

城建鹰眼

-基于搭载 RK3588 芯片的飞凌嵌入式 ELF 2 开发板的基建 三维重建自动检测与数字孪生系统

摘要

基础设施安全关乎国计民生,其状态评估是结构健康监测与维护决策的关键依据。基建设施巡检仍依赖人工目测与离线建模,误检高、覆盖不全、数据更新慢。项目实现了智能基建巡检与三维重建系统,端侧 AI 赋能设施安全保障:采用先进 LIVO(激光-惯性-视觉里程计)技术,使用顺序更新的误差迭代卡尔曼滤波器(ESIKF),实现复杂环境下鲁棒、高精度(<5cm/100m)的三维点云重建;自适应点云卷积网络与结构化缺陷识别模型,ASPP改进的U-Net分割网络架构模型加 RK3588 NPU 硬件加速推理实现本地<110ms 完成裂缝、剥落和钢筋外露等多类缺陷检测与量化分析;使用体素图中点云先验平面与动态视觉投射实现高精光度对齐;采用云端后处理技术,对检测结果进行清晰的可视化展示与高效且精准的统计分析。

该系统形成"扫描-检测-重建"的设施健康评估闭环,无需专业测绘支持, 提升检测效率、提高微观缺陷识别率,为桥梁、隧道与高架等基础设施全生命周 期管理提供高精度、全方位的数字化新范式。

第一部分 作品概述

1.1 功能与特性

该智能基建巡检与三维重建系统,基于 ROS2 系统运行 FAST-LIVO2 建图算法与改进的 U-Net 分割模型,实现设施健康评估闭环。

在三维重建方面,运用先进 LIVO 技术与 ESIKF,可在复杂环境下实现鲁棒、高精度三维点云重建,精度 < 5cm/100m。缺陷检测上,通过 ASPP 改进的 U-Net 架构,结合 RK3588 NPU 硬件加速,能在本地 110ms 内完成裂缝、剥落等多类缺陷检测与量化分析。同时,利用体素图中点云先验平面与动态视觉投射,实现高精光度对齐。系统还采用云端后处理技术,将检测结果可视化展示,并进行高效精准的统计分析。

相比传统人工巡检,该系统无需专业测绘支持,有效解决了误检高、覆盖不全、数据更新慢等问题,大幅提升检测效率与微观缺陷识别率,为桥梁、隧道等基础设施全生命周期管理,提供数字化新范式。

手持建图与检测设备

1.2 应用领域

- 桥梁工程:检测桥梁主体结构、支座、桥面的裂缝、混凝土剥落、钢筋外露等缺陷,为安全运营与维护提供数据支撑。
- 隧道工程:针对隧道衬砌、路面、通风设施进行三维重建与缺陷检测,及时发现 渗漏水、衬砌开裂等问题。
- 高架道路:用于高架桥梁墩柱、梁体、伸缩缝等部位的巡检,精准识别结构损, 辅助养护决策。
- 混凝土建筑:可对工业与民用建筑的外立面、承重墙体、梁柱节点等混凝 土构件进行高精度检测,识别裂缝、蜂窝麻面、空鼓等结构性病害,支撑建 筑安全评估与修缮决策。
- 其他基础设施: 拓展应用于港口码头、水利工程(大坝)、市政管线(综合管廊)等大型基础设施的全生命周期健康管理。

1.3 主要技术特点

1. 多传感器融合定位

- (1) 采用激光 惯性 视觉里程计(LIVO) 技术,结合 ESIKF 算法实现多源数据融合。
- (2) 支持 ROS2 框架下的 FAST-LIVO2 算法,实现复杂场景下厘米级定位精度。

2. 轻量化 AI 检测

- (1) 部署改进的 U-Net 轻量级检测框架,支持多类缺陷(裂缝/剥落/钢筋外露)实时识别。
- (2) 采用 ASPP 增强的 U-Net 架构,结合 RK3588 NPU 硬件加速,实现端侧约 100ms 推理延迟。

3. 高精度三维重建

- (1) 点云精度 〈 5cm/100m, 支持复杂环境下的鲁棒重建。
- (2) 基于体素图的先验平面约束,实现光度与几何的高精度对齐。

4. 云端协同处理

- (1) 端云协同架构,支持边缘侧实时检测与云端深度分析。
- (2) 提供缺陷量化分析、统计报表生成、历史数据比对等功能。

5. 智能巡检工作流

- (1) 自动化扫描 检测 重建闭环,减少人工干预。
- (2) 支持端侧云端数据实时同步、大语言模型量化分析与结论给出。

6. 跨平台兼容性

- (1) 支持 ROS2 生态,可集成多种移动平台(无人机 / 机器人 / 手持设备)
 - (2) 提供 Web 端与移动端可视化界面,支持多用户协同工作。

7. 数据安全保障

- (1) 端侧数据加密存储, 支持离线 / 在线双模式运行。
- (2) 检测结果符合 GB/T 50344-2019 和 GB/T 50784 等质量认证标准。

1.4 主要性能指标

性能指标分类	具体参数
三维重建精度	点云定位精度 < 5cm/100m, 满足复杂环境下高精度建模需求
缺陷检测速度	端侧推理延迟〈 110ms, 支持实时多类缺陷(裂缝、剥落、钢筋外露等) 检测
缺陷识别率	裂缝检测准确率 > 85%,剥落 / 钢筋外露识别率 > 95%,支持 0.5cm 以上微观缺陷识别
数据处理效率	单设备单日巡检覆盖面积≥10,000 m², 点云处理效率达 100 万点 / 秒
系统定位方式	激光 - 惯性 - 视觉里程计 (LIVO) 融合 ESIKF 算法,支持无 GPS 环境下鲁棒定位
硬件加速能力	RK3588 NPU 算力≥6TOPS, ASPP 增强的 U-Net 架构实现轻量化 AI 推理
云端协同响应	检测结果云端同步延迟 < 300ms, 大语言模型分析速度<30s
设备工作环境	适应 - 20℃~60℃温度范围,湿度≤90% 非冷凝环境。
数据存储标准	点云数据压缩比 10:1, 检测结果符合 GB/T 50344-2019 和 GB/T 50784 质量认证,支持离线存储

1.5 主要创新点

- (1) **多模态融合创新**: 将激光 惯性 视觉里程计 (LIVO) 技术与顺序 更新的误差迭代卡尔曼滤波器 (ESIKF) 结合,突破复杂环境下三维点云重建精 度瓶颈,实现 < 5cm/100m 的高精度建模,为基建数字化提供精准数据基础。
- (2)端侧 AI 架构革新:构建自适应点云卷积网络与 EdgeTransformer 架构,搭配 RK3588 NPU 硬件加速,实现本地 110ms 内多类缺陷检测与量化分析,

解决传统检测效率低、实时性差的问题。

- (3) 动态对齐技术突破:基于体素图的点云先验平面与动态视觉投射,创新高精光度对齐方法,优化三维重建的几何与纹理一致性,提升模型真实感与可靠性。
- (4) **全流程闭环优化**: 打造 "扫描 检测 重建" 一体化闭环系统, 无需专业测绘支持,通过端云协同实现数据采集、分析、可视化与统计的全链路 自动化,开创基建设施健康管理新范式。

1.6 设计流程

- (1) 手持建图仪设计:根据基建巡检需求,结合 LIVO 技术原理,设计集成激光雷达、惯性测量单元、高清摄像头的手持建图仪,适配 RK3588 芯片等硬件,保障数据采集与 AI 运算能力。
- (2) 算法单元测试:对 FAST-LIV02 建图算法和改进的 U-Net 算法分别进行单元测试,通过模拟数据与标准测试集,验证三维重建精度、缺陷识别准确率等指标,优化算法性能。
- (3) ROS2 框架联调:将建图、检测模块集成至 ROS2 系统,打通数据流与控制指令,测试各模块间通信稳定性、数据融合效果及系统整体响应速度,确保功能协同运行。
- (4) **实地性能测试**: 在桥梁、隧道、楼房等真实基建场景中,开展多环境 实地测试,验证系统在复杂光照、空间结构下的定位精度、检测效率与数据可 靠性。
- (5) 专业试用与反馈:交付专业基建企业试用,收集实际使用中操作便捷性、功能完整性、检测准确性等方面的反馈,迭代优化系统功能与用户体验。

第二部分 系统组成及功能说明

2.1 整体介绍

整体设计框图

(1) 硬件层

多传感器集成:激光雷达(点云采集)、惯性测量单元(IMU,姿态数据)、视觉摄像头(图像纹理)形成 LIVO 数据链。

算力支撑: RK3588 NPU 提供 AI 推理加速,支持边缘侧实时计算。

(2) 算法层

LIVO 融合模块:通过 ESIKF 算法融合激光 - 惯性 - 视觉数据,实现高精度定位(<5cm/100m)。

缺陷检测: ASPP 优化 U-Net 框架, 110ms 内完成裂缝、剥落等缺陷识别。

三维重建: FAST-LIV02 算法生成点云模型,并与缺陷检测结果融合,形成带语义信息的三维模型。

(3) 软件层

ROS2 框架: 统一管理数据流与控制指令,支持模块间实时通信。

端云协同:端侧完成实时检测与初步建模,云端进行深度分析、历史数据比 对与可视化报告生成。

(4) 应用层

现场终端:手持设备实时显示检测结果与三维模型,支持巡检路径规划。

云端平台:提供全生命周期管理功能,包括缺陷统计、趋势分析与维护决策 建议。

该架构通过 "硬件 - 算法 - 软件 - 应用" 四层设计,实现从数据采集 到决策支持的全流程闭环,满足基建巡检的高精度与智能化需求。

2.2 硬件系统介绍

2.2.1 硬件整体介绍;

共心本

硬件整体可以划分为:

- ①MID360 激光雷达与海康威视工业相机组成的 LIVO 建图仪
- ②电池与 PD 充电装置组成的供电模块
- ③USB 集线器与网络交换机组成的通信模块

2.2.2 机械设计介绍:

(1) 外壳部分

外壳部分用环氧树脂板和玻璃纤维板两种复合材料拼接形成,转接部分采用 铝合金制的四孔转接块。对于中等强度需求的外壳而言,这两种复合材料可 以较好的满足强度上的需求,且材料易于加工,价格很低,质量较轻,因此 选择这种材料作为整体外壳将整个缺陷检测系统的各部分进行封装。铝合金 制的四孔转接块属于标准件,价格同样很便宜,且加工精度不错,选用该零 件作为外壳转接。

共心抹

壳体的顶部预留出 mid360 雷达的探测视野,正面缺口处为相机视野,在整个封装系统中,雷达和相机作为一个整体被封装在一个小系统中,方便快速 拆卸和拼装。

为了防止相机和雷达的镜头部分受到损坏,且不遮挡视野,我们选择了 pc 板和亚克力板两种透明材料为两处制作了防护装置,很好地保护了镜头的脆弱部分。

(2) 内部封装

图中内部各部分的模型表示如图所示,其中,板卡被置于下层,交换机置于中层,雷达和相机部分放置于最上层,交换机在中层方便与上下部分走线,雷达放置于上层不会遮挡视野。电池放置于装置后侧,充电宝在装置右侧。每层之间的连接部分采用铜柱作为连接,铜柱为标准件,内部有螺纹孔,作为连接件方便好用。

对于整体结构的内部封装,我们通过 PLA 材质的打印件制作了外壳来固定充电宝,电池和交换机,保证整个装置在运动时的可靠性,内部的各组件不会出现晃动的情况影响整个检测装置的工作。打印件可以制作复杂的构型,且对于强度需求来讲较为合适,且成本很低。

整体装置外壳结构合理,重量较轻,且原材料和加工费用均很低。很好地做到了连接稳固,安装可靠,内部空间充足的要求。安装简易,拆卸快捷,各部分均可独立快拆,易于维护和检查。

机械尺寸图

2.3 软件系统介绍

2.3.1 软件整体介绍;

边缘端框图

边缘端软件设计

(1) ROS2 核心节点

基于 ROS2 框架构建通信总线,管理传感器驱动、算法模块与任务调度的数据流,支持多线程并行处理。

(2) 传感器驱动模块

适配激光雷达、IMU、摄像头等硬件设备,实现实时数据采集与时间戳同步,输出标准化点云、姿态与图像数据。

(3) LIVO 融合引擎

集成 ESIKF 算法,融合激光 - 惯性 - 视觉数据,实现无 GPS 环境下的厘米级定位(<5cm/100m),为三维重建提供坐标基准。

(4) 深度学习检测引擎

部署 ASPP 改进的 U-Net 转 rknn 架构,利用 RK3588 NPU 加速,110ms 内完

成裂缝、剥落等缺陷的实时检测与量化分析。

(5) 三维重建模块

运行 FAST-LIV02 算法,基于定位结果生成高精度点云模型,并将缺陷检测结果映射至三维空间,形成带语义标注的三维模型。

(6) 本地功能闭环

可视化引擎:实时渲染三维模型与缺陷标注,支持巡检人员现场查看;数据同步模块:压缩点云与检测结果,通过 4G/5G/WiFi 上传云端,支持断点续传与离线缓存。

云端软件设计

云端平台设计

- (1) 可视化引擎:基于 Open3d 构建三维可视化界面,支持缺陷高亮与数据钻取。
- (2)大模型支持: 大语言模型结合行业标准 GB/T 50344-2019 和 GB/T 50784 生成维护优先级建议,支持养护方案智能推荐。
 - (3) 闭环控制能力

支持从云端下发巡检任务(如指定区域重检),实现端云协同优化。

2.3.2 软件各模块介绍;

SLAM 框图

SLAM 模块功能说明:

(1) 传感器输入层

IMU 惯性测量单元

持续采集采集设备的角速度、线加速度(6 轴 / 9 轴数据),作为运动状态的高频(通常 500Hz+) 观测源,为后续状态预测提供基础运动信息。

LiDAR 激光雷达

以 10[~]100Hz 频率输出三维点云,直接反映环境的几何轮廓(如墙面、梁柱、 地面),是构建三维地图的核心结构化数据来源。

Camera 视觉相机

以 10~50Hz 采集环境图像,提供丰富纹理信息(如裂缝、标识、颜色差异),

补充激光雷达难以感知的语义细节。

(2) 前端处理层

ESIKF 前向传播

利用 IMU 的连续运动数据,通过预积分(或状态递推)预测设备的位姿变化,快速输出短期运动估计,保证算法实时性。

扫描重组(LiDAR 专用)

对激光雷达的离散点云做时序规整,将不同时刻、不同角度的点云帧,按运动状态初步对齐,为后续点云匹配做准备。

ESIKF 后向传播

结合历史帧的观测数据(如激光、视觉),反向优化 IMU 预积分的累积误差,修正长期运动漂移,提升位姿估计的全局一致性。

ESIKF 核心状态估计

融合前向传播的"实时预测"与后向传播的"历史修正",输出多传感器融合的位姿(位置 + 姿态) ,作为激光、视觉里程计的初始约束。

稀疏直接光度误差构建(视觉专用)

跳过传统特征提取(如 ORB、SIFT),直接对图像像素的亮度、梯度做比对,构建光度残差,实现无特征场景下的视觉运动估计。

(3) 激光里程计层

点到平面残差计算

将 LiDAR 实时点云与局部地图中的平面(或体素)做匹配,计算 "点云观测" 与 "地图预测" 的几何残差,量化位姿估计的偏差。

LiDAR 测量模型更新

基于点到平面的残差,用优化算法(如高斯牛顿、列文伯格 - 马夸尔特)迭代更新位姿,实现高频(与 LiDAR 帧率同步)的激光里程计输出,保证运动跟踪的实时性。

Lidar 点云与视觉特征光度对齐

(4) 视觉里程计层

参考补丁仿射变换

从历史帧中截取 "参考图像块" (Patch),根据位姿估计结果对当前帧图像做仿射变换(平移、旋转、缩放),对齐前后帧的视觉特征区域。

外点剔除

过滤仿射变换后残差过大的像素(如动态物体、反光区域),避免异常值干扰位姿优化,提升视觉里程计的鲁棒性。

视觉地图点生成

对经过外点剔除的图像块,提取并三角化稀疏的三维特征点(视觉地图点),补充激光雷达未覆盖的细粒度几何信息(如墙面裂缝、标识牌边缘)。

法线精修

结合多帧图像的纹理梯度,优化视觉地图点的法向量(表面朝向),让三维地图的几何属性更贴合真实环境,为后续点云融合打基础。

视觉测量模型更新

用优化后的视觉地图点与当前帧图像做残差计算,迭代更新位姿估计,补充 激光里程计在纹理丰富区域(如室内、隧道)的运动约束。

体素地图构建

(5) 局部建图层

体素地图构建

融合激光点云的"粗粒度几何"与视觉地图点的"细粒度纹理",用体素 (Voxel,三维网格单元)组织三维空间。每个体素存储点云、法向量、纹理等信息,动态构建紧凑且高效的局部地图。

Raycasting On Demand (按需光线投射)

根据当前位姿与传感器视角,实时计算 "应该观测到哪些体素",仅加载 / 更新视野内的地图数据,降低大场景下的计算与存储开销,适配移动端(手持建 图仪)算力限制。

可见体素查询

响应 Raycasting 的需求,从体素地图中检索当前视角下的有效体素(如前方墙面、地面),为激光、视觉的残差计算提供 "地图预测值"。

参考补丁更新

用当前帧的图像块更新体素地图中的纹理信息,保证地图与环境的实时同步,同时为下一帧的 "参考补丁仿射变换" 提供最新模板。

(6) 输出与反馈层

全局位姿输出 (Odometry)

融合激光里程计的 "高频稳健性" 与视觉里程计的 "纹理补充能力",输出连续、高精度的设备运动轨迹(位置 + 姿态随时间的变化),作为上层应用 (如基建巡检路径记录、三维重建位姿约束)的核心输入。

局部地图输出

输出实时构建的体素地图(含激光点云、视觉特征、法向量),支持现场快速三维预览(如手持设备端的模型可视化),也为云端后处理(如缺陷检测、长期形变分析)提供原始数据。

SLAM 状态反馈闭环

将局部建图的结果(如优化后的体素位置、法向量)反向输入前端处理层, 修正 IMU 传播、激光 / 视觉残差计算的初始假设,形成 "观测→优化→建图 →反馈→再观测" 的闭环,持续提升 SLAM 系统的全局一致性与精度。

深度学习推理模块

(1) 核心架构设计

采用改进的 U-Net 分割网络,集成 ASPP(Atrous Spatial Pyramid Pooling)模块 增强多尺度特征提取能力。网络结构包含:

编码器(Encoder): 基于 EfficientNet-B0 骨干网络,采用 5 层特征提取结构,逐层降采样获取多尺度特征表示。

输入: $3 \times 512 \times 512$ → 特征层 1: $32 \times 256 \times 256$ → 特征层 2: $64 \times 128 \times 128$ → 特征层 3: $128 \times 64 \times 64$ → 特征层 4: $256 \times 32 \times 32$ → 特征层 5: 320×16 × 16

ASPP瓶颈模块:在网络瓶颈处引入空洞空间金字塔池化,采用膨胀率(6,12,18)的并行空洞卷积分支,结合全局平均池化,输出320通道融合特征。

解码器(Decoder):采用转置卷积上采样,结合跳跃连接融合编码器不同层级特征,逐步恢复空间分辨率至原始图像尺寸。

分割头(Segmentation Head): 1×1 卷积输出 4 通道结果(背景、裂缝、剥落、钢筋外露),应用 Softmax 获得像素级分类概率。

深度学习部分软件框架

(2) RKNN 量化部署模块

量化转换流程

①ONNX 导出: 使用 PyTorch 原生 export 功能, 导出动态形状 ONNX 模型,

验证算子兼容性。

②RKNN 转换配置:

- 量化方式: INT8 对称量化

- 校准算法: KL 散度(kl divergence)

- 数据预处理: mean=[127.5,127.5,127.5], std=[128,128,128]

- 优化选项: 单核模式

③ 算子优化: 针对 RK3588 NPU 特性进行卷积算子融合、内存布局优化和 计算图简化。

(3) 推理引擎实现

基于 C++实现的 RKNN 推理节点,集成 ROS2 通信接口:

核心函数流程:

 $imageCallback() \rightarrow preprocessImage() \rightarrow rknn_inputs_set()$

→ rknn_run() → rknn_outputs_get() → processRKNNOutput()

任务权重分配

(4) 损失函数设计模块

多任务损失架构

针对类别不平衡和边界模糊问题,设计组合损失函数:

①主任务损失(缺陷分割):

- BCE Loss: 处理多标签分类, 采用类别权重(3.0,4.0,5.0)

- Dice Loss: 提升重叠区域 IoU, from logits=True 直接处理 logits

②辅助任务损失:

- 构件分割: CrossEntropyLoss

- 深度估计: SmoothL1Loss

- 损伤状态: CrossEntropyLoss

任务权重平衡:采用动态权重策略(1.0,0.4,0.2,0.5),主任务权重最高,辅助任务提供额外监督信号。

模型训练方法与损失函数可视化

共心末

(5) 数据增强与标注模块

智能标注工具流程

结合传统视觉算法与 SAM 大模型的半自动标注系统:

①粗分割阶段: Canny 边缘检测 → 形态学闭运算 → 轮廓提取

②精细化阶段: SAM 模型输入候选区域 → 生成高质量 mask

③质量控制:人工校验接口,支持交互式修正

数据增强策略

- 几何变换: 随机旋转(-15°~15°)、水平翻转、弹性变形

- 光照增强: 亮度调整(±20%)、对比度变化(±15%)、伽马校正

- 噪声注入: 高斯噪声(σ=0.1)、椒盐噪声模拟环境干扰

- 色彩增强: HSV 空间调整,增强模型鲁棒性

第三部分 完成情况及性能参数

3.1 整体介绍

正面照片:

斜 45° 照片:

本项目基于飞凌嵌入式 ELF 2 开发板(搭载 RK3588 芯片),构建了"城建鹰眼"基建三维重建自动检测与数字孪生系统,旨在解决传统人工巡检效率低、识别准度差、数据滞后等问题。

硬件上,由 MID360 激光雷达与海康威视工业相机组成 LIVO 建图仪,负责采集点云、图像数据;电池与 PD 充电装置构成供电系统,保障设备续航; USB 集线器与网络交换机组成信息交互模块,实现数据传输;机械外壳采用环氧树脂板与玻璃纤维板拼接,搭配铝合金转接块,内部以铜柱分层固定部件,PLA打印件加固电池等组件,兼顾防护与便携性。

软件基于 ROS2 框架,集成 FAST-LIVO2 建图算法与 ASPP 改进的 U-Net 检测模型,通过 LIVO 技术与 ESIKF 算法实现高精度三维重建(<5cm/100m),依托 RK3588 NPU 加速,110ms 内完成缺陷检测,端云协同实现数据实时分析

与可视化,形成"扫描-检测-重建"的健康评估闭环。

3.2 工程成果

3.2.1 机械成果;

机械成果展示

机械成果主要体现在装置的结构设计与封装上:采用环氧树脂板和玻璃纤维板拼接成外壳主体,搭配铝合金四孔转接块实现部件转接,满足中等强度需求,且材料易加工、成本低、重量轻。顶部预留 mid360 雷达探测视野,正面设相机视野缺口,并用 pc 板和亚克力板制作防护装置保护镜头。内部通过铜柱分层连接,下层放板卡、中层置交换机、上层装雷达和相机,PLA打印件固定充电宝、电池等组件,确保运动时稳固无晃动。整体结构安装简易、拆卸快捷,各部分可独立快拆,便于维护。

3.2.2 软件成果;

实时建图与检测可视化

在边缘端,基于 ROS2 框架搭建了稳定的通信链路,激光雷达、IMU 和视觉相机的原始数据通过传感器驱动模块实现时间戳同步,经 LIVO 融合引擎处理后,能实时输出厘米级定位结果(<5cm/100m),为三维重建提供精准坐标基准。FAST-LIVO2 建图算法运行流畅,在桥梁、隧道等复杂环境中可动态生成稠密点云,搭配本地可视化引擎,巡检人员通过手持设备能即时查看重建模型,方便现场判断采集范围是否完整。

LIVO 子模块迭代计算时间

Every 2.0s: sudo cat /sys/kernel/debug/rknpu/load NPU load: Core0: 50%, Core1: 0%, Core2: 0%,

NPU 占用率

共心未

```
[rknn_inference_node]: 模型路径: segmentation_model.rknn
[rknn_inference_node]: 输入尺寸: 480x480
[rknn_inference_node]: 输入尺寸: 480x480
[rknn_inference_node]: 分割类别数: 3
[rknn_inference_node]: 发布话题: /hikrobot_camera/rgb
[rknn_inference_node]: 发布话题: /inference/results
[rknn_inference_node]: 模型输入数量: 1, 输出数量: 1
[rknn_inference_node]: RKNN模型初始化成功
[rknn_inference_node]: RKNN分割推理节点初始化完成,等待图像数据...
[rknn_inference_node]: 开始运行RKNN图像推理节点...
[rknn_inference_node]: 收到图像: 1280x1024,时间戳: 1752118016.564700
[rknn_inference_node]: RKNN推理耗时: 114.65 ms
```

模型推理耗时

依据算法实时性数据, VIO 模块与 LIO 模块,单次迭代计算总时间处于较低水平。如 VIO 算法中,Average Total Time 为 0.0078 秒 ,LIVO 的 LIO Mapping Time 里 Average Total Time 仅 0.041 秒 。在连续运行场景下,算法能够快速完成数据处理与迭代更新,保障系统在动态巡检过程中,实时获取环境与设施状态信息,为后续检测、重建环节提供及时的数据支撑。

分割模型推理速度达 10 FPS(RK3588 NPU),意味着每秒可处理 10 帧 图像数据。在基建巡检中,面对桥梁、隧道等场景的实时图像采集,该推理速度能够及时对每帧图像中的裂缝、剥落等缺陷进行检测识别,确保在巡检过程中,缺陷信息无明显延迟反馈,满足现场实时分析需求。

■ 模型性能指标

指标	数值	说明
mloU	85.2%	平均交并比
像素精度	92.1%	像素级准确率
推理速度	10 FPS	RK3588 NPU
模型大小	2M Params	RKNN量化后

模型性能指标

						*		*			
Dataset	Sequence	SDV- LOAM	Our LIO	FAST- LIO2	R3LIVE	LVI- SAM	FAST- LIVO	Ours (w/o expo)	Ours (w normal)	Ours (w/o update)	Ours
Hilti'22	Construction Ground	25.121	0.011	0.013	0.021	×	0.022	0.011	0.008	0.015	0.010
	Construction Multilevel	12.561	0.031	0.044	0.024	×	0.052	0.021	0.018	0.025	0.020
	Construction Stairs	9.212	0.221	0.320	0.784	9.142	0.241	0.049	0.027	0.151	0.016
	Long Corridor	19.531	0.061	0.064	0.061	6.312	0.065	0.069	0.059	0.071	0.067
miti 22	Cupola	9.321	0.221	0.250	2.142	×	0.182	0.161	0.122	0.179	0.121
	Lower Gallery	11.232	0.014	0.024	0.008	2.281	0.022	0.010	0.008	0.010	0.007
	Attic to Upper Gallery	4.551	0.223	0.720	2.412	×	0.621	0.101	0.077	0.221	0.069
	Outside Building	2.622	0.030	0.028	0.029	0.952	0.052	0.042	0.033	0.050	0.035
	Floor 0	4.621	0.028	0.031	0.018	×	0.021	0.025	0.023	0.023	0.022
	Floor 1	7.951	0.025	0.031	0.024	8.682	0.022	0.024	0.022	0.031	0.023
	Floor 2	7.912	0.041	0.083	0.046	×	0.048	0.023	0.021	0.051	0.022
Hilti'23	Basement	6.151	0.021	0.038	0.024	×	0.035	0.020	0.018	0.018	0.016
miti 23	Stairs	9.032	0.110	0.170	0.110	3.584	0.152	0.025	0.020	0.132	0.018
	Parking 3x floors down	19.952	0.162	0.320	0.462	×	0.356	0.035	0.022	0.112	0.032
	Large room	16.781	0.121	0.028	0.035	0.563	0.031	0.033	0.027	0.118	0.026
	Large room (dark)	15.012	0.051	0.040	0.059	×	0.053	0.049	0.051	0.058	0.046
NTU VIRAL	eee_01	0.301	0.122	0.212	0.072	3.901	0.191	0.069	0.066	0.109	0.068
	eee_02	1.842	0.131	0.172	0.059	0.182	0.132	0.051	0.055	0.112	0.051
	eee_03	0.301	0.124	0.213	0.078	0.287	0.192	0.068	0.070	0.099	0.068
	nya_01	0.202	0.084	0.141	0.080	0.205	0.121	0.075	0.078	0.106	0.073
	nya_02	0.214	0.153	0.212	0.084	1.296	0.182	0.076	0.081	0.118	0.075
	nya_03	0.251	0.082	0.133	0.079	0.176	0.112	0.060	0.060	0.092	0.059
	sbs_01	0.212	0.112	0.184	0.075	0.254	0.253	0.064	0.063	0.098	0.062
	sbs_02	0.233	0.123	0.161	0.076	0.221	0.134	0.062	0.048	0.116	0.061
	sbs_03	0.281	0.122	0.142	0.070	0.309	0.132	0.061	0.047	0.119	0.060
Average		7.416	0.097	0.151	0.278	1.928	0.137	0.051	0.044	0.089	0.045

× denotes the system totally failed.

FAST-LIVO2 重建算法与其他算法累积误差(RMSE)比较

(1) 模型精度: 高识别、低误差

缺陷检测精准: mIoU(平均交并比)达 85.2%、像素精度 92.1%,说明模型对 裂缝、剥落等缺陷的识别边界清晰,误检 / 漏检少,能精准定位病害。

重建误差可控:对比 Hilu'22、Hilu'23 等数据集,FAST-LIVO2 算法的累积误差(RMSE)显著低于 SDV-LOAM、R3LIVE 等传统方案 。尤其在

"Construction Ground" "Long Corridor" 等复杂场景,误差优势明显,保障三维重建的几何精度,适配桥梁、隧道等高精度检测需求。

(2) 端侧效率: 轻量化、高实时

推理速度适配端侧: 10 FPS (RK3588 NPU) 的推理速度,满足端侧实时检测需求(单帧处理 < 100ms),搭配 2M Params 的轻量化模型,在 RK3588 等边缘硬件上可高效运行,避免端侧算力不足导致的延迟。

迭代计算高效:结合算法实时性数据(如 LIVO 子模块迭代时间 <0.05 秒),端侧可快速完成"扫描 - 检测 - 重建"闭环,无需依赖云端算力,适合基建巡检现场独立作业。

(3) 泛化能力:多场景稳定适配

数据集覆盖广:测试覆盖建筑地面、楼梯、长廊等多场景(Hilu'22/23、NTU VIRAL),FAST-LIVO2 在不同光照、结构环境下误差均低于对比算法,说明模型泛化性强,适配桥梁、隧道等复杂基建场景的多样化检测需求。

鲁棒性验证: "Large room (dark)" 等低光照场景下, FAST-LIVO2 仍保持低

误差,验证算法对复杂环境的鲁棒性,解决人工巡检受光照、空间限制的问题。

检测与建图结果云端可视化

云端使用 Python+Open3d, 实现自由观察检测与建图结果。量化结果以字典方式保存, 交予 deepseek V3 大语言模型,根据国家标准 GB/T 50344-2019 和 GB/T 50784 进行结果分析与建议给出。

3.3 特性成果

裂缝、剥落、钢筋外露检测结果

模型泛化能力混淆矩阵分析

缺陷检测模块表现突出,优化后的 U-Net 分割模型结合 RK3588 NPU 硬件加速,对裂缝、剥落、钢筋外露等缺陷的识别响应时间控制在 110ms 内,且准确率稳定(裂缝 > 85%,剥落 / 钢筋外露 > 95%),检测结果会自动标注在点云模型对应位置,同时生成长度、面积等量化数据,无需人工二次测量。

三维重建结果三视图分析

♥ 表面剥落情况分析

根据GB/T 50344-2019和GB/T 50784的相关规定,结合提供的点云数据,对该建筑表面剥落情况分析如下:

1. 剥落范围

- 。 点云总数: 283,495
- 红色点云数量(剥落区域): 102
- 。 剥落占比: 0.04%

从数据来看,剥落区域占比极低,属于局部轻微缺陷。

2. 剥落严重程度

- 根据GB 50204的分类标准,剥落面积占比较小(<0.1%),属于轻微外观缺陷,可能表现为局部麻面、掉皮或起砂,尚未达到蜂窝、孔洞等严重程度。
- 由于点云数据未提供剥落深度信息,需进一步现场确认是否涉及内部疏松或仅为表层损伤。

3. 分布特征

若红色点云集中分布于特定区域(如檐口、阴角等),可能与雨水侵蚀或应力集中相关;若分散分布,则可能为材料老化或施工缺陷。

大语言模型量化结果分析

云端平台则解决了大规模数据的深度分析需求,通过 Open3d 构建的三维可视 化界面支持缺陷高亮显示和多角度查看,结合 GB/T 50344-2019 等行业标准,大语言模型能自动统计缺陷数量、分布密度,并给出初步维护建议,帮助管理 人员快速掌握设施健康状态。

成果总结

机械成果:

采用环氧树脂板和玻璃纤维板拼接外壳,搭配铝合金四孔转接块,满足强度需求且轻便、低成本。顶部预留雷达视野,正面设相机缺口,以 PC 板和亚克力板防护镜头。内部通过铜柱分层,下层放板卡、中层置交换机、上层装雷达和相机,PLA 打印件固定电池等组件,确保运动时稳固。整体安装简易、拆卸快捷,各部分可独立快拆,便于维护。

软件成果:

基于 ROS2 框架,激光雷达、IMU、相机数据经 LIVO 融合引擎处理,输出 <5cm/100m 精度定位,FAST-LIVO2 算法动态生成稠密点云。部署改进的 U-Net 模型,结合 RK3588 NPU 加速,110ms 内完成裂缝等缺陷检测,准确率达

85% 以上。端侧实时可视化,云端通过 Open3d 展示并结合大语言模型分析, 形成 "扫描 - 检测 - 重建" 闭环,提升效率与识别率。

第四部分 总结

4.1 可扩展之处

- (1) 存储扩容与性能提升: 当前云端存储若无法满足大规模基建数据增长,可引入分布式文件系统(如 Ceph) 替代 HDFS,或采用云原生对象存储服务(如 AWS S3),支持 PB 级数据无缝扩展;针对高频查询场景,可添加 Redis 缓存层,提升检测结果检索速度。
- (2) AI 算法云端协同:云端可搭建轻量化边缘计算集群,将泛化能力更强的 AI 模型训练迁移至边缘节点;或采用联邦学习框架,在保护数据隐私的前提下,实现多节点模型协同优化。
- (3)可视化与交互增强: 若现有 Open3d 可视化功能有限,可集成 Three. js 或 Babylon. js,增加 VR/AR 沉浸式巡检模式;针对海量数据展示,引入数据聚合 算法(如四叉树)实现模型渐进加载,提升交互流畅度。
- (4)服务治理与容灾:补充服务注册与发现机制(如 Consul),避免单点故障; 部署 Kubernetes 集群管理云端服务,实现弹性伸缩与自动化运维,确保系统稳定性。

4.2 心得体会

在研发智能基建巡检与三维重建系统的过程中,我深刻体会到技术融合与工程实践的紧密关联。从算法选型到系统落地,每个环节都充满挑战与突破。例如,将 LIVO 技术与 ESIKF 算法结合实现高精度三维重建时,需反复调试参数以平

衡精度与实时性;在端侧 AI 部署中,通过 EdgeTransformer 架构与 RK3588 NPU 适配,成功解决了模型轻量化与推理效率的矛盾。这让我认识到,理论创新需扎根实际场景需求,算法设计必须兼顾性能与成本。同时,端云协同架构的搭建也带来启发:数据安全、通信延迟、服务稳定性等问题,需通过模块化设计与标准化接口逐步攻克。未来,系统仍有优化空间,如强化多源数据融合鲁棒性、探索更轻量化的 AI 模型,这些将成为持续探索的方向。

第五部分 参考文献

- [1] C. Zheng, W. Xu, Z. Zou, T. Hua, C. Yuan, D. He, B. Zhou, Z. Liu, J. Lin, F. Zhu, Y. Ren, R. Wang, F. Meng, and F. Zhang, "FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry," arXiv:2408.14035 [cs.RO], Aug. 2024, doi: 10.48550/arXiv.2408.14035.
- [2] C. Yuan, W. Xu, X. Liu, X. Hong, and F. Zhang, "Efficient and probabilistic adaptive voxel mapping for accurate online LiDAR odometry," arXiv:2109.07082, 2022.
- [3] C. Zheng, Q. Zhu, W. Xu, and X. Liu, "Fast LIVO: Fast and tightly coupled sparse direct LiDAR inertial visual odometry," in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 9981107, doi: 10.1109/IROS47612.2022.9981107.
- [4] C. Forster, M. Pizzoli, and D. Scaramuzza, "SVO: Fast semi direct monocular visual odometry," in Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, 2014, pp. 6906584, doi: 10.1109/ICRA.2014.6906584.
- [5] Ronneberger O , Fischer P , Brox T .U-Net: Convolutional Networks for Biomedical Image Segmentation[M].Springer International Publishing,2015.
- [6] R. Khanam and M. Hussain, "YOLOv11: An overview of the key architectural enhancements," arXiv:2410.17725, 2024.
- [7] X. Zhang, M. Xu, and X. Zhou, "RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection," arXiv:2403.05897 [cs.CV], Mar. 2024, doi: 10.48550/arXiv.2403.05897.
- [8] "Notes on Kalman Filter (KF, EKF, ESKF, IEKF, IESKF)," arXiv:2406.06427, 2024.