

Exercise 2

Introduction to High-Performance Computing WS 2019

Julian Miller
Tim Cramer
Sandra Wienke
contact@hpc.rwth-aachen.de

- **Examples for O** (N^3) /O (N^2) algorithms are complex
- To simplify, we use an $O(N^2)/O(N)$ algorithm to illustrate possible optimization: for(i=0); i < N; ++i)

- Loop unroll & jam will reduce this to N(N/m + 1)
 - → with m-way unrolling


```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```



```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```



```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```



```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```



```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```



```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```



```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```



```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```



```
for(i = 0; i < N; ++i)
{
  for(j=0; j < N; ++j)
  {
    sum += a[i] * b[j];
  }
}</pre>
```


- Blocking the inner loop: ——
 - → With blocking factor B
- Introduces two effects
 - Array b is only loaded once from memory now
 - →as long as factor B is small enough that parts loaded from

```
for(jj=0; jj < N; jj+=B)
{
    jstart=jj; jend=jj+B;
    for(i = 0; i < N; ++i)
    {
       for(j=jstart; j < jend; ++j)
       {
          sum += a[i] * b[j];
       }
    }
}</pre>
```

b fit into the cache and stay there as long as needed

- → Array a is loaded from memory N/B times instead of once
- Effective memory traffic: N(N/B+1)
- Blocking is the method of choice here, as the blocking factor can be increased to higher values than the unrolling factor


```
for(jj=0; jj < N; jj+=B)
{
    jstart=jj; jend=jj+B;
    for(i = 0; i < N; ++i)
    {
       for(j=jstart; j < jend; ++j)
       {
          sum += a[i] * b[j];
       }
    }
}</pre>
```



```
for(jj=0; jj < N; jj+=B)
{
    jstart=jj; jend=jj+B;
    for(i = 0; i < N; ++i )
    {
       for(j=jstart; j < jend; ++j)
       {
          sum += a[i] * b[j];
       }
    }
}</pre>
```



```
for(jj=0; jj < N; jj+=B)
{
    jstart=jj; jend=jj+B;
    for(i = 0; i < N; ++i )
    {
       for(j=jstart; j < jend; ++j)
       {
          sum += a[i] * b[j];
       }
    }
}</pre>
```



```
for(jj=0; jj < N; jj+=B)
{
    jstart=jj; jend=jj+B;
    for(i = 0; i < N; ++i)
    {
       for(j=jstart; j < jend; ++j)
       {
          sum += a[i] * b[j];
       }
    }
}</pre>
```



```
for(jj=0; jj < N; jj+=B)
{
    jstart=jj; jend=jj+B;
    for(i = 0; i < N; ++i )
    {
       for(j=jstart; j < jend; ++j)
       {
          sum += a[i] * b[j];
       }
    }
}</pre>
```



```
for(jj=0; jj < N; jj+=B)
{
    jstart=jj; jend=jj+B;
    for(i = 0; i < N; ++i )
    {
       for(j=jstart; j < jend; ++j)
       {
          sum += a[i] * b[j];
       }
    }
}</pre>
```


Exercise Tasks

- 1. Norm calculation of a matrix
- 2. Performance analysis tools
- 3. Balance Metric

Problem 1. Norm calculation of a matrix

Let $A = (a_{ij})_{i,j=1,...,n} \in \mathbb{R}^{n \times n}$ be a real matrix. The norms $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are defined by:

$$||A||_1 := \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}| \qquad \text{("maximum column sum")}$$
$$||A||_{\infty} := \max_{i=1,\dots,n} \sum_{j=1}^n |a_{ij}| \qquad \text{("maximum row sum")}.$$

This exercise may be done with pen and paper or using the C++ code template in exercise2.tar.gz

Idea: Store matrix as a 1D-block in memory

double *B

Same starting address: B=*A

Access elements by A[x][y] or B[x*n+y]

High

Performance

Example: n = 4 → 4x4 matrix

Example: n = 4 → 4x4 matrix

Example: n = 4 → 4x4 matrix

Example: n = 4 → 4x4 matrix

Livedemo

Preparation: Allocate memory for the matrix

```
/* Allocate the complete matrix in one block */
    double *B = new double[(long)n*n];
                                                    B[n^2-2]
                                                           B[n^2-1]
                                     B[n+1]
        B[0]
                B[1]
                               B[n]
```


A[0][0]	A[0][1]
B[0]	B[1]

D[:- 4]	A[0][n-1]
R[u-T]	B[n-1]

double	**A	=	new	double*[n]	;

A[1][0]	A[1][1]
B[n]	B[n+1]

/*	<pre>/* Place one pointer on each row</pre>	
	of the matrix in the array A */	
	for (int i=0; i <n; ++i)<="" th=""></n;>	
A[i] = &(B[(long)i*n]);		

A[n-1][0]	A[n-1][1]
B[n²-n]	B[n²-n+1]

27

Norm calculation of a matrix norm_max()

a) Design an algorithm to compute the norm $||A||_{\infty}$ by passing through the memory consecutively.

Livedemo

1. Norm calculation of a matrix a) norm_max()

```
double norm max(double** const A, const int n) {
    double rowsum = 0., max norm = -1.;
/* TODO Implement the max norm using 2 for loops
        and the function double abs(double x) */
    for (int i = 0; i < n; ++i) {
        rowsum = 0.;
        for (int j = 0; j < n; ++j)
            rowsum += abs(A[i][j]);
        if (rowsum > max norm)
            max norm = rowsum;
    return max norm;
```


1. Norm calculation of a matrix b) Calculate the time T⁽¹⁾(n)

- b) Calculate the cache-miss-ratio (#cachemiss/#memoryaccess) and the time $T^{(1)}(n)$ of that algorithm in terms of T_A , T_M , T_C , l, and c where
 - T_A time for an arithmetic operation
 - T_M time for accessing the main memory
 - T_C time for accessing the cache
 - l size of a cache line (in elements)
 - c size of the cache (in elements).

Hint: Auxiliary variables are stored in registers. Assume that the computation of $|\cdot|$ and the comparison of two real numbers both take time T_A . Assume for all calculations that the matrix doesn't fit to the cache $(c \ll n \cdot n)$ and the cache is initially cold (empty).

b) Calculate the time T⁽¹⁾(n)

- n^2 elements (the whole matrix) must be added together and every element must be examined by abs (): $2n^2 T_A$
- **Comparing the row sums:** nT_A
- Loading the matrix elements can be divided in two different actions:
 - \rightarrow Loading the data from the main memory (always a complete cache line) :

$$\frac{n^2}{l}T_M$$

→ Loading data from the cache (cache hit because of "cache locality"):

$$(n^2 - \frac{n^2}{I}) T_C$$

$$T^{(1)}(n) = (2n^2 + n) T_A + (\frac{n^2}{l}) T_M + (n^2 - \frac{n^2}{l}) T_C$$

$$T^{(1)}(n) = (2n^2 + n) T_A + \frac{n^2}{8} 180 T_A + 35(n^2 - \frac{n^2}{8}) T_A$$

$$T^{(1)}(n) = (55, 125 n^2 + n) T_A$$

Cache –
$$miss$$
 – $ratio = (n^2/l)/n^2 = 1/l$

$$T_M = 180 T_A$$

$$T_C = 35 T_A$$

$$l = 8$$

Norm calculation of a matrix norm1_col_wise()

c) By switching the order of the two for loops in a), the algorithm now computes $||A||_1$. What time $T^{(2)}(n)$ does this algorithm take? Calculate the cache-miss-ratio.

Livedemo

Norm calculation of a matrix norm1_col_wise()

```
double norm1 col wise(double** const A, const int n) {
   double colsum = 0., max norm = -1.;
/* TODO Implement the one norm by switching
        the 2 for loops from the max norm */
    for (int j = 0; j < n; ++j) {
        colsum = 0.;
        for (int i = 0; i < n; ++i)
            colsum += abs(A[i][j]);
        if (colsum > max norm)
            max norm = colsum;
    return max norm;
```


c) Time for T⁽²⁾

- Time for arithmetic operations does not change
- Case $n \cdot l < c$ ("Matrix fits into the cache"):

$$\rightarrow T^{(2b)}(n) = T^{(1)}(n) = (2n^2 + n) T_A + \frac{n^2}{l} T_M + \left(n^2 - \frac{n^2}{l}\right) T_C$$

$$\Rightarrow$$
 Cache - miss - ratio = $\frac{\frac{n^2}{l}}{n^2} = \frac{1}{l}$

- Cases n > c and $n \cdot l > c$ ("Matrix does not fit into the cache"):
 - → No cache hit: Every value has to be loaded from the main memory

$$\rightarrow T^{(2)}(n) = (2n^2 + n) T_A + n^2 T_M$$

$$\rightarrow$$
 Cache – miss – ratio = $\frac{n^2}{n^2}$ = 1

Norm calculation of a matrix norm1_row_wise()

d) Design an algorithm to compute $||A||_1$ with consecutive memory access and calculate its runtime $T^{(3)}(n)$.

Hint: Use an auxiliary array for the column sums.

Livedemo

Norm calculation of a matrix norm1_row_wise()

. . .

Norm calculation of a matrix norm1_row_wise()

```
TODO Now compute the column sums with
     consecutive memory access */
 for (int i = 0; i < n; ++i)
     for (int j = 0; j < n; ++j)
          colsums[j] += abs(A[i][j]);
TODO Find the largest column sum */
 for (int i = 0; i < n; ++i)
                                     Hint: O(n) \rightarrow We neglect this for T later.
     if (colsums[i] > max norm)
          max norm = colsums[i];
 delete[] colsums;
 return max norm;
```


d) norm1_row_wise()

High

Performance Computing

d) norm1_row_wise()

High

Performance Computing

d) norm1_row_wise()

High

Performance Computing

d) Time for T⁽³⁾

- Assumption: Auxiliary array is much bigger than the cache
- Time for arithmetic operations does not change
- Additional memory access to auxiliary array:

$$\frac{n^2}{l}T_M + \left(n^2 - \frac{n^2}{l}\right)T_C$$

Hint: We neglect the initialization of the auxiliary array and the comparison, because they are small compared to this term (O(n)). If you want to respect them you need to add $\frac{n}{l}T_M + \left(n - \frac{n}{l}\right)T_C$.

$$T^{(3)}(n) = T^{(1)} + \frac{n^2}{l} T_M + \left(n^2 - \frac{n^2}{l}\right) T_C =$$

$$(2n^2 + n) T_A + \frac{n^2}{l} T_M + \left(n^2 - \frac{n^2}{l}\right) T_C + \frac{n^2}{l} T_M + \left(n^2 - \frac{n^2}{l}\right) T_C =$$

$$(2n^2 + n) T_A + 2 \left[\frac{n^2}{l} T_M + \left(n^2 - \frac{n^2}{l}\right) T_C\right]$$

e) Cache mapping

e) What is the worst case scenario regarding cache-miss-ratio for the algorithm of d) when we assume a direct-mapped cache?

Recap: Cache organization

Direct Mapped Cache:

→ Part of the address selects one entry in the tag RAM for comparison

- 1. Index selects one cache line
- 2. Check if selected tags are equal (no => miss)
- Check if cache line is valid (no => miss)
- 4. Copy data to output buffer
- Select required part from cacheline (if data is valid)Exercise 02

e) Cache mapping

Worst case:

colsums[i] and A[x][i] have same index $(colsums[i] \equiv A[x][i] \mod c)$

- colsums[i] += A[x][i]
 - → LOAD of A[x][i] evicts colsums[i] from cache
 - → LOAD/STORE of colsums[i] has always cache miss

f) Calculate the Speed-up

f) Calculate the speed-up of the algorithm of d) with respect to the one of c).

Hint:
$$Speedup = \frac{T^{(2)}(n)}{T^{(3)}(n)}$$

Assume that the following relations hold for an imaginary processor type:

$$T_M = 180 T_A$$

$$T_C = 35 T_A$$

$$l = 8.$$

(optional) Develop a block-version of the algorithm of d) and formulate its runtime $T^{(4)}(n)$ (cf. slide 302 f.).

f) Calculate the speed-up

$$T^{(2)}(n) = (2n^2 + n) T_A + n^2 T_M$$

If the auxiliary array is much bigger than the cache

$$T^{(3)}(n) = (2n^2 + n)T_A + 2\left[\frac{n^2}{l}T_M + \left(n^2 - \frac{n^2}{l}\right)T_C\right]$$

- In the blocked version the used part of the auxiliary array always fits into the cache
- $T^{(4)}(n) = (2n^2 + n)T_A + \frac{n^2}{l}T_M + \left(n^2 \frac{n^2}{l}\right)T_C + n^2T_C$

f) Calculate the speed-up

- **norm1_col_wise()**: $T^{(2)}(n) = (182 n^2 + n)T_A$
- **norm1_row_wise()**: $T^{(3)}(n) = (108.25 n^2 + n)T_A$
- **norm1_blocking()**: $T^{(4)}(n) = (90.125 n^2 + n)T_A$

Speed-up of the different Versions of norm1 *()

for big n

$$\Rightarrow S(n) = \frac{T_{base}(n)}{T_{opt}(n)} = \lim_{n \to \infty} \left(\frac{a \cdot n^2 + n}{b \cdot n^2 + n} \right) = \lim_{n \to \infty} \left(\frac{a + \frac{1}{n}}{b + \frac{1}{n}} \right) = \frac{a}{b}$$

Algorithms	Speed-up
$T^{(2)} / T^{(3)}$	1.68
$T^{(2)} / T^{(4)}$	2.02
$T^{(3)} / T^{(4)}$	1.20

• •


```
double norm1 block(double** const A, const int n, const int 1) {
    double *colsums = new double[n]; double max norm = -1.;
/* TODO Copy the initialization of the auxiliary array and
computation of the column sums. Implement the blocking with a
surrounding for loop. */
    for (int c = 0; c < n; c += 1) {
        int runto = std::min(c + 1, n);
        for (int j = c; j < runto; ++j)
            colsums[j] = 0.;
        for (int i = 0; i < n; ++i)
            for (int j = c; j < runto; ++j)
                colsums[j] += abs(A[i][j]);
```



```
/* TODO Find the largest column sum */
   for (int i = 0; i < n; ++i)
        if (colsums[i] > max_norm)
            max_norm = colsums[i];

   delete[] colsums;
   return max_norm;
}
```


Exercise Tasks

- Norm calculation of a matrix
- **Performance analysis tools**
- **Balance Metric**

2. Performance analysis tools

Problem 2. Performance analysis tools

If you decided to solve Problem 1 by pen and paper, use the provided binaries in the binary directory in exercise2.tar.gz. Otherwise use your own code.

Problem 2.1. Profiling with gprof

You may run make gprof or execute binary/norm.gprof.exe and inspect the result with gprof binary/norm.gprof.exe | less

What is the time for the various algorithms according to gprof?

Try the target gprof2: make gprof2 or execute binary/norm.gprof2.exe and inspect the result with gprof binary/norm.gprof2.exe | less

What is the difference of the outputs (You may have a look at the gprof targets in the Makefile)? What is the calculation time for the algorithms?

2.2 gprof

Livedemo

Problem 2.2. Hardware Performance Counter

Modern processor architectures have special-purpose registers to store the counts of hardware-related activities. These so called hardware performance counters can be used for low-level performance analysis or tuning. For accessing the hardware performance counters you can use the tool likwid^T which is installed on the RWTH Compute Cluster.

Note 1: For this task you can use your own implementation of a), c), and d) from the exercise norm calculation of a matrix and build them with the Intel compiler (make single in the provided template) or use the provided binaries (norm_max.exe, norm_1_col.exe, and norm_1_row.exe).

Note 2: Use the special tuning node login18-t.hpc.itc.rwth-aachen.de for your measurements. Make sure that you are the only user on the system (e.g., with the w command) to obtain reliable results.

 Examine the different programs with hardware counters using likwid-perfctr: module load likwid likwid-perfctr -C processor id> -g performance group> norm_max.exe Use the performance group MEM_DP for your investigations.

- HW performance counter: Special purpose registers for the count of HW events
- Can be used for low-level performance analysis or tuning
- The tool Likwid can be used
 - → Counters might be hard to interpret
 - → Likwid uses derived metric (e.g., memory bandwidth, data volume, MFlop/s)
 - → Use login18-t for your tests

Ignore the warning that you are not in the likwid group. Using likwid like described should work nevertheless.

If not → mail to contact@hpc

1) Using likwid-perfctr

Load the likwid module

```
$ module load likwid
```

Pin the program to one processor and examine the hardware counters of this processor with likwid

```
$ likwid-perfctr -C processor id> -g <performance group>
norm max.exe
```

- Use the performance group MEM DP
- N = 32768→ \$ likwid-perfctr -C 6 -q MEM DP norm max.exe 32768

1) Using likwid-perfctr

How does this look like?

→ Part I:

Counters

Event	Counter	Core 6
	+	+
INSTR RETIRED ANY	FIXC0	4181301685
CPU CLK UNHALTED CORE	FIXC1	13407652411
CPU CLK UNHALTED REF	FIXC2	7798376880
PWR PKG ENERGY	PWR0	306.8376
PWR_DRAM_ENERGY	PWR3	83.8334
FP ARITH INST RETIRED 128B PACKED DOUBLE	PMC0	327680
FP_ARITH_INST_RETIRED_SCALAR_DOUBLE	PMC1	1146938
FP_ARITH_INST_RETIRED_256B_PACKED_DOUBLE	PMC2	1342504960
FP_ARITH_INST_RETIRED_512B_PACKED_DOUBLE	PMC3	0
CAS_COUNT_RD	MBOX0C0	230072867
CAS_COUNT_WR	MBOX0C1	49141767
CAS_COUNT_RD	MBOX1C0	230072655
CAS_COUNT_WR	MBOX1C1	49142741
CAS_COUNT_RD	MBOX2C0	230070771
CAS_COUNT_WR	MBOX2C1	49142542
CAS_COUNT_RD	MBOX3C0	20616
CAS_COUNT_WR	MBOX3C1	21615
CAS_COUNT_RD	MBOX4C0	20943
CAS_COUNT_WR	MBOX4C1	21603
CAS_COUNT_RD	MBOX5C0	21311
CAS COUNT WR	MBOX5C1	21625

2.2 Hardware Counter1) Using likwid-perfctr

How does this look like?

→ Part II: Metrics

+	
Metric	Core 6
+	++
Runtime (RDTSC) [s]	5.3026
Runtime unhalted [s]	6.4029
Clock [MHz]	3600.1816
CPI	3.2066
Energy [J]	306.8376
Power [W]	57.8650
Energy DRAM [J]	83.8334
Power DRAM [W]	15.8097
DP MFLOP/s	1013.0461
AVX DP MFLOP/s	1012.7062
Packed MUOPS/s	253.2383
Scalar MUOPS/s	0.2163
Memory read bandwidth [MBytes/s]	8331.2911
Memory read data volume [GBytes]	44.1779
Memory write bandwidth [MBytes/s]	1780.1463
Memory write data volume [GBytes]	9.4395
Memory bandwidth [MBytes/s]	10111.4375
Memory data volume [GBytes]	53.6173
Operational intensity	0.1002
+	+

- 2. Analysis of the results. Likwid derives different metric from the counted events. Answer the following questions:
 - Let be $n = 2^{15} = 32768$. Determine the read date volume D_{read} for the computation of $||A||_{\infty}$? What is reported by likwid? Why do these values differ?
 - Which floating point performance (in MFLOP/s) is reported by likwid? Why is it not as high as reported by the norm application?
 - Which memory bandwidth is reported by likwid? How can you assess whether the value is reasonable?

Let be n = 32768. Determine the read data volume D_{read} for the computation of $||A||_{\infty}$

```
→ D_{read} = n*n * 8 Byte = 8.59 GB
```

What is reported by likwid?

```
→ 44.18 GB
```

Why do these values differ?

```
    Code in main():
    for (int i = 0; i < num_tests; ++i) {
        n1 = norm_max(A, h);
}
</pre>
```

→ Computation is executed num_tests = 5 times.

```
→5 * 8.59 GB = 42.95 GB
```

→Note: Some compiler (e.g., clang) optimize the code such that the loop is only executed once (might lead to wrong interpretation of the performance)

- Which floating point performance is reported by likwid?
 - → 1012.87 Mflop/s
- Why is it not as reported by the norm application?
 - → Application reports 1650 Mflop/s
 - → Reason: likwid measures the complete application (including matrix allocation, initialization and error checking)
 - → Solution 1: Use likwid marker API to only measure the kernel
 - → Solution 2: Make more repetition (num_tests variable) to make kernel more dominant
 - →num_tests = 100: 1594.87 Mflops/s

- Which memory bandwidth is reported by likwid?
 - → 10110.85 MB/s
- How can you assess whether the value is reasonable?
 - → STREAM benchmark for one thread: 13842.9 MB/s (Triade)
 - → Not optimal, but reasonable
 - → Measured for complete application (including matrix allocation, initialization and error checking)
 - → Value for num_tests = 100: 12896.04 MB/s

Exercise Tasks

- Norm calculation of a matrix
- Performance analysis tools
- **Balance Metric**

3. Performance Modeling

Observation:
 We reached a performance of 1.6 Gflop/s on a given architecture.

Question: Is that a good or a bad performance?

Answer: Can be given an adequate performance model.

3.1 Machine Balance

Reference machine: 2-socket Intel Skylake CPU

- → 48 cores in total
- → 2.1 GHz (base) clock frequency
- → AVX-512 registers (512 bits)
- → 2 operations per cycle (FMA)
- → 2 FMA units per core
- \rightarrow Cache sizes: L1 \rightarrow 32 KiB, L2 \rightarrow 1 MiB, L3 \rightarrow 33 MiB
- → Sustainable main mem. bandwidth gained by Stream benchmark

Compute the machine balance B_m of this architecture (doubles).

Solution

$$\rightarrow B_m = \frac{b_s}{P_{max}}$$

achievable bandwidth over slowest data path [words/s]

operations per seconds [Flop/s]

See lecture slide Part 4,

page 12 f.

3.1 Machine Balance

Achievable bandwidth [words/s]

$$\Rightarrow b_s = \frac{STREAM\ BANDWIDTH}{8\ B} = \frac{170\ GB/s}{8\ B} = 21.25\ GWords/s$$

Peak amount of floating-point operations

$$\rightarrow P_{max} = \#Cores * Frequency * SIMD_OPs$$

$$\rightarrow$$
 SIMD_OPs = 2 * 2 * 8 Flop = 32 Flops

- → 2 operations (multiply + add)
- →8 doubles per AVX-512 register (512 bit / 64 bit = 8, length of double: 8 Byte)
- \rightarrow 2 FMAs

Solution

$$\Rightarrow B_m = \frac{b_s}{P_{max}}$$

$$= \frac{\frac{170 GB/s}{8 B}}{48 \cdot 2.1 GHz \cdot 32 Flop}$$

achievable bandwidth over slowest data path [words/s]

 P_{max} : peak amount of floating-point operations per seconds [Flop/s]

$$\frac{\frac{170 \text{ GB/S}}{8 B}}{48 \cdot 2.1 \text{ GHz} \cdot 32 \text{ Flop}} = \frac{21.25 \text{ GWords/s}}{3225.6 \text{ GFlop/s}} \approx 0.0067 \frac{\text{Words/s}}{\text{Flop}}$$

3.1 Machine Balance

With respect to the norm calculation of a matrix, which performance limits could be adapted?

Solution

$$\rightarrow B_m = \frac{b_s}{P_{max}}$$

 b_s : achievable bandwidth over slowest data path [words/s]

 P_{max} : peak amount of floating-point operations per seconds [Flop/s]

- → The norm matrix computation is a serial application!
 - → Previously computed P_{max} and b_s can never be reached
 - →Use single-core values for new B_m:

See lecture slide Part 4, page 12 f.

$$B_{m} = \frac{\frac{14 \ GB/s}{8 \ B}}{1 \cdot 2.1 \cdot 32 \ GFlop/s} = \frac{1.75 \ GWords/s}{67.2 \ GFlop/s} \approx 0.026 \frac{Words}{Flop}$$

→ Use this performance limit in the following

3.2 Code Balance

- Compute the code balance B_c of the $|A|_{\infty}$ computation.
- **Assumptions**
 - → Access to main memory is the slowest data path
 - → Floating-point comparison (a < b?) = 1 is NOT a floating-point operation
 - → Ignore the (statistical) sign flipping in the abs-function
- Which elements are located in registers, caches and main memory?

See lecture slide Part 4, page 14 f.

3.2 Code Balance

$|A|_{\infty}$ computation

1 FP operations

1 load (A needs 32,768²*8 B = 8 GB in memory, rowsum in register)

Solution

$$\rightarrow$$
 Code balance: $B_c = \frac{data\ transfers(LOAD,STORE)}{arithmetic\ operations} \frac{[Words]}{[Flop]}$

$$\rightarrow B_c = \frac{1}{1} \frac{Word}{Flop}$$

3.3 Lightspeed

Compute the (relative) lightspeed I of the $|A|_{\infty}$ computation on an Intel Skylake architecture

- → How do you interpret this value?
- → In general, how can a lightspeed value be improved by the application developer?

Solution

page 17 f.

See lecture slide Part 4,

$$ightharpoonup$$
 Lightspeed $l=min(1,\frac{B_m}{B_c})$ with $B_m=0.026\,rac{Words}{Flop},$ $B_c=1rac{Word}{Flop}$

$$\rightarrow l = min(1, \frac{0.026}{1}) = 0.026$$

- → 2.6 % of machine's peak performance possible for this code
- → Machine balance cannot be influenced; only code balance can be influenced by improving the transfer/computation ratio (e.g. by better cache usage)

3.3 Lightspeed

Compute the lightspeed P for absolute performance in GFlop/s!

Solution

$$ightharpoonup P = l \cdot P_{max} = min\left(P_{max}, \frac{b_s}{B_c}\right)$$
 with $b_s = 1.75 \frac{GWords}{s}$, $B_c = 1 \frac{Word}{Flop}$

3.3 Lightspeed

- Compare the measured performance [GFlop/s] (from the previouslydone likwid VIEW run) with the computed theoretical performance
 - → How close is the code to what it can reach at maximum?
 - → Why can there be a difference between theoretical and experimentally-gathered results?

Solution

- \rightarrow Theoretical performance limit: $P = 1.75 \ GFlop/s$
- → Performance analysis: ~ 1.6 GFlops/s
- → Balance metric uses certain assumptions (that usually cannot hold completely), e.g.
 - → Data transfer & arithmetical operations overlap perfectly
 - →Perfect use of FMA (here no multiplications needed, not relevant if memory bound)
 - →Only the slowest data path is/ can be modeled (others are infinitely fast)
 - → Latency is ignored

