Automatic Text Summarization

Introduction

- Text produced from one or more texts, that conveys important information of the original text/texts
- There are two different approaches for automatic text summarization

Extractive Summarization:

approaches select passages from the source text, then arrange them to form a summary. You might think of these approaches as like a highlighter.

Abstractive Summarization:

approaches use natural language generation techniques to write novel sentences. By the same analogy, these approaches are like a pen.

The great majority of existing approaches to automatic summarization are extractive – mostly because it is much easier to *select* text than it is to *generate* text from scratch.

Extractive Summarization

- extractive summarization techniques produce summaries by choosing a subset of the sentences in the original text.
- In order to fetch important sentences from the text, we can
 - 1. Construct an intermediate representation expressing main aspects of the text
 - 2. Score the sentences based on representation
 - 3. Select a summary comprising of required length.
- Luhn's method(1958) count based
 - Ignore Stop words
 - Determine Top Words: The most often occurring words in the document are counted.
 - Select Top Words: A small number of the top words are selected to be used for scoring.
 - Select Top Sentences: Sentences are scored according to how many of the top words they contain.

Extractive Summarization

Latent Semantic Analysis

- Documents are made of topics and topics are made of words.
- A good Summarization should explain the most important topics
- Create a word sentence matrix representing occurrences/tf-idf/log-entropy and use SVD to

Latent Semantic Analysis

 Create a word sentence matrix representing occurrences/tf-idf/log-entropy and use SVD to factorize the matrix.

book	0.15	-0.27	0.04
dads	0.24	0.38	-0.09
dummies	0.13	-0.17	0.07
estate	0.18	0.19	0.45
guide	0.22	0.09	-0.46
investing	0.74	-0.21	0.21
market	0.18	-0.3	-0.28
real	0.18	0.19	0.45
rich	0.36	0.59	-0.34
stock	0.25	-0.42	-0.28
value	0.12	-0.14	0.23

3.91	0	0
0	2.61	0
0	0	2

	T1	T2	T3	T4	T5	T6	T7	T8	T9
	0.35	0.22	0.34	0.26	0.22	0.49	0.28	0.29	0.44
	-0.32	-0.15	-0.46	-0.24	-0.14	0.55	0.07	-0.31	0.44
9	-0.41	0.14	-0.16	0.25	0.22	-0.51	0.55	0	0.34

Drawbacks ::

- LSA depends heavily on SVD which is computationally intensive and hard to update as new documents appear.
- There is no probabilistic interpretation to scores

Latent Dirichlet Allocation

Abstractive Summarization - seq2seq

Pointer-Generator networks

Using Extractive to generate Abstractive

ROUGE

```
Rouge Score
            recall, how much human - summan
               madrine reference
    Rouge recall & preciso
                         > # overlapping words
                            # words in system
    # of overlappin words
    # of west in reference
ROUGE-N - n-grams instead & worlds
         I matcher Longert common subsequence
ROUGE-S -> skip-gram cooccurrence
```

RL in seq2seq

- The model's aim is to output the reference summary, so we define a cross entropy loss between the target and the produced word. But this approach is fundamentally flawed.
- There are various ways in which the document can be effectively summarized. The reference summary is just one of those possible ways.
- So, the model's aim shouldn't be just restricted to outputting only the reference summary. There should be some scope for variations in the summary.
- This is the idea behind using Reinforcement learning in Summarization.