Corporate Debt Standardization and The Rise of Electronic Bond Trading (in progress)

Artur Carvalho University of Chicago

March 3, 2021

The Model in a Nutshell

- ▶ Illiquid secondary bond markets + asymmetric information;
- Electronic (standardized debt only) v.s. OTC (less liquid);
- Equity investors exploit their private information about firms;
- ightharpoonup Covenants arise endogenously \Rightarrow signaling mechanism.

Informational v.s. Liquidity Costs

- lacktriangle Private information affects firms' funding costs $\Rightarrow \Delta$ leverage;
- ► For high enough informational costs, safer firms may forego liquidity gains to signal their creditworthiness.

THE UNIVERSITY OF CHICAGO

Capital Structure

- ▶ The economy lasts for two periods: t = 0, 1;
- Risk-neutral investors: bond investors and equity holders;
- Firm types: safe (prob. μ_s) or risky (prob. $1 \mu_s$).
 - After t = 0 but before period 1, risky firms experience an idiosyncratic, mean-reducing shock with probability q:

$$V_{1,s} = V_0 e^{\mathrm{x}}, \quad V_{1,r} = egin{cases} V_0 e^{\mathrm{x}}, & \mathrm{w/\ prob\ } 1-q \ V_0 e^{\mathrm{y}}, & \mathrm{w/\ prob\ } q \end{cases}$$

where

$$x \sim \mathcal{N}\left(r_f - \frac{1}{2}\sigma^2, \sigma\right), \quad y \sim \mathcal{N}\left(r_f - \frac{1}{2}\sigma^2 - s_f \cdot \sigma, \sigma\right), \quad s_f > 0$$

Capital Structure

- Financed with a mix of debt and equity, issued at time 0;
- ▶ Debt: measure μ_b of coupon-less bonds with principal $p < V_0$;

Tax benefits v.s. bankruptcy costs

- ▶ tax shield: $\pi \mu_b p$
- risk of a costly bankruptcy: lost tax shields and fractional recovery value αV_1 .

Secondary Bond Markets

- **>** Bonds are traded in illiquid secondary markets: $r_{disc}^b > r_f$ **>**
 - ightharpoonup value of newly-issued bonds in primary markets;
 - ► ↑ firms' funding costs.
- Electronic Platforms (EP) v.s. Over-the-Counter (OTC) markets
 - ▶ EPs are more liquid: $r_{disc}^{b,EP} < r_{disc}^{b,OTC}$
 - ▶ But accept only covenant-free bonds.

Payoffs, Prices & The Optimal Capital Structure

- ▶ Bankruptcy condition: $V_1 + \pi \mu_b p < \mu_b p$
- ▶ Debt: $D(\mu_b) = e^{-r_{disc}^b} E\left[\mu_b p + (\mu_b p \alpha V_1) \mathbf{1}_{\{V_1 + \pi \mu_b p < \mu_b p\}}\right]$
- Equity: $E(\mu_b) = e^{-r_f} E[\max\{V_1 + \pi \mu_b p \mu_b p, 0\}]$
- ► Expected Equity Return (*ER*):

$$E(\mu_b) - \underbrace{(V_0 - D(\mu_b))}_{\text{Cash Infusion}} = \underbrace{(E(\mu_b) + D(\mu_b))}_{\text{Firm Value}} - V_0$$

Optimal Capital Structure

 μ_b that maximizes the total initial valuation of the firm.

Asymmetric Information

Assumption (Creditors' Information Set)

Creditor's know the distribution of types and observe V, but not firms' exposure to the mean-reducing shock.

- Firms are ex-ante indistinguishable to debt holders;
- Misrepresentation raises the return to risky-type shareholders':

$$\frac{E_r\left(\mu_{b,s}^{\star}\right)}{V_0 - D_s\left(\mu_{b,s}^{\star}\right)} > \frac{E_r\left(\mu_{b,r}^{\star}\right)}{V_0 - D_r\left(\mu_{b,r}^{\star}\right)}$$

▶ But also ↑ safe firm's funding costs;

$$D^{POOL}(\mu_b) = \mu_s D_s(\mu_b) + (1 - \mu_s) D_r(\mu_b)$$

Characterizing the Economy

The Dual Market Economy

The economy is fully characterized by $E \equiv [Q, \mu_s, r, B, M_b]$

- ▶ Set of types: $Q \equiv \{0, q\}$
- ▶ Interest rates: $r \equiv (r_f, r_{disc}^{b,EP}, r_{disc}^{b,OTC})$
- ▶ Bond contracts: $\boldsymbol{B} \equiv \left\{ \boldsymbol{b}^{EP}, \boldsymbol{b}^{OTC} \right\}$

$$m{b}$$
 $m{b}^{EP} \equiv (m, c, p) = (1, 0, p), \ m{b}^{OTC} \equiv (m{b}^{EP}, \theta)$

▶ Measure of bonds: $M_b \equiv [0, \overline{\mu}_b]$

Focus first on a Restricted Economy: $E^{SD} \equiv \left[Q, \mu_s, r, \boldsymbol{b}^{EP}, M_b\right]$

lacktriangle Trades happen exclusively in EP, since $r_{disc}^{b,EP} < r_{disc}^{b,OTC}$.

Game Setup

Type-Contingent Strategies, Creditors' Beliefs and Offer Price Function

- ▶ Types play mixed strategies p_j^b : $M_b \mapsto [0,1]$ s.t.
 - $ightharpoonup p_j^b(\mu_b)\geqslant 0$ for all $\mu_b\in M_b$, and $\int_{M_b}p_j^b(x)\,dx=1$.
- lacktriangle Creditors form rational beliefs about firms' types: $\gamma_s\left(\mu_b\right)$
- ► Creditors' offer price function: $d_c(\cdot|\gamma)$

Pooling v.s. Separating Bond Measures

- ▶ Separating measure: μ_b s.t. $\gamma_s(\mu_b) \in \{0,1\}$.
- ▶ Pooling measure: μ_b for which $\gamma_s(\mu_b) \in (0,1)$.

Truth-Telling and Funding Conditions

Types' Incentive Compatibility Condition (IC)

A belief and price functions pair, $(\gamma_s(\cdot), d_c(\cdot|\gamma))$, is robust against misrepresentation iff

$$MBR_{j}\left(\mu_{b}'|\gamma\right)\leqslant\max_{\mu_{b}\in\mathcal{M}_{b}\cup\emptyset}MBR_{j}\left(\mu_{b}|\gamma\right)\quad\forall\mu_{b}'\in\mathcal{M}_{b}\text{ s.t. }\gamma_{i}\left(\mu_{b}'\right)=1$$

where $i, j \in \{s, r\}$, $j \neq i$.

Assumption (Creditors' Funding Condition - CFC)

Any choice of capital structure μ_b must maximize the firm value given creditors' beliefs γ and offer price function $d_c(\cdot|\gamma)$, subject to type's incentive compatibility (IC) conditions.

Game Setup

Creditors' Funding Condition - Cont'd

Optimal pooling measure μ_b^{pool}

$$\max_{\mu_b \in M_b} \left\{ \gamma_s FV_s \left(\mu_b | \gamma \right) + \left(1 - \gamma_s \right) FV_r \left(\mu_b | \gamma \right) \right\} \quad \text{(CFC - Pooling)}$$

where
$$FV_j(\mu_b|\gamma) = E_j(\mu_b) + \mu_b d_c(\mu_b|\gamma)$$
.

Optimal separating measure $\mu_{b,i}^{sep}$

$$\max_{\mu_b \in M_b \cup \emptyset} FV_i \left(\mu_{b,i}^{sep} | \gamma \right)$$

s.t.

(CFC - Separating)

$$MBR_{j}\left(\mu_{b,i}^{sep}|\gamma\right) \leqslant \max_{\mu_{b} \in M_{b} \cup \emptyset} MBR_{j}\left(\mu_{b}|\gamma\right) \quad (IC)$$

for $j \neq i$.

Weak Equilibrium in E^{SD}

A weak equilibrium in E^{SD} is a tuple $e \equiv \left(\left\{p_s^b\left(\cdot\right), p_r^b\left(\cdot\right)\right\}, \gamma_s\left(\cdot\right), d_c\left(\cdot|\gamma\right)\right)$ satisfying:

- 1. [Funding] μ_b satisfies *CFC*, $\forall \mu_b \in M_b$ s.t. $p_i^b(\mu_b) > 0$, $i \in \{s, r\}$;
- 2. [Shareholders' optimality] For each μ_b such that $p_i^b(\mu_b) > 0$,

$$MBR_{j}\left(\mu_{b}|\gamma\right) = \max_{\mu_{b} \in M_{b} \cup \emptyset} MBR_{j}\left(\mu_{b}|\gamma\right), \quad j \in \{s, r\}$$

- 3. [Creditors' zero-profit condition]
 - 3.1 For $\mu_b \in M_b$ s.t. $p_i^b(\mu_b) > 0$, $i \in \{s, r\}$,

$$d_{c}\left(\mu_{b}|\gamma\right) = \gamma_{s}\left(\mu_{b}\right)d_{s}\left(\mu_{b}\right) + \left(1 - \gamma_{s}\left(\mu_{b}\right)\right)d_{r}\left(\mu_{b}\right)$$

3.2 Creditors' beliefs are rational:

$$\gamma_{s}\left(\mu_{b}\right) = \frac{\mu_{s} p_{s}^{b}\left(\mu_{b}\right)}{\mu_{s} p_{s}^{b}\left(\mu_{b}\right) + \left(1 - \mu_{s}\right) p_{r}^{b}\left(\mu_{b}\right)}$$

for all
$$\mu_b$$
 s.t. $p_j(\mu_b) > 0$, some $j \in \{s, r\}$.

Characterizing the Weak Equilibria in E^{SD}

- ► Lemma. 1: No type chooses more than one separating measure with strictly positive probability in equilibrium. ▶
- ► Lemma. 2: The only separating measure a risky firm can choose in equilibrium is the risky-type's first-best measure μ_{hr}^{Fl} .
- Lemma. 3: The safe-type's separating measure in equilibrium does not depend on the measure of safe types, μ_s .

Characterizing the Weak Equilibria in E^{SD}

- ▶ Lemma. 4: No market equilibrium in E^{SD} can support more than one pooling measure. •
- ▶ Lemma. 5: There cannot be a market equilibrium in E^{SD} where risky firms choose a pooling measure with probability $p_r^b \in (0,1)$ ▶

Types of Weak Equilibria

- Pure Separating
- Pure Pooling
- Mixed
 - $\blacktriangleright \ \mathit{MBR}_{\mathit{s}}\left(\mu_{\mathit{b}}^{\mathit{pool}}\big|\gamma\right) = \mathit{MBR}_{\mathit{s}}\left(\mu_{\mathit{b},\mathit{s}}^{\mathit{sep}}\big|\gamma\right)$
 - \blacktriangleright $\mu_{b,s}^{sep}$ does not depend on μ_s (Lemma 3)
 - lacksquare back out μ_b^{pool} from $MBR_s\left(\mu_{b,s}^{sep}\big|\gamma
 ight)\Rightarrow\gamma_s^{pool}$ (CFC)
 - solve for $p_s^b\left(\mu_b^{pool}\right)\in(0,1)$ that solves:

$$\gamma_{s}^{pool} = \frac{p_{s}^{b}\left(\mu_{b}^{pool}\right)\mu_{s}}{p_{s}^{b}\left(\mu_{b}^{pool}\right)\mu_{s} + (1 - \mu_{s})}$$

Mixed equilibrium shouldn't hold: $\uparrow p_s^{pool} \Rightarrow \uparrow MBR_s^{pool}$

Equilibria in E^{SD}

Creditors' Preferences

Given the pooling and separating weak equilibria in E^{SD} , bond investors prefer that which yields the highest safe firm valuation.

Equilibrium in E^{SD}

An equilibrium in E^{SD} is a weak equilibrium tuple e^* such that no other weak equilibrium \tilde{e}^* yields a higher total firm value for safe firms.

When the safe type's firm valuations coincide in the pooling and separating weak equilibria, the prevailing equilibrium is that which maximizes the safe-type's MBR.

Equilibria in the Dual Market Economy E

The equilibrium in the dual-market economy E can then be backed-out by comparing the safe-type's firm valuation in the restricted economy E^{SD} to $FV_s^{OTC}\left(\mu_{b,s}^{OTC}\right)$.

Mixed equilibrium where safe firms randomize between standardized and non-standardized debt shouldn't hold:

- $\blacktriangleright MBR_s\left(\mu_{b,s}^{EP}\right) = MBR_s\left(\mu_{b,s}^{OTC}\right);$
- $\blacktriangleright \ \mu_{b,s}^{OTC}$ does not depend on μ_s ;
- $ightharpoonup FV_s\left(\mu_{b,s}^{EP}\right)$ likely different than $FV_s\left(\mu_{b,s}^{OTC}\right)$:
 - ightharpoonup \Rightarrow creditors not indifferent between $\mu_{b,s}^{\it EP}$ and $\mu_{b,s}^{\it OTC}$;
- Moreover, MBR_s^{EP} is weakly increasing in the measure of safe firms in issuing standardized debt, μ_s^{EP} .

Data Analysis

- Merge TRACE and Mergent FISD;
- Restrict sample to U.S. Corporate Bonds w/ covenant data available;
- Use ATS indicator as proxy for electronic trades;
- Group covenant variables by Billett, King, and Mauer (2007) covenant categories;
- Use number of covenant categories as proxy for bond contract complexity;
- Compare number of covenant categories by secondary market and credit rating.

Statistics

Table: Weighted Trade Count and Volume Statistics by Credit Rating

IG		ATS	OTCS	Δ
Trade Count	mean	5.53801	5.43625	0.101759
	std	2.2011	2.19756	0.00354002
Trade Volume	mean	5.25326	5.35874	-0.105477
	std	2.15628	2.18164	-0.0253664
HY		ATS	OTCS	Δ
Trade Count	mean	7.35734	7.0484	0.308941
	std	2.06867	2.27364	-0.204966
Trade Volume	mean	6.67689	6.70326	-0.0263694

- ► Trade Count Weights ►
- ► Trade Volume Weights ▶

Bond Investor's Discount Rate

- Creditors are subject to i.i.d. liquidity shocks before time 1;
- Shocks force portfolio liquidation at a fractional cost in secondary markets.

Equity Return and Misrepresentation

- ▶ Shareholders' investment: $W_0 < V_0$
- ▶ Measure of shareholders: $\nu(\mu_b)$

$$u\left(\mu_{b}\right)W_{0} = \underbrace{V_{0} - D\left(\mu_{b}\right)}_{\text{Book Value of Equity}}$$

Individual shareholder's return:

$$\frac{E(\mu_b)}{\nu(\mu_b)} - W_0 = \left(\frac{E(\mu_b)}{\nu(\mu_b)W_0} - 1\right)W_0$$
$$= \left(\frac{E(\mu_b)}{V_0 - D(\mu_b)} - 1\right)W_0$$
$$= (MBR(\mu_b) - 1)W_0$$

Suppose type-i firms play μ_b' , μ_b'' with strictly positive probability in equilibrium, for some $i \in \{s, r\}$.

- Consistency of creditors' beliefs with investors' strategies requires that $\gamma_i(\mu_b') = \gamma_i(\mu_b'') = 1$, so payoffs are given by the full information (FI) formulas.
- By the shareholders' optimality condition, we must have

$$MBR_i(\mu_b'|\gamma) = MBR_i(\mu_b''|\gamma)$$

▶ However, the strict concavity of the FI firm value function (figure 23) implies that at least one of these measures violates the creditors' funding condition. Contradiction!

Proof. of Lemma 1 - Cont'd

- $\blacktriangleright \mu_{b,r}^{FI}$ already satisfies the safe-type's IC condition;
- ▶ Any separating measure $\mu'_{b,r}$ s.t. $\mu'_{b,r} \neq \mu^{FI}_{b,r}$ violates *CFC*.

By Lemma 2, the IC constraint for the safe-type becomes:

$$\mathit{MBR}_r\left(\mu_{b,s}^{\mathit{sep}}|\gamma_s=1\right)\leqslant \mathit{MBR}_r\left(\mu_{b,r}^{\mathit{FI}}|\gamma_s=0\right)$$

which depends solely on the type's characteristics, but not on the ratio of safe-to-risky firms.

Let $\mu_b', \mu_b'' \in M_b$ be pooling measures.

► Shareholders' Optimality:

$$MBR_{j}\left(\mu_{b}'|\gamma\right) = MBR_{j}\left(\mu_{b}''|\gamma\right)$$

Creditors' Funding Condition:

$$\max_{\mu_b>0}\left\{\gamma_{\mathrm{s}}^\prime F V_{\mathrm{s}} \left(\mu_b | \gamma_{\mathrm{s}}^\prime\right) + \left(1-\gamma_{\mathrm{s}}^\prime\right) F V_{\mathrm{r}} \left(\mu_b | \gamma_{\mathrm{s}}^\prime\right)\right\}$$

where

$$FV_{j} (\mu_{b}|\gamma'_{s}) = E_{j} (\mu_{b}) + \mu_{b} d (\mu_{b}|\gamma'_{s})$$
$$d (\mu_{b}|\gamma'_{s}) = \gamma'_{s} d_{s} (\mu_{b}) + (1 - \gamma'_{s}) d_{r} (\mu_{b})$$

Proof. of Lemma 4 - Cont'd

Optimal Pooling Capital Structure and Shareholders' Payoff for $q_s=0.0$, $q_r=0.5$, $s_f=1.0$, $\sigma=0.3$ Optimal Measure of Bonds

If
$$p_r\left(\mu_b^{pool}\right) < 1$$
, then

- **b** By lemma 4 they must risky firms choose a separating measure $\mu_{b,r}^{sep}$ with strictly positive probability;
- ▶ By lemma 2, $\mu_{b,r}^{sep} = \mu_b^{FI}$;
- Shareholders' optimality condition requires

$$MBR_r\left(\mu_b^{FI}\right) = MBR_r\left(\mu_b^{pool}|\gamma\right)$$

- ▶ However, optimal μ_b is strictly increasing in γ_s , so that $\mu_b^{pool} > \mu_b^{FI}$,
- ► Therefore, $MBR_r\left(\mu_b^{pool}|\gamma\right) > MBR_r\left(\mu_b^{FI}\right)$ (figure 27) Contradiction!

Separating Weak Equilibrium

A pure separating weak equilibrium in E^{SD} is a tuple e satisfying:

- 1. $p_j(\mu_b) = \mathbf{1}_{\left\{\mu_b = \mu_{b,j}^{sep}\right\}}$, for $j \in \{s,r\}$, where $\mu_{b,j}^{sep} \in M_b \cup \emptyset$ solves the creditor funding condition problem CFC Separating.
- 2. Creditors' beliefs are consistent with type's strategies

$$\gamma_{s}\left(\mu_{b}\right) = \begin{cases} 1, & \text{if } \mu_{b} = \mu_{b,s}^{\text{sep}} \\ 0, & \text{if } \mu_{b} = \mu_{b,r}^{\text{sep}} \\ \in [0,1) & \text{s.t. } \mu_{b} \text{ does not solve CFC - Pooling} \end{cases}$$

3. Only optimally levered firms get funded and creditors break even:

$$d_{c}\left(\mu_{b}|\gamma\right) = \begin{cases} \gamma_{s}\left(\mu_{b}\right)d_{s}\left(\mu_{b}\right) + \left(1 - \gamma_{s}\left(\mu_{b}\right)\right)d_{r}\left(\mu_{b}\right) & \text{if } \mu_{b} \in \{\mu_{b,s}^{sep}, \mu_{b,r}^{sep}\}\\ 0 & \text{otherwise} \end{cases}$$

Pooling Weak Equilibrium

A pure pooling weak equilibrium in E^{SD} is a tuple e satisfying:

- 1. $p_{j}\left(\mu_{b}\right)=\mathbf{1}_{\left\{\mu_{b}=\mu_{b}^{pool}
 ight\}}$, for $j\in\left\{ s,r\right\}$, where μ_{b}^{pool} solves the creditor funding condition problem CFC Pooling.
- 2. Creditors' beliefs are consistent with type's strategies, that is,

(i)
$$\gamma_s\left(\mu_b^{pool}\right)=\mu_s$$
, and (ii) for all $\mu_b\in M_b-\{\mu_b^{pool}\}$,

- if $\gamma_s(\mu_b) \in \{0, 1\}$, then μ_b does not solve CFC Separating when $\gamma_s = \gamma_s(\mu_b)$;
- if $\gamma_s(\mu_b) \in (0,1)$, then μ_b does not solve CFC Pooling when $\gamma_s = \gamma_s(\mu_b)$;
- Only optimally levered firms get funded and creditors break even:

$$d_{c}\left(\mu_{b}|\gamma\right) = \begin{cases} \gamma_{s}\left(\mu_{b}\right)d_{s}\left(\mu_{b}\right) + \left(1 - \gamma_{s}\left(\mu_{b}\right)\right)d_{r}\left(\mu_{b}\right) & \text{if } \mu_{b} = \mu_{b}^{pool} \\ 0 & \text{otherwise} \end{cases}$$

Mixed Weak Equilibrium

A mixed weak equilibrium in E^{SD} is a tuple e satisfying

1. Type-contingent strategies: $p_{r}^{b}\left(\mu_{b}\right)=\mathbf{1}_{\left\{\mu_{b}=\mu_{b}^{pool}
ight\}}$ and

$$\begin{split} p_{s}^{b}\left(\mu_{b}\right) &= p_{s}^{pool} \cdot \mathbf{1}_{\left\{\mu_{b} = \mu_{b}^{pool}\right\}} + \left(1 - p_{s}^{pool}\right) \cdot \mathbf{1}_{\left\{\mu_{b} = \mu_{b,s}^{sep}\right\}} \\ \text{and } \mathit{MBR}_{s}\left(\mu_{b}^{pool}|\gamma\right) &= \mathit{MBR}_{s}\left(\mu_{b,s}^{sep}|\gamma\right) \end{split}$$

2. Creditors' beliefs are consistent with types' strategies:

$$\gamma_{s}\left(\mu_{b}\right) = \begin{cases} \frac{p_{s}^{pool}\mu_{s}}{p_{s}^{pool}\mu_{s} + (1 - \mu_{s})} & \text{if } \mu_{b} = \mu_{b}^{pool} \\ 1 & \text{if } \mu_{b} = \mu_{b}^{sep} \\ \in [0, 1] & \mu_{b} \text{ does not satisfy CFC} \end{cases}$$

3. Only optimally levered firms get funded and creditors break even:

$$d_{c}\left(\mu_{b}|\gamma\right) = \begin{cases} \gamma_{s}\left(\mu_{b}\right)d_{s}\left(\mu_{b}\right) + \left(1 - \gamma_{s}\left(\mu_{b}\right)\right)d_{r}\left(\mu_{b}\right) & \text{if } \mu_{b} = \mu_{b}^{pool}\\ d_{s}\left(\mu_{b}\right) & \text{if } \mu_{b} = \mu_{b,s}^{sep}\\ 0 & \text{otherwise} \end{cases}$$

Electronic Market Equilibria

Safe Type's Firm Value

Dual Market Equilibria

Safe Type's Firm Value

Trade Count Weight Difference

ATS v.s. OTC % Difference in Rating- Contingent Number of Non-MTN-Bond Trades by Number of Covenant Categories per Bond - 2019Q3

Trade Volume Weight Difference

ATS v.s. OTC % Difference in Rating- Contingent Non-MTN Bond Trade Volume by Number of Covenant Categories per Bond - 2019Q3

Bibliography

Billett, Matthew T., Tao-Hsien Dolly King, and David C. Mauer, 2007, Growth Opportunities and the Choice of Leverage, Debt Maturity, and Covenants, *The Journal of Finance* 62, 697–730.

