■ Chapitre 5 ■

Intégration sur un intervalle quelconque

Notations.

- \blacksquare \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .
- $\blacksquare a, b$ désignent deux réels tels que a < b.
- $\blacksquare I$ désigne un intervalle de \mathbb{R} .
- $\blacksquare f$ et g désignent deux fonctions continues par morceaux sur I à valeurs dans \mathbb{K} .

I. Intégration sur un segment

I.1 Intégrale des fonctions continues par morceaux

Définition 1 (Subdivision).

Une subdivision du segment [a,b] est une suite finie (x_0,\ldots,x_n) , où $n\in\mathbb{N}^*$, telle que $a=x_0< x_1<\cdots< x_n=b$. Le pas de la subdivision est le réel $\max_{i\in[1,n]}(x_i-x_{i-1})$.

Exercice 1. La subdivision est $r\acute{e}guli\grave{e}re$ si la quantité x_i-x_{i-1} est constante. Déterminer la valeur de x_i en fonction de i, a, b et n.

Définition 2 (Continuité par morceaux).

Soit $f \in \mathcal{F}([a,b],\mathbb{K})$. La fonction f est continue par morceaux sur [a,b] si

- (i). il existe une subdivision $\pi = (x_i)_{i \in [0,n]}$ de [a,b] telle que pour tout $i \in [0,n-1]$, $f_{||x_i,x_{i+1}|}$ soit continue,
- (ii). f admet des limites finies à droite et à gauche en tout point de [a, b].

 $\mathscr{C}^-([a,b],\mathbb{K})$ est l'ensemble des fonctions continues par morceaux sur l'intervalle [a,b] à valeurs réelles.

Exercice 2.

- 1. Donner des exemples de fonctions continues par morceaux.
- 2. Montrer que toute fonction continue par morceaux est bornée. Ses bornes sont-elles nécessairement atteintes?

3. Montrer que la fonction définie sur \mathbb{R}_+ par $f(x) = x \lfloor \frac{1}{x} \rfloor$ si $x \neq 0$ et f(0) = 1, n'est pas continue par morceaux sur \mathbb{R}_+ .

Théorème 1 (Structure).

L'ensemble des fonctions continues par morceaux sur [a,b] est un sous-espace vectoriel de l'ensemble des fonctions de [a,b] dans $\mathbb K$ stable par multiplication et par passage à la valeur absolue.

Théorème 2 (Admis).

Il existe une application de $\mathscr{C}^-([a,b],\mathbb{K})$ dans \mathbb{K} , notée $f\mapsto \int_{[a,b]}f$ telle que : pour toutes fonctions f et g continues par morceaux sur [a,b].

- (i). Si f est constante égale à c, alors $\int_{[a,b]} f = c(b-a)$.
- (ii). Si f et g coïncident sauf en nombre fini de points, alors $\int_{[a,b]} f = \int_{[a,b]} g$.
- (iii). Linéarité. L'application $f \mapsto \int_{[a,b]} f$ est linéaire.

- (iv). Croissance. Si f, g sont à valeurs réelles et pour tout $x \in [a, b], f(x) \leqslant g(x),$ alors $\int_{[a,b]} f \leqslant \int_{[a,b]} g.$
- (v). Inégalité triangulaire. $\left|\int_{[a,b]}f\right|\leqslant\int_{[a,b]}|f|.$
- $(vi). \ \ \mathbf{Relation} \ \ \mathbf{de} \ \ \mathbf{Chasles.} \ \mathrm{Soit} \ \ c \in]a,b[. \ \int_{[a.b]} f = \int_{[a.c]} f + \int_{[c.b]} f.$

Exercice 3.

- 1. Soit f une fonction continue sur morceaux sur [a,b] et à valeurs positives. Montrer que la function $x \mapsto \int_{-\infty}^{x} f(t) dt$ est croissante.
- **2. Inégalité de la moyenne.** Montrer que si f et g sont à valeurs réelles, alors

$$\left| \int_{[a,b]} fg \right| \leqslant \sup_{[a,b]} |g| \int_{[a,b]} |f|.$$

3. Soient $a \in [1, +\infty[$ et $f \in \mathscr{C}^1([1, +\infty[, \mathbb{R})])$. Montrer que

$$\int_{1}^{a} \lfloor t \rfloor f'(t) dt = \lfloor a \rfloor f(a) - \sum_{k=1}^{\lfloor a \rfloor} f(k).$$

Théorème 3 (Théorème de RIEMANN).

Pour tout entier naturel n non nul, la somme de Riemann associée à f sur le segment [a,b]est $S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$. Si f est continue par morceaux sur [a, b], alors,

$$\lim_{n \to +\infty} S_n = \int_a^b f(t) \, \mathrm{d}t.$$

Exercice 4.

- **1.** Déterminer la limite de la suite de terme général $\sum_{k=0}^{n-1} \frac{1}{n+k}$.
- **2.** Déterminer une majoration de $\left|S_n \int_a^b f(t) dt\right|$ lorsque f est K-lipschitzienne.
- 3. Rappeler la méthode des trapèzes.
- I.2 Intégrale des fonctions continues... et plus!

Propriété 1.

Soit f une fonction continue sur [a,b]. Si f est à valeurs positives, alors $f\equiv 0$ si et seulement $si \int_{-\infty}^{b} f(t) dt = 0.$

Exercice 5. Montrer que ce résultat est faux en général si la fonction est continue par morceaux.

Théorème 4 (Inégalité de CAUCHY-SCHWARZ).

Soit $(f,g) \in \mathscr{C}^-([a,b],\mathbb{R})^2$.

$$\left| \int_{[a,b]} fg \right| \leqslant \sqrt{\int_{[a,b]} f^2} \sqrt{\int_{[a,b]} g^2}.$$

De plus, lorsque f et g sont continues sur [a,b], il y a égalité si et seulement si f et g sont colinéaires.

Théorème 5 (Théorème fondamental du calcul différentiel).

Soient $f: I \to \mathbb{K}$ une fonction continue et $a \in I$. La fonction $F: I \to \mathbb{K}$, $x \mapsto \int_a^x f(t) dt$ est l'unique primitive de f qui s'annule en a.

Exercice 6.

- **1.** Soit $f: I \to \mathbb{C}$ une fonction de classe \mathscr{C}^1 sur I. On suppose que f' est bornée sur I par une constante K. Montrer que f est lipschitzienne.
- **2.** Soit f une fonction à valeurs réelles de classe \mathscr{C}^1 sur [0,1] telle que f(0)=0. Montrer que

$$2\int_0^1 f^2(t) dt \le \int_0^1 (f'(t))^2 dt.$$

Théorème 6 (Dérivation des bornes).

Soient J un intervalle de $\mathbb R$ non réduit à un singleton, $f \in \mathscr C(I)$ et α , β des fonctions dérivables de J dans I. La fonction $\varphi: J \to \mathbb R$, $x \mapsto \int_{\alpha(x)}^{\beta(x)} f(t) \, \mathrm{d}t$ est dérivable sur J et

$$\forall x \in I, \varphi'(x) = \beta'(x)f(\beta(x)) - \alpha'(x)f(\alpha(x)).$$

Théorème 7 (Intégration par parties).

Soient f et g deux fonctions de classe \mathscr{C}^1 sur [a,b] à valeurs dans \mathbb{K} . Alors,

$$\int_{a}^{b} f'(t)g(t) dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f(t)g'(t) dt.$$

Exercice 7.

- 1. Déterminer une primitive des fonctions ln et arctan.
- **2.** Pour tout entier naturel n, on note $W_n = \int_0^{\frac{\pi}{2}} \sin^n t \, dt$. Montrer que pour tout entier naturel n supérieur à 2, $nW_n = (n-1)W_{n-2}$.

Théorème 8 (Changement de variable).

Soit $f \in \mathscr{C}(I, \mathbb{K})$ et φ une fonction de [a, b] dans I de classe \mathscr{C}^1 . Alors,

$$\int_{\varphi(a)}^{\varphi(b)} f(u) du = \int_a^b f(\varphi(t)) \varphi'(t) dt.$$

Exercice 8. Calculer les intégrales suivantes.

1.
$$\int_0^1 \sqrt{1-t^2} \, dt$$
.

2.
$$\int_{2}^{3} \frac{\mathrm{d}t}{t\sqrt{t^2-1}}$$
.

3. Soit $f = \mathbbm{1}_{[0,1]}$ et φ la fonction définie pour tout $x \in]0,1]$ par $\varphi(x) = x^3 \sin \frac{1}{x}$ et $\varphi(0) = 0$. Montrer que f est continue par morceaux, φ est de classe \mathscr{C}^1 mais que $f \circ \varphi$ n'est pas continue par morceaux sur [-1,1].

II. Intégrales généralisées

Dans tout ce paragraphe, I désigne un intervalle de \mathbb{R} d'extrémités a et b, où $-\infty \leqslant a < b \leqslant +\infty$.

Définition 3 (Continuité par morceaux).

Soit $f \in \mathscr{F}(I,\mathbb{K})$. La fonction f est continue par morceaux sur I si pour tout $(x,y) \in I^2$ tel que x < y, la fonction f est continue par morceaux sur [x,y].

II.1 Définition

Définition 4 (Convergence)

- * Si I = [a, b[. L'intégrale généralisée $\int_a^b f(t) dt$ converge si $x \mapsto \int_a^x f(t) dt$ possède une limite finie lorsque x tend vers b.
- * Si I=]a,b]. L'intégrale généralisée $\int_a^b f(t) dt$ converge si $x\mapsto \int_x^b f(t) dt$ possède une limite finie lorsque x tend vers a.
- * Si I =]a, b[. L'intégrale généralisée $\int_a^b f(t) dt$ converge s'il existe $c \in]a, b[$ tel que $\int_a^c f(t) dt$ et $\int_c^b f(t) dt$ soient convergentes.

Dans tous les cas, si l'intégrale ne converge pas, elle diverge.

Exercice 9.

- **1.** Étudier la convergence de $\int_0^1 \frac{\mathrm{d}t}{1+t^2}$ et $\int_0^1 \frac{\mathrm{d}t}{1+t}$.
- **2.** Montrer que l'intégrale $\int_0^{+\infty} \cos(t) dt$ est divergente.

- 3. Étudier la convergence de $\int_0^1 \ln(t) dt$. Que constatez-vous?
- **4.** Soit f la fonction définie, pour tout entier naturel n non nul par f(n) = n, qui est affine sur $[n-1/n^3, n+1/n^3]$ et qui vaut 0 sinon. Représenter graphiquement f puis montrer que $\int_{\mathbb{R}_+} f$ converge. Que constatez-vous?

Théorème 9 (Intégrales de référence)

- (i). Intégrales de RIEMANN sur $[1, +\infty[$. $\int_1^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge si et seulement si $\alpha > 1$. Alors, $\int_1^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{\alpha 1}$.
- (ii). Intégrales de RIEMANN sur]0,1]. $\int_0^1 \frac{\mathrm{d}t}{t^{\alpha}}$ converge si et seulement si $\alpha < 1$. Alors, $\int_0^1 \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{1-\alpha}$.

(iii). Fonction exponentielle.
$$\int_0^{+\infty} \mathrm{e}^{-\alpha t} \, \mathrm{d}t \text{ converge si et seulement si } \alpha > 0. \text{ Alors,}$$
$$\int_0^{+\infty} \mathrm{e}^{-\alpha t} \, \mathrm{d}t = \frac{1}{\alpha}.$$

(iv). Fonction logarithme.
$$\int_0^1 \ln(t) dt$$
 converge. De plus, $\int_0^1 \ln(t) dt = -1$.

Exercice 10.

- 1. Montrer que $\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^{\alpha}}$ converge si et seulement si $\alpha > 1$.
- **2.** Montrer que, si f est continue par morceaux, positive et décroissante sur \mathbb{R}_+ , alors

$$\int_0^{+\infty} f(x) \, \mathrm{d}x \text{ converge} \quad \Leftrightarrow \quad \sum f(n) \text{ converge.}$$

II.2 Propriétés

Propriété 2 (Intégrale faussement impropre).

Soit f une fonction continue par morceaux sur le segment [a, b]. Alors, les intégrales de f sur [a, b], [a, b], [a, b], [a, b] et [a, b] sont égales.

Exercice 11. Montrer que $\int_0^1 t \ln(t) dt$ est convergente.

Propriété 3 (Linéarité)

Soit
$$\lambda \in \mathbb{K}$$
. Si $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent. Alors, $\int_a^b (f(t) + \lambda g(t)) dt$ converge et
$$\int_a^b (f(t) + \lambda g(t)) dt = \int_a^b f(t) dt + \lambda \int_a^b g(t) dt.$$

Propriété 4 (Relation de CHASLES).

On suppose que $\int_a^b f(t) dt$ converge et $c \in]a,b[$. Alors, $\int_a^c f(t) dt$ et $\int_c^b f(t) dt$ convergent et $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt.$

II.3 Fonctions à valeurs réelles

Propriétés 5.

On suppose que $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent.

- (i). **Positivité.** Si pour tout $x \in I$, $f(x) \ge 0$, alors $\int_a^b f(t) dt \ge 0$.
- (ii). Croissance. Si pour tout $x \in I$, $f(x) \leq g(x)$, alors $\int_a^b f(t) dt \leq \int_a^b g(t) dt$.

Propriété 6 (Fonctions à valeurs positives).

Si f est valeurs positives sur [a, b[, alors $\int_a^b f(t) dt$ converge si et seulement si $x \mapsto \int_a^x f(t) dt$ est majorée sur [a, b[.

Propriété 7 (Domination locale).

Soient f, g deux fonctions continues de [a, b[dans \mathbb{R}_+ . S'il existe un réel c tel que $\forall x \in [c, b[, 0 \le f(x) \le g(x)]$ et $\int_c^b g(t) dt$ converge, alors $\int_c^b f(t) dt$ converge.

Corollaire 10.

Soient f, g deux fonctions continues de [a, b[dans \mathbb{R}_+ . Si $f(t) = O_b(g(t))$ et $\int_c^b g(t) dt$ converge, alors $\int_c^b f(t) dt$ converge.

III. Absolue convergence, Fonctions intégrables

III.1 Définition

Définition 5 (Convergence absolue).

L'intégrale $\int_a^b f(t) dt$ est absolument convergente si l'intégrale $\int_a^b |f(t)| dt$ est convergente.

Théorème 11 (Absolue convergence & Convergence, Intégrabilité).

Si l'intégrale $\int_a^b f(t) dt$ est absolument convergente, alors elle est convergente. La fonction f est alors intégrable sur I. La valeur de son intégrale sera notée $\int_a^b f(t) dt$ ou $\int_I f(t) dt$

Exercice 12. Soit $\alpha > 1$. Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin(x)}{1+x^{\alpha}} dt$ est absolument convergente.

Théorème 12 (Inégalité triangulaire).

Si $\int_a^b f(t) dt$ est absolument convergente, alors

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \leqslant \int_{a}^{b} |f(t)| \, \mathrm{d}t.$$

Théorème 13.

Soit $f: I \to \mathbb{K}$ une fonction continue et intégrable sur I. Si $\int_I |f| = 0$, alors $f \equiv 0$ sur I.

Théorème 14 (Théorème de comparaison).

On suppose que I = [a, b[.

- (i). Si $|f| \leq |g|$ sur I et g est intégrable sur I, alors f est intégrable sur I.
- (ii). Si $f = O_b(g)$ et g est intégrable sur I, alors f est intégrable sur I.
- (iii). Si $f(t) \sim_b g(t)$, alors f est intégrable sur I si et seulement si g est intégrable sur I.

Exercice 13. Étudier l'intégrabilité des fonctions suivantes. 1. $t \mapsto \frac{\sin(t)}{t^2}$ sur $[1, +\infty[$. 2. $t \mapsto \frac{t\cos(t)}{e^t - 1}$ sur $]0, +\infty[$. 3. $t \mapsto \frac{1}{1-t^2}$ sur [0, 1[.

1.
$$t \mapsto \frac{\sin(t)}{t^2} \operatorname{sur} \left[1, +\infty\right]$$

2.
$$t \mapsto \frac{t\cos(t)}{e^t-1} \operatorname{sur} \left[0,+\infty\right[$$

3.
$$t \mapsto \frac{1}{1-t^2} \text{ sur } [0,1[.$$

III.2 Méthodes de calculs

Théorème 15 (Primitive).

Soit f une fonction continue sur [a,b[possédant une primitive F. Alors, $\int_a^b f(t) dt$ converge si et seulement si F possède une limite finie en b. Si ces propriétés sont vérifiées,

$$\int_{a}^{b} f(t) dt = \lim_{x \to b^{-}} F(x) - F(a).$$

Exercice 14. Reprendre les exemples des intégrales de Riemann.

Théorème 16 (Intégration par parties).

Soient f et g deux fonctions de classe \mathscr{C}^1 sur I. Si la fonction fg a une limite finie en a et en b, alors les intégrales $\int_a^b f'(t)g(t) dt$ et $\int_a^b f(t)g'(t) dt$ sont de même nature. Si ces quantités sont convergentes, en notant

$$[f(t)g(t)]_a^b = \lim_{x \to b^-} (f(x)g(x)) - \lim_{x \to a^+} (f(x)g(x)),$$

on obtient la relation

$$\int_{a}^{b} f'(t)g(t) dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f(t)g'(t) dt.$$

Exercice 15. (Fonction Gamma d'EULER) Pour tout nombre réel x, on pose, sous réserve d'existence,

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- 1. Déterminer le domaine de définition de Γ .
- **2.** Montrer que pour tout réel x strictement positif, $\Gamma(x+1) = x\Gamma(x)$.
- **3.** Pour tout entier naturel n, déterminer $\Gamma(n+1)$.

Théorème 17 (Changement de variable).

Soit $f:]a, b[\to \mathbb{K}$ une fonction continue par morceaux et φ telle que

- (i). $\varphi(\alpha, \beta) = a, b$,
- (ii). φ est de classe \mathscr{C}^1 sur $]\alpha, \beta[$.
- (iii). φ est strictement monotone.

Alors, les intégrales

$$\int_a^b f(t) dt \text{ et } \int_\alpha^\beta f(\varphi(u))\varphi'(u) du$$

sont de même nature. Si ces quantités sont convergentes.

$$\int_{a}^{b} f(t) dt = \int_{0}^{\beta} f(\varphi(u)) |\varphi'(u)| du.$$

Exercice 16. Calcule, si a < b, r...

1.
$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{1 + \cos^2(t)}.$$

$$2. \int_a^b \frac{\mathrm{d}t}{\sqrt{(t-a)(b-t)}}.$$

III.3 Espaces fonctionnels

Définition 6 $(\mathcal{L}^1, \mathcal{L}^2)$.

- (i). L'ensemble des fonctions continues par morceaux intégrables sur I, à valeurs dans \mathbb{K} , est noté $\mathscr{L}^1(I,\mathbb{K})$.
- (ii). L'ensemble des fonctions continues par morceaux sur I, à valeurs dans \mathbb{K} , de $\operatorname{carr\'e}$ $\operatorname{int\'egrable}$, i.e. pour lesquelles $|f|^2$ est intégrable sur I est noté $\mathscr{L}^2(I,\mathbb{K})$.

Exercice 17.

- **1.** Déterminer une fonction f qui appartienne à $\mathcal{L}^1(]0,1],\mathbb{R})$ mais pas à $\mathcal{L}^2(]0,1],\mathbb{R})$.
- **2.** Déterminer une fonction f qui appartienne à $\mathcal{L}^2([1,+\infty[,\mathbb{R})$ mais pas à $\mathcal{L}^1([1,+\infty[,\mathbb{R})$.

Théorème 18 (Structure d'espace vectoriel).

 $\mathscr{L}^1(I,\mathbb{K})$ est un espace vectoriel.

Propriété 8 (Structure préhilbertienne).

- (i). Si f et g appartiennent à $\mathcal{L}^2(I,\mathbb{K})$, leur produit $f \cdot g$ appartient à $\mathcal{L}^1(I,\mathbb{K})$.
- (ii). L'ensemble $\mathscr{L}^2(I,\mathbb{K})$ est un \mathbb{K} -espace vectoriel.
- (iii). Inégalité de CAUCHY-SCHWARZ. Pour tout $(f,g)\in \mathcal{L}^2(I,\mathbb{R}),$

$$\left|\int_I fg\right|\leqslant \sqrt{\int_I \left|f\right|^2}\cdot \sqrt{\int_I \left|g\right|^2}.$$

De plus, si f et g sont continues, $(f,g)\mapsto \int_I fg$ est un produit scalaire. La norme associée est notée

$$||f||_2 = \left(\int_I |f|^2\right)^{\frac{1}{2}}.$$

Exercice 18. Montrer que $\mathscr{L}^2([0,1],\mathbb{R}) \subset \mathscr{L}^1([0,1],\mathbb{R})$.

IV. Plan d'étude

On suppose qu'il faille étudier l'intégrale $\int_I f(t) dt$.

- 1. Étudier la régularité de f en identifiant les points où f n'est pas continue.
- 2. Découper l'intervalle I en intervalles d'études dont les points incertains sont des bornes.
- 3. Choisir entre les stratégies suivantes :
 - a) Prolongement par continuité?
 - **b)** Calcul d'une primitive?

- c) Si la fonction est de signe constant, déterminer une comparaison à une intégrale de référence : équivalent, majoration,...
 - d) Si la fonction n'est pas de signe constant,
 - i. étude d'intégrabilité (se ramener au point précédent).
- ii. effectuer un changement de variable, une intégration par parties vers une fonction intégrable.

iii.

Autour de l'intégrale de DIRICHLET

Exercice 19.

- **1.** Montrer que $\int_0^1 \frac{\sin(t)}{t} dt$ est convergente.
- 2. Deux méthodes.
- a) Montrer que la série de terme général $\int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} dt$ est convergente. En déduire que $\int_{1}^{+\infty} \frac{\sin(t)}{t} dt$ converge.
 - **b)** À l'aide d'une intégration par parties, montrer directement que $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ converge.
- **3.** En déduire que $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ converge.
- **4.** Pour tout entier naturel n, montrer que $\int_{n\pi}^{(n+1)\pi} \frac{|\sin(t)|}{t} dt \geqslant \frac{2}{(n+1)\pi}$.
- **5.** En déduire que $t \mapsto \frac{\sin(t)}{t}$ n'est pas intégrable sur \mathbb{R}_+ .

6. Soit x > 0. Appliquer la formule d'intégration par parties avec $u: t \mapsto -\cos(t)$ et $v: t \mapsto \frac{1}{t}$ sur l'intervalle $[x, 2\pi]$. Que dire lorsque $x \to 0$?

7 Programme officiel (PCSI)

Intégration (p. 27)

Programme officiel (PSI)

Intégration - a, b, c (p. 17)

Mathématiciens

EULER Leonhard (15 avr. 1707 à Basel-18 sept. 1783 à St Pétersbourg).

CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux).

CHASLES Michel (15 nov. 1793 à Epernon-18 déc. 1880 à Paris).

DIRICHLET Johann Peter Gustav Lejeune (13 fév. 1805 à Düren-5 mai 1859 à Göttingen).

RIEMANN Georg Friedrich Bernhard (17 sept. 1826 à Breselenz-20 juil. 1866 à Selasca).

SCHWARZ Hermann (25 jan. 1843 à Hermsdorf-30 nov. 1921 à Berlin).