```
In [1]:
         import pickle
         from rdkit import Chem
         from rdkit.Chem import Draw
         from rdkit.Chem.Draw import IPythonConsole
         from rdkit.Chem import rdFMCS
         from rdkit.Chem.Draw import rdDepictor
         from IPython.display import display
         import matplotlib.pyplot as plt
         from IPython.display import HTML
         import pandas as pd
         IPythonConsole.ipython useSVG=True
         rdDepictor.SetPreferCoordGen(True)
         #IPythonConsole.drawOptions.minFontSize=20
In [2]:
         with open('predictions/w_logs.pkl', 'rb') as file: w_te_data = pickle.load(fi
         with open('predictions/wo_logs.pkl', 'rb') as file: wo_te_data = pickle.load(
         original = pd.read csv('predictions/chem departm output wo tie embedding/outp
In [3]:
         def view_difference(mol1, mol2):
             mcs = rdFMCS.FindMCS([mol1,mol2])
             mcs_mol = Chem.MolFromSmarts(mcs.smartsString)
             match1 = mol1.GetSubstructMatch(mcs mol)
             target_atm1 = []
             for atom in mol1.GetAtoms():
                 if atom.GetIdx() not in match1:
                     target atml.append(atom.GetIdx())
             match2 = mol2.GetSubstructMatch(mcs mol)
             target atm2 = []
             for atom in mol2.GetAtoms():
                 if atom.GetIdx() not in match2:
                     target atm2.append(atom.GetIdx())
             return Draw.MolsToGridImage([mol1, mol2],highlightAtomLists=[target atml,
```

Generation

Notes:

- Predict the next fragment when probability p > 0.5
- The logic takes top-5 attachments from combinations of top-5 motifs and its possible configs. E.g., motif C1=CC=CC=C1 has 2 possible configs, C1=[CH:1]C=C[CH:2]=C1 or C1=[CH:1]C=CC=C1. The first config could be connected to other motifs that the connections are marked by :X, X is a number. The second config is the end motif that couldn't connected to other motifs. Atoms marked by different mark numbers are connected together. No two atoms with same mark numbers are used for connection.
- For every attachment, it's checked for validity:
 - If the to-connect motif and to-be-connected (aka predicted motif) share common atoms for connections.
 - No self-loop.
 - If all atoms in the to-be-connected motif exist in the to-connect motif, no need to attach them.
- To view prediction logs of other molecules, subtract 2 from the molecule's index in Excel file.

```
In [4]:
        def view(data, i, _original):
            print('Original: {}'.format(_original[i]))
            display(Draw.MolsToGridImage([Chem.MolFromSmiles(_original[i])]))
            sample = data[i]
            # step 0
            step f0 = sample[0]
            print('*************Sample {}th*************.format(i))
            print('----')
            print('Root motif: {}'.format(step_f0['root']))
            print('Top 5 root motif configs:', '\n'.join([str(x) for x in step_f0['to]
            # display
            mol = Chem.MolFromSmiles(step_f0['top-5-root-attachments'][0][0])
            print('Displaying partial graph (aka molecule): {}'.format(step_f0['parti
            display(Draw.MolsToGridImage([mol]))
            # the remaing steps
            for i, step_f in enumerate(sample[1:]):
                print('----Step-{}----' \cdot format(i + 1))
                if 'Generate fragment' in step_f:
                    print('Generate next fragment p = {}'.format(step f['Generate fra
                else:
                    print('Skip, current fragment has no next fragment to be attached
                    continue
                if 'top-5-inter-cands' in step_f:
                    print('Top 5 next motifs to attach:')
                    for fragment in step_f['top-5-inter-cands']:
                        print('Molecule {} and its specific config {} w/ p={}'.format
                        display(Draw.MolsToGridImage([Chem.MolFromSmiles(fragment[1]))
                        print('-----
                    if 'Attaching Fragment' in step_f:
                        frag = step_f['Attaching Fragment']
                        sub_mol = Chem.MolFromSmiles(step_f['partial-graph'])
                        print('Attaching fragment {} of config {}'.format(frag[0], fr
                        print('Latest partial graph: {}'.format(step_f['partial-graph)
                        print('Lastest graph (left) vs graph in last step (right)')
                        display(view difference(sub mol, mol))
                        mol = sub_mol
                        print('----
                        print("Skip, the best next fragment to be attached to the cur
```

```
In [10]: view(w_te_data, 12, original)
```

Original: CCCCCCC1=CC=C(S1)C2(C(S3)=CC=C3CCCCCC)C(C(SC(/C=C(C4=0)/C(C5=CSC=C45)))

)=C(C#N)\C#N)=C6)=C6S7)=C7C8=CC9=C(C(SC(/C=C(C%10=0)/C(C%11=CSC=C%10%11)=C(C#N)\C#N)=C%12)=C%12C9(C(S%13)=CC=C%13CCCCCC)C(S%14)=CC=C%14CCCCCC)C=C28


```
----Step-0----

Root motif: CC(=0)[0-]

Top 5 root motif configs: ('O=C([O-:1])[CH3:2]', tensor(13.9317))
('O=C([O-])[CH3:1]', tensor(-12.5431))
('CC(=0)[O-:1]', tensor(-16.1744))
('[O:1]=[CH2:2]', tensor(-980.1329))
('C(#C[CH3:2])[CH3:1]', tensor(-980.1487))

Displaying partial graph (aka molecule): CC(=0)[0-]
```

----Step-1----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-1.0707383155822754

Molecule C1CNC1 and its specific config [CH2:1]1[CH2:2][NH:2][CH2:2]1 w/p=-1.16451895236969

Molecule C1CNC1 and its specific config [CH2:1]1[CH2:2][CH2:2][NH:2]1 w/p=-1.808347225189209

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-2.6687560 081481934

Molecule CN and its specific config [CH3:1][NH2:2] w/ p=-3.1203184127807617

3/20/22, 4:15 PM Debug

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: CCC(=0)[0-]

Lastest graph (left) vs graph in last step (right)

----Step-2----

Generate next fragment p = 1.0

Top 5 next motifs to attach: Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.0152112

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/p=-4.913881301879883

Molecule C1=CSC=C1 and its specific config C1=[CH:1]C=[CH:2]S1 w/ p=-5.4744892 12036133

Molecule C and its specific config C w/p=-5.725157260894775

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-8.778 680801391602

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: O=C([O-])Cc1cccs1 Lastest graph (left) vs graph in last step (right)

----Step-3----

Generate next fragment p = 1.0 Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-1.811964830267243e-05

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-11.43 4046745300293

3/20/22, 4:15 PM

Molecule C and its specific config C w/ p=-11.994294166564941

Molecule C1=CSC=C1 and its specific config C1=[CH:2]S[CH:1]=[CH:1]1 w/ p=-13.7 05684661865234

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-17.187797 54638672

214 1' 6 4 1002 12002 02 6 6' Clarava 1212

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: Cclccc(CC(=0)[O-])s1 Lastest graph (left) vs graph in last step (right)

----Step-4----

Generate next fragment p = 1.0
Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-0.00 9146904572844505

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-4.7870278 35845947

3/20/22, 4:15 PM

Molecule C and its specific config C w/p=-7.912520408630371

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-8.354 876518249512

Molecule C1=CSC=C1 and its specific config C1=CS[CH:1]=C1 w/ p=-8.974496841430 664

Attaching fragment C1=[CH:1]S[CH:2]=[CH:2]1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: O=C([O-])Cc1ccc(-c2cccs2)s1 Lastest graph (left) vs graph in last step (right)

----Step-5----

Generate next fragment p = 0.9997887015342712

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-0.5695070624351501

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-1.1753448 247909546

3/20/22, 4:15 PM

Molecule C1=CSC=C1 and its specific config C1=[CH:2]S[CH:1]=[CH:1]1 w/ p=-2.70 43516635894775

Molecule C1=CSC=C1 and its specific config C1=C[CH:1]=[CH:1]S1 w/ p=-3.2616009 71221924

Molecule C[SiH3] and its specific config [CH3:1][SiH3:2] w/p=-4.3368959426879 88

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: Cclccc(-c2ccc(CC(=0)[O-])s2)s1
Lastest graph (left) vs graph in last step (right)

----Step-6----

Generate next fragment p = 1.0 Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.0103656 60302340984

Molecule CC1=CSC=C1 and its specific config CC1=[CH:1]SC=C1 w/ p=-4.703817367553711

Molecule CC1=CSC=C1 and its specific config CC1=[CH:1]S[CH:2]=C1 w/ p=-6.87516 5939331055

Molecule C1=CSC=C1 and its specific config C1=[CH:2][CH:2]=[CH:1]S1 w/ p=-9.22 6217269897461

Molecule C and its specific config C w/p=-9.870923042297363

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: O=C([O-])Cc1ccc(-c2ccc(-c3cccs3)s2)s1 Lastest graph (left) vs graph in last step (right)

----Step-7----

Generate next fragment p = 0.9998983144760132

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-0.0063044242560863495

Molecule CC and its specific config C[CH3:1] w/p=-5.355673313140869

Molecule C1CCNC1 and its specific config [CH2:1]1[CH2:1][CH2:2][NH:2][CH2:2]1 w/ p=-7.019346714019775

Molecule C1=CSCC1 and its specific config C1=[CH:2]S[CH2:1][CH2:1]1 w/ p=-7.96 6949939727783

Molecule C=O and its specific config O=[CH2:1] W/ p=-9.378978729248047

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: Cc1ccc(-c2ccc(-c3ccc(CC(=0)[0-])s3)s2)s1 Lastest graph (left) vs graph in last step (right)

----Step-8----

Generate next fragment p = 0.9967923760414124Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.1238685 6973171234

Molecule C and its specific config C w/p=-2.2312333583831787

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-5.37 5985622406006

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-6.157 557010650635

Molecule CC1=CSC=C1 and its specific config CC1=[CH:1]S[CH:2]=C1 w/ p=-6.57070 3983306885

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: O=C([O-])Cc1ccc(-c2ccc(-c3ccc(-c4cccs4)s3)s2)s1 Lastest graph (left) vs graph in last step (right)

----Step-9----

Generate next fragment p = 0.9993383288383484

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-0.0006313720368780196

Molecule C1=CSC=C1 and its specific config C1=[CH:2][CH:1]=[CH:1]S1 w/ p=-7.51 4693737030029

Molecule CS and its specific config [CH3:1][SH:2] w/ p=-11.040324211120605

Molecule C=O and its specific config O=[CH2:1] w/ p=-11.106101036071777

Molecule C=N and its specific config [CH2:1]=[NH:2] w/p=-11.327986717224121

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: Cclccc(-c2ccc(-c3ccc(-c4ccc(CC(=0)[0-])s4)s3)s2)s1
Lastest graph (left) vs graph in last step (right)

----Step-10----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.0962555 2594661713

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-2.943 636894226074

3/20/22, 4:15 PM

Molecule C1=CSC=C1 and its specific config C1=CS[CH:1]=C1 w/ p=-3.4166290760040283

Molecule C and its specific config C w/p=-5.316184997558594

Molecule [SiH4] and its specific config [SiH4] w/p=-6.750178337097168

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: O=C([O-])Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-c5cccs5)s4)s3)s2)s 1

Lastest graph (left) vs graph in last step (right)

----Step-11----

Generate next fragment p = 0.8303309679031372

Top 5 next motifs to attach:
Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-0.041510120034217834

Molecule CS and its specific config [CH3:1][SH:2] w/p=-3.2143540382385254

3/20/22, 4:15 PM

Molecule C1=CSC=C1 and its specific config C1=[CH:2][CH:1]=[CH:1]S1 w/ p=-7.84 6226692199707

Molecule C=N and its specific config [CH2:1]=[NH:2] w/p=-10.278705596923828

Molecule C=O and its specific config O=[CH2:1] $\text{W/} \text{p}=-10.48699951171875}$

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-c5ccc(CC(=0)[0-])s5)s4)s3)s
2)s1

Lastest graph (left) vs graph in last step (right)

----Step-12----

Generate next fragment p = 1.0 Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.5011690 258979797

Molecule C1=CSC=C1 and its specific config C1=CS[CH:1]=C1 w/ p=-1.384701490402 2217

3/20/22, 4:15 PM

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-2.001 3294219970703

Molecule C and its specific config C w/p=-4.850032329559326

Molecule C#N and its specific config N#[CH:1] w/ p=-7.40615701675415

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: O=C([O-])Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-c5ccc(-c6ccs6)s5)s4)s3)s2)s1

Lastest graph (left) vs graph in last step (right)


```
----Step-13----

Generate next fragment p = 0.31631457805633545
----Step-14----

Generate next fragment p = 2.1378728306289908e-15
----Step-15----

Generate next fragment p = 6.014240057083953e-07
----Step-16----

Generate next fragment p = 1.5512888011919718e-13
----Step-17----

Generate next fragment p = 0.9976533055305481

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-0.0001510267611593008
```

Molecule C=N and its specific config [CH2:1]=[NH:2] w/ p=-9.659462928771973

Molecule S and its specific config S w/ p=-9.775293350219727

Molecule C1=CSCC1 and its specific config C1=[CH:2]S[CH2:1][CH2:1]1 w/ p=-10.8 77622604370117

Molecule C1CCNC1 and its specific config [CH2:1]1[CH2:1][CH2:2][NH:2][CH2:2]1 w/ p=-11.646870613098145

Attaching fragment C1=[CH:2]S[CH2:1][CH2:1]1 of config ['C1=CS[CH2:1]C1', 'C1=C[CH2:1]CS1']

Latest partial graph: O=C([O-])Cc1ccc(-c2ccc(-c3ccc(-c4sc(-c5ccc(-c6cccs6)s5)c5sccc45)s3)s2)s1

Lastest graph (left) vs graph in last step (right)

----Step-18----

Generate next fragment p = 0.98321932554245

Top 5 next motifs to attach:

Molecule CS and its specific config [CH3:1][SH:2] w/p=-3.814624506048858e-05

Molecule			specifi				3:2] w/	p=-10	.231485	3668212	:89
 Molecule	 [SiH4]	and	its spe	ecific (config	 [SiH4]	w/ p=-	 14.029	7698974	60938	
 Molecule			 s specif				w/ p=-	 14.399	8317718	50586	

Mologula (CU2 1C and its specific config (CU2.11(CU2 .21 tr/ n= 1/4 01

Molecule [CH2-]C and its specific config [CH3:1][CH2-:2] w/p=-14.918670654296 875

Attaching fragment [CH3:1][SH:2] of config ['S[CH3:1]'] Latest partial graph: O=C([O-])Cclccc(-c2ccc(-c3ccc(-c4sc(-c5ccc(-c6ccs6)s5)c5sc(S)cc45)s3)s2)s1

Lastest graph (left) vs graph in last step (right)

----Step-19----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule S and its specific config S w/p=-0.9460978507995605

Molecule CS and its specific config C[SH:1] w/ p=-1.0368585586547852

Molecule C1=CSCC1 and its specific config C1=[CH:2]S[CH2:1][CH2:1]1 w/ p=-3.82 0958375930786

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-6.7731676 10168457

Attaching fragment S of config ['[SH2:1]']

Latest partial graph: O=C([O-])Cc1ccc(-c2ccc(-c3ccc(-c4sc(-c5ccc(-c6cccs6)s5)c5sc(S)cc45)s3)s2)s1

Lastest graph (left) vs graph in last step (right)

----Step-20----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CS and its specific config C[SH:1] w/p=-2.7656173188006505e-05

3/20/22, 4:15 PM

Molecule C[SiH3] and its specific config C[SiH3:1] w/p=-10.856226921081543Molecule CC#N and its specific config N#C[CH3:1] w/ p=-11.877511024475098Molecule O=S and its specific config O=[S:1] w/p=-14.073086738586426

Molecule CC(F)(F)F and its specific config FC(F)(F)[CH3:1] w/ p=-14.895258903503418

Attaching fragment C[SH:1] of config ['C[SH:1]']

Latest partial graph: CSc1cc2c(-c3ccc(-c4ccc(-c5ccc(CC(=0)[0-])s5)s4)s3)sc(-c3ccc(-c4cccs4)s3)c2s1

Lastest graph (left) vs graph in last step (right)

----Step-21----

Generate next fragment p = 7.399842871791407e-08

----Step-22----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule O=S and its specific config O=[S:1] w/ p=-4.2199197196168825e-05

3/20/22, 4:15 PM

Molecule CS and its specific config C[SH:1] w/p=-10.079389572143555Molecule C[SiH3] and its specific config C[SiH3:1] w/ p=-15.358508110046387Molecule [SiH4] and its specific config [SiH4] $\text{w/p}=-17.474271774291992}$

Molecule CC(F)(F)F and its specific config FC(F)(F)[CH3:1] w/ p=-19.0468444824 21875

Attaching fragment O=[S:1] of config ['O=[S:1]']
Latest partial graph: CS(=0)c1cc2c(-c3ccc(-c4ccc(-c5ccc(CC(=0)[O-])s5)s4)s3)sc (-c3ccc(-c4cccs4)s3)c2s1

Lastest graph (left) vs graph in last step (right)

----Step-23----

Generate next fragment p = 0.0

----Step-24----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule O=S and its specific config O=[S:1] w/ p=0.0

Molecule	CC#N an	d its sp	pecific c	onfig N#C	 [CH3:1] w/	p=-19.532	554626464844
Molecule	CS and	its spec	cific con	fig C[SH:	1] w/ p=-2	 20.42498970	0317383
Molecule	C[SiH3]	and its	s specifi	c config	C[SiH3:1]	w/ p=-21.0	5328941345215

Mologula CN and its specific config NICH2.11 W/ n= 22 /0/2721690/5

Molecule CN and its specific config N[CH3:1] w/ p=-22.404373168945312

Attaching fragment O=[S:1] of config ['O=[S:1]']
Latest partial graph: CS(=0)(=0)c1cc2c(-c3ccc(-c4ccc(-c5ccc(CC(=0)[O-])s5)s4)s
3)sc(-c3ccc(-c4cccs4)s3)c2s1
Lastest graph (left) vs graph in last step (right)


```
----Step-25----
Generate next fragment p = 1.737397008713094e-36
----Step-26----
Generate next fragment p = 5.188417517842936e-08
----Step-27----
Generate next fragment p = 1.4229140250709093e-15
----Step-28----
Generate next fragment p = 4.507595943096902e-15
----Step-29----
Generate next fragment p = 2.1907074678612082e-13
----Step-30----
Generate next fragment p = 2.852038053189957e-24
----Step-31----
Generate next fragment p = 2.4798725917207776e-06
----Step-32----
Generate next fragment p = 1.7128844150028954e-20
----Step-33----
Generate next fragment p = 0.24527804553508759
----Step-34----
Generate next fragment p = 3.1638699495767303e-27
----Step-35----
Generate next fragment p = 9.040126514037183e-08
----Step-36----
Generate next fragment p = 6.324027771182904e-23
----Step-37----
Generate next fragment p = 0.9880258440971375
Top 5 next motifs to attach:
Molecule CC and its specific config [CH3:1][CH3:2] \text{W/} p=-0.0001016803507809527
2
```

Molecule CN and its specific config [NH2:1][CH3:2] w/ p=-9.30424690246582

Molecule CN and its specific config [CH3:1][NH2:2] W/ p=-11.479131698608398Molecule C=O and its specific config O=[CH2:1] w/ p=-15.407944679260254 Molecule C1CNC1 and its specific config [CH2:1]1[CH2:2][NH:2][CH2:2]1 w/ p=-17 .559106826782227

Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment.

----Step-38----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-39----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-40----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-41----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-42----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-43----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-44----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-45----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-46----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-47----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-48----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-49----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-50----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

----Step-51----

```
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-52----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-53----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-54----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-55----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-56----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-57----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-58----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-59----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-60----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-61----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-62----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-63----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-64----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-65----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-66----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-67----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-68----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-69----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-70----
```

```
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-71----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-72----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-73----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-74----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-75----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-76----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-77----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-78----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-79----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-80----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-81----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-82----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-83----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-84----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-85----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-86----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-87----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-88----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-89----
```

```
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-90----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-91----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-92----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-93----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-94----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-95----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-96----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-97----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-98----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-99----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
----Step-100----
Skip, current fragment has no next fragment to be attached. Go back to the pre
vious fragment.
```

In []: