

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Indian Institute of Technology Jodhpur

Friday 8^t September, 2023

Advanced Data Structures and Algorithms (CSL 7560)

Data Structures and Algorithmic Techniques (CSL 7561) Instructor:

Instructions: In True/False, wrong answer is worth -0.5.

Pallavi Jain

Time: 1 hour

Minor 1

Maximum Marks: 15

[2]

A red-black tree must have at least one red node. (True or False)
 Suppose we want to maintain a sequence S of n numbers to support, besides the usual dictionary operations insert, search, and delete, find(k, S), which finds the k-th smallest element in the sequence.
 (a) How would you augment a balanced binary search tree to support this operation in O(log n) time?
 (b) Explain, how insert and delete operations can still be maintained in O(log n) time?

- 3. How do you determine whether a graph is connected? What is the complexity of your algorithm?
- 4. In a Red-Black tree, can a red node have exactly one black child? Justify your answer.
- 5. Let A[1, ..., n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called a bad pair of A.
 - s called a bad pair of A. [1]

 (a) List the five bad pairs of the array (2,3,8,6,1).
 - (b) What array with elements from the set $\{1, 2, ..., n\}$ has the most bad pairs? How many does it have?
 - does it have?

 (c) Design an algorithm to count the number of bad pairs in an array of size n in time $O(n \log n)$? [Hint: you can try to use order-statistic tree.]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Indian Institute of Technology Jodhpur

Tuesday 17^t October, 2023

Advanced Data Structures and Algorithms (CSL 7560)

Data Structures and Algorithmic Techniques (CSL 7561) Instructor:

Pallavi Jain

Time: 1 hour

Minor 2

Maximum Marks: 15

Time: 1 hour	MUNUT 2
complete. No proofs are ne is an integer, and it is part worth -0.5.	s, mention whether they are solvable in polynomial time or NP-cessary. For problems where there is an additional parameter k , it of the input, and could be as large as n . The wrong answer is
path of length at mos	graph on n vertices and two designated vertices s and t , is there a t k between s and t ?
path of length at least	graph on n vertices and two designated vertices s and t , is there a t k between s and t ?
(c) Given a graph G, a ser either u or v is in S. (on 15 vertices?	t $S \subseteq V(G)$ is called a <i>vertex cover</i> of G if for every edge $uv \in E(G)$, Given an undirected graph on n vertices, does it have a vertex cover
(d) Given a graph G, a so of vertices in S. Give	set $S \subseteq V(G)$ is called a <i>clique</i> if G has an edge between every pair en a bipartite graph, does it have a clique on k vertices?
(e) Given a graph G, pa independent sets in G	artition the vertex set into sets X and Y such that X and Y are
(f) Find the smallest ind	dependent set in a graph.
2. Show ONE of the following	ng problems is NP-complete.
all cycles in the grap	graph and an integer k , does it have at most k vertices that cover k . I.e. the removal of the k vertices makes the graph acyclic.
(b) Given a set S of pos S_2 that have the same	sitive integers, is there a way to partition S into two subsets S_1 and ne sum?
You can assume that the	following two problems are NP-Complete.
• VERTEX COVER: G most k.	liven a graph G and an integer k , find a vertex cover of G of size at
• Subset Sum: Given of S whose sum is T	n a set S of positive integers and a target integer T , is there a subset T ?
3. Consider the flow networ	rk D given in Figure 1.
(a) Draw the residual n	etwork R of D
(b) Show an augmentin	g path in the residual network R .
(c) Show an augmented	d flow for D.

Figure 1: The red colored number shows capacity and blue colored numbers show flow sent on each edge.

OR.

Let G be a graph of maximum degree two that has weights on the vertices. Design a polynomial time algorithm to find a maximum weight independent set of G.

4. Consider the following modification to the generic Ford-Fulkerson augmenting path algorithm. Instead of maintaining a residual graph, just reduce the capacity of edges along the augmenting path. In particular, whenever we saturate an edge, just remove it from the graph. Does this algorithm compute a maximum flow? Justify your answer. The pseudocode is in Algorithm 1.

```
1: for every edge e ∈ E(G), f(e) = 0
2: while there is a path from s to t do
let P be an arbitrary path from s to t;
let F be minimum capacity of any edge in P;
for every edge e in P do
f(e) = f(e) + F;
if c(e) = F then
remover e from G
else
c(e) = c(e) - F
end if
end for
end while
```

Algorithm 1: Algorithm for Max Flow

[2]