Teoria dos Grafos Aula 3

Aula passada

- Exemplos
- Definições
- Algumas propriedades

Aula de hoje

- Representando grafos
- Matriz e lista

Grafo

- Grafo G=(V, E)
 - V = conjunto de vértices (inteiros)
 - E = conjunto de arestas (pares nãoordenados)
- Exemplo
 - $V = \{1, 2, 3, 5, 6, 7\},\$
 - \blacksquare E = {(1,2), (1,5), (2,3), (2,6), (3,7), (5,7)}

matemática de grafos

Representação

Como representar no computador?

Representando Grafos

Como representar grafos no computador?

Estrutura de dados

- Duas estruturas fundamentais
 - matriz
 - lista
- Qual é a estrutura mais adequada (ou mais eficiente)?

Depende do algoritmo!

Representação via Matriz

- Como representar utilizando matrizes?
- Idéia: associar vértices à linhas e colunas da matriz
 - elemento da matriz indica se há aresta
- Matriz de adjacência
- Matriz n x n (n é número de vértices)
 - $\mathbf{a}_{ij} = 1$, se existe aresta entre vértices i e j
 - $\mathbf{a}_{ij} = \mathbf{0}$, caso contrário.

Matriz de Adjacência

Exemplo

	1	2	3	4
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1
4	0	0	1	0

	1	2	3	4	5	
1	0	1	1	0	0	-
2	1	0	1	0	1	
3	1	1	0	1	0	· ?
				0		
5	0	1	0	1	0	

Matriz de Incidência

- Idéia: associar vértices às linhas e arestas às colunas
 - elemento da matriz indica se aresta incide sobre o vértice

Matriz de incidência

- Matriz n x m (n vértices, m arestas)
 - $\mathbf{a}_{ij} = 1$, se vértice *i* incide sobre aresta *j*
 - a_{ii} = 0 , caso contrário.

Matriz de Incidência

Exemplo

			e_2		$e_{_{_{4}}}$
	1	1	1	0	0
-	2	1	0	1	0
	3	0	0	1	1
	4	0	0	0	1

	e ₁	e_2	e_3	$e_{_4}$	e_{5}	$e_{_6}$
1	1	1	0	0	0	1
2	1	0	1	1	1	0
3	0	1	0	1	0	0
4	0	0	0	0	1	0
5	0	0	1	0	0	1

Desvantagem

- Desvantagem da representação matricial?
- Considere grafos grandes e esparços
 - grande: muitos vértices
 - esparço: relativamente poucas arestas
- Matriz formada principalmente de zeros!

Grande consumo de memória (desnecessário)!

Como resolver este problema?

Representação via Listas

Idéia: associar a cada vértice uma lista de vértices adjacentes

Lista de adjacência

- Vértices associados a um vetor, dimensão n (número de vértices no grafo)
- Cada vértice possui uma lista de vértices adjacentes

Lista de Adjacência

Exemplo

Desvantagem

- Desvantagem da representação com lista?
- Considere grafos onde vértices tem muitos vizinhos (mas bem menos do que n)
- Listas vão ser grandes (longas)
- Problema?

Tempo de acesso! Ex. descobrir se dois vértices são vizinhos

Vantagens/Desvantagens

Tempo de execução	Matriz	Lista
Inserir aresta?	O(1)	O(1)
Remover aresta?	O(1)	O(g _{max})
Testar adjacência (v₁ e v₂ são vizinhos)?	O(1)	O(g _{max})
Listar vizinhos de v?	O(n)	$O(g_{max})$

Melhor estrutura depende do algoritmo!