NOM:

Exercice 1: Dans \mathbb{R}^3 muni de son produit scalaire usuel, on considère $\mathscr{B} = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}\right)$.

- 1) Montrer que \mathcal{B} est une base orthonormale.
- 2) Quelles sont les coordonnées de $x=\begin{pmatrix} 4\\ -7\\ 6 \end{pmatrix}$ dans ${\mathscr B}$?

Exercice 2 : Calculer $\begin{vmatrix} 2 & 0 & 2 & -1 \\ 3 & -1 & 2 & 1 \\ 1 & 1 & 0 & 4 \\ -2 & 0 & 1 & 1 \end{vmatrix}$, en indiquant les calculs intermédiaires.

Exercice 4 : Donner l'expression du produit scalaire de \mathbb{R}^2 dont la norme associée est $\left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\| = \sqrt{(x-y)^2 + 2y^2}$.