10 ENOSMERNI MOTOR

Navor enosmernega motorja je premo sorazmeren s tokom skozi navitje motorja in ga lahko predstavimo z en. 1:

$$M = k_T I, (1)$$

kjer je M navor na gredi motorja, I tok skoz navitje motorja in k_T konstanta motorja, ki podaja razmerje med navorom in tokom. Prav tako je premo sorazmerna povezava med vrtilno hitrostjo gredi motorja in inducirano napetostjo, ki se pojavi na navitju. To razmerje podaja en. 2

$$\omega = \frac{U_i}{k_V},\tag{2}$$

kjer je ω vrtilna hitrost (v rad/s), U_i inducirana napetost in k_V ta konstanta. Izkaže se, da sta konstanti k_T in k_V identični, a jih proizvajalci pogosto podajajo ločeno zaradi namena in praktičnosti uporabe (Moog, n.d.).

V teoretičnih opisih delovanja enosmernega motorja pa sta ti dve konstanti predstavljeni z en. 3

$$k_T = k_V = k_M \Phi_m, \tag{3}$$

kjer je k_M - konstanta motorja, Φ_m pa magnetni pretok skozi zanke navitja. Če poznamo konstanto k_T lahko izračunamo konstanto motorja k_M po en. 4

$$k_M = \frac{k_T}{\sqrt{R_n}},\tag{4}$$

kjer je R_n omska upornost navitja.

10.1 KONSTANTA MOTORJA

10.1.1 NALOGA: KONSTANTA MOTORJA

Za več različnih DC motorjev izmerite potrebne meritve, da boste lahko določili konstanto motorja k_M . Potrebne meritve vpišite v tbl. ${\bf 1}$ in jih označite z * tako, da se bodo izmerjene vrednosti ločile od izračunanih. Račune tudi nakažite vsaj za en primer motorja.

dr. David Rihtaršič

Tabela 1: Meritve osnovnih karakteristik motorja.

	DC Motor 1	DC Motor 2	DC Motor 3
opis motorja ->			
$R_n[\Omega]$			
$U_0[V]$			
$I_R[A]$			
[vrt/min]			
$\omega[rd/s]$			
$I_0[A]$			
$k_V[\frac{V}{rd/s}]$			
$k_T[\frac{Nm}{A}]$			
M[Nm]			
$k_M[Nm/sqrtW]$			
$P_M[W]$			
$P_E[W]$			
$\eta [\%]$			

Pri meritvah in izračunu naj vam bodo v pomoč enačbe v študijskem gradivu Elektrotehnika (Kocijančič 2018)

Kocijančič, Slavko. 2018. "Elektrotehnika."

Moog, Inc. n.d. *Permanent Magnet DC Motors*.

dr. David Rihtaršič