Interestingness of Interestingness measures

Simrat Hanspal Data Scientist Mad Street Den

What to expect

- * What are we mining for?
- * Problems mining associations in retail
- * How to mine gold in retail domain
- * Key takeaways

Interesting associations

- * Association mining is of interest in many domains e.g. Bioinformatics, Web Mining, Text Mining, Retail, Fraud detection etc
- * Association between item X and Y can defined on multiple actions e.g. Co-Occurrence, Co-Purchase etc
- Depicted as X —> YWhere X and Y are disjoint sets

Expectedness	Usefulness	Interestingness	Example
Expected	Useful	Interesting	Bread & Butter
Expected	Not Useful	X	Bread & Morning News
Unexpected	Useful	Very Interesting	Diaper & Beer
Unexpected	Not Useful	X	Diaper & Beer to wrong customer segment

Motivational Example - Market Basket Analysis

- * Retail organisations collect huge amount of transactional data
- Mining Unexpected and useful associations provide new opportunity for cross sell
- * Popular example -
 - Diapers & Beer

Correlation doesn't imply Causation

- Strong correlation doesn't imply causation
- * Strongly correlated rules can be used to
 - * Grow domain knowledge
 - * Increase customer interaction and sales

Doghouse Diaries
"Better than a poke in the
eye with a sharp stick."

Problems of Associations Mining in Retail domain

Data Sparsity

- Small scale client with 2500+ products
- * Total # of possible associations = 2500*2500 = 6250000 (6.25 Million)
- * Number of associations seen in 3 months = 52,000
- * 0.83% of the total # of possible associations
- * Data sparsity also leads to a lot of associations left undiscovered.

Less frequent but Important transactions

- In market basket analysis, products with low frequency get filtered out.
- But these can be expensive products such as jewellery
- Which makes them rare but interesting associations for mining

Spurious Associations

- * Low priced products have high frequency, they can get viewed with many unrelated products too.
- * Even though these associations may have no or negative correlation, such associations get boosted many association mining algorithms.

Shopping carts can be mix of products of varied functionalities

- Customers sometimes have very focused shopping sessions
- * While, at other times it can be mix of different functionalities
 - Like grocery with electronics
- * Such transactions are misleading and should be discarded unless positive correlation is observed

Background -Association rule generation

Generating associations

- * Brute force approach
 - * Generate all associations
 - * Compute the support for every association and filter by minimum threshold
- * This approach is very compute expensive
- * Note, the support of rule X—>Y depends on the support of the corresponding items.
- * So, we filter and consider only those items which have minimum support

Apriori algorithm

- Finds frequent item sets and rules
- Uses the anti-monotone property
 - * Support of a rule never exceeds the support of it's item set.
- * Support based pruning to eliminate less frequent item set
- Confidence based pruning to generate new rules
 - * e.g.: {acd} —> {b} and {abd} —> {c} have high confidence
 - * Then we get {ad} —> {bc}

Limitations of Apriori algorithm

- Setting support and confidence requires domain experience
- * Support filter can eliminate interesting associations with low frequency
- * Confidence is not a measure of correlation, hence it can be misleading.

Generating rules for retail industry

- Retail industry follows seasonal trends
- * Not all product associations are important at all times
- * Apriori generates rules on the whole of data which is expensive
- * Association rules can be generated for products over a shorter window of interest
- * Cost of rule generation over a window is much smaller

We have rules ...

Now let's evaluate them

Basic measure of strength

- * Recall, association rule x -> y
- * Support
 - * Measures frequency of rule $\frac{n(x,y)}{N}$
- * Confidence
 - * Measures strength of the rule
 - * Conditional probability P(y/x)

Two Way Contingency Matrix

	Coffee	~Coffee	
Tea	150	50	200
~Tea	650	150	800
	800	200	1000

Calculating

$$Support = \frac{n(Tea, Coffee)}{N}$$

$$Confidence = \frac{support(Tea, Coffee)}{support(Tea)}$$

	Coffee	~Coffee	
Tea	150	50	200
~Tea	650	150	800
	800	200	1000

$$Support = \frac{150}{1000} = 0.15$$

$$Confidence = \frac{150}{200} = 0.75$$

- Support is used for pruning less frequency associations.
- Confidence is used for pruning weaker associations

Limitations from confidence value

* x- > y looks like a good rule with high support and confidence

$$P(Coffee/Tea) = \frac{150}{200} = 0.75$$

$$P(Coffee) = \frac{800}{1000} = 0.8$$

 Probability of drinking coffee decreases if the person drinks tea.

	Coffee	~Coffe	
Tea	150	50	200
~Tea	650	150	800
	800	200	1000

Lift / Interest Factor

$$Lift = \frac{support(Tea, Coffee)}{support(Tea) * support(Coffee)}$$

$$Lift = \frac{likelihood\ of\ rule}{likelihood\ of\ individual\ probabilities}$$

$$Lift = \frac{0.15}{0.2 * 0.8} = 0.94$$

 Tea and Coffee are Negatively correlated

Score	Correlation
Lift > 1	Positive
Lift == 1	zero
Lift < 1	Negative

Point wise Mutual Information

$$PMI = log2 \frac{support(x, y)}{support(x) * support(y)}$$

$$PMI = log2 \frac{0.15}{0.2 * 0.8} = -0.09$$

	Coffee	~Coffe	
Tea	150	50	200
~Tea	650	150	800
	800	200	1000

- * Similar to Lift
- * Log takes care of long decimal tail

Limitations of Lift & PMI

- * Recall $Lift = \frac{support(x, y)}{support(x) * support(y)}$ $PMI = log2 \frac{support(x, y)}{support(x) * support(y)}$
- Scores for low support events get boosted up
 - Causing spurious associations to bubble up

IS Measure

	В	~B	
A	880	50	930
~A	50	20	70
	930	70	1000

	Y	~Y	
X	20	50	70
~X	50	880	930
	70	930	1000

$$IS = \frac{support(x,y)}{\sqrt{support(x) * support(y)}}$$

	Sup	Conf	Lift	PMI	IS
A&B	0.88	0.95	1.02	0.025	0.94
X&Y	0.02	0.29	4.08	2.029	0.2

Normalised PMI

	В	~B	
A	880	50	930
~A	50	20	70
	930	70	1000

	Y	~Y	
X	20	50	70
~X	50	880	930
	70	930	1000

$$NPMI = \frac{PMI}{log2(support(x,y))}$$

	Sup	Conf	Lift	PMI	IS	NPMI
A&B	0.88	0.95	1.02	0.025	0.94	-0.14
X&Y	0.02	0.29	4.08	2.029	0.2	-0.36

Transitive/Indirect rule mining

- Data sparsity leads to a lot of important associations left undiscovered
- * Can we mine rare/undiscovered associations?

Indirect Association Mining

- * Proposed by Tan et al.
- * Non existant or rare pair {M,X}
- * High dependence on mediator M
- * 0 => independence
- * 1 => complete dependence
- * (0,1] => positively correlated

$$\mu = \frac{P(M, X) - P(M)P(X)}{P(M, X) - (1 - P(X))}$$

Semantic Association Mining

- * Hyper Graph by Liu et al.
- Hyper edge: edge connecting to any number of vertices
- * Two items are semantically associated if similarity measure > threshold
- * Find all similar k item sets
- * Rank similar k item sets

Key takeaway from evaluating interestingness measures

- * No one measure that works for all
- Main problem of retail data
 - * Data sparsity/high undiscovered associations
 - * Spurious associations
 - * Mixed purchase intend
- * What works best is the combination of measures

Thank You!