

Introdução Inteligência Computacional

Profa. Dra. Ana Paula Abrantes de Castro e Shiguemori anapaula.acs@ifsp.edu.br
Instituto Federal de Educação, Ciência e Tecnologia – IFSP

Dr. Elcio Hideiti Shiguemori elcio@ieav.cta.br Instituto de Estudos Avançados - IEAv

Apresentação Professora

- Nome:
 - Ana Paula Abrantes de Castro e Shiguemori
- Biografia
 - Graduada em Engenharia da Computação pela UBC;
 - Mestre em Computação Aplicada pelo INPE (2003);
 - Doutora em Computação Aplicada pelo INPE (2009);
- Áreas de Interesse
 - Redes Neurais Artificias;
 - Lógica Nebulosa;
 - Processamento Digital de Imagens
 - Navegação Autônoma
 - Robótica

Apresentação Professora

Doutorado em Computação Aplicada

• *Título:* Restauração de Imagens com operadores modelados por redes neurais artificiais.

Mestrado em Computação Aplicada

 Título: Abordagens por Redes Neurais para Detecção de Bordas em Navegação Autônoma por Imagens

Graduação em Engenharia da Computação

Título: Navegação Autônoma por Imagens com Lógica Nebulosa.

Apresentação Alunos

- Qual o seu nome?
- De onde você é?
- Qual a sua ocupação?
- E porque você resolveu fazer computação?
- Do que você mais gosta em computação?

Introdução a Inteligência Computacional

Curso: Análise e Desenvolvimento de Sistemas 4º. Semestre - IICI4 – 4 aulas Semanais

Ementa

- A disciplina aborda uma visão detalhada e comparativa das abordagens "não simbólicas" de Inteligência Artificial, também conhecidas como Inteligência Computacional, envolvendo a abordagem conexionista, a evolutiva e a lógica nebulosa, procurando indicar em que classe de problemas cada abordagem é mais adequada.
- Na conexionista são estudados vários modelos de redes, descrevendo as características, formas de aprendizado e aplicações.
- Na evolutiva são apresentados e comparados diferentes algoritmos evolucionários.
- Na nebulosa é estudada como uma ferramenta para manipulação de conhecimento incerto na solução de vários problemas.

1 OBJETIVO

- Introduzir conceitos básicos:
 - Redes Neurais
 - Algoritmos Genéticos
 - Lógica Nebulosa;
- Exemplificar a modelagem e aplicação em problemas reais;
- Apresentar softwares de ensino próprios (ICADEMO, WinGenesis, Fuzzy Rules e Cluster Analysis)
- Apresentar softwares comerciais (Evolver, WEKA e MATLAB/Toolboxes de RNs e LN).

Conteúdo Programático

- Introdução à Inteligência Computacional
- Abordagens da Inteligência Artificial
- Abordagem Conexionista
- Abordagem Evolucionária
- Lógica Nebulosa

Bibliografia Básica

- HAYKIN, Simon. Redes Neurais: Princípios e Práticas. Bookman.
- MEDEIROS, L.F. Inteligência Artificial Aplicada: uma abordagem introdutória. São Paulo: Intersaberes.
- YAZDANBAKHSH, O.; DICK, S. A systematic review of complex fuzzy sets and logic. Fuzzy Sets and Systems, Vol.338.

Bibliografia Complementar

- BRAGA, A.P. et. al. Redes Neurais Artificiais: Teoria e Prática. Editora LTC, Rio de Janeiro.
- JOHAR, A.; JAIN, S.; GARG, P. Transit network design and scheduling using genetic algorithm – a review. An International Journal of Optimization and Control, Vol.6(1).
- LIU, D. Artificial Intelligence Review. An International Science and Engineering Journal. Springer.
- LUGER, G. F. Inteligência Artificial. São Paulo: Pearson.
- SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural networks, vol.61.

Estratégia de Trabalho

- A disciplina será desenvolvida expositivas, sendo incentivada a participação dos alunos nos questionamentos e discussões apresentadas, acompanhadas de metodologias que privilegiam a integração entre teoria e prática, entre eles:
 - estudos de casos
 - elaboração de trabalhos práticos
 - e produção de textos

Estratégia de Trabalho

- Pelo menos três avaliações contínuas e diversificadas no semestre: exercícios, provas escritas, avaliações escritas, avaliações orais, trabalhos, relatórios, projetos, autoavaliação, fichas de observação, etc.
 - Provas escritas individuais e sem consulta (PE)
 - Exercícios em sala de aula e pesquisas teóricas (ES)
 - Desenvolvimento do projeto prático (PP)

Estratégia de Trabalho

- Pelo menos três avaliações contínuas e diversificadas no semestre: exercícios, provas escritas, avaliações escritas, avaliações orais, trabalhos, relatórios, projetos, autoavaliação, fichas de observação, etc.
 - Provas escritas individuais e sem consulta (PE)
 - Exercícios em sala de aula e pesquisas teóricas (ES)
 - Desenvolvimento do projeto prático (PP)

Perspectiva da Disciplina

- Combinar técnicas de Inteligência Computacional em aplicações:
 - engenharia
 - engenharia aeroespacial
 - sensoriamento remoto
 - problemas inversos
 - dados médicos
 - imagens aéreas
 - imagens médicas
 - análise de bens

Motivação

A Reconhecedor de Faces

Reconhecedor de Faces

Sistema de Controle de Acesso

Recuperação de Perfil de Temperatura

Perfil da Temperatura

Perfil da Temperatura

Distribuição da Temperatura

Temperatura medida no sensor no ponto 0.025

Recuperação de Dados Atmosféricos

Navegação Área Autônoma

Processamento de Imagens

Detecção de Bordas

É uma ferramenta importante no processo de análise de imagens;

Automação industrial

segurança

biologia

astronomia área militar

Monitoramento de tráfego

sensoriamento remoto

navegação autônoma

robótica

medicina

RNAs em Detecção de Bordas

^orocessamento de Imagens

Generalização da RNA

RNAs Implementadas

- Aprendizagem supervisionada
 - RPMC
 - RBF Correção do erro
 - LVQ 1
 - LVQ2 Competitiva
- Aprendizagem não-supervisionada
 - ART 1
 - ART 2
 - Maxnet
 Competitiva
 - BAM
 - FAM

Resultados - 26 padrões e Limiar de variância =50

Restauração de Imagens

Obtenção da imagem ideal a partir da versão degradada

Objetivos:

- Melhoria de qualidade nas imagens para visualização e interpretação
- > Remoção (minimização) de ruído

Técnicas:

- Clássicas: Wiener, Filtragem Inversa e Mediana (Gonzalez et. al.).
- Neural: Abordagem Multiscale (Castro et. al. 2008)

Abordagem Inversa

Recuperar uma imagem a partir de sua versão degradada

Restauração da Imagem

Resultado

> **Objetivo**: Manter um veículo em movimento em uma trajetória desejada, sem intervenção de operadores externos.

Necessidades:

- Dobter informações do ambiente durante o movimento.
- Replanejar a trajetória.

on bord

PDI: Automato Controlador: ANN - MLP/BP Ctrl. fisico: C++ (AC 0.1)

T. Espera: SR(2) MW(1)

Tempo Total: 3' 40"

Data: 27-fev-2004

Referências Bibliográficas

- José Demísio Simões da Silva Notas de Aula
- Ana Paula A. C. Shiguemori Notas de Aula
- Elcio Hideiti Shiguemori Notas de Aula