

BACKDOOR ATTACKS ON FEDERATED META-LEARNING

CHIEN-LUN CHEN, LEANA GOLUBCHIK, MARCO PAOLIERI

University of Southern California, Los Angeles, USA

I. MOTIVATION

- Conventional federated learning is vulnerable to poisoning backdoor attacks
 - Existing defenses rely on a third-party to examine all user updates → can leak users' private data
- Poisoning backdoor attacks on federated meta-learning have not been investigated
 - Meta-learning allows users to train on different output classes → more practical in learning federation
 - The trained model can be adapted to unseen/new tasks very quickly (in only a few shots)
 - It is unclear whether meta-learning's fast adaptation ability can "forget" backdoors quickly

IV. EXPERIMENTAL SETUP

Threat Model – an illustrative example:

• Suppose an adversary wants Johnny Depp with glasses to be misclassified as Tim Cook

- During *N*-way *K*-shot meta-training, for the adversary, one of the N classes is always the target class, including some backdoor examples with a backdoor key
- The local update after poisoned training is then boosted before uploading to the server

Attack Evaluation – an illustrative example:

• We consider three different scenarios and two different test sets for evaluating the attack performance, illustrated as follows

Three different scenarios for evaluating attacks:

	Case (a)		Case (b)		Case (c)	
During Federated Meta-Training	Benign clier have back		_	ients have r classes	Benign cli backdoo	
	Fine-Tuning	Test	Fine-Tuning	Test	Fine-Tuning	Test
During Meta-Testing	No backdoor dis present durii		No backdoor of is present during		Backdoor class are present dur	

Two different test sets for evaluating attacks:

Datasets:

	Omniglot	mini-ImageNet		
Backdoor Attack	る () () () () () () () () () () () () ()			
Target Class				
Backdoor Classes	てるすの でもすら でもすら でもすら でもすら でもすら でもすら			
Backdoor Key	::			
Attack Training Set	0 0 7 7 4 4 8			

Federated Learning:

- 1 server and 4 clients (1 malicious adversary (Client 1); 3 benign clients (Clients 2, 3, 4))
- The server updates the global model when it receives 3 updates from clients

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under grants number CNS-1816887 and CCF-1763747.

II. MAIN CONTRIBUTIONS

- Investigate poisoning backdoor attacks on federated meta-learning, and show that
 - Effects of a one-shot attack can persist
 - Fine-tuning cannot effectively remove backdoors
- Propose a local defense mechanism that
 - Can remove backdoor effects successfully
- Is *privacy-preserving*: does **not** require a (potentially untrustworthy) 3rd-party to examine user updates

III. BACKDOOR ATTACKS

Open Questions

- (Federated meta-training) How quickly would updates from benign users dampen the effects of a one-shot backdoor attack?
- (Meta-testing) During fine-tuning, would meta-learning's adaptability help remove backdoors from a poisoned model?

V. EXPERIMENTAL RESULTS: BACKDOOR ATTACKS

(Federated meta-training) How quickly would updates from benign users dampen the effects of a one-shot poisoning backdoor attack?

Accuracy of the global model after each round of federated-training after the attack

- Main Task Acc
- Backdoor Acc (Attack Training)
- Backdoor Acc (Attack Validation)

Meta Testing Acc

Key Results

- Default federated meta-training dampens backdoor effects slowly; backdoor effects persist tens to hundreds of rounds
- Backdoor attacks are more successful on the attack training set
- When benign examples of backdoor classes are used for fine-tuning (Case (c)), backdoor attacks are less successful

(Meta-testing) During fine-tuning, would meta-learning's adaptability help remove backdoors from a poisoned model?

Accuracy of a *poisoned local model* after each fine-tuning step of an episode

- Meta Testing Acc Main Task Acc
- Backdoor Acc (Attack Training) Backdoor Acc (Attack Validation)

Key Results

- When benign examples of backdoor classes are not used for fine-tuning (Cases (a) and (b)), fine-tuning doesn't dampen backdoor effects (even after 500 iterations)
- When benign examples of backdoor classes are used for fine-tuning (Case (c)), backdoors are not removed effectively

VI. DEFENSE MECHANISM PERFORMED LOCALLY

Matching Networks:

• Step 1: Each user saves features of a local *sup*port set of training examples in memory

• Step 2: Features of a query input are matched against support set features in memory

Defense Mechanism: Matching Networks with Customized Attention Mechanism

- Tradeoffs:
 - Matching of the extracted features should remove backdoor effects
 - Not using a shared fully-connected layer could hurt prediction accuracy

VII. EXPERIMENTAL RESULTS: DEFENSE AGAINST BACKDOORS

- Meta Testing Acc
- Main Task Acc
- Backdoor Acc (Attack Training)
- Backdoor Acc (Attack Validation)

Key Results

- The defense mechanism *effectively* and *effi*ciently removes backdoors
- We are first to demonstrate feasibility of this defense without a centralized approach (that could leak users' private data)
- Future work: enhance model performance for complex datasets (e.g., mini-ImageNet)