Prof. Dr. Ece Olcay Güneş Doç. Dr. Berna Örs Yalçın Öğr. Gör. Ali Bahadır

EHB342E LOGIC DESIGN LABORATORY

Final Exam

- Students will solve the final exam version corresponding to their last digit of their ITU Student ID Number as explained below:
 - last digit of Student ID Number $0 \rightarrow$ Final Exam Version 0
 - last digit of Student ID Number $1 \rightarrow$ Final Exam Version 1
 - last digit of Student ID Number $2 \rightarrow$ Final Exam Version 2
 - last digit of Student ID Number $3 \rightarrow$ Final Exam Version 3
 - last digit of Student ID Number 4 → Final Exam Version 4
 - last digit of Student ID Number $5 \rightarrow$ Final Exam Version 5
 - last digit of Student ID Number $6 \rightarrow$ Final Exam Version 6
 - last digit of Student ID Number $7 \rightarrow$ Final Exam Version 7
 - last digit of Student ID Number $8 \rightarrow$ Final Exam Version 8
 - last digit of Student ID Number $9 \rightarrow$ Final Exam Version 9
- If a student submit solutions for a wrong final exam version based on the last digit of the Student ID Number, his/her final exam will be invalid.
- The exam is open-book and open-lecture notes. Exams are exclusive to students and they are expected to work on the solutions on their own.
- The students are expected to abide with the ITU Honor Code http://www.sis.itu.edu.tr/tr/yonetmelik/AkademikOnurSozuEsaslar.html
- Solutions in <u>PDF</u> format are required to be uploaded to the Ninova system before the exam period ended. There will not be extra time for uploading the solutions.
- Each question should be solved on a different page, each page of the solution papers has to be numbered and should have name, last name and Student ID number on top right corner.
- The lecturer will open a Zoom session at the beginning of the exam for announcements and questions about the exam. The Zoom session will end at the end of exam period.
- By uploading the solutions, students here confirm that they have understood the instructions and will act accordingly.

FINAL EXAM 4

Experiment 1

Use the gates mentioned in the following table for the square boxes shown in the following figure.

S.1	S.2	S.3
AND	NAND	EXOR

- a) Find the **truth table** of circuit.
- b) Find the $minimal \ sum \ of \ product \ representation \ of \ the \ output \ function \ F$ of the circuit.

Experiment 2

- a) Find the minimal sum of product representation of the Boolean functions of the outputs x and y given in the following truth table by using Karnaugh Maps.
- b) Draw the circuits using minimum number of gates

	h	_	a		
a	b	C	d	X	y
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	X
0	0	1	1	0	0
0	1	0	0	X	X
0	1	0	1	1	1
0	1	1	0	X	0
0	1	1	1	0	0
1	0	0	0	X	X
1	0	0	1	0	1
1	0	1	0	1	1
1	0	1	1	0	X
1	1	0	0	X	1
1	1	0	1	1	1
1	1	1	0	X	0
1	1	1	1	0	X

Experiment 3

Draw the schematic diagram of circuit which realizes function F=x'y'z+xz by using 3 input active-0 output **DECODER** and necessary **AND**, **OR**, **EXOR** and **NOT** gates.

Experiment 4

- a) Find the optimum sum of product representation of the Boolean functions for the X, Y and Z outputs of a 1-bit comparator (1-bitC) which is used for comparing 2 1-bit numbers and defined by the following truth table.
- b) Draw the 1-bitC circuit by using the optimal Boolean function that you found in (a).
- c) Draw the circuit for a 2-bit comparator (2-bitC) which is used for comparing 2 2-bit positive numbers by using the 1-bitC from (b) and necessary other logic gates.

A	В	X A>B	Y A=B	Z A <b< th=""></b<>
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Experiment 5

Figure 1

- a) Determine the flip-flop input (D1, D2) and output (y) functions that given in Figure 1.
- b) Find the state equations by using D-type flip-flop's characteristic equations.
- c) Fill the state transition table of the circuit.

Experiment 6

We wish to design a synchronous sequential circuit whose state diagram is shown below. You will use JK-type flip-flops in your design.

- a) Encode the states
- b) Obtain the state transition table
- c) Draw the circuit

Experiment 7

Figure 2

- a) Design a 9 to 99 counter by using two 74161 IC (synchronous counter) as shown in the figure. You are allowed to use all the logic gates.
- b) Explain the circuit operation briefly.