Baze de date-Anul 2 Laborator 1 SQL

I. Introducere

1. Ce este un sistem de gestiune a bazelor de date? Daţi exemple.

Un sistem de gestiune a bazei de date (SGBD) este un produs software care asigură interacțiunea cu o bază de date, permițând definirea, consultarea și actualizarea datelor din baza de date.

2. Ce este SQL?

SQL (*Structured Query Language*) este un limbaj neprocedural pentru interogarea şi prelucrarea informatiilor din baza de date.

Compilatorul limbajului *SQL* generează automat o procedură care accesează baza de date și execută comanda dorită.

SQL permite atât definirea, prelucrarea şi interogarea datelor, cît şi controlul accesului la acestea. Comenzile *SQL* pot fi integrate în programe scrise în alte limbaje, de exemplu *Cobol*, *C*, *C*++, *Java* etc.

3. Ce este SQL*Plus? Comenzile SQL*Plus accesează baza de date? SQL*Plus este un utilitar Oracle, având comenzi proprii specifice, care recunoaşte instrucțiunile SQL şi le trimite server-ului Oracle pentru execuție.

Dintre functionalitătile mediului *SQL*Plus*, se pot enumera:

- editarea, executarea, salvarea şi regăsirea instrucțiunilor SQL şi a blocurilor PL/SQL;
- calculul, stocarea şi afişarea rezultatelor furnizate de cereri;
- listarea structurii tabelelor;
- accesarea și copierea de informatii dintr-o bază de date în alta;
- administrarea bazei de date.

Tabelul următor evidentiază diferentele dintre instructiunile SQL și cele SQL*Plus:

SQL	SQL*Plus	
Este un limbaj de comunicare cu	,	
•	, ,	
server-ul Oracle pentru accesarea	transferă <i>server</i> -ului <i>Oracle</i> .	
datelor.		
Se bazează pe standardul ANSI	Este o interfață specifică sistemului	
pentru SQL.	Oracle pentru execuția instrucțiunilor	
pontra o q z.	SQL.	
Prelucrează date și definește	Nu permite prelucrarea informațiilor	
obiecte din baza de date.	din baza de date.	
Nu are un caracter de continuare.	Acceptă "–" drept caracter de	
ita are arrearactor de continuare.	continuare pentru comenzile scrise	
	•	
	pe mai multe linii.	
Instrucțiunile nu pot fi abreviate.	Comenzile pot fi abreviate.	
Utilizează funcții pentru a efectua	Utilizează comenzi pentru	
formatări.	formatarea datelor.	
Caracterul de terminare a unei	Nu necesită caracter de terminare a	
comenzi este ";"	unei comenzi.	

4. Comenzile SQL*Plus acceptă abrevieri? Este necesar vreun caracter de încheiere a comenzii? (vezi tabelul de mai sus)

5. Care sunt limbajele SQL?

În funcție de tipul acțiunii pe care o realizează, instrucțiunile SQL se împart în mai multe categorii. Datorită importanței pe care o au comenzile componente, unele dintre aceste categorii sunt evidentiate ca limbaje în cadrul SQL, și anume:

- limbajul de definire a datelor (LDD) comenzile CREATE, ALTER, DROP;
- limbajul de prelucrare a datelor (LMD) comenzile INSERT, UPDATE, DELETE, SELECT;
- limbajul de control al datelor (*LCD*) comenzile COMMIT, ROLLBACK.

Pe lângă comenzile care alcătuiesc aceste limbaje, *SQL* cuprinde:

- instructiuni pentru controlul sesiunii;
- instrucțiuni pentru controlul sistemului;
- instrucțiuni SQL încapsulate.
- 6. Analizați sintaxa simplificată a comenzii SELECT:

Un element din lista campuri are forma: expresie [AS] alias.

Care dintre clauze sunt obligatorii?

7. Care sunt regulile de scriere a comenzilor SQL (acceptă abrevieri, e nevoie de caracter de terminare)? In instructiunea urmatoare sunt 3 erori. Care sunt acestea?

```
SQL> SELECT employee_id, last_name
2 salary x 12 ANNUAL SALARY
```

3 FROM employees;

Obs: ANNUAL SALARY este un alias pentru câmpul reprezentând salariul anual.

Dacă un alias conține *blank*-uri, el va fi scris obligatoriu între ghilimele. Altfel, ghilimelele pot fi omise.

Alias-ul apare în rezultat, ca şi cap de coloană pentru expresia respectivă. Doar cele specificate între ghilimele sunt *case-sensitive*, celelalte fiind scrise implicit cu majuscule.

II. Exercitii

- 1. a) Consultați diagrama exemplu HR (Human Resources) pentru lucrul în cadrul laboratoarelor SQL.
- b) Identificați cheile primare și cele externe ale tabelelor existente în schemă, precum și tipul relațiilor dintre aceste tabele.

- 2. Să se inițieze o sesiune SQL*Plus folosind *user ID*-ul și parola indicate.
- 3. Să se listeze **structura** tabelelor din schema *HR* (*EMPLOYEES*, *DEPARTMENTS*, *JOBS*, *JOB_HISTORY*, *LOCATIONS*, *COUNTRIES*, *REGIONS*), observând tipurile de date ale coloanelor.

Obs: Se va utiliza comanda DESC[RIBE] nume tabel.

4. Să se listeze **conținutul** tabelelor din schema considerată, afişând valorile tuturor câmpurilor.

Obs: SELECT * FROM nume_tabel;

5. Să se obțină încă o dată rezultatul cererii precedente, fără a rescrie cererea.

Obs: Ultima cerere SQL lansată de către client este păstrată în buffer-ul SQL. Pentru rularea *buffer*-ului, se dă comanda:

SQL>/

sau

SQL> RUN

- 6. Listați structura tabelului *EMPLOYEES* (*DESC employees*) și apoi dați comanda *RUN* (sau "/"). Ce observați? Comenzile *SQL*Plus* sunt păstrate în *buffer*?
- 7. Să se afişeze codul angajatului, numele, codul job-ului, data angajarii. Ce fel de operație este aceasta (selecție sau proiecție)? Salvați instrucțiunea *SQL* într-un fişier *p7l1.sql*.

Obs: Se utilizează comanda SAVE pentru salvarea buffer-ului într-un fișier.

SQL> SELECT employee_id, last_name, job_id, hire_date FROM employees;

SQL> SAVE h:\...\p7I1.sql

Precizarea extensiei .SQL a fișierului nu este obligatorie.

8. a) Executați cererea din fișierul *p7l1.sql*.

SQL> START h:\...\p7I1.sql

sau

SQL> @ h:\...\p7l1.sql

b) Editați fișierul *p7l1.sql*, astfel încât, la rulare, capetele coloanelor să aibă numele cod, nume, cod job, data angajarii.

SQL> EDIT h:\...\p7I1.sql

Cererea modificată va fi:

SELECT employee_id cod, last_name nume, job_id "cod job", hire_date "data angajarii" FROM employees;

9. Să se listeze, cu și fără duplicate, codurile job-urilor din tabelul *EMPLOYEES*.

SQL> SELECT job id FROM employees;

SQL> SELECT DISTINCT job id FROM employees;

10. Să se afișeze numele concatenat cu job_id-ul, separate prin virgula si spatiu, si etichetati coloana "Angajat si titlu".

Obs: Operatorul de concatenare este "||". Şirurile de caractere se specifică între apostrofuri (NU ghilimele, caz în care ar fi interpretate ca alias-uri).

SQL> SELECT last_name|| ', ' || job_id "Angajat si titlu" FROM employees;

11. Creati o cerere prin care sa se afiseze toate datele din tabelul *EMPLOYEES*. Separați fiecare coloană printr-o virgulă. Etichetati coloana "Informatii complete".

12. Sa se listeze numele si salariul angajaților care câştigă mai mult de 2850 \$. Salvați instructiunea *SQL* într-un fisier numit *p12l1.sql*. Să se ruleze acesta.

SQL> SELECT last_name, salary

FROM employees

WHERE salary > 2850;

SQL> SAVE p12I1.sql

SQL> @p12l1.sql sau START p12l1.sql

13. Să se creeze o cerere pentru a afișa numele angajatului și numărul departamentului pentru angajatul nr. 104.

```
SQL> SELECT last_name, department_id
FROM employees
WHERE employee id =104;
```

14. Să se modifice *p12l1.sql* pentru a afișa numele și salariul pentru toți angajații al căror salariu nu se află în domeniul 1500-2850\$. Salvați din nou instrucțiunea într-un fișier numit *p14l1.sql*. Executati cererea.

Obs: Pentru testarea apartenenței la un domeniu de valori se poate utiliza operatorul [NOT] BETWEEN valoare1 AND valoare2.

15. Să se afişeze numele, job-ul şi data la care au început lucrul salariații angajați între 20 Februarie 1987 şi 1 Mai 1989. Rezultatul va fi ordonat crescător după data de început.

```
SQL> SELECT ___, ___, ___
FROM ___
WHERE __ BETWEEN '20-FEB-1987' ___ '1-MAY-1989'
ORDER BY ___;
```

16. Să se afișeze numele salariaților și codul departamentelor pentru toti angajații din departamentele 10 și 30 în ordine alfabetică a numelor.

```
SQL> SELECT __, __
FROM __
___ deptno IN (10, 30)
```

Obs: Apartenența la o mulțime finită de valori se poate testa prin intermediul operatorului IN, urmat de lista valorilor între paranteze şi separate prin virgule:

expresie IN (valoare_1, valoare_2, ..., valoare_n)

- 17. Să se modifice *p14l1.sql* pentru a lista numele şi salariile angajatilor care câştigă mai mult de 1500 \$ şi lucrează în departamentul 10 sau 30. Se vor eticheta coloanele drept *Angajat* si *Salariu lunar*. Salvați noua instructiune *SQL* într-un fişier numit *p17l1.sql*. Executati cererea.
- 18. Care este data curentă? Afișați diferite formate ale acesteia. **Obs:**
- Pseudocoloana care returnează data curentă este SYSDATE. Pentru completarea sintaxei obligatorii a comenzii SELECT, se utilizează tabelul DUAL:

SQL> SELECT SYSDATE

FROM dual:

Datele calendaristice pot fi formatate cu ajutorul funcției TO_CHAR(data, format), unde formatul poate fi alcătuit dintr-o combinație a următoarelor elemente:

Element	Semnificație
D	Numărul zilei din săptămâna (duminica=1;
	luni=2;sâmbătă=6)

DD	Numărul zilei din lună.		
DDD	Numărul zilei din an.		
DY	Numele zilei din săptămână, printr-o		
	abreviere de 3 litere (MON, THU etc.)		
DAY	Numele zilei din săptămână, scris în		
	întregime.		
MM	Numărul lunii din an.		
MON	Numele lunii din an, printr-o abreviere de 3		
	litere (JAN, FEB etc.)		
MONTH	Numele lunii din an, scris în întregime.		
Υ	Ultima cifră din an		
YY, YYY, YYYY	Ultimele 2, 3, respectiv 4 cifre din an.		
YEAR	Anul, scris în litere (ex: two thousand four).		
HH12, HH24	Orele din zi, între 0-12, respectiv 0-24.		
MI	Minutele din oră.		
SS	Secundele din minut.		
SSSSS	Secundele trecute de la miezul nopţii.		

19. Sa se afiseze numele şi data angajării pentru fiecare salariat care a fost angajat in 1987. Se cer 2 soluții: una în care se lucrează cu formatul implicit al datei şi alta prin care se formatează data.

Varianta1:

SQL> SELECT first_name, last_name, hire_date FROM employees WHERE hire_date LIKE ('%87%');

Varianta 2:

SQL> SELECT first_name, last_name, hire_date FROM employees

WHERE TO CHAR(hire date, 'YYYY')='1987';

Sunt obligatorii ghilimelele de la sirul '1987'? Ce observati?

20. Să se afișeze numele și job-ul pentru toți angajații care nu au manager.

SQL> select last_name, job_id

FROM employees

WHERE manager id IS NULL;

21. Sa se afiseze numele, salariul si comisionul pentru toti salariatii care castiga comisioane. Sa se sorteze datele in ordine descrescatoare a salariilor si comisioanelor.

SQL> SELECT	,,	
WHERE		
ORDER	BY salary DESC, commission_	pct DESC;

- 22. Eliminați clauza WHERE din cererea anterioară. Unde sunt plasate valorile NULL în ordinea descrescătoare?
- 23. Să se listeze numele tuturor angajatilor care au a treia literă din nume 'A'.

Obs: Pentru compararea şirurilor de caractere, împreună cu operatorul LIKE se utilizează caracterele *wildcard*:

- % reprezentând orice şir de caractere, inclusiv şirul vid;
- (underscore) reprezentând un singur caracter şi numai unul.

SQL> SELECT DISTINCT last_name FROM employees

WHERE LOWER(last_name) LIKE '__a%';

- **24.** Să se listeze numele tuturor angajatilor care au 2 litere 'L' in nume şi lucrează în departamentul 30 sau managerul lor este 7782.
- **25.** Să se afiseze numele, job-ul si salariul pentru toti salariatii al caror job conține şirul "clerk" sau "rep" si salariul nu este egal cu 1000, 2000 sau 3000 \$. (operatorul NOT IN)
- **26.** Sa se modifice *p17l1.sql* pentru a afisa numele, salariul si comisionul pentru toti angajatii al caror salariu este mai mare decat comisionul (*salary*commission_pct*) marit de 5 ori. Executati din nou cererea . Salvati cererea ca *p26l1.sql*.