

Vishay BCcomponents

NTC Thermistors, Accuracy Line

QUICK REFERENCE DA	TA
PARAMETER	VALUE
Resistance value at 25 °C	$3.3~\Omega$ to $470~\text{k}\Omega$
Tolerance on R ₂₅ - value	± 2 %; ± 3 %; ± 5 %; ± 10 %
Tolerance on B _{25/85} - value	± 0.5 % to ± 3 %
Maximum dissipation	500 mW
Dissipation factor δ (for information only)	7 mW/K 8.5 mW/K (for 640338 to 689)
Response time	1.2 s
Thermal time constant τ (for information only)	15 s
Operating temperature range:	
at zero dissipation; continuously	- 40 to + 125 °C
at zero dissipation; for short periods	≤ 150 °C
at maximum dissipation (500 mW)	0 to 55 °C
Climatic category	40/125/56
Mass	≈ 0.3 g

FEATURES

- Accuracy over a wide temperature range
- · High stability over a long life
- Excellent price/performance ratio
- Old part number was 2322 640 3/4/6....
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

• Temperature sensing and control

These thermistors have a negative temperature coefficient. The device consists of a chip with two tinned solid copper-plated leads. It is grey lacquered and colour coded, but not insulated.

PACKAGING

The thermistors are packed in bulk or tape on reel; see code numbers and relevant packaging quantities.

MARKING

The thermistors are marked with coloured bands; see dimensions drawing and "Electrical data and ordering information".

MOUNTING

By soldering in any position.

LLEUIK	DA	I A AND	UL	G INFORMATION		T		
R ₂₅	B _{25/85} -	VALUE	APPROVED	12NC ORDERING CODE 2381 640 6 ¹⁾	SAP MATERIAL NO. NTCLE100E3 ²⁾	CC	LOR COD	E ³⁾
(Ω)	(K)	(± %)	(Y/N)	2301 040 0 7	NICLE IUUE3	I	II	III
3.3	2880	3	N	*338	338*B0	orange	orange	gold
4.7	2880	3	N	*478	478*B0	yellow	violet	gold
6.8	2880	3	N	*688	688*B0	blue	grey	gold
10	2990	3	N	*109	109*B0	brown	black	black
15	3041	3	N	*159	159*B0	brown	green	black
22	3136	3	N	*229	229*B0	red	red	black
33	3390	3	Y	*339	339*B0	orange	orange	black
47	3390	3	Y	*479	479*B0	yellow	violet	black
68	3390	3	Y	*689	689*B0	blue	grey	black
100	3560	0.75	N	*101	101*B0	brown	black	browi
150	3560	0.75	N	*151	151*B0	brown	green	browi
220	3560	0.75	N	*221	221*B0	red	red	browi
330	3560	0.75	N	*331	331*B0	orange	orange	brow
470	3560	0.75	N	*471	471*B0	yellow	violet	brow
680	3560	0.75	N	*681	681*B0	blue	grey	brow
1000	3528	0.5	N	*102	102*B0	brown	black	red
1500	3528	0.5	N	*152	152*B0	brown	green	red

Vishay BCcomponents

NTC Thermistors, Accuracy Line

ELECTRI	ELECTRICAL DATA AND ORDERING INFORMATION										
R ₂₅	B _{25/85} -	VALUE	UL APPROVED	12NC ORDERING CODE	SAP MATERIAL NO.	cc	LOR COD)E ³⁾			
(Ω)	(K)	(± %)	(Y/N)	2381 640 6 ¹⁾	NTCLE100E3 ²⁾	ı	II	III			
2000	3528	0.5	N	*202	202*B0	red	black	red			
2200	3977	0.75	Y	*222	222*B0	red	red	red			
2700	3977	0.75	Y	*272	272*B0	red	violet	red			
3300	3977	0.75	Y	*332	332*B0	orange	orange	red			
4700	3977	0.75	Y	*472	472*B0	yellow	violet	red			
5000	3977	0.75	Y	*502	502*B0	green	black	red			
6800	3977	0.75	Y	*682	682*B0	blue	grey	red			
10 000	3977	0.75	Y	*103	103*B0	brown	black	orange			
12 000	3740	2	Y	*123	123*B0	brown	red	orange			
15 000	3740	2	Y	*153	153*B0	brown	green	orange			
22 000	3740	2	Y	*223	223*B0	red	red	orange			
33 000	4090	1.5	N	*333	333*B0	orange	orange	orange			
47 000	4090	1.5	N	*473	473*B0	yellow	violet	orange			
50 000	4190	1.5	N	*503	503*B0	green	black	orange			
68 000	4190	1.5	N	*683	683*B0	blue	grey	orange			
100 000	4190	1.5	N	*104	104*B0	brown	black	yellow			
150 000	4370	2.5	Y	*154	154*B0	brown	green	yellow			
220 000	4370	2.5	Y	*224	224*B0	red	red	yellow			
330 000	4570	1.5	N	*334	334*B0	orange	orange	yellow			
470 000	4570	1.5	N	*474	474*B0	yellow	violet	yellow			

Notes

- 1. Replace * in 12NC by 2 for 10 %, 3 for 5 %, 6 for 3 %, 4 for 2 %
- 2. Replace * in SAP by K for 10 %, J for 5 %, H for 3 %, G for 2 %
- 3. For $R_{25} \pm 2$ % band IV is red, \pm 3 % band IV is orange, \pm 5 % band IV is gold and \pm 10 % band IV is silver

DIMENSIONS in millimeters

DERATING AND TEMPERATURE TOLERANCES

PHYSICAL DIMENSIONS FOR RELEVANT TYPE								
CODE NUMBER	CODE NUMBER 2381 640 Bmax	4	ŀ	11	L MAY		В	Tmax
2381 640		d	MIN.	MAX.	H ₂ MAX	_		IIIIax
6.338 to 6.221	5.0	0.6 ± 0.06	1.0	4.0	6.0	24 ±1.5	2.54	4.0
6.331 to 6.474	3.3 ± 0.5	0.6 ± 0.06	-	2.0 ± 1.0	6.0	24 ± 1.5	2.54	3.0

Vishay BCcomponents

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE

Curves valid for 2.2 to 10 k Ω Curve 1: $\Delta R_{25}/R_{25}=5$ % Curve 2: $\Delta R_{25}/R_{25}=3$ % Curve 3: $\Delta R_{25}/R_{25}=2$ % Curve 4: $\Delta R_{25}/R_{25}=1$ % (for 2381 640 5.... series only)

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE

Curves valid for 12 to 22 k Ω Curve 1: $\Delta R_{25}/R_{25}=5$ % Curve 2: $\Delta R_{25}/R_{25}=3$ % Curve 3: $\Delta R_{25}/R_{25}=2$ %

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE

Curves valid for 33 to 47 k Ω Curve 1: $\Delta R_{26}/R_{25} = 5\%$ Curve 2: $\Delta R_{26}/R_{25} = 3\%$ Curve 3: $\Delta R_{26}/R_{25} = 2\%$ Curve 4: $\Delta R_{26}/R_{25} = 1\%$ (for 2381 640 5.... series only)

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE

Curves valid for 68 to 100 k Ω Curve 1: $\Delta R_{25}/R_{25}=5$ % Curve 2: $\Delta R_{25}/R_{25}=3$ % Curve 3: $\Delta R_{25}/R_{25}=3$ % Curve 3: $\Delta R_{25}/R_{25}=2$ % Curve 4: $\Delta R_{25}/R_{25}=1$ % (for 2381 640 5... series only)

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE

Curves valid for 150 to 220 k Ω Curve 1: $\Delta R_{25}/R_{25}=5$ % Curve 2: $\Delta R_{25}/R_{25}=3$ % Curve 3: $\Delta R_{25}/R_{25}=2$ %

TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE

Curves valid for 330 to 470 k Ω Curve 1: $\Delta R_{25}/R_{25}=5$ % Curve 2: $\Delta R_{25}/R_{25}=3$ % Curve 3: $\Delta R_{25}/R_{25}=2$ %

Vishay BCcomponents

NTC Thermistors, Accuracy Line

R_T VALUE AND TOLERANCE

These thermistors have a narrow tolerance on the B-value, the result of which provides a very small tolerance on the nominal resistance value over a wide temperature range. For this reason the usual graphs of R = f(T) are replaced by Resistance Values at Intermediate Temperatures Tables, together with a formula to calculate the characteristics with a high precision.

FORMULAE TO DETERMINE NOMINAL RESISTANCE VALUES

The resistance values at intermediate temperatures, or the operating temperature values, can be calculated using the following interpolation laws (extended "Steinhart and Hart"):

$$R(T) - R_{ref} \times e^{(A + B/T + B/T^2 + C/T^3)}$$
 (1)

$$T(R) = \left(A_1 + B_1 \ln \frac{R}{R_{ref}} + C_1 \ln^2 \frac{R}{R_{ref}} + D_1 \ln^3 \frac{R}{R_{ref}}\right)^{-1}$$
 (2)

where:

A, B, C, D, A_1 , B_1 , C_1 and D_1 are constant values depending on the material concerned; see table below.

 R_{ref} is the resistance value at a reference temperature (in this event 25 $^{\circ}\text{C}$).

T is the temperature in K.

Formulae numbered and are interchangeable with an error of max. 0.005 °C in the range 25 °C to 125 °C and max. 0.015 °C in the range - 40 °C to + 25 °C.

DETERMINATION OF THE RESISTANCE/TEMPERATURE DEVIATION FROM NOMINAL VALUE

The total resistance deviation is obtained by combining the ' R_{25} -tolerance' and the 'resistance deviation due to B-tolerance'.

When:

 $X = R_{25}$ -tolerance

Y = resistance deviation due to B-tolerance

Z = complete resistance deviation,

then:
$$Z = \left[\left(1 + \frac{X}{100} \right) \times \left(1 + \frac{Y}{100} \right) - 1 \right] \times 100 \%$$
 or $Z \approx X + Y$

When

TCR = temperature coefficient ΔT = temperature deviation,

then: $\Delta T = \frac{Z}{TCR}$

The temperature tolerances are plotted in the graphs on the previous page.

Example: at 0 °C, assume X = 5 %, Y = 0.89 % and TCR = 5.08 %/K (see Table), then:

$$Z = \left\{ \left[1 + \frac{5}{100} \right] \times \left[1 + \frac{0.89}{100} \right] - 1 \right\} \times 100\%$$

$$= \{1.05 \times 1.0089 - 1\} \times 100\% = 5.9345\% \ (\approx 5.93\%)$$

$$\Delta T = \frac{Z}{TCR} = \frac{5.93}{5.08} = 1.167 \, ^{\circ}C \, (\approx 1.17 \, ^{\circ}C)$$

A NTC with a R_{25} - value of 10 $k\Omega$ has a value of 32.56 $k\Omega$ between - 1.17 and + 1.17 °C.

PARA	PARAMETER FOR DETERMINING NOMINAL RESISTANCE VALUES										
NUMBER	B _{25/85} (K)	NAME	TOL. B VALUE %	A	В (К)	C (K ²)	D (K ³)	A ₁	B ₁ (K ⁻¹)	C ₁ (K ⁻²)	D ₁ (K ⁻³)
1	2880	mat O. with Bn = 2880K	3	-9.094	2251.74	229098	-2.744820E+07	3.354016E-03	3.495020E-04	2.095959E-06	4.260615E-07
2	2990	mat P. with Bn = 3990K	3	-10.2296	2887.62	132336	-2.502510E+07	3.354016E-03	3.415560E-04	4.955455E-06	4.364236E-07
3	3041	mat Q. with Bn = 3041K	3	-11.1334	3658.73	-102895	5.166520E+05	3.354016E-03	3.349290E-04	3.683843E-06	7.050455E-07
4	3136	mat R. with Bn = 3136K	3	-12.4493	4702.74	-402687	3.196830E+07	3.354016E-03	3.243880E-04	2.658012E-06	-2.701560E-07
5	3390	mat S. with Bn = 3390K	3	-12.6814	4391.97	-232807	1.509643E+07	3.354016E-03	2.993410E-04	2.135133E-06	-5.672000E-09
	3528 ¹⁾	mat.l	٥.	-12.0596	3687.667	-7617.13	-5.914730E+06	3.354016E-03	2.909670E-04	1.632136E-06	7.192200E-08
6	3528 ²⁾	with Bn = 3528K	0.5	-21.0704	11903.95	-2504699	2.470338E+08	3.354016E-03	2.933908E-04	3.494314E-06	-7.712690E-07
7	3560	mat.H with Bn = 3560K	0.75	-13.0723	4190.574	-47158.4	-1.199256E+07	3.354016E-03	2.884193E-04	4.118032E-06	1.786790E-07
8	3740	mat.B with Bn = 3740K	2	-13.8973	4557.725	-98275	-7.522357E+06	3.354016E-03	2.744032E-04	3.666944E-06	1.375492E-07
9	3977	mat A. with Bn =3977K	0.75	-14.6337	4791.842	-115334	-3.730535E+06	3.354016E-03	2.569850E-04	2.620131E-06	6.383091E-08
10	4090	mat.C with Bn = 4090K	1.5	-15.5322	5229.973	-160451	-5.414091E+06	3.354016E-03	2.519107E-04	3.510939E-06	1.105179E-07
11	4190	mat.D with Bn = 4190K	1.5	-16.0349	5459.339	-191141	-3.328322E+06	3.354016E-03	2.460382E-04	3.405377E-06	1.034240E-07
12	4370	mat.E with Bn = 4370K	2.5	-16.8717	5759.15	-194267	-6.869149E+06	3.354016E-03	2.367720E-04	3.585140E-06	1.255349E-07
13	4570	mat.F with Bn = 4570K	1.5	-17.6439	6022.726	-203157	-7.183526E+06	3.354016E-03	2.264097E-04	3.278184E-06	1.097628E-07

Notes

1. Temperature < 25 °C

2. Temperature ≥ 25 °C

Vishay BCcomponents

RESIS1	TANCE VA	LUES AT INTEI	RMEDIAT	E TEMPERATUR	ES			
T _{OPER}	R _T /R ₂₅	ΔR DUE TO B-TOLERANCE	TCR (%/K)	R ₂₅ (Ω) 2381 640; see note 1 at end of tables				
(-)		(%)	(//-	6.338	6.478	6.688		
- 40	13.6364	8.08	- 4.97	45.00	64.09	92.73		
- 35	10.6806	7.30	- 4.80	35.25	50.20	72.63		
- 30	8.4350	6.55	- 4.64	27.84	39.64	57.36		
- 25	6.7148	5.84	- 4.48	22.16	31.56	45.66		
- 20	5.3866	5.15	- 4.33	17.78	25.32	36.63		
- 15	4.3532	4.49	- 4.19	14.37	20.46	29.60		
- 10	3.5432	3.85	- 4.05	11.69	16.65	24.09		
- 5	2.9035	3.24	- 3.92	9.58	13.65	19.74		
0	2.3950	2.65	- 3.79	7.90	11.26	16.29		
5	1.9880	2.08	- 3.66	6.56	9.34	13.52		
10	1.6602	1.54	- 3.55	5.48	7.80	11.29		
15	1.3944	1.01	- 3.43	4.60	6.55	9.48		
20	1.1777	0.49	- 3.32	3.89	5.54	8.01		
25	1.0000	0.00	- 3.22	3.30	4.70	6.80		
30	0.8534	0.48	- 3.12	2.82	4.01	5.80		
35	0.7319	0.94	- 3.02	2.42	3.44	4.98		
40	0.6307	1.39	- 2.93	2.08	2.96	4.29		
45	0.5459	1.82	- 2.84	1.80	2.57	3.71		
50	0.4746	2.24	- 2.76	1.57	2.23	3.23		
55	0.4143	2.65	- 2.68	1.37	1.95	2.82		
60	0.3631	3.04	- 2.60	1.20	1.71	2.47		
65	0.3194	3.43	- 2.52	1.05	1.50	2.17		
70	0.2820	3.80	- 2.45	0.93	1.33	1.92		
75	0.2499	4.16	- 2.38	0.82	1.17	1.70		
80	0.2222	4.51	- 2.32	0.73	1.04	1.51		
85	0.1982	4.85	- 2.25	0.65	0.93	1.35		
90	0.1774	5.19	- 2.19	0.59	0.83	1.21		
95	0.1592	5.51	- 2.13	0.53	0.75	1.08		
100	0.1433	5.82	- 2.07	0.47	0.67	0.97		
105	0.1294	6.13	- 2.02	0.43	0.61	0.88		
110	0.1171	6.43	- 1.97	0.39	0.55	0.80		
115	0.1063	6.72	- 1.92	0.35	0.50	0.72		
120	0.0967	7.00	- 1.87	0.32	0.45	0.66		
125	0.0882	7.28	- 1.82	0.29	0.41	0.60		
130	0.0806	7.55	- 1.77	0.27	0.38	0.55		
135	0.0739	7.81	- 1.73	0.24	0.35	0.50		
140	0.0678	8.07	- 1.69	0.22	0.32	0.46		
145	0.0624	8.32	- 1.65	0.21	0.29	0.42		
150	0.0575	8.56	- 1.61	0.19	0.27	0.39		

RESIST	RESISTANCE VALUES AT INTERMEDIATE TEMPERATURES							
T _{OPER}	ER D/D	∆R DUE TO B-TOLERANCE	TCR	R ₂₅ (Ω)				
(°C)	R_T/R_{25}	(%)	(%/K)	2381 640; see note 1 at end of tables				
				6.109				
- 40	13.675	8.39	- 4.86	136.75				
- 35	10.763	7.58	- 4.72	107.63				
- 30	8.5318	6.81	- 4.58	85.32				
- 25	6.8097	6.06	- 4.44	68.10				
- 20	5.4717	5.35	- 4.31	54.72				
- 15	4.4253	4.66	- 4.18	44.25				
- 10	3.6017	4.00	- 4.06	36.02				
- 5	2.9494	3.37	- 3.94	29.49				

Vishay BCcomponents

NTC Thermistors, Accuracy Line

RESIS1	RESISTANCE VALUES AT INTERMEDIATE TEMPERATURES							
T _{OPER} (°C)	R _T /R ₂₅	ΔR DUE TO B-TOLERANCE (%)	TCR (%/K)	R ₂₅ (Ω) 2381 640; see note 1 at end of tables 6.109				
0	2.4295	2.75	- 3.82	24.30				
5	2.0128	2.16	- 3.71	20.13				
10	1.6767	1.59	- 3.60	16.77				
15	1.4042	1.04	- 3.50	14.04				
20	1.1821	0.51	- 3.39	11.82				
25	1.0000	0.00	- 3.30	10.00				
30	0.8500	0.50	- 3.20	8.50				
35	0.7259	0.98	- 3.11	7.26				
40	0.6226	1.44	- 3.03	6.23				
45	0.5363	1.89	- 2.94	5.36				
50	0.4639	2.33	- 2.86	4.64				
55	0.4029	2.75	- 2.78	4.03				
60	0.3512	3.16	- 2.71	3.51				
65	0.3073	3.56	- 2.64	3.07				
70	0.2698	3.95	- 2.57	2.70				
75	0.2377	4.32	- 2.50	2.38				
80	0.2101	4.69	- 2.43	2.10				
85	0.1864	5.04	- 2.37	1.86				
90	0.1658	5.38	- 2.31	1.66				
95	0.1479	5.72	- 2.25	1.48				
100	0.1323	6.05	- 2.20	1.32				
105	0.1187	6.36	- 2.14	1.19				
110	0.1068	6.67	- 2.09	1.07				
115	0.0964	6.98	- 2.04	0.96				
120	0.0871	7.27	- 1.99	0.87				
125	0.0790	7.56	- 1.94	0.79				
130	0.0717	7.84	- 1.90	0.72				
135	0.0653	8.11	- 1.85	0.65				
140	0.0596	8.37	- 1.81	0.60				
145	0.0545	8.63	- 1.77	0.55				
150	0.0500	8.89	- 1.73	0.50				

T _{OPER}	OPER R _T /R ₂₅	∆R DUE TO B-TOLERANCE	TCR	R ₂₅ (Ω)
(°C)	11/1125	(%)	(%/K)	2381 640; see note 1 at end of tables
		` ,		6.159
- 40	14.9855	8.65	- 5.16	224.78
- 35	11.6319	7.79	- 4.98	174.47
- 30	9.1099	6.98	- 4.80	136.65
- 25	7.1957	6.21	- 4.64	107.93
- 20	5.7297	5.47	- 4.48	85.94
- 15	4.5975	4.76	- 4.33	68.96
- 10	3.7160	4.08	- 4.19	55.74
- 5	3.0245	3.43	- 4.05	45.37
0	2.4780	2.81	- 3.92	37.17
5	2.0431	2.20	- 3.80	30.65
10	1.6947	1.62	- 3.68	25.42
15	1.4138	1.06	- 3.57	21.21
20	1.1859	0.52	- 3.46	17.79
25	1.0000	0.00	- 3.36	15.00
30	0.8506	0.49	- 3.26	12.76
35	0.7242	0.98	- 3.17	10.86
40	0.6194	1.46	- 3.08	9.29

Vishay BCcomponents

RESIST	TANCE VA	LUES AT INTEI	RMEDIAT	E TEMPERATURES
T _{OPER} (°C)	R _T /R ₂₅	AR DUE TO B-TOLERANCE	TCR (%/K)	R ₂₅ (Ω) 2381 640; see note 1 at end of tables
` ,		(%)	, ,	6.159
45	0.5322	1.92	- 2.99	7.98
50	0.4591	2.36	- 2.91	6.89
55	0.3978	2.79	- 2.83	5.97
60	0.3459	3.21	- 2.75	5.19
65	0.3020	3.62	- 2.68	4.53
70	0.2645	4.02	- 2.61	3.97
75	0.2326	4.41	- 2.54	3.49
80	0.2051	4.78	- 2.48	3.08
85	0.1815	5.15	- 2.41	2.72
90	0.1611	5.51	- 2.35	2.42
95	0.1434	5.85	- 2.30	2.15
100	0.1280	6.19	- 2.24	1.92
105	0.1146	6.53	- 2.19	1.72
110	0.1029	6.85	- 2.13	1.54
115	0.0926	7.17	- 2.08	1.39
120	0.0835	7.48	- 2.03	1.25
125	0.0755	7.78	- 1.99	1.13
130	0.0684	8.08	- 1.94	1.03
135	0.0622	8.37	- 1.90	0.93
140	0.0566	8.65	- 1.86	0.85
145	0.0516	8.93	- 1.82	0.77
150	0.0472	9.20	- 1.78	0.71

T _{OPER}		∆R DUE TO	TCR	R ₂₅ (Ω)
(°C)	R_T/R_{25}	B-TOLERANCE (%)	(%/K)	2381 640; see note 1 at end of tables
		(/0)		6.229
- 40	17.042	8.80	- 5.54	374.92
- 35	12.993	7.95	- 5.31	285.85
- 30	10.017	7.14	- 5.10	220.38
- 25	7.8037	6.36	- 4.90	171.68
- 20	6.1382	5.61	- 4.71	135.04
- 15	4.8719	4.89	- 4.53	107.18
- 10	3.8996	4.20	- 4.37	85.79
- 5	3.1461	3.53	- 4.22	69.21
0	2.5571	2.89	- 4.07	56.26
5	2.0930	2.27	- 3.94	46.05
10	1.7245	1.67	- 3.81	37.94
15	1.4298	1.10	- 3.69	31.45
20	1.1924	0.54	- 3.57	26.23
25	1.0000	0.00	- 3.47	22.00
30	0.8431	0.52	- 3.36	18.55
35	0.7144	1.02	- 3.26	15.72
40	0.6083	1.51	- 3.17	13.38
45	0.5203	1.98	- 3.08	11.45
50	0.4470	2.44	- 3.00	9.83
55	0.3856	2.88	- 2.92	8.48
60	0.3339	3.32	- 2.84	7.35
65	0.2903	3.73	- 2.76	6.39
70	0.2533	4.14	- 2.69	5.57
75	0.2218	4.53	- 2.62	4.88
80	0.1948	4.91	- 2.56	4.29

Vishay BCcomponents

NTC Thermistors, Accuracy Line

RESIS1	RESISTANCE VALUES AT INTERMEDIATE TEMPERATURES								
T _{OPER}	D /D	∆R DUE TO B-TOLERANCE	TCR	R ₂₅ (Ω)					
T _{OPER} (°C)	R _T /R ₂₅	(%)	(%/K)	2381 640; see note 1 at end of tables					
		(,0)		6.229					
85	0.1717	5.29	- 2.50	3.78					
90	0.1518	5.65	- 2.44	3.34					
95	0.1346	6.00	- 2.38	2.96					
100	0.1196	6.34	- 2.32	2.63					
105	0.1067	6.68	- 2.27	2.35					
110	0.0954	7.00	- 2.22	2.10					
115	0.0855	7.32	- 2.17	1.88					
120	0.0768	7.62	- 2.12	1.69					
125	0.0691	7.93	- 2.07	1.52					
130	0.0624	8.22	- 2.03	1.37					
135	0.0565	8.50	- 1.98	1.24					
140	0.0512	8.78	- 1.94	1.13					
145	0.0165	9.06	- 1.90	1.02					
150	0.0423	9.32	- 1.86	0.93					

T _{OPER} R _T /R ₂₅		∆R DUE TO	TCR _	R_{25} (Ω)			
(°C)	n _T /n ₂₅	B-TOLERANCE (%)	(%/K)	2381 640; see note 1 at end of tables			
		(70)		6.339	6.479	6.689	
- 40	21.4241	9.51	- 5.94	707.00	1006.93	1456.84	
- 35	16.0147	8.59	- 5.70	528.48	752.69	1089.00	
- 30	12.1074	7.72	- 5.49	399.54	569.05	823.30	
- 25	9.2511	6.87	- 5.28	305.29	434.80	629.07	
- 20	7.1395	6.06	- 5.09	235.60	335.56	485.49	
- 15	5.5619	5.29	- 4.90	183.54	261.41	378.21	
- 10	4.3715	4.54	- 4.73	144.26	205.46	297.26	
- 5	3.4647	3.82	- 4.57	114.33	162.84	235.60	
0	2.7678	3.12	- 4.42	91.34	130.09	188.21	
5	2.2276	2.45	- 4.27	73.51	104.70	151.48	
10	1.8057	1.81	- 4.13	59.59	84.87	122.79	
15	1.4735	1.18	- 4.00	48.63	69.26	100.20	
20	1.2102	0.58	- 3.88	39.94	56.88	82.29	
25	1.0000	0.00	- 3.76	33.00	47.00	68.00	
30	0.8311	0.56	- 3.64	27.43	39.06	56.51	
35	0.6946	1.11	- 3.54	22.92	32.64	47.23	
40	0.5835	1.63	- 3.43	19.26	27.42	39.68	
45	0.4927	2.14	- 3.34	16.26	23.16	33.50	
50	0.4180	2.64	- 3.24	13.79	19.65	28.42	
55	0.3563	3.12	- 3.15	11.76	16.74	24.23	
60	0.3050	3.58	- 3.07	10.06	14.33	20.74	
65	0.2622	4.03	- 2.98	8.65	12.32	17.83	
70	.02263	4.47	- 2.90	7.47	10.64	15.39	
75	0.1961	4.90	- 2.83	6.47	9.22	13.33	
80	0.1705	5.31	- 2.76	5.63	8.02	11.60	
85	0.1489	5.71	- 2.69	4.91	7.00	10.12	
90	0.1304	6.11	- 2.62	4.30	6.13	8.86	
95	0.1146	6.49	- 2.55	3.78	5.38	7.79	
100	0.1010	6.86	- 2.49	3.33	4.75	6.87	
105	0.0893	7.22	- 2.43	2.95	4.20	6.07	
110	0.0792	7.57	- 2.37	2.61	3.72	5.38	
115	0.0704	7.91	- 2.32	2.32	3.31	4.79	
120	0.0628	8.24	- 2.26	2.07	2.95	4.27	
125	0.0561	8.57	- 2.21	1.85	2.64	3.82	

www.vishay.com

For technical questions, contact: nlr.europe@vishay.com

Document Number: 29049 Revision: 06-Oct-06

82

NTC Thermistors, Accuracy Line

Vishay BCcomponents

RESIST	ANCE VA	LUES AT INTE	RMEDIAT	E TEMPERATURI	ES		
T _{OPER}		∆R DUE TO	TCR (%/K)	R ₂₅ (Ω) 2381 640; see note 1 at end of tables			
(°C)	(°C) R _T /R ₂₅	B-TOLERANCE (%)					
				6.339	6.479	6.689	
130	0.0503	8.88	- 2.16	1.66	2.37	3.42	
135	0.0452	9.19	- 2.11	1.49	2.13	3.07	
140	0.0407	9.49	- 2.07	1.34	1.91	2.77	
145	0.0368	9.79	- 2.02	1.21	1.73	2.50	
150	0.0333	10.08	- 1.98	1.10	1.56	2.26	

RESIS1	TANCE VA	LUES AT INTE	RMEDIAT	E TEMPI	ERATURE	ES			
T _{OPER}		ΔR DUE TO	TCR			R (9	25 2)		
(°C)	R _T /R ₂₅	B-TOLERANCE	(%/K)		2381 640 .	; see note	1 AT END O	F TABLES	
` ,		(%)		6.101	6.151	6.221	6.331	6.471	6.681
- 40	21.9261	2.50	- 5.75	2192.6	2388.9	4823.7	7236	10503	14910
- 35	16.5224	2.26	- 5.57	1652.2	2478.4	3634.9	5452	7766	11235
- 30	12.5583	2.03	- 5.40	1255.8	1883.7	2762.8	4144	5902	8540
- 25	9.62492	1.80	- 5.24	962.5	1443.7	2117.5	3176	4524	6545
- 20	7.43618	1.59	- 5.08	743.6	1115.4	1636.0	2454	3495	5057
- 15	5.78976	1.39	- 4.93	579.0	868.5	1273.7	1911	2721	3937
- 10	4.54158	1.19	- 4.78	454.2	681.2	999.1	1499	1235	3088
- 5	3.58813	1.00	- 4.64	358.8	538.2	789.4	1184	1686	2440
0	2.85449	0.82	- 4.51	285.4	428.2	628.0	942.0	1342	1941
5	2.28599	0.64	- 4.38	228.6	342.9	502.9	754.4	1074	1554
10	1.84245	0.47	- 4.25	184.2	276.4	405.3	608.0	865.9	1253
15	1.49414	0.31	- 4.13	149.4	224.1	328.7	493.1	702.2	1016
20	1.21887	0.15	- 4.01	121.9	182.8	268.2	402.2	572.9	828.8
25	1.000	0.00	- 3.90	100.0	150.0	220.0	330.0	470.0	680.0
30	0.82494	0.15	- 3.80	82.5	123.7	181.5	272.2	387.7	561.0
35	0.68413	0.29	- 3.69	68.4	102.6	150.5	225.8	321.5	465.2
40	0.57025	0.43	- 3.59	57.0	85.5	125.5	188.2	268.0	387.8
45	0.47765	0.56	- 3.50	47.8	71.6	105.1	157.6	224.5	324.8
50	0.40198	0.69	- 3.40	40.2	60.3	88.4	132.7	188.9	273.3
55	0.33984	0.82	- 3.31	34.0	51.0	74.8	112.1	159.7	231.1
60	0.28856	0.94	- 3.23	28.9	43.3	63.5	95.23	135.6	196.2
65	0.24606	1.06	- 3.15	24.6	36.9	54.1	81.20	115.6	167.3
70	0.21067	1.17	- 3.07	21.1	31.6	46.3	69.52	99.00	143.3
75	0.18108	1.29	- 2.99	18.1	27.2	39.8	59.76	85.11	123.1
80	0.15623	1.39	- 2.91	15.6	23.4	34.4	51.56	73.43	106.2
85	0.13529	1.50	- 2.84	13.5	20.3	29.8	44.65	63.59	92.00
90	0.11757	1.60	- 2.77	11.8	17.6	25.9	38.80	55.26	79.95
95	0.10251	1.70	- 2.71	10.3	15.4	22.6	33.83	48.18	69.71
100	0.08968	1.80	- 2.64	8.97	13.5	19.7	29.59	42.15	60.98
105	0.07871	1.89	- 2.58	7.87	11.8	17.3	25.97	36.99	53.52
110	0.06928	1.99	- 2.52	6.93	10.4	15.2	22.86	32.56	47.11
115	0.06117	2.08	- 2.46	6.12	9.18	13.5	20.19	28.75	41.60
120	0.05416	2.16	- 2.41	5.42	8.12	11.9	17.87	25.46	36.83
125	0.04809	2.25	- 2.35	4.81	7.21	10.6	15.87	22.60	32.70
130	0.04282	2.33	- 2.30	4.28	6.42	9.42	14.13	20.12	29.11
135	0.03822	2.41	- 2.25	3.82	5.73	8.41	12.61	17.96	25.99
140	0.03420	2.49	- 2.20	3.42	5.13	7.52	11.29	16.07	23.25
145	0.03068	2.57	- 2.15	3.07	4.60	6.75	10.12	14.42	20.86
150	0.02758	2.65	- 2.10	2.76	4.14	6.07	9.10	12.96	18.76

Vishay BCcomponents

NTC Thermistors, Accuracy Line

RESIS	TANCE VA	LUES AT INTE	RMEDIA	TE TEMPERATUR	RES	
T _{OPER}	D /D	∆R DUE TO B-TOLERANCE	TCR		R ₂₅ (Ω)	
(°C)	R_T/R_{25}	(%)	(%/K)	2381	640; see note 1 at end	of tables
		(70)		6.102	6.152	6.202
- 40	23.3402	1.65	- 6.06	23342	35013	46684
- 35	17.3347	1.49	- 5.84	17336	26004	34672
- 30	13.0166	1.34	- 5.62	13018	19526	26035
- 25	9.8764	1.19	- 5.42	9877	14816	19754
- 20	7.5682	1.05	- 5.23	7569	11353	15138
- 15	5.8541	0.92	- 5.05	5855	8782	11709
- 10	4.5688	0.79	- 4.87	4569	6854	9138
- 5	3.5961	0.66	- 4.71	3596	5395	7193
0	2.8533	0.54	- 4.55	2854	4280	5707
5	2.2815	0.43	- 4.40	2282	3422	4563
10	1.8376	0.31	- 4.26	1838	2457	3675
15	1.4904	0.21	- 4.12	1491	2236	2981
20	1.2169	0.10	- 3.99	1217	1826	2434
25	1.0000	0.00	- 3.87	1000	1500	2000
30	0.8266	0.10	- 3.75	826.7	1240	1653
35	0.6873	0.19	- 3.63	687.4	1031	1375
40	0.5746	0.28	- 3.53	574.6	861.9	1149
45	0.4827	0.37	- 3.42	482.7	724.1	965.0
50	0.4073	0.46	- 3.32	407.4	611.0	814.7
55	0.3452	0.54	- 3.23	345.2	517.8	690.5
60	0.2937	0.62	- 3.14	293.7	440.6	587.5
65	0.2508	0.70	- 3.05	250.8	376.2	501.7
70	0.2149	0.78	- 2.97	214.9	322.4	429.8
75	0.1847	0.85	- 2.89	184.8	277.1	369.5
80	0.1593	0.92	- 2.81	159.3	238.9	318.6
85	0.1377	0.99	- 2.73	137.7	206.6	275.5
90	0.11942	1.06	- 2.66	119.4	179.1	238.9
95	0.10380	1.13	- 2.59	103.8	155.7	207.6
100	0.09045	1.19	- 2.53	90.46	135.7	180.9
105	0.07900	1.25	- 2.46	79.00	118.5	158.0
110	0.06915	1.31	- 2.40	69.16	103.7	138.3
115	0.06066	1.37	- 2.34	60.66	90.99	121.3
120	0.05332	1.43	- 2.29	53.32	79.98	106.6
125	0.04696	1.49	- 2.23	46.96	70.44	93.9
130	0.04143	1.54	- 2.18	41.44	62.15	82.9
135	0.03662	1.60	- 2.13	36.63	54.94	73.3
140	0.03243	1.65	- 2.08	32.43	48.65	64.9
145	0.02877	1.70	- 2.03	28.77	43.16	57.5
150	0.02556	1.75	- 1.98	25.56	38.34	51.1

RESIST	RESISTANCE VALUES AT INTERMEDIATE TEMPERATURES										
T _{OPER}	D /D	∆R DUE TO	TCR	R ₂₅ (κΩ)							
(°C)	R_T/R_{25}	B-TOLERANCE (%)	(%/K)	2381 640; see note 1 at end of tables							
		(70)		6.222	6.272	6.332	6.472	6.682	6.103		
- 40	33.21	2.66	6.57	73.06	89.67	109.6	156.1	225.8	332.1		
- 35	23.99	2.41	6.36	52.78	64.77	79.17	112.8	163.1	240.0		
- 30	17.52	2.17	6.15	38.55	47.31	57.82	82.35	119.1	175.2		
- 25	12.93	1.94	5.95	28.44	34.91	42.67	60.77	87.92	129.3		
- 20	9.636	1.71	5.76	21.20	26.02	31.80	45.30	65.53	96.36		
- 15	7.250	1.50	5.58	15.95	19.58	23.93	34.08	49.30	72.50		
- 10	5.505	1.29	5.40	12.11	14.86	18.16	25.87	37.43	55.05		
- 5	4.216	1.08	5.24	9.275	11.38	13.91	19.81	28.67	42.16		
0	3.255	0.89	5.08	7.162	8.790	10.74	15.30	22.14	32.56		

For technical questions, contact: $\underline{\mathsf{nlr.europe@vishay.com}}$

Vishay BCcomponents

T _{OPER}	D /D	∆R DUE TO	TCR	R ₂₅ (k Ω)						
(°C)	R_T/R_{25}	B-TOLERANCE (%)	(%/K)		2381 6	40 ; see n	ote 1 at end o	of tables		
		(70)		6.222	6.272	6.332	6.472	6.682	6.103	
5	2.534	0.70	4.92	5.575	6.842	8.362	11.91	17.23	25.34	
10	1.987	0.52	4.78	4.372	5.366	6.558	9.340	13.51	19.87	
15	1.570	0.34	4.64	3.454	4.239	5.181	7.378	10.67	15.70	
20	1.249	0.17	4.50	2.747	3.372	4.121	5.869	8.492	12.49	
25	1.000	0.00	4.37	2.200	2.700	3.300	4.700	6.800	10.00	
30	0.8059	0.16	4.25	1.773	2.176	2.660	3.788	5.480	8.059	
35	0.6535	0.32	4.13	1.438	1.764	2.156	3.072	4.444	6.535	
40	0.5330	0.47	4.02	1.173	1.439	1.759	2.505	3.624	5.330	
45	0.4372	0.62	3.91	0.9618	1.180	1.443	2.055	2.972	4.372	
50	0.3605	0.77	3.80	0.7932	0.973	1.190	1.694	2.451	3.606	
55	0.2989	0.91	3.70	0.6575	0.807	0.9863	1.405	2.032	2.989	
60	0.2490	1.05	3.60	0.5478	0.672	0.8217	1.170	1.693	2.490	
65	0.2084	1.18	3.51	0.4586	0.562	0.6879	0.9797	1.417	2.084	
70	0.1753	1.31	3.42	0.3857	0.473	0.5785	0.8239	1.192	1.753	
75	0.1481	1.44	3.33	0.3258	0.399	0.4887	0.6960	1.007	1.481	
80	0.1256	1.57	3.25	0.2764	0.339	0.4146	0.5905	0.8544	1.256	
85	0.1070	1.69	3.16	0.2355	0.289	0.3532	0.5031	0.7278	1.070	
90	0.09154	1.81	3.09	0.2014	0.247	0.3021	0.4303	0.6225	0.915	
95	0.07860	1.93	3.01	0.1729	0.212	0.2594	0.3694	0.5345	0.786	
100	0.06773	2.04	2.94	0.1490	0.182	0.2235	0.3183	0.4607	0.677	
105	0.05858	2.15	2.87	0.1289	0.158	0.1933	0.2753	0.3983	0.585	
110	0.05083	2.26	2.80	0.1118	0.137	0.1677	0.2389	0.3457	0.508	
115	0.04426	2.37	2.73	0.0974	0.1195	0.1461	0.2080	0.3010	0.442	
120	0.03866	2.47	2.67	0.0851	0.1044	0.1276	0.1817	0.2629	0.386	
125	0.03387	2.57	2.61	0.0745	0.0915	0.1118	0.1592	0.2303	0.338	
130	0.02977	2.67	2.55	0.0655	0.0804	0.0982	0.1399	0.2024	0.297	
135	0.02624	2.77	2.49	0.0577	0.0709	0.0866	0.1233	0.1784	0.262	
140	0.02319	2.86	2.43	0.0510	0.0626	0.0765	0.1090	0.1577	0.231	
145	0.02055	2.96	2.38	0.0452	0.0555	0.0678	0.0966	0.1398	0.205	
150	0.01826	3.05	2.33	0.0402	0.0493	0.0603	0.0858	0.1242	0.182	

T _{OPER}		∆R DUE TO	TCR		R ₂₅ (Ω)	
(°C)	R_T/R_{25}	B-TOLERANCE (%)	(%/K)	2381 64	40 ; see note 1 at end o	of tables
		(/0)		6.123	6.153	6.223
- 40	25.78	6.81	6.09	309.4	386.8	567.2
- 35	19.13	6.16	5.89	229.5	286.9	420.8
- 30	14.32	5.53	5.70	171.8	214.8	315.0
- 25	10.82	4.93	5.52	129.8	162.3	238.0
- 20	8.245	4.35	5.35	98.93	123.7	181.4
- 15	6.335	3.80	5.19	76.02	95.03	139.4
- 10	4.907	3.26	5.03	58.88	73.60	107.9
- 5	3.830	2.74	4.88	45.95	57.44	84.25
0	3.011	2.24	4.73	36.13	45.16	66.24
5	2.384	1.76	4.60	28.60	35.76	52.45
10	1.900	1.30	4.46	22.80	28.50	41.81
15	1.525	0.85	4.34	18.30	22.87	33.55
20	1.231	0.42	4.21	14.77	18.47	27.09
25	1.000	0.00	4.10	12.00	15.00	22.00
30	0.8170	0.41	3.98	9.804	12.26	17.97
35	0.6712	0.80	3.88	8.054	10.07	14.77
40	0.5543	1.19	3.77	6.652	8.315	12.20

Document Number: 29049 Revision: 06-Oct-06 For technical questions, contact: nlr.europe@vishay.com

Vishay BCcomponents

NTC Thermistors, Accuracy Line

RESIST	TANCE VA	LUES AT INTE	RMEDIAT	E TEMPERATURE	S			
T _{OPER}	D (D	∆R DUE TO B-TOLERANCE (%)	TCR		R ₂₅ (Ω)			
(°C)	R _T /R ₂₅		(%/K)	2381 640; see note 1 at end of tables				
				6.123	6.153	6.223		
45	0.4602	1.57	3.67	5.522	6.903	10.12		
50	0.3839	1.94	3.57	4.607	5.759	8.447		
55	0.3219	2.30	3.48	3.862	4.828	7.081		
60	0.2710	2.65	3.39	3.252	4.067	5.963		
65	0.2293	2.99	3.30	2.751	3.439	5.044		
70	0.1947	3.33	3.22	2.337	2.921	4.284		
75	0.1661	3.66	3.14	1.993	2.492	3.654		
80	0.1422	3.98	3.06	1.707	2.134	3.129		
85	0.1223	4.29	2.99	1.467	1.834	2.690		
90	0.1055	4.60	2.92	1.266	1.583	2.321		
95	0.09135	4.90	2.85	1.096	1.370	2.010		
100	0.07937	5.19	2.78	0.9524	1.190	1.746		
105	0.06919	5.48	2.71	0.8302	1.038	1.522		
110	0.06050	5.76	2.65	0.7260	0.9075	1.331		
115	0.05307	6.04	2.59	0.6369	0.7961	1.168		
120	0.04670	6.31	2.53	0.5604	0.7005	1.027		
125	0.04121	6.57	2.47	0.4945	0.6181	0.9065		

T _{OPER}	D /D	∆R DUE TO B-TOLERANCE	TCR		25 Ω)
(°C)	R_T/R_{25}	(%)	(%/K)	2381 640 ; see n	ote 1 at end of tables
		(70)		6.333	6.473
- 40	33.81	5.55	6.55	1116	1589
- 35	24.50	5.02	6.34	808.6	1151
- 30	17.93	4.52	6.15	591.7	842.8
- 25	13.25	4.03	5.96	437.1	622.6
- 20	9.875	3.56	5.78	325.9	464.1
- 15	7.425	3.10	5.61	245.0	349.0
- 10	5.630	2.67	5.45	185.8	264.6
- 5	4.304	2.24	5.29	142.0	202.3
0	3.315	1.84	5.14	109.4	155.8
5	2.573	1.44	4.99	84.91	120.9
10	2.011	1.07	4.85	66.37	94.53
15	1.583	0.70	4.72	52.24	74.40
20	1.254	0.34	4.59	41.39	58.95
25	1.000	0.00	4.46	33.00	47.00
30	0.8024	0.33	4.34	26.47	37.71
35	0.6474	0.66	4.23	21.37	30.43
40	0.5255	0.98	4.12	17.34	24.70
45	0.4288	1.28	4.01	14.15	20.15
50	0.3518	1.59	3.91	11.61	16.53
55	0.2901	1.88	3.81	9.572	13.63
60	0.2403	2.17	3.71	7.931	11.30
65	0.2001	2.45	3.62	6.603	9.404
70	0.1674	2.72	3.53	5.522	7.865
75	0.1406	2.99	3.44	4.639	6.607
80	0.1186	3.25	3.36	3.913	5.573
85	0.1004	3.51	3.28	3.315	4.721
90	0.08542	3.76	3.20	2.819	4.015
95	0.07292	4.00	3.13	2.406	3.427
100	0.06248	4.24	3.06	2.062	2.936
105	0.05372	4.47	2.98	1.773	2.525
110	0.04635	4.70	2.92	1.530	2.179

Document Number: 29049 Revision: 06-Oct-06

86

Vishay BCcomponents

RESIST	TANCE VA	LUES AT INTE	RMEDIAT	E TEMPERATURES	
T _{OPER}	D /D	∆R DUE TO	TCR		iΩ)
(°C)	R _T /R ₂₅	B-TOLERANCE (%)	(%/K)	2381 640 ; see n	ote 1 at end of tables
		(70)		6.333	6.473
115	0.04013	4.93	2.85	1.342	1.886
120	0.03485	5.15	2.79	1.150	1.638
125	0.03037	5.36	2.73	1.002	1.427
130	0.02654	5.57	2.67	0.8757	1.247
135	0.02326	5.78	2.61	0.7675	1.093
140	0.02044	5.98	2.55	0.6746	0.9608
145	0.01802	6.18	2.50	0.5945	0.8468
150	0.01592	6.37	2.44	0.5254	0.7483

RESIST	ANCE VA	LUES AT INTER	RMEDIAT	E TEMPERATURES	
T _{OPER}	D /D	∆R DUE TO	TCR	R ₂₅ (kΩ	
(°C)	R _T /R ₂₅	B-TOLERANCE (%)	(%/K)	2381 640; see note	e 1 at end of tables
		(/5)		6.683	6.104
- 40	36.66	5.69	6.70	2493	3666
- 35	26.38	5.15	6.49	1794	2638
- 30	19.17	4.63	6.29	1303	1917
- 25	14.06	4.13	6.10	956.2	1406
- 20	10.41	3.65	5.92	708.0	1041
- 15	7.779	3.18	5.74	528.9	777.9
- 10	5.861	2.73	5.57	398.5	586.1
- 5	4.453	2.30	5.41	302.8	445.3
0	3.409	1.88	5.26	231.8	340.9
5	2.631	1.48	5.11	178.9	263.1
10	2.044	1.09	4.97	139.0	204.4
15	1.600	0.72	4.83	108.8	160.0
20	1.261	0.35	4.70	85.74	126.1
25	1.000	0.00	4.57	68.00	100.0
30	0.7981	0.34	4.45	54.27	79.81
35	0.6408	0.67	4.35	43.57	64.08
40	0.5175	1.00	4.22	35.19	51.74
45	0.4202	1.32	4.11	28.57	42.02
50	0.3431	1.63	4.00	23.33	34.31
55	0.2816	1.93	3.90	19.15	28.16
60	0.2322	2.22	3.80	15.79	23.22
65	0.1925	2.51	3.71	13.09	19.25
70	0.1602	2.79	3.62	10.90	16.03
75	0.1340	3.06	3.53	9.114	13.40
80	0.1126	3.33	3.45	7.655	11.26
85	0.09496	3.59	3.36	6.457	9.496
90	0.08042	3.85	3.28	5.469	8.042
95	0.06837	4.10	3.21	4.649	6.837
100	0.05835	4.35	3.13	3.968	5.835
105	0.04998	4.59	3.06	3.399	4.998
110	0.04296	4.82	2.99	2.921	4.296
115	0.03705	5.05	2.92	2.519	3.705
120	0.03206	5.28	2.86	2.180	3.206
125	0.02783	5.50	2.80	1.892	2.783

Vishay BCcomponents

NTC Thermistors, Accuracy Line

RESIST	ANCE VAI	LUES AT INTER	MEDIAT	E TEMPERATURES	
T _{OPER}	D /D	∆R DUE TO B-TOLERANCE	TCR	R ₂	
(°C)	R _T /R ₂₅	B-TOLERANCE (%)	(%/K)	2381 640; see no	ote 1 at end of tables
		(,0)		6.154	6.224
- 40	41.02	10.10	6.89	6153	9024
- 35	29.29	9.12	6.68	4394	6444
- 30	21.12	8.18	6.48	3168	4646
- 25	15.37	7.28	6.29	2305	3381
- 20	11.28	6.42	6.11	1693	2483
- 15	8.358	5.59	5.93	1254	1839
- 10	6.242	4.80	5.76	936.4	1373
- 5	4.700	4.03	5.60	705.0	1034
0	3.567	3.30	5.44	535.0	784.7
5	2.727	2.59	5.29	409.1	600.0
10	2.101	1.90	5.15	315.1	462.1
15	1.629	1.25	5.01	244.4	358.4
20	1.272	0.61	4.88	190.8	279.9
25	1.000	0.00	4.75	150.0	220.0
30	0.7910	0.59	4.62	118.6	174.0
35	0.6295	1.18	4.51	94.42	138.5
40	0.5039	1.74	4.39	75.58	110.9
45	0.4056	2.30	4.28	60.85	89.24
50	0.3283	2.84	4.17	49.25	72.24
55	0.2672	3.37	4.07	40.08	58.78
60	0.2185	3.89	3.97	32.78	48.08
65	0.1796	4.40	3.87	26.94	39.51
70	0.1483	4.90	3.78	22.25	32.63
75	0.1231	5.39	3.69	18.46	27.07
80	0.1025	5.86	3.60	15.38	22.56
85	0.08582	6.33	3.52	12.87	18.88
90	0.07213	6.79	3.44	10.82	15.87
95	0.06086	7.24	3.36	9.129	13.39
100	0.05155	7.68	3.28	7.732	11.34
105	0.04383	8.11	3.21	6.574	9.642
110	0.03740	8.53	3.14	5.610	8.228
115	0.03203	8.94	3.07	4.804	7.046
120	0.02752	9.35	3.00	4.128	6.054
125	0.02372	9.75	2.94	3.559	5.219

RESIST	RESISTANCE VALUES AT INTERMEDIATE TEMPERATURES						
T _{OPER}	R _T /R ₂₅	AR DUE TO	TCR (%/K)	(R ₂₅ (kΩ)		
(°C)		B-TOLERANCE (%)		2381 640; see	note 1 at end of tables		
		(/6)		6.334	6.474		
- 40	48.62	6.22	7.13	16044	22850		
- 35	34.19	5.63	6.91	11282	16068		
- 30	24.28	5.06	6.71	8013	11413		
- 25	17.42	4.51	6.52	5747	8185		
- 20	12.61	3.98	6.33	4161	5926		
- 15	9.211	3.47	6.15	3040	4329		
- 10	6.788	2.98	5.98	2240	3190		
- 5	5.045	2.51	5.82	1665	2371		
0	3.781	2.06	5.66	1248	1776		
5	2.855	1.62	5.50	942.3	1342		
10	2.173	1.19	5.36	717.1	1021		
15	1.666	0.78	5.22	549.8	783.0		
20	1.286	0.38	5.08	424.5	604.6		
25	1.000	0.00	4.95	330.0	470.0		

Document Number: 29049 Revision: 06-Oct-06

88

Vishay BCcomponents

RESIST	RESISTANCE VALUES AT INTERMEDIATE TEMPERATURES						
T _{OPER}	D /D	ΔR DUE TO R _T /R ₂₅ B-TOLERANCE	TCR (%/K)	R ₂			
(°C)	n ₇ /n ₂₅	(%)		2381 640 ; see no	te 1 at end of tables		
		(/-/		6.334	6.474		
30	0.7825	0.37	4.82	258.2	367.8		
35	0.6163	0.74	4.70	203.4	289.6		
40	0.4883	1.09	4.59	161.1	229.5		
45	0.3892	1.44	4.47	128.4	182.9		
50	0.3120	1.77	4.36	103.0	146.7		
55	0.2515	2.10	4.26	83.00	118.2		
60	0.2038	2.43	4.15	67.26	95.80		
65	0.1660	2.74	4.06	54.79	78.03		
70	0.1359	3.05	3.96	44.86	63.88		
75	0.1118	3.35	3.87	36.90	52.55		
80	0.09240	3.64	3.78	30.49	43.43		
85	0.07670	3.93	3.69	25.31	36.05		
90	0.06395	4.21	3.61	21.10	30.06		
95	0.05354	4.48	3.53	17.67	25.16		
100	0.04501	4.75	3.45	14.85	21.15		
105	0.03798	5.01	3.37	12.53	17.85		
110	0.03218	5.27	3.30	10.70	15.12		
115	0.02736	5.52	3.23	9.029	12.86		
120	0.02335	5.77	3.16	7.704	10.97		
125	0.01999	6.01	3.09	6.597	9.396		

T _{AMB}	R _T /R ₂₅	ΔR DUE TO R _T /R ₂₅ B-TOLERANCE	TCR		325 Ω)
(°C)		(%)	(%/K)	2381 640 ; see n	ote 1 at end of tables
		` '		6.683	6.104
- 40	36.66	5.69	6.70	2493	3666
- 35	26.38	5.15	6.49	1794	2638
- 30	19.17	4.63	6.29	1303	1917
- 25	14.06	4.13	6.10	956.2	1406
- 20	10.41	3.65	5.92	708.0	1041
- 15	7.779	3.18	5.74	528.9	777.9
- 10	5.861	2.73	5.57	398.5	586.1
- 5	4.453	2.30	5.41	302.8	445.3
0	3.409	1.88	5.26	231.8	340.9
5	2.631	1.48	5.11	178.9	263.1
10	2.044	1.09	4.97	139.0	204.4
15	1.600	0.72	4.83	108.8	160.0
20	1.261	0.35	4.70	85.74	126.1
25	1.000	0.00	4.57	68.00	100.0
30	0.7981	0.34	4.45	54.27	79.81
35	0.6408	0.67	4.35	43.57	64.08
40	0.5175	1.00	4.22	35.19	51.74
45	0.4202	1.32	4.11	28.57	42.02
50	0.3431	1.63	4.00	23.33	34.31
55	0.2816	1.93	3.90	19.15	28.16
60	0.2322	2.22	3.80	15.79	23.22
65	0.1925	2.51	3.71	13.09	19.25
70	0.1602	2.79	3.62	10.90	16.03
75	0.1340	3.06	3.53	9.114	13.40
80	0.1126	3.33	3.45	7.655	11.26
85	0.09496	3.59	3.36	6.457	9.496
90	0.08042	3.85	3.28	5.469	8.042

Vishay BCcomponents

NTC Thermistors, Accuracy Line

RESIST	RESISTANCE VALUES AT INTERMEDIATE TEMPERATURES WITH R25 AT 68 k Ω AND 100 k Ω							
T _{AMB}	D (D	∆R DUE TO	TCR	R (k				
(°C)	R _T /R ₂₅	B-TOLERANCE (%)	(%/K)	2381 640; see no	ote 1 at end of tables			
		(/0)	(/-)		6.683	6.104		
95	0.06837	4.10	3.21	4.649	6.837			
100	0.05835	4.35	3.13	3.968	5.835			
105	0.04998	4.59	3.06	3.399	4.998			
110	0.04296	4.82	2.99	2.921	4.296			
115	0.03705	5.05	2.92	2.519	3.705			
120	0.03206	5.28	2.86	2.180	3.206			
125	0.02783	5.50	2.80	1.892	2.783			

- AMB	D /D	∆R DUE TO	TCR	${f R_{25}} \ ({f k}\Omega)$
(°C)	R _T /R ₂₅	B-TOLERANCE (%)	(%/K)	2381 640; see note 1 at end of tables
		(70)		5.474
- 40	48.62	6.22	7.13	22850
- 35	34.19	5.63	6.91	16068
- 30	24.28	5.06	6.71	11413
- 25	17.42	4.51	6.52	8185
- 20	12.61	3.98	6.33	5926
- 15	9.211	3.47	6.15	4329
- 10	6.788	2.98	5.98	3190
- 5	5.045	2.51	5.82	2371
0	3.781	2.06	5.66	1776
5	2.855	1.62	5.50	1342
10	2.173	1.19	5.36	1021
15	1.666	0.78	5.22	783.0
20	1.286	0.38	5.08	604.6
25	1.000	0.00	4.95	470.0
30	0.7825	0.37	4.82	367.8
35	0.6163	0.74	4.70	289.6
40	0.4883	1.09	4.59	229.5
45	0.3892	1.44	4.47	182.9
50	0.3120	1.77	4.36	146.7
55	0.2515	2.10	4.26	118.2
60	0.2038	2.43	4.15	95.80
65	0.1660	2.74	4.06	78.03
70	0.1359	3.05	3.96	63.88
75	0.1118	3.35	3.87	52.55
80	0.09240	3.64	3.78	43.43
85	0.07670	3.93	3.69	36.05
90	0.06395	4.21	3.61	30.06
95	0.05354	4.48	3.53	25.16
100	0.04501	4.75	3.45	21.15
105	0.03798	5.01	3.37	17.85
110	0.03218	5.27	3.30	15.12
115	0.02736	5.52	3.23	12.86
120	0.02335	5.77	3.16	10.97
125	0.01999	6.01	3.09	9.396

Note to Resistance Values At Intermediate Temperature Tables

^{1.} Replace dot in last 5 digits of catalog number by a number according to the following details and depending on tolerance on required R₂₅ - value: 4 for a tolerance of ± 2 %; 6 for a tolerance of ± 3 %; 3 for a tolerance of ± 5 %; 2 for a tolerance of ± 10 %.

Vishay BCcomponents

PACKAGING TAPE SPECIFICATIONS

Thermistors on tape

1E pitch 2322 640 4....

DIMENSIONS OF TAPE IN ACCORDANCE WITH "IEC 60286-2"					
SYMBOL	PARAMETER		DIMENSIONS (mm)		
		DIMEN	TOLERANCE		
D	body diameter ²⁾	3.3	± 0.5		
T	maximum total thickness	≤3	-		
d	lead diameter	0.6	± 0.06		
Р	pitch between thermistors	12.7	± 1		
P ₀	feed-hole pitch (cumulative pitch error ± 0.2 mm/20 products)	12.7	± 0.3		
P ₁	feed-hole centre to lead centre	5.08	± 0.7		
Δp	component alignment	0	± 1.3		
F	lead-to-lead distance	2.54	± 0.3		
Δh	component alignment	0	± 2		
W	tape width	18.0	+ 1/- 0.5		
W ₀	hold-down tape width	≥ 12.5	-		
W ₁	feed-hole position	9.0	± 0.5		
W ₂	hold-down tape position	≤ 3	-		
Н	component to tape centre	22 ¹⁾	± 1		
H ₁	component height	≤ 32	-		
L	length of snipped lead	≤ 11	-		
D ₀	feed-hole diameter	4.0	± 0.2		
t	total tape thickness with cardboard tape 0.5 ± 0.1 mm	0.65	± 0.2		
	inspection level: S3 mechanical	-	1 %		

Notes

- 1. Taped products with $H = 45 \pm 1$, are available on request
- 2. $D \le 5$ max for 6404.338 to 221

Vishay BCcomponents

NTC Thermistors, Accuracy Line

DIMENSIONS OF TAPE IN ACCORDANCE WITH "IEC 60286-2"					
SYMBOL	PARAMETER		DIMENSIONS (mm)		
		VALUE	TOLERANCE		
D	body diameter ¹⁾	3.3	± 0.5		
Т	maximum total thickness ²⁾	≤ 3.2	-		
d	lead diameter	0.6	± 0.06		
Р	pitch between thermistors	12.7	± 1		
P ₀	feed-hole pitch (cumulative pitch error ± 0.2 mm/20 products)	12.7	± 0.3		
P ₁	feed-hole centre to lead centre	3.85	± 0.7		
Δр	component alignment	0	± 1.3		
F	lead-to-lead distance	5.08	± 0.3		
Δh	component alignment	0	± 2		
W	tape width	18.0	+ 1/- 0.5		
W ₀	hold-down tape width	≥ 12.5	-		
W ₁	feed-hole position	9.0	+ 0.75/- 0.5		
W ₂	hold-down tape position	≤3	-		
Н	component to tape centre	20	+ 2		
H ₀	lead wire clinch height	16	± 0.5		
L	length of snipped lead	≤11	-		
D ₀	feed-hole diameter	4.0	± 0.3		
t	total tape thickness with cardboard tape 0.5 \pm 0.1 mm	0.7	± 0.2		
	inspection level: S3 mechanical	-	1 %		

Notes

- 1. $D \le 5$ max for 640 3. 338 to 640 4. 221
- 2. $T \le 4$ max for 640 3. 338 to 640 4. 221

Vishay BCcomponents

REEL SPECIFICATIONS

CODE NUMBERS AND RELEVANT PACKAGING QUANTITIES							
PARAMETER	BULK	TAPE AND REEL ¹⁾ 1E pitch	TAPE AND REEL ¹⁾ 2E pitch				
PANAMETER	2381 640 6/ NTCLE100E3B0	2381 640 4/ NTCLE100E3T1	2381 640 3/ NTCLE100E3T2				
Quantity	500	1500 per reel, 2 reels per box	1500 per reel, 2 reels per box				

Note

 The maximum number of emptz places per seel shall not exceed 0.1 % of the total number of components per reel. With no consecutive positions empty.

CHARACTERISTICS OF TAPED PRODUCTS

Minimum pull-out force of the component: 5 N Minimum peel-off force of adhesive tape: 6N

Minimum tearing force tape: 15 N Minimum pull-off force of tape-reel: 5 N

STORAGE CONDITIONS

Storage temperature range: - 25 to + 40 °C

Maximum relative humidity: 80 %

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with "IEC publication 60068-2; Environmental testing", except where indicated.

STABILITY TESTS						
CECC 32 100 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS		
D3; 4.20.1		endurance	25 °C; 1000 hours	ΔR/R < 1 %		
	1	endurance	- 40 °C; 1000 hours	ΔR/R < 1 %		
	539	endurance	500 mW; 55 °C; 1000 hours	$\Delta R/R < 3 \%^{1)}$		
	2	dry heat, (steady state)	125 °C; 1000 hours	$\Delta R/R < 3$ %		
D1; 4.19	3	damp heat (steady state)	56 days at 40 °C; 90 to 95 % RH	ΔR/R < 3 %		
C2; 4.14	14	rapid change of temperature	- 40 °C to + 125 °C; 50 cycles	$\Delta R/R < 2 \%$		
Other applicab	le tests					
		robustness of leads:				
	21	tensile strength	loading force 10 N	$\Delta R/R \leq 1 \%$		
		bending	loading force 5 N			
	58	soldering:				
		solderability	240 °C max.; duration 4 s max.	Δ R/R \leq 1 % ²⁾		
		resistance to heat	265 °C max.; duration 5 s max.			
	27	impact	free fall; 1 m	ΔR/R ≤ 1 %		
	29	shock	490 m/s; half sinewave	ΔR/R ≤ 1 %		
	45	resistance to solvent (isopropanol)	ambient temp for 5 min; 5 N with hydrophylic cotton wool	no traces of lacquer on cotton wool		
	6	vibration	1.5 mm peak to peak: 10 to 58 Hz 10 gp: 50 to 500 Hz 1 octave/min. 2 hours in each direction in three orthogonal directions	no visible damage $\Delta R/R < 1~\%$		
	2	inflammability	1980, needle flame test	non-flammable		

Notes

- 1. For $R_{25} \ge 100 \text{ k}\Omega$ the drift requirement is $\Delta R/R < 5 \%$
- 2. For R_{25}^{25} from 2.2 k Ω to 10 k Ω , requirement is \pm 2 % max

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000
Revision: 08-Apr-05
www.vishay.com