This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

- Tr	cs c	a	·~~	GTG			~~~	כידיר	CCT	ጥጥር	೧೯೧	ርጥ አ	ىد كىد	-C-T-C	ጥጥ እ	ጥርም	ጥር እ		C	2
- i G W		ACC P	L.	C	 R		L			₩ W	S	Y	L	S	Y	V	O	AGC A	AGT V	1 2
CC.	TAT	CCA	JAA	AGT	_											TGT				2
ē	I	C	ĸ	7	່ວ	Ξ	Э	T	ĸ	Ţ	L	I	к	Ī	I	V	T	R	I	4
AA	TGA	_	TTT	ACA	_	GCA.	GTC	GGT				GCA			CAC	TGG	CTT	'GGA	-	3
N	D	I	s	н	Ţ	Q	s	v	s	A	к	Q	3	v	T	G	L	Ð	F	6
AT	TCC	TGG	GCT	TCA	-			GAG			CAA	_		ADD.	GAC	TCT	GGC	AGT	CTA	3
I	P	G	L	Н	5	Ξ	L	s	L	s	ĸ	M	Ð	2	T	L	Α	v	Y	8
CA	ACA	GGI	CCI	CAC	CAG	CCT	GCC	TTC	CCA	AAA	TGT	GCT	GCA	GAT	AGC	CAA	TGA	.cct	GGA	4
Q	Q	v	L	T	s	L	P	s	Q	N	v	L	Q	Ι	Α	N	D	ī.	Ε	1
AA	TCT	CCG	AGA	CCT	CCT	CCA	TCT	GCT	GGC	CTT	CTC	CAA	GAG	CTG	CTC	CCT	GCC	TCA	GAC	4
N	L	R	D	L	L	н	L	L	Α	F	s	ĸ	s	С	s	L	P	Q	T	1
AG	TGG	CCI	GCA	GAA	GCC	AGA	GAG	CCT	GGA	TGG	CGT	CCT	GGA	AGC	CTC	ACT	CTA	CTC	CAC	5
s	G	L	Q	к	P	Ε	s	L	D	G	V	L	Ξ	А	s	L	Y	s	T	1
GA	GGT	GGI	'GGC	TTT	GAG	CAG	GCT	GCA	GGG	CTC	TCT	GCA	.GGA	CAT	TCT	TCA	ACA	GTT	GGA	6
E	v	v	Α	L	s	R	L	Q	G	s	L	Q	D	I	L	Q	Q	L	D	1
GT	TAG	ccc	TGA	ATG	CTG	AAG	TTT	CAA	AGG	CCA	CCA	GGC	TCC	CAA	.GAA	TCA	TGT	'AGA	GGG	ϵ
V	s	Þ	E	С	*															1
AG.	AAA	CCI	TGG	CTT	CCA	GGG	GTC	TTC	AGG	AGA	AGA	GAG	CCA	TGT	GCA	CAC	ATC	CAT	CAT	7
CA	TTT	CTC	TCC	CTC	CTG'	TAG.	ACC	ACC	CAT	CCA	AAG	GCA	TGA	CTC	CAC	AAT	GCT	TGA	CTC	-
AG	TTA	TCC	ACA	CAA	CTT	CAT	GAG	CAC	AAG	GAG	GGG	CCA	.GCC	TGC	AGA	.GGG	GAC	TCT	CAC	8
ΓA	GTT	CTI	CAG	CAA	GTA	GAG	ATA	AGA	.GCC	ATC	CCA	TCC	CCI	CCA	TGT	ccc	ACC	TGC	TCC	9
GG	TAC	ATG	TTC	CTC	CGT	GGG	TAC	ACG	CTT	CGC	TGC	GGC	CCA	GGA	GAG	GTG	AGG	TAG	GGA	9
GG	GTA	GAG	CCI	TTG	GGC'	TGT	CTC	AGA	GTC	TTT	GGG	AGC	ACC	GTG	AAG	GCT	GCA	TCC	ACA	10
AC.	AGC	TGG	AAA	CTC	CCA	AGC.	AGC	ACA	CGA	TGG	AAG	CAC	TTA	TTT	ATT	TAT	TCT	'GCA	TTC	10
ΑT	ттт	GGA	TGG	ATC	TGA	AGC.	AAG	GCA	TCA	GCT	TTT	TCA	.GGC	TTT	GGG	GGT	CAG	CCA	GGA	1:
GΑ	GGA	AGG	CTC	CTG	GGG'	TGC	TGC	TTT	CAA	TCC	TAT	TGA	TGG	GTC	TGC	CCG	AGG	CAA	ACC	12
AA	TTT	TTC	AGI	GAC	TGG.	AAG	GAA	GGT	TGG	GAT	CTT	CCA	AAC	AAG	AGT	CTA	TGC	AGG	TAG	12
GC	TCA	AGA	TTG	ACC	TCT	GGT	GAC	TGG	TTT	TGT	TTC	TAT	TGT	'GAC	TGA	CTC	TAT	CCA	AAC	13
CG	TŤT	GC.	.GC	GCA	TTG	CCG	GGA	GCA	TAG	GCT	AGG	TTA	TTA	TCA	AAA	.GCA	GAT	'GAA	TTT	13
				TAT							-									14
																			TGA	15
																			TGA	1.5
					-														CCT	1
																			:ccc	16
					-														GTT	1
																			CAA	1
			-						-										AAT	18
																			CAG	19
																			TCC	19
																			TTG	20
																			CTG	2:
																			TAG	2:
																			GCT	22
											-								GCT	2:
																			GTA	2
								-											TTG	2
																			TAT	2
																			CAT	2
																			TAT	2
																			TTG	2
																			TAA	2
																			CCT	2
																			AGG	2
	AGC										~AI	-MC	-G 1 1		160	166	. I AA	,GAC	DUNG	21

GGTTG	CAAGGCCCAA	GAAGCCCA	-TCCTGGGAA	GGAAAATGCA	50
TTGGGGAACC	CTGTG-CGGA	TTCTTGTGGC	TTTGGCCCTA	TCTTTTCTAT	100
GTCCAAGCTG	TGCCCATCCA	AAAAGTCCAA	GATGACACCA	AAACCCTCAT	150
CAAGACAATT	GTCACCAGGA	TCAATGACAT	TTCACACACG	CAGTCAGTCT	200
CCTCCAAACA	GAAAGTCACC	GGTTTGGACT	TCATTCCTGG	GCTCCACCCC	250
ATCCTGACCT	TATCCAAGAT	GGACCAGACA	CTGGCAGTCT	ACCAACAGAT	300
CCTCACCAGT	ATGCCTTCCA	GAAACGTGAT	CCAAATATCC	AACGACCTGG	350
AGAACCTCCG	GGATCTTCTT	CACGTGCTGG	CCTTCTCTAA	GAGCTGCCAC	400
TTGCCCTGGG	CCAGTGGCCT	GGAGACCTTG	GACAGCCTGG	GGGGTGTCCT	450
GGAAGCTTCA	GGCTACTCCA	CAGAGGTGGT	GGCCCTGAGC	AGGCTGCAGG	500
GGTCTCTGCA	GGACATGCTG	TGGCAGCTGG	ACCTCAGCCC	TGGGTGCTGA	550
GGCCTTGAAG	GTCACTCTTC	CTGCAAGGAC	T-ACGTTAAG	GGAAGGAACT	600
CTGGTTTCCA	GGTATCTCCA	GGATTGAAGA	GCATTGCATG	GACACCCCTT	650
ATCCAGGACT	CTGTCAATTT	CCCTGACTCC	TCTAAGCCAC	TCTTCCAAAG	700
G		•			701

FIG.2

ĬYR ASP LEU PRO GLY LEU HIS PRO ILE LEU THR LEU SER LYS MET THR LEU ALA VAL TYR GLN GLN ILE LEU THR SER MET PRO VAL ILE GLN ILE SER ASN ASP LEU GLU ASN LEU ARG LEU HIS VAL LEU ALA PHE SER LYS SER CYS HIS LEU PRO LEU PRO HIS TRP GLY THR LEU CYS GLY PHE LEU TRP LEU TRP PRO GLN ASP ILE ASN ASP THR GLY ALA SER GLY LEU GLU THR LEU ASP SER LEU GLY GLY VAL GLU ALA SER GLY TYR SER THR GLU VAL VAL ALA LEU SER ARG GLN GLY SER LEU GLN ASP MET LEU TRP GLN LEU ASP LEU SER LYS VAL THR GLN SER VAL SER SER LYS GLN LYS VAL ARG TYR VAL GLN ALA!VAL PRO ILE GLN THR LEU ILE LYS THR ILE VAL THR ILE ASN END PHE HIS Lys LEU PHE GLN ARG CYS MET THR SER Asp SER ASP TRP ASP 16 31 46 9/ 106 121 136 166 151

	20	100	150	167		
	RINDISHTOS	SQNVLQIAND * \$RNVIQISND	STEVVALSRL			
, .,	TKTLIKTIVT TKTLIKTIVT	VYQQVLTSLP VYQQILTSMP	LDGVLEASLY * LGGVLEASGY	No. of a control of the control of t		
	AVPIOKVODD AVPIOKVODD	SLSKMDQTLA - TLSKMDQTLA	OTSGLOKPES ** ***- WASGLETLDS	·	FIG.4	
	MCWRPLCRFL WLWSYLSYVQ AVPIQKVQDD TKTLIKTIVT RINDISHTQS * ** * * * * * MHWGTLCGFL WLWPYLFYVQ AVPIQKVQDD TKTLIKTIVT RINDISHTQS	VSAKORVTGL DFIPGLHPIL SLSKMDOTLA VYQQVLTSLP SQNVLQIAND * VSSKQKVTGL DFIPGLHPIL TLSKMDQTLA VYQQILTSMP SRNVIQISND	LHL LAFSKSCSLP QTSGLQKPES LDGVLEASLY STEVVALSRL 	LOO LDVSPEC * LWO LDLSPGC		
	MCWRPLCRFL * ** * MHWGTLCGFL	VSAKORVTGL * VSSKOKVTGL	LENLRDLLHL LENLRDLLHV	OGSLODILLOO * OGSLODILLOO		
	Mouse Human	Mouse Human	Mouse Human	Mouse Human		

FIG.4

GLN CYS TRP ARG PRO LEU CYS ARG PHE LEU TRP LEU TRP SER TYR ASP ASP SER Asp SLN GLN grn grn LEU LEU ASP LEO PRO Pro MET GLU ASN LEU ARG ASP PRO LEU GLN ASN GLY LEU Lys GLY VAL ARG Ser THR SER VAL ILE SER SER SER VAL LEU THR CYS Leu ILE GLN LYS GLY LEU GLN LYS PRO GLU SER LEU ASP SER VAL SER ALA LYS GLN ARG VAL ILE LYS THR ILE VAL THR ARG ILE LEU GLN GLN LEU ASP TYR GLN GLN VAL LEU **Leu Ser** LEU LEU ALA PHE SER LYS SER ILE ALA ASN ASP LEU THR GLU VAL VAL ALA GLN ALA VAL PRO PRO ILE GLY LEU HIS SER LEU ALA VAL LEU GLN SER LEU GLN ASP VAL THR LEU Ţπ TYR PRO THR HIS SER LEU GLN ASN VAL Lys SER His ILE GLN THR Leu Leu THR SER THR PHE ALA LEU SER 9/ 106 16 46 166 91 136 31 61 121 151

HG.5

MET HIS TRP GLY THR LEU CYS GLY PHE LEU TRP LEU TRP PRO TYR ASP SER ARG ASN VAL ILE GLN ILE SER ASN ASP LEU GLU ASN LEU ARG ASP LEU LEU HIS VAL LEU ALA PHE SER LYS SER CYS HIS LEU PRO TRP SER GLY LEU GLU THR LEU ASP SER LEU GLY GLY VAL LEU GLU SER GLY TYR SER THR GLU VAL VAL ALA LEU SER ARG LEU GLN TYR VAL GLN ALA VAL PRO ILE GLN LYS VAL GLN ASP THR SER VAL SER SER LYS GLN LYS VAL THR GLY LEU THR LYS THR LEU ILE LYS THR ILE VAL THR ARG ILE ASN ASP MET GLN THR LEU ALA VAL TYR GLN GLN ILE LEU THR SER MET PRO SER LEU GLN ASP MET LEU TRP GLN LEU ASP LEU SER PRO ILE PRO GLY LEU HIS PRO ILE LEU THR LEU SER LYS HIS LEU PHE END PHE ALA ALA GLY 16 46 31 61 106 121 136 151 166

FIG./

FIG.8

1 2 3 4 5 6 7

FIG.9

-	GTGCAAGAAG AAGAAGATCC CAGGGCAGGA AAATGTGCTG GAGACCCCTG CACGTTCTTC TTCTTCTAGG GTCCCGTCCT TTTACACGAC CTCTGGGGAC
21	+10 +20 +30 +40 TGTCGGGTCC NGTGGNTTTG GTCCTATCTG TCTTATGTNC AAGCAGTGCC
101	TATCCAGAAA GTCCAGGATG ACACCAAAAG CCTCATCAAG ACCATTGTCA ATAGGTCTTT CAGGTCCTAC TGTGGTTTTC GGAGTAGTTC TGGTAACAGT
151	NCAGGATCAC TGANATITCA CACACG ?

FIG.10

FIG.11A

white fat
brain
small intestine
stomach
pancreas
lung
testis
heart
spleen
liver

28S —

18S —

FIG.11B

FIG.12A

FIG.12B

ap2

2G7

FIG.13

FIG.14

FIG.15A

BgIII Digests

FIG.15B

FIG.16

T7 PROMOTER PRIMER 69348-1

T7 PROMOTER

BGLII AGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTACA LAC OPERATOR

<u>LEUVALPROARGGLYSER</u>HISMETLEUGLUASPPROALAALAASNLYSALAARGLYSGLUALAGLULEUALA CTGGTGCCGCGCGCGCAGATATGCTCGAGGATCCCGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCT THROMBIN

GCTGCCACCGCTGAGCATAACTAGCATAACCTCGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTG **ALAALATHRALAGLUGLNEND**

17 TERMINATOR PRIMER #69337-1

FIG.18A

FIG.18B

FIG.19A

FIG.19B

FIG.20A-1

360 370 380 390 400 GITGTITCTI NTGGCCCCCT CTGCCTGCTG AGATNCCAGG GGTTAGNGGT 410 420 430 450 TCTTAATTCC TAAA
310 320 330 340 350 TACTGGAAGC TGAGAAGGAT TTTGGATAGC ACAGGGCTCC ACTCTTTCTG 360 370 380 390 400 GTTGTTTCTT NTGGCCCCCT CTGCCTGCTG AGATNCCAGG GGTTAGNGGT 410 420 430 450 GAP OF SEQUENCE (~1.4 KB) 460 470 480 500

HG.20A - 2

550	GCAGGAATCT	009	GANACAAGGG	650	CAGAGAATGA	700	ATTCCTCCCA	750	GTCAGTCTCC
540	TGTGGGAAAA	590	CTGGGTGCAG	640	GGAGACAGCC	069	TCTGAGAGCG:	740	CTNCATAGCA
530	GAACGGATGG	580	TGGCAGTCAC	630	GAGGGTGGAA	680	GGCAGAGGGC TCTGA 3 of 1st intron	730	CCTCTTCCTC
520	ATTGGCCTGG GAAGTGGAGG GAACGGATGG TGTGGGAAAA GCAGGAATCT	570	CGGAGACCAG CTTAGAGGCT TGGCAGTCAC CTGGGTGCAG GANACAAGGG	620	CCTGAGCCAA AGTGGTGAGG GAGGGTGGAA GGAGACAGCC CAGAGAATGA	670	CCCTCCATGC CCACGGGGAA GGCAGAGGGC TCTGAGAGCG ATTCCTCCCAA 3 OF 1ST INTRON	720	CATGCTGAGC ACTIGTTCTC CCTCTTCCTC CTNCATAGCA GTCAGTCTCC
510	ATTGGCCTGG	260	CGGAGACCAG	610	CCTGAGCCAA	099	CCCTCCATGC	710	CATGCTGAGC HOB 2G F

FIG.20A -3

CGG TTTGGACTTC ATTCCTGGGC TCCACCCCAT	820 830 840 850	TCCAAGATGG ACCAGACACT GGCAGTCTAC CAACAGATCC	870 880 890 900	GCCTTCCAGA AACGTGATCC AAATATCCAA CGACCTGGAG	920 930 940 950	ATCTTCTTCA CGTGCTGGCC TTCTCTAAGA GCTGCCACTT	970 980 990 1000	AGTGGCCTGG AGACCTTGGA CAGCCTGGGG GGTGTCCTGG
AAGTCACCGG	88	TCCAAGAT		GCCTTCCA	26	ATCTTCTT	97	AGTGGCCTG
TCCAAACAGA	810	CCTGACCTTA	860 -	TCACCAGTAT	910	AACCTCCGGG	096	GCCTGGGCC

.

FIG.20A -4

FIG. 20A -5

HUMAN OB STRUCTURE

1st exon	1st intr	2nd exon	
 _ATG			TGA
start			stop

FIG.20C

FIG.21A

qo KEX-2 Cleavage XhoI WWW LEU·GLU·LYS·ARG·

FIG.21C

90	(FOLLOWING THROMBIN CLEAVAGE)	90
HIS.TAG THROMBIN CLEAVAGE		GLY · SER · PRO ·
&-MF SIG SEQ GLU-ALA HIS.TAG	KEX-2 STE-13 CLEAVAGE CLEAVAGE	
&-MF SIG	O	

FIG.22B

FIG.23A

FIG.23B

FIG.24A

FIG.24B

recombinant ob (ng) wt 0.01 0.1 0.5 2.0 15.0

19.4 —

FIG.24C

Yeast M-ob
wild type
db/db

FIG.24D

FIG.25B

HP3 HP6

FIG.25A

į

FIG.26A

Human ob

Peptide	Mass(Da)	
	Expected	Observed
22-167	16,024	16,024 ± 3
22-75	5936.9	5936.6 ± 1
76-89	1562.7	N.D.
90-167	8434.5	8435.6 ± 1
158-167	. 1131.9	N.D.

FIG.26 B

FIG.27

FIG.28A

FIG.28B

FIG.28C

FIG.28D

FIG.28E

FIG.28F

FIG.30

FIG.31

1 2 3

FIG.32A

FIG.33

FIG.34

FIG. 35A

FIG. 35B