学籍番号									氏名	
------	--	--	--	--	--	--	--	--	----	--

学籍番号と氏名は丁寧に記載すること

「離散数学・オートマトン」確認テスト

2020/11/17

問1 以下のグラフG = (V, E)を図示しなさい。

$$V = \{v_0, v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}$$

$$\partial^{+}e_{0} = v_{0}, \qquad \partial^{-}e_{0} = v_{1} \qquad \partial^{+}e_{1} = v_{0}, \qquad \partial^{-}e_{1} = v_{2} \\
 \partial^{+}e_{2} = v_{1}, \qquad \partial^{-}e_{2} = v_{5} \qquad \partial^{+}e_{3} = v_{2}, \qquad \partial^{-}e_{3} = v_{1} \\
 \partial^{+}e_{4} = v_{3}, \qquad \partial^{-}e_{4} = v_{2} \qquad \partial^{+}e_{5} = v_{3}, \qquad \partial^{-}e_{5} = v_{4} \\
 \partial^{+}e_{6} = v_{4}, \qquad \partial^{-}e_{6} = v_{0} \qquad \partial^{+}e_{7} = v_{4}, \qquad \partial^{-}e_{7} = v_{5} \\
 \partial^{+}e_{8} = v_{5}, \qquad \partial^{-}e_{8} = v_{3}$$

解答例

問2 以下のグラフを記号で表しなさい。

解答例 始めに、辺から頂点への写像 ∂^{\pm} を使った表現を示す。

$$V = \{v_0, v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9\}$$

$\partial^+ e_0 = v_0,$	$\partial^- e_0 = v_1$	$\partial^+ e_1 = v_0,$	$\partial^- e_1 = v_4$
$\partial^+ e_2 = v_1,$	$\partial^- e_2 = v_5$	$\partial^+ e_3 = v_1,$	$\partial^- e_3 = v_3$
$\partial^+ e_4 = v_2,$	$\partial^- e_4 = v_0$	$\partial^+ e_5 = v_2,$	$\partial^- e_5 = v_1$
$\partial^+ e_6 = v_2,$	$\partial^- e_6 = v_4$	$\partial^+ e_7 = v_3,$	$\partial^- e_7 = v_2$
$\partial^+ e_8 = v_4,$	$\partial^- e_8 = v_5$	$\partial^+ e_9 = v_5,$	$\partial^- e_9 = v_3$

次に、頂点から辺の集合への写像 δ^{\pm} を用いた表現を示す。

$$\delta^{+}v_{0} = \{e_{0}, e_{1}\}, \qquad \delta^{-}v_{0} = \{e_{4}\}$$

$$\delta^{+}v_{1} = \{e_{2}, e_{3}\}, \qquad \delta^{-}v_{1} = \{e_{0}, e_{5}\}$$

$$\delta^{+}v_{2} = \{e_{4}, e_{5}, e_{6}\}, \qquad \delta^{-}v_{2} = \{e_{7}\}$$

$$\delta^{+}v_{3} = \{e_{7}\}, \qquad \delta^{-}v_{3} = \{e_{3}, e_{9}\}$$

$$\delta^{+}v_{4} = \{e_{8}\}, \qquad \delta^{-}v_{4} = \{e_{1}, e_{6}\}$$

$$\delta^{+}v_{5} = \{e_{9}\}, \qquad \delta^{-}v_{5} = \{e_{2}, e_{8}\}$$