Midterm BUEC 333

June 19, 2014, 12:30-14:20

Handing in your midterm

- On the **front page of your answer sheet**, write (i) your name; (ii) your student ID. On the **front page of this document** (the questions), write: (i) your name; and (ii) your student ID.
- If you finish this exam **before 14:00**, come forward and hand in the documents: (i) the answer sheet, (ii) your answer sheet. If you finish it **after 14:00**, please stay seated until we come by to pick things up at 14:20.

Unless otherwise noted, provide: (i) the answer; (ii) an explanation. A correct answer with correct explanation earns 1 point per question.

1 Probability

You have a random sample (X_1, X_2, \dots, X_n) of measurements of X. The random variable X has mean $\mu_x = E(X)$ and variance $\sigma_x^2 = Var(X)$. The sample average is $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Which one of the following three statements about \bar{X} and μ_x is true?
 - (a) $\bar{X} = \mu_x$.
 - (b) $Var(X_1) = Var(\mu_x)$.
 - (c) $E(\bar{X}) = E(X_1) = \mu_x$.
- 2. Show that $Var(\bar{X}) = \sigma_x^2/n$. Carefully state what you are doing at each step of the derivation.

Consider the joint probability distribution presented in Table 1.

3. For each of the following statements (a)-(h), state whether the statement is true. No explanation necessary. Correct answer: 0.25. No answer: 0. Incorrect: -0.25 points.

(a)
$$P(X_2 = 1 | X_1 = 3) = 1$$

		X_1		
		1	2	3
	1	0.1	0.2	0.25
X_2	2	0.1	0.2	0
	3	0.05	0.1	0

Table 1: Joint probability distribution.

- (b) $P(X_2 = 1 | X_1 = 2) = 0.4$
- (c) $P(X_2 = 3|X_1 = 2) = 0.1$
- (d) X_1 and X_2 are uncorrelated
- (e) X_1 and X_2 are independent
- (f) $E(X_1) > 1$
- (g) $P(X_2 = 2) = 0.1$
- (h) $P(X_1 \le 2) = 0.75$

2 Statistics

Assume that you have a random sample (2,3,4) for a RV X with mean μ_x and variance σ_x^2

- 4. For this sample, compute \bar{X} .
- 5. For this sample, compute the sample variance.
- 6. Construct a 90%-CI for μ_x based on the sample mean and sample variance.
- 7. Interpret the numbers in your answer to question 6.

3 Regression analysis

- 8. This question is about the error term, u_i , in regression analysis.
 - (a) Why do we include an error term in our regression equation?
 - (b) What is the difference between an error term and a residual?
- 9. Using the population regression equation or the estimated regression equation, write down precisely what the OLS estimator minimizes. Your answer should include "error terms" or "residuals", as well as a precise mathematical expression for what is being minimized.

Consider the linear regression model, with equation $Y_i = \beta_0 + \beta_1 X_i + u_i$. You are given the following random sample of size n = 3:

X_i	Y_i	i
2	6	1
1	3	2
3	3	3

- 10. For this sample, Compute $\hat{\beta}_1$, the OLS estimator for the intercept β_1 .
- 11. For this sample, Compute $\hat{\beta}_0$, the OLS estimator for the intercept β_0 . If you did not manage to the previous question, assume that $\hat{\beta}_1 = 0.5$.
- 12. Compute the \mathbb{R}^2 . Interpret the number you obtain.