ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа **Фурье-спектроскопия.**

Шульмина Анастасия Сергеевна Группа Б04-007

CO2.

Рис. 1: Спектр пропускания СО

Рис. 2: Колебательно-вращательный спектр СО

Момент инерции для молекулы СО:

$$I = mr^2 (1)$$

С другой стороны :

$$I = \frac{\hbar^2}{4\pi c B} \tag{2}$$

Откуда длина связи $r=118~\mathrm{pm}$

Полупроводник InSb.

Рис. 3: Спектр пропускания InSb

Полиэтилен.

Рис. 4: Спектр пропускания полиэтилена

Таблица 1.24. Полосы в ИК спектре полиэтилена низкой плотности и хлорированного полиэтилена (таблетки с КВг) [386]

Полиэтилен	Хлорирован- ный поли- этилен	Колебание	Полиэтилен	Хлорирован- ный поли- этилен	Колебание
2920 2850 1627 1470 1458 1442 1380 1260	2920 2850 1627 1470 1458 1442 1375 1260	ν _a (CH ₂) ν _s (CH ₂) δ (CH ₂) δ (CH ₂) δ (CH ₂) δ (CH ₂)	(790) 730 720 (660)	1310, 1165 (1105) 918 (790) (730) 720 655 610	ν (СС) γ _r (СН ₂) То же ν (ССІ) То же

Рис. 5: Табличные данные

Тефлон.

Рис. 6: Спектр пропускания тефлона

Таблица 1.33. Полосы в ИК спектре политетрафторэтилена и распределение потенциальной энергии колебаний [34]

v, см−1, вксперимен тальное	ў, см-1, рассчи- танное для спиралы		Тип симметрии	Колебание и распределение по те нциал ьной энергии, %	
	13.	15,			
1450 1379 1295 1242 1210 1150 741 729 676 638 553 516 389 383 321 308 291 277 203	1442 1441 1378 1334 1253 1225 1141 739 725 667 640 578 523 522 379 383 522 379 383 316 298 304 282 193 131 22 17	1444 1442 1379 1345 1251 1226 1141 734 725 660 636 578 527 527 380 383 313 300 304 281 192 118 20 13	A E A E E E E E E A E E A E E A E E E E	v_a (CF ₂) (75), γ_w (CF ₂) (48) v_a (CF ₂) (74) v (CC) (32), v (CF) (44) v (CF) (48), v (CC) (31) v (CC) (73), γ_w (CF ₂) (41) v (CF ₂) (84), v (CC) (23) v (CF ₂) (84), δ (CF ₂) (22) v (CF) (43) v_c (CF ₂) (57), v (CF ₂) (9) γ_w (CF ₂) (77) γ_w (CF ₂) (92) δ (CF ₃) (75) γ_r (CF ₂) (61), v_s (CF ₂) (29) δ (CF ₃) (70), γ_w (CF ₂) (25) γ_t (CF ₃) (97) γ_t (CF ₂) (99) γ_t (CF ₂) (99) γ_t (CF ₂) (61), v (CC) (21) γ_t (CF ₂) (61), v (CC) (21) γ_t (CF ₂)	

Рис. 7: Табличные данные

Альбумин.

Рис. 8: Спектр пропускания альбумина