


```
THE SINGLE-BASE DATA EMBEDDING APPROACH (SB) 2/6
• Define a secret B-ary digit: S_B, cover pixel: P, the embedding function SPSBDE(P, B, S_B).
• First: calculating remainder of the existing pixel value r = P \mod B.
• Second: calculating the differences value d = [(S_B - r) + B] \mod B.
                                                                      Eq. (2)
  Message Embedding:
                                             Saturated pixel:
              if d = 0
                                                     P' + B, if P' < 0
              if d < B/2
                           Eq. (3)
                                                         B, if P' > 255
                                                                        Eq. (4)
              if d = B/2
                                                            otherwise
  P' = 18 + 3 - 5 = 16.
  Extraction: S_5 = 16 \mod 5 = 1
                                   В
                                                B/2
                                                         B/2
                                                                         В
```


THE SINGLE-BASE DATA EMBEDDING APPROACH (SB) $_{4/6}$ EXAMPLE 2: SATURATED PIXEL • SPSBDE(P, B, S_{g}) = (255, 5, 1) • Cover pixel P = 255, a secret 5-ary digit S_{g} = 1. • Remainder of the pixel value P = 255 mod 5 = 0. • Differences value P = [(1 - 0) + 5] mod 5 = 1. • Embedding: since P = P if P if P if P = P if P if

EXPECTED MEAN SQUARE ERROR, EMSE(B) 5/6 • Given an odd base b, e.g. b=5 • Total Square Error = TSE = $0^2+1^2+2^2+(-2)^2+(-1)^2$ • Expected Mean Square Error for b: EMSE(5)=TSE/5=10/5=2• A general case for b, TSE = $0^2+1^2+2^2+...+(\frac{(b-1)}{2})^2+(-\frac{(b-1)}{2})^2...+(-2)^2+(-1)^2$ • Expected Mean Square Error for a base b : EMSE(b)= TSE/b = $\frac{b^2-1}{12}$ • Verify b=5, EMSE(5)= $\frac{5^2-1}{12}$ =2

EXPECTED MEAN SQUARE ERROR, EMSE(B) 6/6 • Given an eve base b, e.g. b=6 • Total Square Error = TSE = $0^2+1^2+2^2+3^2+(-2)^2+(-1)^2$ • Expected Mean Square Error EMSE(6)=TSE/6= $\frac{19}{6}$ • A general case for b, TSE = $0^2+1^2+2^2+...+(\frac{b}{2})^2+[-(\frac{b}{2}-1)]^2...+(-2)^2+(-1)^2$ • Expected Mean Square Error for a base b : EMSE(b)= TSE/b = $\frac{b^2+2}{12}$ • Verify: b=6, EMSE(b)= $\frac{6^2+2}{12}=\frac{19}{6}$ • A general for any base b: MSE(b)= $\frac{b^2-(-2)(b+1) \mod 2}{12}$

THE MULTIPLE-BASE DATA EMBEDDING SCHEME (MB) 3/5

EXAMPLE 3:

- MB(n, F)=(3, 35), we assume the optimal base vector: OBV(3, 3, 4). M=3*3*4=36 > F=35
- The secret 36-ary digit: 32₃₆, pixel-cluster of 3 pixels: PC(90, 100, 110), and the optimal base vector: OBV(3, 3, 4).
- First, we calculate message coefficients:
- $e_1 = 32 \mod 3 = 2$, $e_2 = \left\lfloor \frac{32}{3} \right\rfloor \mod 3 = 1$, $e_3 = \left\lfloor \frac{32}{3 \times 3} \right\rfloor \mod 4 = 3$.
 - Then embedding the coefficient $e_1 = 2$ into pixel $P_1 = 90$ by Eqs. (1) to (4):
 - Remainder of the pixel value $r_1 = 90 \mod 3 = 0$.
 - Difference value $d_1 = [(2-0) + 3] \mod 3 = 2$.
 - Since $2 \ge \lfloor 3/2 \rfloor$, the stego $P_1' = P_1 + d_1 b_1 = 90 + 2 3 = 89$.
 - e_2 , e_3 into P_2 , P_3 , respectively.
- Final stego pixels-cluster = PC(89, 100, 111).

THE MULTIPLE-BASE DATA EMBEDDING SCHEME (MB) 4/5

FIND THE OPTIMAL BASE VECTOR

- The expected mean squared error (EMSE) can be estimated:

 - EMSE(B) = $\frac{\left[B^2 (-2)(B+1) \mod 2\right]}{12}$ Eq. (5) Base(1,5,7) = $\frac{1^2 (-2)^{(1+1) \mod 2}}{12} + \frac{5^2 1}{12} + \frac{7^2 1}{12} = \frac{72}{12} = 6.$ Base(3,3,4) = $\frac{3^2 1}{12} + \frac{3^2 1}{12} + \frac{4^2 + 2}{12} = \frac{34}{12} = 2.8\overline{3}$
- **Example 4:** Given MB(n, F) = (2, 5)

$\{SEV (s_1, s_2)\} Q_{SEV} = 15$	{MBV (v_1, v_2) } $Q_{MBV} = 10$	EMSE(MBV (v ₁ , v ₂))
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)	(1, 5)	1.0000
(2, 2), (2, 3), (2, 4), (2, 5)	(2, 3) , (2, 4), (2, 5)	0.5833 , 1.0000, 1.2500
(3, 3), (3, 4), (3, 5)	(3, 3), (3, 4), (3, 5)	0.6665, 1.0833, 1.3333
(4, 4), (4, 5)	(4, 4), (4, 5)	1.5000, 1.7500
(5, 5)	(5, 5)	2.0000

• EMSE(MBV(2, 3)) = [EMSE(2) + EMSE(3)] / 2 = [0.5 + 0.66667] / 2 = $0.58\overline{3}$

DETERMINE THE OPTIMAL BASE VECTOR

- Given MB(n, F)
- n: how may pixels are clustered to form a basic embedding unit
- F: the maximal target notational system we intend to convey
- Example: MB(2, 5): 2 pixels are clustered as an embedding unit, the maximal 5-ary notational system
- Brute force approach: four steps
- Step 1: determine the fundamental base component, b, where $b = {n \choose VF}$.
- Step 2: construct the fundamental base vector, FBV=(b, b, ...b)
- Step 3: evaluate the distortion in terms of the mean square error for every candidate base vector, CBV_i , using n nested "for" loops: the upper bound is +2 and the lower bound is -2
- Step 4: select the vector that has the minimal mean square error as the optimal bases vector, OBV

DETERMINE THE OPTIMAL BASE VECTOR-EXAMPLE

- Given MB(2, 5)
- Step 1: determine the fundamental base component, b, where b= $\lceil \sqrt[n]{F} \rceil = \lceil \sqrt[2]{5} \rceil = \lceil 2.236 \rceil = 3$
- Step 2: construct the fundamental base vector, FBV=(b, b, ...b)=(3, 3)
- Step 3: evaluate the EMSE for every candidate base vector, CBV_i, using n nested "for" loops
- Note: the "for" loops can be more efficient if we setup some conditions

16

```
ALGORITHM TO DETERMINE OBV: MB(2, 5)

for i=-2 to +2
  for j=-2 to +2
    CBV_i=(b, b)+(i, j)
    if legal (multiply >=F) and not repeat (b1<=b2) and legal component (>=2)
    Dist_i=EMSE(CBV_i)
    else
    next i, j

OBV= Dist_i that has the min{Dist_i}

• Setup three conditions to speedup the computing
• Condition 1: multiply all components \geq F

• Condition 2: components are in ascending order, b1\leqb2\leq ...,
• Condition 3: components \geq 2
```

							\v_	A LANGE
TH	ΕО	PTIMAI	BASE \	/ECTOF	R-MB(2,	5): O	3V(2, 3)	(
r	1	F	i	j	b1'	b2'	Distortion OBV	
2	2	5	-1	0	<mark>2</mark>	<mark>3</mark>	0.583333 Yes	-
2	<u>)</u>	5	0	0	3	3	0.666667	
2	<u>)</u>	5	-1	1	2	4	1.0	N()
2	<u>)</u>	5	0	1	3	4	1.083333	1
2	<u>)</u>	5	-1	2	2	5	1.25	
2	<u>)</u>	5	0	2	3	5	1.333333	
2	<u>)</u>	5	1	1	4	4	1.5	
2	<u> </u>	5	1	2	4	5	1.75	
2	<u> </u>	5	2	2	5	5	2.0	
	See th	e values sh	own in the ϵ	excel file			18	

THE EMBEDDING CAPACITY MAY BE CHANGED

- Given MB(n, F), we determine an optimal base OBV= $(b_1, b_2, ..., b_n)$
- Our initial intention is to embed an F-ary digit in an n-pixel cluster
- The embedding capacity (EC) per n-pixel cluster in bits is: $EC=log_2(F)$
- The embedding rate in bpp is $ER = \frac{EC}{n} = \frac{log_2(F)}{n}$
- Let M= $\prod_{i=1}^{n} \overline{b_i}$ be the multiplication of every component in OBV
- Note that $M \ge F$ but not necessary M=F.
- Mmaking use of M rather than F provides any benefits?

MAKING USE OF M-ARY BUT NOT F-ARY

- We can make use of M rather than F to embed more secret bits without increasing the distortion
- The updated embedding capacity per n-pixel cluster in bits is: $\mathrm{EC} = log_2(M)$
- The updated embedding rate is $ER = \frac{EC}{n} = \frac{log_2(M)}{n}$
- In our example
- Original EC= $log_2(F) = log_2(5) = 2.3219$ bits
- Updated EC=EC= $log_2(M)$ = $log_2(6)$ =2.5850 bits


```
GENERAL MULTIPLE-BASE DATA EMBEDDING
ALGORITHM (GMB) 4/14
                                                                           BINARY TO M-ARY CONVERSION
• An Example of the Notational Concealment (NC)
• Given GMB(2, 7), so n = 2, M = 7-ary, the k = \lfloor \log_2 7 \rfloor = 2, and in theory \log_2 7 = 2.807
• Image resolution H \times V = 16, number of group U = \lfloor (H \times V)/n \rfloor = 8.
                                        D = 2
                                         MC: [\log_2 7] + [\log_2 7] = 4 bits.
              P_6
                                        NC: [\log_2 7 \times 7] = 5 bits. (Avg. Cap. = 2.5)
                              P_{12}
      P_9
              P_{10}
                      P_{11}
                                        MC: [\log_2 7] + [\log_2 7] + [\log_2 7] = 6 bits.
• D_{opt} = \arg \max_{D} \{ \left| \frac{U}{D} \right| \}
                           \times L},
                                        NC:[\log_2 7 \times 7 \times 7] = [\log_2 343] = 8 \text{ bits. (Avg. Cap.} = 2.\overline{6})
         1 \le D \le U and L = [D \times \log_2 M] \le 64 Eq. (18)
  L_{opt} = |D_{opt} \times \log_2 M|
                                                                                      Eq. (19)
```


GENERAL MULTIPLE-BASE DATA EMBEDDING ALGORITHM (GMB) 6/14 BINARY TO M-ARY CONVERSION Dopt Difference Loss (%) Lopt CNC CTHE 13 37 242461 242512.0 0.021 10 51.02 340782 342835.0 2053.02 0.599 93 2 13 250 8 6 63 344043 348025.1 3982.12 (1.144) 789 5 48 359472 360404.7 932.74 0.259 5329 3 37 404114 1542.34 405656.3 0.380 9 7125 371331 1455.99 0.391 51 372787.0 2 10 25489 29 380103 383709.7 3606.71 0.940 59871 63 375291 378187.7 2896.72 0.766 934587 3 59 429579 433273.1 3694.06 0.853 13 3025894 433526 434109.3 583.34 43 0.134

ALGOI	RITHM		PLE-BAS 1B) 7/14					
Images	(Type)	n	M	Сар.	MSE	(MSE _R)	PSNR	Efficiency
Elaine	NC	5	162	384472	0.633	0.633	50.12	2.31697
Boat	NC	4	81	415055	0.667	0.668	49.89	2.37022
Pepper	NC	6	1215	445638	0.889	0.887	48.65	1.91654
Couple	DC	6	9375	571146	1.778	1.81	45.55	1.20373
Tiffany	MC	9	2343750	611667	2.13	2.161	44.78	1.07974
Gold hill	MC	8	4235364	720896	3.792	3.777	42.36	0.72809
Barbara	TC	9	67765824	757576	4.63	4.634	41.47	0.62363
Baboon	TC	3	1089	879339	8.889	8.908	38.63	0.37656
Jet	DC	5	131769	891578	9.35	9.351	38.42	0.36372
Lena	TC	5	532350	996942	16.367	16.355	35.99	0.23253

GENERAL MULTIPLE-BASE DATA EMBEDDING ALGORITHM (GMB)
$$_{8/14}$$
 coefficient mapping

• Solve MC, DC, and TC, message coefficients problem and histogram fluctuation

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } i = 1 \\ \frac{S_M}{\prod_{j=1}^{i} - 1} b_j & \mod b_j, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} P_1 & P_2 & P_3 & P_4 \\ P_5 & P_6 & P_7 & P_8 \\ P_9 & P_{10} & P_{11} & P_{12} \\ P_{13} & P_{14} & P_{15} & P_{16} \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq n, \end{cases}$

• $e_i = \begin{cases} S_M \mod b_i, & \text{if } 2 \leq i \leq n, \\ S_M \mod b_i, & \text{if } 2 \leq i \leq$

GENERAL MULTIPLE-BASE DATA EMBEDDING ALGORITHM (GMB) 10/14 COEFFICIENT MAPPING • Cyclic substitution function (CSF). Denote cover accumulate number is EN_i , stego is XN_i , where j = 1, 2, ..., U, $U = [(H \times V) / n].$ $EN_1 = 1$, $EN_2 = 2$, $EN_3 = 3$, ..., $EN_8 = 8$ P_5 P_6 P_8 P_9 P_{10} P₁₃ P_{14} P₁₅ Embedding: Embedding: $(e_i = 0, EN_{12})$ • $r_i = EN_i \mod b_i$, i = 1, 2, ..., n and j = 1, 2, ..., UEq. (25) $r_i = EN_{12} \mod 5 = 2$ $c_i = (0 + 2) \mod 5 = 2$ • $c_i = CSF(e_i, r_i, b_i) = (e_i + r_i) \mod b_i$, i = 1, 2, ..., nEq. (26) Extraction: Extraction: $(XN_{12}, c_i = 2)$ • $r_i' = XN_i \mod b_i$, i = 1, 2, ..., n and j = 1, 2, ..., UEq. (27) $r_i' = XN_{12} \mod 5 = 2$

Eq. (28)

 $e_i' = (2 - 2) \mod 5 = 0$

CONCLUSIONS

• $e_i' = RCSF(c_i', r_i', b_i) = (c_i' - r_i') \mod b_i, i = 1, 2, ..., n$

- (1) we provide a multiple-purpose style producing a high quality of images or providing a large payload for feasible applications, depending on the selection of the parameters n and M.
- (2) the algorithm conveys a number of secret bits closer to the theoretical maximum contributed from the triplet and notational concealment schemes we introduce.
- (3) it is possible to accurately predict the overall capacity and the stego image quality using mathematical expressions without conducting a real message embedding.
- (4) a coefficient mapping technique we recommend increases the security and resists steganalytic attacks from visualizing the histogram of stego images.

-