Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 16/17

Collective Communication

```
Barrier
Broadcast ↔ Reduce
Scatter ↔ Gather
Allgather ↔ Reduce-scatter
Allreduce
Alltoall
:
```

Paolo Bientinesi | MPI

<pre>int MPI_BCast()</pre>					
Deferre	Node ₀	Node ₁	Node ₂	Node ₃	
Before:			α		
A 64 a	Node ₀	Node ₁	Node ₂	Node ₃	
After:	α	α	α	α	

<pre>int MPI_BCast()</pre>						
Before:	Node ₀	Node ₁	Node ₂	Node ₃		
			α			
After:	Node ₀	Node ₁	$Node_2$	Node ₃		
	α	α	α	α		

MPI_Bcast(Buffer, count, type, root, communicator);

int	MPI.	_Red	uce	(.	••))

int MPI_Reduce(...)

	int	MPI	Reduce	(.			
--	-----	-----	--------	-----	--	--	--

Node₀ Node₁ Node₂ Node₃ Before: δ_0 δ_1 δ_2 δ_3

Node₀ Node₁ Node₂ Node₃ After:

MPI_Reduce(sendBuffer, recvBuffer, count, type, operation, root, communicator);

MPI_Op_create

<pre>int MPI_Scatter()</pre>							
	Node ₀	Node ₁	Node ₂	Node ₃			
			v[0]				
Before:			v[1]				
			v[2] v[3]				
			v[3]				
	Node ₀	Node ₁	Node ₂	Node ₃			
	v[0]						
After:		v[1]					
			v[2]				
				v[3]			

<pre>int MPI_Scatter()</pre>						
	Node ₀	Node ₁	Node ₂	Node ₃		
			v[0]			
Before:			v[1]			
			v[2]			
			v[3]			
	$Node_0$	Node ₁	Node ₂	Node ₃		
	v[0]					
After:		v[1]				
			v[2]			
				v[3]		

MPI_Scatter(sendBuffer, sendCount, sendType, recvBuffer, recvCount, recvType, root, communicator);

int MPI_Ga	ther(.)		
	$Node_0$	Node ₁	Node ₂	Node ₃
Before:	v[0]	v[1]	v[2]	v[3]
	Node ₀	Node ₁	Node ₂	Node ₃
After:			v[0]	
Autor.			v[1] v[2]	
			v[3]	

int MPI_Ga	<pre>int MPI_Gather()</pre>						
	$Node_0$	Node ₁	Node ₂	Node ₃			
Before:	v[0]	v[1]	v[2]	v[3]			
	Node ₀	Node ₁	Node ₂	Node ₃			
After:			v[0] v[1] v[2]				
			v[3]				

int	MPI_	Allgathe	er())
			_ 、	•

	Node ₀	$Node_1$	$Node_2$	Node ₃
Before:	v[0]	v[1]	v[2]	v[3]

	Node ₀	Node ₁	Node ₂	Node ₃
	v[0]	v[0]	v[0]	v[0]
After:	v[1]	v[1]	v[1]	v[1]
	v[2]	v[2]	v[2]	v[2]
	v[3]	v[3]	v[3]	v[3]

int MPI_Allgather(...)

	Node ₀	Node ₁	Node ₂	Node ₃
	v[0]			
Before:		v[1]	v[2]	
			۷[∠]	v[3]

	Node ₀	Node ₁	$Node_2$	Node ₃
	v[0]	v[0]	v[0]	v[0]
After:	v[1]	v[1]	v[1]	v[1]
	v[2]	v[2]	v[2]	v[2]
	v[3]	v[3]	v[3]	v[3]

int	MPT	Reduce	_scatter(١)	
TIIL	MIL T	_neauce_	_Scatter(/	

	Node ₀	$Node_1$	$Node_2$	Node ₃
Before:	v ₀ [0] v ₀ [1]	v ₁ [0] v ₁ [1]	$v_2[0] \ v_2[1]$	v ₃ [0] v ₃ [1]
	v ₀ [2] v ₀ [3]	v ₁ [2] v ₁ [3]	$v_2[2] \ v_2[3]$	v ₃ [2] v ₃ [3]

	Node ₀	$Node_1$	Node ₂	Node ₃
	$\underset{i}{Op} v_{i}[0]$			
After:	v	$\underset{i}{Op} v_{i}[1]$		
			Op v _i [2]	
			L L	$\underset{i}{Op} v_i[3]$

int MPI_Re	educe_s	catter	·()		
	Node ₀	$Node_1$	Node	No	de ₃	
	v ₀ [0]	$v_1[0]$	V ₂ [0]	V 3	[0]	
Before:	v ₀ [1]	$v_1[1]$	v ₂ [1]] V ₃	[1]	
	v ₀ [2]	v ₁ [2]	V ₂ [2]		[2]	
	v ₀ [3]	v ₁ [3]	v ₂ [3]	V ₃	[3]	
	$Node_0$	Node	1 N	$lode_2$	Node ₃	
	Op v _i [0]					
After:	i	$\operatorname{Op}_{i} v_{i}[$		p v _i [2]		
					$\underset{i}{Op} v_{i}[3]$	

int MPI_Allreduce(...)

D-f	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	Node ₃		
Before:	δ_0	δ_1	δ_2	δ_3

int MPI_Allreduce(...)

D-4	$Node_0$	Node ₁	Node ₂	Node ₃
Before:	δ_0	δ_1	δ_2	δ_3

int MPI_A	lltoall	.()		
	Node ₀	Node ₁	Node ₂	Node ₃
	v ₀ [0]	v ₁ [0]	v ₂ [0]	v ₃ [0]
Before:	$v_0[1]$	v ₁ [1]	v ₂ [1]	v ₃ [1]
	$v_0[2]$	v ₁ [2]	v ₂ [2]	v ₃ [2]
	v ₀ [3]	v ₁ [3]	v ₂ [3]	v ₃ [3]
	Node ₀	Node ₁	Node ₂	Node ₃
	$v_0[0]$	v ₀ [1]	v ₀ [2]	v ₀ [3]
After:	v ₁ [0]	V ₁ [1]	V ₁ [2]	v ₁ [3]
	v ₂ [0]	V ₂ [1]	V ₂ [2]	v ₂ [3]
	v ₃ [0]	v ₃ [1]	v ₃ [2]	v ₃ [3]

int MPI_A	ltoall	.()			
	$Node_0$	Node ₁	Node ₂	Node ₃	
	v ₀ [0]	v ₁ [0]	v ₂ [0]	v ₃ [0]	
Before:	$v_0[1]$	v ₁ [1]	v ₂ [1]	v ₃ [1]	
	$v_0[2]$	v ₁ [2]	v ₂ [2]	v ₃ [2]	
	$v_0[3]$	v ₁ [3]	v ₂ [3]	v ₃ [3]	
	Node ₀	Node ₁	Node ₂	Node ₃	
	$v_0[0]$	v ₀ [1]	v ₀ [2]	v ₀ [3]	
After:	$v_1[0]$	V ₁ [1]	v ₁ [2]	v ₁ [3]	
	v ₂ [0]	V ₂ [1]	v ₂ [2]	V ₂ [3]	
	$v_{3}[0]$	v ₃ [1]	v ₃ [2]	v ₃ [3]	

More Collectives

Variable length

- MPI_Scatterv
- MPI_Gatherv
- MPI_Allgatherv
- MPI_Alltoallv

Paolo Bientinesi | MPI 11

More Collectives

Variable length

- MPI_Scatterv
- MPI_Gatherv
- MPI_Allgatherv
- MPI_Alltoallv

```
MPI_Scatter(
    sendBuffer, sendCount,
                sendType,
    recvBuffer, recvCount,
                recvType,
    root, communicator );
MPI_Scatterv(
    sendBuffer, sendCounts[],
    displs[], sendType,
    recvBuffer, recvCount,
                recvType,
    root, communicator )
```

Even more Collectives

Partial reduction

• MPI_Scan

Non-blocking collectives

• MPI_I*

Paolo Bientinesi | MPI