SMZ

ZANZIBAR EXAMINATIONS COUNCIL

FORM THREE ENTRANCE EXAMINATION

053 ELECTRICAL ENGINEERING SCIENCE

TIME: 2:30 HOURS WEDNESDAY 30TH DECEMBER 2020 A.M

INSTRUCTIONS TO CANDIDATES

- 1. This paper consists of **THREE** (3) sections A, B and C.
- 2. Answer **ALL** questions in this paper.
- 3. Write your examination number on every page of this booklet.
- 4. Write all answers in the space provided.
- 5. Use a blue or black pen in writing. Diagrams must be in pencil.
- 6. Calculators, cellular phones and unauthorized materials are not allowed in the examination room.

FOR EXAMINER'S USE ONLY							
Question number Marks Signature Question number Marks							
1			8				
2			9				
3			10				
4			11				
5			12				
6			13				
7							
TOTAL							

This paper consists of 12 printed pages

SECTION A: (10 Marks)

Attempt ALL questions from this section.

- 1. Choose the correct answer and write its letter in the table provided below.
 - i) A transformer has 800 primary turns and 100 secondary turns. To obtain 40V from the secondary winding, the voltage to be applied at the primary winding must be

A: 5V

B: 320V

C: 2.5V

D: 20V

E: 50V

- ii) The magnitude of induced e.m.f in the conductor is determined by
 - A: the amount of flux cut
 - B: amount of the flux linkage
 - C: rate of flux linkage
 - D: flux density of the magnetic field
 - E: change of magnetic flux
- iii) The direction of induced emf can be found with the help of
 - A: lens's law
 - B: Flaming right hand rule
 - C: kirchoffs voltage law
 - D: Laplace's law
 - E: Kirchhoff's current law
- iv) The rate of rise of current through an inductive coil is maximum
 - A: after one time constant
 - B: at the start of current flow
 - C: near the final maximum value of current
 - D: at 63.2% of its maximum seedy value
 - E: at constant movement

v)	Du	ring t	he char	ging of	lead aci	d cell					
	A:	its c	athode	become	dark c	hocolate	e brown	in colo	r		
	B:	the	voltage	increas	es			C:	It give o	ut energ	ју
	D:	Spe	cific gra	avity of I	H₂SO₄ d	ecrease	S	E:	It falls th	ne curre	nt flow
vi)	Tri	ckle c	harging	g of a sto	orage b	attery h	elps to				
	A:	prev	ent pal	lpation			B: I	keep it f	resh and	l fully ch	narged
	C:	mai	ntains p	oroper e	lectrolyt	e level	D: i	increase	s its rese	erve cap	acity
	E:	incre	eases o	xygen							
vii)	ΚW	/h me	ter can	be class	sified as	s an					
,	A:			nstrume			digital	instrum	nent		
	C:			nstrume			_				
				nstrume				9			
			·								
viii)				rent in s -			_				
	A:		trons			ns			ns and ic	ons	
	D:	prot	ons	E	: neut	rons and	d protor	าร			
ix)	An	elect	ron has	S		С	harge				
	A:	neg	ative		B:	positi	ve	C:	neutral		
	D:	no			E:	positi	ve and	negative	e		
x)	If t	wo 4.	arOmega resist	ors are	connect	ed in se	eries the	e effecti	ve resisto	ors of th	e
,	ciro	cuit is									
	Ē	•							_		
	A:	8Ω		B: 4Ω		C: 2Ω		D: 1	2	E: 5Ω	
	An	swer									
		. 1			5. .	T			T ,		
		i	ii	iii	iv	V	vi	vii	Viii	ix	Х

Candidate's	Examination	Number	

SECTION B: (45 Marks)

Attempt ALL questions from this section.

	List down any two (2) factors that determine the resistance of the mate
b)	Show that the Total resistance of resistors R1 and R2 in parallel is give $Rt = \frac{R1 \times R2}{R1 + R2}$
a)	Define the term specific heat capacity.
	A sample of copper has a resistance of 10Ω at 0° c .What will be its

a)	Distinguish between step up transformer and step down transformer.
b)	State the basic transformer equation.
a)	Name three (3) essential devices for all analogue electrical indicating instruments.
b)	With typical examples, distinguish between conductor and insulator.
	A 100W electric lighting bulb is supplied from 250V.

— b)	How many Ohms are there in $0.45M\Omega$?
An	electric heater consume 3.6MJ when connected to a 250V supply for
4 ∩r	
101	minutes. Find
	the power rating of the heater
a)	the power rating of the heater
a)	
a)	the power rating of the heater
a)	the power rating of the heater
a)	the power rating of the heater
a)	the power rating of the heater
a)	the power rating of the heater

8.	a)	Distinguish between Potential difference (p.d) and Electromotive force (E.m.f).
	b)	Draw the symbol for each of the following instruments.
	-,	i) Ohmmeter
		ii) Wattmeter
9.	a)	List down any two (2) examples of dielectric materials.
	b)	Distinguish between capacitor and capacitance.
	c)	Write down any two (2) examples of capacitor.
10	_	Define the following terms.
		i) Magnetic fieldii) Magnetic flux density

Stat	e the basic law of magnetism.			
	SECTION C: (45 Marks)			
	Attempt ALL questions from this section.			
a) State Ohm [,] s law.				
b) A	15 Ω and 5 Ω resistors are connected across 37.5V supply. Find			
	Total resistance			
i)				
-	Total circuit current			
(ii)	Total circuit current Current flowing through each resistor			
(ii) iii)				
(ii) iii)	Current flowing through each resistor			
(ii) iii)	Current flowing through each resistor			
(ii) iii)	Current flowing through each resistor			

	n electric machine connected to a 200V supply take a current of 5A. etermine the following:
i)	
	The input power to the machine.
ii)	The input power to the machine. The energy taken from the source in 180 seconds.
ii)	

_ _	Define the term specific heat capacity of a substance.			
b)	The temperature of 5kg block of copper rises from 15°C to 30°C on being heated. Determine the amount of heat energy supplied to the block. Specific heat capacity of copper is 390j/Kg°C			
- - -				
c) i	i) Calculate the current taken by 3KW appliance when connected to 240V supply.			
i	i) Show that the current will be reduced to 10.41A if the appliance is incorrectly connected to 200V supply, assuming the resistance of the appliance remains the same.			

	Candidate's Examination Number						
a) Draw a circuit consisting of capacitor C_1 and capacitor C_2 in parallel , the						
	combination is connected in series to a capacitor C ₃ . The circuit is supplied						
	from 5V dc.						
h	Express						
2	i) 0.456 pF in to Farad						
	ii) 45 μF in to Farad.						
C) Capacitors of $3\mu F$ and $5\mu F$ are connected in series to a 240V supply.						
	Calculate						
	i) The resultant capacitance (ii) The charge on each capacitoriii) P.d across each capacitor (iv) Energy stored in each capacitor						
-							
-							

	Candidate's	Examination Number	·
- 			