Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №0

по дисциплине «Моделирование»

Выполнил: Студент гр. ИВ-622 Ерёмин И. И.

Проверила: Ассистент Кафедры ВС Петухова Я.В.

СОДЕРЖАНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	3
ГЕНЕРАТОРЫ СЛУЧАЙНЫХ ЧИСЕЛ	5
РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ	5
ЗАКЛЮЧЕНИЕ	9
ПРИЛОЖЕНИЕ	10

ПОСТАНОВКА ЗАДАЧИ

Необходимо взять готовую реализацию трёх генераторов псевдослучайных чисел и убедиться в их равномерном распределении, используя такие параметры как χ^2 и автокорреляция.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Пусть X - исследуемая случайная величина. Требуется проверить гипотезу H_0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений над случайной величиной X: $X^n = (x_1, \dots, x_n), x_i \in [a, b], \forall_i = 1 \dots n$, и по ней построить эмпирический закон распределения F'(x) случайной величины X.

Гипотеза H_0' : X^n порождается ранее упомянутой функцией F'(x). Разделим [a,b] на k непересекающихся интервалов $[a_i,b_i]$, $i=1\dots k$.

Пусть n_i — количество наблюдений в j-м интервале;

 $p_j = F(b_j) - F(a_j)$ - вероятность попадания наблюдения в j-й интервал при выполнении гипотезы H_0' ;

 $E_j = np_j$ - ожидаемое число попаданий в j-й интервал; тогда распределение Хи-квадрат с числом степеней свободы k-1 будет иметь следующую статистику:

$$\chi^2 = \sum_{j=1}^k \frac{(n_j - E_j)^2}{E_j} \sim \chi_{k-1}^2$$

В зависимости от значения критерия χ^2 гипотеза H_0 может приниматься либо отвергаться:

- $\chi_1^2 < \chi^2 < \chi_2^2$ гипотеза H_0 выполняется.
- $\chi^2 \leq \chi_1^2$ попадает в левый «хвост» распределения. Следовательно, теоретические и практические значения очень близки. Если, к примеру, происходит проверка генератора случайных чисел, который сгенерировал n чисел из отрезка [0,1] и выборка X^n распределена равномерно на [0,1], то генератор

J

нельзя называть случайным (гипотеза случайности не выполняется), т.к. выборка распределена слишком равномерно, но гипотеза H_0 выполняется.

• $\chi^2 \geq \chi_2^2$ — попадает в правый «хвост» распределения, гипотеза H_0 отвергается.

Автокорреляционная функция – предназначена для оценки корреляции между смещенными копиями последовательностей.

$$a(\tau) = \frac{\sum\limits_{i=1}^{N-\tau} (x_i - Ex) (x_{i+\tau} - Ex)}{(N-\tau) * S^2(x)},$$
где

Ех - математическое ожидание — среднее значение случайной величины при стремлении количества выборок или количества её измерений (иногда говорят — количества испытаний) к бесконечности:

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 $S^{2}(x)$ - выборочная дисперсия случайной величины — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки:

$$S^{2}(x) = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \dot{x})^{2} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - (\dot{x})^{2};$$

 $x_{i+\tau}$ — множество значений другой случайной величины (полученной из значений прошлой случайной величины, но с некоторым смещением);

n – мощность множества случайных величин;

т – смещение последовательности.

ГЕНЕРАТОРЫ СЛУЧАЙНЫХ ЧИСЕЛ

В качестве генератора случайных чисел были взяты:

- Стандартный генератор для языка Python
- Второй генератор случайных чисел альтернативный стандартному SystemRandom. В модуле random есть класс SystemRandom, внутри реализации которого идет обращение как раз к os.urandom. В этом альтернативном генераторе реализованы те же функции. Она выдает так же псевдослучайные данные, но они зависят дополнительно и от операционной системы. Результаты используются в криптографии. Есть недостаток то что функции SystemRandom отрабатывают в несколько раз дольше.
- Встроенный в NumPy генератор псевдослучайных чисел в подмодуле random. Числа являются псевдослучайными, в том плане что, они сгенерированы детерминистически порождающего элемента (seed ИЗ рассредоточены в статистическом сходстве с случайным образом. Для генерации NumPy использует особенный алгоритм, который имеет название Mersenne Twister – это генератор случайных чисел на основе алгоритма «Вихря Марсенна». Вихрь Мерсенна — генератор псевдослучайных чисел основывается на свойствах простых чисел Мерсенна (отсюда название) и обеспечивает быструю генерацию высококачественных по критерию случайности псевдослучайных чисел. Вихрь Мерсенна лишён многих недостатков, присущих другим ГПСЧ, таких малый период, предсказуемость, легко выявляемые статистические закономерности.

РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ

При помощи генератора псевдослучайных числе было сгенерировано 10 000, и 1 00 000 случайных значений в диапазоне от 0 до 1. Диапазон от 0 до 1 был поделен на 100 и 1 000 равномерных отрезков. Далее считаем количество попаданий на отрезки.

Стандартный рандом: Всего точек:10000 Всего интервалов:1000 Хи квадрат:987.1999999999997 Всего точек:1000000 Всего интервалов:1000 Хи квадрат:1065.9140000000002 Всего точек:1000000 Хи квадрат:77.230200000000002

Рисунок 1 – Результаты вычислений «хи-квадрат» для ГСЧ: Стандартный random

SystemRandom: Всего точек:10000 Всего интервалов:1000 Хи квадрат:1043.80000000000013 Всего точек:1000000 Всего интервалов:1000 Хи квадрат:1005.542 Всего точек:1000000 Хи квадрат:104.900400000000003

Рисунок 2 – Результаты вычислений «хи-квадрат» для ГСЧ: SystemRandom

NumPy: Всего точек:10000 Всего интервалов:1000 Хи квадрат:1006.1999999999999 Всего точек:1000000 Всего интервалов:1000 Хи квадрат:1026.7899999999993 Всего точек:1000000 Хи квадрат:87.80660000000007

Рисунок 3 – Результаты вычислений «хи-квадрат» для ГСЧ: NumPY

Была рассчитана автокорреляция для каждого ГСЧ при $N=1.000.000,\,k=1.000$ и k=100. В таблице N1 показаны результаты генерации случайных чисел каждым ГСЧ с изменением количества чисел и количества интервалов.

Таблица №1

N - количество чисел		N - количество чисел	N = 10 000	N = 1 000 000	N = 1 000 000
k - количество интервалов		количество интервалов	k = 1 000	k = 1 000	k = 100
Генераторы случайных чисел		Стандартный random языка Python	$\chi^2_{_{9\kappa cn, \ random}} = 987.199$	$\chi^2_{_{9KCN, random}} = 1065.914$	$\chi^2_{_{9KCN, random}} = 77.230$
	чисел	SystemRandom	$\chi^2_{_{9KCN, SystemRandom}} = 1043.8$	$\chi^2_{_{\mathcal{H}CN, SystemRandom}} = 1005.542$	$\chi^2_{_{9KCN, SystemRandom}} = 104.9$
		NumPy (Marsenne twister)	$\chi^2_{_{9KCN, NumPy}} = 1006.199$	$\chi^2_{_{9KCN, NumPy}} = 1026.789$	$\chi^2_{_{9\kappa cn, NumPy}}$ =87.806

```
a(t): -0.00015510106307124803
a(t): -9.502794609951921e-05
a(t): -3.293030287239702e-05
a(t): 5.6717856130100635e-06
a(t): 3.70662890042748e-05
a(t): 3.1229065847522166e-05
τ: /
a(t): 1.1552471783893596e-05
a(t): -6.694497435108717e-05
a(t): -2.407503600131013e-05
t: 10
a(t): 3.3139513743229316e-05
t: 11
a(t): 3.134106124032582e-05
a(t): -3.4915659166686736e-05
t: 13
a(t): 4.4351040541599696e-05
a(t): -5.126711908074029e-05
t: 15
a(t): -0.00014914539104447569
a(t): -8.737268881258275e-05
a(t): -0.00015208758477398284
     7.507619071155462e-05
a(t): -2.971716913247061e-05
a(t): 4.1653585051034456e-05
```

Рисунок 4 — Результат расчета коэффициента корреляции генератором: NumPY

```
a(t): -8.906397061711737e-06
t: 2
a(t): 3.3880150198798624e-05
t: 3
a(t): 0.00012524557321904445
t: 4
a(t): -7.078808210108819e-05
t: 5
a(t): -0.00017826665708479153
t: 6
a(t): 7.279629682775103e-05
t: 7
a(t): -0.00010300330901444865
t: 8
a(t): 0.00011752774911759268
t: 9
a(t): -2.028110087604914e-05
t: 10
a(t): 1.4892584828803171e-06
a(t): -7.598183139808489e-05
t: 12
a(t): -8.375638179571828e-05
t: 13
t: 13
a(t): 0.00015353724919966812
t: 14
a(t): 0.00011720040638821478
t: 15
a(t): -1.0728820064648161e-05
t: 16
a(t): -0.00010635763771899102
t: 17
a(t): -1.1042324988726052e-05
t: 18
a(t): -6.879178768772822e-06
t: 19
a(t): -5.294894101875272e-05
t: 20
a(t): 2.7980420650833437e-05
```

Рисунок 5 — Результат расчета коэффициента корреляции генератором: SystemRandom

```
t: 1
a(t): 7.623779722957886e-05
t: 2
a(t): 8.635717053142516e-05
t: 3
a(t): 3.036687340900454e-05
t: 4
a(t): 3.563566891960648e-05
t: 5
a(t): -6.701104736598013e-05
t: 6
a(t): 5.047517400933642e-06
t: 7
a(t): -8.710437118159039e-05
t: 8
a(t): 9.839616589100559e-05
t: 9
a(t): -7.622048919319192e-06
t: 10
a(t): -3.933716429982644e-05
t: 11
a(t): -8.101133226410921e-05
t: 12
a(t): -0.0001282543943977042
t: 13
a(t): -0.3649181880791e-06
t: 15
a(t): 8.853925571094057e-05
t: 16
a(t): 5.108167443304017e-05
t: 17
a(t): 0.00010987666633659189
t: 18
a(t): 6.909283970276065e-05
t: 19
a(t): 0.00012797761570141106
t: 20
a(t): -6.344652899330486e-05
```

Рисунок 6 — Результат расчета коэффициента корреляции Генератором: Стандартный random

Исходя из выше представленных данных можно сделать вывод, что числа действительно являются случайными, так как значения автокорреляции стремятся к нулю.

ЗАКЛЮЧЕНИЕ

В рамках лабораторной работы были проведены эксперименты с тремя генераторами случайных чисел. При помощи этих генераторов произвели эксперимент по критерию Пирса и автокорреляции.

Исходя из результатов эксперимента, мы видим, что критерии «хи-квадрат» примерно равны $\chi^2 = 1065.914$, $\chi^2 = 1005.542$, $\chi^2 = 1026.789$, также можем заметить, что «хи-квадрат» табличного равен $\chi^2_{\text{таб}} = 1142.848$. Следовательно, $\chi^2_{\text{эксп}} < \chi^2_{\text{таб}}$, отсюда мы можем сделать вывод о том, что гипотезы о равновероятном распределении в генераторах случайных чисел принимается. В противном случае, если бы значение $\chi^2_{\text{эксп}}$ оказалось бы в критической области (было бы ровно или больше чем $\chi^2_{\text{таб}}$), то гипотеза была бы отклонена. Следовательно, для всех тех трех различных генераторов, которые мы взяли, гипотеза принимается.

Автокорреляционная функция при изменении параметра τ (смещение в последовательности от 1 до половины наших интервалов) приближена к нулю, что прослеживается в каждом из наших проведенных экспериментах — это говорит нам об очень слабой силе корреляции. Она показывает, что зависимость между данными крайне мала, а также можно отметить, что числа генерируются случайным образом.

ПРИЛОЖЕНИЕ

```
import random
import numpy as np
from math import sqrt
import typing as tp
def get_float_rand() -> float:
  return float(random.random())
def get_SystemRandom() -> float:
  r = random.SystemRandom()
  rand = r.random()
  return float(rand)
def get_NumPy_rand() -> float:
  rnd = np.random.sample()
  return float(rnd)
def mat_waiting(N: int, x: tp.Sequence[int]) -> float:
  i = 0 Ex = 0
  while i < N:
     Ex += x[i] * (1 / N)
     i += 1
  return float(Ex)
def sample_variance(N: int, x: tp.Sequence[int]) -> float:
  i = 0
  Sx = 0
  Ex = mat\_waiting(N, x)
  while i < N:
     Sx += (x[i] + Ex) ** 2
     i += 1
  Sx = Sx / N
  return float(Sx)
def autocorrelation(offset: int, N: int, x: tp.Sequence[int], Ex: float, S2x: float) -> float:
  R = 0
  i = 0
  while i < N - offset:
```

```
R += (x[i] - Ex) * (x[i+offset] - Ex)
     i += 1
  R = R / ((N - offset) * S2x)
  return float(R)
N = 1000000
K = 1000
y = range(N)
\mathbf{x} = []
array = [0] * K
ksi = 0
offset = 1
for k in y:
  rand = get_float_rand()
  x.append(rand)
  inter = rand /(1/K)
  array[int(inter)] += 1
print('Bceгo точек:' + str(N))
print('Bcero интервалов:' + str(K))
avg = 0
for n in x:
  avg += n
avg = avg / (N)
print('Сред. арифм. :' + str(avg))
i = 0
summary = 0
while i < len(x):
  summary += (x[i] - avg) ** 2
deviation = sqrt((1 / N) * summary)
print('Сред. квадр. откл. :' + str(deviation))
p_i = 1 / K
i = 0
while i < K:
  ksi += (((array[i] - p_i * N) ** 2) / (p_i * N))
  i += 1
print('Кси квадрат:' + str(ksi))
Ex = mat\_waiting(N, x)
```

```
\begin{split} S2x &= sample\_variance(N, x) \\ i &= 0 \\ offset &= 1 \\ while &i < K \, / \, 2 \text{:} \\ R &= autocorrelation(offset, N, x, Ex, S2x) \\ print('offset: ' + str(offset)) \\ print('R: ' + str(R)) \\ &i += 1 \\ offset += 1 \end{split}
```