Introduction to Switching Techniques

Index

- Introduction
 - Basic Switching Techniques

Circuit Switching

Packet Switching

Why switching ?

- Direct links (full mesh) among all end systems does not scale to a large number of nodes (number of links grows with $O(N^2)$).
- Solution: we introduce intermediate devices called switches that allow to share the capacity of links by multiple data transfers.
- Switches forward "data" -- in the past, a signal -- from the source end-system to destination end system(s).
 - Normally: spatial switching
- End-systems and switches make up a Switched Network

Circuit Switching (1)

- In a CSN, links and switches are designed to deal with discrete capacity chunks called <u>channels</u>.
 Channels are stitched together by means of switches to create an end-to-end channel called <u>circuit</u>. The capacity of the circuit is exclusively allocated to the call even if unused.
- A signalling protocol sets up and releases the circuit.
- Stages
 - Circuit set-up. Call routing according to dialed end-system address or E164 number (hierarchical routing with backup paths to the backbone).
 - Information transfer.
 - Circuit release.

Circuit Switching (2)

- Advantages:
 - Traffic contract and QoS guarantees
 - Constant small delay, guaranteed rate
- **Disadvantages:**
 - Inefficient use of resources during inactivity periods
 - Blocking: If all circuits are occupied no more service requests are accepted
 - Hard service degradation: some users get a circuit, others are blocked
 - Requires a constant bit rate circuit allocated throughout the network
 - Links are structured into channels, exploited as channels and switches allocate buffers for channel-to-channel interconnection
 - Synchronous operation, complex expensive electronics to MUX and DEMUX channels

Circuit Switching Networks (3)

Examples:

- Telephony (PSTN): originally analog circuit switching, nowadays digital (Narrowband Integrated Services Digital Networks NB-ISDN)
 - Channel = 64Kb/s TDM, Circuit = 64Kb/s TDM, Switching Unit: voice sample (8 bits)
 - Circuit: spans subscriber local exchange primary exchange (sector) secondary exchange (national) - terciary exchange (nodal)...
 - IMPORTANT: The Telephony service is being replaced by packet-switched IP telephony progressively
- PDH, SDH/SONET:
 - Circuits: nx64Kb/s TDM, nx2Mb/s, nx155Mb/s TDM.
- **Optical Transport Networks:**
 - Circuits: nx2.5Gb/s TDM. Switching unit: byte
 - Circuits: lambda (Wavelength Routed Networks). Switching unit: a carrier.
 - CS is the only technique that supports analog signal switching

CS example: Telephone Network

Packet Switching (1)

Main features:

- Messages are split into numbered chunks called packets
- Packets wait on queues until they get the link
- All link capacity is allocated to the packet once packet transmission starts.
- Link capacity is shared by many users.
- The original message is reassembled at the destination node.

Packet Switching (1)

Advantages:

- High Resource Utilization thanks to statistical multiplexing of links and buffers
- Soft degradation with load
- Lower Cost: simpler cheaper equipment, more users served at the same time
- Reduced signalling

Disadvantages:

- No QoS and no traffic contract guarantee (unless QoS mechanisms are configured)
- Variable end-to-end delay
- No rate guarantee
- Packet loss
- Flow and congestion control mechanisms
- Traffic conditioning

Packet Switching (2)

Two sub-types:

Datagram:

Packets forwarding based on the destination address.

Datagrams may follow different paths to destination

Packet order not guaranteed

No signalling required to set up a path for datagrams

Examples: IP , IPv6, ethernet, Fiber Channel, ...

Virtual circuits:

A path (a virtual circuit) is previously established before transmitting packets.

Packet forwarding based on labels with a link-scope meaning.

Types: "switched" (SVC), permanent (PVC)

Phases for SVC:

- SET UP
- DATA TRANSMISSION
- VC RELEASE

Examples: X.25 (obsolete), Frame Relay (obsolete), ATM (fixed-size packets called cells), MPLS.

PS example: REDIMadrid Network

Summary of switching techniques and technologies

Technique	subtype	Switching unit (granularity)	Technology under exploitation
Circuit Switching	TDM	Timeslot (TDM channel)	CS Telephony*, SDH*, OTN (ODU switching)
	FDM	wavelength	OTN (lambda switching)
Packet Switching	Datagrams	Packet (L3) Frame (L2)	IP, ethernet, FiberChannel, Infiniband, PCIExpress
	VC	Frame, cell	MPLS, ATM*

uc3n

Exercise: comparing PS and CS

- Comparing PS and CS on a simple scenario
- Try to understand
 - how data is handled by switches in an ideal scenario:
 - PS: "per-packet"
 - TDM CS: "per-byte" switching
 - Implications of store & forward and queueing
 - TDM CS: ?
 - PS: ?
 - Implications on max concurrently-served users
 - TDM CS: ?
 - PS: ?
 - Concept of bottleneck and best-effort delivery
 - TDM CS: ?
 - PS: ?

Exercise: comparing PS and CS

