Assignment-01-19MAT101 SINGLE VARIABLE CALCULUS

Dharminder Chaudhary Amrita School of Engineering-Chennai

November 22, 2020

1 PROBLEMS ON FUNCTIONS AND GRAPHS

1. Draw the graph of the functions

(a)
$$f(x) = \begin{cases} -x & if \ x < 0 \\ x^2 & if \ 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

(b)
$$f(x) = \begin{cases} 4 - x^2 & \text{if } x \le 1 \\ x^2 + 2x & \text{if } x > 1 \end{cases}$$

(c) Write the piecewise defined function for the graph of a function given below $\,$

2 PROBLEMS ON LIMIT AND CONTINU-ITY OF FUNCTION

1. Find the right hand and the left hand limits of a function defined as follows:

$$f(x) = \begin{cases} \frac{|x-4|}{x-4}, & \text{if } x \neq 4\\ 0, & \text{otherwise} \end{cases}$$

- 2. Prove that $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$.
- 3. Show that $\lim_{x\to 3} \frac{1}{(x-3)^2} = \infty$, whereas $\lim_{x\to 3} \frac{1}{(x-3)}$ does not exist.
- 4. Find $\lim_{x\to 0} e^x sgn(x+[x])$, where the signum function is defined as:

$$sgn(x) = \begin{cases} 1 & if \ x > 0 \\ 1 & if \ x = 0 \\ -1 & if \ x < 0 \end{cases}$$

5. We can observe that the inequality

$$1 - \frac{x^2}{6} < \frac{x \sin(x)}{2 - 2 \cos(x)} < 1$$

holds for all the values of "x" close to zero, then what can you say about $\lim_{x\to 0} \frac{x\ sin(x)}{2-2\ cos(x)}$. Give reasons for your answer.

- 6. Let $Lim_{x\to 5} \sqrt{x-1} = 2$ be given, then find a value $\delta > 0$ such that it works for $\epsilon = 1$, that means, find a value $\delta > 0$ such that $|\sqrt{x-1} 2| < 1$ whenever $0 < |x-5| < \delta$.
- 7. Show that $Lim_{x\to 2} f(x) = 4$ if

$$f(x) = \begin{cases} x^2, & \text{if } x \neq 2\\ 1, & \text{otherwise} \end{cases}$$

- 8. Find the domain of the function $f(x) = \left| \frac{x \sin(x)}{x^2 + 1} \right|$ and show that $f(x) = \left| \frac{x \sin(x)}{x^2 + 1} \right|$ is a continuous function on the domain.
- 9. Find the values a, and b so that the following function

$$f(x) = \begin{cases} a & x+2 & b & x \le 0 \\ x^2 + 3 & a - b & 0 < x \le 2 \\ 6 - b & x & -1 < x \le 1 \\ 3 & x - 5 & x > 2 \end{cases}$$

is a continuous function.

10. Find the values a, b, and c so that the following function

$$f(x) = \begin{cases} 6 - 3b x & x \le -2\\ c x^2 - a x + 4 & -2 < x \le -1\\ 6 - b x & -1 < x \le 1\\ a x^2 + c & x > 1 \end{cases}$$

is a continuous function.

11. Check the continuity and differentiability of the function

$$f(x) = \begin{cases} x^n \cos \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

where "n" is a natural number.

3 DERIVATIVES APPLICATIONS

- 1. Find the area of a triangle enclosed by an arbitrary tangent line to the curve $f(x) = \frac{1}{x}$, the x-axis and the y-axis, and what is your conclusion when you find the required area.
- 2. Find the absolute maximum and minimum values of $f(x) = x^2$ on the domains $D_0 = (-\infty, +\infty)$, $D_1 = [-2, 1]$, and $D_2 = (-2, 1]$ respectively.
- 3. Find the critical points of $f(x) = \sin^2(x) \sin(x) 1$ on the interval $[0, 2\pi]$, and identify the open intervals on which "f" is increasing and decreasing. Also, find the local maximum and local minimum of the function in the corresponding domain.
- 4. Let "c" be a point in the domain of the function "f", where f'(c) exists and f'(c) > 0 that is "f" is positive, then show that function is increasing in the neighborhood of the corresponding point.
- 5. Examine the local maximum and the local minimum for the functions
 - (a) $f(x) = (x-3)^5(x+1)^4$
 - (b) f(x) = sin(x) + cos(x)
 - (c) $f(x) = x^5 5x^4 + 5x^3 1$

- (d) $f(x) = x^3 6x^2 + 9x + 1$
- 6. Sketch a graph of the function $f(x) = x^4 4 x^3 + 10$ using the following steps:
 - (a) Observe where the the function "f" achieves the extremum.
 - (b) Find the subintervals where the function is increasing or decreasing respectively.
 - (c) Observe where the function "f" is concave up and where it is concave down
 - (d) Sketch the general shape of the curve for the function.
 - (e) Plot some points such as local maximum, local minimum, points of inflection and intercepts respectively.