MATH2270: Midterm 1 Practice Problems

The following are practice problems for the first exam.

1. For what values of h and k is the following system consistent?

$$2x_1 - x_2 = h$$
$$-6x_1 + 3x_2 = k$$

2. Give a parametric description of the solutions to the equation $A\vec{x} = \vec{0}$ where A is the matrix shown below:

$$\begin{bmatrix} 1 & -2 & 3 & -6 & 5 & 0 \\ 0 & 0 & 0 & 1 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

3. Determine if the vector $\vec{b} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ is in Span $\{v_1, v_2\}$ where

$$\vec{v_1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \qquad \vec{v_2} = \begin{bmatrix} 5 \\ 9 \\ 7 \end{bmatrix}$$

If the answer is yes, then write \vec{b} as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

- 4. If \vec{b} is in the span of the vectors $\vec{v_1}, \dots, \vec{v_k}$, what can you say about solutions to the matrix equation $A\vec{x} = \vec{b}$ where A is the matrix whose columns are $\vec{v_1}, \dots, \vec{v_k}$ (i.e., $A = [\vec{v_1} \ \vec{v_2} \ \dots \ \vec{v_k}]$)?
- 5. Is the set of vectors $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$ linearly independent? Why or why not?
- 6. Is the set of vectors $\{\operatorname{Span}\{\begin{bmatrix}1\\0\end{bmatrix}\}\}$ linearly independent? Why or why not?
- 7. Determine if the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$, whose standard matrix is A, is 1-1. Is it onto?

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

- 8. Suppose $S : \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that $S\left(\left[\begin{smallmatrix}1\\0\end{smallmatrix}\right]\right) = \left[\begin{smallmatrix}3\\-2\\-1\end{smallmatrix}\right]$ and $S\left(\left[\begin{smallmatrix}0\\1\end{smallmatrix}\right]\right) = \left[\begin{smallmatrix}-1\\2\\2\end{smallmatrix}\right]$.
 - (a) Find $S\left(\begin{bmatrix} -3\\3 \end{bmatrix}\right)$.
 - (b) Find the standard matrix for S.
- 9. Be able to multiply matrices...
- 10. Write down the inverse of the following matrix:

$$\begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$$

11. Compute the inverse of the following matrix:

$$\begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 3 \end{bmatrix}$$

12. Suppose a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ has the property that $T(\vec{u}) = T(\vec{v})$ for some pair of distinct vectors \vec{u} and \vec{v} . Can T be onto? Why or why not?