Bayesian Data Analysis - Assignment 5

October 13, 2018

In order to complete this exercise successfully I created a reusable function

```
generate_chains(sample_size, number_of_chains, burnin_size)
```

that creates multiple chains with a given sample size and removes the burn-in values.

To see if the Metropolis algorithm works correctly, I generated 10 chains with the sample size of 3000 each (total: 30000 samples) and removed the burn-in size of 500 (total: 5000 samples).

```
chains = generate_chains(
  sample_size=3000,
  number_of_chains=10,
  burnin_size=500
)
```

The **starting points** for each chain are generated randomly. Here is the table of starting points:

n	α	β
1	-2.00	7.0
2	3.00	23.0
3	2.00	18.0
4	4.00	16.0
5	1.00	26.0
6	2.00	24.0
7	-1.00	1.0
8	2.00	-2.0
9	-1.00	14.0
10	1.00	20.0

The **proposal/jumping distribution** is calculated using multivariate normal distribution that takes the previous θ value and covariance matrix $cov = \begin{bmatrix} 0.4 & 1 \\ 1 & 10 \end{bmatrix}$, which is obtained by deviding the matrix given in the book $\begin{bmatrix} 4 & 10 \\ 10 & 100 \end{bmatrix}$ by 10. Here is the python function for jumping distribution:

```
def jump(theta_prev, cov):
    j = stats.multivariate_normal(theta_prev, cov)
```

```
theta_sample = j.rvs(1)
return np.array(theta_sample)
```

The \hat{R} values are calculated using theta psrf function. The \hat{R} values in my case are:

$$\widehat{R}_{\alpha} = 1.00178023 \ \widehat{R}_{\beta} = 1.00435052$$

```
chain = generate_chains(sample_size=10000, number_of_chains=1, burnin_size=500)[0]
print('Potential Scale Reduction Factor (PSRF) is: ', psrf(chain))
```

```
$ Potential Scale Reduction Factor (PSRF) is: [1.00178023 1.00435052]
```

The interpretation of Rhat values: if R is not close to 1 (above 1.1 for example) one may conclude that the tested samples were not from the same distribution and that chain might not have been converged yet. In my case both \widehat{R}_{α} and \widehat{R}_{β} values are below 1.1 which means that my generated chains are well converged.

Figure 1: A plot of 10 chains with 25000 samples in total.

Figure 2: A plot of 1 chain with 10000 samples.

Appendix A Source code

```
import matplotlib
    matplotlib.use('TkAgg')
    import matplotlib.pyplot as plt
    from scipy import stats
4
    import numpy as np
    import random
6
    from psrf import psrf
    from bioarraylp import bioassaylp
    # Init all the params based on the description
10
    sigma_a = 2
11
    sigma_b = 10
^{12}
    mu_a = 0
13
    mu_b = 10
14
    cor = 0.5
15
    cov_matrix = np.array([
16
        [sigma_a**2,
                                      cor * sigma_a * sigma_b],
17
        [cor * sigma_a * sigma_b,
                                      sigma_b**2]
18
```

```
])
19
    mean = np.array([mu_a, mu_b])
20
21
    doses = np.array([-0.86, -0.3, -0.05, 0.72])
22
    deaths = np.array([0, 1, 3, 5])
23
    number_of_animals = np.array([5, 5, 5, 5])
24
25
26
    # reusable functions for Metropolis algorithm
    def jump(theta_prev, cov):
27
         j = stats.multivariate_normal(theta_prev, cov)
28
         theta_sample = j.rvs(1)
29
         return np.array(theta_sample)
30
31
    def ratio_can_be_accepted(ratio):
32
         if ratio >= 1:
33
             return True
34
         else:
35
             uniform_random_sample = stats.uniform(0,1).rvs(1)[0]
36
37
             if uniform_random_sample < ratio:</pre>
                 return True
38
             else:
39
                 return False
40
41
42
    def get_next_theta(theta_prev, cov):
         theta_new = jump(theta_prev, cov)
43
         likelihood_theta_new = bioassaylp(
44
             theta_new[0],
45
             theta_new[1],
46
             doses,
47
             deaths,
48
             number_of_animals
49
50
         likelihood_theta_prev = bioassaylp(
51
             theta_prev[0],
52
             theta_prev[1],
53
             doses,
54
             deaths,
55
             number_of_animals
56
         )
57
58
         prior_multivar_nor = stats.multivariate_normal(mean, cov_matrix)
59
         prior_new = prior_multivar_nor.pdf(theta_new)
60
         prior_prev = prior_multivar_nor.pdf(theta_prev)
61
62
         post_new = np.exp(likelihood_theta_new) * prior_new
63
         post_prev = np.exp(likelihood_theta_prev) * prior_prev
64
65
        ratio = post_new / post_prev
66
67
68
         if ratio_can_be_accepted(ratio):
             return theta_new
69
70
         return theta_prev
71
72
    def trim_burnin(chains, burnin_size):
73
```

```
trimmed_chains = []
74
         for chain in chains:
75
              trimmed_chains.append(chain[burnin_size:])
76
         return trimmed_chains
77
78
     def generate_chains(sample_size, number_of_chains, burnin_size):
79
         chains = []
 80
         for i in range(number_of_chains):
81
              starting_points = [random.randint(-2, 4), random.randint(-5, 30)]
82
              print('starting points', starting_points)
83
              chain = [starting_points]
 84
85
              for j in range(sample_size):
86
                  next_theta = get_next_theta(chain[-1], cov_matrix/10)
87
                  chain.append(next_theta)
89
              chains.append(chain)
90
         return trim_burnin(chains, burnin_size=500)
91
92
     chains = generate_chains(sample_size=3000, number_of_chains=10, burnin_size=500)
93
94
     for chain in chains:
95
96
         plt.plot(
              np.array(chain)[:, 0],
97
             np.array(chain)[:, 1],
98
              alpha=0.5,
99
             marker='.',
100
             linewidth=0,
101
             markersize=1,
102
103
     plt.savefig('./ex5/report/1_scatter_plot.png', dpi=150)
104
     plt.figure()
105
106
     print('\nSingle chain')
107
     chain = generate_chains(sample_size=10000, number_of_chains=1, burnin_size=500)[0]
108
     print('\nPotential Scale Reduction Factor (PSRF) is: ', psrf(chain))
109
     plt.plot(
110
         np.array(chain)[:, 0],
111
112
         np.array(chain)[:, 1],
         alpha=0.5,
113
         marker='.'
114
         linewidth=0,
115
         markersize=1,
116
117
     plt.savefig('./ex5/report/2_scatter_plot_with_one_chain.png', dpi=150)
118
     plt.figure()
119
120
121
     '''Outputs:
122
123
     starting points [-2, 7]
     starting points [3, 23]
124
    starting points [2, 18]
125
     starting points [4, 16]
126
     starting points [1, 26]
127
     starting points [2, 24]
128
```