• Last time:

• Today:

- Last time:
 - Conditional independence in Bayesian Networks
- Today:

- Last time:
 - Conditional independence in Bayesian Networks
 - Sampling from Bayesian Networks
- Today:

Last time:

- Conditional independence in Bayesian Networks
- Sampling from Bayesian Networks

Today:

Given a Bayesian Network and some values, how do we calculate the probability of other values?

Last time:

- Conditional independence in Bayesian Networks
- Sampling from Bayesian Networks

Today:

- Given a Bayesian Network and some values, how do we calculate the probability of other values?
- Given data, how do we fit a Bayesian network?

Structure

Structure

Parameters

Structure

Nodes

Edges

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Inputs

Inputs

• Bayesian network structure

Inputs

- Bayesian network structure
- Bayesian network parameters

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

P(B) P(S) S E $P(E \mid B, S)$ C

 $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

 $P(D \mid E)$

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

P(B) P(S) E $P(E \mid B, S)$ $P(D \mid E)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

Exact

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(\underbrace{S=1}|D=1,B=0)$$
 Exact Approximate

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(S=1 \mid D=1, B=0)$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(S=1 \mid D=1, B=0) = \frac{P(S=1, D=1, B=0)}{P(D=1, B=0)}$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(S=1 \mid D=1, B=0)$ P(S=1, D=1, B=0) P(D=1, B=0) P(S=1, D=1, B=0) $P(S=1, D=1, B=0) = \sum_{e,c} P(B=0, S=1, E=e, D=1, C=c)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

 $2^5 = 32$ possible assignments, but quickly gets too large

Exact Inference $\phi(A,B,C)$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Product

B battery failure S solar panel failure E electrical system failure

D trajectory deviation

Product

Condition

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

Marginalize

P(S=1(D=1,B=0)

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

X	Υ	Z	$\phi(X,Y,Z)$			
0	0	0	0.08			. (77. 57)
0	0	1	0.31 $Y = 1$	X	Z	$\phi(X,Z)$
0	1	0		0	0	0.09
0	1	1	0.37	0	1	0.37
1	0	0	0.01	1	0	0.02
1	0	1	0.05	1	1	0.07
1	1	0	0.02			
1	1	1	0.07			

Marginalize

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

Marginalize

 $2^5 = 32$ possible assignments, but quickly gets too large

Exact Inference: Variable Elimination

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Exact Inference: Variable Elimination

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Exact Inference: Variable Elimination

 $P(B \mid d^1, c^1)$

Start with

 $\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(B \mid d^1, c^1)$$

$$D=1, C=1$$

$$P(B \mid d^{1}, c^{1})$$
 Start with $\phi_{1}(B), \phi_{2}(S), \phi_{3}(E, B, S), \phi_{4}(D, E), \phi_{5}(C, E)$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s) \phi_8(B,s)$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s)\phi_8(B,s)$$

B battery failure S solar panel failure E electrical system failure D trajectory deviation C communication loss

Variable Elimination

$$P(B \mid d^1, c^1) \propto \phi_1(B) \sum_{s} \left(\phi_2(s) \sum_{e} \left(\phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e) \right) \right)$$

Naive
$$P(B \mid d^1, c^1) \propto \sum_s \sum_e \phi_1(B) \phi_2(s) \phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e)$$

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s)\phi_8(B,s)$$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(B \mid d^1, c^1) \propto \phi_1(B) \sum_{s} \left(\phi_2(s) \sum_{e} \left(\phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e) \right) \right)$$

$$P(B \mid d^1, c^1) \propto \sum_{s} \sum_{s} \phi_1(B) \phi_2(s) \phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e)$$

Choosing optimal order is NP-hard

Approximate Inference

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

$$P(b^1 \mid d^1, c^1) \approx \frac{\sum_i (b^{(i)} = 1 \land d^{(i)} = 1 \land c^{(i)} = 1)}{\sum_i (d^{(i)} = 1 \land c^{(i)} = 1)}$$

	С	D	E	S	В	
	0	1	1	0	0	
	0	0	0	0	0	
	0	0	1	0	1	
←	1	1	1	0	1	
	0	0	0	0	0	
	0	1	0	0	0	
	1	0	0	0	0	
	1	1	1	1	0	
	0	0	0	0	0	
	0	1	0	0	0	

Analogous to

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

$$P(b^1 \mid d^1, c^1) \approx \frac{\sum_i (b^{(i)} = 1 \land d^{(i)} = 1 \land c^{(i)} = 1)}{\sum_i (d^{(i)} = 1 \land c^{(i)} = 1)}$$

В	S	Е	D	С	
0	0	1	1	0	
0	0	0	0	0	
1	0	1	0	0	
1	0	1	1	1	~
0	0	0	0	0	
0	0	0	1	0	
0	0	0	0	1	
0	1	1	1	1	~
0	0	0	0	0	
0	0	0	1	0	

Analogous to **unweighted particle filtering**

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(b^{1} | d^{1}, c^{1}) \approx \frac{\sum_{i} w_{i}(b^{(i)} = 1 \wedge d^{(i)} = 1 \wedge c^{(i)} = 1)}{\sum_{i} w_{i}(d^{(i)} = 1 \wedge c^{(i)} = 1)}$ $= \frac{\sum_{i} w_{i}(b^{(i)} = 1)}{\sum_{i} w_{i}}$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(b^{1} | d^{1}, c^{1}) \approx \frac{\sum_{i} w_{i}(b^{(i)} = 1 \wedge d^{(i)} = 1 \wedge c^{(i)} = 1)}{\sum_{i} w_{i}(d^{(i)} = 1 \wedge c^{(i)} = 1)}$$
$$= \frac{\sum_{i} w_{i}(b^{(i)} = 1)}{\sum_{i} w_{i}}$$

В	S	Е	D	С	Weight
1	0	1	1	1	$P(d^1 e^1)P(c^1 e^1)$
0	1	1	1	1	$P(d^1 e^1)P(c^1 e^1)$
0	0	0	1	1	$P(d^1 e^0)P(c^1 e^0)$
0	0	0	1	1	$P(d^1 e^0)P(c^1 e^0)$
0	0	1	1	1	$P(d^1 \mid e^1)P(c^1 \mid e^1)$

Analogous to

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(b^{1} | d^{1}, c^{1}) \approx \frac{\sum_{i} w_{i}(b^{(i)} = 1 \wedge d^{(i)} = 1 \wedge c^{(i)} = 1)}{\sum_{i} w_{i}(d^{(i)} = 1 \wedge c^{(i)} = 1)}$$
$$= \frac{\sum_{i} w_{i}(b^{(i)} = 1)}{\sum_{i} w_{i}}$$

В	S	Е	D	С	Weight
1	0	1	1	1	$P(d^1 e^1)P(c^1 e^1)$
0	1	_			$P(d^1 e^1)P(c^1 e^1)$
0	0	0	1	1	$P(d^1 e^0)P(c^1 e^0)$
0	0	0	1	1	$P(d^1 \mid e^0)P(c^1 \mid e^0)$
0	0	1	1	1	$P(d^1 \mid e^1)P(c^1 \mid e^1)$

Analogous to weighted particle filtering

Approximate Inference: Gibbs Sampling

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Approximate Inference: Gibbs Sampling

B battery failure

S solar panel failure

D trajectory deviation C communication loss

E electrical system failure

Markov Chain Monte Carlo (MCMC)

1. Choose any order 2. set evidence variables sample X bosed on X -

11.1

Approximate Inference: Gibbs Sampling

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Markov Chain Monte Carlo (MCMC)

Inl

Learning

Inputs

Outputs

Inputs

• Data, D

Outputs

Inputs

- Data, D
- Priors (?)

Outputs

Inputs

- Data, D
- Priors (?)

Outputs

ullet Bayesian network structure, G

Inference Inputs
BN
Evidence

• Data, D

• Priors (?)

Outputs

Prob of query

- ullet Bayesian network structure, G
- Bayesian network parameters, θ

Counting Parameters

For discrete R.V.s:

$$\dim(\theta_X) = (|\operatorname{support}(X)| - 1) \prod_{Y \in Pa(X)} |\operatorname{support}(Y)|$$

Thurster of params?

 $= 7^3 = 8$

- 10 parameters
 - 12 parameters

Maximum Likelihood

Bayesian

$$\hat{\theta} = \arg\max_{\theta} P(D \mid \theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \arg\max_{\theta} \sum_{i} \log P(o_i \mid \theta)$$

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \arg\max_{\theta} \sum_{i} \log P(o_i \mid \theta)$$

Multinomial:

$$\hat{\theta}_i = \frac{n_i}{\sum_{j=1}^k n_j}$$

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \arg\max_{\theta} \sum_{i} \log P(o_i \mid \theta)$$

Multinomial:

$$\hat{\theta}_i = \frac{n_i}{\sum_{j=1}^k n_j}$$

Bayesian

$$\hat{\theta} = \mathbb{E}_{\theta \sim p(\cdot \mid D)}[\theta] = \int \theta p(\theta \mid D) d\theta$$

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \arg\max_{\theta} \sum_{i} \log P(o_i \mid \theta)$$

Multinomial:

$$\hat{\theta}_i = \frac{n_i}{\sum_{j=1}^k n_j}$$

Bayesian

$$\hat{\theta} = \mathbb{E}_{\theta \sim p(\cdot \mid D)}[\theta] = \int \theta p(\theta \mid D) d\theta$$

Multinomial:

$$p(\theta_{1:n} \mid \alpha_{1:n}, m_{1:n}) = Dir(\theta_{1:n} \mid \alpha_1 + m_1, \dots, \alpha_n + m_n)$$

$$\frac{\alpha_i}{\sum_{j=1}^n \alpha_j}$$

Graph structure
$$P(G \mid D)$$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) = \underbrace{P(G)}_{i=1} \prod_{j=1}^{n} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) = P(G) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\log P(G \mid D)$$

$$= \log P(G) + \sum_{i=1}^{n} \sum_{j=1}^{q_i} \left(\log \left(\frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \right) + \sum_{k=1}^{r_i} \log \left(\frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \right) \right)$$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) = P(G) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\log P(G \mid D)$$

$$= \log P(G) + \sum_{i=1}^{n} \sum_{j=1}^{q_i} \left(\log \left(\frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \right) + \sum_{k=1}^{r_i} \log \left(\frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \right) \right)$$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) = P(G) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\log P(G \mid D)$$

$$= \log P(G) + \sum_{i=1}^{n} \sum_{j=1}^{q_i} \left(\log \left(\frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \right) + \sum_{k=1}^{r_i} \log \left(\frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \right) \right)$$

NP-Hard

Markov Equivalent iff

1. Same undirected edges

Markov Equivalent iff

- 1. Same undirected edges
- 2. Same set of immoral vstructures

Markov Equivalent iff

- 1. Same undirected edges
- 2. Same set of immoral vstructures

Recap

Inference Learning