Конспект по дискретной математике II семестр

Коченюк Анатолий

28 марта 2021 г.

Глава 1

Дискретная теория вероятностей

1.1 Введение

Определение 1 (Вероятностное пространство).

 Ω – элементарные исходы, неделимые дальше.

р – дискретная плотность вероятности.

$$p:\Omega\to[0,1]\quad \textstyle\sum_{q\in\Omega}p(\omega)=1$$

Замечание. В случае дискретного вероятностного пространства $|\Omega|$ – не более, чем счётное.

Пример (Честная монета). $\Omega = \{0,1\}$ $p(0) = p(1) = \frac{1}{2}$

Пример (Нечестная монета). $\Omega = \{0,1\}$ p(1) = p, p(0) = q — различные числа. p+q=1

Ещё одно название – распределение Бернулли

Пример (Честная игральная кость). $\Omega = \{1, 2, 3, 4, 5, 6\}$ $p(\omega) = \frac{1}{6}$

Определение 2. Событие, случайное событие – $A\subseteq \Omega$

Замечание. Неправильное определение – то, что может произойти, а может не произойти.

 $\emptyset \subseteq \Omega$ $\Omega \subseteq \Omega$ – примеры, когда никогда не происходит и всегда происходит

Замечание. Для недискретного случая неверно, что <u>любое</u> подмножество Ω это событие

Определение 3. Вероятность события $P(A) = \sum_{\omega \in A} p(\omega)$

p берёт элементарные исходы. P, \mathbb{P} – вероятность события

Пример. Событие
$$E=\{2,4,6\}$$
 $P(E)=p(2)+p(4)+p(6)=\frac{3}{6}=\frac{1}{2}$ $O=\{1,3,5\}$

Замечание. Не существует вероятностного пространства с бесконечным числом равновероятных исходов

$$p(\omega) = 0$$
 $\sum = 0$

$$p(\omega) = a > 0$$
 $\sum = a \cdot (+\infty) = +\infty$

Пример. Событие $B(IG) = \{4, 5, 6\}$ $P(B) = \frac{1}{2}$

Определение 4 (Независимое событие). События A,B независимы, если $P(A\cap B)=P(A)\cdot P(B)$

Пример. $E \cap O = \emptyset$ $B \cap E = \{4,6\}$

$$P(E \cap O) = \emptyset \quad P(O) \cdot P(B) = \frac{1}{4} \neq 0$$

$$P(B)\cdot P(E) = \tfrac{1}{4} \neq \tfrac{1}{3} = P(B\cap E)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(\Omega)}$$

Определение 5 (Условная вероятность). $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Замечание. Альтернативное определение независимости, не поддерживающее 0: P(A|B) = P(A)

$$V = \{5, 6\}$$

$$P(V \cap E) = \frac{1}{6}$$

$$P(V) = \frac{1}{3}$$
 $P(E) = \frac{1}{2}$ $P(V) \cdot P(E) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} = P(V \cap E)$

Определение 6 (Произведение вероятностных пространств).

$$\Omega_1, p_1 \qquad \Omega_2, p_2$$

$$\Omega = \Omega_1 \times \Omega_2$$

$$p(\langle \omega_1, \omega_2 \rangle) = p_1(\omega_1) \cdot p_2(\omega_2)$$

Теорема 1. $\forall A_1 \subseteq \Omega_1$ и $\forall A_2 \subseteq \Omega_2$

$$A_1 imes \Omega_2$$
 и $\Omega_1 imes A_2$ – независимы

Доказательство. $P\left(A_1 \times \Omega_2 \cap \Omega_1 \times A_2\right) = P\left(A_1 \times A_2\right) = \sum_{\substack{a \in A_1 \\ b \in A_2}} p\left(\langle a, b \rangle\right) =$

$$= \sum_{a \in A_1} \sum_{b \in A_2} p_1(a) \cdot p_2(b) = \sum_{a \in A_1} p_1(a) \left(\sum_{b \in A_2} p_2(b) \right) = P_1(A_1) \cdot P_2(A_2)$$

Определение 7. $A_1, A_2, ..., A_n$

- 1. Попарно независимые A_i и A_j независимы
- 2. Независимы в совокупности $\forall I \subseteq \{1,2,\ldots,n\}$ $P\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} P(A_i)$ $P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3)$

Пример. Кидаем две монеты $\Omega = \{00, 01, 10, 11\}$

 $A_1 = \{10,11\}$ $A_2 = \{01,11\}$ $A_3 = \{01,10\}$ – независимы попарно, но не в совокупности

Определение 8 (Формула полной вероятности).

$$\Omega = A_1 \cup A_2 \cup \ldots \cup A_n \quad i \neq j \implies A_i \cap A_j = \emptyset$$

Совокупность таких А-шек называется полной системой событий.

Дано: вероятности $P(A_i)$ $P(B|A_i)$ Найти: P(B)

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

- формула полной вероятности

Найти: $P(A_i|B)$

 A_1 – болен, A_2 – здоров, B – положительный результат теста $P(A_2 | B)$

$$P(A_{j}|B) = \frac{P(A_{j} \cap B)}{P(B)} = \frac{P(B|A_{j}) \cdot P(A_{j})}{\sum_{i=1}^{n} P(B|A_{i}) \cdot P(A_{i})}$$

– формула Байеса

Рис. 1.1: В

1.2 Случайные величины

Замечание. Неправильное (наивное) определение – величина, принемающая слуйное значение.

Она может быть константой. Что такое величина?

Определение 9 (Случайная величина). $\xi:\Omega\to\mathbb{R}$ – \mathbb{R} – значная функция

 Ω, p – вероятностное пространство.

Пример. Если взять случайные текст длинной 1Кб. Вариантов текста очень много и бессмысленно их рассматривать отдельно, интересует какоето свойство, величина.

Графы, $2^{\binom{n}{2}}$ штук. Но нас интересует какая-то (численная) характеристика элементарного исхода.

Пример.
$$D(ice) = \{1, 2, 3, 4, 5, 6\}$$

$$\Omega = D^2$$
 $p(\langle i, j \rangle) = \frac{1}{36}$

$$\xi: \Omega \to \mathbb{R}$$
 $\xi(\langle i, j \rangle) = i + j$

Пример (Случайные графы). $G(4,\frac{1}{2})$ – случайный граф, 4 вершины, каждое ребро существует с вероятностью $\frac{1}{2}$

$$\Omega = \mathbb{B}^6 \quad p(G) = \frac{1}{64}$$

 $\xi(G)=$ количество компонент связности

Пример.
$$\Omega = \{1, 2, 3, 4, 5, 6\} \ \xi(w) = w$$

Пример.
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 $E = \{2, 4, 6\}$

$$\chi_E(\omega) = egin{cases} 1, & \omega \in E \\ 0, & \omega
otin E \end{cases}$$
 – индикаторная случайная величина

Определение 10. $\Omega, p = \xi$

$$[\xi = i] = \{\omega | \xi(\omega) = i\} \subseteq \Omega$$

$$P([\xi = i]) = P(\xi = i) = f_{\xi}(i) \quad f : \mathbb{R} \to \mathbb{R}$$

 $f_{\xi}(i) = P\left(\xi = i\right)$ – дискретная плотность вероятности случайной величины ξ

$$F_{\xi}(i): \mathbb{R} \to \mathbb{R} = P\left(\xi \leqslant i\right)$$
 – функция распределения

Замечание. Непрерывная vs Дискретная вероятность

Пример.

Рис. 1.2: непрерывная и дискретная вероятность

Замечание.
$$\delta(x) = \begin{cases} 0, & x \neq 0 \\ +\infty, & x = 0 \end{cases}$$

$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$

$$f_{\xi}(i) = P(\xi = i)$$
 $f_{\xi} = \int_{-\infty}^{+\infty} f_{xi}(x) = F_{\xi}(i)$

$$f_{\xi}(x) = \sum_{i} P(\xi = i) f(x - i)$$

Пример. $\Omega = \mathbb{B}^{1000}$ $p(\omega) = \frac{1}{2^{1000}}$

$$\xi(w)=$$
 число 1 в ω

|множество значений
$$\xi$$
| = 1001 $p\left(\xi=i\right) = \frac{\binom{1000}{i}}{2^{1000}}$

Замечание. Случайные числа обозначаются строчными греческими или заглавными латинскими из конца алфавита (X, Z)

Замечание (Что можно делать со случайными величинами). ξ, η – функции

 $\xi^2-2\xi-\xi+\eta-\xi\cdot\eta-\xi^\eta-\sin\xi-e^\eta-rac{1+\xi}{\eta}$ (всё то же, что мы можем делать с функциями.

Пример. $\Omega = D^2 \quad \xi_1 \left(\langle i, j \rangle \right) = i \qquad \xi_2 \left(\langle i, j \rangle \right) = j$ – одинаково распределённые случайные величины

Рис. 1.3: Два-кубика (функция распределения)

Пример. $\Omega = F \quad id(\omega) = \omega$

 $1,2,\dots,6$ – каждый с вероятностью $\frac{1}{6}$. Другое вероятностное пространство относительно предыдущего примера, но всё равно одинаковое распределение.

 $\xi=(i+j)=\xi_1+\xi_2$ $\xi=(i+j)\%6+1$ – у второй то же распределение, что у верхних, но она уже совсем другая.

Определение 11. Математическое ожидание

$$E_{\xi} = \sum_{\omega} p(\omega) \, \xi(\omega).$$

Утверждение 1. $E_{\xi} = \sum_{i} i p(\xi = i)$

Доказательство.

$$\begin{split} E_{\xi} &= \sum_{\omega} p\left(\omega\right) \xi\left(\omega\right) \\ &= \sum_{i} \sum_{w: \xi(\omega) = i} p\left(\omega\right) \cdot \xi\left(\omega\right) \\ &= \sum_{i} \sum_{\omega: \xi(\omega) = i} p\left(\omega\right) \cdot i \\ &= \sum_{i} \sum_{w: \xi(\omega) = i} p\left(\omega\right) \\ &= \sum_{i} i P\left(\xi = i\right) \end{split}$$

Пример. $\Omega = D$ $\xi = id$

$$E_{\xi} = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6 = \frac{21}{6} = \frac{7}{2} = 3,5$$

Пример. $\Omega = D^2$ $\xi(\langle i,j \rangle) = i+j$

 $E_{\xi} = \frac{1}{36} \cdot (2 \cdot 1 + 3 \cdot 2 + 4 \cdot 3 + 5 \cdot 4 + 6 \cdot 5 + 7 \cdot 6 + 8 \cdot 5 + 9 \cdot 4 + 10 \cdot 3 + 11 \cdot 2 + 12 \cdot 1)$ – здесь среднее значение оказалось наиболее частым, но так оно не всегда (пример с 3,5)

Теорема 2.
$$E_{\lambda\xi} = \lambda E_{\xi}$$

$$E\left(\xi + \eta\right) = E_{\xi} + E_{\eta}$$

Доказательство. $E_{\lambda\xi} = \sum_{\omega} p(\omega) \lambda \xi(\omega) = \lambda E_{\xi}$

$$E(\xi + \eta) = \sum_{\omega} p(\omega) (\xi(\omega) + \eta(\omega)) = E_{\xi} + E_{\eta}$$

Утверждение 2. Если ξ и η одинаково распределены, то $E_{\xi}=E_{\eta}$

Пример. Бросим кубик один раз, ξ_1 – что выпало сверху, ξ_2 – что выпало снизу

 $E\left(\xi_{1}+\xi_{2}\right)=7.$ – не играет роли как числа друг относительно друга расположены.

МАТОЖИДАНИЕ ЛИНЕЙНО ВСЕГДА

Пример.
$$\Omega = S_n$$
 $p(\omega) = \frac{1}{n!}$ $\xi\left(\pi\right) = |\{i|\pi[i] = i\}|$ $0\dots n$, кроме $n-1$ $E_{\xi} = \sum\limits_{j=1}^{n} \xi_i = 1$ $\xi_i\left(\pi\right) = \begin{cases} 1, & \pi[i] = i \\ 0, & \text{иначе} \end{cases}$ $E_{\xi_i} = \frac{1}{n}$ $\xi = \sum\limits_{i=1}^{n} \xi_i$

1.3 Независимые случайные величины

Определение 12 (удобное). Случайные величины ξ и η независимы, если события $[\xi = \alpha]$ и $[\eta = \beta]$ – независимы $\forall \alpha, \beta$

Определение 13 (нормальное). $[\xi\leqslant\alpha]$ и $[\eta\leqslant\beta]$ – независимы для $\forall\alpha,]beta$

Пример. $\Omega = \Omega_1 \times \Omega_2$

$$\xi_1(\langle \omega_1, \omega_2 \rangle) = f(\omega_1)$$

$$\xi_2\left(\langle\omega_1,\omega_2\rangle\right) = g\left(\omega_2\right)$$

A и B независимы, χ_A, χ_B – независимы

Теорема 3. ξ,η – независимы $\implies E\left(\xi\cdot\eta\right)=E_{\xi}\cdot E_{\eta}$

Доказательство.
$$E\xi\cdot\eta=\sum\limits_{\alpha}\alpha\cdot P\left(\xi\cdot\eta=\alpha\right)=\sum\limits_{i,j}\alpha P\left(\left[\xi=i\right]\cap\left[\eta=j\right]\right)=\sum\limits_{i}\sum\limits_{j}ijP\left(\xi=i\right)P\left(\eta=j\right)=E_{\xi}E_{\eta}$$

$$i \cdot j = \alpha \quad i \in R_{\xi} \quad j \in R_{\eta}$$

Пример.
$$\Omega = \{0,1\}$$
 $p = \frac{1}{2}$ $\xi(i) = 2i$ $E_{\xi} = 1$

$$\Omega = S_n \quad p = rac{1}{n!} \quad \xi =$$
 число неподвижных точек $\quad E_\xi = 1$

Матожидание одно, но ведут себя совершенно по разному.

Определение 14 (Дисперсия).
$$D_{\xi} = Var(\xi)$$

$$D_{xi} = E(\xi - E_{\xi})^2 = E\left(\xi^2 - 2\xi E_{\xi} + (E_{\xi})^2\right) = E_{xi}^2 - 2E_{\xi}E_{\xi} + (E_{\xi})^2 = E_{\xi^2} - (E_{\xi})^2$$

Теорема 4.
$$D_{c\xi} = c^2 D_{\xi}$$

Если ξ и η независимы, то $D_{\xi+\eta}=D_{\xi}+D_{\eta}$

Доказательство. Упражнение

Вспомним. $\xi, \eta: \Omega \to \mathbb{R}$

$$F_{\xi}(a) = P(\xi \leqslant a)$$

$$f_{\xi}(a) = P(\xi = a)$$

$$F_{\xi}(a) = \sum_{b \leq a} f_{\xi}(b)$$

$$E_{\xi} = \sum_{\omega \in \Omega} p(\omega)\xi(\omega) = \sum_{a} a \cdot P(\xi = a)$$

$$E(\xi + \eta) = E_{\xi} + E_{\eta}$$

 $E\left(\xi-E\xi\right)=E_{\xi}-EE_{\xi}=0$ матожидане отклонения от матожидания равно нулю..

Хочется смотреть насколько величина отклоняется от своего матожиданя. Для этого используется понятие дисперсии:

$$D_{\xi} = E(\xi - E\xi)^2 = E\xi^2 - (E\xi)^2$$

$$D(\xi + \eta) = E\xi^2 + E\eta^2 + 2E\xi\eta - (E\xi)^2 - (E\eta)^2 - 2E\xi E\eta = D_\xi + D_\eta + 2(E_{\xi\eta} - E_\xi E_\eta).$$

В случае независимых случайных величин дисперсия линейна. Иначе она отличается на ковариацию:

Определение 15 (Ковариация).

$$Cov(\xi, \eta) = E_{\xi\eta} - E_{\xi}E_{\eta}.$$

$$D_{\xi} = Cov\left(\xi, \xi\right)$$

Определение 16 (Корреляция).

$$Corr\left(\xi,\eta\right) = \frac{Cov\left(\xi,\eta\right)}{\sqrt{D_{\xi}D_{\eta}}}.$$

Теорема 5. Корреляция двух случайных величин лежит между -1 и 1.

$$-1 \leqslant Corr(\xi, \eta) \leqslant 1.$$

Доказательство. $\alpha = \xi - \lambda \eta$

$$D_{\alpha} = E_{\xi^2} - 2\lambda E_{\xi\eta} + \lambda^2 E\left(\eta^2\right) - (E(\xi))^2 + 2\lambda E_{\xi} E_{\eta} - \lambda^2 \left(E_{\eta^2}\right) \geqslant 0$$

$$D_{\xi} + 2\lambda Cov\left(\eta, \eta\right) + \lambda^2 D_{\eta}$$

$$4Cov\left(\xi, \eta\right)^2 - 4D_{\xi} D_{\eta} \leqslant 0$$

1.4 Хвостовые неравенства

$$\xi \quad E\xi = 10 \quad \xi \geqslant 0$$
$$P\left(\xi \geqslant 100\right) < \frac{1}{10}$$

Теорема 6 (Неравенство Маркова). $\xi \not\equiv 0 \quad \xi \geqslant 0 \quad P\left(\xi \geqslant a \cdot E_{\xi}\right) \leqslant \frac{1}{a}$

Доказательство.
$$E_{\xi} = \sum_{v} v \cdot P\left(\xi = v\right) = \sum_{v < a \cdot E_{\xi}} v \cdot P\left(\xi = v\right) + \sum_{v \geqslant a \cdot E_{\xi}} v \cdot P\left(\xi = v\right) = a \cdot E_{\xi} \cdot P\left(\xi \geqslant a \cdot E_{\xi}\right)$$

Пример.
$$a = \frac{c}{E_{\xi}}$$
 $P(\xi \geqslant c) \leqslant \frac{E_{\xi}}{c}$

$$D_{\xi} = E \left(\xi - E \xi \right)^2$$

$$\eta = (\xi - E_{\varepsilon})^2$$

$$P((\xi - E_{xi})^2 \geqslant a^2 \cdot D_{\xi}) \leqslant \frac{1}{a^2}$$

 $\sigma = \sqrt{D_\xi}$ – среднеквадратичное отклонение

Теорема 7 (Неравенство Чебышева). $P\left(|\xi-E_{\xi}|\geqslant a\sigma\right)\leqslant \frac{1}{a^2}$

$$P(|\xi - E_{\xi}| \geqslant c) \leqslant \frac{D_{\xi}}{c^2}$$

Рис. 1.4: drawing

Задача 1 (10 монет, найти количество "1").

$$E\xi = 5$$
 $D\xi = 2.5$

$$P(\xi \leqslant 0) \leqslant P(|\xi - E\xi| \geqslant 5) \leqslant \frac{2.5}{25} = \frac{1}{10}$$

Замечание. С одной стороны, у неравенства есть плюс: оно **всегда** работает; всегда (!)

С другой — иногда оценки получаются, очень грубыми. В нашем примере ответ $\leqslant \frac{1}{10}$, а в жизни — $\frac{1}{1024}$.

Пример. Нечестная монета $p \neq \frac{1}{2}$. Хотим выяснить чем чаще выпадает.

Бросили: c единиц, n-c нулей. Предположим, что $c<\frac{n}{2}$ $p>\frac{1}{2}$ $pn>\frac{n}{2}$

$$P\left(\xi=c\right)\leqslant P\left(\xi\leqslant c\right)\leqslant P\left(\left|\xi-pn\right|\leqslant pn-c\right)\leqslant P\left(\left|\xi-pn\right|\leqslant \frac{n}{2}-c\right)\leqslant \frac{n}{4\cdot\left(\frac{n}{2}-c\right)^{2}}$$

Теорема 8 (Граница Чернова (без доказательства)). $\xi_i \quad P\left(\xi_i=1\right) \quad P\left(\xi_i=0\right)=1$

$$\xi = \sum_{i=1}^{n} \xi_i \qquad E_{\xi} = np = \mu$$

$$P(|\xi - \mu| \geqslant \delta\mu) < e^{-\mu\frac{\delta^2}{3}}$$

Пример. Случайная величина ξ . Хотим узнать матожидание. Проведём эксперимент n раз: $\xi_1, \xi_2, \dots, \xi_n$

$$P\left(\left|\frac{\sum \xi_i}{n} - E_{\xi}\right| > c\right) \leqslant \frac{D_{\xi}}{n\varepsilon^2}.$$

 $\xi:\Omega\to\mathbb{Z}^+$

$$E_{\xi} = \sum_{i=0}^{n} i \cdot P(\xi = i) = \sum_{i=0}^{n} (P(\xi \ge i) - P(\xi \ge i + 1)) = \sum_{i=1}^{n} P(\xi \ge i)$$

1.5 Теория информации

Определение 17 (Что такое информации). Информация = — неопределённость

непределённость H1. Что-то узнали, стала неопределённость H2. полученная информация I =H1-H2 = $-\Delta$ H

Хочется убрать наблюдателя, нас, из определения, чтобы не было кого-то, кто узнаёт и меняет неопределённость. Надо ввести объективную модель:

Определение 18 (Случайный источник). Ω – вероятностное простраство Есть исходы p_1, p_2, \dots, p_n

Чёрный ящик с красной кнопкой и дисплеем. Основан на вероятностном пространстве

$$\xi_1, \xi_2, \ldots, \xi_m \ldots$$

$$P(\xi_i = a) = p_a \quad a = 1 \dots n$$

Случайный источник p_1, p_1, \ldots, p_n . Хотим померять сколько информации содержится в одном результате эксперимента.

 $H(p_1, p_2, \dots, p_n) : RS(random sources) \to \mathbb{R}^+$

Частный случай $p_i = \frac{1}{n}$

$$h(n) = H\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$$

1.
$$h(n+1) > h(n)$$

2.

Пример.
$$\Omega = \{(1,1), (1,2), \dots, (1,m_1)(2,1), \dots, (2,m_2), \dots, (k,1), \dots, (k,m_k)\}$$

$$n = m_1 + m_2 + \dots m_n$$

$$p(i,j) = 1_{ij} \quad p_i = \sum_{i=1}^{m_k} q_{ij}$$

Первый ряд $(1,*)-p_1$. Второй p_2 ... Последний p_k

Если случайный источник показывает только первое число это эквивалентно $H(p_1, p_2, \dots, p_n)$

Теперь представим, что мы сначала узнаём первую компоненту, а потом открываем вторую

$$\sum_{i=1}^{k} p_i H\left(\frac{q_{i1}}{p_i}, \dots, \frac{q_{im_i}}{p_i}\right)$$

Если провести эксперимент сразу, получим q_{11}, \ldots, q_{im_i}

$$q_{ij} = p_i q_{ij}$$

$$H(p_1r_{11}, p_1r_{12}, \dots, p_1r_{1k_1}, p_2r_{21}, \dots, p_kr_{km_k}) = H(p_1, p_2, \dots, p_k) + \sum_{i=1}^k p_iH(r_{i1}, \dots, r_{im_i}).$$

3. Для фиксированного n H непрерывная как функция $\mathbb{R}^n \to \mathbb{R}$

Теорема 9.
$$H(p_1, p_2, ..., p_n) = -\sum_{i=1}^n p_i \log p_i$$

Лемма 1. h(nm) = H(n) + h(m) Следует из второго свойства

Доказательство.
$$k=n$$
 $m_i=m$ $p_i=\frac{1}{n}$ $q_{ij}=\frac{1}{nm}$ $r_{ij}=\frac{1}{m}$ $h(nm)=H\left(q_{11},q_{12},\ldots,q_{nm}\right)=H\left(\frac{1}{n},\ldots,\frac{1}{n}\right)+\sum\limits_{i=1}^{n}\frac{1}{n}H\left(\frac{1}{m},\ldots,\frac{1}{m}\right)=h(n)+h(m)$

Определение 19. $h(2) = \alpha$ (может с точностью до мультипликативной константы задать)

Лемма 2.
$$h(2^k) = k\alpha$$

Лемма 3.
$$h(n) = \alpha \log_2 n$$

Доказательство.
$$2^i \leqslant n^r < 2^{i+1}$$
 $r \in \mathbb{N}$ $h(i) \leqslant h\left(n^r\right) < \alpha(i+1)$

$$\begin{split} &\alpha \cdot i \leqslant r \cdot h(n) < \alpha(i+1) \\ &\alpha \cdot \frac{i}{r} \leqslant h(n), \alpha \frac{i+1}{r} \\ &i \leqslant r \log_2 n < i+1 \\ &\alpha \frac{i}{r} \leqslant \alpha \log_2 n < \alpha \frac{i+1}{r} \\ &\forall r \quad |h(n) - \alpha \log_2 n| \leqslant \frac{\alpha}{r} \\ &\Longrightarrow h(n) = \alpha \log_2 n \end{split}$$

Доказательство теоремы. Рациональный $p_i=\frac{a_i}{b}$ $m_i=a_i$ $r_{ij}=\frac{1}{a_i}$ $q_{ij}=\frac{1}{b}$ $q_{ij}=p_ir_{ij}$

$$H\left(\underbrace{\frac{1}{b}, \dots, \frac{1}{b}}_{b}\right) = H\left(p_{1}, \dots, p_{k}\right) + \sum_{i=1}^{k} p_{i}H\left(\underbrace{\frac{1}{a_{i}}, \dots, \frac{1}{a_{i}}}_{a_{i}}\right)$$

$$\left(\sum_{i=1}^{k} p_i\right) h(b) = H(p_1, \dots, p_k) + \sum_{i=1}^{k} p_i h(a_i)$$

$$H(p_1, \dots, p_k) = \sum_{i=1}^{k} p_i (\alpha \log_2 b - \alpha \log_2 a_i)$$

Функция непрерывна и она верна для рациональных, следовательно она верна для всех

Замечание. $h(2) = \alpha - \text{бит}$

А теперь мы хотим перевести определение информации на неслучайный источник

Ответ 1. Это тогда будет не совсем корректно с математической точки зрения. Когда смотришь на конкретные детерминированные данные. ■

Ответ 2. Изучение среднего не совсем антинаучное занятие. Внешне оно ведёт себя как случайные величины. ■

Пример. Есть строка s, в которой мы хотим померить информацию.

$$s \in \Sigma^* \quad n = |\Sigma|$$

|s|=l f_i – количество символов c_i в строке s

$$p_i = \frac{f_i}{L}$$

Допустим, что символы выдаёт случайный источник, который выдал символы s_1, s_2, \ldots, s_L . Статистически эта строка похожа на s. *натягивание на глобус* Допустим, что количество информации в строке s равно количеству в строке \widetilde{s}

$$I(\tilde{s}) = J \cdot H(p_1, p_2, \dots, p_n) = -L \sum_{i=1}^{n} p_i \log_2 p_i$$

Вспомним арифметическое кодирование

q = A(s) – длина арифместического кодирования

$$A(s) \leqslant -\log_2(b_L - a_L) = -\log_2(p_{s_1} \cdot \dots \cdot p_{s_L}) = -\log_2\left(\prod_{i=1}^n p_i^{f_i}\right) = -\sum_{i=1}^n \underbrace{\frac{L}{p_i}}_{p_i} \log_2 p_i = 0$$

$$= I\left(\widetilde{s}\right) = L \cdot H\left(p_1, p_2, \dots, p_n\right)$$

Теорема 10. Длина кода, после арифметического кодирования не превышает энтропию Шеннона

Замечание. Арифметическое кодирование асимптотически оптимально среди тех, которые не учитывают взаимное расположение символов.

Пример (Нижняя оценка для сортировки). Пусть a_1, \ldots, a_n – перестановка и мы хотим её отсортировать

Утверждение 3. От одного сравнения мы получаем не больше 1 бита информации

Рассмотрим все перествки. В каждой содержится

$$\log_2 n! = \sum_{i=1}^n \log_2 i \geqslant \sum_{i=\frac{n}{2}}^n \log_2 \frac{n}{2} = \Omega(n \log n)$$

1.6 Цепи Маркова

 $b = (b_1, b_2, \dots, b_n) - b_i$ вероятность находиться в состоянии i

 $C \quad c = (c_1, c_2, \dots, c_n)$ — случайная величина после одного перехода

Матрица перехода p_{ij} – вероятность перейти из i в j

$$P = \begin{bmatrix} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$c_i = P(C = i) = \sum_{j=1}^{n} P(x = i | B = j) P(B = j) = \sum_{j=1}^{n} p_{ji} \cdot b_j$$

$$b^0 = (1,0,0,0)$$
 – нулевой шаг

$$b^1 = (0, \frac{1}{2}, \frac{1}{2}, 0)$$

Рассмотрим судьбу м.ц. после поглощения. Жизнь происходит внутр одной сильно связанной компоненты – эргадического класса.

- 1. d > 1 длинна любого цикла кратна d. Циклический класс
- 2. HOД(длин всех циклов) = 1.

Теорема 11 (Эргадическая для регулярных цепей). М.ц. такова, что $p_{ij}>0 \forall i,j$

Тогда
$$\exists \ b \quad \forall \ b^0 \quad b^0 P^n \to b$$

(b удолветворяет равенству b = bP

Доказательство.
$$(b^0A)_i=\sum\limits_{j=1}^nb_j^0\cdot A_{ji}=\left(\sum\limits_{j=1}^nb_j^0\right)\widetilde{a}_i=\widetilde{a}_i$$

$$\exists \forall j \quad a_{ji} = \widetilde{a}_i$$

 $P^n \to A$, которая удовлетворяет условию выше.

$$m_i^t = \min_i (P^t)_{ii}$$
 $M_i^t = \min_i (P^t)_{ii}$

$$M_i^t - m_i^t \to 0$$

$$\delta = \min_{i,j} \quad \delta > 0$$

$$P_{ji}^{t+1} = \sum_{k=1}^{n} P_{jk}^{t} P_{ki}$$

$$\leq \underbrace{\sum_{\substack{k=1\\k \neq posMin}}^{n} P_{jk} M_{i}^{t} + P_{j \ posMin}(m_{i}^{t} - M_{i}^{t})}_{\leq M_{i}^{t} + \delta \left(m_{i}^{t} - M_{i}^{t}\right).$$

Аналогично с максимумом, оцениваем всё снизу минимумов, кроме максимума

$$M_i^{t+1} \leqslant M_i^t + \delta \left(m_i^t - M_i^t \right).$$

$$-m_i^{t+1} \leqslant -m_i^t + \delta \left(m_i^t - M_i^t \right).$$

$$M_i^{t+1} - m_i^{t+1} \leqslant \left(M_i^t - m_i^t\right) \left(1 - 2\delta\right) \leqslant \left(1 - 2\delta\right)^{t+1} \to 0.$$

Теперь у b = bP

$$(I - P)b = 0$$

$$Rg\left(I - P\right) = n - 1$$

$$\sum b_i = 1$$

 P^{2^c}

$$bP^n0 > b$$
 $bP^{n+1} \to bP$

$$b = bP$$

Вернёмся к вопросу что происходит после поглощения.

$$\vartriangleleft$$
эргадический класс A $\widetilde{p} = \sum\limits_{a \in A} \left(b^o N R\right)_a$

$$\widetilde{b}^0 = \left(b^0 N R\right)_{A - \frac{1}{\widetilde{p}}}$$

 \exists предельное $b: \ \widetilde{b}^0A^n \to b$

Конечное распределение $b\widetilde{p}$

Скрытые Марковские модели. Мы решали до этого прямую задачу – брали м.ц. с извстными матрицами перехода и смотрели на их характеристики.

Есть обратная: Есть состояние и мы хотим узнать матрицу перехода.

Ещё задача: Есть немарковский процесс и мы хотим аппроксимировать его марковским.