

N-DIMENSIONAL LINES

Definition

Given two distinct points x and y in \mathbb{R}^n , the *line* through x and y is the set of points expressable as the sum of x and $\alpha(y-x)$ where $\alpha \in \mathbb{R}$.

In other words, the line through x and y is the set

$$\{z \in \mathbf{R}^n \mid \exists \alpha \in \mathbf{R}, z = x + \alpha(y - x)\} = \{x + \alpha(y - x) \mid \alpha \in \mathbf{R}\}\$$

The second expression is notation for the first, and is called the *set-generator notation*. Notice that if $z = x + \alpha(y - x)$, then

$$z = (1 - \alpha)x + \alpha y,$$

where $\alpha \in \mathbf{R}$ and $x, y \in \mathbf{R}^n$. This highlights the obvious (and obviously desirable) property that the definition is symmetric in x and y.

Visualization in the plane

Notation

We denote the line through x and y by L(x, y).

Properties

There are a few nice properties. If $x \neq y$, then L(x,y) = L(y,x). Also, if v and w are in L(x,y) and $v \neq w$, then the line through v and w is the same as the line through x and y. In symbols

$$L(v, w) = L(x, y)$$

