

Objective 5.1 Explain the threats and vulnerabilities associated with specialized technology.

- Mobile
- Internet of Things (IoT)

Mobile

- Access points
 - Any place where a device connects via Wi-Fi, then into the network infrastructure
 - Common place for vulnerabilities
- VPNs
 - Virtual private network
 - Establish secure connection using insecure access point
- Network vulnerabilities
 - Mobile device has to connect to IT infrastructure
 - · Wi-Fi or cellular
 - Older cellular technologies were very insecure
 - Newer technologies are more secure and use encryption

Mobile

- Device vulnerabilities
 - Securing mobile devices is challenging
 - Provisioned for multi-use
 - Can't secure one device for many different uses
- Operating system vulnerabilities
 - Operating systems update frequently
 - Competition between OS manufacturers
 - Patch bugs and security vulnerabilities

Mobile

- App vulnerabilities
 - Improper platform usage
 - Insecure data storage
 - Insecure authentication
 - Insecure authorization
 - Code quality vulnerabilities

Internet of Things (IoT)

- Smaller devices connecting to the Internet and doing things autonomously
 - Increased risk of compromise
- Botnet
 - Collection of compromised devices used to launch a DDoS attack
- Mirai botnet
 - Malware that compromised a lot of insecure IoT devices
 - Successful DDoS attack

Internet of Things (IoT)

- IoT devices are ubiquitous
- Users often not concerned about security
- Many devices are not hardened
- Default credentials are easy to find

Objective 5.1 Explain the threats and vulnerabilities associated with specialized technology.

- Embedded
- Real-time operating system (RTOS)
- System-on-Chip (SoC)
- Field programmable gate array (FPGA)

Embedded

- Special-purpose software
- Low-power processor
- Often no external storage
- Software can be burned into the firmware
- Could just be hardware only
- Limited ability to monitor or patch

Real-time Operating System (RTOS)

- Devices that require low-latency input processing
 - Vehicles
 - Manufacturing
 - Aviation
 - Medical
- Vulnerabilities allow threats to underlying performance guarantees

System on a Chip (SoC)

- Software and hardware integrated on a single chip
- Used in special-purpose applications
- SoC is efficient and cost effective
- Vulnerabilities can affect the entire SoC environment (hardware and software)

Field Programmable Gate Array (FPGA)

- Combination of SoC and embedded system
- Programmable chip with the ability to be modified and reprogrammed in the field
- Must use special device to overwrite the firmware
 - Upgradable
- Cost effective
- Simplicity sometimes leads to vulnerabilities

Objective 5.1 Explain the threats and vulnerabilities associated with specialized technology.

- Physical access control
- Vehicles and drones
- CAN bus

Physical Access Control

- Example: RFID
 - Radiofrequency identification
 - Chip that uniquely communicates with receiver
- Physical readers make reverse engineering and spoofing possible
- Vulnerabilities can allow attackers to bypass access control
- Replay and cloning are popular attack methods

Vehicles

- Vehicles of all types are increasingly connected
- Internet connectivity
 - Access to many subsystems
 - Control of some subsystems
 - Also opens up vulnerabilities

Typical CAN Bus Configuration Antilock Power Controller Area Network Engine Headlamps Braking Steering Control Control System Module (CAN bus) Control Module Module • Defines communication among vehicle components CANC • CAN exploits (to alter vehicle Body operation) have been Computer OBD-II Port Module demonstrated CANB Parking Airbag HVAC **Audio Control** Convergence Sensors Control Panel Cluster Module Module Module Module Module Module Source: Chapman, B., & Maymĺ, F. (2020). CompTlA CySA+™ Cybersecurity Analyst Certification All-in-One Exam Guide, Second Edition (Exam CSO-002), 134.

Drones

- Can be malicious
 - Controlled by an attacker
- Can be innocent
 - Drone operators may have their drones hijacked and used for malicious purposes
- Many options for attacks

Objective 5.1 Explain the threats and vulnerabilities associated with specialized technology.

- Building automation systems
- Workflow and process automation systems
- Industrial control system
- Supervisory control and data acquisition (SCADA)
- Modbus

Building Automation Systems

- Network of connected cyber-physical devices
 - Combination of computing device that has impact on physical world
 - Examples:
 - Robots
 - Lighting
 - Environmental control
 - Physical access
 - · Smoke detection
 - Fire suppression
- Vulnerabilities can impact a building's usability, inhabitability, and safety

Workflow and Process Automation Systems

- Systems that direct and/or control workflow
 - Project management
 - Document management
 - Software Configuration Management (SCM)
- Value is in autonomy
 - Vulnerabilities can include malicious workflow alterations
- Important to externally audit desired workflow

Industrial Control System (ICS)

- Cyber-physical systems
 - Software to control physical behavior
- Common in manufacturing and warehousing/distribution
- Other applications include elevators and HVAC systems
- Remote Terminal Units (RTU) or Programmable Logic Controllers (PLC)
 - Connect physical world to computers
- PLCs commonly use firmware
 - · Difficult to monitor or upgrade

Supervisory Control and Data Acquisition (SCADA)

- Special class of ICS
- Controls cyber-physical systems
- SCADA vulnerabilities
 - Communications with remote facilities
 - Autonomous operation of remote facilities
 - SCADA is not modular
- Modbus
 - SCADA (PLC) communication standard
 - Security not part of its design

