令和4年度第5学年確率・統計

課題2C言語のライブラリ関数による乱数について

E1832 藤村勇仁

2022年7月4日

1 方法

0 から 100000 までの 5000 ずつの階級に属する乱数の数を数えるプログラムをコード 1 に示す。N の値を変えることで生成する乱数の数を変更する。

端末にて"ulimit-s unlimited"を実行することで、リソースの制限を解除してからプログラムをコンパイルし実行する。

コード 1 count-freq-1000.c

```
1 #include <stdio.h>
 2 #include <stdlib.h>
3 #include <time.h>
5 #define N 1000
7 void init(int A[]) {
       int i;
       srand( (unsigned int) time(NULL) );
       for (i=0; i<N; i++)
10
           A[i] = rand() \% 100000;
11
12 }
13
14 int count(int A[], int min, int max) {
       int i, count = 0;
15
16
       for(i=0; i<N; i++)
           if(min<=A[i] && A[i]<max)</pre>
17
               count++;
18
       return count;
19
20 }
22 int main() {
       int i;
23
       int A[N];
24
       init(A);
25
       for(i=0; i<100000; i+=5000)
26
           printf("\%6d -\%6d : \%d\n", i, i+5000, count(A, i, i+5000));
27
       return 0;
28
29 }
```

2 実行結果

N の値を 1000, 10000, 100000, 1000000, 2000000, 3000000, 4000000, 5000000 としたときの実行結果を表 1 に示す。

表 1 プログラムの実行結果

N 階級	1000	10000	100000	1000000	2000000	3000000	4000000	5000000
0 - 5000	62	537	5025	50524	100633	150453	200754	250964
5000 - 10000	54	490	4931	49891	99645	149642	199919	250338
10000 - 15000	48	495	4971	50006	100129	150181	200312	250163
15000 - 20000	59	496	4982	49732	99865	150203	200211	250269
20000 - 25000	59	504	4910	49953	100013	149399	199180	249105
25000 - 30000	54	502	5015	50073	100431	150227	200365	250373
30000 - 35000	48	511	4971	49664	99801	149921	200394	250498
35000 - 40000	48	505	5141	50187	100448	150771	200792	250603
40000 - 45000	31	501	4913	49644	99290	149363	199417	249620
45000 - 50000	50	537	5087	49936	99974	149985	199886	250132
50000 - 55000	47	504	4979	50074	100288	150428	200374	250412
55000 - 60000	55	483	5030	50050	99866	149880	199833	249676
60000 - 65000	44	496	5053	50157	100390	150287	200263	250113
65000 - 70000	47	502	5022	49745	99619	149564	199602	249600
70000 - 75000	45	489	5005	50122	99993	150260	200254	250224
75000 - 80000	56	475	5014	50352	100441	150143	199910	250107
80000 - 85000	50	486	4917	50001	99680	149472	199429	249371
85000 - 90000	49	509	5011	49918	99907	150215	199976	249704
90000 - 95000	51	504	4986	49858	99611	149736	199239	249012
95000 -100000	43	474	5037	50113	99976	149870	199890	249716

3 考察

N の値が 5000000 の列を見ると、階級が 20 個で乱数が 5000000 個だからこの乱数が一様乱数であるなら、それぞれの階級の度数は 250000 になる。今回の実行結果の度数の最大値は 250964、最小値は 249012 であり、それぞれ誤差は +964 と-988 である。これらの誤差は 250000 に対して十分に小さいため、この乱数は一様乱数とみなせる。

参考文献

[1] 高専の数学教材研究会 (編), 上野健爾 (監修). "確率統計". 高専テキストシリーズ. 森北出版, 2013.