

TD4 - loi géométrique et loi de Poisson

Exercice 1. On lance plusieurs fois de suite un dé cubique équilibré, les lancers étant indépendants.

- 1. Calculer la probabilité que le premier 4 soit obtenu au 3^e lancer.
- 2. En moyenne, au bout de combien de lancers obtient-on le premier 4?

Exercice 2. Soient $X_1, ..., X_n$ des variables aléatoires indépendantes de même loi géométrique de paramètre p. On note $Y = \min(X_1, ..., X_n)$.

- **1.** Calculer $P(X_1 > k)$ pour tout $k \in \mathbb{N}$.
- **2.** Exprimer P(Y > k) en fonction de $P(X_1 > k)$.
- **3.** En déduire la loi de Y.

Exercice 3. Soit X une variable aléatoire à valeurs dans \mathbb{N}^* . On dit la loi de X est sans mémoire si :

$$\forall n, k \in \mathbb{N}$$
, $P(X > n + k \mid X > n) = P(X > k)$.

- 1. Montrer que la loi géométrique $\mathcal{G}(p)$ est sans mémoire.
- **2.** Réciproquement, on veut montrer que si la loi de X est sans mémoire sur \mathbb{N}^* , alors X suit une loi géométrique. On note $u_n = P(X > n)$.
 - **a.** Montrer que pour tous $n, k \in \mathbb{N}$, $u_{n+k} = u_n \times u_k$.
 - **b.** En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est géométrique, en précisant sa raison q et son terme initial u_0 .
 - **c.** En déduire que X suit la loi $\mathcal{G}(p)$ avec p = 1 q.

Exercice 4 (loi des évènements rares).

1. Soit X_n une variables aléatoire de loi binomiale $\mathscr{B}(n, p_n)$ avec $p_n \sim \frac{\lambda}{n}$ lorsque $n \to +\infty$, où $\lambda \in]0, +\infty[$. Soit Y de loi de Poisson $\mathscr{P}(\lambda)$. Montrer que :

$$\forall k \in \mathbb{N}, \quad P(X_n = k) \xrightarrow[n \to +\infty]{} P(Y = k).$$

Remarque : on dit que la suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers Y.

- **2.** Une machine usine des pièces. Chaque pièce a 0,5 % de chance d'être défectueuse, indépendamment des autres. On note *X* le nombre de pièce défectueuses dans un lot de 500 pièces.
 - **a.** Quelle est la loi exacte de *X*?
 - b. Par quelle loi peut-on l'approcher? On utilisera cette loi dans la question suivante.
 - **c.** Calculer $P(X \ge 3)$.

Exercice 5. Soit X une variable aléatoire à valeurs dans \mathbb{N} . On appelle moment factoriel d'ordre $r \in \mathbb{N}$ la quantité $\mathbb{E}[X(X-1)\cdots(X-r+1)]$, à condition que cette dernière soit finie.

- **1.** Calculer les moments factoriels de $X \sim \mathcal{P}(\lambda)$.
- **2.** En déduire l'espérance et la variance de *X*.
- **3.** Mêmes questions si $X \sim \mathcal{G}(p)$, $p \in]0,1]$. *Indication : exprimer les moments factoriels en fonction des dérivées d'une série entière.*

Exercice 6. Un insecte pond des œufs. On suppose que le nombre N d'œufs pondus suit la loi de Poisson de paramètre $\lambda > 0$. Chaque œuf pondu a une probabilité p d'éclore, indépendamment des autres œufs, et indépendamment de N. On note X le nombre d'œufs qui ont éclos.

- **1.** Conditionnellement à l'évènement $\{N=n\}$, quelle est la loi de X? En déduire $P(X=k\mid N=n)$ en fonction de $k\in\mathbb{N}$ et $n\in\mathbb{N}$.
- **2.** En déduire la loi de *X*.
- **3.** Quelle est l'espérance et la variance de *X* ?

Exercice 7*. On considère une expériences de Bernoulli de probabilité de succès $p \in]0,1]$ et on note q = 1 - p la probabilité d'un échec. On répète indépendamment l'expérience jusqu'à obtenir n succès et on note X le nombre d'échecs obtenus avant le n-ième succès. La loi de X est appelée loi binomiale n-égative de paramètres n et p, notée BN(n,p).

- **1.** Montrer que $\forall k \in \mathbb{N}$, $P(X = k) = \binom{n+k-1}{k} p^n q^k$. Indication : $si\ X = k$, combien y a-t-il eu d'expériences ? de succès ? d'échecs ?
- **2.** Soit $\alpha \in \mathbb{C}$, on appelle coefficient binomiale généralisé le nombre $\binom{\alpha}{k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$. Montrer que :

$$\forall k \in \mathbb{N}, \quad P(X = k) = {n \choose k} p^n (-q)^k.$$

- 3. Notons T_k le nombre d'échecs entre le (k-1)-ième et le k-ième succès. Quelle la loi de T_k ?
- **4.** Exprimer X en fonction des variables $(T_k)_{k\geq 1}$ et en déduire la valeur de $\mathbb{E}[X]$.

Exercice 8*. Une marque place dans chacun de ses paquets de céréales une vignette à collectionner. Il existe n vignettes distinctes, et chaque paquet contient l'une d'elles au hasard (uniforme). On se demande combien de paquet il faut ouvrir en moyenne pour obtenir toutes les vignettes. On note X_n le nombre de paquets ouverts jusqu'à obtenir toutes les vignettes, on note $T_1 = 1$, et pour $k \in [2, n]$ on note T_k le nombre de paquets ouverts pour obtenir k vignettes différentes après avoir obtenu k-1 vignettes différentes.

- 1. Quelle est la loi de T_k ?
- **2.** Exprimer X_n en fonction des $(T_k)_{1 \le k \le n}$.
- **3.** En déduire l'espérance de X_n et en donnant un équivalent lorsque $n \to +\infty$.
- **4.** On admet que les $(T_k)_{1 \le k \le n}$ sont indépendantes. Calculer la variance de X_n et montrer que :

$$Var(X_n) \le C n^2$$
,

avec C > 0 une constante.