TAUTOLOGY INNOVATION SCHOOL

LINEAR

BY TAUTOLOGY

Linear Regression

Introduction

What is Linear Regression?

Pros & Cons

Data for Linear Regression

Real World Application

Linear Regression เป็นหนึ่งใน algorithm ประเภท supervised learning ที่ใช้สำหรับแก้ปัญหา regression โดยมีหลักการทำงานคือ การสร้างสมการเชิงเส้นที่ใช้ตัวแปรต้นเพื่อพยากรณ์ตัวแปรตาม

สมการคณิตศาสตร์ของ Linear Regression

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

โดย $-\hat{y}$ คือ ตัวแปรตาม (predicted target)

- x₁, x₂, x₃, ..., x_p คือ ตัวแปรต้น (feature)
- $w_0, w_1, w_2, ..., w_p$ คือ สัมประสิทธิ์ (coefficient)

Introduction

What is Linear Regression?

Data for Linear Regression

Pros & Cons

Real World Application

Data for Linear Regression

ตัวอย่างของข้อมูลที่เหมาะกับ Linear Regression

Data for Linear Regression

ตัวอย่างของข้อมูลที่ไม่เหมาะกับ Linear Regression

Introduction

What is Linear Regression?

Pros & Cons

Data for Linear Regression

Real World Application

Pros & Cons

ข้อดี

- เป็น algorithm ที่เรียบง่าย
- เป็น algorithm ที่เหมาะสมที่สุดกับข้อมูลที่มีความสัมพันธ์ระหว่างตัวแปรต้นและ ตัวแปรตามเป็นเชิงเส้น

ข้อเสีย

• sensitive กับ outliers

ข้อจำกัด

• ใช้งานได้กับข้อมูลที่มีความสัมพันธ์ระหว่างตัวแปรต้นและตัวแปรตามเป็นเชิงเส้น เท่านั้น

Introduction

What is Linear Regression?

Data for Linear Regression

Pros & Cons

Real World Application

Real World Application

การประเมิณค่าตัวของนัก ฟุตบอลในตำแหน่งกองหน้า

โดยพิจารณาจาก อายุ ส่วนสูง การมี ส่วนร่วมกับประตู จำนวนเกมที่ลง เล่น เป็นต้น

Real World Application

ເດ ຈໍ *ນ*ັ

อ้างอิง : [2018, Shine et al] Multiple linear regression modelling of on-farm direct water and electricity consumption on pasture based dairy farms

การคาดการณ์ค่าน้ำค่าไฟ ของฟาร์มโคนม

โดยพิจารณาจาก จำนวนโคนม จำนวนเครื่องรีดนมวัว จำนวนเครื่อง ขัดพื้นไฟฟ้า เป็นต้น

Real World Application

พยากรณ์ปริมาณพืชที่จะ ปลูกได้

โดยพิจารณาจาก สภาพดิน สภาพ อากาศ ปริมาณน้ำฝน อุณหภูมิ เป็น ต้น

อ้างอิง : [2017, Aditya Shastry, HA Sanjay and E. Bhanusree] Prediction of Crop Yield Using Regression Techniques

Introduction

What is Linear Regression?

Pros & Cons

Data for Linear Regression

Real World Application

Linear Regression

Linear Regression

Linear Regression เป็นหนึ่งใน algorithm ประเภท supervised learning

Concept of Supervised Learning

Data ⇒ **Model** ⇒ **Prediction**

Model

Assumption

Real Face of the Model

Cost Function and Cost Landscape

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Assumption

- 1. Linear Relationship
- 2. Normality of Residuals
- 3. Homoscedasticity
- 4. No Missing Features
- 5. No Multicollinearity

Model

Assumption

Real Face of the Model

Cost Function and Cost Landscape

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Linear regression คือ สมการเชิงเส้นที่ใช้ตัวแปรต้นเพื่อพยากรณ์ตัวแปรตาม

Linear regression คือ สมการเชิงเส้นที่ใช้ตัวแปรต้นเพื่อพยากรณ์ตัวแปรตาม

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

โดย

- ullet \hat{y} คือ ตัวแปรตาม (predicted target)
- x₁, x₂, ..., x_p คือ ตัวแปรตัน (feature)
- $\bullet w_0, w_1, ..., w_p$ คือ สัมประสิทธิ์ (coefficient)

x ₁	\mathbf{x}_2		\mathbf{x}_{p}		ŷ
$x_{1,1}$	<i>x</i> _{1,2}		$x_{1,p}$	\longrightarrow	$\widehat{\mathcal{Y}}_{1}$
<i>x</i> _{2,1}	$x_{2,2}$		$x_{2,p}$	→	\widehat{y}_2
:	:	٠.	:	•	:
$x_{i,1}$	$x_{i,2}$		$x_{i,p}$	—	\hat{y}_i
:	:	٠.		•	:
$x_{n,1}$	$x_{n,2}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$x_{n,p}$		\hat{y}_n

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

$$\hat{y}_1 = w_0 + w_1 x_{1,1} + w_2 x_{1,2} + \dots + w_p x_{1,p}$$

$$\hat{y}_2 = w_0 + w_1 x_{2,1} + w_2 x_{2,2} + \dots + w_p x_{2,p}$$

$$\vdots$$

$$\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_p x_{i,p}$$

$$\vdots$$

$$\hat{y}_n = w_0 + w_1 x_{n,1} + w_2 x_{n,2} + \dots + w_p x_{n,p}$$

พ₀, w_1 , w_2 , ..., w_p เพื่อสร้าง model ของ linear regression :

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

โดยที่ w₀, w₁, w₂, ... , w_p เหล่านั้นต้องทำให้ทำให้ผลรวมของ error ระหว่างค่าจริง (y_i) กับค่าพยากรณ์ (ŷ_i) น้อยที่สุด

" เราต้องการหา $w_0, w_1, w_2, ..., w_p$ ที่ทำให้ผลรวมของ error ระหว่าง y_i กับ \hat{y}_i น้อยที่สุด **"**

ผลรวมของ error ระหว่าง y_i กับ \hat{y}_i เรียกว่า "Cost function"

Model

Assumption

Real Face of the Model

Cost Function and Cost Landscape

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Cost Function and Cost Landscape

Cost function ที่เราจะใช้ในการสร้าง model คือ

$$\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

โดยสูตรข้างต้นมีชื่อว่า Sum of Squared Errors หรือ SSE

เหตุผลที่เลือกใช้ Sum of Squared Errors (SSE)

- 1. Error ของแต่ละ sample จะไม่หักล้างกัน
- 2. Cost function ที่นิยามแบบ SSE จะสามารถ diff ได้ และมีความต่อเนื่องทุกจุด
- 3. Cost function ที่นิยามแบบ SSE เป็น convex function และมีจุดต่ำสุดเพียง จุดเดียว

1. Error ของแต่ละ sample จะไม่หักล้างกัน

กราฟแสดงข้อมูลระหว่าง**ค่าจริง** y_i (จุด) และ**ค่าพยากรณ์** \widehat{y}_i (เส้น)

$$SE = \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

$$= (-0.3) + (0.6) + (0.3) + (0.4) + (-1)$$

$$= 0$$

🗵 การมีค่าติดลบทำให้ error หักล้างกัน

1. Error ของแต่ละ sample จะไม่หักล้างกัน

กราฟแสดงข้อมูลระหว่าง**ค่าจริง** $\boldsymbol{y_i}$ (จุด) และ**ค่าพยากรณ์** $\boldsymbol{\widehat{y}_i}$ (เส้น)

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= (-0.3)^2 + (0.7)^2 + (0.2)^2 + (0.4)^2 + (-1)^2$$

$$= 0.09 + 0.49 + 0.04 + 0.16 + 1$$

$$= 1.78$$

🗹 การยกกำลังสองทำให้ error ไม่หักล้างกัน

2. Cost function ที่นิยามแบบ SSE จะสามารถ diff ได้ และมีความต่อเนื่องทุกจุด

กราฟของ cost landscape โดยที่ cost function เป็น SSE

การที่ function diff ได้ และต่อเนื่องทุกจุดทำให้เราสามารถ**ใช้ calculus** ได้อย่างเต็มที่

3. Cost function ที่นิยามแบบ SSE เป็น convex function และมีจุดต่ำสุดเพียงจุด เดียว

กราฟของ cost landscape โดยที่ cost function เป็น SSE

Cost Landscape Plotting

Open File

Cost_Landscape_Plotting.pdf

Convexity of SSE

Open File
Convexity_SSE_LR.pdf

Model

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

How to Create Model (Math)

" เราต้องการหา $w_0, w_1, w_2, ..., w_p$ ที่ทำให้ cost function น้อยที่สุด "

How to Create Model (Math)

- ☐ Least Squares Method
- ☐ Calculation Example

เป้าหมาย เราต้องการจุดต่ำสุดของ cost function ซึ่งสามารถใช้ calculus ในการหาได้

สามารถใช้ calculus เพื่อหาจุดต่ำสุดได้เลย

วิธีการที่เราจะใช้ในการหาคำตอบมีชื่อว่า

"Least Squares Method"

จากคุณสมบัติของจุดต่ำสุดคือ

 ullet gradient ของ cost function เท่ากับ 0 ($abla {\it Cost} = 0$) ullet

ซึ่งหมายความว่า ความชันของ cost function ในมิติใด ๆ เท่ากับ O

$$\frac{\partial Cost}{\partial w_d} = 0 ; d = 0, ..., p$$

การที่ความชั้นของ cost ในมิติใด ๆ เท่ากับ 0 หรือ $\frac{\partial Cost}{\partial w_d} = 0$; d = 0, ..., p สามารถเขียนเป็นสมการได้ดังต่อไปนี้

$$\frac{\partial Cost}{\partial w_0} = 0$$

$$\frac{\partial Cost}{\partial w_1} = 0$$

•

$$\frac{\partial Cost}{\partial w_p} = 0$$

<u>ดังนั้น</u> ∇Cost = 0 สามารถเขียนใหม่ได้ดังนี้

$$\nabla Cost = \begin{bmatrix} \frac{\partial Cost}{\partial w_0} \\ \frac{\partial Cost}{\partial w_1} \\ \vdots \\ \frac{\partial Cost}{\partial w_p} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

โดยที่
$$Cost = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Normal Equation คือ สมการที่ใช้ในการหา weight ของ model

$$\mathbf{w} = \left(X_b^T X_b\right)^{-1} X_b^T \mathbf{y}$$

โดยที่
$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_p \end{bmatrix}$$
, $X_b = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ 1 & x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

Derivation of Normal Equation

Open File

Derive_NormalEq.pdf

How to Create Model (Math)

- **✓ Least Squares Method**
- ☐ Calculation Example

<u>ตัวอย่างการคำนวณ w ด้วย normal equation</u>

$\mathbf{x_1}$	\mathbf{x}_{2}	y
0	1	4
2	1	8
1	1	6
2	0	5

ตารางแสดง toy dataset

• จากข้อมูลใน dataset เราสามารถเขียน X,\mathbf{y} และ X_b ได้ดังต่อไปนี้

$$X = \begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 6 \\ 5 \end{bmatrix} \ \text{ua:} \ X_b = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

• จากสูตร normal equation $\mathbf{w} = \left(X_b^T X_b\right)^{-1} X_b^T \mathbf{y}$ จะได้ว่า

$$\mathbf{w} = \left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 6 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 5 & 3 \\ 5 & 9 & 3 \\ 3 & 3 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 23 \\ 32 \\ 18 \end{bmatrix}$$

$$\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

<u>ดังนั้น</u> เราจะได้ model ของ linear regression สำหรับข้อมูลชุดนี้คือ

$$\hat{y} = 1 + 2x_1 + 3x_2$$

Open File **Exercise_NormalEq.pdf**

How to Create Model (Math)

- **☑** Least Squares Method
- **☑** Calculation Example

Model

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

<u>ตัวอย่าง code สำหรับคำนวณ w</u>

$\mathbf{x_1}$	\mathbf{x}_{2}	y
0	1	4
2	1	8
1	1	6
2	0	5

ตารางแสดง toy dataset

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 6 \\ 5 \end{bmatrix}$$

• ค่า w_0 ถูกเก็บไว้ใน attribute ชื่อ intercept_

• ค่า w_1, \dots, w_p ถูกเก็บไว้ใน attribute ชื่อ coef_

<u>ดังนั้น</u> เราจะได้ $w_0=1, w_1=2$ และ $w_2=3$ ซึ่งสามารถเขียนเป็น model ของ linear regression สำหรับข้อมูลชุดนี้ได้ดังนี้

$$\hat{y} = 1 + 2x_1 + 3x_2$$

Code for this section

Open File

Model Creation.ipynb

$$\mathbf{w} = \left(X_b^T X_b\right)^{-1} X_b^T \mathbf{y}$$

```
learn.
                         CODE
            1 reg = LinearRegression()
In [1]:
            2 reg.fit(X, y)
   Out[1]: LinearRegression()
In [2]:
            1 reg.intercept
   Out[2]: 1.
In [3]:
            1 reg.coef_
   Out[3]: array([2., 3.])
```


Model

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Further Reading

- Gradient Descent
- Moore-Penrose pseudo inverse
- Feature importance with p-value

Gradient Descent

Moore-Penrose pseudo inverse

" Normal Equation"

$$\mathbf{w} = \left(X_b^T X_b\right)^{-1} X_b^T \mathbf{y}$$

Feature importance with p-value

Model

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Linear Regression

Таит в Logy

face 59 ok/tautologyai www.tautology.live

Linear regression คือ สมการเชิงเส้นที่ใช้ตัวแปรต้นเพื่อพยากรณ์ตัวแปรตาม

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

โดย

- ullet \hat{y} คือ ค่าพยากรณ์ของตัวแปรตาม (predicted target)
- x₁, x₂, x₃, ..., x_p คือ ตัวแปรตัน (feature)
- \bullet w_0 , w_1 , w_2 , ..., w_p คือ สัมประสิทธิ์ (coefficient)

1-Sample

Multi-Sample

Code

<u>ตัวอย่างการคำนวณ \widehat{y} </u>

$\mathbf{x_1}$	\mathbf{x}_{2}
3	1

$\widehat{oldsymbol{y}}$	
?	

สมมติว่า w ของปัญหานี้ที่เราหามาได้คือ

$$\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

ซึ่งทำให้สามารถเขียนสมการ \hat{y} ได้ดังต่อไปนี้

$$\hat{y} = 1 + 2x_1 + 3x_2$$

$$= 1 + 2(3) + 3(1)$$

$$= 10$$

<u>ดังนั้น</u> เราจะได้ \hat{y} ของข้อมูลชุดนี้คือ

x ₁	x ₂
3	1

$\widehat{m{y}}$	
10	

1-Sample

Multi-Sample

Code

x ₁	x ₂		\mathbf{x}_{p}		ŷ
<i>x</i> _{1,1}	<i>x</i> _{1,2}		$x_{1,p}$		$\widehat{\mathcal{Y}}_{1}$
<i>x</i> _{2,1}	$x_{2,2}$		$x_{2,p}$		\widehat{y}_2
:	:	··	:		:
$x_{i,1}$	$x_{i,2}$		$x_{i,p}$	\rightarrow	\hat{y}_i
:	:	·.	. :	•	:
$x_{n,1}$	$x_{n,2}$		$x_{n,p}$	<u> </u>	$\widehat{\mathcal{Y}}_n$

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

$$\hat{y}_1 = w_0 + w_1 x_{1,1} + w_2 x_{1,2} + \dots + w_p x_{1,p}$$

$$\hat{y}_2 = w_0 + w_1 x_{2,1} + w_2 x_{2,2} + \dots + w_p x_{2,p}$$

:

$$\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_p x_{i,p}$$

:

$$\hat{y}_n = w_0 + w_1 x_{n,1} + w_2 x_{n,2} + \dots + w_p x_{n,p}$$

เพื่อให้สอดคล้องกับ format ของ data เราสามารถเขียนให้อยู่ในรูปของ matrix ได้ ดังนี้

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} w_0 + w_1 x_{1,1} + w_2 x_{1,2} + \dots + w_p x_{1,p} \\ w_0 + w_1 x_{2,1} + w_2 x_{2,2} + \dots + w_p x_{2,p} \\ \vdots \\ w_0 + w_1 x_{n,1} + w_2 x_{n,2} + \dots + w_p x_{n,p} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ 1 & x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

$$\widehat{\mathbf{y}} = X_b \mathbf{w}$$

โดยที่
$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}$$
, $X_b = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ 1 & x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_p \end{bmatrix}$

<u>ตัวอย่างการคำนวณ ŷ</u>

$\mathbf{x_1}$	\mathbf{x}_{2}
1	1
2	0
3	1
3	0

$\hat{\mathbf{y}}$	
?	
?	
?	
?	

• สมมติว่า w ของปัญหานี้ที่เราหามาได้คือ

$$\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

• และจากข้อมูลใน dataset เราสามารถเขียน X_b ได้ดังต่อไปนี้

$$X_b = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \\ 1 & 3 & 0 \end{bmatrix}$$

เราคำนวณค่า $\hat{\mathbf{y}}$ ได้จาก $\hat{\mathbf{y}} = X_b \mathbf{w}$

$$\hat{\mathbf{y}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \\ 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} (1 \times 1) + (2 \times 1) + (3 \times 1) \\ (1 \times 1) + (2 \times 2) + (3 \times 0) \\ (1 \times 1) + (2 \times 3) + (3 \times 1) \\ (1 \times 1) + (2 \times 3) + (3 \times 0) \end{bmatrix}$$

$$= \begin{bmatrix} 6 \\ 5 \\ 10 \\ 7 \end{bmatrix}$$

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

$\mathbf{x_1}$	\mathbf{x}_2
1	1
2	0
3	1
3	0

$\hat{\mathbf{y}}$
6
5
10
7

1-Sample

Code

<u>ตัวอย่าง code สำหรับหา ŷ</u>

$\mathbf{x_1}$	\mathbf{x}_2
1	1
2	0
3	1
3	0

$\hat{\mathbf{y}}$	
?	
?	
?	
?	

ตารางแสดง toy dataset

• Code สำหรับหา $\hat{\mathbf{y}}$ จากข้อมูลของเรา โดยที่ $X = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 3 & 1 \\ 3 & 0 \end{bmatrix}$

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

$\mathbf{x_1}$	\mathbf{x}_{2}
1	1
2	0
3	1
3	0

$\hat{\mathbf{y}}$
6
5
10
7

Code for this section

Open File

Model Creation.ipynb

$$\hat{\mathbf{y}} = X_b \mathbf{w}$$

Linear Regression

Workshop

AI in Marketing

Al in Investment

Al in Insurance

AI in Marketing

- Abstract
- Why this project important?
- Who this project for?
- Ads Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อพยากรณ์รายได้ที่ได้รับจากการยิง ads โดย feature ที่นำมาใช้ คือ ข้อมูลต่าง ๆ ที่เก็บได้จากการยิง ads เช่น

- จำนวนเงินที่ใช้ในการยิง ads
- จำนวนครั้งที่มีคนคลิก ads

Why this project important?

- สามารถวางแผนรายได้ของบริษัท จาก performance ของ ads
- สามารถต่อยอดกับการทำ marketing บน platform อื่น ๆ

Who this project is for?

- ผู้ขายสินค้าออนไลน์
- ผู้ดูแลเพจ
- Marketing consultant
- นักวิเคราะห์ข้อมูล

Ads Dataset

Ads Dataset

Feature

- spend : จำนวนเงินที่ใช้ในการยิง ads
- clicks : จำนวนครั้งที่มีการคลิก ads
- impressions : จำนวนครั้งที่ ads ปรากฏบน website
- display : มี web address ปรากฏบน ads หรือไม่
- transactions : จำนวนครั้งที่มีการทำธุรกรรม
- ctr : จำนวนครั้งที่คลิกโฆษณาต่อจำนวนครั้งที่โฆษณาปรากฎ (clickthrough rate)
- con_rate : จำนวนสินค้าที่ถูกซื้อต่อจำนวนคนที่เข้ามาดูสินค้า (conversion rate)

Target

• revenue : รายได้ที่ได้รับจากการยิง ads

What we learn from this project?

Data Preparation

01. MARKETING

Workshop

Al in Marketing

Al in Investment

Al in Insurance

Al in Investment

- Abstract
- Why this project important?
- Who this project for?
- Set50 Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อพยากรณ์ราคาสูงสุดรายวันของ SET50 โดย feature ที่นำมาใช้ คือ technical indicator ต่าง ๆ เช่น

- standard deviation
- RSI

Why this project important?

- สามารถสร้างระบบการซื้อขายที่ปราศจาก อารมณ์ของมนุษย์
- สามารถเป็นพื้นฐานสำหรับสร้างระบบการซื้อขาย ที่ robust มากขึ้น
- สามารถต่อยอดกับการเก็งกำไรบนสินทรัพย์ชนิด อื่น ๆ

Who is this project for?

- นักลงทุน
- ผู้ดูแลกองทุน
- นักวิจัยเชิงปริมาณ
- นักวิเคราะห์ข้อมูล

SET50 Dataset

ข้อมูลของ SET50 สามารถเก็บได้ที่เว็บไซต์ https://www.investing.com

SET50 Dataset

Feature

- Open_0 : ราคาเปิดของวันนั้น ๆ
- STD5_Open_O : ส่วนเบี่ยงเบนมาตรฐานของราคาเปิด 5 วันล่าสุด
- RSI14_Open_O : ค่าที่บอกการแกว่งของราคาเปิด 14 วันล่าสุด
- ATR14_0 : ค่าที่บอกความผันผวนของราคา 14 วันล่าสุด

Target

• High_O : ราคาสูงสุดของวันนั้น ๆ

What we learn from this project?

Data Preparation

02. INVESTMENT/set50

O2. INVESTMENT/eurusd

O2. INVESTMENT/xauusd

**ข้อมูลสามารถเก็บได้ที่เว็บไซต์ https://www.investing.com

Workshop

Al in Marketing

Al in Investment

Al in Insurance

AI in Insurance

- Abstract
- Why this project important?
- Who this project for?
- Insurance Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อประเมินค่าประกันภัยส่วนบุคคล โดย feature ที่นำมาใช้ คือ ประวัติ ทั่วไป และประวัติด้านสุขภาพ ของผู้ทำประกัน เช่น

- **LWA**
- อายุ
- BMI

Why this project important?

- สามารถวางแผนตั้งราคาเบี้ยประกันภัยที่ เหมาะสมที่สุด
- สามารถเพิ่มขีดความสามารถในการแข่งขันกับ บริษัทคู่แข่ง

Who this project is for?

- นักคณิตศาสตร์ประกันภัย
- ผู้วางแผนทำประกันภัย
- นักวิเคราะห์ข้อมูล

Insurance Dataset

https://www.kaggle.com/sonujha090/insurance-prediction

Insurance Dataset

Feature

• age : อายุ

• sex : lWA

• BMI : ค่า BMI

• children : จำนวนบุตร

• region : พื้นที่ที่พักอาศัย

Target

• charges : ค่าประกันที่จ่ายให้กับบริษัทประกันภัย

What we learn from this project?

What we learn from this project?

Feature Engineering

สร้าง feature ใหม่ เพื่อเก็บข้อมูลระดับภาวะน้ำหนัก ตัวโดยใช้ค่า BMI ในการแบ่ง

	age	sex	bmi	children	region	charges	bmiclass
0	19	0	27.900	0	3	16884.92400	3
1	62	0	26.290	0	2	27808.72510	3
2	27	1	42.130	0	2	39611.75770	4
3	30	1	35.300	0	3	36837.46700	4
4	34	0	31.920	1	0	37701.87680	4

Code

```
1 data['bmiclass'] = (
2     (data['bmi'] < 18.5) * 1
3     + ((data['bmi'] >= 18.5) & (data['bmi'] < 23)) * 2
4     + ((data['bmi'] >= 23) & (data['bmi'] < 30)) * 3
5     + (data['bmi'] >= 30) * 4
6 )
```


Data Preparation

03. INSURANCE

Workshop

Al in Marketing

Al in Investment

Al in Insurance

Linear Regression

