

8/9/1 DIALOG(R)File 351:Derwent WPI (c) 2002 Thomson Derwent. All rts. reserv.

010503289

WPI Acc No: 1996-000240/199601

Related WPI Acc No: 1996-010829

XRAM Acc No: C96-000115

Biologically degradable mineral fibre compsn. - comprises silicon dioxide, and oxide(s) of aluminium, calcium, magnesium, sodium, potassium, boron, etc.

Patent Assignee: ISOVER SAINT-GOBAIN (COMP); GRUENZWEIG & HARTMANN AG (GRUZ)

Inventor: HOLSTEIN W; LOHE P; SCHWAB W

Number of Countries: 006 Number of Patents: 007

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 4417231	A1	19951123	DE 4417231	A	19940517	199601 B
FI 9505417	A	19951118	WO 95EP1843	A	19950516	199607
			FI 955417	A	19951110	
NO 9600190	A	19960116	WO 95EP1843	A	19950516	199613
			NO 96190	A	19960116	
ZA 9503955	A	19960327	ZA 953955	A	19950516	199619
DE 4417231	C2	19961205	DE 4417231	A	19940517	199702
BR 9506227	A	19970812	BR 956227	A	19950516	199739
			WO 95EP1843	A	19950516	
CN 1128529	A	19960807	CN 95190437	A	19950516	199750

Priority Applications (No Type Date): DE 4417231 A 19940517; DE 1003172 A 19950201

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
DE 4417231	A1	4	C03C-013/06	
ZA 9503955	A	10	C03C-000/00	
DE 4417231	C2	4	C03C-013/06	
BR 9506227	A		C03C-013/00	Based on patent WO 9531411
FI 9505417	A		C03C-000/00	
NO 9600190	A		C03C-013/00	
CN 1128529	A		C03C-013/00	

Abstract (Basic): DE 4417231 A

Mineral fibre compsn. comprises (in wt.%): 50-65 SiO₂, less than 2 Al₂O₃, 15-30 CaO, 3-15 MgO, 8-20 Na₂O, 0-2 K₂O, 0-10 B₂O₃, and 0-5 TiO₂, Fe₂O₃, BaO, MnO and P₂O₅.

ADVANTAGE - The compsn. is biologically degradable, and has good temp. resistance.

Dwg.0/1

Title Terms: BIOLOGICAL; DEGRADE; MINERAL; FIBRE; COMPOSITION; COMPRISE; SILICON; DI; OXIDE; ALUMINIUM; CALCIUM; MAGNESIUM; SODIUM; POTASSIUM; BORON

Derwent Class: F01; L01

International Patent Class (Main): C03C-000/00; C03C-013/00; C03C-013/06

File Segment: CPI

Manual Codes (CPI/A-N): F01-A03; F01-D09; L01-A03C; L01-A05; L01-F03

Derwent Registry Numbers: 1498-U; 1499-U; 1503-U; 1508-U; 1510-U; 1517-U; 1523-U; 1544-U; 1694-U; 1936-U; 1966-U

© 2002 The Dialog Corporation

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK
DEUTSCHLAND

**DEUTSCHES
PATENTAMT**

⑫ Offenlegungsschrift
⑩ DE 44 17 231 A 1

(51) Int. Cl.®:
C 03 C 13/06
// C03B 37/06 (C03C
13/06;3:076,
3:083)C03C 3:085,
3:078;3:089,3:091,
3:097

(21) Aktenzeichen: P 44 17 231.1
(22) Anmeldetag: 17. 5. 94
(43) Offenlegungstag: 23. 11. 95

DE 44 17 231 A 1

(71) Anmelder:
Grünzweig + Hartmann AG, 67059 Ludwigshafen,
DE

(74) Vertreter:
Kador, U., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 80469
München

 Erfinder:
Lohe, Peter, 67112 Mutterstadt, DE; Holstein,
Wolfgang, Dr., 35315 Hamberg, DE; Schwab,
Wolfgang, 68723 Plankstadt, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

54 Mineralfaserzusammensetzung

57 Biologisch abbaubare Mineralfaserzusammensetzung, gekennzeichnet durch folgende Bestandteile in Gewichtsprozent:

SiO_2	50 bis 65
Al_2O_3	weniger als 2
CaO	15 bis 30
MgO	3 bis 15
Na_2O	8 bis 20
K_2O	0 bis 2
B_2O_3	0 bis 10
$\text{TiO}_2, \text{Fe}_2\text{O}_3, \text{BaO}, \text{MnO}, \text{P}_2\text{O}_5$	0 bis 5.

DE 44 17 231 A 1

Beschreibung

Die Erfindung bezieht sich auf eine Mineralfaserzusammensetzung, die biologisch abbaubar ist.

Es sind im Stande der Technik einige Mineralfaserzusammensetzungen beschrieben, von denen angegeben wird, daß sie biologisch abbaubar sind.

Die biologische Abbaubarkeit von Mineralfaserzusammensetzungen ist insofern von großer Bedeutung, weil verschiedene Untersuchungen darauf hinweisen, daß einige Mineralfasern mit sehr kleinen Durchmessern im Bereich von kleiner 3 µm im Verdacht stehen, kanzerogen zu sein, biologisch abbaubare Mineralfasern solcher Dimensionen aber keine Kanzerogenität zeigen.

Neben der biologischen Abbaubarkeit sind jedoch auch die mechanischen und thermischen Eigenschaften der Mineralfasern bzw. der daraus hergestellten Produkte, sowie die Verarbeitbarkeit der Mineralfaserzusammensetzung von ausschlaggebender Bedeutung. Mineralfasern werden beispielsweise in großem Umfang zu Dämmzwecken eingesetzt. Insbesondere für diese Verwendung im Industriesektor ist eine ausreichende Temperaturbeständigkeit der Mineralfasern notwendig.

Ferner muß die Mineralfaserzusammensetzung eine Verarbeitbarkeit nach bekannten Verfahren zur Herstellung von Mineralfasern mit kleinem Durchmesser, wie beispielsweise dem Düsenblasverfahren, ermöglichen.

Aufgabe der Erfindung ist die Schaffung einer neuen Mineralfaserzusammensetzung, die sich durch biologische Abbaubarkeit auszeichnet, die gute Temperaturbeständigkeit aufweist und sich gut verarbeiten läßt.

Der Erfindung liegt die Erkenntnis zugrunde, daß die Aufgabe durch eine Mineralfaserzusammensetzung gelöst werden kann, die im wesentlichen aus Siliciumdioxid, Calciumoxid, Magnesiumoxid und Natriumoxid aufgebaut ist.

Es hat sich gezeigt, daß eine solche Mineralfaserzusammensetzung die Kombination der notwendigen Eigenschaften, nämlich biologische Abbaubarkeit, Temperaturbeständigkeit sowie gute Verarbeitbarkeit erfüllt.

Gegenstand der Erfindung ist eine Mineralfaserzusammensetzung, die biologisch abbaubar ist, die gekennzeichnet ist durch folgende Bestandteile in Gewichtsprozent:

SiO ₂	50 bis 65
Al ₂ O ₃	weniger als 2
CaO	15 bis 30
MgO	3 bis 15
Na ₂ O	8 bis 20
K ₂ O	0 bis 2
B ₂ O ₃	0 bis 10
TiO ₂ , Fe ₂ O ₃ , BaO, MnO, P ₂ O ₅	0 bis 5.

Die erfindungsgemäßen Mineralfaserzusammensetzungen sind nach dem Düsenblasverfahren verziehbar. Die erhaltenen Fasern haben gute Temperaturbeständigkeit. Überraschenderweise zeigen die Mineralfaserzusammensetzungen biologische Abbaubarkeit.

Vorzeugsweise weisen die erfindungsgemäßen Mineralfaserzusammensetzungen folgende Bestandteile in Gewichtsprozent auf:

SiO ₂	55 bis 60
Al ₂ O ₃	weniger als 1,5
CaO	15 bis 25
MgO	6 bis 12
Na ₂ O	9 bis 15
K ₂ O	weniger als 2
B ₂ O ₃	0 bis 8
TiO ₂ , Fe ₂ O ₃ , BaO, MnO, P ₂ O ₅	0 bis 5.

Zur Beurteilung der biologischen Abbaubarkeit wurde die Standardgrießprobe der Deutschen Glasgesellschaft herangezogen. Dies ist eine einfach durchführbare Methode und gibt ein hinreichendes Maß für die biologische Abbaubarkeit. Die Methode ist beschrieben in L. Springer, "Laboratoriumsbuch für die Glasindustrie", 3. Aufl. 1950, Halle/S: W. Knapp Verlag.

Das Temperaturverhalten der Mineralfasern wurde mit der Schwedischen Methode ermittelt. Bei dieser Methode wird ein Silitrohrofen mit liegendem, beidseitig offenem Arbeitsrohr mit einer Länge von 350 mm und einem Innendurchmesser von 27 mm verwendet. Im Ofenzentrum ist ein keramisches Auflageplättchen mit 30 x 20 x 3 mm zum Aufstellen des Prüfkörpers. Der Prüfkörper hat Abmessungen von 12 x 12 x 12 mm oder 12 mm ø x 12 mm Höhe. Die Rohdichte beträgt im Normalfall 100 kg/m³. Die Temperatursteigerung beträgt 5 K/min. Die Ermittlung der Prüfkörperhöhenänderung erfolgt laufend mit einer Ableseoptik.

Die Erfindung wird nachstehend anhand von Beispielen näher beschrieben.

Beispiel 1

Es wurde eine Mineralwolle mit folgender Zusammensetzung in Gewichtsprozent produziert:

SiO ₂ : 56
Al ₂ O ₃ : 0,5
CaO: 20
MgO: 10
Na ₂ O: 10
B ₂ O ₃ : 2,7

Diese Zusammensetzung konnte nach dem Düsenblasverfahren bei einer Verziehtemperatur von 1330°C zu Mineralfasern mit einem mittleren Durchmesser von 1,8 µm gut verarbeitet werden.

Eine Untersuchung gemäß der Standardgrießprobe der Deutschen Glasgesellschaft ergab einen Wert von 35 mg/kg und somit einen Wert für hohe biologische Abbaubarkeit.

Die Ermittlung des Temperaturverhaltens gemäß der Schwedischen Methode ergab eine Temperaturbeständigkeit bei 5% Höhenminderung von 620°C, was aus dem zugehörigen in der einzigen Zeichnung bespielhaft dargestellten Schaubild deutlich zu erkennen ist.

Beispiel 2

Es wurde eine Mineralwolle mit folgender Zusammensetzung in Gewichtsprozent produziert:

SiO ₂ : 56
Al ₂ O ₃ : 1,0
CaO: 21
MgO: 11
Na ₂ O: 11

Diese Zusammensetzung konnte nach dem Düsenblasverfahren bei einer Verziehtemperatur von 1310°C zu Mineralfasern mit einem mittleren Durchmesser von 1,7 µm gut verarbeitet werden.

Eine Untersuchung gemäß der Standardgrießprobe der Deutschen Glasgesellschaft ergab einen Wert von 37 mg/kg und somit einen Wert für hohe biologische Abbaubarkeit.

Die Ermittlung des Temperaturverhaltens gemäß der Schwedischen Methode ergab eine Temperaturbeständigkeit bei 5% Höhenminderung von 600°C.

Patentansprüche

1. Mineralfaserzusammensetzung, die biologisch abbaubar ist, gekennzeichnet durch folgende Bestandteile in Gewichtsprozent:

SiO ₂	50 bis 65	
Al ₂ O ₃	weniger als 2	20
CaO	15 bis 30	
MgO	3 bis 15	
Na ₂ O	8 bis 20	
K ₂ O	0 bis 2	25
B ₂ O ₃	0 bis 10	
TiO ₂ , Fe ₂ O ₃ , BaO, MnO, P ₂ O ₅	0 bis 5.	

2. Mineralfaserzusammensetzung nach Anspruch 1, gekennzeichnet durch folgende Bestandteile in Gewichtsprozent:

SiO ₂	55 bis 60	
Al ₂ O ₃	weniger als 1,5	35
CaO	15 bis 25	
MgO	6 bis 12	
Na ₂ O	9 bis 15	
K ₂ O	weniger als 2	
B ₂ O ₃	0 bis 8	40
TiO ₂ , Fe ₂ O ₃ , BaO, MnO, P ₂ O ₅	0 bis 5.	

Hierzu 1 Seite(n) Zeichnungen

Temperaturverhalten (Schwedenmethode)

