Laboratorium z Metod Numerycznych Sprawozdanie

Autor Łukasz Gut - WFiIS, Informatyka Stosowana, Rok 2. 12 czerwca 2019

Laboratorium nr 12 - Całkowanie numeryczne metodą Romberga

Cel laboratorium

Celem dwunastego laboratorium było zaprogramowanie metody Romberga całkowania numerycznego i obliczenie z jej wykorzystaniem trzech całek.

Wstęp teoretyczny

<u>Całkowanie numeryczne</u> - metoda numeryczna polegająca na przybliżonym obliczaniu całek oznaczonych. Istnieje wiele metod całkowania numerycznego. Najprostszymi są:

- Metoda prostokatów
- Metoda trapezów
- Metoda parabol

Metoda Romberga - w analizie numerycznej metoda pozwalająca przybliżać wartość całki:

$$\int_{a}^{b} f(x) \, dx$$

nieznanej jawnie funkcji f. Funkcja ta zazwyczaj znana jest tylko na dyskretnym zbiorze argumentów.

Niech dany będzie zbiór $a = x_0, x_1, ..., x_{2^i} = b$ punktów dzielących przedział (a, b) na 2^i równych części taki, że znane są wartości funkcji $f(x_i) = y_i$. Niech $h_i = \frac{b-a}{2^i}$ oznacza długość kroku. Metodę Romberga można opisać rekurencyjnie:

$$\begin{cases} R_{0,i} : R_{2^{i}} = h_{i} \sum_{k=0}^{2^{i}-1} \frac{f(x_{k}) + f(x_{k+1})}{2} \\ R_{m,i} : \frac{4^{m}R_{m-1,i+1} - R_{m-1,i}}{4^{m}-1} \end{cases}$$

Gdzie $R_{0,i}$ jest wzorem trapezów. Po obliczeniu pierwszej kolumny, kolejne kolumny obliczane są rekurencyjnie, dzięki czemu otrzymujemy coraz to lepsze przybliżenie całki.

Problem

Problemem, z którym przyszło nam się zmierzyć na dwunastym laboratorium był problem rozwiązania następujących całek metodą Romberga:

$$\int_0^1 \frac{\sin x}{x} dx$$

$$\int_{-1}^{1} \frac{\cos x - e^x}{\sin x} dx$$

$$\int_{1}^{\infty} (xe^{x})^{-1} dx$$

Wyniki

Poniżej przedstawiam wyniki działania programu:

1. Rozwiązanie całki

$$\int_0^1 \frac{\sin x}{x} dx$$

Tabela 1. Kolejne przybliżenia rozwiązania całki

0.920735							
0.939793	0.946146						
0.944514	0.946087	0.946083					
0.945691	0.946083	0.946083	0.946083				
0.945985	0.946083	0.946083	0.946083	0.946083			
0.946059	0.946083	0.946083	0.946083	0.946083	0.946083		
0.946077	0.946083	0.946083	0.946083	0.946083	0.946083	0.946083	
0.946082	0.946083	0.946083	0.946083	0.946083	0.946083	0.946083	0.946083

Widzimy, że wykorzystanie metody Romberga do obliczenia powyższej całki jest bardzo szybkie. Zbieżność otrzymaliśmy już w trzeciej kolumnie!

2. Rozwiązanie całki

$$\int_{-1}^{1} \frac{\cos x - e^x}{\sin x} dx$$

Tabela 2. Kolejne przybliżenia rozwiązania całki

-2.79321							
-2.3966	-2.2644						
-2.28522	-2.24809	-2.247					
-2.25633	-2.2467	-2.2466	-2.2466				
-2.24903	-2.2466	-2.24659	-2.24659	-2.24659			
-2.2472	-2.24659	-2.24659	-2.24659	-2.24659	-2.24659		
-2.24674	-2.24659	-2.24659	-2.24659	-2.24659	-2.24659	-2.24659	
-2.24663	-2.24659	-2.24659	-2.24659	-2.24659	-2.24659	-2.24659	-2.24659

W przypadku kolejnej całki zbieżność otrzymaliśmy dopiero w piątej kolumnie.

3. Rozwiązanie całki

$$\int_{1}^{\infty} (xe^{x})^{-1} dx$$

Tabela 3. Kolejne przybliżenia rozwiązania całki

					=		
0.18394							
0.227305	0.24176						
0.219834	0.217344	0.215716					
0.219351	0.21919	0.219313	0.21937				
0.219384	0.219394	0.219408	0.21941	0.21941			
0.219384	0.219394	0.219383	0.219383	0.219383	0.219383		
0.219384	0.219394	0.219383	0.219384	0.219384	0.219384	0.219384	
0.219384	0.219394	0.219383	0.219384	0.219384	0.219384	0.219384	0.219384

Metoda Romberga najgorzej poradziła sobie z ostatnią całką - tutaj zbieżność z wynikiem otrzymaliśmy dopiero w 7 kolumnie!

Wnioski

Metoda Romberga bardzo dobrze poradziła sobie z obliczeniem nietuzinkowych całek oznaczonych. Dodatkowo dzięki swojemu rekurencyjnemu opisowi jest ona dosyć prosta w implementacji.