Fundamentos de Controle

Introdução

Definição de Sistema de Controle

Um sistema de controle consiste em subsistemas e processos (ou plantas) construídos com o objetivo de obter uma saída desejada com um desempenho desejado, dada uma entrada especificada.

Vantagens dos Sistemas de Controle

- Amplificação de potência
- Controle remoto
- Conveniência da forma da entrada
- Compensação de perturbações

Sistemas em Malha Aberta Sistemas em Malha Fechada (Realimentação)

Objetivos de Análise e de Projeto

- Resposta Transitória
- Resposta em Regime Permanente
- Estabilidade

O Processo de Projeto

- Passo 1: Transformar Requisitos em um Sistema Físico
- Passo 2: Desenhar um Diagrama de Blocos Funcional
- Passo 3: Criar um Esquema
- Passo 4: Desenvolver um Modelo Matemático (Diagrama de Blocos)
- Passo 5: Reduzir o Diagrama de Blocos
- Passo 6: Analisar e Projetar

Passo

1: Transformar Requisitos em um

Sistema Físico

Passo 2: Desenhar um Diagrama de Blocos Funcional

Passo 3: Criar um Esquema

Passo 4: Desenvolver um Modelo Matemático (Diagrama de Blocos)

Lei de Kirchhoff das tensões	A soma das tensões ao longo de um caminho fechado é igual a zero.
Lei de Kirchhoff das correntes	A soma das correntes elétricas que fluem a partir de um nó é igual a zero.
Leis de Newton	A soma das forças atuantes em um corpo é igual a zero; ³ a soma dos momentos atuantes em um corpo é igual a zero.

Passo 5: Reduzir o Diagrama de Blocos

Passo 6: Analisar e Projetar

Entrada	Função	Descrição	Esboço	Utilização
Impulso	$\delta(t)$	$\delta(t) = \infty$ para $0 - < t < 0 +$ $= 0$ caso contrário $\int_{0-}^{0+} \delta(t) dt = 1$	$\delta(t)$ $\delta(t)$	Resposta transitória Modelagem
Degrau	u(t)	u(t) = 1 para t > 0 $= 0 para t < 0$	f(t) t	Resposta transitória Erro em regime permanente
Rampa	tu(t)	$tu(t) = t$ para $t \ge 0$ = 0 caso contrário	f(t)	Erro em regime permanente

Passo 6: Analisar e Projetar

Parábola	$\frac{1}{2}t^2u(t)$	$\frac{1}{2}t^2u(t) = \frac{1}{2}t^2 \text{ para } t \ge 0$ $= 0 \text{ caso contrário}$	f(t)	Erro em regime permanente
Senoide	sen ωt		f(t)	Resposta transitória Modelagem Erro em regime permanente