LUBELSKA PROBA PRZED MATURĄ 2020 – poziom podstawowy					
10 marca 2020 r					
Czas pracy: 170 minut					
Liczba punktów do uzyskania: 50					

W zadaniach o numerach od 1 do 25 wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź

Zadanie 1. (1p)

Wartość wyrażenia $x^2 - y^2$ dla $x = 2 - \sqrt{2}$ i $y = 2 + \sqrt{2}$ jest równa

A.
$$4\sqrt{2}$$

B.
$$-4\sqrt{2}$$

C.
$$-8\sqrt{2}$$

D.
$$8\sqrt{2}$$

Zadanie 2. (1p)

Dana jest liczba $a=100^{100}$. Liczba b stanowi 1% liczby a. Wówczas

A.
$$b = 100^{96}$$
 B. $b = 100^{97}$

B.
$$b = 100^{97}$$

C.
$$b = 100^{98}$$

D.
$$b = 100^{99}$$

Zadanie 3. (1p)

Jeżeli $log_2 18 = c$, to $log_2 3$ jest równy

A.
$$\frac{c+1}{2}$$

B.
$$\frac{c-1}{2}$$

C.
$$\frac{c}{6}$$

D.
$$-\frac{c}{6}$$

Zadanie 4. (1p)

Suma kwadratów dwóch wyrażeń (1 - x) i (x + 2) jest równa

A.
$$x^2 - 2x + 5$$
 B. $x^2 + 2x + 5$

B.
$$x^2 + 2x + 5$$

C.
$$x^2 - 2x + 4$$

D.
$$2x^2 + 2x + 5$$

Zadanie 5. (1*p*)

Dziedziną funkcji $f(x) = \frac{1}{(x-2)(3+x)}$ jest zbiór

A.
$$x \in R \setminus \{2\}$$

A.
$$x \in R \setminus \{2\}$$
 B. $x \in R \setminus \{-3, 2\}$

C.
$$x \in R \setminus \{-3\}$$

D.
$$x \in R \setminus \{-2\}$$

Zadanie 6. (1p)

Liczba (-3) jest rozwiązaniem równania

A.
$$x^2 + 9 = 0$$
 B. $\frac{x+3}{2} = 1$

B.
$$\frac{x+3}{2} = 1$$

$$C.\frac{2}{x+3}=0$$

D.
$$x^2 - 9 = 0$$

Zadanie 7. (1*p*)

Zbiorem rozwiązań nierówności $\frac{x-2}{3} - x < 2$ jest przedział

A.
$$(-\infty, -4)$$
 B. $(-4, +\infty)$

B.
$$(-4, +\infty)$$

C.
$$(-\infty, 4)$$

D.
$$(4, +\infty)$$

Zadanie 8.

Do wykresu funkcji f danej wzorem $f(x) = 2^x - 1$ nie należy punkt o współrzędnych

A.
$$(2,-1)$$

Zadanie 9. (1*p*)

Funkcja f(x) = -2(x-4)(2+x) jest malejąca w przedziale

A.
$$(-2,4)$$
 B. $(-\infty,1)$

$$B(-\infty 1)$$

$$C. \langle -2, 4 \rangle$$

D.
$$\langle 1, +\infty \rangle$$

Zadanie 10. (1p)

Wykresem funkcji f danej wzorem $f(x) = -2(x+2m)^2 - 5$ jest parabola o wierzchołku w punkcie P = (4, -5). Wówczas

A.
$$m = 2$$

B.
$$m = -4$$

C.
$$m = -2$$

D.
$$m = 4$$

Zadanie 11. (1p)

Setny wyraz ciągu (a_n) jest równy 2020. Wzór ogólny na n-ty wyraz ciągu (a_n) może mieć postać

A.
$$a_n = 2n - 2020$$

A.
$$a_n = 2n - 2020$$
 B. $a_n = \frac{n^2}{4} - 480$ C. $a_n = n^2 - 480$ D. $a_n = 2n + 2020$

C.
$$a_n = n^2 - 480$$

$$D.a_n = 2n + 2020$$

Zadanie 12. (1p)

W ciągu arytmetycznym (a_n) , określonym dla $n \in \mathbb{N}^+$ spełniony jest warunek $a_5 = 2(a_3 - a_1) + 1$. Pierwszy wyraz tego ciagu jest równy

Zadanie 13. (1p)

Dany jest trzywyrazowy ciąg geometryczny o wyrazach dodatnich: $(2, x\sqrt{2}, 6)$ Wówczas

A.
$$x = 2$$

B.
$$x = 6$$

B.
$$x = 6$$
 C. $x = \sqrt{6}$

D.
$$x = 3\sqrt{2}$$

Zadanie 14. (1p)

Wiadomo, że $sin\alpha = \frac{3\sqrt{5}}{7} i \alpha \in (90^{\circ}, 180^{\circ})$. Wynika stąd, że

A.
$$cos\alpha = \frac{4}{7}$$

B.
$$cos\alpha = -\frac{2}{7}$$

C.
$$\cos \alpha = \frac{2}{7}$$

A.
$$cos\alpha = \frac{4}{7}$$
 B. $cos\alpha = -\frac{2}{7}$ C. $cos\alpha = \frac{2}{7}$ D. $cos\alpha = -\frac{4}{7}$

Zadanie 15. (1p)

Na okręgu o środku w punkcie O leżą punkty A, B, C (zobacz rysunek). Odcinek AC jest średnicą okręgu. Kąt AOB ma miarę 64°.

Kat OBC ma miare równą

$$\mathrm{B..34}^{\circ}$$

Zadanie 16. (1p)

Dwusieczne katów ostrych trójkąta prostokątnego ABC przecinają się w punkcie P. Przyprostokątne AB i BC mają długości równe odpowiednio 12 i 9 (zobacz rysunek).

Odległość punktu P od przeciwprostokatnej AC jest równa

B. 2

C. 15

D. $\frac{15}{2}$

. 1 1 ,

Zadanie 17. (1p)

Obwód trójkąta równobocznego jest równy $\frac{6x}{y}$, gdzie x > 0 i y > 0. Pole powierzchni tego trójkąta jest równe

A.
$$\frac{x^2\sqrt{3}}{y^2}$$

$$B.\frac{x^2}{y^2}$$

C.
$$\frac{3x}{y}$$

D.
$$\frac{x\sqrt{3}}{y}$$

Zadanie 18. (1p)

Prosta k o równaniu x - y + 12 = 0, tworzy z osią Ox kąt o mierze równej

$$A. 30^{\circ}$$

Zadanie 19. (1p)

Dłuższy z boków prostokąta ABCD ma długość równą 12, a dwa sąsiednie wierzchołki mają współrzędne C = (-5, 1), D = (3, 1). Pole powierzchni tego prostokąta jest równe

A.
$$20\sqrt{3}$$

B. 64

Zadanie 20. (1p)

Przekątna graniastosłupa prawidłowego czworokątnego ma długość równą 16 i jest nachylona do płaszczyzny podstawy pod kątem 45°. Wysokość tego graniastosłupa ma długość równą.

B.
$$8\sqrt{2}$$

$$C. \frac{16\sqrt{3}}{3}$$

D.
$$8\sqrt{3}$$

Zadanie 21. (1p)

Wysokość ściany bocznej opuszczona na krawędź podstawy ostrosłupa prawidłowego trójkątnego jest 3 razy dłuższa od krawędzi jego podstawy. Stosunek pola powierzchni bocznej do pola powierzchni podstawy tego ostrosłupa jest równy

A.
$$\frac{1}{3}$$

B.
$$2\sqrt{3}$$

C.
$$6\sqrt{3}$$

Zadanie 22. (1p)

Ze zbioru cyfr {6,7,8,9} losujemy kolejno bez zwracania dwie cyfry i tworzymy liczbę dwucyfrową. Prawdopodobieństwo tego, że utworzona liczba będzie nie mniejsza niż 89 jest równe

A.
$$\frac{3}{16}$$

B.
$$\frac{4}{16}$$

C.
$$\frac{3}{12}$$

D.
$$\frac{4}{12}$$

Zadanie 23. (1p)

Średnia arytmetyczna zestawu danych: 2, x, 4, x, 6, x, 8, x, 10, x jest równa 4,5. Mediana tego zestawu danych wynosi

A. 2

B. 2,5

C. 3

D. 3,5

Zadanie 24. (1p)

Pole powierzchni całkowitej sześcianu jest równe 72. Wynika stąd, że przekątna tego sześcianu ma długość równą

A. 6

B. $2\sqrt{3}$

C. $3\sqrt{3}$

D.12

Zadanie 25. (1p)

Aby odblokować telefon komórkowy należy użyć czterocyfrowego kodu PIN. Paweł ustalił, że jego kod PIN na parzystych miejscach będzie miał cyfrę nieparzystą, a na nieparzystych miejscach cyfrę parzystą oraz cyfry nie będą się powtarzać. Ile różnych kodów PIN może utworzyć Paweł?

A. 400

B. 300

C. $2 \cdot 5^4$

D. $2 \cdot 4^{5}$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26 do 34 należy zapisać w wyznaczonych miejscach pod treścią zadania (pamiętaj o udzieleniu odpowiedzi)

Zadanie 26. (2p)

Rozwiąż nierówność $2x^2 - 7x \ge -5$.

Zadanie 27. (2p)

Uzasadnij, że jeśli $a \neq 0$ oraz $\frac{b^2}{a^2} = 2b - a^2$, to $b = a^2$

Zadanie 28. (2p)

Dany jest prostokąt ABCD, w którym jeden bok jest dwa razy dłuższy od drugiego. Na boku DC zbudowano trójkąt równoboczny CDE (patrz rysunek). Punkt K jest takim punktem odcinka CE, że kąt $BKC = 75^\circ$. Udowodnij, że punkt K jest środkiem odcinka CE.

Zadanie 29. (2p)

Ile jest liczb naturalnych dwucyfrowych podzielnych przez 15 lub 20?

Zadanie 30. (2p)

Pierwszy wyraz ciągu arytmetycznego jest równy 3, a czwarty jest równy 15. Oblicz sumę sześciu początkowych wyrazów tego ciągu.

Zadanie 31. *(2p)*

Punkty A = (-3, -5), B = (4, -1), C = (-2, 3) są wierzchołkami trójkąta równoramiennego. Oblicz długość ramienia tego trójkąta.

Zadanie 32. (4p)

Wierzchołki trójkąta ABC leżą na paraboli, która jest wykresem pewnej funkcji kwadratowej f (zobacz rysunek).

Pole tego trójkąta jest równe 8, punkt C = (1, 4) jest wierzchołkiem paraboli, a punkty A i B leżą na osi Ox. Wyznacz wzór funkcji f.

Zadanie 33. (4p)

Dane są dwa pojemniki. W pierwszym z nich znajduje się 9 kul: 4 białe, 3 czarne i 2 zielone. W drugim pojemniku znajduje się 6 kul: 2 białe, 3 czarne i 1 zielona. Z każdego pojemnika losujemy po jednej kuli. Oblicz prawdopodobieństwo wylosowania dwóch kul tego samego koloru.

Zadanie 34. (5p)

Podstawą ostrosłupa *ABCS* jest trójkąt równoboczny *ABC* o boku długości 8. Punkt *D* jest środkiem krawędzi *AB*, odcinek *DS* jest wysokością ostrosłupa. Krawędzie *AS* i *BS* mają długość 7. Oblicz długość krawędzi *CS* tego ostrosłupa.

KARTA ODPOWIEDZI

KOD	UCZN	IA		N	lazw	/isko i i	mię							
Wypełnia piszący							Wy	ypełn	ia sp	rawd	Izając	у		
					,									
Nr zadania	A	В	C	D			Ni zada:		X	0	1	2	1	
1.							26	5.					1	
2.							27						1	
3.							28	_					1	
4.							29	_					1	
5.							30						1	
6.							31						1	
7.							-						1	
8.									Ra	zem				
9.													•	
10.						Nr	x	0	1	2	3	4	5	
11.						zadania 32.			_					
12.						33.	÷	-		<u> </u>				
13.													_	
14.						34.								
15.									D]	
16.									Ka	zem				

Suma punktów	Wynik w%

Kazem	

17.

18.

19.

20.

21.

22.

23.

24.

25.