Pandas Practice Set for Beginners

August 17, 2025

Contents

1	Introduction						
2	Pandas Series Basics						
	2.1 Importing Libraries	3					
	2.2 Setting Up Data	3					
	2.3 Creating a Series from a List	3					
	2.4 Creating a Series with Custom Indices	3					
	2.5 Alternative Syntax for Series with Indices	4					
	2.6 Creating a Series from a NumPy Array	$\overline{4}$					
	2.7 Creating a Series from a Dictionary	4					
	2.8 Displaying the Dictionary	4					
	2.9 Series with Functions as Data	4					
	2.10 Creating a Series with Custom Indices	5					
	2.11 Creating Another Series	5					
	2.12 Accessing a Series Element	5					
	2.13 Creating a Series from Labels	5					
	2.14 Adding Two Series	6					
	2.14 Adding Two Series	U					
3 Pandas DataFrames: Part 1							
	3.1 Setting Up the Environment	6					
	3.2 Creating a DataFrame	6					
	3.3 Selecting a Column	6					
	3.4 Checking Column Type	7					
	3.5 Checking DataFrame Type	7					
	3.6 Selecting Multiple Columns	7					
	3.7 Adding a New Column	7					
	3.8 Displaying the Updated DataFrame	7					
	3.9 Dropping a Column	8					
	3.10 Displaying the DataFrame After Dropping	8					
	3.11 Checking DataFrame Shape	8					
	3.12 Selecting Columns Y and X	8					
	3.13 Selecting a Row with loc	8					
	3.14 Selecting a Row with iloc	9					
	3.15 Selecting a Specific Cell	9					
	3.16 Selecting a Subset of Rows and Columns	9					
4	Pandas DataFrames: Part 2	9					
	4.1 Setting Up the Environment	9					
	4.2 Creating a DataFrame	9					

4.3	Boolean DataFrame	10
4.4	Filtering with Boolean DataFrame	10
4.5	Conditional Selection on a Column	10
4.6	Displaying a Column	11
4.7	Filtering Rows Based on a Column	11
4.8	Filtering Rows Based on Another Column	11
4.9	Storing Filtered DataFrame	11
4.10	Selecting a Column from Filtered DataFrame	11

1 Introduction

This document provides a beginner-friendly guide to learning Pandas, a powerful Python library for data manipulation and analysis. It includes code and explanations from three Jupyter notebooks: Pandas-Series-Practice1.ipynb, Pandas-DataFrames-1.ipynb, and Pandas-DataFrame-Part-2.ip Each section covers key concepts like creating Series, manipulating DataFrames, and filtering data, with code examples and their outputs.

2 Pandas Series Basics

This section covers the creation and manipulation of Pandas Series, a one-dimensional labeled array, using the Pandas-Series-Practice1.ipynb notebook.

2.1 Importing Libraries

```
import numpy as np
import pandas as pd
```

Description: Imports the NumPy and Pandas libraries, which are essential for numerical operations and data manipulation, respectively.

2.2 Setting Up Data

```
labels = ['a','b','c']
my_data = [10,20,30]
arr = np.array(my_data)
d = {'a':10,'b':20,'c':30}
```

Description: Defines a list of labels, a list of data values, a NumPy array from the data, and a dictionary for use in creating Series.

2.3 Creating a Series from a List

```
pd.Series(data=my_data)
```

Output:

0 10

1 20

2 30

dtype: int64

Description: Creates a Pandas Series from the list my_data with default integer indices.

2.4 Creating a Series with Custom Indices

```
pd.Series(my_data, labels)
```

Output:

a 10

b 20

c 30

dtype: int64

Description: Creates a Series using my_data with custom indices from the labels list.

2.5 Alternative Syntax for Series with Indices

```
pd.Series(data=my_data, index=labels)
```

Output:

- a 10
- b 20
- c 30

dtype: int64

Description: Demonstrates an alternative syntax for creating a Series with custom indices, equivalent to the previous example.

2.6 Creating a Series from a NumPy Array

```
pd.Series(arr, labels)
```

Output:

- a 10
- b 20
- c 30

dtype: int64

Description: Creates a Series from a NumPy array arr with custom indices.

2.7 Creating a Series from a Dictionary

```
pd.Series(d)
```

Output:

- a 10
- b 20
- c 30

dtype: int64

Description: Creates a Series directly from a dictionary d, where keys become indices and values become data.

2.8 Displaying the Dictionary

d

Output:

```
{'a': 10, 'b': 20, 'c': 30}
```

Description: Displays the dictionary d to confirm its contents.

2.9 Series with Functions as Data

```
pd.Series(data=[sum, print, len])
```

Output:

Description: Shows that a Series can hold arbitrary objects, such as Python built-in functions.

2.10 Creating a Series with Custom Indices

```
ser1 = pd.Series([1, 2, 3, 4], ['Guna', 'Indore', 'America', 'Shivpuri'])
```

Output (after displaying ser1):

Guna 1
Indore 2
America 3
Shivpuri 4
dtype: int64

Description: Creates a Series with numerical data and location-based indices.

2.11 Creating Another Series

```
ser2 = pd.Series([1, 2, 5, 4], ['Guna', 'Noida', 'Italy', 'Shivpuri'])
```

Output (after displaying ser2):

Guna 1
Noida 2
Italy 5
Shivpuri 4
dtype: int64

Description: Creates another Series with different indices for comparison.

2.12 Accessing a Series Element

```
ser2['Noida']
```

Output:

2

Description: Retrieves the value associated with the index 'Noida' from ser2.

2.13 Creating a Series from Labels

```
ser3 = pd.Series(data=labels)
```

Output (after accessing ser3[0]):

'a'

Description: Creates a Series from the labels list and demonstrates accessing the first element.

2.14 Adding Two Series

```
ser1 + ser2
```

Output:

America NaN
Guna 2.0
Italy NaN
Noida NaN
Shivpuri 8.0
dtype: float64

Description: Adds two Series, aligning by index. Non-matching indices result in NaN.

3 Pandas DataFrames: Part 1

This section, based on Pandas-DataFrames-1.ipynb, introduces DataFrame creation and basic operations.

3.1 Setting Up the Environment

```
import numpy as np
import pandas as pd
from numpy.random import randn
np.random.seed(101)
```

Description: Imports libraries and sets a random seed for reproducibility.

3.2 Creating a DataFrame

```
df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z'])
```

Output:

```
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509
```

Description: Creates a 5x4 DataFrame with random values, labeled rows (A-E) and columns (W-Z).

3.3 Selecting a Column

```
1 df['W']
```

Output:

A 2.706850 B 0.651118 C -2.018168 D 0.188695 E 0.190794

Name: W, dtype: float64

Description: Selects the W column, returning a Series.

3.4 Checking Column Type

```
type(df['W'])
```

Output:

pandas.core.series.Series

Description: Confirms that a single column is a Pandas Series.

3.5 Checking DataFrame Type

```
type(df)
```

Output:

pandas.core.frame.DataFrame

Description: Verifies that df is a DataFrame.

3.6 Selecting Multiple Columns

```
df[['W', 'Z']]
```

Output:

W Z
A 2.706850 0.503826
B 0.651118 0.605965
C -2.018168 -0.589001
D 0.188695 0.955057
E 0.190794 0.683509

Description: Selects columns W and Z, returning a DataFrame.

3.7 Adding a New Column

```
1 df['new'] = df['W'] + df['Z']
```

Description: Creates a new column new by adding columns W and Z.

3.8 Displaying the Updated DataFrame

```
ı df
```

Output:

```
Х
                             Y
                                       Ζ
                                              new
A 2.706850
            0.628133 0.907969 0.503826
                                          3.210676
B 0.651118 -0.319318 -0.848077
                                0.605965
                                          1.257083
C -2.018168 0.740122 0.528813 -0.589001 -2.607169
D 0.188695 -0.758872 -0.933237
                                0.955057
                                          1.143752
E 0.190794 1.978757 2.605967
                               0.683509
                                         0.874303
```

Description: Shows the DataFrame with the new column.

3.9 Dropping a Column

```
df.drop("new", axis=1, inplace=True, errors='ignore')
```

Description: Removes the new column permanently from the DataFrame.

3.10 Displaying the DataFrame After Dropping

```
ı df
```

Output:

```
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509
```

Description: Confirms the column **new** has been removed.

3.11 Checking DataFrame Shape

```
df.shape
```

Output:

(5, 4)

Description: Returns the dimensions of the DataFrame (5 rows, 4 columns).

3.12 Selecting Columns Y and X

```
1 df[['Y', 'X']]
```

Output:

```
Y X
A 0.907969 0.628133
B -0.848077 -0.319318
C 0.528813 0.740122
D -0.933237 -0.758872
E 2.605967 1.978757
```

Description: Selects columns Y and X in that order.

3.13 Selecting a Row with loc

```
df.loc['A']
```

Output:

W 2.706850 X 0.628133 Y 0.907969 Z 0.503826 Name: A, dtype: float64

Description: Selects row A using label-based indexing, returning a Series.

3.14 Selecting a Row with iloc

```
df.iloc[0]
```

Output:

```
W 2.706850

X 0.628133

Y 0.907969

Z 0.503826
```

Name: A, dtype: float64

Description: Selects the first row using integer-based indexing.

3.15 Selecting a Specific Cell

```
1 df.loc["B", "Y"]
```

Output:

-0.8480769834036315

Description: Retrieves the value at row B, column Y.

3.16 Selecting a Subset of Rows and Columns

```
df.loc[['A', 'B'], ['X', 'Y']]
```

Output:

```
X Y
A 0.628133 0.907969
B -0.319318 -0.848077
```

Description: Selects a subset of the DataFrame with rows A, B and columns X, Y.

4 Pandas DataFrames: Part 2

This section, based on Pandas-DataFrame-Part-2.ipynb, covers conditional filtering and advanced DataFrame operations.

4.1 Setting Up the Environment

```
import numpy as np
import pandas as pd
from numpy.random import randn
np.random.seed(101)
```

Description: Imports libraries and sets a random seed for reproducibility.

4.2 Creating a DataFrame

```
df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z'])
```

Output:

```
W X Y Z
A -0.993263 0.196800 -1.136645 0.000366
B 1.025984 -0.156598 -0.031579 0.649826
C 2.154846 -0.610259 -0.755325 -0.346419
D 0.147027 -0.479448 0.558769 1.024810
E -0.925874 1.862864 -1.133817 0.610478
```

Description: Creates a new 5x4 DataFrame with different random values.

4.3 Boolean DataFrame

```
1 df > 0
```

Output:

```
Z
              Х
                      Y
  False
           True
                False
                          True
В
    True
          False False
                          True
C
    True
          False
                 False
                         False
    True
          False
                  True
                          True
E False
           True False
                          True
```

Description: Creates a boolean DataFrame where True indicates values greater than 0.

4.4 Filtering with Boolean DataFrame

```
bool_df = df > 0
df[bool_df]
```

Output:

	W	X	Y	Z
Α	NaN	0.196800	NaN	0.000366
В	1.025984	NaN	NaN	0.649826
С	2.154846	NaN	NaN	NaN
D	0.147027	NaN	0.558769	1.024810
F.	NaN	1.862864	NaN	0.610478

Description: Filters the DataFrame to show only values where the condition df > 0 is True, replacing others with NaN.

4.5 Conditional Selection on a Column

```
1 df['W'] > 0
```

Output:

A False
B True
C True
D True
E False

Name: W, dtype: bool

Description: Checks which values in column W are greater than 0.

4.6 Displaying a Column

```
df['W']
```

Output:

- A -0.993263
- B 1.025984
- C 2.154846
- D 0.147027
- E -0.925874

Name: W, dtype: float64

Description: Displays the W column for reference.

4.7 Filtering Rows Based on a Column

```
1 df[df['W'] > 0]
```

Output:

W X Y Z
B 1.025984 -0.156598 -0.031579 0.649826
C 2.154846 -0.610259 -0.755325 -0.346419
D 0.147027 -0.479448 0.558769 1.024810

Description: Filters the DataFrame to include only rows where V > 0.

4.8 Filtering Rows Based on Another Column

```
df[df['Z'] < 0]
```

Output:

W X Y Z C 2.154846 -0.610259 -0.755325 -0.346419

Description: Filters rows where Z < 0.

4.9 Storing Filtered DataFrame

```
resultdf = df[df['W'] > 0]
```

Description: Stores the filtered DataFrame (where $\mathbb{W} > 0$) in resultdf.

4.10 Selecting a Column from Filtered DataFrame

```
resultdf['X']
```

Output:

B -0.156598

C -0.610259

D -0.479448

Name: X, dtype: float64

Description: Selects the X column from the filtered DataFrame.