Exam 3a Chem 1141 Fall 2008

Name:
MULTIPLE CHOICE. [3 pts ea.]
Q1. The SI unit of pressure is the pascal (Pa). It is defined as being equal to: a) $1 \text{ Pa} = 1 \text{ N}$ b) $1 \text{ Pa} = 1 \text{ N/s}$ c) $1 \text{ Pa} = 1 \text{ N/m}^2$ d) $1 \text{ Pa} = 1 \text{ m}^2/\text{N}$ e) $1 \text{ Pa} = 1 \text{ m/s}$
Q2. Which of the following elements is <i>not</i> found as a diatomic gas under regular conditions on earth:
a) nitrogen b) helium c) hydrogen d) oxygen e) fluorine Q3. The volume of a gas is directly proportion to its absolute temperature. This is commonly known as:
 a) Avogadro's law b) Boyle's law c) Charles' law d) Gay-Lussac's law e) van der Waal's law Q4. Given the following chemical equation: N₂(g) + 3H₂(g) → 2NH₃(g)
What volume of hydrogen gas is required to fully react with 3.0 L of nitrogen gas at STP? a) 1.0 L b) 3.0 L c) 4.5 L d) 6.0 L e) 9.0 L
Q5. Which pressure is the largest: a) 1 atm b) 1 mmHg c) 1 torr d) 1 Pa
Q6. A 4.50 g sample of metal absorbs 76.0 J of heat, and changes in temperature from 24.0 °C to 155.1 °C. What is the specific heat capacity of the metal?
a) 0.129 J/g °C b) 0.341 J/g °C c) 1.45 J/g °C d) 14.2 J/g °C e) 89 J/g °C
Q7. Which chemical equation corresponds to the standard enthalpy of formation of $C_8H_{15}Cl(l)$? a) $C_8H_{15}Cl(l) + 11^{1}/_2 O_2(g) \rightarrow 8 CO_2(g) + 7 H_2O(l) + HCl(aq)$ b) $2 C_8H_{15}Cl(l) + 23^{1}/_2 O_2(g) \rightarrow 16 CO_2(g) + 15 H_2O(l) + Cl_2(g)$ c) $C_8H_{15}Cl(l) \rightarrow 8C(s, graphite) + 15H(g) + \frac{1}{2} Cl_2(g)$ d) $C_8H_{15}Cl(l) \rightarrow 8C(s, graphite) + 7^{1}/_2 H_2(g) + \frac{1}{2} Cl_2(g)$ e) $8C(s, graphite) + 7^{1}/_2 H_2(g) + \frac{1}{2} Cl_2(g) \rightarrow C_8H_{15}Cl(l)$
Q8. A chemical reaction that absorbs heat is said to be:
a) Exoergic b) Endoergic c) Exothermic d) Endothermic Q9. Which of the following standard enthalpy of formation values is not zero at 25 °C? a) Na(s) b) Ne(g) c) CH ₄ (g) d) Hg(l) e) H ₂ (g)

Q10. Calculate ΔH° for the reaction:

$$2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$$

given that ΔH_f° for H₂O(l) is -285.8 kJ/mol.

- a) -285.8 kJ/mol
- b) $+285.8 \, kJ/mol$
- c) +142.9 kJ/mol

- d) -142.9 kJ/mol
- e) +571.6 kJ/mol

Q11. A particle of light is called a(n):

- a) Proton
- b) Electron
- c) Quantum
- e) Photon d) Positron

Q12. Which form of electromagnetic (EM) radiation has the *longest* wavelength?

- a) Radio
- b) Ultraviolet c) Visible
- d) X-Ray e) Infrared

Q13. Which set of quantum numbers for an electron in an atom is *not* allowed:

a)
$$n = 3$$
, $l = 2$, $m_l = -1$, $m_s = +\frac{1}{2}$

b)
$$n = 1$$
, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$

c)
$$n = 4$$
, $l = 1$, $m_l = 0$, $m_s = +\frac{1}{2}$

d)
$$n = 1$$
, $l = 1$, $m_l = 0$, $m_s = -1/2$

e)
$$n = 8$$
, $l = 6$, $m_l = -3$, $m_s = +\frac{1}{2}$

Q14. Atoms of neon are paramagnetic.

- a) TRUE
- b) FALSE

Q15. Atoms of oxygen are paramagnetic.

- a) TRUE
- b) FALSE

Q16. [8 pts.] Write the full electron configuration for

- i) oxygen.
- ii) copper
- iii) chlorine

Q17. [6 pts.] Draw an orbital diagram for an atom of phosphorus.

Q18. [8 pts.] Calculate the frequency of light emitted from a hydrogen atom undergoing an electron transition from n = 5 to n = 2.

Q20. [8 pts.] How much heat will be absorbed/released from the complete combustion of 34.0 g of pentane, $C_5H_{12}(I)$.

$$\begin{array}{c} C_5H_{12}(l) + 8O_2(g) \to 5CO_2(g) + 6H_2O(l) \\ \Delta H_f^{\rm o} \ C_5H_{12}(l) = -146.9 \ kJ/mol \\ \Delta H_f^{\rm o} \ H_2O(l) = -285.8 \ kJ/mol \end{array}$$

Q21. [5 pts.] 34.5 mL of 12.0 M HCl(aq) is added to 128 mL of $\rm H_2O$. Calculate the final concentration of HCl. State any assumptions that you are making.

Q22. [10 pts.] What volume of $CO_2(g)$ will be formed by the reaction of 34.0 mL of 1.45 M HCl(aq) with 67.8 mL of 5.60 M LiHCO ₃ (aq)? The reaction is carried out at a temperature of 35 °C, and a pressure of 0.987 atm. Be sure to start by writing out the <i>balanced</i> chemical equation!
Q23. [5 pts.] Name the following compounds: a) Na ₃ PO ₄
b) Fe(NO ₂) ₂
c) MgF ₂ •3H ₂ O
d) B ₃ Cl ₉
e) N_4O_8

Useful Information

1 atm = 101,325 Pa = 760 mmHg = 760 torr

$$R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$$
 $R = 8.3145 \text{ J/mol} \cdot \text{K} = 8.3145 \text{ kg} \cdot \text{m}^2/\text{s}^2 \cdot \text{mol} \cdot \text{K}$
 $(p + an^2/V^2)(V - nb) = nRT$ $pV = nRT$ $q = ms\Delta t = C\Delta t$
 $\Delta H^o_{rxn} = \sum n\Delta H^o_f \text{(products)} - \sum m\Delta H^o_f \text{(reactants)}$
 $E = bv$ $c = v\lambda$ $E = \frac{hc}{\lambda}$ $N_A = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$
 $c = 3.00 \text{ x } 10^8 \text{ m/s}$ $b = 6.626 \text{ x } 10^{-34} \text{ J} \cdot \text{s}$
 $E_n = -R_H (1/n^2)$ $R_H = 2.18 \text{ x } 10^{-18} \text{ J}$
 $M_i V_i = M_f V_f$

Periodic Table of the Elements

			Penc	ouic i	able (or the	Elett	ients									
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	-																18
1																	2
H																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Ιĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
			-	-										-			
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102		

Am

Cm

Fm

No

TABLE 4.2 Solubility Rules for Common Ionic Compounds in Water at 25°C

Soluble Compounds	Exceptions							
Halides (Cl ⁻ , Br ⁻ , I ⁻) Sulfates (SO ₄ ²⁻)	Halides of Ag^+ , Hg_2^{2+} , and Pb^{2+} Sulfates of Ag^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Hg_2^{2+} , and Pb^{2+}							
Insoluble Compounds	Exceptions							
Carbonates (CO_3^{2-}), phosphates (PO_4^{3-}), chromates (CrO_4^{2-}), and sulfides (S^{2-})	Compounds containing alkali metal ions and the ammonium ion							
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba ²⁺ ion							