\lim}_{n\to +\infty}\frac{u_{n+1}}{u_n}$. 当 q<1 时,取 $q_1\in (q,1)$,则存在正整数 N,使得 $\frac{u_{n+1}}{u_n}< q_1$, $\forall n\geq N$. 之后的证明同比值判别法情形 $\rho<1$ 的证明. 证 毕.

Cauchy 根值判别法(root tests)

$\mathsf{Theorem}$

定理: 设∑un 为非负级数. 记

$$\rho = \overline{\lim}_{n \to +\infty} \sqrt[n]{u_n}.$$
 (允许 $\rho = +\infty$).

- 1) 若 ρ <1, 则级数收敛.
- 2) 若 $\rho > 1$, 则级数发散.

注意根值判别法结论(2)与比值判别法加强版的结论(2)的区别:

后者: 若 $\underline{\lim}_{n\to+\infty} \frac{u_{n+1}}{u_n} > 1$, 则正项级数 $\sum u_k$ 发散;

前者: 若 $\overline{\lim}_{n\to+\infty} \sqrt[n]{u_n} > 1$, 则正项级数 $\sum u_k$ 发散.

Example

例一: 考虑如下级数的收敛性

$$\sum_{n=1}^{+\infty} \frac{n^2}{3^n}.$$

解: 记级数的一般项为 un, 则

$$\sqrt[n]{u_n} = \sqrt[n]{rac{n^2}{3^n}} = rac{1}{3}\sqrt[n]{n^2}
ightarrow rac{1}{3} < 1.$$

由根值判别法知级数收敛. 解答完毕.

注:上述级数也可以利用比值判别法判断其收敛性。

例二

Example

例二: 讨论级数 $\sum_{n>1} \frac{1}{2^n} (1+\frac{1}{n})^{n^2}$ 的收敛性.

解: 记级数的一般项为un,则

$$\sqrt[n]{u_n} = \left(\frac{1}{2^n} \left[1 + \frac{1}{n}\right]^{n^2}\right)^{\frac{1}{n}} = \frac{1}{2} \left(1 + \frac{1}{n}\right)^n \to \frac{e}{2} > 1.$$

故由 Cauchy 根值判别法知级数 $\sum_{n>1} u_n$ 发散. 解答完毕.

定理证明

 \underline{u} : 情形一. $\rho = \overline{\lim}_{n \to +\infty} \sqrt[n]{u_n} < 1$. 取 $\varepsilon > 0$ 充分小,使得 $\rho + \varepsilon < 1$. 由上极限性质知,存在 N,使得 $\sqrt[n]{u_n} < (\rho + \varepsilon)$, $\forall n \geq N$,即 $u_n < (\rho + \varepsilon)^n$, $\forall n \geq N$. 由于 $\rho + \varepsilon < 1$,故非负级数 $\sum_{k \geq N} u_k$ 收敛.于是原级数 $\sum_{u_k} u_k$ 收敛.

情形二. $\rho > 1$. 由上极限性质知存在收敛子列 $\sqrt[R]{u_{n_k}} \to \rho > 1$. 取 $\varepsilon > 0$ 充分小,使得 $\rho - \varepsilon > 1$. 于是存在正整数 K,使得 $\sqrt[R]{u_{n_k}} > \rho - \varepsilon$, $\forall k \geq K$. 即 $u_{n_k} > (\rho - \varepsilon)^{n_k}$, $\forall k \geq K$. 这说明 级数 $\sum u_n$ 的一般项不趋向于零. 因此级数发散. 证毕.

例子

例:考虑如下级数的收敛性.

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{2^m} + \frac{1}{3^m} + \dots.$$

解:记上述级数的一般项为 un,则

$$u_{2m-1}=\frac{1}{2^m},\quad u_{2m}=\frac{1}{3^m},\quad \forall m\geq 1.$$

于是

$$^{2m}\sqrt[4]{u_{2m-1}} = \left(\frac{1}{2}\right)^{\frac{m}{2m-1}} \to \frac{1}{\sqrt{2}}, \quad m \to +\infty,$$

$$^{2m}\sqrt[4]{u_{2m}} = \left(\frac{1}{3}\right)^{\frac{m}{2m}} = \frac{1}{\sqrt{3}} \to \frac{1}{\sqrt{3}}, \quad m \to +\infty.$$

例子续

这表明序列 {√un} 有两个聚点,故

$$\rho = \overline{\lim}_{n \to +\infty} \sqrt[n]{u_n} = \frac{1}{\sqrt{2}} < 1.$$

根据根值判别法知级数

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{2^m} + \frac{1}{3^m} + \dots.$$

收敛. 解答完毕.

注记

注: 对于级数,

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{2^m} + \frac{1}{3^m} + \dots,$$

比值判别法及其加强版应用无效. 因为

$$\frac{u_{2m}}{u_{2m-1}} = \frac{\frac{1}{3^m}}{\frac{1}{2^m}} = \frac{2^m}{3^m} \to 0,$$

$$\frac{u_{2m+1}}{u_{2m}} = \frac{\frac{1}{2^{m+1}}}{\frac{1}{3^m}} = \frac{1}{2}\frac{3^m}{2^m} \to +\infty,$$

故 $\overline{\lim}_{n \to +\infty} \frac{u_{n+1}}{u_n} = +\infty$, $\underline{\lim}_{n \to +\infty} \frac{u_{n+1}}{u_n} = 0$. 一般说来, 根值判

别法优于比值判别法. 其中原因可由如下定理看出.

根值判别法优于比值判别法的原因

Theorem

<u>定理</u>: 设 $u_n > 0$, $\forall n \geq 1$, 则

$$\underline{\text{lim}}\frac{u_{n+1}}{u_n} \leq \underline{\text{lim}}\sqrt[n]{u_n} \leq \overline{\text{lim}}\sqrt[n]{u_n} \leq \overline{\text{lim}}\frac{u_{n+1}}{u_n}$$

注:由上述不等式可知,凡是能用比值判别法的情形,都能用根值判别法.之前的例子说明反之不然.在这两种判别法都能使用的情形下,比值判别法的计算常常更简单些.

定理证明

 \underline{u} : 由上下极限的定义知中间不等式成立. 第一和第三个不等式的证明类似. 以下只证第三个不等式成立. 记 $\mathbf{q} = \overline{\lim} \frac{u_{n+1}}{u_n}$. 若 $\mathbf{q} = +\infty$, 则不等式当然成立. 设 $\mathbf{q} < +\infty$. 对任给 $\varepsilon > 0$, 存在正整数 N, 使得 $\frac{u_{n+1}}{u_n} < \mathbf{q} + \varepsilon$, $\forall n \geq N$. 于是对任意 $n \geq N$,

$$u_n < u_{n-1}(q+\varepsilon) < u_{n-2}(q+\varepsilon)^2 < \dots < u_N(q+\varepsilon)^{n-N}$$

$$\Rightarrow \quad \sqrt[n]{u_n} < \sqrt[n]{u_N(q+\varepsilon)^{-N}}(q+\varepsilon), \quad \forall n \geq N.$$

故 $\overline{\lim}\sqrt[n]{u_n} \leq (q+\varepsilon)$. 由于 $\varepsilon > 0$ 任意, 故 $\overline{\lim}\sqrt[n]{u_n} \leq q$. 即第三个不等式成立. 证毕.

绝对收敛与条件收敛, 例子

Definition

定义: (i) 级数 $\sum u_k$ 称为绝对收敛, 如果级数 $\sum |u_k|$ 收敛; (ii) 级数 $\sum u_k$ 称为条件收敛, 如果它收敛但不是绝对收敛, 即级数 $\sum u_k$ 收敛, 但 $\sum |u_k|$ 发散.

Example

例: 级数 $\sum \frac{(-1)^k}{k^2}$ 绝对收敛; 级数 $\sum \frac{(-1)^k}{k}$ 条件收敛. (稍后将证明这个级数收敛).

绝对收敛蕴含收敛

Theorem

定理: 若级数 $\sum u_k$ 绝对收敛, 则它收敛.

Proof.

 \underline{u} : 由假设知 $\sum |u_k|$ 收敛, 故 Cauchy 收敛准则表明, 对任意 $\varepsilon > 0$, 存在正整数 N, 使得

$$\sum_{\mathsf{k}=\mathsf{n}+1}^{\mathsf{n}+\mathsf{p}} |\mathsf{u}_\mathsf{k}| < \varepsilon, \quad \forall \mathsf{n} \geq \mathsf{N}, \ \forall \mathsf{p} \geq 1.$$

$$\Rightarrow \quad \left|\sum_{k=n+1}^{n+p} u_k \right| \leq \sum_{k=n+1}^{n+p} |u_k| < \varepsilon, \quad \forall n \geq N, \ \forall p \geq 1.$$

这表明级数 $\sum u_k$ 收敛.

交错级数 (alternative series)

Definition

定义: 级数 $\sum u_k$ 称为交错级数, 如果它的各项非零且正负相间, 即 $u_k u_{k+1} < 0$, $\forall k > 1$.

注: 为方便, 交错级数通常记作

$$\sum_{k=1}^{+\infty} (-1)^{k-1} u_k = u_1 - u_2 + \dots + (-1)^{k-1} u_k + \dots,$$

或
$$\sum_{k=1}^{+\infty} (-1)^k u_k = -u_1 + u_2 - \dots + (-1)^k u_k + \dots,$$

其中 $u_k > 0$, $\forall k \geq 1$.

Leibniz 定理, Leibniz 型级数

Theorem

<u>定理</u>[Leibniz]: 设 $\sum_{k=1}^{+\infty} (-1)^{k-1} b_k$ 为交错级数, 即 $b_k > 0$. 若 b_k 单调下降且 $b_k \rightarrow 0$. 则

- (1) 级数收敛, 且其和 S 满足 $0 \le S \le b_1$;
- (2) 级数的部分和 S_n 与级数和 S 有误差估计 $|S S_n| \le b_{n+1}$, $\forall n > 1$.

Definition

定义:满足上述定理条件的交错级数常称为 Leibniz 型级数.

例子

Example

例:下述级数均为 Leibniz 级数,

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k}, \quad \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{\sqrt{k}}, \quad \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{\ln k}{k}.$$

由 Leibniz 定理知这三个级数均收敛. 显然它们均条件收敛.

定理证明

证: 记 S_n 为交错级数 $\sum_{k=1}^{+\infty} (-1)^{k-1} b_k$ 的前 n 项和, 则

$$S_{2m} = (b_1 - b_2) + (b_3 - b_4) + \dots + (b_{2m-1} - b_{2m}).$$

由假设 $b_k > 0$ 且单调下降, 故 $S_{2m} \ge 0$ 且单调上升. 又

$$S_{2m} = b_1 - (b_2 - b_3) - \dots - (b_{2m-2} - b_{2m-1}) - b_{2m}.$$

由此可见 $0 \le S_{2m} \le b_1$. 因此序列 S_{2m} 单调上升且有上界, 故收敛. 设 $S_{2m} \to S$, 则 $0 \le S \le b_1$. 由假设 $b_k \to 0$ 知 $S_{2m+1} =$ $S_{2m} + b_{2m+1} \to S$. 这表明部分和序列 $\{S_n\}$ 收敛.

证明续

即交错级数 $\sum (-1)^{k-1}b_k$ 收敛, 且其和 S 满足 $0 \le S \le b_1$. 结论(1)得证. 再将结论(1) 应用于级数

$$|S-S_n|=b_{n+1}-b_{n+2}+\cdots$$

立刻得到 $|S - S_n| \le b_{n+1}$. 故结论(2) 得证. 定理得证.

Leibniz 型级数收敛性, 证明图示

广义积分收敛性的 A-D 判别法之回忆

Theorem

定理: 设函数 f(x), g(x) 在 $[a,+\infty)$ 上连续, 则广义积分

$$\int_a^{+\infty}\! f(x)g(x)dx$$

收敛, 如果以下条件之一成立.

- 1) (Abel 判别法) 积分 $\int_a^{+\infty} f(x) dx$ 收敛, 且 g(x) 在 $[a, +\infty)$ 单调有界;
- 2) (Dirichlet 判别法) 积分 $\int_a^b f(x) dx$ 关于 $b \in [a, +\infty)$ 有界, 且 g(x) 在 $[a, +\infty)$ 单调趋向于零.

级数收敛性的 A-D 判别法

Theorem

定理: 级数

$$\sum_{k=1}^{+\infty} u_k v_k$$

收敛, 如果以下条件之一成立.

- 1) (Abel 判别法) 级数 $\sum_{k=1}^{+\infty} u_k$ 收敛, 且序列 $\{v_k\}$ 单调有界;
- 2) (Dirichlet 判别法) 存在 M > 0, 使得 $|\sum_{k=1}^{n} u_k| \leq M$,

 $\forall n \geq 1$, 并且序列 v_k 单调趋向于零.

例一: 证明级数

$$\sum_{k=1}^{+\infty} \frac{\text{sinkx}}{k}, \quad \mathbf{x} \in (0,2\pi),$$

收敛.

 \underline{u} : 利用 D 判别法. 记 $u_k = \operatorname{sinkx}$, $v_k = \frac{1}{k}$, 则序列 $v_k = \frac{1}{k}$ 单调 趋向于零. 记

$$U_n = \sum_{k=1}^n u_k = \sum_{k=1}^n sinkx.$$

对任意 $x \in (0, 2\pi)$,

例一续一

$$\begin{split} 2\text{sin}\frac{x}{2}U_n &= \sum_{k=1}^n 2\text{sinkxsin}\frac{x}{2} \\ &= \sum_{k=1}^n \left[\cos\frac{(2k-1)x}{2} - \cos\frac{(2k+1)x}{2} \right] \\ &= \cos\frac{x}{2} - \cos\frac{(2n+1)x}{2} \\ \Rightarrow \quad |U_n| &= \frac{\left| \cos\frac{x}{2} - \cos\frac{(2n+1)x}{2} \right|}{2|\sin\frac{x}{2}|} \leq \frac{1}{\sin\frac{x}{2}}. \end{split}$$

即级数 $\sum_{k=1}^{+\infty}$ sinkx 的部分和 U_n 关于 n 有界, $x \in (0, 2\pi)$.

例一续二

于是由 Dirichlet 判别法知级数

$$\sum_{\mathsf{k}=1}^{+\infty}\frac{\mathsf{sinkx}}{\mathsf{k}},\quad \mathsf{x}\in(0,2\pi)$$

收敛. 命题得证.

例二

例二: 设序列 $\{a_k\}$ 单调下降趋向于零, 证明对于 $x \neq 2k\pi$, 级数 $\sum_{k=1}^{+\infty} a_k \cos kx$ 收敛.

 \underline{M} : 根据 Dirichlet 判别法, 只要证明部分和 $U_n = \sum_{k=1}^n \operatorname{coskx}$ 关于 n 有界即可. 考虑

$$2sin\frac{x}{2}U_n = \sum_{k=1}^{n} 2sin\frac{x}{2}coskx$$

$$=\sum_{k=1}^n\left[\sin(kx+\frac{x}{2})-\sin(kx-\frac{x}{2})\right]=\sin(nx+\frac{x}{2})-\sin\frac{x}{2}.$$

于是
$$|U_n| \leq \frac{1}{|\sin\frac{x}{2}|}$$
, $\forall n \geq 1$. 命题得证.

例三

例三: 考虑级数

$$\sum_{k=1}^{+\infty} \frac{\cos k}{k} \qquad (*)$$

绝对收敛性.

解: 在例二中的级数

$$\sum_{k=1}^{+\infty} a_k coskx,$$

中, 取 $a_k = \frac{1}{k}$, x = 1 即可知级数 (*) 收敛. 考虑级数 (*) 的绝对收敛性. 由于

$$\frac{|cosk|}{k} \geq \frac{cos^2k}{k},$$

例三续一

现断言级数

$$\sum_{k=1}^{+\infty} \frac{\cos^2 k}{k} \qquad (**)$$

发散(稍后证明). 由此可知级数 $\sum_{k=1}^{+\infty} \frac{|\cos k|}{k}$ 发散. 因此级数 $\sum_{k=1}^{+\infty} \frac{\cos k}{k}$ 条件收敛, 而非绝对收敛. 以下证明上述断言. 反证. 假设断言不成立, 即级数 (**) 收敛. 由于

$$\frac{cos^2k}{k} = \frac{1+cos2k}{2k} \quad \text{ if } \quad \frac{1}{k} = \frac{2cos^2k}{k} - \frac{cos2k}{k},$$

故调和级数可表示为

例三续二

$$\begin{split} \sum_{k=1}^{+\infty} \frac{1}{k} &= \sum_{k=1}^{+\infty} \frac{1}{k} \Big(2 cos^2 k - cos2k \Big) \\ &= 2 \sum_{k=1}^{+\infty} \frac{cos^2 k}{k} - \sum_{k=1}^{+\infty} \frac{cos2k}{k}. \end{split}$$

(注意上述两个级数均收敛: 第一个级数收敛是根据反证假设; 第二个级数收敛是根据例二的结论, 即当序列 a_k 单调下降趋向于零, $\mathbf{L} \mathbf{x} \neq 2\mathbf{k}\pi$ 时, 级数 $\sum_{k\geq 1} a_k \mathbf{coskx}$ 收敛). 由此得到调和级数收敛. 矛盾. 故断言成立. 解答完毕.

例四

例四: 考虑级数

$$\sum_{k=1}^{+\infty} \frac{\cos \frac{1}{k} cosk}{k} \qquad (*)$$

绝对收敛性.

解:由于级数 $\sum_{k=1}^{+\infty} \frac{\cosh}{k}$ 收敛,且序列 $\cos \frac{1}{k}$ 单调有界,故根据 Abel 判别法可知级数(*)收敛.用例三的证明方法,可类似证明 级数

$$\sum_{k=1}^{+\infty} \frac{\cos \frac{1}{k} \cos^2 k}{k}$$

发散,故级数(*)为条件收敛.解答完毕.

Abel 引理

Lemma

引理: 对任意两组数 $\{a_1,\dots,a_n\}$, $\{b_1,\dots,b_n\}$, 成立

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) + A_n b_n,$$

其中 $A_k = a_1 + a_2 + \cdots + a_k$, $k = 1, 2, \cdots$, n. 此外, 当序列 $\{b_1, \dots, b_n\}$ 单调时,

$$\left|\sum_{k=1}^n a_k b_k\right| \leq A(|b_1|+2|b_n|),$$

其中 $A = \max\{|A_1|, |A_2|, \dots, |A_n|\}.$

引理证明

证:记A₀ = 0,则

$$\begin{split} \sum_{k=1}^{n} a_k b_k &= \sum_{k=1}^{n} (A_k - A_{k-1}) b_k \\ &= \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k \\ &= \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n-1} A_k b_{k+1} \\ &= \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) + A_n b_n. \end{split}$$

第一个结论得证.

证明续

当序列 $\{b_1, \dots, b_n\}$ 单调时, 根据第一个结论得

$$\left|\sum_{k=1}^n a_k b_k\right| = \left|\sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) + A_n b_n\right|$$

$$\leq \sum_{k=1}^{n-1} |A_k| |b_k - b_{k+1}| + |A_n| |b_n| \leq A \sum_{k=1}^{n-1} |b_k - b_{k+1}| + A|b_n|$$

$$= A(|b_1 - b_n| + |b_n|) \le A(|b_1| + 2|b_n|).$$

引理得证.

A-D 判别法证明

 \overline{u} : 为应用 Cauchy 收敛准则来证级数 $\sum u_k v_k$ 的收敛性, 考虑

$$\sum_{k=n+1}^{n+p} u_k v_k.$$

1). 证 Abel 判别法. 假设级数 $\sum u_k$ 收敛, 即部分和序列 $\{U_n\}$ 收敛, 这里 $U_n = \sum_{k=1}^n u_k$. 从而 $\{U_n\}$ 是 Cauchy 序列, 即对任意 $\varepsilon > 0$, 存在正整数 N, 使得

$$|U_{n+p}-U_n|<\varepsilon,\quad \forall n\geq N,\quad \forall p\geq 1.$$

此即

$$\left|\sum_{k=n+1}^{n+p} u_k\right| < \varepsilon, \quad \forall n \geq N, \quad \forall p \geq 1.$$

证明续一

应用 Abel 引理于和式 $\sum_{k=n+1}^{n+p} u_k v_k$ 得

$$\left|\sum_{n+1}^{n+p} u_k v_k \right| \leq A(|v_{n+1}|+2|v_{n+p}|),$$

这里 $A = \max\{|u_{n+1}|, |u_{n+2} + u_{n+1}|, \cdots, |u_{n+p} + \cdots + u_{n+1}|\}$ $= \max\{|U_{n+1} - U_n|, |U_{n+2} - U_n|, \cdots, |U_{n+p} - U_n|\} < \varepsilon,$ $\forall n \geq N, \ \forall p \geq 1. \ \ \text{由假设} \ \{v_k\} \ \ \text{单调有界, 即存在} \ M > 0, \ \text{使得}$ $|v_k| < M, \ \forall k > 1. \ \ \text{于是}$

$$\left| \sum_{n+1}^{n+p} u_k v_k \right| \leq 3 M \varepsilon, \quad \forall n \geq N, \quad \forall p \geq 1.$$

Cauchy 收敛准则表明级数∑ukvk 收敛.

证明续二

2). 证 Dirichlet 判别法. 假设存在 M>0, 使得 $|U_n|\leq M$, 其 中 $U_n=\sum_{k=1}^n u_k$, $n\geq 1$. 还假设序列 v_k 单调趋向于零. 由后 一个假设知, 对 $\forall \varepsilon>0$, 存在正整数 N, 使得 $|v_n|<\varepsilon$, $\forall n\geq N$. 应用 Abel 引理于和式 $\sum_{k=n+1}^{n+p} u_k v_k$ 得

$$\left| \sum_{n+1}^{n+p} u_k v_k \right| \le A(|v_{n+1}| + 2|v_{n+p}|),$$

证明续三

这里
$$A = max\{|u_{n+1}|, |u_{n+2}+u_{n+1}|, \cdots, |u_{n+p}+\cdots+u_{n+1}|\}$$

$$= max\{|U_{n+1}-U_n|, |U_{n+2}-U_n|, \cdots, |U_{n+p}-U_n|\} < 2M,$$

$$\forall n \geq N, \ \forall p \geq 1. \ \ \mathcal{F}\mathcal{E}$$

$$\left|\sum_{n=1}^{n+p} u_k v_k\right| \leq A(|v_{n+1}|+2|v_{n+p}|) \leq 2M \cdot 3\varepsilon = 6M\varepsilon,$$

这里 $\forall n \geq N$, $\forall p \geq 1$. 由此可见级数 $\sum u_k v_k$ 收敛. 定理得证.

作业

习题5.2(page 245-246): 1(1)(3)(5)(7), 2(1)(3)(5), 3(1)(3)(5)(7), 4, 5, 6, 7, 10.