- 1. Using truth tables or boolean postulates, prove that **XOR** is:
 - a. Commutative: $x \oplus y = y \oplus x$

X	У	$x \oplus y$	$y \oplus x$
1	1	0	0
1	0	1	1
0	1	1	1
0	0	0	0

- ... Since the highlighted columns match, the XOR operation is commutative.
- b. Associative: $x \oplus (y \oplus z) = (x \oplus y) \oplus z = x \oplus y \oplus z$

X	у	Z	y⊕z	$x \oplus (y \oplus z)$	$x \oplus y$	$(x \oplus y) \oplus z$
1	1	1	0	1	0	1
1	1	0	1	0	0	0
1	0	1	1	0	1	0
1	0	0	0	1	1	1
0	1	1	0	0	1	0
0	1	0	1	1	1	1
0	0	1	1	1	0	1
0	0	0	0	0	0	0

- : Since the highlighted columns match, the **XOR** operation is associative.
- 2. Prove that **XOR** is not distributive over **AND**, i.e., $x \oplus (yz) \neq (x \oplus y)(x \oplus z)$

X	У	\mathbf{Z}	yz	$x \oplus (yz)$	x⊕y	$x \oplus z$	$(x \oplus y)(x \oplus z)$
1	1	1	1	0	0	0	0
1	1	0	0	1	0	1	0
1	0	1	0	1	1	0	0
1	0	0	0	1	1	1	1
0	1	1	1	0	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

 \therefore Since the highlighted columns do not match, the **XOR** operation is not distributive over **AND**.