Rapport - ft_linear_regression

Thibault Nguyen - thibnguy

Décembre 2024

1 Definition of a Linear Regression

Linear regression is a statistical method used to model the relationship between one dependent variable (Y) and one or more independent variables (X). It assumes that this relationship is linear, meaning that changes in X are directly proportional to changes in Y.

Key Elements of Linear Regression:

• Equation of a Line:

- For simple linear regression (one independent variable), the model is:

$$Y = mX + b + \epsilon$$

where:

- * Y: Dependent variable (outcome or target variable).
- * m: Independent variable (predictor or feature).
- * X: Slope of the line, representing the rate of change in Y for a one-unit change in X.
- * b: Intercept, the value of Y when X = 0.
- * ϵ : Error term, accounting for the deviation of actual values from the predicted line.

• Multiple Linear Regression:

– If there are multiple independent variables (X_1, X_2, \ldots, X_n) , the equation becomes:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n + \epsilon$$

where each b_i represents the coefficient (effect) of the corresponding feature.

• Assumptions:

- The relationship between X and Y is linear.
- The residuals (errors) are normally distributed.
- Homoscedasticity: The variance of residuals is constant across all values of X.
- Independence: Observations are independent of one another.

• Goal:

 The primary goal of linear regression is to find the best-fit line that minimizes the sum of squared residuals (differences between observed and predicted values).

• Applications:

- Predicting continuous outcomes, such as house prices, temperatures, or sales.
- Understanding relationships between variables, such as how advertising spend affects sales.

In summary, linear regression is a foundational technique in statistics and machine learning that models and predicts outcomes based on a linear relationship between variables.

2 How it works

Linear regression is a supervised learning algorithm that predicts a continuous target variable by finding the best-fit linear relationship between input features and the target. Here's how it works using the **four fundamentals**:

• Dataset

- **Definition**: The dataset consists of examples with input features (X) and their corresponding target value (Y).
 - * Example: Predicting house prices (Y) based on features like size (X_1) and number of bedrooms (X_2) .
- The dataset must be:
 - * Clean and properly formatted.
 - * Split into **training** and **testing** sets to evaluate the model's performance.

By convention:

- -m: Number of examples (rows).
- -n: Number of features (columns, excluding the target).

Dataset (x, y)

	Target	Features					
m	y	x_1	x_2	x_3		x_n	
	$y^{(1)}$	$x_1^{(1)}$	$x_2^{(1)}$	$x_3^{(1)}$		$x_n^{(1)}$	
	$y^{(2)}$	$x_1^{(2)}$	$x_2^{(2)}$	$x_3^{(2)}$		$x_n^{(2)}$	
	$y^{(3)}$	$x_1^{(3)}$	$x_2^{(3)}$	$x_3^{(3)}$		$x_n^{(3)}$	
	$y^{(m)}$	$x_1^{(m)}$	$x_2^{(m)}$	$x_3^{(m)}$		$x_n^{(m)}$	
$\stackrel{-}{\longleftrightarrow}$							

• Model

- **Definition**: The model is a mathematical function that predicts Y (target) from X (features).

 \ast For simple linear regression:

$$\hat{Y} = mX + b$$

- · m: Slope (how much Y changes per unit of X).
- · b: Intercept (value of Y when X = 0).
- * For multiple linear regression:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$

- · b_0 : Intercept.
- · b_i : Coefficient of each feature (X_i) .
- **Purpose**: To represent the relationship between inputs (X) and output (Y) using a straight line (or hyperplane in multiple dimensions).

• Cost Function

- **Definition**: The cost function measures the error between the predicted values (\hat{Y}) and the actual target values (Y).
 - * For linear regression, the most common cost function is the

Mean Squared Error (MSE):

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{Y}^{(i)} - Y^{(i)})^2$$

- · $J(\theta)$: Cost function value.
- · $\hat{Y}^{(i)}$: Predicted value for the *i*-th example.
- · $Y^{(i)}$: Actual target value for the *i*-th example.
- \cdot m: Number of examples.
- Purpose: To provide a metric that the algorithm minimizes to improve predictions. Lower cost indicates better model performance.

• Minimization Algorithm

- **Definition**: The minimization algorithm adjusts the model's parameters (coefficients m, b or b_0 , b_1 , ..., b_n) to reduce the cost function $J(\theta)$.
- The most common algorithm used is **Gradient Descent**:
 - * Iteratively updates the parameters using the rule:

$$\theta = \theta - \alpha \cdot \frac{\partial J(\theta)}{\partial \theta}$$

- · α : Learning rate (step size).
- · $\frac{\partial J(\theta)}{\partial \theta}$: Gradient of the cost function.

- Steps in Gradient Descent:

- * Compute the cost $J(\theta)$ for the current parameters.
- * Calculate the gradient (direction of steepest ascent).
- * Update the parameters in the opposite direction of the gradient (descent).
- * Repeat until the cost converges to its minimum.

Summary

- **Dataset**: Provides input-output pairs to learn from.
- **Model**: Represents the linear relationship between inputs (X) and output (Y).
- Cost Function: Quantifies prediction errors to guide the optimization
- Minimization Algorithm: Adjusts the model's parameters to minimize errors, finding the best-fit line.

By combining these four steps, linear regression learns to make accurate predictions based on the data.

3 Train the model

• Feature Normalization

def normalize_features(x)

- **Purpose**: Normalize the input features (x) to have a mean of 0 and a standard deviation of 1. This is important to:
 - * Improve the performance of gradient descent (features with large scales can slow convergence).
 - * Make the model parameters more interpretable.
- How it works:

$$x' = \frac{x - mean(x)}{std(x)}$$

 Example: If x represents car mileage ranging from 0 to 200,000, normalization ensures that this large range doesn't dominate the training process.

def denormalize_theta(theta, mean_x, std_x)

- Purpose: Convert the normalized slope and intercept back to the original scale for interpretability.
- How it works:
 - * The slope is scaled by dividing by the standard deviation (std_x) .
 - * The intercept is adjusted by subtracting the influence of the slope on the mean of x.
- Model

def model(X, theta)

- **Purpose**: Predict the output (\hat{y}) using the linear regression equation:

$$\hat{y} = X.\theta$$

- X includes the features and an intercept term (bias).

 $-\theta$ represents the model parameters: slope (θ_1) and intercept (θ_0) .

• Cost Function

def cost(X, y, theta)

- Purpose: Compute the Mean Squared Error (MSE) cost function to measure how well the model fits the data:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

- * m: Number of training examples.
- * Using $\frac{1}{2m}$ ensures the gradient is consistent in scale with other terms in the optimization process, making the training process smoother.

The $\frac{1}{2}$ factor doesn't affect the optimization itself because it is a constant scaling factor.

Minimizing $J(\theta)$ with $\frac{1}{2m}$ leads to the same parameter values θ as minimizing $J(\theta)$ with $\frac{1}{m}$.

In summary, $\frac{1}{2m}$ is used instead of $\frac{1}{m}$ to make gradient calculations more elegant and computationally simpler without altering the results of the optimization.

• Gradient Calculation

def gradient(X, y, theta)

- **Purpose**: Compute the gradients of the cost function with respect to θ_0 (intercept) and θ_1 (slope):
 - * Gradient for θ_0 :

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})$$

* Gradient for θ_1 :

$$\frac{\partial J}{\partial \theta_1} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}).x^{(i)}$$

 These gradients indicate the direction and magnitude of parameter updates.

• Gradient Descent

def gradient_descent(X, y, theta, learning_rate, n_iterations)

- **Purpose**: Optimize the parameters θ_0 and θ_1 by iteratively updating them in the direction of the negative gradient.
- How it works:
 - * Update rule:

$$\theta = \theta - \alpha . \nabla J(\theta)$$

- \cdot α : Learning rate, controlling the step size.
- · $\nabla J(\theta)$: Gradient of the cost function.
- * Cost is computed and stored in each iteration for tracking convergence.
- The formulas of the **subject** are:

$$tmp\theta_0 = \alpha \cdot \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})$$

$$tmp\theta_1 = \alpha \cdot \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) \cdot x^{(i)}$$

where:

- * α : Learning rate.
- * $\hat{y}^{(i)} \text{: estimatePrice(mileage[i])}.$
- * $y^{(i)}$: price[i].
- * $x^{(i)}$: mileage[i].

• Evaluation Metrics

def coef_determination(y, pred)

- Formula:

$$R^{2} = 1 - \frac{SumofSquaredResiduals(SSR)}{TotalSumofSquares(SST)}$$

- Purpose:

- * \mathbb{R}^2 measures the proportion of variance in the target variable explained by the model.
- * $R^2 = 1$: Perfect fit.
- * $R^2 = 0$: No better than predicting the mean.

def mean_squared_error(y_actual, y_predicted)

- Formula:

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2$$

- Purpose:

- * MSE measures the average of the squared differences between actual and predicted values.
- * It penalizes larger errors more heavily than smaller ones due to the squaring.
- * It's useful for comparing model performance but not as interpretable because its units are the square of the target variable's units.

def mean_absolute_error(y_actual, y_predicted)

- Formula:

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y^{(i)} - \hat{y}^{(i)}|$$

- Purpose:

* MAE calculates the average of the absolute differences between actual and predicted values.

- * It provides an intuitive measure of error in the same unit as the target variable.
- * Less sensitive to outliers compared to MSE since it doesn't square the errors.

def root_mean_squared_error(y_actual, y_predicted)

- Formula:

$$RMSE = \sqrt{MSE}$$

- Purpose:

- * RMSE is the square root of MSE, which brings the error back to the same unit as the target variable.
- * It combines the advantages of MSE (emphasizing larger errors) with interpretability in the target variable's units.
- * Often used in practice to compare model performance.

Metric	Penalizes Large Errors?	Unit	Interpretability	Sensitivity to Outliers
MSE	Yes	Squared	Low	High
MAE	No	Same a starget	High	Low
RMSE	Yes	Same a starget	Medium	Medium
R^2	No	Dimensionless	High(Variance Explained)	N/A

• How It All Works Together

- Normalize the features to ensure faster and more stable gradient descent.
- Initialize θ_0 and θ_1 , and compute the initial cost.
- Use **gradient descent** to iteratively update θ and minimize the cost.
- Once training is complete:
 - * Denormalize θ to interpret the slope and intercept in the original scale.
 - * Evaluate the model's performance using R^2 , MSE, MAE, and RMSE.

- **Visualize** the results:

* Plot the data points and the best-fit line.

4 Predict the model

def estimate_price(mileage, theta0, theta1)

• Formula:

$$Price = \theta_0 + (\theta_1.Mileage)$$

- Purpose:
 - The estimated price function is called with:
 - $\ast\,$ The user-provided mileage.
 - * The loaded model parameters (θ_0 and θ_1).
 - * θ_0 : The baseline price.

* θ_1 : The price decrease per km.

• Example:

- Assume the trained model get the values θ_0 =8443.75 and θ_1 =-0.0213
- User enters a mileage of 50,000 km.
- The program calculates:

$$Price = 8443.75 + (-0.0213 * 50000) = 8443.75 - 1065 = $7378.75$$

Suppose that we get these values:

- Mean Squared Error (MSE): 447428.88

The squared error might look large, but it's in squared units and mainly useful for model comparisons.

- Mean Absolute Error (MAE): 559.61

On average, the predicted price is off by about \$559.61.

- Root Mean Squared Error (RMSE): 668.90

Typical prediction error is around \$668.90, but this value is more affected by outliers.

- Coefficient of Determination (R^2) : 73.19%

Measures how well your model explains the variance in the target variable. Here, 73.19% of the variance in car prices is explained by the model (mileage as the feature).