# Acquisition and Analysis of Biosignals DTEK0042

Biosignal analysis III

Iman Azimi, Ph.D. (Tech.)

Email: iman.azimi@utu.fi



#### Introduction

- So far, we learned:
  - ☐ Time domain analysis and Frequency domain analysis
  - ☐ Analysis of ECG, PPG, EMG, and PCG
- In this session, we will learn:
  - ☐ Time-frequency analysis
  - Analysis of SCG and GCG
  - ☐ Classification and decision-making

#### Time domain analysis

- ☐ Different time-domain techniques are used to analyze the events
- ☐ Feature Extraction:
  - Wave shape
  - Intervals between events
  - Energy distribution
  - ...



#### Frequency domain analysis

- ☐ Different frequency-domain techniques are used to analyze the events
- ☐ Feature Extraction:
  - Mean frequency
  - Dominant frequency (resonance frequency)
  - Power band
  - ...



## Time domain analysis and Frequency domain analysis

- ☐ Time domain analysis: We know when the event starts and when it ends, but it is difficult to understand the patterns, repetitive events, rhythms, etc.
- ☐ Frequency domain analysis: We know about the resonance frequency, but we do not know when the event starts and when it ends.
- ☐ How to use both the time and frequency information?





## Time-Frequency Analysis

#### Nonstationary signals

- ☐ A nonstationary signal possesses statistics that vary with time
- □ Various short-time statistical measures computed over moving windows may be used to characterize a nonstationary signal
  - 1. Mean
  - 2. Variance



Rangayyan, R. M. *Biomedical signal analysis*. 2nd Edition, Vol. 33. John Wiley & Sons, 2015.

#### Nonstationary signals – Cont.

- 3. Measures of activity
  - Nonstationary: turning points and zero crossing rate vary with time
- 4. Auto-correlation function (ACF) and power spectral density (PSD)
  - Nonstationary: ACF varies with time
  - If nonstationary in ACF, also nonstationary in its PSD



Rangayyan, R. M. Biomedical signal analysis. 2nd Edition, Vol. 33. John Wiley & Sons, 2015.

### **Fixed Segmentation**

- ☐ Given a nonstationary signal, the simplest approach to break it into quasistationary segments would be to consider small windows of fixed duration.
- $\square$  Let's consider the signal as x(n) for n=0,1,2,...,N-1
- □ We could consider a fixed segment duration of M samples that  $M \ll N$  and break the signal into  $K = \frac{N}{M}$  parts as

$$x_k(n) = x[n + (k-1)M]$$
  

$$0 \le n \le M - 1 \quad and \quad 1 \le k \le K$$

☐ With the assumption that the signal does not change its characteristics in the segment

#### Short time Fourier transform

- ☐ Short time Fourier transform (STFT) is a sequence of Fourier transforms of a windowed signal
- ☐ For example:
  - 1. A given signal has been segmented into quasistationary parts  $x_k(n)$
  - 2. We compute the DFT of each segment:

$$X_k(\omega) = \sum_{n=0}^{M-1} x_k(n) e^{-i\omega n}$$

•  $X_k(\omega)$  for k=1,2,...,K describe the time-varying spectral characteristics of the signal.

## Example – PCG signal

- ☐ PCG signal (nonstationary) with systolic murmur and opening snap of the mitral valve
- ☐ The duration of each window is 64 samples, equal to 64ms with fs = 1 kHz
- ☐ The second window displaying the largest amount of high-frequency power due to the murmur



## STFT – Moving analysis window

□ Segmentation of the given signal may be interpreted as the application of a moving window to the signal where:

Any time instant

$$x_k(n) = x(n)w(n-m)$$

☐ We need to state how the window is moved from one segment to another.

### STFT – Spectrogram

☐ We may then compute the Fourier transform of the segments:

$$X(m,\omega) = \sum_{n=0}^{M-1} [x(n)w(n-m)] e^{-i\omega n}$$

- ☐ The spectrum is now expressed
  - not only as a function of **frequency**  $\omega$ ,
  - but also as a function of time m
- ☐ The magnitude of the STFT (squared) is known as the spectrogram of the signal.

## Example – PCG signal

- □ PCG signal (fs = 1 kHz) with systolic murmur and opening snap of the mitral valve
- ☐ The duration of each window is 64 samples
- ☐ The window advance interval is 32 samples



### STFT – Analysis window

- $\square$  We may advance the window (with size M):
  - M samples at a time: no overlap
  - One sample at a time: adjacent windows have an overlap of (M-1) samples.
  - $\frac{M}{2}$  samples at a time: an overlap of  $\frac{M}{2}$  samples
- ☐ Some overlap is desirable in order to maintain continuity
- ☐ Duration of the segment (M): the window should be
  - Short enough to ensure that the segment is stationary
  - Long enough to permit meaningful analysis of low-frequency components
- We cannot simultaneously obtain arbitrarily high resolution along both the time and frequency axes

#### Example – Speech signal (1)

- ☐ The speech signal (fs = 8 kHz) of the word "Safety"
- ☐ In the spectrograms, the darkness at each point being proportional to the log PSD
- ☐ The analysis window duration is 16 ms (128 samples)
- ☐ The window advance interval is 8 ms
- ☐ The high-frequency nature of the fricatives is indicated (and plosive).





#### Example – Speech signal (2)

- ☐ In the upper figure:
  - The window duration is 64 ms (512 samples)
  - The window advance interval is 32 ms
- ☐ In the lower figure:
  - The window duration is 128 ms (1024 samples)
  - The window advance interval is 64 ms
- ☐ Increasing the length of the analysis window provides better frequency resolution while at the same time reducing the temporal resolution
- □ Decreasing the window length causes the reverse effects





## Analysis of SCG and GCG

#### SCG and GCG

- ☐ Seismocardiography (SCG) is recorded by attaching an accelerometer to the chest approximately on top of the heart
- ☐ Gyrocardiography (GCG) is a similar technique for capturing rotational movement of the chest caused by the mechanical activity of the heart



## SCG and GCG together

■ Nowadays, we usually record both SCG and GCG signals. This results in a 6-dimensional signal value. In other words, 3 values for X,Y, and Z axis of acceleration and 3 values for X, Y, and Z axis of angular motion



## SCG and GCG preprocessing

- Baseline wander and noise removal
  - filtering with Butterworth filter of order 4 and pass band 3-40 Hz
- Motion artifact rejection
  - SCG is a motion tracking technique. If human body moves during SCG collection, there will be motion artefacts
    - Body movement and chest movements



Mehrang, Saeed, et al. "Machine Learning Based Classification of Myocardial Infarction Conditions Using Smartphone-Derived Seismo-and Gyrocardiography." 2018 Computing in Cardiology Conference (CinC). Vol. 45. IEEE, 2018.

#### Segmentation prior feature extraction

☐ Here we have SCG and GCG signals segmented by 10-second segments



#### Feature extraction (1)

- ☐ Time domain analysis
  - Mean, standard deviation, median, interquartile range, entropy, zero crossing, cross-correlation, auto-correlation, mutual information, complexity, mobility, etc.
- ☐ Frequency domain analysis
  - Dominant frequency in Fourier domain, Fourier transform entropy, relative Fourier energy entropy, relative energy of each axis, etc.
- ☐ Time-frequency domain analysis
  - Short Time Fourier Transform (STFT)

### Feature extraction (2)

☐ For instance, 88 Features are extracted from each segment in each axis.



#### Averaging over all segments

- □ Averages will be calculated for each feature in each axis over the segments
- $\Box$  f<sub>1</sub> in GCG-Z is the average value of f<sub>1</sub> over all segments. This applies to all the other 5 axes.



### Why averaging?

- We need a robust view of a measurement
  - Random noise is removed
- ☐ In every measurement, we segment the signals into shorter episodes, extract features, and then average the features to get a robust view of every feature.



#### Autocorrelation (time domain)

☐ Auto-correlation for arrhythmia (atrial fibrillation) detection



Mehrang, Saeed, et al. "Reliability of Self-Applied Smartphone Mechanocardiography for Atrial Fibrillation Detection." *IEEE Access* 7 (2019): 146801-146812.

#### Autocorrelation and DFT – Normal



Tadi, Mojtaba Jafari, et al. "Comprehensive Analysis of Cardiogenic Vibrations for Automated Detection of Atrial Fibrillation Using Smartphone Mechanocardiograms." IEEE Sensors
Journal 19.6 (2018): 2230-2242.

https://www.dspguide.com/ch11/5.htm

#### Autocorrelation and DFT – Atrial fibrillation



Tadi, Mojtaba Jafari, et al. "Comprehensive Analysis of Cardiogenic Vibrations for Automated Detection of Atrial Fibrillation Using Smartphone Mechanocardiograms." *IEEE Sensors Journal* 19.6 (2018): 2230-2242.

#### Frequency domain analysis

- ☐ Dominant frequency: the frequency that has the greatest magnitude in the Fourier domain.
  - Note that the DC frequency cannot be dominant frequency. We need to remove DC frequency before calculating dominant frequency.
  - Dominant frequency in sub-segments of a signal
  - Variations of dominant frequency among sub-segments: this parameter resembles heart rate variability but it is measured in frequency domain instead of time domain.

#### Time-frequency domain analysis

• **Spectrogram:** it helps us getting a view of time-frequency domain within a segment. Below are two short segments of SCG signals and their spectrograms.



Choudhary, Tilendra, L. N. Sharma, and M. K. Bhuyan. "Spectracentrogram: A Time-Frequency Distribution for Signal Processing Applications." 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). Vol. 3. IEEE, 2018.

## Classification and Decision-making

#### Feature extraction

- ☐ Different features can be extracted from the biosignals:
  - ECG: RR interval, Duration of the ST segment, etc.
  - EMG: RMS value, turns count, etc.
  - SCG: mean, standard deviation, dominant frequency
- ☐ The features show the characteristics of the events
- ☐ The classification methods are utilized to categorize the events.
  - The inputs are the features
  - The output shows
    - if there is a disease or not
    - or the type of the disease

#### Rule-based methods

- ☐ The rule-based methods are any classification scheme that make use of IF-THEN rules for classification
- □ Rules can be set by experts or extracted from the data (depending on the application)
- ☐ There is a rule for each sample
- ☐ The data is classified using the rules

#### Example – simple threshold

Most infections cause a rise in the body temperature (BT)

Our measurement is discrete => x(n)

$$x(n) = [x_1 x_2 x_3 \dots x_N]$$

E.g., to detect a disease: if the value of BT is higher than a threshold (e.g., 37°C)



Rangayyan, R. M. Biomedical signal analysis. 2nd Edition, Vol. 33. John Wiley & Sons, 2015.

### Example – Early Warning Score

- ☐ Monitoring of vital signs allows early-detection of health deterioration.
- ☐ Early Warning Score (EWS) is a scoring method used in hospitals for assessment of patients' conditions.
- ☐ Higher scores are statistically linked to increased likelihood of health deterioration.

| Physiological parameters          | 3      | 2       | 1       | 0         | 1       | 2         | 3     |
|-----------------------------------|--------|---------|---------|-----------|---------|-----------|-------|
| Respiration rate (breaths/minute) |        | 0-8     |         | 9-14      | 15-20   | 21-29     | 30+   |
| Oxygen saturation (%)             | 0%-84% | 85%-89% | 90%-94% | 95%-100%  |         |           |       |
| Temperature (oC)                  |        | 0-35    |         | 35.1-38.0 |         | 38.1-39.5 | 39.6+ |
| Systolic BP (mmHg)                | 0-69   | 70-80   | 81-100  | 101-149   | 150-169 | 170-179   | 180+  |
| Heart rate (beats/minute)         | 0-39   | 40-50   | 51-59   | 60-100    | 101-110 | 111-129   | 130+  |
| Level of consciousness            |        |         |         | A         | V       | P         | U     |

<sup>\*</sup> A=Alert, V=response to voice, P=response to pain, U=unresponsive

### Example – Early Warning Score – Cont.

- ☐ Remote health monitoring systems includes sensors with limited resources (batteries)
- ☐ From the system perspective: A trade-off between energy-efficiency and measurement accuracy is needed
- A look-up table can be defined to reconfigure the system in a real-time fashion by observing the **EWS values**, **physical activity**, and **environmental situation**.
- More details can be found:
  - Anzanpour, A. et al., 2017, March. Selfawareness in remote health monitoring systems using wearable electronics. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 (pp. 1056-1061). IEEE.



#### Machine learning

- Machine learning techniques learn from examples data and past experience to perform specific tasks
  - E.g., categorize events into different classes
- Machine learning can extract models from the observation
  - Models can be defined as relationships between the variables (features) that describe the events.
- ☐ Trained models are used for the test data (to classify or predict)

#### Two references:

- Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. 2012. Learning from Data. AMLBook.
- Thomas Mitchell. 2012. Machine Learning. McGraw-Hill Education Europe

#### Use in healthcare

- ☐ Abnormity (Disease) detection
  - If the input data is normal vs abnormal
  - Classify the diseases
- ☐ Body functions evaluation
  - E.g., neuromuscular system
- ☐ System optimization
- Others

## Example - Atrial fibrillation detection using SCG-GCG

- Jafari Tadi, M. et al. "Comprehensive Analysis of Cardiogenic Vibrations for Automated Detection of Atrial Fibrillation Using Smartphone Mechanocardiograms." IEEE Sensors Journal 19.6 (2018): 2230-2242.
- ☐ Early diagnosis of AFib is a key step in the prevention of stroke and heart failure
- ☐ The SCG and GCG signals are collected from 435 users, including 190 AFib and 245 sinus rhythm cases, using a smartphone.
- ☐ The data analysis pipeline includes:



## Example - Atrial fibrillation detection using SCG-GCG – Cont.

☐ Classification performance in the cross-validation study with three classifiers and majority voting





#### Conclusion

high-dimensional sensor data

In this session, we learned about:

☐ Time-frequency analysis
☐ Analysis of SCG and GCG
☐ Classification and decision-making

In the next lecture, we will have:
☐ A visiting lecturer from the Digital Health Technology group (UTU)
☐ Principal Component Analysis: a case study on finding respiration signal in

#### **Thank You**

Questions?

