# Static-35

## Title

Bending of a curved thick beam of a rectangular cross section

## **Description**

A curved thick beam spanning a 90° arc is bent by a shear load applied at the top end. The bottom end is fixed while the top end is free.

Determine the deflections at the free end.





Structural geometry and analysis model

## **MODEL**

## Analysis Type

3-D static analysis

## Unit System

in, lbf

#### Dimension

Outer radius 4.32 in Inner radius 4.12 in

#### Element

Solid element

## Material

Modulus of elasticity  $E = 10.0 \times 10^6 \text{ psi}$ Poisson's ratio v = 0.25

#### Sectional Property

Rectangular cross-section: b = 0.1 in, h = 0.2 in

### **Boundary Condition**

Node 1~4: Constrain all DOFs

#### Load Case

A shear load, P = 1.0 lbf is applied at the top end

### **Results**



Deflections at the free end

## **Comparison of Results**

Unit: in

| Results                 | Theoretical | MIDAS/Civil |
|-------------------------|-------------|-------------|
| Deflection $(\delta_Y)$ | -0.08814    | -0.08823    |

#### Reference

Timoshenko, S. (1955). "Strength of Materials, Part 1, Elementary theory", 3rd ed., D. Van Nostrand Co., Inc., New York, NY.