

Graphs

Graphs vs. trees

- A graph is a set of nodes (a.k.a. vertices)
 that may be connected by edges
- You can think of a graph as a generalization of a tree
 - In a tree, each node has one "previous" node and any number of "next" nodes
 - In a graph, each node can be connected to any number of nodes (including itself!) There is no notion of "hierarchy" like there is with a tree.

Types of graphs

- A simple graph is one in which each pair of vertices is connected by at most one edge
- In a multigraph, each pair of vertices may be connected by more than one edge
- A weighted graph assigns numerical values to its edges (these might represent cost, length, or some other metric associated with the edges)

Types of graphs

- In an undirected graph, the edges "go both ways" – if there's an edge between vertices A and B, it means you can go from A to B and also from B to A
- In a directed graph (a.k.a. digraph), each edge has a specific direction for example, it's possible to have an edge that goes from A to B, but not from B to A

Graph representations

- Two common computer representations:
 - An adjacency list stores a graph with V vertices as an array of V lists. Each list in the array corresponds to one vertex in the graph. The list associated with vertex i stores all the edges that are incident to ("head out of") vertex i.
 - An adjacency matrix stores a graph with V vertices as a V x V square matrix. Element [i][j] in the matrix indicates whether an edge exists between vertices i and j (1 = edge, 0 = no edge).

Adjacency list

[0]	0-3
[1]	1-2, 1-3, 1-4
[2]	2-1, 2-3
[3]	3-0, 3-1, 3-2, 3-4
[4]	4-1, 4-3

Equivalent adjacency list (the notation *i-j* indicates the edge between vertices *i* and *j*)

Adjacency list with a digraph

[0]	(empty)
[1]	1-3, 1-4
[2]	2-1, 2-3
[3]	3-0, 3-1
[4]	4-1, 4-3

Equivalent adjacency list

Adjacency matrix

	[0]	[1]	[2]	[3]	[4]
[0]	0	0	0	1	0
[1]	0	0	1	1	1
[2]	0	1	0	1	0
[3]	1	1	1	0	1
[4]	0	1	0	1	0

Equivalent adjacency matrix

Note that in an undirected graph, the adjacency matrix A is symmetric since an edge between vertices i and j (A[i][j] = 1) implies that there is also an edge between vertices j and i (A[j][i] = 1)

Adjacency matrix with a digraph

	[0]	[1]	[2]	[3]	[4]
[0]	0	0	0	0	0
[1]	0	0	0	1	1
[2]	0	1	0	1	0
[3]	1	1	0	0	0
[4]	0	1	0	1	0

Equivalent adjacency matrix

