

IN THE CLAIMS:

Claims 1 through 16 (Cancelled)

17. (Currently Amended) A driving IC device for supplying a driving current to a light-emitting device having a plurality of light-emitting parts arranged in a row, the driving IC device comprising n first output terminals each connected to one terminal of m light-emitting parts and a first drive section connected to the first output terminals,

wherein the first drive section comprises:

a data signal storage circuit for storing at least $n \times m$ data signals fed in sequentially a sequential order via r input terminals;
a data selecting circuit for selecting and extracting, in groups of n , the data signals stored in the data signal storage circuit without changing the sequential order; and
a drive circuit for outputting drive signals individually to the first output terminals on a basis of the data signals selected by the data selecting circuit.

18. (Original) A driving IC device as claimed in claim 17, further comprising m second output terminals each connected to another terminal of n light-emitting parts and a second drive section for selectively connecting one of the second output terminals to a predetermined potential.

19. (Original) A driving IC device as claimed in claim 17,
wherein the data signal storage circuit is composed of a shift register that stores $n \times m$ data signals when r data signals are fed in and a latch circuit that stores $n \times m$ data signals, and

the data selecting circuit selects and extracts, in groups of n , the data signals stored in the latch circuit.

20. (Original) A driving IC device as claimed in claim 19, further comprising m second output terminals each connected to another terminal of n light-emitting parts and a second drive section for selectively connecting one of the second output terminals to a predetermined potential.

21. (Original) A driving IC device as claimed in claim 17, wherein the data signal storage circuit is composed of a shift register that stores $n \times m$ data signals when r data signals are fed in, and

the data selecting circuit is composed of a latch circuit that selects and extracts, in groups of n , the data signals stored in the shift register and that stores the n data signals thus extracted.

22. (Original) A driving IC device as claimed in claim 21, further comprising m second output terminals each connected to another terminal of n light-emitting parts and a second drive section for selectively connecting one of the second output terminals to a predetermined potential.

23. (Original) A driving IC device as claimed in claim 17, wherein the first drive section further comprises a correction data storage circuit for storing $n \times m$ correction data signals with which to correct the $n \times m$ data signals.

24. (Original) A driving IC device as claimed in claim 17,
wherein the driving IC device is for driving a light-emitting device having m or less
groups of n light-emitting parts group by group on a time-division basis.

25. (Currently Amended) A driving IC device for supplying a driving current to a
light-emitting device having a plurality of light-emitting parts arranged in a row, the driving IC
device comprising n first output terminals each connected to one terminal of m light-emitting
parts, m second output terminals each connected to another terminal of n light-emitting parts, a
first drive section connected to the first output terminals, a second drive section connected to the
second output terminals, and a timing control circuit,

wherein the first drive section comprises:

a data signal storage circuit for storing at least $n \times m$ data signals fed in
sequentially a sequential order via r input terminals;
a division timing generating circuit for generating m division timing signals from
a signal fed from the timing control circuit;

a data selecting circuit for selecting and extracting, in groups of n , the data signals
stored in the data signal storage circuit on a basis of the m division timing signals fed from the
timing control circuit division timing generating circuit without changing the sequential order;
and

a drive circuit for outputting drive signals individually to the first output terminals
on a basis of the data signals selected by the data selecting circuit, and
the second drive section switches sequentially among the m second output terminals on a
basis of the m division timing signals.

26. (Original) A driving IC device as claimed in claim 25,

wherein the number r of input terminals is equal to the number m of second output terminals.

27. (Original) A driving IC device as claimed in claim 25,

wherein the first drive section further comprises a correction data storage circuit for storing $n \times m$ correction data signals with which to correct the $n \times m$ data signals.

28. (Original) A driving IC device as claimed in claim 25,

wherein the driving IC device is for driving a light-emitting device having m or less groups of n light-emitting parts group by group on a time-division basis.

29. (Currently Amended) An optical print head comprising a light-emitting device having a plurality of light-emitting parts and a driving IC device for supplying a driving current to the light-emitting parts of the light-emitting device,

wherein the light-emitting device comprises n first electrodes each connected to one terminal of a plurality of light-emitting parts,

the driving IC device comprises n first output terminals connected individually to the first electrodes of the light-emitting device and a first drive section for outputting the driving current via the first output terminals, and

the first drive section comprises a data signal storage circuit for storing at least $n \times m$ data signals fed in sequentially sequential order via r input terminals, a data selecting circuit for selecting and extracting, in groups of n , the data signals stored in the data signal storage circuit

without changing the sequential order, and a drive circuit for outputting drive signals individually to the first output terminals on a basis of the data signals selected by the data selecting circuit.

30. (Original) An optical print head as claimed in claim 29, wherein the driving IC device further comprises m second output terminals each connected to another terminal of n light-emitting parts and a second drive section for selectively connecting one of the second output terminals to a predetermined potential.

31. (Original) An optical print head as claimed in claim 29, wherein the data signal storage circuit is composed of a shift register that stores $n \times m$ data signals when r data signals are fed in and a latch circuit that stores $n \times m$ data signals, and the data selecting circuit selects and extracts, in groups of n , the data signals stored in the latch circuit.

32. (Original) An optical print head as claimed in claim 31, further comprising m second output terminals each connected to another terminal of n light-emitting parts and a second drive section for selectively connecting one of the second output terminals to a predetermined potential.

33. (Original) An optical print head as claimed in claim 29, wherein the data signal storage circuit is composed of a shift register that stores $n \times m$ data signals when r data signals are fed in, and

the data selecting circuit is composed of a latch circuit that selects and extracts, in groups of n , the data signals stored in the shift register and that stores the n data signals thus extracted.

34. (Original) An optical print head as claimed in claim 33, further comprising m second output terminals each connected to another terminal of n light-emitting parts and a second drive section for selectively connecting one of the second output terminals to a predetermined potential.

35. (Original) An optical print head as claimed in claim 29, wherein the first drive section further comprises a correction data storage circuit for storing $n \times m$ correction data signals with which to correct the $n \times m$ data signals.

36. (Original) An optical print head as claimed in claim 29, wherein the driving IC device is for driving the light-emitting device having m or less groups of n light-emitting parts group by group on a time-division basis.

37. (Original) An optical print head comprising a light-emitting device having a plurality of light-emitting parts and a driving IC device for supplying a driving current to the light-emitting parts of the light-emitting device,

wherein the light-emitting device comprises n first electrodes each connected to one terminal of m light-emitting parts and m second electrodes each connected to another terminal of n light-emitting parts,

the driving IC device comprises n first output terminals connected individually to the first electrodes of the light-emitting device, a first drive section for outputting the driving current via the first output terminals, m second output terminals connected individually to the second electrodes of the light-emitting device, a second drive section for keeping one of the second output terminals at a predetermined potential so as to make the light-emitting part connected thereto active, and a timing control circuit for outputting m division timing signals,

the first drive section comprises a data signal storage circuit for storing at least $n \times m$ data signals fed in sequentially via r input terminals, a data selecting circuit for selecting and extracting, in groups of n , the data signals stored in the data signal storage circuit on a basis of the m division timing signals fed from the timing control circuit, and a drive circuit for outputting drive signals individually to the first output terminals on a basis of the data signals selected by the data selecting circuit, and

the second drive section switches sequentially among the m second output terminals on a basis of the m division timing signals.

38. (Original) An optical print head as claimed in claim 37,
wherein the number r of input terminals is equal to the number m of second output terminals.

39. (Original) An optical print head as claimed in claim 37,
wherein the first drive section further comprises a correction data storage circuit for storing $n \times m$ correction data signals with which to correct the $n \times m$ data signals.

40. (Original) An optical print head as claimed in claim 37,

wherein the driving IC device is for driving the light-emitting device having m or less groups of n light-emitting parts group by group on a time-division basis.

41. (New) A driving IC device as claimed in claim 17, further comprising:

$k \times m$ (where k is an integer equal to or greater than 2) second output terminals each connected to another terminal of n of the light-emitting parts; and
a second drive section for selectively connecting the second output terminals to a predetermined potential,

wherein, in the data signal storage circuit, $n \times m$ data signals are stored for each of k lines.

42. (New) A driving IC device as claimed in claim 41,

wherein the number r of input terminals is set to be equal to the number $k \times m$ of second output terminals.

43. (New) A driving IC device as claimed in claim 17, further comprising:

m second output terminals each connected to another terminal of n of the light-emitting parts; and
a second drive section for selectively connecting the second output terminals to a predetermined potential,

wherein, when the driving IC device is connected to k of the light-emitting device each having $n \times (m/k)$ (where k is a divisor of m) of the light-emitting parts, the driving IC device drives the light-emitting devices in groups of (m/k) on the time-division basis.

44. (New) A driving IC device as claimed in claim 43,

wherein the number r of input terminals is set to be equal to the number m of second output terminals.

45. (New) An optical print head as claimed in claim 29,

wherein the driving IC device further comprises:

$k \times m$ (where k is an integer equal to or greater than 2) second output terminals each connected to another terminal of n of the light-emitting parts; and

a second drive section for selectively connecting the second output terminals to a predetermined potential, and

wherein, in the data signal storage circuit, $n \times m$ data signals are stored for each of k lines.

46. (New) An optical print head as claimed in claim 45,

wherein the number r of input terminals is set to be equal to the number $k \times m$ of second output terminals.

47. (New) An optical print head as claimed in claim 29,

wherein there are provided k of the light-emitting device each having $n \times (m/k)$ (where k is a divisor of m) of the light-emitting parts,

wherein the drive IC device further comprises:

m second output terminals each connected to another terminal of n of the light-emitting parts; and

a second drive section for selectively connecting the second output terminals to a predetermined potential, and

wherein the light-emitting devices are driven in groups of (m/k) on a time-division basis.

48. (New) An optical print head as claimed in claim 47,

wherein the number r of input terminals is set to be equal to the number m of second output terminals.