Norm and Dot Product Handout

1. Let
$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$.

- (a) Calculate $||\vec{u}||, ||\vec{v}||$, and $||\vec{w}||$.
- (b) What is the distance between \vec{u} and \vec{v} ?
- (c) What is the angle between \vec{u} and \vec{w} ?
- (d) Calculate $\vec{u} \cdot (\vec{v} + \vec{w})$.
- (e) Suppose $\vec{x} \in \mathbb{R}^3$ such that \vec{x} is orthogonal to \vec{u} and \vec{w} and $\vec{x} \cdot \vec{v} = 3$. Calculate $(2\vec{u} 4\vec{v} + \vec{w}) \cdot \vec{x}$.
- 2. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ such that \vec{u} and \vec{v} are orthogonal to each other, $||\vec{v}|| = 4$ and $\vec{v} \cdot \vec{w} = 8$. Find a scalar t such that $\vec{u} = \vec{v} + t\vec{w}$.
- 3. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be unit vectors such that $\vec{u} \cdot \vec{v} = -1$. What is the distance between \vec{u} and \vec{v} ?
- 4. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be orthogonal to each other, with $||\vec{u}|| = 8$, and $||\vec{v}|| = 3$. What is the distance between \vec{u} and \vec{v} ?
- 5. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ such that $||\vec{u}|| = 10$, $||\vec{v}|| = 5$, and $||\vec{u} + \vec{v}|| = 13$. What is the angle between \vec{u} and \vec{v} ?
- 6. Let $\vec{u}, \vec{v} \in \mathbb{R}^3$ such that $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $||\vec{v}|| = 2$, and the distance between \vec{u} and \vec{v} is 3. What is the angle between \vec{u} and \vec{v} ?

Solutions

1. (a)

$$\begin{aligned} ||\vec{u}|| &= \sqrt{1^2 + (-1)^2 + 0^2} = \sqrt{2} \\ ||\vec{v}|| &= \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14} \\ ||\vec{w}|| &= \sqrt{5^2 + (-3)^2 + 1^2} = \sqrt{35}. \end{aligned}$$

- (b) Note that $\vec{u} \vec{v} = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$, and so $||\vec{u} \vec{v}|| = \sqrt{(-1)^2 + (-2)^2 + (-3)^2} = \sqrt{14}$.
- (c) We will use both formulas for the dot product to find the angle between the two vectors. Now

$$\vec{u} \cdot \vec{w} = 1 \cdot 5 + (-1) \cdot (-3) + 0 \cdot 1 = 8.$$

And using the geometric formula, we also have that

$$\vec{u} \cdot \vec{w} = ||\vec{u}|| \cdot ||\vec{w}|| \cdot \cos \theta = \sqrt{2} \cdot \sqrt{35} \cdot \cos \theta,$$

where θ is the angle between the two vectors. Substituting the value we've got for the dot product gives us

$$\sqrt{2} \cdot \sqrt{35} \cos \theta = 8$$
,

and so
$$\theta = \cos^{-1}(\frac{8}{\sqrt{70}}) = 17.0^{\circ}$$

(d) Note that $\vec{v} + \vec{w} = \begin{bmatrix} 7 \\ -2 \\ 4 \end{bmatrix}$, and so

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ -2 \\ 4 \end{bmatrix} = 1 \cdot 7 + (-1) \cdot (-2) + 0 \cdot 4 = 9.$$

(e) Since \vec{x} is orthogonal to \vec{u} and \vec{w} , we have $\vec{u} \cdot \vec{x} = \vec{w} \cdot \vec{x} = 0$. Then

$$(2\vec{u} - 4\vec{v} + \vec{w}) \cdot \vec{x} = 2\vec{u} \cdot \vec{x} - 4\vec{v} \cdot \vec{x} + \vec{w} \cdot \vec{x}$$

= 2 \cdot 0 - 4 \cdot 3 + 0
= -12.

2. Since \vec{u} and \vec{v} are orthogonal to each other, we have $\vec{u} \cdot \vec{v} = 0$. We also have that $||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = 4$, so $\vec{v} \cdot \vec{v} = 4^2 = 16$, and we're given $\vec{w} \cdot \vec{v} = 8$. We can take the equation $\vec{u} = \vec{v} + t\vec{w}$ and take the dot product of both sides with \vec{v} . We get

$$\vec{u} \cdot \vec{v} = (\vec{v} + t\vec{w}) \cdot \vec{v}$$
$$= \vec{v} \cdot \vec{v} + t\vec{w} \cdot \vec{v}$$

Substituting the values we have into this equation gives us

$$0 = 16 + 8t$$
.

And so we must have t = -2.

3. Since \vec{u} and \vec{v} are unit vectors, then $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}} = 1$. Similarly, $||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = 1$. Now the distance between \vec{u} and \vec{v} is given by $||\vec{u} - \vec{v}||$. Using the relation between the dot product and the length of a vector, and the properties of the dot product, we have

$$\begin{aligned} ||\vec{u} - \vec{v}||^2 &= (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) \\ &= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v} \\ &= ||\vec{u}||^2 - 2\vec{u} \cdot \vec{v} + ||\vec{v}^2|| \\ &= 1^2 - 2 \cdot (-1) + 1^2 \\ &= 4. \end{aligned}$$

Then the distance between \vec{u} and \vec{v} is $||\vec{u} - \vec{v}|| = \sqrt{4} = 2$.

4. Following the same steps as we did in the previous problem, and noting that $\vec{u} \cdot \vec{v} = 0$, we get

$$||\vec{u} - \vec{v}||^2 = \vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$

$$= ||\vec{u}||^2 - 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$$

$$= 8^2 - 2 \cdot 0 + 3^2$$

$$= 73.$$

So the distance between \vec{u} and \vec{v} is $||\vec{u} - \vec{v}|| = \sqrt{73}$.

5. To find the angle between the two vectors, we need to use the geometric formula for the dot product $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos\theta$. The unknowns here are the dot product $\vec{u} \cdot \vec{v}$ and the angle θ . We can find the dot product from the information given if we apply some algebra. Using the relation between the dot product and the length of a vector, and the properties of the dot product, we have

$$\begin{aligned} ||\vec{u} + \vec{v}||^2 &= (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) \\ &= \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v} \\ &= ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{v}^2||. \end{aligned}$$

Substituting the values that we have gives us $13^2 = 10^2 + 2\vec{u} \cdot \vec{v} + 5^2$. Solving for the dot product gives us $\vec{u} \cdot \vec{v} = 22$. We can now use the geometric formula for the dot product to find θ , the angle between the two vectors,

$$\theta = \cos^{-1}(\frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||})$$
$$= \cos^{-1}(\frac{22}{10 \cdot 5})$$
$$= 63.9^{\circ}.$$

6. As in the previous problem, we need to use the geometric formula for the dot product to find the angle between the two vectors. The unknowns in the formula $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos\theta$ are the dot product $\vec{u} \cdot \vec{v}$, $||\vec{u}||$ and the angle θ . We can directly calculate $||\vec{u}|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$. We are also given the distance between \vec{u} and \vec{v} , which is $||\vec{u} - \vec{v}||$. We can use this information to find the dot product.

$$\begin{split} ||\vec{u} - \vec{v}||^2 &= (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) \\ &= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v} \\ &= ||\vec{u}||^2 - 2\vec{u} \cdot \vec{v} + ||\vec{v}^2||. \end{split}$$

Substituting the values that we have gives us $3^2 = (\sqrt{14})^2 - 2\vec{u} \cdot \vec{v} + 2^2$. Solving for the dot product gives us $\vec{u} \cdot \vec{v} = 4.5$. We can now use the geometric formula for the dot product to find θ , the angle between the two vectors,

$$\theta = \cos^{-1}(\frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||})$$

$$= \cos^{-1}(\frac{4.5}{(\sqrt{14})(2)})$$

$$= 53.0^{\circ}.$$