Algebra - Lista 9

Zadanie 1 Uzupełnij do bazy ortonormalnej podane układy wektorów:

- $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2});$ $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}), (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}).$

Zadanie 2 Dokonaj ortonormalizacji baz:

- (1,2,2),(1,1,-5),(3,2,8);
- (1,1,1),(-1,1,-1),(2,0,1).

Zadanie 3 (Macierz Grama) Zdefiniujmy macierz Grama układu wektorów $\{v_1,\ldots,v_k\}$ w przestrzeni V z iloczynem skalarnym jako

$$G(A) = (\langle v_i, v_j \rangle)_{i,j=1,\dots,k}$$
.

Udowodnij, że

- $\det(G(A))$ jest nieujemny
- det(G(A)) = 0 wtedy i tylko wtedy, gdy A jest liniowo zależny.

Wskazówka: Co dzieje się z macierzą Grama, gdy ortonormalizujemy ten układ wektorów?

Zadanie 4 Niech $\{e_1,\ldots,e_k\}$ będzie bazą ortonormalną podprzestrzeni $W \leq V$. Pokaż, że rzut prostopadły

$$Pv = \sum_{i} \langle e_i, v \rangle e_i$$

istotnie jest rzutem, tj. $P^2 = P$. Pokaż też, że $v - Pv \in W^{\perp}$ dla każdego wektora v.

Zadanie 5 Niech $W \leq V$, gdzie V jest przestrzenią liniową z iloczynem skalarnym. Pokaż, że

- Dopełnienie ortogonalne W^{\perp} jest przestrzenią liniową.
- $W \cap W^{\perp} = \emptyset$
- \bullet $W + W^{\perp} = V$
- dla każdego wektora $v \in W$ reprezentacja $v = w + w^{\perp}$, gdzie $w \in W$ i $w^{\perp} \in W^{\perp}$, jest jedyna.

Zadanie 6 Niech F będzie izometrią. Pokaż, że $\det F \in \{-1,1\}$. Udowodnij, że złożenie izometrii jest jest izometria.

Zadanie 7 Pokaż, że następujące przekształcenia są izometriami.

- ullet obrót o kąt lpha na płaszczyźnie
- zamiana jednej ze współrzędnych (w bazie ortonormalnej) na przeciwną.

Zadanie 8 Zdefiniujmy iloczyn skalarny na przestrzeni wielomianów jako

$$\langle g, h \rangle = \int_0^1 g(x)h(x)\mathrm{d}x.$$

Dokonaj ortonormalizacji (dowolnej) bazy przestrzeni wielomianów stopnia nie większego niż 2.

Zrzutuj prostopadle na tą przestrzeń wielomiany x^3 , $x^3 + x^2$, $x^3 + x^2 + x$, $x^3 + x^2 + x + 1$. Wskazówka: Rzut jest przekształceniem liniowym.

Zadanie 9 Sprawdź, czy podane poniżej macierze sa dodatnio określone

$$\begin{bmatrix} 1 & 2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 6 & 2 & 4 \\ 2 & 1 & 1 \\ 4 & 1 & 5 \end{bmatrix}, \quad \begin{bmatrix} 6 & 7 & 3 & 3 \\ 7 & 15 & 7 & 3 \\ 3 & 7 & 11 & 1 \\ 3 & 3 & 1 & 2 \end{bmatrix}.$$

Zadanie 10 Przedstaw poniższe macierze dodatnio określone w postaci A^TA .

$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix} .$$

Wskazówka: Dla przypomnienia: jako macierz A możesz wziąć macierz $M_{\mathcal{E} \to \mathcal{A}}$, gdzie \mathcal{E} to baza standardowa, zaś \mathcal{A} : baza ortonormalna.