CMPSCI 250: Introduction to Computation

Lecture #9: Properties of Functions and Relations David Mix Barrington and Ghazaleh Parvini 25 September 2023

Relations and Functions

- Review of the Dog Example
- Defining Functions With Quantifiers
- Total and Well-Defined Relations
- One-to-One and Onto Functions
- Bijections
- Composition and Inverse Functions
- Properties of Binary Relations on a Set
- Examples of Binary Relations on a Set

The Dog Example

- We have a set of dogs D, and predicates R(x) "x is a Rottweiler", T(x) "x is a terrier", S(x, y) "x is smaller than y", W(x) "x likes to go for walks".
- Our desired conclusion is as follows:
 "There exists a Rottweiler that is larger than some terrier who likes walks", which we may write as

 $\exists x: \exists y: R(x) \land S(y, x) \land T(y) \land W(y).$

 We will work from five premises on the next slide.

Dog Example Premises

- (1) All dogs like to go for walks: $\forall x$: W(x)
- (2) Duncan is a terrier: T(d)
- (3) Cardie is smaller than some Rottweiler:
 ∃x: R(x) ∧ S(c, x)
- (4) All terriers are smaller than Cardie: $\forall x: T(x) \rightarrow S(x, c)$
- (5) S is transitive: $\forall x: \forall y: \forall z: (S(x, y) \land S(y, z)) \rightarrow S(x, z)$

Dog Example Strategy

- Recall the goal: There exists a Rottweiler that is larger than some terrier who likes walks $(\exists x: \exists y: R(x) \land S(y, x) \land T(y) \land W(y))$.
- Overall strategy: Figure out which dogs x and y ought to be -- maybe constants, maybe dogs forced to exist by the premises.
 In this case y should be Duncan, and x should be the Rottweiler provided by premise (3).

More of the Dog Example

- We use Instantiation on (3) to get a dog r such that $R(r) \wedge S(c, r)$.
- We need four facts about d and r: We have R(r), and we need W(d), T(d), and S(d, r).
- We have T(d) by (2), and we get W(d) by Specification on (1).

Finishing the Dog Example

- To get S(d, r), we use Specification on (4) to get T(d) → S(d, c), Modus Ponens to get S(d, c) since we have T(d), and finally Specification on (5) to get (S(d, c) \land S(c, r)) \rightarrow S(d, r) and Conjunction and Modus Ponens to get S(d, r).
- Once we have these four facts we use Existence twice to get our desired conclusion $\exists x: \exists y: R(x) \land S(y, x) \land T(y) \land W(y).$

Relations and Direct Products

- Recall that when A and B are two sets, a relation from A to B is any set of ordered pairs, where the first element of each pair is from A and the second is from B.
- We say that the relation R is a subset of the direct product A × B, which is the set of all such ordered pairs.

Functions

- A **function** in ordinary computing usage is an entity that gives an **output** of a given type (the **range** or **codomain**) whenever it is called with an input of a given type (the **domain**).
- A function from A to B takes input from A and gives output from B.
- A relation from A to B may or may not define a function from A to B.

Relations and Functions

- We say that the relation is a function if for each input, there is *exactly one* possible output.
- That is, for every element x of A, there is exactly one element y of B such that the pair (x, y) is in the relation.
- We can put this definition into formal terms using predicates and quantifiers.

When a Relation is a Function

- Let R be a relation from A to B. We'll write " $(x, y) \in R$ " as "R(x, y)", identifying the relation with its corresponding predicate. What does it mean for R to be a function?
- Part of the answer is that each x must have at least one y such that R(x, y) is true.
 - In symbols, we say $\forall x$: $\exists y$: R(x, y). This property of a relation is called being **total**.

When a Relation is a Function

- We also require that each x may have at most one y such that R(x, y) is true -- this is the property of being well-defined.
- We can write that no x has more than one y, by saying $\forall x: \forall y: \forall z: (R(x, y) \land R(x, z)) \rightarrow (y = z)$. Another way to say this is
 - $\neg \exists x: \exists y: \exists z: R(x, y) \land R(x, z) \land (y \neq z).$
- A relation that is well-defined, but not necessarily total, is called a **partial function**. A non-void Java method computes a partial function since it may not terminate for all possible inputs.

Clicker Question #1

- Here are four binary relations on \mathbb{N} , the set of natural numbers. Which one *is not a function* from \mathbb{N} to \mathbb{N} ? Remember that a function must be both total and well-defined.
- (a) $A(x, y) = \{(x, y): y x = 3\}$
- (b) $B(x, y) = \{(x, y): y = x^2 3x + 3\}$
- (c) $C(x, y) = \{(x, y): y = (x 1)^2 2(x 1) 2\}$
- (d) $D(x, y) = \{(x, y): x^2 = y^2\}$

Not the Answer

Clicker Answer #1

- Here are four binary relations on \mathbb{N} , the set of natural numbers. Which one *is not a function* from \mathbb{N} to \mathbb{N} ? Remember that a function must be both total and well-defined.
- (a) $A(x, y) = \{(x, y): y x = 3\}$
- (b) $B(x, y) = \{(x, y): y = x^2 3x + 3\}$
- (c) $C(x, y) = \{(x, y): y = (x 1)^2 2(x 1) 2\}$ y = $(x - 2)^2 - 3$, we don't have C(2, y) for $y \in \mathbb{N}$
- (d) $D(x, y) = \{(x, y): x^2 = y^2\}$

Onto Functions (Surjections)

- We can also use quantifiers to define two important properties of functions.
- A function is onto (also called a surjection) if every element of the range is the output for at least one input, in symbols ∀y: ∃x: R(x, y). Note that this is not the same as the definition of "total" because the x and y are switched -- it is the dual property of being total.

Onto Functions (Surjections)

One-to-One Functions

- A function is **one-to-one** (an **injection**) if it is never true that two different inputs map to the same output.
- We can write this as $\forall w : \forall x : \forall y : (R(w, y) \land R(x, y)) \rightarrow (w = x),$ or equivalently $\neg \exists w : \exists x : \exists y : R(w, y) \land R(x, y) \land (w \neq x).$
 - This is obtained from the well-defined property by switching domain and range.

One-to-one Functions (Injections)

Functions and Sizes of Sets

- These properties are important in **combinatorics** -- if A and B are finite sets, we can have a surjection from A to B if and only if $|A| \ge |B|$.
- Similarly, we can have an injection from A to B if and only if $|A| \le |B|$.
- (Here "|A|" denotes the number of elements in A, and "|B|" the number in B.)

Bijections

- It is possible for a function to be both onto and one-to-one. We call such a function a bijection (also sometimes a one-to-one correspondence or a matching).
- From what we just said about the sizes of finite sets in a surjection or injection, we can see that a bijection from A to B is possible if and only if |A| = |B|.

Clicker Question #2

- Suppose that A and B are two nonempty finite sets, and that f is a function from A to B. If A is *no larger than* B, that is, $|A| \le |B|$, which one of these statements *must be true?*
- (a) f is not onto
- (b) f is one-to-one
- (c) f can't be both one-to-one and onto
- (d) if f is onto, then it is one-to-one

Not the Answer

Clicker Answer #2

- Suppose that A and B are two nonempty finite sets, and that f is a function from A to B. If A is no larger than B, that is, $|A| \le |B|$, which one of these statements must be true?
- (a) f is not onto
- (b) f is one-to-one
- (c) f can't be both one-to-one and onto
- (d) if f is onto, it is one-to-one yes, since then |A| = |B|

Bijections

- There is an interesting theory, which we don't have time for in this course, about the sizes of **infinite** sets, where we define two sets to have the same "size" if there is a bijection from one to the other.
- A bijection from a set to itself is also called a **permutation**. The problem of sorting is to find a permutation of a set that puts it in some desired order.

Composition of Functions

- If f is a function from A to B, and g is a function from B to C, we can define a function h from A to C by the rule h(x) = g(f(x)).
 We map x by f to some element y of B, then map y by g to an element of C.
 This new function is called the **composition** of f and g, and is written "g ∘ f".
- The notation $g \circ f$ is chosen so that $(g \circ f)(x) = g(f(x))$, that is, the order of f and g remains the same in these two ways of writing it.

Inverse Functions

- With quantifiers, we can define $(g \circ f)(x) = z$ to mean $\exists y$: $(f(x) = y) \land (g(y) = z)$.
- If A and C are the same set, it is possible that the function g undoes the function f, so that g(f(x)) is always equal to x and f(g(y)) is always equal to y. This can only happen when f is a bijection -- in this case A and B have the same size, and g must also be a bijection. We say that f and g are inverse functions for one another.

Properties of Binary Relations

- Binary relations from a set to itself (called relations on a set) may or may not have certain properties that we also define with quantifiers.
- A relation R is **reflexive** if $\forall x$: R(x, x) is true, and **antireflexive** if $\forall x$: $\neg R(x, x)$. Note that "antireflexive" is not the same thing as "not reflexive".

More Properties

- R is **symmetric** if $\forall x: \forall y: R(x, y) \rightarrow R(y, x)$, or equivalently $\forall x: \forall y: R(x, y) \leftrightarrow R(y, x)$.
- R is **antisymmetric** if $\forall x$: $\forall y$: (R(x, y) \land R(y, x)) \rightarrow (x = y). Again "antisymmetric" is a different property from "not symmetric".
- R is **transitive** if $\forall x: \forall y: \forall z: (R(x, y) \land R(y, z)) \rightarrow R(x, z).$ We saw this property in the last lecture with the "smaller than" property for dogs.

Examples of Binary Relations

- The **equality relation** E is defined so that E(x, y) is true if and only if x = y.
- This relation is reflexive, symmetric, and transitive.
- We'll soon see that any relation with these three properties, called an equivalence relation, acts in many ways like equality.

Examples of Binary Relations

- On numbers, for example, we can define LE(x, y) to mean $x \le y$, and LT(x, y) to mean x < y.
- LE is reflexive, antisymmetric, and transitive, and relations with those three properties are called **partial orders**.
- LT, on the other hand, is antireflexive, antisymmetric, and transitive.

Examples of Binary Relations

- In the game of rock-paper-scissors, we can define a "beats" relation so that B(x, y) means "x beats y in the game".
- So B(r, s), B(s, p), and B(p, r) are true and the other six possible atomic statements are false.
- This relation is antireflexive, antisymmetric, and *not* transitive.

Rock-Paper-Scissors

Clicker Question #3

- Let the binary relation R on **Z** be defined so that R(x, y) is $\{(x, y): x + y \le 3\}$. This relation is:
- (a) reflexive and symmetric and transitive
- (b) symmetric, not transitive, and not reflexive
- (c) antireflexive, antisymmetric, transitive
- (d) neither reflexive, symmetric, nor transitive

Not the Answer

Clicker Answer #3

- Let the binary relation R on **Z** be defined so that R(x, y) is $\{(x, y): x + 3 \le 3\}$. This relation is:
- (a) reflexive and symmetric and transitive
- (b) symmetric, not transitive, and not reflexive
- (c) antireflexive, antisymmetric, transitive
- (d) neither reflexive, symmetric, nor transitive

$$\{(x, y): x + y \le 3\}$$

- Not reflexive because R(2, 2) is false
- Not antireflexive because R(0, 0) is true
- Symmetric because $x + y \le 3$ is true if and only if $y + x \le 3$
- Not transitive, because R(2, 0) and R(0, 2) are both true but R(2, 2) is false.