

EE16A Imaging 3

Announcements

- Buffer Week Schedule on Piazza
 - Can make up any Imaging Lab (1, 2, or 3)
- Midterm 10/1 study hard!
- This lab is conceptually very challenging
 - This presentation will help a lot :)
 - Also, there's a homework problem that is quite similar

Last week: Single-Pixel Scanning

- Setup a masking matrix where each row is a mask
 - Measured each pixel individually once

Last Week: SPS is Matrix-Vector Multiplication

Masking Matrix H

Unknown, vectorized image, \vec{l}

Recorded Sensor readings, \vec{S}

Last week: Single-Pixel Scanning

- Setup a masking matrix where each row is a mask
 - Measured each pixel individually once
- How can we reconstruct our scanned image?
- What are the requirements of our masking matrix H?

Some questions from last week

- Are all invertible matrices equally good as scanning matrices?
- What happens if we mess up a single scan?

Today: Multi-Pixel Scanning

- Can we measure multiple pixels at a time?
 - Measurements are now linear combinations of pixels
- How can we reconstruct our scanned image? Why?
 - But there are still other things to be concerned about

Why do we care?

- We want to improve the quality of our images
- Fountain codes homework
 - The idea was good enough to get
 Qualcomm to buy the inventors' company
- Redundancy is always good
 - Averaging measurements is better than just keeping bad values

How do we do it?

- We need to change our masks to improve our SNR (signal to noise ratio)
 - Take smarter measurements
 - Measure linear combinations of pixels instead of a single pixel
 - Redundancy is key to getting good results
- Problems?
 - Our measurements are noisy
 - What is noise?
 - Noise can be amplified through inverting a matrix
 - How?

What is noise?

What is Noise?

-0.05

0.1

-0.2

9.8

What is noise?

1	0	0	0	0	0	0	0	•••
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	0	0	1	0	0	0	
0	0	0	0	0	1	0	0	•••
0	0	0	0	0	0	1	0	

Masking Matrix **H**

Unknown, vectorized image, \vec{l}

Random noise vector, \vec{w}

Recorded Sensor readings, \vec{S}

The Missing Link

 H Is an NxN matrix that we know is linearly independent (invertible).
 Therefore:

- H has N linearly independent eigenvectors
- \circ N lin. ind. vectors can span \mathbb{R}^N
 - They span the noise vector
- The inverse has eigenvalues $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots \frac{1}{\lambda_n}$

The Missing Link

Thus the noise term from before can be written as:

$$\vec{\omega} = \alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \cdots + \alpha_n \vec{v_n}$$

And:

$$H^{-1}\overrightarrow{\omega} = H^{-1}(\alpha_1\overrightarrow{v_1} + \alpha_2\overrightarrow{v_2} + \cdots \alpha_n\overrightarrow{v_n})$$

Finally

$$= \frac{1}{\lambda_1}\alpha_1\overrightarrow{v_1} + \frac{1}{\lambda_2}\alpha_2\overrightarrow{v_2} + \cdots + \frac{1}{\lambda_n}\alpha_n\overrightarrow{v_n}$$

Linking it all together

$$\vec{\iota}_{est} = H^{-1} \vec{s} + \boxed{H^{-1} \vec{\omega}}$$

$$\boxed{H^{-1} \vec{\omega}} = \frac{1}{\lambda_1} \alpha_1 \overrightarrow{v_1} + \frac{1}{\lambda_2} \alpha_2 \overrightarrow{v_2} + \cdots \frac{1}{\lambda_n} \alpha_n \overrightarrow{v_n}$$

- The noise is directly related to the eigenvalues.
- We don't know what the alphas are, but we can reduce noise by choosing good eigenvalues
 - What are good eigenvalues?
- What properties would a good H matrix have?

Possible Scanning Matrix: Random

- Usually invertible
- O But what are its eigenvalues?

A more systematic scanning matrix:

- Hadamard matrix!
- Constructed to have large eigenvalues
 - Just what we need!

Notes

- READ CAREFULLY Very long lab with lots of reading; heavily tests understanding of eigen stuff.
- Post check off link is optional but very cool
- Can adjust projector settings
 - Focus with dial on side
 - Brightness, contrast, sharpness
- If you aren't checked off for Imaging 2, do so today