Machine Learning

Università Roma Tre Dipartimento di Ingegneria Anno Accademico 2021 - 2022

Classificazione: **Alberi di Decisione**

Sommario

- Introduzione ai Decision Trees
- Esempio di applicazione
- Feature split learning
- Decision Stump
- Algoritmo greedy decision tree learning
- Classificazione mediante Decision Trees

Alberi di Decisione

- Vediamo ora un altro metodo per la classificazione, molto utile nella pratica.
- Un albero di decisione prende come ingresso un oggetto o una situazione descritta da un insieme di attributi (features) e restituisce una "decisione".
- Effettua dunque una "classificazione" della situazione presentata in input.

Esempio di applicazione

[valutazione richiesta prestito]

Vediamo un esempio di applicazione, relativo alla valutazione di richieste di prestito da parte di un cliente alla propria banca:

Esempio di applicazione

- Nel formulare questo problema come un problema di apprendimento dobbiamo anzitutto decidere quali proprietà, o attributi (features), sono disponibili per descrivere esempi (osservazioni) nel dominio.
- In genere, alcune delle caratteristiche prese in considerazione i tali casi sono le seguenti:
 - reputazione cliente (e.g., ha pagato regolarmente vecchi prestiti?)
 - reddito cliente
 - durata prestito
 - altre informazioni personali (età, motivo per il prestito, ecc.)

Decision Tree Classifier

Esempio di decision tree per il problema in esame:

Valutazione richiesta prestito

xi = (Reputazione = Scarsa, Reddito = Alto, Durata = 5 anni)

Decision Tree Model

Apprendimento albero dai dati

Vediamo come sia possibile costruire (ossia apprendere) un decision tree a partire da un certo numero di osservazioni:

Reputazione	Durata	Reddito	yi
eccellente	3 anni	alto	Sicuro
sufficiente	5 anni	modesto	Sicuro
sufficiente	3 anni	alto	Rischioso
scarso	5 anni	alto	Sicuro
sufficiente	5 anni	modesto	Sicuro
scarso	3 anni	alto	Rischioso
scarso	5 anni	modesto	Rischioso
sufficiente	3 anni	alto	Rischioso
eccellente	3 anni	modesto	Sicuro

Metrica di Qualità

[quality metric]

La metrica che si usa misura la frazione delle previsioni errate fornite dall'albero:

$$Errore = \frac{\#previsioni_errate}{\#esempi}$$

- Ovviamente:
 - miglior valore possibile: 0.0
 - peggior valore possibile: ?

Learning Goal

- Il nostro obiettivo è dunque quello di costruire un albero di decisione che minimizzi il Classification Error sui dati di training, calcolato mediante la metrica di qualità che abbiamo definita.
- Purtroppo questo è un task estremamente difficile:
 - abbiamo un numero esponenziale di possibili alberi da considerare
 - problema NP-hard
 - possiamo però utilizzare delle euristiche che funzionano bene in pratica

Vediamo informalmente come poter procedere per costruire un albero di decisione:

- 1. Cominciamo da un albero "vuoto" e consideriamo tutti gli esempi disponibili.
- ② 2. Selezioniamo la feature "migliore" con la quale possiamo partizionare (split) i dati in base ai diversi valori che essa può assumere.
- 3. Per ogni split:
 - Se non ci sono altre operazioni da fare, costruire foglia con la previsione.
 - Altrimenti, continua la costruzione dell'albero a partire dallo split che stiamo considerando.

Primo problema:

• 1. Cominciamo da un albero "vuoto". Consideriamo tutti gli esempi disponibili.

feature selection

- 2. Selezioniamo la feature "migliore" con la quale possiamo partizionare (split) i dati in base ai vari valori che essa può assumere.
- 3. Per ogni split:
 - Se non ci sono altre operazioni da fare, costruire foglia con la previsione.
 - Altrimenti, continua la costruzione dell'albero a partire dallo split che stiamo considerando.

Secondo problema:

- 1. Cominciamo da un albero "vuoto". Consideriamo tutti gli esempi disponibili.
- ② 2. Selezioniamo la feature "migliore" con la quale possiamo partizionare (split) i dati in base ai vari valori che essa può assumere.
- 3. Per ogni split:

stopping conditions

- Se non ci sono altre operazioni da fare, costruire foglia con la previsione.
- Altrimenti, continua la costruzione dell'albero a partire dallo split che stiamo considerando.

Chiamata ricorsiva:

- 1. Cominciamo da un albero "vuoto". Consideriamo tutti gli esempi disponibili.
- ② 2. Selezioniamo la feature "migliore" con la quale possiamo partizionare (split) i dati in base ai vari valori che essa può assumere.
- 3. Per ogni split:
 - Se non ci sono altre operazioni da fare, costruire foglia con la previsione.

chiamata ricorsiva

• Altrimenti, continua la costruzione dell'albero a partire dallo split che stiamo considerando.

Predizioni con Decision Stump

[feature selection]

22 18

Root node: relativo a tutte le osservazioni.

22: output "Sicuro"

18: output "Rischioso"

Ora dobbiamo selezionare una feature (feature selection problem)

Predizioni con Decision Stump

[feature: Reputazione]

Se scegliamo "Reputazione":

Decision Stump

[feature: Reputazione]

set \hat{y} = "majority value"

Decision Stump

[feature: Reputazione]

Decision Stump

[feature: Durata]

Se scegliamo "Durata":

Selezione della migliore feature

[feature selection]

Dobbiamo definire un criterio per la scelta della migliore feature:

VS.

Selezione della migliore feature

[feature selection]

Per far questo consideriamo gli errori già visti in precedenza

Selezione della migliore feature

[feature selection]

..... e usiamoli per calcolare il Classification Error per ogni feature:

Scegliamo la feature con il Classification Error più basso.

Calcolo Classification Error

- Abbiamo dunque diviso il calcolo del Classification Error in due fasi:
 - 1. Per ogni nodo relativo ad un sottoinsieme dei dati, ottenuto considerando uno dei possibili valori della feature d'interesse, assegniamo il valore della majority class del nodo (\hat{y} = "majority class").
 - 2. Calcolo del Classification Error considerando come predizione per ogni nodo considerato quella assegnata nel passo precedente.

Algoritmo per Feature Split Selection

- Dato un sottoinsieme M di osservazioni disponibili (nodo dell'albero):
 - \forall feature $\phi_j(\mathbf{x})$:
 - Split dei dati M in base ai valori della feature $\phi_j(\mathbf{x})$.
 - Calcolo del Classification Error per il Decision Stump della feature $\phi_j(x)$.
 - Scelta della feature $\phi_{j^*}(\mathbf{x})$ con il Classification Error più basso.

[recursive stump learning]

La costruzione dell'albero si effettua come segue:

[secondo livello]

[secondo livello]

Stopping Conditions

- La costruzione di un ramo dell'albero si ferma quando arriviamo ad un nodo nel quale si verifica una delle seguenti condizioni:
 - 1. Gli esempi relativi al nodo sono tutti di uno stesso tipo (e.g., tutti Sicuro o tutti Rischioso): scegliamo come foglia il valore in questione.
 - 2. Gli esempi relativi al nodo sono di tipo diverso, e non ci sono più feature da considerare: scegliamo come foglia il majority value.
 - 3. Nel nodo non ci sono più esempi, ma c'è ancora qualche feature non considerata nel percorso che porta a quel nodo: valore di default (e.g., maggioranza nodo genitore).

decision_tree_learning(nodo)
1. Start da un nodo relativo a M esempi
2. Feature Selection
3. Per ogni split:

Stopping Condition

then: costruire la foglia con la previsione ŷ

else: decision_tree_learning(nodo relativo allo split)

Algoritmo per fare previsioni mediante Decision Tree

Vediamo ora il semplice algoritmo che implementa la funzione $T(\mathbf{x})$, ossia l'algoritmo che, a fronte di un ingresso \mathbf{x}_i , visita l'albero di decisione costruito nella fase di training e fornisce in output una previsione $\hat{\mathbf{y}}_i$:

```
predict(tree_node, input)
if tree_node corrente è una foglia
then: return majority class dei punti relativi alla foglia
else:
```

- next_node = figlio di tree_node il cui valore della feature corrisponde all'input
- return predict(next_node, input)

Riferimenti

- Watt, J., Borhani, R., Katsaggelos, A.K. Machine Learning Refined, 2nd edition, Cambridge University Press, 2020.
- James, G., Witten, D., Hastie, T., Tibishirani, R. An Introduction to Statistical Learning, Springer, 2013.
- Ross, S.M. Probabilità e Statistica per l'Ingegneria e le Scienze, 3a edizione, Apogeo, 2015.
- Machine Learning: Classification, University of Washington Coursera, 2017.
- Flach, P. Machine Learning The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, 2012.