Будем искать решение в виде $x_n=\lambda^n.$ Тогда $\lambda^{n+1}=\frac{1}{2}(\lambda^n+\lambda^{n-1}).$ Поделив на λ^{n-1} получим

$$\lambda^2 = \frac{1}{2}(\lambda + 1) \Leftrightarrow (\lambda - 1)(\lambda + \frac{1}{2}) = 0.$$

Таким образом, мы нашли решения $x_n=1$ и $x_n=\left(-\frac{1}{2}\right)^n$. Из линейности рекуррентного соотношения общее решение можно записать в виде

$$x_n = C_1 + C_2 \left(-\frac{1}{2}\right)^n.$$

Подставим начальные условия $x_1=a$ и $x_2=b$. Тогда

$$x_n = \frac{1}{3}(a+2b) + \frac{4}{3}(b-a)\left(-\frac{1}{2}\right)^n.$$

Переходя к пределу $n \to \infty$, получаем $\frac{1}{3}(a+2b)$.