LAB Work 2 - Fundamental

Oussama RCHAKI Vision

October 16, 2024

Figure 1: 675 matches entre les 2 images.

Figure 2: 567 inliers sur 675 points correspondants.

Figure 3: Lignes épipolaires exemple 1.

Figure 4: Lignes épipolaires exemple 2.

Objectif du TP

L'objectif de ce TP est de **calculer la matrice fondamentale** F à partir de correspondances de points entre deux images, en utilisant l'**algorithme RANSAC**. L'algorithme permet de trouver une solution robuste malgré la présence de points d'appariement erronés (outliers). Une fois la matrice fondamentale obtenue, nous devons l'affiner à l'aide d'une **minimisation des moindres carrés**, puis afficher les **lignes épipolaires** associées aux points cliqués par l'utilisateur sur les images.

Définition de RANSAC

RANSAC (Random Sample Consensus) est un algorithme itératif qui permet d'estimer des modèles à partir de données contenant des **outliers**. Il sélectionne aléatoirement des sous-ensembles de données pour ajuster un modèle, puis évalue sa cohérence avec l'ensemble des données afin de trouver une solution robuste.

Observation

Lors du recalcul des lignes épipolaires, j'ai observé que les **positions des épipoles** changent à chaque exécution. Cela est dû aux particularités de RANSAC :

- Nature aléatoire : RANSAC sélectionne aléatoirement des sous-ensembles de correspondances, ce qui peut conduire à des matrices fondamentales légèrement différentes à chaque itération.
- Sensibilité des épipoles : Les épipoles sont particulièrement sensibles aux variations de F, même minimes, ce qui explique leur déplacement entre les recalculs.

Conclusion

Ces variations dans les épipoles ne sont pas nécessairement des erreurs, mais elles reflètent la **nature probabiliste** de RANSAC et la **sensibilité du calcul géométrique**. Pour réduire ces variations, il est possible d'augmenter le nombre d'itérations RANSAC (Sans prendre en considération le Niter).