MATT GIBSON

Computational biologist

@ matthew.j.s.gibson@gmail.com

♀ Bloomington, IN, USA

% https://gibsonmatt.github.io/

SUMMARY

I am a computational biologist specializing in statistical inference from genomic datasets. In May 2022 I will receive a Ph.D. from Indiana University. I have published 9 research articles on population genetics and bioinformatics in top field journals such as *eLife* and *Molecular Ecology*. My research has focused on using genomes and computing to map genes shaping natural trait variation.

EXPERIENCE

Evolution and bioinformatics Ph.D. candidate

Aug 2016 - Current

Indiana University

- Developed bioinformatic pipelines for analyzing whole genome sequencing data
- Studied the genomic basis of climatic adaptations in plant populations, using whole genome sequencing and statistical genetic inference
- Completed coursework in genetics and machine learning

NIFA predoctoral fellow

May 2021 - Current

US Department of Agriculture

 Recipient of \$120,000 fellowship to research plant adaptation to climate variation and next-gen crop breeding using low-coverage whole genomes

Research assistant

math Aug 2013 - June 2016

University of Kansas

 Contributed to the development of statistical software for plant genomics applications

TECHNICAL SKILLS

- Languages: Python (advanced), R (advanced), bash (intermediate), C# (beginner), Stan (beginner), Node.js (beginner)
- Bioinformatics: RADseq assembly, samtools, bcftools, SNP calling in GATK, low-coverage genotyping in ANGSD, short read mapping/alignment, RNAseq analysis
- Computing: SLURM, torque, git, Unix tools
- Statistics: linear modeling/regression, mixed-effects models, GWAS, hidden Markov models, demographic modeling with maximum likelihood.

EDUCATION

Ph.D. Evolution and bioinformatics Indiana University-Bloomington

Aug 2016 - Current (Exp. May 2022)

B.S. Genetics, with honors University of Kansas

2011 - 2016

PROJECTS

Introgression and fruit color convergence in Galápagos tomato

 Led a project using reduced representation genome sequencing, HMM local ancestry inference, and admixture mapping to dissect the genetic basis of fruit color variation in Galápagos tomato.

Computational tool for detecting hemiplasy

 Contributed to the development of statistical software (HeIST) for predicting the risk of false inference in phylogenetic data sets.

Landscape genomics in wild tomato

 Led a project in which I used high-fidelity genomic and climate data with multivariate statistical models (RDA) to describe climatic drivers of adaptation and identify novel functional genes.

Mapping genes for flower color in genus Jaltomata

 Developed the bioinformatic pipeline for mapping the locations of genes for flower traits in the plant genus *Jaltomata*

SELECTED PUBLICATIONS

"Introgression shapes fruit color convergence in invasive Galápagos tomato". **Gibson, MJS.**, Torres, MdL., Brandvain, Y., & Moyle, LC. 2021. *eLife*. https://doi.org/10.7554/eLife.64165

"Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species". **Gibson, MJS.** & Moyle, LC. 2020. *Molecular Ecology*. https://doi.org/10.1111/mec.15477

"Determining the probability of hemiplasy in the presence of incomplete lineage sorting and introgression". Hibbins, MS., **Gibson**, **MJS.**, Hahn, MW. 2020. *eLife*. https://doi.org/10.7554/eLife.63753

"Genome-wide genotyping estimates mating system parameters and paternity in the island species Tolpis succulenta". **Gibson, MJS.**, Crawford, DJ., Holder, MT., Mort, ME., Kerbs, B., Menzes de Sequeira, M., Kelly, JK. 2020. *American Journal of Botany*. https://doi.org/10.1002/ajb2.1515

For a full list of publications refer to https://gibsonmatt.github.io/publications.html