栈与队列 队列接口与实现 邓俊辉 deng@tsinghua.edu.cn

操作与接口

- ❖队列 (queue) 也是受限的序列
- ❖只能在队尾插入(查询):
 - enqueue() / rear()
- ❖ 只能在队头删除(查询):
 - dequeue() / front()
- ❖ 先进先出 (FIFO)
 - 后进后出(LILO)
- ❖扩展接口:getMax()...

实例

操作	输出	队列(右侧为队头)						
Queue()								
empty()	true		_					
enqueue(5)		5						
enqueue(3)		3	5					
dequeue()	5	3						
enqueue(7)		7	3		_			
enqueue(3)		3	7	3				
front()	3	3	7	3				
empty()	false	3	7	3				

操作	输出	队列(右侧为队头)								
enqueue(11)		11	3	7	3					
size()	4	11	3	7	3					
enqueue(6)		6	11	3	7	3				
empty()	false	6	11	3	7	3				
enqueue(7)		7	6	11	3	7	3			
dequeue()	3	7	6	11	3	7				
dequeue()	7	7	6	11	3					
front()	3	7	6	11	3					
size()	4	7	6	11	3					

实现

- ❖ 队列既然属于序列的特例,故亦可直接基于向量或列表派生
- template <typename T> class Queue: public List<T> {
 public: //原有接□一概沿用

 void enqueue(T const & e) { insertAsLast(e); } //入队
 T dequeue() { return remove(first()); } //出队
 T & front() { return first()->data; } //队首
 - }; //以列表首/末端为队列头/尾——颠倒过来呢?
- ❖ 确认:如此实现的队列接口,均只需0(1)时间
- ❖ 课后:基于向量派生实现队列模板类,并就其效率做一评估