2009 IMO #1

Tristan Shin

12 Apr 2018

Let n be a positive integer and let $a_1, a_2, a_3, \ldots, a_k$ $(k \ge 2)$ be distinct integers in the set $\{1, 2, \ldots, n\}$ such that n divides $a_i (a_{i+1} - 1)$ for $i = 1, 2, \ldots, k - 1$. Prove that n does not divide $a_k (a_1 - 1)$.

Suppose the opposite. Take any prime p dividing n. Then

$$\nu_p(n) \le \nu_p(a_i(a_{i+1}-1)) = \nu_p(a_i) + \nu_p(a_{i+1}-1)$$

for i = 1, 2, ..., k. Summing this up, we get that

$$k\nu_p(n) \le \sum_{i=1}^k \nu_p(a_i) + \nu_p(a_{i+1} - 1) = \sum_{i=1}^k \nu_p(a_i) + \nu_p(a_i - 1),$$

so there is some j such that $\nu_p(n) \leq \nu_p(a_j) + \nu_p(a_j - 1)$. Observe that $\min(\nu_p(a_j), \nu_p(a_j - 1)) = 0$, so $\max(\nu_p(a_j), \nu_p(a_j - 1)) \geq \nu_p(n)$.

• Suppose $\nu_p(a_j) \ge \nu_p(n)$. I claim that $\nu_p(a_i) \ge \nu_p(n)$ for all i. We start at i = j; this is true. If the inequality is true for i, then $\nu_p(a_i - 1) = 0$, so

$$\nu_p(a_{i-1}) = \nu_p(a_{i-1}) + \nu_p(a_i - 1) \ge \nu_p(n)$$
,

so the inequality is true for i-1. So by induction, the inequality is true. Then $a_i \equiv 0 \pmod{p}^{\nu_p(n)}$ for all i.

• Otherwise, $\nu_p(a_j - 1) \ge \nu_p(n)$. I claim that $\nu_p(a_i - 1) \ge \nu_p(n)$ for all i. We start at i = j; this is true. If the inequality is true for i, then $\nu_p(a_i) = 0$, so

$$\nu_p (a_{i+1} - 1) = \nu_p (a_i) + \nu_p (a_{i+1} - 1) \ge \nu_p (n),$$

so the inequality is true for i+1. So by induction, the inequality is true. Then $a_i \equiv 1 \pmod{p^{\nu_p(n)}}$ for all i.

In all cases, the a_i are all the same mod $p^{\nu_p(n)}$. By CRT, the a_i are all the same mod n, contradiction.

So n does not divide $a_k(a_1-1)$.