Statistical Theory and Modeling (ST2601) Lecture 6 - The central theorems, transformations and Monte Carlo

Mattias Villani

Department of Statistics Stockholm University

Overview

- **■** Stochastic convergence
- Law of large numbers
- Central limit theorem
- Transformations of random variables
- Monte Carlo simulation

Stochastic convergence - asymptotics

- Performance of a statistical method in large samples $n \to \infty$.
- Can be a good approximation for finite samples.
- **Sequence of random variables** X_1, X_2, \ldots, X_n .
- Example: sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- What happens with X_n as $n \to \infty$?
 - ▶ Does it concentrate on a single value?
 - \triangleright Does the distribution of X_n stabilize?

Convergence in distribution

- The sequence $X_1, X_2, ..., X_n$ converges in distribution to the random variable X if "the cdf of X_n starts to look like the cdf of X" when n gets large.
- \blacksquare $F_n(x)$ is the cdf of X_n
- F(x) is the cdf of X

Definition. A sequence of random variables $X_1, ..., X_n$ converges in distribution to the random variable X, if

$$F_n(x) \to F(x)$$
 as $n \to \infty$,

for all x where $F(\cdot)$ is continuous, where $F_n(x)$ and F(x) are the cumulative distribution functions (cdf) of X_n and X, respectively. We then write $X_n \stackrel{d}{\to} X$.

NegBin converges in distribution to Poisson

NegBin converges in distribution to Poisson

NegBin converges in distribution to Poisson

Student-t converges in distribution to N(0,1)

Student-t converges in distribution to N(0,1)

Student-t converges in distribution to N(0,1)

Limit of a deterministic sequence

Mathematical limit at infinity for deterministic sequences

$$\lim_{n\to\infty} x_n = L$$

means that we can make sure that

$$|x_n - L| < \epsilon \qquad \iff \qquad x_n \in (L - \epsilon, L + \epsilon)$$

for any $\epsilon > 0$, by choosing a large enough n.

- **Example:** $x_n = \left(1 + \frac{1}{n}\right)^n$, with $\lim_{n \to \infty} x_n = e \approx 2.7183$.
- \blacksquare X_n are random variables, cannot guarantee that $|X_n L| < \epsilon$.

Limit of a deterministic sequence

Convergence in probability

The sequence X_1, X_2, \ldots, X_n converges in probability to the constant c if "the distribution of X_n concentrates around c" when n gets large.

Definition. A sequence of random variables X_1, \ldots, X_n converges in probability to a constant c, if for all $\epsilon > 0$

$$\Pr(|X_n - c| > \epsilon) \to 0 \quad as \quad n \to \infty.$$

We then write $X_n \stackrel{p}{\to} c$.

■ We can also have convergence in probability to a random variable *X* instead of a constant; see the prequel book.

Convergence in probability

 \blacksquare 50% and 95% probability intervals.

Law of large numbers

■ The law of large numbers tells us that the sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

converges in probability to the population mean $\mu = \mathbb{E}(X_i)$ as $n \to \infty$.

Theorem 4 (law of large numbers).

For independent random variables $X_1, X_2, ...$ with finite mean $\mu = \mathbb{E}(X)$ and finite variance we have

$$\bar{X}_n \stackrel{p}{\to} \mu$$

where $\stackrel{p}{
ightharpoonup}$ denotes convergence in probability, i.e., for all $\epsilon>0$

$$\Pr(|\bar{X}_n - \mu| \ge \epsilon) \to 0 \quad as \quad n \to \infty$$
 (5.3)

Law of large numbers - widget

Central limit theorem

The central limit theorem tells us that the sample mean \bar{X}_n converges in distribution to a normal distribution.

Theorem 6 (central limit theorem - informal version). Let X_1, X_2, \ldots be iid random variables with finite mean μ and variance σ^2 . Then for large n,

$$\bar{X}_n \stackrel{\text{approx}}{\sim} N(\mu, \sigma^2/n)$$

Have to **standardize** to avoid a degenerate distribution:

$$\frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} = \sqrt{n} \frac{(\bar{X}_n - \mu)}{\sigma}$$

Formal version

Theorem 5 (central limit theorem).

Let X_1, X_2, \ldots be iid random variables with finite mean μ and variance σ^2 . Then

$$\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \stackrel{d}{\to} N(0, 1),$$

as $n \to \infty$, where $\stackrel{d}{\to}$ denotes convergence in distribution.

Central limit theorem

Central limit theorem - widget

Transformations of random variables

- **Known**: the distribution of X is f(x)
- Wanted: the distribution of a transformed variable

$$Y = g(X)$$

- Why? We often need to transform the data.
- Bayes: we often need to transform parameters.
- Examples:
 - ▶ Linear: $Y = a + b \cdot X$
 - ▶ Log: Y = log(X)
 - ▶ Logit: $Y = \log\left(\frac{X}{1-X}\right)$

Transformations of random variables - example

- **E**xample:
 - **pdf**: $f_X(x) = 3x^2$ for 0 < x < 1
 - **cdf**: $F_X(x) = \int_0^x 3t^2 dt = [t^3]_0^x = x^3$
- **Linear transformation**: Y = 2 + 3X
- **cdf** of *Y*:

$$F_Y(y) = \Pr(Y \le y) = \Pr(2 + 3X \le y) = \Pr\left(X \le \frac{y - 2}{3}\right)$$
$$= F_X\left(\frac{y - 2}{3}\right) = \left(\frac{y - 2}{3}\right)^3$$

 \blacksquare **pdf** of Y

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_X\left(\frac{y-2}{3}\right) = f_X\left(\frac{y-2}{3}\right) \cdot \frac{1}{3}$$
$$= 3\left(\frac{y-2}{3}\right)^2 \cdot \frac{1}{3} = \left(\frac{y-2}{3}\right)^2 \quad \text{for } 2 \le y \le 5$$

Transformations of random variables - example

- A little more general: **linear transformation**: Y = a + bX
- **pdf** of *Y*

$$F_Y(y) = \Pr(Y \le y) = \Pr(a + bX \le y) = \Pr\left(X \le \frac{y - a}{b}\right) = F_X\left(\frac{y - a}{b}\right)$$

cdf of Y

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_X\left(\frac{y-a}{b}\right) = f_X\left(\frac{y-a}{b}\right) \cdot \frac{1}{b}$$

■ We computed the **inverse transformation**, i.e. solved for *x*

$$y = a + bx$$
 \iff $x = \frac{y - a}{b}$

General: if g(x) is an invertible function

$$y = g(x) \iff x = g^{-1}(y)$$

where $g^{-1}(y)$ is the inverse function.

Transformations of random variables

Transformation formula:

$$f_Y(y) = f_X\left(g^{-1}(y)\right) \left|\frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y)\right|$$

- Need three piece of information to apply the formula:
 - ▶ The **density** $f_X(x)$ for X
 - ▶ The inverse transformation $x = g^{-1}(y)$
 - ► The derivative of the inverse transformation

$$\frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y)$$

- Note that | · | is the absolute value (removes negative signs).
- For example |-3|=3 and |5|=5.

Transformations of random variables

Transforming variables - change-of-variable formula

Let $X \sim f_X(x)$ and

$$Y = g(X)$$

an invertible monotonically increasing or decreasing transformation with continuous derivative and inverse transformation

$$X = g^{-1}(Y).$$

The density of Y is then

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right|$$

- If Y = g(X) is piecewise monotone, handle each piece separately and sum up.
- **E**xample 3 on Wikipedia on transformations uses this on:
 - ► $X \sim N(0,1)$
 - $ightharpoonup Y = X^2$ which is monotone on $(-\infty,0)$ and $[0,\infty)$
 - Result: $Y \sim \chi^2(\nu = 1)$

Transformations of random variables - example

Let $X \sim N(\mu, \sigma^2)$ with pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Let $Y = \exp(X)$ with inverse transformation $X = \log(Y)$ with derivative

$$\frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y) = \frac{\mathrm{d}}{\mathrm{d}y}\log(y) = \frac{1}{y}$$

Then

$$f_Y(y) = f_X(\log(y)) \cdot \frac{1}{y} = \frac{1}{y\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(\log(y) - \mu)^2\right)$$

for y > 0.

■ We have shown: if $X \sim N(\mu, \sigma^2)$ then

$$\exp(X) \sim \text{LogNormal}(\mu, \sigma^2)$$

Monte Carlo simulation

- Let $X \sim f(x)$.
- Compute $\mathbb{E}(g(X))$ for some function Y = g(X) by simulation.
- Key idea: law of large numbers.
- Simulate $x_1, \ldots x_m \stackrel{\text{iid}}{\sim} f(x)$

$$\frac{1}{m}\sum_{i=1}^m g(x_i) \stackrel{p}{\to} \mathbb{E}\left(g(X)\right)$$

Monte Carlo to compute tail probability Pr(X > c)

$$g(x) = \begin{cases} 1 & \text{if } x > c \\ 0 & \text{if } x \le c \end{cases}$$

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx = \int_{-\infty}^{c} 0 \cdot f(x)dx + \int_{c}^{\infty} 1 \cdot f(x)dx$$
$$= \int_{c}^{\infty} f(x)dx = \Pr(X > c)$$

Monte Carlo accuracy via the CLT

Central limit theorem (informal)

$$\frac{1}{m} \sum_{i=1}^{m} g(x_i) \overset{\text{approx}}{\sim} N\left(\mu, \frac{\sigma^2}{N}\right)$$

where

$$\mu = \mathbb{E}\left(g(X)\right)$$

and

$$\sigma^2 = \mathbb{V}(g(X))$$