Linear Algebra

COMP40017

17 May 2023

Questions are © 2023 Imperial College London.

1. Let $A\vec{x} = \vec{b}$ be a system of linear equations where,

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 4 & 3 & 2 & 1 \\ 10 & 5 & 4 & 1 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 4 \\ 5 \\ 7 \end{bmatrix}$$

- (a) i. Perform elementary row operations on the augmented matrix $[A \mid \vec{b}]$ to reduce A to its Reduced Row Echelon Form.
 - ii. State the free variables.
 - iii. Find the general solution (solution set S) of $A\vec{x} = \vec{b}$ and describe it geometrically.
- (b) i. Find the rank and nullity of A.
 - ii. Find a basis for the image space im(A).
 - iii. Find a basis for the kernel ker(A).
 - iv. Find the rank and nullity of A^{\top} .
 - v. Find a 'simple' basis for the image space im (A^{\top}) .
 - vi. Find the kernel ker (A^{\top}) .
- (c) i. Find the solution of $A\vec{x} = \vec{b}$ closest (lowest squared Euclidean distance) to the origin $\overrightarrow{0}$.
 - ii. Find the projection of the vector $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\top}$ onto the kernel $\ker(A)$.

2. (a) Let
$$A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$$

- i. Compute the eigenvalues and eigenspaces of A.
- ii. Determine a transformation matrix B such that $B^{-1}AB$ is a diagonal matrix and provide this diagonal matrix.
- iii. Compute A^9
- iv. Find the expression for A^{-2} in terms of I,A and A^2 using the Cayley-Hamilton Theorem.
- (b) Let $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4 \in \mathbb{R}^4$ such that,

$$ec{a}_1 = \left[egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}
ight], ec{a}_2 = \left[egin{array}{c} 0 \\ 1 \\ 1 \\ 1 \end{array}
ight], ec{a}_3 = \left[egin{array}{c} 1 \\ 0 \\ 1 \\ 1 \end{array}
ight], ec{a}_4 = \left[egin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}
ight]$$

Let $A = (\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4)$

- i. Show that A is an ordered basis of \mathbb{R}^4 .
- ii. Let $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4)$ be an orthonormal basis of \mathbb{R}^4 such that $\vec{b}_1 = \vec{a}_1$. Find \vec{b}_2, \vec{b}_3 , and \vec{b}_4 .
- iii. Consider a vector \vec{x}_0 whose coordinates with respect to A are

$$\vec{x}_0 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}_{\text{w.r.t. } A}^{\top}$$

Compute the coordinates of \vec{x}_0 with respect to B.

iv. Also, consider a vector $\vec{y_0}$ whose coordinates with respect to B are

$$\vec{y}_0 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}_{\text{w.r.t } B}^{\top}$$

Compute the coordinates of \vec{y}_0 with respect to A.

v. Consider a linear mapping $f: \mathbb{R}^4 \to \mathbb{R}^4$ such that in terms of the standard ordered basis, it is defined as follows:

$$f([x_1, x_2, x_3, x_4]^{\top}) = [x_1 + x_2, x_2 + x_3, x_3 + x_4, x_4 + x_1]^{\top}$$

Compute the same linear transformation f in terms of different bases:

$$f_{AB}: \mathbb{R}^4_B \to \mathbb{R}^4_A$$