INTERNATIONAL INSTITUTE OF AGRICULTURE BURRAU OF AGRICULTURAL INTELLIGENCE AND PLANT DISEASES

IONTHLY BULLETIN F AGRICULTURAL INTELLIGENCE AND PLANT DISEASES

AR V - NUMBER 6

JUNE 1914

In qupting articles, please mention this BULLETIN.

CONTENTS

FIRST PART: ORIGINAL, ARTICLES

RA, F.: Protective Inoculations against Swine Fever in Hungary					707
A, R.: The Cattle Industry in Italy at the Present Day (conclusion) .	٠			•	712
NUNG, F.: Recent Experience and Progress in Beekeeping in Germany	٠	,	•	*	716

SECOND PART: ABSTRACTS

AGRICULTURAL INTELLIGENCE.

I. - GENERAL INFORMATION.

SOPMENT OF AGRICULTURE IN DIFFERENT COUNTRIES. — 489. The Agricultural [Conditions of Albania. — 490. Agriculture in the Argentine Republic.

Titeral Shows and Congresses. — 491. Agricultural Shows. — 492. Agricultural mgresses.

II. - CROPS AND CULTIVATION.

a) GENERAL

LIURAL METEOROLOGY. — 493. Determination of Air Temperatures. — 494. Chemical supposition of Rain in South Africa.

RYSICS, CHEMISTRY AND MICROBIOLOGY. —495. The Red Clay Soil of Porto Rico. — 6. Methods in Soil Bacteriology: VII. Ammonification and Nitrification in Soil and fution. —497. Absence of Nitrate Formation in Cultures of Azotobacter. —498. The chanism of Denitrification. —499. The Functions of the Non-bacterial Population of e Bacteria Bed.

US AND MANURING. — 500. The Manurial Value of Phonolite. — 501. New Investigations ith Magnesium.

b) SPECIAL

ULTURAL BOTANY. — CHEMISTRY AND PHYSIOLOGY OF PLANTS. — 502. Report of the sperial Reonomic Botanist for India, 1913. — 503. Researches on Vegetable Physiology: I and IV. — 504. Resistance of Leguminous Seeds to High Temperatures. — 505. Sur-

- vival of Plant Tissues after Frost. 506. Effects of the Winter of 1913^{-14} on Q. Plants. 507. The Indicator Significance of Vegetation in the Toock Valley, U_0 508. The Enror in Water Culture Experiments due to the Presence of $T_{\rm races}$ of Z_0 Glass. 509. Contribution to the Study of the Formation of Hydrocyanic A_0 Plants. 510. Note on the Displacement Curves of Organic Bases and their Applic to the Determination of the Strength of Alkalolds.
- PLANT BREEDING AND AGRICULTURAL SEEDS. 511. Methods and Results of the Sele of Flax in Russia. 512. On the Appearance of Sterile Dwarfs in Humulus Lupuk 513. Preliminary Note on the Genetics of Fragaria. 514. The Farmer's Section Cooperative Association in Wisconsin. 515. Report on the Work of the State testing Station in Denmark in the Year 1912-13. 516. Impurities in Seeds in Viz Australia.
- CERRAL AND PULSE CROPS. 517. Investigations on Barley in Connection with the Separ of the Glumes through Rapid Drying.
- Forage Crops. Meadows and Pastures. 518, Analysis of Teosinte Seeds (Raine rians = Euchlaena luxurians). 519. Cultivation of Sulla (Hedysarum coronaria Rice Fields. 520. Cultivation Experiments with Vicia striats in Hungary.
- RUBBER, GUM AND RESIN PLANTS. 521. On the Coagulation of the Latex of Maniha 6

 515. 522. The Coagulation of the Latex of Herea brasiliensis and its Beating of
 Strength of Rubber.
- Various Crops. 523. Precautions for the Growing and Transplanting of Liberian Coff. 524. "Autumnal Flavour" of Tea. 525. Recognition of Tanning and Colouring Market by Means of the "Mulhouse Band". 526. Problems concerning the Utilization of Palm in Italian Erythrea.
- MARKET GARDENINO. 527. Field Cultivation of Capsicum in Meglena, Hellenic Macedon 528. Warm Baths for Forcing Strawberries.
- FRUIT GROWING. 529. Recent Work of the Royal Hungarian Central Ampelological tute at Budapest. 530. The Growth of the Roots of the Vine and its Importance: Manuring and Cultivation of the Soi of Vineyards. 531. Protection of Vines at Spring Frosts. 532. The World's Trade in Bananas. 533. Citropsis, a New Tr. African Genus allied to Citrus.

III. - LIVE STOCK AND BREEDING.

a) GENERAL

- HYGIENE. 534. Researches on the Life History of the Large Warble Fly and Meanad trolling it. 535. Practical Observations on Contagion in Anthrax of Cattle, on it minution of Cases by Vaccination and on Uniform Immunization. 536. Swing Young Pigs. 537. Causes and Effects of Cryptorchism.
- ANATOMY AND PHYSIOLOGY. 538. Sugar in Blood Plasma. 539. Influence of Fluoris the Animal Organism.
- FEEDS AND FEEDING. 540. The Food Value of Certain Grasses. 541. Bacteriologica search on Eastlaged Forage. — 542. Toxic Bran. — 543. The Rate of Liberation of E. cyanic Acid from Linseed.
- ENCOURAGEMENT OF BREEDING. 544. Live Stock in Morocco. 545. Live Stock in Caledonia.

b) SPECIAL

Horses, Asses and Mules. - 546. Short-faced Abyssinian Mules.

CATTLE. — 547. Present State of Milk Record Associations in Austria. — 548. Red Fa.

Cattle. — 549. Determination of Growth in Grazing Cattle. — 550. Heredity of

Births in Cattle.

g. - 551. Morocco Sheep and their Products. - 552. Development and Prospects of Sheep seeding for Wool in German South-west Africa.

5. - 553. Present State of Milk Recording for Goats in the German Empire.

1-554 The Olfactory Sense of the Honey Bee.

gonush. -- 555. Silkworm Rearing in Madagascar. -- 556. Silkworm Rearing in the Yalong valley, China.

IV. - FARM ENGINEERING.

EMETURAL MACHINERY AND IMPLEMENTS. — 557. Machines at the General Agricultural Show, Paris, 1914. — 558. Motor Plougiting Competition of the North Kent Agricultural Association. — 559. New Hand Drills. — 560. Fletcher and Becker's Fruit Grader. — 561. "Germania" Potato Esiccator with Oil Heating. — 562. The Manufacture of Agricultural Machines and Implements in Russia. — 563. The Trade in Agricultural Machines in France. — 564. Imports and Exports of Agricultural Machines and Implements into and out of Germany in 1913. — 565. Review of Patents.

DNG CONSTRUCTION. — 566. Shower-bath System of Sheep Dipping.

V. - RURAL ECONOMICS.

The Economic Importance of Beet Growing. — 568. The Consumption of Artificial Manures in Intensive Agriculture.

VI. - AGRICULTURAL INDUSTRIES.

DEFENDING ON ANIMAL PRODUCTS. — 569. Determination of the Viscosity of Milk as a Means of Detecting the Addition of Water. — 570. Biorized Milk. — 571. Effect of Certain Dairy Operations upon the Germ Content of Milk. — 572. The Origin of some of the Strentococci found in Milk.

USTRIES DEPENDING ON PLANT PRODUCTS. — 573. Improvement of Damaged Wines and Spirits.

PLANT DISEASES.

I .- GENERAL INFORMATION.

SLATIVE AND ADMINISTRATIVE MEASURES FOR THE PROTECTION OF PLANTS. — 574. Decree tacing Mytilaspis citricola (= Lepidosaphes beckii) amongst Notifiable Insects in Uruguay.

II. - DISEASES NOT DUE TO PARASITES AND OF UNKNOWN ORIGIN.

Observations and Researches on "Dörrfleckenkrankheit" (Dry Spot Disease) of Oats. — 576. The Presence of Endocellular Fibres in the Tissues of the Vine and of other Dicotylulous

III. - BACTERIAL AND RUNGOID DISEASES.

e) GENERAL

GENERALITIES. — 577. Phytopathological Observations in the Grand Duchy of Baden, no Funct. — 578. Some Chinese Funct. — 579. Wintering of Cereals in the Uredo Stage. 580. Inoculation Experiments of Potatoes with Fusarium, 1913.

b) SPECIAL

BACTERIAL AND FUNGOID DISEASES OF VARIOUS CROPS. — 581. A Leaf Disease of Cyan voluta. — 582. Cylindrosporium Ju3landis injurious to the Leaves of Walnut in Alphi

IV. — PARASITIC AND OTHER INJURIOUS FLOWERING PLANTS.

583. Experiments on the Destruction of Charlock (Sinapis arvensis) by Mechanical and (mical Means.

V. -- INSECT PESTS.

a) GENERAL

GENERALITIES. — 584. Relation between the Larvae of Vine Moths (Conchylis ambiguital Polychrosis boirana) and the Weeds of Vineyards and other Plants.

Means of Prevention and Control. — 585. Thripodenus bruin. sp., a Chalcid Patishi, Franklinicila robusta, injurious to Peus in France. — 586. Destruction of Conchylician by Ladybirds. — 587. Destruction of Schizoneura lanigera and Epidiashis beduin Fundigation with Hydrocyanic Acid.

b) SPECIAL.

INSECTS INJURIOUS TO VARIOUS CROPS. — 588. The Chinch Bug (Bissus leucopherus), injure to Cereals in Kansas. — 589. Tomaspis fluvillatora (Hemiptera) on Sugar Cane in bit Guiana. — 590. Polychrosis botrana and Conchysis ambiguella in Piedmont in 1913: 1 logy and Control. — 591. Agromyza pruinosa on Betula nigra in America.

The Editor's notes are marked (Ed.):

FIRST PART. ORIGINAL ARTICLES

Protective Inoculations against Swine Fever in Hungary

Prof. F. HUTYRA, Budapest.

Since the year 1896 when swine plague made its first appearance in ingary, it has caused enormous losses every year amongst the herds of ine. During the first year it spread rapidly over almost the whole counyand in the following year 639 765 deaths were officially reported. After at the losses decreased, but only because the stock of pigs had considerly diminished. The usual veterinary police measures proved quite ffectual in checking the progress of the disease and many large estates re constrained either to reduce their herds or to suppress them altoher. This very unsatisfactory state of affairs began to improve when prective inoculations were recognized as a suitable remedial measure.

Following on the results of DORSET, Mc BRYDE and NILES, which showed at the American Hog Cholera was caused by a virus, similar experiments re carried out in Hungary and proved entirely confirmatory, as were see of workers in other countries, proving that the European swine fever caused by the same virus and is identical with American hog cholera.

This led to inoculation experiments being undertaken, on the same plan those of the American investigators, by the writer and Dr. J. KÖVES; these twise showed that pigs which have survived an artificial or natural infection can acquire a high degree of immunity and that their serum then has a property of protecting other pigs against artificial or natural infection. It is experiments were repeated on a large scale in 1908; as they yielded instruction results, the necessary arrangements were made for producing ge quantities of the protective serum. A somewhat primitive State boratory was equipped at the stock farm at Köbánya and was ready to tribute the serum in the spring of 1909.

The very first inoculations were successful and consequently the demand the serum increased to such a degree, that the laboratory was scarcely le to meet it and it was found advisable to hand over the production of turn to a private company formed for the purpose, reserving the actual linical work concerned in the preparation to State officials, and submitionally enlarged by new buildings and enclosures, the stock of pigs of ranging between two and three thousand.

Hyperimmunisation is carried out as follows: pigs weighing about 2 lbs. and having already recovered from a slight infection, are subjected the or four times at intervals of about two weeks to subcutaneous injection the belly. The infection consists of 300 to 400 cc. of virul blood taken from pigs suffering from acute infection. About ten deafter the last injection, blood is first drawn from their tails and finally the are bled to death by a wound in the heart. The blood obtained is immediately centrifuged and 0.5 per cent. of carbolic glycerin is added to separated serum.

The following quantities of serum have been prepared since the fountion of the laboratory:

1909		٠.				622 839	œ.	used entirely in Hun.
1910			٠	٠		I 947 0 95	3	gary.
IoI						3 736 710	3	the greater proportion
1912						7 454 150	D	used in Hungary.

Only serum that has been tested on animals and found effective sent out. Table I shows the results of these tests on 104 six-months Mangalicza pigs averaging 64 lbs. in weight.

TABLE I. - Tests of swine fever serum.

Quantity		Imm	inising scrum	Number	from swi	nths ine ten.
of virus	Quantity injected ec.	of enimals	Absolute number	िय व		
•			Control animals .			
_	i —	1 1		8	8	[00]
2,0	 	-	_	8	8	1001
			Total ,	16	16	[00]
	•		Immunised animals		•	
2,0	12.0	3/913	21. I 27. II. 1913	8	I	12.5
2,0	12.0	11/913	10. VI 21. VII. 1913	8	-	-
2.0	12.0	12/913	18. VI 16. VII. 1913	8	-	-
2,0	12.0	13/913	20. VI 31. VII. 1913	8	I	12,5
2,0	12.0	14/913	30. VI 9. VIII. 1913	8	-	-
2,0	12.0	15/913	10. VII 18. VIII, 1913	8		-
2.0	12.0	16/913	15. VII 1. IX. 1913	8	_	-
2.0	12.0	17/913	2. VIII 11. IX. 1913	8	-	-
2.0	12.0	18/913	22. VIII 13. X. 1913	8		-
2.0	12.0	19/913	12. IX 8. X. 1913	8		
2.0	12,0	20/913	19. IX 14. X. 1913	8	1	12.5
		,	Total		3	3.4

⁽t) Every Rep. Number refers to 44-88 gallons of mixed serum. The animals of mixed serum. The animals of mixed serum.

Inoculation with serum produces only a temporary or passive immunity. thas been found both in Hungarian and other experiments, that if the which have been treated with the serum are exposed at the same time orthy after to natural infection, they contract the disease in a mild and acquire a permanent or active immunity. Consequently serum inoion is only advisable in the case of already infected herds of swine, and ld be practised as early as possible after the outbreak of the disease healthy pigs and on those that are not yet severely affected, after h the herd may be left till the total disappearance of the disease in the ity. An early diagnosis of the first cases and timely inoculation are tial in order to obtain favourable results from the serum. Unfortunain practice, errors in diagnosis are not rare and inoculation is often ved until the plague has already caused heavy losses and the herds are dy badly infected, in which case secondary bacterial infections often set minst which the serum is powerless. In the course of five years upwards of a million pigs have been inocuwith the serum in Hungary. Accurate reports from veterinary surgeons , the results obtained from the inoculations practised on 110 198 pigs 36 herds up to March 1,1914, have been received, and are summarized

TABLE II. — Results of serum inoculations in Hungary from April 1909 to March 1914.

able II.

soculate	d herds	Inoculated	animais	Limits of losses	Total loss				
mber	per Per cent Number Per cent		Number Per cent in inoculated berds Number						
408	48.8	35 738	32.4	0		_			
156	18.7	32 734	29.7	0.1 5.0	667	2.0			
75	9.0	12 176	11,1	5.1 10.0	886	7.3			
81	9.7	14 096	12.8	10.1 - 20.0	2 236	15.8			
720	86.2	94 744	86.0		3 789	4.0			
37	4.4	5 410	4.9	20.1 — 30.0	1 270	23.4			
46	5.5	5 699	5.2	30.1 — 40.0	2 140	37.5			
33	3.9	4 345	3.9	40.1 and above	2 905	66.4			
836		110 198	1		10 104	9.4			

A reappearance of swine fever in herds that had been freed from it by culation was only rarely reported, and in these cases it is suspected that he other disease, such as swine erysipelas, was present. The permanent munity of the animals treated with serum was also proved by thousands

of observations made on pigs, which, when hyperimmunised, were found resist large quantities of virulent blood without any ill effect upon the health.

The experience gained in large fattening establishments is also instr tive. In these cases the heads were inoculated immediately after the fi appearance of the disease and suffered no appreciable loss, while former the havoc was almost always considerable. According to a report by Cale in one fattening establishment at Köbánya, 19 herds with 2478 pigs w inoculated in the course of two years, after which 185 head, or per cent., had to be killed owing to severe illness. In the second year losses diminished considerably and in three herds none were reported. On t other hand out of 150 pigs which were left as controls and not inoculate 62, that is 41.3 per cent., fell victims to the disease. In 5 herds which w inoculated after some delay the losses ranged between 20 and 35 per ce (altogether 144 head, or 27.5 per cent.). In eight other herds in the su locality, whose owners would not allow their animals to be inoculated & pigs out of 1404, that is 53.8 per cent., had to be killed, the losses in various herds ranging from 20 to 86 per cent.

As a result of this experience pigs, intended for fattening are general treated with the serum shortly after being put into the fattening si and losses are thus avoided. Such is the confidence in the protective act of the serum that store pigs are now bought with impunity from ordina herds, while formerly only such pigs were admitted to the fattening or as came from herds having recovered from a slight attack of swine fever a which on that account could be considered as immune. Differences the value and market price of the pigs according to their degree of natu

immunity have consequently disappeared.

The permanence of the results of inoculation helped to spread them tice throughout the whole country, with the result that the swine indust has successfully recovered from a period of great depression and the numb of pigs in the country has considerably increased.

The practical difficulty of obtaining an early diagnosis of swine in followed by immediate serum inoculation of the herd, led to experime being made several years ago on the so-called immediate active immunisali of healthy herds, a method which is preferred to serum inoculation in Nor America. It consists in the simultaneous subcutaneous injection of; rum and virulent blood and it also presents some drawbacks, namely: 1) th the proportion of virus to serum to be used cannot be determined previous with exactitude, and consequently one can never be perfectly sure that t inoculation will not cause serious losses, and 2) that in this way previous healthy herds get the plague and may prove new centres of infection. (the other hand the simultaneous injections have the great advantage th they can be employed at any time and that only healthy herds are subm ted to them, so that errors of diagnosis are out of the question.

A large number of practical experiments were undertaken in order judge of the value of this method in Hungary. Herds of Mangalic store pigs bought in different localities were placed on two large lan ikept for several months in the open but separate from one another. The culations, which were always made by veterinary surgeons belonging the laboratory, consisted in the subcutaneous injection of 1 to 2 cc. virulent blood and 10 to 20 cc. of the serum. In almost all cases, after out a week well-marked reactions were observed: a certain number of inoculated animals appeared less lively and at their rations more slowly not at all. These symptoms, however, usually only lasted a day, after ich the animals got well again, with the exception of a few which grew re and eventually died.

On one of the estates, between September 1910 and May 1911 ten herds aprizing 3163 pigs between the ages of 8 and 14 months and weighing to 120 lbs. per head were inoculated. After an incubation period of ogdays, 467 head, or 14.7 per cent., fell ill and 73 head, or 2.3 per cent., at. With the exception of one herd, in which 6.2 per cent. of the inoculated imals died on account of a simultaneous outbreak of foot-and-mouth ease, the losses in the remaining herds kept below 3 per cent. After reral months the pigs were fattened, and then in three herds 4.3, 2.0 and 6 per cent. of the pigs respectively contracted swine fever and had to killed; the remaining herds suffered no loss.

On the second estate, at different seasons between July 1910 and Febny 1914, 45 herds with a total of 15394 pigs aged from 2 to 24 months re inoculated simultaneously with virulent blood and serum. Here also be or less violent reactions were obtained after about a week, but in great majority of cases these caused only insignificant losses, as may be in from the following table (Table III).

TABLE III.

Number of	De	aths			
Herds	Pigs	Head	Per cen		
	3 344	0	0		
	9 844	176	1.7		
	350	25	7.1		
	290	21	7.2		
	539	44	1.8		
	35 t	52	14.8		
	420	90	21.4		

In the first year of this experiment new cases of disease and death peared in 8 herds several months after the inoculation reaction (altogether pigs out of 2802 animals, or 2.5 per cent.). As these cases were reported swine fever it seemed as if they were the result of a retarded reaction, but ther investigations proved them to be cases of swine erysipelas, where-

upon all such cases of subsequent disease were immediately treated with a sipelas serum; the result was that only 4 animals died in one herd of 476 in and none at all in the other 44 herds. Out of the 45 herds that were in culated, 37 were put up to fatten partly in the same locality and part at Köbánya and in no case were there any losses from swine fever. The promanence of immunity was also tested by the fact that in 7 herds, some weeks or months after the reaction, 245 pigs were infected artificially by a cutaneous injections of from 3 to 5 cc. of virulent blood, with the resthat only one pig died and the others showed no signs of a reaction. I sides this, several herds were used later for the production of serum and withis object were treated with large quantities of virulent blood withoutsufing any loss.

The results obtained in Hungary during the last five years are in per accord with those obtained in North America, and show that swine play can be successfully checked both by pure serum inoculations and by sin taneous injections. Serum inoculation is advisable for the treatment recently infected herds and results in a rapid disappearance of the play provided the first cases are diagnosed soon after the outbreak and it the rest of the herd be inoculated immediately: in this case, owing to the simultaneous natural infection, they acquire a permanent active immunity. By the simultaneous inoculation with virulent blood and immunity serum the pigs get a direct active immunity. In quite healthy herds to simultaneous inoculations usually causes no losses at all or only quite is significant ones, though there is no certainty that very violent reach may not occur. Considering that animals thus inoculated secrete into tious virus during the period of reaction, precautions must be taken prevent the possible spread of the disease to other herds.

The Cattle Industry in Italy at the Present Day

(Continued from p. 606)

by R. Zappa.

Professor at the Royal Agricultural College at Portici (Naples),

F. Tuscany.— The cattle in this region vary very much with a locality, but the most noteworthy breeds are the Maremma, the so-call

Mucca Pisana, and especially the Valdichiana.

a) The Maremma is represented by the cattle found in the provide of Grosseto and in a small part of the Pisa province; they are ke entirely or almost entirely on the pastures and present the character the Podolian type. They stand high with fore-quarters more develop than hind ones, their dewlap is abundant, their horns are thick a long, their coat is light or dark gray, darker on the fore than on the hind quarters and with black points. The cattle are semi-wild, hardy a

tant; they are consequently especially suitable as draught animals, of little or no value as producers of milk and meat.

specially frequent in the provinces of Pisa and Florence. Its coat is to rearly so, and it is believed to be of Swiss origin. Some authorisation. It is a fairly good milker and is also suitable for the production leat and for draught purposes.

c) But among the Tuscan breeds the most prevalent and most ortant is the Chianina or Valdichiana breed, with its breeding centre he Valley of the Chiana. Without entering into the question of its ote origin, which has been much discussed and is not yet settled, there o doubt that this breed manifests some morphological characters nging to the Podolian type. The animals stand high and have been ed by LEYDER the giants of the species, the oxen measuring up ft. 4 in. Normal adult males in store condition weigh 1760 1980 lbs., cows 1320 to 1540 lbs.; at the Florence show of 1905 fat ox weighed 2935 lbs., while cows can weigh up to 2200 lbs. se animals are unusually long-limbed; the coat is generally silvery e, with a tendency to gray about the neck and shoulders in all the finest specimens, especially in bulls, and black points. The is are rather short. The calves are born with a yellowish red coat h gradually turns white at between three and five months. Ani-; having pink spots on their tongues, muzzles, etc., or white hairs he brush of their tails, are commonly called mucchi and discarded, variations generally being hereditary and showing a tendency to ism which is considered a sign of degeneration; mucchi are neverss markedly suitable for fattening. Valdichiana cattle are remarkable heir early maturity and fineness. They are both good draught animals good meat producers, in fact with regard to this latter quality they compete with breeds bred specially for the purpose. They fatten rapidly kill well, yielding as much as 70.9 per cent. in carcase tests and never than 60 per cent. Their strength as draught animals has been slightly ced through the excessive refinement of the breed, so that they are only used for haulage and agricultural work on the plains and on rather soils. As for milk, the cows barely produce enough to rear their own es. The breed has been famous for a considerable time and has been ied and illustrated more than any other Italian breed. Of late years is been the object of special attention on the part of distinguished itists and enthusiastic breeders, amongst which Prof. Ezio MARCHI, it Passerini of Bettoile (Arezzo) and the Counts of Frassineto zzo) deserve to be mentioned. It has spread beyond the limits of its district, not only in Tuscany itself but also in the Upper Tiber Valley, mbria and elsewhere.

G. Marches and Umbria. — These two regions being situated between any and Romagna on one side, and the Abruzzi and the Roman pagna on the other, their cattle represent as it were an intermediate

stage between improved conditions of animal ausbandry and its init phases. Nevertheless, even here, marked progress may be recorded dum the last few years. The inhabitants of the Marches classify their carrinto three groups which they consider as three distinct breeds.

a) The mountain breed, small and hardy animals, poor produce of milk and of meat, belonging to the Podolian type. On the high mon

tains pure Maremma cattle are frequently imported.

b) The so-called plain or improved cattle of the Marches, which also called the Perugia breed, and which is the most important. It is it result of crossing the Valdichiana with the native cattle of the Podolic type, which was carried on during the second half of the last centur. The Valdichiana characteristics which now predominate in this breed a somewhat too exacting for local agricultural conditions; but the latter are gradually being improved and the infusion of some Romagna blox is also tending to adapt the cattle to their surroundings.

c) An intermediate breed is found on the hills, especially in the proinces of Ancona and Ascoli Piceno. It is the so-called brina of manibreed, and is the result of crossing the mountain and plain cattle. Gra in colour, but lighter than the mountain breed, it is smaller and mocompact than the improved breed, being also coarser, hardier and ve-

suitable for draught purposes.

In the country about Fermo and Pesaro a good many pure Romage

are bred and are daily becoming more popular in the Marches,

Umbria appears to have no distinct indigenous breed. The mountain are mostly stocked with *Maremma* cattle, and the plains and the valley with *Valdichiana* or *Perugia* cattle.

H. Latium, and the Southern Adriatic and Mediterranean regions.—1 the south of the Marches and Umbria the prevailing cattle all belong the Podolian type, which undergoes various local modifications. Occasion imports of improved Italian or foreign breeds are met with, especial amongst dairy cattle near large towns, in which case the Schwytz are in most popular, though other breeds are also represented. The first import of foreign cattle date back to early times. The Bourbons imported animal from Switzerland and from England, and traces of these are visible in the cattle of the neighbourhood of Naples and of the whole Sorrento penisula. Of late years the imports have increased, not only to supply the didaries with milk but also to improve the native cattle. The best resultance usually been obtained with the Schwytz breed on account of its remarkable adaptability.

The native *Podolian* or *Apulian* cattle are kept out on the pasture and receive no sort of attention unless environmental conditions make it imperative or unless the animals are required for draught purposes. They are allowed to breed promiscuously, or almost so, and this accounts to the lack of differentiated breeds, the local modifications which occur being due to natural external agencies.

The cattle of Latium, frequently called the Agro Romano breed, represent one of these modifications and are characterised by uniformity,

to the relatively uniform conditions under which they live. They are re the average in stature, strongly built, with long thick horns and a gray coat.

The animals are very hardy, robust, almost wild and especially suitfor draught purposes.

Throughout the whole region it may be said that the cattle found he hills are hardier, smaller, darker in colour, and produce less milk beef than the cattle of the plains and valleys.

J. Sicity. — Animal husbandry occupies a very secondary position be agricultural economy of Sicily, which is one of the poorest regions attle of all Italy. The number of stock, moreover, shows little sign of passing, owing to the scarcity of keep. Cattle are kept almost entirely be open, and only rarely housed.

Experiments have been made to introduce foreign breeds, especially in neighbourhood of the large cities, but with indifferent success. Crosses been attempted with Schwytz, Simmental, Valdichiana and even

Dutch and Shorthorns, but only the Schwytz have given good results. The native or Sicilian cattle are usually divided into three sub-breeds:

a) The coastal, plain, or Modica breed which occupies the district

lodica and the western slopes of Etna.

b) The Mezzalina, or hill cattle, in the province of Trapani and the

b) The Mezzania, of Mu Cattle, in the province of Trapani and the

c) The mountain breed, found in the high mountains, as in the dits of Mistretta, Patti and Nicosia.

The Modica cattle are the most esteemed, and are most typical of breed. They stand rather high (oxen up to 5 ft. 8 in). and three-year-old a weigh from 1320 to 1650 lbs. The coat is light or dark red — darker the fore quarters and on the more exposed parts of the body — with k points; the horns are rather short, especially in the males, and black ed; the dewlap is somewhat large, especially in the males. The cows well developed udders. They are good draught animals and milkers, mot very suitable for meat production.

The milk yield varies considerably with the individual and with eason. In a good season when there is plenty of feed on the pastures, cows will yield as much as $3\frac{1}{2}$ to $5\frac{1}{2}$ gallons of milk daily and more during the spring and autumn; some cows are said to have given nch as 660 gallons of milk at one lactation, but during the summer the secretion of milk ceases.

The nountain cattle are small and very hardy; their horns are very and their coat is a much paler red; they are strong and resistant, are not good for the production of either milk or meat.

The Mezzalina sub-broad occupies an intermediate position both for and other characters.

K. Sardinia. — Agriculture in Sardinia is prevalently of an extensive re, based on the production of live stock and cereals. Livestock is of preatest importance in Sardinia. Cattle especially are the chief source

of wealth and of recent years have both increased in numbers and proved in quality.

The old Sardinian is gradually disappearing, leaving in its plate improved breed which is becoming increasingly popular on the mad of the mainland. Only in the mountains and in out of the way plate those small animals still to be seen, which formerly were character of the whole of Sardinia and which stand only about 4 ft. high and we under 550 lbs. Their coat is reddish or yellowish, with black muzzles, his switches to their tails and brown rings round the eyes; their homs long and thick, and their yield of milk and meat is very poor.

The present cattle is the result of repeated crosses with imposeds. Bulls from Sicily, Piedmont, Lombardy, Tuscany and the Mar were first imported for the purpose, but of late Schwytz bulls have be preferred, and every year they are now imported on a large scale cattle have much improved with regard to size, early maturity and milk meat production; at the same time, they are good draught anima their live weight ranges from 1320 to 1760 lbs. These results been obtained in spite of the very primitive conditions under which

animals are still reared.

From the foregoing account of breeds and their distribution, apparent that the cattle industry in Italy has undergone considerable de opment in recent times, and is likely to increase in this direction with spread of education and of the cooperative spirit. Nevertheless, m remains to be done and a higher degree of production will hardly be read in many parts unless State aid be granted to start the process of important ment.

Recent Experience and Progress in Beekeeping in Germany

by

F. GERSTUNG,

Editor of "Deutsche Bienenzucht in Theorie and Prazis", Ossmanstedt in Thuringi

Beekeeping in Germany had made satisfactory progress both in the and practice, notwithstanding the unfavourable conditions of weather 1 of yield, which, during recent years, have diminished the returns of 1 industry.

The action of the State in establishing institutions for research is instruction, and the organisation of theoretical and practical courses of keeping, now held regularly every year in almost all the beekeeper's sociations in the Empire, have largely contributed to the progress of beeking. Thus in Bavaria, which numbers about 50 000 beekeepers, a scient institution for the study of bees has been founded at the University of Edgen; here, elementary and advanced courses are held on beekeeping the diseases, the breeding of queens, etc., under the direction of Professor End

NDER. This institution is under the general supervision of the Professor of logy, Dr. FLEISCHMANN.

The results of the scientific work of this institution have been published the work of Professor Zander: Handbuch der Bienenkunde in Einzelstellungen (1). The yearly reports are published in the Landwirtschaft-

es Jahrbuch für Bayern (2).

Every year scientific and practical courses for persons from all the conerated states are held at the Royal Horticultural Institution at Dahlem, in. The scientific instruction is given by Dr. Küstenmacher, profes of beekeeping in the institution, and other teachers (for chemistry, bo y, etc.). The practical instruction is given by the writer of this paper or other leading men of German beekeeping. The reports upon the work of Institute appear regularly in the Bericht der Königl. Gartnerlehranstalt Dahlem bei Berlin (3) (Report of the Royal Horticultural Institution of hlem near Berlin), made by the Director, Herr Oekonomierat TH. Ech-MAYER.

The director of the Biological Institute at Dahlem, Dr. MAASSEN, unies himself especially with the diseases of bees. It is to a great ext due to him that the etiology of foulbrood has been satisfactorily and intifically explained; on the basis of the results of his investigations a has been drawn op on foulbrood and other contagious diseases of bees, ich will probably be discussed and approved by the Reichstag in

course of this year.

The Imperial Sanitary Office (Reichsgesundheitsamt) has published nemorandum on the honey trade, in which it warns German beekeepers the danger that threatens them in the shape of cheap foreign and artial honey, and communicates the measures adopted by the authorities and decisions of the law courts for the protection of beekeepers and of the 1ey-consuming public. Dr. KUSTENMACHER published in the Deutsche menzucht in Theorie und Praxis (4) year 1910, a series of articles with the ect of explaining scientifically "what is honey", apon which the Reichsundheitsamt published an Entwurf zu Festsetzungen über Hönig (Draft definitions of honey), which contains the preliminaries and bases for a on the protection of honey demanded for many years past by German keepers. In consequence of the improvements in the methods of exining honey, due to the labours of Professor HAENLE of Strasburg, . FIEHE of Berlin, Prof. LANGER of Graz, and others, it has become ier to distinguish with certainty between pure and mixed or adulterated leys and to prove the kind and degree of adulteration.

As for the special questions connected with the study of bees, which dug recent years have awakened most interest, we can in this short review

y mention the more important.

⁽¹⁾ Published by Eugen Ulmer, Stuttgart.

⁽²⁾ Published by Carl Gerber, Munich.

⁽³⁾ Published by Paul Parey, Perlin.

⁽⁴⁾ Published by Fritz Pfenmingstorff, Berlin.

The discussion as to the notion of the bee colony still continues. The anthropomorphic theory and the so-called organic theory oppose each other. The first considers the colony as a closed family (called also a State) of se. eral individuals united for the purpose of conservation and reproduction and who, in consequence of their special endowment and intelligence, are capable of adapting themselves suitably to the structure of their state and of finding out and fulfilling the special function which each has to per form. The other theory, that of the so-called organic point of view, which has been introduced and defended by us, considers the colony as a whole as a living unit, which, according to its wants for the conservation of the species, develops out of itself special organs in the form of different beings which form the colony. The various functions which are indispensable for the preservation of the whole are correspondingly distributed among is members according to their age and sex. The preservation of the colour is not based on the free choice of functions by each member, which presupposes a certain intelligence in the bees, but by the difference of the physiological structure of the individual members and of the whole colony caused by the conditions of their life, from which arise the capacity for and necessity of the various forms of activity for the conservation of the whole to the exclusion of the free choice of functions on the part of the individual The organic point of view has found decisive scientific support from the recognition that certain organs develop and begin to function only at certain periods, and after having fulfilled their duties disappear again. It is known that the wax glands do not develop their full functional activity until about 8 days after the emergence of the young bees and then retro grade until they cease to act; further, that the young nurse develops to its full perfection a gland which is only found at this stage, but which is necessary for the digestion of pollen, and that this gland gets atrophid as soon as the bee has passed the stage of nurse bee and has become a worker. This shows clearly that the most important functions for the preservation of the colony and of all its members are connected with the various ages and with corresponding physiological states and anatomial transformations. The organic theory recognizes logically a rigorous division of work, which represents the real basis for all the measures adopted in the practice of beekeeping. It adapts its methods as much as possible to the biological laws of the colony and endeavours to practise systematic bee keeping. The organic theory of the bee colony and its consequences in the theory and practice of beekeeping are treated in extenso in the book Der Bien und seine Zucht, 4th Edition (Berlin, Fritz Pfennigstorff).

The question of parthenogenesis, which has been so much debated during the last sixty years is again the subject of lively discussion. The most minute investigation into the eggs of bees has proved that the original opinion of Dr. Dzerson is still scientifically well founded; according to his theory the male members (drones) issue from unfecundated eggs, while the female members (queens and workers) hatch out from fecundated ones. Dr. NACHIB-HEIM of Munich has furnished scientific proof of this, while Prof. Bresslau of Strasburg has recognized and described the mechanism of fecundation.

vertherless, even these new discoveries fail to explain how the queen capable of fecundating her eggs or not according to their destination.

On the origin of the bee pap which the young larvae get during the first in days of their development, no unanimity of opinion has been attained spite of intense investigation. Professor Zander and others uphold Schier views, according to which the nutriment proceeds from the glands of head and thorax of the young nurse-bees. Dr. KÜSTENMACHER shares to bee pap. The latter considers the chyle stomach produces bee pap. The latter considers the chyle stomach as the seat of the oduction of propolis.

It is satisfactory to note that of late years eminent zoological scients have turned their attention to investigations on bees, and one may hope at before long many obscure points will be cleared up.

Practical beekeeping in Germany has, during the last ten years, ungone far-reaching changes. The most striking is the change from the ed (basket) or skep hives to the movable bar frame hive and in the latrom the system of hives having the opening behind to that with the ening above. Quite recently horizontal hives have taken the place vertical ones, and lastly, large hives are used instead of small ones.

The completely changed conditions of the honey-bearing flowers, which we converted the districts in which formerly the honey was gathered late to early yielding districts, have led to fixed hives falling more and more to disuse and being now almost limited to the heaths. In East ussia, where formerly only basket hives (Kanitz hive) were common, the called mixed system prevails, that is the Kanitz basket hive is used brood hive and for winter quarters, while a large lift with movable bar mes is placed on it for the honey. In this way it is possible to obtain centricated honey without destroying the combs. Nevertheless, the new rframe hives are continually spreading in East Prussia.

In 1880, at the meeting at Cologne, uniform dimensions for the bar frame res, which are still frequently called Dzierzon or Berlepsch hives, were fixed on, the so-called German-Austrian standard (8.79 in. wide by 7.29 in. pla for half frames and 14.58 in. high for whole frames). It soon apared that these dimensions were not favourable to the development the colonies. The early collection of the honey demanded a numerous pulation already in May and June, to be able to utilize completely the son which was often very short. This was not, however, possible with a standard hive, except with much trouble and difficulty, by enlarging a brooding space and similar measures.

At the same time as the insufficiency of the standard measures was nognized, the discovery was made of the laws which govern the making wax and of the brood cells, which was to prove of the greatest importance the construction of hives (r). With the demand for more space for the relopment of the colony was added the one due to a better knowledge of

⁽¹⁾ See: Grundgesetz der Brut-und Volksentwickelung des Biens, sixth edition: Berlin, 2 Plenningstorff.

the nature of a colony, namely for Space corresponding to the population Thus scientific dimensions were introduced into Germany, during if last twenty years and they have given satisfaction throughout the country They are the following: 15.75 by 9.84 inches or 155 square inches for 1 comh without the wooden frame, and nine such combs afford the colony sufficient hrooding space. These dimensions, wherever they have been a plied with understanding, have given the best results, and it seems the their substitution for all the others will be only a question of time. It hardly to be expected that these will ever be replaced by other dimension as with them the habitation of the colony is made according to its require ments. The colony itself ought to change before other dimensions conbe considered suitable.

This systematic brood comb has been adopted in many systems; hives which formerly used the standard dimensions, as for instance the g_{α} lepsch, the four-storied Liedloff, the Alherti, the German-American and other hives. Most modern hives are built according to these dimension

On the introduction of this modern system the influence of American was felt. Almost all the American forms of hives prefer the isolated pos sition of the colonies in the open under a separate protecting 100f, while naturally suggested the idea of handling the colony from above. The method at first seemed strange and unusual to German beekeepers wh mostly kept their colonies in bee houses and handled them from the bac The handling from above and the new dimensions encoun tered many difficulties, and had to struggle with much prejudice by with time all hostility has been overcome. When, during the last five year the horizontal hives became the fashion in Germany, the handling in above, which a short time previously was held to be impossible, began to b considered quite natural.

When the systematic dimensions were introduced the vertice hives were preferred, that is those with high frames. For countries without late honey these hives are even now the best form, a they oblige the colony to provide first of all the necessary store of food for the winter and to deposit it overhead, before bringing is beekeeper's share into the lifts. These hives, by their special build, prevail the pernicious practice of feeding with sugar and causing the degeneration

of the bees.

Certain conditions of the honey crop (fir and heather honey, etc.) 18th der it necessary to remove all the honey from the body box or to collect as comb-honey all that which cannot be removed by centrifugation. The is not easy with the vertical hive; consequently, by the side of the vertical hives, have been introduced the horizontal ones, in which the modern hrood comh is simply laid on its side without altering its dimensions. It is advisable to build the horizontal hives with the frames at right angles to the side which bears the alighting board and entrance.

The horizontal hive induces the hees, without any effort on the part of the keeper, to deposit all the honey they collect in the lifts, whence it call be easily collected. This can cause the body box to he completely freed free ney when the booty is not heavy and sometimes in very poor years it leven endanger the existence of the colony.

The more unfavourable the conditions of the supply of honey-bearing vers, the greater must be the care bestowed on the hees in order to get is factory returns from them. We cannot enter more fully into the subwhich, besides, is treated in every modern work on beekeeping.

An unforeseen difficulty in the way of adapting beekeeping to the nged conditions in the supply of honey-bearing flowers arose by the roduction made some decades ago of foreign breeds of bees, which hybized the native bees that were well adapted to their environment, in most cases spoiled them. It became necessary to breed, by selection, se suitable to present conditions. This was no easy task, as it is not pose to select a particular male (drone) for the mating. The impulse to scientific breeding of queens, from both the theoretical and practical ats of view, came from America. Von Stachelhausen worked out eral sure methods and introduced them into Germany by his hook: Der n und seine Zucht. The Swiss also, under the leadership of Dr. Kramer Zürich, have devoted much care to the breeding of queens, which at sent awakens much interest in Germany and is practised with success. The recent investigations into the laws of heredity have yielded new vieles and methods in the selection of breeding to have defined haved in the selection of breeding to have defined to haved the produce of the laws of heredity have yielded new

The recent investigations into the laws of heredity have yielded new ciples and methods in the selection of breeding stock and of breeds that at present methods founded on scientific bases can be employed brain, by means of selection, the desired qualities.

In conclusion, the following are some statistics concerning bees and ey. On December 1,1912, the total number of beehives in the German pire was 2 619 891, the highest on record. East Prussia, Württemberg Baden have had the greatest increases. The importation of wax nunted to 2952 tons, worth £409 500, the exports to 1 430 tons, th £210 500. Duty was paid in 1912 on £129 360 worth of honey. German beekeepers attempted in 1913 to unite all their associations one in order to defend their interests vigourously, but they have not succeeded in the proposed unification.

SECOND PART. ABSTRACTS

AGRICULTURAL INTELLIGENCE

GENERAL INFORMATION.

489 - The Agricultural Conditions of Albania. — SEDLMAYR, E. C. in Wiener Lawirtschaftliche Zeitung, Year 64, No. 31-32, pp. 279-280. Vienna, April 22, 1914.

Leaving out of consideration the mountain pastures, whose an is difficult to estimate, the area of the land available for agriculture Albania is between 500 000 and 600 000 acres. The most extensive estate are situated in the large plains along the sea, while the best soils are the mountain valleys of the large rivers.

The greatest landowner is the State, and the large estates of win it disposes are partly absolute State property and partly a mewkuf a a vacuf, i. e. ecclesiastical property. The large private estates are the hands of about five great families, each of which possesses from 1000 to 150 000 acres of land. Medium-sized estates of about 500 to 1000 are in extent are fairly common all over the country, while peasants im of about 25 acres are rare in the plains, but prevalent in the mountain

The large estates, both State-owned and private, and many of the medium-sized estates are worked on the share system. The size of the lam (a tschiftlik w) depends upon the number of members in the farmer's family and upon the quantity of live stock he possesses. One-tenth of the graction of (a dim w) goes to the State; of the remaining nine-tenths, one-timegoes to the landowner, and the rest or six-tenths to the farmer. In souther and central Albania large tracts of country lie fallow or are merely graze owing to the scarcity of farmers; at present barely 20 per cent of the whole cultivable area is being farmed.

Agriculture is still in its infancy, the only implements used for tilin the soil being a primitive wooden swing-plough and a harrow formed to a bundle of thorns. Only quite recently some of the very largest fames the north have provided themselves with modern ploughs, have ball

d a few other inplements. Regular rotations are unknown. The most muon crop is maize grown continuously, while small areas are put to eat, rye, barley and oats. In some places tohacco, flax, hemp and cotton to be seen, and to the south of Skumbi also rice fields. The agricultural duce is chiefly devoted to the needs of the local population, for means transport are not only insufficient, but also unsafe.

Live stock is rather more important than the raising of crops, but also conducted on extensive lines. Stahling is almost unknown, the imals being kept on the open pastures until they are ready for the market. e homed cattle are represented by the so-called Illyrian breed, small imals rarely attaining a height of 3ft. 6in., yellowish brown, yellow gray brown in colour and generally uniform; the buffaloes often met hin the plains are more strongly built, larger and better developed. e native horse is small, hardy and very thrifty and is very suitable as addle and pack horse. Asses and mules, especially in the south, are not e. In the mountains, sheep prevail, especially in the form of a kind of ckel sheep which supplies the peasants with meat, wool and skins, as Il as milk. Goats are kept; throughout the country, but especially he mountains, they are a fine, well-developed breed. Very fine poultry also found in Albania, while in many localities bees are kept, but in a st primitive fashion.

Oil and wine making are important branches of agriculture, while ongst fruits quinces and pomegranates thrive very well, besides plums, ples and pears, and in the north walnuts are abundant.

The grazing lands are extensive tracts often covered with bracken or nb or almost desert like with scanty herbage growing among the stones, other times they are arable land allowed to fall back into pasture. Meadare rare and only attain any importance in the north. Grass leys quite unknown.

Forestry has been still more neglected than agriculture and live ck, and extensive tracts of forest have been spoilt or completely destroyed injudicious management. It is only in out-of-the-way valleys in the high untains that valuable forests still exist.

In conclusion, the writer points out that agriculture may flourish develop in Albania provided that the numerous rivers of the country utilized systematically for irrigating the extensive plains and for production of electric power, and that the means of communication improved, the conditions of ownership settled, and the working classes scated.

- Agriculture in the Argentine Republic. — Hermes, A., with the assistance of Houtmeter Schommerg, H. — Berichie über Landwirtschaft, published by Reichsams des Innern, pp. VIII + 311, 48 tables and 17 maps. Berlin, 1913.

The writer discusses in the introductory chapters the geographical sition, area, history, the orographic, geological and soil conditions, as il as the hydrography and climate of the Argentine Republic. He riews also the conditions of its native population and immigrants, and of means of communication, and then proceeds to a description of the agri-

cultural conditions of the country, from which the following data are extracted.

Agriculture in the Argentine is still very extensive in character and especially characterized by a simple and very distinct division between the cultivation of the soil and animal husbandry. These two great division of agriculture exist side by side and each has its own sphere of action as its own means of accomplishing its work.

Cultivation of the soil. - The owners of the numerous large estate (" estancieros "), devote themselves almost exclusively to the raising livestock.; they cultivate the soil only temporarily and then only indirect ly by means of colonists' families and only with the object of improving the food supply for the stock, i. c. of producing forage, especially lucens The still unbroken areas to be put to lucerne, or worn-out lucerne fields are broken np by the colonists and cropped with wheat on the share sn tem. With the last cereal crop, lucerne seed, provided by the estanciero is sown and the colonist pulls down his primitive mud hut and moves to another part of the estate to repeat the same process. The colonist agreement with the landowner is usually made in one of the two forms "a medias" and "per tanto". According to the former the owner generals takes half shares both in the outlay for certain items such as seed, reaping and threshing, and in the returns. According to the second system the "tantero" bears all the farming expenses and pays a small percentage of the gross returns to the landowner for the use of the land.

One of the chief causes of the great spread of the share system in the Argentine is the shortage of labour and its high price.

Besides this, the character of the seasons largely affects the demand for labour during the summer over the extensive agricultural tracts.

The cultivation of the soil, as has already been mentioned, is only an accessory object, and has naturally undergone later and slower development than animal husbandry, which has been the prominent feature from the beginning. Only where medium and small holdings are more prevalent, is in the old colonists' centres of the chief provinces, especially in Sante R, is there unmistakable evidence of mixed farming. The cultivation of cereals on a large scale by individual owners or by contractors is not very frequent.

Except during the earliest periods of development in the seventeeth and eighteenth centuries, when the Cuyo provinces of Mendoza, San Juan and San Luis provided not only Argentine and Chile but also Brazil with what flour, Argentine has until recently been dependent on foreign countris for her corn. It was only in the seventies of last century that the country developed from an importer of cereals into a cereal exporting country, and she has come to occupy one of the most prominent positions amongst such countries in an astonishingly short space of time.

The agricultural area of Argentine was 1 432 620 acres in 1872 and had become 50 306 693 acres in 1910; that is in barely 40 years it had increased more than thirty fold. While the area of the cultivated land in 1872 was only 0.19 per cent. of the total area of the country it attained 6.82 per

in 1910, and, notwithstanding the great progress achieved, this latter shows the great future possibilities of agricultural development in the ry. Development has been especially rapid since 1895. Between 1895 and the cultivated land increased fourfold and the development has been rapid in the central provinces of Buenos Airos, Entre Rios, Santa Fé and ba, the cultivated area of which is much greater than that of all the provinces and territories put together.

he export of cereals is due to the unceasing spread of cultivation. At mports rose with the rising exports and it was only in 1877 that the is were surpassed by the imports,

able I shows how the value of the exports of animal products gradually exceeded by the products of the soil, till, in 1908, the amounted to twice as much as the former.

1I. - Value of exports of plant and animal products from Argentine for the period 1896-1910.

Years	Plant products (r)	Animal products
	£	£
	8 563 085	14 003 079
	4 632 955	14 700 308
	8 475 7 99	17 347 820
	12 935 379	22 439 457
	15 341 406	14 145 990
	14 213 929	17 995 976
	13 534 012	20 754 090
	20 895 477	21 675 704
	29 844 630	20 917 973
	33 796 696	28 001 177
	31 299 088	24 644 730
	32 577 008	24 581 9 49
	47 980 018	22 854 396
	45 761 815	30 483 860
	39 046 835	31 964 539

Exclusive of forest products.

griculture in Argentina presents a a rich variety of cultivated plants, y be seen from Table II, which shows the increased area of the varions ince the beginning of the seventies of last century, a period which may sidered as the starting point of the recent agricultural development country.

Table II. — Increased acreage of various crops, 1872-1000

		Cultivated as	ren in acres.	
Crops	1872	1888	x895	1909 1
Wheat	(†) 18o 627	2 015 021	5 064 951	14 422 690
Maize,	322 304	1 980 796	3 074 491	7 425 625
Flax	84	?	357 112	3 596 919
Oats		-	?	1 414 946
Barley	4 233	?	134 857	148 293
Lucerne	261 397	963 747	1 762 112	11 630 259
Potatoes	5 834	?	52 100	
Pulse	9 254	?	51 401	
Wine	9 019	63 393	82 68a	
Sugarcane,	6 062	52 046	151 411	
Tobacco	8 552	?	39 031	23 591
Cotton	996	30	2 172	
Barthnuts	5 901	?	33 298	
Vegetables	· —	3	58 216	
Trees in general	_	89 268	504 656	1 641 819
Other cultivated plants	70 406	912 406	120 093	5 302 247
Total cultivated area (3)	ī 433 252	6 076 707	12 088 582	46 395 634

⁽¹⁾ This figure is too low, since the provinces of Buenos Aires, Entre Rios and Rioji, is a no statistical data could be obtained, are not included.

(a) The acreage under outs was not secretained in 1872 nor in 1886 and 1895. The calcing the percentage of increase is based on an estimate made in 1896, according to which the us

(3) These figures are taken from official returns,

The class "other cultivated plants" consists almost entirely grass leys, which in the year 1909 amounted to 5 154 008 acres. B also the increase has been very considerable since 1895.

The great extent of the Republic, embracing various climates, is reason for the diversity of crops cultivated. Together with the common or and forage crops, vines and subtropical and tropical plants grow to perf tion. The rapid and extensive spread of wheat, the chief Argentine cereal, comparison with that of subtropical and tropical plants, is due notomy favourable natural conditions, but also to the excellent position, as regul means of communication, of the principal wheat belt (Central Argentia The same is true within certain limits of maize and lucerne. In 19 these three plants occupied more than two-thirds of the whole cultival area of the country.

In the other hand the chief territory in which tropical and subtroprops, such as cotton, tobacco and coffee, are raised, namely Northern tine, lies at a greater distance from the European market and is far rell provided with means of communication than the coastal zone. With resent opening up of the large northern belt, however, the cultivation spical and subtropical crops is sure to increase rapidly, as the natural tions are decidedly favourable.

Sugarcane is very important in the Argentine. The economic organof the province of Tucuman, which is the chief centre of its cultivais based upon it. Jujuy and Chaco come next in order of importance, at a distance, Santa Fé, Corrientes, Santiago del Estero, Salta and For-

Vine growing is also important; whilst in 1872 the total acreage vines was only 9016 acres, in 1888 it was 63 360 acres, in 1895, 80680, n 1909, 302 509 acres. Between 1895 and 1909 the area under vines st quadrupled itself. More than three quarters of this area is situated in novinces of Mendoza and San Juan, the former with 119 848 acres, he latter with 119 680 acres.

Live stock in general. — Table III shows the development of live stock a Argentine between 1888 and 1908.

TABLE III. - Head of live stock 1888-1908.

		Year	Percentage of increase or decrease					
	8881	1895	1908	1868-1895	1895-1968	1888-1908		
j	4 262 917	4 445 859	7 531 376	4.29	69,40	76.67		
and asses	430 940	483 369	750 125	12,17	55.19	74.07		
	21 963 930	21 701 526	29 1 16 625	- 1.19	34.16	32.5		
	66 701 097	74 379 562	67 211 754	11.51	- 9.64	0.7		
	403 203	652 766	1 403 591	61.15	115.02	248,1		
	1 969 765	2 748 860	3 945 086	39.04	43.52	100,2		

The province of Buenos Aires, by far the largest of all, possesses more one-third of all the cattle, one-third of the horses and upwards of one-the stock of sheep and pigs of the whole Republic. On the other hand the last but one of all the provinces with regard to its stock of mules asses and the last of all for goats. As for the value of the live stock, rovince of Buenos Aires owns more than half the total. It is followed is provinces of Santa-Fé, Entre Rios, Corrientes and Cordoba. Among erritories La Pampa occupies the foremost position.

The live stock at present existing in the Argentine Republic has been tly improved by the introduction of European blood. The number and e of animals imported for breeding purposes between the years 1880 and (1) is shown in Tables IV and V.

Unfortunately no reliable official statistical data as to the imports of breeding before 1880 are available.

TABLE IV. — Number of live stock imported into the Argentine Republic between 1880 and 1907.

Exporting country	Cattle	Horses	Agses	Sheep	Pigs	1
England	14 477	3 102	352	65 947	I 945	
France	583	1 580	112	1 184	3	1
Germany	153	120		3 327	12	
Belgium	325	156 ·	_	209	56	;
Holland	50	26	-	10	14	1
Spain	42	84	839	128	4	
Italy	62	79	57	56	6	i
United States	169	28	9	504	161	1
Australia		-		125	-	1
Various	10	11	-	33	5	
	15 871	5 186	1 369	71 523	2 206	٠

TABLE V. — Value of live stock imported into the Argentine Republic between 1880 and 1907.

	 		_	 _		 	 	 _	_	_	_	_		Total value	Average value head
Cattle ,					,									796 330	50 4
Horses														344 640	66 9
Asses .														32 821	25 19
Sheep.													-	715 079	10 0
Pigs .													1	19 617	8 17

The total value of the animals imported into Argentina between 100 and 1907 amounts to upwards of £1 900 000, the greater part of this magoing to England as the chief purveyor of the best live stock.

Horse breeding. — For centuries breeding was left almost entirely that the without any human interference. Natural selection produced the native Criollo horse, which was extraordinarily hardy and resistant. If the second half of the uneteenth century this primitive system of horse breeding underwent a great and unfavourable change owing to the enclosure of pastures with the formation of "bretes" or corrals, to the ruthless decimation of the herds of horses for their hides and to the slaughter of thousands of the best and heaviest horses for the numerous tallow factories. On the other hand the importation of the best has ropean breeds, which commenced in the second half of the nineteenth century and increased rapidly, had a lasting effect and considerably modified

riollo horse. Vast tracts of country are now stocked no longer by pure os. but by heterogeneous crossbreds, compared with which the number re-breds raised on the most up-to-date estancias is relatively small. thoroughbreds are the only type of light horse which has acquired importance in the Argentine Republic, owing to the passionate interken by the population in horse racing. No other country has invested considerable sums in Thoroughbreds in so short a time. Amongst the breeds of light horses introduced into the country, Hackneys undoubttake the lead. They are bred now with the greatest care in a numf the best estancias. From a purely zootechnical point of view their natisation has been one of the most successful in the Argentine; neeless their popularity has never spread and their distribution today is y localised and confined to the neighbourghood of the great metroponenos Aires. The other types of light English horses, Yorkshire and land, have not acquired any special importance in the Argentine. Anglo-Normans, which have been imported of late years in fairly numbers, deserve to be mentioned, as they seem to be steadily gainwour. Other types of light horses have also been imported, such as ers. Morgans, Russian and American trotters, Arabs, and, among Gerbreeds. Trakehners, Oldenburgers, Holsteiners, and East Friesians. vithout great success up to the present, owing in part to the fact that xperiments are very recent.

Among heavy draught horses, Clydesdales and Shires, the former espenave long been most popular, but of late Percherons have become is rivals and have gained much ground in a surprisingly short time; to their general usefulness and to the good results they have given crossed with the native breed. Of late years too the English Suffolk has been tried, not without success, and quite recently the mais, French brother of the Percheron, has been introduced and ises to become popular. The Belgian breed has only been tried limited extent, but has so far given satisfaction and it appears led to play an increasingly important part in the agriculture of trigontine.

Cattle. — Of all the branches of animal husbandry none has taken me advantage of the astonishing economic development of the country the rearing. The second half of the nineteenth century with its extenimports of the best European breeds and gradual elimination of the cololo strain represents a period of the great transformation in the time cattle. In the case of cattle also, England is the great purveyor proved stock, the part played by other countries being insignificant. upremacy of England as a source of supplies is ensured by the special time National Law, No. 4155, completed by some decrees, especially of January 9 and 16, 1903, which forbid the importation of cattle, and goats from any other European country.

If all breeds the Shorthorn, or, as it is generally known in the Argenthe "Durham", is the most widely spread. It is especially suitable for ing with the native Criollo cattle and is considered now as the impro-

ver par excellence of the Argentine cattle. The next in favour, but maid a bad second, is the Hereford, which, in spite of great exertions on the p of its partisans, is in no great demand.

The third English beef type is the Aberdeen Angus, representatives which are not very numerous and mostly met with in the south-west district. Perhaps this breed will spread more when the herds of the contry are further improved so that it has a chance of revealing its grant quality of producing valuable beef animals when crossed with other proceeds.

No other breed has hitherto acquired any importance in the Argentine neither the small English beef types nor milch cattle, the latter probably account of the edict prohibiting the importation of cattle mentioned also Among the best known milk breeds, Flemish and black and white Lowle cattle have been in the country for the last twenty years; Jerseys and a shires have not become very popular owing to their lack of size and well the beef-producing types are by far the most prevalent, and give the country a character of great uniformity. Argentine, with its greates cias and its herds running into thousands of head, is eminently adapt to the production of fat beef on its immense pastures.

Sheep. - The importation of improved European sheep began in first half of the nineteenth century. The first object being to obtain a L. wool, imports from Spain were gradually abandoned in favour of imports improved sheep from Germany, because breeders in that country have in the beginning devoted themselves to the production of fine wool. 1836 and 1837 about 4 200 Saxon Elector and Negretti sheep were import from Germany alone. At first the Electors were the most popular, but, owns the lack of development of the crossbreds, after 1838 preference was given Negrettis, which are larger and produce more wool, Germany continuous be the chief source of supplies. Rambouillet sheep made their first appe ance in the country in 1845, but it was only in 1870 that France can np and passed Germany as a source of supplies, without however attaining W high figures. Vermont sheep were also tried, but without much sum The repeated severe crises in the wool trade, and the enormous incre in the number of sheep led the estancieros to seek to make sh farming more profitable by ntilizing skins and tallow in the "saladen (salt meat factories) and "grasieras" (tallow factories). Conseque size and condition of the sheep became more important and the lap and heavier Rambouillet breed was preferred. Meanwhile the increase exports of live animals and frozen meat, together with the fact that eventh somewhat coarser wool of the crossbreds found a sale on the markets led! a demand for sheep which produced good mutton. In this way English bred gradually replaced the fine-woolled types of France and Germany, and it ports of these breeds soon became considerable. While England had \exp^{it} ed to Argentine only 625 sheep for breeding purposes between 1863 and 18 against 3260 from France and Germany in the next five years, 1881 the English sheep numbered 2759 against 1895 French and German.

incoin sheep were the favourites and were largely employed for crossth Merinos, so that after a few years their crosses formed the bulk of
gentine flocks; they stocked the rich natural pastures in the province
enos Aires, while the Merino sheep were driven into the dry lands.
Central Pampas and of the south. There are still some first class
of farms in the province of Buenos Aires, but the mass of Merinos are
in the above districts. From the Central Pampas the Merinos have
igradually southwards to the Rio Negro, Santa Cruz and Patagonia.
ommon Merinos thrive especially well in Patagonia, which has become
rellent sheep raising country of late years, but which can only it en pt
induce very high class wool on account of its great remoteness and
quent transport difficulties.

lomney Marsh sheep are at present found only to a limited extent, sem to have a future before them in the Argentine. New Leicesters, solds and Cheviots have also been imported, but have not attained any tance; neither have the Down breeds made much progress, probably to the coarseness of their wool.

igs. — Pig rearing is still in its infancy in the Argentine owing to the it conditions of land tenure and to the small and uncertain market. It tively more developed in the more densely populated agricultural its, especially where much maize is grown.

outs.—Goats are not numerous in the Pampas, owing to the predomiof sheep. They are more important in the mountainous parts of the blic where they often represent a valuable source of income for the farmer. Their most remunerative product is their skins, which comgood prices, especially the kid skins.

bullry. — Poultry keeping is also in a very undeveloped condition Argentine.

1 a special chapter the writer treats of the work of the "Sociedad Argentina" (the Central Agricultural Association of the Argentine) the International Agricultural Exhibition of 1910. A further chapter oted to the utilization of animal products in the Argentine (salting it, exportation of live animals and cold storage).

illization of animal products.—At present the production of cold stored zen meat are the most important methods of utilizing animal products. 11882 Drabble Bros. erected the first cold storage plant in the Argen-nd were soon followed by Sausinena and Son. At first only mutton eated, beef coming later. Exports began in 1883 with the limited of 17 165 head; in 1885 the number was 108 823, in 1886, 434 699 ree years later it was upwards of a million. Since then the industry veloped rapidly, having been much assisted by the State.

t present the cold storage industry in the Argentine employs upwards hands, and its working capital amounts to about £ 10 000 000. While 7 the value of the salted meat was 48 per cent. of that of the total ty of animal produce exported, twenty-three years later it sank to an 2.5 per cent. On the other hand cold-stored beef, which was ninth

on the list in point of importance in 1887, now occupies the first place the place of jerked beef (iasajo) more valuable products have appeared the total value of exports has risen uninterruptedly and sometimes great rapidity.

The price of refrigerated and frozen meat delivered on board at B_{ij} Aires is as follows:

	Price per lb.
Frozen beef	2.83 4
Refrigerated beef	3-37 *
Frozen mutton	3.79 >
Freight to London and Liverpool:	
Frozen meat	0.37 n
Refrigerated	0.51 1

Dairying. - The total number of dairying firms in the Argentine risen from 324 in 1903 to 896 in 1909, but the whole industry is still in early stages. Really intensive dairying does not yet exist and cannot experience of the cannot e the large open grazing tracts and the lack of suitable labour as well as thin population making the country in its present condition unsub for the development of the industry.

The milch cows are mostly crossbred Shorthorns and are milked a rather primitive fashion, often only once a day, in the morning a they have suckled their calf. The yield of milk is low, at most I.y. 1.76 gallons during the first period of lactation and 0.44 to 0.66 gak day on an average. Breeding for milk is as yet scarcely known in gentine, and would be hardly justifiable at present.

Of late the Government has seemed disposed to pay more attent to the question of dairying, and the recently founded "Oficina de India Lechera y Refrigeracion," which forms part of the Ministry of Agricult is beginning to show much activity. On its initiative the first milk con association has been instituted at Germania ("Sociedad de Contrala la Produccion lechera de Germania ") with help from the River Plate la Company (a large company of English and Argentine capitalists), wh possesses in the provinces of Buenos Aires, Santa Fé, Cordoba and h Rios 45 creameries driven by steam and a capital of 500 000 pesses (£ 102 040). It makes butter, cream, and casein, and raises pigs in the bit factories (mantequerias) of Buenos Aires, Rosario, Santa Fè and Bi vilbaso (Entre Rios).

A concluding chapter contains a description of typical farms an extensive bibliographical review is given in the form of an appear

JLTURAL VS AND RESSES

491 - Agricultural Shows.

Belgium.

1914. Oct. 24-26. Louvain. - Second International Poultry Show, organized by the "at teurs de Louvain ".

France.

1914. Oct. 1-4. Angoulême. — General show of horticultural products and of the arts industries depending on horticulture, organized by the "Société d'Horticulto" de Viticulture de la Charente ". M. Lotte, 98 rue de Bassau, Angoulême.

Dec (2nd half). Paris. — Twenty-fifth Poultry Show of the "Société nationale d'Aviculture de France".

Germany.

(Summer). Breslau. — Annual show of the German Agricultural Society (Deutsche Landwirtschafts-Gesellschaft).

March 19-27. Magdeburg. — Third fat stock show, will include also rabbits, agricultural machines, butcher's tools and foodstuffs.

Hungary.

September. Budapest. — Show of agricultural machines, organized by the "Köztelek"

Agricultural Society of Budapest.

Norway.

Sept. 20-28. Christiania. — Exhibition of agriculture, mechanical cultivation and domestic economy, held during the Norwegian Centenary Exhibition (May 15 Oct. 15). Russia.

Sept. 18-Oct. 4. Rostov-on-the-Don. — Agricultural and industrial show, organized by the Imperial Agricultural Society of the Don-Kuban-Terek.

, july-October, Tortosa, — International Exhibition of Agriculture, Viticulture and Hygiene.

- Agricultural Congresses.

France.

Nov. 3-6 (probable date). Mehm (Seine-et-Marne). — Nineteenth Annual Congress of Chrysanthemists, held by the "Société française des Chrysanthemists". At the same time the "Société d'Horticulture de Seine-et-Marne" will organize a show of all horticultural products.

Dec. 4-5. Paris. — First National Congress on Agricultural Labour, organized by the "Société nationale de protection de la main-d'œuvre agricole." There will be six sections: x) Legislation on rural wages and insurance. 2) Popular agricultural instruction. 3) Credit on property, housing, hygiene. 4) Labour exchanges. 5) Minor agricultural industries. 6) Métayage and various lease contracts.

Italy.

. August (end). Genova. — International congress on the wine trade, held by the local committee, in agreement with the presidency of the International Committee on the Wine Trade (Paris). There will be two long excursions, one to the vermouth districts and the other to Marsala.

CROPS AND CULTIVATION.

- Determination of Air Temperatures. — Hellmann, G. in Bericht über die Tättskeit des Königlich Preussischen Meteorologischen Instituts im Jahre 1913, pp. 46-51. Berlin, 1914.

Two aspiration thermometers (Aspirationsthermometer) were set 1.5 metres (5ft.) apart in a meadow belonging to the Meteorological ervatory at Potsdam. One was one metre (3 ft. 3 in.) from the surface be grass, which was kept closely mown, and the other was two metres t. 6 in.). Readings were taken by means of a telescope every second, ally for periods of ten minntes. From the results obtained, the writer w the following conclusions:

on the list in point of importance in 1887, new occupies the first place the place of jerked beef (tasajo) more veluable products have appeared the total value of exports has risen uninterruptedly and sometimes great rapidity.

The price of refrigerated and frozen meat delivered on board at $B_{\mathbf{k}}$

Aires is as follows:

Service and the service of the servi	Price per th
Frozen beef	2.83 4
Refrigerated beef	3.27 .
Freight to London and Liverpool:	3.79 .
Frozen meat	0.37 »
Refrigerated	0.51 1

Dairving. - The total number of dairying firms in the Argentine risen from 324 in 1903 to 896 in 1909, but the whole industry is still in early stages. Really intensive dairying does not yet exist and cannot a the large open grazing tracts and the lack of suitable labour as well a thin population making the country in its present condition turns for the development of the industry.

The milch cows are mostly crossbred Shorthorns and are milked a rather primitive fashion, often only once a day, in the morning a they have suckled their calf. The yield of milk is low, at most it 1.76 gallons during the first period of lactation and 0.44 to 0.66 gak day on an average. Breeding for milk is as yet scarcely known in gentine, and would be hardly justifiable at present.

Of late the Government has seemed disposed to pay more attent to the question of dairying, and the recently founded "Oficina de Indus Lechera y Refrigeracion," which forms part of the Ministry of Agricult is beginning to show much activity. On its initiative the first milk on association has been instituted at Germania ("Sociedad de Contrate la Produccion lechera de Germania") with help from the River Plate Company (a large company of English and Argentine capitalists), possesses in the provinces of Bnenos Aires, Santa Fé, Cordoba and Il Rios 45 creameries driven by steam and a capital of 500 000 pesos (£ 102 040). It makes butter, cream, and casein, and raises pigs in the but factories (mantequerias) of Buenos Aires, Rosario, Santa Fè and la vilbaso (Entre Rios).

A concluding chapter contains a description of typical farms? an extensive bibliographical review is given in the form of an append

DLTURAL. RESSES

491 - Agricultural Shows.

Belgium.

1914. Oct. 24-26. Louvain. — Second International Poultry Show, organized by the "Atl teurs de Louvain ".

France.

1914. Oct. 1-4. Angoulême. -- General show of horticultural products and of the sits industries depending on horticulture, organized by the "Société d'Horticulture de Viticulture de la Charente ". M. Lotte, 98 rue de Bassau, Angoulême.

Dec. (and half) Paris . - Twenty fifth Poultry Show of the "Society marapair or new culture de France de France de l'acceptant de l'acc Germany-Annual show of the German Agricultural Society (Deut

(Summer). Breslau.

wirtschafts-Gesellschaft).
March 19-21. Magdeburg. Third lat stock show, will fucude also ratiolis, agric or (one) at many of tural machines, butcher's tools and foodstuffs. 医多数不断 表现

Hungary.

September. Budapest. - Show of agricultural machines, organized by the "Köztelek" Agricultural Society of Budapest.

Norway.

- Sept. 20-28. Christiania. Exhibition of agriculture, mechanical cultivation and domestic economy, held during the Norwegian Centenary Exhibition (May 15-Oct. 15). Russia.
- Sept. 18 Oct. 4. Rostov-on-the-Don. -- Agricultural and industrial show, organized by the Imperial Agricultural Society of the Don-Kuban-Terek. Spain.
- July-October, Tortosa. International Exhibition of Agriculture, Viticulture and Hygiene.

- Agricultural Congresses.

France.

- . Nov. 3-6 (probable date). Mclun (Seine-et-Marne). Ninetecnth Annual Congress of Chrysanthemists, held by the "Société française des Chrysanthémistes". At the same time the "Société d'Horticulture de Scine-et-Marne" will organize a show of all horticultural products.
- Dec. 4-5. Paris. First National Congress on Agricultural Labour, organized by the "Société nationale de protection de la main-d'œuvre agricole. " There will be six sections: t) Legislation on rural wages and insurance. 2) Popular agricultural instruction. 3) Credit on property, housing, hygiene. 4) Labour exchanges. 5) Minor agricultural industries. 6) Métayage aud various lease centracts. Italy.
- August (end), Genova. International congress on the wine trade, held by the local committee, in agreement with the presidency of the International Committee on the Wine Trade (Paris). There will be two long excursions, one to the vermouth districts and the other to Marsala.

CROPS AND CULTIVATION.

- Determination of Air Temperatures. - Hellmann, G. in Bericht über die Tatigheit des Königlich Preussischen Meteorologischen Instituts im Jahre 1913, pp. 46-51. Berlin, 1914.

Two aspiration thermometers (Aspirationsthermometer) were set 1.5 metres (5ft.) apart in a meadow belonging to the Meteorological ervatory at Potsdam. One was one metre (3 ft. 3 in.) from the surface be grass, which was kept closely mown, and the other was two metres t 6 in.). Readings were taken by means of a telescope every second, illy for periods of ten minutes. From the results obtained, the writer V the following conclusions:

I. On days of active radiation, the temperature of the air at $midd_{0}$ vary from ro to 1.5° C. (1.8° to 2.7° F.) per minute at a distance of 0.4° or 0.5° C. two metres from the surface of the soil. Changes of 0.4° or 0.5° C. or 0.9° F.) in 10 to 15 seconds are not infrequent.

2. Variations of temperature during the hours of strongest sur (i. e. 7 a.m. to 1 p.m.) are greater at one metre from the surface :

ground than at two metres.

3. Usually during those hours, the temperature is higher at one than at two metres from the surface, but frequently this order is $_{10}$, showing the presence of both ascending and descending currents of air

4. In the early part of even hot days in summer (7 a.m. to 9 large variations are rare, and during the colder months of the ye

thermometer hardly varies 0.05° C. in several minutes.

It follows from the above conclusions that a single reading on when radiation is very active is likely to give erroneous results and s be replaced by the mean of a large number of readings taken at freque tervals. On the other hand one single reading will be sufficient on c or windy days. Further, two metres is a better height at which to thermometers than one metre, as violent fluctuations of temperature d radiation and reflexion from the soil are less noticeable at two metres at one. It would appear, therefore, that the English practice of pl thermometers at 4 feet from the surface of the ground would not give good results as that observed in other countries of placing them at 6h.

494 - Chemical Composition of Rain in South Africa. — Juritz, C.P. in The African Journal of Science, Vol. X, No. 7, pp. 170-193. Capetown, March 1911.

These determinations of the chemical composition of rain in S.

Africa were begun in 1910 as part of the scheme for the examination.

TABLE I.

		Total		Pounds	per acre	
Locality	Period	reinfall in		Nitrogen		
		inches	as ammonia	es nitrates	total	CP
Grahamstown .	Aug.1911 to July 1912	26.59	1.030	0.726	1.756	23.
	Dec. s to Nov. s	22.14	0.858	0.735	1.593	23.
Kokstad	Jan. 1912 to Dec. 3	26.54	1.118	0.670	1.788(3)	-
Bloemfontein .	Sep. 1910 to Aug,1911	27.82	3.658	1.620	5.278	6.
ع د	Se p. 19 7 1 to A ug.1912	15.49	4.870	1.363	6.233	2.
Durbar]	Jan. » to Dec. 1911	42.34	3.651	1.234	4.885	61.
	an. 1912 to Dec. 1912	31.07	3.906	1.249	5.155	704
Cedara		26.68	4.710	0,865	5.575	16.1

⁽¹⁾ Not including Aug. and Dec. 1911, and May 1912. — (2) Not including Dec. and May end Aug. 1912. — (3) Excluding 0.25 inch of rain during Sept. 1912.—(4) including March 1912. — (5) Excluding 0.2 inch of rain during June 1911.—(6) Edding 0.1 inch of rain during June 1912.

all in all parts of the world initiated by Dr. MILLER. The detertions were carried out at 8. stations, adopting uniform methods of cing and analysing the rainwater. Precautions were taken to prevent amination by dust and by the excreta of birds. The results obtained are summarised in the tables (I and II):

LE II. - Comparison of nitrogen content of summer and winter rains

			Ni	trogen in p	ounds per	acre	
ecality	Period	Sum	mer; Sep.	to Feb.	Win	er: March	to Aug
Kanty		as am- monia	as nitrates	tota1	as am- monia	as Ditrates	total
amstown . afontein .	Sep. 1911 to Aug. 1912 1 1910 to 1911 1 1911 to 1 1912	1.425		1.057 2.332 4.321 3.519	0.448 2.233 1.626 1.796		0.71: 2.94(1.91:

Table II shows an increase of nitric nitrogen during the summer ths. During 1910-11 considerably more nitrogen was brought down as 1001ia at Bloemfontein in winter than in summer, but during the wing year this irregularity disappeared.

- The Red Clay Soil of Porto Rico. (1) — Gile, P. I. and Agerton, C. N. — Porto Rico Agricultural Experiment Station, Bulletin No. 14, pp. 1-24. Washington, March 1914.

The red clay is one of the most widely distributed types of soil in the id of Porto Rico. It is a fairly heavy clay resting on an impervious suband contains a high percentage of iron and aluminium but no carbon-being almost invariably acid and deficient in organic matter. Usually sponds to manuring and more especially to applications of lime, but ain areas, which have been continuously under sugarcane, are in a ck" condition and respond neither to manuring nor to liming. The on for this condition is unknown, and the results of analyses of the mic matter of these soils carried out by the U. S. Department of iculture failed to account for the observed facts.

- Methods in Soll Bacteriology, VII: Ammonification and Nitrification in Soll and Solution. — Löhnen, F. and Green, H. H. (Laboratorium für Bakteriologie am Landwirtschaftlichen Institut der Universität Leipzig) in Centralbiat! für Bakteriologie etc., II Abt., Vol. 40, No. 19/21, pp. 457-479. (Article written in English). Jena, April 4. 1914.

In a series of ammonification trials the influence of aeration on the prowas investigated by using different depths of liquid medium, blood if being the basis of the nitrogen supply. It was found that this factor less importance than was expected, and that the low ammonification

^[1] See No. 100, B. Feb. 1914.

of substances in deep layers, such as has been previously noted, only be due in part to the anaerobic conditions prevailing. In a secon of trials, the decomposing material was not only placed in a liquid $m_{\rm t}$ but also distributed over various solid median, such as soil, sand, glass glass wool, and this factor of distribution appeared to be of consident importance, as ammonification was always more active when solid $_{\rm t}$ were employed than it was in a liquid medium.

Nitrification trials showed that the activity of this process in media decreases as the depth of the medium increases, and when the sol was spread out in a film 2 mm, thick, the results were similar to obtained when soil was used as medium. The concentration of ammonia in the liquid medium appeared an important factor, a amounts of nitrate being formed with 0.1 per cent. ammonium sultand 0.1 and 0.3 per cent. magnesium ammonium phosphate (Mg NH, but the amount being reduced when 0.2 per cent. ammonium sultand used. The presence of basic magnesium carbonate proved distinhibitive.

497 - The Absence of Nitrate Formation in Cultures of Azotobaca Kellerman, K. F. and Smith, N. R. (U. S. Department of Agriculture, Weshi D. C.) in Contrablatt für Bakteriologie etc., II Abt., Vol. 40, No. 19/21, pp. 47 (Article written in English). Jena, April 4, 1914.

Recently there has appeared a report (1) of observations upon or cultures of species or varieties of Azotobacter recording the formation nitrate, presumably resulting from the activity of the cultures under cussion. Professor Jones supplied the writers with cultures of four which he considered to possess the ability of forming nitrate; thes grown in Ashby's solution both with and without the addition of pot mitrate, and at stated intervals careful examinations were made by the presence of nitrate and for the gain in total nitrogen due to the for atmospheric nitrogen. The results indicated clearly that while strains were capable of fixing appreciable quantities of free nitrogewere apparently unable to produce nitrates.

498 - The Mechanism of Denitrification. — HULME, W. (Manchester Union Journal of the Chemical Society, Vols. CV and CVI, No. 617, pp. 623-632. March 1914.

Four flasks of culture media were prepared, containing respective

Peptone . . 0.5 % Dextrose . . 0.5 % Dextrose . . 0.5 % Pet. nitrate . 0.5 %

and were inoculated with pure cultures of denitrifying organisms is from dried sewage filter deposit. The gases formed by the fermes

⁽¹⁾ JONES, D. H., A morphological and cultural study of some Azotobacter. — blatt für Bakteriologie, II Abt. Vol. 38, pp. 14-15, 1913.

collected, measured and analysed. After 20 days they had the folig composition :

Flask	cc. of gas formed	Hydrogen %	Nitrogen %	Carbon dioxid
sining nitrate	39	-	98.83	3-17
mining meeting (36		98.59	1.41
aining no nitrate	26	70.14	–	29.86
alithing no miceae	5 3	73.17	-	25.83

flasks I and 3 were also shown to contain nitrite.

from these results it would appear that reduction of nitrate is brought by the action of nascent hydrogen, for though hydrogen is the chief ituent of the gas evolved from flasks 2 and 4, which contain no te, in the presence of nitrate the gas of fermentation consists almost of nitrogen. This conclusion was confirmed by another experiment hich the medium fermented contained a weaker solution of nitrate per cent.). So long as nitrite was present in the fermenting solution ases formed consisted of nitrogen and carbon dioxide, but as soon as tion was complete and nitrite could no longer be detected in the enting solution, then the gases formed consisted of hydrogen and n dioxide.

In order to determine whether enzymes played any part in denitrion, sterile enzyme solutions were prepared from the four above culture a. The media were precipitated with alcohol and salt, and the precipt was dried, redissolved, and filtered through a Chamberland filter le. A few cc. of these enzyme solutions were then added to tubes siming 5 cc. of a 1 per cent. solution of potassium nitrate and incubated 4 hours, after which the nitrate present was estimated quantitatively:

	Mg	m. of nitrogen as nitr	rite
Flask	Nitrate sol. alone	Enzyme sol, alone	Nitrate + enzyme sol.
,			
	0,005	0.01	0.03
,	0,005		0.02
	0,005	-	0.01
	0.005	_	0.01

These results seem to show that the denitrification of a medium conguitrates and peptone under anaerobic conditions yields an enzyme which has the power of reducing a I per cent. solution of potassium nit-The reduction obtained with the enzyme solutions from flasks 2 and 4 probably due to a purely chemical reduction of the nitrate by the org matter present in the solution.

Further enzyme solutions were prepared from a nitrate broth ut going denitrification: a) after the fermentation had progressed for four and the culture medium contained a considerable quantity of nitrite, b) when the fermentation was complete and all the nitrate and nitrite been decomposed; both were tested for enzyme action as before and results showed that the denitrification of nitrate broth under semi-acconditions involved the production of an enzyme as long nitrate or ni were present in the solution, but that the enzyme disappeared when nitrate and nitrite had been decomposed.

Finally, other enzyme solutions were prepared from culture media, of which had been inoculated with denitrifying organisms while others remained sterile, in order to determine whether the reducing product ated from denitrifying solutions was really due to bacterial influence whether it would also be produced in a flask containing similar ingred and treated in exactly the same way, but which all the while remainsterile. The enzyme solutions were tested as before and the results define showed that the reducing product was due entirely to bacterial action was not a purely chemical product.

499 - The Functions of the Non-Bacterial Population of the "Bacterial - Crabtree, J. (Manchester Sewage Works, Withington) in Centralblatt für B. ologie Abt. II, Vol. XI., No. 11/13, pp. 225-239. Jena, March 2, 1914.

Three experimental contact filter beds were prepared as folk the socket ends of three earthenware sewer pipes, 2ft. 6in. long by in diam., were filled with concrete to form a bottom, and a hole was b at the base of each to form an outlet. They were then filled with clir 0.25 in. to 0.75 in. in size, and received the effluent from the settlement twice daily except Saturdays and Sundays when only one filling was gi the contact lasted two hours each time. Of the three beds, A serve control, B was subjected repeatedly to partial sterilization by filling tank with a saturated solution of tolnene in water, and C was at first ru a duplicate of A bnt later was also toluened. The beds were occasion and the effluents constantly, subjected to analysis, chemically by estimation of free ammonia and nitrates and by the oxygen absort test, and biologically by the plating out of bacteria on gelatine and by on ing protozoa by means of a plankton counting chamber. Further, a pre nary set of experiments showed that the bacterial content of the eff varied with that of the bed medium and could therefore be used to ind the bacterial condition of the latter without continual disturbance of bed.

During the first two months the beds all received the same treats and the analyses showed that the three beds were similar in every rest On the 67th day from the start B was toluened for the first time.

act of this on the effluent was first a drop, then a large increase in the inter of bacteria growing on gelatine, and a decrease of the percentage intention. The bed, however, recovered comparatively quickly and was intentional again at the end of a week. The treatment was repeated intervals varying from 7 days to 3 weeks, always with the same results, effluent from B never reaching the same degree of purification as that in A. After eight months, B produced for the first time an effluent better in A. This occurred 56 days after previous toluene treatment and from time forward the superiority of B's effluent was maintained in spite repeated treatment with toluene.

At the end of the 13th month the protozoa in B were reduced to 760 cc. of the bed medium, while A contained 2240 per cc., but a series of derial counts carried ont during the 12th and 13th months indicated that enumber of bacteria in the effluent from B was only slightly higher than number in the effluent from A. It was therefore difficult to attribute the periority of B over A to the increase of bacteria owing to the removal of animal population. When, however, the capacities of the two beds were mpared, a considerable difference was observed between A and B. While coriginal capacity of A had only been reduced 7.06 per cent by the 13th onth that of B had been reduced 15.7 per cent, and the difference of the face deposit on the clinkers was evident to the naked eye, that of B being rister and more spongy, while that of A was more granular. But this ry reduction in capacity and change in the character of the surface posit, which may be ascribed to the removal of the animal forms, would move the purity of the effluent by increasing the surface of the bed. dwould consequently account for the superior results given by B over A.

During the 13th month, C as well as B was toluened, and confirmed the alts obtained with B at the start. In a last set of experiments, when the at efficient was replaced by a dilute peptone solution (1 part of altumoid ammonia per 100 000) in order to eliminate the effect of the continual dition of extraneous organisms and colloid matter, the toluened bed C wied greater purification that the untreated bed A, while, at the same at the capacity of A increased and that of C did not, owing to its imal population attacking and removing the solid deposit.

Thus the animal population of a contact bed helps to keep the latter and from this point of view is desirable, but outside this effect it seems lavelittle influence on the actual purification processes taking place. The reased number of bacteria capable of growing on gelatine which were sent in the beds after tolnene treatment was not correlated with a higher gee of purification, and the writer suggests that counts on nutrient gelme do not necessarily indicate the number of bacteria involved in the niying processes, for growth on gelatine is chiefly a putrefactive process, the purification is chiefly an oxidation process. In this connection, work of Müller is referred to, where it is shown that protozoa in the reduce the number of bacteria capable of growing on gelatine, but not affect those growing on albumose agar; from this the conclusion drawn that protozoa prey only on bacteria foreign to water (B. coli,

B. typhosus, etc.) and leave the normal population untouched. Applying the idea to the case of sewage, very suggestive results were obtained by pleing effluents simultaneously on gelatine and albumose agar, when the ord of the counts obtained from beds A and B was reversed. The writer on puts forward this explanation tentatively, as the experimental eviden on which it is based is still very slight; but according to it, the remove of protozoa would not only reduce the capacity of a bed but would altend to decrease its power of purification by allowing the increase of the putrefactive organisms and a consequent decrease of the normal population the better results obtained with B than with A after eight months being solely attributed to the increased surface of bed B. But in any case, the continual addition of sewage rich in all classes of bacteria must tend keep the population fairly stable and tend to nullify any selective effective the protozoa may possess.

500 - The Manurial Value of Phonolite (1): - NEUMANN, R. in Fühling's Las wirtschaftliche Zeitung, Year 63, Part 8, pp. 278-291. Stuttgart, 1914.

It has already been demonstrated by a number of pot and field expements that phonolite possesses a certain manurial value, which, however cannot be compared with that of the common potash manures, becaute of its insolubility, and the use of ground phonolite has therefore bedeemed inadvisable owing to its high price and limited efficiency.

In 1912 a new phonolite appeared on the market, the "Vulkan-ph nolith", which was claimed to be more valuable than those previous known and to possess the property of fixing nitrogen. In spite of repeats warnings against it from competent quarters it succeeded in gaining footing in several countries. In order to give greater weight to its warning the Experimental Station of Hohenheim started a series of pot and fix experiments with the new phonolite in the autumn of 1912. The invetigations were planned: 1) to compare the values of phonolite and kain as potash manures by the addition of kainit on the one hand and phonolite on the other to a fundamental manuring of basic slag and nitral of soda; and 2) to ascertain the existence of the alleged nitrogen-fixin property by comparing an unmanured soil with one treated with phonolite. The plants used were winter and spring barley and mangolds. Il fertilizers used had the following composition:

Vulkan-phonolith:

7.3 per cent. total potash (soluble in hydrofluoric acid).

5.0 » potash soluble in hot concentrated hydrochloric acid.

0.4 a potash soluble in hot water,

Kainit: 15.1 per cent. K20.

Basic slag: 16.3 per cent. citrate soluble PaOs.

Nitrate of soda: 15.3 per cent. N.

(1) See also: No. 233, B. March 1913; No. 349, B. April 1913; B. Oct. 1913, P. 14² original article by Prof. LEMMERMANN: On the Possibility of Replacing Stassfurt Pots Safts by Finely Ground Phonolite, Leucite, etc.

The writer summarizes the results of his experiments and observations

T. The affirmation that "Vukain-phonolith" possesses the property strogen fixation has not been confirmed by either the pot or the desperiments.

2. In the barley field the only effect of phonolite was to increase the li of straw; this increase, however, was greater when the same amount potash was given under the form of kainit.

3. In these same experiments kainit also gave a large increase in the

dd of grain.

4. With mangolds, phonolite produced a heavier crop of roots, but increase was only apparent, for on examining the amount of dry matter the crop it was found that there was no real increase. With an equal mount of potash given as potash salts the yield of dry matter was considerable in the product of potash given as potash salts the yield of dry matter was considerable in the product of the pr

The experiments have failed to prove any superiority of "Vulkan-

molith" over the other phonolite.

- New Investigations with Magnesium. - Misses, E. and Compain, E. in La Vio

Applications of dolomite (having a lime - magnesia ratio of 1.5) were nie as follows on plots 0.6 acre in area:

The soil was a clay loam having the following percentage composition:

Soft	Sabsoil
Nitrogen 0,1	8 0.16
Phosphoric acid 0.2	0.20
Potash O.I	3 0,09
Potasu.	
Lime	0.35
Maguesia	t 4.89
Organic matter L7	1.49
Coarse sand 31.0	r 32.26
Fine sand 59.5	8 56.17
rine sano	
Clay	
Reaction alka	line neutra

The manure was hand sown and harrowed in. The land was then longhed a second time and tankard mangels were sown on June 25. The after were harvested on October 29 and yielded the following weights by acre.

Plot I Raw	đ	olo	mi	te				25 -, tons
Plot 2 Roested			•		•			26.5
Plot 3 Idme .								285
Plot 4 Control						٠		27.5

These results show that the dolomite had a distinctly depress effect on the yield.

502 - Report of the Imperial Economic Botanist for India, 1918. (1) - Howam in Report of the Agricultural Research Institute and College, Pusa, 1912-13, pp. 2 Calcutta, 1914.

Wheat Experiments.

The improvement in the quality of Indian wheats has now reacthe practical stage and extensive seed farms have been established for distribution of high grade seed to the public. Mr. Humphries, of Incorporated Society of British and Irish Millers, reports that these I wheats produce good baking flours equal to those of the Manitoba sp. wheats. At the same time both cultivators, landholders and the educe community in India prefer them to their own indigenous varieties.

Experiments in different localities in India have shown that these in proved varieties retain their superior qualities whether grown on alluvial stunder irrigation or on the black cotton soils of the Deccan.

Further experiments are in progress with the object of producing stra of Pusa wheats with increased standing power, rust resistance and gene hardiness.

Other Investigations.

Tobacco. — A type of tobacco has been found in Bihar suitable cigarettes. It is known as Type 28 and seed is now being distributed planters and Government farms in the Central and United Provint Partial sterilisation of the seed beds by surface fires has given excell results in preventing loss of first sowings and seedlings.

The inheritance of characters has been studied and several promis strains have been isolated. It has been shown that the inheritance of st quantitative characters as size and shape of leaf follow Mendelian laws

Gram (Cicer arietinum). — The selection experiments have been at nued. The high yielding white strain again gave good results at Pusa a is being tried on the Government farms in the Central and Unit Provinces.

Fibres.—The study of the inheritance of characters in Hibisons S dariffa is being continued. A promising strain of H. cannabinus, kno as type 3, has been grown for fibre with satisfactory results, and seed to be distributed during the season.

Indigo. — This work has been transferred from the Sirsiah Exp. ment Station to Pusa. Two problems await solution, viz. methods

miling loss of plant due to "wilt" during the late monsoon, and the nuction of a reliable seed supply in Bihar. The methods of pollination also be studied with a view to applying modern methods of selection breeding. Already valuable results have been obtained on the mestal treatment of "wilt" and these will be published during 1914. Development of the Fruit Industry in Baluchistan.

The raising of nursery stock and economy in the use of water for irrigapurposes has been effected. Clover as a green manure has given relient results. A collect on of the most useful varieties of trees from the ath of France is being made with a view to future developments. Tomato cultivationis being attempted on a large scale, the plants

ing trained on the two-branch system combined with furrow irrigation. Experiments on the packing and transport of fruits are also being mied out.

Research on Vegetable Physiology: III and IV. (1) - MAZE, P. in Annales de Institut Pasteur, Vol. 27, No. 12, pp. 1093-1143; Vol. 28, No. 1, pp. 21-26. Paris, Deember 25, 1913, January 1914.

The functions of water. - In a perfectly balanced culture solution, the me of water transpired by the maize plant in producing a given quanof dry matter is constant and independent of the concentration of salts in solution. The addition of assimilable organic matter dimins transpiration, and, in the case of sngar, the amount of dry matter he plant is increased. In an unbalanced solution, an increase in concentration of calcium nitrate from 0.5 to 1.0 per cent., or of sum chloride from 0.5 to 2.0 per cent., lowers the rate of transpiration, ist ammonium nitrate and potassium phosphate in excess, increase it.

The rate of transpiration by day is independent of that by night, but er a low temperature in the day-time the nocturnal rate of transpiration more rapid. The rate of transpiration is also greater during the second If of the night than during the first. Other workers have observed a ester rate of transpiration in plants growing in poor soils, owing to the exusion of the roots in the rapidly impoverished soil.

The mechanism of absorption. - In nature the soil solution is never sisologically balanced for the needs of the plants, and only those which pen all their seeds at a definite period are able to complete the ripening press in an exhausted solution. Leguminous plants generally show all ages of development at the same time and require a nutritive solution of ustant strength. Their roots are therefore sensitive indicators of the pulition of a culture medium. In dilute solutions they develop luxurirly, whilst in unbalanced solutions they grow to an abnormal length d the leaves do not develop at all.

The root is protected against the entrance of soluble substances by

e presence of a mucilaginous sheath. Secretory functions of roots. - The acid reaction of the excretions of lots would be favourable to diastatic action, but though soluble starch in a culture solution may be absorbed by roots, there is no evidence of formation of invert sugar in the medium. Saccharose in culture medius partially converted into invert sugar, but sucrase cannot be detect. The leaves and stem contain 78.9 per cent. of invert sugar. It there appears that saccharose is absorbed as such, inverted in the leaves and turned to the roots to be excreted as invert sugar.

Conditions of fructification in aseptic solutions. — In 1911, fructifition was only obtained in cultures containing sodium nitrate. Under oil conditions, the plants appeared to be disturbed during the development the reproductive organs; several female ears were produced, the major of which aborted. During the migration of reserves to the fertilist ovaries the composition of the nutritive solution requires to be change to meet the requirements of the plant.

THE INFLUENCE OF MINERAL SALTS ON THE GROWTH OF MAIZE

The solutions were made with ordinary tap-water, since fructificati does not take place in distilled water owing to the absence of traces certain substances. The influence of calcium carbonate, sulphur, in

manganese and zinc was studied.

Calcium carbonate. — When calcium carbonate is replaced by calcium carbonate. — When calcium carbonate is replaced by calcium chloride in culture solutions containing ammonium salts, the roots she abnormal development and the medium develops an acid reaction. If nitrogen is supplied as sodium or ammonium nitrate, the medium becomes alkaline and abnormal root development takes place. It is the fore necessary that calcium should be present in the form of carbona. The quantities of iron, manganese, and zinc present in culture solution would be fatal if supplied as pure solutions in distilled water. They a precipitated by the calcium salts in the culture solution and are only a dered soluble gradually as the culture solution becomes acid or alkalium.

Influence of sulphur and iron. — In the absence of sulphur and in plants gradually develop chlorosis and become sterile. A drop of solution containing iron or sulphur placed on the discoloured leaves restores the green containing iron or sulphur placed on the discoloured leaves restores the green containing iron or sulphur placed on the discoloured leaves restores the green containing iron or sulphur placed on the discoloured leaves restores the green containing iron or sulphur and iron.

colour and the functions of the chlorophyll.

Influence of manganese. — The difficulties of depriving a plant of manganese owing to its presence in glass and in the seeds, diminishes the chle otic effect of its absence from the solution. Solutions of manganese not restore the discoloration due to manganese chlorosis, but the sap normal maize plants appears to contain some specific substance while restores the chlorophyll function.

Influence of zinc. — In the absence of zinc, the roots become cover with a yellowish deposit of sulphur. The leaves gradually darken, ta on a metallic appearance and become incrusted with mineral matter can

ing the death of the plant.

Pure solutions of nitrate, phosphate, sulphate and chloride of sol potash and lime are only favourable to growth in concentrations between

and o.1 per cent. Ammonium salts of the same acid radicles are not calcium nitrate appears to fee.

Calcium nitrate appears to favour the development of long roots, 15 making a greater depth of soil available to the plant.

The Resistance of Leguminous Seeds to High Temperatures. Publication of the Faculty of Natural Science of the Reyal Hungarian Academy of Agriculture at Magyarovar). — NBUBERGER, F. in Kishletügyi Koulemények, Vol. 17, No. 1, pp. 121-168 (pp. 169-170, German abstract). Budapest, January February 1914. The experiments were made with seeds of Vision Pales Vision Labor.

The experiments were made with seeds of Vicia Faba, Vicia sativa, ascolus vulgaris, Pisum sativum, Lens esculenta, Medicago sativa and folium repens. The seeds were submitted to the action of dry heat at emperature of 50° to 130° C. for from ½ hour to 6 hours, and to the fours, They were then germinated in a Weinzierl apparatus. The results summarised in Tables I and II.

The effect of heat on germination is proportional to its intensity and ation. Up to a temperature of 80° C. dry heat acting for a certain length lime is not injurious to germination. Above 80° C, the resistance of the ividual seeds of different varieties varies considerably. For any given des the resistance to heat is inversely proportional to the water content the seeds, and may be increased to some extent by careful drying. The hest temperature to which leguminous seeds have been subjected without troying their germinating power is 130° C. Immersion in water at a perature higher than the maximum temperature of germination has injurious effect if the immersion takes place before the seeds begin to all. The relative resistance of different species may be considered a cial characteristic of each species.

According to the writer the injurious action of heat is due to the desction of enzymes which control the germinating power of the seed. Furresearches are being made on this subject.

TABLE I.

Instruence of dry heat on the germinating power of leguminous seeds.	tence	10	ary						-			I		ľ	Ì	i			Ī		Ī	
	w	k	3	٥	3		¥	100		=	ъ.			13	130			.Sex		nge C	ij	alle
	thanto % v							A	Duration of treatment in hours	8	an an	H	hour	-								encenta settous (,C, *c;
	tial gen capacit			-	•	•		0	*	-		0	*	-	-	•	*		*	*	н	q to late alming 1-40()
	ial				1				ž	Pecentage germination	2	adla	80						i			οŢ
Broad beans (Victa Faba)	ů,	8	8	66	- 8	27		81	81	90 14	oi +		89	1			0	٥	٥	. 0		789
(Vicia Fada) (attack- rubs)	8	8	95	001	- 46	- <u>\$</u>	- 56	8	<u> </u>	95 75	3	w	71				٥	٥	٥	٥	٥	116.
Haricot beans (Phaseolus vulgaris)	98	96	96	88	- 8	0	75	4	<u></u>	36		0		-			0	٥	٥	•	٥	510
Peas (Pisum sativum)	96	9.5	\$	77	4	39	-89	9	- -	69 52	188			- 8	- 0		0	٥	٥	٥	٥	804
Lentils (Lens esculenta)	86	8	8	93	98	59	- 26	76. 4	- 64	97 27	7 17	12		- 8	4	-	٥	•	٥	ō	٠.	885
Vetches (Vicia sativa)	100	66	66	97	8	84	<u>2.</u>	95 4	- 1	100 96	86	8	200	26	4	2	8	39	۰	21	6	1 472
Lucerne (Medicago sativa)	8	95	85	386	-62	75	822	85.3	35 9	98 06	86	õ	16	7	65	£	67	43	e.	61	0	1 368
White clover (Trifolium repens) .	10	92	83	8.5	87	ş	85	86	40	88	80	67	88	80	72	67	ă	0	3.5	0+	0	1 300

u u g	disors	ta) óf j germin	or	_	0 - 646	232	963	242	0 915	377	•	
4		×	١.		60	٥	N	٥	4	н		
		4	ļ		٥	٥	٥	٥	4	0		
73		н			4	0	+	٥	8	67		
		*			13	0	0	٥	53	4	-	
		а			٥	٥	٥	٥	15	0	(
5	ä	H			17	0	'n	0	4	90		
	A	*	8		33	0	00	٥	73	٠		
	tent	н	finat		٥	٥	0	٥	82	۰		
\$	reatu		5		5	0	80	m	53	4		
	of th	×	tage.	-	99	12	13	~	8	6	-	
3	Duration of treatment in hours:	*	Percentage germination		0	0	∞ -	٥	33	7	-	
•	Dur	н	ļ ~		39	н	91		53	7	,	
		*		_	٥	٥	15	٨	4	80	-	
'n					8	4	4	0	62	10		
ş,		"			72	٥	Z Z	6	စ္တ	31	- !	
'n		H			97	56	50	-6I	89	9/	6	
		"			86	89	78	8	86	6	ì	
* 3		H	H			8	100	2	6	100	88	8
two	twinst fty %	etili Sepec	वा		100	-86	8	86	001	8	7	
					:	:	•			:		
						•	•	:	:	;		
					:	Haricot beans (Phaseolus vulgaris)	Peas (Pisum sattoum)	:	:	:	White closer (Telfolium sales)	
					:	gart	:	Lentils (Lons esculenta),	:	:	7	
					·	244	:	:	•		400	
					Faba	eolus		<u>.</u>		uttva	1	
					14	Phas.	wna;	ulen	attro	80 8	11011	
					Broad beans (Vicia Faba)	2) 88	Saat	\$ 680	Vetches (Vicia sativa)	Lucerne (Medicago sativa)		
					eans	bean	isum;	Len	7	(Me	96.0	
					Ą	8	e.	118	hes	THe .	7	

505 - The Survival of Plant Tissues after Frost. - Russel, W. in Comples. Radi P. Académie des Sciences, Vol. 158, No. 7, pp. 568-510. Paris, February 16, 1914.

Plant cells contract under the influence of cold, and the water past through the cell-walls freezes in the intercellular spaces (1). The $t\bar{t}$ walled parenchyma is dislodged by the accumulation of ice, and the port deformed and often crushed soon show disorganisation of the protopic through loss of water. This disorganisation rarely affects the whole of parenchymatous tissue; the vascular tissue, the endodermis and the $t\bar{t}$ cycle generally persist, whilst the lignified and corky parenchyma $t\bar{t}$ remain unchanged.

It is generally believed that plants which are not able to resist second, show no living tissues after a thaw. The writer, however, u Ruzicka's reagent (2), has shown the presence of living cells amongst disorganised tissues, and in the slightly injured tissues numerous cells:

up the red stain characteristic of living protoplasm.

The damaged tissues may continue to live a considerable time a a thaw, and this is borne out by the fact that plants do not perish im diately, however wilted and disorganised their organs may appear, but continue to live several days or even weeks (3).

Plants with living cells in the vascular tissues and adjacent parenchy only succumb very slowly; the xylem and phloem parenchyma is the tissue to be destroyed. Thus, a specimen of Sonchus oleraccus destre by frost at the end of December, still contained living cells on Februshian the thick lignified cork ring at the base of the hollow stem, whad been completely decorticated.

Thus, the death of a plant through frost does not take place sudde but rather cell by cell, and is retarded proportionately to the amoun undamaged tissue.

506 - The Effects of the Winter of 1913-1914 on Certain Plants. - MOUSES, Reque Horticole, Year 86, No. 9, pp. 202-204. Paris, May 1, 1914.

During the winter 1913-14, the soil in the neighbourhood of Paris frozen to a depth of from 12 to 14 in. Of the newly introduced plant the DE VILMORIN experimental ground at Verrières, those from China of pletely resisted the cold.

A list of the plants damaged by the frost is given below, grouped cording to the extent of the damage.

⁽¹⁾ PRILLIEUX, Effect of frost on plants (Bull. Soc. Bol., 1869) — MUELLER THU Landwirtsch. Jahrb., 1883 and 1886. — MOLISCH, Ueber das Erfrieren der Pflanzen, Jéna — MOLLIARD and MATRUCHOT, Aaction du gel sur les cellules (Revue gén. de Bel., P. Sorauer, Wätmemangel. (Handbuch der Pflanzenkrankheilen. 1. I. 1909).

⁽²⁾ V. RUZICKA, Ueber tinktorielle Differenzen zwischen lebendem und abgstoft Protoplasma (Arch. ges Physiol., T. CVII, pp. 437-534).

⁽³⁾ Observations on Papaver Rhoeas, Sisymbrium officinale, Cheiranthus Cheiri, lium pratense, Achillea Millefolium, Ballota foetida, Lamium album, Euphorbia sili Mercurialis annua, Urtica urens, etc.

A. - WOODY PLANTS.

r. Plan'ts completely frozen.

iostaphylos arguta.

adleia macrostachya yunnamensis.

ins purpureus. tus hirsutus.

genia apiculata.

beridopsis corallina; ous Cunninghams.

aria macrodonta.

Stranvæsia glaucescens. Pittosporum undulatum.

Pinus longifolia

» Monterumæ var. Lindleyi.

n oocarpa.

microphylla. Lumholtzii.

n pseudo-Strobus var, tenuifolia,

2. Plants badly damaged.

ındinaria Falconeri.

indinaria humilis var. gracilis ies religiosa.

mbusa Nagashima.

penteria californica. hospermum prostratum.

ndevillea suaveolens.

Helianthemum roseum.

Teucrium fruticans. Pinus Montezumoe.

n patula.

Teocote.

» sp. 6956 M. V. China.

nts having their leaves or only their extremities frozen.

tinidia Henryi.

ilea candida. undinaria auricona.

Simonii Chinese var.

ua microphylla. matis Armandi.

allonia pulverulenta,

illa spicata. rya elliptica.

salyptus coccifera (1).

Elæagnis Simonii. Keteleeiria Davidiana

Myrsine africana

Nandina domestica. Quercus Suber.

» spec. no. 26, Yunnan.

» no. 13, Tonkin.

Xylosma sp. 7220 M. V. China.

New genus, no. 4395, Wilson.

B. - HERBACEOUS PLANTS.

r. Plants completely frozen.

themis montana. undo conspicua.

Erodium pelargonifolium.

Rehmannia anoulata and hybrids.

incoa ramosa candida. Salvia dichroa.

2. Plants more or less damaged.

mitum Vilmorinianum.

Tritoma rufa.

pinus arboreus.

Sisyrinchium striatum.

pericum polyphyllum.

Old leaves damaged. Young leaves resistant.

3. Plants of doubtful hardiness which have shown complete resistance.

Asimina triloba. Abutilon vitifolium. Abies bracteata. Aristotelia Macqui. Camellia Japonica. Clematis cirrhosa. Clematis balearica. Clerodendron fælidum. Castanopsis chrysophylla. Baccharis patagonica. Fuchsia Riccartoni (covered at the base). Carrya Thursti.

Oreodaphne californica

Olearia nummularia folia Pinus koraiensis Ayacahuite. Prumnopitys elegans. Tsuga Brunoniana. Rhododendron campylocarpum. Piptanthus nepalensis, Rosa lavigata. Rhododendron Griffithianum hybrid Eriobotrya japonica (covered at the Mimosa dealbata (covered at the ! Zizyphus vulgaris.

Punica Granatum var. Legrellei,

507 - The Indicator Significance of Vegetation in the Tooele Valley, Dia KEARNEY, T. H., BRIGGS, L. J., SHANTZ, H. L., MC LANE, J. W. and Pier R. L. in Journal of Agricultural Research, Vol. I, No. 5, pp. 365-417, +7 Washington, D. C., February 1914.

This investigation of the correlation existing between the distrib of the vegetation and the physical and chemical properties of the soil carried out in the Great Basin region between the Rocky Mountains and Sierra Nevada and Cascade ranges. The problems to be solved we 1) what types of vegetation indicate conditions of soil moisture favour or unfavourable to dry farming, and, 2) what types indicate the prese or absence of alkali salts in quantities likely to injure cultivated crops. the purpose of this investigation it was necessary to find a locality with both dry farming and irrigation farming are practised, where much of land is still covered with the original native growth, and where some of soils contain an excess of alkali salts. The Tooele Valley in Central U was selected as representing these conditions. The natural vegetat of this valley consists of a few easily recognisable and sharply delimi plant communities, the distribution of which is largely determined by moisture relations and the salt-content of the soil.

These correlations are summarised in the table opposite.

The sage brush (Arlemisia tridentata) occurs nearest the mounts where the soil is of a light, permeable texture, rather low in moisture h ing capacity, and free from an excess of alkali salts, and where the moist available for growth is usually exhausted early in summer. A good gro of sage brush indicates suitability for both dry and irrigation farming, where the growth is thin and poor irrigation is necessary.

The Kochia (Kochia vestita) association occurs just below the sage by belt. The soil is of a finer texture, less permeable and with a higher m ture holding capacity, and the subsoil has a higher salt content. Dry ia ing is precarious owing to the shallow depth of soil free from alkali and impervious nature hinders the washing out of the salts by irrigation.

75I

The shadscale (Atriplex confertifolia) association occurs below the K_{00} belt. The soil is similar, but frequently contains much gravel and is during the summer months. Owing to its greater permeability, irrigat farming would be possible on this land.

The greasewood-shadscale (Sarcobatus vermiculatus and Atriplex of fertifolia) association occurs between the pure shadscale vegetation and salt flats and also on the ridges and knolls intersecting the latter. The generally contains sufficient available moisture below the first foot dur the summer and considerable quantities of alkaline salts. Land of this to is not suitable for dry farming, but can be made to produce good crops un irrigation, especially when drainage is provided.

The presence of the grass-flat (Sporobolus, Distichlis, Chrysotham, vegetation indicates a soil with high moisture capacity, moist to the s face during a great part of the year and more or less saline. Such land p duces a coarse natural pasturage, but is not suitable for crop-product until drained.

The salt-flat (Allenrolfea, Salicornia) vegetation occupies land which extremely saline and wet to the surface during a great part of the year. To type of land is not adapted to crop production.

508 - The Error in Water Culture Experiments due to the Presence of Tru of Zine in Glass. — JAVILLIER, M. in Comples Rendus hebdomadaires des séauces FAcadémie des Sciences, Vol. 158, No. 2, pp. 140-143. Paris, January 12, 1914.

Culture experiments with Aspergillus niger in Raulin's solution wi and without zinc show different results according to the nature of the vest employed. Thus:

•	Bohemian Glass (Kavalliler)	Jena Glass (Schott and Gen)	•
			- 5,000
Raulin solution without zinc	0.352	1.861	0.291
» with zinc	1.780	1.736	1.624

In a solution of hydrochloric acid equivalent in acidity to that of Rat lin's solution the writer found 0.05 mgm. of zinc per 125 cc.

509 — Contribution to the Study of the Formation of Hydrocyanic Acid in Plant — JORISSEN, A. in Bulletin de la Classe des Sciences de l'Académic Royale de Belgique, No. pp. 130-137. Brussels, 1014.

As the result of a number of laboratory experiments, the writer conclude that hydrocyanic acid may be produced in dilute solutions of potassium nitrite and citric acid when the latter is subjected to oxidation by the action of small quantities of iron salts under the influence of light rays. On stage in the transformation would be acetone-dicarboxylic acid (COOH, COO-CH, COOH) which is produced by the action of heat on a mixtum of concentrated sulphuric acid and citric acid, or by the action of potassium permanganate on citric acid. Acetone-dicarboxylic acid yield hydrocyanic acid in the presence of dilute solutions of potassium mirris.

o. Note on the Displacement Curves (1) of Organic Bases and their Application to the Determination of the Strength of Alkaloids. — Gourau, R. in Bulletin de la Classe des Sciences de l'Académie Royale de Belgique, No. 1, pp. 63-90.

Brussels, 1914.

The writer has applied the method of Duron to the determination of ceria alkaloids. A known quantity of hydrochloric acid is added to a given antity of the alkaloid. The solution of the salt thus obtained is diluted the water or alcohol. The conductivity is then determined at constant nperature. A solution of normal or decinormal caustic soda is added, exastic soda is determined by the change in conductivity of the solution displacement curve is obtained by plotting the conductivity against the antity of caustic soda.

The first part of the curve is a straight line corresponding to the neulisation of the free acid; the second part, corresponding to the hydrolysis the alkaloid, consists of one or more straight lines according as the alkaloid mono or polybasic; the third part corresponds to the addition of excess the soda solution. The angles of the curve are more acute in proportion the solution is less hydrolysed.

The method has been successfully applied to the following alkaloids: cains in solution in alcohol, even in the presence of small quantities of sugar, ouring matter, etc. Homalropine in a solution of equal quantities of ter and alcohol, and hydrolysed by normal caustic soda solution. ropine in a solution of equal quantities of water and alcohol. e percentage of atropine in pharmaceutical preparations of bellaana can be determined with accuracy by extracting the acid ution with ether or chloroform after removing foreign matter such as in, chlorophyll, etc. The percentage of aconitine in laboratory preparons of aconite can be determined in the same way. Pilocarpine and cone are determined in aqueous solutions; strychnine in a solution of 5 its of alcohol to 4 parts of water. These proportions are less reliable contine (hemlock) and nicoline owing to hydrolysis of the salts. The we for morphine (which may act either as a base or an acid) consists of sections corresponding to the neutralisation of free acid, the displacent of morphine, the formation of sodium morphinate and the addition free alkali.

- Methods and Results of the Selection of Fiax in Russia. — ALTHANSEN, L. (Laboratory of Agricultural Chemistry, Central Administration of Agricultural Organisation at St. Petersburg) in Russisches Journal für experimentelle Landwertschaft, Vol. XV, Part. 1, pp. 12-47 - 11 plates (German Summary, pp. 48-53). St. Petersburg, 1914.

An account is given of the principles and methods applied to the selecn of flax at the Laboratory of Agricultural Chemistry, St. Petersburg. e native varieties of flax consist of mixtures of types affording excellent

⁽¹⁾ See B. Dec 1912, pp. 2562-2569, original article on C Analysis of wines by a Physchemical Volumetric Method's by P. Duboux and M. Dutoit. (E. d.).

material for the selection and separation of strains. Although pure in varieties chosen for some special peculiarity offer distinct advantages, it power of resistance to unfavourable conditions of growth is greater in variety consisting of a mixture of types. Thus it is possible that certai mixtures of pure lines will give the best results. The isolation of type is comparatively easy, even for the less evident characters, and hybridistion experiments are also being carried out.

In 1913, 601 F₁ generations and 195 F₂ generations had been obtained. The combination and the separation of types is not difficult to observe an does not require much time. Selection is conducted in the laboratory of the results of field observations and determinations of the quality of the fibre.

Great importance is attached to field trials on a large scale. The memorus measurements and the counting necessary are effected with as muce economy as possible. Young people who need only read, write and countare employed for the mechanical work, each determination being made be two persons independently. In reducing the necessary measurements the express the character of the type, much calculation and time is saved be using the "individual" mean in place of the arithmetic mean. This methoworks as follows: the selected plants are arranged in the order of the heights; the centre plant of the series and five neighbours on each side of it are then measured. The arithmetic mean of these plants is considered as the "individual" mean of the series and is sufficiently accurate for practice purposes. The economy of time thus effected enables determination to be made of other characters, such as length of unbranched stem, diamete of stem and the number of seeds.

The selected types are grown in rows between rows of native varieties so that the result of each row can be compared with the results of two rows of a control variety. The accuracy of the trials is increased in the second generation by sowing four rows of each strain from the seed produce in the first generation. The risk of cross-fertilisation in this method i inconsiderable, since self-fertilisation is the rule in flax.

The sowing of the seeds is facilitated by arranging them in the laboratory on strips of perforated cardboard. The strips are the length of the row and the lower side of the perforations is closed by a sheet of thin paper. The seeds therefore rest in small cavities thus formed, about ½ in. apart, and, a planting time, the strips are laid on the soil and the seeds buried by means of a glass rod. This method ensures accuracy and economises time and labour. It is also used for testing the strains on a larger scale, by using larger sheets of cardboard and dispensing with the alternate rows of mative varieties. In this case each sheet holds 120 seeds and two such sheets containing different varieties constitute a trial plot. The plots are duplicated from 4 to 8 times.

When sufficient seed has been obtained, the strains are then grown as field cultures and determinations made of the quality of their fibre. This stage has now been reached by varieties which have been under selection since 1909.

On the Appearance of Sterile "Dwarts" in Humulus Lupulus L.—
SUMON, E. S. in Journal of Genetics, Vol. 3, No. 3, pp. 195-200 + 3 plates. Cambridge,
petruary 1914.

In experiments on hybridising various male and female hops, numerous ledwarfs appeared in the F_1 generations. These dwarfs are character-by very feeble growth the first year, by the subsequent development merous shoots prostrate on the surface of the ground or forming an bush-like growth about one foot high, and by the complete absence were seven after 7 years' growth. The proportion of sterile dwarfs to al plants in the F_1 generations varies in different crosses and is greatest use in which the male hop is a form from Oregon, U. S. A.

A Preliminary Note on the Genetics of Fragaria. — RICHARDSON, C. W. 18 The Journal of Genetics, Vol. 3, No. 3, pp. 171-177 + 4 figs + 1 plate. Cambridge, Pebruary 1914.

cosses between Fragaria vesca semperflorens, a runner-producing and F. de Gaillon, a runnerless species, always produce runner-prog plants in F₁ and runner and runnerless plants in F₂, the runner a marked dominant.

A cross between F. vesca having normal trifoliate leaves and F. moylla produced normal plants in F₁, and showed segregation in F₂, using 177 normal plants and 73 with single leaves.

Eight garden varieties were selfed and some 1000 plants obtained, ese none showed any resemblance to F. vesca or to any Alpine species, any showed distinct traces of F. chinensis, more of F. virginiana and few of F. chinensis. The leaf-character of "Hantbois" occasionally are in those of French origin.

'St. Antoine de Padoue'', a perpetual variety, was selfed and produced generation consisting of 93 perpetuals, 35 non-perpetuals and 2 tiul ones. Examination of these same plants the following year showed to consist of 108 perpetuals and 22 non-perpetuals. "Laxton's Perd" gave an F₁ generation of 69 perpetuals, 11 non-perpetuals and 2 tiul.

A cross between "Bedford Champion" (non-perpetual) and Laxton's stual gave rise to 24 perpetuals and 53 non-perpetuals, whereas the lest expectation would have been equality.

One of these F_1 non-perpetuals gave rise to an F_2 generation consist-18 non-perpetuals and 6 perpetuals, and an F_1 perpetual produced 14 perpetuals and 5 perpetuals in F_2 .

The evidence points to the existence of several factors determing the stual character.

Experiments on the inheritance of sex were made with female F. virna and male F. chiloensis lucida.

A cross between chiloensis hermaphrodite and grandiflora hermaph dite produced a minority of hermaphrodites, a majority of males a no females, while the cross virginiana female and grandiflora, mention above, produced no males.

It appears that most characters of *Fragaria* are capable of segregation but the occurrence of a certain amount of "linking" may present diffulties requiring many years to solve.

514 - The Farmers' Seed-Growers' Cooperative Association in Wisconsin. MATENZERS, F. F. in Deutsche Landwirtschaftliche Presse, Year xxxxi, No. 29, pp. 364. Berlin, April 11, 1914.

The seed-growers' association known under the name of the "Wiscon Experiment Association" was founded on a cooperative basis in the y 1901 by 187 members. In order to make sure that the members reprised the full importance of the objects in view, it was decided that at in only the farmers who had attended a State school of agriculture wor be admitted as members.

The expenses of the Association were defrayed by the members of during the first two years. Since 1903 the State has granted a subsit which last year amounted to about \$ 5000.

The activity of the Association has been considerable from the we beginning. After the secretary of the Association had decided upon t most suitable varieties of seed at the farm of the Experiment Association every member received enough seed for two acres with which to can out comparative trials. Altogether the experiments are conducted a large scale; thus for five years 1020 members experimented with band and 1500 with maize. Already, from the beginning, the members in the various counties were invited to form centres for the supply of selection seeds in their vicinity. In this way 1500 centres for maize were established by the side of those for barley, oats and tye, and their action was subthat the neighbouring farms soon adopted the new varieties and the desired uniformity in the varieties cultivated was attained, which is also the present reputation of the Association for it maize and other cereals.

The Association has also rendered valuable service in the control plant diseases.

⁽i) The signs refer to the sex character of the species as well as to the $s_i \times s_i^{(j)}$ parent,

Owing to the considerable growth of the Association, a certain decentraltion has become necessary. It has been met by the foundation of al sections for the several counties, which bear the title of "County ders of the Experiment Association." They are under the supervision the central management and have a secretary who is appointed and paid the State Association. When in a county more than fifty farmers yw seeds according to the instructions of the Association, such County ders are founded. At present there are thirty-eight of them.

For the sale of the selected seed, special packages bearing the tradeirk of the Association are used. But previously, in the course of the ar, the secretary of the County Order must have inspected the methods selection and other treatment of the seed, and the central Association ust have made a final examination of the seed. A special list is kept the names of the producers of "inspected" seeds.

For the further promotion of the sale of seeds, the State Association s already erected some seed granaries furnished with the necessary pliances.

5- Report on the Work of the State Seed-testing Station in Denmark in the Year 1912-13. — Communication by the Director, K. DORPH-PETERSEN.

This seed control station is the oldest in the world; it was founded 1871 by E. MÖLLER-HOLST and taken over by the State in 1891. The portance which it has gained may be seen from the number of samples amined yearly and which, from 373, the average for the first five years its existence, has risen to 14213 in the year now reported upon. Plant reders and other farmers and their associations sent 6756 samples for amination in 1012-13.

The seeds are examined as to their quality and place of origin. For a latter the so-called characteristic seeds are looked for. Examinations to origin are especially frequent for clover seeds and have largely contibuted to prevent the importation of undesirable seeds. In the year the Report, 176 determinations of the place of origin were made.

In the investigation into the purity of the goods, two average samples fat least 1000 seeds each are taken and the following determinations 12 made: a) content in seeds of the kind which gives its name to the arel; b) the offal (earth, stones, broken seeds, etc); c) seeds of other mitivated plants; d) seeds of weeds. For the various contents the perentage by weight is given in the examination certificate. In the case specially noxious weeds their number per kilogram is given also. The aphanoscope is used for grass seeds that are difficult to examine. If the difference in the proportion of pure seeds in the two average samples more than 2 per cent., a third determination as to purity is made and an erage drawn from the three. A parcel which contains upwards of 15 recnt. of seeds of other cultivated plants is declared to be mixed goods. Then the content of weeds and offal is considerably above the usual quanty, the sample is designated as "impure seeds". In 1912-13, 8957 determations as to purity were made.

For the determination of germination capacity, six lots of one hundre, "pure seeds" are placed to germinate in special apparatus. For most small seeds, Jacobsen's or the Copenhagen apparatus is used, as it ensures uniform moisture and allows the temperature to be regulated with precision.

For cereals, pulse and beets the germination capacity is determined after 10 to 12 days, for grasses after 15 to 20. The germination energy

is determined after about one-third of the above time.

In 1912-13, 11431 germination tests were carried out, and in 6624 of these the purity and weight of the seeds were also determined. Further,

255 examinations for moisture content were made.

Of the samples examined, 1701 were so-called "second analyses" of seeds which had been delivered to farmers, associations or small traders. Thirteen seedsmen have made an agreement with the Station according to which they must send the latter the addresses of all their clients to whom they have sold guaranteed seeds, and this immediately after delivery. The Station then sends the purchasers instructions for taking samples and a small bag for the same. The examination is charged to the vendor. The results of the examinations are communicated to all the purchasers of the 13 seedsmen and they are also published in the yearly report of the Seed-testing Station. Most of the consignments made during the year have come up to the guarantee. Some of the seedsmen however, have had to pay some compensation under the agreement with the Station.

The examination of seeds sold by traders who had no connexion with the Station showed that nearly one half of the samples did not correspond to the guarantee given with them. Out of the 17 ½ million lbs. of seeds sold in Denmark for grass leys, nearly 12 million lbs. are delivered by the controlled firms. A great proportion of root crop seeds were also tested by the Station.

The present state of seed testing has been brought about without

any special legislation or other public measure.

The cost of testing is from 1s 11/4 to 7s 81/2d per sample. Last year the State granted the Station £200. The rest of its expenses, the whole of which amount to £1925, is covered by the fees.

impurities in Seeds in Victoria, Australia. - Communicated by the Depart-

Report on seed examined in January and February 1914.

Variety of seed	Country	Weed sceds	
	of atigin	Species	Percentage
clovet (Trifolium pralense perenne).	Germany	Cuscuta sp. Prunella vulgaris Daucus Carota	0.39 0.05 0.12
clover (Trifolium repens)	Russia	Rumen crispus Rumen Acetosella Spergula arvensis Cuscuta ap.	5.07 0.21 0,00
ass (Trifolium pratense perenne)	Austria	Rumez crispus Carduus lanceolatus Daucus Carota	0.79 0.02 0.02
(Trifolium hybridum)	Russia	Polygonum Convolvulus Rumex Acetosella	0.02 3.61
ovet (Trifolium pratense perenne).	Germany	Cuscula sp. Daucus Carola Rumer crispus	0.11 0.02 0.18
e (Medicago sativa)	Germany	Cuscuta sp.	0.02
ss (Trifolium pratense perenne)	Germany	Raphanus sp. Cuscuta ep.	0.22
ss (Trifolium pratense perenne)	Germany ,	Cuscuta sp. Rumex crispus Consum maculatum	0,14 0,32 0,02
Mustard (Sinapis alba)	Germany /	Galium Aparine Polygonum Persicaria Polygonum Convolvulus Conium maculatum	0.09 0.45 0.07
of pleasure (Camelina sativa)	Germany	Erysimum repandum	I.49 —
(Lepidium ruderale)	Germany	Cuscuta sp. Chenopodium album	0.25

 $^{^{1.\ 2}}$ and 4, $^{9}14$ Oz. of seed was examined, in all the others 3 oz. Nos. a and 7 were cleaned rvision.

and 11 contained a small percentage of grit and loading (stalks, etc.).

13 and 8 contained also a little Plantage inncentate; No. 4 Plantage inncentate, Madicage inPhicuse protesse; No. 5 Plantage inncentate and Cickerium Intybus; No. 6 Passicum sp.

517 - Investigations on Barley in Connection with the Separation of the Gim through Rapid Drying. - Stemmenmayer, A. in Landwirtschaftliche Zeitung, Year Part 6, pp. 214-216. Stuttgart, March 15, 1914.

The writer carried out at the Seed Selection Station at Weihenstepha Bavaria, a series of experiments on a barley which showed no tendency separate from its glumes, with the object of studying the influence of ath native moistening and rapid drying on the separation of the grain from t glumes.

Four groups of three ears with sound grains were steeped in separavessels containing spring water at a temperature of 20° C. In the first q periment each lot of ears was steeped and dried for a different length of q at about 45° C., the ears being weighed after each operation in order to termine the average amount of water absorbed.

The result of the first experiment was generally negative; only of few grains could some cracking of the glumes be observed. The experiment was repeated three times with the same ears. At the third steep the average weight of the ear after 24 hours' immersion had risen from normal initial weight of 1.85 grams to 2.62 grams, that is it had absort 41.6 per cent. of water; after eight hours' esiccation the average weight the ear was 1.87 grams. The glumes of 28.2 per cent. of the grains we damaged by the repeated steeping and desiccation, which shows clearly the alternative wetting and drying undergone by corn during the summan causes the glumes to crack without the intervention of any mechanic action. Repeating the steeping and desiccation a fourth time did not all the condition of the grain.

To determine the effect of mechanical action, the above ears and oth which had not been treated were vigorously rubbed by hand, and the damag glumes and naked grains were counted. The untreated ears contained at per cent. of damaged grains, and of these 0.3 per cent. were quite nake the treated ears contained 62.4 per cent. of damaged grains, of which 3 per cent. were quite naked. This simple experiment shows clearly that the connection between the grain and the glume is loosened by alternate step ing and drying and becomes apparent when the grain is subjected to root treatment, as is the case, for instance, in threshing. The loss of glumes threshing, however, is far less serious to malting barley than the injury the may be caused by threshing in dry years when the grain is brittle and the damage is generally deeper and decreases the germinating power.

518 - Analysis of Teosinte Seeds (Reana luxurians = Euchlaena lurians, Asch.) (1). - Renseignements de l'Office Colonial, Year 8, No. 3, pp. 133-1 Brussels, March 1914

Chemical analysis of the kernels of this plant shows that it contains m food material than any cereal. The low food value of the seeds as a wh is due to the large percentage (56.37) of pericarp:

	Per cent of fresh kernel	Per cent of dry matter
Humidity (100° C.)	13.46	
Mineral matter	1.36	1.57
Fat	4.16	4.80
Cellulose (Weende)	1.43	1.65
Total nitrogenous matter	21.25	24.57
Nitrogen-free extract (starch)	53.10	61.38
Pentosans	1.01	1.16
Undetermined	4.23	4.87
Total , , .	100,00	100.00

he high proportions of nitrogenous matter, fat and starch give this I a food value of the highest order, as shown by the following figures:

	Pood units in 100 parts of dry matte
Teosinte, seeds	135
Wheat flour	156
Flour from teosinte kernels	208.5
Lentil flour	230

The Cultivation of Sulla (Hedysarum coronarium L.) in Rice Fields. —
ROZZI, D. in Il Celtivatore, Year 60, No. 9, pp. 262-268. Casale Monferrato, March
, 1914.

rench honeysuckle or Sulla has long been known as a valuable crop for dry land cultivation in hot countries, but it is only within years that its suitability for cultivation in rice fields has been by experiments in Italy. The advantages of this forage crop are that uires little cultivation, no special manuring and that it improves by its deep rooting habit; it leaves a considerable amount of a behind and yields more forage than any other crop under similar lions.

eed is sown at the rate of about 2.68 lbs. per acre before harvesting ce, about August 20th. After about a week, germination takes place he rice is harvested. Small ditches are then cut to facilitate the ige of the fields and the crop receives no further attention until the ing spring, when it is thoroughly weeded. The crop is ready for cut the end of July. The residual phosphates of the manuring for the ling rice crop are sufficient for the needs of this plant, and its deep 18 habit gives the soil an excellent preparation for the following crop. This crop is therefore most suitable for making the transition set to dry land cultivation. The average yields obtained are $2\frac{1}{2}$ cwt. 18, valued at £3 12s per cwt.

The cost of cultivation and returns per acre are as follows:

			•
Expenses:		£sd	£sd
Seed		2 6	
Sowing and opening dit	ches	8 o	
Weeding		3 3	
Cutting		14 3	
Transport		12 9	
Threshing			
	Total		396
Returns:			_
Seed		812 9	
Straw			
	Total		9 I2 0
	Net profit per a	acre £	6 2 6

520 - Cultivation Experiments with Vicia striata in Hungary, 1906-11 GYÁRFÁS, J. in Kásrielügyi Köulemények, Vol. XVII, Part 1, pp. 1-11, Budapest, uary-February 1914.

Vicia striata, a plant indigenous to Hungary, has long been recommended as a forage crop for alkaline soils, and the Royal Hungarian Experimental Station at Magyarovar has carried out a long series of experimental both pot cultures and field trials in cooperation with several agriculturists.

The conclusions arrived at are as follows:

Vicia striata is less resistant to the action of saline salts th
 saliva and is consequently unsuitable for alkaline soils.

2) As a spring crop on good land it has little agricultural value,

growth being inferior to that of V. sativa.

3) It gives better results as an autumn crop and would probate useful as a winter forage crop, being as resistant to cold as V. villosa.

4) Sown in the autumn and harvested as an early crop before t flowering period, i. e. about the end of May or beginning of June, it yie a crop as large as that of V. villosa.

The experiments are being continued on a large scale.

521 - On the Coagulation of the Latex of Manihot Glaziowii. - MANI, in Der Pflanzer, Year X, No. 3, pp. 149-157. Daressalam, March 1914.

The writer shows that magnesium sulphate either alone or mixed \vec{w} other substances is of no practical value. He criticises the use of certain α gulants such as the juices of the citrus and papaw, which introduce in purities difficult to remove by washing and which lower the quality the rubber.

The experiments carried out at Amani on the use of calcium chlori in combination with other substances are summarised in the following table. The coagulants described as "good" may be used throughout Germi East Africa except in the coastal regions; those described as "very good should be used in a solution diluted according to the local climatic or ditions, the composition of the water, and the concentration of the late

	Composition of congulant %	Congula	State of congulum	Value	Remarks	
calcium chloride 0.5 carbolic acid 0.5		boot	thick filaments with large nodules	none		
	calcium chloride 0.5 acetic acid 0.5	good	thick narrow strips	useful		
	calcium chloride 0.5 carbolic acid 0.3 acetic acid 0.15	poor	like No. 2.	useful in some cases	For use only or dry plantations	
	calcium chloride 0.75 sceticacid 0.75	very good	thick and narrow strands	usciul		
	calcium chloride 1.0 carbolic acid 0.25	poor	narrow threads	useful in some cases		
1	calcium chloride 1.0 carbolic acid 0.3 acètic acid 0.15	good	like No. 2.	useful		
	akcium chloride 1,0 arbolic acid 0,5	good	like No. 4.	useful	Too weak for young trees and wet districts	
	alcium chloride 1.0	very good	like No. 4.	useful		
	alcium chloride 1.0 octic acid 0.25	good	thick narrow strips well congulated	useful		
a	akium chloride 1.25 cetic acid 0.5	good	like No. 9.	useful		
c	alcium chloride 125 arbolic acid 0.5	good	like No. 9.	useful		
c	alcium ehloride 1.25 arbolic acid 0.75	very good	like No. 9.	useiul		
c	alcium chloride 1.5 arbolic acid 0.25	very good	like No. 9.	useful		
a	alcium chloride 1.5 cetic acid 0.5	good	like No. 4.	useful		
2	alcium chloride 1.5 arbolic acid 0.5	very good	like No. 9.	useful	,	
c	alcium chloride 1.5	very good	thick narrow strips easily separable	useful	Too strong for hot dry districts	
ą,	alcium chloride 1.5 cetic acid 0.25 arbolic acid 0.25	very good	ike No. 16.	nseful		

522 - The Coagulation of the Latex of Hevea braziliensis, and its bearing on the Strength of Rubber. — Barritt, N. W. in The Journal of the Society of Chemical Industry, Vol. XXXIII, No. 6, pp. 289-293 + 4 figs. London, March 31, 1014.

Experiments on the behaviour of latex in solutions of varying concentration of acids and salts show that the coagulation of latex is analogout to the coagulation of protein solutions. Thus the coagulating effect of salts varies according to the basic radicle in the order of Hofmeister's series. Mineral acids up to a certain concentration increase the quantity of salt required to effect coagulation, but at higher concentrations less salt is required. With organic acids no limiting concentration was found above which coagulation took place without increase in concentration of salt.

Since the physical properties of proteins depend upon the concentrations of salt and acid with which they are in equilibrium, it seems very probable that the physical properties of plantation rubber are dependent of the concentration of the salts and acids in the latex at the time of coagulation. Thus, the addition of water and dilute acid would appear to be the cause of the variability and inferiority of plantation rubber compared with Fine Hard Para prepared by the Amazonian smoking method. The adoption of uniform methods of coagulation by acid on estates would not remove the variability of the product, owing to the natural variation in the composition of latex due to genetic and physiological differences in the trees and the influence of climatic variations.

The standardisation of plantation rubber, therefore, becomes exceedingly difficult and involves testing the product of each individual coagulting vessel.

523 - Precautions for the Growing and Transplanting of Liberian Coffee, FAUCHERS, A. in L'Agriculture pratique des pays chauds, Year 14, No. 131, pp. 814:
Paris, February 1914.

The slow growth and late maturity of the Liberian coffee is attributed to the lack of care in the preparation of the nurseries and the transplanting of the young plants. By observing the following precautions the tree may come into bearing 18 months earlier.

Nurseries. — In order to be able to lift the plant with a ball of soll the seeds should be sown in a clay soil at least 10 in. apart each way. Then should be a nursery for each 25 acres of land, so as to avoid excessive transport, and each nursery should contain twice the number of plants require so as to allow for a careful selection.

Transplanting. — A plant 14 inches high should be lifted with a ball of soil 8 inches deep and 5 inches in diameter. Neglect of these condition delays maturity from 1 to 2 years and endangers the life of the plants

524 - "Autumnal Flavour" of Tea. - The Indian Agriculturist, Vol. 39, No. 3, pp. 74-72 Calcutta, March 2, 1974.

At the beginning of the cold season in the north of India the leave of the tea plant undergo a change which gives the tea a very special around known as "autumnal flavour" and the leaves require a different treatment.

m that during the rest of the year. The following method is the outcome

The leaves are brought to the factory three times a day, at 12.30, and 4.30 p. m., and are kept in a fresh state until 10 p. m. They then rolled for half an hour, sifted and rolled again. Fernmentation is word to take place during the night, and in the early morning the leaves reased expenses of the night labour are compensated for by the higher me of the product thus obtained.

- Recognition of Tanning and Colouring Matters by Means of the "Mulhouse Band". — Berteau, A. in L'Agronomie coloniale, Year I, No. 9, pp. 65-79.

A simple process for the detection of tanning materials and dies has n investigated by the "Jardin Colonial" of Nogent-sur-Marne. It sists in the use of the "Mulhouse band"; this is a piece of cloth 8 inches le, divided into five zones treated whith different mordants, with a all untreated piece between every two zones. The mordants are: trong iron salts, 2) weak iron salts, 3) half iron, half alumina, 4) weak mina salts, and 5) strong alumina salts.

Tannins, precipitating iron salts, show up specially on the first zones, ich become tinted with some colour between black and brown or green; true colouring matters show on the alumina zones.

The Mulhouse band is put into boiling water containing some of the subice to be examined; another band is treated in the same way, but using is standard tanning or colouring material. If, on comparing these two ids, it is found that the substance seems to contain valuable materials, it is be sent to some laboratory for proper analysis.

- Froblems Concerning the Utilisation of the Dum Palm in Italian Erythres. — BALDRATI, I. in L'Agricoltura Coloniale, Year 8, Nos. 2 and 3, pp. 85-107 and 182-100, + 4 figs. Florence, February and March 1914.

The exportation of the fruits of the dum palm (Hyphaene) from Ita-Erythrea only attained any importance towards 1906, since when pros has been rapid, as is seen from the following figures:

Year	1907	1908	1909	1910	1911	1912	1913 (10 months)
Exports in tons	532	1693	485	3204	3832	3726	3655

Two types of fruit are distinguishable: I) Oval in shape, with smooth ace; 2) elongated and irregular in shape, with protuberances. The second e has larger fruits and unts with flat faces and is superior in industrial in Each type includes two varieties: one with sweet fruits of a deeper colour and heavier, the other with bitter fruits almost without pulp but it suitable for producing vegetable ivory.

The dum palm groves in Erythrea are only of recent formation and extending rapidly. The spread of this palm is effected by means of hants; the entire fruits are consumed and the kernels germinate after

passing through the animals. The spread has also been promoted by $\mathfrak t$ periodical emigrations of the Beni Amer tribes.

It has been feared that the exportation of the fruits would interfe with the natural reproduction of this palm, but the writer points out the such fears are groundless considering the importance of propagation by me of suckers; groups of palms of the same sex and derived from one plate are frequently found in the forests, and propagation by means of suckers preferred in the formation of new plantations.

Since one male tree is sufficient to pollinate ten female trees, it is in portant to be able to identify the sex of a tree before flowering. According to Grant and Beccart the males are recognised by the foliage covering the trunk, whilst the females have bare trunks. The writer finds this not to be the case, and distinguishes the sexes according to the size of the learned number of segments as follows:

	Male inches	Female inches
Leaf blade	47 – 51	58-70
Petiole	39-47	47-62
No. of segments	7 1-7 9	80-86
	(always odd)	(always even)

At a distance, the leaves of the female trees may be recognised by t numerous leaflets and the incurving of the lower part.

Regular and abundant rainfall produces an abundance of flowers a good yield appears to be dependent on the wind. As a rule good and harvests alternate:

1907 1	arye	st very poor	1911	harvest	poor
1908	,	very good	1912	,	gootl
1909	39	good	1913		medium.
1910	n	very good.			

The exact age at which this palm begins to fruit is not known, I the writer considers it is two or three years later than in the case of the d palm. Although often cited as a xerophyllous plant, this palm is 0 found in luxuriant growth in deep alluvial soils periodically inundate. The plantations require protection against the ravages of fire, monke parrots and the natives.

The yield varies from 4600 to 7600 lbs. per acre, of 40 to 50 female tre If the number of male trees were reduced to one for every ten females, t number of female trees would be increased to from 70 to 100 per acre at the yield increased to an average of 13000 lbs., corresponding to 4600 lb of kernels.

The cost of the nuts at Genoa amounts to £7 to £9 per ton.

The writer concludes by an account of the different uses of the dup palm and the improvements to be made in its utilization.

Pield Cultivation of Capsicum in Meglens, Hellenic Macedonia. — Communication from Panaxotis A. Décazos, Chief of the Department of Agriculture of Macedonia (Salonica).

Capsicum powder, or "red pepper", is used throughout the Balkan southies (Turkey, Roumania, Bulgaria, Servia) and in Hungary, especially in the agricultural population, as a condiment in the preparation of food, he most esteemed products of capsicum are those with the "hottest" arour; these are produced almost exclusively in Meglena (Turkish, Karajova), Hellenic Macedonia, in which valley this cultivation predominates and is so extensive as to be considered an agricultural rather than a hortistical industry.

The fertile soils of this valley are derived chiefly from argillaceous hists and limestones and are loamy or sandy with considerable perentages of lime and organic matter. The majority of this land is irrigable on the 15 small streams which flow through it.

The climate is Mediterranean (I) and warmer during the winter an that of Monastir and Norina in the same latitude, owing to the mounding mountains (2) which shelter it from the cold north and northest winds, while the summer temperature remains cool owing to the ments of cold air from these same mountains. The atmosphere is very list throughout the year, owing to the abundant rainfall and numerous

The population of Meglena is about 125 per square mile and is ample supply the labour requirements of this crop.

Rotations. — Capsicum follows maize or French beans in either the two following rotations:

wheat maize capsicum wheat maize French beans

capsicum.

(i) The climatic conditions of Meglena are probably between those of Solonica and mastir, which, according to Duroy (Monastir 1899-1903) and to some observations of the moultural College at Solonica (1906-1910) are as follows:

	Temperature, ℃.		Rainfall in mm.	
Month.	Salonica	Monastir	Salonica Monastin	
	20.56	17	43.6	68.0
	24,20	19	16.1	71.0
	25.23	23	29.0	49.0
ust	24.21	22	38.0	40.0
tember	17.50	18	37.0	29.0

⁽²⁾ For an account of the geological and physical conditions, see CVISIÉ, Geographie d Geologie von Mazedonien und Altserbien. — Petermanns Mitteilungen, Ergansungsheft 16, 162, p. 224 et seq. (Morichovo und Meglen). Gotha, 1908.

A three- or four-course rotation is necessary to maintain the fertility for this crop, and to check the progress of underground pests. Of account of the large amount of labour required, it is a suitable crop to the small holder and for countries where labour is cheap and plentiful

Cultivated varieties.—During the half century in which this crop has been grown on a large scale in Meglena, many varieties have originate and become adapted to the particular conditions of climate and so in which they are grown. Each variety yields a product of special type o more or less good quality, varying according to the locality. Experiment have shown that these Meglena varieties lose a considerable part of the quality and piquancy when grown in other countries or even in neigh bouring districts. The Grecian occupation being very recent, it has no been possible to study the relative conditions from the scientific point of view. It is only known that the products of highest quality computers of Neochore, Fressino, Poziar and Stroupino.

Two of these varieties are distinguished as common and sweet caps, cum respectively.

Common capsicum is of commercial importance and is preferred \S the cultivators on account of its higher yield. The fruit, are very conic in shape with a length of 2 ½ to 4 inches, and a diameter at the base 1 3 /4 to 1½ inch. The skin is rather thick, and 4 to 8 lbs. of fruit, according to the moisture content, are required to yield 1 lb. of pepper. This variet grows to height of 16 to 24 inches, and each plant produces only 40 to 5 fruits, owing to the reduction in irrigation during the season. The annual production of common capsicum reaches 2 to 4 million lbs. and increase each year.

Sweet capsicum. — The fruits of this variety are almost as large a those of the above, but the skin is thinner and the product is both piquar and sweet. It is cultivated only in the villages of Bakovo, Csernezi an Stroupino. At least 8 lbs. of dry fruits are required to produce I it of pepper, and although it realises higher prices in the market, it is a ls profitable crop to cultivate than the common capsicum. The annual production reaches only 10 000 to 90000 lbs. of pepper. Experiment have shown that the seeds of this variety grown in other villages produce plants with the characteristics of the common variety.

Preparation of nurseries.—The seeds are not generally sown in the open but in a cold pit, and afterwards transplanted. A sheltered plot is chosen and dug to a depth of 12 to 20 inches at the beginning of April. The surface soil is mixed with well decomposed manure and the seeds sown thickly towards the end of April. A thin layer of finely divided manure is then spread over the surface and the bed watered each evening until the majority of the plants have appeared. Later, waterings are given every 5 or 6 days according to the weather. Two days before transplanting they are given a thorough watering to facilitate the lifting of the plants. The seedlings are kept hoed and thinned to promote strong growth, and if at the time of transplanting they appear backward, a dressing of pigeod guano is given in the seed-bed.

Preparation of the land and planting out. — The best soils for capsicum cloams of sands containing humus, and capable of irrigation. The land ploughed, and then harrowed five or six times to reduce it to as fine a ture as possible. It is then ridged and the irrigation channels cleaned t. Planting out takes place during June when the plants possess 4 or eaves. The soil is irrigated and the plants are dibbled by hand in holes 8 inches apart on the ridges, which are 16 inches apart.

Irrigation and weeding. — After transplanting, the soil is irrigated ery 3 or 5 days until the success of the plants is assured. The first weed-takes place a fortnight after the last irrigation, unless weeds are much evidence before this time. When the plants are established, irrigation withheld until the leaves show signs of drought. This point is of consider-leimportance, since irrigation at this stage may greatly injure the quality the product, the piquancy being partially or wholly destroyed. Three four days after this second irrigation the land is hoed again deeply and plants earthed up. The next irrigation is made after the capsules have med and before the plants appear as wilted as for the previous irrigation. necessary, a final weeding is made, and then the plants are irrigated ery 4 or 5 days.

Harvest and drying of the truits. — The capsules are harvested during tember and early October when they have assumed a dark red colour I when nearly all their moisture has evaporated. The ripening of the its takes place at intervals, and the harvest is generally divided into ee periods according to the stage of ripening. In some villages with variner climate, where the autumn frosts come later, the crop is often picked at one time at the beginning of October, when the majority of fruits are very ripe and have acquired a better colour and a higher rket value.

The fruits from the first picking may be dried in the sun if conditions favourable, but generally they are dried in a special drying shed, conning a perforated wooden platform fixed at 55 to 60 inches from the r. The capsules are dried on this in a layer not more than 20 to 24 hes thick, lest the colour and quality of the product should be damaged, ing to risk of fire in houses, special drying sheds are generally used, od fires are used, the smoke of which develops the colour of the product. process lasts from 7 to 17 days, and with slow drying at relatively temperatures a finer product is obtained. The drying is said to be aplete when the fruits are very fragile, and crackle. In order to completely the fruits, including the thick placenta, they are covered over the temperature is raised for 48 hours. They are then collected, ken into small fragments by means of a stick and taken to the flour is, where they are ground on a soft millstone.

Yield and returns. Control of purity.— The average yield of red pepper rom 1300 to 2200 lbs. per acre; from 5 to 8 lbs. of capsules are required Produce 1 lb. of common capsicum and from 8 to 10 lbs. for each of sweet capsicum. Sometimes the broken dried fruits are sold under name of "boúcovo". The price of the powder fluctuates between

2 $\frac{1}{4}d$ and 4 $\frac{1}{2}d$ per lb. The largest market is Edessa (Vodena) in Hellenh Macedonia, where it is sold in bags of 100°kg. (220 lbs.).

The best quality of red pepper has a bright rose-red colour, the dar red and reddish-green varieties being the inferior grades. The bright red colour is obtained by sun-drying or by slow continuous drying, the fruits have been touched by frost before picking; they develop a greenist colour and loose their piquancy. Attempts to improve the appearance of the inferior grades by chemical treatment, have been prevented by the action of the Turkish Government during the last ten years. Before export the product is inspected at a central depot where a small samp is taken from each bag and tested for colouring matter by making an a coholic extract and evaporating a little on a sheet of clean cigarette pape. Any chemical treatment of the product shows itself in different coloure stains on the paper, while the pure pepper gives a uniform pale red. A adulterated products are confiscated and destroyed, and the bags which are certified as pure are specially sealed to avoid their being opened before reaching their destination.

The cost of growing capsicum, including the drying, is £9 108 † £11 per acre, while the gross returns are from £13 to £17 108.

528 - Warm Baths for Foreing Strawberries. — Baltel, G. in Revue Hothia Year 86, No. 9, p. 212. Paris, May 1914.

Young plants are obtained by rooting runners in small pots earl in June and then planting out in the open. They are repotted in September and sheltered when necessary. Before forcing in November and December a small pad of straw or hay is placed round the neck of the plan and tied on so as to prevent loss of soil when the pot is inverted. The pots are then inverted on an iron grid over a tank of water at a temperatur of 32 to 35° C. (89° to 95° F.) so that the leaves are submerged. After treatment in this way for from 6 to 8 hours, the plants grow more rapidly produce more flowers and give a better yield of fruit.

- 529 Recent Work of the Royal Hungarian Central Ampelological Institute: Budapest. — Communication from Dr. Gyula de Istvánffi, Professor at the Universiand Director of the Institute.
- 1). Research on mildew in vines. Experiments have been conducte for more than 10 years; a new line was taken up in 1911 with the institution of infection experiments. A summary has been published in Hu garian, of which a French translation appeared in the Annales de l'Institut ampélologique (1). The chief results have already been published in the Bulletin of Agricultural Intelligence and Plant Diseases (2).
- Researches on the relation between climatic conditions and milden.
 These have been completed after five years' work, and indicate the meteor logical conditions favourable to the development of mildew, the course

(2) See No. 1208, B. Oct. 1913.

⁽¹⁾ GY. DE ISTVÁNFFI and GY. PALINKÁS: Etudes sur le Mildiou de la Vigne. Vol. II 1913, June, pp. 1-122, pl. 1-IX. Budapest, 1912.

the propagation of the disease during several years and the means of

a). The Intelligence Department for reporting the spread of mildew. — tablished in 1911 on the initiative of the Director of the Institute. Data ports are published weekly in the papers indicating the districts where climatic conditions are favourable to the outbreak of the disease. This is made the Institute popular and considerably strengthened its rk.

4). Information relating to defensive measures (with coloured illustrans). These appeared in 1912 in new publications; of the articles ating to the control of mildew 12 000 copies were distributed in 5 700 e-growing districts.

5). Experiments in the control of mildew. — The agricultural value an remedies used in various countries was determined in two series of eriments carried out in 8 and 10 State vineyards respectively. The titute undertakes the testing of all acceptable remedies during a pelof three years under the most varied climatic conditions.

6). The origin of "bramble-leaf", frozen stocks, the preparation of its, their treatment and preservation from a mycological point of w, have been studied. The publication of this work was completed ing 1913.

7). Researches on the degeneration of vineyards in certain districts.—
siderable work was done during 1912-13, especially in the sandy
on of the Alföld. The subject was studied from the point of view
anatomy, biology, pathology, meteorology and pedology. The chief
ses of the degeneration are drought, frost, exhaustion of the vines,
lect, and damage due to atacks of cockchafer grubs and phylloxera.
de results have been obtained in the experiments in the mountain districts
fokay-Hegyalja and at Somlyóhegy. A collection of phytopatholoil studies is in course of preparation, together with an account of the
hods of examination used by the Institute.

8). The control and examination of the means of destruction is one of most important works of the Institute, and deals with all the remedies ise. In 1912, 103 specimens were examined and 360 determinations le. The biological and phytopathological effect of new remedies is viously tested on vines under glass before experimenting in vineyards. Eniments have also been made on the use of carbon tetrachloride against lloxera in four vineyards. Spraying materials have been tried in asses and 142 determinations made, and the value of the "Tempus" iver was also determined in the experiment fields of the Institute at value.

9). Studies on defects of wines are in course of publication. They to to: a) the examination of acetification of wines, brought about by 26 rent acetifying bacteria; the best varieties for the production of vine-

gar were chosen; b) detailed researches on lactic fermentation, which according to results obtained at the Institute, is the cause of numerous defects of wine; c) the examination of the organisms of must, showing the theorems causing the diseases of wine are already present in the must this led to an examination of the sulphuring process and the fermentation of the must hy yeast; d) the study of the flavour of Hungarian wines known as "levego iz" (air flavour), which has shown that yeasts play an important part in producing substances which influence the flavour and arom of wines.

10). The practical application of yeast cultures. - After studying i detail the action of the various yeasts in the chief vine-growing district the Institute placed these yeasts at the disposal of wine-makers in IOI and 1913. The yeasts included: 1) those producing a high alcolo content, for "Aszu" wine; 2) organisms giving a good fermentation end at low temperatures; 3) organisms settling to the bottom of the home and suitable for champagnes; 4) organisms capable of fermenting must containing a considerable quantity of sulphurous acid; 5) high resistant organisms; 6) organisms which rapidly form a thick scum whe alcoholic fermentation is complete; 7) organisms for fermenting red wines Some 45 000 gallons of must were fermented, and in the majority of case better wines with higher prices were obtained. In the autumn of 1919 this procedure was continued on a larger scale. As the result of exper ment it was found that the best condition for despatching the yeasts wa absorbed in sterilised cotton wool, in which condition they retained the vitality after 4 or 5 months.

A description of the properties of the 54 varieties of ferments so a selected, and a determination of the maximum quantity of alcohol product in musts of different concentrations of sugar, are in course of progress

11). Experiments in vine-growing are being carried out in State the yards in different districts, with the object of determining the most subtable time for pruning; these experiments will be terminated in 105 after six years' duration. At the same time the composition of the bleeding sap is determined by chemical analyses (34 in 1912). Henglis grafting machine was also tried from the point of view of perfecting the work, and as a result of the anatomical examination of the joint and the graft it was concluded that this machine could not efficiently replay hand grafting on a large scale.

12). Manurial experiments to compare the value of different extres have been carried out since 1909. In 1912 additional experiments we begun, comprising 360 chemical analyses of 86 samples of must. Further analyses have been made of the fertilising value of grape pomace, to refuse, hrewers' hops, sawdust, etc. Experiments with chemical manure in 1912 were designed to establish the most suitable mixtures for largareas of soil types; these experiments are being conducted at present 7 districts.

13). Experiments with different types of stakes have been made 14). Smudging against frost has been tried in four State vineyard

15). Experiments with hybrid stocks. — Nine experiment fields were uted in 1912 in various localities of Hungary, and others are contemplated. The nurseries have been established in different districts for the propabilish in 12 different counties, with respect to the suitablity of hybrids certain conditions of soil, particular attention being paid to the difficults of treating the soil with carbon disulphide. Various binding materials, has raphia, bast and jute, have also been tried.

16). The Hungarian Ampelography, describing all the more important

165, with colour-photographs, is nearing completion.

17). Publications.—The Annuaire has been discontinued, and popular ides are published in Borászati Lapok. Vol. IV. of the Annals contain-only technical articles has appeared, and the French edition will in be out.

18). Vine-growing and meteorological stations. — There are 11 of these work under the Institute; the results given by them, especially as to Idew, have been very useful. Their climatological data for 1901-08 re recently been published under the title of Réthy Antal (142 pp.).

19). Observations on the development and phenology of the vine were ried on by means of schedules in 1912; the observations now extend it twelve years.

20). Ampelographical Collection. — This is situated at Köbánya, near dapest; it contains 600 varieties. The Institute also possesses a vineyard it Orsova, far from any vine district, where imported varieties are inseed; these are then used for hybridization, chiefly to obtain adaptable cks.

21). The information department replied, in 1912, to 3385 enquiries all branches of vine-growing and wine-making.

- The Growth of the Roots of the Vine and its Importance in the Manuring and Cultivation of the Soil of Vineyards. -- Kroemer in Zeitschrift für Weinbau und Weinbehandlung, Year 1, Parts 1 and 2, pp. 37-46 and 70-81. Berlin, 1914.

The writer describes the development of the root-system of the vine, ticularly the active portion, and its relation to the physical properties the soil. He concludes that the most favourable conditions for the relopment of the active root system occur in the upper layer of soil that the deeper root system is concerned with the absorption of water her than food material, though the more soluble constitutents, such as introgenous ones for example, may also be absorbed by these deep ts.

Consequently the removal of superficial roots as generally carried out injurious to the plants, and appropriate cultural methods ought to employed instead which would encourage the development of surface its in addition to the deeper root system.

For the first few years after planting the soil should be cultivated ply while the deep root system develops. In older vineyards on fairly ist soil the superficial root system can then be stimulated without danger the plants, and care should be taken not to disturb the surface soil

by carrying out only very shallow tillages. The same treatment m_{ay} adopted in the case of soils with a high water-table. On the other hat in light, permeable dry soils with a low water-table, and especially in d tricts of low rainfall, deep cultivation should still be practised to devel a deep penetrating root system.

531 - Protection of Vines against Spring Frost. — Lun-Saluces in Bulldin & Société des Agriculteurs de France, Year 16, pp. 265-267. Paris, April 15, 1914.

A system of protection against spring frosts was organised in the d trict of Sauternes (Gironde) in 1913, with good results. The land of ear commune was divided into a number of sections; in each commune of the growers volunteered to give the alarm: he fires a cannon at nighting if a frost seems likely, then three shots when the fires are to be lift, a three more in the morning when the temperature rises above freezing to the second section.

Fire places are fixed in the alleys of each section at intervals of to 30 yds., and besides them one cauldron on wheels is supplied for eve 12 acres or so; this moves up and down in a cross shape. The cauldr is half full of coal tar, which is lit by means of pine branches; it is occasic ally sprinkled with water to increase the denseness of the suioke. I fixed fires are made of green pine branches, litter, green grass, etc. I this means a very dense smoke was obtained, so that it was difficult find one's way about; this completely prevented further radiation for the ground. In case there is much current of air, it is well to have ext cauldrons producing smoke on the windward side.

At Preignac, in 1913, the cost of smudging on three mornings in Ap for about 5 hrs. each was about 3s 6d per acre for materials alone.

532 - The World's Trade in Bananas. - Macparlane, John I. in The Tea & Coffee Trade Journal, Vol. XXVI, No. 3, pp. 226-230 + 6 figs. New York, March 19
1. - Importing countries. - United States. This country is the world

greatest consumer of bananas. During the fiscal year ending June 3 1913, \$ 28 657 084 worth of fruit were imported, more than half of whit consisted of bananas. The latter were imported chiefly from the region bordering the Caribbeau Sea, as shown in the following table:

Imports of Bananas to the United States, 1912-13.

•		Value
	No. of bunches	-
	-	\$
Jamaica	. 11 163 269	3 488 498
Honduras	. 7983 591	2 435 006
Costa Rica	6 973 684	2 744 813
Рапата	4 438 300	2 082 502
Guatemala		600 041
Columbia	. 2684749	1 107 429
Cuba		834 206
Nicaragua		348 064
Mexico. ,	. 1 541 504	412 315
British Honduras		163 249
S. Domingo	475 500	222 626
Guiana :		3 9 9 3 2
Grenada	. 4 398	4 111
Other regions of the West Indie	s, 1 625	466
Total	. 42 357 109	14 484 258

Half of the bananas imported to the United States enter through port of New Orleans, which receives more bananas than any other in the world and possesses special facilities for landing the fruits. The value of the bananas imported to Furope is almost equal to that the United States, but the quantity is only about one-third. England, mee and Germany are the most important consumers in Europe.

England is second to the United States in imports of bananas, ich are increasing rapidly.

							No. of bunches	Value \$
1900,				•		•	1 287 000	2 740 000
1912.	٠		•		٠		6 978 876	9 587 000

Germany imports 35 226 000 kg., valued at \$2 525 000, while France eived 21 749 000 kg., valued at \$1 210 000.

II. Exporting Countries. - Jamaica comes first in the exportation bananas:

1911.	٠							16 947 385 bunches
1912.								13 382 072

The decrease in 1912 is attributed to accidental causes.

Costa Rica comes second, with an export of 10 647 000 bunches, and ws an increasing production.

Honduras is rapidly increasing her exports to the United States, Panama has doubled her exports during the last ten years.

The Canary Is., which were formerly the chief exporters to Europe, intain their exports at about 2 723 000 bunches.

- Citropsis, a New Tropical African Genus allied to Citrus. - SWINGLE, WALTER and KELLERMAN, MAUDE in Journal of Agricultural Research, Vol. I, No. 5, pp. 420-436 + 7 figs. + 1 plate. Washington, February 1914.

The fruits of Citropsis are known as "African cherry oranges"; they produced in clusters from the axils of the leaves. The writers coner it necessary to establish a new genus to include these African species they do this by raising the section Citropsis of Engler to generic k. The following species are described: C. Preussii (Engler), C. Schwein-hii (Engler), C. gabunensis (Engler) and C. mirahilis (Chev.), as well as reticulata (Willd.) which is not well known.

The members of this genus are worthy of the attention of agriculturists, reseveral of them produce an abundance of delicious fruits. C. Schwein-thii has given good results on poor sandy soils in Florida. It is ed that the numerous small fruits may be increased in size by hybriation with Citrus; successful crosses have already been obtained.

LIVE STOCK AND BREEDING.

534 - Research on the Life History of the Large Warble Fly (1) and Means Controlling it. - Lucer, Adrien in Comptes Rendus Hebdomadaires des Stania l'Académie des Sciences, Vol. 158, No. 13, pp. 968-970. Paris, March 30, 1914.

The writer communicates further investigations into the life history of the large warble fly. The adult fly lives only until it has mated and

posited its eggs.

In eleven flies observed by the writer, the average duration of life a from four to five days. During this time the fly does not seem to take for It does not appear either to travel any distance from the place where was hatched, flying only in fine, warm weather, and not moving is the mo ings, evenings or cool wet weather. The number of eggs which were for in the bodies of four females were: 372, 386, 357 and 343, which is less th the number found by GLASER. Recently-laid eggs contained the lan already clearly formed.

Neither placing adult flies on the neck and back of an ox nor enck ing the ox with some flies in a cage for several days appeared to alarm 1 animal, from which the writer is led to believe that the gadding of cat

is not caused by warble flies.

The writer also undertook experiments for the control of warbles obtained very satisfactory results with tincture of iodine prepared accord to the pharmacopoea. An injection of 0.5 and I cc. of pure or diluted to ture of iodine (Gram solution) practised on the swellings of two oxen b the result of killing all of the SI larvae they contained. These experime were to be continued in May in the Département of Ariège.

535 - Practical Observations on Contagion in Anthrax of Cattle, on the Di nution of Cases by Vaccination and on Uniform Immunication. - Wast in Allatorvosi Lapok, XXXVI, No. 30, pp. 355-358. Budapest, 1913.

The writer reports on his results obtained from the dissection of 12 cattle and from the clinical observation of about 250 diseased ones. Contr to the generally accepted opinion, according to which the food is credit with being the chief source of contagion, the writer believes that at le 80 per cent. of the cases are due to the drinking water. In support of opinion he mentions instances of large estates and communes in wh only the animals that drank the water from certain sources fell ill a the disease disappeared as soon as these sources were closed. Infection wounds in the skin is possible, but it is so rare that it can be practical neglected. Where, on the contrary, infected water exists, the disease m attack stall-fed animals also, and exceptionally even buffaloes.

As for the age, it has been observed that in such localities not only ste contract the disease, but also calves immediately after weaning, and the so frequently that they must be regularly vaccinated at that time. In or

⁽¹⁾ See No. 144, B. Feb. 1913; No. 251, B. March 1914; No. 445, B. May 1914-

hooid cases of sickness due to the inoculation, it is recommended to grind wine the powdered matter used for vaccinating, as by this means it be more exactly dosed. Only the matter obtained from the liquid tained in the swellings is suitable or this purpose, as that obtained in the muscles cannot be reduced to a uniform powder.

Observing this method, 5000 head of cattle have been inoculated the course of eight years without any losses, and only in the ninth year

Itwo deaths occur shortly after inoculation.

For the treatment of diseased animals intravenous injection of hydrogen nxide, followed by the incision and washing out of the swellings, is recomnded. As a prophylactic measure immediately on the outbreak of the ease, a search should be made for infected wells or other sources water.

- Swine-pox in Young Pigs. - Ban, E. in Allatoreosi Lapok, Year XXXVI, No. 52, 00. 620-621. Budapest, December 27, 1913.

The existence of swine-pox was until recently considered doubtful. auveau, Gerlach and R. Koch had, however, demonstrated that cow-pox be artificially communicated to pigs, but under natural conditions the ease had hardly ever been observed. In 1906 Száutó proved that pigs, ecially sucking ones, sometimes contract the disease and that they commicate it to healthy animals by merely living with them. Since then, from ir to year the number of observations has increased and it appears that many districts of Hungary the disease is fairly frequent, that it attacks ne herds every year and that sometimes it causes considerable losses. is is especially true of districts on the right bank of the Danube, where, acding to the writer's observations, it is one of the most frequent diseases sucking pigs. Generally it develops so insidiously that the owner is only are of its presence when a proportion of the weaned pigs are arrested their development or some of them die. When the herds are once inted it is very difficut, as with cow-pox, to free them again, even making of repeated disinfections.

The disease is accompanied by severe itching, which leads to the proction of an eczema. The course of the attack is generally mild, but netimes serious losses occur, mostly through complication with intestinal arrh or chronic catarrhal pneumonia. In one herd the necrosis of the ts was observed, but it is not certain that this complication was caused ectly by the disease. Protective inoculations with cow-pox lymph re good results in several localities on about 400 young pigs. Small noities were formed at the place of inoculation, but otherwise the animals' alth was in no wise impaired. In one case, a few pigs developed small stules on the inner side of the thigh, where they had been inoculated, d after 6 or 8 weeks all the other animals fell ill, but not seriously. It not impossible that these inoculations, which of late have been more quently practised, may have contributed to the spread of the disease.

537 — Causes and Effects of Cryptorchism. — Zsámár, George in Allatorvosi I.a. Year xxxvii, No. 6, pp. 61-64, No. 7, pp. 74-78, No. 8, pp. 90-95. Budapest, Febr. 7, 14, 21, 1914.

With the object of throwing more light on the question of the creative power or the sterility of cryptorchids, the writer subjected $\dot{\alpha}$ testicles which had been retained by monorchid horses to a rigorous $\dot{\alpha}$ logical investigation as to their sperm-producing capacity.

The result of his investigations can be summarized as followed in the domen or in the inguinal canal, and of the age of the animal with the limits of 2 to 3 years, the germinative cells in the tubuli represented only by earlier stages of development, as spermogones or most spermocytes. Such testicles therefore resemble normal testicles young animals, with the essential differences that in the former deger ative processes point to the cessation of development, while in the lat the conditions for further development exist. The degeneration come more the germinative cells than Sartoli's cells, while the so-called placells on the contrary seem more numerous.

The formation of sperm in the retained testicles does not reach degree of being vital and fertilizing; consequently stallions that completely cryptorchid must be considered as sterile and monoci stallions as owing their generative power only to the testicle which descended normally into the scrotum.

If the male sexual characters are well marked in completely crypt chid horses, this is explained by the fact that the so-called plasm α which produce the inner secretion have not suffered any degeneration.

538 - Sugar in Blood Piasma. — BIERRY, H. and FANDARD, L. in Complex on hebdomadaires des séances de l'Académie des Sciences, Vol. 158, No. 1, pp. 61-64, P. January 5, 1914.

The blood of horses, chickens and dogs was examined for sig and it was found that venous plasma was always richer in sugar than corresponding arterial plasma.

539 - Influence of Fluorine on the Animal Organism. — SCHWYZER, F. in Don mische Zeitschrift, Vol. 60, Part I, pp. 32-42. Berlin, February 14,1914.

Experiments with rabbits led the writer to conclude that fluori introduced into the body caused a loss of lime, chlorine and fat from the bones; even in daily doses inferior to one millionth of the live well it acts as a poison, and consequently is strictly to be avoided for preserving mashes for live stock and similar uses.

540 - The Food Value of Certain Grasses. — Gregoire, A. and Carriaux, E. Rapports et Communications du Ministère Belge de l'Agriculture et des Travaux Fuit No. 8, pp. 5-48. Brussels, 1914.

The following grasses, Italian ryegiass (Lolium italicum), English ryega (Lolium perenne), tall fescue (Festuca elatior), tall oat grass (Arrhendika) elatius) and timothy (Phleum pratense), were investigated from two poir of view: 1) their food value, and 2) the assimilation by the animal of in

	- A H	Dry matter	- F	Crude	Crud	Crude	Nitroger free extract	Nitrogen free extract	8 8	Crude	Ash	4	Pure protein	e da	Phosphoric acid	noric d	3	Lime
	Grégoire	Pott (mean)	5xiog3120	Pott (mean)	Grégoire	Pott (mean)	Srégoire	Pott (mean)	stiog\$1Đ	Pott (mean)	Grégoire	Pott (mean)	51iog\$10	Pott (mean)	\$1iog\$10	Pott (mean)	Grégoire	Pott (mean)
Italian ryegra s s:																		
1st cut (Sep. 8, 1908)	85	86.8	8.76	0	2.5	,	44-61		20.21	000	9.38	, ,	7.93	[0.814	!	0.728	1
2nd » (June 15, 1909)	85	3	4.43	,	86.0		50.20	÷	24.00	-	5.40	5	3.77		0.456		0.418	
English ryegrass:											-		_				•	
1st cut (Sep. 8, 1908)	85	98	10.18	,	2.33		39.72		23.42	9	9,36	,	8.95		0.921		0.683	
2nd » (June 15, 1909)	85	9.00	5.24	;	91.1	9.	46.51	34.7	25.76	33.0	6.33	4	4.21		0.513	Ī	0.417	
Tall fescue:					_	_		_										
ret cut (Sep. 8, 1908)	85		10.51		1.97		43.30	- ``-	21.56		7.67	_	9.17		0.761	_ - -	0.586	
2nd » (June 15, 1909)	85	85.7	6.91	8.0	2,25	2.3	43.34 42.3		24.67 26.0	26.0	7.83	7.0	5.99	1	0.573	1	0.354	1
3rd » (July 12, 1909)	85		5.55		2,12		39.97		26.55		10.52		4.26	ó	462		0.354	
Tall out grass:							-		_			_						
1st cut (June 3, 1910)	85	0	5.07		1,18		34.97		35-13		8.65		4.30		0.534	_ 0	0.282	
2nd n (Sep. 6, 1912)	85	0.00	5.47	7	1.38	2	37.51	41.7	31.89	29.5	8.77	0.2	4.39		0.633	-	0.378	
Timothy:																-		
(luly 13, 1910) · · ·	85	87.3	4.54	7.6	0.72	2.3	45.20 45.3 27.90 27.4	45-3 2	7.90		5.92	4.7	4.22		0.388	0	0.371	1
				*	-							-	-		,	-		

TABLE II. - Results of digestibility trials.

		Percentag	e digestibili	ty: mean	of 3 theep.	
Kind of hay	Dry matter %	Organic matter	Crude protein	Crude fat	Nitrogen free extract	Crud
Italian ryegrass:						
Cut young	82.15	74.6	56.4	53-4	79.1	73
Cut in flower	80.32	58.7	. 26.4	36.4	68,0	46
English ryegrass:	i				1	
Cut young	80.06	76.0	62.1	53.I	80.6	1 ; 76
Cut in flower	80.93	59.8	40.9	48.9	64.7	55
Tall fescue:		1				1
Cut young	83.28	70.7	63.2	55.9	75.4	67
Cut in flower	84.42	63.3	53.6	73.0	64.3	53
Cut after flowering	87:84	56.7	51,0	82.6	62.1	47
Tall oat grass:					İ	
Cut young	85.47	57.8	46.5	52.3	54.4	63
Cut in flower	85.90	56.4	43-7	48.7	47.5	66
Timothy:						
Cut after flowering	83.93	54.4	37.1	60.1	62.5	43

and phosphoric acid contained in the grasses. The first three were sor on an old experimental field at Gembloux in May 1908; no manure w applied, a good set was obtained and the first crop cut in September 19 under good weather conditions. In April 1909 the plots received 180 fr of nitrate per ace, and half of each plot was cut on June 15, the his being got up in good condition, while the other half was not cut till late and made in bad weather. The other two grasses were also sown on a old experimental field at Gembloux, but on land in good heart. Seed w sown in 1909 and came up normally; 180 lbs. of nitrate were applied. April. A good crop of tall oat grass was obtained, but only a modera one of timothy.

Food value of hay. — Feeding trials were carried out on sheep in Kit feeding boxes similar to those in use at the Möckern Experimental Station the faeces and urine were also collected by the same system as employed at Möckern. The trials lasted a fortnight after a preliminary preparation period of a week. The hay was chaffed and carefully mixed with oth foods, samples being analysed by Belgian official methods with slight modifications. The results are tabulated in Table I and compared with those obtained by Porr for similar plants.

The two sets of figures are somewhat different: the two kinds of ry grasses and timothy contain less albuminoids and the two former more is trogen-free extract than Porr's samples and the percentage of fibre. English ryegrass in also lower; tall out grass is poorer in nitrogen-free extra

1B III. — Average amount of total organic matter and digestible matter (and their starch value) provided per day and per 1000 kilog live weight in the different kinds of hay (in kilog.).

	Total		Digestib	le material		
Kind of hay	organic matter	Crude protein	Crude fat	Nitrogen free extract	Crude fibre	Starch Value
ian syegrass:		İ				
omg	15.984	1.043	0.231	7.456	3.037	8.3
lish ryegrass:	14.200	0.209	0.064	6.105	1.975	5.7
Omuk	15.448	1 293	0.252	6.533	3.667	8.4
flower	14.642	0.398	0.105	5.607	2.647	5.9
oung:	16.298	1.400	0.233	6.884	3.080	8.8
l flower	15.285	0.729	0.328	5.452	2.602	6.4
ter flowering	15.823	0.583	0.425	5-303	2.656	5.8
ошлд	15.172	0.506	0,143	4.028	4.053	5.0
flower	13.316	0.386	0.100	2.826	4.055	3,8
fter flowering	15.502	0.309	0.159	5.184	2.239	3.9

ncher in cellulose. These differences show how the composition of may vary from year to year and the very approximate value of figures cognised tables.

Results of digestibility trials are given in Table II, and in Table III verage amount of total organic matter and digestible material (tor with their starch values) provided in the rations perday and per 1000 live weight.

Kellner's maintenance ration for an adult sheep is as follows:

	natter .							kilog.
Crude	digestible	e pr	oteiı	1.			1.20	9
3	7	fat	i				0.20	9
Nitrog	en-free ex	titar	t+	fibr	е	_	10.50	,
Starch	value						8.30	*

If the experimental rations the two ryegrasses and the tall fescue the only ones which supplied amounts of food elements up to Kell-standard, and Table IV gives the gain or loss of nitrogen undergone animals calculated from the difference between the nitrogen digested the food and that excreted in the urine, and stated as loss or gain often per day and per 1000 kilog. live weight.

TABLE VI. - Kellner's digestibility coefficients.

	Prot	ein ⁶		Nitrogen	
Kind of hay	crude	pure	Fat	free cxtract	Crude fib
	6				
Italian ryegrass	63.4	54-4	43.8	65.5	65.1
English ryegrass	50.0	39.3	29.9	55.1	51.0
Tall fescue	50.0	38.4	29.9	53,7	53.1
Timothy	47.I	41.6	41.7	62.0	53.0

led to believe that the two following causes might account for the observed loss of phosphoric acid and lime:

I. The acidity of the ash of grasses, due more especially to silicic acid produces an eminently toxic effect; silicic acid goes into the circulation where, notwithstanding its weak acid properties, it plays an important part causing a loss of mineral bases and eventually even of phosphoric acid

2. The movement of phosphoric acid is regulated by that of the lim with which it is intimately connected. It would therefore appear that the insolubility of the phosphoric acid in the ash of grass is an important factor, making it difficult for the animal to make good the losses which follow as a consequence of the lime drainage caused by the silicic acid.

The mineral matter of a ration composed solely of grass hay shoul therefore be supplemented. In practice this is usually done by adding to the ration fodders with alkaline ash, such as leguminous fodders or roots but failing these means, calcium carbonate should be added. The writer carried out some trials in which calcium carbonate was introduced into the ration, and observed that the latter substance in no way diminished the digestibility of the grasses, while it prevented the losses of lime and phosphoric acid to the animal body, so that a small gain was actually recorded

CONCLUSIONS.

r. The figures given in tables of food values cannot be more than ap proximately accurate in so far as they deal with hay made from certain grasses.

2. The digestibility of hay decreases with the increase in age of the grasses from which it was made, but the amount of decrease varies consider ably with the different species, which may be placed in the following ascending order: tall out grass, tall fescue, English ryegrass, Italian ryegrass.

3. The food value of various hays differs considerably from that give by Keilner. Tall fescue heads the list and is followed by the two rye grasses and tall out grass.

4. A ration composed solely of hay made from grasses causes losse of phosphoric acid and lime to the animal organism, more especially when

e hay is cut very young. The chief cause for this would appear to the silicic acid present in the grasses, and possibly also the low solubility the phosphoric acid.

5. The addition of calcium carbonate to the ration has no effect on solubility, but reduces the losses of phosphoric acid and lime.

1 - Bacteriological Research on Ensilaged Forage (1). -- Gorini, C. in Annuario della Istituzione Agraria Dott. Andrea Ponti, Vol. II, pp. 165-179, Milan, 1911.

As a result of ten years', investigation on the subject, the writer distingshes four types of silage:

I. Silage in which hntyric acid bacteria predominate.

2. Silage in which lactic acid hacteria predominate.

3. Silage in which putrefying bacteria predominate.

4. Silage comparatively free from hacteria.

The first two may be considered normal types, the remaining two normal types of silage. Ahnormal silage may be produced either ien the temperature of fermentation is too low, which favours the velopment of putrefying hacteria, or when the temperature is too high, ich destroys all hacterial life; consequently the making of successful age depends chiefly upon the amount of heat produced in the silo, ich may he controlled hy the packing, and only to a lesser extent upon e moisture content and quality of the forage. The optimum temperature the silo is 50° C. (122° F.), at which temperature lactic acid bacteria edominate; if the temperature rises to 60° C. (140° F.) the hutyric acid ra is especially favoured.

With regard to the question as to whether it is advisable to classify age as "sweet" and "sour", the writer observes that strictly speaking silage is more or less acid and that consequently it should all he classid according to the degree and nature of its acidity, though it does not low that the quality of the silage can always he determined from its gree of acidity: the rule holds good only within certain limits.

Opinions are still divided with regard to the relative value of the o types of silage for food in general, but when fed to dairy cows the iter gives preference to the lactic acid type, as the hutyric acid type is ble to taint the milk and butter.

The writer has also carried out some experiments on seeding pure cultes of lactic hacteria into the silos. The experiments are not yet comtely finished, but the results obtained up to the present lead to the lowing conclusions:

I. That the addition of lactic acid bacteria to the silo improves

e keeping qualities of the silage.
 2. That different lactic acid bacteria act differently upon the silage.

 That even at a relatively low temperature it is possible to make called sweet silage.

⁽¹⁾ Cf. Ricerche Batteriologiehe sui Forazgi conservati nei Silos, by the same writer, the years 1906, 1908, 1909, 1910, 1912. Premiata Tipografia agraria, Milan. (Ed).

542 - Toxic Bran. - MARCHADIER and Goujon in Annales des Falsifications, Vear No. 64, pp. 77-81. Paris, February 1914.

Bran undergoes degenerative changes on storage which may be the cause of serious disturbances when it is fed to animals. In order to find a method of determining whether any given sample of bran be fit for food a method of determining whether any given sample of bran be fit for food a method of determining whether any given sample of bran be fit for food the writers carried out the following experiments: 100 tons of fresh bran the writers carried out the following experiments: 100 tons of fresh bran the formation of lumps was observed, while in March the temperature had ise considerably and the centre of the heap was carbonized. Samples were considerably and the centre of the heap was carbonized. Samples were leaded in friable and dun coloured, and 3) from the centre where the bran had friable and dun coloured, and 3) from the centre where the bran had friable and dun coloured, and 3) from the centre where the bran had friable and dun coloured, and 3) from the centre where the bran had friable and dun coloured, and 3) from the centre where the bran had friable and dun coloured, and 3) from the centre where the bran had friable and dun coloured, and 3) from the centre where the bran had friable and dun coloured, and 3) from the centre where the bran had friable and dun coloured, and 3) from the centre where the bran had fried the fried of the same bran kept apart from the heap was also chicory. A sample of the same bran kept apart from the heap was also chicory. A sample of the same bran kept apart from the heap was also chicory. A sample of the same bran kept apart from the heap was also chicory. A sample of the same bran kept apart from the heap was also chicory. A sample of the same bran kept apart from the heap was also chicory.

	Commercial sample	Bran not put in heap	Bran from the cutside of the heap	Bran from lower layers of the heap	Bran from
foisture Acidity as fixed volatile Fat Ash Anaeroxidase Soluble in cold water	0.000 1.32 5.5 present	14.8 0.172 0.172 0.000 1.70 5.8 present 12.35	13.6 0.211 0.211 0.000 1.10 5.9 present 4.35	11.6 0.776 0.578 0.198 2.64 6.0 absent 9.80	11.5 2 of 1 44 0.6 4.9 6 2 abse

The acidity increases as fermentation proceeds, so that at the end of the process the acid content is fifteen times as high as it was originally and the oxidising enzymes disappear in the later stages of fermentation. The writers suggest that these two factors be taken as a base for determining whether bran be fit for food, classing the bran as follows:

	Acidity
	below 0.150
Normal bran	-to-cess 0.300
Bran unfit for food	-

The Rate of Liberation of Hydrocyanic Acid from Linseed (1), — Collins, 8 H. and Blair, H. in The Analysi, Vol. XXXIX, No. 455, pp. 70-72. London, petruary 1914.

Linseed was digested with water to which other substances were added perimentally and the resulting hydrocyanic acid, when formed, was rewed, by a stream of hydrogen gas, absorbed in weak caustic soda solution aple of linseed yielded 0.38 mgm. of hydrocyanic acid per gm. of lind. The velocity of reaction was such that one half of the total amount syielded in 46 minutes, whereas solutions of hydrocyanic acid in water died one half the total amount in 26 minutes, reaching in 3 hours' time from to 99 per cent. of the total amount present. When the linseed was acidito represent digestive conditions, no hydrocyanic acid was liberated, dsimilar negative results followed the use of pepsin and rennet in acid soluns. Even hydrochloric acid of $\frac{N}{1000}$ strength prevented the enzyme from thing, and $\frac{N}{1000}$ strength produced a marked slowing in the rate of liberand of hydrocyanic acid from linseed.

With non-ruminant animals the acidity of the stomach would render enzyme inactive. In the case of cattle where 2 to 3 lbs of linseed may fed daily, the writer attributes the usually innocuous effects partly to influence of other foods in slowing down the action, and partly to the fact it the hydrocyanic acid formed must be largely evaporated into the air ring rumination with its attendant continual regurgitation of the food o the mouth. The linseed "mash" fed to calves is a more likely source danger. Linseed treated with a large volume of boiling water and kept 100° C. for half an hour produced no hydrocyanic acid gas, but at 60° evolution of acid was only slightly checked, though almost completely eked at 90° C.; linseed heated dry to 100° C. or ground finely produced increased amount of hydrocyanic acid. Linseed mash prepared in a mpy condition generated hydrocyanic acid from these lumps, slowly first, but rapidly when the lumps were broken up, showing that the enzyme d not been destroyed in the comparatively dry material inside the lumps.

The extractives, such as petrol, ether, chloroform, etc., had no marked ect on the enzyme, so that the removal of oil from the seed in the manufacte of linseed cake by the solvent method, far from producing a safer matal, only tends to concentrate both enzyme and glucoside.

1 - Live Stock in Morocco. Monod, T. in Revue générale des Sciences pures et appliquées, Year 25, No. 7, pp. 341-346. Paris, April 15, 1914.

Though Morocco is a country eminently adapted to agriculture and estock, its production has remained at a low levelowing to the defective ethods practised by the natives, who make no attempts to save their ock in years of drought. Conditions could be considerably improved by creating food reserves to fall back upon in periods of drought, such as 1y, forage crops, irrigated meadows or maize and sorghum silage; and

2) tapping springs and building stone drinking troughs to improve hygienic condition of the present water holes, which are a constant solv of disease to stock.

Horses.— The type varies with the soil in the different localities all are preeminently saddle horses and belong to the Berber type. It are quiet, hardy, mettlesorde, but are lacking in breed and shapeling Usually they are less well cared for than in Algeria, brood mares be ill fed and generally undersized. Where they receive rather better the ment, such as in the Marrakech district, the superiority of the anim is evident. The introduction of Arab thoroughbreds should prove we beneficial and the work undertaken in this direction by the State should give excellent results.

Mules are very popular in Morocco both for agricultur al purp and as carriage or saddle beasts; they fetch a good price (£24 to £ and their improvement by means of selection and the use of impor-

asses should prove remunerative.

Cattle.— A large demand and a low production due to droughts diseases have combined to raise prices abnormally, i. e. to twice the value of two years ago. Numerous breeds exist, all hardy and fattent readily when well fed. Cattle receive no kind of care; they are allowed breed promiscuously and are kept out without any kind of shelter. Yet should be possible to obtain both a good milking breed and a good working breed from the native animals.

Sheep. — Sheep number 1 500 000 in Western Morocco and 9000 in Eastern Morocco in those districts under French influence, and wor be liable to vast improvement under a judicious system of br eding a

selection.

Pigs belong to the Iberian race and are spreading all over the count as the natives have not the same antipathy for that species of anim as have the Algerians. A good export trade to Europe, where the profession a ready market, may be predicted.

545 - Live Stock in New Caledonia. - Lapporque, G. in La Vie agricole et ru Year 8, No. 7, pp. 175-177. Paris, January 17, 1914.

New Caledonia is situated on the southern limit of the tropical zones has a remarkably constant climate, with a mean temperature of 680 to 77 (minimum 57° F. and maximum 97° F.), rather long droughts and occass ally very wet periods. The soil is only moderately fertile and may be punder coffee, but live stock rearing is the chief resource of the country.

Colonists embarked on cattle rearing from the outset, using as bas animals of the Shorthorn, Hereford, Devon and Aberdeen-Angus break Crosses of Shorthorn-Devons or Shorthorn-Herefords are now commonst and of these two, the former seems the better adapted to the country Large herds, up to 1000 head, range freely on the open stations, which may cover an area of 15 000 acres each, in charge of mounted stockmen who are ably seconded by their dogs. Males and females are never separated and breed promiscuously.

In 1908 New Caledonian cattle underwent a serious crisis due to principal causes: 1) the deterioration of pastures owing to frequent overstocking, which destroys the grasses and gives the weeds a chance of getting a hold; and 2) running males and females together, which results in numbers of the females being called upon to perform maternal duties before maturity, the annual castration of males not required for breeding purposes being an insufficient preventive measure. Better times are dawning, colonists are beginning to co-operate in order to improve the management of live stock, and stations are being reduced in size in order to lead by the erection of a cold, storage factory, which would make the export on measure to make the transport of meat in the form of live cattle neconomic possibility.

46 - Short-faced Abyssinian Mules. - Dechambre, P. in Bullatin de la Societé Nationale d'Acclimatation, Year 61, No. 5, pp. 129-132. Paris, March I, 1914.

The writer mentions an abnormal head conformation frequently met ith in Abyssinian mules and interesting from its analogy to special conforlations in other types of animals. It consists in a considerable depression the base of the subnasal bones together with an underhung jaw giving he animal a bulldog expression.

Mules possessing this characteristic are in no way inferior to normal nimals; they are small, strong and well ribbed up; but, of course, should be abnormality be developed beyond a certain point, both the breathing ad the articulation of the jaws are interfered with and the animal suffers. rom an enquiry made by Dr. Groslambert, it would appear that the out-faced mules, or "fongga", are the result of purely accidental variations inch are not inherited. Analogous conformations in other types of animals re represented by the bulldog, the "natos" or short-faced Chilian cattle, and tumbler pigeons.

7 - Present State of Milk Record Associations in Austria. — ROSSMANET, RITTER VON in Mitteilungen des Zuchtvereins für das alpine Grauvieh in Steiermark, Year 2, No. 1, 9 pages, 1914.

Milk recording has only comparatively recently gained a footing in ustria (1), but it has rapidly become important, as may be gathered om the following data.

In East Galicia milk records are registered by the Lemberg Agricultul Society in 140 herds containing 4344 cows. For this object a special fice exists, employing thirteen persons besides the director.

In West Galicia two associations were founded in 1904, followed by '0 more in 1906. At present the number of animals under record is 50, of which 160 belong to small farmers.

In Bohemia regular test milkings have been carried out since 1905

⁽¹⁾ See article: a The Present State of Dairy-Cow Testing 1, B. Oct. and Nov. 1912. (Ed).

exclusively by cooperative breeding and economic associations. Up $_{\rm tc}$ the present 3500 cows on 692 farms have been tested.

Moravia has, at present, two testing associations with 50 member

and 320 cows.

In Upper Austria the Simmentaler Cattle-breeders' Federation a Schärding has kept milk records since 1904. Since 1912, 96 breeders with 888 cows have submitted to the control. From 1904 to 1912 the average milk yield rose by about 44 gallons per head per annum. In 1910 the Federation of Simmental Breeders at Ried began the work of milk recording, and the next year the Montavon breeders followed suit. In the latter federation, 191 members with 2879 cows submit to the control.

In Salzburg, for the last two or three years six cooperative breeding

associations with 1675 cows have been keeping milk records.

Extensive test milking is practised in the Tyrol also, but on account of the communes and farms being so widely scattered in the high mountains, a good deal is left to the private recording of the farmers.

In Styria, the "First Styrian Milk Control Association" has carrier out regular milking tests since 1904. In that year it, numbered 11 members with 365 cows, while in 1914 there were 30 members and 1050 cows. The contributions for large landowners are 168 8d per year and 28 6d per cow per year, while peasant owners pay only 10d per year per cow. The association has a yearly State subvention, which has grown gradually from £33 4s to £125. The tests are inade three times a week, three person being employed for the purpose.

Besides the above, milking tests have been practised in Styria by the Federation of Murbodner Cattle-breeding Cooperative Association

since 1910. At present 1632 cows are under control.

548 - Red Fiemish Cattle. — RAQUET, H. in Annales de Gembloux, Year XXIV, No. : pp. 81-102. Brussels, February 1, 1914.

The total number of Flemish cattle is estimated at 700 000 head in France and 500 000 head in Belgium. In Flanders in 1912, their density wa about I to 2 ½ acres. As milkers they are almost equal to the Dutch brew when under a favourable system of management: 14 cows on the fam of Mr. Talpe of Hooghlede, West Flanders produced during the seve years 1902-1908 an average annual yield varying from 780 to 1080 gallon with the nature of the season, being highest in the wetter seasons.

At agricultural shows in Belgian Flanders, points are awarded at cording to the following scale:

Cows.		
General appearance, frame	20	
Dorsal line	IO	general conformation
Head, horns, breed characteristics, coat colour	10	50 points
Skin	IO	
Udder and teats	20	milking qualities
Udder and teats	20	50 points
Escutcheon		30 politic
	100	

		ılls				
Dorsal Dine	٠.					20
Frame	٠.	٠.				20
Skin, horns	٠.	٠.	•	•	٠	20
Pedigree, milking characteristics	, ¢5	cuto	he	on		10 10
						100

The breed is very adaptable and has been substituted for Swiss and the cattle in the province of Santander (Spain). It has successfully ablished itself in Argentine, but the Argentine strain, which is the result crossing the old red-and-white Flemish cattle with Shorthorns, is more the old Zeeland cattle than the modern Flemish breed. The breed, resented by 52 bulls and 11 heifers from the best Flemish herds, has been imported into Saô Paulo, Brazil.

The French herd-book was started in 1886 at Bergues, while the Fleh one is of more recent origin and has its headquarters at Roulers in st Flanders. The writer considers that for registration purposes, the ed should be divided into three sections: I) milking type, red with a k nose, the original type; 2) beef type produced by crossing with the rthorns, red with a pink nose; and 3) general purpose type with dominant milking qualities, red and white with a pink nose. He fursuggests that the fee for entering should be abolished as an encouragent to breeders.

- Determination of Growth in Grazing Cattle. — BRUCHHOLZ, K. G. in Doutsche Landwirtschaftliche Tierzucht, Year 18, No. 16, pp. 185-187. Hanover, April 17, 1914. The writer divides young cattle into three group: according to the nae of the growth they make while at grass: 1) Those which form chiefly 18 and flesh: the e eventually grow to big beasts, and when still ng give promise of becoming good breeding, milking or fattening & 2. Those in which the increase of weight is almost entirely due to they always remain small, and are less valuable than those of the t group. 3) Those which make little increase in fat, hones or flesh: y will always be poor animals.

To find out to which category the young stock at grass belong, it is untial to take body measurements as well as noting the increase in weight. writer recommends taking only the girth measurement, at the beging and end of the grazing time, as taking detailed measurements of a large uber of animals is very laborious. The value of this method is shown by accompanying table, in which data are given for eight beifers; these e turned out to grass in May, at eighteen months old, and taken off in in October. Four months after dropping the second calf they were ghed again for comparison wirh the data obtained earlier.

It may be noted that the chief increase of live-weight took place May and June; four of the heifers showed much less increase in July 1 August, and three of them a decrease in September. The girth reased much more evenly.

Increase in weight and girth of heifers.

						4		
Number of heifer	1	2	3	4	5	6	7	8
Increase in live-weight during grazing period lbs.	216	249	129	64	115	164	293	
Increase in girth during grazing period in.	12	To	9 1/2	8	7 ¾	3 ½ 2	2 1/2	1
Live-weight 4 months after second calving lbs.	1 45 6	1 318	1 397	1 273	1 278	1 154	1 067	Ιa

The table shows clearly that the heifers which increased most in gr were the ones which eventually made the heaviest cows, while the increa of live-weight at this period shows no correlation with the live-weight the mature animals.

550 - Heredity of Twin Births in Cattle. — UHLMANN, E. in Deutsche Landwische liche Tiersucht, Year 18, No. 14, pp. 163-164, Hanover, April 3, 1914.

The writer has investigated a herd in which the birth of twin calve has been very frequent. He found two sisters which had borne twin 2 out of 7 and 4 out of 9 times; the dam of these cows (as well as the two other sisters) never had twins, but the maternal grand-dam once gain birth to twins. Two daughters of the first cow have also given twin (each I out of 3 times), while two daughters of the second cow has calved two and four times respectively without producing twins.

The bulls used have been of various strains not known to have a tol dency to twin-production.

The evidence seems to point to a twin-producing character being inherited from the grand-dam mentioned.

551 - Marocco Sheep and their Products. — Bulletin économique du Maroc, Yeal No. 6, pp. 5-7. Rabat, August 15, 1913.

There are two chief breeds of sheep in Morocco.

1. The Muluya Basin breed, found in the high plateaux of Easter Morocco, has a close fleece very similar to the Merino; it is hardy as resistant to drought.

2. The Atlantic or Western breed which is a kind of degenerate merine. These types vary to a certain extent; in the neighbourhood of Tangler some imported Spanish Merinos have improved the local sheep, while if the neighbourhood of Fez two modifications are met with: the Beni-Hasse with a long silky fleece, and the Berber which is smaller with a heavier coarser fleece.

The principal sheep-breeding centres are the High Plateaux of Easter Morocco and the fertile plains of the Atlantic coast, the Rharb district the district of Beni Hassen, parts of Shawia, and above all the Marakes district, the annual production being approximately as follows:

Rabat district 100 000

Fez and Sifru district . . . 50 000 to 60 000

Meknes district 20 000 > 25 000

Shawia 50 000 » 60 000

Mazagan and Saffi districts . . 300 000

In the Rabat district, prices range from 12s to 17s per head. Exts by sea are prohibited; sheep may leave the country by way of Algeria proximately 200 000 per annum are exported), and are taxed 3d per d on passing out at the frontier. Shearing is carried out in spring and natives take the fleeces to Jewish or European dealers the following ter and receive 1s 4d to 2s per fleece. The wool is graded into three liftes:

- I. Ourdigha -- short and fine, comes from Shawia and Tadla and fetches the est price.
- 2. Aboudia -- medium quality and unwashed, comes from the Rharb district and the Valley.
- 3. Beldia low quality, comes from Rabat, Saffi, and Mazagan districts.

Exports are taxed 4d a 1b. on washed wool and $6\frac{1}{2}d$ a 1b. on unhed wool, the washing having caused the wool to loose 50 to 60 per by weight. Formerly France was the only importing country, but Germany takes a large part of the wool produced, as is shown by following table:

Importing country		Value of importe	d Moroccan waol	
	1909 £	1910 £	1911	1912 £
France	74 250	91 600	106 800	32 740
England	6 000	13 060	5 250	4 290
Germany	26 990	69 630	90 240	32 580

Large quantities of skins are exported. Sheep skins are also largely ed into slippers, which are then exported to Algeria and Egypt.

Development and Prospects of Sheep Breeding for Wool in German South-West Africa. (Lecture given by Prof. Golf at the meeting of the Kolonial Wirtchaftliches Komitee) in Zeitschrift für Schafzucht, Part 4, pp. 81-86, Hanover, April 1914. The breeding of sheep for their wool is destined to become the most ortant branch of farming for at least one half of the total area of Gersouth-west Africa. The most important area is the whole south of colony, that is all the country south of a line running eastward from dhuk. Then in the northern half of the colony there is a western dry which is bounded on the west by the Namib desert and on the east a line drawn from Windhuk to the Kunene passing through Walch are more suitable than sheep, as the thorny pastures injure the fleeces. On April 1, 1912, the number of wool sheep in German South-west a was 46 901. The yield of wool is inferior to that of South Africa, which

is 8.8 lbs. of unwashed wool per head; in 1910 the export from G_{eq} South-west Africa was 186 180 lbs., worth £37 401. If this industry i develop satisfactorily, the breeding and management must be imput with the introduction of special wool-producing breeds, the aim being production of wool of the best quality.

As the most suitable sheep the writer recommends Cape Merinos, w_i might be improved by the introduction of pedigree rams. In the Nort the colony the German Tuchwollschaf would probably be suitable crossing; in the south, however, the German, Australian or African K_{ar} wollschaf would be more advisable for the present.

553 - Present State of Milk Recording for Goats in the German Empire. — Re made in the autumn of 1913 to the German Agricultural Society, subcommission milk records for goats, by Dr. Müller of Dortmund; in Mittellungen der Deat Landwirtschafts-Gesellschaft, Year 29, Part 9, pp. 138-140. Berlin, February 28, 1

The German Agricultural Association (D.I.G.), in the summer of 10 addressed an enquiry to all the central agricultural offees (landwirtschiliche Zentralstellen) on the present situation and development of 1

recording for goats, and received the following information.

Milk records are kept at present in the Grand Duchy of Hesse Hesse-Nassau (district of Wiesbaden), in the province of Saxony, in Rhine province, in Westphalia, Hanover, Brunswick, Coburg and Sach Altenburg, and in the Kingdoms of Württemberg and Saxony. In veral localities, as in Silesia, Oldenburg, Baden, Bavaria and Lippe record of performances has been begun, but up to the present there no complete yearly records available. The milking tests, which vi more or less useful figures, are about 500, and refer to the most differ breeds of goats. The first tests appear to have been made in the Grande Duchy of Hesse and in the Kingdom of Saxony about the end of thel century. Recently, thanks to the increasing recognition of the importa of milk recording work, it has been receiving considerable financial from the numerous agricultural central offices. Special instructions the method of carrying out these milking tests are at present publish only in Württemberg and Hanover, though short directions are to found almost everywhere.

The best results have been obtained in those localities in which special control assistant was available (Westphalia), or in those in which some organization took an interest in milk control.

Most of the observations, especially of late years, are no longer may be measure, but by weight, and if possible every fortnight. In only few localities are records kept of the weight, age and mating of the animal and of the number and weight of the kids dropped. Data on the height and girth, and on the feeding and utilization of the food, are now to be found. On the other hand in some places the net returns have be calculated. The results vary between — 5s 9d and + £7 10 s per animal per year.

The results hitherto obtained are insufficient for the clearing up several questions connected with the keeping of goats, to a great extension

because they have been obtained by different methods. It is therefore nighly desirable that in future uniform methods be adopted.

54 - The Olfactory Sense of the Honey Bee. — Mc Indoo, N. E. (Bureau of Entomology, U. S. Dep. of Agriculture, Washington, D. C.) in The Journal of Experimental College, Vol. XVI, No. 3, pp. 265-345. Philadelphia, Pa., April 5, 1914.

Olfactory pores were found on the bases of the wings, and on the rochanter, legs, and sting. They numbered approximately 2600 in the lones, 2200 in the workers, and 1800 in the queen. They are described a detail.

55 - Silkworm Rearing in Madagascar (1). - 1. FAUCHERE, A. in L'Agriculture Pratique des Pays Chauds, Year 14, Nos. 130-137, pp. 12-23, 92-102, 140-147. Paris, January to March, 1914. - 2. Journal d'Agriculture Tropicale, Year 14, No., 153, pp. 89-91-91is, March 31, 1914.

A full account is given of the treatment of silkworms in Madagascar; he Centre is the most favourable part for Bombyx mori, called "landikely".

The native worm is Borocera madagascariensis, known as "landike"; his is reared in the open, either in natural forests of "tapia" (Uapaca lusiacea) in the Centre and "afiafy" on the coasts, or in plantations of tsitovina" (Dodonea madagascariensis) and Cajanus indicus. There are two roods in the season; the cocoons are grey and cannot be reeled: they are herefore carded and spun. This silk gives rise to a considerable trade in he island.

56 - Silkworm Rearing in the Yalong Valley, China. -- LEGENDRB, A. F., in Annales de l'Ecole Nationale d'Agriculture de Montpellier, Vol. XIII, Parts I-III. Montpellier, July and October 1913, and January 1914.

The rearing of si kworms in China has been very little improved since arly times, and it would probably be possible to double the yield at very ttle expense. The writer has studied silkworm rearing at a village near be Yalong river in Szechuan; it varies little throughout the Empire, unless abject to European influence, as at Canton and Shanghai.

In spite of the height (6000 to 7000 ft.), the eggs begin to hatch at the nd of February or in early March; batching is sometimes hastened by eeping the eggs in a warm room; it lasts three or four days.

Little attention is given to the worms; they are kept on heaps of aves of mulberry (Morus alba) or "ta tchou" (Cudrania triloba), in askets or on coarse bamboo mats; these are kept in the roof, and often bove the kitchen, as the smoke from the green firewood is supposed to eep away insects.

The worms of the Kienchang district (Szechuan) moult three times: ach stage lasts about 13 days, and spinning up takes another 10 days, that the whole rearing period is 49 days. For the first two stages only udrania leaves are used; they are fed cut up small in the first stage, in tree pieces or whole in the second. The leaves are picked once a day, as no as the dew is off, and the number of meals is increased from four to

⁽¹⁾ See No. 967, B. Aug. 1913.

eight as the worms grow; in rainy weather they are not fed. It is supposed that leaves covered by the fine sand occasionally brought by the wind an fatal. The old leaves are not removed till there is a considerable accumulation of them, when the worms are picked off into baskets and then put back onto the fresh leaves.

The chief errors in the Chinese method are crowding together of the worms and not cleaning out often enough; for these reasons the worms are liable to disease. The only remedy known is to pick out the diseased ones which can be done only imperfectly owing to the size of the mats.

For spinning up, dry rape stalks or oak twigs with the dead leaves on are used. Seven days after the cocoons are finished they are placed in the sun to kill the larvae, or in dull weather they are put in an oven.

The moths emerge from the cocoons kept for egg production 12 to 15 days after the beginning of spinning; a number of females are made to lay on each of the egg papers used: these measure about 17 by 11 inches.

Cocoons. — The cocoons are divided into six groups according to shape and quality. In a normal rearing there are 15 to 20 per cent. of the first quality and 35 to 40 per cent. of the next two, some 35 per cent. being inferior and to per cent. double.

About 33 fresh or 43 dry cocoons go to a Chinese ounce (37 gms.). The yield of raw silk does not exceed 9 per cent. of the weight of the fresh cocoons and 7 $\frac{1}{2}$ per cent. is a good average; in bad years it may be only 4 to 4 $\frac{1}{2}$ per cent.

The cocoons are of four chief colours: pure white, canary yellow, golden and green. The raw silk is dull and dirty-looking.

The yield from 25 gms. of eggs may be 23 kg. in a good year, and is 18 kg. in ordinary seasons, while in France 60 kg. is often obtained.

Breeds. — Four breeds are known, all being single-brooded and with eggs in clusters:

- r. Pė-ts'an (uncoloured); two varieties, one with white legs (giving white coccons) and the other with yellow legs,
- Houa ts'an (speckled); each segment with a grey band posteriorly; legs yellow.
 Lao hou ts'an (striped green); uniform dark brown, with pale yellow weiver.
- legs; head striped with black; cocoon very full, but often green and therefore not liked.

 4. Ou ts'an; less dark than the preceding, with the same striped head; mokes

yellow.

There is also a wild silkworm (" ié ts'an"), much like the "lao hou ts'an", living on mulberry.

Diseases.—"Pébrine" occurs occasionally in a mild form, and is supposed never to occur with "flacherie"; the latter breaks out every three or four years and carries off 90 per cent. of the worms. "Muscardine" takes about 1 per cent. of the worms, and "grasserie" (which prevents their spinning) about 10 per cent. A good many of the worms pupate without spinning.

One of the worst enemies is a fly, which oviposits in the larvae; its pread is encouraged by the practice of leaving the dead worms about stead of burning them.

Mulberries. — There are four varieties: a) with dentate leaves; b) with eeply divided leaves, not so well liked by the worms; c) with leaves absent along the veins, and d) the wild mulberry with pubescent aves refused by the domestic silkworms. A trunk-rot is about the only sease seen.

FARM ENGINEERING.

7- Machines at the General Agricultural Show, Paris, 1914. — RINGELMANN, Max in Journal d'Agriculture Pratique, Vear 78, Vol. I, Nos. 11, 12, 13, 14, pp. 341-344, 371-373, 399-402, 438-439. Paris, March 12, 19, 26 and April 2, 1914. This year the number of exhibitors was 619 as against 665 in 1913,

he importance of the show, however, was not lessened and bore witness the constant improvement in the construction of agricultural machines ad implements. In this paper detailed descriptions and figures of

veral of the exhibits are given.

I. Apparatus for the mechanical tillage of the soil. — This class was presented by a large number of machines, including almost all those bich took part in the Grignon and Trappes trials of last autumn. Among e tractors, windlass and hauling tractors, motor ploughs and rotary ggers, steam lorries and steam and petrol traction engines, the most teworthy were the exhibits of the following firms: Compagnie internamale des machines agricoles de France, Bajac, G. Filtz, Stock, Bauche, riebvre, Doizy, Société de la Motoculture Française, Tourand and Deresse, Foden, Société française de materiel agricole of Vierzon, Pécardères, Lanz, de Mesmay, Case Co., Pavesi and Tolotti, Dion-Bouton, riébure, Landrin, and Amiot.

In the latest type of the DEMESMAY tractor, all four wheels are driving heels, the object of this being to diminish the compression of the soil. Its idth is only 50 inches so that it can be used in vineyards. It weighs empty out 3080 lhs. One of these machines (15 HP) took part in the intertional competition at Chassart in September 1913, when, according the general report, it ploughed 6.92 acres to a depth of 6.3 inches in

hours 57 minutes, the work being excellent.

The Case tractor (40 HP) weighs 7.26 tons when in working order; Chassart it hauled a 6-furrow gang plough and ploughed 23.34 acres a depth of 6.5 inches in 16 hours 4 minutes. It worked very regularly,

ever stopping for more than a few minutes to lubricate.

The Lephbure windlass consists of a four-wheeled chariot bearing a rtical Abeille engine (12-15 or 20-25 HP), which drives a windlass mounted 1a horizontal axis at right angles to the axles of the wheels. In ploughing, 70 of these machines are used as on the usual double-engine system. Each inclass weighs empty 5500 to 5900 lbs.

The Landrin windlass tractor carries a 45 HP engine and weig about 5.4 tons; it can travel at four different speeds, from 1.86 to 7, miles per hour. The driving wheels are provided with twelve adjustal cleats which can project up to 4.8 inches. The motor by itself procest rapidly, then stops, anchors itself and hauls in the cable also at four different speeds, from 0.9 to 3.7 miles per hour. It can wind up to 500 feet cable.

Amor's motor plough with a 40 HP Abeille engine is mounted a four-wheeled frame. The driving wheels are provided with obliq projecting cleats which are removed when travelling on roads. The plou is situated behind the motor; it is a double three-furrow Flemish gaplongh, which can be lifted by a kind of crane worked by the motor itse thus one man can drive and work the whole machine from his seat.

Pavesi and Tolotti's motor plough consists of a triangul frame on three wheels, the front one being the steering wheel and the $n_{\rm f}$ hind one the driving wheel. The latter is provided with blades which proje vertically from the lower part of the tire only, and are worked by a spec excentric. The ploughs, from one to six in number, are placed at t side of the frame between the steering and driving wheels, so that the plou beam is pushed instead of being hauled. One man seated about the mide of the frame is sufficient to drive the machine. It is built in two sizes, to 20 HP and 40 to 50 HP.

Among the ploughs exhibited in Paris, an improvement deserves be specially mentioned, viz. A. Bajac's movable equilibrium counts weight. As is well known, it is extremely fatiguing for the ploughman, who using the heavy two or three-furrow double Flemish ploughs, to turn the round at the end of the furrow, or to move them on a road or headlan In order to obviate this drawhack Bajac fit a sliding cast iron weig (176 lbs.) on to a horizontal hollow bar attached to the fore part of the plough (see figs. 1 and 2). The weight can be retained at the extremit of the bar by means of a pin. When the weight is behind the axle of the fore-carriage it increases the weight of the plough and presses it into the ground, while, when pushed to the extreme end of the har, it counterwances the weight of the plough and allows the latter to be easily handle. This principle has been applied by Bajac in several different forms; in the case of the largest ploughs the counterweight and fittings weigh as mit as 440 lbs. and the weight is shifted by a small winch.

Sowing machines and drills.— Of the numerous drills, that exhibite by O. JOERISSEN is a force feed with an obliquely fluted feed shell, varying in size according to the nature of the seed. The quantity drilled is regulate by the speed of the feeding shaft; the gearing is enclosed in a casing all may be adapted to 16 different speeds.

In the "Bahy "drill the fluting is double and parallel to the axle.

In LAVAULT'S drills the feed consists of a series of claws acting alter ately and varying in size according to the nature of the seed.

In CHARLIER FRÈRES'S drills the shoe furrow openers are replaced by two disks set at an acute angle to each other.

Potato planters are represented by the Moline machines and by those FASCIAUX; in the latter a boy seated on the planter throws the seed natoes into holes made in the ground by blades mounted on a disk relying at right angles to the axle of the wheels; by changing the gears e holes in the rows may be made at 18,20 or 22 in. apart.

Sprayers and sulphurers. - Various models were exhibited by a mber of makers, among whom V. VERMOREI, showed a very complete

Mection.

BERGES BACHASSE AND Co. showed a pack-saddle sprayer in which te two cylindrical reservoirs are fitted with a device to diminish or prevent e wave motion of the liquid in them which is so trying to the animal. consists of a series of slotted felt disks arranged parallel to the ends the reservoirs.

MIRANDE FRÈRES' sprayer is mounted on two wheels; equilibrium maintained by special harness and the whole can pass between rows vines only 3 ft. 3 in. apart.

Harvesting machines. - S. PLISSONNIER exhibited a motor mower ¡Valloton's system; it is on three wheels with a 6 to 8 HP engine; it zighs about 1980 lbs. and cuts 3 ft 3 in. to 6 ft 6 iu. according to the kind crop and the slope of the field.

The SOCIETÉ LA FRANCE exhibited a motor reaper and binder. It carries smale 3 1/2 HP engine which drives the reaping and binding apparatus, ile the team only draws the machine. Somewhat similar machines e shown also by some American firms, in which the engine is partly suprted by a small wheel.

GARNIER AND Co. exhibit a horse rake with several improvements, 10ng which is one to deaden the shock of the teeth.

Among the reapers and binders A. RIVET presented one in which e reel slats instead of being placed in planes parallel to their axis of ation are disposed helically so as to throw the grain obliquely on the atform canvas; the binding is improved by this means, especially in e case of short straw.

G. RICHOMME exhibited a combined binder and thresher which on the ole resembles a common binder, but the elevator is replaced by three ressive threshing devices through which the cereal ascends; the straw in passes onto the binder deck and the grain is elevated by a belt d poured into sacks.

There were several POTATO DIGGERS and BEET ROOT LIFTERS, among the ter one built by GUICHARD & FILS provided with an elevator that loads beets into a cart.

Motors.— A number of internal combustion motors were exhibited, ne burning paraffin, others heavy oil, naphthaline and producer gas; ong these Dubois' two stroke motor is noteworthy for the distribution ich is effected, not by valves, but by the displacement of the piston ich uncovers alternately the opening for the escape and that for the mission of compressed air into the case.

Machines for the preparation of agricultural produce for market. Several threshing machines were exhibited, each of them presenting so improved detail. There were fans and straw elevators forming part of working with threshing machines or straw balers. Among the latter Le burke-Albaret exhibited a baler which turns out bales weighing 77 to lbs., and which is arranged so as to make small bales also, not exceed 22 to 33 lbs.; and the Compagnie internationale des machines are considered as portable baler with a rapid stroke the piston and carrying a 4 HP horizontal engine on its fore-carriage.

G. BARRAULT exhibited a pulp and straw mixer for the thorough mix

of small straw and beet pulp.

Simon freezes had a motor apple-crusher, being a combination o

small engine and a crusher on the same small chariot.

For wine making there were several labour-saving machines: MABID FREERS' foulo-pompe crushes the grapes and elevates them by means c screw working in a horizontal cylinder, which, after crushing them, for them up a vertical or inclined pipe. One of these machines driven by 3 HP motor could crush and raise to a height of 50 feet from 12 to 15 to of crushed grapes per hour.

Always with a view to saving manual labour many large hydraulic a motor wine presses have been built and exhibited. In MARMONIER ET MAEH presses the hydraulic pumps are driven continuously by a motor am special device prevents the pressure exceeding a certain fixed limit.

In MARMONIER'S vertical pump a rapid displacement of 2.4 to 2.8 per minute can be obtained at first, which grows slower as the pressure creases. In MABILLE'S pump the pressure automatically rises again as 3 as it has sunk owing to the flow of a certain quantity of must.

Other machines and implements. — Among pumps one exhibited C. Duquenne for deep wells or borings is distinguished by a descend column of water under pressure playing the part of piston to apparatus situated at the bottom of the well called an aspirator. Given exhibited an apparatus, connected with a small clock, which, on being will automatically discharge into a manger a previously prepared ration fodder when the given hour is reached.

558 - Motor Ploughing Competition of the North Kent Agricultural Association. The Implement and Machinery Review, Vol. XXXIX, No. 464, pp. 1089-1 London, December 1, 1913.

On November 5, 1913, a motor ploughing competition was held the North Kent Agricultural Association at Farningham, at which following four machines competed, the prize offered being a gold me

Saunderson's « Universal » Model G, 18 to 20 H. P. agricultural motor and a Hor 3-furrow B. Z. plough,

The Ideal Agricultural Motors Co's a Ideal a agricultural motor and a Howard 4 fr.

The . Stock . self-contained 6-furrow motor plough.

The « Ivel » old pattern 20 H. P. agricultural motor with a Cockshutt « Kid Kangar. 3-farrow plough.

To each machine a portion of land in the same field was allotted. be land was substantially of identical character throughout the four orions. The depth of the ploughing was in all cases approximately inches and the quality of the work was fair. The consumption of fuel fier running two hours was measured.

In making their award the judges made the question of first cost and conomy of working an important factor. The other points on which the idging was based were: Acreage ploughed in a given time, quality and epth of work, weight on the land, fuel and oil consumption, ease of transort, simplicity of design and strength, accessibility and facility of repair, daptability to other farm uses and ease of handling. For each point arks were awarded on a variable scale according to its relative importance. Full consideration was also given to interest on capital, depreciation, aintenance and repairs. In the results the points awarded were as flows:

u Universal »				•	٠	٠	•	357	« Stock »	276
« Ideal »	•	•	,		•	•		294	« Ivel » . ·	

The following table gives the principal results obtained at the trial:

	• Universal •	· Ideal »	• Stock •	• Ivel »
Price	£ 267	£ 650	£ 1 050	£ 365
res ploughed in 2 hours	1	1	2 1/4	3/4
(paraffin .	44 pints	-		36 pints
el consumed petrol	2)	52 pints		5 .
benzol .	_	-	68 pints	_
st per day	£1 18s od	£2 125 0d	£ 5 6s 4d	£ 2 05 8d
st per acre	4s 9d	6s 6d	55 104	7s 8d

^{9 -} New Hand Drills (1). - Von Rümker in Deutsthe Landwirtschaftliche Presse, Yeat XXXXI, No. 33, p. 409 + 1 sig. Berlin, April 25, 1914.

The writer points out the advantages of two hand drills (for one and vo rows) and one machine for sowing single grains in holes, built by him id by H. Leidner.

The advantages of the drills consist in their continuous work, in heir easy management and their suitableness for all seeds and methods sowing. They allow a very uniform distribution of seed, even with hall quantities per unit of surface; they do not crush or otherwise injure he seed and they can be instantly emptied by tilting over. The two-

row machine allows of the rows being from 3 ¼ to 16 inches apart and is so constructed that the seed can flow into only one funnel if so required. The field to be sown does not require any other preparation than that which is usual for team-hauled drills, nor is any harrowing required after drilling.

The marker is especially suitable where grains have to be sown singly With three or four assistants upwards of 50 000 seeds can be sown per day

These machines will be found especially useful in plant-breeding establishments, in gardening and forestry, and in scientific institutions where varieties are tested, and in general in all cases in which continuous and perfect seeding is required. The prices of the machines are the following: - One-row drill £5 8s, the two-row drill £7 7s, and the marker a single-grain seeder £9 16s.

560 - Fletcher and Becker's Fruit Grader. — The Implement and Machinery Rain Vol. XXXIX, No. 464, p. 1072. London, December 1, 1913.

The grading of fruits by machinery ensures a more rapid and unifor separation than when this work is done by hand, but some machine grader are liable to damage delicate fruit. With this new grader (see fig. 3, facing p. 808), however, bruising seems to be impossible. Apples, tomatoes, goose berries and similar fruit can be separated into four grades at the rate of two bushels a minute and cleaned at the same time.

Each grading surface is composed of indiarubber belting, in whice suitable sized holes are punched, laced round two rollers, and three surface units at varying heights form the bottom of the main trough of the machine. Any of these belts can be quickly removed and replaced by others having smaller or larger holes. The rollers carrying the belts are driven by chain and sprocket gearing actuated by the operator, who stands at the hoppy and of the machine.

The fruit as it is carried along by each belt comes into contact wit suspended cleaning brushes, which also help the separation, the smalle size falling upon the first packing table and the largest passing out: the far end of the machine.

The packing tables are made of canvas and held in strong woods framing; their height may be easily regulated.

561 - "Germania" Potato Esicator with Oil Heating. — Maschinen-Zeitung, Vesti No. 4, p. 45. Berlin, February 15, 1914.

The Association of German Potato Dryers recently tested the two cylinder potato esiccator "Germania" at the potato flake factory at Löbminear Cöthen. According to Prof. Parow's report! the trial was very

satisfactory.

The special character of this esiccator is that the cylinders are in heated by steam but by oil at a temperature of 250° C. (482° F.), heated in special boiler, and then pumped into the cylinders. The work is quite from danger, as the ignition point of the oil is 340° C. (734° F.) and neith the boiler nor the pipes have to bear any pressure. The return of the to the boiler is also very simple.

The whole plant, without woodwork and masonry, costs about £80

About £40 worth of oil is required.

62 - The Manufacture of Agricultural Machines and Implements in Russia in 1911. — Landwirtschaftliche Maschinen u. Geräle, Year 14, No. 13, pp. 15-22 and 40. Artern, Prov. of Saxony, March 28, 1914.

In 1912 the statistical division of the Bureau for Agricultural Machinery f St. Petersburg, considering it necessary to know the present state of he manufacture of agricultural machiness and implements in Russia, ellected material by enquiries addressed to manufacturers, to factory and nland Revenue inspectors, to the Customs Department and to others, and as now published a book on the subject under the title: "The manufacture f agricultural machines and implements in 1911 and their importation to Russia."

In spite of the great competition of foreign countries, the machine dustry has developed of late years to such an extent that in 1911 it as in a position to place on the home market £6 502 400 worth of mahines and implements, the output of factories, small workshops and rivate artisans being included in this sum. According to the enquiry, bout 820 factories build agricultural machinery; of these 665 are situated 1 European Russia, 110 in Poland, 37 in the Caucasus and 8 in Siberia. heir total output amounted in 1911 to £5 320 017. Table I shows 12 number of factories and the value of the machines built by them.

From this table it will be seen that the agricultural machine industry most developed in South Russia, in the so-called New Russia and in the forthern regions. This is due, on the one hand, to the facilities for providing the raw material, iron and steel, and on the other to the demand for approved equipment in those districts.

The above sum of £5320 or7 is distributed among the various groups I machines as follows:

TABLE II.

٠	٠	•	٠	•	٠	•	•	•	•	٠	•	٠	٠

Tillage implements	954 530
Sowing machines	804 500
Harvesting machines	1 312 321
Threshing machines	713 360
Cleaning and grading machines	239 796
Machines for preparing fodder	146 225
Gins and transmissions	298 053
Power motors,	324 062
Other machines and implements and duplicate parts	527 170
	£5 320 017

Among the tillage implements, ploughs represent, about three-fourths f the total value. They are built in almost every "government", but specially in Southern Russia, where they were already manufactured na large scale in the seventies of last century. The total number of ploughs wilt in Russia in 1911 may be set down at 650 000. The exact number nd value of machines and implements constructed by private artisans

TABLE I.

TABLE 1.		
Territories and "governments"	Number of works	Value of otuput
Central agricultural territory: Kursk, Orel, Rjasan, Tambov, Tula, Voronesh	73	341 825
Middle Volga: Saratov, Simbirsk, Pensa, Nijni-Novgorod, Kasan, Ufa .	63	169 168
Lower Volga: Samara, Orenburg, Astrakhan	9	19 243
New Russia: Bessarabia, Kherson, Taurida, Yeka terinoslav, Don province	157	2 876 913
South west: Kiev, Podolia, Volhynia	68	170 860
Little Russia; Kharkov, Poltava, Chernigov	40	436 242
Industrial district: Vladimir, Moscow, Kaluga, Tver, Yaroslav, Kostroma	48	328 715
White Russia: Minsk, Moghilev, Vitebsk, Smolensk	47	47 050
Lithuania: Vilna, Koyno, Grodno	11	48 953
Lake district: Pskow, St Petersburg, Novgorod, Olonets	9	
Baltic provinces: Livonia, Courland, Esthonia	39	286 634
Urals:		
Vyatka, Perm	100	94 945
Vologda, Arkhangelsk	1	
In 50 governments of European Russia	665	4 831 121
Poland:		
Warsaw, Kalisz, Kielce, Lomza, Lublin, Pietrkow, Plock, Radom, Siedlee, Suwalki	110	437 088
Caucasus: Kuban, Stavropol, Terek, Tiflis, Erlvan	37	43 455
Siberia: Tobolsk, Tomsk, Amur prov., Lake district	8	8 353
The whole of Russia	820	5 320 017

cannot be easily determined; still, from enquiries made, their value may be estimated at about 2740 000. Besides this, a number of factoris

nd workshops mount and repair agricultural machines, for, which they so make a certain number of duplicate parts. The value of this kind swork may be estimated at about £444 066.

The grand total of the output of the Russian factories and workshops therefore about £6 502 400. But this is insufficient to meet the demands f the Russian farmers, who still import large quantities of agricultural achinery from abroad. According to the Customs returns in 1911 about 7119 124 worth of foreign machines and implements were imported and 1912 about £6 540 881. Among the imports of 1911, reapers, hay tedders and horse rakes figure for £2 524 621, threshing machines for £610 907 and scythes, sickles and forks for £264 325.

The consumption of agricultural machines has risen during the last 1, to 35 years from £845 840 to £12 581 870. In order to promote ill further the use of good agricultural machines and implements, about 70 years ago the Russian Ministry of Agriculture set aside an area of 14 acres, near the agricultural school of Eugenfeld, for the establishment a permament station for testing such machines. They are selected for ial by a special Burean in St. Petersburg, which applies directly to reign firms whose machines it wishes to test and informs them of the ndition of the trials. This season most of the tests will deal with tillage achines: tractors, steam ploughs, etc.

3 - The Trade in Agricultural Machines in France. - Coupan, G. in La Vie Agricule et Rurale, Year 3, No. 18, p. 469. Paris, April 4, 1914.

There being no available statistics as to the quantities of agricultural achines and implements made in France, an idea of the development this industry can only be formed from the statistics of the imports dexports. The annexed diagram shows the rapid increase of the imports are 1895 and the slow rise of the exports.

By far the greatest quantity of agricultural machines and implements ported into France come from the United States, namely from 55 per nt. in 1895 to 69 per cent. in 1912. The next most important country this connection is the United Kingdom (37 per cent. in 1895 to 10 per nt. in 1912) followed by Germany, from 5 per cent. in 1895 to 10.5 per nt. in 1912.) As for the kinds of machine imported, mowers, reapers id binders occupy the first place. During the first 10 months of 1912 id of 1913 they amounted to about 70 per cent. of the total imports.

French machines are exported to many countries, chiefly however the French colonies and protectorates.

(1) r million kilos = 2 204 620 lbs.
(2) r million francs = \$39 648 r65 8d.

564 - Imports and Exports of Agricultural Machines and Implements into out of Germany in 1913. — Maschinen-Zeitung, Year 12, No. 4, p. 42. I February 15, 1914.

Exports

The following table shows the numbers and value of the most important agricultural machines imported into and exported from Germany di

the year 1013:

	Imports		Exports	
	No.	Value £	No.	Val £
Threshing machines	526		20 189	44
fron ploughs	5 362	_	292 610	65
Ploughs for power motors	268		326	-
Mowers and reapers	50 638	1 176 468	6 508	-
Milk separators	33 055	133 803	45 892	ΙĊ
and sugar, lime, clay and cement	_	24 510	_	1 8t
Other agricultural machines		133 803	-	1 5t

- Review of Patents

Tillage machines and implements, 64 488. Toothed wheel gear for Internal combustion ploughing machine. ria, 64 489. Spur wheel for steam plough traction engines, motor ploughs and the like. 64 821. Hoeing apparatus, 262 502. Plough mouldboard with rollers and conveyers. i1110.

464 667. One-way plough with metal beam. œ,

456 191. Motor plongh.

464 058, Motor tractor plough.

464 232. Attachment for motor ploughs and the like.

463 000. Double gang plough in which the turning, fixing and adjusting is done automatically by the team.

463 oor. Motor plough,

272 006. Apparatus for driving agricultural machines by electric power. many.

272 050. Hoe for agricultural motors.

272 204. Driving wheel for motor ploughs in which skidding is prevented by radially moveable spuds worked by an excentric.

272 538. Hoeing machine. 272 539. Hand tilling implement.

272 540. Device for simultaneous and uniform raising and lowering of plough shares in motor ploughs with revolving beam.

61 852. Plough drawn by electric power. mgaty,

61 947. Tilling machine,

62 053. Motor ploughing apparatus.

62 192. Hoeing machine.

130 979. Ploughing machine.

132 899. Improvement in harrows.

134 585. Improved coulter for ploughs.

135 964. New non-skidding wheel for ploughing and other agricultural machines.

137 552. Cultivator.

63 482. Device for adjusting the gage of plough wheels while working. izerland,

63 484. Tilling implement.

63 761. Apparatus for machine tilling.

63 762. Tilling machine with motor driven implement shaft.

26 343. Flexible arms for agricultural implements. ited Kingdom,

26 500. Plonghs.

26 593. Cultivating apparatus.

1 087 620. Motor driven device for tilling the soil. ited States,

1 088 788, Folding harrow.

r 089 072. Disk furrow opener.

1 089 325. Soil pulverizer.

1 1189 351. Automatic hoe.

Manure distributors.

463 128. Spreading device for manure distributor.

many,

272 051. Manute distributor with roller.

ngary,

ace,

ily.

62 014. Manure spreader. ited Kingdom, 25 773. Manure and seed drills.

1 ago 293. Fertilizer distributor. ted States,

1 090 356. Fertilizer distributor.

Drills and sowing machines.

Austria.

65 008. Furrow opener for drills.

France,

462 978. Machine for making holes in the ground in which to plan potatoes.

464 584. Portable sowing apparatus.

Hungary,

61 803. Potato planting machine. 61 937. Drill and manure spreader.

Italy,

136 008, Rotary sowing machine.

138 540. Apparatus on wheels for thick sowing.

Switzerland,

63 485. Sowing and manure spreading machine.

United Kingdom,

25 700. Seed drills.

United States,

1 087 211. Combined seed planter and manure distributor.

1 087 319. Seeder and cultivator tooth.

1 089 458. Corn planter.

1 089 893. Corn planter attachment.

Reapers, mowers, etc.

Austria, France,

64 620. Motor mower.

463 666. Side delivery take.

463 624. Lawn mower.

463 805. Motor chassis for mowers, reapers and binders of all systems.

463 398. Mowers with fore-carriage.

464 454. Improvements in side-delivery rakes.

Hungary,

61 872. Hand reaper.

Italy,

134 347. Sheaf opener. 134 603. Motor mower.

135 120. Mower, reaper and motor car with reversible motion.

United States,

1 087 455. Corn harvester. 1 090 029. Attachment for binders.

1 090 246. Motor harvester.

1 090 371. Corn gatherer and husker.

1 090 747. Tobacco harvester.

Machines for lifting root crops.

Belgium,

262 745. Improvements in topping and lifting machines for bectand oil

roots planted in rows.

France,

463 631. Machine for topping and lifting beets and similar roots.

463 836. Machine for topping and lifting beets and similar roots. 464 022. Beetroot lifter

Hungary,

61 716. Potato lifting machine.

61 927. Delivery wheel for potato lifter.

62 007. Two-rowed beet lifter.

Italy,

135 987. Potato lifting machine.

Threshing and winnowing machines.

262 695. Shaker for threshing machine.

Belgium, France.

464 634. Sheaf elevator.

Hungary,

62 130. Cereal cleaner.

62 248. Grain sieve.

Italy, Switzerland, 136 041. Threshing and husking machine for wh.....

63 487. Apparatus for separating stones and earth from cereals. 26 055. Threshing machines.

United Kingdom,

26 433. Separating wild oats from wheat etc.

United States,

1 087 338. Corn husking machine

Pig & - Fletcher and Becker's truit grader (see No. 560).


```
Other agricultural machines and implements.
                  64 616. Groat mill.
usiria,
                  65 010. Drainage and ditching machine.
                 462 938. Milking machine.
                 463 049. Apparatus for milking cows.
                 463 625. Attachment for churns for getting rid of the butter milk.
                 463 846. Improved sharpener for the knives of chaff cutters and similar
                              machines.
                 463 851. Apparatus for charging compressed air sprayers.
                 463 895. Device for unfastening animals in stables.
                 464 205. Apparatus for protecting crops from frost.
                 465 30r. Cone-shaped attackment for nozzles of sprayers.
                 272 026. Motor straw elevator.
Germany,
                272 202. Apparatus for singling plants sown in rows.
                 272 205. Ditching plough.
                  62 046. Beet pulp press.
Hungary,
                  62 130. Cereal cleaner.
                  130 970. Esiccators for rice, maize, pomace, etc.
Italy,
                 131 908. Spherical elastic valve for horizontal tube of sprayers.
                  134 451. Improved sulphurer.
                  135 549. Floating weeding machine.
                  r35 964. Apparatus for driving automatically any sprayer mounted on
                              wheels.
                  136 215. Portable continuous action hydraulic press.
                   65 489. Device for introducing honeycomb frames into or removing
  iterfand.
                              them from hives.
                   63 517. Process for freeing peat from water,
                   63 565. Apparatus for extracting the juice of fruit by means of steam,
                   63 759. Centrifugal separator.
                   63 764. Straw baler.
                   63 767. Apparatus for the destruction of pests such as flies, by means
                              of electricity.
                   64 646. Machine and process for the preparation of farmyard manure.
                  64 702,4. Apparatus for grading and cleaning grain groats, grain, etc.,
                              hy means of statical electricity.
                   64 705. Process and apparatus for the dry preservation of eggs.
                   25 000. Cow milkers.
  aited Kingdom,
                    25 641. Spraying nozzles.
                    25 767. Butter churn, grinder and worker.
                    26 032. Machine for treating oil palm fruits.
                 26 065. Sharpener for knives of chaff cutter.
                    26 322. Driving gear for chaif cutters.
                    26 446. Instrument for tapping rubber trees.
```

166. - The Shower-Bath System of Sheep Dipping. — The Implement and Machinery Review, Vol. XXXIX, No. 468, p. 1660. London, April 128, 1914.

1 090 709. Machine for heading Kafir corn.

1 087 309. Flax puller.

hited States.

The accompanying illustration shows the new shower bath system of sheep dipping, which appears to be finding favour in Queensland. It consists of a shed 40 ft. long by 12 ft. wide, the roof of which is of flat, perforated iron sheets. The dip is pumped by a 3 in. centrifugal pump

from a tank to the roof and falls through the perforations on to the $_{20i}$ sheep beneath, the shower lasting about seven minutes. The roof edge are turned up to prevent the dip running off and the sides of the shed $_{35}$ hole enclosed to obviate the blowing about of the dip. There are about $_{35}$ hole to the square foot.

This method is proving entirely satisfactory, the cost in one case $bein_1$ stated to be $\frac{1}{2}d$ per head. One thousand sheep per hour can be dipper without undue haste by four men.

RURAL ECONOMICS.

567 - The Economic Importance of Beet Growing. - SAGAWE, B. in Archiv fur. exakte Wissenschaftsforschung, Vol. 6, Part I, pp. 157-209. Jena, 1914.

The writer examines and discusses the importance of beet growing and investigates the soundness of the frequently recommended principle "extensiv organisieren und intensiv kultivieren" (cultivate intensively in extensive farming) which tends to increase the growing of forage plants at the expense of beets.

He mentions first the results of some investigations into the labour required for growing beets by WATERSTRADE, WERNER, DETTWELLER and LANGENBECK, wherein it is shown without exception, that the amount of labour in a farm increases with the proportion of the land under beets. On the other hand the results do not agree as to the difference of the amount of labour required in the most intensive and the most extensive farms. Before diminishing the acreage of beets in favour of forage crops in order to overcome the difficulty of procuring labur, it is necessary to have a clear idea of the consequences of such a change and of the other economic factors involved in beet growing, such as its profitableness, its value as a source of forage and its effect upon the utilization of labour.

All investigations made up to the present have shown that beet growing is one of the most important elements of profits of farms in arable districts. In part 180 of the Arbeilen der Deutschen Landwirtschafts-Gesellschaft (Transactions of the German Agricultural Association) Langenberg examined the effect of the acreage of root crops on farming conditions in 42 farms and came to the conclusion that the increase of root crops leads to the increase of live stock, to the increase of the value of the dead stock, to the increase of the outlay on artificials, concentrated foods, and salaries and to the increase of the returns from animal and vegetable products, of the net returns and of the capital invested. Part 214 of the Arbeiten der D. L. G. dealing with farming in Silesia, as well as some previous work of the present writer on the profitableness of root crops (1), lead to the same results. The statististics of the Silesian Chamber of Agriculture show that when the farms are arranged according to the percentage of their area devoted to beets the same conclusion is reached. (Table 1).

TABLE I.

Root crops per cent of area	Total value per acre	Gross returns per sere	Outlay per scre	Net returns per acre	Interest per cent
	£sd	£sd	£sd	£sd	
1910-1911	j	1	•		
ler 15	33 2 6	4 14 5	4 I7 I	5 2	0,8
20 . ,	40 13 4	6 1 5	5 3 7	1 1 0	2.6
25	43 8 11	7 4 5	5 17 5	I 12 6	3.7
30	47 7 11	9 7 8	7 0 I	2 II 2	5.2
ove 30	37 18 8	12 10 5	994	3 2 8	5.5
1909-1910					
der 15	44 16 8	5 4 0	5 5 1	15 6	1.7
20	34 14 4	4 7 11	14 14 4	1 3 10	3.4
25	14 17 4	7 1 7	5 14 4	I 14 6	4,2
ove 25	51 19 6	10 6 8	8 10 7	2 16 8	5.5
1908-1909					3.3
nder 15	45 12 6	5 9 1	5 0 0	7 11	0,0
-20	37 9 11	5 15 6	5 5 6	17 1	2,3
25	38 12 11	6 19 4	5 15 6	1 7 0	3.5
bove 25	50 11 7	9 16 10	7 13 11	2 11 7	5.0

In their work on the returns of Moravian peasant farms (Ertragsfähigst der mährischen Bauernbetriebe, Brünn 1911) HOWARD and OSTERMAVER ome to the same conclusion: that the rate of interest yielded by the capital wested depends directly upon the acreage of the root crops.

The question of the consequences of substituting forage for beet crops 1 only be correctly solved by a careful comparison of the amount of age produced by the two crops. The writer makes this comparison, calcuing the cost of the forage supplied by both according to their technical value, and using the values of Howard and Ostermayer for the purse. He assumes the leaves of beetroots to be one third of the crop, that e ratio of grain to straw is 1:2 in wheat and rye, 1:1.5 in oats and 1.33 in barley, and finds that the cost of production of one hundweight of food units is as follows:

	According to Howard	According to Ostermayer
	s d	s d
Winter wheat	6 10	7 5
Winter rye	7 1	8 o
Barley	6 8	6 7
Oats	7 6	7 4
Beets!	4 4	3 8
Mangolds		8 to
Potatoes	7 11	9 2
Clover hay		4 8
Meadow hay		4 10

According to the above, beets produce the cheapest food units, cheape than meadows and clover leys. But the question arises whether beets shoul be compared to hay or rather to fresh clover and grass, as in making ha a considerable loss of food units takes place and the cost of production increases. But as it is generally impossible to feed all the clover and meadon grass in its fresh condition, the writer is of opinion that the comparison beets and forage plants should not he made between the former and hay, no between the beets and the green food, but between the food value of pay green food, part hay on the one hand and of beet leaves in the state; which they are utilized on the other. Not the quantity at the time of the harvest but the available quantity in the condition in which it is fer should be calculated, because a certain loss of food units takes place durin the storage of roots and leaves. On this plan, the writer has calculated the cost of production of forage, in the state in which it is fed, from twelv yearly accounts of several Silesian farms in different years, and determine the price of one hundredweight of food units in:

		-
Clover	3	o
Lucerne	3	2
Bects	4	. 4
Meadow grass	4	9
Mangolds	•	10
Potatoes	7	10 1/2

from which it appears that the food unit in beets is dearer than clover and lucerne, but cheaper than that of meadow grass.

The exclusive consideration of market prices leads to erroneous cond sions, as does the neglect of the unmarketable products produced on a far for the farm itself must be considered as the market. The valuation of physiologico-economical basis (1) is also erroneous, because by this method the price of the starch unit delivered at the farm is taken as basis, and the unmarketable products are given a value plus cost of carriage, with the marketable ones get a value minus the same. But apart from this is a mistake to make the starch unit the basis of the price of foods while are not sold in the condition in which they are fed, for this way of value though correct from the physiological point of view, is unsound from the economic point of view, because the unmarketable field products can on be made marketable by means of live stock.

The profitableness of beet growing is much influenced by the valuation its by-products. If beet leaves could be sold on the market, their value on the farm would be the market price minus cost of carriage. If, the fore, their value is to be calculated from the market prices of the market able foods, from every hundredweight of the farm forage the cost of traport per cwt. of marketable food must be deducted; the actual cost of criage of the marketable food must not be set off against the total quantities.

mmarketable produce. But for beet leaves it does not seem advisable the marketable foods as basis of their valuation, on account of the pendance of beet growing and live stock for the production of stable and forage. Beet leaves must therefore be sold to the live stock rice which leaves a margin of profit for the beet account. This inliate value of farm bye products varies according to food units, or er unit in marketable foods minus the cost of carriage per hundredand the minimum value or manurial value plus cost of storage. he writer then discusses the intimate connection between live stock eet growing for the utilization of farmyard manure, and shows that his point of view also a substitution of forage crops for beet would be lent to buying dearer forage and getting a lower value for the farmnanure, and would result in a decrease rather than an increase in the from the live stock and consequently from the whole farm, provided he growing of beets had not yet exceeded its most profitable limits. With the increased acreage of beet, the utilization of labour improves. riter proves this by classifying the farms which send their books to ok-keeping office of the Silesian Chamber of Agriculture according to reage devoted to beets, and calculates the ratio of outlay on labour ss returns (Table II).

TABLE II. - Wages in percentage of gross returns.

	Acreage in root crops				
Aest	less than 15 %	15-20 %	20-25 %	25-30 %	above 30 %
1	39	35	31	28	26
0	41	36	32	27	23
9	35	36	18	27	бо
Average	38	36	31	27	23

The larger the relative acreage of root crops the smaller the outlay on required for the same gross returns. This result is due to the well a fact that with increasing intensity of farming labour diminishes in no to the capital invested. The higher absolute outlay on labour is ed by the increasing profits of the farms, the means of which for the years amount to 1.1, 2.8, 3.8, and 5.2 per cent. respectively for the our groups.

he same results are obtained from farms under the book-keeping conthe D. I.. G. using LANGENBECK'S and OSTERMAYER'S figures. In order we that these results are not due to the improvement in the quality soil and in the economical conditions of the beet farms rather to the increase of root crops, the writer shows that by grouping the according to their increasing total value, the amount of labour emd in the D. I.. G. farms shows no difference, that the figures of the in farms show an increase in the amount of labour employed but

that the increase is quite insufficient to account for the fall of the with the increased acreage of root crops. •

The statement that beet growing is often pushed beyond it profitable limits is not confirmed by the results of the accounts, which that the interest on the capital invested still gives an increase wh root crops attain upwards of 35 per cent of the total acreage, notwith ing the fact that the proportion of net returns to gross returns factor "value according to returns" (Ertragswert) appears to rea highest limit with about 30 per cent. of the total acreage under 10 order to determine the optimum limit of any crop which has reach ultimate profitable limit of outlay, it is not enough to consider on absolute value of the net returns or the ratio of outlay to gross n but rather the rise or fall of the rate of interest on the total c The figures calculated on these lines for the D. L. G. farms show that crops reach the optimum limit of profitableness and in the use of at about 60 per cent., while root crops attain this same limit at 30 per cent. with regard to the use of labour but not with regard highest rate of interest. It follows that such districts as do not especially suitable to extensive forage crops on account of their p and natural conditions should only devote a relatively small perc of their area to these crops.

568 - The Consumption of Artificial Manures in Intensive Agriculture. - H in Landwirtschaftliche Zeitschrift für die Rheinprovinz, Year 15, No. 16, pp. Bonn, April 17, 1914.

One of the most valuable means of judging the degree of in of the cultivation of a farm is a knowledge of the kind and amount artificials used on it; thus the average outlay on artificials in the year 1 on 36 farms in the Russian Baltic provinces was $28\,6d$ per acre of cult land, on 145 farms in East Prussia $78\,4d$, and on 18 intensive in the Rhine province £1 $58\,4d$ per acre. These figures afford a better of the degree of intensity than any other item of expenditure.

In the total outlay for the Rhine province, nitrate of soda a phate of ammonia amount to 6s 5d, "Ammoniaksuperphosphat" (ture of superphosphate and sulphate of ammonia) to 12s 10d, supe phate and basic slag to 2s 4d, potash salts and kainit to 2s 5d, and to 1s 4d. If these figures be classed according to the percentage various elemental plant nutrients, it will be found that nitrogen repalout 60 per cent., phosphoric acid 25 per cent. and potash an each 15 per cent.

The two principal sources of nitrogen are farmyard manusartificials. The question of the best proportion in which these two be used is of great importance with regard to the profitableness of the farm. As the number of live stock kept increases, the necessity of sing nitrogen in the form of artificials decreases, as is shown in the 18 land farms which are divided into two groups according to the a of live stock kept, with the following results (Table I):

•	1	Live	stock alne		Outles	for artif	icials per	sere	
Groups	Number of farm	Total	Cattle	Total	Nitrate of sods		Superphos- phate and basic sing	Potash and keinit	Lime
	Ž	1£ s 6	1 £ 5	d £ s d	Esd	E s d	£sd	£sd	£ 8 4
ĭ	9							1 0 111	
ı î	9	F 10	5 2 11 1	12 1 9] 7 [0 7 1	0 14 1	1 0 2 1	1 0 2 1	2 0 1

The outlay on artificials is much greater in group II than in group I nd especially is this the case for nitrogen. The gross and net returns are ry similar in both groups, as the difference in the amount of live stock it is not large. If, however, farms are taken where the difference is greater, e influence of the live stock on the amount of fertilizers purchased, pecially of nitrogen, as well as on the profitableness of the farm is more ident. The writer has taken from the Arbeiten der Deutschen Landwirtsujis Gesellschaft, Part 130, the figures relating to 20 sugar-beet farms in arony, 10 of which keep much live stock and the other 10 only a limited antity, other conditions being equal. It appears that the first group, hich keeps 31.56 units of live stock per 100 acres buys 337 lbs. per acre uitrate of soda and sulphate of ammonia annually, while the second oup, which keeps only 12.54 units per 100 acres, consumes every year 1 lbs. per acre. The consumption of «Ammoniaksuperphosphat» is approxtely equal, viz. 301 lbs. per acre in the first group and 298 lbs. in the and. The net returns are £4 48 11d per acre in the first group and 128 5d in the second. The above figures prove clearly that the net proare connected with the quantity of live stock kept on the farm and crease with it. The writer is therefore of opinion that in every farm here large quantities of nitrogenous fertilizers are bought regularly, should be ascertained whether the amount of live stock could not be creased and the amount of purchased fertilizers correspondingly deeased.

AGRICULTURAL INDUSTRIES.

- Determination of the Viscosity of Milk as a Means of Detecting the Adlition of Water. — Kooper, W. D. (Communication from the Laboratory of Graner Co. Lev., Leipzig) in Milkswiftschaftlickes Zentralbiat, Year 43, Part 7, pp. 169-179 and Part 8, pp. 201-208. Hanover, April 2 and 15, 1914.

The writer examined 50 different mixed milks, with the object of intigating the question of utilizing the viscosity of milk as a means of ecting the addition of water. The fat content and specific gravity were determined at the same time by the Gerber and lactometer tests $r_{\rm es}$ pectively, and the total dry matter was calculated from these value by Fleischmann's formula. The viscosity was determined by means of specially constructed burette-shaped apparatus. This was first filler with distilled water, then with milk; for both, the time required for $t_{\rm h}$ outflow of 10 cc. was observed.

Viscosity constant,
$$V = \frac{\text{outflow of milk, time in seconds}}{\text{outflow of water, time in seconds}}$$

In order to get comparable results, the tests must be carried out a uniform temperature, differences of 0.50 C. (0.90 F.) having a perceptible effect, and the bore of the outlet must be adjusted so that the outflow be neither too fast nor too slow. The milk must be thoroughly well mixed before being poured into the burette, without subjecting it to too violent shaking which might cause a change in the natural viscosity of the liquid The time required for the outflow must be determined with precision be within one-fifth of a second.

A high viscosity constant is usually associated with a high fat content but the rule is not infallible, nor is the ratio of the specific gravity to viscosity constant more reliable. On dividing the average viscosity constant [1.588] by the average dry matter of the milk (11.472 per cent.), the facto 0.1384 was obtained, and if there be any constant relationship whateve between viscosity and dry matter content, the dry matter of any on sample (or T) should be given by the formula:

$$\frac{V}{0.1384} = T$$

On comparing values thus obtained with those obtained by using the Fleischmann formula for the 50 samples investigated, it appeared that the greatest divergence between the two methods amounted in one cast to 0.36 per cent. All the other samples showed smaller differences, so that the writer concluded that a direct relationship existed between variations in the viscosity and the dry matter content of milk.

In using the viscosity constant for detecting the addition of water to milk, experiments showed that under certain conditions watered milk can yield the same viscosity constant as unadulterated milk, in which case the value obtained for T is too high; the greater the amount of water added to the milk the greater is the difference between the real and calculated value for dry matter, owing to the fact that the watering causes the amount of dry matter to diminish more rapidly than the viscosity constant. If a milk for instance with II.472 per cent. of dry matter and a viscosity constant of 1.588 be mixed with an equal quantity of water, the percentage of dry matter would be reduced to $\frac{\text{II.472}}{2} = 5.736; \text{ but}$ the viscosity constant would only be reduced to about $\frac{\text{II.588} + \text{I}}{2} = 1.294$ From this:

$$T = \frac{V}{0.1384} = \frac{1.294}{0.1384} = 9.349 \text{ per cent.};$$

 $_{\rm id}$ is, the difference between the real and calculated values for the dry after would be :

The difference between the amounts of dry matter determined by e two methods therefore affords an easy and rapid way of ascertaining bether milk has been watered, and if so to what extent. The writer remmends that the question be further investigated.

0 - Biorized Milk (1). — Klunker, chief physician to the Institute of Hygiene at the University of Jena, in *Molkerei Zeitung*, Year 28, No. 33, pp. 625-626, No. 34, pp. 639-640. Hildesheim, April 29, May 1, 1914.

The above paper is a preliminary communication of an investigan of LOBECK'S milk sterilization process, carried out at the Institute Hygiene, University of Jena, with an experimental apparatus capable treating 2.64 gallons per hour. Samples of biorized milk from Leipzig, emnitz and Düsseldorf, where the process is in use, were sent for comparn, and the results obtained are as follows:

- The whole apparatus is easy to handle, to dismount, to clean d to disinfect. The daily initial loss of milk is very small.
- 2. The biorized milk (called by LOBECK "enzyme-milk") is equal colour, appearance, smell and taste to the best raw milk.
- 3. This milk is somewhat less easily skimmed than raw milk, but the temperatures employed, viz. 131 and 135° F., the difference is so all that it would be imperceptible to consumers. Equally good relts can only be obtained with heated milk if the temperature be kept low 113° F. and the heating be continued for half an hour; no milk steurized in any other way approaches biorized milk in this respect.
- 4. The original enzymes (oxydases) of natural milk are not influced by biorization; the milk proteins undergo no change. On the other and coagulation proceeds more slowly but is not weakened.
- 5. Biorization causes such a decrease in the germ content that the eping quality of the milk is more than doubled. As moreover the heat
 \(\) to 131 and 135 \circ F. does not destroy the lactic acid producers, there no danger that the milk will be spoiled while on sale by the prevalence spore-forming bacilli. Biorized milk can therefore compete with fresh, anly milked raw milk as food for babies.
- 6. Disease-producing germs, such as typhus, paratyphus, diarrhoea, elera and diphtheria bacilli, are destroyed with absolute certainty. The struction of the tubercle bacilli is less certain, but experiments seem indicate that they do not resist the treatment.

The new process would appear to mark a distinct forward step towards pplying a hygienic, wholesome milk to the public.

571 - The Effect of Certain Dairy Operations upon the Germ Content of Milk. HARDING, H. A., RUEHLE, J. K. etc., New York Agricultural Experiment Station, Bulletin No. 365, pp. 197-233. Geneva, N. Y., August 1913.

Bacterial counts were made in milk samples produced under various conditions of hand-milking. Neither plastering nor whitewashing the byre, nor clipping the udder and flank of the cows, nor the use of a vacuum machine for cleaning the cows preparatory to milking, seemed to have any effect on reducing the bacterial content of the milk; in fact the opposite effect was usually observed. A series of tests carried out on samples drawn from the milking pail, from the cooler, and after final straining, indicated that the germ content of the milk was not increased by the handling it received on the farm subsequently to the milking operation.

572 - The Origin of Some of the Streptococci Found in Milk. - ROGERS, L. and DAHLBERG, A. O. (Burcau of Animal Industry) in Journal of Arricultus Research, Vol. I, No. 6, pp. 491-511. Washington, D. C., March 1914.

A collection of cultures of streptococci was made, of which 42 wei isolated from normal milk, 51 from infected udders, 114 from bovine faece and 39 from the mouths of cows. These were all subjected to a large numb of tests and tabulated according to their behaviour on gelatine and in medi containing dextrose, lactose, saccharose, raffinose, starch, inulin, manninglycerin, dulcite and adonite. The cultures fall into groups according the nature of the material from which they were originally isolated.

573 - Improvement of Damaged Wines and Spirits. — Zweipler, F. in Allgomen Weinzeitung, No. 18, pp. 185-186. Vienna, 1914.

The writer carried out some experiments on the improvement of dan aged wines at the Agricultural Experiment Station of Marburg (Styria during which the following results were obtained.

- I. A turbid highly coloured wine with a musty odour and taste was treated with sesame oil, but ineffectually. On increasing the dose oil the smell of the latter was communicated to the wine. On addin 0.16 oz. of Eponit (1) per gallon of wine and filtering it after six days, the wine became light coloured and clear, and tasted clean.
- 2. Another wine that had become dark hrown was treated with 0.00 oz. of sodium bisulphite, 0.0096 oz. of gelatine and 0.008 oz. of tanni per gallon, with the result that the colour became clear and the wine kep well. Equally good results were obtained by using 0.064 oz. of Eponi and 0.008 oz. of sodium hisulphite alone.
- 3. A sour turnid wine with a taste of the cask (total acidity 12.7 pt thousand) on being treated with 0.24 oz. of precipitated carbonate of lime 0.0192 oz. of gelatine and 0.016 oz. of tannin per gallon, became clear an mild and pleasant to the taste. Sesame oil had no other effect that that of imparting its smell to the wine.

^{(1) &}quot;Eponit" is a vegetable charcoal, a new clarifier which has given good results it is sold by the Aktien Gesellschaft der Oesterreichischen Cerein Fahrik, late ii Ujhely and Co, of Stockerau near Vienna.

4. White wine made with red grapes was decoloured in order to blend it with another white wine. In one case 0.12 oz. of Eponit per gallon was sufficient, while another wine required 0.16 oz. per gallon.

5. Two plum brandies which had become black were clarified, one with tainin and gelatine, and the other with skimmed milk; the results were imperfect in both cases, while 0.368 oz. of Eponit, though working slowly, rendered the brandy perfectly clear and its taste quite clean. An equally good result was obtained by adding water to the brandy and redistilling it.

PLANT DISEASES.

GENERAL INFORMATION.

574 - Decree Piacing Mytilaspis citricola (= Lepidosaphes beckii) among: Notifiable Insects in Uruguay. — Revista de la Asociación rural del Uruguay, Year XII No. 12, p. 883. Montevideo, 1913.

At the request of the "Defensa Agricola", and on evidence of damage caused by this insect to orange plantations in certain districts, the President of the Republic issued a decree, dated October 25, 1913, that My tilaspis citricola (Lepidosaphes beckii) should be classed as an insect injuriou to plants according to art. 7 of the law of October 21, 1911.

DISEASES NOT DUE TO PARASITES AND OF UNKNOWN ORIGIN.

575 - Observations and Researches on "Dörrsieckenkrankheit" (Dry spot Disease of Oats. - Hiltner, I., in Praktische Blätter für Pflanzenbau und Pflanzenschult Year 12, Part 3-4, pp. 28-41, 1 fig. Stuttgart, March-April 1914.

A disease of oats generally called "Dörrfleckenkrankheit" has been observed in various districts in North Germany during recent years and has frequently appeared in Holland, Denmark and Sweden. The leave develop normally at first, but fairly early lose their turgescence at the bends; the wilted portions soon change colour and perish. If the disease appears when the plants are young, as is often the case, the yield of the crop is greatly reduced, since many of the panicles do not emergifrom their sheaths.

The disease has been attributed either to a fungus, Scolecotrichum graminis, or to root nematodes, or to the frit fly (Oscinis jrit). The majority of observers, however, consider it due to unfavourable soil conditions, particularly the percentage of lime.

Pot culture experiments carried out by the writer (Director of the Agricultural Botanical Station of Munich) show that: 1) the disease apparently does not occur on compact clay soils; 2) it appears in culture

of ordinary garden soil containing lime, without direct addition of lime; treatment of this soil with carbon disulphide does not prevent the outbreak of the disease; 4) no disease appears on soil treated with quicklime and carbon disulphide, but carbonate of lime and carbon disulphide are without effect in checking the disease. The effect of the quicklime in antimation with carbon disulphide is accounted for by its action on the increased ammonia produced after the treatment with carbon disulphide, resulting in increased nitrification and the formation of calcium nitrate.

In field cultures the disease increased considerably after abundant rain; this causes the formation of bicarbonates of soda and potash by double decomposition of alkaline salts with the carbonate of lime in the soil.

Water cultures lead to the conclusion that the disease is not caused by the presence of lime itself, but by the resulting decomposition products formed either in the soil or in the leaves of the oats. The researches show that: 1) in nutritive solutions containing monopotassium phosphate, normal development of the oat and other plants is impossible when the solution is made with un-neutralised tap-water containing lime; chlorosis develops rapidly owing to the alkalimity of the surface-film of the solution, and the functions of the roots are checked; 2) in Knop's solution made with Munich tap-water neutralised with sulphuric acid, the oat plants develop relatively better, but the leaves are subject to the disease; the chemical decomposition causing the alkaline reaction evidently takes place in the leaves in this case; 3) since the addition of monopotassium phosphate to garden soil containing lime can cause the development of the disease in oats, it is concluded that as in the case of water cultures, the appearance of the disease is determined chiefly by the alkaline decomposition products formed in particular by the action of the bicarbonate of lime.

The different varieties of oats show varying degrees of resistance to the disease. Pot cultures have shown that the variety Leutewitzer Yellow is more resistant to the frit fly than Fichtelgebirg, and that it remains free from disease in garden soil rich in lime, whilst Fichtelgebirg is badly attacked. In soils poor in lime the disease does not appear in either variety. The writer considers the yellow varieties less susceptible to the metabolic disturbances which give rise to the disease. The fungus Scolecotric hum appears later on all the diseased plants, but it cannot be the cause of the disease since it is only developed to any considerable extent on certain types of soils.

The functional disturbances of the leaves may be prevented by sprayng with a solution of iron salts. A diseased culture of Fichtelgebirg oats
was effectively cured after four sprayings with ½ to 2 per cent. solutions of
ron salts. Tartrate of iron gives the best results.

It has also been found that oats which have become chlorotic owing the presence of alkaline substances in the nutritive medium, or which after from the disease owing to the formation of injurious alkaline products in the leaves, can be cured by spraying with salts of iron. This hould explain the satisfactory development of oats which is often noted after spraying for wild radish with sulphate of iron.

The writer has also determined the identity of the disease knon as "Hafersucht" in the Bavarian Alps, and "Holsternische Haferkranl heit" or "Moorkoloniale", with "Dörrfteckenkrankheit" The research are being continued to determine the effects of acid and alkaline fertilizer

576 – The Presence of Endocellular Fibres in the Tissues of the Vine and other Dicotyledons (1). — MAMELI, EVA in Atti dell'Istituto botanico dell'Università di Pavia, Series II, Vol. XVI, pp. 47-65, plate VIII, Milan, 1914.

In this summary the writer fully confirms her preceding observations (at the presence of endocellular fibres is frequent, not only in the vin affected by bramble-leaf (roncet), but also in healthy ones (86 per cent, wines grown in districts hitherto free from bramble-leaf and showing the exterior symptoms of this disease or of decay, may contain these end cellular fibres even in the two-year-old canes.

Between healthy vines and those suffering from bramble-leaf, there no difference at all either in the form or in the frequency of the fibre these may be rare or wanting altogether in both.

The formation of the fibres cannot be attributed to falls of temper ture, because their presence has been ascertained by the writer in vin and other plants grown for several years in hot-houses.

The writer has found these fibres in Vitis vinifera I., and V. heter phylla Thunb., as well as in nineteen other dicotyledonous plants belong to the most different families, so that their presence has no connectic with any pathological condition of the plant which contains them. To origin and function of the endocellular fibres are in all probability mechanical.

BACTERIAL AND FUNGOID DISEASES.

577 - Phytopathological Observations in the Grand Duchy of Baden, 1913.
WARL, C. von and Müller, K. in Bericht der Hauptstelle für Pflanzenschulz in Bad an der Gossherzo;t. landwirtschaftl. Versuchsanstall Augustenburg für das Jahr 191 pp. 70, + 5 figs., append. I and II. Stuttgart, 1914.

A list is given of the cultivated plants and their pests observed durir

Phylloxera (Phylloxera vastatrix) was recorded for the first time is the Grand Duchy of Baden. Conchylis ambiguella caused serious damage whilst the vine mite (Phyllocoptes vitis) and the vine tortrix (Tortrix pille riana) have diminished.

American gooseberry mildew (Sphaerotheca mors-uvae) has sprea everywhere.

Experiments on the destruction of meadow saffron (Colchian autumnale) have been started; the seeds are not distributed by irrigation

(1) See No. 480, B. May 1914. (Ed.). (2) See No. 1207, B. Oct. 1913 and No. 289, B. March 1914. (Ed.). ince they sink in water, but apparently by means of hay seeds; in $4\frac{1}{2}$ hs of hay seeds 790 of these seeds were found.

Experiments on protective measures against plant pests.— Comparative pials of the fungicidal action on vine mildew (Plasmopara viticola) have been made with certain commercial fungicides and Bordeaux mixture. Cerdidymsulfat", "Malacidschwefel" and "Laykoschwefel" were tried and louid inferior to Bordeaux mixture. They were particularly useless against mildew in 1913, when the weather was very favourable to the disease.

Applications of 20 per cent. solutions of sulphate of iron were used against the "Grind" disease of the vine, with only partial success; the disease reappeared on the treated vines but in a less described.

sease reappeared on the treated vines but in a less degree.

Experiments on the destruction of charlock and radish have shown again the value of a 20 per cent. solution of sulphate of iron, a dressing of kainit of about 90 lbs. per acre, and a 20 per cent. solution of "cuproa-votin." (1). Calcium cyanamide at the rate of 1 cwt. per acre did not opme up to expectations.

"Malacidschwefel" does not fulfil its claims in the destruction of aphids.
"Urania-Grün", based on aceto-arsenite of copper, produces a more permanent suspension in water than "Malacidschwefel", but is not more effective.

Prof. Lang's "Schwefelaluminiumpatronen" were not successful against haussters and rabbits, owing to the depth of their winter burrows, but they were effective against water voles.

Immersion of seeds in creolin, carbolineum, or formalin and coal-tar is not a safe protection against the attacks of birds. Carbolineum in 5 per cent. solution is injurious to the germinating power of the seeds.

Various observations.— The results of the investigations on the introduction of phylloxera into the Grand Duchy are not conclusive; it does not appear to have heen due to winged individuals coming from Upper Alsace.

Winter spores of *Plasmopara viticola* have been found in abundance on vine leaves, and the perithecia of the powdery mildew (*Uncinula necator*) were abundant on vines near houses at Durlach.

Infection experiments on *Rhylisma accrinum*, the fungus of sycamore leaf-blotch, have confirmed former experiments, which showed that infection takes place on the under side of the leaf and not on the upper surface as maintained by Tubeuf.

The organization against plant diseases in the Grand Duchy has been still further improved by the collaboration of lecturers on fruit and vine growing, and by the creation of a station for purchasing the materials required. The Central Station for the Protection of Plants organises special visits to farms where modern methods of control are demonstrated and lectures are held to stimulate the interest of farmers in the aims of phytopathology.

⁽¹⁾ Supplied by Ludwig Meyer, Mainz; price about 30s per 100 lbs.

. 578 - Some Chinese Fungi (1). — MIYAKE ICEIRO, in The Botanical Magasine, Vol. XXVI No. 327, pp. 37-56, plate I. Tokyo, March 1914.

A systematic catalogue of more than one hundred species and varietic collected by the writer in various localities during the summer of 19. The majority were found on cultivated or economic plants. Of the ser species new to science the following are worthy of mention: Rehmic ulmicola, on the leaves of U'mus sp.; Coniothyrium Tiliae, on the leaves of Tilia cordata; C. Spiraea, on the leaves of Spiraea pubescens; Sep glocum Anemones, on the leaves of Anemone sp.

The following species are already known: Gymnosporangium Y madai Miyake, common on leaves of Pyrus Malus and P. spectabi near Pekin; the disease often spreads so rapid: y in June and July the all the foliage turns yellow, dries up and falls; Aecidium Mori Barel, the leaves of Broussonetia Kazinoki and Morus alba, widespread a injurious in Japan; Helminthosporium Onyzae Miyake and Hori; fit observations made by the writer, this latter fungus is not so widely dist buted or dangerous in China as in Japan.

579 - Wintering of Cereal Rusts in the Uredo Stage. — MONTEMARTINI, LUICI Rivista di Patologia vegetale, Year 7, No. 2, pp. 40-44. Payla, 1914.

The writer reviews the results of other workers on the persistence the uredospore stage during the winter months. He records the fathat at Pavia and in its Province this form of rust occurs on wild and a tivated Gramineae, which continue green after harvest, and that it m reinfect the wheat plant at any time. Thus, autumn-sown wheat may directly infected, and if the season is warm and late the disease make its appearance. The uredo stage also appears to be able to resseveral degrees of frost for many days. Further observations are required determine the temperature which is fatal to the parasite. Under It lian conditions it seems more probable that the infection of the wheerop takes place by means of uredospores from diseased plants durit the autumn, rather than by transmission through the seed as suppose by Eriksson.

The spread of the disease is therefore influenced by the growth grasses, the summer weather (during hot, dry summers, when grass dry up, the uredo stage gives place to the teleuto stage), the period sowing and the autumn and winter weather.

580 - Inoculation Experiments on Potatoes with Fusarium, 1913. — Himse BAUR, W. in Oestereichisch-Ungarische Zeitschrift für Zuckerindusfrie und Landwi schaft, Year XL,III, Part I, pp. 1-16. Vienoa, 1914.

Experiments were carried out in 1913 to confirm the results obtains in 1912 on a small scale. Inoculations were made, as in 1912, of vigorous material, using mycelium only. In addition to direct insertion in the tissues of the plant, inoculations of the soil were made in the immedian neighbourhood of the plants. The experiments were begun on the 1915

july, and the inoculations were made on fine days between 6 and 8 a.m. the open fields which had previously shown no sign of the disease. The found that inoculations of the potato haulm resulted in the appearance eaf-curl, thus proving that one form of leaf-curl in potatoes is due to etion of the haulms by the various forms of Fusarium (and also Verticum).

- A Leaf Disease of Cycas revoluta. - MARCOLONGO, I, in Rivisia di Palolo-ia wegelak, Year 7, No. 1, pp. 6-8. Pavia, 1914.

For many years a number of specimens of Cycas revoluta in Naples we been attacked by a leaf-disease, characterised by small round yellow its with dark edges, which extend until the whole segment of the leaf yellow. A slight greenish mould appears on the underside of the leaf i thickens as the disease advances. Microscopic examination has we that this disease is due to a new species of Cladosporium, provision
described as C. Cycadis.

In gelatine cultures nothing has been obtained but a pycnidial form, able of reproducing itself from the stylospores. Inoculations of healthy es with either the conidial (Cladosporium) or the pycnidial (Phoma) 3e, have produced the characteristic symptoms of the disease.

- Cylindrosporium Juglandis injurious to the Leaves of Wainut in Alabama. — Wolf, A. in Myholozisches Centralblatt, Vol. IV, Part 2, pp. 65-69 + figs. Jena, March 1914.

During the last two years walnut trees at Auhurn, Alabania, have bwn a new leaf disease characterised by numerous irregular dry spots ich appear on both sides of the leaf. The spots are brown in colour that a central grey spot indicating the point of infection. Some spots are incomply brown and others become uniformly grey owing to the entrance air below the raised cuticle. The adjacent tissue often becomes chlorotic single leaf may develop from 500 to 1000 or more centres of infection, which may remain distinct or may join up so as to cover the whole is surface. In the summer of 1912 a small plantation was so hadly acked that the trees were completely defoliated on two occasions before normal period of leaf-fall.

The disease is caused by a Cylindrosporium, the fructifications of ich appear on the under sides of the leaves. The fungus has been ated in pure cultures and reproduced with success in various media, no perithecia have been obtained in artificial cultures. Supposing the conidial stage survives on the fallen leaves until the new leaves ear, it does not seem probable that perithecia are produced in the neighthood of Auhurn. It is probable that the perfect form of this fungus ld be produced under certain conditions, as in the case of other species chindrosporium.

Experiments in 1913 showed that the disease could easily be kept heck by destroying all fallen leaves from the diseased trees, and using deaux mixture on the appearance of the disease. The writer describes fungus as C. Iuelandis.

PARA SITIC AND OTHER INJURIOUS FLOWERING, PLANTS

583 - Experiments on the Destruction of Charlock (Sinapis arvensis)
Mechanical and Chemical Means. — Leurz, J. von in Praktische Blätter für für
enbau und Pflankenschutz, Year XII, Part 3-4, pp. 43-46. Stuttgart, March-Angil,
The results of two years' experiments show that rolling is more cite
ive than spraying with sulphate of iron for destroying charlock; it m
be done as soon as the oats appear above ground. The rolling must
very thorough, so as to crush all the charlock seedlings, and is best repea
asecond time; on stony or cloddy land this method is not applicable

INSECT PESTS.

584 - Relation between the Larvae of Vine Moths (Conchylis ambigue and Polychrosis botrana) and the Weeds of Vineyards and Ol Plants. — Lüstner, Gustav, in Zeitschrift für Weinbau und Weinbehandlung, Ye Part I, pp. 3-35. Berlin, 1914.

The writer has conducted numerous experiments to determine w foods other than the flowers and fruits of the vine are available for th insects during their larval stage. He tried the larvae with 92 spe of plants, the majority being vineyard weeds, others hedgerow and or mental plants.

In the case of the *Conchylis* larvae the experiments were carried from the beginning of September to the middle of October. The lar were observed to be distinctly polyphagous, even devouring Euph biaceous plants. It will therefore be difficult to prevent the larvae in feeding on the first buds and fruits by means of disagreeable substant. They are also ready to devour the parts of the plant (e. g. the tips shoots and young leaves, etc.) that are not generally found to be attack

The experiments with *Polychrosis* larvae were carried out in the spr and the larvae were found to be equally polyphagous.

These experiments show that: 1) these pests may continue to ke on the shoots of the vine, or failing this, on common weeds, so that m sures for the control of the pest by the immediate consumption of the frattacked, are not adequate; 2) enclosing the bunches of grapes in be serves to protect the fruit, but does not decrease the danger of the spre of the insects; 3) brushing the first shoots showing signs of attack is reflective in destroying the larvae, since they find shelter elsewhere, a further this procedure is liable to cause damage to the young vine shoots.

585 - Thripoctenus brui n. sp., a Chalcid Parasite of Frankliniella robus injurious to Peas in France. — Vullet, A. in Comptes rendus hebdomadains séances de la Société de Biologie, Vol. LXXVI, No. 13, pp. 552-555, figs. 1-3. Ps April 10, 1914.

Garden peas are sometimes seriously damaged by attacks of the I thrips (Frankliniella robusta), which, in 1913, caused considerable dams

ar Montargis (Loiret). The writer describes a hymenopterous parasite this insect, which is new to Science, under the name of Thripocterus

The description is based on numerous specimens occurring among larvae and nymphs of F. robusta in the flowers of peas, broad beans sweet peas collected at Dercy (Aisne) in July 1913. T. brui is clearly suished by several characters from T. russelli Crawford, the by other known species of the genus, parasitic on the bean thrips (Heliotiks fasciatus Pergande) in the United States.

The writer received a large number of specimens of F. robusta from at Montargis in 1913, but found no specimens of the parasite which is so abundant at Dercy during the same season. It would appear eful to distribute the flowers of peas and beans containing T. brui with view to controlling the spread of S. robusta in the same way that Del ercio (1) has controlled the olive thrips (Phloeothrips oleae Costa) by sans of Tetrastichus gentilei.

Destruction of Conchylis Larvae by Lad; birds. — Löstner, Gustav in Zeitschrift für Weinhau und Weinhehondlung, Year 1, Part 2, pp. 65-69. Berlin, 1914. The writer has observed that the larvae of the first generation of Con-ylis ambiguella Hub. are devoured by the adult Coccinella septempunctata een aphids are lacking. They are not attacked by the larvae of C. septemnala and only to a slight extent by the adult C. decempunctata. When often the steel by their silky web they are not attacked by any Coccinella.

7 - The Destruction of Woolly Aphis (Schizoneura lanigera) and Pear Scale (Epidiaspis betulae) by Fumigation with Hydrocyanio Acid. — Läsnner, Gustav in Deutsche Obstbauteitung, Part 8, pp. 174-176, t fig.. Stuttgart, April 15, 1914.

Hydrocyanic acid fumigation has long been employed in America, t was introduced into Germany by the writer. Attempts to fumigate ple and pear trees to destroy Schizoneura lanigera and Epidiaspis betulae = E. pyricola) have not met with success, and the expense is so great to make the method impracticable for the treatment of fruit trees.

3 - The Chinch Bug (Blissus leucopterus), injurious to Cereals in Kansas, - Headle, Thomas J. and Mc. Colloch, James Walker, in Kansas State A ricultural College, Agricultural Experiment Station, Bulletin No. 191, pp. 285-353, figs. 1-13, plates I-VII. Manhattan, Kansas, 1913.

The chinch bug existed in Kansas before the country was colonised. hibernates on bunch grass (Andropogon scoparius Michx.), big bluestem furcatus Muhl.) and faise red-top (Triplasis purpurea Walt.), from uch it migrates in early spring to wheat and other cereals. The first heration reaches maturity just after harvest, and finding itself short of food, migrates to adjacent crops of maize and sorghum, where the second heration reaches maturity in the autumn. The insect then hibernates waste grasses.

The larvae as well as the adults damage their host plants by piercing

the cortex, extracting the sap and destroying the tissues adjacent to wound. The damage to crops in Kansas amounts to several mills follars annually, owing to the reduction in the yield of wheat and sometime to the maje and sorghum crops.

the property of the development of property of the property of the development of the property of the eggs and larve and by exposing the adults to the attacks of the fungus Spootrichs globuliferum Speg,, which is the only natural parasite of this insect. The fungus is widely spread throughout the regions affected by the pest, as when conditions are favourable it becomes a powerful epidemic. The mo favourable conditions are a temperature of 24° C. and humidity approacing saturation.

Careful experiments have shown that it is not possible to spread, t infection of the fungus by artificial means, and much money has been us lessly expended in adopting this method of control in Kansas, "s most precise experiments have shown that destructive measures can successfully applied twice a year, viz. during the migration of the fingeneration from the cereal crop to maize and sorghum, and again aff hibernating. The writers have found that firing the winter quarters the insect is the most economical and practical method of destroying

589 - Tomaspis flavilatera, n. sp. (Hemiptera) on Sugar Cane in British (iana (1). — Urica, F. W. in Bulletin of Entomological Research, Vol. V, Part I, p. figs. r-2, London, April 1914.

The writer gives a technical description of a new froghopper, Tomas, flavilatera (fam. Cercopidae), occurring on herbaceous plants and casionally on sugar cane in British Guiana.

590 - Polychrosis botrana and Conchylis ambiguella in Piedmont in 18 Biology and Control. — Voglino, P. in Osservatorio consorziale di Fitopatologia Torino. Osservazioni sulle tignole della vite eseguite nel Piemonte nel 1913, pp. Turin, 1914.

As the result of a conference between the Agricultural Commit of Turin and the Subalpine Vine-growers' Society, held on Febraury 1913, a Commission was appointed to study the means of controlling ravages of vine moths and to determine the value of tobacco extract this purpose. The Commission met on the 1st of March and decided appeal to local bodies and to the Ministry of Agriculture for financia help; the carrying out of the experimental work was entrusted to the Turin Phytopathological Observatory. (2).

Towards the end of April, measures were taken for the establishmen of special stations for observation in various districts of the province of Turin (Moncalieri, Rivoli, Caluso), of Cuneo (Alba, Dogliani, Barolo of Alessandria (Cassine, Mongardino) and of Novara (Briona). The

⁽¹⁾ See No. 352, B. Jan. 1911; No. 649, B. Feb. 1911; Nos. 1558 and 1584, B. May 191
No. 1698, B. Dec. 1912; No. 1306, B. Nov. 1913, and No. 188, B. Feb. 1914.
(2) See article in B. July 1913, pp. 1000-1005.
(Ed.).

ations were definitely established at the end of April and beginning of fay. At each station one or two vines were planted in wire-netting cages, and a small meteorological observatory was erected. With a view estions was drawn up, and a practical and scientific control was effort in ans of special control cages of very fine wire-netting for the various stations and important vine-growing districts. Observations are also made in districts without special stations as follows: Acqui province of Alessandria), Gattinara (province of Novara) and the Susa alley (province of Turin).

The results obtained in 1913 show that in Piedmont Polychrosis is one widely distributed than Conchylis; the latter was occasionally minerous (50-80 per cent.) in colder districts at the mouths of the mountain alleys (province of Turin), and was also frequent (50-65 per cent.) at attinara. In the true vine-growing districts exposed to the sun, in the provinces of Turin, Alessandria and Cuneo, Conchylis was found in noportions varying from 2 to 4 per cent., exceptionally 10 per cent.: the arvae and moths found were largely Polychrosis.

The development of *Polychrosis* is in direct relation to the humidity f the air, being favoured by damp; abnormal changes of temperature in he spring, which have an injurious effect on the growth of the vines, have title effect on the development of the insect. The damage was caused by the spring and summer generations; the autumn generation consisted a limited number of moths, only occurring locally, which did not produce awae until after the vintage was mostly finished.

The spring emergence of moths occurred throughout May both in he lahoratory at Turin and at the several stations; in one station only Rivoli) they continued to appear until the beginning of June, with a maxnum during the second ten days of May. They lived from 13 to 15 days ind deposited their eggs on the stalks of the hunches and the pedicels of the flowers, especially in the second half of May, but also in the first teek in June. The larvae of the first generation appeared towards the md of May and pupated from the second ten-days of June until July.

The summer generation of moths first appeared at the Observatory ation on the 26th of June, and at the Stations during the first few days f July, with a maximum emergence during the second ten days (14th o 22nd); they lived 11 to 14 days and began depositing eggs on the grapes bout the 15th of July, continuing into early August. The larvae of the econd generation appeared during the third ten-days of July and especially August and began pupating at the end of August.

The autumn brood of moths only appered in certain districts (Monardino, Dogliani, Barolo), from the 17th to the 22nd of September, bottly after the vintage. Only at Barolo was there supposed to be a hird generation of larvae on the Nehiolo vine.

The season 1913 was not favourable to a biological study of *Polychrosis*, ring to the low humidity of the atmosphere, and the late spring frosts,

which in many places retarded the development of the shoots, thus depriving the moths of suitable places for depositing their eggs. Further research are necessary to complete the biological study, especially with regard partially an irring, oviposition, development of larvae of the second generation which resistance of the pupae to insecticides and extreme temperatures.

The mode of cultivation has considerable influence on the developm and spread of the pest. Where the canes or wooden supports are replated by iron, sandstone or reinforced concrete, the number of insects is considerable.

ably reduced.

The programme for 1914 does not require an increase in the numl of stations but an extension of regular and careful observations and t use of small cages made of fine wire netting and a sheet of mica. A certa number of pupae should be introduced into the cages in the spring and su mer periods. By suspending these cages along the rows, it is easy observe the first appearance of the moths and thus to regulate the application of insecticides. Cages are preferable to lamp-traps, since Polychro only flies at dusk.

Tobacco extract caused scorching in some places when used in per cent. solution, but rarely in 2.5 per cent. solution, though combin with Bordeaux mixture; a concentration of 2 to 2.5 per cent. was fou to be most appropriate. It was not always effective in keeping the most away from the vines, and in some places was hardly satisfactory for stroying the larvae, though in others two applications during the per indicated by the flight of the adults were completely effective. The adults of sodium carbonate (I lb. in 100 gallons) to the tobacco extra (without Bordeaux mixture) increased its efficiency; an intermittent should be used.

Tobacco dust damaged the vines in only two places, but was enting without effect against the larvae.

Lead arsenate in 1 per cent. solution gave good results, combin with Bordeaux mixture, or used for dipping the young bunches.

The best results are obtained by employing arsenate of lead to destreme the first generation larvae, at least until tobacco extract can be obtain with a guaranteed nicotine content so as to avoid danger of damaging young shoots. During July and August it is preferable to use tobac extract (2 to 2.5 per cent.), since it acts as an insectifuge and avoids t difficulties of arsenate. The treatment should not continue later the the first few days of August, owing to the danger of affecting the flavior of the wine. In spraying, care should be taken to cover the neighbour shoots with the liquid, since the moths kept away from the bunches wo otherwise deposit their eggs on the leaves, and the larvae might reather bunches.

In 1914 attention should be paid to clearing the vine stocks and remoning hiding-places suitable for the hibernation of the pupae. On suitable holdings it would be useful to resort to hand picking of the larvae, within neglecting the use of insecticides.

during the winter badly attacked grapes in tubs covered with ting. Further, many pupae may be trapped by placing dark or bunches of straw among the old wood of the vines.

- Agromyza pruinosa (Diptera) on River Birch (Betula nigra) in America. — Greene, Charles T. in Journal of Agricultural Research, Vol. I, No. 6, pp. 471-474, p'ates I,X-1,X1. Washington, D-C., 1914.

The writer describes the different stages of development of Agromyza pruinosa Coq., the larva of which, unlike those of other species of Agromyzidae, bores into wood; this species produces borings, known as "pith ray flecks", in the cambium of the river birch (Betula nigra).

During July and part of August 1912 considerable damage was caused by this insect at Chain Bridge in the District of Columbia, whilst in 1913 it was only recorded on a few trees in this locality. The attacked trees appear quite healthy externally, the borings in the cambium being only visible on raising the bark.

The writer reared six adults of A. pruinosa during the spring of 1913 and found that it resembled very closely A. carbonaria Zett. which causes considerable damage to birches in Europe. He records Sympha agromyzae Rohwer, as parasitic on the eggs of A. pruinosa.