2. Pokazac, ze $Tran(x) \implies Tran(\mathcal{P}(x)) \wedge Tran(\bigcup x)$.

 $\operatorname{Tran}(\mathbf{x}) \implies \operatorname{Tran}(\mathcal{P}(\mathbf{x}))$

Wezmy dowolny $a \in \mathcal{P}(x)$. Z definicji zbioru potegowego wiemy, ze

$$a \in \mathcal{P}(x) \iff a \subseteq x$$

natomiast z Tran(x) dostajemy

$$b \in a \subseteq x \implies b \subseteq x$$
.

W takim razie mamy

$$b \in a \in \mathcal{P}(x) \land b \in \mathcal{P}(x),$$

czyli $Tran(\mathcal{P}(x))$.

$$Tran(x) \implies Tran(\bigcup x)$$

Wezmy dowolny $a \in \bigcup x$. Z definicji sumy zbioru mamy, ze

$$a \in \bigcup x \iff (\exists b \subseteq x) a \in b$$

Ale skoro $b \subseteq x$ i Tran(x), to $b \in x$, czyli

$$b \in \bigcup x$$
.

W takim razie $a \in b \in \bigcup x$ oraz $a \in \bigcup x$, a wiec $Tran(\bigcup x)$.

3. Pokazac, ze $Tran(x \cup \{x\}) \implies Tran(x)$.

Wezmy dowolny $a \in x$. Poniewaz $x \in x \cup \{x\}$ oraz $Tran(x \cup \{x\})$, to

$$a \in x \cup \{x\}.$$

W takim razie jesli $b \in a$, to $b \in x \cup \{x\}$. Rozwazmy dwa przypadki:

- 1. $b \in \{x\}$, czyli b = x, a wiec $x = b \in a \in x$, co jest sprzeczne.
- 2. $b \in x$, czyli $b \in a \in x$ oraz $b \in x$, czyli Tran(x).

4. Czy $\operatorname{Tran}(\mathcal{P}(x)) \implies \operatorname{Tran}(x)$? Czy $\operatorname{Tran}(\bigcup x) \implies \operatorname{Tran}(x)$?

 $\operatorname{Tran}(\mathcal{P}(\mathbf{x})) \implies \operatorname{Tran}(\mathbf{x})$

Wezmy dowolny $a \in x$. Z definicji zbioru potegowego wiemy, ze

$$(\exists b \subseteq x) a \in b \in \mathcal{P}(x).$$

Ale poniewaz $\operatorname{Tran}(\mathcal{P}(x))$, to $a \in \mathcal{P}(x)$, czyli $a \subseteq x$. Czyli $a \in x$ oraz $a \subseteq x$, czyli $\operatorname{Tran}(x)$.

 $\operatorname{Tran}(\bigcup x) \implies \operatorname{Tran}(x)$

$$\mathbf{x} = \{\{\emptyset\}\}$$

$$\bigcup x = \{\emptyset\}$$

Mamy $Tran(\bigcup x)$, ale nie Tran(x).

5. Pokazac, ze $Tran(x) \iff \bigcup x \subseteq x$.

 \Longrightarrow

Wezmy dowolny $a \in \bigcup x$. Z aksjomatu sumy wiem, ze istnieje $b \subseteq x$ takie, ze $a \in b \subseteq x$. Ale poniewaz Tran(x), to $b \in x$ oraz $a \in x$, czyli $\bigcup x \subseteq x$.

 \Leftarrow

Wezmy dowolny $a \in \bigcup x$. Z aksjomatu sumy wiemy, ze

$$(\exists b \in x) a \in b \in x.$$

Ale poniewaz $\bigcup x \subseteq x$, to $a \in x$. Czyli dostajemy $a \in b \in x$ oraz $a \in x$, wiec Tran(x).

6. Pokazac, ze $Tran(\omega)$.