例题 3.4 同轴平面浚, 。活定直茂し 例题 3.4 过品,切的量了 (了) 求平面满足 建青麵點. n = cost i + sind R ▶ 过 P(-1,0,1)流量前/(cost.+sms.证),表说*证显证上页了 ▶ 经过线: 该线落在以下两个平面上: శျ็(๑๗ឆึ + ๑๗ឆึ) (PP)=03 $\pi \cdot \triangleright x + 3y - z = 0$ = {T (xi21+202) (PP3)-0} 解:直线化为几几颗点 过七新平面下的衙量 可以表示为 スパートンスパラ π过化上前之 (化≤π) 又 % [[P(-1,a,1) GBE {T1: 7+34-2=0 i. -2λ1+λ2=0 => n= ... (Tz: x-4+2+1=0 ·通过点法式 = T 方程 => >1 TI + 2 TI = >1 (X+39-2)+>2(X-9+2+1)=0

考虑一条直线 / 与一个平面 π 之间的关系:

- - 经过 P₀(x₀, y₀, z₀)
 方向向量 v = (v_x, v_y, v_z)
 - - ▶ 经过 Q₀
 - ▶ 法向量 $\mathbf{n} = (n_x, n_y, n_z)$

直线 I 与平面 π 的关系:

- \triangleright v \perp n: v · n = 0

 - P₀ 在平面 π 上: $\overrightarrow{Q_0P_0} \cdot \mathbf{n} = 0$ 则 I 在 π 上
 P₀ 不在平面 π 上: $\overrightarrow{Q_0P_0} \cdot \mathbf{n} \neq 0$ 则 I 与 π 平行且 不在 π 上
- ▶ v 与 n 不垂直: v · n ≠ 0 则 / 与 π 相交
 - ► 特别地, v || n: v × n = 0 则 / 与 九垂直

关系: 不共面情形

- $I_1: P = P_0 + vt$
- ▶ $l_2: Q = Q_0 + us$

之间的关系

▶ v, u 与 Q₀P₀ 不共面:

不共面:
$$|(\mathbf{v},\mathbf{u},\overrightarrow{Q_0P_0})| \neq 0$$

则 1 与 12 不共面

关系: 共面情形

▶ v, u 与 $\overrightarrow{Q_0P_0}$ 共面:

$$|(\mathbf{v}, \mathbf{u}, \overline{Q_0} \overrightarrow{P_0})| = 0$$
则 I_1 与 I_2 共面 P I_2 中行 $:=$ I_2 中 I_3 I_4 I_5 I_5 I_6 I_7 I_8 $I_$

例题 4.4

例题 4.4

考虑两条直线:

$$I_1: \frac{x-1}{-1} = \frac{y+2}{2} = \frac{z-1}{1}$$
 $I_2: \frac{x-r}{2} = \frac{y-2}{r} = \frac{z+1}{-2}$

通过对 r 和 t 的讨论, 分析 l_1 与 l_2 的相对位置. 可见

$$\begin{cases} P_1(1,-2,1) & \mathbf{v}_1 = (-1,2,1) \\ P_2(\mathbf{r},2,-1) & \mathbf{v}_2 = (2,\tilde{\mathbf{t}},-2) \end{cases}$$

考虑是否共面, i.e. \mathbf{v}_1 , \mathbf{v}_2 , $\overrightarrow{P_1P_2}$ 是否共面. 计算

$$(\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{PR}}) = \begin{vmatrix} -1 & 2 & 1 \\ 2 & t & -2 \\ r - 1 & 4 & -2 \end{vmatrix} \qquad \mathbf{R}$$

$$= -1(-2b+8)+2\times(-2(r-1)+4)+1(2\times4-b(r-1))$$

$$= \pm(r-3)(t+4)$$

例题 4.4 解

 l_1 与 l_2 共面 \Leftrightarrow r=3 或 t=-4. 进一步分析共面的情形

- ▶ t = -4: 平行但不重合 ✓
- ▶ $t \neq -4$: 相交 (共面可得 r = 3)
 - ▶ t = 2: 垂直
 ぷび=0

两直线夹角

定义(直线与直线的夹角)

设直线 I_1 和 I_2 的方向向量分别为 \mathbf{v}_1 和 \mathbf{v}_2 . 记 θ 为 \mathbf{v}_1 和 \mathbf{v}_2 的夹角. 称

$$\varphi = \min\{\theta, \pi - \theta\}$$

为直线 11 和直线 12 的夹角.

可见

$$\cos \varphi = |\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1| \cdot |\mathbf{v}_2|}|.$$

Q: 为什么直线间的夹角要取锐角, 但向量间的夹角不用? **这**

州 · 国级被约60 向量看方向

两平面夹角

定义 (平面与平面的夹角)

设平面 π_1 和 π_2 的法向向量分别为 \mathbf{n}_1 和 \mathbf{n}_2 . 记 θ 为 \mathbf{n}_1 和 \mathbf{n}_2 的夹角. 称

$$\varphi = \min\{\theta, \pi - \theta\}$$

为平面 π_1 和平面 π_2 的夹角.

可见

$$\cos \varphi = \left| \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| \cdot |\mathbf{n}_2|} \right|.$$

直线与平面夹角

定义 (直线与平面的夹角)

设直线 I_1 的切向量为 \mathbf{v}_1 , 平面 π_1 的法向量为 \mathbf{n}_1 . 记 θ 为 \mathbf{v}_1 与 \mathbf{n}_1 的夹角. 称

$$\varphi = \frac{\pi}{2} - \min\{\theta, \pi - \theta\}$$

为直线 I_1 和平面 π_1 的夹角. 可得

$$\sin \varphi = \cos(\min\{\theta, \pi - \theta\})$$
$$= \left|\frac{\mathbf{v}_1 \cdot \mathbf{n}_1}{|\mathbf{v}_1||\mathbf{n}_1|}\right|.$$

- ▶ 直线 $I: \frac{\mathsf{x}-1}{-1} = \frac{\mathsf{y}+2}{2} = \frac{\mathsf{z}-1}{1}$
- ▶ $\overline{\text{Y}}$ π : x + y + 2z = 3求直线 I 与平面 π 的夹角.

- ▶ /的方向向量 $\mathbf{v} = (-1, 2, 1)$
- ▶ π 的法向量 **n** = (1,1,2)

例题 4.5 解

解(续)

由
$$\mathbf{v} = (-1, 2, 1)$$
 和 $\mathbf{n} = (1, 1, 2)$, 得

- ► v · n
- **▶** |n|

利用

$$\sin \varphi = |\frac{\mathbf{v} \cdot \mathbf{n}}{|\mathbf{v}||\mathbf{n}|}|$$

 $求 \varphi$

一般含义

对于度量空间 (X, d) 诱导其上集合之间的距离

点到点的距离

对于两点 $P_0(x_0, y_0, z_0)$ 和 $P_1(x_1, y_1, z_1)$, 那么 P_0 与 P_1 两点之间的距离可以通过 $\overrightarrow{P_0P_1}$ 的大小确定, i.e. $=(N-N)^{\frac{1}{2}}(N-N)^{\frac{1}{2}}(N-N)^{\frac{1}{2}}$

$$d(P_0,P_1)=|\overrightarrow{P_0P_1}|.$$

我们将利用两点之间的距离表示线面之间的距离

点到直线距离

考虑

- ▶ 线 $I(P_1, \mathbf{v})$: 过点 P_1 & 方向向量为 \mathbf{v} 记 P_0 到 I 的距离为 $d(P_0, I)$. 验证

$$d(P_0, I) = \frac{|\mathbf{v} \times \overrightarrow{P_1 P_0}|}{|\mathbf{v}|}.$$

$$= \frac{|\mathbf{v} \times \overrightarrow{P_1 P_0}|}{|\mathbf{v}| |\overrightarrow{P_1 P_0}|} \times |\overrightarrow{P_1 P_0}|$$

例题 4.6

例题 4.6

设

$$I_1: \frac{x}{1} = \frac{y-2}{2} = \frac{z-1}{2}$$

$$I_2: \frac{\mathsf{x}-1}{2} = \frac{\mathsf{y}-2}{4} = \frac{\mathsf{z}-2}{4}$$

求 1 与 12 之间的距离.

$$\overrightarrow{R} = \frac{1}{2} + \overrightarrow{R} + \overrightarrow{R}$$

$$\Rightarrow d(\ell_1,\ell_2) = d(\theta_1(t_0),\ell_2) = f(\ell_2)$$

$$\vec{\nabla}_{1} = (1, 2, 2)
\vec{\nabla}_{2} = (2, 4, 4)
\Rightarrow \vec{\nabla}_{1} / |\vec{\nabla}_{2}|
\Rightarrow \ell_{1} / |\ell_{2}|
\Rightarrow d(\ell_{1}, \ell_{2}) = d(\ell_{1}, P_{2})$$

点到平面距离

考虑

- $ightharpoonup P_0(x_0, y_0, z_0)$
- **>** 平面 $\pi(P_1, \mathbf{n})$: 过点 P_1 & 法向量为 \mathbf{n} 记 P_0 到 π 的距离为 $d(P_0, \pi)$. 验证

$$d(P_0,\pi)=rac{|\mathbf{n}\cdot\overrightarrow{P_1P_0}|}{|\mathbf{n}|}, rac{|\overrightarrow{n}|\cdot\overrightarrow{P_0}|\cdot \cos \overrightarrow{n}\cdot\overrightarrow{P_0}|}{|\overrightarrow{n}|}$$

其中 P_1 为 π 上的一点.

例题 4.7

例题 4.7

设

$$\pi_1: x + 2y - 2z + 3 = 0$$

$$ightharpoonup \pi_2: 2x + 4y - 4z - 3 = 0$$

求
$$d(\pi_1,\pi_2)$$

$$P_2 = (\frac{3}{2}, 1, 1)$$

$$d(\pi_i, P_2) = \frac{|\vec{\eta_i} \cdot \vec{P_i R_i}|}{|\vec{\eta_i}|}$$

线到线的距离

我们定义直线 1, 与 12 之间的距离为

$$d(I_1,I_2) := \inf_{p_1 \in I_1, p_2 \in I_2} d(p_1,p_2).$$

e.g.

- ▶ $l_1 \parallel l_2$: $d(l_1, l_2) = d(p_1, l_2)$ for all $p_1 \in l_1$.
- ▶ l_1 与 l_2 相交或重合: $d(l_1, l_2) = 0$
- \blacktriangleright 其他情形: $d(I_1,I_2)$ 为公垂线段长度

面到面的距离

定义平面 π_1 与 π_2 之间的距离为

$$d(\pi_1,\pi_2) := \inf_{m{
ho}_1 \in \pi_1, m{
ho}_2 \in \pi_2} d(m{
ho}_1,m{
ho}_2).$$

e.g.

- ▶ $\pi_1 \parallel \pi_2$: $d(\pi_1, \pi_2)$ 为公垂线段长度
- ▶ 相交或重合: 距离为零