Classical Mechanics Lecture #2

Generalization to many particles

Newfors laws would not be useful if they only applied to single particles. However, with the help of the third law, it turns ont we can derive a simple form of Newton's 2nd law that describes extended objects. These extended objects can be thought of a collection of print particles of a continuum of small parts. For now we assume that our system consists of a large number of discrete small particles. Let the total number of particles be N (where N can be large). We also assume that the particles interact with each other, i.e., they exert forces on each other. Then if we take the ith particle from this collection, then the total force on that particle would be:

Fi = \(\) F \(\) F \(\) Force on the ith partide from onlyide the

system of N particles.

Torce on ith particle due to the

j-th particle.

We assume that the particle does not apply any force on itself. Then the total force on the whole system will be the sum of the forces on all the particles:

$$\overrightarrow{F} = \sum_{i=1}^{N} \overrightarrow{F}_{i}$$

$$\overrightarrow{i} = (23 \cdot ... \cdot N) = \sum_{i=1}^{N} \left\{ \sum_{j \neq i} \overrightarrow{F}_{ij} + \overrightarrow{F}_{i} \right\}$$

$$\overrightarrow{F}_{13} \overrightarrow{F}_{23} \cdot ... \cdot \overrightarrow{F}_{12} = \sum_{i,j} \overrightarrow{F}_{ij} + \sum_{i} \overrightarrow{F}_{ij} + \sum_{i} \overrightarrow{F}_{ij}$$

$$\overrightarrow{F}_{13} \overrightarrow{F}_{23} \cdot ... \cdot \overrightarrow{F}_{12} = \sum_{i,j} \overrightarrow{F}_{ij} + \sum_{i} \overrightarrow{F}_{ij} + \sum$$

			Fex	主革					
Now	define	the to	fal mas	s of	the	system	n fo	be	
			M =	Σmi					particles
				, (nasses	of the	indiv	ridud	particles
and t	the Cent	tre of	mass .	R:					
	R =	: \(\frac{1}{i}\) \(\mathreat{M}\)	i Ti =	≥ M	1 =	ΣPi			
		P	1						
	Tion	u D	= \(\frac{1}{i} \)	e oud	1 50	110 10	0110.		
	ineu	PC &	i	C Op(o		we k	We		
			Flext) _ ,	<u>:</u>				
			F	- M	K				
			form as	s Newto	n's l	aw fo	ra	Sing!	e partic
which	has the	same	9			U		U	
which * This	has the	same us to	use	Newton	s sec	ond la	w to	dese	wibe the
* This	s allows	us to	use tre of	Newton	s see	and la	w to	dese	
* This	s allows	us to	use tre of	Newton	s see	and la	w to	dese	
* This	allows	us to	use tre of	Newton	s see	and la	w to	dese	
* This	s allows	us to	use tre of	Newton	s see	and la	w to	dese	
* This	s allows	us to	use tre of	Newton	s see	and la	w to	dese	
* This	s allows	us to	use tre of	Newton	s see	and la	w to	dese	
* This	s allows	us to	use tre of	Newton	s see	and la	w to	dese	
* This	s allows	us to	use tre of	Newton	s see	and la	w to	dese	