

Orange Cyberdefense

Security Assessment of Authentication and Authorization Mechanisms in Ethereum, Quorum, Hyperledger Fabric and Corda

Marie-Jeanne Lagarde, Master's thesis 2018-2019

Agenda

Methodology

- Roadmap
- 2. Analysis framework
- 3. Hypothesis
- 4. Experiments
- 5. Threat model

Discussion

Conclusion

Introduction Motivation Scope **Research Questions** Methodology Roadmap Analysis framework Hypothesis Experiments **Platform Security Assessment** Threat model Ethereum Quorum Hyperledger Fabric Corda Discussion Conclusion

Motivation

Scope: definition of the subject

"Security of main blockchain technologies"

A Olstoria's

Ethereum Quorum Hyperledger Fabric Corda

Authentication: verifying the proclaimed identity

Authorization: verifying the access rights

Research Questions

How are the mechanisms designed and implemented?

What are the vulnerabilities?

How can we harden the systems?

Introduction Motivation Scope Research Questions Methodology Roadmap Analysis framework Hypothesis **Platform Security Assessment** Experiments Threat model Ethereum Quorum Hyperledger Fabric Corda Discussion Conclusion

Roadmap

Analysis Framework

Implementation: Deployments & Experiments

- 1) Network permissioning
 - 2) Transaction
- 3) Remote user (off-site location access)

Hypothesis for deployment

H1

Most deployed platform versions are the most likely to be targeted by attackers

H2

Users tend to adapt their systems from existing official sample scripts

Ethereum	Quorum	Hyperledger Fabric	Corda
Geth Client v1.8.23	Quorum 2.2.1 using 7nodes demo with Tessera	Hyperledger Fabric v1.3.0 using Deploy your first network tutorial	Corda Example Dapp v3.3

Experiments: a Total of 18 Experiments Conducted

Implementation: Deployments & Experiments

Role of the experiments:

- Assess behaviour
- Test uncertain behaviours
- Assess the popularity of known attacks
- Demonstrate possible vulnerabilities

Threat model definition

1) Authentication threats:

- Brute force / dictionary attack
- Password sniffing attack
- Key compromise attack
- Replay attack
- MITM / Session hijacking
- Source non-repudiation
- DDoS and DoS

2) Authorization threats:

- Elevation of privileges
- Exploitation of access granting vulnerabilities
- 3) Security single points of failure
- 4) Default parameters vulnerabilities

Introduction Motivation Scope Research Questions Methodology Roadmap Analysis framework Hypothesis Experiments Platform Security Assessment Threat model Ethereum Quorum Hyperledger Fabric Corda Discussion Conclusion

Ethereum: Authentication and Authorization Mechanisms

Authenticated channel for node communication	key-based
Transaction sender authentication	key-based
General remote user authentication	non-existing
Account owner remote authentication	passphrase-based
Remote user authorization	Depends on which modules are enabled

Experiment: RPC honeypot

Gather information about the motives and tactics of attackers

Goals

- Default account unlock duration 300s
- Measure the likelihood of an attack occurring within this lapse of time

Setup

- Deploy a node with all RPC modules enable listening to all incoming port.
- Capture the traffic during one and a half hour using Wireshark.

Experiments: RPC honeypot results

10849 packets observed from 13 different attackers

The largest interval between two attempts is 20 seconds

Dictionary attack

Main purpose is financial benefits

...[{"id" :0,"json
rpc":"2. 0","meth
od":"eth _account
s"}]

Packet captured with Wireshark

Authentication Vulnerabilities

Node authenticated Communication	Remote account owner authentication
Isolate a node from the network	Funds stealing

Key compromise: Elliptical curve secp256k1 vulnerable to Pollards rho speed up attacks (Hartwig Mayer research [1], only successful on 109 bit long keys)

Quorum: Authentication and Authorization Mechanisms of Ethereum Permissioned Platform

Node authentication	Key-based and optionally certificate-based if TLS CA
Transaction sender authentication	key-based
Transaction receiver authorization	ACL
General remote user authentication	non-existing
Account owner remote authentication	passphrase-based
Remote user authorization	Depends on which modules are enabled

TLS can be enabled in the modes: CA, Trust on First use (TOFU), whitelist

Experiments : permissioning & honeypot

1) Different permissioning files

Triggers inconsistent behaviour

2) Dynamicity of addition/revocation

TLS Mode	None	CA	TOFU & CA	TOFU	Whitelist
Dynamic addition of a node	Yes	Yes	Yes	Yes	No
Dynamic revocation of a node	Yes	Yes via CRL	Yes via CRL	No	No

3) Honeypot for espionage

No attacker is detected

Authentication Vulnerabilities: many similarities with Ethereum

Node authentication	Remote account owner authentication	Block communication via HTTP
Espionage/Sabotage	Espionage/Sabotage	Espionage/Sabotage

Key compromise: Elliptical curve secp256k1 vulnerable to Pollards rho speed up attacks (Hartwig Mayer research [1], only successful on 109 bit long keys)

Vulnerabilities

Single points of failure	Elevation of Privileges	Exploitation of Access Granting and Revoking Vulnerabilities
· Root CA is used for TLS and Identity	 Module-enabling attacks Transaction access using RPC 	 TLS TOFU and Whitelist modes do support node revocation Different permissioning files

Additional vulnerability: TOFU mode prevents a node from changing a compromised key pair.

Hyperledger Fabric : Authentication and Authorization Mechanisms

Message sender authentication	Certificate-based
Node role granting	ABAC
Transaction sender authorization	ACL

Hyperledger Fabric offers a module called Fabric CA which handles certificate issuing.

P8

New

Org

A malicious majority can prevent an organization from being noticed of a change in the configuration

- 1) Majority vote Org3 removal (but Org3 is not noticed that it has been removed)
- 2) Majority vote New Org Addition
- 3) Majority vote Org3 Addition (but Org3 is not noticed that it has been re-added)

Authentication Vulnerabilities

Message sender authentication	Message sender authentication in Fabric CA
Sabotage (inoperative network)	Malicious registrations
×	X
By default, mutual TLS disabled	By default, TLS disabled

** FABRIC Vulnerabilities

Single points of failure	Elevation of Privileges	Exploitation of Access Granting and Revoking Vulnerabilities
 Single node orderer Single root CA: if same root CA is used for TLS and MSP identities 	Lack of smart contract sandboxing causing possible elevation of privileges (Nettitude, Security Assessment report [2])	 No support to revoke TLS certificates No expiration of identity certificate

Corda: Authentication and Authorization Mechanisms

Message sender authentication	Certificate-based
Node role granting	ABAC
Transaction sender authorization	Depends on notaries nodes
General remote user authentication	Password-based
Remote user authorization	Capability list

c·rda

Corda: two flavours network

Corda Business Network

Publicly available

- Identity registration managed by R3
- Possibility to build a restricted business network for nodes using the same smart contract

Cost 2500\$/year

Corda Independently Managed Network

- Root CA, Network Map and Intermediate CA must be implemented from scratch (build HTTP servers)
 - Free

Deployment out of this project scope (price/complexity)

Experiment: Deployment of Corda official demo, assessment of default parameters

Authentication Vulnerabilities

Message sender authentication

Sabotage

By default, mutual TLS enabled

Remote user authentication

User Impersonation Espionage Sabotage

By default, RPC TLS disabled

c·rda

Vulnerabilities

Single points of failure	Elevation of Privileges	Exploitation of Access Granting and Revoking Vulnerabilities
 Single Root CA Single Doorman Single Network Map Single notary configuration 	Elevation of privileges attack using a smart contract (Corda does not implement specific security controls to prevent privileges escalation)	For Corda Business Network, obvious threat that privilege granting depends on an untrusted third party (R3)

Additional vulnerability: User prevented from changing a compromised key pair (NetworkMapClient throws an exception when trying to publish a NodeInfo corresponding to a name that has been registered before)

Introduction Motivation Methodology Hypothesis Roadmap Analysis framework Hypothesis **Platform Security Assessment** Experiments Threat model Ethereum Quorum Hyperledger Fabric Corda Discussion Conclusion

Discussion

Hypothesis 2 Validation

Illegal to conduct a large scan of running nodes.

Platforms Obsolescence

Platform design and implementation are often subject to change.

Threat Model Definition

Platforms have a singular architecture, thus the model might not properly cover potential threats of other platforms.

Introduction Motivation Scope Research Questions Methodology Roadmap Analysis framework Hypothesis Experiments **Platform Security Assessment** Threat model Ethereum Quorum Hyperledger Fabric Corda Discussion Conclusion

Conclusion

- Recurrent vulnerabilities among platforms:
 - Weak or non-existing remote user authentication schemes
 - Absence of password policy
 - Lack of sandboxing of smart contract execution
- TLS optional in permissioned blockchain → wide exposure
- Weak default parameters are frequently preferred to ease software adoption and functionality demonstrations irrespective of the consequences on security

References

- [1] Hartwig Mayer, CoinFabric. *ECDSA Security in Bitcoin and Ethereum: a Research Survey*. [Online; accessed 14-February-2019]. 2016. URL: https://pdfs.semanticscholar.org/1785/6bad4335c8ca7419aab2c715ea25ce5e0621.pdf.
- [2] Graham Shaw. Security Assessment Management Report. [Online; accessed 14-February-2019]. 2017. URL: hhttps://wiki.hyperledger.org/display/HYP/Project+Audits? preview=%2F2393550%2F2393585%2Fmanagement_report_linux_foundation_fabric_august_2017_v1. 1.pdf

