1 100 TeV Colliders

1.1 Keynotes

- Key note talks in FCC week 2015 by Benedikt [7] and Schulte [6].
- Preliminary CDR [1].

Machine design, luminosity and cross section

- Barletta-Battaglia+[3] for a review of accelerator physics for future colliders.
- Assadi-Collins+[31] for overview and cost estimate.
- Richter [46] (also Barletta–Battaglia+ [3]) reminded us that $\sigma \propto E^{-2}$ (or s^{-1}) and pointed out that the luminosity goal should be set as $(100/14)^2 \times (\text{LHC value})$ in order to maintain the discovery potential, and to get funded. Because of the Lorentz contraction the luminosity is expected to scale as $\propto s$, this claim for $15\,\text{ab}^{-1}$ (= 300 fb@LHC) is fairly reasonable.
- Based on the discussion, Hinchliffe–Kotwal+ [65] also calls for an integrated luminosity of 10–20 ab⁻¹ with showing the cross sections for several processes, but "have not found generic arguments to justify them."
- Rizzo [59] studies cross section scaling. Naive estimation gives σ scales as $E^2\sigma(m, E) = E_0^2\sigma(m\frac{E_0}{E}, E_0)$, but because of PDF evolution and α_s running, σ at higher energy drops more rapidly, especially for process involving gluon PDF ($\sim -50\%$) or more QCD-couplings ($\sim -15\%$ for each).

1.2 Phenomenology

Snowmass 2013

- Avetisyan—Campbell+ [19] provides Snowmass SM Background set, the detector simulation for which is explained in Anderson—Avetisyan+ [22]. See also the talks in SLAC (2014): Selvaggi [5] and Hirschauer [4].
- $t\bar{t}$ charge asymmetry in Berge-Westhoff [16].
- q-compositeness (jj angular dist.) in Apanasevich-Upadhyay+ [17].
- hh in Yao [20]: $bb\gamma\gamma$ channel is utilized to measure HSC at 8% (stat only). This is included in Higgs WG report, Dawson-Gritsan+ [27].
- \tilde{q} and \tilde{g} in Cohen–Golling+[26], extended in Cohen–Golling+[28]: see "SUSY" below.
- Warped XD in Agashe–Antipin+ [25] but at 33 TeV. $Z' \to t_h t_h$, $G^{(1)} \to Z_\mu Z_j$, $g^{(1)} \to t_h t_l$, and KK $Z/W/\gamma$ are thoroughly studied.
- jj resonance in Yu [18] (singlet Z' & octet G') and Anderson [21] (q^*) .
- Z' in Godfrey-Martin [23] (20-30 TeV).
- Vector-like top quarks in Andeen-Bernard+ [24].

General

- Larkoski—Thaler [38] examines jet physics: winner-take-all aces, soft drop clustering, and Sudakov-safe observables. The first two works very well to remove contaminations from pile-up etc.
- Hook–Katz [39] investigates W- and Z-radiation from $E \gtrsim 1 \,\mathrm{TeV}$ particles, which can be utilized to see ν (or to determine $\not p$), to determine SU(2) charge of new particles, and in the decay of heavy scalar whose 3-body decays are enhanced.

SUSY

For colored SUSY particles pair-production (production crosssections in Borschensky-Krmer+[41]),

- \tilde{q} and \tilde{g} in Cohen–Golling+ [28]: $\tilde{g}\tilde{g}(\tilde{q}\tilde{q}) \to 4q(2q) + \cancel{E}_{T}$ (both of splitted and degenerate), $\tilde{q}\tilde{q} + \tilde{q}\tilde{g} + \tilde{g}\tilde{g}$ with massless $\tilde{\chi}_{1}^{0}$, and $\tilde{g}\tilde{g} \to 4t + \cancel{E}_{T}$ are studied. CMSSM interpretation is found in Fowlie–Raidal [30] and Fowlie [33].
- Jung-Wells [29] studies Split-SUSY (O(1) TeV inos while decoupled sfermions) motivated by DM and m_h ($m_{\tilde{q}} \lesssim 100 \,\text{TeV}$). Signal is $2^+ j 0 l \rlap/E_T$ from $\tilde{g} \to \tilde{w} \bar{q} q$ pair; AMSB, GMSB, and mirage are in scope. They say the thermal wino LSP cannot be covered even with $10 \,\text{ab}^{-1}$.
- Beauchesne–Earl–Gregoire [62] also studies (mini-) Split-SUSY based on GMSB and (deflected) AMSB; \tilde{g} decays into t and b, i.e., $2^+b0l\rlap/\!E_{\rm T}$ and $2^+l^{\rm SS}8^+j(2^+b)\rlap/\!E_{\rm T}$ are considered. Thermal wino LSP region is not fully covered.
- Ellis–Zheng [71] analyzes \tilde{q} +gaugino production, where \tilde{q} of 30 TeV (\tilde{g} , 8 TeV), 14 TeV (\tilde{W} , 4 TeV), and 9 TeV (\tilde{B} , 2–3 TeV) are within the reach of exclusion. They also pointed out that gluino–neutralino DM coannihilation region can be excluded for $\tilde{q} < 32$ TeV.
- Cohen-D'Agnolo+[37] analyzes $\tilde{t}\tilde{t} \to tt + E_T$. With a large mass splitting (boosted top), a μ in either of the leading 2j is required. Compressed spectra are also studied.

For non-colored SUSY particle pair-production,

- Acharya-Boek+ [47] studies $\tilde{\chi}\tilde{\chi}$ production in $|\mu| < M_2 \ll M_1, m_{\tilde{l}}$ (decoupled) case, 3=l0b+ \cancel{E}_{T} signal.
- Gori–Jung+ [48] is more complete: scenarios with $M_1 \gg M_2 \& \mu$, $M_2 \gg \mu > M_1$ and $\mu \gg M_2 > M_1$ are studied with 3l, 4l, SS2l and OS2l signatures. They also mention that in $Z \to ll$ the leptons will be reconstructed as a single jet to degrade the searches.
- Cortona [55] extrapolates LHC results to obtain constraints at 100 TeV (no MC simulation), including $\tilde{W}\tilde{H} \to Wh(\to b\bar{b})$ and disappearing \tilde{W} signatures. DM interplay in models with split-SUSY, AMSB and GMSB are also studied.
- Bramante–Fox+ [53] studies $\tilde{\chi}^{0,\pm}$ searches motivated by the M_1 – M_2 – μ surface to explain $\Omega_{\rm DM}$.

Exotic signals (also see the section "Exotics"),

- Low-Wang [35] discusses SUSY DM searches: mono-jet (pure \tilde{W}/\tilde{H} , \tilde{B} -coann. with \tilde{g} , \tilde{t} , \tilde{q}), disappearing track (pure \tilde{W}/\tilde{H}), and soft leptons (\tilde{B} - \tilde{W} - \tilde{H} mixed).
- Cirelli–Sala–Taoso [42] is an extension work, which focuses on \tilde{W} -like DM and additionally considers mono- γ , VBF $2j_{\text{forward}} + E_{\text{T}}$.
- Berlin–Lin+ [61] also studies VBF $2j_{\text{forward}} + E_{\text{T}}$, which performs matching for additional jets, and considers \tilde{H} case as well.

• Arbey-Battaglia-Mahmoudi [70] is also on mono-jet searches; not citing the previous papers.

Also,

• Ellis-Kane-Zheng [44] studies G_2 -MSSM, predicting $m_{\tilde{g}} = 1-2 \,\text{TeV}$ and $m_{\tilde{q}} \sim 20 \,\text{TeV}$, in $\tilde{g}\tilde{g}$, $\tilde{t}\tilde{g}$, $\tilde{b}\tilde{g}$ and $\tilde{\chi}\tilde{\chi}$ productions, but only the crosssections are shown.

Extra dimension

- Chen-Davoudiasl-Kim [32] studies RS warped $G^{(1)} \to Z_{ll} Z_{\nu\nu}$.
- Agashe-Chen+[56] studies RS warped $G^{(1)} \to \gamma_1 \gamma \to W_i W_l \gamma$

Z' and W'

- Earlier works for 100–200 TeV pp colliders are Rizzo [8] and Godfrey [9].
- Rizzo [34] provides much more realistic analysis, focusing on electron final states (because of worse momentum resolution of μ). Coupling determination is discussed, and the importance of the three body decay (studied as early as in Cvetic-Langacker [2]*1) is also referred.

SM and Higgs sector

- Wen-Qu+ [40] looks for WWW production to see anomalous QGC (W^4 coupling).
- Alves-Galloway+ [49] studies $\alpha_{1,2}(Q)$ measurement by DY ll and $l\nu$ processes.
- Di-Higgs production
 - Baglio-Djouadi+[13] (cf. Shao-Li+[14]) calculates di-Higgs cross section.
 - Chen-Low [36] sees di-Higgs kinematical distributions to constraint $t\bar{t}h$ -, h^3 and non-SM $t\bar{t}hh$ -couplings.
 - Barr-Dolan+[57] studies $hh \to bb\gamma\gamma$ and HSC determination, extending Snowmass work Yao [20], to conclude $\lambda/\lambda_{\rm SM} \in [0.64, 1.45]$ ([0.89, 1.13]) at $3\,{\rm ab^{-1}}$ (30 ${\rm ab^{-1}}$).
 - Azatov-Contino+ [60] also did it, in EFT language, with a good review of past works.
 - Li-Li+[63] studies hh production in $4W \rightarrow 3l_{\rm SSSF}2j$ channel; fairly good at 100 TeV.
 - Papaefstathiou [64] studies rare channel of hh production: $b\bar{b}Z_lZ_l$ (less prospective), $b\bar{b}Z_l\gamma$ (impossible), $b\bar{b}+2l$ (from WW and $\tau\tau$ promising, but from $\mu\mu$ impossible for a large BKG).
- He–Li–Zheng [58] tries to determine tth-coupling (strength and CP-structure) in $t\bar{t}h$ ($\to b\bar{b}$ and $\gamma\gamma$) but detector effects are not considered; theoretical analysis.

Exotics

- Zhou–Berge+ [15] studies mono-jet signature motivated by DM scenarios, based on EFT D5/8/9 and Z' on-shell mediator.
- Curtin–Meade–Yu [45] considers EW baryogenesis with strong first-order EWPT, achieved with single \mathbb{Z}_2 -odd singlet scalar, which can be constrained by HSC measurement or VBF production $h \to SS$, as well as searches at TLEP.
- Craig-Lou+ [52] also studies the model; $j + \cancel{E}_{T}$, $t\bar{t} + \cancel{E}_{T}$, and VBF $2j_{\text{forward}} + \cancel{E}_{T}$ (\cancel{E}_{T} from $h \to SS$) are considered.

^{*1}Further readings are Ciafaloni–Comelli [10], Baur [11] and Bell–Kuhn–Rittinger [12].

- Feng-Iwamoto+ [68] studies the reach of long-lived \tilde{l} searches, mentioning the worse momentum resolution at higher $p_{\rm T}$ and the possibility of muon radiative energy loss.
- Khoze–Ro–Spannowsky [69] studies the reach for s-ch. med. DM scenarios (Higgs portal and generalized) in searches for $2j_{\text{forward}} + \cancel{E}_{\text{T}}$.

Other models

2HDM Auerbach-Chekanov+ [54] studies the reach of $t\bar{t}$ -resonance searches with cut-based top tagging.

Hajer-Li+[66] studies heavy Higgs searches with BDT t-tagging; $bbH/A \rightarrow bbtt/\tau\tau$ and $tbH^{\pm} \rightarrow tbtb$, and found that moderate tan β region is covered by 2b2t signals.

String resonances Anchordoqui–Antoniadis+ [43] studies searches for string resonances in jj and γj signatures.

Majorana neutrino Alva–Han–Ruiz [50] studies VBF $W\gamma \to Nl$, t-ch. enhanced and can be larger than DY $W^* \to Nl$, resulting in SS2l signature. Signal is $2^=l^{\rm SS}2^+j$ without $\not\!E_{\rm T}$. Their MC analysis is detailed and performed carefully.

Dark photon Curtin–Essig+ [51] studies dark-photon γ' searches. With kinetic mixing only, $h \to Z\gamma' \to 4l$ ($m_{\gamma'} = 12\text{-}62\,\text{GeV}$) and DY $\gamma' \to ll$ (12–90 GeV and 180 GeV–) will exclude $\epsilon \gtrsim 10^{-3}$. With Higgs mixing, $h \to \gamma \to 4l$ ($2m_{\mu}$ – $m_h/2$) is considered. Indirect constraints from ILC etc. are also discussed.

Composite Higgs Kotwal–Chekanov–Low [67] studies $\eta \to hh \to 4\tau$ searches, highlighting the 4τ channel as the golden-channel for di-Higgs production; also mentions the difficulty of τ -tagging with $p_{\rm T} \gtrsim 1\,{\rm TeV}$.

References

- [1] CEPC-SppC Preliminary Conceptual Design Report, http://cepc.ihep.ac.cn/preCDR/volume.html.
- [2] M. Cvetic and P. Langacker, Rare decays as diagnostics for Z-prime gauge couplings at hadron colliders, Phys. Rev. **D46** (1992) R14–R18.
- [3] W. Barletta, M. Battaglia, M. Klute, M. Mangano, S. Prestemon et al., Future hadron colliders: From physics perspectives to technology R&D, Nucl. Instrum. Meth. A764 (2014) 352–368.
- [4] J. Hirschauer, Standard Model Backgrounds at 100 TeV, talk at Workshop on Physics at a 100 TeV Collider, SLAC, 23–25 April 2014.
- [5] M. Selvaggi, Fast Detector Simulation for Sensitivity Studies, talk at Workshop on Physics at a 100 TeV Collider, SLAC, 23–25 April 2014.
- [6] D. Schulte, FCC-hh machine overview, talk at FCC Week 2015, Washington D. C., 23–29 March 2015.
- [7] M. Benedikt, FCC study overview and status, talk at FCC Week 2015, Washington D. C., 23–29 March 2015.
- [8] hep-ph/9609248: T. G. Rizzo, Searches for new gauge bosons at future colliders, eConf C960625 (1996) NEW142.
- [9] hep-ph/0201093: S. Godfrey, Update of discovery limits for extra neutral gauge bosons at hadron colliders, eConf C010630 (2001) P344.
- [10] hep-ph/0604070: P. Ciafaloni and D. Comelli, The Importance of weak bosons emission at LHC, JHEP 0609 (2006) 055.

- [11] hep-ph/0611241: U. Baur, Weak Boson Emission in Hadron Collider Processes, Phys. Rev. D75 (2007) 013005.
- [12] 1004.4117: G. Bell, J. H. Kuhn and J. Rittinger, Electroweak Sudakov Logarithms and Real Gauge-Boson Radiation in the TeV Region, Eur. Phys. J. C70 (2010) 659–671.
- [13] 1212.5581: J. Baglio, A. Djouadi, R. Grber, M. M. Mhlleitner, J. Quevillon et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 1304 (2013) 151.
- [14] 1301.1245: D. Y. Shao, C. S. Li, H. T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 1307 (2013) 169.
- [15] 1307.5327: N. Zhou, D. Berge, L. Wang, D. Whiteson and T. Tait, Sensitivity of future collider facilities to WIMP pair production via effective operators and light mediators, 2013.
- [16] 1307.6225: S. Berge and S. Westhoff, Charge Asymmetry in Top Pair plus Jet Production A Snowmass White Paper, 2013.
- [17] 1307.7149: L. Apanasevich, S. Upadhyay, N. Varelas, D. Whiteson and F. Yu, Sensitivity of potential future pp colliders to quark compositeness, 2013.
- [18] 1308.1077: F. Yu, Di-jet resonances at future hadron colliders: A Snowmass whitepaper, 2013.
- [19] 1308.1636: A. Avetisyan, J. M. Campbell, T. Cohen, N. Dhingra, J. Hirschauer et al., Methods and Results for Standard Model Event Generation at $\sqrt{s} = 14$ TeV, 33 TeV and 100 TeV Proton Colliders (A Snowmass Whitepaper), 2013.
- [20] 1308.6302: W. Yao, Studies of measuring Higgs self-coupling with $HH \rightarrow b\bar{b}\gamma\gamma$ at the future hadron colliders, 2013.
- [21] 1309.0845: J. Anderson, Excited quark production at a 100 TeV VLHC, 2013.
- [22] 1309.1057: J. Anderson, A. Avetisyan, R. Brock, S. Chekanov, T. Cohen et al., Snowmass Energy Frontier Simulations, 2013.
- [23] 1309.1688: S. Godfrey and T. Martin, Z' Discovery Reach at Future Hadron Colliders: A Snowmass White Paper, 2013.
- [24] 1309.1888: T. Andeen, C. Bernard, K. Black, T. Childres, L. Dell'Asta et al., Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider, 2013.
- [25] 1309.7847: K. Agashe, O. Antipin, M. Backovic, A. Effron, A. Emerman et al., Warped Extra Dimensional Benchmarks for Snowmass 2013, 2013.
- [26] 1310.0077: T. Cohen, T. Golling, M. Hance, A. Henrichs, K. Howe et al., A Comparison of Future Proton Colliders Using SUSY Simplified Models: A Snowmass Whitepaper, 2013.
- [27] 1310.8361: S. Dawson, A. Gritsan, H. Logan, J. Qian, C. Tully et al., Working Group Report: Higgs Boson, 2013.
- [28] 1311.6480: T. Cohen, T. Golling, M. Hance, A. Henrichs, K. Howe et al., SUSY Simplified Models at 14, 33, and 100 TeV Proton Colliders, JHEP 1404 (2014) 117.
- [29] 1312.1802: S. Jung and J. D. Wells, Gaugino physics of split supersymmetry spectra at the LHC and future proton colliders, Phys. Rev. D89 no. 7, (2014) 075004.
- [30] 1402.5419: A. Fowlie and M. Raidal, Prospects for constrained supersymmetry at $\sqrt{s} = 33$ TeV and $\sqrt{s} = 100$ TeV proton-proton super-colliders, Eur. Phys. J. C74 (2014) 2948.
- [31] 1402.5973: S. Assadi, C. Collins, P. McIntyre, J. Gerity, J. Kellams et al., Higgs Factory and 100 TeV Hadron Collider: Opportunity for a New World Laboratory within a Decade, 2014.
- [32] 1403.3399: C.-Y. Chen, H. Davoudiasl and D. Kim, Z with missing energy as a warped graviton signal at hadron colliders, Phys. Rev. D89 no. 9, (2014) 096007.
- [33] 1403.3407: A. Fowlie, CMSSM, naturalness and the "fine-tuning price" of the Very Large Hadron Collider, Phys. Rev. **D90** no. 1, (2014) 015010.
- [34] 1403.5465: T. G. Rizzo, Exploring new gauge bosons at a 100 TeV collider, Phys. Rev. D89 no. 9, (2014) 095022.
- [35] 1404.0682: M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 1408 (2014) 161.

- [36] 1405.7040: C.-R. Chen and I. Low, Double take on new physics in double Higgs boson production, Phys. Rev. D90 no. 1, (2014) 013018.
- [37] 1406.4512: T. Cohen, R. T. D'Agnolo, M. Hance, H. K. Lou and J. G. Wacker, Boosting Stop Searches with a 100 TeV Proton Collider, JHEP 1411 (2014) 021.
- [38] 1406.7011: A. J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev. D90 no. 3, (2014) 034010.
- [39] 1407.2607: A. Hook and A. Katz, Unbroken SU(2) at a 100 TeV collider, JHEP 1409 (2014) 175.
- [40] 1407.4922: Y. Wen, H. Qu, D. Yang, Q.-s. Yan, Q. Li et al., Probing triple-W production and anomalous WWWW coupling at the CERN LHC and future O(100) TeV proton-proton collider, JHEP 1503 (2015) 025.
- [41] 1407.5066: C. Borschensky, M. Krmer, A. Kulesza, M. Mangano, S. Padhi et al., Squark and gluino production cross sections in pp collisions at $\sqrt{s} = 13$, 14, 33 and 100 TeV, Eur. Phys. J. C74 no. 12, (2014) 3174.
- [42] 1407.7058: M. Cirelli, F. Sala and M. Taoso, Wino-like Minimal Dark Matter and future colliders, JHEP 1410 (2014) 033.
- [43] 1407.8120: L. A. Anchordoqui, I. Antoniadis, D.-C. Dai, W.-Z. Feng, H. Goldberg et al., String Resonances at Hadron Colliders, Phys. Rev. D90 no. 6, (2014) 066013.
- [44] 1408.1961: S. A. R. Ellis, G. L. Kane and B. Zheng, Superpartners at LHC and Future Colliders: Predictions from Constrained Compactified M-Theory, 2014.
- [45] 1409.0005: D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 1411 (2014) 127.
- [46] 1409.1196: B. Richter, High Energy Colliding Beams; What Is Their Future?, Rev. Accel. Sci. Tech. 7 (2014) 1–8.
- [47] 1410.1532: B. S. Acharya, K. Boek, C. Pongkitivanichkul and K. Sakurai, Prospects for observing charginos and neutralinos at a 100 TeV proton-proton collider, JHEP 1502 (2015) 181.
- [48] 1410.6287: S. Gori, S. Jung, L.-T. Wang and J. D. Wells, Prospects for Electroweakino Discovery at a 100 TeV Hadron Collider, JHEP 1412 (2014) 108.
- [49] 1410.6810: D. S. M. Alves, J. Galloway, J. T. Ruderman and J. R. Walsh, Running Electroweak Couplings as a Probe of New Physics, JHEP 1502 (2015) 007.
- [50] 1411.7305: D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from $W\gamma$ fusion at hadron colliders, JHEP 1502 (2015) 072.
- [51] 1412.0018: D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating Dark Photons with High-Energy Colliders, JHEP 1502 (2015) 157.
- [52] 1412.0258: N. Craig, H. K. Lou, M. McCullough and A. Thalapillil, The Higgs Portal Above Threshold, 2014.
- [53] 1412.4789: J. Bramante, P. J. Fox, A. Martin, B. Ostdiek, T. Plehn et al., Relic neutralino surface at a 100 TeV collider, Phys. Rev. D91 no. 5, (2015) 054015.
- [54] 1412.5951: B. Auerbach, S. Chekanov, J. Love, J. Proudfoot and A. V. Kotwal, Sensitivity to new high-mass states decaying to $t\bar{t}$ at a 100 TeV collider, Phys. Rev. **D91** no. 3, (2015) 034014.
- [55] 1412.5952: G. G. di Cortona, Hunting electroweakinos at future hadron colliders and direct detection experiments, JHEP 1505 (2015) 035.
- [56] 1412.6215: K. Agashe, C.-Y. Chen, H. Davoudiasl and D. Kim, Photon cascade decay of the warped graviton at LHC14 and a 100 TeV hadron collider, Phys. Rev. D91 no. 7, (2015) 076002.
- [57] 1412.7154: A. J. Barr, M. J. Dolan, C. Englert, D. E. Ferreira de Lima and M. Spannowsky, Higgs Self-Coupling Measurements at a 100 TeV Hadron Collider, JHEP 1502 (2015) 016.
- [58] 1501.00012: X.-G. He, G.-N. Li and Y.-J. Zheng, Probing Higgs Boson CP Properties with ttH at the LHC and the 100 TeV pp Collider, 2014.
- [59] 1501.05583: T. G. Rizzo, Mass Reach Scaling for Future Hadron Colliders, Eur. Phys. J. C75 no. 4, (2015) 161.
- [60] 1502.00539: A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs production via gluon fusion, 2015.

- [61] 1502.05044: A. Berlin, T. Lin, M. Low and L.-T. Wang, Neutralinos in Vector Boson Fusion at High Energy Colliders, Phys. Rev. D91 no. 11, (2015) 115002.
- [62] 1503.03099: H. Beauchesne, K. Earl and T. Gregoire, LHC constraints on Mini-Split anomaly and gauge mediation and prospects for a future 100 TeV pp collider, 2015.
- [63] 1503.07611: Q. Li, Z. Li, Q.-S. Yan and X. Zhao, Probe Higgs boson pair production via the 3\ell2j + missing E_T mode, 2015.
- [64] 1504.04621: A. Papaefstathiou, Discovering Higgs boson pair production through rare final states at a 100 TeV collider, 2015.
- [65] 1504.06108: I. Hinchliffe, A. Kotwal, M. L. Mangano, C. Quigg and L.-T. Wang, Luminosity goals for a 100-TeV pp collider, 2015.
- [66] 1504.07617: J. Hajer, Y.-Y. Li, T. Liu and J. F. H. Shiu, Heavy Higgs Bosons at 14 TeV and 100 TeV, 2015.
- [67] 1504.08042: A. V. Kotwal, S. Chekanov and M. Low, Double Higgs Production in the 4τ Channel from Resonances in Longitudinal Vector Boson Scattering at a 100 TeV Collider, Phys. Rev. D91 (2015) 114018.
- [68] 1505.02996: J. L. Feng, S. Iwamoto, Y. Shadmi and S. Tarem, Long-Lived Sleptons at the LHC and a 100 TeV Proton Collider, 2015.
- [69] 1505.03019: V. V. Khoze, G. Ro and M. Spannowsky, Spectroscopy of Scalar Mediators to Dark Matter at the LHC and at 100 TeV, 2015.
- [70] 1506.02148: A. Arbey, M. Battaglia and F. Mahmoudi, Monojet Searches for MSSM Simplified Models, 2015.
- [71] 1506.02644: S. A. R. Ellis and B. Zheng, Reaching for Squarks and Gauginos at a 100 TeV p-p Collider, 2015.