On the (In)fidelity and Sensitivity of Explanations

Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, Pradeep Ravikumar

Objective Measure

Infidelity — expected difference between the function value change after perturbation f(x) - f(x - I) and explanation dot perturbation $I \cdot \Phi(f, x)$

- Many explanations optimizes infidelity with respect to some perturbations
- We may calculate the closed form optimal solution
- We can design new explanations by defining new perturbations

perturbation	distance to baseline	ϵ · coordinate basis vector	$\mathbb{P}(Z = z) \propto \frac{d - 1}{\binom{d}{\ z\ _1} \ z\ _1 (d - \ z\ _1)}$	(baseline + Gaussian noise)	square bloc in image
explanation	IG [1] LRP [2] DeepLift [3]	Gradient [4]	Shapley value [5]	NB	Square

Sensitivity — expected function value change after small perturbation in input

- If explanation is "sensitive", it may undermine the credibility of explanations [6]
- We show that we can improve both the sensitivity and infidelity of a given explanation by smoothing explanations

Theorem 4.1. Given a black-box function \mathbf{f} , explanation functional Φ , the smoothed explanation functional Φ_k , $\mathrm{SENS}_{\mathrm{MAX}}(\Phi_k, \mathbf{f}, \mathbf{x}, r) \leqslant \int \mathrm{SENS}_{\mathrm{MAX}}(\Phi, \mathbf{f}, \mathbf{z}, r) k(\mathbf{x}, \mathbf{z}) d\mathbf{z}.$

Thus, when the sensitivity $SENS_{MAX}$ is large only along some directions z, the averaged sensitivity could be much smaller than the worst case sensitivity over directions z.

Theorem 4.2. Given a black-box function \mathbf{f} , explanation functional Φ , the smoothed explanation functional Φ_k , some perturbation of interest \mathbf{I} , C_1, C_2 defined in (6) and (7) where $C_1 \leq \frac{1}{\sqrt{2}}$,

$$\mathit{INFD}(\Phi_k, \mathbf{f}, \mathbf{x}) \leqslant \frac{C_2}{1 - 2\sqrt{C_1}} \int_{\mathbf{z}} \mathit{INFD}(\Phi, \mathbf{f}, \mathbf{z}) k(\mathbf{x}, \mathbf{z}) d\mathbf{z}.$$

We propose objective evaluation metrics to quantify the infidelity and sensitivity for feature-based explanations. We show that we can improve the infidelity and sensitivity simultaneously for a given explanation by smoothing.

College of Engineering

Experiments

Infidelity and Sensitivity

Datasets WINIST		Datasets	Datasets WINIST		Citai-10		Imagenet		
Methods	SENS _{MAX}	INFD	Methods	SENS _{MAX}	INFD	SENS _{MAX}	INFD	SENS _{MAX}	INFD
Grad	0.86	4.12	Grad	0.56	2.38	1.15	15.99	1.16	0.25
Grad-SG	0.23	1.84	Grad-SG	0.28	1.89	1.15	13.94	0.59	0.24
IG	0.77	2.75	IG	0.47	1.88	1.08	16.03	0.93	0.24
IG-SG	0.22	1.52	IG-SG	0.26	1.72	0.90	15.90	0.48	0.23
GBP	0.85	4.13	GBP	0.58	2.38	1.18	15.99	1.09	0.15
GBP-SG	0.23	1.84	GBP-SG	0.29	1.88	1.15	13.93	0.41	0.15
Noisy	0.25	0.51	SHAP	0.35	1.20	0.93	5.78	_	_
Baseline	0.35	0.51	Square	0.24	0.46	0.99	2.27	1.33	0.04

Visual Example

Sanity Check

	Grad	Grad-SG	IG	IG-SG	Squar
Original	4				May 1
Random					
Original					
Random					T

	Grad	Grad-SG	IG	IG-SG	Squar
Corr	0.17	0.10	0.18	0.16	0.13
Corr (abs)	0.57	0.62	0.61	0.62	0.28

Table 2: Correlation of the explanation between the original model randomized model for the sanity check.

Human Evaluation

	Grad	Grad-SG
	bind.	bird
bird	IG bird	OPT

	Grad	Grad-SG	IG	OP'
Infid.	0.55	0.38	0.35	0.0
Acc.	0.47	0.50	0.53	0.8

Table 3: The infidelity and the accuracy human are able to predict the input blocked used based on the explanations.

Reference

- [1] Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribution for deep networks. In ICML 2017.
- [2] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek, W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.
- [3] Shrikumar, A., Greenside, P., and Kundaje, A. Learning important features through propagating activation differences. In ICML 2017.
- [4] Shrikumar, A., Greenside, P., Shcherbina, A., and Kundaje, A. Not just a black box: Learning important features through propagating activation differences. arXiv preprint arXiv:1605.01713, 2016.
- [5] Lundberg, S. M. and Lee, S.-I. A unified approach to interpreting model predictions. In NeurIPS 2017.
- [6] Ghorbani, A., Abid, A., and Zou, J. Interpretation of neural networks is fragile. In AAAI 2019.