Reinforcement learning

Michal CHOVANEC, PhD.

March 2018

Fakulta riadenia a informatiky

Problem definition

- learn to play game with unknow rules
- input : state and reward
- output : action and total score
- Q(s, a): learn Q function

agent never sees required value (required action)

Q-learning algorithm

$$Q'(s, a) = R(s, a) + \gamma \max_{a' \in A} Q(s', a')$$

where

Q(s,a) is previous state

Q(s', a') is actual state

R(s, a) is reward obtained in state s after executing action a γ is discount factor $\gamma \in \langle 0, 1 \rangle$

SARSA algorithm

State Action Reward State Action

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(R(s,a) + \gamma Q(s',a'))$$

where

Q(s,a) is previous state

Q(s', a') is actual state

R(s, a) is reward obtained in state s after executing action a

 γ is discount factor $\gamma \in \langle 0, 1 \rangle$

 α is learning rate $\alpha \in (0,1)$

Storing Q values

- table
- linear combination of basis function (handmade features)
- Kenerva's sparse encoding
- neural network

problems

- state correlations
- nonstationary Q values
- convergence to optimal strategy

Neural network approximator - deep reinforcement learning

Speed up learning

32

64

common feed forward neural network

stacked autoencoder + feed forward neural network

Michal CHOVANEC, PhD.

Reinforcement learning

Sparse weights

$$\Delta w = \eta E x \frac{df(y)}{dw} - \lambda sgn(w)$$

```
where E is error, x is input, y is output, f is activation function (ReLU, tanh, softmax ...), f is learning rate , f is sparsity parameter
```

Arcade game experiment

	FNN sparse	FNN no sparse	AE+FNN sparse	AE+FNN no sparse
unsupervised iterations	0	0	100000	100000
supervised iterations	200000	200000	200000	200000
iterations per slice	0	0	50000	50000
learning rate	0.0005	0.0005	0.0005	0.0005
init weight range	0.1	0.1	0.1	0.1
dropout	0	0	0	0
lambda	0.0000001	0	0.0000001	0

Sparsity results

FNN sparse weights histogram

AE+FNN sparse weights histogram

Michal CHOVANEC. PhD.

FNN no sparse weights histogram

AE+FNN no sparse weights histogram
Reinforcement learning

Sparsity results

```
NETRONI LICENSE VITAGO DISSIONI RICENSI RICENSI MINISTE MINISTE PRINCIPI DI CONTROL PRINCIPI DI CONTROLI PRINCIPI DI CONTROL PRINCIPI DI CONTROLI PRINCIPI DI CONTROLI PRINCIPI DI CONTROLI DI
```

FNN sparse weights visualisation

```
Jugarian Sulatana Producing Sendanian datupata bermanya Personalah bagatuan 
Pengarian Germanya Sulatanasa selamanah terbasah sedanah Sendanian selamangan 
Sendanian Personalah Sendanya Sendanian Sendanian Personalah danganan sebagaian 
Sendanian Sendanian separahan sedanahan Personalah Sendanian Sendania
```

AE+FNN sparse weights visualisation

Score results

FNN progress comparison

FNN score

AE+FNN progress comparison

AE+FNN score

Michal CHOVANEC, PhD.

Reinforcement learning

Results

Training progress comparison

	average score	best score	worst score	average best action probability [%
FNN sparse weights	960.58	994.97	922.64	95.32
FNN nosparse weights	945.04	995.64	878.31	93.29
AE+FNN sparse weights	914.5	947.64	875.31	93.4
AE+FNN no sparse weights	908.58	954.31	780.32	93.12

Michal CHOVANEC, PhD.

Reinforcement learning

Snake game experiment

FNN score progress comparison

AE+FNN score progress comparison

Michal CHOVANEC, PhD.

Reinforcement learning

Snake game experiment

Training worms score progress for best networks

Q&A

https://github.com/michalnand/robotics https://github.com/michalnand/machine_learning

michal.nand@gmail.com