GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2023 (COGC-2023)

Semester- V

Course Title: Virtual Instrumentation

(Course Code: 4351705)

Diploma program in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	Fifth

1. RATIONALE

The course provides introduction to virtual instrumentation. Using virtual instrumentation the students can design and analyze various circuits and control systems. This course has been designed so that students can familiarize with various simulation software tools to build and simulate the different types of Electronics and Control Systems.

2. COMPETENCY ('Program Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Apply concepts of virtual instrumentation in different applications

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) CO1: Define virtual instrumentation concepts
- b) CO2: Compare traditional and virtual instrumentation.
- c) CO3: Describe data acquisition system for virtual instrumentation
- d) CO4. Simulate different electronic and control system using virtual instrumentation environment
- e) CO5: Apply Virtual Instrumentation techniques for Environment Sustainability.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Sc	heme	Total Credits					
(In	Hour	rs)	(L+T+P/2)	Theory	Theory Marks			Total
\mathbf{L}	T	P	С	CA	ESE	CA	ESE	Marks
3	0	2	4	30*	70	25	25	150

GTU - COGC-2023 Curriculum

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the COs.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx . Hrs. require d
1	Install circuit Simulating and Analyzing software and familiarize with the system requirements and essential features/specifications of the software in use.	1	02
2	Introduction To Basic of Prosim/PSpice/Multisim software	1	02
3	Install LabVIEW software with necessary component	2	02
4	Introduction To LabVIEW environment	2	02
5	Simulate a VI for LED on-off using switch	2	02
6	To perform Boolean operations using virtual instrumentation software	2	02
7	Generate first N Numbers using virtual instrumentation software	1	02
8	Perform basic arithmetic operations using virtual instrumentation software	1	02
9	Determine poles and zeros of given first order transfer function	1	02
10	Determine root locus of given first order transfer function	1	02
11	Study different system Toolbox in virtual instrumentation software	1	02
12	Simulate basic half-wave rectifier and plot its output	1	02
13	Simulate basic full-wave rectifier and plot its output	1	02

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx . Hrs. require d
14	Create mathshcript to find solution in virtual instrumentation software	1	02
15	Simulate for loop for a given example	1	02
16	Simulate while loop for a given example	2	02
17	Generate square wave using virtual instrumentation software	2	02
18	Generate triangular wave using virtual instrumentation software.	2	02
19	Create data acquisition system for temperature measurement using virtual instrumentation environment	3	02
20	Compare PC based system and PXI system.	3	02
21	Develop program to find out frequency of a given signal.	3	02

Note

- i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Ability to Identify and solve engineering problems	20
2	Ability to Prepare experimental setup	20
3	Ability to Conduct the experiment	20
4	Ability to Record observations correctly	20
5	Ability to Interpret the result and conclude	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the Pros is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications.
1	Computer with Prosim/PSpice/Multisim software.
2	Computer with Matlab /Scilab software.
3	Computer with LabVIEW software.

7. AFFECTIVE DOMAIN OUTCOMES

The following sample Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and Pros More could be added to fulfil the development of this competency.

- a. Positively Influence others as a leader/a team member.
- b. Meet the expectations of your superior/teacher/guide.
- c. Cooperate your team mates and colleagues.
- d. Help worker/staff/personnel nearby you.
- e. Obey your higher officials/trainers/guide/manager.
- f. Respect more experienced persons in your field.
- g. Aid new comers/new joinees in your field.
- h. Empathize your coworkers.
- i. Tolerate the unpleasant and extreme environment conditions in the field.
- j. Follow safety practices while using electrical appliances.
- k. Practice environmentally friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

GTU - COGC-2023 Curriculum

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of Revised Bloom's taxonomy in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Major Learning Outcomes ('Course Outcomes' in	Topics and Sub-topics
	Cognitive Domain according	
	to NBA terminology)	
Unit-I Introduction to Virtual Instrumentation	1a Introduction to virtual instrumentation 1b Compare virtual instrumentation and traditional instrumentation 1c Role virtual instrumentation in real-time world	1.1 Historical perspective of virtual instrumentation Basics of Virtual instrumentation 1.2 Block diagram and Architecture of Virtual Instrumentation 1.3 Data flow techniques in virtual instrumentation 1.4 Compare virtual instrumentation and traditional instrumentation 1.5 Application of virtual instrumentation in real-time world 1.6 Role of hardware in virtual instrumentation 1.7 Role of software in virtual instrumentation 1.8 basic concepts of graphical system design model
Unit-II Programming techniques in Virtual Instrumentation environment	2a Basics of Graphical User Programming (GUI) 2b Compare conventional programming and GUI based programming 2e Prepare basic program in virtual instrumentation software 2f compare graphical programming and text based programming	2.1 VI programming techniques VIs and sub-VIs, 2.2 Basics of Loops and charts 2.3 Basics of Arrays, graphs 2.4 Case and sequence structures, formula nodes, local and global variables, string and file I/O, math script.

T T 1:		
Unit	Major Learning Outcomes ('Course Outcomes' in	Topics and Sub-topics
	Cognitive Domain according	
	to NBA terminology)	
Unit III	3a Introduction to Data	3.1 Explain concept of Data acquisition
Elements Of	acquisition system	system
Data	3b Selection criteria of hardware	3.2Enlist and explain Selection criteria of
Acquisition in	for data acquisition system	hardware for data acquisition system
virtual instrumentation	1 -	<u> </u>
environment	3c Basics of ADC, DAC, DIO	3.3Describe Basics of ADC, DAC, DIO
CHVITOIMICHT	3d Basics of Counters and	3.4Describe Basics of Counters and timers
	timers	3.5Describe concept RS232/ RS485 module
	3e Timing, Interrupts; RS232C/	
	RS485	
Unit – IV	4aPC architecture, current	4.1PC architecture, current trends, operating
Operating	trends, operating system	system requirements,
System And Hardware	requirements,	4.2 Explain PC based instrumentation,
Overview	4b PC based instrumentation,	4.3Interface requirement for virtual
0,12,12,	4c Interface requirement for	instrumentation
	virtual instrumentation	4.4Basics of analog and digital interfaces
	4d Basics of analog and digital	4.5Compare PC based and PXI based system
	interfaces	-
	4e Compare PC based and PXI	
	based system	
Unit – V	5aAdvantage of virtual	5.1 Advantage of virtual instrumentation for
Virtual	instrumentation for environment	environment sustainability
Instrumentation	sustainability	5.2 Role of virtual instrumentation in
for Environment	5b Role of virtual	environment conservation
Sustainability	instrumentation in environment	5.3 measurement and plotting of environment
	conservation	parameter in VI environment
	5c measurement and plotting of	
	environment parameter in VI	
	environment	

Note:

The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

		Taaahina	Distribution of Theory Marks				
Unit	Unit Title	Teaching Hours	R	U	A	Total	
-		Hours	Level	Level	Level	Marks	
I	Introduction to Virtual Instrumentation	12	4	6	2	18	
II	Programming Techniques in					16	
	Virtual Instrumentation	10	1	4	5		
	Environment						
III	Elements of Data Acquisition in					16	
	virtual instrumentation	8	1	3	4		
	environment						
IV	Operating System And Hardware					12	
	Overview	8	1	3	4		
V	Virtual Instrumentation For					08	
	Environment Sustainability	4	1	2	1		
	Total	42	8	18	16	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

10. SUGGESTED LIST OF STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student related co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- A. Industrial visit for students in order to have an exposure to the real-world environment
- B. A workshop/seminar where students can have interaction with industry personnel.
- C. Simulate different system and generate output
- D. Model preparation. E.g. prepare model of heated type air dryer.
- E. Present a seminar on any one technical topic.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Display of animation videos of industrial loops.
- ii. Arrange industrial visit to nearby process industry.

iii. Compliment student for his/her work done during the practical in order to motivate him/her by student and Instruct him/her remedies to improve his work if required.

- iv. Arrange expert lectures of instrumentation engineers working in process industries.
- v. Utilize Massive Open Online Courses (MOOCs) to teach various topics/sub-topics.
- vi. Research through net i.e. internet based home assignments.
- vii. Assign preparation of mini projects.
- viii. Guide students to focus on energy savings in industry and home.
- ix. Guide students on how to address issues on environment and sustainability.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her at the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that he/she contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course. The student ought to submit a micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Make a working virtual circuit of rectifier
- b) Make a working virtual circuit of AC-dc power supply.
- c) Make a working virtual circuit of filter, amplifier base on respective branch subject.
- d) Make a virtual model of first order plant system in scilab.
- e) Make a working model of P-controller of the first order plant system.
- f) Make a project of calculator in LabVIEW.
- g) Make a project of Boolean gates in LabVIEW.
- h) Water level detection with LabVIEW. ...
- i) Temperature sensing with LabVIEW. ...
- j) Temperature conversion with LabVIEW. ...
- k) Quadratic roots calculation with LabVIEW. ...
- 1) Measuring and controlling temperature with LabVIEW. ...
- m) Speech recognition with LabVIEW. ...
- n) Home automation with energy Gentrification simulation in LabVIEW

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Books	Author	Publication
1	Virtual Instrumentation Using Labview	JOVITHA JEROME ·	PHI Learning
2	A Guide To Matlab: For Beginners And Experienced Users	Ronald L. Lipsman, Jonathan Rosenberg	Cambridge University Press
3	Modelling And Simulation In Scilab/Scicos	Stephen L. Campbell	Springer

14. List of Software/Learning Websites

- MATLAB,
- SCILAB
- Prosim
- PSpice
- LabVIEW
- www.mathworks.in
- www.ni.com

15. PO-COMPETENCY-CO MAPPING

Semester V	Applied Instrumentation- (Course Code: 4351701)							
		POs						
Competency & Course Outcomes	PO 1 Basic & Discipli ne specific knowle dge	PO 2 Probl em Analy sis	develop-	PO 4 Engineerin g Tools, Experimen -tation & Testing	PO 5 Engineerin g practices for society, sustainabili ty & environmen t	PO 6 Project Manage- ment	PO 7 Life- long learnin g	
<u>Competency</u> To maintain industrial processes.								
CO1: Define virtual instrumentation concepts	2	1	-	1	1	-	1	

CO2: Compare traditional and virtual instrumentation	2	1	1	1	1	1	1
CO3: Describe data acquisition system for virtual instrumentation	1	2	2	2	2	1	2
CO4: Simulate different electronic and control system using virtual instrumentation environment	2	1	1	2	1	2	1
CO5: Application of Virtual Instrumentation for Environment Sustainability	2	1	1	2	2	1	1

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Member – Board of Studies (GTU), Electrical and Allied branches

Prof. Suresh Z. Shyara, IC Engineering, AVPTI, Rajkot.

Prof. Mahesh J. Vadhavaniya, IC Engineering, Government Polytechnic, Palanpur.

GTU Resource Persons

Prof. A. K. Bula, IC Engineering, Government Polytechnic, Gandhinagar.

Prof. V. A. Chauhan, IC Engineering, Government Polytechnic, Palanpur.

Prof. S. V. Gandhi, IC Engineering, Government Polytechnic, Ahmedabad.