Formal Languages

Dr D D Karunaratna

Lesson objectives

After successful completion of this lesson, you should be able to

- 1. describe the need for meta-languages.
- 2. describe the terms alphabet, syntax and semantics with examples.
- 3. describe the difference between abstract syntax and concrete syntax.
- 4. describe what a "string" is and operations that can be performed on strings.
- 5. define the Kleene closure of an alphabet and its properties.
- 6. define a language.
- 7. List the main components of BNF and to define simple languages by using BNF.
- 8. Identify whether a given string is in the language or not, given the definition of the language in BNF.
- 9. give the limitations of BNF.
- 10. define components of a language by using Syntax charts.
- 11. describe the main parts of a grammar.
- 12. describe the language defined by a given grammar and to define simple languages by using grammars.

Lesson objectives ...

- 13. Specify the conditions to be satisfied for the grammars to be equivalent.
- 14. classify grammars by using the **Chomsky's** scheme of classification.
- 14. construct a derivation sequence/parse tree for a given string.
- 15. Identify ambiguous grammars.

Formal Languages

- A useful programming language must be suited both for describing and for implementing the solution to a problem.
- There are many ways for specifying the syntax of languages.
- A formal language has to be described by using another language **meta-language.**
- A precise specification of a language requires an unambiguous meta-language.

- Definition of a language involves three fundamental aspects
 - Alphabet (Σ)
 - Syntax
 - Semantics

Alphabet (Σ)

- Alphabet (Σ) : A finite nonempty set of symbols.
 - The members of the alphabet can be considered as abstract entities with no meaning by themselves along.

Example:

C language alphabet includes symbols such as $a,+,\{if....$

Syntax and Semantics

- Consider the following sentences
 - 1. Snake is a mammal.
 - 2. Snake not mammal is.
 - 3. Snake is a reptile.

Which of the above statements are correct?

Syntax

- Syntax : linguistic form of sentences in the language
 - Only concerned with the form and structure of symbols of the language rather than the meaning.
 - The syntax of a programming language is commonly divided into two parts namely lexical syntax and phrase-structure syntax.
 - Lexical syntax describes the smallest units with significance tokens
 - Phrase-structure syntax describe how tokens can be combined into programs.

Syntax ...

```
Example: Lexical syntax <token>::= <identifier> | <numeral> | <reserved word>
```

```
Example : Phrase-structure syntax
cprogram> ::= program <identifier> <block>
<block> ::= <declaration seq> begin <command
    seq> end
```

Semantics

- Semantics: Linguistic meaning of syntactically correct sentences.
 - In programming languages semantics are ascribed in terms of the structure of the phrases.
 - For programming languages, semantics describes the behavior of a computer when executing a program in the language.
 - A syntactically correct program need not make any sense semantically.

Eg: Saman is a married bachelor.

Abstract Vs. Concrete Syntax

- Abstract syntax : Provides the definition of constructs.
- Concrete syntax : Provides the definition of the form of the constructs.

Example: Concrete syntax

String (Word)

- String(Word): finite sequence, $w = a_1 a_2 a_3 \dots a_n$, of symbols from the alphabet.
- Example
- $let \Sigma = \{a, b\}$
- then aa, abab are strings on Σ
 - Two strings are considered the same if all their letters are the same and in the same order.

Notation

- Lower case letters a,b,c,... are used for elements of Σ .
- Lower case letters u,v,w,.. Are used for string names.
- Example
- w = abaa string named w has the specific value abaa

String Operations

- Concatenation of two strings w and v is the string obtained by appending the symbols of v to the right end of w
- Reverse of a string is obtained by writing the symbols in reverse order.
- Length of a string w, denoted by |w| is the number of symbols in the string.
- Empty string, denoted by $\in(\lambda)$, is the string of length zero
 - $| \in | = 0$ $\in w = w \in = w$ holds for any string w

String Operations ...

- Let w = uv
- − u is said to be a prefix of w.
- v is said to be a suffix of w.
- Example
- w = abbab, then $\{ \in ,a,ab,abb,abba,abbab \}$ is the set of all prefixes of w.
- If w is a string, then wⁿ is the string obtained by concatenating w, n times.
- $w^0 = \in$ for any string w

String Operations ...

- Let Σ be an alphabet
- Σ^k is the set of strings of length k with symbols from Σ .

Example:

- let $\Sigma = \{0,1\}$
- $\Sigma^1 = \{0,1\}$
- $\Sigma^2 = \{00,01,10,11\}$
- $\Sigma^0 = \{ \in \}$

Kleene closure

- If Σ is an alphabet, then Σ^* , call the **Kleene closure** of the alphabet, denotes the set of strings obtained by concatenating zero or more symbols from Σ .
 - Kleene closure is a unary operation on a set Σ defined as $\Sigma^* = \{ \in \} \cup \Sigma^1 \cup \Sigma^2 \cup \dots$
 - $-\Sigma^+=\Sigma^*$ $\{\in\}$

What is a language?

- Informally a language L over an alphabet Σ is a subset of Σ^* .
 - A language can be empty, finite, infinite.

Example

- let $\Sigma = \{a,b\}$
- then $\{a,aa,aab\}$ is a **finite language** on Σ
- $L = \{a^nb^n | n \ge 0 \}$ is an. infinite language on Σ

• The Kleene closure of two different sets may define the same language.

Example

$$S = \{a, b, ab\}\ T = \{a, b, bb\}$$

Then both S* and T* are languages of all strings of a's and b's since any string of a's and b's can be factored into components of either a or b, both of which are in S and T.

Note: Other than letters, strings can also be elements of an alphabet.

• Theorem : $S^* = S^{**}$, for any set S

Proof:

$$x \in S^{**} \Rightarrow x = w_1 w_2..w_n$$
 where each $w_i \in S^*$
 $\Rightarrow w_i = l_1 l_2..l_m$ where each $l_i \in S$
 $\Rightarrow x$ is a concatenation of elements of S
 $\Rightarrow x \in S^*$
 $S^{**} \subseteq S^*$
Similarly prove $S^* \subseteq S^{**}$
Thus $S^* = S^{**}$

Principles of Programming Languages

- Since languages are sets, the union, intersection, and difference of two languages are automatically defined.
- The complement of a language is defined with respect to Σ^* .

$$L' = \Sigma * - L$$

• Concatenation of two languages L_1 and L_2 contains every string in L_1 concatenated with every string in L_2 .

$$L_1L_2 = \{xy \mid x \in L_1, y \in L_2\}$$

• Lⁿ is defined as the concatenation of L with itself n times

$$L^0 = \{ \in \}$$
$$L^1 = L$$

• The star-closure of a language is defined as $L^* = L^0 \cup L^1 \cup L^2 \dots$

• The positive closure of a language is defined as

$$L^+ = L^1 \cup L^2 \dots$$

Language Definition Mechanisms

- Giving a set of rules, which defines all the acceptable words of the language.
 - The set of language-defining rules can be of two kinds
 - Rules that can be used to identify whether a given string of alphabet letters is in the language or not
 - Rules that can be used to generate all the words in the language.
- A language L over an alphabet Σ is a subset of Σ^* . Thus set notations can be used to define languages. However set notation is inadequate to define complex languages.

Matalanguags BNF (Backus-Naur-Form)

- First used to describe Algol60.
- BNF is a language for defining the semantics of languages -metalanguage
- BNF greatly simplifies semantic specifications.

BNF (Backus-Naur-Form)

Components of BNF

- A finite set of terminal symbols(Σ) alphabet of the language
 - The sentences in the language are composed by assembling these symbols.
- A set of non-terminal symbols (N)- syntactic categories.
 - Represents different types of sentences in the language and their parts.
- Set of rewriting rules (Productions) (ρ)
 - Describe the structure of terminals in terms of terminals and non-terminals.
- A start symbol (S).
 - specifies the principal category being defined—for example, sentence or program.

In Classic BNF

 A non-terminal is usually given a descriptive name, and is written in angle brackets < >.

Examples:

<Identifier>,<Integer>,<Expression>, ...

Productions have the form

Leftside ::= definition or

Leftside → definition

Where leftside \in N and definition \in $(N \cup \Sigma)^*$

Example

How to define signed integers by means of BNF?

A number of extensions are employed with BNF grammars to increase readability and for the elimination of unnecessary recursion.

Extended BNF notation

- [x] : Optional element x (x or nothing)
- {..} : An arbitrary sequence of an element

Example

How to define signed integers by using extended BNF?

<signed integer> ::= [+| -]<digit>{<digit>}

Extended BNF notation

- White space is only meaningful to separate tokens.
- Rules are normally contained on a single line;
 - rules with many alternatives may be formatted alternatively with each line after the first beginning with a vertical bar.

Describing Lists in BNF

A rule in BNF is said to be **recursive** if its LHS appears in its RHS.

Example

 $< identifier_list > \rightarrow identifier$

- < *identifier_list* $> \rightarrow$ identifier, < *identifier_list* >
- When a BNF rule has its LHS also appearing at the beginning of its RHS, the rule is said to be left recursive.
- When a BNF rule has its LHS also appearing at the right end of the RHS, the rule is said to be right recursive.

 In a grammar for a complete language, the start symbol represents a complete program and is usually named < program >

Example: (Grammar 1) A grammar for a small language

Principles of Programming Languages

Derivations in this language

- \Rightarrow is read **derives**

Valid Programs

All strings of terminal symbols

Sentences defined by the BNF grammar

All sentences satisfying language constraints

- Derivation :
 - Leftmost derivations
 - Rightmost derivation
 - Neither leftmost nor rightmost
- Derivation order has no effect on the language generated by a grammar.

- The language defined by BNF grammar is the set of strings that can be parsed (or derived) using the rules of the grammar.
- BNF grammars have limited power in defining languages.
 - Conceptual dependencies cannot be defined by BNF Grammars.

Example:

- The same identifier may not be declared twice in the same block.
- An identifier cannot be used before declaring it.

Syntax Diagrams(Syntax charts)

Graphical representation for extended BNF rules

Example: Definition of an identifier

Possible paths represents the possible sequence of symbols

Lexical structures and Phrase structures

- The set of productions used to describe a real programming language grammar is usually divided into two distinct groups
 - Lexical structure : the way in which individual characters are combined to form words or tokens.
 - Phrase structure: the way in which the words or tokens of the language are combined to form components of programs.

- Formally, a grammar is a four-tuple(N, Σ, P, S)
 - N: the set of non-terminal symbols, denoted by capital letters – Denotes the syntactic classes of the grammar.
 - $-\sum$: the set of terminal symbols (or, simply, terminals), denoted by small letters
 - P: set of derivative productions, also called rules, or syntactic equations for generating permissible strings of terminals and non-terminals (sentential form), denoted as a whole by Greek letters.
 - S : A designated initial non-terminal from which all strings in the language are derived

Note:

$$-\sum \cap N = \emptyset \text{ and } S \in N$$

- The sentences of a language are generated by starting with the symbol S and applying productions from P to replace non-terminal symbols until a sentential form consisting only of terminals results.
- The set of all such sentences that can be derived in this way is the language defined by the grammar.
- An infinite number of grammars can be developed to generate any particular language.
- A sentence generated by starting with S and applying the productions is called a **derivation**.

• The productions are given in the form $\alpha \to \beta$ where α , $\beta \in (\Sigma \cup N)^*$

Indicates the sentential form α may be replaced by the sentential from β

| : read as or, is used to group alternative right parts for the same production.

Derivations

- $w1 \Rightarrow * w2$
 - w1 can be converted to w2 by applying zero or more rules.
 - w1 derives w2
 - A partially derived string is called a *sentential form* and contains both terminals and non-terminals

$$\omega 1 \Rightarrow + w2$$

- derive in one or-more steps
- Language of a Grammar G

$$L(G) = \{ w \mid w \in \Sigma^*, S \Rightarrow^* w \}$$

Example:

$$G = \{N, \Sigma, P, S\}$$
 where

$$N = \{S\}$$

$$\Sigma = \{0,1\}$$

Productions in P are

$$S \rightarrow 0S1 | \in$$

where \in is the empty string.

The language generated by this grammar consists of all strings containing n $(0 \ge)$ 0's followed by n 1's.

∈ Productions

Consider the productions of the form

$$L \rightarrow \in$$

results the erasure of the non-terminal L from the sentential form

Regular Grammars

Regular grammars have rules of the form

Example:

A grammar to generate binary strings ending in 0

$$A \rightarrow 0A|1A|0$$

Regular expressions can also be used to define languages.

Classes of Grammars

Chomsky's scheme of classification

Based on the format of the productions assume productions are of the form $\alpha_i \rightarrow \beta_i$

- Type 0 : Phrase structure grammars no restrictions on form of productions $\alpha_i \to \beta_i$ for all i
 - All formal grammars.
 - Generates all languages recognizable by a Turing machine

Chomsky's scheme of classification

- Type 1 : Context-sensitive grammars
 - $|\alpha_i| \le |\beta_i|$ for all i, where $|\cdot|$ denotes the length Note: null string would not be allowed as a right hand side of any production.

```
Example:
```

```
<sentence> ::= abc | a<thing>bc
<thing>b ::= b<thing>
<thing>c ::= <other>bcc
a<other> ::= aa | aa<thing>
b<other> ::= <other>b
```

Type 2 : Context free grammars (BNF Grammars)

 $\forall \alpha_I$ restricted to a single non-terminal symbol, for all i

- Can be recognized by pushdown automata
- Context free grammar is a common notation for specifying the syntax of programming languages.

Example:

In C if-else statement

Stmt \rightarrow **if** (expr) stmt **else** stmt

- Type 3 : regular grammars
 - all production of the form $A \rightarrow xB$ or $A \rightarrow x$ where A and B are non-terminals and x is in Σ^* right liner grammar.
 - all production of the form $A \to Bx$ or $A \to x$ where A and B are non-terminals and x is in Σ^* left liner grammar.
 - Can be recognized by finite automata.
- The syntax of a regular language can be expressed by a single EBNF expression.
 - only terminal symbols occur in the expression

Note: type t grammars are also type t-1 for all t > 0

• A language L(G) is said to be of type k if it can be generated by type k grammar.

Example:

- $G_1 = (\{0,1\},\{S\},\{S \to 0S1| \in \},S)$
- $G_2 = (\{0,1\}, \{S,Z,U\}, P, S)$ $P = \{S \to ZU, Z \to 0Z | \in , U \to 1U | \in \}$
- $G_3 = (\{0,1\}, \{S,R\}, P,S)$ $P = \{S \to 0S|0|1|1R| \in R \to 1|1R\}$
 - $-G_1,G_2,G_3$ are context free grammars
 - G₃ is regular
- The more restricted the grammar, the easier it is to construct a corresponding recognizer for the language generated by the grammar

• The BNF and context-free grammar forms are equivalent in power, the differences are only in notation.

Definition

Let
$$G = (N, \Sigma, P, S)$$
, then the set

 $L(G) = \{ w \mid w \in \sum^*, S \Rightarrow w \}$ is the language generated by G

- Two grammars are **equivalent** if they generate the same language.
 - Important in designing parsers.
 - For some grammars it is hard/impossible to build practical parser may be transformed into equivalent grammars that can be parsed.

Example

Let
$$G1 = (\{S\}, \{a,b\}, S, P1)$$
, with P1 given by $S \rightarrow aSb| \in$

Let $G2 = (\{A,S\}, \{a,b\}, S, P2)$, with P2 given by

$$S \rightarrow aAb | \in$$

$$A \rightarrow aAb \in$$

G1 is equivalent to G2

• Given a grammar of a language how can we prove that a given string is an element of the language?

Example:

Integer → Digit | Integer Digit

Digit $\rightarrow 0|1|2|3|4|5|6|7|8|9$

Is the string 352 in the language?

Two main methods

- Build a parse tree for the string
- Develop a derivation for the string

Parse Tree

Two different ways of building the parse tree

- Top-down
- Bottom-up

Derivation

```
Integer \Rightarrow Integer Digit \Rightarrow Integer Digit Digit \Rightarrow Digit Digit Digit \Rightarrow 3 5 Digit Digit \Rightarrow 3 5 2
```

- Each string on the right hand side of a derivation is called a sentential form.
 - Generally contains terminal and non-terminal symbols.
- There are many possible derivation paths from the start symbol to the final sentence depending on the order in which productions are applied.

Parse Trees

A parse tree pictorially shows how the start symbol of a grammar derives a string in the language.

Formally, given a context-free grammar, a parse tree is a tree with the following properties

- The root is labeled by the start symbol
- Each leaf is labeled by a token (terminal) or by \in
- Each interior node is labeled by a non-terminal
- If A is the nonterminal labeling some interior node and XYZ are the labels of the children of that node from left to right, then $A \rightarrow XYZ$ is a production

Canonical Derivations

Each derivation step requires two kinds of choices to be made.

- Selecting a non-terminal from the sentential form.
- Selecting a production for the non-terminal selected.

A canonical derivation is obtained by imposing some ordering rule for the selection of the next non-terminal to replace in a sentential form.

Two types of canonical derivations

- Left-most derivation
- Right-most derivation

Ambiguous Grammars

A grammar is ambiguous **if at least one sentence in its language has more than one valid parse tree**. Since the parse tree of a sentence is often used to infer its semantics, an ambiguous sentence can have multiple meanings.

Example

Expression → Expression – Expression

| Expression * Expression

| Factor

Factor → a | b | c

Principles of Programming Languages

• Consider the sentence a - b * c

No algorithm exists that can take an arbitrary grammar and determine with certainty and in finite time whether it is ambiguous or not.

Ambiguous Grammars...

- In the previous example the grammar does not reflects the true semantics of the operators results ambiguity.
- It is possible to embed some of the semantics of a language in its syntax.
- Example

Expression → Expression – Term | Term

Term → Factor | Term * Factor

Factor \rightarrow a | b | c

Ambiguous Grammars...

- Ambiguities can arise in recursive productions where a particular non-terminal can be replaced at two different locations in the definition.
- There exists no general method for determining whether an arbitrary BNF specification is ambiguous or not.