Name, group no:	

1. (10 points) Find the limit or prove that it does not exist

$$\lim_{x,y\to 0}\frac{1-\cos(x+2y)}{\sin(xy)}$$

Name, group no:	

2. (10 points) Using Lagrange multipliers find the extrema of the function $f(x,y)=x^2+4xy+y^2$ subject to $x^2+2y^2=16$.

Name, group no:	

3. (10 points) Consider the function $u(x,y)=x^2-4xy+ay^2-\ln(xy)$ for x>0 and y>0. For which values of a the function u is convex?

Name, group no:	

4. (10 points) Find the second order Taylor approximation of a function $f(x,y)=x^5y^3+3x^2y$ at a point x=1,y=2.

Jame, group no:	

5. (10 points) Use Lagrange multipliers to find the height and radius of a cylinder with the maximal volume among those with a surface $S=10\pi$. Make sure you check the second order condition for maximisation.

Name, group no:			
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	

- 6. (10 points) Let $h(x,y) = kx^2 + 6xy + 14y^2 + 4y + 10$.
 - (a) Find the minimal value of the function h for k=2.
 - (b) Using envelope theorem find approximate minimal value of h for k=1.98.

Name, group no:	

7. This is a road construction costs minimization problem. Let the terrain profile be represented by the function $y(t) = \begin{cases} 3-3|t|, & \text{if } |t| \leq 1 \\ 0, & \text{otherwise} \end{cases}$. A road works start from the east of this hill (on the negative half-axis). Excavation costs can be found by the formula

$$I(a,b) = \int_{-b/a}^{0} (at + b - y(t))^{2} dt$$

where at + b is the road profile we need to find with the constants a > 0, b > 0, and $b/a \ge 1$.

- (a) (15 points) Find the Hessian matrix of I(a, b) and check its sign-definitness.
- (b) (5 points) Let (a^*, b^*) be the solution of the first-order conditions for the minimization problem. Justify your choice for the (a^*, b^*) values.

Variant μ Good luck! Total time: 120 min

Jame, group no:	

8. (continuation of problem 7) (20 points)

Allowable grade of the road satisfies constraint $a \leq 1$. Under this constraint solve the problem $I(a,b) \to \min$ with respect to b.

Name, group no:	

1. (10 points) Find the limit or prove that it does not exist

$$\lim_{x,y\to 0} \frac{1-\cos(x+3y)}{\sin(xy)}$$

Name, grou	ip no:		
		• • • • • • • • • • • • • • • • • • • •	

2. (10 points) Using Lagrange multipliers find the extrema of the function $f(x,y)=x^2+6xy+y^2$ subject to $x^2+2y^2=16$.

Name, group no:	

3. (10 points) Consider the function $u(x,y)=x^2-6xy+ay^2-\ln(xy)$ for x>0 and y>0. For which values of a the function u is convex?

Name, group no:	

4. (10 points) Find the second order Taylor approximation of a function $f(x,y)=x^5y^3+4x^2y$ at a point x=1,y=2.

Jame, group no:	

5. (10 points) Use Lagrange multipliers to find the height and radius of a cylinder with the maximal volume among those with a surface $S=12\pi$. Make sure you check the second order condition for maximisation.

Name, group no:	
••••••	

- 6. (10 points) Let $h(x,y) = kx^2 + 4xy + 14y^2 + 4y + 10$.
 - (a) Find the minimal value of the function h for k=2.
 - (b) Using envelope theorem find approximate minimal value of h for k=1.98.

Name, group no:	

7. This is a road construction costs minimization problem. Let the terrain profile be represented by the function $y(t) = \begin{cases} 3-3|t|, & \text{if } |t| \leq 1 \\ 0, & \text{otherwise} \end{cases}$. A road works start from the east of this hill (on the negative half-axis). Excavation costs can be found by the formula

$$I(a,b) = \int_{-b/a}^{0} (at + b - y(t))^{2} dt$$

where at + b is the road profile we need to find with the constants a > 0, b > 0, and $b/a \ge 1$.

- (a) (15 points) Find the Hessian matrix of I(a, b) and check its sign-definitness.
- (b) (5 points) Let (a^*, b^*) be the solution of the first-order conditions for the minimization problem. Justify your choice for the (a^*, b^*) values.

Name, group no:

8. (continuation of problem 7) (20 points)

Allowable grade of the road satisfies constraint $a \leq 1$. Under this constraint solve the problem $I(a,b) \to \min$ with respect to b.

Jame, group no:	
	• • • • • • • • • • • • • • • • • • • •

1. (10 points) Find the limit or prove that it does not exist

$$\lim_{x,y\to 0} \frac{1-\cos(x+4y)}{\sin(xy)}$$

Name, group no:	

2. (10 points) Using Lagrange multipliers find the extrema of the function $f(x,y)=x^2+8xy+y^2$ subject to $x^2+2y^2=16$.

Name, group no:	

3. (10 points) Consider the function $u(x,y)=x^2-8xy+ay^2-\ln(xy)$ for x>0 and y>0. For which values of a the function u is convex?

Name, group no:	

4. (10 points) Find the second order Taylor approximation of a function $f(x,y) = x^5y^3 + 7x^2y$ at a point x = 1, y = 2.

Name, group no:	

5. (10 points) Use Lagrange multipliers to find the height and radius of a cylinder with the maximal volume among those with a surface $S=14\pi$. Make sure you check the second order condition for maximisation.

Name, group no:	

- 6. (10 points) Let $h(x,y) = kx^2 + 6xy + 12y^2 + 4y + 10$.
 - (a) Find the minimal value of the function h for k=2.
 - (b) Using envelope theorem find approximate minimal value of h for k=1.98.

Name, group no:	

7. This is a road construction costs minimization problem. Let the terrain profile be represented by the function $y(t) = \begin{cases} 3-3|t|, & \text{if } |t| \leq 1 \\ 0, & \text{otherwise} \end{cases}$. A road works start from the east of this hill (on the negative half-axis). Excavation costs can be found by the formula

$$I(a,b) = \int_{-b/a}^{0} (at + b - y(t))^{2} dt$$

where at + b is the road profile we need to find with the constants a > 0, b > 0, and $b/a \ge 1$.

- (a) (15 points) Find the Hessian matrix of I(a, b) and check its sign-definitness.
- (b) (5 points) Let (a^*, b^*) be the solution of the first-order conditions for the minimization problem. Justify your choice for the (a^*, b^*) values.

Name, group no:	

8. (continuation of problem 7) (20 points)

Allowable grade of the road satisfies constraint $a \leq 1$. Under this constraint solve the problem $I(a,b) \to \min$ with respect to b.

Name, group no:	

1. (10 points) Find the limit or prove that it does not exist

$$\lim_{x,y\to 0}\frac{1-\cos(x+5y)}{\sin(xy)}$$

Name, grou	ip no:		
		 •	

2. (10 points) Using Lagrange multipliers find the extrema of the function $f(x,y)=x^2-4xy+y^2$ subject to $x^2+2y^2=16$.

Name, grou	ip no:		
		 •	

3. (10 points) Consider the function $u(x,y)=x^2+4xy+ay^2-\ln(xy)$ for x>0 and y>0. For which values of a the function u is convex?

Name, group no:	

4. (10 points) Find the second order Taylor approximation of a function $f(x,y)=x^5y^3-3x^2y$ at a point x=1,y=2.

Name, group no:			
	• • • • • •	 • • •	• • •

5. (10 points) Use Lagrange multipliers to find the height and radius of a cylinder with the maximal volume among those with a surface $S=16\pi$. Make sure you check the second order condition for maximisation.

Name, group no:	

- 6. (10 points) Let $h(x,y) = kx^2 + 2xy + 14y^2 + 4y + 10$.
 - (a) Find the minimal value of the function h for k=2.
 - (b) Using envelope theorem find approximate minimal value of h for k=1.98.

Name, group no:	

7. This is a road construction costs minimization problem. Let the terrain profile be represented by the function $y(t) = \begin{cases} 3-3|t|, & \text{if } |t| \leq 1 \\ 0, & \text{otherwise} \end{cases}$. A road works start from the east of this hill (on the negative half-axis). Excavation costs can be found by the formula

$$I(a,b) = \int_{-b/a}^{0} (at + b - y(t))^{2} dt$$

where at + b is the road profile we need to find with the constants a > 0, b > 0, and $b/a \ge 1$.

- (a) (15 points) Find the Hessian matrix of I(a, b) and check its sign-definitness.
- (b) (5 points) Let (a^*, b^*) be the solution of the first-order conditions for the minimization problem. Justify your choice for the (a^*, b^*) values.

Name, group no:	

8. (continuation of problem 7) (20 points)

Allowable grade of the road satisfies constraint $a \leq 1$. Under this constraint solve the problem $I(a,b) \to \min$ with respect to b.