

Improving Process Understanding through **Crystallization Modeling**

Shane T. Grosser¹ Eric Sirota¹, Jochen Schoell² and Lorenzo Codan²

2013 Advanced Process Modeling Forum **New York, NY** June 5th, 2013

¹Chemical Process Development and Commercialization, Merck, Rahway, NJ,

²Chemical Process Development and Commercialization, Merck, Werthenstein, Switzerland

Crystallization in Small Molecule Dev.

- Crystallization is frequently employed to produce solid material fit for formulation from chemical synthesis steps
- Oral absorption and formulation performance can be closely tied to particle physical attributes (i.e. particle size and shape)
 - Historically dry milling has been employed to reduce particle size to improve adsorption performance. Significant cost and IH concerns driving a desire for direct crystallization with minimal dry milling required.
- Overall process time cycle and yearly capacity can also be negatively impacted by slowly filtering compounds
 - Filtration performance is frequently correlated to particle size and shape and frequently benefits from larger, more growth dominated crystallization processes.
- Crystallization design plays a key role in balancing many of these particle attribute considerations

Merck's X-Lab

- Merck maintains a dedicated crystallization laboratory to support small molecule crystallization design and development
- Staffed by 9 engineers, the X-lab focuses on support for:
 - Crystallization development support of process design
 - Drug substance processability assessment
 - Solubility screening
 - Wet-milling performance evaluation
 - Evaluation of filtration characteristics
 - □ Sensitivity to particle breakage
 - Intermediate and drug substance polymorph screening
 - Supply stabilization support and process improvement
 - Crystallization technology development
- X-lab operates as a center of excellence with significant subject matter expertise and advanced development and analytical tools.

Equipment Capability

Focused Beam Reflectance Measurement (FBRM)

Easy-Max 100 mL vessel

Infrared Spectroscopy (FTIR)

Particle Vision Microscope (PVM)

> Optimax 250 - 1000 mL vessel

Equipment Capability (cont'd)

- Particle Characterization
 - SEM
 - Optical Microscope
 - Sympatec
 - Microtrac
 - Surface Area
 - Powder density
- Wet Milling
 - Rotor stator milling
 - Media milling
- Filtration RateCharacterization
 - Rosenmund Pocket Filtration

- Analytical Tools
 - HPLC
 - GC
 - Karl Fischer
 - Crystal 16
- Solid State Characterization Tools
 - XRPD
 - VTI (Vapor Sorption)
 - Differential Scanning Calorimetry (DSC)
 - Thermogravimetric Analysis (TGA)
 - Raman Microscopy
 - On-line Raman

Crystallization Monitoring

Drivers for Modeling

- Preliminary assessment of a compound's propensity for growth
 - Quick regression of growth parameters gives preliminary read regarding whether crystallization kinetics are:
 - □ Fast posing potential challenges with need for rapid micro/meso-mixing
 - Slow creating potential time cycle challenges
- Rapid screening of batch crystallization conditions
 - Numerous alternative crystallization modes can be simulated insilico, with only minimal lab-scale pre-investment required
- Optimization of target process parameters/recipes
 - Advanced process optimization algorithms enable more efficient process design and opportunities for increased process robustness
- ☐ Batch-to-Continuous Process Development
 - Lab-scale continuous crystallization capabilities are severely limited with existing lab infrastructure
 - Simulation offers an attractive tool for design optimization that is both time and resource efficient and can be based on existing batch process information

Growth Parameter Libraries

- Heavily seeded, isothermal crystallizations are executed to gain understanding of a compound's propensity for growth (vs. secondary nucleation for example)
- Comparison of growth rate to historical database enables rapid assessment of expected process cycle times and potential processing challenges (e.g. need for rapid mixing)

gCrystal Environment

- Flow sheeting environment for building the crystallization
- Options for temperature, level and pressure controllers, as well as numerous sensors/ analyzers (ie. PSD)
- A convenient graphical user interface for parameter entry with numerous crystallization kernels built in

Propensity for Growth

- Seeded isothermal crystallization experiments with a high seed loading in varying solvent mixtures
- ☐ Growth parameters estimated using gCrystal
 - gCrystal's graphical user interface and straightforward regression techniques simplifies growth parameter acquisition
- Understanding of growth kinetics helps guide additional crystallization development

$$G = k_1(S-1)^{k_2}$$

Particle Size Prediction

0.4% seed @ 65C Age at seed point Staged cool down

Secondary Nucleation then Growth

20% seed @ 70°C Age at seed point Staged cool down

Growth & Agglomeration Only

5% seed @ 71°C Staged cool down

Growth & Agglomeration then Secondary nucleation

Solution Phase Regression

0.4% seed @ 65C Age at seed point Staged cool down

Secondary Nucleation then Growth

20% seed @ 70°C Age at seed point Staged cool down

Growth & **Agglomeration Only**

5% seed @ 71°C Staged cool down

Growth & Agglomeration then Secondary nucleation

16

	D10	D50	D90
Model prediction - Growth & 2 nd Nucleation	22.5	82.5	158.6
Experimental Data -	22.5	72.5	224.1

- Distribution broadening prevents accurate prediction of D90 results
- Broadening believed to be attributed to shape factors associated with laser diffraction techniques

d (micron)

	D10	D50	D90
Model prediction - Growth and 2 nd Nucleation	32.3	58.1	104.8
Model prediction - + Agglomeration	64.9	129.2	206.5
Experimental Data -	29.2	118.0	264.3

- SEM micrographs indicate significant secondary nucleation, at the end of the crystallization
- Growth and 2nd nucleation only model does not accurately predict the data
- Model is not accurately capturing bimodal behavior

Next Steps

Agglomeration

- Agglomeration parameter regression was not functioning properly at the time of original investigation. Quantitative prediction of the agglomeration parameter should improve further agglomeration kernel performance.
- Impact of degree of sonication employed during analysis impairs agglomeration regression. Re-evaluation with a compound less prone to agglomeration is currently underway.
- Shape effects in laser diffraction measurement
 - Re-execute population balance model evaluation with more block like material
 - Current investigations are planned towards repeating particle size measurement with alternative techniques less sensitive to particle shape (i.e. Coulter counter)
 - ☐ Techniques such as coulter counter are less frequently used within the industry and therefore do not likely serve to address the issue
 - Can data generated as output from gCrystal be treated so as to predict the broadening attributed to such shape effects? we shall see...
 Public

Conclusions

- Propensity for growth
 - Growth kinetics are rapidly and easily estimated using the gCrystal software environment and helpful in assessing a particular substance's crystallization tendencies.
- Particle size distribution prediction
 - Population balance models for prediction of particle size distribution can reasonably predict D50, provided the appropriate kernels are active and regressed, and alteration of the simulation parameters are rapid
 - Measurement error attributed to laser diffraction measurement techniques appears to be limiting the quantitative prediction from a particle size perspective, but qualitatively, model is well suited for determining mean size and active crystallization mechanisms.

