Ponovljeni prvi međuispit

- 1. Klinac ima praćku kojom može izbaciti kamen brzinom iznosa $v_0 = 10\,\mathrm{m\,s^{-1}}$ te stoji na udaljenosti $d = 5\,\mathrm{m}$ od uspravnog zida. Odredi kut u odnosu na vodoravnu ravninu pod kojim mora izbaciti kamen ako želi pogoditi zid u najvišoj mogućoj točki. (Ubrzanje gravitacijske sile $g = 9.81\,\mathrm{m\,s^{-2}}$.) (3 boda)
- 2. Kvadar miruje na vodoravnoj podlozi po kojoj može klizati bez trenja, a vodoravnom oprugom konstante $k=50\,\mathrm{N\,m^{-1}}$ je povezan s čvrstim uporištem. U nekom trenutku na kvadar počne djelovati vodoravna sila stalnog iznosa $F_0=3\,\mathrm{N}$ usmjerena tako da rasteže oprugu. Odredi maksimalnu kinetičku energiju koju će kvadar postići prije nego što se zaustavi. (3 boda)
- 3. Bilijarska kugla nalijeće na mirnu bilijarsku kuglu jednake mase. Ako se prva kugla odbije pod kutom θ_1 u odnosu na smjer svog gibanja prije sudara, odredi kut koji zatvara smjer gibanja druge kugle nakon sudara sa smjerom gibanja prve kugle prije sudara. Sudar smatramo savršeno elastičnim. (4 boda)

Ponovljeni drugi međuispit

- 1. Odredi iznose sila u dvama osloncima na kojima leži homogena vodoravna greda duljine $\ell=6\,\mathrm{m}$, mase $m_\mathrm{G}=80\,\mathrm{kg}$ i na kojoj stoji čovjek mase $m_{\check{\mathrm{C}}}=60\,\mathrm{kg}$. Udaljenost lijevog oslonca od lijevog kraja grede je 1.5 m, udaljenost desnog oslonca od desnog kraja grede je 0.5 m, a čovjek je udaljen 3 m od lijevog oslonca. (Ubrzanje gravitacijske sile $g=9.81\,\mathrm{m\,s^{-2}}$) (3 boda)
- 2. Tanki homogeni štap duljine $\ell=0.8\,\mathrm{m}$ i mase m, na čijem je jednom kraju pričvršćena čestica mase m/3, vrti se u vodoravnoj ravnini oko osi koja prolazi njegovim središtem kutnom brzinom $\omega=21\,\mathrm{rad}\,\mathrm{s}^{-1}$. Čestica je zatim malom eksplozijom izbačena sa štapa. Eksplozija česticu šalje na vodoravnu putanju koja je okomita na štap u trenutku eksplozije, brzinom koja je za $6\,\mathrm{m}\,\mathrm{s}^{-1}$ veća od brzine koju kraj štapa poprima nakon eksplozije. Odredi brzinu izbačene čestice. (4 boda)
- 3. Dvije zvijezde se gibaju po kružnim orbitama oko središta mase čitavog sustava brzinama stalnih iznosa v_1 i v_2 . Polumjer jedne od orbita je r_1 . Odredite polumjer druge orbite i mase obiju zvijezda. (Rezultate izrazi preko v_1 , v_2 i r_1 .) (3 boda)

Ponovljeni završni ispit

- 1. Klinac ima praćku kojom može izbaciti kamen brzinom iznosa $v_0 = 10\,\mathrm{m\,s^{-1}}$ te stoji na udaljenosti $d = 5\,\mathrm{m}$ od uspravnog zida. Odredi kut u odnosu na vodoravnu ravninu pod kojim mora izbaciti kamen ako želi pogoditi zid u najvišoj mogućoj točki. (Ubrzanje gravitacijske sile $g = 9.81\,\mathrm{m\,s^{-2}}$.) (5 bodova)
- 2. Tanki homogeni štap duljine $\ell=0.8\,\mathrm{m}$ i mase m, na čijem je jednom kraju pričvršćena čestica mase m/3, vrti se u vodoravnoj ravnini oko osi koja prolazi njegovim središtem kutnom brzinom $\omega=21\,\mathrm{rad\,s^{-1}}$. Čestica je zatim malom eksplozijom izbačena sa štapa. Eksplozija česticu šalje na vodoravnu putanju koja je okomita na štap u trenutku eksplozije, brzinom koja je za $6\,\mathrm{m\,s^{-1}}$ veća od brzine koju kraj štapa poprima nakon eksplozije. Odredi brzinu izbačene čestice. (5 bodova)
- 3. Na dnu uspravno postavljene, cilindrične, odozgo otvorene posude promjera $D=0.4\,\mathrm{m}$ nalazi se kružni otvor promjera $d=1\,\mathrm{cm}$ kroz koji voda iz posude slobodno istječe u atmosferu. U početnom trenutku nivo vode bio je $h_0=0.2\,\mathrm{m}$ iznad dna posude. Odredite kako ovisi visina nivoa vode u posudi o vremenu istjecanja te odredite nakon koliko vremena će sva voda isteći. (Ubrzanje gravitacijske sile $g=9.81\,\mathrm{m\,s^{-2}}$.) (3 boda)
- 4. Ronilac na dubini $d_1 = 30 \,\mathrm{m}$ ispusti mjehurić zraka volumena $V_1 = 1 \,\mathrm{cm}^3$. Odredi volumen tog mjehurića kada on stigne tik pod površinu vode uzimajući u obzir da temperatura vode na dubini d_1 iznosi $T_1 = 5$ °C, dok pod površinom ona iznosi $T_0 = 20$ °C, pretpostavljajući da je temperatura zraka u mjehuriću jednaka temperaturi vode koja ga okružuje. (Gustoća vode $\rho = 1020 \,\mathrm{kg} \,\mathrm{m}^{-3}$, ubrzanje gravitascijske sile $g = 9.81 \,\mathrm{m} \,\mathrm{s}^{-2}$, atmosferski tlak $p_{\mathrm{atm.}} = 101.325 \,\mathrm{kPa.}$) (3 boda)
- 5. Termički izoliran cilindar, zatvoren na oba kraja, podijeljen je pomičnim klipom u dva dijela; A i B. U početnom stanju u oba dijela cilindra se nalazi idealni dvoatomni plin ($\kappa = 7/5$). Početno stanje plina u dijelu A je $p_{\rm A0} = 200\,\rm kPa$ i $V_{\rm A0} = 1\,\rm L$, u dijelu B je $p_{\rm B0} = 100\,\rm kPa$ i $V_{\rm B0} = 1\,\rm L$, a klip je zakočen kako se ne bi pomakao uslijed razlike tlakova. Preselimo li klip iz početnog položaja do položaja u kojem su tlakovi izjednačeni, odredi nove volumene dijelova A i B, te tlak plinova. Pretpostavljamo da je proces u plinovima adijabatski. (4 boda)

Riješenja zadataka s ponovljenih ispita

Zadatak: Klinac ima praćku kojom može izbaciti kamen brzinom iznosa $v_0 = 10 \,\mathrm{m\,s^{-1}}$ te stoji na udaljenosti $d = 5 \,\mathrm{m}$ od uspravnog zida. Odredi kut u odnosu na vodoravnu ravninu pod kojim mora izbaciti kamen ako želi pogoditi zid u najvišoj mogućoj točki. (Ubrzanje gravitacijske sile $g = 9.81 \,\mathrm{m\,s^{-2}}$.)

Postupak: Ishodište pravokutnog koordinatnog sustava neka se nalazi tamo gdje je praćka, x-os neka je vodoravna i usmjerena prema zidu, a y-os neka je uspravna usmjerena prema gore. Putanja kamena izbačenog iz ishodišta brzinom iznosa v_0 pod kutom α u odnosu na x-os dana je izrazom

$$y = xu - \frac{gx^2}{2v_0^2}(1+u^2)$$
, gdje je $u = tg\alpha$.

Kamen pogađa zid u točki x = d, y = h, pa imamo

$$h = du - \frac{gd^2}{2v_0^2}(1 + u^2).$$

Za danu udalnost do zida d i početnu brzinu kamena v_0 visina h na kojoj kamen pogađa zid ovisi o kutu izbačaja pa tražimo maksimum h u odnosu na $u = \operatorname{tg}\alpha$,

$$0 \equiv \frac{\mathrm{d}}{\mathrm{d}u}h = d\left(1 - \frac{gd}{v_0^2}u\right),$$

što je ispunjeno za

$$u = \frac{v_0^2}{gd}.$$

Za zadane vrijednosti

$$u \simeq 2.039, \qquad \alpha \simeq 63.87^{\circ}.$$

Rješenje: $\alpha \simeq 63.87^{\circ}$

5

Zadatak: Kvadar miruje na vodoravnoj podlozi po kojoj može klizati bez trenja, a vodoravnom oprugom konstante $k = 50 \,\mathrm{N}\,\mathrm{m}^{-1}$ je povezan s čvrstim uporištem. U nekom trenutku na kvadar počne djelovati vodoravna sila stalnog iznosa $F_0 = 3 \,\mathrm{N}$ usmjerena tako da rasteže oprugu. Odredi maksimalnu kinetičku energiju koju će kvadar postići prije nego što se zaustavi.

Postupak: Neka se ishodište x-osi podudara s početnim položajem kvadra, a njen smjer sa smjerom u kojem se kvadar počinje gibati (smjerom rastezanja opruge.) Ukupnu silu koja djeluje na tijelo pri položaju x možemo napisati kao

$$F[x] = F_0 - kx.$$

Tu silu možemo smatrati konzervativnom te joj pridružujemo potencijalnu energiju

$$E_{\text{pot.}}[x] = -\int_0^x F[x'] dx' = -F_0 x + \frac{1}{2} kx^2.$$

Ukupna energija je očuvana veličina čiju vrijednost određujemo na osnovu početnih uvjeta x=0 i v=0,

$$E = E_{\text{kin.}} + E_{\text{pot.}} = 0.$$

Položaj kvadra pri kojem kinetička energija postiže svoj maksimum slijedi iz uvjeta

$$0 = \frac{\mathrm{d}}{\mathrm{d}x} E_{\mathrm{kin.}} = -\frac{\mathrm{d}}{\mathrm{d}x} E_{\mathrm{pot.}} = F_0 - kx,$$

koji je ispunjen kada se kvadar nalazi pri položaju

$$x = \frac{F_0}{k}.$$

Kinetička energija pri tom položaju je

$$E_{\text{kin.}} = -E_{\text{pot.}} = F_0 \frac{F_0}{k} - \frac{1}{2} k \left(\frac{F_0}{k}\right)^2 = \frac{F_0^2}{2k}.$$

Za zadane vrijednosti $E_{\rm kin.} = 0.09 \, \rm J.$

Rješenje: $E_{\text{kin.}} = F_0^2/2k = 0.09 \,\text{J}$

Zadatak: Bilijarska kugla nalijeće na mirnu bilijarsku kuglu jednake mase. Ako se prva kugla odbije pod kutom θ_1 u odnosu na smjer svog gibanja prije sudara, odredi kut koji zatvara smjer gibanja druge kugle nakon sudara sa smjerom gibanja prve kugle prije sudara. Sudar smatramo savršeno elastičnim.

Postupak: Sudar promatramo u sustavu u kojem druga kugla miruje prije sudara. U svakom sudaru očuvana je količina gibanja pa imamo

$$\mathbf{p} = m\mathbf{v}_1 = m\mathbf{v}_1' + m\mathbf{v}_2',$$

a u savršeno elastičnom sudaru očuvana je i kinetička energija

$$E_{\text{kin.}} = \frac{mv_1^2}{2} = \frac{mv_1'^2}{2} + \frac{mv_1'^2}{2}$$

(veličine označene s $^\prime$ odnose se na stanje nakon sudara.) Gornji izrazi čine sustav

$$\mathbf{v}_1 = \mathbf{v}_1' + \mathbf{v}_2', \qquad v_1^2 = {v_1'}^2 + {v_2'}^2.$$

Kvadriranjem prve jednadžbe dobivamo

$$v_1^2 = v_1'^2 + 2\mathbf{v}_1' \cdot \mathbf{v}_2' + v_2'^2,$$

te oduzimanjem druge jednadžbe slijedi

$$\mathbf{v}_1' \cdot \mathbf{v}_2' = 0,$$

što znači da su brzine \mathbf{v}_1' i \mathbf{v}_2' međusobno okomite, odnosno, ako \mathbf{v}_1' s \mathbf{v}_1 zatvara kut θ_1 , onda \mathbf{v}_2' s \mathbf{v}_1 zatvara kut

$$\theta_2 = \pi/2 - \theta_1.$$

Može se razmotriti i slučaj u kojem je uvjet $\mathbf{v}_1' \cdot \mathbf{v}_2' = 0$ ispunjen time što je jedna od brzina nakon sudara jednaka nuli. Ako $\mathbf{v}_1' = 0$, onda $\mathbf{v}_2' = \mathbf{v}_1$, što odgovara čeonom savršeno elastičnom sudaru čestica jednakih masa, te kut θ_1 nije dobro definiran. Ako $\mathbf{v}_2' = 0$, onda $\mathbf{v}_1' = \mathbf{v}_1$, dakle sudar se "nije dogodio," te kut θ_2 nije dobro definiran.

Rješenje: $\theta_2 = \pi/2 - \theta_1$

Zadatak: Odredi iznose sila u dvama osloncima na kojima leži homogena vodoravna greda duljine $\ell=6\,\mathrm{m}$, mase $m_\mathrm{G}=80\,\mathrm{kg}$ i na kojoj stoji čovjek mase $m_\mathrm{C}=60\,\mathrm{kg}$. Udaljenost lijevog oslonca od lijevog kraja grede je 1.5 m, udaljenost desnog oslonca od desnog kraja grede je 0.5 m, a čovjek je udaljen 3 m od lijevog oslonca. (Ubrzanje gravitacijske sile $g=9.81\,\mathrm{m\,s^{-2}}$)

Postupak: Pravokutni koordinatni sustav postavljamo tako da je lijevi kraj grede u ishodištu, greda leži na pozitivnom dijelu x-osi, a y-os je uspravna i usmjerena prema gore. Središte mase grede se nalazi pri $x_{\rm G} = \ell/2 = 3\,{\rm m}$, oslonci se nalaze pri $x_1 = 1.5\,{\rm m}$ i $x_2 = 5.5\,{\rm m}$, a čovjek stoji pri $x_{\rm C} = 4.5\,{\rm m}$. Prema prvom uvjetu statike zbroj svih sila koje djeluju na tijelo koje miruje jednak je nuli. Razmotrimo li uspravnu komponentu svih sila koje djeluju na gredu imamo

$$\sum F_y = -m_{G}g - m_{\check{C}}g + F_1 + F_2 = 0,$$

gdje su F_1 i F_2 iznosi sila kojima oslonci djeluju na gredu. Prema drugom uvjetu statike zbroj momenata svih sila koje djeluju na tijelo mora biti jednak nuli. Ovdje razmatramo z-komponentu momenata,

$$\sum M_z = -m_G g x_G - m_{\check{C}} g x_{\check{C}} + F_1 x_1 + F_2 x_2 = 0.$$

Iz gornjeg sustava slijedi

$$F_{1,2} = \pm \frac{(m_{\rm G} + m_{\rm \check{C}})x_{2,1} - m_{\rm G}x_{\rm G} - m_{\rm \check{C}}x_{\rm \check{C}}}{x_2 - x_1} g.$$

Za zadane vrijednosti

$$F_1 \simeq 637.7 \,\mathrm{N}, \qquad F_2 \simeq 735.7 \,\mathrm{N}.$$

Rješenje: $F_{\text{liievo}} \simeq 637.7 \,\text{N}, \, F_{\text{desno}} \simeq 735.7 \,\text{N}$

Zadatak: Tanki homogeni štap duljine $\ell=0.8\,\mathrm{m}$ i mase m, na čijem je jednom kraju pričvršćena čestica mase m/3, vrti se u vodoravnoj ravnini oko osi koja prolazi njegovim središtem kutnom brzinom $\omega=21\,\mathrm{rad\,s^{-1}}$. Čestica je zatim malom eksplozijom izbačena sa štapa. Eksplozija česticu šalje na vodoravnu putanju koja je okomita na štap u trenutku eksplozije, brzinom koja je za $6\,\mathrm{m\,s^{-1}}$ veća od brzine koju kraj štapa poprima nakon eksplozije. Odredi brzinu izbačene čestice.

Postupak: Kutna količina gibanja štapa u odnosu na os vrtnje može se prije eksplozije napisati kao

$$L_{\text{štap}} = I_{\text{štap}} \omega = \frac{m\ell^2}{12} \omega = \frac{m\ell}{6} \frac{\ell}{2} \omega = \frac{m\ell}{6} v_{\text{štap}},$$

gdje je $v_{\text{štap}}=(\ell/2)\,\omega$ brzina kraja štapa. Kutna količina gibanja čestice mase m/3 koja je pričvršćena na kraj štapa te se giba brzinom $v_{\text{čestica}}=v_{\text{štap}}$ je

$$L_{\rm čestica} = \frac{\ell}{2} \, p_{\rm čestica} = \frac{\ell}{2} \, \frac{m}{3} \, v_{\rm čestica} = \frac{m\ell}{6} \, v_{\rm štap}.$$

Nakon eksplozije imamo (veličine označene s ' odnose se na stanje nakon eksplozije):

$$L'_{\text{štap}} = \frac{m\ell}{6} \, v'_{\text{štap}}, \qquad L'_{\text{čestica}} = \frac{\ell}{2} \, p'_{\text{čestica}} = \frac{\ell}{2} \, \frac{m}{3} \, v'_{\text{čestica}} = \frac{m\ell}{6} \, v'_{\text{čestica}}.$$

Na osnovu očuvanja kutne količine gibanja,

$$L_{\text{štap}} + L_{\text{čestica}} = L'_{\text{štap}} + L'_{\text{čestica}}$$

slijedi

$$2v_{\text{štap}} = v'_{\text{štap}} + v'_{\text{čestica}} = 2v'_{\text{štap}} + \Delta v',$$

gdje smo koristili $v'_{\rm čestica}=v'_{\rm štap}+\Delta v'$. Iz gornjeg izraza računamo brzinu kraja štapa nakon sudara,

$$v'_{\text{štap}} = v_{\text{štap}} - \frac{\Delta v'}{2} = \frac{\ell}{2}\omega - \frac{\Delta v'}{2},$$

te konačno

$$v'_{\text{čestica}} = v'_{\text{štap}} + \Delta v' = \frac{\ell}{2} \omega + \frac{\Delta v'}{2}.$$

Za zadane vrijednosti $v'_{\text{čestica}} = 11.4 \,\mathrm{m \, s^{-1}}.$

Rješenje:
$$v'_{\rm čestica} = (\ell\omega + \Delta v')/2 = 11.4\,{\rm m\,s^{-1}}$$

9

Zadatak: Dvije zvijezde se gibaju po kružnim orbitama oko središta mase čitavog sustava brzinama stalnih iznosa v_1 i v_2 . Polumjer jedne od orbita je r_1 . Odredite polumjer druge orbite i mase obiju zvijezda. (Rezultate izrazi preko v_1 , v_2 i r_1 .)

Postupak: Iz jednakosti perioda slijedi polumjer orbite druge zvijezde,

$$T = \frac{2\pi r_1}{v_1} = \frac{2\pi r_2}{v_2}, \qquad r_2 = \frac{v_2}{v_1} r_1.$$

Centripetalna sila odgovorna za kružno gibanje zvijezda realizirana je njihovim međusobnim gravitacijskim privlačenjem,

$$\frac{m_1 v_1^2}{r_1} = G_N \frac{m_1 m_2}{(r_1 + r_2)^2} = \frac{m_2 v_2^2}{r_2},$$

iz čega slijedi

$$m_{1,2} = \frac{(r_1 + r_2)^2}{G_N} \frac{v_{2,1}^2}{r_{2,1}},$$

odnosno uz korištenje izraza za r_2 ,

$$m_1 = \frac{r_1 v_2}{G_N v_1} (v_1 + v_2)^2, \qquad m_2 = \frac{r_1}{G_N} (v_1 + v_2)^2.$$

Rješenje: $r_2 = v_2 r_1 / v_1$, $m_1 = r_1 (v_2 / v_1) (v_1 + v_2)^2 / G_N$, $m_2 = r_1 (v_1 + v_2)^2 / G_N$

Zadatak: Na dnu uspravno postavljene, cilindrične, odozgo otvorene posude promjera $D=0.4\,\mathrm{m}$ nalazi se kružni otvor promjera $d=1\,\mathrm{cm}$ kroz koji voda iz posude slobodno istječe u atmosferu. U početnom trenutku nivo vode bio je $h_0=0.2\,\mathrm{m}$ iznad dna posude. Odredite kako ovisi visina nivoa vode u posudi o vremenu istjecanja te odredite nakon koliko vremena će sva voda isteći. (Ubrzanje gravitacijske sile $g=9.81\,\mathrm{m\,s^{-2}}$.)

Postupak: Neka je $v_1 = -dh/dt$ brzina spuštanja novoa vode u posudi, a v_2 neka je brzina istjecanja vode kroz otvor. Jednadžba kontinuiteta Sv = const. primijenjena pri površini vode u posudi i pri njenom dnu daje uvjet $S_1v_1 = S_2v_2$, odnosno

$$D^2v_1 = d^2v_2.$$

Bernoullijeva jednadžba $p + \frac{1}{2}\rho v^2 + \rho gh = const.$ primijenjena pri površini vode u posudi i pri njenom dnu daje uvjet

$$p_{\text{atm.}} + \frac{1}{2}\rho v_1^2 + \rho gh = p_{\text{atm.}} + \frac{1}{2}\rho v_2^2.$$

Eliminacijom v_2 iz gornjeg sustava slijedi

$$v_1 = -\frac{\mathrm{d}h}{\mathrm{d}t} = \left(\frac{d}{D}\right)^2 \sqrt{\frac{2gh}{1 - (d/D)^4}}.$$

Gornju jednadžbu možemo napisati kao (separacija varijabli)

$$\frac{\mathrm{d}h}{\sqrt{h}} = -\left(\frac{d}{D}\right)^2 \sqrt{\frac{2g}{1 - (d/D)^4}} \,\mathrm{d}t$$

te integracijom slijedi

$$2\sqrt{h} = -\left(\frac{d}{D}\right)^2 \sqrt{\frac{2g}{1 - (d/D)^4}} t + const.$$

Integracijsku konstantu određujemo na osnovu početnog uvjeta $h=h_0$ u t=0 te možemo pisati

$$h[t] = \left(\sqrt{h_0} - \left(\frac{d}{D}\right)^2 \sqrt{\frac{g/2}{1 - (d/D)^4}} t\right)^2.$$

Trajanje istjecanja T slijedi iz uvjeta h[T] = 0,

$$T = \left(\frac{D}{d}\right)^2 \sqrt{\frac{2h_0}{g}} \sqrt{1 - (d/D)^4}.$$

Za zadane parametre $T \simeq 323.1 \,\mathrm{s}.$

Zadatak je također moguće riješiti i zanemarujući član $\frac{1}{2}\rho v_1^2$ u Bernoullijevoj jednadžbi što daje

 $v_2 = \sqrt{2gh}$

(izraz poznat kao Torricellijev zakon istjecanja.) Na osnovu jednadžbe kontinuiteta tada imamo

$$v_1 = \frac{S_2}{S_1} v_2 = \left(\frac{d}{D}\right)^2 v_2 = \left(\frac{d}{D}\right)^2 \sqrt{2gh},$$

što se za maleni d/D neznatno razlikuje od ranije dobivenog izraza za v_1 . Provodeći raniji postupak uz ovdje dobivenu brzinu v_1 dobije se

$$h[t] = \left(\sqrt{h_0} - \left(\frac{d}{D}\right)^2 \sqrt{\frac{g}{2}} t\right)^2, \qquad T = \left(\frac{D}{d}\right)^2 \sqrt{\frac{2h_0}{g}} \simeq 323.1 \,\mathrm{s}.$$

Rješenje: $h[t] = \left(\sqrt{h_0} - \left(\frac{d}{D}\right)^2 \sqrt{\frac{g/2}{1 - (d/D)^4}} t\right)^2$, $T = \left(\frac{D}{d}\right)^2 \sqrt{\frac{2h_0}{g}} \sqrt{1 - (d/D)^4} \simeq 323.1 \text{ s.}$

Zadatak: Ronilac na dubini $d_1=30\,\mathrm{m}$ ispusti mjehurić zraka volumena $V_1=1\,\mathrm{cm}^3$. Odredi volumen tog mjehurića kada on stigne tik pod površinu vode uzimajući u obzir da temperatura vode na dubini d_1 iznosi $T_1=5\,^{\circ}\mathrm{C}$, dok pod površinom ona iznosi $T_0=20\,^{\circ}\mathrm{C}$, pretpostavljajući da je temperatura zraka u mjehuriću jednaka temperaturi vode koja ga okružuje. (Gustoća vode $\rho=1020\,\mathrm{kg}\,\mathrm{m}^{-3}$, ubrzanje gravitascijske sile $g=9.81\,\mathrm{m}\,\mathrm{s}^{-2}$, atmosferski tlak $p_{\mathrm{atm.}}=101.325\,\mathrm{kPa.}$)

Postupak: Količina zraka u mjehuriću se ne mijenja s dubinom pa na osnovu jednadžbe stanja idealnog plina imamo

$$\frac{p_0 V_0}{T_0} = nR = \frac{p_1 V_1}{T_1},$$

gdje se lijeva strana odnosi na stanje pod površinom, a desna strana na stanje na dubini $d_1=30\,\mathrm{m}$. Traženi volumen je

$$V_0 = \frac{T_0}{p_0} \frac{p_1 V_1}{T_1},$$

gdje je $V_1 = 1 \,\mathrm{cm}^3$, tlakovi su

$$p_0 = p_{\text{atm.}}, \qquad p_1 = p_{\text{atm.}} + \rho g d_1,$$

a temperature su $T_0=(20+273.15)\,\mathrm{K},\,T_1=(5+273.15)\,\mathrm{K}.\,$ Konačno, za zadane vrijednosti,

$$V_0 \simeq 4.176 \, \mathrm{cm}^3$$
.

Rješenje: $V_0 = (T_0/T_1) (1 + \rho g d_1/p_{\text{atm.}}) V_1 \simeq 4.176 \text{ cm}^3$

Zadatak: Termički izoliran cilindar, zatvoren na oba kraja, podijeljen je pomičnim klipom u dva dijela; A i B. U početnom stanju u oba dijela cilindra se nalazi idealni dvoatomni plin ($\kappa = 7/5$). Početno stanje plina u dijelu A je $p_{\rm A0} = 200\,\mathrm{kPa}$ i $V_{\rm A0} = 1\,\mathrm{L}$, u dijelu B je $p_{\rm B0} = 100\,\mathrm{kPa}$ i $V_{\rm B0} = 1\,\mathrm{L}$, a klip je zakočen kako se ne bi pomakao uslijed razlike tlakova. Preselimo li klip iz početnog položaja do položaja u kojem su tlakovi izjednačeni, odredi nove volumene dijelova A i B, te tlak plinova. Pretpostavljamo da je proces u plinovima adijabatski.

Postupak: Obzirom da su procesi adijabatski imamo $pV^{\kappa} = const.$, odnosno,

$$p_{A0}V_{A0}^{\kappa} = p_{A1}V_{A1}^{\kappa} = p_{A1}(V_{A0} + \Delta V)^{\kappa},$$

$$p_{B0}V_{B0}^{\kappa} = p_{B1}V_{B1}^{\kappa} = p_{B1}(V_{B0} - \Delta V)^{\kappa},$$

gdje se varijable s oznakom 1 odnose na stanje nakon pomicanja klipa. Dijeleći gornju jednadžbu donjom, uz oznaku $V_0=V_{\rm A0}=V_{\rm B0}$ i koristeći $p_{\rm A1}=p_{\rm B1},$ imamo

$$\frac{p_{\rm A0}}{p_{\rm B0}} = \left(\frac{1 + \Delta V/V_0}{1 - \Delta V/V_0}\right)^{\kappa},$$

odnosno uz $p_{A0}/p_{B0}=2$ i $\kappa=7/5$,

$$\frac{\Delta V}{V_0} = \frac{(p_{\rm A0}/p_{\rm B0})^{1/\kappa} - 1}{(p_{\rm A0}/p_{\rm B0})^{1/\kappa} + 1} = \frac{2^{5/7} - 1}{2^{5/7} + 1} \simeq 0.2427.$$

Konačni volumeni su

$$V_{\rm A1} = V_0 \left(1 + \frac{\Delta V}{V_0} \right) \simeq 1.243 \,\mathrm{L}, \qquad V_{\rm B1} = V_0 \left(1 - \frac{\Delta V}{V_0} \right) \simeq 0.7574 \,\mathrm{L}.$$

Konačni tlakovi su

$$p_1 = p_{\rm A1} = p_{\rm B1} = p_{\rm B0} \left(1 - \frac{\Delta V}{V_0} \right)^{-\kappa} \simeq 147.6 \,\mathrm{kPa}.$$

Rješenje: $V_{\rm A1} \simeq 1.243 \, {\rm L}, \, V_{\rm B1} \simeq 0.7574 \, {\rm L}, \, p_{\rm A1} = p_{\rm B1} \simeq 147.6 \, {\rm kPa}$