Matematiska Institutionen KTH

Tentamen på kursen SF1604 (och 5B1109), för D1, Mars 29, 2008, kl: 9:00-14:00.

Inga hjälpmedel ät tillåtna.

12	poäng totalt eller mer ger minst omdömet	Fx
15	poäng totalt eller mer ger minst betyget	E
18	poäng totalt eller mer ger minst betyget	D
22	poäng totalt eller mer ger minst betyget	C
28	poäng totalt eller mer ger minst betyget	В
32	poäng totalt eller mer ger minst betyget	Α

Bonuspoäng: För omdömet Fx och betygen E, D, och C får maximalt 5 bonuspoäng tiigodoräknas från lappskrivningar höstterminen 2007. För betygen A och B för inga bonuspoäng tillgodoräknas.

Generellt gäller att för full poäng krävs korrekta och väl presenterade resonemang.

PROBLEM:

DEL I

1. (3p) Bestäm för vilka värden på talet a som följande homogena ekvationssystem har triviala lösningar.

$$\begin{cases} x + y + z = 0 \\ x - y + 2a^2z = 0 \\ 2x + 2y + 2z = 0 \end{cases}$$

- 2. (3p) Bestäm parameterformen för den linjen i planet med ekvationen x+3y-z=5 som passerar genom punkten (0,2,1) och är vinkelrät mot (1,1,1).
- 3. (3p) Bestäm dimension och ange en bas för det minsta delrum till \mathbb{R}^4 som innehåller vektorerna

$$(1,3,2,5), (0,2,0,8), (2,0,1,0)$$
 och $(2,2,1,8)$

- 4. (3p) Betrakta vektorummet $V=Span\{(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ i \mathbb{R}^4 . Bestäm projektionen av vektorn (3,1,1,0) på V.
- 5. (3p) Bestäm egenvärden och egenvktorer till följande matris:

$$A = \left(\begin{array}{ccc} 0 & 3 & 1\\ 0 & 1 & 2\\ 0 & 0 & -1 \end{array}\right).$$

DEL II

6. (4p) Betrakta den linjära funktionen

$$f: \mathbb{R}^3 \to \mathbb{R}^3, f(x, y, z) = (x - z, z - x, x - y).$$

- (a) Bestäm matrisen $[F]_B$ med avseende på den kanoniska basen $\{(1,0,0),(0,1,0),(0,0,1)\}$.
- (b) Välj en annan bas $B' = (v_1, v_2, v_3)$ och bestäm basbytesmatrisen från B till B'.
- (c) Bestäm matrisen $[F]_{B'}$ med avseende till basen B'.
- 7. (4p) Betrakta följande andragradskurva:

$$C: x^2 + 4y^2 - 4xy + 6x - 12x + 9 = 0.$$

- (a) Bestäm den kanoniska formen (d.v.s. den huvudaxelformen) av C.
- (b) Rita C (i koordinatena (x, y).)
- 8. (4p) Låt $r \subset \mathbb{R}^3$ vara linjen definierad av:

$$r: x - y = z - 1 = 0$$

Bestäm samtliga linjer s som är parallela till (1,0,-1) och sådana att distansen till linjen r är lika med ett, d(s,r)=1. Finns det ändligt många sådana linjer?

DEL III

9. (5 p)

Bestäm
$$A^{1000}$$
 om $A=\left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array}\right)$.

10. (5p) Låt $M_3(\mathbb{R})$ vara vektorrummet av alla reella 3×3 matriser. Betrakta funktionen:

$$T: M_3(\mathbb{R}) \to M_3(\mathbb{R}), T(A) = A^T.$$

- (a) Visa att ± 1 är de enda egenvärderna till [T].
- (b) Hitta en bas B till $M_3(\mathbb{R})$ sådan att $[T]_B$ är en diagonalmatris.