Algèbre 2 Test Nº 1

AU 2015-2016 Durée: 2h

Exercice 1 (3pt):

Soient A et B deux polynômes non nuls de $\mathbb{K}[X]$.

Montrer que : $A \wedge B = 1 \Leftrightarrow AB \wedge (A + B) = 1$.

Exercice 2 (4pt):

- 1. Montrer que $P_n \neq 1 + X + \frac{X^2}{2!} + \dots + \frac{X^n}{n!}$ n'a que des racines simples dans C.
- \bigstar 2. Déterminer tous les polynômes P de $\mathbb{K}[X]$ divisibles par leur polynôme dérivé P.

Exercice 3 (4pt):

Trouver tous les polynômes U et V tels que $(X-1)^3U + (X+1)^2V = 1$.

Exercice 4 (4pt):

Déterminer a_n et b_n pour que $A_n = a_n X^{n+1} + b_n X^n + 1$ soit divisible par $B = (X-1)^2$. Former alors le quotient Q_n dans la division de A_n par B.

Exercice 5 (5pt):

Soit le polynôme $P = X^4 + 12X - 5$.

On se propose de trouver, dans \mathbb{C} , x_1, x_2, x_3, x_4 les racines de P sachant que $x_1 + x_2 = 2.$

- 1. Ecrire le système d'équations qui donne la relation entre les racines de P et ses coefficients.
- 2. En utilisant $x_1 + x_2 = 2$ monter que : $x_1x_2 = 5$, $x_3 + x_4 = -2$ et $x_3x_4 = -1$.
- 3. A l'aide de la question 2 trouver x_1, x_2, x_3 et x_4 .