Low conductivity

High conductivity

Huvgens

Adding Huyge

sources
Fresnel approxim

Fraunhofer approximation

Reflection from metals

We've talked about reflectance and transmittance from dielectrics. We also need to take a long look in the mirror and consider how light waves interact with conductors, which obey Ohm's law of I=(1/R)V or $J=\sigma E$ in terms of a current density J, electric field E, and conductance σ . With this, Maxwell's equations in 1D become

$$\frac{\partial^2}{\partial x^2}E = \mu\epsilon \frac{\partial^2 E}{\partial t^2} + \mu\sigma \frac{\partial E}{\partial t}$$
 (1)

$$\frac{\partial^2}{\partial x^2}B = \mu\epsilon \frac{\partial^2 B}{\partial t^2} + \mu\sigma \frac{\partial B}{\partial t}$$
 (2)

Since *E* and *B* have the same form, we'll consider *E* only in what follows. We'll now do our usual thing of considering solutions of the form $E = E_0 e^{-i(kx - \omega t)}$.

Some conductivities σ in $1/(\Omega \cdot \text{meters})$: undoped silicon 1.2×10^3 , aluminum 3.77×10^7 , copper 5.96×10^7 , silver 6.30×10^7 . Aluminum: magnetic susceptibility is $\chi_m = (\mu/\mu_0 - 1) = 2.1 \times 10^{-5}$. Fresnel approximat

Fraunhofer approximation To consider solutions of the form $E = E_0 e^{-i(kx - \omega t)}$, we need to take some derivatives:

$$\frac{\partial}{\partial t}E = (i\omega)E_0e^{-i(kx-\omega t)}$$

$$\frac{\partial^2}{\partial t^2}E = \frac{\partial}{\partial t}(i\omega)E_0e^{-i(kx-\omega t)} = (-\omega^2)E_0e^{-i(kx-\omega t)}$$

$$\frac{\partial}{\partial x}E = (-ik)E_0e^{-i(kx-\omega t)}$$

$$\frac{\partial^2}{\partial x^2}E = \frac{\partial}{\partial x}(-ik)E_0e^{-i(kx-\omega t)} = (-k^2)E_0e^{-i(kx-\omega t)}$$
(3)

We can use these results for expanding Eq. 1:

$$\begin{split} \frac{\partial^2}{\partial x^2}E &= \mu\epsilon\frac{\partial^2 E}{\partial t^2} + \mu\sigma\frac{\partial E}{\partial t} \\ (-k^2)E_0e^{-i(kx-\omega t)} &= (-\omega^2)\mu\epsilon E_0e^{-i(kx-\omega t)} + \mu\sigma(i\omega)\,E_0e^{-i(kx-\omega t)} \end{split}$$

Making wavefror

Huygens construction

Adding Huygen

Fresnel approxima

From the differential equation of Eq. 4, we have

$$k^{2} = \omega^{2} \mu \epsilon - i \omega \mu \sigma$$

$$k = \omega \sqrt{\mu \epsilon} \sqrt{1 - i \frac{\sigma}{\omega \epsilon}} = k_{r} - i k_{i}$$
(5)

so that wave propagation becomes

$$E_0 e^{-i(kx - \omega t)} = E_0 e^{-i(k_r x - \omega t)} e^{-k_i x}$$
(6)

with a phase velocity of $v_p = \omega/k_r$ and an amplitude attenuation of $e^{-k_i x}$.

Making wavefron

Huygens construction

Adding Huygen sources

Fresnel approximation

Again, we had from Eq. 5 the form

$$k = \omega \sqrt{\mu \epsilon} \sqrt{1 - i \frac{\sigma}{\omega \epsilon}} = k_r - i k_i$$

How should we handle the factor $\sqrt{1 - i\sigma/(\omega\epsilon)}$? At optical frequencies ($\lambda = 500$ nm corresponds to $\omega = 2\pi c/\lambda = 3.8 \times 10^{15}$ rad/sec), let's consider values for two different materials:

Aluminum:
$$\frac{\sigma}{\omega\epsilon_0} = \frac{3.77\times 10^7}{3.8\times 10^{15}\cdot 8.85\times 10^{-12}} = 1.1\times 10^3$$
 Undoped silicon:
$$\frac{\sigma}{\omega\epsilon} = \frac{1.2\times 10^3}{3.8\times 10^{15}\cdot 16\cdot 8.85\times 10^{-12}} = 2.2\times 10^{-3}$$

where for silicon we have a dielectric constant of $k = \epsilon/\epsilon_0 = 16$. As you can see, we have two entirely different limits for $\sqrt{1 - i\sigma/(\omega\epsilon)}$.

Metals: low conductivity limit

Let's first consider the case of low conductivity $\sigma \ll \omega \epsilon$, such as the case of undoped silicon. In that case, we can approximate k from Eq. 5 as

$$k = \omega \sqrt{\mu \epsilon} \sqrt{1 - i \frac{\sigma}{\omega \epsilon}} \simeq \omega \sqrt{\mu \epsilon} \left(1 - i \frac{\sigma}{2\omega \epsilon} \right)$$
 (7)

where we've used the binomial expansion. The phase velocity then becomes

$$v = \frac{\omega}{k_r} = \frac{\omega}{\omega\sqrt{\mu\epsilon}} = \frac{c}{n} \tag{8}$$

but the light intensity is attenuated according to $(e^{-k_ix})^2 = e^{-2k_ix}$ with a 1/e attenuation distance of

$$\frac{1}{2k_i} = \frac{2\omega\epsilon}{\omega\sigma\sqrt{\mu\epsilon}} = \frac{2}{\sigma}\sqrt{\frac{\epsilon}{\mu}}.$$
 (9)

For undoped silicon, $1/(2k_i) = 4.4 \times 10^{-6}$ m or 4.4 μ m.

Low conductivity

High conductivity

waking wa

construction

Adding Huygens sources

Fraunhofer approximation

Metals: high conductivity limit

If instead we consider the high conductivity limit of $\sigma\gg\omega\epsilon$ (which we saw earlier was the case for aluminum), we can approximate k from Eq. 5 as

$$k = \omega \sqrt{\mu \epsilon} \sqrt{1 - i \frac{\sigma}{\omega \epsilon}} \simeq \omega \sqrt{\mu \epsilon} \sqrt{-i \frac{\sigma}{\omega \epsilon}} = \sqrt{-i \sigma \mu \omega}.$$
 (10)

Now $\sqrt{-i} = \sqrt{e^{-i\pi/2}} = (e^{-i\pi/2})^{1/2} = e^{-i\pi/4} = (1-i)/\sqrt{2}$, so we have $k = k_r - ik_i$ with $|k_r| = |k_i|$, and

$$k_r = -k_i = \sqrt{\frac{\sigma\mu\omega}{2}}. (11)$$

The wave intensity is attenuated according to $(e^{-i(k_r-ik_i)x})^2 = (e^{-ik_rx}e^{-k_ix})^2 \Rightarrow e^{-2k_ix}$ with a 1/e attenuation distance of

$$\frac{1}{2k_i} = \frac{\sqrt{2}}{2\sqrt{\sigma\mu\omega}} = \frac{1}{\sqrt{2\sigma\mu\omega}} \tag{12}$$

which works out to be only 1.67×10^{-9} meters or 16.7 Å, corresponding to the distance of a few atoms! Mirrors need only a very thin metal coating!

Metals: high conductivity limit II

The index of refraction in this case is

$$n = \frac{c}{v_p} = \frac{k}{\omega \sqrt{\mu_0 \epsilon_0}} = \frac{1}{\omega \sqrt{\mu_0 \epsilon_0}} \sqrt{\frac{\sigma \mu \omega}{2}} \frac{(1-i)}{\sqrt{2}} = \sqrt{\frac{\sigma}{\omega \epsilon_0}} \frac{(1-i)}{2}$$
 (13)

where we have assumed $\mu = \mu_0$ or $\chi_m \ll 1$. For aluminum with green light, we have n = 16.7(1 - i).

Reflection coefficients for metals

The Fresnel equations gave reflection coefficients of

$$r_{\text{TE}} = \frac{\cos \theta - \sqrt{n^2 - \sin^2 \theta}}{\cos \theta + \sqrt{n^2 - \sin^2 \theta}}$$
 (14)

$$r_{\text{TM}} = \frac{n^2 \cos \theta - \sqrt{n^2 - \sin^2 \theta}}{n^2 \cos \theta + \sqrt{n^2 - \sin^2 \theta}}$$
(15)

If we have $n \gg 1$, the $\sin \theta$ and $\cos \theta$ terms will be small compared to n and the reflectivity will approach $R \to 1$.

Making wavefronts

Waves from point sources

• The wave equation for a plane wave is

$$\psi = \psi_0 \exp\left[-i(\vec{k}\cdot\vec{z} - \omega t)\right]. \quad (16)$$

 For a spherical wave, the wave equation is

$$\psi = \psi_0 \frac{\lambda}{r} \exp\left[-i(kr - \omega t)\right]. \quad (17)$$

Notice that k is no longer a vector because the spherical wave goes every which way; no direction is defined.

How can we connect the two?

The Huygens construction

High conductivity

Making wavefro

Huygens construction

Adding Huygen

Fresnel approximation

- Christian Huygens (1629–1695): consider many point sources placed next to each other and in phase. Looks like a plane wave!
- Consider many point sources but with a phase delay/advance, and also magnitude modulation, that depends on position. Refer to this magnitude and phase modulation (which is complex) as $\tilde{g}(x_0, y_0)$.
- In other words, we treat each point in the input plane $(x_0, y_0, 0)$ as a Huygens point source with amplitude $\tilde{g}(x_0, y_0)$.

Adding Huygens sources

To get the amplitude $\psi(x, y, z)$ at a downstream point (x, y, z), we want to add up all the Huygens point sources (ignoring the time dependance term $\exp[i\omega t]$):

$$\psi(x, y, z) = \psi_0 \frac{\lambda}{A} \int_{x_0} \int_{y_0} \tilde{g}(x_0, y_0) \frac{\exp[-ikr]}{r} \cos \theta.$$
 (18)

The 1/A term is for an integration area to cancel out $\int \int dx_0 dy_0$, and the $\cos \theta$ term is an obliquity factor which we can normally ignore. Since ψ is an amplitude (amplitude=magnitude $\exp[iphase]$), the irradiance E is given by $E = \psi \psi^{\dagger}$.

sources Fresnel approximation

Fraunhofer approximation

Adding Huygens sources II

The radius r from the spherical wave source is given by

$$r = \sqrt{z^2 + (x - x_0)^2 + (y - y_0)^2} = z\sqrt{1 + \frac{(x - x_0)^2}{z^2} + \frac{(y - y_0)^2}{z^2}}.$$
(19)

Propagation distances

Again, from Eq. 19 we have

$$r = \sqrt{z^2 + (x - x_0)^2 + (y - y_0)^2} = z\sqrt{1 + \frac{(x - x_0)^2}{z^2} + \frac{(y - y_0)^2}{z^2}}$$

In the limit of $[(x-x_0)^2 + (y-y_0)^2 \ll z^2$, we can write this as

$$r \simeq z \left[1 + \frac{(x - x_0)^2}{2z^2} + \frac{(y - y_0)^2}{2z^2} - \frac{(x - x_0)^4}{8z^4} - \frac{(y - y_0)^4}{8z^4} + \dots \right]$$
$$\simeq z \left[1 + \frac{x^2 + y^2}{2z^2} + \frac{x_0^2 + y_0^2}{2z^2} - \frac{xx_0 + yy_0}{z^2} \right]$$
(20)

The second version of the above assumes the *Fresnel approximation*, where we ignore the x^4/z^4 -type terms. Let $\rho = \sqrt{(x-x_0)^2 + (y-y_0)^2}$ represent transverse distances; the Fresnel approximation assumes

$$\frac{2\pi z}{\lambda} \frac{\rho^4}{8z^4} \ll \frac{\pi}{2} \qquad \text{or} \qquad z^3 \gg \frac{\rho^4}{2\lambda} \tag{21}$$

Numerical example

- Again, the Fresnel approximation assumes $z^3 \gg \rho^4/(2\lambda)$. If we say that ρ =0.5 mm and λ = 500 nm, we require $z^3 \gg (0.4\text{mm})^3$.
- Since the numerical aperture of a lens is defined as N.A.= $n \sin \theta$, where θ is the angle subtended by the lens relative to the optical axis, in this example we effectively have N.A. $\ll 1 \sin(\arctan \rho/z)$ or N.A. $\ll 0.4$ if we pick z > 1 mm.
 - This means that high resolution microscope objectives which have large N.A. must be designed without the use of the Fresnel approximation.
 - Note: one can relate the numerical aperture and the "f number" or f#—which is the focal length divided by diameter—of a lens with N.A.= 2/f#.

Fresnel approximation II

Again, we want to write the expression of Eq. 18 of

$$\psi(x, y, z) = \psi_0 \frac{\lambda}{A} \int_{x_0} \int_{y_0} \tilde{g}(x_0, y_0) \frac{\exp[-ikr]}{r} \cos \theta$$

using the Fresnel approximation version (Eq. 20) of expanding the source-to-measurement distance r giving

$$kr \simeq \frac{2\pi z}{\lambda} \left[1 + \frac{x^2 + y^2}{2z^2} + \frac{x_0^2 + y_0^2}{2z^2} - \frac{xx_0 + yy_0}{z^2} \right]$$

We'll use this expansion for r in the $\exp[ikr]$ phase term, while in the 1/r magnitude terms we'll simply use 1/z. We then have

$$\psi(x, y, z) = \psi_0 \frac{\lambda}{z} \frac{1}{A} \int_{x_0} \int_{y_0} \tilde{g}(x_0, y_0)$$

$$\exp \left[-i \frac{2\pi z}{\lambda} - i \pi \frac{x^2 + y^2}{\lambda z} - i \pi \frac{x_0^2 + y_0^2}{\lambda z} + i 2\pi \frac{x x_0 + y y_0}{\lambda z} \right]$$
(22)

ow conductivity

Making wav

Huygens construction

Adding Huygens sources

Fresnel approximation Fraunhofer approximation

Fresnel approximation III

Again, we have from Eq. 22 the expression

$$\psi(x, y, z) = \psi_0 \frac{\lambda}{z} \frac{1}{A} \int_{x_0} \int_{y_0} \tilde{g}(x_0, y_0)$$

$$\exp\left[-i \frac{2\pi z}{\lambda} - i \pi \frac{x^2 + y^2}{\lambda z} - i \pi \frac{x_0^2 + y_0^2}{\lambda z} + i 2\pi \frac{x x_0 + y y_0}{\lambda z} \right]$$

Look at the terms that depend on only *x* and *y*: they do not depend on the variables of integration, so we can pull them out of the integral, giving

$$\psi(x, y, z) = \psi_0 \frac{\lambda}{z} \frac{1}{A} \exp\left[-i\frac{2\pi z}{\lambda}\right] \exp\left[-i\pi \frac{x^2 + y^2}{\lambda z}\right]$$

$$\int_{x_0} \int_{y_0} \tilde{g}(x_0, y_0) \exp\left[-i\pi \frac{x_0^2 + y_0^2}{\lambda z}\right] \exp\left[i2\pi \frac{xx_0 + yy_0}{\lambda z}\right]$$
(23)

This is the Fresnel-Kirchoff diffraction equation. The prefactor phase terms only matter if we talk about light amplitudes; if we're just using ψ to calculate $I=\psi^*\psi$, we can forget about those phase factors outside the integral.

Low conductivity

Making wa

Huygens construction

Adding Huygen

Fraunhofer

The Fraunhofer approximation

• What if the object at the input plane is a relatively small pinhole, such that $(x_0^2 + y_0^2)/(\lambda z)$ never reaches a very large value?

• This condition can be written as

$$z \gg 4 \frac{x_0^2 + y_0^2}{\lambda} \tag{24}$$

If we again use $x_0 = 0.4$ mm and $\lambda = 500$ nm, we require $z \gg 2$ mm. We might satisfy this condition in many cases! This condition is known as the *Fraunhofer approximation*.

• We'll also ignore the phase factor $\exp[-i2\pi z/\lambda]$, since it just tells us that the wavefield changes phase by 2π every time we travel a wavelength in distance.

Huygens constructio

Adding Huygen sources

Fresnel approxima

Fraunhofer approximation

Fraunhofer approximation II

In the Fraunhofer approximation of Eq. 24, and ignoring phase factors outside the integral because they will disappear when calculating $I=\psi^*\psi$, we can write the Fresnel-Kirchoff diffraction integral of Eq. 23 as

$$\psi(x, y, z) \simeq \psi_0 \frac{\lambda}{z} \frac{1}{A} \int_{x_0} \int_{y_0} \tilde{g}(x_0, y_0) \exp\left[i2\pi \left(\frac{xx_0}{\lambda z} + \frac{yy_0}{\lambda z}\right)\right] dx_0 dy_0$$
 (25)

Remember that this just results from adding up all the Huygens point sources with their magnitude and phase variations $\tilde{g}(x_0, y_0)$. The form of this equation should ring a bell, however!

