Residually Finite Varieties

Keith A. Kearnes University of Colorado

The *residual character* of a variety \mathcal{V} is the least $\chi_{\mathcal{V}}$ such that every subdirectly irreducible algebra in \mathcal{V} has cardinality $<\chi_{\mathcal{V}}$, if exists. Else $\chi_{\mathcal{V}}=\infty$.

The *residual character* of a variety \mathcal{V} is the least $\chi_{\mathcal{V}}$ such that every subdirectly irreducible algebra in \mathcal{V} has cardinality $<\chi_{\mathcal{V}}$, if exists. Else $\chi_{\mathcal{V}} = \infty$. \mathcal{V} is *residually finite* if $\chi_{\mathcal{V}} \leq \omega$.

The *residual character* of a variety \mathcal{V} is the least $\chi_{\mathcal{V}}$ such that every subdirectly irreducible algebra in \mathcal{V} has cardinality $<\chi_{\mathcal{V}}$, if exists. Else $\chi_{\mathcal{V}} = \infty$. \mathcal{V} is *residually finite* if $\chi_{\mathcal{V}} \leq \omega$.

Theorem (McKenzie-Shelah, 1974)

If V has finite type, then $\chi_{\mathcal{V}} \in \{3, 4, \dots, \omega, \omega^+, (2^{\omega})^+, \infty\}$.

The *residual character* of a variety \mathcal{V} is the least $\chi_{\mathcal{V}}$ such that every subdirectly irreducible algebra in \mathcal{V} has cardinality $<\chi_{\mathcal{V}}$, if exists. Else $\chi_{\mathcal{V}} = \infty$. \mathcal{V} is *residually finite* if $\chi_{\mathcal{V}} \leq \omega$.

Theorem (McKenzie-Shelah, 1974)

If V has finite type, then $\chi_{\mathcal{V}} \in \{3, 4, \dots, \omega, \omega^+, (2^{\omega})^+, \infty\}$.

The *residual character* of a variety \mathcal{V} is the least $\chi_{\mathcal{V}}$ such that every subdirectly irreducible algebra in \mathcal{V} has cardinality $<\chi_{\mathcal{V}}$, if exists. Else $\chi_{\mathcal{V}} = \infty$. \mathcal{V} is *residually finite* if $\chi_{\mathcal{V}} \leq \omega$.

Theorem (McKenzie-Shelah, 1974)

If V has finite type, then $\chi_V \in \{3, 4, \dots, \omega, \omega^+, (2^\omega)^+, \infty\}$.

It seems hard to realize $\chi_{\mathcal{V}} = \omega$ in finite type.

The *residual character* of a variety \mathcal{V} is the least $\chi_{\mathcal{V}}$ such that every subdirectly irreducible algebra in \mathcal{V} has cardinality $<\chi_{\mathcal{V}}$, if exists. Else $\chi_{\mathcal{V}} = \infty$. \mathcal{V} is *residually finite* if $\chi_{\mathcal{V}} \leq \omega$.

Theorem (McKenzie-Shelah, 1974)

If V has finite type, then $\chi_V \in \{3, 4, \dots, \omega, \omega^+, (2^\omega)^+, \infty\}$.

It seems hard to realize $\chi_{\mathcal{V}} = \omega$ in finite type. A variety with this property has infinitely many finite SI's, but no infinite ones.

The *residual character* of a variety \mathcal{V} is the least $\chi_{\mathcal{V}}$ such that every subdirectly irreducible algebra in \mathcal{V} has cardinality $<\chi_{\mathcal{V}}$, if exists. Else $\chi_{\mathcal{V}}=\infty$. \mathcal{V} is *residually finite* if $\chi_{\mathcal{V}}\leq\omega$.

Theorem (McKenzie-Shelah, 1974)

If V has finite type, then $\chi_V \in \{3, 4, \dots, \omega, \omega^+, (2^\omega)^+, \infty\}$.

It seems hard to realize $\chi_{\mathcal{V}} = \omega$ in finite type. A variety with this property has infinitely many finite SI's, but no infinite ones. The McKenzie-Shelah example is the variety of \mathbb{Z} -sets, presented with two unary operations satisfying f(g(x)) = g(f(x)) = x.

Theorems

Theorems

If V has finite type, and is among the following, then $\chi_{\mathcal{V}} \neq \omega$:

(1) a variety of groups (Olshanskii, 1969),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),
- (6) a variety of Lie algebras over a finite field of characteristic ≥ 5 (Premet-Semenov, 1990),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),
- (6) a variety of Lie algebras over a finite field of characteristic ≥ 5 (Premet-Semenov, 1990),
- (7) a variety that omits nontrivial abelian congruences (Kearnes-Willard, 1999),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),
- (6) a variety of Lie algebras over a finite field of characteristic ≥ 5 (Premet-Semenov, 1990),
- (7) a variety that omits nontrivial abelian congruences (Kearnes-Willard, 1999),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),
- (6) a variety of Lie algebras over a finite field of characteristic ≥ 5 (Premet-Semenov, 1990),
- (7) a variety that omits nontrivial abelian congruences (Kearnes-Willard, 1999), $(typ\{V\} \subseteq \{3,4,5\})$

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),
- (6) a variety of Lie algebras over a finite field of characteristic ≥ 5 (Premet-Semenov, 1990),
- (7) a variety that omits nontrivial abelian congruences (Kearnes-Willard, 1999), $(typ\{V\} \subseteq \{3,4,5\})$
- (8) a variety that omits nontrivial rectangular congruences (Kearnes-Willard, ?),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),
- (6) a variety of Lie algebras over a finite field of characteristic ≥ 5 (Premet-Semenov, 1990),
- (7) a variety that omits nontrivial abelian congruences (Kearnes-Willard, 1999), $(typ\{V\} \subseteq \{3,4,5\})$
- (8) a variety that omits nontrivial rectangular congruences (Kearnes-Willard, ?),

Theorems

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),
- (6) a variety of Lie algebras over a finite field of characteristic ≥ 5 (Premet-Semenov, 1990),
- (7) a variety that omits nontrivial abelian congruences (Kearnes-Willard, 1999), $(typ\{V\} \subseteq \{3,4,5\})$
- (8) a variety that omits nontrivial rectangular congruences (Kearnes-Willard, ?), $(typ\{V\} \subseteq \{2,3,4\})$

Theorems

If V has finite type, and is among the following, then $\chi_V \neq \omega$:

- (1) a variety of groups (Olshanskii, 1969),
- (2) a variety of semigroups (McKenzie, 1981), (Golubov-Sapir, 1982),
- (3) a variety of rings (McKenzie, 1982),
- (4) an affine complete variety (Kaarli-Pixley, 1987),
- (5) a variety of lattices (Freese-Nation, ?),
- (6) a variety of Lie algebras over a finite field of characteristic ≥ 5 (Premet-Semenov, 1990),
- (7) a variety that omits nontrivial abelian congruences (Kearnes-Willard, 1999), $(typ\{V\} \subseteq \{3,4,5\})$
- (8) a variety that omits nontrivial rectangular congruences (Kearnes-Willard, ?), $(typ\{V\} \subseteq \{2,3,4\})$

Conjecture

If V has finite type and satisfies $typ\{V\} \subseteq \{2,3,4,5\}$, then $\chi_V \neq \omega$.

SI's:

 A_1 ,

 A_2 ,

 $|A| \nearrow \omega$

Con's:

 A_3 ,

SI's:

Con's:

 A_1 ,

 A_2 ,

 $|A| \nearrow \omega$

• •

$$\nu = (0:\mu)$$

SI's:

 A_1 ,

 A_2 ,

Con's:

 $|A| \nearrow \omega$

s₂ *S*₄ **S**3

$$\nu = (0:\mu)$$

SI's:

$$A_1$$
,

 A_2 ,

$$\nu = (0:\mu)$$

$$S = \{s_1, s_2, \ldots\}$$

= a noncentralizing set

Key fact: If $\chi_{\mathcal{V}} \leq \omega$, \mathcal{V} has finite type, and \mathcal{V} omits nontrivial rectangular congruences, then "[Cg(w, x), Cg(y, z)] = 0" is definable.

Key fact: If $\chi_{\mathcal{V}} \leq \omega$, \mathcal{V} has finite type, and \mathcal{V} omits nontrivial rectangular congruences, then "[Cg(w, x), Cg(y, z)] = 0" is definable.

- (1) Γ is a principal congruence formula (if $A \models \Gamma(e, f, a, b)$, then $(e, f) \in \operatorname{Cg}(a, b)$).
- (2) If $[Cg(a,b), Cg(c,d)] \neq 0$, then $\exists \{e,f\} \in A^{(2)}$ such that $A \models \Gamma(e,f,a,b)$ and $A \models \Gamma(e,f,c,d)$.

Key fact: If $\chi_{\mathcal{V}} \leq \omega$, \mathcal{V} has finite type, and \mathcal{V} omits nontrivial rectangular congruences, then "[Cg(w, x), Cg(y, z)] = 0" is definable.

- (1) Γ is a principal congruence formula (if $A \models \Gamma(e, f, a, b)$, then $(e, f) \in \operatorname{Cg}(a, b)$).
- (2) If $[Cg(a,b), Cg(c,d)] \neq 0$, then $\exists \{e,f\} \in A^{(2)}$ such that $A \models \Gamma(e,f,a,b)$ and $A \models \Gamma(e,f,c,d)$.

Example: (Rings,
$$Cg(a, b) = Cg(a - b, 0)$$
)
 $[Cg(a, 0), Cg(c, 0)] = 0 \Leftrightarrow (a)(c) = (0) = (c)(a)$

Key fact: If $\chi_{\mathcal{V}} \leq \omega$, \mathcal{V} has finite type, and \mathcal{V} omits nontrivial rectangular congruences, then "[Cg(w, x), Cg(y, z)] = 0" is definable.

- (1) Γ is a principal congruence formula (if $A \models \Gamma(e, f, a, b)$, then $(e, f) \in \operatorname{Cg}(a, b)$).
- (2) If $[Cg(a,b), Cg(c,d)] \neq 0$, then $\exists \{e,f\} \in A^{(2)}$ such that $A \models \Gamma(e,f,a,b)$ and $A \models \Gamma(e,f,c,d)$.

Example: (Rings,
$$Cg(a, b) = Cg(a - b, 0)$$
)

$$[Cg(a, 0), Cg(c, 0)] = 0 \Leftrightarrow (a)(c) = (0) = (c)(a)$$

$$\Leftrightarrow \forall r(arc = 0 \& cra = 0)$$

Key fact: If $\chi_{\mathcal{V}} \leq \omega$, \mathcal{V} has finite type, and \mathcal{V} omits nontrivial rectangular congruences, then "[Cg(w, x), Cg(y, z)] = 0" is definable.

- (1) Γ is a principal congruence formula (if $A \models \Gamma(e, f, a, b)$, then $(e, f) \in \operatorname{Cg}(a, b)$).
- (2) If $[Cg(a,b), Cg(c,d)] \neq 0$, then $\exists \{e,f\} \in A^{(2)}$ such that $A \models \Gamma(e,f,a,b)$ and $A \models \Gamma(e,f,c,d)$.

Example: (Rings,
$$Cg(a, b) = Cg(a - b, 0)$$
)

$$[Cg(a, 0), Cg(c, 0)] = 0 \Leftrightarrow (a)(c) = (0) = (c)(a)$$

$$\Leftrightarrow \forall r(arc = 0 \& cra = 0)$$

Key fact: If $\chi_{\mathcal{V}} \leq \omega$, \mathcal{V} has finite type, and \mathcal{V} omits nontrivial rectangular congruences, then "[Cg(w, x), Cg(y, z)] = 0" is definable.

- (1) Γ is a principal congruence formula (if $A \models \Gamma(e, f, a, b)$, then $(e, f) \in \operatorname{Cg}(a, b)$).
- (2) If $[Cg(a,b), Cg(c,d)] \neq 0$, then $\exists \{e,f\} \in A^{(2)}$ such that $A \models \Gamma(e,f,a,b)$ and $A \models \Gamma(e,f,c,d)$.

Example: (Rings,
$$Cg(a, b) = Cg(a - b, 0)$$
)

$$[Cg(a, 0), Cg(c, 0)] \neq 0 \Leftrightarrow (a)(c) \neq (0) \text{ or } (c)(a) \neq (0)$$

$$\Leftrightarrow \exists r(arc \neq 0 \text{ or } cra \neq 0)$$

Key fact: If $\chi_{\mathcal{V}} \leq \omega$, \mathcal{V} has finite type, and \mathcal{V} omits nontrivial rectangular congruences, then "[Cg(w, x), Cg(y, z)] = 0" is definable.

- (1) Γ is a principal congruence formula (if $A \models \Gamma(e, f, a, b)$, then $(e, f) \in \operatorname{Cg}(a, b)$).
- (2) If $[Cg(a,b), Cg(c,d)] \neq 0$, then $\exists \{e,f\} \in A^{(2)}$ such that $A \models \Gamma(e,f,a,b)$ and $A \models \Gamma(e,f,c,d)$.

Example: (Rings,
$$Cg(a, b) = Cg(a - b, 0)$$
)
$$[Cg(a, 0), Cg(c, 0)] \neq 0 \quad \Leftrightarrow (a)(c) \neq (0) \text{ or } (c)(a) \neq (0)$$

$$\Leftrightarrow \exists r(arc \neq 0 \text{ or } cra \neq 0)$$

$$\Gamma(e, 0, a, 0) = \exists s(e = sa \text{ or } e = as)$$

Bound the size of noncentralizing sets in SI's

For pcf Γ' , write $S \xrightarrow{\Gamma'} \{u, v\}$ to mean $A \models \Gamma'(u, v, s, t)$ for all $\{s, t\} \in S^{(2)}$.

Bound the size of noncentralizing sets in SI's

For pcf Γ' , write $S \xrightarrow{\Gamma'} \{u, v\}$ to mean $A \models \Gamma'(u, v, s, t)$ for all $\{s, t\} \in S^{(2)}$.

Claim. \exists pcf Γ_n such that for any noncentralizing $S \subseteq A \in \mathcal{V}_{SI}$, |S| = n, $\forall \{a,b\} \in A^{(2)} \exists \{u,v\} \in A^{(2)}(\{a,b\} \xrightarrow{\Gamma_n} \{u,v\} \xleftarrow{\Gamma_n} S)$:

For pcf Γ' , write $S \xrightarrow{\Gamma'} \{u, v\}$ to mean $A \models \Gamma'(u, v, s, t)$ for all $\{s, t\} \in S^{(2)}$.

For pcf Γ' , write $S \xrightarrow{\Gamma'} \{u, v\}$ to mean $A \models \Gamma'(u, v, s, t)$ for all $\{s, t\} \in S^{(2)}$.

For pcf Γ' , write $S \xrightarrow{\Gamma'} \{u, v\}$ to mean $A \models \Gamma'(u, v, s, t)$ for all $\{s, t\} \in S^{(2)}$.

For pcf Γ' , write $S \xrightarrow{\Gamma'} \{u, v\}$ to mean $A \models \Gamma'(u, v, s, t)$ for all $\{s, t\} \in S^{(2)}$.

$$S_{5} \qquad S_{4} \qquad S_{3} \qquad S_{2}$$

$$\downarrow \Gamma_{5} \qquad \downarrow \Gamma_{4} \qquad \downarrow \Gamma_{3} \qquad \downarrow \Gamma_{2}$$

$$\bullet \bullet \bullet \qquad \xrightarrow{\Gamma_{5}} \{u_{5}, v_{5}\} \xrightarrow{\Gamma_{4}} \{u_{4}, v_{4}\} \xrightarrow{\Gamma_{3}} \{u_{3}, v_{3}\} \xrightarrow{\Gamma_{2}} \{u_{2}, v_{2}\}$$

$$|S_{i}| = i \qquad \qquad u_{2} \neq v_{2}$$

$$S_4 \qquad S_3$$

$$\downarrow \Gamma_4 \qquad \qquad \downarrow \Gamma_3$$

$$\{u_5, v_5\} \stackrel{\Gamma_4}{\longrightarrow} \{u_4, v_4\} \stackrel{\Gamma_3}{\longrightarrow} \{u_3, v_3\}$$

$$S_4 \qquad S_3 \qquad S_2$$

$$\downarrow \Gamma_4 \qquad \qquad \downarrow \Gamma_3 \qquad \qquad \downarrow \Gamma_2$$

$$\{u_5, v_5\} \stackrel{\Gamma_4}{\longrightarrow} \{u_4, v_4\} \stackrel{\Gamma_3}{\longrightarrow} \{u_3, v_3\} \stackrel{\Gamma_2}{\longrightarrow} \{u_2, v_2\}$$

$$|S_i| = i \qquad \qquad u_2 \neq v_2$$

$$S_{5} \qquad S_{4} \qquad S_{3} \qquad S_{2}$$

$$\downarrow \Gamma_{5} \qquad \downarrow \Gamma_{4} \qquad \downarrow \Gamma_{3} \qquad \downarrow \Gamma_{2}$$

$$\bullet \bullet \bullet \qquad \xrightarrow{\Gamma_{5}} \{u_{5}, v_{5}\} \xrightarrow{\Gamma_{4}} \{u_{4}, v_{4}\} \xrightarrow{\Gamma_{3}} \{u_{3}, v_{3}\} \xrightarrow{\Gamma_{2}} \{u_{2}, v_{2}\}$$

$$|S_{i}| = i \qquad \qquad u_{2} \neq v_{2}$$

If SI's have noncentralizing sets of unbounded size, then it is consistent with $Th(\mathcal{V})$ that some SI $A \in \mathcal{V}$ contains elements related as follows.

$$S_{5} \qquad S_{4} \qquad S_{3} \qquad S_{2}$$

$$\downarrow \Gamma_{5} \qquad \downarrow \Gamma_{4} \qquad \downarrow \Gamma_{3} \qquad \downarrow \Gamma_{2}$$

$$\bullet \bullet \bullet \qquad \stackrel{\Gamma_{5}}{\longrightarrow} \{u_{5}, v_{5}\} \qquad \stackrel{\Gamma_{4}}{\longrightarrow} \{u_{4}, v_{4}\} \qquad \stackrel{\Gamma_{3}}{\longrightarrow} \{u_{3}, v_{3}\} \qquad \stackrel{\Gamma_{2}}{\longrightarrow} \{u_{2}, v_{2}\}$$

$$|S_{i}| = i \qquad \qquad u_{2} \neq v_{2}$$

Hence V has an infinite SI.

Hypotheses

Con(A), A SI

Hypotheses

- $\chi_{\mathcal{V}} \leq \omega$
- [Cg(w,x), Cg(y,z)] = 0 definable

Hypotheses

- $\chi_{\mathcal{V}} \leq \omega$
- [Cg(w,x), Cg(y,z)] = 0 definable

Hypotheses

- $\chi_{\mathcal{V}} \leq \omega$
- [Cg(w,x), Cg(y,z)] = 0 definable
- $\langle 0, \mu \rangle$ not type **1**

Hypotheses

- $\chi_{\mathcal{V}} \leq \omega$
- [Cg(w, x), Cg(y, z)] = 0 definable
- $\langle 0, \mu \rangle$ not type **1**

Hypotheses

- $\chi_{\mathcal{V}} \leq \omega$
- [Cg(w,x), Cg(y,z)] = 0 definable
- $\langle 0, \mu \rangle$ not type **1**

• \mathcal{V} omits type 1

Hypotheses

- $\chi_{\mathcal{V}} \leq \omega$
- [Cg(w,x), Cg(y,z)] = 0 definable
- $\langle 0, \mu \rangle$ not type **1**

• \mathcal{V} omits type 1

Hypotheses

- $\chi_{\mathcal{V}} < \omega$
- [Cg(w,x), Cg(y,z)] = 0 definable
- $\langle 0, \mu \rangle$ not type **1**

• \mathcal{V} omits type 1

Con(A), A SI

If [Cg(w, x), Cg(y, z)] = 0 is definable and \mathcal{V} omits type 1, then proving $\chi_{\mathcal{V}} \neq \omega$ can be reduced to the case of modules.

V = variety of modules over a f.g. ring R. R is *minimal* if it is infinite, but every proper quotient is finite (like \mathbb{Z}).

V = variety of modules over a f.g. ring R. R is *minimal* if it is infinite, but every proper quotient is finite (like \mathbb{Z}).

V = variety of modules over a f.g. ring R. R is *minimal* if it is infinite, but every proper quotient is finite (like \mathbb{Z}).

Lemmas

(1) $\chi_{\mathcal{V}} < \omega \text{ iff } |R| < \omega.$

V = variety of modules over a f.g. ring R. R is *minimal* if it is infinite, but every proper quotient is finite (like \mathbb{Z}).

- (1) $\chi_{\mathcal{V}} < \omega \text{ iff } |R| < \omega.$
- (2) Every f.g. infinite ring has a minimal quotient.

V = variety of modules over a f.g. ring R. R is *minimal* if it is infinite, but every proper quotient is finite (like \mathbb{Z}).

- (1) $\chi_{\mathcal{V}} < \omega \text{ iff } |R| < \omega$.
- (2) Every f.g. infinite ring has a minimal quotient.
- (3) Every injective module over a minimal ring is faithful.

V = variety of modules over a f.g. ring R. R is *minimal* if it is infinite, but every proper quotient is finite (like \mathbb{Z}).

- (1) $\chi_{\mathcal{V}} < \omega \text{ iff } |R| < \omega$.
- (2) Every f.g. infinite ring has a minimal quotient.
- (3) Every injective module over a minimal ring is faithful.
- (4) Every variety of modules has an SI injective.

V = variety of modules over a f.g. ring R. R is *minimal* if it is infinite, but every proper quotient is finite (like \mathbb{Z}).

Lemmas

- (1) $\chi_{\mathcal{V}} < \omega \text{ iff } |R| < \omega.$
- (2) Every f.g. infinite ring has a minimal quotient.
- (3) Every injective module over a minimal ring is faithful.
- (4) Every variety of modules has an SI injective.

Corollary

If [Cg(w,x), Cg(y,z)] = 0 is definable, and V omits type 1, then $\chi_{V} \neq \omega$.