Computational Data Analysis Classification And Regression Trees

Lars Arvastson and Line Clemmensen

March 19, 2018

Todays Lecture

- Recap
- ► Regression Trees
- ► Classification Trees

Recap

Unsupervised clustering

- Dissimilarity measures
- K-means clustering
- K-medoids clustering
- Hierarchical clustering
 - cluster-cluster distance
- Gaussian mixture
- Validation and model selection
 - ► CV?
 - Gap-statistics
 - ▶ BIC

Classification And Regression Trees

CART

Classification And Regression Trees

The Elements of Statistical Learning:

"Tree based methods partition the feature space into a set of rectangles, and then fit a simple model (like a constant) in each one."

Classification And Regression Trees (1984) by Breiman, Friedman, Olshen and Stone introduced,

- CART
- The one-standard-error rule

Decision trees

Like a decision tree but built on data instead of expert knowledge

Regression trees

Regression

- ▶ True function: y = f(x) (blue)
- ▶ Observation with noise: (x_i, y_i) (black)

Fit a piecewise polynomial

- \triangleright X = [ones(n,1) double(x>5) double(x>10)];
- A constant in each interval
- Evenly spaced knots

Can we place the knots in a better way?

Algorithm attempt:

- ▶ Choose a number of knots *k*.
- try all possible positions for each knot k
 - Infinite number of combinations

Try e.g. 100 positions on the x-axis for each knot

- ▶ 100^k positions to try
- ► E.g. 100⁵ = 10 000 000 000 combinations
- With more than one input variable it gets even worse

New idea:

- ▶ Place the knots one after another
- ▶ Place each knot such that the fit is as good as possible

At this point, the regression function is pretty good!

Tree representation

Each split can be represented by a parent node split into two child nodes

More than one input variable

Handled in the simplest way possible

```
For each input variable
For each split
Evaluate split point
End
End
```

Choose the best variable and split

More than one input variable

Questions

- ▶ What is a good split?
 - We need to know this to decide where to split
- ► How many splits should we try?
 - ▶ We used 100 before is there a better choice?

When do we stop splitting?

What is a good split?

- ► The terminal nodes each represent an interval of the input variable(s).
- We choose to represent the outcome in this interval by a constant function.
- As for most regression problems, we say that a constant function is good if it has low residual sum of squares when compared to training outcome data

What is a good split?

- ▶ Prediction \hat{y} is a constant in each interval.
- ► Residual sum of squares (RSS) in interval *I*: $RSS_I = \sum_{i \in I} (y_i - \hat{y}_i)^2$
- ▶ Minimal when $\hat{y} = \sum_{i \in I} y_i / n$

How many splits?

- Optimal constant function is the average of the outcome in the interval.
- Only important if observations are in the interval or not.
- Split somewhere in each gap between observations.

How many splits?

In an interval with n_l observations we have n_l possible splits

- Nothing fancy here, just try them all
- ▶ Chose the one with the lowest total RSS on the interval

$$RSS_{I} = RSS_{I_{left}} + RSS_{I_{right}}$$

Splitting categorical predictors

- Consider a two-category input (e.g. male-female)
 - Only one way to split, men versus women
 - Empty groups are not allowed
 - {male},{female} and {female},{male} is the same split
- Consider a three-category input {apple, orange, banana}
 - Three possible splits {apple}, {orange, banana} {apple, orange}, {banana} {apple, banana}, {orange}
- ▶ How many splits for a variable with k categories?
 - In today's exercises!

How large do we grow the tree?

- Stop splitting when a node contains too few observations
- ► For instance, do not split nodes with 10 or less observations
- ► This variable is called MinParent in Matlab's fitrtree function

Tree-growing procedure

- ► First interval (node) is the entire range of *X*.
- For each variable
 - ► For each splitting position, calculate RSS = RSS_{left} + RSS_{right}
 - Remember position with the lowest RSS
- Split the variable with the lowest RSS at the corresponding position
- ► This produces a left and right sub-interval (child-nodes)
 - Split each of these into child nodes as above
 - Keep splitting nodes until a node contains too few observations
- Assign a constant function to terminal nodes, the average of the observations

Resulting tree

MinParent = 10

- ► The tree was split too far overfitting
- How do we know when to stop splitting?

Answer: we don't

A seemingly worthless split may lead to excellent splits below

- The tree was split too far overfitting
- How do we know when to stop splitting?

Answer: we don't

A seemingly worthless split may lead to excellent splits below

- ► The tree was split too far overfitting
- How do we know when to stop splitting?

Answer: we don't

A seemingly worthless split may lead to excellent splits below

- We don't want to miss out on good splits
- ► Strategy: grow the tree really large (small MinParent) and then decide which splits were unnecessary and remove these.
- ► This is called **pruning** the tree
 - Pruning a node amounts to removing its sub-tree, thereby making a terminal node

Pruning rule

Prune the non-terminal node whose sub-tree gives the smallest **per node** reduction in RSS.

▶ Divide the reduction by the number of terminal nodes minus one

Pruning the tree

Weakest-link pruning: prune branches that contribute the least to lowering RSS

Example:

Pruning the tree

Weakest-link pruning: prune branches that contribute the least to lowering RSS

Example:

Weakest-link pruning: prune branches that contribute the least to lowering RSS

Weakest-link pruning: prune branches that contribute the least to lowering RSS

Weakest-link pruning: prune branches that contribute the least to lowering RSS

Weakest-link pruning: prune branches that contribute the least to lowering RSS

Weakest-link pruning: prune branches that contribute the least to lowering RSS

When to stop pruning?

- ▶ If we keep pruning, we will end up with just the root node
- Which of all these sub-trees do we choose?
- Two approaches
 - Independent test set
 - Cross-validation

Using a independent test set

- As we prune our way towards the root node, evaluate the performance of each sub-tree with respect to the test set.
- Continue all the way to the root node
 - Choose sub-tree with best performance

Using cross-validation

Three alternatives...

- Cross validate all possible trees, does not work in practice too many trees.
- Use a tuning parameter. Choose the tree that minimizes,

$$RSS(T) + \alpha |T|$$

 $|T| =$ # end-nodes

Find the tuning parameter α using cross validation

► Use the cross validation to determine the optimal value of the minimum number of observations in a terminal node. Matlab parameter 'MinLeaf'. Then use the full grown tree without pruning.

Regression example revisited

MinParent = 20 full tree

Regression example revisited

Best sub-tree chosen by 10-fold cross-validation.

What do we conclude about regression trees in terms of

- ▶ Bias
- Variance

Classification trees

Classification trees

Terminal node assigns a class instead of a constant

Only difference: criteria for splitting nodes and pruning the tree

Node values

With **regression trees** we transform a new observation into a constant.

- The constant was derived from the training data.
- It was the mean of the output variable of the training observations in the node.

For **classification trees** we assign new observations to a certain class

- The class is derived from training data
- It is the majority class of the training observations in the node

Model error

Regression trees

For regression trees we used RSS as a measure of node impurity

Classification trees

- For classification trees we have a few options
 - Missclassification rate
 - Gini index
 - Cross-entropy
- They all favor the split that increases purity the most.
 - Typically the predictive performance is not that different
 - ► The shape of the trees might, however, be very different

Node impurity for classification trees

In a specific node, representing a region *R* with *N* observations, let

$$\hat{p}_k = \frac{1}{N} \sum_{x_i \in R} \mathbb{1}(y_i = k)$$

Classify observations in the node to class,

$$K = \arg \max_{k} \hat{p}_{k}$$

Measures of impurity within a node,

Misclassification error: $Q = \frac{1}{N} \sum_{i \in R} \mathbb{1}(y_i \neq K) = 1 - \hat{p}_K$

Gini index: $Q = \sum_{k \neq k'} \hat{p}_k \hat{p}_{k'} = \sum_k \hat{p}_k (1 - \hat{p}_k)$

Cross-entropy (deviance): $Q = -\sum_k \hat{p} \log \hat{p}_k$

From node impurity to split criterion

- The node impurity is weighted with the number of observations in each node.
- ► The split decision is based on the split that **minimizes**,

$$N_{left}Q_{left} + N_{right}Q_{right}$$

N, the number of observations in left and right node *Q*, node impurity for left and right node

Comparing splits

Missclassification error

Left node: 5/14 Right node: 5/14 **Split criterion**

14(5/14) + 14(5/14) = 10

Lower is better!

Missclassification error

Left node: 1/5 Right node: 10/23 **Split criterion**

5(1/5) + 23(10/23) = 11

Comparing splits

Gini index

Left node: ... Right node: ...

Split criterion

...

Gini index

Left node: ...

Right node: ... **Split criterion**

...

Calculate split criterion based on the Gini index!

Node impurity for classification trees

- Node impurity measures for a two-class problem.
- X-axis: proportion of samples belonging to class 2.

Entropy and Gini index are better measures for growing tree because they are more sensitive to node probabilities.

Standard practice

- ▶ Use **Gini index** as split criterion when **building** the tree.
- ▶ Use **missclassification rate** as criterion when deciding which node to **prune**.

Benefits of a tree structure

Interpretability!

Consider the following (classification) tree on heart diseases

Interpretability

- CART is popular in medical sciences because it may represent the way doctors reason.
- ► A single tree describes the entire partitioning on the input space.
- With p > 3 input variables, the partition (cf. knot positions) are difficult to visualize.
 - ▶ But a tree representation is always possible.
- A large tree might be difficult to interpret anyway...

Missing data

Incomplete data are common in many applications.

We can always

- Delete the observation
- Replace with mean or median

For trees we can

- Introduce and extra category "missing" if it is a categorical variable.
- Use a surrogate variable. In each branch, have a list of alternative variables and split points - as a backup.
 - Matlab does this.

Questions?

