On reducing the Erdös-Szekeres problem into a constraint unsatisfiability problem regarding certain multisets

Arch Wilhes

September 26, 2015

Abstract

We introduce the theory of *div point set*, which aims to provide a framework to study the combinatoric nature of any set of points in general position on an Euclidean plane. We then show that the Erdös-Szekeres conjecture can be proven through proving the unsatisfiability of some first-order logic formulae concerning some sets of 5-cardinal multisets over boolean variables under certain constraints.

1 Introduction

More than half a century ago Erdös and Szekeres [1] proved that for all $n \geq 3$, there exists an integer N such that among any N points in general position on an Euclidean plane, there always exists n points forming a convex polygon, and conjectured that the smallest number for N is determined by the function $g(n) = 2^{n-2} + 1$. This was known as the Erdös-Szekeres conjecture (and the problem of determining such N was often referred to the Happy End Problem, as it led to the marriage of Szekeres and Klein, who first proposed the question). 25 years after the initial paper, Erdös and Szekeres [2] showed that g(x) cannot be less than 2^{n-2} . Currently the best known bounds for g(x) are

$$2^{n-2} + 1 \le g(n) \le \binom{2n-5}{n-2} + 1$$

Many improvements for the upper bound have been made throughout the decades. The current upper bound was obtained by Tóth and Valtr [3] in 1998 as an improvement to the previous upper bound by Kleitman and Pachter [4] in the same year.

There are also attempts to verify individual instances of n. In 2002 Szekeres and Peters [5] showed using an exhaustive computer search that the conjecture holds for n = 6. Even to this day it remains the best known result. Rather than describing a computer Proof for $n \geq 7$ or improving the upper bound, our aim in this article is to demonstrate that solving some instances of a certain multiset unsatisfiability problem would prove the Erdös and Szekeres conjecture, through the theory of div point set.

1.1 preliminary

$$\forall x_1, x_2, x_3...x_n \in A$$

and $\exists x_1 \in A \exists x_2 \in A \exists x_3 \in A ... \exists x_n \in A$ as

$$\exists x_1, x_2, x_3...x_n \in A$$

For any set V, |V| would be used to denote its cardinality, and $\mathcal{P}(V)$ be used to denote its power set:

$$\mathcal{P}(V) = \{v : v \subseteq V\}$$

We say a set V is totally ordered over certain binary relation \geq iff for all a, b and c in V,

$$(a \ge b \land b \ge a) \Leftrightarrow (a = b)$$
$$(a \ge b \land c \ge b) \Leftrightarrow (a \ge c)$$
$$(a \ge b) \lor (b \ge a)$$

The subscript of a set union or set intersection may be omitted to indicate that union or intersection is applied to each element in the set:

For any set,
$$A$$
,
$$\bigcup A = \bigcup_{a \in A} a = a_1 \cup a_2 \cup ... a_n$$

$$\bigcap A = \bigcap_{a \in A} a = a_1 \cap a_2 \cap ... a_n$$

where |A| = n and $a_1, a_2, ... a_n$ are all n distinct elements in A

For any k-tuple T, $\pi_i(T)$ would be used to denote the i-th element of T where $i, k \in \mathbb{N}$ and $i \leq k$; $\pi_{\cup}(T)$ would be used the denote the union of 1st, 2nd ... k-th elements of a k-tuple;

and $\pi_{\cap}(T)$ would be used to denote intersection in such fashion:

For any
$$k$$
-tuple, T ,
$$\pi_{\cap}(T) = \bigcup_{i=1}^k \pi_i(T)$$

$$\pi_{\cap}(T) = \bigcap_{i=1}^k \pi_i(T)$$

A single-argument function is any binary relation, f, satisfying

$$\forall x \in X$$

$$\exists r \in f = \pi_1(r)$$

$$\forall r \in f$$

$$\pi_1(r) \in X$$

$$\pi_2(r) \in Y$$

$$\forall r_1, r_2 \in f$$

$$r_1 = r_2 \Leftrightarrow \pi_2(r_1) = \pi_2(r_2)$$

for some none-empty sets X (often referred to as domain) and Y (referred to as co-domain). We often express the relationship between f, X, and Y as:

$$f: X \longrightarrow Y$$

We write f(x) = y iff there exists an ordered pair (x, y) in f. A function is always assumed to be single-argument, unless otherwise stated. A function f is injective iff

$$\forall r_1, r_2 \in f$$
$$r_1 = r_2 \Leftrightarrow \pi_2(r_1) = \pi_2(r_2)$$

It is subjective iff

$$\forall y \in Y$$
$$\exists r \in f \quad y = \pi_2(r)$$

It is bijective iff it is both injective and surjective, in which case $\xrightarrow{1:1}$ would be used to denote such property. To avoid ambiguity, for any function $f: X \longrightarrow Y$, we would use $f^{members}$ to denote a new function, from $\mathcal{P}(X)$ to $\mathcal{P}(Y)$ such that

$$f^{members}(x) := \bigcup_{a \in x} \{f(a)\}$$

Here is a generalization of it, $f^{members^n}$, defined recursively:

$$f^{members^n}(x) := \bigcup_{a \in x} \{f^{members^{n-1}}(a)\} \text{ where } n \in \mathbb{N}_{\geq 2}$$

$$f^{members^1}(x) := f^{members}(x)$$

A multiset is a generalization of set, where the same element can occur multiple times, making a difference. Two multisets are equal iff (1) both multisets contain the same distinct elements and (2) for each distinct element, it occurs the same number of times in both multisets. A multiset is defined as an ordered pair (A, m_m) where $m_m : A \longrightarrow \mathbb{N}_{\geq 1}$ is a function that describes the number of occurrences of some element in the multiset, and A is a set of all distinct elements in the multiset. The cardinality of a multiset (A, m_m) is defined as the sum of all $m_m(x)$ for $x \in A$. Multisets are expressed using square brackets, $\{\}$, as compared to sets which use curly brackets, $\{\}$. Here is an example:

$$[f(x): x \in \mathbb{N}_{\geq 1}: x \leq 3] = [1, 1, 1] = (\{1\}, \{(1, 3)\})$$

where $f(x) = 1$

A hypergraph is a generalization of graph, where an edge can contain any number of vertices. It is defined as an ordered pair (V, E) where E is a subset of $\mathcal{P}(V) \setminus \emptyset$. Elements in V are referred to as vertices while elements in E are referred to as edges or hyperedges. A hypergraph is k-uniformed when

$$\forall e \in E \quad |e| = k$$

where $k \in \mathbb{N}_{\geq 1}$. A full vertex coloring on some graph or hypergraph, (V, E), is defined as a function, $C: V \longrightarrow cDom$, such that

$$|C| = |V|$$

$$\forall c \in C \quad \pi_1(c) \in V \land \pi_2(c) \in cDom$$

$$\forall c_1, c_2 \in C \quad c_1 = c_2 \Leftrightarrow \pi_1(c_1) = \pi_1(c_2)$$

where $cDom \subset \mathbb{N}$, and it is often referred to as the set of colors. When |Dom| = 2, we say the coloring is monochromatic. We would use FullCol(G, cDom) to denote the set of all possible full vertex colorings on a graph G of the set of colors cDom. For any graph G of n vertices, and any non-empty cDom,

$$|FullCol(G, cDom)| = n^{|cDom|}$$

2 Div point set as a representation for any set of points in general position

We start off by introducing an object which we would be referring to as div point set.

Definition 1. A div point set is any order-pair (P, Θ_P) satisfying

$$|\Theta_P| = \binom{|P|}{2} \land P \neq \varnothing \tag{2.1}$$

$$\forall D_n \in \Theta_P \qquad (d_n, \delta_n) := D_n$$

$$|d_n| = 2$$

$$d_n \in \mathcal{P}(P)$$

$$|\delta_n| = 2$$

$$\bigcup \delta_n = P \setminus d_n$$

$$\bigcap \delta_n = \varnothing$$

$$(2.2)$$

$$\forall D_n, D_m \in \Theta_P \quad \left| \begin{array}{l} (d_n, \delta_n) \coloneqq D_n \\ (d_m, \delta_m) \coloneqq D_m \\ d_n = d_m \Leftrightarrow D_n = D_m \end{array} \right. \tag{2.3}$$

We would be using \mathfrak{DPS}^* to denote the class of all ordered pairs satisfying (2.1), (2.2) and (2.3). Thus \mathfrak{X} is a *div point set* iff $\mathfrak{X} \in \mathfrak{DPS}^*$.

For any n points in general position, where $n \geq 2$, we can always select any 2 arbitrary points and draw a line across them, dividing the rest of the points into 2 disjoint sets. So long as the points are in general position, we can be sure that no 3 points forms a line, and thus each of the remaining n-2 points would always be in one of these sets. Let's refer to these 2 disjoint sets as divs produced by a divider made up of 2 distinct points, and the points in the divs as TBD points of the divider (TBD is short for to-be-distributed-among-divs). The process of selecting 2 distinct points from a set of point P, creating a divider, and producing 2 divs can be repeated $\binom{|P|}{2}$ times until all sets of 2 points in P are selected.

Any set of points P in general position on an Euclidean plane where $|P| \geq 2$ can be represented by some *div point set* (P, Θ_P) . Each member of $D_n \in \Theta_P$ would be referred to as a *dividon*, to be interpreted as follows:

$$(d_n, \delta_n) := D_n$$
 $\begin{cases} a, b \} := d_n \\ a \text{ and } b \text{ represent the 2 points which make up the } divider \\ \{div_1, div_2\} := \delta_n \\ div_1 \text{ and } div_2 \text{ represent the 2 } divs \text{ produced by the } divider \\ \bigcup \delta_n \text{ thus represents the set of } TBD \text{ points of the } divider \end{cases}$

The sets of points in Figures I, II and III can be represented by any div point set (A, Θ_A) as long as A is a set of 4 arbitrary elements a, b, c, d and

$$\Theta_A = \{(\{a, b\}, \{(\{c\}, \{d\}\}), (\{a, c\}, \{(\{b\}, \{d\}\}), (\{a, d\}, \{(\{b\}, \{c\}\}), (\{b, c\}, \{(\{a, d\}, \emptyset\}), (\{b, d\}, \{(\{a, c\}, \emptyset\}), (\{c, d\}, \{(\{a, b\}, \emptyset\})\})\}\}$$

To make sense of the *div point set* representation, we label the third point from the bottom in *Figure I* and the second point from the bottom in *Figures II* and *III* as a (note that each of these is the point surrounded by the remaining 3 points in the figure). For the rest of the points in each figure we simply label them arbitrarily as b, c, and d.

Only a handful of $div\ point\ sets$ can be used to represent points in general position in \mathbb{E}^2 . For majority of $\mathfrak{X} \in \mathfrak{DPS}^*$, let $(P, \Theta_P) := \mathfrak{X}$, there exists no meaningful interpretation for P as some sets of points in \mathbb{E}^2 such that each $D \in \Theta_P$ is a dividon that describes how TBD points are distributed between the 2 divs produced by each divider. A classical example would be (Q, Θ_Q) where Q is a set of 4 arbitrary elements a, b, c, d and

$$\Theta_{Q} = \{(\{a, b\}, \{(\{c, d\}, \varnothing\}), (\{a, c\}, \{(\{b, d\}, \varnothing\}), (\{a, d\}, \{(\{b, c\}, \varnothing\}), (\{b, c\}, \{(\{a, d\}, \varnothing\}), (\{b, d\}, \{(\{a, c\}, \varnothing\}), (\{c, d\}, \{(\{a, b\}, \varnothing\})\})\}$$

For a div point set (P, Θ_P) to have a meaningful interpretation for P as some set of points in \mathbb{E}^2 , it has to satisfy certain conditions. For any 3 distinct points, x, y, and z in general position in \mathbb{E}^2 , let $\langle x, y \rangle^z$ denote the div containing z produced by the divider made up of the point x and y, and $\langle x, y \rangle^{-z}$ denote the div not containing z produced by the divider. After some experimentation with points in \mathbb{E}^2 , we would make the observation that the following formulas always hold true for any distinct points a, b, c, d in \mathbb{E}^2 . (2.5) is trivially true, while (2.6), (2.7) and (2.8) are demonstrated in Figures IV, V and VI respectively.

$$\forall a, b, c, d$$

$$a \in \langle b, c \rangle^d \Leftrightarrow d \in \langle b, c \rangle^a$$

$$a \in \langle b, c \rangle^{-d} \Leftrightarrow d \in \langle b, c \rangle^{-a}$$

$$(2.5)$$

 $\forall a, b, c, d$

$$c \in \langle a, b \rangle^{-d}$$

$$\Leftrightarrow ((a \in \langle b, c \rangle^d \land a \in \langle b, d \rangle^c)$$

$$\lor (a \in \langle b, c \rangle^{-d} \land a \in \langle b, d \rangle^{-c}))$$
(2.6)

 $\forall a, b, c, d$

$$c \in \langle a, b \rangle^{d}$$

$$\Leftrightarrow ((a \in \langle b, c \rangle^{d} \land a \in \langle b, d \rangle^{-c})$$

$$\vee (a \in \langle b, c \rangle^{-d} \land a \in \langle b, d \rangle^{c}))$$

$$(2.7)$$

$$\forall a, b, c, d$$

$$a \in \langle b, c \rangle^{-d} \land a \in \langle b, d \rangle^{-c} \Rightarrow a \in \langle c, d \rangle^{b}$$
(2.8)

In the context of div point sets, (2.5) is always true by (2.2) (recall $\bigcap \delta = \emptyset$), while (2.6), (2.7) and (2.8) can be rewritten as constraints on the dividons of a div point set as shown in (2.10), (2.11), and (2.12), using a function, ϕ , for determining if two arbitrary points belong to the same div in some δ of a dividon:

$$\phi(\delta, w) = \begin{cases} 1 & \text{if} & (a \in div_1 \land b \in div_2) \Leftrightarrow div_1 = div_2 \\ 0 & \text{if} & (a \in div_1 \land b \in div_2) \Leftrightarrow div_1 \neq div_2 \end{cases} \text{ where } \begin{vmatrix} \delta = \{div_1, div_2\} \\ w = \{a, b\} \end{cases}$$
 (2.9)

For any div point set (P, Θ_P) ,

$$\forall p_{1}, p_{2}, p_{3}, p_{4} \in P$$

$$R := \bigcup_{n=1}^{4} \{p_{n}\}$$

$$|R| = 4$$

$$\Leftrightarrow \forall D_{1}, D_{2}, D_{3} \in \Theta_{P}$$

$$(2.10)$$

$$\bigcup_{n=1}^{3} \pi_{1}(D_{n}) = R \wedge \bigcap_{n=1}^{3} \pi_{1}(D_{n}) = \{p_{4}\}$$

$$\Rightarrow (\phi(\pi_{2}(D_{1}), R \setminus \pi_{1}(D_{1})) = 1$$

$$\Leftrightarrow \phi(\pi_{2}(D_{2}), R \setminus \pi_{1}(D_{2})) = \phi(\pi_{2}(D_{3}), R \setminus \pi_{1}(D_{3}))$$

$$\forall p_{1}, p_{2}, p_{3}, p_{4} \in P$$

$$R := \bigcup_{n=1}^{4} \{p_{n}\}$$

$$|R| = 4$$

$$\Leftrightarrow \forall D_{1}, D_{2}, D_{3} \in \Theta_{P}$$

$$(2.11)$$

$$\bigcup_{n=1}^{3} \pi_{1}(D_{n}) = R \wedge \bigcap_{n=1}^{3} \pi_{1}(D_{n}) = \{p_{4}\}$$

$$\Rightarrow (\phi(\pi_{2}(D_{1}), R \setminus \pi_{1}(D_{1})) = 0$$

$$\Leftrightarrow \phi(\pi_{2}(D_{2}), R \setminus \pi_{1}(D_{2})) \neq \phi(\pi_{2}(D_{3}), R \setminus \pi_{1}(D_{3}))$$

$$\forall p_{1}, p_{2}, p_{3}, p_{4} \in P$$

$$R := \bigcup_{n=1}^{4} \{p_{n}\}$$

$$|R| = 4$$

$$\Leftrightarrow \forall D_1, D_2, D_3 \in \Theta_P$$

$$\bigcap_{n=1}^2 \pi_1(D_n) = \{p_4\} \land \bigcup_{n=1}^2 \pi_1(D_n) \setminus \{p_4\} = \pi_1(D_3)$$

$$\Rightarrow (\phi(\pi_2(D_1), R \setminus \pi_1(D_1)) = \phi(\pi_2(D_2), R \setminus \pi_1(D_2)) = 0$$

$$\Rightarrow \phi(\pi_2(D_3), R \setminus \pi_1(D_3)) = 1$$
(2.12)

Figure IV

Figure V

Figure VI

Axiom 1. A div point sets (P, Θ_P) has an interpretation for P as some set of points in \mathbb{E}^2 such that $D \in \Theta_P$ each describes the relative positions of the points (in terms of how the TBD points of each divider is distributed between 2 divs it produced) iff it is in \mathfrak{DFS}^+ , the class of div point sets satisfying (2.10), (2.11), and (2.12).

Remark. For div point sets of 3 or less points, it is vacuously true that they satisfy (2.10), (2.11), and (2.12) and thus they are by default in the class \mathfrak{DPS}^+ . This is consistent with Euclidean geometry: any set of 3 points in general position can be represented by any div point set of 3 points, and the same goes to any set of 2 points, and any set of 1 point.

Definition 2. We say that two *div point sets* (A, Θ_A) and (B, Θ_B) are isomorphic iff there exists a bijective function $f: A \xrightarrow{1:1} B$ which preserves the structure of the *divions*. Notationally,

$$(A, \Theta_A) \cong (B, \Theta_B) \Leftrightarrow \exists f : A \xrightarrow{1:1} B$$

$$\forall D_A \in \Theta_A$$

$$\exists D_B \in \Theta_B$$

$$(d_a, \delta_a) := D_A$$

$$(d_b, \delta_b) := D_B$$

$$f^{members}(d_a) = d_b \Leftrightarrow f^{members^2}(\delta_a) = \delta_b$$

$$(2.13)$$

in which case f would be referred to as the isomorphism between the two sets.

Remark. It is trivially true that all div point sets (P, Θ_P) in \mathfrak{DPS}^* where $|P| \leq 3$ are isomorphic to any div point sets (Q, Θ_Q) in \mathfrak{DPS}^* where |Q| = |P|.

Theorem 1. $\neg(\mathfrak{X} \cong Conc_4^1) \Leftrightarrow (\mathfrak{X} \cong Conv_4)$ for all $\mathfrak{X} \in \mathfrak{DPS}_4^+$ where \mathfrak{DPS}_4^+ denotes the div point sets of 4 points in \mathfrak{DPS}^+ and

$$Conc_{4}^{1} = (Cc_{4}^{1}, \Theta_{Cc_{4}^{1}}) \qquad Conv_{4} = (Cv_{4}, \Theta_{Cv_{4}})$$

$$Cc_{4}^{1} = \{1, 2, 3, 4\} \qquad Cv_{4} = \{1, 2, 3, 4\}$$

$$\Theta_{Cc_{4}^{1}} = \{(\{1, 2\}, \{\{3\}, \{4\}\}\}), \qquad (\{1, 3\}, \{\{2\}, \{4\}\}\}), \qquad (\{1, 3\}, \{\{2\}, \{4\}\}\}), \qquad (\{1, 4\}, \{\{2\}, \{3\}\}\}), \qquad (\{1, 4\}, \{\{2, 3\}, \emptyset\}), \qquad (\{2, 3\}, \{\{1, 4\}, \emptyset\}), \qquad (\{2, 3\}, \{\{1, 4\}, \emptyset\}), \qquad (\{2, 4\}, \{\{1, 3\}, \emptyset\}), \qquad (\{2, 4\}, \{\{1\}, \{3\}\}), \qquad (\{3, 4\}, \{\{1, 2\}, \emptyset\})\}$$

$$(\{3, 4\}, \{\{1, 2\}, \emptyset\})\} \qquad (\{3, 4\}, \{\{1, 2\}, \emptyset\})\}$$

Proof for Theorem 1.

Summary. In Part 1 of the proof we would define a function ψ that returns 0 or 1 based on the divs of a dividon of some div point set in \mathfrak{DPS}_4^+ . In Part 2 we would define $\mathfrak{DPS}_4^\mathbb{N}$ and a function Col that uses ψ , and show that for every $\mathfrak{X} \in \mathfrak{DPS}_4^\mathbb{N}$, there exists a unique full vertex monochromatic coloring $Col(\pi_2(\mathfrak{X}))$ on some hypergraph H, where the vertices of H are the dividers of the div points sets in $\mathfrak{DPS}_4^\mathbb{N}$. In Part 3 we would define the edges of H in such a manner that the coloring $Col(\pi_2(\mathfrak{X}))$ on H satisfies some conditions iff \mathfrak{X} satisfies (2.10) and (2.11). In Part 4 we demonstrate that for the coloring to satisfy the conditions, there exists only 3 Scenarios, and colorings in Scenario 2 and 3 are isomorphic to $Col(\pi_2(Conc_4^1))$ and $Col(\pi_2(Conv_4))$, and $Conc_4^1$ and $Conv_4$ satisfy (2.12), but not the other div point set the coloring in Scenario 1 is based on, and thus proving Theorem 1.

Part 1. For any div point set (P,Θ_P) in \mathfrak{DPS}_4^+ , since |P|=4, we can be certain that

$$\forall D \in \Theta_{P}$$

$$\pi_{2}(D) \in \{type_{0}, type_{1}\}$$

$$\{a, b\} = P \setminus \pi_{1}(D)$$

$$type_{0} = \{\{a\}, \{b\}\}$$

$$type_{1} = \{\{a, b\}, \emptyset\}$$

$$(2.15)$$

Recall that in (2.9), we define a function ϕ that takes in some $\pi_2(D)$ and a set of 2 TBD points, and returns 1 if the TBD points belong to the same div in $\pi_2(D)$, or 0 if they belong to different divs in $\pi_2(D)$. For $\mathfrak{X} \in \mathfrak{DPS}_4^+$, we can define a new function ψ , a simpler version of ϕ that does basically the same thing by exploiting (2.15), namely the fact every $\pi_2(D)$ is either $type_0$ or $type_1$ (since that there are only 2 TBD points for each divider):

$$\psi(\delta) = \begin{cases} 1 & \text{if } \exists div \in \delta & |div| = 2\\ 0 & \text{if } \forall div \in \delta & |div| = 1 \end{cases}$$
 (2.16)

For every dividon D of any $\mathfrak{X} \in \mathfrak{DPS}_{4}^{+}$, we have

$$\phi(\pi_2(D), P \setminus \pi_1(D)) = \psi(\pi_2(D)) \tag{2.17}$$

Part 2. Let's define $\mathfrak{DPS}_4^{\mathbb{N}}$ to be the set of all *div point sets* (P, Θ_P) for which $P = \{1, 2, 3, 4\}$. All $\mathfrak{X} \in \mathfrak{DPS}_4^{\mathbb{N}}$ would have the same *dividers* (Recall the set of *dividers* is just the set of elements in $\mathcal{P}(P)$ whose cardinality is 2.) Now let H = (V, E) be a hypergraph whose vertices are the *dividers* of *div point sets* in $\mathfrak{DPS}_4^{\mathbb{N}}$. Using ψ , we can define a bijective function, Col, that transforms the set of *dividons* of a *div point set* in $\mathfrak{DPS}_4^{\mathbb{N}}$ into some full vertex monochromatic coloring for H.

$$Col: \{\pi_2(\mathfrak{X}): \mathfrak{X} \in \mathfrak{DPS}_4^{\mathbb{N}}\} \longrightarrow FullCol(H, \{0, 1\})$$

$$Col(\Omega_P) = \{(\pi_1(D), \psi(\pi_2(D))): D \in \Omega_P\}$$
(2.18)

It is bijective because

$$\forall \mathfrak{X}_1, \mathfrak{X}_2 \in \mathfrak{DPS}^{\mathbb{R}}$$

$$Col(\pi_2(\mathfrak{X}_1)) = Col(\pi_2(\mathfrak{X}_2)) \Leftrightarrow \mathfrak{X}_1 = \mathfrak{X}_2$$

$$(2.19)$$

due to the fact that ψ is bijective for every dividon of any div point set of 4 points.

Part 3. Now let's define any set of three *dividers* containing 1 element in common to be an edge of H (recall that the vertices are the *dividers*), notationally,

$$E = \{e \in \mathcal{P}(V) : |e| = 3 \land |\bigcap e| = 1\}$$

$$(2.20)$$

H is a 3-uniform hypergraph with 4 hyperedges. For $\mathfrak{X} \in \mathfrak{DPS}_4^{\mathbb{N}}$ to satisfy (2.10) and (2.11) is equivalent to having $Col(\pi_2(\mathfrak{X})) \in FullCol(H, \{0, 1\})$ to satisfy the following:

- I. If a vertex, V, is colored 0, the other 2 vertices belonging to the same edge as V must have the same coloring.
- II. If a vertex, V, is colored 1, the other 2 vertices belonging to the same edge as V must have different colorings.

This is due to the fact, for any $\mathfrak{X} \in \mathfrak{DPS}_4^{\mathbb{N}}$, (2.10) and (2.11) can be rewritten as having the colors on the vertices of each edge to satisfy some formulae, namely the following:

$$\forall e \in E$$

$$\forall d_1, d_2, d_3 \in e$$

$$d_1 \neq d_2 \neq d_3$$

$$\Leftrightarrow Col(\pi_2(\mathfrak{X}))(d_1) = 1 \Leftrightarrow Col(\pi_2(\mathfrak{X}))(d_2) = Col(\pi_2(\mathfrak{X}))(d_3))$$
(2.21)

 $\forall e \in E$

$$\forall d_1, d_2, d_3 \in e$$

$$d_1 \neq d_2 \neq d_3$$

$$\Leftrightarrow (Col(\pi_2(\mathfrak{X}))(d_1) = 0 \Leftrightarrow Col(\pi_2(\mathfrak{X}))(d_2) \neq Col(\pi_2(\mathfrak{X}))(d_3))$$
(2.22)

(recall that Col is the function to transform some $\pi_2(\mathfrak{X})$ into a coloring, while $Col(\pi_2(\mathfrak{X}))$ is the actual coloring, which is defined as a function in Preliminary) This is a result of

$$\forall p_1, p_2, p_3, p_4 \in P$$

$$R := \bigcup_{n=1}^{4} \{p_n\}$$

$$\forall D \in \Theta_P$$

$$\phi(\pi_2(D), R \setminus \pi_1(D)) = \phi(\pi_2(D), P \setminus \pi_1(D)) = \psi(\pi_2(D))$$

$$(2.23)$$

for any div point set (P, Θ_P) for which |P| = 4 (recall (2.15)), and any dividons D_1, D_2 and D_3 where

$$\left|\bigcap_{n=1}^{3} \pi_1(D_n)\right| = 1 \land \left|\bigcup_{n=1}^{3} \pi_1(D_n)\right| = 4 \tag{2.24}$$

would always have the dividers d_1, d_2 and d_3 respectively, where

$$|\bigcap_{n=1}^{3} d_n| = 1 \land d_1 \neq d_2 \neq d_3 \tag{2.25}$$

which are precisely what makes up an edge in E (recall (2.20)). Therefore a div point set of 4 points, \mathfrak{X} , satisfies (2.10) and (2.11) iff $Col(\pi_2(\mathfrak{X}))$ satisfies I and II.

Part 4. To satisfy I and II, 3 vertices belonging to the same edge must either be colored [0,0,0] or [0,1,1].

Suppose we start off by giving some vertices belonging to the same edge the coloring of [0,0,0], by I this would indicate that the rest of the vertices need to have the same colors (recall that each vertex belongs to 2 different edges). We can either end up with H having all vertices colored 0 (let's call it $\mathcal{S}_{cenazio}$ 1), or 3 vertices colored 0 and 3 vertices colored 1 (let's call it $\mathcal{S}_{cenazio}$ 2).

Now suppose we start off by giving some vertices belonging to the same edge the coloring of [0,1,1], by I this would indicate that the remaining 2 vertices of another edge, which the vertex colored 0 belongs to, must have the same colors. If we give them the coloring of [0,0], we would have an edge with vertices colored [0,0,0], and the last uncolored vertex must then be colored 1, so we end up in $\mathcal{S}_{cenario}$ 2 again. If we give them the coloring of [1,1], we would end up with 1 vertex colored 0 and 4 vertices colored 1, in which case the last uncolored vertex would need to be colored 0, since it belongs to 2 edges both with 2 vertices colored 1. Let's name this $\mathcal{S}_{cenario}$ 3, where 2 vertices are colored 0 and 4 vertices are colored 1.

A pictorial description of the colorings is shown in Figure VII. Scenario 1 describes a coloring isomorphic to $Col(\pi_2(\mathfrak{X}_{\varnothing}))$ where $\mathfrak{X}_{\varnothing} \in \mathfrak{DPS}_4^{\mathbb{N}}$ and

$$\pi_{2}(\mathfrak{X}_{\varnothing}) = \{(\{1,2\}, \{(\{3,4\},\varnothing\}), \\ (\{1,3\}, \{(\{2,4\},\varnothing\}), \\ (\{1,4\}, \{(\{2,3\},\varnothing\}), \\ (\{2,3\}, \{(\{1,4\},\varnothing\}), \\ (\{2,4\}, \{(\{1,3\},\varnothing\}), \\ (\{3,4\}, \{(\{1,2\},\varnothing\})\})\}$$

while Scenario 2 describes a coloring isomorphic to $Col(\pi_2(Conc_4^1))$ and scenario 3 describes a coloring isomorphic to $Col(\pi_2(Conv_4))$. $Conc_4^1$ and $Conv_4$ both satisfy (2.12), and $\mathfrak{X}_{\varnothing}$

does not. Since any div point set of 4 points is isomorphic to some $\mathfrak{X} \in \mathfrak{DPS}_4^{\mathbb{N}}$, and only $Conc_4^1$ and $Conv_4$ satisfy all (2.10), (2.11), and (2.12), we conclude that

$$\forall X \in \mathfrak{DPS}_4^+ \quad \exists a \in \{Conc_4^1, Conv_4\} \quad X \cong a$$

Remark. In Euclidean geometry, Theorem 1 can be interpreted as stating that for any set of 4 distinct points in general positions, it is either the case that it forms a structure where 1 point is inside a triangle formed by connecting the rest of 3 points, or the case that a convex polygon can be created by connecting the 4 points in a certain manner, which can be verified rather easily by a human child with a pen, a piece of paper and a love for Euclidean geometry.

2.1 unit div point set and sub div point set

For div point sets of 5 or more points, the function ψ defined in (2.16) would not be really useful since there would be 3 or more TBD points in each dividon. That means we cannot apply to same technique above to derive div point sets of 5 or more points satisfying (2.10), (2.11) and (2.12). With that in mind, we introduce the object unit div point set which makes use of unit dividons.

Definition 3. A unit div point set is any order-pair (P, Ω_P) satisfying (2.26), (2.27) and (2.28).

$$|\Omega_P| = \binom{|P|}{2} \binom{|P| - 2}{2} \land P \neq \emptyset \tag{2.26}$$

$$\forall D_n \in \Omega_P \qquad (d_n, \delta_n) \coloneqq D_n$$

$$|d_n| = 2$$

$$d_n \in \mathcal{P}(P)$$

$$|\delta_n| = 2$$

$$|\bigcup \delta_n| = 2$$

$$\bigcup \delta_n \in \mathcal{P}(P \setminus d_n)$$

$$\bigcap \delta_n = \varnothing$$

$$(2.27)$$

$$\forall D_n, D_m \in \Omega_P \qquad (d_n, \delta_n) := D_n$$

$$(d_m, \delta_m) := D_m$$

$$d_n \cup \bigcup \delta_n = d_m \cup \bigcup \delta_m \Leftrightarrow D_n = D_m$$

$$(2.28)$$

We would be using \mathcal{UDPS}^* to denote the class of all unit div point set.

Remark. Similar to how *div point sets* of 4 points always satisfy (2.15), a *unit div point set* always satisfies (2.29).

$$\forall \mathfrak{X} \in \mathcal{U} \mathfrak{D} \mathcal{P} \mathcal{S}^*$$

$$(P, \Omega_P) := \mathfrak{X}$$

$$\forall D \in \Omega_P$$

$$\pi_2(D) \in \{type_0, type_1\}$$

$$\{a, b\} \subseteq P \setminus \pi_1(D)$$

$$type_0 = \{\{a\}, \{b\}\}$$

$$type_1 = \{\{a, b\}, \varnothing\}$$

For any unit div point set, (P, Ω_P) , we can use ψ (defined in (2.16)) to map every $\pi_2(D) \in \Omega_P$ to some $k \in \{0, 1\}$.

Remark. One may immediately notice that any *div point sets* of 4 points also satisfy (2.26), (2.27) and (2.28), and any *unit div point set* of 4 points also satisfy (2.1), (2.2) and (2.3), and that is the say

$$\{\mathfrak{X}_{udp3} \in \mathcal{UDPS}^* : |\pi_1(X)| = 4\} = \{\mathfrak{X}_{dp3} \in \mathcal{DPS}^* : |\pi_1(X)| = 4\} \tag{2.30}$$

by virtue of the fact that

$$\binom{|4|}{2}\binom{|4-2|}{2} = \binom{|4|}{2} \tag{2.31}$$

and

$$\forall \mathfrak{X} \in \mathcal{U} \mathfrak{DPS}^* \qquad (P, \Omega_P) \coloneqq \mathfrak{X}$$

$$|P| = 4$$

$$\forall D_n \in \Omega_P$$

$$\delta_n = P \setminus d_n$$

$$\forall D_n, D_m \in \Omega_P$$

$$d_n = d_m \Leftrightarrow D_n = D_m$$

$$(2.32)$$

As we can see, the difference between a div point set and a unit div point set lies in that the former relies on a single dividon to describe the distribution of |P| - 2 TBD points between the 2 divs produced by a divider, while the later relies on $\binom{|P|-2}{2}$ unit dividons for that (since each unit dividon only describes the distribution of 2 TBD points). For every $\mathfrak{X}_{dp\delta} \in \mathfrak{DPS}^*$ there exists a unique $\mathfrak{X}_{udp\delta} \in \mathfrak{UDPS}^*$ which $\mathfrak{X}_{dp\delta}$ can be transformed into, by breaking down each dividon into $\binom{|P|-2}{2}$ unit dividons, achievable using the function \mathfrak{b} - \mathfrak{c} defined below.

$$\theta \cdot d(D, P) = \{ (\pi_1(D), d_u(x, \pi_2(D)) : x \in \mathcal{P}(P \setminus \pi_1(D)) : |x| = 2 \}
d_u(x, divs) = \begin{cases} \{x, \emptyset\}, & \text{if } x \subseteq divs \\ \{\{a\}, \{b\}\}, & \text{if } a \in div_1 \land b \in div_2 \\ & \text{where } x = \{a, b\} \text{ and } divs = \{div_1, div_2\} \end{cases}$$
(2.33)

Definition 4. The function $\mathcal{F}_{udp\delta}^{\mathfrak{IPS}}$ transforms a div point set into a unit div point set.

$$\mathcal{F}_{udps}^{\mathfrak{DPS}}(\mathfrak{X}_{dps}) = (\pi_1(\mathfrak{X}_{dps}), \bigcup \{ \ell \cdot d(D, \pi_1(\mathfrak{X}_{dps})) : D \in \pi_2(\mathfrak{X}_{dps}) \}$$
(2.34)

 $\mathcal{F}_{udp\delta}^{\mathfrak{DPS}}$ can be implemented in Haskell as follows:

import Control.Monad
import Data.List ((\\))

Remark. If we apply $\mathcal{Z}_{udps}^{\mathfrak{DSS}}$ on *div point sets* of 4 points we would immediately realize that $\mathcal{Z}_{udps}^{\mathfrak{DSS}}$ returns the same ordered pair, since for *div point sets* of 4 points, $\Omega_{sub} \subset \Omega_P$ in (2.34) would contain only one element and the element is some $D_{\Theta} \in \Theta_P$. For *div point sets* of 5 or more points Ω_{sub} would contain 3 or more elements, thus

$$\forall \mathfrak{X} \in \mathfrak{DPS}^* \qquad \mathfrak{F}_{udps}^{\mathfrak{DPS}}(\mathfrak{X}) = \mathfrak{X} \Leftrightarrow |\pi_1(\mathfrak{X})| = 4$$
 (2.35)

On the other hand, applying $\mathfrak{F}_{udp\delta}^{\mathfrak{DPS}}$ on $div\ point\ sets$ with 3 or less points would result in (P,\emptyset) since $\binom{n-2}{2}=0$ for n<4 and that is not going to be useful. So it is more sensible to define $\mathfrak{F}_{udp\delta}^{\mathfrak{DPS}}$ over $div\ point\ sets$ of 4 or more points.

$$\mathfrak{Z}_{udps}^{\mathfrak{DPS}}: \mathfrak{DPS}_{\geq 4}^* \longrightarrow \mathcal{U}\mathfrak{DPS}^* \tag{2.36}$$

Lemma 1. $\mathcal{F}_{udp^3}^{\mathfrak{DPS}}: \mathfrak{DPS}_{\geq 4}^* \longrightarrow \mathcal{U}\mathfrak{DPS}^*$ is injective but not surjective. If the codomain is defined to be $\mathcal{U}\mathfrak{DPS}^{\Theta}$, the set of *unit div point sets* of 4 or more points satisfying (2.37), $\mathcal{F}_{udp^3}^{\mathfrak{DPS}}$ is then bijective.

$$\forall D_{1}, D_{2}, D_{3} \in \Omega_{P}$$

$$(D_{1} \neq D_{2} \neq D_{3} \land \pi_{1}(D_{1}) = \pi_{1}(D_{2}) = \pi_{1}(D_{3}) \land |\bigcup_{n=1}^{3} \pi_{2}(D_{n})| = 3)$$

$$\Rightarrow (\psi(\pi_{2}(D_{1})) = 1 \Leftrightarrow \psi(\pi_{2}(D_{2})) = \psi(\pi_{2}(D_{3})))$$

$$\land (\psi(\pi_{2}(D_{1})) = 0 \Leftrightarrow \psi(\pi_{2}(D_{2})) \neq \psi(\pi_{2}(D_{3})))$$

$$(2.37)$$

Proof for Lemma 1. It is injective because in (2.34) Ω_{sub} differs depending on $D \in \Theta_P$ as a result of d_u in db being injective. It is not surjective onto the co-domain \mathcal{USPS}^* , but surjective onto the co-domain \mathcal{USPS}^{Θ} , as a consequence of

I. $|\delta_n| = 2$ in (2.2): Unit div point sets with unit dividons such as

$$\{(a,b),(\{c\},\{d\})\},\{(a,b),(\{c\},\{e\})\},\{(a,b),(\{e\},\{d\})\}$$

can only be transformed from a div point set where $|\delta_n| = 3$ for some dividion, in this case:

$$\{(a,b),(\{c\},\{d\},\{e\})\}\$$

Thus we have

$$\forall D_1, D_2, D_3 \in \Omega_P$$

$$D_1 \neq D_2 \neq D_3 \land \pi_1(D_1) = \pi_1(D_2) = \pi_1(D_3) \land |\bigcup_{n=1}^3 \pi_2(D_n)| = 3$$

$$\Leftrightarrow \neg((\psi(\pi_2(D_1)) = \psi(\pi_2(D_2)) = \psi(\pi_2(D_3)) = 0)$$
(2.38)

II. Associativity: if a and b are in the same div, and b and c are in the same div, a and c must be in the same div. So unit div points set with unit dividons such as

$$\{(a,b),(\{c,d\},\varnothing)\},\{(a,b),(\{c,e\},\varnothing)\},\{(a,b),(\{e\},\{d\})\}$$

can not be transformed from any div point set. Thus we have

$$\forall D_1, D_2, D_3 \in \Omega_P$$

$$D_1 \neq D_2 \neq D_3 \land \pi_1(D_1) = \pi_1(D_2) = \pi_1(D_3) \land |\bigcup_{n=1}^3 \pi_2(D_n)| = 3$$

$$\Leftrightarrow \neg(\psi(\pi_2(D_1)) = \psi(\pi_2(D_2) = 1 \land \psi(\pi_2(D_3)) = 0)$$
(2.39)

Combining (2.39) and (2.38) gives (2.37).

Lemma 2. A unit div point set (P, Ω_P) has an interpretation for P as some set of 4 or more points in \mathbb{E}^2 such that $D \in \Omega_P$ each describes the relative positions of the points (in terms of how 2 TBD points of each divider is distributed between divs it produced) iff it is in \mathscr{USPS}^+ , the class of unit div point sets of 4 ore more points satisfying (2.37), (2.41), (2.42), and (2.43), in which ξ is a function that returns the union of the divider and the TBD points in a unit dividon, D, notationally,

$$\xi(D) = \pi_1(D) \cup \bigcup \pi_2(D) \tag{2.40}$$

For any unit div point set (P, Ω_P) ,

$$\forall p_1, p_2, p_3, p_4 \in P$$

$$R := \bigcup_{n=1}^{4} \{p_n\}$$

$$|R| = 4$$

$$\Leftrightarrow \forall D_1, D_2, D_3 \in \Omega_P$$

$$(\xi(D_1) = \xi(D_2) = \xi(D_3) = R \land D_1 \neq D_2 \neq D_3$$

$$\land \bigcap_{n=1}^{3} \pi_1(D_n) = \{p_4\} \)$$

$$\Rightarrow (\psi(\pi_2(D_1)) = 1$$

$$\Leftrightarrow \psi(\pi_2(D_2)) = \psi(\pi_2(D_3)) \)$$

$$(2.41)$$

 $\forall p_1, p_2, p_3, p_4 \in P$

$$R := \bigcup_{n=1}^{4} \{p_n\}$$

$$|R| = 4$$

$$\Leftrightarrow \forall D_1, D_2, D_3 \in \Theta_P$$

$$(\xi(D_1) = \xi(D_2) = \xi(D_3) = R \land D_1 \neq D_2 \neq D_3$$

$$\land \bigcap_{n=1}^{3} \pi_1(D_n) = \{p_4\})$$

$$\Rightarrow (\psi(\pi_2(D_1)) = 0$$

$$\Leftrightarrow \psi(\pi_2(D_2)) \neq \psi(\pi_2(D_3)))$$

$$(2.42)$$

 $\forall p_1, p_2, p_3, p_4 \in P$

$$R := \bigcup_{n=1}^{4} \{p_n\}$$

$$|R| = 4$$

$$\Leftrightarrow \forall D_{1}, D_{2}, D_{3} \in \Theta_{P}$$

$$(\xi(D_{1}) = \xi(D_{2}) = \xi(D_{3}) = R \land D_{1} \neq D_{2} \neq D_{3}$$

$$\land \bigcap_{n=1}^{2} \pi_{1}(D_{n}) = \{p_{4}\} \land \bigcup_{n=1}^{2} \pi_{1}(D_{n}) \setminus \{p_{4}\} = \pi_{1}(D_{3}))$$

$$\Rightarrow (\psi(\pi_{2}(D_{1})) = \psi(\pi_{2}(D_{2})) = 0$$

$$\Rightarrow \psi(\pi_{2}(D_{3})) = 1)$$
(2.43)

Proof for Lemma 2. A div point set \mathfrak{X}_{dp^5} satisfying (2.10), (2.11), and (2.12), iff the unit div point set $\mathfrak{F}_{udp^5}^{\mathfrak{DPS}}(\mathfrak{X}_{dp^5})$ satisfies (2.41), (2.42), and (2.43). This can be demonstrated in a similar way as (2.23): for any unit dividion D_u of some unit div point set, \mathfrak{A}_{udp^5} , and its corresponding dividion D of the div point set \mathfrak{A}_{dp^5} where $\mathfrak{F}_{udp^5}^{\mathfrak{DPS}}(\mathfrak{A}_{dp^5}) = \mathfrak{A}_{udp^5}$ - corresponding in the sense that $D_u \in \mathfrak{b} \cdot d(D, \pi_2(\mathfrak{A}_{dp^5}))$ and so $\pi_1(D_u) = \pi_1(D)$ - let $R := \xi(D_u)$, we would have

$$\phi(\pi_2(D), R \setminus \pi_1(D)) = \phi(\pi_2(D_u), \bigcup \pi_2(D_u)) = \psi(\pi_2(D_u))$$
 (2.44)

By restricting the unit dividons into $\xi(D_1) = \xi(D_2) = \xi(D_3) = R$, we can then replace the predicate $\bigcap_{n=1}^{3} \pi_1(D_n) = \{p_4\}$ with $D_1 \neq D_2 \neq D_3$, and every occurrence of $\phi(\pi_2(D_n), R \setminus \pi_1(D_n))$ with $\psi(\pi_2(D_n))$ (for $n \in \{1, 2, 3\}$) in (2.10), (2.11), and (2.12). This would gives (2.41), (2.42), and (2.43): they are basically a different way of expressing (2.10), (2.11), and (2.12) in the case of unit div point sets. Thus any unit div point set (P, Ω_P) in \mathcal{WPS}^+ has an interpretation for P as some set of 4 or more points in \mathbb{E}^2 , similar to how any div point set (P, Θ_P) in \mathcal{WPS}^+ has an interpretation for P by Axiom 1.

Lemma 3. A unit div point set is in \mathcal{UDPS}^+ iff it is isomorphic to some unit div point set (P, Ω_P) in $\mathcal{UDPS}^\mathbb{N}$ where $Col_{udps}(\Omega_P)$, a full vertex monochromatic coloring on H_{udps} , satisfies (2.48) and (2.49), while $\mathcal{UDPS}^\mathbb{N}$ is the class of all unit div point sets (P, Θ_P) where $P \subset \mathbb{N}$ and $|P| \geq 4$, and Col_{udps} is a function similar to Col in (2.18),

$$Col_{udps}(\Omega_P) = \{ ((\pi_1(D), \bigcup \pi_2(D)), \psi(\pi_2(D)) : D \in \Omega_P \}$$
 (2.45)

and $H_{udp\delta}$ is a 3-and-6-uniform hypergraph with 2 sets of hyperedges, E_1 and E_2 , defined as a 3-tuple $H_{udp\delta} = (V_{udp\delta}, E_1, E_2)$, constructed based on P:

$$V_{udp\delta} = \bigcup \{V_{of}(d) : d \in \mathcal{P}(P) : |d| = 2\}$$

$$E_1 = \{e \in \mathcal{P}(V) : |e| = 6 \land \forall v_1, v_2 \in e \ \pi_{\cup}(v_1) = \pi_{\cup}(v_2)\}$$

$$E_2 = \{e \in \mathcal{P}(V) : |e| = 3 \land \forall v_1, v_2 \in e \ \pi_1(v_1) = \pi_2(v_2) \land |\bigcup_{v \in e} \pi_2(v)| = 3\}$$

$$(2.46)$$

with $V_{of}(d)$ being a function that returns a set of ordered pair consists of *divider* and TBD points of unit dividens of the same divider,

$$V_{of}(d) = \{ (d, P_{TBD}) : P_{TBD} \in \mathcal{P}(P \setminus x) : |P_{TBD}| = 2 \}$$

$$(2.47)$$

and, finally, here are the conditions that the coloring needs to satisfy:

$$\forall e \in E_{1}$$

$$\exists v_{1}, v_{2} \in e \qquad \qquad | \pi_{1}(v_{1}) = \pi_{2}(v_{2})$$

$$\pi_{1}(v_{2}) = \pi_{2}(v_{1})$$

$$C(v_{1}) = C(v_{2}) = 0$$

$$C^{members}(e \setminus \{v_{1}, v_{2}\}) = \{1\}$$

$$\Leftrightarrow \neg \exists v_{1}, v_{2}, v_{3} \in e \qquad | |\pi_{1}(v_{1}) \cap \pi_{1}(v_{2}) \cap \pi_{1}(v_{3})| = 1$$

$$C(v_{1}) = C(v_{2}) = C(v_{3}) = 0$$

$$C^{members}(e \setminus \{v_{1}, v_{2}, v_{3}\}) = \{1\}$$

$$(2.48)$$

 $\forall e \in E_2$

$$\forall v_1, v_2, v_3 \in e$$

$$v_1 \neq v_2 \neq v_3$$

$$\Rightarrow (C(v_1) = 1 \Leftrightarrow C(v_2) = C(v_3))$$

$$\land (C(v_1) = 0 \Leftrightarrow C(v_2) \neq C(v_3))$$

$$(2.49)$$

wherein C is the coloring based on the set of unit divdons of some $\mathfrak{X}_{upds} \in \mathcal{UDPS}^{\mathbb{N}}$, i.e. $C = Col_{udps}(\pi_2(\mathfrak{X}_{upds}))$.

Remark. One may notice that the construction of $H_{udp\delta}$ depends solely on $\pi_1(\mathfrak{X}_{upd\delta})$ (i.e. the points of a *unit div point set*), as different from the coloring, which depends solely on $\pi_2(\mathfrak{X}_{upd\delta})$ (i.e. the set of *unit dividons*). This is similar to how the 3-uniform hypergraph H and the coloring on its vertices are defined back in the Proof for Theorem 1.

However, each vertex of $H_{udp\delta}$ is an ordered pair, structurally different from each vertex of H which is a set with cardinality of 2. Such definition for the vertices of $H_{udp\delta}$ in terms of not only the divider of a unit dividen but also its TBD points is necessary. This is because for any unit div point set, (P,Ω_P) , there exists $\binom{|P|-2}{2}$ distinct unit dividens sharing a common divider, where $\binom{|P|-2}{2} > 1$ when $|P| \geq 5$. In order to distinguish unit dividens from one another in a unit div point set of 5 or more points, we would need to know both its divider and its TBD points.

Remark. For any unit div point set, (P, Ω_P) where |P| = 4, E_2 of H_{upds} constructed based on P is an empty set, and thus (2.49) is trivially true for any coloring on such H_{upds} . On the other hand, there would only be 1 edge in E_1 and the coloring $C_{udps}(\Omega_P)$ satisfies (2.48) iff (P, Ω_P) is isomorphic to $\mathfrak{X} \in \{Conv^4, Conc_1^4\}$: in (2.48), the first-order predicate before the logical connective \Leftrightarrow is true iff \mathfrak{X} is isomorphic to $Conv^4$, while the first-order predicate after \Leftrightarrow is true iff \mathfrak{X} is isomorphic to $Conc_1^4$.

Proof for Lemma 3. Every unit div point set of 4 or more points is isomorphic to some unit div point set in $\mathfrak{UDPS}^{\mathbb{N}}$. For a unit div point set to be in \mathfrak{UDPS}^{+} , it has to satisfy (2.37), (2.41), (2.42), and (2.43). It is clear that a unit div point set, (P, Ω_P) , satisfies (2.37) iff $Col(\Omega_P)$ on the $H_{udp\delta}$ constructed based on P satisfies (2.49): (2.49) is simply a different way of writing (2.37) by first defining the order pairs $(d_n, \bigcup \delta_n)$ of some unit dividons $D_n = (d_n, \delta_n)$ that satisfy the necessary conditions (namely $(D_1 \neq D_2 \neq D_3 \wedge \pi_1(D_1) = \pi_1(D_2) = \pi_1(D_3) \wedge |\bigcup_{n=1}^3 \pi_2(D_n)| = 3)$) to be vertices of an edge in E_2 (recall (2.46)). On the other hand (P, Ω_P) would satisfy (2.41), (2.42), and (2.43) iff $Col(\Omega_P)$ on $H_{udp\delta}$ constructed based on P satisfies (2.48).

(2.41), (2.42), and (2.43) can be summarized as formulae with universal quantification of 4 points in P, where if these points are distinct, some conditional proposition regarding certain distinct unit dividons in Ω_P must be true. The common characteristic of the conditional proposition in all 3 formulae is that $\xi(D_1) = \xi(D_2) = \xi(D_3) = R$ is a part of the conjunction that makes up the antecedent. For any unit div point sets of 4 or more points, there are a total of 6 unit dividons D where $\xi(D) = R$ for any $R \subseteq P$ where |R| = 4, obtainable using \mathcal{UD}_3 , a function which takes in a set of 4 points, R, and returns a set of such ordered pair:

$$\mathcal{UDs}(R) = \{u \cdot d(d) : d \in \mathcal{P}(R) : |d| = 2\}$$

$$u \cdot d(d) = (d, R \setminus d)$$
(2.50)

One may notice that $\mathcal{UDS}(R)$ always has a cardinality of $\binom{4}{2} = 6$ and that E_1 of the H_{udps} constructed based on some P can be expressed in terms of \mathcal{UDS} .

$$E_1 = \{ \mathcal{U} \mathfrak{D} \mathfrak{s}(R) : R \in \mathcal{P}(P) : |R| = 4 \}$$

$$(2.51)$$

By Theorem 1, a unit div point set of 4 points (recall that div point sets of 4 points are their own unit div point sets) satisfies (2.41), (2.42), and (2.43) iff it is isomorphic to either $Conc_4^1$ or $Conc_4$. More fundamentally, this means that any unit div point set, (P, Ω_P) , satisfies (2.41), (2.42), and (2.43) iff each set of 6 unit dividons, $\Omega' \subseteq \Omega_P$, where for all $D \in \Omega'$, $\xi(D)$ is equivalent to a subset of 4 cardinality of P, is isomorphic¹ to either $\pi_2(Conc_4^1)$ or $\pi_2(Conv_4)$. The set of all such Ω' for any $\mathfrak{X} \in \mathcal{UDPS}^*$, can be expressed as a function $All_{\Omega'}$ where:

$$All_{\Omega'}(\mathfrak{X}) = \{ \Omega'_{basedOn}(R, \pi_2(\mathfrak{X})) : R \in \mathcal{P}(\pi_1(\mathfrak{X})) : |R| = 4 \}$$

$$\Omega'_{basedOn}(R, \Omega_P) = \{ D : D \in \Omega_P : \xi(D) = R \}$$

$$(2.52)$$

One may then realize that the following equation holds true for E_1 of any $H_{upd\delta}$ constructed based on $\pi_1(\mathfrak{X})$:

$$E_1 = \{ \{ (\pi_1(D), \bigcup \pi_2(D)) : D \in \Omega' \} : \Omega' \in All_{\Omega'}(\mathfrak{X}) \}$$
 (2.53)

Therefore any unit div point set of n points in $\mathcal{UDPS}^{\mathbb{N}}$, (P, Ω_P) , satisfies (2.41), (2.42), and (2.43) iff for all 4-cardinal $R \subseteq P$, a subset C' of $Col_{udp5}(\Omega_P)$, the monochromatic vertex coloring on H_{upd5} constructed based on P, where for all $c \in C'$, $\xi(\pi_1(c)) = R$, is isomorphic² to either the coloring $Col(\pi_2(Conc_4^1))$ or $Col(\pi_2(Conv_4))$. Notationally,

$$\forall R \in \{P' \in \mathcal{P}(P) : |P'| = 4\}$$

$$C' := C'_{of}(R, Col_{udp3}(\Omega_P))$$

$$C' \cong Col(\pi_2(Conc_4^1)) \Leftrightarrow \neg(C' \cong Col(\pi_2(Conv_4)))$$
where $C'_{of}(R, C) = \{c \in C : \xi(\pi_1(c)) = R\}$

$$(2.54)$$

which is what is expressed in (2.48).

Note. $isomorphic^1$: The definition of isomorphism in (2.56) is that of $div\ point\ sets$, but the isomorphism we are talking about here is that of sets of $unit\ dividons$, which can be defined as follows:

$$\Omega_{1} \cong^{1} \Omega_{2} \Leftrightarrow |\Omega_{1}| = |\Omega_{2}| \qquad (2.55)$$

$$\wedge \exists f_{\Omega} : \bigcup_{D \in \Omega_{1}} \pi_{1}(D) \xrightarrow{1:1} \bigcup_{D \in \Omega_{2}} \pi_{1}(D)$$

$$\forall D_{1} \in \Omega_{1}$$

$$\exists D_{2} \in \Omega_{2}$$

$$(d_{1}, \delta_{1}) := D_{1}$$

$$(d_{2}, \delta_{2}) := D_{2}$$

$$f^{members}(d_{1}) = d_{2} \Leftrightarrow f^{members^{2}}(\delta_{1}) = \delta_{2}$$

It is necessary to specify Ω_1 and Ω_2 to have the same cardinality, since it is possible for f_{Ω} , a bijective function satisfying the condition, to exist in the case when $|\Omega_1| \neq |\Omega_2|$.

 $isomorphic^2$: The isomorphism we are talking about here is that of colors, which can be defined as follows:

$$C_{1} \cong^{2} C_{2} \Leftrightarrow \exists f_{C} : \{\pi_{1}(c) : c \in C_{1}\} \xrightarrow{1:1} \{\pi_{1}(c) : c \in C_{2}\}$$

$$\forall c_{1} \in C_{1}$$

$$\exists c_{2} \in C_{2}$$

$$(v_{1}, color_{1}) := c_{1}$$

$$(v_{2}, color_{2}) := c_{2}$$

$$f(v_{1}) = v_{2} \Rightarrow color_{1} = color_{2}$$

$$(2.56)$$

Definition 5. We say that $\mathfrak{X}_1 \in \mathfrak{DPS}^*$ is a *sub div point set* of $\mathfrak{X}_2 \in \mathfrak{DPS}^*$ (denoted by \leq) iff the set of *unit divdion* of the corresponding *unit div point set* of \mathfrak{X}_1 is a subset of

that of \mathfrak{X}_2 . Notationally,

$$\forall \mathfrak{X}_{1}, \mathfrak{X}_{2} \in \mathfrak{DPS}^{*}
(A, \Omega_{A}) := \mathfrak{F}_{udps}^{\mathfrak{DPS}}(\mathfrak{X}_{1})
(B, \Omega_{B}) := \mathfrak{F}_{udps}^{\mathfrak{DPS}}(\mathfrak{X}_{2})
\mathfrak{X}_{1} \leq \mathfrak{X}_{2} \Leftrightarrow \Omega_{A} \subseteq \Omega_{B}$$
(2.57)

For clarification, 2 sub div point sets of some div point set, (S_1, Ω_{S_1}) and (S_2, Ω_{S_2}) , are distinct sub div point sets if $S_1 \neq S_2$, which is to say, distinctness here is not defined in terms of isomorphism, but equality (i.e. by the axiom of extensionality in ZFC).

Definition 6. Set $p_{\delta_{of}}$ is a function that returns the set of all sub div point sets of m points for some div point set where $m \in \mathbb{N}_{\geq 4}$.

$$\&dp_{\delta_{of}}(\mathfrak{X}_{dp_{\delta}}, m) = \&dp_{\delta}(\mathfrak{X}_{dp_{\delta}}, P_{s}) : P_{s} \in \pi_{1}(\mathfrak{X}_{dp_{\delta}})(P) : |P_{s}| = m \ (2.58)$$

where $\mathcal{S}dps$ is a function that returns the *sub div point set* of a set of points, P_s , of a *div point set* of \mathfrak{X}_{dps} :

$$\mathcal{S}dp_{5}(\mathfrak{X}_{dp_{5}}, P_{s}) = \mathcal{F}_{dp_{5}}^{\mathcal{U}\mathfrak{DFS}}((P_{s}, \{D : D \in \pi_{2}(\mathcal{F}_{udp_{5}}^{\mathfrak{DFS}}(\mathfrak{X}_{dp_{5}})) : \xi(D) \subseteq P_{s}\}))$$
where $\mathcal{F}_{dp_{5}}^{\mathcal{U}\mathfrak{DFS}}$ is the inverse of $\mathcal{F}_{udp_{5}}^{\mathfrak{DFS}}$ (2.59)

Since a div point set of n points always has $\binom{n}{m}$ distinct sub div point sets of m points, where $m \leq n$ and $m \geq 4$, $\mathcal{Sdps}_{of}(\mathfrak{X}_{dps}, m)$ has the cardinality of $\binom{|\pi_1(\mathfrak{X}_{dps})|}{m}$.

Lemma 4. For any *div point set*, \mathfrak{X} , and any natural number m greater or equal to 4, let \mathfrak{A} and \mathfrak{B} to be any 2 distinct *sub div point sets* of m points of \mathfrak{X} , and k be the number of points \mathfrak{A} and \mathfrak{B} have in common, $\mathfrak{F}_{udps}^{\mathfrak{DP8}}(\mathfrak{A})$ and $\mathfrak{F}_{udps}^{\mathfrak{DP8}}(\mathfrak{B})$ always have $6\binom{k}{4}$ unit dividons in common. Notationally,

$$\forall \mathfrak{X} \in \mathfrak{DP8}^*$$

$$\forall m \in \mathbb{N}_{\geq 1}$$

$$\forall \mathfrak{A}, \mathfrak{B} \in \mathcal{Sdps}_{of}(\mathfrak{X}, m)$$

$$|\pi_2(\mathfrak{F}_{udps}^{\mathfrak{DP8}}(\mathfrak{A})) \cap \pi_2(\mathfrak{F}_{udps}^{\mathfrak{DP8}}(\mathfrak{B}))| = 6 \binom{|\pi_1(\mathfrak{A}) \cap \pi_1(\mathfrak{B})|}{4}$$

$$(2.60)$$

Proof for Lemma 4. For any $m > |\pi_1(\mathfrak{X})|$, the proposition on all elements $\mathfrak{A}, \mathfrak{B} \in \mathcal{S}dps_{of}(\mathfrak{X}, m)$ is vacuously true. For $m = |\pi_1(\mathfrak{X})|$, it is obvious that the proposition is true: since every dividon of a div point set can be broken down into $\binom{|P|-2}{2}$ unit dividon, any unit div point set of n points would have $\binom{n-2}{2}\binom{n}{2} = 6\binom{n}{4}$ unit dividons in total. For m < 4, the proposition is trivially true because $\binom{m}{4} = 0$ and unit div point sets of 3 or less points have no

unit dividons (recall (2.26)). For any $m < |\pi_1(\mathfrak{X})|$ but greater than 3, the proposition can be proven true by first observing that $\mathcal{UDs}(R) \cap \mathcal{UDs}(R') = \emptyset \Leftrightarrow R \neq R'$ (recall (2.50)) for any sets R and R' with cardinality of 4, which indicates no 2 distinct unit div point set of 4 points have a unit dividon in common. Notationally,

$$\forall \mathcal{A}, \mathcal{B} \in \{ \mathcal{X} : \mathcal{X} \in \mathcal{UDPS}^* : |\pi_1(\mathcal{X})| = 4 \}$$

$$\pi_2(\mathcal{A}) \cap \pi_2(\mathcal{B}) = \emptyset \Leftrightarrow \pi_1(\mathcal{A}) \neq \pi_1(\mathcal{B})$$
(2.61)

However, for any 2 unit div point sets of 5 or more points, $\mathcal{A}_{udp\delta}$ and $\mathcal{B}_{udp\delta}$, if they have 4 points in common, let the set of such 4 points be R (i.e. $R \in \mathcal{P}(\pi_1(\mathcal{A}_{udp\delta}) \cap \pi_2(\mathcal{A}_{udp\delta})) \wedge |R| = 4$) each D' in $\mathcal{UDS}(R)$ would be equivalent to $\xi(D_a)$ and $\xi(D_b)$ where D_a and D_b are respectively unit dividon of $\mathcal{A}_{udp\delta}$ and $\mathcal{B}_{udp\delta}$ having the same divider and TBD points. In the case when $\mathcal{A}_{udp\delta} = \mathcal{F}_{udp\delta}^{\mathcal{DSS}}(\mathcal{A}_{dp\delta})$ and $\mathcal{B}_{udp\delta} = \mathcal{F}_{udp\delta}^{\mathcal{DSS}}(\mathcal{B}_{dp\delta})$ for some $\mathcal{A}_{dp\delta}$ and $\mathcal{B}_{dp\delta}$ that are both sub div point sets of a certain $\mathfrak{X} \in \mathcal{DPS}^*$, $D_a = D_b$ for every such respective unit dividons of $\mathcal{A}_{udp\delta}$ and $\mathcal{B}_{udp\delta}$. This implies that for every such distinct R, $\mathcal{A}_{udp\delta}$ and $\mathcal{B}_{dp\delta}$ have 6 unit dividons in common. Let k be the number of points $\mathcal{A}_{udp\delta}$ and $\mathcal{B}_{udp\delta}$ have in common, the number of such distinct R is precisely k chooses 4 i.e. $\binom{\pi_1(\mathcal{A}_{udp\delta})\cap\pi_1(\mathcal{B}_{udp\delta})}{A}$.

Theorem 2. Let \mathfrak{DPS}_5^+ denote the class of all *div point sets* of 5 points in \mathfrak{DPS}^+ . All $\mathfrak{X} \in \mathfrak{DPS}_5^+$ either have 4, 2 or 0 distinct *sub div point set* of 4 points isomorphic to $Conc_4^1$ (with the remaining *sub div point sets* of 4 points isomorphic to $Conv_4$).

Proof for Theorem 2.

Summary. In Part 1 we prove that there exists no $\mathfrak{X} \in \mathfrak{DPS}_5^+$ where $\mathfrak{SdpS}_{of}(\mathfrak{X},4)$ has precisely 1, 3 or 5 elements isomorphic to $Conc_4^1$. In Part 2 we prove that there exists $\mathfrak{X} \in \mathfrak{DPS}_5^+$ where $\mathfrak{SdpS}_0^+(\mathfrak{X},4)$ has precisely 0, 2 or 4 elements isomorphic to $Conc_4^1$.

Part 1. A div point set $\mathfrak{X}_{dp\delta}$ is in \mathfrak{DPS}^+ iff $\mathfrak{F}_{udp\delta}^{\mathfrak{DPS}}(\mathfrak{X}_{dp\delta})$ is in \mathfrak{UDPS}^+ . Any unit div point set of 5 points in \mathfrak{UDPS}^+ always has an even number of unit dividons D where $\psi(\pi_2(D)) = 0$, since it is isomorphic to some (P, Ω_P) in $\mathfrak{UDPS}^{\mathbb{N}}$ where the coloring $Col_{udp\delta}(\Omega_P)$ satisfies (2.49). For $Col_{udp\delta}(\Omega_P)$ to satisfy (2.49), every e in E_2 must has its vertices colored [1,0,0] or [1,1,1]. Since in any unit div point set of 5 points, there exists only $\binom{5-2}{2} = 3$ distinct unit dividon with the same divider, edges in E_2 are disjoint (recall (2.46)), and therefore any coloring satisfying (2.49) would have an even number of vertices colored 0. $Conc_4^1$ has an odd number of unit dividons D where $\psi(\pi_2(D)) = 0$, while $Conv_4$ has an even number for such unit dividons. Therefore there exists no unit div point sets of 5 points, $\mathfrak{X}_{udp\delta}$, in \mathfrak{UDPS}^+ such that $All_{\Omega'}(\mathfrak{X}_{udp\delta})$ (defined (2.52)) contains an odd number of elements isomorphic 1 to $\pi_2(Conc_4^1)$. We thereby conclude that there exists no $\mathfrak{X} \in \mathfrak{DPS}_5^+$ where $\mathfrak{S}_d p_{\mathfrak{S}_6}(\mathfrak{X}, 4)$ has precisely 1, 3 or 5 elements isomorphic to $Conc_4^1$.

Part 2. There exists unit div point sets of 5 points in \mathcal{UDPS}^+ with precisely 4, 2, or 0 sub div point sets of 4 points isomorphic to $Conc_4^1$. We would prove it by demonstrating

that it is possible to construct unit div point sets of 5 points, $\mathcal{X}_{upd\delta}$, isomorphic to some (P, Ω_P) in $\mathcal{UDPS}^{\mathbb{N}}$ where the coloring $Col_{udp\delta}(\Omega_P)$ satisfies (2.48) and (2.49) and there are precisely 4, 2, or 0 distinct $\Omega' \in All_{\Omega'}(\mathcal{X}_{udp\delta})$ isomorphic¹ to $\pi_2(Conc_4^1)$, (with the remaining Ω' isomorphic to $Conv_4$).

I. To construct such unit div point sets $\mathfrak{X}_{udp\delta}$ where $All_{\Omega'}(\mathfrak{X}_{udp\delta})$ contains 0 elements isomorphic to $Conc_4^1$ and 5 elements isomorphic to $\pi_2(Conv_4)$, we would need to make sure there are only 2 unit dividons $D \in \Omega'$ where $\phi(D) = 0$ for all Ω' in $All_{\Omega'}(\mathfrak{X}_{udp\delta})$. Let's denote the set of all such unit dividons as D^* , the 5 elements in $All_{\Omega'}(\mathfrak{X}_{udp\delta})$ as Ω'_1 , Ω'_2 , Ω'_3 , Ω'_4 , Ω'_5 and each 2 such unit dividons in Ω'_n as D^1_n and D^1_n for $n \in \{1, 2, 3, 4, 5\}$, i.e. $\{D^1_n, D^1_n\} = \Omega'_n \cap D^*$. For the coloring to satisfy (2.48) and (2.49), we simply let any 2 unit dividons D^x_n , D^x_m where $x \in \{1, 2\}$ and $n \neq m$ to have a common divider, while avoiding to have 3 distinct unit dividon in D^* to a common divider, and the same time ensuring that

$$\pi_1(D_n^1) = \bigcup \pi_2(D_n^2)$$

$$\pi_1(D_n^2) = \bigcup \pi_2(D_n^1)$$
(2.62)

(recall (2.48)). That is to say, for some subsets of 2 cardinality, A, B, C, D, E, F of $\pi_1(X_{udps})$, we have

$$\pi_{1}(D_{1}^{1}) = \bigcup \pi_{2}(D_{1}^{2}) = \pi_{1}(D_{2}^{1}) = \bigcup \pi_{2}(D_{2}^{2}) = A$$

$$\pi_{1}(D_{1}^{2}) = \bigcup \pi_{2}(D_{1}^{1}) = \pi_{1}(D_{3}^{2}) = \bigcup \pi_{2}(D_{3}^{1}) = B$$

$$\pi_{1}(D_{2}^{2}) = \bigcup \pi_{2}(D_{2}^{1}) = \pi_{1}(D_{4}^{2}) = \bigcup \pi_{2}(D_{4}^{1}) = C$$

$$\pi_{1}(D_{4}^{1}) = \bigcup \pi_{2}(D_{4}^{2}) = \pi_{1}(D_{5}^{1}) = \bigcup \pi_{2}(D_{5}^{2}) = D$$

$$\pi_{1}(D_{5}^{2}) = \bigcup \pi_{2}(D_{5}^{1}) = \pi_{1}(D_{6}^{2}) = \bigcup \pi_{2}(D_{6}^{1}) = E$$

$$\pi_{1}(D_{3}^{1}) = \bigcup \pi_{2}(D_{3}^{2}) = \pi_{1}(D_{6}^{1}) = \bigcup \pi_{2}(D_{6}^{2}) = F$$

$$(2.63)$$

where

$$A \neq B \neq C \neq D \neq E \neq F$$

$$(A \cap B) = (A \cap C) = (B \cap F) = (C \cap D) = (D \cap E) = (E \cap F) = \emptyset$$

Suppose \mathfrak{X} is a *div point set* where $\mathfrak{F}_{udp_5}^{\mathfrak{DPS}}(\mathfrak{X})$ is isomorphic to the *unit div point set* described above: \mathfrak{X} would be isomorphic to $Conv_5$ defined in (2.69) below.

II. To construct such unit div point sets \mathfrak{X}_{udp3} where $All_{\Omega'}(\mathfrak{X}_{udp3})$ contains 2 elements isomorphic to $Conc_4^1$ and 3 elements isomorphic to $\pi_2(Conv_4)$ - let's use the same

notations in I - we would need to make sure that

$$\forall n \in \{1, 2, 3\} \qquad \{D_n^1, D_n^2\} = \Omega_n' \cap D^*$$

$$\forall n \in \{4, 5\} \qquad \{D_n^1, D_n^2, D_n^3\} = \Omega_n' \cap D^*$$
(2.64)

The divider of unit dividens D_n^1 , D_n^2 , D_n^3 for $n \in \{4,5\}$ need to have 1 element in common:

$$|\pi_1(D_n^1) \cap \pi_1(D_n^1) \cap \pi_1(D_n^1)| = 1$$
(2.65)

(recall (2.48)), while (2.62) continues to apply to D_n^1 , D_n^2 for $n \in \{1, 2, 3\}$. For the coloring to satisfy (2.48) and (2.49), we can have D_4^x to share the same divider as D_5^x for all $x \in \{1, 2\}$, while letting the remaining unit dividons in D_4 and D_5 , namely D_4^3 and D_5^3 , to respectively share the same divider as D_1^1 and D_2^1 , and the remaining unit dividons in D_1 and D_2 , namely D_1^2 and D_2^2 , to respectively share the same dividers as the two dividons in D_3 . That is to say, for the distinct points $a, b, c, d, e \in \pi_1(X_{udps})$, we have

$$\pi_{1}(D_{4}^{1}) = \pi_{1}(D_{5}^{1}) = \{a, b\}$$

$$\pi_{1}(D_{4}^{2}) = \pi_{1}(D_{5}^{2}) = \{a, c\}$$

$$\pi_{1}(D_{4}^{3}) = \pi_{1}(D_{1}^{1}) = \bigcup \pi_{2}(D_{1}^{2}) = \{a, d\}$$

$$\pi_{1}(D_{5}^{3}) = \pi_{1}(D_{2}^{1}) = \bigcup \pi_{2}(D_{2}^{2}) = \{a, e\}$$

$$\pi_{1}(D_{1}^{2}) = \bigcup \pi_{2}(D_{1}^{1}) = \pi_{1}(D_{3}^{1}) = \bigcup \pi_{2}(D_{3}^{2}) \subset P \setminus \{a, d\}$$

$$\pi_{1}(D_{2}^{2}) = \bigcup \pi_{2}(D_{2}^{1}) = \pi_{1}(D_{3}^{2}) = \bigcup \pi_{2}(D_{3}^{1}) \subset P \setminus \{a, e\}$$

$$(2.66)$$

Suppose \mathfrak{X} is a *div point set* where $\mathfrak{F}_{udp_5}^{\mathfrak{DPS}}(\mathfrak{X})$ is isomorphic to the *unit div point set* described above: \mathfrak{X} would be isomorphic to $Conc_5^1$ defined in (2.69) below.

III. To construct such unit div point sets $\mathfrak{X}_{udp\delta}$ where $All_{\Omega'}(\mathfrak{X}_{udp\delta})$ contains 4 elements isomorphic to $Conc_4^1$ and 1 element isomorphic to $\pi_2(Conv_4)$ - let's use the same notations in II - this time we would need to make sure that

$$\forall n \in \{1\} \qquad \{D_n^1, D_n^2\} = \Omega_n' \cap D^*$$

$$\forall n \in \{2, 3, 4, 5\} \qquad \{D_n^1, D_n^2, D_n^3\} = \Omega_n' \cap D^*$$

$$(2.67)$$

where (2.65) applies to D_n^1 , D_n^2 and D_n^3 for $n \in \{2, 3, 4, 5\}$ and (2.62) continues to apply to D_n^1 , D_n^2 for $n \in \{1\}$. For the coloring to satisfy (2.48) and (2.49), we can let D_4^x to share the same divider as D_5^x , and D_2^x to share the same divider as D_3^x , for $x \in \{1, 2\}$. And then we let the remaining unit dividons in D_4 and D_5 , namely D_4^3 and D_5^3 , to respectively share the same divider as D_3^3 and D_1^1 , while the remaining unit dividons in D_2 , namely D_2^3 to share the same divider as D_1^2 . That is to say, for

the distinct points $a, b, c, d, e \in \pi_1(X_{udps})$, we have

$$\pi_{1}(D_{4}^{1}) = \pi_{2}(D_{5}^{1}) = \{a, b\}$$

$$\pi_{1}(D_{4}^{2}) = \pi_{2}(D_{5}^{2}) = \{a, c\}$$

$$\pi_{1}(D_{4}^{3}) = \pi_{1}(D_{3}^{3}) = \{a, d\}$$

$$\pi_{1}(D_{3}^{1}) = \pi_{1}(D_{2}^{1}) = \{e, d\}$$

$$\pi_{1}(D_{3}^{2}) = \pi_{1}(D_{2}^{2}) = \{c, d\}$$

$$\pi_{1}(D_{5}^{3}) = \pi_{1}(D_{1}^{1}) = \bigcup \pi_{2}(D_{1}^{2}) = \{a, e\}$$

$$\pi_{1}(D_{2}^{3}) = \pi_{1}(D_{1}^{2}) = \bigcup \pi_{2}(D_{1}^{1}) = \{b, d\}$$

Suppose \mathfrak{X} is a *div point set* where $\mathfrak{F}_{udp\delta}^{\mathfrak{DPS}}(\mathfrak{X})$ is isomorphic to the *unit div point set* described above: \mathfrak{X} would be isomorphic to $Conc_5^2$ defined in (2.69) below.

Remark. A stronger version of *Theorem 2* would state that for all $\mathfrak{X}_{dp\delta} \in \mathfrak{DPS}_5^+$, $\mathfrak{X}_{dp\delta}$ is either isomorphic to $Conv_5$, $Conc_5^1$ or $Conc_5^2$, where

 $\begin{aligned} Conc_5^1 = & (Cc_5^1, \Theta_{Cc_5^1}) & Conc_5^2 = & (Cc_5^2, \Theta_{Cc_5^2}) \\ & Cc_5^1 = & \{1, 2, 3, 4, 5\} & Cc_5^2 = & \{1, 2, 3, 4, 5\} \end{aligned}$ $Conv_5 = (Cv_5, \Theta_{Cv_5})$ $Cv_5 = \{1, 2, 3, 4, 5\}$ $\Theta_{Cv_5} = \{(\{1,2\},\{(\{3,4\},\varnothing\}), \quad \Theta_{Cc_5^1} = \{(\{1,2\},\{(\{3,4,5\},\varnothing\}), \ \Theta_{Cc_5^2} = \{(\{1,2\},\{(\{3,4,5\},\varnothing\}), \ \Theta_{Cc_5^2} = \{(\{1,2\},\{(\{3,4\},\varnothing\}), \ \Theta_{Cc_5^2} = \{(\{1,2\},\{$ $(\{1,3\},\{\{2\},\{4,5\}\}),$ $(\{1,3\},\{\{2,5\},\{4\}\}),$ $(\{1,3\},\{\{2,4,5\},\varnothing\}),$ $(\{1,4\},\{\{2,3\},\{5\}\}),$ $(\{1,4\},\{\{2,3,5\},\varnothing\}),$ $(\{1,4\},\{\{2\},\{3,5\}\}),$ $(\{1,5\},\{\{2,3,4\},\varnothing\}),$ $(\{1,5\},\{\{2\},\{3,4\}\}),$ $(\{1,5\},\{\{2,4\},\{3\}\}),$ $(\{2,3\},\{\{1,4,5\},\varnothing\}),$ $(\{2,3\},\{\{1,4,5\},\varnothing\}),$ $(\{2,3\},\{\{1,4,5\},\varnothing\}),$ $(\{2,4\},\{\{1,5\},\{3\}\}),$ $(\{2,4\},\{\{1\},\{3,5\}\}),$ $({2,4}, {\{1\}, \{3,5\}}),$ $(\{2,5\},\{\{1\},\{3,4\}\}),$ $(\{2,5\},\{\{1,4\},\{3\}\}),$ $(\{2,5\},\{\{1,4\},\{3\}\}),$ $({3,4}, {\{1,2,5\},\emptyset})$ $({3,4}, {\{1,2,5\},\emptyset})$ $(\{3,4\},\{\{1\},\{2,5\}\})$ $({3,5}, {{1,2}, {4}})$ $({3,5},{{1,2},{4}})$ $(\{3,5\},\{\{1,4\},\{2\}\})$ $({3,4}, {\{1,2,5\},\emptyset})$ $(\{4,5\},\{\{1,2,5\},\varnothing\})$ $(\{4,5\},\{\{1,3\},\{2\}\})$ (2.69)

To prove this version of *Theorem 2* we would need to prove that there exists no *div point sets* in \mathfrak{DPS}_5^+ not isomorphic to $Conv_5$, $Conc_5^1$ or $Conc_5^2$.

Remark. Let $All_{of\Omega'}(\mathfrak{X},n)$ be a generalization of $All_{\Omega'}(\mathfrak{X})$ such that

$$All_{of\Omega'}(\mathfrak{X}, n) = \{ \Omega'_{basedOn}(R, \pi_2(\mathfrak{X})) : R \in \mathcal{P}(\pi_1(\mathfrak{X})) : |R| = n \}$$
 (2.70)

Using Theorem 2, we can prove that the proposition below about unit div point set is false:

A unit div point set of 5 or more points, $\mathfrak{X}_{udp\delta}$, is in \mathfrak{UDPS}^+ iff all elements in $All_{of\Omega'}(\mathfrak{X}_{udp\delta}, n)$ are isomorphic to the set of unit dividons of some unit div point set in \mathfrak{UDPS}^+ , for any $n \in \mathbb{N}_{\geq 4}$ less than $|\pi_1(\mathfrak{X}_{udp\delta})|$.

However, the following weaker version of it still holds true.

```
If \mathfrak{X}_{udp\delta} is in \mathfrak{UDPS}^+, all members of All_{of\Omega'}(\mathfrak{X}_{udp\delta}, n) are also in \mathfrak{UDPS}^+ for any n \in \mathbb{N}_{\geq 4} less than |\pi_1(\mathfrak{X}_{udp\delta})|.
```

This is equivalent as stating that for any unit div point set, \mathfrak{X}_{δ} , whose unit dividons is a subset of that of some $\mathfrak{X} \in \mathcal{UDPS}^+$, there certainly exists an interpretation for $\pi_1(\mathfrak{X}_{\delta})$ as some set of points in \mathbb{E}^2 , which is just a subset of the interpretation for $\pi_1(\mathfrak{X})$ as some set of points in \mathbb{E}^2 , since $\pi_1(\mathfrak{X}_{\delta}) \subseteq \pi_1(\mathfrak{X})$.

There is undoubtedly some similarity between the false proposition above, and the following proposition which is too false:

```
A div point set of 4 or more points, \mathfrak{X}_{dp\delta}, is in \mathfrak{DPS}^+ iff all elements in \mathcal{S}_{dp\delta_{of}}(\mathfrak{X}_{dp\delta}, n) are also in \mathfrak{DPS}^+, for any n \in \mathbb{N}_{\geq 3} less than |\pi_1(X_{dps})|. If this is true, it would imply that \mathfrak{DPS}^* = \mathfrak{DPS}^+, which is obviously false.
```

However, if we closely examine this proposition, we would realize that it would be true if not for the case when n=3: since it is vacuously true that any div point sets of 3 points satisfy (2.10), (2.11), and (2.12), we cannot conclude that a certain div point set satisfies (2.10), (2.11), and (2.12), even if all its sub div point sets of 3 points satisfy them. Now recall Lemma 3 where E_2 of the hypergraph based on P is an empty set in the case when |P|=4 and as a result, it is vacuously true that such E_2 always satisfies (2.49). This is why the proposition regarding unit div point sets above is false: we cannot conclude that a certain unit div point set is isomorphic to some unit div point set, (P, Ω_P) , in $\mathcal{UDPS}^{\mathbb{N}}$ where $Col_{udps}(\Omega_P)$ satisfies (2.48) and (2.49), even if all elements in $All_{of\Omega'}(\mathfrak{X}_{udps}, \mathfrak{A})$ are isomorphic to some unit div point set, (P, Ω_P) , in $\mathcal{UDPS}^{\mathbb{N}}$ where $Col_{udps}(\Omega_P)$ satisfies them.

It can be proven that in the case when $n \in \mathbb{N}_{\geq 5}$, the proposition regarding unit div point sets above is true.

2.2 convexity

The notion that there exists n points forming a convex polygon among some set of points in \mathbb{E}^2 can be expressed through *convexity* in the context of *div point sets*.

Definition 7. A div point set (P, Θ_P) has a convexity of n iff there exists (Q, Θ_Q) such

that $(Q, \Theta_Q) \leq (P, \Theta_P)$ and (Q, Θ_Q) is isomorphic to $Conv_n$, defined as follow

```
Conv_{n} = (P, \{(d, \delta_{conv}(d, P)) : d \in \mathcal{P}(P) : |d| = 2\})
\begin{cases}
P := \{x \in \mathbb{N}_{\geq 1} : x \leq n\} \\
\delta_{conv}(d, P) = \{\{p : p \in P : inside(p, d)\}, \{p : p \in P : outside(p, d)\}\} \\
inside(p, d) = (p > min(d) \land p < max(d)) \\
outside(p, d) = (p < min(d) \lor p > max(d)) \\
min(d) \text{ returns the smallest number in } d \\
max(d) \text{ returns the biggest number in } d.
\end{cases} 
(2.71)
```

where n is a natural number ≥ 3 . Here is an implementation of it as a function in Haskell:

Axiom 2. For any $\mathfrak X$ in $\mathfrak DPS^+$, $\mathfrak X$ has an interpretation for $\pi_1(\mathfrak X)$ as some set of points in E^2 among which there exists n points forming a convex polygon, iff $\mathfrak X$ has a convexity of n. More precisely, there exists an interpretation for $P' \subseteq \pi_1(\mathfrak X)$ as some set of n points in E^2 forming a convex polygon iff $Sdps(\mathfrak X, P')$ is isomorphic to $Conv_n$, for all $n \geq 3$.

Remark. One may notice that for any $n \geq 4$, all sub div point sets of n-1 points of $Conv_n$ are isomorphic to $Conv_{n-1}$. By $Axiom\ 2$, that is equivalent to the following proposition: for any $n \geq 4$, after removing any one point from a set of n points that are the vertices of a convex polygon on an Euclidean plane, the remaining points too forms a convex polygon, which is trivially true.

Remark. By Axiom 2, we can conclude from Theorem 2 that for any 5 points in general position on an Euclidean plane, there always exists 4 points forming a convex polygon.

3 A reduction to a multiset unsatisfiability problem

The Erdös-Szekeres conjecture can be expressed as a conjunction of (3.1) and (3.2) in the theory of *div point set*.

$$\forall n \in \mathbb{N}_{\geq 3}$$

$$\exists \mathcal{A} \in \mathfrak{DPS}^+ \quad |\pi_1(A)| = 2^{n-2} \wedge \exists \mathcal{A}_{\delta} \leq \mathcal{A} \quad \mathcal{A}_{\delta} \ncong Conv_n$$

$$(3.1)$$

$$\forall n \in \mathbb{N}_{\geq 3}$$

$$\forall \mathcal{A} \in \mathcal{DPS}^+ \quad |\pi_1(A)| > 2^{n-2} \Leftrightarrow \exists \mathcal{A}_{\mathfrak{s}} \leq \mathcal{A} \quad \mathcal{A}_{\mathfrak{s}} \cong Conv_n$$

$$(3.2)$$

Since the lower bound has been proven to be $2^{n-2} + 1$, all is left is to prove (3.2) and the conjecture would be proven.

3.1 a combinatorial characteristics of sub div point sets

As we examine $div\ point\ sets$ of $v\ points$ for v>5, we would notice this rather interesting fact about $sub\ div\ point\ sets$: for any natural number a>1, let \$9.88 be the set of all $sub\ div\ point\ set$ of v-a points of any $div\ point\ sets$ of $v\ points$, for all $\mathfrak{X}_{\$9.98}$ in \$9.988, we can always select v-a distinct sets of a+1 div point sets in \$9.988 such that for each of these sets, it contains $\mathfrak{X}_{\$9.98}$ and all div points sets in it have $\binom{v-a-1}{t}$ sub div point sets of $t\ points$ in common, for all $t\in\mathbb{N}_{\geq 1}$. What is cool about this is that it doesn't just apply to a+1 but a+b for any $b\in\mathbb{N}_{\geq 1}$ as long as a+b is smaller than $v\$ (and in which case we would have $\binom{v-a-b}{t}$ sub div point sets of $t\ points$ in common). Notationally,

$$\forall \mathfrak{X} \in \mathfrak{DPS}^{+} \\
v := |\pi_{1}(\mathfrak{X})| \\
\forall a \in \mathbb{N}_{\geq 1} \\
\mathcal{S}\mathfrak{DPSS} := \mathcal{S}dps_{of}(\mathfrak{X}, v - a) \\
\forall \mathfrak{X}_{\mathcal{S}\mathfrak{DPS}} \in \mathcal{S}\mathfrak{DPSS} \\
\forall b \in \{x : x \in \mathbb{N}_{\geq 1} : x < v - a\} \\
\exists \mathcal{S} \in \mathcal{P}_{n}(\mathcal{P}_{n}(\mathcal{S}\mathfrak{DPSS}, a + b), v - a) \\
\forall s \in \mathcal{S} \\
\mathcal{X}_{\mathcal{S}\mathfrak{DPS}} \in \mathcal{S} \\
\forall t \in \mathbb{N}_{\geq 1} \\
|\bigcap_{\ell \in \mathcal{S}} \mathcal{S}dps_{of}(\ell, t)| = \binom{v - a - b}{t}$$
(3.3)

where

$$\mathcal{P}_n(S,n) = \{x : x \in \mathcal{P}(S) : |x| = n\}$$
(3.4)

To understand why such combinatorial characteristics exists, consider this: any 2 sub div point sets, \mathcal{S}_1 and \mathcal{S}_2 of a certain div point set is distinct as long as they are of distinct points i.e. $\mathcal{S}_1 \neq \mathcal{S}_2 \Leftrightarrow \pi_1(\mathcal{S}_1) \neq \pi_1(\mathcal{S}_2)$ and are the same as long as they are of the same points i.e. $\mathcal{S}_1 = \mathcal{S}_2 \Leftrightarrow \pi_1(\mathcal{S}_1) = \pi_1(\mathcal{S}_2)$, thus (3.3) is equivalent as stating: for any set \mathcal{N} with the same cardinality as \mathbb{N} ,

```
\forall X \in \mathcal{P}(\mathcal{H})
v \coloneqq |X|
\forall a \in \mathbb{N}_{\geq 1}
X_{subset-set} \coloneqq \mathcal{P}_n(X, v - a)
\forall X_{subset} \in X_{subset-set}
\forall b \in \{x : x \in \mathbb{N}_{\geq 1} : x < v - a\}
\exists S \in \mathcal{P}_n(\mathcal{P}_n(X_{subset-set}, a + b), v - a)
\forall s \in S
X_{subset} \in s
\forall n \in \mathbb{N}_{\geq 1}
|\bigcap_{l \in s} \mathcal{P}_n(l, n)| = \binom{v - a - b}{n}
(3.5)
```

For the purpose of illustration, suppose we have some div point set \mathfrak{X}_9 of 9 points, let isom be an bijective function from $\mathcal{Sdps}_{of}(\mathfrak{X}_9,4)$ to a set of natural numbers, N, where $N = \{n : n \in \mathbb{N}_{\geq 1} : n \leq |\mathcal{Sdps}_{of}(\mathfrak{X}_9,4)|\}$, the set $\{\{iso(\mathfrak{X}_4) : \mathfrak{X}_4 \in \mathfrak{X}_5\} : \mathfrak{X}_5 \in \mathcal{Sdps}_{of}(\mathfrak{X}_9,5)\}$ would be isomorphic to:

```
\{\{1,2,7,22,57\},\{1,3,8,23,58\},\{1,4,9,24,59\},\{1,5,10,25,60\},\{1,6,11,26,61\},\{2,3,12,27,62\},
\{2,4,13,28,63\}, \{2,5,14,29,64\}, \{2,6,15,30,65\}, \{3,4,16,31,66\}, \{3,5,17,32,67\}, \{3,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,33,68\}, \{4,6,18,18,18,18\}, \{4,6,18,18,18\}, \{4,6,18,18\}, \{4,6,18,18\}, \{4,6,18,18\}, \{4,6,18,18\}, \{4,6,18,18\}, \{4,6,18,18\}, \{4,6,18,18\}, \{4,6,18,18\}, \{
\{4,5,19,34,69\}, \{4,6,20,35,70\}, \{5,6,21,36,71\}, \{7,8,12,37,72\}, \{7,9,13,38,73\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,39,74\}, \{7,10,14,
\{10,11,21,46,81\},\{12,13,16,47,82\},\{12,14,17,48,83\},\{12,15,18,49,84\},\{13,14,19,50,85\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,15,20,51,86\},\{13,
  \{28, 29, 34, 50, 105\}, \{28, 30, 35, 51, 106\}, \{29, 30, 36, 52, 107\}, \{31, 32, 34, 53, 108\}, \{31, 33, 35, 54, 109\}, \{32, 33, 36, 55, 110\}, \{33, 34, 55, 110\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100\}, \{34, 56, 100
\{39, 40, 46, 52, 117\}, \{41, 42, 44, 53, 118\}, \{41, 43, 45, 54, 119\}, \{42, 43, 46, 55, 120\}, \{44, 45, 46, 56, 121\}, \{47, 48, 50, 53, 122\}, \{47, 48, 50, 53, 122\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{48, 46, 56, 121\}, \{4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (3.6)
\{47, 49, 51, 54, 123\}, \{48, 49, 52, 55, 124\}, \{50, 51, 52, 56, 125\}, \{53, 54, 55, 56, 126\}, \{57, 58, 62, 72, 92\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73, 93\}, \{57, 59, 63, 73,
  \{57, 60, 64, 74, 94\}, \{57, 61, 65, 75, 95\}, \{58, 59, 66, 76, 96\}, \{58, 60, 67, 77, 97\}, \{58, 61, 68, 78, 98\}, \{59, 60, 69, 79, 99\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}, \{59, 60, 60, 70, 90\}
  \{59, 61, 70, 80, 100\}, \{60, 61, 71, 81, 101\}, \{62, 63, 66, 82, 102\}, \{62, 64, 67, 83, 103\}, \{62, 65, 68, 84, 104\}, \{63, 64, 69, 85, 105\},
  \{76, 77, 79, 88, 118\}, \{76, 78, 80, 89, 119\}, \{77, 78, 81, 90, 120\}, \{79, 80, 81, 91, 121\}, \{82, 83, 85, 88, 122\}, \{82, 84, 86, 89, 123\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 85, 88, 122\}, \{83, 8
\{83, 84, 87, 90, 124\}, \{85, 86, 87, 91, 125\}, \{88, 89, 90, 91, 126\}, \{92, 93, 96, 102, 112\}, \{92, 94, 97, 103, 113\}, \{92, 95, 98, 104, 114\}, \{92, 94, 97, 103, 113\}, \{92, 95, 98, 104, 114\}, \{93, 94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 103, 113\}, \{94, 97, 10
\{97, 98, 101, 110, 120\}, \{99, 100, 101, 111, 121\}, \{102, 103, 105, 108, 122\}, \{102, 104, 106, 109, 123\}, \{103, 104, 107, 110, 124\}, \{103, 104, 107, 110, 124\}, \{103, 104, 107, 110, 124\}, \{103, 104, 107, 110, 124\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 109, 123\}, \{104, 106, 106, 109, 106\}, \{104, 106, 106, 106\}, \{104, 106, 106\}, \{104, 106, 106\}, \{104, 106, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 106\}, \{104, 1
\{115, 116, 117, 121, 125\}, \{118, 119, 120, 121, 126\}, \{122, 123, 124, 125, 126\}\}
```

which shows how sub div point sets of 4 points of \mathfrak{X}_9 (each represented by a distinct natural number above) would be disturbed among sub div point sets of 5 points of \mathfrak{X}_9 . Notice how it satisfies (3.3) (e.g. for every sub div point set of 5 points, \mathfrak{X}_5 , there exists a set in $\mathscr{P}_n(\mathscr{P}_n(\mathcal{S}_d p_{\delta_o f}(\mathfrak{X}_9, 5), 5), 5)$ where its elements are different supersets of \mathfrak{X}_5 , in which the div point sets of 5 points all have a sub div point set of 4 points in common i.e. $|\bigcap_{\ell \in \mathfrak{S}} \mathcal{S}_{\mathfrak{S}_0 f}(\ell, 4)| = \binom{9-4-1}{4} = 1$ where $s \in S$ and S is the set containing such supersets i.e. $S \in \mathscr{P}_n(\mathscr{P}_n(\mathcal{S}_d p_{\delta_o f}(\mathfrak{X}_9, 5), 5), 5)$.

We suspect that (3.2) is nothing more than an elegant result of what happens when we have a structure whose sub-structures possess the combinatorial characteristics described above and the same time having to abide by some simple rule, which, in this case, is what described in (3.7) below.

3.2 the problem $UNSAT_{multiset}^{\mathfrak{DP8}^+}$

Definition 8. $UNSAT_{multiset}$ is the decision problem of determining if there exists no value-assignment for all variables in V, distributed in a certain manner among the multisets in M, such that it satisfies the FOL formulae in C, where the value-assignment is defined to be a function, Z: for all v in V, Z(v) = x for some $x \in D$ where D, the set of values a variable can be assigned to, is often referred to as the domain. An instance of $UNSAT_{multiset}$ can thus be represented as a 4-tuple (V, D, M, C).

We shall now present the problem $UNSAT_{multiset}^{\mathfrak{DPS}^+}$, a special case of $UNSAT_{multiset}$, of which, if an instance is solved, we can use the result that it yields True (i.e. it is not satisfiable) to prove that for a specific $n \in \mathbb{N}_{\geq 5}$, there exists no div point set of $2^{n-2} + 1$ points, \mathfrak{X} , where it satisfies

$$\forall \mathfrak{X}_{5} \in \mathcal{S}dps_{of}(\mathfrak{X}, 5) [Assign(\mathfrak{X}_{4}) : \mathfrak{X}_{4} \in \mathcal{S}dps_{of}(\mathfrak{X}_{5}, 4)] \in \{[1, 1, 1, 1, 0], [1, 1, 0, 0, 0], [0, 0, 0, 0, 0]\}$$

$$(3.7)$$

but does not satisfy

$$\exists \mathcal{A}_{\delta} \in \mathcal{S}dp_{\delta_{of}}(\mathfrak{X}, n)$$

$$\forall \mathcal{A}_{\delta\delta} \in \mathcal{S}dp_{\delta_{of}}(\mathfrak{X}, 4) \quad Assign(\mathcal{A}_{\delta\delta}) = 0$$

$$(3.8)$$

where

$$Assign(\mathfrak{X}) = \begin{cases} 1 & \text{if} & \mathfrak{X} \cong Conc_4^1 \\ 0 & \text{if} & \mathfrak{X} \cong Conv_4 \end{cases}$$
 (3.9)

Since for any div point sets in \mathfrak{DPS}^+ , its sub div point sets of 5 points satisfy (3.7) (recall Theorem 2), this would thus prove that div point set in \mathfrak{DPS}^+ must too satisfy (3.8), and

consequently proving (3.2) which can be rewritten as follows

$$\forall n \in \mathbb{N}_{\geq 3}$$

$$\forall \mathcal{A} \in \mathcal{DPS}^+$$

$$|\pi_1(A)| > 2^{n-2}$$

$$\Leftrightarrow \exists \mathcal{A}_{\delta} \in \mathcal{SdpS}_{of}(\mathcal{A}, n)$$

$$\forall \mathcal{A}_{\delta\delta} \in \mathcal{SdpS}_{of}(\mathcal{A}_{\delta}, 4) \quad Assign(\mathcal{A}_{\delta\delta}) = 0$$

$$(3.10)$$

(recall that for all $k \in \mathbb{N}_{\geq 3}$ and $n \geq k$, any sub div point set of k points of any $Conv_n$ is isomorphic to some $Conv_k$).

Definition 9. $UNSAT_{multiset}^{\mathfrak{DPS}^+}$ is a special case of $UNSAT_{multiset}$ where some instance, (V, D, M, C), of $UNSAT_{multiset}$ is an instance of $UNSAT_{multiset}^{\mathfrak{DPS}^+}$ iff for some $n \geq 5$,

$$|V| = {2^{n-2} + 1 \choose 4}$$

$$D = \{0, 1\}$$

$$M = A \cup B$$

$$(3.11)$$

where A is a set of 5-cardinal multisets, and B is a set of n-cardinal multisets. For some div point set of n points, \mathcal{X} , the variables in V are distributed in $m \in A$ the same way as how elements in $\mathcal{Sd}_{\mathfrak{PS}_{\mathfrak{I}}}(\mathcal{X},4)$ are distributed in $\mathcal{X}_{\mathfrak{SPS}_{\mathfrak{I}}}(\mathcal{X},5)$, while the variables are distributed in $m \in B$ the same way as how elements in $\mathcal{Sd}_{\mathfrak{PS}_{\mathfrak{I}}}(\mathcal{X},4)$ are distributed in $\mathcal{X}_{\mathfrak{SPS}_{\mathfrak{I}}}(\mathcal{X},5)$. And C is the set of the formulae (3.12) and (3.13).

$$\forall a \in A \qquad a \in \{[1, 1, 1, 1, 0], [1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]\}$$
(3.12)

$$\forall b \in B \qquad b \neq \underbrace{[0, 0, 0, ..., 0, 0]}_{\binom{n}{4} \ 0's} \tag{3.13}$$

The distribution of variables in A and B can be implement in Haskell as follows:

```
| otherwise = factorial n 'div' (factorial k * factorial (n-k))
factorial :: Integer -> Integer
factorial n = foldl (*) 1 [1..n]
combine :: Integer -> [Integer] -> [[Integer]]
combine 0 _ = [[]]
combine n xs = [ y:ys | y:xs' <- tails xs</pre>
                         , ys <- combine (n-1) xs']
number_of_points = (\n->(2^(n-2)+1))
n_setOf_m_Multisets:: Integer -> Integer -> [Multiset]
n_setOf_m_Multisets m n = [ map fromJust $ map ((flip lookup) encoding)
    (combine 4 m_points) | m_points <- combine n [1..m] ]
       encoding = merge (combine 4 [1..m]) [1..(m 'choose' 4)]
setA :: Integer -> [Multiset]
setA n = n_setOf_m_Multisets (number_of_points n) 5
setB :: Integer -> [Multiset]
setB n = [ x | x <- n_setOf_m_Multisets (number_of_points n) n, 2 'elem' x ]</pre>
```

Remark. A different implementation may result in a different M for the same n. Nonetheless, the different M obtained from a different implementation would be isomorphic to the M obtained from this implementation, in which case we would consider that distribution to be the same. Thus as far as unsatisfiability is concerned, for every $n \in \mathbb{N}_{\geq 5}$, there exists exactly one instance of $UNSAT_{multiset}^{\mathfrak{DPS}^+}$.

Here is the simplest instance of $UNSAT_{multiset}^{\mathfrak{DSB}8^+}$ (when n=5): since A=B, we have $|M|=|A|=|B|={2^{5-2}+1\choose 5}=126$ multisets, and $|V|={2^{5-2}+1\choose 4}=126$ variables as well

(with each denoted by v_n below), distributed among the multisets in M as follows:

```
\{[v_1, v_2, v_7, v_{22}, v_{57}], [v_1, v_3, v_8, v_{23}, v_{58}], [v_1, v_4, v_9, v_{24}, v_{59}], [v_1, v_5, v_{10}, v_{25}, v_{60}], [v_1, v_6, v_{11}, v_{26}, v_{61}], [v_2, v_3, v_{12}, v_{27}, v_{62}], [v_1, v_2, v_{11}, v_{12}, v_{12}, v_{13}, v_{12}, v_{13}, v_{12}, v_{13}, v
[v_2, v_4, v_{13}, v_{28}, v_{63}], [v_2, v_5, v_{14}, v_{29}, v_{64}], [v_2, v_6, v_{15}, v_{30}, v_{65}], [v_3, v_4, v_{16}, v_{31}, v_{66}], [v_3, v_5, v_{17}, v_{32}, v_{67}], [v_3, v_6, v_{18}, v_{33}, v_{68}], [v_4, v_{16}, v_{11}, v_{12}, v_{12}
[v_4, v_5, v_{19}, v_{34}, v_{69}], [v_4, v_6, v_{20}, v_{35}, v_{70}], [v_5, v_6, v_{21}, v_{36}, v_{71}], [v_7, v_8, v_{12}, v_{37}, v_{72}], [v_7, v_9, v_{13}, v_{38}, v_{73}], [v_7, v_{10}, v_{14}, v_{39}, v_{74}], [v_7, v_{10}, v_{14}, v_{15}, v_{
[v_7, v_{11}, v_{15}, v_{40}, v_{75}], [v_8, v_9, v_{16}, v_{41}, v_{76}], [v_8, v_{10}, v_{17}, v_{42}, v_{77}], [v_8, v_{11}, v_{18}, v_{43}, v_{78}], [v_9, v_{10}, v_{19}, v_{44}, v_{79}], [v_9, v_{11}, v_{20}, v_{45}, v_{80}], [v_9, v_{11}, v_{12}, v_{12}, v_{12}, v_{12}, v_{13}, v_{14}, v_{15}, v_{14}, v_{15}, v_{15},
[v_{10}, v_{11}, v_{21}, v_{46}, v_{81}], [v_{12}, v_{13}, v_{16}, v_{47}, v_{82}], [v_{12}, v_{14}, v_{17}, v_{48}, v_{83}], [v_{12}, v_{15}, v_{18}, v_{49}, v_{84}], [v_{13}, v_{14}, v_{19}, v_{50}, v_{85}], [v_{13}, v_{15}, v_{20}, v_{51}, v_{86}], [v_{13}, v_{14}, v_{19}, v_{50}, v_{85}], [v_{13}, v_{14}, v_{19}, v_{19
[v_{14}, v_{15}, v_{21}, v_{52}, v_{87}], [v_{16}, v_{17}, v_{19}, v_{53}, v_{88}], [v_{16}, v_{18}, v_{20}, v_{54}, v_{89}], [v_{17}, v_{18}, v_{21}, v_{55}, v_{90}], [v_{19}, v_{20}, v_{21}, v_{56}, v_{91}], [v_{22}, v_{23}, v_{27}, v_{37}, v_{92}], [v_{17}, v_{18}, v_{21}, v_{55}, v_{90}], [v_{19}, v_{20}, v_{21}, v_{56}, v_{91}], [v_{22}, v_{23}, v_{27}, v_{37}, v_{92}], [v_{18}, v_{21}, v_{58}, v_{18}, v
[v_{22}, v_{24}, v_{28}, v_{38}, v_{93}], [v_{22}, v_{25}, v_{29}, v_{39}, v_{94}], [v_{22}, v_{26}, v_{30}, v_{40}, v_{95}], [v_{23}, v_{24}, v_{31}, v_{41}, v_{96}], [v_{23}, v_{25}, v_{32}, v_{42}, v_{97}], [v_{23}, v_{26}, v_{33}, v_{43}, v_{98}], [v_{24}, v_{25}, v_{29}, v_{29},
[v_{24}, v_{25}, v_{34}, v_{44}, v_{99}], [v_{24}, v_{26}, v_{35}, v_{45}, v_{100}], [v_{25}, v_{26}, v_{36}, v_{46}, v_{101}], [v_{27}, v_{28}, v_{31}, v_{47}, v_{102}], [v_{27}, v_{29}, v_{32}, v_{48}, v_{103}], [v_{27}, v_{30}, v_{33}, v_{49}, v_{104}], [v_{27}, v_{28}, v_{31}, v_{47}, v_{102}], [v_{27}, v_{29}, v_{32}, v_{48}, v_{103}], [v_{27}, v_{30}, v_{33}, v_{49}, v_{104}], [v_{27}, v_{28}, v_{31}, v_{47}, v_{102}], [v_{27}, v_{29}, v_{32}, v_{48}, v_{103}], [v_{27}, v_{30}, v_{33}, v_{49}, v_{104}], [v_{27}, v_{28}, v_{31}, v_{47}, v_{102}], [v_{27}, v_{29}, v_{32}, v_{48}, v_{103}], [v_{27}, v_{30}, v_{33}, v_{49}, v_{104}], [v_{27}, v_{28}, v_{31}, v_{47}, v_{102}], [v_{27}, v_{29}, v_{32}, v_{48}, v_{103}], [v_{27}, v_{30}, v_{33}, v_{49}, v_{104}], [v_{27}, v_{28}, v_{31}, v_{47}, v_{102}], [v_{27}, v_{29}, v_{32}, v_{48}, v_{103}], [v_{27}, v_{30}, v_{33}, v_{49}, v_{104}], [v_{27}, v_{28}, v_{31}, v_{47}, v_{102}], [v_{27}, v_{29}, v_{32}, v_{48}, v_{103}], [v_{27}, v_{39}, v_{31}, v_{49}, v_{104}], [v_{27}, v_{28}, v_{31}, v_{47}, v_{102}], [v_{27}, v_{29}, v_{32}, v_{48}, v_{103}], [v_{27}, v_{29}, v_
[v_{28}, v_{29}, v_{34}, v_{50}, v_{105}], [v_{28}, v_{30}, v_{35}, v_{51}, v_{106}], [v_{29}, v_{30}, v_{36}, v_{52}, v_{107}], [v_{31}, v_{32}, v_{34}, v_{53}, v_{108}], [v_{31}, v_{33}, v_{35}, v_{54}, v_{109}], [v_{32}, v_{33}, v_{36}, v_{55}, v_{110}], [v_{31}, v_{32}, v_{34}, v_{53}, v_{108}], [v_{31}, v_{33}, v_{35}, v_{54}, v_{109}], [v_{32}, v_{33}, v_{36}, v_{55}, v_{110}], [v_{31}, v_{32}, v_{33}, v_{35}, v_{54}, v_{109}], [v_{31}, v_{32}, v_{34}, v_{55}, v_{110}], [v_{31}, v_{32}, v_{32}, v_{34}, v_{55}, v_{110}], [v_{31}, v_{32}, v_{32}, v_{34}, v_{55}, v_{110}], [v_{31}, v_{32}, v_{32}, v_{34}, v_{55}, v
[v_{34}, v_{35}, v_{36}, v_{56}, v_{111}], [v_{37}, v_{38}, v_{41}, v_{47}, v_{112}], [v_{37}, v_{39}, v_{42}, v_{48}, v_{113}], [v_{37}, v_{40}, v_{43}, v_{49}, v_{114}], [v_{38}, v_{39}, v_{44}, v_{50}, v_{115}], [v_{38}, v_{40}, v_{45}, v_{51}, v_{116}], [v_{38}, v_{49}, v_{48}, v
[v_{39}, v_{40}, v_{46}, v_{52}, v_{117}], [v_{41}, v_{42}, v_{44}, v_{53}, v_{118}], [v_{41}, v_{43}, v_{45}, v_{54}, v_{119}], [v_{42}, v_{43}, v_{46}, v_{55}, v_{120}], [v_{44}, v_{45}, v_{46}, v_{56}, v_{121}], [v_{47}, v_{48}, v_{50}, v_{53}, v_{122}], [v_{47}, v_{48}, v_{56}, v_{58}, v
[v_{47}, v_{49}, v_{51}, v_{54}, v_{123}], [v_{48}, v_{49}, v_{52}, v_{55}, v_{124}], [v_{50}, v_{51}, v_{52}, v_{56}, v_{125}], [v_{53}, v_{54}, v_{55}, v_{56}, v_{126}], [v_{57}, v_{58}, v_{62}, v_{72}, v_{92}], [v_{57}, v_{59}, v_{63}, v_{73}, v_{93}], [v_{57}, v_{58}, v_{68}, v_{78}, v_{
[v_{57}, v_{60}, v_{64}, v_{74}, v_{94}], [v_{57}, v_{61}, v_{65}, v_{75}, v_{95}], [v_{58}, v_{59}, v_{66}, v_{76}, v_{96}], [v_{58}, v_{60}, v_{67}, v_{77}, v_{97}], [v_{58}, v_{61}, v_{68}, v_{78}, v_{98}], [v_{59}, v_{60}, v_{69}, v_{79}, v_{99}], [v_{58}, v_{61}, v_{68}, v_{78}, v_{98}], [v_{59}, v_{60}, v_{69}, v_{79}, v_{99}], [v_{59}, v_{61}, v_{61}, v_{62}, v_{61}, v_{61}, v_{62}, v_{61}, v_{62}, v_{
[v_{59}, v_{61}, v_{70}, v_{80}, v_{100}], [v_{60}, v_{61}, v_{71}, v_{81}, v_{101}], [v_{62}, v_{63}, v_{66}, v_{82}, v_{102}], [v_{62}, v_{64}, v_{67}, v_{83}, v_{103}], [v_{62}, v_{65}, v_{68}, v_{84}, v_{104}], [v_{63}, v_{64}, v_{69}, v_{85}, v_{105}], [v_{64}, v_{64}, v_{66}, v_{68}, v
[v_{63}, v_{65}, v_{70}, v_{86}, v_{106}], [v_{64}, v_{65}, v_{71}, v_{87}, v_{107}], [v_{66}, v_{69}, v_{88}, v_{108}], [v_{66}, v_{68}, v_{70}, v_{89}, v_{109}], [v_{67}, v_{68}, v_{71}, v_{90}, v_{110}], [v_{69}, v_{70}, v_{71}, v_{91}, v_{111}], [v_{69}, v_{70}, v_{71}, v_{91}, v_{111}], [v_{69}, v_{70}, v_{71}, v_{91}, v_{71}, v_{91}, v_{71}, v_{71}
[v_{72}, v_{73}, v_{76}, v_{82}, v_{112}], [v_{72}, v_{74}, v_{77}, v_{83}, v_{113}], [v_{72}, v_{75}, v_{78}, v_{84}, v_{114}], [v_{73}, v_{74}, v_{79}, v_{85}, v_{115}], [v_{73}, v_{75}, v_{80}, v_{86}, v_{116}], [v_{74}, v_{75}, v_{81}, v_{87}, v_{117}], [v_{75}, v_{87}, v
[v_{76}, v_{77}, v_{79}, v_{88}, v_{118}], [v_{76}, v_{78}, v_{80}, v_{89}, v_{119}], [v_{77}, v_{78}, v_{81}, v_{90}, v_{120}], [v_{79}, v_{80}, v_{81}, v_{91}, v_{121}], [v_{82}, v_{83}, v_{85}, v_{88}, v_{122}], [v_{82}, v_{84}, v_{86}, v_{89}, v_{123}], [v_{81}, v_{82}, v_{83}, v_{85}, v_{88}, v_{122}], [v_{81}, v_{81}, v_{82}, v_{83}, v_{85}, v_{88}, v_{122}], [v_{81}, v_{81}, v_{81
[v_{83}, v_{84}, v_{87}, v_{90}, v_{124}], [v_{85}, v_{86}, v_{87}, v_{91}, v_{125}], [v_{88}, v_{89}, v_{90}, v_{91}, v_{126}], [v_{92}, v_{93}, v_{96}, v_{102}, v_{112}], [v_{92}, v_{94}, v_{97}, v_{103}, v_{113}], [v_{92}, v_{95}, v_{98}, v_{104}, v_{114}], [v_{93}, v_{94}, v_{97}, v_{103}, v_{113}], [v_{92}, v_{95}, v_{98}, v_{104}, v_{114}], [v_{93}, v_{94}, v_{97}, v_{103}, v_{113}], [v_{93}, v_{96}, v_{104}, v_{114}], [v_{95}, v_{98}, v_{114}, v_{114}], [v_{95}, v_{114
[v_{93}, v_{94}, v_{99}, v_{105}, v_{115}], [v_{93}, v_{95}, v_{100}, v_{106}, v_{116}], [v_{94}, v_{95}, v_{101}, v_{107}, v_{117}], [v_{96}, v_{97}, v_{99}, v_{108}, v_{118}], [v_{96}, v_{98}, v_{100}, v_{109}, v_{119}], [v_{96}, v_{98}, v_{100}, v_{109}, v_{119}], [v_{96}, v_{98}, v_{100}, v_{118}], [v_{96}, v_{98}, v_{100}, v_{109}, v_{119}], [v_{96}, v_{98}, v_{100}, v_{118}], [v_{96}, v_{98}, v_{100}, v_{100}, v_{118}], [v_{96}, v_{98}, v_{100}, v_{100}, v_{100}, v_{100}, v_{118}], [v_{96}, v_{98}, v_{100}, v_{1
[v_{97}, v_{98}, v_{101}, v_{110}, v_{120}], [v_{99}, v_{100}, v_{101}, v_{111}, v_{121}], [v_{102}, v_{103}, v_{105}, v_{108}, v_{122}], [v_{102}, v_{104}, v_{106}, v_{109}, v_{123}], [v_{103}, v_{104}, v_{107}, v_{110}, v_{124}], [v_{102}, v_{103}, v_{104}, v_{107}, v_{110}, v_{110}
[v_{105}, v_{106}, v_{107}, v_{111}, v_{125}], [v_{108}, v_{109}, v_{110}, v_{111}, v_{126}], [v_{112}, v_{113}, v_{115}, v_{118}, v_{122}], [v_{112}, v_{114}, v_{116}, v_{119}, v_{123}], [v_{113}, v_{114}, v_{117}, v_{120}, v_{124}], [v_{113}, v_{114}, v_{116}, v_{119}, v_{123}], [v_{113}, v_{114}, v_{117}, v_{120}, v_{124}], [v_{113}, v_{114}, v_{116}, v_{119}, v_{123}], [v_{113}, v_{114}, v_{117}, v_{120}, v_{124}], [v_{113}, v_{114}, v_{116}, v_{119}, v_{123}], [v_{113}, v_{114}, v_{117}, v_{120}, v_{124}], [v_{113}, v_{114}, v_{116}, v_{119}, v_{123}], [v_{113}, v_{114}, v_{117}, v_{120}, v_{124}], [v_{113}, v_{114}, v_{116}, v_{118}, v_{128}], [v_{113}, v_{114}, v_{116}, v_{118}, v_
[v_{115}, v_{116}, v_{117}, v_{121}, v_{125}], [v_{118}, v_{119}, v_{120}, v_{121}, v_{126}], [v_{122}, v_{123}, v_{124}, v_{125}, v_{126}]\}
```

It is no surprise that the distribution of variables in $m \in M$ above is exactly that of sub div point sets of 4 points in $\mathfrak{X}_5 \in \mathcal{Sdps}_{of}(\mathfrak{X}_9,5)$ where \mathfrak{X}_9 is any div point set of 9 points (as shown in (3.6)). Each variable in V represents $Assign(\mathfrak{X}_4)$ for a particular element $\mathfrak{X}_4 \in \mathcal{Sdps}_{of}(\mathfrak{X},4)$ where \mathfrak{X} is a div point set of $2^{n-2}+1$ points for some $n \in \mathbb{N}_{\geq 5}$. If there exists no value-assignment Z satisfying formulae in C, we can be certain that there exists no div point set of $2^{n-2}+1$ points, \mathfrak{X} , where it satisfies (3.7) but does not satisfy, (3.8) as mentioned above, and, consequently, proving the the n-instance of conjecture.

Remark. $UNSAT_{multiset}^{\mathfrak{DPS}^+}$ can be reduced into the Boolean Unsatisfiability Problem, the complement of SAT, by first converting each multiset in A into the DNF formula below:

$$\bigvee_{v_0 \in \mathcal{A}} (\neg v_0 \land \bigwedge_{v_1 \in \mathcal{A} \setminus \{v_0\}} v_1) \lor \bigvee_{\mathcal{A}_{|3|} \in \mathcal{A}_{|3|}^*} (\bigwedge_{v_0 \in \mathcal{A}_3} \neg v_0 \land \bigwedge_{v_1 \in V \setminus \mathcal{A}_{|3|}} v_1) \lor (\bigwedge_{v_0 \in \mathcal{A}} \neg v_0)$$
(3.14)

where $\mathcal{A}_{|3|}^* = \{\mathcal{A}_{|3|} \in \mathbb{P}(\mathcal{A}) : |\mathcal{A}_{|3|}| = 3\}$ and \mathcal{A} denotes the set of variables in each multiset, and converting each multiset in B into the DNF formula below:

$$\bigvee_{v \in \mathcal{B}} v \tag{3.15}$$

where \mathcal{B} denotes the set of variables in each multiset, then joining all these DNF formulae conjunctively. One may realize that, in the case when $\mathcal{B} = \mathcal{A}$, the conjunction of $\bigvee_{u \in \mathcal{B}} u$ and $\bigwedge_{v_0 \in \mathcal{A}} \neg v$ gives a tautology, and thus for the instance of $UNSAT_{multiset}^{\mathfrak{DPS}^+}$ where n = 5, we would have a simpler propositional formula. The same observation can be made in the

set of FOL formulae of such instance of $UNSAT_{multiset}^{\mathfrak{DP8}^+}$ where in order to satisfy (3.13), we would need to restrict (3.12) to $\forall a \in A \ a \in \{[1,1,1,1,0],[1,1,0,0,0]\}.$

We thereby conclude that a plausible approach to proving the upper-bound of the Erdös-Szekeres conjecture through $UNSAT_{multiset}^{\mathfrak{DPS}^+}$ is by induction i.e. we first solve for the instance of $UNSAT_{multiset}^{\mathfrak{DPS}^+}$ where n=5 - apparently accomplishable with a modern SAT solver running on a high performance computer - and then we prove the inductive hypothesis that $\forall m \in \mathbb{N}_{\geq 5}$ $UNSAT(m) \Rightarrow UNSAT(m+1)$ where UNSAT(k) denotes the unsatisfiability of the instance of $UNSAT_{multiset}^{\mathfrak{DPS}^+}$ in which n=k.

Remark. The Erdös-Szekeres conjecture would not be disproven even if a certain instance of $UNSAT_{multiset}^{\mathfrak{DPS}^{8+}}$ turns out to yield False (i.e. it is satisfiable), since satisfying the constraints only implies that there exists a *div point set* of $2^{n-2} + 1$ points for a particular $n \in \mathbb{N}_{>5}$ where

- I. none of its sub div point sets of n points is isomorphic to $Conv_n$
- II. each of its sub div point sets of 5 points has 4, 2 or 0 distinct sub div point sets of 4 points isomorphic to $Conc_4^1$

from which we cannot conclude that such *div point set* is in $\mathfrak{DF8}^+$, unless it too satisfies the stronger version of *Theorem 2* i.e. unless proven so, we should not rule out the possibility for a *div point set* of 5 points to not be in $\mathfrak{DF8}^+$ despite having 4, 2 or 0 distinct *sub div point sets* of 4 points isomorphic to $Conc_4^1$ (with the remaining isomorphic to $Conv_4$).

To disprove the Erdös-Szekeres conjecture, not only do we need to show that (3.2) is false, we need to demonstrate that there exists no other constraints besides (2.10), (2.11), and (2.12) which $\mathfrak{X} \in \mathfrak{DPS}^*$ has to satisfy such that there exists an interpretation for $\pi_1(\mathfrak{X})$ as some set of points in \mathbb{E}^2 i.e. Axiom 1's consistency with Euclidean geometry.

References

- [1] Erdös, P. and Szekeres, G. A Combinatorial Problem in Geometry, Compositio Math. 2, 463-470, 1935.
- [2] Erdös P. and Szekeres, G. On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3-4 (1961), 53-62. Reprinted in: Paul Erdös: The Art of Counting. Selected Writings (J. Spencer, ed.), 680-689, MIT Press, Cambridge, MA, 1973.
- [3] Töh, G. and Valtr, P. Note on the Erdös-Szekeres Theorem, Discr. Comput. Geom. 19, 457-459, 1998.
- [4] Kleitman, D. and Pachter, L. Finding Convex Sets among Points in the Plane, Discr. Comput. Geom. 19, 405-410, 1998.

[5] Szekeres, G. and Peters, L. Computer Solution to the 17-Point Erdös-Szekeres Problem. ANZIAM J. 48, 151-164, 2006.