Software Requirements Specification (SRS)

Project: Bandwidth Monitoring System

Team Members:

- V. Nithin Reddy SE22UCSE278
- M. Panvi Tej SE22UCSE194
- N. Kushwanth Reddy SE22UCSE177
- C. Aryan SE22UCSE035
- E. Anvith Tej SE22UCSE089
- B. Jathin Reddy SE22UCSE118
- A. Hemanth SE22UCSE109

1. Introduction

1.1 Purpose

This document defines the functional and non-functional requirements for the Bandwidth Monitoring System, a lightweight web-based tool that monitors network bandwidth usage in real time. It tracks device-level and application-level traffic and generates alerts when usage exceeds specified thresholds.

1.2 Scope

The system is intended for small offices, educational labs, or home networks. It provides real-time usage data, logs historical bandwidth, tracks connected devices, and classifies bandwidth usage by application. A web dashboard allows users to visualize and analyze the data.

1.3 Intended Audience

- Network Administrators
- Students and Educational Institutions
- Developers interested in network analytics
- Project Reviewers and Faculty

1.4 Definitions

- Bandwidth: The amount of data sent or received over a network interface.
- Flask: A Python-based web framework used for developing the backend API.
- psutil: A Python library for retrieving system and network resource usage.

2. Overall Description

2.1 Product Perspective

This system is a standalone application that uses local machine resources and SQLite for storage. It provides REST APIs and a web-based UI to present data to the user.

2.2 Product Functions

- Real-time bandwidth monitoring
- Bandwidth usage logging (per interface, per device, per application)
- Threshold-based alerting
- Device and application categorization
- · Web-based dashboard for visualization
- Historical usage reporting

2.3 User Classes and Characteristics

Admin: Can start/stop the monitoring, configure thresholds Viewer: Can view current and historical data via the dashboard

2.4 Operating Environment

- Python 3.10+
- SQLite database
- Web browser (for accessing dashboard)
- Works on Windows, Linux

2.5 Design and Implementation Constraints

- Uses psutil, which may require elevated permissions
- Tracks local device/application usage only (not across routers)
- Not designed for high-traffic enterprise-grade networks

3. System Features

Real-Time Bandwidth Monitoring

Continuously fetch bandwidth data using psutil.net_io_counters().

Device Tracking

Records IP, MAC, bytes sent/received, and top application per device.

Application Usage Monitoring

Monitors bandwidth usage per application.

Alerts and Thresholds

Generates alert if total bandwidth usage exceeds a specified threshold.

Dashboard Visualization

Provides a web-based dashboard (index.html) for real-time and historical data.

4. External Interface Requirements

4.1 User Interface

- Accessible via web browser on http://localhost:5000
- Provides charts for total bandwidth, top interfaces, devices, and apps

4.2 Hardware Interfaces

- System should have at least one network interface
- No external hardware required

4.3 Software Interfaces

- Flask: Serves the API and HTML pages
- SQLite: Local database storage
- Matplotlib: For generating plots in PNG

4.4 Communications Interfaces

RESTful APIs served over HTTP

5. Non-functional Requirements

- Performance: Updates bandwidth stats every 5 seconds
- Reliability: Background thread for monitoring with exception handling
- Usability: Simple web interface with charts, no login needed
- Maintainability: Modular, documented Python code
- Portability: Platform-independent, works on Windows and Linux

6. Appendices

A. Database Tables

- bandwidth_usage(timestamp, interface, bytes_sent, bytes_received, total_bytes)
- device_usage(timestamp, ip_address, mac_address, bytes_sent, bytes_received, top_application)
- application_usage(timestamp, application_name, bytes_sent, bytes_received)
- alerts(timestamp, message, threshold, actual_value, resolved)

B. API Endpoints

- /api/current_usage
- /api/historical
- /api/device_usage

- /api/application_usage
- /api/alerts
- /api/usage_report

C. Diagrams

1. System Architecture

The diagram below shows the architecture of the Bandwidth Monitoring System, including the web UI, backend API, monitoring services, and database.

