```
S3:
1) CFG
CC - E - N + 2
- Predicate + 1
- nof of regions individual paths
```

- 2) TC -> coverage -> statement, paths, condition, decision-condition, loop, multiplication, loop coverage
- I. Verify if a natural nr is prime

```
function Prim(m: integer): boolean; var i: integer, b: boolean
begin
1
        b := true;
2
        if m < 2 then
3
                b := false
        else
                begin
                        i := 1 (should be 2)
4
5
                        while b and (i \le m \text{ div } 2) do
6
                                if m \mod i = 0 then
                                         b := false
7
                                 else
8
                                         b := true
                                i := i + 1 (should be)
                end
9
                Prim := b
end
CC = E - N + 2 = 12 - 10 + 2 = 4
= Pred + 1 = 3 + 1
= nr of reg = 4
underline is what makes them unique
P1: 1 - 2 - 3 - 9
P2: 1 - 2 - 4 - <u>5 - 9</u>
P3: 1 - 2 - 4 - 5 - 6 - 7 - 8' - 5 - ... - 9
P4: 1 - 2 - 4 - 5 - 6 - 8 - 8' - 5 - ... - 9
```

- 2. TC
- a) Statement coverage

#TC	Statements	Input m	Output expected	Output actual
1	1, 2, 3, 9	1	false	false

2	1, 2, 4, 5, 9	2	true	true
3	1 - 2 - 4 - 5 - 6 - 7 - 8' - 5 9	4	false	false
4	1 - 2 - 4 - 5 - 6 - 8 - 8' - 5 9	5	true	false

Remarks:

- 1) TC4 -> bug
- 2) Statemen 8' can not be covered

STEPS:

- TC 1 .. 4
- bug
- i = 2 (in statement 4) and i = i + 1 (8')
- CFG new
- ? TC 1.. 4
- ?! TC5 m = 9

TC5 m = 9 F F bug 2 m = 4 T F i != 4 T1...5

b) Path coverage == (not always) Statement Coverag

#TC	Paths	#TC_ Statements
1	P1	1
2	P2	2
3	P3	3
4	P4	5

c) Decision coverage

#TC	S2 T	S2 F	S5 T	S5 F	S6 T	S6 F	input	output
1	X						1	F
2		X	X	X	X		4	F
3		X	X	X	X	X	9	F

d) Condition Coverage

(this is the same as the table above, this is stupid)

#T S2 S2 S5 S5 S5 S5 S5 S6 S6 input output expected C T F
$$C1 = C1 = C2 = i <= m$$
 $C2 = i <= m$ T F $C1 = C1 = C2 = i <= m$ T F $C2 = i <= m$ T $C2 = i <= m$

T3 here was added

TC? a) = b) = c) =>
$$3 T + d) (3') = 4T$$

3T in case 3' we make m = 7 so that we have 3 test cases instead of 4

so we have the following TC: 1, 2, 3°

e) Loop

loop n = max

#TC loop 0 loop 1 loop
$$k < n$$
 loop $k = n$ loop $k = n + 1$ Input m Output b

1 X this is not possible

2 X X X 4 (n is 1) F

delete X 7 (n is 2) T

3 X 9 F

d) + e) =>
$$3 \text{ Td} + 1 \text{ Te} => 3$$
"

II.

procedure CeaMaiLungaSecventa (nr: Integer, valE: sirnat, var pozF, lungf: Integer) begin

```
\begin{split} pozF &= 0; \ lungF = 0; \ pozI := 0; \ lungI := 0; \ i := 0; \\ while \ (i <= nrE) \ do \\ begin \\ if \ EstePrim \ (\ valE(i) - valE(i+1)) \ then \\ begin \end{split}
```

end

graf in caiet CN = no of regions = 5 = Pred (while, if + 1

Individual path = 5

P1: 1 - 2 - 9

P2: 1 - 2 - 3 - 4 - 5 - 8 - 2 ... 9

P3: 1 - 2 - 3 - 4 - 6 - 7 - 8 ... 9

P4: 1 - 2 - 3 - 4 - 6 - 8 ... 9

P5: 1 - 2 - 3 - 8 ... - 9

Fixed bugs:

i := 1

while i < nrE

abs(valE(i) - valE(i + 1))

the second if should be in the first must increase lungI somewhere

#TC	Path	input nrE	input valE	output pozF	output lungF	actual	actual
1	P1	0				bug	bug
2	P2	2	[5, 8]	1	2	0 (bug)	0 (bug)
3	P3	3	[5, 8, 5]	1	3	1	2
4	P4	5	[5, 8, 9, 5, 8]	1	2	1 (bug)	4 (bug)