

Today's Class

- What is Computer Vision?
- What are the applications of computer vision?
- Some topics.
- Why Vision+Language?

Relationship with several nearby courses

- Computer Graphics: Models to Images
- Computer Vision: Images to Models

Computer vision I: Image formation,

3D reconstruction

Computer vision II: Recognition

Resources

Online sources:

- Stanford CS231n: Convolutional Neural Networks for Visual Recognition
- Andrew Ng: Deep Learning

Books:

- 1. Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
 Deep Learning. MIT Press, 2017
- 2. Richard Szeliski, CV: Computer Vision: Algorithms and Applications, 2010
- ▶ 3. [中文版]计算机视觉——算法与应用,艾海舟[译],清华 大学出版社,2012

Relationship with several nearby Research Area

What is Computer Vision?

What are examples of computer vision being used in the world?

What is Computer Vision?

- Computer vision is the science and technology of machines that see.
- Concerned with the theory for building artificial systems that obtain information from images.
- The image data can take many forms, such as a video sequence, depth images, views from multiple cameras, or multi-dimensional data from a medical scanner

Computer Vision

Make computers understand images and video.

What kind of scene?

Where are the cars?

How far is the building?

. . .

Components of a computer vision system

Computer vision vs human vision

What we see

What a computer sees

Vision is really hard

- Vision is an amazing feat of natural intelligence
 - Visual cortex occupies about 50% of the brain
 - More human brain devoted to vision than anything else

Why computer vision matters

Safety

Health

Security

Comfort

Fun

Access

Brief history of computer vision

- 1966: Minsky assigns computer vision as an undergrad summer project
- ▶ 1960's: interpretation of synthetic worlds
- 1970's: some progress on interpreting selected images
- 1980's: ANNs come and go; shift toward geometry and increased mathematical rigor
- 1990's: face recognition; statistical analysis in vogue
- 2000's: broader recognition; large annotated datasets available; video processing starts
- 2010's: deep learning greatly boosts the performance of computer vision.

Ohta Kanade '78

Turk and Pentland '91

How Computer Vision is used now

- Optical character recognition
- Face detection
- Image editing
- Medical image analysis
- . . .
- https://www.bilibili.com/video/BV19a411t7vG/?vd_source =8275a2758ee7d2cac0897efeb47abf25

How Computer Vision is used now

Optical character recognition (OCR)

Technology to convert scanned docs to text

If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers

http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

LeNet-5 [1998, paper by LeCun et al.]

Face detection

- Many new digital cameras now detect faces
 - ▶ Canon, Sony, Fuji, ...

Smile detection

Sony Cyber-shot® T70 Digital Still Camera

Vision-based biometrics

"How the Afghan Girl was Identified by Her Iris Patterns" Read the <u>story</u> <u>wikipedia</u>

Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely http://www.sensiblevision.com/

Object recognition (in mobile phones)

Point & Find, Nokia Google Goggles

Face expression transfer

Megapixel DeepFakes

https://www.youtube.com/watch?v=JkUF40kPV4M

City Scale 3D Modeling

https://www.youtube.com/watch?v=TaVOTvN8CpM

Special effects: shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic

Sports

Sportvision first down line
Nice explanation on www.howstuffworks.com

Case Study: Unmanned supermarket

Amazon Go is a new kind of store featuring the world's most advanced shopping technology. No lines, no checkout – just grab and go! (Stage 3.0)

https://www.amazon.com/b?ie=UTF8&node=16008589011

Interactive Games: Kinect

- Object Recognition: http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o
- Mario: http://www.youtube.com/watch?v=8CTJL5IUjHg
- ▶ 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
- Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

Horizon Workrooms

https://www.youtube.com/watch?v=lgj50IxRrKQ https://www.youtube.com/watch?v=Rncz85tVt5I

Horizon Workrooms

Industrial robots

Vision-guided robots position nut runners on wheels

Mobile robots

NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Saxena et al. 2008 STAIR at Stanford

Medical imaging

3D imaging MRI, CT

Image guided surgery
Grimson et al., MIT

Case Study: self-driving cars

- Google Driverless Car
- Tesla Model S
- Minieye
- https://www.youtube.com/watch?v=PRg5RNU_JLk

Case Study: self-driving cars

Topics

- saliency detection
 - unsupervised saliency detection/salient object discovery)
- segmentation
 - (unsupervised image segmentation, semantic segmentation)
- object detection
 - (face detection/general object detection, supervised methods)
- object recognition
 - (face recognition/general image classification, (un)supervised methods)
- image generation
 - Generative adversarial network, style transfer, diffusion
- video processing
 - (tracking/event classification(supervised))
- . . .

Saliency detection

Application of computer vision

Content based image resizing (Image Retargeting)

https://www.youtube.com/watch?v=6NcIJXTlugc

Website Design
Image/Video Compression

Image Segmentation

Semantic segmentation

Application

Medical Image Analysis: MRI/CT/PET Image retrieval Finding Images by Sketching

Object Detection

Object Recognition

Object Identification

Generative Adversarial Network

- Face generation
- Style transfer
- Scene generation
- https://www.youtube.com/watch?v=OGGjXG562WU

Generative Adversarial Network

Video Classification

References

- 1. Computer Vision: A Modern Approach (2nd Edition),
 David A. Forsyth, University of California, Berkeley Jean Ponce
- 2. Computer Vision: Algorithms and Applications (Texts in Computer Science), by <u>Richard Szeliski</u> (Author), Springer, 2010
- 3. Hartley and Zisserman, <u>Multiple View Geometry in</u> <u>Computer Vision</u>, Cambridge University Press, 2004
- 4. <u>Stephen E. Palmer</u>, Vision Science: Photons to Phenomenology, MIT Press, 1999
- 5. Koller and Friedman, <u>Probabilistic Graphical Models:</u>
 <u>Principles and Techniques</u>, MIT Press, 2009

References

Online sources:

- Stanford CS231n: Convolutional Neural Networks for Visual Recognition
- Andrew Ng: Deep Learning

Books:

- 1. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2017
- 2. Richard Szeliski, CV: Computer Vision: Algorithms and Applications, 2010
- 3. [中文版]计算机视觉——算法与应用,艾海舟[译],清华大学出版社, 2012