Monetary Transmission Through the Housing Sector

Daniel Albuquerque (BoE), Thomas Lazarowicz (UCL) and Jamie Lenney (BoE)

RES Conference, June 2025

Recent period drew increased scrutiny to housing/rental market and effect of monetary policy.

- Limited empirical evidence base beyond house price and rent:price ratio.
- ► HANK literature not yet incorporated housing element.

Contributions

- 1. Empirical results for monetary policy shock in the UK:
 - i house prices are slow to fall, but magnitude is eventually large
 - ii rents are stable for 1-2 years, then fall
 - iii Sales fall for 1-2 years
- 2. Build upon canonical HANK model: housing tenure
 - renter / owner-occupier / private landlord
 - match the model to the data
 - sticky and extrapolative house price expectations \rightarrow i & ii
- 3. Study Housing and monetary policy transmission
 - quantify the housing channel of monetary policy [quite large]
 - private landlords vs commercial rental housing [private landlords reduce trade off]
 - Policy response to rental market supply shock [Look through rental price] Fig.

House prices: prolonged decline; rents: stable for at least year

Figure IRFs to 1p.p. Bank Rate shock

- Estimate a monthly VAR from 1997-2023, with dummies for the Covid period.
- ▶ Baseline VAR with 6 variables: GDP, CPI core ex-rent, bank rate, mortgage spread, FTSE and house prices
- ▶ Use target factor from Braun et al. [2024] as instrument for bank rate

Regional responses: clear Macro Response

Sales and stocks: reduced activity for at least one year

 $ightharpoonup p_h$ fall not enough to maintain activity in housing market

HANK Model with a Housing Market

- ► HANK model, with 2 assets: financial wealth and housing
 - \rightarrow flats H_1 and houses H_2 , $H_2 > H_4$, only flats can be rented
 - \rightarrow renters r, owner occupiers oo, or landlords ll
 - → borrowing against your home(s) subject to LTV/LTI constraints
 - → short-run analysis: fixed housing supply
 - \rightarrow sticky rental transitions with probability $\theta_r = 0.25$
- ► Novel Market Clearing Condition in Rental Market

$$S_{r,t} = \int_{HH Rental Demand} is_{ll,i,t} di$$

$$HH Rental Supply$$

- ► Household are inattentive and over-extrapolate as in Kohlhas and Walther [2021] (depart from RE) ► Empircal.
- ► Rest of Model standard: Price/Wage PC, Fiscal rule, Taylor rule...
 - Steady Sate of Model calibrated to relevant UK moments for housing, income. Calibration
 - Solved in sequence space (Auclert et al. [2021]) with upper envelope EGM method (Iskhakov et al. [2017].

HANK Model with a Housing Market

$$a' + c + C_h(p_h, p_r, p_r^*, h') = (1 + r + \mathbf{1}_{\mathbf{a} < \mathbf{0}} \bar{r}) a + zwl(1 - \tau) + \Pi(z),$$

 $a' \ge \bar{a}(h', p_h, z, w, l)$

Toron elal en		-
Transition	$-c_h$	ā
Own H - Own H	$-\delta_h H_2$	$\min(a, \max(-\kappa_h p_h H_2, -\kappa_v y(z)))$
Own H - Own F	$-p_h(H_1 - H_2) - 2F - \delta_h H_1$	$\max(-\kappa_h p_h H_1, -\kappa_y y(z))$
Own H - Rent	$p_h H_2 - F - p_r^*$	0
Own H - LL	$-p_h H_1 - F + p_r^* - \delta_h (H_1 + H_2)$	$\max(-\kappa_h p_h(H_1 + H_2), -\kappa_y y(z) - \kappa_h H_1 p_h)$
Own F - Own F	$-\delta_h H_1$	$\min(a, \max(-\kappa_h p_h H_1, -\kappa_y y(z)))$
Own F - Own H	$-p_h(H_2 - H_1) - 2F - \delta_h H_2$	$\max(-\kappa_h p_h H_2, -\kappa_y y(z))$
Own F - Rent	$p_h H_1 - F - p_r^*$	0
Rent - Own F	$-p_hH_1-F-\delta_hH_1$	$\max(-\kappa_h p_h H_1, -\kappa_y y(z)))$
Rent - Rent	$-p_{r,i}$	0
LL - Own H	$H_1p_h - F - \delta_h H_2$	$\min(a + p_h H_1 - F, \max(-\kappa_h p_h H_2, -\kappa_y y(z)))$
LL - LL	$p_{r,i} - \delta_h(H_2 + H_1)$	$min(a, max(-\kappa_h p_h(H_1 + H_2), -\kappa_h p_h H_1 - \kappa_y y(z))$
LL - LL x2	$-H_1p_h + 2p_r^* - F - \delta_h(H_2 + 2H_1)$	$\max(-\kappa_h p_h(2H_1 + H_2), -\kappa_h 2p_h H_1 - \kappa_y y(z))$
LL x2 - LL x2	$2p_{r,i} - \delta_h(H_2 + 2H_1)$	$\min(a, \max(-\kappa_h p_h(2H_1 + H_2), -\kappa_h 2p_h H_1 - \kappa_y y(z)))$
LL x2 - LL	$H_1p_h + p_r^* - F - \delta_h(H_2 + H_1)$	$\min(a + H_1p_h - F, \max(-\kappa_h p_h (H_1 + H_2), -\kappa_h p_h H_1 - \kappa_y y(z)))$

IRF Matching Params. Alt E

Application I: Housing and Monetary Policy

House price dominant channel in closing housing markets after interest rate rise.

Application I: Housing and Monetary Policy

Figure Consumption Channels and by Housing Tenure

- Around quarter of transmission in the model at the peak through p_h and p_r .
- Mortgagors hit hardest but so are landlords.

Application II: Commercial vs private landlords

- \triangleright Commercial sector borrows from banks and purchases rental housing $H_{CR,t}$
- Rents have limited impact on the (non-rental) housing market

Contributions

- 1. Empirical results for monetary policy shock in the UK:
 - i house prices are slow to fall, but magnitude is eventually large
 - ii rents are stable for 1-2 years, then fall
 - iii Sales fall for 1-2 years
- 2. Build upon canonical HANK model: housing tenure
 - renter / owner-occupier / private landlord
 - match the model to the data
 - sticky and extrapolative house price expectations → i & ii
- 3. Study Housing and monetary policy transmission
 - quantify the housing channel of monetary policy [quite large]
 - private landlords vs commercial rental housing [private landlords reduce trade off]
 - Policy response to rental market supply shock [Look through rental price]

IRFs for baseline VAR (Dack)

Dwelling types: similar co-movement

 $\rightarrow\,$ prices across regions and types react in the same way $\rightarrow\,$ single p_h

Household Problem (Back)

$$\begin{aligned} z_{i} &= z_{1,i} + z_{2,i} \\ z_{j,i} &= \rho_{j,z} z_{j,i} + \epsilon_{j,z}, \quad \epsilon_{j,z} \sim N(o, \sigma_{j,z}^{2}), j = 1, 2 \end{aligned}$$

$$\mathbf{E} \Big[V^{(2)}(\chi, h, z, a) \Big] &= \sum_{h'} Prob(h'|h, \chi, z, a) \Big(V^{(3)}(\chi, h', z, a) - \eta(h') \Big)$$

$$Prob(h'|h, \chi, z, a) &= \frac{\exp\left(\frac{V^{(3)}(\chi, h', z, a) - \eta(h')}{\alpha_{z}} \right)}{\sum_{h'} \exp\left(\frac{V^{(3)}(\chi, h', z, a) - \eta(h')}{\alpha_{z}} \right)}$$

$$V^{(3)}(\chi, h', a, z) &= \max_{h'} u(c, h', l) + \beta \mathbf{E} [V^{(1)}(\chi'|\chi, h', z'|z, a')]$$

$$u(c, h, l) = \frac{(c^{1-\phi_h}x(h)^{\phi_h})^{1-\sigma_c}}{1-\sigma_c} - \phi_l \frac{l^{1+\psi_l}}{1+\psi_l}, x(h) = H(h)(1+\omega_{oo}\mathbf{1}_{oo})$$

Expectations TBack

$$\bar{f}_t p_{t+k} = c + \frac{1}{1+\delta} (\delta f_{t-1}^{-} p_{t+k} + E_t^{RE} [p_{t+k}] - \gamma p_t)$$

- Point estimates $\{\gamma = -0.11, \delta = 2.86, \gamma_{p_b} = 1.26, \delta_{p_b} = 0.05\}$
- \blacktriangleright δ much les than Auclert et al. [2020] (approx 11.5). Much less stickiness required.
- δ_{p_k} and γ_{p_k} close to estimates from Michigan data (1.55***,0.09)

Calibration (Back)

- 1. Estimated labour income process with transitory and persistent components
- 2. Internally calibrated parameters

Targeted Moment	Model	Data	Parameter	Source
Ann. Debt to GDP	0.68	0.65	β	ONS
Share of Renters	0.35	0.33	$\phi_h, \omega_{oo}, p_{r,ss}$	EHS (97-23)
Share of Flat Owners	0.10	0.10	$\phi_h, \omega_{oo}, p_{r,ss}$	EHS (97-23)
Share of Landlords	0.06	0.06	$\phi_h, \omega_{oo}, p_{r,ss}$	WAS (08-20)
Annual rate $oo \rightarrow r$	0.013	0.008	η_m	EHS (97-23)

3. Untargeted Moments:

Moment	Model	Data	Source
Housing Wealth to Financial Net Worth	7.2	7.0	WAS (08-20)
Top 10 pct. Total Wealth Share	0.31	0.48	WAS (08-20)
Share of Homeowners with Mortgage	0.53	0.53	EHS (97-23)
Share of Landlords with Mortgage	0.37	0.57	WAS (07-20)
Avg Rent to Renter Disposable Income	0.31	0.33	EHS (97-23)

External Calibration Calibration

Table Externally calibrated parameters

Parameter	Value	Source
Frisch	0.5	auclert2020micro
EIS	0.25	
Steady State Markup	1.06	auclert2020micro
Borrowing wedge $\bar{r}(ann)$	0.0126	(avg 97-19 of 2yr 75pct)
Transaction Cost	0.02p _{h,ss}	Halifax
$\frac{P_{h,ss}}{\bar{y}}$	6.3	Avg 97-23 ONS;
Loan to value max κ_h	0.90	PSD 90 pctile. FTB
Loan to income max $\kappa_{_{V}}$	4.5	PSD 90 pctile. FTB
Rental price adj. prob $\hat{m{ heta}}_r$	0.25	1 year contract
Housing Maintenance (ann) δ_h	0.015	Bureau of Economic Analysis
Taste shock scaler $lpha_z$	0.15	iskhakov2017endogenous

Income Process (Back)

Table Internally estimated parameters

Moment	Data	Model	Parameter
Cross sectional labour income std. dev	0.66	0.59	$\rho_{z,1}, \rho_{z,2}, \sigma_{z,1}^2, \sigma_{z,2}^2$
One year earnings change std. dev	0.19	0.19	$\rho_{z,1}, \rho_{z,2}, \sigma_{z,1}^2, \sigma_{z,2}^2$
Five year earnings change std. dev	0.78	0.37	$\rho_{z,1}, \rho_{z,2}, \sigma_{z,1}^2, \sigma_{z,2}^2$
90-10 income ratio	4.66	4.53	$\rho_{z,1}, \rho_{z,2}, \sigma_{z,1}^2, \sigma_{z,2}^2$

15 grids points

IRF Matching Parameters • Back

Table IRF Matched Parameters

Parameter	Symbol	IRF matched value
Slope of price Philips Curve	Kp	0.06
Slope of wage Philips Curve	$\kappa_{\rm w}$	0.005
Debt stab. in fiscal rule	${m \gamma}_{tax}$	0.34
Taylor rule coefficients	$\left(\phi_{\pi},\phi_{y},\rho_{m}\right)$	(1.06, 0.00, 0.95)
Price underreact	θ_{SE}	2.86
Price underreact p_h	$ heta_{{\sf SE},p_h}$	1.26
Price extrapolation	γ_e	-0.10
House price extrapolation	γ_{e,p_h}	0.05

IRF Matching: Other Expectations • Back

Application III: Optimal Policy Response to Housing Market Shock

Policy Maker targets a loss function of minimising $L_{x} = \sum_{t=0}^{20} (\pi_{t,x})^2 + \lambda (i_t - i_{t-1})^2$

Commercial Sector Pricing

- Commercial sector can borrow from bank and purchase rental housing.
- Subject to fixed costs to make price same in steady state
- Same contract constraints as private landlords.
- Any profits (unexpected capital gains on housing) distributed with aggregate dividends
- Sets marginal price as follows.

$$p_{r,t} = E_t \left[\frac{\epsilon_r}{\epsilon_r - 1} \left(\delta_{hf} + \frac{p_{h,t}}{v_{1,t}} - \theta_r \frac{v_{2,t}}{v_{1,t}} \right) \right],$$

where $v_{1,t}$, $v_{2,t}$ are the usual forwarding looking terms in the solution of firms' problem subject to Calvo pricing.

$$H_1 S_{r,t} = H_1 S_{ll1,t} + 2H_1 S_{ll2,t} + \overline{HA} + \underbrace{H_{CR,t}}_{Com. Supply}$$

Application II: Commercial vs private landlords

- ightharpoonup Commercial sector borrows from banks and purchases rental housing $H_{CR,t}$ ullet Details
- Rents have limited impact on the (non-rental) housing market
- ► Higher pass-through of interest rates to rents

Application I: Housing and Monetary Policy

Figure House price decomposition: $p_{h,t} = p_{r,t} + \frac{1}{1+r_{t+1}}p_{h,t+1} + \omega_{frict} + \omega_{Behave}$

Behavioural frictions push up on house price

Representative agent frictionless benchmark

Same macro structure but representative agent with no housing frictions. Still have nominal rigidities.

Figure Impulse response to a MP shock

References

- A. Auclert, M. Rognlie, and L. Straub. Micro jumps, macro humps: Monetary policy and business cycles in an estimated hank model. Technical report, National Bureau of Economic Research, 2020.
- A. Auclert, B. Bardóczy, M. Rognlie, and L. Straub. Using the sequence-space jacobian to solve and estimate heterogeneous-agent models. *Econometrica*, 89(5):2375–2408, 2021.
- R. Braun, S. Miranda-Agrippino, and T. Saha. Measuring monetary policy in the uk: The uk monetary policy event-study database. *Journal of Monetary Economics*, page 103645, 2024.
- F. Iskhakov, T. H. Jørgensen, J. Rust, and B. Schjerning. The endogenous grid method for discrete-continuous dynamic choice models with (or without) taste shocks. *Quantitative Economics*, 8(2):317–365, 2017.
- A. N. Kohlhas and A. Walther. Asymmetric attention. American Economic Review, 111(9):2879-2925, 2021.