```
In [1]: # This Python 3 environment comes with many helpful analytics libraries installed
    # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
    # For example, here's several helpful packages to load
    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the read-only "../input/" directory
    # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os
    for dirname, _, filenames in os.walk('/kaggle/input'):
        for filename in filenames:
            print(os.path.join(dirname, filename))

# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version usin
    # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
    /kaggle/input/my-data/Customer Loyalty History.csv
```

Customer loyalty program data from Northern Lights Air (NLA) in Canada Analysis and Customer Lifetime Value(CLV) Prediction

/kaggle/input/my-data/Airline Loyalty Data Dictionary.csv /kaggle/input/my-data/Customer Flight Activity.csv

```
In [2]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import plotly.express as px
   import warnings
   warnings.filterwarnings('ignore')
   pd.set_option('display.max_columns', 50)
```

In [3]: df_activity=pd.read_csv('/kaggle/input/my-data/Customer Flight Activity.csv')
 df_loyality=pd.read_csv('/kaggle/input/my-data/Customer Loyalty History.csv')

In [4]: df_activity.head(3)

Out[4]:

		Loyalty Number	Year	Month	Flights Booked	Flights with Companions	Total Flights	Distance	Points Accumulated	Points Redeemed	Dollar Cost Points Redeemed
-	0	100018	2017	1	3	0	3	1521	152.0	0	0
	1	100102	2017	1	10	4	14	2030	203.0	0	0
	2	100140	2017	1	6	0	6	1200	120.0	0	0

In [5]: df_loyality.head(3)

Out[5]:

	Loyalty Number	Country	Province	City	Postal Code	Gender	Education	Salary	Marital Status	Loyalty Card	CLV	Enrollment Type	Enrollment Year	Enrollment Month	Cancellation Year	Canc
0	480934	Canada	Ontario	Toronto	M2Z 4K1	Female	Bachelor	83236.0	Married	Star	3839.14	Standard	2016	2	NaN	
1	549612	Canada	Alberta	Edmonton	T3G 6Y6	Male	College	NaN	Divorced	Star	3839.61	Standard	2016	3	NaN	
2	429460	Canada	British Columbia	Vancouver	V6E 3D9	Male	College	NaN	Single	Star	3839.75	Standard	2014	7	2018.0	
4																b

Merging all data

In [6]: df=df_activity.merge(df_loyality,on='Loyalty Number')

```
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 405624 entries, 0 to 405623
        Data columns (total 25 columns):
                                         Non-Null Count
        # Column
        0
            Loyalty Number
                                         405624 non-null int64
                                         405624 non-null int64
                                         405624 non-null
            Flights Booked
                                         405624 non-null
            Flights with Companions
                                         405624 non-null
                                                         int64
            Total Flights
                                        405624 non-null int64
            Distance
                                         405624 non-null int64
            Points Accumulated
                                         405624 non-null float64
            Points Redeemed
                                         405624 non-null int64
            Dollar Cost Points Redeemed 405624 non-null
                                         405624 non-null object
        10 Country
         11 Province
                                         405624 non-null
                                                         obiect
                                         405624 non-null
        12 City
                                                         object
        13 Postal Code
                                         405624 non-null
                                                         object
         14 Gender
                                         405624 non-null
         15 Education
                                         405624 non-null
                                         302952 non-null
            Salary
                                                         float64
         17 Marital Status
                                         405624 non-null
                                                         object
         18 Loyalty Card
                                         405624 non-null
                                                         object
                                         405624 non-null
         19 CLV
                                                         float64
         20 Enrollment Type
                                         405624 non-null
                                                         object
         21 Enrollment Year
                                         405624 non-null
                                                         int64
         22 Enrollment Month
                                         405624 non-null int64
         23 Cancellation Year
                                         50064 non-null
                                                         float64
         24 Cancellation Month
                                         50064 non-null
                                                         float64
        dtypes: float64(5), int64(11), object(9)
        memory usage: 77.4+ MB
In [8]: df.isna().sum()
Out[8]: Loyalty Number
                                           a
                                           0
        Month
        Flights Booked
        Flights with Companions
        Total Flights
       Distance
        Points Accumulated
        Points Redeemed
        Dollar Cost Points Redeemed
        Country
        Province
        City
        Postal Code
                                           0
        Gender
                                           а
        Education
                                      102672
        Marital Status
        Loyalty Card
        CLV
        Enrollment Type
        Enrollment Year
                                          a
        Enrollment Month
                                          a
        Cancellation Year
                                      355560
        Cancellation Month
                                      355560
        dtype: int64
```

Droping missing values in Cancellation Year& Cancellation& Month&Postal Code and Country because the missing values are more than 85% from all data

```
In [9]: df=df.drop(['Cancellation Year','Cancellation Month','Postal Code','Country'],axis=1)
```

Completing missing values in Salary column by mean from simple imputer technique

```
In [10]: from sklearn.impute import SimpleImputer
         # Create an instance of SimpleImputer with the desired strategy
         imputer = SimpleImputer(strategy='mean')
         # Fit the imputer on the salary column and transform the missing values
         df['Salary'] = imputer.fit_transform(df[['Salary']])
In [11]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 405624 entries, 0 to 405623
         Data columns (total 21 columns):
                                           Non-Null Count
                                                           Dtype
          0
              Loyalty Number
                                          405624 non-null
                                                           int64
          1
              Year
                                          405624 non-null
                                                           int64
              Month
                                           405624 non-null
                                                           int64
              Flights Booked
                                           405624 non-null
                                                            int64
              Flights with Companions
                                           405624 non-null
              Total Flights
                                           405624 non-null
                                                            int64
              Distance
                                           405624 non-null
                                                            int64
              Points Accumulated
                                           405624 non-null
                                                           float64
              Points Redeemed
                                           405624 non-null
                                                           int64
              Dollar Cost Points Redeemed 405624 non-null
                                                           int64
          10
             Province
                                           405624 non-null
                                                           object
          11 City
                                           405624 non-null
          12
             Gender
                                          405624 non-null
                                                           object
          13 Education
                                          405624 non-null
                                                           obiect
                                          405624 non-null
          14 Salary
                                                           float64
          15 Marital Status
                                          405624 non-null object
          16 Loyalty Card
                                          405624 non-null
                                                           object
          17 CLV
                                          405624 non-null
                                                           float64
          18 Enrollment Type
                                          405624 non-null object
          19 Enrollment Year
                                          405624 non-null
                                                           int64
          20 Enrollment Month
                                          405624 non-null int64
         dtypes: float64(3), int64(11), object(7)
         memory usage: 65.0+ MB
In [12]: df.head()
Out[12]:
```

	Loyalty Number	Year	Month	Flights Booked	Flights with Companions	Total Flights	Distance	Points Accumulated	Points Redeemed	Dollar Cost Points Redeemed	Province	City	Gender	Education	Salary	Marital Status
(100018	2017	1	3	0	3	1521	152.0	0	0	Alberta	Edmonton	Female	Bachelor	92552.0	Married
1	100018	2017	2	2	2	4	1320	132.0	0	0	Alberta	Edmonton	Female	Bachelor	92552.0	Married
2	100018	2018	10	6	4	10	3110	311.0	385	31	Alberta	Edmonton	Female	Bachelor	92552.0	Married
3	100018	2017	4	4	0	4	924	92.0	0	0	Alberta	Edmonton	Female	Bachelor	92552.0	Married
4	100018	2017	5	0	0	0	0	0.0	0	0	Alberta	Edmonton	Female	Bachelor	92552.0	Married
- 4																

Extracting top 10 customers having the highest average CLV

```
In [14]: df.groupby('Loyalty Number')['CLV'].mean().sort_values(ascending=False).head(10)
Out[14]: Loyalty Number
          615459
                    83325.38
          652627
                    83325.38
          776187
                    74228.52
          844145
                    74228.52
                    73225.96
          767366
          592003
                    73225.96
          838263
                    67907.27
          680886
                    67907.27
          179870
                    66025.75
                    66025.75
          495253
         Name: CLV, dtype: float64
```

Extracting top 10 customers having the highest Total Flights number

```
In [15]: df.groupby('Loyalty Number')['Total Flights'].sum().sort_values(ascending=False).head(10)
Out[15]: Loyalty Number
          336882
                    448
          775768
                    400
          464187
                    399
          255836
                    395
                    392
          512296
          736504
                    383
          279419
                    379
          215508
                    375
          876062
                    372
          615561
                    372
         Name: Total Flights, dtype: int64
```

Exploratory Data Analysis(EDA)

```
In [16]: df['City'].value_counts().plot(kind='bar')
Out[16]: <Axes: xlabel='City'>
80000 -
```



```
In [18]: df['Marital Status'].value_counts().plot(kind='pie',autopct='%1.1f%%')
Out[18]: <Axes: ylabel='count'>
```

58.1%

58.1%

Divorced

Single

Most customers are from married people

The highest selling loyality card is star and the lowest is aurora

The most customers are having Bachelor degree

```
In [21]: df['Enrollment Type'].value_counts().plot(kind='pie',autopct='%1.1f%%')
Out[21]: <Axes: ylabel='count'>
```


Converting Gender and Enrollment Type columns to numerical columns

```
In [24]: df['Gender']=df['Gender'].replace({'Female':0,'Male':1})
df['Enrollment Type']=df['Enrollment Type'].replace({'Standard':0,'2018 Promotion':1})
```

Converting categorical features to numerical by LabelEncoder to can use them in prediction.

```
In [25]: from sklearn.preprocessing import LabelEncoder
labelencoder=LabelEncoder()
    df['Province']=labelencoder.fit_transform(df['Province'])
    df['City']=labelencoder.fit_transform(df['City'])
    df['Education']=labelencoder.fit_transform(df['Education'])
    df['Marital Status']=labelencoder.fit_transform(df['Marital Status'])
    df['Loyalty Card']=labelencoder.fit_transform(df['Loyalty Card'])
```

Extracting the correlations between all features and CLV column to determine the features that have the highest influence on CLV feature.

In [26]: df.corr()
Out[26]:
Dollar

	Year	Month	Flights Booked	Flights with Companions	Total Flights	Distance	Points Accumulated	Points Redeemed	Dollar Cost Points Redeemed	Province	City	(
Year	1.000000e+00	-5.737962e- 16	0.044510	0.021615	0.042550	0.056140	0.075208	0.017633	0.017624	3.580244e-13	2.043782e-13	-2.83
Month	-5.737962e- 16	1.000000e+00	0.082133	0.064492	0.086353	0.076345	0.054178	0.019408	0.019315	-2.307385e- 16	3.152263e-16	1.4965
Flights Booked	4.451043e-02	8.213330e-02	1.000000	0.502500	0.961344	0.767457	0.760279	0.188232	0.188242	-3.461029e- 03	-3.605528e- 04	4.7096
Flights with Companions	2.161493e-02	6.449206e-02	0.502500	1.000000	0.721136	0.517979	0.511090	0.334325	0.334385	-2.193267e- 03	2.562142e-03	2.8248
Total Flights	4.255050e-02	8.635348e-02	0.961344	0.721136	1.000000	0.779935	0.771989	0.257307	0.257334	-3.471862e- 03	5.270724e-04	4.6735
Distance	5.614031e-02	7.634481e-02	0.767457	0.517979	0.779935	1.000000	0.994564	0.224261	0.224283	-3.625086e- 03	1.791207e-03	3.0077
Points Accumulated	7.520848e-02	5.417842e-02	0.760279	0.511090	0.771989	0.994564	1.000000	0.223230	0.223264	-3.455821e- 03	1.759084e-03	2.7329
Points Redeemed	1.763278e-02	1.940776e-02	0.188232	0.334325	0.257307	0.224261	0.223230	1.000000	0.999972	2.510058e-04	1.888936e-04	-3.86
Dollar Cost Points Redeemed	1.762408e-02	1.931472e-02	0.188242	0.334385	0.257334	0.224283	0.223264	0.999972	1.000000	2.325534e-04	1.974144e-04	-3.92
Province	3.580244e-13	-2.307385e- 16	-0.003461	-0.002193	-0.003472	-0.003625	-0.003456	0.000251	0.000233	1.000000e+00	-1.558457e- 01	9.2722
City	2.043782e-13	3.152263e-16	-0.000361	0.002562	0.000527	0.001791	0.001759	0.000189	0.000197	-1.558457e- 01	1.000000e+00	4.0353
Gender	-2.834385e- 13	1.496595e-16	0.004710	0.002825	0.004674	0.003008	0.002733	-0.000387	-0.000392	9.272205e-03	4.035342e-03	1.00000
Education	-1.086689e- 13	1.626831e-16	0.005135	0.002838	0.005018	0.005853	0.005157	0.001889	0.001902	-1.741454e- 03	-6.454917e- 03	-3.62
Salary	-3.284742e- 13	3.736994e-16	0.005010	0.002150	0.004699	0.006951	0.006802	0.002450	0.002445	1.843328e-03	-2.266529e- 03	2.1481
Marital Status	-1.434437e- 13	-1.916412e- 16	0.004303	0.003115	0.004440	0.003229	0.002805	-0.000265	-0.000274	3.133414e-03	3.881080e-03	-1.66
Loyalty Card	-1.707973e- 13	-2.915448e- 16	0.000669	0.001160	0.000905	0.002201	-0.012249	0.000382	0.000379	7.527903e-03	6.350424e-03	2.2982
CLV	1.488269e-13	-2.556763e- 17	-0.002964	-0.002583	-0.003197	-0.004252	-0.001075	-0.000304	-0.000277	4.567617e-03	-4.713820e- 03	-1.10
Enrollment Type	3.697842e-13	3.445648e-16	-0.043759	-0.029551	-0.044476	-0.049261	-0.049275	-0.016238	-0.016254	1.521648e-02	2.096196e-03	-3.04
Enrollment Year	-9.927540e- 14	3.564005e-16	-0.153455	-0.097012	-0.153861	-0.165263	-0.164645	-0.047867	-0.047915	1.909355e-03	-7.986071e- 04	-1.23
Enrollment Month	1.890369e-13	1.100554e-16	-0.031528	-0.019644	-0.031520	-0.034416	-0.033893	-0.008689	-0.008692	1.589009e-02	4.096361e-03	2.0552

```
In [27]: plt.figure(figsize=(16,8))
             sns.heatmap(df.corr(),annot=True)
Out[27]: <Axes: >
                                                                                                                                                                                      1.0
                                                      0.082 0.064 0.086 0.076 0.054 0.019 0.019-2.3e-163.2e-161.5e-161.6e-163.7e-161.9e-162.9e-162.6e-173.4e-163.6e-161.1e
                           Flights Booked
                                                              0.5 0.96
                                                                                                  -0.00350.000360.0047 0.0051 0.005 0.00430.00067-0.003 -0.044 -0.15 -0.032
                                                                                                                                                                                      0.8
                  Flights with Companions -
                             Total Flights
                                                0.086 0.96
                                                                                0.77
                                                                                                                                                                                     0.6
                                                                                                  -0.00350.0018 0.0027 0.0052 0.0068 0.0028 -0.012 -0.0011 -0.049 -0.16
                         Points Redeemed
                                                                                                    000250.000150.000350.00150.000250.00026.000380.0003-0.016 -0.048-0.008
                                                0.019 0.19
              Dollar Cost Points Redeemed
                                          0.018 0.019 0.19
                                                                                        1
                                                                                                    .000230.00020.000390.00190.00240.000270.000380.000280.016 -0.048-0.008
                                          3 6e-132 3e-160 0035-0 0022-0 0035-0 00360 00350 000250 0002
                                                                                                          -0.16 0.0093-0.00170.0018 0.0031 0.0075 0.0046 0.015 0.0019 0.016
                                                                                                    1
                                                                                                                                                                                      0.4
                                                                                                           1
                                                                                                                0.004 -0.0065-0.00230.0039 0.0064-0.0047 0.0021-0.00080.004
                                                                                                                1 -0.00360.000210.00170.0023-0.0011-0.003 -0.012 0.002
                                           .1e-13.6e-160.00510.0028 0.005 0.00590.0052 0.00190.0019-0.0017-0.00650.0036 1 0.31 0.039 0.063 -0.032 -0.015 -0.011 0.0092
                                                                                                                                                                                      0.2
                                  Salary -3.3e-13.7e-16 0.005 0.0021 0.0047 0.007 0.0068 0.0025 0.0024 0.0018 0.0023 0.0021 0.31 1 -0.048 0.011 -0.02 -0.047 -0.034 0.029
                                           .4e-131.9e-160.0043 0.0031 0.0044 0.0032 0.00280.00026.000270.0031 0.0039-0.0017 0.039 -0.048 1 0.027 -0.025-0.0045-0.014-0.001
                           Marital Status -
                                           .7e-132.9e-16.000670.00120.000910.0022 -0.0120.000380.000380.0075 0.0064 0.0023 0.063 0.011 0.027
                                                                                                                                           1
                                                                                                                                                                                      0.0
                                           5e-132.6e-17-0.003-0.00260.0032-0.00430.0011-0.00030.000280.0046-0.0047-0.0011-0.032 -0.02 -0.025 -0.21
                                                                                                                                                1
                                           7e-133.4e-16-0.044 -0.03 -0.044 -0.049 -0.049 -0.016 -0.016 0.015 0.0021 -0.003 -0.015 -0.047 -0.0045-0.00670.0026
                                                                                                                                                       1
                         Enrollment Type
                                           .9e-148.6e-16 -0.15 -0.097 -0.15 -0.17 -0.16 -0.048 -0.048 0.0019-0.0008-0.012 -0.011 -0.034 -0.0140.000130.0017 <mark>0.34</mark>
                        Enrollment Month
                                          .9e-13l.1e-16-0.032 -0.02 -0.032 -0.034 -0.034-0.0087-0.0087 0.016 0.0041 0.0021 0.0092 0.029 -0.0012-0.00230.0027 -0.26 -0.11
                                                                    Total Flights
                                                                                                                                    Marital Status
                                                                                                                                           Loyalty Card
                                                                                                                                                 CE
                                                                                                                                                              Year
                                                                                                                                                                    Month
                                                                           Distance
                                                                                                                                                                    Enrollment
                                                                                        Points
In [28]: df.head()
Out[28]:
                                                                                                             Dollar
                                                                                                                                                                      Marital
                                 Flights
                                           Flights with
                                                          Total
                                                                                   Points
                                                                                                Points
                                                                                                              Cost
                                                                                                                                                                              Loyalty
                                                                 Distance
                 Year Month
                                                                                                                                City Gender Education
                                                                                                                                                             Salary
                                                                                                                                                                                          CI
                                Booked
                                                        Flights
                                          Companions
                                                                            Accumulated
                                                                                                             Points
                                                                                                                                                                      Status
                                                                                            Redeemed
             0 2017
                                       3
                                                     0
                                                              3
                                                                      1521
                                                                                     152.0
                                                                                                     0
                                                                                                                  0
                                                                                                                             0
                                                                                                                                            0
                                                                                                                                                            92552.0
                                                                                                                                                                                     0 7919
             1 2017
                             2
                                       2
                                                     2
                                                                      1320
                                                                                     132.0
                                                                                                     0
                                                                                                                  0
                                                                                                                             0
                                                                                                                                            0
                                                                                                                                                         0
                                                                                                                                                           92552.0
                                                                                                                                                                                    0 7919
                                                                                                                             0
                                                                                                                                            0
             2 2018
                            10
                                       6
                                                             10
                                                                      3110
                                                                                     311.0
                                                                                                   385
                                                                                                                 31
                                                                                                                                                         0
                                                                                                                                                           92552.0
                                                                                                                                                                                    0 7919
                                                                       924
                                                                                                     0
                                                                                                                             0
                                                                                                                                            0
             3 2017
                                                     0
                                                                                      92.0
                                                                                                                  0
                                                                                                                                                         0
                                                                                                                                                           92552.0
                                                                                                                                                                                    0
                                                                                                                                                                                       7919
                2017
                                                     0
                                                                                                     0
                                                                                                                             0
                                                                                                                                                            92552.0
                                                                                                                                                                                       7919
In [29]: X=df.drop('CLV',axis=1)
            y=df.CLV
             Splitting the data to train and test
In [30]: from sklearn.model selection import train test split
```

```
In [30]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=.25,stratify=y,random_state=42)
```

Scaling all data by MinMaxScaler to increase the prediction accuracy

```
In [31]: from sklearn.preprocessing import MinMaxScaler
         scale=MinMaxScaler()
         X_train_scaled=scale.fit_transform(X_train)
         X_train_scaled
Out[31]: array([[0.
                          , 0. , 0.33333333, ..., 0.
                                                                 , 0.66666667,
                 1.
                          ],
                           , 0.72727273, 0.38095238, ..., 0.
                                                                  , 0.83333333,
                 0.09090909],
                                      , 0.28571429, ..., 0.
                [1.
                                                                  , 0.5
                 0.36363636],
                           , 0.90909091, 0.33333333, ..., 0.
                Γ0.
                                                                  , 0.83333333,
                 0.27272727],
                [1.
                                      , 0.23809524, ..., 0.
                                                                  , 0.5
                 1.
                          ],
                [1.
                            0.81818182, 0.
                                                , ..., 0.
                                                                   , 0.16666667,
                 0.45454545]])
In [32]: X_test_scaled=scale.transform(X_test)
         X_test_scaled
Out[32]: array([[1.
                                    , 0. , ..., 1.
                                                                  , 1.
                 0.27272727],
                [1.
                           , 0.09090909, 0.38095238, ..., 0.
                                                                  , 0.
                 0.45454545],
                          , 0.54545455, 0.23809524, ..., 0.
                [1.
                                                                  , 1.
                0.
                [0.
                           , 0.72727273, 0.61904762, ..., 0.
                                                                  , 0.66666667,
                 1.
                           , 0.63636364, 0.
                                                                  , 1.
                [0.
                                      , 0.04761905, ..., 0.
                                                                   , 0.16666667,
                 0.27272727]])
In [33]: from sklearn.metrics import mean_absolute_error, mean_squared_error
```

Using random forest regressor for CLV prediction

```
In [34]: from sklearn.ensemble import RandomForestRegressor
    RFR=RandomForestRegressor(n_estimators=300)
    RFR.fit(X_train_scaled,y_train)
    y_pred=RFR.predict(X_test_scaled)
    print(mean_absolute_error(y_pred,y_test))

270.3215078472331
```

Using XGB Regressor for CLV prediction

```
In [35]: from xgboost import XGBRegressor
          XGB=XGBRegressor(n_estimators=1000,learning_rate=1,max_depth=13)
          XGB.fit(X_train_scaled,y_train)
          y_pred2=XGB.predict(X_test_scaled)
          print(mean_absolute_error(y_pred2,y_test))
          849.2057255379643
In [36]: y_pred[:10]
                           , 3530.23383333, 15943.436
                                , 3530.23383333, 15943.436 , 4621.43349167,
, 33806.78743333, 5674.93586667, 6288.7598 ,
Out[36]: array([ 3115.7
                 11638.9
                  2916.64466667, 8622.84
In [37]: y_test.head(10)
Out[37]: 245412
                     3115.70
                     3472.37
          356677
          343052
                    16702.70
          137897
                     4766.37
          2895
                    11638.90
          186527
                    34090.04
          395808
                     5660.13
          29135
                     6301.10
          77628
                     2722.21
          287876
                     8622.84
          Name: CLV, dtype: float64
```

Comparing between actual and prediction CLV to determine the accuracy and

```
In [38]: pred_df=pd.DataFrame(y_pred,index=X_test.index,columns=['prediction'])
# Merge the predicted values with the actual test data
merged_df = pd.concat([y_test,pred_df], axis=1)
merged_df=merged_df.rename(columns={'CLV':'Actual'})
merged_df
```

Out[38]:

	Actual	prediction
245412	3115.70	3115.700000
356677	3472.37	3530.233833
343052	16702.70	15943.436000
137897	4766.37	4621.433492
2895	11638.90	11638.900000
74002	3097.92	3130.740467
269131	3919.37	3919.370000
281504	3237.50	3290.053233
28471	8236.92	8236.920000
366563	17759.39	8745.155633

101406 rows × 2 columns

As we see the random forest regressor algorithm is the best one for CLV prediction