1	вариант	ф. номер	група	поток	курс	специалност
	1					
	Име:				•	

Второ контролно по Изчислимост и сложност (упр.) 14/01/2017 г.

Зал. 1 (5 точки). Дайте пример за разрешимо множество А. такова че множеството

$$B = \{ x \in \mathbb{N} \mid (\forall y \in \mathbb{N}) [\Pi(x, y) \in A] \}$$

не е полуразрешимо. Обосновете се!

 ${f 3ад.}$ 2 (5 точки). На всяко крайно множество от вида D= $\{x_0 < x_1 < \dots < x_k\}$ съпоставяме естественото число $v=2^{x_0}+2^{x_1}+\dots 2^{x_k}$. С D_v ще означаваме крайното множество с код v. Докажете, че съществува примитивно рекурсивна функция h,такава че:

$$(\forall v \in \mathbb{N})[D_v = W_{h(v)}].$$

Зад. 3 (5 точки). Докажете, че множеството

$$A = \{ x \in \mathbb{N} \mid W_x \subseteq \{0, \dots, x\} \}$$

не е полуразрешимо. (Забележска: А не е индексно множество).

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Второ контролно по Изчислимост и сложност (упр.) 14/01/2017 г.

Зал. 1 (5 точки). Дайте пример за разрешимо множество А. такова че множеството

$$B = \{ x \in \mathbb{N} \mid (\forall y \in \mathbb{N}) [\Pi(x, y) \in A] \}$$

не е полуразрешимо. Обосновете се!

 ${f 3}$ ад. ${f 2}$ (5 точки). На всяко крайно множество от вида D= $\{x_0 < x_1 < \dots < x_k\}$ съпоставяме естественото число $v=2^{x_0}+2^{x_1}+\dots 2^{x_k}$. С D_v ще означаваме крайното множество с код v. Докажете, че съществува примитивно рекурсивна функция h, такава че:

$$(\forall v \in \mathbb{N})[D_v = W_{h(v)}].$$

Зад. 3 (5 точки). Докажете, че множеството

$$A = \{x \in \mathbb{N} \mid W_x \subseteq \{0, \dots, x\}\}\$$

не е полуразрешимо. (Забележска: А не е индексно множество).

Решения

Задача 1

Знаем, че множеството $K=\{x\ | ! arphi_x(x)\}$ е полуразрешимо. Следователно, съществува примитивно рекурсивна функция ho, такава че $x\in K\iff (\exists y)[
ho(x,y)=0]$ Това означава, че $x \in \overline{K} \iff (\forall y)[\rho(x,y) \neq 0]$. Да разгледаме множество

$$A=\{\Pi(x,y)\mid \rho(x,y)\neq 0\}.$$

To е разрешимо, защото $u \in A \iff
ho(L(u), R(u)) \neq 0$. Това означава, че $x \in \overline{K} \iff (\forall y)[\Pi(x,y) \in A]$. Тогава за множеството $B = \{x \mid (\forall y \in \mathbb{N})[
ho(x,y) \neq 0]\}$, $x \in \overline{K} \iff x \in B.$

Оттук следва, че B не е полуразрешимо множество.

Задача 2

Знаем, че съществува примитивно рекурсивна функция mem, за която mem(x,v)=0, ако $x\in D_v$ и mem(x,v)=1, ако $x
ot\in D_v$. Да разгледаме изчислимата функция

$$f(v,x) \simeq \begin{cases} 0, & mem(x,v) = 0 \\ \neg !, & mem(x,v) = 1. \end{cases}$$

Ясно е, че $f(v,x)\simeq arphi_a(v,x)$, за някое a. Тогава от S_n^m теоремата следва, че $f(v,x)\simeq arphi_{S_1^1(a,v)}(x)$. Нека $h(v)=S_1^1(a,v)$. Оттук следва, че

$$Dom(\varphi_{h(v)}) = W_{h(v)} = D_v.$$

Задача 3

 $oldsymbol{\Pi}$ ърво решение. $\,\,\,$ Да разгледаме функцията

$$f(x,y) \simeq \begin{cases} 0, & x \in K \\ \neg !, & x \notin K \end{cases}$$

Брво решение. $ext{ да разгледаме функцията}$ $f(x,y)\simeq egin{cases} 0,&x\in K\\ \neg!,&x\not\in K. \end{cases}$ Понеже K е полуразрешимо множество, то f е изчислима. Ясно е, че $f(x,y)\simeq arphi_a(x,y)$, за някое a. Тогава от S_n^m теоремата следва, че $f(x,y)\simeq arphi_{S_1^1(a,x)}(y)$. Нека $h(x) = S_1^1(a, x)$. Тогава

$$\begin{split} x \in \overline{K} & \Longrightarrow Dom(\varphi_{h(v)}) = W_{h(v)} = \emptyset & \Longrightarrow W_{h(v)} \subseteq \{0, \dots, h(v)\} & \Longrightarrow h(v) \in A \\ x \in K & \Longrightarrow Dom(\varphi_{h(v)}) = W_{h(v)} = \mathbb{N} & \Longrightarrow W_{h(v)} \not\subseteq \{0, \dots, h(v)\} & \Longrightarrow h(v) \not\in A. \end{split}$$

Оттук следва, че $\overline{K} \leq_m A$. Тогава ако A е полуразрешимо, то и \overline{K} ще бъде полуразрешимо, което е противоречие.

Второ решение. Пова решение е по-общо и тази идея може да се приложи и за други задачи. Да разгледаме функцията

$$f(x,y,z) \simeq \begin{cases} 0, & y \in K \ \lor \ z \leq S^1_1(x,y) \\ \neg !, & \text{иначе.} \end{cases}$$

От теоремата за рекурсивна определимост знаем, че съществува a, такова че: $\varphi_a(y,z)\simeq f(a,y,z)$. Тогава от S_n^m теоремата следва, че $f(a,y,z)\simeq \varphi_{S_1^1(a,y)}(z)$. Нека $h(y) = S_1^1(a, y)$. Тогава

$$y \in \overline{K} \implies Dom(\varphi_{h(y)}) = W_{h(y)} = \emptyset \implies W_{h(v)} = \{0, \dots, h(v)\} \implies h(v) \in A$$

$$y \in K \implies Dom(\varphi_{h(v)}) = W_{h(v)} = \mathbb{N} \implies W_{h(v)} \not\subseteq \{0, \dots, h(v)\} \implies h(v) \not\in A.$$

Оттук следва, че $\overline{K} \leq_m A$. Тогава ако A е полуразрешимо, то и \overline{K} ще бъде полуразрешимо, което е противоречие.