Physique des particules – TD4

www.antoinebourget.org/teaching/particules/

Exercice 1: Rotations et générateurs infinitésimaux

On considère l'espace Euclidien \mathbb{R}^3 muni d'un repère orthonormé d'axes (x, y, z).

- 1. Ecrire les matrices des rotations $R_x(\theta)$, $R_y(\theta)$, $R_z(\theta)$ d'angle θ autour des trois axes dans la base canonique.
- 2. On définit le générateur infinitésimal J_x par la relation $R_x(\theta) = 1 + i\theta J_x + o(\theta)$, et similairement pour les autres axes. Calculer les matrices de ces générateurs infinitésimaux et les relations de commutations.
- 3. Donner l'interprétation géométrique de ces relations.
- 4. Donner l'expression des générateurs infinitésimaux des translations et des rotations dans l'espace des fonctions $\mathbb{R}^3 \to \mathbb{R}$ en terme d'opérateurs différentiels.
- 5. Calculer les relations de commutations entre ces générateurs.

Exercice 2 : Théorème de Noether

On considère un champ scalaire complexe décrit par la densité lagrangienne

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^* (\partial^{\mu} \phi) - \frac{1}{2} m^2 |\phi|^2.$$

- 1. Ecrire les équations d'Euler-Lagrange pour ce lagrangien.
- 2. Identifier un groupe de symétrie globale U(1).
- 3. Montrer que la quantité $j_{\mu} = \phi^* \partial_{\mu} \phi \phi \partial_{\mu} \phi^*$ satisfait $\partial^{\mu} j_{\mu} = 0$ et interpréter cette equation comme une loi de conservation en séparant les parties spatiales et temporelles de cette équation.
- 4. Comparer avec l'équation de conservation de la charge électrique dans la théorie de Maxwell. Quel est l'analogue de j_{μ} dans ce cas ?

Exercice 3: Le groupe SU(2)

- 1. Donner des bases des espaces vectoriels des matrices hermitiennes et antihermitiennes.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{C})$. Montrer que

$$\det(I_n + \epsilon M) = 1 + O(\epsilon^2) \Leftrightarrow \operatorname{Tr}(M) = 0. \tag{1}$$

- 3. On rappelle que $SU(2) = \{U \in \mathcal{M}_2(\mathbb{C}); U^{\dagger}U = I_2, \det U = 1\}$. En écrivant $U = I_2 + \epsilon M$, déterminer l'espace vectoriel réel auquel doit appartenir M pour que $U \in SU(2)$ au premier ordre en ϵ . Cet espace vectoriel, muni du commutateur des matrices comme crochet de Lie, est l'algèbre de Lie réelle $\mathfrak{su}(2)$.
- 4. Montrer que si $M \in \mathfrak{su}(2)$ alors $\exp(M) \in SU(2)$.
- 5. Montrer que $\{i\sigma_x, i\sigma_y, i\sigma_z\}$ est une base de $\mathfrak{su}(2)$.
- 6. Montrer que $SU(2) = \left\{ \begin{pmatrix} \alpha & \beta \\ -\beta^* & \alpha^* \end{pmatrix}; |\alpha|^2 + |\beta|^2 = 1 \right\}$. En déduire que SU(2) est topologiquement une sphère S^3 .
- 7. Montrer qu'il existe une matrice $S \in SL_2(\mathbb{C})$ telle que

$$\forall U \in SU(2), \ U^* = S^{-1}US. \tag{2}$$