Engenharia de Software para Nuvem - Aula 1

Jemerson Fernando Maia - jfnandopr@gmail.com

Pós-graduação em Engenharia de Software para Modernização de Sistemas

BIOPARK EDUCAÇÃO

Agenda

- Introdução a Cloud Computing, Containers, IaC, DevOps
- Provedores de Serviços de Nuvem

Computação em Nuvem (Cloud Computing)

Infraestrutura de TI

- Refere-se aos componentes necessários para executar e gerenciar ambientes de TI empresarial.
 - hardware
 - software
 - o rede
 - sistema operacional
 - o armazenamento de dados

Infraestrutura

A infraestrutura de TI pode ser implantada nas próprias instalações da organização ou em cloud computing (nuvem).

Cloud Computing

É a entrega de recursos de TI sob demanda por meio da Internet com definição de preço de pagamento conforme o uso.

On premise

Cloud

Controle direto sobre dados

Implementação complicada e cara

Você tem responsabilidade

Grande custo inicial e de manutenção

Permite protocolos customizados

Controle

Implementação

Manutenção

Custo

Segurança

Menos controle direto

Implementação mais simples e barata

Provedor cuida disso

Baixo custo inicial e boa escalabilidade

Permite recursos avançados (a depender do provedor)

Cloud Computing

Figure 1: Sizing Cloud Shift, Worldwide, 2019 - 2025

Gartner

Source: Gartner, February 2022

Cloud Computing

Cloud computing is the new norm

Cloud computing continues to evolve from a market disruptor to the expected approach for IT. Although cloud computing has become a foundation of digital business, many organizations still struggle to optimize this powerful tool. Gartner estimates that less than one-third of enterprises have a documented cloud strategy.

Causas do crescimento

- oferece maior escalabilidade e agilidade, permitindo que as empresas respondam rapidamente às mudanças no mercado e nas necessidades dos clientes
- adoção de tecnologias de inteligência artificial, analytics e internet das coisas
- arquitetura de softwares robustas e flexíveis
- o aumento do uso de dispositivos e a necessidade de armazenar e processar grandes dados em tempo real
- pandemia (a necessidade de colaboradores remotos acessem serviços de alta performance)

Modelos de Serviços em Nuvem

Modelos de Serviços em Nuvem

Tipos de Implantação

Nuvem Privada

Utilizada por uma única organização, com dados particulares do negócio.

Seus serviços e infraestrutura se encontram em um centro de dados privado.

Nuvem Híbrida

Combinação entre nuvem privada e nuvem pública, com serviços geralmente integrados.

Nuvem Pública

Compartilhável entre várias organizações com um provedor que gerencia o software

Vantagens de Utilização de Cloud Computing

- Uma facilidade muito maior de compartilhar os dados
- Diminuição da sobrecarga de infraestrutura
- Qualidade de acesso aos usuários
- Poder acessá-lo de qualquer lugar
- Otimização do tempo
- Não há inatividade
- Estabilidade no serviço
- O pagamento somente por aquilo que você utiliza
- Tomada de decisão mais ágil
- Serviço com maior durabilidade e menor custo

Como executar minha aplicação em nuvem?

Algo que veio para ajudar foram os ...

Containers

O que é?

Containers são como se fossem máquinas virtuais modulares e extremamente leves.

É como um ambiente isolado, disposto em um servidor, que divide um único host de controle.

Funcionam um pouco como VMs, mas de uma maneira muito mais específica e granular.

Virtualização

Virtual Machine Virtual Machine Virtual Machine Арр В App C Guest Guest Guest Operating Operating Operating System System System

X Conteinerização

Containers

A containerização é um conceito antigo no mundo da computação (1979) que ganhou destaque quando o Docker introduziu ferramentas simplificadas para criar e gerenciar contêineres.

Docker é uma tecnologia de conteinerização que permite a criação e o uso de containers

Container (Motivação)

- O aplicativo n\u00e3o \u00e9 executado corretamente quando migrado de um ambiente para outro
 - Normalmente, esses problemas surgem por causa de diferenças na configuração de biblioteca e outras dependências.
 - Os contêineres resolvem esse problema ao fornecer uma infraestrutura leve e imutável para o empacotamento e a implantação de aplicativos.

Benefícios

- Agilidade
- Portabilidade
- Escalabilidade
- Economia de recursos
- Disponibilidade

Orquestração de Containers

- A orquestração automatiza a implantação, o gerenciamento, a escala e a rede dos containers.
 - Cuida do ciclo de vida dos containers de forma autônoma, subindo e distribuindo, conforme nossas especificações ou demandas

Ferramentas de Orquestração de Containers

E aplicações que não rodam em containers, como criar e manter os servidores em nuvem?

Provisionamento & Gerenciamento de

Configuração Automatizados

Provisionamento

Provisionamento é o processo de criação e configuração da infraestrutura de TI.

O provisionamento é um dos primeiros estágios da implantação de servidores, aplicações, componentes de rede, armazenamento, entre outros.

Necessário ser realizado tanto em uma infraestrutura on-premise quanto em nuvem.

Provisionamento Automatizado

Atualmente, a maioria das tarefas de provisionamento já é executada com facilidade pela automação, usando infraestrutura como código (IaC).

A IaC é uma forma de gerenciamento de configuração que codifica os recursos de infraestrutura em arquivos de dados legíveis por máquina e humanos, como o YAML.

Esses arquivos de dados são então lidos e a infraestrutura é provisionada.

Gerenciamento de Configuração

Gerenciamento de configuração é o processo usado para manter sistemas computacionais, servidores e softwares em um estado desejado, consistentemente.

É uma forma de se certificar de que o sistema funciona como o esperado, ainda que alterações sejam feitas com o passar do tempo.

No desenvolvimento de software, o gerenciamento de configuração é muitas vezes usado junto com o controle de versão e de CI/CD.

Gerenciamento de Configuração Automatizadas

Tradicionalmente, isso é feito de forma manual ou por meio de scripts personalizados criados por administradores de sistemas.

A automação do gerenciamento de configurações tem como objetivo reduzir os custos, os erros e a complexidade.

Benefícios do Provisionamento e Gerenciamento de Configuração Automatizados

- Gerenciamento de várias VM ou nós de execução de software de maneira fácil e organizada
- Rastreabilidade (o que, quando e quem mudou)
- Evitar erros humanos
- Mais segurança
- Rapidez
- Escalabilidade

Ferramentas para Provisionamento e Gerenciamento de Configuração de Infraestrutura

DevOps

O conflito

o problema não é o código, são as máquinas

> o problema não são as máquinas, é o código

O que é?

A combinação de filosofias culturais, práticas e ferramentas que aumentam a capacidade de uma empresa de distribuir aplicativos e serviços em alta velocidade.

É uma mudança cultural em que as equipes adotam uma cultura de engenharia de software, fluxo de trabalho e conjunto de ferramentas que elevam os requisitos operacionais ao mesmo nível de importância que a arquitetura, design e desenvolvimento.

Como tudo começou - Agile

- Indivíduos e interações, mais que processos e ferramentas
- Software em funcionamento, mais que documentação abrangente
- Responder a mudanças, mais que seguir um plano

Como tudo começou - Agile

- Apesar do surgimento da metodologia ágil, as equipes de desenvolvimento e operações permaneceram separadas.
- O movimento do DevOps começou a tomar forma entre 2007 e 2008
- Equipes de desenvolvimento e operações se uniram para solucionar disfunções no setor
- O conceito surgiu após a disseminação de concepções como entrega contínua, desenvolvimento ágil e deploy contínuo (presentes no Manifesto Ágil, de 2001)

Como tudo começou - Agile

- Agile Conference 2008
 - Infraestrutura Ágil de Andrew Schafer para Patrick Debois
- Velocity Conference da O'Reilly 2009
 - John Allspaw e Paul Hammond apresentaram a palestra chamada "10+ Deploys per Day:
 Dev and Ops Cooperation at Flickr"
- DevOpsDays 2009
 - Patrick Debois decidiu criar sua própria conferência na Bélgica
- Gartner -2011
 - Publicou um relatório no qual afirmava que, até o final de 2015, DevOps se tornaria a principal estratégia em 20% das organizações mundiais.

Como tudo começou - Agile

DEVOPS DAYS

João Pessoa

Mar 7: Los Angeles Mar 12 - 13: Zurich Mar 18: Chicago

Apr 16 - 17: Raleigh Apr 29 - 30: Aarhus Apr 29 - 30: Atlanta https://devopsdays.org/

Bogotá

NOV 15, 2024

Chattanooga

Florianópolis

C.A.M.S. (Culture, Automation, Measure, Sharing)

Culture

• É preciso colaborar, compartilhar e entender a importância de manter uma relação saudável entre todas as áreas.

Automation

 Identificar os processos que sejam repetitivos ou que levam bastante tempo e buscar resolver o quanto antes.

Measure

 Deve-se medir tudo que é possível: performance, processos, interações e até mesmo pessoas. O processo de melhoria contínua é o coração do DevOps!

Sharing

 Ter uma boa comunicação entre as equipes, incentivar as pessoas a se comunicarem e compartilharem ideias e problemas (Blameless).

Princípios Básicos

- Ação centrada ao cliente
- Foco no resultado final
- Responsabilidade de ponta a ponta
- Equipes autônomas e multifuncionais
- Melhoria Contínua
- Automatize tudo o que puder

Habilidades principais do DevOps Engineer

- CI/CD (continuous integration CI e continuous delivery CD)
- Infraestrutura como código (IaC)
- Gerenciamento de configuração
- Contêiner e orquestração
- Gerenciamento de serviços em nuvem
- Scripts
- Monitoramento

Pipeline DevOps

Atividade

Atividade em Grupo

Imagine que você foi contratado para implantar a cultura DevOps em uma empresa. Pense e descreve ações e ferramentas para ajudar a melhorar:

- Comunicação
- Automação de processos
- Medir (processos ou sistema) e atuar sobre

Cada grupo apresentará suas soluções e discutiremos sobre

Provedores de Serviços de Nuvem (Cloud Service Provider)

Um CSP (provedor de serviços de nuvem) é uma empresa terceirizada que fornece recursos de computação escalonáveis que as empresas podem acessar sob demanda em uma rede, incluindo computação baseada em nuvem, armazenamento, plataforma e serviços de aplicativos.

Por que é interessante misturar e combinar serviços em nuvem de diferentes CSPs?

- para atender a diferentes requisitos
- selecionar os melhores recursos de nuvem para os casos de uso específicos
 - análise de dados e serviços de IA
 - suporte para ambientes legados
 - o opções de computação mais amplas.
- Reduzir custos

Figure 1: Magic Quadrant for Cloud Infrastructure and Platform Services

Cloud On-Premise

- laaS
 - Red Hat OpenStack Platform
 - https://www.redhat.com/pt-br/technologies/linux-platforms/openstack-platform
 - Apache CloudStack
 - https://cloudstack.apache.org/
- PaaS
 - Red Hat OpenShift
 - https://www.redhat.com/pt-br/technologies/cloud-computing/openshift
 - Dokku
 - https://dokku.com/

Serverless Computing

Serverless é um modelo de desenvolvimento nativo em nuvem para criação e execução de aplicações sem o gerenciamento de servidores.

Soluções serverless contam com um provedor de nuvem para gerenciar a infraestrutura e a escalabilidade de apps.

Depois da implantação, as aplicações serverless atendem à demanda e aumentam ou diminuem a escala automaticamente de acordo com as necessidades.

Arquitetura baseada em nuvem

- Aplicativo
- Serviço
- Provedor
- Armazenamento
- Infraestrutura
- Gerenciamento
- Segurança

Arquitetura baseada em nuvem

AWS vx Azure vs GCP

AWS vs Azure vs GCP - Overview

	Amazon Web Services	Microsoft Azure	Google Cloud Platform
Launched	2006	2008	2011
Availability points	450+	160+	112+
Strength	Infrastructure- as-a-Service (IaaS)	Platform-as-a- Service (PaaS)	Database-as-a- Service (DaaS)
Services	237+	172+	100+
Pricing	Pay-as-you-go, by product/service	Pay-as-you-go, by product/service	Pay-as-you-go, by product/service

AWS vs Azure vs GCP - Quem usa?

AWS

- Coursera
- Expedia
- Netflix
- Coinbase
- Fórmula 1
- Airbnb
- Lyft
- Coca Cola
- BMW
- Samsung

Azure

- Bosch
- Audi
- ASOS
- HSBC
- Starbucks
- 3M
- FedEx
- Walmart
- HP
- Mitsubishi Electric
- Renault

Google Cloud

- Toyota
- Nintendo
- Spotify
- Twitter
- PayPal
- UPS
- Unilever

AWS vs Azure vs GCP - Market Share & Growth Rate

In Q1 2022, AWS revenue grew 36% to \$18.44 billion; Microsoft Cloud revenue jumped 32% to \$23.4 billion; and Google Cloud revenue jumped 44% to \$5.8 billion. After earnings wrapped in April, Synergy said AWS topped the cloud infrastructure services marketplace with 33% share, with Microsoft and Google trailing with 22% and 10% share, respectively.

AWS vs Azure vs GCP - Availability Zones

AWS		Azure		GCP	
Region	25	Regions	60	Regions	24
Availability Zones	80	Availability Zones	At least 3 per region	Zones	73
Local Zones	5	NA	NA	NA	NA
Point of Presence (POP)	230	Point of Presence (POP)	130	Network Edge Locations	144
Countries	245	Countries	200	Countries	200

AWS vs Azure vs GCP - Key Cloud Tools

Tool	AWS	Azure	Google Cloud
Virtual machines	EC2	Azure Virtual Machines	Compute Engine
Container orchestration	ECS	Azure Kubernetes Service (AKS)	Google Kubernetes Engine (GKE)
Serverless functions	AWS Lambda	Azure Functions	Cloud Functions
Load balancing	Elastic Load Balancer (ELB)	Azure Load Balancer	Network Load Balancer
Content delivery	CloudFront	Azure Content Delivery Network	Cloud CDN
Database services	RDS, DynamoDB, Aurora	Azure SQL Database, Cosmos DB	Cloud SQL, Cloud Datastore, Bigtable
Analytics	Redshift, Kinesis	Azure Synapse Analytics	BigQuery, Cloud Data Fusion
Machine learning	SageMaker, Rekognition	Azure Machine Learning	Cloud Al Platform
Identity and access management	IAM	Azure Active Directory	Cloud Identity, Identity Platform
Monitoring and logging	CloudWatch, X-Ray	Azure Monitor, Log Analytics	Stackdriver

AWS vs Azure vs GCP - Services

Service	AWS	Azure	Google Cloud
Compute	EC2, Lambda, Fargate, Elastic Beanstalk	Virtual Machines, Batch, Functions, App Service	Compute Engine, Kubernetes Engine, App Engine, Cloud Functions
Storage	S3, EBS, EFS	Blob Storage, File Storage, Disk Storage	Cloud Storage, Persistent Disk, Cloud Filestore
Databases	RDS, DynamoDB, Aurora, Neptune, ElastiCache	Cosmos DB, SQL Database, MySQL Database, PostgreSQL Database	Cloud Bigtable, Cloud SQL, Cloud Firestore, Cloud Datastore, Cloud Memorystore
Networking	VPC, Direct Connect, Route 53	Virtual Network, Load Balancer, Traffic Manager	Virtual Private Cloud, Cloud Load Balancing, Cloud CDN, Cloud Interconnect
Security	IAM, KMS, GuardDuty, Inspector	Azure Active Directory, Key Vault, Security Center	Identity and Access Management, Cloud Key Management Service, Cloud Security Scanner
Artificial Intelligence	SageMaker, Rekognition, Lex, Polly	Azure Machine Learning, Cognitive Services, Bot Service	Cloud Al Platform, Cloud AutoML, Cloud Natural Language, Cloud Translation
Analytics	Redshift, Kinesis, QuickSight, Athena	Azure Synapse, Data Lake Storage, Power BI, Stream Analytics	BigQuery, Cloud Data Fusion, Cloud Dataproc, Cloud Data Catalog

AWS vs Azure vs GCP - Services

Service	AWS	Azure	Google Cloud
Internet of Things (IoT)	IoT Core, Greengrass	IoT Hub, IoT Central	Cloud IoT Core, Cloud IoT Edge
Developer Tools	CodePipeline, CodeBuild, CodeCommit, CodeDeploy	Azure DevOps, Visual Studio Team Services	Cloud Build, Cloud Code, Cloud Source Repositories, Stackdriver Debugger
Management Tools	CloudWatch, CloudFormation, OpsWorks, Systems Manager	Azure Monitor, Azure Resource Manager, Azure Automation	Cloud Monitoring, Cloud Deployment Manager, Cloud Console, Cloud Shell
Mobile Services	Mobile Hub, Cognito, Pinpoint, Device Farm	Mobile Apps, Notification Hubs, Visual Studio App Center	Firebase, Cloud Functions for Firebase, Cloud Firestore, Cloud Messaging
Game Development	GameLift	Azure PlayFab	Google Play Developer Console
Integration	Step Functions, Simple Queue Service (SQS), Simple Notification Service (SNS)	Logic Apps, Service Bus, Event Grid	Cloud Tasks, Cloud Pub/Sub, Cloud Functions, Cloud Scheduler
Media Services	Elastic Transcoder, MediaConvert, MediaLive, MediaPackage, MediaStore	Azure Media Services, Azure Stream Analytics	Cloud Video Intelligence, Cloud Speech-to-Text, Cloud Text-to-Speech
Blockchain	Managed Blockchain, Quantum Ledger Database (QLDB)	Azure Blockchain	

Hands on

Hands On

- Criar uma conta na AWS
- Criar uma máquina virtual EC2 Linux
- Instalar docker
 - https://github.com/jfnandopr/biopark-iac

Hands On

```
$ docker network create site-net
$ docker volume create site-db
$ docker volume create site-www
$ docker run --name db -d --net site-net -e
MYSQL DATABASE=wordpress -e MYSQL_ROOT_PASSWORD=123456 -v
site-db:/var/lib/mysql mysql
$ docker run --name site -d -p 80:80 --net site-net -v
site-www:/var/www/html wordpress
$ docker run --name adminer -d -p 8080:8080 --net site-net
adminer
```

Até a próxima

