University of Illinois

Spring 2020

CS 446/ECE 449 Machine Learning Homework 6: Structured Prediction

Due on Thursday March 12 2020, noon Central Time

1. [28 points] Structured Prediction

Your answer:

We are interested in jointly predicting/modeling two discrete random variables $y = (y_1, y_2) \in \mathcal{Y}$ with $y_i \in \mathcal{Y}_i = \{0, 1\}$ for $i \in \{1, 2\}$ and $\mathcal{Y} = \prod_{i \in \{1, 2\}} \mathcal{Y}_i$. We define the joint probability distribution to be $p(y) = p(y_1, y_2) = \frac{1}{Z} \exp F(y)$.

(a)	(3 points) What is the value of Z (in terms of $F(y)$) and what is Z called? How configurations do we need to sum over? Provide the expression using \mathcal{Y}_i .	many
	Your answer:	

(b) (6 points) Next we want to solve (for any hyperparameter ϵ)

$$\max_{\hat{p} \in \Delta_{\mathcal{Y}}} \sum_{y \in \mathcal{Y}} \hat{p}(y) F(y) - \sum_{y \in \mathcal{Y}} \epsilon \hat{p}(y) \log \hat{p}(y), \tag{1}$$

where $\Delta_{\mathcal{Y}}$ denotes the probability simplex, *i.e.*, \hat{p} is a valid probability distribution over its domain \mathcal{Y} . Using general notation, write down the Lagrangian and compute its derivative w.r.t. $\hat{p}(y) \ \forall y \in \mathcal{Y}$. Subsequently, find the optimal \hat{p}^* . What is the resulting optimal cost function value for the program given in Eq. (1)? How does this result relate to part (a)?

(3 points) For the program configuration $y^* = \arg \max_{f_2(y_2) + f_{1,2}(y_1, y_2)}$. How in?	$\operatorname{ax}_{\hat{y} \in \mathcal{V}} F(\hat{y})$) w	thich maximizes $F(y)$.	Assume $F(y) = f_1$	$(y_1) +$
Your answer:					
(9 points) As discussed in as the following integer lir				an be equivalently v	vritter
			$b_r(y_r) \in \{0, 1\}$ $\sum_{y_r} b_r(y_r) = 1$ $\sum_{y_p \setminus y_r} b_p(y_p) = b_r(y_r)$	$\forall r, y_r \\ \forall r \\ \forall r, p \in P(r), y_r $	(2
Using the decomposition F explicitly state the integer $\mathcal{Y}_i = \{0, 1\}$ for $i \in \{1, 2\}$. $P(\{2\}) = \{1, 2\}$. Use nota	linear pro (Hint: 7	ogra Γhe	am and all its constraint parent sets are as follo	ts for the special cases $P(\{1\}) = \{1, 2\}$	se tha
$P(\{2\}) = \{1, 2\}$. Use nota Your answer:	tion such	as	$f_1(y_1 = 0)$ and $b_1(y_1 = 0)$	0).)	

((e)) ((3)	points)) Let	b	be	the	vector

$$b = [b_1(y_1 = 0), b_1(y_1 = 1), b_2(y_2 = 0), b_2(y_2 = 1), b_{1,2}(y_1 = 0, y_2 = 0), b_{1,2}(y_1 = 1, y_2 = 0), b_{1,2}(y_1 = 0, y_2 = 1), b_{1,2}(y_1 = 1, y_2 = 1)]^{\top}.$$

Specify all but the integrality constraints of part (d) using matrix vector notation, i.e., provide A and c for Ab=c.

Your answer:		

(f) (4 points) Complete A6_Structure.py where we approximately solve the integer linear program using the linear programming relaxation. Implement the constraints. Why do we provide -f as input to the solver? What is the obtained result b for the relaxation of the program given in Eq. (2) and its cost function value? Is this the configuration y^* which has the largest score?

Your answer:		