CODAGE DE REED SOLOMON

P. GUERINI, D'APRÈS [HJ]

1. Éléments sur les corps finis

Pour la théorie générale, on pourra se référer à [E] ou à [S]; voir aussi [C-L].

On travaille dans un corps fini de caractérisrique 2, c.-à-d. dans \mathbb{F}_q , où $q=2^m$ $(m\in\mathbb{N}^\star)$. Pour m=1, $\mathbb{F}_2=\mathbb{Z}/2\mathbb{Z}$. Et pour m=4, $\mathbb{F}_{16}=\mathbb{F}_2[X]/(X^4+X+1)$, où (X^4+X+1) est l'idéal de $\mathbb{F}_2[X]$ engendré par le polynôme X^4+X+1 . On montre que \mathbb{F}_{16} est un anneau, comme on le fait pour $\mathbb{Z}/n\mathbb{Z}$. Et de même que $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier, \mathbb{F}_{16} est un corps car X^4+X+1 est irréductible sur \mathbb{F}_2 .

Preuve de l'irréductibilité. Le polynôme $X^4 + X + 1$ n'est pas le produit d'un polynôme de degré 1 et d'un polynôme de degré 3 car il n'a pas de racines dans \mathbb{F}_2 .
S'il est le produit de deux polynômes de degré 2 il s'écrit $(X^2 + hX + 1)(X^2 + \beta X + 1)$. Le

S'il est le produit de deux polynômes de degré 2, il s'écrit $(X^2 + bX + \dot{1})(X^2 + \beta X + \dot{1})$. Le coefficient de X^3 est alors $b + \beta$ et celui de X est aussi $b + \beta$. On doit donc avoir $b + \beta = 0$ et $b + \beta = \dot{1}$, ce qui est impossible.

Le corps \mathbb{F}_{16} est bien de cardinal 16, engendré par la classe de X, notée \overline{X} . Ses éléments sont donnés par le tableau suivant :

\mathbb{F}_{16}	Ò	i	\overline{X}	$\overline{X} + i$	\overline{X}^2	$\overline{X}^2 + \dot{1}$	$\overline{X}^2 + \overline{X}$	$\overline{X}^2 + \overline{X} + \dot{1}$	\overline{X}^3	$\overline{X}^3 + \dot{1}$
Indexation pyfinite	0	1	2	3	4	5	6	7	8	9

$\overline{X}^3 + \overline{X}$	$\overline{X}^3 + \overline{X} + \dot{1}$	$\overline{X}^3 + \overline{X}^2$	$\overline{X}^3 + \overline{X}^2 + \dot{1}$	$\overline{X}^3 + \overline{X}^2 + \overline{X}$	$\overline{X}^3 + \overline{X}^2 + \overline{X} + \dot{1}$
10	11	12	13	14	15

Pour effectuer un produit, on procède par division euclidienne.

Par exemple, dans \mathbb{F}_2 , $(X^2 + \dot{1})(X^2 + X + \dot{1}) = X^4 + X^3 + X + \dot{1} = X^4 + X + \dot{1} + X^3$. Donc dans \mathbb{F}_{16} , le produit de $\overline{X}^2 + \dot{1}$ et de $\overline{X}^2 + \overline{X} + \dot{1}$ est \overline{X}^3 . Pour Python, cela se traduit par $5 \times 7 = 8$.

Et pour l'inverse, on utilise l'algorithme d'Euclide étendu. Par exemple, $X^4+X+\dot{1}+(X^2+X)(X^2+X+\dot{1})=\dot{1}$. En réduisant modulo $X^4+X+\dot{1}, (\overline{X}^2+\overline{X}+\dot{1})^{-1}=\overline{X}^2+\overline{X}$. En Python, $7^{-1}=6$.

On note enfin que $(\mathbb{F}_{16}^{\star}, \times)$ est cyclique, engendré par \overline{X} (c'est un fait général : si \mathbb{F}_q est un corps fini, alors le groupe $(\mathbb{F}_q^{\star}, \times)$ est cyclique). En particulier, $\overline{X}^{q-1} = \overline{X}^{15} = \dot{1}$ (15 étant l'ordre de \overline{X}).

2. Codage de Reed Solomon

Dans toute la suite, on notera $\alpha=\overline{X}$ (élément primitif), $q=2^p,\, n=q-1$ et, pour tout $i\in\{1,\ldots,n\},\, x_i=\alpha^{i-1}.$ On a $\alpha^n=1$ et $\mathbb{F}_q=\left\{\dot{0},\dot{1},\alpha,\ldots,\alpha^{n-1}\right\}=\left\{\dot{0},x_1,x_2,\ldots,x_n\right\}.$ On pose, pour $k\leqslant n$,

$$G = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{k-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{k-1} \\ & & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{k-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{k-1} \\ & & & \vdots \\ 1 & \alpha^{n-1} & \alpha^{2(n-1)} & \cdots & \alpha^{(k-1)(n-1)} \end{bmatrix} = \left(\alpha^{(i-1)(j-1)}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant k}} \in \mathcal{M}_{n,k} \left(\mathbb{F}_{16}\right).$$

 $\cdots + u_{k-1}x^{k-1} \in \mathbb{F}_{16}[x]$. Son codage est le n-uplet $(u(x_1), \dots, u(x_n))$ c.-à-d. , vectoriellement, C = GU.

On définit aussi la matrice de contrôle

$$H = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ & & \vdots & \\ x_1^{n-k} & x_2^{n-k} & \cdots & x_n^{n-k} \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & \cdots & \alpha^{2(n-1)} \\ & & \vdots & \\ 1 & \alpha^{n-k} & \cdots & \alpha^{(n-k)(n-1)} \end{bmatrix} = \left(\alpha^{i(j-1)}\right)_{\substack{1 \le i \le n-k \\ 1 \le j \le n}} \in \mathcal{M}_{n-k,n}\left(\mathbb{F}_{16}\right).$$

On remarque que le produit HG est nul :

Preuve. Pour $1 \le i \le n - k$ et $1 \le j \le k$,

$$(HG)_{i,j} = \sum_{l=1}^{n} h_{i,l} g_{l,j}$$

$$= \sum_{l=1}^{n} \alpha^{(i-1)(l-1)} \alpha^{j(l-1)}$$

$$= \sum_{l=1}^{n} (\alpha^{i+j-1})^{(l-1)}$$

$$= \sum_{l=0}^{n-1} (\alpha^{i+j-1})^{l}$$

$$= (1 - \alpha^{i+j-1})^{-1} (1 - \alpha^{n(i+j-1)}) \operatorname{car} 1 \leqslant i + j - 1 \leqslant n - 1 \operatorname{et} \operatorname{donc} \alpha^{i+j-1} \neq 1$$

$$= 0 \operatorname{car} \alpha^{n} = 1.$$

On a donc le résultat important

$$HC = 0$$
.

3. Correction d'erreurs par l'arithmétique des polynômes

Le message codé C est transmis (sur CD, par WIFI, etc.) mais peut subir des erreurs. Notons R, le message reçu. On pose R=C+E, où E est le vecteur correspondant aux erreurs. On suppose que le nombre maximal d'erreurs, c.-à-d. de coordonnées non nulles de E est au plus $t=\left\lfloor\frac{n-k}{2}\right\rfloor$.

On va voir que dans ce cas, on peut identifier et corriger les erreurs. On définit le polynôme

$$Q(x,y) = Q_0(x) + yQ_1(x),$$

où $Q_0\in\mathbb{F}_{16}[x]$ est de degré au plus $l_0=n-1-t$ et $Q_1\in\mathbb{F}_{16}[x]$ est de degré au plus $l_1=n-1-t-(k-1)=n-k-t$. Notons que

- $-\sin n k$ est pair, 2t = n k, $l_1 = t$ et $l_0 + l_1 = n 1$;
- si n k est impair, 2t = n k 1, $l_1 = n k 1 (t 1) = t + 1$ et $l_0 + l_1 = n$.

On montre que l'on peut choisir Q_0 et Q_1 de sorte que pour tout $i \in \{1, ..., n\}$ $Q(x_i, r_i) = 0$.

Preuve. En notant a_0, \ldots, a_{l_0} les coefficients de Q_0 et b_0, \ldots, b_{l_1} ceux de Q_1 , il s'agit de résoudre

(3.1)
$$\begin{bmatrix} 1 & x_1 & \cdots & x_1^{l_0} & \vdots & r_1 & r_1 x_1 & \cdots & r_1 x_1^{l_1} \\ & \vdots & & \vdots & & & \vdots \\ 1 & x_n & \cdots & x_n^{l_0} & \vdots & r_n & r_n x_n & \cdots & r_n x_n^{l_1} \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_{l_0} \\ b_0 \\ \vdots \\ b_{l_1} \end{bmatrix} = 0,$$

c.-à-d. de trouver un élément du noyau d'une matrice de taille $n \times l_0 + l_1 + 2$. Comme $l_0 + l_1 + 2 \ge n - 1$, il existe bien un élément non nul dans le noyau.

Noter que Q_1 ne peut être le polynôme nul. En effet si c'était le cas, il existerait un élément non

nul dans la noyau de la matrice
$$\begin{bmatrix} 1 & x_1 & \cdots & x_1^{l_0} \\ & \vdots & & \\ 1 & x_n & \cdots & x_n^{l_0} \end{bmatrix}. \text{ Or celle-ci est de rang } l_0+1 < n. \qquad \square$$

On considère alors le polynôme $P(x)=Q_0(x)+u(x)Q_1(x)$, de degré $\leqslant n-1-t$. Comme le nombre maximal d'erreurs est t, parmi les nombres x_1,\ldots,x_n , il y en a au moins n-t tels que $r_i=u(x_i)$ et donc $P(x_i)=0$. Donc P admet plus de racines que son degré maximal et est donc nul. On en déduit que

$$u(x) = -\frac{Q_0(x)}{Q_1(x)},$$

ce qui permet de retrouver C.

4. DÉCODAGE PAR SYNDROMES

On suppose dans cette section que n - k est pair.

Le polynôme Q_1 déterminé ci-dessus est appelé polynôme localisateur des erreurs. En effet, on a pour tout i,

$$\begin{cases} Q_0(x_i)+r_iQ_1(x_i)=0 \text{ par d\'efinition de } Q_0 \text{ et } Q_1\\ Q_0(x_i)+c_iQ_1(x_i)=0 \text{ car } u(x_i)=c_i \end{cases}$$

et si i est un indice tel que $e_i \neq 0$, c.-à-d. $r_i \neq c_i$, on a donc $Q_1(x_i) = 0$. Les indices des erreurs sont donc parmi les indices des racines de Q_1 .

Noter que puisque n-k est pair, $l_1=t$ et donc les t erreurs sont données exactement par les racines de Q_1 .

On remarque que, puisque $HC=HGU=0,\,HR=HE.$ On définit alors le vecteur des syndromes par la formule

$$S = \begin{bmatrix} S_1 \\ \vdots \\ S_{n-k} \end{bmatrix} = HR,$$

dont la non nullité traduit l'apparition d'erreurs. On a ainsi, pour tout $i \in \{1, \dots, n-k\}$,

$$S_i = \sum_{l=1}^n \alpha^{i(l-1)} r_l = \sum_{l=1}^n r_l x_l^i.$$

 $\text{Le système (3.1) se réécrit } MA+NB=0, \text{ où } M=\begin{bmatrix}1&x_1&\cdots&x_1^{l_0}\\ &\vdots&\\ 1&x_n&\cdots&x_n^{l_0}\end{bmatrix} \text{ et } N=\begin{bmatrix}r_1&r_1x_1&\cdots&r_1x_1^{l_1}\\ &\vdots&\vdots&\\ r_n&r_nx_n&\cdots&r_nx_n^{l_1}\end{bmatrix}.$

Soit
$$K = \begin{bmatrix} x_1 & \cdots & x_n \\ & \vdots & \\ x_1^{l_1} & \cdots & x_n^{l_1} \end{bmatrix} \in \mathcal{M}_{l_1,n}(\mathbb{F}_{16})$$
 dont on vérifie, comme pour le produit HG de la sec-

tion 2, que KM=0. On obtient alors KNB=0. Or KN est une matrice de taille $l_1\times l_1+1$ et de terme général

$$(KN)_{i,j} = \sum_{l=1}^{n} x_l^i r_l x_l^{j-1} = \sum_{l=1}^{n} r_l x_l^{i+j-1} = S_{i+j-1}.$$

On a ainsi

$$\begin{bmatrix} S_1 & \cdots & S_{l_1+1} \\ & \vdots & \\ S_{l_1} & \cdots & S_{2l_1} \end{bmatrix} \begin{bmatrix} b_0 \\ \vdots \\ b_{l_1} \end{bmatrix} = 0$$

(noter que puisque n-k est pair, on a $2l_1=n-k$).

Si B résout ce système, On a $NB \in \operatorname{Ker} K$. Mais comme KM = 0, $\operatorname{Im} M \subset \operatorname{Ker} K$. Et de plus, K est de rang l_1 , donc dim $\operatorname{Ker} K = n - l_1$ et M est de rang $l_0 + 1 = n - l_1$. Donc

 $\operatorname{Ker} K = \operatorname{Im} M$. Il existe donc bien un vecteur A tel que MA = -NB. Le vecteur B trouvé donne donc bien les coefficients d'un polynôme Q_1 .

Grâce aux syndromes, on détermine donc Q_1 . Ses racines donnent les indices i_1, \ldots, i_t d'apparition des erreurs. On extrait alors du système HE = S le système

$$\begin{bmatrix} x_{i_1} & \cdots & x_{i_t} \\ & \vdots & \\ x_{i_1}^t & \cdots & x_{i_t}^t \end{bmatrix} \begin{bmatrix} e_{i_1} \\ \vdots \\ e_{i_t} \end{bmatrix} = \begin{bmatrix} S_1 \\ \vdots \\ S_t \end{bmatrix}.$$

On détermine ainsi les coordonnées non nulles de E et on retrouve alors C par la formule C=R+E.

On peut aussi, en théorie, travailler dans $\mathbb C$ en choisissant α égal à une racine primitive $n^{\mathrm{i\`{e}me}}$ de l'unité.

CODAGE DE REED SOLOMON 5

Références

- [C-L] Chambert-Loir A. De Galois aux corps finis, Gazette des mathématiciens, 131, 59-68 (janvier 2012).
- [E] J-P. Escofier, *Théorie de Galois*, Masson, 1997.
- $[HJ] \ \ T.\ H\"{o}holdt, J.\ Ju\$tesen, \textit{A Course In Error-Correcting Codes}, second\ edition, EMS\ Textbooks\ in\ Mathematics, 2017.$
- [S] I. Stewart, Galois Theory, Chapman & Hall Mathematics, 1989.