Рекуррентные нейронные сети

Классификация текстов

Задача классификации

CNN

Doc2Vec

Классификация текстов с помощью RNN

Зачем нужен еще один тип сетей?

Наш путь

Картинка из лекции Бурцева М. С.

Наш путь

Картинка из лекции Бурцева М. С.

Картинка из лекции Бурцева М. С.

Зачем нужен еще один тип сетей?

Примеры последовательностей в данных:

- Видео
- Аудио / музыка
- Текст

Sequence tagging

Дано:

- ▶ D множество размеченных последовательностей (x, y)
- ▶ $x = \{x_1, ..., x_n\}$ последовательность входных объектов
- ▶ $y = \{y_1, ..., y_n\}$ последовательность выходных векторов
- $ightharpoonup x_i \in X, y_i \in Y$

Необходимо: по входной последовательности предсказать элементы выходной последовательности

$$\hat{Y} = rg \max_{Y} p(Y|X)$$

RNN

$$h_t$$
 — скрытое состояние b момент t $h_t = f(Vx_t + Wh_{t-1} + b)$ $\hat{y}_t = g(Uh_t + \hat{b})$

Activation functions

Sigmoid	Tanh	RELU
$g(z)=rac{1}{1+e^{-z}}$	$g(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$	$g(z) = \max(0,z)$
$\begin{array}{c c} 1 \\ \hline \frac{1}{2} \\ \hline -4 & 0 & 4 \end{array}$	$ \begin{array}{c c} 1 \\ \hline -4 & 0 \\ \hline -1 \\ \end{array} $	

RNN

Обучение сети — минимизация суммарных потерь:

$$\sum_{t=1}^n \mathcal{L}_t(y_t,\hat{y}_t)
ightarrow \min_{V,U,W,b,\hat{b}}$$

Пример

$$h_t = f\left(Vx_t + Wh_{t-1} + b\right)$$

$$|h| = 10, |x| = 30$$

От какого количества обучаемых весов зависит h_5 ?

От какого количества обучаемых весов зависит h_2 ?

Пример

$$h_t = f\left(Vx_t + Wh_{t-1} + b\right)$$

$$|h| = 10, |x| = 30$$

$$V \in \mathbb{R}^{10 imes 30}, W \in \mathbb{R}^{10 imes 10}, b \in \mathbb{R}^{10 imes 1}$$

RNN: градиенты

Обучаемые параметры: V, U, W, b, b

Градиент по W:

$$\frac{d\mathcal{L}_t}{dW} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{dh_t}{dW}$$

RNN: градиенты

Обучаемые параметры: V, U, W, b, b

Градиент по W:

$$rac{d\mathcal{L}_t}{dW} = rac{\partial \mathcal{L}_t}{\partial \hat{y}_t} rac{\partial \hat{y}_t}{\partial h_t} rac{dh_t}{dW}$$

$$\frac{dh_t}{dW} = \sum_{k=1}^t \left(\prod_{i=k+1}^t rac{\partial h_i}{\partial h_{i-1}}
ight) rac{\partial h_k}{\partial W}$$

RNN: проблемы

Взрыв градиента:

$$\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \to \infty$$

Затухание градиента:

$$\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \to 0$$

Популярные способы борьбы с взрывом/затуханием:

- ► Gradient clipping (против взрыва)
- ► Модели LSTM и GRU (против затухания)

Gradient clipping

Ограничение нормы градиента:

$$\left. egin{aligned} ext{if } \left| \left|
abla \mathcal{L}
ight|
ight|_{ ext{clipped}} &\geq C : \
abla \mathcal{L} \leftarrow rac{C}{\left| \left|
abla \mathcal{L}
ight|} \cdot
abla \mathcal{L} \end{aligned}$$

Without clipping

With clipping

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

• Дополнительный путь течения информации (состояние сети, C₊)

• Состояние сети обновляется в каждой клетке (очень аккуратно, с возможностью не обновляться вообще)

• Forget gate: часть информации забывается (домножение на результаты сигмоиды)

• Input gate: новая информация формируется

• Input gate: новая информация прибавляется к состоянию сети

• Ouput: новое состояние сети скрещивается с $\mathbf{h}_{\text{t-1}}$ и формирует \mathbf{h}_{t}

$$z_t = [h_{t-1}, x_t]$$

$$f_t = \sigma(W_f \cdot z_t + b_f)$$

$$i_t = \sigma(W_i \cdot z_t + b_i)$$

$$\hat{C}_t = \text{th}(W_c \cdot z_t + b_c)$$

$$C_t = f_t \cdot C_{t-1} + i_t \cdot \hat{C}_t$$

$$o_t = \sigma(W_o \cdot z_t + b_o)$$

$$h_t = o_t \cdot \text{tanh}(C_t)$$

Gated Recurrent Unit (GRU)

<u>Update gate:</u> controls what parts of hidden state are updated vs preserved

Reset gate: controls what parts of previous hidden state are used to compute new content

New hidden state content: reset gate selects useful parts of prev hidden state. Use this and current input to compute new hidden content.

Hidden state: update gate simultaneously controls what is kept from previous hidden state, and what is updated to new hidden state content

$$oxed{u^{(t)}} = \sigma \left(oldsymbol{W}_u oldsymbol{h}^{(t-1)} + oldsymbol{U}_u oldsymbol{x}^{(t)} + oldsymbol{b}_u
ight)$$
 $oxed{r^{(t)}} = \sigma \left(oldsymbol{W}_r oldsymbol{h}^{(t-1)} + oldsymbol{U}_r oldsymbol{x}^{(t)} + oldsymbol{b}_r
ight)$

$$oldsymbol{ ilde{h}}^{(t)} = anh\left(oldsymbol{W}_h(oldsymbol{r}^{(t)} \circ oldsymbol{h}^{(t-1)}) + oldsymbol{U}_h oldsymbol{x}^{(t)} + oldsymbol{b}_h
ight) \ oldsymbol{h}^{(t)} = (1 - oldsymbol{u}^{(t)}) \circ oldsymbol{h}^{(t-1)} + oldsymbol{u}^{(t)} \circ oldsymbol{ ilde{h}}^{(t)}$$

LSTM и RNN

https://github.com/mmta-team/mmta_fall_2020/blob/master/04_tagging_rnn/tagging_rnn.pdf

Можно больше слоёв?

$$h_t^1, C_t^1 = LSTM(h_{t-1}^1, C_{t-1}^1, x_t)$$

 $h_t^2, C_t^2 = LSTM(h_{t-1}^2, C_{t-1}^2, h_t^1)$
 $h_t^3, C_t^3 = LSTM(h_{t-1}^1, C_{t-1}^1, h_t^2)$
 $y_t = g(Uh_t^2 + \hat{b})$

Можно больше направлений?

$$egin{aligned} \overrightarrow{h_t}, \overrightarrow{C_t} &= \overrightarrow{LSTM} \left(\overrightarrow{h_{t-1}}, \overrightarrow{C_{t-1}}, x_t
ight) \ \overleftarrow{h_t}, \overleftarrow{C_t} &= \overrightarrow{LSTM} \left(\overleftarrow{h_{t+1}}, \overleftarrow{C_{t+1}}, x_t
ight) \ y_t &= g \left(U \left[\overrightarrow{h_t}, \overleftarrow{h_t}
ight] + \hat{b}
ight) \end{aligned}$$

Sequence tagging

Где? Как?

Summary

1. LSTMs are powerful but GRUs are faster

2. Clip your gradients

3. Use bidirectionality when possible

4. Multi-layer RNNs are powerful, but you might need skip/dense-connections if it's deep