Stat 201A, Fall 2012 HOMEWORK 6 (due Thursday 9/20)

All problems below refer to a homogeneous Poisson process with rate λ . As in class, $N_{(a,b)}$ is the number of arrivals in the time interval (a,b), and T_r is the time till the rth arrival.

- 1. Fix 0 < a < b < t. Given $N_{(0,t)} = n$, find the conditional joint distribution of $(N_{(0,a)}, N_{(a}, b), N_{(b,t)})$. Identify this as a well known distribution and find its parameters.
- **2.** Fix integers $r \leq n$. Find the conditional density of T_r given $N_{(0,1)} = n$. Identify this as a well known distribution and find its parameters. [Find $P(T_r \in dt | N_{(0,1)} = n)$.]
- **3.** Continuing Problem 2: Assume n > 1. Find the conditional joint density of T_1 and T_n given $N_{(0,1)} = n$. In what way is this joint density related to i.i.d. uniform random variables?
- **4.** Fix r and let $s \ge 0$ be an integer. Find the correlation between T_r and T_{r+s} . Describe the behavior of this correlation as s gets large.