Faster and More Accurate DNN Training With Selective Backpropagation

Angela Jiang, Daniel Wong, Giuio Zhou, Dave Andersen, Jeff Dean*, Greg Ganger, Michael Kaminsky[†], Michael A. Kozuch[†], Padmanabhan Pillai[†] **Carnegie Mellon University; * Google AI; [†]Intel Labs**

Overview

Can we speed up DNN training by backpropagating only useful examples?

Motivation

- Labeled datasets are getting larger
- Not enough time/resources to train on whole dataset (e.g., ImageNet)
- Accelerated inference (w/TPUs) => Training bottlenecked by backprop

Goal

- Speed up training by reducing the number of backprops
 - Learn from surprising examples that have more to teach the network

Approach

- Identify useful examples using inference (the output of the forward pass)
 - If example's output is different from target, learn from this example

Training wth Selective-Backprop (SB)

CIFAR10

- Baseline does not filter examples
- SB filters >55% of CIFAR10 examples
- SB reaches target errors with fewer iterations
- SB improves final test error

SVHN (w/ Label Error)

- SB filters > 80% of SVHN examples
- SB reaches target errors with fewer iterations
- SVHN is known to have label error
- SB reaches same final accuracy despite label error

Diving into CIFAR10

Easy Examples

Hard Examples

Cifar 10 Speedup

Backwards is 3X More costly Backwards is 10X More costly Backwards is 10X More costly Backwards is 10X More costly 100 Backwards is 10X More costly

- Relative speedup compared to baseline dependent on:
 - Relative cost of backwards and forwards pass
 - Target error
- SB gives up to 78% speedup (theoretical max is 100%)

Selective-Backprop Benefit Attribution

- SB is equivalent to NoFilter with:
 - Larger batch sizes
 - Downweighting losses based on prob

- Y-axis is confidence in our predicition of correct class
- On test examples during snapshot of training
- SB improves confidence of challenging examples
 - Without sacrificing confidence of easier examples