Université Cadi Ayyad Faculté des Sciences Semlalia Département de Mathématiques

Les espaces vectoriels topologiques

Auteur : Zahidi Samir

Encadrant : Pr.Tebbaa Kamal

12 juin 2018

TABLE DES MATIÈRES

1	<u>Généralités</u>		2
	1.1	Opérations dans $\mathcal{P}^*(E)$	2
	1.2	Sous-ensembles équilibrés	2
	1.3	Envoloppe et noyau équilibré	4
	1.4	Sous-ensembles absorbants	5
	1.5	Convexité	6
	1.6	Semi-normes	8
	1.7	Jauge ou fonctionnelle de Minkowski	10
2	Les espaces vectoriels topologiques		14
	2.1	Rappels topologique	14
	2.2	Voisinage d'un point-Propriétés	15
	2.3		15
	2.4	Espace vectoriel topologique séparé	20
		2.4.1 Quelques proriétés topologiques élémentaires	21
3	Les espaces vectoriels topologiques localement convexes		
	3.1	Voisinages de 0 - Tonneaux	26
	3.2	Construction d'un tonneau à partir d'un voisinage	27
	3.3	Topologie définie par une famille de semi-normes	28
		3.3.1	28
	3.4	E.V.T localement convexes métrisables	30
	3.5	Sous-ensembles bornés	34
		3.5.1	34
	3.6	Applications linéaires sur les E.V.T.L.C séparés	36

CHAPITRE 1

GÉNÉRALITÉS

Dans toute la suite, on désigne par E un espace vectoriels sur \mathbb{K} , ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et on note $\mathcal{P}^*(E)$ l'ensemble des parties non vides de E.

1.1 Opérations dans $\mathcal{P}^*(E)$

• L'addition de deux éléments U et V de $\mathcal{P}^*(E)$ est le sous-ensemble non vide, noté U+V, défini par :

$$U+V = \{x \in E \mid \text{ il existe } u \in U \text{ et } v \in V \text{ tel que } x = u+v\}.$$

Cette adition est associative, commutative et le sous-espace $\{0\}$ est son élément neutre. Ainsi $(\mathcal{P}^*(E), +)$ est un monoïde commutatif. Les seules parties inversibles de $\mathcal{P}^*(E)$ sont les sous-ensembles de E réduits à un point.

• La multiplication d'un vecteur A de $\mathcal{P}^*(E)$ par un scalaire $\lambda \in \mathbb{K}$ définit un sous-ensemble non vide de E, noté λA et on a :

$$\lambda A = \{x \in E/ \text{ il existe } a \in A, \ x = \lambda a\}.$$

1.2 Sous-ensembles équilibrés

Définition 1.2.1

Une partie non vide A de E est dite équilibrée (ou cerclée) si $\lambda A \subset A$ pour tout $|\lambda| \leq 1, \ \lambda \in \mathbb{K}$.

Exemples 1.2.1

Un sous-espace de E est équilibré.

Proposition 1.2.1

- a) Soit $(A_i)_{i\in I}$ une famille de parties équilibrées de E, les parties $\bigcap A_i$ et $\bigcup A_i$ sont équilibrées.
- b) Soit A un partie équilibrée, alors pour tout $\lambda \in \mathbb{K}$, λA est équilibrée.

Preuve

Soit $(A_i)_{i \in I}$ une famille de parties équilibrées de E.

— Montrons que $\bigcap_{i \in I} A_i$ est équilibrée c'est à dire $\lambda \bigcap_{i \in I} A_i \subset \bigcap_{i \in I} A_i \ \forall |\lambda| \leq 1 \ \lambda \in \mathbb{K}$.

Soit $x \in E$, $x \in \lambda \bigcap_{i \in I} A_i$ il existe $a \in \bigcap_{i \in I} A_i$ tel que :

$$x = \lambda a. \ O\hat{u} \ a \in \bigcap_{i \in I} A_i \ \Rightarrow \ a \in A_i \ \forall i \in I.$$

$$\Rightarrow x = \lambda a \in \lambda A_i \ \forall i \in I.$$

Puisque A_i est équilibré alors $\forall i \in I \ \lambda A_i \subset A_i \ \forall \lambda \in \mathbb{K}$ tel que $|\lambda| \leq 1$ donc $x = \lambda a \in \lambda A_i \subset A_i \ \forall i \in I. \ D'où \ x \in A_i \ \forall i \in I.$

Il en résulte
$$\lambda \bigcap_{i \in I} A_i \subset \bigcap_{i \in I} A_i$$
.

Montrons que la réunion quelconque de parties équilibrées est équilibrée.

Soit
$$x \in E$$
, $x \in \lambda \bigcup_{i \in I} A_i$ alors il existe $a \in \bigcup_{i \in I} A_i$ telle que : $x = \lambda a$. où $a \in \bigcup_{i \in I} A_i \Rightarrow \exists i_0 \in I \text{ tel que } a \in A_{i_0}$.

$$\Rightarrow \exists i_0 \in I \ x = \lambda a \in \lambda A_i \ \forall |\lambda| \le 1.$$

Puisque A_{i_0} et équilibré alors $\forall |\lambda| \leq 1$ on a $\lambda A_{i_0} \subset A_{i_0}$ donc

$$x = \lambda a \in \lambda A_{i_0} \ et \ A_{i_0} \ \subset \ \bigcup_{i \in I} A_i \ \forall |\lambda| \le 1 \ alors \ x \ \lambda \bigcup_{i \in I} A_i. \ On \ conclut \ \lambda \bigcup_{i \in I} A_i \subset \bigcup_{i \in I} A_i.$$

Soit A est équilibré .

Montrons que $\forall \lambda \in \mathbb{K} \ |\lambda| \leq 1 \ \lambda A$ une partie équilibrée.

Soient $x \in E$ $\mu \in \mathbb{K}$ $|\mu| \le 1$ tels que : $x \in \mu(\lambda A)$ donc $\exists a \in \lambda A \ x = \mu a$.

Or $a \in \lambda A$ alors $\exists b \in A$ tel que $a = \lambda b$ alors $x = \mu(\lambda b) = \lambda(\mu b)$.

Puisque A équilibré et $|\mu| \le 1$ et $b \in A$ donc $\mu b \in A \implies \lambda \mu b \in \lambda A$.

$$\Rightarrow x \in \lambda A.$$

$$D'où \mu(\lambda A) \subset \lambda A.$$

1.3 Envoloppe et noyau équilibré

Proposition 1.3.1

a) Soit A une partie non vide de E. Il existe un plus petit ensemble équilibré noté $\varepsilon(A)$ contenant A. $\varepsilon(A)$ est appelé l'envoloppe équilibrée de A. On a :

$$\varepsilon(A) = \bigcup_{|\lambda| \le 1} \lambda A = \bigcap_{\substack{B \supset A \\ B \text{ \'equilibr\'e}}} B.$$

b) Si $0 \in A$, il existe un plus grand ensemble équilibré noté $\eta(A)$, contenu dans A. $\eta(A)$ est appelé noyau équilibré de A. On a:

$$\eta(A) = \bigcap_{|\mu| \ge 1} \mu A = \bigcup_{\substack{B \subset A \\ B \text{ \'equilibr\'e}}} B.$$

Preuve

a) Soit $A \neq \emptyset$. La famille des parties équilibrées de E contenant A n'est pas vide car elle contient E. Leur intersection $\varepsilon(A)$ est non vide et c'est la plus petite partie équilibrée contenant A. Pour montrer que $\bigcap_{\substack{B \supset A \\ B \neq quilibré}} B \subset \bigcup_{|\lambda| \leq 1} \lambda A$ il suffit de montrer que $\bigcup_{|\lambda| \leq 1} \lambda A$ est un ensemble équilibré qui contient A. On a $A \subset \bigcup_{|\lambda| \leq 1} \lambda A$, en effet soit $a \in A$ alors $(a = 1.a \in 1)$ $A \subset \bigcup_{|\lambda| \leq 1} \lambda A$. Et si $|\alpha| \leq 1$ alors:

$$\alpha \bigcup_{|\lambda| \le 1} \lambda A = \bigcup_{|\lambda| \le 1} \alpha \lambda A \subset \bigcup_{|\mu| \le 1} \mu A$$

$$(car \ |\alpha\lambda| \le 1 \ et \ \{\lambda \in \mathbb{K} \ / \ |\lambda| \le 1\} \subset \{\lambda \in \mathbb{K} \ / \ |\alpha\lambda| \le 1\})$$

 $donc \bigcup_{|\lambda| \le 1} \lambda A \ est \ \acute{e}quilibr\acute{e}e.$

Si B équilibré contient A, alors pour tout $|\lambda| \leq 1$ on a $\lambda A \subset \lambda B \subset B$. ce qui implique $\bigcup_{|\lambda| \leq 1} \lambda A \subset B$. D'où $\bigcup_{|\lambda| \leq 1} \lambda A$ est le plus petit ensemble équilibré contenant A. D'où l'égalité.

b) La réunion $\eta(A)$ des parties équilibrées de E contenues dans A est la plus grande partie équilibrée contenue dans A. Elle n'est pas vide car $\{0\}$ est équilibré et $0 \in A$.

 $Si |\lambda| \leq 1$, on a:

$$\lambda \eta(A) \subset \eta(A) \subset A.$$

D'où

$$\eta(A) \subset \mu A \ si \ |\mu| \ge 1.$$

$$\eta(A) \subset \bigcap_{|\mu| \ge} \mu A.$$

Pour établir l'inclusion inverse. Soit $x \in \bigcap_{|\mu| \ge 1} \mu A$ qui équivant à $x \in \mu A$ pour tout $|\mu| \ge 1$.

Donc $\lambda x \in A$ pour tout $|\lambda| \le 1$.(Rappelons que $0 = 0x \in A$).

Mais l'ensemble $\{\lambda x/|\lambda| \le 1\}$ est équilibré, donc il est contenu dans $\eta(A)$. Par conséquent $x \in \eta(A)$ et

$$\bigcap_{|\mu| \ge 1} \mu A \subset \eta(A).$$

Exemples 1.3.1

$$E = \mathbb{R}^2, \ \mathbb{K} = \mathbb{R}, \ A = \{(x, y) \in \mathbb{R}^2 / xy = 1\}$$
$$\varepsilon(F) = \{(x, y) \in \mathbb{R}^2 / 0 < xy \le 1\} \cup \{0\}$$
$$\eta(A) = \emptyset \ (car \ 0 \notin A)$$

1.4 Sous-ensembles absorbants

Définition 1.4.1

Une partie non vide A de E est dite absorbante (ou radicale) si pour tout $x \in E$ il existe un nombre $\alpha_x > 0$ tel que $x \in \lambda A$ pour tout $|\lambda| \ge \alpha_x$. (ce qui équivant à $\mu x \in A$ pour tout $|\mu| \le \beta_x = \frac{1}{\alpha_x}$).

Exemples 1.4.1

- 1. Si E est normé, la boule ouvert B(0,R) (R>0) de centre 0 et de rayon R est absorbante.
- 2. la boule ouvert B(x,R) de centre $x \neq 0$ et de rayon R > 0 est absorbante si et seulement si, R > ||x||.
- 3. $E = \mathbb{C}$, $\mathbb{K} = \mathbb{C}$. La partie \mathbb{R} n'est pas absorbante.

Proposition 1.4.1

Une partie A équilibrée est absorbante si et seulement si pour tout $x \in E$ il existe $\lambda \neq 0 \ \lambda \in \mathbb{K}$ tel que $\lambda x \in A$.

Preuve

Soit A une partie équilibrée.

- (⇒) Supposons A absorbante alors $\forall x \in E \ \exists \beta_x > 0 \ pour \ tout \ \mu \in \mathbb{K} \ |\mu| \leq \beta_x \ \mu x \in A$. On pose $\mu = \beta_x \ donc \ \beta_x x \in A$.
- (\Leftarrow) Supposons que $\forall x \in E \ \exists \lambda \neq 0 \ \lambda x \in A$. Et on montrons que A est absorbante.

Soit $x \in E$. On pose $\beta_x = |\lambda| > 0$. Soit $\alpha \in \mathbb{K}$ tel que $|\alpha| \le \beta_x$ et donc $\frac{|\alpha|}{\beta_x} \le 1$. Comme A est équilibrée, donc :

$$\frac{\alpha}{\beta_x} x \in A \implies \exists a \in A \text{ tel que } \frac{\alpha}{\beta_x} x = a$$

$$\Rightarrow \exists a \in A \text{ tel que } \alpha x = \beta_x a$$

$$\Rightarrow \alpha x \in \beta_x A = |\lambda| A = \lambda A \subset A$$

D'où A est absorbante.

Propriétés 1.4.1

L'intersection finie d'absorbants est absorbante.

Preuve

En effet, par réccurence et on va tout d'abord monter que l'intersection de deux parties absorbantes est absorbantes.

Soit A, B deux parties absorbantes. Donc

Soit $x \in E$, $\exists \alpha_1, \alpha_2 > 0 \ \forall \ \mu \ \lambda \in K \ |\mu| \leq \alpha_1 \ |\mu| \leq \alpha_2 \ telle \ que \ \mu x \in A \ \lambda x \in B$.

On prend $\alpha = \min(\alpha_1, \alpha_2)$ alors $\mu x \in A \cap B \mid \mu \mid \leq \alpha$.

Soit $(A_1, A_2, \ldots, A_n, A_{n+1})$ une famille des absobantes.

On suppose $\bigcap_{i=1}^{n} A_i$ est absorbante et on montre que $\bigcap_{i=1}^{n+1} A_i$ est absorbante. Effet, on a $\bigcap_{i=1}^{n+1} A_i = \left(\bigcap_{i=1}^{n} A_i\right) \bigcap A_{n+1}$ est absorbantes car c'est l'intersection de deux absorbante.

1.5 Convexité

Définition 1.5.1

- a) Etant donnés deux points $x, y \in E$, l'ensemble [x, y] (resp.]x, y[) des points $\lambda x + (1 \lambda)y, 0 \le \lambda \le 1$ (resp. $0 < \lambda < 1$) est appelé segment fermé (resp. segment ouvert) d'extrémités x, y.
- b) L'ensemble]x,y] (resp.[x,y[) des points $\lambda x + (1-\lambda)y$ ($0 < \lambda \le 1$)(resp. $0 \le \lambda < 1$), est appelé segment ouvert en x et fermé en y (resp. fermé en x et ouvert en y).
- c) Un sous-ensemble A non vide de E est dit convexe $si: \forall x, y \in A$, le segment fermé [x,y] est contenu dans A. Autrement dit, $si \alpha A + \beta A \subset A$ pour tout $\alpha \geq 0$, $\beta \geq 0$ $\alpha + \beta = 1$.

Exemples 1.5.1

(i) Soit ||.|| une norme sur l'espace vectoriel E. Pour tout $x \in E$ et r > 0, la boule centrée en x et de rayon r (ouverte ou fermée) $B(x,r) = \{y \in E / ||x-y|| \le r\}$ est convexe. En effet, soit $x \in E$. Soit $a, b \in B(x,r)$ et $\lambda \in [0,1]$.

Montrons que $\lambda a + (1 - \lambda)b \in B$.

$$\begin{array}{lll} On \ a : ||x - (\lambda a + (1 - \lambda)b)|| &= & ||x + \lambda x - \lambda a - (1 - \lambda)b)|| \\ &= & ||\lambda(x - a) + (1 - \lambda)(x - b)|| \\ &\leq & \lambda ||(x - a)|| + (1 - \lambda)||(x - b)|| \\ &\leq & \lambda r + (1 - \lambda)r \\ &< & r. \end{array}$$

On conclut que B(x,r) est donc convexe.

(ii) Pour toute forme linéaire, $\varphi: E \to \mathbb{R}$ et $b \in \mathbb{R}$, le sous-niveau $A = \{x \in E/\varphi(x) \leq b\}$ est un ensemble convexe appelé demi-espace. En effet, Soient $x, y \in A$ et $\lambda \in [0, 1]$. Montrons que $\lambda x + (1 - \lambda)y \in A$. On a :

$$\varphi(\lambda x + (1 - \lambda)y) = \lambda \varphi(x) + (1 - \lambda)\varphi(y)$$

$$\leq \lambda b + (1 - \lambda)b$$

$$\leq b.$$

Propriétés 1.5.1

- L'intersection d'une famille quelconque $(K_i)_{i \in J}$ de convexes est convexe.
- Etant donné une partie non vide A de E, il existe une plus petite partie convexe c(A) contenant A et qui est égale à l'intersection des parties convexes contenant A.
- c(A) est identique à l'ensemble des barycentres $\sum_{k} \lambda_k x_k$ des parties finies x_k de A, affectés de masses positives λ_k , avec $\sum_{k} \lambda_k = 1$.

Preuve

Soit $(K_j)_{j\in J}$ une famille de convexes.

Soit $x, y \in \bigcap_{j \in J} (K_j)$. Alors $x, y \in (k_j) \ \forall j \in J$. Or les K_j sont des convexes donc $\forall \lambda \in [0, 1]$ on a, $\lambda x + (1 - \lambda)y \in K_j \ \forall j \in J$. D'où $\lambda x + (1 - \lambda)y \in \bigcap_{j \in J} K_j$.

Proposition 1.5.1

Soit E et F deux espaces vectoriels sur \mathbb{K} et f une application linénaire de E dans F.

- (i) Soit $A \subset E$. Si A est équilibré (resp. convexe) alors f(A) est équilibré (resp. convexe). Si f est surjective et si A est absorbante alors f(A) est absorbante.
- (ii) Soit $B \subset F$. Si B est équilibré (resp. convexe, resp. absorbant) alors $f^{-1}(B)$ est équilibré (resp. convexe, resp. absorbant).

Preuve

(i) Soit $A \subset E$ équilibré. Alors $\lambda f(A) = f(\lambda A) \subset f(A)$ donc f(A) est équilibré.

Soit A convexe. Alors $\lambda f(A) + \mu f(A) = f(\lambda A + \mu A) \subset f(A)$ pour tout $\lambda, \mu \geq 0$ $\lambda + \mu = 1$. Donc f(A) convexe.

Soient un A absorbant et $y \in F$. Puisque f est surjective $f^{-1}(\{y\})$ n'est pas vide. Soit $x \in f^{-1}(\{y\})$ il existe $\alpha > 0$ tel que $|\lambda| \leq \alpha$ implique $\lambda x \in A$. Alors $f(\lambda x) = \lambda f(x) = \lambda y \in f(A)$ donc f(A) est absorbant.

(ii) $B \subset F$ équilibré alors $\lambda f^{-1}(B) = f^{-1}(\lambda B) \subset f^{-1}(B)$ donc $f^{-1}(B)$ équilibré. Soit B convexe alors $\lambda f^{-1}(B) + \mu f^{-1}(B) = f^{-1}(\lambda B + \mu B) \subset f^{-1}(B)$ si $\lambda, \mu \geq 0, \lambda + \mu = 1$

donc $f^{-1}(B)$ convexe.

Soient B absorbant et $x \in E$. Posons y = f(x) il existe $\alpha > 0$ tel que $|\lambda| \le \alpha$ implique $\lambda x \in B . Or \ \lambda y = f(\lambda x) \ alors \ \lambda x \in f^{-1}(B) \ donc \ f^{-1}(B) \ est \ absorbant.$

Semi-normes 1.6

Définition 1.6.1

On appelle semi-norme sur E, une application $q: E \to \mathbb{R}_+$ vérifiant les conditions suivantes:

a) Pour tous x, y dans E

$$q(x+y) \le q(x) + q(y).$$

a) Pour tout $x \in E$, $\lambda \in \mathbb{K}$

$$q(\lambda x) = |\lambda| q(x).$$

Proposition 1.6.1

Soit E un \mathbb{K} -espace vectoriel. Si q est une semi-norme sur E alors :

(1)
$$q(0) = 0$$
 (2) $|q(x) - q(y)| \le q(x - y)$

Preuve

On a q(0) = q(0x) = 0q(x) = 0, ce qui prouve (1).

Montrons (2). On a par définition pour tous x, y dans E.

 $q(x) = q(x - y + y) \le q(x - y) + q(y)$ donc $q(x) - q(y) \le q(x - y)$. Cependant par

homogéniété de q on déduit que $q(x-y) = q(-(y-x)) \ge q(y) - q(x)$. ce qui prouve que $|q(x) - q(y)| \le q(x-y)$.

Proposition 1.6.2

Soientt q une semi-norme sur E, les ensembles :

$$\{x \in E / q(x) \le \alpha\}$$
 et $\{x \in E / q(x) < \alpha\}$

sont convexes, équilibrés et absorbants. Pour tout $\alpha > 0$

Preuve

Soit $\alpha > 0$.

Soit
$$A = \{x \in E / q(x) \le \alpha\}.$$

• A est Convexe:

Soient $x, y \in A$ et $\lambda \in [0, 1]$

$$donc \ q(\lambda x + (1 - \lambda)y) \leq \lambda q(x) + (1 - \lambda)q(y).$$

$$\leq \lambda \alpha + \alpha - \lambda \alpha$$

$$< \alpha.$$

 $donc \ \lambda x + (1 - \lambda)y \in A.$

• A est équilibré :

Montrons que $\forall \beta \in \mathbb{K}$ tel que $|\beta| \leq 1$, $\beta A \subset A$.

Soit
$$x \in \beta A$$
 $\Rightarrow \exists a \in A, tel \ que \ x = \beta a$
 $\Rightarrow \exists a \in A, tel \ que \ q(x) = q(\beta a) \le |\beta| q(a) \le \alpha$
 $\Rightarrow q(x) \le \alpha$
 $\Rightarrow x \in A.$

• A est absorbant:

Soit $x \in E$, on cherche l'existence d'un r > 0 tel que $\forall \beta \in \mathbb{K} \ |\beta| \le r$ on a $\beta x \in A$.

En effet, $x \in E$ et on prend $r = \frac{\alpha}{1+q(x)} > 0$. Alors $\forall |\beta| \leq r$,

On a
$$q(\beta x) = |\beta|q(x)$$

 $\leq r.q(x)$
 $= \alpha.$

 $donc \beta x \in A$.

Proposition 1.6.3

Soient p et q deux semi-normes sur E. Pour que légalité $q \leq p$ soit vérifiée, il faut et il suffit que :

$${x \in E / p(x) \le 1} \subset {x \in E / q(x) \le 1}$$

Preuve

• Si $q \le p$, alors $p(x) \le 1$ implique $q(x) \le 1$, d'où l'inclusion.

• Supposons que $\{x \in E \mid p(x) \leq 1\} \subset \{x \in E \mid q(x) \leq 1\}$. Soit $x \in E$ tel que $p(x) \neq 0$.On pose $y = \frac{x}{p(x)}$. Alors p(y) = 1. Donc $q(y) = q(\frac{x}{p(x)}) \leq 1$ et $p(x) \leq q(x)$ Si $x_0 \in E$ vérifie $p(x_0) = 0$ alors pour tout $\lambda \in \mathbb{K}$ $p(\lambda x_0) = 0$.

On suppose par l'absurde $q(x_0) \neq 0$. Or on a ceci $\forall \lambda \in K$ tel que $q(\lambda x_0) \leq 1$ (car elle est équlibrée) en particulier pour $\lambda = \frac{2}{q(x_0)}$ ce qui implique $q(\lambda x_0) = q(\frac{2}{q(x_0)}x_0) = \frac{2}{q(x_0)}q(x_0) = 2 \leq 1$. Absurde. $q(x_0) = p(x_0) = 0$

1.7 Jauge ou fonctionnelle de Minkowski

Soit A une partie absorbante de E.

Définition 1.7.1

Soit A un sous-ensemble de E. On appelle jauge ou fonctionnelle de Minkowski de A l'application $J_A: E \to [0, +\infty]$ définie par :

$$x \to J_A(x) = \begin{cases} \inf \{ \alpha / x \in \alpha A \} &, \quad s'il \ exsiste \ un \ \alpha \ge 0 \ tet \ que \ x \in \alpha A. \\ +\infty &, \quad si \ pour \ tout \ \alpha \ge 0, \ x \notin \alpha A. \end{cases}$$

Exemples 1.7.1

Si A = E, on a $x \in \alpha E$ pour tout $\alpha > 0$. Dans,

$$J_E(x) = \inf\{\alpha / \alpha > 0\} = 0$$

Si A est un sous-espace propre de E (i.e. $A \neq E$) on a:

$$J_A(x) = \begin{cases} 0 & , & si \ x \in A. \\ +\infty & , & si \ x \notin A. \end{cases}$$

Remarque 1.7.1

A étant une partie de E:

1. Si A est absorbante, pour tout $x \in E$ on a :

$$J_A(x) = \inf\{\alpha > 0 / x \in \alpha A\} = \inf\{\beta > 0 / \frac{x}{\beta} \in A\} < +\infty$$

 $2. \ 0 \in A, \ J_A(0) = 0.$

 $Si \ 0 \notin A, \ J_A(0) = +\infty.$

3. Si $A \neq \emptyset$, $J_A(x) \leq 1$ pour tout $x \in A$.

4. Si $A \subset B$, on a $J_B \leq J_A$.

Démonstration pour 4. Soit $x \in E$. Si $J_B(x) = +\infty$ pour tout $\alpha > 0$ $x \notin \alpha B$. Donc, $x \notin \alpha A \subset \alpha B$ et $J_A(x) = +\infty$. Si $J_B(x) < +\infty$ $J_B(x) = \inf\{\alpha > 0 / x \in \alpha B\}$. Comme $\alpha A \subset \alpha B$ alors

$$\{\alpha > 0 / x \in \alpha A\} = \{\alpha > 0 / x \in \alpha B\}$$

ce qui implique $J_B(x) \leq J_A(x)$.

5. Si A est convexe et $0 \in A$, on a :

$$J_A(x) \ge 1 \text{ si } x \in A$$

En effet, $J_A(x) < 1$ entraı̂ne $x \in \alpha A \subset A$ pour certain $0 < \alpha < 1$ (La derniére inclusion résulte de la convexité de A et du fait que $0 \in A$).

Notons qu'on peut avoir $J_A(x) = 1$ pour $x \in A^c$.

Exemples 1.7.2

$$E = \mathbb{R}^2 \ (\mathbb{K} = \mathbb{R}) \ A = \{(x_1, x_2) \in \mathbb{R}^2 \ (1, 1) \ / \ max(|x_1|, |x_2|) \le 1\}$$

 $J_A(x_1, x_2) = max(|x_1|, |x_2|).$

Propriétés 1.7.1

Soit A une partie non vide de E.

- 1) Pour tout $\lambda \ge 0$ alors: $J_A(\lambda A) = \lambda J_A(A)$. (4)
- 2) Si A est convexe alors: $J_A(x+y) \leq J_A(x) + J_A(y)$. (5)
- 3) si A est équilibrée alors : $J_A(\lambda A) = |\lambda| J_A(A)$ pour tout $\lambda \in \mathbb{K}$ $\lambda \neq 0$. (6)
- 4) On suppose A convexe, équilibrée et absorbante. Alors on a :
 - (i) $x \to J_A(x)$ est une semi norme sur E.
 - (ii) Soient $V = \{x \in E / J_A(x) < 1\}$ $W = \{x \in E / J_A(x) \le 1\}$ alors On $a : J_V = J_W = J_A, V \subset A \subset W$.
 - (iii) Si $V \subset B \subset W$ $J_B = J_A$.
 - (iv) Si q est une semi-norme sur E et $A = \{x \in E / q(x) < 1\} \quad B = \{x \in E / p(x) \le 1\}$ alors on a $J_A(x) = J_B(x) = q(x)$.
 - v) Si A_1, \ldots, A_n sont des parties convexes, équilibrées et absorbantes de E alors:

$$J_{\underset{j=i}{\cap} A_j}^n = \underset{i \le j \le n}{Max} J_{A_j} = J.$$

Preuve

1. Si $J_A(x_0) = +\infty$ alors pour tout $\alpha > 0$ on a $x_0 \notin \alpha A$ donc $\lambda x_0 \notin \alpha A$ ($\lambda > 0, \alpha > 0$) et $J_A(\lambda x_0) = +\infty$. D'où l'égalité (4). Si $J_A(x_0)$ est fini, en remarquant que $x_0 \in \alpha A$ équivant à $\lambda x_0 \in \lambda \alpha A$ ($\alpha > 0$ et $\lambda > 0$ fixé) on obtient:

$$J_A(x_0) = \inf\{\alpha / x_0 \in \alpha A\}$$

$$= \inf\{\alpha > 0 / \lambda x_0 \in \lambda \alpha A\}$$

$$= \inf\{\frac{\beta}{\lambda} > 0 / \lambda x_0 \in \beta A\}$$

$$= \frac{1}{\lambda} \inf\{\beta > 0 / \lambda x_0 \in \beta A\}$$

$$= \frac{1}{\lambda} J_A(\lambda x_0).$$

2. Supposons A convexe. L'inégalité (5) est vérifiee si $J_A(x) = +\infty$. ou si $J_A(y) = +\infty$. Si $J_A(x) < +\infty$ et $J_A(y) < +\infty$, d'après la définition de la borne inférieure d'un ensemble de nombres et celle de jauge, pour tout $\varepsilon > 0$, il existe $\lambda, \mu > 0$ tels que :

$$J_A(x) \le \lambda < J_A(x) + \varepsilon$$

 $J_A(x) \le \lambda < J_A(x) + \varepsilon$
 $x \in \lambda A, \quad y \in \mu A$

D'où $x = \lambda a$ et $y = \mu b$ $(a, b \in A)$ et on $a \times y = (\lambda + \mu)c$ avec

$$c = \frac{\lambda}{\lambda + \mu} a + \frac{\mu}{\lambda + \mu} b \in A \ (car A \ est \ convexe)$$

D'après (5), $J_A(c) \leq 1$. Et on a

$$J_A(x+y) \le \lambda + \mu < J_A(x) + J_A(y) + 2\varepsilon$$

3. L'égalité (6) est vérifiée si $\lambda > 0$. Pour l'établir dans le cas général, il suffit de supposer $|\lambda| = 1$. Si $|\lambda| = 1$ $\alpha > 0$, $\lambda x \in \alpha A$ équivaut à $x \in \alpha A$. En effet, αA est équilibrée et $\lambda x \in \alpha A$ implique $x = \frac{1}{\lambda}(\lambda x) \in \alpha A$. Inversement si $x \in \alpha A$ alors $\lambda x \in \lambda(\alpha A) \subset \alpha A$. Donc

$$J_A(\lambda x) = \inf\{\alpha / \lambda x \in \alpha A\} = \inf\{\alpha > 0 / x \in \alpha A\} = J_A(x)$$

- 4. i) Si l'ensemble A est convexe, équilibré et absorbant $J_A(x)$ est finie pour tout $x \in E$. l'égalité (6) est valable aussi pour $\lambda = 0$. (5) montre alors que J_A est une semi-norme sur E.
- 4. ii) Les inclusions $V \subset A \subset W$ sont évidentes. Donc $J_V \geq J_A \geq J_W$; on a pour x fixé,

$$J_V(x) = \inf\{\alpha > 0 / x \in \alpha V\} = \inf\{\alpha > 0 / J_A(x) < \alpha\} = J_A(x)$$

(car, $x \in \alpha V$ équivant à $J_A(x) < \alpha \text{ si } \alpha > 0$).

De même,

$$J_W(x) = \inf\{\alpha > 0 / x \in \alpha W\} = \inf\{\alpha > 0 / J_A(x) \le \alpha\} = J_A(x)$$

4. iii) La propriété est évidente D'après la remarque 1.7.1-4 et on a l'égalité :

 $J_V = J_W$ d'après (la propriété 1.7.1-4.ii)

4. iv) A est convexe, équilibrée et absorbante. Pour $\alpha > 0, \ x \in \alpha A$ équivaut à $q(x) < \alpha$. Donc,

$$J_A(x) = \inf\{\alpha > 0 / x \in \alpha A\} = \inf\{\alpha > 0 / q(x) \le \alpha\} = q(x)$$

On abtient de la même manière l'égalité $q(x) = J_B(x)$.

4. $v) \bigcap_{j=1}^{n} A_j$ est convexe, équilibrée et absorbante d'aprés (1.5.1; 1.2.1-(a); 1.4.1) et J_{A_j} est une semi-norme sur E. On a:

$$A = \{x \in E / J(x) < 1\}$$

$$= \{x \in E / J_{A_j}(x) < 1 \quad \forall j \in \{1, \dots, n\}\}$$

$$= \bigcap_{j=1}^{n} \{x \in E / J_{A_j} < 1\}$$

Or,

$$\{x \in E \mid J_{A_j} < 1\} \subset A_j \ (1 \le j \le n) \ (la \ propriété 1.7.1-4.ii)$$

Donc,
$$A \subset \bigcap_{j=1}^{n} A_j$$
 et comme J est une semi-norme $J_A = J \geq J \bigcap_{j=1}^{n} A_j$

D'autre part,

$$\bigcap_{j=1}^n A_j = A_k \ (1 \le k \le n) \quad et \quad \int_{j=1}^n A_j \ge \max_{1 \le k \le n} J_{A_k} = J \quad d'après \ la \ remarque \ 1.7.1-4$$

CHAPITRE 2

LES ESPACES VECTORIELS TOPOLOGIQUES

2.1 Rappels topologique

Définition 2.1.1

On dit qu'une famille non vide \mathcal{B} de parties d'un ensemble X est une base filtre sur X si $\varnothing \notin \mathcal{B}$ et si pour tout A,B dans \mathcal{B} , il existe C dans \mathcal{B} tel que $C \subset A \cap B$.

Proposition 2.1.1

Rappelons qu'on peut définir une topologie sur un ensemble non vide X à partir des axiomes de voisinages :

Supposons qu'à chaque point $x \in X$ on puisse associe une famille $\mathcal{V}(x)$ de parties de X vérifiant les axiomes suivants :

- (i) Toute partie de X contenant un élément de V(x) appartient à V(x).
- (ii) L'intersection de deux élément de V(x) appartient à V(x).
- (iii) Tout élément de V(x) contient x.
- (iv) Si $V \in \mathcal{V}(x)$, il existe $W \in \mathcal{V}(x)$, $W \subset V$ et $V \in \mathcal{V}(y)$ pour tout $y \in W$.

Les axiomes (i), ..., (iv) définissent une topologie unique pour laquelle $\mathcal{V}(x)$ est l'ensemble des voisinages de x. Un ensemble $\varnothing \neq W \subset X$ est ouvert pour cette topologie si et seulement si, pour tout $x \in W$ on a $W \in \mathcal{V}(x)$. Autrement dit si W est un voisinage de ses point de chacun de ses points.

Rappelons qu'un espace topologique E est dit séparé si pour tout $x \in E$, $y \in E$, $x \neq y$, il existe un voisinage V_x de x et un voisinage V_y de y tels que $V_x \cap V_y \neq \emptyset$. Cette condition est équivalente à la suivante :

L'intersection des voisinages fermés d'un point quelconque $a \in E$ est $\{a\}$.

2.2 Voisinage d'un point-Propriétés

Définition 2.2.1

Un ensemble E est dit espace vectoriel topologique sur \mathbb{K} (réel si $\mathbb{K} = \mathbb{R}$, complexe si $\mathbb{K} = \mathbb{C}$) si :

- E est un espace vectoriel sur \mathbb{K} .
- $\bullet E$ est un espace topologique.
- La topologie de E est compatible avec la structure d'espace vectoriel de E, ce qui signifie :
- $(E.V.T)_1 \bullet L'application (x,y) \rightarrow x+y \ de \ E \times E \rightarrow E \ est \ continue.$
- $(E.V.T)_2 \bullet L'application (\lambda, x) \to \lambda x de \mathbb{K} \times E \to E est continue.$

 $(E \times E \ et \ \mathbb{K} \times E \ étant munis de la topologie produit).$

- L'axiome $(E.V.T)_1$ exprime que pour tout voisinage V_{x+y} du point x+y, il existe un voisinage V_x de x et un voisinage de y tel que $V_x+V_y\subset V_{x+y}$.
- L'axiome $(E.V.T)_2$ exprime que pour tout voisinage $V_{\lambda x}$ du point λx , il existe un nombre $\beta_x > 0$ et un voisinage V_x de x tel que,

si
$$\forall \mu \in \mathbb{K}$$
, $|\mu - \lambda| \leq \beta_x$ alors $\mu V_x \subset V_{\lambda x}$

Remarque 2.2.1

L'abréviation E.V.T dèsignera un espace vectoriel topologique.

Exemples 2.2.1

Un espace normé (E, ||.||) est un E.V.T.

2.3

Soit $a \in E$. La translation $\mathcal{T}_a: x \to x + a$ est une bijection de $E \to E$. D'après $(E.V.T)_1$ \mathcal{T}_a et \mathcal{T}_a^{-1} sont continues et donc \mathcal{T}_a est un homéomorphisme de E dans E. De même manière, on voit que $\mathcal{T}_{\lambda}: x \to \lambda x$ est un homéomorphisme de E dans E.

Il en résulte que l'image d'un voisinage de $x \in E$ par \mathcal{T}_a (ou par \mathcal{T}_{λ}) est un voisinage de x + a (ou de λx). En déduit que les voisinages du point a sont de la forme : $V + a = V + \{a\}$ où V est voisinage de 0. Notons $\mathcal{V}(a)$ l'ensemble des voisinages du point $a \in E$. Pour connaître $\mathcal{V}(a)$ il suffit de connaître $\mathcal{V}(0)$. Nous allons préciser les propriété de $\mathcal{V}(0)$ qui sont liées à la structure des espace vectoriel de E.

Propriétés 2.3.1

 $\mathcal{V}_{(1)}$ * si $V \in \mathcal{V}(0)$, il existe $U \in \mathcal{V}(0)$ tel que $U + U \subset V$.

 $\mathcal{V}_{(2)} * \mathcal{V}(0)$ est invariant par dilatation (i.e. si $V \in \mathcal{V}(0)$ alors $\lambda V \in \mathcal{V}(0)$ pour tout $\lambda \in \mathbb{K} \ \lambda \neq 0$).

 $\mathcal{V}_{(3)}$ * Tout élément de $\mathcal{V}(0)$ est absorbant .

 $\mathcal{V}_{(4)}\,$ * Le noyau équilibré d'un voisinage de 0 est un voisinage équilibré de 0 .

 $\mathcal{V}_{(5)}$ * Il existe un système fondamental de voisinages équilibrés de 0 (i.e. si $V \in \mathcal{V}(0)$ il existe $W \in \mathcal{V}(0)$ W équilibré $W \subset V$).

 $\mathcal{V}_{(6)}$ * Tout élément de $\mathcal{V}(0)$ contient un voisinage ouvert équilibré de 0.

Preuve

- 1. $\mathcal{V}_{(1)}$ résulte de $(E.V.T)_1$. En effet, $(0,0) \longrightarrow 0+0=0$. Donc pour tout $V \in \mathcal{V}(0)$ il existe $U_1, U_2 \in \mathcal{V}(0)$ tels que $U_1 + U_2 \subset V$. D'où $\mathcal{V}_{(1)}$ avec $U = U_1 \cap U_2$.
- 2. L'application $\mathcal{T}_{\lambda} \longrightarrow \lambda x \ (\lambda \neq 0)$ étant un homéomorphisme et $\mathcal{T}_{\lambda}(0) = 0$ un voisinage de 0 a pour image un voisinage de 0.
- 3. Soient $x \in E$ et $V \in \mathcal{V}(0)$ donnés. L'application $\lambda \longrightarrow \lambda x$ de $\mathbb{K} \longrightarrow E$ est continue au point $\lambda = 0$ et V est un voisinage du point 0.x = 0; il existe un nombre $\beta_x > 0$ tel que $\mu x \in V$ si $|\mu| \leq \beta_x$. Cela montre que V est absorbant. D'où $\mathcal{V}_{(3)}$.
- 4. Soit $V \in \mathcal{V}(0)$. D'aprés $(E, V, T)_2$, il existe $\alpha > 0$ et $W \in \mathcal{V}(0)$ tels que

$$\mu W \subset V \ si \ |\mu| \leq \alpha$$

 $\mu W(\mu \neq 0)$ est un voisinage de 0 (D'aprés $\mathcal{V}_{(2)}, \mathcal{V}_{(3)}$) ainsi que la réunion :

$$A = \bigcup_{|\mu| < \alpha} \mu W \subset V.$$

Mais A est équilibré. En effet, si $|\lambda| \leq 1, (\lambda \neq 0)$

$$donc \ \lambda A = \bigcup_{|\mu| \le \alpha} \lambda \mu W.$$

$$= \bigcup_{\substack{|\mu| \le \alpha \\ \lambda | \le \alpha}} \mu W \subset \bigcup_{|\mu| \le \alpha} \mu W.$$

$$= A$$

Donc le noyau équilibré $\eta(V)$ de V qui contient A (qui est un voisinage de 0) est un voisinage de 0. D'où \mathcal{V}_4 .

- 5. Un système fondamental de voisinages équilibrés de 0 est constitué par l'ensemble $\mathcal{F}(0) = \{\eta(V) / V \in \mathcal{V}(0)\}.$
- 6. Soit $V \in \mathcal{V}(0)$, contient un voisinage U de 0 équilibré.

Soit $\overset{\circ}{U}$ l'intérieur de U. On a $\overset{\circ}{U} \subset U$ et pour tout $\lambda \in \mathbb{K}$ $|\lambda| \leq 1$ $\lambda \overset{\circ}{U} \subset U \subset V$. Donc l'enveloppe équilibrée $\varepsilon(\overset{\circ}{U}) = \bigcup_{|\lambda| \leq 1} \lambda \overset{\circ}{U}$ est contenue dans V et c'est un ouvert contenant 0.

Théorème 2.3.1

Dans un (E.V.T) sur (\mathbb{K}) il existe un système fondamental $\mathcal{F}(0)$ de voisinages de 0 tel que :

 $\mathcal{F}_{(1)}$: Tout $V \in \mathcal{F}(0)$ est absorbant.

 $\mathcal{F}_{(2)}$: Tout $V \in \mathcal{F}(0)$ est équilibré.

 $\mathcal{F}_{(3)}$: Pour tout $V \in \mathcal{F}(0)$, il existe $U \in \mathcal{F}(0)$ tel que $U + U \subset V$.

Preuve

on pose $\mathcal{F}(0) = \{ \eta(V) / V \in \mathcal{V}(0) \}$ est un système fondamental de voisinage de 0.

 $\mathcal{F}_{(1)}$. Soit $U \in \mathcal{F}(0)$. Alors il existe $V \in \mathcal{V}(0)$ tel que $U = \eta(V)$, or $\eta(V)$ est un voisinage de 0 (d'après la propriété $\mathcal{V}_{(4)}$) donc $U = \eta(V) \in \mathcal{V}(0)$. D'où U est absorbant (d'après la propriété $\mathcal{V}_{(3)}$).

 $\mathcal{F}_{(2)}$. Soit $U \in \mathcal{F}(0)$. Il existe $V \in \mathcal{V}(0)$ tel que $U = \eta(V)$ est le noyeau équilibré de V donc U est équilibré (d'après la propriété $\mathcal{V}_{(4)}$).

 $\mathcal{F}_{(3)}$. Soit $U \in \mathcal{F}(0)$. Il existe $V \in \mathcal{V}(0)$ tel que $U = \eta(V)$. Or $\eta(V) \in \mathcal{V}(0)$ donc il existe $W_1 \in \mathcal{V}(0)$ tel que $W_1 + W_1 \subset \eta(V)$ et on pose que $W = \eta(W_1)$. D'où $W \in \mathcal{F}(0)$ (d'après la propriété $\mathcal{V}_{(1)}$).

• On peut se demander si une famille de parties d'un espace vectoriel (sur \mathbb{K}) possédant les propriétés $\mathcal{F}_{(1)}, \mathcal{F}_{(2)}, \mathcal{F}_{(3)}$ de théorème(2.3.1),on peut définir une topologie sur E compatible avec la structure vectorielle de E. La réponse est fournie par l'énoncé suivant :

Théorème 2.3.2

soit E un espace vectoriel sur \mathbb{K} . Si \mathcal{F} est une base de filtre vérifiant $\mathcal{F}_{(1)}, \mathcal{F}_{(2)}, \mathcal{F}_{(3)}$, il existe alors une topologie unique sur E compatible avec la structure d'espace vectoriel de E et pour la quelle \mathcal{F} est un système fondamental de voisinages de 0.

Preuve

A chaque $x \in E$, on associe la famille $V(x) = \{V + x / V \in \mathcal{F}\}.$

Montrons que V(x) est un ensemble de voisinages de x. Montrer ceci, revient à montrer les axions d'aprés la propositions (2.1.1).

Soit $x \in E$. Nous dirons que la partie $\emptyset \neq W \subset X = E$ est un voisinage de x si et seulement si, W contient une partie de la forme V + x où $V \in \mathcal{V}$.

Maintenant vérifions les axiomes $(i), \ldots, (iv)$.

(i) Soient $A \subset E$ et $x \in A$.

Il existe V un voisinage de x tel que $V \subset A$ alors il existe $W \in \mathcal{F}$ tel que $x + W \subset V$. Donc $x + W \subset A$, ainsi A est un voisinage de x.

- (ii) Soient W_1 , W_2 deux voisinages de x. Alors il existe $(V_1, V_2 \in \mathcal{F})$ tels que : $x + V_1 \subset W_1$ et $x + V_2 \subset W_2$. Comme \mathcal{F} est une base de filtre, alors il existe $V \in \mathcal{F}$ tel que $V \subset V_1 \cap V_2$ donc $x + V \subset W_1 \cap W_2$. D'où $W_1 \cap W_2$ est un voisinage de x.
- (iii) Soit W un voisinage de x. Alors il existe $V \in \mathcal{F}$ tel que $V + x \subset W$. Alors $x = 0 + x \in V + x \subset W$.
- (iv) Soit W un voisinage de x. Alors il existe $V \in \mathcal{F}$ tel que $x + V \subset W$. Or d'après \mathcal{F}_3 , il existe $U \in \mathcal{F}$, $U + U \subset V$ et x + U et un voisinage de x.

Soit $y \in x + U$. Or on $a: y + U \subset x + U + U \subset x + V \subset W$.

Il existe donc une topologie unique sur E pour laquelle $\mathcal F$ est un système fondamental de voisinages de 0.

Reste à établir que la topologie ainsi définie est compatible avec la structure d'espace vectoriel de E.

1. L'application $E \times E \rightarrow E$

$$(a,b) \mapsto a+b$$
 est continue.

En effet, soit W_{a+b} un voisinage de a+b. Alors il existe $V \in \mathcal{F}$ tel que $(a+b)+V \subset W_{a+b}$. D'aprés \mathcal{F}_3 il existe $U \in \mathcal{F}$, telle que $U+U \subset V$ et a+U est un voisinage de b. Donc

$$(U+a) + (U+b) \subset (a+b) + V \subset W_{a+b}$$

. D'où la continuié de l'applicaton considérée.

2. L'application $\mathbb{K} \times E \to E$

$$(\lambda, a) \mapsto \lambda a \quad est \ continue.$$

En effet, on doit établir que pour tout voisinage W de λa , il existe un nombre $\beta > 0$ et un voisinage A de a tels que :

(*) $\mu x \in W$ si $|\mu - \lambda| \leq \beta$ et $x \in A$. Démontrons tout d'abord qu'à tout couple $(\lambda, V) \in \mathbb{K} \times \mathcal{F}$, on peut associer $U \in \mathcal{F}$ tel que $\lambda U \subset V$. Il existe $U_1 \in \mathcal{F}$ avec,

$$2U_1 \subset U_1 + U_1 \subset V$$
.

De même, soit $U_2 \in \mathcal{F}$ tel que $U_2 + U_2 \subset U_1$. D'où

$$2^{2}U_{2} \subset 2U_{2} + 2U_{2} \subset (U_{2} + U_{2}) + (U_{2} + U_{2}) \subset U_{1} + U_{1} \subset V$$

Par induction, on peut alors trouver pour tout $n \in \mathbb{N}^*$ un élément U de \mathcal{F} tel que $2^nU \subset V$. λ étant donné, soit n entier vérifiant $|\lambda| \leq 2^n$. Comme U est équilibré $2^{-n}\lambda U \subset U \subset V$. D'où $\lambda U \subset 2^nU \subset V$. D'autre part, si $\lambda a + V \subset W$ est un voisinage de λa il existe $U \in \mathcal{F}$,

$$U + U + U + U \subset V$$

(appliquer deux fois \mathcal{F}_3). En particulier

$$U + U + U \subset V$$

Revenons à (*) et écrivons $\mu x - \lambda a$ sous forme :

$$\mu x - \lambda a = (\mu - \lambda)a + \lambda(x - a) + (\mu - \lambda)(x - a)$$
 Où λ et a sont donnés

U est absorbant alors il existe $\alpha > 0$ tel que :

$$(\mu - \lambda)a \in U \text{ si } |\mu - \lambda| \leq \alpha.$$

Soient $T \in \mathcal{F}$, $\lambda T \subset U$. Alors il existe $S \in \mathcal{F}$, $S \subset T \cap U$ (car \mathcal{F} base de filtre) On pose $\beta = \min(1, \alpha)$

L'ensemble A = S + a est un voisinage de a.

Soit $x \in A$, on a $x - a \in S$. Donc

$$\lambda(x-a) \in \lambda S \subset \lambda T \subset U$$

De même,

$$(\mu - \lambda)(x - a) \in (\mu - \lambda)S \subset U$$
, si $|\mu - \lambda| \leq \beta$. (puisque S est équilibré)

Conclusion

$$\mu x - \lambda a \in U + U + U \subset V \text{ si } x \in A \quad |\mu - \lambda| < \beta.$$

D'où,

$$\mu x \in V + \lambda a \subset W \quad si \quad x \in A \quad |\mu - \lambda| \le \beta.$$

Exemples 2.3.1

Un espace vectoriel sur \mathbb{K} muni de la topologie grossière est un E.V.T.

Par contre, E muni de la topologie discrète n'est pas un E.V.T.

2.4 Espace vectoriel topologique séparé

Un espace vectoriel topologique E est dit séparé si sa topologie est séparée . Le fait que la topologie de E soit compatible avec la structure d'espace vectoriel de E permet de remplacer les conditions du rappels topologique pour espace vectoriel topologique séparé par des conditions plus simples.

Proposition 2.4.1

- a) Dans un espace vectoriel topologique E, tout voisinage de 0 contient un voisinage fermé (donc les voisinages fermés de 0 forment un système fondamental de voisinage de 0).
- b) E est séparé si et seulement si l'une des trois conditions suivantes est vérifiée :
 - (S_1) Pour tout $a \neq 0$ $a \in E$, il existe un voisinage de 0 ne contenant pas le point a.
 - (S_2) L'intersection des voisinages fermés de 0 se réduit à $\{0\}$.
- (S_3) {0} est fermé.

Preuve

- a) Soit V un voisinage de 0. Il existe un voisinage équilibré U de 0, $U + U \subset V$ (car, V contient un élément de $\mathcal{F}(0)$ et \mathcal{F}_3 est vérifiée). L'adhérence \overline{U} de U est un voisinage de 0 et on a $\overline{U} \subset V$. En effet, si $x \in \overline{U}$ alors x + U est un voisinage de x et $(x + U) \cap U \neq \emptyset$; cela entraîne l'existence d'un $y \in U$ tel que $x + y \in U$, U étant équilibré, $-y \in U$ et $x \in -y + U \subset U + U \subset V$. D'où $\overline{U} \subset V$.
- b) 1. Si E est séparé, (S_1) et (S_2) sont vérifiées. Réciproquement supposons S_1 est vérifiée. Montrons tout d'abord qu'il existe un voisinage W de $a \neq 0$ et un voisinage U de 0 disjoints. Soit V un voisinage de 0 ne contenant pas a. Il existe un voisinage équilibré U de 0, $U + U \subset V$, U + a est un voisinage de a et on a:

(1)
$$U \cap (U+a) = \emptyset$$

Si a et b sont deux points quelconques $a \neq b$ il existe d'aprés le résultat ci-dessus, un voisinage $V_{a-b} + b$ de a - b et un voisinage U de 0, tels que $U \cap V_{a-b} = \varnothing$. Or V_{a-b} est un voisinage de a, U + b est un voisinage de b, et

$$(V_{a-b}+b)\cap (U+b)=\varnothing$$

Donc E est séparé.

- 2. Soit $(\bigcap_{i\in I} F_i)$ l'intersection de voisinages fermés de 0. Si $\bigcap_{i\in I} F_i = \{0\}$, E est séparé. En effet, soit $a \neq 0$ $a \in E$. Il existe au moins un voisinage fermé F_i qui ne contient pas a. D'où la conclusion d'aparès S(1).
- 3. Soit E un E. V. T. (sur \mathbb{K}) tel que $\{0\}$ soit fermé. $E \setminus \{0\}$ est ouvert et si $a \neq 0$ $a \in E$, il existe un voisinage V_a de a ne contenant pas le point 0. On a $V_a = a + U$, où U est un voisinage de 0. Le noyau équilibré $\eta(U)$ de U est un voisinage 0 qui ne contient pas le point a (sinon $-a \in \eta(U) \subset U$ et $-a + a = 0 \in V_a$). Donc E est séparé d'aprés S(1).

Exemples 2.4.1

E=L'espace vectoriel \mathbb{R}^2 . Nous munissons E de la topologie suivante : Pour tout $\varepsilon > 0$, l'ensemble :

$$V_{\varepsilon} = \{(x, y) \in \mathbb{R}^2 / |x| < \varepsilon\}$$

est appelé voisinage de 0.

D'aprés le théorème (2.3.2), on constate aussitôt que la base de filtre $\mathcal{F} = \{V_{\varepsilon}\}_{{\varepsilon}>0}$ permet de munir E d'une structure d' E.V.T. E est alors non séparé, car ((S_1)) est en défaut pour tout point a = (0, y). Ou encore ((S_3)) en défaut car l'intersection des voisinages fermés de 0 est

$$\{(0,y) \mid y \in \mathbb{R}\} \neq \{0\}.$$

2.4.1 Quelques proriétés topologiques élémentaires

Soit E un espace vectoriel topologique sur \mathbb{K} .

Propriétés 2.4.1

L'adhérence d'une partie équilibrée M de E est équilibrée.

Preuve

En effet, l'application $\begin{array}{ccc} \mathbb{K} \times E & \to E \\ (\lambda, x) & \to \lambda x \end{array}$ est continue et elle applique

 $\{\lambda \in \mathbb{K} \ / \ |\lambda| \le 1\} \times M \ dans \ M. \ Donc, \ elle \ applique \ \{\lambda \in \mathbb{K} \ / \ |\lambda| \le 1\} \times \overline{M} \ dans \ \overline{M}.$

Remarque 2.4.1

Soit U un voisinage de 0. U contient un voisinage fermé V, et V contient un voisinage équilibré W. L'adhérence \overline{W} de W étant équilibrée et $\overline{W} \subset V \subset U$, on en déduit que dans E.V.T. il existe un système fondamental de voisinages de 0 constitué par des voisinages fermés et équilibrés de 0.

Remarque 2.4.2

1.L'intérieur $\overset{\circ}{A}$ d'une partie équilibrée A est équilibré si seulement si $0 \in \overset{\circ}{A}$.

En effet, 1. La condition est évidement nécessaire. D'autre part si $|\lambda| \leq 1$, on a : $\lambda \overset{\circ}{A} \subset \lambda A \subset A$. Si $\lambda \neq 0$ $|\lambda| \leq 1$, $\lambda \overset{\circ}{A}$ est une partie ouverte de A et $\lambda \overset{\circ}{A} \subset \overset{\circ}{A}$. Cette dernière inclusion est aussi valable pour $\lambda = 0$. D'où la résultat.

Propriétés 2.4.2

Si A est un ouvert non vide de E, et si B est une partie quelconque (non vide) de E, alors A + B est ouvert.

En effet, le translaté d'un ouvert est ouvert . Donc b + A est ouvert et par conséquent

$$B+A=\bigcup_{b\in B}(b+A)$$

est ouvert.

Preuve

Soit $(K_i)_{i \in J}$ une famille de convexes.

Soit $x, y \in \bigcap_{j \in J} (K_j)$. Alors $x, y \in (k_j) \ \forall j \in J$. Or les K_j sont des convexes donc $\forall \lambda \in [0, 1]$ on a, $\lambda x + (1 - \lambda)y \in K_j \ \forall j \in J$. D'où $\lambda x + (1 - \lambda)y \in \bigcap_{j \in J} K_j$.

Remarque 2.4.3

La somme de deux fermés (non vide) n'est pas fermée en général.

Exemples 2.4.2

$$E = \mathbb{R}^{2}$$

$$A = \{(x, y) \in \mathbb{R}^{2} / xy = 1 \ x > 0, y > 0\}$$

$$B =] - \infty, 0]$$

$$A + B = \{(x, y) \in \mathbb{R}^{2} / y > 0 \ xy \le 1\}$$
Par contre, on a:

Propriétés 2.4.3

Si E est séparé, $A \subset E$ fermé, $K \subset E$ compact (A, K non vides), alors A + K est fermé. Cette propriété va résulter des lemmes suivants :

Lemme 2.4.1

Si V est un voisinage de K, il existe un voisinage U de 0 tel que, $K+U \subset V$ (L'énoncé est faux en général, si on remplace K compact par K fermé).

Preuve

Pour tout $x \in K$, il existe un voisinage ouvert équilinré U_x de 0 tel que $x + U_x + U_x \subset V$. En effet, V étant un voisinage de K, il existe $W \in \mathcal{V}(0)$ tel que $x + W \subset V$. Soit U_x un voisinage ouvert équilibré de 0 tel que $U_x + U_x \subset W$ d'où $x + U_x + U_x \subset V$. La famille d'ouverts $(x + U_x)_{x \in K}$ est un recouvrement ouvert de K dont on peut extraire un recouvrement fini :

$$x_1 + U_{x_1}, \dots, x_n + U_{x_n}$$

Posons, $U = \bigcap_{j=1}^{n} U_{x_j}$ est un voisinage de 0 (ouvert, équilibré). On a $K + U \subset V$. En effet, soient $a \in K$ et $u \in U$, il existe $j \in \mathbb{N}$, $1 \leq j \leq n$ tel que $a \in x_j + U_{x_j}$. Or, $u \in U \subset U_{x_j}$. D'où

$$a + u \in x_j + U_{x_i} + U_{x_i} \subset V$$

Remarque 2.4.4

L'exemple $E = \mathbb{R}^2$ ($\mathbb{K} = \mathbb{R}$), $K = \{(x,y) \in \mathbb{R}^2 \mid y = 0\}$ et $V = \{(x,y) \in \mathbb{R}^2 \mid xy < 1\}$, montre que l'énoncé est faux si K est fermé.

Lemme 2.4.2

Soient $A \neq \emptyset$ une partie fermée de E et $K \subset E$ compact (non vide) tels que $A \cap K = \emptyset$. Il existe un voisinage U de 0 tel que

$$(A+U)\bigcap (K+U)$$

Preuve

 A^c est un voisinage de K. Le lemme 1 montre qu'il existe un voisinage V de 0 tel que $((K+V)\cap A=\varnothing. \ Soit\ U\ un\ voisinage\ équilibré\ de\ 0\ avec\ U+U\subset V.\ On\ a$ $(K+V)\cap (A+U)=\varnothing$. Sinon, il existerait $b\in K, a\in A, u_1, u_2\in U\ avec\ b+u_1=a+u_2.$ Mais $b+u_1-u_2=a\in A,\ et\ b+u_1-u_2\in K+U+U\subset K+V\ (car\ -u_2\in U\ puisque\ U\ est\ équilibré\).$ D'où une contradiction.

Achevons la démonstration de la proriété (...).

Soit $x \notin A + K$, on a

$$(x - A) \bigcap K = \varnothing.$$

x-A étant fermé, il existe un voisinage V de 0 tel que (Lemme 2)

$$(x - A + V) \bigcap (K + V) = \varnothing$$

Or $0 \in V$, la derniére égalité entraine :

$$(x - A + V) \cap K = \varnothing$$

$$(x+V) \cap (A+K) = \varnothing$$

Comme x+V est un voisinage de x, on en déduit que $(A+K)^c$ est ouvert. Donc A+K est fermé.

Propriétés 2.4.4

Dans un E.V.T E, l'enveloppe équilibrée d'un fermé F n'est pas néssairement fermée. Par contre si E est séparé et $K \subset E$ compact (non vide), l'enveloppe équilibrée $\varepsilon(K)$ de K est compacte.

L'exemple suivant justifie la première partie.

Exemples 2.4.3

$$E = \mathbb{R}^2, F = \{(x, y) \in \mathbb{R}^2 / y = a > 0\}$$

$$\varepsilon(F) = \{(x, y) \in \mathbb{R}^2 / |y| \le a \ y \ne 0\} \cup \{0\}$$

Pour la deuxième partie, remarquons que $\varepsilon(K) = \bigcup_{|\lambda| < 1} \lambda K$ est l'image de

 $\{\lambda \in K \mid |\lambda| \leq 1\} \times K$ par l'application continue $(\lambda, x) \to \lambda x$. Le produit de deux compacts étant compact, $\varepsilon(K)$ est compacte.

Propriétés 2.4.5

Un E.V.T E (sur \mathbb{K}) est connexe par arcs (donc connexe).

Preuve

En effet, x et y étant donnés dans E, l'application

$$f: [0,1] \to E$$

définie par $\alpha \to \alpha x + (1 - \alpha)y$ est continue, f(1) = x, f(0) = y.

Propriétés 2.4.6

2. Si A est une partie convexe de E, alors \overline{A} est convexe.

Preuve

2. L'application $(a,b) \to \alpha a + \beta b$ de $E \times E \to E$, étant continue pour tout voisinage W de $\alpha x + \beta y$ ($\alpha > 0, \beta > 0$ $\alpha + \beta = 1$ $x \in \overline{A}, y \in \overline{A}$) il existe un voisinage V_x et un voisinage V_y de y tels que

$$\alpha V_x + \beta V_y \subset W$$

Soient $a \in V_x \cap A \neq \emptyset$, $b \in V_y \cap A \neq \emptyset$. Alors, $\alpha a + \beta y \in A$ et $\alpha a + \beta b \in W \cap A$. Donc, $W \cap A$ n'est pas vide. Comme W est un voisinage arbitraire de $\alpha x + \beta y$, il en résulte que $\alpha a + \beta y \in \overline{A}$.

Propriétés 2.4.7

Soient A une partie convexe, équilibrée, absorbante de E et J_A la jauge de A (qui est une semi norme sur E). On a:

- a) J_A est continue $\Leftrightarrow A$ est un voisinage de 0.
- b) Si J_A est continue alors

$$\overset{o}{A} = \{ x \in E \, / \, J_A(x) < 1 \}$$

$$\overline{A} = \{x \in E / J_A(x) \le 1\}$$

Preuve

a) On a les inclusions

(1)
$$\{x \in E / J_A(x) < 1\} \subset A \subset \{x \in E / J_A(x) \le 1\}$$

Si J_A est continue. Alors le premier ensemble figurant dans (1) et ouvet et A est un voisinage de 0. Réciproquement si A est un voisinage de 0, alors pour tout $\varepsilon > 0$ εA est un voisinage de 0 et par conséquent $\{x \in E \mid J_A(x) \leq \varepsilon\} \supset \varepsilon A$ est un voisinage de 0. Celà entraine la continuité de J_A à l'origine.

La continuité à l'origine entraîne la continuité partout. En effet, J_A est une semi-norme. Soit $x_0 \in E$, il suffit de vérifier que pour $\varepsilon > 0$ étant donné, il existe un voisinage V_{x_0} de x_0 tel que

$$|J_A(y) - J_A(x_0)| \le \varepsilon$$
, $si \ y \in V_{x_0}$.

Or, $|J_A(y) - J_A(x_0)| \leq J_A(y - x_0)$ et J_A est continue au point 0. Il existe un voisinage U de 0 tel que $J_A(x) \leq \varepsilon$ si $x \in U$. L'inégalité $|J_A(y) - J_A(x_0)| \leq \varepsilon$ est alors réalisée si $y \in x_0 + U = V_{x_0}$.

Propriétés 2.4.8

Soit E un E.V.T (sur \mathbb{K}). Si q est une semi-norme sur E, les propriétés suivantes sont équivalentes :

- 1- q est continue au point 0.
- 2- q est continue sur E.
- 3- $\{x \in E \mid q(x) < 1\}$ est un ouvert.
- 4- $\{x \in E / q(x) < 1\}$ est un voisinage de 0.
- 5- $\{x \in E \mid q(x) \leq 1\}$ est un voisinage de 0.

Propriétés 2.4.9

Soient E un E.V.T. (sur \mathbb{K}) et p,q deux semi-normes sur E telles que $q \leq p$. Si p est continue alors q est continue.

En effet,

$${x \in E / q(x) \le 1} \supset {x \in E / p(x) \le 1}$$

Le dernier ensemble est un voisinage de 0, car p est continue. Le premier ensemble est donc un voisinage de 0. Donc q est continue.

CHAPITRE 3

LES ESPACES VECTORIELS TOPOLOGIQUES LOCALEMENT CONVEXES

Un grand nombre d'E.V.T qu'on rencontre en analyse possèdent un système fondamental de voisinages convexes de 0. Leur topologie peut d'ailleurs être définie à partie d'une famille de semi- normes, ce qui facilite leur étude. Dans ce chapitre, nous étudions la structure de ces espaces.

3.1 Voisinages de 0 - Tonneaux

Définition 3.1.1

Un E.V.T (sur \mathbb{K}) est dit localement convexe si 0 possède un système fondamental de voisinages convexes (Il en sera alors ainsi pour tout point).

Définition 3.1.2

 $Un\ sous-ensemble\ T\ d'un\ E.V.T\ est\ dit\ tonneau\ si\ T\ est\ convexe,\ absorbant,\ ferm\'e\ et\ \'equilibr\'e.$

Exemples 3.1.1

Un espace normé est localement convexe. Les boules fermées centrées en 0 sont des tonneaux.

Proposition 3.1.1

Dans un E.V.T (sur \mathbb{K}) localement convexe, il existe un système fondamental de voisinages de 0 constitué par des tonneaux.

Preuve

Soit W un voisinage de 0. Nous allons montrer que W contient un voisinage équilibré, convexe, fermé de 0. D'aprè (2.4.1), W contient un voisinage fermé V de 0. L'espace étant localement convexe, V contient un voisinage convexe U de 0 et $\overline{U} \subset V$ (car V est fermé). Le noyau équilibré $\eta(\overline{U})$ de \overline{U} est donné par :

$$\eta(\overline{U}) \, = \, \bigcap_{|\lambda| \geq 1} \lambda \overline{U} \subset \overline{U} \subset V \subset W$$

 $\eta(\overline{U})$ est fermé (L'intersection des fermés), convexe et absorbant ($\lambda \overline{U}$ est convexe). D'où la proposition.

Proposition 3.1.2

Soient E un espace vectoriel (sur \mathbb{K}), \mathcal{B} une famille de parties absorbantes, équilibrées, et convexes de E. Soit \mathcal{F} l'ensemble des intersections finies des parties de la forme λV , $\lambda > 0$, $V \in \mathcal{B}$ (i.e. $W \in \mathcal{F}$ si et seulement si, $W = \lambda_1 V_1 \cap \lambda_1 V_1 \cap \ldots \cap \lambda_n V_n$, $(\lambda_j > 0)$, $V_j \in \mathcal{B}$, $j = 1, \ldots, n$, $n \geq 1$ arbitraire). Il existe alors une topologie (unique) sur E (compatible avec la structure d'espace vectoriel de E) pour laquelle E est un E. V. T localement convexe, et \mathcal{F} un système fondamental de voisinages de 0.

Preuve

En effet, les propriétés : absorbant, équilibré, convexe, sont vérifiées pour les éléments de \mathcal{F} . \mathcal{F} est aussi une base de filtre. La proriété \mathcal{F}_3 du théorème (2.3.1) est aussi vérifiée. Car si $V \in \mathcal{F}$ on $a : \frac{1}{2}V \in \mathcal{F}$, et $\frac{1}{2}V + \frac{1}{2}V \subset V$ (puisque V est convexe).

Remarque 3.1.1

Si \mathcal{B} est une base de filtre, on pourra choisir pour \mathcal{F} l'ensemble des parties de la forme λV avec $\lambda > 0$ et $V \in \mathcal{B}$.

3.2 Construction d'un tonneau à partir d'un voisinage

Soit E un E.V.T. Soit U un voisinage de 0. Considérons l'enveloppe équilibrée $\varepsilon(U)$ de $U(d'après la proposition 1.3.1). Si <math>\overline{c} = \overline{c} [\varepsilon(U)]$ est l'adhérence de l'enveloppe convexe

 $\operatorname{de} \varepsilon(U)$ (d'après la proposition 1.5.1), alors \overline{c} est un tonneau.

En effet, il suffit seulement de vérifier que \bar{c} est absorbante et équlibrée :

 \bar{c} est absorbante, car c'est un voisinage de 0.

 \overline{c} est équilibrée. En effet, d'après (2.4.1; 2.4.6) il suffit de montrer que $c\left[\varepsilon(U)\right]$ est équilibrée. Or $c\left[\varepsilon(U)\right]$ identique à l'ensemble des barycentres $x=\sum\limits_{k=1}^{n}\alpha_kx_k$ affectés des masses positives $\alpha_1,\alpha_2,\ldots,\alpha_n$ avec, $\alpha_1+\alpha_2+\ldots\alpha_n=1$, $x_k\in\varepsilon(U)$. Donc, si $\lambda\in\mathbb{K}$, $|\lambda|\leq 1$, on a :

$$\lambda x = \sum_{k=1}^{n} \alpha_k(\lambda x_k) \ et \ \lambda x_k \in \varepsilon(U)$$

D'où $\lambda x \in c [\varepsilon(U)]$ pour $|\lambda| \leq 1, \lambda \in \mathbb{K}$. En résumé,

$$\begin{array}{ccc} U & \longrightarrow \varepsilon(U) \longrightarrow c \left[\varepsilon(U) \right] \\ \cap & \swarrow \\ c \left[\varepsilon(U) \right] \end{array}$$

3.3 Topologie définie par une famille de semi-normes

3.3.1

Soient E un espace vectoriel (sur \mathbb{K}) et $(q_i)_{i\in I}$ une famille de semi-normes sur E. Posons pour tout $i\in I$:

$$V_i = \{ x \in E / q_i(x) \le 1 \}$$

 V_i est convexe, équilibré, absorbant. On est dans la situation de la proposition 3.2.1. On peut donc munir E d'une structure d'E.V.T localement convexe. Un système fondamental de voisinages de 0 est constitué par des convexes de la forme :

$$(1) \lambda_1 V_{i_1} \cap \ldots \cap \lambda_n V_{i_n}$$

 $(\lambda_k > 0, \ k = 0, \dots, n, \ \{i_1, \dots, i_n\}$ partie finie de I).

Un voisinage W de 0 est alors un ensemble qui contient une partie de forme (1). Ainsi,

$$W_{i_1,\dots,i_n;\lambda_1,\dots,\lambda_n} \supset \bigcap_{j=1}^n \lambda_j V_{i_j} = \{ x \in E \ / \ q_{i_j}(x) \le \lambda_j \ , 1 \le j \le n \}$$

Remarque 3.3.1

Un ensemble de la forme

$$\lambda \bigcap_{j=1}^{n} V_{i_j} \ (\lambda > 0)$$

est convexe, équilibré, absorbant, et c'est un voisinage de 0. Or, on a :

$$\lambda_1 V_{i_1} \cap \ldots \cap \lambda_n V_{i_n} \supset (\min_{1 \le i \le n} \lambda_i) \bigcap_{j=1}^n V_{i_j}$$

Donc, la famille des ensembles de la forme :

$$\lambda \bigcap_{j=1}^{n} V_{i_j} = \{ x \in E / q_{i_j}(x) \le \lambda_j , 1 \le j \le n \}$$

forment un système fondamental de voisinages convexes de 0. Ainsi, $W_{i_1,\dots,i_n,\lambda}$ est voisinage de 0 si :

$$W_{i_1,...,i_n,\lambda} \supset \lambda \bigcap_{j=1}^n V_{i_j} = \{ x \in E \ / \ q_{i_j}(x) \le \lambda_j \ , 1 \le j \le n \}$$

Remarque 3.3.2

- Pour la topologie ainsi définie, toutes les semi-normes de la famille de semi-normes considérée sont continues d'après la propriété(2.4.7)
- Réciproquement, considérons un E.V.T. E (sur \mathbb{K}) localement convexe, et vérifions si la topologie de E provient d'une famille de semi-normes. Soit $(V_i)_{i\in I}$ une famille de tonneaux formant un système fondamental de voisinages de 0 (prop....). Soit J_{V_i} la jauge de V_i . J_{V_i} est une semi-norme sur E, elle est continue, car V_i est un voisinage de 0 (). La famille de semi-normes $(J_{V_i})_{i\in I}$ définit alors la topologie initiale de E. Car

$$V_i = \{ x \in E / J_{V_i}(x) \le 1 \}.$$

Théorème 3.3.1

Une famille $(q_i)_{i\in I}$ de semi-normes sur un espace vectoriel (sur \mathbb{K}) permet de munir E d'une structure d'E. V. T localement convexe. Un sysème fondamental de voisinages convexes, équilibrés, fermés de 0 est constitué par la famille des voisinages des tonneaux :

$$\lambda \bigcap_{j=1}^{n} V_{i_j} = \{ x \in E / q_{i_j}(x) \le \lambda, i_j \in I, 1 \le j \le n \text{ nquelconque} \}$$

Réciproquement, la topologie d'un E.V.T localement convexe peut être définie à partir d'une famille de semi-normes.

Remarque 3.3.3

Soit E un E. V. T localement convexe dont la topologie est définie par la famille de seminormes $(q_i)_{i\in I}$. Dire que la suite $(x_n)_{n\geq 1}$ d'éléments de E converge vers zéro, signifie que pour tout voisinage W de 0, il existe un nombre n_0 tel que pour toute $n\leq n_0$ tel que $x_n \in W$. Traduisons ce fait en utilisant les semi-normes (q_i) . Soit $\varepsilon > 0$ donné. L'ensemble $\{x \in E \mid q_i(x) \le \varepsilon\} = W$ est un voisinage de 0 pour tout $i \in I$. Il existe donc un nombre $n_0(i,\varepsilon)$ pour tout $n \ge n_0$ $x_n \in W$, c'est-à-dire, $\forall n \ge n_0$ $q_i(x_n) \le \varepsilon$. D'où $\lim_{n \to +\infty} q_i(x_n) = 0$ pour tout $i \in I$. Réciproquement, cette derniére propriété entraine que x_n converge vers 0.

Proposition 3.3.1

Soit E un E.V.T dont la topologie est définie par une famille de semi-normes $(q_i)_{i\in I}$. E est séparé si et seulement si, pour tout $x_0 \neq 0$ $x_0 \in E$, il existe $i_0 \in I$ tel que $q_{i_0}(x_0) \neq 0$.

Preuve

En effet, si $q_{i_0}(x_0) = \alpha > 0$, l'ensemble $\{x \in E / q_{i_0}(x_0) \leq \frac{\alpha}{2}\}$ est un voisinage de 0 qui ne contient pas x_0 . Donc E est séparé. Réciproquement si E est séparé, il existe un voisinage W de 0 qui ne contient pas $x_0 \neq 0$, W contient un ensemble de la forme $\bigcap_{k=1}^n \{x \in E / q_{i_k}(x) \leq \alpha\}$. Donc il existe un indice $i_k \in I$ avec $q_{i_k}(x_0) \neq 0$ (Dans le cas contraire $x_0 \in W$).

3.4 E.V.T localement convexes métrisables

Soit $(E, ||\ ||)$ un espace normé. E est localement convexe et sa topologie est définie par une seule semi-norme (ici une norme). Il existe en outre un système dénombrable de voisinages convexes de 0 à savoir les boules centrées en 0 et de rayon $\frac{1}{n}$ (n = 1, 2, ...). On peut se demander si la topologie d'un E.V.T E localement convexe est métrisable, à condition que la famille de semi-normes qui définit la topologie de E soit dénombrable. En général, dans ce cas, la topologie de E ne peut définie à partir d'une seule semi-norme. Mais si E est séparé, on peut être définir une métrique sur E de sorte que la topologie définie par cette métrique soit la même que la topologie initiale de E. C'est l'objet de ce paragraphe.

Définition 3.4.1

Deux familles de semi-normes $(p_i)_{i\in I}$, $(q_i)_{i\in I}$ sur un espace vectoriel E sont dites équivalementes si elles définissent la même topologie localement convexe sur E.

Cela la signifie que si W est un voisinage de 0 pour la topologie définie par l'une des familles, alors W est un voisinage de 0 pour la topologie définie par l'autre famille.

Exemples 3.4.1

Soit $(p_i)_{i\in\mathbb{N}}$ une de suite de semi-normes sur l'espace vectoriel E. Considérons la suite croissante de semi-norme $(q_j)_{j\in\mathbb{N}}$ définie par :

$$q_0 = q_1 = p_0$$

 $q_2 = \max(p_0, p_1)$
 \vdots
 $q_n = \max(p_0, p_1, \dots, p_{n-1})$

Les deux familles $(p_i)_{i\in\mathbb{N}}$ et $(q_i)_{i\in\mathbb{N}}$ sont alors équivalentes. En effet, soit \mathcal{F} la topologie localement convexe de E définie par les (p_i) et \mathcal{F}' celle définie par les q_i . Soit W un voisinage de 0 pour \mathcal{F} . Il existe des indices i_1, \ldots, i_n, N , et $\lambda > 0$ tels que

$$W \supset \bigcap_{j=1}^{n} \{ x \in E / p_{i_j}(x) \le \lambda \} \supset \{ x \in E / q_N(x) \le \lambda \}$$

Le dernier ensemble est un voisinage de 0 pour \mathcal{F}' . Donc \mathcal{F}' est plus fine que \mathcal{F} . D'une manière analogue, on vérifie que \mathcal{F} est plus fine que \mathcal{F} . Finalement $\mathcal{F} = \mathcal{F}'$.

Proposition 3.4.1

- Si la topologie d'un E.V.T séparé E est définie par une seule semi-norme q, alors q est une norme et E est espace normé.
- Si la topologie de E est défine par une famille finie de semi-normes q_1, \ldots, q_n , la topologie de E peut être définie par une seule semi-norme (par exemple $q = \max(q_1, \ldots, q_n)$ ou $p = \sum_{i=1}^n q_i$).

Preuve

E est séparé, donc d'après (3.3.1) pour tout $x \neq 0$ on a $q(x) \neq 0$ et q est une norme. La dernière partie résulte des inégalités :

$$q_i \le q \le p \le nq \quad (1 \le i \le n)$$

Théorème 3.4.1

Un E.V.T (sur \mathbb{K}) localement convexe séparé dont la topologie est définie par une famille dénombrable de semi-normes $(q_n)_{n\in\mathbb{N}}$ est métrisable.

Preuve

On peut supposer $(q_n)_{n\in\mathbb{N}}$ croissante (quitte à remplacer la suite q_n par une suite équivalente (3.4.1). Considérons l'application :

$$\delta: E \to \mathbb{R}+$$

$$x \to \delta(x) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \frac{q_n(x)}{1+q_n(x)} (q_n \le q_{n+1}, n = 0, 1, \ldots)$$

La série étant majorée par $\sum_{n=0}^{+\infty} \frac{1}{2^n} = 2$ est convergente pour tout $x \in E$.

L'application δ possède les propriétés suivantes :

1.1
$$(\delta(x) = 0) \Leftrightarrow (x = 0)$$

1.2 $\delta(x) = \delta(-x)$
2.1 $\delta(x + y) \leq \delta(x) + \delta(y)$
2.2 $\delta(\lambda x) < \delta(x) \sin |\lambda| < 1 \ (\lambda \in \mathbb{K})$

Démonstration :

1.1 Si x = 0, on a $q_n(0) = 0$ pour tout n. Donc $\delta(0) = 0$. Si $x \neq 0$, l'espace E étant séparé, il existe un indice n_0 tel que $q_{n_0}(x) \neq 0$ (d'aprés la proposition 3.3.1). Donc $\delta(x) \neq 0$, alors on a l'équivalence ($\delta(x) = 0$) $\Leftrightarrow (x = 0)$.

1.2 On a
$$q_n(x) = q_n(-x)$$
 pour tout n. Donc $\delta(x) = \delta(-x)$.

2.1

On a les inégalités :
$$\begin{cases} q_n(x+y) & \leq q_n(x) + q_n(y) \\ \frac{a+b}{1+a+b} & \leq \frac{a}{1+a} + \frac{b}{1+b} \ (a,b \geq 0) \end{cases}$$

et du fait que l'application $t \longmapsto \frac{t}{1+t}$ définie sur $]-1,+\infty[\longrightarrow \mathbb{R}$ est croissante, on obtient :

$$\frac{q_n(x+y)}{1+q_n(x+y)} \le \frac{q_n(x)+q_n(y)}{1+q_n(x)+q_n(y)} \le \frac{q_n(x)}{1+q_n(x)} + \frac{q_n(y)}{1+q_n(y)}$$

 $D'où \delta(x+y) \le \delta(x) + \delta(y).$

 $2.2 Si |\lambda| \leq 1$,

$$\frac{q_n(\lambda x)}{1 + q_n(\lambda x)} \le \frac{q_n(x)}{1 + q_n(x)}$$

 $(car \ q_n(\lambda x) = |\lambda| q_n(x)). \ D'où \ \delta(\lambda x) \le \delta(x) \ (|\lambda| \le 1).$

3. Les propriétés de δ montrent que l'application

$$p: E \times E \rightarrow \mathbb{R}_+$$

 $(x,y) \rightarrow p(x,y) = \delta(x-y)$

est une métrique sur E invariante par translation :

$$p(x+a, y+a) = p(x, y)$$

4. La topologie \mathcal{F}' définie par p sur E est la topologie initiale \mathcal{F} de E. Il suffit d'établir que tout voisinage de 0 pour \mathcal{F}' est un voisinage de 0 pour \mathcal{F} et réciproquement. Comme p est invariante par translation en il résultera $\mathcal{F} = \mathcal{F}'$.

Pour tout $k \in \mathbb{N}$ considérons la boule

$$U_k = \{x \in E / p(x,0) \le \frac{1}{2^k}\}$$

et le voisinage $V_k = \{x \in E / q_{k+1}(x) \leq \frac{1}{2^{k+2}}\}$. Alors on a $V_k \subset U_k$. En effet, si $x \in V_k$, alors

$$q_0(x) \le q_1(x) \le \dots \le q_{k+1}(x) \le \frac{1}{2^{k+2}}$$

$$\frac{q_n}{1 + q_n(x)} \le q_n(x) \le \frac{1}{2^{k+2}} (n \le k+1).$$

Donc,

$$p(x,0) = \begin{pmatrix} \sum_{n=0}^{k+1} \frac{1}{2^n} \frac{q_n(x)}{1+q_n(x)} \end{pmatrix} + \begin{pmatrix} \sum_{n=k+2}^{+\infty} \frac{1}{2^n} \frac{q_n(x)}{1+q_n(x)} \end{pmatrix}$$

$$\leq \begin{pmatrix} \sum_{n=0}^{k+1} \frac{1}{2^n} \frac{1}{2^{k+2}} \end{pmatrix} + \begin{pmatrix} \sum_{n=k+2}^{+\infty} \frac{1}{2^n} \end{pmatrix}$$

$$\leq \frac{1}{2^{k+2}} \begin{pmatrix} \sum_{n=0}^{k+1} \frac{1}{2^n} \end{pmatrix} + \frac{1}{2^{k+1}} \leq \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = \frac{1}{2^k}$$

et $x \in U_k$. Ainsi, pour tout voisinage de 0 (pour \mathcal{F}') contient un voisinage de 0 (pour \mathcal{F}). Réciproquement, un voisinage W_1 de 0 pour \mathcal{F} contient un voisinage W de 0 pour \mathcal{F} de la forme:

$$W_1 \subset W = \{x \in E / q_m(x) \le \frac{1}{2^k}\} (m, k) \text{ entiers}$$

et W contient la boule

$$V = \{x \in E / p(x,0) \le \frac{1}{2^{m+n+1}}\}\$$

En effet, si $x \in V$, alors

$$\frac{1}{2^m} \frac{q_m(x)}{1 + q_m(x)} \le \frac{1}{2^{m+k+1}}$$

D'où $\frac{q_m(x)}{1+q_m(x)} \le \frac{1}{2^{k+1}}$ qui entraîne $q(x) \le \frac{1}{2^k}$ et $x \in W \subset W_1$.

Remarque 3.4.1

Si λ_n converge vers 0 dans \mathbb{K} , alors $p(\lambda x, 0)$ converge vers zéro pour tout $x \in E$. En effet, $\lambda_n x \to 0$ (pour \mathcal{F}).

Le théorème 3.4.1 peut être énoncé comme suit :

Un E.V.T (sur \mathbb{K}) séparé, localement convexe, qui admet un système démombrable de voisinages convexes de 0 est métrisable (en vertu de la réciproque du théorème 3.3.1).

Remarque 3.4.2

Une démonstration plus fine permet de montrer le théorème suivant :

Soit un E un E.V.T séparé. S'il existe un système fondamental dénombrale de voisinages de

0, alors la topologie de E peut être définie à partir d'une métrique invariante par translation.

3.5 Sous-ensembles bornés

3.5.1

On sait que dans un espace normé, un sous-ensemble A est dit borné s'il est contenu dans une boule de centre 0 et de rayon $R < +\infty$. Il en résulte que pour tout voisinage ω de 0, on peut trouver un nombre $\alpha > 0$ tel que $A \subset \alpha \omega$. Cette dernière propriétié sert comme définition des bornés dans un E.V.T.

Définition 3.5.1

Soit E un E. V. T (sur \mathbb{K}). Un sous-ensemble A de E est dit borné, si pour tout voisinage V de 0, il existe un nombre $\alpha > 0$ tel que $A \subset \lambda V$ pour tout $|\lambda| \geq \alpha$ ($\lambda \in \mathbb{K}$). On dit alors que V absorbe A.

Remarque 3.5.1

A est borné si les éléments d'un système fondamental de voisinages de 0 absorbent A.

Propriétés 3.5.1

 P_1 - Si V est un voisinage équilibré de 0 et A un sous -ensemble borné de E, alors l'inclusion $A \subset \lambda V$ pour tout $|\lambda| \geq \lambda_0 > 0$ est réalisée à condition que $A \subset \lambda_0 V$. En effet $|\lambda| \geq \lambda_0$ entraîne $|\lambda^{-1}\lambda_0| \geq 1$ et $\lambda^{-1}\lambda V \subset V$ (car V est équilibré). Donc $A \subset \lambda_0 V$ entraîne $A \subset \lambda(\lambda^{-1}\lambda_0)V \subset \lambda V$.

 P_2 - Un sous-ensemble contenu dans un ensemble borné est lui-même borné.

P₃- Un ensemble réduit à un point est borné (car tout voisinage de 0 est absorbant).

 P_4 - Une réuion finie de sous-ensembles bornés est bornée.

 P_5 - L'adhérence \overline{A} d'un sous-ensemble borné A est borné.

En effet, soit ω un voisinage de 0; ω contient un voisinage fermé V. Or A étant borné, il existe $\alpha > 0$ tel que $A \subset \lambda V$ ($|\lambda| \ge \alpha$) et par conséquent $\overline{A} \subset \overline{\lambda V} = \lambda V \subset \lambda \omega$. C'est-à-dire tout voisinage de 0 absorbe \overline{A} .

 P_6 - Soit E localement convexe dont la topologie est définie par une famille de semi-normes $(q_i)_{i\in I}$. La partie $A\subset E$ est bornée si et seulement si chaque semi-norme q_i est bornée sur A (i.e. $\sup q_i(x) = M_i < +\infty$).

En effet, si A est borné, pour tout $i \in I$ il existe $\lambda_i > 0$ tel que

$$A \subset \lambda_i \{ x \in E / q_i(x) \le 1 \} = \{ x \in E / q_i(x) \le \lambda_i \}$$

Donc, $\sup_{x \in A} q_i(x) = M_i \le \lambda_i$.

Réciproquement, supposons $\sup_{x\in A}q_i(x)=M_i<+\infty$ pour tout $i\in I$. Tout voisinage V de 0 contient un voisinage de 0 de la forme $\lambda_0 \cap V_{i_j}$ où $V_{i_j}(x)=\{x\in E\,/\,q_{i_j}(x)\leq 1\}(\lambda_0>0).$ Soit $M=\max(M_{i_j},\ldots,M_{i_j})$ on a:

$$A \subset \{x \in E / q_{i_i}(x) \le M_{i_i}\} \ (1 \le j \le n)$$

Donc

$$A \subset \bigcap_{j=1}^{n} M_{i_j} V_{i_j} \subset M \bigcap_{j=1}^{n} V_{i_j} = \frac{M}{\lambda_0} \lambda_0 \bigcap_{j=1}^{n} V_{i_j} \subset \frac{M}{\lambda_0} V \subset \lambda V \ (|\lambda| \ge \frac{M}{\lambda_0}).$$

Ainsi, V absorbe A.

Proposition 3.5.1

Soit E un E.V.T. séparé et localement convexe. S'il existe un voisinage borné V de 0, alors E est un espace normé.

Preuve

D'après la proposition 3.1.1, il existe un voisinage-tonneau W de 0 contenu dans V. Soit J_W la jauge de W, J_W est une semi-norme. Soit \mathcal{F}' la topologie définie par J_W sur l'espace vectoriel E. Montrons que \mathcal{F}' est identique à la topologie initiale \mathcal{F} de E. Un système fondamental de voisinages de 0 pour \mathcal{F}' est constitué par la famille $(W_{\varepsilon})_{\varepsilon>0}$ où

$$W_{\varepsilon} = \{ x \in E / J_W(x) \le \varepsilon \} = \varepsilon \{ x \in E / J_W \le 1 \} = \varepsilon W \subset \varepsilon V.$$

(d'aprés la propriété 2.4.7) Soit U un voisinage de 0 pour \mathcal{F} . V étant borné, il existe $\lambda>0$ tel que $\frac{1}{\lambda}V\subset U$. D'où $W_{\frac{1}{\lambda}}\subset \frac{1}{\lambda}V\subset U$.

Finalement, la famille $(W_{\varepsilon})_{\varepsilon>0}$ est aussi un système fondamental de voisinage de 0 pour \mathcal{F} . Donc $\mathcal{F} = \mathcal{F}'$, E étant séparé, J_W est une norme 3.4.1 et E un espace normé.

Proposition 3.5.2

Dans un E.V.T E, séparé une partie compacte est bornée.

En effet, soient K un compact de E et V un voisinage de 0 (on pourra supposer V ouvert, équilibré grâce à la proriété $\mathcal{V}_{(6)}$ de 2.3.1). On a $K \subset \bigcup_{n=1}^{+\infty} nV = E$ (noter que V est aussi

absorbant). La famille $(nV)_{n\in\mathbb{N}^*}$ est un recouvrement ouvert de K, on peut en extraire un recouvrement fini :

$$K \subset n_1 V \cup n_2 V \cap \ldots \cap n_p V$$

V étant équilibré, $n_j V \subset (\max_{1 \leq j \leq p} n_j) V$ et $K \subset (\max_{1 \leq j \leq p} n_j V)$.

3.6 Applications linéaires sur les E.V.T.L.C séparés

Proposition 3.6.1

Soient E et F deux E.V.T.L.C. et $u: E \to F$ linéaire.

Alors on a u continue sur $E \Leftrightarrow u$ continue en 0.

En effet, supposons u est continue en 0. Soient $x \in E$ tel que $u(x) = y \in F$ et V = y + U ($U \in \mathcal{V}_{(0,F)}$) est un voisinage de y dans F. u étant continue en 0, il existe $U' \in \mathcal{V}_{(0,E)}$ tel que $u(x + U') = u(x) + u(U') = y + u(U') \subset y + U$ ce qui montre la continuité de u au point x. La réciproque est immédiate. En termes de semi-nomes on a le critère (trés utile) suivant pour vérifier si l'application linéaire u est continue :

Critére 3.6.1

L'application linéaire $u: E \to F$ est continue si et seulement si, pour toute semi-norme continue q sur F, il existe une constante M > 0 et une semi-norme continue p sur E tel $que <math>q \circ u \leq Mp$ (i.e):

(1)
$$(q \circ u)(x) \leq Mp(x)$$
 pour tout $x \in E$.

Preuve

Si q est une semi-norme continue sur F, $q \circ u$ l'est aussi. On prend alors $p = q \circ u$, M = 1. Réciproquement, supposons (1) vérifiée. Pour tout voisinage V de 0 dans F, $u^{-1}(V)$ est un voisinage de 0 dans E. F étant localement convexe, on peut choisir V convexe équilibré. Alors J_V (la jauge de V) est une semi-norme continue sur F. Il existe p semi-norme continue sur E et M > 0 tel que $(J_V \circ u)(x) \leq Mp(x)$ $(x \in E)$ ce implique la continuité de la semi-norme $J_V \circ u$ sur E. L'ensemble $U = \{x \in E \mid (J_V \circ u)(x) < 1\}$ est donc un voisinage de 0 dans E et on a:

$$(x \in U) \Leftrightarrow (u(x) \in \{x \in E \mid J_V(x) < 1\} \subset V) \Rightarrow (u(x) \in V) \Rightarrow (x \in u^{-1}(V)) \Rightarrow U \subset u^{-1}(V).$$