Para efeitos da nota atribuida à resolução de exercícios ao longo do semestre - **Submeter até 23:59 de 22 de Maio** (o problema continuará depois disponível para submissão, mas sem contar para a nota)

[para perceber o contexto do problema deve ler o guião da aula #09]

[ED237] Round-Robin

Neste problema deverá submeter uma classe **ED237** contendo um programa completo para resolver o problema (ou seja, com o método main).

Pode assumir que no Mooshak **terá acesso a todas as classes base dadas listas, pilhas e filas** (não precisa de as incluir na submissão).

Problema

Suponha que tem uma fila de processos para serem executados por um processador e que usa o seguinte algoritmo de *scheduling* com uma estratégia *round-robin*:

- Pega no primeiro processo da fila e executa-o durante um máximo de *T* segundos
- 2. Se o processo ainda não terminou, é enviado para o final da fila passando a faltar menos *T* segundos para ele terminar
- 3. Volta ao primeiro ponto, continuando a processar sempre o primeiro processo da fila até todos os processos terem terminado.

Imagine por exemplo que T=5 e que tinha a seguinte fila, onde o número indica o tempo restante. O processador iria passar por 7 iterações antes de terminar:

Tempo actual: 0 segundos (0 iterações do processador)

emacs	firefox	bash	dia
9	3	12	5

O processador começa por executar *emacs* durante 5 segundos. Ficam ainda a faltar 4 segundos e esse processo é agora colocado no final da fila:

Tempo actual: 5 segundos (1 iteração do processador)

firefox	bash	dia	emacs
3	12	5	4

Como *firefox* tem menos tempo do que 5 segundos, é executado durante os 3 segundos que precisa e termina. O algoritmo continua a ser executado até terminarem todos os processos:

Tempo actual: 8 segundos (2 iterações do processador) [termina "firefox"]

bash	dia	emacs
12	5	4

Tempo actual: 13 segundos (3 iterações do processador)

		\ 3
dia	emacs	bash
5	4	7

Tempo actual: 18 segundos	4 iterações do processador	[termina "dia"]
----------------------------------	----------------------------	-----------------

emacs	bash
4	7

Tempo actual: 22 segundos (5 iterações do processador) [termina "emacs"]

bash 7

Tempo actual: 27 segundos (6 iterações do processador)

bash 2

Tempo actual: 29 segundos (7 iterações do processador) [termina "bash"] **Fila vazia**

A sua tarefa é escrever um método para simular este processo, escrevendo para o ecrã cada vez que termina um processo uma linha no formato NOME_PROCESSO a b, onde a é o tempo quando o processo terminou e b é o número de iterações do processador quando tal aconteceu. Por exemplo, se fosse dada a fila anterior e com T=5, o output devia ser:

firefox 8 2 dia 18 4 emacs 22 5 bash 29 7

Dicas: (é livre para fazer fazer como quiser, mas é sugerido fazer da seguinte maneira):

- Crie uma classe *Process* para conter um processo, com dois atributos: *name* e *time* (tempo restante)
- Para representar os processos, use uma fila (*MyQueue*<*Process*>), ou uma lista circular (*CircularLinkedList*<*Process*>).
- Precisa de continuar a processar enquanto a fila (ou lista) não estiver vazia, dando sempre tempo de execução ao primeiro processo da fila (ou lista)
- Cuidado com os casos onde o processo tem menos tempo restante do que *T*

Input

A primeira linha contém um inteiro **T**, o tempo de execução máximo por iteração. A segunda linha contém um inteiro **N**, o número de processos da fila. Seguem-se **N** linhas com os processos no formato NOME_PROCESSO TEMPO_NECESSÁRIO. O nome é constituído unicamente por letras minúsculas e o tempo é um inteiro.

Output

O output deve conter ${\bf N}$ linhas, descrevendo os processos pela ordem em que foram terminando no formato NOME_PROCESSO TEMPO_TERMINAÇÃO NUM_ITERAÇÕES.

Exemplo de Input/Output

Input	Output
5 4 emacs 9 firefox 3 bash 12 dia 5	firefox 8 2 dia 18 4 emacs 22 5 bash 29 7

Estruturas de Dados (CC1007) DCC/FCUP - Faculdade de Ciências da Universidade do Porto