Quick Reference Radial Basis Functions

using namespace rbf;

The RBFs supported in Radial ++ are:

RBF	C++
Multiquadric	MQ
Thin-Plate Splines	TPS
Radial Powers	POT
Gaussian	GAU
Inverse Multiquadric	IMQ

The declaration of the RBF in C++ can be done as:

MQ<T> mq; where T=float, double, etc.

the same sintaxis follow for the rest of kernels.

The generalized RBFs are:

C++	Phi(x)	beta
MQ	$(r^2+c^2)^(beta/2)$	1,3,5,7,
IMQ	$(r^2+c^2)^(-beta/2)$	1,3,5,7,
GAU	$\exp(-r^2*c^2)$	
TPS	r^beta log(r)	2,4,6,8,
POT	r^beta	1,3,5,7,

 $r = \|x\|_2$ Euclidean distance

c = shape parameter

The default beta values are:

C++	default beta value
	1
MQ	1
IMQ	1
GAU	-
TPS	2
POT	1

The degree of the polynomial for each RBF internally is calculated as:

m
ceil(beta/2)
1+beta/2
ceil(beta/2)

See the theorems, 8.15, 6.13, 6.10, 8.17 and 8.16 in the book Scattered Data Approximation by Holger Wendland.

Recall, the total degree of the polynomial is at most m-1. You can configurate this value to obtain more polynomial precission. Each RBF can be configurated with beta and m.

Author.

José Antonio Muñoz-Gómez Universidad de Guadalajara CUCSUR Agosto - 2009