Лабораторная работа 1 «Обращение матрицы с измененным столбцом»

Пусть имеется обратимая квадратная матрица A порядка n вместе со своей обратной матрицей A^{-1} . Пусть также задан вектор-столбец x высоты n. В матрице A заменяется i-й столбец на столбец x. В результате получается матрица \overline{A} . Матрица \overline{A} отличается от матрицы A только одним столбцом. Задача состоит в том, чтобы

- a) выяснить является ли матрица \overline{A} обратимой;
- δ) если матрица \overline{A} обратима, то найти матрицу $(\overline{A})^{-1}$, обратную к ней.

Для решения этой задачи можно использовать стандартные методы обращения матрицы, игнорируя тот факт, что обращаемая матрица \overline{A} не сильно отличается от матрицы A, для которой обратная матрица уже известна. Существует более эффективный метод решить задачу, который существенно использует наличие дополнительных данных. Метод состоит в следующем:

- ШАГ 1. Находим $\ell=A^{-1}x$. Если $\ell_i=0$, то матрица \overline{A} необратима и метод завершает свою работу; в противном случае матрица \overline{A} обратима и мы переходим на следующий шаг.
- Шаг 2. Формируем вектор $\widetilde{\ell}$, который получается из вектора ℓ заменой i-го элемента на -1.
 - ШАГ 3. Находим $\hat{\ell} = -\frac{1}{\ell_i} \tilde{\ell}$.
- Шаг 4. Формируем матрицу Q, которая получается из единичной матрицы порядка n заменой i-го столбца на столбец $\hat{\ell}$.
 - Шаг 5. Находим $(\overline{A})^{-1} = QA^{-1}$.

Шаги 1-4 выполняются за время $O(n^2)$. На шаге 5 умножаются две квадратные матрицы порядка n. Умножение двух таких матриц «по определению» занимает время $O(n^3)$. Матрица Q разреженная и имеет простую структуру. Это позволяет реализовать шаг 5 таким образом, чтобы его время работы было $O(n^2)$. Каждая строка матрицы Q содержит не более двух ненулевых элементов. В j-й строке матрицы Q один из ненулевых элементов располагается на j-й позиции, а другой элемент, если он есть, — на i-ой позиции. Таким образом, для того, чтобы умножить j-ую строку матрицы Q на k-ый столбец матрицы A^{-1} достаточно умножить i-ый и j-ый элементы i-ой строки соответственно на i-ый и i-ый элементы i-ой строки соответствения сложить. В результате получим элемент матрицы $(\overline{A})^{-1}$, стоящий на пересечении i-ой строки и i-го столбца. Для нахождения одного элемента матрицы $(\overline{A})^{-1}$ мы совершаем константное число арифметических операций (а именно, два умножения и одно сложение). Для вычисления всех i0 элементов матрицы $(\overline{A})^{-1}$ нам понадобится совершить $O(n^2)$ арифметических операций.

Требуется программно реализовать этот алгоритм обращения матрицы \overline{A} . Рассмотрим пример.

Пусть

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad x = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

В матрице A заменим третий столбец (i=3) на столбец x. В результате получим матрицу

$$\overline{A} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Требуется определить обратима матрица \overline{A} и в случае положительного ответа найти для нее обратную матрицу $(\overline{A})^{-1}$.

Находим вектор

$$\ell = A^{-1}x = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Поскольку $\ell_3=1\neq 0$, то матрица \overline{A} обратима.

В копии вектора ℓ заменим третий элемент на -1

$$\widetilde{\ell} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Находим

$$\widehat{\ell} = -\frac{1}{\ell_3}\widetilde{\ell} = -\frac{1}{1} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

Заменим в единичной матрице порядка три третий столбец на столбец $\widehat{\ell}$

$$Q = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Наконец, находим матрицу обратную к матрице \overline{A}

$$(\overline{A})^{-1} = QA^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$