한국IT교육원

EfficientDet

목차

- 01. 프로젝트 개요
- 02. 프로젝트 팀 구성 및 역할
- 03. 프로젝트 수행 절차 및 방법
- 04. 프로젝트 수행 결과
- 05. 자체 평가 의견

▶ EfficientDet이란?

- EfficientDet 은 구글에서 개발한 객체 탐지 모델로, 작은 모델 사이즈와 높은 정확도를 동시에 달성하는 것이 특징입니다. EfficientNet이라는 경량화 된 네트워크 구조를 기반으로 하여 다양한 크기의 모델을 만들어냅니다.
- 객체 탐지 문제를 해결하기 위한 아래와 같은 방법을 결합합니다.
 - Faster R-CNN Anchor box 방법과 RPN 구조.
 - MobileNet의 Depth-Wise 연산과 Bottleneck 구조.
 - RetinaNet의 Top-Down 연산.
 - ResNet의 Top-Down 연산.
- <u>BiFPN(Bi-directional Feature Pyramid Network)</u>이라는 새로운 특징 추출 방법을 사용하여 <u>병렬적인 정보 흐름을 통해</u> 정확도와 효율성 모두를 향상시키는 것을 목적으로 합니다. 이를 통해 작은 객체부터 큰 객체까지 정확하게 검출할 수 있습니다.

▶ 기획 의도

EfficientDet은 최근 Object Detection 분야에서 매우 획기적인 발전을 이룬 딥 러닝 모델 SOTA(State-of-the-Art) 입니다.

기존의 Object Detection 모델들보다 더욱 높은 정확도를 보여주면서도,

더욱 적은 연산량과 II단비터 수를 TM고 있어서보다 <u>효율적인 모델 구현</u>이 T능합니다.

이로 인해 Datasets 전 처리 및 EfficientDet 모델 구현과 학습을 통해서 최신의 Object Detection 모델을 학습하고자합니다.

프로젝트 개요

▶ 기대 효과

EfficientDet 모델은 Object Detection 분야 뿐만 아니라, 다양한 분야에서 응용 가능합니다.

예를 들어 자율주행, 보안 감시, 영상 인식 등에서 활용될 수 있습니다.

자율주행차에서는 차량 및 보행자 등의 객체 검출에 사용되며,

보안 분야에서는 인명 구조나 범죄 예방을 위한 CCTV 모니터링 등에 사용될 수 있습니다.

▶ 프로젝트 구조

1. Datasets 수집 및 전 처리

2. Backbone Network

EfficientNet에서 사용된 MobileNetV2의 구조를 기반으로 한 EfficientNet 모델을 사용합니다.

3. Feature Pyramid Network

다양한 스케일의 특징 맵을 활용하여 Object Detection을 수행하는 Feature Pyramid Network(FPN)을 사용합니다. EfficientDet은 EfficientNet의 네트워크 구조를 활용하여 FPN을 구성하였습니다.

4. BiFPN(Bi-directional Feature Pyramid Network)

BiFPN은 FPN에서 발생하는 문제를 해결하기 위해 도입되었습니다. EfficientDet은 EfficientNet의 네트워크 구조를 활용하여 BiFPN을 구성하였습니다. BiFPN은 상위 및 하위 레벨의 피라미드 기반 기능을 조합하여 높은 정확도와 빠른 속도를 동시에 보장합니다.

5. Dataset 학습 및 Test 후 평가

▶ 활용 장비 및 재료(개발 환경 등)

- Python ver_3.11
- Tensorflow Lite
- Google Colaboratory
- Google Drive
- GALAXY S21 (android)

결과 제시 ① 탐색적 분석 및 전처리

▶학습 데이터 소개 (Train/dev set)

귀스텀 데이터셋(Custom Dataset)

A.I hub dataset, 사진(Labeling dataset)

```
<annotation>
   <folder></folder>
   <filename>free-video-854671 jpg.rf.99196cb032c78d9d459fd350bee181dd.jpg</filename>
   <path>free-video-854671 jpg.rf.99196cb032c78d9d459fd350bee181dd.jpg</path>
   <source>
       <database>roboflow.ai</database>
   </source>
   <size>
       <width>640</width>
       <height>640</height>
       <depth>3</depth>
   </size>
   <segmented>0</segmented>
   <object>
       <name>car</name>
       <pose>Unspecified</pose>
       <truncated>0</truncated>
       <difficult>0</difficult>
       <occluded>0</occluded>
       <br/>bndbox>
           <xmin>288</xmin>
           <max>410</max>
           <ymin>456
           <ymax>641
       </bndbox>
    </object>
    <object>
       <name>car</name>
       <pose>Unspecified</pose>
       <truncated>0</truncated>
       <difficult>0</difficult>
       <occluded>0</occluded>
       <br/>bndbox>
           <xmin>456
           <max>564</max>
           <ymin>341
           <ymax>534
       </bndbox>
```


Toyota-Premio-2017-for-sale_jp g.rf.411af3cfc7...

1633889726037 G-SUPERIOR-20 14-for-sale_jpg..

1633889695131 BMW-730iL-LW B-2010-for-sale_ jpg.rf.1933ef7...

Honda-Civic-FD 3-2008-for-sale_ jpg.rf.1ab8af97...

1633889725834 _Nissan-XTrail-2 001-for-sale_jpg. rf.1000d931be...

1633889694964 1633889694810 Honda-Accord-Honda-Freed-N Full-option-2008 aviPremium-201 -for-sale_jpg.rf.... 3-for-sale_jpg.r...

Suzuki-Wagon-

R-Stingray-2017

-for-sale_jpg.rf....

1633889725621

_Toyota-Land-Cr

uiser-Prado-201

1633889730131 Toyota-Premio-2013-for-sale_jp

1633889725455 _Mercedes-Benz-CLA-200-Night-Pack-2019-for-...

1633889694649

X10-Two-Wheel-

Toyota-Vitz-Saf

ety-2016-for-sal

g.rf.7ae3b1ef6..

_Toyota-CHR-NG _Suzuki-Alto-20 15-for-sale_jpg.rf .5030c1ac7a83... ale jpg.rf.6ada... 2019-for-sale_j...

2010-for-sale ip

Toyota-CHR-NG X-50-2017-for-s

filename	width	height	class	xmin	ymin	xmax	ymax
00014_jpg.rf.011641	416	416	car	9	144	413	412
00011_jpg.rf.99f968	416	416	car	19	67	416	413
00009_jpg.rf.373cf8	416	416	car	2	34	417	409
00012_jpg.rf.6a938f	416	416	car	4	34	416	389
00006_jpg.rf.1e36fc	416	416	car	185	265	388	408
00004_jpg.rf.1bd393	416	416	car	109	96	321	351
00002_jpg.rf.34d3b5	416	416	car	43	68	161	140
00002_jpg.rf.34d3b5	416	416	car	363	78	416	130
00002_jpg.rf.34d3b5	416	416	car	2	67	55	176
00002_jpg.rf.34d3b5	416	416	car	33	84	397	371
00003_jpg.rf.4156bf	416	416	car	43	91	407	324
000959_JPG.rf.378b	817	829	motorcycle	523	667	605	773
000959_JPG.rf.378b	817	829	person	607	596	639	681
000959_JPG.rf.378b	817	829	car	45	590	176	722
000959_JPG.rf.378b	817	829	car	253	648	452	830

XML Format JSON Format CSV Format

결과 제시 ② 모델 개요

▶ EfficientDet ₽텔 구조

결과 제시 ③ 모델 선정 및 분석

▶ EfficientDet 분석


```
def build_BiFPN(features, num_channels, id, freeze_bn=False):
   if id == 0:
      _, _, C3, C4, C5 = features
      P3 in = C3
      P4 in = C4
      P5 in = C5
      P6_in = layers.Conv2D(num_channels, kernel_size=1, padding='same', name='resample_p6/conv2d')(C5)
      P6_in = layers.BatchNormalization(momentum=MOMENTUM, epsilon=EPSILON, name='resample_p6/bn')(P6_in)
      # P6_in = BatchNormalization(freeze=freeze_bn, name='resample_p6/bn')(P6_in)
      P6_in = layers.MaxPooling2D(pool_size=3, strides=2, padding='same', name='resample_p6/maxpool')(P6_in)
      P7_in = layers.MaxPooling2D(pool_size=3, strides=2, padding='same', name='resample_p7/maxpool')(P6_in)
      P7_U = layers.UpSampling2D()(P7_in)
      P6_td = layers.Add(name=f'fpn_cells/cell_{id}/fnode0/add')([P6_in, P7_U])
      P6_td = layers.Activation(lambda x: tf.nn.swish(x))(P6_td)
      P6_td = SeparableConvBlock(num_channels=num_channels, kernel_size=3, strides=1,
                                 name=f'fpn_cells/cell_{id}/fnode0/op_after_combine5')(P6_td)
       P5_in_1 = layers.Conv2D(num_channels, kernel_size=1, padding='same',
                              name=f'fpn_cells/cell_{id}/fnode1/resample_0_2_6/conv2d')(P5_in)
      P5_in_1 = layers.BatchNormalization(momentum=MOMENTUM, epsilon=EPSILON,
                                          name=f'fpn cells/cell {id}/fnode1/resample 0 2 6/bn')(P5 in 1)
      # P5_in_1 = BatchNormalization(freeze=freeze_bn, name=f'fpn_cells/cell_{id}/fnode1/resample_0_2_6/bn')(P5_in_1)
       P6_U = layers.UpSampling2D()(P6_td)
       P5 td = layers.Add(name=f'fpn_cells/cell {id}/fnode1/add')([P5 in 1, P6 U])
      P5_td = layers.Activation(lambda x: tf.nn.swish(x))(P5_td)
       P5 td = SeparableConvBlock(num channels=num channels, kernel size=3, strides=1,
                                 name=f'fpn_cells/cell_{id}/fnode1/op_after_combine6')(P5_td)
      P4_in_1 = layers.Conv2D(num_channels, kernel_size=1, padding='same',
                               name=f'fpn_cells/cell_{id}/fnode2/resample_0_1_7/conv2d')(P4_in)
      P4 in 1 = layers.BatchNormalization(momentum=MOMENTUM, epsilon=EPSILON,
                                          name=f'fpn_cells/cell_{id}/fnode2/resample_0_1_7/bn')(P4_in_1)
      # P4 in 1 = BatchNormalization(freeze=freeze bn, name=f'fpn cells/cell {id}/fnode2/resample 0 1 7/bn')(P4 in 1)
      P5_U = layers.UpSampling2D()(P5_td)
      P4_td = layers.Add(name=f'fpn_cells/cell_{id}/fnode2/add')([P4_in_1, P5_U])
      P4_td = layers.Activation(lambda x: tf.nn.swish(x))(P4_td)
      P4_td = SeparableConvBlock(num_channels=num_channels, kernel_size=3, strides=1,
                                 name=f'fpn_cells/cell_{id}/fnode2/op_after_combine7')(P4_td)
      P3_in = layers.Conv2D(num_channels, kernel_size=1, padding='same',
                             name=f'fpn_cells/cell_{id}/fnode3/resample_0_0_8/conv2d')(P3_in)
      P3_in = layers.BatchNormalization(momentum=MOMENTUM, epsilon=EPSILON,
                                        name=f'fpn_cells/cell_{id}/fnode3/resample_0_0_8/bn')(P3_in)
      # P3_in = BatchNormalization(freeze=freeze_bn, name=f'fpn_cells/cell_{id}/fnode3/resample_0_0_8/bn')(P3_in)
```

```
P4_U = layers.UpSampling2D()(P4_td)
P3_out = layers.Add(name=f'fpn_cells/cell_{id}/fnode3/add')([P3_in, P4_U])
P3_out = layers.Activation(lambda x: tf.nn.swish(x))(P3_out)
P3_out = SeparableConvBlock(num_channels=num_channels, kernel_size=3, strides=1,
                           name=f'fpn_cells/cell_{id}/fnode3/op_after_combine8')(P3_out)
P4_in_2 = layers.Conv2D(num_channels, kernel_size=1, padding='same',
                       name=f'fpn_cells/cell_{id}/fnode4/resample_0_1_9/conv2d')(P4_in)
P4 in 2 = layers.BatchNormalization(momentum=MOMENTUM, epsilon=EPSILON,
                                   name=f'fpn_cells/cell_{id}/fnode4/resample_0_1_9/bn')(P4_in_2)
# P4_in_2 = BatchNormalization(freeze=freeze_bn, name=f'fpn_cells/cell_{id}/fnode4/resample_0_1_9/bn')(P4_in_2)
P3 D = layers.MaxPooling2D(pool size=3, strides=2, padding='same')(P3 out)
P4_out = layers.Add(name=f'fpn_cells/cell_{id}/fnode4/add')([P4_in_2, P4_td, P3_D])
P4_out = layers.Activation(lambda x: tf.nn.swish(x))(P4_out)
P4 out = SeparableConvBlock(num_channels=num_channels, kernel_size=3, strides=1,
                           name=f'fpn_cells/cell_{id}/fnode4/op_after_combine9')(P4_out)
P5_in_2 = layers.Conv2D(num_channels, kernel_size=1, padding='same',
                       name=f'fpn_cells/cell_{id}/fnode5/resample_0_2_10/conv2d')(P5_in)
P5_in_2 = layers.BatchNormalization(momentum=MOMENTUM, epsilon=EPSILON,
                                   name=f'fpn_cells/cell_{id}/fnode5/resample_0_2_10/bn')(P5_in_2)
# P5 in 2 = BatchNormalization(freeze=freeze bn, name=f'fpn cells/cell {id}/fnode5/resample 0 2 10/bn')(P5 in 2)
P4_D = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(P4_out)
 5 out = layers.Add(name=f'fpn cells/cell {id}/fnode5/add')([P5 in 2, P5 td, P4 D])
P5_out = layers.Activation(lambda x: tf.nn.swish(x))(P5_out)
 5_out = SeparableConvBlock(num_channels=num_channels, kernel_size=3, strides=1,
                           name=f'fpn cells/cell {id}/fnode5/op after combine10')(P5 out)
P5_D = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(P5_out)
P6_out = layers.Add(name=f'fpn_cells/cell_{id}/fnode6/add')([P6_in, P6_td, P5_D])
P6_out = layers.Activation(lambda x: tf.nn.swish(x))(P6_out)
 6_out = SeparableConvBlock(num_channels=num_channels, kernel_size=3, strides=1,
                           name=f'fpn_cells/cell_{id}/fnode6/op_after_combine11')(P6_out)
P6_D = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(P6_out)
 7_out = layers.Add(name=f'fpn_cells/cell_{id}/fnode7/add')([P7_in, P6_D])
P7_out = layers.Activation(lambda x: tf.nn.swish(x))(P7_out)
P7_out = SeparableConvBlock(num_channels=num_channels, kernel_size=3, strides=1,
                           name=f'fpn cells/cell {id}/fnode7/op after combine12')(P7 out)
```


결과 제시 ③ 모델 선정 및 분석

<u>EfficientDet</u>: Scalable and Efficient Object Detection

결과 제시 ④ 모델 평가 및 개선

EfficientDet Pull Bit

EfficientDet은 기존의 Object Detection 모델들보다 <mark>더욱 높은 정확도와 더 적은 파라미터 수</mark>를 가진 모델입니다. 기존 모델들과 비교해 더 효율적인 성능을 보이고 있습니다.

예를 들어, EfficientDet-D7 모델은 COCO 데이터셋에서 크기, 연산량이 작으면서 55.1 AP(Average Precision)를 달성했습니다.

이는 기존 모델인 Faster R-CNN, RetinaNet, SSD 등과 비교해 더 높은 정확도를 가지며, 파라미터 수가 적은 EfficientDet-D5 모델과 비교해 더욱 높은 성능을 보입니다.

예를 들어, EfficientDet-D4 모델은 RetinaNet-101 모델보다 빠르면서도 더 높은 정확도를 가집니다. 또한, EfficientDet은 기존 모델들과 비교해 속도가 빠른 편입니다.

따라서, EfficientDet은 기존 모델들보다 더욱 효율적이며 정확도가 높은 모델로 평가될 수 있습니다.

Method	Backbone	Size	FPS	AP	AP_{50}	AP_{75}	AP_S	AP_M	\mathbf{AP}_L
EfficientDet-D5 [35]	EfficientNet-B5 [34]	1280	14*	51.5%	70.5%	56.7%	33.9%	54.7%	64.1%
ATSS [45]	R101-DCN [5]	800*	14	46.3%	64.7%	50.4%	27.7%	49.8%	58.4%
SABL [38]	R101 [11]		13	43.2%	62.0%	46.6%	25.7%	47.4%	53.9%
CenterMask [16]	V99-FPN [16]	-	13	46.5%		-	28.7%	48.9%	57.2%
EfficientDet-D6 [35]	EfficientNet-B6 [34]	1408	110	52.6%	71.5%	57.2%	34.9%	56.0%	65.4%
RDSNet [39]	R101 [11]	800	11	38.1%	58.5%	40.8%	21.2%	41.5%	48.2%
RetinaNet [18]	S143 [6]	1280	10	50.7%	70.4%	54.9%	33.6%	53.9%	62.1%
SM-NAS: E5 [42]		1333*800	9.3	45.9%	64.6%	49.6%	27.1%	49.0%	58.0%
EfficientDet-D7 [35]	EfficientNet-B6 [34]	1536	8.2*	53.7%	72.4%	58.4%	35.8%	57.0%	66.3%
ATSS [45]	X-32x8d-101-DCN [5]	800*	7.0	47.7%	66.6%	52.1%	29.3%	50.8%	59.7%
ATSS [45]	X-64x4d-101-DCN [5]	800*	6.9	47.7%	66.5%	51.9%	29.7%	50.8%	59.4%
EfficientDet-D7x [35]	EfficientNet-B7 [34]	1536	6.5*	55.1%	74.3%	59.9%	37.2%	57.9%	68.0%
TSD [33]	R101 [11]		5.3*	43.2%	64.0%	46.9%	24.0%	46.3%	55.8%

결과 제시 ⑤ 시연 동영상

주행 경로

잘한 부분

각 팀원이 자신의 역할과 책임을 분명하게 이해하고, 프로젝트 전체의 목표와 일정을 공유하며, 개인의 경험과 지식을 팀원들에게 공유해서, 서로에게 많은 도움을 주면서 프로젝트를 수행했습니다.

아쉬운 부분

Object Detection을 하지 못하는 Object들도 많이 있어서 높은 성능의 하드웨어와 많은 양의 Dataset과 시간이 있었다면 "더 좋은 성능의 Object Detection을 할 수 있었겠다"라는 아쉬움이 있습니다.

• 프로젝트를 수행하면서 경험한 성과

최근까지의 Object Detection의 State of the Art Model인 EfficientDet에 대해서 알게 되었고 Dataset 전 처리 방법과 학습 방법 그리고 Tensorflow Lite모델을 안드로이드 플랫폼에 탑재해서 학습시킨 Dataset을 비탕으로 도로 주행환경 중 자율주행에 필요한 전방의 Object들을 감지하는 능력을 기웠습니다.