Lecture 2: Describing Data

Sravani Vadlamani

QMB 3200

08/27/2020

Review of Chapter 1

- Levels of Measurement
 - ► Nominal
 - ▶ Ordinal
 - ► Interval
 - Ratio
- ► Types of Variables
 - Numerical
 - Discrete vs Continuous
 - ▶ Categorical
 - Nominal vs Ordinal

Review of Chapter 1

- Population vs Sample
- Sampling Strategies
 - Simple Random Sampling
 - Convenience Sampling
 - Stratified Sampling
 - Cluster Sampling
- Observational Studies vs Experiments
 - Confounding Variables

Data Display

Suggested Reading

► Chapter 2- From the Textbook

Descriptive Statistics

Methods of organizing, summarizing, and presenting data in a convenient and informative way. These methods include:

► Graphical techniques (Pie charts, Histograms, etc.)

▶ Numerical techniques (Mean, Standard deviation, etc.)

Graphical Methods for Describing Quantitative Data

- Dot plots
- Histograms

Example

TABLE 2.2 EPA Mileage Ratings on 100 Cars

36.3	41.0	36.9	37.1	44.9	36.8	30.0	37.2	42.1	36.7
32.7	37.3	41.2	36.6	32.9	36.5	33.2	37.4	37.5	33.6
40.5	36.5	37.6	33.9	40.2	36.4	37.7	37.7	40.0	34.2
36.2	37.9	36.0	37.9	35.9	38.2	38.3	35.7	35.6	35.1
38.5	39.0	35.5	34.8	38.6	39.4	35.3	34.4	38.8	39.7
36.3	36.8	32.5	36.4	40.5	36.6	36.1	38.2	38.4	39.3
41.0	31.8	37.3	33.1	37.0	37.6	37.0	38.7	39.0	35.8
37.0	37.2	40.7	37.4	37.1	37.8	35.9	35.6	36.7	34.5
37.1	40.3	36.7	37.0	33.9	40.1	38.0	35.2	34.8	39.5
39.9	36.9	32.9	33.8	39.8	34.0	36.8	35.0	38.1	36.9

Dot plots

Histograms

Scatter Plots

Examine relation between two variables

X = Total Income

Y = Loan Amount

Scatter Plots

Examine relation between two variables

X = Total Debt

Y = Loan Interest

Numerical Methods for Describing Quantitative Data

The measures are those help to:

- Locate the "center" of the relative frequency distribution
 - (measures of central tendency)
- ► Measure "spread" around the center
 - ► (measures of variation)
- Describe the "relative position" of an observation
 - (measures of relative standing)

Measures of Central Tendency

Mean

	Population	Sample
Size	N	n
Mean	μ	$-\frac{1}{x}$

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

Population Mean

$$\frac{1}{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Sample Mean

Mean

$$\frac{1}{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Mean = 3

$$\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$

Mean = 4

$$\frac{1+2+3+4+10}{5} = \frac{20}{5} = 4$$

Median

In an ordered array, the median is the "middle" number (50% above, 50% below)

If the number of values is odd, the median is the middle number.

If the number of values is even, the median is the average of the two middle numbers.

Mode

► Value that occurs most often

All are Mode

Measures of Variation

- Measures of variation give information on the spread or variability of the data values.
 - Range
 - Standard deviation
 - Variance

Range

Range =
$$x_{Largest} - x_{Smallest}$$

Example:

Range =
$$14 - 1 = 13$$

Disadvantages of the Range

Ignores the way in which data are distributed

Sensitive to outliers

Range =
$$5 - 1 = 4$$

Variance - Standard deviation

- Average of squared deviations of values from the mean
 - ► Sample variance and sample standard deviation

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Example: Sample Standard Deviation

Sample

Data
$$(x_i)$$
: 10 12 14 15 17 18 18 24
$$n = 8 \qquad \text{Mean} = \overline{x} = 16$$

$$S = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{X})^2 + (14 - \overline{X})^2 + \dots + (24 - \overline{X})^2}{n - 1}}$$

$$= \sqrt{\frac{(10 - 16)^{2} + (12 - 16)^{2} + (14 - 16)^{2} + \dots + (24 - 16)^{2}}{8 - 1}}$$

$$=\sqrt{\frac{130}{7}}$$
 = 4.3095 A measure of the "average" scatter around the mean

Comparing Standard Deviations

Data A

Mean = 15.5S = 3.338

Mean = 15.5S = 0.926

Data C

Mean = 15.5S = 4.567

Measuring variation

Example1 - Calculate Variance and Standard Deviation

X_i	\overline{X}	$\left(X_i - \overline{X}\right)$	$\left(X_i - \overline{X}\right)^2$
4			
4			
5			
5			
5			
5			
5			
6			
6			
7			
Sum = 52	Sum = 52	Sum =	Sum =

Example - Calculate Variance and Standard Deviation

X_i	\overline{X}	$\left(X_i - \overline{X}\right)$	$\left(X_i - \overline{X}\right)^2$
4	5.2		
4	5.2		
5	5.2		
5	5.2		
5	5.2		
5	5.2		
5	5.2		
6	5.2		
6	5.2		
7	5.2		
Sum = 52	Sum = 52	Sum =	Sum =

Example - Calculate Variance and Standard Deviation

X_i	\overline{X}	$\left(X_i - \overline{X}\right)$	$\left(X_i - \overline{X}\right)^2$
4	5.2	-1.2	
4	5.2	-1.2	
5	5.2	-0.2	
5	5.2	-0.2	
5	5.2	-0.2	
5	5.2	-0.2	
5	5.2	-0.2	
6	5.2	0.8	
6	5.2	0.8	
7	5.2	1.8	
Sum = 52	Sum = 52	Sum =	Sum =

Example - Calculate Variance and Standard Deviation

X_i	\overline{X}	$\left(X_i - \overline{X}\right)$	$\left(X_i - \overline{X}\right)^2$
4	5.2	-1.2	1.44
4	5.2	-1.2	1.44
5	5.2	-0.2	.04
5	5.2	-0.2	.04
5	5.2	-0.2	.04
5	5.2	-0.2	.04
5	5.2	-0.2	.04
6	5.2	0.8	.64
6	5.2	0.8	.64
7	5.2	1.8	3.24
Sum = 52	Sum = 52	Sum = 0	Sum =7.6

Example Solution

Variance

$$s^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \overline{X})^{2}}{N-1} = \frac{7.6}{9} = .84$$

Standard Deviation

$$s = \sqrt{s^2} = \sqrt{.84} = .92$$

Example2

Data 2,2,3,3,4,5,5,5,6

Calculate mean, median, mode, variance and standard deviation

Example2 - Calculate Mean, Median, Mode, Variance and Standard Deviation

X_i	\overline{X}	$\left(X_i - \overline{X}\right)$	$\left(X_i - \overline{X}\right)^2$
2			
2			
3			
3			
4			
5			
5			
5			
5			
6			
Sum = 40	Sum =	Sum =	Sum =

Example2 - central tendency solution

```
Data 2,2,3,3,4,5,5,5,6
```

Mode = 5 Median = 4.5 Mean = 4

Example2 - Variance and Standard Deviation

X_i	\overline{X}	$\left(X_i - \overline{X}\right)$	$\left(X_i - \overline{X}\right)^2$
2	4	-2	4
2	4	-2	4
3	4	-1	1
3	4	-1	1
4	4	0	0
5	4	1	1
5	4	1	1
5	4	1	1
5	4	1	1
6	4	2	4
Sum = 40	Sum = 40	Sum =0	Sum =18

Example 2 Variability Solution

Variance

$$s^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \overline{X})^{2}}{N-1} = \frac{18}{9} = 2$$

Standard Deviation

$$s = \sqrt{s^2} = \sqrt{2} = 1.41$$

Example

Find the mean, median, mode, range and standard deviation for the following list of values:

13, 18, 13, 14, 13, 16, 14, 21, 13

Mean	
Median	
Mode	
Range	
Standard Deviation	

Population vs Sample

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Describing Distributions

- **Terms**
 - **Symmetric**
 - Same shape on both sides of the center
 - Modality # of peaks
 - ►Unimodal one peak
 - ►Bimodal two peaks
 - ► Rectangular Distribution no peaks

Describing Distributions

- **Terms**
 - Skewness symmetry
 - Negative fewer scores to the left, skew < 0
 - ▶ Positive fewer scores to the right, skew > 0
 - Kurtosis concentration of scores
 - Mesokurtic normal, kurtosis = 0
 - ▶ Platykurtic flatter, kurtosis < 0
 - Leptokurtic more peaked, kurtosis > 0

Symmetricity

Modality

Skewness

Positive Skew

Negative Skew

Shape of a distribution

- Describes how data are distributed
- Measures of shape
 - Symmetric or skewed

Kurtosis

Platykurtic

Leptokurtic

Outliers/Unusual Observations

Are there any unusual observations or potential outliers?

Commonly Observed Shapes

Practice

Which of these variables do you expect to be uniformly distributed?

- a) Weights of adult females
- b) Salaries of a random sample of people from North Carolina
- c) House prices
- d) Birthdays of classmates (day of the month)

Practice

Which of these variables do you expect to be uniformly distributed?

- a) Weights of adult females
- b) Salaries of a random sample of people from North Carolina
- c) House prices
- d) Birthdays of classmates (day of the month)

Measures of Relative Standing

- Quartiles
- ► Interquartile range
- Z score

Quartiles

Quartiles split the <u>ranked</u> data into 4 segments with an equal number of values per segment

25%	25%	25%	25%
1	1	1	
Q1	Q	Q.	3

- The first quartile, Q₁, is the value for which 25% of the observations are smaller and 75% are larger
- $ightharpoonup Q_2$ is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the observations are greater than the third quartile

Quartiles (Example)

Sample Data in Ordered Array: 7 8 11 12 13 16 16 17 18 21 22

$$(n = 11)$$
 $(n+1)/4$

 Q_1 is in the $(11+1)/4 = 3^{rd}$ position of the ranked data, so $Q_1 = 11$

 Q_2 is in the $2(11+1)/4 = 6^{th}$ position of the ranked data, so $Q_2 = \text{median} = 16$

 Q_3 is in the $3(11+1)/4 = 9^{th}$ position of the ranked data, so $Q_3 = 18$

Interquartile range (IQR)

Quartiles Calculation (based on textbook)

- Order the n observations from smallest to largest
- Calculate the product *np*
- n = sample size
- p = 0.25 for 25th percentile
 - = 0.5 for 50th percentile
 - = 0.75 for 75th percentile
- If *np* is not an integer, round it up to the next integer and find the corresponding ordered value
- If *np* is an integer (say k), take the average of the kth and k+1th observations

• Graphical procedure that contains information about the mean, median, interquartile range, and unusual and/or extreme observations.

The Box (or Box Plot) represents the middle 50% of the data.

The Whiskers represent the general max and min of the data.

Whiskers of a box plot can extend up to 1.5 x IQR away from the quartiles.

max upper whisker reach = $Q3 + 1.5 \times IQR$ max lower whisker reach = $Q1 - 1.5 \times IQR$

IQR: 20 - 10 = 10

max upper whisker reach = $20 + 1.5 \times 10 = 35$

max lower whisker reach = $10 - 1.5 \times 10 = -5$

A potential outlier is defined as an observation beyond the maximum reach of the whiskers. It is an observation that appears extreme relative to the rest of the data.

Outliers

- Important to look at outliers
 - Identify extreme skew in the distribution
 - Identify data collection and entry errors
 - Provide greater insights into interesting data features

Create a Box Plot for the following data
0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 9, 9, 10, 18

0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 9, 9, 10, 18

- Median = 4, Q1= 2, Q3 = 6
- \blacktriangleright Lower Fence = Q1 1.5 * (Q3 Q1) = 2 1.5 * 4 = -4
 - Adjacent Value = 0
- Upper Fence = Q3 + 1.5 * (Q3 Q1) = 6 + 1.5 * 4 = 12
 - Adjacent Value = 10

Z-Score

- ► A measure of distance from the mean (for example, a Z-score of 2.0 means that a value is 2.0 standard deviations from the mean).
- ► The difference between a value and the mean, divided by the standard deviation.
- ► A Z-score above 3.0 or below -3.0 is considered as an outlier.

$$Z = \frac{X - \overline{X}}{S}$$

Z-Score Example

If the mean is 15.0 and the standard deviation is 3.0, what is the Z score for the value 18?

$$Z = \frac{X - \overline{X}}{S} = \frac{18 - 15}{3.0} = 1$$

- ▶ The value 18 is 1.0 standard deviations above the mean
- ► (A negative Z-score would mean that a value is less than the mean)

Practice Problems from Textbook

• 2.1-2.10

Descriptive Measures in Excel

Find the mean, median, mode, range and standard deviation for the following list of values:

13, 18, 13, 14, 13, 16, 14, 21, 13

Mean	
Median	
Mode	
Range	
Standard Deviation	

Find the mean, median, mode, range and standard deviation for the following list of values:

13, 18, 13, 14, 13, 16, 14, 21, 13

Mean	15
Median	14
Mode	13
Range	8
Standard Deviation	2.828

Find the mean, median, Q1, Q3, IQR for the following data and represent it on a boxplot

245	333	296	304	276	336	289	234	253	292
366	323	309	284	310	338	297	314	305	330
266	391	315	305	290	300	292	311	272	312
315	355	346	337	303	265	278	276	373	271
308	276	364	390	298	290	308	221	274	343

Find the mean, median, Q1, Q3, IQR for the following data and represent it on a boxplot

245	333	296	304	276	336	289	234	253	292
366	323	309	284	310	338	297	314	305	330
266	391	315	305	290	300	292	311	272	312
315	355	346	337	303	265	278	276	373	271
308	276	364	390	298	290	308	221	274	343

Hand Calculation

Q1 = 278

Q3 = 330

IQR = 52

Excel

Q1 = 279.5

Q3 = 328.25

IQR = 48.75

Mean = 305.58

Median = 304.5

Numerical Methods for Describing Qualitative Data

- Frequency Distribution Table
- Contingency Table

Frequency Distribution Table

Category frequency: number of observations that fall in a given category.

► Category relative frequency: the proportion of the number of observations that fall in a given category.

Frequency Distribution Table - Example

TABLE 2.1 Summary Frequency Table for Cause of Energy-Related Fatal Accidents

Category (Cause)	Frequency (Number of Accidents)	Relative Frequency (Proportion)
Coal mine collapse	7	.156
Dam failure	4	.089
Gas explosion	28	.622
Lightning	1	.022
Nuclear reactor	1	.022
Oil fire	4	.089
Totals	45	1.000

Source: "Safety of Nuclear Power Reactors." Nuclear Issues Briefing Paper 14, November 2004.

Contingency Table

- Summarize two or more qualitative/categorical variables at the same time
- ► Looking at gender and promotions data at a workplace

		Dec		
		promoted	not promoted	Total
Condor	Male	21	3	24
Gender	Female	14	10	24
	Total	35	13	48

Contingency Table

		Dec		
		promoted	not promoted	Total
Condor	Male	21	3	24
Gender	Female	14	10	24
	Total	35	13	48

Gender	Total
Male	24
Female	24

Promotion	Tot al
Promoted	35
Not Promoted	13

Graphical Methods for Describing Qualitative Data

- ▶ Pie Chart
- ► Bar Chart
- Pareto Diagram

Pie Chart

Bar Chart

Pareto Diagram

