2 4 NOV 2022

B.C.A. SEM. -01

Seat No.

Core Course BCA-CC-106 Code: 22638

Subject Title - Mathematics

T	'im	e:	2	1/2	H	ou	rs	
								-

[Total Marks: 70

[9]

Q.1 Explain operations of set theory: Union, Intersection, Difference. [18]
Also explain associative law and distributive law of set theory.

OR

- Q.1 (A) Let $f(x) = \frac{3x+2}{x-1}$, g(x) = 2x + 3. Then find $f^{-1}(x)$, $g^{-1}(x)$. [9]
 - (B) For $U = \{x \in N \mid 1 \le x \le 20\}$, $A = \{1, 2, 4, 5, 8, 9, 14, 19, 20\}$ [9] and $B = \{1, 5, 9, 13, 20\}$ verify De'Morgan's Law.
- Q.2 If $\bar{a} = (2, -3, 5)$, $\bar{b} = (-1, 2, 0)$ and $\bar{c} = (1, 3, -3)$ then find [18] (i) $\bar{a} + \bar{b}$ (ii) $\bar{a} \cdot \bar{c}$ (iii) $\bar{b} \cdot (\bar{a} + \bar{c})$ (iv) $\bar{b} \times \bar{c}$ (v) $3(\bar{b} - \bar{c})$ (vi) $|\bar{c} \times \bar{a}|$ (vii) $|\bar{b} \cdot \bar{a}|$ (viii) $\bar{a} \times \bar{b} \times \bar{c}$ (ix) $5\bar{b} \cdot \bar{c}$.

OR

- Q.2 (A) If $A = \begin{bmatrix} 7 & 3 \\ 6 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -3 \\ 0 & 5 \end{bmatrix}$ then find A^{-1} and B^{-1} . [9]
 - (B) Explain with example: Symmetric and skew-symmetric matrix. [9]
- Q.3 From 2 wicket keepers, 7 batsman, 6 bowlers and 2 all-rounder, [17] a cricket team of 11 players is to be formed. In how many ways, this can be done, if the team contains:
 - (i) Exactly 5 bowlers and at least one all-rounder (ii) At least 1 wicket keeper, at least 4 bowlers and exactly one all-rounder (iii) At least 5 batsman and exactly one wicket keeper.

OR

- Q.3 (A) Prove in usual notations: ${}_{n}P_{r} = {}_{(n-1)}P_{r} + r \cdot {}_{(n-1)}P_{(r-1)}$. [9]
 - (B) Find (i) $^{100}C_{98}$ (ii) $(^{6}P_{3})(^{6}C_{3})$ (iii) $^{101}C_{1}$ (iv) $^{n}P_{0} + ^{n}C_{0}$. [8]
- Q.4 Explain with example: (i) Connected graph (ii) Isomorphism of [17] graphs (iii) Rooted tree (iv) Incidence between vertex and edge.

OR

- Q.4 (A) Discuss about properties and uses of binary tree.
 - (B) Explain in detail (i) Adjacent Vertices (ii) Degree of a vertex. [8]
