Lecture 9

Bonds: Duration, Convexity and immunization

Presented by: Yan 14-15/12/2024

Introduction

1 Homework 3 explanation

2 Lecture 9 review

问题 1: $E[Y_{100}]$

公式:

随机游走 $Y_k = \sum_{i=1}^k x_i$,其中 x_i 是 i.i.d. 变量,且 $P(x_i = 1) = P(x_i = -1) = 0.5$ 。 因此, $E[x_i] = 0$,而 Y_k 是 x_i 的和,因此期望 $E[Y_k] = k \cdot E[x_i] = 0$ 。

答案: a.0。

问题 2: $P(Y_5=10)$

随机游走中, Y_k 不可能超出 $\pm k$ 的范围。对于 $Y_5=10$,它超出了可能的范围,因此概率为 0。

答案: a.0。

问题 3: $P(Y_5=5)$

要使 $Y_5=5$,意味着 5 次抛掷中全是 $x_i=1$ 。

$$P(Y_5 = 5) = (0.5)^5 = \frac{1}{32}$$

答案:
$$b.1/32$$
。 P(Y5 = 5) = P(um= 5) = $5!/(5!0!)*1/2^5 = 1/32$

问题 4:
$$P(Y_6=0)$$

$$P(Y_{m} = ZR - m) = P(u_{m} = R)$$

$$P(Y_{m} = ZR - m) = P(u_{m} = R)$$

$$P(X_{m} = ZR - m) = P(u_{m} = R)$$

$$P(X_{m} = ZR - m) = P(u_{m} = R)$$

$$P(X_{m} = R)$$

随机游走的 $Y_6=0$ 表示 6 次抛掷中,正负次数相同,即正负各为 3 次。可能的组合数为 $\binom{6}{3}=20$ 。总样本空间为 $2^6=64$,因此:

$$P(Y_6=0)=rac{\binom{6}{3}}{2^6}=rac{20}{64}=rac{5}{16}$$

答案: d.5/16。

问题 5: $E[(Y_2)^2]$

随机游走 $Y_2 = x_1 + x_2$, 其中 $x_1, x_2 \in \{1, -1\}$ 。可能的取值为:

$$Y_2 = 2, 0, -2$$

其平方为 $Y_2^2=4,0,4$ 。 概率分布为 $P(Y_2^2=4)=\frac{1}{2}$, $P(Y_2^2=0)=\frac{1}{2}$ 。 期望为:

$$E[(Y_2)^2] = 4 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = 2$$

答案: c.2。

问题 6: $E[(Y_8)^2]$

类似于问题 5, 但 Y_8 是 8 次随机游走的和。由于 x_i 是独立的:

$$Var(Y_8) = \sum_{i=1}^{8} Var(x_i) = 8 \cdot 1 = 8$$

$$E[(Y_8)^2] = Var(Y_8) + [E(Y_8)]^2 = 8 + 0 = 8$$

答案: b.8。

问题 7: $E[Y_1Y_2]$

随机游走中:

$$Y_1 = x_1, \quad Y_2 = x_1 + x_2$$

因此:

$$E[Y_1Y_2] = E[x_1(x_1 + x_2)] = E[x_1^2] + E[x_1x_2]$$

由于 $x_1^2 = 1$, 且 x_1 和 x_2 独立, $E[x_1x_2] = 0$:

$$E[Y_1Y_2] = 1 + 0 = 1$$

答案: b.1。

问题 8: $E[Y_4Y_7]$

$$egin{aligned} Y_4 &= \sum_{i=1}^4 x_i, & Y_7 &= \sum_{i=1}^7 x_i \ E[Y_4Y_7] &= E\left[\left(\sum_{i=1}^4 x_i
ight) \cdot \left(\sum_{j=1}^7 x_j
ight)
ight] \end{aligned}$$

展开并利用独立性,只有 i=j 时有贡献:

$$E[Y_4Y_7] = \sum_{i=1}^4 E[x_i^2] = 4$$

答案: b.4。

问题 9: $P(M_4 \geq 6)$

最大值 $M_k = \max(0, Y_1, Y_2, \ldots, Y_k)$ 。对 4 次抛掷,最大值不可能超过 4,因此 $P(M_4 \geq$

6) = 0.

答案: a.0。

问题 10: $P(M_4 \geq 2)$

我们计算在 4 次抛掷中,最大值达到或超过 2 的概率。通过枚举:

• $M_4 \ge 2$ 的情况有 Y_k 曾达到 2, 共 $\binom{4}{2} = 6$ 种方式 (正 2 次, 负 2 次)。 总样本数为 $2^4 = 16$,概率为: $P(M_1 > 2) = \frac{6}{2} = \frac{3}{2}$ $Y_4 = \{4, -4, 2, -2, 0\}$

 $=2*4!/(4!0!)*1/2^4 + 4!/(3!1!)*1/2^4 = 3/8$

11. Suppose $A = \{2, 20, 4\}$. What is the best initial move of the first player?

12. Compute $v^* = v_0(0)$ for $A = \{2, 20, 4\}$:

- ① if the first player chooses 4, then the second player chooses 20, then the first player chooses 2. so, the first player has 6 golds, the second player has 20 golds
- ② if the first player chooses 2, then the second player chooses 20, then the first player chooses 4. so, the first player has 6 golds, the second player has 20 golds

- 13. Compute $v^* = v_0(0)$ for $A = \{2, 7, 20, 16\}$:
 - a. 16, b. 22, c. 23, d. 27.

VR(i) = max & 2 21+1 + WR+1 (it1);

 $\omega_{\mathbf{p}}(i) = \begin{cases} v_{\mathbf{p}+1}(i) & \text{if right optimal} \\ v_{\mathbf{p}+1}(i+1) & \text{if left optimal} \end{cases}$

k = 0,1,...,n-1k = 0,1,...,k

Kn-k+i + WR+, (i)}

14. Suppose $A = \{2, 7, 20, 16\}$. What is the best initial move of the first player?

- ① if the first player chooses 16, then the second player chooses 20, then the first player chooses 7, then the second player chooses 2 so, the first player has 23 golds, the second player has 22 golds
- ② if the first player chooses 2, then the second player chooses 16, then the first player chooses 20, then the second player chooses 7 so, the first player has 22 golds, the second player has 23 golds

15. Consider $A = \{5, 9, 3, 7, 3, 3, 4, 11, 20, 7, 2\}$. We know that $w_1(0) = 35$ and $w_1(1) = 30$. What is the initial optimal move of the first player?

a. pick 2, b. pick 5, c. pick 20, d. pick 35.

16. As in Prob. 15, $A = \{5, 9, 3, 7, 3, 3, 4, 11, 20, 7, 2\}, w_1(0) = 35, w_1(1) = 30$. Compute v^* :

$$V_{R}(i) = \max_{i} \sum_{i=1}^{N} \frac{1}{N_{R+i}} \left(\frac{i}{N_{R+i}}\right);$$

$$\sum_{i=1}^{N} \frac{1}{N_{R+i}} \left(\frac{i}{N_{R+i}}\right);$$

$$\sum_{i=1$$

$$v^* = v0(0)$$

= Max{5+w1(1), 2+w1(0)}
= max{5+30, 2+35}
= 37

so, initial optimal move of the first player should be 2 and $v^* = 37$

17. First player always get at least as much as the second player.

18. Suppose $A = \{2, x_2, x_3, 20\}$ with some unknown x_2 and x_3 . Then, it is always optimal to choose 20.

T17 false.

从T11 可知,无论 first player 如何选择,始终有6 <20, the first player lose. 从T13可知,first player 有概率胜过second player, 23>22

T18 the first player will have:

 $20+\max(\min(x3,2), x2) \text{ or } 2+\max(\min(x2,20), x3).$

if x3 = 100, x2 = 0,

 $20+\max(\min(x3,2), x2) = 22, 2+\max(\min(x2,20), x3) = 102,$

it's optimal to choose 2.

So, we could **not** say it's always optimal to choose 20

Introduction to Financial Mathematics

19. Suppose $A = \{2, x_2, 20\}$ with some unknown x_2 . Then, it is always optimal to choose 20.

a. True b. False.

- ① if the first player chooses 20, then the second player chooses x2(x2>2), then the first player chooses 2. so, the first player has 22 golds, the second player has x2(x2>2) golds ② if the first player chooses 20, then the second player chooses 2(x2<2), then the first player chooses x2. so, the first player has x20+x22 golds, the second player has 2 golds x22 golds x23.
- (3) if the first player chooses 2, then the second player chooses 20(x2<20), then the first player chooses x2. so, the first player has 2+x2 golds, the second player has 20 golds (4) if the first player chooses 2, then the second player chooses x2(x2>20), then the first player chooses 20. so, the first player has 22 golds, the second player has x2(x2>20) golds '2+min(x2, 20)'
- ∴ 20+min(2, x2) always larger than or equal to 2+min(x2, 20)
- : it's optimal to choose 20

20. Consider $A = \{5, 9, 3, 7, 3, 3, 4\}$. Then, $v^* + w^* = 34$.

a. True b. False.

两个玩家轮流选数字,最终选完所有的数字, 所以 $v^* + w^* = total sum number = 34$

Thank you!

Presented by: Yan 14-15/12/2024