THE MATHEMATICAL CONCEPT OF A DERIVATIVE

A CRISP AND CONCISE INTRODUCTION

Jaideep Ganguly, Sc.D.

Email: jganguly@alum.mit.edu

Last updated on 31-Oct-2022

Contents

Contents		1
1	Definition of a Derivative	2
2	Derivative of a Polynomial Term	2
3	Derivatives of a Trigonometric Function	2
4	Important Derivatives	2
5	Chain Rule	2
6	Implicit Differentiation	3
7	Product Rule	3
8	Quotient Rule	3
9	L'Hôpital's rule	3
10	Concave Up (Convex) & Concave Down	3
11	Euler's number - e	3
12	Hyperbolic Functions	3
13	Partial Derivatives	3

1 Definition of a Derivative

Consider the limit:
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$

This limit is called the *derivative* and is shown as: $\frac{df}{dx} = \frac{dy}{dx} = f'(x)$

Its value at a is represented as: $f'(a) = \frac{dy}{dx}\Big|_{x=a}$

A derivative is rate of change, it is the *tangent* at the point.

A function f(x) is differentiable at x=a if f'(a) exists and f(x) is called differentiable on an interval if the derivative exists for each point in that interval. If f(x) is differentiable at x=a, then f(x) is continuous at x=a. $\boxed{\frac{d}{dx}}$ is known as the $\boxed{\text{Differential Operator}}$.

2 Derivative of a Polynomial Term

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^n - a^n}{x - a}$$
Now, $x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + a^2x^{n-3} + \dots + a^{n-2}x + a^{n-1})$

$$\implies f'(a) = \lim_{x \to a} (x^{n-1} + ax^{n-2} + a^2x^{n-3} + \dots + a^{n-2}x + a^{n-1}) = na^{n-1}$$
Hence,
$$\boxed{\frac{dx^n}{dx} = nx^{n-1}} \text{ and obviously, } \frac{d}{dx}(constant) = 0$$

3 Derivatives of a Trigonometric Function

4 Important Derivatives

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

$$\lim_{h \to 0} \frac{ln(x+h) - ln(x)}{h} = \lim_{h \to 0} \frac{ln\frac{(x+h)}{x}}{h} = \lim_{h \to 0} \frac{1}{h} ln\left(1 + \frac{h}{x}\right) = \lim_{h \to 0} ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}}$$
Let $n = \frac{h}{x}$ or $h = nx$ or $\frac{1}{h} = \frac{1}{n} \cdot \frac{1}{x} \to \lim_{h \to 0} ln(1+n)^{\frac{1}{n}\frac{1}{x}} = \lim_{h \to 0} ln\left((1+n)^{\frac{1}{n}}\right)^{\frac{1}{x}} = \frac{1}{x} ln\left(\lim_{h \to 0} (1+n)^{\frac{1}{n}}\right) = \frac{1}{x}$

$$\frac{d}{dx}a^x = \ln(a)a^x$$

Let
$$a = e^{ln(a)}$$

$$\frac{d}{dx}a^{x} = \frac{d}{dx}(e^{(ln(a))^{x}}) = \frac{d}{dx}(e^{ln(a)x}) = ln(a)e^{ln(a)x} = ln(a)a^{x}$$

5 Chain Rule

$$\frac{d}{dx}(v(u(x))) = \frac{dv}{dx} = \frac{dv}{du} \times \frac{du}{dx}$$

because
$$\frac{dv}{dx} = \lim_{x \to 0} \frac{\Delta v}{\Delta x} = \lim_{x \to 0} \left(\frac{\Delta v}{\Delta u} \times \frac{\Delta u}{\Delta x} \right) = \lim_{x \to 0} \left(\frac{\Delta v}{\Delta u} \right) \times \lim_{x \to 0} \left(\frac{\Delta u}{\Delta x} \right) = \frac{dv}{du} \times \frac{du}{dx}$$

2

6 Implicit Differentiation

In implicit differentiation, we differentiate each side of an equation with two variables (usually x and y) by treating one of the variables as a function of the other. This calls for using the chain rule. Example:

$$x^2 + y^2 = 1 \rightarrow \frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}x^2 + \frac{d}{dx}y^2 = 2x + 2y\frac{dy}{dx} = 0 \rightarrow \frac{dy}{dx} = -\frac{x}{y}$$

7 Product Rule

$$(fg)' = fg' + gf' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$
$$= \lim_{h \to 0} f(x+h) \frac{(g(x+h) - g(x))}{h} + \lim_{h \to 0} g(x) \frac{f(x+h) - f(x)}{h} = \boxed{f(x)g'(x) + g(x)f'(x)}$$

8 Quotient Rule

$$\left(\frac{f}{g} \right)' = \lim_{h \to 0} \frac{f'g - fg'}{g^2} = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} = \lim_{h \to 0} \frac{1}{h} \frac{f(x+h)g(x) - f(x)g(x+h)}{g(x+h)g(x)}$$

$$= \lim_{h \to 0} \frac{1}{g(x+h)g(x)} \frac{f(x+h)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x+h)}{h} = \lim_{h \to 0} \left(g(x) \frac{f(x+h) - f(x)}{h} - f(x) \frac{g(x+h) - g(x)}{h} \right) = \boxed{\frac{f'g - fg'}{g^2}}$$

9 L'Hôpital's rule

First, need to do mathematical manipulations to get the limit into a l'Hôpital form, i.e., 0/0 or ∞/∞ form. Let f(x) and g(x) be continuous functions on an interval containing x=a, with f(a)=g(a)=0. Suppose that f and g are differentiable, and that f' and g' are continuous. and, suppose that $g'(a) \neq 0$. Then,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{(f(x) - f(a))/(x - a)}{(g(x) - f(a))/(x - a)} = \frac{\lim_{x \to a} (f(x) - f(a))/(x - a)}{\lim_{x \to a} (g(x) - f(a))/(x - a)} = \frac{f'(x)}{g'(x)}$$

10 Concave Up (Convex) & Concave Down

Let y = f(x) be twice-differentiable on an interval I. If f'' > 0 on I, the graph of f over I is concave up (also called convex). If f'' < 0 on I, the graph of f over I is concave down.

11 Euler's number - e

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to 0} (1 + n)^{\frac{1}{n}} = \sum_{n=0}^{\infty} \frac{1}{n!} \text{ such that, } \lim_{n \to 0} \frac{e^h - 1}{h} = 1, \ e = 2.718281 \dots \boxed{\frac{d}{dx} e^x = e^x}$$

12 Hyperbolic Functions

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 $\cosh x = \frac{e^x + e^{-x}}{2}$ $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $\cosh^2 x - \sinh^2 x = 1$

13 Partial Derivatives

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \qquad f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$
$$f_x = f_x(x,y) = \frac{\partial}{\partial x} f(x,y) \qquad f_y = f_x(x,y) = \frac{\partial}{\partial y} f(x,y)$$

Example,
$$f(x,y) = x^2y - 10y^2z^3 + 43x - 7tan(4y)$$

$$\frac{\partial}{\partial x}f(x,y,z) = 2xy + 43 \qquad \frac{\partial}{\partial y}f(x,y,z) = x^2 - 20yz^3 - 28sec^2(4y) \qquad \frac{\partial}{\partial z}f(x,y,z) = -30y^2z^2 + 28sec^2(4y)$$