Exercice 1 /3.5

On donne $z_1 = 2 + i$ et $z_2 = 1 + 3i$.

Donner la forme algébrique de :

1.
$$z_1 + 2\overline{z_2}$$

2.
$$z_1 \times \overline{z_2}$$

3.
$$\frac{z_1}{z_2}$$

Exercice 2. /6

Résoudre dans \mathbb{C} les équations suivantes :

1.
$$2(1+z) - i = (1+i)z$$

2.
$$2z + i\overline{z} = 2 - 2i$$
.

3.
$$(-iz+1-3i)(3\overline{z}-4+i)=0$$

Exercice 3. /5

Soient z et Z deux complexes tels que $Z=z^2-2\overline{z}+1$. On pose $z=x+\mathrm{i} y$ avec $(x\,;\,y)\in\mathbb{R}^2$.

- 1. Démontrer que $Z = x^2 2x y^2 + 1 + i(2xy + 2y)$.
- 2. Donner une condition nécessaire et suffisante pour que Z soit réel.
- 3. Proposer deux nombres complexes z non nuls tels que Z soit imaginaire pur.

Exercice 4. /2.5

On considère la fonction Python suivante :

Léa a testé la fonction et a obtenu le résultat suivant :

```
b developpe(1,complex(0,2))
(-11-2j)
```

- 1. Quelle égalité mathématique peut-elle écrire?
- 2. Démontrer cette égalité.

Exercice /3

Soit P le polynôme de degré 2 défini sur $\mathbb C$ par $P(z)=z^2-2az+a^2+b^2$ où a et b sont deux réels.

- 1. Démontrer que P(a+ib)=0.
- **2.** Démontrer pour pour tout nombre complexe z on a $P(\overline{z}) = \overline{P(z)}$.
- **3.** En déduire une autre racine de polynôme P. Aucun calcul n'est attendu mais justifiez avec soin le raisonnement effectué.