```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

dataframe = pd.read_csv("/content/Real estate.csv")

dataframe.head()

	No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area	11.
0	1	2012.917	32.0	84.87882	10	24.98298	121.54024	37.9	
1	2	2012.917	19.5	306.59470	9	24.98034	121.53951	42.2	
2	3	2013.583	13.3	561.98450	5	24.98746	121.54391	47.3	
3	4	2013.500	13.3	561.98450	5	24.98746	121.54391	54.8	

dataframe.shape

(414, 8)

dataframe.columns

```
import matplotlib.pyplot as plt

plt.scatter(dataframe['X3 distance to the nearest MRT station'], dataframe['Y house price of unit area']
plt.xlabel('Nearest MRT')
plt.ylabel('price')
plt.title('Scatter Plot of Target Column')
plt.show()
```

Scatter Plot of Target Column


```
import matplotlib.pyplot as plt

plt.scatter(dataframe['X2 house age'], dataframe['Y house price of unit area'], color='blue')
plt.xlabel('house age')
plt.ylabel('price')
plt.title('Scatter Plot of price')
plt.show()
```



```
import matplotlib.pyplot as plt

plt.scatter(dataframe['X4 number of convenience stores'], dataframe['Y house price of unit area'], color
plt.xlabel('no of convenience stores')
plt.ylabel('price')
plt.title('Scatter Plot of Target Column')
plt.show()
```


dataframe.drop(columns = ["X1 transaction date","No"], inplace =True)

dataframe.drop(columns = ["X5 latitude","X6 longitude"], inplace =True)

dataframe

Y house price of unit area	X4 number of convenience stores	X3 distance to the nearest MRT station	X2 house age	
37.9	10	84.87882	32.0	0
42.2	9	306.59470	19.5	1
47.3	5	561.98450	13.3	2
54.8	5	561.98450	13.3	3
43.1	5	390.56840	5.0	4
15.4	0	4082.01500	13.7	409
50.0	9	90.45606	5.6	410
40.6	7	390.96960	18.8	411
52.5	5	104.81010	8.1	412
63.9	9	90.45606	6.5	413
			4 1	444

414 rows × 4 columns

▼ Univariate analysis

<Axes: xlabel='X2 house age', ylabel='Density'>

sns.kdeplot(x=dataframe["X3 distance to the nearest MRT station"],color ='red')

<Axes: xlabel='X3 distance to the nearest MRT station', ylabel='Density'>

<Axes: xlabel='X4 number of convenience stores', ylabel='Density'>

sns.kdeplot(x=dataframe["Y house price of unit area"],color ='orange')

<Axes: xlabel='Y house price of unit area', ylabel='Density'>

plt.boxplot(x=dataframe["Y house price of unit area"])

```
{'whiskers': [<matplotlib.lines.Line2D at 0x7c633f7fab30>,
 <matplotlib.lines.Line2D at 0x7c633f7f9a20>],
 'caps': [<matplotlib.lines.Line2D at 0x7c633f7faa10>,
 <matplotlib.lines.Line2D at 0x7c633f7f8730>],
 'boxes': [<matplotlib.lines.Line2D at 0x7c633f7fbcd0>],
 'medians': [<matplotlib.lines.Line2D at 0x7c633f7fa8f0>],
 'fliers': [<matplotlib.lines.Line2D at 0x7c633f7fb8b0>],
 'means': []}
 120
                                      0
 100
  80
  60
  40
  20
                                      1
```

print(dataframe['Y house price of unit area'].nlargest(5)) 270 117.5 220 78.3 312 78.0 166 73.6 105 71.0 Name: Y house price of unit area, dtype: float64 max_value_index = dataframe['Y house price of unit area'].idxmax()

```
dataframe.loc[max_value_index]
```

X2 house age 10.8000
X3 distance to the nearest MRT station 252.5822
X4 number of convenience stores 1.0000
Y house price of unit area 117.5000

Name: 270, dtype: float64

```
dataframe.drop(270, inplace=True)
```

```
dataframe["Y house price of unit area"].nlargest(5)
```

220 78.3 312 78.0 166 73.6 105 71.0 16 70.1

Name: Y house price of unit area, dtype: float64

sns.kdeplot(dataframe["Y house price of unit area"], color ="orange")

<Axes: xlabel='Y house price of unit area', ylabel='Density'>

dataframe.describe()

	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	Y house price of unit area	
count	413.000000	413.000000	413.000000	413.000000	
mean	17.729298	1085.898530	4.101695	37.787651	
std	11.401205	1262.974876	2.945182	13.046097	
min	0.000000	23.382840	0.000000	7.600000	
25%	9.000000	289.324800	1.000000	27.700000	
50%	16.100000	492.231300	4.000000	38.400000	
75%	28.200000	1455.798000	6.000000	46.600000	
max	43.800000	6488.021000	10.000000	78.300000	

dataframe.info()

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
```

X_train, X_test ,Y_train, Y_test = train_test_split(dataframe.drop(columns =["Y house price of unit area

```
norm_transformer = ColumnTransformer(
    transformers = [ ('scaling', MinMaxScaler(),['X3 distance to the nearest MRT station'])]
, remainder = "passthrough")
```

 $X_train['X3\ distance\ to\ the\ nearest\ MRT\ station'] = norm_transformer.fit_transform(X_train)$

 $X_{\text{test}}[X] = X_{\text{test}}[X] = X_{\text$

X_train.describe()

memory usage: 32.3 KB

	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	
count	330.000000	330.000000	330.000000	11.
mean	17.530909	0.166309	4.084848	
std	11.336350	0.199201	2.934764	
min	0.000000	0.000000	0.000000	
25%	9.025000	0.041138	1.000000	
50%	15.950000	0.072635	4.000000	
75%	27.400000	0.221577	6.000000	
max	43.800000	1.000000	10.000000	

from sklearn.linear_model import LinearRegression

lr = LinearRegression()

lr.fit(X_train,Y_train) ▼ LinearRegression LinearRegression() Y_pred =lr.predict(X_test) X_test \blacksquare X2 house age X3 distance to the nearest MRT station X4 number of convenience stores 377 3.9 0.004065 8 ılı 170 24.0 0.696760 0 230 4.0 0.328556 3 25.6 0.695523 0 331 337 31.3 0.089329 5 0.041138 308 16.4 5 17.5 0.145618 100 7 20.3 0.040872 6 14.7 22 0.206780 1 30.4 0.068193 68 6 83 rows × 3 columns Y_test from sklearn.metrics import mean_squared_error as mse, r2_score mse = mse(Y_test, Y_pred) rmse =np.sqrt(mse) print(rmse) 6.52805867931348 print(mse) 42.61555012056005

0.7118820479919712

print(r2_score(Y_test,Y_pred))

```
from sklearn.linear_model import Ridge
ri = Ridge(alpha =2)
ri.fit(X_train,Y_train)
           Ridge
     Ridge(alpha=2)
ri_pred = ri.predict(X_test)
print(r2_score(Y_test,ri_pred))
     0.6985773713549839
Y_train_pred = ri.predict(X_train)
print(r2_score(Y_train,Y_train_pred))
     0.5520697253523801
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
degree = 2
poly_features = PolynomialFeatures(degree=degree)
linear_regression = LinearRegression()
poly_regression_model = make_pipeline(poly_features, linear_regression)
poly_regression_model.fit(X_train,Y_train)
             Pipeline
       ▶ PolynomialFeatures
        ▶ LinearRegression
poly_pred = poly_regression_model.predict(X_test)
print(r2_score(Y_test,poly_pred))
```

① 0s completed at 5:53 PM

) ×