· B-5 Mode/ 之 Fourier's 解it

M. T. Doong 11/vs $U_{2} = YW - YXW_{1} - \frac{1}{2}V'Y'W_{11}$ X(t): share price W(X.t): call t*: maturity date C strike Transform (6) $\omega(x,t) = e^{\gamma(t-t^*)} \gamma(u,s)$ $U = \left(\frac{1}{V^{2}}\right) \left(Y - \frac{1}{2}V^{2}\right) \left[\ln(\frac{X}{C}) - (Y - \frac{1}{2}V^{2})(t - t^{2})\right]$ $S = -(\frac{2}{1/2})(r - \frac{1}{2}v^2)^2(t - t^*)$ $\omega_1 = \frac{\partial \omega}{\partial u} \frac{\partial u}{\partial t} = \left[e^{\gamma(t-t^*)} y, \frac{1}{2} \frac{(\frac{1}{v^*})(r-\frac{v^*}{2})}{2^{s}} \right]$ $U_{2} = \frac{\partial W}{\partial S} \frac{\partial S}{\partial t} + \frac{\partial W}{\partial W} \frac{\partial V}{\partial t} + \frac{\partial W}{\partial t}$ $= \left[e^{\gamma(t-t^*)} \right/ \frac{25}{5t} + \left[e^{\gamma(t-t^*)} \right/ \frac{3u}{5t} + \left[\gamma(t-t^*) \right]$ $= e^{\frac{1}{2}(t-t^*)} \left[-\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + ry \right]$

-/1 (1/2) (8- V2) $\frac{1}{\sqrt{11(\frac{2}{V^2})^2(r-\frac{V^2}{2})^2}}$ X (6) A with c=1 initial condition: $\frac{1}{2}(4,0) = \omega(x,+*)$ $y(u, 0) = C \left[e^{u(\frac{1}{2}v^2)/(r-\frac{1}{2}v^2)} \right]$ リシの u < 0 $(u^*, 0) = C[e^{\ln(\frac{x}{C})} - 1] = x - C$ 以ショ u<0. 以シロ Uro.

$\hat{W}_{2} = e^{-((-\frac{1}{2})^{2})} \left(-\frac{1}{2} \left(\frac{2}{\sqrt{2}} \right) \left(r - \frac{\sqrt{2}}{2} \right)^{2} - \frac{1}{2} \left(\frac{1}{\sqrt{2}} \right) \left(r - \frac{\sqrt{2}}{2} \right)^{2} + r y \right) \right)$	
$= Y \cdot e^{Y(t-tx)} / - YX e^{-Y(t-tx)} (\frac{2}{V^2}) (Y - \frac{2}{2}) / \frac{1}{V^2}$	
$-\frac{1}{2}v^{2}\chi^{2}e^{r(t-\frac{1}{2})}\frac{1}{(v^{2})(r-\frac{1}{2})^{2}}+\frac{1}{2}(v^{2})^{2}(r-\frac{1}{2})^{2}$	

$$-\frac{1}{1}\left(\frac{2}{v^{2}}\right)\left(r-\frac{v^{2}}{2}\right)^{2}=-rx\cdot\frac{\left(\frac{2}{v^{2}}\right)\left(r-\frac{v^{2}}{2}\right)}{x}$$

$$+\frac{1}{2}v^{2}\chi^{2}\frac{1}{1}\left(\frac{v^{2}}{v^{2}}\right)\left(r-\frac{v^{2}}{2}\right)}{x^{2}}$$

$$-\left(r-\frac{U^{2}}{2}\right)^{2}=-r\left(r-\frac{U^{2}}{2}\right)+\frac{1}{2}v^{2}\left(r-\frac{U^{2}}{2}\right)$$

$$-(Y-\frac{\sigma^2}{2})=-Y+\frac{1}{2}\sigma^2$$

De la maria

 $U_{t}(x, t) = k U_{xx}(x, t) \quad (-\infty < x < \infty, t > 0)$ n of Variables:
applies to the solution of initial problèms for homogeneous U(x, t) = M(x) N(t) 代入の代 M(x) N'(t) = kM''(x) N(t)each eigenvalue λ_k , we obtain an equation for Λ (2), (3) Λ , assume $\lambda_k > 0$, for all k. $N_k(t) = a_k \exp(-\lambda_k k t)$ $U_k = M_k \cdot N_k \qquad (M_k \cdot M_j) = 0$ for k + j inner product of

Superposition of Uk. The spectrum (i.e., the set of eigenvalues) is continuous in the unbounded case, whereas in the b	
The spectrum (i.e., the set of eigenvaluer)	5
continuous in the unbounded case; whereas in the b	ounded
case the spectrum is discrete.	
	4
Discrete form:	
$u(x,t) = \sum_{k=1}^{\infty} u_k = \sum_{k=1}^{\infty} M_k N_k.$,
$U(x,0) = \sum_{k} M_{k}(x) N_{k}(0) = \sum_{k} a_{k} M_{k}(x) = f(x)$)
$a_k = \frac{\left(f(x), M_k(x)\right)}{\left(M_k(x), M_k(x)\right)}$	
t _R	
$U(x,t) = \sum_{k} q_k \exp(-\lambda_k k t) M_k(x)$	
Continuous form:	
In the case of a continuous spectrum, the	
eigenvalues λ range over the set D , which be the interval $-\infty < \lambda < \infty$, $0 \le \lambda < \infty$, or	may_
other uncountable case.	some
other uncountable that	
$u = \int u(\lambda) d\lambda = \int M(\lambda) N(\lambda) d\lambda.$	
D	
Replace 2 by 22	
$M''(x) + Y'M(x) = 0 -\infty < x < \infty$	
$ M(x) $ bounded as $\chi \to \infty$	
this implies Y is real;	
-∞< Y < ∞	Pri
A A	Paper House

To

 $\mathcal{H}''(x) + \gamma^{\perp} \mathcal{M}(x) = 0.$

 $M(x; r) = d(r) e^{irx} + \beta(r) e^{-irx}$

Define:

 $\int_{-\infty}^{\infty} \left[\alpha(r) e^{irx} + \beta(r) e^{-irx} \right]$ dr

Q(Y) e dr ----

 $Q(Y) = \beta(Y) + \alpha(-Y)$

taran da karangan da karan Karangan da karangan da ka	
Fourier Integral Formula.	
and the state of t	
Define $\overline{f(r)} = \overline{f(x)} = \overline{\int_{QR}^{\infty} e^{irx} f(x)} dx$	(x
() () () () () () () () () ()	
$\int (x) = \int \int \left\{ - $	d Y (5·)
	<u> </u>
	•
By comparing (4) 15), we conclude that	
$O(r) = \frac{1}{\sqrt{2}\bar{\chi}} F(r)$	
Properties of Fourier Transform.	
$ \overline{\mathcal{J}}^{-1}\left\{\overline{f}(r)\cdot G(r)\right\} = \overline{f}(x) * g(x) $	
$ = -i \gamma \mathcal{F}(x) $	
$iii \mathcal{F}\left\{f^{n}(x)\right\} = (-i\gamma)^{n} \mathcal{F}\left\{f(x)\right\}$	
$ \sim$ \sim \sim \sim \sim \sim	
$iV \int_{-\infty}^{\infty} F(Y) ^2 dY = \int_{-\infty}^{\infty} f(x) ^2 dX$	
있는 1일 1년 1일	
선물 등 사용하는 것이 되었다. 사용 발생활동 사용하는 사용하는 것이 되었다.	V (2)
	75

 $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$ $U(x,t) = \sqrt{x} \left\{ u(x,t) \right\} = \sqrt{\frac{1}{J_2 x}} \int_{-\infty}^{\infty} e^{ixx} u(x,t) dx$ (6) $\times \frac{1}{\sqrt{2z}} e^{irx}$ and integrate with respect to x from $-\infty$ to ∞ $\frac{\int_{2\pi}^{\infty} \int_{-\infty}^{\infty} u_{t} e^{(rx)} dx + (cr)^{2} \int_{-\infty}^{\infty} (r, t)}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{t} e^{(rx)} dx + (cr)^{2} \int_{-\infty}^{\infty} (r, t) dx}$ $\frac{\partial}{\partial t} \bigcup (r,t) + (r,t)^2 \bigcup (r,t) = 0 -----(8)$ [By property (iii)] $U(r,0) = \overline{f(r)} = \frac{1}{\sqrt{2\chi}} \int_{-\infty}^{\Delta} e^{irr} f(x) dx ----(9)$ $\frac{\partial}{\partial t} U(r,t) + (cr)^2 U(r,t) = 0$ U(x,0) = F(r) $U(r,t) = F(r) \exp \left[-(cr)^2 t\right]$ $U(x,t) = \mathcal{J}^{-1} \{ U(r,t) \}$ $=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{-crx-rc^{2}t}{e^{-crx-rc^{2}t}}\frac{f(r)}{dr}.$ $\frac{1}{\sqrt{3\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-ir(x-s)} - r^2 c^2 t \qquad f(s) dr ds + \frac{1}{\sqrt{3\pi}}$

Cox[r(x-s)]dr $L(\alpha) = 2 \int_{-\infty}^{\infty} e^{-r^2C^2A} \operatorname{Coe}[\alpha r] dr$ d I(a) 2 C2 t (<) -r2c2+ dr = \[\frac{\ta}{\ta} $from (10) (11), I(x) = \frac{\pi}{4c^2t} exp[-\frac{(x-5)^2}{4c^2t}] ---- (12)^{\frac{1}{2}}$ Substitute (12) to XX $U(x,t) = -\frac{1}{\sqrt{4\pi c^2 t}} \int_{-\infty}^{\infty} \exp\left[-\frac{(x-s)^2}{4c^2 t}\right] f(s) ds.$ $\frac{1}{\sqrt{\lambda}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{(x+20)}} \frac{1}{\sqrt{c^2 + c^2 + c$ 5 = x+20-102t

NO. 3 DATE
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \int_{-\frac{\pi}{2}}^{\infty} \frac{\left(\left(u+2\sqrt{3}\right)\left(\frac{1}{2}v^{2}\right)/\left(r-\frac{1}{2}v^{2}\right)-1\right)e^{-\frac{3}{2}v^{2}}}{\left(\left(e^{-\frac{1}{2}v^{2}}\right)-\frac{1}{2}e^{-\frac{3}{2}v^{2}}\right)}$
$\frac{\sqrt{2} - \frac{u}{J + S}}{\sqrt{2}} = -d_{2}$ $\frac{\omega(x, t) = e^{x(t - t^{*})} y(u, s)}{\sqrt{2}}$ $\frac{\omega(x, t) = \frac{1}{\sqrt{2}} c e^{x(t - t^{*})} \int_{-d_{2}}^{\infty} \frac{\left(\left(u + \frac{1}{2}\sqrt{2}s\right)\left(\frac{1}{2}v^{2}\right)/\left(x - \frac{1}{2}v^{2}\right)\right)}{-\frac{1}{2}\sqrt{2}}$ $\frac{c e^{x(t - t^{*})}}{\sqrt{2}\sqrt{2}} \int_{-d_{2}}^{\infty} e^{-\frac{1}{2}\sqrt{2}}$
$\frac{2n\sqrt{-term}}{ce^{r(t-t^*)}} \left(\begin{array}{c} \infty & -\frac{z^2}{2} \\ -\frac{z^2}{2} \\ \end{array} \right) = Ce^{r(t-t^*)} \sqrt{(d_2)}$ $= Ce^{r(t-t^*)} \sqrt{(d_2)}$
$ s = \frac{1}{1 + erm}$
$= \chi \cdot \frac{1}{\sqrt{2}} \int_{-d_{2}}^{\infty} e^{-\frac{1}{2}\left[\frac{1}{2} - \frac{1}{2}\sqrt{t^{2} - t} + \frac{1}{2}\sqrt{t^{2} - t}\right]} dg$ $= \chi \cdot \frac{1}{\sqrt{2}} \int_{-d_{2}}^{\infty} e^{-\frac{1}{2}\left[\frac{1}{2} - \frac{1}{2}\sqrt{t^{2} - t} + \frac{1}{2}\sqrt{t^{2} - t}\right]} dg$ $= \chi \cdot \frac{1}{\sqrt{2}} \int_{-d_{2}}^{\infty} e^{-\frac{1}{2}\left[\frac{1}{2}\sqrt{t^{2} - t} + \frac{1}{2}\sqrt{t^{2} - t}\right]} dg'$ $= \chi \cdot \frac{1}{\sqrt{2}} \int_{-d_{2}}^{\infty} e^{-\frac{1}{2}\left[\frac{1}{2}\sqrt{t^{2} - t^{2} - t^{2}}\right]} dg'$ $= \chi \cdot \frac{1}{\sqrt{2}} \int_{-d_{2}}^{\infty} e^{-\frac{1}{2}\left[\frac{1}{2}\sqrt{t^{2} - t^{2} - t^{2}}\right]} dg'$

🛱 Papér House

DZ