Ph.D. Qualifying Exam, Real Analysis

Fall 2013, part I

Do all five problems. Write your solution for each problem in a separate blue book.

Suppose that K is a bounded measurable function on $\{(x,y): 0 \le y \le x \le 1\} \subset [0,1]^2$. Let T be the Volterra operator

 $(Tf)(x) = \int_0^x K(x, y) f(y) dy,$

 $f \in L^p([0,1]), 1 . Show that for <math>f \in L^p([0,1]), 1 , this expression indeed defines a function <math>Tf \in L^p([0,1])$, and $T: L^p([0,1]) \to L^p([0,1])$ is bounded in this range of p. Show moreover that the spectrum of T is $\{0\}$.

- Let $0<\alpha<1$. Show that there exists a continuous real-valued function f on [0,1] such that for all $x\in[0,1]$ and for all $\delta>0$ and C>0 there is $y\in[0,1]\cap(x-\delta,x+\delta)$ such that the estimate $|f(y)-f(x)|\leq C|y-x|^{\alpha}$ does *not* hold.
- Suppose $f \in C^{\infty}(\mathbb{R}^n)$ is real valued and $K \subset \mathbb{R}^n$ is compact. Show that if the differential of f does not vanish on K then for all $u \in C^{\infty}(\mathbb{R}^n)$ with support in K and for all $N \geq 0$ there is C > 0 such that

 $\left| \int e^{i\omega f(x)} u(x) \, dx \right| \le C\omega^{-N}, \ \omega > 1.$

- Show that the set of Schwartz functions, $\mathcal{S}(\mathbb{R})$, consisting of C^{∞} functions such that the seminorms $\rho_{k,\ell}(\phi) = \sup_{x \in \mathbb{R}} |x^{\ell} \partial^k \phi|, \ \ell, k \in \mathbb{N}$, are finite, is not a normed space, i.e. there exists no norm on $\mathcal{S}(\mathbb{R})$ giving rise to the locally convex topology induced by these seminorms. (Here \mathbb{N} is the set of non-negative integers.)
- Let $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ denote the circle. Thus, $C^k(\mathbb{T})$ can be identified with the space of 2π -periodic C^k functions on \mathbb{R} . Let $M: C^k(\mathbb{T}) \to C^k(\mathbb{T})$ denote the multiplication operator by e^{ix} : $(Mf)(x) = e^{ix}f(x)$, and for $k \geq 1$ (including $k = \infty$) let $\frac{d}{dx}: C^k(\mathbb{T}) \to C^{k-1}(\mathbb{T})$ be the usual derivative.

 $e^{ix}f(x)$, and for $k\geq 1$ (including $k=\infty$) let $\frac{d}{dx}:C^k(\mathbb{T})\to C^{k-1}(\mathbb{T})$ be the usual derivative. Suppose that $T:C^\infty(\mathbb{T})\to C^\infty(\mathbb{T})$ is a linear map (no continuity of any kind is assumed!) and T satisfies $T\frac{d}{dx}=\frac{d}{dx}T$ and TM=MT (on $C^\infty(\mathbb{T})$). Show that there exists $c\in\mathbb{C}$ such that $T=c\operatorname{Id}$, i.e. Tf=cf for all $f\in C^\infty(\mathbb{T})$.

(Hint: First show that if $y \in \mathbb{T}$ and f(y) = 0 then (Tf)(y) = 0; this shows that T is multiplication by a function.)

Ph.D. Qualifying Exam, Real Analysis

Fall 2013, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems:
 - **a.** Show that $C^{\infty}([0,1])$ is dense in $L^p([0,1])$ for $1 \le p < \infty$.
 - **b.** Let \mathcal{H} be a separable Hilbert space with an orthonormal basis $\{x_n\}_{n=1}^{\infty}$. Let $\{y_n\}$ be a sequence in \mathcal{H} and prove that the following two statements are equivalent.
 - 1. $\lim_{n\to\infty}(x,y_n)=0$ for all $x\in\mathcal{H}$.
 - 2. $\{\|y_n\|\}_{n=1}^{\infty}$ is bounded in \mathbb{R} , and $\lim_{n\to\infty}(x_m,y_n)=0$ for each $m\geq 1$.
- 2 Suppose X, Y are Hilbert spaces.
 - **a.** Show that if $A \in \mathcal{L}(X,Y)$ has closed range and finite dimensional kernel then there is a constant C and a finite rank orthogonal projection $F \in \mathcal{L}(X)$ such that $||x||_X \leq C(||Ax||_Y + ||Fx||_X)$.
 - **b.** Show that if in addition $Y/\operatorname{Ran}A$ is finite dimensional, then there is a constant \tilde{C} and a finite rank orthogonal projection $\tilde{F} \in \mathcal{L}(Y)$ such that $\|y\|_Y \leq \tilde{C}(\|A^*y\|_X + \|\tilde{F}y\|_Y)$.
- Let $\mathcal{S}(\mathbb{R})$ denote set of Schwartz functions, and $\mathcal{S}'(\mathbb{R})$ the dual space of tempered distributions. For $u \in \mathcal{S}'(\mathbb{R})$ let Du denote the distributional derivative of u, and let Mu be the distribution xu (i.e. $(Mu)(\phi) = u(x\phi), \phi \in \mathcal{S}(\mathbb{R})$). Let $\mathcal{H} = \{u \in L^2(\mathbb{R}) : Du \in L^2, Mu \in L^2\}$, equipped with the norm $\|u\|_{\mathcal{H}}^2 = \|u\|_{L^2}^2 + \|Du\|_{L^2}^2 + \|Mu\|_{L^2}^2$. Show that \mathcal{H} is a Hilbert space (with the norm being induced by the inner product), $\mathcal{S}(\mathbb{R})$ is dense in \mathcal{H} , and the inclusion map $\iota : \mathcal{H} \to L^2(\mathbb{R})$ is compact.
- Recall that with $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ the circle, the dual space of $C(\mathbb{T})$ is the Banach space \mathcal{M} of finite Borel measures. Show that $L^1(\mathbb{T})$ is closed in \mathcal{M} in the Banach topology induced by this duality, but is not closed in \mathcal{M} if the latter is equipped with the weak-* topology. Is $L^1(\mathbb{T})$ closed in \mathcal{M} if \mathcal{M} is equipped with the weak topology?
- Suppose that $\{a_n: n=0,1,2,\ldots\}$ is *any* sequence of real numbers. Show that there exists a real valued function $f\in C^\infty(\mathbb{R})$ such that $f^{(n)}(0)=a_n$. (Hint: let $\chi\in C_c^\infty(\mathbb{R})$ identically 1 near 0, and choose $\epsilon_n>0$ appropriately so that $\lim_{n\to\infty}\epsilon_n=0$ and

$$\sum_{n=0}^{\infty} \frac{a_n x^n}{n!} \, \chi(x/\epsilon_n)$$

converges in C^{∞} .)