Intelligent Data Analytics

Decision Tree

Dr. Nguyen Tien Huy

ntienhuy@fit.hcmus.edu.vn

Content

- Problem introduction
- Decision Tree for classification
- 3 Decision Tree for regression
- 4 Pruning Tree

Gender prediction

#No	Age	Weight	Height	Gender
1	54	65	181	Male
2	19	82	173	Male
3	24	54	165	Female
4	54	57	170	Female
5	18	81	185	Male
6	51	45	155	Female

Gender prediction

#No	Age	Weight	Height	Gender
1	54	65	181	Male
2	19	82	173	Male
3	24	54	165	Female
4	54	57	170	Female
5	18	81	185	Male
6	51	45	155	Female

Decision Tree

How to build a decision tree

 CART (Classification and Regression Trees) → uses Gini Index(Classification) as metric.

ID3 (Iterative Dichotomiser 3) → uses *Entropy* function and <u>Information gain</u> as metrics.

Entropy and Information Gain

Weather prediction using Information Gain

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

$$H(S) = \sum_{\mathsf{c} \in \mathsf{C}} -p(\mathsf{c}) \log_2 p(\mathsf{c})$$

$$H(S) = -\left(\frac{9}{14}\right)\log_2\left(\frac{9}{14}\right) - \left(\frac{5}{14}\right)\log_2\left(\frac{5}{14}\right)$$
$$H(S) = 0.94$$

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

$$IG(S, Wind) = H(S) - \sum_{t \in T} P(t) * H(t)$$

$$P(S_{weak}) = \frac{\text{Number of weak}}{Total}$$
$$= \frac{8}{14}$$

$$P(S_{strong}) = \frac{\text{Number of strong}}{Total}$$
$$= \frac{6}{14}$$

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

$$IG(S, Wind) = H(S) - \sum_{t \in T} P(t) * H(t)$$

$$H(S_{weak}) = -\left(\frac{6}{8}\right)log_2\left(\frac{6}{8}\right) - \left(\frac{2}{8}\right)log_2\left(\frac{2}{8}\right)$$
$$= 0.811$$

$$H(S_{strong}) = -\left(\frac{3}{6}\right)log_2\left(\frac{3}{6}\right) - \left(\frac{3}{6}\right)log_2\left(\frac{3}{6}\right)$$
$$= 1$$

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

$$\begin{split} IG(S,Wind) &= H(S) - \sum_{t \in T} P(t) * H(t) \\ &= H(S) - P(S_{weak}) * H(S_{weak}) - P(S_{strong}) * H(S_{strong}) \\ &= 0.94 - \left(\frac{8}{14}\right)(0.811) - \left(\frac{6}{14}\right)(1.0) \\ &= 0.048 \end{split}$$

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

$$IG(S, Wind) = 0.048$$

 $IG(S, Outlook) = 0.246$
 $IG(S, Temperature) = 0.029$
 $IG(S, Humidity) = 0.151$

Final decision tree

Weather prediction using Gini index

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

$$Gini(S, Outlook) = \sum_{i \in T} P(i) * Gini(i)$$

$$Gini(i) = 1 - \sum_{c \in C} P(c)^2$$

Weather prediction using Gini index

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes $$
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

$$Gini(Outlook = Sunny) = 1 - P(Yes)^{2} - P(No)^{2}$$

$$= 1 - (2/5)^{2} - (3/5)^{2}$$

$$= 0.48$$

$$Gini(Outlook = Overcast) = 1 - (4/4)^{2} - (0/4)^{2}$$

$$= 0$$

$$Gini(Outlook = Rain) = 1 - (3/5)^{2} - (2/5)^{2}$$

$$= 0.48$$

$$Gini(S, Outlook) = (5/14) * 0.48 + (4/14) * 0 + (5/14) * 0.48$$

$$= 0.342$$

Weather prediction using Gini index

Day	Outlook	Temperature	Humidity	Wind	Play cricket
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Gini(S, Outlook) = 0.342 Gini(S, Temperature) = 0.5 Gini(S, Humidity) = 0.367Gini(S, Wind) = 0.428

Python Implementation

• Source:

https://colab.research.google.com/drive/10y4pf5hWabQK9REEvfIhgj-H3fcuAKnV

• Data:

https://drive.google.com/file/d/1S1PkRzfWzZTwCacKewZ4QbY4tLJ N5z3X/view?usp=sharing

Categorial vs Numerical data

- Numerical data has meaning as a measurement, such as a person's height, weight, IQ, or blood pressure
- Categorical data represents characteristics such as a person's gender, marital status, hometown, or the types of movies they like.

	Outlook	Temp	Humidity	Windy	Hours Played
0	Rainy	Hot	High	False	25
1	Rainy	Hot	High	True	30
2	Overcast	Hot	High	False	46
3	Sunny	Mild	High	False	45
4	Sunny	Cool	Normal	False	52
5	Sunny	Cool	Normal	True	23
6	Overcast	Cool	Normal	True	43
7	Rainy	Mild	High	False	35
8	Rainy	Cool	Normal	False	38
9	Sunny	Mild	Normal	False	46
10	Rainy	Mild	Normal	True	48
11	Overcast	Mild	High	True	52
12	Overcast	Hot	Normal	False	44
13	Sunny	Mild	High	True	30

Standard deviation

Hours Played
25
30
46
45
52
23
43
35
38
46
48
52
44
30

$$Count = n = 14$$

$$Average = \bar{x} = \frac{\sum x}{n} = 39.8$$

Standard Deviation =
$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = 9.32$$

Coeffeicient of Variation =
$$CV = \frac{S}{\bar{x}} * 100\% = 23\%$$

Standart deviation for a split

$$S(T, X) = \sum_{c \in X} P(c)S(c)$$

		Hours Played (StDev)	Count
	Overcast	3.49	4
Outlook	Rainy	7.78	5
	Sunny	10.87	5
•			14

$$S(Hours, Outlook) = P(Sunny)*S(Sunny) + P(Overcast)*S(Overcast) + P(Rainy)*S(Rainy)$$

$$= (4/14)*3.49 + (5/14)*7.78 + (5/14)*10.87$$

$$= 7.66$$

		Hours Played (StDev)
	Overcast	3.49
Outlook	Rainy	7.78
	Sunny	10.87
SDR=1.66		

		Hours Played (StDev)
Humidity	High	9.36
	Normal	8.37
SDR=0.28		

		Hours Played (StDev)
Temp.	Cool	10.51
	Hot	8.95
	Mild	7.65
SDR=0.17		

		Hours Played (StDev)
Million also	False	7.87
Windy	True	10.59
SDR=0.29		

$$SDR(T, X) = S(T) - S(T, X)$$

SDR(Hours , Outlook) = \mathbf{S} (Hours) – \mathbf{S} (Hours, Outlook) = 9.32 - 7.66 = 1.66

How to stop

- Coefficient of variant.
- The number of samples in a branch.

Pruning Tree

- Pruning Tree: to avoid overfitting.
- How:
 - Control tree's depth
 - Control the number of samples in each node.

Thanks for your attention!