CS 189/289A Introduction to Machine Learning Fall 2022 Jennifer Listgarten, Jitendra Malik

DIS1

1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a statistical model given observations, by finding the parameters that maximize the likelihood of the observations. Concretely, given observations y_1, y_2, \ldots, y_n distributed according to $p_{\theta}(y_1, y_2, \ldots, y_n)$ (here p_{θ} can be a probability mass function for discrete observations or a density for continuous observations), the likelihood function is defined as $L(\theta) = p_{\theta}(y_1, y_2, \ldots, y_n)$ and the MLE is

$$\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} L(\theta).$$

We often make the assumption that the observations are *independent and identically distributed* or iid, in which case $p_{\theta}(y_1, y_2, ..., y_n) = p_{\theta}(y_1) \cdot p_{\theta}(y_2) \cdot ... \cdot p_{\theta}(y_n)$.

- (a) Your friendly TA recommends maximizing the log-likelihood $\ell(\theta) = \log L(\theta)$ instead of $L(\theta)$. Why does this yield the same solution $\hat{\theta}_{\text{MLE}}$? Why is it easier to solve the optimization problem for $\ell(\theta)$ in the iid case? Given the observations y_1, y_2, \ldots, y_n , write down both $L(\theta)$ and $\ell(\theta)$ for the Gaussian $f_{\theta}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y-\mu)^2}{2\sigma^2}}$ with $\theta = (\mu, \sigma)$.
- (b) The Poisson distribution is $f_{\lambda}(y) = \frac{\lambda^{y}e^{-\lambda}}{y!}$. Let Y_1, Y_2, \dots, Y_n be a set of independent and identically distributed random variables with Poisson distribution with parameter λ . Find the joint distribution of Y_1, Y_2, \dots, Y_n . Find the maximum likelihood estimator of λ as a function of observations y_1, y_2, \dots, y_n .

2 ℓ_1 - and ℓ_2 -Regularization

Consider sample points $X_1, X_2, \dots, X_n \in \mathbb{R}^d$ and associated values $y_1, y_2, \dots, y_n \in \mathbb{R}$, an $n \times d$ design matrix $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^{\mathsf{T}}$ and an n-vector $y = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^{\mathsf{T}}$.

For the sake of simplicity, assume (1) that the sample data have been centered (i.e each feature has mean 0) and (2) that the sample data have been whitened, meaning a linear transformation is applied to the original data matrix so that the resulting features have variance 1 and the features are uncorrelated; i.e., $X^TX = nI$.

For this question, we will not use a fictitious dimension nor a bias term; our linear regression function will output zero for x = 0.

Consider linear least-squares regression with regularization in the ℓ_1 -norm, also known as Lasso. The Lasso cost function is

$$J(w) = |Xw - y|^2 + \lambda ||w||_1$$

where $w \in \mathbb{R}^d$ and $\lambda > 0$ is the regularization parameter. Let $w^* = \arg\min_{w \in \mathbb{R}^d} J(w)$ denote the weights that minimize the cost function.

In the following steps, we will explore the sparsity-promoting property of the ℓ_1 -norm and compare this with the ℓ_2 -norm.

1. We use the notation X_{*i} to denote column i of the design matrix X, which represents the ith feature. Write J(w) in the following form for appropriate functions g and f.

$$J(w) = g(y) + \sum_{i=1}^{d} f(X_{*i}, w_i, y, \lambda)$$

- 2. If $w_i^* > 0$, solve for the optimal value w_i^* . Hint: use your answer in the previous part.
- 3. If $w_i^* < 0$, solve for the optimal value w_i^* .
- 4. Considering parts 2 and 3, what is the condition for w_i^* to be zero?
- 5. Now consider ridge regression, which uses the ℓ_2 regularization term $\lambda |w|^2$. How does this change the function $f(\cdot)$ from part 1? What is the new condition in which $w_i^* = 0$? How does it differ from the condition you obtained in part 4?

3 Probabilistic Interpretation of Lasso

Let's start with the probabilistic interpretation of least squares. Start with labels $y \in \mathbb{R}$, data $\mathbf{x} \in \mathbb{R}^d$, and noise $z \sim \mathcal{N}(0, \sigma^2)$, where $y = \mathbf{w}^T \mathbf{x} + z$. Recall from lecture that we then have

$$P(y|\mathbf{x}, \sigma^2) \sim \mathcal{N}(\mathbf{w}^T\mathbf{x}, \sigma^2)$$

However, maximum likelihood estimates (MLE) can overfit by picking parameters that mirror the training data. To ameliorate this issue, we can assume a Laplace prior on $w_i \sim \text{Laplace}(0, t)$, i.e.

$$P(w_j) = \frac{1}{2t} e^{-|w_j|/t}$$

$$P(\mathbf{w}) = \prod_{j=1}^{D} P(w_j) = (\frac{1}{2t})^D \cdot e^{-\frac{\sum |w_j|}{t}}$$

Here, we will see that this modification results in the Lasso objective function.

Recall that the MLE objective finds the parameters that maximize the likelihood of the data,

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg max}} L(\mathbf{w})$$

$$= \underset{\mathbf{w}}{\operatorname{arg max}} P(Y_1, \dots, Y_n, |\mathbf{w}, \mathbf{X}_1, \dots, \mathbf{X}_n, \sigma^2)$$

$$= \underset{\mathbf{w}}{\operatorname{arg max}} \prod_{i=n}^{n} P(Y_i | \mathbf{X}_i, \mathbf{w}, \sigma^2).$$

When working in a Bayesian framework, we instead focus on the posterior distribution of the parameters conditioned on the data, $P(\mathbf{w}|Y_1,\ldots,Y_n,\mathbf{X_1},\ldots,\mathbf{X_n},\sigma^2)$. To pick a single model, we can choose the **w** that is most likely according to the posterior,

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} P(\mathbf{w}|Y_1, \dots, Y_n, \mathbf{X_1}, \dots, \mathbf{X_n}, \sigma^2)$$

$$= \arg\max_{\mathbf{w}} \frac{P(\mathbf{w}, Y_1, \dots, Y_n | \mathbf{X_1}, \dots, \mathbf{X_n}, \sigma^2)}{P(Y_1, \dots, Y_n | \mathbf{X_1}, \dots, \mathbf{X_n}, \sigma^2)}$$

$$= \arg\max_{\mathbf{w}} \frac{P(Y_1, \dots, Y_n | \mathbf{X_1}, \dots, \mathbf{X_n}, \sigma^2) P(\mathbf{w})}{P(Y_1, \dots, Y_n | \mathbf{X_1}, \dots, \mathbf{X_n}, \sigma^2)}$$

$$= \arg\max_{\mathbf{w}} \frac{L(\mathbf{w}) P(\mathbf{w})}{P(Y_1, \dots, Y_n)}$$

$$= \arg\max_{\mathbf{w}} L(\mathbf{w}) P(\mathbf{w}) \quad \text{since } P(Y_1, \dots, Y_n | \mathbf{X_1}, \dots, \mathbf{X_n}, \sigma^2) \text{ does not depend on } \mathbf{w}.$$

We call \mathbf{w}^* the Maximum a posteriori (MAP) estimate.

(a) Write the log-likelihood for this MAP estimate.

(b) We already have the log-likelihood for MAP. Show that the MAP you derived in the previous part (in this case, Gaussian noise with a Laplace prior) is equivalent to minimizing the following. Additionally, identify the constant λ . Note that $\|\mathbf{w}\|_1 = \sum_{j=1}^{D} |w_j|$.

$$J(\mathbf{w}) = \sum_{i=1}^{n} (Y_i - \mathbf{w}^{\mathsf{T}} \mathbf{X_i})^2 + \lambda ||\mathbf{w}||_1$$