

Python for Analytics: Week 4

Solution: Newsvendor Problem with NumPy Arrays

- NumPy arrays
 - Element-wise arithmetic operations

Required Assignment: Newsvendor Case - NumPy

Following the story in Week 4 Required Assignment, the discrete distribution information of two types of newspapers is stored in a two-dimensional array distr. The first row represents the probabilities of each weather condition, the second and third rows give the corresponding newspaper demands. Calculate: 1) the expected newspaper demands; 2) the standard deviations of newspaper demands; and 3) the expected total profit, where the parameters are given in the Required Assignment.

- NumPy arrays
 - Function and array methods

Duck ak 1144	. ~
Probabilitie Paper	
Paper	<u>-</u> 2

Sunny	Cloudy	Raining	Thunderstorm	Haze
0.315	0.226	0.289	0.087	0.083
560	530	389	202	278
533	486	386	234	263

- NumPy arrays
 - Function and array methods

	Sunny	Cloudy	Raining	Thunderstorm	Haze
Probabilities	0.315	0.226	0.289	0.087	0.083
Paper1	560	530	389	202	278
Paper2	533	486	386	234	263

- NumPy arrays
 - Function and array methods

Probabilities	
Paper1	
Paper2	

Sunny	Cloudy	Raining	Thunderstorm	Haze
0.315	0.226	0.289	0.087	0.083
560	530	389	202	278
533	486	386	234	263

Two-dimensional array distr

0.315	0.226	0.280	0.087	0.083	$\mid \ _{st}\mid$	560	
0.515	0.220	0.289	0.087	0.065	''	522	Γ
					٠ .	333	

Broadcasting

```
1 exp_d = (distr[0] * distr[1:]).sum(axis=1)
2 exp_d
```

array([449.249, 431.472])

- NumPy arrays
 - Function and array methods

	Sunny	Cloudy	Raining	Thunderstorm	Haze
Probabilities	0.315	0.226	0.289	0.087	0.083
Paper1	560	530	389	202	278
Paper2	533	486	386	234	263

axis1							
0.315*560	0.226*530	0.289*389	0.087*202	0.083*278			
0.315*533	0.226*486	0.289*386	0.087*234	0.083*263			

```
1 exp_d = (distr[0] * distr[1:]).sum(axis=1)
2 exp_d
```

array([449.249, 431.472])

- NumPy arrays
 - Function and array methods

	Sunny	Cloudy	Raining	Thunderstorm	Haze
Probabilities	0.315	0.226	0.289	0.087	0.083
Paper1	560	530	389	202	278
Paper2	533	486	386	234	263

axis1						nensional arr	ay distr
0.315*560	0.226*530	0.289*389	0.087*202	0.083*278		449.249	
0.315*533	0.226*486	0.289*386	0.087*234	0.083*263		431.472	

```
1 exp_d = (distr[0] * distr[1:]).sum(axis=1)
2 exp_d
array([449.249, 431.472])
```


- NumPy arrays
 - Function and array methods

	Sunny	Cloudy	Raining	Thunderstorm	Haze
Probabilities	0.315	0.226	0.289	0.087	0.083
Paper1	560	530	389	202	278
Paper2	533	486	386	234	263

Two-dimensional array distr

560	530	389	202	278	_	449.24
533	486	386	234	263		431.47
			4			

```
1 var_d = (distr[0] * (distr[1:] - exp_d.reshape((2, 1))) **2).sum(axis=1)
2 std_d = var_d ** 0.5
```

3 std d

array([118.90763222, 101.3157797])

- NumPy arrays
 - Function and array methods

	Sunny	Cloudy	Raining	Thunderstorm	Haze
Probabilities	0.315	0.226	0.289	0.087	0.083
Paper1	560	530	389	202	278
Paper2	533	486	386	234	263

560	530	389	202	278
533	486	386	234	263

	2 11 0 02			GISTI
449.249	449.249	449.249	449.249	449.249
431.472	431.472	431.472	431.472	431.472

Two-dimensional array distr

S Broadcasting

```
var_d = (distr[0] * (distr[1:] - exp_d.reshape((2, 1))) **2).sum(axis=1)

std_d = var_d ** 0.5

std_d
```

array([118.90763222, 101.3157797])

- NumPy arrays
 - Function and array methods

Probabilities	5
Paper1	
Paper2)

Sunny	Cloudy	Raining	Thunderstorm	Haze
0.315	0.226	0.289	0.087	0.083
560	530	389	202	278
533	486	386	234	263

560-449.249	530-449.249	389-449.249	202-449.249	278-449.249
533-431.472	486-431.472	386-431.472	234-431.472	263-431.472

```
var_d = (distr[0] * (distr[1:] - exp_d.reshape((2, 1)))**2).sum(axis=1)
std_d = var_d ** 0.5
std_d
```

```
array([118.90763222, 101.3157797 ])
```


- NumPy arrays
 - Function and array methods

Probabilities
Paper1
Paper2

Sunny	Cloudy	Raining	Thunderstorm	Haze
0.315	0.226	0.289	0.087	0.083
560	530	389	202	278
533	486	386	234	263

```
      (560-449.249)**2
      (530-449.249)**2
      (389-449.249)**2
      (202-449.249)**2
      (278-449.249)**2

      (533-431.472)**2
      (486-431.472)**2
      (386-431.472)**2
      (234-431.472)**2
      (263-431.472)**2
```

```
var_d = (distr[0] *
std_d = var_d ** 0.5
std_d
(distr[1:] - exp_d.reshape((2, 1)))**2).sum(axis=1)
std_d
```

```
array([118.90763222, 101.3157797 ])
```


- NumPy arrays
 - Function and array methods

Probabilities
Paper1
Paper2

Sunny	Cloudy	Raining	Thunderstorm	Haze
0.315	0.226	0.289	0.087	0.083
560	530	389	202	278
533	486	386	234	263

Two-dimensional array distr

axis1

(560-449.249)**2	(530-449.249)**2	(389-449.249)**2	(202-449.249)**2	(278-449.249)**2
(533-431.472)**2	(486-431.472)**2	(386-431.472)**2	(234-431.472)**2	(263-431.472)**2

```
var_d = (distr[0] * (distr[1:] - exp_d.reshape((2, 1)))**2).sum(axis=1)
std_d = var_d ** 0.5
std_d
```

```
array([118.90763222, 101.3157797 ])
```


- NumPy arrays
 - Function and array methods

Probabilities
Paper1
Paper2

Sunny	Cloudy	Raining	Thunderstorm	Haze
0.315	0.226	0.289	0.087	0.083
560	530	389	202	278
533	486	386	234	263

430
380

560	530	389	202	278
533	486	386	234	263

```
1  order = np.array([430, 380])
2  exp_sold = (distr[0] * np.minimum(order.reshape((2, 1)), distr[1:])).sum(axis=1)
3  exp_sold
```

```
array([385.699, 357.587])
```


- NumPy arrays
 - Function and array methods

Probabilities
Paper1
Paper2

Sunny	Cloudy	Raining	Thunderstorm	Haze
0.315	0.226	0.289	0.087	0.083
560	530	389	202	278
533	486	386	234	263

Two-dimensional array distr

430	430	430	430	430
380	380	380	380	380

560	530	389	202	278
533	486	386	234	263

```
1 order = np.array([430, 380])
2 exp_sold = (distr[0] * np.minimum(order.reshape((2, 1)), distr[1:])).sum(axis=1)
3 exp_sold
```

array([385.699, 357.587])

- NumPy arrays
 - Function and array methods

	Sunny	Cloudy	Raining	Thunderstorm	Haze
Probabilities	0.315	0.226	0.289	0.087	0.083
Paper1	560	530	389	202	278
Paper2	533	486	386	234	263

Two-dimensional array distr


```
1  order = np.array([430, 380])
2  exp_sold = (distr[0] * np.minimum(order.reshape((2, 1)), distr[1:])).sum(axis=1)
3  exp_sold
```

array([385.699, 357.587])

- NumPy arrays
 - Function and array methods

Probabilities	5
Paper1	
Paper2	2

Sunny	Cloudy	Raining	Thunderstorm	Haze
0.315	0.226	0.289	0.087	0.083
560	530	389	202	278
533	486	386	234	263

0.315	0.226	0.289	0.087	0.083	*
0.315	0.226	0.289	0.087	0.083	

430	430	389	202	278
380	380	380	234	263

```
Broadcasting
1 | order = np.array([430, 380])
```

```
1 order = np.array([430, 380])
2 exp_sold = (distr[0] * np.minimum(order.reshape((2, 1)), distr[1:])).sum(axis=1)
3 exp_sold
```

```
array([385.699, 357.587])
```


- NumPy arrays
 - Function and array methods

	Sunny	Cloudy	Raining	Thunderstorm	Haze
Probabilities	0.315	0.226	0.289	0.087	0.083
Paper1	560	530	389	202	278
Paper2	533	486	386	234	263

Two-dimensional array distr 0.315*430 0.226*430 0.289*389 0.087*202 0.083*278 0.315*380 0.226*380 0.289*380 0.087*234 0.083*263

```
1  order = np.array([430, 380])
2  exp_sold = (distr[0] * np.minimum(order.reshape((2, 1)), distr[1:])).sum(axis=1)
3  exp_sold
```

array([385.699, 357.587])

BUSINESS SCHOOL