Internet of Things 3

The "Things" in IoT

The "Things"

- Sensors & Actuators are the fundamental building blocks of IoT
 - Sensor senses
 - Actuator acts
- Smart objects are any physical objects that contain
 - Embedded technology
 - Microcontroller unit, memory storage, power supply, communication ports, input and output, timer or counter
 - Sensors and/or actuators

- Smart objects are to sense and/or interact with their environment in a meaningful way
 - being interconnected, and
 - enabling communication among themselves or with external agent.

Sensor

Smart Object

Sensors

- It measures some physical quantity and converts that measurement into analog/digital form
- There are a <u>number of ways to group</u> and cluster sensors into different categories
 - Based on external energy requirement
 - Active / Passive
 - Based on placement location
 - Invasive / Non-invasive
 - Based on distance from the sensing object
 - Contact / No-contact

- Based on application industry
 - Medical / Manufacturing / Agriculture / etc.
- Based on measuring scale
 - Absolute / Relative

- Based on sensing mechanism
 - Thermoelectric / Electromechanical / Piezo resistive / Optic / Electric / Fluid mechanics / Photoelastic / etc.
- Based on sensing parameter
 - Position / Occupancy / Motion / Velocity / Force / Pressure / Flow / Humidity / Light / Temperature / Acoustic / Radiation / Chemical / Biosensors / etc.

Sensor Types: What it measures

Sensor Type	Description	Example
Position	 Measures the position of an object Position could be absolute/relative Position sensor could be linear, angular, or multi-axis 	Proximity sensorPotentiometerInclinometer
Occupancy	 Detects the presence of people and animals in a surveillance area Generates signal even when a person is stationary 	Radar Sensor
Motion	Detects the movement of people and objects	Passive Infrared (PIR) Sensor

Ultrasonic Proximity
Sensor

Infrared Proximity
Sensor

PIR Motion Sensor

Sensor Type	Description	Example
Velocity and Acceleration	 Velocity sensor measures how fast an object moves Acceleration sensor measures the changes in velocity 	GyroscopeAccelerometer
Force	Detects whether a physical force is applied and the magnitude of the force	Tactile sensorViscometer
Pressure	 Measuring the force applied by liquids or gases It is measured as force per unit area 	BarometerPiezometer

Gyroscope

Capacitive Touch Sensor

Sensor Type	Description	Example
Flow	Detects the rate of fluid flow through a system in given period of time	Water meterAnemometer
Humidity	 Detects amount of water vapour in the air Can be measured in absolute/relative scale 	HygrometerSoil moisture sensor
Light	Detects the presence of light	LDR light sensorPhotodetectorFlame Sensor

Soil moisture sensor

LDR light sensor

Flame sensor

Sensor Type	Description	Example
Radiation	Detects the radiation in the environment	Neutron detectorGeiger-Muller counter
Temperature	 Measures the amount of heat or cold present in the system Two type: contact / non-contact 	ThermometerTemperature gaugeCalorimeter

Neutron detector

Geiger-Muller counter

Temperature Sensor

Thermo-Hygrometer

Sensor Type	Description	Example
Acoustic	Measures sound level	MicrophoneHydrophone
Chemical	 Measures the concentration of a chemical (e.g. CO₂) in a system 	Smoke detectorBreathalyzer
Biosensor	 Detects various biological elements, such as organisms, tissues, cells, enzymes, antibodies, nucleic acid, etc. 	Pulse oximeterElectrocardiograph (ECG)Blood glucose biosensor

Breathalyzer

Pulse oximeter

Sensors in a Smart Car

Sensors in a Smartphone

Actuators

- Sensors are designed to sense and measure the surrounding environment
- Actuators receive some type of control signal (commonly an electrical signal or digital command) that triggers a physical effect, usually some type of motion, force, and so on.

Source: https://cdn2.hubspot.net/hubfs/1878050/Landingpages/Events/Schwabengipfel/Guido Schmutz IoT-Cloud-or-OnPrem.pdf?t=1501051153000

IoT based Automated Systems

Smart Parking System

Source:

https://www.mobiloitte.com/blog/smart-parking-solution-using-iot/

Smart Irrigation System

Source:

https://www.hydropoint.com/what-is-smart-irrigation/

Actuator Classification

- Common ways to classify actuators:
 - ✓ Type of motion they produce
 - e.g. linear, rotary, one/two/three axes
 - ✓ Power output
 - e.g. high power, low power, micro power
 - ✓ Binary / Continuous output
 - Based on number of stable-state outputs
 - ✓ Area of application
 - Specific industry or vertical where they are used
 - ✓ Type of energy
 - e.g. mechanical energy, electrical energy, hydraulic energy, etc.

Actuators by Energy Type

Туре	Examples
Mechanical actuators	Lever, Screw jack, Hand crank
Electrical actuators	Thyristor, Bipolar transistor, Diode
Electromechanical actuators	AC motor, DC motor, Step motor
Electromagnetic actuators	Electromagnet, Linear solenoid
Hydraulic and Pneumatic actuators	Hydraulic cylinder, Pneumatic cylinder, Piston, Pressure control valve, Air motor
Smart material actuator (includes thermal and magnetic actuators)	Magnetorestrictive material, Bimetallic strip, Piezoelectric bimorph

Smart Objects

- It is the building blocks of IoT
- Smart object has the following five characteristics:
 - Sensor(s) and/or Actuator(s)
 - Processing unit
 - For acquiring sensed data from sensors,
 - processing and analysing sensing data,
 - coordinating control signals to any actuators, and
 - controlling many functions (e.g. communication unit, power unit).

Memory

- · Mostly on-chip flash memory
- user memory used for storing application related data
- program memory used for programming the device

Communication unit

 Responsible for connecting a smart object with other smart objects and the outside world (via the network using wireless/wired communication)

Power source

To powered all components of the smart object

TelosB Mote

Source: Cisco

Present Trends in Smart Objects

- Size is decreasing
- Power consumption is decreasing
- Processing power is increasing
- Communication capabilities are improving
- Communication is being increasingly standardized

Lessons Learned

- √ What is "Things" in IoT
- ✓ Classification method of Sensors
- ✓ Different Sensors based on Sensing parameter
- ✓ Classification method of Actuators
- ✓ Different Actuators based on Energy type
- √ What is "Smart object" in IoT

Thanks!

Figures and slide materials are taken from the following Books:

1. David Hanes et al., "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, 2018, Pearson India.