

Namn eller kod Name or Code					Grupp Group		
Personnummer Civic registration	n number			Program <i>Programme</i>	Antagningsår <i>Admis</i>	ssion year	
Skriftlig tentamen i Written examination in				Kurskod Course code			
Datum <i>Date</i>					Skrivtid Examinati	ion timo	
- Dalum bale					Skrivila Examinan	Orrilline	
Lärare Teacher							
Tillåtna hjälpmedel <i>Permitted aid</i>							
Övrigt Further information							
Uppgift Question	Poäng <i>Points</i>	Resultat <i>Result</i>]	Inlämningstid Submi	t time		
1717 3			_				
			_	Legitimation ID			
			_				
			-	Antal inlämnade bla	d No. of submitted she	eets	
			_	Kontrollerat av studer	nt Checked by student		
			_	iterimoneral av stader	iii cheeked by traderiii		
				Kontrollerat av skrivva	kt Checked by invigilat	or	
			-				
			-	Betygsgränser <i>Grade</i>	limits	ECTS	
			-	G Pass		A	
				VG Pass w Distinction	4	В	
			-		5	С	
			-			D	
			_			E	
					L		
			1				
Max poäng <i>Max no of points</i>			-	Utkvitterad Received	1		
Summa <i>Sum</i>			_	Darking Date			
Betyg <i>Grade</i>			-	Datum <i>Date</i>			

Question 1

Number representation and the linear congruential generator

- a) Perform the following computations in binary arithmetic (Show how you perform the computations):
 - i. $111001_2 \times 10111_2$
 - ii. $101110001_2/110000_2$
- b) Convert the following decimal numbers into binary number representation:
 - i. The decimal number 747.86 to a binary number, with 4 binary digits after the fractional point.
 - ii. The decimal number -67 to a binary number, using a 2-complement representation with 8 bits.
- c) Assume that we have a linear congruential generator $(ax_{i-1} + c \mod m)$, with a = 5, c = 7, and m = 17. Write the first 6 integers in the sequence (not including the initial seed) that will be generated if the seed is 7.

Question 2

Sets and relations

- a) Let $A = \{1, \{1, 2\}, 2, \{3\}, 4\}$. Determine, and explain in your own words, which of the following statements are true:
 - i. $\{2\} \subseteq A$
 - ii. $\{2\} \in A$
 - iii. $\{1, \{4\}\} \subseteq A$
 - iv. $3 \in A$
- **b)** Illustrate the set, $((A \cap B) \cup \overline{B}) \cap (A \cap \overline{C})$ using a series of Venn diagram.

c) Let A be the following set $A = \{0, 1, 2, 3, 4\}$. A binary relation R on the set A is defined as follows: x is related to y if |x - y| < 2, i.e., the absolute value of the difference between x and y is smaller than 2.

Determine if the relation R as defined above is:

- i. reflexive
- ii. symmetric
- iii. antisymmetric
- iv. transitive

Hint:

- (a) R is reflexive if xRx for all $x \in A$..
- (b) R is *irreflexive* if there are no elements x of A for which xRx.
- (c) R is symmetric if xRy implies yRx, for all $x, y \in A$.
- (d) R is antisymmetric if xRy and yRx then x = y, for all $x, y \in A$.
- (e) R is transitive if xRy and yRz imply xRz, for all $x, y, z \in A$.

Question 3

Logic and functions

- a) Show that $(\neg p \rightarrow q) \land (\neg p \land \neg q)$ is a contradiction.
- b) Let the functions f, g, and h be defined as follows:

$$f: \mathbf{R} \to \mathbf{R}, f(x) = 3x - x$$

$$g: \mathbf{R} \to \mathbf{R}, g(x) = x^2 + x$$

$$h: \mathbf{R} \to \mathbf{R}, h(x) = -(x+1)^2$$

Calculate the following function compositions:

- i. $f \circ g$
- ii. $h \circ f$
- c) Let A be the following set $A = \{0, 1, 2, 3\}$. A function f is defined as follows $f: A \to A, f(x) = (2x + 2) \mod 4$.
 - i. Is f one-to-one?
 - ii. Is f onto?
 - iii. Does f^{-1} exist?

Motivate your answers!

Question 4

Boolean Algebra

- a) Use the axioms and laws of Boolean Algebra to simplify the expression (xx' + yx)' + y. You have to note which law you used in every step to get points.
- **b)** The following Boolean function, f(x, y, z, w), where x, y, z, w are Boolean variables (can only take values 0 or 1), is defined according to the Truth Table,

\boldsymbol{x}	y	z	w	f(x, y, z, w)
0	0	0	0	d
0	0	0	1	d
0	0	1	0	d
0	0	1	1	1
0	1	0	0	d
0	1	0	1	1
0	1	1	1 0	1
0 0 0 0 0 0 0 1 1 1 1	1	1 1	1	d
1	0	0	0	0
1	0	0	1	0
1	0	1	1 0	d
1	0	1	1	d
1	1	0	0	0
1	1	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	1	0
1	1	1	1 0	0
1	1	1	1	d

The d's stand for 'don't care', and can each be set to either a 0 or a 1, in order to get the minimum expression for f.

Use the Karnaugh map below to find a minimum expression for f!

Karnaugh Map:

c) Lets obtain a boolean function, f(x, y, z), for the operation: f = ('sum bit' OR 'carry bit') in a 'full adder', that is f = (f1 OR f2) is 0 when both f1 and f2 are 0, and 1 otherwise

A full adder takes 3 input Boolean variables, (x, y, z), and makes two separate output functions, f1(x, y, z) and f2(x, y, z).

The task of a full adder is to make a binary addition of three input binary variables, x, y, z, e.g.

In general,

$$\begin{array}{ccc}
 & x \\
 & y \\
 + & z \\
\hline
 & f2 & f1
\end{array}$$

- i. Make a Truth Table for f(x, y, z) = f1(x, y, z) ORf2(x, y, z), for all possible combinations of x, y, z (8 combinations), following the expected result of binary addition of three digits.
- ii. Use a Karnaugh map to find a simplified expression (if possible) for the function f(x, y, z).

Karnaugh Map:

Question 5

Number Theory

- a) Use the Euclidean algorithm and find the greatest common divisor $d = \gcd(a, b)$ and the least common multiple $m = \operatorname{lcm}(a, b)$ when a = 1235 and b = 1729.
- b) Use the Euclidean algorithm steps to find ALL the integer solutions of the equation,

$$13x + 216y = 1$$

- c) You have been given the following public key of an RSA public key system, $n=247,\,e=x=17.$
 - i. Encrypt the message m=4. (Hint! $c=m^e \mod n$).
 - ii. Find the decryption key d and decrypt the ciphertext c=3. (Hint! $ed \mod (p-1)(q-1)=1$.)

Högskolan Kristianstad

APPENDIX – Formulas and laws

Laws of logic

Law(s)		Name
$p \Leftrightarrow q \equiv (p \to q) \land (q \to q)$	→ <i>p</i>)	Equivalence law
$p \to q \equiv \neg p \vee q$		Implication law
$\neg \neg p \equiv p$		Double negation law
$p \land p \equiv p$	$p \lor p \equiv p$	Idempotent laws
$p \land q \equiv q \land p$	$p \lor q \equiv q \lor p$	Commutative laws
$(p \land q) \land r \equiv p \land (q \land r)$	$) (p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv $ $(p \lor q) \land (p \lor r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$	$\neg (p \lor q) \equiv \neg p \land \neg q$	de Morgan's laws
$p \wedge T \equiv p$	$p \vee F \equiv p$	Identity laws
$p \wedge F \equiv F$	$p \vee T \equiv T$	Annihilation laws
$p \land \neg p \equiv F$	$p \lor \neg p \equiv T$	Inverse laws
$p \land (p \lor q) \equiv p$	$p \lor (p \land q) \equiv p$	Absorption laws

Boolean axioms

x + y = y + x	$x \times y = y \times x$	commutative axioms
	$x \times (y \times z) = (x \times y) \times z$	associative axioms
$x + (y \times z) = (x + y) \times (x + z)$	$x \times (y + z) = (x \times y) + (x \times z)$	distributive axioms
x + 0 = x	$x \times 1 = x$	identity axioms
x + x' = 1	$x \times x' = 0$	inverse axioms

The operations +, \times and ' are called *addition*, *multiplication* and complementation respectively.

Högskolan Kristianstad

Boolean laws

x'' = x

x + x = x

 $(x+y)' = x' \times y'$

x+1=1

 $> x + (x \times y) = x$

0' = 1

 $x \times x = x$

 $(x \times y)' = x' + y'$

 $x \times 0 = 0$

 $x \times (x + y) = x$

1' = 0

double complement law

idempotent laws

de Morgan's laws

annihilation laws

absorption laws

complement laws