ELEC 3035: Practice problems for part 1 (Academic year 2010/11)

Lecturer: Ivan Markovsky

1.	State-space representation of a system defined by a differential equation Find a state space representation for a dynamical system defined by the differential equation
	$m\ddot{p} + \alpha\dot{p} + \beta p = u, \tag{1}$
	where p and u are vector valued signals (of the same dimension), and m , α , β are positive constants. Give real-life examples of systems, described by (1). What is the physical meaning of p , u , m , α , and β in the examples?
2.	Drawing a circle by a dynamical system (state-space approach) Find a state space equation $\dot{x} = Ax$ (i.e., specify the matrix A) and an initial condition $x(0)$, such that the corresponding trajectory x is a circle in \mathbb{R}^2 with centre $(0,0)$ and radius r .
3.	Drawing a circle by a dynamical system (transfer function approach) Find transfer functions H_1 and H_2 and corresponding inputs u_1 and u_2 , such that if y_1 and y_2 are the outputs of the systems defined by H_1 and H_2 , respectively, the locus of the points $(y_1(t), y_2(t))$ is a circle with centre $(0,0)$ and radius r .
4.	Discretization Discretize the system defined by the equation $m\ddot{p}=u$, assuming that the input u is constant in between the discretization points with value equal to the value at the left point (zero-order hold). Find the corresponding continuous-time and discrete-time state-space representations.
5.	Controllability Is it possible to transfer the continuous-time system of problem 4 from any initial condition $(p(0),\dot{p}(0))$ to any final condition $(p(T),\dot{p}(T))$, where $T>0$? Is the same true for the discrete-time system (in which case T is a positive integer—the discrete-time index). What is the smallest T , for which the transfer can be achieved?
6.	State transfer Design an input u for the discrete-time system of problem 4, such that starting from given initial condition $(p(0), \dot{p}(0))$, $p(t_i) = d_i$, for $i = 1,, N$, i.e., the trajectory hits a number of targets. $(t_1 > t_2 > \cdots > t_N$ are given moments of time, and d_i are given vectors.)
7.	Impact of uncertainty in the initial condition on the trajectory Consider problem 6, when the horizontal component $p_1(0)$ of the initial position $p(0)$ is uncertain: it is only known to belong to an interval with width 2Δ around a value y_{ini} , i.e., $p_1(0) \in [y_{\text{ini}} - \Delta, y_{\text{ini}} + \Delta]$. Find the maximum deviation of $p(t_i)$ from its target d_i due to the uncertainty in the initial condition. Propose a method to increase the accuracy in achieving the targets.
8.	Do the skipped exercises from

http://www.ecs.soton.ac.uk/~im/elec3035/exercises.pdf

and think of what we did in class, *e.g.*, dynamics of an object (with or without gravity, with or without friction) in case of constant or periodically changing wind. Get a feeling how the basic setup, described in of the exercises, can get arbitrary complicated but the approach for solving the new problems remains the same: 1) derive a state space representation of the model and 2) use the methods (matrix exponential, convolution, observability, controllability) covered in the course to solve the problem.

9. Do the ELEC 3035: Practice problems for part 1 from the 2009/10 academic year

http://www.ecs.soton.ac.uk/~im/elec3035/practice-problems.pdf

10. The the following exercises from [ÅM08]: 2.1, 2.3, 2.6, 5.4, 5.8(a-c), 8.1, 8.2, 8.4, 8.6.

References

[ÅM08] K. Åström and R. Murray. Feedback systems: An introduction for scientists and engineers. Princeton University Press, 2008.