Problem 10. Give an example of a family of intervals A_n , n = 1, 2, ..., such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n$ consists of a single real number. Prove that your example has the stated property.

Proof. Let the set A_n be defined as $\left[0,\frac{1}{n}\right]$

For n = 1,

$$A_1 = [0, 1]$$

For n+1 i.e. n=2,

$$A_2 = [0, \frac{1}{2}]$$

Since $[0, \frac{1}{2}] \subset [0, 1]$, i.e. $A_2 \subset A_1$, $A_{n+1} \subset A_n$ holds.

As
$$n \to \infty, \frac{1}{n} \to 0$$
. So $\bigcap_{n=1}^{\infty} A_n = [0, 0]$

Since, the interval is inclusive, $0 \in A_n$. The expression $\bigcap_{n=1}^{\infty} A_n$ will hence equate to 0. $0 \in \mathbb{R}$

Therefore, the example given has the required stated properties.