Unsupervised Learning:

Unsupervised learning is a type of machine learning in which models are trained using unlabeled dataset and are allowed to act on that data without any supervision.

Hierarchical Clustering in Machine Learning

Hierarchical clustering is another unsupervised machine learning algorithm, which is used to group the unlabeled datasets into a cluster and also known as **hierarchical cluster analysis** or HCA.

In this algorithm, we develop the hierarchy of clusters in the form of a tree, and this tree-shaped structure is known as the **dendrogram**.

Sometimes the results of K-means clustering and hierarchical clustering may look similar, but they both differ depending on how they work. As there is no requirement to predetermine the number of clusters as we did in the K-Means algorithm.

The hierarchical clustering technique has two approaches:

- 1. **Agglomerative:** Agglomerative is a **bottom-up** approach, in which the algorithm starts with taking all data points as single clusters and merging them until one cluster is left.
- 2. **Divisive:** Divisive algorithm is the reverse of the agglomerative algorithm as it is a **top-down approach.**

Why hierarchical clustering?

So, as we have seen in the K-means clustering that there are some challenges with this algorithm, which are a predetermined number of clusters, and it always tries to create the clusters of the same size. To solve these two challenges, we can opt for the hierarchical clustering algorithm because, in this algorithm, we don't need to have knowledge about the predefined number of clusters.

In this topic, we will discuss the Agglomerative Hierarchical clustering algorithm.

Agglomerative Hierarchical clustering

The agglomerative hierarchical clustering algorithm is a popular example of HCA. To group the datasets into clusters, it follows the **bottom-up approach**. It means, this algorithm considers each dataset as a single cluster at the beginning, and then start combining the closest pair of clusters together. It does this until all the clusters are merged into a single cluster that contains all the datasets.

This hierarchy of clusters is represented in the form of the dendrogram.

How the Agglomerative Hierarchical clustering Work?

The working of the AHC algorithm can be explained using the below steps:

Step-1: Create each data point as a single cluster. Let's say there are N data points,
 so the number of clusters will also be N.

 Step-2: Take two closest data points or clusters and merge them to form one cluster.
 So. there will now be N-1 clusters.

Step-3: Again, take the two closest clusters and merge them together to form one cluster.
 There
 will
 be
 N-2
 clusters.

Step-4: Repeat Step 3 until only one cluster left. So, we will get the following clusters.
 Consider the below images:

 Step-5: Once all the clusters are combined into one big cluster, develop the dendrogram to divide the clusters as per the problem.

Measure for the distance between two clusters

As we have seen, the **closest distance** between the two clusters is crucial for the hierarchical clustering. There are various ways to calculate the distance between two clusters, and these ways decide the rule for clustering. These measures are called **Linkage methods**. Some of the popular linkage methods are given below:

1. **Single Linkage:** It is the Shortest Distance between the closest points of the clusters. Consider the below image:

2. **Complete Linkage:** It is the farthest distance between the two points of two different clusters. It is one of the popular linkage methods as it forms tighter clusters

than

single-linkage.

3. **Average Linkage:** It is the linkage method in which the distance between each pair of datasets is added up and then divided by the total number of datasets to calculate the average distance between two clusters. It is also one of the most popular linkage methods.

4. **Centroid Linkage:** It is the linkage method in which the distance between the centroid of the clusters is calculated. Consider the below image:

From the above-given approaches, we can apply any of them according to the type of problem or business requirement.

Partitioning Method (K-Mean) in Data Mining

Partitioning Method:

This clustering method classifies the information into multiple groups based on the characteristics and similarity of the data. Its the data analysts to specify the number of clusters that has to be generated for the clustering methods. In the partitioning method when database(D) that contains multiple(N) objects then the partitioning method constructs user-specified(K) partitions of the data in which each partition represents a cluster and a particular region. There are many algorithms that come under partitioning method some of the popular ones are K-Mean, PAM (K-Mediods), CLARA algorithm (Clustering Large Applications) etc.

What is an EM algorithm?

The Expectation-Maximization (EM) algorithm is defined as the combination of various unsupervised machine learning algorithms, which is used to determine the **local maximum likelihood estimates (MLE)** or **maximum a posteriori estimates (MAP)** for unobservable variables in statistical models. Further, it is a technique to find maximum likelihood estimation when the latent variables are present. It is also referred to as the **latent variable model**.

A latent variable model consists of both observable and unobservable variables where observable can be predicted while unobserved are inferred from the observed variable. These unobservable variables are known as latent variables.

What is Dimensionality Reduction?

The number of input features, variables, or columns present in a given dataset is known as dimensionality, and the process to reduce these features is called dimensionality reduction.

A dataset contains a huge number of input features in various cases, which makes the predictive modeling task more complicated. Because it is very difficult to visualize or make predictions for the training dataset with a high number of features, for such cases, dimensionality reduction techniques are required to use.

Dimensionality reduction technique can be defined as, "It is a way of converting the higher dimensions dataset into lesser dimensions dataset ensuring that it provides similar information." These techniques are widely used in machine learning for obtaining a better fit predictive model while solving the classification and regression problems.

It is commonly used in the fields that deal with high-dimensional data, such as **speech** recognition, signal processing, bioinformatics, etc. It can also be used for data visualization, noise reduction, cluster analysis, etc.

Principal Component Analysis

Principal Component Analysis is an unsupervised learning algorithm that is used for the dimensionality reduction in <u>machine learning</u>. It is a statistical process that converts the

observations of correlated features into a set of linearly uncorrelated features with the help of orthogonal transformation. These new transformed features are called the **Principal Components**. It is one of the popular tools that is used for exploratory data analysis and predictive modeling. It is a technique to draw strong patterns from the given dataset by reducing the variances.

PCA generally tries to find the lower-dimensional surface to project the high-dimensional data.

PCA works by considering the variance of each attribute because the high attribute shows the good split between the classes, and hence it reduces the dimensionality. Some real-world applications of PCA are *image processing*, *movie recommendation system*, *optimizing the power allocation in various communication channels*. It is a feature extraction technique, so it contains the important variables and drops the least important variable.

The PCA algorithm is based on some mathematical concepts such as:

- Variance and Covariance
- Eigenvalues and Eigen factors

Some common terms used in PCA algorithm:

- Dimensionality: It is the number of features or variables present in the given dataset.
 More easily, it is the number of columns present in the dataset.
- Correlation: It signifies that how strongly two variables are related to each other. Such as if one changes, the other variable also gets changed. The correlation value ranges from 1 to +1. Here, -1 occurs if variables are inversely proportional to each other, and +1 indicates that variables are directly proportional to each other.
- Orthogonal: It defines that variables are not correlated to each other, and hence the correlation between the pair of variables is zero.
- Eigenvectors: If there is a square matrix M, and a non-zero vector v is given. Then v will be eigenvector if Av is the scalar multiple of v.
- o **Covariance Matrix:** A matrix containing the covariance between the pair of variables is called the Covariance Matrix.

Linear Discriminant Analysis (LDA) in Machine Learning

Linear Discriminant Analysis (LDA) is one of the commonly used dimensionality reduction techniques in machine learning to solve more than two-class classification problems. It is also known as Normal Discriminant Analysis (NDA) or Discriminant Function Analysis (DFA).

This can be used to project the features of higher dimensional space into lower-dimensional space in order to reduce resources and dimensional costs. In this topic, "Linear Discriminant Analysis (LDA) in machine learning", we will discuss the LDA algorithm for classification predictive modeling problems, limitation of logistic regression, representation of linear Discriminant analysis model, how to make a prediction using LDA, how to prepare data for LDA, extensions to LDA and much more. So, let's start with a quick introduction to Linear Discriminant Analysis (LDA) in machine learning.

Why LDA?

- Logistic Regression is one of the most popular classification algorithms that perform well for binary classification but falls short in the case of multiple classification problems with well-separated classes. At the same time, LDA handles these quite efficiently.
- LDA can also be used in data pre-processing to reduce the number of features, just as
 PCA, which reduces the computing cost significantly.
- LDA is also used in face detection algorithms. In Fisherfaces, LDA is used to extract useful data from different faces. Coupled with eigenfaces, it produces effective results.