C8/B.TECH (EIE-NEW)/SEM-5/EC-511(EI)/08/(09)

Ucch Vicen

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 ANALOG COMMUNICATION THEORY SEMESTER - 5

		_		_
Time	:	3	Hours	1

1.

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

Choo	se the	correct alternatives for any te	en of the	e following:	10 × 1 = 10
i)		nal x (t) is called an energy significantly following ?	gnal, if	its energy E and power P s	atisfy which
	a)	both E and P are infinite	b)	E is infinite, but P is finite	
	c)	E is finite, $P = 0$	d)	E is finite, but P is infinite	
ii)	For b	oroadcast system it is more ec	onomica	ai to have	•
	a)	one costly transmitter	b)	many costly receivers	
	c)	many costly transmitters	d)	none of these.	
iii)	Signal at the output of an AM modulator is given by				•
	e = 5	$\cdot 3 (1 + 0.64 \sin 6280 t) \sin 1$	10 ⁶ t. Th	ne modulating frequency is	
	a)	6·28 kHz			
	b)	1 kHz			
	c)	1000 kHz			
	d)	indeterminate from the given	n data.		
iv)		e locked the PLL can track	the inc	coming frequency over a fir	nite range of
	a)	lock range	b)	capture range	
	c)	null range	d)	none of these.	

CS/B.TECH	(EIE-NE	W)/SEM-5/EC-511(E1)/08/(09) 4
v)	Indi	cate the false statement regarding the advantages of SSB-SC over
	Gen	eral AM:
	a)	More channel space is available
	b)	Signal is more noise resistant
	c)	Much less power is needed for the same signal strength
	d)	Transmitter circuits are more stable giving better reception.
vi)	The	image channel rejection in a superheterodyne receiver comes from
	a)	IF stages only b) RF stages only
	c)	Detector and RF stages only d) Detector, RF and IF stages.
vii)	The	noise performance of a wideband FM system
•	a)	is generally poorer than AM system
	b)	is independent of signal-to-noise ratio
·	c)	exhibits a threshold
	d)	is independent of modulation index.
viii)	A fa	ir die is tossed. It shows numbers 1 to 6 with equal probabilities. Let the
		ome be called the random variable X . Then the probability distribution
	iunc	tion for the value 6 i.e. $P_X(6)$ is
	a)	1 b) 5/6
	c)	1/6 d) 0.
ix)	Mod	ulation is used to
	a)	reduce the bandwidth used
	b)	separate different transmissions
	c)	ensure that intelligence may be transmitted over long distances
**************************************	d)	allow the use of practicable antennae.

55708 (13/12)

CS/B.TECH (EIE-NEW)/SEM-5/EC-511(EI)/08/(09)

5

				2008 / 2508
x)	Acc	ording to Paley-Wiener criter	ia the fund	etion $\int_{-\infty}^{\infty} \frac{ m H(\omega) }{1+\omega^2} d\omega \text{ should be}$
	a)	less than zero	b)	less than one
	c)	less than infinity	d)	none of these.
xi)	Den	nodulation of DSB-SC signal	s requires	
	a) .	an envelope detector	b)	a synchronous detector
	· c)	a discriminator	d)	an integrator.
xii)	The	auto-correlation function of	an energy	signal has
	a)	no symmetry	b)	conjugate symmetry
	c)	odd symmetry	d)	even symmetry.
		GR	OUP – B	
		(Short Answe	r Type Q	iestions)
		Answer any th	ree of the	following. $3 \times 5 = 15$
a)		X_1 (t) be a continuous time per enential Fourier series coefficients		nal with fundamental frequency $\omega_{_{\rm I}}$ and wen that
	$X_2(t)$	$=X_1(1-t)+X_1(t-1)$, having ex	ponential	Fourier series coefficient as b_k . Find a
	relat	ionship between a_k and b_k .	,	
b)	Give	n that $X(t)$ has the Fourier	transform	of $X(\omega)$. Find the Fourier transform of
	X_1 (t	c), such that $X_1(t) = X(3t-6)$.		3 + 2
		vn the "threshold effect" in gnal power in SSB-SC system		ope detector. Calculate the input and $2 + 1\frac{1}{2} + 1\frac{1}{2}$
Wri	te dow	n the advantages and disadv	antages of	SSB system over DSB system.
a) ·	•	the per cent modulation of a		e whose total power content is 2500 W
b)	Calcu	ulate the % power saving i	n SSB sc	heme when 50% modulation is used
	comr	pared to AM transmission		3 + 2

2.

3.

5.

6

6. A DSB-SC signal $x(t) \cos \omega_c t$ is demodulated using a locally generated carrier Acos $(\omega_c t + \theta)$ as shown in the following figure. Show that this scheme can demodulate the signal (with some attenuation) as long as θ is not $\pi/2$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) A certain frequency modulated signal is represented as $v(f)=10 \sin \left[10^8 t + 15 \sin 2000 t\right] v. \text{ Determine the power delivered to a } 20\Omega \text{ load.}$ Also write all the information that we get from the expression.
 - b) Discuss one process for NBFM generation.
 - c) Show with the help of block diagram how NBFM can be converted to WBFM in indirect method of FM generation.
 6+4+5
- 8. a) Define and explain the terms 'effective noise temperature' and 'equivalent noise bandwidth'.
 - b) Consider two (2) two-port networks in cascade, each with the same noise bandwidth but with different available power gains and noise figures. Find the overall noise figure of the cascade. Assume perfect impedance matching.
 - c) Calculate the SNR at the output of a DSB-SC system.

4 + 4 + 7

CS/B.TECH (EIE-NEW)/SEM-5/EC-511(EI)/08/(09)

9. a) What do you mean by the term 'superheterodyne'? Why is the local oscillation frequency unconverted in case of superheterodyne radio receiver? What is image frequency?

7

- b) Explain a superheterodyne AM radio receiver with suitable block diagrams and waveform sketches as where required. 1 + 2 + 2 + 10
- 10. a) Starting from the definition of frequency/phase modulation, derive the frequency modulated (FM) wave's mathematical expression. What type of spectrum an FM wave has? If the modulation index, β is 2.4, what is the value of carrier frequency component $J_0 \beta$, where $J_n(x)$ is the Bessel function of the first kind of order n for argument x?
 - b) State the relation between frequency modulated (FM) and phase modulated (PM) waves. With the help of a neat diagram, explain the operation of a varactor diode type FM oscillator. Give its limitations.
 8 + 7
- 11. Write short notes on any three of the following:

 3×5

- a) Pre-emphasis and de-emphasis circuits and their use
- b) QAM system
- c) Envelope detector
- d) VSB-SC modulation and demodulation.

END