

■ 概述

OCP8191 是一款高度集成的电源开关,采用准谐振降压(QR-Bulk)模式,应用于恒流控制 LED照明。

OCP8191 包含了一个 550V 功率 MOSFET 开 关与一个功率控制器芯片。此外,芯片还集成了高 压启动、IC 供电电路和一种创新型退磁检测电路, 省去了变压器辅助绕组。芯片采用准谐振控制以提 高效率。

OCP8191 集成了多种保护电路,包括欠压锁定(UVLO),逐周期过流保护(OCP),过热调节(OTP)和 LED 短路保护等。

■ 特征

- 集成 550V 功率 MOSFET
- 无需辅助绕组检测
- 准谐振模式以提高效率
- 内部集成过热功率调节
- 内部集成充电电路和快速启动
- ±4%恒流控制器
- 极低的 VCC 工作电流
- 内部集成 AC 线电压恒流补偿
- 内部保护电路:
 - LED 短路保护
 - 逐周期过流检测
 - 芯片过热保护
 - VCC 欠压锁定功能
 - 脚位悬空保护
- 封装类型 TO-92、TSOT-23-5L

■ 应用

● LED 照明

■ 典型应用电路

图 1 典型应用电路

■ 管脚定义

■ 管脚描述

烘曲分粉	管脚号		47.44	
管脚名称	TO-92	TSOT-23-5L	描述	
Drain	3	4	内部500V MOSFET高压管的漏端	
CS	2	2	芯片地兼峰值电流控制	
VCC	1	5	芯片电源脚	
NC		1,3	悬空	

■ 电路框图

图 2 内部方块电路图

■ 绝对最大额定值(注1)

符号	参数	范围	单位	
VCC	芯片电源电压	7.0	V	
Drain	功率MOSFET漏端电压	-0.3 to 550	V	
θ_{JA}	封装热阻(TO-92)	120	°C/W	
OJA	封装热阻(TSOT-23-5L)	250	°C/W	
T _A	工作环境温度	- 40 ~ 85	°C	
TJ	工作结温	− 40 ~ 150	°C	
T _{STO}	存储温度	− 65 ~ 150	°C	
T _L	管脚温度(焊接10秒)	260	°C	
ESD	НВМ	3	KV	
E9D	MM	250	V	

■ 推荐工作范围(注 2)

符号	参数	范围	单位
T _A	工作环境温度	− 40 ~ 85	°C

■ 电气参数(测试条件:如无特殊说明,T_A=25°)

符号	参数	条件	最小值	典型值	最大值	单位		
电源电压(VCC Pin)								
I _{VCC_OP}	工作电流		-	140	260	uA		
V _{CC_OP}	VCC 工作电压		-	5.8	6.2	V		
V _{CC_OFF}	VCC 欠压锁定阈值		-	5.3	-	V		
时间								
T_{OFF_MIN}	最小关断时间		-	2	-	us		
T_{OFF_MAX}	最大关断时间		-	250	-	us		
电流采样(CSI	Pin)							
T_LEB	CS 输入端前沿消隐时间		-	500	-	ns		
V _{CS_MAX}	电流峰值阈值		490	500	510	mV		
T_{D_OCP}	过流检测和控制延时			100		ns		
过热保护								
T _{SD}	过热调节温度点	(注3)		150		$^{\circ}\!$		
功率 MOSFET	(Drain Pin)							
V_{BR}	功率管漏源击穿电压		550	-	-	V		
R _{dson}	静态漏源电阻	I _{Drain} =50mA	-	12	-	Ω		

- 注 1: 最大极限值是指超出该工作范围,芯片有可能损坏。
- 注 2: 超出推荐工作范围,不能保证芯片能正常工作。
- 注 3: 设计保证。

■ 典型参数特征

(测试条件: 如无特殊说明, T_A=25℃, V_{CC}=5.8V)

■ 应用信息

OCP8191 包含了一个高压功率 MOSFET 开关与一个功率控制芯片。内部集成的高精度恒流控制和高可靠性保护功能使其适合应用于 LED 照明。

1. 5.8V调节器

在OCP8191中,内部MOSFET关断的时候,5.8V的电压调节器通过Drain脚汲取一路电流给VCC电容充电到5.8V。 当功率MOSFET开启时,充电器件停止给VCC电容继续存储能量。极低的功耗允许OCP8191仅从Drain端汲取电流即可 连续工作,约1uF的电容值是能有效保证高频去耦合和能量存储。

2. 极低工作电流

OCP8191工作电流为140uA (典型值),极低的工作电流有助于更高的效率和使用较小的VCC电容。

3. 无辅助绕组的电流过零检测

在OCP8191中,通过监测MOSFET的栅漏寄生电容Crss的耦合电流实现电流过零点的检测。当电感电流续流到零后,漏端电压的变化受电感和MOSFET漏端电容的谐振控制。寄生电容Crss上的电压震荡会引起电流变化,漏端电压震荡减小时产生一个负电流,漏端电压震荡上升时产生一个正电流。通过检测该电流的变化来确定电感电流过零点,如图3所示:

图3 电流过零检测

4. 准谐振降压(QR-Buck)恒流驱动

在准谐振降压模式下,芯片保证CS峰值电流恒定并且在第一个谐振波谷处开始一个新的PWM周期。因此,可以同时实现高精度恒流控制和高转换效率。LED调节器输出平均电流由下式给出:

$$I_{\text{Buck_CC_OUT}}(mA) = \frac{1}{2} \times \frac{500mV}{\text{Rcs}(\Omega)}$$
(1)

在上式中,Rcs为连接在CS脚和降压转换系统地之间的采样电阻。

5. 最小和最大关断时间

在OCP8191中,最小关断时间(典型值2us)是用来抑制功率管关断时的振铃。在电感具有很大漏感的应用中,最小关断时间是必要的。OCP8191中最大关断时间典型值为250us。

6. 电流限制和前沿消隐

电流限制电路采样VCC和CS之间的电压,如在框图中所示。当采样电压超过内部阈值(500mV)时,功率MOSFET在此周期的剩余时间内关断。芯片内部集成前沿消隐电路,在前沿消隐时间内(典型值500ns),逐周期电流检测比较器无效,因此不会关断栅驱动。

7. 芯片过热调节保护(OTP)

OCP8191 集成了过热调节功能。当IC温度超过150℃,系统调整输出电流逐渐减小,如图4所示。因此,输出功率和热消耗都会减少,采用这种方式,系统温度可有效限制并且提高了系统可靠性。

图 4 过热保护示意图

8. 功率管软开关

OCP8191采用软开关驱动功率管以优化EMI性能。

■ 订购信息

型号	封装	包装数量	温度范围	环保等级	基座材料
OCP8191MAD	TO-92	2000pcs/reel	-40∼85℃	Green	Cu
OCP8191TWAD	TSOT-23-5L	3000pcs/reel	-40∼85℃	Green	Cu

■ 打标信息

■ 封装信息

(1) TO-92

佐 卫	尺寸(毫米)		尺寸 (英寸)		
符号	最小	最大	最小	最大	
А	4.3	4.7	0.169	0.185	
A1	4.3	4.7	0.169	0.185	
Т	3.3	3.7	0.130	0.146	
d	0.33	0.43	0.013	0.017	
Р	12.4	13.0	0.488	0.512	
P0	12.5	12.9	0.492	0.508	
P2	6.05	6.65	0.238	0.262	
F1, F2	2.2	2.8	0.087	0.110	
Δh	-0.1	0.1	0.004	0.004	
W	17.5	19.0	0.689	0.748	
W0	5.5	6.5	0.217	0.256	
W1	8.5	9.5	0.335	0.374	
W2	-	1.0	-	0.039	
Н	19.0	21.0	0.748	0.827	
H0	15.5	16.5	0.610	0.650	
L1	2.5	-	0.098	-	
D0	3.8	4.2	0.150	0.165	
t1	0.35	0.45	0.014	0.018	
t2	0.15	0.25	0.006	0.010	
P1	3.55	4.15	0.140	0.163	
ΔΡ	-0.1	0.1	-0.004	0.004	

(2) TSOT-23_5L

符号	尺寸 (毫米)		尺寸(英寸)	
गुच	最小	最大	最小	最大
А	-	1.10	-	0.043
A1	0.000	0.100	0	0.004
A2	0.7	1.0	0.028	0.039
С	0.12	REF.	0.005 REF.	
D	2.70	3.10	0.106	0.122
E	2.60	3.00	0.102	0.118
E1	1.40	1.80	0.055	0.071
L	0.45 REF.		0.018 REF.	
L1	0.60 REF.		0.024 REF.	
θ	0°	10°	0°	0.394°
b	0.30	0.50	0.012	0.02
С	0.95 REF.		0.037 REF.	
c1	1.90	1.90 REF. 0.075 REF.		5 REF.