Exercício 05: Equação do calor

Ana Moreira 54514

Resolução da equação do calor a partir da equação da temperatura de uma barra, através de uma simplificação para uma equação matricial, resolvida pelo método de elementos finitos lineares. Comparação da solução analítica à resolução numérica.

I. EXERCÍCIO 1: RESOLUÇÃO DA EQUAÇÃO DO CALOR USANDO ELEMENTOS FINITOS LINEARES

Para implementar o método de elementos finitos, utilizou-se uma barra metálica de dimensão $L=10~\mathrm{em}$ contacto com um reservatório de calor a temperatura $T_R = 2T_A$, cuja equação para a variação da temperatura é dada por:

$$\frac{\partial u(x)}{\partial t} = \alpha \left(\frac{\partial^2 u(x)}{\partial x^2} \right) - \mu u$$
 (1)

onde $u(x) = T(x) - T_A$, sendo T_A a temperatura ambiente e T(x) a temperatura da barra a uma distância x do reservatório; α o coeficiente de difusão térmico e μ a taxa de perda para a atmosfera. No estado estacionário, temos que $\frac{\partial u(x)}{\partial t} = 0$ logo:

$$\frac{\partial^2 u(x)}{\partial x^2} = k\mu \ (2)$$

 $\begin{array}{l} \text{com } k=\frac{\mu}{\alpha}=1 \text{ para este caso.} \\ \text{Para definir as condições de fronteira do sistema,} \end{array}$ considerou-se x=0 o ponto em que a barra está em contacto com o reservatório (logo com $T = T_R$) e x=L o ponto longe o suficiente do reservatório para que se possa considerar que $T=T_A$. No regime estacionário considerado, podemos definir as condições de fronteira como: $u(0) = T(0) - T_A = T_R - T_A = 2T_A - T_A = T_A e$ $u(L) = T(L) - T_A = T_A - T_A = 0.$

Considerando u(x) como uma expansão numa base de funções lineares $v_i(x)$:

$$u(t) \approx \sum_{i=0}^{N} c_i v_i(x)$$
 (3)

em que a função $v_i(x)$ é uma função triangular, definida como:

$$v_i(x) = \begin{cases} \frac{(x - x_{i-1})}{\Delta x}, & x \in [x_{i-1}, x_i] \\ \frac{(x_{i+1} - x)}{\Delta x}, & x \in [x_i, x_{i+1}] \\ 0, & \text{caso contrário} \end{cases}$$

em que $\Delta x = x_{i+1} - x_i$. Como a função u(x) foi aproximada por um somatório, esta é definida por um conjunto

discreto de valores. Assim, utilizam-se funções peso w_i que são iguais às funções de base pelo método de Garlenik: $w_i = v_i$.

$$\sum_{i,j=0}^{N} c_i \int_0^L \frac{\partial^2 v_i(x)}{\partial x^2} v_j dx = \sum_{i,j=0}^{N} c_i \sum_{i,j=0}^{N} v_i v_j dx$$
 (4)

Resolvendo a parte esquerda da equação por integração

$$\int_{0}^{L} \frac{\partial^{2} v_{i}(x)}{\partial x^{2}} v_{j} dx = \left[v'_{i} v_{j}\right]_{0}^{L} - \int_{0}^{L} v'_{i} v'_{j} dx = -\int_{0}^{L} v'_{i} v'_{j} dx$$
(5)

sendo $\left[v_i'v_j\right]_0^L=0$ porque a função base é zero nas fronteiras, ou seja, em x=0 e x=L. Substituindo a Equação 5 na Equação 4 obtém-se:

$$\sum_{i,j=0}^{N} c_i \left(\int_0^L v_i' v_j' dx + \int_0^L v_i v_j dx \right) = 0$$
 (6)

obtendo-se assim um sistema de N equações incógnitas.

Se considerarmos o problema na forma matricial, podemos calcular os coeficientes c_i . De todos os elementos da matriz A, apenas os elementos A_{ii} e $A_{ii\pm 1}$ serão diferentes de zero. Para b, b_1 é o único elemento não nulo. Isto explica-se pelo facto das expressões que contêm $v_i(x)v_j(x)$ ou $v_i'(x)v_i'(x)$ serem iguais a zero para j>i+1e j < i - 1.

Logo, podemos definir os elementos de ambas as matrizes como:

$$A_{ij} = \begin{cases} -\frac{6 + 2(\Delta x)^2}{3\Delta x}, & j = i\\ \frac{6 - (\Delta x)^2}{6\Delta x}, & j = i \pm 1\\ 0, & \text{caso contrário} \end{cases}$$

$$b_j = \begin{cases} \frac{6 - (\Delta x)^2}{6\Delta x}, & j = 1\\ 0, & \text{caso contrário} \end{cases}$$

De modo a determinar se a aplicação do método foi a correta, temos de comparar com o resultado analítico, ou seja, a solução da Equação 1. Esta é dada por:

$$u(x) = \frac{e^{-x}(e^{20} - e^{2x})}{e^{20} - 1}$$
 (7)

uma vez que a solução geral seria $u(x) = c_1 e^x + c_2 e^{-x}$, sendo c_1 e c_2 determinadas através das condições de fronteira (e porque k=1).

Para calcular a matriz dada, utilizamos o módulo SparceLib++. Comparando a solução analítica às soluções obtidas numericamente para diferentes valores de Δx , dados por: 0.1, 0.5 e 1, sendo que cada um destes valores implica uma discretização diferente, obteve-se o gráfico da Figura 1.

Figura 1. Gráfico da temperatura em função da distância ao reservatório para valores de $\Delta x = \{0.1, 0.5, 1\}$, juntamente com a solução analítica. 10000 iterações.

Figura 2. Amplificação do gráfico da temperatura em função da distância ao reservatório para valores de $\Delta x = \{0.1, 0.5, 1\}$, juntamente com a solução analítica. 10000 iterações.

Desta figura observa-se que todos os valores de Δx apresentam curvas muito próximas da curva analítica, levando-nos a concluir que o método dos elementos finitos é uma boa aproximação da solução analítica da equação do calor.

De modo a melhor comparar a evolução da curva para cada valor de Δx com a solução analítica, aplicou-se uma amplificação ao gráfico da Figura 1, obtendo-se assim o gráfico da Figura 2. Desta figura, podemos concluir que o valor de Δx que produz um gráfico mais próximo da solução analítica é o de $\Delta x=0.1$, sendo que para $\Delta x=0.5$ e $\Delta x=1$, os gráficos apresentam desvios em relação à solução analítica. Isto leva-nos a concluir que quanto menor a discretização escolhida, melhores os resultados obtidos. Isto deve-se ao facto de que quanto menor for o Δx escolhido, maior o número de pontos utilizados, logo maior a precisão do método.