King County Housing Price Analysis

Lucas Wilkerson

Summary

Data from King County housing sales was analyzed to determine what housing characteristics correlate to higher housing prices.

Regression Modeling was utilized to come up with a predictive model to determine housing prices.

Insight from the analysis will be used to generate actionable recommendations for the stakeholder.

Outline

- Business Problem
- Data/Methods
- Regression Results
- Conclusions

Business Problem

A King County real estate company wants to increase client acquisition and retention through:

- Identifying key housing price characteristics
- Giving sound recommendations
- Improving client's home sale price

Data/Methods

EDA:

- King County House Sales dataset
- Final dataset:
 - 30,062 entries
 - 21 columns (features)
 - **Sqft_living:** correlation = **0.61**
 - **Grade**: correlation = **0.57**

Regression Modeling:

- 6 model iterations were ran
- Target Variable: **Price**

Data/Methods

Regression Results: Baseline Model

R-Squared:

- **0.375**: model explains 37.5% variance in price

Sqft_living:

1 sqft increase = " 562.53 increase in price
 (USD)

High Error Metrics:

- MAE of \$ 395,915.33
- MSE of \$ 706,874.49

OLS Regression Results

		OLD REGIO	SSION N					
		price	R-sq	uared:		0.375		
		OLS	Adj.	R-squared:	0.375			
		Least Squares	F-st	atistic:		1.800e+04 : 0.00 -4.4755e+05		
		Thu, 10 Aug 2023	B Prob	(F-statistic):			
		20:46:46	Log-	Likelihood:				
		30062	AIC:		8.951e+05			
Df Residuals:		30060	BIC:	BIC:		8.951e+05		
Df Model:			L					
Covariance Type:		nonrobust	:					
		f std err		P> t	[0.025	0.975]		
		4 9758.256		0.000	-9.99e+04	-6.16e+04		
$sqft_living$	562.526	1 4.193	134.171	0.000	554.308	570.744		
Omnibus:		43093.44	l Durb	in-Watson:		1.860		
Prob(Omnibus):		0.000) Jarq	ue-Bera (JB):	47238386.360			
Skew:		8.103	B Prob	(JB):		0.00		
Kurtosis:		196.520	Cond	Cond. No.		5.57e+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.57e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Regression Results

Final Model:

- R-Squared: **0.503**
- Grade and Waterfront = highest in price increase per unit
- Square foot of living space:
 - Each 1 square foot increase, there is a
 0.02% increase in average price
- Condition of home:
 - Improve by 1 rating = about 4.92%
 increase in average price

OLS Regression Results											
Dep. Variable:	price		R-squared:			0.503					
Model:				. R-squared:	0.503						
Method:	Least Squares					1791.					
Date:			Prob (F-statistic):			0.00					
Time:	20:54:40		Log-Likelihood:			-15850.					
No. Observations:	30062		AIC:			3.174e+04					
Df Residuals:	30044		BIC:			3.189e+04					
Df Model:	17										
Covariance Type:	nonrobust										
	coef			t	P> t	[0.025	0.975]				
const	11.5676		030	379.636	0.000	11.508	11.627				
bedrooms	-0.0113		003		0.000	-0.018	-0.005				
	0.0002			51510F15	0.001	0.000	0.000				
sqft_living	3.442e-07			7.981	0.000	2.6e-07					
sqft_lot	0.0369					0.026					
floors			006	6.659	0.000		0.048				
grade	0.2164		003	62.540	0.000	0.210					
Basement	0.0463		005	8.942	0.000	0.036	0.056				
Garage	-0.0167		006	-2.755	0.006	-0.029	-0.005				
Patio	0.0196		006	3.254	0.001	0.008	0.031				
Waterfront	0.2819		021	13.733	0.000	0.242	0.322				
Nuisance	0.0211	27,00	006	3.311	0.001	0.009	0.034				
view_encoded	0.0365		003	11.158	0.000	0.030	0.043				
condition_encoded	0.0492	0.	004	13.342	0.000	0.042	0.056				
heat_source_encoded	-0.0104	0.	003	-3.451	0.001	-0.016	-0.004				
sewer_system_encoded		0.	007	-15.263	0.000	-0.129	-0.100				
Month	-0.0149	0.	001	-19.526	0.000	-0.016	-0.013				
Age	0.0029	0.	000	25.512	0.000	0.003	0.003				
renovated	0.0564		012	4.664	0.000	0.033	0.080				
Omnibus:		0.615		bin-Watson:		1.963					
Prob(Omnibus):	0.000 Jarque-Bera (JB):					110100.416					
Skew:		-1.039 Prob(JB):				0.00					
Kurtosis:		2.142		d. No.		8.04e+05					
Mar copin											

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.04e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Conclusions/Recommendations

Overall Condition: Optimize the condition of their home.

Square Feet of Living Space: Increase the square footage of living space.

- 1 sqft = "0.02 % increase in price
- Scaled out: 1000 sqft = " 20% increase in price

Grade: Hire a high quality contractor and invest in high quality materials when building on to the home or making structure improvements/repairs.

• 1 increase in grade level = " 21.6% increase in price

Limitations/ Future Considerations

- The final R-Squared value is 0.503 which suggests that approximately only 50.3% of the variance. Ideally for confidence in the model we want this higher.
- There were columns eliminated from the dataset which could have impact.
- There are other factors of influence that could be explored in further detail such as location and time of year sold.

Thank You!

Email: Idwilker10@gmail.com

GitHub: @ldwilker10

LinkedIn: https://www.linkedin.com/in/lucasdukewilkerson/