∞広島大学 トポロジー・幾何セミナー

"Skein and cluster algebras of marked surfaces without punctures for als"

Tsukasa Ishibashi (RIMS)

Wataru Tuasa (RIMS)

(based on [IT] arXiv: 2101.00643)

skein algebra

- o web cluster
- o elementary web
- o skein relation

quantum cluster algebra

o cluster of I

- o cluster variables {Ai}
- a quantum exchange relation

Conjecture $A_{s_{\epsilon}(y,z)} = S_{y,z}^{\epsilon}[\bar{\delta}] = \mathcal{U}_{s_{\epsilon}(y,z)} \subset \operatorname{Frac} S_{y,z}^{\epsilon}$

U | $g = sl_2$ Laurent expansion

A g : Surface subalgebra positivity

= coeff. in $\mathbb{Z}_+[8^{\pm i}]$

Muller (2016) The conjecture is true for $y = sl_2$

Main result [IT]

- $\mathcal{A}_{\mathcal{A}_3,\Sigma}^{\mathfrak{r}} \subset \mathcal{S}_{\mathcal{A}_3,\Sigma}^{\mathfrak{r}}[\tilde{\partial}'] \subset \mathcal{U}_{S_{\mathfrak{r}}(\mathcal{A}_3,\Sigma)} \subset \operatorname{Frac} \mathcal{S}_{\mathcal{A}_3,\Sigma}^{\mathfrak{r}}$
- {elevation preserving webs} $\subset S_{sls,z}^{\delta}$ has positivity.

§ the sl3 - skein algebra

 $\mathcal{S}_{\mathrm{Al}_3,\Sigma}^{\mathrm{A}}$: the Al_3 -skein algebra of Σ consisting of Al_3 -webs

als-skein relation

ϖ a tangled trivalent graph on Σ

: (=) an oriented uni-trivalent graph with

- sink and saurce vertices

- internal crossings on edges

_ elevation at a marked point

Definition (the sl_3 - skein algebra of Σ)

$$S_{sl_3,\Sigma}^A := \operatorname{span}_{\mathbb{Z}_A} \left\{ \begin{array}{l} \operatorname{tangled} & \operatorname{trivalent} \\ \operatorname{graphs} & \operatorname{on} \Sigma \end{array} \right\} \left(\begin{array}{l} (1) & \operatorname{sl}_3 - \operatorname{skein} & \operatorname{relations} \\ (2) & \operatorname{boundary} & \operatorname{sl}_3 - \operatorname{skein} & \operatorname{relations} \end{array} \right)$$

$$\mathbb{Z}\left[A^{\frac{1}{2}}\right] \qquad \text{(3)} \quad \operatorname{isotopy} \quad \text{of} \quad \Sigma \quad \operatorname{rel.} \quad \operatorname{to} \quad \partial \Sigma$$

- multiplication of Sols, E

(1) sl3 - skein relations [Kuperberg '96]

(2) boundary sl₃ - skein relations
[IY]

$$A^{-1} = A = A$$

$$A^{-\frac{1}{2}} = A^{\frac{1}{2}} = A^{\frac{1}{2}}$$

$$A^{-\frac{1}{2}} = A^{\frac{1}{2}} = A^{\frac{1}{2}}$$

$$A^{-\frac{1}{2}} = A^{\frac{1}{2}}$$

W→ (1) (2) realize Reidemeister moves

§ basis, generators, clusters of Salz, I

10 basis webs

$$BWeb_{\Sigma} = \left\{ sl_3 - webs \text{ represented} \right\}$$
by non-elliptic flat trivalent graphs

e.g. non-elliptic

Theorem [IT] (Confluence theory in [Sikora-Westbury]) BWeb is a ZA-basis of Sals, E $\mathbb{Z}[A^{\frac{1}{2}}]$

@ elementary webs ΕWeb Σ

$$\mathsf{EWeb}_{\Sigma} \ni \mathsf{G} : \Leftrightarrow \mathsf{G} \in \mathsf{BWeb}_{\Sigma}$$
 $\not\equiv \mathsf{G}_1, \mathsf{G}_2 \in \mathsf{BWeb}$ s.t. $\mathsf{G} = \mathsf{A}^{\otimes} \mathsf{G}_1 \mathsf{G}_2$

@ web cluster C

an A-commutative subset of EWeb s.t. #C = # vertices of a sl_3 - triangulation

X- C C EWeb_Σ C BWeb_Σ C S_{Als,Σ}
CWeb_Σ

Proposition [IY]

· EWeb + generates & pls, \$

Proposition [IY]

the set of web clusters
$$CWeb_{T} = \{C_{(T,+)}, C_{(T,-)}\}$$

$$\ell_{(\tau,+)} = \{ \bigwedge_{t_+} \bigvee_{t_+} \bigvee_{t_+$$

oskein relation: t+ & t.

$$t_+t_- = A^{-\frac{1}{2}}$$

$$=A^{\frac{3}{2}}+A^{-\frac{3}{2}}$$

$$=A^{\frac{3}{2}}+A^{-\frac{3}{2}}$$

" quantum Exchange relation" in Ase(T, als)

Proposition [IT]

§ Expansion of webs and positivity

$$w e \bar{e} = A^{\circ} + A^{\circ} + A^{\circ}$$

Theorem [IT]

 Δ : an ideal triangulation of Σ .

 $t(\Delta)$: triangles in Δ

a web cluster of T

 $\forall G \in BWeb$, $\exists J_G : monomial in <math>\mathcal{C}_{\Delta} := \bigcup_{T \in \mathsf{t}(\Delta)} \mathcal{C}_{T_{\mathcal{E}}}$

S.t. G.JG E < CB > alg C & sls, E

+ ori. edges

r • Any sl3-web has a Lauront expression in CA

@ "quantum positivity"

S: a certain subset of slowebs

S has quantum positivity w.r.t. A

 \Leftrightarrow $\forall G \in S$ has a Laurent expression in $\langle \ell_B \rangle_{alg}$ with coefficients in $\mathbb{Z}_+[q^{\pm 1}]$

Theorem [IY]

elev_{Δ} = { elevation - preserving webs w.r.t. Δ } has positivity for C_{Δ}

@ elevation - preserving wh

Remark eleva > bang [U brace [