Digit 1					Digit :	<u>-</u>					Digit 3				Di	git 4			
	W (1 - 9) X		Υ	Z (=> 0)		W (1	- 9) X	Υ	Z (=> 0)		W (1 - 9) X	Υ		Z (=> 0)		W (1 - 9) X	1	Y	Z (=> 0)
inp w					inp w					inp w					inp w				
mul x 0	0				mul x 0		0			mul x 0	0				mul x 0	0			
add x z	Z				add x z		Z			add x z	Z				add x z	Z			
mod x 26	X %	26			mod x 2	6	X % 26			mod x 26	X 9	6 26			mod x 26	Z % 2	5		
div z l					div z l					div z l					div z 26	Z % 2	5		FI(Z / 26)
add x 10	(x %	6 26) + 10			add x 1	2	(x % 26) + 1	.2		add x 15	(x	% 26) + 15			add x -9	(Z % 2	6) - 9		
eql x w	0				eql x v		0			eql x w	0				eql x w	0 of 1			
eql x 0	1				eql x 0		1			eql x 0	1				eql x 0	1 of 0			
mul y 0			0		mul y 0			0		mul y 0		C	1		mul y 0		(0	
add y 25			25		add y 2	5		25		add y 25		2	:5		add y 25		2	25	
mul y x			25		mul y x			25		mul y x		2	5		mul y x		2	25 of 0	
add y 1			26		add y 1			26		add y 1		2	6		add y 1		2	26 of 1	
mul z y				26 * Z	mul z y				26 * Z	mul z y				26 * Z	mul z y				26 * FI(Z / 26) of FI(Z / 26)
mul y 0			0		mul y 0			0		mul y 0		C)		mul y 0		(0	
add y w			w		add y w			w		add y w		٧	v		add y w		١	w	
add y 15			W + 15		add y 8			W + 8		add y 2		٧	V + 2		add y 6		١	W + 6	
mul y x			W +15		mul y >			W + 8		mul y x		٧	V + 2		mul y x		١	W + 6 of 0	
add z y				W + 15 + 26Z	add z y				W + 8 + 26Z	add z y				W + 2 + 26Z	add z y				W + 6 + 26 * FI(Z / 26) OF FI(Z / 26)

Known: Z must be 0 for a set of input-digits to be valid

Assumption: 7 steps multiply the value by roughly a factor of 26

37 equal steps must reduce to ever reach zero.

34 + 6 + 26 + 18[2 / 26) of 18[2 / 26]

34 + 6 + 26 + 18[2 / 26) of 18[2 / 26]

35 + 27 26 does reduce Z by a factor of about 26

37 26 does reduce Z by a factor of about 26

38 equal x must be true, so since x = (2% 26) - ssome factor-), it must be equal to the input digit

39 given Z from previous calculations, you can deterministically find the input digit (maybe use this to check if the digit is in a valid input space to reduce calculations?

DIGIT	FORMULA
1	W + 15 + 26Z
2	W + 8 + 26Z
3	W + 2 + 26Z
4	W = (Z % 26) - 9
5	W + 13 +26Z
6	W + 4 + 26Z
7	W + 1 + 26Z
8	W = (Z % 26) - 5
9	W + 5 + 26Z
10	W = (Z % 26) - 7
11	W = (Z % 26) - 12
12	W = (Z % 26) - 10
13	W = (Z % 26) - 1
14	W = (7 % 26) - 11

```
PSEUDO CODE:
}
```

```
Retur...
}
Z = floor(z / 26)
Res.push(digit)
} else {
Z = digits[digits_idx] + weights_nondeter[idx] + z * 26
Res.push(digits[digits_idx++])
}
      }
      Return res
}
```