

## IN THE CLAIMS

Kindly amend the claims to read as follows.

**1. (currently amended) Compound of formula**



R<sub>1</sub> and R<sub>2</sub> independently from each other are; C<sub>1</sub>-C<sub>20</sub>alkyl; C<sub>2</sub>-C<sub>20</sub>alkenyl; C<sub>3</sub>-C<sub>10</sub>cycloalkyl; or C<sub>3</sub>-C<sub>10</sub>cycloalkenyl; or R<sub>1</sub> and R<sub>2</sub> together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n<sub>1</sub> is a number from 1 to 4;

when n<sub>1</sub> = 1,

R<sub>3</sub> is a saturated or unsaturated heterocyclic radical; ~~hydroxy-C<sub>1</sub>-C<sub>6</sub>alkyl; cyclohexyl optionally substituted with one or more C<sub>1</sub>-C<sub>6</sub>alkyl; or phenyl optionally substituted with a heterocyclic radical, aminocarbonyl or C<sub>1</sub>-C<sub>6</sub>alkylcarboxy;~~

when n<sub>1</sub> is 2,

R<sub>3</sub> is an alkylen-, cycloalkylene, alkenylene or phenylene radical which is optionally substituted by a carbonyl- or carboxy group; or a radical of formula  $\cdot-\text{CH}_2-\text{C}\equiv\text{C}-\text{CH}_2-\cdot$ ; or R<sub>3</sub> together with A forms

a bivalent radical of the formula (1a)



n<sub>2</sub> is a number from 1 to 3;

when n<sub>1</sub> is 3,

R<sub>3</sub> is an alkantriyl radical;

when n<sub>1</sub> is 4,

R<sub>3</sub> is an alkantetrayl radical;

A is -O-; or -N(R<sub>5</sub>)-; and

R<sub>5</sub> is hydrogen; C<sub>1</sub>-C<sub>5</sub>alkyl; or hydroxy-C<sub>1</sub>-C<sub>5</sub>alkyl.

**2. (previously presented)** Compound according to claim 1, wherein

R<sub>1</sub> and R<sub>2</sub> independently from each other are hydrogen; C<sub>1</sub>-C<sub>20</sub>alkyl; C<sub>2</sub>-C<sub>20</sub>alkenyl; C<sub>3</sub>-C<sub>10</sub>cycloalkyl; or C<sub>3</sub>-C<sub>10</sub>cycloalkenyl; or R<sub>1</sub> and R<sub>2</sub> together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n<sub>1</sub> is a number from 1 to 4;

when n<sub>1</sub> is 1,

R<sub>3</sub> is a saturated or unsaturated heterocyclic radical; hydroxy-C<sub>1</sub>-C<sub>5</sub>alkyl; or cyclohexyl substituted with one or more C<sub>1</sub>-C<sub>5</sub>alkyl;

when n<sub>1</sub> is 2,

R<sub>3</sub> is an alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by a carbonyl- or carboxy group;

when n<sub>1</sub> is 3,

R<sub>3</sub> is an alkantriyl radical;

when n<sub>1</sub> is 4,

R<sub>3</sub> is an alkantetrayl radical;

A is -O-; or -N(R<sub>5</sub>)-; and

R<sub>5</sub> is hydrogen; C<sub>1</sub>-C<sub>5</sub>alkyl; or hydroxy-C<sub>1</sub>-C<sub>5</sub>alkyl.

**3. (previously presented)** Compound according to claim 1, wherein

R<sub>1</sub> and R<sub>2</sub> are C<sub>1</sub>-C<sub>20</sub>alkyl.

**4. (previously presented)** Compound according to claim 1, wherein

R<sub>1</sub> and R<sub>2</sub> independently from each other are C<sub>1</sub>-C<sub>5</sub>alkyl.

**5. (currently amended)** Compound according to claim 1, wherein

R<sub>1</sub> and R<sub>2</sub> in formula (1) have the same definition.

**6. (cancelled)**

**7. (previously presented)** Compound according to claim 1, wherein  
if  $n_1$  is 1,  
 $R_3$  is a saturated heterocyclic radical.

**8. (original)** Compound according to claim 7, wherein  
 $R_3$  is a monocyclic radical of 5, 6 or 7 ring members with one or more hetero atoms.

**9. (currently amended)** Compound according to claim 8, wherein  
 $R_3$  is morpholinyl; piperazinyl; piperidyl; pyrazolidinyl; imadazolidinyl; or pyrrolidinyl.

**10. (currently amended)** Compound according to claim 16, wherein  
 $R_3$  is an unsaturated heterocyclic radical.

**11. (original)** Compound according to claim 10, wherein  
 $R_3$  a polycyclic radical.

**12. (previously presented)** Compound according to claim 1 , wherein

$R_3$  is a radical of formula (1a)  , and

$R_5$  is polycyclic heteroaromatic radical with one or 2 heteroatoms.

**13. (original)** Compound according to claim 12, wherein

$R_3$  is a radical of formula (1b)  , wherein

$R_6$  is hydrogen; or C<sub>1</sub>-C<sub>5</sub>alkyl.

**14. (previously presented)** Compound according to claim 1, wherein,  
 if  $n_1$  is 2,  
 $R_3$  is a  $C_1$ - $C_{12}$ alkylene radical.

**15. (original)** Compound according to claim 14, wherein

$R_3$  is a radical of formula  $*-\text{CH}_2-(\text{CH}_2)_m-\text{CH}_2-*$ ;  $*-\text{CH}_2-\text{C}_6\text{H}_{11}-\text{CH}_2-*$ ;



$r$  is 0 or 1; and

$q$  = is a number from 0 to 5.

**16. (previously presented)** Compound according to claim 1, wherein,  
 when  $n_1$  is 3;

$R_3$  is a radical of formula (1a)  $*-\text{CH}_2-\overset{*}{\underset{|}{\text{CH}}}-(\text{CH}_2)_p-\text{CH}_2-*$  or (1b)  $*-\text{CH}_2-\overset{*}{\underset{|}{\text{CH}}}-\overset{*}{\underset{|}{\text{CH}}}$  and

$p$  is a number from 0 to 3; and

$R_1$ ,  $R_2$  and  $A$  are defined as in formula (1).

**17. (previously presented)** Compound according to claim 1, wherein, when  
 $n_1$  is 4,

$R_3$  is a radical of formula  $*-\overset{*}{\underset{|}{\text{C}}}-\overset{*}{\underset{|}{\text{C}}}-*$ ; or  $*-\text{CH}_2-\overset{*}{\underset{|}{\text{C}}}-\text{CH}_2-\overset{*}{\underset{|}{\text{C}}}-\text{CH}_2-*$ ; and

$R_1$ ,  $R_2$  and  $A$  are defined as in formula (1).

**18. (original)** Compound according to claim 1, which corresponds to formula



R<sub>1</sub> and R<sub>2</sub> independently from each other are hydrogen; or C<sub>1</sub>-C<sub>5</sub>alkyl;

A is -NH; or -O-; and

R<sub>3</sub> is a saturated or unsaturated heterocyclic radical.

**19. (original)** Compound according to claim 1, which corresponds to formula



R<sub>1</sub> and R<sub>2</sub> independently from each other are hydrogen; or C<sub>1</sub>-C<sub>5</sub>alkyl;

A is -NH; or -O-; and

R<sub>3</sub> is a C<sub>1</sub>-C<sub>12</sub>alkylene radical.

**20. (original)** Compound according to claim 1, which corresponds to formula



R<sub>1</sub> and R<sub>2</sub> independently from each other are hydrogen; or C<sub>1</sub>-C<sub>5</sub>alkyl;

A is -NH; or -O-; and

R<sub>3</sub> is  $*-\text{CH}_2-\overset{*}{\text{CH}}-(\text{CH}_2)_p-\text{CH}_2-*$  or  $*-\text{CH}_2-\overset{*}{\underset{*}{\text{CH}}}-$ ; and

p is a number from 0 to 3.

21. (original) Compound according to claim 1, which corresponds to formula



$R_1$ ,  $R_2$  and  $A$  are defined as in formula (1).

22. (currently amended) A process for the preparation of the compounds of formula (1), which comprises, dehydrating/dehydatisating



(b) reacting the anhydride with the compound of formula (6c<sub>1</sub>) H-N(R<sub>5</sub>)-R<sub>3</sub> or (6c<sub>2</sub>) H-O-R<sub>3</sub> to the compound of formula



R<sub>1</sub> and R<sub>2</sub> independently from each other are hydrogen; C<sub>1</sub>-C<sub>20</sub>alkyl; C<sub>2</sub>-C<sub>20</sub>alkenyl; C<sub>3</sub>-C<sub>10</sub>cycloalkyl; or C<sub>3</sub>-C<sub>10</sub>cycloalkenyl; or R<sub>1</sub> and R<sub>2</sub> together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n<sub>1</sub> is 1 to 4;

if n<sub>1</sub> is 1,

R<sub>3</sub> is hydrogen; C<sub>1</sub>-C<sub>20</sub>alkyl; hydroxy-C<sub>1</sub>-C<sub>5</sub>alkyl; C<sub>2</sub>-C<sub>20</sub>alkenyl; C<sub>3</sub>-C<sub>10</sub>-Cyclohexyl not substituted or substituted with one or more C<sub>1</sub>-C<sub>5</sub>alkyl; (Y-O)<sub>p</sub>Z; C<sub>6</sub>-C<sub>10</sub>aryl; or a saturated or unsaturated heterocyclic radical;

Y is C<sub>1</sub>-C<sub>12</sub>alkylen;

Z is C<sub>1</sub>-C<sub>5</sub>alkyl;

p is a number from 1 to 20;

if n<sub>1</sub> is 2,

R<sub>3</sub> is a alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by carbonyl- or carboxy group;

if n<sub>1</sub> is 3,

R<sub>3</sub> is an alkantriyl radical;

if n<sub>1</sub> is 4,

R<sub>3</sub> is a alkantetrayl radical;

A is -O-; or -N(R<sub>5</sub>)-;

R<sub>5</sub> is hydrogen; C<sub>1</sub>-C<sub>5</sub>alkyl; or hydroxy-C<sub>1</sub>-C<sub>5</sub>alkyl; and

R<sub>5</sub> is hydrogen; C<sub>1</sub>-C<sub>5</sub>alkyl; or hydroxy-C<sub>1</sub>-C<sub>5</sub>alkyl.

**23. (currently amended)** Process according to claim 22, wherein the process refers to compounds of formula



R<sub>1</sub> and R<sub>2</sub> independently from each other are C<sub>1</sub>-C<sub>12</sub>alkyl; and  
R<sub>5</sub> is hydrogen; C<sub>1</sub>-C<sub>12</sub>alkylalkyl; or C<sub>3</sub>-C<sub>6</sub>-cycloalkyl.

**24. (canceled)**

**25. (canceled)**

**26. (original)** A cosmetic preparation comprising at least one or more compounds of formula (1) according to claim 1 with cosmetically acceptable carriers or adjuvants.

**27. (previously presented)** Compounds of formula



R<sub>1'</sub> and R<sub>2''</sub> independently from each other are hydrogen; C<sub>1</sub>-C<sub>20</sub>alkyl; C<sub>2</sub>-C<sub>20</sub>alkenyl; C<sub>3</sub>-C<sub>10</sub>-cycloalkyl; or C<sub>3</sub>-C<sub>10</sub>cycloalkenyl; or R<sub>1</sub> and R<sub>2</sub> together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring.

**28. (canceled)**

**29. (previously presented)** UV-Absorber-dispersion, comprising

(a) a micronised UV absorber of formula



R<sub>1</sub> and R<sub>2</sub> independently from each other are hydrogen; C<sub>1</sub>-C<sub>20</sub>alkyl; C<sub>2</sub>-C<sub>20</sub>alkenyl; C<sub>3</sub>-C<sub>10</sub>cycloalkyl; or C<sub>3</sub>-C<sub>10</sub>cycloalkenyl; or R<sub>1</sub> and R<sub>2</sub> together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

when n<sub>1</sub> is 1,

R<sub>3</sub> is hydrogen; C<sub>1</sub>-C<sub>20</sub>alkyl; hydroxy-C<sub>1</sub>-C<sub>5</sub>alkyl; C<sub>2</sub>-C<sub>20</sub>alkenyl; C<sub>3</sub>-C<sub>10</sub>cyclohexyl not substituted or substituted with one or more C<sub>1</sub>-C<sub>5</sub>alkyl; (Y-O)<sub>p</sub>Z; C<sub>6</sub>-C<sub>10</sub>aryl; or a saturated or unsaturated heterocyclic radical;

Y C<sub>1</sub>-C<sub>12</sub>alkylen;

Z C<sub>1</sub>-C<sub>5</sub>alkyl;

p is a number from 1 to 20;

when n<sub>1</sub> is 2,

R<sub>3</sub> is a alkylen-, cycloalkylen- or alkenylen- radical optionally interrupted by a carbonyl- or carboxy group;

if n<sub>1</sub> is,

R<sub>3</sub> is an alkanetriyl radical;

if n<sub>1</sub> is 4,

R<sub>3</sub> is an alkantetrayl radical;

A is -O-; or -N(R<sub>5</sub>)-; and

R<sub>5</sub> is hydrogen; C<sub>1</sub>-C<sub>5</sub>alkyl; or hydroxy-C<sub>1</sub>-C<sub>5</sub>alkyl;

having a particle size from 0.02 to 2  $\mu\text{m}$ , and

(b) a suitable dispersing agent.

**30. (previously presented)** A cosmetic preparation according to claim 26, wherein the compounds of formula (1) are present in micronized form.