B. Wielki Przemarsz

Dostępna pamięć: 128 MB

Główna część Nowego Manhattanu jest zbudowana na planie prostokąta o wysokości m i szerokości n. Place (oznaczone niżej kropkami) są położone w punktach kratowych, gdzie punkt S=(0,0) oznacza plac położony najdalej na północny zachód, zaś punkt F=(m,n) oznacza plac położony najdalej na południowy wschód, jak na poniższym rysunku. Niektóre place połączone są tunelami. Wszystkie tunele prowadzą w kierunku południowym, wschodnim lub południowo-wschodnim. Żadna para tuneli nie przecina się, a przejście z jednego tunelu do innego możliwe jest tylko na placu.

Magistrat miejski zastanawia się, ile jest różnych ścieżek, którymi może przejść pochód od punktu S do punktu F. Pomóż im w tym zadaniu.

Specyfikacja danych wejściowych

W pierwszym wierszu danych wejściowych znajdują się trzy liczby całkowite $m, n \in [1, 10^9]$ oraz $t \in [1, 500\,000]$ oznaczające odpowiednio wysokość i szerokość miasta oraz liczbę tuneli. W siedmiu punktowanych testach zachodzi dodatkowo $m \cdot n \leq 10^6$.

W każdym z kolejnych t wierszy znajduje się opis jednego tunelu, składający się z 4 liczb oddzielonych pojedynczymi spacjami: a_1 , b_1 , a_2 oraz b_2 , takich że $a_1 \le a_2$ i $b_1 \le b_2$. Liczby te oznaczają, że od placu o współrzędnych (a_1,b_1) prowadzi tunel do placu (a_2,b_2) . Nie ma tuneli prowadzących od placu do niego samego. Między parą placów istnieje co najwyżej jeden tunel.

Powyższy rysunek został przedstawiony w przykładzie A.

Specyfikacja danych wyjściowych

W pierwszym i jedynym wierszu wyjścia Twój program powinien wypisać liczbę $k \mod 999\,979$, gdzie k jest liczbą różnych ścieżek prowadzących od placu S do placu F.

Przykład A

·	
Wejście:	Wyjście:
2 3 14	6
0 0 0 1	
0 1 0 2	
0 0 2 2	
0 0 1 0	
0 1 1 1	
0 1 1 2	
0 2 2 3	
1 0 1 1	
1 0 2 1	
1 2 1 3	
1 1 2 1	
2 1 2 2	
1 3 2 3	
2 2 2 3	

Przykład B

Wejście: Wyjście: 3
0 0 1 0
0 0 0 1
0 0 1 1
0 1 1 1
1 0 1 1

Przykład C

Wejście: Wyjście: 2 1 2 0 0 0 1 0 0 0 0 1