

FACULTAD REGIONAL CÓRDOBA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA

PROYECTO FINAL:

RED MULTINODAL PARA DETECTAR INHIBICIONES EN SISTEMAS DE SEGURIDAD VEHICULAR

Coronel Martín, Fantin Stéfano, Giletta Julian

Docentes evaluadores: Candiani, Carlos Rabinovich, Daniel Galleguillo, Juan Agradecemos profundamente a nuestra familia que siempre nos apoyó en este largo camino y a la Universidad Tecnológica Nacional, particularmente a la carrera de ingeniería electrónica, la cual siempre se caracterizó por la buena organización y la búsqueda del bienestar estudiantil.

Resumen

En este documento se plasma el proceso de investigación y desarrollo de un sistema multinodal pensado para detectar inhibiciones en los sistemas de seguridad vehicular que funcionen en la frecuencia de 433,92MHz.

El dispositivo planteado cuenta con tres unidades de recepción, las cuales denominamos nodos, y una central de procesamiento encargada de comunicarse y gestionar la información por estos recolectada.

Para la comunicación entre los nodos y la central se utiliza el protocolo RS485, y para comunicar la central con un servidor web, teniendo así los datos a disposición remotamente, se hace uso de un módulo GSM.

Índice general

	Resu	ımen
L.	Intr	roducción
	1.1.	Marco teórico
		1.1.1. Codificación en sistemas de seguridad vehicular
		1.1.2. Estructura de transmisión
	1.2.	Objetivos de la investigación

Índice de figuras

1.1.	Software Defined Radio utilizado para tomar las primeras me-	
	diciones	5
1.2.	Demodulación ASK de señales de controles remotos en 433,92	
	MHz	6

Índice de cuadros

Capítulo 1

Introducción

Hoy en día en muchos paises, y particularmente en la Argentina, se presenta una recurrente modalida de delincuencia que trata de inhibir los sistemas de seguridad vehicular, no permitiendo que estos se cierren y pudiendo tener completo acceso a su interior. Es una metodología muy usada debido a que no se hace uso de la fuerza bruta para ingresar al vehículo y apela a la distracción del usuario.

Siendo conscientes de esta problemática nos hemos empeñado en desarrollar un sistema de detección de los dispositivos utilizados con este fin. Como se verá más adelante se ha hecho un relevamiento de los dispositivos incautados por la policía a través de notas periodísticas y con vínculos internos a departamentos policiales que pusieron a disposición la información presente sobre estos.

Los inhibidores pueden operar corrompiendo la trama de datos emitida por el llavero, no dejando así que el receptor del vehículo pueda identificar el intento de comunicación y también lo pueden hacer saturando el receptor, cosa que de igual manera este no puede identificar la comunicación intentada. Creemos importante que el dispositivo a diseñar abarque estas dos posibilidades.

Otra característica importante a la hora de encarar el proyecto es determinar la frecuencia de operación. Los controles remotos poseen transmisores de radio de corto alcance que operan en dos bandas posibles: 433,92 MHz para vehículos de origen europeo y asiático y 315 MHz para vehículos de origen norteamericano. En la Argentina la mayor cantidad de sistemas de seguridad operan en 433,92 MHz por lo que nos pareció adecuado diseñar el detector para esta frecuencia.

Una vez definidos los requerimientos básicos del desarrollo es importante establecer el lugar en el que creemos adecuado que opere. Es así que surge la idea de tener al menos tres nodos receptores capaces de identificar si hay o no un inhibidor en las inmediaciones de este y que la información que recolecte sea enviada a una unidad de procesamiento, que denominamos "central", la cual se encargaría de comunicarse con los nodos, recopilar la información y subirla a una base de datos, permitiendo la visualización remota de lo que está sucediendo en tiempo real y, de ser posible, triangular la posición estimada del dispositivo inhibidor dentro del arreglo de receptores.

Esto sería emplazado en un estacionamiento utilizando una estrategia de disposición que se analizará más adelante

1.1. Marco teórico

Es importante realizar un estudio profundo sobre el tema que vamos a abordar, ya que es necesario definir un método novedoso que satisfaga la necesidad de distinguir interferencias de señales legítimas generadas por un control remoto.

1.1.1. Codificación en sistemas de seguridad vehicular

Desde los inicios de los sistemas remotos de apertura y control vehicular hasta ahora se ha transitado un largo camino. El primer sistema de identificación por radiofrecuencia fue ingresado en el mercado por Renaul en el modelo Fuego en el año 1995. Todo este tiempo desde su puesta en uso hasta la fecha ha servido para definir y universalizar las metodologías usadas para comunicarse, intentando dar una mejora en cuanto a la seguridad y efectividad del sistema.

Sistemas de código fijo

Esta es la forma más difundida de codificación para los controles remotos vehiculares en nuestro país. Se trata de un código de comunicación fijo, que precisa estar preestablecido en el circuito integrado del dispositivo, el cual se mantiene constante para la acción a realizar. De esto podemos notar que para los controles remotos comunes que poseen opción de cierre y apertura

del automóvil se tienen solo dos códigos fijos que realizan cada una de estas acciones y que, eventualmente, podrían ser copiados y replicados para generar la acción codificada.

Sistemas de código variable

Esta metodología no está muy difundida en nuestra región. Se trata de un sistema de seguridad que no repite el mismo patrón para ejecutar la acción de cierre o apertura del vehículo para evitar que se pueda leer y replicar el código. Usualmente se hace uso de un generador de números pseudoaleatorios que se encuentra en el emisor y receptor, un contador de pulsaciones en el emisor y un contador de recepciones en el vehículo. Cuando el control remoto envía la señal para realizar una acción en el vehículo este manda su contador, el cual será comparado con el interno del receptor y, de estar dentro de la ventana de aceptación definida en el sistema de seguridad, el automóvil autentica el mensaje recibido y actualiza el contador interno, ya que este puede diferir al de la llave. Hay diversos tipos de encriptación de la comunicación; aquí solo mencionaremos los más difundidos: Hitag 1, Hitag 2, Hitag AES, DST-40, Keeloq

Sistemas por desafío

El sistema por desafío es actualmente el más utilizado en autos de alta gama. En este caso el control remoto intenta comunicarse y el vehículo envía una pregunta desafío que tiene que ser respondida correctamente para validar la comunicación.

En esta variante por lo que fpácilmente se puede observar es necesario que el control remoto y el vehículo tengan la capacidad de emitir y recibire datos, generando una comunicación bidireccional. Hay muchas variantes de desafío requerido por el vehículo, pero la más utilizada es la de validación de contraseña, donde el desafío pedido es pedir la contraseña y esta será o no validada. Esto en definitiva no impide que sea replicado el patrón de comienzo de comunicación y la autenticación, por lo que hay modalidades más avanzadas como tener una tabla de códigos pseudoaleatorios definida en ambos dispositivos y asociada a un identificador, de modo que el vehículo requiera el código por medio de este no dando lugar a que un escucha externo pueda saber a qué valor está asociado.

1.1.2. Estructura de transmisión

Tener noción previa de lo que esperamos recibir cuando hacemos un análisis de una señal es de gran importancia, por lo que en esta sección analizaremos la estructura de transmisión de un control remoto de autos.

Como antes fue mencionado no hay solo una frecuencia de operación, pero sí hay una que es ampliamente difundida en nuestro país y en esa nos centraremos (433,92 MHz), la modulación utilizada en la mayor cantidad de estos dispositivos es ASK, por su fácil implementación. Con esta información ya seríamos capaces de demodular la señal y analizar la estructura.

Para la demodulación de la señal hemos utilizado un SDR (Software Defined Radio) como el que se puede observar en la figura 1.1, el cual fue facilitado por el centro de investigación G.In.T.E.A (Grupo de Investigación y Transferencia en Electrónica Avanzada) de la Universidad Tecnológica Nacional, facultad regional Córdoba.

Figura 1.1: Software Defined Radio utilizado para tomar las primeras mediciones

En la figura 1.2 podemos observar las primeras mediciones tomadas. Aquí podemos distinguir la estrategia de transmisión que se utiliza. En un comienzo la señal posee un preámbulo, el cual es utilizado por el receptor para sincronizar el reloj del receptor para decodificar correctamente los paquetes del transmisor. Después del preámbulo hay una palabra de sincronización que se utiliza para evitar choques con otros dispositivos que operan en esa banda y por último se encuentra la señal de código real.

Al presionar el botón del control remoto el preámbulo es enviado una única vez y luego se envía la palabra de sincronización y el comando de acción repetidamente hasta que se deje de accionar.

Figura 1.2: Demodulación ASK de señales de controles remotos en 433,92 $\,\mathrm{MHz}$

1.2. Objetivos de la investigación

En base a la información recolectada establecemos los capacidad de detectar inhibicion de potencia o corrupcion Una forma de atacar la señal de un llavero es atascándola pasando datos basura dentro de la banda de paso del receptor RFID, el área en la que el receptor está escuchando una señal válida (pagina 217 imagen)