

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

Matemáticas I (MA-1111) Septiembre-Diciembre 2007

Nombre:	
Carné:	Sección:

2^{do} Examen Parcial (35 %) Duración: 1h 50min Tipo F1

Justifique todas sus respuestas

Pregunta 1. Calcule los siguientes límites y en caso que alguno no exista explique por qué no.

(a) (5 puntos)
$$\lim_{x\to 2} \frac{x^2 - |x-2| - 4}{|x-2|}$$

(b) (4 puntos)
$$\lim_{x\to 0} \frac{\tan(5x)}{\tan(3x)}$$

(c) (5 puntos)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + 2}}{4x + 3}$$

Pregunta 2. (10 puntos) Sean $a, b \in \mathbb{R}$ dos constantes. Sea

$$f(x) = \begin{cases} \frac{1-x^2}{x+1} & \text{si } x < -1\\ ax + b & \text{si } -1 \le x \le 0\\ 1 - \cos^2(x) - x^2 & \text{si } x > 0 \end{cases}$$

Encuentre los valores de las constantes a y b para los cuales f es continua en x = -1 y x = 0.

Pregunta 3. Sea f(x) = x - [x] en donde $[\cdot]$ representa la función parte entera. Es decir, [x] representa el mayor número entero menor o igual a x.

- (a) (2 puntos) Grafique la función f.
- (b) (2 puntos) Calcule para $a \in \mathbb{Z}$, $\lim_{x \to a^+} f(x)$ y $\lim_{x \to a^-} f(x)$. Justifique su respuesta.
- (c) (1 puntos) Encuentre todos los valores de $a \in \mathbb{R}$ para los cuales $\lim_{x \to a} f(x)$ existe.

Pregunta 4. (6 puntos) Demuestre que la ecuación $x \tan(x) = 1 - x$ tiene al menos una solución en los números reales.

Soluciones

1) (a) Por un lado,

$$\lim_{x \to 2^{+}} \frac{x^{2} - |x - 2| - 4}{|x - 2|} = \lim_{x \to 2^{+}} \frac{x^{2} - (x - 2) - 4}{(x - 2)} = \lim_{x \to 2^{+}} \frac{x^{2} - x - 2}{(x - 2)}$$
$$= \lim_{x \to 2^{+}} \frac{(x - 2)(x + 1)}{(x - 2)} = \lim_{x \to 2^{+}} (x + 1) = 3$$

Por otro lado,

$$\lim_{x \to 2^{-}} \frac{x^2 - |x - 2| - 4}{|x - 2|} = \lim_{x \to 2^{-}} \frac{x^2 - (2 - x) - 4}{(2 - x)} = \lim_{x \to 2^{-}} \frac{x^2 + x - 6}{(2 - x)}$$
$$= \lim_{x \to 2^{-}} \frac{(x - 2)(x + 3)}{(2 - x)} = \lim_{x \to 2^{-}} \frac{(x - 2)(x + 3)}{-(x - 2)}$$
$$= -\lim_{x \to 2^{-}} (x + 3) = -5$$

Por lo tanto, $\lim_{x\to 2} \frac{x^2-|x-2|-4}{|x-2|}$ no existe pues los límites laterales son diferentes.

(b) Sea $L = \lim_{x\to 0} \frac{\tan(5x)}{\tan(3x)}$

$$L = \lim_{x \to 0} \frac{\frac{\sin(5x)}{\cos(5x)}}{\frac{\sin(3x)}{\cos(3x)}} = \frac{\sin(5x)}{\sin(3x)} \frac{\cos(3x)}{\cos(5x)} = \lim_{x \to 0} \frac{\sin(5x)}{\sin(3x)} \lim_{x \to 0} \frac{\cos(3x)}{\cos(5x)}$$
$$= \lim_{x \to 0} \frac{\frac{\sin(5x)}{\sin(3x)}}{\frac{5 \cdot 3x}{5 \cdot 3x}} = \frac{\frac{1}{3} \lim_{x \to 0} \frac{\sin(5x)}{\frac{5x}{3x}}}{\frac{1}{5} \lim_{x \to 0} \frac{\sin(3x)}{3x}} = \frac{5}{3}.$$

(c)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + 2}}{4x + 3} = \lim_{x \to -\infty} \frac{\frac{1}{x}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \frac{\lim_{x \to -\infty} \frac{-1}{|x|}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x^2}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{1}{x}}\sqrt{9x^2 + 2}}{\frac{1}{x}(4x + 3$$

2) Tenemos que elegir a y b para que f sea continua en x = -1 y x = 0. Queremos que $f(c) = \lim_{x \to c} f(x)$ para estos dos puntos. Trabajamos primero con x = -1. Tenemos que

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{1 - x^{2}}{x + 1} = \lim_{x \to -1^{-}} \frac{(1 - x)(1 + x)}{x + 1} = \lim_{x \to -1^{-}} (1 - x) = 2,$$

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} ax + b = -a + b$$

y f(-1) = -a + b, tenemos por lo tanto que

$$-a+b=2. (1)$$

Ahora trabajamos con x = 0, tenemos que f(0) = b,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} ax + b = -a + b = b,$$

У

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 1 - \cos^2(x) - x^2 = 1 - \cos^2(0) - 0^2 = 0$$

Por lo tanto b=0, sustituyendo esto en la ecuación (1) obtenemos que a=-2.

3) (a) Grafica de f

(b) Tenemos que

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} (x - [x]) = \lim_{x \to a^+} (x - a) = 0$$
$$\lim_{x \to a^-} f(x) = \lim_{x \to a^-} (x - [x]) = \lim_{x \to a^-} (x - (a - 1)) = 1$$

(c) Como vimos en la parte anterior, $\lim_{x\to a} f(x)$ no existe cuando $a\in\mathbb{Z}$ en vista que los límites laterales son diferentes. Si tomamos $a\in\mathbb{R}\setminus\mathbb{Z}$, entonces:

$$\lim_{x \to a} f(x) = \lim_{x \to a} (x - [x]) = a - [a].$$

4) La ecuación

$$x\tan(x) = 1 - x$$

es equivalente a

$$x\tan(x) - 1 + x = 0. (2)$$

Definimos $f(x) = x \tan(x) - 1 + x$. Evaluamos f en x = 0 y $x = \frac{\pi}{4}$. Entonces

$$f(0) = 0\tan(0) - 1 + 0 = -1 < 0 < \frac{\pi}{2} - 1 = \frac{\pi}{4}\tan(\frac{\pi}{4}) + \frac{\pi}{4} - 1 = f(\frac{\pi}{4})$$

Si verificamos que f es continua en el intervalo $[0, \frac{\pi}{4}]$, entonces por el teorema del valor intermedio tendríamos que existe $c \in [0, \frac{\pi}{4}]$ tal que f(c) = 0 y tal c es una solución de la ecuación (2).

La función f es la suma de $f_1(x) = x \tan(x)$ y $f_2(x) = x - 1$. Basta ver entonces que f_1 y f_2 son continuas en $[0, \frac{\pi}{4}]$. La función $f_2(x) = x - 1$ es polinómica y por lo tanto continua en \mathbb{R} y en particular continua en $[0, \frac{\pi}{4}]$. La función $f_1(x) = x \tan(x)$ es el producto de $f_3(x) = x$, que es continua en $[0, \frac{\pi}{4}]$ por ser una función polinómica, y $f_4(x) = \tan(x)$, que es continua en su dominio, como el intervalo $[0, \frac{\pi}{4}]$ es un subconjunto del dominio de la tangente, tenemos que f_4 es continua alli. Esto termina la prueba.