



## Statistics

Written by



Madhuri Abhang Lecturer in Mathematics



# Mean deviation, Standard deviation

17 July 2020

## Learning Objective/ Key learning



Calculate mean and standard deviation of discrete and grouped data related to the given simple engineering problem.

#### Content



24 August 2020

- Mean deviation about mean for raw data
- 2. Mean deviation about mean for ungrouped data
- 3. Mean deviation about mean for grouped data
- 4. Standard deviation for raw data
- 5. Standard deviation for ungrouped data
- 6. Standard deviation for grouped data

Key takeaways
Mean deviation
Standard deviation



Madhuri Abhang
Lecturer in Mathematics





## **Concept Explanation**



- ▶ Mean deviation (M.D.)
- ► For raw data:

Mean deviation about mean = 
$$\frac{\sum |x_i - \overline{x}|}{N} = \frac{\sum |d_i|}{N}$$
  
where  $\overline{x}$  = mean of  $N$  observations

► Example:

Find mean deviation about mean of the following data:

$$\frac{1}{x} = \frac{\sum x_i}{N} = \frac{2+3+4+5+6+7}{6}$$
$$= 4.5$$



| $x_i$ | $\left d_{i}\right  = \left x_{i} - \overline{x}\right $ |
|-------|----------------------------------------------------------|
| 2     | 2.5                                                      |
| 3     | 1.5                                                      |
| 4     | 0.5                                                      |
| 5     | 0.5                                                      |
| 6     | 1.5                                                      |
| 7     | 2.5                                                      |
|       | $\sum  d_i  = 9$                                         |

M.D. = 
$$\frac{\sum |d_i|}{N} = \frac{9}{6}$$
  
= 1.5



24 August 2020

► For ungrouped data:

Mean deviation about mean= 
$$\frac{\sum f_i |x_i - \bar{x}|}{\sum f_i} = \frac{\sum f_i |d_i|}{N}$$

► Example:

Calculate mean deviation from mean for the following data:

| Marks           | 3 | 4 | 5 | 6 | 7 | 8 |
|-----------------|---|---|---|---|---|---|
| No. of students | 1 | 3 | 7 | 5 | 2 | 2 |



| $x_i$ | $f_i$           | $f_i x_i$            | $ d_i  =  x_i - \overline{x} $ | $f_i d_i $            |
|-------|-----------------|----------------------|--------------------------------|-----------------------|
| 3     | 1               | 3                    | 2.5                            | 2.5                   |
| 4     | 3               | 12                   | 1.5                            | 4.5                   |
| 5     | 7               | 35                   | 0.5                            | 3.5                   |
| 6     | 5               | 30                   | 0.5                            | 2.5                   |
| 7     | 2               | 14                   | 1.5                            | 3.0                   |
| 8     | 2               | 16                   | 2.5                            | 5.0                   |
|       | $\sum f_i = 20$ | $\sum f_i x_i = 110$ |                                | $\sum f_i  d_i  = 21$ |

Mean = 
$$\bar{x} = \frac{\sum f_i x_i}{N} = \frac{110}{20} = 5.5$$
  
M.D.=  $\frac{\sum f_i |d_i|}{N} = \frac{21}{20} = 1.05$ 

M.D.=
$$\frac{\sum f_i |d_i|}{N} = \frac{21}{20} = 1.05$$



### ► For grouped data:

M.D. about mean = 
$$\frac{\sum f_i \left| x_i - \overline{x} \right|}{\sum f_i} = \frac{\sum f_i \left| d_i \right|}{N}$$
 where  $x_i = \text{Mid-value}$ 

#### ► Example:

Find mean deviation of the following data:

| Class     | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
|-----------|------|-------|-------|-------|-------|
| Frequency | 1    | 2     | 4     | 2     | 1     |



| Class | $f_i$           | $x_i$ | $f_i x_i$            | $ d_i  =  x_i - \overline{x} $ | $f_i  d_i $           |
|-------|-----------------|-------|----------------------|--------------------------------|-----------------------|
| 0-10  | 1               | 5     | 5                    | 20                             | 20                    |
| 10-20 | 2               | 15    | 30                   | 10                             | 20                    |
| 20-30 | 4               | 25    | 100                  | 0                              | 0                     |
| 30-40 | 2               | 35    | 70                   | 10                             | 20                    |
| 40-50 | 1               | 45    | 45                   | 20                             | 20                    |
|       | $\sum f_i = 10$ |       | $\sum f_i x_i = 250$ |                                | $\sum f_i  d_i  = 80$ |

Mean = 
$$\bar{x} = \frac{\sum f_i x_i}{N} = \frac{250}{10} = 25$$
  
M.D. about mean =  $\frac{\sum f_i |d_i|}{N}$   
=  $\frac{80}{10} = 8$ 



- ► Standard deviation:
- ► For raw data:

$$S.D. = \sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N}} = \sqrt{\frac{\sum d_i^2}{N}}$$

► Example:

Find standard deviation for:

Solution: 
$$\bar{x} = \frac{\sum x_i}{N} = \frac{9+10+12+13+18+20+21+25}{8} = 16$$



| $X_i$ | $d_i = x_i - \overline{x}$ | $d_i^2$            |
|-------|----------------------------|--------------------|
| 9     | -7                         | 49                 |
| 10    | -6                         | 36                 |
| 12    | -4                         | 16                 |
| 13    | -3                         | 9                  |
| 18    | 2                          | 4                  |
| 20    | 4                          | 16                 |
| 21    | 5                          | 25                 |
| 25    | 9                          | 81                 |
|       |                            | $\sum d_i^2 = 236$ |

$$\sigma = \sqrt{\frac{\sum d_i^2}{N}}$$
$$= \sqrt{\frac{236}{8}} = 5.431$$



► For ungrouped data:

$$S.D. = \sigma = \sqrt{\frac{\sum f_i d_i^2}{N}}$$

► Example:

Calculate standard deviation for the following:

| $X_i$ | 27 | 28 | 29 |
|-------|----|----|----|
| $f_i$ | 1  | 7  | 2  |



| $x_i$ | $f_i$           | $f_i x_i$            | $d_i = x_i - \overline{x}$ | $d_i^{2}$ | $f_i d_i^{\ 2}$        |
|-------|-----------------|----------------------|----------------------------|-----------|------------------------|
| 27    | 1               | 27                   | -1.1                       | 1.21      | 1.21                   |
| 28    | 7               | 196                  | -0.1                       | 0.01      | 0.07                   |
| 29    | 2               | 58                   | 0.9                        | 0.81      | 1.62                   |
|       | $\sum f_i = 10$ | $\sum f_i x_i = 281$ |                            |           | $\sum f_i d_i^2 = 2.9$ |

$$\bar{x} = \frac{\sum f_i x_i}{N} = \frac{281}{10} = 28.1$$

S.D. = 
$$\sigma = \sqrt{\frac{\sum f_i d_i^2}{N}}$$
  
=  $\sqrt{\frac{2.9}{10}} = 0.539$ 



#### ► For grouped data:

S.D. = 
$$\sigma = \sqrt{\frac{\sum f_i \left(x_i - \overline{x}\right)^2}{\sum f_i}} = \sqrt{\frac{\sum f_i d_i^2}{N}}$$

where  $x_i = \text{mid-value}$ 

#### ► Example:

The following table shows the chest measurement of 100 students. Calculate the standard deviation.

| Chest in cm     | 67-74 | 75-81 | 82-88 | 89-95 | 96-102 | 103-109 |
|-----------------|-------|-------|-------|-------|--------|---------|
| No. of students | 5     | 31    | 40    | 20    | 3      | 1       |



| Class   | Continuous class | $f_i$            | $x_{i}$ | $f_i x_i$             | $d_i = \left  x_i - \overline{x} \right $ | $d_i^{2}$ | $f_i d_i^{\ 2}$            |
|---------|------------------|------------------|---------|-----------------------|-------------------------------------------|-----------|----------------------------|
| 68-74   | 67.5-74.5        | 5                | 71      | 355                   | 13.16                                     | 173.1856  | 865.928                    |
| 75-81   | 74.5-81.5        | 31               | 78      | 2418                  | 6.16                                      | 37.9456   | 1176.3136                  |
| 82-88   | 81.5-88.5        | 40               | 85      | 3400                  | 0.84                                      | 0.7056    | 28.224                     |
| 89-95   | 88.5-95.5        | 20               | 92      | 1840                  | 7.84                                      | 61.4656   | 1229.312                   |
| 96-102  | 95.5-102.5       | 3                | 99      | 297                   | 14.84                                     | 220.2256  | 660.6768                   |
| 103-109 | 102.5-109.5      | 1                | 106     | 106                   | 21.84                                     | 476.9856  | 476.9856                   |
|         |                  | $\sum f_i = 100$ |         | $\sum f_i x_i = 8416$ |                                           |           | $\sum f_i d_i^2 = 4437.44$ |

$$\overline{x} = \frac{\sum f_i x_i}{N} = \frac{8416}{100} = 84.16$$

$$S.D. = \sqrt{\frac{\sum f_i d_i^2}{N}}$$
$$= \sqrt{\frac{4437.44}{100}} = 6.661$$

## Quiz



▶ Q 1.Mean deviation about mean for raw data is:

$$\blacktriangleright$$
 a)  $\frac{\sum |d_i|}{N}$  b)  $\frac{\sum f_i |d_i|}{N}$  c)  $\sqrt{\frac{\sum d_i^2}{N}}$  d)  $\sqrt{\frac{\sum f_i d_i^2}{N}}$ 

Q 2. Standard deviation for grouped data is:

a) 
$$\frac{\sum |d_i|}{N}$$
 b)  $\frac{\sum f_i |d_i|}{N}$  c)  $\sqrt{\frac{\sum d_i^2}{N}}$  d)  $\sqrt{\frac{\sum f_i d_i^2}{N}}$ 

Ans. 1) a 2) d