Faculty of Mathematics and Computer Science University of Heidelberg

Master thesis

in Scientific Computing

submitted by

Ekaterina Tikhoncheva

born in Moscow

October 2015

Application of graph matching

in

Computer Vision

This Master thesis has been carried out by Ekaterina Tikhoncheva

it the

Computer Vision group

Heidelberg Collaboratory for Image Processing

under the supervision of

Prof. Dr. Björn Ommer

Declaration of Authorship	

	ny own work and I have documented all was not previously presented to another blished.
Place and date	Signature

Acknowledgments

I would like to use the opportunity to acknowledge help of the people, who led me through and stood by during my work on this master thesis.

First of all, I would like to express my thanks to my supervisor Prof. Dr. Björn Ommer for the opportunity to work on the interesting topic, for his wise supervision, patience and support. I also would like to express my gratitude to Borislav Antic for his valuable suggestions and discussions regarding the topic of this thesis. I venerate their passion to the science and am grateful for their ability to inspire everybody around them with it.

Additionally I want to thank my colleagues in the Computer Vision group for the pleasant working atmosphere and for many funny moments during my presence in the group.

Finally, I would like to thank my family for their endless believe in me. Especially, my farther Mikhail Tikhonchev and boyfriend Michael Sutter for their patience to read this work and help with the English grammar, for cheering me up and just for being always there for me when needed.

Thank you!

Abstract. Graph matching is one of the fundamental problems in graph theory and computer vision. Due to its practical relevance this problem is heavily investigated and there are a lot of approximative algorithms for solving it. However a lot of algorithms are able to work efficiently only with small graphs (up to 100 nodes) and scale poorly for bigger graphs. In this thesis we introduce a novel approach for extending the usability of existing graph matching algorithms to bigger graphs. For that we introduce a two level graph matching framework. Two given graphs to match represent the lower level. To reduce the problem size we partition each of the graphs into a fix number of subgraphs and consider each subgraph as a node of a new graph (anchor graph), that is placed on the second higher level. To solve the initial matching problem we iteratively first solve the matching problem on the higher level, which gives us correspondences between nodes of the two anchor graphs. Afterwards we find in parallel correspondences between nodes of the matched subgraph pairs. To improve the initial partition before next iteration we introduce an update rule, which allows the subgraphs to exchange nodes on their border. We demonstrate the effectiveness of our approach in matching synthetic graphs and finding correspondences between pairs of images.

Zusammenfassung. Graph Matching ist eines der grundlegenden Probleme in der Graphentheorie und Computer Vision. Aufgrund seiner praktischen Relevanz ist es auch ein ausgiebig erforschtes Problemfeld. Es existieren viele approximative Algorithmen, die in der Lage sind schnell eine hoch qualitative Lösung zu liefern. Allerdings sind viele der Algorithmen nur für kleine Graphen mit bis zu 100 Knoten geeignet und lassen sich schwer für größere Graphen anwenden. Aus diesem Grund haben wir uns in dieser Masterarbeit mit der Entwicklung eines neuen Ansatzes zum Graph Matching beschäftigt, der die Anwendung von existierenden Algorithmen für große Graphen mittels eines zweistufigen Ansatzes ermöglicht. Zwei gegebene Graphen sind auf der unteren Stufe platziert. Um die Schwierigkeit des Problems zu minimieren, zerlegen wir jeden einzelnen Graphen in eine fixe Anzahl von Teilgraphen, die wir mit einem Knoten eines neuen Graphen (Ankergraphen) erfassen. Die zwei Ankergraphen repräsentieren die zweite Stufe unseres Verfahrens. Zuerst finden wir die Zuordnung zwischen den Knotenmengen der beiden Ankergraphen. Um die Abbildung zwischen den Knoten der ursprünglichen Graphen zu finden lösen wir das Matchingproblem für jedes zugeordnete Paar von Teilgraphen parallel. Die Vorgehensweise wird durch eine Update-Regel erweitert und iterativ wiederholt. Wir demonstrieren die Funktionalität unseres Ansatzes mit Beispielen von künstlich generierten Graphen und der Zuordnung von Merkmalpunkten auf zwei Bildern.