Deep Learning Applications in Supply Chain Management

Robert Andrews rea3ah@virginia.edu

Agenda

- 1. Results
- 2. Supply Chain Management Overview
- 3. Research Objective
- 4. Data Overview
- 5. Methodology
- 6. Wrap Up

Results

LSTM Results

Training/Validation

• Validation MSE: 0.0025

• Validation MAPE: 21.66

→ greater than 78% accurate!

Testing

• Average **Accuracy: 0.968**

Supply Chain Management

Supply Chain Management

- **Supply Chain** the complete process for delivery of a consumer good from product order placement to arrival to consumers (Lin et al., 2022)
- Supply Chain Management the active management of the following constituent processes: demand (sales) estimation, raw material purchasing, supplier selection, production, product distribution, outbound transportation, and inventory management (Aamer et al., 2020; Lin et al., 2022; Tirkolaee et al., 2021)

Example Supply Chain

% Wall Street Journal | Walmart

Demand forecasting aims to ameliorate the Bullwhip Effect

% Lean DNA

Research Objective

Research Objective

Train a neural network that predicts consumer demand with at least 70% accuracy

(based on accepted commercial forecasting standards (Skarica, 2022))

Could support literature claim that ANNs are the most accurate SCM forecasting methods

Data Overview

Walmart Data

- Retrieved from Kaggle
- Walmart US Sales data from 2010-2012
- ~13 MB (412,000 obs)
 - Reduced to 143 observations after data aggregation
- Response variable: weekly sales
- Features:
 - date
 - unemployment rate
 - inflation
 - holiday
 - o fuel price
 - temperature
- only date was retained

Methodology

Recurrent Neural Network

• Most used NN architecture for time series analysis

LSTM General Architecture

LONG SHORT-TERM MEMORY NEURAL NETWORKS

% Saul Dobilas (solclover.com)

Model Details

- 2 hidden layers
- 5,061 parameters
- Optimizer: ADAM
- Learning Rate: 0.001
- Loss Function: MSE
- Key Metrics: MAPE

Model Construction Code

· Design and Train LSTM Network

```
[] 1 from keras.models import Sequential
2 from keras.layers import LSTM
3 from keras.layers import Dense

[] 1 from keras import callbacks
```

- [] 1 # from ann_visualizer.visualize import ann_viz 2 # from graphviz import Source 3 # ann_viz(model,view=True)
- [] 1 model.summary()

Model: "sequential_19"

Layer (type)	Output	Shape		Param #
lstm_29 (LSTM)	(None,	None,	20)	1760
lstm_30 (LSTM)	(None,	None,	20)	3280
dense_11 (Dense)	(None,	None,	1)	21

Trainable params: 5,061 Non-trainable params: 6

Training

Validation MSE: 0.0025

Validation MAPE: 21.66

⇒ greater than 78% accurate!

Predictive Accuracy

- Holdout data: last 12 weeks of sales
- Average Accuracy: 0.968

weekly	sales	Predictions	Accuracy

date

2012-08-10	47403451.04	45439380.0	0.959
2012-08-17	47354452.05	45439728.0	0.960
2012-08-24	47447323.60	45439064.0	0.958
2012-08-31	47159639.43	45441128.0	0.964
2012-09-07	48330059.31	45432740.0	0.940
2012-09-14	44226038.65	45462332.0	0.972
2012-09-21	44354547.11	45461396.0	0.975
2012-09-28	43734899.40	45465904.0	0.960
2012-10-05	47566639.31	45438208.0	0.955
2012-10-12	46128514.25	45448556.0	0.985
2012-10-19	45122410.57	45455828.0	0.993
2012-10-26	45544116.29	45452776.0	0.998

Wrap Up

Recap of Results

• Validation MSE: 0.0025

Validation MAPE: 21.66

• Avg. Test Accuracy: 0.968

		=	Training los	
0.04				
0.03				
0.02			٠.,	••
0.01				
0.00 2 4 6	8 10	12	14 16	18

	weekly_sales	Predictions	Accuracy
date			
2012-08-10	47403451.04	45439380.0	0.959
2012-08-17	47354452.05	45439728.0	0.960
2012-08-24	47447323.60	45439064.0	0.958
2012-08-31	47159639.43	45441128.0	0.964
2012-09-07	48330059.31	45432740.0	0.940
2012-09-14	44226038.65	45462332.0	0.972
2012-09-21	44354547.11	45461396.0	0.975
2012-09-28	43734899.40	45465904.0	0.960
2012-10-05	47566639.31	45438208.0	0.955
2012-10-12	46128514.25	45448556.0	0.985
2012-10-19	45122410.57	45455828.0	0.993
2012-10-26	45544116.29	45452776.0	0.998

Conclusions

- This analysis offered further evidence of why DL is preferred ML method in SCM
 DL was used in 49% of SCM forecasting (Aamer et al., 2021)
- Neural Networks offer major advantages to other Machine Learning methods
- ANNs should be preferred in Supply Chain Management and other commercial applications

Future Research

- Deep multilayer perceptron
- Determine whether other features can be leveraged
- Develop active data pipeline to feed new data into the algorithm
- Deployment of real time forecasting updates to drive value for consumers and shareholders

References

Aamer, A., Eka Yani, L. P., & Alan Priyatna, I. M. (2020). Data Analytics in the Supply Chain Management: Review of Machine Learning Applications in Demand Forecasting. Operations and Supply Chain Management: An International Journal, 14(1), 1–13. https://doi.org/10.31387/oscm0440281

Lin, H., Lin, J., & Wang, F. (2022). An innovative machine learning model for supply chain management. Journal of Innovation & Knowledge, 7(4), 100276. https://doi.org/10.1016/j.jik.2022.100276

Pan, Y. (2016, October 30). Notes for CS231n Recurrent Neural Network. www.yuthon.com/post/tutorials/notes-for-cs231n-rnn/

Skarica, V. (2022, January 3). 4 Demand Forecast Accuracy KPIs You'll Actually Use. Farseer. https://www.farseer.io/post/4-demand-forecast-accuracy-kpis-you-ll-actually-use#:~:text =Forecast%20error%20 numbers%20 range%20 from

Terlep, E. F., Costas Paris and Sharon. (2022, December 27). Supply Chains Upended by Covid Are Back to Normal. Wall Street Journal. https://www.wsj.com/articles/supply-chains-upended-by-covid-are-back-to-normal-116 71746729

Tirkolaee, E. B., Sadeghi, S., Mooseloo, F. M., Vandchali, H. R., & Aeini, S. (2021, June 22).

Application of Machine Learning in Supply Chain Management: A Comprehensive
Overview of the Main Areas. Mathematical Problems in Engineering.

https://www.hindawi.com/journals/mpe/2021/1476043/

