

Projeto de uma Ligação por Feixes Hertzianos

Sistemas de Comunicações

Curso: LETI **Turno:** 3ª feira 17:00 - 19:00

Trabalho realizado por: Miguel Carreiro, nº 82012 Ruben Condesso, nº 81969

Índice

1.	Introdução	3
	Especificações do projeto	3
2.	Parâmetros da ligação	3
	Plano de frequências	4
	Atenuação atmosférica	6
	Atenuação devido a hidrometeoritos	6
	Reflexões no terreno	6
	Indisponibilidade/Fiabilidade	7
	C/N ótimo	7
3.	Análise de percursos	7
	Possibilidades de ligação	7
	Ligação direta entre Palmela e Praia das Maçãs	7
	Ligação direta entre Palmela e Praia das Maçãs com repetidor passivo	9
	Ligação direta entre Palmela e Praia das Maçãs com repetidor ativo	10
	Reflexão sobre outros percursos possíveis	13
4.	Análise de custos	13
5.	Solução final	15
	Cálculo da semi-banda	15
	Especificações da banda escolhida	16
	Evolução dos custos de exploração	17
	Receitas	18
	Despesas	18
	Valor residual	18
	Cálculo dos Azimutes e Ângulos de Fogo	19

1. Introdução

Este trabalho tem como objetivo elaborar um projeto de uma ligação de feixes hertzianos digitais, entre as localidades de Palmela e Praia das Maçãs, para um sinal PDH/E-2 (8 Mbit/s). Esta ligação deverá suportar um tráfego telefónico correspondente a um máximo de 120 canais telefónicos e que garanta as especificações definidas pela ITU-R.

Para que a ligação cumpra as condições referidas acima, serão averiguados os vários trajetos possíveis e quais as caraterísticas dos elementos físicos, tais como a altura dos mastros, diâmetro e orientação das antenas, entre outros. Serão também analisadas a banda de frequências a utilizar na ligação, os locais exatos de instalação das antenas, bem como a necessidade de recorrer à utilização de repetidores ativos ou passivos.

A finalidade deste projeto consistirá em obter, de entre as várias hipóteses possíveis, aquela que apresente um custo médio mais baixo para uma chamada telefónica bidirecional de 3 minutos, sem comprometer a fiabilidade e a qualidade da ligação, obedecendo às cláusulas definidas pela ITU-R.

Para a elaboração das várias hipóteses a considerar, foram tomadas em conta os seguintes elementos:

- ✓ Script Link data from Google maps.html publicado na página da cadeira;
- ✓ Livro Feixes Hertzianos, de Carlos Salema:
- ✓ Script Feixer, do programa Mathematica;
- ✓ Slides publicados na página da cadeira.

Especificações do projeto

No enunciado do projeto estão estabelecidas algumas condições a ter em conta, nomeadamente:

- $p_0 = 5$; b = 1.2; $F_0 = 7$; a = 0.1
- Valor máximo da potência do emissor: $p_m = \frac{p_0}{f^b} = \frac{5}{f^{1.2}}$, com f em GHz e p_m em W;
- Fator de ruído do recetor: $F = F_0 + a * f = 7 + 0.1 * f$, com F em dB e f em GHz;
- Encargos de exploração anuais, iguais a 0.15 do custo inicial;
- Encargos nulos com terrenos e direitos de passagem;
- Taxa de utilização anual de acordo com o definido pela ANACOM no endereço www.anacom.pt/render.jsp?categoryld=336153#4;
- Duração do projeto de 25 anos;
- Valor residual nulo;
- Tráfego médio por canal telefónico igual a $(0.02 + 0.02 * t_{i[anos]})$ *Erlang*;
- Taxa interna de retorno (a preços constantes) de 10%;
- Taxa de inflação de 3%.

2. Parâmetros da ligação

Nesta secção do relatório serão exploradas as várias variáveis referentes às diversas hipóteses a ter em conta, assim como a justificação para as escolhas efetuadas para este projeto.

Plano de frequências

Para definir a banda de frequências a usar na ligação é necessário considerar as várias bandas de frequências definidas, pelo ITU-R, para utilização, assim como a respetiva largura de banda e modulação a utilizar. Partimos do pressuposto de que uma menor largura de banda corresponderá a um menor custo, logo, para a mesma banda de frequência, caso existam duas larguras de banda diferentes, e passíveis de utilização, será escolhida a que tiver o valor mais baixo. Convém salientar que um aumento de frequência leva a que a potência no emissor diminua, a atenuação no espaço livre aumente e que haja um maior fator de ruído no recetor.

A análise sobre a viabilidade dos vários planos detalhados de frequência será feita com base nas frequências definidas pela ANACOM, e com o auxílio do anexo A do livro *Feixes Hertzianos*, cuja utilização foi aconselhada nas aulas teóricas. Consultando então a lista de frequências autorizadas pela ANACOM, foi possível excluir as seguintes bandas:

- Banda (LB's excluídas): Justificação
- Banda dos 6 GHz (Todas): Destinada apenas a feixes digitais com uma capacidade da ordem dos 140 ou 155 Mbit/s e feixes analógicos com uma capacidade de 1800 canais telefónicos, sendo por isso incompatível com as condições estipuladas no enunciado do projeto;
- Banda dos 8 GHz (29,65 MHz): Não é indicada para este projeto pois a única largura de banda disponível é demasiado cara (e dispendiosa);
- Banda dos 11 GHz (40 MHz): Não é indicada para este projeto, pois a única largura de banda disponível é demasiado elevada (e dispendiosa);
- Banda dos 13 GHz (28 MHz e 56 MHz): Indicada apenas para feixes digitais e analógicos de alta capacidade;
- Banda dos 18 GHz (todas): Destinada a feixes digitais de 34, 140 e 280 Mbit/s.

Sobram então as seguintes opções:

f[GHz]	Modulação	$b_{orf}[MHz]$	$b_{rf}[MHz]$	m	β
2	64-QAM	1.75	1.47	32.64	0.1
2	8-PSK/16-QAM	3.5	2.93	5.7131	0.1
2	4-PSK	7	4.4	2.39	0.1
2	2-PSK	14	8.8	1.54	0.1
7	64-QAM	1.75	1.47	32.64	0.1
7	8-PSK/16-QAM	3.5	2.93	5.7131	0.1
7	4-PSK	7	4.4	2.39	0.1
7	2-PSK	14	8.8	1.54	0.1
13	8-PSK/16-QAM	3.5	2.93	5.7131	0.1
13	4-PSK	7	4.4	2.39	0.1
13	2-PSK	14	8.8	1.54	0.1
15	8-PSK/16-QAM	3.5	2.93	5.7131	0.1
15	4-PSK	7	4.4	2.39	0.1
15	2-PSK	14	8.8	1.54	0.1

Tabela 1 – Bandas de frequência disponíveis para a ligação

Os valores desta tabela foram obtidos através do livro *Feixes Hertzianos* e através das seguintes fórmulas:

$$b_{rf} = \frac{f_b}{\log_2 m}; b_{orf} = (1+\beta) * \frac{f_b}{\log_2 m} \rightarrow \beta \le \frac{b_{orf}}{b_{rf}} - 1$$

Considerando que o f_b (débito binário) é igual a 8 Mbit/s, e sabendo que o b_{rf} corresponde à largura de banda em radiofrequência, b_{orf} corresponde à ocupação do espectro em radiofrequência, β é o fator de excesso de banda de *Nyquist* com valores compreendidos entre 0.1 e 0.5, e, finalmente, m é o número de níveis por palavra, que por sua vez irá determinar o tipo de modulação a utilizar (2-, 4-, 8-PSK, 16-, 64-, 256-QAM).

Inicialmente, para calcularmos os valores da tabela 1, nomeadamente o valor de m e, por conseguinte, a modulação a usar, assumimos que o valor de β era 0.1. Com recurso ao *Feixer* obtivemos os seguintes resultados:

f[GHz]	Modulação	$b_{orf}[MHz]$	$b_{rf}[MHz]$	m	β
7	64-QAM	1.75	1.47	32.64	0.1
7	8-PSK	3.5	2.93	5.7131	0.1
7	4-PSK	7	4.4	2.39	0.1
7	2-PSK	14	8.8	1.54	0.1
13	8-PSK	3.5	2.93	5.7131	0.1
13	4-PSK	7	4.4	2.39	0.1
13	2-PSK	14	8.8	1.54	0.1

Tabela 2 – Bandas de frequências a testar para a ligação

Convém salientar que no caso onde existia a modulação 8-PSK/16-QAM, decidimos optar apenas pela modulação 8-PSK devido ao seu menor custo.

A frequência ótima convergiu sempre para 7 GHz, no entanto, os valores de $\frac{C}{N}$ necessários para a ligação na frequência de 13 GHz aproximaram-se sempre dos valores de 7 GHz, logo, logo serão estas as bandas de frequências a considerar para a nossa ligação. Mais à frente teremos de considerar o custo do aluguer da banda de frequência e dos elementos físicos necessários para a concretização da ligação, referente às duas bandas de frequência em causa, para averiguar qual a mais rentável financeiramente.

Atenuação atmosférica

O valor da atenuação atmosférica é normalmente desprezável para frequências inferiores a 1 GHz, sendo que entre 1 e 20 GHz a atenuação atmosférica não excede, em geral, 1 dB. No entanto, para frequências superiores a 10 GHz, com chuva, ou 20 GHz, sem chuva, é a atenuação suplementar devido à presença dos gases atmosféricos e aos hidrometeoritos que limita a utilização de frequências sempre mais elevadas nas ligações por feixes hertzianos.

Portugal	Temperatura [ºC]	Humidade [%]	$ ho[g/m^3]$
Inverno	10	85	7.3
Verão	25	50	11.3

Tabela 3 - Valores típicos de temperatura e humidade para Portugal

No Feixer, para a obtenção de resultados utilizámos os valores por defeito do programa, ou seja, uma temperatura de 25°C e humidade relativa de 85%.

Atenuação devido a hidrometeoritos

A precipitação, principalmente a chuva provoca vários fenómenos nas ondas radioelétricas, tais como a absorção, dispersão e alterações na polarização das mesmas. No entanto, estes efeitos só têm importância prática para frequências superiores a alguns GHz e para períodos de tempo em que a intensidade de precipitação é elevada.

Para este projeto é mais adequado obter elementos sobre a distribuição acumulada da intensidade de precipitação, tendo em conta dados meteorológicos. Contudo, em certos locais não é possível obter os valores médios da intensidade de precipitação durante períodos curtos, sendo que é temos de recorrer a distribuições típicas dada a região climática onde a ligação se situa. No *Feixer*, foi utilizada uma intensidade de precipitação anual de 42 mm/h para uma fração de tempo anual de 0.01%.

Reflexões no terreno

Tendo em conta que a Terra não é um refletor perfeito, onde existem locais onde o terreno apresenta alguma rugosidade, existe uma área em torno do ponto especular (cuja dimensão depende das caraterísticas do terreno, como a rugosidade) a contribuir com potência dispersa na direção da antena recetora.

Numa ligação entre dois pontos, em que o elipsoide de *Fresnel* entre esses mesmos pontos se encontra desobstruído, a antena de receção, além da potência direta, p_d , irá receber uma fração de potência dispersa, p_s , que é refletida no terreno. No nosso projeto é exigido que se verifique a seguinte condição:

$$p_s < p_d - 10 dB$$

Em qualquer das hipóteses consideradas (que serão especificadas na $\frac{\sec(\tilde{a}0)}{\cos(\tilde{a})}$, se denotaram que todos os valores de p_s e p_d cumpriram a condição anterior para todas as frequências, logo, não foi necessário fazer qualquer alteração no nosso projeto.

Indisponibilidade/Fiabilidade

A indisponibilidade de uma ligação em feixes hertzianos deve-se às avarias ou degradação do equipamento, aos fenómenos atmosféricos (nomeadamente chuva), às interferências com outros serviços, dos erros de exploração ou manutenção por parte do Homem e devido aos desabamentos ou sabotagem das instalações e torres das antenas. Para o nosso projeto considerámos apenas a indisponibilidade devido à chuva (com orçamento de 10%).

C/N ótimo

A margem de ligação é referente à diferença entre a relação sinal/ruído, ou seja, a qualidade da ligação, e a qualidade necessária para verificar as três cláusulas da ITU-R. A frequência ótima de trabalho será aquela que corresponder o valor máximo da margem crítica, e que será obtida através da análise dos gráficos ilustrados no *Feixer*.

3. Análise de percursos

Esta secção é referente à nossa avaliação de todas as hipóteses de ligações consideradas no projeto. Iremos compará-las e escolher a que apresenta melhores resultados. Posto isto, a ligação escolhida irá ser analisada para reduzir o seu custo sem comprometer a qualidade e fiabilidade da ligação, ou seja, a melhorar a relação eficiência/custo.

Possibilidades de ligação

Foram consideradas as seguintes hipóteses de ligação entre Palmela e a Praia das Maçãs:

- Raio direto entre Palmela e Praia das Maçãs;
- Raio direto entre Palmela e Praia das Maçãs com recurso a repetidor passivo;
- Raio direto entre Palmela e Praia das Maçãs com recurso a repetidor ativo:

Ligação direta entre Palmela e Praia das Maçãs

Esta ligação foi a primeira a ser testada, apesar de a priori sabermos que não era viável, devido à elevada atenuação de obstáculo. No entanto, seria a mais económica e mais fácil de implementar, daí ser testada em primeiro lugar.

	Latitude	Longitude	Cota [m]	Distância [km]
Palmela	38°33'57.1"N	8°54'03.3"W	237	56.911
Praia das Maçãs	38°48'58.4"N	9°28'19.8"W	55	00.011

Tabela 4 - Coordenadas das antenas terminais da ligação direta

Figura 1 – 1º Elipsóide de Fresnel da ligação direta

Como se pode observar na figura, a 1ª Elipsóide de *Fresnel* é obstruída numa parte do percurso, o que inviabiliza a ligação direta, sem recurso a repetidor. Obtiveram-se os seguintes resultados para a margem de segurança da ligação:

f[GHz]	Modulação	LB[MHz]	$\left(\frac{C}{N}\right)_{min}[dB]$	$\left(\frac{C}{N}\right)_{CIP}[dB]$	Margem da ligação [<i>dB</i>]
7	64-QAM	1.75	79.8832	25.8818	-54.0014
7	8-PSK	3.5	66.8742	22.8715	-44.0027
7	4-PSK	7	61.6394	21.1106	-40.5289
7	2-PSK	14	60.0543	18.1003	-41.954
13	8-PSK	3.5	69.293	14.5346	-54.7584
13	4-PSK	7	64.0569	12.7737	-51.2831
13	2-PSK	14	63.169	9.76342	-53.0761

Tabela 5 - Margem da ligação direta Palmela-Praia das Maçãs

Como se pode verificar na tabela acima, a margem de ligação é muito baixa, inviabilizando o seu funcionamento, mesmo com recurso a outras otimizações. Desta forma, será considerada a hipótese de colocar um repetidor passivo no ponto mais alto do obstáculo da ligação.

Ligação direta entre Palmela e Praia das Maçãs com repetidor passivo

A próxima ligação a ser testada é uma ligação direta, mas com recurso a um repetidor costas-com-costas localizado na Serra de Sintra:

	Latitude	Longitude	Cota [m]	Distância [km]
Palmela	38°33'57.1"N	8°54'03.3"W	237	48.904
Serra de Sintra (Cruz Alta)	38°46'55.1"N	9°23'32.5"W	482	
Praia das Maçãs	38°48'58.4"N	9°28'19.8"W	55	8.007

Tabela 6 - Coordenadas da ligação direta com repetidor

Figura 2 - 1º Elipsóide de Fresnel da ligação direta com repetidor

Foi colocado um repetidor passivo no ponto mais alto do perfil, de cota 486m, e foram considerados os seguintes parâmetros para teste da ligação:

Altura do mastro de emissão (m)	6
Altura do mastro de receção (m)	6
Diâmetro da antena de emissão (m)	4.5
Diâmetro da antena de receção (m)	4.5
Área efetiva do repetidor passivo (m²)	7.95
Altura do mastro de receção do repetidor passivo (m)	6
Altura do mastro de emissão do repetidor passivo (m)	6

Tabela 7 - Caraterísticas dos elementos físicos da ligação com repetidor passivo na serra de Sintra (Cruz Alta)

No processo de otimização da ligação reduzimos gradualmente o valor da altura dos mastros enquanto não se verificasse atenuação de obstáculo e/ou a altura destes fosse igual ou superior ao valor mínimo (6 metros). Calculámos a área efetiva relativo ao repetidor passivo costas-com-costas, considerando o diâmetro igual a 4.5 metros, da seguinte forma: $a_{ef} = \pi \left(\frac{4.5}{2}\right)^2 * 0.5 = 7.95m^2$.

f[GHz]	Modulação	LB[MHz]	$\left(\frac{C}{N}\right)_{min}[dB]$	$\left(\frac{C}{N}\right)_{CIP}[dB]$	Margem da ligação [<i>dB</i>]
7	64-QAM	1.75	78.3982	49.9373	-28.4609
7	8-PSK	3.5	66.8631	69.5725	-19.9361
7	4-PSK	7	63.0061	45.1661	-17.8399
7	2-PSK	14	60.0414	42.1558	-17.8856
13	8-PSK	3.5	46.927	50.0104	-19.2714
13	4-PSK	7	65.8124	48.2495	-17.5629
13	2-PSK	14	62.8269	45.2392	-17.5877

Tabela 8 - Margem da ligação direta Palmela-Praia das Maçãs

Comparativamente aos dados da Tabela 5, é possível verificar que a margem de ligação melhorou substancialmente, no entanto, nenhuma das ligações cumpre as margens mínimas de segurança (≥3dB). Posto isto, concluímos que a ligação neste trajeto necessitará de um repetidor ativo, que irá ser verificado de seguida.

Ligação direta entre Palmela e Praia das Maçãs com repetidor ativo

Uma vez que a ligação com repetidor passivo não cumpre a margem de segurança mínima, é necessário testar essa mesma ligação com repetidor ativo. As coordenadas das antenas terminais, bem como dos repetidores são iguais aos valores da Tabela 6.

Para o cálculo dos valores a considerar, a ligação será dividida em 2 ligações: a primeira entre Palmela até à Serra de Sintra (Cruz Alta); a segunda entre a Serra de Sintra (Cruz Alta) e a praia das Maçãs.

500 400 E 300 200 100 0 2 4 6 8

Ligação 2 Serra de Sintra (Cruz Alta)-Praia das Maçãs

Figura 3 - 1º Elipsóide de Fresnel para a ligação Palmela-Serra de Sintra (Cruz Alta)

Figura 4 - 1º Elipsóide de Fresnel para a ligação Serra de Sintra (Cruz Alta)-Praia das Maçãs

Para otimizar as ligações começámos por variar a altura dos mastros até atingir o valor mínimo onde não se obtenha atenuação de obstáculos. Para tal, foram considerados os seguintes parâmetros para o teste da ligação (os valores são apenas para fins indicativos, mais à frente os valores serão ajustados para os equipamentos disponíveis):

Altura do mastro de emissão (m)	6
Altura do mastro de receção (m)	6
Diâmetro da antena de emissão (m)	4

Diâmetro da antena de receção (m)	0.6
Diâmetro da antena de receção do repetidor ativo (m)	4
Diâmetro da antena de emissão do repetidor ativo (m)	0.6
Altura do mastro de receção do repetidor ativo (m)	6
Altura do mastro de emissão do repetidor ativo (m)	6

Tabela 9 - Caraterísticas dos elementos físicos da ligação com repetidor ativo na Serra de Sintra (Cruz Alta)

De forma a otimizar as ligações, começámos por variar a altura dos mastros, quer na receção, quer na emissão e no mastro do repetidor. Além disso, variámos também os diâmetros dos mesmos. Essa variação foi ao encontro de cumprir a condição:

$$p_s < p_d - 10 dB$$

Os valores em causa também tiveram de cumprir as cláusulas do ITU-R, e, finalmente, a margem de ligação teria de ser superior a 3 dB, em ambas as ligações. Os valores obtidos estão ilustrados na Tabela 9, e, por conseguinte foram obtidos os parâmetros de ligação das Tabelas 10 e 11.

f[GHz]	Modulação	LB[MHz]	$\left(\frac{C}{N}\right)_{min}[dB]$	$\left(\frac{C}{N}\right)_{CIP} [dB]$	Margem da ligação [<i>dB</i>]
7	64-QAM	1.75	76.0036	80.7363	4.73271
7	8-PSK	3.5	64.4688	77.726	13.2572
7	4-PSK	7	59.2348	75.9651	16.7303
7	2-PSK	14	56.3782	72.9548	16.5766
13	8-PSK	3.5	66.8767	75.66	8.78339
13	4-PSK	7	61.6419	73.8991	12.2572
13	2-PSK	14	58.7841	70.8888	12.1047

Tabela 10 - Margem da ligação Palmela-repetidor ativo na Serra de Sintra (Cruz Alta)

f[GHz]	Modulação	LB[MHz]	$\left(\frac{C}{N}\right)_{min}[dB]$	$\left(\frac{C}{N}\right)_{CIP}[dB]$	Margem da ligação [<i>dB</i>]
7	64-QAM	1.75	47.2373	64.1972	16.9599
7	8-PSK	3.5	35.7028	61.1869	25.4841
7	4-PSK	7	30.47	59.426	28.956
7	2-PSK	14	27.6166	56.4157	28.7991
13	8-PSK	3.5	38.0955	60.2809	22.1853
13	4-PSK	7	32.8627	58.52	25.6573
13	2-PSK	14	30.0105	55.5097	25.4992

Tabela 11 - Margem da ligação repetidor ativo na Serra de Sintra (Cruz Alta)-Praia das Maçãs

Na ligação Palmela-repetidor foi necessário usar antenas com um diâmetro significativamente superior ao da ligação repetidor-Praia das Maçãs, dado que a distância desta última é bastante inferior à da primeira ligação. Verificámos que, para esta solução, conseguimos obter valores de margem de segurança acima do desejado (> 3 dB), logo, a escolha da frequência e da respetiva largura de banda recairá naquela que será mais vantajosa em termos económicos.

Analisando as tabelas 10 e 11 facilmente verificamos que os valores referentes às modulações 2-PSK e 4-PSK remetem a um custo não favorável para a ligação, logo, as larguras de banda referentes a essas modulações serão rejeitadas. Desta forma, sobram apenas três opções:

- 7 GHz [1.75 MHz];
- 7 GHz [3.5 MHz];
- 13 GHz [3.5 MHz].

Verificámos que ainda seria possível reduzir o diâmetro das antenas para a opção de 7 GHz [3.5 MHz], mas também facilmente verificámos que o que se poupava nessa redução, em termos de custos, não iria compensar o valor do aluguer da banda de frequências, ao longo dos 25 anos, comparativamente com a opção de 7 GHz [1.75 MHz], sendo que a opção em causa foi rejeitada. No final, resultaram apenas duas opções possíveis, cujo custo de aluguer de banda de frequências definido pela ANACOM se encontra a seguir:

- 7 GHz [1.75 MHz]: $57.5 * \sqrt{56.911} * 1.75 = 759.11 €/ano$;
- 13 GHz [3.5 MHz]: $30.5 * \sqrt{56.911} * 3.5 = 805.32 €/ano.$

Posto isto, verificamos que a diferença entre os custos de aluguer das duas bandas não permite a priori afirmar qual das duas é mais vantajosa, sendo por isso necessário proceder a uma análise de custos (a ser efetuada na secção 4).

Sabendo que estas são as únicas soluções a considerar para a nossa ligação, iremos explorar de forma mais pormenorizada os parâmetros físicos da ligação, para as duas bandas de frequência, de modo a encontrar os valores mais otimizados em termos de custos para cada uma das soluções, começando pela banda de frequências de 13 GHz [3.5 MHz] (Serão usados os valores correspondentes aos equipamentos disponíveis).

Altura do mastro de emissão (m)	6
Altura do mastro de receção (m)	6
Diâmetro da antena de emissão (m)	3
Diâmetro da antena de receção (m)	0.6
Diâmetro da antena de receção do repetidor ativo (m)	3
Diâmetro da antena de emissão do repetidor ativo (m)	0.6
Altura do mastro de receção do repetidor ativo (m)	6
Altura do mastro de emissão do repetidor ativo (m)	6

Tabela 12 - Caraterísticas dos elementos físicos da ligação com repetidor ativo na Serra de Sintra (Cruz Alta) para a frequência de 13 GHz [3.5 MHz]

f[GHz]	Modulação	LB[MHz]	$\left(\frac{C}{N}\right)_{min}[dB]$	$\left(\frac{C}{N}\right)_{CIP}[dB]$	Margem da ligação [<i>dB</i>]
13	8-PSK	3.5	66.8767	70.6625	3.78584

Tabela 13 - Margem da ligação Palmela-repetidor ativo na Serra de Sintra (Cruz Alta)

f[GHz]	Modulação	LB[MHz]	$\left(\frac{C}{N}\right)_{min}[dB]$	$\left(\frac{C}{N}\right)_{CIP}[dB]$	Margem da ligação [<i>dB</i>]
13	8-PSK	3.5	47.2373	64.1972	16.9599

Tabela 14 - Margem da ligação repetidor ativo na Serra de Sintra (Cruz Alta)-Praia das Maçãs

Estão assim definidos os valores mínimos dos elementos físicos da ligação, para a banda de frequências de 13 GHz [3.5 MHz], de modo a que a ligação seja bemsucedida.

Passamos de seguida para a banda de frequências de 7 GHz [1.75 MHz].

Altura do mastro de emissão (m)	6
Altura do mastro de receção (m)	6
Diâmetro da antena de emissão (m)	4.5
Diâmetro da antena de receção (m)	0.6
Diâmetro da antena de receção do repetidor ativo (m)	4.5
Diâmetro da antena de emissão do repetidor ativo (m)	0.6
Altura do mastro de receção do repetidor ativo (m)	6
Altura do mastro de emissão do repetidor ativo (m)	6

Tabela 15 - Caraterísticas dos elementos físicos da ligação com repetidor ativo na Serra de Sintra (Cruz Alta) para a frequência de 7 GHz [1.75 MHz]

f[GHz]	Modulação	LB[MHz]	$\left(\frac{C}{N}\right)_{min}[dB]$	$\left(\frac{C}{N}\right)_{CIP}[dB]$	Margem da ligação [<i>dB</i>]
7	64-QAM	1.75	76.0036	82.7824	6.77881

Tabela 16 - Margem da ligação Palmela-repetidor ativo na Serra de Sintra (Cruz Alta)

f[GHz]	Modulação	LB[MHz]	$\left(\frac{C}{N}\right)_{min}[dB]$	$\left(\frac{C}{N}\right)_{CIP}[dB]$	Margem da ligação [<i>dB</i>]
7	64-QAM	1.75	49.63	63.2912	13.6612

Tabela 17 - Margem da ligação repetidor ativo na Serra de Sintra (Cruz Alta)-Praia das Maçãs

Ficam assim encontrados os valores mínimos dos elementos físicos da ligação, para a banda de frequências de 7 GHz [1.75 MHz], de modo a que a ligação seja bemsucedida.

Reflexão sobre outros percursos possíveis

Testámos no Feixer mais trajetos para a nossa ligação, onde, após análise dos mapas do Google Maps, colocámos um repetidor em vários pontos geográficos, cuja ligação não fosse obstruída pela Serra de Sintra, sendo esta o maior obstáculo da nossa ligação. No entanto, para os vários testes realizados com o repetidor passivo, nenhum foi ao encontro dos requisitos da ligação, e mesmo usando um repetidor ativo, dada as grandes distâncias que a ligação teria de percorrer, esta hipótese não iria ser mais favorável que o percurso direto. Além disto, também testámos outras localizações dentro da Serra de Sintra, nomeadamente na zona da Peninha, mas obtivemos, mais uma vez, resultados não favoráveis.

4. Análise de custos

Esta secção é referente a uma análise de custos de todas as opções consideradas viáveis na secção anterior, que terá como objetivo escolher aquela que apresentará um custo de chamada mais baixo. No seguimento da secção anterior, as hipóteses a serem testadas serão:

- 7 GHz [1.75 MHz];
- 13 GHz [3.5 MHz].

Dado que, no trajeto escolhido para este projeto, as antenas terminais encontram-se em zonas urbanas, e o repetidor encontra-se numa zona rural, logo tivemos de ter em conta esses factos. Dessa forma, escolhemos utilizar torres autosuportadas nas antenas terminais, sendo que ocupam uma área de solo muito inferior comparativamente com a torre espiada, que será usada no repetidor. O custo das torres metálicas autosuportadas é dado por:

$$c_{ta} = 4000 + 600 * h$$
, com $h =$ altura do mastro;

Já o custo da torre espiada é dado por:

$$c_{tq} = 3500 + 300 * h$$
, com $h =$ altura do mastro;

O custo de cada antena parabólica é dado por:

$$c_a = 1000 + 75 * d^3$$
, com $d =$ diâmetro da antena;

O custo das guias de onda tem a seguinte expressão:

$$c_{ge}=15*\left(1+\frac{10}{f}\right)*l_{guia}$$
, com $l_{guia}=$ comprimento do mastro [m] e
$$f=$$
 frequência da portadora[GHz];

O custo do equipamento emissor + recetor e o conjunto abrigo + sistema de alimentação de energia é fornecido pelos slides do sumário do projeto. Começaremos por fazer uma análise de custos para a frequência de 7 GHz [1.75 MHz] no trajeto escolhido:

	Item	Quantidade	Caraterísticas	Preço unidade [€]	Preço [€]
	Torre metálica	2	h = 6m	7600,00	15200,00
	Torre espiada	1	h = 6m	5300,00	5300,00
icial	Equipamento emissor + recetor	4		35000,00	140000,00
to ir	Antena parabólica	2	d = 4.5m	7834,38	15668,76
nent	Antena parabolica	2	d = 0.6m	1816,20	3632,40
Investimento inicial	Abrigo e sistema de alimentação de energia	3		60000,00	180000,00
	Guias de onda	4	d = (10+6)m	582,86	2331,44
	Total				362132,60
0 =	Aluguer de banda	1			759,11
Custo anual	Manutenção	15%	do investimento i	nicial	54319,89
D a	Total				417211,60

Tabela 18 - Análise de custos da ligação Palmela-Praia das Maçãs com repetidor ativo na Serra de Sintra (Cruz Alta) para a frequência de 7 GHz

De seguida iremos efetuar a análise de custos para o mesmo trajeto, mas cuja frequência é de 13 GHz [3.5 MHz].

	Item	Quantidade	Caraterísticas	Preço unidade [€]	Preço [€]
	Torre metálica	2	h = 6m	7600,00	15200,00
	Torre espiada	1	h = 6m	5300,00	5300,00
icial	Equipamento emissor + recetor	4		35000,00	140000,00
io Fi	Antena parabólica	2	d = 3m	3025,00	6050,00
nent	Antena parabolica	2	d = 0.6m	1816,20	3632,40
Investimento inicial	Abrigo e sistema de alimentação de energia	3		60000,00	180000,00
	Guias de onda	4	d = (10+6)m	424,62	1698,48
	Total				351880,88
0 -	Aluguer de banda	1			805,32
Custo anual	Manutenção	15%	do investimento i	nicial	52782,13
O a	Total				405468,33

Tabela 19 - Análise de custos da ligação Palmela-Praia das Maçãs com repetidor ativo na Serra de Sintra (Cruz Alta) para a frequência de 13 GHz

5. Solução final

Comparando o custo total de cada solução, chegamos à conclusão de que a frequência de 13 GHz [3.5 MHz] revela ser mais económica, e cumpre todas as especificações da ITU-R, e, dessa forma, será escolhida como solução final da ligação em causa.

Cálculo da semi-banda

Obtiveram-se os melhores resultados em termos de funcionamento e em termos financeiros para a frequência de 13 GHz, largura de banda de 3.5 MHz. Para este espaçamento entre canais, a ANACOM define que as frequências centrais (MHz) são dadas por:

- Semibanda inferior: $f_n = f_0 245 + 3.5 * n$;
- Semibanda superior: $f'_n = f_0 + 21 + 3.5 * n$.

em que n = 1,2,...,64 e $f_0 = 12.996$ GHz.

		Troço Palmela	a-repetidor	
n	f_n [GHz]	Margem da ligação [dB]	f'_n [GHz]	Margem da ligação [dB]
1	12.7545	3.88172	13.0205	3.77718
2	12.758	3.88042	13.024	3.77594
3	12.7615	3.87912	13.0275	3.77449
4	12.765	3.87782	13.031	3.77304
10	12.786	3.86997	13.052	3.76429
20	12.821	3.85672	13.087	3.74955
40	12.891	3.82961	13.157	3.71949

64	12.975	3.79604	13.241	1.8932
----	--------	---------	--------	--------

Tabela 20 - Margem da ligação para as semibandas no 1º troço

Para o 2º troço assumimos que as conclusões a que iríamos chegar seriam as mesmas do que para o 1º troço, logo a frequência a usar será a de 12.7545 GHz.

Especificações da banda escolhida

Analisando o ponto anterior verificamos que a frequência ideal a ser utilizada é 12.7545 GHz dado que oferece a melhor margem de ligação em termos de custos e fiabilidade. Assim, as especificações finais do projeto são as que se seguem:

Frequência Largura de banda 3.5 MHz Fator de excesso de banda 0.1 Largura de banda ocupada em radiofrequência Número de níveis por palavra Modulação utilizada PSK Altura do mastro de Palmela Diâmetro da antena no terminal de Palmela Altura do mastro do repetidor ativo Orientação Palmela Diâmetro Orientação Altura Orientação Orientação Altura Orientação Orientação Altura Orientação Orientação
Fator de excesso de banda 0.1 Largura de banda ocupada em radiofrequência 2.933 MHz Número de níveis por palavra 8 Modulação utilizada PSK Altura do mastro de Palmela 6 m Diâmetro da antena no terminal de Palmela 3 m Altura do mastro do repetidor ativo 6 m Orientação Altura 6 m Palmela Diâmetro 3 m Palmela Diâmetro 3 m Orientação Altura 6 m
Largura de banda ocupada em radiofrequência Número de níveis por palavra Modulação utilizada PSK Altura do mastro de Palmela Diâmetro da antena no terminal de Palmela Altura do mastro do repetidor ativo Orientação Altura
Número de níveis por palavra 8 Modulação utilizada PSK Altura do mastro de Palmela 6 m Diâmetro da antena no terminal de Palmela 3 m Altura do mastro do repetidor ativo 6 m Orientação Altura 6 m Palmela Diâmetro 3 m repetidor ativo Orientação Altura 6 m
Modulação utilizada PSK Altura do mastro de Palmela 6 m Diâmetro da antena no terminal de Palmela 3 m Altura do mastro do repetidor ativo 6 m Orientação Altura 6 m Palmela Diâmetro 3 m Orientação Altura 6 m
Altura do mastro de Palmela 6 m Diâmetro da antena no terminal de Palmela 3 m Altura do mastro do repetidor ativo 6 m Orientação Altura 6 m Palmela Diâmetro 3 m repetidor ativo Orientação Altura 6 m
Diâmetro da antena no terminal de Palmela 3 m Altura do mastro do repetidor ativo 6 m Orientação Altura 6 m Palmela Diâmetro 3 m repetidor ativo Orientação Altura 6 m
Altura do mastro do repetidor ativo 6 m Orientação Altura 6 m Antenas no repetidor ativo Orientação Altura 6 m
Orientação Altura 6 m Antenas no repetidor ativo Orientação Altura 6 m
Antenas no repetidor ativo Palmela Diâmetro 3 m Orientação Altura 6 m
repetidor ativo Orientação Altura 6 m
7 illara 5 ili
Praia das Maçãs Diâmetro 0.6 m
Altura do mastro da Praia das Maçãs 6 m
Diâmetro da antena no terminal da Praia das Maçãs 0.6 m
Ganho de emissão da antena de Palmela 49.052 dBi
Ganho de receção da antena do repetidor ativo 49.052 dBi
Ganho de emissão do repetidor ativo 35.0726 dBi
Ganho de receção da antena da Praia das Maçãs 35.0726 dBi
Rendimento das antenas 50%
Atenuação em espaço livre (Troço Palmela-repetidor) 148.343 dB
Atenuação em espaço livre (Troço repetidor-Praia das Maçãs) 132.534 dB
Atenuação de obstáculo (Troço Palmela-repetidor) 0 dB
Atenuação de obstáculo (Troço repetidor-Praia das Maçãs) 0 dB
Atenuação de atmosfera (Troço Palmela-repetidor) 2.01424 dB
Atenuação de atmosfera (Troço repetidor-Praia das Maçãs) 0.326344 dB
Atenuação dos guias (Troço Palmela-repetidor) 1.82042 dB
Atenuação dos guias (Troço repetidor-Praia das Maçãs) 1.82042 dB

Folga dos guias	10 m
$p_{\scriptscriptstyle S}/p_{\scriptscriptstyle d}$ (Troço Palmela-repetidor)	-∞ dB
p_s/p_d (Troço repetidor-Praia das Maçãs)	-25.2792 dB
Potência de emissão (Palmela)	-4.81698 dBW
Potência de receção (repetidor)	-60.7112 dBW
Potência de emissão (repetidor)	-4.81968 dBW
Potência de receção (Praia das Maçãs)	-71.1735 dBW
Fator de redução da área da assinatura (fase mínima)	490
Fator de redução da área da assinatura (fase não mínima)	35
$(C/N)_{opt}$ (Palmela-repetidor)	3.88172 dB
$({\it C/N})_{opt}$ (repetidor-Praia das Maçãs)	22.2 dB

Tabela 21 - Especificações finais do projeto

Evolução dos custos de exploração

O custo da ligação, terá em vista um período de 25 anos, como é definido no enunciado do projeto. Este deve ser realizado de forma a que no final dos 25 anos o valor residual seja nulo. Neste ponto, apenas serão alvo de estudo as duas hipóteses que foram sujeitas a uma análise profunda no projeto, ou seja, as hipóteses para 7 GHz [1.75 MHz] e 13 GHz [3.5MHz]. Os custos do investimento inicial, tendo como base os dados fornecidos pelo enunciado, estão ilustrados nas tabelas 18 e 19, referentes a cada hipótese.

Na análise da evolução dos custos é fundamental ter em conta os encargos da exploração anual que, no nosso caso, é de 15% do valor inicial investido. O custo inerente à taxa de utilização da largura de banda é dado por:

$$T_{LB} = T * \sqrt{L_{[Km]}} * LB_{[MHz]}$$

com L= distância total da ligação e LB= faixa da largura de banda. Posto isto, para a nossa ligação, temos os seguintes valores:

Faixa [GHz]	Т	L [Km]	LB [MHz]	<i>T_{LB}</i> /ano [€]
7	57.5	56.911	1.75	759.11
13	30.5	56.911	3.5	805.32

Tabela 22 - Custo inerente à taxa de utilização da largura de banda

O valor atual líquido pode ser calculado através da seguinte fórmula:

$$val = \sum_{t=1}^{N} \frac{r_t - d_t}{(1+i)^t * (1+j)^t}$$

com N= ano em que se quer calcular o val, r e d respetivamente as receitas e as despesas num dado ano, i a taxa de inflação e j a taxa de atualização anual. Para o valor residual ser nulo, o val para N=25 tem que ser igual ao investimento inicial (d_0) , com uma taxa interna de retorno, j=tir=10%.

Receitas

As receitas r_t são dadas por:

$$r_t = n * T_{tel} * N * C_{3min}$$

em que n é o número de canais telefónicos, no nosso caso n=120, T_{tel} é o tráfego telefónico, N o número de chamadas de 3 minutos num ano e C_{3min} é o preço de cada chamada de 3 minutos. O valor de N e de T_{te} são iguais a:

$$N=rac{365~dias*24~horas*60~min}{3}=175200$$
 chamadas/ano
$$T_{tel}=(0.2+0.02*t_i)~{
m Erlang}$$

Despesas

As despesas d_t do projeto a considerar são dadas por:

$$d_t = 0.15 * d_0 + T_{LB/ano}$$

com d_0 = despesa do investimento inicial e $T_{LB/ano}$ = custo de aluguer de largura de banda por ano.

Valor residual

Como foi dito no início da secção, o objetivo é alcançar um valor residual nulo ao fim de 25 anos. Para isso consideramos as seguintes expressões:

$$d_0 = \sum_{t=1}^{25} \frac{r_t - d_t}{(1+i)^{t_t} * (1+tir)^{t_t}}$$

$$r_t - d_t = c^{te} = d_0/t_r$$

Para tal, implica que $t_r = \sum_{t=1}^{25} \frac{1}{(1+i)^t t_* (1+tir)^t t} = 7.18736.$

Com isto, sabemos que
$$C_{3min} = \frac{\frac{d_0}{t_r} + 0.15*d_0 + T_{LB/ano}}{n*(0.2 + 0.02*t_i)*N}$$

Para as nossas duas hipóteses, a evolução do custo da chamada ao longo do projeto, incluindo a taxa de inflação, está ilustrada na seguinte tabela:

Banda de frequências→	7 GHz	13 GHz	
t _i [ano]	C _{3min} [€]	<i>C</i> _{3min} [€]	
1	0.022802	0.022171	
2	0.020901	0.020323	
3	0.019294	0.018760	
4	0.017916	0.017420	
5	0.016721	0.016259	
6	0.015676	0.015242	
7	0.014754	0.014346	
8	0.013934	0.013549	
9	0.013201	0.012836	
10	0.012541	0.012194	
11	0.011944	0.011613	
12	0.011401	0.011085	

13	0.010905	0.010603
14	0.010451	0.010162
15	0.010033	0.009755
16	0.009647	0.009380
17	0.009290	0.009033
18	0.008958	0.008710
19	0.008649	0.008410
20	0.008361	0.008129
21	0.008091	0.007867
22	0.007838	0.007621
23	0.007601	0.007390
24	0.007377	0.007173
25	0.007166	0.006979

Tabela 23 - Custo das chamadas de 3 minutos ao longo de 25 anos

Verifica-se que o custo da chamada para a banda de 13 GHz é inferior ao custo da chamada para a banda de 7 GHz, indo ao encontro das conclusões retiradas anteriormente.

Cálculo dos Azimutes e Ângulos de Fogo

Os azimutes são os ângulos que o raio direto do feixe faz com a direção do Norte geográfico. Cada antena tem um azimute associado, e, nesta secção serão calculados os azimutes de todas as antenas do projeto (antenas terminais e repetidor ativo). O ângulo de fogo consiste no ângulo que o raio direto faz com a direção horizontal correspondente à posição das antenas.

Estes parâmetros são fundamentais para a correta instalação das antenas de forma a tirar partido da direção à qual corresponde o ganho máximo das mesmas. Para calcular os ângulos x e y, em cada um dos terminais da ligação, consideramos as seguintes expressões:

$$y = \arctan\left(\cot\left(\frac{|g_R - g_E|}{2}\right) * \frac{sen\left(\frac{t_R - t_E}{2}\right)}{cos\left(\frac{t_R + t_E}{2}\right)}\right) + \arctan\left(\cot\left(\frac{|g_R - g_E|}{2}\right) * \frac{cos\left(\frac{t_R - t_E}{2}\right)}{sen\left(\frac{t_R + t_E}{2}\right)}\right)$$

$$x = \arctan\left(\cot\left(\frac{|g_R - g_E|}{2}\right) * \frac{cos\left(\frac{t_R - t_E}{2}\right)}{sen\left(\frac{t_R + t_E}{2}\right)}\right) - \arctan\left(\cot\left(\frac{|g_R - g_E|}{2}\right) * \frac{sen\left(\frac{t_R - t_E}{2}\right)}{cos\left(\frac{t_R + t_E}{2}\right)}\right)$$

com g_E e g_R igual às longitudes dos terminais do emissor e recetor, respetivamente, e t_E e t_R igual às latitudes dos terminais do emissor e recetor, respetivamente, do percurso.

Na nossa ligação, cada terminal encontra-se apontado em direção ao outro terminal, segundo um certo ângulo de fogo.

Os ângulos de fogo, α , correspondem ao ângulo entre a tangente à superfície da terra e o raio do feixe. Os ângulos σ correspondem ao ângulo entre a tangente à superfície da terra enquanto os ângulos i correspondem ao ângulo entre o feixe e o plano horizontal. Tal pode ser verificado na Figura 5.

Figura 5 - Representação dos ângulos de fogo numa ligação por feixes hertzianos entre dois pontos

De seguida, consideramos a seguinte expressão: $\theta_e = tan^{-1}\left(\frac{d/2}{r}\right)*\frac{180}{\pi}$. O valor do ângulo i é dado por: $i=tan^{-1}\left(\frac{h}{d}\right)*\frac{180}{\pi}$. Chegamos por fim às equações para o cálculo dos ângulos de fogo:

- Ângulo de fogo de emissão: $a_e = \theta_e i$;
- Ângulo de fogo de receção: $a_r = \theta_e + i$.

Posto isto, para o percurso escolhido para a nossa ligação, ou seja, Palmela – Praia das Maçãs, com recurso a repetidor ativo na Serra de Sintra (Cruz Alta), ilustraremos os resultados obtidos para os ângulos de fogo e do azimute, na seguinte tabela:

	Latitude	Longitude	Altura (cota + mastro) [m]	Ângulo de Fogo [⁰]	Azimute [º]
Palmela	38.565861	-8.900916	237+6=243	0° 7' 19.2''	299° 31′ 51.13″
Repetidor ativo	38.781972	-9.392631	482+6=488	-0° 27' 7.2"	119° 13' 24.96"
Repetidor ativo	00.701072		1012 0.002001 102.10	-88° 53' 52.8'	298° 56' 50.71"
Praia das Maçãs	38.816222	-9.472167	55+6=61	88° 57' 7.2"	118° 53' 51.29"