Ichino and Yaguchi dissimilarity measure for variables

$$\varphi(A_i, B_i) = |A_i \oplus B_i| - |A_i \otimes B_i| + \gamma (2 \cdot |A_i \otimes B_i| - |A_i| - |B_i|),$$

where: $\varphi(A_i, B_i)$ – dissimilarity measure of symbolic variables,

 A_i , B_i – symbolic variables of any type,

 \oplus – Cartesian join,

 \otimes – Cartesian meet,

 \parallel – means the length of an interval for continuous data or the number of elements of an set of values,

 γ - parameter <0, $\frac{1}{2}$ >.

Ichino and Yaguchi measure for objects (U_2)

$$d_q(a_1,b_1) = \left(\sqrt[q]{\sum_{j=1}^p \phi(A_j,B_j)^q}\right),$$

where: $d_q(a_1, b_1)$ – Ichino and Yaguchi measure (sometimes called extended Minkowski metric – see Diday [2000]),

q – integer number greater or equal 1,

 $a_1 = (A_1, A_2, ..., A_p), b_1 = (B_1, B_2, ..., B_p)$ – two symbolic objects containing p symbolic variables,

 $\phi(A_i, B_i)$ – Ichino and Yaguchi dissimilarity measure for variables.

Hausdorff distance measure (H)

$$\max \left\{ \max_{\alpha \in [\underline{A}, \overline{A}]} \left\{ \min_{\beta \in [\underline{B}, \overline{B}]} d(\alpha, \beta) \right\}, \max_{\beta \in [\underline{B}, \overline{B}]} \left\{ \min_{\alpha \in [\underline{A}, \overline{A}]} d(\alpha, \beta) \right\} \right\},$$

where: $H(a_1, b_1)$ – Hausdorff distance,

 $a_1 = (A_1, A_2, ..., A_p), b_1 = (B_1, B_2, ..., B_p)$ – two symbolic objects containing p symbolic interval-valued variables. Each variable A_i is an interval in a form $[\underline{A_i}, \overline{A_i}], d(...)$ – Euclidean distance.

References

Billard, L., Diday, E. (2006), *Symbolic data analysis. Conceptual statistics and data mining*, Wiley, Chichester.

Bock H.H., Diday E. (Eds.) (2000), Analysis of symbolic data. Explanatory methods for extracting statistical information from complex data, Springer Verlag, Berlin.