Bayesian Infinite Automata David Pfau*, Nicholas Bartlett[†], Frank Wood[†]

Overview

- -nth-order Markov models, or m-gram models, are popular for learning sequences, but the size of the models blows up as n increases.
- -We relax the problem by expanding the class of models to include all *probabilistic deterministic* finite automata (PDFA)[1], which includes m-gram models as a special case
- -Inference is Bayesian we define a prior over PDFAs of arbitrary size, using hierarchical Pitman-Yor processes[2]. We call the model the Probabilistic Deterministic *Infinite* Automata since there is no bound on the possible number of states of a sample -Posterior inference via MCMC on natural language, DNA and synthetic grammars yield encouraging results

Finite Automata

The posterior of the PDIA is approximated with a mixture of PDFAs. From m-gram models to Hidden Markov Models, the model classes here form a simple hierarchy:

m-gram \subseteq PDFA \subseteq mixture of PDFA \subseteq PNFA = HMM*

(a) PNFA in mixture of PDFA (b) PNFA not in mixture of PDFA

Generative Model $\mathbf{O}1$ \mathbf{O}^2 $\mu \sim \text{Dir}(\alpha_0/|\mathbf{Q}|)$ \mathbf{q}_1 $\mathbf{q}12$ \mathbf{q}_0 $j=0...|\Sigma|$ $\phi_{\rm j} \sim {\rm Dir}(\alpha \mu)$ $\delta(q_i,\sigma_j) = \delta_{ij} \sim \phi_j$ i=0...|Q| \mathbf{q}_4 \mathbf{q}_6 $\pi_{\mathrm{qi}} \sim \mathrm{Dir}(\beta/|\Sigma|)$ i=0...|Q|Q5 $\xi_0 = q_0, \ \xi_t = \delta(\xi_{t-1}, x_{t-1})$ \mathbf{q}_4 **Q**87 $x_t \sim Mult(\pi \xi_t)$ \mathbf{q}_2 where Q – finite set of states $\mathbf{O}1$ \mathbf{O}_2 Σ – finite alphabet (iid probability vector) $\delta: Q \times \Sigma \rightarrow Q$ – transitions $\pi: \mathbb{Q} \times \Sigma \rightarrow [0,1]$ – emissions (iid probability vector) $q_0 \in Q$ – initial state $xt \in \Sigma$ – data at time t $\xi_t \in \mathbb{Q}$ – state at time t q0 q1 q3 q3 q3 q5 q2 q4 q5 q2 ... 0 0 2 2 1 2 1 0 ... $\alpha,\alpha_0,\beta\geqslant 0$ – hyperparams

The limit as $|\mathbf{Q}|{ o}\infty$ is well defined - a Hierarchical Dirichlet Process (HDP)[4]. Add discounts $d, d_0 \in [0,1]$ to make it a Hierarchical Pitman-Yor process $(d, d_0=0 \Leftrightarrow HDP)$. Also, specify base distribution H (here geometric). If μ and ϕ_j are marginalized out, then δ_{ij} are exchangeable.

Intuitively, δ_{ij} is likely similar to other $\delta_{i'j'}$, moreso if j = j'(same symbol emitted from different states). Draws from a PYP cluster together, and rich clusters get richer.

Inference

- MCMC sampler for posterior sample $\delta_{ij} | \delta_{-ij}, \pi, x_{0:t}$
- By conjugacy of π and x_t , $p(x_{0:t}|\delta,\pi)$ has closed form that only depends on counts of each emission from each state
- Thanks to exchangeability, δ_{ij} not encountered by the data can safely be ignored, and $p(\delta_{ij}|\delta_{-ij})$ has simple form
- Directly applying Gibbs sampling leads to problems if δ_{ij} is the only transition to state qi': this state would be left out of the conditional probability vector
- Instead use Metropolis-Hastings sampling for each δ_{ij}
- Propose from $\delta_{ij}|_{\delta-ij}$, accept from ratio of $p(x_{0:t}|_{\delta,\pi})$ for new and old δ_{ij} , sampling entries of δ from $\delta_{ij} | \delta_{-ij}$ as needed
- If proposal is accepted, remove entries from δ with 0 counts

Natural Language and DNA Prediction

		PDIA	PDIA-MAP	HMM-EM	bigram	trigram	4-gram	5-gram	6-gram	SSM
A	AIW	5.13	5.46	7.89	9.71	6.45	5.13	4.80	4.69	4.78
		365.6	379	52	28	382	2,023	5,592	10,838	19,358
D	NA	3.72	3.72	3.76	3.77	3.75	3.74	3.73	3.72	3.56
		64.7	54	19	5	21	85	341	1,365	314,166

Top rows: perplexity of held out data. Bottom: number of states

- Alice in Wonderland: 10k train, 4k test "alice was beginning to..."
- Mouse DNA: 150k train, 50k test "CGTATATGCGCC..."
- Controls: EM-trained HMM, HPYP smoothed n-gram[2], sequentiallytrained sequence memoizer[5]
- Average predictions superior to predictions of "best" or MAP sample from PDIA posterior

Synthetic Grammar Induction

Future Directions

- Evaluation on larger data sets
- More efficient sampling split-merge?
- How to tie together emission distributions between different states? (Like Kneser-Ney for m-grams)

References

- [1] Rabin, M. Probabilistic automata. *Information and control*, Elsevier, 1963, 6, 230-245.
- [2] Teh, Y. W. A Hierarchical Bayesian Language Model based on Pitman-Yor Processes. *Proceedings of the* Association for Computational Linguistics, 2006, 985-992.
- [3] Dupont, P.; Denis, F. & Esposito, Y. Links between probabilistic automata and hidden Markov models: probability distributions, learning models and induction algorithms. Pattern recognition, Elsevier, 2005, 38, 1349-137.
- [4] Teh, Y. W.; Jordan, M. I.; Beal, M. J. & Blei, D. M. Hierarchical Dirichlet Processes. Journal of the American Statistical Association, 2006, 101, 1566-1581.
- [5] Wood, F.; Archambeau, C.; Gasthaus, J.; James, L. & Teh, Y. W. A Stochastic Memoizer for Sequence Data. Proceedings of the 26th International Conference on Machine Learning, 2009, 1129-1136.

* technically, PNFA without final state = HMM[3], but those are the only models we consider here

{*Center for Theoretical Neuroscience, †Department of Statistics} Columbia University