Combinatorial Counting & Probability (3cr) Chapter 6 Some Continuous Probability Distributions

Zhong Guan

Math, IUSB

Outline

- 1 6.5 Normal Approximation to Binomial and Poisson
 - Normal Approximation to Binomial
 - Normal Approximation to Poisson

Outline

- 1 6.5 Normal Approximation to Binomial and Poisson
 - Normal Approximation to Binomial
 - Normal Approximation to Poisson

Recall from Chapter 2

Binomial experiment is an experiment consists of *n* repeated independent trials, each trial has two outcomes: **success** and **failure** and the probability of success *p* remains constant. Each trial is called a **Bernoulli trial**.

Binomial distribution: Let X be the number of "successes" in a binomial experiment of n trials with probability p of success. The distribution of X is called a **binomial distribution** with p.m.f.

$$P(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}, \quad x = 0, 1, 2, \dots, n.$$

with mean $\mu = np$ and standard deviation $\sigma = \sqrt{np(1-p)}$.

Recall from Chapter 2

Binomial experiment is an experiment consists of *n* repeated independent trials, each trial has two outcomes: **success** and **failure** and the probability of success *p* remains constant. Each trial is called a **Bernoulli trial**.

Binomial distribution: Let X be the number of "successes" in a binomial experiment of n trials with probability p of success. The distribution of X is called a **binomial distribution** with p.m.f.

$$P(x) = P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, 2, ..., n.$$

with mean $\mu = np$ and standard deviation $\sigma = \sqrt{np(1-p)}$.

Example of binomial close to normal

Table 6.5 The Binomial Probability Distribution for n = 12 and p = .50

x	P(x)
0	.0002
1	.0029
2	.0161
3	.0537
4	.1208
5	.1934
6	.2256
7	.1934
8	.1208
9	.0537
10	.0161
11	.0029
12	.0002

Example of binomial close to normal

Table 6.5 The Binomial Probability Distribution for n = 12 and p = .50

x	P(x)
0	.0002
1	.0029
2	.0161
3	.0537
4	.1208
5	.1934
6	.2256
7	.1934
8	.1208
9	.0537
10	.0161
11	.0029
12	.0002

If $Y \sim b(n, p)$, then for large n

$$\frac{Y}{n} \sim N(p, p(1-p)/n)$$
, approximately.

That is

$$Y \sim N[np, np(1-p)]$$
, approximately.

So for large *n*, and integers *a* and *b*,

$$P(a \leqslant Y \leqslant b) = P(a - 0.5 \leqslant Y \leqslant b + 0.5)$$
$$\approx \Phi\left[\frac{b + 0.5 - np}{\sqrt{np(1 - p)}}\right] - \Phi\left[\frac{a - 0.5 - np}{\sqrt{np(1 - p)}}\right]$$

If $Y \sim b(n, p)$, then for large n

$$\frac{Y}{n} \sim N(p, p(1-p)/n)$$
, approximately.

That is

$$Y \sim N[np, np(1-p)]$$
, approximately.

So for large n, and integers a and b,

$$P(a \leqslant Y \leqslant b) = P(a - 0.5 \leqslant Y \leqslant b + 0.5)$$
$$\approx \Phi\left[\frac{b + 0.5 - np}{\sqrt{np(1 - p)}}\right] - \Phi\left[\frac{a - 0.5 - np}{\sqrt{np(1 - p)}}\right]$$

If $Y \sim b(n, p)$, then for large n

$$\frac{Y}{n} \sim N(p, p(1-p)/n)$$
, approximately.

That is

$$Y \sim N[np, np(1-p)]$$
, approximately.

So for large *n*, and integers *a* and *b*,

$$P(a \leqslant Y \leqslant b) = P(a - 0.5 \leqslant Y \leqslant b + 0.5)$$
$$\approx \Phi\left[\frac{b + 0.5 - np}{\sqrt{np(1 - p)}}\right] - \Phi\left[\frac{a - 0.5 - np}{\sqrt{np(1 - p)}}\right]$$

Examples

Example 1: Among the gifted 7th-graders who score very high on mathematics exam, approximately 20% are left-handed or ambidextrous. Let X equal the number of left-handed or ambidextrous students among a random sample of n = 25 gifted 7th-graders. Find P(2 < X < 9), approximately.

Examples

Solution of Example 1: Since $X \sim b(n, 0.20)$, n = 25, $X \sim N(\mu, \sigma^2)$, approximately, with $\mu = np = 25(0.2) = 5$, $\sigma^2 = 25(0.2)(0.8) = 4$. Approximately,

$$P(2 < X < 9) \approx \Phi(\frac{8.5 - 5}{\sqrt{4}}) - \Phi(\frac{2.5 - 5}{\sqrt{4}}) = \Phi(1.75) - \Phi(-1.25)$$
$$= \Phi(1.75) - 1 + \Phi(1.25) = 0.854291$$

The exact value is

$$P(2 < X < 9) = P(X \le 8) - P(X \le 2) = 0.9532 - 0.0982 = 0.855.$$

Outline

- 1 6.5 Normal Approximation to Binomial and Poisson
 - Normal Approximation to Binomial
 - Normal Approximation to Poisson

Normal Approximation to Poisson

If $Y \sim P(\mu)$ for large μ , then

$$W = \frac{Y - \mu}{\sqrt{\mu}} \sim N(0, 1)$$
, approximately.

So for large μ , and integers a and b,

$$P(a \leqslant Y \leqslant b) = P(a - 0.5 \leqslant Y \leqslant b + 0.5)$$
$$\approx \Phi\left[\frac{b + 0.5 - \mu}{\sqrt{\mu}}\right] - \Phi\left[\frac{a - 0.5 - \mu}{\sqrt{\mu}}\right]$$

Normal Approximation to Poisson

Examples

Example 2: Let X equal the number of alpha particles counted by a Geiger counter during 30 seconds. Assume that $X \sim P(\mu)$, with $\mu = \lambda t = 49$. Find P(45 < X < 60) (a) exactly and (b) approximately.

Examples

Solution of Example 2: Since $X \sim P(49)$, $X \sim N(49, 49)$, approximately.

(a) Using Excel,

$$P(45 < X < 60) = P(X \le 59) - P(X \le 45) = 0.614817548.$$

(b) Approximately, using the normal approximation,

$$P(45 < X < 60) \approx \Phi(\frac{59.5 - 49}{\sqrt{49}}) - \Phi(\frac{45.5 - 49}{\sqrt{49}}) = \Phi(1.5) - \Phi(-0.5)$$
$$= \Phi(1.5) - 1 + \Phi(0.5) = 0.6246553$$