Laboratorium Fizyki Ciała Stałego			lanie oporu w funkcji tempe tale, półprzewodniki)	Zespół w składzie:		
Wydział:	Kierun	ek:		Rok:		
Data wykonania:			Data oddania:	Ocena:		

Cel ćwiczenia

Utrwalenie wiadomości na temat przewodnictwa elektrycznego i struktury pasmowej półprzewodników. Zapoznanie się z zależnością temperaturową oporu elektrycznego dla metali i półprzewodników i charakteryzującymi ją parametrami fizycznymi. Wyznaczenie przerwy energetycznej w półprzewodnikach z pomiaru przewodności.

Wymagane wiadomości teoretyczne

Opór elektryczny, opór właściwy. Temperaturowa zależność oporu elektrycznego dla metali. Oporność resztkowa. Struktura pasmowa półprzewodnika – pasmo walencyjne i przewodnictwa. Poziomy domieszkowe. Przerwa energetyczna. Temperaturowa zależność oporu elektrycznego dla półprzewodników.

Literatura

- Karol Krop (red.), Fizyka Ciała Stałego. Laboratorium, Skrypt Uczelniany AGH nr 900, http://winntbg.bg.agh.edu.pl/skrypty2/0162/
- C. Kittel, Wstęp do fizyki ciała stałego, PWN (wydanie dowolne)

Instrukcja wykonania ćwiczenia

- 1. Włączyć multimetry (omomierze) służące do pomiary oporu elektrycznego wzorcowego opornika platynowego oraz badanych półprzewodników. Multimetry podłączone do termistora oraz próbki InSb ustawić na pomiar rezystancji elektrycznej w stałym, najmniej czułym zakresie pomiarowym 00.000MΩ przy użyciu klawiszy *Hi/Lo*.
- 2. Uruchomić pompę próżniową odpompowującą (szklany) kriostat. Pompa powinna być włączona przez cały czas wykonywania ćwiczenia.
- 3. Wlać ciekły azot do naczynia *Dewara* (termosu) i ustawić go pod kriostatem. Odczekać 5 minut w celu odpompowania kriostatu.
- 4. Ostrożnie zanurzyć kriostat w ciekłym azocie (kręcąc czarnym pokrętłem przy statywie). Wykonać punkt A opracowania wyników w czasie oczekiwania na ochłodzenie próbki, osiągnięcie przez termometr platynowy oporu niższego od 38Ω.
- 5. Włączyć zasilacz grzałki (przekręcając pokrętło na obudowie zasilacza).
- 6. Zapisywać (w tabeli punktu B opracowania) opór termometru platynowego co 2Ω poniżej 50Ω i co 4Ω powyżej 50Ω i równocześnie (w tej samej temperaturze) opór próbek półprzewodnikowych (InSb oraz termistora). Wraz ze wzrostem temperatury zmiana oporu będzie coraz wolniejsza. Aby zapobiec temu efektowi należy stopniowo wysuwać kriostat z naczynia *Dewara* z ciekłym azotem.
- 7. Pomiar prowadzić do osiagniecia oporu termometru platynowego równego 130Ω .
- 8. Wyłączyć zasilacz grzałki i wysunąć kriostat z ciekłego azotu.
- 9. Dokończyć opracowanie wyników i podsumować ćwiczenie.
- 10. Wyłączyć pompę kriostatu.

Wstęp teoretyczny

O długości maksymalnej dwóch stron powinien zostać przygotowany przed zajęciami i zawierać zestawienie informacji z punktu "Wymagane wiadomości teoretyczne".

Opracowanie wyników

Studenci wykonują opracowanie wyników podczas zajęć. Ocena z ćwiczenia jest wypadkową przygotowania teoretycznego, staranności wykonania pomiarów oraz jakości i ilości wykonanych punktów opracowania.

A. Temperaturowa zależność oporu elektrycznego dla wzorcowego termometru platynowego

W zakresie temperatur od ok. 40 K do 1400 K opór platyny zmienia się liniowo wraz z temperaturą. Zależność tą można wyrazić za pomocą wzoru:

$$R_{Pt100}(T) = A \cdot T - B$$

gdzie $A = 0.385 \Omega/K$, $B = 5.15 \Omega$ natomiast T jest temperaturą wyrażoną w Kelwinach.

Na wykresie poniżej proszę wykreślić tą zależność w zakresie temperatur od 100 K do 400 K obliczając opór co 50 K i przeprowadzając prostą przez otrzymane punkty. Etykiety na osi pionowej wykresu powinny być wartościami całkowitymi.

B. Zależność oporu półprzewodników od temperatury, szerokość pasma wzbronionego

Do poniższej tabeli proszę wpisywać wyniki pomiarów dla badanych próbek. Po ich zakończeniu należy przeliczyć opór termometru platynowego na temperaturę w Kelwinach (korzystając z charakterystyki termometru platynowego) i obliczyć jej odwrotność. Wyznaczyć również przewodność badanych próbek i ich logarytm naturalny.

R _{Pt100}	R _{InSb}	R _{term.}	Τ	1/T	σ_{InSb}	$\ln(\sigma_{lnSb})$	σ_{term}	$\ln(\sigma_{term})$
[Ω]	$[k\Omega]$	[kΩ]	[K]	[K ⁻¹]	$[\Omega^{-1}]$		$\sigma_{term} \ [\Omega^{-1}]$	

R _{Pt100}	R _{InSb}	R _{term.}	Т	1/T	σ_{InSb}	$\ln(\sigma_{lnSb})$	σ_{term}	$\ln(\sigma_{term})$
[Ω]	$[k\Omega]$	[kΩ]	[K]	[K ⁻¹]	$[\Omega^{-1}]$		$[\Omega^{-1}]$	

W oparciu o zmierzone dane narysować wykresy przedstawiające zależność logarytmu naturalnego od odwrotności temperatury dla obu badanych materiałów.

Przewodność elektryczna półprzewodników jest proporcjonalna do prawdopodobieństwa wzbudzenia elektronów z pasma walencyjnego do pasma przewodnictwa, które jest proporcjonalne do czynnika Boltzmanna: $\exp(-\Delta E/k_BT)$, gdzie ΔE jest szerokością przerwy energetycznej.

Wykreślając zależność oporu od temperatury w postaci $\ln(1/R) = \ln(\sigma) = f(1/T)$, można zaobserwować charakterystyczne zakresy liniowe. Do każdego z tych zakresów (dwóch dla InSb oraz jednego dla termistora) należy dopasować funkcję prostoliniową. Wyznaczone współczynniki nachylenia prostych, A, użyć do obliczenia szerokości pasma wzbronionego ΔE_G oraz przerwy domieszkowej ΔE_D w InSb oraz ΔE_G termistora, korzystając z zależności:

$$A = |\Delta E/k_B|$$
.

Uzyskane wartości przeliczyć na elektronowolty. Niepewności wyników dla przerw energetycznych oszacować na podstawie niepewności dopasowania linii prostych do danych eksperymentalnych stosując prawo przenoszenia błędów.

$$A_{1,\text{InSb}} = \dots \pm \dots = [K]$$
 \Rightarrow $\Delta E_G = \dots \pm \dots = [eV]$ $A_{2,\text{InSb}} = \dots \pm \dots = [K]$ \Rightarrow $\Delta E_D = \dots \pm \dots = [eV]$ $A_{term} = \dots \pm \dots = [K]$ \Rightarrow $\Delta E_{term} = \dots \pm \dots = [eV]$

Podsumowanie

Należy zwięźle opisać przebieg ćwiczenia i jego wyniki. Opisać w jaki sposób zostały oszacowane błędy. Porównać uzyskane wyniki z teoretycznymi wartościami przerwy energetycznej i skomentować ewentualne rozbieżności.