Evaluación Sumativa 2 Thgenieria Civil en Informatica. Mi Ercoles 14 de julio de 2021. O Sumas de Riemann y Area entre curvas. (a) f(x) = 1+ x3, \(\Delta = \left\{ -1, -\frac{1}{2}, 0, \frac{1}{4}, \frac{1}{2}, 1\right\} Solución. Dado que f es creciente en todo IR, espe-Cificamente en el intervalo [-1,1] 'calcu-laremos la Suma Inferior de f con A, con Xin de [xi-1, Xi] = [-1,1]. -1 -1 0 4 1 $5(f,\Delta) = (-\frac{1}{2} - (-1)) \cdot f(-1) + (0 - (-\frac{1}{2})) \cdot f(-\frac{1}{2})$ + (2-0). f(0) + (2-4). f(4) + (1-1). f(2) $= \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot \frac{\cancel{x}}{8} + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot \frac{65}{64} + \frac{1}{2} \cdot \frac{9}{8}$ $=\frac{7}{16}+\frac{1}{4}+\frac{65}{256}+\frac{9}{16}$ $=\frac{5.64}{4.64}+\frac{65}{256}$ $=\frac{320+65}{256}$ = 385 × 1,504 (m²) 256

(b)
$$Y = x^3 + 3x^2 + 2$$
 $x = -3$
 $Y = x^3 + 6x^2 - 25$ $x = \frac{-1 - \sqrt{21}}{2} = x^2$
 $x = 1$

solución.

$$A_{R} = \int_{-3}^{\infty} (x^{3} + 6x^{2} - 25) dx$$

+
$$\int_{\infty}^{1} \left[(x^{3} + 3x^{2} + 2) - (x^{3} + 6x^{2} - 25) \right] dx$$

$$= \left(\frac{1}{64} \left(-1 - \sqrt{21}\right)^4 - \frac{8!}{4}\right) + 6\left(9 + \frac{1}{24}\left(-1 - \sqrt{21}\right)^3\right)$$

$$-25\left(\frac{1}{2}\left(-1 - \sqrt{21} + 3\right) - 3\left(\frac{1}{3} - \frac{1}{24}\left(-1 - \sqrt{21}\right)^3\right)\right)$$

$$+2 + (1 + \frac{1 + \sqrt{21}}{2})$$

$$\approx 0,21 + 49,62$$

$$= 49,83 (u^2)$$

① ② $f(x) = 8 + x^3$, $\Delta = \{-2, -\frac{3}{2}, 0, 1, \frac{3}{2}, 2\}$ Solución.

Dado que f es creciente en todo IR, específicamente en el intervalo [-2,2] calcularemos la Suma Superior de f con A, con xi de [xi-1, xi] = [-2,2].

$$-\frac{1}{2}$$
 $-\frac{3}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$

$$\overline{5}(f,\Delta) = (-\frac{3}{2} - (-2)) \cdot f(-\frac{3}{2}) + (0 - (-\frac{3}{2})) \cdot f(0)$$

$$+(1-0)\cdot f(1) + (\frac{3}{2}-1)\cdot f(\frac{3}{2}) + (2-\frac{3}{2})\cdot f(2)$$

$$= \frac{1}{2} \cdot \frac{3f}{8} + \frac{3}{2} \cdot 8 + 1.9 + \frac{1}{2} \cdot \frac{91}{5} + \frac{1}{2} \cdot \frac{16}{5}$$

$$= \frac{128}{16} + \frac{29.16}{1.16}$$

$$=\frac{128+464}{16}$$

$$=\frac{592}{16}$$

$$= 37 (u^2)$$

D(a) Dato:
$$h(II) = h(-II) = h'(II) = \frac{\pi}{2}$$
 $F(X) = Sen^3(x^2 - 12x + 3x) + \int_{-h(x)}^{h(x)} h(t) dt$
 $f(X) = \int_{-T}^{x} f(X) dx$

Calcular $f''(II)$.

Solución

Usando el T.F.C.-1 para $f(X)$ tenemos que:

 $f'(X) = \int_{-T}^{x} f(X) dx = F(X)$

Ahora, dedo que h es diferenciable en todo IR (por hipó tes:), calculames $f''(X)$. Esto es:

 $f''(X) = F'(X) = [3Mn^2(x^2 - 12x + 34)] \cdot (2x - 12) + \frac{d}{dx} [\int_{-h(x)}^{h(x)} h(t) dt]$

$$f'(x) = (6x - 36) 5 m^{2} (x^{2} - 12x + 36)$$

$$+ h(h(x)) \cdot h'(x) - h(-h(x)) \cdot (-h(x))^{1}$$

Evaluando en x= 1, obtenemos:

$$= (3\pi - 36) 2 m^{2} (\frac{\pi^{2}}{4} - 6\pi + 36) + \lambda(\frac{\pi}{2}) \cdot \frac{\pi}{2} + \lambda(\frac{\pi}{2}) \cdot \frac{\pi}{2}$$

$$= (3\pi - 36) 2 m^{2} (\frac{\pi^{2}}{4} - 6\pi + 36) + \frac{\pi^{2}}{2} \cdot \frac{\pi}{2} + \lambda(\frac{\pi}{2}) \cdot \frac{\pi}{2}$$

2(b) Calcular
$$\widetilde{B} = \int_{0}^{4} x^{5} e^{x^{2}} dx$$

Solveion.

$$B = \int_{0}^{4} x^{5} e^{x^{2}} dx = \int_{0}^{4} x^{4} (x \cdot e^{x^{2}}) dx$$

Usando Integración por partes turemos lo Si quiente:

$$u = x^{4} \quad du = 4x^{3} dx$$

$$dv = x e^{x^{2}} dx \quad v = \int_{0}^{4} x e^{x^{2}} dx = \int_{0}^{4} e^{x^{2}} dx$$

$$B = \underbrace{x^{4} \cdot e^{x^{2}} - 2\int_{0}^{4} x^{2} e^{x^{2}} dx}_{2} = \int_{0}^{4} x^{2} (x \cdot e^{x^{2}}) dx$$

$$\widetilde{u} = x^{2}, \quad d\widetilde{u} = 2x \cdot dx$$

$$\widetilde{u} = x^{2}, \quad d\widetilde{u} = 2x \cdot dx$$

$$\widetilde{v} = x \cdot e^{x^{2}} dx \quad \widetilde{v} = \int_{0}^{4} x e^{x^{2}} dx = \int_{0}^{4} e^{x^{2}} dx$$

$$I = \underbrace{x^{2} \cdot e^{x^{2}} - \int_{0}^{4} 2x e^{x^{2}} dx}_{2} = \int_{0}^{4} e^{x^{2}} e^{x^{2}} dx = \int_{0}^{4} e^{x^{2}} e^{x^{2}} dx$$

$$I = \underbrace{x^{2} \cdot e^{x^{2}} - \int_{0}^{4} 2x e^{x^{2}} dx}_{2} = \int_{0}^{4} e^{x^{2}} e^{x^{2}} dx = \int_{0}^{4}$$

 $D(c) \text{ Dato}: h(\overline{\mu}) = h(\overline{\mu}) = h'(\overline{\mu}) = \overline{\mu}$ $F(x) = S_{2}n^{3}(4x^{2} - 36x + 81) + \int_{-h(x)}^{h(x)} h(t) dt$ $f(x) = \int_{-\pi}^{x} F(n) dn \qquad \text{Calcular } f''(\overline{\mu}).$ Solvcion $Idem \ a \ \mathcal{D}(x), \text{ procedemos } a \ \text{Calcular } f''(x).$ $f''(x) = \frac{d}{dx} \left[\int_{-\pi}^{x} f(x) dn \right] = F(x)$ $f''(x) = f'(x) = \left[3 \operatorname{Sen}^{2}(4x^{2} - 36x + 8) \right] \cdot (8x - 36)$ $+ h(h(x)) \cdot h'(x) - h(-h(x)) \cdot (-h(x))^{1}$ Luego:

 $f''(\overline{x}) = (12\pi - 36) \cdot \text{Sen}^2((\pi - 9)^2) + \frac{\pi^2}{2}$

2) (a) Calcular
$$\widetilde{D} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(a)^3 (x)}{\sqrt{m^3 (x)}} dx$$

Solution

Calculamos:

$$D = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(a)^3 (x)}{\sqrt{m^3 (x)}} dx$$

$$D = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(a)^3 (x)}{\sqrt{m^3 (x)}} dx$$

Usando el thétedo de Sustitución, tendremos:

$$u = \delta m(x), \quad du = cos(x) dx$$

$$D = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} du - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} du$$

$$= \frac{u^{\frac{\pi}{2}}}{u^{\frac{\pi}{2}}} - \frac{u^{\frac{\pi}{2}}}{u^{\frac{\pi}{2}}} + G$$

$$= \frac{u^{\frac{\pi}{2}}}{u^{\frac{\pi}{2}}} - \frac{u^{\frac{\pi}{2}}}{u^{\frac{\pi}{2}}} + G$$

$$= -2 \cdot u^{\frac{\pi}{2}} - \frac{2}{3} \cdot u^{\frac{\pi}{2}} + G$$

$$Volviordo al Problema, Calculamos:$$

$$D = -\left(\frac{2}{\sqrt{m}} + \frac{2}{3} \sqrt{m^3(x)}\right) \begin{vmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{vmatrix}$$

$$= -\left(\frac{2}{\sqrt{1}} + \frac{2}{3} \sqrt{1} - \frac{2}{\sqrt{2}} - \frac{2}{3} \sqrt{(\frac{\pi}{2})^3}\right)$$

= - (2+3-2/2-3-3) = 5#3

(Nos reducimos al prin

(Nos redulimos al primer cuadrante). Gurar Remanada abridedor de x=4.

Solveion.

Como nos reducimos al primer madranty consideraremos:

$$R: \begin{cases} Y = \sqrt{x^3} \\ Y = 8 \\ x = 0 \\ Y = 0 \end{cases}$$

del eje x=4.

De esta manera usamos la definición de volumenes refébido al método de capas CIIIndricas concentricas, parte (a).

res amos la formula:

$$V(5) = 2\pi \int_{a}^{b} |x-c| (f(x) - g(x)) dx$$

donde: a=0, b=4, f(x)=8, $g(x)=\sqrt{x^3}$

Además, 0 = x = 4 = 4 => |x-4| = 4-x.

Con la anterior, calculamos:

$$V(s) = 2\pi \int_{0}^{4} (4-x)(8-\sqrt{x^{3}}) dx$$

$$= 2\pi \int_{0}^{4} (32 - 4\sqrt{x^{3}} - 8x + x\sqrt{x^{3}}) dx$$

$$V(5) = 2\pi \left[\frac{1}{32} \int_{0}^{4} dx - 4 \int_{0}^{4} x^{\frac{3}{2}} dx - 8 \int_{0}^{4} x dx + \int_{0}^{\frac{5}{2}} dx \right]$$

$$V(s) = 2\pi \left[32 \times | \frac{4}{9} - 4 \times \frac{5}{2} | \frac{4}{9} + \frac{3}{2} | \frac{4}{9} + \frac{3}{2} | \frac{4}{9} \right]$$

$$= 2\pi \left[32(4-0) - \frac{3}{5}(4^{\frac{5}{2}} - 0) - 4(16-0) + \frac{2}{5}(4^{\frac{5}{2}} - 0) \right]$$

$$= 2\pi \left[128 - \frac{8}{5} \cdot 32 - 64 + \frac{2}{7} \cdot 128 \right]$$

$$= 2\pi \left(128 - \frac{256}{5} - 64 + \frac{256}{7} \right)$$

$$= 2\pi \left(64 + \frac{1.492 + 1730}{35} \right)$$

$$= 2\pi \left(64 - \frac{512}{35} \right)$$

$$= 2\pi \left(\frac{2.240 - 512}{35} \right)$$

$$= 2\pi \left(\frac{2.240 - 512}{35} \right)$$

$$= 3.456 \pi \left(\frac{3}{2} \right)$$

$$\approx 98,74 \text{ his}$$

donde
$$a = 0$$
, $b = 2$, $f(x) = \sqrt[3]{32} \times \sqrt[3]{32} \times$

$$= \pi \left[\int_{0}^{2} (32x)^{\frac{2}{3}} dx - \int_{0}^{2} x^{4} dx\right]$$

$$= \pi \left[\frac{2}{32^{3}} \int_{0}^{2} \frac{2}{3} dx - \int_{0}^{2} x^{4} dx \right]$$

$$= TT \left[\begin{array}{c|c} 32^{\frac{2}{3}} & \frac{5}{3} & 2 \\ \hline \frac{5}{3} & 0 & -\frac{5}{3} & 0 \end{array} \right]$$

$$= \pi \left[8\sqrt[3]{2 \cdot \frac{3}{5}} \left(2\sqrt[3]{4-0} \right) - \left(\frac{32}{5} - 0 \right) \right]$$

$$= \pi \left[\frac{24 \sqrt[3]{2} \cdot 2\sqrt[3]{4}}{5} - \frac{32}{5} \right]$$

$$= \pi \left(\frac{48}{5} \sqrt[3]{8} - \frac{3^2}{5} \right)$$

$$=\pi\left(\frac{48.2-3^2}{5}\right)$$

$$= TT \left(96 - 32 \right)$$

$$= \pi \cdot \frac{64}{5}$$

$$= 12,8 \pi (h^3)$$

(a) Everema del Valor Medio para integrales (TVM). Sea f E C [a,b]. Entonces, existe C E [a,b] + al que: $\int_{-a}^{b} f(x) dx = f(c) \cdot (b-a)$ (a) $f(x) = \frac{1}{(x+1)^2}$ con $[a_1b] = [0,2]$ Solucion. Dado que f E C [0,2] procedoremos con el T.V.M. para integrales. $\int_{0}^{2} \frac{1}{(x+1)^{2}} dx = f(c) \cdot (2-0)$ coloniamos el lado izguierdo. $\int_{-\sqrt{x+1}}^{2} dx = \int_{-2}^{2} (x+1)^{-2} dx$ $= \frac{(X+1)^{-1}}{-1}$ $= -\left[\frac{1}{(X+1)}\right]^2$ $=-\left(\frac{1}{3}-1\right)$ $=-\left(-\frac{2}{3}\right)$ $\int_{(X+1)^2}^{1} dX = \frac{2}{3}$

Inego: $\frac{2}{3} = f(c), 2$ donde $f(c) = \frac{1}{(c+1)^2}$ Con esto, tenemos lo signiente: $\frac{2}{3} = \frac{2}{(C+1)^2}$ $(=) (C+1)^2 = 3 / \sqrt{}$ |C+1 | = \(\frac{1}{3} \) $C+1 = \sqrt{3} \quad V \quad C+1 = -\sqrt{3}$ $C = -1 + \sqrt{3} \quad V \quad C = -1 - \sqrt{3}$ Pero, -1-53 & [0,2]. Lnogo, el valor de C que satisface el T.V.M. es C = -1+ V3.

(4)(b) f(x) = Vx+1 con [a,b]=[0,3] Solucion De do que f e C C 0,3], procedorenes Con el riso del TVM., procedorenes Decimos que $\int_{0}^{3} \sqrt{x+1} \, dx = f(c) \cdot (3-9)$ Calculamos el lado izquierdo $\int_{D}^{3} (x+1)^{\frac{1}{2}} dx = \underbrace{(x+1)^{\frac{3}{2}}}_{3}$ $=\frac{2}{3}\left(4^{\frac{2}{2}}-4^{\frac{2}{3}}\right)$ $=\frac{2}{3}(8-1)$ = 3.7 $(1)^{3}(x+y)^{2}dx = \frac{14}{3}$ De esta manura: 14 = f(c) · 3, dorde f(c) = Vc+1 Así nos gueda: 14 = VC+1.3 (=) VC+1 = 14 ()2 C+1 = 196 $0 = \frac{186}{81} - \frac{81}{81} = \frac{115}{81} \approx 1,42 \in [0,3]$