MEDICAL REFERENCE

Corbin Cox

Last Updated: 2019-11-25

Contents

I	Critical Care	3
1	Vasopressors	4
II	Toxicology	5
2	Methemoglobinemia	6

Last Updated: 2019-11-25

Part I Critical Care

CHAPTER 1

Vasopressors

test

Last Updated: 2019-11-25

Part II Toxicology

CHAPTER 2

Methemoglobinemia

2.1 PATHOPHYSIOLOGY

- Oxidant stress converts hemoglobin iron from Fe²⁺ to Fe³⁺
 - Still binds oxygen, but doesn't release it (shifts binding curve left)
- NADH (glycolosis) pathway detoxifies most methemoglobin (Met-Hgb) during normal situations
- NADPH is upregulated when needed, such as toxininduced methemoglobinemia

Figure 2.2: Met-Hgb (left), Normal (right)

DOI: 10.4103/0019-5154.147895

2.1.1 Causes

- Conditions
 - Cytochrome b₅ reductase deficiency
 - Hemoglobin M
- Drugs

- Dapsone
- Benzocaine (and other local anesthetics)
- Nitrite-containing compounds (NTG, nitroprusside, amyl nitrite)
- Sulfonamides (sulfa antibiotics)
- Analine dyes
- Primaguine / chloroguine
- Many others

2.2 DIAGNOSIS

- Be suspicious for methemoglobinemia in cyanotic patients with an SpO2 in the mid-80%'s which is unresponsive to supplemental oxygen, and in patients with chocolate-colored blood
- Hypoxic cyanosis usually doesn't occur until SpO2 is \approx 50%, this is a rare case of cyanosis with "high" SpO2
- SaO2 SpO2 >5% is an indication that something is messing with pulse-ox reading, usually a deviant Hgb like Met-Hgb
 - High Met-Hgb will make SpO2 trend toward \approx 85%
 - Supplemental O2 will drive up PaO2, and SaO2 on iStat ABGs will increase because it is calculated from PaO2
- Order methemoglobin from lab for confirmation, if symptomatic with high suspicion for methemoglobinemia, can treat empirically

2.3 TREATMENT

- \bullet Treat symptomatic patients or any patient with Met-Hgb ${>}30\%$
- Call Toxicology
- Methylene Blue 1-2 mg/kg IV over 5 min
 - Can repeat in 30-60min if needed

Figure 2.3: Methemoglobin %

Shihana et al.

Place a drop of blood on white paper, allow it to dry, and compare with chart above. Chart Met-Hgb should be within \pm 15% of lab value

Table 2.1: Met-Hgb Symptoms

Met-Hgb %	Symptoms
1-3%	Normal
10-20%	Cyanosis
20-30%	Anxiety
	Headache
	Dizziness
	Fatigue
30-50%	Tachypnea
	Confusion
	Syncope
50-70%	Szs
	Coma
	Metabolic Acidosis
>70%	Death

- SpO2 may decrease significantly during infusion, caused by interference with pulse-ox, not hypoxia
- Will discolor body fluids
- Side effects
 - ∗ MAO inhibition ⇒ serotonin syndrome
 - Methemoglobinemia (doses >7 mg/kg/day)
- May not be as effective for analine dye overdoses, analine metabolite inhibits entry of methylene blue into RBCs
- Methylene Blue continuous infusion
 - Limited evidence for dosing
 - One case series reported 2 mg/kg over 6hr (0.33 mg/kg/hr, daily dose 8 mg/kg)
 - Some self-reporting from toxicologist starting at 0.1 mg/kg/hr
 - Rates of 0.5-1 mg/kg/hr when used for vasoplegia, so higher doses may be safe
 - * Bottom line: Call tox if you have to start continuous methylene blue
 - Usually not needed, consider if Met-Hgb induced by long-acting agent like dapsone, or if >2 bolus

doses needed

- Cimetidine for Dapsone induced Met-Hgb
 - Inhibits CYP450 metabolism of dapsone → hydroylamine dapsone, which produces more Met-Hgb than dapsone
- · Other Therapies
 - High-Dose Vitamin C (takes a long time to work)
 - Riboflavin (takes a long time to work)
 - Hyperbaric oxygen
 - Red-cell exchange

References

- Goldfrank LR and Hoffman RS, eds. Goldfrank's Manual of Toxicologic Emergencies. New York: McGraw-Hill Medical, 2007.
- 2. Ludlow JT, Wilkerson RG, and Nappe TM. Methemoglobinemia. In: *StatPearls*. Treasure Island (FL): StatPearls Publishing, 2019. pmid: 30726002. URL: http://www.ncbi.nlm.nih.gov/books/NBK537317/ (visited on 11/09/2019).
- Prasad R, Singh R, Mishra OP, and Pandey M. Dapsone Induced Methemoglobinemia: Intermittent vs Continuous Intravenous Methylene Blue Therapy. Indian J Pediatr 2008;75:245–7.
- Shihana F, Dissanayake DM, Buckley NA, and Dawson AH. A Simple Quantitative Bedside Test to Determine Methemoglobin. Annals of Emergency Medicine 2010;55:184– 9.
- Skold A, Cosco DL, and Klein R. Methemoglobinemia: Pathogenesis, Diagnosis, and Management. Southern Medical Journal 2011;104:757–61.