21BCE7371 RADHA KRISHNA GARG

ML LAB SVM for Multiclass Classification

DATA

1. Allhyper.csv

2. Allhypo.csv

1	41	F		f			f	f	f	f		1.3	2.5	t	125	1.14	109	f	?	SVHC	negative. 3733
2												4.1			102					other	negative. 1442
3	46	М										0.98			109	0.91	120			other	negative. 2965
4	70											0.16	1.9		175					other	negative. 806
5	70											0.72	1.2			0.87	70			SVI	negative. 2807
6	18											0.03			183	1.3	141			other	negative. 3434
7	59															0.92	78			other	negative. 1595
8	80											2.2	0.6		80	0.7	115			SVI	negative. 1367
9	66											0.6	2.2		123	0.93	132			SVI	negative. 1787
0	68	М										2.4	1.6		83	0.89	93			SVI	negative. 2534
1	84											1.1	2.2		115	0.95	121			SVI	negative. 1485
2												0.03			152	0.99	153			other	negative. 3448
3	71											0.03	3.8		171	1.13				other	negative. 1027
4	59											2.8	1.7		97	0.91	107			SVI	negative. 3331
5	28	М										3.3	1.8		109	0.91	119			SVHC	negative. 2043
6	65														99	1.14	87			other	compensated hypothyroid. 3169
7	42											1.2	1.8		70	0.86	81			other	negative. 2755
8	63											1.5	1.2			0.96	121			SVI	negative. 1010
9	80												1.6		99	0.95	104			SVI	negative. 803

3. Sick.csv

1	41																	1.3		2.5		125		1.14		109			SVHC	negative. 3733
2																		4.1				102							other	negative. 1442
3	46	М																0.98				109		0.91		120			other	negative. 2965
4	70																	0.16		1.9									other	negative. 806
5	70																	0.72		1.2				0.87		70			SVI	negative. 2807
6	18																	0.03				183		1.3		141			other	negative. 3434
7	59																							0.92		78			other	negative. 1595
8	80																	2.2		0.6		80		0.7		115			SVI	sick. 1367
9	66																	0.6		2.2		123		0.93		132			SVI	negative. 1787
10	68	М																2.4		1.6		83		0.89		93			SVI	negative. 2534
11	84																	1.1		2.2				0.95					SVI	negative. 1485
12																		0.03				152		0.99					other	negative. 3448
13	71																	0.03		3.8		171		1.13					other	negative. 1027
14																		2.8		1.7				0.91		107			SVI	negative. 3331
15	28	M																3.3		1.8		109		0.91		119			SVHC	negative. 2043
16																						99		1.14		87			other	negative. 3169
17	42																	1.2		1.8		70		0.86		81			other	negative. 2755
18	63																	1.5		1.2				0.96					SVI	negative. 1010
19	80	F	f	f	f	f	f	f	f	f	f	f	f	f	f	t	t	6	t	1.6	t	99	t	0.95	t	104	f	?	SVI	negative. 803

CODE

```
import warnings
warnings.filterwarnings("ignore")
import <u>pandas</u> as <u>pd</u>
import <u>numpy</u> as <u>np</u>
from <u>sklearn</u>.<u>svm</u> import <u>SVC</u>
from <u>sklearn.preprocessing</u> import label binarize
from sklearn.impute import SimpleImputer
from <u>sklearn.preprocessing</u> import <u>MinMaxScaler</u>
from sklearn.utils.class weight import compute class weight
from sklearn.model selection import GridSearchCV,
train_test_split, cross_val_score
from <u>sklearn.metrics</u> import classification report,
accuracy_score, confusion_matrix
from <u>sklearn.preprocessing</u> import <u>LabelEncoder</u>
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
matplotlib inline
```

```
def parse_row(row):
   row = row.split(".")[0]
    return row
def to_hyperthyroid(row):
   if row != "negative":
       row = "hyperthyroid"
   return row
def to hypothyroid(row):
   if row != "negative":
       row = "hypothyroid"
    return row
def convert category(dataframe, column):
   if column == 'Sex':
        conditionF = dataframe[column] == 'F' # For sex column
       conditionT = dataframe[column] == 'M' # For sex column
    else:
        conditionF = dataframe[column] == 'f'
        conditionT = dataframe[column] == 't'
    dataframe.loc[conditionF, column] = 0
    dataframe.loc[conditionT, column] = 1
```

Data Retrieval

```
"FTI Measured", "FTI", "TBG Measured", "TBG",
"Referral Source", "Category"]
hyper data = <u>pd</u>.read csv("../Datasets/allhyper.csv",
names=columns)
hypo_data = <u>pd</u>.read_csv("../Datasets/allhypo.csv", names=columns)
sick data = <u>pd</u>.read csv("../Datasets/sick.csv", names=columns)
hyper_data['Category'] = hyper_data['Category'] \
                             .apply(parse row) \
                             .apply(to hyperthyroid)
hypo_data['Category'] = hypo_data['Category'] \
                             .apply(parse row) \
                             .apply(to hypothyroid)
sick data['Category'] = sick data['Category'] \
                             .apply(parse row)
# Combined Thyroid Data
thyroid_frames = [hyper_data, hypo_data, sick_data]
thyroid_data = pd.concat(thyroid_frames) \
                 .drop duplicates() \
                 .drop(['Referral Source', 'TBG', 'TBG
Measured'], axis=1)
classes = thyroid_data['Category'].unique()
print("Number of samples:", len(thyroid_data))
thyroid data.head()
```

	Age	Sex	On Thyroxine	Query on Thyroxine	On Antithyroid Medication	Sick	Pregnant	Thyroid Surgery	I131 Treatment	Query Hypothyroid	 TSH	T3 Measured	ТЗ	TT4 Measured	TT4	T4U Measured	T4U
0	41				f	f				f	1.3		2.5		125		1.14
1	23									f	4.1				102		?
2	46	М			f			f		f	0.98				109		0.91
3	70									f	0.16		1.9		175		?
4	70				f	f				f	0.72		1.2		61		0.87
5 rc	5 rows × 27 columns																

Data Cleaning

```
# A quick fix needed
thyroid_data.loc[thyroid_data['Age'] == '455', 'Age'] = '45'
```

```
# Convert '?' to np.nan and convert numeric data to numeric dtype
for col in thyroid_data.columns:
    if col != 'Category':
        thyroid_data.loc[thyroid_data[col] == '?', col] = np.nan
        thyroid_data[col] = pd.to_numeric(thyroid_data[col])
```

	Age	FTI	FTI Measured	Goitre	Hypopituitary	I131 Treatment	Lithium	On Antithyroid Medication	On Thyroxine	Pregnant	T3 Measured	T4U	T4U Measured	TSH	TSH Measured	TT4	Mea
ı	41.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.30	1.0	2.5	1.0	125.0	1.0	
٠	1 23.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.10	1.0	2.0	1.0	102.0	0.0	
1	2 46.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.98	0.0	1.9	1.0	109.0	1.0	
1	3 70.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.16	1.0	1.9	1.0	175.0	0.0	
	4 70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.72	1.0	1.2	1.0	61.0	1.0	
5	5 rows × 27 columns																

Split Data

```
X = thyroid_data.drop('Category', axis=1)
y = thyroid_data['Category']

col_names = X.columns

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.25, stratify=y)

scaler = MinMaxScaler()
X_train = pd.DataFrame(scaler.fit_transform(X_train))
X_test = pd.DataFrame(scaler.transform(X_test))
```

Visualize Data with PCA

```
def plot_pca_data(X, y):

LE = LabelEncoder()
y_encoded = LE.fit_transform(y)

pca = PCA(n_components=2)
pca.fit(X)
pca_X = pca.transform(X)

x_axis = pca_X[:,0]
```


Model Selection

```
cv=cv,n_jobs=-1)
grid_clf.fit(X_data, y_data)
print("The best parameters are: ", grid_clf.best_params_)
return grid_clf.best_params_
```

```
The best parameters are: {'C': 8, 'degree': 5, 'gamma': 'scale', 'kernel': 'poly'}

v SVC

SVC(C=8, class_weight='balanced', degree=5, kernel='poly')
```

Evaluate Parameters

```
def cross_validate(estimator, X_data, y_data, scoring='accuracy',
    cv=3, Z=2):
    classes = y_data.unique()
    # Execute Cross Validation
```

```
scores = cross_val_score(estimator=estimator, X=X_data,
y=y_data, cv=cv, scoring=scoring)

print("Model Scoring Evaluation Results")
   print("The mean score and the confidence interval of the
score estimate are:")
   print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(),
scores.std() * Z))

cross_validate(estimator=svm_clf, X_data=X_train, y_data=y_train,
cv=5)
```

Model Scoring Evaluation Results
The mean score and the confidence interval of the score estimate are:
Accuracy: 0.73 (+/- 0.07)

Predict on Test Set

```
y_true, y_pred = y_test, svm_clf.predict(X_test)

print("Accuracy:",accuracy_score(y_test, y_pred))
print("*"*50)
print()
print()
print("\t\tClassification Report")
print()
print()
print(classification_report(y_true, y_pred))
```

Accuracy: 0.6985111662531017

Classification Report

	precision	recall	f1-score	support
hyperthyroid	0.19	0.42	0.26	19
hypothyroid	0.27	0.51	0.35	55
negative	0.92	0.73	0.81	689
sick	0.23	0.63	0.33	43
accuracy			0.70	806
macro avg	0.40	0.57	0.44	806
weighted avg	0.83	0.70	0.74	806

```
# Confusion Matrix
```

cm = confusion_matrix(y_true, y_pred, labels=classes)

print(cm)

[[500	31	75	83]
[8	8	0	3]
[21	0	28	6]
[12	3	1	27]]