

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) دانشکده مهندسی کامپیوتر و فناوری اطلاعات

گزارش فاز نهایی پروژه

درس طراحی سیستم های دیجیتال برنامه پذیر

استاد درس دکتر صاحب الزمانی

نگارش آرش حاجی صفی - ۹۶۳۱۰۱۹

مرداد ۱۳۹۹

گزارش طراحی:

كتابخانه pds_utils:

شامل تمامی توابع و ثابتهایی است که در طول طراحی ماژول ها از آن استفاده نمودهام.

تایپ mem برای پیادهسازی ماتریسها استفاده میشود که ابعاد تعداد سطر و ستون را به صورت زیر به آن میدهیم و یک حافظه 2 بعدی با آن ابعاد با اندازه بردارهای ۷ بیتی در حافظه میسازد:

mem(<> integer range <>, integer range)

تابع getProduct دو ماتریس با شماره سطر و ستون می گیرد و حاصل ضرب سطر مورد نظر ماتریس اول را در ستون مشخص شده ماتریس دوم برمی گرداند.

تابع getMem یک mem با عناصر همگی صفر با ابعاد n×m برمی گرداند

توابع جمع، ضرب و تفریق روی ماتریسها (mem) به صورت overload شده پیاده شده اند.

تابع dotMul یک بردار به صورت signed و یک ماتریس را می گیرد و بردار را در تک تک درایههای ماتریس ضرب می کند و ماتریس حاصل را برمی گرداند (برای ضرب عدد در ماتریس).

تابع copyMat یک ماتریس را عیناً برمی گرداند.

تابع transpose حاصل ترانهاده یک ماتریس را برمی گرداند.

تابع A_{12} میسازد. X ماتریس با ابعاد ماتریس A از روی ماتریس X و X میسازد.

توابع readMat و writeMat برای خواندن ماتریس از روی فایل و نوشتن محتویات ماتریس در فایل برای test benchها پیاده شده اند.

ماژولهای 1، 2 و 3:

ماژول 1 ماتریسهای A ، B و X را به عنوان ورودی می گیرد و حاصل ماتریس F را در خروجی قرار میدهد. همچنین این ماتریس پارامترهای D و D را به صورت generic دریافت می کند.

ماژول 2 ماتریسهای A و X را به عنوان ورودی می گیرد و حاصل ماتریس DA را در خروجی قرار میدهد. همچنین این ماتریس پارامترهای n و m را به صورت generic دریافت می کند.

ماژول 3 ماتریس DA را در ورودی می گیرد و حاصل ماتریس G را در خروجی قرار می دهد. همچنین این ماتریس پارامترهای m و m را به صورت generic دریافت می کند.

ماژول 4:

این ماژول دقیقاً پیادهسازی مسیر دادهی زیر است که محاسبات یک مرحله از الگوریتم را انجام میدهد:

ماژول 5:

ماژول نهایی ما است که مسیر داده نهایی و واحد کنترل را تشکیل میدهد. مسیر داده آن به صورت زیر است:

به این صورت طراحی شده که در کلاک اول از روی ماتریس A_{12} و ماتریس A_{12} ماتریس اولیه A_{11} را میسازد. سپس با استفاده از A_{11} A_{12} A_{13} میدهد. سپس در کلاک بعدی جای A_{13} اولیه از A_{14} استفاده و با استفاده از A_{15} A_{15} A_{15} بدست می آیند به عنوان ورودی خود ماژول A_{15} (به کمک A_{15} استفاده می کند و به این ترتیب A_{15} A_{15} بدست می آید. این کار را به همین صورت در لبه بالارونده کلاک تا زمانی انجام می دهد که قدر مطلق یکی از عناصر A_{15} از عدد ثابت A_{15} بزرگتر باشد. وقتی این شرط نقض شود و قدر مطلق همگی عناصر A_{15} از عدد ثابت A_{15} کوچکتر شود، آپدیت کردن A_{15} و رودی ماژول A_{15} متوقف می شود و در نتیجه A_{15} A_{15} مورد نظر در صورت پروژه خواهد بود.

خروجیهای تست بنچ 4 مرحله اول X و G به صورت فایلهای G.output.txt و G مرحله اول X و ولدر پروژه قرار داده شدهاند. این خروجی ها با توابع گفته شده در صفحه قبل به صورت اتوماتیک روی فایل نوشته شدهاند.

مسير داده نهايي هم به صورت Final-Data-Path.pdf در فولدر پروژه قرار داده شده است.

نتایج هم در فایل Results.csv قرار داده شدهاند و هم در اینجا آنها را می آورم:

16 بيتى

Ut	ilization	Post-Synthesis Post-Implementation				
			(Graph Table		
	Resource	Utilization	Available	Utilization %		
	LUT	962	1221600	0.08		
	FF	112	2443200	0.01		
	DSP	165	2160	7.64		
	Ю	1009	1200	84.08		
	BUFG	1	128	0.78		

Design Timing Summary

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	-49.242 ns	Worst Hold Slack (WHS):	0.062 ns	Worst Pulse Width Slack (WPWS):	2.150 ns	
Total Negative Slack (TNS):	-64825.384 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	1591	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	1609	Total Number of Endpoints:	1609	Total Number of Endpoints:	209	

Fmax = 18435898.3813Hz = 18.43Mhz

پريود کلاک: 5 نانو ثانيه

8 بيتى:

Jti	ilization	Post-S	yntl	nesis	Post-Im	plementation	
					G	raph Table	
	Resource	Estimation	n	Avail	able	Utilization %	
	IO	4	148		1200	37.33	
Power				Su	mmary On-Chip		
Total On-Chip Power:		0.634 W					
Junction Temperature:			25.5 °C				
Thermal Margin:		59.5 °C (67.4 W)					
Effective ϑJA :		0.8 °C/W					
Power supplied to off-chip devices:		0 W					
Confidence level:		High					

در مورد 8 بیتی اطلاعات توان و فرکانس و تعداد LUT و DSP را ابزار ارائه نمی دهد.

قابل توجه:

علت بالا بودن بسیار زیاد توان مصرفی درگاه های بسیار زیاد ورودی و خروجی (همانطور که در آخر ص1 و ابتدای ص2 توضیح داده شد) هستند که به دلیل زیبا و خوانا تر شدن کد و عدم hard code کردن مقادیر داخلی ماتریسها، برای هر ماتریس یک درگاه قرار داده شده که در مجموع تعداد آنها خیلی زیاد می شود.