PDD

Lecture 5: Locality Sensitive Hashing

Prepared by Jacek Sroka (based on Mining massive datasets)

Hashing

Goal:

- convert variable-length or composite keys into fixed length
- What we want: deterministic, efficient to compute, uniformly distributes keys

hashCode in Java

- consistent with equals
- not required that unequal objects produce different hash values, but we want that to improve performance of hash tables

Examples

```
- hashCode := 7
```

- hashCode := memory address

- hashCode(int x) $:= 13x+7 \pmod{10}$

Cryptographic hashing

- infeasible to reverse
- infeasible to find different messages with the same hash value
- a small change to a message should change the hash value (new hash value should look uncorrelated with the old one)

Hashing vs Locality Sensitive Hashing

- General hashing
 - Huge number of buckets (possibly more than items)
 - Small difference between items results in assigning to different bucket
 - Some degree of conflicts
- Locality Sensitive Hashing
 - Much less buckets than items
 - Similar items are assigned to the same bucket
 - Some degree of false positives and false negatives (can be controlled)

Applications

- Clustering
- Finding similar item sets
 - Plagiarism in the net
 - Grouping similar news articles
 - National news agency sells stories to publishers
 - Finding page mirrors (don't want to show both in search results)
 - Different adds
 - Different ordering of content
 - Collaborative filtering
 - Users give "likes" to content
 - Similar users like similar sets of items
 - Similar items are liked by similar sets of users
 - Problem: find similar users/items
 - Entity resolution
 - Differences in phone numbers or addresses

Similarity of text documents

- There exist other approaches like TF/IDF, but we don't want to check all pairs
- Jaccard similarity for sets

The plan

- Shingling: documents → sets
- Minhashing: large sets → short signatures (preserving similarity)
- Locality sensitive hashing: find small subset of all pairs that can be similar

Shingling

- K-shingles (k-grams) sequence of k characters from the document
- k=2, doc=trelemorele
 - 2-shingle={tr,re,el,le,em,mo,or}
- We represent documents as sets of their k-shingles
 - Similar documents have many shingles in common
 - Changing a word affects k-shingles k away from the word
 - Reordering paragraphs only affects shingles that cross paragraph boundaries
- k=3, "ala ma kota" VS "ma kota ala"
 - "la ", "a m", " ma" \rightarrow "ta ", "a a", " al"

Shingle size

- Usually 4-10
- Longer shingles differentiate more
- Long shingles can be hashed to 4 byte tokens
 - Rare collisions

Jaccard similarity

• $Sim(C1,C2) = |C1 \cap C2| / |C1 \cup C2|$

Sim(C1, C2) = 3/8

Indicator metrices

- Rows elements of the universal set
 - All k-shingles
- Columns = sets
- Sparse
- 1 in row $\bf e$ and column $\bf S <=>$ shingle $\bf e \in {\sf document S}$

Jaccard similarity for indicator matrix

Jaccard similarity = similarity of rows with at least one 1 (proof by coloring :))

C1	C2				
1	1	==			
0	1	!=			
1	0	!=			
0	0		Sim(C1,C2)	=	2 /
1	1	==	, , ,		- ,
1	0	!=			

• Types of rows:

C1	C2	
1	1	a
1	0	b
0	1	С
0	0	d

$$Sim(C1, C2) = a/(a+b+c)$$

Minhashing

- Permute rows randomly
- Minhash function h(C) = number of the first (in the permuted order) row with 1
- Use many (e.g. 100) independent permutations (hash functions) to create signature
- Indicator matrix → signature matrix

1	4	3	1	0	1	0
3	2	4	1	0	0	1
7	1	7	0	1	0	1
6	3	6	0	1	0	1
2	6	1	0	1	0	1
5	7	2	1	0	1	0
4	5	5	1	0	1	0

1	2	1	2
2	1	4	1
2	1	2	1

Surprising property

- Probability over all permutation that h (C1) =h (C2) is Sim (C1, C2)
- Both are a / (a+b+c)
 - Find first row with at least one 1
 - If type-a then h (C1) =h (C2)
 - If type-b or type-c then h (C1) !=h (C2)
 - Random permutation picks a row as first with probability a/(a+b+c)
- Similarity of signatures = fraction of the minhash functions in which they agree
 - Fraction of rows in which columns of integers agree
- Expected similarity of signatures = Jaccard similarity of columns
 - The longer signatures, the smaller the error

1	2	1	2	
2	1	4	1	
2	1	2	1	

Implementation

- Hard to pick permutation for large number of rows (e.g. 1 bilion)
 - Takes lots of memory
 - Accessing rows in permuted order leads to thrashing
- Good approximation is to use hash functions
 - Let h_i (r) give the order of rows for i-th permutation

for each row r do:

for each hash function h_i do: compute h_i(r)

$$f(x) = x \mod 5$$

 $g(x) = (2x+1) \mod 5$

Row	C1	C2
1	1	0
2	0	1
3	1	1
4	1	0
5	0	1

f(1)=1 g(1)=3	Sig1 1 3	Sig2 ∞ ∞
f(2) = 2 g(2) = 0	1 3	2
f(3) = 3 g(3) = 2	1 2	2
f(4) = 4 g(4) = 4	1 2	2
f(5)=0 g(5)=1	1 2	0

Implementation cont.

- If data is given by column not by row
 - Columns=documents, rows=shingles
 - Sort matrix once so it is by row

Locality sensitive hashing

- Goal: produce small list of candidate pairs elements that must be evaluated
- Use LSH to hash into many buckets. Elements in the same bucket are candidate pairs.
- Pick a similarity threshold t (< 1)
 - Pair of columns is candidate if they agree in at least fraction of t rows, i.e., M(i,c) = M(i,d) for at least fraction t values of i
- Big idea: hash columns of M several times
 - Candidate pairs = hash to at least one same bucket

Partition into bands

Hash function for one bucket

- 100,000 columns (5,000,000,000 pairs of signatures)
- signatures of 100 integers (40Mb)
- Goal: find all 80% similar pairs of documents

20 bands of 5 integers/band

C1,C2 are 80% similar

- Probability C1, C2 identical in one band: (0.8) ^5 =0.328
- Probability C1, C2 not similar in any of 20 bands:

$$(1-0.328)^2 = .00035$$

 1/3000th of 80%-similar pairs are false negatives

C1,C2 are 40% similar

- Probability C1, C2 identical in one band: (0.4) ^5 =0.01
- Probability C1, C2 identical in >= 1
 of 20 bands: <= 20*0.01=0.2
 - Small chance for false positives
 - Decreases quickly for lower similarities

What we aim for

Similarity s of two sets ->

What we get with one band

What we get with b bands

Example: b=20; r=5

S	1-(1-s ^r) ^b
0.2	0.006
0.3	0.047
0.4	0.186
0.5	0.470
0.6	0.802
0.7	0.975
8.0	0.9996

Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets

LSH for Euclidean distance

- Hash function correspond to lines
- Partition line into buckets of size a
- Hash its point into a bucket containing its projection onto the line
- Nearby points always close; distant rarely
- See https://www.youtube.com/watch?v=arjbdAEf9c0