NO	ANSWER SCHEME	MARKS
1	$Y = \frac{\sigma}{}$	
	\mathcal{E}	
	$[Y] = \frac{[\sigma]}{[\varepsilon]} = \frac{[F]}{[A]} \times \frac{[l]}{[\Delta l]}$	K1
	$=\frac{MLT^{-2}}{L^2}=ML^{-1}T^{-2}$	GJU1
		2

NO	ANSWER SCHEME	MARKS
2 (a)(i)	$v^2 = u^2 + 2as$	G.1
	$12^2 = 16^2 + 2a(80)$	G1
	$a = -0.7ms^{-2}$	JU1
2 (a)(ii)	v = u + at	
	12 = 16 + (-0.7)t	~~~
	t = 5.7s	GJU1
2 (b) (i)	$v_x = u_x = 3 m s^{-1}$	
	2 2 2	
	$v_y^2 = u_y^2 - 2gs$	G1
	=-2(9.81)(-2)	GI
	$v_y = 6.26 m s^{-1}$	
	$v = \sqrt{{v_x}^2 + {v_y}^2}$	K1
	$=\sqrt{3^2+6.26^2}$	G1
	$= 6.94 m s^{-1}$	JU1
2 (b)(ii)	1	
	$-2 = -\frac{1}{2}9.81t^2$	
	=0.639 s	G1
	$S_x = u_x t$	G1
	=3(0.639)	11.11
	=1.92m	JU1
		10

NO	ANSWER SCHEME	MARKS
3 (a)(i)	$\sum P_{initial} = \sum P_{final}$	K1
	$(m_1 + m_2)u = m_1v_1 + m_2v_2$ (65 + 450) (0)=(65)(1.5)+(450)v_2	G1
	$v_2 = -0.217 \text{ m s}^{-1}$ (in the opposite direction)	JU1
3 (a)(ii)	$J = Ft = \Delta P$	K1
	Ft = m(v - u)	G.1
	$F(10 \times 10^{-3}) = 65(-1.5 - 0)$	G1
	F = -9750 N $ F = 9750 N$	JU1

3 (b)(i)	All 4 correct – D3 Any 3 correct – D2 Any 2 correct – D1 Others – 0	D3
3 (b)(ii)	$\sum_{x} F_{y} = 0$	
	$R - mg \cos \theta - F \sin \theta = 0$ $R = mg \cos \theta + F \sin \theta$	K1
	$R = (2)(9.81)\cos 30^\circ + 50\sin 30^\circ = 41.99 \text{ N}$	J
	$\sum_{x} F_{x} = ma$	
	$F\cos\theta - mg\sin\theta - f = ma$ $F\cos\theta - mg\sin\theta - \mu R = ma$) K1
	$50\cos 30^{\circ} - (2)(9.81)\sin 30^{\circ} - (0.25)(41.99) = (2)a$	G1
	$\therefore a = 11.497 \mathrm{m s^{-2}}$	JU1
		13

NO	ANSWER SCHEME	MARKS
4 (a)	W = area under the graph	K1
	$=\frac{1}{2}(6+4)(10)+\frac{1}{2}(3+4)(-5)$	
	$=32.5 \mathrm{J}$	
	$W = K_f - K_i$	
	$W = K_f - \frac{1}{2}mu^2$	
	$32.5 = K_f - \frac{1}{2}(2)(10^2)$	G1
	$K_f = 132.5 J$	JU1
4 (b) (i)		
	$\sum E_i = \sum E_f$	K1
	U = K	
	$mgh = \frac{1}{2}mv^2$	
	$(2)(9.81)(0.3) = \frac{1}{2}(2)v^2$	G1
	$v = 2.43 \mathrm{m s^{-1}}$	JU1
4 (b)(ii)	$\sum_{i} E_{i} = \sum_{i} E_{f}$ $K = U_{f}$	
	$K = U_s$ $\frac{1}{2}mv^2 = \frac{1}{2}kx^2$	
	$\frac{1}{2}(2)(2.43)^2 = \frac{1}{2}(20)x^2$	G1
	x = 0.768 m	JU1
		8

NO.	ANSWER SCHEME	MARK(S)
5 (i)	$\omega = \frac{v}{r}$ $\omega = \frac{10}{25}$ $\omega = 0.4 rads^{-1}$	G1 JU1
5 (ii)	$T = \frac{2\pi}{\omega}$	

	$T = \frac{2\pi}{0.4}$	
	T = 15.71 s	GJU1
5 (iii)	$F_{nett} = F_c = \frac{mv^2}{r}$	
	$F_c = \frac{(900)(10)^2}{25}$	G1
	$\therefore F_c = 3600 \mathrm{N}$	JU1
		5

NO	ANSWER SCHEME	MARKS
6 (a) (i)	$\omega = 2\pi f = 8\pi \ rads^{-1}$	K1
	$v = \pm \omega \sqrt{(A^2 - x^2)}$	
	$= \pm 8\pi \sqrt{(2^2 - 1^2)}$	G1
	$=\pm43.53cms^{-1}$	JU1
6(a)(ii)	$a = -\omega^2 x$	
	$= -(8\pi)^2 (1) = -631.65 cm s^{-2}$	GJU1
6(b)(i)	$\omega = \frac{2\pi}{T} = \frac{2\pi}{4} = 0.5\pi rads^{-1}$	G1 JU1
6(b)(ii)	$x = A \sin \omega t$	
	$=5\sin 0.5\pi t$	G1
	where x is in centimeter and t is in second	JU1
6(b)(iii)	$E = \frac{1}{2}m\omega^2 A^2$	
	$=\frac{1}{2}(0.025)(0.5\pi)^2(0.05)^2$	G1
	$= 7.70 \times 10^{-5} J$	JU1
6(c)	(i) Right	J1
	$(ii)k = \frac{2\pi}{3}$	
	$(ii)k = \frac{2\pi}{\lambda}$ $2\pi = \frac{2\pi}{\lambda}$	

	$\lambda = 1m$	GJU1
	$(iii)\omega = 2\pi f$	
	$4\pi = 3\pi f$	
	f = 0.5m	GJU1
	$(iv)v = f\lambda$	
	v = 0.5(1)	
	$=0.5ms^{-1}$	GJU1
	$(v)v = A\omega\cos(\omega t - kx)$	
	$v = (6)(4\pi)\cos(4\pi x \cdot 0.1 - 2\pi)$	G1
	$v = 23.3 \ ms^{-1}$	JU1
(d)	(i) $y = 16 \cos 2x \sin 2\pi t$	
	where y and x in m and t in s .	J1
	(ii) $A = 16 m$	KGJU1
(e)	(i) $n = 5$	
	$f = \frac{nv}{4l}$	
	5(340)	
	$=\frac{5(340)}{4(0.50)}$	KGJU1
	=850Hz	KOJUT
	(ii) $l = 0.25 \text{ m}$	
	n = 1	
	$f = \frac{nv}{4l}$	
	1(340)	
	$=\frac{1(340)}{4(0.25)}$	
	=340Hz	KGJU1

(f)	$f_o = \left(\frac{v}{v - v_s}\right) f_s$	K1
	$= \left(\frac{340}{340 - 65}\right) 800$ $= 989 Hz$	G1
	=989Hz	GJU1
		23

NO	ANSWER SCHEME	MARKS
7 (a)(i)	$A = \pi r^2 = 1.767 \times 10^{-6} m^2$	
	$Y = \frac{Fl_o}{Ae} = \frac{(mg)l_o}{A(l-l_o)}$	
	$7 \times 10^{10} = \frac{150(9.81)l_o}{1.767 \times 10^{-6} (5.5 - l_o)}$	G1
	$l_o = 5.435 \mathrm{m}$	JU1
7 (a)(ii)		
	$e = 5.5 - l_o$	
	=5.5-5.435	
	=0.065m ecf	JU1

(b)	$\left(\frac{dQ}{dt}\right)_1 = \left(\frac{dQ}{dt}\right)_2$	K1
	$-k_1 A \left(\frac{dt}{x}\right)_1 = -k_2 A \left(\frac{dt}{x}\right)_2$	
	$240\left(\frac{T_{\text{int}} - 80}{l}\right) = 110\left(\frac{5 - T_{\text{int}}}{l}\right)$	G1
	$T_i = 56.42$ °C	JU1
7 (c)	$\gamma = 3\alpha$	K1
	$\gamma = 3\alpha$ $\Delta V = 3\alpha V_o \Delta T$	
	$=3(1.4\times10^{-6})(0.12\times0.10\times0.08)(120-30)$	
	$=3.63\times10^{-7}\mathrm{m}^3$	GJU1
		8

NO	ANSWER SCHEME	MARKS
8 (a)	$n = \frac{pV}{RT}$ $= \frac{(1.3 \times 10^5)(1)}{(8.31)(350)}$	G1
	= 45 moles	J1
	f = 3 for monatomic	K1
	$\Delta U = \frac{f}{2} nR\Delta T$	
	$= \frac{3}{2}(45)(8.31)(370 - 350)$ $= 1.12 \times 10^4 J$	GJU1
8 (b)	$v_{rmsH} = \sqrt{\frac{3RT}{M_H}} \tag{1}$	
	$v_{rmsN} = \sqrt{\frac{3RT}{M_N}}$ $2 \div 1, v_{rmsN} = \sqrt{\frac{2}{28}} \times 1330$ (2)	
	$2 \div 1, v_{rmsN} = \sqrt{\frac{2}{28}} \times 1330$	G1
	$=355 ms^{-1}$	JU1

8 (c)(i)	$W_{AB} = p\Delta V$	
	$= 3p_o(2V_o - V_o)$ = 3(1.0×10 ⁵)(0.02)	G1 JU1
	$= 6000J$ $W_{BC} = 0 \rightarrow no change in volume$	JU1
8 (c)(ii)	BC:	
	$Q = W + \Delta U$	
	$-4000 = 0 + \Delta U$	G1
	$\Delta U = -4000J$	JU1
		11