Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 1 of 40

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 2 of 40

Fig.3 (A)

36

2523

Oblon, Spivak, et al.
703-413-3000
Docket # 283042US90PCT
Sheet 5 of 40
Fig.5
(A)

Oblon, Spivak, et al. 703-413-3000 Docket # 2830 2 US 00 PC Sheet 6 of 40 Fig.6 (A) (B) 5,6 30 (C)586,0 52,5,6 (D) 60,α 58

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 9 of 40

9/40

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 12 of 40

Oblon, Spivak, et al. 703-413-3000 Docket # 283042U \$900 T 40 Sheet 13 of 40

Fig.13

RESULT OF HAST TEST	0	0	0	0	0	0	0	0	0	0	×	×	0	0	0	0
AMOUNT OF VOLTAGE DROP (V)	0.091	0.093	0.085	0.085	0.095	0.097	0.087	980'0	0.084	0.083	60:0	0.093	0.084	0.108	0.103	0.123
SUM OF THICKNESSES OF POWER SOURCE LAYERS OF CORE (μ m)	40	24	09	2/	615	815	09	2/2	99	165	190	215	140	20	840	1015
THICKNESS OF POWER SOURCE LAYER IN INNER LAYER OF CORE SUBSTRATE (µm)	25	15	45	09	100	100	15	15	20	150	175	200	125	10	100	100
THICKNESS OF POWER SOURCE LAYER ON FRONT SURFACE LAYER OF CORE SUBSTRATE (µm)	15	6	15	15	15	15	45	09	15	15	15	15	15	10	40	15
THICKNESS OF CONDUCTIVE LAYER ON INTERLAYER INSULATION LAYER (μ m)	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
QUANTITY OF LAYERS IN INNER LAYER	2	2	2	2	12	16	2	2	2	2	2	2	2	2	16	20
α1/ α2	2	1.2	3	3.75	30.75	40.75	3	3.75	3.25	8.25	9.5	10.75	7	1	42	50.75
#	FIRST EMBODIMENT-1	FIRST EMBODIMENT-2	FIRST EMBODIMENT—3	FIRST EMBODIMENT-4	FIRST EMBODIMENT—5	FIRST EMBODIMENT—6	FIRST EMBODIMENT-7	FIRST EMBODIMENT—8	FIRST EMBODIMENT—9	FIRST EMBODIMENT-10	FIRST EMBODIMENT-11	FIRST EMBODIMENT-12	FIRST EMBODIMENT 28	FIRST COMPARATIVE EXAMPLE — 1	FIRST COMPARATIVE EXAMPLE—2	FIRST COMPARATIVE EXAMPLE—3

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 14 of 40

14/40

Fig.14

#	WIDTH OF CONDUCTOR/INTERVAL OF CONDUCTORS(μ m)												
11	5/5	7. 5/7. 5	10/10	12. 5/12. 5	15/15								
FIRST EMBODIMENT—3	0	0	0	0	0								
FIRST EMBODIMENT-4	0	0	0	0	0								
FIRST EMBODIMENT-7	×	×	0	0	0								
FIRST EMBODIMENT-8	×	×	0	0	0								

7ig.15

Oblon, Spivak, e135 / 40 Oblon, Spivak, e135 / 40 Docket # 283042U\$90PCT Sheet 15 of 40 90 90 90 90 90 90 90																		
E OF	No.3 IC MOUNTED Speed	tet #	YESS 428	304 CJINON	NON	YES	YES N	YES	YES	NONE	YES	YES	YES	YES	NONE	YÈS	YES	YES
PRESENCE/ABSENCE OF MALFUNCTION	No.2 IC MOUNTED	YES	YES	NONE	NONE	YES	YES	NONE	NONE	NONE	NONE	YES	YES	NONE	NONE	YES	YES	YES
PRESI	No.1 IC MOUNTED	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	YES	YES	YES
	AMOUNT OF VOLTAGE DROP (V)	0.091	0.093	0.085	0.085	0.095	0.097	0.087	980:0	0.084	0.083	0.09	0.093	0.087	0.084	0.108	0.103	0.123
NO NO	THICKNESSES OF POWER SOURCE LAYERS OF CORE (\(\mu \) m)	40	24	09	. 75	615	815	09	75	92	165	190	215	08	140	20	840	1015
THICKNESS	OF POWER SOURCE LAYER IN INNER LAYER OF CORE SUBSTRATE (\$\mu\$m)	25	15	45	09	100	100	15	15	20	150	175	200	32.5	125	×10	100	100
THICKNESS OF POWER	SOURCE LAYER ON FRONT SURFACE LAYER OF CORE SUBSTRATE (µm)	15	6	15	15	15	15	45	09	15	15	15	15	15	15	10	40	15
THICKNESS OF	CONDUCTIVE LAYER ON INTERLAYER INSULATION LAYER (\(\mu \) m)	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	QUANTITY OF LAYERS IN INNER LAYER	2	2	2	2	12	16	2	2	2	2	2	2	4	2	2	16	20
	α1/ α2	2	1.2	3	3.75	30.75	40.75	3	3.75	3.25	8.25	9.5	10.75	4	7	-	42	50.75
	**	FIRST EMBODIMENT-1	FIRST EMBODIMENT-2	FIRST EMBODIMENT — 3	FIRST EMBODIMENT-4	FIRST EMBODIMENT —5	FIRST EMBODIMENT-6	FIRST EMBODIMENT-7	FIRST EMBODIMENT-8	FIRST EMBODIMENT-9	FIRST EMBODIMENT-10	FIRST EMBODIMENT-11	FIRST EMBODIMENT-12	FIRST EMBODIMENT -27	FIRST EMBODIMENT-28	FIRST COMPARATIVE EXAMPLE—1	FIRST COMPARATIVE EXAMPLE—2	FIRST COMPARATIVE EXAMPLE—3

Oblon, Spivak, et 4.6/40

)

					703-	ر ب ر	-300	<i>J</i> U												
CE OF	,	No.3 IC MOUNTED		· S	NONE	NONE #	NONES N	S SHONES	NONE &	NONE	NONE S	NONE	YES	YES	YES	YES	YES	YES	NONE	NONE
PRESENCE/ABSENCE OF MALFUNCTION		No.2 IC MOUNTED			NONE															
PRES		No.1 IC MOUNTED			NONE	HONE	NONE	NONE	NONE	NONE	NONE									
NO MI	THICKNESSES OF POWER SOURCE	LAYERS OF	でで (m m)		09	09	65	65	75	75	165	165	190	190	215	215	09	09	80	80
THICKNESS	OF POWER SOURCE LAYER IN	INNER LAYER OF CORE	SUBSTRATE	(m n/)	45	45	20	20	09	09	150	150	175	175	200	200	15	15	32.5	32.5
THICKNESS OF POWER	SOURCE LAYER ON FRONT	SURFACE LAYER OF	CORE	SUBSIRAIE (µm)	15	15	15	15	15	15	15	15	15	15	15	15	45	45	15 ·	15
IC SOLINACITE	CONDUCTIVE LAYER ON INTERI AYER	INSULATION	(AYEK		20	20	20	20	20	20	20	20	20	20	20	20	20	20	. 20	20
	QUANTITY OF LAYERS	IN INNER LAYER			2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	4
	HAVING NO DUMMY	TAND			20	100	20	100	20	100	20	100	20	100	20	100	50	100	20	100
	α1/α	3 0	_		3	က	3.25	3.25	3.75	3.75	8.25	8.25	9.5	9.5	10.75	10.75	3	. 3	4	4
		:			FIRST EMBODIMENT-13	FIRST EMBODIMENT-14	FIRST EMBODIMENT-15	FIRST EMBODIMENT-16	FIRST EMBODIMENT-17	FIRST EMBODIMENT-18	FIRST EMBODIMENT-19	FIRST EMBODIMENT-20	FIRST EMBODIMENT-21	FIRST EMBODIMENT-22	FIRST EMBODIMENT-23	FIRST EMBODIMENT-24	FIRST EMBODIMENT-25	FIRST EMBODIMENT-26	FIRST EMBODIMENT-29	FIRST EMBODIMENT-30

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 17 of 40 17/40 Fig. 17

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 19 df 49 / 4 0 Fig. 1 9

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 21 of 40

Oblon, Spivak, et al.
703-413-3000
Docket # 283042US90PCT
Sheet 23 of 40
23/40

Oblon, Spivak, et al.
703-413-3000
Docket # 283042US90PCT
Sheet 2000 40
Fig. 25

Oblon, Spivak, et al. 703-413-3000 Docket #283042US90PCT Sheet 262f 0 4 U

	703-413-3000 Docket # 283042US90PCT Sheet 30 of 40 30/40																														
PRESENCE/ABSENCE OF IC MALFUNCTION		#3	(3.46GHZ,1066MHZ)		YES	YES	YES	YES	YES	NONE	NONE	NONE	NONE	YES	NONE	NONE	NONE	YES	NONE	NONE	NONE	NONE	YES	NONE	NONE	NONE	NONE	YES	YES	YES	YES
/ABSENCE OF 1		#2(3.2	GHZ,800MHZ)		NONE	YES	NONE	YES																							
PRESENCE		#1(3.06	RD GHZ400MHZ)	AE	0.086 NONE	0.086 NONE	0.086 NONE).087 NONE	0.085 NONE	0.078 NONE	0.076 NONE	0.074 NONE	0.074 NONE	0.078 NONE	0.076 NONE	0.074 NONE	0.072 NONE	0.086 NONE	0.078 NONE	0.076 NONE	0.074 NONE	0.072 NONE	0.086 NONE	0.078 NONE	0.076 NONE	0.074 NONE	0.072 NONE	0.086 NONE	0.078 NONE	0.078 NONE	0.087 YES
	AMOUNT OF VOLTAGE DROP (V)		SECOND THIRD	TIME TIME	0.116 0		0.128 0	0.126 0		0.108	0.108							0.129 (0.120	0.117 (0.129		0.117	0.117] (0.117			0.121	0.150
	AMOUNT OF		FIRST	TIME	0.154	0.222	0.206	0.202	0.202	0.137	0.135	0.130	0.132	0.201	0.159	0.155	0.154	0.208	0.165	0.155	0.155	0.155	0.201	0.155	0.155	0.155	0.155	0.203	0.201	0.204	0.306
REGION HAVING NO	9	OR/AND	PERCENTAGE	THEREOF	30 JUST BELOW 1C		%02	80%	%06	45 JUST BELOW IC	60 JUST BELOW 1C	75 JUST BELOW IC	70%	45 30% JUST BELOW	60 30% JUST BELOW	75 30% JUST BELOW			45 50% JUST BELOW	60 50% JUST BELOW	75 50% JUST BELOW	50% JUST BELOW	50% JUST BELOW	45 70% JUST BELOW	60/70% JUST BELOW	75 70% JUST BELOW	50 70% JUST BELOW	70% JUST BELOW	20%	30 50% JUST BELOW	5 NONE
	CONDUCTOR IN INNER LAYER	OF	MULTILAYER	(m //)		08	30	30	90	45	09	75	75	45	09	75	150 30%	300 30%	45	09	75	150 50%	300 50%	45	09			300 70%	09	30	5
THICKNESS		CONDUCTOR	OF BU LAYER	(mπ)	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
		#			SECOND EMBODIMENT-11	SECOND EMBODIMENT-12	SECOND EMBODIMENT-13	SECOND EMBODIMENT-14	SECOND EMBODIMENT-15	SECOND EMBODIMENT-16	SECOND EMBODIMENT-17	SECOND EMBODIMENT-18	SECOND EMBODIMENT-19	SECOND EMBODIMENT-20	SECOND EMBODIMENT-21	SECOND EMBODIMENT-22	SECOND EMBODIMENT-23	SECOND EMBODIMENT-24	SECOND EMBODIMENT-25	SECOND EMBODIMENT-26	SECOND EMBODIMENT-27	SECOND EMBODIMENT-28	SECOND EMBODIMENT-29	SECOND EMBODIMENT-30	SECOND EMBODIMENT-31	SECOND EMBODIMENT-32	SECOND EMBODIMENT-33	SECOND EMBODIMENT-34	SECOND EMBODIMENT-35	SECOND EMBODIMENT-36	SECOND COMPARATIVE EXAMPLE-3

Oblon, Spivak, et al. 703-413-3000

33/40

					<i>5/</i>							
PRESENCE/	ABSENCE OF IC MALFUNCTION	NONE	YES	NONE	SƏA	YES						
DROP(V)	THIRD	0. 089	0.088	0.088	680 '0	0.087	0. 088	0.088	0. 086	0.086	680 '0	0. 108
AMOUNT OF VOLTAGE DROP(V)	SECOND	0. 118	0.135	0.120	0. 118	0. 118	0.110	0. 110	0. 108	0. 108	0. 153	0. 160
AMOUNT (FIRST	0. 157	0. 218	0. 158	0. 158	0.155	0.140	0. 138	0. 133	0.135	0.310	0.389
NOSSIG	HAVING NO DUMMY LAND OR PERCENTAGE	JUST BELOW	20%	400	%08	%06	JUST BELOW IC	JUST BELOW IC	JUST BELOW IC	%02	NONE	NONE
THICKNESS	OF Cu IN INNER LAYER OF MULTILAYER CORE	(μμ) 30	30	30	30	30	45	09	75	75	30	15
THICKNESS	OF Cu IN BUILT-UP LAYER (μ m)	15	15	15	15	15	15	15	15	15	15	15
	#	SECOND EMBODIMENT1	SECOND EMBODIMENT2	SECOND EMBODIMENT3	SECOND EMBODIMENT4	SECOND EMBODIMENTS	SECOND EMBODIMENT6	SECOND EMBODIMENT7	SECOND EMBODIMENT8	SECOND EMBODIMENT9	SECOND COMPARATIVE EXAMPLE1	SECOND COMPARATIVE EXAMPLE2

Fig.33

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 34 of 40

> 34/40 Fig.34

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 36 of 40 3 6 4 0 Fig. 36

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 37 of 40 3 7 / 4 0 Fig. 3 7

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 38 of 40

> 38/40 Fig.38

Oblon, Spivak, et al. 703-413-3000 Docket # 283042US90PCT Sheet 39 of 40

40/40

Oblon, Spivak, et al. 703-413-3000

Sheet 40 of 40

Docket # 283042US90PCT