```
import pandas as pd
import numpy as np
import numpy.random as rd
import seaborn as sns
import matplotlib.pyplot as plt
import graphviz
%matplotlib inline
df=pd.read_csv('Admission_Predict.csv')
df = pd.DataFrame(df)
         Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit 💢
                                                                                       0.92
                         337
                                                     4 4.5 4.5 9.65
                         324
                                    107
                                                     4 4.0 4.5 8.87
                                                                           1
                                                                                       0.76
                         316
                                    104
                                                     3 3.0 3.5 8.00
                                                                                       0.72
                                                                           1
      3
                         322
                                    110
                                                     3 3.5 2.5 8.67
                                                                           1
                                                                                       0.80
                         314
                                    103
                                                     2 2.0 3.0 8.21
                                                                                       0.65
                                                                                       0.82
     395
               396
                         324
                                    110
                                                     3 3.5 3.5 9.04
     396
               397
                         325
                                    107
                                                     3 3.0 3.5 9.11
                                                                                       0.84
     397
                         330
                                    116
                                                     4 5.0 4.5 9.45
                                                                                       0.91
                                                     3 3.5 4.0 8.78
                                                                            0
                                                                                       0.67
     398
               399
                         312
                                    103
     399
               400
                         333
                                    117
                                                     4 5.0 4.0 9.66
                                                                                       0.95
    400 rows × 9 columns
```

→ New Section

df=df.drop(columns='Serial No.') GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit 🎉 337 118 4 4.5 4.5 9.65 0.92 324 107 4 4.0 4.5 8.87 0.76 2 316 104 3 3.0 3.5 8.00 1 0.72 3 322 110 3 3.5 2.5 8.67 0.80 314 103 2 2.0 3.0 8.21 0.65 395 324 110 3 3.5 3.5 9.04 0.82 396 325 107 3 3.0 3.5 9.11 0.84 116 4 5.0 4.5 9.45 0.91 397 330 398 312 103 3 3.5 4.0 8.78 0.67 399 333 117 4 5.0 4.0 9.66 0.95

```
admission=[]
for i in df['Chance of Admit']:
    if (1>=0.9):
        admission.append(1)
    else:
        admission.append(0)
df['Admission']=admission
```

400 rows × 8 columns

```
GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit Admission
              337
                        118
                                         4 4.5 4.5 9.65
                                                                         0.92
              324
                        107
                                         4 4.0 4.5 8.87
                                                                         0.76
              316
                        104
                                         3 3.0 3.5 8.00
                                                                         0.72
              322
                        110
                                         3 3.5 2.5 8.67
                                                                         0.80
              314
                        103
                                         2 2.0 3.0 8.21
                                                                         0.65
     395
             324
                        110
                                         3 3.5 3.5 9.04
                                                              1
                                                                         0.82
                                                                                     Θ
     396
              325
                        107
                                         3 3.0 3.5 9.11
                                                                         0.84
df=df.drop(columns='Chance of Admit')
         GRE Score TOEFL Score University Rating SOP LOR CGPA Research Admission 💢
                                         4 4.5 4.5 9.65
                        107
                                         4 4.0 4.5 8.87
              316
                        104
                                         3 3.0 3.5 8.00
      3
              322
                        110
                                         3 3.5 2.5 8.67
                                         2 2.0 3.0 8.21
              31 LL
                        103
     395
              324
                        110
                                         3 3.5 3.5 9.04
     396
              325
                        107
                                         3 3.0 3.5 9.11
     397
              330
                        116
                                         4 5.0 4.5 9.45
     398
             312
                        103
                                         3 3.5 4.0 8.78
     399
              333
                        117
                                         4 5.0 4.0 9.66
    400 rows × 8 columns
df.fillna(df.mean(),inplace=True)
         GRE Score TOEFL Score University Rating SOP LOR CGPA Research Admission 💢
              337
                        118
                                         4 4.5 4.5 9.65
              324
                        107
                                         4 4.0 4.5 8.87
                                         3 3.0 3.5 8.00
      2
              316
                        104
                                         3 3.5 2.5 8.67
      3
              322
                        110
              314
                        103
                                         2 2.0 3.0 8.21
     395
                                         3 3.5 3.5 9.04
              324
                        110
     396
              325
                        107
                                         3 3.0 3.5 9.11
                                         4 5.0 4.5 9.45
     397
              330
                        116
     398
              312
                        103
                                         3 3.5 4.0 8.78
                                         4 5.0 4.0 9.66
     399
              333
                        117
    400 rows × 8 columns
X=df[['GRE Score','TOEFL Score','University Rating','SOP','LOR','CGPA','Research']]
Y=df[['Admission']]
X,Y
         GRE Score TOEFL Score University Rating SOP LOR CGPA Research
                             4 4.5 4.5 9.65
                       118
             324
                                         4 4.0 4.5 8.87
                                       3 3.0 3.5 8.00
              322
                                         3 3.5 2.5 8.67
             314
                        103
                                        2 2.0 3.0 8.21
                        110
                                       3 3.5 3.5 9.04
             324
     395
     396
             325
                        107
                                         3 3.0 3.5 9.11
     397
             330
                        116
                                         4 5.0 4.5 9.45
     398
             312
                        103
                                         3 3.5 4.0 8.78
             333
                        117
                                         4 5.0 4.0 9.66
     [400 rows x 7 columns], Admission
```

[400 rows x 1 columns])

from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2)

X_train

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	1		
303	323	107	3	3.5	3.5	8.55	1			
328	324	112	4	4.0	3.5	8.77	1			
22	328	116	5	5.0	5.0	9.50	1			
192	322	114	5	4.5	4.0	8.94	1			
321	323	104	3	4.0	4.0	8.44	1			
45	322	110	5	5.0	4.0	9.10	1			
103	317	104	2	4.5	4.0	8.47	0			
121	334	119	5	4.5	4.5	9.48	1			
236	325	112	4	4.0	4.5	9.17	1			
207	310	102	3	3.5	4.0	8.02	1			
320 rows × 7 columns										

X_test

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	1	
16	317	107	3	4.0	3.0	8.70	0		
186	317	107	3	3.5	3.0	8.68	1		
216	322	112	4	4.5	4.5	9.26	1		
334	312	107	4	4.5	4.0	8.65	1		
254	321	114	4	4.0	5.0	9.12	Θ		
4	314	103	2	2.0	3.0	8.21	0		
237	329	114	5	4.5	5.0	9.19	1		
305	321	109	3	3.5	3.5	8.80	1		
47	339	119	5	4.5	4.0	9.70	0		
263	324	111	3	2.5	1.5	8.79	1		
80 rows × 7 columns									

Y_train

```
Admission
     303
     328
     22
Y_test
                       %
          Admission
     16
     186
     216
     334
     254
     237
     305
     47
     263
    80 rows × 1 columns
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
DT1= tree.DecisionTreeClassifier(criterion = "entropy")
DT1=DT1.fit(X_train,Y_train)
y_predict = DT1.predict(X_test)
y_predict
    print("Testing accuracy is",accuracy\_score(Y\_test,y\_predict))
    Testing accuracy is 0.9
y_predict = DT1.predict(X_train)
print("Training accuracy is",accuracy_score(Y_train,y_predict))
    Training accuracy is 1.0
tree.plot_tree(DT1)
```

```
[Text(0.5, 0.916666666666666, 'X[5] <= 9.235\nentropy = 0.586\nsamples = 320\nvalue = [275, 45]'),
Taxt(0.2 0.75 'X[1] <= 118 0\nentropy = 0.035\nsamples = 272\nvalue = [271 1]'\
from sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(DT1,X_test,Y_test)
          /usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated.
             warnings.warn(msg, category=FutureWarning)
          <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f46214690d0>
                                     Predicted label
                                                               predicted= pd.DataFrame(y_predict)
predicted
                                                       1.
            315
            316
            317
            318
            319
          320 rows × 1 columns
DT2= tree.DecisionTreeClassifier(criterion = "gini")
DT2=DT2.fit(X_train,Y_train)
y_predict = DT2.predict(X_test)
           0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0])
print("Testing accuracy is",accuracy_score(Y_test,y_predict))
          Testing accuracy is 0.9
y_predict = DT2.predict(X_train)
print("Training accuracy is",accuracy_score(Y_train,y_predict))
          Training accuracy is 1.0
tree.plot_tree(DT2)
```

```
[Text(0.4230769230769231, 0.9, 'X[5] <= 9.235\ngini = 0.242\nsamples = 320\nvalue = [275, 45]'),
Text(0.153846153846153846, 0.5, 'gini = 0.807\nsamples = 277\nvalue = [271, 1]'),
Text(0.67392307692307693, 0.5, 'gini = 0.007\nsamples = 270\nvalue = [270, 0]'),
Text(0.23076923076923078, 0.5, 'X[3] <= 4.25\ngini = 0.5\nsamples = 1\nvalue = [270, 0]'),
Text(0.23076923076923078, 0.3, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(0.3076923076923077, 0.3, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(0.3076923076923070, 0.3, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(0.405384615384615384, 0.5, 'X[1] <= 114.5\ngini = 0.48\nsamples = 5\nvalue = [3, 2]'),
Text(0.405384615384615, 0.3, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),
Text(0.603307692307693, 0.3, 'X[0] <= 329.5\ngini = 0.045\nsamples = 3\nvalue = [0, 1]'),
Text(0.40538461538461, 0.5, 'X[0] <= 9.295\ngini = 0.045\nsamples = 48\nvalue = [1, 42]'),
Text(0.8461538461538461, 0.5, 'X[0] <= 9.295\ngini = 0.045\nsamples = 48\nvalue = [1, 42]'),
Text(0.6923076923076923, 0.1, 'gini = 0.0\nsamples = 4\nvalue = [0, 4]'),
Text(0.6923076923076923, 0.1, 'gini = 0.0\nsamples = 1\nvalue = [0, 4]'),
Text(0.6923076923076923, 0.1, 'gini = 0.0\nsamples = 1\nvalue = [0, 4]'),
Text(0.6923076923076923, 0.1, 'gini = 0.0\nsamples = 1\nvalue = [0, 4]'),
Text(0.84615384615, 0.1, 'gini = 0.0\nsamples = 1\nvalue = [0, 4]'),
Text(0.923076923076923, 0.1, 'gini = 0.0\nsamples = 38\nvalue = [0, 38]')]
```

plot_confusion_matrix(DT2,X_test,Y_test)

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecat warnings.warn(msg, category=FutureWarning)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f4620e6fd50>

from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, Y_train)
dot_data = tree.export_graphviz(clf, filled=True, rounded=True)
graph = graphviz.Source(dot_data)

Colab paid products - Cancel contracts here

✓ 0s completed at 10:08 PM