# 2.2 MATHEMATICAL ANALYTICAL TOOLS

Laplace transformation is a method that allows the solutions of linear differential equations to be

obtained without complexity.

Laplace transform simplifies the mathematical model of a complex continuous time (analog) control system. A similar conversion technique that converts the discrete time control system model (digital control system) domain equations/model into algebraic equations is z-transform.

The Laplace transformation of a control system mathematically offers the following advantages:

(i) Ease in finding mathematical solutions

(ii) Frequency domain based performance analysis

## 2.2.1 Laplace transform technique

The Laplace transform of a time domain function f(t) is given by

$$F(s) = L[f(t)] = \int_0^\infty f(t) e^{-st} dt; \quad t \ge 0$$
 (2.8)

Here, the notation L is read as 'Laplace transform of' and s is a complex number given as  $s = (\sigma + \sigma)$ jw). The functions f(t) and F(s) constitute a Laplace transform pair. Similar to Fourier transform, the condition for Laplace transform to exist is

$$\int_{-\infty}^{\infty} |f(t)e^{-\sigma t}| dt < \infty \tag{2.9}$$

With same finite  $\sigma$ , which is a real number, large enough to ensure absolute convergence. As shown in Eq. (2.8), Laplace transformation thus changes the time domain f(t) to frequency domain F(s). The time domain function f(t) can be obtained back from the frequency domain function F(s) (Laplace transformed function) by the process of inverse Laplace transformation denoted by  $L^{-1}$ , as given below.

$$L^{-1}[Lf(t)] = L^{-1}[F(s)] = f(t) = \frac{1}{2\pi j} \int_{\sigma - j\omega}^{\sigma + j\omega} F(s) e^{+st} ds$$
 (2.10)

Here,  $\sigma$  is a real number such that the contour path of integration is in the region of convergence (ROC)

of F(s), normally requiring  $\sigma > Re(s_p)$  for every singularity  $s_p$  of F(s).

The various commonly used control system input signals, like ramp, parabolic functions, etc., cannot be handled by Fourier transform as the integral, shown in Eq. (2.9), is not converging for the above input signals and are not Fourier transformable. Whereas because of convergence factor  $e^{-\sigma t}$ , the above input functions are Laplace transformable.

Some important Laplace transforms used in control system analysis are given below:

1. 
$$L[f_1(t) + f_2(t) + f_3(t) + \cdots] = L[f_1(t)] + L[f_2(t)] + L[f_3(t)] + \cdots$$
  
=  $F_1(s) + F_2(s) + F_3(s) + \cdots$ 

2. L[Kf(t)] = K[f(t)] = KF(s); Laplace operator obeys linearity.

3.  $L[f_1(t) \times f_2(t)] \neq F_1(s) \times F_2(s)$ ; The multiplication of two or more Laplace functions is not the simple multiplication of two time-domain functions and then their Laplace transforms. It is instead equal to the convolution of two time-domain functions. For differential functions:

(i) 
$$L \frac{df(t)}{dt} = [sF(s) - f(0^+)]$$

(ii) 
$$L \frac{d^2 f(t)}{dt^2} = [s^2 F(s) - s f(0^+) - f'(0^+)]$$

(iii) 
$$L \frac{d^3 f(t)}{dt^3} = [s^3 F(s) - s^2 f(0^+) - s f'(0^+) - f''(0^+)]$$
  
and so on

and so on

 $f'(0^+)$  and  $f''(0^+)$  are the functional values  $\frac{df(t)}{dt}$  and  $\frac{d^2f(t)}{dt^2}$ , respectively, at  $t = 0^+$ .

5. For integral functions

(i) 
$$L \int f(t) dt = \left[ \frac{F(s)}{s} + \frac{f^{-1}(0^+)}{s} \right]$$

(ii) 
$$L \int \int f(t) dt = \left[ \frac{F(s)}{s^2} + \frac{f^{-1}(0^+)}{s^2} + \frac{f^{-2}(0^+)}{s} \right]$$

(iii) 
$$L \iiint f(t) dt = \left[ \frac{F(s)}{s^3} + \frac{f^{-1}(0^+)}{s^3} + \frac{f^{-2}(0^+)}{s^2} + \frac{f^{-3}(0^+)}{s} \right]$$

and so on where 
$$f^{-i}(t) = \int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t} f(t) dt$$

6. Initial value theorem:

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} s L[f(t)] = \lim_{s\to \infty} sF(s)$$

7. Final value or steady-state value theorem:

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} s L[f(t)] = \lim_{s\to 0} sF(s)$$

The final value theorem is valid only if  $\lim_{t \to \infty} f(t)$  exists.

Proof of Laplace transform of differential functions

The time domain function in this case is  $\frac{df(t)}{dt}$ . The Laplace transform of a time-domain function f(t)is given by

Laplace Transform of Some Commonly Used Control System Input Signals

# (i) Impulse function

It is defined as

$$f(t) = \lim_{t_0 \to 0} \frac{K}{t_0} \quad \text{for } 0 < t < t_0$$

(where, k is a constant)

$$= 0 \qquad \text{for } t < 0, \, t_0 < t$$

In the above case, its Laplace transform is given by

$$L[f(t)] = \lim_{t_0 \to 0} \frac{K}{t_0 s} (1 - e^{-st_0})$$

ttains a

(2.20)

(2.21)

(2.22)

$$= \lim_{t_0 \to 0} \frac{\frac{d}{dt_0} \left[ K(1 - e^{-st_0}) \right]}{\frac{d}{dt_0} (t_0 s)}$$

$$= \frac{Ks}{s} = K$$

The Laplace transform of an impulse function is equal to the area under the impulse.

(ii) Step function:

It is defined as

$$f(t) = 0$$
 for  $t < 0$   
=  $K$  (some constant) for  $t > 0$ 

Taking the Laplace transform of the above function

$$L[f(t)] = \int_0^\infty Ke^{-st} dt = \frac{K}{s}$$

(iii) Ramp function:

It is defined as

$$f(t) = 0$$
 for  $t < 0$   
=  $Kt$  for  $t \ge 0$ ; where  $K$  is a constant

Taking the Laplace transform of the above function

$$L[f(t)] = K \int_0^\infty t \, e^{-st} \, dt$$

$$= Kt \frac{e^{-st}}{s} \Big|_0^\infty - \int_0^\infty K \frac{e^{-st}}{-s} \, dt$$

$$= \frac{K}{s} \int_0^\infty e^{-st} \, dt$$

$$= \frac{K}{s^2}$$

(iv) Parabolic function

It is defined as

$$f(t) = 0 \text{ for } t < 0$$

$$= \frac{Kt^2}{2} \text{ for } t \ge 0 \quad \text{(unit parabolic function)}$$

$$\int_0^\infty f(t) e^{-st} dt = \int_0^\infty \frac{Kt^2}{2} e^{-st} dt = \frac{K}{2} \int_0^\infty t^2 e^{-st} dt \quad (2.24)$$

Taking  $t^2/2$  as the first term and  $e^{-st}$  as the second term and integrating it by parts, we get

$$\int_0^\infty f(t)e^{-st} dt = \frac{K}{2} \left[ \left[ \frac{-t^2 e^{-st}}{s} \right]_0^\infty + \frac{2}{s} \int_0^\infty t e^{-st} dt \right]$$
(2.25)

Taking t as the first term and  $e^{-st}$  as the second term in the integral on RHS and integrating by page we get

$$\int_0^{\infty} f(t)e^{-st} dt = \frac{K}{2} \left[ 0 + \frac{2}{s} \left( \frac{-te^{-st}}{s} \Big|_0^{\infty} + \frac{1}{s} \int_0^{\infty} e^{-st} dt \right) \right]$$
 (22s)

or

$$\int_0^\infty f(t)e^{-st} dt = \frac{K}{2} \times \frac{2}{s} \left[ -\frac{1}{s^2} e^{-st} \Big|_0^\infty \right]$$

or

$$\int_0^\infty f(t)e^{-st} dt = \frac{K}{s^3}$$
 (2.27)

Alternatively, 
$$L\left[\int_0^\infty f(t) e^{-st} dt\right] = \frac{K}{2} \int_0^\infty t^2 e^{-st} dt$$

$$= \frac{K}{2} \left[\frac{e^{-st}}{s} t^2\Big|_0^\infty\right] + \frac{1}{s} \int_0^\infty 2t e^{-st} dt$$

$$= \frac{K}{s} \left[\frac{e^{-st}}{s} t\Big|_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} dt\right]$$

$$= \frac{K}{s^2} \left[\frac{e^{-st}}{-s}\Big|_0^\infty\right] = \frac{K}{s^3}$$

# (v) Exponential function

It is defined as

$$f(t) = 0 & \text{for } t < 0$$
$$= Ke^{-at} & \text{for } t \ge 0$$

Where, K and a are constants,

The Laplace transform of the above function is given as

$$L[f(t)] = \int_0^\infty K e^{-at} e^{-st} dt = K \int_0^\infty e^{-(a+s)t} dt$$

$$= \frac{K}{(s+a)}$$

|  | Table 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F(s)                                   |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|  | f(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n!                                     |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{n!}{s^{n+1}}$                   |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |
|  | e-at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overline{(s+a)}$                     |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |
|  | eat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{(s-a)}$                     |
|  | -01 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F(s+a)                                 |
|  | $e^{-at}f(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                      |
|  | te <sup>-at</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(s+a)^2$                              |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |
|  | te <sup>at</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(s-a)^2$                              |
|  | AND THE PROPERTY OF THE PARTY O | n!                                     |
|  | $t^n e^{-at}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{(s+a)^{n+1}}$                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|  | sin at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\omega}{(2, 2)}$                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{\left(s^2+\omega^2\right)}$ |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                      |
|  | cos ωt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(s^2 + \omega^2)$                     |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ω                                      |
|  | $e^{-at}\sin \omega t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(s+a)^2+\omega$                       |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (s+a)                                  |
|  | $e^{-at}\cos \omega t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(s+a)^2+\omega$                       |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                      |
|  | sinh at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overline{(s^2-a^2)}$                 |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|  | cosh at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{s}{(s^2-a^2)}$                  |

 $\omega^2$ 

 $\omega^2$ 

# Example 2.7 Solve the following differential equations:

(i) 
$$4\frac{dx}{dt} + 3x = 10$$
;  $x(0^+) = 1$ 

(ii) 
$$\frac{d^2x}{dt^2} + 10\frac{dx}{dt} + 10x = 0$$
;  $x(0^+) = 0$  and  $x'(0^+) = 1$ 

#### Solution

(i) Taking Laplace transform of both sides, we get

$$4[sX(s) - x(0^{+})] + 3X(s) = \frac{10}{s}$$
 (2.34)

Putting the value of  $x(0^+)$  and rearranging Eq. (2.34), we get

$$X(s) = \frac{\left(\frac{10}{s} + 4\right)}{(4s+3)} \tag{2.35}$$

(2.36)

(2.37)

or

$$X(s) = \frac{10}{s(4s+3)} + \frac{4}{(4s+3)}$$

or

$$X(s) = \frac{10}{4s(s+3/4)} + \frac{1}{(s+3/4)}$$

Taking inverse Laplace transform of Eq. (2.37), we get

$$x(t) = L^{-1}[X(s)] = L^{-1} \left[ \frac{10}{4s(s+3/4)} \right] + L^{-1} \left[ \frac{1}{(s+3/4)} \right]$$
Part I Part II

Taking Part I first,

$$L^{-1}\left[\frac{10}{4s(s+3/4)}\right] = L^{-1}\left[\frac{10}{4}\left(\frac{A}{s} + \frac{B}{(s+3/4)}\right)\right]$$

$$= L^{-1} \left[ \frac{10}{4} \left( \frac{4}{3s} - \frac{4}{3} \times \frac{1}{(s+3/4)} \right) \right]$$

$$= \frac{10}{4} \times \frac{4}{3} - \frac{10}{4} \cdot \frac{4}{3} \cdot e^{-(3/4)t}$$

$$= (10/3)[1 - e^{-(3/4)t}]$$

Taking Part II from Eq. (2.38) for inverse Laplace transform, we have

$$L^{-1}\left[\frac{1}{(s+3/4)}\right] = e^{-(3/4)t}$$

putting both the inverse Laplace transforms together, we have

$$x(t) = \left(\frac{10}{3} - \frac{7}{3}e^{-(3/4)t}\right)$$

(ii) Taking the Laplace transform of the given time-domain (differential) equation,

$$[s^2X(s) - sx(0^+) - x'(0^+)] + [10sX(s) - 10x(0^+)] + 10X(s) = 0$$
  
eiven values of initial conditions

Substituting the given values of initial conditions and then rearranging, we have

$$X(s) = \frac{1}{\left(s^2 + 10s + 10\right)} \tag{2.39}$$

Modifying the expression shown in Eq. (2.39), we get

$$X(s) = \frac{1}{s^2 + 10s + (5)^2 - 15}$$

$$= \frac{1}{\sqrt{15}} \left( \frac{\sqrt{15}}{(s+5)^2 - (\sqrt{15})^2} \right)$$
(2.40)

Taking inverse Laplace transform of Eq. (2.40), we get

$$x(t) = L^{-1}[X(s)] = L^{-1} \left[ \frac{1}{\sqrt{15}} \left( \frac{\sqrt{15}}{(s+5)^2 - (\sqrt{15})^2} \right) \right] = \frac{1}{\sqrt{15}} e^{-5t} \sin h \sqrt{15} t$$

Example 2.8 Solve the differential equation given below:

$$2\frac{dx}{dt} + 8x = 10e'$$
; given  $x(0^+) = 2$ 

al

Example 2.10 A series circuit consisting of resistance R and a capacitor C is connected to a DC supply voltage of V volts. Find the initial value of the current flowing in the circuit.

Solution
Applying KVL to the given circuit, we get

$$Ri(t) + \frac{1}{C} \int i(t) dt = V$$
 (2.56)

Taking Laplace transform of Eq. (2.56), we get

$$RI(s) + \left(\frac{I(s)}{Cs} + \frac{i^{-1}(0^+)}{Cs}\right) = \frac{V}{s}$$
 (2.57)

Assuming  $i^{-1}(0^+) = 0$ , we find

$$RI(s) + \frac{1}{Cs} I(s) = \frac{V}{s}$$
 (2.58)

OF

$$I(s) = \frac{V \cdot Cs}{s (RCs + 1)} \tag{2.59}$$

Applying the initial value theorem to Eq. (2.59), for initial value of the current, we get

$$i(0^{+}) = \lim_{t \to 0} i(t) = \lim_{s \to \infty} s I(s) = \lim_{s \to \infty} s \times \left(\frac{V \cdot Cs}{s (CRs + 1)}\right)$$
$$= \lim_{s \to \infty} \left(\frac{V \cdot C}{(CR + 1/s)}\right)$$
$$= \frac{VC}{CR} = \frac{V}{R} \text{ amperes}$$

Example 2.11 The Laplace-transformed expression for series current passing through a series circuit consisting of resistance  $R\Omega$ , an inductance L henry, and a DC supply voltage of V volts is given by

$$I(s) = \frac{1}{(R+Ls)} \cdot \frac{V}{s}$$

The component values are V = 100 volts,  $R = 1 \text{ M}\Omega$ , and L = 0.1 mH. Calculate the steady-state value of the series current flowing in the circuit.

## Solution

It is given that

$$I(s) = \frac{1}{(R+Ls)} \cdot \frac{V}{s}$$

Applying the final value theorem to Eq. (2.60), we have

$$i_{ss} = \lim_{t \to \infty} i(t) = \lim_{s \to 0} s I(s)$$

$$= \lim_{s \to 0} s \cdot \frac{1}{(R + Ls)} \cdot \frac{V}{s}$$

$$= \lim_{s \to 0} \frac{V}{(R + Ls)} = \frac{V}{R}$$

Putting the values of V and R as given, we get

$$i_{ss} = \frac{100}{1 \times 10^6} = 100 \,\mu$$

(2.60)

or

$$L[f(t)] = -\log\left(1 + \frac{1}{s}\right) = -\log\left(\frac{s+1}{s}\right) = \log\left(\frac{s}{s+1}\right)$$

Find the inverse Laplace transform of the following frequency domain function:

$$F(s) = \frac{s^2 + 3s + 4}{s^3 + 9s^2 + 27s + 27}$$

Here, the denominator can be expressed as  $(s + 3)^3$ .

$$F(s) = \frac{s^2 + 3s + 4}{(s+3)^3}$$

So,

Using partial fraction expansion, we get

ion, we get
$$F(s) = \frac{k_1}{(s+3)} + \frac{k_2}{(s+3)^2} + \frac{k_3}{(s+3)^3}$$

or 
$$\frac{s^2 + 3s + 4}{(s+3)^3} = \frac{k_1}{(s+3)} + \frac{k_2}{(s+3)^2} + \frac{k_3}{(s+3)^3}$$
or 
$$s^3 + 3s + 4 = k_1(s+3)^2 + k_2(s+3) + k_3 = k_1s^2 + (6k_1 + k_2)s + (9k_1 + 3k_2 + k_3)$$

Equating coefficients of  $s^2$ , we get

$$k_1 = 1$$

Similarly, equating coefficients of s, we get

$$k_2 = 3 - 6 = -3$$

and lastly equating constant terms, we get

$$k_3 = 4 - 9 + 9 = 4$$

Thus

$$F(s) = \frac{1}{s+3} - \frac{3}{(s+3)^2} + \frac{4}{(s+3)^3}$$

Now, taking its inverse Laplace transform on both sides, we have

$$L^{-1}F(s) = L^{-1} \left[ \frac{1}{(s+3)} - \frac{3}{(s+3)^2} + \frac{4}{(s+3)^3} \right]$$
or
$$L^{-1}F(s) = L^{-1} \frac{1}{s+3} - L^{-1} \frac{3}{(s+3)^2} + L^{-1} \frac{4}{(s+3)^3}$$
or
$$f(t) = e^{-3t} - 3te^{-3t} + \frac{4}{3}t^2e^{-3t}$$
Finally,
$$f(t) = e^{-3t} \left[ 1 - t(3 - \frac{4}{3}t) \right]$$

Q. 2.4 Find Laplace transform and then find time solution of the following differential equation:

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 6e^t$$

Here,  $y(0^+) = 0$  and  $y'(0^+) = 4$ .

### Solution

Taking Laplace transform on both sides, we get

$$L\left[\frac{d^2y}{dt^2}\right] + L\left[\frac{3dy}{dt}\right] + L[2y] = L[6e^t]$$

or 
$$[s^2Y(s) - sy(0^+) - y'(0^+)] + 3[sY(s) - y(0^+)] + 2[Y(s)] = \frac{6}{s-1}$$

or 
$$[s^{2}Y(s) - 0 - 4] + 3[sY(s) - 0] + 2Y(s) = \frac{6}{s - 1}$$
[Substituting  $y(0^{+}) = 0$  and  $y'(0^{+}) = 4$ ]

$$(s^{2} + 3s + 2)Y(s) - 4 = \frac{6}{s - 1}$$

$$Y(s) = \frac{\frac{6}{s-1} + 4}{(s^2 + 3s + 2)} = \frac{\frac{6+4s-4}{(s-1)(s+2)(s+1)}}{(s-1)(s+2)(s+1)}$$

$$= \frac{4s+2}{(s-1)(s+2)(s+1)}$$

Further, obtaining partial fractions expansion,

$$Y(s) = \frac{4s+2}{(s-1)(s+1)(s+2)} = \frac{k_1}{s-1} + \frac{k_2}{s+1} + \frac{k_3}{s+2}$$

 $4s + 2 = k_1(s+1)(s+2) + k_2(s-1)(s+2) + k_3(s^2-1)$ 

$$4s + 2 = k_1(s^2 + 3s + 2) + k_2(s^2 + s - 2) + k_3(s^2 - 1)$$
agreeting coefficients  $s^2 = s^2 + s^$ 

Now, equating coefficients of  $s^2$ , we get

$$0 = k_1 + k_2 + k_3 \tag{2.93}$$

Similarly, equating coefficients of s, we get

$$4 = 3k_1 + k_2 \tag{2.94}$$

and lastly equating constants, we get  $2 = 2k_1 - 2k_2 - k_3$ (2.95)From Equations (2.93) and (2.95), we get

$$0 = k_1 + k_2 + k_3$$

$$2 = 2k_1 - 2k_2 - k_3$$

$$2 = 3k_1 - k_2$$
(2.96)

$$\frac{4 = 3k_1 + k_2}{6 = 6k_1 \Rightarrow k_1 = 1}$$
 (2.97)

Thus, from Eq. (2.96), we get

$$k_2 = 4 - 3k_1 = 4 - 3 = 1$$

From Eq. (2.95), we get

$$k_{2} = -4 + 3k_{1}$$

$$k_{3} = -(k_{1} + k_{2}) = -(1 + 1) = -2$$

$$Y(s) = \frac{1}{s - 1} + \frac{1}{s + 1} - \frac{2}{s + 2}$$

Finally,

$$Y(s) = \frac{1}{s-1} + \frac{1}{s+1} - s+2$$

Now, taking its inverse Laplace transform on both sides, we get

aplace transform 
$$t^{-1}Y(s) = L^{-1}\left[\frac{1}{s-1} + \frac{1}{s+1} - \frac{2}{s+2}\right]$$

$$v(t) = e^t + e^{-t} - 2e^{-2t}$$

#### INTRODUCTION

Transfer function and gain describe the input—output relationship(s) of a given control system. This relationship may be helpful in analysing the behaviour of control systems. The above relationship(s) will include the effect of dependency of one variable on another along with the contribution by system parameters.

### 3.1 TRANSFER FUNCTION

Transfer function is defined as the ratio of Laplace transform of the output variable to Laplace transform of the input variable with all the initial conditions pertaining to the system being zero. A general system is shown in Fig. 3.1.



Figure 3.1 A system with input and output variables

For the system, shown in Fig. 3.1, the transfer function will be

Transfer function (TF) = 
$$(G(s)) = \frac{C(s)}{R(s)}$$
 initial condition (s) being zero (3.1)

G(s) is termed as the transfer function because it represents the way an output signal is related to the input signal.

The transfer function involves Laplace operator s, where

$$s = j\omega$$
 (3.2)

It makes the transfer function a property of the system in frequency domain. The transfer function is totally a theoretical approach for analysing the system for its behaviour.

The transfer function relates one output variable with one input variable only. In the industrial control systems falling in the categories of MISO, SIMO, and MIMO, the individual transfer functions

# Example 3.1 Find the transfer function of the electrical circuit shown in Fig. 3.3.



Figure 3.3 Electrical circuit

#### Solution

Writing KVL equation for the above circuit, we get

$$v_i(t) = Ri(t) + \frac{1}{C} \int_0^t i(t) dt$$
 (3.5)

and 
$$v_0(t) = \frac{1}{c} \int_0^t i(t) dt$$
 (3.6)

Taking Laplace transform of Eqs (3.5) and (3.6) and keeping all initial conditions as zero, we obtain

$$V_i(s) = RI(s) + \frac{1}{Cs}I(s) \tag{3.7}$$

and 
$$V_0(s) = \frac{1}{Cs} I(s) \tag{3.8}$$

Taking the ratio of  $V_0(s)$  to  $V_I(s)$  from Eqs (3.8) and (3.7), we get the desired transfer function as

$$\frac{V_o(s)}{V_I(s)} = \frac{1}{1 + RCs}$$