Instructions:

There are a total of five (5) multi-part questions, with point values noted for each question.

Please show your calculations, or the details of your program(s) for each problem. You <u>must</u> supply the R/Python programs, and the programs should be commented so that each step is clearly explained.

Combine all your answers/files into a single zipped file and post the zipped file to CANVAS.

Problem 1 - (20 points)

The "Admission" CSV dataset on CANVAS, shows whether an applicant has been admitted to a college (admit=1), or not (admit=0). There are three predictors. The variables gre and gpa are continuous. The variable rank is categorical and takes on the values 1 through 4.

- Use the kmeans clustering method to create two clusters for the Admission dataset using gre and gpa as clustering variables. Tabulate the clustered rows against the "ADMIT" column.
- Use the hierarchical clustering method to create two clusters for the Admission dataset using gre and gpa as clustering variables. Tabulate the clustered rows against the "ADMIT" column.

Answer: Please refer CS513_A1.R

An analyst has categorized the gre and the gpa variables into four categories: low, medium, high, and very high. Use the resulting dataset "Admission_cat" on CANVAS to develop the following two classification models

Problem 2 - (20 points)

Use the Random Forest methodology to develop a classification model for the Admission_cat dataset using gre, gpa and the rank variables as predictors. Use 30% of the records to create the test dataset and score the test dataset. What is the accuracy of your model?

Answer: Please refer CS513_A2.R. The accuracy of the model is 70.83.

Problem 3 - (20 points)

Use the c5.0 methodology to develop a classification model for the Admission_cat dataset using the gre, the gpa and the rank variables as predictors. Use 30% of the records to create the test dataset and score the test dataset. What is the accuracy of your model?

Answer: Please refer CS513_A2.R. The accuracy of the model is 71.66.

Problem # 4: (20 points)

Using data in the table below, construct a Neural Network with one Output Layer (z) and one Hidden Layer (two nodes A and B). Calculate the predicted outcome if the inputs to the input nodes are (Node 1=.4, Node 2=.7 Node 3= .7 and Node 4=.2)

Use the actual value of .75 and a learning factor of .1 to adjust the weight for xx to z.

From	То	Weight	
Х	Α	0.5	
Node 1	Α	0.6	
Node 2	Α	8.0	
Node 3	Α	0.6	
Node 4	Α	0.2	
х	В	0.7	
Node 1	В	0.9	
Node 2	В	8.0	
Node 3	В	0.4	
Node 4	В	0.2	
xx	z	0.5	
Α	z	0.9	
В	Z	0.9	

Answer: Please refer CS513_A4.xlsx.

Problem # 5: (20 points)

Use the c4.5 methodology to develop a classification model for the following training data (one level only):

Applicant	GRE	GPA	Admitted
1	Medium	High	Yes
2	Low	Low	No
3	High	Medium	No
4	Medium	Medium	Yes
5	Low	Medium	Yes
6	High	High	Yes
7	Low	Low	No
8	Medium	Medium	Yes

Answer: Please refer CS513_A5.xlsx.

Datasets: Admission, Admission_cat