ISHIK	KA
Problem	1
Given	
	guthesis Function
	$Uint(n) := S \pm 1 \pm Cos(TT n)$ for $ n \le 1$ else
	else
mesus	Vint is in interval (-1,1). it zero otherwis
ay to	Prove :- It satisfy parelition of unity
	$\sum_{k \in \mathbb{Z}} \text{ limt } (n-k) = \Delta \text{for all } n \in \mathbb{R}$
Prob	$ \frac{2 \left(\frac{1}{2} + \frac{1}{2} \cos \left(\pi \left(x - K \right) \right) \right)}{K \in \mathbb{Z}} $ $ \frac{1}{2} + \frac{1}{2} \cos \left(\pi \left(x - K \right) \right) $
when	[n-k] L 1
Sen ce	WS (TT (n-k) = WS (TT n-TTK)
By FOR	unula (sCA-B) = CosAcusB+ SinASinB
COSCAN	- TIK) = COSTTR & SINTTR SINTTR
Custin	$u \cdot (-1)^{K} + \sin \pi n \cdot 0$ (as(πk) = $(-1)^{L}$, $\sin \pi k$ =0
	(-1) COSTIN

D-I Sín Tin
2
Box n=-1
2) -I Sin(-11)
2
25 O [Sin II = 0]
and for n > 1 is 0
so it is Continuous on first destrative
Step3 second derivotive
V
forst derivotive = - TT Sin Tin
digerentiate
2 - M Cos TTyc . TT
3 - T12 Cos T1 22
for n=-1
-3 $-\frac{3}{45}$ (-1)
N 172
Now tein function be comes Discontinuous

80 Clint 6 C1 regularity order in 1 C) show truncated sinc function Unt (n) = | Sin Tin for |n/ 62 D else No letter the partition of unity here it given for function (nu) 42 nears Prese the two Values pussible [k-2, k+2] we have to show E (int (n-k) + 1 Proof by example n=0.5

3

u(0.5) = E lent (0.5-k) k=76

fut we know by given l'int

(mit (0.5-k) 70 only when \0.5-k\ \le 2

for Values of k

10.5-K 62

-240.5-k42

-2.5 \(- \lambda \) \(\lambda \) 1.5

-1.5 & K & 2.5

\$0

KG 2-1,0,1,23

Now Computing each term

when k=-1

n-k21.5

Sin TT (n-k) = Sin (1.5 TT)=-1

SIN TI(n-K) 2 -1 -2 -3TT (n-K) 3TT

when R=0

2-K=0.5

Sinf(
$$x-k$$
)= $5n(0.5\pi)=1$

Sin $\pi(x-k)$
 $\frac{1}{7}(x-k)$

Oben $k=1$
 $3(x-2-0.5)$

Sin $\pi(-0.5)=-1$
 $3(x-2-0.5)$
 $3(x-2-0.5)$
 $3(x-2-0.5)$
 $3(x-2-0.5)$
 $3(x-2-0.5)$
 $3(x-2-0.5)$

Add all the term

 -2
 -1.5π
 -1.5π

Problem 2 given £1 = 86 at n120.8 F3 = 42 given Synthesis function a) for well Co, C1, C2 fcni) = Sci-B2 (nj-i) for linear System Coeff (0)(1,12 are Centered around entiger lattice Points for our n values 0.8,1.0,1.2 they lie near good nude 0,1,2 80 se vist jake 1=0,1,2

At 220.8

· 20-0 = 0.8 → [0.8] >0.5, use second case

 $B_{2}(0.8)^{2} \pm ((.5-0.8)^{2})^{2} = (0.7)^{2}$

· n-1= -0.2 > [-0.2] < 0.5

 $\beta_2(-0^2) = 3 - (-0.2)^2 = 0.75 - 0.04$

 $n-2=-1.2 \rightarrow [-1.2] \neq 0.5 80$

 $\beta_{2}(-1.2) = \frac{1}{2}(1.5-1.2)^{2} = \frac{1}{2}(0.3)^{2} = 0.045$

so first 800

[B2 (0.8), B2 (-0.2), B2 (-1.2)] = [0.245, 0.71, 0.045]

At n = 1.0

· n-0 = 1.0 > 0.5

 $\beta_2 (1.0) = \frac{1}{2} (0.5)^2 = 0.125$

$$\beta_2(-1) = \frac{1}{2}(0.5)^2 = 0.125$$

At n= 102

Linear System 0.245 0.045 0 - 11 00125 0.75 0.045 0.7) Verifying (0, (1, (2)) 2 (245, 35, 25)9000 1St = 0-245 x 245. 7 0.71 x 35 7 0.045 x 25 9000 2rd = 0.125 x 245 + 0.75 x 35 + 0.725 x25 ~ 60 90032d 2 0.045x245 7 0.71 x35 7 0.245 7 25 b) Analytic expression u(n) = } (e. B2(x-i) 2 245 · B (n) + 35 · B (n-1) + 25 · B 2 (n-2)

given locations

n=0.5

B₂(-0.5) = 0.5

B2 (-1.5) = 0

U(0.5)2 245 x 0.5735 x 0.5

20 140

· 221

grom part a = 60

· 2 2 1.55

B₂(1.5) = 0 B₂(0.5)=0.5

B2 (-0.5) = 0.5

U(1.5) = 35 x 0.5 + 25 x65

2 17-5+12.5 = (30)

C) B(n)=100 n2 - 3/0x 7 270

locations = 1 , 1 , 3

F(1) = 100 x/1/2 310 x 1 + 270 25 - 155 + 270 = 140 T(1) = 10 - 310 + 276 = 60 F(3/2)2 (00 x(3)2 - 310 x 3 +270 25 79 - 155 73 +270 225 - 465 + 276 = 30 Juterpolation in Some d) -> Quadratic B-splines have lower smoothness they are les's accurate for Bunction with Curve. Cubic model Curve better. > Visyal quality in Poor. -> Cubic B-Spline create twice Continuously differentiable (C2) interpolant whereas quadratic has only c1