

MEMBAHAS LANJUTAN TERAPAN ALJABAR BOOLEAN

Terapan aljabar Boolean antara lain:

- 1. Aljabar Boolean 2 Variable dan 3 Variable
- 2. Prinsip Dualitas
- 3. Fungsi Boolean4. Penjumlahan dan Perkalian 2 Fungsi
- 5. Komplemen Fungsi Boolean
- 6. Bentuk Kanonik
- 7. Rangkaian Logik (Gate)
- 8. Penyederhanaan Fungsi Boolean

Pada pertemuan 5 hanya membahas:

- Komplemen fungsi Boolean
- Rangkaian logic (gate) Bentuk Kanonik

Point 1-4 sudah dibahas pada pertemuan 4, sedangkan point 8 akan dibahas pada pertemuan selanjutnya

KOMPLEMEN FUNGSI BOOLEAN

- Fungsi Boolean jika dikomplemenkan akan diperoleh fungsi komplemen
- ❖Fungsi komplemen dari f yaitu f' dapat dicari dengan dua cara :
- 1. Menggunakan hukum DeMorgan
- 2. Menggunakan Prinsip Dualitas

KOMPLEMEN FUNGSI BOOLEAN

1. Hukum De Morgan

Hukum De Morgan untuk dua variable/peubah (berlaku untuk n variable) x1 dan x2 adalah :

$$i (x1 + x2)' = x1'.x2'$$

 $ii (x1.x2)' = x1' + x2'$

2. Prinsip Dualitas

- □Tentukan dual dari ekspresi Boolean yang merepresentasikan *f*
- □Komplemenkan setiap literal didalam dual tersebut

KOMPLEMEN FUNGSI BOOLEAN

Contoh : carilah komplemen fungsi Boolean dibawah ini :

1.
$$f(x, y, z) = x.(y + z)$$

2.
$$h(a, b, c) = a'b + (bc)'$$

3.
$$h(a,b,c) = a'b + ac' + (bc)'$$

menggunakan cara **Hukum DeMorgan** dan **Prinsip Dualitas**

KOMPLEMEN FUNGSI BOOLEAN

1. Hukum De Morgan

$$f(x, y, z) = x. (y + z)$$

$$f'(x, y, z) = [x.(y + z)]'$$

= $x' + (y + z)'$
 $f'(x, y, z) = x' + (y'.z')$

2. Prinsip Dualitas

$$f(x, y, z) = x.(y + z)$$

Dual dari:

$$f(x, y, z) = x + (y. z)$$

Komplemenkan tiap literalnya:

$$f'(x,y,z)=x'+(y'.z')$$

Hasil sama

KOMPLEMEN FUNGSI BOOLEAN

1. Hukum De Morgan

$$h(a,b,c) = a'b + (bc)'$$

$$h'(a,b,c) = [a'b + (bc)']' \qquad \text{Hkm Involusi}$$

$$= (a'b)' \cdot ((bc)')'$$

$$= ((a')' + b') \cdot (bc)$$

$$h'(a,b,c) = (a+b') \cdot (bc)$$

$$H_{asi|sama}$$

2. Prinsip Dualitas

$$h(a, b, c) = a'b + (bc)'$$

= $a'b + (b' + c')$

Dual dari:

$$h(a,b,c)=(a'+b).(b'.c')$$

Komplemenkan tiap literalnya: h'(a, b, c) = (a + b').(bc)

KOMPLEMEN FUNGSI BOOLEAN

1. Hukum De Morgan

(a')' = a

$$h(a,b,c) = a'b + ac' + (bc)'$$

$$h'(a,b,c) = [a'b + ac' + (bc)']'$$

$$= (a'b)' \cdot (ac')' \cdot ((bc)')'$$

$$= ((a')' + b') \cdot (a' + (c')') \cdot ((bc)')'$$

$$h'(a,b,c) = (a+b') \cdot (a'+c) \cdot (bc)$$

$$H_{asj}$$

Hkm Involusi 2. Prinsip Dualitas

$$h(a,b,c) = a'b + ac' + (bc)'$$

$$h(a,b,c) = a'b + ac' + (b'+c')$$

Dual dari:

$$h(a,b,c) = (a'+b).(a+c').(b'.c')$$

Komplemenkan tiap literalnya:

$$h'(a,b,c) = (a+b').(a'+c).(b.c)$$

RANGKAIAN LOGIC (GATE)

Aljabar Boolean
dapat juga di
implementasikan
ke dalam
rangkaian
gerbang logika

1. Gerbang Inverter (NOT):

Gerbang logika yang mempunyai satu masukan dan satu keluaran.

Simbol Gerbang:

IN OUT x,

2. Gerbang OR: gerbang logika yang mempunyai dua atau lebih masukan dengan satu sinyal keluaran.

Simbol Gerbang:

RANGKAIAN LOGIC (GATE)

X

3. Gerbang AND: gerbang logika yang mempunyai dua atau lebih masukan dengan satu sinyal keluaran.
Simbol Gerbang:

 4. Gerbang NAND:

gerbang logika yang mempunyai dua atau lebih masukan dengan satu sinyal keluaran.

Simbol Gerbang:

5. Gerbang NOR: gerbang logika yang mempunyai dua atau lebih masukan dengan satu sinyal keluaran.

Simbol Gerbang:

RANGKAIAN LOGIC (GATE)

Contoh 1:

Nyatakan fungsi f(x,y) = xy + x'y

Dalam rangkaian logika

Wahyu Nur Cholifah-Matematika Diskrit

MATEMATIKA DISKRIT

RANGKAIAN LOGIC (GATE)

Contoh 2:
Nyatakan fungsi f(x, y, z) = y'(xz' + z)Dalam rangkaian
logika

RANGKAIAN LOGIC (GATE)

Contoh 3: Nyatakan fungsi f(x, y, z) = [(yz)' + (x + z)]'Dalam rangkaian logika

Ada 2 bentuk kanonik:

- 1. SOP (sum of product / penjumlahan dari hasil kali / miniterm)
 - Notasi: $f(x, y, z) = (x. y. z) + (x. y'. z) + (x'. y'. z') + \cdots$
 - symbol miniterm = Σm , dimana nilai x' = 0; x = 1
- 2. POS (product of sum / perkalian dari hasil jumlah / maxterm)
 - Notasi : $f(x, y, z) = (x' + y + z') \cdot (x + y' + z) \cdot (x + y + z) \cdot ...$
 - symbol maxterm = πM , dimana nilai x' = 1; x = 0

X	y	mi	niterm	maxterm		
		suku	lambang	suku	lambang	
0	0	x'.y'	m0	x+y	M0	
0	1	x'.y	m1	x+y'	M1	
1	0	x.y'	m2	x'+y	M2	
1	1	x.y	m3	x'+y'	M3	

Tabel Miniterm & Maxterm

	У	Z	miı	niterm	maxterm	
X			suku	lambang	suku	lambang
0	0	0	x'.y'.z'	m0	x+y+z	M0
0	0	1	x.'y'.z	m1	x+y+z'	M1
0	1	0	x'.y.z'	m2	x+y'+z	M2
0	1	1	x'.y.z	m3	x+y'+z'	M3
1	0	0	x.y'.z'	m4	x'+y+z	M4
1	0	1	x.y'.z	m5	x'+y+z'	M5
1	1	0	x.y.z'	m6	x'+y'+z	M6
1	1	1	x.y.z	m7	x'+y'+z'	M7

Untuk menyatakan fungsi Boolean ke dalam bentuk kanonik dapat dilakukan dengan cara

- 1. Menggunakan Table Kebenaran
- 2. Melengkapi variable yang belum terdapat dalam sukunya

Bentuk Kanonik dapat juga diimplementasikan ke dalam bentuk **Table Kebenaran**

Untuk menghasilkan

- ❖SOP maka dilihat dari kombinasi variable fungsi yang bernilai 1
- ❖POS maka dilihat dari kombinasi variable fungsi yang bernilai 0

Point 1

Contoh:

Nyatakan

Tabel

Kebenaran

dibawah ini

ke dalam

bentuk SOP

dan POS

1

\boldsymbol{x}	y	z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

2

\boldsymbol{x}	y	z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

x	y	z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

1. SOP

- a. Cek **nilai fungsi =1** yaitu : 001, 100, 111
- b. _ Fungsi Boolean dalam bentuk kanonik

$$f(x,y,z) = x'y'z + xy'z' + xyz$$

= 001 + 100 + 111
= m1 + m4 + m7
$$f(x,y,z) = \Sigma m(1,4,7)$$

- 2. POS
- a. Cek **nilai fungsi =0** yaitu : 000,010,011,101,110
- b. Fungsi Boolean dalam bentuk kanonik

$$f(x,y,z) = (x + y + z).(x + y' + z).(x + y' + z').(x' + y + z').(x' + y' + z)$$

$$= (0 + 0 + 0).(0 + 1 + 0).(0 + 1 + 1).(1 + 0 + 1).(1 + 1 + 0)$$

$$= M0.M2.M3.M5.M6$$

$$f(x,y,z) = \pi M(0,2,3,5,6)$$

x	y	z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	_1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- 1. SOP
- a. Cek **nilai fungsi =1** yaitu : 000, 011, 100, 110, 111
- b. _ Fungsi Boolean dalam bentuk kanonik

$$f(x,y,z) = x'y'z' + x'yz + xy'z' + xyz' + xyz$$

$$= 000 + 011 + 100 + 110 + 111$$

$$= m0 + m3 + m4 + m6 + m7$$

$$f(x,y,z) = \Sigma m(0,3,4,6,7)$$

- 2. POS
- a. Cek **nilai fungsi =0** yaitu : 001, 010, 101
- b. Fungsi Boolean dalam bentuk kanonik

$$f(x,y,z) = (x + y + z'). (x + y' + z). (x' + y + z')$$

$$= (0 + 0 + 1). (0 + 1 + 0). (1 + 0 + 1)$$

$$= M1. M2. M5$$

$$f(x,y,z) = \pi M(1,2,5)$$

Bentuk Kanonik diimplementasikan dengan cara melengkapi variable yang belum terdapat didalam setiap sukunya.

Untuk menghasilkan

*SOP dan POS maka harus melengkapi dahulu variable untuk setiap suku agar jumlahnnya sama

Point 2

Contoh Nyatakan fungsi Boolean

$$1. \quad f(x,y,z) = x + y'z$$

2.
$$f(a,b,c)=a'b+ac$$

Kedalam bentuk SOP dan POS

1. SOP
$$f(x, y, z) = x + y'z$$

Catt:

harus melengkapi variable agar jumlahnya sama

$$x = x(\underline{y} + \underline{y}')$$

$$= xy + xy'$$

$$= (xy + xy') \cdot (\underline{z} + \underline{z}')$$

$$x = xyz + xyz' + xy'z + xy'z'$$

$$f(x, y, z) = x + y'z$$

$$= xyz + xyz' + xy'z' + xy'z' + xy'z + x'y'z$$

$$= xyz + xyz' + xy'z + xy'z' + x'y'z$$

$$= 111 + 110 + 101 + 100 + 001$$

$$= m7 + m6 + m5 + m4 + m1$$

$$f(x, y, z) = \Sigma m(1, 4, 5, 6, 7)$$

Catt: apabila ada variable yg sama maka

$$y'z = y'z(\underline{x + x'})$$
$$y'z = xy'z + x'y'z$$

BENTUK KANONIK

POS
$$f(x, y, z) = x + y'z$$

$$f(x, y, z) = x + y'z$$

$$= (x + y') \cdot (x + z)$$

$$= (x + y' + \underline{zz'}) \cdot (x + z + \underline{yy'})$$

$$= (x + y' + z) \cdot (x + y' + z') \cdot (x + y + z)$$

$$= (x + y' + z) \cdot (x + y' + z') \cdot (x + y + z)$$

$$= (x + y' + z) \cdot (x + y' + z') \cdot (x + y + z)$$

$$= (x + y' + z) \cdot (x + y' + z') \cdot (x + y + z)$$

$$= (0 + 1 + 0) \cdot (0 + 1 + 1) \cdot (0 + 0 + 0)$$

$$= M2 \cdot M3 \cdot M0$$
Hkm komplemen
$$f(x, y, z) = \pi M(0, 2, 3)$$

$$y + y' = 1$$

$$y \cdot y' = 0$$

Catt:

harus melengkapi variable agar jumlahnya sama

$$x + y' = x + y' + zz'$$

= $(x + y' + z).(x + y' + z')$

$$x + z = x + z + yy'$$

= $(x + y + z).(x + y' + z)$

hasil sop $\rightarrow (x, y, z) = \Sigma m(1, 4, 5, 6, 7)$

Wahyu Nur Cholifah-Matematika Diskrit

$$2.\operatorname{SOP} f(a,b,c) = a'b + ac$$

Catt:

harus melengkapi variable agar jumlahnya sama

$$a'b = a'b(\underline{c + c'})$$
$$= a'bc + a'bc'$$

$$f(a,b,c) = a'b + ac$$

$$= a'bc + a'bc' + abc + ab'c$$

$$= 011+010+111+101$$

$$= m3 + m2 + m7 + m5$$

$$f(a,b,c) = \Sigma m(2,3,5,7)$$

$$ac = ac(\underline{b} + \underline{b}')$$

= $abc + ab'c$ Hkm komplemen
y+y'=1
y.y'=0

$$POS f(a, b, c) = a'b + ac$$

BLINT UNION THE METERS

$$x+(y,z)=(x+y).(x+z)$$
 $x.(y+z)=xy+xz$

$$f(a,b,c) = a'b + ac$$

$$= (a' + ac) \cdot (b + ac)$$

$$= (a' + a) \cdot (a + b) \cdot (a' + c) \cdot (b + c)$$

$$= 1 \cdot (a + b + c') \cdot (a' + c + bb') \cdot (b + c + aa')$$

$$= (a + b + c) \cdot (a + b + c') \cdot (a' + b + c) \cdot (a' + b' + c) \cdot (a' + b' + c)$$

$$= (a + b + c) \cdot (a + b + c') \cdot (a' + b + c) \cdot (a' + b' + c)$$

$$= (a + b + c) \cdot (a + b + c') \cdot (a' + b + c) \cdot (a' + b' + c)$$

$$= (0 + 0 + 0) \cdot (0 + 0 + 1) \cdot (1 + 0 + 0) \cdot (1 + 1 + 0)$$

$$= M0 \cdot M1 \cdot M4 \cdot M6$$

$$f(a, b, c) = \pi M(0, 1, 4, 6)$$
Hkm komplemen y+y'=1 y.y'=0

$$a'b + ac = (a'b + a).(a'b + c)$$

 $a'b + a = (a' + a).(a + b)$
 $a'b + c = (a' + c).(b + c)$

Catt:

harus melengkapi variable agar jumlahnya sama

$$a + b + cc' = (a + b + c) \cdot (a + b + c')$$

 $a' + c + bb' = (a'+b+c) \cdot (a'+b'+c)$
 $b + c + aa' = (a + b + c) \cdot (a' + b + c)$

Hasil SOP -> $f(a, b, c) = \Sigma m(2, 3, 5, 7)$

LATIHAN 4

Unk Soal no 1-3:

Soal a unk NPM Genap Soal b unk NPM Ganjil

Sedang Soal no 4 unk NPM Ganjil & Genap

- 1. Carilah komplen fungsi Boolean dari persamaan dibawah ini dengan menggunakan hokum DeMorgan dan Prinsip Dualitas
- a. f(a, b, c) = a'b + (a + bc)'
- b. h(x, y, z) = (xy)' + x + (y'z)
- 2. Dari persamaan dibawah ini buatlah **gerbang** logikanya
- a. f(x, y, z) = (xy)' + y + z
- b. g(a,b,c) = (a+b+c').(a+b)'
- 3. Nyatakan fungsi Boolean:
- a.f(x,y)=x'
- b. f(x, y, z) = y' + xy + x'yz'kedalam bentuk kanonik SOP dan POS

4 Nyatakan **table kebeneran** ini dalam bentuk kanonik SOP dan POS

X	\mathbf{y}	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

X	\mathbf{y}	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Wahyu Nur Cholifah-Matematika Diskrit