

30-764

# Redes de Computadores I

MSc. Fernando Schubert



- Em 1985 a IEEE iniciou o projeto 802 com o objetivo de estabelecer normas para permitir a intercomunicação entre equipamentos de vários fabricantes.
- É uma maneira de especificar as funções das camadas físicas e de enlace dos principais protocolos LAN
- O IEEE dividiu a camada de enlace de dados em duas subcamadas:
  - Controle de enlace LLC (logical link control) e
  - Controle de acesso ao meio MAC (media access control)
- O IEEE também criou vários padrões de camada física para diferentes protocolos de LAN.





- Padronização de redes locais e metropolitanas
  - Usada em várias tecnologias
- Arquitetura baseada no modelo OSI
  - Subcamada de enlace lógico (LLC)
    - Provê serviços de comunicação de quadro
    - Controle de fluxo
    - Controle de erros

- Arquitetura baseada no modelo OSI (cont.)
  - Subcamada de controle de acesso ao meio (MAC)
    - Controle do acesso a um meio compartilhado
    - Enquadramento
    - Endereçamento
    - Detecção de erros
  - Camada física
    - Provê serviços de transmissão e recepção de bits
    - Interfaces elétricas e mecânicas
    - Características de sincronização
    - Especificação do meio de transmissão

#### SURGIMENTO DO ETHERNET

- Início no PARC da Xerox (1973)
  - Criado por Robert Metcalfe e David Boggs.
  - Necessidade de uma rede local (LAN) eficiente para interconectar computadores.
- Primeiro Documento
  - Metcalfe escreve um memorando descrevendo o conceito de Ethernet em 22 de maio de 1973.
- Conceito Inicial
  - Baseado na tecnologia ALOHAnet.
  - Uso de cabos coaxiais para transmissão de dados.
  - Velocidade inicial de 2.94 Mbps



# SURGIMENTO DO ETHERNET

#### **XEROX PARC**

Palco de muitas inovações na área de computação





#### SURGIMENTO DO ETHERNET

#### **ETHERNET**

Apresentação inicial do conceito em 1975



# ETHERNET: EVOLUÇÃO E PADRONIZAÇÃO

- Ethernet 1.0 (1980)
  - Publicação do padrão Ethernet pela Xerox, Intel e Digital Equipment Corporation (DEC).
  - Introdução do cabo coaxial grosso ("Thicknet").
- IEEE 802.3 (1983)
  - Padronização oficial pelo IEEE como 802.3.
  - Adotado globalmente como um padrão de rede local.
- Desenvolvimentos Subsequentes
  - Introdução de "Thin Ethernet" (1985), utilizando cabos coaxiais mais finos.
  - Evolução para cabos de par trançado e fibra ótica.



#### **ETHERNET**

- O protocolo mais utilizado em LANs cabeadas
- Opera em duas camadas: física e enlace
- Família de protocolos definida nas normas IEEE 802.2 e 802.3
- Suporta taxas de transferência de 10, 100, 1000, 10.000, 40.000, 100.000 e
   400.000 Mbps (400Gbps)
- Na camada de enlace é chamado um protocolo de enlace
- Na camada física é chamado tecnologia de camada física



### **ETHERNET**

- Vários tipos se diferenciam na camada física
  - Tipo de cabo, codificação, uso do CSMA/CD ou de comutação
- Todos os tipos descritos na norma IEEE 802.3
  - Exceto o padrão 10 Gigabit Ethernet (IEEE 802.3ae)





# ETHERNET: EVOLUÇÃO





### ETHERNET: FORMATO DO QUADRO



# ETHERNET: SERVIÇO

- Não orientado à conexão
  - Não há estabelecimento de conexão entre o transmissor e o receptor
- Não confiável
  - Receptor não envia ACKs ou NACKs para o transmissor
  - Fluxo de datagramas passados para a camada de rede pode conter falhas na sequência
    - Falhas são recuperadas se aplicação estiver usando o TCP
    - ii. Caso contrário, a aplicação recebe dados com lacunas



| Descrição                               | Tipo                                                                  |                                                                       |                                                            |                                                                                           |                                                                                     |                                                                                    |
|-----------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                         | 10Base2                                                               | 10Base5                                                               | 10Base-T                                                   | 10Base-FB <sup>b</sup>                                                                    | 10Base-FL <sup>b</sup>                                                              | 10Base-FP <sup>b</sup>                                                             |
| Cabo                                    | Coaxial Fino (RG-58)                                                  | Coaxial Grosso (RG-8)                                                 | UTP Categorias 3, 4 ou<br>5                                | Fibra                                                                                     | Fibra                                                                               | Fibra                                                                              |
| Topologia                               | Barramento                                                            | Barramento                                                            | Estrela                                                    | Ponto-a-ponto                                                                             | Ponto-a-ponto                                                                       | Estrela                                                                            |
| Conectores                              | BNC                                                                   | Transceptores, cabo<br>transceptor, AUI de 15<br>pinos                | RJ-45, painéis, repetidoras                                | Transceptores de fibra ótica, ST                                                          | Transceptores de fibra ótica, ST                                                    | Transceptores de fibra ótica, ST                                                   |
| Comprimento de<br>Segmento Máximo       | 185 metros                                                            | 500 metros                                                            | 100 metros                                                 | 2000 metros                                                                               | 2000 metros                                                                         | 500 metros                                                                         |
| Número máximo<br>de nós por<br>segmento | 30 – mínimo de 0,5<br>entre nós                                       | 100 – espeçados em<br>incrementos de 2,5<br>metros                    | 2                                                          | 2                                                                                         | 2                                                                                   | 33                                                                                 |
| Diâmetro Máximo                         | 925 metros                                                            | 2500 metros                                                           | 500 metros                                                 | 2500 metros                                                                               | 2500 metros                                                                         | 2500 metros                                                                        |
| Outros                                  | Terminação de 50 ohm<br>no final de cada cabo;<br>uma ponta aterrada. | Terminação de 50 ohm<br>no final de cada cabo;<br>uma ponta aterrada. | Cada nó é conectado<br>direta ou indiretamente<br>via hub. | Usada somente para<br>interconectar<br>repetidoras Ethernet;<br>máximo 15<br>repetidoras. | Usado para interconectar estações de trabalho ou repetidoras; máximo 5 repetidoras. | Usado em instalações<br>pequenas como redes<br>locais para grupos de<br>trabalhos. |

Tabela 2: Resumo das especificações IEEE 802.3 e Ethernet de 10Mbps.



- Topologia em barramento compartilhado entre as estações
- Cabo coaxial amarelo conhecido como thick Ethernet com marcações a cada 2.5 mts indicando o ponto de conexão para as estações.
- Todos os nós no mesmo domínio de colisão
- Quadros de fontes diferentes podem colidir
- Operação em half-duplex
- Método de acesso é o CSMA/CD

#### Domínio de Colisão

- Definição: Um domínio de colisão é um segmento de rede onde pacotes de dados podem "colidir" uns com os outros durante a transmissão.
- Impacto da Colisão: Quando dois dispositivos enviam pacotes simultaneamente, ocorrem colisões, causando perda de pacotes e exigindo retransmissão.
- Hubs: Em uma rede baseada em hub, todos os dispositivos conectados compartilham um único domínio de colisão, aumentando a probabilidade de colisões.
- Switches: Switches criam domínios de colisão separados para cada dispositivo conectado, reduzindo colisões e melhorando o desempenho da rede.
- Consideração de Design de Rede: Minimizar domínios de colisão utilizando switches em vez de hubs melhora a eficiência e a confiabilidade da rede.



- Topologia em barramento compartilhado entre as estações
- Cabo coaxial amarelo conhecido como thick Ethernet com marcações a cada 2.5 mts indicando o ponto de conexão para as estações.
- Todos os nós no mesmo domínio de colisão
- Quadros de fontes diferentes podem colidir
- Operação em half-duplex
- Método de acesso é o CSMA/CD

#### Half-Duplex

- Comunicação Bidirecional com Limitações:
  - Half-duplex permite a transmissão de dados em ambas as direções, mas não simultaneamente. Os dispositivos devem se revezar para enviar e receber dados.
- Gerenciamento de Colisões:
  - Em redes Ethernet que utilizam half-duplex, o protocolo CSMA/CD (Carrier Sense Multiple Access with Collision Detection) é empregado para gerenciar e detectar colisões, garantindo que apenas um dispositivo transmita de cada vez para evitar colisões de pacotes de dados.
- Uso Comum:
  - Normalmente usado em redes Ethernet mais antigas e em alguns sistemas de comunicação sem fio onde o full-duplex não é viável, levando a um desempenho potencialmente inferior em comparação com sistemas full-duplex.





Figure 4-13. Architecture of classic Ethernet.

- Quadro Ethernet possui um tamanho mínimo
  - Garantir a detecção de colisão
- Tempo máximo entre o início de transmissão de uma quadro e a recepção do primeiro bit de uma mensagem de jam...
  - É duas vezes o tempo de propagação de uma extremidade a outra do cabo
    - RTT (round-time trip → tempo de ida-e-volta)



**Figure 4-15.** Collision detection can take as long as  $2\tau$ .





- Quadro Ethernet possui um tamanho mínimo
  - Garantir a detecção de colisão
- De acordo com o IEEE 802.3
  - LAN a 10 Mb/s, 2500 m, 2x108 m/s
    - RTT (Round-Trip Time) máximo =  $2 \tau = 50 \mu s 1 bit = 100 ns$
- Então, quadro mínimo =  $50 \mu s/100 \text{ ns} = 500 \text{ bits}$ 
  - IEEE 802.3: ~512 bits ou 64 bytes

- Cálculo do tamanho mínimo do quadro Ethernet
  - Para o 10Base5 10 Mb/s
- Tempo para envio de um bit t bit =  $1/10^7$  = 100 ns
- Velocidade de propagação no meio: vprop = 2 x 10<sup>8</sup> m/s
  - o Cada segmento Ethernet nessa especificação tem no máximo 500 m
  - $\circ$  Logo: Tprop = 2,5  $\mu$  s
- Pela norma, com o uso de repetidores é possível unir 5 segmentos de 500m → 2500 m
  - Cada repetidor introduz um atraso, na época da especificação, de aproximadamente
     3µs

- Logo
  - $\circ$  RTT = 2 \* (2,5 + 3 + 2,5 + 3 + 2,5 + 3 + 2,5 + 3 + 2,5) = 49 us 50  $\mu$  s
    - Valor mais próximo do real é 46,4 μ s
- Para garantir a detecção de colisão o meio deve estar ocupado por pelo menos RTT, logo o tamanho mínimo de quadro é dado por:
  - o tamquadro = RTT/tbit =  $50 \times 10-6 / 100 \times 10-9 = 500$  bits  $\rightarrow 512$  bits = 64 bytes



# ALGORITMO DE BACKOFF EXPONENCIAL BINÁRIO

- Objetivo:
  - Adaptar as tentativas de retransmissão à carga atual estimada
  - Alta carga espera aleatória será mais longa

# ALGORITMO DE BACKOFF EXPONENCIAL BINÁRIO

- No caso da detecção de uma colisão
  - Estação interrompe a transmissão
  - Estação envia um sinal de reforço de colisão (jam)
    - É necessário, pois nem sempre o número de bits do quadro interrompido é suficiente para a detecção de colisão
    - Tamanho igual a 48 bits (Tamanho mínimo RTT = 512 464bits = 48bits)
      - Garante que o jam é recebido antes do fim da transmissão

# ALGORITMO DE BACKOFF EXPONENCIAL BINÁRIO

- No caso da detecção de uma colisão (cont.)
  - Estação retransmite o quadro após um tempo aleatório
    - Tempo é dado por um número aleatório (n) que multiplica o tempo de slot (51,2 μs)
      - Tempo de slot correspondente a 2 τ
        - » Suficiente para 512 bits no Ethernet •
    - n entre 0 e 2 i − 1, onde i é o número de colisões
      - Após 10 colisões
        - » Intervalo aleatório congelado em 1023 slots
      - Após 16 colisões
        - » Quadro é descartado
        - » Falha é reportada para a camada superior
- Ethernet n\u00e3o possui confirma\u00f3\u00f3es nem corre\u00e7\u00e3o de erros (responsabilidade das camadas superiores)



### ETHERNET: CSMA/CD

- 1. Adaptador recebe datagrama da camada de rede e cria um quadro
- 2. Se o adaptador percebe que o canal está ocioso, começa a transmitir o quadro. Se percebe que o canal está ocupado, espera que o canal fique livre e transmite
- Se o adaptador transmitir todo o quadro sem detectar outra transmissão, o adaptador concluiu a operação com o quadro
  - Não houve colisão!
- 4. Se o adaptador detectar outra transmissão enquanto estiver transmitindo, aborta e envia sinal de reforço de colisão (jam) de 48 bits
- 5. Após interromper a transmissão, o adaptador entra em backoff exponencial binário
  - a. Após a m-ésima colisão, o adaptador escolhe um K aleatoriamente entre {0,1,2,...,2 m-1}. O adaptador espera 512\* K tempos de bit e retorna ao Passo 2.



#### ETHERNET: CSMA/CD

Muito melhor do que slotted ALOHA (37%), chegando a 85% de eficiência com quadros 1024

bytes



Figure 4-16. Efficiency of Ethernet at 10 Mbps with 512-bit slot times.



- Preâmbulo
  - Sincronização entre relógios
  - 7 bytes 10101010 e o último byte 10101011
    - Espécie de delimitador de início de quadro
  - Codificação Manchester produz uma onda quadrada de 10 MHz durante aproximadamente 6,4 μ s
- Endereços de destino e de origem 6 bytes cada



- IEEE controla parte do endereço
  - Identificadores únicos de organização (Organizationally Unique Identifiers OUI)
    - Primeiros 3 bytes (24 bits)
  - Fabricante define os outros 3 bytes
    - Antes de vender a interface de rede
  - Bit mais significativo igual a 1
    - Multicast ou difusão
  - Todos os bits em um
    - Difusão



- Endereços de destino e origem
  - O adaptador recebe um quadro com endereço de destino igual ao seu ou com endereço de broadcast (ex. pacote ARP de request) •
    - Passa os dados do quadro para o protocolo da camada de rede
  - Caso contrário
    - O adaptador descarta o quadro



- Tipo
  - Protocolo usado pela camada superior
- Dados
  - Tamanho mínimo de 46 bytes
    - Quadro de 64 bytes garante a detecção de colisão
      - 64 bytes = dados + cabeçalho
  - o Tamanho máximo de 1500 bytes
    - Maximum Transfer Unit (MTU)





- Dados (cont.)
  - Dados passados para a camada de rede incluem o enchimento (se existente)
    - Tamanho do pacote da camada rede fará com que os dados sejam separados do enchimento
- CRC 32 bits





- Não há delimitador de fim de quadro
  - Delimitação indicada pela ausência de bits





# REDE ETHERNET ORIGINAL

- Camada física
  - Cabeamento
  - Codificação



#### REDE ETHERNET ORIGINAL

- Tipos de cabeamentos (802.3)
  - Nomenclatura
    - <x><sinal><y>
      - x é a taxa de transmissão em Mb/s
      - sinal é o tipo de sinalização usada
      - y é o comprimento máximo do cabo coaxial / 100 em metros ou o tipo de meio físico



- 10Base5 (Ethernet grossa):
  - Normalizada em 1980
  - Banda base
  - Topologia em barramento
  - Taxa de transmissão de 10 Mb/s
  - Segmento de até 500 m
  - Máximo de cinco segmentos
  - Máximo de 100 estações por segmento
  - Cabo coaxial de 1 cm de diâmetro
  - Custo alto dos cabos e conectores
  - Pouca flexibilidade do cabo











- 10Base2 (Ethernet fina)
  - Normalizada em 1987
  - Banda base
  - Topologia em barramento
  - Taxa de transmissão de 10 Mb/s
  - Segmento de até 185 m (~200 m)
  - Máximo de cinco segmentos
  - Máximo de 30 estações por segmento
  - Cabo de 0,5 cm de diâmetro
  - Conectores BNC padrão
  - Problema de identificação de cabos partidos











- 10Base-T:
  - Normalizada em 1990
  - $\circ$  T  $\rightarrow$  par trançado (twisted) como meio de transmissão
  - Taxa de transmissão de 10 Mb/s
  - Estação conectada a um hub através de dois pares trançados
  - Topologia em estrela
  - Topologia lógica em barramento
  - Alcance de 100 a 200 m (do hub a uma estação)
  - Depende da qualidade do cabo
  - Número máximo de estações por segmento é 1024







(a) 10Base5, (b) 10Base2 e (c) 10Base-T (fonte: Tanenbaum)





- 10Base-F
  - Utiliza fibra óptica
  - Possui excelente imunidade a ruído
  - Segmentos de até 2 km
  - Número máximo de estações por segmento é 1024
  - Alternativa cara em função do custo dos conectores e dos terminadores



### CODIFICAÇÃO DA REDE ETHERNET ORIGINAL

- Não usa codificação binária direta
  - Problemas de temporização (perda de sincronismo)
- Uso de codificação Manchester
  - Determina-se o início e o fim de cada bit sem o uso de um relógio externo transição



- Hub
  - Transmissão em half-duplex
  - Somente repete os dados
  - Não executa o CSMA/CD
    - Estações executam CSMA/CD
    - Encaminha jams
  - Não é escalável
    - Um único domínio de colisão
  - Permite taxas mais elevadas, pois pode reduzir as distâncias entre as estações.
    - Em compensação, ainda não resolve o problema da escalabilidade

- Comutador (Acesso dedicado, a estação está ligada diretamente)
  - Transmissão em full-duplex
  - Processa, armazena e transmite os dados
  - Pares trançados não são compartilhados não há colisões
    - Cada porta executa o protocolo Ethernet separadamente
  - Escalável
  - Aumento de eficiência da rede
  - Limitação passa a ser dada pela banda do meio físico ou pela capacidade de comutação





Figure 4-17. (a) Hub. (b) Switch.

- Comutador (Acesso dedicado, a estação está ligada diretamente)
  - Transmissão em full-duplex
  - Processa, armazena e transmite os dados
  - Pares trançados não são compartilhados não há colisões
    - Cada porta executa o protocolo Ethernet separadamente
  - Escalável
  - Aumento de eficiência da rede
  - Limitação passa a ser dada pela banda do meio físico ou pela capacidade de comutação
  - Topologia em estrela

### FAST ETHERNET (100 MB/S)

- Primeira evolução: Normalizada em 1995
  - Usa par trançado ou fibra óptica como meio
  - Mantêm o formato e os tamanhos mínimo e máximo do quadro
  - Compatibilidade com o Ethernet legado
  - Funciona nos modos half-duplex e full-duplex

### FAST ETHERNET (100 MB/S)

- 10Base-T
  - UTP cat 3 sinais de 25 MHz
- Fast Ethernet
  - Half-duplex
    - Tamanho máximo da rede deveria ser de 250 m
      - Limitação vem do tamanho máximo do cabo (100 m)
        - » Alcance de 200 m
  - Full-duplex
    - Limitação vem do tamanho máximo do cabo (100 m)
      - » Alcance de 200 m

### FAST ETHERNET (100 MB/S)

- 10Base-T
  - UTP cat 3 sinais de 25 MHz
- Fast Ethernet
  - Half-duplex
    - Tamanho máximo da rede deveria ser de 250 m
      - Limitação vem do tamanho máximo do cabo (100 m)
        - » Alcance de 200 m
  - Full-duplex
    - Limitação vem do tamanho máximo do cabo (100 m)
      - » Alcance de 200 m

### FAST ETHERNET COM PAR TRANÇADO

- 100Base-T4
  - Pode usar UTP cat 3
  - Usa quatro pares por estação (um para transmissão, um para recepção e os outros dois intercambiáveis)
    - Não funciona em full-duplex
- 100Base-TX
  - UTP cat 5 sinais de 125 MHz a 100 m
  - Usa dois pares (um para transmissão e outro para recepção)
    - Operação pode ser full-duplex com taxa de 100 Mb/s em cada direção

### FAST ETHERNET COM FIBRA ÓPTICA

- 100Base-FX
  - Usa dois filamentos de fibra multimodo
  - Um para cada sentido
    - Operação full-duplex
  - Possui distância máxima estação-comutador até:
    - 2 km



#### FAST ETHERNET

| Tipo           | Padrão          | Velocidade | Cabo<br>Utilizado           | Distância<br>Máxima | Conector | Aplicação Típica                                                     |
|----------------|-----------------|------------|-----------------------------|---------------------|----------|----------------------------------------------------------------------|
| 100BASE-<br>TX | IEEE<br>802.3u  | 100 Mbps   | Par trançado<br>(Cat 5/5e)  | 100 metros          | RJ-45    | Redes locais<br>corporativas e<br>residenciais                       |
| 100BASE-<br>FX | IEEE<br>802.3u  | 100 Mbps   | Fibra óptica<br>multimodo   | 2 km                | SC, ST   | Conexões backbone,<br>links de longa distância                       |
| 100BASE-<br>T4 | IEEE<br>802.3u  | 100 Mbps   | Par trançado<br>(Cat 3/4/5) | 100 metros          | RJ-45    | Redes antigas com<br>cabos de categoria<br>inferior                  |
| 100BASE-<br>T2 | IEEE<br>802.3u  | 100 Mbps   | Par trançado<br>(Cat 3)     | 100 metros          | RJ-45    | Alternativa para cabos<br>de par trançado de<br>categoria mais baixa |
| 100BASE-<br>SX | IEEE<br>802.3u  | 100 Mbps   | Fibra óptica<br>multimodo   | 300 metros          | SC, ST   | Conexões de curta<br>distância em fibra<br>óptica                    |
| 100BASE-<br>BX | IEEE<br>802.3ah | 100 Mbps   | Fibra óptica<br>monomodo    | 10-20 km            | SC, LC   | Redes de acesso, como<br>FTTx (Fiber to the X)                       |

### GIGABIT ETHERNET (1 GB/S)

- Normalizada em 1998
  - Usa par trançado ou fibra óptica como meio
  - Mantêm o formato do quadro
    - Tamanhos mínimo e máximo são seguidos
    - Funciona nos modos half-duplex e full-duplex
    - Modo normal é o full-duplex

### GIGABIT ETHERNET (1 GB/S)

|                        |                           |                      |                                             | Distância                |                   |                                                                        |
|------------------------|---------------------------|----------------------|---------------------------------------------|--------------------------|-------------------|------------------------------------------------------------------------|
| Tipo<br>1000BASE-<br>T | Padrão<br>IEEE<br>802.3ab | Velocidade<br>1 Gbps | Cabo Utilizado  Par trançado (Cat  5e/6/6a) | Máxima<br>100<br>metros  | Conector<br>RJ-45 | Aplicação Típica  Redes locais  corporativas e  residenciais           |
| 1000BASE-<br>SX        | IEEE<br>802.3z            | 1 Gbps               | Fibra óptica multimodo                      | 220 - 550<br>metros      | SC, LC            | Conexões de<br>curta distância<br>em fibra óptica                      |
| 1000BASE-<br>LX        | IEEE<br>802.3z            | 1 Gbps               | Fibra óptica<br>multimodo/monomodo          | 550<br>metros -<br>10 km | SC, LC            | Conexões<br>backbone e<br>links de longa<br>distância                  |
| 1000BASE-<br>CX        | IEEE<br>802.3z            | 1 Gbps               | Cabo de cobre blindado<br>(STP)             | 25<br>metros             | HSSDC             | Conexões de<br>curta distância<br>em ambientes<br>industriais          |
| 1000BASE-<br>TX        | TIA/EIA-<br>854           | 1 Gbps               | Par trançado (Cat 6)                        | 100<br>metros            | RJ-45             | Redes locais<br>(pouco utilizado<br>devido ao custo<br>e complexidade) |
| 1000BASE-<br>LH        | IEEE<br>802.3z            | 1 Gbps               | Fibra óptica<br>monomodo                    | 10 - 70<br>km            | SC, LC            | Links de longa<br>distância, uso<br>em operadoras<br>de telecom        |
| 1000BASE-<br>ZX        | IEEE<br>802.3ah           | 1 Gbps               | Fibra óptica<br>monomodo                    | 70 - 100<br>km           | SC, LC            | Links de longa<br>distância e<br>redes<br>metropolitanas<br>(MAN)      |

### 10Gigabit ETHERNET (10 GB/S)

- IEEE 802.3ae (2002)
  - Usa fibra óptica como meio
  - Mantêm o formato e os tamanhos mínimo e máximo do quadro
  - Funciona no modo full-duplex
- IEEE 802.3an (2006)
  - Usa par trançado como meio



### 10Gigabit ETHERNET (10 GB/S)

| Tipo            | Padrão                              | Velocidade | Cabo<br>Utilizado                | Distância<br>Máxima | Conector | Aplicação Típica                                                              |
|-----------------|-------------------------------------|------------|----------------------------------|---------------------|----------|-------------------------------------------------------------------------------|
| 10GBASE-<br>T   | IEEE<br>802.3an                     | 10 Gbps    | Par trançado<br>(Cat 6a/7)       | 100<br>metros       | RJ-45    | Redes locais<br>corporativas e data<br>centers                                |
| 10GBASE-<br>SR  | IEEE<br>802.3ae                     | 10 Gbps    | Fibra óptica<br>multimodo        | 26 - 400<br>metros  | SC, LC   | Conexões de curta<br>distância em data<br>centers                             |
| 10GBASE-<br>LR  | IEEE<br>802.3ae                     | 10 Gbps    | Fibra óptica<br>monomodo         | 10 km               | SC, LC   | Links de longa distância<br>em redes<br>metropolitanas e<br>operadoras        |
| 10GBASE-<br>LRM | IEEE<br>802.3ae                     | 10 Gbps    | Fibra óptica<br>multimodo        | 220<br>metros       | SC, LC   | Conexões de<br>curta/média distância<br>em edifícios antigos<br>com fibra MMF |
| 10GBASE-<br>ER  | IEEE<br>802.3ae                     | 10 Gbps    | Fibra óptica<br>monomodo         | 40 km               | SC, LC   | Links de longa<br>distância, uso em<br>operadoras de telecom                  |
| 10GBASE-<br>ZR  | IEEE<br>802.3ae<br>(não<br>oficial) | 10 Gbps    | Fibra óptica<br>monomodo         | 80 km               | SC, LC   | Conexões de muito<br>longa distância, uso em<br>redes metropolitanas          |
| 10GBASE-<br>CX4 | IEEE<br>802.3ak                     | 10 Gbps    | Cabo de<br>cobre<br>(InfiniBand) | 15 metros           | CX4      | Conexões de curta<br>distância em data<br>centers, racks de<br>servidores     |
| 10GBASE-<br>SW  | IEEE<br>802.3ae                     | 10 Gbps    | Fibra óptica<br>multimodo        | 300<br>metros       | SC, LC   | Conexões em redes<br>SONET/SDH                                                |



## 40Gigabit ETHERNET (40 GB/S)

| Tipo            | Padrão          | Velocidade | Cabo<br>Utilizado                      | Distância<br>Máxima | Conector                      | Aplicação Típica                                                       |
|-----------------|-----------------|------------|----------------------------------------|---------------------|-------------------------------|------------------------------------------------------------------------|
| 40GBASE-<br>KR4 | IEEE<br>802.3ba | 40 Gbps    | PCB (Placa de circuito impresso)       | 1 metro             | Conectores<br>de<br>backplane | Conexões internas<br>de backplane em<br>chassi de rede                 |
| 40GBASE-<br>CR4 | IEEE<br>802.3ba | 40 Gbps    | Cabo de cobre<br>twinaxial             | 7 metros            | QSFP+                         | Conexões de curta<br>distância em data<br>centers (entre racks)        |
| 40GBASE-<br>SR4 | IEEE<br>802.3ba | 40 Gbps    | Fibra óptica<br>multimodo<br>(OM3/OM4) | 100-150<br>metros   | MPO/MTP                       | Conexões de curta<br>distância em data<br>centers                      |
| 40GBASE-<br>LR4 | IEEE<br>802.3ba | 40 Gbps    | Fibra óptica<br>monomodo               | 10 km               | LC                            | Links de longa<br>distância em redes<br>metropolitanas e<br>operadoras |
| 40GBASE-<br>FR  | IEEE<br>802.3bm | 40 Gbps    | Fibra óptica<br>monomodo               | 2 km                | LC                            | Conexões de média<br>distância                                         |
| 40GBASE-<br>T   | IEEE<br>802.3bq | 40 Gbps    | Par trançado<br>(Cat 8)                | 30 metros           | RJ-45                         | Conexões de curta<br>distância em data<br>centers                      |



### 100Gigabit ETHERNET (100 GB/S)

| Tipo              | Padrão          | Velocidade | Cabo<br>Utilizado                      | Distância<br>Máxima        | Conector                      | Aplicação Típica                                                       |
|-------------------|-----------------|------------|----------------------------------------|----------------------------|-------------------------------|------------------------------------------------------------------------|
| 100GBASE-<br>KR4  | IEEE<br>802.3bj | 100 Gbps   | PCB (Placa de<br>circuito<br>impresso) | 1 metro                    | Conectores<br>de<br>backplane | Conexões internas<br>de backplane em<br>chassi de rede                 |
| 100GBASE-<br>CR4  | IEEE<br>802.3bj | 100 Gbps   | Cabo de cobre<br>twinaxial             | 7 metros                   | QSFP28                        | Conexões de curta<br>distância em data<br>centers (entre racks)        |
| 100GBASE-<br>SR4  | IEEE<br>802.3bm | 100 Gbps   | Fibra óptica<br>multimodo<br>(OM3/OM4) | 70-100<br>metros<br>(OM3)  | MPO/MTP                       | Conexões de curta<br>distância em data<br>centers                      |
|                   |                 |            |                                        | 100-150<br>metros<br>(OM4) |                               |                                                                        |
| 100GBASE-<br>LR4  | IEEE<br>802.3ba | 100 Gbps   | Fibra óptica<br>monomodo               | 10 km                      | LC                            | Links de longa<br>distância em redes<br>metropolitanas e<br>operadoras |
| 100GBASE-<br>ER4  | IEEE<br>802.3bm | 100 Gbps   | Fibra óptica<br>monomodo               | 40 km                      | LC                            | Conexões de longa<br>distância, uso em<br>operadoras de<br>telecom     |
| 100GBASE-<br>SR10 | IEEE<br>802.3ba | 100 Gbps   | Fibra óptica<br>multimodo              | 100<br>metros<br>(OM3)     | MPO/MTP                       | Conexões de curta<br>distância com<br>maior número de<br>fibras        |
|                   |                 |            |                                        | 150<br>metros<br>(OM4)     |                               |                                                                        |
| 100GBASE-<br>FR   | IEEE<br>802.3cd | 100 Gbps   | Fibra óptica<br>monomodo               | 2 km                       | LC                            | Conexões de média<br>distância                                         |
| 100GBASE-<br>DR   | IEEE<br>802.3cn | 100 Gbps   | Fibra óptica<br>monomodo               | 500<br>metros              | LC                            | Conexões de média<br>distância em data<br>centers e campus             |



#### E além...

- Terabit Ethernet:
  - o 200, 400 Gigabit: já aprovados e com hardware existente
  - o 800 Gigabit: padrão recentemente aprovado

### **EXERCÍCIOS**

- 1. Identifique o endereço MAC do seu computador
  - a. Informe o valor do endereço
  - b. Converta para binário
  - c. Identifique o fabricante
- 2. Dado o endereço MAC 01:00:5E:00:00:01, classifique-o como broadcast, unicast ou multicast.
- 3. O endereço MAC FF:FF:FF:FF:FF é broadcast, unicast ou multicast?
- 4. Dado o endereço MAC 00:1A:2B:3C:4D:5E, classifique-o como broadcast, unicast ou multicast.
- 5. O endereço MAC 33:33:00:00:00:01 é broadcast, unicast ou multicast?
- Dado o endereço MAC 02:00:00:00:00:01, classifique-o como broadcast, unicast ou multicast.



### **EXERCÍCIOS**

- 1. A empresa Xispirito Enterprise está com problemas em sua rede local. O número de equipamentos passou de 25 para 50. A empresa utiliza uma rede antiga com Fast Ethernet (100 Mbps) com cabos CAT-5 e hubs para permitir a comunicação entre os computadores. Quais modificações podem ser feitas na rede para melhorar a performance?
- 2. Acesse <a href="http://checkip.amazonaws.com">http://checkip.amazonaws.com</a>. Este site retornará o seu endereço IP público. Agora acesse a sua linha de comando e execute o comando arp -a (Windows). O que você vê? Copie o resultado.
  - a. Você está vendo o endereço público na tabela ARP? Caso sim, explique o processo de resolução ARP, caso não, explique por que o endereço não está visível.
  - b. O que significa cada coluna do retorno do comando?