BUDT 730 Data, Models and Decisions

Lecture 7
Hypothesis Testing (I)
Prof. Sujin Kim

Learning Objective

- Learn the principles of hypothesis testing
- Construct the null and alternative hypotheses for business cases
- Distinguish between two different types of errors: Type I and Type II
- Learn how to interpret the two errors
- Perform a hypothesis test for the population mean
- Data Files:
 - 2003salary.xlsx
 - AluminumSheet.xlsx
 - Beverage Bottling.xlsx

Examples and R Functions

- Four examples:
 - Example 1 CEO Salary, Data set: 2003Salary.xlsx
 - Example 2 Aluminum Sheet, Data set: AluminumSheet.xlsx
 - Example 3 Meal Service problem, No data
 - Example4 Bottling filling problem, Data set: Beverage Bottling.xlsx
- R libraries and functions for the examples:

Package Name	Function Name	
built-in package	pnorm(), pt()	
built-in package	qnorm(), qt()	
built-in package	t.test()	

Concepts of Hypothesis Testing

"I've narrowed it down to two hypothesis: it grew, or we shrunk."

Credit: Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/)

Recall Meal Service Problem

- A government contractor provided services to the military in a troubled region.
 - Average of 10,000 daily meals provided.
 - Operations lasted 300 days
 - Cost: \$10/meal
 - Total charged: \$30 million
- The government believes that the charges of the contractor are too high.
- The government obtains a random sample of 30 days
 - Average number of meals for 30 days: 8,983 Meals Served
 - Suppose that population standard deviation is 1643.17 meals per day

What is the government trying to determine?

Cost of Service and the CLT

How likely is it to obtain a number as small as 8,983 if the contractor's claim was true?

Answer: Invoking the CLT, \bar{X} has a normal distribution, with mean 10,000 and a

standard deviation of 300.

$$P(\bar{X} \le 8,983) = \text{NORM.DIST}(8983,10000,300,1)=0.00035$$

$$P\left(Z \le \frac{8,983-10,000}{300}\right) = NORM.S.DIST(-3.39) = 0.00035$$

Hypothesis Testing

- Hypothesis testing can be applied to a wide class of problems.
- It enables us to arrive at statistical conclusions about an uncertain outcome
 - o Is the production under control?
 - Is a company's tax filing fraudulent?
 - Did the marketing campaign result in higher brand awareness?
- The goal:
- We want to make a decision in favor of <u>one out of two possible scenarios</u> using only limited amounts of information

Concepts in Hypothesis Testing

- Construct a set of two hypotheses:
 - **H**₀ (Null Hypothesis): Baseline case, conservative, status quo
 - H_a or H₁ (Alternative Hypothesis): The thing we are trying to prove, innovative, new idea, headline of the newspaper article/study title
- Note that the two hypotheses divide all possible outcomes into two nonoverlapping sets.
- That is, H₀ and H_a are complements
 - H₀ and H_a must be mutually exclusive (i.e., non-overlapping)
 - H₀ and H_a must be collectively exhaustive (i.e., cover all possibilities)

Constructing Hypothesis

Example

- H₀ (Null Hypothesis): the marketing campaign did not improve brand awareness
- H_a (Alternative Hypothesis): the marketing campaign improved brand awareness

Statistically Speaking

 μ_{old} = previous brand awareness

 μ_{new} = new brand awareness

- $\mathbf{H_0}$ (Null Hypothesis): $\mu_{new} \leq \mu_{old}$
- \circ **H**_a (Alternative Hypothesis): $\mu_{new} > \mu_{old}$

Concepts in Hypothesis Testing

In this course, we will focus on hypothesis testing on population parameters $(\mu \ or \ p)$.

- Decision is always given in terms of the null hypothesis:
 - \circ **Reject H₀** or **fail to reject H₀**; we never conclude "reject H_a ", or "accept H_a ".
 - We <u>reject H</u>₀ because our sample provided evidence against it
 - Interpretation in practice: <u>H_a MAY be true.</u>
 - We fail to reject H₀ because our sample didn't provide enough evidence against it
 - Technically, this does not necessarily mean that H₀ is true
 - Interpretation in practice: H₀ MAY be true.

Confidence Intervals vs. Hypothesis Testing

Confidence interval

 Goal: Estimate an unknown population parameter with sampling distribution

- Procedure: Collect a random sample and compute confidence interval
- Decision: "we are 95% confident that the population mean, μ is in [0.1, 0.9] "

Hypothesis test

 Goal: Test a hypothesis about a specific population parameter.

$$0 H_0: \mu = 0.5, H_a: \mu \neq 0.5$$

 Procedure: Collect random sample and determine whether to reject the null hypothesis

 Decision: "we reject (or fail to reject) the null hypothesis at 5% significance level "

Example: CEO Salary

- Suppose that average annual percentage salary increase for CEOs of mid-size corporations was 7% from 1999 to 2002
- For the 2003, due to a worsening economic situation, we hypothesize that the average salary increase was lower than in the previous years
- Let μ be the average salary increase in 2003, what is H_a ?
 - $0 \mu = 7\%$
 - $0 \mu > 7\%$
 - \circ μ < 7%
 - $\circ \mu \neq 7\%$

What is the difference between the two statements?

 ... we hypothesize that the average salary increase was lower (greater) than in the previous years (previous years average was 7%)

$$H_a$$
: $\mu < (>) 7%$

 ... we hypothesize that the average salary increase was different than in the previous years (previous years average was 7%)

$$H_a$$
: $\mu \neq 7\%$

One-Tailed vs. Two-Tailed Tests

- The hypothesis test are either one tailed or two tailed
 - If we are only interested in changes in one direction, we use a one-tailed test, which is supported only by evidence in a single direction, framed as < or >
 - H_0 : $\mu \ge (or \le 1)$ 7%
 - H_a : μ < (or >) 7%
- If we are interested in changes in any direction, we use a two-tailed test, which is supported by evidence in either direction, framed as ≠
 - H_0 : μ = 7%
 - H_a: μ≠ 7%
- The null must include '='
 - \circ The hypothesized population mean = 7% for both tests.
- In general, we first set up the alternative hypothesis and the null is the complement of it.

Example: Aluminum Sheets

- An aircraft manufacturer needs to buy aluminum sheets with an average thickness of
 0.05 inches
- The manufacturer knows that significantly thinner sheets would be unsafe and thicker sheets would be too heavy
- A random sample of 100 sheets from a potential supplier is collected and the thickness of each sheet in the sample is measured and recorded.
- The manufacturer needs to decide whether to hire the supplier or not based on the sample.
- Write a research hypothesis test for this problem: Identify the null hypothesis and the alternative hypothesis. What test should be run for the problem?

Example: Aluminum Sheets

- Identify the null hypothesis and the alternative hypothesis
 - \circ Let μ be the mean thickness of aluminum sheets.
 - \circ H₀: $\mu = 0.05$
 - Θ H_a: μ ≠ 0.05

The hypothesis test is two-tailed.

General Procedure for Hypothesis Tests

- 1. Construct H₀ and H₁
 - Identify the parameter of interest: mean, proportion, ...
 - o H₀ (Null Hypothesis): Baseline case, conservative, status quo
 - \circ $\mathbf{H}_{\mathbf{a}}$ (Alternative Hypothesis): The thing we are trying to prove, innovative, new idea
 - Determine whether the test is one-tailed or two-tailed
 - Choose a **significance level** α (0.01=1%, 0.05=5%, 0.1=10%)
- 2. Compute the value of test statistics
- 3. Choose an appropriate test statistic and perform the test using sample data:
 - Critical value method
 - p-value method
- 4. Interpret the results: Reject H_0 or fail to reject H_0

Type I and Type II Errors

Type I & II Errors

Type I Error

- Reject the null hypothesis, even though it's true
- O CEO salary: "conclude that the average salary increase is less than 7%, while in reality it is the usual 7%"

Type II Error

- Fail to reject the null, even though it's false
- O CEO salary: "conclude that the average salary increase is the usual 7%, while in reality it is lower"

	Null hypothesis is TRUE	Null hypothesis is FALSE
Reject null hypothesis	Type I Error (False positive)	Correct outcome! (True positive)
Fail to reject null hypothesis	Correct outcome! (True negative)	Type II Error (False negative)

Type I & II Errors

- Identify the Type I and Type II errors for the aluminum sheet problem
 - Type I error:
 - Type II error

Type I & II Errors

- Identify the Type I and Type II errors for the aluminum sheet problem
 - Type I error: We conclude that the average thickness is not equal to 0.05 inches and do not hire the supplier, while in fact it is 0.05 inches.
 - Type II error: We conclude that the average thickness is equal to 0.05 inches and hire the supplier, while in fact it is NOT equal to 0.05 inches.

Setting the Significance Level

- Level of significance α: The probability of Type I error that the researcher is willing to tolerate.
 - O Given that H_0 is true, what is your tolerance for rejecting it? 1% of the time? 5% of the time?
- Predetermined by the analyst -must be set before data collection and analysis
- In hypothesis testing we are primarily concerned with "controlling" the Type I Error
 - \circ We often set $\alpha = 5\%$ (or smaller)

Significance Level α

Recall that the null must include '=': ex) $\mu = 7\%$ or $\mu = 0.05$

We assume that the null is true and perform hypothesis testing under H_0 .

Therefore, the decision is always given in terms of the null hypothesis: Reject H₀ or fail to reject H₀

Two tailed test

Right one tailed test

Type I vs. II Errors

- We are "less concerned" with the Type II Error
- The evaluation of the Type II error is not straightforward.
 - The burden of proving H_a is true is on the researcher
- Ideally probability of Type I error should be low. However, if α is set very low, then the probability of Type II error is high
- Similarly, if the probability of Type II error is set very low, then the probability of Type I error is high
- Need to strike the right balance between Type I and Type II errors

Type I & II Errors (10/6(W))

- In making the tradeoff between likelihood of Type I and Type II errors and setting α , what should be considered?
 - We must consider the <u>costs</u> of making a Type I error relative to the cost of making a Type II error.
 - If the cost of making a Type I error is high (relative to the cost of Type II error), then the level of significance should be low.

Hypothesis Test

Population Mean

Test Statistic for Test of Mean

• μ_0 is the hypothesized population mean

$$H_0$$
: $\mu = \mu_0$ H_a : $\mu \neq \mu_0$ H_0 : $\mu >= \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu < \mu_0$

For a population mean with unknown standard deviation, we run the t-test. The formula of the test statistic is

$$T = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

- The test statistic has a t-distribution with (n-1) degrees of freedom.
- The closer the sample statistic is to zero, the more unlikely it is to reject the null hypothesis.
- It the population standard deviation is known, use Z-test

Method 1: Critical Value

- A critical value is the standard score such that the area in the tail on the opposite side of the critical value (or values) from zero equals the corresponding significance level, α
- The value depends on whether the hypothesis test is one-tailed or two-tailed

Method 1: Critical Value Method for the T-test

Two tailed test:

$$H_0: \mu = \mu_0$$

$$H_a$$
: $\mu \neq \mu_0$

The null hypothesis is rejected if

|t-value| >
$$t_{n-1,1-\frac{\alpha}{2}}$$

Right One tailed test:

$$H_0: \mu \leq \mu_0$$

$$H_a$$
: $\mu > \mu_0$

The null hypothesis is rejected if

t-value >
$$t_{n-1,1-\alpha}$$

Two Tailed Hypothesis Test for the Mean

Distribution of \overline{X} under H_0 : $N(\mu_0, \sigma/\sqrt{n})$

t-distribution with df=n-1

Left One Tailed Hypothesis Test for the Mean

 H_0 : $\mu >= \mu_0$, H_a : $\mu < \mu_0$

Distribution of \overline{X} under H_0 : $N(\mu_0, \sigma/\sqrt{n})$

t- distribution with df=n-1

Method 2: p-value

- The p-value is the probability of observing something as extreme as the test statistic assuming the null hypothesis is true
- We compute the p-value based on the test statistic and number of tails.
- If the p-value $< \alpha$, reject H₀
- If the p-value $\geq \alpha$, do not reject H₀

Two Tailed Hypothesis Test for the Mean

Distribution of \overline{X} under H_0 : $N(\mu_0, \sigma/\sqrt{n})$ t-distribution with df=n-1

Right One Tailed Hypothesis Test for the Mean

Distribution of \overline{X} under H_0 : $N(\mu_0, \sigma/\sqrt{n})$ t-distribution with df=n-1

Interpretation of p-value

p-value means:

- 1. Assuming that the null hypothesis is true
- 2. there is a 100(p-value) percent chance
- 3. that we would get a result this extreme (point estimate), or more

Example: CEO Salary

- Suppose that average annual percentage salary increase for CEOs of mid-size corporations was 7% from 1999 to 2002
- For the 2003, due to a worsening economic situation, we hypothesize that the average salary increase was lower than in the previous years
- Use dataset 'From Excel' in R
- Import '2003Salary.xlsx'
- Summary statistics of 'Salary Increase':
 - \circ Sample size (n)= 9
 - Sample mean $(\bar{X}) = 0.055 = 5.5\%$
 - \circ Sample stdev. (s)= 0.039 = 3.9%

X2003Salary ×			
⟨□ □ □ □ □ ▼ Filter			
^	Observation	Salary Increase	
1	1	0.0410	
2	2	0.0117	
3	3	0.0573	
4	4	0.0883	
5	5	0.0860	
6	6	0.1020	
7	7	-0.0155	
8	8	0.0430	
9	9	0.0829	

- Step 1: We have identified the null hypothesis and the alternative hypothesis
 - H_0 : $\mu \ge 7\%$
 - o H_a : $\mu < 7\%$
 - We have identified that the hypothesis test is a one-sided test
 - \circ Set the significance level α to 5%
- Compute t- value, critical value, and p-value and make a decision
 - Note: we assume that the random variable Salary Increase follows a normal distribution.

- Step 2: Compute the t-value
 - \circ Sample size (n)= 9,
 - Sample mean $(\bar{X}) = 0.055 = 5.5\%$
 - \circ Sample stdev (s)= 0.039 = 3.9%
 - \circ Hypothesized mean (μ_0) =0.07 = 7%

$$T = \frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{5.5\% - 7\%}{\frac{3.9\%}{\sqrt{9}}} = -1.136$$

- Step 3: Make a decision
 - O Method 1: Critical value method:
 - Critical value = T.INV(0.05,8) or qt(0.05,8) = -1.859 < -1.136 (t-value)
 - Conclusion: We do not reject the null hypothesis, that is, we do not have sufficient evidence for rejecting the null hypothesis

BUDT 730

- Step 3: Make a decision
 - Method 2: p value method by hand
 - \circ p-value = T.DIST(-1.136,8,1) or pt(-1.136,8) = 0.144 = 14.4% > 5%: p-value is greater than α
 - Conclusion: We do not reject the null hypothesis

0.05518889

Method 2: p-value method using t.test() function in R

```
t.test( data, mu = mu_0, alternative = "two.sided", "less" or "greater", conf.level = 0.95, ...)
    > t.test(X2003Salary$`Salary Increase`,mu=0.07,alternative = 'less', conf.level = 0.95)
        One Sample t-test
    data: X2003Salary$`Salary Increase`
    t = -1.1356, df = 8, p-value = 0.1445 | > 0.05: We do not reject the null
    alternative hypothesis: true mean is less than 0.07
    95 percent confidence interval:
        -Inf 0.07944177
    sample estimates:
    mean of x
```

Step 4: Interpret the results
In the CEO example our conclusion is that ...

- 1. ...the average salary increases in 2003 did not fall below the 7%
- 2. ... the average salary increases in 2003 was below 7%
- (3.) ...the average salary increases in 2003 was the usual 7%

Interpretation of p-value

The p-value of 0.145 means that:

- 1. Assuming that the true average percentage salary increase is 7%
- 2. there is a 14.5% chance
- 3. that we get a mean of 5.5% or less on a sample of 9.

42

- Use dataset 'AluminumSheet.xlsx'
- Summary statistics of 'Thickness':
 - \circ Sample size (n)= 100
 - \circ Sample average (\bar{X}) = 0.04802 inches
 - \circ Sample standard deviation (s) = 0.00873 inches
- Compute t- value, critical value, and p-value and make a decision

	Α
1	Thickness
2	0.04904
3	0.054092
4	0.048577
5	0.050288
6	0.045012
7	0.045299
8	0.054733
9	0.048369
10	0.052945
11	0.043319
12	0.040177
13	0.034675
14	0.038976
15	0.04643

• Step 1: Identify the null hypothesis and the alternative hypothesis Let μ be the mean thickness of aluminum sheets.

$$H_0$$
: $\mu = 0.05$
 H_a : $\mu \neq 0.05$

- The hypothesis test is a two-tailed test
- \circ Set the significance level α to 5%
- Step 2: Compute the t-value

$$T = \frac{X - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{0.04802 - 0.05}{\frac{0.00873}{\sqrt{100}}} = -2.2682$$

Step 3: Make a decision

Method 1: Critical value method by hand

- Critical value = T. INV(0.975, 99) or qt(0.975,99) = 1.98 < |-2.2682(t-value)|
- Conclusion: We reject the null hypothesis

Method 2: p-value method by hand

- T. DIST(-2.2682, 99,1) or pt(-2.2682, 99) = 0.0127
- p-value = 2*0.0127= 0. 0254 < 0.05</p>
- Reject H_0 at α = 0.05 & 0.1 Do not buy sheets from the supplier!
- What about α = 0.01? \rightarrow Do not reject! -> Hire the supplier!

Method 2: p-value method using t.test function

```
> t.test(AluminumSheet$Thickness,mu=0.05, conf.level = 0.95, alternative = 'two.sided')
One Sample t-test
data: AluminumSheet$Thickness

t = -2.2682, df = 99, p-value = 0.02549 < 0.05 : We reject the null
alternative hypothesis: true mean is not equal to 0.05
95 percent confidence interval:
0.04628847 0.04975212
sample estimates:
mean of x
0.0480203
```

Interpretation of p-value

The p-value of 0.02549 means that:

- 1. Assuming that the true average thickness is 0.05 inches
- 2. there is a 2.5% chance
- 3. that we get a mean of 0.04802" or more extreme on a sample of 100 sheets.

 Our sample was 0.00198" away from the goal. If the true mean was 0.05", there's a 2.5% chance that their sheets would be more than 0.00198" away from the target thickness.

BUDT 730

More Examples on Hypothesis Test for the Population Mean

Meal Service

Overfilling Beverage Bottles

Example: Meal Service (10/11(M))

- A government contractor provided services to the military in a troubled region.
 - Average of 10,000 daily meals provided.
 - Operations lasted 300 days
 - Cost: \$10/meal
 - Total charged: \$30 million
- The government believes that the charges of the contractor are too high.
- The government obtains a random sample of 30 days
 - Average number of meals for 30 days: 8,983 Meals Served
 - Suppose that population standard deviation is 1643.17 meals per day

Meal Service: Hypothesis Test

- What is the government trying to determine?
- Construct the hypothesis for the government.
- What is the risk of Type I and Type II error?
- Make a decision for $\alpha = 1\%$, 5%, and 10%, using two methods.
- Interpret the p-value.

Meal Service: Hypothesis Test

- What is the government trying to determine?
 To determine whether the contractor's charges are accurate or not.
- Construct the hypothesis for the government.
 - \circ Let μ be the mean number of meals served per day.
 - H_0 : The contractor's charges are accurate, $\mu \ge 10000 \ (\mu_0 = 10000)$
 - \circ H_1 : The contractor overcharges the government, μ <10000
 - This is a one sample, one-tailed Z-test
- What is the risk of Type I and Type II error?
 - Type I error: Fire the contractor when the contractor's charges are correct.
 - Type II error: Do not fire the contractor when the contractor overcharges the government.

Meal Service: What is your conclusion?

- Set up a test statistic and compute the value.
 - o Given n = 30, $\bar{X} = 8,983$, s = 1643.17

- Make a decision for $\alpha = 1\%, 5\%$, and 10%, using two methods.
 - Oritical Value Method:
 - Reject H_0 if $Z = -3.39 < Z_{1,\alpha}$
 - $Z_{0.1} = -1.28$, $Z_{0.05} = -1.64$, $Z_{0.01} = -3.09$
 - \circ p-value = NORM.S.DIST(-3.39, 1) or pnorm(-3.39) = 0.0003
 - \circ Decision: Reject $H_0 => Yes$, the contractor overcharged the government

Example: Overfilling Beverage Bottles

- Quality control example
 - Goal is to ensure that the mean fill level is 12 oz.
 - If the process is overfilling, it costs \$5,000 to stop and correct the process
 - If the process overfills bottles, it costs \$2,000 in daily losses
- On one particular day, a sample of 32 bottles yields a mean of 12.100 oz., and a standard deviation of 0.149 oz.
 - Should the production manager conclude that the process is systematically overfilling?

BUDT 730

Overfilling: Hypothesis Test

- What is the manager trying to determine?
- Construct the hypothesis for the manager.
- What is the risk of Type I and Type II error? Which one is worse?
- Make a decision for $\alpha = 1\%, 5\%$, and 10%, using two methods.
- Interpret the p-value.

Overfilling: Formulating the Hypothesis Test

- Hypotheses
 - H_0 : The process is not overfilling bottles or $\mu \le 12$ ($\mu_0 = 12$)
 - \circ H₁: The process is overfilling bottles or $\mu > 12$
 - This is a one sample, one-tailed T- test
- Potential Errors
 - Type I: Stop the process when it is not overfilling bottles
 - Type II: Do not stop the process when it is overfilling bottles
- Which is worse?
 - Type II error (assuming that the process is inspected every week)
- How does this affect our choice of α ?
 - \circ Set α to be high, say 10%

55

Overfilling: "By Hand"

- Compute test statistic
 - \circ Given n = 32, $\bar{X} = 12.1$ oz., s = 0.149363907oz.

$$T = \frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{12.1 - 12}{\frac{0.149363907}{\sqrt{32}}} = 3.60976713$$

- Critical value method:
 - o Reject H_0 if $T = 3.6098 > t_{n-1.1-\alpha} = T.INV(1-\alpha, 31)$ or $qt(1-\alpha, 31)$
 - $0 t_{31,0.9} = 1.31, t_{31,0.95} = 1.70, t_{31,0.99} = 2.46 << 3.6098$
- p-value = T.DIST.RT(3.6098, 31) or 1- pt $(3.6098, 31) = 0.000533 << \alpha$
- Decision: Reject $H_0 =>$ Stop the process!

-56

Example: Overfilling "using R"

12.09531

> t.test(Beverage Bottling\$Fill, mu=12, conf.level = 0.95, alternative = "greater") One Sample t-test data: Beverage_Bottling\$Fill t = 3.6098, df = 31, p-value = 0.0005331 $< \alpha$: We reject the null alternative hypothesis: true mean is greater than 12 95 percent confidence interval: 12.05054 Inf sample estimates: mean of x

Interpretation of p-value

p-value means:

- 1. Assuming that the mean fill level is 12 oz (the machine is working fine)
- 2. there is a 0.05% chance
- 3. that the machine would fill 32 bottles to an average of 12.1 ounces or more

Really strong evidence against the null!

-58

Next ...

Hypothesis test for the proportion