

Napredni algoritmi i strukture podataka

Što je računalna geometrija?

- Definicija: sistematsko proučavanje struktura podataka i algoritama u geometriji
- Primjeri:
 - Računalna grafika jedno od najrazvijenijih područja računalne igre, vizualizacija, modeliranje
 - Prostorni dizajn produkata raspored na elektroničkim pločicama, dizajn integriranih čipova, pakiranja, CAD/CAM
 - Robotika izračun pokreta i trajektorija
 - **GIS** prostorne projekcije, smještanje objekata, proračuni putanja, pretraživanje objekata, presjeci, ...

Osnovni geometrijski elementi - točka

- Točka je infinitezimalni element \mathbb{R}^n prostora $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = (x_1, x_2, x_3, \dots, x_n) = p$
- ullet Realni prostor \mathbb{R}^n je apstraktan preslikavamo ga u Kartezijev koordinatni sustav
- Točka se može napisati i u vektorskom obliku $\vec{x} = [x_1 \ x_2 \ x_3 \ ... \ x_n]$

Osnovni geometrijski elementi - linija

 Linija je beskonačni skup točaka u prostoru koje slijede linearnu jednadžbu

$$L = \{(x, y) : (x, y) \in \mathbb{R}^2, ax + by = c\}$$

Linearna jednadžba može se napisati i kao

$$y = c - ax$$

 Ako imamo dvije točke u prostoru kroz koje linija prolazi

$$p_1 = (x_1, y_1), p_2 = (x_2, y_2)$$

• Linija se može napisati kao

$$a = \frac{y_2 - y_1}{x_1 - x_2}$$
, $c = y_1 + \frac{y_2 - y_1}{x_1 - x_2}x_1$

Osnovni geometrijski elementi – linija i segment

• Linija se može parametrizirati

$$\Delta y = y_2 - y_1, \Delta x = x_2 - x_1$$

 $y = y_1 + t\Delta y, x = x_1 + t\Delta x$

- Parametar $t \in [0,1]$ određuje poziciju točke na liniji:
 - za t=0 nalazimo se u p_1 , dok se za t=1 nalazimo u p_2
- Parametarski pristup koristimo za omeđivanje linije
- Linija prolazi točkama $A=(x_a,y_b)$, $B=(x_b,y_b)$
- Ako smatramo da ju točke A i B omeđuju
 - Za vrijednosti parametra $t \in [0,1]$ dobivamo skup točaka koji predstavljaju segment linije ili dužinu \overline{AB} .

Osnovni geometrijski elementi – ploha

- Promotrimo geometrijski element koji ima jednu dimenziju manje od prostora u kojem se nalazi
 - Na primjer točka (0 dimenzija) na liniji (1 dimenzija)
- U trodimenzionalnom prostoru to je ploha
- Ploha je beskonačan skup točaka koje slijede linearnu jednadžbu $P = \{(x, y, z) : (x, y, z) \in \mathbb{R}^3, ax + by + cz = d\}$
- Podskup točaka plohe nazivamo geometrijskim oblikom

Osnovni geometrijski elementi – poligoni

- Podskup plohe $\mathcal{P} \in P$ ograničen skupom točaka i linijskim segmentima između tih točaka naziva se poligon
- Poligon sastavljen od n točaka naziva se n-gon
- Linijski segmenti omeđuju poligon čineći brid poligona, dok se točke u poligonu nazivaju tijelo poligona
- Kada nabrajamo točke na bridu poligona to uobičajeno činimo u smjeru kazaljke na satu
- Suma unutarnjih kutova poligona je

$$S = (n-2) * 180^{\circ}$$

Osnovni geometrijski elementi – poligoni

- Poligon se smatra **konveksnim** ako za svaki par točaka $p_1, p_2 \in \mathcal{P}$, dužina $\overline{p_1p_2}$ prolazi unutar poligona
- Poligon se smatra **jednostavnim** ako nema interakcije sa samim sobom, na primjer križanje sa svojim bridom

- Regularni poligoni su ekviangularni i ekvilateralni, što znači da su im unutarnji kutevi i duljine svih linijskih segmenata jednaki
 - Primjer: jednostranični trokut, kvadrat, pentagon, hexagon, heptagon, ...

Plošna konveksna ljuska (Convex Hull)

- Zamislimo skup točaka u \mathbb{R}^2 , $P_p = \{p_1, p_2, \dots, p_n\}$
- Postoji podskup tih točaka, takav da čini brid poligona $\mathcal P$ koji sadržava sve točke iz skupa P_p , tako da vrijedi $\nexists p \in P_p$: $p \notin \mathcal P$
- Ako je poligon ${\mathcal P}$ konveksan, tada se radi o konveksnoj ljusci
- ullet Zamislimo da je P_p skup čavala zabijen u dasku
- Stavimo gumicu oko tih čavala
- Gumica predstavlja rub poligona koji je konveksna ljuska

- Nabrajamo točke koje pripadaju bridu poligona $b(\mathcal{P}) \subseteq P_p$ u smjeru kazaljke na satu
- Jednostavni način utvrđivanja da je $b(\mathcal{P})$ konveksna ljuska
 - Uzmemo svaki linijski segment ruba poligona i gledamo da li su sve ostale točke u poligonu **desno** od njegove linije
 - Ako da, radi se o konveksnoj ljusci
- Kako utvrditi da je točka "desno" od linije?
- I što to uopće znači "desno"?

• Ako imamo dvije točke $A=(x_a,x_b), B=(x_b,y_b)$ i njihov linijski segment \overline{AB} , tada se može definirati vektor

$$\overrightarrow{AB} = \begin{bmatrix} x_b - x_a & y_b - y_a \end{bmatrix}$$

Uz sustav jednadžbi

$$\overrightarrow{AB} * \overrightarrow{n}^T = 0, D = \overrightarrow{n} * \overrightarrow{Ap}^T$$

Dobivamo

$$D = [y_b - y_a \quad x_a - x_b] \begin{bmatrix} x - x_a \\ y - y_a \end{bmatrix}$$
$$D = (x - x_a)(y_b - y_a) - (y - y_a)(x_b - x_a)$$

• Za sve D>0 smatramo da je točka p **desno** od linijskog segmenta \overline{AB}


```
function SimpleConvexHull(P_p)
\alpha(P_p) \leftarrow \emptyset
for each pair of points p_i, p_j \in P_p do
bound \leftarrow 1
for each point p_k \in P_p such that p_k \notin \{p_i, p_j\} do
if p_k is left from the line segment \overline{p_i p_j} then
bound \leftarrow 0
if bound is 1 then
add \ \overline{p_i p_j} \ to \ \alpha(P_p) \ taking \ care \ of \ the \ clockwise \ order
return \alpha(P_p)
```

Kompleksnost = $O(n^3)$

- S obzirom da na početku imamo samo P_p , moramo pronaći rub $b(\mathcal{P})$ takav da predstavlja konveksnu ljusku, što je označeno sa $\alpha(\mathcal{P})$
- Uzimamo parove točaka iz $p_i, p_j \in P_p$ i provjeravamo da li su sve ostale točke iz P_p desno od njihovog linijskog segmenta $\overline{p_i p_j}$
- Ako da, onda taj linijski segment $\overline{p_ip_j}$ pripada $\alpha(\mathcal{P})$
- Dva velika problema:
 - Algoritam ne osigurava da je konveksna ljuska zatvorena
 - Visoka kompleksnost rješenja

- Da li je moguć drukčiji, brži algoritam za pronalazak konveksne ljuske?
- Razdijelimo konveksnu ljusku na gornji i donji dio $\alpha(\mathcal{P}) = \alpha_{lower}(\mathcal{P}) \cup \alpha_{upper}(\mathcal{P})$
- ullet Horizontalno sortiramo točke u $P_{oldsymbol{p}}$

$$h(P_p) = \{p_{h_i} : p_{h_i} \in P_p\}$$

$$\forall p_{h_i}, p_{h_j} \in h(P_p) : i < j, x(p_{h_i}) \le x(p_{h_j})$$

- Primjećujemo da je prva točka u $h(P_p)$ početak, a zadnja točka u $h(P_p)$ završetak gornjeg dijela konveksne ljuske ili $\alpha_{upper}(\mathcal{P})$
- Istovjetno, samo okrenuto, zadnja točka u $h(P_p)$ početak, a prva točka u $h(P_p)$ završetak donjeg dijela konveksne ljuske ili $\alpha_{lower}(\mathcal{P})$

- I dalje oba dijela konveksne ljuske obilazimo u smjeru kazaljke na sati
- To znači da je konveksna ljuska, a time i oba njena dijela desno naginjuća
- Da bismo utvrdili da je dio konveksne ljuske desno naginjući, trebamo barem tri točke
- Koristimo se istim principom utvrđivanja da li je treća točka po redu desno ili lijevo od linije koju čine prve dvije točke


```
function ConvexHull(P_p)

create h(P_p) as the sorted list of points from P_p

\alpha_{upper}(P_p) \leftarrow \{p_{h_1}, p_{h_2}\} from h(P_p)

for i \leftarrow 3 to n do

add p_{h_i} to \alpha_{upper}(P_p)

while |\alpha_{upper}(P_p)| \geq 3 and last three points incline left do

remove the point before the last from \alpha_{upper}(P_p)

\alpha_{lower}(P_p) \leftarrow \{p_{h_n}, p_{h_{n-1}}\} from h(P_p)

for i \leftarrow n-2 downto 1 do

add p_{h_i} to \alpha_{lower}(P_p)

while |\alpha_{lower}(P_p)| \geq 3 and last three points incline left do

remove the point before the last from \alpha_{lower}(P_p)

return \alpha_{upper}(P_p) \cup \alpha_{lower}(P_p)
```

 $Kompleksnost = O(n \log n)$

- Prvo horizontalno sortiramo listu točaka
- Dodamo prve dvije točke iz $h(P_p)$ u gornju konveksnu ljusku
- U petlji krećemo od treće točke
 - Ukoliko zadnje tri točke naginju lijevo, uklanjamo srednju od njih iz gornje konveksne ljuske
- Kada stignemo do zadnje točke u $h(P_p)$, dobili smo gornju konveksnu ljusku
- Za donju se radi isti postupak, ali obrnutim redoslijedom kroz $h(P_p)$

- Algoritam prolazi kroz svih n točaka iz P_p , čime bi kompleksnost bila O(n)
- Kako imamo potrebu koristiti neki od algoritama za sortiranje, za stvaranje $h(P_p)$, tako nam kompleksnost algoritma za sortiranje prevladava i ukupna kompleksnost je $O(n \log n)$
- Koncept konveksne ljuske koristi se kasnije u linearnom programiranju

Geometrijsko pretraživanje

- ${f \cdot}$ Zamislimo da u bazi podataka imamo skup podataka koji možemo smjestiti u $n{f \cdot}$ dimenzionalni prostor
- Neke od dimenzija mogu biti visina, težina, plaća, itd...
- Zaboravimo na trenutak sve mogućnosti baze podataka
- B⁺ indeksna stabla nam pomažu dohvatiti podatke za točno određenu vrijednost atributa
- Kako dohvatiti skup podataka koji ima određeni atribut u određenom rasponu vrijednosti?
- Na primjer: pronađimo sve osobe koje su visine od 165 do 184 centimetara
- Generalno, imamo skup vrijednosti (1-dimenzionalan) iz kojeg što je brže moguće želimo pronaći vrijednosti u traženom rasponu

- Imamo skup vrijednosti P, te raspon koji tražimo $[\mu_1, \mu_2]$
- Na primjer $P = \{173, 176, 179, 189, 191, 196, 198\}$
- Kako organizirati skup vrijednosti P tako da imamo mogućnost pronalaska raspona $[\mu_1,\mu_2]$ na najefikasniji mogući način?
- Pribjegavamo korištenju binarnih stabala
- U ovom slučaju koristimo binarna stabla koja u listovima imaju konkretne vrijednosti – zovemo ih stabla raspona
 - Listovi imaju vrijednosti iz *P*
 - Unutarnji čvorovi su navodeći (*guiding*) i ne trebaju imati iste vrijednosti kao listovi
 - Princip sličan kao i kod B⁺ stabala

- Imamo binarno stablo τ , takvo da svaki unutarnji čvor ima vrijednost da vrijedi:
 - U lijevom podstablu su sve vrijednosti koje su ≤
 - U desnom podstablu su sve vrijednosti koje su >
- 1. Krenemo od korijenskog čvora tražeći prvi čvor koji je u traženom rasponu $[\mu_1, \mu_2]$, takozvani *razdvajajući čvor* n_{split}
- 2. Od razdvajajućeg čvora n_{split} krećemo se na lijevu i na desnu stranu, tako dobivamo dvije vertikalne putanje od čvora do lista: \mathcal{V}_L i \mathcal{V}_R

- 3. Krećući se na lijevo, znamo da su čvorovi manji od n_{split} , te imamo dvije opcije:
 - a) Čvor je unutar traženog raspona $[\mu_1, \mu_2]$, što znači
 - Njegovo desno podstablo je sigurno u traženom rasponu i sve vrijednosti automatski dodajemo rezultatu (pruning)
 - Za njegovo lijevo podstablo nismo sigurni, pa se krećemo na lijevo dijete
 - b) Čvor nije unutar traženog raspona, što znači
 - Njegovo lijevo podstablo sigurno nije u rasponu i ignoriramo ga
 - Za njegovo desno podstablo nismo sigurni, pa se krećemo na desno dijete
- 4. Kretanjem u desno izvodimo zrcalne operacije

 $Kompleksnost = O(k + \log n)$

- Primjer stabla i pretraživanja raspona [165,184]
- Korijenski čvor je ujedno i n_{split}
- Sivi čvorovi su testirani
- Crni čvorovi su automatski dodani u rezultat (pruned)
- Bijeli čvorovi su odbačeni kao van raspona
- Kompleksnost pretraživanja je $O(k + \log n)$, gdje je k broj automatski dodanih vrijednosti, a $\log n$ su dva prolaska kroz binarno stablo


```
function 1DRANGEQUERY(\tau, \mu_1, \mu_2)
    rv \leftarrow \emptyset
    n_{sylit} \leftarrow \text{FINDSPLITTINGNODE}(\tau, \mu_1, \mu_2)
    if n_{split} is leaf then
        if v(n_{svlit}) is in the range [\mu_1, \mu_2] then
            add n_{split} to rv
    else
                                                              ▷ left traversal
        n \leftarrow leftChild(n_{split})
        while n is not leaf do
            if \mu_1 \leq v(n) then
                add ReportSubtree(rightChild(n)) to rv
                n \leftarrow leftChild(n)
            else
                n \leftarrow rightChild(n)
        if n is leaf and v(n) is in the range [\mu_1, \mu_2] then
            add n to rv
                                                            n \leftarrow rightChild(n_{svlit})
        while n is not leaf do
            if v(n) < \mu_2 then
                add ReportSubtree(leftChild(n)) to rv
                n \leftarrow rightChild(n)
            else
                n \leftarrow leftChild(n)
        if n is leaf and v(n) is in the range [\mu_1, \mu_2] then
            add n to rv
    return rv
```

```
function FINDSPLITTINGNODE(\tau, \mu_1, \mu_2)

n \leftarrow root(\tau)

while n is not leaf and (\mu_1 \geq v(n) \text{ or } \mu_2 \leq v(n)) do

if \mu_2 \leq v(n) then

n \leftarrow leftChild(n)

else

n \leftarrow rightChild(n)
```


- Kako stvoriti binarno stablo koje reflektira određeni skup vrijednosti P?
- Kod binarnih stabala učili smo kako stvoriti stablo na temelju sortiranog skupa vrijednosti - promišljeno
- Sličan princip koristi se i ovdje
 - Stvoreni čvor sadrži medijan svih vrijednosti koje su u njegovom podstablu – želimo da stablo bude uravnoteženo
 - Njegovo lijevo podstablo sadrži samo vrijednosti koje su ≤ od vrijednosti čvora
 - Njegovo desno podstablo sadrži samo vrijednosti koje su > od vrijednosti čvora
 - Rekurzivnim postupkom stvaramo binarno stablo sve do njegovih listova – konkretnih vrijednosti


```
function Create1DRangeTree(P_p)

if |P_p| = 1 then

return n \leftarrow leaf having the value from P_p

else

v_m \leftarrow median(P_p)

P_{p_{left}} \leftarrow \{p_i : p_i \in P_p \land p_i \leq v_m\}

P_{p_{right}} \leftarrow \{p_i : p_i \in P_p \land p_i > v_m\}

n_{left} \leftarrow \text{Create1DRangeTree}(P_{p_{left}})

n_{right} \leftarrow \text{Create1DRangeTree}(P_{p_{right}})

n \leftarrow \text{create node having value } v_m

leftChild(n) \leftarrow n_{left}

rightChild(n) \leftarrow n_{right}

return n
```

- 1. Ako smo dobili samo jednu vrijednost
 - a) Vratimo čvor s tom vrijednošću (list)
- 2. Ako smo dobili više vrijednosti
 - a) Izračunamo medijan za korijenski čvor
 - b) Podijelimo vrijednosti na lijeve (≤) i desne (>)
 - c) Rekurzivno stvorimo lijevo i desno podstablo
 - d) Postavimo stvorena podstabla kao lijevo i desno dijete korijenskog čvora
- Kompleksnost stvaranja stabla raspona je $O(n \log n)$ radi sortiranja zbog traženja medijana

- Svakom čvoru stabla raspona dodajemo podstablo au_{assoc} za dodatnu dimenziju (y)
 - Ovo ulančavanje se može nastaviti za ostale dimenzije
- au_{assoc} predstavlja stablo raspona za sve točke koje predstavlja čvor n_i , ali za višu dimenziju – ako je n_i za x-os, tada se au_{assoc} formira za y-os
- Kompleksnost pretraživanja za dvije dimenzije je sada $O(k + \log^2 n)$ radi ulančavanja stabala
- Kompleksnost stvaranja je i dalje $O(n \log n)$ radi sortiranja

- Zamislimo skup intervala $I=\{s_i=([x_{i_1},x_{i_2}],y_i):x_{i_1},x_{i_2},y_i\in\mathbb{R}\}$ koji su paralelni sa x-osi zapravo horizontalni linijski segmenti
- Točke (x_{i_1}, y_i) i (x_{i_2}, y_i) zovemo krajnjim točkama intervala
- Želja nam je imati strukturu u koju spremamo skup intervala, tako da brzo i efikasno možemo pronaći intervale koji se nalaze u prozoru upita $W_q = [q_{x_1}, q_{x_2}] \times [q_{y_1}, q_{y_2}]$
- Rješenje se nalazi u kompozitnom binarnom stablu koje vrijednosti sprema u čvorovima – zovemo ih stabla intervala
- U ovom slučaju nemamo listove koji predstavljaju konkretne vrijednosti

- Izračunamo medijan v_m svih krajnjih točaka intervala iz skupa intervala za koji stvaramo stablo
 - Za korijenski čvor skup intervala je I
 - Za svaki čvor ispod korijenskog to je podskup od I skupa intervala spremljenog u roditelja
- Stvorimo čvor s vrijednošću izračunatog medijana v_m
 - U čvor spremimo sve intervale koji presijecaju v_m
 - U n_1 tako spremamo intervale $I(n_1) = \{s_1, s_2, s_3\}$
- Rekurzivno stvaramo lijevo i desno podstablo
 - U lijevo podstablo idu svi intervali čije su obje krajnje točke $< v_m$
 - U desno podstablo idu svi intervali čije su obje krajnje točke $>v_m$

- Svakom čvoru se dodaju dvije dodatne strukture podataka (2D stabla raspona recimo)
 - U lijevom τ_{left} se čuvaju lijeve krajnje točke intervala spremljenih u taj čvor (\leq)
 - U desnom τ_{right} se čuvaju desne krajnje točke intervala spremljenih u taj čvor (>)
 - Krajnje točke u stablima au_{left} i au_{right} imaju povratne reference na intervale u čvorovima kako bi se izbjeglo bilo kakvo dodatno pretraživanje
- Ovo radimo zato što pretraživanje rezultira sa dva moguća scenarija:
 - 1. Interval u potpunosti presijeca $[q_{x_1},q_{x_2}]$, što znači da mu je lijeva krajnja točka $< q_{x_1}$, a desna $> q_{x_2}$
 - 2. Interval ima početak ili kraj u $[q_{x_1},q_{x_2}]$, što znači da mu je lijeva ili desna krajnja točka u tom rasponu
 - 3. Trebamo paziti i da je interval u rasponu $\left[q_{y_1}$, $q_{y_2}
 ight]$
- Ovo se može utvrditi kroz dodatne strukture au_{left} ili au_{right}
 - Zato se stablo intervala i naziva kompozitnim


```
function CreateIntervalTree(I)
     if I = \emptyset then
          n \leftarrow \text{empty leaf}
     else
          x_{med} \leftarrow median(endpoints(I))
          I_{left} \leftarrow \{s_i : s_i \in I \land x_{i_1}(s_i) < x_{med} \land x_{i_2}(s_i) < x_{med}\}
          I_{right} \leftarrow \{s_i : s_i \in I \land x_{i_1}(s_i) > x_{med} \land x_{i_2}(s_i) > x_{med}\}
          I_{med} \leftarrow I \setminus (I_{left} \cup I_{right})
          n \leftarrow create a node having value x_{med}
          intervals(n) \leftarrow I_{med}
          leftChild(n) \leftarrow CreateIntervalTree(I_{left})
          rightChild(n) \leftarrow CreateIntervalTree(I_{right})
          if I_{med} \neq \emptyset then
               P_{left} \leftarrow \{((x_{i_k}(s_i), y_i(s_i)), s_i) : s_i \in I_{mid} \land x_{i_k}(s_i) \le x_{med}\}
               P_{right} \leftarrow \{((x_{i_k}(s_i), y_i(s_i)), s_i) : s_i \in I_{mid} \land x_{i_k}(s_i) > x_{med}\}
                                             \triangleright We include the back reference to s_i
               \tau_{left}(n) \leftarrow \text{Create2DRangeTree}(P_{left})
               \tau_{right}(n) \leftarrow \text{Create2DRangeTree}(P_{right})
     return n
```

- Zbog potrebe za sortiranjem, osnovno stablo intervala ima kompleksnost $O(n \log n)$
- Dodamo li tome dva stabla raspona po čvoru, dobivamo $O((n \log n)(2 \log n))$
- Što je u konačnici $O(n \log^2 n)$

- Pretraživanje stabla intervala slično je pretraživanju stabla raspona. Ako se trenutno nalazimo u čvoru n_i (krećemo od korijenskog čvora), tada imamo tri osnovna slučaja:
 - medijan čvora $x_{med}(n_i)$ je unutar raspona $\left[q_{x_1},q_{x_2}\right]$
 - konzultiraju se oba stabla au_{left} i au_{right} , kako bi se selektirali intervali koji završavaju u prozoru $[q_{x_1},q_{x_2}] imes [q_{y_1},q_{y_2}]$
 - medijan čvora $x_{med}(n_i)$ s lijeve je strane raspona $\left[q_{x_1},q_{x_2}\right]$
 - konzultira se desno dodatno stablo au_{right} , kako bi se selektirali intervali koji desnom stranom završavaju u prozoru $[q_{x_1},q_{x_2}] \times [q_{y_1},q_{y_2}]$
 - ullet za lijevo podstablo čvora n_i smatramo da nema traženih intervala
 - nastavljamo u desnom podstablu
 - medijan čvora $x_{med}(n_i)$ s desne je strane raspona $\left[q_{x_1},q_{x_2}\right]$
 - konzultira se lijevo dodatno stablo au_{left} , kako bi se selektirali intervali koji lijevom stranom završavaju u prozoru $[q_{x_1},q_{x_2}] \times [q_{y_1},q_{y_2}]$
 - ullet za desno podstablo čvora n_i smatramo da nema traženih intervala
 - nastavljamo u lijevom podstablu

- No, što se dešava s intervalima koji u potpunosti presijecaju raspon, kao recimo s_1 i s_2 u primjeru?
- Umjesto da krajnje točke pretražujemo isključivo u rasponu $[q_{x_1}, q_{x_2}]$, pretraživanje proširimo
 - Lijeve krajnje točke pretražujemo u prozoru $(-\infty,q_{x_2}] \times [q_{y_1},q_{y_2}]$
 - Desne krajnje točke pretražujemo u prozoru $[q_{x_1}, \infty) \times [q_{y_1}, q_{y_2}]$

```
function IntervalQuery(n, [q_{x_1}, q_{x_2}] × [q_{y_1}, q_{y_2}])
    iv \leftarrow \emptyset
    if q_{x_1} \leq x_{med}(n) \leq q_{x_2} then
         p \leftarrow 2DRANGEQUERY(\tau_{left}(n), (-\infty, q_{x_2}] \times [q_{y_1}, q_{y_2}])
         p \leftarrow p \cup 2DRangeQuery(\tau_{right}(n), [q_{x_1}, \infty) \times [q_{y_1}, q_{y_2}])
         iv \leftarrow all intervals of the endpoints in p
         move \leftarrow both
    else if x_{med}(n) < q_{x_1} then
         p \leftarrow 2DRANGEQUERY(\tau_{right}(n), [q_{x_1}, \infty) \times [q_{y_1}, q_{y_2}])
         iv \leftarrow all intervals of the endpoints in p
         move \leftarrow right
    else if q_{x_2} < x_{med}(n) then
         p \leftarrow 2DRANGEQUERY(\tau_{left}(n), (-\infty, q_{x_2}] \times [q_{y_1}, q_{y_2}])
         iv \leftarrow all intervals of the endpoints in p
         move \leftarrow left
    if move \in \{both, left\} and exists lc \leftarrow leftChild(n) then
         iv \leftarrow iv \cup IntervalQuery(lc, [q_{x_1}, q_{x_2}] \times [q_{y_1}, q_{y_2}])
    if move \in \{both, right\} and exists rc \leftarrow rightChild(n) then
         iv \leftarrow iv \cup IntervalQuery(rc, [q_{x_1}, q_{x_2}] \times [q_{y_1}, q_{y_2}])
    return iv
```

- S obzirom da imamo dvije razine stabala, u prvoj razini je stablo intervala, a u drugoj su dva dvodimenzionalna stabla raspona, kompleksnost pretraživanja $O((2 \log^2 n)(\log n)) = O(\log^3 n)$
- Za neke druge strukture podataka u τ_{left} i τ_{right} to može biti drukčije. Recimo za običnu listu je to $O(n \log n)$

Stablo prioriteta (priority tree)

- Korištenje dvodimenzionalnog stabla raspona u stablu intervala čini se neefikasno – dvodimenzionalno stablo raspona ima dva sloja (tri ukupno sa stablom intervala)
- Upiti za stablo intervala su specifični: $(-\infty, q_{x_2}] \times [q_{y_1}, q_{y_2}]$ i $[q_{x_1}, \infty) \times [q_{y_1}, q_{y_2}]$
- Za ovu se namjenu može koristiti gomila (heap) kao podatkovna struktura
 - Gomila je sortirana struktura, gdje je korijen gomile najmanji ili najveći član
 - Govorimo o uzlazno ili silazno sortiranoj gomili
- Ukoliko točke sortiramo po x-osi, možemo ih spremiti u gomilu
 - To nam rješava horizontalni dio upita $(-\infty,q_{x_2}]$ i $[q_{x_1},\infty)$
 - Za $(-\infty, q_{x_2}]$ trebamo uzlazno sortiranu gomilu spuštamo se od korijena gomile, pa sve do dok ne naiđemo na $x(n)>q_{x_2}$

Stablo prioriteta

- Što je s y-osi? Gomila sama po sebi neće podržati tu drugu dimenziju.
- Koristimo činjenicu da particioniranje gomile može biti proizvoljno tako dugo dok je gomila sortirana – roditelj manji ili veći od djece
- U gomilu ugrađujemo koncept binarnog stabla stablo prioriteta
 - Vrijednost čvora p(n) predstavlja točku spremljenu u čvor n slijedi princip gomile, uvijek uzimamo slijedeću točku s najmanjom x(p) vrijednosti
 - Čvoru dodajemo parametar y(n)
 - Struktura stabla prioriteta po parametru y(n) slijedi princip binarnog stabla
 - Lijevo dijete n_L ima parametar $y(n_L) \le y(n)$ manji ili jednak od roditelja
 - Desno dijete n_R ima parametar $y(n_R) > y(n)$ veći od roditelja
 - Kada stvaramo stablo prioriteta i odlučujemo u koje podstablo stavljamo točke
 - Iz skupa točaka maknemo točku čvora
 - Izračunamo medijan y_{med} vrijednosti preostalih točaka parametar $y(\mathbf{n})$ postavimo na y_{med}
 - Preostale točke s $y(p) \le y_{med}$ idu u lijevo podstablo
 - Preostale točke s $y(p) > y_{med}$ idu u desno podstablo

Stablo prioriteta


```
function CreatePriorityTree(P)

p_{min} = \underset{p_i \in P}{arg \ min} \ x(p_i)
p_i \in P
n \leftarrow \text{new node}
p(n) \leftarrow p_{min}
\text{if } P \setminus p_{min} \neq \emptyset \text{ then}
y_{med} \leftarrow median(P \setminus p_{min})
P_L \leftarrow \{p : p \in P \setminus p_{min}, y(p) \leq y_{med}\}
P_R \leftarrow \{p : p \in P \setminus p_{min}, y(p) > y_{med}\}
y(n) \leftarrow y_{med}
\text{if } P_L \neq \emptyset \text{ then}
leftChild(n) \leftarrow \text{CreatePriorityTree}(P_L)
\text{if } P_R \neq \emptyset \text{ then}
rightChild(n) \leftarrow \text{CreatePriorityTree}(P_R)
\text{return } n
```


Stablo prioriteta

- S obzirom da y vrijednost točke čvora (y(p(n))) stabla nije isto što i y parametar čvora (y(n))-y parametar čvora je korišten u formiranju binarnog stabla
 - y(p(n)) se koristi kada se provjerava da li je konkretna točka u prozoru upita, to jest unutar $\left[q_{y_1},q_{y_2}\right]$
 - y(n) se koristi za kretanje po stablu prioriteta
- Potražimo čvor razdvajanja n_{split} prvi ispod korijena koji je unutar intervala $q_{y_1} \leq y(n_{split}) \leq q_{y_2}$
- Pretraživanje razdvajamo u dvije vertikalne putanje
 - Koncept je isti kao i kao pretraživanja raspona
- Cijelo vrijeme pratimo da je $x(p(n)) \le q_{x_2}$ princip gomile
- Za čvorove svih putanja koje prolazimo od korijena, uključujući i čvorove svih podstabala koje automatski dodajemo, svaku točku čvora provjeravamo da li je unutar prozora upita $(-\infty, q_{x_2}] \times [q_{y_1}, q_{y_2}]$

 Zamislimo dvodimenzionalni primjer u kojem umjesto intervala imamo linijske segmente

$$S = \left\{ s_i = \overline{(x_{i_1}, y_{i_1})(x_{i_2}, y_{i_2})} : (x_{i_k}, y_{i_k}) \in \mathbb{R}^2 \right\}$$

Zatim definiramo područje pretraživanja

$$W = [q_{x_1}, q_{x_2}] \times [q_{y_1}, q_{y_2}]$$

- Primjer štampane elektroničke pločice na kojoj želimo pronaći sve vodove koji prolaze kroz određeno područje
- Primjer plana grada na kojem se žele pronaći ulice koje se nalaze unutar nekog područja pretraživanja

- Da li za takvo pretraživanje možemo koristiti stablo intervala?
- Zamislimo da imamo prozor upita koji je lijevo od medijana čvora (n_1 na primjeru).
 - Provjeravamo da li su lijevi krajevi linijskih segmenata čvora n_1 unutar $(-\infty,q_{x_2}]\times[q_{y_1},q_{y_2}]$
 - Na primjeru vidimo barem dva linijska segmenta svojim lijevim krajevima nisu u traženom području, no ipak presijecaju prozor upita W_q \bigodot
- Iako će stablo intervala ispravno raditi za većinu slučajeva, neki će ipak proizvesti false negative rezultat

- Umjesto toga primijenimo pozicijski pristup (locus approach)
- Krenemo od x-osi
 - Skup linijskih segmenata razbijemo u elementarne intervale to su intervali po x-osi u kojima nema promjena broja linijskih segmenata
 - Promjene se dešavaju u krajnjim točkama linijskih segmenata koristimo se projekcijama krajnjih točaka na x-os : $x_i = x(p_i)$
 - Primjer na slici razbijamo u slijedeće elementarne intervale

$$(-\infty, x_1), [x_1, x_1], (x_1, x_2), [x_2, x_2], \dots, (x_7, x_8), [x_8, x_8], (x_8, \infty)$$

$$(-\infty, x_1), [x_1, x_1], (x_1, x_2), [x_2, x_2], \dots, (x_7, x_8), [x_8, x_8], (x_8, \infty)$$

- Svaki od elementarnih intervala pretvorimo u jedan list uravnoteženog binarnog stabla – listovi su vrijednosti (koncept B⁺ indeksnog stabla), a unutarnji čvorovi samo su za navođenje
- Stablo iznad tih listova napravimo na promišljeni način
 - Želimo da stablo bude uravnoteženo kako bi pretraživanje bilo $O(k+\log^2 n)$ opet se vraćamo na koncept pretraživanja za raspon
- Unutarnji čvorovi stabla agregiraju intervale svojih podstabala $I(n) = I(n_L) \cup I(n_R)$
 - Ovo rezultira time da se intervali u čvorovima iste razine ne preklapaju i nemaju razmaka
- Korijenski čvor agregira sve elementarne intervale, što rezultira sa $(-\infty,\infty)$


```
procedure InsertSegment(n, [x_1, x_2])

if I(n) \subseteq [x_1, x_2] then
add [x_1, x_2] to S(n)

else

if I(leftChild(n)) \cap [x_1, x_2] \neq \emptyset then
InsertSegment(leftChild(n), [x_1, x_2])

if I(rightChild(n)) \cap [x_1, x_2] \neq \emptyset then
InsertSegment(rightChild(n), [x_1, x_2])
```

- Zatim pridjeljujemo linijske segmente čvorovima stabla
 - Logika nalaže da se svaki linijski segment u elementarnom intervalu pridijeli svojem listu
 - Moguće je (i vjerojatno) da više listova sadrži isti linijski segment s_i time uzrokujemo visoku kompleksnost spremanja stabla (storage complexity)
 - Takav linijski segment pridijelimo na unutarnji čvor koji sadrži sve listove koji imaju taj linijski segment s_i
 - Korištenjem intervala čvorova I(n), za takvo pridjeljivanje možemo krenuti od korijenskog čvora
 - Za n_i , interval je $I(n_i)=[x_2,x_3]$, što u je u potpunosti sadržano u linijskim segmentima s_1 i s_3
 - $S(n_i) = \{s_1, s_3\}$ predstavlja kanonski skup linijskih segmenata koji u potpunosti prolaze intervalom $I(n_i)$
- Dobivamo stablo segmenata

- Ukoliko želimo pronaći linijske segmente iz S koji prolaze kroz $I_q=q_x{\times}[q_{y_1},q_{y_2}]$
- Trebamo pronaći elementarni interval kroz koji prolazi q_{x}
- Izvodimo klasični prolaz kroz stablo, prolazeći kroz čvorove gdje je $q_x \in I(n)$
- List predstavlja traženi elementarni interval
- Vertikalnu putanju od korijenskog čvora do lista označimo kao $\mathcal V$
- Skup svih linijskih segmenata koji prolaze kroz q_x su

$$\bigcup_{n\in\mathcal{V}} S(n) \subseteq S$$

• U našem primjeru $\{s_1, s_2, s_3\}$

- Ukoliko uzmemo interval nekog čvora I(n) on definira vertikalni blok $V_b(n) = I(n) \times (-\infty, \infty)$
- Svi linijski segmenti uS(n) u potpunosti horizontalno prolaze kroz cijeli $V_b(n)$
- U primjeru na slici primjećujemo i jedno drugo svojstvo koje je vezano uz princip agregacije intervala
 - $V_b(n_1) = V_b(n_2) \cup V_b(n_3)$
 - Linijski segmenti $S(n_1)$ u potpunosti prolaze kroz $V_b(n_1)$, a time i kroz $V_b(n_2)$ i $V_b(n_3)$
 - Linijski segmenti koji u potpunosti prolaze kroz $V_b(n_i)$, gdje je n_i u podstablu čiji je korijen n_j , **djelomično prolaze** kroz $V_b(n_i)$

- Vratimo se pretraživanju prozora $W_q = [q_{x_1}, q_{x_2}] \times [q_{y_1}, q_{y_2}]$
- Koncept je isti kao i kod pretraživanja raspona
- Pronađemo čvor razdvajanja n_{split} koji je u ovom slučaju:
 - Sadrži cijeli interval $I_{q_x} = \left[q_{x_1}, q_{x_2}\right]$
 - Lijevo dijete n_L sadrži $q_{x_1} \in I(n_L)$
 - Desno dijete n_R sadrži $q_{x_2} \in I(n_R)$
- Nakon toga dobivamo:
 - Dvije vertikalne putanje, lijevu \mathcal{V}_L i desnu \mathcal{V}_R u primjeru čvorovi sive boje
 - Skup podstabala N_T koje su sigurno u intervalu I_{q_χ} u primjeru čvorovi crne boje
- Rezultat je skup vertikalnih blokova

- U skupu vertikalnih blokova koji su rezultat:
 - Možemo imati samo jedan vertikalni blok
 - Kada je n_{split} u elementarnom intervalu u listu
 - Kada je n_{split} korijen podstabla čiji su svi elementarni intervali u I_{q_x}
 - Prvi i posljednji vertikalni blok sadrže q_{x_1} i q_{x_2}
- Skup linijskih segmenata koji u potpunosti ili djelomično presijeca I_{q_x} je unija svih kanonskih skupova linijskih segmenata podstabala koja čine skup vertikalnih blokova vidi crvene čvorove

$$\bigcup_{n \in \mathcal{V}_L \cup \mathcal{V}_R \cup N_T} S(n) \subseteq S$$

- Što je s vertikalnim pretraživanjem, kako pronalazimo $I_{q_{\mathcal{V}}} = \left[q_{\mathcal{Y}_1}, q_{\mathcal{Y}_2}\right]$?
- Do sada znamo da kanonski skup linijski segmenata S(n) sadrži linijske segmente koji u potpunosti horizontalno presijecaju vertikalni blok $V_b(n)$
- Ako kanonski skup segmenata organiziramo u uravnoteženo binarno stablo, možemo koristiti isti princip geometrijskog pretraživanja kao i kod raspona
 - Problem: Da bismo jasno znali vertikalni raspored linijskih segmenata, oni se **ne smiju presijecati**!
- Takvo stablo pridružimo čvoru koji ima $S(n) \neq \emptyset$ i označujemo sa $\tau(n)$

- Prvi i posljednji vertikalni blok sadrže q_{x_1} i q_{x_2}
- U tim vertikalnim blokovima ne smijemo gledati samo mjesto gdje linijski segment presijeca rubove vertikalnog bloka
- Mora se uzeti u obzir sjecište linijskog segmenta sa q_{x_1} , odnosno q_{x_2} , kako ne bi došlo do *false positive* pribrajanja linijskog segmenta konačnom rezultatu


```
function ReportSubtree(n, W_q = [q_{x_1}, q_{x_2}] \times [q_{y_1}, q_{y_2}])
    rv \leftarrow \emptyset
    if n is not nil then
        add Vertical Query (\tau(n), n, W_q) to rv
        add ReportSubtree(leftChild(n), W_q) to rv
        add ReportSubtree(rightChild(n), W_a) to rv
    return rv
function FINDSPLITTINGNODE(\tau, I_q = [q_{x_1}, q_{x_2}])
    n \leftarrow root(\tau)
    while n is not leaf do
        lc \leftarrow leftChild(n), rc \leftarrow rightChild(n)
        if q_{x_1} \in I(lc) and q_{x_2} \in I(rc) then
             return n
        else
            if I_a \subseteq I(lc) then
                 n \leftarrow lc
            else
                 n \leftarrow rc
    return n
```

```
function SegmentTreeQuery(\tau, W_q = [q_{x_1}, q_{x_2}] \times [q_{y_1}, q_{y_2}])
    rv \leftarrow \emptyset
    n_{snlit} \leftarrow \text{FINDSPLITTINGNODE}(\tau, [q_{x_1}, q_{x_2}])
    if n_{split} is leaf then
        if S(n_{svlit}) \neq \emptyset then
             add Vertical Query (\tau(n_{svlit}), n_{svlit}, W_q) to rv
    else
        n \leftarrow leftChild(n_{split})
        while n is not leaf do
             add Vertical Query (\tau(n), n, W_a) to rv
             lc \leftarrow leftChild(n), rc \leftarrow rightChild(n)
             if q_{x_1} \in I(lc) then
                 add ReportSubtree(rc, W_q) to rv
                 n \leftarrow lc
             else
                 n \leftarrow rc
        add Vertical Query (\tau(n), n, W_a) to rv
        n \leftarrow rightChild(n_{split})
        while n is not leaf do
             add Vertical Query(\tau(n), n, W_a) to rv
            lc \leftarrow leftChild(n), rc \leftarrow rightChild(n)
             if q_{x_2} \in I(rc) then
                 add ReportSubtree(lc, W_a) to rv
                 n \leftarrow rc
             else
                 n \leftarrow lc
        add Vertical Query (\tau(n), n, W_a) to rv
    return rv
```

Pitanja

