Catastrophe Posts Genuinity Prediction

Shriya Sandilya

October 25, 2025

Problem Statement Understanding

Problem Statement

Catastrophe posts on social media Can be genuinely about catastrophes like

- Landslide
- Earthquake
- Fire etc.

Or they can be exaggerations and hyperboles to express some other sentiment

Example Posts

On plus side LOOK AT THE SKY LAST NIGHT IT WAS ABLAZE

Dataset

- 10,000 posts
- Hand-Classified as Genuine or Fake

id	text	location	keyword	target
a unique	the text of	the location	a particular	denotes
identifier for	the post	the post	keyword	whether
each post		was sent	from the	a post is
		from (may	post (may	about a real
		be blank)	be blank)	disaster (1)
		,	,	or not (0)

Table: Dataset Columns

Dataset Analysis

Null Values

Tran Tanacs			
column	percentage		
id	0.00		
text	0.00		
location	33.27		
keyword	0.80		
target	0.00		

Class Distribution

class	count	percentage			
0	4342	57.03			
1	3271	42.97			

Approach and Methodology

Tech Stack Used

Languages & Libraries

- Python
- NumPy, Pandas, Scikit-learn
- NLTK, Emoji
- Streamlit for deployment

Tools & Environment

- Jupyter Notebook for development
- Overleaf for presentation
- Git + GitHub for version control
- Joblib for model persistence

Approach and Methodology

O Data Preprocessing

- Removed URLs, mentions, hashtags, emojis.
- Lowercased text, removed stopwords, applied stemming.

Feature Engineering

- TF-IDF vectorization of cleaned text (max_features=8000, bigrams included).
- Added 3 numeric features:
 - Character count
 - Word count
 - Punctuation count

Feature Combination

 Combined sparse TF-IDF and scaled numeric features using scipy.hstack().

Model Training

- Logistic Regression with 5-fold cross-validation.
- Tuned using GridSearchCV for regularization strength. (Not used in end)

Evaluation Metrics

Accuracy, F1-score.

Model Selection

Compared 4 NLP Focused ML Models

- Logistic Regression
- Naive Bayes
- Random Forest
- XGBoost
- SVM

Compared their Accuracy and F1 Scores

```
Model Comparison:

Model SVM
Accuracy 0.820092
F1-Score 0.775410

0 Logistic Regression
0.821405
0.774461

1 Naive Bayes
0.815496
0.756288

2 Random Forest
0.798424
0.752220

3 XGBoost
0.787262
0.717277
```

Model Selection

Tuned Hyperparameters

- Logistic Regression
 - Best params:
 - solver: lbfgs
 - C: 2
 - Evaluated with tuned parameters
 - Worse Performance
 - Accuracy:
 - F1 Score:
- XGBoost
 - Best params:
 - subsample: 0.8
 - n estimators: 400
 - max depth: 4
 - learning rate: 0.1
 - colsample by tree: 0.8

Model Selection

Ensemble Models

Soft Voting Models

Hyperparameter tuned Logistic Regression and XGBoost

- Logistic Regression + Naive Bayes + Random Forest + XGBoost
- Logistic Regression + Naive Bayes
- Logistic Regression + XGBoost

Compared their Accuracy and F1 Scores

Model	Accuracy	F1
LR + NB + RF + XG	0.8221	0.7662
LR + NB	0.8162	0.7701
LR + NB	0.8050	0.7607

Nothing exceeded **Logistic Regression** or **SVM** significantly Went ahead with Logistic Regression

Project Demo

Project Demo

- Deployed using Streamlit.
- Accepts tweet input from user.
- Cleans, vectorizes, and predicts using the trained model.

Example:

Input: "Earthquake in Delhi, buildings shaking!" **Output:** Real Disaster Tweet (Confidence: 0.71)

Challenges and Learnings

Challenges

- Figuring out what can be visualised
- Figuring out numeric features
- Trying to improve Accuracy and F1 Score
- Data Augmentation Could not accomplish properly
- Trying DL techniques
- Feature fit issues in deployment

Learnings

- Practical usage of NLP tools like TF-IDF and text cleaning function
- Learned how to use Ensemble Models

References and Links

- References
 - Kaggle NLP Getting Started
 - NLTK Documentation
 - Scikit-Learn: TF-IDF
 - Scikit-Learn: Logistic Regression
 - Streamlit Deployment
- Links
 - Deployed Streamlit App
 - Github Repository

Thank You