

11-01-00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Atty. Dkt. No: 5150-45700

Inventor(s):

Stefan Klemens Muller, Clemens
 Bierwisch, Rudolf Macken and
 Ulrich Dieterle

Title: METHOD FOR THE DIRECT
 CALL OF A FUNCTION BY
 A SOFTWARE MODULE BY
 MEANS OF A PROCESSOR
 WITH A MEMORY-
 MANAGEMENT UNIT
 (MMU)

CERTIFICATE OF EXPRESS MAIL
UNDER 37 C.F.R. §1.10

"Express Mail" mailing label number: EL690353637US
 DATE OF DEPOSIT: October 30, 2000

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. §1.10 on the date indicated above and is addressed to:

Assistant Commissioner for Patents
 Box Patent Application
 Washington, DC 20231

Debra J. Tix

UTILITY PATENT APPLICATION TRANSMITTAL

(For new non-provisional applications under 37 CFR § 1.53(b))

Application Elements

1. Filing Fee

The filing fee is calculated as shown below.

Total Claims	15	-20=		x \$18.00=	
Independent Claims	4	-3 =		x \$78.00=	
Multiple Dependent Claims				Fee:	
				Basic Fee:	
				Sub-Total:	
				Reduction by 50% for Small Entity:	
				Assignment Fee	
				Total:	

A check in the amount of _____ is enclosed.

The Commissioner is hereby authorized to charge any other fees which may be required or credit any overpayment to Conley, Rose, & Tayon, P.C., Deposit Account No. 501505/ / .

2. Specification

13 page(s) of specification; 3 page(s) of claims (1-15), 1 page(s) of abstract

3. Drawings

Formal Figure(s) 1-9 on 8 sheet(s)

4. Oath or Declaration

Newly executed

Copy from a prior application (see 37 C.F.R. § 1.63(d))

Deletion of Inventor(s) (in continuation or divisional applications):

Delete the following inventor(s) named in the prior non-provisional application:

The inventor(s) to be deleted are set forth on a signed sheet attached hereto.

5. The entire disclosure of the prior application referred to above is considered to be part of the accompanying application and is hereby incorporated by reference herein.6. Microfiche Computer Program (Appendix)

JC921 U.S. PTO
09/702357
10/30/00

7. Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary)
 Computer Readable copy
 Paper Copy (identical to computer copy)
 Statement verifying identity of above copies

8. Assignment Papers

9. Power of Attorney
 Is attached.
 The power of attorney appears in the original papers of the prior application.
 Since the power does not appear in the original papers, a copy of the power in the prior application is enclosed.

10. Information Disclosure Statement (IDS)
 Copies of IDS Citations

11. Amendments
 A preliminary amendment is enclosed.
 Cancel in this application claim(s) _____ before calculating the filing fee. At least one independent claim is retained for filing purposes.
 Amend the specification by inserting before the first line the sentence: _____

12. Return Receipt Postcard

13. Small Entity Status
 A small entity statement is enclosed.
 A small entity statement was filed in the prior non-provisional application and such status is still proper and desired.
 Is no longer claimed.

14. Priority of foreign application number 199 54 407.7, filed on November 12, 1999 in Germany is claimed under 35 U.S.C. § 119(a)-(d)

15. Petition under 37 C.F.R. § 136 for Extension of Time

16. Other: _____

Address all future correspondence to:

Jeffrey C. Hood
Conley, Rose, & Tayon, P.C.
P.O. Box 398
Austin, Texas 78767
Phone: (512) 476-1400 Fax: (512) 703-1250

Signature

Name

Registration No.

Date

Jeffrey C. Hood
35,198
10/30/2000

PATENT
5150-45700

JC839 U.S. PTO

"EXPRESS MAIL" MAILING
LABEL NUMBER EL690353637 US
DATE OF DEPOSIT 10/30/2001
I HEREBY CERTIFY THAT THIS
PAPER OR FEE IS BEING
DEPOSITED WITH THE UNITED
STATES POSTAL SERVICE
"EXPRESS MAIL POST OFFICE TO
ADDRESSEE" SERVICE UNDER 37
C.F.R. § 1.10 ON THE DATE
INDICATED ABOVE AND IS
ADDRESSED TO THE
COMMISSIONER OF PATENTS
AND TRADEMARKS,
WASHINGTON, D.C. 20231

Debra J. Tix

**METHOD FOR THE DIRECT CALL OF A FUNCTION BY A SOFTWARE MODULE
BY MEANS OF A PROCESSOR WITH A MEMORY-MANAGEMENT UNIT (MMU)**

By:

Stefan Klemens Muller
Luchswege 3
52222 Stolberg/Germany

Rudolf Macken
Bachstrasse 35
52441 Linnich/Germany

Clemens Bierwisch
Eupener Strasse 198
52066 Aachen/Germany

Ulrich Dieterle
Konrad-Adenauer-Strasse 80
52223 Stolberg/Germany

Attorney Docket No.: 5150-45700

Jeffrey C. Hood
Conley, Rose & Tayon, P.C.
P.O. Box 398
Austin, Texas 78767-0398
Ph: (512) 476-1400

Title: METHOD FOR THE DIRECT CALL OF A FUNCTION BY A SOFTWARE
MODULE BY MEANS OF A PROCESSOR WITH A
MEMORY-MANAGEMENT UNIT (MMU)

5

Inventors: Stefan Klemens Mueller, Clemens Bierwisch, Rudolf Nacken and Ulrich Dieterle

Field of the Invention

10 The invention pertains to a method for the direct call of a target function by a start function by means of a processor with a memory-management unit (MMU) in a computer operated by an operating system.

Description of the Related Art

15 In multitasking operating systems, several programs are executed (quasi-) simultaneously. Since programs do not always run error-free, multitasking operating systems must minimize the damage in case there is a program error. Thus, multitasking operating systems isolate the memory of individual programs from each other so that the error behavior of one program does not adversely affect other programs. For simplification, the term operating system will be used in the following to refer to a multitasking operating system.

20 Memory isolation comprises the separation of virtual and physical memory. Memory accesses of programs occur in virtual memory and not in physical memory. Virtual memory is mapped to physical memory by the processor by reading tables. For this purpose, the processor comprises a memory-management unit (MMU). One responsibility of the operating system is to set up and manage these tables. These tables are designated as memory contexts. The memory contexts themselves are in computer memory and are read by the MMU. In contrast to programs, memory accesses of the MMU occur in physical memory and not in virtual memory. To access a memory context, the MMU needs its physical address. For this purpose the processor comprises a MMU control register. The physical address of the current, valid memory context is stored in 25 the MMU control register.

Each program is associated with a particular memory context. A program with its own memory context is designated as a task. Memory contexts are formed by the operating system such that they do not overlap in the physical memory. The memory isolation of the tasks is guaranteed in this way. Thus, the program error of a program occurs only in one memory context
5 and cannot affect other programs in other memory contexts.

The principle of physical isolation of the memory contexts of two tasks is shown in Figure 1 of the attached drawings.

Data exchange between tasks is made impossible by memory isolation. However, data exchange is necessary in order to make the output data of a task available to another task (e.g.,
10 for the data exchange between a database program and a word processing program). Thus, operating systems offer means for inter-task communication. Inter-task communication, however, must be done in such a way that the hole closed by memory isolation is not reopened. Therefore, inter-task communication of operating systems is generally realized by copying the data. The operating system “transports,” so to speak, a copy of data from one task to another. By this mechanism, tasks can exchange data without having mutual access to their data.
15

Data exchange through an operating system has the disadvantage that the highest possible data throughput is not achievable due to the copying of the data. There are applications, however, that require the highest possible data throughput. For such applications, operating systems offer the use of shared memory for direct, mutual data access by different tasks. In shared memory, the memory contexts of associated tasks are formed such that they share a certain physical memory region.
20

Figure 2 of the attached drawings shows the principle of shared memory access of two tasks.

Shared memory contradicts the principle of memory isolation. This contradiction is not
25 problematic, however, because it is not possible to arbitrarily force tasks to use shared memory. If tasks are to achieve the highest possible data throughput between each other, then they must include program functions that explicitly request shared memory. Therefore, a task must be configured intentionally by the programmer to use shared memory with certain other tasks. The programmer must take special consideration of the danger of program errors to other tasks in
30 order to avoid further affects of these types of program errors.

In addition to data exchange, there is also the exchange of events, i.e., the exchange of data state changes, which, generally, are only provided through inter-task communication of the operating system. In order not to open the holes that were closed by memory isolation, events are registered by the operating system and transferred at a given time. The operating system
5 “transports” events from one task to another through mechanisms similar for data.

The exchange of events over an operating system has the disadvantage that the time of the transfer depends on the operating system and the other tasks executed by the operating system. Thus, it is not possible to perform an exchange of events with optimum determinability, i.e., with certainty of the time point of the transfer. There are a number of applications, however,
10 where it is necessary to have the highest possible determinability. Analogous to shared memory, it can be understood that the operating systems should now offer a corresponding bypass mechanism. However, no current operating system offers such a mechanism.

Therefore, one object of the present invention is to create a method for the direct and immediate exchange of events between different tasks.

15
DRAFT - DO NOT QUOTE OR CITE

Summary of the Invention

This object is achieved in that the start function is a component of a first task with a first memory context and the target function is in another memory context and in that the first task performs a context switch from the first memory context to the other memory context, and the context switch is reversed after the execution of the target function.

In other words, the first task includes a function that executes and controls a call of the target function independently of the operating system. Thus, the target function is called directly and with highest determination by bypassing the scheduler of the operating system. The first task thus assumes one of the typical jobs (in the sense of function) of the operating system.

The preferred processing steps for optimum and safe execution of this method are disclosed in the subordinate claims and the following description of embodiments of the invention. In addition, the invention pertains to a software program to execute a method according to the invention as well as a machine-readable data carrier that stores such a software program.

Brief Description of the Drawings

Figure 1 illustrates the principle of physical isolation of memory contexts of two tasks;

Figure 2 illustrates the principle of shared memory access of two tasks;

5 Figure 3 illustrates an exemplary computer system which includes one embodiment of the present invention;

Figure 4 illustrates an exemplary computer system architecture of the computer system of Figure 3;

10 Figure 5 illustrates the interaction between client and server according to one embodiment of the present invention;

Figure 6 is a flowchart diagram illustrating preparation of the direct call of the target function according to one embodiment of the invention;

15 Figure 7 shows the different memory contexts of the client and the server as well as the newly built context containing copies of the parts of the client context and the server context referring to locked memory; and

Figures 8 and 9 show the steps of the method according to one embodiment of the invention during the runtime of the direct call.

20 While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.

Detailed Description of the Embodiments

Figure 3 - Exemplary Computer System

5 Figure 3 illustrates an exemplary computer system 102 which may include one embodiment of the invention. One embodiment of the present invention operates in a computer system 102. The computer system 102 may include a system unit 82, display or monitor 84, and one or more I/O devices, such as keyboard 86 and mouse 88. The computer system may take any of various forms, such as a personal computer, mainframe, Internet appliance, personal digital assistant, television and
10 other computing devices. In general, the term "computer system" may encompass any device having a processor which executes instructions from a memory medium. The computer system may store the client program and the server program as shown in Figure 5.

Figure 4 - Exemplary Computer System Architecture

15 Figure 4 is an exemplary block diagram of the computer 102 (of Figure 3). The elements of a computer not necessary to understand the operation of the present invention have been omitted for simplicity. The computer system 102 may include at least one central processing unit or CPU 160 which is coupled to a processor or host bus 162. The CPU 160 may be any of various types, including an x86 processor, a PowerPC processor, a CPU from the Motorola family of processors, a
20 CPU from the SPARC family of RISC processors, as well as others. The CPU may include a memory management unit (MMU) 161. Main memory 166 is coupled to the host bus 162 by means of memory controller 164. The main memory 166 may store the client program and the server program shown in Figure 5, and may include software according to one embodiment of the invention. The main memory 166 may also store operating system software as well as other
25 software for operation of the computer system, as well known to those skilled in the art.

30 The host bus 162 may be coupled to an expansion or input/output bus 170 by means of a bus controller 168 or bus bridge logic. The expansion bus 170 is preferably the PCI (Peripheral Component Interconnect) expansion bus, although other bus types can be used. The expansion bus 170 may include slots for various I/O devices 122, as shown. The computer 102 may further comprise a video display subsystem 180 and hard drive 182 coupled to the expansion bus 170.

According to software technology, the most direct (and most deterministic) form of event-forwarding occurs by means of a function call. Here, in one task, a function of another task is called, which corresponds to a call of a function in another memory context. In contrast to inter-task communication, such a call happens “directly” and thus, it is referred to as a direct call.

The direct call is a service that is offered by a task. The task that offers the service of directly calling a function of another task is referred to as the server. The program part of the server that performs the direct call is referred to as the start function. The second task that has a function that should be called directly is referred to as the client because it enlists the service of the server. The directly called function within the client is referred to as the target function.

Similarly to the use of shared memory, the function call in the client according to one embodiment of the invention may be provided by the programmer of the client. The direct call of a function of a task cannot be forced by other programs. Client and server preferably deliberately coordinate with each other in order to achieve the highest possible determinability by means of a direct call.

In order to ensure the general validity of the method, the target function preferably remains callable from the client itself. Further, no compiler-specific settings or functions should be used since such special items are not available on all available computer platforms.

In order to set up a direct call, the client preferably transmit the memory address (in short: address) of its target function to the server. For this purpose, the client uses the inter-task communication of the operating systems. At runtime, the server has the job to execute the direct call. The interaction between client and server is shown in Figure 5 of the drawings.

The address of the target function which is valid in the memory context (in short: context) of the client, however, is not valid in the context of the server because it is a virtual address. So that the server can use this address meaningfully, the server must know the physical address of the target function. The physical address of the target function is stored in the context of the client. Thus, to determine the physical address of the target function, reading access to the context of the client must be allowed.

Because the server absolutely requires reading access to the context of the client for reasons to be explained below, the address of the client context is transmitted to the server.

Because the server cannot access the virtual address of the client context, the client must transmit the physical address of its context.

The physical address of the context is stored in the MMU control register of the processor. The client determines the physical address of its context by reading the MMU control register.

However, the server cannot have reading access to physical memory, but rather only to virtual memory of its own context. The operating system offers mechanisms, however, for associating physical memory with a context. This process is referred to as mapping. Through mapping of the physical address of the client context into the server context, the server would be able to read the client context. In this way, the server could determine the physical address from the virtual address of the target function that is valid in the client context.

Through mapping of the physical address of the target function into the server context, the start function would be able to perform a direct call.

In general, however, functions access absolute-addressed data. In addition, functions can also call additional functions. Furthermore, absolute-addressed jumps can be performed within the functions themselves. The knowledge of the physical address of the target function is, therefore, only sufficient if the target function does not access absolute-addressed data, does not call additional functions, and does not contain absolute-addressed jumps. In practice, this case is rare, however, because a function with such restrictions can produce almost no meaningful results.

In order to remove these restrictions, the physical address of all absolute, virtual addresses in the target function could be determined and mapped into the server context. Then, all the addresses valid in the client context would have to be replaced in the target function with the corresponding mapped addresses in the server context. This method would be very complicated, however, because the program code must be disassembled for this purpose. In addition, a change of the addresses in the target function would mean that the target function (and all functions called from the target function) would not be executable anymore in the client context itself. Thus, the invention must go beyond this method variant (Method Variant 1).

Instead, Claim 1 describes a method in which the start function changes from its context to the context of the target function.

The server knows the physical address of the client context. Instead of mapping the target function into its own context, the start function can write the physical address of the client context into the MMU control register. Thus, the start function performs a context switch to the

client. It can perform a direct call because all the data and additional functions called from the target function are in the context of the client where the call occurs. After execution of the direct call, the start function writes the original value back into the MMU control register in order to switch back to the server context.

5 In order for this variant (Method Variant 2) of the direct call to work, the start function must be in the shared memory of the client and server. Otherwise, in the event of switching from the server context to the client context, the validity of the start function would be lost and a return from the target function call to the start function would no longer be possible. Operating systems, however, offer no possibility of placing program code in shared memory. Only data can
10 be in shared memory. This lacking ability of the operating system to place program code in shared memory can generally be reproduced by writing accesses to the corresponding context. In a concrete case, the part of the server context containing the start function would be copied into the client context. Through this copying process, the start function is in the context of the client so that it is possible to return from the target function call to the start function.

15 There is a problem, however, because a context switch belongs to the fundamental jobs (in the sense of function) of the operating system. Thus, operating systems cannot process an autonomous context switch by a task. In scheduling, operating systems store the physical context address of the task instead of reading them from the MMU control register each time. If a task executes a context switch autonomously and then it is interrupted by the scheduler of an operating system, the operating system will assign the task its original context, and not the context the task had switched to, at the next assignment of processor time to the task. Thus, the target function would be executed in the wrong context. The server should absolutely avoid scheduling by the operating system at the runtime of the start function and the called target function. This condition on the server is referred to as the server condition.
20

25 Furthermore, it should be guaranteed that no operating system functions are called from the target function because the operating systems cannot process a request from this context (since they have not switched into this context). The behavior of the operating system would not be predictable with such calls. This condition on the client is referred to as the first client condition.

30 Because the direct call occurs asynchronously to the runtime of the client, i.e. the client is interrupted during the direct call due to the server condition, problems can arise if the client itself

calls the target function (or functions called from the target function). If scheduling to the server occurs during the call to the target function by the client that would then also call the target function, then the target function would be called a second time before the first call is ended. Such a second call requires a function to be reentrant. Reentrant functions are very complicated
5 to construct. So that this complicated construction is not necessary, the client can only call the target function (or functions that are called from the target function) if the server can definitely not call the target function. This condition on the client is referred to as the second client condition.

Furthermore, the client may only access data that could be used or changed by the target
10 function at times that the server can call the target function such that the access is performed entirely within a processor cycle or protected by flags. In other cases, the client could be interrupted by the server in the middle of a data access while it accesses data outside of its target function. An access to data that is performed entirely within a processor cycle is referred to as an atomic access. This condition on the client is referred to as the third client condition.

15 The server preferably deactivates the scheduler of the operating system in order to fulfill the server condition. The scheduler of the operating system is interrupt-controlled. The start function should suspend interrupt handling by means of a processor control register and guarantee that it cannot be interrupted by the scheduler of an operating system.

20 The client fulfills the first client condition by avoiding explicit operating system calls in the target function. Of course, it should also be guaranteed that there are no implicit operating system calls in the target function. Implicit operating system calls occur when exceptions appear, such as division by zero. Thus, the target function should be programmed without errors in order not to cause any exception conditions that result in an operating system call.

25 In case of a shortage of physical working memory, the operating system automatically swaps out parts of the memory to the hard disk. If a conventional task accesses swapped-out memory, an exception condition occurs that causes an implicit operating system call. In connection with this operating system call, the swapped-out memory will be read from the hard disk and written into the physical memory (working memory). Next, the task successfully accesses the desired memory without noticing the automatic operating system call.

Such an implicit operating system call during the runtime of the directly called target function would cause a critical state because the scheduler of the operating system proceeds on the assumption that the context of the server, and not the context of the client, is active.

In order to exclude such exception conditions, the swapping-out of memory that the target function accesses must be prevented. The operating system offers mechanisms in order to prevent the swapping out of memory. This process is referred to as locking. Therefore, to satisfy the first client condition, the entire memory accessed in the target function must be locked.

The client fulfills the second client condition by avoiding the target function calls at times where it is possible for the server to call the target function. Since the server must be activated by the client for calling the target function from the client, the client can block the call of its own target function during such an activation.

The client fulfills the third client condition by restricting accesses to data that could be used or changed by the call of the target function to atomic data accesses or accesses protected by flags, if there is the possibility that the server will call the target function.

Thus far, the conditions for the call to the target function by a context switch in the start function have been explained.

Of course, locking of program code and data in its entirety does not belong to the standard jobs (in the sense of task) of software development. Therefore, it is probable that errors will occur. Furthermore, there is the difficulty that the operating system will swap out the memory of a certain task depending on the requirements of another task. The swapping-out happens at unpredictable times. Because the operating system swaps out at unpredictable times, whether all necessary memory regions are locked cannot be tested. This testability problem demands a solution that cannot be offered by Method Variant 2.

The goal of Method Variant 3 that will now be described is that unlocked memory is recognizable not at unpredictable times, but rather immediately at the first call to the target function. For this purpose, the start function will perform the context switch not into the client context, but rather into a newly formed context. The setup of a new context means configuring the MMU of the processor. The new context is assembled from copies of parts of the client context and the server context. The new context is referred to as a copied context and forms the second context that will be switched into from the server context. The client portion of the copied context includes exactly the parts of the client context corresponding to the locked

memory. The server portion of the copied context includes the start function and all data used by the start function.

The Method Variant 3, solves the testability problem of Method Variant 2 because there is no unlocked memory in the copied context. An access of the target function to such memory is
5 immediately noticeable because it is not allowed if the MMU of the processor has switched into the copied context.

In connection with the description of the method for the direct call of a function in another memory context through configuration of the MMU of the processor, the fundamental problems have been explained with reference to Method Variants 1 and 2. Method Variant 1
10 does not enable the direct call of a sufficiently complex function for the execution of meaningful jobs (in the sense of task). Method Variant 2 is suitable for such a job, but it exhibits problems, in particular with testability.

Method Variant 3 which performs a context switch not into the client context, but rather into a copied memory context, wherein the memory of this copied memory context is completely locked, represents the optimum embodiment of the invention.
15

Analogously to shared memory as a means to achieve the highest possible data throughput between tasks, the represented method according to the invention supplies a means to achieve the highest possible determinability for an exchange of events between tasks. Thus, as shared memory enables direct data coupling, so the represented method enables direct event coupling.
20

Figures 6 - 9

Figures 6 – 9 show steps of the method according to one embodiment of the invention. In preparation of the direct call the target function, additional related functions and all used data are
25 locked. Additionally, the start function and all data used by the start function are locked. The physical address of the client context is transferred to the server and a new memory context is built by copying all parts of the client context and the server context referring to locked memory into this new context. Finally the address of the target function is transferred to the server. These steps for preparing the direct call are shown in figure 6. Figure 7 shows the different memory contexts of the
30 client and the server as well as the newly built context containing copies of the parts of the client context and the server context referring to locked memory.

Figures 8 and 9 show the steps of the method according to one embodiment of the invention during the runtime of the direct call. In a first step the IRQ handling of the operating system is deactivated in order to block any scheduling by the operating system during the runtime of the direct call. Then the start function of the server switches from its own context to the new context by writing the physical address of the new memory context containing the target function into the MMU control register. Within the new memory context the start function calls the target function. After the execution of the target function the start function writes the physical address of the memory context of the server back into the MMU control register in order to switch back to the server context. Then the start function reactivates the IRQ handling of the operating system.

Figure 9 shows the context switches and the call of the target function within the three memory contexts. The representation of the client context in figure 9 depicts some requirements that should be fulfilled in order to ensure the safe execution of the direct call. According to the crossed out arrow headed with the term "2nd client condition" the calls of the target function by the client are blocked during the runtime of the direct call. Further, during the runtime of the direct call data accesses from the client to data used by the target function are limited by the "3rd client condition", i.e. either to atomic accesses that can be performed within one processing cycle or to accesses protected by flags.

Although the system and method of the present invention is described in connection with several embodiments, it is not intended to be limited to the specific forms set forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit and scope of the invention as defined by the appended claims.

We claim:

5 1. Method for the direct call of a target function by means of a start function through
a processor with a memory management unit (MMU) in a computer operated by an operating
system, characterized in that the start function is a component of a first task with a first memory
context and the target function is in another memory context and in that the first task performs a
context switch from the first memory context into the other memory context, the target function
is executed, and this context switch is reversed after the execution of the target function.

10 2. Method according to Claim 1, characterized in that in order to perform the context
switch, the physical address of the memory context of the task containing the target function is
written into the MMU control register by the first task.

15 3. Method according to Claim 1, characterized in that parts of the first task as well as
parts of the second task containing the target function are copied into a new memory context and
the context switch is performed into this new memory context.

20 4. Method according to Claim 3, wherein the computer features working memory
(RAM) and mass storage, e.g., a hard disk, and wherein the operating system swaps out parts of
the working memory to the mass storage as required, characterized in that the memory region of
the copied memory context is locked at least during the runtime of the target function called by
the start function in order to avoid swapping out this memory region from the working memory.

25 5. Method according to claim 1, characterized in that the start function avoids task
switching by the operating system during the runtime of the target function by deactivating the
interrupt handling by means of a processor control register.

30 6. Method according to claim 1, characterized in that the target function includes no
program steps containing a call of the operating system.

7. Method according to claim 1, characterized in that during the call to the target function by the start function, a new call to the target function by a function outside of the target function is blocked.

5 8. Method according to claim 1, characterized in that the task containing the target function only executes accesses that are performed entirely within a processing cycle to data that could be used or changed by the target function.

10 9. Method according to claim 1, characterized in that the task containing the target function only executes accesses that are protected by flags to data that could be used or changed by the target function.

15 10. Software program to be loaded into the working memory of a computer operated by an operating system with a processor with a memory management unit (MMU), characterized in that it includes a task with a start function for performing a method according to claim 1.

11. Software program according to Claim 10, characterized in that it includes a second task with a target function for performing a method according to claim 1.

20 12. Machine-readable data carrier with a software program which implements a method for the direct call of a target function by means of a start function through a processor with a memory management unit (MMU) in a computer operated by an operating system, characterized in that the start function is a component of a first task with a first memory context and the target function is in another memory context and in that the first task performs a context switch from the first memory context into the other memory context and this context switch is 25 reversed after the execution of the target function.

30 13. A method for the direct call of a target function by means of a start function in a computer system comprising a processor with a memory management unit (MMU), wherein the computer system includes an operating system, wherein the start function is a component of a

first task with a first memory context and the target function is in another memory context, the method comprising:

the first task performing a context switch from the first memory context into the other memory context;

5 executing the target function in the other memory context;

 reversing said context switch to return to the first memory context after executing the target function.

14. The method according to Claim 13, wherein the CPU includes a MMU control
10 register;

 wherein the first task performing the context switch includes the first task writing the physical address of the memory context of the task containing the target function into the MMU control register.

15. The method according to Claim 13, further comprising

 copying parts of the memory context of the first task as well as parts of the memory context of the second task containing the target function into a new memory context;

 wherein the first task performing the context switch comprises the first task performing the context switch into the new memory context.

Abstract

A method for the direct call of a target function by a start function by means of a processor with a memory management unit (MMU) in a computer operated by an operating system. In today's multitasking operating systems, the call of a function of a first task by a second task is executed and managed by the task scheduler of the operating system. The time of the execution of the called function is uncertain and is dependent on the operating system as well as the tasks managed at every point in time by the operating system. One object of the invention is to disclose a method which enables a time-determined call of a function and which is executed immediately in connection with the call. This object is achieved in that the start function is a component of a first task with a first memory context and in that the first task performs a context switch from the first memory context into the other memory context and this memory switch is reversed after the execution of the target function.

15

Fig. 1
(Prior Art)

Fig. 2
(Prior Art)

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

