IN THE CLAIMS:

1. (Currently Amended) Method for determining the storage state of an ammonia-adsorbing SCR catalyst, wherein the change in at least one physical property of the SCR catalyst changes on account of the NH₃ storing process, said method comprising:

applying a measuring pickup to the SCR catalyst;

sensing a physical property an electrical impedance of the SCR catalyst from said measuring pickup wherein the sensing of the impedance takes place at one or more frequencies from the frequency range between 0 Hz and an upper cut-off frequency, at which the wavelength corresponding to the measuring frequency is significantly less than the dimensions of the measuring arrangement; and

determining the storage state on the basis of said physical property electrical impedance.

- 2. (Currently Amended) Method according to Claim 1, wherein the sensing of the electrical impedance a physical property is carried out at a plurality of points of the SCR catalyst.
- 3-5. (Cancelled)

- 6. (Original) Method according to Claim 4, wherein the sensing of the electrical impedance occurs with either two electrodes, a conductor loop, or an inter-digital structure.
- 7. (Currently Amended) Method according to Claim [[6]] 2, wherein one of said plurality of points is near the inlet of the SCR catalyst, and another of said plurality of points is disposed in the rearward quarter of the SCR catalyst.

8-9. (Cancelled)

10. (Currently Amended) Method for determining the storage state of an ammonia-adsorbing SCR catalyst, said SCR catalyst adapted for use in an exhaust gas stream, said method comprising:

placing a material identical or similar to the SCR catalyst material with regard to its physical properties, said material being arranged in the exhaust-gas stream in addition to the SCR catalyst, said material being arranged in the exhaust-gas stream in addition to the SCR catalyst, said material includes at least one physical property that changes with the NH₃ storing process;

applying said material to a measuring pickup;

sensing a physical property an electrical impedance of said material from said measuring pickup wherein the sensing of the impedance takes place at one or more frequencies from the frequency range between 0 Hz, i.e. d.c. voltage, and an upper cut-off frequency, at which the wavelength corresponding to the

Amendment dated November 21, 2003

measuring frequency is significantly less than the dimensions of the measuring

arrangement; and

determining the storage state on the basis of said physical property

electrical impedance.

11. (Currently Amended) Method according to Claim 10, wherein the

sensing of the electrical impedance a physical property is carried out at a

plurality of points of the SCR catalyst.

12-14. (Cancelled)

15. (Withdrawn) Apparatus for carrying out the method according to Clam 14,

wherein the measuring pickup for sensing the complex electrical impedance

includes a substrate having two generally flat sides, on one flat side either a

conductor or electrode structure is applied, and on the other flat side an

electrical heater is applied, the material being applied on the flat side that is

provided with the conductor or electrode structure.

16. (Withdrawn)Apparatus according to Claim 15, wherein either the

conductor or electrode structure is an inter-digital structure.

17. (Withdrawn)Apparatus according to Claim 16, wherein the substrate is

selected from silicon, quartz or a ceramic, and the electrical heater has 100 nm to

-4-

Application Serial No.: 09/608,761 Reply to Advisory Action mailed October 27, 2003 Amendment dated November 21, 2003

50 µm thick sheets of metal, and the conductor or electrode structure is

constructed of metal and has a layer thickness of between 100 nm and 100 µm

and the material has a layer thickness of between 100 nm and 1000 µm

18. (Cancelled)

19. (Withdrawn) Apparatus for carrying out the method according to Claim 18,

wherein the measuring pickup for sensing the thermal electromotive force

includes a substrate having two generally flat sides, on one flat side an electrical

heater is applied on the other flat side the material and at least two pairs of

thermocouples are applied.

20. (Withdrawn)Apparatus according to Claim 19, wherein the substrate

consists of silicon, quartz or a ceramic, and the electrical heater has 100 nm to

100 µm thick sheets of metal.

21. (Cancelled)

22. (Withdrawn) Apparatus for carrying out the method according to Claim 21,

wherein the measuring pickup for sensing the change in mass of the material

includes a vibrating quartz crystal on which electrical excitation electrodes are

applied on both sides, the material being applied at least on one excitation

electrode.

- 5 -

Application Serial No.: 09/608,761 Reply to Advisory Action mailed October 27, 2003 Amendment dated November 21, 2003

23. (Withdrawn) Apparatus for carrying out the method according to Claim 21,

wherein the measuring pickup for recording the change in mass of the substitute

material is constructed as follows: the laminar substitute material forms within

a surface wave sensor the propagation path of a surface wave.

24. (New) Method for determining the storage state of an ammonia-adsorbing

SCR catalyst, wherein the change in at least one physical property of the SCR

catalyst changes on account of an NH3 storing process, said method comprising:

applying a measuring pickup to the SCR catalyst;

sensing one of a thermal electromotive force of the SCR catalyst and the

SCR catalysts' response to temperature changes, said sensors being provided by

said measuring pickup; and

determining the storage state on the basis of said one of said thermal

electromotive force and the catalysts' response to temperature changes.

25. (New) The method according to Claim 24, wherein the sensing is carried

out at a plurality of points of the SCR catalyst.

26. (New) The method according to Claim 25, wherein one of said plurality of

points is near an inlet of the SCR catalyst, and another one of said plurality of

points is disposed in the rearward quarter of the SCR catalyst.

- 6 -