GRAVITATIONAL LENSING

3 - DEFLECTION ANGLE (CONTINUATION) - LENS EQUATION

Massimo Meneghetti AA 2018-2019

GENERALISATION OF THE DEFLECTION ANGLE FORMULA

Using "Thin screen approximation"

GENERALISATION OF THE DEFLECTION ANGLE FORMULA

Using "Thin screen approximation"

GENERALISATION OF THE DEFLECTION ANGLE FORMULA

Using "Thin screen approximation"

DEFLECTION BY AN ENSEMBLE OF POINT MASSES

- Structure formation is often studied using numerical simulations
- ➤ Galaxies, galaxy clusters, etc. are described by ensembles of particles
- ➤ The calculation of the deflection angle by direct summation of all contributions from each particle has a computational cost O(N²)

DEFLECTION BY AN ENSEMBLE OF POINT MASSES

- Structure formation is often studied using numerical simulations
- ➤ Galaxies, galaxy clusters, etc. are described by ensembles of particles
- ➤ The calculation of the deflection angle by direct summation of all contributions from each particle has a computational cost O(N²)

DEFLECTION BY AN EXTENDED MASS DISTRIBUTION

This can be easily generalized to the case of a continuum distribution of mass

$$\Sigma(\overrightarrow{\xi}) = \int \rho(\overrightarrow{\xi}, z) dz$$

$$d\hat{\overrightarrow{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \frac{\vec{\xi} - \vec{\xi}'}{|\vec{\xi} - \vec{\xi}'|^2} \Sigma(\vec{\xi}') d\xi'^2$$

$$\hat{\overrightarrow{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{\vec{\xi} - \vec{\xi'}}{|\vec{\xi} - \vec{\xi'}|^2} \Sigma(\vec{\xi'}) d\xi'^2$$

IS ANY DEFLECTION RIGHT?

Some rays are deflected in the right way, others are not!

IS ANY DEFLECTION RIGHT?

Imagine you are sitting here $ec{e}_{in}$ (0,0)

Some rays are deflected in the right way, others are not!

IS ANY DEFLECTION RIGHT?

Imagine you are sitting here \vec{e}_{in} \vec{e}_{out} (0,0)

Some rays are deflected in the right way, others are not!

$$D_{
m L}$$
 $D_{
m LS}$ $D_{
m S}$ $D_{
m S}$

$$D_{
m L}$$
 $D_{
m LS}$ $D_{
m LS}$ $D_{
m LS}$ $D_{
m LS}$

$$D_{LS}$$

$$\eta' = D_{S}\theta \qquad \eta = D_{S}\beta \qquad \hat{\eta} = D_{LS}\hat{\alpha}(\theta)$$

$$D_{S}\theta = D_{S}\beta + D_{LS}\hat{\alpha}(\theta) \Rightarrow \beta = \theta - \frac{D_{LS}}{D_{S}}\hat{\alpha}(\theta)$$

Remember that:

- 1) positions on the lens and source planes are defined by vectors
- 2) the deflection angle itself is a vector

$$\overrightarrow{\theta} = \frac{\overrightarrow{\xi}}{D_L} \qquad \overrightarrow{\beta} = \frac{\overrightarrow{\eta}}{D_S}$$

$$\overrightarrow{\beta} = \overrightarrow{\theta} - \frac{D_{LS}}{D_S} \hat{\overrightarrow{\alpha}} (\overrightarrow{\theta}) = \overrightarrow{\theta} - \overrightarrow{\alpha} (\overrightarrow{\theta})$$

DIMENSIONLESS NOTATION

Quite often, an alternative way is chosen to write the lens equation: the so called "dimension-less" notation.

This implies the choice of a reference angle (or length) to scale the source and image positions and the deflection angle:

$$\overrightarrow{\theta} = \frac{\overrightarrow{\xi}}{D_L} \qquad \overrightarrow{\beta} = \frac{\overrightarrow{\eta}}{D_S} \qquad \overrightarrow{\alpha}(\overrightarrow{\theta}) = \frac{D_{LS}}{D_S} \hat{\overrightarrow{\alpha}}(\overrightarrow{\theta}) \qquad \overrightarrow{\beta} = \overrightarrow{\theta} - \frac{D_{LS}}{D_S} \hat{\overrightarrow{\alpha}}(\overrightarrow{\theta}) = \overrightarrow{\theta} - \overrightarrow{\alpha}(\overrightarrow{\theta})$$

$$\theta_0 = \frac{\xi_0}{D_L} = \frac{\eta_0}{D_S}$$

the reference angle subtends the reference scales on the lens and on the source planes

$$\frac{\overrightarrow{\theta}}{\theta_0} = \frac{\overrightarrow{\beta}}{\theta_0} - \frac{\overrightarrow{\alpha}(\overrightarrow{\theta})}{\theta_0}$$

dividing both members of the lens equation by the reference angle...

$$\overrightarrow{y} = \overrightarrow{x} - \overrightarrow{\alpha}(\overrightarrow{x})$$

$$\overrightarrow{\alpha}(\overrightarrow{x}) = \frac{\overrightarrow{\alpha}(\overrightarrow{\theta})}{\theta_0} = \frac{D_L}{\xi_0} \overrightarrow{\alpha}(\overrightarrow{\theta})$$

LENSING POTENTIAL

$$\hat{\vec{\alpha}} = \frac{2}{c^2} \int_{-\infty}^{+\infty} \vec{\nabla}_{\perp} \Phi dz$$

This formula tells us that the deflection is caused by the projection of the Newtonian gravitational potential on the lens plane.

$$\hat{\Psi}(\vec{\theta}) = \frac{D_{LS}}{D_{L}D_{S}} \frac{2}{c^{2}} \int \Phi(D_{L}\vec{\theta},z) dz$$
 We introduce the effective lensing potential

LENSING POTENTIAL

$$\hat{\vec{\alpha}} = \frac{2}{c^2} \int_{-\infty}^{+\infty} \vec{\nabla}_{\perp} \Phi dz$$

This formula tells us that the deflection is caused by the projection of the Newtonian gravitational potential on the lens plane.

$$\hat{\Psi}(\vec{\theta}) = \frac{D_{\rm LS}}{D_{\rm L}D_{\rm S}} \frac{2}{c^2} \int \Phi(D_{\rm L}\vec{\theta},z) {\rm d}z \quad \text{We introduce the effective lensing potential}$$

the lensing potential is the projection of the 3D potential

LENSING POTENTIAL

$$\hat{\vec{\alpha}} = \frac{2}{c^2} \int_{-\infty}^{+\infty} \vec{\nabla}_{\perp} \Phi dz$$

This formula tells us that the deflection is caused by the projection of the Newtonian gravitational potential on the lens plane.

the lensing potential scales with distances

$$\vec{\nabla}_{\theta} \hat{\Psi}(\vec{\theta}) = \vec{\alpha}(\vec{\theta})$$

The reduced deflection angle is the gradient of the lensing potential

$$\begin{split} \vec{\nabla}_{\theta} \hat{\Psi}(\vec{\theta}) &= D_{L} \vec{\nabla}_{\perp} \hat{\Psi} = \vec{\nabla}_{\perp} \left(\frac{D_{LS}}{D_{S}} \frac{2}{c^{2}} \int \hat{\Phi}(\vec{\theta}, z) dz \right) \\ &= \frac{D_{LS}}{D_{S}} \frac{2}{c^{2}} \int \vec{\nabla}_{\perp} \Phi(\vec{\theta}, z) dz \\ &= \vec{\alpha}(\vec{\theta}) \end{split}$$

NOTE THAT...

.....

... the same result holds if we use the dimension-less notation:

$$ec{
abla}_x = rac{\xi_0}{D_{
m L}} ec{
abla}_{ heta}$$

$$ec{
abla}_{x}\hat{\Psi}=rac{\xi_{0}}{D_{\mathrm{L}}}ec{
abla}_{ heta}\hat{\Psi}=rac{\xi_{0}}{D_{\mathrm{L}}}ec{lpha}$$

By multiplying both sides of the equation by $D_{\rm L}^2/\xi_0^2$ we obtain:

$$\frac{D_{\mathrm{L}}^2}{\xi_0^2} \vec{\nabla}_x \hat{\Psi} = \frac{D_{\mathrm{L}}}{\xi_0} \vec{\alpha} \qquad \qquad \Psi = \frac{D_{\mathrm{L}}^2}{\xi_0^2} \hat{\Psi} \qquad \qquad \vec{\nabla}_x \Psi(\vec{x}) = \vec{\alpha}(\vec{x})$$

We have introduced the dimensionless counter-part of the lensing potential!

$$\triangle_{\theta} \hat{\Psi}(\vec{\theta}) = 2\kappa(\vec{\theta})$$

The laplacian of the lensing potential is twice the convergence:

$$\kappa(\vec{\theta}) \equiv \frac{\Sigma(\vec{\theta})}{\Sigma_{\rm cr}}$$
 with $\Sigma_{\rm cr} = \frac{c^2}{4\pi G} \frac{D_{\rm S}}{D_{\rm L}D_{\rm LS}}$

$$\triangle_{\theta} \hat{\Psi}(\vec{\theta}) = 2\kappa(\vec{\theta})$$

The laplacian of the lensing potential is twice the convergence:

$$\kappa(\vec{\theta}) \equiv \frac{\Sigma(\vec{\theta})}{\Sigma_{cr}}$$
 with $\Sigma_{cr} = \frac{c^2}{4\pi G} \frac{D_S}{D_L D_{LS}}$
$$[G] = L^3/M/T^2$$

$$[c^2] = L^2/T^2$$

$$[D_X] = L$$

$$\triangle_{\theta} \hat{\Psi}(\vec{\theta}) = 2\kappa(\vec{\theta})$$

The laplacian of the lensing potential is twice the convergence:

$$\kappa(ec{ heta}) \equiv rac{\Sigma(ec{ heta})}{\Sigma_{cr}}$$
 with $\Sigma_{cr} = rac{c^2}{4\pi G} rac{D_{S}}{D_{L}D_{LS}}$
$$[G] = L^3/M/T^2$$

$$[c^2] = L^2/T^2$$

$$[D_X] = L$$

The critical surface density is a characteristic density to distinguish between strong and weak gravitational lenses!

$$\triangle_{\theta} \hat{\Psi}(\vec{\theta}) = 2\kappa(\vec{\theta})$$

The laplacian of the lensing potential is twice the convergence:

We start from the poisson equation

$$\triangle \Phi = 4\pi G\rho$$

The surface mass density is then:

$$\Sigma(\vec{\theta}) = \frac{1}{4\pi G} \int_{-\infty}^{+\infty} \triangle \Phi dz$$

$$\kappa(\vec{\theta}) = \frac{1}{c^2} \frac{D_{\rm L}D_{\rm LS}}{D_{\rm S}} \int_{-\infty}^{+\infty} \triangle \Phi dz$$

Let's introduce the Laplacian operator on the lens plane:

$$\triangle_{\theta} = \frac{\partial^{2}}{\partial \theta_{1}^{2}} + \frac{\partial^{2}}{\partial \theta_{2}^{2}} = D_{L}^{2} \left(\frac{\partial^{2}}{\partial \xi_{1}^{2}} + \frac{\partial^{2}}{\partial \xi_{2}^{2}} \right) = D_{L}^{2} \left(\triangle - \frac{\partial^{2}}{\partial z^{2}} \right)$$

Then:

$$\triangle \Phi = \frac{1}{D_{\rm L}^2} \triangle_{\theta} \Phi + \frac{\partial^2 \Phi}{\partial z^2}$$

With this substitution:

$$\kappa(\vec{\theta}) = \frac{1}{c^2} \frac{D_{\rm LS}}{D_{\rm S} D_{\rm L}} \left[\triangle_{\theta} \int_{-\infty}^{+\infty} \Phi dz + D_{\rm L}^2 \int_{-\infty}^{+\infty} \frac{\partial^2 \Phi}{\partial z^2} dz \right]$$

where the second term in the sum is zero, if the lens if gravitationally bound!

Given the definition of lensing potential:

$$\kappa(\boldsymbol{\theta}) = \frac{1}{2} \triangle_{\boldsymbol{\theta}} \hat{\Psi}$$

Note that:

$$riangle_{m{ heta}} = D_{
m L}^2 riangle_{m{\xi}} = rac{D_{
m L}^2}{m{\xi}_0^2} riangle_{x}$$

$$\triangle_{\theta} = D_{\mathrm{L}}^2 \triangle_{\xi} = \frac{D_{\mathrm{L}}^2}{\xi_0^2} \triangle_x \qquad \kappa(\theta) = \frac{1}{2} \triangle_{\theta} \hat{\Psi} = \frac{1}{2} \frac{\xi_0^2}{D_{\mathrm{L}}^2} \triangle_{\theta} \Psi$$

$$\kappa(\vec{x}) = \frac{1}{2} \triangle_x \Psi(\vec{x})$$

DIMENSIONLESS NOTATION

From

$$\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} - \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^2} d^2\xi'$$

we obtain

$$\vec{\alpha}(\vec{x}) = \frac{1}{\pi} \int_{\mathbf{R}^2} d^2 x' \kappa(\vec{x}') \frac{\vec{x} - \vec{x}'}{|\vec{x} - \vec{x}'|}$$

Using

$$\vec{\nabla}_x \Psi(\vec{x}) = \vec{\alpha}(\vec{x})$$

$$\Psi(\vec{x}) = \frac{1}{\pi} \int_{\mathbf{R}^2} \kappa(\vec{x}') \ln |\vec{x} - \vec{x}'| d^2 x'$$

DIMENSIONLESS NOTATION

From

$$\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} - \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^2} d^2\xi'$$

we obtain

$$\vec{\alpha}(\vec{x}) = \frac{1}{\pi} \int_{\mathbf{R}^2} d^2 x' \kappa(\vec{x}') \frac{\vec{x} - \vec{x}'}{|\vec{x} - \vec{x}'|}$$

Using

$$\vec{\nabla}_x \Psi(\vec{x}) = \vec{\alpha}(\vec{x})$$

Convolution kernels

$$\Psi(\vec{x}) = \frac{1}{\pi} \int_{\mathbf{R}^2} \kappa(\vec{x}') \ln |\vec{x} - \vec{x}'| \mathrm{d}^2 x'$$