Feature set analysis for chess 3UNN networks Tesis de Licenciatura

Martín Emiliano Lombardo

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

2024

Introducción

Ajedrez

- Dos jugadores
- Suma cero

Humano vs. Computadora

Neuron activation

Humano vs. Computadora

Humano vs. Computadora

Ajedrez como árbol

Motores de ajedrez (Chess Engines)

 Exploran el árbol de juego (Minimax, MCTS, etc.)

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas
- La evaluación se propaga hacia arriba, según el algoritmo

Función de evaluación o "eval"

Intentan resumir todo el subárbol en un solo número. En general son creadas *artesanalmente*

(adelanto) Feature sets: ¿Cómo transformar la posición a un vector para usar NNs?

■ **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- 1960s+: Aparecen los primeros motores de ajedrez, lentos y débiles

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles
- 1997 (hito): IBM DeepMind vence a Garry Kasparov en un torneo (superhuman)

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles
- 1997 (hito): IBM DeepMind vence a Garry Kasparov en un torneo (superhuman)
- 2017 y 2018: Google DeepMind publica AlphaGo Zero y su sucesor AlphaZero
 - se reemplaza la función de evaluación por una red neuronal

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles
- 1997 (hito): IBM DeepMind vence a Garry Kasparov en un torneo (superhuman)
- 2017 y 2018: Google DeepMind publica AlphaGo Zero y su sucesor AlphaZero
 - se reemplaza la función de evaluación por una red neuronal
- 2018: Yu Nasu introduce las redes ∃UMM para Shogi

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles
- 1997 (hito): IBM DeepMind vence a Garry Kasparov en un torneo (superhuman)
- 2017 y 2018: Google DeepMind publica AlphaGo Zero y su sucesor AlphaZero
 - se reemplaza la función de evaluación por una red neuronal
- 2018: Yu Nasu introduce las redes ∃UMM para Shogi
- **2020**: Stockfish 12 introduce redes ∃UИИ en su evaluación
 - se utilizan a la par de evaluaciones artesanales

- **1950s**: Se desarrollan los primeros *algoritmos* de ajedrez
- **1960s**+: Aparecen los primeros *motores de ajedrez*, lentos y débiles
- 1997 (hito): IBM DeepMind vence a Garry Kasparov en un torneo (superhuman)
- 2017 y 2018: Google DeepMind publica AlphaGo Zero y su sucesor AlphaZero
 - se reemplaza la función de evaluación por una red neuronal
- 2018: Yu Nasu introduce las redes ∃UИИ para Shogi
- **2020**: Stockfish 12 introduce redes ∃UNN en su evaluación
 - se utilizan a la par de evaluaciones artesanales
- **2024**: Stockfish 16.1 elimina todo aspecto humano de su evaluación, todo es mediante redes neuronales

El objetivo principal es **proponer y evaluar novedosos feature** sets.

El objetivo principal es **proponer y evaluar novedosos feature sets**. Además, **probar una técnica de entrenamiento** no convencional.

El objetivo principal es **proponer y evaluar novedosos feature sets**. Además, **probar una técnica de entrenamiento** no convencional.

El plan de la presentación es el siguiente:

Implementación de un motor de ajedrez clásico

El objetivo principal es **proponer y evaluar novedosos feature sets**. Además, **probar una técnica de entrenamiento** no convencional.

- Implementación de un motor de ajedrez clásico
- Definición y ejemplos de feature sets

El objetivo principal es **proponer y evaluar novedosos feature sets**. Además, **probar una técnica de entrenamiento** no convencional.

- Implementación de un motor de ajedrez clásico
- Definición y ejemplos de feature sets
- Introducción a las redes ∃UNN

El objetivo principal es **proponer y evaluar novedosos feature sets**. Además, **probar una técnica de entrenamiento** no convencional.

- Implementación de un motor de ajedrez clásico
- Definición y ejemplos de feature sets
- Introducción a las redes ∃UNN
- Entrenamiento de las redes ∃UИИ

El objetivo principal es **proponer y evaluar novedosos feature sets**. Además, **probar una técnica de entrenamiento** no convencional.

- Implementación de un motor de ajedrez clásico
- Definición y ejemplos de feature sets
- Introducción a las redes ∃UNN
- Entrenamiento de las redes ∃UИИ
- Experimentos

Motor

Motor de ajedrez

Para evaluar las redes NNUEs es necesario un motor de ajedrez.

Motor de ajedrez

Para evaluar las redes NNUEs es necesario un motor de ajedrez.

Buscamos construir un **motor de ajedrez clásico**, con **optimizaciones clásicas** pero **que use NNUEs** para evaluar posiciones.

Minimax

Primera idea: evalúo todas las posiciones a las que me puedo mover y elijo la mejor.

Minimax

Primera idea: evalúo todas las posiciones a las que me puedo mover y elijo la mejor.

Pero si extendemos la idea recursivamente... es el algoritmo **minimax**.

- △ **Maximizing nodes**: nuestro jugador. Elige el movimiento que maximice la evaluación.
- **Minimizing nodes**: el oponente. Elige el movimiento que minimiza la evaluación.

Minimax

Figure: Un árbol minimax de 4 de profundidad. El "mejor" movimiento para el jugador maximizador es el que lleva a la evaluación más alta, macada en azul.

No queremos hacer minimax a una profundidad fija, si no a un tiempo fijo (100 milisegundos).

No queremos hacer minimax a una profundidad fija, si no a un tiempo fijo (100 milisegundos).

Iterative deepening es una técnica que consiste en hacer minimax a profundidades crecientes, hasta que se acabe el tiempo.

No queremos hacer minimax a una profundidad fija, si no a un tiempo fijo (100 milisegundos).

Iterative deepening es una técnica que consiste en hacer minimax a profundidades crecientes, hasta que se acabe el tiempo.

Che pero no pierdo todo el cómputo que hice en la iteración anterior?

No queremos hacer minimax a una profundidad fija, si no a un tiempo fijo (100 milisegundos).

Iterative deepening es una técnica que consiste en hacer minimax a profundidades crecientes, hasta que se acabe el tiempo.

Che pero no pierdo todo el cómputo que hice en la iteración anterior? **Sí, pero...**

Optimizaciones

■ Poda Alpha-beta (anim)

Optimizaciones

- Poda Alpha-beta (anim)
- Reordenamiento de movimientos (peor caso Minimax)
 - MVV/LVA (Most Valuable Victim/Least Valuable Attacker)
 - .

Optimizaciones

- Poda Alpha-beta (anim)
- Reordenamiento de movimientos (peor caso Minimax)
 - MVV/LVA (Most Valuable Victim/Least Valuable Attacker)
- Tablas de transposición: un caché

Feature set

¿Cómo transformar la posición a un vector?

¿Cómo transformar la posición a un vector?

Definición

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- **P**(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).

Definición

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- Cada elemento en S_P es un *feature*.

Definición

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- \blacksquare Cada elemento en S_P es un feature.
- Cada feature es un valor en el vector de entrada, valiendo 1 si está activo y 0 si no.

Ejemplos de S

Información posicional:

FILES =
$$\{a, b, ..., h\}$$

RANKS = $\{1, 2, ..., 8\}$
SQUARES = $\{a1, a2, ..., h8\}$

Información sobre las piezas:

ROLES = { \triangle Pawn, \triangle Knight, \triangleq Bishop, Ξ Rook, $\stackrel{\text{\tiny def}}{=}$ Queen, $\stackrel{\text{\tiny def}}{=}$ King Colors = { \bigcirc White, \bullet Black}

Ejemplo completo

	Feature set	
	$(\text{Files} \times \text{Colors})_P$	$(\text{Files} \times \text{Roles})_Q$
Active features		$\langle a, \triangle \rangle, \langle c, \Psi \rangle, \langle c, \Phi \rangle,$
	$\langle c, \bigcirc \rangle, \langle d, \bigcirc \rangle, \langle h, \bullet \rangle$	$\langle d, \triangle \rangle, \langle h, \triangle \rangle$

 $P(\langle f, c \rangle)$: there is a piece in file f with color c. $Q(\langle f, r \rangle)$: there is a piece in file f with role r.

Operación: Suma \oplus (concatenación)

Hay veces que es útil combinar información de dos feature sets

Operación: Suma \oplus (concatenación)

Hay veces que es útil combinar información de dos feature sets

$$S_P, T_Q$$
 : feature sets $S_P \oplus T_Q = (S \cup T)_R$ donde $R(e) = \begin{cases} P(e) & \text{if } e \in S \\ Q(e) & \text{if } e \in T \end{cases}$

La codificación más natural de una posición de ajedrez

ALL: $(SQUARES \times ROLES \times COLORS)_P$ $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

■ Es pequeño: $64 \times 6 \times 2 = 768$ *features*

La codificación más natural de una posición de ajedrez

ALL: $(SQUARES \times ROLES \times COLORS)_P$ $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ *features*
- Es completo: contiene toda la información del tablero

La codificación más natural de una posición de ajedrez

ALL: $(SQUARES \times ROLES \times COLORS)_P$ $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ *features*
- Es completo: contiene toda la información del tablero
- Es muy rápido computar cuáles features están activas

(AUNN) NNUE

ЗUИИ: Efficiently Updatable Neural Networks

Ya tenemos definido el input* y el output:

Ya tenemos definido el input* y el output:

■ El input es un vector one-hot generado por el *feature set*.

Ya tenemos definido el input* y el output:

- El input es un vector one-hot generado por el *feature set*.
- El output es un número real.

La red es una feedforward clásica de 3 layers fully connected.

- con activaciones ClippedReLU
- es siamés en la primera capa

ЗUИИ: **E**fficient **U**pdates (primera capa)

Figure: Linear layer operation comparison. Figures from [18].

ЗUИИ: Concatenación de la primera capa

Figure: Concatenation of the first layer's output after a move is made. Inspired by a CPW figure.

ЗUИИ: **E**fficient **U**pdates

Figure: Árbol parcial de feature updates (agregados y borrados) para ($SQUARES \times COLORS$) (POV blanco) en un tablero simplificado 3x3 de peones.

ЗИИИ: Resumen

■ La red son 3 capas fully connected, con parámetros *L*1 y *L*2.

ЗИИИ: Resumen

- La red son 3 capas fully connected, con parámetros *L*1 y *L*2.
- Tenemos un acumulador de la primera capa por cada jugador.

ЗИИИ: Resumen

- La red son 3 capas fully connected, con parámetros *L*1 y *L*2.
- Tenemos un acumulador de la primera capa por cada jugador.
- Los acumuladores se actualizan eficientemente con cada movimiento, en la recursión.

ЗUИИ: Tradeoff

Tiempo de inferencia vs. nodos visitados.

ЗUИИ: Tradeoff

Tiempo de inferencia vs. nodos visitados.

Si la red es rápida (y por lo tanto débil), se pueden visitar más nodos y llegar más profundo.

ЗUИИ: Tradeoff

Tiempo de inferencia vs. nodos visitados.

Si la red es rápida (y por lo tanto débil), se pueden visitar más nodos y llegar más profundo.

Si se tienen predicciones de mayor calidad (y por lo tanto más lento), se visitan menos nodos pero con evaluaciones más precisas.

ЗИИИ: Tradeoff

Tiempo de inferencia vs. nodos visitados.

Si la red es rápida (y por lo tanto débil), se pueden visitar más nodos y llegar más profundo.

Si se tienen predicciones de mayor calidad (y por lo tanto más lento), se visitan menos nodos pero con evaluaciones más precisas.

No es directo determinar qué resulta más fuerte.

Entrenamiento

Dataset

 Para entrenar estas redes se necesitan decenas de miles de millones de samples. Generarlo a mano es inviable.

Dataset

- Para entrenar estas redes se necesitan decenas de miles de millones de samples. Generarlo a mano es inviable.
- Uso el mismo dataset usado para entrenar Stockfish 16.1 (135GB, 48.4 billion)

Dataset

- Para entrenar estas redes se necesitan decenas de miles de millones de samples. Generarlo a mano es inviable.
- Uso el mismo dataset usado para entrenar Stockfish 16.1 (135GB, 48.4 billion)
- Cada sample se ve así:

Dataset

- Para entrenar estas redes se necesitan decenas de miles de millones de samples. Generarlo a mano es inviable.
- Uso el mismo dataset usado para entrenar Stockfish 16.1 (135GB, 48.4 billion)
- Cada sample se ve así:

■ 130 GB \rightarrow 2 TB \rightarrow 522 GB

Métodos de entrenamiento

- Target scores o Score target: Utiliza las evaluaciones del dataset como target.
- **PQR**: Utiliza dos principios *razonables* para armar una función de pérdida.

- **Score-space**: los scores en el dataset están entre [-10000, 10000] (*centipawn* o proporcional)
- WDL-space: otra escala donde 0 es perder, 0.5 es empate y 1 es ganar

- **Score-space**: los scores en el dataset están entre [-10000, 10000] (*centipawn* o proporcional)
- WDL-space: otra escala donde 0 es perder, 0.5 es empate y 1 es ganar

Queremos que la red genere valores en **score-space**, pero para las funciones de pérdida es mejor usar **WDL-space**.

El modelo WDL dice que el winrate se puede modelar como una función de la evaluación.

El modelo WDL dice que el winrate se puede modelar como una función de la evaluación.

Los datos muestran que la función sigmoide da una buena aproximación:

$$W(f(P)) = \sigma\left(\frac{f(P) - a}{b}\right) = \frac{1}{1 + e^{-\frac{f(P) - a}{b}}}$$

Figure: Modelo WDL ajustado a 100 million de evaluaciones en el dataset.

¿Para qué WDL?

¿Para qué WDL?

■ Las evaluaciones están mas "cerca" en WDL-space:

■ 7500 vs 8000: 1% winrate

■ 50 vs 550 : 30% winrate

¿Para qué WDL?

- Las evaluaciones están mas "cerca" en WDL-space:
 - 7500 vs 8000: 1% winrate
 - 50 vs 550 : 30% winrate
- Se puede interpolar con los resultados (no lo hago)
 - $\lambda \cdot \mathcal{W}(f(P)) + (1 \lambda) \cdot r$

¿Para qué WDL?

- Las evaluaciones están mas "cerca" en WDL-space:
 - 7500 vs 8000: 1% winrate
 - 50 vs 550 : 30% winrate
- Se puede interpolar con los resultados (no lo hago)
 - $\lambda \cdot \mathcal{W}(f(P)) + (1 \lambda) \cdot r$
- Gradientes más chicos

Método 1: Target scores

Usamos los valores del dataset como target.

Método 1: Target scores

Usamos los valores del dataset como target.

La función de pérdida es **Mean Square Error (MSE)** con potencia 2.6.

$$\mathcal{L}(y, f(x, \boldsymbol{W})) = \frac{1}{N} \sum_{i}^{N} |\mathcal{W}(y_i) - \mathcal{W}(f(x_i, \boldsymbol{W}))|^{2.6}$$

donde...

- 1 N es la cantidad de muestras.
- 2 y son las evaluaciones objetivo.
- 3 f es el modelo.
- 4 x son los inputs (vector del feature sets).
- $\mathbf{5}$ \mathbf{W} son los parámetros del modelo.
- ${f 6}$ ${\cal W}$ es la función de winrate que mapea de score-space a WDL-space.

Técnica vista en un blogpost de 2014 por Erik Bernhardsson, que se basa en dos principios:

Técnica vista en un blogpost de 2014 por Erik Bernhardsson, que se basa en dos principios:

1 Para dos posiciones en suseción $P \to Q$ observadas en el dataset, tenemos que f(P) = -f(Q). Esto es porque el juego es de suma cero.

Técnica vista en un blogpost de 2014 por Erik Bernhardsson, que se basa en dos principios:

- 1 Para dos posiciones en suseción $P \to Q$ observadas en el dataset, tenemos que f(P) = -f(Q). Esto es porque el juego es de suma cero.
- 2 Ir desde P, no a la posición observada Q, sino a una posición $random\ P \to R$, se debe cumplir f(R) > f(Q) porque un movimiento random es mejor para el siguiente jugador y peor para el que hizo el movimiento.

Técnica vista en un blogpost de 2014 por Erik Bernhardsson, que se basa en dos principios:

- 1 Para dos posiciones en suseción $P \to Q$ observadas en el dataset, tenemos que f(P) = -f(Q). Esto es porque el juego es de suma cero.
- 2 Ir desde P, no a la posición observada Q, sino a una posición $random\ P \to R$, se debe cumplir f(R) > f(Q) porque un movimiento random es mejor para el siguiente jugador y peor para el que hizo el movimiento.

Se puede construir una función de pérdida que refleje la igualdad en (1) y la desigualdad en (2).

La función de pérdida es la suma de la log-verosimilitud negativa de las inecuaciones:

- f(R) > f(Q)
- f(P) > -f(Q)
- f(P) < -f(Q)

$$\mathcal{L}(x^P, x^Q, x^R, \boldsymbol{W}) = \frac{1}{N} \sum_{i}^{N} -\log(\sigma(r_i - q_i))$$

$$-\log(\sigma(p_i + q_i))$$

$$-\log(\sigma(-(p_i + q_i)))$$

- **1** x^i son los inputs (vector del feature sets) para las posiciones $i \in \{P, Q, R\}$.
- 2 $\overline{\mathcal{W}}(x) = 2\mathcal{W}(x) 1$ es una función que mapea de WDL-space [0, 1] a [-1,1], así $\overline{\mathcal{W}}(x) = -\overline{\mathcal{W}}(-x)$.

La función se acerca a 0 cuando x crece y se acerca a ∞ cuando x tiende a $-\infty$.

Veamos cada uno de los términos:

- $-\log(\sigma(r_i q_i))$: Este término es chico cuando $r_i > q_i$, y grande cuando $r_i < q_i$.
- $-\log(\sigma(p_i+q_i))$: Este término es chico cuando $p_i>-q_i$, y grande cuando $p_i<-q_i$.
- $-\log(\sigma(-(p_i+q_i)))$: Este término es chico cuando $p_i<-q_i$, y grande cuando $p_i>-q_i$.

El término (1) sostiene la inecuación f(R) > f(Q), y los términos (2) y (3) la igualdad f(P) = -f(Q).

Setup

Figure: Secuencia de pasos para enviar un batch del subproceso batch-loader en Rust a Pytorch.

Experimentos

Recapitulando... ¿Qué hay que definir para entrenar una red?

■ Feature set: determina la codificación y los patrones que se pueden aprender

- Feature set: determina la codificación y los patrones que se pueden aprender
- **Dataset**: datos de entrenamiento, visto anteriormente

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- Arquitectura de la red: el tamaño de cada capa; L_1 y L_2

- **Feature set**: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- Arquitectura de la red: el tamaño de cada capa; L_1 y L_2
- **Método de entrenamiento**: PQR/target scores; determina el formato de las muestras y la loss function

- **Feature set**: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- Arquitectura de la red: el tamaño de cada capa; L_1 y L_2
- **Método de entrenamiento**: PQR/target scores; determina el formato de las muestras y la loss function
- **Hiperparámetros**: learning rate, batch size, epochs, etc.

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red

- **Loss** (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red
- Elo relativo: la medida más común para comparar engines.
 - Se realizan torneos de 100ms por movimiento
 - El elo es calculado a partir de Ordo

Baseline: motivación

Busco fijar el setup de entrenamiento con valores razonables

Busco fijar el setup de entrenamiento con valores razonables

■ El feature set va a cambiar cada experimento

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Entonces queda por determinar...

■ La arquitectura de la red $(L_1 \ y \ L_2)$

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Entonces queda por determinar...

- La arquitectura de la red $(L_1 \ y \ L_2)$
- Los hiperparámetros

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

■ Exponential decay: 0.99

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

Exponential decay: 0.99

■ Batch size: 16384

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

■ Exponential decay: 0.99

■ Batch size: 16384

■ **Epoch size**: 100 million

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

■ Exponential decay: 0.99

■ **Batch size**: 16384

■ **Epoch size**: 100 million

cada epoch realiza 6104 batches

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

Exponential decay: 0.99

■ **Batch size**: 16384

■ **Epoch size**: 100 million

cada epoch realiza 6104 batches

■ **Epochs**: 256

■ cada run observa 25.6 billion samples

Baseline: experimento

Sólo queda buscar parámetros L_1 y L_2 razonables. Realizo una búsqueda en grilla con:

- $\blacksquare \ \mathsf{L1} \in \{256, 512, 1024, 2048\}$
- $L2 \in \{32, 64, 128, 256\}$

El feature set a utilizar es ALL[768].

Baseline: resultados

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.
- L1=512. Es el mejor valor para L2=64 y L2=128, y en margen de error para L2=32.
 - Además es el más rápido de entrenar.

Axis encoding: motivación

Figure: Weights of **a neuron** in the L1 layer, which are connected to features in ALL where the role is Ξ Rook. The intensity represents the weight value, and the color represents the sign (although not relevant).

Axis encoding: motivación

La red detecta patrones parecidos a los movimientos de las piezas.

Axis encoding: motivación

La red detecta patrones parecidos a los movimientos de las piezas. Para hacerle la vida más fácil a la red, propongo agregar features como:

"there is a ○ White 🖺 Rook in the 4th rank"

Axis encoding: experimento

Axis encoding: experimento

Depiction	Block name	Definition		Number of features
	Н	(FILES	\times Roles \times Colors) _P	96
‡	V	(Ranks	\times Roles \times Colors) _P	96
	D1	(Diags1	\times Roles \times Colors) _P	180
	D2	(Diags2	\times Roles \times Colors) _P	180

 $P(\langle x, r, c \rangle)$: there is a piece in x with role r and color c

Axis encoding: experimento

Depiction	Feature set	Number of features
$\longleftrightarrow \oplus \updownarrow$	$\mathrm{H}\oplus\mathrm{V}$	192
✓ ⊕ 🔨	$\mathrm{D}1\oplus\mathrm{D}2$	360
↔ ⊕ ↑ ⊕ ✓ ⊕ \	$H\oplus V\oplus D1\oplus D2$	552
$ALL \oplus \longleftrightarrow \oplus $	$\mathrm{All} \oplus \mathrm{H} \oplus \mathrm{V}$	960
$ALL \oplus \nearrow \oplus \searrow$	$\mathrm{All} \oplus \mathrm{D1} \oplus \mathrm{D2}$	1128
$ALL \oplus \longleftrightarrow \oplus \uparrow \oplus \nearrow \oplus \nwarrow$	$ALL \oplus H \oplus V \oplus D1 \oplus D2$	1320

Axis encoding: resultados

Feature set	Number of features	Val. loss	Rating elo (rel. to ALL)	Puzzles move acc.
←→ ⊕ 📫	192	0.005810	-384.3 ± 5.1	0.8618
→ • •	360	0.006707	-444.1 ± 5.1	0.8517
	552	0.003907	-183.5 ± 4.1	0.8748
ALL (reference)	768	0.003134	0.0	0.8865
$ALL \oplus \longleftrightarrow \oplus \updownarrow$	960	0.003082	-27.1 \pm 4.1	0.8851
$ALL \oplus \nearrow \oplus \searrow$	1128	0.003087	-26.1 ± 3.8	0.8814
$\begin{array}{c} A \sqcup L \oplus \longleftrightarrow \oplus \downarrow \\ \oplus \swarrow \oplus \swarrow \end{array}$	1320	0.003067	-58.7 ± 3.7	0.8766

Pairwise axes: motivación

8

Configuraciones distintas, situaciones similares

Las mismas dos features (par rojo y par azul)

Pairwise axes: motivación

Comparando con el experimento anterior, es más específico en vez de más general:

"there is a \bigcirc White Ξ Rook in the 4th rank" vs.

"there is a ● Black \(\mathbb{Z}\) Rook next to a \(\cap \) White \(\text{\alpha}\) Pawn in the 'a' file"

Pairwise axes: experimento

D.	Block name	Definition	Num. of features	
		$(RANKS \times (ROLES \times COLORS) \times (ROLES \times COLORS))_P$		
0-0	PH	$P(\langle r, r_1, c_1, r_2, c_2 \rangle)$: there is a piece in rank r with role r_1 and color c_1 to the left of a piece with role r_2 and color c_2	1152	
		$({\rm Files}\times({\rm Roles}\times{\rm Colors})\times({\rm Roles}\times{\rm Colors}))_Q$		
ζ	PV	$Q(\langle f, r_1, c_1, r_2, c_2 \rangle)$: there is a piece in file f with role r_1 and color c_1 below a piece with role r_2 and color c_2	1152	

Pairwise axes: experimento

8 5 4 3 2 b Pairwise vertical (PV)

Pairwise axes: experimento

Los feature sets a entrenar son:

- \blacksquare ALL \oplus PH (1920 features)
- lacksquare ALL \oplus PV (1920 features)
- lacksquare ALL \oplus PH \oplus PV (3072 features)

Pairwise axes: resultados

Feature set	Number of features	Val. loss	Rating elo (rel. to ALL)
All (reference)	768	0.003134	0.0
All ⊕ 0-0	1920	0.003033	-38.2 ± 4.8
$ALL \oplus $	1920	0.002946	-8.4 ± 5.0
All ⊕ 0-0 ⊕ 8	3072	0.002868	-37.6 ± 4.9

■ Reducir el número de pairs puede llevar a una mejora por sobre ALL (ej. Å)

 La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.

- La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.
- Un paper de Eliot Slater (1950) mostró que hay una correlación entre la mobilidad de un jugador y la cantidad de partidas ganadas.

- La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.
- Un paper de Eliot Slater (1950) mostró que hay una correlación entre la mobilidad de un jugador y la cantidad de partidas ganadas.
- Se usa en funciones de evaluación hechas a mano.

- La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.
- Un paper de Eliot Slater (1950) mostró que hay una correlación entre la mobilidad de un jugador y la cantidad de partidas ganadas.
- Se usa en funciones de evaluación hechas a mano.
- Propongo agregar mobilidad como features en la red.

Mobility: experimento

Hay dos maneras de codificar la mobilidad:

- Bitsets (por rol/color)
- Cantidades (por rol/color)

Mobility: experimento (bitsets)

Los features proveen **las celdas** a las que una pieza de determinado rol/color puede moverse.

La cantidad de features es $64 \times 6 \times 2 = 768$, la misma que ALL.

Mobility: experimento (counts)

Los features proveen **la cantidad de celdas** a las que una pieza de determinado rol/color puede moverse. Esto reduce la cantidad de features significativamente.

Piece role	Min	Max
∆ Pawn	0	8+
🛭 Knight	0	15+
≜ Bishop	0	16+
罩 Rook	0	25+
	0	25+
_ 🗳 King	0	8

Mobility: experimento (counts)

Figure: Total mobility values for each piece on the board. Computed using 2 billion boards. The value 0 for the 2 Knight, 2 Bishop, 2 Rook, and 2 Queen has been excluded from the plot, as it is very common.

Mobility: experimento

Block name	Definition	Number of features	
МВ	$(SQUARES \times ROLES \times COLORS)_P$	768	
	$P(\langle s, r, c \rangle)$: there is a piece of role r		
	and color c that can move to square s		
МС	$(\{0,1,\ldots\} \times \text{Roles} \times \text{Colors})_P$		
	$P(\langle m, r, c \rangle)$: the value of mobility for a piece of role r and color c is m	206	

Los feature sets a entrenar son: $\rm ALL \oplus MB$ (1536 features) y $\rm ALL \oplus MC$ (974 features).

Mobility: resultados

Table: Mobility encodings results

Feature set	Number of features	Val. loss	Rating elo (rel. to ALL)
ALL (reference)	768	0.003134	0.0
$\mathrm{All} \oplus \mathrm{MB}$	1536	0.002824	-260.9 ± 5.4
	974	0.003032	-280.9 ± 5.6

- Las predicciones mejoran muy poco (el loss no se reduce tanto).
- Por ende, el costo de las actualizar los features es más alto al beneficio que aportan.

Mobility: resultados

Table: Mobility encodings results

Feature set	Number of features	Val. loss Rating min elo (rel. to A	
ALL (reference)	768	0.003134	0.0
$ALL \oplus MB$	1536	0.002824	-260.9 ± 5.4
$\overline{\hspace{1.5cm}\text{All} \oplus \text{MC}}$	974	0.003032	-280.9 ± 5.6

- Las predicciones mejoran muy poco (el loss no se reduce tanto).
- Por ende, el costo de las actualizar los features es más alto al beneficio que aportan.
- MB tiene más updates que MC, pero menor loss que compensa.

Feature set statistics

Depiction	Feature block	Number of features	Average features		
2 оргосион			active per position	added per move	removed per move
+	All	768	14.68	0.98	0.60
	Н	96	14.68	0.60	0.43
‡	V	96	14.68	0.61	0.43
	D1	180	14.68	0.77	0.52
_ \	D2	180	14.68	0.77	0.52
0-0	РН	1152	8.23	0.92	0.57
Ş	PV	1152	8.30	0.83	0.53
MB	MB	768	48.93	5.68	4.35
MC	MC	206	12.00	2.34	1.48

PQR: motivación

Recordando...

- P: Una posición en el dataset
- Q: La posición obtenida a partir de aplicar el "mejor" movimiento a P, según el dataset
- **R**: Una posición aleatoria obtenida a partir de P, tal que $R \neq Q$

PQR: motivación

Recordando...

- P: Una posición en el dataset
- Q: La posición obtenida a partir de aplicar el "mejor" movimiento a P, según el dataset
- **R**: Una posición aleatoria obtenida a partir de P, tal que $R \neq Q$

Y los principios:

- **1** Si $P \rightarrow Q$, entonces f(P) = -f(Q) (suma cero)
- 2 Si $P \to R$ tal que $R \neq Q$, entonces f(R) > f(Q)

PQR: motivación

¿Los principios funcionan en la práctica? Veamos...

PQR analysis for a network trained with target scores

Figure: Analysis of N = 4000 PQR samples using a model trained with target scores and the feature set ALL.

- Entrenar de cero, directamente con PQR
 - no espero que sea mejor que target scores

- Entrenar de cero, directamente con PQR
 - no espero que sea mejor que target scores
- B. Continuar de un checkpoint entrenado con el otro método
 - no tiene que aprender tanto de entrada
 - mejor caso: mejora lentamente
 - peor caso: se "olvida" todo lo anterior (resulta peor)
 - se entrena con distintos learning rates
 - (esto nunca se hizo antes)

Eligiendo R: más opciones para elegir $R \Rightarrow$ es más probable que R sea peor que Q.

Eligiendo R: más opciones para elegir $R \Rightarrow$ es más probable que R sea peor que Q.

No podemos elegir un número fijo (por ejemplo, > 10) porque la cantidad de movimientos disponibles varía a lo largo de la partida.

Eligiendo R: más opciones para elegir $R \Rightarrow$ es más probable que R sea peor que Q.

No podemos elegir un número fijo (por ejemplo, > 10) porque la cantidad de movimientos disponibles varía a lo largo de la partida.

PQR: resultados (A)

PQR: resultados (A)

Figure: Analysis of N = 4000 PQR samples using the epoch 256 of the model trained from scratch with no filtering (p = 0.0) and the feature set ALL.

PQR: resultados (B)

Conclusiones

Conclusiones: feature sets

- ALL está en un sweet spot difícil de mejorar
 - es fácil de implementar
 - barato de computar qué features están activas
 - tiene pocos updates por movimiento

Conclusiones: feature sets

- ALL está en un sweet spot difícil de mejorar
 - es fácil de implementar
 - barato de computar qué features están activas
 - tiene pocos updates por movimiento
- Nuevos features por encima deben tener pocos updates y ser aprovechables por la red
 - esto se ve reforzado por el hecho de que no se encontró nada nuevo por años

 Es una ténica interesante que funciona pero produce redes inferiores

- Es una ténica interesante que funciona pero produce redes inferiores
 - puede servir para otros juegos sin datasets

- Es una ténica interesante **que funciona** pero produce redes inferiores
 - puede servir para otros juegos sin datasets
- Es prometedor para finetunear luego de entrenar con target scores

- Es una ténica interesante **que funciona** pero produce redes inferiores
 - puede servir para otros juegos sin datasets
- Es prometedor para finetunear luego de entrenar con target scores

Gracias! ¿Preguntas?