3co	3482 Using Stars
	Assignment-Parameter Estimation
Anst	Giroen - Random Sample (x_1, \dots, x_n) $ L(\theta_1, \theta_2) = T_1 L e^{\left(-\frac{x_1 - y_2}{2\sigma^2}\right)} $ $ i=1 \sqrt{2\pi\sigma^2} $
	Jaking natural log of Likelihood fx^n $ln L(\theta_1, \theta_2) = \underbrace{\left(-\left(x_i - \mu\right)^2 - 1 \ln\left(2\pi\sigma^2\right)\right)}_{i=1}$
	Jo find MLE, diff. Log Likelihood w.g.t 0, , 02.
	$\frac{\partial}{\partial \theta_1} \ln L(\theta_1, \theta_2) = \underbrace{\sum_{i=1}^{\infty} (x_i - u_i)}_{i=1} = 0$
	$\frac{1}{2} \sum_{i=1}^{n} x_i - n u = 0$
	$\frac{\Theta_{1} = 1 \leq X_{1}}{U n^{1-1}}$
1010 ₂	$\frac{\partial}{\partial z} \ln L \left(\theta_1, \theta_2 \right) \stackrel{\text{T}}{=} \left(- \left(\frac{\chi_1 - \theta_1}{2(\theta_2)^2} \right) + 1 \right) = 0$
⇒	$\sum_{i=1}^{n} \left(\frac{x_i - \theta_1}{\theta_2} \right)^2 - n = 0$
E	$\frac{\partial^2}{\partial z} = \frac{1}{\pi} \sum_{i=1}^{\infty} \left(\times i - \Theta_i \right)^2$
	02 = 1 = (Xi - O1) Sample Variance

	Date.
Ans 2	Page Mo.
	To find the MLE of Opor a bionomial distribution B(m. a)
	Je find the MLE of Of or a bionomial distribution $B(m, \Theta)$ where m m is a known to integer.
	$L(\theta) = \frac{\pi}{\pi} {m \choose \pi_i} \theta^{\lambda_i} (1-\theta)^{m-\lambda_i}$
	Taking In
	$ln(L(\theta)) = \underbrace{len(m) + Xiln(\theta) + (m-Xi)ln(1-\theta)}_{l=1}$
	$\frac{\partial}{\partial x} \ln(L(\theta)) = \sum_{i=1}^{\infty} (X_i - m - X_i) = 0$
	00 PO /
	Solving for O
,	X' = X'
	$\underbrace{X_i = \sum_{i=1}^{\infty} m - X_i}_{i=1}$
	$\sum_{i=1}^{n} X_{i}(1-\theta) = \sum_{i=1}^{n} (m-X_{i})\theta$
	γ η
	$\theta \in X_i = m \leq \theta$
	0- 1 m V.
	O= 1 x Xi m i=1
- 1	MLE of this sample mean of observations.
11	