SICK Mobile Robot Presentation

Overview of Project

- Use SICK LIDAR to scan for objects directly to the left, right, and in front of the robot
- Have an easy way to obtain this data, and give the objects x, y coords.
- Use this data collected from the SICK LIDAR to orientate the robot in the middle of a hallway
- Create a topic in ROS that will let the robot know it's orientation wrt the hallway

METHODS

RQT_GRAPH from lidar pi and motor pi

Rosbag recording of lidar node

Mapping

Mapping and Challenges

Biggest Hurdle

- Obtaining the data needed to create the walls of the hallway
- Then using the walls to orientate the robot in the hallway
- Turns in the hallway and intersections

Resources Needed from SICK

- Any ROS nodes that subscribe to the /scan topic and output points in x, y coords.
- In the same node we can then use those points to create a line (the wall left or right)
- From there we can get the necessary vectors needed to orient the robot in the middle of the hallway
- The output of the node can then be a vector for the robot to follow

Milestones

- Create topic to subscribe to /scan and obtain x, y coords.
- Be able to orient the robot in the middle of the hallway
 - Make tests where we can see (d_left or d_right) either increase if we go away from the wall or decrease if we go closer to the wall
- Use vectors to give the robot an output vector to follow
- Determine what needs to be done at intersections and corners
- Test, test, and test
 - Debug anything that comes up