Overview: Video Coding Standards

- Video coding standards: applications and common structure
- Relevant standards organizations
- ITU-T Rec. H.261
- ITU-T Rec. H.263
- ISO/IEC MPEG-1
- ISO/IEC MPEG-2
- ISO/IEC MPEG-4
- Recent progress: H.264/AVC

The JVT Project

- ITU-T Q.6/SG16 (VCEG Video Coding Experts Group) formed for ITU-T standardization activity for video compression since 1997
- August 1999: 1st test model (TML-1) of H.26L
- December 2001: Formation of the Joint Video Team (JVT) between VCEG and ISO/IEC JTC 1/SC 29/WG 11 (MPEG) to establish a joint standard project H.264 / MPEG4-AVC
- ITU-T Approval: May 2003
- ISO/IEC Approval: October 2003

JVT Goals

Improved coding efficiency

- Average bit rate reduction of 50% given fixed fidelity compared to any other standard
- Trade-off complexity vs. coding efficiency

Improved network friendliness

- Anticipate error-prone transport over mobile networks and the wired and wireless Internet
- Further improve robustness techniques in H.263 and MPEG-4

Simple syntax specification

- Avoid excessive quantity of optional features
- Minimize number of "profiles" for distinct application areas

H.264/JVT Applications

Entertainment Video

- Broadcast: Terrestial / Satellite / Cable . . .
- Storage: DVD / HD-DVD / PVR . . .

Conversational Services

- H.320 Conversational
- 3GPP Conversational H.324/M
- H.323 Conversational Internet/best effort IP/RTP
- 3GPP Conversational IP/RTP/SIP

Video Streaming

- 3GPP Streaming IP/RTP/RTSP
- Streaming IP/RTP/RTSP (without TCP fallback)

Other Applications

- 3GPP Multimedia Messaging Services
- Digital camcorder

Relationship to Other Standards

- Identical specifications have been approved in both ITU-T / VCEG and ISO/IEC / MPEG
- In ITU-T / VCEG this is a new & separate standard
 - ITU-T Recommendation H.264
 - ITU-T Systems (H.32x) will be modified to support it
- In ISO/IEC / MPEG this is a new "part" in the MPEG-4 suite
 - Separate codec design from prior MPEG-4 visual
 - New Part 10 called "Advanced Video Coding" (AVC similar to "AAC" in MPEG-2 as separate audio codec)
 - MPEG-4 Systems / File Format has been modified to support it
 - H.222.0 | MPEG-2 Systems also modified to support it
- IETF: RTP payload packetization

H.264/AVC Profiles

- Baseline: core compression capabilities, plus error resilience, e.g., for videoconferencing, mobile video
- Main: high compression and quality, e.g., for broadcasting
- Extended: added features for efficient streaming

H.264/AVC Coder

Video Coding Standards: H.264/AVC no. 7

Input Video Signal

- Progressive and interlaced frames can be coded as one unit
- Progressive vs.

 interlace frame is
 signaled but has no
 impact on decoding
- Each field can be coded separately
- Dangling fields

Interlaced Frame (Top Field First)

Partitioning of the Picture

Slices:

- A picture is split into 1 or several slices
- Slices are self-contained
- Slices are a sequence of macroblocks

Macroblocks:

- Basic syntax & processing unit
- Contains 16x16 luma samples and 2 x 8x8 chroma samples
- Macroblocks within a slice depend on each other
- Macroblocks can be further partitioned

Flexible Macroblock Ordering (FMO)

Slice Group:

- Pattern of macroblocks defined by a Macroblock allocation map
- A slice group may contain 1 to several slices

Macroblock allocation map types:

- Interleaved slices
- Dispersed macroblock allocation
- Explicitly assign a slice group to each macroblock location in raster scan order
- One or more "foreground" slice groups and a "leftover" slice group

Interlaced Processing

 Field coding: each field is coded as a separate picture using fields for motion compensation

Frame coding:

- Type 1: the complete frame is coded as a separate picture
- Type 2: the frame is scanned as macroblock pairs, for each macroblock pair: switch between frame and field coding

0	2	4							
1	3	5							
						36			
						37			
				Ma	cro	hlo	ck F	Pair	
				IVIA	CIU		JK I	all	

Scanning of a Macroblock

Coded Block Pattern for Luma in 8x8 block order: signals which of the 8x8 blocks contains at least one 4x4 block with nonzero transform coefficients

Luma 4x4 block order for 4x4 intra prediction and 4x4 residual coding

Chroma 4x4 block order for 4x4 residual coding, shown as 16-25, and intra 4x4 prediction, shown as 18-21 and 22-25

H.264/AVC Coder

Common Elements with other Standards

- Macroblocks: 16x16 luma + 2 x 8x8 chroma samples
- Input: Association of luma and chroma and conventional sub-sampling of chroma (4:2:0)
- Block-wise motion compensation
- Motion vectors over picture boundaries
- Variable block-size motion
- Block transforms
- Scalar quantization
- I, P, and B coding types

H.264 Motion Compensation Accuracy

Bernd Girod: EE398B Image Communication II Video Coding Standards: H.264/AVC no. 15

H.264 Multiple Reference Frames

Bernd Girod: EE398B Image Communication II Video Coding Standards: H.264/AVC no. 16

H.264 Intra Prediction

 Directional spatial prediction (9 types for luma, 1 chroma)

 e.g., Mode 3: diagonal down/right prediction a, f, k, p are predicted by (A + 2Q + I + 2) >> 2

H.264 4x4 Transform

Bernd Girod: EE398B Image Communication II Video Coding Standards: H.264/AVC no. 18

Quantization of Transform Coefficients

- Scalar quantization
- Logarithmic step size control
- Smaller step size for chroma (per H.263 Annex T)
- Extended range of step sizes
- Can change to any step size at macroblock level
- Quantization reconstruction is one multiply, one add, one shift

Deblocking Filter

- Improves subjective quality and PSNR of the decoded picture
- Significantly superior to post filtering
- Filtering affects the edges of the 4x4 block structure
- Adaptive filtering removes blocking artifacts, but does not unnecessarily blur the visual content
 - On slice level, the global filtering strength can be adjusted to the individual characteristics of the video sequence
 - On edge level, filtering strength is made dependent on inter/intra, motion, and coded residuals
 - On sample level, quantizer dependent thresholds can turn off filtering for every individual sample
 - Specially strong filter for macroblocks with very flat characteristics almost removes "tiling artifacts"

Deblocking Filter

One dimensional visualization of an edge position

Filtering of p_0 and q_0 only takes place if:

1.
$$|p_0 - q_0| < \alpha(QP)$$

2.
$$|p_1 - p_0| < \beta(QP)$$

3.
$$|q_1 - q_0| < \beta(QP)$$

Where $\beta(QP)$ is considerably smaller than $\alpha(QP)$

Filtering of p_1 or q_1 takes place if additionally:

1.
$$|p_2 - p_0| < \beta(QP)$$
 or $|q_2 - q_0| < \beta(QP)$

(QP = quantization parameter)

Deblocking: Subjective Result for Intra

Highly compressed first decoded intra picture at 0.28 bit/sample

Without Filter

With H264/AVC Deblocking

Deblocking: Subjective Result for Inter

Highly compressed decoded inter picture

Without Filter

With H264/AVC Deblocking

Entropy coding

Variable length coding

- Exp-Golomb code for almost all symbols except for transform coefficients
- Context adaptive VLCs for coding of transform coefficients
 - Number of coefficients is decoded
 - Special treatment of values +1 and -1
 - Contexts are built dependent on transform coefficients

Context-Adaptive Arithmetic Coding (CABAC)

Chooses a model conditioned on past observations

Maps non-binary symbols to a binary sequence

Uses the provided model for the actual encoding and updates the model

S Pictures

General description

- Allows identical reconstruction of frames even when different reference frames are being used
- SP pictures use of motion-compensated prediction
- SI pictures can exactly approximate SP pictures

Applications

- Bitstream switching or splicing
- Random access
- Fast-forward, fast-backward
- Error recovery and/or resiliency
- Resynchronization such as in Video Redundancy Coding

SP and SI Pictures

Comparison of H.264 to MPEG-4

- MPEG-4: Advanced Simple Profile (ASP)
 - Motion Compensation: 1/4 pel
 - Global Motion Compensation
- H.264:
 - Motion Compensation: 1/4 pel
 - Using CABAC entropy coding
 - 5 reference frames (News: 17)
- Both
 - Sequence structure IBBPBBP...
 - $QP_B=QP_P+2$ (step size: +25%)
 - Search range: 32x32 around 16x16 predictor
 - Lagrangian D+λR coder control

[source: ITU-T VCEG]

RD Curves: Foreman (QCIF, 10Hz)

[source: ITU-T VCEG]

MPEG-4 @ 32 kbit/s H.26L @ 32 kbit/s

MPEG-4 @ 32 kbit/s

MPEG-4 @ 32 kbit/s

Performance Streaming Application

	Average bit-rate savings relative to:				
Coder	MPEG-4 ASP	H.263 HLP	MPEG-2		
H.264/AVC MP	37.44%	47.58%	63.57%		
MPEG-4 ASP	-	16.65%	42.95%		
H.263 HLP	-	-	30.61%		

Example Streaming Test Result

Example Streaming Test Result

Test Results for Real-Time Conversation

	Average bit-rate savings relative to:		
Coder	H.263 CHC	MPEG-4 SP	H.263 Base
H.264/AVC BP	27.69%	29.37%	40.59%
H.263 CHC	-	2.04%	17.63%
MPEG-4 SP	-	-	15.69%

Example Real-Time Conversation Result

Example Real-Time Test Result

Test Results Entertainment-Quality Applications

	Average bit-rate savings relative to:
Coder	MPEG-2
H.264/AVC MP	45%

Example Entertainment-Quality Applications Result

Example Entertainment-Quality Applications Result

Further reading

IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on the H.264/JVC Video Coding Standard, July 2003.

