CX1107 Data Structures and Algorithms

Dr. Loke Yuan Ren Lecturer yrloke@ntu.edu.sg

College of Engineering
School of Computer Science and Engineering

Matching Problem

- A graph that vertex V can be partitioned into two subsets, e.g. J and W.
- J and W are two disjoint sets.
- Every edge connects a vertex in J to one in W.
- This graph is known as Bipartite Graph.

- Matching:
 - A subset of edges that are mutually non-adjacent
 - No two edges have an endpoint in common
- Problem: Matching with the maximum number of edges

Maximum Matching == Maximum Flow

- Introduce two vertices: a source s and a sink t
- A flow network G(V,E) is a directed graph in which each edge (j, w) has a nonnegative capacity.
- The capacity is {0, 1} for matching problem

The Ford-Fulkerson Method

- An iterative improvement strategy
- Proposed by L. R. Ford Jr. and D. R. Fulkerson in 1956
- Iteratively find an additional flow (match) in the network
 - A residual network is used to find the available flow
 - $c_f(j, w) = c(j, w) f(j, w)$
- Initially, there is no flow
- Residual network == original network

Figure 12.6: Residual Network G_f where $c_f(j, w)$ is $1 \forall e_f$

The Ford-Fulkerson Method

- In each iteration,
 - Find an augmenting path p from s to t in the residual network G_f
 - Update the original matching network G by adding p
 - Update the residual network G_f

First ...

 $c_f(j, w) = c(j, w) - f(j, w)$

function Ford-Fulkerson(Graph G, Vertex s, Vertex t)

for each edge $(u, v) \in E[G]$ do

$$f[u,v] \leftarrow 0$$

$$f[v,u] \leftarrow 0$$

end for

while Finding a path from s to t in G_f do

$$c_{min}(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}$$

for each edge $(u, v) \in p$ do

if
$$(u, v) \in E$$
 then

$$f[u,v] \leftarrow f[u,v] + c_{min}(p)$$

else

$$f[v,u] \leftarrow f[v,u] - c_{min}(p)$$

end if

$$c_f(u,v) \leftarrow c_f(u,v) - c_{min}(p)$$

$$c_f(v,u) \leftarrow c_f(v,u) + c_{min}(p)$$

end for

end while

end function

 $\succ c_f(j, w) = c(j, w)$: same as the original network G

 $\succ c_f(j, w)$ is non-zero

 \triangleright adding the new flow

 $c_f(j, w) = c(j, w) - f(j, w)$

for each edge $(u, v) \in E[G]$ do

$$f[u,v] \leftarrow 0$$

$$f[v,u] \leftarrow 0$$

end for

while Finding a path from s to t in G_f do

function Ford-Fulkerson(Graph G, Vertex s, Vertex t)

$$c_{min}(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}$$

for each edge $(u, v) \in p$ do

if
$$(u, v) \in E$$
 then
$$f[u, v] \leftarrow f[u, v] + c_{min}(p)$$
else

$$f[v,u] \leftarrow f[v,u] - c_{min}(p)$$

end if
$$c_f(u, v) \leftarrow c_f(u, v) - c_{min}(p)$$

$$c_f(v, u) \leftarrow c_f(v, u) + c_{min}(p)$$

end for

end while

end function

▶ Initialization of Flows

 $\succ c_f(j, w) = c(j, w)$: same as the original network G

 $\succ c_f(j, w)$ is non-zero

 $\succ c_{min}(p)$ is always 1 for matching problem here

▶ adding the new flow

Next... Why does it work?

 $c_f(j, w) = c(j, w) - f(j, w)$

for each edge $(u, v) \in E[G]$ do

$$f[u,v] \leftarrow 0$$

$$f[v,u] \leftarrow 0$$

end for

while Finding a path from s to t in G_f do

function Ford-Fulkerson(Graph G, Vertex s, Vertex t)

$$c_{min}(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}$$

for each edge $(u, v) \in p$ do

if
$$(u, v) \in E$$
 then

$$f[u,v] \leftarrow f[u,v] + c_{min}(p)$$

else
$$f[v,u] \leftarrow f[v,u] - c_{min}(p)$$
 end if

$$c_f(u,v) \leftarrow c_f(u,v) - c_{min}(p)$$
$$c_f(v,u) \leftarrow c_f(v,u) + c_{min}(p)$$

end for

end while

end function

▶ Initialization of Flows

 $ightharpoonup c_f(j,w) = c(j,w)$: same as the original network G

- $\succ c_f(j, w)$ is non-zero
- $\succ c_{min}(p)$ is always 1 for matching problem here

▶ adding the new flow

> Remove a flow in opposite direction

Next...No new flow. Done!

 $c_f(j, w) = c(j, w) - f(j, w)$

for each edge $(u, v) \in E[G]$ do

$$\begin{aligned} f[u,v] &\leftarrow 0 \\ f[v,u] &\leftarrow 0 \end{aligned}$$

end for

while Finding a path from s to t in G_f do

function Ford-Fulkerson(Graph G, Vertex s, Vertex t)

$$c_{min}(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}$$

for each edge $(u, v) \in p$ do

if
$$(u, v) \in E$$
 then

$$f[u,v] \leftarrow f[u,v] + c_{min}(p)$$

else

$$f[v,u] \leftarrow f[v,u] - c_{min}(p)$$

end if

$$c_f(u,v) \leftarrow c_f(u,v) - c_{min}(p)$$

$$c_f(v,u) \leftarrow c_f(v,u) + c_{min}(p)$$

end for

end while

end function

▷ Initialization of Flows

 $\succ c_f(j, w) = c(j, w)$: same as the original network G

 $\succ c_f(j, w)$ is non-zero

▷ adding the new flow

> Remove a flow in opposite direction

Summary

- Ford Fulkerson Method
 - Maximum Flow Problem
 - Maximum Matching Problem
- Finding the augmenting paths
 - BFS or DFS or any graph traversal
- Matching problem is a {0,1} weighted graph or an unweighted graph
 - Implementation is easier