Nonlinear System of ODEs

The second system of ODEs are given by:

$$dx/dt = x(\alpha 1 - \beta 1x - \gamma 1y),$$

$$dy/dt = y(\alpha 2 - \beta 2x - \gamma 2y) \qquad \qquad -(1)$$
 where $\alpha 1$, $\alpha 2$, $\beta 1$, $\beta 2$, $\gamma 1$, $\gamma 2 > 0$.

Taking $u = \beta 1x$, $v = \gamma 2y$, $\gamma = \gamma 1/\gamma 2$, $\beta = \beta 2/\beta 1$, the above nonlinear equations can be deduced to linear system F(u,v)

$$u' = u(\alpha 1 - u - \gamma v),$$

$$v' = v(\alpha 2 - \beta u - v)$$
-(2)

Linearization techniques can now be applied to the equations (2)

To find equilibrium points:

u'=0 and v'=0, we will get four lines in uv plane

L1: u=0

L2: $u=\alpha 1-y v$

L3: v=0

L4: v=α2-βu

Total Derivative of F(u,v) i.e. Jacobian Matrix A:

DF(u,v)= A = [[(
$$\alpha$$
1-2u- γ v) ($-\gamma$ u)],
 [($-\beta$ v) (α 2- β u-2v)]]

Depending upon the values of $\alpha 1, \alpha 2$, β and γ the system will have a certain number of equilibria points and lines L2 and L4 will be differently oriented in the uv plane.

We have three possibilities:

- 1. L2 and L4 can be parallel to each other. ($\beta y = 1$ and $\beta != \alpha 1/\alpha 2$)
- 2. L2 and L4 can coincide. ($\beta y = 1$ and $\beta = \alpha 1/\alpha 2$)
- 3. L2 and L4 intersect each other at a point.

Case 1: L2 and L4 can be parallel to each other. ($\beta y = 1$ and $\beta != \alpha 1/\alpha 2$)

Considering following set of parameters : $(\alpha 1=3, \alpha 2=1, \beta=0.5, \gamma=2)$

We obtain 3 equilibrium points: P1(0.0, 0.0), P2(0.0, 1.0) and P3(3.0, 0.0)

Eigenvalues corresponding to the given equilibrium points are:

Eigenvalues	Equilibrium Point	Stability
3.0 and 1.0	P1(0.0, 0.0) : Source	Unstable
-1.0 and 1.0	P2(0.0, 1.0) : Saddle Point	Unstable
-3.0 and -0.5	P3(3.0, 0.0) : Sink	Asymptotically Stable

Obtained Phase Portrait (using code):

Case 2: L2 and L4 coincide ($\beta y = 1$ and $\beta = \alpha 1/\alpha 2$)

Considering following set of parameters : (α 1=1, α 2=1, β =1 , γ =1) Equilibrium points obtained: P1(0, 0) and at (u, 1 - u) [lies on L2=L4 line] for all u belongs to R

Eigenvalues corresponding to the given equilibrium points are:

Equilibrium Point: P1(0, 0) and corresponding Eigenvalues are: 1.0 and 1.0

Eigenvalues	Equilibrium Point	Stability
1.0 and 1.0	P1(0.0, 0.0) : Source	Unstable

Case 3: L2 and L4 intersect each other at a point ($\beta y < 1$)

We will have three sub cases:

3.1 c1,c2>0

3.2. c1<0<c2

3.3. c1>0>c2

In all these sub cases we will get four equilibrium points given by:

P1(0,0), P2(α 1,0), P3(0, α 2) and P4(((α 1- γ * α 2)/(1- β * α)), ((α 2- β * α 1)/(1- β * γ)))

3.1. c1,c2 > 0

Considering following set of parameters :
$$(\alpha 1 = 1.5, \alpha 2 = 2, \beta 1 = 1, \beta 2 = 0.75, \gamma 1 = 0.5, \gamma 2 = 1.0)$$

 $\gamma = \gamma 1/\gamma 2 = 0.5, \beta = \beta 2/\beta 1 = 0.75, c1 = \alpha 1-\gamma \alpha 2 = 0.5, c2 = \alpha 2-\beta \alpha 1 = 0.875, \gamma \beta = 0.375$

Equilibrium points obtained: P1(0, 0), P2(1.5, 0), P3(0, 2), P4(0.8, 1.4)

Eigenvalues corresponding to the given equilibrium points are:

Eigenvalues	Equilibrium Point	Stability
1.5 and 2.0	P1(0, 0): Source	Unstable
-1.5 and 0.875	P2(1.5, 0) : Saddle Point	Unstable
-2.0 and 0.5	P3(0, 2) : Saddle Point	Unstable
-0.385 and -1.814	P4(0.8, 1.4) : Sink	Asymptotically Stable

3.2. c1< 0 < c2

Considering following set of parameters:

$$(\alpha 1 = 1, \alpha 2 = 4, \beta 1 = 4, \beta 2 = 1, \gamma 1 = 1.5, \gamma 2 = 1)$$

 $\gamma = \gamma 1/\gamma 2 = 1.5, \quad \beta = \beta 2/\beta 1 = 1, c1 = \alpha 1-\gamma \alpha 2 = -5, \quad c2 = \alpha 2-\beta \alpha 1 = 3.75, \quad \gamma \beta = 0.375$

Equilibrium points obtained: P1(0, 0), P2(1, 0), P3(0, 4), P4(-8, 6)

Eigenvalues corresponding to the given equilibrium points are:

Eigenvalues	Equilibrium Point	Stability
1.0 and 4.0	P1(0, 0) : Source	Unstable
-1.0 and 3.75	P2(1, 0) : Saddle Point	Unstable
-4.0 and -5.0	P3(0, 4) : Sink	Asymptotically Stable
6.567 and -4.567	P4(-8, 6) : Saddle Point	Unstable

3.3. c1 > 0 > c2

Considering following set of parameters:

$$\begin{array}{l} (\alpha 1 = 1, \ \alpha 2 = 0.5, \ \beta 1 = 1, \ \beta 2 = 0.7, \ \gamma 1 = 1, \ \gamma 2 = 1) \\ \gamma = \gamma 1/\gamma 2 = 1, \quad \beta = \beta 2/\beta 1 = 0.7, \ c1 = \alpha 1 - \gamma^* \alpha 2 = 0.5, \quad c2 = \alpha 2 - \beta^* \alpha 1 = -0.199, \ \gamma \beta = 0.7 \end{array}$$

Equilibrium points obtained: P1(0, 0), P2(1, 0), P3(0, 0.5), P4(1.666, -0.664)

Eigenvalues corresponding to the given equilibrium points are:

Eigenvalues	Equilibrium Point	Stability
1.0 and 0.5	P1(0, 0) : Source	Unstable
-1.0 and -0.2	P2(1, 0) : Sink	Asymptotically Stable
-0.5 and 0.5	P3(0, 0.5) : Saddle Point	Unstable
-1.263 and 0.263	P4(1.666, -0.664) : Saddle Point	Unstable

Case4: $\beta y != 1$ and $\beta y > 1$ (Lines L2 and L4 intersect at one point)

4.1. c1 < 0 < c2

Considering following set of parameters : $c(\alpha 1 = 0.1, \alpha 2 = 2.1, \beta = 4, \gamma = 0.5)$ $c1 = \alpha 1 - \gamma^* \alpha 2 = -0.95, c2 = \alpha 2 - \beta^* \alpha 1 = 1.70, \gamma \beta = 2.0$

Equilibrium points obtained: P1(0, 0), P2(0.1, 0), P3(0, 2.1), P4(0.951, -1.70)

Eigenvalues corresponding to the given equilibrium points are:

Eigenvalues	Equilibrium Point	Stability
0.1 and 2.1	P1(0, 0) : Source	Unstable
-0.1 and 1.7	P2(0.1, 0) : Saddle Point	Unstable
-2.1 and -0.95	P3(0, 2.1) : Sink	Asymptotically Stable
0.375+1.214j and 0.375-1.214j	P4(0.951, -1.70) : Inward Spiral	Asymptotically Stable

