Министерство образования Республики Беларусь Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Факультет информационных технологий и управления

Кафедра интеллектуальных информационных технологий

Отчёт по лабораторной работе №1 по курсу «МРЗвИС» на тему «Реализация модели решения задачи на конвейерной архитектуре»

Выполнили студенты группы 821702:

Проверил:

Холупко А.А Никипелов А.Д

Крачковский Д.Я

МИНСК 2020

Вариант 8

Постановка задачи: реализовать и исследовать модель решения на конвейерной архитектуре задачи вычисления попарного произведения (деления (обращения)) компонентов двух векторов чисел.

Описание модели. Краткое описание особенностей

Алгоритм вычисления произведения пары 6-разрядных чисел умножением со старших разрядов со сдвигом частичной суммы вправо.

Исходные данные

- m количество пар;
- p разрядность умножаемых попарно чисел (6);
- n количество процессорных элементов в системе (n = p = 6);
- t = 3 время счёта на этапах сбалансированного конвейера;
- 2 числовых вектора равной длины: Длина векторов и элементы задаются пользователем вручную

Результаты:

Общая часть:

```
Pairs of number
3
enter 3 the first vector
1
2
3
enter 3 the second vector
4
5
6
first vector
1 - 0000.01
2 - 0000.10
3 - 0000.11
second vector
4 - 0001.00
5 - 0001.01
6 - 0001.10
How many stages do you want? (1/2/3/6/18)
```

Pair 1: 0000.01	Pair 1 5.3operation 0000.0000.100	Pair 2 5.1operation 0000.00	l
0001.00 Pair 2:	15 Pair 1 6.1operation	Pair 2 5.2operation 0000.0010.10	
0000.10 0001.01	0000.00 Pair 1 6.2operation	Pair 2 5.3operation 0000.0001.010	
Pair 3: 0000.11 0001.10	0000.0000.100 Pair 1 6.3operation	33 Pair 2 6.1operation	
Pair 1 1.1operation 0000.00	18	Pair 2 6.2operation	
Pair 1 1.2operation 0000.00	Pair 2 1.1operation 0000.10	0000.0001.010 Pair 2 6.3operation	
Pair 1 1.3operation 0000.000	Pair 2 1.2operation 0000.10	36	
3 Pair 1 2.1operation 0000.00	Pair 2 1.3operation 0000.010	Pair 3 1.1operation 0000.00	
Pair 1 2.2operation 0000.000	21 Pair 2 2.1operation 0000.00	Pair 3 1.2operation 0000.00	
Pair 1 2.3operation 0000.0000	Pair 2 2.2operation 0000.010	Pair 3 1.3operation 0000.000	
6 Pair 1 3.1operation 0000.01	Pair 2 2.3operation 0000.0010	39 Pair 3 2.1operation 0000.11	
Pair 1 3.2operation 0000.0100	24 Pair 2 3.1operation 0000.10	Pair 3 2.2operation 0000.110	Pair 3 4.3operation 0000.0100.10
Pair 1 3.3operation 0000.0010.0	Pair 2 3.2operation 0000.1010	Pair 3 2.3operation 0000.0110	48 Pair 3 5.1operation
9 Pair 1 4.1operation 0000.00	Pair 2 3.3operation 0000.0101.0	42 Pair 3 3.1operation 0000.11	0000.00 Pair 3 5.2operation 0000.0100.10
Pair 1 4.2operation 0000.0010.0	27 Pair 2 4.1operation 0000.00	Pair 3 3.2operation 0001.0010	Pair 3 5.3operation 0000.0010.010
Pair 1 4.3operation 0000.0001.00	Pair 2 4.2operation 0000.0101.0	Pair 3 3.3operation 0000.1001.0	51 Pair 3 6.1operation
12 Pair 1 5.1operation 0000.00	Pair 2 4.3operation 0000.0010.10	45 Pair 3 4.1operation 0000.00	0000.00 Pair 3 6.2operation
Pair 1 5.2operation 0000.0001.00	30 Pair 2 5.1operation	Pair 3 4.2operation 0000.1001.0	0000.0010.010 Pair 3 6.3operation
Pair 1 5.3operation 0000.0000.100	0000.00 Pair 2 5.2operation 0000.0010.10	Pair 3 4.3operation 0000.0100.10	0000.0001.0010

Pair 1: 0000.01	Pair 2 2.1operation 0000.00	Pair 3 2.3operation	I
0001.00 Pair 2:	Pair 2 2.2operation 0000.010	0000.0110	
0000.10 0001.01	Pair 2 2.3operation 0000.0010	0000.00 Pair 2 5.2operation	
Pair 3: 0000.11 0001.10	Pair 1 5.1operation 0000.00	0000.0010.10 Pair 2 5.3operation	
Pair 1 1.1operation 0000.00	Pair 1 5.2operation 0000.0001.00	0000.0001.010	
Pair 1 1.2operation 0000.00	Pair 1 5.3operation 0000.0000.100	24 Pair 3 3.1operation 0000.11	
Pair 1 1.3operation 0000.000	15 Pair 2 3.1operation	Pair 3 3.2operation 0001.0010	
3 Pair 1 2.1operation	0000.10 Pair 2 3.2operation	Pair 3 3.3operation 0000.1001.0	
Pair 1 2.2operation	0000.1010 Pair 2 3.3operation	Pair 2 6.1operation 0000.00	
Pair 1 2.3operation	0000.0101.0 Pair 1 6.1operation	Pair 2 6.2operation 0000.0001.010	
0000.0000	Pair 1 6.2operation	Pair 2 6.3operation 0000.0000.1010	
Pair 1 3.1operation 0000.01	0000.0000.100 Pair 1 6.3operation 0000.0000.0100	27 Pair 3 4.1operation 0000.00	
Pair 1 3.2operation 0000.0100	18	Pair 3 4.2operation 0000.1001.0	
Pair 1 3.3operation 0000.0010.0	Pair 3 1.1operation 0000.00	Pair 3 4.3operation 0000.0100.10	
9 Pair 2 1.1operation	Pair 3 1.2operation 0000.00	30	
Pair 2 1.2operation	0000.000	Pair 3 5.1operation 0000.00	
0000.10 Pair 2 1.3operation	0000.00	Pair 3 5.2operation 0000.0100.10	
0000.010 Pair 1 4.1operation 0000.00	0000.0101.0	Pair 3 5.3operation 0000.0010.010	Pair 3 6.1operation 0000.00
Pair 1 4.2operation 0000.0010.0	Pair 2 4.3operation 0000.0010.10	33 Pair 3 6.1operation 0000.00	Pair 3 6.2operation 0000.0010.010
Pair 1 4.3operation 0000.0001.00	21 Pair 3 2.1operation 0000.11	Pair 3 6.2operation 0000.0010.010	Pair 3 6.3operation 0000.0001.0010
12	Pair 3 2.2operation 0000.110	Pair 3 6.3operation 0000.0001.0010	36

Pair 1: 0000.01 0001.00	Pair 1 4.2operation 0000.0010.0	.18 Pair 3 3.1operation 0000.11
Pair 2: 0000.10 0001.01	Pair 1 4.3operation 0000.0001.00	Pair 3 3.2operation 0001.0010
Pair 3: 0000.11	12 Pair 3 1.1operation 0000.00	Pair 3 3.3operation 0000.1001.0
Pair 1 1.1operation	Pair 3 1.2operation 0000.00	Pair 2 5.1operation 0000.00
0000.00 Pair 1 1.2operation 0000.00	Pair 3 1.3operation 0000.000	Pair 2 5.2operation 0000.0010.10
Pair 1 1.3operation	Pair 2 3.1operation 0000.10	Pair 2 5.3operation 0000.0001.010
3	Pair 2 3.2operation 0000.1010	21 Pair 3 4.1operation
Pair 1 2.1operation 0000.00	Pair 2 3.3operation 0000.0101.0	Pair 3 4.2operation
Pair 1 2.2operation 0000.000	Pair 1 5.1operation 0000.00	0000.1001.0 Pair 3 4.3operation
Pair 1 2.3operation 0000.0000	Pair 1 5.2operation 0000.0001.00	0000.0100.10 Pair 2 6.1operation
6 Pair 2 1.1operation 0000.10	Pair 1 5.3operation 0000.0000.100	0000.00 Pair 2 6.2operation 0000.0001.010
Pair 2 1.2operation 0000.10	15 Pair 3 2.1operation 0000.11	Pair 2 6.3operation 0000.0000.1010
Pair 2 1.3operation 0000.010	Pair 3 2.2operation 0000.110	24 Pair 3 5.1operation
Pair 1 3.1operation 0000.01	Pair 3 2.3operation 0000.0110	0000.00 Pair 3 5.2operation
Pair 1 3.2operation 0000.0100	Pair 2 4.1operation 0000.00	0000.0100.10 Pair 3 5.3operation
Pair 1 3.3operation 0000.0010.0	Pair 2 4.2operation 0000.0101.0	0000.0010.010
9 Pair 2 2.1operation 0000.00	Pair 2 4.3operation 0000.0010.10	27 Pair 3 6.1operation 0000.00
Pair 2 2.2operation 0000.010	Pair 1 6.1operation 0000.00	Pair 3 6.2operation 0000.0010.010
Pair 2 2.3operation 0000.0010	Pair 1 6.2operation 0000.0000.100 Pair 1 6.3operation	Pair 3 6.3operation 0000.0001.0010
Pair 1 4.1operation 0000.00	0000.0000.0100	30

При п=6

Pair 1: 0000.01 0001.00	Pair 1 3.2operation 0000.0100	15 Pair 3 4.1operation 0000.00
Pair 2: 0000.10	Pair 1 3.3operation 0000.0010.0	Pair 3 4.2operation 0000.1001.0
0001.01 Pair 3: 0000.11	9 Pair 3 2.1operation 0000.11	Pair 3 4.3operation 0000.0100.10
0001.10 Pair 1 1.1operation	Pair 3 2.2operation	Pair 2 5.1operation 0000.00
0000.00 Pair 1 1.2operation	Pair 3 2.3operation 0000.0110	Pair 2 5.2operation 0000.0010.10
0000.00 Pair 1 1.3operation	Pair 2 3.1operation 0000.10	Pair 2 5.3operation 0000.0001.010
0000.000	Pair 2 3.2operation 0000.1010	Pair 1 6.1operation 0000.00
3 Pair 2 1.1operation 0000.10	Pair 2 3.3operation 0000.0101.0	Pair 1 6.2operation 0000.0000.100
Pair 2 1.2operation 0000.10	Pair 1 4.1operation 0000.00	Pair 1 6.3operation 0000.0000.0100
Pair 2 1.3operation 0000.010	Pair 1 4.2operation 0000.0010.0	18
Pair 1 2.1operation 0000.00	Pair 1 4.3operation 0000.0001.00	
Pair 1 2.2operation 0000.000	12 Pair 3 3.1operation	Pair 3 5.2operation 0000.0100.10
Pair 1 2.3operation 0000.0000	0000.11	Pair 3 5.3operation 0000.0010.010
6	Pair 3 3.2operation 0001.0010	Pair 2 6.1operation 0000.00
Pair 3 1.1operation 0000.00	Pair 3 3.3operation 0000.1001.0	Pair 2 6.2operation 0000.0001.010
Pair 3 1.2operation 0000.00	Pair 2 4.1operation 0000.00	Pair 2 6.3operation 0000.0000.1010
Pair 3 1.3operation 0000.000	Pair 2 4.2operation 0000.0101.0	21
Pair 2 2.1operation 0000.00	Pair 2 4.3operation 0000.0010.10	Pair 3 6.1operation 0000.00
Pair 2 2.2operation 0000.010	Pair 1 5.1operation 0000.00	Pair 3 6.2operation 0000.0010.010
Pair 2 2.3operation 0000.0010	Pair 1 5.2operation 0000.0001.00	Pair 3 6.3operation 0000.0001.0010
Pair 1 3.1operation 0000.01	Pair 1 5.3operation 0000.0000.100	24

Pair 1:	Pair 1 3.1operation	
0000.01 0001.00	0000.01	Pair 2 5.1operation 0000.00
Pair 2: 0000.10	Pair 3 2.3operation 0000.0110	Pair 1 5.2operation
0001.01	Pair 2 3.1operation 0000.10	0000.0001.00
Pair 3: 0000.11 0001.10	Pair 1 3.2operation 0000.0100	Pair 3 5.1operation 0000.00
Pair 1 1.1operation 0000.00	Pair 3 3.1operation 0000.11	Pair 2 5.2operation 0000.0010.10
Pair 2 1.1operation 0000.10	Pair 2 3.2operation 0000.1010	Pair 1 5.3operation 0000.0000.100
Pair 1 1.2operation 0000.00	Pair 1 3.3operation 0000.0010.0	15
Pair 3 1.1operation 0000.00	9	Pair 3 5.2operation 0000.0100.10
Pair 2 1.2operation 0000.10	Pair 3 3.2operation 0001.0010	Pair 2 5.3operation 0000.0001.010
Pair 1 1.3operation 0000.000		Pair 1 6.1operation 0000.00
3	Pair 1 4.1operation 0000.00	Pair 3 5.3operation
Pair 3 1.2operation 0000.00	Pair 3 3.3operation 0000.1001.0	0000.0010.010 Pair 2 6.1operation
Pair 2 1.3operation 0000.010	Pair 2 4.1operation 0000.00	0000.00
Pair 1 2.1operation 0000.00	Pair 1 4.2operation 0000.0010.0	Pair 1 6.2operation 0000.0000.100
Pair 3 1.3operation 0000.000	Pair 3 4.1operation 0000.00	Pair 3 6.1operation 0000.00
Pair 2 2.1operation 0000.00	Pair 2 4.2operation 0000.0101.0	Pair 2 6.2operation 0000.0001.010
Pair 1 2.2operation 0000.000	Pair 1 4.3operation 0000.0001.00	Pair 1 6.3operation 0000.0000.0100
Pair 3 2.1operation 0000.11	12	18
Pair 2 2.2operation 0000.010	Pair 3 4.2operation 0000.1001.0	Pair 3 6.2operation 0000.0010.010
Pair 1 2.3operation 0000.0000	Pair 2 4.3operation 0000.0010.10	Pair 2 6.3operation 0000.0000.1010
6	Pair 1 5.1operation 0000.00	Pair 3 6.3operation
Pair 3 2.2operation 0000.110	Pair 3 4.3operation 0000.0100.10	0000.0001.0010
Pair 2 2.3operation	Pair 2 5.1operation	20

Графики

Вопросы:

1. Проверить, что модель работает верно: программа работает правильно (на всех этапах конвейера).

Имеются исходные векторы четырехразрядных чисел:

$$A = <1, 2, 3>,$$

$$B = <4, 5, 6>.$$

Проверка результатов:

- 1. 1*4=4(000100);
- 2. 2*5=10(001010);
- 3. 3*6=18(010010).

Результаты верны.

2. Объясните на графиках точки перегиба и асимптоты.

Асимптоты на графиках объясняются законом, по которому происходит ограничение роста характеристик конвейера (коэффициент ускорения и эффективность) с увеличением конкретного из параметров (\mathbf{n} и \mathbf{r}). Асимптоты:

Для K_{ν} :

$$\lim_{r \to \infty} \frac{rn}{n+r-1} = n$$

Эта асимптота показывает, что конвейер выполнит операцию не более, чем в n раз быстрее, чем на последовательной системе, благодаря параллельной обработке числовых векторов.

$$\lim_{n \to \infty} \frac{rn}{n+r-1} = r$$

Эта асимптота показывает, что конвейер выполнит операцию не более, чем в r раз быстрее, чем на последовательной системе, благодаря параллельной обработке числовых векторов. При n стремящемся к бесконечности конвейер сможет обрабатывать пары одновременно.

Для е:

$$\lim_{r \to \infty} \frac{r}{n+r-1} = 1$$

$$\lim_{n \to \infty} \frac{r}{n+r-1} = 0$$

Эффективность показывает «эффективную» работу процессорных элементов (этапов) в рамках системы:

- 1. при возрастании ранга задачи,
- 2. при возрастании количества самих процессорных элементов к бесконечности.
- 3. Спрогнозируйте, как изменится вид графиков при изменении параметров модели? Если модель позволяет, то проверьте на ней правильность ответа.

- Параметр r: при его увеличении растет значение K_y и e;
- **Параметр n:** при его увеличении растет значение K_y , а e-y уменьшается.
- 4. Каково соотношение между параметрами п, г, m, р модели сбалансированного конвейера?

m – задает пользователь, p = 6, n = p, r = m.

5. Допустим: имеется некоторая характеристика h (эффективность е или ускорение K_y) и для неё выполняется:

$$h(n_1, r_1) = h(n_2, r_2) \text{ } \text{ } \text{ } n_1 > n_2.$$

Каким будет соотношение между r_1 и r_2 ?

Проанализируем соотношение и сравним данные с построенными графиками характеристик. При таком соотношении для K_y - $r_1 < r_2$, для e - $r_1 > r_2$.

Ответ: K_y: $r_1 < r_2$; $e: r_1 > r_2$.

6. Дано:

- а. несбалансированный конвейер (заданы конкретные значения: n, $\{t_i\}$ времена выполнения обработки на этапах конвейера);
- b. e_0 некоторое фиксированное значение эффективности.

Определить значение r_0 , при котором выполняется $e(n, r_0) > e_0$? (Получить формулу, затем подставить в неё значения параметров.)

Эффективность определяется по формуле: $e = \frac{Ky(r)}{n}$ (1)

Коэффициент ускорения определяется по формуле: $Ky(r) = \frac{T1}{Tn}(2)$

$$T(n) = \sum_{i=1}^{n} t_i + (r-1)t_{max}(3)$$

$$T_1 = r \sum_{i=1}^n t_i \left(\mathbf{4} \right)$$

Подставим (3), (4) в формулу (2):

$$Ky(n,r) = \frac{r \sum_{i=1}^{n} t_i}{\sum_{i=1}^{n} t_i + (r-1)t_{max}}$$
(5)

Итоговая формула эффективности:

$$e(n,r) = \frac{Ky(r,n)}{n} = \frac{r\sum_{i=1}^{n} t_i}{n(\sum_{i=1}^{n} t_i + (r-1)t_{max})}$$
(6)

Подставим полученную формулу (6) в исходное неравенство:

$$\begin{cases} \frac{r_0 \sum_{i=1}^{n} t_i}{n(\sum_{i=1}^{n} t_i + (r_0 - 1)t_{\max})} > e_0 \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \\ t_{\max} \ge t_i \end{cases} \Rightarrow \begin{cases} r_0 \sum_{i=1}^{n} t_i > e_0 n \left(\sum_{i=1}^{n} t_i + (r_0 - 1)t_{\max}\right) \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \\ t_{\max} \ge t_i, e_0 > 0 \end{cases}$$

$$\begin{cases} r_0 \sum_{i=1}^{n} t_i > e_0 n \sum_{i=1}^{n} t_i + e_0 r_0 n t_{\max} - e_0 n t_{\max} \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \\ t_{\max} \ge t_i, e_0 > 0 \end{cases} \Rightarrow \begin{cases} r_0 \sum_{i=1}^{n} t_i - e_0 n t_{\max} \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \\ t_{\max} \ge t_i, e_0 > 0 \end{cases}$$

$$\begin{cases} r_0 \sum_{i=1}^{n} t_i - e_0 r_0 n t_{\max} > e_0 n \sum_{i=1}^{n} t_i - e_0 n t_{\max} \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \\ t_{\max} \ge t_i, e_0 > 0 \end{cases} \Rightarrow \begin{cases} r_0 \sum_{i=1}^{n} t_i - e_0 n t_{\max} \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \\ t_{\max} \ge t_i, e_0 > 0 \end{cases}$$

Т.к. для любого несбалансированного конвейера: $\sum_{i=1}^n t_i - t_{\max} \geq 0$ и

• при
$$\sum_{i=1}^n t_i - e_0 n t_{\max} > 0$$
:
$$\begin{cases} r_0 > \frac{e_0 n (\sum_{i=1}^n t_i - t_{\max})}{\sum_{i=1}^n t_i - e_0 n t_{\max}} \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \\ t_{\max} \ge t_i, e_0 > 0 \end{cases}$$
• при $\sum_{i=1}^n t_i - e_0 n t_{\max} < 0$:
$$\begin{cases} r_0 < \frac{e_0 n (\sum_{i=1}^n t_i - t_{\max})}{\sum_{i=1}^n t_i - e_0 n t_{\max}} \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \\ t_{\max} \ge t_i, e_0 > 0 \end{cases}$$

$$\begin{cases} r_0 > \frac{e_0 n (\sum_{i=1}^n t_i - t_{\max})}{\sum_{i=1}^n t_i - e_0 n t_{\max}} \\ r_0 \ge 1, t_i \ge 1, n \ge 1, \end{cases}$$

$$r_0 \ge 1, t_i \ge 1, n \ge 1,$$
Т.К. 2-ое уравнение имеет решением пустое мн-во.
$$t_{\max} \ge t_i, e_0 > 0$$
Ответ: $r_0 > \frac{e_0 n (\sum_{i=1}^n t_i - t_{\max})}{\sum_{i=1}^n t_i - e_0 n t_{\max}}$

7. Для несбалансированного конвейера (использовать исходные данные предыдущего вопроса) определить: $\lim_{r\to\infty} e(n,r)$.

Так как
$$e(n,r) = \frac{r \sum_{i=1}^{n} t_i}{n(\sum_{i=1}^{n} t_i + (r-1)t_{max})},$$

то, предел находим по правилу Лопиталя $\lim_{n\to\infty} e(n,r)$

$$= \lim_{r \to \infty} \frac{r \sum_{i=1}^{n} t_i}{n(\sum_{i=1}^{n} t_i + (r-1)t_{max})} = \lim_{r \to \infty} \left(\frac{r' \sum_{i=1}^{n} t_i}{r' n t_{max}}\right) = \frac{\sum_{i=1}^{n} t_i}{n t_{max}}$$

8. Дан несбалансированный конвейер (использовать исходные данные предыдущего вопроса). Каким образом можно перестроить данный конвейер, чтобы для заданного r_0 выполнялось $e(n, r_0) > e_0$?

Т.к. e функция от двух переменных, и r_0 задано, то необходимо найти при каком n будет выполняться заданное условие.

при каком
$$n$$
 будет выполняться заданное условие.
 Т.к. $e(n,r) = \frac{r_0 \sum_{i=1}^n t_i}{n(\sum_{i=1}^n t_i + (r_0 - 1)t_{\max})} > e_0$
 $n < \frac{r_0 \sum_{i=1}^n t_i}{e_0(\sum_{i=1}^n t_i + (r_0 - 1)t_{\max})}$, но т.к. $n \ge 1$, то

Ответ: необходимо перестроить конвейер путем объединения этапов конвейера таким образом, чтобы $1 \le n < \frac{r_0 \sum_{i=1}^n t_i}{e_0(\sum_{i=1}^n t_i + (r_0 - 1)t_{\max})}$ выполнялось.

9. Дан несбалансированный конвейер (использовать исходные данные предыдущего вопроса) и значение минимального кванта времени t₀ (условной временной единицы). Каким образом нужно перестроить данный конвейер, чтобы получить максимально быстрый конвейер? Получить для него формулы Ку(n,r), e(n,r)?

Конвейер нужно перестроить так, чтобы он был сбалансированным и каждый этап выполнялся за минимальную по емкости единицу времени t_0 . Это значит, что нужно разделить этапы конвейера, которые длятся дольше, чем t_0 , на более мелкие этапы, которые будут длиться t_0 . Выразим N - время выполнения для обработки одной пары чисел:

$$\begin{cases} T_0 = Nt_0 \\ T_0 = \sum_{i=1}^n t_i \Rightarrow \begin{cases} N = \frac{\sum_{i=1}^n t_i}{t_0} \\ t_i > 0 \end{cases} \end{cases}$$

Числовые характеристики полученного конвейера:

$$K_{y}(N,r) = \frac{T_{1}}{T_{N}} = \frac{\frac{\sum_{i=1}^{n} t_{i}}{t_{0}} r t_{0}}{\left(\frac{\sum_{i=1}^{n} t_{i}}{t_{0}} + (r-1)\right) t_{0}} = \frac{\frac{\sum_{i=1}^{n} t_{i}}{t_{0}} r}{\frac{\sum_{i=1}^{n} t_{i}}{t_{0}} + (r-1)}$$

$$e(N,r) = \frac{T_{1}}{NT_{N}} = \frac{Nrt_{0}}{N(\frac{\sum_{i=1}^{n} t_{i}}{t_{0}} + (r-1)) t_{0}} = \frac{r}{\frac{\sum_{i=1}^{n} t_{i}}{t_{0}} + (r-1)}$$

Вывод

В результате выполнения лабораторной работы была реализована модель сбалансированного конвейера для вычисления произведения пар чисел умножением со старших разрядов со сдвигом частичной суммы вправо. Реализованная модель была проверена на работоспособность и правильность получаемых результатов. Данная модель позволяет ускорить процесс вычисления результата для векторов значений (нескольких пар).

Были исследованы числовые характеристики конвейерной архитектуры: коэффициент ускорения и эффективность - в решении поставленной задачи.