LES SUITES NUMÉRIQUES E04C

Suite géométrique : Somme de termes EXERCICE N°4

 $(v_n)_{n\in\mathbb{N}}$ définie par $v_n = 1.5 \times 2^n$. Soit la suite

1) Calculer v_0 , v_1 et v_2 .

•
$$v_0 = 1.5 \times 2^0$$
, ainsi $v_0 = 1.5$

•
$$v_1 = 1.5 \times 2^1$$
, ainsi $v_1 = 3$

•
$$v_1 = 1,5 \times 2^1$$
, ainsi $v_1 = 3$
• $v_2 = 1,5 \times 2^2$, ainsi $v_2 = 6$

2) Démontrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique et déterminer la raison de la suite.

Soit $n \in \mathbb{N}$,

$$v_{n+1} = 1.5 \times 2^{n+1} = 1.5 \times 2 \times 2^n = 2(1.5 \times 2^n) = 2v_n$$

Ainsi,
$$\forall n \in \mathbb{N}$$
, $v_{n+1} = 2v_n$

On reconnaît une suite géométrique de raison q = 2 et de 1^{er} terme $v_0 = 1,5$

3) Ouelle est la valeur du 11^e terme?

On commence à zéro donc le 11^e terme est v_{10} .

$$v_{10} = 1,5 \times 2^{10}$$
 , ainsi $v_{10} = 1536$.

4) Calculer la somme des 11 premiers termes.

Notons S la somme demandée.

$$S = \sum_{k=0}^{10} v_k = v_0 \frac{1 - q^{11}}{1 - q} = 1,5 \times \frac{1 - 2^{11}}{1 - 2}$$
, ainsi $S = 3070,5$