# Database Systems (CS 355 / CE 373)

Dr. Umer Tariq
Assistant Professor,
Dhanani School of Science & Engineering,
Habib University

#### Acknowledgements

 Many slides have been borrowed from the official lecture slides accompanying the textbook:

Database System Concepts, (2019), Seventh Edition,

Avi Silberschatz, Henry F. Korth, S. Sudarshan

McGraw-Hill, ISBN 9780078022159

The original lecture slides are available at:

https://www.db-book.com/

 Some of the slides have been borrowed from the lectures by Dr. Immanuel Trummer (Cornell University). Available at: (<u>www.itrummer.org</u>)

#### Outline: Week 2

- Introduction to Relational Data Model
- Structure of Relational Databases
- Relational Database Schema
- Keys
- Schema Diagrams

# File-Based Approach



# Database Management System (DBMS)



#### What should be the DBMS Interface?



#### What should be the DBMS Interface?



#### Data Model

 A collection of conceptual tools for describing data, data relationships, data semantics, and consistency constraints.



- The relational model uses <u>a collection of tables</u> to represent both data and the relationships among those data.
- Its conceptual simplicity has led to its widespread adoption; a vast majority of database products are based on the relational model.

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

(a) The instructor table

| dept_name  | building | budget |
|------------|----------|--------|
| Comp. Sci. | Taylor   | 100000 |
| Biology    | Watson   | 90000  |
| Elec. Eng. | Taylor   | 85000  |
| Music      | Packard  | 80000  |
| Finance    | Painter  | 120000 |
| History    | Painter  | 50000  |
| Physics    | Watson   | 70000  |

(b) The department table

#### The Relational Model

• The relational model uses <u>a collection of tables</u> to represent both data and the relationships among those data.



Figure 2.1 The instructor relation.

# Why is It Called the "Relational" Model?

Let's talk some math!



• The relation between two sets is a collection of pairs (2-tuples) containing one object from each set.

## Why is It Called the "Relational" Model?

Let's talk some math!







- The relation between two sets is a set of pairs (2-tuples) containing one object from each set.
- The relation between three sets is a set of 3-tuples containing one object from each set.
- The relation between n sets is a set of n-tuples containing one object from each set.

# Why is It Called the "Relational" Model?

| dept_name  | building | budget |
|------------|----------|--------|
| Comp. Sci. | Taylor   | 100000 |
| Biology    | Watson   | 90000  |
| Elec. Eng. | Taylor   | 85000  |
| Music      | Packard  | 80000  |
| Finance    | Painter  | 120000 |
| History    | Painter  | 50000  |
| Physics    | Watson   | 70000  |

(b) The department table

| defit-name =        | { Comp Sci, Biology, EE, Music, }                    |
|---------------------|------------------------------------------------------|
|                     | { Tylor, Watson, Packed, Painter}                    |
| budget .            | { Set of All integer }                               |
| eldion<br>Thurs set | { (conf. Sei, Taylor, 100000), (Birly, Watson, 920), |
|                     | <b>-</b> :                                           |

The relation is a set of tuples.

#### The Relational Model

• The relational model uses <u>a collection of tables</u> to represent both data and the relationships among those data.



Figure 2.1 The *instructor* relation.

& Bidogy, Comp. Sci, Elect. Erg.

#### Let's Practice Our Terminology!

Finance, Hostoy, Mous, Physica. MECH Educ. ?

 Identify some attributes of the course relation?

Identify any tuple in the course relation?

 Are there any attributes that have a unique value in each tuple of this relation?

course.id, title

| course_id | title                      | dept_name  | credits |
|-----------|----------------------------|------------|---------|
| BIO-101   | Intro. to Biology          | Biology    | 4       |
| BIO-301   | Genetics                   | Biology    | 4       |
| BIO-399   | Computational Biology      | Biology    | 3       |
| CS-101    | Intro. to Computer Science | Comp. Sci. | 4       |
| CS-190    | Game Design                | Comp. Sci. | 4       |
| CS-315    | Robotics                   | Comp. Sci. | 3       |
| CS-319    | Image Processing           | Comp. Sci. | 3       |
| CS-347    | Database System Concepts   | Comp. Sci. | 3       |
| EE-181    | Intro. to Digital Systems  | Elec. Eng. | 3       |
| FIN-201   | Investment Banking         | Finance    | 3       |
| HIS-351   | World History              | History    | 3       |
| MU-199    | Music Video Production     | Music      | 3       |
| PHY-101   | Physical Principles        | Physics    | 4       |

Figure 2.2 The *course* relation.

| Conf. 10 Compagnin Office Localin                                                 | ConflD | Comp. Non | Offic Larety |
|-----------------------------------------------------------------------------------|--------|-----------|--------------|
| 1 ENLED Laho, Kurchi, Ishnahil<br>2 Universe Laho, Kurch Properties of Attributes | 1      | ENLRU     | Lohm         |
| 2 Univered Lake, Much Properties of Attributes                                    | 1      | ENLRO     | Kundi        |
|                                                                                   | 1      | ENLRO     | 15 Bushan    |
|                                                                                   | 7      | Unileva   | Lahn         |
| V                                                                                 | 2      | Unilever  | Karach.      |

- For each attribute of a relation, there is a set of permitted values, called the **domain** of that attribute.
- For all relations, domains of all attributes must be <u>atomic</u>.
- A domain is atomic if elements of the domain are considered to be indivisible units.
- The <u>null</u> value is a special value that signifies that the value is unknown or does not exist.

## Properties of Attributes: Example

 Suppose that we add an attribute "phone\_number" to the *instructor* relation.

Is this attribute atomic?

Can the attribute have a null value?

| ID    | name       | dept_name  | salary | phone_number |
|-------|------------|------------|--------|--------------|
| 10101 | Srinivasan | Comp. Sci. | 65000  | 021-134167   |
| 12121 | Wu         | Finance    | 90000  | 0 42 23 4167 |
| 15151 | Mozart     | Music      | 40000  |              |
| 22222 | Einstein   | Physics    | 95000  |              |
| 32343 | El Said    | History    | 60000  | 051-12467    |
| 33456 | Gold       | Physics    | 87000  |              |
| 45565 | Katz       | Comp. Sci. | 75000  |              |
| 58583 | Califieri  | History    | 62000  |              |
| 76543 | Singh      | Finance    | 80000  |              |
| 76766 | Crick      | Biology    | 72000  |              |
| 83821 | Brandt     | Comp. Sci. | 92000  |              |
| 98345 | Kim        | Elec. Eng. | 80000  | mll          |

#### Database: Schema vs Instance

- Database Schema
  - Logical design of the database

department (dept\_name, building, budget)
instructor (ID, name, dept\_name, salary)

- Database Instance
  - A snapshot of the data in the database at a give instant in time

| ID    | пате       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

| dept_name  | building | budget |
|------------|----------|--------|
| Comp. Sci. | Taylor   | 100000 |
| Biology    | Watson   | 90000  |
| Elec. Eng. | Taylor   | 85000  |
| Music      | Packard  | 80000  |
| Finance    | Painter  | 120000 |
| History    | Painter  | 50000  |
| Physics    | Watson   | 70000  |

(b) The department table

#### Relation: Schema vs Instance

- Relation Schema
  - Consists of a list of attributes and their corresponding domains

department (dept\_name, building, budget)

- Relation Instance
  - A snapshot of the tuples in a relation at a give instant in time

| dept_name  | building | budget |
|------------|----------|--------|
| Comp. Sci. | Taylor   | 100000 |
| Biology    | Watson   | 90000  |
| Elec. Eng. | Taylor   | 85000  |
| Music      | Packard  | 80000  |
| Finance    | Painter  | 120000 |
| History    | Painter  | 50000  |
| Physics    | Watson   | 70000  |

(b) The department table

- We often use the same name (such as department) to refer to both the schema and the instance. However, when required, we can differentiate:
  - "The department schema"
  - "An instance of the department relation"

## Database Schema: Example

```
classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building, room_number, time_slot_id)
teaches(ID, course_id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID)
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)
```

**Figure 2.8** Schema of the university database.

# Example of a Query

| I.  | D          | name          | dept_name          | salary |
|-----|------------|---------------|--------------------|--------|
|     | 222        | Einstein      | Physics            | 95000  |
| l   | 121<br>343 | Wu<br>El Said | Finance<br>History | 90000  |
|     | 565        | Katz          | Comp. Sci.         | 75000  |
| 98. | 345        | Kim           | Elec. Eng.         | 80000  |
| 767 | 766        | Crick         | Biology            | 72000  |
|     | 101        | Srinivasan    | Comp. Sci.         | 65000  |
| 58: | 583        | Califieri     | History            | 62000  |
|     | 821        | Brandt        | Comp. Sci.         | 92000  |
|     | 151        | Mozart        | Music              | 40000  |
|     | 456        | Gold          | Physics            | 87000  |
| 76: | 543        | Singh         | Finance            | 80000  |

(a) The instructor table

Find the names of all instructors who work in Watson building

#### Example of a Query: Role of Link between Relations

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

| dept_name  | building | budget |
|------------|----------|--------|
| Comp. Sci. | Taylor   | 100000 |
| Biology    | Watson   | 90000  |
| Elec. Eng. | Taylor   | 85000  |
| Music      | Packard  | 80000  |
| Finance    | Painter  | 120000 |
| History    | Painter  | 50000  |
| Physics    | Watson   | 70000  |

(b) The department table

(a) The instructor table

- Find the names of all instructors who work in Watson building
  - Consider the department schema and the instructor schema
  - Observe that the attribute dept\_name is duplicated in both.
  - This duplication is useful in answering queries which involve multiple relations.

Consider the following version of the <u>department</u> relation:

| dept-name | program-director | budget |
|-----------|------------------|--------|
| CS        | Dr. Abdul Samad  | 100000 |
| ECE       | Dr. Farhan       | 85000  |
| ISciM     | Dr. Aeyaz        | 80000  |
| CS        | Dr. Abdul Samad  | 100000 |

Consider the following versions of the <u>department</u> relation:

| dept-name | program-director | budget |
|-----------|------------------|--------|
| CS        | Dr. Abdul Samad  | 100000 |
| ECE       | Dr. Farhan       | 85000  |
| ISciM     | Dr. Aeyaz        | 80000  |
| CS        | Dr. Abdul Samad  | 100000 |

• No two tuples in a relation are allowed to have exactly the same value for all attributes.

Consider the following version of the <u>department</u> relation:

| dept-name | program-director | budget |
|-----------|------------------|--------|
| CS        | Dr. Abdul Samad  | 100000 |
| ECE       | Dr. Farhan       | 85000  |
| ISciM     | Dr. Aeyaz        | 80000  |
| CS        | Dr. Waqar        | 100000 |

.

Consider the following version of the <u>department</u> relation:

| dept-name | program-director | budget |
|-----------|------------------|--------|
| CS        | Dr. Abdul Samad  | 100000 |
| ECE       | Dr. Farhan       | 85000  |
| ISciM     | Dr. Aeyaz        | 80000  |
| CS        | Dr. Waqar        | 100000 |

Values for some attributes cannot be repeated in a relation.

Consider the following versions of the <u>department</u> and <u>instructor</u> relations:
 <u>department</u>

| dept-name | program-director | budget |
|-----------|------------------|--------|
| CS        | Dr. Abdul Samad  | 100000 |
| ECE       | Dr. Farhan       | 85000  |
| ISciM     | Dr. Aeyaz        | 80000  |

#### <u>instructor</u>

| ID   | name             | dept-name |
|------|------------------|-----------|
| 2033 | Dr. Abdul Samad  | CS        |
| 2071 | Dr. Farhan       | ECE       |
| 3045 | Dr. Pervez       | Physics   |
| 3067 | Dr. Waqar Saleem | ISciM     |

Consider the following relations:

#### department

| dept-name | program-director | budget |
|-----------|------------------|--------|
| CS        | Dr. Abdul Samad  | 100000 |
| ECE       | Dr. Farhan       | 85000  |
| ISciM     | Dr. Aeyaz        | 80000  |

#### <u>instructor</u>

| ID   | name             | dept-name |
|------|------------------|-----------|
| 2033 | Dr. Abdul Samad  | CS        |
| 2071 | Dr. Farhan       | ECE       |
| 3045 | Dr. Pervez       | Physics)  |
| 3067 | Dr. Waqar Saleem | ISciM     |

 Some attributes can only be assigned values that are present in another relation.

#### Constraints on Tuples in a Relation: What is the Source?

- Any relational model (that you develop) is trying to model a real-world enterprise/business.
  - For instance, in the previous slides, the relational model was an attempt at modeling the DSSE at Habib University.
- Constrains on the tuples in a relational model (such as the examples shown in previous slides) are dictated by the rules/constraints of the real-world enterprise/business being modeled.

# Constraints on Tuples in a Relation: How are these Constraints Expressed/Specified?

- Through "Keys"
- Through the following types of "Keys", we specify how tuples within a given relation must be different from one another.
  - Superkey
  - Candidate Key
  - Primary Key
  - Foreign Key

## Keys: Superkey

 A <u>superkey</u> K is a <u>set of one or more attributes</u> such that no two distinct tuples can have the same values on all attributes in the set K.

Formally, let R denote the set of attributes in the schema of relation r. If we say that a subset K of R is a *superkey* for r, we are restricting consideration to instances of relations r in which no two distinct tuples have the same values on all attributes in K. That is, if  $t_1$  and  $t_2$  are in r and  $t_1 \neq t_2$ , then  $t_1.K \neq t_2.K$ .

- {ID}؟؟ چىلە گىلە
- Name}?
- {ID, Name}? <mark>کساند</mark>هم
- {name, dept\_name, salary}?

Not a Sufuly

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

(a) The *instructor* table

## Keys: Superkey

• A <u>superkey</u> K is a set of one or more attributes such that no two distinct tuples can have the same values on all attributes in the set K.

Formally, let R denote the set of attributes in the schema of relation r. If we say that a subset K of R is a *superkey* for r, we are restricting consideration to instances of relations r in which no two distinct tuples have the same values on all attributes in K. That is, if  $t_1$  and  $t_2$  are in r and  $t_1 \neq t_2$ , then  $t_1.K \neq t_2.K$ .

#### {ID}?

is a Superkey: enough to identify a tuple uniquely

#### {Name}?

is not a Superkey: two instructor can have the same name

#### {ID, Name}?

is a superkey: enough to identify a tuple uniquely

#### {name, dept\_name, salary}?

 Not a superkey. Possible for two instructors to have the same values of name, dept\_name, salary

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

(a) The *instructor* table

#### **Keys: Candidate Keys**

- A superkey may contain extraneous attributes.
- For example, each of the following is a superkey:
  - {ID}
  - {ID, name}
  - {ID, name, dept\_name}
- In general, <u>if K is a superkey, then so is any superset of K.</u>
- We are often interested in superkeys for which no proper subset is a superkey.

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

(a) The instructor table

- Such <u>minimal superkeys</u> are called <u>candidate</u> keys.
  - Only {ID} is the candidate key.

## **Keys: Candidate Keys**

Consider the following relation schema:

student (name, date\_of\_birth, major, student\_id, address)

Candidate Keys?

## Keys: Candidate Keys

Consider the following relation schema:

student (name, date-of-birth, major, student-id, address)

- Candidate Keys
  - {student-id}
  - {name, address}

It is possible that several distinct sets of attributes could serve as a candidate key.

#### **Keys: Primary Key**

#### Primary Key

- One of the candidate keys that is chosen as the principle means of identifying tuples within a relation
- The choice is made by the database designer
- Notation:

```
classroom(<u>building</u>, <u>room_number</u>, capacity)
department(<u>dept_name</u>, building, budget)
```

- Equivalent Term: Primary Key Constraint
  - The designation of a key represents a constraint in the real-world enterprise being modeled through the relational model.
  - Therefore, "primary keys" are also referred as "primary key constraints".

## Keys as a Representation of Constraints in the Real World

Consider the following alternative relation schemas:

- student (student-id, major, year-of-entry, date-of-birth, address) 1)
- student (student-id, major, year-of-entry, date-of-birth, address) 2,
- 3) student (student-id, major, year-of-entry, date-of-birth, address)
- What does each option tell you about the Student ID conventions being used by the University for which the schema is being developed?

Consider the following relations: departmen

| dept-name | program-director | budget |
|-----------|------------------|--------|
| CS        | Dr. Abdul Samad  | 100000 |
| ECE       | Dr. Farhan       | 85000  |
| ISciM     | Dr. Aeyaz        | 80000  |

#### <u>instructor</u>

| ID   | name             | dept-name |
|------|------------------|-----------|
| 2033 | Dr. Abdul Samad  | CS        |
| 2071 | Dr. Farhan       | ECE       |
| 3045 | Dr. Pervez       | Physics   |
| 3067 | Dr. Waqar Saleem | ISciM     |

 Some attributes can only be assigned values that are present in another relation.

## Keys: Foreign Key

Consider the following relations:

|           | <u>aepartment</u> |        |
|-----------|-------------------|--------|
| dept-name | program-director  | budget |
| CS        | Dr. Abdul Samad   | 100000 |
| ECE       | Dr. Farhan        | 85000  |
| ISciM     | Dr. Aeyaz         | 80000  |

#### instructor

| ID   | name             | dept-name |
|------|------------------|-----------|
| 2033 | Dr. Abdul Samad  | CS        |
| 2071 | Dr. Farhan       | ECE       |
| 3045 | Dr. Pervez       | Physics   |
| 3067 | Dr. Waqar Saleem | ISciM     |

- Attribute dept\_name in relation instructor can only be assigned values that are present as the values of attribute dept\_name in relation department.
- dept\_name is a <u>foreign key</u> from the relation instructor to the relation department
- Referencing relation: instructor Referenced relation: department
- The referenced attributes (dept\_name) must be the primary key in the referenced relation.

## Keys: Foreign Key

#### Formally:

A foreign-key constraint from attribute(s) A of relation  $r_1$  to the primary-key B of relation  $r_2$  states that on any database instance, the value of A for each tuple in  $r_1$  must also be the value of B for some tuple in  $r_2$ . Attribute set A is called a foreign key from  $r_1$ , referencing  $r_2$ . The relation  $r_1$  is also called the referencing relation of the foreign-key constraint, and  $r_2$  is called the referenced relation.

department (<u>dept-name</u>, program-director, budget) Instructor(<u>ID</u>, name, dept-name)

#### <u>department</u>

| dept-name | program-director | budget |
|-----------|------------------|--------|
| CS        | Dr. Abdul Samad  | 100000 |
| ECE       | Dr. Farhan       | 85000  |
| ISciM     | Dr. Aeyaz        | 80000  |

#### instructor

| ID   | name             | dept-name |
|------|------------------|-----------|
| 2033 | Dr. Abdul Samad  | CS        |
| 2071 | Dr. Farhan       | ECE       |
| 3045 | Dr. Pervez       | Physics   |
| 3067 | Dr. Waqar Saleem | ISciM     |

### Keys: Exercise

```
Item (Item Name, Vendor Name, Price)
Customer (Customer Code, Customer Name, Address)
Vendor (Vendor Name, Contact Person, Address)
Order(Order No, Customer Code, Item Name, Vendor Name, Order Date)
```

Identify Primary Keys?

## Keys: Exercise

Item (Item Name, Vendor Name, Price)
 Customer (Customer Code, Customer Name, Address)
 Vendor (Vendor Name, Contact Person, Address)
 Order (Order No, Customer Code, Item Name, Vendor Name, Order Date)

• Identify Foreign Keys?

#### **Keys: Exercise**

Item (<u>Item Name</u>, <u>Vendor Name</u>, Price)
Customer (<u>Customer Code</u>, Customer Name, Address)
Vendor (<u>Vendor Name</u>, Contact Person, Address)
Order(<u>Order No</u>, Customer Code, Item Name, Vendor Name, Order Date)

- Identify Foreign Keys?
  - Customer Code is a foreign key from Order to Customer
  - {Item Name, Vendor Name} is a foreign key from Order to Item
  - Vendor Name is a foreign key from Item to Vendor

## Schema Diagram

 Used to depict a database schema along with primary key and foreign key dependencies



## Schema Design 101

- Identify Tables
- Identify Columns/Attributes associated with each table
- Identify Primary Keys
- Identify relationships among tables through Foreign Keys





- For the following relational schema
  - Identify all primary keys (underline)
  - Identify all foreign keys (use arrows)

employee (person\_name, street, city)
works (person\_name, company\_name, salary)
company (company\_name, city)

#### **Practice Exercise 2**

- For the following relational schema
  - Identify all primary keys (underline)
  - Identify all foreign keys (use arrows)

```
branch(branch_name, branch_city, assets)
customer (ID, customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)
borrower (ID, loan_number)
account (account_number, branch_name, balance)
depositor (ID, account_number)
```

#### **Practice Exercise 3**

- You have been asked to create a database schema for a hospital. For your help, the following relations have been identified in the schema:
  - physician
  - department
  - affiliated\_with
  - procedure
  - prescribes
  - room
  - stay
  - undergoes
  - trained\_in
  - patient
  - appointment
  - medication
- Complete the process of developing the schema