Instituto Tecnológico Autónomo de México Trabajo Final Simulación

Alumnos:

•	Patricio Ancona Roche	132111
•	losé Pablo Barrera Karrer	123998

Fecha de entrega: 18/Diciembre/2014

I. Resumen Ejecutivo

El problema consiste en estimar la pérdida agregada de una cartera crediticia. Se Utilizarán dos modelos de pérdida agregada que permitirán conocer la pérdida total de un conjunto de individuos.

Dichos modelos son **Modelo individual** y **Modelo colectivo**, los cuales agrupan la información de forma distinta.

Haciendo un análisis de los datos con el modelo individual tenemos una esperanza de pérdida agregada de 1,158.6 PESOS en 0.516262 segundos. Realizando el mismo análisis con el modelo colectivo la pérdida agregada fue de 3,332.1 PESOS en 24.064620 segundos.

II. Introducción

Una cartera crediticia representa el saldo de montos efectivamente entregados a los acreditados más los intereses devengados no cobrados correspondientes. Estos montos no siempre son pagados, por lo que existe una probabilidad de riesgo de incumplimiento de pago.

En este problema, se espera conocer la esperanza de incumplimiento de una cartera crediticia específica.

Para esto, se utilizaron los métodos ya mencionados, los cuales serán explicados más a detalle a continuación.

III. Metodología

Supuestos:

- La información de la muestra fue tomada del documento de Excel proporcionado.
- Sus respectivas desviaciones estándar y esperanza teórica se calcularon directamente en Excel.

$$\mu = p \cdot \sum f_k$$

$$f_k$$
 = valor del k – ésimo préstamo

El cálculo de los tamaños de simulación se hicieron con la siguiente fórmula:

$$N = \sum_{j=1}^{\infty} n_j, n_j = \left(\frac{\sigma \cdot Z_{\frac{1-\alpha}{2}}}{c}\right)^2, c = 10$$

Los componentes de riesgo de cada grupo utilizados son los siguientes:

Grupo	Industrial	Construcci ón	Comercio	Servicios
p_j	0.70%	0.90%	0.65%	0.60%
ρ_j	0.09%	0.04%	0.05%	0.07%

- La correlación extragrupo $(\rho_{i,j})$ es de .5%.
- lacktriangle La información será analizada cada grupo por separado. (i.e. se calculó cada L_i de forma individual).

1) Modelo Individual (Ver código 1)

Tomando los supuestos anteriormente mencionados se siguieron los siguientes pasos:

1. Calibración de los parámetros u, ρ_j y $\widetilde{\rho}$.

$$u = \Phi^{-1}(p)$$

$$\rho_{j} = [r : \Phi_{(2)}(u, u; r) = p_{j}^{2} + \rho_{j} \cdot p_{j}(1 - p_{j})]$$

$$\widetilde{\rho} = \left\{ r : \min \left\{ \sum_{i < j} \left[\Phi\left(u_i, u_j; r\right) - \left(p_i p_j + \rho_{i,j} \cdot \sqrt{p_i \left(1 - p_i\right) p_j \left(1 - p_j\right)}\right) \right]^2 \right\} \right\}$$

- 2. Simulación de las variables latentes X_i para así hacer la suma de los montos con la restricción X_i < u.
- 3. Cálculo de los parámetros a comparar (media, varianza, sesgo, kurtosis y cuartiles).

2) Modelo Individual con reducción de varianza (Ver código 2)

Los pasos realizados fueron los siguientes:

- 1. La calibración de los parámetros u, ρ_j y $\widetilde{\rho}$ se hizo de igual manera que en el Modelo Individual.
- 2. La primera mitad del vector L se crea de la misma manera que el método sin reducción de varianza.
- 3. La segunda mitad se calculó utilizado la variable antitética de L con la siguiente fórmula:

$$L\left(\frac{N}{2}+i\right) = \mu - \sigma \cdot Z, Z \quad Normal(0,1)$$

 $L_i = i - \acute{e}sima$ entrada del vector L

L=Vector con la deuda simulada

N = Número de simulaciones a realiza r

Tomando en cuenta que L se distribuye $Normal(\mu,\sigma^2)$, parámetros calculados directamente en Excel.

- 4. Contabilización de entradas de L_i que son mayores a $2.5 \cdot \mu$
- 5. Cálculo de los parámetros a comparar (media, varianza, sesgo, kurtosis y cuartiles).

3) Modelo Colectivo (Ver código 3)

Los pasos realizados fueron los siguientes:

- 1. La calibración de los parámetros u, ρ_j y $\tilde{\rho}$ se hizo de igual manera que en el Modelo Individual.
- 2. Cálculo de p

$$p = \Phi\left(\frac{u_{j} - \sqrt{\widetilde{\rho} \cdot Z_{0}} - \sqrt{\rho_{j} - \rho} \cdot Z}{\sqrt{1 - \widetilde{\rho}}}\right), Z \quad Normal(0, 1)$$

3. Cálculo de k

$$K_j$$
 Binomial (n_j, p)

con la p calculada en el paso 2

4. Cálculo de L

$$L = \sum_{j=1}^{m} L_{j}, L_{j} = \sum_{k=1}^{K_{j}} f_{D_{k}}^{(j)}$$

 $f_{D_k}^{(j)} = monto\ prestado\ al\ k - \acute{e}simo\ acreditado$

 $D_{k}^{\square} {=} \mathit{Variable}$ aleatoria que denota al número de acreditado que incumplió

IV. Resultados

MODELO INDIVIDUAL (ver código 1)

Histograma

• Diagrama de caja y brazos

Tabla de información general

INDUSTRIA	CONSTRUCC	COMERCI	SERVICIO	TOTAL
L	IÓN	0	S	ES

MEDIA	315.5785	405.4743	226.5132	210.9963	1158.5 623
VARIANZA	325850	350340	213140	188330	269415
SESGO	2.4803	1.9287	3.1369	2.5655	2.5278 5
KURTOSIS	10.3982	7.2409	16.0836	9.9462	10.917 225
QUARTIL 1	0	0	0	0	0
QUARTIL 2	0	92	0	0	92
QUARTIL 3	389	610	251	188.5	1438.5
QUARTIL 4	4867	4679	5219	3547	18312
QUANTIL 95	1453	1706	1236.8	1153	5548.8

• Tiempo de ejecución: 0.516262 segundos.

MODELO INDIVIDUAL CON REDUCCIÓN DE VARIANZA (ver código 2)

Histograma

Diagrama de caja y brazos

• Tabla de información general

	INDUSTRIA L	CONSTRUCC IÓN	COMERCI O	SERVICIO S	TOTAL ES
MEDIA	305.8461	422.7015	228.3159	197.8730	1154.7 365
VARIANZA	271910	284850	204760	201280	240700
SESGO	1.4396	1.4150	1.3834	1.2674	1.3763 5
KURTOSIS	7.9919	6.6666	7.9947	7.3779	7.5077

					75
QUARTIL 1	0	0	0	0	0
QUARTIL 2	133.1220	318.7176	55.0000	0	506.83 96
QUARTIL 3	575.8823	701.0000	436.4854	409.1101	2122.4 778
QUARTIL 4	4537	4743	4249	4104	17633
QUANTIL 95	1226.2	1395.2	1068	1054.6	4744

- Tiempo de ejecución: 0.897302 segundos.
- Probabilidad de que la pérdida agregada exceda 2.5 veces a la media teórica:

	INDUSTRIAL	CONSTRUCC IÓN	COMERCIO	SERVICIOS
PROBABILID AD	0.3995	0.4307	0.3842	0.3713

MODELO COLECTIVO (ver código 3)

Histograma

• Diagrama de caja y brazos

• Tabla de información general

	INDUSTRIA L	CONSTRUCC IÓN	COMERCI O	SERVICIO S	TOTAL ES
MEDIA	880.6	1096.6	698.1	656.8	3332.1
VARIANZA	879350	991400	655210	638170	791032 .5
SESGO	1.4287	1.1717	1.7413	1.6574	1.4997 75
KURTOSIS	5.4185	4.5017	7.0378	6.4416	5.8499
QUARTIL 1	83	301.5	26	0	410.5
QUARTIL 2	614	855	453	352	2274
QUARTIL 3	1348	1679	1070	1081.5	5178.5

QUARTIL 4	7729	7729	6913	6776	29147
QUANTIL 95	2.8270	3022.6	2327.6	2255.3	7608.3 27

• Tiempo de ejecución: 24.064620 segundos.

COMPARACIÓN DE MÉTODOS

	TEÓDICO	INIDI) (IDIIA)	INDIVIDUAL	COLECTIVO
	TEÓRICO	INDIVIDUAL	CON REDUCCIÓN	COLECTIVO
			DE VARIANZA	
MEDIA	1,152.794	1,158.5623	1,154.7365	3,332.1
VARIANZ	220,968.8	269,415	240,700	791,032.5
A	52			
TIEMPO		0.516262	0.897302	24.064620
DE	-			
EJECUCI				
ÓN				

Con la tabla anterior se puede observar que el método COLECTIVO no es nada eficiente en términos de media, varianza y tiempo de ejecución. A diferencia de esto, el método INDIVIDUAL resulto muy eficiente (la media y varianza son muy cercanas a las teóricas y el tiempo de ejecución es poco).

Específicamente, el método INDIVIDUAL CON REDUCCIÓN DE VARIANZA es el mejor, ya que la media simulada sigue siendo eficiente y la disminución de varianza es preferible a pesar del muy pequeño aumento en el tiempo de ejecución (.3 segundos).

V. Anexos

Comandos generales:

>> A1=xlsread('datos1.xlsx');

%instrucción que lee el primer conjunto de datos (Industrial).

>> A2=xlsread('datos2.xlsx');

%instrucción que lee el segundo conjunto de datos (Construcción).

>> A3=xlsread('datos3.xlsx');

%instrucción que lee el tercer conjunto de datos (Comercio).

>> A4=xlsread('datos4.xlsx');

%instrucción que lee el cuarto conjunto de datos (Servicios).

>> P=[.007,.009,.0065,.006];

%Instrucción que crea el vector con las probabilidades de incumplimiento.

>> RHO=[.0009,.0004,.0005,.0007];

%Instrucción que crea el vector con los coeficientes de correlación intragrupo

>> N=[9844,7499,8323,8373];

%Instrucción que crea el vector con los números de simulación calculados anteriormente.

- >> mod1(N,RHO,P,A1,A2,A3,A4) %Modelo individual
- >> mod2(N,RHO,P,A1,A2,A3,A4) %Modelo colectivo
- >> varmod1(N,RHO,P,A1,A2,A3,A4) %Modelo individual con reducción de varianza
- >> hist (W_i) %Generador de histogramas.
- >> boxplot(W_i) %Generador de Diagrama de caja y brazos

Código 1

```
function [ W1, W2, W3, W4 ] = mod1( N, RHO, p, A1, A2, A3, A4 )
%Calibración u y rho j
for i=1:4
                u(i) = norminv(p(i));
                 fun = Q(r) (mvncdf([u(i); u(i)], [0; 0], [1 r; r 1]) - (p(i)^2 +
RHO(i) *p(i) * (1-p(i)));
                r0 = 0.5;
                rho(i) = fzero(fun, r0);
end
%Calibración de Rho gorro
aux=0;
fun2=@(r) ((mvncdf([u(1);u(2)],[0;0],[1 r;r 1]) -
 (p(1)*p(2)+.005*sqrt(p(1)*(1-p(2))*p(2)*(1-p(2))))^2)+
 (mvncdf([u(1);u(3)],[0;0],[1 r;r 1]) -
 (p(1)*p(3)+.005*sqrt(p(1)*(1-p(1))*p(3)*(1-p(3))))^2)+
 (mvncdf([u(1);u(4)],[0;0],[1 r;r 1]) -
 (p(1)*p(4)+.005*sqrt(p(1)*(1-p(1))*p(4)*(1-p(4))))^2)+
 (mvncdf([u(2);u(3)],[0;0],[1 r;r 1]) -
 (p(2)*p(3)+.005*sqrt(p(2)*(1-p(2))*p(3)*(1-p(3))))^2)+
 (mvncdf([u(2);u(4)],[0;0],[1 r;r 1]) -
 (p(2) * p(4) + .005 * sqrt(p(2) * (1-p(2)) * p(4) * (1-p(4))))^2) +
 (mvncdf([u(3);u(4)],[0;0],[1 r;r 1]) -
 (p(3)*p(4)+.005*sqrt(p(3)*(1-p(3))*p(4)*(1-p(4))))^2));
rhog=fminbnd(fun2,0,1);
%Indicador de tipo de grupo
a=1;
while a<5
                if a==1
                                V=A1;
                else
                                 if a==2
                                                  V=A2;
                                 else
                                                  if a==3
                                                                  V=A3;
                                                 else
                                                                  V=A4;
                                                 end
                                end
                end
n=length(V);
%Calculo de montos de incumplimiento
L=zeros(1,n);
Z0=randn;
for h=1:N(a)
                L(h) = 0;
                for i=1:n
                                 Z(i) = randn;
                                E(i) = randn;
                                X(i) = \operatorname{sqrt}(\operatorname{rhog}) * Z0 + \operatorname{sqrt}(\operatorname{rho}(a) - \operatorname{rhog}) * Z(i) + \operatorname{sqrt}(1 - \operatorname{rhog}) * Z(
rho(a))*E(i);
                                                 if X(i) < u(a)
                                                                  L(h) = L(h) + V(i);
                                                  end
```

```
end
end
%Cálculo de factores a comparar
Media(a) = mean(L);
Varianza(a) = var(L);
Sesgo(a) = skewness(L);
Kurtosis(a) = kurtosis(L);
Quartil1(a) = quantile(L, .25);
Quartil2(a) = quantile(L,.5);
Quartil3(a) = quantile(L, .75);
Quartil4(a) = quantile(L, 1);
Quartil95(a) = quantile(L, .95);
    if a==1
        W1=L;
    else
         if a==2
             W2=L;
         else
             if a==3
                 W3=L;
             else
                  W4=L;
             end
         end
    end
a = a + 1;
end
%Impresión de resultados
Media
Varianza
Sesgo
Kurtosis
Quartil1
Quartil2
Quartil3
Quartil4
Quartil95
end
```

Código 2

```
function [ ] = varmod1( N, RHO, p, A1,A2,A3,A4 )
MT=[307.013,422.811,220.428,202.542];
DT=[506.20,441.79,465.44,466.84];
%Calibración u y rho j
for i=1:4
    u(i)=norminv(p(i));
    fun = @(r) (mvncdf([u(i); u(i)],[0; 0],[1 r; r 1]) - (p(i)^2 + RHO(i)*p(i)*(1-p(i))));
    r0 = 0.5;
    rho(i) = fzero(fun,r0);
end
%Calibración de Rho gorro
aux=0;
fun2=@(r) ((mvncdf([u(1);u(2)],[0;0],[1 r;r 1]) - (p(1)*p(2)+.005*sqrt(p(1)*(1-p(2))*p(2)*(1-p(2))))^2)+
```

```
(mvncdf([u(1);u(3)],[0;0],[1 r;r 1]) -
(p(1)*p(3)+.005*sqrt(p(1)*(1-p(1))*p(3)*(1-p(3))))^2)+
(mvncdf([u(1);u(4)],[0;0],[1 r;r 1]) -
(p(1)*p(4)+.005*sqrt(p(1)*(1-p(1))*p(4)*(1-p(4))))^2)+
(mvncdf([u(2);u(3)],[0;0],[1 r;r 1]) -
(p(2)*p(3)+.005*sqrt(p(2)*(1-p(2))*p(3)*(1-p(3))))^2)+
(mvncdf([u(2);u(4)],[0;0],[1 r;r 1]) -
(p(2) * p(4) + .005 * sqrt(p(2) * (1-p(2)) * p(4) * (1-p(4))))^2) +
(mvncdf([u(3);u(4)],[0;0],[1 r;r 1]) -
(p(3)*p(4)+.005*sqrt(p(3)*(1-p(3))*p(4)*(1-p(4))))^2));
rhog=fminbnd(fun2,0,1);
%Indicador de tipo de grupo
a=1;
while a<5
     cont=0;
     if a==1
         V=A1;
     else
         if a==2
              V=A2;
         else
              if a==3
                   V=A3;
              else
                   V=A4;
              end
         end
    end
n=length(V);
%Calculo de montos de incumplimiento
L=zeros(1,n);
Z0=randn;
for j=1:ceil(N(a)/2)
     L(j) = 0;
     for i=1:n
         Z(i) = randn;
         E(i) = randn;
         X(i) = \operatorname{sqrt}(\operatorname{rhog}) * \mathbb{Z}0 + \operatorname{sqrt}(\operatorname{rho}(a) - \operatorname{rhog}) * \mathbb{Z}(i) + \operatorname{sqrt}(1 - i)
rho(a))*E(i);
              if X(i) < u(a)
                   L(\dot{j}) = L(\dot{j}) + V(\dot{i});
              end
    end
     Z=randn;
    L(ceil(N(a)/2)+j)=MT(a)-DT(a)*Z;
     if L(j) \ge MT(a)
         cont=cont+1;
     if L(ceil(N(a)/2)+j)>=MT(a)
         cont=cont+1;
     end
end
proba(a) = cont/N(a);
%Cálculo de factores a comparar
Media(a) = mean(L);
Varianza(a) = var(L);
Sesgo(a) = skewness(L);
```

```
Kurtosis(a) = kurtosis(L);
Quartil1(a) = quantile(L, .25);
Quartil2(a) = quantile(L,.5);
Quartil3(a) = quantile(L, .75);
Quartil4(a) = quantile(L,1);
Quartil95(a) = quantile(L, .95);
    if a==1
         W1=L;
    else
         if a==2
             W2=L;
         else
             if a==3
                 W3=L;
             else
                 W4=L;
             end
         end
    end
a=a+1;
end
%Impresión de resultados
Media
Varianza
Sesao
Kurtosis
Quartil1
Ouartil2
Quartil3
Quartil4
Quartil95
proba
end
```

Código 3

```
function [ W1, W2, W3, W4 ] = mod2( N, RHO, p, A1, A2, A3, A4 )
%Calibración u y rho j
for i=1:4
    u(i) = norminv(p(i));
    fun = Q(r) (mvncdf([u(i); u(i)], [0; 0], [1 r; r 1]) - (p(i)^2 +
RHO(i)*p(i)*(1-p(i)));
    r0 = 0.5;
    rho(i) = fzero(fun, r0);
end
%Calibración de Rho gorro
aux=0;
fun2=@(r) ((mvncdf([u(1);u(2)],[0;0],[1 r;r 1]) -
(p(1)*p(2)+.005*sqrt(p(1)*(1-p(2))*p(2)*(1-p(2))))^2)+
(mvncdf([u(1);u(3)],[0;0],[1 r;r 1]) -
(p(1)*p(3)+.005*sqrt(p(1)*(1-p(1))*p(3)*(1-p(3))))^2)+
(mvncdf([u(1);u(4)],[0;0],[1 r;r 1]) -
(p(1)*p(4)+.005*sqrt(p(1)*(1-p(1))*p(4)*(1-p(4))))^2)+
(mvncdf([u(2);u(3)],[0;0],[1 r;r 1]) -
(p(2)*p(3)+.005*sqrt(p(2)*(1-p(2))*p(3)*(1-p(3))))^2)+
(mvncdf([u(2);u(4)],[0;0],[1 r;r 1]) -
(p(2)*p(4)+.005*sqrt(p(2)*(1-p(2))*p(4)*(1-p(4))))^2)+
```

```
(mvncdf([u(3);u(4)],[0;0],[1 r;r 1]) -
(p(3)*p(4)+.005*sqrt(p(3)*(1-p(3))*p(4)*(1-p(4))))^2));
rhog=fminbnd(fun2,0,1);
%Indicador de tipo de grupo
a=1;
while a<5
    if a==1
        V=A1;
    else
        if a==2
             V=A2;
        else
             if a==3
                 V=A3;
             else
                 V=A4;
             end
        end
    end
n=length(V);
%Calculo de montos de incumplimiento
Z0=randn;
for j=1:N(a)
    K = 0;
    for i=1:n
        Z=randn;
        p=normpdf((u(a)-sqrt(rhog)*Z0-sqrt(rho(a)-rhog)*Z)/(sqrt(1-
rhoq)));
        U=rand;
             if U<p
                 K=K+1;
             end
    end
    resp=0;
    for h=1:K
        b=ceil(rand*(n-1))+1;
        x = V(b);
        resp= resp + x;
    end
    L(j) = resp;
end
%Cálculo de factores a comparar
Media(a) = mean(L);
Varianza(a) = var(L);
Sesgo(a) = skewness(L);
Kurtosis(a) = kurtosis(L);
Quartil1(a) = quantile(L, .25);
Quartil2(a) = quantile(L, .5);
Quartil3(a) = quantile(L, .75);
Quartil4(a) = quantile(L,1);
Quartil95(a) = quantile(L, .95);
    if a==1
        W1=L;
    else
        if a==2
             W2=L;
        else
```

```
if a==3
                ₩3=L;
            else
               ₩4=L;
            end
        end
    end
a = a + 1;
end
%Impresión de resultados
Media
Varianza
Sesgo
Kurtosis
Quartil1
Quartil2
Quartil3
Quartil4
Quartil95
end
```