Đồ họa máy tính

Tuần 7: Phương pháp tô màu

Nội dung

- 7.1. Tô màu theo vết dầu loang.
- 7.2. Tô màu theo dòng quét.

7.1. Tô màu theo vết dầu loang

7.1.1. Phát biểu bài toán

Cho trước biên kín **S** được xác định bởi dãy liên tục các pixels, hãy tô màu **miền trong của S**.

Giới hạn bài toán:

- . Màu biên và màu tô thuần nhất.
- . Màu biên khác màu tô.

7.1. Tô màu theo vết dầu loang.

7.1.2. Phương pháp

- L1. Khởi đầu từ điểm P (x,y) trong S với màu tô C(P)
- L2. Khảo sát các điểm trong lân cận của P: NS (P)
- L3. Lặp với mỗi điểm Q thuộc NS(P)

```
Nếu C(Q) != C(Boundary) and C(Q) != C(P)
```

C(Q) := C(P)

P := Q goto L3

Nếu khác

Kết thúc

7.1. Tô màu theo vết dầu loang

7.1.3. Giải thuật

```
Procedure Boundary_fill (x, y, fill_color, boundary: integer)
Var present_color: integer;
begin
   Present_color := inquire_color;
   if ( present_color != boundary) and (( present_color != fill_color) then
   begin
     Set_pixel (x, y, fill_color);
     Boundary_fill (x+1, y, fill_color, boundary);
     Boundary_fill (x-1, y, fill_color, boundary);
      Boundary_fill (x, y+1, fill_color, boundary);
      Boundary_fill (x, y-11, fill_color, boundary);
   end
end
```


7.2.1. Phát biểu bài toán

Cho đa giác S xác định bởi n đỉnh: P₁, P₂, ...,P_n. Hãy tô màu miền trong của S.

Giới hạn bài toán:

- . Dòng quét nằm ngang.
- . Khoảng cách 2 dòng quét là 1 pixel.
- . Miền tô được xác định bởi định lý Jordan.

7.2.2. Phương pháp

Tô sọc dựa trên qui tắc xác định miền trong (qui tắc lẽ-chẳn).

Phương pháp chung

- L1. Với mỗi dòng quét
- L2. Xác định giao điểm dòng quét với các cạnh của S.
- L3. Sắp xếp các giao điểm theo thứ tự tăng dần của x
- L4. Lấp đầy pixels giữa các cặp giao điểm lẽ-chẵn.

7.2.2. Phương pháp

Khuyết điểm

3/6/2016

KĐ1. Dòng quét đi qua các cạnh // 0x.

KĐ2. Dòng quét đi qua các đỉnh của S.

7.2.2. Phương pháp

Giải quyết vấn đề

C1. Hiệu chỉnh lại phương pháp.

C2. Tinh chế dữ liệu đầu vào.

7.2.2. Phương pháp

C2. Tinh chế dữ liệu đầu vào.

- Loại bỏ các cạnh // Ox.
- Làm ngắn cạnh tại các đỉnh không cực trị.

7.2.3. Giải thuật

```
Cấu trúc dữ liệu AEL (Active Edge List)
```

```
struct AEL {
```

```
Int y_upper;
```

Float x_int;

Float reci_slope;

Struct AEL *next;

7.2.3. Giải thuật

Cấu trúc dữ liệu ET (Edge Table)

struct AEL *ET[MAX_LINES)

ET[y] trỏ đến danh sách các cạnh có giá trị y của đỉnh thấp trùng giá trị y của dòng quét.

Giải thuật tô sọc dựa trên cấu trúc ET và AEL

Giai đoạn lấp đầy miền trong của S dựa vào cấu trúc dữ liệu AEL và bảng ET.

- L1. Lặp với mỗi dòng quét y từ MIN-Y đến MAX-Y.
- L2. Nếu ET[y] != NIL thì
- L3. .Thêm các cạnh được trỏ bởi ET[y] vào danh sách AEL được trỏ bởi Beglist.
- L4. Néu Beglist != NIL thì
 - . Sắp xếp danh sách AEL theo thứ tự tăng dần của x_int.
 - . **Lấp đầy** các pixel giữa các cặp giao điểm lẽ-chẵn ứng với dòng quét y dựa vào thông tin trong danh sách AEL đã được sắp thứ tự.
 - . **Loại bỏ** các cạnh trong danh sách AEL có y_upper = y.
 - . Cập nhật giá trị x_int bởi lượng reci_slope trong danh sách AEL.

L4. Kết thúc lặp

