# 数字信号处理

周治国

## 第三章 离散傅里叶变换

#### 一、DFS变换的推导

由DTFT推导DFT

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n}$$

$$\therefore X(e^{j\omega}) = X(e^{j(\omega+2\pi)}) \qquad \therefore \diamondsuit \widetilde{X}(e^{j\omega}) \stackrel{\triangle}{=} X(e^{j\omega})$$

假定 
$$x(n) = 0$$
, 当 $n < 0$ ,  $n > N-1$  (有限长)

$$\widetilde{X}(e^{j\omega}) = \sum_{n=0}^{N-1} x(n)e^{-j\omega n}$$

$$\tilde{X}(k) = X(e^{j\omega}) \Big|_{\omega = \frac{2\pi}{N}k} = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn} = \tilde{X}(k+N) \quad (3-11)$$

$$0 \le k \le N-1$$

采样,周期性离散频率函数

时域序列周期化

(3-11) 武 
$$= \frac{1}{N} \sum_{k=0}^{N-1} (\sum_{m=0}^{N-1} \widetilde{x}(m) e^{-j\frac{2\pi}{N}km}) e^{j\frac{2\pi}{N}kn}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} \widetilde{x}(m) \sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}k(n-m)}$$

$$\mathcal{L}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{L}(k) e^{j\frac{2p}{N}kn} = \frac{1}{N} \sum_{m=0}^{N-1} \tilde{x}(m) \sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}k(n-m)}$$

可以证明 
$$\frac{1}{N} \sum_{k=0}^{N-1} e^{-j\frac{2\pi}{N}k(n-m)} = \begin{cases} 1 & n=m+Nl \\ 0 & n\neq m+Nl \end{cases}$$
 正交定理

$$\therefore \tilde{x}'(n) \stackrel{\triangle}{=} \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j\frac{2\pi}{N}kn} = \frac{1}{N} \left[ \sum_{m=0}^{N-1} \tilde{x}(m) \right]_{n=m} = \tilde{x}(n)$$

$$\therefore \widetilde{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) e^{j\frac{2\pi}{N}kn}$$

$$\widetilde{X}(k) \longrightarrow \widetilde{x}(n)$$
(3-13)

结合(3-11)、(3-13)式,

$$\widetilde{x}(n) \stackrel{DFS}{\longleftrightarrow} \widetilde{X}(k)$$
 为方便起见,令

$$W_N = e^{-j\frac{2\pi}{N}} \longrightarrow W_N$$
因子

DFS变换:

$$\widetilde{X}(k) = DFS[\widetilde{x}(n)] = \sum_{n=0}^{N-1} \widetilde{x}(n)W_N^{kn}, \quad \forall k$$

$$\widetilde{x}(n) \stackrel{\triangle}{=} IDFS \left[ \widetilde{X}(k) \right] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) W_N^{-kn}, \quad \forall n$$

DFS例题: 习题集P37 1

已知
$$\tilde{x}(n) = \{14 \ 12 \ 10 \ 8 \ 6 \ 10\}, \ \text{求DFS}$$
  
解:  $\tilde{X}(k) = DFS \left[ \tilde{x}(n) \right] = \sum_{n=0}^{N-1} \tilde{x}(n) W_N^{kn}, \ \forall k$   
$$= \sum_{n=0}^{5} \tilde{x}(n) W_6^{kn} = \sum_{n=0}^{5} \tilde{x}(n) e^{-j\frac{2\pi}{6}nk}$$
  
 $\tilde{X}(0) = 60$   $\tilde{X}(3) = 0$   
 $\tilde{X}(1) = 9 - j3\sqrt{3}$   $\tilde{X}(4) = 3 - j\sqrt{3}$   
 $\tilde{X}(2) = 3 + j\sqrt{3}$   $\tilde{X}(5) = 9 + j3\sqrt{3}$ 

#### 二、DFS的主要性质

1.线性特性

迭加原理

$$\widetilde{x}_3(n) = a\widetilde{x}_1(n) + b\widetilde{x}_2(n)$$

$$\widetilde{X}_3(k) = DFS[a\widetilde{x}_1(n) + b\widetilde{x}_2(n)] = a\widetilde{X}_1(k) + b\widetilde{X}_2(k)$$

- 2.移位特性
  - (1) 时域移位

若
$$\tilde{x}(n) \longleftrightarrow \tilde{X}(k)$$
,则 $\tilde{x}(n-m) \longleftrightarrow W_N^{mk} \tilde{X}(k)$ 

(2) 频域移位

若
$$\tilde{X}(k) \longleftrightarrow \tilde{x}(n)$$
,则 $\tilde{X}(k-l) \longleftrightarrow W_N^{-nl} \tilde{x}(n)$ 

#### 3.周期卷积特性

(1) 时域

时域周期卷积←→频域相乘

#### 3.周期卷积特性

(2) 频域

$$\tilde{x}(n) = \tilde{x}_1(n)\tilde{x}_2(n) \longleftrightarrow \tilde{X}(k) = \frac{1}{N}\tilde{X}_1(k) \otimes \tilde{X}_2(k)$$
  
时域相乘  $\longleftrightarrow$  频域周期卷积

周期卷积计算例题 课本P75



图 3-5 周期卷积

周期卷积计算例题 习题集P38 3

$$x(n) = \begin{cases} n+1 & 0 \le n \le 4 \\ 0 & 其他 \end{cases}$$
, 求 $h(n) = R_4(n-2)$   
令 $\tilde{x}(n) = x(n)_6$ ,  $\tilde{h}(n) = h(n)_6$   
求 $\tilde{x}(n)$ 和 $\tilde{h}(n)$ 的周期卷积  
解:  $\tilde{y}(n) = \tilde{x}(n) \widetilde{\otimes} \tilde{h}(n) = \sum_m x(m)h(n-m)$   
=  $\{14 \ 12 \ 10 \ 8 \ 6 \ 10\}$ 

表 3-3

| $\widetilde{h}(n-m)$ $\widetilde{x}(m)$ | 1 | 2 | 3 | 4 | 5 | 0 | $\widetilde{y}(n)$ |
|-----------------------------------------|---|---|---|---|---|---|--------------------|
| 0                                       | 0 | 1 | 1 | 1 | 1 | 0 | 14                 |
| 1                                       | 0 | 0 | 1 | 1 | 1 | 1 | 12                 |
| 2                                       | 1 | 0 | 0 | 1 | 1 | 1 | 10                 |
| 3                                       | 1 | 1 | 0 | 0 | 1 | 1 | 8                  |
| 4                                       | 1 | 1 | 1 | 0 | 0 | 1 | 6                  |
| 5                                       | 1 | 1 | 1 | 1 | 0 | 0 | 10                 |

#### 4.对称特性

(1) 
$$\forall \widetilde{x}(n) \longleftrightarrow \widetilde{X}(k)$$
   
则  $\widetilde{x}^*(n) \longleftrightarrow \widetilde{X}^*(-k)$    
 $\widetilde{x}^*(-n) \longleftrightarrow \widetilde{X}^*(k)$ 

$$DTFT[x(n)] = X(e^{j\omega})$$

$$DTFT[x^*(n)] = X^*(e^{-j\omega})$$

$$DTFT[x^*(-n)] = X^*(e^{j\omega})$$

$$x(n) \leftrightarrow X(e^{j\omega})$$

$$x^*(n) \leftrightarrow X^*(e^{-j\omega})$$

$$x^*(-n) \leftrightarrow X^*(e^{j\omega})$$

(2) 
$$\forall \widetilde{x}(n) \stackrel{DFS}{\longleftrightarrow} \widetilde{X}(k)$$

$$\operatorname{Re}\left[\widetilde{x}(n)\right] \stackrel{DFS}{\longleftrightarrow} \widetilde{X}_{e}(k) = \frac{1}{2} \left[\widetilde{X}(k) + \widetilde{X}^{*}(-k)\right]$$

$$j \operatorname{Im}\left[\widetilde{x}(n)\right] \stackrel{DFS}{\longleftrightarrow} \widetilde{X}_{o}(k) = \frac{1}{2} \left[\widetilde{X}(k) - \widetilde{X}^{*}(-k)\right]$$

$$\mathscr{Y}_{e}(n) = \frac{1}{2} \left[\widetilde{X}(n) + \mathscr{Y}^{*}(-n) \times^{D} \right] \operatorname{Re}\left[\widetilde{X}(k) + \widetilde{X}^{*}(-k)\right]$$

$$\mathscr{Y}_{o}(n) = \frac{1}{2} \left[\widetilde{X}(n) - \mathscr{Y}^{*}(-n) \times^{D} \right] \operatorname{Re}\left[\widetilde{X}(k) + \widetilde{X}^{*}(-k)\right]$$

$$\widetilde{X}_{o}(n) = \frac{1}{2} \left[\widetilde{X}(n) - \mathscr{Y}^{*}(-n) \times^{D} \right] \operatorname{Re}\left[\widetilde{X}(k) + \widetilde{X}^{*}(-k)\right]$$

$$\widetilde{X}_{o}(n) = \frac{1}{2} \left[\widetilde{X}(n) - \mathscr{Y}^{*}(-n) \times^{D} \right] \operatorname{Re}\left[\widetilde{X}(k) + \widetilde{X}^{*}(-k)\right]$$

$$\operatorname{Re}\left\{x(n)\right\} = \frac{1}{2}\left[x(n) + x^{*}(n)\right] \leftrightarrow \frac{1}{2}\left[X(e^{j\omega}) + X^{*}(e^{-j\omega})\right] = X_{e}(e^{j\omega})$$

$$j\operatorname{Im}\left\{x(n)\right\} = \frac{1}{2}\left[x(n) - x^{*}(n)\right] \leftrightarrow \frac{1}{2}\left[X(e^{j\omega}) - X^{*}(e^{-j\omega})\right] = X_{o}(e^{j\omega})$$

$$x_{e}(n) = \frac{1}{2}\left[x(n) + x^{*}(-n)\right] \leftrightarrow \frac{1}{2}\left[X(e^{j\omega}) + X^{*}(e^{j\omega})\right] = \operatorname{Re}\left\{X(e^{j\omega})\right\}$$

$$x_{o}(n) = \frac{1}{2}\left[x(n) - x^{*}(-n)\right] \leftrightarrow \frac{1}{2}\left[X(e^{j\omega}) - X^{*}(e^{j\omega})\right] = j\operatorname{Im}\left\{X(e^{j\omega})\right\}$$

(3)
$$\forall \widetilde{x}(n) = \widetilde{x}^*(n) \quad \text{实序列}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{X}(k) = \widetilde{X}^*(-k) \quad \text{共轭对称}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\left|\widetilde{X}(k)\right| = \left|\widetilde{X}(-k)\right| \quad \text{偶对称}$$

$$\arg[\widetilde{X}(k)] = -\arg[\widetilde{X}(-k)] \quad \text{奇对称}$$

实序列:
$$x(n) \leftrightarrow X(e^{j\omega})$$

$$1.x(n) = x^*(n) \Rightarrow X(e^{j\omega}) = X^*(e^{-j\omega})$$

$$2.\begin{cases} X(e^{j\omega}) = \operatorname{Re}\left\{X(e^{j\omega})\right\} + j\operatorname{Im}\left\{X(e^{j\omega})\right\} \\ X^*(e^{-j\omega}) = \operatorname{Re}\left\{X(e^{-j\omega})\right\} - j\operatorname{Im}\left\{X(e^{-j\omega})\right\} \end{cases}$$

$$\Rightarrow \begin{cases} \operatorname{Re}\left\{X(e^{j\omega})\right\} = \operatorname{Re}\left\{X(e^{-j\omega})\right\} \\ \operatorname{Im}\left\{X(e^{j\omega})\right\} = -\operatorname{Im}\left\{X(e^{-j\omega})\right\} \end{cases}$$

$$X(e^{j\omega}) \Rightarrow \operatorname{Re}\left\{\operatorname{Mab}_{\mathcal{A}}, \text{ 虚部是奇函数}\right\}$$

$$3. \text{极坐标形式: } X(e^{j\omega}) = \left|X(e^{j\omega})\right| e^{j\operatorname{arg}\left[X(e^{j\omega})\right]}$$
幅度是 $\omega$ 的偶函数 $\left|X(e^{j\omega})\right| = \left|X(e^{-j\omega})\right|$ 
相位是 $\omega$ 的奇函数 $\operatorname{Arg}\left[X(e^{j\omega})\right] = -\operatorname{Arg}\left[X(e^{-j\omega})\right]$