multiple predictors

Dr. Mine Çetinkaya-Rundel Duke University

weights of books

	weight (g)	volume (cm	cover
	800	885	hb
2	950	1016	hb
3	1050	1125	hb
4	350	239	hb
5	750	701	hb
6	600	641	hb
7	1075	1228	hb
8	250	412	pb
9	700	953	pb
10	650	929	pb
	975	1492	pb
12	350	419	pb
13	950	1010	pb
14	425	595	pb
15	725	1034	pb

Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?

Paperbacks generally weigh less than hardcover books.


```
R
# load data
> library(DAAG)
> data(allbacks)
# fit model
> book mlr = lm(weight ~ volume + cover, data = allbacks)
> summary(book mlr)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **
volume 0.71795 0.06153 11.669 6.6e-08 ***
cover:pb -184.04727 40.49420 -4.545 0.000672 ***
Residual standard error: 78.2 on 12 degrees of freedom
Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154
F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

 $weight = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$

For hardcover books: plug in 0 for cover:

weight =
$$197.96 + 0.72 \text{ Volume} - 184.05 \times 0$$

= $197.96 + 0.72 \text{ Volume}$

For paperback books: plug in for cover:

interpreting the regression parameters: slope

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

 $weight = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$

Slope of **volume**: All else held constant, for each 1 cm³ increase in volume the model predicts the books to be heavier on average by 0.72 grams.

Slope of **cover**: All else held constant, the model predicts that paperback books weigh 184.05 grams lower than hardcover books, on average.

interpreting the regression parameters: intercept

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

 $weight = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$

Intercept: Hardcover books with no volume are expected on average to weigh 198 grams.

Meaningless in context, serves to adjust the height of the line.

prediction

Predict the weight of a paperback book that is 600 cm³ in volume.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$weight = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$$

$$197.96 + 0.72 \times 6000 - 184.05 \times 1 = 445.91 grams$$

interaction variables

- Model assumes hardcover and paperback books have the same slope for the relationship between their volume and weight.
- If this isn't reasonable, then we would include an interaction variable in the model (beyond the scope of this course).

