3-1 In-Class Exercise

1. Let
$$\mathbf{u} = (1, 2, -3, 5, 0)$$
, $\mathbf{v} = (0, 4, -1, 1, 2)$, and $\mathbf{w} = (7, 1, -4, -2, 3)$. Find the components of $\frac{1}{2}(\mathbf{w} - 5\mathbf{v} + 2\mathbf{u}) + \mathbf{v}$

3-1 Suggested Exercise

- 1. Which of the following vectors in \mathbb{R}^6 , if any, are parallel to $\mathbf{u} = (-2, 1, 0, 3, 5, 1)$?
 - **a.** (4, 2, 0, 6, 10, 2)
 - **b.** (4, -2, 0, -6, -10, -2)
 - $\mathbf{c}.\ (0,0,0,0,0,0)$
- 2. Show that there do not exist scalars c_1 , c_2 , and c_3 such that

$$c_1(-2,9,6) + c_2(-3,2,1) + c_3(1,7,5) = (0,5,4)$$

3. Let P be the point (2, 3, -2) and Q the point (7, -4, 1). Find the midpoint of the line segment connecting the points P and Q.

3.2 In-Class Exercise

1. Determine whether the expression makes sense mathematically.

$$\mathbf{a.} \ \|\mathbf{u}\| \cdot \|\mathbf{v}\|$$

c.
$$(\mathbf{u} \cdot \mathbf{v}) - k$$

b.
$$(\mathbf{u} \cdot \mathbf{v}) - \mathbf{w}$$

$$\mathbf{d}.\ k \cdot \mathbf{u}$$

3.2 Suggested Exercise

- 1. Let $\mathbf{v} = (1, 1, 2, -3, 1)$. Find all scalars k such that $||k\mathbf{v}|| = 4$.
- 2. Figure shows a cube. Find the angle between the vectors **d** and **u** to the nearest degree.

3.3 In-Class Exercise

1. Find the vector component of **u** along **a** and the vector component of **u** orthogonal to **a**.

$$\mathbf{u} = (-1, -2), \ \mathbf{a} = (-2, 3)$$

3.3 Suggested Exercise

1. Show that if v is orthogonal to both \mathbf{w}_1 and \mathbf{w}_2 , then v is orthogonal to $k_1\mathbf{w}_1 + k_2\mathbf{w}_2$ for all scalars k_1 and k_2 .

2. Is it possible to have $proj_a u = proj_u a$? Explain.

3.5 In-Class Exercise

1. Calculate the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ of the vectors

$$u = 3i - 2j - 5k$$
, $v = i + 4j - 4k$, $w = 3j + 2k$

3.5 Suggested Exercise

1. Find the area of the triangle in 3-space that has the given vertices.

$$P_1(2,6,-1), P_2(1,1,1), P_3(4,6,2)$$

2. Simplify $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v})$.

- 3. Suppose that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 3$. Find
- a) $\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v})$
- b) $(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}$
- c) $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$