Nichtlineare Dynamik

3. Dezember 2013

Fehler in der Mitschrift an alexander.book@gmx.de oder dominik.o@gmx.net

Inhaltsverzeichnis

1	Gru	ındlagen	4
	1.1	Dynamische Systeme	4
		1.1.1 Eigenschaften der Flussabbildung ϕ	5
	1.2	Elementarste Typen von dynamischen Systemen	5
		1.2.1 Gewöhnliche Differentialgleichungs Systeme (GDG-	
		Systeme)	6
		1.2.2 Homöomorphismus Systeme (Hom-Systeme)	6
	1.3	Gleichgewichtspunkte	7
		1.3.1 Gleichgewichtspunkte in GDG-Systemen	7
		1.3.2 Gleichgewichtspunkte in Hom-Systemen	7
		1.3.3 Gleichgewichtspunkte von linearen dynamischen Sys-	
		temen	8
		1.3.4 Beispiele von Gleichgewichtspunkten	8
	1.4	Dynamische Stabilität von Gleichgewichtspunkten im Sin-	
		ne von Lyapunov	9
		1.4.1 Indirekte Methode von Lyapunov	10
		1.4.2 Direkte Methode von Lyapunov	11
2	Line	eare Systeme	14
	2.1		14
	2.2	Klassifikation von Phasendiagrammen von GDG-Systemen	
		für $n = 1 \dots \dots \dots$	15
	2.3	Klassifikation von Phasendiagrammen von GDG-Systemen	
		für $n = 2$	15
		2.3.1 Jordannormalform ist in Diagonalform	15
			17
		2.3.3 Jordannormalform ist in keiner Diagonalform	19
	2.4		21

Inhaltsverzeichnis

	2.5	Klassifikation von Phasendiagrammen von Hom-Systemen für $n=1$	23
3	Grobman-Hartman-Theorem		
	3.1	Kontinuierlicher Fall	25
	3.2	Diskreter Fall	28
4	Peri	iodische Orbits	29
	4.1	Begriff und Bestimmung von periodischen Orbits	29
		4.1.1 Bestimmungsgleichung für periodische Punkte	30
	4.2	Poincaré Abbildung für GDG-Systeme	30
	4.3	Stabilitätsanalyse periodischer Orbits mittels Poincaré Ab-	
		bildung	33
	4.4	Poincaré-Bendixson-Theorie	36
	4.5	Zeitlich periodische nicht-autonome GDG-Systeme	38
5	Verzweigungstheorie (Bifurkationstheorie)		
	5.1	,	42
	5.2	Diskreter Fall für $n = 1 \dots \dots \dots \dots$	47

1 Grundlagen

1.1 Dynamische Systeme

Definition 1.1.1 (dynamische Systeme). Wir behandeln zwei Arten von dynamischen Systemen:

- 1. kontinuierliches dynamisches System: Es gibt eine kontinulierliche Zeitvariable $t \in \mathbb{R}$
- 2. diskretes dynamisches System: Es gibt eine kontinulierliche Zeitvariable $t \in \mathbb{Z}$

Im folgenden bezeichnet T entweder \mathbb{R} oder \mathbb{Z} , je nachdem, welches dynamische System im Kontext verwendet wird.

Es gibt einen (Zustands-)Phasenraum X, der den Zustand eines Systems mit verschiedenen Größen beschreibt ($X \subseteq \mathbb{R}^n, n \in \mathbb{N}$). $x \in X$ beschreibt somit einen möglichen Zustand eines dynamischen Systems. Falls $\dim(X) < \infty$, so nennt man es endlich dimensionales dynamisches System. Andernfalls ($\dim(X) = \infty$) nennt man es unendlich dimensionales dynamisches System. Mit Dynamik bezeichnet man die zeitliche Veränderung des Zustands eines dynamischen Systems.

Generell beginnt ein dynamisches System bei einer Anfangszeit t_o und einem Zustand $x(t_0) = x_0 \in X$. Anhand dieses Punktes wird jedem andern Zeitpunkt ein eindeutiger Zustand zugewiesen $(x(t_0) = x_0 \Rightarrow \forall t \in T \exists ! x_t \in \mathbb{R}^n : x(t) = x_t)$ Diese Zuordnung wird durch die Flussabbildung definiert:

$$\phi \colon \mathbb{R} \times X \to X, \ \forall t \in T : x(t) := \phi(t - t_0, x_0)$$

Definition 1.1.2 (Klassifikation von dynamischen Systemen). Man unterscheidet dynamische Systeme in lineare und nicht-lineare Systeme:

- 1. Lineares dynamisches System: $\phi(t,\cdot)\colon X\to X$ ist linear. Man schreibt dann auch $\phi(t,x)=\phi(t)x$. Dabei ist $\phi(t)$ ein linearer Operator für alle $t\in T$
- 2. Nichtlineares dynamisches System: $\phi(t,\cdot): X \to X$ ist nicht linear.

Definition 1.1.3 (Phasendiagramm). Durch ein dynamischen Systems (X, ϕ) wird jedem Zustand $x \in X$ ein *Orbit* zugeordnet:

$$\Gamma_x := \{ y \in X | \exists t \in T : \phi(t, x) = y \}$$

Ein Phasendiagramm ist die Skizze des Orbits Γ_x für einige $x \in X$.

Bemerkung Durch jeden Punkt $x \in X$ verläuft genau ein Orbit Γ_x . Insbesondere können sich Orbits nicht traversal (selbst) schneiden.

1.1.1 Eigenschaften der Flussabbildung ϕ

Die Flussabbildung genügt folgenden Eigenschaften:

- 1. $\forall x \in X : \phi(0, x) = x$
- 2. $\phi(\cdot, x)$ ist stetig für alle $x \in X$.
- 3. $\phi(t,\cdot)$ ist stetig für alle $t \in T$.
- 4. $\phi(t,\cdot)\colon X\to X$ ist ein Homöomorphismus (d.h. bijektiv und Umkehrabbildung ist stetig)
- 5. $\phi(s+t,x) = \phi(s,\phi(t,x))$ für alle $s,t \in T, x \in X$

1.2 Elementarste Typen von dynamischen Systemen

Dynamische Systeme können auch implizit angegeben werden. Im Folgenden werden die zwei wichtigsten dynamischen Systeme für diese Vorlesung vorgestellt.

1.2.1 Gewöhnliche Differentialgleichungs Systeme (GDG-Systeme)

GDG-Systeme sind ein Beispiel für kontinuierliche dynamische Systeme. Betrachtet man eine autonome gewöhnliche Differentialgleichung 1. Ordnung

$$\dot{x} = v(x)$$

wobei $v: \mathbb{R}^n \to \mathbb{R}^n$ ein Vektorfeld ist. Durch das zugehörige AWP $x(0) = x_0$ wird die Lösung $x(t) = \phi(t, x_0)$ festgelegt, falls v hinreichende Struktur besitzt. Falls v beispielsweise lokal Lipschitz-stetig ist, liefert Picard-Lindelöf eine lokal eindeutige Lösung. Dies induziert ein dynamisches System (X, ϕ) , wobei $X = \mathbb{R}^n$, bzw. X das Definitionsgebiet des Vektorfeldes ist.

Lemma 1.2.1. Die durch dieses AWP induziert ϕ genügt den Eigenschaften einer Flussabbildung

Beweis Sei $\phi(t,x)$ die Fundamentallösung der Differentialgleichung

$$\dot{x} = v(x)$$

wobei $v \in C^1(\mathbb{R}^n)$. D.h. $x(t) = \phi(t,x)$ ist die eindeutige Lösung des zugehörigen AWP $x(0) = x_0$. Folglich ist $\phi(t+s,x)$ eine Lösung der Differentialgleichung für alle $s \in \mathbb{R}$, denn:

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi(t+s,x_0) = v(\phi(t+s,x_0))$$

Aber $\phi(t+s,x_0)|_{t=0} = \phi(s,x_0)$ ist die Anfangsbedingung dieser Lösung. Also löst $\phi(t+s,x_0)$ das AWP $x(0) = \phi(s,x_0)$. Deswegen gilt $\phi(t+s,x_0) = \phi(t,(\phi(s,x_0))$

1.2.2 Homöomorphismus Systeme (Hom-Systeme)

Betrachte einen Homöomorphismus $\psi \colon X \to X$. Dieser induziert ein diskretes dynamisches System wie folgt:

$$\phi(k,x) := \begin{cases} \psi^k(x), & \text{falls } k \in \mathbb{N} \\ \psi^0(x) = x, & \text{falls } k = 0 \\ \psi^{-k}(x) := (\psi^{-1})^{-k}(x), & \text{falls } k \in \mathbb{Z} \setminus \mathbb{N}_0 \end{cases}$$

 ϕ ist damit die Flussabbildung eines diskreten dynamischen Systems (X, ϕ) .

1.3 Gleichgewichtspunkte

Definition 1.3.1. Ein Punkt $x_G \in X$ heißt Gleichgewichtszustand(-punkt) des dynamischen Systems (X, ϕ) , falls gilt

$$\forall t \in T : \phi(t, x_G) = x_G$$

1.3.1 Gleichgewichtspunkte in GDG-Systemen

Sei x_G ein Gleichgewichtspunkt des durch die Differentialgleichung $\dot{x} = v(x)$ induzierte dynamischen Systems. Dann gilt:

$$\forall t \in \mathbb{R} : \phi(t, x_G) = x_G$$

Differenzieren liefert

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi(t,x_G) = 0$$

Somit liegt jeder Gleichgewichtspunkt des dynamischen Systems in der Nullstellenmenge des Vektorfeldes v.

$$x_G$$
 Gleichgewichtspunkt $\Leftrightarrow x_G \in v^{-1}(\{0\})$

1.3.2 Gleichgewichtspunkte in Hom-Systemen

Sei ψ ein Homöomorphismus. Sei (X, ϕ) das durch ψ induzierte dynamische System. Somit muss für jeden Gleichgewichtspunkt x_G des dynamischen Systems gelten:

$$\forall k \in \mathbb{Z} : \phi(k, x_G) = \psi^k(x_G) = x_G$$

Für k=1 folgt $x_G=\psi(x_G)$. Also sind alle Gleichgewichtspunkte des dynamischen Systems Fixpunkte von ψ .

 x_G Gleichgewichtspunkt $\Leftrightarrow x_G$ Fixpunkt von ψ

1.3.3 Gleichgewichtspunkte von linearen dynamischen Systemen

Im linearen Fall ist für beide Typen GDG- bzw. Hom-Systeme ein trivialer Gleichgewichtspunkt $x_G = 0$ gegeben.

1. GDG-System: Gegeben sei die Differentialgleichung

$$\dot{x} = v(x) = Ax, \ A \in \mathbb{R}^{n \times n}, \ x \in \mathbb{R}^n$$

Dann ist die Flussabbildung gegeben durch $\phi(t, x) = \exp(tA)x$. Zur Wiederholung: Die exponential Matrix ist definiert durch $\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$ und konvergiert für jedes $A \in \mathbb{R}^{n \times n}$ gleichmäßig.

Die Bedingung ein Gleichgewichtspunkt zu sein ist $\phi(t, x) = 0$. Also erfüllt $x_G = 0$ trivialer weise dieser Bedingung.

2. Hom-System: Sei ψ eine lineare Funktion, also

$$\psi(x) = Ax, \ A \in \mathbb{R}^{n \times}, \ x \in \mathbb{R}^n$$

Damit ψ ein Homöomorphismus wird, muss det $(A) \neq 0$ gelten. Die Bedingung für ein Gleichgewichtspunkt ist diesesmal

$$\psi(x) = x$$

 $x_G = 0$ erfüllt dies Bedingung und ist daher ein Gleichgewichtspunkt.

1.3.4 Beispiele von Gleichgewichtspunkten

Gleichgewichtspunkte des DGD-Systems Betrachte die Differentialgleichung $\dot{x} = x - x^3 = v(x), \ x \in \mathbb{R} = X$ Die Gleichgewichtspunkte sind also gegeben durch

$$v(x) = x - x^3 = 0$$

= $x(1 - x^2) = 0$
 $\Rightarrow x_G^1 = 0, x_G^{2/3} = \pm 1$

1 Grundlagen

Gleichgewichtspunkte des Hom-Systems Betrachten den Homöomorphismus $\psi(x) = x^3$, $x \in \mathbb{R}$. Die Gleichgewichtspunkte des von ψ induzierten dynamischen Systems sind gegeben durch

$$\psi(x) = x \Leftrightarrow x^3 = x \Leftrightarrow x^3 - x = 0$$
$$x_G^1 = 0, x_G^{2/3} = \pm 1$$

1.4 Dynamische Stabilität von Gleichgewichtspunkten im Sinne von Lyapunov

Sei (X, ϕ) ein dynamisches System, $x_G \in X$ ein Gleichgewichtspunkt, (X, d) ein metrischer Raum.

Wiederholung: d heißt Metrik auf X, falls $d: X \times X \to \mathbb{R}$ und für beliebige Elemente $x, y, z \in X$ gilt:

- 1. $d(x,y) \ge 0$, $d(x,y) = 0 \Leftrightarrow x = y$ (Definitheit)
- 2. d(x,y) = d(y,x) (Symmetrie)
- 3. $d(x,y) \le d(x,z) + d(z,y)$ (Dreiecksungleichung)

Definition 1.4.1. Ein Gleichgewichtspunkt x_G heißt

- stabil (im Sinne von Lyapunov), falls $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X, t \in T, t > 0 : d(x, x_G) < \delta \Rightarrow d\left(\phi(t, x), x_G\right) < \varepsilon$
- instabil (im Sinne von Lyapunov), falls x_G nicht stabil ist.
- asymptotisch stabil (im Sinne von Lyapunov), falls x_G stabil ist und gilt

$$\exists b > 0 \ \forall x \in X : d(x, x_G) < b \Rightarrow \lim_{t \to \infty} d(\phi(t, x), x_G) = 0$$

Abbildung 1.1: Stabilität(links); Instabilität (rechts)

1.4.1 Indirekte Methode von Lyapunov

Indirekte Methode von Lyapunov für GDG-Systeme

Sei v ein C^1 -Vektorfeld ($v \in C^1(\mathbb{R}^n, \mathbb{R}^n)$), x_G ein Gleichgewichtspunkt des von v erzeugten GDG-Systems. Es bezeichne $\sigma(A)$ die Menge aller Eigenwerte der Matrix A.

Lemma 1.4.1. Betrachte die Jacobi-Matrix $J_v(x)$ an der Stelle $x = x_G$.

- Falls $\forall \lambda \in \sigma(J_v(x_G))$: Re $\lambda < 0$, dann ist x_G asymptotisch stabil.
- Falls $\exists \lambda \in \sigma(J_v(x_G)) : \operatorname{Re} \lambda > 0$, dann ist x_G instabil.
- ullet Falls v ein lineares dynamisches System induziert und es gilt

$$\forall \lambda \in \sigma(J_v(x_G)) : \text{Re} \leq 0 \text{ und } \lambda \text{ halb einfach, falls } \text{Re } \lambda = 0$$

dann ist x_G stabil. Dabei ist ein Eigenwert λ halb einfach, falls seine geometrische Vielfachheit, seiner algebraischen Vielfachheit entspricht.

Indirekt Methode von Lyapunov für Hom-Systeme

Sei ψ ein C^1 -Homöomorphismus (C^1 -Diffeomorphismus), x_G ein Gleichgewichtspunkt des von ψ erzeugten Hom-Systems.

Lemma 1.4.2. Betrachte die Jacobi-Matrix von ψ an der Stelle x_G

- Falls $\forall \lambda \in \sigma(J_{\psi}(x_G)) : |\lambda| < 1$, dann ist x_G asymptotisch stabil
- Falls $\exists \lambda \in \sigma(J_{\psi}(x_G)) : |\lambda| > 1$, dann ist x_G instabil.
- Falls ψ ein lineares dynamisches System erzeugt und gilt

$$\forall \lambda \in \sigma(J_{\psi}(x_G)) : |\lambda| \leq 1 \text{ und } \lambda \text{ halbeinfach, falls } |\lambda| = 1$$

dann ist x_G stabil.

1.4.2 Direkte Methode von Lyapunov

Direkte Methode von Lyapunov für GDG-Systeme

Sei v ein C^1 -Vektorfeld, x_G ein Gleichgewichtspunkt.

Definition 1.4.2. Eine (strikte) Lyapunov-Funktion V ist eine Funktion $V \in C^1(U, \mathbb{R})$, sodass $x_G \in U$, $U \subset \mathbb{R}^n$ offen und

- 1. $V(x_G) = 0$
- 2. $\forall x \in U \setminus \{x_G\} : V(x) > 0$

3.
$$\forall x \in U : \langle \nabla V(x), v(x) \rangle \stackrel{(<)}{\leq} 0$$

 $(\Rightarrow \partial_t V(\phi(t, x)) = \langle \nabla V(\phi(t, x)), v(\phi(t, x)) \rangle \stackrel{(<)}{\leq} 0)$

Lemma 1.4.3. Falls eine Lyapunov-Funktion für v um x_G existiert dann ist x_G stabil. Gilt strikte Ungleichheit in (3), dann ist x_G sogar asymptotisch stabil.

Bemerkung Falls $U = \mathbb{R}^2$ und V eine strikte Lyapunov-Funktion zu x_G , dann ist x_G global asymptotisch stabil.

Beweis Fall " \leq ":

Sei $\varepsilon > 0$ hinreichend klein, sodass $\overline{B_{\varepsilon}(x_G)} \subset U$. Sei m das Minimum von V auf $\partial B_{\varepsilon}(x_G)$. Dies existiert, da $\partial B_{\varepsilon}(x_G)$ kompakt und V stetig (Satz von Weierstraß). Dann folgt mit Bedingung 1), 2): m > 0.

Definiere $\tilde{U} := \{x \in B_{\varepsilon}(x_G) \mid V(x) < m\} \neq \emptyset$ offen. $(x_G \in \tilde{U} \text{ und})$

1 Grundlagen

insbesondere ex. $\delta > 0$ mit $B_{\delta}(x_G) \subset \tilde{U}$, wie auch in jedem anderen Punkt von \tilde{U}).

$$x_0 \in \tilde{U} \Rightarrow V(x_0) < m \text{ und damit } V(\Phi(t, x_0)) \leq V(x_0) < m$$

 $\Rightarrow \Phi(t, x_0) \notin \partial B_{\varepsilon}(x_G) \ \forall t \geq 0$
 $\Rightarrow \Phi(t, x_0) \in B_{\varepsilon}(x_G)$
 $\Rightarrow x_G \text{ ist Lyapunov-stabil}$

Beispiel $X = \mathbb{R}^2$

$$\begin{cases} \dot{x} = y \\ \dot{y} = x - x^3 \end{cases}$$

• Gleichgewichtspunkte:

$$v(x,y) = \begin{pmatrix} y \\ x - x^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow y = 0, x = 0 \quad \forall x = \pm 1$$
$$\Rightarrow x_G^1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ x_G^{2/3} = \begin{pmatrix} \pm 1 \\ 0 \end{pmatrix}$$

• Konstruktion einer Lyapunov Funktion $II \cdot y - I \cdot x$

$$-x\dot{y} + y\dot{y} = -x^{3}y = -x^{3}\dot{x}$$

$$\Leftrightarrow \frac{d}{dt} \left(-0.5x(t)^{2} + 0.5y(t)^{2} + 0.25x(t)^{4} \right) = 0$$

$$\Leftrightarrow -0.5x(t)^{2} + 0.5y(t)^{2} + 0.25x(t)^{4} = C$$

Dann ist

$$V(x,y) = -0.5x(t)^{2} + 0.5y(t)^{2} + 0.25x(t)^{4} - C$$

eine Lyapunov-Funktion für jedes $x_G^i, (i=1,2,3)$ bei geeigneter Wahl von C, denn

$$-V(x_G^i) = 0 \text{ mit } C = 0 \text{ für } x_G^1 \text{ und } C = -0, 25 \text{ für } x_G^{2/3}$$
$$-\langle \nabla V(x,y), v(x,y) \rangle = 0$$
$$\nabla V(x,y) = \begin{pmatrix} -x + x^3 \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

1 Grundlagen

$$-HV(x,y) = \begin{pmatrix} -1+3x^2 & 0 \\ 0 & 1 \end{pmatrix}$$

$$HV(x_G^1) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \text{ indefinit } \Rightarrow x_G^1 \text{ ist Sattelpunkt von } V$$

$$HV(x_G^{2/3}) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \text{ pos. definit } \Rightarrow x_G^{2/3} \text{ sind strikte lokale}$$

$$\text{Minima von } V \Rightarrow V > 0 \text{ für alle } x \neq x_G^{2/3} \text{ in einer gewissen}$$

$$\text{Umgebung von } x_G^{2/3}.$$

$$\Rightarrow x_G^{2/3} \text{ sind Lyapunov-stabil.}$$

$$Jv(x,y) = \begin{pmatrix} 0 & 1 \\ 1-3x^2 & 0 \end{pmatrix} \Rightarrow Jv(x_G^1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \lambda_{1/2} = \pm 1$$

$$\Rightarrow Re(\lambda_{1/2}) > 0 \Rightarrow \text{ indirekte Methode: } x_G^1 \text{ ist instabil}$$

Direkte Methode für Hom-Systeme

Direkte Methode von Lyapunov funktioniert entsprechend des GDG-Falls wobei in der Definition einer Lyapunov-Funktion die Bedingng 3) zu ersetzen ist durch:

$$\forall x \in U : V(\Psi(x)) \stackrel{(<)}{\leq} V(x)$$

wobei Ψ der erzeugende Homöomorphismus des Hom-Systems sei.

2 Lineare Systeme

2.1 GDG-Systeme

Betrachte die Differentialgleichung

$$\dot{x} = Ax =: v(x)$$

wobei $x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$ Systemmatrix

Satz 2.1.1 (Jordannormalform von A). Es exisitiert eine invertierbare lineare Transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, sodass

$$J = T^{-1}AT$$

in Jordan-Normalform ist. Es gilt außerdem

$$e^{Jt} = e^{T^{-1}AT} = \sum_{j=1}^{\infty} \frac{t^j}{j!} (T^{-1}AT)^j = T^{-1} \sum_{j=1}^{\infty} \frac{t^j}{j!} A^j T = T^{-1} e^{At} T$$

Dabei ist J die Matrix der Flußabbildung des J-Systems $\dot{\xi}=J\xi,~A$ die Matrix des A-Systems $\dot{x}=Ax$

Terminologie Man sagt, dass das J- und das A-System bezüglich der linearen Transformation T zueinander konjugiert oder $\ddot{a}quivalent$ sind.

Bemerkung T bildet die Orbits des J-Systems bijektiv auf die Orbits des A-Systems ab. Sei dazu $\xi \in \mathbb{R}^n$. Dann gilt für die Orbits durch ξ

$$e^{Jt}\xi = T^{-1}e^{At}T\xi$$

$$\Leftrightarrow Te^{Jt}\xi = e^{At}T\xi = e^{At}x$$

T bildet den Orbit durch ξ des J-Systems auf den Orbit durch $x = T\xi$ des A-Systems ab. Daher klassifiziert man lineare Differentialgleichungen modulo einer linearen Transformation T.

2.2 Klassifikation von Phasendiagrammen von GDG-Systemen für n=1

Die erzeugende Differentialgleichung lautet

$$\dot{x} = ax, \qquad a \in \mathbb{R}$$

Man erhält dann folgende Klassifikation in Abhänigkeit von a:

- 1. a = 0: alle Punkte sind Gleichgewichtspunkte
- 2. a > 0: x = 0 ist eine Quelle
- 3. a > 0: x = 0 ist eine Senke

2.3 Klassifikation von Phasendiagrammen von GDG-Systemen für n=2

$$\dot{x} = Ax, \qquad A \in \mathbb{R}^{2 \times 2}$$

Die Jordannormalform von A kann dann folgende 3 Typen annehmen

2.3.1 Jordannormalform ist in Diagonalform

A habe Eigenwerte $\lambda_1, \lambda_2 \in \mathbb{R}$ halbeinfach. Die Jordannormalform von A ist gegeben durch

$$J = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right)$$

Das dazugehörige Anfangswertproblem lautet dann

$$\begin{cases} \dot{\xi_1} = \lambda_1 \xi_1, \ \xi_1(0) = \xi_{10} \in \mathbb{R} \\ \dot{\xi_2} = \lambda_2 \xi_2, \ \xi_2(0) = \xi_{20} \in \mathbb{R} \end{cases}$$

Die Lösung der obigen Differentialgleichung ist offensichtlich

$$\xi_1(t) = \xi_{10} e^{\lambda_1 t}$$

$$\xi_2(t) = \xi_{20} e^{\lambda_2 t}$$

2 Lineare Systeme

Nun wollen wir ξ_2 in Abhänigkeit von ξ_1 angeben, falls alle Rechnungen so durchführbar sind:

$$\frac{\xi_1}{\xi_{10}} = e^{\lambda_1 t}$$

$$\Leftrightarrow \ln\left(\frac{\xi_1}{\xi_{10}}\right) = \lambda_1 t \Leftrightarrow t = \frac{1}{\lambda_1} \ln\left(\frac{\xi_1}{\xi_{10}}\right)$$

$$\Rightarrow \xi_2 = \xi_{20} \exp\left(\frac{\lambda_2}{\lambda_1} \ln\left(\frac{\xi_1}{\xi_{10}}\right)\right) = \xi_{20} \left(\frac{\xi_1}{\xi_{10}}\right)^{\frac{\lambda_2}{\lambda_1}}$$

Nun können die Phasendiagramme klassifiziert und skizziert werden. Es ergeben sich daher die Fälle

1. Fall: $0 < \lambda_1 < \lambda_2$

x = 0 wird instabiler Knoten 2. Art genannt.

2. Fall: $\lambda_2 < \lambda_1 < 0$

x = 0 ist wird stabiler Knoten 2. Art genannt.

Abbildung 2.1: 1. Fall (links); 2. Fall (rechts)

3. Fall: $0 < \lambda_1 = \lambda_2$

x = 0 wird instabiler Knoten 1. Art genannt.

4. Fall: $\lambda_1 = \lambda_2 < 0$

x = 0 wird stabiler Knoten 1. Art genannt.

Abbildung 2.2: 3. Fall (links); 4. Fall (rechts)

5. Fall: $\lambda_1 < 0 < \lambda_2$

x=0 wird Sattelpunkt genannt und ist offensichtlich instabil. Es ergeben sich in diesem Fall als Orbits Hyperbeln.

2.3.2 Jordannormalform ist in Pseudo-Diagonalform

A habe einen geometrisch einfachen und algebraisch doppelten Eigenwert $\lambda \in \mathbb{R}$. Die Jordannormalform von A ist dann gegeben durch

$$J = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right)$$

Das dazugeörige Anfangswertproblem lautet

$$\begin{cases} \dot{\xi_1} = \lambda \xi_1 + \xi_2, \ \xi_1(0) = \xi_{10} \in \mathbb{R} \\ \dot{\xi_2} = \lambda \xi_2, \qquad \xi_2(0) = \xi_{20} \in \mathbb{R} \end{cases}$$

2 Lineare Systeme

Abbildung 2.3: 5. Fall

Die Lösungen sind schließlich folgendermaßen gegeben

$$\Rightarrow \xi_2(t) = \xi_{20}e^{\lambda t} \qquad \Rightarrow \xi_1(t) = \xi_{10}e^{\lambda t} + t\xi_{20}e^{\lambda t}$$

Die Orbits sind analog zur vorherigen Jordannormalform darstellbar als

$$\xi_1 = \left(\frac{\xi_{10}}{\xi_{20}} + \frac{1}{\lambda} \ln \frac{\xi_2}{\xi_{20}}\right) \xi_2$$

solange keine ungültige Rechenoperation durchgeführt wird.

Abbildung 2.4: 1. Fall (links); 2. Fall (rechts)

1. Fall: $\lambda < 0$

x = 0 wird stabiler Knoten 3. Art genannt.

2. Fall: $\lambda < 0$

x = 0 wird instabiler Knoten 3. Art genannt.

2.3.3 Jordannormalform ist in keiner Diagonalform

A habe ein paar komplex konjugierte Eigenwerte $\lambda_{1/2} = \alpha \pm i\beta$. Die reelle Jordannormalform von A ist gegeben durch

$$J = \left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array}\right)$$

und es ergibt sich das Anfangswertproblem

$$\begin{cases} \dot{\xi_1} = \alpha \xi_1 + \beta \xi_2, & \xi_1(0) = \xi_{10} \in \mathbb{R} \\ \dot{\xi_2} = -\beta \xi_1 + \alpha \xi_2, & \xi_2(0) = \xi_{20} \in \mathbb{R} \end{cases}$$

Die Lösung ist daher

$$\phi(t,\xi_0) = e^{Jt}\xi_0 = e^{(A+B)t}\xi_0$$

wobei

$$A = \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha \end{array}\right), \ B = \left(\begin{array}{cc} 0 & \beta \\ -\beta & 0 \end{array}\right)$$

Offensichtlich kommutieren A und B miteinander und es gilt $e^{(A+B)t}=e^{At}e^{Bt}$. Berechnen wir nun die Exponentialmatrix von A bzw. B explizit, so erhalten wir

$$e^{At} = e^{\alpha t} \cdot I_2, \ e^{Bt} = \begin{pmatrix} \cos(\beta t) & \sin(\beta t) \\ -\sin(\beta t) & \cos(\beta t) \end{pmatrix} \in SO(2)$$

Die explizite Lösung ist dann

$$\phi(t,\xi_0) = e^{\alpha t} \underbrace{\begin{pmatrix} \cos(\beta t) & \sin(\beta t) \\ -\sin(\beta t) & \cos(\beta t) \end{pmatrix}}_{Drehmatrix} \xi_0$$

2 Lineare Systeme

1. Fall: $\alpha \neq 0$

x=0 wird Strudel(Wirbel) genannt. Falls $\alpha<0$ so sagt man zusätzlich, dass x stabil ist. Für $\alpha>0$ entsprechend instabil.

2. Fall: $\beta \neq 0$

x=0 ist mit den Uhrzeigersinn orientiert, falls $\beta < 0$. Entsprechend, falls $\beta > 0$ gegen den Uhrzeigersinn orientiert.

3. Fall: $\alpha = 0$

x = 0 heißt Zentrum. Dieser ist stabil, jedoch nicht asymptotisch stabil.

Abbildung 2.5: $\beta < 0 < \alpha$ (links); $\alpha < 0 < \beta$ (rechts)

Abbildung 2.6: $\alpha=0,\beta<0$

2.4 Reduktion des Klassifikationsproblems

Definition 2.4.1. Sei (X, ϕ) ein dynamisches System. Dann heißt

- $M \subset X$ positiv invariant $\Leftrightarrow \forall t \geq 0 : \phi(t, M) \subset M$
- $M \subset X$ negativ invariant $\Leftrightarrow \forall t \leq 0 : M \subset \phi(t, M)$

$$\Leftrightarrow \forall t \geq 0 : \phi(-t, M) \subset M$$

$$\Leftrightarrow \forall t \leq 0 : \phi(t, M) \subset M$$

• $M \subset X$ invariant $\Leftrightarrow M$ positiv und negativ invariant

$$\Leftrightarrow \forall t \in T : \phi(t, M) = M$$

Ist $M \subset X$ invariant, dann bildet $(M, \phi(t, \cdot)|_M)$ ein dynamisches System auf M und wird Teilsystem des ursprünglichen Systems (X, ϕ) genannt.

Bemerkung Jeder invariante Untervektorraum $U \subset \mathbb{R}^n$ bzgl. der linearen Abbildung

$$x \mapsto Ax : \mathbb{R}^n \to \mathbb{R}^n$$

(d.h. $x \in U \Rightarrow Ax \in U$) ist ein invarianter Untervektorraum des GDG-Systems $\dot{x} = Ax$, denn

$$\phi(t, x_0) = e^{At} x_0 = \sum_{j=0}^{\infty} \frac{t^j}{j!} \underbrace{A^j x_0}_{\in U}, \quad x_0 \in U$$

Der Wert der Summe liegt in U, da U abgeschlossen und sie Grenzwert ist von

$$e^{At}x_0 = \lim_{N \to \infty} \underbrace{\sum_{j=0}^{N} \frac{t^j}{j!} A^j x_0}_{\in U \ \forall N}$$

Corollar 2.4.1. Alle Eigenräme E_j (bzw. verallgemeinerte Eigenräume), sowie deren direkte Summen sind kanonisch invariante Unervektorräume des Systems

$$\dot{x} = Ax, \qquad A \in \mathbb{R}^{n \times n}$$

<u>Speziell:</u> Ist $\mathbb{R}^n = \bigoplus_{j=1}^N E_j$ eine direkte Summe von (relativ niedrig dimensionierten) Eigenräumen von A, dann ist das ursprüngliche System

2 Lineare Systeme

 $\dot{x} = Ax$ das direkte Produkt der Teilsysteme auf den E_j . Falls sich die Teilsysteme vollständig analysieren bzw. klassifizieren lassen, dann auch das ursprüngliche System $\dot{x} = Ax$ im \mathbb{R}^n

Definition 2.4.2. Spezielle (verallgemeinerte) Eigenräume von A und damit invariante Untervektorräume von $\dot{x} = Ax$:

• stabiler Unterraum von $\dot{x} = Ax$

$$E^s := \{ v \in \mathbb{R}^n | (A - \lambda \operatorname{id})(v) = 0 \land \operatorname{Re}(\lambda) < 0 \}$$

Dies ist der verallgemeinterte Eigenraum zu allen Eigenwerten λ von A mit Re $\lambda < 0$.

• instabiler Unterraum von $\dot{x} = Ax$

$$E^{u} := \{ v \in \mathbb{R}^{n} | (A - \lambda \operatorname{id})(v) = 0 \wedge \operatorname{Re}(\lambda) > 0 \}$$

Dies ist der verallgemeinterte Eigenraum zu allen Eigenwerten λ von A mit Re $\lambda > 0$.

• Zentrums-Unterraum von $\dot{x} = Ax$

$$E^c := \{ v \in \mathbb{R}^n | (A - \lambda \operatorname{id})(v) = 0 \wedge \operatorname{Re}(\lambda) = 0 \}$$

Dies ist der verallgemeinterte Eigenraum zu allen Eigenwerten λ von A mit Re $\lambda = 0$.

Satz 2.4.1. *Es gilt:*

$$\mathbb{R}^n = E^s \oplus E^u \oplus E^c$$

Terminologie Spezielle Eigenraum-Typen des GDG-Systems $\dot{x} = Ax$

- $E^c = \{0\} \Rightarrow x = 0$ heißt hyperbolischer Gleichgewichtspunkt
- $E^c = \{0\}, E^s \neq \{0\}, E^u \neq \{0\} \Rightarrow x = 0$ heißt Sattelpunkt
- $E^c = \{0\}, E^u = \{0\} \Rightarrow x = 0$ heißt Senke (asympt. stabil)
- $E^c = \{0\}, E^s = \{0\} \Rightarrow x = 0$ heißt Quelle (instabil)

Abbildung 2.7: E^c entscheidet viel über das Verhalten der Orbits

2.5 Klassifikation von Phasendiagrammen von Hom-Systemen für n=1

Sei $X = \mathbb{R}$, $\psi \colon X \to X$ ein linearer Homömorphismus, der das lineare dynamische Systeme (X, ϕ) erzeugt. Insbesondere ist $\psi(x) = ax$ für ein $a \in \mathbb{R} \setminus \{0\}$.

Man kann dann die Orbits folgendermaßen klassifizieren.

Falls |a| < 1

x = 0 wird Senke genannt und ist stabil.

Falls |a| > 1

x = 0 wird Quelle genannt und ist instabil.

Falls a < 0

x = 0 wird orientierungsumkehrend genannt.

Falls a > 0

x = 0 wird orientierungserhaltend genannt.

Falls |a|=1

x=0 wird Zentrum genannt. Ist a=1, so ist jeder Punkt $x\in\mathbb{R}$ ein Gleichgewichtspunkt. Für a=-1 ergeben sich 2-periodische Orbits (gezählt an der minimalen positiven Periode).

Bemerkung Jeder der bzgl. der linearen Abbildung $x \mapsto Ax$ invarianter Unterverktorraum U ist invariant bzgl. des von $\psi(x) = Ax$ erzeugten dynamische Systems.

3 Grobman-Hartman-Theorem

3.1 Kontinuierlicher Fall

Sei (X, ϕ) ein dynamisches System, das durch die Differentialgleichung $\dot{x} = v(x)$ induziert ist, wobei $v \in C^k(\mathbb{R}^n, \mathbb{R}^n)$, $k \geq 1$. Sei zusätzlich x_G ein Gleichgewichtspunkt des dynamischen Systems. Betrachte die *Linearisierung* des Systems um x_G

$$\dot{\xi} = Jv(x_G)\xi, \ \xi = x - x_G$$

$$(\dot{\xi}(x_G) \approx v(x), \text{ falls } ||\xi|| \ll 1)$$

Satz 3.1.1 (Grobman-Hartman). Gegeben sei ein dynamisches System (X,ϕ) wie oben, wobei x_G ein hyperbolischer Gleichgewichtspunkt ist, d.h. Re $\lambda \neq 0$ für alle Eigenwerte λ von $Jv(x_G)$. Dann existiert eine Umgebung $U \subseteq \mathbb{R}^n$ von $\xi = 0$ und ein Homöomorphismus $h: U \to \mathbb{R}^n$, so dass

$$\forall t \in D : h(e^{Jv(x_G)t}\xi) = \phi(t, h(\xi))$$

wobei
$$D := \{ t \in \mathbb{R} | e^{Jv(x_G)t} \xi \in U \}$$
 bezeichne.

Somit bildet h homöomorph die Orbits des linearisierten Systems durch $\xi \in U$ auf diejenigen des nichtlinearen Systems durch $h(\xi)$ ab, wobei die zeitliche Orientierung erhalten bleibt. Man sagt, die beiden Systeme sind mittels des Homöomorphismus topologisch konjugiert zueinander. Insbesondere ist damit also das lokale Phasenportrait des nichtlinearen Systems nahe x_G ein homöomorphes Abbild des lokalen Phasenportraits des linearisierten Systems in U; die Bezeichnung zur Typisierung (Klassifikation) entsprechender hyperbolischer Gleichgewichtspunkte nichtlinearer Systeme übernimmt man vom linearen Fall, z.B: Ist $\xi = 0$ ein Sattelpunkt von $\dot{\xi} = Jv(x_G)\xi$, dann ist auch x_G ein Sattelpunkt von $\dot{x} = v(x)$.

Bezeichnung Wir führen folgende Bezeichnungen ein

3 Grobman-Hartman-Theorem

Abbildung 3.1: Illustration Grobman-Hartman-Theorem

- $h(E^s \cap U) =: W^s_{loc}(x_G)$ lokale stabile Mannigfaltigkeit von x_G (positiv invariant)
- $h(E^u \cap U) =: W^u_{loc}(x_G)$ lokale instabile Mannigfaltigkeit von x_G (negativ invariant)
- $W^s(x_G):=\{x\in\mathbb{R}^n|\lim_{t\to+\infty}\phi(t,x)=x_G\}$ heißt (globale) stabile Mannigfaltigkeit von x_G
- $W^u(x_G):=\{x\in\mathbb{R}^n|\lim_{t\to-\infty}\phi(t,x)=x_G\}$ heißt (globale) instabile Mannigfaltigkeit von x_G

Bemerkung $W^s(x_G)$ und $W^u(x_G)$ sind invariant, d.h.

$$\phi(t, W^{s/u}(x_G)) = W^{s/u}(x_G) \ \forall t \in \mathbb{R}$$

$$x \in W^s(x_G) \Rightarrow \lim_{t \to \infty} \phi(t, x) = x_G$$

$$\Rightarrow \lim_{t \to \infty} \phi(t, \phi(s, x)) = \lim_{t \to \infty} \phi(t + s, x) = x_G \text{ für jedes } s \in \mathbb{R}$$

$$\Rightarrow \phi(s, x) \in W^s(x_G)$$

$$\Rightarrow \phi(s, W^s(x_G)) = W^s(x_G) \ \forall s \in \mathbb{R}$$

Satz 3.1.2 (Über die lokalen stabilen und instabilen Mannigfaltigkeiten eines hyperbolischen Gleichgewichtspunktes). Unter den Voraussetzungen von (3.1.1) gibt es eine Umgebung $U \subseteq \mathbb{R}^n$ von x_G , sodass Abbildungen

$$h^s: E^s \cap V \to E^u \text{ und } h^u: E^u \cap V \to E^s$$

existieren, die so glatt sind wie das Vektorfeld v(x), so dass

$$W_{loc}^s(x_G) = \operatorname{graph}(h^s, E^s \cap V)$$

und

$$W_{loc}^u(x_G) = \operatorname{graph}(h^u, E^u \cap V)$$

 $mit\ h^{s/u}(x_G)=0\ und\ J_{h^{s/u}}(x_G)=0,\ d.h.\ W_{loc}^{s/u}(x_G)\ ist\ in\ x_G\ tangential\ zu\ E^{s/u}.$ Speziell kann V=h(U) gewählt werden, wobei h der Homöomorphismus aus (3.1.1) ist.

Beispiel Gegeben sei folgende Differentialgleichung

$$v\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \dot{x} = x \\ \dot{y} = -y + x^2 \end{cases}$$

Ein Gleichgewichtpunkt ist $x_G = (0,0)$. Die Jacobi-Matrix erfüllt in x_G

$$Jv(x_G) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Daher sind die Eigenwerte

$$\lambda_1 = -1, \lambda_2 = 1 \Rightarrow x_G$$
 hyperbolischer Sattelpunkt

und der Satz von Grobman-Hartman ist anwendbar. Die Orbitgleichung erhält man folgendermaßen:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-y + x^2}{x} \text{ (für } x \neq 0) = -\frac{1}{x} \cdot y + x$$

$$\Rightarrow y(x) = \frac{1}{3}x^2 + \frac{c}{x}, c \in \mathbb{R} \text{ beliebig}$$

$$\Rightarrow h^u : \mathbb{R} \to \mathbb{R}, x \mapsto \frac{x^2}{3} (c = 0)$$

$$\Rightarrow h^u(0) = 0, (h^u)'(0) = Jh^u(0) = 0$$

$$h^s : \mathbb{R} \to \mathbb{R}, x \mapsto 0$$

3.2 Diskreter Fall

Sei ψ ein C^k -Diffeomorphismus von \mathbb{R}^n nach \mathbb{R}^n , d.h. ψ ist bijektiv und $\psi^{-1} \in C^k(\mathbb{R}^n, \mathbb{R}^n)$, x_G ein Gleichgewichtspunkt des von ψ erzeugten dynamischen Systems. Betrachte die Linearisierung dieses Systems in x_G , erzeugt durch $J\psi(x_G)$ (regulär). $(\psi(x) \approx J\psi(x_G)\xi, \xi = x - x_G, \|\xi\| \ll 1)$

Satz 3.2.1 (Grobman-Hartman). Unter diesen Voraussetzungen existiert eine Umgebung $0 \in U \subset \mathbb{R}^n$ und ein Homöomorphismus $h: U \to h(U) \subset \mathbb{R}^n$, $h(0) = x_G$, sodass das von $J\psi(x_G)\xi$ erzeugte System bzgl. h lokal topologisch konjugiert ist, d.h.

$$h(J\psi(x_G)\xi) = \psi(h(\xi)), \xi \in U$$
$$h(J\psi(x_G)^k\xi) = \psi^k(h(\xi)), k \in \mathbb{Z} \text{ beliebig}$$

sofern x_G ein hyperbolischer Gleichgewichtspunkt des ψ -Systems ist, d.h. $\xi = 0$ ein hyperbolischer Gleichgewichtspunkt des linearisierten $J\psi(x_G)$ -Systems ist.

Die restliche Grobman-Hartman-Theorie ist analog zum kontinuierlichen Fall.

Beispiel $\psi(x) = x^3$ erzeugender Homöomorphismus (C^k -Diffeomorphismus für $1 \le k \le \infty$ außerhalb von x = 0)

Als Voraussetzung der Grobman-Hartman-Theorie genügt es, wenn die Voraussetzungen lokal nahe der betrachteten Gleichgewichtspunkte erfüllt sind.

$$x_G = \pm 1, J\psi(x_G) = 3 > 1 \implies x_G$$
 orientierungserhaltende Quelle

Gesucht ist ein Homöomorphismus h, welcher das ψ - und das $J\psi(x_G)$ System lokal nahe $x_G = \pm 1$ konjugiert (in $U_1 = (-\infty, 0), U_2 = (0, +\infty)$). $h : \mathbb{R} \to \mathbb{R}, \xi \mapsto h(\xi)$ stetig, bijektiv, sodass

$$h(3\xi) = h(\xi)^3 \ \forall \xi \in U$$

$$\Leftrightarrow \ln h(3\xi) = 3 \ln h(\xi)$$

$$\Rightarrow \ln \circ h(\xi) = \xi$$

$$\Rightarrow h(\xi) = e^{\xi}, h(0) = 1 \text{ in } U_2 = (0, +\infty)$$

4 Periodische Orbits

4.1 Begriff und Bestimmung von periodischen Orbits

Definition 4.1.1. Sei (X, ϕ) ein dynamisches System. Ein Orbit $\Gamma_{x_p} = \{\phi(t, x_p) | t \in \mathbb{R}\}$ heißt T-periodisch, falls T > 0 und

$$\forall t \in \mathbb{R} : \phi(t, x_p) = \phi(t + T, x_p)$$

Das minimale T>0 heißt Periode des Orbits Γ_{x_p} . x_p nennt man T-periodischen Punkt des Systems.

Abbildung 4.1: periodische Orbits

Bemerkung Falls x_p ein T-periodischer Punkt ist, so ist auch jeder andere Punkt $x \in \Gamma_{x_p}$ T-periodisch.

4.1.1 Bestimmungsgleichung für periodische Punkte

Die Bestimmungsgleichung ist folgendermaßen gegeben

$$\phi(T, x_p) = \phi(0, x_p)$$

für ein minimales T > 0. Speziell im diskreten Fall ergibt sich

$$\phi(T, x_p) = \psi^T(x_p) = x_p$$

Beispiel $\psi(x) = -x, \ x \in \mathbb{R}$. Bestimmungsgleichung für 2-periodische Punkte

$$\psi^2(x_p) = \mathrm{id}(x_p) = x_p$$

Folglich ist jeder Punkt $x_p \in \mathbb{R} \setminus \{0\}$ ein 2-periodischer Punkt, also gilt $\Gamma_{x_p} = \{x_p, -x_p\}$. Für x = 0 liegt ein Gleichgewichtspunkt vor (man sagt auch 1-periodisch).

Abbildung 4.2: periodische Orbits

4.2 Poincaré Abbildung für GDG-Systeme

Sei (X, ϕ) ein dynamisches System, das durch die Differentialgleichung $\dot{x} = v(x), \ x \in \mathbb{R}^n$ erzeugt wird.

Definition 4.2.1. Sei x_p ein T-periodischer Punkt. Es existiert ein $n \in \mathbb{R}^n$, sodass $\langle v(x_p), n \rangle \neq 0$, beispielsweise $n = v(x_p)$. Die (n-1)-dimensionale Untermannigfaltigkeit

$$\Sigma_{x_n} := \{ x \in X | \langle x - x_p, n \rangle = 0 \}$$

schneidet den Orbit Γ_{x_p} transversal in x_p und wird auch Poincaré Schnitt genannt. Sei $V \subseteq \mathbb{R}^n$ eine hinreichend kleine Umgebung von x_p . Die erste Rückkehrzeit $\tau \colon \Sigma_{x_p} \cap V \to \mathbb{R}$ ist definiert als

$$\tau(x) := \min \left\{ t > 0 | \phi(t, x) \in \Sigma_{x_p} \cap B_{\varepsilon(x)}(x) \right\}$$

wobei $\varepsilon(x)$ hinreichend klein gewählt ist.

Bemerkung Die erste Rückkehrzeit gibt die Zeit an, die benötigt wird um, ausgehend vom Punkt $x \in \Sigma_{x_p} \cap V$, die transversale Menge Σ_{x_p} nach einem vollen Umlauf wieder zu schneiden. Das heißt es gilt $\phi(\tau(x), x) \in \Sigma_{x_p}$, sowie $\tau(x_p) = T$ nach Definition.

Abbildung 4.3: Transversale Menge Σ_{x_p} , sowie erste Rückkehrzeit

Lemma 4.2.1. Sei $v \in C^k(\mathbb{R}^n, \mathbb{R}^n)$ ein Vektorfeld mit $k \in \mathbb{N}$. Dann existiert eine Umgebung $V \subseteq \mathbb{R}^n$ von x_p , sodass $\tau \in C^k(V, \mathbb{R})$.

Beweis Definiere Funktion $F: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, $(t, x) \mapsto \langle \phi(t, x) - x_p, n \rangle$. F ist k-fach stetig differenzierbar. Wir weisen die Voraussetzungen für den Satz von der impliziten Funktion nach

- Es gilt $F(T, x_p) = 0$
- \bullet Die Ableitung von F nach t ist invertierbar in x_p

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \phi(t, x) - x_p, n \rangle = \langle \frac{\mathrm{d}}{\mathrm{d}t} \phi(t, x), n \rangle = \langle v(x), n \rangle$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \langle \phi(t, x) - x_p, n \rangle \Big|_{x = x_p} = \langle v(x_p), n \rangle \neq 0$$

Der Satz von der impliziten Funktion anwendbar und es existiert daher ein $V \subseteq \mathbb{R}$, sowie $f \in C^k(V, \mathbb{R})$, sodass gilt

- 1. $f(x_p) = T$
- 2. $\forall x \in V : F(f(x), x) = 0$

Dieses f stellt die erste Rückkehrzeit τ dar, denn es gilt

$$F(\tau(x), x) = \langle \phi(\tau(x), x) - x_p, n \rangle = 0 = F(f(x), x)$$

Definition 4.2.2. Die Abbildung

$$P_{\Sigma_{x_p}}: V \cap \Sigma_{x_p} \to \Sigma_{x_p}, \ x \mapsto \phi(\tau(x), x)$$

heißt Poincaré Abbildung (des periodischen Orbits Γ_{x_p} bezüglich Σ_{x_p}).

Bemerkung Falls $v \in C^k$, so ist $P_{\Sigma_{x_p}} \in C^k$. Dies ist eine direkte Folgerung von (4.2.1), sowie der Eigenschaft, dass $\phi \in C^k$. Die Poincaré Abbildung besitzt einen Fixpunkt, denn $P_{\Sigma_{x_p}}(x_p) = x_p$. Allgemeiner gilt folgendes Lemma

Lemma 4.2.2. Sei x ein Fixpunkt von $P_{\Sigma_{x_p}}^N$ mit einem minimalen $N \in \mathbb{N}$. Dann ist Γ_x ein periodischer Orbit mit Periode

$$\sum_{j=1}^{N} \tau(x_j)$$

wobei $x_1 = x$, $x_{j+1} = \phi(\tau(x_j), x_j)$ für j = 1, ... N

4.3 Stabilitätsanalyse periodischer Orbits mittels Poincaré Abbildung

Definition 4.3.1 (Orbitale dynamische Stabilität). Sei (X, d) ein metrischer Raum, (X, ϕ) ein dynamisches System mit einem periodischen Orbit Γ_{x_p} . Dann heißt Γ_{x_p}

• orbital stabil, falls

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in X, t \ge 0 : \operatorname{dist}(x, \Gamma_{x_p}) < \delta \Rightarrow \operatorname{dist}(\phi(t, x), \Gamma_{x_p}) < \varepsilon$$

- orbital instabil, falls Γ_{x_p} nicht orbital stabil ist.
- orbital asymptotisch stabil, falls Γ_{x_p} orbital stabil ist und gilt

$$\exists b > 0 \forall x \in X : \operatorname{dist}(x, \Gamma_{x_p}) < b \Rightarrow \lim_{t \to \infty} \operatorname{dist}(\phi(t, x), \Gamma_{x_p}) = 0$$

wobei $\operatorname{dist}(x, M) := \inf_{y \in M} d(x, y), M \subseteq X$. Zu orbital asymptotisch stabilen Orbits Γ_{x_p} sagt man auch *Grenzzykel*.

- Satz 4.3.1 (Stabilitätskriterium). Sei Γ_{x_p} ein periodischer Orbit von (X,ϕ) , Σ_{x_p} ein Poincaré Schnitt durch x_p und $P_{\Sigma_{x_p}}$ eine zugehörige Poincaré Abbildung. Es existiert eine Umgebung $V \subseteq \mathbb{R}^n$ von x_p , sodass $(\Sigma_{x_p} \cap V, \psi)$ ein diskretes dynamisches System durch $\psi(n,x) := P_{\Sigma_{x_p}}^n(x)$ induziert, das den Gleichgewichtspunkt x_p besitzt. Dann sind äquivalent
 - 1. x_p ist ein (asymptotisch) stabiler Gleichgewichtspunkt des diskreten Systems im Sinne von Lyapunov

Abbildung 4.4: Orbitale Stabilität(links); Orbitale asymptotische Stabilität (rechts)

Abbildung 4.5: Illustration des Satzes über das Stabilitätskriterium. Γ_{x_p} ist orbital asymptotisch stabil. Kontinuierliche System (rechts); Das dazugehörige diskretisierte Poincaré System (links)

4 Periodische Orbits

2. Γ_{x_p} ist ein orbital (asymptotisch) stabiler Orbit des kontinuierlichen Systems.

Beispiel Betrachte folgende Differentialgleichung

$$\begin{cases} \dot{x} = \mu x - y - x(x^2 + y^2) \\ \dot{y} = x + \mu y - y(x^2 + y^2) \end{cases}$$

mit einem Parameter $\mu > 0$. Eine Transformation in Polarkoordinaten vermittels $x = r\cos(\theta), \ y = r\sin(\theta), \ r \geq 0, \ \theta \in [0, 2\pi)$ liefert

$$\begin{cases} \dot{r} = \mu r - r^3 \\ \dot{\theta} = 1 \end{cases}$$

Daher ist die Flussabbildung folgendermaßen gegeben

$$\phi\left(t, \begin{pmatrix} r_0 \\ \theta_0 \end{pmatrix}\right) = \left(\begin{pmatrix} \frac{1}{\mu} + e^{-2\mu t} \left(\frac{1}{r_0^2} - \frac{1}{\mu} \right) \end{pmatrix}^{-\frac{1}{2}} \right)$$
$$t + \theta_0$$

Ein periodischer Orbit Γ ist offensichtlich gegeben durch

$$\begin{cases} r = \sqrt{\mu} \\ \theta = \theta_0 \end{cases} \Leftrightarrow \begin{cases} x(t) = \sqrt{\mu}\cos(\theta(t)) \\ y(t) = \sqrt{\mu}\sin(\theta(t)) \end{cases}$$

Also hat dieser Orbit die Periode 2π und er besitzt die Poincaré Abbildung

$$P_{\Sigma}(r_0) = \left(\frac{1}{\mu} + e^{-2\mu t} \left(\frac{1}{r_0^2} - \frac{1}{\mu}\right)\right)^{-\frac{1}{2}}$$

wobei $\Sigma = \mathbb{R} \times \{0\}$, falls $\theta_0 \neq \frac{(2k+1)\pi}{2}$, ansonsten $\Sigma = \{0\} \times \mathbb{R}$. Für alle $\mu > 0$ gilt $P_{\Sigma}(\sqrt{\mu}) = \sqrt{\mu}$. Die Ableitung von P_{Σ} nach r ist

$$\frac{\mathrm{d}}{\mathrm{d}r} P_{\Sigma}(\sqrt{\mu}) = e^{-4\pi\mu} \stackrel{\mu>0}{<} 1$$

Die direkte Methode von Lyapunov liefert, dass $(\sqrt{\mu}, \theta_0)^T$ asymptotisch stabil ist im Sinne von Lyapunov und somit liefert (4.3.1), dass $(\sqrt{\mu}, \theta_0)^T$ orbital asymptotisch stabil ist.

Abbildung 4.6: Flussabbildung zum Beispiel

4.4 Poincaré-Bendixson-Theorie

Betrachte das GDG-System

$$\dot{x} = v(x), \qquad x \in \mathbb{R}$$

Definition 4.4.1. Sei $\phi(t, x)$ Flußabbildung dieses Systems und $x_0 \in \mathbb{R}$. Dann heißt

$$\omega(x_0) = \{ x \in \mathbb{R}^n \mid \exists (t_j)_{j \in \mathbb{N}} \in \mathbb{R}, t_j \to \infty : \lim_{j \to \infty} \phi(t_j, x) = x_0 \}$$

 ω -Limesmenge des (Anfangs-) zustands x_0 . Jedes $x \in \omega(x_0)$ ist ein sogenannter ω -Limespunkt von x_0 .

Bemerkung Entsprechend definiert man α -Limesmengen bzw. α -Limespunkte im Fall $(t_j) \to -\infty$.

Beispiel 1. Sei x_G asymptotisch stabiler Gleichgewichtspunkt. Dann gilt $\omega(x_0) = \{x_G\}$ für alle x_0 hinreichend nahe bei x_G

2. Sei Γ_{x_p} ein orbital asymptotisch stabiler periodischer Orbit. Dann gilt $\omega(x_0) = \Gamma_{x_p}$ für alle x_0 hinreichend nahe bei Γ_{x_p}

Definition 4.4.2. Ein Orbit Γ heißt heterokliner Orbit zwischen x_1 und x_2 , falls ein heterokliner Punkt $x_h \in \Gamma$ existiert, sodass

$$\lim_{t \to -\infty} \phi(t, x_h) = x_1, \qquad \lim_{t \to \infty} \phi(t, x_h) = x_2$$

gilt. Seien $x_G^1,...,x_G^N$ Gleichgewichtspunkte, x_G^{N+1} bezeichne x_G^1 . Seien Γ_k heterokline Orbits zwischen x_G^k und x_G^{k+1} mit heteroklinen Punkt x_h^k . Dann heißt die Menge

$$\bigcup_{k=1}^{N} \Gamma_k \cup x_G^k$$

heterokliner Zykel.

Bemerkung Es ist in der Definition eines heteroklinen Orbits auch zugelassen, dass dieser Orbit zwischen zwei gleichen Punkten verläuft, d.h. $x_1 = x_2$. Ein solcher Orbit wird auch als homokliner Orbit bezeichnet.

Abbildung 4.7: Illustration eines heteroklinen Zykels mit einem homoklinen Orbit zwischen x_G^4 und x_G^5

Satz 4.4.1 (Poincaré-Bendixson-Theorem). Sei $n=2, M \subset \mathbb{R}^2$ eine positiv invariante, kompakte Teilmenge. Dann gilt für jedes $x_0 \in M$ hinsichtlich der ω -Limesmenge $\omega(x_0)$ von x_0 eine der folgenden drei Alternativen:

- 1. $\omega(x_0) = \{x_G\}$ ist ein Gleichgewichtspunkt in M
- 2. $\omega(x_0) = \Gamma_{x_p}$ ist ein periodischer Orbit
- 3. $\omega(x_0)$ ist ein heterokliner Zykel

Corollar 4.4.1. Es seien die Vorraussetzungen des Poincaré-Bendixson-Theorems gegeben. Ferner existiere in M kein Gleichgewichtspunkt des Systems. Dann enthält M mindestens einen periodischen Oribit des Systems.

Beispiel

$$\begin{cases} \dot{x} = \mu x - y - x(x^2 + y^2) \\ \dot{y} = x + \mu y - y(x^2 + y^2) \end{cases}$$

x=y=0 ist trivialer (und einizger) Gleichgewichtspunkt. Betrachte das Vektorfeld v(x,y) des Systems längs eines Kreises $x^2+y^2=R^2$

$$\Rightarrow v(x,y) = \begin{pmatrix} \mu x - y - R^2 x \\ x + \mu y - R^2 y \end{pmatrix}$$

$$\langle v(x,y), \binom{x}{y} \rangle = \mu x^2 - xy - R^2 x^2 + xy + \mu y^2 - R^2 y^2$$
$$= (\mu - R^2)(x^2 + y^2) = (\mu - R^2)R^2 \leq 0, \qquad (R \geq \sqrt{\mu})$$

Außerhalb von x = y = 0 exisitiert kein weiterer Gleichgewichtspunkt, da $\langle v(x,y), \binom{x}{y} \rangle \neq 0$ für $R \neq 0, \sqrt{\mu}$ und $v_{|_{x^2+y^2=\mu}} = \binom{-y}{x} \neq 0$.

Somit existiert nach Poincaré-Bendixson innerhalb des Ringelements $R_1^2 < x^2 + y^2 < R_2^2$ wenigstens ein periodischer Orbit Γ_{x_p} .

4.5 Zeitlich periodische nicht-autonome GDG-Systeme

Betrachte die Differentialgleichung

$$\dot{x} = v(t, x), \qquad x \in \mathbb{R}^n, t \in \mathbb{R} \text{ mit}$$

$$v(t + T, x) = v(t, x) \qquad \forall (t, x) \in \mathbb{R} \times \mathbb{R}^n$$

Abbildung 4.8: Vektorfeld auf den Kreisen R_1 sowie R_2 des obigen Beispiels

wobei T>0 minimal ist und die zeitliche Periode des System angibt. Da dies eine nicht-autonome Differentialgleichung ist, wird dadurch a priori kein dynamisches System erzeugt. Doch wenn man den erweiterten Phasenraum betrachtet wird ein dynamisches System induziert.

Lemma 4.5.1. Jede nicht-autonome Differentialgleichung $\dot{x} = v(t, x)$ kann folgendermaßen in eine autonome Differentialgleichung transformiert werden

$$\dot{\tilde{x}} := \begin{pmatrix} \dot{t} \\ x \end{pmatrix} = \begin{pmatrix} 1 \\ v(t,x) \end{pmatrix} = \begin{pmatrix} 1 \\ v(\tilde{x}) \end{pmatrix} =: \tilde{v}(\tilde{x})$$

Dabei erweitert man den Phasenraum der nicht-autonomen Differentialgleichung auf $\mathbb{R} \times \mathbb{R}^n$, d.h. $\tilde{v} : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$. Die Lösungen der autonomisierten Differentialgleichung mit Anfangswert $\tilde{x}(0) = \begin{pmatrix} \tau_0 \\ x_0 \end{pmatrix}$ entspricht der Lösung der nicht-autonomen Differentialgleichung mit Anfangswert $x(\tau_0) = x_0$.

Aus dem Lemma folgt sofort, dass die autonomisierte Differentialgleichung auf $\mathbb{R} \times \mathbb{R}^n$ ein dynamisches System induziert, falls v entsprechende Bedingungen besitzt. Die Flussabbildung schreiben wir dann folgendermaßen

$$\tilde{x} = \tilde{\phi}\left(t, (\tau_0, x_0)\right)$$

4 Periodische Orbits

Da v in der ersten Komponente T-periodisch sind die Lösung mit Anfangswert (τ_0, x_0) identisch zu den Lösungen mit Anfangswert $(\tau_0 + kT, x_0)$ für jedes $k \in \mathbb{Z}$. Daher ergibt sich auf kanonische Art eine Poincaré-Abbildung

$$P_{\tau_0}: \mathbb{R}^n \to \mathbb{R}^n, \ x_0 \mapsto \phi(T; \tau_0, x_0)$$

wobei ϕ der Fluss der nicht-autonomen Differentialgleichung ist. Ein dazugehöriger Poincaré Schnitt ist beispielsweise

$$\Sigma_{\tau_0} = \{ (t, x) \in \mathbb{R} \times \mathbb{R}^n | \langle (t - \tau_0, x), (1, 0) \rangle = 0 \} = \{ (\tau_0, x) | x \in \mathbb{R}^n \}$$

Im folgenden werden wir diese spezielle Poincaré Abbildung auch mit *Periodenabbildung* bezeichnen.

Abbildung 4.9: Illustration der Periodenabbildung; Γ_{x_1} ist T-periodisch, Γ_{x_2} ist 2T-periodisch

Die Periodenabbildung erzeugt analog wie im vorherigen Kapitel ein diskretes dynamisches System durch $\psi(k,x) = P_{\tau_0}^k(x)$. Daher kann man

4 Periodische Orbits

die periodischen Orbits von ϕ wieder mithilfe der Stabilität von Gleichgewichtspunkten von ψ analysieren.

Bemerkung Fixpunkte von P_{τ_0} entsprechen i.A. einem T-periodischen Orbit von $\dot{x} = v(t,x)$ und Fixpunkte von $P_{\tau_0}^K$ $(K \in \mathbb{N})$ entsprechen einem KT-periodischen Orbit einschließlich der Stabiltätseigenschaften.

Beispiel

$$\dot{x} = -x + \sin t$$
 (nicht autom, 2π -periodisch)

Die allgemeine homogene Lösung ist gegeben durch $x_h(t) = e^{(t-t_0)}x_0$ Allgemeine Lösung:

$$x(t) = x_p(t) + x_h(t)$$

$$= \frac{1}{2}(\sin t - \cos t) - \frac{1}{2}e^{(t-t_0)}(\sin t_0 - \cos t_0) + e^{(t-t_0)}x_0$$

$$= \phi(t; t_0, x_0)$$

 \Rightarrow Mit $\tau_0 = t_0 = 0, t = 2\pi$ folgt:

$$P_0: \mathbb{R} \to \mathbb{R}, x_0 \mapsto -\frac{1}{2} - \frac{1}{2}e^{-2\pi}(-1) + e^{-2\pi}x_0$$
$$= -\frac{1}{2} + \frac{1}{2}e^{-2\pi} + e^{-2\pi}x_0$$

ist Periodenabbildung für obige GDG. Bestimmung des (eindeutigen) Fixpunkts:

$$P_0(x_0) = x_0 \Leftrightarrow -\frac{1}{2} + \frac{1}{2}e^{-2\pi} + e^{-2\pi}x_0 = x_0$$
$$\Rightarrow x_0 = \frac{-\frac{1}{2} + \frac{1}{2}e^{-2\pi}}{e^{-2\pi}}$$

 $\Rightarrow 0 < \frac{d}{d_x 0} P_0(x_0) = e^{-2\pi} < 1 \Rightarrow \text{asymptotisch stabil} \Rightarrow \text{obige GDG}$ besitzt einen orbital asymptotisch stabilen 2π -periodischen Orbit.

Zunächst werden stationäre Verzweigungen betrachtet.

5.1 Kontinuierlicher Fall für n = 1

Für $(\lambda, x) \in \mathbb{R} \times \mathbb{R}$ und den Verzweigungsparameter λ betrachte man

$$\dot{x} = v(\lambda, x)$$

Bei der stationären Verzweigungstheorie studiert man die Struktur der Gleichgewichtspunkte im Phasenraum (x-Raum) in Abhängigkeit vom Parameter $\lambda \in \mathbb{R}$. Im Folgenden sei o.B.d.A. x=0 für alle Werte von λ ein trivialer Gleichgewichtspunkt. Das heißt es gilt für alle $\lambda \in \mathbb{R}$: $v(\lambda,0)=0$

Definition 5.1.1. Die Menge aller trivialen Gleichgewichtspunkte bildet den *Grundlösungszweig*

$$G = \{(\lambda, 0) \in \mathbb{R} \times \mathbb{R}\}\$$

Falls der Grundlösungszweig die Form $x = x_G(\lambda)$ mit $\lambda \in \mathbb{R}$ hat, setze

$$x = x_G(\lambda) + \xi$$

$$\Rightarrow \dot{x} = \dot{\xi} = v(\lambda, x_G(\lambda) + \xi) = \tilde{v}(\lambda, \xi).$$

Da $v(\lambda, x_G(\lambda)) = 0$, ist $\xi = 0$ Gleichgewichtspunkt für alle λ

Definition 5.1.2. Ein Punkt $(\lambda_C, 0) \in G$ auf dem Grundlösungszweig heißt stationärer Verzweigungspunkt (Bifurkationspunkt) des Problems $\dot{x} = v(\lambda, x)$, falls er in $\mathbb{R} \times \mathbb{R}$ Häufungspunkt nicht-trivialer Gleichgewichtslösungen (λ, x_G) mit $x_G \neq 0$ ist.

Im Folgenden bezeichnet v_x die partielle Ableitung von v nach x

$$v_x = \partial_x v = \frac{\partial}{\partial x} v$$

Lemma 5.1.1. Sei $U \subseteq \mathbb{R}^2$ offen, sowie $v \in C^1(U, \mathbb{R})$. Eine notwendige Bedingung für einen Verzweigungspunkt $(\lambda_C, 0) \in G$ ist

$$v_x(\lambda_C,0)=0$$

Beweis Angenommen $v_x(\lambda_C, 0) \neq 0$. Dann folgt nach dem Satz über implizite Funktionen für $v(\lambda_C, 0) = 0, v_x(\lambda_C, 0) \neq 0$, dass $v(\lambda, x) = 0$ nahe $(\lambda_C, 0)$ zu jedem λ genau einen Gleichgewichtspunkt $x = x_G(\lambda)$ hat, mit $x_G(\lambda)$ C^1 -glatt, $x(\lambda_C) = 0$. Damit gilt notwendigerweise $x_G(\lambda) \equiv 0$, d.h. nahe $(\lambda_C, 0)$ existiert keine nicht-trivialen Lösungspunkte.

Definition 5.1.3. Ein Verzweigungspunkt (λ_C, x_C) heißt transkritisch, falls in jeder hinreichend kleinen Umgebung U von (λ_C, x_C) Parameter $\lambda_- < \lambda_C < \lambda_+$ und Anfangswerte $x_+, x_- \in \mathbb{R}$ existieren, sodass $(x_- - x)(x_+ - x) < 0$ und

$$v(\lambda_{-}, x_{-}) = v(\lambda_{C}, x) = v(\lambda_{+}, x_{+}) = 0$$

Abbildung 5.1: Transkritischer Verzweigungspunkt (links); Kein transkritischer Punkt (rechts)

Definition 5.1.4. Ein Verzweigunspunkt (λ_C, x_C) heißt subkritisch bzw. superkritisch, falls eine Umgebung U von (λ_C, x_C) existiert, sodass für alle nicht-trivialen Gleichgewichtspunkte $(\lambda, x) \in U$ gilt

$$\lambda < \lambda_C$$
 bzw. $\lambda > \lambda_C$

Abbildung 5.2: Subkritischer Verzweigungspunkt (links); Superkritischer Verzweigungspunkt (rechts)

Satz 5.1.1 (Hinreichende Bedingung für einen VP). Sei $U \subseteq \mathbb{R}^2$ offen, $v \in C^k(U,\mathbb{R})$ für ein $k \geq 2$ und $v(\lambda_C,0) = 0$. Es gelten weiter

$$1. \ v_x(\lambda_C, 0) = 0$$

2.
$$v_{\lambda x}(\lambda_C, 0) \neq 0$$
.

Dann ist $(\lambda_C, 0)$ ein Verzweigungspunkt. Weiterhin existiert in einer Umgebung von $(\lambda_C, 0)$ ein eindeutiger nicht-trivialer Lösungszweig $\lambda = \lambda^*(x) \in C^{k-1}(\mathbb{R})$, welcher den Grundlösungszweig in $(\lambda_C, 0)$ transversal schneidet in $(\lambda_C, 0)$, d.h. $\lambda^*(0) = \lambda_C$ und

$$-\frac{v_{xx}(\lambda_C, 0)}{2v_{\lambda x}(\lambda_C, 0)} = \lambda^{*\prime}(0) \in \mathbb{R}$$

Gilt zudem

3.
$$v_{xx}(\lambda_C, 0) \neq 0$$
.

Dann ist die Verzweigung bei $(\lambda_C, 0)$ transkritisch Falls anstelle von 3

4.
$$v_{xx}(\lambda_C, 0) = 0$$

 $v_{xxx}(\lambda_C, 0) \neq 0$

 $mit \ k \geq 3 \ gilt, \ dann \ ist \ die \ Verzweigung \ super-bzw. \ subkritisch \ falls$

$$-\frac{v_{xxx}(\lambda_C, 0)}{3v_{\lambda x}(\lambda_C, 0)} = \lambda^{*"}(0)$$

positives bzw. negatives Vorzeichen hat.

Beweis Man betrachte die Gleichgewichtsbedingung (stationär)

$$v(\lambda, x) = 0.$$

und setze

$$V(\lambda, x) = \begin{cases} \frac{v(\lambda, x)}{x} & x \neq 0 \\ v_x(\lambda, 0) & x = 0 \end{cases}$$

mit $(\lambda, x) \in \mathbb{R} \times \mathbb{R}$ beliebig, woraus die C^{k-1} -Glattheit von V folgt. Aus 1 folgt $V(\lambda_C, 0) = 0$. Ferner gilt $V_{\lambda}(\lambda_C, 0) \neq 0$, weshalb sich $V(\lambda, x) = 0$ lokal eindeutig nach $\lambda = \lambda^*(x)$ auflösen lässt (Satz über implizite Fuktionen) mit $\lambda^*(0) = \lambda_C$, λ^* C^{k-1} -glatt.

Insbesondere gilt: $v(\lambda^*(x), x) = 0$ für alle $x \neq 0$ Taylorentwicklung von $v(\lambda, x)$ um $(\lambda_C, 0)$:

$$v(\lambda, x) = \underbrace{a(\lambda)}_{v_x(\lambda, 0)} \underbrace{x + \underbrace{b(\lambda)}_{\frac{1}{2}v_{xx}(\lambda, 0)} x^2 + \underbrace{c(\lambda)}_{\frac{1}{6}v_{xxx}(\lambda, 0)} x^3 + \dots, \text{ falls } v \text{ entsprechend glatt}$$

$$= v_{\lambda x}(\lambda_C, 0)(\lambda - \lambda_C)x + \dots$$

$$+ \frac{1}{2}v_{xx}(\lambda_C, 0)x^2 + \dots$$

$$+ \frac{1}{6}v_{xxx}(\lambda_C, 0)x^3 + \dots$$

Daraus folgt:

$$V(\lambda, x) = v_{\lambda x}(\lambda_C, 0)(\lambda - \lambda_C) + \dots$$

$$+ \frac{1}{2}v_{xx}(\lambda_C, 0)x + \dots$$

$$+ \frac{1}{6}v_{xxx}(\lambda_C, 0)x^2 + \dots$$

Daher gilt:

$$V_{\lambda}(\lambda_C, 0) = v_{\lambda x}(\lambda_C, 0) \neq 0$$
$$V_{x}(\lambda_C, 0) = \frac{1}{2}v_{xx}(\lambda, 0)$$
$$V_{xx}(\lambda_C, 0) = \frac{1}{3}v_{xxx}(\lambda, 0)$$

Zusatzaussage:

Aus 3 folgt für hinreichend kleine |x|

$$V(\lambda^*(x), x) = 0$$

Differenzieren der impliziten Darstellung ergibt

$$V_x(\lambda^*(x), x) + V_\lambda(\lambda^*(x), x) \cdot (\lambda^*)'(x) = 0$$

Speziell für x = 0 folgt, dass

$$V_x(\lambda_C, 0) + \underbrace{V_\lambda(\lambda_C, 0)}_{\neq 0 \text{ wegen } 2} \cdot (\lambda^*)'(0) = 0$$

und somit

$$(\lambda^*)'(0) = -\frac{V_x(\lambda_C, 0)}{V_\lambda(\lambda_C, 0)} = -\frac{v_{xx}(\lambda_C, 0)}{2v_{\lambda x}(\lambda_C, 0)} \stackrel{3}{\neq} 0$$

Daher ist $(\lambda_C, 0)$ ein transkritischer Verzweigungspunkt. Falls 4 gilt, so kann ein weiteres mal differenziert werden und es gilt

$$V_{x\lambda}(\lambda^*(x), x) \cdot (\lambda^*)'(x) + V_{xx}(\lambda^*(x), x) + V_{\lambda\lambda}(\lambda^*(x), x) \cdot (\lambda^*)'(x)^2 + V_{\lambda x}(\lambda^*(x), x) \cdot (\lambda^*)'(x) + V_{\lambda}(\lambda^*(x), x)(\lambda^*)''(x) = 0$$

Speziell für x = 0 gilt $\lambda^*(x) = \lambda_C$, sowie $(\lambda^*)'(x) = 0$ und es fallen alle Terme mit $(\lambda^*)'(x)$ weg. Daher ergibt sich

$$V_{xx}(\lambda_C, 0) + V_{\lambda}(\lambda_C, 0) \cdot (\lambda^*)''(0) = 0$$

Letztendlich folgt daraus, dass

$$(\lambda^*)''(0) = -\frac{V_{xx}(\lambda_C, 0)}{V_{\lambda}(\lambda_C, 0)} = -\frac{v_{xxx}(\lambda_C, 0)}{3v_{\lambda x}(\lambda_C, 0)} \neq 0$$

Ist nun $(\lambda^*)''(0) > 0$, so handelt es sich um ein superkritischen Verzweigungspunkt, für $(\lambda^*)''(0) < 0$ liegt ein subkritischer Verzweigungspunkt vor.

Beispiel
$$\dot{x} = \lambda x - x^2$$
, $v(\lambda, 0) = 0$ für alle λ , $\underbrace{v_x(\lambda, 0)}_{=(\lambda - 2x)|_{x=0}} \stackrel{!}{=} 0$.

 $\Rightarrow \lambda = \lambda_C = 0$ ist kritischer Punkt, Bedingung 1 ist erfüllt (sonst nirgends VP).

$$v_{x\lambda}(\lambda_C, 0) = 1 \neq 0$$
, daher ist $(\lambda_C, 0)$ VP,
 $v_{xx}(\lambda, 0) = -2$, inbesondere, $v_{xx}(0, 0) = -2 \neq 0$
 $\Rightarrow (\lambda_C, 0) = (0, 0)$ ist transkritischer VP.

5.2 Diskreter Fall für n=1

Sei $\psi \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, sodass $\psi(\lambda, \cdot) \colon \mathbb{R} \to \mathbb{R}$ ein Homöomorphismus bzw. C^k -Diffeomorphismus für alle $\lambda \in \mathbb{R}$ ist.

 $\psi(\lambda,0)=0$ für alle $\lambda\in\mathbb{R}$, d.h. x=0 ist für alle $\lambda\in\mathbb{R}$ ein trivialer Fixpunkt.

Nicht-triviale Gleichgewichtspunkte:

$$\psi(\lambda, x) = x$$

$$\Leftrightarrow \underbrace{\psi(\lambda, x) - x}_{=v(\lambda, x)} = 0$$

Das zugehörige stationäre Problem ist formal identisch mit jenem des kontinuierlichen Falls weshalb der Satz entsprechend anwendbar ist.