Globale Beleuchtungsrechnung

Einführung in die Computergrafik

Wiederholung

- Polynomielle Kurven
 - Parametrisierung
 - Monom-Kurve
 - Hermite-Kurve
 - Bézier-Kurve
- Parametrisierte Flächen

Ausblick

Worum gehts?

Agenda

- Schatten
 - Schattenvolumen
- Globale Beleuchtungsrechnung
 - Raytracing

- Warum Schatten?
 - Szenen ohne Schatten wirken künstlich
 - Schatten helfen uns, räumliche Beziehungen zwischen Objekten besser zu erfassen
 - Schatten geben Aufschluss über die Position der Lichtquelle

- Schatten und Halbschatten

- Punktlichtquellen induzieren scharfe Schatten!

- Für die Computergrafik wichtige Eigenschaften von Schatten
 - Zentralprojektion von Polygon A auf Polygon B
 - mit der Position der Punktlichtquelle als Zentrum
 - liefert den Schatten von Polygon A auf Polygon B
 - Augpunkt = Position der Punktlichtquelle → keine Schatten
 - Punktlichtquellen erzeugen keine Halbschatten

Schatten auf einer einfachen Grundfläche

- (Blinn 1988)
 - Projiziere Objekt auf Grundfläche
 - Zeichne Objekt mit einer geeigneten dunklen Farbe
- Nachteil
 - sehr komplexe Berechnung der projizierten Fläche

Schatten auf einer einfachen Grundfläche

- Beispiel

Schattenvolumen

Definition

- Menge aller Segmente
 - auf Gerade vom Augpunkt
 - durch das Objekt
 - die im Sichtvolumen liegen.
- Begrenzung
 - Silhouette des Objekts
 - Position de Lichtquellen
- ein Schattenvolumen pro Objekt und Lichtquelle
- Randpolygone des Schattens: Schattenpolygone

Berechnungsidee

Schattenvolumen

Schattenvolumen

Implementierung

- Wie kann man diese Berechnung effizient implementieren?
- möglichst innerhalb der bestehende Rendering Pipeline.
- Ausflug: Framepuffer besteht intern aus mehreren Puffern
 - Auflösung immer: Größe des OpenGL-Fensters
 - z.B. Fullscreen = Auflösung des Bildschirms
 - Farbpuffer/Bildpuffer: RGB-Farbe pro Pixel
 - wird auf dem Bildschirm ausgegeben
 - Tiefenpuffer: Tiefenwerte pro Pixel
 - wird für die Verdeckungsrechnung verwendet
 - nur Farbwert des vordersten Objektes pro Pixel
 - Stencil-Puffer: Zähler pro Pixel
 - kann individuell verwendet werden

Quelle: [2]

Beispiel

- Szene mit Schatten
 - gelbes Licht in grünemObjekt

- gleiche Szene
 - Darstellung der Schattenpolygone

Quelle: [1]

Übung: Schattenvolumen

- Entwickeln Sie einen Algorithmus, um im 2D die Schattenpolygone zu finden.
- Szenenobjekte
 - Segmente:
 - va und vb
 - Position der Lichtquelle: L
- gesamte Szene sich innerhalb der Grenzen

$$-(0,0) \rightarrow (1,1)$$

- Schattenpolygon = Segment
 - Startpunkt va
 - Endpunkt vb
 - Normale n

va

Annahme: Vertices je Objekt gegen Uhrzeigersinn aufgelistet

Globale Beleuchtungsrechnung

Globale Beleuchtungsrechnung

- Ziel der Globalen Beleuchtungsrechnung:
 - möglichst photorealistisches Rendering
- bekannteste Algorithmen
 - Raytracing [3]
 - Radiosity [4]

Radiosity (Quelle: [6])

Raytracing (Quelle: [5])

Globale Beleuchtungsrechnung

- Rendering Gleichung
 - Kajiya, Siggraph 1986, The Rendering Equation
 - liefert theoretischen Rahmen

$$L_{r}(x,\omega_{r}) = L_{e}(x,\omega_{r}) + \int_{\Omega_{i}} \rho(x,\omega_{r},\omega_{i})L_{i}(x,\omega_{i})\cos(\theta_{i})d\omega_{i}$$

$$L_{o}(x,\omega_{o})$$

$$L_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

$$E_{r}(x,\omega_{r})$$

Kompromisse bei der Lösung

- Ignoriere jede Kopplung in der Gleichung

$$L_r(x,\omega_r) = L_e(x,\omega_r) + \sum_{j=1}^n \rho(x,\omega_r,\omega_j) L_j(x,\omega_i) \cos\left(\langle (N,\omega_j) \rangle \right)$$

- siehe: lokalen Beleuchtungsmodelle
- Beachte nur spezielle Arten der Kopplung
 - Raytracing und Radiosity
- Löse die Gleichung vollständig:
 - Modelle zur globalen Beleuchtungsrechnung
 - z.B. Monte Carlo Verfahren

Globale Beleuchtungsrechnung

- analytische Lösung der gekoppelten Gleichung praktisch nicht möglich
- Auffassung der Rendering Gleichung als rekursive Funktion
- daraus folgen praktische Verfahren
- Verfolgung des Lichts entlang Strahlen entgegen der Ausbreitungsrichtung
 - Raytracing
 - Path Tracing (Pfadverfolgung)
 - Distributed Ray Tracing

Raytracing (Whitted Raytracing oder Rekursives Raytracing)

Raytracing

- Betrachte folgende Eigenschaften bei der Ausbreitung von Licht
 - Reflexion
 - Brechung
 - Verdeckungsrechnung
 - Schatten

Annahmen

- Lichtquellen
 - Punktlichtquellen
- Material
 - Diffus mit spekularem Anteil (Phong Modell)
- Lichtausbreitung
 - verdeckende Objekte
 - Schatten, aber keine Halbschatten
 - keine Lichtabschwächung

Rekursives Raytracing

- vor allem für Szenen mit hohem spiegelndem und transparentem Flächenanteil geeignet

Grundidee

- Lichtstrahlen auf ihrem Weg von der Quelle bis zum Auge verfolgen
- Vereinfachung
 - nur ideal reflektierte
 - und ideal gebrochene Strahlen
 - Achtung: Auf rein diffusen Flächen bricht das Verfahren ab!

Rekursives Raytracing

- Definition der Kamera wie gehabt
- Auflösung des zu erstellenden Bildes kann frei gewählt werden
- Bildfläche kann sich als Schnitt aus
 - Sichtvolumen
 - und Near-Clipping-Ebene vorgestellt werden

Strahl

- Repräsentation eines parametrisierten Strahls
 - Startpunkt ps
 - Richtungsvektor v_s (am Besten normiert)
 - Parameter λ

- Strahl beim Raytracing
 - $p_S = Augpunkt$
 - nur Schnitte mit $\lambda > 0$ gesucht
 - in Blickrichtung

Schnitt mit Szenenobjekten

- für jeden Pixel der Bildfläche wird ein Strahl in die Szene geschickt
- Suche nach Schnittpunkten mit allen Objekten der Szene
- falls mehrere Schnittpunkte: verwende den, der dem Augpunkt am nächsten liegt
- kein Schnitt: Hintergrundfarbe

Strahl-Objekt-Schnitt: Ebene

- Ebene E
 - Punkt: p_E
 - Normale: n_E
- parametrisierte Darstellung des Strahls $\overrightarrow{p_S} + \lambda \overrightarrow{v_S}$

Ebene in Hesse'scher Normalform

$$\overrightarrow{n_E}\overrightarrow{x} - \overrightarrow{n_E}\overrightarrow{p_E} = 0$$

Einsetzen

$$\overrightarrow{n_E}(\overrightarrow{p_S} + \lambda \overrightarrow{v_S}) - \overrightarrow{n_E}\overrightarrow{p_E} = 0$$

– Auflösen nach λ

$$\lambda = \frac{\overrightarrow{n_E}\overrightarrow{p_E} - \overrightarrow{n_E}\overrightarrow{p_S}}{\overrightarrow{n_E}\overrightarrow{v_S}}$$

Schnittpunkt x_s:

$$\overrightarrow{x_S} = \overrightarrow{p_S} + \lambda \overrightarrow{v_S}$$

Strahl-Objekt-Schnitt: Kugel

- Kugel K
 - Mittelpunkt: mK
 - Radius: rK
- parametrisierte Darstellung des Strahls
- Einsetzen
- Auflösen nach λ (zwei Lösungen)

$$||(\overrightarrow{x} - \overrightarrow{m_K})||^2 - r_k^2 = 0$$

$$\overrightarrow{p_S} + \lambda \overrightarrow{v_S}$$

$$||(\overrightarrow{p_S} + \lambda \overrightarrow{v_S} - \overrightarrow{m_K})||^2 - r_k^2 = 0$$

$$p = \frac{2\overrightarrow{p_S}\overrightarrow{v_S} - 2\overrightarrow{m_K}\overrightarrow{v_S}}{\overrightarrow{v_S}^2}$$

$$q = \frac{\overrightarrow{p_S}^2 - 2\overrightarrow{p_S}\overrightarrow{m_K} + \overrightarrow{m_K}^2 - r_K^2}{\overrightarrow{v_S}^2}$$

$$\lambda_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Strahl-Objekt-Schnitt

- falls mehrere Lösungen für λ : wähle kleinstes $\lambda > 0$
 - nächster Schnittpunkt
 - Schnittpunkt in Blickrichtung des Strahls

Strahl-Objekt-Schnitt: Dreieck

- Vorgehen
 - bestimme Ebene E aus Dreieck
 - berechne Schnitt Strahl-Ebene E: x_S
 - berechne baryzentrische Koordinaten von x₅ bezüglich des Dreiecks
 - Schnitt falls je α , β , $\gamma > 0$ und $\alpha + \beta + \gamma = 1$
- siehe "Polygonale Netze"

Schnitt Strahl-Objekt

- Schnittpunkt-Berechnung ist je nach Objekttyp relativ "teuer"
- Schnittpunkt-Berechnung muss sehr häufig durchgeführt werden
- Optimierung notwendig
 - Schnittberechnungen optimieren
 - Anzahl Schnittberechnungen reduzieren (z.B. durch hierarchische Datenstrukturen)

Übung: Schnitt Strahl-Ebene

- Berechnen Sie den Schnitt zwischen dem Strahl S

$$S:(5,1)+\lambda(-1,3)$$

- und der Ebene E, die
 - durch den Punkt $p_E = (2,2)$ geht und
 - die Normale $n_E = (1,-1)$ hat

Beleuchtungsrechnung

- am Schnittpunkt: Auswerten des Beleuchtungsmodells
- z.B: diffuser und spekularer Anteil des Phong-Modells

Schattenstrahlen

- zusätzlicher Strahl von xS zu Lichtquelle (Richtung L)
- falls Schnitt mit Objekt: Schatten

Reflexion

- bei jedem Objektschnitt: neuer Strahl in Richtung der idealen Spiegelung
- Erinnerung ideal reflektierte Richtung R bei Normale N und Richtung zum Betrachter E
- zusätzlicher Strahl
 - Start = Schnittpunkt x_s
 - Richtung = R

Lichtbrechung

- Objekt transparent: zusätzlich ein gebrochener Strahl weiterverfolgt
- Herleitung: Brechungsgesetz:
 - Übergang Material 1 nach Material 2
 - Brechungskonstanten n₁, n₂
 - Eintrittswinkel α 1
 - Austrittswinkel α 2

$$n_1 \sin(\alpha_1) = n_2 \sin(\alpha_2)$$

Normale n

Richtung des gebrochenen Strahls

- Berechnung des gebrochenen Strahls
 - Winkel α_1 kann aus Skalarprodukt aus v_s und Normale berechnet werden

$$\cos \alpha_1 = v_S \cdot N$$

- Winkel α_2 ergibt sich nach Brechungsgesetz

$$\alpha_2 = \arcsin \frac{\sin \alpha_1 n_1}{n_2}$$

- Rotationsachse:

$$R = v_s \times N$$

Normale n

R kommt aus Bildebene heraus

- gebrochene Strahlrichtung: Rotation von -N um R mit Winkel α_2

Algorithmus

- für jedes Pixel des Bildschirms {
 - bestimme nächsten Schnittpunkt des Sehstrahls mit einem Objekt der Szene
 - stelle mit Hilfe von Schattenstrahlen fest, ob der Schnittpunkt im Schatten liegt und berechne gegebenenfalls mit Hilfe des Phong Beleuchtungsmodells die Leuchtdichte.
 - berechne in diesem Schnittpunkt den ideal reflektierten Lichtstrahl, berechne die Leuchtdichte aus dieser Richtung
 - berechne ideal gebrochenen Lichtstrahl, berechne die Leuchtdichte aus dieser Richtung
 - berechnen Farbe als gewichtete Summe der drei Komponenten

Vorteile

- Szenen mit hohem spiegelnden und transparenten Flächenanteil
- Szenenbeschreibung kann beliebig komplexe Objekte enthalten
 - solange Schnittpunkte und Normalen berechnet werden können
- kein Zusatzaufwand für:
 - verdeckte Flächen
 - Schatten
 - Reflexionen und Transparenz
- keine perspektivische Transformationen, kein Clipping notwendig
- Selbstdurchdringungen von Objekte unproblematisch
- Beleuchtungsmodell muss nur in sichtbaren Objektpunkten berechnet werden.

Nachteile

- Phong-Modell physikalisch nicht korrekt
- Aliasing-Effekte durch diskrete Abtastung
- Schnittpunktberechnungen teuer
- weiche Schatten schwer umsetzbar
- Neuberechnung der Schatten bei Änderung der Kamera
 - eigentlich nicht notwendig
- Berechnung Blickpunktabhängig
 - Neuberechnung bei neuer Kameraposition notwendig

Diffuse Reflexionen?

- auch diffuse Oberflächen reflektieren Licht
- dienen als zusätzliche Lichtquellen
 - z.B.: weißes Blatt Papier
- Raytracing ignoriert diesen Effekt
- Verbesserungen
 - Photon Tracing
 - Path Tracing
- Alternative
 - Radiosity

Übung: Raytracing

- Skizzieren Sie alle Strahlen in folgender Szene die auf den grünen Strahl folgen (Rekursionstiefe 2)
 - der Strahl durch die Bildebene hat Rekursionstiefe 0
 - gebrochene Strahlrichtungen dürfen Sie (sinnvoll) annehmen

Zusammenfassung

- Schatten
 - Schattenvolumen
- Globale Beleuchtungsrechnung
 - Raytracing

Quellen

- Die Folien basieren teilweise auf Vorlesungsfolien von Prof. Dr. Wolfgang Straßer und Andreas Schilling, Universität Tübingen
- [1] Cass Everitt & Mark J. Kilgard: Practical & Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering, 2002
- [2] Wikipedia: Z-Buffer: http://de.wikipedia.org/wiki/Z-Buffer, abgerufen am 23.04.2015
- [3] Whitted: An Improved Illumination Model for Shaded Display, Siggraph 1980
- [4] Goral et. al.: Modeling the Interaction of Light between diffuse Surfaces, Siggraph 1984
- [5] "Alexclass". Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons http://commons.wikimedia.org/wiki/File:Alexclass.jpg#/media/File:Alexclass.jpg
- [6] "Radiosity RRV, step 79" von David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka, Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons
- [7] Holzstich Albrecht Dürer, 1525