Quiz on Labor Demand

Pascal Michaillat

Question 1

Consider a matching model of unemployment with labor force of size H, a recruiting cost of r > 0 recruiters per vacancy, a job-separation rate s > 0, and a Cobb-Douglas matching function: $m = \sqrt{U} \times \sqrt{V}$. Define the labor market tightness as $\theta = V/U$. Using the assumption that labor-market flows are balanced, compute the recruiter-producer ratio $\tau = R/N$.

A.
$$\tau(\theta) = \frac{\sqrt{\theta}}{1 - r \times s \times \sqrt{\theta}}$$

B.
$$\tau(\theta) = \frac{r \times s}{1 - r \times s \times \sqrt{\theta}}$$

C.
$$\tau(\theta) = \frac{r \times s \times \sqrt{\theta}}{1 - r \times s \times \sqrt{\theta}}$$

D.
$$\tau(\theta) = \frac{r+s}{r+s \times \sqrt{\theta}}$$

E.
$$\tau(\theta) = \frac{r \times s \times \sqrt{\theta}}{r \times s \times \sqrt{\theta} - 1}$$

F. None of the above

Question 2

The recruiter-producer ratio derived above has the following properties:

- A. It is increasing in θ and positive on \mathbb{R}_+ , with $\lim_{\theta \to \infty} \tau(\theta) = \infty$.
- B. It is decreasing in θ and positive on \mathbb{R}_+ , with $\lim_{\theta \to \infty} \tau(\theta) = 0$.
- C. It is increasing in θ and positive on [0, rs], with $\lim_{\theta \to rs} \tau(\theta) = \infty$.
- D. It is increasing in θ and positive on [0, 1/rs], with $\lim_{\theta \to 1/rs} \tau(\theta) = \infty$.
- E. It is decreasing in θ and positive on [0, rs], with $\lim_{\theta \to rs} \tau(\theta) = 0$.
- F. None of the above.

Question 3

Consider a matching model of unemployment with labor force H, a recruiting cost of r > 0 recruiters per vacancy, a job-separation rate s > 0, a Cobb-Douglas matching function $m = \sqrt{U} \times \sqrt{V}$, a fixed wage w, and a production function $y = 2 \times a \times \sqrt{N}$, where a governs labor productivity and N denotes the number of producers in the firm. Define labor market tightness as $\theta = V/U$. What is the labor demand?

A.
$$L^{d}(\theta) = (1 - rs\sqrt{\theta})^{2} \times (a/w)^{2}$$

B.
$$L^d(\theta) = \frac{(w/a)^2}{(1-rs\sqrt{\theta})^2}$$

C.
$$L^d(\theta) = \frac{(a/w)^2}{1-rs\sqrt{\theta}}$$

D.
$$L^d(\theta) = (1 - rs\sqrt{\theta}) \times (a/w)^2$$

E.
$$L^d(\theta) = (1 - rs\sqrt{\theta}) \times (a/w)$$

F. None of the above

Question 4

The labor demand curve derived in the previous question has the following properties:

- A. It is decreasing in θ , with $L^d(0) = (a/w)^2$ and $L^d(1/(rs)^2) = 0$.
- B. It is decreasing in θ , with $L^d(0) = \infty$ and $L^d(\infty) = 0$.
- C. It is increasing in θ , with $L^d(0) = 0$ and $L^d(1/(rs)^2) = (a/w)^2$.
- D. It is decreasing in θ , with $L^d(0) = (a/w)$ and $L^d(1/(rs)) = 0$.
- E. None of the above.

Question 5

Consider a matching model with a fixed wage. An increase in the wage leads to:

- A. An inward shift of the labor supply curve.
- B. An outward shift of the labor supply curve.
- C. A downward shift of the labor demand curve.

- D. An upward shift of the labor demand curve.
- E. A downward rotation of the labor demand curve.
- F. An upward rotation of the labor demand curve.
- G. None of the above.