

BUSINESS UNDERSTANDING DATA UNDERSTANDING DATA PREPARATION MODELAÇÃO AVALIAÇÃO VISUALIZAÇÃO (PowerBI; Streamlit)

CONCLUSÕES E RECOMENDAÇÕES

Projeto 1 – Grupo 2

PROJECT OVERVIEW

Business Understanding

Contexto

Cadeia de diversas lojas de venda a retalho distribuídas por várias cidades turcas.

Objetivo: Implementação de um modelo preditivo para antecipação da procura de produtos e otimização da

gestão de stock

O maior problema da Gestão de Stock é o equilíbrio da disponibilidade de produtos sem acumulação excessiva de inventário ou ruturas de stock.

Impacto

- Excesso
 - Custos elevados
 - o Imobilização de capital
 - Risco de obsolescência
- Ruturas
 - Perdas de vendas
 - Insatisfação do cliente

Business Understanding

Oportunidade do Negócio

Valor da Abordagem Preditiva

- Antecipar a procura com maior precisão
- Minimizar desperdícios e melhorar serviço ao cliente
- Apoiar decisões logísticas de forma fundamentada
- Otimizar capital de rotação através de melhor gestão de inventário

Impacto Esperado

- Aumento de vendas e de disponibilidade
- Diminuição de excesso de inventário
- Melhoria na satisfação do cliente
- Otimização de custos operacionais

Prever a demanda é um desafio complexo

BUSINESS UNDERSTANDING

DATA UNDERSTANDING

- DATA PREPARATION
- MODELAÇÃO
- AVALIAÇÃO
- VISUALIZAÇÃO (PowerBI; Streamlit)
- PROJECT OVERVIEW
- CONCLUSÕES E RECOMENDAÇÕES

Data Understanding

PRODUCT

product_id product_lenght product_depth product_width cluster_id hierarchy1_id hierarchy2_id hierarchy3_id hierarchy4_id hierarchy5_id

SALES

store_id
product_id
date
sales
revenue
stock
price
promo_type_1
promo_bin_1
promo_type_2
promo_bin_2
promo_discount_2
promo_discount_type_2

CITIES

store_id storetype_id store_size city_id_old country_id city_code

Registo diário com 8.9M registos

02-01-2017 a 31-10-2019 = **1033 dias**

63 lojas em 19 cidades Turcas

Info de 699 produtos, mas apenas **600** na presentes na tabela de factos.

Data Understanding - Nulos

Data Understanding - Outliers

Distribuição Mensal de Quantidades Vendidas

16704 combinações produto-loja distintos

Lojas podem assumir comportamentos distintos de vendas ao longo do ano

Feriados durante a semana poderão distribuir as vendas pela semana se não forem ao FDS

Feriados poderão influenciar a procura e as vendas na restante semana

Ritmo a <u>4 semanas</u> e <u>última semana</u> poderão ajudar a prever procura

S0136, única loja sazonal

Promoções poderão ter impacto na procura.

- BUSINESS UNDERSTANDING
- DATA UNDERSTANDING
- DATA PREPARATION
- MODELAÇÃO
- AVALIAÇÃO
- VISUALIZAÇÃO (PowerBI; Streamlit)
- PROJECT OVERVIEW
- CONCLUSÕES E RECOMENDAÇÕES

Data Preparation

• Ingestão diária das 3 fontes: sales, cities e product na Bronze LakeHouse do Fabric

- Validação da unicidade das tabelas
- Validação hierárquica das categorias: confirmar que só existe relação com 1 hierarquia anterior
- Eliminação de linhas: Outubro 2019 sem sales, revenue e stock
- Correção de tipos datas para datetype, p.e
- Normalização textual id's, nomes e categorias padronizadas para minúsculas e sem espaços
- Correção textual das cidades tratar caracteres especiais nos nomes das cidades
- Duplicados nas chaves primárias manter última ocorrência
- Imputação de Nulos cluster_id, price , promo_bin_1

- Reorganização e reforço das tabelas com criação de variáveis relevantes
 - Problema / negócio: 5_business_days_offset , week_start_date, week_end_date
 - EDA: is_weekend, is_holiday, is_promotion_active
- Criação do StarSchema
 - Tabelas dimensão : date, product, store, promotion
 - Tabela de factos: sales

Data Preparation

Notebook

Notebook

Notebook

Clean Sales Data

Clean Cities Data

Arquitetura Medallion

Silver

Gold

Rich Dim Promotion

Rich Dim Date

Rich Dim Stores

Rich Dim Products

Notebook

Notebook

Notebook

Notebook

BI & Analytics

Machine Learning

product_key

product_id

product_lenght

product_depth

product_width

cluster_id

hierarchy1_id

hierarchy2_id

hierarchy3_id

hierarchy4_id

hierarchy5_id

dim_PROMOTION

promotion_key

promo_type_1

promo_bin_1

promo_type_2

promo_bin_2

promo_discount_2

promo_discount_type_2

is_promotion_active dim_STORE

store_key

store_id storetype_id store_size

city_id_old

country_id city_code

BRONZE LH

Ingest Raw Product

SILVER LH

Clean Product Data

GOLD LH

Notebook

Rich Fact Sales

Notebook

Notebook

Notebook

Ingest Raw Sales Data

Ingest Raw Cities

- BUSINESS UNDERSTANDING
- DATA UNDERSTANDING
- DATA PREPARATION
- MODELAÇÃO
- AVALIAÇÃO
- VISUALIZAÇÃO (PowerBI; Streamlit)
- PROJECT OVERVIEW
- CONCLUSÕES E RECOMENDAÇÕES

Modelação

Modelação

Modelação

Modelação - Feature Engineering

Grupo de Features	Justificação
Lag Features	lag_1, lag_4 capturam padrões recentes de procura. Ajudam os modelos a aprender dependências temporais através do uso de valores passados como preditores.
Médias Móveis	rolling_mean_4 suaviza flutuações de curto prazo e capta tendências locais. Evita reações exageradas a picos ou ruídos nos dados.
Transformação de Preço	log_price reduz a assimetria nos dados de preço, especialmente quando o preço varia exponencialmente.
Métricas de Inventário	inv_days_cover expressa quantos dias/semanas de stock estão disponíveis com base nas vendas recentes (rolling_mean_4).
Sazonalidade	month_sin, month_cos, fourier_sin_52_k1, fourier_cos_52_k1 codificam padrões cíclicos (mensais e anuais). Features padrão em modelos de séries temporais para representar sazonalidade sem codificar eventos no calendário.
Índice Temporal	t acompanha a progressão temporal por combinação produto-loja.

- BUSINESS UNDERSTANDING
- DATA UNDERSTANDING
- DATA PREPARATION
- MODELAÇÃO
- AVALIAÇÃO
- VISUALIZAÇÃO (PowerBI; Streamlit)
- PROJECT OVERVIEW
- CONCLUSÕES E RECOMENDAÇÕES

Segmentação de lojas

Cluster 0 Lojas de pequena dimensão e de performance básica

- Pequena superfície
- Baixo volume por transação, mas com frequência elevada
- Perfil tipo: lojas de conveniência, ou pontos de venda rápida

Cluster 1 Lojas de grande dimensão e de performance excecional

- Grande superfície
- Vendas massivas mas esporádicas
- Alto volume de receita e quantidade por transação
- Perfil tipo: loja flagship, centro de distribuição ou loja corporativa B2B

Cluster 2 Lojas de media dimensão e de performance eficiente

- Média superfície
- Excelente performance diária
- Equilíbrio entre volume e frequência de vendas
- Perfil tipo: lojas bem localizadas em zonas de alto tráfego

Cluster 3 Lojas premium com vendas pontuais

- Média a grande superfície
- Vendas de alto valor
- Baixa frequência diária mas alto ticket médio
- Perfil tipo: lojas especializadas ou de produtos premium

25

Modelos para Previsão

Produtos com dados suficientes

ARIMA

- Erro médio absoluto (MAE) foi de 0.53.
- MAE representa 12.19% das vendas médias e 4.49% do desvio padrão.
- R² foi 0 indica que o modelo tem um desempenho igual a uma previsão baseada na média.

Erros médios baixos, mas <u>nenhuma</u> explicabilidade da variabilidade (R2).

Observações Críticas e Próximos Passos

- Desenvolvimento de modelo de previsão de demanda.
- **Desafio de Dados**: A alta <u>frequência de vendas a zero</u> (demanda intermitente) limita a capacidade dos modelos de explicar a variabilidade (R²).
- Explorar **modelos mais adaptados** a este tipo de dados para capturar melhor a dinâmica da demanda.

Produtos sem dados suficientes

XGBoost

- Selecionado como o melhor modelo para 5.049 combinações.
- Erro médio absoluto (MAE) foi de 0.061.
- MAE representa 1.77% das vendas médias e 0.48% do desvio padrão.
- R² foi **-0.0017** indica que o modelo tem um <u>desempenho pior</u> do que uma previsão baseada na média.

Baseline (Média)

- Selecionada como o melhor modelo para **3.864 combinações**.
- Erro médio absoluto (MAE) foi de 0.012.
- MAE corresponde a 0.36% das vendas médias e 0.10% do desvio padrão.
- R² foi 0.113.

Regressão Linear

- Selecionado como o melhor modelo para 3.554 combinações.
- Erro médio absoluto (MAE) foi de 0.19.
- MAE representa 5.67% das vendas médias e 1.55% do desvio padrão.
- **R**² foi **0.033.**

Erros médios baixos, mas <u>pouca</u> explicabilidade da variabilidade (R2).

- BUSINESS UNDERSTANDING
- DATA UNDERSTANDING
- DATA PREPARATION
- MODELAÇÃO
- AVALIAÇÃO
- **VISUALIZAÇÃO** (PowerBI; Streamlit)
- PROJECT OVERVIEW
- CONCLUSÕES E RECOMENDAÇÕES

Visualização e Experimentação

PowerBI e Streamlit

Visualização e Experimentação

PowerBI e Streamlit

- BUSINESS UNDERSTANDING
- DATA UNDERSTANDING
- DATA PREPARATION
- MODELAÇÃO
- AVALIAÇÃO
- VISUALIZAÇÃO (PowerBI; Streamlit)
- PROJECT OVERVIEW
- CONCLUSÕES E RECOMENDAÇÕES

Overview do Projeto

Arquitetura Medallion

Silver

Experimentação individual de cada combinação produto-loja (escolha de features, modelos e parâmetros a utilizar)

Criação de features para cada grupo de dados definido

Ingestão e treino de modelos específicos para cada grupo

Previsão de stock do melhor modelo encontrado

para cada combinação produto-loja

Filtragem e Divisão

de dados para ML

Validação Contra stock mín/max/segurança

Gold

Bronze

Visualização de

métricas

Obtenção do melhor modelo para cada combinação produto-loja

Overview do Projeto

1

DATA FOUNDATION (Medallion)

Desenvolvimento inicial da infraestrutura Janela de execução: Diariamente

2

MODEL SELECTION

Criação de *Features* dinamicamente. Seleção do melhor modelo baseada nas métricas de erro

Janela de execução: Semanalmente (Segunda-feira)

PREDICTION

Previsão de stock

Janela de execução: Semanalmente (Quinta-feira)

- BUSINESS UNDERSTANDING
- DATA UNDERSTANDING
- DATA PREPARATION
- MODELAÇÃO
- AVALIAÇÃO
- VISUALIZAÇÃO (PowerBI; Streamlit)
- PROJECT OVERVIEW
- CONCLUSÕES E RECOMENDAÇÕES

Next steps

Desenvolvimento de um modelo preditivo de demanda para cada combinação loja-produto

Obtenção de dados de demanda passíveis de imputação nos dados atuais.

Estudo de novas features para serem introduzidas no modelo de SARIMAX, Regressão Linear e XGBoost

Identificar e introduzir novas variáveis nos modelos existentes:

- Dados de marketing e promoções
- Indicadores económicos
- Dados climáticos

Benefícios Diretos:

- Redução do stock parado menos capital imobilizado
- Diminuição de ruturas de stock melhor disponibilidade de produto
- Otimização de compras timing e quantidades ideais
- Melhoria da imagem menos descontos por excesso de stock

Estudo da aplicação de outros modelos nos dados modelados

Investigação de técnicas de cuttingedge para melhorar a precisão:

- Redes Neurais: Para padrões complexos
- LSTM: Para sequências temporais longas
- Ensemble Methods: Combinação de múltiplos modelos

instituto politécnico de gestão e tecnologi

Obrigado pela atenção!

Pós-Graduação em Analytics e Data Science Empresarial

U.C.: Projeto 2

05 de Julho de 2025

Grupo 2

- Álvaro Mota
- João Rodrigues
- Maria Lúcia
- Rui Gomes