Implementación de una biblioteca para resolución de juegos con información perfecta e imperfecta

Pedro Luis Soto Santos

Universidad de Sevilla pepoluis712@gmail.com

Presentación TFG 22 de Junio de 2023

Índice de la Presentación

- 1 Introducción
- 2 Marco Teórico Juegos de Información Perfecta Juegos de Información Imperfecta
- 3 Software Relacionado
- 4 Biblioteca pyplAI
- 6 Casos de Estudio

Minimax y MCTS SO-ISMCTS

MO-ISMCTS

Algoritmo Genético

- 6 Experimentación y Pruebas
- Resultados
- 8 Conclusiones y Trabajo Futuro

Introducción

Teoría de Juegos

- Juegos de Información Perfecta
- Juegos de Información Imperfecta
 - Estado
 - Movimiento

Introducción

Objetivos

- Biblioteca pública para Python
- Manual de uso
- Desarrollo de juegos de mesa
- Análisis estadístico del rendimiento

Minimax

Minimax

- Heurística
- Poda Alfa-Beta

MCTS

MCTS

$$UCT(s) = rac{r(s)}{n(s)} + K\sqrt{rac{2 \ln n(s_0)}{n(s)}}$$

- Conjunto de Información
- Movimientos Parcialmente Observables

PIMC

SO-ISMCTS

SO-ISMCTS+POM

MO-ISMCTS

Software Relacionado

Se buscaba:

- Biblioteca genérica
- Bien documentada

Se encontró:

- Bibliotecas poco documentadas (mcts y mctspy)
- Implementaciones aisladas

Biblioteca *pyplAl*

- pyplAl
- Única
- Python
- Eficiencia y simplicidad

Biblioteca *pyplAl*

Manual de uso

Biblioteca pyplAI

Publicada en pypi y GitHub

Minimax y MCTS

- Tic-Tac-Toe
- Ultimate Tic-Tac-Toe
- Damas

Casos de Estudio

SO-ISMCTS

- Blackjack
- Escoba
- Stratego

Casos de Estudio

MO-ISMCTS

- Phantom (4, 4, 4)
- Holjjak

Algoritmo Genético Configuración Inicial Stratego

1	2	2	2	2	2	3	3	3	3
4	4	5	5	6	6	6	7	7	7
8	8	9	10	В	В	В	В	В	F

 $[\ 1,\ 2,\ 2,\ 2,\ 2,\ 2,\ 3,\ 3,\ 3,\ 4,\ 4,\ 5,\ 5,\ 6,\ 6,\ 6,\ 7,\ 7,\ 7,\ 8,\ 8,\ 9,\ 10,\ 12,\ 12,\ 12,\ 12,\ 11\]$

Algoritmo Genético Configuración Inicial Stratego

- Evaluación por simulaciones
- Selección por ruleta
- Mutación por intercambio

Algoritmo Genético Configuración Inicial Stratego

Cruce basado en orden con tabla de frecuencia

Experimentación y Pruebas

- Minimax vs MCTS
- Tiempo medio computación minimax
- SO-ISMCTS y MO-ISMCTS vs Agente Aleatorio
- SO-ISMCTS vs Croupier (Blackjack)
- MO-ISMCTS vs SO-ISMCTS

Experimentación y Pruebas

Mapa de calor configuraciones iniciales AG

• SO-ISMCTS+AG vs SO-ISMCTS+Configuraciones Aleatorias

Importancia de la función heurística en minimax

Buen rendimiento del SO-ISMCTS

• Calidad de las configuraciones iniciales del algoritmo genético

Ligera superioridad de MO-ISMCTS sobre SO-ISMCTS

Conclusiones y Trabajo Futuro

- Biblioteca genérica, bien documentada y accesible
- Completa batería de juegos
- Extenso análisis de rendimiento
- Ampliar variedad de algoritmos
- Dar visibilidad a la biblioteca
- Adaptar la biblioteca a la resolución de otros problemas de la Teoría de Juegos o incluso robótica