Filter Summary Report: TIA,simple,Z3,ZL

Generated by MacAnalog-Symbolix

December 7, 2024

Contents

1 Examined H(z) for TIA simple Z3 ZL: $\frac{Z_3Z_Lg_m}{Z_3g_m+Z_Lg_m}$

 $H(z) = \frac{Z_3 Z_L g_m}{Z_3 g_m + Z_L g_m}$

- 2 HP
- 3 BP
- 3.1 BP-1 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

Parameters:

Q:
$$C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L Z_3}$
K-LP: 0
K-HP: 0
K-BP: Z_3
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

Parameters:

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L + Z_3}{C_L R_L Z_3}$$
 K-LP: 0
 K-HP: 0
 K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
 Qz: 0
 Wz: None

3.3 BP-3 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

Q:
$$C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L Z_3}$
K-LP: 0
K-HP: 0
K-BP: Z_3
Qz: 0
Wz: None

$$H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$$

$$H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3}$$

$$H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$$

3.4 BP-4
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L + Z_3}{C_L R_L Z_3}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
 Qz: 0 Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

Parameters:

Q:
$$C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L Z_3}$
K-LP: 0
K-HP: 0
K-BP: Z_3
Qz: 0
Wz: None

3.6 BP-6
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_L + Z_3}{C_L R_L Z_3}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

Q:
$$C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$

$$H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3}$$

$$H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$$

$$H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3}$$

$$H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$$

bandwidth:
$$\frac{1}{C_L Z_3}$$
 K-LP: 0
K-HP: 0
K-BP: Z_3 Qz: 0
Wz: None

3.8 BP-8
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_L + Z_3}{C_L R_L Z_3}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
Qz: 0
Wz: None

3.9 BP-9
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

Parameters:

Q:
$$C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L Z_3}$
K-LP: 0
K-HP: 0
K-BP: Z_3
Qz: 0
Wz: None

3.10 BP-10
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L + Z_3}{C_L R_L Z_3}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
 Qz: 0 Wz: None

$$H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3}$$

$$H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$$

$$H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3} \label{eq:hamiltonian}$$

3.11 BP-11
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

 $H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$

Parameters:

Q:
$$C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L Z_3}$
K-LP: 0
K-HP: 0
K-BP: Z_3
Qz: 0
Wz: None

3.12 BP-12
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_L + Z_3}{C_L R_L Z_3}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
Qz: 0
Wz: None

3.13 BP-13
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

Parameters:

Q:
$$C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L Z_3}$
K-LP: 0
K-HP: 0
K-BP: Z_3
Qz: 0
Wz: None

3.14 BP-14
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$

$$H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3}$$

$$H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$$

$$H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3}$$

bandwidth: $\frac{R_L+Z_3}{C_LR_LZ_3}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_LZ_3}{R_L+Z_3}$ Qz: 0

3.15 BP-15 $Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

 $H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$

Parameters:

Wz: None

Q: $C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{1}{C_L Z_3}$ K-LP: 0 K-HP: 0 K-BP: Z_3 Qz: 0 Wz: None

3.16 BP-16 $Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

 $H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3}$

Parameters:

Q: $\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{R_L + Z_3}{C_L R_L Z_3}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_L Z_3}{R_L + Z_3}$ Qz: 0 Wz: None

3.17 BP-17 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$

 $H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3}$

Parameters:

Q: $C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{1}{C_L Z_3}$ K-LP: 0 K-HP: 0 K-BP: Z_3 Qz: 0 Wz: None

3.18 BP-18
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

 $H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3}$

Parameters:

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_L + Z_3}{C_L R_L Z_3}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
Qz: 0
Wz: None

3.19 BP-19 $Z(s) = \left(\infty, \infty, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$

 $H(s) = \frac{L_L Z_3 s}{C_L L_L Z_3 s^2 + L_L s + Z_3} \label{eq:hamiltonian}$

Parameters:

Q:
$$C_L Z_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L Z_3}$
K-LP: 0
K-HP: 0
K-BP: Z_3
Qz: 0
Wz: None

3.20 BP-20 $Z(s) = \left(\infty, \infty, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty, \frac{L_LR_Ls}{C_LL_LR_Ls^2+L_Ls+R_L}\right)$

 $H(s) = \frac{L_L R_L Z_3 s}{C_L L_L R_L Z_3 s^2 + L_L R_L s + L_L Z_3 s + R_L Z_3} \label{eq:hamiltonian}$

Parameters:

Q:
$$\frac{C_L R_L Z_3 \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_L + Z_3}{C_L R_L Z_3}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
Qz: 0
Wz: None

4 LP

5 BS

5.1 BS-1
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$Q: \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{Z_3}$$

$$wo: \sqrt{\frac{1}{C_L L_L}}$$
bandwidth: $\frac{Z_3}{L_L}$

$$K-LP: Z_3$$

$$K-HP: Z_3$$

$$K-BP: 0$$

$$Qz: None$$

$$Wz: \sqrt{\frac{1}{C_L L_L}}$$

5.2 BS-2
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

Q:
$$\frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}(R_{L}+Z_{3})}{R_{L}Z_{3}}$$
 wo:
$$\sqrt{\frac{1}{C_{L}L_{L}}}$$
 bandwidth:
$$\frac{R_{L}Z_{3}}{L_{L}(R_{L}+Z_{3})}$$
 K-LP:
$$\frac{R_{L}Z_{3}}{R_{L}+Z_{3}}$$
 K-HP:
$$\frac{R_{L}Z_{3}}{R_{L}+Z_{3}}$$
 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_{L}L_{L}}}$$

5.3 BS-3
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{Z_3}{L_L}$$
 K-LP: Z_3 K-HP: Z_3 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

5.4 BS-4
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$$

$$H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$$

$$H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$$

$$H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)}{R_L Z_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_L Z_3}{L_L (R_L + Z_3)} \\ \text{K-LP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-HP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{array}$$

5.5 BS-5
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$\begin{aligned} &\text{Q: } \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{Z_3}\\ &\text{wo: } \sqrt{\frac{1}{C_LL_L}}\\ &\text{bandwidth: } \frac{Z_3}{L_L}\\ &\text{K-LP: } Z_3\\ &\text{K-HP: } Z_3\\ &\text{K-BP: } 0\\ &\text{Qz: None}\\ &\text{Wz: } \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

5.6 BS-6
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

$$Q: \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)}{R_L Z_3}$$
 wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{R_L Z_3}{L_L (R_L + Z_3)}$ K-LP: $\frac{R_L Z_3}{R_L + Z_3}$ K-HP: $\frac{R_L Z_3}{R_L + Z_3}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_L L_L}}$

5.7 BS-7
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{Z_3}{L_L}$$
 K-LP: Z_3 K-HP: Z_3

$$H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$$

$$H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$$

$$H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$$

Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

5.8 BS-8
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)}{R_L Z_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_L Z_3}{L_L (R_L + Z_3)} \\ \text{K-LP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-HP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{array}$$

5.9 BS-9
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

Parameters:

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{Z_3}{L_L}$$
 K-LP: Z_3 K-HP: Z_3 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.10 BS-10
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)}{R_L Z_3} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L Z_3}{L_L (R_L + Z_3)} \\ &\text{K-LP: } \frac{R_L Z_3}{R_L + Z_3} \\ &\text{K-HP: } \frac{R_L Z_3}{R_L + Z_3} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

$$H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$$

$$H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$$

$$H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$$

5.11 BS-11
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

 $H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$

Parameters:

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{Z_3}{L_L}$$
 K-LP: Z_3 K-HP: Z_3 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.12 BS-12
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{R_L(C_LL_Ls^2+1)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

 $H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)}{R_L Z_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_L Z_3}{L_L (R_L + Z_3)} \\ \text{K-LP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-HP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{array}$$

5.13 BS-13
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

 $H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$

Parameters:

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{Z_3}$$
wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
bandwidth:
$$\frac{Z_3}{L_L}$$
K-LP:
$$Z_3$$
K-HP:
$$Z_3$$
K-BP:
$$0$$
Qz: None
$$Wz: \sqrt{\frac{1}{C_LL_L}}$$

5.14 BS-14
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

 $H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)}{R_L Z_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_L Z_3}{L_L (R_L + Z_3)} \\ \text{K-LP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-HP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{array}$$

5.15 BS-15
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$

 $H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$

Parameters:

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{Z_3}$$
wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
bandwidth:
$$\frac{Z_3}{L_L}$$
K-LP:
$$Z_3$$
K-HP:
$$Z_3$$
K-BP:
$$0$$
Qz: None
$$Wz: \sqrt{\frac{1}{C_LL_L}}$$

5.16 BS-16
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_{3s}}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)}{R_L Z_3} \\ &\text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth:} \ \frac{R_L Z_3}{L_L (R_L + Z_3)} \\ &\text{K-LP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ &\text{K-HP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ &\text{K-BP:} \ 0 \\ &\text{Qz:} \ \text{None} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.17 BS-17
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$H(s) = \frac{Z_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L Z_3 s + 1}$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{Z_3}$$
wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
bandwidth:
$$\frac{Z_3}{L_L}$$
K-LP: Z_3 K-HP: Z_3 K-BP: 0

Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

5.18 BS-18
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{R_L(C_LL_Ls^2+1)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

$H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)}{R_L Z_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_L Z_3}{L_L (R_L + Z_3)} \\ \text{K-LP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-HP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{array}$$

5.19 BS-19
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$H(s) = \frac{Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L s^2 + C_L Z_3 s + 1}$

Parameters:

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{Z_3}{L_L}$$
 K-LP: Z_3 K-HP: Z_3 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.20 BS-20
$$Z(s) = \left(\infty, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty, \frac{R_L(C_LL_Ls^2+1)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

$H(s) = \frac{R_L Z_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + C_L R_L Z_3 s + R_L + Z_3}$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}(R_L + Z_3)}{R_LZ_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ \text{bandwidth:} \ \frac{R_LZ_3}{L_L(R_L + Z_3)} \\ \text{K-LP:} \ \frac{R_LZ_3}{R_L + Z_3} \\ \text{K-HP:} \ \frac{R_LZ_3}{R_L + Z_3} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

6.1 GE-1
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$\begin{aligned} &\text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L+Z_3} \\ &\text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth:} \ \frac{R_L+Z_3}{L_L} \\ &\text{K-LP:} \ Z_3 \\ &\text{K-HP:} \ Z_3 \\ &\text{K-BP:} \ \frac{R_LZ_3}{R_L+Z_3} \\ &\text{Qz:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

6.2 GE-2
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

Parameters:

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_L + Z_3 \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.3 GE-3
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$\begin{aligned} &\text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3} \\ &\text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth:} \ \frac{R_L + Z_3}{L_L} \\ &\text{K-LP:} \ Z_3 \\ &\text{K-HP:} \ Z_3 \\ &\text{K-BP:} \ \frac{R_L Z_3}{R_L + Z_3} \\ &\text{Qz:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

$$H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$$

$$H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$$

$$H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$$

6.4 GE-4
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_L + Z_3 \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.5 GE-5
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_L + Z_3}{L_L}$$
K-LP:
$$Z_3$$
K-HP:
$$Z_3$$
K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
Qz:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

6.6 GE-6
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

$$H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$$

$$H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$$

$$H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$$

6.7 GE-7
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$\begin{aligned} &\text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L+Z_3} \\ &\text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth:} \ \frac{R_L+Z_3}{L_L} \\ &\text{K-LP:} \ Z_3 \\ &\text{K-HP:} \ Z_3 \\ &\text{K-BP:} \ \frac{R_LZ_3}{R_L+Z_3} \\ &\text{Qz:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

6.8 GE-8 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

Parameters:

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_L + Z_3 \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.9 GE-9 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

Parameters:

$$Q: \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{R_L + Z_3}{L_L}$
K-LP: Z_3
K-HP: Z_3
K-BP: $\frac{R_L Z_3}{R_L + Z_3}$
Qz: $\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

 $H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$

$$H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$$

$$H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$$

6.10 GE-10
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_L + Z_3 \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.11 GE-11
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

Parameters:

$$Q: \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_L + Z_3}{L_L}$$
K-LP:
$$Z_3$$
K-HP:
$$Z_3$$
K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
Qz:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

6.12 GE-12
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_L + Z_3 \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

$$H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$$

$$H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$$

$$H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$$

6.13 GE-13
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

 $H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$

Parameters:

$$Q: \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{R_L + Z_3}{L_L}$
K-LP: Z_3
K-HP: Z_3
K-BP: $\frac{R_L Z_3}{R_L + Z_3}$
Qz: $\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.14 GE-14 $Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

Parameters:

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_L + Z_3 \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.15 GE-15 $Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

Parameters:

$$Q: \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{R_L + Z_3}{L_L}$
K-LP: Z_3
K-HP: Z_3
K-BP: $\frac{R_L Z_3}{R_L + Z_3}$
Qz: $\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

 $H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$

 $H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$

6.16 GE-16
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

 $H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$

Parameters:

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}}$$
 $(R_L + Z_3)$
wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.17 GE-17 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$

 $H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L + Z_3}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_L + Z_3}{L_L}$$
K-LP:
$$Z_3$$
K-HP:
$$Z_3$$
K-BP:
$$\frac{R_L Z_3}{R_L + Z_3}$$
Qz:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

6.18 GE-18 $Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

 $H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.19 GE-19
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

 $H(s) = \frac{Z_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_L s + C_L Z_3 s + 1}$

Parameters:

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L+Z_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_L+Z_3}{L_L}$$
 K-LP: Z_3 K-HP: Z_3 K-BP:
$$\frac{R_LZ_3}{R_L+Z_3}$$
 Qz:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}$$
 Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

6.20 GE-20
$$Z(s) = \left(\infty, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

 $H(s) = \frac{Z_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_L s^2 + C_L L_L Z_3 s^2 + L_L s + R_L + Z_3}$

Parameters:

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} (R_L + Z_3)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_L + Z_3)}$
K-LP: $\frac{R_L Z_3}{R_L + Z_3}$
K-HP: $\frac{R_L Z_3}{R_L + Z_3}$
K-BP: Z_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

7 AP

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, R_3, \infty, \infty, R_L)$

$$H(s) = \frac{R_L Z_3}{R_L + Z_3}$$

20

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3}{C_L Z_3 s + 1}$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

 $H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L\right)$

 $H(s) = \frac{R_L Z_3}{R_L + Z_3}$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3}{C_L Z_3 s + 1}$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

 $H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$

10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L\right)$

 $H(s) = \frac{R_L Z_3}{R_L + Z_3}$

10.10 INVALID-ORDER-10 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3}{C_L Z_3 s + 1}$

10.11 INVALID-ORDER-11 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

 $H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$

10.12 INVALID-ORDER-12 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$

10.13 INVALID-ORDER-13 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$

 $H(s) = \frac{R_L Z_3}{R_L + Z_3}$

10.14 INVALID-ORDER-14 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3}{C_L Z_3 s + 1}$

10.15 INVALID-ORDER-15 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

 $H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$

10.16 INVALID-ORDER-16 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$

10.17 INVALID-ORDER-17 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$

 $H(s) = \frac{R_L Z_3}{R_L + Z_3}$

10.18 INVALID-ORDER-18 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3}{C_L Z_3 s + 1}$

10.19 INVALID-ORDER-19 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

 $H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$

10.20 INVALID-ORDER-20 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$

10.21 INVALID-ORDER-21 $Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, R_L\right)$

 $H(s) = \frac{R_L Z_3}{R_L + Z_3}$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_3}{C_L Z_3 s + 1}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_3}{R_L + Z_3}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_3}{C_L Z_3 s + 1}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_3}{R_L + Z_3}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_3}{C_L Z_3 s + 1}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\infty, \ \infty, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_3}{R_L + Z_3}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_3}{C_L Z_3 s + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_3}{R_L + Z_3}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_3}{C_L Z_3 s + 1}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L Z_3}{C_L R_L Z_3 s + R_L + Z_3}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_3 (C_L R_L s + 1)}{C_L R_L s + C_L Z_3 s + 1}$$