In the table below only one of the proposed answers to each question is correct, choose the correct one with justification.

N^0	Questions		Proposed answers	S
		a	b	c
1	$e^{\frac{1}{2}ln9} \times e^{-\ln\frac{1}{3}} =$	e^3	9	$e^{\frac{3}{2}}$
2	Consider the function f given by $f(x) = ln\left(\frac{e^x}{e^x - 2}\right).$ The domain of definition of f is] ln 2 , +∞[]0, +∞[] - ∞,+∞[
3	For all real numbers x, $\frac{e^{-x}}{e^{-x}+2}$ is equal to	$\frac{1}{3}$	$\frac{1}{1+2e^x}$	$\frac{-e^x}{-e^x+2}$
4	For all real numbers x, $ln(e^x + 2) - x$ is equal to	$\ln\left(\frac{e^x+2}{x}\right)$	ln 2	$\ln\left(\frac{e^x+2}{e^x}\right)$
5	The equation $e^{2x} + 2e^x - 1 = 0$ has in the set \mathbb{R}	2 distinct roots	No roots	Only one root
6	$\lim_{x\to+\infty}\frac{\ln\left(e^x+1\right)}{x}=$	0	e	1
7	$\lim_{x\to-\infty}(x+e^{-x})=$	0	-∞	+∞

Exercise 2

Let f be the function defined on \mathbb{R} as $f(x) = e^{2x} + (x-3)e^{x}$.

Denote by (C) the representative curve of f in an orthonormal system (O; i; j).

- 1) Determine $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to +\infty} f(x) = 0$
- 2) Determine $\lim_{x \to +\infty} f(x)$ and deduce an asymptote to (C).
- 3) Let g be the function defined on \mathbb{R} as $g(x) = x 2 + 2e^x$.
 - a- Set up the table of variations of the function g.
 - b- Calculate g(0) then deduce, according to the values of x, the sign of g(x).
- 4) Verify that $f'(x) = e^x g(x)$ and set up the table of variations of the function f.
- 5) Show that the equation f(x) = 0 has, on , a unique root α . Verify that $0.7 < \alpha < 0.8$.
- 6) Draw the curve (C).

Consider the function f defined on \mathbb{R} as $f(x) = 2 - (x+2)e^{-x}$.

Denote by (C) its representative curve in an orthonormal system (O; i, j)

- 1) a- Determine $\lim_{x \to -\infty} f(x)$. b-Determine $\lim_{x \to +\infty} f(x)$. Deduce an asymptote (d) to (C).
- 2) a- Calculate f'(x), and set up the table of variations of f. b-Show that the equation f(x) = 0 has two roots α and 0. Verify that $-1.6 < \alpha < -1.5$
- 3) a- Show that (C) has an inflection point whose coordinates are to be determined.b- Write an equation of (Δ), the tangent to (C) at its inflection point.
- 4) Let (d') be the line with equation y = -x.

a-Verify that
$$f(x) + x = (x + 2)(1 - e^{-x})$$

b- Study, according to the values of x, the relative positions of (d') and (C).

- 5) Draw (d), (Δ) , (d') and (C).
- 6) Let g be the function defined as g(x) = ln(-x f(x)). Determine the domain of definition of g.

Exercise 4

Part A

Let $g(x) = e^{2x} - 2e^x + 3$, and let (G) be its curve in (O; i, j). Show that For all x in \mathbb{R} , g(x) > 0.

Part B

Let f be the function defined over \mathbb{R} by $f(x) = \ln(e^{2x} - 2e^x + 3)$ and (C) be its curve.

- 1) Determine $\lim_{x\to -\infty} f(x)$. Deduce an asymptote (d) to (C).
- 2) Discuss according to the values of x, the position of (C) with respect to (d).
- 3) Determine $\lim_{x \to +\infty} f(x)$. Deduce that (d'): y = 2x is an oblique asymptote to (C).
- 4) Determine the coordinates of the intersection points of (d') and (C).
- 5)Calculate f'(x) and set up the table of variation of f.
- 6) Trace (C).

Consider the function f defined on \mathbb{R} as $f(x) = (x + 2)e^{-x} + 1$.

Denote by (C) the representative curve of f in an orthonormal system (O; i, j).

- 1) a-Determine $\lim_{x\to +\infty} f(x)$. Deduce an asymptote (d) to (C).
 - b- Find the coordinates of the point of intersection of (C) and (d).
- 2) Determine $\lim_{x \to -\infty} f(x)$ and calculate f(-2.5).
- 3) Verify that $f'(x) = -(x + 1)e^{-x}$ and set up the table of variations of f.
- 4) a- Show that the equation f(x) = 0 has a unique root α on \mathbb{R} .
 - b- Verify that $-2.2 < \alpha < -2.1$.
- 5) a- Prove that the point I(0,3) is the point of inflection of the curve (C).
 - b- Determine an equation of (T), the tangent to (C) at I.
 - c- The table below is the table of variations of the function g defined as $g(x) = (x + 2)e^{-x} + x 2$

x	-∞	0	+∞
g(x)	-∞	0	→ +∞

Deduce, according to the values of x, the relative positions of (C) and (T).

- 6) Draw (d), (T) and (C).
- 7) Let *k* be the function given by $k(x) = \frac{x}{\ln(-x-2)}$.

Denote by (C') the representative curve of k in an orthonormal system(O; i, j).

- a- Determine the domain of definition of k.
- b- Show that $k'(\alpha) = \frac{\alpha+1}{\alpha^2+2\alpha}$.
- c- Show that the tangent to (C') at the point with abscissa α intersects the y-axis at the point $W(0; \frac{1}{\alpha+2})$.

Part A

Consider the function h defined on IR by: $h(x) = e^{2x} + 2e^x - 2$.

- 1) Solve the equation h(x) = 0.
- 2) Calculate $\lim_{x \to -\infty} h(x)$ and $\lim_{x \to +\infty} h(x)$.
- 3) a- Set up the table of variations of h.
 - b- Draw the representative curve (H) of h in an orthonormal system.

Part B

Let g be the function defined on IR by $g(x) = \frac{e^{2x} + 2}{e^x + 1}$

and let f be a function defined by $f(x) = \ln [g(x)]$

Designate by (C) the representative curve of f in the plane referred to a new orthonormal system (O; i, j).; (graphical unit: 2 cm).

- 1) a- Show that f is defined for every real number x.
 - b- Calculate $\lim_{x\to-\infty} f(x)$ and deduce an asymptote (d) of (C).
- 2) a- Show that $f(x) = x + \ln(\frac{1+2e^{-2x}}{1+e^{-x}})$

b-Calculate $\lim_{x\to +\infty} f(x)$ and prove that the line (d') of equation y=x is an asymptote to (C).

c-Study, according to the values of x, the relative positions of (C) and (d').

3) a- Prove that $g'(x) = \frac{e^x(h(x))}{(e^x+1)^2}$

b-Show that f'(x) and h(x) have the same sign and set up the table of variations of f.

c-Find the abscissa of the point on the curve (C) at which the tangent to (C) is parallel to (d').

4) Draw (d), (d') and (C).

Exercise 7

Part A

Consider the function f defined on IR by $f(x) = e^{2x} - 4e^x + 3$

Designate by (C) its representative curve in an orthonormal system (O; i, j).

- 1) a- Determine $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to +\infty} \frac{f(x)}{x}$. b- Solve the equation f(x) = 0.
- 2) Calculate f'(x) and set up the table of variations of f.
- 3) Show that O is a point of inflection of (C).
- 4) Write an equation of the tangent (T) at O to (C).
- 5) Let h be the function defined on IR by h(x) = f(x) + 2x.
 - a- Show that $h'(x) \ge 0$ for every real number x.
 - b- Deduce, according to the values of x, the relative positions of (C) and (T).
- 6) Draw (T) and (C).

Part B

Let g be the function given by $g(x) = \ln[f(x)]$

Designate by (Ω) its representative curve in an orthonormal system.

- 1) Justify that the domain of definition of g is $]-\infty,0[\cup]\ln 3,+\infty[$
- 2) Determine $\lim_{x\to -\infty} g(x)$. Deduce an asymptote (D) of (Ω) .
- 3) Show that the line (d) of equation y = 2x is asymptote to (Ω) at $+\infty$.
- 4) Determine the coordinates of the points of intersection of (Ω) with (d) and (D).
- 5) Set up the table of variations of g.
- 6) Draw (Ω) .

Exercise 8

Part A

Let h be the function defined over $]0;+\infty[$ by $h(x)=\frac{e^{x}-1}{x}$. Denote by (C) curve of h in an (O; i, j). 1)a-Verify that $h'(x)=\frac{(x-1)e^{x}+1}{x^2}$.

b-Let g be the function defined over $]0;+\infty[$ by $g(x)=(x-1)e^x$

Set up the table of variations of g and deduce that h'(x) > 0.

2)a- Calculate
$$\lim_{x\to 0^+} h(x)$$
, $\lim_{x\to +\infty} h(x)$ and $\lim_{x\to +\infty} \frac{h(x)}{x}$.

b- Set up the table of variations of h.

3)a- Write an equation of (Δ) , the tangent to (C) at the point with abscissa 1.

b-Draw (Δ) and (C).

Part B

Consider the function f defined over]0; $+\infty[$ by $f(x) = h(x) + \ln x$ and denote by (Γ) be its curve.

- 1) a- Calculate $\lim_{x\to 0} f(x)$, $\lim_{x\to +\infty} f(x)$.
 - b- Set up the table of variations of the function f.
- 2) a- Prove that the equation f(x) = 0 has a unique solution α and that $0.3 < \alpha < 0.4$. b- Compare $h(\alpha)$ and h(1). Deduce that $\ln \alpha > 1 e$.
- a- Discuss, according to the values of x, the relative positions of (C) and (Γ). b- Draw (Γ).
- 4) A is a point on (C) and B is a point on (Γ) such that A and B have the same abscissa x. m is any real number such that m > 0. If AB = m, prove that there exist two values of x whose product is independent of m.

Part A

Consider the function g defined on \mathbb{R} as $g(x) = (2x - 1)e^{2x} + 1$.

- 1) Calculate g'(x) and set up the table of variation of g. (It is not required to find the limits of g at $-\infty$ and $+\infty$).
- 2) Deduce the sign of g(x).

Part B

Let
$$f$$
 be the function defined, on \mathbb{R} as
$$\begin{cases} f(x) = \frac{e^{2x} - 1}{x} & \text{for } x \neq 0 \\ 2 & \text{for } x = 0 \end{cases}$$

Let (C) be its representative curve in an orthonormal system (O; i, j).

- 1) Find $\lim_{x\to 0} f(x)$ and deduce that f is continuous at 0.
- 2) Find $\lim_{x \to -\infty} f(x)$, deduce an asymptote to (C).
- 3) Find $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to +\infty} \frac{f(x)}{x}$. 4) a) $\lim_{x \to 0} \frac{f(x)-2}{x}$

b)Deduce that the line (T) with equation y = 2x + 2 is tangent to (C) at the point with abscissa 0.

- 5) Verify that $f'(x) = \frac{g(x)^2}{x^2}$ for $x \neq 0$ and set up the table of variations of f.
- 6) Plot (T) and (C).

1)
$$e^{\frac{1}{2}ln9} \times e^{-\ln\frac{1}{3}} = e^{\ln 9^{\frac{1}{2}}} \times e^{\ln 3} = \sqrt{9} \times 3 = 9$$
 Answer: b

2)
$$f(x) = \ln\left(\frac{e^x}{e^{x}-2}\right)$$
. $\frac{e^x}{e^x-2} > 0$

Roots: $\frac{e^x}{e^x-2} = 0$ then $e^x = 0$ impossible $e^x - 2 \neq 0$ then $x \neq \ln 2$

x	-∞	ln 2		+ ∞
$\frac{e^x}{e^x - 2}$	_		+	

$$x \in]\ln 2, +\infty[$$

Answer b.

3) 1st method

$$\frac{e^{-x}}{e^{-x}+2} = \frac{1}{1+2e^x}$$
 cross multiplication
$$e^{-x} + 2 = e^{-x}(1+2e^x)$$

$$e^{-x} + 2 = e^{-x} + 2$$

Answer b

2nd method

$$\frac{e^{-x}}{e^{-x}+2} = \frac{\frac{1}{e^x}}{\frac{1}{e^x}+2} = \frac{\frac{1}{e^x}}{\frac{1+2e^x}{e^x}} = \frac{1}{1+2e^x}$$

4)
$$ln(e^x + 2) - x = ln(e^x + 2) - lne^x = ln(\frac{e^x + 2}{e^x})$$
 answer c

$$5)e^{2x} + 2e^x - 1 = 0$$

$$(e^x)^2 + 2e^x - 1 = 0$$

$$e^x = \frac{-2+\sqrt{8}}{2}$$
 accepted then $x = \ln \frac{-2+\sqrt{8}}{2}$

 $e^x = \frac{-2-\sqrt{8}}{2}$ rejected

since $e^x > 0$ for any x One root Answer c

6)
$$\lim_{x \to +\infty} \frac{\ln(e^x + 1)}{x} = \frac{\ln +\infty}{+\infty} = \frac{+\infty}{+\infty}$$

$$\lim_{\substack{x \to +\infty}} \frac{[\ln(e^x + 1)]'}{(x)'} = \lim_{\substack{x \to +\infty}} \frac{\frac{e^x}{e^x + 1}}{1} = \lim_{\substack{x \to +\infty}} \frac{e^x}{e^x + 1} = \frac{+\infty}{+\infty} \quad \lim_{\substack{x \to +\infty}} \frac{(e^x)'}{(e^x + 1)'} = \lim_{\substack{x \to +\infty}} \frac{e^x}{e^x} = 1 \quad \text{Answer c}$$

7)
$$\lim_{x \to -\infty} (x + e^{-x}) = -\infty + e^{-(-\infty)} = -\infty + \infty$$

$$\lim_{x \to -\infty} (x + e^{-x}) = \lim_{x \to -\infty} (x + \frac{1}{e^x}) = \lim_{x \to -\infty} \frac{x e^{x+1}}{e^x} = \frac{0+1}{e^{-\infty}} = \frac{1}{0^+} = +\infty \quad \text{since } \lim_{x \to -\infty} x e^x = 0$$

Answer c

1)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^{2x} + (x - 3)e^{x} = e^{+\infty} + (+\infty)e^{+\infty} = +\infty$$
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^{2x} + (x - 3)e^{x}}{x} = \frac{+\infty}{+\infty}$$

$$\lim_{x \to +\infty} \frac{(e^{2x} + (x-3)e^x)'}{(x)'} = \lim_{x \to +\infty} \frac{2e^{2x} + e^x + (x-3)e^x}{1} = +\infty$$
asymptotic direction parallel to y-axis

2)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^{2x} + (x - 3)e^{x} = \lim_{x \to -\infty} e^{2x} + xe^{x} - 3e^{x}$$
$$= e^{-\infty} + 0 - 3e^{-\infty} = 0 \qquad y = 0 \quad Horizontal \ asymptote \qquad \text{since } \lim_{x \to -\infty} xe^{x} = 0$$

3)
$$a - g'(x) = 1 + 2e^x$$
 $g'(x) > 0$

х	$-\infty$ $+\infty$
g'(x)	+
g(x)	0

b-
$$g(0) = 0$$

х	-∞	0		+ ∞
g(x)	_		+	

4)
$$f'(x) = 2e^{2x} + e^x + (x-3)e^x = e^x(2e^x + 1 + x - 3) = e^x(2e^x + x - 2) = e^xg(x)$$
.

x	-∞	0		+ ∞
f'(x)	_	()	+	
f(x)	0	-2 /		▼ +∞

5) f is continuous
f is increasing

$$f(0.7) = -0.6$$
 $f(0.7) < 0$ and $f(0.8) = 0.08$ $f(0.8) > 0$
Then the equation $f(x) = 0$ has, on , a unique root α . Verify that $0.7 < \alpha < 0.8$.

6)

Exercise 3

1) a-
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 2 - (x+2)e^{-x} = 2 - (-\infty+2)e^{+\infty} = +\infty$$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = +\infty \quad asymptoic \ directio \ parallel \ y - axis$$
b- $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2 - (x+2)e^{-x} = 2 - (+\infty+2)e^{-\infty} = -\infty(0)$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(x+2)'}{(e^x)'} = \lim_{x \to +\infty} \frac{1}{e^x} = \frac{1}{+\infty} = 0$$

$$\lim_{x \to +\infty} f(x) = 2 - 0 = 2$$

(d):
$$y = 2$$
 horizontal asymptote

2) a-
$$f'(x) = -(e^{-x} + (x+2)(-e^x)) = -(e^{-x}(1-x-2)) = -e^x(-x-1) = e^{-x}(x+1)$$
.
 $f'(x) = 0$ then $x = -1$

x	-∞	- 1		+ ∞
f'(x)	_		+	
f(x)	+∞	2 – e	*	2 -~

b- *f is*

The equation f(x) = 0 has two roots α and 0. Verify that $-1.6 < \alpha < -1.5$

3) a-
$$f''(x) = -e^{-x}(x+1) + e^{-x} = e^{-x}(-x-1+1) = -xe^{-x} = 0$$

 $x = 0$ then $y = f(0) = 0$ (0,0)

x	-∞	0	+ ∞
f''(x)	+	() -	

b-
$$(\Delta): y = ax + b$$

 $a = f'(0) = e^{0}(0 + 1) = 1$
 $(\Delta): y = ax + b$
 $0 = 1(0) + b$ then $b = 0$
 $y = x$

4) a-
$$f(x) + x = (x + 2)(1 - e^{-x})$$

$$2 - (x + 2)e^{-x} + x = x - xe^{-x} + 2 - 2e^{-x}$$

$$2 - xe^{-x} - 2e^{-x} + x = x - xe^{-x} + 2 - 2e^{-x}$$

b-
$$f(x) - y_d = f(x) - (-x) = f(x) + x = (x+2)(1 - e^{-x}) = 0$$

Then x = -2 and $1 - e^{-x} = 0$ then $e^{-x} = 1$ then $-x = \ln 1 = 0$ then x = 0

x	-∞	- 2	0	+ ∞
$f(x) - y_d$	+	0 -	() +	
position	(C) is above (d')	(C) is bel	ow (d') (C) is a	bove (d')
	(C) (\cap (d') at $(-2,2)$	$(C) \cap (d')$	at (0,0)

C)
$$\cap$$
 (d') at (-2,2) (C) \cap (d') at (0,0)

6)
$$-x - f(x) > 0 \times (-1)$$

 $x + f(x) < 0$
 $(x + 2)(1 - e^{-x}) < 0$

Roots: x + 2 = 0 then x = -2 $1 - e^{-x} = 0$ then $e^{-x} = 1$ then -x = 0 then x = 0

x	-∞		- 2		0		+ ∞
$(x+2)(1-e^{-x})$		+	0	_	0	+	
w c 1 2 0 [

$x \in]-2,0[$

Exercise 4

Part A

$$g'(x) = 2e^{2x} - 2e^x = 0$$
 then $e^x = 0$ rejected or $e^x = 1$ then $x = 0$

$$\min g(x) = 2 \qquad g(x) > 0$$

Part B

1)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \ln(e^{-\infty} - 2e^{-\infty} + 3) = \ln 3$$
 (d): $y = \ln 3$ horizontal asymptote

2)
$$f(x) - y_d = \ln(e^{2x} - 2e^x + 3) - \ln 3 = \ln\left(\frac{e^{2x} - 2e^x + 3}{3}\right) = 0$$

Then
$$e^{\ln\left(\frac{e^{2x}-2e^x+3}{3}\right)} = e^0$$
 then $\frac{e^{2x}-2e^x+3}{3} = 1$ then $e^{2x}-2e^x+3 = 3$

Then $e^{2x} - 2e^x = 0$ then $e^x = 0$ rejected and $e^x = 2$ then $x = \ln 2$

x	-∞	ln2		+ ∞
$f(x) - y_d$	_	0	+	
position	(C) is below (d)		(C) is above (d)	

(C)
$$\cap$$
 (d) at (ln2, ln3)

3)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln(e^{2x} - 2e^{x} + 3) = \ln(+\infty - \infty)$$

$$\lim_{x \to +\infty} \ln(e^{x}(e^{x} - 2) + 3)) = \lim_{x \to +\infty} \ln((+\infty)(+\infty) + 3) = +\infty$$

$$\lim_{x \to +\infty} f(x) - y_{(d')} = \lim_{x \to +\infty} \ln(e^{2x} - 2e^{x} + 3) - 2x = \lim_{x \to +\infty} \ln(e^{2x} - 2e^{x} + 3) - \ln e^{2x}$$

$$\lim_{x \to +\infty} \ln \frac{e^{2x} - 2e^{x} + 3}{e^{2x}} = \lim_{x \to +\infty} \frac{+\infty}{+\infty}$$

$$\lim_{x \to +\infty} \ln \frac{(e^{2x} - 2e^{x} + 3)'}{(e^{2x})'} = \lim_{x \to +\infty} \ln \frac{2e^{2x} - 2e^{x}}{2e^{2x}} = \lim_{x \to +\infty} \ln \frac{2e^{x}(e^{x} - 2)}{2e^{2x}} = \lim_{x \to +\infty} \ln \frac{(e^{x} - 2)'}{e^{x}} = \lim_{x \to +\infty} \ln \frac{(e^{x} - 2)'}{(e^{x})'}$$

$$= \lim_{x \to +\infty} \ln \frac{e^{x}}{e^{x}} = = \ln 1 = 0$$

$$4) f(x) - 2x = \ln \frac{e^{2x} - 2e^x + 3}{e^{2x}} = 0 \quad then \quad \frac{e^{2x} - 2e^x + 3}{e^{2x}} = 1 \quad then \ e^{2x} - 2e^x + 3 = e^{2x}$$
Then $2e^x = 3$ $then \ e^x = \frac{3}{2}$ $then \ x = \ln \frac{3}{2}$ and $y = 2x = 2\ln \left(\frac{3}{2}\right)$ $\left(\ln \frac{3}{2}, 2\ln \frac{3}{2}\right)$

х	-∞	$ln\frac{3}{2}$		+ ∞
$f(x)-y_{d'}$	+	0	_	
position	(C) is above (d)		(C) is below (d)	

(C)
$$\cap$$
 (d) at $(ln \frac{3}{2}, 2 ln \frac{3}{2})$

5)
$$f'(x) = \frac{2e^{2x} - 2e^x}{e^{2x} - 2e^x + 3} = 0$$
 then $2e^{2x} - 2e^x = 0$

then $e^x = 0$ rejected and $e^x = 1$ then x = 0

х	-∞ 0	+ ∞
f'(x)	- () +	
	ln 3	+∞
f(x)	ln2	

1) a-
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + 2)e^{-x} + 1 = (+\infty)(e^{-\infty}) + 1 = (+\infty)(0)$$

$$\lim_{x \to +\infty} \frac{(x+2)'}{(e^x)'} + 1 = \lim_{x \to +\infty} \frac{1}{e^x} + 1 = \frac{1}{+\infty} + 1 = 1.$$
 (d): y = 1 horizontal asymptote

b-
$$f(x) - 1 = (x + 2)e^{-x} + 1 - 1 = (x + 2)e^{-x} = 0$$
 then $x = -2$

x	-∞	- 2	+ ∞
$f(x) - y_d$	_	0	+
position	(C) is below (d)	(C) is	s above (d)

$$(C) \cap (d)$$
 at $(-2,1)$

2)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x + 2)e^{-x} + 1 = (-\infty)(e^{+\infty}) + 1 = -\infty$$

 $f(-2.5) = (-2.5 + 2)e^{2.5} + 1 = 0.5e^{2.5} + 1 = -5.09$ (-2.5, -5.09)

3)
$$f(x) = (x + 2)e^{-x} + 1$$

$$f'(x) = e^{-x} + (x+2)(-e^{-x}) = e^{-x}(1-(x+2)) = e^{-x}(1-x-2) = -(x+1)e^{-x} = 0$$

Then x = -1

x	-∞	-1	+ ∞
f'(x)		+	
f(x)	-∞ _	e+1	1

- 4) a- f(x) is so f(x) = 0 has a unique root α on \mathbb{R} .
 - b- Verify that $-2.2 < \alpha < -2.1$.
- 5) a- f''(x) = 0 table of sign I(0,3) is the point of inflection of the curve (C).
 - b- (T) to (C) at I (T): y = -x + 3

$$f(x) - y_T = (x + 2)e^{-x} + 1 - x + 3 = (x + 2)e^{-x} + 1 + x - 3$$
$$= (x + 2)e^{-x} + x - 2 = g(x)$$

x	-∞	0	+ ∞
$f(x)-y_T$	_	+	
position	(C) is below (d)	(C) is above (d)

 $(C) \cap (T)$ at (0,3)

6)

7)

$$a-x-2 > 0$$
 then $-x > 2$ then $x < -2$
$$ln(-x-2) \neq 0$$
 then $-x-2 \neq 1$ then $-x \neq 3$ then $x \neq -3$
$$x \in]-\infty, -3[\cup] -3, -2[$$

b- f(x)=0 has a unique root α on $\mathbb R$. Then $f(\alpha)=0$ then $(\alpha+2)e^{-\alpha}+1=0$ then $(\alpha+2)e^{-\alpha}=-1$ then $(\alpha+2)=\frac{-1}{e^{-\alpha}}$ then $(\alpha+2)=-e^{\alpha}$ then $(\alpha+2)=-e^{\alpha}$

$$k'(x) = \frac{\ln(-x-2) - x\left(-\frac{1}{-x-2}\right)}{\ln^2(-x-2)} = \frac{\ln(-x-2) + \left(\frac{x}{-x-2}\right)}{\ln^2(-x-2)}$$

$$k'(\alpha) = \frac{\ln(-\alpha-2) + \left(\frac{\alpha}{-\alpha-2}\right)}{\ln^2(-\alpha-2)} = \frac{\ln(e^{\alpha}) + \left(\frac{\alpha}{-\alpha-2}\right)}{\ln^2(e^{\alpha})} = \frac{\alpha + \left(\frac{\alpha}{-\alpha-2}\right)}{(\alpha)^2} = \frac{\frac{\alpha(-\alpha-2)}{-\alpha-2} + \left(\frac{\alpha}{-\alpha-2}\right)}{\alpha^2} = \frac{\frac{-\alpha^2 - 2\alpha + \alpha}{-\alpha-2}}{\alpha^2}$$

$$=\frac{\frac{-\alpha^2-\alpha}{-\alpha-2}}{\alpha^2}=\frac{\frac{\alpha^2+\alpha}{\alpha+2}}{\alpha^2}=\frac{\alpha^2+\alpha}{\alpha^2(\alpha+2)}=\frac{\alpha(\alpha+1)}{\alpha^2(\alpha+2)}=\frac{(\alpha+1)}{\alpha(\alpha+2)}=\frac{\alpha+1}{\alpha^2+2\alpha}\;.$$

c- Let us find the equation of the tangent to (C') at the point with abscissa α

$$x = \alpha$$
 then $y = k(\alpha) = \frac{\alpha}{\ln(-\alpha - 2)} = \frac{\alpha}{\ln(e^{\alpha})} = \frac{\alpha}{\alpha} = 1$

$$y = ax + b$$
 with $a = k'(\alpha) = \frac{\alpha + 1}{\alpha^2 + 2\alpha}$

$$y = ax + b$$

$$1 = \frac{\alpha + 1}{\alpha^2 + 2\alpha}(\alpha) + b \quad then \ b = 1 - \frac{\alpha + 1}{\alpha^2 + 2\alpha}(\alpha) = 1 - \frac{\alpha^2 + \alpha}{\alpha^2 + 2\alpha} = \frac{\alpha^2 + 2\alpha - \alpha^2 - \alpha}{\alpha^2 + 2\alpha} = \frac{\alpha}{\alpha(\alpha + 2)} = \frac{1}{\alpha + 2}$$

$$y = \frac{\alpha + 1}{\alpha^2 + 2\alpha} x + \frac{1}{\alpha + 2}$$

$$W\left(0; \frac{1}{\alpha+2}\right) \in y - axis \ since \ x = 0$$

Let substitute the coordinates of this point in the tangent

$$\frac{1}{\alpha+2} = \frac{\alpha+1}{\alpha^2+2\alpha}(0) + \frac{1}{\alpha+2}$$

$$\frac{1}{\alpha+2} = \frac{1}{\alpha+2}$$

Exercise 6

Part A

1)
$$x = -1 - \sqrt{3}$$
 $x = -1 + \sqrt{3}$

1)
$$x = -1 - \sqrt{3}$$
 $x = -1 + \sqrt{3}$
2) $\lim_{x \to -\infty} h(x) = -2$ $y = -2$ $H.A.$ $\lim_{x \to +\infty} h(x) = +\infty$
3) $a - h'(x) = 2e^{2x} + 2e^x$ $h'(x) > 0$

3)
$$a - h'(x) = 2e^{2x} + 2e^x$$
 $h'(x) > 0$

x	$-\infty$ $+\infty$
h'(x)	+
h(x)	→ +∞ -2

b- Draw the representative curve (H) of h in an orthonormal system.

Part B

1) a-
$$\frac{e^{2x}+2}{e^x+1} > 0$$
 since $e^u > 0$ therefore f is defined for every real number x .
b- $\lim_{x \to -\infty} f(x) = \ln 2$ (d): $y = \ln 2$ H.A.

2) a-
$$f(x) = x + \ln\left(\frac{1+2e^{-2x}}{1+e^{-x}}\right) = 1 + \ln\left(\frac{1+\frac{2}{e^{2x}}}{1+\frac{1}{e^{x}}}\right) = 1 + \ln\left(\frac{\frac{e^{2x}+2}{e^{2x}}}{\frac{e^{x}+1}{e^{x}}}\right)$$

$$= \ln e^{x} + \ln\frac{e^{x}(e^{2x}+2)}{e^{2x}(e^{x}+1)} = \ln e^{x} + \ln\frac{(e^{2x}+2)}{e^{x}(e^{x}+1)} = \ln\left[e^{x}\left(\frac{(e^{2x}+2)}{e^{x}(e^{x}+1)}\right)\right]$$

$$= \ln\frac{(e^{2x}+2)}{(e^{x}+1)} = \ln g(x).$$
b- $\lim_{x \to \infty} f(x) = +\infty$

b-
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} x + \ln\left(\frac{1+2e^{-2x}}{1+e^{-x}}\right) - x = \lim_{x \to +\infty} \ln\left(\frac{1+2e^{-2x}}{1+e^{-x}}\right) = \ln 1 = 0$$
a- $f(x) - x = \ln\left(\frac{1+2e^{-2x}}{1+e^{-x}}\right) = 0$

$$\frac{1+2e^{-2x}}{1+e^{-x}} = 1 \quad then \ 1+2e^{-2x} = 1+e^{-x} \quad then \ 2e^{-2x} - e^{-x} = 0$$
Then $e^{-x} = 0$ rejected and $e^{-x} = \frac{1}{2}$ then $-x = \ln\frac{1}{2}$ then $x = \ln 2$

5) a-
$$g'(x) = \frac{e^x(h(x))}{(e^x+1)^2}$$

b-
$$f(x) = \ln g(x) = \ln u$$
 $f'(x) = \frac{u'}{u} = \frac{g'(x)}{g(x)}$

$$g(x) > 0$$
 since $e^u > 0$ so $f'(x)$ has the same sign as $g'(x)$

The sign of g'(x) depends on h(x) since $e^u > 0$

Therefore f'(x) and h(x) have the same sign.

 $Slope\ tangent = slope\ (d')$

$$f'(x) = 1$$

$$\frac{g'(x)}{g(x)} = 1 \text{ then } g'(x) = g(x)$$

$$\frac{e^{x}(e^{2x}+2e^{x}-2)}{(e^{x}+1)^{2}} = \frac{e^{2x}+2}{e^{x}+1} \times (e^{x}+1) \text{ both sides}$$

$$\times$$
 ($e^x + 1$) both sides

$$\frac{e^{x}(e^{2x} + 2e^{x} - 2)}{e^{x} + 1} = \frac{e^{2x} + 2}{1}$$

$$e^{3x} + 2e^{2x} - 2e^{x} = e^{3x} + 2e^{x} + e^{2x} + 2$$

$$e^{2x} - 4e^{x} - 2 = 0$$

$$e^{x} = 2 + \sqrt{6} \quad then \ x = \ln(2 + \sqrt{6}) \text{ or } e^{x} = 2 - \sqrt{6} \quad rejected$$

$$v = f(\ln(2 + \sqrt{6})) = \cdots$$

6)

Exercise 7

Part A

1) a-
$$\lim_{x \to -\infty} f(x) = 3$$
 $y = 3$, $\lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ asymptotic direction parallel $y - axis$. b- $f(x) = 0$ then

2)
$$f'(x) = 2e^{2x} - 4e^x = 0$$
 and set up the table of variations of f .

3)
$$f''(x) = 0 \dots O$$
 is a point of inflection of (C).

4) The tangent (T) at O to (C):
$$y = -2x$$

5)
$$a-h'(x) = 2e^{2x} - 2e^x + 2$$
 and set up the table of sign

b- Deduce, according to the values of x, the relative positions of (C) and (T).

6)

Part B

1) f(x) > 0 then $e^{2x} - 4e^x + 3 > 0$ Set up the table of sign

Then the domain of definition of g is $]-\infty,0[\cup]\ln 3,+\infty[$

- 2) $\lim_{x \to -\infty} g(x)$. Deduce an asymptote (D) of (Ω).
- 3) Show that the line (d) of equation y = 2x is asymptote to (Ω) at $+\infty$.
- 4) Determine the coordinates of the points of intersection of (Ω) with (d) and (D).
- 5) Set up the table of variations of g.

6)

Exercise 8

Part A

1)a-Verify that
$$h'(x) = \frac{(x-1)e^x+1}{x^2}$$
.

b-Let g be the function defined over $]0;+\infty[$ by $g(x)=(x-1)e^x$

Set up the table of variations of g and deduce that h'(x) > 0.

2)a- Calculate $\lim_{x\to 0^+} h(x)$, $\lim_{x\to +\infty} h(x)$ and $\lim_{x\to +\infty} \frac{h(x)}{x}$.

b-

3)a- (Δ), the tangent to (C) at the point with abscissa 1: y = x + 0.72

b-

Part B

1) a- $\lim_{x\to 0} f(x)$, $\lim_{x\to +\infty} f(x)$.

b-
$$f'(x) = h'(x) + \frac{1}{x} = \frac{(x-1)e^x + 1}{x^2} + \frac{1}{x} = \cdots$$
....

2) a- The equation f(x)=0 has a unique solution α and that $0.3<\alpha<0.4$. b- $\alpha<1$ and h is increasing then

$$h(\alpha) < h(1)$$

f(x) = 0 has a unique solution α

Then $f(\alpha) = 0$ then $h(\alpha) + \ln \alpha = 0$ then $h(\alpha) = -\ln \alpha$

$$h(\alpha) < h(1)$$

$$-\ln \alpha < e - 1 \times (-1)$$

$$\ln \alpha > 1 - e$$

3) a- Discuss, according to the values of x, the relative positions of (C) and (Γ). b-

4)
$$A(x, h(x))$$
 $B(x, f(x))$
 $AB = m$

$$\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = m$$

$$\sqrt{(x - x)^2 + (f(x) - h(x))^2} = m$$

$$\sqrt{(h(x) + \ln x - h(x))^2} = m$$

$$\sqrt{(\ln x)^2} = m$$

$$|\ln x| = m$$

$$\ln x_1 = m$$

$$\ln x_2 = -m$$

$$x_1 = e^m$$

$$x_2 = e^{-m}$$

$$x_1 = x_2 = e^m$$

$$x_1 = x_2 = e^m$$

$$x_2 = e^m$$

$$x_1 = x_2 = e^m$$

Part A

$$g(x) = (2x - 1)e^{2x} + 1.$$

- 1) g'(x) and set up the table of variation of g.
- 2) The sign of g(x).

Part B

1)
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{e^{2x} - 1}{x} = \frac{0}{0}$$
$$\lim_{x \to 0^{+}} \frac{(e^{2x} - 1)'}{(x)'} = \lim_{x \to 0^{+}} \frac{2e^{2x}}{1} = 2$$
$$\lim_{x \to 0^{-}} f(x) = 2$$
$$f(0) = 2 \text{ so } f \text{ is continuous at } 0.$$

- 2) $\lim_{x \to -\infty} f(x) = 0$ (d): y = 0
- 3) $\lim_{x \to +\infty} f(x) = +\infty$ and $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ asymptotic direction parallel to y axis.
- 4) a) $\lim_{x \to 0} \frac{f(x) 2}{x} = \frac{f(0) 2}{0} = \frac{0}{0}$ $\lim_{x \to 0} \frac{f'(x)}{1} = f'(0) = \cdots$

b) The line (T) with equation y = 2x + 2 is tangent to (C) at the point with abscissa 0.

5) $f'(x) = \frac{g(x)^2}{x^2}$ for $x \neq 0$ and set up the table of variations of f.

