

Suppose \overline{b} is not in the Col. Sp (A) \Rightarrow No Scalars $\chi_1, \chi_2 \dots \chi_n$ exist 8.t $\overline{b} = \chi_1 A_1 + \dots + \chi_n A_n$ Ai. in col of $A^{m \times n}$

b projectsp(A).

 \overrightarrow{b} does not belong to the $\operatorname{Col} \operatorname{Sp}(A)$. $\overrightarrow{b} \in \mathbb{R}^m$, $\overrightarrow{b} \notin \operatorname{Col} \operatorname{Sp}(A)$.

Since \overline{b} does not belong to the \overline{col} Sp(A); we would like to \overline{col} sp(A) will never be 0.

So we want to find that \overline{col} sp(A).

So we want to make \overline{b} as small as possible.

If we can find a unique vector x^* that minimizes the length of b-Ax, we can x^* to be the best optimal Soln to Ax = b in the

| | b - Ax | is the smallest when Ax* is the Orthogonal proj of B onto the col-Sp(A).

(b-Ax*) is orthogonal to the Col Sp(A).

We want (b-Ax*) to be orthog.

to every vector in the Col Sp(A).

dry vector in the Col.8p(A) = Ay for $y \in \mathbb{R}^n$.

$$\Rightarrow (b - Ax^*) \cdot Ay = 0$$

 $= (Ay)^{T}(b-Ax^{*}) = 0$

= YTAT(b-Ax*) = 0.

 $= y^{T} \left(A^{T}b - A^{T}Ax^{*} \right) = 0.$

for every $y \in \mathbb{R}^n$.

Since the only vector which is Osthogonal to every vector in Rn is the zero vector, we have

 $A^Tb - A^TAx^* = 0$

> ATAX* = ATb.

 $A \in \mathbb{R}^{m \times n}$ $A^{\mathsf{T}} \in \mathbb{R}^{n \times m}$

ATA: Square matrix of dim nxn.

Suppose the cols of A are all linearly indep => Rank of A=n.

ATA will be invertible.

 $\Rightarrow \chi^* = (A^T A)^{-1} A^T b.$

 $\chi^* = (A^TA)^T A^T b$ is the best optimal soln to Ax = b.

 $\chi = (A^T A)^{-1} A^T b$

xt = x dagger

We wanted to Solve

Ax = b

But is b & col Sp(A) no Soln

exists Therefore we Solve

for Ax = b*, where

Oxthog

b* = Projection of b onto col Sp(A)

Suppose we have A which is an investible matrix then given Ax = b, we get $X = A^{-1}b$. Q

 $(A^TA)^{-1}A^T \longrightarrow PSeudo inverse of A.$

 $\chi t = (A^T A)^{-1} A^T b$.

Look at $A \chi t = (A (A^T A)^{-1} A^T) b$ Projection of b onto the column

Space of A.

... The matrix $A(A^TA)^{-1}A^T$ is the matrix that projects every \overline{B} Onto the $Col: \mathcal{S}p(A)$.

Question: How do we prove that $A(A^TA)^{-1}A^T$ is actually a projection matrix?

Question 2: What is a projection matrix?

Question 3: What are the properties of a projection matrix?