

Front-End ASICs for CZT and Si Multi-Element Detectors

Gianluigi De Geronimo

Microelectronics Group, Instrumentation Division, Brookhaven National Laboratory, Upton, NY

Outline

- I. Circuit Solutions
- II. ASICs for CdZnTe Sensors
 - III. ASICs for Si Sensors

Typical front-end channel

- high reliability
- ease of use
- spectroscopic quality
- data concentration optimization

Input MOSFET optimization

$$ENC^{2} = \frac{A_{1}}{\tau_{p}} \frac{\left(C_{p} + C_{i} + C_{g}\right)^{2}}{g_{m}} + A_{2}A_{f} \left(C_{p} + C_{i} + C_{g}\right)^{2} + A_{3}\tau_{p} \left(I_{p} + I_{rst}\right)$$

g_m,C_g,A_f, are functions of input MOSFET width **W** and power **P**

Input MOSFET optimization

Continuous reset of the preamplifier

- current gain equal to N
- fully linear
- self-adapts to leakage current
- minimum noise contribution

Continuous reset of the preamplifier

First generation of front-end ASICs

other features

- plug & play
- per-channel test capacitor
- programmable gain
- programmable peaking time
- high output drive capability
- high stability vs temperature —

Generation of front-end ASICs for CZT

ASIC	Pixel capacitance [pF]	Channel count	Peaking time [µs]	Gain [mV/fC]	Power / channel [mW]	ENC [rms. e-]	Applications
General purpose	3	16	0.6, 1.2, 2.0, 4.0	30, 50, 100, 200	18	30+20/pF	LFOV Gamma Camera SFOV Gamma Camera Nuclear Safeguards
Medium speed	3	4	0.4	200	18	29+27/pF	Down Hole Well Logging X-Ray Diffraction Gauges
High speed bipolar	3	8	0.2	240	18	42+44/pF	Bone Densitometry Pulse Mode CT Industrial X-Ray
High capacitance	12	8	0.6, 1.2, 2.0, 4.0	30, 50, 100, 200	35	57+10/pF	Industrial Strip Detectors Backscatter Gauges Large Area Detector

Technology : 0.5µm CMOS SP3M

CZT – ASIC spectra measurements

CZT – ASIC applications

Solstice Gamma camera

- 96 CZT crystals
- 3072 pixels
- 192 front-end ASICs
- 1.3M events/second
- average FWHM 3.8% at 122keV

eZ-SCOPE hand held Gamma camera

- 1 CZT crystal
- 256 pixels
- 16 front-end ASICs
- 4.8M events/second
- average FWHM 4.0% at 122keV

CZT – ASIC applications

Bone Densitometry – GE Lunar Detector

- 16 CZT crystals
- 16 pixels 3 x 7 x 3 mm³
 - 2 front-end ASICs
- DEXA (Dual Energy X-ray Absorptiometry)
- ASICs replaced 17 circuit boards (over 500 components) and improved performances

Typical fluorescence EXAFS measurement geometry

Optimum pixellation

ENC ÷
$$\sqrt{\left(\mathbf{C_p(N)} + \mathbf{C_i}\right)^{\gamma+1} \frac{\frac{\mathbf{Rate}}{\mathbf{N}}}{\left(\frac{\mathbf{P}}{\mathbf{N}} - \mathbf{p_2}\right)^{\gamma}}} \qquad \gamma = 0.5 \cdots 1$$

charge sharing (≈20µm/side) and trapping (gap/side) : empirical

Si n-type high resistivity wafer 250 μ m thick, N = 384 p⁺ \approx 1mm \times 1mm pixels, gaps 10 μ m, 30 μ m, 50 μ m

Beam through

Sensor – ASIC photo

quadrant

Highly segmented detectors

Benefits:

- Position Resolution
 - pixel pitch ~ $1/\sqrt{N}$
- Energy Resolution:
 - C_{DET} $\sim 1/N$
 - $-I_{DARK} \sim 1/N$
 - Pulse Shaping time ~N
- Rate capability
 - pileup ~ 1/N

Drawbacks:

- Interconnect density
 - density ~ N
- Electronics channel count
 - cost ~ N
 - power ~ N

Front-end channel overview

Technology CMOS 0.35µm 3.3V 2P4M

ASIC photo

32 channels, 3.6 ´ 6.3 mm²

Energy resolution

Si – ASIC spectra measurements

Current EXAFS detector

head - preamplifiers

rack - shapers ...

New EXAFS detector

» 400 channels, < 300 eV, > 10MHz