HOMEWORK 1: THE COMPLEX PLANE DUE: WEDNESDAY, SEPTEMBER 18TH

- 1) Write down a piecewise function to determine the argument of any given complex number z = a + ib. Be sure to justify your assertions.
- 2) Verify the assertion that $re^{i\theta} \cdot se^{i\phi} = rse^{i(\theta+\phi)}$ by using the Cartesian representation of a complex number.
- 3) Given $w = re^{i\theta}$. r > 0, solve the equation $z^n = w$ explicitly. How many solutions are there? To simplify matters, you may give your solutions with $Arg(z) \in [0, 2\pi)$ instead of our usual $(-\pi, \pi)$.
- 4) Show that it is impossible to define a total ordering < on \mathbb{C} such that
 - 1) For any $z, w \in \mathbb{C}$, either z = w, z < w, or w < z.
 - 2) If $a, b, c \in \mathbb{C}$ and a < b, then a + c < b + c.
 - 3) If $a, b, c \in \mathbb{C}$ and 0 < a, then b < c implies ab < ac

(hint: What happens when you consider 0 < i and i < 0?)

5) Show that in polar coordinates, the Cauchy-Riemann equations are

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \qquad \qquad \frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$$

Therefore, if we define $\log(z) = \log(r) + i\theta$, where $z = re^{i\theta}$, then log is holomorphic in the region r > 0 and $-\pi < \theta < \pi$.

6) Show that the Laplacian

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

while acting on twice continuously differentiable functions satisfies the following equality:

$$\Delta = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} = 4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}$$

Why is this assumption necessary? Conclude that if f is holomorphic (with this assumption), then the real and imaginary parts are **harmonic**. That is to say $\Delta f = 0$.

7) Define a function $f: \mathbb{C} \to \mathbb{C}$ by

$$f(z) = f(x + iy) = \sqrt{|x||y|}$$

Show that although f satisfies the Cauchy-Riemann equations, f is not holomorphic at 0.