ON THE SATISFIABILITY PROBLEM FOR THE SYMMETRIC GROUP S_4 AND MODULAR CIRCUITS

<u>Simon Grünbacher</u> and Erhard Aichinger Institute for Algebra Austrian Science Fund FWF P33878

THE QUESTION

The Question

Let S_4 be the symmetric group on a four-element set.

A polynomial over S_4 is a product of variables and constants.

Example: $(1\ 2)xy(4\ 3)$ is a polynomial of length 4.

We are interested in the complexity of the decision problem PolSat(S_4):

Given: A polynomial p over S_4 .

Asked: Is there an assignment $x \in S_4^n$ such that p(x) = 1?

If we instead ask whether p(x) = 1 for all assignments, the problem is called PolEqv (S_4) .

WHAT HAPPENED BEFORE

Why S_4 ?

The following related questions already have an answer:

- \blacksquare Systems of equations over a fixed finite group G. [M. Goldmann, A.Russell 2002]
- PolSat (S_3) and PolEqv (S_3) are in P. [G. Horvath, C.Szabo 2006], [S. Burris, J.Lawrence 2004]
- PolSat(A_4) and PolEqv(A_4) are in P. [G.Horvath, C.Szabo 2012]
- In fact: S_4 is the smallest group for which the problems are not known to be in P.
- PolSat(S_5) and PolEqv(S_5) are in NPC/coNPC. [M.Goldmann, A.Russel 2002]

Representations of polynomials

Question: Does the choice of representation matter?

Answer: Yes! We have the following:

Theorem [M. Kompatscher, 2019]

Let G be a finite non-nilpotent group. Then there is a term t such that PolSat(G,t) is NP-complete and PolEqv(G,t) is conP-complete.

Lower bounds

Conjecture [Exponential Time Hypothesis, R.Impagliazzo, R.Paturi 2001]

All deterministic algorithms solving 3-satisfiability take $\exp(o(n))$ time.

Theorem [P. Idziak, P. Kawalek, J. Krzaczkowski, 2020]

If ETH holds, then PolSat(S_4) and PolEqv(S_4) both require $\exp(o(\log^2(n)))$ time.

Proof idea: Find a polynomial p of length $\exp(O(\sqrt{n}))$ that expresses n-bit conjunction. Use this to do a very inefficient reduction.

Modular Circuits

The complexity of solving equations is related to the strength of the following computational model:

Definition

For integers m_1, \ldots, m_h , a $CC[m_1, \ldots, m_h]$ -circuit is a boolean circuit with:

- \blacksquare depth h
- arbitrary fan-in
- **gates** at depth i that return 1 iff m_i divides $\sum_i x_i$.

Conjecture [Strong Exponential Size Hypothesis]

Let p_1,\ldots,p_h be primes. Then $\mathrm{CC}[p_1,\ldots,p_h]$ -circuits require $\exp(o(n^{1/(h-1)}))$ gates to compute AND_n .

Note: Lower bound can be matched.

Conjunction and satisfiability

Lemma [Folklore]

Fix p_1,\ldots,p_h . Let $\gamma(n)$ be a lower bound on the size of $\mathrm{CC}[p_1,\ldots,p_h]$ -circuits computing AND_n . Then we can decide $\exists x \in \{0,1\}^n: C(x)=1$ for such a circuit in deterministic time $\exp(O(\gamma^{-1}(|C|)\log(|C|)))$.

Proof: Assume C(x) = 1 is satisfiable.

Let a be a solution of minimal hamming weight k.

Let C' be the circuit obtained from C by fixing x_i to 0 whenever $a_i = 0$.

Then C' computes AND_k by minimality of a.

Therefore $|C| \ge |C'| \ge \gamma(k)$, thus $k \le \gamma^{-1}(|C|)$.

 \implies It suffices to check only those x with hamming weight at most $\gamma^{-1}(|C|)$.

Note: There is also a randomized $\exp(O(\gamma^{-1}(|C|) + \log(|C|)))$ algorithm.

Upper bounds

SESH also leads to algorithms for some equation satisfiability problems.

Note: A hardness assumption leads to an algorithm.

Intuition: Easier to reason about a computationally limited model.

Theorem [M.Kompatscher, 2022]

Assume SESH and let A be a finite nilpotent algebra from a congruence modular variety. Then there is t(A)>0 and $\exp(O(\log^{t(A)}(n)))$ algorithms solving $\mathsf{CSAT}(A)$ and $\mathsf{CEQV}(A)$.

Question: Can we apply this idea also to S_4 ?

Upper bounds for S_4

According to [P.Idziak, P.Kawalek, J.Krzaczkowski and A.Weiß 2020]:

The paper [2] contains all necessary pieces to provide a $\exp(O(\log^{r(G)}(n)))$ upper bound for $\mathsf{PoLSAT}(G)$ whenever G is solvable [under SESH].

Our contribution: Work out the details for S_4 .

What we did

Theorem [Erhard Aichinger, S.G. 2025]

The following problems are polytime-equivalent:

- \blacksquare PolSat (S_4)
- the complement of PolEqv (S_4)
- \blacksquare the satisfiability problem for CC[2,3,2]-circuits

Therefore, SESH implies a $\exp(O(\log(n)^3))$ deterministic upper bound for both problems.

THE PROOF

The proof

We prove only the reduction from $\mathsf{PoLSat}(S_4)$ to circuit satisfiability.

The holomorph of a group G is $Hol(G) := G \rtimes Aut(G)$.

We have $S_4 \cong \operatorname{Hol}(\mathbb{Z}_2^2) \cong \mathbb{Z}_2^2 \rtimes \operatorname{GL}_2(\mathbb{Z}_2) \cong \mathbb{Z}_2^2 \rtimes (\mathbb{Z}_3 \rtimes \mathbb{Z}_2)$.

We first reduce PolSat(S_4) to an intermediate problem involving the matrix ring $\mathbb{Z}_2^{2\times 2}$.

Restricted expressions

Definition

A restricted monomial expression is a product of variables and elements from $GL_2(\mathbb{Z}_2)$.

A restricted polynomial expression p is a sum of restricted monomial expressions. The restricted equivalence problem REQV($\mathbb{Z}_2^{2\times 2}$) asks whether p(X)=0 for all invertible X.

Example: $Z(\frac{1}{1},\frac{1}{0})XY + (\frac{0}{1},\frac{1}{0})$

Non-example: $XY(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix})$

We will use the following interpolation result:

Lemma

Let $f: (\mathbb{Z}_2^{2\times 2})^k \to \mathbb{Z}_2^{2\times 2}$ be a function. Then there is a restricted polynomial expression computing f.

Proof idea: It is known that f is computed by a general polynomial p.

Fact: You can replace every noninvertible constant a by a sum of two invertible constants. 11/23

Expand the result.

A picture

From groups to matrices

```
Initial problem: \exists x \in S_4^m : p(x) = 1

Representation: S_4 \cong \mathbb{Z}_2^2 \times \operatorname{GL}_2(\mathbb{Z}_2)

Multiplication: \binom{v}{A} \cdot \binom{w}{B} := \binom{v+Aw}{AB}.

Representation for S_4-polynomials: \prod_{i=1}^n \binom{v_i}{A_i} = \binom{\sum_{j=1}^m p_j y_j}{q} where p_1, \dots, p_m, q are restricted polynomial expressions.

New problem: \exists X \in \operatorname{GL}_2(\mathbb{Z}_2)^m, y \in (\mathbb{Z}_2^2)^m : \sum_i p_i(X) y_i = 0 \land q(X) = 1
```

Getting rid of vectors

Current problem: $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^m, y \in (\mathbb{Z}_2^2)^m : \sum_i p_i(X)y_i = 0 \land q(X) = 1$ Observation: If $\sum_{i=1}^N g_i = 0$ over $(\mathbb{Z}_2^2, +)$ then there exists $S \subseteq [N]$ with $|S| \le 4$ and $\sum_{s \in S} g_s = 0$.

 \Longrightarrow The equation $\sum_i p_i y_i = 0$ has a solution iff it has a solution with at most 4 nonzero y_i .

 \Longrightarrow Sufficient to check a smaller set S of $O(n^4)$ choices of y.

Interpolation: For all $v \in \mathbb{Z}_2^2$ there is a constant restricted polynomial expression M(v) with $M(v) = (v \ 0)$.

New problem: $\exists X \in GL_2(\mathbb{Z}_2)^m : \exists y \in S : \sum_i p_i(X)M(y_i) = 0 \land q(X) - 1 = 0.$

Getting rid of AND

Current problem: $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^m : \exists y \in S \sum_i p_i(X) M(y_i) = 0 \land q(X) - 1 = 0.$

We wish to express a=b=0 by a single inequality.

If $\mathbb{Z}_2^{2\times 2}$ was a field, we would use $(1-a^{q-1})(1-b^{q-1})\neq 0\iff a=b=0.$

Interpolation: Choose a binary restricted polynomial expression r with

$$r(x,y) \neq 0 \iff x = y = 0.$$

For $y \in S$ let $h_y(X) = r(\sum_i p_i(X)M(y_i), q(X) - 1)$.

New problem: $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^m : \exists y \in S : h_y(X) \neq 0.$

Getting rid of OR

Current problem: $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^m : \exists y \in S : h_y(X) \neq 0.$

Goal: Eliminate disjunction over *S*.

Fact: Every $A \in \mathbb{Z}_2^{2 \times 2}$ is a sum of some $B, C \in GL_2(\mathbb{Z}_2)$.

New problem: $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^m Z, W \in \mathrm{GL}_2(\mathbb{Z}_2)^S : \sum_{s \in S} (Z_s + W_s) h_s(X) \neq 0.$

We will write $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^N : g(X) \neq 0$ for brevity.

Status update

Inequalities to equalities

Current problem: $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^N : g(X) \neq 0$

Interpolation: Choose a restricted polynomial expression t with $t(x) = 0 \iff x \neq 0$.

New problem: $\exists X \in GL_2(\mathbb{Z}_2)^N : t(g(X)) = 0.$

We will write $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^N : f(X) = 0$ for brevity.

Field work

Current problem: $\exists X \in \mathrm{GL}_2(\mathbb{Z}_2)^N : f(X) = 0$

We can view $\mathbb{Z}_2^{2\times 2}$ as a two-dimensional vector space over the four element field

 $F_4 \subseteq \mathbb{Z}_2^{2 \times 2}$ generated by $\alpha = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 1 \end{smallmatrix} \right)$.

Fact: The elements 1 and $\sigma := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ form a basis.

Fact: Every $X \in \mathrm{GL}_2(\mathbb{Z}_2)$ is of the form $\phi(s,t) := (\alpha^{s+t} + \alpha^{2+t}) + \sigma(\alpha^{s+t} + \alpha^{1+t})$ for some $s \in \{-1,1\}, t \in \mathbb{Z}_3$.

Multiplication rule: $\phi(r, u)\phi(s, v) = \phi(rs, su + v)$

Note: Using the structure of $\mathrm{GL}_2(\mathbb{Z}_2) \cong \mathrm{Hol}(\mathbb{Z}_3)$ here.

Multiplication can be expanded to yield sparse polynomials over \mathbb{Z}_3 .

New problem: $\exists s \in \mathbb{Z}_3^N, t \in \{-1,1\}^N : \sum_i \alpha^{q_{1i}(s,t)} + \alpha^{q_{2i}(s,t)} + \sigma(\alpha^{q_{3i}(s,t)} + \alpha^{q_{4i}(s,t)}) = 0$

Shorter version: $\exists s \in \mathbb{Z}_3^N, t \in \{-1,1\}^N : \sum_i \alpha^{u_i(s,t)} = 0 \land \sum_i \alpha^{v_i(s,t)} = 0$

Cleaning up

Current problem: $\exists s \in \mathbb{Z}_3^N, t \in \{-1,1\}^N: \sum_i \alpha^{u_i(s,t)} = 0 \land \sum_i \alpha^{v_i(s,t)} = 0$ We combine the two equations via $a = b = 0 \iff 1 - ((1-a^3)(1-b^3))^3 = 0$. We represent s_i as a sum of two variables in $\{-1,1\}$ so all variables have the same domain.

New problem: $\exists x \in \{-1,1\}^{N'} : \sum_i \alpha^{p_i(x)} = 0$ Here, the $p_i \in \mathbb{Z}_3[x_1,\ldots,x_n]$ are in sparse representation.

Towards circuits

Current problem: $\exists x \in \{-1,1\}^N : \sum_i \alpha^{p_i(x)} = 0$

To evaluate such a expression, you need to:

- Take a product of ± 1 -valued variables (i.e. compute in \mathbb{Z}_2)
- Take a product of powers of α (i.e. compute in \mathbb{Z}_3)
- Take a sum in F_4 (i.e. compute in \mathbb{Z}_2^2)

Remaining translation steps tedious, but not difficult.

Final problem: $\exists x: C(x) = 0$ for a CC[2,3,2]-circuit C.

Towards circuits

Open problems

Task 1: Prove superlinear lower bounds on CC[2,3,2]-circuits computing conjunction. **Task 2:** Relate PolSat(G) to specific modular circuit problems for other solvable groups G.