AILAB SEMINAR #19

BERT

220223 한양대학교 인공지능연구실 김민지

1

PLM

Pre-trained Language Model

(Previous) Word2Vec

PLM

- 하나의 단어를 하나의 Vector로 Mapping
- 다의어나 동음이의어를 구분하지 못한다는 한계가 존재

Pre-trained Language Model - LSTM

PLM

- Semi-supervised Sequence Learning, Google, 2015
- LSTM 언어 모델을 학습(Unlabeled Data)하고 나서 Text 분류 등 Task에 대해 추가 학습

Pre-trained Language Model - ELMo

PLM

- ELMo: Deep contextualized word representations, Al2 & Univ. of Washington, 2017
- 순방향 언어 모델과 역방향 언어 모델을 각각 Pre-training 후 Input으로 사용

Bidirectional 언어 모델?

PLM

- 양방향 Cell로 언어 모델을 구현하면 자기 자신을 보고 예측하는 것과 같음
- 이전 단어를 보고 다음 단어를 예측하는 언어 모델에는 적합하지 않음

2

BERT

Bidirectional Encoder Representations from Transformers

BERT - Bidirectional Encoder Representations from Transformers

PLM

- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019
- Pre-train deep bidirectional representation을 위해 제시
- Unsupervised Fine-tuning Approach 기반의 language representation model

Model Architecture

PLM

BERT

■ *Tensor2tensor*의 Multi-layer bidirectional Transformer encoder를 사용

Model Architecture

PLM

BERT

- *BERT_{BASE}* (L=12, H=768, A=12, Total Parameters=110M)
- *BERT_{LARGE}* (L=24, H=1024, A=16, Total Parameters=340M)
- GPT와의 비교를 위한 Base model 제시

Fine-tuning approach

OpenAl GPT T₁ T₂ ... T_N Trm Trm ... Trm Trm E₁ E₂ ... E_N

Left-to-right (Decoder)

Feature-based approach

Concatenation of left-to-right and right-to-left LSTMs

Input / Output Representations

PLM

- "Sentence": 임의의 연속적인 text (문장, 구 등)
- "Sequence": 1개 또는 2개의 sentence로 구성된 Input token들
- [CLS]: Special classification token (Sequence의 처음에 위치)
- [SEP]: Special separation token (Sentence 구분)

Pre-training BERT

PLM

- Deep bidirectional representation을 학습하기 위해 두 가지 Task를 정의
- BookCorpus (800M words)와 English Wikipedia (2,500M words) 사용
- Task #1: Masked LM (MLM)
- Task #2: Next Sentence Prediction (NSP)

Task #1: Masked LM

PLM

BERT

- 각 Input token sequence 의 15%를 Random하게 Masking
- Final hidden state에서 Masked Token을 예측

Example My dog is hairy 15%

80% of the time My dog is [MASK] Replace the word with [MASK] token

10% of the time My dog is apple Replace the word with a random word

10% of the time My dog is hairy Keep the word unchanged

Task #2: Next Sentence Prediction (NSP)

PLM

- Question Ansering(QA) & Natural Language Interference(NLI): 문장 간 관계 학습이 필요
- Sentence A와 B를 두 가지 방식으로 구성, Final hidden vector의 C = IsNext / NotNext

```
Actual Next sentence (50%) Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Random Sentence (50%) Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext
```

Fine-tuning BERT

PLM

BERT

- 각 Task에 맞게 Input과 Output을 도입하여 Fine-tuning 후 사용
- Single sentence일 때와 Multiple sentence일 경우 모두를 Self-attention으로 처리
- (Bidirectional Cross Attention 과정을 따로 거칠 필요가 없음)
- Pre-training 에 비해 비교적 Inexpensive

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Experiments - GLUE

PLM

BERT

- GLUE Test Results
- https://gluebenchmark.com/leaderboard

		F1				orrelation			
System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
$BERT_{BASE}$	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Cnaarman

Experiments - SQuAD v1.1

PLM

- QA Task, The Stanford Question Answering Dataset
- Ablation Study에서 Pre-training의 NSP가 유의미함을 보임

Top Leaderboard Systems (Element	M	F1	EM	-				
Human			LIVI	F1				
#1 Ensemble - nlnet #2 Ensemble - QANet - Published	Dec 1	10th, 2	2018)					
#2 Ensemble - QANet - Published	-	-	82.3	91.2				
Published	-	-	86.0	91.7				
	-	-	84.5	90.5				
BiDAF+ELMo (Single) -	Published							
	-	85.6	-	85.8				
R.M. Reader (Ensemble) 81	.2	87.9	82.3	88.5				
Ours								
$BERT_{BASE}$ (Single) 80	8.0	88.5	-	-				
BERT _{LARGE} (Single) 84	1.1	90.9	-	-				
BERT _{LARGE} (Ensemble) 85	8.8	91.8	-	-				
BERT _{LARGE} (Sgl.+TriviaQA) 84	.2	91.1	85.1	91.8				
BERT _{LARGE} (Ens.+TriviaQA) 86	5.2	92.2	87.4	93.2				

]			
Tasks	MNLI-m				SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
$BERT_{BASE}$	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

Conclusion

PLM

- Performance 측면에서 대단한 Model을 제시함
- Unsupervised Pre-training를 수행하고 나면 (Google TPU로 수 일 소요)
- 특정 Task를 위한 Fine-tuning의 비용이 적게 필요하다는 장점
- Bidirectional Architecture를 적합한 Task를 정의하여 제시함

Any Question?

Thank you

들어주셔서 감사합니다

References

- https://jalammar.github.io/illustrated-word2vec/
- https://wikidocs.net/108730
- https://arxiv.org/pdf/1810.04805.pdf
- https://nlp.seas.harvard.edu/2018/04/03/attention.html
- https://github.com/SKTBrain/KoBERT#naver-sentiment-analysis