A partially marginalized likelihood for exoplanet inference

David W. Hogg (NYU) with help from Paul Baines (Davis) and everyone else at SAMSI Kepler

disclaimer: This document is a draft, and not yet ready for public consumption. In particular, any use of the content in this document would represent a serious lapse in judgement.

abstract: We present a likelihood function for the time-series photometry that makes up a lightcurve from the *Kepler* mission (or similar experiment). The function includes parameters that describe stochastic stellar variability and parameters that describe periodic exoplanet (or other companion) transits. The stellar variability model is a Gaussian Process in a wavelet basis that is capable of modeling non-trivial time correlations with a diagonal covariance matrix. These choices make it possible to *marginalize out* all stellar-variability parameters, leaving the user with a flexible likelihood function parameterized only by exoplanet parameters. We show something non-trivial.

1 generalities

There are N observations Y_n of a single star taken at times t_n . The model is

$$Y_n = [1 - q(t_n \mid \omega)] F(t_n \mid \alpha) + e_n \quad , \tag{1}$$

where $q(\cdot | \omega)$ is a function that describes the attenuation of the starlight caused by the transiting exoplanet, ω is a blob of parameters describing an exoplanet's size and orbit, $F(\cdot | \alpha)$ is a function that describes the apparent brightness of the star as a function of time, α is a blob of parameters describing the stellar mean flux and variability, and e_n is the noise contribution to the *n*th datum (coming from photon and read noise, among other things). This description—plus a model for the noise—will lead to a justifiable likelihood function. If we model the noise contributions as being Gaussian and

independent with known variances σ_n^2 , the likelihood function becomes

$$p(\{Y_n\}_{n=1}^N \mid \omega, \alpha, \varphi) = \prod_{n=1}^N p(Y_n \mid \omega, \alpha, \varphi)$$

$$p(Y_n \mid \omega, \alpha, \varphi) = N(Y_n \mid \mu_n, \sigma_n^2)$$
(2)

$$p(Y_n \mid \omega, \alpha, \varphi) = N(Y_n \mid \mu_n, \sigma_n^2) \tag{3}$$

$$\mu_n \equiv [1 - q(t_n \mid \omega)] F(t_n \mid \alpha) , \qquad (4)$$

where $\{Y_n\}_{n=1}^N$ is the set of all data, φ is an enormous blob of hyperparameters that includes all our decision-making and assumptions (and more, soon), the product in the likelihood encodes our "independent noise" assumption, and $N(x \mid m, V)$ is the Gaussian for x with mean m and variance V,

By assumption, we care only about the exoplanet parameters ω and not in the least about the star parameters α .