Big Data Übungsblatt 08

Anton Bulat, Josephine Geiger, Julia Siekiera

December 8, 2017

Aufgabe 1: Kommunikationskosten

Bestimmen Sie die Kommunikationskosten der folgenden Probleme in Abhängigkeit der genannten Eingabegrößen:

a)

Schnitt zweier Relationen $R \cap S$ mit r bzw. s Tupeln (Folie 38, Vorlesung 5): Die Eingabe in den Mapper besteht aus allen Tupeln aus beiden Relationen, also sind die Kommunikationskosten hier in $\mathcal{O}(r+s)$. Da der Mapper nur die Identität ist, ist die Eingabe in den Reducer genauso groß. Also sind die Gesamtkommunikationskosten dieses Problems in $\mathcal{O}(2r+2s) = \mathcal{O}(r+s)$.

b)

Gruppenbasierter Similarity-Join mit n Bildern und Gruppengröße h (Folie 39, Vorlesung 7):

Die Eingabe in den Mapper besteht aus Tupeln (i, P_i) mit dem Bildindex und dem Bild. Bei n Bildern sind diese Kommunikationskosten also in $\mathcal{O}(n)$. Die Eingabe in den Reducer ist höher. Es werden die n Bilder an jeweils g-1 Reducer geschickt, also liegen diese Kommunikationskosten in $\mathcal{O}(n \times \frac{n}{h})$. Die Gesamtkommunikationskosten dieses Problems liegen somit in $\mathcal{O}(\frac{n^2}{h} + n)$.

Aufgabe 2: Graphische Modelle

a)

Grundsätzlich lassen sich anhand eines graphischen Modells Aussagen treffen über

 \bullet die minimal mögliche Reducergröße q:

$$q \ge \max_{n \in B} deg(n).$$

Das heißt, man braucht mindestens so viele Eingaben in einem Reducer wie die höchste Anzahl an Eingangskanten in einen Ausgabeknoten.

 \bullet die maximal benötigte Replikationsrate r:

$$r \leq \sum_{n \in A} deg(n) = \sum_{n \in B} deg(n).$$

Das heißt, man braucht höchstens so viele Replikationen einer einzelnen Eingabe wie Kanten insgesamt. (Noch öfter braucht eine Eingabe nicht geschickt zu werden.)

b)

Natürlicher Join $R(A,B)\bowtie S(B,C)$ mit a möglichen Werten für A,b möglichen Werten für B und c möglichen Werten für C:

i)

Das zugehörige graphische Modell besitzt a*b+b*c Eingabeknoten und a*b*c Ausgabeknoten.

ii)

Modell für $a=2,\,b=3$ und c=1:

Eingabe:

iii)

Schranken für q und r in Abhängigkeit von a, b und c:

$$q \ge \max_{n \in B} deg(n) \Rightarrow q \ge 2.$$

Die untere Schranke für q hängt hier nicht von a,b und c ab, sondern ist hier fest ≥ 2 , weil zwei Relationen gejoint werden und deshalb zwei Eingabetupel für ein mögliches Ausgabetupel benötigt werden.

$$r \leq \sum_{n \in B} deg(n) \Rightarrow r \leq 2*a*b*c.$$

c)

Gruppierung $\gamma_{A,SUM(B)}R(A,B)$ mit a möglichen Werten für A und b möglichen Werten für B:

i)

Das zugehörige graphische Modell besitzt a*b Eingabeknoten (gleich der Anzahl an Tupeln in der Relation R) und a Ausgabeknoten, da für jeden Wert von A eine Summe berechnet wird.

ii)

Eingabe:

iii)

Schranken für q und r in Abhängigkeit von a und b:

$$q \ge \max_{n \in B} deg(n) \Rightarrow q \ge b.$$

Für jeden Wert von A gibt es bis zu b Summanden, wofür jeweils ein Tupel an den Reducer geschickt werden muss.

$$r \leq \sum_{n \in B} deg(n) \Rightarrow r \leq a * b.$$

Aufgabe 3: Unterschranken an Replikationsraten

 $\mathbf{a})$

Der Reducer vergleicht paarweise die Tupel aus R und S, womit bei q Eingabewerten maximal $\binom{q}{2} \approx q^2/2$ Ausgabewerte überdeckt werden. Damit ist $g(q) \approx q^2/2$ für $q \geq 2$. Für q < 2 ist g(q) = 0.

Falls man davon ausgeht, dass der Algorithmus zur Berechnung des Schnitts dem Algorithmus auf der Folie 38 der Vorlesung 5 entspricht, wird dem Reducer zu einem beliebigen Tupel, das in R oder S enthalten ist, ein Key/Value-Paar mit genau zwei Tupeln als Value übergeben, da R und S die gleichen Tupel enthalten. Somit ist unser q immer gleich 2 und ein Reducer gibt genau einen Ausgabewert aus. Somit ist g(q) = 1.

b)

Wenn $A \in \mathbb{R}^{m \times n}$ und $\vec{x}, \vec{b} \in \mathbb{R}^{n \times 1}$, dann muss m = n gelten, damit die Gleichung $A\vec{x} + \vec{b}$ eine gültige Lösung \vec{y} mit $\vec{y} \in \mathbb{R}^{n \times 1}$ hat (Voraussetzung gleiche Dimension bei Vektoraddition). Der Reducer berechnet einzeln die Werte y_i , womit bei qEingabewerten maximal $\binom{q}{1}=q$ Ausgabewerte überdeckt werden. Damit ist g(q)=q. Bei $m\neq n$ ist g(q)=0, da es keine gültige Lösung gibt.

\mathbf{c}

Schritt 1: Laut Aufgabenstellung $g(q) = \frac{\sqrt{2}}{3}q^{\frac{3}{2}}$. Schritt 2: Als Ausgabe werden Tripel von Kanten erwartet, die jeweils eine 3-Clique bilden. In einem ungerichteten Graph mit n Knoten kann es maximal $\binom{n}{3}$ 3-Cliquen für n>2 geben (wenn der Graph vollständig ist). Also ist die gesamte Anzahl der Ausgaben nicht gröer als $\binom{n}{3}$ bzw. man kann zu jeder 3er Kombination der Knoten angeben, ob es sich um eine Clique handelt oder nicht. Damit wäre die Gesamtzahl der vom Problem generierten Ausgaben $m = \binom{n}{3} = \frac{n*(n-1)*(n-2)}{6} \approx \frac{n^3}{6}$

Schritt 3: Es gilt $\sum_{i=1}^{k} g(q_i) \ge m$ mit $g(q_i) = \frac{\sqrt{2}}{3} q_i^{\frac{3}{2}}$ und $m = \frac{n^3}{6}$, also $\Rightarrow \sum_{i=1}^{k} \frac{\sqrt{2}}{3} q_i^{\frac{3}{2}} \ge \frac{n^3}{6} \Leftrightarrow \sum_{i=1}^{k} 2 * \sqrt{2} q_i^{\frac{3}{2}} \ge n^3 \Leftrightarrow \sum_{i=1}^{k} 2 * \sqrt{2 * q_i^3} \ge n^3$ Schritt 4: Da $q \ge q_i$ bleibt die Ungleichung $\sum_{i=1}^{k} 2 * \sqrt{2 * q_i^2 * q} \ge n^3$ erfüllt. Etwas umgeformt ergibt sich $\sum_{i=1}^{k} q_i \ge \frac{n^3}{2*\sqrt{2*q}} \Leftrightarrow \frac{1}{n} * \sum_{i=1}^{k} q_i = r \ge \frac{n^2}{2*\sqrt{2*q}}$.

 \mathbf{d}