

Кластеризация

1. <1 000 000 объектов

1. <1 000 000 объектов На одной машине в оперативной памяти

1. <1 000 000 объектов На одной машине в оперативной памяти

2. 1 000 000 000 объектов

1. <1 000 000 объектов На одной машине в оперативной памяти

2. 1 000 000 000 объектов Вычисления на кластере машин

1. <1 000 000 объектов На одной машине в оперативной памяти

2. 1 000 000 000 объектов Вычисления на кластере машин

3. 1 000 000 000 000 объектов

1. <1 000 000 объектов На одной машине в оперативной памяти

2. 1 000 000 000 объектов Вычисления на кластере машин

3. 1 000 000 000 000 объектов Миллионы машин. Р2Р вычисления

Задачи с порядком 1 млрд объектов

- Learning to rank
 - 1 млрд сайтов (2014)
 - Объем текстовых данных ~500 Тб

Задачи с порядком 1 млрд объектов

- Learning to rank
 - 1 млрд сайтов (2014)
 - Объем текстовых данных ~500 Тб

- Recommendations
 - Месячная аудитория рунета 300 млн человек
 - 400 Тб логов в месяц

Задачи с порядком 1 трлрд объектов

• Поиск искусственных сигналов в данных радиотелескопа NASA (SETIHOME)

Задачи с порядком 1 трлрд объектов

• Поиск искусственных сигналов в данных радиотелескопа NASA (SETIHOME)

• Моделирование белков

Построение модели. Семплирование

• Выделить 0.1% - 1% данных

Построение модели. Семплирование

- Выделить 0.1% 1% данных
- Построить модель при помощи классических библиотек

Построение модели. Семплирование

- Выделить 0.1% 1% данных
- Построить модель при помощи классических библиотек
- В 90% случаев это работает!

- Неправильное выделение семпла
 - У нас 1 млрд строк лога
 - Берем семпл s=1%
 - И строим предсказание Т от фич А,В,С

- Неправильное выделение семпла
 - У нас 1 млрд строк лога
 - Берем семпл s=1%
 - И строим предсказание Т от фич А,В,С

$$P_{sample}(T) = \frac{n(T) \cdot s}{N \cdot s} = \frac{n(T)}{N} = P(T)$$

- Неправильное выделение семпла
 - У нас 1 млрд строк лога
 - Берем семпл s=1%
 - И строим предсказание Т от фич А,В,С

$$P_{sample}(T) = \frac{n(T) \cdot s}{N \cdot s} = \frac{n(T)}{N} = P(T)$$

$$P_{sample}(A) = \frac{n(A) \cdot s}{N \cdot s} = \frac{n(A)}{N} = P(A)$$

- Неправильное выделение семпла
 - У нас 1 млрд строк лога
 - Берем семпл s=1%
 - И строим предсказание Т от фич А,В,С

$$P_{sample}(T) = \frac{n(T) \cdot s}{N \cdot s} = \frac{n(T)}{N} = P(T)$$

$$P_{sample}(A) = \frac{n(A) \cdot s}{N \cdot s} = \frac{n(A)}{N} = P(A)$$

$$P_{sample}(A \cup T) = \frac{n(A \cup T) \cdot s^{2}}{N \cdot s} = \frac{n(A \cup T) \cdot s}{N} = P(A \cup T) \cdot s$$

Недостаток статистики

Недостаток статистики

$$N = 100\,000\,000$$
 $n(T) = 1000$ $n(A) = 200$

$$n(T) = 1000$$

$$n(A) = 200$$

$$n(A \cup T) = 100$$

Недостаток статистики

$$N = 100\,000\,000$$
 $n(T) = 1000$ $n(A) = 200$ $n(A \cup T) = 100$ $P(T|A) = \frac{n(A \cup T)}{n(A)} = 0.5$

Недостаток статистики

$$N = 100\,000\,000 \qquad n(T) = 1000 \qquad n(A) = 200 \qquad n(A \cup T) = 100$$

$$P(T|A) = \frac{n(A \cup T)}{n(A)} = 0.5$$

$$conf. interval = P \pm 1.96 \frac{\sqrt{(P \cdot (1 - P))}}{\sqrt{n(A)}} = 0.5 \pm 0.08$$

Недостаток статистики

• В полных данных

$$N = 100\,000\,000 \qquad n(T) = 1000 \qquad n(A) = 200 \qquad n(A \cup T) = 100$$

$$P(T|A) = \frac{n(A \cup T)}{n(A)} = 0.5$$

$$conf.\ interval = P \pm 1.96 \frac{\sqrt{(P \cdot (1 - P))}}{\sqrt{n(A)}} = 0.5 \pm 0.08$$

Недостаток статистики

• В полных данных

$$N = 100\,000\,000 \qquad n(T) = 1000 \qquad n(A) = 200 \qquad n(A \cup T) = 100$$

$$P(T|A) = \frac{n(A \cup T)}{n(A)} = 0.5$$

$$conf.\ interval = P \pm 1.96 \frac{\sqrt{(P \cdot (1 - P))}}{\sqrt{n(A)}} = 0.5 \pm 0.08$$

$$N = 1000000$$

$$n(T) = 10$$

$$n(A)=2$$

$$n(T)=10 \qquad \qquad n(A)=2 \qquad \qquad n(A\cup T)=1$$

Недостаток статистики

• В полных данных

$$N = 100\,000\,000 \qquad n(T) = 1000 \qquad n(A) = 200 \qquad n(A \cup T) = 100$$

$$P(T|A) = \frac{n(A \cup T)}{n(A)} = 0.5$$

$$conf. interval = P \pm 1.96 \frac{\sqrt{(P \cdot (1 - P))}}{\sqrt{n(A)}} = 0.5 \pm 0.08$$

$$N=1\,000\,000$$
 $n(T)=10$ $n(A)=2$ $n(A\cup T)=1$ $P(T|A)=\frac{n(A\cup T)}{n(A)}=0.5$

Недостаток статистики

• В полных данных

$$N = 100\,000\,000 \qquad n(T) = 1000 \qquad n(A) = 200 \qquad n(A \cup T) = 100$$

$$P(T|A) = \frac{n(A \cup T)}{n(A)} = 0.5$$

$$conf. interval = P \pm 1.96 \frac{\sqrt{(P \cdot (1 - P))}}{\sqrt{n(A)}} = 0.5 \pm 0.08$$

$$N = 1\,000\,000 \qquad n(T) = 10 \qquad n(A) = 2 \qquad n(A \cup T) = 1$$

$$P(T|A) = \frac{n(A \cup T)}{n(A)} = 0.5$$

$$conf. interval = P \pm 1.96 \frac{\sqrt{(P \cdot (1 - P))}}{\sqrt{n(A)}} = 0.5 \pm 0.69$$

• Большое количество фич

- Большое количество фич
- Чем больше фич, тем сложнее модель

- Большое количество фич
- Чем больше фич, тем сложнее модель
- Чем сложнее модель, тем проще она переобучается

- Большое количество фич
- Чем больше фич, тем сложнее модель
- Чем сложнее модель, тем проще она переобучается

В LSML приходится иметь дело с задачами, содержащими $10^3 - 10^6$ фич

• Использование редких событий и признаков

- Использование редких событий и признаков
- Использование большого числа фич

- Использование редких событий и признаков
- Использование большого числа фич
- Увеличение сложности моделей

- Способы разделения алгоритмов
 - Параллельность по данным

- Способы разделения алгоритмов
 - Параллельность по данным

схема master-worker

- Способы разделения алгоритмов
 - Параллельность по данным схема master-worker

– Паралельность по итерациям

- Способы разделения алгоритмов
 - Параллельность по данным схема master-worker
 - Паралельность по итерациямDAG

- Способы разделения алгоритмов
 - Параллельность по данным схема master-worker
 - Паралельность по итерациямDAG
- Пример: mapReduce парадигма.
- Map-only задачи паралельны по данным
- Map + reduce паралельность по итерациям

Распаралеливание алгоритмов

Как распаралеливаются классические алгоритмы в парадигме mapreduce

Распараллеливание можно аддитивные статистики

Признаки

$$\vec{x} = \begin{pmatrix} x^{(1)} \\ \dots \\ x^{(n)} \end{pmatrix}$$

Класс

Формула Наивного байейса:

$$P(y|x^{(1)},...,x^{(n)})=P(y)\frac{\prod_{i}P(x^{(i)}|y)}{C}$$

• Выражение $P(y) = \frac{v(y)}{v(all)} = \frac{\sum_{j} 1(y_{j} = y)}{\sum_{j} 1}$

• Выражение $P(y) = \frac{v(y)}{v(all)} = \frac{\sum_{j} 1(y_{j} = y)}{\sum_{j} 1}$

• Map:
$$(y_j, \Sigma_{sub})$$
 (total, Σ_{sub})

• Выражение $P(y) = \frac{v(y)}{v(all)} = \frac{\sum_{j} 1(y_j = y)}{\sum_{j} 1}$

• Map:
$$(y_j, \Sigma_{sub})$$
 $(total, \Sigma_{sub})$

• Reduce: (y_i, Σ) (total, Σ)

• Выражение

$$P(x^{(i)}|y) = \frac{v(x^{(i)},y)}{v(y)}$$

• Map:

$$((x^i, y_j); \Sigma_{sub})$$

• Reduce:

$$((x^i, y_j); \Sigma)$$

Пример: Naive Bayes. Асимптотика

Классический алгоритм

$$O(Nm+mc)$$

MapReduce алгоритм

$$O(\frac{Nm}{P} + mc \log P)$$

$$w^T \cdot x = 0$$

$$P_{w}(x) = \frac{1}{1 + \exp(-w \cdot x)}$$

$$l(w) = \sum_{i=1}^{n} y_i \log p(x_i) + (1 - y_i) \log (1 - p(x_i))$$

$$w = argmin_w l(w)$$

Метод Ньютона-Рафсона

$$w = w - H^{-1} \nabla_w l(w)$$

$$\nabla_{w} l(w) = \begin{vmatrix} \frac{\partial l(w)}{\partial w_{1}} \\ \dots \\ \frac{\partial l(w)}{\partial w_{n}} \end{vmatrix} \qquad H = \begin{vmatrix} \frac{\partial^{2} l(w)}{\partial w_{1} \partial w_{1}} & \dots & \frac{\partial^{2} l(w)}{\partial w_{1} \partial w_{n}} \\ \dots & \dots & \dots \\ \frac{\partial^{2} l(w)}{\partial w_{n} \partial w_{1}} & \dots & \frac{\partial^{2} l(w)}{\partial w_{n} \partial w_{n}} \end{vmatrix}$$

• Выражение
$$\frac{\partial l(w)}{\partial w_k} = \sum_{i=1}^m (y_i - p_w(x_i)) x_i^{(k)}$$

• Map:
$$grad_{sub}[k] = \sum_{i} (y - p_w(x_i)) x^{(k_i)}$$

$$(k, grad_{sub}[k])$$

• Выражение

$$\frac{\partial^2 l(w)}{\partial w_k \partial w_j} = \sum_{i=1}^m p_w(x_i) (p_w(x_i) - 1) x_i^{(j)} x_i^{(k)}$$

· Map:

$$H_{sub}[k,j] = \sum_{sub} \dots$$
$$((k,j); H_{sub}[k,j])$$

· Reduce:

$$H[k,j]=H_{sub}[k,j]$$

$$((k,j);H[k,j])$$

Логистическая регрессия. Асимптотика

←					m						
-1,23	1,50	-1,18	5,29	0,21	2,40	1,59	-0,05	0,66	-1,41	1,11	
0,33	0,95	-1,29	2,20	-0,15	-0,43	2,62	-0,77	-0,09	0,94	1,06	
-0,41	0,07	-2,23	3,66	0,09	0,20	-4,22	-1,18	-1,24	-0,89	0,91	\
-0,58	-0,87	-0,60	3,13	0,87	-0,16	4,50	1,04	-1,09	-0,71	-0,14	
-0,64	1,11	-0,03	3,49	-0,01	1,44	-4,29	-1,76	0,81	-0,42	0,43	
-0,12	0,05	-0,21	10,38	0,53	-2,75	0,32	0,61	-0,04	0,19	-0,15	X
-0,30	0,45	0,05	-4,48	-1,19	1,96	-0,61	1,31	2,49	-0,21	-0,28	
-3,49	0,33	1,30	5,04	0,15	-5,01	-1,97	-1,83	0,29	-0,96	0,51	
-1,53	0,79	1,31	-6,12	1,84	1,87	-2,60	-0,18	2,66	1,43	-0,08	
-0,88	-1,15	-0,13	-0,62	-0,77	-3,06	-0,52	-0,92	-1,40	-0,88	1,40	
-0,45	0,02	1,99	-1,57	-0,67	2,49	-1,90	1,15	1,20	-0,12	0,84	
-0,49	0,90	-0,58	-3,69	-1,11	2,02	-4,88	-1,68	0,65	-0,16	-0,61	
0,08	1,62	0,05	8,17	0,43	0,17	1,95	1,29	-1,16	-0,13	0,07	
-0,16	0,72	-1,26	0,21	-0,51	3,99	-0,91	2,24	0,55	-1,39	-0,49	
-0,08	-2,02	0,18	-0,67	-0,33	2,83	-6,51	0,05	-0,75	0,94	0,62	
0,75	-0,67	-0,22	2,15	1,23	-1,01	2,65	0,25	-1,88	-2,63	-2,52	
1,42	0,82	-0,54	-3,36	0,08	-0,08	2,16	0,26	-0,19	-0,08	1,37	
0,75	-0,50	1,94	9,18	-1,54	-4,92	0,18	-2,57	1,19	-2,56	2,63	
-1,10	-0,50	-0,82	7,41	-1,24	-1,72	-2,47	-0,39	0,45	-1,40	0,04	
-0,40	0,45	1,47	2,75	0,49	0,78	-1,03	0,36	-0,95	0,17	-1,13	

Классический алгоритм

$$O(Nm^2+m^3)$$

MapReduce алгоритм
$$O\big(\frac{Nm^2}{P} + \frac{m^3}{P} + m^2 \log P\big)$$

Асимптотика

Алгоритм	Классическая сложность	Сложность MapReduce			
Наивный Байес	O(Nm+mc)	$O(\frac{Nm}{P} + mc \log P)$			
К-средних	O(Nmc)	$O(\frac{Nmc}{P} + Nm\log P)$			
Логистическая регрессия	$O(Nm^2+m^3)$	$O(\frac{N m^2}{P} + \frac{m^3}{P} + m^2 \log P)$			
GDA	$O(Nm^2+m^3)$	$O(\frac{Nm^2}{P} + \frac{m^3}{P} + m^2 \log P)$			
SVM	$O(N^2m)$	$O(\frac{N^2m}{P} + m\log P)$			

Выводы

• LSML может дать профит!

Выводы

- LSML может дать профит!
- N и m велико требуется модификация алгоритмов