2016年2月6日(土) 修士論文審査会

オンチップ診断向き 遷移故障診断法に関する研究

計算機システム研究室 M2 宮本夏規

発表概要

- •研究背景
- •研究目的
- •故障診断
- •組込み自己診断(BISD)機構
- •テストパターン系列の遷移故障診断能力・向上化法
- •評価実験•結果
- まとめ・今後の課題

研究背景

- ・コンピュータの機能を利用した、自動車の先進自動 運転技術の進歩
- ・制御用の車載半導体数が増加し、システムが 高度化・複雑化 ___

車載マイコンからなる システムの高信頼化が必要不可欠

- •高信頼化のための要素技術
 - 多重化、冗長化、組込み自己テスト・自己診断機能

研究目的

- ●遷移故障診断用組込み自己診断 (Built-in self diagnosis, BISD)機構の 提案
- ●組込み自己診断で用いるテストパターン系列の遷移故障診断能力向上化法 (リシード法)の提案

外部テストを利用した故障診断-1-

・故障の検出された被診断回路(CUD)の故障箇所を推定 (手順1)被診断回路(CUD)のパス/フェイル情報と 被疑故障のパス/フェイル情報を比較

外部テストを利用した故障診断-2-

・故障の検出された被診断回路(CUD)の故障箇所を推定 (手順2)被診断回路(CUD)のパス/フェイル情報と同一の 被疑故障のパス/フェイル情報 ⇒ 故障箇所を推定

検出 ...1 非検出 ...(

組込み自己診断(BISD)機構

・診断用署名を用いた故障診断をオンチップで実現

診断用署名に基づく故障診断-1-

・被診断回路(CUD)から得られる診断用署名と、 診断用故障シミュレーションを行うことで 得られる被疑故障署名とを比較

診断用署名と被疑故障署名が一致

⇒ 故障箇所

診断用署名に基づく故障診断-2-

BISD機構の シミュレーションモデル

組込み自己診断機構のテスト生成回路

•32ビットLFSR (線形帰還シフトレジスタ)を複数用いることで任意のテストパターン系列を生成

テストパターン系列の遷移故障 診断能力

- 診断可能な故障数 [診断可能な故障]
 - ...推定される故障が1つだけのもの
 - ○診断可能な故障数が多い → 診断能力が高い
- クラス数[クラス]
 - …診断可能な故障以外の故障について、被疑故障署名が同じ故障(要素)を1つにまとめたもの
 - ○要素数の少ないクラスが多い → 診断能力が高い

テストパターン系列の遷移故障診断能力(例1)

		被疑故障リストF					
		f_1	f_2	f_3	f_4	f_5	
T_{lpha}	t_a	0	1	1	0	1	
	t_b	1	1	1	1	1	
	t_c	0	0	0	1	0	
	t_d	1	1	1	0	1	
	t_e	0	1	1	0	1	
	t_f	0	1	1	0	1	
署名		S_1	S_2	S_2	S_4	S_2	

■診断可能な故障数

••• $2(f_1, f_4)$

■クラス数

••• $1(\{f_2, f_3, f_5\})$

検出 ...1 非検出 ...0

テストパターン系列の遷移故障診断能力(例2)

		被疑故障リストF					
Ì		f_1	f_2	f_3	f_4	f_5	
$T_{oldsymbol{eta}}$	t_a	0	1	1	0	1	
	t_b	1	1	1	1	1	
	t_c	0	0	0	1	0	
	t_d	1	1	1	0	1	
	t_g	0	1	0	1	1	
	t_h	1	1	0	0	1	
署名		S_{I}	$S_{\rm II}$	$S_{\rm III}$	S_{IV}	$S_{\rm II}$	

■診断可能な故障数

 $3(f_1, f_3, f_4)$

■クラス数

 \cdots 1 $(\{f_2, f_5\})$

テストパターンを 変更することで 故障診断能力が向上

検出 ...1

非検出 ...0

テストパターン系列の遷移故障診断能力の向上化法-1-

リシード法 テストパターン系列の生成時にリシード用テストパターン でシードを入れ替え(リシード)、テストパターン系列を 変更

テストパターン系列の遷移故障診断能力の向上化法-2-

故障診断評価実験(諸元)

BISD機構のシミュレーションモデルを利用したリシード法の遷移故障診断能力の評価

計算機諸元

CPU	Intel(R) Xeon(R) L5240 3.0GHz				
メモリ	64.0GB				
OS	RedHat 4.4.7-16				

- 対象回路
 - ISCAS'89ベンチマーク回路
- 対象故障
 - \bullet 初期ランダムテスト系列 T_S が検出する単一遷移故障
- テストパターン系列
 - ランダムテスト系列およびリシードテスト系列 (系列数...2048、3072、4096)

故障診断評価実験 結果-1-

回路名	対象 故障数	系列数	系列の 種類	診断可能な 故障数	クラス数	クラス内の 最大故障数
cs9234	7.756	2,048	ランダム	659	1,443	45
			リシード	679	1,415	52
		3,072	ランダム	699	1,471	45
	7,756		リシード	708	1,455	52
		4.006	ランダム	718	1,474	45
		4,096	リシード	724	1,476	45

・ランダム...ランダムテスト系列

・リシード ...リシードテスト系列(提案法)

故障診断評価実験 結果-2-

回路名	対象 故障数	系列数	系列の 種類	診断可能な 故障数		クラス数	クラス内の 最大故障数
cs13207	12 200	2,048	故障診断能力が 改善していない		952	1,703	142
					> 940	1,704	147
		2.072	ランダム	973		1,723	137
	12,289	3,072	リシード		981	1,736	最大故障数 142 147
		1.006	ランダム		1,011	1,749	
		4,096	リシード		1,022	1,762	135

・ランダム...ランダムテスト系列

・リシード ...リシードテスト系列(提案法)

まとめ・今後の課題

まとめ

- •遷移故障診断用組込み自己診断機構の提案
- •提案機構で用いるテストパターン系列の遷移故障 診断能力向上化法の提案
- •リシード法による遷移故障診断能力の改善を確認

今後の課題

・リシード法により遷移故障診断能力が向上しない 回路への対応 ご静聴ありがとうございました