Building intuitive chat bots via language switching pattern mining

Sai Kiran Peketi

Collaborators: : Neha Prabhugaonkar Kavita Ganeshan, Unnikrishnan Sureshkum

Supervisor: Dr. Soudip Roy Chowdhury

Cuddle Inc.

Outline

- Motivation
- Code Borrowing in Chat logs
- System Architecture
- Models
- Results
- Future Work
- References

Motivation

Code Borrowing in Chat logs

- Code-mixing leads to Code-borrowing
- Determining the *likelihood* of a code to be borrowed from Code-mixing pattern
 - borrowedness index

System Architecture

In Today's Talk

Data Flow under pattern miner

Chatbot Integration

- Parallel Corpus used for building conversational knowledge [IITB English-Hindi Corpus] (http://www.cfilt.iitb.ac.in/iitb_parallel/)
- Two deep learning-based methods are used
 - Softmax classifier (continous bag of words CBOW) i.e., probability of the next word ("target") given the previous words ("Context")
 - Sequence-to-sequence model for language mapping
- If the translated target word is ranked high wrt borrowedness index
 - Recommend users translated target word

Data Collection

Tweet Annotation

- The total number of tweets extracted were 240360
- The distribution of different types of tweets

Classes	Number of Tweets		
ENGLISH	5652		
HINDI	84		
СМН	11950		
CME	196143		
CMEQ	2674		
OTHER	2		
CS	23855		

Model Creation

- Model 1: UUR Model
 - Unique User Ratio of a word w : UUR(w) = (U_hi + U_cmh) / U_en

- Model 2: UTR Model
 - Unique Tweet Ratio of a word w : UTR(w) = (T_hi +T_cmh) / T_en

Model Creation

- Model 3: Inverse Model
 - IM(w) = 0.5 * IUUR(w) + 0.5 * IUTR(w), where
 - IUUR(w) = 1 + log(U/UUR), where $U = U_hi + U_cmh + U_en$
 - IUTR(w) = 1 + log(T/UTR), where $T = T_hi + T_cmh + T_en$

- Model 4: TF-IDF Model
 - This gives the importance of the word in the corpus

Model Creation

- Model 5: Weighted Class Average Model (WCAM)
 - WCAM(w) = [(PH)*0.25 + (EP)*0.25 + [(SE)+(SH)]*0.2 + (CS)*0.1]/(PE)

PH	Pure Hindi		
EP	English Phrase		
SE	Start English		
SH	Start Hindi		
CS	# Code Switch >2		
PE	Pure English		

- Model 6: Code-Switched Model
 - CSR(w) = T_cs/N_en, where N_en = number of times the word is tagged as English
 - T_cs = number of CS tweets in which word w is present

Results

• Spearman's Rank Correlation

Ground Truth (12 words)	UUR + UTR Model	0.61
	Ensemble Model	0.63

Ground Truth (70 words)	UUR + UTR Model	0.59
	Ensemble Model	0.62

Results

• Final Ranked List

word	UUR Model	UTR Model	WCAM Model	Inverse Model	TF-IDF Model	CS Model	Ensemble Model ***
sir	7	7	45	117	8	20	1
main	1	1	3	182	70	1	2
film	14	13	9	161	23	4	3
picture	17	17	19	193	128	16	4
song	43	55	27	91	39	27	5

^{***} Runner up at Data Challenge organised by Microsoft research and IIT KGP in COMAD and CODS conference in March, 2017

Future Work

- Applying algorithms on various types of data
 - FB, work-related tweets etc.
 - Experiments with European languages
- Applying different algorithms
 - Combining WCAM and TFIDF to get better insights
 - Using RankNet for ranking of borrowed words
- Improving the user-experience of chat bot
 - Measuring the effect of multi-lingual auto-suggest via user engagement

References

- 1. Bali et al. (2014): Kalika Bali Jatin, Sharma, Monojit Choudhury, and Yogarshi Vyas. ""I am borrowing ya mixing?" An Analysis of English-Hindi Code Mixing in Facebook." EMNLP 2014 (2014): 116.
- 2. Gella et al, (2013): Spandana Gella, Jatin Sharma and Kalika Bali. Query word labeling and Back Transliteration for Indian Languages: Shared task system description In Proceedings of the Fifth Workshop on Forum for Information Retrieval (FIRE 2013). New Delhi, India
- 3. Gualberto A. Guzman, Jacqueline Serigos, B.E.B.A.J.T. Simple Tools for Exploring Variation in Code-Switching for Linguists. 12–20.
- 4. Dietterich, T. G. Ensemble methods in machine learning. In International workshop on multiple classifier systems, Springer (2000), 1–15.
- 5. Data Challenge details: https://ikdd.acm.org/cods2017/data-challenge.html

Thank You

Questions?