

Device Control Register Bus (DCR) v2.9 (v1.00b)

DS402 December 2, 2009

Product Specification

Introduction

The Xilinx 32-Bit Device Control Register Bus (DCR), a soft IP core designed for Xilinx FPGAs, provides the DCR bus structure as described in the IBM 32-Bit Device Control Register Bus (DCR) Architecture Specification to allow easy connection of the DCR Master to the DCR slaves. It provides the daisy-chain for the DCR data bus and the OR gate for the DCR acknowledge signals from the DCR slaves.

Features

- DCR connections for one DCR master and a variable number of DCR slaves, which are configurable via design parameter
- Daisy-chain connections for the DCR data bus
- Required OR function of the DCR slaves' acknowledge signal

LogiCORE™ Facts						
C	Core Specifics					
Supported Device Family	Automotive Spartan®-3/3E/3A/3A DSP, Virtex®-4 /4Q/4QV, Virtex- 5/5FX					
Version of Core	dcr_v29	v1.00b				
Re	esources Used					
	Min	Max				
Slices						
LUTs	See Table	4 & Table 5				
FFs						
Block RAMs	NA	NA				
Pro	vided with Core					
Documentation	Product Specification					
Design File Formats	VHDL					
Constraints File	N/A					
Verification	N/A					
Instantiation Template	N/A					
Reference Designs	None					
Design	Tool Requiremen	nts				
Xilinx Implementation Tools	ISE® 11.4 or later					
Verification	tion ModelSim PE/SE 6.4b or later					
Simulation	ModelSim PE/SE 6.4b or later					
Synthesis	XST					
Support						
Provided by Xilinx, Inc.						

2

Functional Description

The relationships between the DCR Master/Slaves and the DCR Bus Module is shown in Figure 1.

32-Bit Device Control Register (DCR) Bus Interconnect

The Xilinx DCR bus module provides the necessary bus OR structure for the slaves' acknowledge signals and the correct daisy-chain connections for the DCR data bus. It allows for direct connection for 1 master and a variable number of slaves.

The Xilinx DCR Bus module does not provide a means for reducing the fan-out on DCR signals if the number of slaves is large, consequently you must analyze the timing of the DCR bus to determine if the number of slaves is too large. Figure 1 shows an example of the DCR connections when:

C_DCR_NUM_SLAVES=3, C_DCR_AWIDTH=10, and C_DCR_DWIDTH=32

Figure 1: DCR Interconnect Diagram

DCR Design Parameters

To allow the user to obtain a DCR that is uniquely tailored the user's system, certain features can be parameterized in the Xilinx DCR design. This allows the user to have a design that utilizes only the resources required by your system and runs at the best possible performance. The features that can be parameterized in the Xilinx DCR Bus are shown in Table 1.

Table 1: DCR Bus Design Parameters

Generic	Feature / Description	Parameter Name	Allowable Values	Default Value	VHDL Type	
		DCR Features				
G1	Number of DCR Slaves ⁽¹⁾	C DCR NUM SLAVES 1 - 16		4	integer	
G2	DCR Address Bus Width	C_DCR_AWIDTH	10	10	integer	
G3	DCR Data Bus Width	C_DCR_DWIDTH	32	32	integer	
	Implementation					
G4	Implement the OR gate for the ACK signals using LUTs or MUXCYs ⁽²⁾	C_USE_LUT_OR	1 = Implement the ACK OR gate using LUTs 0=Implement the ACK OR gate using MUXCYs	1	integer	

Notes:

- The DCR Bridge module does not provide any fan-out control on the DCR address bus or the DCR control signals. Therefore, care should be taken when using a large number of DCR slaves.
- This parameter allows the choice of implementing the OR gate for the DCR acknowledge signal using LUTs or carry-chain muxes.

Allowable Parameter Combinations

All combinations of parameters are allowed. Care should be taken if the number of slaves is large due to the large fan-out of the DCR control signals.

DCR I/O Signals

Table 2 provides a summary of all Xilinx DCR Bus input/output (I/O) signals, the interfaces under which they are grouped, and a brief description of the signal.

Table 2: DCR Pin Descriptions

Port	Signal Name	Interface	I/O	Initial State	Description
		Master D	CR Si	gnals	
P1	M_dcrABus[0:C_DCR_ AWIDTH-1]	Master	I		Master DCR address bus
P2	M_dcrRead	Master	I		Master read from DCR indicator
P3	M_dcrWrite	Master	I		Master write to DCR indicator
P4	M_dcrDBus[0:C_DCR_ DWIDTH-1]	Master	I		Master write data bus

Table 2: DCR Pin Descriptions (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description
P5	DCR_Ack	Master	0	0	Master DCR data transfer acknowledge
P6	DCR_M_DBus[0:C_DCR_ DWIDTH-1]	Master	0	0	Master DCR read data bus
		Slave Do	CR Sig	ınals	
P7	DCR_ABus[0:C_DCR_NUM_ SLAVES*C_DCR_AWIDTH-1]	Slave	0	0	DCR address bus to slaves
P8	DCR_Read[0:C_DCR_NUM_ SLAVES-1]	Slave	0	0	DCR read request to slaves
P9	DCR_Write[0:C_DCR_NUM_ SLAVES-1]	Slave	0	0	DCR write request to slaves
P10	DCR_SI_DBus[0:C_DCR_ NUM_SLAVES*C_DCR_ DWIDTH-1]	Slave	0	0	DCR write data bus to slaves
P11	SI_dcrAck[0:C_DCR_NUM_ SLAVES-1]	Slave	I		DCR slaves' acknowledge
P12	SI_dcrDBus[0:C_DCR_NUM_ SLAVES*C_DCR_DWIDTH-1]	Slave	I		DCR slaves read data bus from slaves

Parameter/Port Dependencies

The width of many of the DCR signals depends on the number of DCR slaves. The dependencies between the DCR design parameters and I/O signals are shown in Table 3.

Table 3: Parameter-Port Dependencies

Generic	Name	Affects	Depends	Relationship Description			
Design Parameters							
G1	C_DCR_NUM_SLAVE S	P7, P8, P9, P10, P11, P12		The width of many buses is set by the number of DCR slaves in the design.			
G2	C_DCR_AWIDTH	P1, P7		The width of these buses is set by the width of the DCR address bus.			
G3	C_DCR_DWIDTH	P4, P6, P10, P12		The width of these buses is set by the width of the DCR data bus.			
G4	C_USE_LUT_OR						
	,	ı	/O Signals				
P1	M_dcrABus[0:C_DCR_ AWIDTH-1]		G2	Width varies with the size of the DCR address bus.			
P2	M_dcrRead						
P3	M_dcrWrite						
P4	M_dcrDBus[0:C_DCR_ DWIDTH-1]		G3	Width varies with the size of the DCR data bus.			

the size of the DCR data bus.

Generic	Name	Affects	Depends	Relationship Description
P5	DCR_Ack			
P6	DCR_M_DBus[0:C_DC R_ DWIDTH-1]		G3	Width varies with the size of the DCR data bus.
P7	DCR_ABus[0:C_DCR_ NUM_SLAVES*C_DCR _AWIDTH-1]		G1, G2	Width varies with the number of slaves and the size of the DCR address bus.
P8	DCR_Read[0:C_DCR_ NUM_SLAVES-1]		G1	Width varies with the number of slaves.
P9	DCR_Write[0:C_DCR_ NUM_SLAVES-1]		G1	Width varies with the number of slaves.
P10	DCR_SI_DBus[0:C_DC R_ NUM_SLAVES*C_DCR _ DWIDTH-1]		G1, G3	Width varies with the number of slaves and the size of the DCR data bus.
P11	SI_dcrAck[0:C_DCR_N UM_ SLAVES-1]		G1	Width varies with the number of slaves.
P12	SI_dcrDBus[0:C_DCR_ NUM_SLAVES*C_DCR		G1, G3	Width varies with the number of slaves and

Table 3: Parameter-Port Dependencies (Cont'd)

DCR Bus Module Interfaces

_DWIDTH-1]

DCR Master Interface

The interface of the DCR Master to the DCR Bus Module is shown in Figure 2.

Figure 2: DCR Master Interface

DCR Slave Interface

The interface of a DCR slave to the DCR Bus Module is shown in Figure 3 where C_DCR_AWIDTH=10, C_DCR_DWIDTH=32 and the DCR slave number is n.

Figure 3: DCR Slave[n] Interface

Timing Diagrams

Figure 4 and Figure 5 show DCR_V29 write and read transactions.

Figure 4: DCR v29 Write Cycle Timing Diagram

Figure 5: DCR v29 Read Cycle Timing Diagram

Design Implementation

Target Technology

6

The target technology is an FPGA listed in the Supported Device Family field of the LogiCORE IP Facts table.

DS402 April 24, 2009 www.xilinx.com

Device Utilization and Performance Benchmarks

Since the DCR is a module that will be used with other design pieces in the FPGA, the utilization and timing numbers reported in this section are just estimates. As the DCR is combined with other pieces of the FPGA design, the utilization of FPGA resources and timing of the DCR design will vary from the results reported here.

To analyze the timing of the DCR within the FPGA, a design was created that instantiated the DCR with registers on all of the DCR inputs and outputs. This allowed a constraint to be placed on the clock net for the DCR to yield more realistic timing results. The f_{MAX} parameter shown in Table 5 was calculated with registers on the DCR inputs and outputs. Note however, that the resource utilizations reported in Table 5 do not include the registers on the DCR inputs and outputs.

The DCR benchmarks are shown in Table 5 are for a Virtex®-4 FPGA using multi-pass place and route.

Table 4: Performance and Resource Utilization Benchmarks on Virtex-4 FPGA (xc4vlx200ff1513-10)

Parameter Values					Device Resources			
C_DCR_NUM_SLAVES	C_DCR_AWIDTH	C_DCR_DWIDTH	C_USE_LUT_OR	Slices	Slice Flip- Flops	LUTs	f _{MAX}	
1	10	32	1	0	0	0	568	
2	10	32	1	0	0	1	444	
3	10	32	0	0	0	1	201	
4	10	32	1	1	0	1	407	
4	10	32	0	1	0	1	407	
5	10	32	1	1	0	1	279	
6	10	32	0	1	0	2	322	
7	10	32	1	1	0	2	166	
8	10	32	1	2	0	3	143	
8	10	32	0	1	0	2	366	

Notes:

- These benchmark designs contain only the DCR with registered inputs/outputs without any additional logic. Benchmark numbers approach the performance ceiling rather than representing performance under typical user conditions.
- 2. Device resource numbers do not include the registers for the DCR I/O.
- 3. Max frequency calculated with registers on the DCR I/O.

The DCR benchmarks are shown in Table 5 are for a Virtex-5 FPGA using multi-pass place and route.

Table 5: Performance and Resource Utilization Benchmarks on Virtex-5 FPGA (xc5vlx220ff1760-2)

	Parameter Values				Device Resources		
C_DCR_NUM_SLAVES	C_DCR_AWIDTH	C_DCR_DWIDTH	C_USE_LUT_OR	Slices	Slice Flip- Flops	LUTs	f _{MAX}
1	10	32	1	0	0	0	839
2	10	32	1	0	0	1	226
3	10	32	0	0	0	1	248
4	10	32	1	0	0	1	262
4	10	32	0	0	0	1	286
5	10	32	1	0	0	1	358
6	10	32	0	0	0	2	304
7	10	32	1	0	0	2	227
8	10	32	1	0	0	2	192
8	10	32	0	0	0	2	258

Notes:

8

Reference Documents

The following documents contain reference information important to understanding the Xilinx DCR design:

1. IBM 32-Bit Device Control Register Bus Architectural Specification (v2.9)

These benchmark designs contain only the DCR with registered inputs/outputs without any additional logic. Benchmark numbers approach the performance ceiling rather than representing performance under typical user conditions.

^{2.} Device resource numbers do not include the registers for the DCR I/O.

^{3.} Max frequency calculated with registers on the DCR I/O.

Revision History

Date	Version	Revision
04/23/02	1.0	Initial Xilinx release.
05/20/02	1.1	Update for EDK 1.0
07/24/02	1.2	Add XCO parameters for System Generator
01/07/03	1.3	Update for EDK SP3
07/08/03	1.4	Update to new template
09/11/03	1.4.1	Update graphics to GSC standards
07/18/03	1.4.2	Correct trademarks
06/24/04	1.5	Remove references to any device family except V2p, per CR 190407
8/9/04	1.6	Updated trademarks and supported device families listing; inserted cross- references for tables and figures; made minor format and content edits
7/18/05	1.7	Converted to new data sheet template
05/18/06	1.8	Updated for Virtex-5 FPGA support
4/24/09	1.9	Replaced references to supported device families and tool name(s) with hyperlink to PDF file
12/2/09	2.0	Updated to v1.00b for EDK_L 11.4 release.

Notice of Disclaimer

Xilinx is providing this design, code, or information (collectively, the "Information") to you "AS-IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.