1. Classical probability

- Variations with repetitions: n^k
- Variations without repetition: $\frac{n!}{(n-k)!}$
- Permutations: n!
- Combinations: $\binom{n}{k}$

2. Axiomatic def. of probability

- Definition of σ -algebra $\mathcal{F} \subseteq 2^{\Omega}$:
 - 1. $\Omega \in \mathcal{F}$
 - 2. If $A \in \mathcal{F}$ then $A' \in \mathcal{F}$
 - 3. If $A_1, A_2, \ldots \in \mathcal{F}$ then $A_1 \cup A_2 \cup \ldots \in \mathcal{F}$
- Properties of σ -algebra: $\emptyset \in \mathcal{F}$; if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$, $A \setminus B \in \mathcal{F}$
- Properties of probability:
 - $-P(\emptyset) = 0, P(A') = 1 P(A)$
 - If $A \subseteq B$ then $P(B \setminus A) = P(B) P(A)$
 - $-P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - $-P(A_1 \cup \ldots \cup A_n) \leq P(A_1) + \ldots + P(A_n)$, equality for disjoint events $(A_i \cap A_j = \emptyset \text{ for } i \neq j)$

3. Conditional probability

- Definition: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ for P(B) > 0
- $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$
- Chain rule:
- $P(A_1 \cap \ldots \cap A_n) = P(A_1)P(A_2|A_1) \cdot \ldots \cdot P(A_n|A_1 \cap \ldots \cap A_{n-1}) \Big| \bullet D^2(X) = E((X EX)^2) = E(X^2) (EX)^2$
- Partition A_1, \ldots, A_n : $A_i \cap A_j = \emptyset$ for $i \neq j$, and $A_1 \cup \ldots \cup A_n = \Omega$
- Total probability: if A_1, \ldots, A_n partition: $P(B) = \sum_{i=1}^n P(A_i) P(B|A_i)$
- Bayes' rule: if A_1, \ldots, A_n partition: $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^n P(B|A_j)P(A_j)}$

4. Independence

- Definition $P(A \cap B) = P(A)P(B)$. More generally: A_1, \ldots, A_n independent if for each $S \subseteq \{1, 2, \dots, n\}: P(\bigcap_{i \in S} A_i) = \prod_{i \in S} P(A_i)$
- If $A \perp B$ then $A \perp B'$, $A' \perp B$, $A' \perp B'$
- If A_1, \ldots, A_n independent then $P(A_1 \cup \ldots \cup A_n) = 1 - P(A'_1) \cdot \ldots \cdot P(A'_n)$
- Conditional independence (given C): $P(A \cap B|C) = P(A|C)P(B|C)$
- Random walk: $\stackrel{B}{\longleftarrow}$ $\stackrel{1-p}{\longleftarrow}$ $\stackrel{p}{\longleftarrow}$

 - Prob. of reaching A: $P(A) = \begin{cases} \frac{b}{a+b} & (p = \frac{1}{2}) \\ \frac{\left(\frac{p}{1-p}\right)^a \left(\frac{p}{1-p}\right)^{a+b}}{1 \left(\frac{p}{1-p}\right)^{a+b}} & (p \neq \frac{1}{2}) \end{cases}$
 - Prob. of reaching B: P(B) = 1 P(A)

5. Random variables

- Definition: measurable function $X : \Omega \to \mathbb{R}$
- Distribution of random variable: measure P_X over \mathbb{R} with Borel σ -algebra, such that $P_X(A) = P(X \in A) = P(X^{-1}(A))$
- \bullet C.d.f.: $F_X(x) = P(X \leqslant x)$
- Properties of F_X : nondecreasing; $F(\infty) = 1$, $F(-\infty) = 0$; $P(a < X \leqslant b) = F(b) - F(a)$
- Degenerate distribution: P(X = c) = 1
- Uniform distribution: $X \in \{x_1, \dots, x_n\}, P(X = x_i) = \frac{1}{n}$
- Bernoulli distribution B(p): $X \in \{0,1\}, P(X=1) = p$, P(X=0) = 1 - p
- Binomial distribution B(n, p): $X \in \{0, 1, ..., n\}$, $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$
- Geometric distribution $G_1(p)$: $X \in \{1, 2, ...\}$, $P(X = k) = (1 - p)^{k-1}p$
- Geometric distribution $G_0(p)$: $X \in \{0, 1, ...\}$, $P(X=k) = (1-p)^k p$
- For $X \sim G_1(p)$: $P(X > k) = (1 p)^k$
- Memorylessness $X \sim G_1(p)$: $P(X > k + \ell | X > k) = P(X > \ell)$
- Negative binomial distribution NB(r, p): $P(X = k) = \binom{r+k-1}{r-1}(1-p)^rp^k$
- Poisson distribution $Pois(\lambda)$: $X \in \{0, 1, ...\}$, $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$
- $B(n,p) \to \operatorname{Pois}(\lambda)$ for $n \to \infty$ and $\lambda = np$

6. Moments of random variables

- For $X \in \{0, 1, ...\}$: $EX = \sum_{k=1}^{\infty} P(X \ge k)$
- For Y = f(X): $EY = \sum_{x} f(x)P(X = x)$
- Linearity: E(aX + b) = aEX + b
- $\bullet D^2(aX+b) = a^2D^2(X)$
- $D^2(X) \ge 0$ and $D^2(X) = 0 \iff X$ has degenerate distr.
- Expected value and variance

Distribution of X	EX	$D^2(X)$
B(p)	p	p(1 - p)
B(n,p)	np	np(1-p)
$G_1(p)$	$\frac{1}{n}$	$\frac{1-p}{n^2}$
NB(r,p)	$\frac{rp}{1-p}$	$\frac{rp}{(1-p)^2}$
$Pois(\lambda)$	λ	λ

- k-th order moment: $m_k = E(X^k)$
- k-th order central moment: $\mu_k = E((X EX)^k)$
- Markov's inequality: for nonnegative X and a > 0: $P(X \geqslant a) \leqslant \frac{EX}{a}$
- Chebyshev's inequality: $P(|X EX| \ge \epsilon) \le \frac{D^2(X)}{\epsilon^2}$
- For $X \sim B(n, p)$ the most probable value is: (a) $\lfloor (n+1)p \rfloor$ if (n+1)p is non-integer; (b) (n+1)p and (n+1)p-1 (two values) if (n+1)p is integer

7. Multidimensional random variables

- Marginal distribution: $P(X=x) = \sum_{y} P(X=x, Y=y)$
- Conditional distribution: $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$
- $P(X \in A) = \sum_{y} P(X \in A | Y = y) P(Y = y)$ (total prob.)
- Conditional expectation: $E(X|Y = y) = \sum_{x} x P(X = x|Y = y)$
- $| \bullet \ E(E(X|Y)) = EX \text{ (tower rule)}$

8. Multidimensional random variables II

- $\bullet \ E(X_1 + \ldots + X_n) = EX_1 + \ldots + EX_n$
- C(X,Y) = E((X EX)(Y EY)) = E(XY) (EX)(EY)
- $D^2(X \pm Y) = D^2(X) \pm 2C(X,Y) + D^2(Y)$
- $|C(X,Y)| \leqslant D(X)D(Y)$
- $\rho(X,Y) = \frac{C(X,Y)}{D(X)D(Y)} \in [-1,1]$
- $\bullet \;$ Independence:

 $P(X_1 \in A_1, \dots, X_n \in A_n) = P(X_1 \in A_1) \cdot \dots \cdot P(X_n \in A_n)$

- X_1, \ldots, X_n independent: $E(X_1 \cdot \ldots \cdot X_n) = EX_1 \cdot \ldots \cdot EX_n$
- X, Y independent: C(X, Y) = 0
- X_1, \ldots, X_n independent: $D^2(X_1 \pm \ldots \pm X_n) = D^2(X_1) + \ldots + D^2(X_n)$
- If $X_1, \ldots, X_n \sim B(p)$ independent then $Y = \sum_{i=1}^n X_i \sim B(n, p)$

9. Continuous random variables

- For Y = g(X) g differentiable and invertible: $f_Y(y) = f_X(h(y))|h'(y)|$, where $h = g^{-1}$
- If Y = g(x) then $EY = \int_{-\infty}^{\infty} g(x)f(x) dx$
- Uniform distr. Unif[a,b]: $f(x) = \frac{1}{b-a}$ for $x \in [a,b]$ $E(X) = \frac{a+b}{2}, D^2(X) = \frac{(b-a)^2}{12}$
- Exponential distr. $\text{Exp}(\lambda)$: $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$, $F(x) = 1 e^{-\lambda x}$, $EX = \frac{1}{\lambda}$, $D^2(X) = \frac{1}{\lambda^2}$
- Memorylessness: if $X \sim \text{Exp}(\lambda)$ then $P(X \ge b | X \ge a) = P(X \ge b a)$
- Normal distribution $N(\mu, \sigma^2)$: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$, $EX = \mu$, $D^2(X) = \sigma^2$
- If $X \sim N(\mu, \sigma^2)$ then $aX + b \sim N(\mu a + b, a^2 \sigma^2)$
- If $X \sim N(\mu, \sigma^2)$ then $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$
- If $Z \sim N(0,1)$ then $X = \sigma Z + \mu \sim N(\mu, \sigma^2)$
- C.d.f. of $Z \sim N(0,1)$: $\Phi(z) = P(Z \leq z)$, $\Phi(-z) = 1 \Phi(z)$

10. Continuous random variables II

- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$
- Marginal density: $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$
- Conditional density: $f_{Y|X}(y|x) = \frac{f(x,y)}{f(x)}$
- $f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx$
- Independent random variables: $f(x_1, ..., x_n) = f_{X_1}(x_1) \cdot ... \cdot f_{X_n}(x_n)$
- X_1, \ldots, X_n independent with c.d.f. F_X , $Y = \max_i \{X_i\}$, $Z = \min_i \{X_i\}$ then $F_Y(y) = F_X(y)^n$, $F_Z(z) = 1 (1 F_X(z))^n$
- If X, Y independent and Z = X + Y then: $f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$ (convolution)
- If $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, and X, Y independent then: $Z = X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$
- $X_i \sim N(\mu_i, \sigma_i^2)$ independent, $Z = \sum_{i=1}^n a_i X_i$, then: $Z \sim N(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2)$
- Z has distribution $\chi^2(k)$ if $Z = \sum_{i=1}^k X_i^2$ where $X_i \sim N(0,1)$, independent. EZ = k
- T has t-Student distribution, t(k), if $T = \frac{X}{\sqrt{Z}}\sqrt{k}$, where $X \sim N(0,1), \ Z \sim \chi^2(k), \ X$ and Z independent

11. Limit theorems I

- If X_1, \ldots, X_n independent with the same distr., $EX_i = \mu$ and $D^2(X_i) = \sigma^2$ then $E\overline{X}_n = \mu$ and $D^2(\overline{X}_n) = \frac{\sigma^2}{n}$
- $\bullet X_n \stackrel{\text{w.pr. } 1}{\to} X : P(\lim_{n \to \infty} X_n = X) = 1$
- $\bullet X_n \xrightarrow{P} X: \forall \epsilon > 0, \lim_{n \to \infty} P(|X_n X| > \epsilon) = 0$
- $\bullet \ X_n \stackrel{\text{w.pr. } 1}{\to} X \ \Rightarrow \ X_n \stackrel{P}{\to} X \ \Rightarrow \ X_n \stackrel{D}{\to} X$
- (Strong) Bernoulli LLN: if $X_1, \ldots, X_n \sim B(p)$ independent, then $\overline{X}_n \stackrel{\text{w.pr. } 1}{\longrightarrow} p$
- (Strong) Khinchin LLN: if X_1, \ldots, X_n independent with the same distr., $EX = \mu$, $D^2(X) < \infty$ then $\overline{X}_n \stackrel{\text{w.pr.}}{\longrightarrow} \mu$

12. Limit theorems II

- For $U = \frac{X EX}{D(X)}$: $EU = 0, D^2(U) = 1$
- $X_n \stackrel{D}{\to} X$: $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at every continuity point of F_X
- Moivre-Laplace theorem: if $X_1, \ldots, X_n \sim B(p)$ independent, then $U = \frac{S_n np}{\sqrt{np(1-p)}} = \frac{\overline{X}_n p}{\sqrt{p(1-p)}} \sqrt{n} \stackrel{D}{\to} Z \sim N(0,1)$
- Lindeberg-Levy theorem: if X_1, \ldots, X_n independent with the same distr., $EX = \mu$, $D^2(X) = \sigma^2$ then: $U = \frac{\overline{X}_n \mu}{\sigma} \sqrt{n} \xrightarrow{D} Z \sim N(0, 1)$
- Conclusion: if $S_n \sim B(n, p)$ then S_n can be approximated by $X \sim N(np, np(1-p))$ (condition: $np \ge 5$ i $n(1-p) \ge 5$)
- $\bullet M_X(0) = 1, M_X^{(k)}(0) = E(X^k), M_{aX+b}(t) = e^{bt}M_X(at),$
- $M_{X+Y}(t) = M_X(t)M_Y(t)$ for X, Y independent