Lecture 4: Hardware Platform

Course code: COMP 413 - Internet of Things

Dr. Abdulkadir Köse Computer Engineering Department Abdullah Gül University

Email: abdulkadir.kose@agu.edu.tr

Fall 2022

Overview

- Sensors & Actuators
- Node Architecture
- Communication Architecture

Sensors Characteristics

– Sensors:

- They are mainly input components in IoT
- They are devices that receive a stimulus and responds with an electrical signal
- Basically three types:
 - Passive, omnidirectional (e.g. mic)
 - Passive, narrow-beam sensor (e.g. PIR)
 - Active sensors (e.g. sonar, radar, etc.)
- Unit of measurements:
 - SI: modernized metric system.

Quantity	Name	Symbol
Length	Meter	m
Time	Second	S
Electric current	Ampere	А
Luminous intensity	Candela	cd

Transfer Function

- A transfer function for a sensor: a mathematical function representing the input-output relation.
 - Input: a physical measured parameter
 - Output: usually an electrical output signal.
- It describes the system response of a sensor.
- The simplest form of transfer function is a linear function which can be described as follows.

$$S = a + bx$$

where x is the input, b is the slope (and sometimes called sensitivity), and a is the offset (or the output when the input is zero).

Transfer Function

– An example:

 Inverse transfer function: to tell the physical measured parameter based on sensor output.

Transfer Function: Linear/Nonlinear

– Linear:

– It can be described by a straight line:

$$S = a + bx$$

 Hardly any sensor produces linear transfer function, there is always some nonlinearity in the function.

– Nonlinear:

- Any response that is not linear
- Appropriate functions should be utilized to describe the response (e.g. multiple linear functions, polynomial function, exponential function, etc)

Transfer Function

- Multiple Inputs
 - Some sensors may depend on multiple inputs
 - e.g. humidity sensor (two inputs: relative humidity and temperature)
- Saturation
 - The output becomes flat at some levels of input

Transfer Function

Resolution

- It describe the smallest increment of stimulus
- Outputs change in small steps

Accuracy

It describes how close the measurement is to the true value

Precision or Repeatability

 It describes the difference in results when measurements are taken repeatedly under the same conditions

Capacitive

- A change in capacitance with a change in environment
 - Can detect liquids and objects based on their dielectric constant
 - Can take human body capacitance as input
- For detection of displacement, humidity, acceleration, human contact, etc.

Resistive

- A change in resistance with a change in environment
 - Physical changes include light, force, heat, magnetic field, etc.
- For detection of light, force, heat, etc.
- Applications include camera, street lights, music instruments, weight sensing, touch screen, etc.

MICROCHIE

– Magnetic (passive)

- There are several approaches for magnetic sensing, eg.
 Hall effect sensor, magneto-diode, magneto-transistor, etc.
- Generally, they detect magnetic fields or their alteration by ferromagnetic objects.
- For measuring of rotary movement, Earth's magnetic field, etc.

Inductive (active)

- A change in the amplitude of an emitted high frequency electromagnetic field the oscillations.
- For detection of metallic object and different metals
- Common in vehicle detection

Thermoelectric

- A creation of voltage when there is a different temperature on each side of an object
- For measurement of temperature

Pyroelectric

- A temporary voltage generated from a certain material when it is heated or cooled
- For human/animal motion detection, flame detection,
 NDIR (Non Dispersive IR) gas analysis, etc.
- Common in PIR (Passive InfraRed) sensors

Sound level

- A generation of electrical voltage signals with vibration of air
- Two popular approaches: inductive (dynamic microphone) and capacitive (condenser microphone)
- Common sensing application: Sound meter

- Other sensing technologies
 - Electromechanical sensors
 - Involving of mechanical devices.
 - Some examples:
 - Fluid flow measurement (e.g. mechanical flow meters),
 Microelectromechanical systems (e.g. MEMS gyroscopes), etc.
 - Electrochemical sensors
 - Involving interaction between electricity and chemistry.
 - Some examples:
 - CO detector, pH meter, etc.

Sensors in Modern Smart Phones

Actuators

- They are mainly output components
- Generally 4 types:
 - Hydraulic: use hydraulic power, powerful but slow
 - Pneumatic: use compressed air, rapid delivery
 - Electric: use electricity, versatile ←for IoT
 - Mechanical: use other mechanical energy
- They alter the surrounding. Some examples:
 - Adding light, heat, sound, moisture, etc.
 - Moving objects
 - Displaying messages
 - and others...

Hardware Components

XM1000: Processor and Memory

Item	Specification	Description					
Processor							
Processor Model	TI MSP430F2618	Texas Instruments MSP430 family 16-Bit RISC Architecture 62.5-ns Instruction Cycle Time					
Memory	116KB 8KB 1MB	Program flash Data RAM External Flash (ST® M25P80)					
ADC	12bit resolution	8 channels					
Interfaces	UART, SPI, I2C USB	Serial Interfaces External System Interface (FTI® FT232BM)					

XM1000: Sensors

Sensors		
Light 1	Hamamatsu® S1087	Visible Range (560 nm peak sensitivity wavelength)
Light 2	Hamamatsu® S1087-01	Visible & Infrared Range (960 nm peak sensitivity wavelength)
Temperature & Humidity	Sensirion® SHT11	Temperature Range: -40 ~ 123.8 °C Temperature Resolution: : ± 0.01(typical) Temperature Accuracy: ± 0.4 °C (typical) Humidity Range: 0 ~ 100% RH Humidity Resolution: 0.05 (typical) Humidity Accuracy: ± 3 %RH (typical)

Block Diagram (from the datasheet)

Figure 3: Functional Block Diagram of the Telos Module, its components, and buses

Schematic (from the datasheet)

XM1000: Sensors

Relative Humid	ity					Temperature					
Parameter	Condition	min	typ	max	Units	Parameter	Condition	min	typ	max	Units
Resolution 1		0.4	0.05	0.05	%RH	Decelution 1		0.04	0.01	0.01	°C
Resolution		8	12	12	bit	Resolution 1		12	14	14	bit
Accuracy 2	typical		±4.5		%RH	Accuracy 2	typical		±0.5		°C
SHT10	maximal	Se	e Figure	2		SHT10	maximal	see Figure 3			
Accuracy 2	typical		±3.0		%RH	Accuracy ²	typical		±0.4		°C
SHT11	maximal	se	e Figure	2		SHT11	maximal	see Figure 3			
Accuracy 2	typical		±2.0		%RH	Accuracy 2	typical		±0.3		°C
SHT15	maximal	se	e Figure	2		SHT15	maximal	see Figure 3		3	
Repeatability			±0.1		%RH	Repeatability			±0.1		°C
Hysteresis			±1		%RH	Operating Penge		-40		123.8	°C
Non-linearity	linearized		<<1		%RH	Operating Range		-40		254.9	°F
Response time 3	τ (63%)		8		S	Response Time 6	τ (63%)	5		30	S
Operating Range		0		100	%RH	Long term drift			< 0.04		°C/yr
Long term drift 4	normal		< 0.5		%RH/yr						

Electrical and General Items

Parameter	Condition	min	typ	max	Units	
Source Voltage		2.4	3.3	5.5	V	
Power Consumption ⁵	sleep		2	5	μW	
	measuring		3		mW	
	average		90		μW	
Communication	digital 2-wire interface, see Communication					
Storage	10 - 50°C (0 - 125°C peak), 20 - 60%RH					

Temperature Sensor – SHT11

Transfer function: (given in the Data sheet)

Table 8: Temperature conversion coefficients¹⁵.

 SO_T = reading (14-bit) T = temperature (-39.6°C to 124.23°C)

Light Sensor – S1087

(see ./platform/xm1000/apps/sensors/sensorReading.c under contiki folder)

Short circuit current linearity

Relationship between light (L, in unit lx) and current (I in unit A):

$$L = 0.625 \times 10^6 \times I \times 1000$$

Circuits:

Based on Ohm's law:

$$V = I \times R$$

where $R = 100k$
and V is sent into 12-bit ADC.

Relationship between ADC value and V is: $ADC = \frac{V}{V_{ref}} \cdot 2^{12}$

where $V_{ref} = 1.5$ (given in the data sheet)

So, to determine the light level, we do:

float V_sensor = 1.5 * light_sensor.value(LIGHT_SENSOR_PHOTOSYNTHETIC)/4096;
float I = V_sensor/100000; // <- Ohm's law
float light_lx = 0.625*1e6*I*1000; // <- based on data sheet</pre>
25

XM1000: Communication Unit

Item	Specification		Description			
Radio						
RF Chip	((() 4) ()		IEEE 802.15.4 2.4GHz Wireless Module			
Frequency Band	2.4GHz ~ 2.485GHz		IEEE 802.15.4 compliant			
Sensitivity	-95dBm typ		Receive Sensitivity			
Transfer Rate	250Kbps		IEEE 802.15.4 compliant			
RF Power	-25dBm ~ 0dBm		Software Configurable			
Range	~120m(outdoor), 20~30m(indoor)		Longer ranges possible with optional SMA antenna attached			
Current Draw	RX: 18.8mA TX: 17.4r Sleep mode: 1uA	nA	Lower RF Power Modes reduce consumption			
RF Power Supply	2.1V ~ 3.6V		CC2420 Input Power			
Antenna	Dipole Antenna / PCB Antenna		Additional SMA connector available for extra antenna			
	Antenna	\				

Power consumption

XM1000: Power Supply

- XM1000 uses 2 AA batteries to supply 3V
- Current drawn simultaneously from both batteries
- Primary AA battery capacity
 - Zinc-carbon (dry cell): 400-900mAh
 - Zinc-chloride (heavy duty): 1000-1500mAh
 - Alkaline: 1700-3000mAh
- Rechargeable AA battery capacity
 - Nickel-cadmium (NiCd): 500-1100mAh
 - Nickel-metal hydride (NiMH): 1300–2700mAh

Mote Lifetime

– Power Profile:

	MIN	NOM	MAX	UNIT	
Supply voltage	2.1		3.6	V	
Supply voltage during flash memory programming	2.7		3.6	V	
Operating free air temperature	-40		85	°C	
Current Consumption: MCU on, Radio RX		21.8	23	mA	
Current Consumption: MCU on, Radio TX		19.5	21	mA	
Current Consumption: MCU on, Radio off		1800	2400	μА <	
Current Consumption: MCU idle, Radio off		54.5	1200	μΑ	7
Current Consumption: MCU standby		5.1	21.0	μA	

- For "MCU on, Radio off" mode:

- Mote draws 1.8mA of current constantly
- Thus average current drawn per hour = 1.8mA
- Assume that the battery capacity is 1500mAh
- Therefore the lifetime = 1500mAh/1.8mA = 833.3hrs or 34 days (rough estimation)

Power consumption map

 Battery capacity 1500mAh means the battery can continuously supply 1500mA for an hour

Power consumption map

 Additional activities on the mote means more current is drawn leading to shorter lifetime

Power consumption (measured)

Based on the work: Eduardo Casilari, Jose M.
 Cano-García and Gonzalo Campos-Garrido,
 "Based on Modeling of Current Consumption in 802.15.4/ZigBee Sensor Motes," Sensors 2010.

Table 1. Summary of drained current for different 802.15.4/ZigBee operations in the CC2480 mote.

Operation	State	Mean Required Current (mA)	Duration (ms)	
Inactivity	Sleep mode	0.00075 mA	Variable	
	Power-up of the microcontroller	2 mA	1,100 ms	
Start-up	Waiting period (microcontroller and	15.5 mA	Variable	
	ZigBee processor are active)			
Association	Scanning in 1 channel	26.6 mA	2,000	
to the Coordinator	Scanning in 16 channels	33.8 mA	up to 27,500	
	Transmission of a <i>n</i> - byte packet	30.5 mA	$0.99 + (8 \times n)/250$	
Transmission of a packet	Listening of the channel: CSMA	32.5 mA	2.9 ms	
of <i>n</i> bytes with sensed	wait, CCA, Reception of ACK	32.3 HE1	2.5 1115	
data	Activation/deactivation of the			
	ZigBee processor (radio transceiver	13 mA	13 ms	
	is off)			
Loss of connection	Scanning in 1 channel	9.3 mA	Variable	
(orphan scan followed				
by active scan without answer)	Scanning in 16 channels	27.6 mA	Variable	

Exercise

A city council plans to improve its traffic flow at a busy junction. A smart traffic light is proposed.

As an engineer, you are asked to lead the project to build the smart traffic light. What types of sensors will you consider to measure the traffic flow?

Solution

There are many options:

- Video Camera
- Pneumatic Road tube
- Piezoelectric Sensor
- Inductive Loop
- Magnetic Sensor
- Acoustic detector
- Passive Infrared
- Others (with appropriate argument)

IoT Networking

We focus on IEEE 802.15.4

IEEE 802.15.4 Standard

- IEEE 802.15.4 Standard specifies communication technologies for low-rate wireless personal area networks (LR-WPANs).
 - Including PHY & Medium Access Control (MAC)
- Three possible frequency bands (unlicensed):
 - 868.0-868.6 MHz, 902-928 MHz, <u>2.4-2.485 GHz</u>
- Maximum data rate: 250 kb/s
 - Different modulation schemes are used in different frequency bands
- References:
 - IEEE Std. 802.15.4[™], 2015
 - Marco Naeve, Eaton Corp., IEEE 802.15.4 MAC Overview, 2004

IEEE 802.15.4 at 2.4GHz

IEEE 802.15.4 Frequency Band at 2.4GHz

IEEE 802.15.4 MAC: Configuration

– Network topologies:

– Star:

– Device classes:

- Full Function Device (FFD): can act as a coordinator for a PAN (•), communicate with any other device
- Reduced Function Device (RFD): only communicate with coordinator
- Mesh (or Cluster Tree Network)
 - The first PAN coordinator instructs a device to become the PAN coordinator of a new cluster adjacent to the first one. Other device gradually connect and form a mesh.

38

IEEE 802.15.4 MAC: Mode

Beacon-mode

- Make use of coordinator to coordinate transmission
- Coordinator transmits a beacon to synchronize data transmission
- All other nodes scan for the beacon and then use CSMA-CA to access the superframe on the channel
- Transmission may be contention free using guaranteed time slots (GTS) assigned by coordinator

Non-beacon mode

- For point-to-point network
- Nodes use unslotted CSMA-CA to access the channel
- Less configuration, but receivers need to listen to the channel continuously

IEEE 802.15.4 MAC: Superframe

– Superframe (16 slots):

IEEE 802.15.4 MAC: Superframe

Superframe Active/Inactive periods:

All nodes can sleep during the inactive period

IEEE 802.15.4 MAC: Data Transfer

- Nodes use CSMA-CA to access the channel and transmit their data
 - Random delay is imposed to access an idle channel
 - In beacon-mode, all nodes are synchronized in time
- A successful transmission may be acknowledged by the receivers
 - Acknowledgement frames are sent without CSMA-CA (that is, no random delay)
 - Timeout retransmission is used for acknowledged transmission
 - Transmission is always considered successful for unacknowledged transmission

IEEE 802.15.4 MAC: Data Transfer to a Coordinator

IEEE 802.15.4 MAC: Data Transfer from a Coordinator

CSMA-CA Algorithm

Figure 6-5—CSMA-CA algorithm

IEEE 802.15.4 MAC: Unslotted CSMA/CA Channel Access

IEEE 802.15.4 MAC: Unslotted CSMA/CA Channel Access

IEEE 802.15.4 MAC: Guaranteed Time Slot (GTS)

- GTS offers contention-free access within the superframe
- PAN coordinator is responsible for GTS allocation
 - up to seven GTSs at the same time
- GTS allocation is based on
 - GTS requests
 - The current available capacity in the superframe
- FFDs requiring fixed rates of transmissions can request for GTS
 - Need to track beacon to continue using GTS

Network Solution

Software implementation

Hardware implementation

ZigBee, 6LoWPAN, etc (Making use of IEEE 802.15.4 features to build a networking solution)

IEEE 802.15.4 (Solution for point-to-point communications)

Check that you know...

- Understand the concept of a transfer function and apply it
- Derive transfer function based on some experimental information or data sheet specification
- Describe briefly sensor technologies
- Describe briefly the physical layer setup of IEEE 802.15.4
- Explain the network setup and MAC operation of IEEE 802.15.4
- Understand the differences between PAN and LPWAN, and be aware of some popular LPWAN technologies
- Compute the power consumption of a radio activity, and estimate the lifetime of a mote

Questions?