### **DATA ANALYSIS PYTHON PROJECT - BLINKIT ANALYSIS**

# **Import Libraries**

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
```

# **Import Raw Data**

```
In [2]: df = pd.read_csv("Blinkit Analysis/blinkit_data.csv")
```

# Sample Data

```
In [3]: df.head(10)
```

| - 1    | 7     |   |
|--------|-------|---|
| $\cap$ | 1 2 1 | 0 |
| ou t   | 101   | 0 |
|        |       |   |

|   | Item Fat<br>Content | Item<br>Identifier | Item Type                | Outlet<br>Establishment<br>Year | Outlet<br>Identifier | Outlet<br>Location<br>Type | Outlet<br>Size | Outlet Type          | Item<br>Visibility | Item<br>Weight | Sales    | Rating |
|---|---------------------|--------------------|--------------------------|---------------------------------|----------------------|----------------------------|----------------|----------------------|--------------------|----------------|----------|--------|
| 0 | Regular             | FDX32              | Fruits and<br>Vegetables | 2012                            | OUT049               | Tier 1                     | Medium         | Supermarket<br>Type1 | 0.100014           | 15.10          | 145.4786 | 5.0    |
| 1 | Low Fat             | NCB42              | Health and<br>Hygiene    | 2022                            | OUT018               | Tier 3                     | Medium         | Supermarket<br>Type2 | 0.008596           | 11.80          | 115.3492 | 5.0    |
| 2 | Regular             | FDR28              | Frozen<br>Foods          | 2010                            | OUT046               | Tier 1                     | Small          | Supermarket<br>Type1 | 0.025896           | 13.85          | 165.0210 | 5.0    |
| 3 | Regular             | FDL50              | Canned                   | 2000                            | OUT013               | Tier 3                     | High           | Supermarket<br>Type1 | 0.042278           | 12.15          | 126.5046 | 5.0    |
| 4 | Low Fat             | DRI25              | Soft Drinks              | 2015                            | OUT045               | Tier 2                     | Small          | Supermarket<br>Type1 | 0.033970           | 19.60          | 55.1614  | 5.0    |
| 5 | low fat             | FDS52              | Frozen<br>Foods          | 2020                            | OUT017               | Tier 2                     | Small          | Supermarket<br>Type1 | 0.005505           | 8.89           | 102.4016 | 5.0    |
| 6 | Low Fat             | NCU05              | Health and<br>Hygiene    | 2011                            | OUT010               | Tier 3                     | Small          | Grocery<br>Store     | 0.098312           | 11.80          | 81.4618  | 5.0    |
| 7 | Low Fat             | NCD30              | Household                | 2015                            | OUT045               | Tier 2                     | Small          | Supermarket<br>Type1 | 0.026904           | 19.70          | 96.0726  | 5.0    |
| 8 | Low Fat             | FDW20              | Fruits and<br>Vegetables | 2000                            | OUT013               | Tier 3                     | High           | Supermarket<br>Type1 | 0.024129           | 20.75          | 124.1730 | 5.0    |
| 9 | Low Fat             | FDX25              | Canned                   | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.101562           | NaN            | 181.9292 | 5.0    |
|   |                     |                    |                          |                                 |                      |                            |                |                      |                    |                |          |        |

In [4]: df.tail(10)

| $\cap \cdot \cdot \perp \Gamma$ | 4 T . |
|---------------------------------|-------|
| UUTTIZ                          | + 1 : |

|      | Item Fat<br>Content | Item<br>Identifier | Item Type                | Outlet<br>Establishment<br>Year | Outlet<br>Identifier | Outlet<br>Location<br>Type | Outlet<br>Size | Outlet Type          | Item<br>Visibility | Item<br>Weight | Sales    | Rating |
|------|---------------------|--------------------|--------------------------|---------------------------------|----------------------|----------------------------|----------------|----------------------|--------------------|----------------|----------|--------|
| 8513 | Regular             | DRY23              | Soft Drinks              | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.108568           | NaN            | 42.9112  | 4.0    |
| 8514 | low fat             | FDA11              | Baking<br>Goods          | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.043029           | NaN            | 94.7436  | 4.0    |
| 8515 | low fat             | FDK38              | Canned                   | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.053032           | NaN            | 149.1734 | 4.0    |
| 8516 | low fat             | FDO38              | Canned                   | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.072486           | NaN            | 78.9986  | 4.0    |
| 8517 | ' low fat           | FDG32              | Fruits and<br>Vegetables | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.175143           | NaN            | 222.3772 | 4.0    |
| 8518 | low fat             | NCT53              | Health and<br>Hygiene    | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.000000           | NaN            | 164.5526 | 4.0    |
| 8519 | low fat             | FDN09              | Snack<br>Foods           | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.034706           | NaN            | 241.6828 | 4.0    |
| 8520 | low fat             | DRE13              | Soft Drinks              | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.027571           | NaN            | 86.6198  | 4.0    |
| 8521 | reg                 | FDT50              | Dairy                    | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.107715           | NaN            | 97.8752  | 4.0    |
| 8522 | reg                 | FDM58              | Snack<br>Foods           | 1998                            | OUT027               | Tier 3                     | Medium         | Supermarket<br>Type3 | 0.000000           | NaN            | 112.2544 | 4.0    |

# Size of Data

In [5]: print("Size of data is:", df.shape)

Size of data is: (8523, 12)

### Field (col name) of Data

#### **Dataypes**

```
In [7]: df.dtypes
Out[7]: Item Fat Content
                                       object
                                       object
         Item Identifier
         Item Type
                                       object
         Outlet Establishment Year
                                        int64
         Outlet Identifier
                                       object
        Outlet Location Type
                                       object
         Outlet Size
                                       object
         Outlet Type
                                       object
         Item Visibility
                                      float64
        Item Weight
                                      float64
         Sales
                                      float64
         Rating
                                      float64
        dtype: object
```

## Data Cleaning - Remove inconsistancy

```
In [10]: df['Item Fat Content']
Out[10]: 0
                 Regular
                 Low Fat
          1
          2
                 Regular
                 Regular
          3
                 Low Fat
                   . . .
         8518
                  Low Fat
          8519
                 Low Fat
         8520
                 Low Fat
                 Regular
          8521
         8522
                 Regular
         Name: Item Fat Content, Length: 8523, dtype: object
In [11]: df['Item Fat Content'].dtype
Out[11]: dtype('0')
In [12]: df['Item Fat Content'].str.contains(' ')
Out[12]: 0
                 False
                  True
          1
          2
                  False
          3
                  False
                   True
                  . . .
         8518
                  True
         8519
                   True
         8520
                   True
         8521
                 False
                 False
          8522
         Name: Item Fat Content, Length: 8523, dtype: bool
In [13]: ((df.map(lambda x: str(x).strip()) != df.map(str)).any().any())
Out[13]: np.False_
In [14]: (df.astype(str) != df.astype(str).apply(lambda x: x.str.strip())).any()
```

```
Out[14]: Item Fat Content
                                      False
         Item Identifier
                                      False
         Item Type
                                      False
         Outlet Establishment Year
                                      False
         Outlet Identifier
                                      False
         Outlet Location Type
                                      False
         Outlet Size
                                      False
         Outlet Type
                                      False
         Item Visibility
                                      False
         Item Weight
                                      False
         Sales
                                      False
         Rating
                                      False
         dtype: bool
```

#### **BUSINESS REQUIREMENTS**

#### **KIP's REQUIREMENTS**

```
In [15]: #total sales
    # col name = Expression - action
    Total_Sales = df['Sales'].sum()

#avg sales
    Avg_sales = df['Sales'].mean()

#avg rating
    Avg_ratings = df['Rating'].mean()

#no of item sold
    Total_no_item_sold = df['Sales'].count()

In [16]: #Display

print(f"Total Sales : ${Total_Sales:,.0f}")
    print(f"Average Sales: ${Avg_sales:.0f}")
    print(f"No of Item Sold: (Total_no_item_sold:,.0f}")
    print(f"Average Rating: {Avg_ratings:.1f}")
```

Total Sales: \$1,201,681 Average Sales: \$141 No of Item Sold: 8,523 Average Rating: 4.0

#### **CHART'S REQUIREMENTS**

#### **Total sales by Fat Content**

#### Sales By Fat Content



### Total sales by Item Type

```
f'{bar.get_height():,.0f}', ha = 'center', va = 'bottom', fontsize = 8)
plt.tight_layout()
plt.show()
```



Fat Content b Outlet for Total Sales

```
In [19]: Outlet_Content = df.groupby(['Outlet Location Type', 'Item Fat Content'])['Sales'].sum().unstack() #convert row into col regul
Outlet_Content = Outlet_Content[['Regular', 'Low Fat']] # to ensure bar dont overlap on each others

ax = Outlet_Content.plot(kind = 'bar', figsize = (9, 5), title ='Outlet Tire by Item Fat Content')
plt.xlabel('Outlet Location Tier')
plt.ylabel('Item Fat Content')
plt.tight_layout()
plt.show()
```



**Total Sales by Outlet Establishment** 

```
In [20]: Total_sales_by_establishment = df.groupby(['Outlet Establishment Year'])['Sales'].sum().sort_index() #to take indexes in sort

plt.figure(figsize = (9,5))
plt.plot(Total_sales_by_establishment.index, Total_sales_by_establishment.values, marker = 'o', linestyle = '-')

plt.xlabel('Total Sales')
plt.ylabel('Outlet Establishment Year')
plt.title('Total Sales by Outlet Establishment Year')

for x, y in zip(Total_sales_by_establishment.index, Total_sales_by_establishment.values):
    plt.text(x,y, f'{y:,.0f}', ha='center', va= 'bottom', fontsize = 9)

plt.tight_layout()
plt.show()
```

#### Total Sales by Outlet Establishment Year



## **Select By Outlet Size**

```
In [21]: sales_by_size = df.groupby('Outlet Size')['Sales'].sum()

plt.figure(figsize=(5,5)) # optional
plt.pie(sales_by_size, labels = sales_by_size.index, autopct = '%1.1f%%', startangle = 90)

plt.title('Outlet Sales by Size')
```

plt.tight\_layout() # optional - but if we are applying any size to figure then it is good practice to tight\_layout just to avo plt.show()

#### Outlet Sales by Size



## **Select By Outlet Size**

```
In [25]: sales_by_location = df.groupby('Outlet Location Type')['Sales'].sum().reset_index()
    sales_by_location= sales_by_location.sort_values( 'Sales' , ascending = False)

plt.figure(figsize=(7, 3)) # Smaller height, enough width
    ax = sns.barplot(x='Sales', y='Outlet Location Type', data=sales_by_location)
```

```
plt.title('Total Sales by Outlet Location Type')
plt.xlabel('Total Sales')
plt.ylabel('Outlet Location Type')
plt.tight_layout()  # Ensures Layout fits without scroll
plt.show( )
```

#### Total Sales by Outlet Location Type



In [ ]: