Sequences

Note that \mathbb{R}^n and \mathbb{C}^n can be viewed as function spaces where:

$$R^n = \{f : \{1, \dots, n\} \to \mathbb{R}\}\$$

$$C^n = \{f : \{1, \dots, n\} \to \mathbb{C}\}\$$

As $n \to \infty$ we get the vector space of all real/complex sequences with component-wise vector addition and scalar multiplication:

$$(x_1, x_2, \ldots) + (y_1, y_2, \ldots) = (x_1 + y_1, x_2 + y_2, \ldots)$$

$$\lambda(x_1, x_2, \ldots) = (\lambda x_1, \lambda x_2, \ldots)$$

Notation

 (x_n) is the sequence whose n^{th} term is x_n .

 $\{x_n \mid n \in \mathbb{N}\}\$ is the set of all elements in the sequence (x_n) .

Let \mathcal{C} be the set of all complex sequences in \mathbb{C} . The following are subspaces of \mathcal{C} :

- Bounded sequences in C.
- Converging sequences in C.
- Sequences in C whose partial sums corresponding series converge.

Definition: ℓ^p

Let $p \in \mathbb{N}$:

$$\ell^{p} = \left\{ (z_{n})_{n \in \mathbb{N}} \left| \sum_{n=1}^{\infty} |z_{n}|^{p} < \infty \right. \right\}$$

Definition: Convex Function

Let f(x) be a real function defined on an open interval I. To say that f is *convex* (or *concave up*) on I means $\forall \, s,t \in I$ and $\forall \, \lambda \in \mathbb{R}$:

$$f((1-\lambda)s + \lambda t) \le (1-\lambda)f(s) + \lambda t$$

Theorem: Young's Inequality

Let $a,b,p,q\in\mathbb{R}$ such that a,b>0, $1\leq p,q<\infty,$ and $\frac{1}{p}+\frac{1}{q}=1$:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof

Let $a=e^{\frac{s}{p}}$ and $b=e^{\frac{t}{q}}$ for some $s,t\in\mathbb{R}$.

$$ab = e^{\frac{s}{p}}e^{\frac{t}{q}} = e^{\frac{s}{p} + \frac{t}{q}}$$

But $f(x) = e^x$ is convex (concave up) everywhere and so:

$$ab \le \frac{1}{p}e^s + \frac{1}{q}e^t = \frac{a^p}{p} + \frac{b^q}{q}$$

Theorem: Hölder's Inequality

Let $p,q \in \mathbb{R}$ such that $1 \leq p,q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, and let $(x_n),(y_n) \in \ell^p$:

$$\sum_{n=1}^{\infty} |x_n y_n| \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} |y_n|^q\right)^{\frac{1}{q}}$$

Proof

Let
$$A=\left(\sum_{n=1}^{\infty}|x_n|^p\right)^{\frac{1}{p}}$$
 and $B=\left(\sum_{n=1}^{\infty}|y_n|^q\right)^{\frac{1}{q}}.$

Since $(x_n), (y_n) \in \ell^p, 0 \le A, B < \infty$.

If either sequence is the zero sequence then trivial, so assume both are non-zero.

Let
$$a = \frac{|x_n|}{A}$$
 and $b = \frac{|y_n|}{B}$.

Since A, B > 0, and hence a, b > 0, so applying Young:

$$ab = \frac{|x_n y_n|}{AB} \le \frac{1}{p} \left(\frac{|x_n|}{A}\right)^p + \frac{1}{q} \left(\frac{|y_n|}{B}\right)^q$$

Summing both sides:

$$\frac{1}{AB} \sum_{n=1}^{\infty} |x_n y_n| \le \frac{1}{pA^p} \sum_{n=1}^{\infty} |x_n|^p + \frac{1}{qB^q} \sum_{n=1}^{\infty} |y_n|^q = \frac{1}{pA^p} A^p + \frac{1}{qB^q} B^q = \frac{1}{p} + \frac{1}{q} = 1$$

Therefore:

$$\sum_{n=1}^{\infty} |x_n y_n| \le AB = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} |y_n|^q\right)^{\frac{1}{q}}$$

Theorem: Minkowski's Inequality

Let $p \in \mathbb{R}$ such that $1 \leq p < \infty$ and let $(x_n), (y_n) \in \ell^p$:

$$\left(\sum_{n=1}^{\infty} |x_n + y_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{\frac{1}{p}}$$

Proof

For p=1, Minkowski reduces to the triangle inequality (trivial), so AWLOG p>1.

$$\sum_{n=1}^{\infty} |x_n + y_n|^p = \sum_{n=1}^{\infty} |x_n + y_n| |x_n + y_n|^{p-1}$$

$$\leq \sum_{n=1}^{\infty} (|x_n| + |y_n|) |x_n + y_n|^{p-1}$$

$$= \sum_{n=1}^{\infty} |x_n| |x_n + y_n|^{p-1} + \sum_{n=1}^{\infty} |y_n| |x_n + y_n|^{p-1}$$

Since $p > 1, \exists q > 1, \frac{1}{p} + \frac{1}{q} = 1$, so applying Hölder:

$$\sum_{n=1}^{\infty} |x_n + y_n|^p \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} |x_n + y_n|^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} |x_n + y_n|^{(p-1)q}\right)^{\frac{1}{q}}$$

But (p-1)q = 1, and so:

$$\sum_{n=1}^{\infty} |x_n + y_n|^p \le \left(\left(\sum_{n=1}^{\infty} |x_n|^p \right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |y_n|^p \right)^{\frac{1}{p}} \right) \left(\sum_{n=1}^{\infty} |x_n + y_n|^p \right)^{\frac{1}{q}}$$

Finally, dividing both sides by $\left(\sum_{n=1}^{\infty}|x_n+y_n|^p\right)^{\frac{1}{q}}$ and noting that $1-\frac{1}{q}=\frac{1}{p}$:

$$\left(\sum_{n=1}^{\infty} |x_n + y_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{\frac{1}{p}}$$

Theorem

Let C be the vector space consisting of all complex sequences.

 ℓ^p is a subspace of \mathcal{C} .

Proof

Clearly, $\ell^p \subset \mathcal{C}$.

Assume $(x_n) \in \ell^p$ and $\lambda \in \mathbb{C}$.

$$\left(\sum_{n=1}^{\infty} |\lambda x_n|^p\right)^{\frac{1}{p}} = |\lambda|^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} < \infty$$

$$(\lambda x_n) \in \ell^p$$

 $\therefore \ell^{\it p}$ is closed under scalar multiplication.

Assume $(y_n) \in \ell^p$.

By Minkowski:

$$\left(\sum_{n=1}^{\infty} |x_n + y_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{\frac{1}{p}} < \infty$$

$$(x_n + y_n) \in \ell^p$$

- $\therefore \ell^p$ is closed under vector addition.
- $\therefore \ell^p$ is a subspace of \mathcal{C} .