Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Industrielles de

Révisions 2 – Modéliser les systèmes asservis – Transformée de Laplace

l'Ingénieur

Sciences

1 Définitions

Définition — Conditions de Heavisde – Fonction causale – Conditions initiales nulles.

Une fonction temporelle f(t) vérifie les conditions de Heaviside lorsque les dérivées successives nécessaires à la résolution de l'équation différentielle sont nulles pour $t=0^+$:

$$f(0^+) = 0$$
 $\frac{\mathrm{d}f(0^+)}{\mathrm{d}t} = 0$ $\frac{\mathrm{d}^2f(0^+)}{\mathrm{d}t^2} = 0...$

On parle de conditions initiales nulles.

Définition — Transformée de Laplace.

À toute fonction du temps f(t), nulle pour $t \le 0$ (fonction causale), on fait correspondre une fonction F(p) de la variable complexe p telle que :

$$\mathcal{L}[f(t)] = F(p) = \int_{0+}^{\infty} f(t)e^{-pt} dt.$$

On note $\mathcal{L}\big[f(t)\big]$ la transformée directe et $\mathcal{L}^{-1}\big[F(p)\big]$ la transformée inverse.

De manière générale on note $\mathcal{L}[f(t)] = F(p), \mathcal{L}[e(t)] = E(p), \mathcal{L}[s(t)] = S(p), \mathcal{L}[\omega(t)] = \Omega(p), \mathcal{L}[\theta(t)] = \Theta(p) \dots$

Résultat — Dérivation.

 $\text{Dans les conditions de Heaviside}: \mathscr{L}\left[\frac{df(t)}{dt}\right] = pF(p) \quad \mathscr{L}\left[\frac{d^2f(t)}{dt^2}\right] = p^2F(p) \quad \mathscr{L}\left[\frac{d^nf(t)}{dt^n}\right] = p^nF(p).$

 $En \ dehors \ des \ conditions \ de \ Heaviside, \ la \ transform\'ee \ de \ Laplace \ d'une \ d\'eriv\'ee \ premi\`ere \ est \ donn\'ee \ par \ \mathcal{L}\left[\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right] = p \ F(p) - f(0^+).$

Définition — Transformées usuelles.

Domaine temporel $f(t)$	Domaine de Laplace $F(p)$	Domaine temporel $f(t)$	Domaine de Laplace $F(p)$
Dirac $\delta(t)$	F(p) = 1	Échelon $u(t) = k$	$U(p) = \frac{k}{p}$
Fonction linéaire $f(t) = t$	$\mathbf{F}(\mathbf{p}) = \frac{1}{\mathbf{p}^2}$	Puissances $f(t) = t^n \cdot u(t)$	$F(p) = \frac{n!}{p^{n+1}}$
$f(t) = \sin(\omega_0 t) \cdot u(t)$	$F(p) = \frac{\omega_0}{p^2 + \omega_0^2}$	$f(t) = \cos(\omega_0 t) \cdot u(t)$	$F(p) = \frac{p}{p^2 + \omega_0^2}$
$f(t) = e^{-at} \cdot u(t)$	$F(p) = \frac{1}{p+a}$	$f(t) = e^{-at} \sin(\omega_0 t) \cdot u(t)$	$F(p) = \frac{\omega_0}{\left(p+a\right)^2 + \omega_0^2}$
$f(t) = t^n e^{-at} u(t)$	$F(p) = \frac{n!}{\left(p+a\right)^{n+1}}$		

2 Théorèmes

Théorème — Théorème de la valeur initiale.

$$\lim_{t\to 0^+} f(t) = \lim_{p\to\infty} pF(p)$$

Théorème — Théorème du retard.

$$\mathcal{L}\left[f(t-t_0)\right] = e^{-t_0 p} F(p)$$

Théorème — Théorème de la valeur finale.

$$\lim_{t\to\infty} f(t) = \lim_{p\to 0} pF(p)$$

Théorème — Théorème de l'amortissement.

$$\mathcal{L}\left[e^{-a\,t}f(t)\right] = F(p+a)$$

