問13 次の表計算のワークシート及びマクロの説明を読んで、設問1,2に答えよ。

〔表計算の説明〕

ある科目を受講する学生を、知人関係の情報に基づいてグループ分けするプログラムを表計算ソフトで作成した。グループ分けする対象の学生は 50 人である。グループはそれぞれ 10 人で、各グループにはあらかじめ 1 人のグループ長が決められている。

[ワークシート:知人関係類似度行列]

任意の2学生の知人関係の情報を表現した"知人関係類似度行列"を作成した。ワークシート"知人関係類似度行列"の例を図1に示す。

	A	В	c	D	E	F	•••	AY	AZ
1		受講者番号	1	2	3	4		49	50
2	受講者番号	氏名	佐藤一郎	鈴木二郎	高橋三郎	田中四郎	•••	伊藤花子	山本礼子
3	1	佐藤一郎	0	0.117	0.133	0.111		0.052	0.136
4	2	鈴木二郎	0.117	0	0	0.133		0.133	0.157
5	3	高橋三郎	0.133	0	0	0		0.153	0.111
6	4	田中四郎	0.111	0.133	0	0		0.125	0.095
:	:	i	:	:	÷	;	:	i i	:
51	49	伊藤花子	0.052	0.133	0.153	0.125		0	0.150
52	50	山本礼子	0.136	0.157	0.111	0.095		0.150	0

図1 ワークシート"知人関係類似度行列"の例

- (1) 各学生には $1\sim50$ の受講者番号が振られている。セル $A3\sim A52$ には,1 から順番に受講者番号を入力する。セル $B3\sim B52$ には受講者番号に対応する氏名を入力する。同様にセル $C1\sim AZ1$ には受講者番号を,セル $C2\sim AZ2$ には氏名を入力する。
- (2) セル C3 ~ AZ52 には、対応する 2 人の知人関係の類似性をある指標に基づいて数値化した値(以下、類似度という)が格納されている。類似度は 0 以上 1 以下の数値である。各セルに対応する学生 2 人の組合せが同一であれば類似度は同じ値である。例えば、受講者番号 1 の佐藤一郎と受講者番号 2 の鈴木二郎の類似度に対応

するセル C4, D3 にはいずれも同じ値が格納される。また、同一学生同士に当たるセル C3, D4, …, AZ52 には0が入力されている。

〔ワークシート:グループ分け〕

ワークシート "知人関係類似度行列" を基に、図 2 に示すワークシート "グループ 分け" を作成した。

	A	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	P	Q
1		グループ番号	1	2	3	4	5			1	2	3	4	5			
2		グループ長	2	11	16	32	45	済		2	11	16	32	45			
3	1	佐藤一郎	0	0	0	0	1	1		-1	-1	-1	-1	-1	-1	16	1
4	2	鈴木二郎	1	0	0	0	0	1		-1	-1	-1	-1	-1	-1	16	1
5	3	高橋三郎	0	0	0	0	0	0		0	0.071	0.076	-1	0	0.076	13	3
6	4	田中四郎	0	0	0	0	0	0		0.133	0.125	0.133	-1	0.062	0.133	8	1
	1	:	:	:	:	:	÷	:	:	:	÷	:	:	:	:	÷	1
51	49	伊藤花子	0	0	0	1	0	1		-1	-1	-1	-1	-1	-1	16	1
52	50	山本礼子	0	0	0	1	0	1		-1	-1	-1	-1	-1	-1	16	1
53		定員充足	0	0	0	1	0										
54																	
55		受講者番号 18 の学生をグループ		1	に推薦する												

図2 ワークシート"グループ分け"

- (1) セル $A3 \sim A52$ には、1 から順番に受講者番号を入力する。セル $B3 \sim B52$ には、受講者番号に対応する氏名を入力する。
- (2) セル $C1 \sim G1$ には、1から順番にグループ番号を入力する。
- (3) セル C2~G2 には、各グループのグループ長の受講者番号を入力する。
- (4) セル $C3 \sim G52$ には、それぞれの学生(グループ長を含む)が、対応するグループに割り当てられている場合は1 を、そうでない場合には0 を入力する。
- (5) セル $H3 \sim H52$ には、対応する学生が既にいずれかのグループに割り当てられている場合は 1 が、そうでない場合は 0 が表示される。
- (6) セル C53 \sim G53 には、対応するグループに割り当てられた学生が 10 人であれば 1 が、そうでない場合は 0 が表示される。
- (7) 本ワークシートは、グループ分け作業を支援するための推薦機能を有している。

どのグループにも割り当てられていない学生と、所属する人数が 10 人に達していないグループのグループ長との組合せの中で、類似度が最大となる組合せを抽出し、その組合せに含まれる学生の受講者番号とグループ長が属するグループ番号を行55 に表示する。ただし、類似度が最大となる組合せが複数ある場合、次の優先順で最も優先度が高い組合せを表示する。

- ① 割り当てようとする学生の受講者番号が最も小さい組合せ
- ② ①に該当する組合せが複数存在する場合、その中でグループ長が属するグループ番号が最も小さい組合せ
- (8) 列」から列Qを、推薦機能のための計算領域に用いる。

設問 1	ワークシート	"グループ分け"	の推薦機能に関する次の記述中の	
15	こ入れる正しい答	答えを,解答群の	中から選べ。	

(1) セル J3 ~ N52 には、それぞれの学生と対応するグループ長との類似度の値を入力する。ただし、学生が既にいずれかのグループに割り当てられている場合、又は対応するグループに割り当てられている学生数が 10 人である場合には-1 が入るようにしたい。そこで、次の式をセル J3 に入力し、セル J3 ~ N52 に複写する。

IF (<u>a</u>, -1, 表引き (知人関係類似度行列 !\$C\$3 ~ \$AZ\$52, <u>b</u>))

(2) それぞれの学生を割り当てる候補となるグループを選定するために、次の 式をセル O3 に入力し、セル O4 ~ O52 に複写する。

最大(J3~N3)

さらに、次の式をセル Q3 に入力し、セル Q4 \sim Q52 に複写する。

照合一致(O3, J3~N3, 0)

(3) 推薦する受講者番号を表示するために、次の式をセル P3 に入力し、セル $P4 \sim P52$ に複写する。

順位(O3, O\$3~O\$52, 1)

さらに, 次の式をセル C55 に入力する。

С

(4) 推薦する学生の割当て先グループ番号を表示するために、次の式をセル G55 に入力する。

d

aに関する解答群

- ア 論理積(\$H3=0, C\$53=0) イ 論理積(\$H3=0, C\$53=1)

- ウ 論理積(\$H3=1, C\$53=0) エ 論理積(\$H3=1, C\$53=1)
- オ 論理和(\$H3=0, C\$53=0) カ 論理和(\$H3=0, C\$53=1)
- キ 論理和(\$H3=1, C\$53=0)
- ク 論理和(\$H3=1, C\$53=1)

bに関する解答群

- ア \$A3, C\$1 イ \$A3, C\$2 ウ A\$3, C\$1 エ A\$3, C\$2

cに関する解答群

- ア 照合一致(1, P3~P52, 0) イ 照合一致(50, P3~P52, 0)
- ウ 照合検索(1, P3~P52, O3~O52) エ 照合検索(50, P3~P52, O3~O52)
- 才 条件付個数 $(H3 \sim H52, =1)$ 为 条件付個数 $(O3 \sim O52, =-1)$
- キ 条件付個数(O3 \sim O52, \neq -1)

dに関する解答群

- ア 整数(条件付個数(H3~H52,=1)/10)+1
- イ 表引き(Q3~Q52, C55, 1)
- ウ 照合一致(C55, P3~P52,0)
- 工 照合検索(C55, P3~P52, O3~O52)
- 才 照合検索(C55, Q3~Q52, A3~A52)
- 力 条件付個数(C53~G53,=1)+1

- 設問 2 ワークシート "グループ分け"のセル $C2 \sim G2$ にグループ長の受講者番号を入力して実行すると以後のグループ分け処理を全て自動化するマクロ Grouping を,ワークシート "グループ分け" に格納した。マクロ Grouping は次の手順で処理を行う。
 - ① セル C3~G52 を全て 0 で初期化する。
 - ② 5 人のグループ長をそれぞれのグループに割り当てる。つまりセル C3 ~ G52 の中で対応するセルの値を1に変更する。
 - ③ 推薦機能によって、推薦する学生の受講者番号はセル C55 に、グループ番号はセル G55 に表示されるので、セル C3 \sim G52 の中で対応するセルの値を 1 に変更する。
 - ④ 全員がいずれかのグループに割り当てられるまで③を繰り返す。

マクロ Grouping 中の に入れる正しい答えを、解答群の中から選べ。

〔マクロ: Grouping〕

○マクロ: Grouping

○数値型:I, J, NumUsers, NumGroups

• NumUsers ← 50

NumGroups ← 5

e, gに関する解答群

- ア 相対(B2, C55, I) ← 1
- イ 相対(B2, C55, G55) ← 1
- ウ 相対(B2, I, G55) ← 1
- 工 相対(B2, I, 相対(B2, 0, I)) ← 1
- 才 相対(B2, I, 相対(B2, C55, I)) ← 1
- 力 相対(B2, 相対(B2, 0, I), I) ← 1
- キ 相対(B2, 相対(B2, C55, I), I) ← 1
- ク 相対(B2, 相対(B2, 0, G55), I) ← 1

fに関する解答群

- ア NumGroups オ NumGroups * NumGroups
- ウ NumUsers * (NumGroups 1)
- オ NumUsers * NumGroups カ NumUsers + NumGroups
- キ NumUsers NumGroups ク NumUsers / NumGroups