CENTRE FOR ADVANCEMENT OF STANDARDS IN EXAMINATIONS (GEMS ASIAN SCHOOLS)

COMMON REHEARSAL EXAMINATIONS – JANUARY 2015 (ALL INDIA SENIOR SCHOOL CERTIFICATE EXAMINATION) MATHEMATICS (041)

Grade: XII Max Marks: 100

No. of pages: 4 Time: 3 hours.

General Instructions:

i. All questions are compulsory.

- ii. The question paper consist of 26 questions divided into three sections A,B and C. Section A comprises of 6 questions of one mark each, section B comprises of 13 questions of 4 marks each and section C comprises of 07 questions of six marks each.
- iii. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- iv. Use of calculators is not permitted. You may ask for logarithmic tables, if required.
- v. This question paper consists of 4 printed pages.

SECTION - A

Question numbers 1 to 6 carry 1 mark each.

- 1) Let f: R \rightarrow R be defined by f(x) = $(2 x^7)^{\frac{1}{7}}$. Find a function g: R \rightarrow R such that gof = fog = I_R
- 2) Find the value(s) of $cos^{-1} \left[cos \frac{-3\pi}{5} \right]$.
- 3) If A is a square matrix of order 3 and $|A^T| = 5$, find the value of $|2 \ adjA|$.

1

- 4) Without expanding evaluate : $\begin{vmatrix} 2x-4 & 2x+5 & 2x-7 \\ 4 & -5 & 7 \\ y-3 & y-3 & y-3 \end{vmatrix}$.
- 5) If $2A = \begin{bmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{bmatrix}$, find k so that A. (adjA) = kI.

6) If \vec{a} and \vec{b} are any two unit vectors, then prove that $|\vec{a} - \vec{b}| = 2 \sin \frac{\theta}{2}$.

SECTION - B

Question numbers 7 - 19 carry 4 marks each.

7) Examine which of the following is a binary operation. i) $a * b = , a^b$, $a, b \in \mathbb{N}$ ii) $a * b = b^a$, $a, b \in \mathbb{Q}$ For binary operation check the commutative and associative property.

(OR)

Check whether the relation R in the set R of reals, defined as $R = \{(a, b): a \le b^2\}$ is an equivalence relation or not. Verify all three conditions

- 8) Solve for x : $\sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3}$.
- 9) Using properties of determinants, prove that $\begin{vmatrix} b^2 + c^2 & c^2 & b^2 \\ c^2 & c^2 + a^2 & a^2 \\ b^2 & a^2 & b^2 + a^2 \end{vmatrix} = 4a^2b^2c^2$
- 10) If $\sqrt{1-x^6} + \sqrt{1-y^6} = a(x^3 y^3)$, prove that $\frac{dy}{dx} = \frac{x^2 \sqrt{1-y^6}}{y^2 \sqrt{1-x^6}}$.
- 11) If $y \sqrt{1+x^2} = \log \left(\sqrt{1+x^2} x\right)$ show that $(1+x^2)y_2 + 3xy_1 + y = 0$.
- 12) Find the intervals in which $f(x) = \sin x \sqrt{3}\cos x$, $x \in [0, 2\pi]$ is strictly increasing or decreasing.
- 13) Evaluate $\int_0^{\pi} \frac{x \, dx}{4 \cos^2 x}$

OR

Evaluate: $\int_2^5 (x^2 + 3) dx$ as limit of a sum

14) Evaluate: $\int \frac{e^{\tan^{-1}x} \cdot (1 + x + x^2)}{1 + x^2} dx$

15) Evaluate:
$$\int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$$

OR

$$\int \frac{5x+3}{\sqrt{x^2+4x+10}} \, \mathrm{d}x$$

16) Find the general solution for the differential equation:

$$x\frac{dy}{dx} + y - x + xy \cot x = 0, x \neq 0$$

17) Solve:
$$x \frac{dy}{dx} = y(\log y - \log x + 1)$$
.

18) If $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a}.\vec{b} = \vec{a}.\vec{c} = 0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$

, prove that
$$\vec{a} = \pm 2 \left(\vec{b} \times \vec{c} \right)$$
.

OR

Form the differential equation representing the family of parabolas having center at the origin and axis as the x-axis.

19) Two dice are thrown simultaneously. Let X denote the number of ones. Find the probability distribution of X. Also find the mean and variance of X using the probability distribution table.

SECTION - C

Question numbers 20-26 carry 6 marks each:

- 20) Two schools A and B wants to award their students who won gold, silver and bronze medals in CBSE Athletic meet. The total amount awarded for 1 gold, 1 silver and 1 bronze is Rs 2200. The school A awarded Rs 4200 and school B, Rs 4900. School A won 2 gold, 1 silver and 3 bronze whereas school B won 3 gold, 2 silver and 1 bronze. Using matrices, find the award money for each prize. What is the importance of sports in education?
 - 21) Make a sketch of the region given below and find the area using integration $\{(x,y): 0 \le y \le x^2 + 3, 0 \le y \le 2x + 3, 0 \le x \le 3\}$.

- 22) Find the equation of the plane through the line of intersection of the planes x-2y+ z=1 and 2x + y+ z= 8 and parallel to the line $\frac{x-2}{1} = \frac{y+3}{2} = \frac{z-4}{1}$. Also find the distance from the point (1, 2, 3) to the plane formed.
- 23) Find the Cartesian and vector equation of the planes passing through the intersection of the planes \vec{r} . ($2\vec{i}+6\vec{j}$)+ 12=0 and \vec{r} . ($3\vec{i}-\vec{j}+4\vec{k}$)= 0, which are at unit distance from the origin.

OR

Show that the lines $\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are co planar. Also find the equation of the plane containing the lines.

- 24) A 15-year old child rides his motor cycle at 50 km/hour, the cost of petrol is Rs 5 per Km. If he rides at a speed of 70 km/hr. He has only Rs 400 to spend on petrol and wishes to travel maximum distance within one hour. Form a LPP and solve graphically. Should a child below 18-years be allowed to drive a motor cycle? Write your opinion.
- 25) Answering a question on a multiple choice test with four choices for each question, a student knows, guesses or copies the answer. Let ½ be the probability that he knows the answer and ¼ be the probability that he guesses the answer. Assume that a student who copies the answer will be correct with probability ¾. What is the probability that the student knows the answer given that he answered it correctly?
- **26)** An open box with a square base is to be made out of a given quantity of sheet of area 81m². Find the maximum volume of the box.

OR

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum when the angle between them is $\frac{\pi}{3}$.