[Code] Impact of COVID Misinformation on Vaccination Intent - A Reanalysis Identifying and Addressing Covariate Imbalances

Stanford Stats 209 Project

Authors: Zhongren Chen, Matheus Dias, Quentin Hsu

Full Report: https://www.overleaf.com/read/trngjhvnckrk

Covariate Names JSON Mapping: https://codebeautify.org/jsonviewer/cb92c22d

Import Data

```
# Download Relevant Files
system("gdown --id 1nWhtsofuJjDDm-qaiKVH0GvtEmmfGLC7") # full_orb_us.csv
system("gdown --id 1Zl1bHYKnZVCSKC3_e6-GXKk7Epzeukj8") # full_orb_uk.csv
system("gdown --id 17Ta02ItPh5goVHnxZJku1H3Hh-sH8L-P") # utility.R
# Install Packages
if(!require(tidytext)){
  install.packages("tidytext")
}
if(!require(optmatch)){
  install.packages("optmatch")
}
if(!require(DOS2)){
  install.packages("DOS2")
}
if(!require(RItools)){
  install.packages("RItools")
}
if(!require(gridExtra)){
  install.packages("gridExtra")
}
if(!require(estimatr)){
  install.packages("estimatr")
}
if(!require(ggpubr)){
  install.packages("ggpubr")
}
if(!require(rstatix)){
  install.packages("rstatix")
```

```
}
if(!require(pROC)){
 install.packages("pROC")
}
     Loading required package: tidytext
     Warning message in library(package, lib.loc = lib.loc, character.only = TRUE, logica
     "there is no package called 'tidytext'"
     Installing package into '/usr/local/lib/R/site-library'
     (as 'lib' is unspecified)
     also installing the dependencies 'SnowballC', 'hunspell', 'janeaustenr', 'tokenizers
     Loading required package: optmatch
     Warning message in library(package, lib.loc = lib.loc, character.only = TRUE, logica
     "there is no package called 'optmatch'"
     Installing package into '/usr/local/lib/R/site-library'
     (as 'lib' is unspecified)
     also installing the dependencies 'SparseM', 'abind', 'xtable', 'svd', 'minqa', 'numD
     Loading required package: DOS2
     Warning message in library(package, lib.loc = lib.loc, character.only = TRUE, logica
     "there is no package called 'DOS2'"
     Installing package into '/usr/local/lib/R/site-library'
     (as 'lib' is unspecified)
     also installing the dependencies 'BiasedUrn', 'mvtnorm', 'sensitivity2x2xk', 'sensit
     Loading required package: RItools
     Loading required package: SparseM
     Attaching package: 'SparseM'
     The following object is masked from 'package:base':
         backsolve
     Loading required package: gridExtra
     Warning message in library(package, lib.loc = lib.loc, character.only = TRUE, logica
     "there is no package called 'gridExtra'"
     Installing package into '/usr/local/lib/R/site-library'
     (as 'lib' is unspecified)
     Loading required package: estimatr
```

```
library(tidyverse)
library(tidytext)
library(optmatch)
library(DOS2)
library(RItools)
library(gridExtra)
library(estimatr)
library(ggpubr)
library(rstatix)
library(pROC)
source('utility.R')
     Warning message in system("timedatectl", intern = TRUE):
     "running command 'timedatectl' had status 1"
     — Attaching packages
                                                                  - tidyverse 1.3.1 —
     √ ggplot2 3.3.5
                         √ purrr
                                    0.3.4
     √ tibble 3.1.6

√ dplyr

                                    1.0.7
     √ tidyr 1.1.4
                         ✓ stringr 1.4.0

√ readr 2.1.0

√ forcats 0.5.1
     — Conflicts ———
                                                            - tidyverse conflicts() —
     X dplyr::filter() masks rstatix::filter(), stats::filter()
     X dplyr::lag()
                       masks stats::lag()
     Loading required package: survival
     The optmatch package has an academic license. Enter relaxinfo() for more information.
     Attaching package: 'gridExtra'
     The following object is masked from 'package:dplyr':
         combine
df us <- read.csv("full orb us.csv")</pre>
head(df us)
```

Warning message in library(package, lib.loc = lib.loc, character.only = TRUE, logica

"there is no package called 'estimatr'"

(as 'lib' is unspecified)

Installing package into '/usr/local/lib/R/site-library'

X Know.anyone.Nobody Know.anyone.Myself Know.anyone.Family.inside.HH Know.ar

•	<int></int>	<int></int>	<int></int>	<int></int>
1	0	0	0	0
2	1	1	0	0
3	2	0	0	0
4	3	0	1	0
5	4	1	0	0
6	5	1	0	0

see https://github.com/sloomba/covid19-misinfo/blob/main/dat/orb_us.json for coding of the
str(df_us)

```
'data.frame':
              4001 obs. of 137 variables:
                                                 : int 0123456789 ...
$ X
$ Know.anyone.Nobody
                                                 : int
                                                        0100111010...
$ Know.anyone.Myself
                                                 : int
                                                        0001000000...
$ Know.anyone.Family.inside.HH
                                                 : int
                                                        000000100...
                                                 : int
$ Know.anyone.Family.outside.HH
                                                        0000000000...
$ Know.anyone.Close.friend
                                                 : int
                                                        0000000000...
                                                 : int
$ Know.anyone.Colleague
                                                        1010000001...
$ COVID.19.Knowledge.Washing.hands
                                                        1 2 2 2 1 1 2 1 2 2 ...
                                                 : int
$ COVID.19.Knowledge.Staying.indoors.for.Self
                                                 : int
                                                        2 2 1 -2 1 -2 2 2 2 2 ...
$ COVID.19.Knowledge.Staying.indoors.for.Others
                                                 : int
                                                        2 2 1 -1 -1 -2 2 -1 2 -1
$ COVID.19.Knowledge.Spread.before.symptoms
                                                 : int
                                                        -1 2 2 -1 1 1 -1 1 2 2 ...
$ COVID.19.Knowledge.R.Number
                                                 : int
                                                        1 2 2 2 -1 -1 1 2 1 2 ...
$ COVID.19.Knowledge.Treatments.already.exist
                                                        2 2 -2 -1 -2 2 1 0 1 -2 .
                                                 : int
                                                        1 2 -1 -2 2 -1 -1 2 2 2 .
$ COVID.19.Knowledge.Wearing.masks
                                                 : int
$ COVID.19.VCI.COVID.19.Vax.Importance
                                                 : int
                                                        2 2 -1 -2 2 -2 0 2 2 2 ...
                                                        1 2 1 1 1 -2 1 -2 2 1 ...
$ COVID.19.VCI.COVID.19.Vax.Safety
                                                 : int
$ COVID.19.VCI.COVID.19.Vax.Efficacy
                                                 : int
                                                        2 2 -1 -1 1 -2 1 1 1 2 ..
$ COVID.19.VCI.COVID.19.Vax.Compatibility
                                                        -1 2 -2 -2 -2 0 1 1 -2 -2
                                                 : int
$ COVID.19.VCI.Contract.via.COVID.19.Vax
                                                 : int
                                                        -2 2 -1 -2 0 -2 0 2 -2 0
$ COVID.19.VCI.COVID.19.Vax.benefits.outweigh.risks: int
                                                        1 2 -2 -1 1 -2 -1 0 1 0 .
                                                        2 2 2 2 0 -2 1 0 2 1 ...
$ General.VCI.Vax.Importance
                                                 : int
$ General.VCI.Vax.Safety
                                                 : int
                                                        2 2 1 -1 0 2 0 2 2 0 ...
$ General.VCI.Vax.Efficacy
                                                 : int
                                                        1 2 1 -2 0 -2 1 -1 2 1 ...
$ General.VCI.Vax.Compatibility
                                                 : int
                                                        1 2 2 -2 1 -2 0 0 2 2 ...
$ COVID.19.Impact.Mental.health
                                                 : int
                                                        -1 2 2 -2 -2 -2 2 1 2 2 .
$ COVID.19.Impact.Financial.stability
                                                 : int
                                                        1 2 -1 -1 -2 1 2 1 1 2 ..
                                                 : int
                                                        -1 2 2 1 -1 2 2 -2 2 1 ..
$ COVID.19.Impact.Daily.disruption
$ COVID.19.Impact.Social.disruption
                                                 : int
                                                        1 2 2 1 -1 2 2 2 1 2 ...
$ Social.Facebook.used
                                                        1 1 1 0 0 1 1 1 1 1 ...
                                                 : int
$ Social.Twitter.used
                                                 : int
                                                        1000011001...
$ Social.YouTube.used
                                                 : int
                                                        1000011110...
$ Social.WhatsApp.used
                                                 : int
                                                        1000000010...
$ Social.Instagram.used
                                                 : int
                                                        1011011111...
$ Social.Pinterest.used
                                                        0000010111...
                                                 : int
$ Social.LinkedIN.used
                                                        0010010000...
                                                 : int
$ Social.Other.used
                                                        0000001110...
```

```
0000100000...
$ Social.None.of.these.used
                                             : int
$ Social.Facebook.to.receive.info
                                             : int
                                                   1 1 0 0 0 1 1 1 0 0 ...
                                                   1000011000...
$ Social.Twitter.to.receive.info
                                             : int
$ Social.YouTube.to.receive.info
                                             : int
                                                   000001000...
$ Social.WhatsApp.to.receive.info
                                                   0000000000...
                                             : int
$ Social.Instagram.to.receive.info
                                             : int
                                                   0001001000...
$ Social.Pinterest.to.receive.info
                                                   0000000000...
$ Social.LinkedIN.to.receive.info
                                             : int
                                                   0000000000...
$ Social.Other.to.receive.info
                                             : int
                                                   0000001000...
$ Social.None.of.these.to.receive.info
                                             : int
                                                   0010100011...
$ Social.Facebook.to.share.info
                                             : num
                                                   1 1 0 0 0 NA 0 NA 0 0 ...
$ Social.Twitter.to.share.info
                                             : num
                                                   10000NA0NA00...
$ Social.YouTube.to.share.info
                                                   00000NA0NA00...
                                             : num
$ Social.WhatsApp.to.share.info
                                                   1 0 0 0 0 NA 0 NA 0 0 ...
                                             : num
$ Social.Instagram.to.share.info
                                                   10010NA1NA00...
                                             : num
$ Social.Pinterest.to.share.info
                                                   00000NA0NA00...
                                             : num
$ Social.LinkedIN.to.share.info
                                             : num
                                                   00000NA0NA00...
$ Social.Other.to.share.info
                                             : num
                                                   0 0 0 0 0 NA 0 NA 0 0 ...
$ Social.None.of.these.to.share.info
                                             : num
                                                   0 0 1 0 1 NA 0 NA 1 1 ...
$ Trust Television
                                                   999199999
```

Data Processing

```
# US
df_us_cleaned <- df_us %>%
  mutate(
    z = Treatment,
    inv_z = 1 - Treatment,
    # Pre-Treatment Covariates
    Shielding = ifelse(Shielding == 2, 0, 1),
    know.anyone.covid = (1 - Know.anyone.Nobody),
    # Derived Personas
    ## Bad Covid Knowledge
    ## only including these 5 which should be broadly known. Other 2 may not be well known.
    covid knowledge avg = (
      (COVID.19.Knowledge.Washing.hands) +
      (COVID.19.Knowledge.Staying.indoors.for.Self) +
      (COVID.19.Knowledge.Staying.indoors.for.Others) +
      (COVID.19.Knowledge.Spread.before.symptoms) +
      (COVID.19.Knowledge.Wearing.masks)
    )/5,
    bad covid knowledge = ifelse(covid knowledge avg < 0, 1, 0),
    ## Distrust of Covid Vax
    ## flip these two since their wording is opposite (agree is bad)
    COVID.19.VCI.COVID.19.Vax.Compatibility = COVID.19.VCI.COVID.19.Vax.Compatibility * -1,
```

```
COVID.19.VCI.Contract.via.COVID.19.Vax = COVID.19.VCI.Contract.via.COVID.19.Vax *
       -1,
covid vax trust avg = (
      COVID.19.VCI.COVID.19.Vax.Importance +
              COVID.19.VCI.COVID.19.Vax.Safety +
              COVID.19.VCI.COVID.19.Vax.Efficacy +
              COVID.19.VCI.COVID.19.Vax.benefits.outweigh.risks +
              COVID.19.VCI.COVID.19.Vax.Compatibility +
              COVID.19.VCI.Contract.via.COVID.19.Vax
) / 6,
bad covid vax trust = ifelse(covid vax trust avg < 0, 1, 0),
## Distrust of General Vax
general vax trust avg = (
      General.VCI.Vax.Importance +
              General.VCI.Vax.Safety +
              General.VCI.Vax.Efficacy +
              General.VCI.Vax.Compatibility
bad_general_vax_trust = ifelse(general_vax_trust_avg < 0, 1, 0),</pre>
# note this is post-treatment, but should technically be ok
# since should not have been affected by treatment
covid_disrupt = ifelse((
      COVID.19.Impact.Mental.health +
              COVID.19.Impact.Financial.stability +
              COVID.19.Impact.Daily.disruption +
             COVID.19.Impact.Social.disruption
) / 4 > 0,
1,
0
),
# Processed Questions
## Make questions -1, 0, 1 for more samples per bucket
COVID.19.Knowledge.Washing.hands.tri = ifelse(COVID.19.Knowledge.Washing.hands == 0, 0, i
COVID.19.Knowledge.Staying.indoors.for.Self.tri = ifelse(COVID.19.Knowledge.Staying.indoor
COVID.19.Knowledge.Staying.indoors.for.Others.tri = ifelse(COVID.19.Knowledge.Staying.inc
COVID.19.Knowledge.Spread.before.symptoms.tri = ifelse(COVID.19.Knowledge.Spread.before.s
COVID.19.Knowledge.Wearing.masks.tri = ifelse(COVID.19.Knowledge.Wearing.masks == 0, 0, i
COVID.19.VCI.COVID.19.Vax.Importance.tri = ifelse(COVID.19.VCI.COVID.19.Vax.Importance ==
COVID.19.VCI.COVID.19.Vax.Safety.tri = ifelse(COVID.19.VCI.COVID.19.Vax.Safety == 0, 0, i
COVID.19.VCI.COVID.19.Vax.Efficacy.tri = ifelse(COVID.19.VCI.COVID.19.Vax.Efficacy == 0,
COVID.19.VCI.COVID.19.Vax.benefits.outweigh.risks.tri = ifelse(COVID.19.VCI.COVID.19.Vax.
COVID.19.VCI.COVID.19.Vax.Compatibility.tri = ifelse(COVID.19.VCI.COVID.19.Vax.Compatibil
COVID.19.VCI.Contract.via.COVID.19.Vax.tri = ifelse(COVID.19.VCI.Contract.via.COVID.19.Vax.tri = ifelse(COVID.19.Vax.tri =
General.VCI.Vax.Importance.tri = ifelse(General.VCI.Vax.Importance == 0, 0, ifelse(General.VCI.Vax.Importance =
General.VCI.Vax.Safety.tri = ifelse(General.VCI.Vax.Safety == 0, 0, ifelse(General.VCI.Vax.Safety)
General.VCI.Vax.Efficacy.tri = ifelse(General.VCI.Vax.Efficacy == 0, 0, 0, ifelse(General.VCI.Vax.Efficacy == 0, 0, 0, 0, ifelse(General.VCI.Vax.Efficacy =
General.VCI.Vax.Compatibility.tri = ifelse(General.VCI.Vax.Compatibility == 0, 0, ifelse(
```

```
## Strict Decrease in Vaccine Intent
    ## note that 1 is the first answer choice which is Yes, so a "decrease" in vaccine intent
    Vaccine.Intent.for.self..Decrease = (Vaccine.Intent.for.self..Post. > Vaccine.Intent.for.
    Vaccine.Intent.for.others..Decrease = (Vaccine.Intent.for.others..Post. > Vaccine.Intent.
    pre_vaccine_no_intent = (Vaccine.Intent.for.self..Pre. == 4),
    ## Agreeing with Misinfo
    Image.NumAgree = ((Image.1.Agreement > 0) + (Image.2.Agreement > 0) + (Image.3.Agreement
    Image.NumDontKnow = ((Image.1.Agreement == 0) + (Image.2.Agreement == 0) + (Image.3.Agree
    Image.NumDisagree = (5 - Image.NumAgree - Image.NumDontKnow),
    NumMisinfoBelief = Treatment*Image.NumAgree + (1-Treatment)*(Image.NumDisagree),
    MisinfoBeliever = NumMisinfoBelief > 1,
    ## Sharing the Misinfo
    Image.NumShare = ((Image.1.Share > 0) + (Image.2.Share> 0) + (Image.3.Share > 0) + (Image.
    Image.NumDontKnow = ((Image.1.Share == 0) + (Image.2.Share == 0) + (Image.3.Share == 0) +
    Image.NumNotShare = (5 - Image.NumShare - Image.NumDontKnow),
    NumMisinfoShare = Treatment*Image.NumShare + (1-Treatment)*(Image.NumNotShare),
    MisinfoShare = NumMisinfoShare > 1,
    ## Trusting the Misinfo Source
    Image.NumTrust = ((Image.1.Trust > 0) + (Image.2.Trust> 0) + (Image.3.Trust > 0) + (Image.
    Image.NumDontKnow = ((Image.1.Trust == 0) + (Image.2.Trust == 0) + (Image.3.Trust == 0) +
    Image.NumNotTrust = (5 - Image.NumTrust - Image.NumDontKnow),
    NumMisinfoTrust = Treatment*Image.NumTrust + (1-Treatment)*(Image.NumNotTrust),
   MisinfoTrust = NumMisinfoTrust > 1
  )
df_us_cleaned %>%
  select(
    Ζ,
    inv_z,
    Treatment,
    Shielding,
    know.anyone.covid,
    bad_covid_knowledge,
    bad_covid_vax_trust,
    bad_general_vax_trust,
    covid disrupt,
    Vaccine.Intent.for.self..Decrease,
   Vaccine.Intent.for.self..Post.,
   Vaccine.Intent.for.self..Pre.,
   Vaccine.Intent.for.others..Decrease,
    Vaccine.Intent.for.others..Post.,
    Vaccine.Intent.for.others..Pre.,
    NumMisinfoBelief,
    NumMisinfoShare,
```

'COVID.19.VCI.COVID.19.Vax.Compatibility.tri', 'COVID.19.VCI.Contract.via.COVID.19.Vax.tri',

	z	iny z	Tnoatmont	Shiolding	know anyone covid	bad_covid_knowledge	bad_covi	
		<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<pre><dbl></dbl></pre>	bau_covi	
1	1	0	1	0	1	0		
2	1	0	1	1	0	0		
3	1	0	1	1	1	0		
	1	0	1	·				
4			·	0	1	1		
5	1	0	1	0	0	0		
6	1	0	1	1	0	1		
<pre>df_us_cleaned_removed_no_intent <- df_us_cleaned %>% filter(pre_vaccine_no_intent == 0) final_covariates <- c('Age', 'Gender', 'Education', 'Employment', 'Religion', 'Political', 'Ethnicity', 'Income', 'know.anyone.covid', 'Shielding', 'bad_covid_knowledge', 'bad_covid_vax_trust', 'bad_general_vax_trust', 'covid_disrupt')</pre>								
final_ 'COVID 'COVID 'COVID 'COVID 'COVID 'COVID		owledge. owledge. owledge. owledge. owledgeCOVID.	Washing.ham Staying.ind Staying.ind Spread.befo Wearing.mam 19.Vax.Impo 19.Vax.Safo 19.Vax.Eff	doors.for.Sedoors.for.Odore.symptoms sks.tri', ortance.tri' ety.tri',	thers.tri', s.tri',			

```
'General.VCI.Vax.Importance.tri',
'General.VCI.Vax.Safety.tri',
'General.VCI.Vax.Efficacy.tri',
'General.VCI.Vax.Compatibility.tri'
)

summary(df_us_cleaned)
```

```
Know.anyone.Nobody Know.anyone.Myself
                     :0.0000
Min.
     :
              Min.
                                 Min.
                                        :0.00000
1st Qu.:1000
              1st Qu.:0.0000
                                 1st Qu.:0.00000
Median :2000
              Median :1.0000
                                 Median :0.00000
     :2035
                    :0.5414
Mean
              Mean
                                 Mean
                                      :0.07298
3rd Qu.:3001
              3rd Qu.:1.0000
                                 3rd Qu.:0.00000
     :4995
              Max. :1.0000
                                 Max.
                                        :1.00000
Know.anyone.Family.inside.HH Know.anyone.Family.outside.HH
Min. :0.00000
                            Min.
                                   :0.0000
1st Qu.:0.00000
                            1st Qu.:0.0000
```

Imbalance

Mahalanobis Distance FRT

```
meutan :0.000
                                 meutan :0.0000
computeMahalanobis <- function(treatment.data, control.data) {</pre>
  total.data <- rbind(treatment.data, control.data)</pre>
  mean.treatment <- as.vector(colMeans(treatment.data))</pre>
  mean.control <- as.vector(colMeans(control.data))</pre>
  result <- mahalanobis(mean.treatment, mean.control, cov = cov(total.data))
  return(result)
}
simulate <- function(data) {</pre>
  # Build Random Vector
  data$random <- sample(data$z, replace=F, size=nrow(data))</pre>
  # Filter dataframes
  treatment_data = filter(data, random == 1)
  control data = filter(data, random == 0)
  # Only select the relevant covariates
  treatment_data = treatment_data[, final_covariates]
  control_data = control_data[, final_covariates]
  distance <- computeMahalanobis(treatment_data, control_data)</pre>
  return(distance)
}
overall mahal sim <- c()
for(i in 1:10000) {
  overall mahal sim[i] <- simulate(df us cleaned)</pre>
}
```

```
orig_study_mahal <-
  computeMahalanobis(filter(df_us_cleaned, z == 1)[, final_covariates], filter(df_us_cleaned,
mahal_p_val <- mean(overall_mahal_sim > orig_study_mahal)

hist(overall_mahal_sim,
  main = 'Monte Carlo Sim of Mahalanobis Distance',
    xlab = 'Mahalanobis Distance')
abline(v = orig_study_mahal, lty = 2)
```

Monte Carlo Sim of Mahalanobis Distance

Median : 1.0000 Median : 1.000 Median : 1.000

orig_study_mahal mahal_p_val

> 0.415998496263431 0

1st Qu.:-1.0000

1st Qu.:-1.0000

Visualizing the Imbalance

וומא. . ב.טטטט וומא. . ב.טטטט

▼ Propensity Score

```
df_us_cleaned$prop2 <-
glm(as.formula(paste("z ~", paste(
   final_covariates, collapse = " + "
)))),</pre>
```

```
family = binomial(link = "logit"),
  data = df_us_cleaned)$fitted.values

auc(df_us_cleaned$z, df_us_cleaned$prop2)

    Setting levels: control = 0, case = 1

    Setting direction: controls < cases

    0.687015994668444

df_us_cleaned %>%
    mutate(Treatment = as.factor(Treatment)) %>%
    ggplot(aes(x = prop2, fill = Treatment)) +
    geom_density(alpha=0.6) +
    scale_fill_manual(values = c("blue","red")) +
    ggtitle('Imbalance of Propensity Scores')
```


▼ Matching Plots

```
plot(
   xBalance(
   as.formula(paste("Treatment ~", paste(final_covariates, collapse = " + "))),
   data = df_us_cleaned
),
```

```
main="US Control vs Treatment"
)
```

US Control vs Treatment

▼ Individual Covariate T-Tests

```
df_us_cleaned.long <-
    select_if(df_us_cleaned[, c('z', final_covariates)], is.numeric)    %>%
    pivot_longer(-z, names_to = "variables", values_to = "value")

stat.test <- df_us_cleaned.long %>%
    group_by(variables) %>%
    t_test(value ~ z) %>%
    adjust_pvalue(method = "bonferroni") %>%
    add_significance()

stat.test[, c('variables', 'statistic', 'p.adj', 'p.adj.signif')] %>%
    arrange(p.adj)
```

A rstatix_test: 14 × 4

		_	
p.adj.signif	p.adj	statistic	variables
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
***	1.3370e-60	-17.2654778	Age
***	5.5300e-17	-8.7647881	Employment
***	1.1074e-05	4.9574744	Ethnicity
***	1.1900e-04	4.4650867	covid_disrupt
**	2.3240e-03	-3.7735170	Gender
ns	9.3940e-02	-2.7140540	bad_covid_knowledge
ns	6.1600e-01	2.0158926	Education
ns	6.9720e-01	1.9627419	Religion
ns	8.9880e-01	-1.8518380	bad_covid_vax_trust
	4 0000-100	4 4007070	had seemed were toward
	S		<pre>imbalanced_covariates <- s filter(p.adj.signif != ' pull(variables)</pre>

Impact of Imbalanced Covariates

```
pre_intent_plot <- function(df, group, y, item = 'plot') {</pre>
  lower_limit <- ifelse(y == 'NumMisinfoBelief',-1.25,-0.5)</pre>
  upper_limit <- ifelse(y == 'NumMisinfoBelief', 3.25, 0.5)</pre>
  group = sym(group)
  y = sym(y)
  benchmark <- mean(df %>% pull(!!y))
  processed_df <- df %>%
    mutate(!!group := as.factor(!!group)) %>%
    group_by(!!group) %>%
    summarize(
      .groups = 'keep',
      t = mean(!!y),
      v = var(!!y) / n(),
      t_{lower} = t - 1.96 * sqrt(v),
      t upper = t + 1.96 * sqrt(v)
    select(!!group, t, v, t_lower, t_upper)
  se <- processed df %>%
```

```
ungroup() %>%
    summarize(se = sqrt(var(t))) %>%
    pull(se)
  p <- processed_df %>%
    ggplot(aes(
      x = t,
      y = !!group,
      group = !!group
    ))+
    #draws the means
    # geom_point(position = position_dodge(1)) +
    geom point() +
    #draws the CI error bars
    geom_errorbarh(aes(xmin = t_lower, xmax = t_upper),
                   # color = !!group),
                   show.legend = FALSE,
                   height = 0) +
    \# position = position dodge(0.78)) +
    # xlim(lower limit, upper limit) +
    geom vline(xintercept = benchmark, linetype = "dotted") +
    labs(
      title = group,
      x = 'avg pre vaccine intent') +
    theme(axis.title.y = element_blank())
  return(if (item == 'se') {
    se
  } else{
    р
  })
}
pre_vaccine_intent_se <- data.frame(covariate = character(),</pre>
                                       se = double())
pre_vaccine_intent_plots <- list()</pre>
i = 1
for (c in detailed_covariates) {
  pre_vaccine_intent_se <- pre_vaccine_intent_se %>%
    add_row(
      covariate = c,
      se = pre_intent_plot(df_us_cleaned, c, 'Vaccine.Intent.for.self..Pre.', 'se')
    )
  pre vaccine intent plots[[i]] <-</pre>
    pre_intent_plot(df_us_cleaned, c, 'Vaccine.Intent.for.self..Pre.', 'plot')
  i = i + 1
}
```

Imbalanced Covariates

```
pre_vaccine_intent_se %>%
  filter(covariate %in% imbalanced_covariates) %>%
  ggplot(aes(x = reorder(covariate, se), y = se)) +
  geom_bar(stat = 'identity') +
  coord_flip() +
  theme(
    axis.title.y = element_blank()
) +
  labs(
    title='Skew of Imbalanced Covariates',
    y='Standard Deviation of Pre-Treatment Vaccine Intent'
)
```

Skew of Imbalanced Covariates

grid.arrange(grobs = pre_vaccine_intent_plots[c(1,2,4,7,14)], ncol = 2)

All Explored Covariates

```
pre_vaccine_intent_se %>%
    ggplot(aes(x = reorder(covariate, se), y = se)) +
    geom_bar(stat = 'identity') +
    coord_flip() +
    theme(
        axis.title.y = element_blank()
) +
    labs(
        title='Skew of All Covariates',
        y='Standard Deviation of Pre-Treatment Vaccine Intent'
)
```

bad covid vax trust -

COVID.19.VCI.COVID.19.Vax.Importance.tri -

0.4

Standard Deviation of Pre-Treatment Vaccine Intent

0.2

0.6

0.8

Employment Political Age know.anyone.covid -

Skew of All Covariates

Adjusting for Imbalance

▼ Setup

```
df_adj_summary <- data.frame(</pre>
  method = character(),
  outcome = character(),
  estimate = double(),
  std_err = double(),
  p_val = double()
ttest <- function(df, method_name, Y, treatment, control, alternative = 'greater'){</pre>
   results <- t.test(
   treatment,
    control,
    alternative = alternative
  )
  df <- df %>%
    add_row(
      method = method_name,
      outcome = Y,
      estimate = results$estimate[1] - results$estimate[2],
      std_err = results$stderr,
      p_val = results$p.value
    )
  return(df)
```

▼ Baseline

```
# SELF US

df_adj_summary <- ttest(
    df_adj_summary,
    method_name = 'FRT',
    Y = 'Vaccine_Intent_Self',
    treatment = filter(df_us_cleaned_removed_no_intent, Treatment == 1)$Vaccine.Intent.for.self
    control = filter(df_us_cleaned_removed_no_intent, Treatment == 0)$Vaccine.Intent.for.self..
    alternative = 'greater'
)

df_adj_summary</pre>
```

A data.frame: 1 × 5

method	outcome	estimate	std_err	p_val
<chr></chr>	<chr></chr>	<dbl></dbl>	<db1></db1>	<dbl></dbl>

FRT Vaccine_Intent_Self 0.08659778 0.01302287 1.920301e-11

▼ Regression Adjustment

```
#### Prepare Dataset for doing Lin's estimator in US
df us Lin <- df us cleaned removed no intent %>%
  select(
   c(
    'z',
    'Vaccine.Intent.for.self..Decrease',
    all of(final covariates)
    )
  )
#### Centralize covariates
lin covariates <-
  subset(df_us_Lin, select = -c(z, Vaccine.Intent.for.self..Decrease))
lin_covariates_sub_mean = lin_covariates - colMeans(lin_covariates)
lin_adj_us = lm_robust(
  df_us_Lin$Vaccine.Intent.for.self..Decrease ~ df_us_Lin$z + . +
    df_us_Lin$z * . ,
  lin_covariates_sub_mean
)
df_adj_summary <- df_adj_summary %>%
    add row(
      method = 'Lins Estimator',
      outcome = 'Vaccine Intent Self',
      estimate = lin_adj_us$coefficients['df_us_Lin$z'],
      std err = lin adj us$std.error['df us Lin$z'],
      p_val = lin_adj_us$p.value['df_us_Lin$z']
df_adj_summary
```

A data.frame: 2 × 5

method	outcome	estimate	std_err	p_val
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>

FRT Vaccine_Intent_Self 0.08659778 0.01302287 1.920301e-11

Lins Estimator Vaccine_Intent_Self 0.07380057 0.03266724 2.393695e-02

Matching

```
matching_adj <- function(df,</pre>
                          covariates,
                          num matches = 1,
                          match_from = 'control' # flip the z if matching from treatment, eg n
                          ){
  df$prop <-
    glm(
      as.formula(paste(ifelse(match from == 'treatment', "inv z ~", "z ~"), paste(covariates,
      family = binomial,
      data = df
    )$fitted.values
  mahal <- smahal(</pre>
      if(match_from == 'treatment'){df$inv_z} else{df$z},
      df[, covariates])
  mahal.match <- pairmatch(mahal, control = num_matches, data = df)</pre>
  match_summary <-</pre>
    summarize.match(df, mahal.match)
  p <- xBalance(</pre>
        as.formula(paste(paste("Treatment ~", paste(covariates, collapse = " + ")), '+ strata
        data = df
      )
  return_items <- list("summary" = match_summary, "mahal_match" = mahal.match, "xBalance" = r
  return(return_items)
}
match_results <- matching_adj(df_us_cleaned_removed_no_intent, final_covariates, num_matches</pre>
plot(match_results$xBalance,
  main="US Control vs Treatment After Matching Adj")
```

US Control vs Treatment After Matching Adj

A data.frame: 3 × 5

method	outcome	estimate	std_err	p_val
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
FRT	Vaccine_Intent_Self	0.08659778	0.01302287	1.920301e-11
Lins Estimator	Vaccine_Intent_Self	0.07380057	0.03266724	2.393695e-02
matching	Vaccine_Intent_Self	0.07943925	0.01191567	1.530347e-11

▼ Placebo Benchmark

```
# train glm on the covariates (not depending on treatment at all)
glm_ber <- glm(as.formula(paste(
    "Vaccine.Intent.for.self..Decrease ~",
    paste(final_covariates, collapse = " + ")
)),
family = binomial,
data = df_us_cleaned)

# use trained glm to predict placebo Y's for full dataset
df_us_cleaned$placebo_y_prob <-
    predict(glm_ber, df_us_cleaned[, final_covariates], type = "response")</pre>
```

Baseline

```
df_adj_summary <- ttest(
    df_adj_summary,
    method_name = 'FRT',
    Y = 'Placebo_Y',
    treatment = filter(df_us_cleaned, Treatment == 1)$placebo_y_prob,
    control = filter(df_us_cleaned, Treatment == 0)$placebo_y_prob,
    alternative = 'two.sided'
)
df_adj_summary</pre>
```

A data.frame: 4 × 5

p_val	std_err	estimate	outcome	method	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	
1.920301e-11	0.013022871	0.086597782	Vaccine_Intent_Self	FRT	
2.393695e-02	0.032667238	0.073800570	Vaccine_Intent_Self	Lins Estimator	
1.530347e-11	0.011915672	0.079439252	Vaccine_Intent_Self	matching	
6.869553e-02	0.001380498	0.002514752	Placebo_Y	FRT	

Lin's Estimator

method outcome estimate std_err p_val

Matching

A data.frame: 6 × 5

method	outcome	estimate	std_err	p_val
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
FRT	Vaccine_Intent_Self	0.0865977820	0.013022871	1.920301e-11
Lins Estimator	Vaccine_Intent_Self	0.0738005700	0.032667238	2.393695e-02
matching	Vaccine_Intent_Self	0.0794392523	0.011915672	1.530347e-11
FRT	Placebo_Y	0.0025147524	0.001380498	6.869553e-02
Lins Estimator	Placebo_Y	0.0093135764	0.005651380	9.942806e-02
matching	Placebo_Y	-0.0004977516	0.001179685	6.730946e-01

▼ Summary Results

```
df_adj_summary %>%
  filter(outcome == 'Vaccine_Intent_Self')
```

p_val	std_err	estimate	outcome	method
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
1.920301e-11	0.013022871	0.0865977820	Vaccine_Intent_Self	FRT
2.393695e-02	0.032667238	0.0738005700	Vaccine Intent Self	Lins Estimator

Heterogenous Treatment Effects

```
Lins Estimator
                            Placebo Y
                                       0.0093135764  0.005651380  9.942806e-02
hte_plot <- function(df, group, y){</pre>
  lower limit <- ifelse(y == 'NumMisinfoBelief', -1.25, -0.5)</pre>
  upper_limit <- ifelse(y == 'NumMisinfoBelief', 3.25, 0.5)</pre>
  group = sym(group)
  y = sym(y)
  p <- df %>%
    mutate(
      !!group := as.factor(!!group)
    ) %>%
    group_by(!!group, z) %>%
    summarize(
      .groups = 'keep',
      t = mean(!!y),
      v = var(!!y) / n()
    pivot_wider(names_from = z, values_from = c(t, v)) %>%
    mutate(
      T = t_1 - t_0
      var = v_0 + v_1,
      T_{lower} = T - 1.96 * sqrt(var),
      T upper = T + 1.96*sqrt(var)
    ) %>%
    select(
      !!group, T, var, T_lower, T_upper
    ggplot(aes(x=T, y = !!group, group = !!group)) +
    #draws the means
    # geom_point(position = position_dodge(1)) +
    geom point() +
    #draws the CI error bars
    geom errorbarh(
      aes(xmin = T_lower, xmax = T_upper),
          # color = !!group),
      show.legend = FALSE,
      height = 0
      # position = position dodge(0.78)
```

```
) +
    xlim(lower_limit, upper_limit) +
    geom_vline(xintercept = 0, linetype="dotted") +
    ggtitle(group) +
    theme(axis.title.y=element_blank())
  return(p)
}
hte_plots_vaccine_intent_self <- list()</pre>
#hte_plots_vaccine_intent_others <- list()</pre>
#hte_plots_misinfo_belief <- list()</pre>
i = 1
for(c in detailed_covariates){
  hte plots vaccine intent self[[i]] <- (hte plot(df us cleaned, c, 'Vaccine.Intent.for.self.
  #hte_plots_vaccine_intent_others[[i]] <- (hte_plot(df_us_cleaned, c, 'Vaccine.Intent.for.ot</pre>
  #hte_plots_misinfo_belief[[i]] <- (hte_plot(df_us_cleaned, c, 'NumMisinfoBelief'))</pre>
  i = i + 1
}
grid.arrange(grobs = hte_plots_vaccine_intent_self[1:16], ncol = 4)
grid.arrange(grobs = hte_plots_vaccine_intent_self[16:length(hte_plots_vaccine_intent_self)],
```


Appendix

Т

Regression Adjustment for different Y

```
### Prepare Dataset for doing Lin's estimator in US
df_us_Lin_diffY <- df_us %>%
 mutate(
   Image.NumAgree = ((Image.1.Agreement > 0) + (Image.2.Agreement > 0) + (Image.3.Agreement
   Image.NumDontKnow = ((Image.1.Agreement == 0) + (Image.2.Agreement == 0) + (Image.3.Agree
   Image.NumDisagree = (5 - Image.NumAgree - Image.NumDontKnow),
   NumMisinfoBelief = Treatment*Image.NumAgree + (1-Treatment)*(Image.NumDisagree),
   MisinfoBeliever = NumMisinfoBelief > 1
 )
df_us_Lin_diffY <- df_us_Lin_diffY %>%
 select(
   Treatment,
   MisinfoBeliever,
   Age,
   Gender,
   Education,
   Employment,
   Religion,
   Political,
```

```
Estimate Std. Error
                                                                          t value
       (Intercept)
                                             0.1740396861 0.019694216 8.83709626
       df us Lin diffY$Treatment
                                             0.1450791027 0.024768026 5.85751572
                                             0.0019454845 0.006695294 0.29057493
       Age
       Gender
                                             0.0048258691 0.013019011 0.37067863
       Education
                                            -0.0070584299 0.007794243 -0.90559528
       Employment
                                             0.0114954266 0.008324136 1.38097543
       Religion
                                             0.0072905918 0.006165036 1.18257086
       Political
                                             0.0002926068 0.010903823 0.02683525
       Ethnicity
                                             0.0031752055 0.007980987 0.39784622
                                            -0.0129332051 0.006720612 -1.92440894
       Income
       df us Lin diffY$Treatment:Age
                                            -0.0611937418 0.008410222 -7.27611521
       df_us_Lin_diffY$Treatment:Gender
                                            -0.0592343925 0.016061044 -3.68807865
       df us Lin diffY$Treatment:Education
                                             0.0113309146 0.009528519 1.18915805
       df us Lin diffY$Treatment:Employment -0.0502178194 0.009683472 -5.18593109
       df_us_Lin_diffY$Treatment:Religion
                                            -0.0364020033 0.007597894 -4.79106513
       df us Lin diffY$Treatment:Political
                                            -0.0533218053 0.013082245 -4.07589120
       df ... lin diffydTnootmont. Fthnicity
                                             A AAMAAESAS A AAAAAEEE A MAAMAAA
→ Old Placebo Code
       df us Lin diffY$Treatment
       Education
```

5.078078e-09 0.096519907 0.1936382982 Without covariate adjustment 3.652049e-01 -0.022339510 0.0082226498 df_us_cleaned_control <- df_us_cleaned[df_us_cleaned\$Treatment == 0,]</pre> df_us_cleaned_treatment <- df_us_cleaned[df_us_cleaned\$Treatment == 1,]</pre> #### fit bernoulli glm on control: glm ber <- glm(Vaccine.Intent.for.self..Decrease ~ Age + Gender + Education + Employment + R€ + Political + Ethnicity + Income + know.anyone.covid + Shielding + bad covid knowledge + bad + bad_general_vax_trust + covid_disrupt, family=binomial(link=logit), data=df us cleaned control) prob_control <- predict(glm_ber, df_us_cleaned_control[,final_covariates], type = "response"</pre> fake_outcome_control <- rbernoulli(length(prob_control), p = prob_control)</pre> prob_treatment <- predict(glm_ber, df_us_cleaned_treatment[,final_covariates], type = "respor</pre> fake_outcome_treatment <- rbernoulli(length(prob_treatment), p = prob_treatment)</pre> #### Compute difference in mean: mean(fake outcome control) - mean(fake outcome treatment) -0.00397034321892702 E+hnici+v 2002 With covariate adjustment df us Lin diffY\$Treatment:Gender

3983

```
# family=binomial(link=logit),
# data=df_us_cleaned_control)

df_us_fake_outcome <- df_us_cleaned %>%
    mutate(
    placebo_Y <- c(fake_outcome_treatment, fake_outcome_control)
    )

Lin_covariate <- df_us_fake_outcome[,final_covariates] - colMeans(df_us_fake_outcome[,final_covariates])

placebo_lin_fit= lm(df_us_fake_outcome$placebo_Y ~ df_us_fake_outcome$Treatment + . + df_us_Lin$Treatment * . , Lin_covariate)</pre>
summary(placebo_lin_fit)
```

```
Call:
```

Residuals:

Min 1Q Median 3Q Max -0.30619 -0.11244 -0.07175 -0.03353 1.04285

Coefficients: (1 not defined because of singularities)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.139145	0.051116	2.722	0.00651
df_us_fake_outcome\$Treatment	0.043335	0.058877	0.736	0.46176
Age	0.003360	0.005325	0.631	0.52809
Gender	-0.017464	0.010282	-1.698	0.08951
Education	-0.016347	0.005955	-2.745	0.00608
Employment	0.001925	0.005744	0.335	0.73748
Religion	-0.005611	0.004833	-1.161	0.24578
Political	0.009666	0.008553	1.130	0.25853
Ethnicity	0.029829	0.005932	5.029	5.16e-07
Income	-0.006795	0.005614	-1.210	0.22621
know.anyone.covid	0.018739	0.010233	1.831	0.06714
Shielding	-0.000199	0.010127	-0.020	0.98432
<pre>bad_covid_knowledge</pre>	-0.000560	0.011231	-0.050	0.96023
bad_covid_vax_trust	0.004351	0.011134	0.391	0.69599
bad_general_vax_trust	0.009589	0.011329	0.846	0.39741
covid_disrupt	-0.013266	0.011139	-1.191	0.23376
df_us_Lin\$Treatment	NA	NA	NA	NA
Age:df_us_Lin\$Treatment	-0.007767	0.006226	-1.247	0.21231
<pre>Gender:df_us_Lin\$Treatment</pre>	-0.003501	0.011829	-0.296	0.76729
<pre>Education:df_us_Lin\$Treatment</pre>	0.006807	0.006906	0.986	0.32436
<pre>Employment:df_us_Lin\$Treatment</pre>	-0.002537	0.006459	-0.393	0.69450
Religion:df_us_Lin\$Treatment	0.006152	0.005589	1.101	0.27102
Political:df_us_Lin\$Treatment	-0.008638	0.009791	-0.882	0.37771
<pre>Ethnicity:df_us_Lin\$Treatment</pre>	-0.000605	0.006993	-0.087	0.93106
<pre>Income:df_us_Lin\$Treatment</pre>	-0.001437	0.006584	-0.218	0.82728
<pre>know.anyone.covid:df_us_Lin\$Treatment</pre>	0.005674	0.011828	0.480	0.63146
Shielding:df_us_Lin\$Treatment	0.005444	0.011721	0.464	0.64237
<pre>bad_covid_knowledge:df_us_Lin\$Treatment</pre>	0.019544	0.012992	1.504	0.13258
<pre>bad_covid_vax_trust:df_us_Lin\$Treatment</pre>	-0.007544	0.012870	-0.586	0.55779
had gononal vay thuctodf us lintThoatmont	0 002116	0 012104	0 161	06000