ABSTRACT

Stock price prediction is one among the complex machine learning problems. It depends on a large number of factors which contribute to changes in the supply and demand. This project presents a time series approach using Linear Regression, for predicting the price of Apple's stock, and evaluation of the approach for the same. Stock prices are represented as time series data and trading indications which let the user know about when to perform the trading and when to not. We will be using the popular scikit-learn framework to build our model and evaluate it.

TABLE OF CONTENTS

Chapter.	Title	Page No.
No		
	Abstract	i
	Table of Contents	ii
	List of Figures	iv
	Abbreviation	v
1.	INTRODUCTION	1-3
	1.1 Introduction	1
	1.2 Existing System	1
	1.3 Disadvantages	2
	1.4 Proposed System	2
	1.5 Advantages	2
	1.6 Problem Definition	3
2.	REQUIREMENT ANALYSIS	4-5
	2.1 System Requirement	4
	2.2 Software Requirement	4
	2.3 Functional Requirement	4
	2.4 Technologies Used	5
	2.5 Programming Language Used	5
3	DESIGN ANALYSIS	6-9
	3.1 Data Flow Diagram:	6
	3.2 System Architecture	7
	3.3 Class Diagram	8
	3.4 Component Diagram	9
4	ALGORITHM & MODULES	10-33
	4.1 Algorithm	10
	4.1.1 Linear regression	10

	4.1.2 Regression vs. classification	10
	4.2 Modules	15
	4.2.1 Numpy	15
	4.2.2 Pandas	16
	4.2.3 Seaborn	17
	4.2.4 Matplotlib	24
	4.2.5 Scikit-learn	30
5	IMPLEMENTATION	34-35
	5.1 Implementation	34
	5.2 Source Code	34
6	TESTING & VALIDATION	36-40
	6.1 Testing Methodologies	36
	6.2 Unit Testing	36
	6.3 Integration Testing	37
	6.4 User Acceptance Testing	38
	6.5 Output Testing	38
	6.6 Validation Checking	38
	6.7 Using Live Test Data	39
	6.8 Using Artificial Test Data	39
	6.9 Testing Strategy	40
7	SCREENSHOTS	41-42
	7.1 Screenshots	41
	7.1.1 Stock Data	41
	7.1.2 Graph Representation of Stock	42
8	CONCLUSION	43-44
	8.1 Conclusion	43
	8.2 Limitation	43
	8.3 Future Scope	44
9	REFERENCES	45
1	1	

LIST OF FIGURES

Sl No	Title	Page No.
3.1	Data Flow Diagram	6
3.2	System Architecture	7
3.3	Class Diagram	8
3.4	Component Diagram	9
4.1	Cricket Chirps per Minute	11
4.2	Cricket Chirps Per Minute Temperature in Celsius	12
4.3	Time point	20
4.4	Day Total Bill	21
4.5	level and axes-level functions	22
4.6	Time rate	23
7.1	Stock Data	41
7.2	Graph Representation of Stock	42

ABBREVIATION

GUI	Graphical User Interface
PY	Python
OPP	Object Oriented Programming
DRY	Don't Repeat Yourself
PIP	Package Installer for Python
MRO	Method Resolution Order
PEP	Python Enhancement Proposals
BDFL	Benevolent Dictator For Life
REPL	Read-Eval-Print Loop