

Team Presentation

Stefanny Escobar Ramírez

Sara Gallego

David González

Simón Marín

Mauricio Toro

Training Process

Healthy-Cattle Images

Testing Process

Compression Algorithm Design: Huffman Coding

The binary tree is a data structure which is composed of root, branch and leaf, in which each node can have one left and one right child.

Photo by Wolfgang Hasselmann on Unsplash

Compression Algorithm Design: Huffman Coding

Huffman Tree from the string "Data Structure"

Character	d	a	t	S	f
Frequency	1	2	3	2	2

Character	u	С	e	=	Total
Frequency	2	1	1	1	15

Huffman coding is implemented by constructing a binary tree of nodes from a list of nodes, whose size depends on the number of symbols n. The nodes contain two fields, the symbol and the weight.

Photo by Doruk Yemenici on Unsplash

Thanks!

Supported by

The two author is supported by a Sapiencia grant funded by the municipality of Medellín. The other author are supported by Generation E. All authors would like to thank the Vicerrectoría de Descubrimiento y Creación, Universidad EAFIT, for their support in this research.