Prototype networks for few-shot learning

Fabian Greavu, Machine Learning exam @ unifi

Summary

- ❖ Introduction
 - Challenge
 - Few-shot learning
- Project workflow
 - Datasets
 - Prototypical Networks
 - Centroids
 - NC, NS, NQ
 - Loss, Optimizer, scheduler
 - Training skeleton
 - Code
- Experiments
 - Omniglot
 - Mini Imagenet
 - ➤ Flowers102
 - Comparison
- Conclusion

Intro

Challenge

'classic' Classification Task

(Specialized into X classes)

Deploy

Our Challenge Classification Task

Few-shot learning

- A meta-learning technique to 'learn to learn'
- Uses **small amount** of occurrences
- Can perform with **high accurancies**

Dataset

Meta-learning definition

Fig. 1. Overview of the meta-learning landscape including algorithm design (meta-optimizer, meta-representation, meta-objective), and applications.

Project workflow

Datasets

- Omniglot: 1623 handwritten characters
 - 80 images per class
 - classes: (1032 train, 172 val, 464 test)
- Mini Imagenet: 100 objects
 - 600 images per class
 - classes: (64 train, 16 val, 20 test)
- Flowers 102: 102 flowers
 - 40-120 images per class
 - classes: (64 train, 16 val, 22 test)

ロにゅみゅうけんめんからららいロロコトかぶんさんりょりょりょ Pm はりとはおままもに大 ナレフピンンショネリのんナ 3 m 8 m v HHHII I MO S S S Y CO T CO S L O E U & W N D B & & B CO 1. 安立贫行均 写为 医马氏开干什么 1. 心心也 1. 之三年主 4 2 3 4 5 7 8 6 8 8 8 8 [モル目句のかずめかマドエニエックがいひとと とどくて ゲスイスヒリ L и Чп Ч С в У S Тико и мото 4 т в В: в в Р ч С ч Г э ч ± K. L. APX TYNOZ EBY = = om = TOVP L CUURT TO

Prototypical Networks

- Extracts features with a neural network
 - 4 CNN blocks: Conv out=64, ks=3 / BatchNorm2D / ReLu / MaxPool2D
- Learning: embeddings learning
 - Trained 100 episodes/iterations per epochs (200 ep) to learn embeddings

Prototypical Networks - centroids

- Use a small part of output as support, other as query
- Centroids are mean(support)
- Calculate distances between query and centroids
- Calculate loss as mean of log_softmax of negative distances

Prototypical Networks - NC, NS, NQ

- NC: how many classes to use per each iteration on batch (or 'ways')
- NS: how many examples to use as support for centroids calculus (or 'shots')
- NQ: how many examples to use as queries for centroids calculus ('query')
 - 1 shots -> One-Shot Learning
 - 5 shots -> Few-Shot Learning ____ \mathbf{c}_1

Loss, optimizer, scheduler

- Loss: mean(log_softmax(-distances(query, centroids), targets)
- Optimizer: Adam with Ir=0.001
- Scheduler: StepLr with step_size=20, gamma = 0.5

One batch

Training skeleton

```
model = PrototypicalNet()
loss = loss_function(x, y, NC, NS, NQ)
optim = StepLr()
for epoch in epochs:
for it in iterations:
 x, y = GetSample(NC, NS, NQ)
 out = model(x)
  ... loss
  backward()
for it in iterations:
 .... eval ....
```


Code

All code is available at github

- Full hyperparams control
- 3 available datasets
- results and plots
- simple train.py and test.py scripts

```
python train.py --dataset mini_imagenet \
       --epochs 200 \
       --gpu∖
       --train-num-class 30 \
       --test-num-class 5 \
       --number-support 5 \
       --train-num-query 15\
       --episodes-per-epoch 100 \
       --adam-lr 0.001 \
       --opt-step-size 20 \
       --opt-gamma 0.5 \
       --distance-function "euclidean" \
       --save-each 5
```

Experiments

Omniglot

5-shot

Mini Imagenet

5-shot

Flowers 102

5-shot

Comparison - distance metric

Dataset	Cosine (acc)	Euclidean (acc)	
mini_imagenet	22.36	63.62	
omniglot	23.48	97.77	
flowers102	82.89	84.48	

Comparison - one vs few shot vs paper

Dataset	Paper res 5-way 5-shot (Acc)	Our res 5-way 5-shot (Acc)	Paper res 5-way 1-shot (Acc)	Our res 5-way 1-shot (Acc)
mini_imagenet	68.20	63.62	49.42	46.13
omniglot	98.80	97.77	98.8	91.93
flowers102	1	84.48	1	56.08

Conclusions

Conclusion

- Euclidean distance performs better than cosine similarity
- Paper results were correctly replicated

Future studies

- Add custom dataset option for training
- Implement proper torch.nn.Dataset and torch.nn.Sampler + torch.nn.DataLoader
- Try different fields than CV