Namen: _____

Aufgabe	11.1	11.2	11.3	Z11.1	\sum
Punkte					

Höhere Analysis – Übungsblatt 11

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 11.1 (Lineare Approximation durch Tangentialraum)

5 Punkte

Sei $M \subset \mathbb{R}^m$ eine C^1 -Mannigfaltigkeit der Dimension n und sei $p \in M$. Zeigen Sie, dass

$$\frac{1}{r}\sup\left\{\operatorname{dist}(x,p+T_pM):x\in M\cap B_r(p)\right\}\xrightarrow{r\searrow 0}0.$$
(1.1)

Hinweis: Zur Erinnerung: Für $x \in \mathbb{R}^m$ und $A \subset \mathbb{R}^m$ nicht-leer ist $\operatorname{dist}(x,A) := \inf\{|x-y| : y \in A\}$. Überlegen Sie sich zuerst, dass ohne Beschränkung der Allgemeinheit p=0 gewählt werden kann. Stellen Sie dann die Mannigfaltigkeit um 0 lokal als Graph und lokal durch eine Parametrisierung φ dar, und bedenken Sie, dass $\varphi(x) - \varphi(0) = \operatorname{D}\varphi(0)x + o(|x|)$.

Aufgabe 11.2 (Integration auf Graphen)

5 Punkte

Sei $U \subset \mathbb{R}^n$ offen und $g \in C^1(U)$. Sei $M := \text{graph}(g) \subset \mathbb{R}^m$ mit m = n + 1.

- a) Sei $p \in M$. Bestimmen Sie T_pM und N_pM . Begründen Sie ihre Antwort.
- b) Sei $f \in L^1(M)$. Zeigen Sie, dass

$$\int_{M} f \, d\mathcal{H}^{n} = \int_{U} f(x, h(x)) \sqrt{1 + |\nabla h(x)|^{2}} \, d\mathcal{L}^{n}(x). \tag{2.1}$$

c) Sei $U=\{x\in\mathbb{R}^2:|x|<1\}$ und $g(x)=3(1-|x|^2)$. Sei $F\colon\mathbb{R}^3\longrightarrow\mathbb{R}^3$ gegeben durch $F(y)=(y_1,0,0)^\intercal$. Berechnen Sie

$$\int_{M} F \cdot \nu \, \mathrm{d}\mathcal{H}^{2},\tag{2.2}$$

wobei $\nu \colon M \longrightarrow \mathbb{S}^2$ die äußere Normale

$$\nu(x, g(x)) = \frac{1}{\sqrt{1 + |\nabla g(x)|^2}} {-\nabla g(x) \choose 1}.$$
 (2.3)

bezeichnet.

Hinweis: Beispiel 5.7 erweist sich als nützlich. Zu b): Zeigen Sie, dass für alle $v \in \mathbb{R}^n$ gilt $\det(\mathbf{1}_n + v^{\intercal}v) = 1 + |v|^2$ indem Sie v zu einer Orthogonalbasis ergänzen.

Aufgabe 11.3 (Satz von Gauß)

5 Punkte

- a) Zeigen Sie, dass die äußere Normale $\nu \colon \mathbb{S}^{m-1} \longrightarrow \mathbb{S}^{m-1}$ gegeben ist durch $\nu = \mathrm{id}$.
- b) Sei $\Omega \subset \mathbb{R}^m$ offen und beschränkt mit C^1 -Rand. Sei $\nu \colon \partial \Omega \longrightarrow \mathbb{S}^{m-1}$ die äußere Normale. Zeigen Sie, dass

$$\int_{\partial\Omega} x \cdot \nu(x) \, d\mathcal{H}^{m-1} = m\mathcal{L}^m(\Omega). \tag{3.1}$$

Folgern Sie hieraus, dass $\mathscr{H}^{m-1}(\mathbb{S}^{m-1})=m\mathscr{L}^m(B)$, wobei $B\coloneqq\{x\in\mathbb{R}^n:|x|\leq 1\}.$

c) Berechnen Sie $\int_{\mathbb{S}^2} x_1^4 d\mathcal{H}^2(x)$.

Abgabe bis spätestens 11.02.2021, 14:00 Uhr in Moodle.

Zusatzaufgabe 11.1 (Greensche Formeln)

3 Punkte

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit C^1 -Rand. Sei $\nu \colon \partial \Omega \longrightarrow \mathbb{S}^{n-1}$ die äußere Normale an $\partial \Omega$. Zu einer Funktion $f \in C^2(\Omega)$ definieren wir die Differentialoperatoren

$$\Delta f := \operatorname{div}(\nabla f), \qquad \partial_{\nu} f := \nabla f \cdot \nu.$$
 (4.1)

Seien $\varphi, \psi \in C^2(\Omega) \cap C^1(\overline{\Omega})$. Zeigen Sie mit Hilfe des Satzes von Gauß die drei Greenschen Formeln:

a)
$$\int_{\Omega} \Delta \varphi \, dx = \int_{\partial \Omega} \partial_{\nu} \varphi \, d\mathcal{H}^{n-1}.$$

b)
$$\int_{\Omega} \varphi \, \Delta \psi + \nabla \varphi \cdot \nabla \psi \, \mathrm{d}x = \int_{\partial \Omega} \varphi \, \partial_{\nu} \psi \, \mathrm{d}\mathscr{H}^{n-1}.$$

c)
$$\int_{\Omega} \varphi \Delta \psi - \psi \Delta \varphi \, dx = \int_{\partial \Omega} \varphi \, \partial_{\nu} \psi - \psi \, \partial_{\nu} \varphi \, d\mathscr{H}^{n-1}.$$