Exercises: EVD and SVD

Problems marked with \nearrow are to be done by hand; those marked with \square are to be solved using a computer.

- 1. (True/False) Petermine whether each of the following is true or false.
 - (a) Given a square matrix $A \in \mathbb{R}^{n \times n}$, we can always find an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that AV = VD.
 - (b) If $A \in \mathbb{R}^{5 \times 5}$ has 5 distinct eigenvalues, then A has an EVD.
 - (c) If $A \in \mathbb{R}^{5 \times 5}$ has 3 distinct eigenvalues, then A does not have an EVD.
 - (d) A square matrix $A \in \mathbb{R}^{m \times m}$ with $\det(A) = 0$ does not have an SVD.
 - (e) A rank deficient matrix $A \in \mathbb{R}^{m \times n}$ has an SVD.
 - (f) Let $A \in \mathbb{R}^{m \times n}$. Then $B = AA^{\mathrm{T}} \in \mathbb{R}^{m \times m}$ is a diagonalizable matrix.
- 2. (Visualization of spectra and pseudospectra) \square The eigenvalues of *Toeplitz* matrices, which have a constant value on each diagonal, have beautiful connections to complex analysis. Define six 64×64 Toeplitz matrices using

```
z = zeros(1,60);
A{1} = toeplitz( [0,0,0,0,z], [0,1,1,0,z] );
A{2} = toeplitz( [0,1,0,0,z], [0,2i,0,0,z] );
A{3} = toeplitz( [0,2i,0,0,z], [0,0,1,0.7,z] );
A{4} = toeplitz( [0,0,1,0,z], [0,1,0,0,z] );
A{5} = toeplitz( [0,1,2,3,z], [0,-1,-2,0,z] );
A{6} = toeplitz( [0,0,-4,-2i,z], [0,2i,-1,2,z] );
```

(The variable A constructed hereinabove is a *cell array*. Type doc cell to learn more about this.) For each of the six matrices, do the following.

- (a) Plot the eigenvalues of A{#} as red dots in the complex plane. (Set 'MarkerSize' to be 3.)
- (b) Let E and F be 64×64 random matrices generated by randn. On top of the plot from part (a), plot the eigenvalues of the matrix $A + \varepsilon E + i\varepsilon F$ as blue dots, where $\varepsilon = 10^{-3}$. (Set 'MarkerSize' to be 1.)
- (c) Repeat part (b) 49 more times (generating a single plot).

Arrange all six plots in a 3×2 grid using subplot. Make sure all figures are drawn in 1:1 aspect ratio.

3. (EVD and powers of a matrix) \mathcal{O} Let $A \in \mathbb{R}^{n \times n}$ has an EVD $A = VDV^{-1}$ and suppose that all its eigenvalues are either positive or negative ones. Show that $A^2 = I$.

Note. To gain a geometric intuition about this problem, think about the eigenvalue decomposition of a Householder reflector $H = I - 2uu^{T}$.

4. (Rayleigh quotient)

Let

$$A = \begin{bmatrix} 3 & -2 \\ -2 & 0 \end{bmatrix}.$$

and define a function $R_A: \mathbb{R}^2 \to \mathbb{R}$ by

$$R_A(\mathbf{x}) = \frac{\mathbf{x}^{\mathrm{T}} A \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}.$$

- (a) Write out $R_A(\mathbf{x})$ explicitly as a function of x_1 and x_2 .
- (b) Find $R_A(\mathbf{x})$ for $x_1 = 1, x_2 = 2$.
- (c) Confirm that $\mathbf{x} = (1, 2)^{\mathrm{T}}$ is an eigenvector of A, whose corresponding eigenvalue is equal to the value computed in part (b).
- (d) Find the gradient vector $\nabla R_A(\mathbf{x})$.
- (e) Show that the gradient vector is zero when $x_1 = 1$, $x_2 = 2$.

Note. The map R_A constructed above is known as the *Rayleigh quotient*. As confirmed in part (c), this map is known to send an eigenvector of A to its associated eigenvalue.

- 5. (2-norm and principal singular value) \mathscr{N} Let $A \in \mathbb{C}^{m \times n}$ have an SVD $A = USV^*$. The following problem walks you through the proof of the fact that $||A||_2 = \sigma_1$.
 - (a) Use the technique of Lagrange multipliers to show that among vectors that satisfy $\|\mathbf{x}\|_2^2 = 1$, any vector that maximizes $\|A\mathbf{x}\|_2^2$ must be an eigenvector of A^*A . (*Hint.* If B is any hermitian matrix, *i.e.*, $B^* = B$, the gradient of the scalar function $\mathbf{x}^*B\mathbf{x}$ with respect to \mathbf{x} is $2B\mathbf{x}$.)
 - (b) Use the result of part (a) to prove that $||A||_2 = \sigma_1$, the principal singular value of A.
- 6. (LLS via SVD) \nearrow Recall that the linear least square (LLS) problem $A\mathbf{x}$ "=" \mathbf{b} can be rewritten as

$$\hat{R}\mathbf{x} = \hat{Q}^{\mathrm{T}}\mathbf{b},\tag{1}$$

using the thin QR factorization $A = \hat{Q}\hat{R}$. Multiplying (1) by \hat{R}^{-1} gives a formula for the pseudoinverse

$$A^{+} = \hat{R}^{-1} \hat{Q}^{\mathrm{T}}. \tag{**}$$

The whole process can be turned into the following QR-based algorithm for LLS problem:

- i. Factor $A = \hat{Q}\hat{R}$.
- ii. Let $\mathbf{z} = \hat{Q}^{\mathrm{T}} \mathbf{b}$.
- iii. Solve $\hat{R}\mathbf{x} = \mathbf{z}$ for \mathbf{x} using backward substitution.

Now assuming that $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, establish analogous results using the thin SVD,

$$A = \hat{U}\hat{\Sigma}V^T. \tag{2}$$

That is:

- (a) Derive an equation similar to (1) by substituting (2) into the associated normal equation.
- (b) Find an alternate formula for A^+ using the result of part (a).
- (c) Write down an SVD-based algorithm for LLS problem using the result of part (a).
- 7. (Low-rank approximation) Find the rank-1 matrix closest to A as measured in the 2-norm.

(a)
$$\square$$
 $A = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$

(b)
$$\square$$
 $A = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$

(c)
$$A = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$$
, where $b > 0$.

8. (Visualizing SVD) \square Write a MATLAB function which, given $A \in \mathbb{R}^{2\times 2}$, plots the right singular vectors \mathbf{v}_1 and \mathbf{v}_2 in the unit circle and also the scaled left singular vectors $\sigma_1\mathbf{u}_1$ and $\sigma_2\mathbf{u}_2$ in the appropriate ellipse. Apply your program to the matrices

$$A_1 = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Example Output.

Considerations.

- Use subplot to produce two plots side by side. Make sure the unit circle looks like a circle.
- Draw corresponding vectors \mathbf{v}_j and $\sigma_j \mathbf{u}_j$ in the same color. In the example figure above, the first singular vectors are drawn in red, the second ones in blue.

3

• Use legend to create legends.