[Survey research in the digital age], [Probability and non-probability sampling], [Computer-administered interviews], [Combining surveys and big data], [Additions and extensions]

Matthew J. Salganik Department of Sociology Princeton University

- 1) Introduction
- 2) Observing behavior
- 3) Asking questions
- 4) Running experiments
- 5) Mass collaboration
- 6) Ethics
- 7) The future

	Sampling	Interviews	Data environment
1st era	Area probability	Face-to-face	Stand-alone
2nd era	Random digital dial	Telephone	Stand-alone
3rd era	probability Non-probability	Computer-administered	Linked

Probability Samples

$$P(u_i) = \frac{p_i}{(N-1)\cdots(N-n+1)} {N-1 \choose n-1} (n-1)! + \sum_{j\neq i}^{N} \frac{p_j}{(N-1)\cdots(N-n+1)} {N-1 \choose n-1} (n-1)! \frac{n-1}{N-1},$$

which upon simplification becomes

(19)
$$P(u_i) = \frac{N-n}{N-1}p_i + \frac{n-1}{N-1}, \qquad (i = 1, 2, \dots, N).$$

Similarly, it may be shown that for this case

(20)
$$P(u_i u_j) = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right],$$
$$(i \neq j: i, j = 1, 2, \dots, N).$$

Non-Probability Samples

http://www.chicagotribune.com/news/nationworld/politics/chi-chicagodays-deweydefeats-story-story.html

Probability Samples

Non-Probability Samples

unknown sampling process weighting based on unverifiable assumptions

unknown sampling process weighting based on unverifiable assumptions

Probability sample (roughly): every unit from a frame population has a known and non-zero probability of inclusion

- Probability sample (roughly): every unit from a frame population has a known and non-zero probability of inclusion
- ▶ Not all probability samples look like miniature versions of the population

- ► Probability sample (roughly): every unit from a frame population has a known and non-zero probability of inclusion
- ▶ Not all probability samples look like miniature versions of the population
- ▶ But, with appropriate weighting, probability samples can yield unbiased estimates of the frame population

Main insights from probability sampling:

► How you collect your data impacts how you make inference

Main insights from probability sampling:

- ► How you collect your data impacts how you make inference
- ▶ Focus on properties of estimators not properties samples

Main idea and equation in sampling and estimation:

$$\hat{\bar{y}} = \frac{\sum_{i \in s} y_i / \pi_i}{N}$$

where π_i is person i's probability of inclusion

Sometimes called:

- ► Horvitz-Thompson estimator
- $\blacktriangleright \pi$ estimator

Inference from probability samples in theory

```
\left.\begin{array}{c} \text{respondents} \\ \text{known information about sampling} \end{array}\right\} \ \text{estimates}
```

Inference from probability samples in theory

 $\left.\begin{array}{c} \text{respondents} \\ \text{known information about sampling} \end{array}\right\} \ \text{estimates}$

Inference from probability samples in practice

 $\underbrace{\text{estimated information about sampling}}_{\text{auxiliary information} + \text{assumptions}} \text{estimates}$

Inference from probability samples in theory

respondents known information about sampling estimates

Inference from probability samples in practice

respondents
estimated information about sampling auxiliary information + assumptions estimates

Inference from non-probability samples

respondents
estimated information about sampling auxiliary information + assumptions estimates

4 D > 4 A > 4 B >

Imagine that you want to estimate the average height of Princeton students.

- ► Assume 50% are male and 50% are female
- You stand outside Lewis Library and recruit a non-random sample of 60 Princeton students
- ▶ Males (n= 20): Average height: 180cm
- ► Females (n=40): Average heigh: 170cm

What is your estimate of the average height?

ightharpoonup sample mean $= 173.3 \text{cm} \ (\frac{180*20+170*40}{20+40})$

- ightharpoonup sample mean = 173.3cm $\left(\frac{180*20+170*40}{20+40}\right)$
- weighted estimate = 175cm (180 * 0.5 + 170 * 0.5)

- ightharpoonup sample mean = 173.3cm $\left(\frac{180*20+170*40}{20+40}\right)$
- weighted estimate = 175 cm (180 * 0.5 + 170 * 0.5)
- weighted estimate uses auxiliary information and assumptions

- ightharpoonup sample mean = 173.3cm $\left(\frac{180*20+170*40}{20+40}\right)$
- weighted estimate = 175 cm (180 * 0.5 + 170 * 0.5)
- weighted estimate uses auxiliary information and assumptions
- ► How could this go wrong?

Forecasting elections with non-representative polls

Wei Wang a,*, David Rothschild b, Sharad Goel b, Andrew Gelman a,c

Wang et al (2015)

^a Department of Statistics, Columbia University, New York, NY, USA

^b Microsoft Research, New York, NY, USA

^c Department of Political Science, Columbia University, New York, NY, USA

- ▶ about 750,000 interviews
- ▶ about 350,000 unique respondents

► Samples don't need to look like mini-populations

- ► Samples don't need to look like mini-populations
- ► Key to making good estimates is for estimation process to account for the sampling process

- Samples don't need to look like mini-populations
- ► Key to making good estimates is for estimation process to account for the sampling process
- ► There is not a bright-line difference between probability sampling in practice and non-probability sampling

- Samples don't need to look like mini-populations
- ► Key to making good estimates is for estimation process to account for the sampling process
- ► There is not a bright-line difference between probability sampling in practice and non-probability sampling
- ▶ To learn more: Lohr (2009) or Sandal et al (2013)

[Survey research in the digital age], [Probability and non-probability sampling], [Computer-administered interviews], [Combining surveys and big data], [Additions and extensions]

Matthew J. Salganik Department of Sociology Princeton University

