AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1. (Previously Amended) A polymerization process comprising contacting:
 - (a) a catalyst system;
 - (b) monomers comprising at least 85 wt% propylene monomers by total weight of the monomers; and
 - (c) an antistatic agent that has been pre-contacted with a scavenger; in a reactor under polymerization conditions; wherein the antistatic agent is present from 0.3 to 1.5 ppm based on the weight of the monomers introduced into the reactor.
- 2. (Cancelled)
- 3. (Currently Amended) The polymerization process of claim 2 1, wherein the scavenger comprises an aluminum alkyl compound.
- 4. (Original) The polymerization process of claim 3, wherein the aluminum alkyl compound is selected from the group consisting of triethylaluminum, trimethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, diethyl aluminum chloride, and mixtures thereof.
- 5. (Original) The polymerization process of claim 4, wherein the aluminum alkyl compound is triethylaluminum.
- 6. (Original) The polymerization process of claim 1, wherein the antistatic agent comprises a polysulfone copolymer, a polymeric polyamine, an oil-soluble sulfonic acid, or mixtures thereof, with or without a solvent.
- 7. (Cancelled)
- 8. (Cancelled)
- 9. (Original) The polymerization process of claim 1, wherein the antistatic agent is present from about 0.3 to about 0.8 ppm based on the weight of the monomers introduced into the reactor.

- 10. (Original) The polymerization process of claim 1, wherein the catalyst system comprises a supported metallocene catalyst system.
- 11. (Original) The polymerization process of claim 1, wherein the catalyst system comprises a supported metallocene catalyst system comprising a support and a metallocene, the metallocene represented by the following:

wherein M is a metal of Group 4, 5, or 6 of the Periodic Table;

 R^1 and R^2 are identical or different, and are one of a hydrogen atom, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a C_6 - C_{10} aryl group, a C_6 - C_{10} aryloxy group, a C_2 - C_{10} alkenyl group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} alkylaryl group, a C_8 - C_{40} arylalkenyl group, or a halogen atom;

 R^5 and R^6 are identical or different, and are one of a halogen atom, a C_1 - C_{10} alkyl group, which may be halogenated, a C_6 - C_{10} aryl group, which may be halogenated, a C_2 - C_{10} alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} alkylaryl group, a C_8 - C_{40} arylalkenyl group, a -NR2 15 , -SR 15 , -OSiR3 15 or -PR2 15 radical, wherein R 15 is one of a halogen atom, a C_1 - C_{10} alkyl group, or a C_6 - C_{10} aryl group;

 R^7 is

-B(R¹¹)-, -Al(R¹¹)-, -Ge-, -Sn-, -O-, -S-, -SO-, -SO₂-, -N(R¹¹)-, -CO-, -P(R¹¹)-, or -P(O)(R¹¹)-;

wherein R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{20} alkyl group, a C_1 - C_{20} fluoroalkyl group, a C_6 - C_{30} aryl group, a C_6 - C_{30} fluoroaryl group, a C_1 - C_{20} alkoxy group, a C_2 - C_{20} alkenyl group, a C_7 - C_{40} arylalkyl group, a C_8 - C_{40} arylalkenyl group, a C_7 - C_{40} alkylaryl group, or R^{11} and R^{12} , or R^{11} and R^{13} , together with the atoms binding them, can form ring systems;

M² is silicon, germanium or tin;

R⁸ and R⁹ are identical or different and have the meanings stated for R¹¹; m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2; and the radicals R³, R⁴, and R¹⁰ are identical or different and have the meanings stated for R¹¹, R¹² and R¹³.

- 12. (Original) The polymerization process of claim 11, wherein the support is a fluorided support.
- 13. (Original) The polymerization process of claim 1, wherein the catalyst system comprises a metallocene catalyst system comprising a metallocene selected from the group consisting of Dimethylsilandiylbis (2-methyl-4-phenyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,5-benzoindenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl) zirconium dimethyl; Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis (2-ethyl-4-naphthyl-1-indenyl) zirconium dimethyl;

Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,5diisopropyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2,4,6-trimethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-ethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2,5,6trimethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis (2-methyl-4-phenyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4,5-benzoindenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl) zirconium dichloride; Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis (2ethyl-4-naphthyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4,5-diisopropyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2,4,6-trimethyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2methyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-ethyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2,5,6-trimethyl-1-indenyl) zirconium dichloride; and mixtures thereof.

- 14. (Original) The polymerization process of claim 13, wherein the catalyst system further comprises a support.
- 15. (Original) The polymerization process of claim 14, wherein the support is a fluorided support.

16.-61. (Cancelled)

- 62. (Currently amended) A method to reduce fouling in a reactor comprising the step of:
 - (a) adding propylene monomers into the reactor;
 - (b) adding a catalyst system comprising a metallocene catalyst system;
 - (c) adding an antistatic agent that has been pre-contacted with a scavenger; and
 - (d) forming a polymer in the reactor;

wherein the antistatic agent is present from about .05 0.3 to about 200 1.5 ppm based on the weight of the propylene monomers introduced into the reactor.

- 63. (Cancelled)
- 64. (Original) The method of claim 63, wherein the scavenger comprises an aluminum alkyl compound.
- 65. (Original) The method of claim 64, wherein the aluminum alkyl compound is selected from the group consisting of triethylaluminum, trimethylaluminum, tri-isobutylaluminum, tri-n-hexylaluminum, diethyl aluminum chloride, and mixtures thereof.
- 66. (Original) The method of claim 65, wherein the aluminum alkyl compound is triethylaluminum.
- 67. (Original) The method of claim 62, wherein the antistatic agent comprises a polysulfone copolymer, a polymeric polyamine, an oil-soluble sulfonic acid, or mixtures thereof, with or without a solvent.
- 68. (Cancelled)
- 69. (Cancelled)
- 70. (Original) The method of claim 62, wherein the antistatic agent is present from about 0.3 to about 0.8 ppm based on the weight of the propylene monomers introduced into the reactor.
- 71. (Original) The method of claim 62, wherein the metallocene catalyst system comprises a supported metallocene catalyst system.
- 72. (Original) The method of claim 62, wherein the metallocene catalyst system comprises a support and a metallocene, the metallocene represented by the following:

 $P(O)(R^{11})$ -;

wherein M is a metal of Group 4, 5, or 6 of the Periodic Table;

 R^1 and R^2 are identical or different, and are one of a hydrogen atom, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a C_6 - C_{10} aryl group, a C_6 - C_{10} aryloxy group, a C_2 - C_{10} alkenyl group, a C_7 - C_{40} arylalkyl group, a C_7 - C_{40} alkylaryl group, a C_8 - C_{40} arylalkenyl group, or a halogen atom;

 R^5 and R^6 are identical or different, and are one of a halogen atom, a C_1 - C_{10} alkyl group, which may be halogenated, a C_6 - C_{10} aryl group, which may be halogenated, a C_2 - C_{10} alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} alkylaryl group, a C_8 - C_{40} arylalkenyl group, a -NR₂¹⁵, -SR¹⁵, -OR¹⁵, -OSiR₃¹⁵ or -PR₂¹⁵ radical, wherein R¹⁵ is one of a halogen atom, a C_1 - C_{10} alkyl group, or a C_6 - C_{10} aryl group;

wherein R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{20} alkyl group, a C_1 - C_{20} fluoroalkyl group, a C_6 - C_{30} aryl group, a C_6 - C_{30} fluoroaryl group, a C_1 - C_{20} alkoxy group, a C_2 - C_{20} alkenyl group, a C_7 - C_{40} arylalkyl group, a C_8 - C_{40} arylalkenyl group, a C_7 - C_{40} alkylaryl group, or R^{11} and R^{12} , or R^{11} and R^{13} , together with the atoms binding them, can form ring systems;

M² is silicon, germanium or tin;

R⁸ and R⁹ are identical or different and have the meanings stated for R¹¹;

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2; and the radicals R³, R⁴, and R¹⁰ are identical or different and have the meanings stated for R¹¹, R¹² and R¹³.

- 73. (Original) The method of claim 72, wherein the support is a fluorided support.
- 74. The method of claim 62, wherein the metallocene catalyst system comprises a (Original) metallocene selected from the group consisting of Dimethylsilandiylbis (2-methyl-4-phenyl-1indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,5-benzoindenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl) zirconium dimethyl; Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis (2ethyl-4-naphthyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,5-diisopropyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2,4,6-trimethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2methyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-ethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2,5,6-trimethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis (2-methyl-4-phenyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4,5-benzoindenyl) zirconium dichloride; Dimethylsilandiylbis(2methyl-4,6-diisopropylindenyl) zirconium dichloride; Dimethylsilandiylbis(2-ethyl-4-phenyl-1indenyl) zirconium dichloride; Dimethylsilandiylbis (2-ethyl-4-naphthyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4,5-diisopropyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2,4,6-trimethyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-1-indenyl) zirconium dichloride;

Dimethylsilandiylbis(2-ethyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2,5,6-trimethyl-1-indenyl) zirconium dichloride; and mixtures thereof.

- 75. (Original) The method of claim 74, wherein the metallocene catalyst system further comprises a support.
- 76. (Original) The method of claim 75, wherein the support is a fluorided support.
- 77. (Original) The method of claim 62, wherein the polymer comprises a propylene homopolymer or copolymer.

78.-94. (Cancelled)

95. (New) The polymerization process of claim 1, wherein the polymerization process is selected from the group consisting of continuous gas phase polymerization processes, continuous slurry polymerization processes and continuous polymerization processes.