Import Python Libraries and Modules

```
# Import Python Libraries: NumPy and Pandas
import pandas as pd
import numpy as np
```

```
# Import Libraries & modules for data visualization
from pandas.plotting import scatter_matrix
from matplotlib import pyplot
```

```
# Import scikit-Learn module for the algorithm/modeL: Nearest Neighbors from sklearn.neighbors import KNeighborsClassifier
```

Import scikit-Learn module to split the dataset into train/ test sub-datasets
from sklearn.model_selection import train_test_split

```
# Import scikit-Learn module for K-fold cross-validation - algorithm/modeL
evaluation & validation
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
```

Import scikit-Learn module classification report to later use for information
about how the system try to classify / lable each record
from sklearn.metrics import classification_report

Load the data - iris.csv

```
# Specify location of the dataset
filename = 'C:/Users/sohai/iris.csv'
```

```
# Load the data into a Pandas DataFrame
df = pd.read_csv(filename)
```

Preprocess Dataset - Clean Data: Find & Mark Missing Values

```
Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
PetalLengthCm 0
dtype: int64
```

Perform the exploratory data analysis (EDA) on the dataset

```
# get the dimensions or shape of the dataset
# i.e. number of records / rows X number of variables / columns
print(df.shape)
```

```
(150, 7)
```

```
#get the data types of all the variables / attributes in the data set
print(df.dtypes)
```

```
Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object
```

PetalLengthCm float64

dtype: object

```
#return the first five records / rows of the data set
print(df.head(5))
```

```
Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                             Species \
               5.1
                                         1.4
                                                     0.2 Iris-setosa
0
  1
                           3.5
               4.9
                                                     0.2 Iris-setosa
   2
                           3.0
                                         1.4
2
  3
              4.7
                           3.2
                                        1.3
                                                    0.2 Iris-setosa
                           3.1
                                                    0.2 Iris-setosa
3 4
              4.6
                                        1.5
                                                   0.2 Iris-setosa
4
  5
              5.0
                           3.6
                                        1.4
  PetalLengthCm
0
            1.4
1
            1.4
            1.3
2
3
            1.5
4
            1.4
```

#return the summary statistics of the numeric variables / attributes in the data
set
print(df.describe())

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	١
count	150.000000	150.000000	150.000000	150.000000	150.000000	
mean	75.500000	5.843333	3.054000	3.758667	1.198667	
std	43.445368	0.828066	0.433594	1.764420	0.763161	
min	1.000000	4.300000	2.000000	1.000000	0.100000	
25%	38.250000	5.100000	2.800000	1.600000	0.300000	
50%	75.500000	5.800000	3.000000	4.350000	1.300000	
75%	112.750000	6.400000	3.300000	5.100000	1.800000	
max	150.000000	7.900000	4.400000	6.900000	2.500000	

PetalLengthCm

count	150.000000
mean	3.758667
std	1.764420
min	1.000000
25%	1.600000
50%	4.350000

75%	5.100000	
max	6.90000	

#class distribution i.e. how many records are in each class
print(df.groupby('Species').size())

Species
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
dtype: int64

Plotting Histogram

#plot histogram of each numeric variable / attribute in the data set
df.hist(figsize=(12, 8))
pyplot.show()

Plotting Density Plots

```
# generate density plots of each numeric variable / attribute in the data set
df.plot(kind='density', subplots=True, layout=(3, 3), sharex=False, legend=True,
fontsize=1,
figsize=(12, 16))
pyplot.show()
```


Box Plots

```
# generate box plots of each numeric variable / attribute in the data set
df.plot(kind='box', subplots=True, layout=(3,3), sharex=False, figsize=(12,8))
pyplot.show()
```


Scatter Plot Matrix

```
# generate scatter plot matrix of each numeric variable / attribute in the data
set
scatter_matrix(df, alpha=0.8, figsize=(15, 15))
pyplot.show()
```


Separate Dataset into Input & Output NumPy arrays

```
# store dataframe values into a numpy array
array = df.values
# separate array into input and output by slicing
# for X(input) [:, 1:5] --> all the rows, columns from 1 - 4 (5 - 1)
# these are the independent variables or predictors
X = array[:,1:5]
# for Y(input) [:, 5] --> all the rows, column 5
# this is the value we are trying to predict
Y = array[:,5]
```

Split Input/Output Arrays into Training/Testing Datasets

```
# split the dataset --> training sub-dataset: 67%; test sub-dataset: 33%
test_size = 0.33
#selection of records to include in each data sub-dataset must be done randomly
seed = 7
#split the dataset (input and output) into training / test datasets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,
random_state=seed)
```

Build and Train the Model

```
#build the model
model = KNeighborsClassifier()
# train the model using the training sub-dataset
model.fit(X_train, Y_train)
#print the classification report
predicted = model.predict(X_test)
report = classification_report(Y_test, predicted)
print(report)
```

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	14
Iris-versicolor	0.85	0.94	0.89	18
Iris-virginica	0.94	0.83	0.88	18
accuracy			0.92	50
macro avg	0.93	0.93	0.93	50
weighted avg	0.92	0.92	0.92	50

Score the accuracy of the model

```
#score the accuracy leve
result = model.score(X_test, Y_test)
#print out the results
print(("Accuracy: %.3f%%") % (result*100.0))
```

```
Accuracy: 92.000%
```

Classify/Predict Model

```
model.predict([[5.3, 3.0, 4.5, 1.5]])
```

```
array(['Iris-versicolor'], dtype=object)
```

Evaluate the model using the 10-fold cross-validation technique.

```
# evaluate the algorythm
# specify the number of time of repeated splitting, in this case 10 folds
n \text{ splits} = 10
# fix the random seed
# must use the same seed value so that the same subsets can be obtained
# for each time the process is repeated
seed = 7
# split the whole dataset into folds
# In k-fold cross-validation, the original sample is randomly partitioned into k
equal sized subsamples. Of the k subsamples, a single subsample is retained as the
validation data for testing the model, and the remaining k - 1 subsamples are used
as training data. The crossvalidation process is then repeated k times, with each
of the k subsamples used exactly once as the validation data. The k results can
then be averaged to produce a single estimation. The advantage of this method over
repeated random sub-sampling is that all observations are used for both training
and validation, and each observation is used for validation exactly once
kfold = KFold(n splits, random state=seed)
# for logistic regression, we can use the accuracy level to evaluate the model /
algorithm
scoring = 'accuracy'
# train the model and run K-fold cross validation to validate / evaluate the model
results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)
# print the evaluationm results
# result: the average of all the results obtained from the K-fold cross validation
print("Accuracy: %.3f (%.3f)" % (results.mean(), results.std()))
```

```
Accuracy: 0.933 (0.084)
```

C:\Users\sohai\anaconda3\lib\site-packages\sklearn\model_selection_split.py:296: FutureWarning: Setting a random_state has no effect since shuffle is False. This will raise an error in 0.24. You should leave random_state to its default (None), or set shuffle=True.

FutureWarning

The accuracy of the logistic regression model is 93%

Cart Regression with Scikit-Learn

Load Data - Import Python Libraries and Modules

```
# Import Python Libraries: NumPy and Pandas
import pandas as pd
import numpy as np
# Import Libraries & modules for data visualization
from pandas.plotting import scatter_matrix
from matplotlib import pyplot
# Import scit-Learn module for the algorithm/model: Linear Regression
from sklearn. tree import DecisionTreeRegressor
# Import scikit-Learn module to split the dataset into train/ test sub-datasets
from sklearn.model_selection import train_test_split
# Import scikit-Learn module for K-fold cross-validation - algorithm/modeL
evaluation & validation
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
```

Load dataset

```
# Specify location of the dataset
filename = 'c:/Users/sohai/housing_boston.csv'
# Specify the fields with their names
names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
'PTRATIO', 'B',
'LSTAT', 'MEDV']
# Load the data into a Pandas DataFrame
df = pd.read_csv(filename, names=names)
# VIP NOTES:
# Extract a sub-dataset from the original one -- > dataframe: df2
df2 = df[['RM', 'AGE', 'DIS', 'RAD', 'PTRATIO', 'MEDV']]
```

Pre-process Dataset - Clean Data: Find & Mark Missing Values

```
# mark zero values as missing or NaN
df[['RM', 'PTRATIO', 'MEDV']] = df[['RM', 'PTRATIO', 'MEDV']].replace(0, np.NaN)
# count the number of NaN values in each
print(df.isnull().sum())
```

```
CRIM
           0
INDUS
           0
CHAS
           0
NOX
RM
           0
AGE
           0
DIS
           0
RAD
           0
TAX
           0
PTRATIO
В
LSTAT
MEDV
dtype: int64
```

Perform the Exploratory Data Analysis (EDA) on the dataset

```
# Get the dimensions or Shape of the dataset
# i.e. number of records/rows x number of variables/columns
print(df2.shape)
```

```
(452, 6)
```

```
# Get the data types of all variabLes/attributes of the data set
# The results show
print(df2.dtypes)
```

```
RM float64
AGE float64
DIS float64
RAD int64
PTRATIO float64
MEDV float64
dtype: object
```

```
# Get several records/rows at the top of the dataset
# Get the first five records
print(df2.head(5))
```

```
RM
       AGE
              DIS RAD PTRATIO MEDV
0 6.575 65.2 4.0900
                    1
                         15.3 24.0
1 6.421 78.9 4.9671
                   2
                         17.8 21.6
2 7.185 61.1 4.9671
                    2
                         17.8 34.7
3 6.998 45.8 6.0622 3
                        18.7 33.4
4 7.147 54.2 6.0622 3
                        18.7 36.2
```

Get the summary statistics of the numeric variables/attributes of the dataset
print(df2.describe())

	RM	AGE	DIS	RAD	PTRATIO	MEDV
count	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000
mean	6.343538	65.557965	4.043570	7.823009	18.247124	23.750442
std	0.666808	28.127025	2.090492	7.543494	2.200064	8.808602
min	3.561000	2.900000	1.129600	1.000000	12.600000	6.300000
25%	5.926750	40.950000	2.354750	4.000000	16.800000	18.500000
50%	6.229000	71.800000	3.550400	5.000000	18.600000	21.950000
75%	6.635000	91.625000	5.401100	7.000000	20.200000	26.600000
max	8.780000	100.000000	12.126500	24.000000	22.000000	50.000000

Histogram

```
# Plot histrogram for each numeric
df2.hist(figsize=(12, 8))
pyplot.show()
```


Density Plots

```
# Density plots
# IMPORTANT NOTES: 5 numeric variables -> at Least 5 plots -> Layout (2, 3): 2
rows, each row with 3 plots
df2.plot(kind='density', subplots=True, layout=(2, 3), sharex=False, legend=True,
fontsize=1,
figsize=(12, 16))
pyplot.show()
```


Box Plots

```
df2.plot(kind='box', subplots=True, layout=(3,3), sharex=False, figsize=(12,8))
pyplot.show()
```


Scatter plot matrix

```
# scatter plot matrix
scatter_matrix(df2, alpha=0.8, figsize=(15, 15))
pyplot.show()
```


Separate Dataset into Input & Output Arrays

```
# Store dataframe values into a numpy array
array = df2.values
# separate array into input and output components by slicing
# For X (input)[:, 5] --> all the rows, columns from 0 - 4 (5 - 1)
X = array[:,0:5]
# For Y (output)[:, 5] --> all the rows, column index 5 (Last column)
Y = array[:,5]
```

Split Input/Output Arrays into Training/Testing Datasets

```
# Split the dataset --> training sub-dataset: 67%; test sub-dataset:
test_size = 0.33
```

```
# Selection of records to include in which sub-dataset must be done randomly
# use this seed for randomization
seed = 7
# Split the dataset (both input & outout) into training/testing datasets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,
random_state=seed)
```

Build and Train the Model

```
# Build the model
model = DecisionTreeRegressor()
# Train the model using the training sub-dataset
model.fit(X_train,Y_train)
# Non-Linear --> NO coefficients and the intercept
DecisionTreeRegressor (criterion='mse', max_depth=None, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0 ,presort=False,
random_state=None,
splitter='best')
```

Calculate R Squared

```
R_squared = model.score(X_test, Y_test)
print(R_squared)
```

```
0.5316791950736979
```

Prediction

```
model.predict([[6.0, 55, 5, 2, 16]])
```

```
array([20.4])
```

Evaluate/Validate Algorithm/Model - Using K-Fold Cross-Validation

```
# Evaluate the algorithm
# Specify the K-size
num_folds = 10
# Fix the random seed
# must use the same seed value so that the same subsets can be obtained
# for each time the process is repeated
seed = 7
# Split the whole data set into folds
kfold = KFold(n_splits=num_folds, random_state=seed)
# For Linear regression, we can use MSE (mean squared error) value
# to evaluate the model/algorithm
scoring = 'neg_mean_squared_error'
# Train the model and run K-foLd cross-validation to validate/evaluate the model
results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)
# Print out the evaluation results
# Result: the average of all the results obtained from the k-foLd cross-validation
print(results.mean())
```

-40.41926231884058

C:\Users\sohai\anaconda3\lib\site-packages\sklearn\model_selection_split.py:296: FutureWarning: Setting a random_state has no effect since shuffle is False. This will raise an error in 0.24. You should leave random_state to its default (None), or set shuffle=True.

FutureWarning