# EXAMINING ANOMALY DETECTION AND REINFORCEMENT LEARNING TECHNIQUES

CMPT 318 TERM PROJECT FALL 2023



https://redfoxsec.com/blog/top-cybersecurity-trends-2023/

Submitted By: Rebecca Reedel (301454910), Asmita Srivastava (301436340), Mrinal Goshalia (301478325)

#### INTRODUCTION

- The Cyber Threat Landscape is evolving.
- More complicated attacks require More Sophisticated Detection Systems and Mitigations.
- Zero-day Exploits are increasingly popular and are undetectable by Signature-Based IDS.



#### PROBLEM SCOPE

One of the many ways the Cyber Attack

Space is growing, is the increasing popularity
of automated systems, such as **Supervisory Control Systems**.

Malicious Attacks on SCS can cause devastating cascading failures.

An example would be an attack on the Electrical Grid Controls of a Hospital.





#### SOLUTION

Since Supervisory Control Systems automate the processes of **critical** resources, it is imperative that malicious and anomalous behaviours be **detected VERY quickly!** 

Therefore, we need **automated systems**monitoring all processes. This is done through
Anomalous Intrusion Detection Systems using **Machine Learning** Technology.

## FEATURE ENGIRERIG



Standardize response variables, so within same range

#### **PCA**

Use Principal Component

Analysis to eliminate

redundant data

#### Interpret Results

Plot and analyze principal components and evaluate response variables

#### Extract Features

Select subset of features
determined after PCA to be
used in HMMs

### Principal Component Analysis

- Feature engineering technique to assess and model raw data.
- Helps in reducing redundancy from multi-dimensional data to essential components.
- Goal: Reduce redundancy in data by extracting 3 principal components on energy consumption data.



### Principal Component Analysis Cont.

Contribution by Voltage:

2.108480e+00\*(48.1%) + 0.5697202583\*(23.9%)

Contribution by Global Intensity:

1.733467e+01\*(48.1%) + 5.9705662244\*(23.9%)

Principal Components:



Global Active Power, Global Reactive Power and Global Intensity.

# 

WEDNESDAYS, 00:00:00 - 04:00:00

- The time window was selected after due diligence based on time series' dimensions.
- This time window yields = 36960 observations, which is (154 wednesdays) x (240 minutes) worth of data.

#### Hidden Markov Models

- HMMs are a form of probabilistic modelling, taking into account state transition and their probability of outcomes.
- The true state is 'hidden', hence needing to be estimated as different stages in the model training process.
- An HMM model involves a set of parameters which it can be modelled using, these parameters are based upon the data provided under training.
- HMMs can help predict malware if we train it under some 'normal' designated data and have it deviate from any possible security threats known as anomalies.



https://gist.github.com/fohria

#### TRAIN-TEST SPLIT

When creating a Hidden Markov Model, it is very important to split the initial data into **train** and **test** sets.

- Train set: used during creation of the HMM, and is what the model learns from.
- Test set: used on the model afterwards and is crucial for checking that the model will react well to unseen data.

We chose a 70/30 proportion split for train and test respectively.

#### Log-Likelihood

Log-likelihood in HMMs gives us a measure of the performance of the model fit and helps in understanding the state observations.

#### Bayesian Information Criterion (BIC)

BIC offers a good measure to decide the best model given its increasing complexity, avoiding overfitting by estimating the model to the data provided.



# FINDING THE MODEL

Before doing any Anomaly Detection, we had to find the most reliable and best results model

Best Model = High Log-LikeliHood and Low BIC

We calculated the difference as:

Difference = BIC - Log-Likelihood (all negative)

The best models had the smallest difference.

In the end, the best model had n\_states = 24

#### **Initial Models**

We started with 6 models from 4 to 24, in increments of 4 each time

#### **More Models**

After inspecting the Log-Like of all 6 models, we saw that n\_states = 16, 20 and 24 were the best. We decided to make 5 more models in-between those values

#### Test Data Comparison

Using the 3 best models, we did forwardbackward substitution with the test data to get the log-like. Then normalized the log-likes by dividing by dataset size. The best model for both LL was chosen for anomaly detection

# Using HMMs for Anomaly Detection

Lower log-likelihood = values don't match with the expected behaviour of data set

lower log-likelihood = more anomalous data

We found that the 3rd data set had the lowest

LL and therefore contains the most anomalies.

#### 1. Filter Datasets

We completed the same feature engineering (except. PCA analysis) on the 3 datasets

#### 2. Create Model

Using the best n\_states value we got during the last set (n\_states = 24), We created 3 HMMs for each anomalous dataset.

#### 3. Compute Log-Likelihood

Using the built-in method, we computed the log-like for each model

### Reinforcement Learning

- Reinforcement Learning is a Machine
   Learning algorithm based on state, action
   and reward.
- In this environment, given a state the goal is to take actions in order to maximize cumulative reward in the end.
- In the cybersecurity realm, RL systems can be trained for intrusion detection by identifying abnormal behaviour and responding to malware accordingly.



https://hub.packtpub.com/wp-content/uploads/2019/12/reinforcement-learning-1024x835.png

# Hyperparameter Choices

- Alpha ( $\alpha$ ) represents the model's learning rate
  - We chose <u>alpha value = 0,2</u>
- **Gamma** ( $\gamma$ ) is the 'discount factor,' determining the weight assigned to future rewards as compared to immediate rewards.
  - We chose <u>gamma value = 0.6</u>
- **Epsilon** (\*) defines the exploration process in the greedy-action selection procedure.
  - We chose <u>epsilon value = 0.2</u>



# Q-table Analysis

- Reward is almost always positive.
- Commodities and Real-Estate exhibit the widest ranges
  - They also average the highest q-values
- Forex and Stock values have moderate to high q-values
  - Are generally in the mid-range with moderate variability
- <u>Cryptocurrencies and Stocks</u> tend to average the lowest q-values
  - Cryptocurrencies vary from having both positive and negative q-values.



https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/

## Policy Results Analysis

| computePolicy(mod | del)               | \$1 B              | 34                 |                    |                    |                    |                    |
|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 48                | 49                 | 50                 | 51                 | 52                 | 53                 | 54                 | 55                 |
| "Commodities"     | "Forex"            | "Cryptocurrencies" | "Stocks"           | "Real_Estates"     | "Forex"            | "Commodities"      | "Forex"            |
| 56                | 57                 | 58                 | 59                 | 60                 | 61                 | 62                 | 63                 |
| "Forex"           | "Cryptocurrencies" | "Cryptocurrencies" | "Cryptocurrencies" | "Commodities"      | "Cryptocurrencies" | "Commodities"      | "Real_Estates"     |
| 64                | 65                 | 66                 | 67                 | 68                 | 69                 | 100                |                    |
| "Real_Estates"    | "Cryptocurrencies" | "Stocks"           | "Stocks"           | "Forex"            | "Commodities"      | "Commodities"      | "Real_Estates"     |
| 71                | 72                 | 73                 | 74                 | 75                 | 76                 | 77                 | 78                 |
| "Commodities"     | "Real_Estates"     | "Cryptocurrencies" | "Commodities"      | "Stocks"           | "Real_Estates"     | "Cryptocurrencies" | "Stocks"           |
| 1                 | 79                 | 2                  | 3                  | 4                  | 5                  | 6                  | 7                  |
| "Commodities"     | "Forex"            | "Real_Estates"     | "Cryptocurrencies" | "Real_Estates"     | "Real_Estates"     | "Forex"            | "Real_Estates"     |
| 10                | 8                  | 80                 | 11                 | 9                  | 81                 | 12                 | 82                 |
| "Commodities"     | "Real_Estates"     | "Stocks"           | "Commodities"      | "Cryptocurrencies" | "Real_Estates"     | "Real_Estates"     | "Real_Estates"     |
| 13                | 83                 | 14                 | 84                 | 15                 | 85                 | 16                 | 86                 |
| "Real_Estates"    | "Commodities"      | "Real_Estates"     | "Stocks"           | "Real_Estates"     | "Stocks"           | "Real_Estates"     | "Forex"            |
| 17                | 87                 | 18                 | 88                 | 19                 | 89                 | 20                 | 90                 |
| "Real_Estates"    | "Commodities"      | "Commodities"      | "Stocks"           | "Stocks"           | "Cryptocurrencies" | "Real_Estates"     | "Stocks"           |
| 21                | 91                 | 22                 | 92                 | 23                 | 93                 | 24                 | 94                 |
| "Commodities"     | "Stocks"           | "Real_Estates"     | "Forex"            | "Cryptocurrencies" | "Cryptocurrencies" | "Commodities"      | "Cryptocurrencies" |
| 25                | 95                 | 26                 | 96                 | 27                 | 97                 | 28                 | 98                 |
| "Real_Estates"    | "Commodities"      | "Real_Estates"     | "Forex"            | "Commodities"      | "Forex"            | "Commodities"      | "Stocks"           |
| 29                | 99                 | 30                 | 31                 | 32                 | 33                 | 34                 | 35                 |
| "Real_Estates"    | "Forex"            | "Commodities"      | "Real_Estates"     | "Forex"            | "Stocks"           | "Forex"            | "Commodities"      |
| 36                | 37                 | 38                 | 39                 | 40                 | 41                 | 42                 | 43                 |
| "Commodities"     | "Stocks"           | "Forex"            | "Real_Estates"     | "Real_Estates"     | "Cryptocurrencies" | "Real_Estates"     | "Commodities"      |
| 44                | 45                 | 46                 | 47                 |                    |                    |                    |                    |
| "Real_Estates"    | "Cryptocurrencies" | "Commodities"      | "Stocks"           |                    |                    |                    |                    |

### Policy Results Analysis

- Displays the optimal action to take at each state,
   maximizing expected cumulative reward.
- Each state has been assigned its optimal action/investment sector
- Useful when determining which sector to invest in given a specific budget
- Policy also produces a high, positive <u>reward of</u>
   12033.83 suggesting that the investment/trading
   strategy is successful and produces a significant financial gain.



https://www.freepik.com/premium-vector/stock-market-concept-with-people-scene-flat-cartoon-design-man-makes-money-exchange-with-successful-strategy-analyzes-data-increases-profit-vector-illustration-visual-story-web 30250511.htm

#### Behaviour towards Unseen Data

#### TASK:

 We trained the reinforcement model on the unseen data given the specified budget range (\$15 - \$45 million)

#### **KEY HIGHLIGHTS:**

- Real-estate is a very lucrative investment sector, being the optimal action for the most number of states.
- Cryptocurrency and Forex are less lucrative and only appear to do well in a select few states....invest with caution
- Commodities also appears to do well in a select states and are distributed across the state range

| tate | opt                                     |
|------|-----------------------------------------|
| 15   | Rea                                     |
| 16   | Rea                                     |
| 17   | Rea                                     |
| 18   | C                                       |
| 19   |                                         |
| 20   | Rea                                     |
| 21   | C                                       |
| 22   | Rea                                     |
| 23   | Crypto                                  |
| 24   | 100000000000000000000000000000000000000 |
| 25   | Rea                                     |
| 26   | Rea                                     |
| 27   | C                                       |
| 28   | C                                       |
| 29   | Rea                                     |
| 30   | C                                       |
| 31   | Rea                                     |
| 32   |                                         |
| 33   |                                         |
| 34   |                                         |
| 35   | C                                       |
| 36   | C                                       |
| 37   |                                         |
| 38   |                                         |
| 39   | Rea                                     |
| 40   | Rea                                     |
| 41   | Crypto                                  |
| 42   | Re                                      |
| 43   | C                                       |
|      |                                         |

#### CONCLUSION



- Using feature engineering and probabilistic models like **HMM**s can help understand the data better to detect unusual behaviours indicative of security threats and malware.
- Machine learning models like Reinforcement

  Learning can help increase the efficiency of

  IDS in detecting malware by learning through
  the shortcomings, maximizing reward for safe
  and secure software solutions.

https://safetyandsecurityafrica.com/what-are-intrusion-detection-systems/

# THANK YOUVERY NUCH!



CMPT 318 - Fall 2023