Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

• Chain rule (valid for all distributions):
$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^n P(x_i | x_1, ..., x_{i-1})$$

• <u>Assume</u> conditional independences:

→ Consequence:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

 $P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$

- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Coin Flips

 $P(X_1)$

P(h, h, t, h) =

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

101	1/4	3/4
1	+L	J-

P(T|R)

Example: Alarm Network

		_
P(B)	0.001	0.999
В	q+	q-

	Burg			
r(b)	0.001	666.0		

/	
/	rglary
\	Burg

/	
1	\prec
	р
	h
	せ
	<u>–</u>
	ŭ
\	

/	
	~
	6
	<u> </u>
	t
	ø

	Mary calls
Alarm	

l	Г
ı	
ı	
ı	L

P(J|A)

<

0.9

Ή

John calls

P(M A)	0.7	6.0	0.01	66.0
M	+m	-m	+m	m-
Α	+a	+a	-a	-a

0.05

Ή.

e-

0.1

+9

0.95

٩

	Sec.
H	

0.002

+

P(E)

ш

0.998

φ

P(A B,E)	0.95	0.05	0.94	0.06	0.29	0.71	0.001	0.999
А	+a	-a	+a	-a	+a	- a	+a	-a
Е	+e	+e	-e	-e	+e	+e	-e	-e
В	q+	q+	q+	q+	q-	q-	q-	q-

Example: Alarm Network

P(B)	0.001	0.999
В	q+	q-

0.002

+6

P(E)

ш

0.998

φ

	$\overline{\mathbb{Q}}$	
B		7 (

(F)	\$
B	

P(J|A)

4

	l	ш	+e	+e		٩	φ
	١	В	+b	+p		q+	Q+
_							
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.0	8.0	10.01	1	66 U	
>		+ H	-m	+w		-m	

+9

+9

٦

0.05

+

-9

0.1

т

+9

0.95

Τ

e-

-ع

P(A B,E)	0.95	0.05	0.94	90:0	0.29	0.71	0.001	0.999
Α	+a	-a	+a	-a	+a	-a	+ a	-a
Е	+e	+e	-e	-e	+e	+e	-e	-e
В	q+	q+	q+	q+	q-	q-	q-	q-

+m
— <i>j</i> ,
+a,
-e,
+b,
P(

 \prod

Example: Traffic

Causal direction

3/4	1/4	
+t	-t	
+L		

		-
_		
	$\Big)$	

1. 14	-
	111

R)
Ξ
P(

3/16	1/16	91/9	6/16
+t	-t	+t	-t
+L	+L	J-	J-

Example: Reverse Traffic

Reverse causality?

		₩	,
)		

P(T,R)

	10	10	
3/16	1/16	6/16	6/16
+t	1-	+1	1-
+r	+r	J-	J-

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
- How big is an N-node net if nodes have up to k parents?

 $O(N * 2^{k+1})$

Both give you the power to calculate

 $P(X_1, X_2, \dots X_n)$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables *Traffic* and *Drips*
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
- Today:
- First assembled BNs using an intuitive notion conditional independence as causality
- Then saw that key property is conditional independence
- Main goal: answer queries about conditions independence and influence
- After that: how to answer numerical queries (inference)

