Reduções

André Vignatti

DINF- UFPR

Reduções

O que significa **transformar** (reduzir) um problema *A* em um problema *B*?

- Pegar a entrada (instância) de A e transformar numa entrada de B.
- Usar o algoritmo de B como caixa-preta.
- Transformar a saída (resposta) de B numa saída de A.

Reduzir um problema *A* para um problema *B*:

O algoritmo para A usa o algoritmo para B como caixa-preta.

Redução 0 - Problema dos Elementos Distintos

Dado um vetor A de n inteiros, há alguma duplicata em A?

Algoritmo Natural:

```
para i \leftarrow 1 até n-1 faça
para j \leftarrow i+1 até n faça
se A[i] = A[j]
retorne SIM
retorne NÃO
```

Tempo de execução: $O(n^2)$.

Redução 0 - Problema dos Elementos Distintos

Redução para Ordenação:

```
1 Ordene A

2 para i \leftarrow 1 até n-1 faça

3 se A[i] = A[i+1]

4 retorne SIM

5 retorne NÃO
```

Tempo de execução: O(n) mais o tempo de ordenar n números.

O algoritmo usa a ordenação como caixa-preta.

Os Dois Lados da Redução

Suponha que um problema A se reduz a um problema B:

Direção Positiva: o algoritmo para *B* implica num algoritmo para *A*.

Direção Negativa: suponha que não há algoritmo eficiente para A. Então não há algoritmo eficiente para B (uma restrição técnica do tempo de redução é necessário neste caso)

Os Dois Lados da Redução

Exemplo:

Direção Positiva: um algoritmo $O(n \log n)$ para a **Ordenação** implica num algoritmo $O(n \log n)$ para os **Elementos Distintos**.

Direção Negativa: se não há algoritmo melhor que $n \log n$ para os **Elementos Distintos** então não há algoritmo melhor que $n \log n$ para a **Ordenação**.

(A **direção negativa** será vista com mais calma na redução do Ordenação para o Casco Convexo) .

Redução entre problemas - Esquema

Claramente vale transitividade:

Se
$$P_1
ightarrow P_2$$
 e $P_2
ightarrow P_3$ então $P_1
ightarrow P_3$

Problema do Casamento Cíclico - CC

Sejam A e B duas strings de tamanho n onde:

$$A = a_0 a_1 \dots a_{n-1}$$
 e $B = b_0 b_1 \dots b_{n-1}$

Determinar se B é uma rotação cíclica de A.

Isto é, determinar se existe índice *k* tal que:

$$a_{[(i+k) \mod n]} = b_i$$
, para $i = 0, ..., n-1$.

ABCD é uma rotação cíclica de CDAB com k=2

Podemos resolver este problema diretamente, mas vamos resolvê-lo reduzindo-o a outro.

Problema do Casamento de String - CS

Sejam S (string) e P (padrão) duas strings. Determinar se P é uma substring de S.

Proposicao

Casamento Cíclico \rightarrow Casamento de String.

Demonstração.

Se (A, B) é instância do problema CC então B é uma rotação cíclica de $A \Leftrightarrow B$ é uma substring de AA.

Assim,

(A, B) de CC tem resposta sim $\Leftrightarrow (AA, B)$ de CS tem resposta sim

Exercicio: Caso um algoritmo de CS devolva o índice onde começa o padrão, faça uma redução que devolva também a posição da rotação cíclica.

Definicao

Dada coleção de conjuntos S_1, \ldots, S_k temos que $R = \{r_1, \ldots, r_k\}$ é um Sistema de Representantes Distintos (SRD) se $r_i \in S_i$ para todo $i = 1, \ldots, k$.

Problema do Sistema de Representantes Distintos

Dado coleção de conjuntos S_1, \ldots, S_k , encontrar um SRD.

Exemplo:

Considere os seguintes conjuntos:

Ecológicos: Ana, Alberto Ruralistas: João, Alberto Feministas: Ana, Maria

Então, {Ana, João, Maria} formam um SRD.

Não há SRD para a coleção abaixo:

- $S_1 = \{1, 2\}$
- $S_2 = \{3,4\}$
- $S_3 = \{3,4\}$
- $S_4 = \{1, 2, 4\}$
- $S_5 = \{2, 4\}$

Problema do Emparelhamento Máximo - EM

Dado grafo bipartido G = (X, Y, E), onde X e Y são conjuntos de vértices e E é o conjunto de arestas, encontrar um emparelhamento (conjunto de arestas sem extremos em comum) de cardinalidade máxima.

Proposicao

Problema do SRD → Problema do EM.

Demonstração.

Dada coleção S_1, \ldots, S_k , instância de um SRD, sobre conjunto A,

defina grafo G = (X, Y, E) onde

- $X = S_1 \cup S_2 \cup ... \cup S_k$
- $Y = \{1, 2, ..., k\}$
- $E = \{(a, j) | a \in S_j\}.$

Note que o SRD tem solução $\Leftrightarrow G$ tem emparelhamento de tamanho k. (Seria necessário uma prova mais formal desse fato)

Para o exemplo de antes:

Problema do Triângulo em um Grafo

Dado grafo G = (V, E) não-orientado, decidir se G tem um triângulo (subgrafo completo de 3 vértices).

Proposicao

O Problema dos Triângulo em um grafo pode ser resolvido em tempo $O(n^3)$.

Demonstração.

Basta verificar todos os $\binom{n}{3}$ subconjuntos de 3 vértices de G.

Vamos reduzir o Problema do Triângulo em um Grafo para o seguinte problema

Problema da Multiplicação de Matrizes

Dadas matrizes $A \in B$, computar a matriz $C = A \cdot B$.

Teorema [Strassen'69]

Existe algoritmo que computa multiplicação de matrizes de ordem n com complexidade de tempo $O(n^{2807})$.

Teorema [Coppersmith-Winograd'90]

Existe algoritmo que computa multiplicação de matrizes de ordem n com complexidade de tempo $O(n^{2376})$.

Definicao

Dado grafo G = (V, E), onde $V = \{1, ..., n\}$, a matriz de adjacência A de G é uma matriz de ordem $n \times n$ onde

$$A[i,j] = \begin{cases} 1 & \text{se } \{i,j\} \in E \\ 0 & \text{caso contrário.} \end{cases}$$

O que acontece se calcularmos A^2 ?

Sabemos que

$$A^{2}[i,j] = \sum_{k=1}^{n} A[i,k] \cdot A[k,j]$$

Portanto $A^2[i,j] > 0 \Leftrightarrow$ existe índice k tal que A[i,k] = 1 e A[k,j] = 1.

I.e.,

$$A^2[i,j] > 0 \Leftrightarrow \text{existe } k \text{ tal que}$$

Proposicao

O Problema do Triângulo em um grafo G pode ser resolvido em tempo $O(n^{2376})$.

Demonstração.

Seja A matriz de incidência de G.

- Compute A^2 em tempo $O(n^{2,376})$.
- Para cada posição (i, j), verifique em A e A^2 se A[i, j] = 1 e $A^2[i, j] > 0$.
- Caso se verifique para algum par, temos um triângulo em G.

Problema do Casco Convexo

São dados n pontos no plano p_1, \ldots, p_n . Queremos os pontos do casco convexo listados em sentido anti-horário.

Não basta retornar os pontos do casco convexo: deve-se também retorná-los em sentido anti-horário.

- (a, c, d, b) é uma solução válida.
- (d, b, a, c) é uma solução válida.
- (a, d, c, b) não é uma solução válida.

Iremos reduzir o problema da **ordenação** no problema do **casco convexo**.

Ou seja, vamos usar um algoritmo do casco convexo como caixa-preta para resolver a ordenação.

Redução:

- Sejam x_1, x_2, \ldots, x_n os números da entrada do problema da ordenação.
- Para cada x_i , transforme num ponto 2D (x_i, x_i^2) (esses pontos estão na parábola $y = x^2$).
- Execute o algoritmo do casco convexo (claramente os pontos estão no casco convexo, resta saber a ordem).
- **3** Encontre o menor ponto (leva O(n)) e a partir dele, percorra a ordem retornada.

Os pontos retornados pelo casco convexo (começando do menor) são os elementos ordenados.

Então, podemos usar o algoritmo do casco convexo para ordenar!

De um certo ponto de vista...

...o problema do casco convexo é **mais difícil** que o problema da ordenação (pois ele resolve a ordenação).

Conclusão:

Se tivermos um algoritmo rápido para o casco convexo, podemos usar para ordenar.

- Mas sabemos que para ordenar é necessário pelo algoritmo Ω(n log n).
- Então, não existe algoritmo para o casco convexo melhor que Ω(n log n).