10. Antiderivatives & Areas

ANTIDERIVATIVES

A function F(x) is called an **antiderivative** of f(x) if

Example 10.1. Guess an antiderivative for each of the following functions. Then check your answer by differentiating.

function f(x)

guess an antiderivative F(x) of f verify that F'(x) = f(x)

- (a) f(x) = 2x
- **(b)** $f(x) = 3x^2$
- (c) $f(x) = e^x$
- $f(x) = \cos(x)$ (d)
- **(e)** f(x) = 0

^{*} These notes are solely for the personal use of students registered in MAT1320. ©EJM All rights reserved.

Fact. If $F(x)$ and $G(x)$ are both antiderivatives of $f(x)$, then $F(x) - G(x) = C$, for some constant C .
ullet Thus, if F and G are two distinct antiderivatives of $f(x)$, then the graphs of F and G are identical, up to a vertical translation.
Theorem 10.2. If F is an antiderivative of f on an interval I , then the most general antiderivative of f on I is $F(x) + C$ where C is an arbitrary constant.
Integral Notation:
"Undoing" Basic Rules of Differentiation
Constants.

Powers.

The special power n=-1

Constant multiples

Sums and differences.

Example 10.3. Find f(x) given that $f'(x) = \frac{5}{x^6} + 8x^3 - \frac{2}{x}$ and f(1) = 2.

Trig functions.
Example 10.4. Verify that $F(x) = -\ln \cos x + C$ is an antiderivative of $\tan x$.
Exponential functions.
•
Inverse trig functions.

"Undoing" Less Basic Rules of Differentiation

Example 10.5. Verify that $x \ln x - x$ is an antiderivative of $\ln(x)$.

Example 10.6. Try to determine (guess!) an antiderivative for each of the following functions. Verify (check!) your answer by differentiating.

- (a) $2xe^{x^2}$
- **(b)** $3x^2 \sin x + x^3 \cos x$
- (c) $\cot(x)$
- (d) e^{ax+b} where a and b are constant real numbers.
- (e) $\frac{g'(x)}{g(x)}$

(f) $e^x [e^x + 8]^{10}$

Exercise 10.7. Determine an equation for the height of a ball at time t if the ball is thrown with an initial upwards velocity of v_0 m/s, from an initial height of h_0 m above the ground, on Earth where acceleration due to gravity is -9.8 m/s².

AREAS & RIEMANN SUMS

Example 10.8. Let
$$f(x) = (x-1)^2 + 1$$
.

What is the area of the region under the graph of f, above the x-axis between x=0 and x=2? This is not a standard shape, so we do not have an area formula.

We can try to estimate the area using several rectangles:

= [2 + 1.25 + 1 + 1.25](0.5) = 2.75

- If we use n=4 rectangles, then each rectangle has width $\Delta x=0.5$ (this is because we are chopping the interval [0,2] into four equal pieces).
- \circ If we use n=8 rectangles instead, then each rectangle has width 0.25 (this is because we are chopping the interval [0,2] into eight equal pieces).
- \circ For the height of each rectangle, we will use the *y*-coordinate of *f* at the appropriate value of *x* (for now, we'll use the *x*-coordinate at the bottom left corner of each rectangle).

$$L_{4} = \begin{bmatrix} \text{Estimate of area using} \\ 4 \text{ rectangles with} \\ \text{left endpoint heights} \end{bmatrix}$$

$$\approx \begin{pmatrix} \text{area of 1st} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 2nd} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 3rd} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 4th} \\ \text{rectangle} \end{pmatrix}$$

$$= \begin{pmatrix} \underbrace{0.5} \times \underbrace{f(0)} \\ \underbrace{\text{width}} \\ \text{1st rect.} \end{pmatrix} + \begin{pmatrix} \underbrace{0.5} \times \underbrace{f(0.5)} \\ \underbrace{\text{width}} \\ \text{2nd rect.} \end{pmatrix} + \begin{pmatrix} \underbrace{0.5} \times \underbrace{f(1)} \\ \underbrace{\text{width}} \\ \text{3rd rect.} \end{pmatrix} + \begin{pmatrix} \underbrace{0.5} \times \underbrace{f(1.5)} \\ \underbrace{\text{width}} \\ \text{4th rect.} \end{pmatrix}$$

$$= (0.5 \times 2) + (0.5 \times 1.25) + (0.5 \times 1) + (0.5 \times 1.25)$$

$$L_8 = \begin{bmatrix} \text{Estimate of area using} \\ 8 \text{ rectangles with} \\ \text{left endpoint heights} \end{bmatrix}$$

$$\approx \begin{pmatrix} \text{area of 1st} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 2nd} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 3rd} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 4th} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 6th} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 7th} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 8th} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 7th} \\ \text{rectangle} \end{pmatrix} + \begin{pmatrix} \text{area of 8th} \\ \text{rectangle} \end{pmatrix}$$

$$= \begin{pmatrix} 0.25 \times f(0) \end{pmatrix} + \begin{pmatrix} 0.25 \times f(0.25) \end{pmatrix} + \begin{pmatrix} 0.25 \times f(0.5) \end{pmatrix} + \begin{pmatrix} 0.25 \times f(0.75) \end{pmatrix} + \begin{pmatrix} 0.25 \times f(1.75) \end{pmatrix} + \begin{pmatrix} 0.25 \times f(1.75) \end{pmatrix} + \begin{pmatrix} 0.25 \times f(1.75) \end{pmatrix} + \begin{pmatrix} 0.25 \times f(1.25) \end{pmatrix} + \begin{pmatrix} 0.25 \times f(1.2$$

General Observations:

- If we chopped the interval into even more (thinner) rectangles, we would get better and better estimates of the actual area.
- \circ Using n rectangles, each of width Δx , where Δx is the interval length divided by n, we can estimate the net area between any continuous function and the x-axis from x=a to x=b.

- \circ The bigger n gets, the smaller Δx gets (more rectangles, but they are thinner).
- \circ For the height of the *i*th rectangle, we could just as well have used the *x*-coordinate at the bottom right corner of each rectangle, or the *x*-coordinate at the midpoint of the rectangles two sides, or some other sample point x_i^* .

 The widths of the rectangles did not all have to be equal (but having them all of equal width made the calculation more straightforward).

STUDY GUIDE

- $\diamond\,$ an antiderivative vs. the most general antiderivative
- undoing basic rules of differentiation
- ♦ some ideas for undoing less basic rules of differentiation
- \diamond approximating area (or distance) using a Riemann sum: $A \approx \sum_{i=1}^n f(x_i^*) \Delta x$