KISTLER

5357B...

1 ... 4

Ladungskalibrator Etalonneur de charge Charge Calibrator

Mit dem Ladungskalibrator können piezoelektrische Messanlagen kontrolliert und kalibriert werden. Der Ladungskalibrator wird anstelle des Sensors oder parallel zu diesem in die Messkette eingeschaltet. Es können bis zu fünf

Ladungsverstärker angeschlossen werden. Die

Bedienung erfolgt über die Tastatur oder über optionelle Schnittstellen.

Die eingestellten Parameter erscheinen auf

L'étalonneur de charge permet d'étalonner et de contrôler des systèmes de mesure piézo-électriques. Il est branché dans la chaîne de mesure au lieu d'un capteur ou en parallèle avec delui-ci. Cinq amplificateurs de charge au maximum peuvent être connectés. La mise en fonction est effectuée par l'intermédiaire du clavier ou d'interfaces optionnels.

Les paramètres ajustés sont affichés par le LCD

The charge calibrator allows to calibrate and check piezoelectric measuring systems. It is connected in the measuring chain in place of a sensor or parallel with it. Up to five charge amplifiers can be connected. Operation is effected by means of a keyboard or by optional interfaces

The parameters set are shown on the LCD.

- Grosser Kalibrierbereich Grande gamme d'étalonnage Large calibration range
- Verschiedene Formen von Kalibriersignalen Différentes formes de signaux d'étalonnage Various shapes of calibration signals
- Bedienung und Fernsteuerung ähnlich wie Ladungsverstärker Typ 5011B
 Maniment et télécommande similair à l'amplificateur de charge type 5011B
 Operation and remote control similar to charge amplifier Type 5011B
- Bis zu 5 Ladungsverstärker können angeschlossen werden On peut brancher jusqu'à 5 amplificateurs de charge Up to 5 charge amplifiers can be connected
- mit SCS Kalibrierzertifikat
- avec cértificat d'étalonnage SCS
- with SCS calibration certificate
- C€-konform Conforme au C€ Conforming to C€

Technische Daten Données techniques Technical Data

Kalibrator	Etalonneur	Calibrator		
Kalibrierbereich	Gamme d'étalonnage	Calibration range	рС	±10 ±999'000
Sensor-Empfindlichkeit (wählbar durch drei signifikante Stellen)	Sensibilité du capteur (sélectable avec 3 chiffres significatifs)	Sensor sensitivity (selectable with 3 significant digits)	pC/M.U.	0,01 9'990
Kalibriersignal (wählbar durch drei signifikante Stellen)	Signal d'étalonnage (sélectable avec 3 chiffres significatifs)	Calibration signal (selectable with 3 significant digits)	M.U.	0,01 99'900'000
Fehler 15 35 °C 0 50 °C	Erreur 15 35 °C 0 50 °C	Error 15 35 °C 0 50 °C	%	<±0,5 <±0,8
Isolationswiderstand ≤9'990 pC Zeitkonstante ≤9'990 pC	Résistance d'isolement ≤9'990 pC Constante de temps >9'990 pC	Insulation resistance ≤9'990 pC Time constant ≤9'990 pC	TΩs	≥100 100'000
Signalformen	Formes du signal	Signal shapes	11111	ww.
Anstiegs- und Abfallzeit (je nach Bereich 0 99 %, 100 1%)	Temps de montée et de chute (selon gamme 0 99 %, 100 1 %)	Rise and fall times (acc. to range 0 99 %, 100 1%)	ms	0,5 2,5
Frequenz des Rechtecksignals	Fréquence du signal carré	Frequency of square signal	Hz (%)	25 (±20)
Logik ("Active Low")	Logique ("Active Low")	Logic ("Active Low")		
Eingangspegel (offen) UH UL	Niveau d'entrée (ouvert) UH UL	Input level (open) UH UL	V V(mA)	>12,5 <1,3 (-0,6)
Geschützt gegen Überspannung Dauerspannung Impuls ≤0,1 s	Protégé contre surtension Tension continue Impulsion ≤0,1 s	Protected against overvoltage Continuous voltage Pulse ≤0,1 s	V V	≤±85 ≤±700
+15 V-Ausgang	Sortie +15 V	+15 V output	mA	≤20

^{*} In all Kistler documents, the decimal sign is a comma on the line (ISO 31-0:1992).

Allgemeines	Général	General		
Temperaturbereich für Spezifikationen für Funktion	Gamme des températures pour spécifications pour le fonctionnement	Temperature range for specifications for function	°C °C	0 50 –10 60
Spannungsversorgung (umschaltbar)	Alimentation (commutable)	Power supply (switchable)	V AC (% Hz) 230/115 (-22/+15) 48 62
Leistungsaufnahme	Consommation de puissance électr.	Power consumption	VA	≈20
Abmessungen mit Tischgehäuse Typ 5747A1 ohne Tischgehäuse Frontplatte gemäss DIN 4149 (Teil 5)	Dimensions Boîtier de table type 5747A1 sans boîtier Platine avant, conforme à la norme DIN 41494 (Partie 5)	Dimensions with table-top case Type 5747A1 without case Front panel according to DIN 41494 (Part 5)	mm mm HE/TE	≈94x151x195 70,9x128,7x169,5 3/14
Konformität mit EG-Richtlinie	Conformité à la Directive CE	Conformity to EC Directive		
Sicherheit EMV Störaussendung EMV Störfestigkeit	Sécurité CEM Emission CEM Immunité	Safety EMC Emission EMC Immunity	EN 61010-1 EN 50081-1/EN5081-2 EN 50082-1/EN5082-2	
Anschlüsse	Connexions	Connections		
Ladungsausgang (1) Ladungsausgang (2) (5) (Dose)	Sortie de charge (1) Sortie de charge (2) (5) (prise)	Charge output (1) Charge output (2) (5) (socket)	Type Type	BNC neg. Fischer 5-pol.
Fernsteuerung, Buchse 6pol.	Télécommande, prise à 6 pôles	Remote control, 6-pole socket	Type	DIN 45322
Netz 2P+E (Schutzklasse I) Messkreis nicht geerdet	Réseau 2P + E (classe de protection I) circuit de mesure non relié à la terre	Mains 2P + E (safety class I) measuring circuit not grounded	Туре	IEC 320C14
Spannung zwischen Netzerde und "Signal Common"	Tension entre terre du réseau et "Signal Common"	Voltage between mains ground and "Signal Common"	V _{rms}	≤50
Gewicht	Poids	Weight	kg	≈2

Option: Parallele Schnittstelle IEEE-488, Typ 5605A

Standardisierte Schnittstelle, mit IEC-625-1 elektrisch kompatibel, zur Ferneinstellung und -abfrage sämtlicher Parameter. Messdaten werden nicht übertragen.

Option: Interface parallèle IEEE-488 Type 5605A

Interface standardisée, compatible électriquement avec IEC-625-1 pour le réglage et l'appel à distance de tous les paramètres. Les données de mesure ne sont pas transmises.

Option: Parallel Interface IEEE-488 Type 5605A

Standardized interface with IEC 625-1 electrically compatible for remote control and checking of all parameters. Measured data are not transmitted.

Verwendeter Standard	Standard utilisé	Standard used	IEEE-488-1978
Abstand zwischen 2 Geräten Länge des Bus	Distance entre 2 appareils Longueur du bus	Distance between 2 instruments Bus length	≤2 m ≤20 m
Anzahl Geräte am Bus	Nombre d'appareils sur le bus	Number of instruments on the bus	≤15
Adressbereich	Domaine d'adressage	Address range	0 30
Funktionen	Fonctions	Functions	Listener, Talker
Eingabepuffer	Tampon d'entrée	Input buffer	100 Byte
Ausgabepuffer	Tampon de sortie	Output buffer	100 Byte

Option: Serielle Schnittstelle RS-232C, Typ 5611B

Standardisierte Schnittstelle, zur Ferneinstellung und -abfrage sämtlicher Parameter. Messdaten werden nicht übertragen

Option: Interface sérielle RS-232C, Typ 5611B

Interface standardisée pour réglage et appel à distance de tous les paramètres. Les données de mesure ne sont pas transmises.

Option: Serial Interface RS-232C, Typ 5611B

Standardized interface for remote control and checking of all parameters. Measured data not transmitted.

Verwendeter Standard	Standard utilisé	Standard used	RS-232C resp. V24
Länge des Kabels	Longueur du câble	Cable length	≤20 m (2500 pF)
Baudraten	Vitesse de transfert en bauds	Baud rates	50, 110, 250, 300, 600, 1200, 2400, 4800
Anzahl Datenbit	Nombre de bits d'information	Number of data bit	7 oder/ou/or 8
Anzahl Stoppbit	Nombre de bits d'arrêt	Number of stop bit	1 oder/ou/or 2
Parität	Parité	Parity	ohne, gerade od. ungerade sans, pair ou unpair without, even or odd
Eingabepuffer	Tampon d'entrée	Input buffer	100 Byte
Ausgabepuffer	Tampon de sortie	Output buffer	100 Byte
Software-Protokoll	Protocole du logiciel	Software protocol	XON /XOFF nicht zulässig pas permis / not allowed

Beschreibung

Signalform-Generator mit Spannungsreferenz

Der Signalform-Generator liefert zusammen mit der Referenzspannungsquelle die für die Ladungserzeugung notwendige Spannung U.

Die via Tastatur eingestellte Signalform wird als binärer Code (Signalform-Auswahl) dem Signalgenerator zugeführt, wobei die Amplitude der Referenzspannung konstant bleibt.

Digitaler Spannungsteiler (12-Bit DAC)

Ein kontinuierlich einstellbarer Feinabgleich der Referenzspannung erfolgt durch den dem Signalgenerator nachgeschalteten, programmierbaren digitalen Spannungsteiler (DAC). Das über die Tastatur eingestellte Kalibriersignal und der Sensorempfindlichkeitswert werden rechnerisch verarbeitet und die Spannung U entsprechend eingestellt.

Kalibrierkondensatoren

Zur Generierung der gewünschten Ladung wird die Kapazität C in festen Stufen umgeschaltet:

Ladung Q = Kapazität C • Spannung U

Ladungsausgang

Die erzeugte Ladung kann auf einen der Ausgänge "Charge Output" 1 ... 5 geschaltet werden; damit lassen sich ohne Verkabelungsänderungen fünf Kanäle abgleichen.

Mikroprozessor-Steuerung

Das Gerät wird von einem 8-Bit Mikroprozessor gesteuert. Die Kommunikation zwischen dem Ladungskalibratorteil und der Prozessoreinheit erfolgt seriell durch Optokoppler (galvanische Trennnung). Über diese Verbindung werden die Informationen der Tasten und des Remote-Control-Anschlusses zum Mikroprozessor übertragen. In umgekehrter Richtung erfolgt die Einstellung des Gerätes. Direkt mit dem Mikroprozessor verbunden sind die 2x8stellige LC-Anzeige, die Speicher und eine IEEE-488- bzw. RS-232C-Schnittstelle als Option.

Das Programm ist in einem 32 k EPROM gespeichert. Die eingestellten Parameter werden in einem nicht-flüchtigen, steckbaren 2 k NOV-RAM abgelegt; sie bleiben bis zu 10 Jahre erhalten.

Description

Générateur des formes de signaux avec référence de tension

Le générateur des formes de signaux branché sur la source de tension de référence livre le signal de tension U nécessaire à la génération de la charge électrique.

La forme du signal sélectionnée sur le clavier est introduite comme code binaire dans le générateur de signaux, l'amplitude de la tension de référence restant constante.

Diviseur de tension numérique (CDA à 12 bits)

Un diviseur de tension numérique programmable (CDA) branché en aval du générateur de signaux permet d'effectuer un réglage fin continu de la tension de référence. Le signal d'étalonnage ainsi que la sensibilité du capteur introduits à l'aide du clavier sont traités numériquement et la tension U est réglée en correspondance.

Condensateurs d'étalonnage

Pour générer la charge d'étalonnage nécessaire, la capacité C est commutée par dégrés:

Charge Q = capacité C • tension U

Sortie de charge

La charge électrique générée peut être branchée sur l'une des sorties de charge "Charge Output" 1 ... 5. Ceci permet d'ajuster 5 canaux sans changer le câblage.

Contrôle par microprocesseur

L'instrument est commandé par un microprocesseur à 8 bits. L'unité étalonneur de charge communique sériellement avec le processeur par l'intermédiaire de coupleurs optiques (séparation galvanique). Par cette connexion les informations du clavier et de la télécommande sont transmises au microprocesseur. Le réglage de l'instrument se fait en sens inverse. L'affichage LC à 2x8 caractères, les mémoires ainsi qu'un interface optionnel IEEE-488 ou RS-232C sont directement connectés au microprocesseur.

Le programme est mémorisé dans un EPROM 32 k. Les paramètres réglés sont mémorisés dans un NOVRAM 2 k non-volatile enfichable. Ces données restent en mémoire pour une durée de 10 ans.

Description

Waveform generator with voltage reference

Together with the reference voltage source the Waveform generator yields the voltage signal U necessary for the charge generation.

The binary code of the signal shape selected by means of the keyboard is lead to the signal generator whereby the amplitude of the reference voltage remains constant.

Digital voltage divider (12-Bit DAC)

A programmable digital voltage divider (DAC) connected to the signal generator allows a continuous fine adjustment of the reference voltage. The calibration signal and the sensitivity of the sensor are set with the keyboard and processed numerically. The voltage U is adjusted correspondingly.

Calibration capacitors

To generate the necessary calibration charge, the capacitance C is switched in fixed steps:

Charge Q = Capacitance C • Voltage U

Charge output

The generated electric charge can be switched to one of the "Charge Output" 1 ... 5. This allows to adjust 5 channels without changing the cabling.

Microprocessor control

The instrument is controlled by an 8-bit microprocessor. The charge calibrator unit and CPU communicate serially via optocouplers (galvanic separation). Through this connection the information input of the keyboard and of the remote control plug are transmitted to the microprocessor. The adjustment of the instrument is effected in the reverse way. The 2x8-digit LCD, the memories and an IEEE-488 resp. RS-232C interface (options) are directly connected to the microprocessor.

The program is stored in a 32 k EPROM. The set parameters are memorized in a non-volatile pluggable 2 k NOVRAM. These data remain stored for up to 10 years.

Netzteil

Ein Netzfilter unterdrückt Netzstörungen. Die Spannung kann zwischen 230 V und 115 V umgeschaltet werden. Die Speisungen für Ladungskalibratorteil und Mikroprozessorteil sind galvanisch getrennt. Die +15V-Spannung steht an "Remote Control" zur Verfügung.

Alimentation réseau

Un filtre pour réseau supprime les parasites. La tension peut être commutée de 230 V sur 115 V. Les alimentations pour les unités étalonneur et microprocesseur sont séparées électriquement. La tension +15 V est disponible sur "Remote Control".

Power supply

A filter at the mains input suppresses interferences. The voltage can be selected either as 230 V or 115 V. The supplies for the charge calibrator unit and the microprocessor are electrically separated. The +15 V voltage is available at "Remote Control".

Anwendung

Eine typische Anwendung ist die Kombination eines Ladungskalibrators mit 1 bis 5 Ladungsverstärkern. Die Vorteile der Ladungskalibrierung werden um so grösser, je komplexer die Messanlage ist. Man erreicht zweierlei: eine grössere Messgenauigkeit (es gilt die Genauigkeit des Kalibrators und nicht die Summe der Genauigkeiten aller Geräte der Messkette) und eine Kontrolle, ob nicht ungewollt ein Instrument der Messkette seit der letzten Überprüfung verstellt wurde. Der Kalibrator wird entweder anstelle eines Sensors oder parallel dazu an den Ladungseingang "Charge Input" des Ladungsverstärkers angeschlossen.

Bedienung

Am Ladungskalibrator wird die Empfindlichkeit des verwendeten Sensors gemäss Kalibrierblatt eingestellt und die gewünschte Kalibriergrösse gewählt, z.B. 500 bar. Auf Tastendruck ("Charge On") erhält man das 500 bar entsprechende Ladungssignal mit der gewählten Signalform. Am Anzeige- oder Registriergerät der Messanlage erkennt man, ob die Soll-Anzeige (hier 500 bar) vorhanden ist bzw. ob eine Nachjustierung nötig ist.

Einbau

Der Ladungskalibrator ohne Gehäuse kann in ein 19*-Rack eingebaut werden. Neben dem Kalibrator lassen sich z.B. noch 5 Ladungsverstärker Typ 5011B einbauen.

Application

La combinaison d'un étalonneur de charge avec 1 à 5 amplificateurs de charge est typique. Les avantages de l'étalonnage de charge sont d'autant plus importantes que le système devient plus complexe. On obtient ainsi d'une part une plus grande précision (la précision de l'étalonneur de charge et non la somme des précisions de tous les appareils de la chaîne de mesure compte) et d'autre part la vérification si un des instruments de la chaîne n'a pas été déréglé depuis le dernier contrôle. L'étalonneur doit être branché à l'entrée "Charge Input" de l'amplificateur de charge, soit à la place du capteur, soit en parallèle à celui-ci.

Utilisation

La sensibilité selon la feuille d'étalonnage du capteur utilisé ainsi que la grandeur d'étalonnage choisie, par ex. 500 bar, sont affichées sur l'étalonneur de charge. En actionnant le bouton "Charge On", on obtient un signal de charge correspondant à 500 bar et de la forme choisie. D'après la valeur affichée par l'indicateur ou l'enregistreur de l'installation de mesure, on peut facilement vérifier si un réajustage s'impose ou non.

Installation

L'étalonneur de charge sans boîtier peut être monté dans un rack 19". Outre l'étalonneur au maximum de 5 amplificateurs de charge type 5011B peuvent aussi être installés.

Application

A typical case is a combination of charge calibrator and 1 to 5 charge amplifiers. The more complicated the measuring system, the greater the advantages of charge calibration. Two objects are achieved: higher measuring accuracy (the accuracy of the calibrator applies instead of the sum of the accuracies of all instruments in the measuring chain) and a check for any inadvertent misadjustment of some instrument within the chain since the last verification. The calibrator is connected to the Charge Input of the charge amplifier either paralleling a sensor or instead of it.

Operation

The sensitivity of the sensor being used is adjusted on the charge calibrator according to the calibration sheet, and the desired calibration magnitude is selected, e.g. 500 bar. By pressing the Charge On key, the charge signal corresponding to 500 bar is obtained with the selected signal shape. On the display or recorder of the measuring system it can be seen whether the reference value is shown (500 bar) or whether readjustment is necessary.

Installation

The charge calibrator without housing can be installed into a 19" rack. Besides the calibrator, for example 5 charge amplifiers Type 5011B can also be fitted.

Bestellbezeichnungen Désignations de la commande Order designations Type 5357B Ladungskalibrator Etalonneur de Charge **Charge Calibrator** 0 ohne Tischgehäuse Sans boîtier de table Without table-mounted cas mit Tischgehäuse Avec boîtier de table With table-mounted cas 1 ohne Schnittstelle Without interface 0 Sans interface mit Parallel-Schnittstelle With parallel interface IEEE-488 (Type 5605A) Avec interface parallèle mit serieller Schnittstelle Avec interface sérielle With serial interface RS-232C (Type 5611B) 2

Zusatzbezeichnung Y26 für 115V AC

Désignation supplémentaire Y26 p. 115 V AC

Supplementary designation Y26 for 115 V AC

Lieferumfang

- SCS-Kalibrierzertifikat
- Netzkabel
- Anschlusskabel Typ 1601B1 für <u>einen</u> Ladungsverstärker, 2xBNC pos.,
 I = 1 m

Zubehör (separat zu bestellen)

- Anschlusskabel Typ 1629 für weitere, 4 Ladungsverstärker, Fischer 5-polig pos. -4xBNC pos., mit 4 Kabeln
 I = 200, 300, 400, 500 mm
- Stecker Typ 1564, 6-polig für Buchse "Remote Control", nach DIN 45 322

Etendue de la fourniture

- Cértificat d'etalonnge SCS
- Câble pour réseau
- Câble de connexion type 1601B1 pour <u>un</u> amplificateur de charge 2xBNC pos.,
 I = 1 m

Accessoires (à commander à part)

- Cable de connexion type 1629 pour 4 amplificateurs de charge supplémentaires, Fischer 5-pôles pos. 4xBNC pos., avec 4 câbles
 I = 200, 300, 400, 500 mm
- Connecteur à 6 pôles type 1564 pour prise "Remote Control", selon DIN 45 322

Scope of delivery

- SCS calibration certificate
- Mains cable
- Connecting cable Type 1601B1 for one charge amplifier, 2xBNC pos., I = 1 m

Accessories (to be ordered separately)

- Connecting cable Type 1629 for 4 charge amplifiers, Fischer 5-pole pos. - 4xBNC pos., with 4 cables
 - = 200, 300, 400, 500 mm
- 6-pole connector Type 1564 for socket "Remote Control", per DIN 45 322