```
In [1]:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.preprocessing import LabelEncoder, OneHotEncoder
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.preprocessing import StandardScaler

In [2]:
    def print_title(title):
        print(f'\n{'-'*60}\n\033[1m{title}\033[0m'))
    def print_section(title):
        print(f'{'-'*60}\n{title}\n{'-'*60}')
```

1. Loading and Preprocessing

```
In [4]: # importing and reaing the data
cp = pd.read_csv('CarPrice.csv')
cp=pd.DataFrame(cp)
cp.head(5)
```

Out[4]:		car_ID	symboling	CarName	fueltype	aspiration	doornumber carbody		drivewheel	enginelocation	wh
	0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	
	1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	
	2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	
	3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	
	4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	

5 rows × 26 columns

```
In [5]: #Data frme Description
    cp.describe()
```

Out[5]:		car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	borerati
	count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.00000
	mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.907317	3.32975
	std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.642693	0.27084
	min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	2.54000
	25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.000000	3.15000
	50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	3.31000
	75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.000000	3.58000
	max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.000000	3.94000

```
In [6]: # DataFrane info
cp.info()
```

```
Column
                                         Non-Null Count Dtype
                 _____
                                           _____
               car ID
                                         205 non-null int64
            \cap
            1 symboling
                                         205 non-null int64
               symboling 205 non-null int64
CarName 205 non-null object
fueltype 205 non-null object
aspiration 205 non-null object
doornumber 205 non-null object
carbody 205 non-null object
drivewheel 205 non-null object
enginelocation 205 non-null object
wheelbase 205 non-null float64
Carwidth 205 non-null float64
            2
            3 fueltype
            4 aspiration
            5
            6
            7
            8
            9
            10 carlength
            11 carwidth
                                         205 non-null float64
            12 carheight
                                         205 non-null float64
            12 carneight 205 non-null float64
13 curbweight 205 non-null int64
14 enginetype 205 non-null object
15 cylindernumber 205 non-null object
16 enginesize 205 non-null int64
17 fuelsystem 205 non-null object
18 boreratio 205 non-null float64
                                         205 non-null float64
            19 stroke
            20 compressionratio 205 non-null float64
21 horsepower 205 non-null int64
            22 peakrpm
                                         205 non-null int64
            23 citympg
                                         205 non-null int64
            24 highwaympg
                                         205 non-null
                                                                int64
                                           205 non-null float64
            25 price
           dtypes: float64(8), int64(8), object(10)
           memory usage: 41.8+ KB
In [7]: # Null value finding
           cp.isnull().sum()
           car ID
                                       0
Out[7]:
           symboling
                                       0
           CarName
                                       0
           fueltype
           aspiration
           doornumber
                                       0
           carbody
                                       0
           drivewheel
           enginelocation
           wheelbase
           carlength
           carwidth
           carheight
                                       0
           curbweight
                                       0
           enginetype
                                       0
           cylindernumber
                                       0
           enginesize
           fuelsystem
                                       0
           boreratio
           stroke
           compressionratio
                                       0
           horsepower
                                       0
                                       0
           peakrpm
                                       0
           citympg
                                       0
           highwaympg
           price
           dtype: int64
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

```
cp.duplicated().sum()
```

Out[8]:

```
In [9]: # Visualizing outliers of dataset before processing
  plt.figure(figsize =(6,5))
  cp.boxplot()
  plt.xticks(rotation=90)
  plt.show()
```



```
## finding object-type Features columns in dataframe and this will be compayer after enc
In [10]:
         object cols = [col for col in cp.columns if cp[col].dtype == 'object']
         object cols df = pd.DataFrame(object cols)
         object cols df.columns = ['Object column']
         print(f'Object data type columns:\n{object cols df}\n\nThe total count of Object Columns
         Object data type columns:
            Object_column
         0
                   CarName
         1
                  fueltype
         2
                aspiration
         3
                doornumber
         4
                   carbody
         5
                drivewheel
         6
           enginelocation
         7
                enginetype
         8
            cylindernumber
                fuelsystem
```

The total count of Object Columns is 10

```
In [11]: | print(f'total num of unique value in CarName: {len(cp['CarName'].unique())}')
         print(f'total num of unique value in fueltype: {len(cp['fueltype'].unique())}, {(cp['fueltype'].unique())},
        print(f'total num of unique value in aspiration: {len(cp['aspiration'].unique()))} {(cp['
         print(f'total num of unique value in doornumber: {len(cp['doornumber'].unique())} { (cp['
         print(f'total num of unique value in carbody: {len(cp['carbody'].unique())} {(cp['carbod
         print(f'total num of unique value in drivewheel: {len(cp['drivewheel'].unique()))} {(cp['
        print(f'total num of unique value in enginelocation: {len(cp['enginelocation'].unique()
         print(f'total num of unique value in enginetype: {len(cp['enginetype'].unique())} { (cp['
         print(f'total num of unique value in cylindernumber: {len(cp['cylindernumber'].unique()
         print(f'total num of unique value in fuelsystem: {len(cp['fuelsystem'].unique())} { (cp['
        total num of unique value in CarName: 147
        total num of unique value in fueltype: 2, ['gas' 'diesel']
        total num of unique value in aspiration: 2 ['std' 'turbo']
        total num of unique value in doornumber: 2 ['two' 'four']
        total num of unique value in carbody: 5 ['convertible' 'hatchback' 'sedan' 'wagon' 'hard
        top']
        total num of unique value in drivewheel: 3 ['rwd' 'fwd' '4wd']
        total num of unique value in enginelocation: 2 ['front' 'rear']
        total num of unique value in enginetype: 7 ['dohc' 'ohcv' 'ohc' 'l' 'rotor' 'ohcf' 'dohc
        v']
        total num of unique value in cylindernumber: 7 ['four' 'six' 'five' 'three' 'twelve' 't
        wo' 'eight']
        total num of unique value in fuelsystem: 8 ['mpfi' '2bbl' 'mfi' '1bbl' 'spfi' '4bbl' 'id
        i' 'spdi']
```

OrdinalEncoding

coding is 147

OrdinalEncoding method used for having more control over mapping

```
In [13]: # Encoding for 'cylindernumber' and 'doornumber' Feature value
         from category encoders import OrdinalEncoder
         Enco cp = cp
         mapping = [{'col':'cylindernumber', 'mapping':{'two':2, 'four':4, 'six':6, 'five':5, 'three
         encoder = OrdinalEncoder(mapping=mapping)
         Enco cp = encoder.fit transform(Enco cp)
In [14]: # crate dictionary for OrdinalEncoder
         uniqu = Enco cp['CarName'].unique()
         print(f'The cont of unique name in uniqu df is {len(uniqu)} and count of unique name in
         print()
         uniqu df = pd.DataFrame(uniqu)
         uniqu df = uniqu df.reset index(drop=True)
         uniqu df.columns=['Uniqu CarName']
         uniqu df['CarName Enco'] = uniqu df.index + 1
         # Create the dictionary
         map dict = pd.Series(uniqu df['CarName Enco'].values, index=uniqu df['Uniqu CarName']).t
         The cont of unique name in unique of is 147 and count of unique name in original df of en
```

```
In [15]: # Encoding for 'CarName'
mapping = [{'col':'CarName', 'mapping':map_dict}]
encoder = OrdinalEncoder(mapping=mapping)
Enco_cp = encoder.fit_transform(Enco_cp)
Enco cp = Enco cp.rename(columns={'CarName': 'Car Name'}) # renamed to avoid repeated co
```

Custom mapping is done for all remaining object-type columns

```
In [17]: # custom mapping for fueltype
  name_mapping = {'gas': 1, 'diesel': 2}
  Enco_cp['fueltype'] = Enco_cp['fueltype'].map(name_mapping)
```

```
# custom mapping for aspiration
In [18]:
        name mapping1 = {'std': 1, 'turbo': 2}
        Enco cp['aspiration'] = Enco cp['aspiration'].map(name mapping1)
In [19]: # custom mapping for carbody
        name mapping2 = {'convertible':1, 'hatchback':2, 'sedan':3, 'wagon':3, 'hardtop':4}
        Enco cp['carbody'] = Enco cp['carbody'].map(name mapping2)
In [20]: # custom mapping for drivewheel
        name mapping3 = {'rwd':1, 'fwd':2, '4wd':3}
        Enco cp['drivewheel'] = Enco cp['drivewheel'].map(name mapping3)
In [21]: # custom mapping for enginelocation
        name mapping4 = {'front':1, 'rear':2}
        Enco cp['enginelocation'] = Enco cp['enginelocation'].map(name mapping4)
In [22]: # custom mapping for enginetype
        name mapping5 = {'dohc':1, 'ohcv':2, 'ohc':3, '1':3, 'rotor':4, 'ohcf':5, 'dohcv':6}
        Enco cp['enginetype'] = Enco cp['enginetype'].map(name mapping5)
In [23]: # custom mapping for fuelsystem
        name mapping6 = {'mpfi':1, '2bbl':2, 'mfi':3, '1bbl':4, 'spfi':5, '4bbl':6, 'idi':7, 'sp
        Enco cp['fuelsystem'] = Enco cp['fuelsystem'].map(name mapping6)
In [24]: Enco_cp.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 205 entries, 0 to 204
        Data columns (total 26 columns):
        # Column Non-Null Count Dtype
                             _____
        dtypes: float64(8), int32(3), int64(15)
        memory usage: 39.4 KB
In [25]: | ## syntex for object type columns conversion confiremation
        object cols = [col for col in cp.columns if cp[col].dtype == 'object']
        object cols1 = [col for col in Enco cp.columns if Enco cp[col].dtype == 'object']
```

```
print('All Objdect type columns are converted to numerical columns')
              else:
                     print('Object type columns conversion are pending')
              All Objdect type columns are converted to numerical columns
              ## finding the Correlation of Data Frame
In [26]:
               cor Enco cp = Enco cp.corr()
               ## scaling dataframe
In [27]:
               Scal cp = Enco cp
               scaler = MinMaxScaler()
               scaled data = scaler.fit transform(Scal cp)
               cp scaled = pd.DataFrame(scaled data, columns=Scal cp.columns)
In [28]: ## finding correlation of the scaled data frame
               cor scl cp = cp scaled.corr()
               ## Plotting heatmap of Correlation
              plt.figure(figsize = (10,8))
               sns.heatmap(cor scl cp,annot=True,cmap='coolwarm',vmin=-1,vmax=1,annot kws={"size": 5})
               plt.show()
                                                                                                                                                            1.00
                            CAT ID - 1 0.15 1 0.13 0.068 0.19 0.13 0.051 0.051 0.051 0.051 0.052 0.26 0.072 0.084 0.094 0.094 0.094 0.094 0.06 0.16 0.15 0.015 0.2 0.016 0.011 0.11
                       Symboling -0.13 1 0.14 0.19 0.06 0.06 0.44 0.04 0.23 0.34 0.23 0.54 0.23 0.0049 0.11 0.11 0.017 0.13 0.0087 0.18 0.071 0.27 0.036 0.033 0.08
                                      1 0.14 1 0.13 0.075 0.18 0.13 0.045 0.061 0.12 0.16 0.044 0.25 0.068 0.1 0.1 0.038 0.048 0.27 0.17 0.15 0.019 0.2 0.018 0.014 0.11
                                                                                                                                                          - 0.75
                          fueltype - a13 0.19 0.13 1 04 0.19 0.2 0.13 0.04 0.31 0.21 0.23 0.28 0.22 1.7e-1.7-0.025 0.07 0.63 0.054 0.24 0.38 0.16 0.48 0.26 0.19 0.11
                        aspiration -aoos 0.06 aors a4 1 aos2 aos8 0.06 aors a2 a2 a3 a3 aos7 a32 0.016 0.048 a11 a47 a21 a22 a3 a24 a.18 0.2 a.25 a18
                     doornumber - a19 0.00 a18 a19 a032 1 a51 a099 0.14 a45 a4 a21 a55 a2 a024 0.016 a021 0.018 a12 0.011 a18 0.13 a25 0.012 0.036 a032
                          Carbody - a13 0.44 a13 a2 a028 a51 1 0.061 a073 a4 a39 a21 a.44 a21 a08 a13 a18 0.032 a19 a038 a2 a037 0.14 0.06 0.083 a17
                                                                                                                                                          - 0.50
                       drivewheel -0.001 0.042 -0.045 -0.13 -0.066 0.099 -0.061 1 0.13 -0.46 -0.49 -0.47 0.02 -0.05 0.29 -0.31 -0.52 0.036 -0.48 -0.072 -0.13 -0.52 0.039 0.45 0.45 -0.05
                  enginelocation -acs1 a21 a061 0.04 0.057 0.14 a073 0.15 1 0.19 0.051 0.052 0.11 a05 a3 a18 a2 0.083 a19 0.14 0.02 a32 a2 0.15 0.1 a32
                       wheelbase - a 3 45 a 12 a 31 a 26 a 45 a 4 46 4.0 19 1 a 87 a 8 a 59 a 78 a 22 a 34 a 57 a 0 0 48 a 49 a 16 a 25 a 35 a 36 a 47 a 54 a 5
                                                                                                                                                          - 0.25
                        carlength - a17 0.36 0.16 0.21 0.23 0.4 0.39 0.49 0.051 0.87 1 0.84 0.49 0.88 0.26 0.43 0.68 0.091 0.01 0.13 0.16 0.55 0.29 0.67 0.7
                         Carwidth -0.052 0.23 0.044 0.23 0.3 0.21 0.21 0.047 0.052 0.8 0.84 1 0.28 0.87 0.17 0.55 0.74 0.017 0.50 0.18 0.18 0.18 0.18 0.04 0.22 0.04 0.08
                        - 0.00
                      enginetype -ao84 aoo49 a1 17e-17a.016 ao24 ao8 a29 a3 a.22 a.26 a.17 a.016 a27 1 a.27 a.28 ao86 a18 a.34 aoo84 a.17 a.037 a14 a17 a.15
                 cylindernumber -0.094 0.11 0.1 0.025 0.048 0.010 0.13 0.31 0.18 0.34 0.43 0.55 0.014 0.01 0.27 1 0.85 0.23 0.23 0.0082 0.02 0.02 0.02 0.045 0.47 0.72
                                                                                                                                                          - -0.25
                       enginesize -0.034 0.11 0.038 007 011 0.021 018 0.52 02 027 0.08 074 0.007 085 0.28 085 1 0.13 058 02 0.029 081 0.24 0.05 0.08
                       fuelsystem _-0.064 0.017 0.048 0.02 0.47 0.018 0.032 0.036 0.083 0.0048 0.031 0.017 0.051 0.026 0.086 0.23 0.13 1 0.12 0.36 0.04 0.23 0.21 0.26 0.22 0.12
                         boreratio - 026 0.13 027 0.054 021 0.12 0.19 0.48 0.19 0.49 0.01 0.56 0.17 0.65 0.18 0.23 0.58
                                                                                                         -0.12 1 -0.056 0.0052 0.57 -0.25 -0.58 -0.59 0.5
                            Stroke - 0.16 0.0087 0.17 0.24 0.22 0.011 0.038 0.072 0.14 0.16 0.13 0.18 0.055 0.17 0.34 0.0082 0.2 0.36 0.050 1 0.19 0.081 0.068 0.042 0.044 0.079
                                                                                                                                                            -0.50
               compressionratio - a15 a.18 a15 a98 a3 a18 a2 a.13 a.02 a25 a16 a18 a26 a15 a0084 a.02 a029 ac4 a0052 a19 1
                      horsepower -0.015 a071 -0.019 -0.16 a24 -0.13 a037 <mark>0.52</mark> a32 a35 a55 a64 -0.11 a75 -0.17 a69 a81 -0.23 a57 a081 -0.2
                         peakrpm - 0.2 027 0.2 0.48 0.18 0.25 0.14 0.039 02 0.36 0.29 0.22 0.32 0.27 0.037 0.12 0.24 0.21 0.25 0.068 0.44 0.13
                                                                                                                                                            -0.75
                          citympg -ao16 -0.036 a018 a26 -0.2 -0.012 -0.016 a45 -0.15 -0.47 -0.67 -0.64 -0.049 -0.76 -0.14 -0.45 -0.05 -0.26 -0.05 -0.042 -0.32
                    highwaympg - a011 a035 a014 a19 - 0.25 -0.036 -0.083 a45 - 0.1 - 0.54 - 0.7 - 0.68 - 0.11 - 0.8 - a17 - 0.47 - 0.68 - a22 - 0.59 -0.044 - a27 - 0.77 - 0.054
                             price -0.11 0.08 0.11 0.11 0.18 0.032 0.17 0.58 0.32 0.58 0.68 0.76 0.12
                                                                                          0.84 -0.15 0.72 0.87 -0.12
                                                                                                               0.55 0.079 0.068
                                                                                                                                                            -1.00
                                                                                                                                  citympg
                                                              carbody
                                             Car_Name
                                                                              carlength
                                                                                              enginetype
                                                                                                      enginesize
                                                                                                                  stroke
                                         symboling
                                                                          wheelbase
                                                                                  carwidth
                                                                                      carheight
                                                                                          curbweight
                                                                                                          fuelsystem
                                                                                                                      compressionratio
                                                      aspiration
                                                          doornumber
                                                                  drivewheel
                                                                      enginelocation
                                                                                                  cylindernumber
                                                                                                              boreratio
                                                                                                                           horsepower
                                                                                                                               peakrpm
                                                                                                                                      highwaympg
In [29]: # Correlation plotting
              plt.figure(figsize=(9, 7.6))
```

if object cols + object cols1 == object cols:

plt.title("Correlation Histogram plotting")

```
ax=sns.histplot(data=cor_scl_cp, kde=True)
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.xticks([])
plt.show()
```


In [30]: skewness = cp_scaled.skew() print(skewness)

car_ID	0.00000
symboling	0.211072
Car_Name	-0.132597
fueltype	2.732619
aspiration	1.673832
doornumber	-0.247552
carbody	-0.415674
drivewheel	0.058352
enginelocation	8.143531
wheelbase	1.050214
carlength	0.155954
carwidth	0.904003
carheight	0.063123
curbweight	0.681398
enginetype	0.390540
cylindernumber	2.817459
enginesize	1.947655
fuelsystem	1.539368
boreratio	0.020156
stroke	-0.689705
compressionratio	2.610862
horsepower	1.405310
peakrpm	0.075159
citympg	0.663704
highwaympg	0.539997
price	1.777678
dtype: float64	

```
In [31]: #Skewness plotting before mapping and scaling
plt.figure(figsize=(9, 7.6))
plt.title("Kewness plotting\nBefore Scaling")
ax=sns.histplot(data=Enco_cp,kde=True)
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.xticks([])
plt.show()

#skewness after mapping and scaling
plt.figure(figsize=(9, 7.6))
plt.title("Skewness plotting\nAfter Scaling")
ax=sns.histplot(data=cp_scaled,kde=True)
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.xticks([])
plt.show()
```

Kewness plotting Before Scaling

Skewness plotting After Scaling

Removing outliers using IQR method

```
In [33]: #IQR Method
def outliers(df):
    for col in df.select_dtypes(include=['int64','float64']).columns:
        Q1 = df[col].quantile(0.25)
        Q3 = df[col].quantile(0.75)
        IQR = Q3 - Q1

        lower = Q1 - (1.5*IQR)
        upper = Q3 + (1.5*IQR)

        # Capping
        df[col] = df[col].apply(lambda x: lower if x < lower else upper if x > upper else
        return df
```

Renaming final data

```
In [35]: cp_scaled.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 205 entries, 0 to 204
       Data columns (total 26 columns):
          Column
                            Non-Null Count Dtype
        --- -----
                            _____
          car ID
        0
                            205 non-null
                                          float64
                                        float64
        1
          symboling
                            205 non-null
        2 Car Name
                            205 non-null float64
        3 fueltype
                            205 non-null float64
                                        float64
          aspiration
        4
                           205 non-null
                                        float64
        5
          doornumber
                           205 non-null
          carbody
                            205 non-null
                                        float64
```

```
enginelocation 205 non-null float64
                             9 wheelbase 205 non-null float64
                           wheelbase 205 non-null float64
10 carlength 205 non-null float64
11 carwidth 205 non-null float64
12 carheight 205 non-null float64
13 curbweight 205 non-null float64
14 enginetype 205 non-null float64
15 cylindernumber 205 non-null float64
16 enginesize 205 non-null float64
17 fuelgyster 205 non-null float64
                            16 enginesize 205 non-null float64
17 fuelsystem 205 non-null float64
18 boreratio 205 non-null float64
19 stroke 205 non-null float64
20 compressionratio 205 non-null float64
21 horsepower 205 non-null float64
22 peakrpm 205 non-null float64
23 citympg 205 non-null float64
                            22 peakrpm23 citympg
                                                                                         205 non-null float64
                                                                                         205 non-null float64
205 non-null float64
                            24 highwaympg25 price
                          dtypes: float64(26)
                          memory usage: 41.8 KB
In [36]: Car_price = cp scaled
In [37]: Car price = outliers(Car price)
                           Car price.info()
                          <class 'pandas.core.frame.DataFrame'>
                          RangeIndex: 205 entries, 0 to 204
                          Data columns (total 26 columns):
                            # Column Non-Null Count Dtype
                          ---
                                                                                            _____
                            0 car_ID
1 symboling
2 Car_Name
3 fueltype
4 aspiration

      0
      car_ID
      205 non-null
      float64

      1
      symboling
      205 non-null
      float64

      2
      Car_Name
      205 non-null
      float64

      3
      fueltype
      205 non-null
      float64

      4
      aspiration
      205 non-null
      float64

      5
      doornumber
      205 non-null
      float64

      6
      carbody
      205 non-null
      float64

      7
      drivewheel
      205 non-null
      float64

      8
      enginelocation
      205 non-null
      float64

      9
      wheelbase
      205 non-null
      float64

      10
      carlength
      205 non-null
      float64

      11
      carwidth
      205 non-null
      float64

      12
      carheight
      205 non-null
      float64

                                                                                          205 non-null float64
                            11 carwidth12 carheight
                                                                                         205 non-null float64
                           13 curbweight 205 non-null float64
14 enginetype 205 non-null float64
15 cylindernumber 205 non-null float64
16 enginesize 205 non-null float64
17 fuelsystem 205 non-null float64
18 boreratio 205 non-null float64
19 stroke 205 non-null float64
                            20 compressionratio 205 non-null float64
21 horsepower 205 non-null float64
22 peakrpm 205 non-null float64
23 citympg 205 non-null float64
24 highwaympg 205 non-null float64
25 price 205 non-null float64
                          dtypes: float64(26)
                          memory usage: 41.8 KB
```

7

drivewheel 205 non-null float64

In [38]: ## ploting boxplot to visualise removed outliers
 for i in Car_price.columns:
 sns.boxplot(data=Car_price, x=i)
 plt.show()

0.00 fueltype

-0.04

-0.02

0.02

0.04

0.1900 0.1925 0.1950 0.1975 0.2000 0.2025 0.2050 0.2075 0.2100 cylindernumber

2. Model Implementation

```
In [ ]:
In [40]: # Assainginn x value and y value as Fetures and target
    x=cp_scaled.drop(columns='price')
    y=cp_scaled['price']
```

price

1)Linear Regression

```
In [42]: # syntex of traning and testing for linear regression
         from sklearn.model selection import train test split
         x train, x test, y train, y test = train test split(x, y, test size=0.2, random state=5)
In [43]: from sklearn.linear model import LinearRegression
         #syntes for linear regression modeling
         model = LinearRegression()
         model.fit(x train, y train)
Out[43]:
         ▼ LinearRegression
         LinearRegression()
In [44]: # Sytax for model Prediction
         y pred = model.predict(x test)
         print(y pred)
          [0.0173999 \quad 0.04114517 \quad 0.26544993 \quad 0.51049577 \quad 0.08589462 \quad 0.24499946 
          0.36402258 \ 0.07779068 \ 0.04451748 \ 0.03283352 \ 0.0672954 \ 0.07635405
          0.07446685 \ 0.2553732 \ 0.09497911 \ 0.08987182 \ 0.22474338 \ 0.53989787
          0.03839838 \ 0.02304198 \ 0.01413171 \ 0.13812371 \ 0.13675742 \ 0.33336011
          0.11148947 0.17399271 0.2307172 0.04856993 0.29493778 0.052302
          0.08707402 0.01230129 0.30648486 0.1690059 0.11836766 0.12674929
          0.14777943 0.60542014 0.46073699 0.05247625 0.07869153]
In [45]: # Sytax for model score
         score LinearRegression = model.score(x test, y test)
         score LinearRegression
         0.9218232858292736
Out[45]:
         2) Decidion Tree Regressor
In [47]: | #syntax of traning and testing for Decidion Tree Regressor
         x1 train, x1 test, y1 train, y1 test = train test split(x, y, test size=0.2, random stat
In [48]: #syntas for Decidion Tree Regressor modeling
         from sklearn.tree import DecisionTreeRegressor
         model1 = DecisionTreeRegressor(random state=42)
         model1.fit(x1 train, y1 train)
Out[48]:
               DecisionTreeRegressor
         DecisionTreeRegressor(random_state=42)
In [49]: #syntax for model prediction
         y1 pred = model1.predict(x1 test)
         print(y1 pred)
         [0.60715704 \ 0.28399782 \ 0.09510451 \ 0.17506579 \ 0.60715704 \ 0.00191152
          0.04468497 0.08043295 0.09440941 0.07142148 0.17506579 0.07298545
          0.21168264 \ 0.15217715 \ 0.60715704 \ 0.03028648 \ 0.00697582 \ 0.18981183
          0.04644754 \ 0.09510451 \ 0.12727769 \ 0.23040068 \ 0.05910829 \ 0.00672757
          0.06183903 0.60715704 0.08269202 0.28293034 0.05910829 0.2697731
          0.60715704 \ 0.03850355 \ 0.04138325 \ 0.34573755 \ 0.07047813 \ 0.60715704
          0.16324909 0.16699767 0.0942977 0.24206842 0.10865895]
In [50]: #sytex for model score
```

```
score DecisionTreeRegressor
         0.9545150840364851
Out[50]:
         3)RandomForestRegressor
In [52]: #syntax of traning and testing for RandomForestRegressor
         x2 train,x2 test,y2 train,y2 test=train test split(x, y, test size=0.2,random state=42)
In [53]: #syntas for RandomForestRegressor modeling
         from sklearn.ensemble import RandomForestRegressor
         model2=RandomForestRegressor(random state=42)
         model2.fit(x2 train, y2 train)
Out[53]:
               RandomForestRegressor
         RandomForestRegressor(random_state=42)
In [54]: # syntax of model prediction
         y2 pred = model2.predict(x2 test)
         print(y2 pred)
         [0.60248101 \ 0.34357182 \ 0.09436721 \ 0.19631374 \ 0.50423291 \ 0.03565563
          0.06862867 0.07303436 0.10732858 0.07418524 0.21084082 0.07193039
          0.21741274 \ 0.1443836 \ 0.60715704 \ 0.03391614 \ 0.01339506 \ 0.22582171
          0.08858175 \ 0.09936547 \ 0.13185939 \ 0.24552319 \ 0.05238792 \ 0.01416836
          0.05285115 \ 0.60574189 \ 0.09671913 \ 0.28936448 \ 0.05539943 \ 0.28403158
          0.50567524 \ 0.03384365 \ 0.07140212 \ 0.348156 \ 0.07165384 \ 0.50048856
          0.11344124 0.18313688 0.0584498 0.23754655 0.07887121]
In [55]: # syntax of model score
         score RandomForestRegressor = model2.score(x2 test,y2 test)
         print(score RandomForestRegressor)
         0.9568274904378331
         4) Gradient Boosting Regressor
In [57]: | # Syntax of traning and testing for Gradient boosting regressor
         x3 train,x3 test,y3 train,y3 test = train test split(x,y,test size=0.2,random state=42)
In [58]: # syntax for GradientboostingRegressor
         from sklearn.ensemble import GradientBoostingRegressor
         model3 = GradientBoostingRegressor(random state = 42)
         model3.fit(x3 train, y3 train)
Out[58]:
               GradientBoostingRegressor
         GradientBoostingRegressor(random_state=42)
In [59]: # Syntax of model prediction
         y3 pred = model.predict(x3 test)
         print(y3 pred)
         [ \ 0.50408979 \ \ 0.31074129 \ \ 0.10535158 \ \ 0.199467 \ \ \ 0.51442429 \ \ 0.01230129
           0.04451748 0.03366744 0.13834713 0.08050286 0.1690059 0.05779177
           0.28184428 \quad 0.10256637 \quad 0.55473401 \quad 0.01413171 \quad -0.06475342 \quad 0.21771767
           0.10351905 0.13108738 0.13971486 0.36231498 0.04322966 0.01511448
           0.07779068 \quad 0.50523767 \quad 0.19733959 \quad 0.27348636 \quad 0.02185689 \quad 0.24499946
```

score DecisionTreeRegressor = model1.score(x1 test,y1 test)

```
In [60]: # syntax for model score
         score GradientBoostingRegressor = model3.score(x3 test,y3 test)
         print(score GradientBoostingRegressor)
         0.9654483345578171
         Support Vector Regressor(SVR)
In [62]: # syntax of standardscaling of x and y value
         scaler x = StandardScaler()
         x scaled = scaler x.fit transform(x)
         scaler y = StandardScaler()
         y scaled = scaler y.fit transform(y.values.reshape(-1,1))
In [63]: # syntax of traing and testng for SVR
         x4 train, x4 test, y4 train, y4 test = train test split(x scaled, y scaled, test size=0.2, ra
In [64]: # Syntax of DVR modeling
         from sklearn.svm import SVR
         model4 = SVR(kernel='rbf', C=1.0, epsilon=0.1)
         model4.fit(x4 train,y4 train.ravel())
Out[64]:
         ▼ SVR
         SVR()
In [65]: # sytax of model predictin
         y4 pred = model4.predict(x4 test)
         print(y4 pred)
          \begin{smallmatrix} 1.70411533 & 0.59824683 & -0.86953452 & 0.21991343 & 1.41229274 & -1.08769008 \end{smallmatrix} 
          -0.44380025 \ -0.93592188 \ -0.45225855 \ -0.59721948 \ -0.08104726 \ -0.76734628
           0.38416197 \; -0.14378696 \quad 2.49010599 \; -0.86407123 \; -0.22082264 \quad 0.13084676
          -0.77148585 \ -0.4974642 \ -0.51203069 \ 0.42334069 \ -0.54468937 \ -0.46899712
          -0.81044879 1.8999882 -0.36339444 0.4711522 -0.94643054 0.50326225
          1.56182218 -0.86067676 -0.62876583 1.01176453 -0.75934718 1.39070537
          -0.3209201 0.02335724 -0.89973135 0.15776104 -0.76007862
In [66]: #sytex for model score
         score SVR = model4.score(x4 test,y4 test)
         print(score SVR)
         0.8812822630479982
In [67]: # List of values
         values = {'LinearRegression':[score LinearRegression],
                    'DecisionTreeRegressor': [score DecisionTreeRegressor],
                    'RandomForestRegressor': [score RandomForestRegressor],
                    'GradientBoostingRegressor':[score GradientBoostingRegressor],
                    'SVR':[score SVR]}
         df values=pd.DataFrame(values)
         max values = df values.max()
         overall max value = df values.max().max()
         overall max value
         overall max columns = df values.columns[df values.eq(overall max value).any()]
         print(f'The highest model score of Regression model is {overall max columns}\nAnd the Sc
         The highest model score of Regression model is Index(['GradientBoostingRegressor'], dtyp
         e='object')
         And the Score is 0.9654483345578171
```

 $0.47402081 \quad 0.01740523 \quad 0.0173999 \quad 0.37884679 \quad 0.04590541 \quad 0.47502946$

0.12009852 0.14921605 0.06041256 0.22474338 0.09772654]

3). Model Evelution

Compareing the performance of all models based on R-squred, Mean Squared Error (MSE) and Mean Absolute Error (MAE)

```
In [69]: from sklearn.metrics import mean_squared_error, r2_score,mean_absolute_error
```

Evaluating Linear Regression model using following metrics

```
In [71]: mae_LR = mean_absolute_error(y_test,y_pred)
    mse_LR = mean_squared_error(y_test,y_pred)
    r2_LR = r2_score(y_test,y_pred)
    print_title(f'The Evaluated performace of MSE, MAE and R-Squred Score\nfor Linear Regres
    print_section(f'Mean Squared Error: {mse_LR}\nMean Absolute Error: {mae_LR}\nR-Squared S
```

The Evaluated performace of MSE, MAE and R-Squred Score for Linear Regression model

Mean Squared Error: 0.0023150850976519604 Mean Absolute Error: 0.03594446242220855 R-Squared Score: 0.9218232858292736

Evaluating Decision Tree Regressor model using following metrics

```
In [73]: mae_DTR = mean_absolute_error(y1_test,y1_pred)
    mse_DTR = mean_squared_error(y1_test,y1_pred)
    r2_DTR = r2_score(y1_test,y1_pred)
    print_title(f'The Evaluated performace of MSE, MAE and R-Squred Score\nfor Decidion Tree
    print_section(f'Mean Squared Error: {mse_DTR}\nMean Absolute Error: {mae_DTR}\nR-Squared
```

The Evaluated performace of MSE, MAE and R-Squred Score for Decidion Tree Regresso model

Mean Squared Error: 0.0014845947267692608 Mean Absolute Error: 0.027874622327227223 R-Squared Score: 0.9545150840364851

Evaluating Random Forest Regressor model using following metrics

```
In [75]: mae_RFR = mean_absolute_error(y2_test,y2_pred)
    mse_RFR = mean_squared_error(y2_test,y2_pred)
    r2_RFR = r2_score(y2_test,y2_pred)
    print_title(f'The Evaluated performace of MSE, MAE and R-Squred Score\nfor Random Forest
    print_section(f'Mean Squared Error: {mse_RFR}\nMean Absolute Error: {mae_RFR}\nR-Squared
```

The Evaluated performace of MSE, MAE and R-Squred Score for Random Forest Regressor model $\,$

Mean Squared Error: 0.00140911945597086

Mean Absolute Error: 0.026968862204385824 R-Squared Score: 0.9568274904378331

Evaluating Gradient Boosting Regressor model using following metrics

```
In [77]: mae_GBR = mean_absolute_error(y3_test,y3_pred)
    mse_GBR = mean_squared_error(y3_test,y3_pred)
```

```
r2_GBR = r2_score(y3_test,y3_pred)
print_title(f'The Evaluated performace of MSE, MAE and R-Squred Score\nfor Gradient Boos
print_section(f'Mean Squared Error: {mse_GBR}\nMean Absolute Error: {mae_GBR}\nR-Squared

The Evaluated performace of MSE, MAE and R-Squred Score
for Gradient Boosting Regressor model

Mean Squared Error: 0.002743681669317043
Mean Absolute Error: 0.0418180493930531
R-Squared Score: 0.9159392607899799
```

Evaluating Support Vector Regressor model using following metrics

Best Performing model with justification

Result Comparison using R-Squared Score

```
Compared and Identifyed model using R2_Score metric of Random Forest Regressor its R-Squared Score is 95% and it has best-performing algoritham with justification. And the Wrost model is Support Vector Regressor its R-Squared score is 88%
```

4) Feature Importance Analysis

Identitying the significant variables affecting car prices

```
Feature: 0, Score: 0.01921
         Feature: 1, Score: 0.00098
         Feature: 2, Score: 0.01325
         Feature: 3, Score: 0.00000
         Feature: 4, Score: 0.00000
         Feature: 5, Score: 0.00055
         Feature: 6, Score: 0.00168
         Feature: 7, Score: 0.00197
         Feature: 8, Score: 0.00000
         Feature: 9, Score: 0.00653
         Feature: 10, Score: 0.01077
         Feature: 11, Score: 0.01080
         Feature: 12, Score: 0.00467
         Feature: 13, Score: 0.53391
         Feature: 14, Score: 0.00000
         Feature: 15, Score: 0.00000
        Feature: 16, Score: 0.24616
         Feature: 17, Score: 0.00286
         Feature: 18, Score: 0.00519
         Feature: 19, Score: 0.00444
        Feature: 20, Score: 0.00250
         Feature: 21, Score: 0.04080
         Feature: 22, Score: 0.00554
        Feature: 23, Score: 0.02291
        Feature: 24, Score: 0.06529
In [85]: variables = list(x.columns.values)
         variables
         dic = dict(zip(variables,importance))
         df dic = pd.DataFrame([dic])
         max value = max(dic, key=dic.get)
         # plot feature importance
         plt.bar(variables,importance)
         plt.title('Ploting Significat variables')
         plt.xlabel('Variables')
         plt.xticks(rotation=90, ha='right')
         plt.ylabel('Values')
         plt.show()
```


5) Hyperparameter Tuning

```
In [228...
          from sklearn import svm
          from sklearn.svm import SVR
          from sklearn.model selection import cross val score
          x5 train, x5 test, y5 train, y5 test = train test split(x,y,test size=0.3)
In [217...
          model5 = svm.SVR(kernel='rbf', C=30, gamma='auto')
In [219...
          model5.fit(x5 train, y5 train)
Out[219]:
                  SVR
          SVR(C=30, gamma='auto')
In [240...
          kernels = ['rbf','linear']
          C = [1, 10, 20]
          avg scores = {}
          for kval in kernels:
              for cval in C:
                  cv_scores = cross_val_score(svm.SVR(kernel=kval,C=cval,gamma='auto'),x,y,cv=5)
                  avg scores[kval + ' ' + str(cval)] = np.average(cv scores)
In [238...
          avg scores
```

Out[238]: {'rbf_1': 0.5987282035895402, 'rbf_10': 0.6152560732739006, 'rbf_20': 0.6140176596351637, 'linear_1': 0.5885914453891583, 'linear_10': 0.5690558781453141, 'linear_20': 0.5715248726425439}