Experiment Number: S0593

Species/Strain: Mouse/B6C3F1

Route: Gavage, IV

Toxicokinetics Data Summary

Test Compound: 2-Hydroxy-4-methoxybenzophenone

CAS Number: 131-57-7

Date Report Requested: 11/09/2016 Time Report Requested: 13:59:57

Lab: Research Triangle Institute

Male

	Treatment Groups (mg/kg)										
	100 ^{a, #}	100 ^{c, #}	100 b, *	250 a, #	250 b, *	500 ^{a, #}	500 b, *	50 IV ^{a, #}	50 IV b, *		
	Plasma										
C _{max} (mg/L)	0.0799		0.372	0.346	1.43	0.614	3.24	31.7	4.47		
T _{max} (minute)	15		30	15	30	60	30	5	5		
Alpha (min^-1)		0.161 ± 0.018									
Beta (min^-1)	0.0028	0.00874 ± 0.0026		0.0045		0.0044		0.0042			
t _{1/2(Beta)} (minute)	248			154		158		166			
k ₀₁ (min^-1)		0.0809 ± 0.038									
k ₁₀ (min^-1)		0.112 ± 0.013									
k ₁₂ (min^-1)		0.0454 ± 0.0095									
k ₂₁ (min^-1)		0.0126 ± 0.0038									
CI (L/min/kg)								0.0736			
CI _{1(F)} (L/min/kg)	6.13			8.96		6.72					
V ₁ (L/kg)		0.72 ± 0.096						17.6			
V _{1(F)} (L/kg)	2189			1996		1532					
MRT (minute)	352			183		182		38.2			
AUC _{0-t} (mg*min/L)			60.8		151		349		200		
AUC _{inf} (mg*min/L)	15.3			30.1		76.5		647			
F (fraction)	0.0120			0.00822		0.0110					

Experiment Number: S0593

Species/Strain: Mouse/B6C3F1

Route: Gavage, IV

Toxicokinetics Data Summary

Test Compound: 2-Hydroxy-4-methoxybenzophenone

CAS Number: 131-57-7

Date Report Requested: 11/09/2016 Time Report Requested: 13:59:57

Lab: Research Triangle Institute

Female

	Treatment Groups (mg/kg)										
	100 a, #	100 ^{d, #}	100 b, *	250 ^{a, #}	250 b, *	500 ^{a, #}	500 b,*	50 IV a, #	50 IV b, *		
	Plasma										
C _{max} (mg/L)	0.112		0.433	0.757	2.04	5.30	3.82	19.0	3.07		
T _{max} (minute)	15		15	30	10	120	15	5	5		
Alpha (min^-1)		0.135 ± 0.016									
Beta (min^-1)	0.0051	0.00740 ± 0.0017		0.0088		0.0055		0.0042			
t _{1/2(Beta)} (minute)	137			78.5		126		164			
k ₀₁ (min^-1)		0.0315 ± 0.016									
k ₁₀ (min^-1)		0.0756 ± 0.0089									
k ₁₂ (min^-1)		0.0533 ± 0.0093									
k ₂₁ (min^-1)		0.0132 ± 0.0030									
CI (L/min/kg)								0.108			
CI _{1(F)} (L/min/kg)	7.59			4.97		0.774					
V ₁ (L/kg)		1.38 ± 0.17						25.4			
V _{1(F)} (L/kg)	1502			563		140					
MRT (minute)	296			123		142		59.8			
AUC _{0-t} (mg*min/L)			24.1		91.7		275		84.3		
AUC _{inf} (mg*min/L)	12.4			54.7		650		434			
F (fraction)	0.0142			0.0216		0.139					

Experiment Number: S0593 Toxicokinetics Data Summary

Route: Gavage, IV

Test Compound: 2-Hydroxy-4-methoxybenzophenone Species/Strain: Mouse/B6C3F1 **CAS Number:** 131-57-7

Date Report Requested: 11/09/2016 Time Report Requested: 13:59:57

Lab: Research Triangle Institute

LEGEND

Data are displayed as mean ± SEM

MODELING METHOD & BEST FIT MODEL

^a WinNonlin (Models 200 and 201), Version 1.0 (Scientific Consulting Inc., 1995); Noncompartmental modeling

ANALYTE

[#]2-Hydroxy-4-methoxybenzophenone

* 2.4-Dihvdroxybenzophenone

TK PARAMETERS

C_{max} = Observed or Predicted Maximum plasma (or tissue) concentration

 T_{max} = Time at which C_{max} predicted or observed occurs

Alpha = Hybrid rate constant of the alpha phase

Beta = Hybrid rate constant of the beta phase

 $t_{\frac{1}{2}(beta)}$ = Half-life for the beta phase

 k_{01} = Absorption rate constant, k_a

 k_{10} = Elimination rate constant from the central compartment also k_e or k_{elim}

 k_{12} = Distribution rate constant from first to second compartment etc.

 k_{21} = Distribution rate constant from second to first compartment etc.

CI = Clearance including total clearance

 $Cl_{_{1(F)}}$ = Apparent clearance of the central compartment, also $Cl_{_{(F)}}$ for gavage groups in non-compartmental model

 V_1 = volume of distribution of the central compartment

V_{1(F)} = Volume of distribution of the central compartment, includes V_d and V_{volume} of distribution, V_z apparent volume of distribution NCA, V_{ann} apparent volume of distribution for intravenous studies

MRT = Mean residence time

 $AUC_{0-t} = Area under the plasma concentration versus time curve, AUC, from time t_i (initial) to t_f (final), <math>AUC_{last}$

AUC inf = Area under the plasma concentration versus time curve, AUC, extrapolated to time equals infinity

F = Bioavailability, absolute bioavailability

** END OF REPORT **

^b WinNonlin Version 1.0 (Scientific Consulting Inc., 1995); Noncompartmental modeling

^c WinNonlin Version 1.0 (Scientific Consulting Inc., 1995); Best fit is two compartmental which simultaneously solves iv and oral data sets. Analyzed using compartmental modeling techniques with established models or models written to simultaneously solve iv (Study AC) and oral data sets (Study AE) using 1/YHAT weighting where YHAT is the predicted plasma HMBP concentration at a given time.

^d WinNonlin Version 1.0 (Scientific Consulting Inc., 1995); Best fit is two compartmental which simultaneously solves iv and oral data sets. Analyzed using compartmental modeling techniques with established models or models written to simultaneously solve iv (Study AD) and oral data sets (Study AF) using 1/YHAT weighting where YHAT is the predicted plasma HMBP concentration at a given time.