PCB Badge Challenge

Documentação da PCB de Natal

Sumário

1	1 Projeto Inicial 2 Lista de materiais					
2						
	Funcionamento do circuito e cáculos 3.1 Multivibrador astável					
	Fazendo a PCB 4.1 Design inicial					

1 Projeto Inicial

A ideia do projeto é fazer uma badge de PCB, um enfeite com tema natalino. Foi implementado um circuito com o CI contador de década CD4017, para criar um sequencial. O circuito de clock foi feito usando um multivibrador astável com dois transistores.

2 Lista de materiais

Sugestão: adquira os componentes na sua loja de preferência e confira se os footprints estão corretos.

Referência	Quantidade	Valor	Encapsulamento	Link para compra
BT1	1	CR2016/CR2025/CR2032	Bateria Moeda	Proesi CR2025
BT	1	Suporte bateria	-	Proesi
C1	1	10uF	SMD Eletrolítico	Proesi 10uF/25V
C2	1	47uF	SMD Eletrolítico	Proesi 47uF/10V
D1 - D10	10	Vermelho	Led SMD 0805	Proesi
D11 - D15	5	Branco	Led SMD 0805	Proesi
Q1, Q2	2	BC847	BJT: SOT-23	Proesi
R1, R4	2	330R	SMD 0805	Proesi
R2	1	47k	SMD 0805	Proesi
R3	1	22k	SMD 0805	Proesi
R5 - R19	15	100R	SMD 0805	Proesi
SW1	1	Chave DPDT	DPDT 6 terminais	Proesi - Chave 8x8 com trava
U1	1	CD4017	SO-16	Proesi

3 Funcionamento do circuito e cáculos

Para o seu funcionamento, o CI contador CD4017, necessita de um pulso de clock, que foi obtido através de um circuito conhecido como Multivibrador Astável. Esse circuito foi selecionado em detrimento a outras opções (como osciladores simples baseados no CI 555 ou no CI 4093), devido a possibilidade de controle do tempo de espera do pulso de clock. Foram escolhidos componentes discretos pelo desafio e relativa simplicidade, pois não queria utilizar circuitos microcontroladores.

3.1 Multivibrador astável

O tempo de condução de cada transistor, é alterado segundo os valores dos capacitores e dos resistores. A equação que permite que isso seja calculado é dada por

$$t_c = 0.69 \cdot R \cdot C$$

onde R é o valor do resistor em ohms (Ω) e F é o valor do capacitor eletrolítico em Farads (F). Os componentes que controlam os transistores são R_2 , R_3 , C_1 e C_2 . Lembrando que o controle é feito de maneira cruzada, ou seja, a combinação de R_2 e C_1 controlam o tempo de espera do circuito, pois estão na base de Q_2 , enquanto R_3 e C_2 controlam o pulso de clock, controlando a polarização da base do transistor Q_1 . Os resistores R_1 e R_4 são resistores para polarizar o transistor e garantir o funcionamento do circuito. Para a PCB, foram escolhidos os seguintes valores:

$$R_1 \in R_4 = 330\Omega$$

 $R_2 = 47k\Omega$
 $R_3 = 22k\Omega$
 $C_1 = 10\mu F$
 $C_2 = 47\mu F$

Fazendo os cálculos temos que:

$$t_{espera} = 0,69 \cdot 47 \times 10^{3} \cdot 10 \times 10^{-6} = 0,3243 = 324,3$$
ms
 $t_{clock} = 0,69 \cdot 22 \times 10^{3} \cdot 47 \times 10^{-6} = 0,71346 = 713,4$ 6ms

Esse pulso de clock é enviado para o contador CD4017.

3.2 Circuito sequencial

A cada borda de subida do pulso de clock, o 4017 incrementa uma saída. Ao ser energizado, a saída Q0 é colocada em nível alto, enquanto as outras ficam em nível baixo. Ao receber o primeiro pulso de clock, a saída Q1 vai para nível alto e o restante para nível baixo, e assim sucessivamente, comportamento descrito no datasheet do componente:

Os leds são conectados nas saídas do contador. Na realidade, foram ligados dois leds vermelhos em paralelo para cada led vermelho representado no diagrama a seguir:

4 Fazendo a PCB

Foram escolhidos para a confecção da placa componentes SMD com encapsulamento 0805, para manter o circuito pequeno, mas com componentes com um tamanho que seja confortável para a soldagem a mão. O design da placa foi feito usando o software Inkscape, para desenhar arquivos com a extensão .svg, que foram posteriormente convertidos em arquivos .dxf, que são nativamente reconhecidos pelo software KiCad.

4.1 Design inicial

Após definidas as ideias, dadas as limitações de tamanho (100 x 100 mm), o design abaixo foi considerado para ser o formato da borda da placa, com o design a ser feito na cama de silk screen.

Durante a tentativa de design de PCB, o tamanho se mostrou limitante, e a placa foi convertida em um design para ser um enfeite pendurável em árvore, ou até mesmo em uma mochila ou similar, com o novo tamanho de 95×55 mm.

4.2 Design final e camadas

Como o intuito é fazer um circuito que além de funcional, seja bonito, foram acrescentados alguns ornamentos, como estrelas e riscos de neve para representar o movimento do trenó. Então ficou decidido que a frente da placa seria a mais limpo possível, com trilhas pequenas e discretas. A solder mask será da cor preta, para representar o céu noturno, enquanto a figura do papai noel e as estrelas estão na camada dos pads, para receberem um acabamento metálico prateado. Os riscos de neve ficaram na camada de silk screen para dar um contraste com o fundo preto. O furo de fixação foi feito através de uma via de maior diâmetro, com 3,8 mm de diâmetro e 3,5 mm de furo.

Foram então acrescentados ornamentos na placa e algumas mudanças foram feitas, sendo essa a visualização 3D do design final.

