Processador Dynasty

EDU - 2022007610 MARCUS 2022007001 FILIPE - 2022010099

Descrição do Processador

- Processador RISC;
- Baseado no MIPS;
- Processador de 16bits;

Formatos das Instruções

Instrução do tipo R					
Opcode	rs	rt			
4bits	6bits	6bits			
15-12	11-6	5-0			
Instrução do tipo I					
Opcode	rs	Imediato			
4bits	6bits	6bits			
15-12	11-6	5-0			
Instrução do tipo J					
Opcode	Endereço				
4bits	12bits				
15-12	11-0				

Lista de operações suportadas

Opcode	Sintaxe	Formato	Significado	Exemplo
0000	ADD	R	Soma	add \$s0, \$s1
0001	ADDI		Soma imediata	<i>addi</i> \$s0, 1
0010	SUB	R	Subtração	<i>sub</i> \$s0, \$s1
0011	SUBI		Subtração imediata	<i>sub</i> i \$s0, 3
0100	LW	-	Load	<i>lw</i> \$s0 ram (00)
0101	sw	I	Store	sw \$s0 ram (00)
0110	ш	_	Load imediato	<i>li</i> \$s0 2
0111	BEQ	J	Branch Equal	beq endereço
1000	IF	J	If Equal	<i>lf</i> \$s0 \$s1
1001	JUMP	J	Jump	<i>j</i> endereço (0000)

Datapath do Processador

Datapath do tipo R

Datapath do tipo l

Datapath do tipo J

Teste do ADDI, SUB e SUBI

Primeira instrução

Recebe o valor de 3

CLOCK BO

OPCOD... B 0001

Segunda instrução

0 ps

Value at

ADDRES... B 000000000000011 ALU RE... B 000000000000011

MUX 2 ... B 000000000000011

PC OUT B 0000000000000000

R A OUT B 0000000000000000

R B OUT B 0000000000000000

RAM O... B 0000000000000000

ROM O... B 0001000000000011

RS OUT B 000000

RT OUT B 000011

Terceira instrução

Teste do ADDI, SUB e SUBI

Quarta instrução

Sub S0 S1

Teste do Fibonacci

Teste do Fibonacci

Limitações e dificuldades

- Falta de documentação online e conteúdo disponível;
- IDE Quartus;
- Simulações e testes usando o waveforms;

Conclusão

Este trabalho apresentou o projeto e implementação do processador de 16 bits denominado de Dynasty, que foi uma rica oportunidade para pôr em prática o que nos foi ensinado na disciplina de AOC, e esclarecer diversos pontos que antes eram difíceis de se entender. "Uma das maiores dificuldades encontradas foi justamente a divisão bits".

Referencias

- Stallngs, William. Arquitetura e Organização de computadores. 8° Edição . São Paulo : Pearson Pratice Hall, 2010.
- https://github.com/DilliKel/AOC_Eduardo_Kelvin_UFRR_2022
- https://embarcados.com.br/serie/vhdl-basico/

OBRIGADO PELA ATENÇÃO!!!