Tarea 2 Termodinámica

Cerritos Lira Carlos, Calderon Alba Sebastian

3 de abril del 2020

1.-

Considerando que la energía interna de un sistema hidrostático es una función de T y p, deducir las ecuaciones:

a)
$$dQ = \left[\left(\frac{\partial U}{\partial T} \right)_p + p \left(\frac{\partial V}{\partial T} \right)_p \right] dT + \left[\left(\frac{\partial U}{\partial p} \right)_T + p \left(\frac{\partial V}{\partial p} \right)_T \right] dp$$

b)
$$\left(\frac{\partial U}{\partial T} \right)_p = C_p - pV\beta$$

c)
$$\left(\frac{\partial U}{\partial p} \right)_T = pV k_T - (C_p - C_V) \frac{k_T}{\beta}$$

2.-

Un líquido se agita irregularmente en un recipiente bien aislado y por ello experimenta una elevación de temperatura. Considerando el líquid como sistema:

- a) ¿Ha habido una transferencia de calor?
- b) ¿Se ha realizado trabajo?
- c) ¿Cuál es el signo de ΔU ?

3.-

Un mol de gas ideal monoatómico está confinado en un cilíndro con un pistón, y se mantiene a temperatura constante T_0 dentro de un baño térmico. El gas lentamente se expande de V_1 a V_2 mientras se sigue manteniendo a temperatura T_0 . ¿Por qué la energía interna del gas no cambia?. Calcular el trabajo hecho por el gas y el calor que fluye hacia el gas.

4.-

En la expansión adiabática de un gas ideal se cumple $PV^{\gamma} = cte$. Mostrar que también se vale:

$$TV^{\gamma-1} = cte$$
$$T = ctep^{1-\frac{1}{\gamma}}$$

5.-

Explicar las contribuciones energéticas para cada proceso en el ciclo de Otto, que se recorre en el sentido $a \to b \to d \to a$. Calcular la eficiencia del ciclo.

