אינפי 1 -פתרון גיליון תרגילים מספר 6

מקיים $\delta>0$ כך שלכל x המקיים המקיים m<0 אם לכל $\lim_{x\to 3}f(x)=-\infty$ כך שלכל $f(x)=-\infty$. מתקיים ש $f(x)=-\infty$, $0<|x-3|<\delta$

x>M כך שלכל M>0 קיים $\varepsilon>0$ אם לכל $\lim_{x\to\infty}f(x)=-3$ ב נאמר ש- ו $\int f(x)+3|<\varepsilon$. $|f(x)+3|<\varepsilon$

, $0<|x-3|<\delta$ קיים x המקיים x המקיים x כך שלכל x>0 כך שלכל x>0 קיים אם המקיים x המקיים x נאמר ש- x

ד נאמר ש- x < m קיים t > 0 כך שלכל ש
 t > 0 עבורו מתקיים $\lim_{x \to \infty} f(x) \neq 3$.
 $|f(x) - 3| > \varepsilon$

$$\lim_{x \to 3} \frac{1}{1 + x^2} = \frac{1}{10} . \times 2$$

, מתקיים $\delta > 0$ יש להראות שקיים $\delta > 0$ כך שלכל $\delta > 0$ מתקיים $\varepsilon > 0$ יהא יש

$$.(*) \quad \left| \frac{1}{1+x^2} - \frac{1}{10} \right| < \varepsilon$$

ש- אז יתקיים ש. $\left| \frac{1}{1+x^2} - \frac{1}{10} \right| = \left| \frac{(3-x)(3+x)}{10(1+x^2)} \right| \le \frac{\delta \mid 3+x \mid}{10}$

. $\delta = \min\left\{3, \varepsilon \cdot \frac{10}{9}\right\}$ נוכל לבחור (*) כדי למלא את התנאי . $\left|\frac{1}{1+x^2} - \frac{1}{10}\right| \leq \frac{9\delta}{10}$

$$\lim_{x \to \infty} \sqrt{x^2 - 3x + 3} = \infty .$$

. (*) $\sqrt{x^2-3x+3}>R$ ייהא x>M כך שלכל M>0 כך שלכל M>0 יש להראות שקיים R>0 יש להראות שקיים את x>M לכל x>M שיקיים את x>M שיקיים את x>M שיקיים את x>M הוא $x>M=\max\{R^2-3,4\}$

$$1 \leftarrow x + x = 1$$
 בעזרת משפט הסנדוויץי: $1 = 1 \cdot x = 1$

$$\lim_{x \to 0+} \frac{x}{x + [x]} = \lim_{x \to 0+} \frac{x}{x} = 1 \quad \exists$$

$$\lim_{x \to 3+} \frac{\sqrt{x^2 - 9}}{|x - 3|} = \lim_{x \to 3+} \frac{\sqrt{(x + 3)(x - 3)}}{x - 3} = \lim_{x \to 3+} \frac{\sqrt{x + 3}}{\sqrt{x - 3}} = \infty$$

$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{6x^2 + 10} = \frac{1}{2} \tau$$

$$\lim_{x \to 0} \frac{\sin(x+a) - \sin(a)}{\sin(x)} = \lim_{x \to 0} \frac{2\cos((x+2a)/2)\sin((x+a-a)/2)}{2\sin(x/2)\cos(x/2)} = \cos(a) \text{ n}$$

$$\lim_{x \to a} \frac{\sin^2(x) - \sin^2(a)}{x^2 - a^2} = \lim_{x \to a} \frac{(\sin(x) - \sin(a))(\sin(x) + \sin(a))}{(x - a)(x + a)} =$$

$$\lim_{x \to a} \frac{2\cos((x + a)/2)\sin((x - a)/2) \cdot 2\sin((x + a)/2)\cos((x - a)/2)}{(x - a)(x + a)} =$$

$$\lim_{x \to a} \frac{\sin^2(x) - \sin^2(a)}{x^2 - a^2} = \frac{\cos(a)2\sin(a)}{2a} \lim_{x \to a} \frac{2\sin((x - a)/2)}{(x - a)} = \frac{\cos(a)2\sin(a)}{2a}$$

$$\lim_{x \to a} \frac{\sin^2(x) - \sin^2(a)}{x^2 - a^2} = 1 \cdot \lim_{x \to 0} \frac{2\sin(x/2) \cdot 2\sin(x/2)}{x^2} = 1$$

- ולכן |x| = |x| + 1 שלם |x| = |x| + 1 עבור |x| = |x| שלילי שאינו שלם |x| = |x|x -ש נקודות אי רציפות סליקות כש . $f(x) = \begin{cases} 0 & x \geq 0 & or \ x \in Z \\ -1 & x < 0 \end{cases}$ and $x \notin Z$ שלם ושלילי, ונקודת אי רציפות מסוג ראשון ב- 0.
- נגדיר: $h(t) = \begin{cases} -A & t < -A \\ t & |t| \le A \end{cases}$ היות ו $h(t) = \begin{cases} -A & t < -A \\ t & |t| \le A \end{cases}$ נגדיר: 5

. רציפה f(x) בה בכל נקודה בה g(x) = h(f(x)) - רציפה, נובע ש

: מתקיים א x>M כך שלכל היות וf(x)=1 - מתקיים, אוכחה: היות וf(x)=1. היות והפונקציה רציפה ב - $\inf_{x>M} \{f(x)\} \ge \frac{1}{2}$ לכן $|f(x)| > \frac{1}{2}$, היות והפונקציה רציפה ב -- היא מקבלת שם מקסימום ומינימום. נסמן את המקום בו המינימום מתקבל ב[0,M]. $\inf_{\mathbf{x} \in [0,M]} \{f(\mathbf{x})\} = f(\mathbf{x}_{\scriptscriptstyle m}) > 0$ לכן $f(\mathbf{x}_{\scriptscriptstyle m}) > 0$ הפונקציה, של הפונקציה, לפי הנתון אל החיוביות של הפונקציה, ליכו $\inf_{x \in [0,\infty)} \{f(x)\} = \min \left\{ \inf_{x \in [0,M]} \{f(x)\}, \inf_{x > M} \{f(x)\} \right\} \ge \min \{f(x_m), 1/2\} > 0$

: הוכח או הפרך

 $\lim_{x\to 0} f(1/x)=0 \text{ at } \lim_{x\to \infty} f(x)=0 \text{ --} 1R$ א. אם f(x) מוגדרת בכל f(x) מוגדרת בכל $\lim_{x\to 0+} e^{-1/x}=0, \lim_{x\to 0-} e^{-1/x}=\infty \text{ at } \lim_{x\to \infty} f(x)=0 \text{ .}$ אזי f(x)=0 אוי הוגמא נגדית: $f(x)=e^{-x}$. אזי $f(x)=e^{-1/x}$

 $g(x)=(f(x))^2$ ב. אם $g(x)=(f(x))^2$ רציפה ב

. רציפה $g(x)=(f(x))^2=1$ אך ביפה ב- 0, אך $f(x)=\begin{cases} 1 & x>0 \\ -1 & x\leq 0 \end{cases}$ רציפה.

. לא קיים. $\lim_{n\to\infty}f(a_n)$ שעבורן $a_n\to a$ וסדרה a - רציפה בf(x) היים. ג. לא נכון. הטענה סותרת את משפט הרציפות של היינה. . $\lim_{x \to 0} x f(x)$ אזי קיים x = 0 חסומה בסביבת f(x) ד. אם

 $\lim_{x \to 0} x f(x) = 0$ - נראה ש

יהא . |xf(x)|<arepsilon מתקיים $0<|x|<\delta$ כך שלכל x המקיים $\delta>0$ כך מתקיים . $\varepsilon>0$ יהא

 $\delta = rac{arepsilon}{M}$ הנדרש הוא δ הנדרש ולכן ה- δ הנדרש הוא . $f(x) \leq \delta M$ החסם של

 $f(x) = x^5 + x^3 + x - 1$ ה. ל- 1.

(0,1) -ביניים, קיימת ב- f(x), f(0)=-1, f(1)=2 נקודה בה f(x), מתאפסת.