Submit your complete solution via MyCourses by Monday Dec 7, 23.59.

Exercise 1

At the instant $\theta=60^\circ$, the slotted guide rod is moving to the left with an acceleration of 2 m/s and a velocity of 5 m/s. Determine the angular acceleration and angular velocity of link AB at this instant.

Exercise 2

Rod AB is rotating with an angular velocity of $\omega_{AB}=60$ rad/s. Determine the velocity of the slider C at the instant $\theta=60^\circ$ and $\phi=45^\circ$.

Exercise 3

Member AB is rotating at $\omega_{AB}=6$ rad/s. Determine the velocity of point P, and the angular velocity of member BPD.

Answer: $\omega_{BPD}=3$ rad/s; $v_P=1.79$ m/s

Exercise 4

If member *AB* has the angular motion shown, determine the velocity and acceleration of point *C* at the instant shown.

Exercise 5

A force of $F=10\,\mathrm{N}$ is applied to the 10-kg ring as shown. If slipping does not occur, determine the ring's initial angular acceleration, and the acceleration of its mass center G. Neglect the thickness of the ring.

Answer: $\alpha=0.560~\mathrm{rad/s^2}$; $a_G=0.224~\mathrm{m/s^2}$

