UFF – Depto. de Análise GAN 04139 – Álgebra Linear P1 – Prof. Ana Isabel – 16/06/2004 - 16h

- 1. **(1,0 ponto)** Sendo $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 3 \\ 0 & 1 & 3 \end{pmatrix}$, encontre duas matrizes elementares E_1 e E_2 tais que a matriz $B = E_2 \cdot E_1 \cdot A$ fique na forma triangular superior, isto é na forma $B = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$.
- 2. (1,0 ponto) Definimos uma "matriz-tabuleiro" como sendo uma matriz quadrada $A = [a_{ij}]$ tal que

$$a_{ij} = \begin{cases} 1 & \text{se } i+j \text{ \'e par} \\ 0 & \text{se } i+j \text{ \'e impar} \end{cases}$$

Encontre uma base para o espaço-solução de $A\mathbf{x} = \mathbf{0}$, onde:

- (a) A é a matriz-tabuleiro 3×3 .
- (b) A é a matriz-tabuleiro 4×4 .
- 3. **(1,5 pontos)** Seja $A = \begin{pmatrix} -3 & -4 \\ 1 & 2 \end{pmatrix}$.
 - (a) Encontre os autovalores de A.
 - (b) Encontre os autoespaços de A, exibindo uma base para cada um deles e suas dimensões.
 - (c) Encontre os autovalores de A^{48} .
- 4. (0,5 pontos) Encontre um vetor \mathbf{v} em \mathbb{R}^3 tal que o conjunto $\{(1,2,1),(1,1,0),\mathbf{v}\}$ seja uma base de \mathbb{R}^3 .

5. **(2,0 pontos)** Seja $S = [\{(0,1,1,2), (3,0,1,0)\}]$ e seja

$$T = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$$

- (a) Encontre equações para S.
- (b) Determine a dimensão de $S \cap T$.
- 6. **(2,0 pontos)** Dadas as bases $\alpha = \{(2,4,2), (1,3,1), (1,5,2)\}$ e $\varepsilon = \{(1,0,0), (0,1,0), (0,0,1)\}$ de \mathbb{R}^3 , use operações elementares para determinar a matriz mudança de base $[I]^{\varepsilon}_{\alpha}$ a partir de $[I]^{\alpha}_{\varepsilon}$.
- 7. **(2,0 pontos)** (Sendo 0,2 para cada item correto, 0 para cada item sem resposta e -0,2 para cada item errado)

Diga se é verdadeira(V) ou falsa(F) cada uma das afirmações abaixo:

- (a) A soma de matrizes invertíveis é sempre uma matriz invertível. ()
- (b) $\{A \in M_{2\times 2} \mid \det A = 0\}$ é subespaço de $M_{2\times 2}$. ()
- (c) $det(2 \cdot A) = 2 \cdot det(A)$. ()
- (d) O conjunto $\{(2,1),(4,3),(7,-3)\}$ é LI em \mathbb{R}^2 . ()
- (e) O produto de matrizes triangulares superiores é sempre uma matriz triangular superior. ()
- (f) Se $\{v_1, v_2, v_3\}$ é LI então também o é o conjunto $\{kv_1, kv_2, kv_3\}$ para cada $k \in \mathbb{R}^*$. ()
- (g) Toda matriz elementar é invertível. ()
- (h) O conjunto $\{(1,2,2),(1,3,2)\}$ gera \mathbb{R}^3 . ()
- (i) Se A é uma matriz $n \times n$ não invertível e B resulta da permutação de duas linhas de A, então B pode ser ou não ser invertível. ()
- (j) Se A é uma matriz $n \times n$ não invertível então $A\mathbf{x} = \mathbf{0}$ tem infinitas soluções. ()

As respostas devem ser bem justificadas e expostas com clareza. Duas horas de prova, sem consulta.