Assignment 1

 You are given a transaction data shown below from a fast food restaurant. For simplicity, we assign the meal items short names [M1-M5]. For all the min_sup=2/9 and min_conf=7/9.
 Apply Apriori and identify all k-frequent itemsets. Find all the strong association rules and note their confidence.

Meal Item	List of Items	
Order 1	{M1, M2, M5}	
Order 2	{M2, M4}	
Order 3	{M2, M3}	
Order 4	{M1, M2, M4} {M1, M3}	
Order 5		
Order 6	{M2, M3}	
Order 7	{M1, M3}	
Order 8	{M1, M2, M3, M5}	
Order 9	{M1, M2, M3}	

2. Define maximal and closed frequent itemset. Identify the above from the database:

Transaction ID	Items
T1	{A, C, T, W}
T2	{C, D, W}
T3	{A, C, T, W}
T4	{A, C, D, W}
T5	{A, C, D, T, W}
T6	{ C, D, T }

 Consider the database d shown in the table below. Consider min_sup =60% and min_conf=80%. Apply Apriori and identify all k-frequent itemsets. Find all the strong association rules and note their confidence.

TID	Items
T100	{M, O, N, K, E, Y}
T200	{D, O, N, K, E, Y }
T300	{M, A, K, E}
T400	{M, U, C, K, Y}
T500	{C, O, O, K, I, E}

 Consider the transaction database as follows and indicate closed and maximal frequent item sets

TID	Items
1	{A, B, C}
2	{A, B, C, D}
3	{B, C, E}
4	{A, C, D, E}
5	{D, E}

5. Draw the decision tree for the following dataset:

Color	Туре	Doors	Tires	Class
Red	SUV	2	Whitewall	+
Blue	Minivan	4	Whitewall	-
Green	Car	4	Whitewall	
Red	Minivan	4	Blackwall	2
Green	Car	2	Blackwall	+
Green	SUV	4	Blackwall) -
Blue	SUV	2	Blackwall	J. T.
Blue	Car	2	Whitewall	+
Red	SUV	2	Blackwall	-
Blue	Car	4	Blackwall	-

6. Construct a decision tree for the following data:

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Assume minimp = 4

1,8,4,5	123mgs	2,4,5,6	13.5.6	1,2,3,4,5
			2245 54 3	
345 AO (8)	135	1 2456	J	⊗ <i>≫</i>
ACW)				

Closed frequent itemset: {A,c,w}, {c,p}, {c,T}{c,w}, {c}, {w}, Maximal frequent itemset: {A,c,w}, fc, t), fc, t}

£C, D, T3

3. TID Items {M,O,N,K,E,Y} TIOO {D,O,N,K,E,Y} T200 T300 {M, A, K, E} T400 {M,U,C,K,Y} T500 { c,0,0, k, I, E}

C1= { [M}, {0}, {N}, {K}, {E}, {Y}, {D}, {A} {U}, {C}, {I}}

musup=60/ mm-conf = 80/

Itemset	Support
{M}	3
103	3
[N]	2 X
1K5	ц
{E}	3
{D}	1.×
EA3	1 *
{u}	2 1
403	11
{I}	1 //

L, = { { M }, { 0 }, { k }, { E }, { V } } C2={{M,O}, {M, K}, {M,E}, {M,Y}, {O,K}, {O,E}, {0,43, {K, E3, {K, 43, {E, 43}}

Itenset	Support
₹M,03	1 X
{M,K}	2 x
{M,E}	2 x
[K.M]	
£0, K}	3
{0,E}	2 X
10,45 FK.EJ	4
{K, Y}	3
£ , 43	2 X

: L2={{M, K}, {O,K}, {O,E}, {K,E}, {K,Y}} C3={ 0, K, E}

> Support Itemset {O, K, E}

.. L3=C3

	COLOR	TYPE	DOORS	Tyres	CLASS
1	Red	SUV	2.	WhiteWall	+
2	Blue	Miniman	4	Whitewall	
3	Green	Can	4	whitewall	-
4	Red	Minian	4	Blackwall	-
5	Green	can	2	Blackwall	+
6	Green	suv	4	Blackwoll	-
٦	Blue	SUV	2	Backwall	-
8	Blue	Can	2	Whitewall	+
9	Red	30V	2	Blackwall	-
0	Blue	Can	4	Blackwall	-

$$I_{10}(D) = I(3, 7)$$

= $-\frac{3}{10}log_{2} - \frac{3}{10}log_{2} I_{0}$
= 0.8813

=0.3{-\$109\$(\$)-\$1092(\$)}+0.4{-\$1092(\$)}-\$1092(\$)}+0.3{-\$1092(\$)}-\$1092(\$)} =03(0.9183)+0.4(0.8113)+0.3(0.9183)=0.2755+0.3245+0.2755

Infatype(D)=4I(1,3) +2I(0,2)+3I(2,2)=0.4(0.8113)+0+0.3(1) =0.3245+0.3=0.6245

 $Into Doors (D) = \frac{5}{10} I(3,2) + 5I(0,5) = 0.5 \left[-\frac{3}{5} log_{\frac{3}{5}} - \frac{2}{5} log_{\frac{3}{5}} -$ = 0.5 (0.9109) = 0.4855

Intogres(D) = 4 I(2,2) + 6 I(1,5) = 0.4(1)+0.62-6 log_6- 5 log_5 }=0.4+0.6(0.65) =0.4+0.39=0.19

Attribute	1 Gain
Color	0.8813 - 0.8755 = 0.0058
Type	0.8813 - 0.6245 = 0.2568
Doors	0.8813 - 0.4855 = 0.3958
Types	0.8813 - 0.79 = 0.0913

... Choose Doors

COLOR	TYPE	TYRES	CLASS
Red	Mileral	Whitewall	+
Green	P Car	Blackwall	+
Blue	300	Blackwoll	-
Blue	Can	Whitewall	+
Red	SUV	Blackwall	-

het D, be dataset D where Doors = 2 Info (D,) = I(3,2) = 0.9709 Infocolor(D,) = +2 I(1,1) + I(1,0) +号エ(いり) = 0.4(1)+0.2(0)+0.4(1) Infogre(D,)=====(1,2)+===(2,0) = 0.6 (0.9183)+0.4(0) -0.5509 Info byres(D,)====[2,0)+=[(I(1,2))

= 0.4(0)+0.6(0.9183)=0.5509

Attribute Gain
Color 0.9709-0.8=0.1709
Type 0.9709-0.5509=4200
0.9709-0.5509=0.42

6

Types

Both Type and Tyres have 8 lowest Gain,
we can choose either . . . choose Type

→ Let Dia be the doteset where Dototet Doors=2 and Type = SUV

Color Tyres Class Info $(D_{12}) = I(1,2) = 0.9183$ 1 Red Whitewell + Info $(D_{12}) = \frac{2}{3}I(1,1) + \frac{1}{3}I(0,1)$ 7 Blue Blackwoll - = 0.66(1) + 0.33(0) = 0.66Info $(D_{12}) = \frac{1}{3}I(1,0) + \frac{2}{3}I(0,2) = 0$

Attribute 4ain : Split using Tyres
Color 0.2583
Tyres 0.9183

→ het D12 be The subset of D, where Doors=2 and
Type= Car

Color Types Class Info $(D_2) = I(1,1) = 1$ 5 Green Blackwoll + Info $(D_2) = \frac{1}{2}I(1,0) + \frac{1}{2}I(0,1)$ 8 Blue Whitewoll - Info $D_1(D_1) = \frac{1}{2}I(1,0) + \frac{1}{2}I(0,1) = 0$

: Color and Tyres both have Gain = 1, we can choose either ... choose Color

	100				8
6	AGE	INCOME	STUDENT	CREDIT_ RATING	BUYS_ COMPUTER
1	L=30	high	No	Fain	No
2	Z=30	high	No	Excellent	No
3	3140	high	No	Fair	Yes
4	740	medium	No	Fair	Yes
5	740	law	Yes	Fair	Yes
6	740	سمد	Yes	Excellent	No
٦	3140	ما	Yes	Excellent	Yes
8	<=30 ∠=30	medium	No	Fair	No
9	Z=30	مام	Yes	Fain	Yes
10	740	medium	Yes	Fain	Yes
11	L=30	medium	Yes	Excellent	Yes
12	3140	medium	No	Excellent	Yes
13	3140	high	Yes	Fair	Yes
14	740	medium	No	Eccellent	No

6. Injo(D) =
$$I(5,9) = -\frac{5}{10} \log_2(\frac{5}{11}) - \frac{9}{110} \log_2(\frac{9}{11}) = 0.9403$$

Infoge(D) = $\frac{5}{11}I(\frac{3}{3}) + \frac{1}{11}I(\frac{1}{4}0) + \frac{5}{11}I(\frac{3}{3}2)$

= $\frac{5}{111}I(\frac{5}{2}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{2}{5}] + \frac{1}{11}I(\frac{1}{4}0) + \frac{5}{11}I(\frac{5}{3}\log_2\frac{3}{5} - \frac{3}{5}\log_2\frac{2}{5}]$

= $\frac{5}{111}I(\frac{3}{4}0) + 0 + \frac{5}{111}I(\frac{3}{4}0) +$

 $Info:_{intome}(D_i) = \frac{1}{5}I(2,0) + \frac{1}{5}I(1,1) + \frac{1}{5}I(1,0) = 0 + 0.4(1) + 0 = 0.4$ $Info:_{intome}(D_i) = \frac{3}{5}I(0,3) + \frac{2}{5}I(2,0) = 0$ $Info:_{intome}(D_i) = \frac{3}{5}I(1,2) + \frac{2}{5}I(1,1) = 0.6(0.9183) + 0.4(1) = 0.5509 + 0.4 = 0.9509$ $Info:_{intome}(D_i) = \frac{3}{5}I(1,2) + \frac{2}{5}I(1,1) = 0.6(0.9183) + 0.4(1) = 0.5509 + 0.4 = 0.9509$ $Attribute \qquad Gain$

Income 0.5709 Student 0.9709

Choose Student

Credit_Roting 0.02

	Income	Student	Credit	Buys	0					
4 5 6	medium	No	Roting	computer						
	Low	Yes	Fair	Yes						
	day	Yes	Excellent	Ves						
10	medium	Yes	Fair	Yes						
14	medium		Excellent	No						
	T Company	No	Excellent							
Info(D3)=I(3,2)=0.9709										
Infounceme(D ₃) = $\frac{3}{5}I(a,1) + \frac{2}{5}I(1,1) = 0.6(0.9133) + 0.4(1)$ = 0.5509 + 0.4 = 0.9509										
uncome 3 5 5 509 +0.4 = 0.9509										
T (D) $2T(1)+3T(2,1)=0.9509$										
Infostudent (D3) = = I(1,1) + 3 I(2,1) = 0.9509										
Informedit_roting 3) = 3I(3,0)+2I(0,2)=0										
Attribute Gain . Chasse credit_roting										
Attribute Gain : Choose credit-re					_,					
100										
11.19	Student Credit_Rating	0.9709								
A4e 1,2,3,4,5,6,7,8,9,10,11,12,13,14										
1=30 740										
		/	3140							
	,9,11 Studer	F) (Yes)	[Credit_	Rating 4,5,6,19,11					
1,2,8	,9,1110	3,-	7, 12, 13	- 11/2	Fair					
F. B.				Excellent	Land					

6,14 (40)

(Tes) 9,10

1,2,8 (10)