

Model Optimization and Tuning Phase

Date	23 March 2024
Team ID	738220
Project Title	Walmart Sales Analysis for Retail Industry with Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation:

Model	Tuned Hyperparameters	Optimal Values
Random Forest	from sklearm.ensemble import RandomforestRegressor # Create a Random Forest Regressor mobil ff goods = AnnodomForestRegressor (meliastors=150, mam_depth=30, min_samples_split=5, min_samples_leaf=1, random_state=42) # Train the model on the training set # Random ForestRegressor(meliastors) # Rake predictions on the test set # predictions = # f_model.predict(X_test) # Calculate the #*2 score of the model # Calculate the #*2 score of the model # Calculate the Most Mean Squared Error (MME) # Calculate the Most Mean Squared Error (MME) # Calculate the Most Mean Squared Error (MME) # Calculate the Tean Squared Error (MME) # Calculate the Tean Squared Error (MME) # Calculate the Teaning accuracy for the Random Forest model # Calculate the training accuracy for the Random Forest model # Calculate the training accuracy for the Random Forest model # Calculate the training accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Random Forest model # Calculate the Teaning accuracy for the Teaning accuracy for the Teaning accuracy for the Teaning accuracy for the Teaning	# Print the MAE and RMSE values print(f"Random Forest MAE: (rf_mae:.2f}") print(f"Random Forest RMSE: {rf_mse:.2f}") Random Forest MAE: 1626.49 Random Forest RMSE: 4402.19 # Print the R^2 score print(f"Random Forest R^2 Score: {rf_score:.2f}%") Random Forest R^2 Score: 96.35% print(f"Random Forest Training Accuracy: {r
Decision Tree	from sklearn.tree import DecisionTreeRegressor # Create a decision tree regressor model # Londel - DecisionTreeRegressor(rendom_tate=42) # Train the model on the Training set # Londel.fs(X_train, y_train) # Nake predictions on the test set # Calculate the R*2 score of the model # Calculate the R*2 score of the model # Lorer - # Ct_model.core(X_test, y_test) * 180 # Print the R*2 score # Print(f'Decision Tree R*2 Score; (#t_score:.2f)%") # Calculate the Rean Absolute Error (PAE) # Calculate the Rean Absolute Error (PAE) # Calculate the Rean Absolute Error (PAE) # Calculate the Rean Hassolute Fore (PAE) # Calculate The Rean Equation Fore Read Fore (PAE) # Calculate The Rean Equation Fore Read Fore (PAE) # Calculate The Rean Equation Fore Read Fore (PAE) # Calculate The Rean Equation Fore Read Fore (PAE) # Calculate The Read Fore Read Fore Read Fore (PAE) # Calculate The Read Fore Re	# Print the MAE and RMSE values print(f"Decision Tree MAE: {dt_mae:.2f}") print(f"Decision Tree RMSE: {dt_mse:.2f}") Decision Tree R^2 Score: 94.19% Decision Tree MAE: 2075.26 Decision Tree RMSE: 5558.13 print(f"Decision Tree Training Accuracy: {dt_train_accuracy: 100.00%

ARIMA	# Calculate the Root Mean Squared Error (RMSE) arima_rmse = np.sqrt(mean_squared_error(test_data, forecast)) # Calculate the Mean Squared Error (MSE) arima_mse = mean_squared_error(test_data, forecast) # Calculate the Mean Absolute Error (MAD) arima_mad = mean_absolute_error(test_data, forecast)	<pre># Print the RMSE, MSE, and MAD print(f"RMSE: (rmse:.2f)") print(f"MSE: Rse:.2f}") print(f"MAD: {mad:.2f}") RMSE: 686.64 MSE: 471475.70 MAD: 448.51</pre>
XGBoost	Import regboost as xgb from Sklaarm.metrics import meam_squared_error, meam_absolute_error # Create an XBOOST regressor model # Create an XBOOST regressor model # Train the model on the training set # Train the model in the set set set # Train the model in the set set # Train	XGBoost R^2 Score: 96.11% XGBoost MAE: 2094.81 XGBoost RMSE: 4546.16 XGBoost Training Accuracy: 97.50%

Performance Metrics Comparison Report:

Model	Optimized Metric		
Decision Tree	+		
Random Forest	Decision Tree 100.0 94.18924/137508/9 5558.131802810404 2075.201		
ARIMA	Model Training Accuracy Test Accuracy RMSE MAE /MAD (Arima) Arima - 686.6408829232673 448		
XGBoost	Model Training Accuracy Test Accuracy RMSE MAE /MAD (Arima) XGBooost 97.50340544072975 96.112549042831 4546.164067935629 2094.8089620184737		

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest	Both decision tree and random forest models achieved high accuracy, with decision tree reaching 100% accuracy and random forest achieving 99.05% accuracy. However, decision tree models often result in overfitting and high loss due to their complexity, whereas random forest models balance accuracy with reduced loss across different models. This suggests that random forest is the most effective model, as it maintains high accuracy while retaining the most useful information.