Сума на подпространства и размерност на сумата

Твърдение 1. Нека U и W са подпространства на линейно пространство V над поле F . Тога ва:

- (i) $U \cap W$ е подпространство на V;
- (ii) $U \cup W$ е подпространство на V тогава и само тогава, когато $U \subseteq W$ или $W \subseteq U$.

Доказателство. (i) Ако $v_1, v_2 \in U \cap W$ и $\alpha \in F$, то $v_1 + v_2, \alpha v_1 \in U$, защото U е подпространство на V, съдържащо v_1 и v_2 . Аналогично, $v_1 + v_2, \alpha v_1 \in W$, защото W е подпространство на V, съдържащо v_1 и v_2 . В резултат, $v_1 + v_2, \alpha v_1 \in U \cap W$ и $U \cap W$ е подпространство на V.

(ii) Да допуснем, че $U \cup W$ е подпространство на V, U не се съдържа в W и W не се съдържа в U. Тогава съществуват вектори $u \in U \setminus W$ и $w \in W \setminus U$. Подпространството $U \cup W$ на V съдържа векторите u, w, а оттам и тяхната сума $u + w \in U \cup W$.

Ако $u + w = u_1 \in U$, то $w = u_1 - u \in U$, противно на избора на $w \notin U$.

Аналогично, допускането $u+w=w_1\in W$ води до $u=w_1-w\in W$, което противоречи на избора на $u\not\in W$.

Следователно обединението $U \cup W$ на подпространства U и W на линейно пространство V е подпространство на V само когато $U \subseteq W$ или $W \subseteq U$.

Ако $U\subseteq W$, то от $U\cup W\subseteq W\subseteq U\cup W$ следва, че $U\cup W=W$ е подпространство на V. Аналогично, за $W\subseteq U$ имаме $U\cup W\subseteq U\subseteq U\cup W$, така че $U\cup W=U$ е подпространство на V.

Определение 2. Ако V_1, \dots, V_n са подпространства на линейно пространство V, то множеството

$$V_1 + \ldots + V_n = \{v_1 + \ldots + v_n | v_i \in V_i\}$$

на сумите $v_1 + \ldots + v_n$ на вектори $v_i \in V_i$ се нарича сума на V_1, \ldots, V_n .

Твърдение 3. Ако V_1, \ldots, V_n са подпространства на линейно пространство V, то сумата

$$V_1 + \ldots + V_n = l(V_1 \cup \ldots \cup V_n)$$

съвпада с линейната обвивка на обединението $V_1 \cup \ldots \cup V_n$.

B частност, $V_1+\ldots+V_n$ е подпространство на V и това е минималното подпространство на V, съдържащо $V_1\cup\ldots\cup V_n$.

Доказателство. Да означим $S:=V_1+\ldots+V_n$ и $L:=l(V_1\cup\ldots\cup V_n)$.

Всеки вектор $v \in S$ е от вида $v = v_1 + \ldots + v_n = 1.v_1 + \ldots + 1.v_n \in l(V_1 \cup \ldots \cup V_n) = L$, така че $S \subseteq L$.

Обратно, ако $v\in L$, то за всяко $1\leq i\leq n$ съществуват $v_{i,1},\dots,v_{i,k_i}\in V_i$ и $\lambda_{i,1},\dots,\lambda_{i,k_i}\in F$ с

$$v = \sum_{i=1}^{n} \sum_{s=1}^{k_i} \lambda_{i,s} v_{i,s}.$$

Подпространствата V_i съдържат векторите $v_i := \sum_{s=1}^{k_i} \lambda_{i,s} v_{i,s}$ и $v = v_1 + \ldots + v_n \in S$. Това доказва $L \subseteq S$ и S = L.

Задача 4. Нека U и W са крайномерни линейни подпространства на линейно пространство V над поле F. Тогава U+W и $U\cap W$ са крайномерни подпространства на V и

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

Доказателство. Подпространството $U \cap W$ на крайномерното пространство U е крайномерно. Ако $U \cap W \neq \{\overrightarrow{\mathcal{O}}\}$, то съществува базис a_1, \ldots, a_k на $U \cap W$. Допълваме до базис $a_1, \ldots, a_k, b_1, \ldots, b_n$ на U и базис $a_1, \ldots, a_k, c_1, \ldots, c_m$ на W. Достатъчно е да проверим, че $a_1, \ldots, a_k, b_1, \ldots, b_n, c_1, \ldots, c_m$ е базис на U + W, защото тогава U + W е крайномерно подпространство на V и

$$\dim(U) + \dim(W) - \dim(U \cap W) = (k+n) + (k+m) - k = k+n+m = \dim(U+W).$$

От
$$U = l(a_1, \dots, a_k, b_1, \dots, b_n)$$
 и $W = l(a_1, \dots, a_k, c_1, \dots, c_m)$ следва

$$U + W = l(a_1, \dots, a_k, b_1, \dots, b_n) + l(a_1, \dots, a_k, c_1, \dots, c_m) =$$

$$= l(a_1, \dots, a_k) + l(b_1, \dots, b_n) + l(a_1, \dots, a_k) + l(c_1, \dots, c_m) =$$

$$= l(a_1, \dots, a_k) + l(b_1, \dots, b_n) + l(c_1, \dots, c_m) = l(a_1, \dots, a_k, b_1, \dots, b_n, c_1, \dots, c_m),$$

защото сумата на две линейни комбинации на a_1, \ldots, a_k е линейна комбинация на a_1, \ldots, a_k . Нека

$$\sum_{i=1}^{k} x_i a_i + \sum_{j=1}^{n} y_j b_j + \sum_{s=1}^{m} z_s c_s = \overrightarrow{\mathcal{O}}$$
 (1)

е представяне на нулевия вектор като линейна комбинация на векторите $a_1,\ldots,a_k,$ $b_1,\ldots,b_n,\,c_1,\ldots,c_m$ с коефициенти $x_1,\ldots,x_k,\,y_1,\ldots,y_n,\,z_1,\ldots,z_m\in F$. Полагаме

$$a := \sum_{i=1}^{k} x_i a_i, \quad b := \sum_{j=1}^{n} y_j b_j, \quad c := \sum_{s=1}^{m} z_s c_s$$

и забелязваме, че от $a+b+c=\overrightarrow{\mathcal{O}}$ следва

$$a+b=-c\in U\cap W=l(a_1,\ldots,a_k),$$

защото $a+b \in l(a_1,\ldots,a_k,b_1,\ldots,b_n) = U$ и $-c \in l(c_1,\ldots,c_m) \subset l(a_1,\ldots,a_k,c_1,\ldots,c_m) = W$. Следователно съществува вектор

$$a' = \sum_{i=1}^{k} t_i a_i \in l(a_1, \dots, a_k) = U \cap W,$$

изпълняващ равенството

$$a + b = -c = a'.$$

В резултат получаваме, че

$$\overrightarrow{\mathcal{O}} = a' + c = \sum_{i=1}^{k} t_i a_i + \sum_{s=1}^{m} z_s c_s.$$

Поради линейната независимост на векторите $a_1,\ldots,a_k,c_1,\ldots,c_m$ от базиса на W, оттук следва $t_i=0$ за всички $1\leq i\leq k$ и $z_s=0$ за всички $1\leq s\leq m$. Сега

$$\sum_{i=1}^{k} x_i a_i + \sum_{j=1}^{n} y_j b_j = a + b = -c = \overrightarrow{\mathcal{O}}$$

изисква $x_i=0$ за всички $1\leq i\leq k$ и $y_j=0$ за всички $1\leq j\leq n$, защото базисът $a_1,\ldots,a_k,b_1,\ldots,b_n$ на U е линейно независима система вектори. С това доказахме, че единствената линейна комбинация (1) на $a_1,\ldots,a_k,b_1,\ldots,b_n,\,c_1,\ldots,c_m$, представяща нулевия вектор $\overrightarrow{\mathcal{O}}$ е тази с нулеви коефициенти. Следователно $a_1,\ldots,a_k,\,b_1,\ldots,b_n,\,c_1,\ldots,c_m$ е линейно независима система, а оттам и базис на U+W.

Ако $U \cap W = \{\overline{\mathcal{O}}\}$, избираме базис b_1, \ldots, b_n на U и базис c_1, \ldots, c_m на W. Достатъчно е да докажем, че $b_1, \ldots, b_n, c_1, \ldots, c_m$ е базис на U + W, защото тогава U + W е крайномерно пространство и

$$\dim(U) + \dim(W) - \dim(U \cap W) = n + m - 0 = n + m = \dim(U + W).$$

От
$$U = l(b_1, \ldots, b_n)$$
 и $W = l(c_1, \ldots, c_m)$ следва, че

$$U + W = l(b_1, \dots, b_n) + l(c_1, \dots, c_m) = l(b_1, \dots, b_n, c_1, \dots, c_m).$$

Ако
$$\sum\limits_{j=1}^n y_j b_j + \sum\limits_{s=1}^m z_s c_s = \overrightarrow{\mathcal{O}}$$
, то

$$\sum_{i=1}^{n} y_{i} b_{j} = \sum_{s=1}^{m} (-z_{s}) c_{s} \in l(b_{1}, \dots, b_{n}) \cap l(c_{1}, \dots, c_{m}) = U \cap W = \{\overrightarrow{\mathcal{O}}\}.$$

Следователно

$$\sum_{j=1}^n y_j b_j = \overrightarrow{\mathcal{O}}$$
 и $\sum_{s=1}^m z_s c_s = \overrightarrow{\mathcal{O}}$.

От линейната независимост на базиса b_1, \ldots, b_n на U следва $y_j = 0$ за всички $1 \le j \le n$. Аналогично, линейната независимост на базиса c_1, \ldots, c_m на W изисква $z_s = 0$ за всички $1 \le s \le m$. Следователно единствената линейна комбинация на векторите $b_1, \ldots, b_n, c_1, \ldots, c_m$, представяща нулевия вектор \overrightarrow{O} е тази с нулеви коефициенти, така че $b_1, \ldots, b_n, c_1, \ldots, c_m$ е линейно независима система, а оттам и базис на U + W.

Ако $U \cap W = U$, то $U \subseteq W$. Следователно $U + W \subseteq W \subseteq U + W$ и U + W = W. Сега от $\dim(U \cap W) = \dim(U)$ и $\dim(U + W) = \dim(W)$ получаваме $\dim(U + W) = \dim(U) + \dim(W) - \dim(U \cap W)$.