# **Computer Vision, Object Detection Lab 2**

Rami Ahmed

#### 1. Visualization





Figure 1.a,b. Random examples from nut training data.

# 2. Training Curves





Figure 2.a. Total loss of COCO init model

Figure 2ba. Total loss of IN init model

We noticed that COCO init converges faster and converges to a lower value.

# 3. Visualizations and Predictions

### COCO init





Figure 3.a,b. Random predictions from COCO initialized model.

### IN init





Figure 4.a,b. Random predictions from IN initialized model.

We noticed that COCO init gives more confident predictions >= 98%, while IN gives less confident ones >=75%.

# 4. Evaluation

# Segmentation

| Init | AP | AP50 | AP75 | APs | APm  | API |
|------|----|------|------|-----|------|-----|
| сосо | 93 | 100  | 100  | NaN | 91   | 94  |
| IN   | 76 | 100  | 97   | NaN | 75.5 | 74  |

#### BBox

| Init | AP | AP50 | AP75 | APs | APm  | API |
|------|----|------|------|-----|------|-----|
| сосо | 85 | 100  | 94   | NaN | 80   | 90  |
| IN   | 59 | 100  | 59   | NaN | 60.5 | 48  |

# 5. Conclusion

As it appears from above, that the COCO initialized model performs better than the ImageNet one in most of the metrics, and performs equal in some the rest. This is mainly because COCO is built on ImageNet with additional data.