CSC 373 H1 QUIZ # 7 25 October 2012 Aids Allowed: none Worth: 1.5% Duration: 10 minutes

- 1. Consider the following "network flow with reduced transmission" problem.
 - **Input:** A network N = (V, E) (a directed graph with a single source $s \in V$, a single sink $t \in V$, and positive integer capacities c(e) for every edge $e \in E$). In addition, we are given real numbers $t(v) \in [0, 1]$ for every vertex $v \in V$ (t(v) is a transmission coefficient).

Output: A maximum flow f (that is, flow values f(e) for every edge $e \in E$ such that $f^{\text{out}}(s)$ is maximum), subject to the following constraints.

- Capacity constraint: $0 \le f(e) \le c(e)$ for all edges $e \in E$ (same as the original network flow problem).
- Modified conservation constraint: $f^{\text{out}}(v) = t(v) \cdot f^{\text{in}}(v)$ for every vertex $v \in V \{s, t\}$ (in other words, the flow out of every node v is reduced by a factor of t(v) from the flow into the node).

Show how to model this problem as a linear program: state explicitly what variables you are using, what your objective function is, and what your constraints are.