GeeksQuiz

Computer science mock tests for geeks

	Greedy Algorithms		
Question 1			
Which of the following standard algorithms is not a Greedy algorithm?			
A Di	ijkstra's shortest path algorithm		
B Pr	rim's algorithm		
C Kr	ruskal algorithm		
D н	uffman Coding		
Ве	ellmen Ford Shortest path algorithm		
Discuss it			
Question 2			
Suppose we run Dijkstra's single source shortest-path algorithm on the following edge weighted directed graph with vertex P as the source. In what order do the nodes get included into the set of vertices for which the shortest path distances are finalized? (GATE CS 2004)			

- A P, Q, R, S, T, U
- **P**, Q, R, U, S, T
- P, Q, R, U, T, S
- P, Q, T, R, U, S

Discuss it

Question 3

A networking company uses a compression technique to encode the message before transmitting over the network. Suppose the message contains the following characters with their frequency:

Frequency
5
9
12
13
16
45

If the compression technique used is Huffman Coding, how many bits will be saved in the message?

- **A** 224
- **B** 800
- **C** 576

Discuss	Discuss it				
Question	4				
What is t	the time complexity of Huffman Coding?				
A	O(N)				
В	O(NlogN)				
C	O(N(logN)^2)				
D	O(N^2)				
)uestion					
Question	5				
Question n questi A	on #2, which of the following represents the word "dead"?				
Question	on #2, which of the following represents the word "dead"? 1011111100101				

Question 6		
impleme	f the following is true about Kruskal and Prim MST algorithms? Assume that Prim is ented for adjacency list representation using Binary Heap and Kruskal is implemented ion by rank.	
Α	Worst case time complexity of both algorithms is same.	
В	Worst case time complexity of Kruskal is better than Prim	
С	Worst case time complexity of Prim is better than Kruskal	
Discuss	it	
Question	7	
Which of	f the following is true about Huffman Coding.	
Α	Huffman coding may become lossy in some cases	
В	Huffman Codes may not be optimal lossless codes in some cases	
С	In Huffman coding, no code is prefix of any other code.	
D	All of the above	
Discuss	it	
Question	8	
Suppose	the letters a, b, c, d, e, f have probabilities 1/2, 1/4, 1/8, 1/16, 1/32, 1/32 respectively.	

Which of the following is the Huffman code for the letter a, b, c, d, e, f?

Α	0, 10, 110, 1110, 11111		
В	11, 10, 011, 010, 001, 000		
С	11, 10, 01, 001, 0001, 0000		
D	110, 100, 010, 000, 001, 111		
Discuss i			
Question			
	the letters a, b, c, d, e, f have probabilities 1/2, 1/4, 1/8, 1/16, 1/32, 1/32 respectively. he average length of Huffman codes?		
A	3		
В	2.1875		
С	2.25		
D	1.19375		
Discuss it			
	There are 9 questions to complete.		
띕	Tweet 0 8+1 0		

Iconic One Theme | Powered by Wordpress