



# **Questions from Previous Lecture?**

# **Continuum Hypothesis**



### **Continuum Mechanics**



How did every point in this object change shape?

### **Continuum Mechanics**



What is happening in this tiny chunk of material?

# **Finite Element Method**



### **Finite Element Method**



TetWild | https://github.com/Yixin-Hu/TetWild

#### We want to figure out how to compute this!

$$rac{d}{dt} rac{\partial L}{\partial \dot{\mathbf{q}}} = rac{\partial L}{\partial \mathbf{q}}$$

### **Tetrahedral Finite Elements**



TetWild | https://github.com/Yixin-Hu/TetWild

### **Tetrahedral Finite Elements**



### **Tetrahedral Finite Elements**



### **Generalized Coordinates for Tetrahedral Element**

















































### Kinetic Energy of a Tetrahedron



Reference (Undeformed) Space

$$\int_{\Omega} \rho \mathbf{N} (\mathbf{X})^T \mathbf{N} (\mathbf{X}) d\Omega$$

Integrate over tetrahedron

$$\int_{\Omega} \rho \begin{pmatrix} \phi_{0}\phi_{0}I & \phi_{0}\phi_{1}I & \phi_{0}\phi_{2}I & \phi_{0}\phi_{3}I \\ \phi_{1}\phi_{0}I & \phi_{1}\phi_{1}I & \phi_{1}\phi_{2}I & \phi_{1}\phi_{3}I \\ \phi_{2}\phi_{0}I & \phi_{2}\phi_{1}I & \phi_{2}\phi_{2}I & \phi_{2}\phi_{3}I \\ \phi_{3}\phi_{0}I & \phi_{3}\phi_{1}I & \phi_{3}\phi_{2}I & \phi_{3}\phi_{3}I \end{pmatrix} d\Omega$$

$$\int_{\Omega} \rho \begin{pmatrix} \phi_{0}\phi_{0}I & \phi_{0}\phi_{1}I & \phi_{0}\phi_{2}I & \phi_{0}\phi_{3}I \\ \phi_{1}\phi_{0}I & \phi_{1}\phi_{1}I & \phi_{1}\phi_{2}I & \phi_{1}\phi_{3}I \\ \phi_{2}\phi_{0}I & \phi_{2}\phi_{1}I & \phi_{2}\phi_{2}I & \phi_{2}\phi_{3}I \\ \phi_{3}\phi_{0}I & \phi_{3}\phi_{1}I & \phi_{3}\phi_{2}I & \phi_{3}\phi_{3}I \end{pmatrix} d\Omega$$

evaluate each term separately

$$\rho \int_{\Omega} \phi_r \left( \mathbf{X} \right) \phi_s \left( \mathbf{X} \right) d\Omega \mathbf{I}$$

#### evaluate each term separately

$$\rho \int_{\Omega} \phi_r (\mathbf{X}) \phi_s (\mathbf{X}) d\Omega \mathbf{I}$$

#### integration using barycentric coordinates

$$6\rho \cdot \underbrace{vol}_{} \cdot \int_{0}^{1} \int_{0}^{1-\phi_{1}} \int_{0}^{1-\phi_{1}-\phi_{2}} \left(\phi_{r}\phi_{s}\right) d\phi_{3} d\phi_{2} d\phi_{1}$$

tetrahedron volume

#### need this identity as well

$$\phi_0(\mathbf{X}) = 1 - \phi_1(\mathbf{X}) - \phi_2(\mathbf{X}) - \phi_3(\mathbf{X})$$

### Integrating the Mass Matrix – An Example

integration using barycentric coordinates

$$6\rho \cdot vol \cdot \int_0^1 \int_0^{1-\phi_1} \int_0^{1-\phi_1-\phi_2} (\phi_1\phi_1) d\phi_3 d\phi_2 d\phi_1$$

$$\phi_0(\mathbf{X}) = 1 - \phi_1(\mathbf{X}) - \phi_2(\mathbf{X}) - \phi_3(\mathbf{X})$$

### Integrating the Mass Matrix – An Example

integration using barycentric coordinates

$$6\rho \cdot vol \cdot \int_0^1 \int_0^{1-\phi_1} \int_0^{1-\phi_1-\phi_2} (\phi_1^2) d\phi_3 d\phi_2 d\phi_1$$

integrate from inside out

$$6\rho \cdot vol \cdot \int_0^1 \int_0^{1-\phi_1} \phi_1^2 \left(1 - \phi_1 - \phi_2\right) d\phi_2 d\phi_1$$

### Integrating the Mass Matrix – An Example

integration using barycentric coordinates

$$6\rho \cdot vol \cdot \int_0^1 \int_0^{1-\phi_1} \phi_1^2 \left(1 - \phi_1 - \phi_2\right) d\phi_2 d\phi_1$$

integrate from inside out

$$6\rho \cdot vol \cdot \int_{0}^{1} \frac{\phi_{1}^{2} (\phi_{1} - 1)^{2}}{2} d\phi_{1}$$
$$6\rho \cdot vol \cdot \frac{1}{60} = \frac{\rho \cdot vol}{10}$$

$$\int_{\Omega} \rho \begin{pmatrix} \phi_{0}\phi_{0}I & \phi_{0}\phi_{1}I & \phi_{0}\phi_{2}I & \phi_{0}\phi_{3}I \\ \phi_{1}\phi_{0}I & \phi_{1}\phi_{1}I & \phi_{1}\phi_{2}I & \phi_{1}\phi_{3}I \\ \phi_{2}\phi_{0}I & \phi_{2}\phi_{1}I & \phi_{2}\phi_{2}I & \phi_{2}\phi_{3}I \\ \phi_{3}\phi_{0}I & \phi_{3}\phi_{1}I & \phi_{3}\phi_{2}I & \phi_{3}\phi_{3}I \end{pmatrix} d\Omega$$

### Kinetic Energy of a Tetrahedron



Reference (Undeformed) Space

## **Generalized Coordinates for Bunny FEM**



### **Generalized Coordinates for Bunny FEM**













Assemble M by summing over all tetrahedra

## Potential Energy for a Single Tetrahedron



Reference (Undeformed) Space

### Potential Energy for a Single Tetrahedron



### How do we measure strain?











rest length squared



Strain 
$$l^2 - l_0^2$$

deformed length squared

$$l^2 = \Delta \mathbf{x}^T \Delta \mathbf{x}$$

$$l_0^2 = \Delta \mathbf{X}^T \Delta \mathbf{X}$$

Strain 
$$\Delta \mathbf{x}^T \Delta \mathbf{x} - \Delta \mathbf{X}^T \Delta \mathbf{X}$$

$$\Delta \mathbf{X}^T \mathbf{F}^T \mathbf{F} \Delta \mathbf{X} - \Delta \mathbf{X}^T \Delta \mathbf{X}$$

Right Cauchy Green Deformation

$$\Delta \mathbf{X}^T \left( \mathbf{F}^T \mathbf{F} - \mathbf{I} \right) \Delta \mathbf{X}$$

**Green Lagrange Strain** 

## From Deformation to Potential Energy



Reference (Undeformed) Space

## **Neohookean Strain Energy Density**



### From Deformation to Potential Energy



Reference (Undeformed) Space



Reference (Undeformed) Space









### From Deformation to Potential Energy



Reference (Undeformed) Space

### From Deformation to Potential Energy



Reference (Undeformed) Space

# **Single-Point Numerical Quadrature**

### **Potential Energy for a Bunny**



### Potential Energy for a Bunny



### The Lagrangian

$$V = \sum_{j=0}^{m-1} \operatorname{vol}_{j} \cdot \psi\left(\mathbf{F}_{j}\left(\mathbf{q_{j}}\right)\right)$$
 $L = T - V$ 

$$\frac{1}{2}\dot{\mathbf{q}}^{T}\mathbf{M}\dot{\mathbf{q}}$$



## **Euler-Lagrange Equation**

 $d \partial L$ dt da Generalized Forces f

# **Equations of Motion**

$$M\ddot{\mathbf{q}} = -rac{\partial V}{\partial \mathbf{q}}$$

$$-\frac{\partial V}{\partial \mathbf{q}} = -\sum_{j=0}^{m-1} \operatorname{vol}_{j} \cdot \frac{\partial}{\partial \mathbf{q}} \psi \left( \mathbf{F}_{j} \left( \mathbf{E}_{j} \mathbf{q} \right) \right)$$

Because F is a matrix, this is tricky

We can CONVERT F to a vector

#### **Vectorized Deformation Gradient**

$$F = \begin{pmatrix} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} & \frac{\partial x}{\partial Z} \\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} & \frac{\partial y}{\partial Z} \\ \frac{\partial z}{\partial X} & \frac{\partial z}{\partial Y} & \frac{\partial z}{\partial Z} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial x} \\ \frac{\partial y}{\partial X} \\ \frac{\partial y}{\partial X} \\ \frac{\partial z}{\partial X} \\ \frac{\partial z}{\partial X} \\ \frac{\partial z}{\partial Z} \\ \frac{\partial z}{\partial X} \\ \frac{\partial z}{\partial Z} \\ \frac{\partial$$

$$\begin{pmatrix}
-\mathbf{1}^T \mathbf{T}^{-1} \\
\mathbf{T}^{-1}
\end{pmatrix}$$

$$\mathbf{D} \in \mathbb{R}^{4 \times 3}$$

#### **Vectorized Deformation Gradient**



 $\mathbf{q}_{j}$ 

$$-\frac{\partial V}{\partial \mathbf{q}} = -\sum_{j=0}^{m-1} \operatorname{vol}_{j} \cdot \frac{\partial}{\partial \mathbf{q}} \psi \left( \mathbf{F}_{j} \left( \mathbf{E}_{j} \mathbf{q} \right) \right)$$

Because F is a matrix, this is tricky

We can CONVERT F to a vector

$$-\frac{\partial V}{\partial \mathbf{q}} = -\sum_{j=0}^{m-1} \operatorname{vol}_{j} \cdot \frac{\partial}{\partial \mathbf{q}} \psi \left( \mathbf{B}_{j} \mathbf{E}_{j} \mathbf{q} \right)$$
vectorized

Now we can compute the derivatives

$$-\frac{\partial V}{\partial \mathbf{q}} = -\sum_{j=0}^{m-1} \operatorname{vol}_{j} \cdot \mathbf{E}_{j}^{T} \mathbf{B}_{j}^{T} \frac{\partial \psi\left(\mathbf{F}_{j}\right)}{\partial \mathbf{F}}$$

$$\mathbf{f} = \sum_{j=0}^{m-1} \mathbf{E}_{j}^{T} \mathbf{f}_{j} \qquad \qquad \mathbf{f}_{j} = -\mathrm{vol}_{j} \mathbf{B}_{j}^{T} \frac{\partial \psi \left( \mathbf{F}_{j} \right)}{\partial \mathbf{F}}$$
 assemble per-tetrahedron forces

# **Equations of Motion**

$$M\ddot{\mathbf{q}} = -rac{\partial V}{\partial \mathbf{q}}$$



Capture and Modeling of Non-Linear Heterogeneous Soft Tissue | Bickel et al

