기계학습 (2022년도 2학기)

Ensemble I

전북대학교 컴퓨터공학부

Overview

- We've seen two particular learning algorithms: k-NN and decision trees
- Next two lectures: combine multiple models into an ensemble which performs better than the individual members
 - A key idea in ML more broadly
 - Generic class of techniques that can be applied to almost any learning algorithms...
 - ... but are particularly well suited to decision trees

Today

- Understanding generalization using the bias/variance decomposition
- Reducing variance using bagging

Next lecture

Making a weak classifier stronger (i.e. reducing bias) using boosting

Ensemble methods: Overview

- An ensemble of predictors is a set of predictors whose individual decisions are combined in some way to predict new examples
 - E.g., (possibly weighted) majority vote
- Intuitions:
 - Individuals often make mistakes, but the "majority" is less likely to make mistakes.
 - Individuals often have partial knowledge, but a committee can pool expertise to make better decisions.
- For this to be nontrivial, the learned hypotheses must differ somehow, e.g.
 - Different algorithm
 - Different choices of hyperparameters
 - Trained on different data
 - Trained with different weighting of the training examples
- Ensembles are usually easy to implement. The hard part is deciding what kind of ensemble you want, based on your goals.

Agenda

- This lecture: bagging
 - Train classifiers independently on random subsets of the training data.
- Next lecture: boosting
 - Train classifiers sequentially, each time focusing on training examples that the previous ones got wrong.
- Bagging and boosting serve very different purposes.
- → To understand this, we need to take a detour to understand the bias and variance of a learning algorithm.

Loss Functions

- A **loss function** L(y, t) defines how bad it is if the algorithm predicts y, but the target is actually t.
- Example: 0-1 loss for classification

$$L_{0-1}(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases}$$

- Averaging the 0-1 loss over the training set gives the training error rate, and averaging over the test set gives the test error rate.
- Example: squared error loss for regression

$$L_{\rm SE}(y,t)=\frac{1}{2}(y-t)^2$$

The average squared error loss is called mean squared error (MSE)

Bias and Variance

Training set의 변화에 따라 기계학습 알고리즘의 성능이 어떻게 달라지는지를 정량적으로 평가하기 위한 개념

주어진 test 입력 하나에 대해

Bias: (unknown) true function과 hypothesis (또는 model) h(x)들의 예측의 평균

Variance: hypothesis가 training set에 따라 동일한 입력 x에 대해 변화하는 정도 (즉 training set이 달라지면서 x에 대한 예측 값의 변화량)

Bias-Variance Decomposition

 Recall that overly simple models underfit the data, and overly complex models overfit.

- We can quantify this effect in terms of the bias/variance decomposition.
- Bias and variance of what?

■ Suppose the training set \mathfrak{D} consists of pairs (x_i, t_i) sampled independent and identically distributed (i.i.d.) from a single data generating distribution

 $p_{\text{data}} \ (\stackrel{\sim}{\lnot}, \mathfrak{D} \sim p_{\text{data}})$

Pick a fixed query point x
 (denoted with a green x)

Consider an experiment where
 we sample lots of training sets

independently from $p_{\rm data}$.

- Let's run our learning algorithm on each training set, and compute its prediction y at the query point x.
- We can view y as a random variable, where the randomness comes from the choice of training set.
- \blacksquare The classification accuracy is determined by the distribution of y.

■ Here is the analogous setup for regression:

- Notice: y is independent of t. (why? y는 training set에서 훈련된 h로부터 예측)
- This gives a distribution over the loss at x, with expectation $\mathbb{E}[L(y,t)|x]$ (독립적으로 sampling된 training set들로부터 개별적으로 훈련된 h들의 x에 대한 평균 loss)
- For each query point \mathbf{x} , the expected loss is different. We are interested in minimizing the expectation of the losses with respect to $\mathbf{x} \sim p_{\text{data}}$

- For now, focus on squared error loss, $L(y, t) = \frac{1}{2}(y t)^2$
- A first step: suppose we knew the conditional distribution p(t|x). What value y should we predict?
 - Here, we are treating t as a random variable and choosing y.

Claim: $y_* = \mathbb{E}[t \mid \mathbf{x}]$ is the best possible prediction.

Proof:
$$\mathbb{E}[(y-t)^2 \mid \mathbf{x}] = \mathbb{E}[y^2 - 2yt + t^2 \mid \mathbf{x}]$$

 $= y^2 - 2y\mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t^2 \mid \mathbf{x}]$
 $= y^2 - 2y\mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t \mid \mathbf{x}]^2 + \text{Var}[t \mid \mathbf{x}]$
 $= y^2 - 2yy_* + y_*^2 + \text{Var}[t \mid \mathbf{x}]$
 $= (y - y_*)^2 + \text{Var}[t \mid \mathbf{x}]$

$$\mathbb{E}[(y-t)^2 \,|\, \mathbf{x}] = (y-y_*)^2 + \mathsf{Var}[t \,|\, \mathbf{x}]$$

(목표: 위 식의 최소값일때 <math>y 값 구하기)

- The first term is nonnegative, and can be made 0 by setting $y = y_*$
- The second term corresponds to the inherent unpredictability, or **noise**, of the targets, and is called the **Bayes error**.

(예: Gaussian noise를 가지는 true function $t = f(x) + \epsilon, \epsilon \sim N(0, \sigma)$)

- This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is **Bayes optimal**.
- Notice that this term doesn't depend on y.
- This process of choosing a single value y_* based on $p(t|\mathbf{x})$ is an example of decision theory.

- Now return to treating y as a random variable (where the randomness comes from the choice of dataset).
- We can decompose out the expected loss (suppressing the conditioning on x for clarity):

$$\mathbb{E}[(y-t)^2] = \mathbb{E}[(y-y_*)^2] + \text{Var}(t)$$

$$= \mathbb{E}[y_*^2 - 2y_*y + y^2] + \text{Var}(t)$$

$$= y_*^2 - 2y_*\mathbb{E}[y] + \mathbb{E}[y^2] + \text{Var}(t)$$

$$= y_*^2 - 2y_*\mathbb{E}[y] + \mathbb{E}[y]^2 + \text{Var}(y) + \text{Var}(t)$$

$$= \underbrace{(y_* - \mathbb{E}[y])^2}_{\text{bias}} + \underbrace{\text{Var}(y)}_{\text{variance}} + \underbrace{\text{Var}(t)}_{\text{Bayes error}}$$

$$\mathbb{E}[(y-t)^2] = \underbrace{(y_* - \mathbb{E}[y])^2}_{\text{bias}} + \underbrace{\text{Var}(y)}_{\text{variance}} + \underbrace{\text{Var}(t)}_{\text{Bayes error}}$$

 $total\ error = irreducible\ error + error\ due\ to\ bias + error\ due\ to\ variance$ $reducible\ error$

- We just split the expected loss into three terms:
 - bias: how wrong the expected prediction is (corresponds to underfitting)
 - variance: the amount of variability in the predictions (corresponds to overfitting)
 - Bayes error: the inherent unpredictability of the targets

■ Even though this analysis only applies to squared error, we often loosely use "bias" and "variance" as synonyms for "underfitting" and "overfitting"

Bias/Variance Decomposition: Another Visualization

- We can visualize this decomposition in output space, where the axes correspond to predictions on the test examples.
- If we have an overly simple model (e.g. k-NN with large k), it might have
 - high bias (because it's too simplistic to capture the structure in the data)
 - low variance (because there's enough data to get a stable estimate of the decision boundary)

Bias/Variance Decomposition: Another Visualization

- If you have an overly complex model (e.g. k-NN with k = 1), it might have
 - low bias (since it learns all the relevant structure)
 - high variance (it fits the quirks of the data you happened to sample)

Bagging

Now, back to bagging!

Bagging: Motivation

- lacksquare Suppose we could somehow sample m independent training sets from p_{data} .
- We could then compute the prediction y_i based on each one, and take the average $y = \frac{1}{m} \sum_{i=1}^{m} y_i$
- How does this affect the three terms of the expected loss?
 - Bayes error: unchanged, since we have no control over it
 - Bias: unchanged, since the averaged prediction has the same expectation

$$\mathbb{E}[y] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^m y_i\right] = \mathbb{E}[y_i]$$

■ Variance: reduced, since we're averaging over independent samples

$$\operatorname{Var}[y] = \operatorname{Var} \left| \frac{1}{m} \sum_{i=1}^{m} y_i \right| = \frac{1}{m^2} \sum_{i=1}^{m} \operatorname{Var}[y_i] = \frac{1}{m} \operatorname{Var}[y_i]$$

Bagging: The Idea

- In practice, we don't have access to the underlying data generating distribution $p_{\rm data}$.
- It is expensive to independently collect many datasets.
- Solution: bootstrap aggregation, or bagging.
 - Take a single dataset \mathfrak{D} with n examples.
 - Generate m new datasets, each by sampling n training examples from \mathfrak{D} , with replacement.
 - Average the predictions of models trained on each of these datasets.

Bagging: The Idea

- Problem: the datasets are not independent, so we don't get the $\frac{1}{m}$ variance reduction.
 - Possible to show that if the sampled predictions have variance σ^2 and correlation ρ , then

$$\operatorname{Var}\left(\frac{1}{m}\sum_{i=1}^{m}y_{i}\right)=\frac{1}{m}(1-\rho)\sigma^{2}+\rho\sigma^{2}$$

- Ironically, it can be advantageous to introduce additional variability into your algorithm, as long as it reduces the correlation between samples.
 - Intuition: you want to invest in a diversified portfolio, not just one stock.
 - Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.

(data set을 완전히 독립적으로 sampling하는 것은 어려우므로 다른 종류의 모델들을 사용하여 예측들의 독립성을 높임. 즉 위의 식에서 ρ 을 줄임)

Random Forests

- Random forests = bagged decision trees, with one extra trick to decorrelate the predictions (전 페이지의 식에서 ρ 을 줄임)
- Collection of independently-trained binary decision trees
 - When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features
- Random forests are probably the best black-box machine learning algorithm
 - they often work well with no tuning whatsoever.
 - one of the most widely used algorithms in Kaggle competitions

Application: Microsoft Xbox 360 Kinect

Body part recognition: supervised learning

Infrared image

Gray scale depth map

Kinect Body Part Recognition

■ Problem: label each pixel with a body part

Kinect Body Part Recognition

■ Features: depth differences between pairs of pixels

$$f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$

 $d_{l}(\mathbf{x})$ is depth image, $\theta = (\mathbf{u}, \mathbf{v})$ is offset to second pixel

- Classification: forest of decision trees
 - Classify each pixel x in image I using all decision trees and average the results at the leaves:

$$P(c|I, \mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|I, \mathbf{x})$$

Summary

- Bagging reduces overfitting by averaging predictions.
- Used in most competition winners
 - Even if a single model is great, a small ensemble usually helps.
- Limitations:
 - Does not reduce bias.
 - There is still a correlation between classifiers.
- Random forest solution: Add more randomness.