Lösungen zu Übungsaufgaben 02

Gruppe: Mi 08-10 SR 2, Barbara Rieß

Linus Keiser

November 8, 2023

Aufgabe 5

(a)
$$f^{-1}(V_1 \cup V_2) = f^{-1}(V_1) \cup f^{-1}(V_2)$$

Proof. Wir zeigen die Gleichheit der Mengen durch Nachweis der gegenseitigen Inklusion.

Zu zeigen: $f^{-1}(V_1 \cup V_2) \subseteq f^{-1}(V_1) \cup f^{-1}(V_2)$ und $f^{-1}(V_1) \cup f^{-1}(V_2) \subseteq f^{-1}(V_1 \cup V_2)$.

1. Inklusion: Sei $x \in f^{-1}(V_1 \cup V_2)$. Dann gilt:

$$f(x) \in V_1 \cup V_2$$

$$\Rightarrow f(x) \in V_1 \text{ oder } f(x) \in V_2$$

$$\Rightarrow x \in f^{-1}(V_1) \text{ oder } x \in f^{-1}(V_2)$$

$$\Rightarrow x \in f^{-1}(V_1) \cup f^{-1}(V_2)$$

2. Inklusion: Sei $x \in f^{-1}(V_1) \cup f^{-1}(V_2)$. Dann gilt:

$$x \in f^{-1}(V_1) \text{ oder } x \in f^{-1}(V_2)$$

 $\Rightarrow f(x) \in V_1 \text{ oder } f(x) \in V_2$
 $\Rightarrow f(x) \in V_1 \cup V_2$
 $\Rightarrow x \in f^{-1}(V_1 \cup V_2)$

Da x in beiden Fällen zu $f^{-1}(V_1 \cup V_2)$ gehört, folgt die Gleichheit der Mengen:

$$f^{-1}(V_1 \cup V_2) = f^{-1}(V_1) \cup f^{-1}(V_2)$$

(b)
$$f^{-1}(V_1 \cap V_2) = f^{-1}(V_1) \cap f^{-1}(V_2)$$

Proof. Wir zeigen die Gleichheit der Mengen durch Nachweis der gegenseitigen Inklusion.

Zu zeigen: $f^{-1}(V_1 \cap V_2) \subseteq f^{-1}(V_1) \cap f^{-1}(V_2)$ und $f^{-1}(V_1) \cap f^{-1}(V_2) \subseteq f^{-1}(V_1 \cap V_2)$.

1. Inklusion: Sei $x \in f^{-1}(V_1 \cap V_2)$. Dann gilt:

$$f(x) \in V_1 \cap V_2$$

$$\Rightarrow f(x) \in V_1 \text{ und } f(x) \in V_2$$

$$\Rightarrow x \in f^{-1}(V_1) \text{ und } x \in f^{-1}(V_2)$$

$$\Rightarrow x \in f^{-1}(V_1) \cap f^{-1}(V_2)$$

2. Inklusion: Sei $x \in f^{-1}(V_1) \cap f^{-1}(V_2)$. Dann gilt:

$$x \in f^{-1}(V_1) \text{ und } x \in f^{-1}(V_2)$$

 $\Rightarrow f(x) \in V_1 \text{ und } f(x) \in V_2$
 $\Rightarrow f(x) \in V_1 \cap V_2$
 $\Rightarrow x \in f^{-1}(V_1 \cap V_2)$

Da x in beiden Fällen zu $f^{-1}(V_1 \cap V_2)$ gehört, folgt die Gleichheit der Mengen:

$$f^{-1}(V_1 \cap V_2) = f^{-1}(V_1) \cap f^{-1}(V_2)$$

(c)
$$f(U_1 \cup U_2) = f(U_1) \cup f(U_2)$$

Proof. Wir zeigen die Gleichheit der Mengen durch Nachweis der gegenseitigen Inklusion.

Zu zeigen: $f(U_1 \cup U_2) \subseteq f(U_1) \cup f(U_2)$ und $f(U_1) \cup f(U_2) \subseteq f(U_1 \cup U_2)$.

1. Inklusion: Sei $y \in f(U_1 \cup U_2)$. Dann existiert ein $x \in U_1 \cup U_2$, so dass f(x) = y. Es folgt:

$$x \in U_1 \cup U_2$$

 $\Rightarrow x \in U_1 \text{ oder } x \in U_2$
 $\Rightarrow f(x) \in f(U_1) \text{ oder } f(x) \in f(U_2)$
 $\Rightarrow y \in f(U_1) \cup f(U_2)$

2. Inklusion: Sei $y \in f(U_1) \cup f(U_2)$. Es folgt:

$$y \in f(U_1)$$
 oder $y \in f(U_2)$
 $\Rightarrow \exists x_1 \in U_1 : f(x_1) = y \text{ oder } \exists x_2 \in U_2 : f(x_2) = y$
 $\Rightarrow \exists x \in U_1 \cup U_2 : f(x) = y$
 $\Rightarrow y \in f(U_1 \cup U_2)$

Da y in beiden Fällen zu $f(U_1 \cup U_2)$ gehört, folgt die Gleichheit der Mengen:

$$f(U_1 \cup U_2) = f(U_1) \cup f(U_2)$$

(d) $f(U_1 \cap U_2) \subseteq f(U_1) \cap f(U_2)$

Proof. Wir zeigen, dass jedes Element der Bildmenge von $U_1 \cap U_2$ auch in der Schnittmenge der Bildmengen von U_1 und U_2 liegt.

Zu zeigen: $f(U_1 \cap U_2) \subseteq f(U_1) \cap f(U_2)$.

Sei $y \in f(U_1 \cap U_2)$. Dann existiert ein $x \in U_1 \cap U_2$ so, dass f(x) = y. Da x sowohl in U_1 als auch in U_2 liegt, gilt:

$$x \in U_1 \cap U_2$$

 $\Rightarrow x \in U_1 \text{ und } x \in U_2$
 $\Rightarrow f(x) \in f(U_1) \text{ und } f(x) \in f(U_2)$
 $\Rightarrow y \in f(U_1) \text{ und } y \in f(U_2)$
 $\Rightarrow y \in f(U_1) \cap f(U_2)$

Daher ist jedes Element von $f(U_1 \cap U_2)$ auch ein Element von $f(U_1) \cap f(U_2)$, und somit ist $f(U_1 \cap U_2) \subseteq f(U_1) \cap f(U_2)$ bewiesen.

(e) Ist f injektiv, so gilt $f(U_1 \cap U_2) = f(U_1) \cap f(U_2)$

Proof. Da f injektiv ist, hat jedes Element in N höchstens ein Urbild in M. Wir zeigen die Gleichheit der Mengen durch Nachweis der gegenseitigen Inklusion.

Zu zeigen: $f(U_1 \cap U_2) \subseteq f(U_1) \cap f(U_2)$ und $f(U_1) \cap f(U_2) \subseteq f(U_1 \cap U_2)$. Die erste Inklusion $f(U_1 \cap U_2) \subseteq f(U_1) \cap f(U_2)$ haben wir bereits in Teil (d) bewiesen. Für die umgekehrte Inklusion, sei $y \in f(U_1) \cap f(U_2)$. Dann existieren $x_1 \in U_1$ und $x_2 \in U_2$ so, dass $f(x_1) = y$ und $f(x_2) = y$. Da f injektiv ist, folgt $x_1 = x_2$. Also liegt x_1 (welches gleich x_2 ist) sowohl in U_1 als auch in U_2 , d.h. $x_1 \in U_1 \cap U_2$. Daher ist $y = f(x_1) \in f(U_1 \cap U_2)$.

Somit ist $f(U_1) \cap f(U_2) \subseteq f(U_1 \cap U_2)$ und zusammen mit der ersten Inklusion folgt die Gleichheit der Mengen:

$$f(U_1 \cap U_2) = f(U_1) \cap f(U_2)$$

Gegenbeispiel zur Aussage (e)

Um zu zeigen, dass auf die Injektivität von f in Teil (e) nicht verzichtet werden kann, geben wir ein Beispiel einer nicht-injektiven Abbildung f: $\mathbb{Z} \to \mathbb{Z}$ und Mengen $U_1, U_2 \subset \mathbb{Z}$ an, für die gilt: $f(U_1 \cap U_2) \neq f(U_1) \cap f(U_2)$.

Betrachten wir die Funktion $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$. Diese Funktion ist offensichtlich nicht injektiv, da f(x) = f(-x) für alle $x \in \mathbb{Z}$.

Wählen wir $U_1 = \{1\}$ und $U_2 = \{-1\}$, dann erhalten wir:

- $U_1 \cap U_2 = \emptyset$, also $f(U_1 \cap U_2) = \emptyset$.
- $f(U_1) = \{1^2\} = \{1\}$ und $f(U_2) = \{-1^2\} = \{1\}$, also $f(U_1) \cap f(U_2) = \{1\}$.

Es folgt, dass $f(U_1 \cap U_2) = \emptyset$ nicht gleich $f(U_1) \cap f(U_2) = \{1\}$ ist. Dieses Beispiel zeigt, dass ohne die Injektivität von f die Gleichheit in Aussage (e) nicht gewährleistet ist.

Aufgabe 7

(a) Beweise zu Injektivität und Surjektivität

Satz 1.10 (Teilaussagen): Für Abbildungen $f: L \to M$ und $g: M \to N$ gilt:

- 1. Sind f und g surjektiv, so ist auch $g \circ f$ surjektiv.
- 2. Ist $g \circ f$ injektiv, so ist auch f injektiv.

Proof. **Teil 1:** Wir nehmen an, dass f und g surjektiv sind. Für jedes Element n in N existiert aufgrund der Surjektivität von g ein Element m in M mit g(m) = n. Da f ebenfalls surjektiv ist, existiert für dieses m ein Element l in L mit f(l) = m. Folglich gilt für die Verkettung $g \circ f$, dass $(g \circ f)(l) = g(f(l)) = g(m) = n$. Da n beliebig gewählt war, ist $g \circ f$ surjektiv.

Teil 2: Wir nehmen nun an, dass $g \circ f$ injektiv ist. Angenommen, es gibt $l_1, l_2 \in L$ mit $f(l_1) = f(l_2)$. Dann folgt $(g \circ f)(l_1) = g(f(l_1)) = g(f(l_2)) = (g \circ f)(l_2)$. Da $g \circ f$ injektiv ist, muss $l_1 = l_2$ gelten. Dies zeigt, dass f injektiv ist.

(b) Gegenbeispiele zur Umkehrung v. Aussagen aus Teil(a)

Ziel: Wir zeigen, dass die Umkehrungen der Aussagen aus Teil (a) nicht allgemeingültig sind, indem wir geeignete Gegenbeispiele konstruieren.

- 1. **Gegenbeispiel für die Surjektivität:** Wir definieren die Funktionen $f: L \to M$ und $g: M \to N$ wie folgt:
 - Sei $L = \{1\}, M = \{a, b\}, \text{ und } N = \{\alpha\}.$
 - Die Funktion f ist gegeben durch f(1) = a.
 - Die Funktion g ist gegeben durch $g(a) = g(b) = \alpha$.

Obwohl f nicht surjektiv ist, da kein Element in L auf b abgebildet wird, ist die Verkettung $g \circ f$ surjektiv, da für jedes Element in N ein Urbild in L existiert, nämlich 1.

- 2. **Gegenbeispiel für die Injektivität:** Wir betrachten die Mengen und Funktionen:
 - Sei $L = \{1, 2\}, M = \{a, b\}, \text{ und } N = \{\alpha\}.$
 - Die Funktion f ist definiert durch f(1) = a und f(2) = b, und ist somit injektiv.
 - Die Funktion g ist definiert durch $g(a) = g(b) = \alpha$.

Hier ist f injektiv, aber die Verkettung $g \circ f$ ist nicht injektiv, da sowohl f(1) als auch f(2) auf das gleiche Element α in N abgebildet werden.

Diese Gegenbeispiele zeigen, dass die Umkehrungen der Aussagen aus Teil (a) nicht zutreffen und somit die Originalaussagen nicht umkehrbar sind.

Aufgabe 8

Gegeben ist der logische Ausdruck:

$$([\neg (A \lor B)] \oplus [C \land (\neg D)]) \to [A \land (C \lor D) \land (\neg B)]$$

(a) Belegung: (A, B, C, D) = (1, 0, 1, 0)

$$\neg(A \lor B) \Rightarrow \neg(1 \lor 0) \Rightarrow \neg1 \Rightarrow 0$$

$$C \land (\neg D) \Rightarrow 1 \land (\neg 0) \Rightarrow 1 \land 1 \Rightarrow 1$$

$$A \land (C \lor D) \land (\neg B) \Rightarrow 1 \land (1 \lor 0) \land (\neg 0) \Rightarrow 1 \land 1 \land 1 \Rightarrow 1$$

$$[\neg(A \lor B)] \oplus [C \land (\neg D)] \Rightarrow 0 \oplus 1 \Rightarrow 1$$

$$([\neg(A \lor B)] \oplus [C \land (\neg D)]) \rightarrow [A \land (C \lor D) \land (\neg B)] \Rightarrow 1 \rightarrow 1 \Rightarrow \text{WAHR}$$

Daher ist der Wahrheitswert der Aussage für die Belegung (a) WAHR.

(b) Belegung: (A, B, C, D) = (0, 1, 1, 0)

Daher ist der Wahrheitswert der Aussage für die Belegung (b) FALSCH.