Algoritmos de Procura e de Ordenação I

27/09/2023

Sumário

- Recap
- Ordens de complexidade
- Linear Search Procura sequencial num array não ordenado
- Linear Search Procura sequencial num array ordenado
- Binary Search Procura binária
- Sugestão de leitura

Recapitulação

Best case, Worst case, Average Case

$$B(n) = \min_{I \in D_n} t(I) \qquad W(n) = \max_{I \in D_n} t(I)$$

$$A(n) = \sum_{I \in D_n} p(I) \times t(I)$$

Procura do maior elemento

```
int searchMax( int a[], int n ) {
      int indexMax = 0;
      for( int i=1; i<n; i++ ) {
            if( a[i] > a[indexMax] ) {
                                     (n-1) comps.
                  indexMax = i;
                                          Atribuições a indexMax:
                                           B(n) = 1
      return indexMax;
                                          W(n) = n
                                          A(n) \approx n/2
```

Notações habituais

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1}{2} N^2$ $10 N^2$ $5 N^2 + 22 N \log N + 3N$:	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$		develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1/2}{N^2}$ N^5 $N^3 + 22 N \log N + 3 N$:	develop lower bounds

[Sedgewick & Wayne]

Fizeram?

•
$$T(n) = 10 n^2 + 100 n - 23$$

$$T(n)$$
? $O(n^2)$

$$T(n)$$
? $\Omega(n^2)$

$$T(n)$$
? $\Omega(n^3)$

$$T(n)$$
 ? $\Omega(n)$

$$T(n) ? \Theta(n^2)$$

$$T(n) ? \Theta(n^3)$$

$$T(n) ? \Theta(n)$$

Ordens de Complexidade

Ordens de Complexidade/Classes de Eficiência

- \bullet O(1): constante
 - Que algoritmos?
- O(log n) : logarítmico
 - E.g., diminuir-para-reinar
- O(n) : linear
 - Processar todos os elementos de um array, uma lista, etc.
- O(n log n) : n-log-n
 - E.g., dividir-para-reinar

Ordens de Complexidade/Classes de Eficiência

- O(n^k): polinomial (quadrático, cúbico, etc.)
 - k ciclos encastelados
- O(2ⁿ): exponencial
 - Gerar todos os subconjuntos de um conjunto com n elementos
- O(n!) : fatorial
 - Gerar todas as permutações de um conjunto com n elementos

Ordens de Complexidade/Classes de Eficiência

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Exemplo – Contagem de operações

n	1	2	4	8	16	32	64	128	256
M(n)	1	3	10	36	136	528	2080	8256	32896

- M(n) : número de operações efetuadas
- Ordem de complexidade ?
- Expressão para o número de operações ?

Outro exemplo

n	1	2	3	4	5	6	7	8	9	10
M(n)	1	3	7	15	31	63	127	255	511	1023

- M(n) : número de operações efetuadas
- Ordem de complexidade ?
- Expressão para o número de operações ?

Tempo de execução – Estimativas

order of growth of time					a few hours for input of size N
description	function	2x factor	10x factor	predicted time for 10N	predicted time for 10 N on a 10x faster computer
linear	N	2	10	a day	a few hours
linearithmic	$N \log N$	2	10	a day	a few hours
quadratic	N^2	4	100	a few weeks	a day
cubic	N^3	8	1,000	several months	a few weeks
exponential	2^N	2^N	2 ^{9N}	never	never

Predictions on the basis of order-of-growth function

[Sedgewick & Wayne]

Linear Search — Array não ordenado

Procura sequencial – Comparações?

```
int search( int a[], int n, int x ) {
       for( int i=0; i<n; i++ ) {
              if( a[i] == x ) {
                                                    B(n) = 1
                                                    W(n) = n
                      return i;
                                                    A(n) = ?
       return -1;
```

Caso Médio – Abordagem estruturada

- Estabelecer um cenário
- Identificar a operação básica a contar
- Identificar os casos/configurações possíveis
 - Quantos são ?
- Contar o nº de operações realizadas para cada um dos casos
- Atribuir uma probabilidade a cada um dos casos possíveis
- Construir uma tabela
- Calcular o nº de operações para o caso médio

1 – Valor procurado pertence ao array

- O valor procurado pertence ao array
- Contar o número de comparações necessárias para o encontrar
- Valor encontrado na 1º posição, ou na 2º posição, ou ...
- Necessária 1 comparação, ou 2 comparações, ou ...
- Situações equiprováveis
- Tabela ?

1 – Elemento procurado pertence ao array

Casos possíveis		Nº de comparações	Probabilidade
I ₀	É o 1º elemento	1	1/n
l ₁	É o 2º elemento	2	1/n
l ₂	É o 3º elemento	3	1/n
I _{n-1}	É o último elemento	n	1/n

$$A(n) = \sum_{i=0}^{n-1} \frac{1}{n} \times (i+1) = \frac{1}{n} \sum_{i=0}^{n-1} (i+1) = \frac{1}{n} \times \frac{n \times (n+1)}{2} = \frac{n+1}{2} \approx \frac{n}{2}$$

2 – Valor procurado pode não pertencer!

- O valor procurado pertence ao array com probabilidade p
- O valor procurado não pertence ao array com probabilidade (1 p)
- Quantos casos são ?
- Contar o número de comparações para cada um dos casos
- Valor encontrado na 1º posição, ou na 2º posição, ou ...
- Necessária 1 comparação, ou 2 comparações, ou ...
- Que probabilidade atribuir a cada caso ?
- Tabela?

2 – Valor procurado pode não pertencer!

Casos possíveis		Nº de comparações	Probabilidade
I ₀	É o 1º elemento	1	p/n
I ₁	É o 2º elemento	2	p/n
I ₂	É o 3º elemento	3	p/n
I _{n-1}	É o último elemento	n	p/n
I _n	Não encontrado!	n	(1 – p)

$$A(n) = \sum_{i=0}^{n-1} \frac{p}{n} \times (i+1) + (1-p) \times n = \frac{p \times (n+1)}{2} + (1-p) \times n$$

2 – Valor procurado pode não pertencer!

$$A(n) = \frac{p \times (n+1)}{2} + (1-p) \times n$$

- Se p = 1, então $A(n) = (n + 1) / 2 \approx n / 2$
- Se p = 50%, então A(n) = $(n + 1) / 4 + n / 2 \approx 3 \times n / 4$
- Se p = 25%, então A(n) = $(n + 1) / 8 + 3 \times n / 4 \approx 7 \times n / 8$

Linear Search — Array ordenado

Procura sequencial – Comparações?

```
int search( int a[], int n, int x ) {
       int stop = 0; int i;
       for( i=0; i<n; i++ ) {
               if( x <= a[i] ) {
                      stop = 1; break;
       if( stop && x == a[i] ) return i; // Ordem da conjunção !!
       return -1;
```

Melhor Caso e Pior Caso

Valor procurado pode pertencer ou não pertencer ao array

• B(n) = 2

- Quando?

- W(n) = (n + 1) Quando ?

Melhor Caso e Pior Caso

Valor procurado pode pertencer ou não pertencer ao array

• B(n) = 2

- Valor procurado é igual ao 1º elemento OU
- Valor procurado é menor do que o 1º elemento

- W(n) = (n + 1)
- Valor procurado é igual ao último elemento OU
- Valor procurado está entre o penúltimo e o último

Casos possíveis		Nº de comparações	Probabilidade
Sucesso 0	É o 1º elemento		
Sucesso 1	É o 2º elemento		
Sucesso (n – 1)	É o último elemento		
Insucesso 0	Menor do que o 1º		
Insucesso 1	Entre o 1º e o 2º		
Insucesso (n – 1)	Entre o penúltimo e o último		
Insucesso n	Maior do que o último		

• Quantos são os casos possíveis ? Quantas comparações em cada um ?

Casos possíveis		Nº de comparações	Probabilidade
Sucesso 0	É o 1º elemento	2	
Sucesso 1	É o 2º elemento	3	
Sucesso (n – 1)	É o último elemento	n + 1	
Insucesso 0	Menor do que o 1º	2	
Insucesso 1	Entre o 1º e o 2º	3	
Insucesso (n – 1)	Entre o penúltimo e o último	n + 1	
Insucesso n	Maior do que o último	n	

• Que probabilidade associar a cada caso possível?

Casos possíveis		Nº de comparações	Probabilidade
Sucesso 0	É o 1º elemento	2	1 / (2 n +1)
Sucesso 1	É o 2º elemento	3	1 / (2 n +1)
Sucesso (n – 1)	É o último elemento	n + 1	1 / (2 n +1)
Insucesso 0	Menor do que o 1º	2	1 / (2 n +1)
Insucesso 1	Entre o 1º e o 2º	3	1 / (2 n +1)
Insucesso (n – 1)	Entre o penúltimo e o último	n + 1	1 / (2 n +1)
Insucesso n	Maior do que o último	n	1 / (2 n +1)

$$A(n) = \frac{1}{2n+1} \left\{ \left(\sum_{i=0}^{n-1} (i+2) \right) + \left(\sum_{i=0}^{n-1} (i+2) \right) + n \right\}$$

$$A(n) = \frac{1}{2n+1} \left\{ \frac{n \times (n+3)}{2} + \frac{n \times (n+3)}{2} + n \right\}$$

$$A(n) \approx \frac{n}{2}$$

- Comparar com o cenário do array não ordenado
- É melhor ou pior ?

Tarefa 1

- Considerar uma probabilidade de 25% de o valor procurado pertencer ao array
- Calcular o nº de comparações associadas ao caso médio para este cenário

Binary Search — Array ordenado

	-	
0 1 2 3	4	J

- O valor 2 pertence ao array ?
- Qual é o primeiro elemento consultado ?

• O valor 2 pertence ao array?

0	1	2	3	4	5
2	4	6	8	10	12

0	1	2	3	4	5
2	4	6	8	10	12

O valor 2 pertence ao array ?

0 1 2 4

Qual é o próximo elemento consultado?

0	1	2	3	4	5
2	4	6	8	10	12

• O valor 2 pertence ao array?

0	1	2	3	4	5
2	4	6	8	10	12

2 4 Encontrado !!

0	1	2	3	4	5
2	4	6	8	10	12

0	1	2	3	4	5
2	4	6	8	10	12

0	1	2	3	4	5
2	4	6	8	10	12
			3	4	5
			8	10	12

• O valor 13 pertence ao array?

0	1	2	3	4	5
2	4	6	8	10	12
			3	4	5
			8	10	12

12

• O valor 13 pertence ao array?

0	1	2	3	4	5
2	4	6	8	10	12
			3	4	5
			8	10	12

5 **12**

Não encontrado!!

Árvore binária

 A representação gráfica como árvore binária auxilia a compreensão do funcionamento do algoritmo

Procura binária — Nº de iterações do ciclo ?

```
int binSearch( int a[], int n, int x ) {
       int left = 0; int right = n - 1;
       while( left <= right ) {
               int middle = (left + right) / 2;
               if(a[middle] == x) return middle;
               if(a[middle] > x) right = middle - 1;
               else left = middle + 1;
       return -1;
```

Tarefa 2

 Simule o funcionamento do algoritmo para arrays ordenados com um maior número de elementos

• Por exemplo, para n = 7 e n = 15

Tarefa 3

- Habitualmente expressa-se o esforço computacional do algoritmo de procura binária através do número de iterações do ciclo
- Melhor caso: Quando? Quantas iterações? Quantas comparações?
- Pior caso : Quando ? Quantas iterações ? Quantas comparações ?

Sugestão de leitura

Sugestão de leitura

- J. J. McConnell, Analysis of Algorithms, 1st Edition, 2001
 - Capítulo 2: secções 2.1, 2.2