Statistical Thinking in Python (Part 2)

November-13-17 8:25 A

#Ch 1 Parameter estimation by optimization

#How often do we get no-hitters? # Seed random number generator np.random.seed (42)

Compute mean no-hitter time: tau tau = np.mean (nohitter_times)

Draw out of an exponential distribution with parameter tau: inter_nohitter_time inter_nohitter_time = np.random.exponential (tau, 100000)

Plot the PDF and label axes
_ = plt.hist (inter_nohitter_time,
_ bins = 50, normed = True, histtype = 'step')
_ = plt.xlabel('Games between no-hitters')
_ = plt.ylabel('PDF')

Show the plot plt.show()

#Do the data follow our story? # Create an ECDF from real data: x, y x, y = ecdf (nohitter_times)

Create a CDF from theoretical samples: x_theor, y_theor x_theor, y_theor = ecdf (inter_nohitter_time)

Overlay the plots plt.plot(x_theor, y_theor) plt.plot(x, y, marker=".", linestyle='none')

Margins and axis labels plt.margins(0.02) plt.xlabel('Games between no-hitters') plt.ylabel('CDF')

Show the plot plt.show()

#How is this parameter optimal?
Plot the theoretical CDFs
plt.plot(x_theor, y_theor)
plt.plot(x, y, marker='.', linestyle='none')
plt.margins(0.02)
plt.xlabel('Games between no-hitters')
plt.ylabel('CDF')

Take samples with half tau: samples_half samples_half = np.random.exponential (tau/2, 10000)

Take samples with double tau: samples_double samples_double = np.random.exponential (2*tau, 10000)

Generate CDFs from these samples x_half, y_half = ecdf (samples_half) x_double, y_double = ecdf (samples_double)

Plot these CDFs as lines
_ = plt.plot(x_half, y_half)
_ = plt.plot(x_double, y_double)

Show the plot plt.show()

#EDA of literacy/fertility data
Plot the illiteracy rate versus fertility
_ = plt.plot(illiteracy, fertility, marker='.', linestyle='none')

#EDA of literacy/fertility data
Plot the illiteracy rate versus fertility
_ = plt.plot(illiteracy, fertility, marker='.', linestyle='none')
Set the margins and label axes
plt.margins(0.02)
_ = plt.xlabel('percent illiterate')
_ = plt.ylabel('fertility')
Show the plot
plt.show()
Show the Pearson correlation coefficient

print(pearson_r(illiteracy, fertility))

plt.show()

#Linear regression # Plot the illiteracy rate versus fertility = plt.plot(illiteracy, fertility, marker='.', linestyle='none') plt.margins(0.02) _ = plt.xlabel('percent illiterate') _ = plt.ylabel('fertility') # Perform a linear regression using np.polyfit(): a, b a, b = np.polyfit (illiteracy, fertility, 1) # Print the results to the screen print('slope =', a, 'children per woman / percent illiterate') print('intercept =', b, 'children per woman') # Make theoretical line to plot x = np.array([0, 100])y = a * x + b# Add regression line to your plot $_{-}$ = plt.plot(x, y) _=plt.xlabel ('illiteracy') _ = plt.ylabel ('fertility') # Draw the plot

#How is it optimal?
Specify slopes to consider: a_vals
a_vals = np.linspace (0, 0.1, 200)

Initialize sum of square of residuals: rss
rss = np.empty_like (a_vals)

Compute sum of square of residuals for each value of a_vals
for i, a in enumerate(a_vals):
 rss[i] = np.sum((fertility - a*illiteracy - b)**2)

Plot the RSS
plt.plot(a_vals, rss, '-')
plt.xlabel('slope (children per woman / percent illiterate)')
plt.ylabel('sum of square of residuals')

plt.show()

#Linear regression on appropriate Anscombe data
Perform linear regression: a, b
a, b = np.polyfit (x, y, 1)

Print the slope and intercept
print(a, b)

Generate theoretical x and y data: x_theor, y_theor
x_theor = np.array([3, 15])
y_theor = a * x_theor + b

Plot the Anscombe data and theoretical line

11 10 9 8 7 6 5

```
x_theor = np.array([3, 15])
y_theor = a * x_theor + b

# Plot the Anscombe data and theoretical line
_ = plt.plot (x, y, marker = ".", linestyle = 'none')
_ = plt.plot (x_theor, y_theor, '-')

# Label the axes
plt.xlabel('x')
plt.ylabel('y')

# Show the plot
plt.show()
```

#Linear regression on all Anscombe data
Iterate through x,y pairs
for x, y in zip(anscombe_x, anscombe_y):
 # Compute the slope and intercept: a, b
 a, b = np.polyfit (x, y, 1)

Print the result
print('slope:', a, 'intercept:', b)

