Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

14-Hydroxy-11-[(E)-4-methoxybenzylidene]-8-(4-methoxyphenyl)-5-thia-3,13-diazaheptacyclo[13.7.1.1^{9,13}.0^{2,9}.0^{2,14}.-0^{3,7}.0^{19,23}]tetracosa-1(22),15(23),16,-18,20-pentaen-10-one

Raju Suresh Kumar,^a Hasnah Osman,^a‡A. S. Abdul Rahim,^b Madhukar Hemamalini^c and Hoong-Kun Fun^c*§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 30 September 2011; accepted 3 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.050; wR factor = 0.142; data-to-parameter ratio = 29.4.

In the title compound, $C_{36}H_{32}N_2O_4S$, the piperidine ring adopts a chair conformation, while the five-membered pyrrolidine (with a C atom as the flap atom) and thiazolidine (with the S atom as the flap atom) rings adopt envelope conformations. The naphthalene ring system makes dihedral angles of 18.82 (5) and 40.92 (5)° with the two methoxy-substituted benzene rings. In the crystal, centrosymmetrically-related molecules are linked into dimers via pairs of C— $H\cdots$ O and C— $H\cdots$ N hydrogen bonds. An intramolecular O— $H\cdots$ N hydrogen bond is also observed. The crystal structure is further stabilized by C— $H\cdots\pi$ interactions.

Related literature

For details of cycloaddition, see: Tsuge & Kanemasa (1989); Nair & Suja (2007); Aicher *et al.* (1998); Lalezari & Schwartz (1988). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

$C_{36}H_{32}N_2O_4S$	$\gamma = 68.553 \ (1)^{\circ}$
$M_r = 588.70$	$V = 1436.19 (4) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 10.6287 (1) Å	Mo $K\alpha$ radiation
b = 11.8672 (2) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 12.6588 (2) Å	T = 100 K
$\alpha = 84.439 \ (1)^{\circ}$	$0.37 \times 0.25 \times 0.16 \text{ mm}$
$\beta = 75.105 (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.943, T_{\max} = 0.975$

39492 measured reflections 11591 independent reflections 9231 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$

Refinement

$$R[F^2 > 2\sigma(F^2)] = 0.050$$

 $wR(F^2) = 0.142$
 $S = 1.02$
11591 reflections
394 parameters

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \mathring{A}}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \mathring{A}}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

Cg7 and Cg9 centroids of the C20-C25 and C31-C36 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
O1-H101···N2	0.86 (2)	1.96 (2)	2.6253 (14)	133.3 (19)
$C24-H24A\cdots N1^{1}$ $C26-H26C\cdots O1^{i}$	0.95 0.98	2.61 2.48	3.4447 (15) 3.4078 (17)	146 157
C19 $-$ H19 $B \cdot \cdot \cdot Cg7^{ii}$ C26 $-$ H26 $B \cdot \cdot \cdot Cg7^{iii}$	0.98 0.98	2.82 2.87	3.4652 (18) 3.7720 (14)	124 154
$C9-H9B\cdots Cg9^{iv}$	0.99	2.87	3.8211 (14)	161

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+2, -z+2; (iii) -x+2, -y+1, -z+2; (iv) -x+1, -y+1, -z+1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

[‡] Additional correspondence author, e-mail: ohasnah@usm.my.

[§] Thomson Reuters ResearcherID: A-3561-2009.

organic compounds

RSK, HO and ASA thank Universiti Sains Malaysia (USM) for the University Research Grant No. 203/PKIMIA/6711179 and the Ministry of Science, Technology and Innovation Grant No. 09-05-lfn-meb-004. RSK also thanks USM for the award of a post-doctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6431).

References

Aicher, T. D., Balkan, B., Bell, P. A., Brand, L. J., Cheon, S. H., Deems, R. O.,
Fell, J. B., Fillers, W. S., Fraser, J. D., Gao, J., Knorr, D. C., Kahle, G. G.,
Leone, C. L., Nadelson, J., Simpson, R. & Smith, H. C. (1998). *J. Med. Chem.*41, 4556–4566.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Lalezari, I. & Schwartz, E. L. (1988). J. Med. Chem. 31, 1427–1429.

Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Tsuge, O. & Kanemasa, S. (1989). *Advances in Heterocyclic Chemistry*, edited by A. R. Katritzky, Vol. 45, p. 231. San Diego: Academic Press.

supplementa	ry materials		

Acta Cryst. (2011). E67, o2881-o2882 [doi:10.1107/S160053681104061X]

14-Hydroxy-11-[(E)-4-methoxybenzylidene]-8-(4-methoxyphenyl)-5-thia-3,13-diazaheptacyclo[13.7.1.1^{9,13}.0^{2,9}.0^{2,14}.0^{3,7}.0^{19,23}]tetracosa-1(22),15(23),16,18,20-pentaen-10-one

R. S. Kumar, H. Osman, A. S. A. Rahim, M. Hemamalini and H.-K. Fun

Comment

Three-component reactions involving [3+2]-cycloaddition of azomethine ylides to olefinic dipolarophiles constitutes a facile approach for the construction of five membered heterocyclic rings of biological importance (Tsuge & Kanemasa, 1989; Nair & Suja, 2007). Among these heterocycles, pyrrolo[2,1-b]thiazole is an unusual ring system with antineoplastic (Lalezari & Schwartz, 1988) and hypoglycemic (Aicher *et al.*, 1998) activities. In this paper we wish to report the crystal structure determination of the title compound possessing the biologically-active pyrrolothiazole ring.

The asymmetric unit of the title compound is shown in Fig. 1. The six-membered piperidine (N1/C1–C5) ring adopts a chair conformation [Q = 0.6172 (12) Å; θ = 138.18 (11)° and ϕ = 119.73 (17)°; Cremer & Pople, 1975] while the five-membered pyrrolidine (N2/C4/C6,C7/C10) and thiazolidine (S1/N2/C7–C9) rings adopt an envelope conformation with the C6 (displacement -0.217 (1) Å) and the S1 (displacement 0.284 (1) Å) atoms as the flap atoms and with puckering parameters, Q = 0.3565 (13) Å; ϕ = 89.37 (19)°; and Q = 0.5087 (11) Å; and ϕ = 0.44 (14)° repectively. The naphthalene (C27–C36) ring makes dihedral angles of 18.82 (5)° and 40.92 (5)° with the two methoxy-substituted (C13–C18)/(C20–C25) phenyl rings.

In the crystal structure, (Fig. 2), the centrosymmetrically-related molecules are linked into dimers via pairs of intermolecular C—H···O and C—H···N (Table 1) hydrogen bonds. An intramolecular O—H..N hydrogen bond is also observed. The crystal structure is further stabilized by weak C—H··· π interactions involving the centroids Cg7 and Cg9 of the (C20–C25) and (C31–C36) rings, respectively.

Experimental

A mixture of 3,5-bis[(E)-(4-methoxyphenyl) methylidene]-tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and thiazolidine-4-carboxylic acid (1 mmol) were dissolved in methanol (5 mL) and refluxed for 1 hour. After completion of the reaction as evident from TLC, the mixture was poured into water (50 mL). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallisation from pet.ether-ethylacetate mixture to yield colourless blocks of (I).

Refinement

Atom H1O1 was located from a difference Fourier maps and refined freely [O–H = 0.86 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95–1.00 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2. The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.

14-Hydroxy-11-[(*E*)-4-methoxybenzylidene]-8-(4-methoxyphenyl)-5- thia-3,13-diazaheptacyclo[$13.7.1.1^{9,13}.0^{2,9}.0^{2,14}.0^{3,7}.0^{19,23}$]tetracosa- 1(22),15 (23),16,18,20-pentaen-10-one

Crystal data

 $C_{36}H_{32}N_2O_4S$ Z = 2 $M_r = 588.70$ F(000) = 620Triclinic, PT $D_{\rm x} = 1.361 \; {\rm Mg \; m}^{-3}$ Hall symbol: -P 1 Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ a = 10.6287 (1) ÅCell parameters from 9888 reflections $\theta = 2.3 - 35.1^{\circ}$ b = 11.8672 (2) Åc = 12.6588 (2) Å $\mu = 0.16 \text{ mm}^{-1}$ T = 100 K $\alpha = 84.439 (1)^{\circ}$ $\beta = 75.105 (1)^{\circ}$ Block, colourless $\gamma = 68.553 (1)^{\circ}$ $0.37\times0.25\times0.16~mm$ $V = 1436.19 (4) \text{ Å}^3$

Data collection

Bruker SMART APEXII CCD 11591 independent reflections diffractometer 9231 reflections with $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube graphite $R_{\rm int} = 0.036$ $\theta_{\text{max}} = 34.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ ϕ and ω scans Absorption correction: multi-scan $h = -13 \rightarrow 16$ (SADABS; Bruker, 2009) $T_{\min} = 0.943, T_{\max} = 0.975$ $k = -18 \rightarrow 18$ 39492 measured reflections $l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.142$	H atoms treated by a mixture of independent and constrained refinement
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0751P)^2 + 0.5144P]$ where $P = (F_o^2 + 2F_c^2)/3$
11591 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
394 parameters	$\Delta \rho_{\text{max}} = 0.66 \text{ e Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.38 \text{ e Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.79522 (3)	0.60158 (3)	0.48963 (2)	0.02192 (7)
O1	0.36989 (8)	0.50498 (7)	0.72474 (7)	0.01646 (15)
O2	0.46670 (9)	0.92470 (8)	0.78875 (8)	0.02136 (17)
O3	-0.38126 (10)	1.24757 (10)	0.79511 (9)	0.0306(2)
O4	0.89106 (10)	0.68108 (9)	1.10873 (8)	0.02435 (19)
N1	0.28341 (9)	0.66632 (8)	0.84751 (8)	0.01489 (16)
N2	0.58835 (9)	0.56730 (9)	0.64184 (8)	0.01619 (17)
C1	0.18792 (11)	0.79213 (10)	0.87130 (9)	0.01641 (19)
H1A	0.1511	0.8009	0.9515	0.020*
H1B	0.1081	0.8072	0.8385	0.020*
C2	0.25141 (11)	0.88926 (10)	0.83004 (9)	0.01574 (18)
C3	0.40668 (11)	0.85241 (10)	0.80088 (9)	0.01529 (18)
C4	0.48625 (10)	0.71733 (10)	0.78310 (9)	0.01380 (17)
C5	0.41421 (11)	0.65015 (10)	0.87649 (9)	0.01572 (18)
H5A	0.4719	0.5633	0.8785	0.019*

H5B	0.3961	0.6867	0.9484	0.019*
C6	0.64462 (11)	0.67997 (10)	0.75962 (9)	0.01479 (18)
H6A	0.6715	0.7393	0.7055	0.018*
C7	0.69662 (11)	0.55899 (10)	0.69999 (9)	0.01564 (18)
H7A	0.7041	0.4916	0.7547	0.019*
C8	0.83679 (11)	0.53339 (11)	0.61614 (10)	0.0188 (2)
H8A	0.8876	0.4451	0.6070	0.023*
H8B	0.8953	0.5696	0.6400	0.023*
C9	0.64853 (12)	0.54767 (12)	0.52515 (10)	0.0212(2)
H9A	0.5784	0.5931	0.4833	0.025*
Н9В	0.6810	0.4605	0.5078	0.025*
C10	0.46097 (10)	0.67354 (10)	0.68033 (9)	0.01421 (17)
C11	0.32921 (10)	0.63151 (10)	0.73099 (9)	0.01408 (17)
C12	0.17995 (11)	1.00541 (10)	0.80811 (10)	0.01742 (19)
H12A	0.2345	1.0553	0.7851	0.021*
C13	0.03109 (11)	1.06591 (10)	0.81448 (10)	0.01782 (19)
C14	-0.07494 (12)	1.02983 (10)	0.88129 (10)	0.0185 (2)
H14A	-0.0513	0.9639	0.9303	0.022*
C15	-0.21409 (12)	1.08765 (11)	0.87811 (10)	0.0202(2)
H15A	-0.2838	1.0608	0.9239	0.024*
C16	-0.24999 (12)	1.18508 (11)	0.80725 (11)	0.0225(2)
C17	-0.14648 (13)	1.22501 (12)	0.74238 (12)	0.0259(2)
H17A	-0.1708	1.2925	0.6951	0.031*
C18	-0.00926 (13)	1.16714 (11)	0.74650 (11)	0.0234(2)
H18A	0.0595	1.1963	0.7025	0.028*
C19	-0.48594 (14)	1.19644 (15)	0.84307 (14)	0.0335 (3)
H19A	-0.5714	1.2426	0.8192	0.050*
H19B	-0.5051	1.1997	0.9229	0.050*
H19C	-0.4530	1.1120	0.8199	0.050*
C20	0.70703 (11)	0.67646 (10)	0.85510 (9)	0.01501 (18)
C21	0.75256 (12)	0.76997 (11)	0.86841 (10)	0.0190(2)
H21A	0.7418	0.8356	0.8180	0.023*
C22	0.81297 (13)	0.76854 (11)	0.95352 (11)	0.0215 (2)
H22A	0.8425	0.8332	0.9612	0.026*
C23	0.83076 (12)	0.67281 (11)	1.02806 (9)	0.0180(2)
C24	0.78598 (12)	0.57861 (10)	1.01762 (9)	0.01754 (19)
H24A	0.7968	0.5132	1.0683	0.021*
C25	0.72497 (12)	0.58202 (10)	0.93148 (9)	0.01717 (19)
H25A	0.6945	0.5178	0.9245	0.021*
C26	0.90991 (13)	0.58491 (12)	1.18668 (10)	0.0228 (2)
H26A	0.9547	0.6000	1.2397	0.034*
H26B	0.9688	0.5083	1.1490	0.034*
H26C	0.8192	0.5803	1.2248	0.034*
C27	0.41283 (11)	0.76642 (10)	0.59441 (9)	0.01534 (18)
C28	0.47477 (12)	0.83835 (11)	0.52540 (10)	0.0191 (2)
H28A	0.5635	0.8372	0.5288	0.023*
C29	0.40394 (13)	0.91443 (11)	0.44894 (10)	0.0217 (2)
H29A	0.4476	0.9630	0.4006	0.026*
C30	0.27418 (13)	0.92003 (11)	0.44276 (10)	0.0217 (2)
	, (13)	(11)	, 0 (10)	5.5-17 (2)

H30A	0.2301	0.9716	0.3906	0.026*
C31	0.20612 (12)	0.84865 (10)	0.51443 (10)	0.0183 (2)
C32	0.07319 (12)	0.84443 (11)	0.51840 (11)	0.0217(2)
H32A	0.0199	0.8934	0.4700	0.026*
C33	0.02096 (12)	0.76951 (11)	0.59229 (11)	0.0216(2)
H33A	-0.0680	0.7678	0.5933	0.026*
C34	0.09598 (11)	0.69493 (10)	0.66679 (10)	0.0186(2)
H34A	0.0577	0.6446	0.7174	0.022*
C35	0.22508 (11)	0.69716 (10)	0.66413 (9)	0.01528 (18)
C36	0.27902 (11)	0.77326 (10)	0.58842 (9)	0.01567 (18)
H1O1	0.459(2)	0.4815 (19)	0.7015 (17)	0.038 (5)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01679 (12)	0.03083 (16)	0.01653 (13)	-0.00899 (11)	-0.00024 (9)	-0.00062 (11)
O1	0.0143 (3)	0.0127(3)	0.0219 (4)	-0.0046 (3)	-0.0028 (3)	-0.0023 (3)
O2	0.0192 (4)	0.0174 (4)	0.0302 (5)	-0.0093 (3)	-0.0059(3)	-0.0015 (3)
O3	0.0181 (4)	0.0280 (5)	0.0396 (6)	-0.0001 (3)	-0.0079(4)	-0.0013 (4)
O4	0.0323 (5)	0.0277 (5)	0.0232 (4)	-0.0175 (4)	-0.0158 (4)	0.0060(4)
N1	0.0150 (4)	0.0148 (4)	0.0147 (4)	-0.0059(3)	-0.0015 (3)	-0.0021 (3)
N2	0.0135 (4)	0.0190 (4)	0.0157 (4)	-0.0057 (3)	-0.0012 (3)	-0.0052 (3)
C1	0.0153 (4)	0.0151 (4)	0.0181 (5)	-0.0059(3)	-0.0004 (3)	-0.0037 (4)
C2	0.0151 (4)	0.0160 (5)	0.0164 (5)	-0.0064(3)	-0.0016 (3)	-0.0035 (4)
C3	0.0161 (4)	0.0157 (4)	0.0149 (4)	-0.0065 (3)	-0.0031 (3)	-0.0026 (4)
C4	0.0138 (4)	0.0144 (4)	0.0140 (4)	-0.0060(3)	-0.0030(3)	-0.0010 (3)
C5	0.0155 (4)	0.0162 (4)	0.0158 (4)	-0.0065 (3)	-0.0026 (3)	-0.0007 (4)
C6	0.0139 (4)	0.0156 (4)	0.0153 (4)	-0.0061 (3)	-0.0030(3)	-0.0004 (3)
C7	0.0132 (4)	0.0163 (5)	0.0166 (5)	-0.0047(3)	-0.0025 (3)	-0.0017 (4)
C8	0.0143 (4)	0.0213 (5)	0.0193 (5)	-0.0054 (4)	-0.0023 (4)	-0.0022 (4)
C9	0.0175 (5)	0.0289 (6)	0.0174 (5)	-0.0085 (4)	-0.0010 (4)	-0.0085 (4)
C10	0.0131 (4)	0.0146 (4)	0.0151 (4)	-0.0056 (3)	-0.0021 (3)	-0.0017 (3)
C11	0.0140 (4)	0.0135 (4)	0.0154 (4)	-0.0059 (3)	-0.0024 (3)	-0.0017 (3)
C12	0.0167 (4)	0.0153 (5)	0.0203 (5)	-0.0065 (4)	-0.0027 (4)	-0.0020 (4)
C13	0.0170 (4)	0.0148 (5)	0.0209 (5)	-0.0051 (4)	-0.0032 (4)	-0.0025 (4)
C14	0.0176 (4)	0.0153 (5)	0.0213 (5)	-0.0051 (4)	-0.0028 (4)	-0.0026 (4)
C15	0.0164 (4)	0.0188 (5)	0.0238 (5)	-0.0052 (4)	-0.0023 (4)	-0.0041 (4)
C16	0.0190 (5)	0.0184 (5)	0.0269 (6)	-0.0016 (4)	-0.0053 (4)	-0.0050 (4)
C17	0.0232 (5)	0.0170 (5)	0.0318 (7)	-0.0023 (4)	-0.0049 (5)	0.0022 (5)
C18	0.0218 (5)	0.0162 (5)	0.0293 (6)	-0.0057 (4)	-0.0034 (4)	0.0019 (4)
C19	0.0169 (5)	0.0400(8)	0.0387 (8)	-0.0043 (5)	-0.0039 (5)	-0.0079 (6)
C20	0.0142 (4)	0.0163 (4)	0.0155 (4)	-0.0066 (3)	-0.0034 (3)	0.0003 (4)
C21	0.0216 (5)	0.0188 (5)	0.0210 (5)	-0.0113 (4)	-0.0083 (4)	0.0043 (4)
C22	0.0268 (5)	0.0209 (5)	0.0245 (6)	-0.0145 (4)	-0.0119 (4)	0.0047 (4)
C23	0.0183 (4)	0.0210 (5)	0.0177 (5)	-0.0093 (4)	-0.0067 (4)	0.0015 (4)
C24	0.0194 (5)	0.0177 (5)	0.0169 (5)	-0.0082 (4)	-0.0052 (4)	0.0022 (4)
C25	0.0191 (4)	0.0168 (5)	0.0178 (5)	-0.0088 (4)	-0.0049 (4)	0.0010(4)
C26	0.0241 (5)	0.0287 (6)	0.0194 (5)	-0.0121 (5)	-0.0093 (4)	0.0050(4)

C27	0.0166 (4)	0.0165 (5)	0.0145 (4)	-0.0076 (4)	-0.0034(3)	-0.0013 (4)
C28	0.0210 (5)	0.0208 (5)	0.0183 (5)	-0.0113 (4)	-0.0039(4)	0.0005 (4)
C29	0.0256 (5)	0.0209 (5)	0.0207 (5)	-0.0116 (4)	-0.0055 (4)	0.0030(4)
C30	0.0251 (5)	0.0198 (5)	0.0212 (5)	-0.0081 (4)	-0.0082 (4)	0.0036 (4)
C31	0.0195 (5)	0.0165 (5)	0.0198 (5)	-0.0061 (4)	-0.0069(4)	0.0003 (4)
C32	0.0204 (5)	0.0195 (5)	0.0263 (6)	-0.0055 (4)	-0.0103 (4)	0.0010(4)
C33	0.0166 (5)	0.0205 (5)	0.0291 (6)	-0.0063 (4)	-0.0082 (4)	-0.0007 (4)
C34	0.0155 (4)	0.0169 (5)	0.0238 (5)	-0.0065 (4)	-0.0046 (4)	-0.0005 (4)
C35	0.0146 (4)	0.0144 (4)	0.0171 (5)	-0.0055 (3)	-0.0029 (3)	-0.0021 (4)
C36	0.0161 (4)	0.0151 (4)	0.0167 (5)	-0.0061 (3)	-0.0040 (3)	-0.0017 (4)
			. ,		,	
Geometric para	meters (Å, °)					
S1—C8		1.8072 (12)	C14-	C15	1.39	39 (16)
S1—C9		1.8318 (12)		—H14A	0.950	
O1—C11		1.4066 (13)		C16		27 (18)
O1—H1O1		0.86 (2)		—H15A	0.950	
O2—C3		1.2209 (13)		-C17		56 (19)
O3—C16		1.3608 (15)		-C18		89 (18)
O3—C19		1.4317 (19)		—H17А	0.950	
O4—C23		1.3657 (14)		—H18A	0.950	
O4—C26		1.4256 (15)		—H19А	0.980	
N1—C5		1.4689 (14)		—H19В	0.980	
N1—C1		1.4737 (14)		—H19С	0.980	
N1—C11		1.4783 (14)		C25		35 (15)
N2—C9		1.4552 (15)		–C21		18 (15)
N2—C10		1.4805 (14)		—C21 —C22		47 (17)
N2—C7		1.4879 (14)		—С22 —Н21А	0.950	
C1—C2		1.5257 (15)		—C23		41 (16)
C1—C2 C1—H1A		0.9900		—С23 —Н22А	0.950	
		0.9900		—H22A —C24		
C1—H1B				—C24 —C25		43 (16) 52 (16)
C2—C12 C2—C3		1.3499 (16)		—С23 —Н24А	0.950	53 (16)
		1.4971 (15)				
C3—C4		1.5219 (15)		—H25A	0.950	
C4—C6		1.5300 (14)		—H26A	0.980	
C4—C5		1.5549 (14)		—H26B	0.980	
C4—C10		1.5645 (15)		—H26C	0.980	
C5—H5A		0.9900		C28		58 (15) 50 (15)
C5—H5B		0.9900		-C36		59 (15)
C6—C20		1.5115 (15)		—C29		37 (17)
C6—C7		1.5336 (16)		—H28A	0.950	
C6—H6A		1.0000		—C30		35 (17)
C7—C8		1.5352 (15)		—H29A	0.950	
C7—H7A		1.0000		-C31		33 (16)
C8—H8A		0.9900		—H30A	0.950	
С8—Н8В		0.9900		-C36		77 (16)
C9—H9A		0.9900		—C32		99 (16)
С9—Н9В		0.9900		—C33		06 (17)
C10—C27		1.5169 (15)	C32-	—H32A	0.950)()

C10—C11	1.6150 (14)	C33—C34	1.4204 (17)
C11—C35	1.5071 (15)	C33—H33A	0.9500
C12—C13	1.4629 (15)	C34—C35	1.3738 (15)
C12—H12A	0.9500	C34—H34A	0.9500
C13—C14	1.4005 (16)	C35—C36	1.4111 (15)
C13—C18	1.4072 (17)		
C8—S1—C9	86.85 (5)	C15—C14—C13	122.04 (11)
C11—O1—H1O1	103.5 (14)	C15—C14—H14A	119.0
C16—O3—C19	117.38 (11)	C13—C14—H14A	119.0
C23—O4—C26	116.72 (10)	C16—C15—C14	119.42 (11)
C5—N1—C1	108.80 (8)	C16—C15—H15A	120.3
C5—N1—C11	103.25 (8)	C14—C15—H15A	120.3
C1—N1—C11	115.53 (9)	O3—C16—C15	125.09 (12)
C9—N2—C10	119.67 (10)	O3—C16—C17	115.42 (12)
C9—N2—C7	110.77 (8)	C15—C16—C17	119.49 (11)
C10—N2—C7	110.49 (8)	C18—C17—C16	120.48 (12)
N1—C1—C2	115.45 (9)	C18—C17—H17A	119.8
N1—C1—H1A	108.4	C16—C17—H17A	119.8
C2—C1—H1A	108.4	C17—C18—C13	121.44 (11)
N1—C1—H1B	108.4	C17—C18—H18A	119.3
C2—C1—H1B	108.4	C13—C18—H18A	119.3
H1A—C1—H1B	107.5	O3—C19—H19A	109.5
C12—C2—C3	115.93 (10)	O3—C19—H19B	109.5
C12—C2—C1	125.44 (10)	H19A—C19—H19B	109.5
C3—C2—C1	118.37 (9)	O3—C19—H19C	109.5
O2—C3—C2	123.17 (10)	H19A—C19—H19C	109.5
O2—C3—C4	121.64 (10)	H19B—C19—H19C	109.5
C2—C3—C4	115.15 (9)	C25—C20—C21	117.17 (10)
C3—C4—C6	114.65 (8)	C25—C20—C6	123.15 (10)
C3—C4—C5	107.25 (8)	C21—C20—C6	119.67 (10)
C6—C4—C5	117.84 (9)	C22—C21—C20	121.30 (10)
C3—C4—C10	110.70 (9)	C22—C21—H21A	119.4
C6—C4—C10	104.10 (8)	C20—C21—H21A	119.4
C5—C4—C10	101.35 (8)	C21—C22—C23	120.42 (11)
N1—C5—C4	103.40 (8)	C21—C22—H22A	119.8
N1—C5—H5A	111.1	C23—C22—H22A	119.8
C4—C5—H5A	111.1	O4—C23—C22	115.36 (10)
N1—C5—H5B	111.1	O4—C23—C24	124.82 (10)
C4—C5—H5B	111.1	C22—C23—C24	119.81 (10)
H5A—C5—H5B	109.0	C23—C24—C25	118.84 (10)
C20—C6—C4	117.40 (9)	C23—C24—H24A	120.6
C20—C6—C7	114.59 (9)	C25—C24—H24A	120.6
C4—C6—C7	102.88 (8)	C24—C25—C20	122.46 (10)
C20—C6—H6A	107.1	C24—C25—H25A	118.8
C4—C6—H6A	107.1	C20—C25—H25A	118.8
C7—C6—H6A	107.1	O4—C26—H26A	109.5
N2—C7—C6	105.66 (8)	O4—C26—H26B	109.5
N2—C7—C8	108.84 (9)	H26A—C26—H26B	109.5
C6—C7—C8	113.73 (9)	O4—C26—H26C	109.5

N2—C7—H7A	109.5	H26A—C26—H26C	109.5
C6—C7—H7A	109.5	H26B—C26—H26C	109.5
C8—C7—H7A	109.5	C28—C27—C36	118.55 (10)
C7—C8—S1	105.83 (7)	C28—C27—C10	132.36 (10)
C7—C8—H8A	110.6	C36—C27—C10	109.08 (9)
S1—C8—H8A	110.6	C27—C28—C29	119.05 (10)
C7—C8—H8B	110.6	C27—C28—H28A	120.5
S1—C8—H8B	110.6	C29—C28—H28A	120.5
H8A—C8—H8B	108.7	C30—C29—C28	122.19 (11)
N2—C9—S1	107.06 (8)	C30—C29—H29A	118.9
N2—C9—H9A	110.3	C28—C29—H29A	118.9
S1—C9—H9A	110.3	C29—C30—C31	120.14 (11)
N2—C9—H9B	110.3	C29—C30—H30A	119.9
S1—C9—H9B	110.3	C31—C30—H30A	119.9
H9A—C9—H9B	108.6	C36—C31—C32	116.57 (10)
N2—C10—C27	116.57 (9)	C36—C31—C30	116.52 (10)
N2—C10—C4	103.90 (8)	C32—C31—C30	126.90 (11)
C27—C10—C4	118.45 (9)	C33—C32—C31	120.32 (11)
N2—C10—C11	110.50 (8)	C33—C32—H32A	119.8
C27—C10—C11	103.54 (8)	C31—C32—H32A	119.8
C4—C10—C11	103.06 (8)	C32—C33—C34	122.12 (10)
O1—C11—N1	108.47 (9)	C32—C33—H33A	118.9
O1—C11—C35	112.32 (9)	C34—C33—H33A	118.9
N1—C11—C35	114.67 (9)	C35—C34—C33	118.58 (11)
O1—C11—C10	110.43 (8)	C35—C34—H34A	120.7
N1—C11—C10	105.60 (8)	C33—C34—H34A	120.7
C35—C11—C10	105.07 (8)	C34—C35—C36	119.45 (10)
C2—C12—C13	129.67 (10)	C34—C35—C11	131.91 (10)
C2—C12—H12A	115.2	C36—C35—C11	108.64 (9)
C13—C12—H12A	115.2	C31—C36—C35	122.96 (10)
C14—C13—C18	117.06 (11)	C31—C36—C27	123.53 (10)
C14—C13—C12	125.30 (11)	C35—C36—C27	113.51 (10)
C18—C13—C12	117.63 (10)		
C5—N1—C1—C2	47.19 (12)	C3—C2—C12—C13	172.17 (11)
C11—N1—C1—C2	-68.33 (12)	C1—C2—C12—C13	-1.9 (2)
N1—C1—C2—C12	156.00 (11)	C2—C12—C13—C14	25.1 (2)
N1—C1—C2—C3	-17.89 (14)	C2—C12—C13—C18	-153.53 (13)
C12—C2—C3—O2	20.91 (17)	C18—C13—C14—C15	2.62 (18)
C1—C2—C3—O2	-164.63 (11)	C12—C13—C14—C15	-176.01 (11)
C12—C2—C3—C4	-156.99 (10)	C13—C14—C15—C16	-0.56 (18)
C1—C2—C3—C4	17.47 (14)	C19—O3—C16—C15	-12.1 (2)
O2—C3—C4—C6	5.30 (15)	C19—O3—C16—C17	168.17 (13)
C2—C3—C4—C6	-176.76 (9)	C14—C15—C16—O3	178.80 (12)
O2—C3—C4—C5	138.19 (11)	C14—C15—C16—C17	-1.47 (19)
C2—C3—C4—C5	-43.87 (12)	O3—C16—C17—C18	-1.47 (19) -178.89 (13)
O2—C3—C4—C10	-112.08 (12)	C15—C16—C17—C18	1.3 (2)
C2—C3—C4—C10	65.86 (11)	C15—C10—C17—C18 C16—C17—C18—C13	0.8 (2)
C1—N1—C5—C4	-74.32 (10)	C14—C13—C18—C17	-2.74 (19)
C1—N1—C5—C4 C11—N1—C5—C4	48.90 (10)	C12—C13—C18—C17 C12—C13—C18—C17	-2.74 (19) 175.99 (12)
C11-N1-C3-C4	TO.70 (10)	C12—C13—C10—C1/	113.77 (14)

C3—C4—C5—N1	72.44 (10)	C4—C6—C20—C25	77.87 (14)
C6—C4—C5—N1	-156.42 (9)	C7—C6—C20—C25	-43.01 (14)
C10—C4—C5—N1	-43.66 (10)	C4—C6—C20—C21	-103.47 (12)
C3—C4—C6—C20	75.97 (12)	C7—C6—C20—C21	135.65 (11)
C5—C4—C6—C20	-51.72 (13)	C25—C20—C21—C22	0.13 (17)
C10—C4—C6—C20	-162.95 (9)	C6—C20—C21—C22	-178.61 (11)
C3—C4—C6—C7	-157.21 (9)	C20—C21—C22—C23	0.42 (19)
C5—C4—C6—C7	75.10 (11)	C26—O4—C23—C22	179.62 (11)
C10—C4—C6—C7	-36.13 (10)	C26—O4—C23—C24	0.61 (18)
C9—N2—C7—C6	123.03 (10)	C21—C22—C23—O4	-179.83 (12)
C10—N2—C7—C6	-11.96 (11)	C21—C22—C23—C24	-0.76 (19)
C9—N2—C7—C8	0.54 (13)	O4—C23—C24—C25	179.52 (11)
C10—N2—C7—C8	-134.45 (9)	C22—C23—C24—C25	0.54 (17)
C20—C6—C7—N2	158.44 (8)	C23—C24—C25—C20	0.01 (17)
C4—C6—C7—N2	29.85 (10)	C21—C20—C25—C24	-0.34 (17)
C20—C6—C7—C8	-82.24 (11)	C6—C20—C25—C24	178.34 (10)
C4—C6—C7—C8	149.17 (9)	N2—C10—C27—C28	-60.95 (16)
N2—C7—C8—S1	29.46 (10)	C4—C10—C27—C28	64.25 (16)
C6—C7—C8—S1	-88.03 (10)	C11—C10—C27—C28	177.51 (12)
C9—S1—C8—C7	-39.36 (8)	N2—C10—C27—C36	117.99 (10)
C10—N2—C9—S1	100.24 (10)	C4—C10—C27—C36	-116.81 (10)
C7—N2—C9—S1	-30.08 (11)	C11—C10—C27—C36	-3.56 (11)
C8—S1—C9—N2	40.67 (9)	C36—C27—C28—C29	-1.56 (17)
C9—N2—C10—C27	-8.80 (14)	C10—C27—C28—C29	177.29 (12)
C7—N2—C10—C27	121.64 (10)	C27—C28—C29—C30	1.05 (19)
C9—N2—C10—C4	-141.06 (9)	C28—C29—C30—C31	0.2 (2)
C7—N2—C10—C4	-10.62 (11)	C29—C30—C31—C36	-0.86 (18)
C9—N2—C10—C11	109.00 (10)	C29—C30—C31—C32	179.89 (13)
C7—N2—C10—C11	-120.56 (9)	C36—C31—C32—C33	0.20 (18)
C3—C4—C10—N2	152.82 (8)	C30—C31—C32—C33	179.46 (12)
C6—C4—C10—N2	29.13 (10)	C31—C32—C33—C34	0.3 (2)
C5—C4—C10—N2	-93.66 (9)	C32—C33—C34—C35	-0.56 (19)
C3—C4—C10—C27	21.66 (12)	C33—C34—C35—C36	0.29 (17)
C6—C4—C10—C27	-102.03 (10)	C33—C34—C35—C11	179.41 (11)
C5—C4—C10—C27	135.18 (9)	O1—C11—C35—C34	57.75 (16)
C3—C4—C10—C11	-91.86 (9)	N1—C11—C35—C34	-66.69 (16)
C6—C4—C10—C11	144.45 (8)	C10—C11—C35—C34	177.83 (12)
C5—C4—C10—C11	21.66 (10)	O1—C11—C35—C36	-123.06 (10)
C5—N1—C11—O1	84.67 (9)	N1—C11—C35—C36	112.51 (10)
C1—N1—C11—O1	-156.69 (8)	C10—C11—C35—C36	-2.97 (11)
C5—N1—C11—C35	-148.89 (9)	C32—C31—C36—C35	-0.47 (17)
C1—N1—C11—C35		C30—C31—C36—C35	
	-30.25 (12) -32.72 (10)		-179.81 (11)
C5—N1—C11—C10	-33.72 (10)	C32—C31—C36—C27	179.65 (11)
C1—N1—C11—C10	84.92 (10)	C30—C31—C36—C27	0.31 (17)
N2—C10—C11—O1	-0.31 (12)	C34—C35—C36—C31	0.23 (17)
C27—C10—C11—O1	125.23 (9)	C11—C35—C36—C31	-179.08 (10)
C4—C10—C11—O1	-110.79 (9)	C34—C35—C36—C27	-179.88 (10)
N2—C10—C11—N1	116.76 (9)	C11—C35—C36—C27	0.81 (13)
C27—C10—C11—N1	-117.70 (9)	C28—C27—C36—C31	0.91 (17)

C4—C10—C11—N1	6.28 (10)	C10—C27—C36—C31	-178.19 (10)
N2—C10—C11—C35	-121.64 (9)	C28—C27—C36—C35	-178.98 (10)
C27—C10—C11—C35	3.90 (11)	C10—C27—C36—C35	1.92 (13)
C4—C10—C11—C35	127.88 (9)		

Hydrogen-bond geometry (Å, °)

Cg7 and Cg9 centroids of the C20–C25 and C31–C36 rings, respectively.

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1—H1O1···N2	0.86(2)	1.96 (2)	2.6253 (14)	133.3 (19)
C24—H24A···N1 ⁱ	0.95	2.61	3.4447 (15)	146
C26—H26C···O1 ⁱ	0.98	2.48	3.4078 (17)	157
C19—H19B···Cg7 ⁱⁱ	0.98	2.82	3.4652 (18)	124
C26—H26B···Cg7 ⁱⁱⁱ	0.98	2.87	3.7720 (14)	154
С9—H9В···Сg9 ^{iv}	0.99	2.87	3.8211 (14)	161

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+2, -z+2; (iii) -x+2, -y+1, -z+2; (iv) -x+1, -y+1, -z+1.

Fig. 1

Fig. 2

