ÁLGEBRA

GRADO EN INGENIERÍA INFORMÁTICA

CURSO 2015/16. Convocatoria Ordinaria 2.

Apellidos y Nombre :				DNI
Grupo de teoría : Grupo de prácticas: Número de convocatoria en la que se examina				
Evaluación continua	□ Sí □ No	□ Polinomios. Nota: □ El Grupo Simétrico. Nota: □ Teoría de Grafos. Nota:	Prácticas	□ Apto. Nota □ No apto

1. (10 puntos) Calcular, en $\mathbb{Z}_{19}[x]$, el cociente entre los polinomios:

$$p(x) = -6 a x^2 + 2 x + 5$$
 $y q(x) = 2 x - 1$

Determinar a para que, en $\mathbb{Z}_{19}[x]$, dicho cociente sea exacto y su máximo común divisor sea x+9.

- 2. (10 puntos) Consideremos $M_2(\mathbb{C})$ el conjunto de las matrices cuadradas de orden dos con coeficientes en \mathbb{C} y H el conjunto de las matrices simétricas.
 - a) Razonar si H es subgrupo de $M_2(\mathbb{C})$.
 - b) Calcular un subgrupo propio de H.
- 3. (10 puntos) Consideremos el grafo con matriz de adyacencia $A = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$. Se pide:
 - a) Representarlo gráficamente.
 - b) Definir y razonar si es completo, de Euler, bipartito y plano. Definir y calcular su número cromático.
 - c) Definir grafos isomorfos y razonar si el grafo del ejercicio es isomorfo a $K_{3,3}$.
- 4. (15 puntos) Para V el conjunto de los polinomios de grado menor o igual que 2 con coeficientes en Z₅ y $U = \{p(x) \in V \mid p(0) = 0\}$. Se pide:
 - a) Demostrar que U es un subespacio vectorial.
 - b) Calcular dimensión, una base B_U , ecuaciones paramétricas y ecuaciones implícitas de U.
 - c) Definir un endomorfismo no nulo, f, en U que no sea isomorfismo.
 - d) Razonar si el polinomio $x + 2x^2$ está en U, y, en caso afirmativo, calcular su imagen mediante f.
- 5. (10 puntos) Consideremos V un espacio vectorial euclídeo con matriz de Gram, $G = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 4 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$, respecto

de una base $B = \{v_1, v_2, v_3, v_4\}$. Se pide:

- a) Calcular la expresión general del producto escalar.
- b) Enunciar las propiedades de producto escalar y demostrar la simetría.
- c) Calcular el coseno del ángulo que forman los vectores v_1 y v_3 . ¿Es B una base ortogonal?
- d) ¿Es B una base unitaria? Calcular una base unitaria a partir de B.
- 6. (5 puntos) Determinar para qué valores de a, la matriz $A = \begin{pmatrix} a+1 & a+1 & 0 & 0 \\ 0 & 0 & 0 & a+1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & a+1 & a+1 \end{pmatrix}$ es diagonalizable

por semejanza y para estos casos, demostrarlo explícitamente.