Pattern Recognition

SER: Speech Emotion Recognition

REPORT - Assignment 3

1.	Maram Mohamed Ghazal	5467
2.	Alaa Abdelmajied Kamel	5591
3.	Lina Hazem	5613
4.	Mariam Fekry	5614
5.	Mariam Matar	5653

Speech Emotion Recognition

Introduction

SER It is a system through which various audio speech files are classified into different emotions such as happy, sad, anger and neutral by computer. SER can be used in areas such as the medical field or customer call centers. In this assignment, we use Convolutional Neural Network to recognize emotion from the audios in Crema dataset.

Discussion

The first step in this assignment is loading the audio dataset (Crema Dataset) using librosa library. The dataset consists of 6 different emotions which are SAD, ANGER, DISGUST, FEAR, HAPPY, and NEUTRAL each emotion is given a unique label starting from 0 to 5. After that, the dataset is splitted into 70% training and validation and 30% testing and 5% of the training and validation data for validation in case of 2D CNN model, while for the 1D CNN model, the dataset is splitted into 80% training and validation and 20% testing and 10% of the training and validation data for validation.

The assignment is divided into two parts, one for the 1D CNN model and the other for the 2D CNN model.

• 1D CNN MODEL

The process of generation:

1. Data Augmentation

The training data is augmented using different methods including:

- Gaussian white noise
- Shifting.

2. Features Extraction

Different types of features extraction are used including:

- Zero crossing rate
- Energy
- Root mean square
- Chroma short time frequency transform
- Mel Frequency Cepstral Coefficients

These types are used to extract different features from the training, validation, and testing datasets. After that, the data dimensions are altered to enter the model.

3. Model Architecture

- 1st Trial validation accuracy = 46%
- 2nd Trial validation accuracy = 49%
- 3rd Trial validation accuracy = 50%
- Final Trial
 - 1st trial

validation accuracy = 51% test accuracy = 50.3%

2nd trial
validation accuracy = 50.5%
test accuracy = 51.2%

4. Outputs of the Final Trial

• 1st Trial

	precision	recall	f1-score	support	
0	0.54	0.57	0.55	270	
2	0.62 0.54	0.72 0.39	0.67 0.45	257 263	
3 4	0.45	0.29	0.35 0.41	257 225	
5	0.46	0.62	0.53	217	
accuracy			0.50	1489	
macro avg	0.50	0.51	0.49	1489	
weighted avg	0.50	0.50 0.		1489	

val accuracy: 51.00671052932739 train accuracy: 60.83629131317139 test accuracy 50.3693754197448

Figure 1. Training Accuracy vs Validation Accuracy

Figure 2. Training Loss vs Validation Loss

Figure 3. The Confusion Matrix

The best classified emotion is ANGER, while the worst classified emotion is FEAR.

2nd Trial

	precision	recall	f1-score	support
0	0.54	0.68	0.60	262
1	0.65	0.70	0.68	235
2	0.52	0.42	0.46	269
3	0.36	0.27	0.31	239
4	0.46	0.45	0.46	260
5	0.48	0.56	0.52	224
accuracy			0.51	1489
macro avg	0.50	0.51	0.50	1489
weighted avg	0.50	0.51	0.50	1489

val accuracy: 50.503355264663696 train accuracy: 61.14118695259094 test accuracy 51.24244459368704

Figure 4. Training Accuracy vs Validation Accuracy

Figure 5. Training Loss vs Validation Loss

Figure 6. The Confusion Matrix

 The best classified emotion is SAD, while the worst classified emotion is FEAR.

• 2D MODEL

The process of generation:

1. Data Augmentation

The training data is augmented using:

Frequency mask

2. Features Extraction

Type of feature extraction used:

Mel Spectogram

Mel Spectogram sample from training set before and after frequency mask

3. Model Architecture

- 1st Trial:
- Using relu as activation function + I1 as kernel_regularizer + RMSprop optimizer

validation accuracy: 45.59% test accuracy 44.8%

• 2nd Trial (Final Model):

- Using relu as activation function + l1_l2 as kernel_regularizer + RMSprop optimizer
- Using class weights to handle imbalance
- Trial to get out of stucking in local minimum
- Using ReduceLROnPlateau

validation accuracy: 56.3% test accuracy:57.09%

4. Outputs of the Final Model

				precision			recal	l f1-	score	sup	port	
			0		0.4	19	0.72		0.59	394		
			1	0.74			0.67		0.70		385	
			2		0.6	51	0.40		0.48		391	
	3			0.47		0.50		0.48		374		
4			0.53		0.57		0.55	354				
5				0.69		0.56		0.62		335		
accuracy								0.57		2233		
macro avg					0.59		0.5	7	0.57		2233	
weighted avg					0.59		0.5	7	0.57		2233	
[[2	284	6	25	49	6	24]						
[8	258	18	21	68	12]						
[95	34	156	48	32	26]						
[98	12	10	186	58	10]						
[22	36	19	61	203	13]						
[67	4	26	32	18	188]]						

val accuracy: 56.32184147834778 train accuracy: 62.803155183792114 test accuracy 57.09807433945365

Figure 7. Training Accuracy vs Validation Accuracy

Figure 8. Training Loss vs Validation Loss

Figure 9. The Confusion Matrix

The best classified emotion is SAD, while the worst classified emotion is DISGUSTED.