

Prova 20 Abril 2015, questões e respostas

Circuitos Lógicos (Universidade Estadual de Campinas)

EA772 Circuitos Lógicos Prof. José Mario De Martino — Prova 02 — 1°. Semestre 2015

Nome:	RA:
1 (01110)	- 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

- (2,5 pts) Projete um circuito combinacional dado pela soma de produtos mínima que implemente a função f(x4, x3, x2, x1, x0) definida pelo conjunto-um = (0, 1, 4, 5, 7, 8, 15, 24, 30). Faça a minimização utilizando o método de Quine McCluskey. Não é necessário apresentar o diagrama esquemático do circuito projetado apenas a expressão lógica.
- 2. (1,5 pts) Faça a minimização de estados do sistema sequencial descrito na Tabela 1. Apresente a tabela de estados mínima.

	Entrada	
EA	x = a	x = b
A	C, 1	E, 0
В	H, 1	F, 1
С	Н, 0	F, 1
D	A, 0	C, 0
Е	G, 0	C, 0
F	B, 0	C, 0
G	H, 1	E, 1
Н	C, 0	D, 1
	PE, z	

Tabela 1: Tabela de Estados.

- 3. (3,0 pts) Projete um contador binário módulo 4 cíclico decrescente/crescente. O contador possui duas entradas binárias x e d. Quando x = 0, o contador permanece no estado em que se encontra, contando quando x = 1. Quando d = 0 a contagem é crescente e quando d = 1 a contagem é decrescente. Utilize flip-flop JK sensível à borda de subida. Projete uma máquina de Moore. Utilize a abordagem canônica para o projeto. Faça a minimização dos circuitos combinacionais utilizando mapas de Karnaugh. Desenhe o circuito.
- 4. (3,0 pts) Projete uma máquina de Mealy que possua uma entrada binária x e uma saída binária z. A saída z(t) será igual a 1 sempre que x(t-3, t) = 0011 ou x(t-4, t) = 01101. Apresente o diagrama de estados. Utilize flip-flop D sensível à borda de subida. Utilize a abordagem canônica para o projeto. Faça a minimização de estados e a minimização dos circuitos combinacionais utilizando mapas de Karnaugh. Desenhe o circuito.