Análise de Séries Temporais - Trabalho 2

Davi Guerra Alves - Henrique Oliveira Dumay

12/07/2023

Apresentação

A série analisada consiste na série número 1686 pertencente ao banco de dados da competição de previsão M3, disponível no pacote *Mcomp* do software R. A série descreve o número de carregamentos com código *TD-AUTOUNITS*, mensalmente, de outubro de 1984 a setembro de 1993.

Figure 1: Comportamento da série ao longo do tempo

Decomposição MSTL

Série Original

Figure 2: Decomposição MSTL

A decomposição MSTL mostra os componentes de tendência, sazonalidade e erro da série estudada. Percebe-se a presença de uma tendência decrescente, com comportamento sazonal com certa regularidade ao longo do tempo.

Modelos ARIMA

A presença do componente de tendência explicita a não-estacionaridade da série original. A função ndiffs() é utilizada para estimar o número de diferenças exigidas para tornar a série estacionária por meio de um teste de raíz unitária, com a hipótese nula de que a série tem raízes estacionárias contra a hipótese alternativa de que a série tem raíz unitária. O teste retorna o menor número de diferenças exigidas para o teste em um nível de significância de 95%. Já a função nsdiffs() utiliza testes de raíz unitária para determinar o número de diferenças sazonais para tornar a série estacionária.

Com o uso das funções acima, obteve-se o valor para d=1 e D=0. Os modelos candidatos terão a forma:

$$SARIMA(p, 1, q) \times (P, 0, Q)_{12}$$

A estacionariedade da série pode ser testada utilizando o teste Kwiatkowski-Phillips-Schmidt-Shin (KPSS), com a hipótese nula de que a série é estacionária. O teste resulta em um valor de 0.0221285, com p-valor de 0.1, que não nos permite rejeitar a hipótese nula a um nível de significância $\alpha = 0,05$.

Consideramos que a série é, agora, estacionária, observamos os gráficos da função de autocorrelação (ACF) e da função de autocorrelação parcial (PACF) em busca de possíveis autocorrelações entre os diferentes atrasos da série. Os gráficos a seguir ilustram a série diferenciada, assim como os gráficos das funções de ACF e PACF.

Figure 3: Gráficos ACF e PACF

Dos gráficos apresentados, pode-se afirmar que a série diferenciada não apresenta um padrão claro de autocorrelações simples e sazonais que permita inferir diretamente a modelagem. Neste sentido, serão testados valores diferentes para p, P, q e Q e os diferentes modelos serão comparados por meio do critério AIC.

Para os diferentes valores de (p, q, P, Q) teremos:

```
## p = 0 , q = 0 , P = 0 , Q = 0 , AICc = 1782.086
## p = 0 , q = 1 , P = 0 , Q = 0 , AICc = 1772.446
## p = 0 , q = 3 , P = 0 , Q = 0 , AICc = 1765.736
## p = 2 , q = 3 , P = 0 , Q = 0 , AICc = 1745.548
## p = 0 , q = 2 , P = 1 , Q = 0 , AICc = 1745.396
## p = 1 , q = 1 , P = 1 , Q = 0 , AICc = 1744.079
## p = 2 , q = 2 , P = 1 , Q = 0 , AICc = 1743.72
## p = 3 , q = 3 , P = 1 , Q = 0 , AICc = 1741.292
## p = 0 , q = 1 , P = 1 , Q = 1 , AICc = 1735.097
## p = 1 , q = 1 , P = 1 , Q = 1 , AICc = 1733.713
```

O modelo com menor AICc foi o $SARIMA(1,1,1) \times (1,0,1)_{12}$.

Os coeficientes do modelo proposto, portanto, serão obtidos do cálculo da função Arima com o modelo acima proposto. Os coeficientes do modelo terão a seguinte forma:

$$\phi_1 = 0,3152; \theta_1 = -0,9218; \varphi = 0,9606; \vartheta = -0,7359$$

Para o modelo ARIMA utilizando transformação Box-Cox, os valores para d e D utilizando as funções ndiffs() e nsdiffs() são, respectivamente, 1 e 0. De acordo com o teste KPSS, não se pode rejeitar a hipótese nula da série transformada ser estacionária (KPSS = 0.021624 e p-valor = 0.1). O valor do parâmetro λ da transformação de Box-Cox é 0.09559902.

Figure 4: Gráficos ACF e PACF da série transformada (BoxCox)

A análise gráfica da funções de autocorrelação e autocorrelação da série transformada não permite a inferência a respeito de seus parâmetros de maneira clara. Procede-se a pesquisa de valores de p, q, P e Q de forma manual de acordo com o critério de AICc.

```
## p = 0 , q = 0 , P = 0 , Q = 0 , AICc = 153.6586
## p = 0 , q = 1 , P = 0 , Q = 0 , AICc = 142.2782
## p = 0 , q = 3 , P = 0 , Q = 0 , AICc = 136.6817
## p = 1 , q = 3 , P = 0 , Q = 0 , AICc = 136.3155
## p = 2 , q = 3 , P = 0 , Q = 0 , AICc = 136.3155
## p = 0 , q = 1 , P = 1 , Q = 0 , AICc = 107.1571
## p = 0 , q = 1 , P = 1 , Q = 1 , AICc = 103.1689
## p = 0 , q = 2 , P = 1 , Q = 1 , AICc = 99.51568
## p = 1 , q = 1 , P = 1 , Q = 1 , AICc = 98.80396
## p = 3 , q = 3 , P = 1 , Q = 1 , AICc = 95.45263
```

Para a série transformada, temos que o menor nível de AICc foi encontrado com os parâmetros p=3, q=3, P=1 e Q=1, cujo modelo pode ser descrito por $SARIMA(3,1,3)\times (1,0,1)_{12}$, com coeficientes iguais a:

$$\phi_1=1,2866; \phi_2=-1,0479; \phi_3=0,2771; \theta_1=-2,0555; \theta_2=2,0480. \theta_3=-0,9371; \varphi=0,9995; \vartheta=-0,9649, \varphi=0,0480. \theta_3=-0,0480. \theta$$

Análise de Resíduos

Os resíduos do modelo ARIMA sem transformação apresentam o seguinte comportamento gráfico:

Figure 5: Resíduos ARIMA sem transformação

Já os resíduos do modelo ARIMA com transformação Box-Cox apresentam o seguinte comportamento gráfico:

Figure 6: Resíduos ARIMA com transformação boxcox

Graficamente, observa-se que os resíduos de ambos os modelos parecem distribuir-se simetricamente ao retor da origem e não apresentam autocorrelações bem definidas. Precisa-se, entretanto, testá-los para estacionariedade, independência e distribuição normal. Essas hipóteses serão testadas conforme se segue, todas assumindo nível de significância $\alpha = 0.05$.

A estacionaridade será testada a partir do teste Kwiatkowski-Phillips-Schmidt-Shin (KPSS), com a hipótese nula de que a série é estacionária. O teste para o modelo $SARIMA(1,1,1) \times (1,0,1)_{12}$ e para o mesmo modelo, utilizando a transformação de Box-Cox:

Modelo	KPSS	P-valor
SARIMA sem Box-Cox SARIMA com Box-Cox		0.1 0.1

De acordo com o teste KPSS, não se pode rejeitar a hipótese de estacionariedade dos resíduos de ambos os modelos.

O teste de independência dos resíduos é realizado a partir do teste Ljung-Box, com a hipótese H_0 de que os resíduos são idenpendentemente distribuídos. O teste apresenta os seguintes valores para os dois modelos, com um lag igual a 15:

Modelo	Chi-Quadrado	Graus de liberdade	P-valor
SARIMA sem Box-Cox	23.72163	15	0.069974
SARIMA com Box-Cox	18.7508953	15	0.2252448

Os resultados acima mostram que a independência dos resíduos não pode ser rejeitada ao nível de significância de 5% em ambos os modelos.

A normalidade dos resíduos é testada com o teste Shapiro-Wilk de Normalidade, com H_0 de que os resíduos apresentam distribuição normal. O valor do teste estatístico para os dois modelos trabalhados é:

Modelo	W	P-valor
SARIMA sem Box-Cox SARIMA com Box-Cox	0.986694 0.9846868	$0.3620588 \\ 0.2527214$

Do resultado acima, não se pode rejeitar a hipótese de normalidade dos resíduos de ambos os modelos, com nível de significância de 5%.

Modelos ETS

O modelo ETS (Error, trend and seasonal) permite descrever os modelos de alisamento exponencial em função dos tipos de suas componentes: tendência, sazonalidade e erro. O modelo utiliza três caracteres como identificação de acordo com a terminologia adotada por Hyndman et al. (2002) e Hyndman et al. (2008). A primeira letra se refere ao componente do erro; a segunda, ao componente da tendência e a terceira, da sazonalidade. A série anteriormente descrita apresenta tendência e sazonalidade claras à decomposição realizada e, portanto, trabalharemos com componentes de modelagem que contenham essas características. Quando transformada, será utilizado o parâmetro $\lambda = 0.095599$.

Os modelos que apresentam as características observadas na decomposição e seus respectivos AICcs, considerando um modelo não transformado e um modelo com transformação de Box-Cox, estão representados na tabela abaixo:

Parâmetros	AICc Modelo sem Box-Cox	AICc Modelo com Box-Cox
AAA	1950.568	290.3203
AAA Dumped	1953.429	295.7952
MAA	1947.757	Combinação não possível
MAA Dumped	1942.956	Combinação não possível
MAM	1925.053	Combinação não possível
MAM Dumped	1928.537	Combinação não possível
MMM	1923.268	Combinação não possível
MMM Dumped	1928.128	Combinação não possível

O modelo com menor AICc e, portanto, o modelo com melhor desempenho comparativo, para o modelo não transformado é o "MMM", em que apresenta componentes multiplicativos para previsões de erros, tendência e sazonalidade. Já para o modelo com transformação de Box-Cox, o modelo com menor AICc é o "AAA".

O modelo selecionado sem transformação apresenta a seguinte estrutura, com $\alpha=0.111, \beta=10^{-4}, \gamma=10^{-4}$:

$$\mu_{t} = l_{t-1}b_{t-1}s_{t-m}$$

$$l_{t} = l_{t-1}b_{t-1} + \frac{\alpha \epsilon_{t}}{s_{t-m}}$$

$$b_{t} = b_{t-1} + \frac{\beta \epsilon_{t}}{s_{t-m}l_{t-1}}$$

$$s_{t} = s_{t-m} + \frac{\gamma \epsilon_{t}}{l_{t-1}b_{t-1}}$$

Enquanto o modelo selecionado para o conjunto de dados transformados por Box-Cox tem a seguinte estrutura, com $\alpha=0.1245, \beta=10^{-4}, \gamma=10^{-4}$:

$$\mu_{t} = l_{t-1} + b_{t-1} + s_{t-m}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \epsilon_{t}$$

$$b_{t} = b_{t-1} + \beta \epsilon_{t}$$

$$s_{t} = s_{t-m} + \gamma \epsilon_{t}$$

 ${\bf A}$ decomposição do modelo ETS "MMM" e do modelo ETS "AAA" com transformação de Box-Cox são ilustrados abaixo.

Decomposition by ETS(M,M,M) method

Figure 7: Decomposição ETS

Decomposition by ETS(A,A,A) method

Figure 8: Decomposição ETS

Resíduos

Os resíduos do modelo ETS sem transformação selecionado são ilustrados na figura a seguir:

Figure 9: Análise de Resíduos do ETS

Enquanto os gráficos para o modelo ETS selecionado usando tranformação de Box-Cox são ilustrados abaixo:

Figure 10: Análise de Resíduos do ETS do modelo com Box-Cox

Observa-se que os resíduos parecem comportar-se de maneira aleatória, com distribuição normal e sem autocorrelações importantes entre diferentes intervalos. Os testes formais encontram-se na tabela abaixo, a exemplo do anteriormente realizado:

Teste	MMM sem dumped	p-valor	AAA com dumped Box-Cox	p-valor
KPSS	0.12301	0.1	0.12936	0.1
Ljung-Box	25.522	0.043	31.196	0.008
Shapiro-Wilk	0.98751	0.416	0.99329	0.8794

Os resultados acima apresentados sugerem que os resíduos do modelo são estacionários, apresentam distribuição normal, entretanto, é possível a rejeição da hipótese nula de independência em ambos os casos, como pode ocorrer em métodos ETS, que objetivam a previsão de dados e não sua modelagem.

Estudo de desempenho preditivo por janela deslizante

Considerante os dois modelos ARIMA e os dois modelos ETS anteriormente escolhidos, será realizado um estudo de desempenho preditivo por janela deslizante para a série M3 com ID 1686 com conjunto de treino consistindo nos últimos 14 períodos e considerando um horizonte preditivo de até 5 meses a frente. Para tal será utilizado a função tsCV, que calcula os erros de previsão obtidos aplicando a função de previsão a subconjuntos da série temporal, conforme ilustrado na figura abaixo. Os modelos utilizados para previsão são aqueles apresentados anteriormente: ARIMA, ARIMA com Box-Cox, ETS e ETS com box-cox.

	1	2	3	 	 n-12	n-13	n-14							n
Passo 1								1	2	3	4	5		
Passo 2									1	2	3	4	5	
Passo 3										1	2	3	4	5
											1	2	3	4
												1	2	3
													1	2
														1

Figure 11: Janelas deslizantes

Para comparação dos resultados, foi calculado o erro absoluto médio (MAE) para cinco horizontes de previsão.

Table 6: Erro absoluto médio

	ARIMA	ARIMA Box-Cox	ETS	ETS Box-Cox
h=1	618.7394	650.5141	607.9737	619.6107
h=2	682.1576	655.0000	689.5125	680.8275
h=3	721.7444	676.1479	694.9449	691.8927
h=4	897.2101	852.4361	906.0159	881.6696
h=5	1269.6113	1335.7609	1257.1669	1233.9927

Os resultados dos erros médios absolutos para horizontes entre 1 e 5 períodos mostra que os quatro modelos apresentam um resultado semelhante. Para o primeiro horizonte, os modelo ETS mostraram um erro médio menor, enquanto para os horizontes 2, 3 e 4, o modelo ARIMA com transformação de Box-Cox mostrou menor erro absoluto médio. Para o 5° horizonte, os modelos ETS e o modelo ARIMA sem transformação mostraram um erro absoluto médio menor que o modelo ARIMA com box-cox.

Figure 12: Erros absolutos médios a cada horizonte de previsão

Resultados

Os gráficos dos modelos ARIMA e ETS anteriormente especificados foram traçados abaixo, no qual, em azul é possível observar previsões pontuais e, em cinza, os intervalos para as previsões em cada horizonte de tempo. Observa-se que todos os modelos levam a previsões com formas gráficas similares, entretanto, é possível notar um maior intervalo para as previsões no modelo $ARIMA(1,1,1) \times (1,0,1)_{12}$.

Comparando os 4 modelos estimados anteriormente com os seguintes modelos: Auto Arima, SES, Holt, Auto ETS, STLF, Bats, Tbats, temos os seguintes da métrica MAE, no conjunto de testes:

Figure 13: Previsões pontuais e intervalares

Table 7: Comparação do Erro absoluto médio com todos os modelos

Modelos	MAE
ARIMA	444.852
ARIMA com Box-Cox	503.719
ETS (MMM)	444.336
ETS com Box-Cox (AAA)	449.663
Auto ARIMA	857.577
SES	718.517
Holt	717.372
Auto ETS	319.458
STLF	311.043
Bats	286.61
Tbats	276.817

O modelo TBATS foi o que apresentou o menor erro absoluto médio no conjunto de dados de teste (276.817). O modelo BATS apresentou o segundo menor valor, seguido pelo modelo STLF e pela função automática ETS, que resultou em modelo MNM. .

Conclusão

A série ID 1686 do banco de dados M3, é uma série que apresenta tendência negativa e sazonalidade. Ela é tornada estacionária com uma diferenciação simples. A modelagem da série por modelos ARIMA e ETS manalmente selecionados resultou em um modelo $SARIMA(1,1,1) \times (1,0,1)_{12}$, um modelo utilizando transformação Box-Cox $SARIMA(3,1,3) \times (1,0,1)_{12}$, um modelo ETS MMM e um modelo, utilizando transformação de Box-Cox, AAA. Todos os modelos estimados apresentam resultados preditivos semelhantes, com erros absolutos médios próximos para previsões em cinco horizontes. A análise preditiva, utilizando um segundo conjunto de dados de teste, mostrou que os benchmarks TBATS, BATS, STLF e ETS apresentaram os menores erros absolutos médios.

Código utilizado

```
M3[[id]] %>% plot(xlab="Ano", ylab="N de carregamentos")
# Gráfico da série original
mstl(serie, s.window= c(12)) %>%
  plot(main="Série Original")
# Número de diferenças
serie %>%
  ndiffs()
                      \# d = 1
serie %>%
  diff() %>%
  nsdiffs()
                       \# D = 0
serie_dif <- serie %>%
  diff()
# Estacionariedade da série diferenciada
kpss.test(serie_dif)
# Gráficos da série diferenciada
par(mfrow=c(3,1), mar=c(1, 1, 1, 1) + 0.5)
plot(serie_dif,main="Série diferenciada")
acf(serie_dif, lag = 5*12, main="ACF")
pacf(serie_dif, lag = 5*12, main="PACF")
# Gráfico da série diferenciada com transformação BoxCox
par(mfrow=c(3,1), mar=c(1,1,1,1) + 0.5)
plot(serie_box_cox_dif,main="Série diferenciada", ylab = "", xlab = "")
acf(serie_box_cox_dif, lag = 5*12, main="ACF", ylab = "")
pacf(serie_box_cox_dif, lag = 5*12, main="PACF", ylab = "")
# Iterar a procura do melhor SARIMA
melhor_AICc = Inf
for (P in 0:1) {
  for (Q in 0:1) {
    for (p in 0:3) {
      for (q in 0:3) {
        fit = Arima(serie, order=c(p,1,q), seasonal=c(P,0,Q), lambda = NULL)
        if (fit$aicc < melhor_AICc) {</pre>
          melhor_AICc = fit$aicc
          cat("p =",p,", q =",q,", P =",P,", Q =",Q,", AICc =", fit$aicc, "\n")
      }
   }
  }
}
# Gráficos SARIMA(111)x(101)[12]
plot(fit_arima$residuals, ylab = "Residuos", xlab = "")
acf(fit_arima$residuals, main="", xlab = "")
```

```
pacf(fit_arima$residuals, main="", xlab = "")
qqnorm(fit_arima$residuals, main="", ylab="QQPlot", xlab="")
qqline(fit_arima$residuals)
# Iterar a procura do melhor SARIMA + BOXCOX
melhor AICc = Inf
for (P in 0:1) {
  for (Q in 0:1) {
    for (p in 0:3) {
      for (q in 0:3) {
        fit = Arima(serie, order=c(p,1,q), seasonal=c(P,0,Q), lambda = 'auto')
        if (fit$aicc < melhor_AICc) {</pre>
          melhor AICc = fit$aicc
          cat("p =",p,", q =",q,", P =",P,", Q =",Q,", AICc =", fit$aicc, "\n")
        }
     }
   }
 }
}
# Gráficos SARIMA(3,1,3)x(1,0,1)[12] + BOXCOX
plot(fit_arima_boxcox$residuals, ylab = "Residuos", xlab = "")
acf(fit_arima_boxcox$residuals, main="", xlab="")
pacf(fit_arima_boxcox$residuals, main="", xlab="")
qqnorm(fit_arima_boxcox$residuals, main="", xlab="", ylab="QQPlot")
qqline(fit_arima_boxcox$residuals)
# Análise de resíduos
kpss.test(fit arima$residuals)
kpss.test(fit_arima_boxcox$residuals)
Box.test(fit_arima$residuals, lag = 15, type ="Ljung-Box")
Box.test(fit_arima_boxcox$residuals, lag = 15, type ="Ljung-Box")
shapiro.test(fit_arima$residuals)
shapiro.test(fit_arima_boxcox$residuals)
# Iterar a procura do melhor ETS
componentes_tendencia = c("A","M")
componentes_sazonais = c("A","M")
componentes_erros = c("A","M")
model_ets = function(y,model,damped,lambda){
  tryCatch({
    ets(y,model=model,damped=damped, lambda=lambda)
  },
  error=function(cond)print('nao pode')
  )
}
# Modelos sem BoxCox
for(comp_erro in componentes_erros){
  for(comp_tend in componentes_tendencia){
    for(comp_saz in componentes_sazonais){
     for(damped in c(T,F)){
```

```
modelo = paste0(comp_erro,comp_tend,comp_saz)
       print("----")
       print(paste0("Modelo: ", modelo))
       print(paste0("Damped: ", damped))
       modelo_ets = model_ets(y = serie,
                              model = modelo,
                              damped = damped,
                              lambda = NULL)
       print(modelo_ets['aicc'])
   }
 }
}
# Modelos com BoxCox
lambda = BoxCox.lambda(serie)
for(comp_erro in componentes_erros){
 for(comp_tend in componentes_tendencia){
   for(comp_saz in componentes_sazonais){
     for(damped in c(T,F)){
       modelo = paste0(comp_erro,comp_tend,comp_saz)
       print("----")
       print(paste0("Modelo: ", modelo))
       print(paste0("Damped: ", damped))
       modelo_ets = model_ets(y = serie,
                              model = modelo,
                              damped = damped,
                              lambda = lambda)
       print(modelo_ets['aicc'])
     }
   }
 }
}
# Modelos escolhidos
fit_ets <- ets(serie, model = "MMM", damped = FALSE)</pre>
fit_ets_boxcox <- ets(serie, model = "AAA", damped = FALSE, lambda = lambda)
# Decomposição dos modelos ETS
plot(fit_ets, xlab = "Decomposição ETS")
plot(fit_ets_boxcox, xlab = "Decomposição ETS com box-cox")
# Análise de resíduos
plot(residuo_ets, xlab = "Residuos", ylab = "");
acf(residuo_ets, main="", ylab="", xlab="ACF");
pacf(residuo_ets, main="", ylab="", xlab="PACF");
qqnorm(residuo_ets, main="", xlab = "Gráfico QQ", ylab="");qqline(residuo_ets)
plot(residuo_ets_boxcox, xlab = "Residuos", ylab = "");
acf(residuo_ets_boxcox, main="", ylab="", xlab="ACF");
pacf(residuo_ets_boxcox, main="", ylab="", xlab="PACF");
qqnorm(residuo_ets_boxcox, main="", xlab = "Gráfico QQ", ylab="");qqline(residuo_ets_boxcox)
kpss_ets = kpss.test(residuo_ets)
box_ets = Box.test(residuo_ets, lag = 15, type ="Ljung-Box")
```

```
shap_ets = shapiro.test(residuo_ets)
kpss_ets_boxcox = kpss.test(residuo_ets_boxcox)
box_ets_boxcox = Box.test(residuo_ets_boxcox, lag = 15, type ="Ljung-Box")
shap_ets_boxcox = shapiro.test(residuo_ets_boxcox)
# Janelas deslizantes
f_arima <- function(y, h){</pre>
 forecast(fit_arima, h)
}
f_arima_boxcox <- function(y, h){</pre>
  forecast(fit_arima_boxcox, h,lambda = lambda)
}
f_ets <- function(y, h){</pre>
  forecast(fit_ets, h)
f_ets_boxcox <- function(y, h){</pre>
  forecast(fit_ets_boxcox, h, lambda = lambda)
}
# Calculo dos erros de previsão com a janela flutuante
CV_arima = tsCV(y=serie,
                forecastfunction=f_arima,
                init = length(serie)-14)
CV arima boxcox = tsCV(y=serie,
                        forecastfunction=f_arima_boxcox,
                        h=5,
                        init = length(serie)-14)
CV_ets = tsCV(y=serie,
              forecastfunction=f_ets,
              h=5,
              init = length(serie)-14)
CV_ets_boxcox = tsCV(y=serie,
                     forecastfunction=f_ets_boxcox,
                     h=5,
                     init = length(serie)-14)
# Calculo da métrica de erro para cada horizonte de previsão
# por erro absoluto médio (MAE)
MAE_arima = CV_arima %>% abs() %>% colMeans(na.rm=T)
MAE_arima_boxcox = CV_arima_boxcox %>% abs() %>% colMeans(na.rm=T)
MAE_ets = CV_ets %>% abs() %>% colMeans(na.rm=T)
MAE_ets_boxcox = CV_ets_boxcox %>% abs() %>% colMeans(na.rm=T)
tab = cbind(MAE_arima, MAE_arima_boxcox, MAE_ets, MAE_ets_boxcox);
# Apresentação dos resultados MAE
tab2 <- tab
colnames(tab2) <- c('ARIMA', 'ARIMA Box-Cox', 'ETS', 'ETS Box-Cox')</pre>
kableExtra::kable(tab2 ,"latex", booktabs=T,
                  escape = F,align = "c",
                  caption = "Erro absoluto médio") %>%
```

```
kableExtra::kable_styling(position = "center",
                            latex_options = "HOLD_position") %>%
  kableExtra::row_spec(2:dim(tab2)[2], extra_css = "border-bottom-style: none")
# Construir um gráfico com os horizontes no eixo x e a métrica no eixo y
plot.ts(tab, plot.type='s', col=1:5, lwd=c(2,2), xlab="h",ylab="MAE")
legend(x=1,y=1300, legend=c("ARIMA", "ARIMA com Box-Cox", "ETS", "ETS com Box-Cox"), col=1:4, lwd=c(2
# Comparação dos 4 modelos com os modelos com benchmarks
dados_teste = M3[[id]]$xx
f arima = fit arima %>% forecast(h=h) %>% accuracy(dados teste)
f_arima_boxcox = fit_arima_boxcox %>% forecast(h=h) %>% accuracy(dados_teste)
f_ets = fit_ets %>% forecast(h=h) %>% accuracy(dados_teste)
f_ets_boxcox = fit_ets_boxcox %>% forecast(h=h, lambda = lambda) %>% accuracy(dados_teste)
f_auto_arima = auto.arima(serie) %>% forecast(h=h) %>% accuracy(dados_teste)
f_ses = ses(serie, h=h) %>% forecast(h=h) %>% accuracy(dados_teste)
f_holt = holt(serie, h=h) %>% forecast(h=h) %>% accuracy(dados_teste)
f_auto_ets = ets(serie) %>% forecast(h=h) %>% accuracy(dados_teste)
f_stlf = stlf(serie, h=h) %>% forecast(h=h) %>% accuracy(dados_teste)
f_bats = bats(serie) %>% forecast(h=h) %>% accuracy(dados_teste)
f_tbats = tbats(serie) %>% forecast(h=h) %>% accuracy(dados_teste)
acuracia <- rbind(f arima[2,3],
                  f_arima_boxcox[2,3],
                  f ets[2,3],
                  f_ets_boxcox[2,3],
                  f_auto_arima[2,3],
                  f_ses[2,3],
                  f_holt[2,3],
                  f_auto_ets[2,3],
                  f_stlf[2,3],
                  f_bats[2,3],
                  f_tbats[2,3])
modelos = c("ARIMA", "ARIMA com Box-Cox", "ETS (MMM)",
            "ETS com Box-Cox (AAA)", "Auto ARIMA", "SES",
            "Holt", "Auto ETS", "STLF", "Bats", "Tbats")
resultados = cbind(modelos, round(acuracia,3))
kableExtra::kable(resultados, "latex", booktabs=T,
                  col.names = c("Modelos", "MAE"),
                  escape = F,align = "c",
                  caption = "Comparação do Erro absoluto médio com todos os modelos") %>%
  kableExtra::kable_styling(position = "center",
                            latex_options = "HOLD_position") %>%
  kableExtra::row_spec(2:11, extra_css = "border-bottom-style: none")
```