0.1 Jordan 标准型

引理 0.1

r阶矩阵

$$J = \begin{pmatrix} \lambda_0 & 1 & & & \\ & \lambda_0 & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_0 \end{pmatrix}$$

的行列式因子组和不变因子组都是

$$1, \cdots, 1, (\lambda - \lambda_0)^r$$
.

进而」的等因子组为

$$(\lambda - \lambda_0)^r$$
.

J的极小多项式等于特征多项式等于

$$(\lambda - \lambda_0)^r$$
.

证明 显然 J 的特征多项式为 $(\lambda - \lambda_0)^r$. 对任一小于 r 的正整数 $k,\lambda I - J$ 总有一个 k 阶子式, 其值等于 $(-1)^{\frac{k(k-1)}{2}}$, 因此 J 的行列式因子为

$$1, \cdots, 1, (\lambda - \lambda_0)^r. \tag{1}$$

(??)式也是J的不变因子组,故J的初等因子组只有一个多项式 $(\lambda - \lambda_0)^r$. 由定理??知J的极小多项式等于特征多项式等于 $(\lambda - \lambda_0)^r$.

引理 0.2

设特征矩阵 $\lambda I - A$ 经过初等变换化为下列对角阵:

$$\begin{pmatrix} f_1(\lambda) & & & \\ & f_2(\lambda) & & \\ & & \ddots & \\ & & f_n(\lambda) \end{pmatrix}, \tag{2}$$

其中 $f_i(\lambda)$ $(i=1,\cdots,n)$ 为非零首一多项式. 将 $f_i(\lambda)$ 作不可约分解, 若 $(\lambda-\lambda_0)^k$ 能整除 $f_i(\lambda)$, 但 $(\lambda-\lambda_0)^{k+1}$ 不能整除 $f_i(\lambda)$, 就称 $(\lambda-\lambda_0)^k$ 是 $f_i(\lambda)$ 的一个**准素因子**, 所有 $f_i(\lambda)$ 的准素因子称为 A 的**准素因子组**, 则矩阵 A 的初等因子组等于所有 $f_i(\lambda)$ 的准素因子组.

注 这个引理给出了求矩阵初等因子组的另外一个方法,它可以不必先求不变因子组而直接用初等变换把特征矩阵化为对角阵,再分解主对角线上的多项式即可. 另外,这个引理的结论及其证明在一般的数域 账 上也成立. **证明** 第一步,先证明下列事实:

若 $f_i(\lambda)$, $f_i(\lambda)$ ($i \neq j$) 的最大公因式和最小公倍式分别为 $g(\lambda)$, $h(\lambda)$, 则

$$\operatorname{diag}\{f_1(\lambda), \cdots, f_i(\lambda), \cdots, f_j(\lambda), \cdots, f_n(\lambda)\}\$$

经过初等变换可以变为

$$\operatorname{diag}\{f_1(\lambda), \cdots, g(\lambda), \cdots, h(\lambda), \cdots, f_n(\lambda)\},\$$

且这两个对角阵具有相同的准素因子组.

不失一般性, 令 i = 1, j = 2. 因为 $(f_1(\lambda), f_2(\lambda)) = g(\lambda)$, 所以存在 $u(\lambda), v(\lambda)$, 使

$$f_1(\lambda)u(\lambda) + f_2(\lambda)v(\lambda) = g(\lambda).$$

又令 $f_1(\lambda) = g(\lambda)q(\lambda), f_2(\lambda) = g(\lambda)q'(\lambda)$. 则 $h(\lambda) = g(\lambda)q(\lambda)q'(\lambda) = f_2(\lambda)q(\lambda)$. 对(??)式作下列初等变换:

现来考察 $g(\lambda)$ 与 $h(\lambda)$ 的准素因子. 将 $f_1(\lambda)$, $f_2(\lambda)$ 作标准因式分解, 其分解式不妨设为

$$f_1(\lambda) = (\lambda - \lambda_1)^{c_1} (\lambda - \lambda_2)^{c_2} \cdots (\lambda - \lambda_t)^{c_t},$$

$$f_2(\lambda) = (\lambda - \lambda_1)^{d_1} (\lambda - \lambda_2)^{d_2} \cdots (\lambda - \lambda_t)^{d_t},$$

其中 c_i, d_i 为非负整数.令

$$e_i = \max\{c_i, d_i\}, \quad k_i = \min\{c_i, d_i\},$$

则

$$g(\lambda) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_t)^{k_t},$$

$$h(\lambda) = (\lambda - \lambda_1)^{e_1} (\lambda - \lambda_2)^{e_2} \cdots (\lambda - \lambda_t)^{e_t}.$$

不难看出 $g(\lambda)$, $h(\lambda)$ 的准素因子组与 $f_1(\lambda)$, $f_2(\lambda)$ 的准素因子组相同.

第二步证明 (??)式所示矩阵的法式可通过上述变换得到.

先将第 (1,1) 位置的元素依次和第 (2,2) 位置, \cdots ,第 (n,n) 位置的元素进行上述变换,此时第 (1,1) 元素的所有一次因式的幂都是最小的;再将第 (2,2) 位置的元素依次和第 (3,3) 位置, \cdots ,第 (n,n) 位置的元素进行上述变换; \cdots ;最后将第 (n-1,n-1) 位置的元素和第 (n,n) 位置的元素进行上述变换.可以看出,最后得到的对角阵就是 (??)式所示矩阵的法式.注意到在每一次变换的过程中,准素因子组都保持不变,这就证明了结论.

例题 0.1 设 $\lambda I - A$ 经过初等变换后化为下列对角阵:

$$\begin{pmatrix} 1 & & & & \\ & (\lambda - 1)^2(\lambda + 2) & & & \\ & & \lambda + 2 & & \\ & & & 1 & \\ & & & \lambda - 1 \end{pmatrix},$$

求 A 的初等因子组.

解 由引理?? 知,A 的初等因子组为 $\lambda - 1, (\lambda - 1)^2, \lambda + 2, \lambda + 2$.

引理 0.3

设 1 是分块对角阵:

其中 J_i 是 r_i 阶矩阵且

$$J_i = \begin{pmatrix} \lambda_i & 1 & & & \\ & \lambda_i & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_i \end{pmatrix}.$$

则」的行列式因子组和不变因子组都是

$$1, \dots, 1, (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_k)^{r_k}$$
.

进而」的初等因子组为

$$(\lambda - \lambda_1)^{r_1}, (\lambda - \lambda_2)^{r_2}, \cdots, (\lambda - \lambda_k)^{r_k}.$$

J的极小多项式等于特征多项式等于

$$(\lambda - \lambda_1)^{r_1}(\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_k)^{r_k}$$
.

证明 与引理??的证明类似. 显然 J 的特征多项式为 $(\lambda-\lambda_1)^{r_1}(\lambda-\lambda_2)^{r_2}\cdots(\lambda-\lambda_k)^{r_k}$. 对任一小于 r 的正整数 $r_1+\cdots+r_k$, $\lambda I-J$ 总有一个 k 阶子式,其值等于 (-1); $\frac{k(k-1)}{2}$,因此 J 的行列式因子为

$$1, \dots, 1, (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_k)^{r_k}$$
.

显然上式也是J的不变因子. 从而由定理??知J的极小多项式等于特征多项式等于

$$(\lambda - \lambda_1)^{r_1}(\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_k)^{r_k}$$
.

由 J 的不变因子组可以直接得到其初等因子组. 关于 J 的初等因子组还有另一个证法如下. $\lambda I - J$ 是一个分块对角 λ -矩阵. 由于对分块对角阵中某一块施行初等变换时其余各块保持不变, 故由引理??及命题??知, $\lambda I - J$ 相抵于下列分块对角阵:

$$H=egin{pmatrix} H_1 & & & & & \\ & H_2 & & & & \\ & & \ddots & & \\ & & & H_k \end{pmatrix},$$

其中 $H_i = \text{diag}\{1, \dots, 1, (\lambda - \lambda_i)^{r_i}\}$. 再由引理??即得 J 的初等因子组为

$$(\lambda - \lambda_1)^{r_1}, (\lambda - \lambda_2)^{r_2}, \cdots, (\lambda - \lambda_k)^{r_k}.$$

定理 0.1 (Jordan 标准型)

设A是复数域上的矩阵且A的初等因子组为

$$(\lambda - \lambda_1)^{r_1}$$
, $(\lambda - \lambda_2)^{r_2}$, \cdots , $(\lambda - \lambda_k)^{r_k}$,

则 A 相似于分块对角阵:

$$J = \begin{pmatrix} J_1(\lambda_1) & & & \\ & J_2(\lambda_2) & & \\ & & \ddots & \\ & & J_k(\lambda_k) \end{pmatrix}, \tag{3}$$

其中 J_i 为 r_i 阶矩阵,且

$$J_i = \begin{pmatrix} \lambda_i & 1 & & & \\ & \lambda_i & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_i \end{pmatrix}.$$

(??)式中的矩阵 J 称为 A 的 **Jordan 标准型**, 每个 $J_i(\lambda_i)$ 称为 A 的一个 **Jordan 块**.

注 由引理??可以看出, 若交换任意两个 Jordan 块的位置, 得到的矩阵与原来的矩阵仍有相同的初等因子组, 它们仍相似. 因此矩阵 *A* 的 Jordan 标准型中 Jordan 块的排列可以是任意的. 但是, 由于每个初等因子唯一确定了一个 Jordan 块, 故若不计 Jordan 块的排列次序, 则矩阵的 Jordan 标准型是唯一确定的.

证明 由定理??知,A与J有相同的初等因子组,因此A与J相似.

命题 0.1 (Jordan 块的性质)

(1) $J_n(\lambda_0)$ 的行列式因子组和不变因子组都是

$$1, \cdots, 1, (\lambda - \lambda_0)^n$$
.

进而初等因子组为 $(\lambda - \lambda_0)^n$,极小多项式等于特征多项式等于 $(\lambda - \lambda_0)^n$.

- (2) 设 $J_0 = J_n(0)$, 则 J_0 是基础幂零阵, 且 $J_0^n = 0$.
- (3) 设 $J = J_n(\lambda_0)$ 是特征值为 λ_0 的 n 阶 Jordan 块,则和 J 乘法可交换的 n 阶矩阵必可表示为 J 的次数不超过 n-1 的多项式.
- (4) 当 λ ≠ 0, 有

$$J_n^{-1}(\lambda) = \begin{pmatrix} \frac{1}{\lambda} & -\frac{1}{\lambda^2} & \cdots & (-1)^{n-1} \frac{1}{\lambda^n} \\ & \frac{1}{\lambda} & \ddots & \vdots \\ & & \ddots & -\frac{1}{\lambda^2} \\ & & & \frac{1}{\lambda} \end{pmatrix}.$$

(5) 设 $A \in M_n(\mathbb{C})$, 则存在 P 是非异阵, 使

$$P^{-1}AP = J = \text{diag}\{J_1, J_2, \cdots, J_k\}$$

是 A 的 Jordan 标准型, 其中 J_i 是 A 的特征值 λ_i 的 r 阶 Jordan 块. 若 $f(x) = a_0 + a_1 x + \dots + a_p x^p$, 则 $f(A) = P^{-1} f(J)P = P \text{diag } \{ f(J_1), f(J_2), \dots, f(J_k) \} P^{-1},$

其中

$$f(J_i) = \begin{pmatrix} f(\lambda_i) & \frac{1}{1!}f'(\lambda_i) & \frac{1}{2!}f^{(2)}(\lambda_i) & \cdots & \frac{1}{(r-1)!}f^{(r-1)}(\lambda_i) \\ & f(\lambda_i) & \frac{1}{1!}f'(\lambda_i) & \cdots & \frac{1}{(r-2)!}f^{(r-2)}(\lambda_i) \\ & & f(\lambda_i) & \cdots & \frac{1}{(r-3)!}f^{(r-3)}(\lambda_i) \\ & & \ddots & \vdots \\ & & & f(\lambda_i) \end{pmatrix}$$

证明

- (1) 由引理??和定理??即得.
- (2) 由 Jordan 块的定义可直接得到

从而结论显然成立.

(3) 证法一 (几何方法):注意到 $J - \lambda_0 I_n = J_n(0)$ 为基础幂零阵,于是

$$\varphi(e_n) = e_{n-1}, \varphi^2(e_n) = \varphi(e_n - 1) = e_{n-2}, \dots, \varphi^{n-1}(e_n) = e_1.$$

故 $\mathbb{C}^n = L(\varphi^{n-1}(e_n), \varphi^{n-2}(e_n), \dots, e_n) = C(J - \lambda_0 I_n, e_n)$ 是关于线性变换 $J - \lambda_0 I_n$ 的循环空间 (也可由 Jordan 标准型的几何意义直接得到),循环向量是标准单位列向量中的最后一个 $e_n = (0, \dots, 0, 1)'$,又由 (1) 可知, $J - \lambda_0 I_n = J_n(0)$ 的特征多项式与极小多项式相等都是 λ^n . 于是再由定理??即得结论.

证法二 (代数方法): 设 A 和 J 可交换, 注意到 $J = \lambda_0 I_n + J_0$, 其中 $J_0 = J_n(0)$ 是特征值为零的 Jordan 块, 故 A,J 乘法可交换当且仅当 A,J_0 乘法可交换. 经计算得到 A 必为下列形状的上三角矩阵:

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ & a_1 & \ddots & \vdots \\ & & \ddots & a_2 \\ & & & a_1 \end{pmatrix}$$

于是

$$A = a_1 I_n + a_2 J_0 + \dots + a_n J_0^{n-1} = a_1 I_n + a_2 (J - \lambda_0 I_n) + \dots + a_n (J - \lambda_0 I_n)^{n-1}$$

可表示为J的次数不超过n-1的多项式.

- (4) 利用矩阵逆的定义和矩阵乘法易得.
- (5) 注意到

$$J^m = \operatorname{diag}\{J_1^m, J_2^m, \cdots, J_k^m\}.$$

又

$$A^m = (PJP^{-1})^m = PJ^mP^{-1},$$

因此要计算 f(A), 只需计算出 J_i^m 即可. 利用二项式定理和数学归纳法不难证明

$$J_{i}^{m} = \begin{bmatrix} \lambda_{i}I_{r} + \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{pmatrix} \end{bmatrix}^{m} = \begin{pmatrix} \lambda_{i}^{m} & C_{m}^{1}\lambda_{i}^{m-1} & C_{m}^{2}\lambda_{i}^{m-2} & \cdots & \cdots \\ & \lambda_{i}^{m} & C_{m}^{1}\lambda_{i}^{m-1} & \cdots & \cdots \\ & & & \lambda_{i}^{m} & \cdots & \cdots \\ & & & & \ddots & \vdots \\ & & & & \lambda_{i}^{m} \end{pmatrix}$$

则不难算出

$$f(J_i) = \begin{pmatrix} f(\lambda_i) & \frac{1}{1!}f'(\lambda_i) & \frac{1}{2!}f^{(2)}(\lambda_i) & \cdots & \frac{1}{(r-1)!}f^{(r-1)}(\lambda_i) \\ & f(\lambda_i) & \frac{1}{1!}f'(\lambda_i) & \cdots & \frac{1}{(r-2)!}f^{(r-2)}(\lambda_i) \\ & & f(\lambda_i) & \cdots & \frac{1}{(r-3)!}f^{(r-3)}(\lambda_i) \\ & & \ddots & \vdots \\ & & & f(\lambda_i) \end{pmatrix}.$$

再由

$$f(A) = f(PJP^{-1}) = Pf(J)P^{-1}$$

$$= Pf(\text{diag}\{J_1, J_2, \dots, J_k\})P^{-1}$$

$$= P\text{diag}\{f(J_1), f(J_2), \dots, f(J_k)\}P^{-1},$$

即可计算出 f(A).

定理 0.2

设 φ 是复数域上线性空间V上的线性变换,则必存在V的一组基,使得 φ 在这组基下的表示矩阵为(\ref{q} ?)式 所示的 Jordan 标准型.

证明 由定理??立得. □

推论 0.1

设 A 是 n 阶复矩阵, 则下列结论等价:

- (1) A 可对角化;
- (2) A 的极小多项式无重根;
- (3) A 的初等因子都是一次多项式.

证明 $(1) \Rightarrow (2)$: 由可对角化的判定条件 (5) 的结论即得.

- (2) \Rightarrow (3): 设 A 的极小多项式 $m(\lambda)$ 无重根. 由于 $m(\lambda)$ 是 A 的最后一个不变因子, 故 A 的所有不变因子都无重根, 从而 A 的初等因子都是一次多项式.
- (3) ⇒ (1): 设 A 的初等因子组为 $\lambda \lambda_1, \lambda \lambda_2, \cdots, \lambda \lambda_n$,则由定理**??**知,A 相似于对角阵 diag{ $\lambda_1, \lambda_2, \cdots, \lambda_n$ },即 A 可对角化.

推论 0.2

设 φ 是复线性空间V上的线性变换,则 φ 可对角化当且仅当

- 1. φ的极小多项式无重根;
- 2. φ的初等因子都是一次多项式;
- 3. φ 的 Jordan 块都是一阶矩阵.

证明

推论 0.3

设 φ 是复线性空间V上的线性变换, V_0 是 φ 的不变子空间. 若 φ 可对角化, 则 φ 在 V_0 上的限制也可对角化.

证明 设 φ , $\varphi|_{V_0}$ 的极小多项式分别为 $g(\lambda)$, $h(\lambda)$, 则由推论??知, $g(\lambda)$ 无重根. 又 $g(\varphi|_{V_0}) = g(\varphi)|_{V_0} = \mathbf{0}$, 故 $h(\lambda) \mid g(\lambda)$, 于是 $h(\lambda)$ 也无重根, 再次由推论??知, $\varphi|_{V_0}$ 可对角化.

推论 0.4

设 φ 是复线性空间 V 上的线性变换, 且 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$, 其中每个 V_i 都是 φ 的不变子空间, 则 φ 可对角化的充分必要条件是 φ 在每个 V_i 上的限制都可对角化.

证明 必要性由推论??即得, 下证充分性. 若 φ 在每个 V_i 上的限制都可对角化, 则由定义存在 V_i 的一组基, 使得 $\varphi|_{V_i}$ 在这组基下的表示矩阵是对角阵. 再由定理??知 V_i 的一组基可以拼成 V 的一组基, 因此 φ 在这组基下的表示 阵是对角阵, 即 φ 可对角化.

推论 0.5

设A 是数域 \mathbb{K} 上的矩阵, 如果 A 的特征值全在 \mathbb{K} 中, 则 A 在 \mathbb{K} 上相似于其 Jordan 标准型.

证明 由于 A 的特征值全在 \mathbb{K} 中, 故 A 的 Jordan 标准型 J 实际上是 \mathbb{K} 上的矩阵. 因为 A 在复数域上相似于 J, 由推论?? 知,A 在 \mathbb{K} 上也相似于 J.

例题 0.2 设 A 是 7 阶矩阵, 其初等因子组为

$$\lambda - 1, (\lambda - 1)^3, (\lambda + 1)^2, \lambda - 2,$$

求其 Jordan 标准型.

解 A 的 Jordan 标准型为

$$J = \begin{pmatrix} 1 & & & & & \\ & 1 & 1 & 0 & & & \\ & 0 & 1 & 1 & & & \\ & 0 & 0 & 1 & & & \\ & & & -1 & 1 & \\ & & & 0 & -1 & \\ & & & & 2 \end{pmatrix},$$

J含有4个Jordan块.

例题 0.3 设复数域上的四维线性空间 V 上的线性变换 φ 在一组基 $\{e_1,e_2,e_3,e_4\}$ 下的表示矩阵为

$$A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 6 & 1 & 2 & 1 \\ -14 & -5 & -1 & 0 \end{pmatrix},$$

求 V 的一组基, 使 φ 在这组基下的表示矩阵为 Jordan 标准型, 并求出从原来的基到新基的过渡矩阵. 解 用初等变换把 $\lambda I - A$ 化为对角 λ -矩阵并求出它的初等因子组为

$$(\lambda-1)^2$$
, $(\lambda-1)^2$.

因此.A 的 Jordan 标准型为

$$J = \begin{pmatrix} 1 & 1 & & \\ 0 & 1 & & \\ & & 1 & 1 \\ & & 0 & 1 \end{pmatrix}.$$

设矩阵 P 是从 $\{e_1, e_2, e_3, e_4\}$ 到新基的过渡矩阵,则

$$P^{-1}AP = J.$$

此即

$$AP = PJ. (4)$$

设 $P = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, 其中 α_i 是四维列向量, 代入(??)式得

$$(A\alpha_1, A\alpha_2, A\alpha_3, A\alpha_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{pmatrix} 1 & 1 & & \\ 0 & 1 & & \\ & & 1 & 1 \\ & & 0 & 1 \end{pmatrix},$$

化成方程组为

$$(A - I)\alpha_1 = \mathbf{0},$$

$$(A - I)\alpha_2 = \alpha_1,$$

$$(A - I)\alpha_3 = \mathbf{0},$$

$$(A - I)\alpha_4 = \alpha_3.$$

由于 α_1, α_3 都是 A 的属于特征值 1 的特征向量, 故 α_2, α_4 称为属于特征值 1 的广义特征向量. 我们可取方程组 $(A-I)x=\mathbf{0}$ 的两个线性无关的解分别作为 α_1, α_3 (注意不能取线性相关的两个解, 因为 P 是非异阵), 然后再分别 求出 α_2, α_4 (注意诸 α_i 的解可能不唯一, 只需取比较简单的一组解) 即可. 经计算可得

$$\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \\ -5 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}, \quad \alpha_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

于是

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ -5 & 0 & -1 & 1 \end{pmatrix}.$$

因此新基为

$${e_1 - 2e_2 + e_3 - 5e_4, e_2, e_3 - e_4, e_4}.$$

例题 **0.4** 计算矩阵 $A=\begin{pmatrix}2&3&2\\1&8&2\\-2&-14&-3\end{pmatrix}$ 的 Jordan 标准型, 并求一个可逆矩阵 $P\in\mathbb{C}^{n\times n}$ 使得 $P^{-1}AP$ 为 Jordan

标准型.

证明 利用初等变换把 $\lambda I - A$ 化为对角 λ -矩阵得

$$\begin{pmatrix} \lambda - 2 & -3 & -2 \\ -1 & \lambda - 8 & -2 \\ 2 & 14 & \lambda + 3 \end{pmatrix} \xrightarrow{r_1 \longleftrightarrow r_2} \begin{pmatrix} 1 & 8 - \lambda & 2 \\ \lambda - 2 & -3 & -2 \\ 2 & 14 & \lambda + 3 \end{pmatrix} \xrightarrow{r_2 - (\lambda - 2)r_1} \begin{pmatrix} 1 & 8 - \lambda & 2 \\ 0 & \lambda^2 - 10\lambda + 13 & 2 - 2\lambda \\ 0 & 2\lambda - 2 & \lambda - 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda^2 - 10\lambda + 13 & 2 - 2\lambda \\ 0 & 2\lambda - 2 & \lambda - 1 \end{pmatrix} \xrightarrow{j_2 - 2j_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & (\lambda - 3)^2 & 2 - 2\lambda \\ 0 & 0 & \lambda - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & (\lambda - 3)^2 & 0 \\ 0 & 0 & \lambda - 1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & (\lambda - 3)^2 \end{pmatrix}.$$

于是 $\lambda I - A$ 的行列式因子组为 1,1, $(\lambda - 1)(\lambda - 3)^2$,从而不变因子组为 1,1, $(\lambda - 1)(\lambda - 3)^2$,进而初等因子组为 $\lambda - 1$, $(\lambda - 3)^2$. 故 A 的 Jordan 标准型为

$$J = \begin{pmatrix} 1 & & \\ & 3 & 1 \\ & & 3 \end{pmatrix}.$$

于是设3阶可逆矩阵 P,满足

$$P^{-1}AP = J \iff AP = PJ.$$

再设 $P = (\alpha_1, \alpha_2, \alpha_3)$, 其中 $\alpha_i \in \mathbb{R}^3$, 将其代入上式得

$$(A\alpha_1, A\alpha_2, A\alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & & \\ & 3 & 1 \\ & & 3 \end{pmatrix}.$$

化成方程组为

$$(A - I)\alpha_1 = 0,$$

$$(A - 3I)\alpha_2 = 0,$$

$$(A - 3I)\alpha_3 = \alpha_2.$$

因此解 (A-I)x = 0 得 $x = (-2k_1, 0, k_1)^T$, $\forall k_1 \in \mathbb{R}$. 故可取 $\alpha_1 = (-2, 0, 1)^T$. 解 (A-3I)x = 0 得 $x = (k_2, -k_2, 2k_2)^T$, $\forall k_2 \in \mathbb{R}$. 故可取 $\alpha_2 = (1, -1, 2)^T$,并将其代入 $(A-3I)x = \alpha_2$ 解得 $x = (k_3 + 1, -k_3, 2k_3)^T$, $\forall k_3 \in \mathbb{R}$. 故可取 $\alpha_3 = (2, -1, 2)^T$. 综上可知

$$P = \begin{pmatrix} -2 & 1 & 2 \\ 0 & -1 & -1 \\ 1 & 2 & 2 \end{pmatrix}.$$

命题 0 2

设 $n, m \in \mathbb{N}$, 计算 $J_n(0)X = XJ_m(0)$ 的解矩阵, 并证明 dim $\{X|J_n(0)X = XJ_m(0)\} = \min\{m, n\}$.

解 设 $X = (x_{ij})_{n \times m}$, 则

$$\begin{pmatrix} 0 & 1 & & & \\ & 0 & \ddots & & \\ & & \ddots & 1 & \\ & & & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ x_{21} & x_{22} & \cdots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nm} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ x_{21} & x_{22} & \cdots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nm} \end{pmatrix} \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & \ddots & 1 \\ & & & & \ddots & 1 \\ & & & & & \ddots & 1 \\ & & & & & \ddots & 1 \\ & & & & & & \ddots & 1 \\ & & & & & & \ddots & 1 \\ & & & & & & \ddots & 1 \\ & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & & \ddots & 1 \\ & & & & & & & & \ddots & 1 \\ & & & & & & & \ddots & 1 \\ & & & & & & & & \ddots & 1 \\ & & & & & & & & \ddots & 1 \\ & & & & & & & & & \ddots & 1 \\ & & & & & & & & & & \ddots & 1 \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & &$$

比较上述等式两边矩阵的各个元素可得

$$x_{i1} = x_{n,i} = 0, \forall i \in \{2, \dots, n\}, j \in \{1, \dots, m-1\};$$

9

$$x_{ij} = x_{i-1,j-1}, \forall i \in \{2, \cdots, n\}, j \in \{2, \cdots, m\}.$$

故原方程的解矩阵为

(i) 当 n = m 时,

$$X = \begin{pmatrix} x_{nn} & x_{n-1,n} & \cdots & x_{2n} & x_{1n} \\ & x_{nn} & x_{n-1,n} & \cdots & x_{2n} \\ & & \ddots & \ddots & \vdots \\ & & & x_{nn} & x_{n-1,n} \\ & & & & x_{nn} \end{pmatrix}.$$

此时原方程组的解空间维数为n=m.

(ii) 当 n > m 时,

$$X = \begin{pmatrix} x_{mm} & x_{m-1,m} & \cdots & x_{2m} & x_{1m} \\ & x_{mm} & x_{m-1,m} & \cdots & x_{2m} \\ & & \ddots & \ddots & \vdots \\ & & & x_{mm} & x_{m-1,m} \\ & & & & x_{mm} \end{pmatrix}.$$

此时原方程组的解空间维数为 m.

(iii) 当 n < m 时,

$$X = \begin{pmatrix} x_{nm} & x_{n-1,m} & \cdots & x_{2m} & x_{1m} \\ x_{nm} & x_{n-1,m} & \cdots & x_{2m} \\ & \ddots & \ddots & \vdots \\ & & x_{nm} & x_{n-1,m} \\ & & & x_{nm} \end{pmatrix}.$$

此时原方程组的解空间维数为 n.

综上可知, 原方程组的解空间维数为 min {n, m}, 即

$$\dim \{X|J_n(0) X = XJ_m(0)\} = \min \{m, n\}.$$

推论 0.6

设 $n, m \in \mathbb{N}$, 计算 $J_n(\lambda)X = XJ_m(\lambda)$ 的解矩阵, 并证明 $\dim \{X|J_n(\lambda)X = XJ_m(\lambda)\} = \min \{m, n\}$.

解 设 $X = (x_{ij})$, 注意到

$$J_{n}(\lambda) X = XJ_{m}(\lambda) \Longleftrightarrow [\lambda I_{n} + J_{n}(0)] X = X [\lambda I_{m} + J_{m}(0)]$$

$$\iff \lambda X + J_{n}(0) X = XJ_{m}(0) + \lambda X \Longleftrightarrow J_{n}(0) X = XJ_{m}(0).$$

故由命题??可知原矩阵方程的解为

(i) 当 n = m 时,

$$X = \begin{pmatrix} x_{nn} & x_{n-1,n} & \cdots & x_{2n} & x_{1n} \\ & x_{nn} & x_{n-1,n} & \cdots & x_{2n} \\ & & \ddots & \ddots & \vdots \\ & & & x_{nn} & x_{n-1,n} \\ & & & & x_{nn} \end{pmatrix}.$$

10

此时原方程组的解空间维数为n=m.

(ii) 当 n > m 时,

$$X = \begin{pmatrix} x_{mm} & x_{m-1,m} & \cdots & x_{2m} & x_{1m} \\ & x_{mm} & x_{m-1,m} & \cdots & x_{2m} \\ & & \ddots & \ddots & \vdots \\ & & & x_{mm} & x_{m-1,m} \\ & & & & x_{mm} \end{pmatrix}.$$

此时原方程组的解空间维数为 m.

(iii) 当 n < m 时,

$$X = \begin{pmatrix} x_{nm} & x_{n-1,m} & \cdots & x_{2m} & x_{1m} \\ x_{nm} & x_{n-1,m} & \cdots & x_{2m} \\ & \ddots & \ddots & \vdots \\ & & x_{nm} & x_{n-1,m} \\ & & & x_{nm} \end{pmatrix}$$

此时原方程组的解空间维数为 n.

综上可知, 原方程组的解空间维数为 min {n, m}, 即

$$\dim \{X|J_n(\lambda) X = XJ_m(\lambda)\} = \min \{m, n\}.$$