DIVISIBILITÉ ET NOMBRES PREMIERS

I) DIVISION EUCLIDIENNE

1) Définition:

Effectuer la division euclidienne (ou entière) de l'entier a par l'entier non nul b, c'est déterminer les entiers q et r vérifiant l'égalité :

$$a = b \times q + r$$
 avec $r < b$

2) Vocabulaire:

b s'appelle le

q s'appelle le

r s'appelle le

Ex 1 : Combien de boites de 36 macarons dois-je acheter pour pouvoir en donner 2 à chacun de mes 240 invités ?

Le nombre de macarons que je veux offrir est :

Divisons par

Ex 2 : Soit l'égalité $165 = 18 \times 8 + 21$ On partage ici 165 en 8 paquets de unités. Il reste alors

unités

Peut-on proposer un partage plus astucieux ?

Oui, car ici, le reste est plus grand que le

On écrira donc l'égalité :

II) MULTIPLES ET DIVISEURS D'UN NOMBRE

1) Définition:

Si le reste de la division d'un entier a par un entier b est nul, on dit que :

- a est un « multiple » de b
- a est « divisible » par b
- b est un « diviseur » de a

Ex 1: $408 = 12 \times 34 + 0$ est un multiple de est un diviseur de est divisible par

Ex 2 : Donner tous les diviseurs de 12 :

2) Critères de divisibilité

Un nombre est divisible:

- par 2 s'il est pair.
- par 3 si la somme de ses chiffres est divisible par 3.
- par 4 si le nbre formé par ses deux derniers chiffres est divisible par 4.
- par 5 si son dernier chiffre est 0 ou 5.
- par 6 s'il est divisible à la fois par 2 et par 3.
- par 9 si la somme de ses chiffres est divisible par 9.
- par 10 si son dernier chiffre est 0.

Ex: 3345 est-il divisible par 15?

III) NOMBRES PREMIERS

1) Définition

On appelle « nombre premier » tout entier positif qui admet exactement deux diviseurs : 1 et lui-même.

Remarques:

- 0 n'est pas premier car il admet une infinité de diviseurs
- 1 n'est pas premier car il n'est divisible que par 1
- 2 est premier car il n'est divisible que par 1 et 2
- 3
- 4

2) Crible d'Eratosthène

Déterminons les nombres premiers inférieurs à 50 :

Méthode:

- On parcours le tableau ci-dessous dans l'ordre croissant.
- On entoure chaque nombre premier et on barre tous ses multiples :

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

3) Décomposition d'un entier en produit de facteurs premiers

Ex 1 : Décomposer 780 en produit de facteurs premiers :

Donc $780 = 2^2 \times 3 \times 5 \times 13$

Ex 2: Même question avec 525:

Remarque:

La décomposition en produit de facteurs premiers est très utile notamment dans les calculs avec fractions : simplifications, multiplications, déterminer un dénominateur commun (comparaisons, additions et soustractions).

Ex 3 : Calculer A =
$$\frac{39}{780} + \frac{21}{525}$$

Ex 4 : Calculer B =
$$\frac{175}{780} \times \frac{52}{525}$$

Ex 5: Quels est le plus grand des diviseurs communs à 780 et 105?

PGCD(780, 105) =

Ex 6: Quel est le plus petit des multiples communs à 780 et 105?

PPCM(780, 105) =