МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ГРИГОРОВИЧА ШЕВЧЕНКА ФІЗИЧНИЙ ФАКУЛЬТЕТ

3BIT

до лабораторної роботи №7: «Операційні підсилювачі з позитивним зворотним зв'язком»

Месюра М. С.

РЕФЕРАТ

Звіт до ЛР №6: 11 с., 4 рис., 2 джерела.

ОСЦИЛОГРАФ, ОПЕРАЦІЙНИЙ ПІДСИЛЮВАЧ, МОДЕЛЮВАННЯ, ВАХ, LTSPICE, КОМПАРАТОР

Об'єкт досдіження — ОП, їхні ВАХ.

Мета роботи — ознайомитися з властивостями схем на операційних підсилювачах (ОП), охоплених позитивним зворотним зв'язком, опанувати способи генерації електричних сигналів за допомогою схем з ОП.

Змодельовано генератори: релаксаційний та гармонічних коливань. Використано математичне моделювання. Оброблено отримані результати.

3MICT

Частина 1. Теоретичні відомості.	c.
I. Основні означення	4
II. Аналогові компаратори. Тригер Шмідта	
Частина 2. Виконання роботи.	
 Релаксаційний генератор 	
1. Схема	6
2. BAX	7
II. Генератор гармонічних коливань	
1. Схема	
2. BAX	9
Decorron	10
Висновки	
Джерела	11

Частина 1. Теоретичні відомості.

І. Основні означення.

Компаратор — це електронний пристрій порівняння двох аналогових сигналів: U_{in_1} та U_{in_2} . При цьому на виході схеми формуються тільки два значення вихідного сигналу:

- а) напруга на виході максимальна $\left(U_{out}=U_{max}\right)$, якщо різниця напруг між вхідними сигналами є додатньою $\left(U_{in_1}-U_{in_2}>0\right)$;
- б) напруга на виході мінімальна $\left(U_{out}=U_{min}\right)$, якщо різниця напруг між вхідними сигналами є від'ємною $\left(U_{in_1}-U_{in_2}<0\right)$.

Передавальна характеристика компаратора — залежність вихідної напруги компаратора від напруги на його вході.

Рівень включення (виключення) компаратора — значення напруги на вході компаратора $U_{in} = U_{on}$, при якій вихідна напруга U_{out} змінює своє значення від мінімального U_{min} до максимального U_{max} (при включенні); при виключенні $U_{in} = U_{off}$ і вихідна напруга змінюється від U_{max} до U_{min} .

Гістерезисний компаратор (**тригер Шміта**) — це електронний пристрій порівняння, у якого передавальна характеристика є неоднозначною, тобто рівні включення і виключення не збігаються (на відміну від звичайного компаратора), а відрізняються на величину, яку називають гістерезисом переключення.

Генератори — це електронні пристрої, які формують на виході змінну напругу потрібної форми. На відміну від підсилювачів, у таких пристроїв немає входу. Їх вихідний сигнал з'являється у відповідь на підключення до них джерела живлення. Форма генерованої напруги може бути різноманітною: гармонічною, прямокутною, пилкоподібною або будь-якою іншою.

II. Аналогові компаратори. Тригер Шмідта.

Особливістю аналогових компараторів на основі операціних підсилювачів (ОП) ϵ те, що їх можна використовувати без зворотного зв'язку. На рисунку наведено схему однопорогового компаратора. При зміні знаку різниці вхідних напруг (наприклад, коли напруга U_{out_2} ста ϵ більшою за U_{in_1}) вихідна напруга стрибком

змінюється від свого найменшого значення U_{min} (яке ϵ ні чим ішим як напругою

насичення U_{HAC}^{-}) до U_{max} (напруги насичення U_{HAC}^{+}). Звичайно, вихідна напруга не може миттєво перейти із одного стану в інший. Для стандартного ОП величина швидкості наростання вихідної напруги обмежена і становить близько 1 В/мкс. Отже для переходу від рівня $U_{min} = -12$ В до $U_{max} = +12$ В потрібен час ~ 24 мкс. Внаслідок скінченності часу виходу ОП зі стану насичення ця затримка у часі переключення компаратора буде ще більшою.

Можна сказати, що вхідний сигнал компаратора має аналоговий характер, а вихідний — цифровий. Внаслідок цього компаратори часто виконують роль елементів зв'язку між аналоговими та цифровими пристроями.

Ми вже знаємо, що у схемі з ОП, охопленим негативним зворотним зв'язком, за відсутності вхідного сигналу будь-яка флуктуація напруги на вході, підсилена операційним підсилювачем на виході, пригнічується ланкою негативного зворотного зв'язку, тобто сама себе послаблює.

Сконструюємо ланку позитивного зворотного зв'язку, подавши сигнал з виходу операційного підсилювача на його неінвертувальний вхід за допомогою подільника напруги $R_1,\,R_2$. При цьому коефіцієнт зворотного зв'язку $\beta=\frac{R_1}{R_1+R_2}$. Якщо $K_0\cdot \beta>1$, то флуктуація

сама себе підсилюватиме і амплітуда на виході зростатиме. Врешті-решт на виході встановиться напруга, що дорівнює напрузі насичення ОП (негативній чи позитивній, в залежності від полярності початкової флуктуації). Процес встановлення відбувається достатньо швидко або, як кажуть, лавиноподібно (для більшості реальних інтегральних ОП — від десятків мікросекунд до долей мікросекунди).

На неінвертувальному вході при цьому встановиться напруга U^+ , рівна $U^+ = U_{out} \cdot \beta$. Припустимо, що в момент включення на виході встановилася напруга насичення позитивної полярності (наприклад, +12 В), а резистори подільника ланки зворотного зв'язку мають однаковий опір (наприклад, по 10 кОм). Тоді $\beta = 0.5$ і $U^+ = +6$ В.

Частина 2. Виконання роботи.

- І. Релаксаційний генератор.
- 1. Схема.

Рис. 1. Схема

2. Вхідна та вихідна напруга.

Рис. 2. $U_{in}(t),\;U_{out}(t)$

II. Генератор гармонічних коливань.

1. Схема.

Рис. 3. Схема

2. Вхідна та вихідна напруга.

Рис. 4. $U_{in}(t),\ U_{out}(t)$

Висновок: за допомогою даної лабораторної роботи вдалось дослідити вхідну та вихідну напругу операційних підсилювачів. При дослідження використовувались два типи генераторів на базі ОП: релаксаційний та гармонічних коливань.

Усі покази отримано за допомогою комп'ютерного моделювання у програмі LTspice ® та за допомогою її вбудованих можливостей Waveform Data.

Використані джерела:

Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.

Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання" : Методичне видання. – К.: 2006.- с.