Introduction à l'utilisation de Linux dans les systèmes embarqués et temps réel

Eurogiciel

Agence de Rennes 22 rue Rigourdière - 35510 Cesson Sévigné

26 janvier 2011

Eurogiciel Linux embarqué 1/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

- Introduction aux systèmes embarqués
 - Description
 - Structure typique
- Présentation de Linux
 - Notions élémentaires
 - Modes d'exécution
 - Projet GNU
 - Solution pour l'embarqué
- Outils pour l'embarqué
 - Plateforme de développement
 - Réduction de taille et d'empreinte mémoire
 - Choix du chargeur d'amorçage
 - Production d'une distribution
 - Outils de débogage, de profilage et d'émulation

Eurogiciel Linux embarqué 2/109

- Processus d'amorçage
 - Présentation
 - Améliorations au niveau du noyau
 - Analyse de la séquence de démarrage du noyau
 - Analyse de la séquence de démarrage des processus
- Capacités temps réel
 - Description du temps réel
 - Classification
 - Notions élémentaires
 - Charge CPU et ordonnancement
 - Disciplines d'ordonnancement sous Linux
 - Modes de préemption
 - Technique à co-noyau

Eurogiciel Linux embarqué 3/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

- Aspects juridiques
 - Logiciels libres
 - Logiciels "open source"
 - Notion de Copyleft
 - Différentes licences
 - Validité juridique de la licence GPL
 - Exemples concrets
- Conclusion

Eurogiciel Linux embarqué 4/109

Description Structure typique

- Introduction aux systèmes embarqués
 - Description
 - Structure typique

Eurogiciel Linux embarqué 5/109

Introduction aux systèmes embarqués

Présentation de Linux Outils pour l'embarqué Processus d'amorçage Capacités temps réel Aspects juridiques Conclusion

Description Structure typique

Caractéristiques

- Combinaison d'électronique et d'informatique, de matériel et de logiciel
- Exécution d'une fonction spécifique et dédiée
- Système enfoui au cœur d'un équipement
- Difficultés d'accès
- Ressources restreintes
- Contraintes techniques et environnementales
- Contrainte de durée de vie et de maintenabilité

Principaux champs d'application

- Calcul généraliste
- Contrôle de systèmes asservis
- Traitement de signal
- Réseaux et télécommunications

Description Structure typique

Première définition

"Les logiciels embarqués (ou enfouis) sont destinés au pilotage de systèmes embarqués informatiques et électroniques autonomes ayant de très fortes interactions avec leur environnement."

Autre définition

"Un système embarqué est un équipement qui réalise une fonction dédiée ou qui est conçu pour une utilisation avec une application logicielle embarquée spécifique."

Eurogiciel Linux embarqué 7/109

Introduction aux systèmes embarqués

Présentation de Linux Outils pour l'embarqué Processus d'amorçage Capacités temps réel Aspects juridiques Conclusion

Description
Structure typique

Éléments constitutifs courants

- Microprocesseur, microcontrôleur ou DSP
- Coprocesseurs
- Périphériques d'entrées-sorties
- Convertisseurs A/N et N/A
- Clavier et IHM minimalistes
- FPGA ou ASIC

Présentation de Linux Outils pour l'embarqué Processus d'amorçage Capacités temps réel Aspects juridiques Conclusion

Description
Structure typique

Interactions avec l'environnement

- Lecture de capteurs
- Commande d'actionneurs

Eurogiciel Linux embarqué 9/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'ambarqué

Outils pour l'embarqué Processus d'amorçage Capacités temps réel Aspects juridiques Conclusion Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

- Présentation de Linux
 - Notions élémentaires
 - Modes d'exécution
 - Projet GNU
 - Solution pour l'embarqué

Conclusion

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Différents supports d'exécution

- Noyau
- Exécutif
- Système d'exploitaion

Noyau

- Structure minimaliste
- Éxécution performante
- Ordonnancement des tâches
- Communication et synchronisation entre les tâches
- Gestion de l'horloge "temps réel"
- Gestion des interruptions matérielles
- Liaison directe avec le matériel

Eurogiciel Linux embarqué 11/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Exécutif

- Exploitation d'un noyau
- Gestion de la mémoire
- Gestion des entrées-sorties et des accès réseau
- Gestion de fichiers et d'horloges
- Accès direct aux primitives du noyau

Système d'exploitation

- Couche logicielle basée sur un exécutif
- Intégration éventuelle d'un environnement de développement
- Mise à disposition de plusieurs utilitaires
- Accès sécurisé aux primitives du noyau

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Structure d'un système d'exploitation

Empilement de couches logicielles

Conclusion

Eurogiciel Linux embarqué 13/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Distinction Linux et GNU/Linux

- Linux est un noyau "augmenté"
- GNU/Linux est un système d'exploitation de type Unix utilisant Linux
- Un système Linux embarqué est une forme d'exécutif

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Historique de Linux (1/2)

- 1991 : Écriture du noyau Linux à partir de zéro (from scratch) en 6 mois par Linus TORVALDS dans sa chambre à l'université d'Helsinki pour son PC 80386
- 1991 : Linus TORVALDS distribue son noyau sur Internet et des programmeurs du monde entier le rejoignent pour contribuer au code et aux tests
- 1992 : Plus de 100 développeurs travaillent sur le noyau

Eurogiciel Linux embarqué 15/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Historique de Linux (2/2)

- 1992 : Distribution de Linux sous licence GNU GPL
- 1994 : Sortie de Linux 1.0
- 1994 : Création de la société Red Hat par Bob Young et Marc Ewing créant ainsi un nouveau modèle économique basé sur une technologie "open source"
- 1995 : Utilisation progessive de GNU/Linux et des logiciels libres pour les serveurs Internet
- 2001 : Investissement par IBM d'un milliard de dollars dans Linux
- 2002 : Adoption massive de GNU/Linux dans de nombreux secteurs de l'industrie
- 2010 : Environ 1200 personnes contribuent au développement du noyau

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Mode basique de numérotation des versions selon trois champs

Conclusion

- Indice majeur
- Indice mineur
- Indice de révision

Quatrième champ depuis la version 2.6.11 (mars 2005)

- Incrémentation en fonction de la correction de bogues
- Pas de nouvelle fonctionnalité

Versions actuelles

- 2.6.36 publiée le 20 octobre 2010
- 2.6.35.8 publiée le 29 octobre 2010

Eurogiciel Linux embarqué 17/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Caractéristiques (1/2)

- Structure monolithique
- Pilotes pouvant être compilés comme modules et chargés ou déchargés "à chaud"
- Exécution des pilotes de périphériques en mode/espace noyau
- Exécution de la plupart des interfaces graphiques en mode/espace utilisateur
- Support des plateformes multiprocesseurs (SMP) et de machines de toutes tailles (scalabilité)
- Large portabilité et support matériel étendu

Conclusion

Caractéristiques (2/2)

- Développement essentiellement en langage C avec une légère couche en assembleur
- Structure 32 bits minimale des processeurs avec ou sans MMU (Memory Management Unit)
- Mécanisme de préemption (2.6.x)
- Conformité aux standards et interopérabilité POSIX
- Stabilité et fiabilité

Eurogiciel Linux embarqué 19/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Notions élémentaires

Modes d'exécution Projet GNU Solution pour l'embarqué

Configuration et compilation d'un noyau Linux

- Placement des sources dans \usr\src\
- Configuration (ex.: make menuconfig)
- Compilation et installation par la séquence make && make modules_install && make install

Conclusion

Exemples de mise en œuvre

- Cluster Jaguar (1.75 PFlops)
- PicoTux

Eurogiciel Linux embarqué 21/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques

Conclusion

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Partitionnement de l'espace mémoire

Deux régions distinctes

Espace utilisateur

- Mode restreint assurant la protection des processus
- Impossibilité pour un processus d'accéder à une zone mémoire d'un autre processus
- Espace d'exécution des programmes applicatifs
- Programmation principalement à l'aide des fonctions de la bibliothèque standard

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Espace noyau

- Utilisation large du matériel et notamment de la mémoire
- Accès aux services du noyau
- Espace d'exécution de la plupart des pilotes de périphériques et des applications temps réel
- Programmation à l'aide de l'API noyau

Interactions avec le noyau depuis l'espace utilisateur

Utilisation des appels système depuis l'espace utilisateur

Eurogiciel Linux embarqué 23/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Description

- Acronyme récursif signifiant "GNU is Not Unix"
- Projet initié en 1983 par Richard STALLMAN suite à un désaccord avec le principe de la licence BSD (Berkeley Software Distribution)
- Projet de système d'exploitation composé exclusivement de logiciels libres et basé sur les concepts d'Unix

Conclusion

 Création en 1985 de la FSF (Free Software Foundation) par Richard STALLMAN

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Adoption du noyau Linux

- Prévision du développement d'un noyau (Hurd)
- Disponibilité des logiciels du projet GNU par la publication du noyau Linux (sous licence GPL en 1992)
- Ensemble des distributions Linux marquées par l'empreinte du projet GNU (licences, etc.) et appellation GNU/Linux défendue par Richard STALLMAN

Nombreux outils

- Utilitaires de base : Bash, Grep, Tar, Cpio, Emacs, Wget, ...
- Développement : GCC, GDB, Make, Binutils, Glibc, ...
- Outils et environnements graphiques : Gimp, GTK+, GNOME, ...
- Etc.

Eurogiciel Linux embarqué 25/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Notions élémentaires Modes d'exécution Projet GNU Solution pour l'embarqué

Contraintes des solutions propriétaires

- Pas ou peu de compatibilité entre les solutions
- Outils de développement coûteux et figés
- Dépendance d'un éditeur et redevances souvent élevées
- Problèmes de pérennité
- Portabilité réduite

Intérêt de Linux

- Fort développement de Linux et des logiciels libres
- Alternative très sérieuse du prototypage au produit fini
- Support élargi et très large documentation
- Code ouvert et coûts moindres

Conclusion

Positionnement sur le marché

Solution la plus utilisée

Eurogiciel Linux embarqué 27/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

- Outils pour l'embarqué
 - Plateforme de développement
 - Réduction de taille et d'empreinte mémoire
 - Choix du chargeur d'amorçage
 - Production d'une distribution
 - Outils de débogage, de profilage et d'émulation

Plateforme de développement

Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

Atelier

- Architectures différentes entre la machine hôte et la cible
- Communication via une liaison Ethernet, RS232, USB, etc.
- Chargement à l'aide d'une interface JTAG (IEEE 1149.1)

Eurogiciel Linux embarqué 29/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Plateforme de développement

Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

Machine hôte

- Éditeur
- Chaîne de développement croisé (compilateur, éditeur de liens, débogueur, outils de profilage, etc.)
- Simulateur et émulateur

Cible

- Chargeur d'amorçage (bootloader)
- Noyau
- Système de fichiers racine (rootFS)

Conclusion

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

Bibliothèque des fonctions standards

GLibc peu adaptée aux systèmes embarqués

Alternatives disponibles

Bibliothèque	Taille	Fonctionnalités et compatibilité
EGlibc	-	++
μ Clibc	+	+
DietLibc	++	-
KLibc	+++	

Eurogiciel Linux embarqué 31/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques

Conclusion

Plateforme de développement
Réduction de taille et d'empreinte mémoire
Choix du chargeur d'amorçage
Production d'une distribution
Outils de débogage, de profilage et d'émulation

Commandes utilisateur

Coreutils peu adapté aux systèmes embarqués

Alternatives disponibles

Bibliothèque	Taille	Fonctionnalités et compatibilité
Busybox	++	-
Embutils	+	

Conclusion

Plateforme de développement
Réduction de taille et d'empreinte mémoire
Choix du chargeur d'amorçage
Production d'une distribution
Outils de débogage, de profilage et d'émulation

Busybox (1/2)

- "Couteau suisse" pour Linux embarqué
- Agglomération des commandes Unix essentielles en un seul exécutable
- Utilisation avec les bibliothèques Glibc et μClibc
- Possibilité de réduction en fonction des besoins
- Mise à disposition d'outils complémentaires (SSH, SMTP, NTP, etc.)

Eurogiciel Linux embarqué 33/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Plateforme de développement

Réduction de taille et d'empreinte mémoire

Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

Busybox (2/2)

Configuration via un menu graphique

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

Rôle essentiel

- Lancement du noyau
- Spécification du système de fichiers racine

Solutions disponibles

- U-Boot
- ARMBoot
- RedBoot
- OpenBIOS
- FreeBIOS
- PXELinux
- EtherBoot
- Etc.

Eurogiciel Linux embarqué 35/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

Solutions disponibles

- Buildroot
- OpenEmbedded
- ElinOS
- Timesys
- MontaVista
- OpenWRT
- LTIB
- PTXdist
- Linux From Scratch
- Etc.

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

Buildroot (1/2)

- Génération complète d'un système embarqué
 - Chaîne de compilation croisée
 - Images du chargeur d'amorçage, du noyau et du système de fichiers racine
- Sélection des outils et de la bibliothèque standard
 - Busybox
 - Glibc, μClibc, EGlibc
 - Etc.
- Choix du système de fichiers
 - JFFS2
 - UbiFS
 - Ext2
 - CramFS
 - Etc.
- Possibilité d'extension
 - Intégration de paquets et automatisation de tâches

Eurogiciel Linux embarqué 37/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage

Production d'une distribution

Outils de débogage, de profilage et d'émulation

Buildroot (2/2)

Configuration via un menu graphique

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

GDB

- Débogeur du projet GNU
- Variantes pour le débogage du noyau (KGDB) et sur cible (GDBserver)
- Disponibilité d'une interface graphique (DDD)
- Compilation par GCC avec l'option "-g"

Strace

Outil de trace des appels système réalisés par un programme

Dtrace

 Outil de détection de problèmes en temps réel aux niveaux noyau et applicatif

Gprof

- Profileur de code
- Compilation par GCC avec l'option "-pg"

Eurogiciel Linux embarqué 39/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

SystemTAP

- Outil d'analyse de l'exécution d'un système GNU/Linux
- Exploitation d'un langage de script
- Compilation d'un script après validation et chargement comme module du noyau
- Mesure de performances des appels de fonctions
- Fonctionnement en modes utilisateur et noyau
- Disponibilité d'une interface graphique (SystemTAP GUI)

Eurogiciel Linux embarqué 40/109

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

Valgrind

- Boîte à outils de mise au point, de déverminage et de profilage
- Analyse dynamique de programmes en cours d'exécution
- Support des plateformes x86, PPC et ARM
- Disponibilité de plusieurs interfaces graphiques
- Memcheck : Détection des problèmes mémoire dans les programmes C/C++
- Cachegrind : Optimisation du cache
- Callgrind : Extension à Cachegrind fournissant des informations sur les graphes d'appels
- Massif : Optimisation de la pile
- Helgrind : Détection des problèmes de concurrence dans les programmes multi-tâches

Eurogiciel Linux embarqué 41/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

QEMU

- Utilitaire d'émulation
- Bon niveau de performances
- Support de nombreuses architectures
- Ajout relativement aisé de nouveaux matériels
- Connexion avec GDB entre la machine hôte et la cible émulée

KVM

- "Fork" de QEMU
- Machine virtuelle fonctionnant sur une architecture x86 disposant des technologies Intel VT et AMD SVM
- Intégration au noyau depuis la version 2.6.20

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

LTTng (1/2)

- Utilitaire de trace, d'analyse de performances et de débogage au niveau noyau
- Logiciel intrusif dans le noyau (patch)
- Contrainte de lien avec la version du noyau
- Supervision des appels systèmes, des interruptions, des allocations mémoire, de l'ordonnanceur, etc.
- Contrôle des opérations de trace par LTT-Control
- Portage de LTTng pour les exécutions en mode utilisateur (UST)

Eurogiciel Linux embarqué 43/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Plateforme de développement Réduction de taille et d'empreinte mémoire Choix du chargeur d'amorçage Production d'une distribution Outils de débogage, de profilage et d'émulation

LTTng (2/2)

Utilitaire LTTV pour la visualisation graphique

Présentation Améliorations au niveau du noyau Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

- Processus d'amorçage
 - Présentation
 - Améliorations au niveau du noyau
 - Analyse de la séquence de démarrage du noyau
 - Analyse de la séquence de démarrage des processus

Eurogiciel Linux embarqué 45/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Présentation

Améliorations au niveau du noyau Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Constat

- Démarrage d'un système Linux "standard" en plusieurs dizaines de secondes
- Démarrage d'un système Linux optimisé en moins d'une seconde

Deux niveaux d'optimisation complémentaires

- Amélioration de l'initialisation du noyau
- Gestion adaptée du démarrage des processus

Conclusion

Présentation

Améliorations au niveau du noyau Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Séquence de démarrage standard

- Exécution du moniteur d'amorçage
- Lecture du secteur d'amorçage
- Lancement du chargeur d'amorçage
- Démarrage du noyau
- Exécution du processus Init

Eurogiciel Linux embarqué 47/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Présentation

Améliorations au niveau du noyau Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Séquence de démarrage "embarqué"

- Lancement du chargeur d'amorçage
- Démarrage du noyau
- Exécution du processus Init

Présentation Améliorations au niveau du novau

Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Horadatage des messages

- Configuration du noyau avec l'option CONFIG_PRINTK_TIMES
- Activation par passage du paramètre printk.time=1 au noyau
- Activation/désactivation dynamique par la ligne de commande avec
 echo [1/0] > /sys/module/printk/parameters/printk_time

```
[49357.810982] ata1.00: ACPI cmd ef/03:02:00:00:00:00:00 (SET FEATURES) filtered out
[49357.810986] ata1.00: ACPI cmd ef/03:22:00:00:00:00 (SET FEATURES) filtered out
[49357.850587] ata1.00: configured for MMDMA2
[49357.870602] usb 5-2: reset low speed USB device using uhci hcd and address 2
[49358.183111] PM: resume of drv:usb dev:5-2: complete after 844.694 msecs
[49358.183111] PM: resume of drv:usbhid dev:5-2:1.0 complete after 844.666 msecs
[49358.183112] PM: resume of drv:usbhid dev:5-2:1.0 complete after 844.666 msecs
[49358.370035] [drm:atom op_jump] *ERROR* atombios stuck in loop for more than 1sec aborting
[49358.370039] [drm:atom execute table locked] *ERROR* atombios stuck executing E952 (len 86, WS 4, PS 0) @ 0xE985
[49359.190062] PM: resume of drv:radeon dev:0000:01:00.80 complete after 1857.197 msecs
[49359.900062] Ata3: SATA link up 3.0 Gbps (SStatus 123 SControl 300)
[49359.964358] ata3.00: ACPI cmd f5/00:00:00:00:00:00 (SECURITY FREEZE LOCK) filtered out
[49359.964353] ata3.00: ACPI cmd bf/cl:00:00:00:00:00 (SET MULTIPLE MODE) succeeded
[49359.964453] ata3.00: ACPI cmd def/10:03:00:00:00:00:00 (SET MULTIPLE MODE) succeeded
[49359.974610] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET MULTIPLE MODE) succeeded
[49359.974613] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET MULTIPLE MODE) succeeded
[49359.974708] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET FEATURES) filtered out
[49359.974708] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET MULTIPLE MODE) succeeded
[49359.974708] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET FEATURES) filtered out
[49359.974708] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET MULTIPLE MODE) succeeded
[49359.974708] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET FEATURES) filtered out
[49359.974708] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET FEATURES) filtered out
[49359.974708] ata3.00: ACPI cmd def/10:03:00:00:00:00 (SET FEATURES) filtered out
[49350.011731] ata3.00: ACPI cmd def/10:03:00:00:00:00:00 (SET FEATURES) filtered out
[49350.011731] ata3.00: ACPI cmd def/10:03:00:0
```

Eurogiciel Linux embarqué 49/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Présentation
Améliorations au niveau du novau

Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Techniques de base

- Suppression des pilotes et fonctions inutiles
- Suppression des fonctions de détection automatique
- Choix d'un système de fichiers performant et adapté
- Configuration en module de tout pilote inutilisé au moment du démarrage
- Recopie du noyau de la mémoire flash vers la mémoire RAM par DMA

Chargement différé de modules

- Patch du noyau
- Changement de la fonction module_init() en deferred_module_init()
- Activation ultérieure des modules concernés par la ligne de commande echo 1 > /proc/deferred_initcalls

Présentation

Améliorations au niveau du novau

Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Suppression des messages vers la console

- Écriture vers la console très pénalisante
- Affichage vers la console pas toujours nécesaire
- Gains souvent importants (30 à 50%)
- Désactivation des appels à la fonction printk() par passage du paramètre quiet au noyau

Eurogiciel Linux embarqué 51/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Présentation
Améliorations au niveau du novau

Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Calibration des délais

- Utilisation des fonctions mdelay() et udelay()
- Prise en compte de la granularité d'horloge de 1 ms (1000 Hz) ou 10 ms (100 Hz)
- Calcul de la variable lpj sur 25 quantums de temps ("jiffies")
- Délai nécessaire au calcul de 25 ms ou 250 ms
- Valeur constante de lpj sur un système donné
- Récupération de la valeur de lpj dans les messages par passage du paramètre loglevel=8 au noyau
- Passage du paramètre lpj=xxxxxx au noyau

Présentation Améliorations au niveau du noyau

Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Synchronisation de l'horloge système

- Exactitude de l'heure système pas toujours nécessaire
- Mise à jour de l'horloge système à chaque démarrage à partir de l'horloge temps réel (RTC)
- Délai en fonction de l'architecture et de la résolution de la RTC
- Suppression de la synchronisation par un patch
- Mise en œuvre possible d'une synchronisation via une horloge externe (ex. : NTP)

Eurogiciel Linux embarqué 53/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Présentation

Améliorations au niveau du noyau

Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Accélération du redémarrage

- Utilisation de l'outil Kexec
- Lancement d'une seconde exécution du noyau
- Pas d'exécution de la phase d'amorçage
- Utilisation courante lors de la mise à jour d'un micrologiciel

Utilisation de la trace

- Configuration du noyau avec l'option CONFIG_BOOT_TRACER
- Activation par passage des paramètres initcall_debug et printk.time=1 au noyau
- Génération d'images au format SVG par la ligne de commande avec dmesg | perl scripts/bootgraph.pl > output.svg
- Disponibilité depuis la version 2.6.28

Eurogiciel Linux embarqué 55/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Présentation Améliorations au niveau du noyau Analyse de la séquence de démarrage du noyau Analyse de la séquence de démarrage des processus

Utilisation de l'outil Bootchart

- Éxécution d'un script lors de la phase d'initialisation
- Lecture des informations dans le système de fichiers /proc
- Production d'un graphique

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

- Capacités temps réel
 - Description du temps réel
 - Classification
 - Notions élémentaires
 - Charge CPU et ordonnancement
 - Disciplines d'ordonnancement sous Linux
 - Modes de préemption
 - Technique à co-noyau

Eurogiciel Linux embarqué 57/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel

Technique à co-noyau

Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption

Caractéristiques

- Respect de contraintes temporelles
- Correction d'un traitement conjointement basée sur l'exactitude logique et le délai d'obtention du résultat
- Pas nécessairement rapide, mais réactif
- Prévisible, fiable, déterministe logiquement et temporellement
- Contexte multitâche

Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Première définition

"Un système est dit temps réel lorsque la correction de son comportement ne dépend pas uniquement des résultats logiques de son exécution, mais aussi des instants physiques auxquels ces résultats sont obtenus."

Autre définition

"Un système informatique temps réel peut être défini comme un système qui contrôle un environnement en recevant des données, en les traitant et en produisant une action de façon suffisamment rapide pour intervenir sur le comportement de l'environnement à ce moment-là."

Eurogiciel Linux embarqué 59/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel

Technique à co-noyau

Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption

Objectifs visés

- Respect d'échéances lâches ou fermes pour l'exécution des tâches
- Minimisation de la latence
- Minimisation de la gigue

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Temps partagé

- Validité d'un résultat uniquement basée sur sa correction logique
- Pas de considération de la date d'obtention du résultat

Eurogiciel Linux embarqué 61/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Temps réel dur

- Criticité du résultat
- Tout retard d'obtention du résultat génère une faute temporelle

Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Description du temps réel

Temps réel mou

- Tolérance de certains dépassement d'échéances
- Validité partielle du résultat au-delà de l'échéance

Eurogiciel Linux embarqué 63/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Description d'une tâche

- Suite d'instructions agissant sur un ensemble de données dans un contexte d'exécution défini
- Traitement nécessitant l'allocation d'une ressource (processeur)
- Déclinaison sous la forme d'un processus ou d'un thread
- Caractérisation essentielle par une capacité (durée d'exécution maximale)

Classification

Notions élémentaires

Charge CPU et ordonnancement

Disciplines d'ordonnancement sous Linux

Modes de préemption

Technique à co-noyau

Description du temps réel

Différents types de tâches

- Périodique
 - Activation à intervalles réguliers
 - Lecture de capteurs, opération de scrutation, traitement cyclique, etc.
- Sporadique
 - Temps minimal entre deux activations
 - Manifestation attendue, mais incertaine, d'un événement ou d'une action, etc.
- Apériodique
 - Aucune connaissance des dates d'activation
 - Déclenchement d'une alarme, manifestation subite d'un événement ou d'une action, etc.

Eurogiciel Linux embarqué 65/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption

Technique à co-noyau

Différents états d'une tâche

- Élue
- Bloquée
- Prête
- Terminée

Contraintes potentielles sur les tâches

- Précédence
- Accès à une ressource en exclusion mutuelle

Classification

Notions élémentaires

Charge CPU et ordonnancement

Disciplines d'ordonnancement sous Linux

Modes de préemption

Technique à co-noyau

Description du temps réel

Modèle canonique d'une tâche périodique

• r_i : Date de réveil de la ième instance

• d_i : Date d'échéance de la ième instance

C : Capacité

D : Délai critique

P: Période

Cas d'échéance sur requête lorsque D = P

Eurogiciel Linux embarqué 67/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Objectifs visés

- Répartition de la ressource processeur entre les différentes tâches
- Choix de la tâche courante (exclusion mutuelle et politique d'arbitrage)
- Mise en œuvre d'une discipline garantissant le respect des contraintes de temps pour l'ensemble du jeu de tâches
- Utilisation optimale de la ressource processeur

Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption

Description du temps réel

Technique à co-noyau

Facteur d'utilisation du processeur

• Évaluation par la période et la capacité des tâches

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i}$$
 avec $U \le 1$ (100%)

Exemple

$$\left. \begin{array}{l} T_1: C_1 = 5, P_1 = 25 \\ T_2: C_2 = 6, P_2 = 20 \\ T_3: C_3 = 3, P_3 = 15 \end{array} \right\} \qquad U = 0.7 \quad (70\%)$$

Eurogiciel Linux embarqué 69/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption

Technique à co-noyau

Classification des disciplines d'ordonnancement

- Préemptif/non préemptif
- En ligne/hors ligne
- Priorités statiques/priorités dynamiques
- Oisif/non oisif
- Mono-processeur/multi-processeurs

Disciplines d'ordonnancement classiques

- Premier arrivé-premier servi (FIFO)
- Tourniquet (RR)

Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Description du temps réel

Rate monotonic (1/9)

- Introduction en 1973
- Ordonnancement préemptif hors ligne à priorités statiques
- Considération de tâches indépendantes et périodiques de capacité connues
- Affectation des priorités aux tâches de manière inversement proportionnelle à la période
- Priorité la plus élevée à la tâche la plus fréquente

Eurogiciel Linux embarqué 71/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques

Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Rate monotonic (2/9)

 Existence d'une borne sur le taux d'utilisation du processeur (condition suffisante)

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i} \quad \text{avec} \quad U \leq n(2^{\frac{1}{n}} - 1)$$

• Toujours ordonnançable lorsque $U \le 0.693$ (69.3%)

Eurogiciel Linux embarqué 72/109

Aspects juridiques

Conclusion

Rate monotonic (3/9)

Premier exemple

$$T_1: r_0 = 0, C_1 = 3, P_1 = 9 T_2: r_0 = 0, C_2 = 1, P_2 = 4 T_3: r_0 = 0, C_3 = 2, P_3 = 12$$

$$U = 0.75 (75\%)$$

Condition suffisante vérifiée

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i}$$
 $\leq n(2^{\frac{1}{n}} - 1) = 0.78$

Eurogiciel Linux embarqué 73/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel Classification Notions élémentaires

Charge CPU et ordonnancement Disciplines d'ordonnancement sous Linux Modes de préemption

Technique à co-noyau

Rate monotonic (4/9)

Vérification graphique

Aspects juridiques

Conclusion

Rate monotonic (5/9)

Second exemple

$$T_1: r_0 = 0, C_1 = 3, P_1 = 6 T_2: r_0 = 0, C_2 = 1, P_2 = 5 T_3: r_0 = 0, C_3 = 4, P_3 = 16$$

$$U = 0.95 (95\%)$$

Condition suffisante non vérifiée

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i}$$
 $\leq n(2^{\frac{1}{n}} - 1) = 0.78$

Eurogiciel Linux embarqué 75/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques

Conclusion

Description du temps réel Classification Notions élémentaires

Charge CPU et ordonnancement Disciplines d'ordonnancement sous Linux Modes de préemption

Technique à co-noyau

Rate monotonic (6/9)

Vérification graphique

 $T_1: r_0 = 0, C_1 = 3, P_1 = 6$

Conclusion

Rate monotonic (7/9)

Troisième exemple

$$T_1: r_0 = 0, C_1 = 2, P_1 = 6 T_2: r_0 = 0, C_2 = 1, P_2 = 3 T_3: r_0 = 0, C_3 = 4, P_3 = 12$$

$$U = 1 \quad (100\%)$$

Condition suffisante non vérifiée

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i}$$
 > $n(2^{\frac{1}{n}} - 1) = 0.78$

Configuration harmonique

Eurogiciel Linux embarqué 77/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel Classification Notions élémentaires

Charge CPU et ordonnancement Disciplines d'ordonnancement sous Linux Modes de préemption Technique à co-noyau

Rate monotonic (8/9)

Vérification graphique

Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Description du temps réel

Classification

Rate monotonic (9/9)

- Utilisation limitée aux tâches à échéance sur requête
- Possibilité d'obtention d'une charge CPU totale en cas de configuration harmonique
- Borne théorique pouvant souvent être dépassée et repoussée à 88%

Eurogiciel Linux embarqué 79/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Deadline monotonic (1/2)

- Ordonnancement préemptif hors ligne à priorités statiques
- Considération de tâches indépendantes et périodiques de capacité connues
- Affectation des priorités aux tâches en fonction de leur délai critique
- Priorité la plus élevée à la tâche dont le délai critique est le plus court
- Performances équivalentes à RM pour les tâches à échéance sur requête
- Performances meilleures que RM pour les configurations quelconques

Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Description du temps réel

Classification

Deadline monotonic (2/2)

Condition suffisante d'ordonnançabilité

$$U = \sum_{i=1}^{n} \frac{C_i}{D_i} \quad \text{avec} \quad U \leq n(2^{\frac{1}{n}} - 1)$$

- Toujours ordonnançable lorsque $U \le 0.693$ (69.3%)
- Possibilité de dépassement de la borne $n(2^{\frac{1}{n}}-1)$ dans certains cas

Eurogiciel Linux embarqué 81/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Earliest deadline first (1/4)

- Ordonnancement préemptif en ligne à priorités dynamiques
- Considération de tâches indépendantes et périodiques de capacités connues
- Affectation dynamique des priorités aux tâches de manière croissante et inversement proportionnelle au délai restant avant échéance
- Priorité la plus élevée à la tâche dont l'échéance est la plus proche

Eurogiciel Linux embarqué 82/109

Classification Notions élémentaires Charge CPU et ordonnancement Disciplines d'ordonnancement sous Linux

Modes de préemption Technique à co-noyau

Description du temps réel

Earliest deadline first (2/4)

 Évaluation du taux d'utilisation du processeur pour des tâches à échéance sur requête (condition nécessaire et suffisante)

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i}$$
 avec $U \le 1$

• Évaluation du taux d'utilisation du processeur pour des tâches quelconques (condition suffisante)

$$U = \sum_{i=1}^{n} \frac{C_i}{D_i}$$
 avec $U \le 1$

Eurogiciel Linux embarqué 83/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux

ts juridiques Modes de préemption

Conclusion Technique à co-noyau

Earliest deadline first (3/4)

Exemple

$$T_1: r_0 = 0, C_1 = 3, D_1 = 6, P_1 = 6 T_2: r_0 = 0, C_2 = 1, D_2 = 5, P_2 = 5 T_3: r_0 = 0, C_3 = 4, D_3 = 16, P_3 = 16$$

$$U = 0.95 \quad (95\%)$$

Condition nécessaire et suffisante vérifiée

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i} \leq C_i$$

Eurogiciel Linux embarqué 84/109

Description du temps réel Classification Notions élémentaires

Charge CPU et ordonnancement

Disciplines d'ordonnancement sous Linux Modes de préemption

Technique à co-noyau

Earliest deadline first (4/4)

Vérification graphique

$$T_2: r_0 = 0, C_2 = 1, D_2 = 5, P_2 = 5$$

$$T_3: r_0 = 0, C_3 = 4, D_3 = 16, P_3 = 16$$

Eurogiciel Linux embarqué 85/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques

Description du temps réel Classification Notions élémentaires

Charge CPU et ordonnancement Disciplines d'ordonnancement sous Linux Modes de préemption Technique à co-noyau

Least laxity first (1/2)

Ordonnancement préemptif en ligne à priorités dynamiques

Conclusion

- Considération de tâches indépendantes et périodiques de capacités connues
- Affectation des priorités aux tâches en fonction de leur laxité dynamique
- Priorité la plus élevée à la tâche dont la marge de temps restant avant échéance est la plus réduite
- Conditions d'ordonnançabilité identiques à EDF
- Changements de contexte généralement plus fréquents que pour EDF

Description du temps réel Classification Notions élémentaires Charge CPU et ordonnancement

Technique à co-noyau

Disciplines d'ordonnancement sous Linux Modes de préemption

Least laxity first (2/2)

Vérification graphique (même jeu de tâches que pour EDF)

$$T_2: r_0 = 0, C_2 = 1, D_2 = 5, P_2 = 5$$

$$T_3: r_0 = 0, C_3 = 4, D_3 = 16, P_3 = 16$$

Eurogiciel Linux embarqué 87/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Premier arrivé-premier servi (SCHED_FIFO)

- Gestion temps réel des processus
- Niveaux de priorité de 1 à 99
- File d'attente de processus pour chaque niveau de priorité
- Exécution du premier processus de la file de plus haute priorité
- Pas de préemption dans une même file d'attente
- Préemption d'une file sur une autre moins prioritaire

Tourniquet (SCHED_RR)

- Gestion temps réel des processus
- Niveaux de priorité de 1 à 99
- File d'attente de processus pour chaque niveau de priorité
- Exécutions successives des processus de la file de plus haute priorité
- Préemption d'une file sur une autre moins prioritaire

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Gestion en temps partagé (SCHED_OTHER)

- Gestion par défaut des processus
- Priorité dynamique d'un processus prêt à être exécuté déterminée par incrémentation à partir du niveau statique de courtoisie (commande nice) et du temps d'attente écoulé
- Priorité statique de niveau 0
- Préemption par les disciplines SCHED_FIFO et SCHED_RR

Gestion en temps partagé (SCHED_BATCH)

- Depuis Linux 2.6.16
- Considération d'un processus exigeant en temps CPU
- Application d'une pénalité pour les traitements par lot (non interactifs)

Eurogiciel Linux embarqué 89/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Configuration du noyau

- Réduction du temps de latence
- Trois solutions standards disponibles

Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Description du temps réel

Pas de préemption (PREEMPT_NONE)

- Pas de préemption du code s'exécutant en mode noyau
- Limitation des changements de contexte

Préemption volontaire (PREEMPT_VOLUNTARY)

- Ajout de points explicites de préemption dans le noyau
- Intégration basée sur les appels à la fonction might_sleep
- Limitation de placement des points de préemption à des zones déterminées du noyau

Préemption complète (PREEMPT)

- Préemption totale du noyau
- Réaction aux événements interactifs

Eurogiciel Linux embarqué 91/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Intégration du patch PREEMPT_RT

- Ajout d'un quatrième mode de préemption au noyau
- Extension de l'ordonnanceur standard
- Temps réel dur
- Réduction du temps de latence moyen à 20/30 microsecondes
- Temps de latence maximal entre 100 et 500 microsecondes

Description du temps réel Classification Notions élémentaires Charge CPU et ordonnancement Disciplines d'ordonnancement sous Linux Modes de préemption

Technique à co-noyau

Caractéristiques

- Ajout d'un co-noyau pour la gestion temps réel
- Intégration d'un sous-système temps réel dans un module noyau
- Virtualisation des interruptions
- Routage prioritaire des interruptions vers le co-noyau
- Utilisation d'un ordonnanceur temps réel spécifique
- Gestion du noyau standard comme une tâche de bas niveau de priorité
- Temps réel dur
- Temps de latence maximal de 15/20 microsecondes

Principales solutions

- RTLinux
- RTAI
- Xenomai

Eurogiciel Linux embarqué 93/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Description du temps réel
Classification
Notions élémentaires
Charge CPU et ordonnancement
Disciplines d'ordonnancement sous Linux
Modes de préemption
Technique à co-noyau

Structure générale

Intégration du co-noyau

Logiciels libres Logiciels "open source" Notion de Copyleft Différentes licences Validité juridique de la licence GPL Exemples concrets

Aspects juridiques

- Logiciels libres
- Logiciels "open source"
- Notion de Copyleft
- Différentes licences
- Validité juridique de la licence GPL
- Exemples concrets

Eurogiciel Linux embarqué 95/109

> Introduction aux systèmes embarqués Présentation de Linux Outils pour l'embarqué Processus d'amorçage Capacités temps réel Aspects juridiques Conclusion

Logiciels libres Logiciels "open source" Notion de Copyleft Différentes licences Validité juridique de la licence GPL Exemples concrets

Définition

"Un logiciel libre est un logiciel qui peut être utilisé, copié, étudié, modifié et redistribué sans restriction majeure autre que la mise à disposition du code source."

Libertés fondamentales selon la FSF

- Liberté d'exécuter le programme pour tous les usages
- Liberté d'étudier le fonctionnement du programme et de l'adapter (accès au code source requis)
- Liberté de redistribuer des copies
- Liberté d'améliorer le programme et de publier les améliorations pour en faire profiter toute la communauté (accès au code source requis)

Logiciels libres
Logiciels "open source"
Notion de Copyleft
Différentes licences
Validité juridique de la licence GPL
Exemples concrets

Définition

"Un logiciel "open source" est un logiciel dont la licence respecte notamment la possibilité de libre redistribution, d'accès au code source et de travaux dérivés."

Critères selon l'OSI

- Redistribution libre et gratuite du programme
- Livraison du code source
- Respect de la licence d'origine pour les travaux dérivés
- Préservation de l'intégrité du code source de l'auteur
- Aucune discrimination envers des personnes ou des groupes
- Aucune discrimination envers des domaines d'application
- Pas besoin de se conformer à des termes de licences complémentaires
- Pas de licence spécifique à un produit
- Pas de contamination des autres programmes conjointement distribués
- Neutralité vis-à-vis de la technologie utilisée

Eurogiciel Linux embarqué 97/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Logiciels libres Logiciels "open source" Notion de Copyleft Différentes licences Validité juridique de la licence GPL Exemples concrets

Définitions

"Le Copyleft est la possiblité de copier, d'utiliser, d'étudier, de modifier et de distribuer un logiciel dans la mesure où cette possibilité est préservée."

Caractéristiques

- Opposition à la notion de Copyright
- Conservation du statut libre pour un logiciel dérivé
- Garantie que le code libre le restera dans toutes ses modifications
- Impossibilité de distribution d'un logiciel propriétaire incorporant du code sous licence avec Copyleft

Logiciels libres
Logiciels "open source"
Notion de Copyleft
Différentes licences
Validité juridique de la licence GPL
Exemples concrets

GPL (General Public Licence)

- Licence avec Copyleft
- Publication par Richard STALLMAN et Eben MOGLEN pour la définition des conditions légales de distribution des logiciels libres du projet GNU
- Placement sous licence GPL des programmes GPL modifiés ou dérivés ainsi que les logiciels intégrant du code de programmes GPL même lié statiquement ou dynamiquement (application uniquement aux logiciels distribués)
- Clause spéciale pour GCC (permission de compiler un programme sans placement sous GPL)
- Application des libertés fondamentales de la FSF

Eurogiciel Linux embarqué 99/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Logiciels libres
Logiciels "open source"
Notion de Copyleft
Différentes licences
Validité juridique de la licence GPL
Exemples concrets

LGPL (Lesser General Public Licence)

- Licence avec Copyleft publiée par la FSF
- Version limitée, ou amoindrie, de la licence GPL pour permettre à certains logiciels libres de pénétrer certains domaines n'autorisant pas le choix d'une publication entièrement libre
- Permission d'intégrer sans contrainte une partie de code non modifiée d'un programme sous licence LGPL (placement sous licence LGPL si le code est modifié)
- Autorisation de lier statiquement ou dynamiquement un programme à une bibliothèque sous licence LGPL sans contrainte de licence ou de distribution de code source
- Autorisation de lier un programme sous licence LGPL à une bibliothèque non LGPL sans pour autant révoguer la licence

Logiciels libres
Logiciels "open source"
Notion de Copyleft
Différentes licences
Validité juridique de la licence GPL
Exemples concrets

MIT ou X11 (Massachusetts Institute of Technology)

- Licence sans Copyleft
- Autorisation donnée à toute personne recevant un logiciel sous licence MIT/X11 le droit illimité de l'utiliser, le copier, le modifier, le fusionner, le publier, le distribuer, le vendre et de changer sa licence
- Seule obligation de mettre le nom des auteurs avec la notice copyright

BSD (Berkeley Software Distribution)

- Licence sans Copyleft
- Conditions aujourd'hui identiques à la licence MIT/X11, mais la licence BSD contenait jusqu'en 1999 une clause publicitaire maintenant disparue

Eurogiciel Linux embarqué 101/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Logiciels libres
Logiciels "open source"
Notion de Copyleft
Différentes licences
Validité juridique de la licence GPL
Exemples concrets

CeCILL (CEA CNRS INRIA Logiciel Libre)

- Licences francophones
- Version principale avec Copyleft et compatible avec la licence GPL
- Garantie du respect des principes du logiciel libre, à savoir le libre accès au code source, la libre utilisation, la libre modification et la libre redistribution
- Garantie du respect du droit français aux créateurs et aux utilisateurs de logiciels libres en termes de responsabilité cicvile et de propriété intellectuelle
- Versions B, compatible avec les licences BSD et X11 (sans Copyleft) et C, compatible avec la licence LGPL (avec Copyleft)

Logiciels libres
Logiciels "open source"
Notion de Copyleft
Différentes licences
Validité juridique de la licence GPL
Exemples concrets

Cas Free

- Procès en cours (contre FSF France) pour non distribution aux utilisateurs finaux (abonnés) du code GPL utilisé
- Objet du procès lié à la définition de la notion de distribution
- Pas d'achat de l'équipement ("box") par l'utilisateur final (appartenance à Free)
- Facturation exceptionnelle du client en cas de non renvoi après résiliation

Cas Skype

- Téléphone WSKP100 commercialisé, mais non fabriqué par Skype
- Utilisation d'une version modifiée du noyau Linux pour le firmware
- Non respect de la distribution du code source aux utilisateurs finaux

Eurogiciel Linux embarqué 103/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques

Logiciels libres Logiciels "open source" Notion de Copyleft Différentes licences Validité juridique de la licence GPL Exemples concrets

Cas Edu4

- Reconnaissance, le 16 septembre 2009, par la cour d'appel de Paris de la culpabilité de la société Edu4 de ne pas avoir fourni à son client (AFPA) le code source d'une version modifiée du logiciel libre VNC utilisé par le prestataire
- Reconnaissance à l'utilisateur du logiciel le droit de faire respecter les termes de la licence GPL
- Pas d'intervention de l'auteur au procès du logiciel

Eurogiciel Linux embarqué 104/109

Logiciels libres
Logiciels "open source"
Notion de Copyleft
Différentes licences
Validité juridique de la licence GPL
Exemples concrets

Cas #1

- Développement d'un produit sous licence quelconque (libre ou non) et utilisation d'une librairie sous licence GPL
- Notion ambiguë de liaison des librairies, mais constat des situations suivantes :
 - Contamination si la librairie est liée statiquement au produit
 - Pas de contamination si la librairie est appelée dynamiquement par le produit
- Prise en compte spécifique de ce cas par la licence LGPL

Cas #2

- Introduction par copié/collé de morceaux de code sous licence GPL dans un logiciel développé par une entreprise
- Contamination du code par la licence GPL et obligation de fourniture du code source au client

Eurogiciel Linux embarqué 105/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Logiciels libres
Logiciels "open source"
Notion de Copyleft
Différentes licences
Validité juridique de la licence GPL
Exemples concrets

Cas #3

- Développement d'un produit sous licence GPL, car dérivé d'un projet à l'origine sous licence GPL (ex. : personnalisation d'un noyau), facturation et livraison du code source à un client
- Revente ou cession possible par le client avec fourniture du code source
- Perte systématique d'exclusivité lors de la revente ou cession d'un produit sous licence Copyleft

Eurogiciel Linux embarqué 106/109

Eurogiciel Linux embarqué 107/109

Introduction aux systèmes embarqués
Présentation de Linux
Outils pour l'embarqué
Processus d'amorçage
Capacités temps réel
Aspects juridiques
Conclusion

Bilan

- Linux est une alternative sérieuse pour l'embarqué
- Existence d'une large communauté de développeurs et d'utilisateurs
- Disponibilité d'une documentation étendue
- Possibilités pour le temps réel
- Vigilance quant aux licences

Questions

Eurogiciel Linux embarqué 109/109