ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY

Numer zadania		Etapy rozwiązania zadania	Liczba punktów	Uwagi dla egzaminatorów
	1.1	Podanie wartości b : $b = 2$.	1	
1	1.2	Sporządzenie wykresu funkcji g.	1	Krzywa będąca wykresem funkcji g dla $x < 4$ nie może przecinać prostej o równaniu $y = 2$.
	1.3	Zapisanie szukanych wartości parametru p : $p = 0$ lub $p \ge 2$.	1	
2	2.1	Zastosowanie definicji wartości bezwzględnej i zapisanie: $-4x-12 < -x-5$ dla $x \in (-\infty, -5)$, $-4x-12 < x+5$ dla $x \in (-5, -3)$, $4x+12 < x+5$ dla $x \in (-3, \infty)$.	1	
	2.2	Rozwiązanie nierówności liniowych bez uwzględniania ograniczeń: $x > -\frac{7}{3}$, $x > -\frac{17}{5}$, $x < -\frac{7}{3}$.	1	
	2.3	Uwzględnienie ograniczeń, tzn. zapisanie zbiorów rozwiązań poszczególnych nierówności: zbiór pusty, $\left(-\frac{17}{5}, -3\right), \left\langle -3, -\frac{7}{3}\right\rangle$.	1	
	2.4	Wyznaczenie zbioru rozwiązań nierówności z wartością bezwzględną: $\left(-\frac{17}{5}, -\frac{7}{3}\right)$.	1	
	2.1	II sposób rozwiązania: Zapisanie danej nierówności w postaci : $4 x+3 < x+5 $.	1	

	2.2	Podniesienie obu stron nierówności do drugiej potęgi:	1	
	2.2	$4^2 \cdot (x+3)^2 < (x+5)^2.$	1	
	2.3	Doprowadzenie nierówności do postaci iloczynowej: $(3x+7) \cdot (5x+17) < 0$ lub $15\left(x+\frac{17}{5}\right)\left(x+\frac{7}{3}\right) < 0$.	1	Punkt przyznajemy, gdy zdający zapisze nierówność w postaci ogólnej i obliczy pierwiastki trójmianu kwadratowego.
	2.4	Zapisanie zbioru rozwiązań nierówności: $x \in \left(-\frac{17}{5}, -\frac{7}{3}\right)$.	1	
	2.1	Metoda graficzna. Zapisanie danej nierówności w postaci : $4 x+3 < x+5 $.	1	
	2.2	Sporządzenie wykresów funkcji $f(x) = 4 x+3 $ i $g(x) = x+5 $.	1	
	2.3	Wyznaczenie odciętych punktów wspólnych wykresów funkcji f i g.	1	
	2.4	Zapisanie zbioru rozwiązań nierówności: $\left(-\frac{17}{5}, -\frac{7}{3}\right)$.	1	
3	3.1	Sporządzenie rysunku.	1	Na rysunku muszą być szkice wykresów obu funkcji podanych w zadaniu.
	3.2	Zapisanie współrzędnych dowolnego punktu paraboli w zależności od jednej zmiennej: np. $P = (x, x^2)$.	1	
	3.3	Wyznaczenie odległości punktu P od danej prostej: $d = \frac{\left 2x - x^2 - 6\right }{\sqrt{5}}$.	1	
	3.4	Zapisanie odległości bez wartości bezwzględnej: $d = \frac{(x-1)^2 + 5}{\sqrt{5}} \text{ lub } d = \frac{x^2 - 2x + 6}{\sqrt{5}}.$	1	

	3.5	Oszacowanie najmniejszej wartości: $d \ge \sqrt{5}$.	1	
	3.4	II sposób rozwiązania: (czynności 3.4 i 3.5) Wyznaczenie najmniejszej wartości funkcji $d(x) = \frac{\left 2x - x^2 - 6\right }{\sqrt{5}}$: $d_{\min} = \sqrt{5}$.	1	Zdający może wyznaczyć równanie prostej równoległej do danej prostej, stycznej do paraboli i obliczyć odległość między tymi prostymi równoległymi.
	3.5	Zapisanie wniosku: $d \ge \sqrt{5}$.	1	
	4.1	Obliczenie prawdopodobieństw: $P(A) = \frac{2}{3}$, $P(B) = \frac{3}{4}$.	1	
4	4.2	Zastosowanie prawa De Morgana: $A' \cap B' = (A \cup B)'$.	1	Zdający nie musi wprost zapisywać prawa De Morgana.
	4.3	Wykorzystanie wzoru na prawdopodobieństwo sumy zdarzeń.	1	
	4.4	Obliczenie wartości $P(A' \cap B')$: $P(A' \cap B') = \frac{1}{12}$.	1	
	5.1	Zapisanie wzoru funkcji w postaci: $h(x) = \frac{a}{x-2} + 1$.	1	
5	5.2	Obliczenie współczynnika a i zapisanie wzoru funkcji: $a = 2$, $h(x) = \frac{2}{x-2} + 1$.	1	Wystarczy obliczenie współczynnika a . Akceptujemy podanie wzoru $h(x) = \frac{x}{x-2}, \text{ bez uzasadnienia.}$ Przyznajemy wtedy punkty za czynności 5.1, 5.2.
	5.3	Obliczenie wartości funkcji h dla $x = \sqrt{3}$: $h(\sqrt{3}) = -2\sqrt{3} - 3$ i zapisanie wniosku.	1	
6	6.1	Zastosowanie wzoru skróconego mnożenia i zapisanie wyrażenia w postaci: $2 - \sqrt{3} + 2 \cdot \left(2 - \sqrt{3}\right)^{\frac{1}{2}} \cdot \left(2 + \sqrt{3}\right)^{\frac{1}{2}} + 2 + \sqrt{3}$ lub $2 - \sqrt{3} + 2 \cdot \sqrt{\left(2 - \sqrt{3}\right) \cdot \left(2 + \sqrt{3}\right)} + 2 + \sqrt{3}$.	1	
	6.2	Obliczenie liczby a : $a = 6$.	1	
	6.3	Obliczenie liczby $b:b=9$.	1	
	6.4	Zapisanie wniosku wraz z uzasadnieniem: $a^b > b^a$.	1	

7	7.1	Zapisanie, że liczba (-3) jest jednym z rozwiązań danego równania $(x+3)(x^2+5x+4)=0$.	1	
	7.2	Rozwiązanie równania kwadratowego $x^2 + 5x + 4 = 0$: $x = -1$, $x = -4$.	1	
	7.3	Rozwiązanie warunku, dla którego drugi czynnik równania nie ma rozwiązań: $\Delta < 0$ dla $p \in (-\infty, -2) \cup (2, \infty)$.	1	
	7.4	Zapisanie układu warunków, dla których liczba (-3) jest jedynym rozwiązaniem równania kwadratowego $x^2 + (p+4)x + (p+1)^2 = 0$: $\Delta = 0 \text{ i } \frac{-b}{2a} = -3.$	1	Wyznaczenie wszystkich wartości p , dla których liczba (-3) jest rozwiązaniem równania kwadratowego $x^2 + (p+4)x + (p+1)^2 = 0$: $p = 2$ lub $p = -1$.
	7.5	Rozwiązanie układu warunków z punktu 7.4: $p = 2$.	1	Sprawdzenie, że tylko dla $p = 2$ liczba (-3) jest jedynym rozwiązaniem równania kwadratowego.
	7.6	Zapisanie odpowiedzi: $p \in (-\infty, -2) \cup (2, \infty)$.	1	
	7.4	II sposób rozwiązania: (czynności 7.4, 7.5) Zapisanie warunku, przy którym liczba (-3) jest jedynym rozwiązaniem równania $x^2 + (p+4)x + (p+1)^2 = 0$: $(x+3)^2 = x^2 + (p+4)x + (p+1)^2$.	1	
	7.5	Obliczenie $p: p = 2$.	1	
	8.1	Zapisanie zależności między bokami czworokąta opisanego na okręgu: $a+b=2c$, gdzie a – długość dłuższej podstawy, b – długość krótszej podstawy, c – długość ramienia trapezu.	1	
8	8.2	Wyznaczenie różnicy długości podstaw trapezu za pomocą długości ramienia: $a - b = 4c - 60$.	1	
	8.3	Wyrażenie wysokości trapezu w zależności od długości ramienia: $h = \sqrt{-3c^2 + 120c - 900}$.	1	
	8.4	Wyznaczenie pola trapezu jako funkcji długości jego ramienia: $P = c \cdot \sqrt{-3c^2 + 120c - 900}$.	1	
	8.5	Wyznaczenie dziedziny funkcji $P: c \in (15,30)$.	2	1 pkt za oszacowanie $c < 30$. 1 pkt za oszacowanie $c > 15$.

	9.1	Oznaczenie współrzędnych środka okręgu $S = (x, 0)$ i zapisanie równania pozwalającego wyznaczyć współrzędne środka okręgu, np.: $\sqrt{(x-1)^2 + 4^2} = \sqrt{(x+6)^2 + 3^2}$.	1	
	9.2	Obliczenie współrzędnych punktu $S: S = (-2, 0)$.	1	Jeśli zdający wyznaczy równanie symetralnej odcinka <i>AB</i> oraz jej punkt przecięcia z osią <i>Ox</i> , to przyznajemy punkty w czynnościach 9.1 oraz 9.2.
	9.3	Obliczenie długości promienia okręgu: $r = 5$ i zapisanie równania okręgu: $(x+2)^2 + y^2 = 25$.	1	
9	9.4	Wyznaczenie równania prostej $AB: y = \frac{1}{7}x + \frac{27}{7}$.	1	Wystarczy, że zdający obliczy współczynnik kierunkowy prostej <i>AB</i> .
	9.5	Zapisanie równania rodziny prostych prostopadłych do prostej AB : $y = -7x + b$.	1	
	9.6	Wykorzystanie wzoru na odległość punktu $(0,0)$ od prostej o równaniu $y = -7x + b$ i zapisanie równania: $\sqrt{2} = \frac{ b }{5\sqrt{2}}$.	1	
	9.7	Wyznaczenie równań prostych spełniających warunek zadania: $y = -7x - 10$, $y = -7x + 10$.	1	Wystarczy, że zdający obliczy wartości b , o ile zapisał równanie rodziny prostych $y = -7x + b$.

10	10.1	Zapisanie, że ciąg $(\sin \alpha, \sin \beta, 1)$ lub $(1, \sin \beta, \sin \alpha)$ jest geometryczny.	1	Nie wymagamy rozpatrzenia obu przypadków, ale istotne jest założenie, że "1" jest pierwszym lub ostatnim wyrazem ciągu.
	10.2	Wykorzystanie definicji lub własności ciągu geometrycznego i zapisanie warunku: $\sin^2 \beta = \sin \alpha \cdot 1$.	1	
	10.3	Wykorzystanie zależności między funkcjami trygonometrycznymi w trójkącie prostokątnym: $\sin \beta = \cos \alpha$ oraz jedynki trygonometrycznej i zapisanie równania z niewiadomą $\sin \alpha : 1 - \sin^2 \alpha = \sin \alpha$.	1	
	10.4	Rozwiązanie równania: $\sin \alpha = \frac{\sqrt{5} - 1}{2}$, $\sin \alpha = \frac{-\sqrt{5} - 1}{2}$. Podanie odpowiedzi: $\sin \alpha = \frac{\sqrt{5} - 1}{2}$.	1	

	11.1	Zaznaczenie na rysunku szukanego kata.	1	
	11.2	Obliczenie długości przekątnej podstawy i wysokości ściany bocznej: $a\sqrt{2}$ i $\frac{a\sqrt{3}}{2}$, gdzie a oznacza długość krawędzi ostrosłupa.	1	
11	11.3	Zastosowanie twierdzenia kosinusów w trójkącie, w którym występuje kąt dwuścienny $\alpha: \left(a\sqrt{2}\right)^2 = \left(\frac{a\sqrt{3}}{2}\right)^2 + \left(\frac{a\sqrt{3}}{2}\right)^2 - 2 \cdot \frac{a\sqrt{3}}{2} \cdot \frac{a\sqrt{3}}{2} \cdot \cos \alpha$.	1	
	11.4	Obliczenie kosinusa kąta α : $\cos \alpha = -\frac{1}{3}$.	1	
	11.3	II metoda rozwiązania: (czynności 11.3 i 11.4) Zastosowanie definicji funkcji sinus dla połowy kąta α : $\sin \frac{\alpha}{2} = \frac{\frac{a\sqrt{2}}{2}}{\frac{a\sqrt{3}}{2}} = \frac{\sqrt{6}}{3}.$	1	Jeśli zdający obliczy przybliżoną wartość kąta $\frac{1}{2}\alpha$, a następnie wartość kąta α i poprawnie ustali na tej podstawie przybliżoną wartość $\cos\alpha$, to otrzymuje punkty w czynnościach 11.3 i 11.4. Za samo obliczenie przybliżonej wartości kąta α nie przyznajemy punktów w czynności 11.4.
	11.4	Wyznaczenie kosinusa kąta α : $\cos \alpha = 1 - 2 \cdot \sin^2 \left(\frac{\alpha}{2}\right) = -\frac{1}{3}$.	1	

Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie przyznajemy maksymalną liczbę punktów.