Model predictive control: theory and practice

MPC for LTI systems Conceptual issues in MPC

- Recursive feasibility and stability

Linear MPC: basic formulation

For the following linear, discrete time, time invariant model

$$M:\begin{cases} x(k+1)=Ax(k)+B\,u(k)\\ y(k)=Cx(k) \end{cases}, x(k)\in\mathbb{R}^n, u(k)\in\mathbb{R}^m, y(k)\in\mathbb{R}^p$$

$$A \in \mathbb{R}^{n,n}$$
, $B \in \mathbb{R}^{n,m}$, $C \in \mathbb{R}^{p,n}$, $(A,B) \rightarrow \text{stabilizable}$

we want to design a predictive controller in order to obtain the system state regulation to the origin in the presence of:

input saturation constraints

linear state constraints

Linear MPC

Model Predictive Control – M. Canale

Linear MPC: basic formulation

For the considered control problem it will be shown that the MPC controller is obtained by solving a suitable **Quadratic Programme** (**QP**) problem at each sampling time

To this aim we will proceed in two steps:

- cost function \rightarrow quadratic w.r.t. U(k)
- constraints \rightarrow linear w.r.t. U(k)

The geometric structure of QP will be exploited in order to show that the predictive controller is a piecewise linear function of the system state

MPC L4 4

Basic formulation: the cost function

The considered control objectives can be taken into account through the following cost function:

$$J(x(k \mid k), U(k)) = \sum_{i=0}^{H_{\rho}-1} L(x(k+i \mid k), u(k+i \mid k)) + \Phi(x(k+H_{\rho} \mid k))$$

$$= \sum_{i=0}^{H_{\rho}-1} x(k+i \mid k)^{T} Q x(k+i \mid k) + u(k+i \mid k)^{T} R u(k+i \mid k) +$$

$$+ x(k+H_{\rho} \mid k)^{T} P x(k+H_{\rho} \mid k) =$$

$$= \sum_{i=0}^{H_{\rho}-1} ||x(k+i \mid k)||_{Q}^{2} + ||u(k+i \mid k)||_{R}^{2} + ||x(k+H_{\rho} \mid k)||_{P}^{2},$$

$$U(k) = [u(k \mid k) \quad u(k+1 \mid k) \quad \dots \quad u(k+H_{c}-1 \mid k)]^{T}$$

$$H_{\rho} = H_{c}, Q = Q^{T} \ge 0, R = R^{T} > 0, P = P^{T} \ge 0$$

Model Predictive Control – M. Canale

MPC_L4 5

Basic formulation: the cost function

In order to derive the quadratic form of the cost function recalling that

$$X(k+i|k) = A^{j}X(k|k) + \sum_{i=0}^{j-1} A^{j-j-1}Bu(k+j|k)$$

then the predicted state sequence

$$X(k) = [x(k|k), x(k+1|k), \dots, x(k+H_p|k)]^{\mathsf{T}}$$

can be expressed as:

$$X(k) = Ax(k \mid k) + BU(k)$$

$$\mathcal{A} = \begin{bmatrix} A \\ A^{2} \\ \vdots \\ A^{H_{\rho}} \end{bmatrix}, \mathcal{B} = \begin{bmatrix} B & 0 & 0 & \cdots & 0 \\ AB & B & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ A^{H_{\rho}-2}B & A^{H_{\rho}-3}B & A^{H_{\rho}-4}B & \cdots & B \\ A^{H_{\rho}-1}B & A^{H_{\rho}-2}B & A^{H_{\rho}-3}B & \cdots & AB \end{bmatrix} \cdots$$

Basic formulation: the cost function

It can be shown that the cost function:

$$J(X(k \mid k), U(k)) = \sum_{i=0}^{H_{\rho}-1} \|X(k+i \mid k)\|_{Q}^{2} + \|U(k+i \mid k)\|_{R}^{2} + \|X(k+H_{\rho} \mid k)\|_{P}^{2}$$

is quadratic w.r.t. U(k), i.e. is of the form:

$$J(x(k \mid k), U(k)) = \frac{1}{2}U(k)^{T}HU(k) + x(k \mid k)^{T}FU(k) + \overline{J}$$

where H > 0

Model Predictive Control - M. Canale

MPC L4 6

Basic formulation: the cost function

... defining the matrices:

$$Q = \begin{bmatrix} Q & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & Q & 0 \\ 0 & \cdots & 0 & P \end{bmatrix} \in \mathbb{R}^{nH_{p} \times nH_{p}}, \mathcal{R} = \begin{bmatrix} R & 0 & \cdots & 0 \\ 0 & R & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & R \end{bmatrix} \in \mathbb{R}^{mH_{p} \times mH_{p}}$$

the cost function can be rewritten as:

$$J(x(k \mid k), U(k)) = X^{T}(k)QX(k) + U^{T}(k)RU(k)$$

and substituting the expression of X(k) we get

$$J(x(k \mid k), U(k)) = x^{T}(k \mid k) \mathcal{A}^{T} \mathcal{Q} \mathcal{A} x(k \mid k) + 2x^{T}(k \mid k) \mathcal{A}^{T} \mathcal{Q} \mathcal{B} U(k) + U^{T}(k) (\mathcal{B}^{T} \mathcal{Q} \mathcal{B} + \mathcal{R}) U(k)$$

• • •

Basic formulation: the cost function

$$J(x(k \mid k), U(k)) = x^{T}(k \mid k) \mathcal{A}^{T} \mathcal{Q} \mathcal{A} x(k \mid k) + 2x^{T}(k \mid k) \mathcal{A}^{T} \mathcal{Q} \mathcal{B} U(k) + U^{T}(k) (\mathcal{B}^{T} \mathcal{Q} \mathcal{B} + \mathcal{R}) U(k)$$
... posing

$$H = 2(\mathcal{B}^{T} \mathcal{Q} \mathcal{B} + \mathcal{R})$$

$$F = 2\mathcal{A}^{T} \mathcal{Q} \mathcal{B}$$

$$\bar{J} = x^{T} (k \mid k) \mathcal{A}^{T} \mathcal{Q} \mathcal{A} x (k \mid k)$$

the cost function can be rewritten as:

$$J(x(k \mid k), U(k)) = \frac{1}{2}U(k)^{T}HU(k) + x(k \mid k)^{T}FU(k) + \overline{J}$$

which is quadratic in U(k) (note that H > 0)

Model Predictive Control – M. Canale

MPC_L4 9

Basic formulation: saturation constraints

The second point of the analysis of the basic formulation is to show that input saturation constraints and linear state constraints lead to linear constraints on U(k)

Saturation Constraints

For simplicity, consider the case m=1 (single input system) and $H_p=H_c=2$

In this case we have $U(k) = [u(k|k), u(k+1|k)]^T$ saturation constrainits are of the form:

$$U_{\min} \le U(k \mid k) \le U_{\max}$$
$$U_{\min} \le U(k + 1 \mid k) \le U_{\max}$$

Basic formulation: the cost function

In the absence of constraints the minimizer is given by:

$$U(k) = U^{\mathcal{O}}(k) = -H^{-1}FX(k \mid k) \underset{K=H^{-1}F}{=} -KX(k \mid k)$$

which corresponds to a (static) state feedback control law

Since the system is time invariant, such a solution is also the result of the application of the (unconstrained) RH strategy

A suitable choice of matrices *Q*, *R* and *P* guarantees (asymptotic) stability of the controlled system

Model Predictive Control – M. Canale

MPC_L4 10

Basic formulation: saturation constraints

After some manipulations we get:

input saturation constraints lead to linear constraints on U(k)

Basic formulation: state constraints

Let us now consider the linear state constraints ($H_p = 2$)

$$L_1 X(k+1 \mid k) \leq W_1$$

$$L_2 X(k+2 \mid k) \leq W_2$$

$$L_1 X(k+1 \mid k) \leq W_1,$$

$$\rightarrow X(k+1 \mid k) = AX(k \mid k) + BU(k \mid k)$$

$$L_2 X(k+2|k) \le W_2,$$

 $\to X(k+2|k) = A^2 X(k|k) + ABU(k|k) + BU(k+1|k)$

$$\begin{bmatrix}
L_1 & 0 \\
0 & L_2
\end{bmatrix}
\begin{bmatrix}
B & 0 \\
AB & B
\end{bmatrix}
\begin{bmatrix}
u(k \mid k) \\
u(k + 1 \mid k)
\end{bmatrix} \le -\begin{bmatrix}
L_1 & 0 \\
0 & L_2
\end{bmatrix}
\begin{bmatrix}
A \\
A^2
\end{bmatrix} x(k \mid k) + \begin{bmatrix}
W_1 \\
W_2
\end{bmatrix}$$

Model Predictive Control – M. Canale

MPC L4 13

Linear MPC

Similar results are obtained for general values of the prediction horizon (even in the case of different control horizon) (for details see: *G. C. Goodwin,., M. M. Seron, J. A. De Doná,* "Constrained Control and Estimation: an optimisation approach", Springer Verlag, 2005)

To conclude, the optimization problem involved in MPC design is:

$$\min_{U(k)} J(x(k \mid k), U(k)) = \min_{U(k)} \frac{1}{2} U(k)^T H U(k) + x(k \mid k)^T F U(k)$$
s.t.
$$LU(k) \leq W$$

which is a QP on U(k)

Basic formulation: linear constraints

Now rearranging both input and state constraints we obtain

$$\begin{bmatrix}
L_{u} \\
L_{x}
\end{bmatrix} \begin{bmatrix}
u(k \mid k) \\
u(k + 1 \mid k)
\end{bmatrix} \leq \begin{bmatrix}
W_{u} \\
W_{x}
\end{bmatrix}$$

$$LU(x) \leq W$$

which represents a linear set of constraints on U(k)

Model Predictive Control – M. Canale

MPC_L4 14

QP solution

$$\min_{U(k)} J(x(k \mid k), U(k)) = \min_{U(k)} \frac{1}{2} U(k)^{\mathsf{T}} H U(k) + x(k \mid k)^{\mathsf{T}} F U(k)$$
s.t.

$$LU(k) \leq W$$

Matrix *H* is the **hessian** of QP

If H > 0, then the QP problem is convex

There are several effective numerical algorithm that can be employed in the solution of (convex) QP problems:

- "active set" algorithms
- "primal-dual" interior point algorithms

MatLab → quadprog

RH principle and QP

The RH controller $\mathcal{K}(\cdot)$ as the solution of QP

Model Predictive Control - M. Canale

MPC L4 17

Some conceptual issues ...

Until now MPC seems to be a very powerful tool to solve in an efficient way constrained control problems

However, since the feedback control action is realized through the RH principle via the solution to a FHOCP, the two following issues arise:

- is the FHOCP always feasible at every point of the state space ?
- is the closed loop system stable (i.e. does the MPC controller $\mathcal{K}(x)$) stabilize the origin of the controlled system?)

Stability analysis

Model Predictive Control – M. Canale

Some conceptual issues: loss of feasibility

Consider the linear system

$$x(k+1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

subject to the constraints $|u(k)| \le 0.5$, $||x(k)||_{\infty} \le 5$

The MPC controller designed using the cost function

$$J = \sum_{i=0}^{H_p-1} X(k+i|k)^T Q X(k+i|k) + U(k+i|k)^T R U(k+i|k)$$

$$H_p = H_c = 3_t Q = I_{2t} R = 10$$

leads to an unfeasible FHOCP at k = 2

Some conceptual issues: loss of stability

Consider the linear system

$$X(k+1) = \begin{bmatrix} 2 & 1 \\ 0 & 0.5 \end{bmatrix} X(k) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} U(k)$$

subject to the constraints $|u(k)| \le 1$, $|x(k)| \le 10$

Analyze the MPC controller designed using the cost function

$$J = \sum_{i=0}^{H_{\rho}-1} X(k+i|k)^{T} Q X(k+i|k) + U(k+i|k)^{T} R U(k+i|k)$$

$$Q = I_{2}$$

with different values of H_p , R

Model Predictive Control - M. Canale

MPC L4 21

Remarks

- Guaranteeing stability of closed loop systems based on (finite horizon) optimization scheme (e.g. RH) is not a trivial task
- A noticeable aspect is that the obtained finite horizon sequence is optimal → optimality can then be turned into a notion of stability by utilizing the **optimal cost function (i.e.** $J^{O}(x(k))$) as a Lyapunov function for asymptotic stability of the controlled system:

Some conceptual issues: loss of stability

- 1 $R=10, H_p=2$
- R=2, $H_{\rho}=3$
- R=1, $H_{\rho}=4$
- Initial points leading to trajectories that converge to the origin
- Intitial points that diverge

Model Predictive Control – M. Canale

MPC L4 22

Remarks

- However, the optimization is defined over a finite future horizon, yet stability properties must hold over an infinite horizon
- A commonly used "trick" is to add an appropriate weighting on the terminal state $\Phi(\cdot)$ in the cost function to account for impact of events that lie beyond the end of the fixed horizon
- Moreover, an (invariant) terminal constraint set $X_{\mathcal{E}}$ under a suitable known and stabilizing terminal control law $\mathcal{K}_{\varepsilon}(x(k))$ is also introduced in the optimization problem in order to guarantee its feasibility

Reminder: Lyapunov direct method

Let (x_e) be an equilibrium of the dynamic system

$$X(k+1) = f(X(k), U(k))$$

and let $\mathcal{X} \subseteq \mathbb{R}^n$ a domain containing x_e . If there exists a class C^1 fuction V(x(k)) which is positive definite in $x_n \in \mathcal{X}$ and such that

$$\Delta V(x) = V(x(k+1)) - V(x(k)) = V(f(x(k), u_e)) - V(x(k))$$

is negative definite in $x_{\rho} \in \mathcal{X}$ then the equilibrium (x_0) is asymptotically stable

The function V(x) which satisfies the criterion assumptions is said Lyapunov function for asymptotic stability

Model Predictive Control – M. Canale

MPC L4 25

Definitions

Useful concepts

Feasible initial set

The set S_{Hp} of **feasible initial states** is the set of initial states $X_0 \in \mathbb{X}$ for which there exist feasible state and control sequences for the optimization problem $\mathcal{P}_{H_0}(x)$

Positively invariant set positively invariant

A set $\mathbb{S} \subset \mathbb{R}^n$ is said for the system

$$x(k+1)=f(x(k),u(k)),k\geq 0$$

under the control $u(k) = \mathcal{K}(x(k))$ (or positively invariant for the closed loop system $x(k+1) = f(x(k), \mathcal{K}(x(k)))$ if

$$f(x,\mathcal{K}(x)) \in \mathbb{S}, \ \forall x \in \mathbb{S}$$

Stability analysis for linear MPC

Model Predictive Control – M. Canale

General formulation

$$\min_{U(k)} J(x(k \mid k), U(k)) = \\
= \min_{U(k)} \sum_{i=0}^{H_{p}-1} x(k+i \mid k)^{T} Qx(k+i \mid k) + u(k \mid k)^{T} Ru(k \mid k) + \Phi(x(k+H_{p} \mid k)) \\
s.t. \\
\mathcal{P}_{H_{p}}(x) : \begin{cases}
x(k+1) = Ax(k) + Bu(k) \\
U(k) \in \mathbb{U} \\
x(k+i \mid k) \in \mathbb{X}, i = 1, ..., H_{p} - 1 \\
x(k+H_{p} \mid k) \in \mathbb{X}_{F} \subset \mathbb{X}
\end{cases}$$

"End terminal constraint" (Kwon & Pearson, 1977)

$$= \min_{U} \sum_{i=0}^{H_{p}-1} x(k+i|k)^{T} Qx(k+i|k) + u(k+i|k)^{T} Ru(k+i|k)$$
s.t.
$$\begin{cases} x(k+i+1|k) = Ax(k+i|k) + Bu(k+i|k), i \ge 0 \\ U(k) \in \mathbb{U} \\ x(k+i|k) \in \mathbb{X}, i = 1, ..., H_{p} - 1 \\ u(k+i|k) = 0, i = H_{c}, ..., H_{p} - 1 \\ x(k+H_{p}|k) = 0 \end{cases}$$

 $\min_{k} J(x(k \mid k), U) =$

MPC L4 29

"End terminal constraint" (Kwon & Pearson, 1977)

... at time k+1 the cost function obtained with sequence U_1 (not optimal) is $J(U_1, x(k+1|k+1)) = J(U^0, x(k|k)) - x^T(k|k)Qx(k|k) - u^T(k|k)Ru(k|k)$ therefore:

$$V(x(k+1|k+1)) = J(U_1^O, x(k+1|k+1)) \le J(U_1, x(k+1|k+1))$$

where $U_1^O = [u^O(k+1|k+1), u^O(k+1|k+1), ..., u^O(k+H_c|k+1)]$

Let us compute the increment

$$\Delta V(k) = V(x(k+1|k+1)) - V(x(k|k)) \le -x^{T}(k|k)Qx(k|k) - u^{T}(k|k)Ru(k|k) < 0$$

recalling that $Q \ge 0$, R > 0:

It is proven that $\Delta V(x) < 0$ and since V(x) > 0 asymptotic stability of the controlled system is proven

Moreover since $\{V(x)\}_{k=0}^{\infty} \to 0$ for $k \to \infty \Rightarrow x(k) \to 0$

"End terminal constraint" (Kwon & Pearson, 1977)

Sketch of the proof

Suppose feasibility of $\mathcal{P}_{Ho}(x)$ at time k let

$$U^{O} = [u^{O}(k \mid k), u^{O}(k+1 \mid k), ..., u^{O}(k+H_{c}-1 \mid k)]$$

be the minimizer and let

$$X^{O} = [X^{O}(k \mid k), X^{O}(k+1 \mid k), ..., X^{O}(k+H_{p}-1 \mid k),$$

$$V(X) = J(U^{O}, X(k \mid k))$$

be the corresponding state sequence and the cost fuction respectively

apply $\mathcal{Q}(k|k)$, go to time k+1 and consider the feasible (but not optmal) sequence

$$U_1 = [u^{O}(k+1|k),...,u^{O}(k+H_c-1|k),0]$$

and its corresponding state sequence

$$X_1 = [x^{O}(k+1|k),...,x^{O}(k+H_{p}-1|k),0]$$

Model Predictive Control – M. Canale

MPC L4 30

"Terminal weighting matrix" (Kwon et al.,1983)

$$\min_{U} J(x(k \mid k), U) = \\
= \min_{U} \sum_{i=0}^{H_{p}-1} x(k+i \mid k)^{T} Qx(k+i \mid k) + u(k+i \mid k)^{T} Ru(k+i \mid k) \\
+ x(k+H_{p} \mid k)^{T} Px(k+H_{p} \mid k) \\
\text{s.t.} \\
\begin{cases}
x(k+i+1 \mid k) = Ax(k+i \mid k) + Bu(k+i \mid k), i \ge 0 \\
U(k) \in \mathbb{U} \\
x(k+i \mid k) \in \mathbb{X}, i = 1, ..., H_{p} - 1 \\
u(k+i \mid k) = 0, i = H_{c}, ..., H_{p} - 1
\end{cases}$$

$$Hp: \text{ stable system}$$

"Terminal weighting matrix" (Kwon et al.,1983)

Matrix P is chosen as the positive definite solution of the discrete time Lyapunov equation:

$$A^T PA + Q = P$$

The proof is similar to the case of the "End terminal constraint" Negative definiteness of the increment $\Delta V(x)$ can be shown as follows

$$V(x(k+1|k+1)) = J(U_{1}^{O}, x(k+1|k+1)) \leq J(U_{1}, x(k+1|k+1))$$

$$\Delta V(k) = V(x(k+1|k+1)) - V(x(k|k)) \leq$$

$$-x^{T}(k|k)Qx(k|k) - u^{T}(k|k)Ru(k|k) + x^{T}(k+1+H_{p}|k)Px(k+1+H_{p}|k) +$$

$$+x^{T}(k+H_{p}|k)(Q-P)x(k+H_{p}|k)$$

Model Predictive Control – M. Canale

MPC L4 33

A possible solution ...

Idea: consider the infinite horizon cost of the LO controller

$$J = \sum_{i=0}^{\infty} X(k+i | k)^{T} QX(k+i | k) + u(k+i | k)^{T} Ru(k+i | k)$$

and split it into two parts:

up to time $i = H_p$ where constraints are active

$$J = \sum_{i=0}^{H_p-1} x(k+i)^T Qx(k+i) + u(k+i)^T Ru(k+i) + ...$$

for $k > H_p$ where constraints are not active

... +
$$\sum_{i=H_p}^{\infty} x(k+i)^T Qx(k+i) + u(k+i)^T Ru(k+i)$$

Terminal weighting matrix" (Kwon et al.,1983)

... $\Delta V(x)$ can be written as

$$\Delta V(k) = V(x(k+1 | k+1)) - V(x(k | k)) \le -x^{T}(k | k)Qx(k | k) - u^{T}(k | k)Ru(k | k) + M_{k}$$

where

$$M_{k} = x^{T}(k+1+H_{p} | k)Px(k+1+H_{p} | k) + x^{T}(k+H_{c} | k)(Q-P)x(k+H_{p} | k) =$$

$$= (Ax(k+H_{p} | k))P(Ax(k+H_{p} | k)) + x^{T}(k+H_{p} | k)(Q-P)x(k+H_{p} | k) =$$

$$= x^{T}(k+H_{p} | k)(A^{T}PA+Q-P)Px(k+H_{p} | k) = 0$$

Therefore $\Delta V(x) < 0$

Model Predictive Control - M. Canale

MPC_L4 34

"Invariant terminal set" (Skokaert & Rawlings, 1996)

$$\min_{U} J(x(k \mid k), U) =
= \min_{U} \sum_{i=0}^{H_{p}-1} x(k+i \mid k)^{T} Qx(k+i \mid k) + u(k+i \mid k)^{T} Ru(k+i \mid k) + x(k+H_{p} \mid k)^{T} Px(k+H_{p} \mid k)$$
st

$$x(k+i+1|k) = Ax(k+i|k) + Bu(k+i|k), i \ge 0$$

$$U(k) \in \mathbb{U}$$

$$x(k+i|k) \in \mathbb{X}, i = 1,..., H_{p} - 1$$

$$u(k+i|k) = -K_{LQ}x(k+i|k), i = H_{c},..., H_{p} - 1$$

$$x(k+H_{p}|k) \in \Omega_{LQ} \supset 0$$

Hp: Stabilizable system

"Invariant terminal set" (Skokaert & Rawlings, 1996)

The set Ω_{LQ} is chosen as a positive invariant set w.r.t. the (unconstrained) LQ controller designed according to the cost function

$$J = \sum_{i=0}^{\infty} x(k+i | k)^{T} Qx(k+i | k) + u(k+i | k)^{T} Ru(k+i | k)$$

The proof is similar to the one of the terminal weighting matrix case

P is chosen as the solution of the Riccati equation:

$$(A - BK_{LQ})^T P(A - BK_{LQ}) + Q + K_{LQ}^T RK_{LQ} = P$$

Model Predictive Control – M. Canale

MPC L4 37

"Invariant terminal set" (Skokaert & Rawlings, 1996)

Therefore, the maximum volume ellipsoid which satisfies constraints is looked for

In the case of saturation constraints

$$-1 \le u(\cdot) \le 1 \implies -1 \le -K_{LO}x(\cdot) \le 1$$

The ellipsoid is the one reported in the picture

- The maximum volume ellipsoid centered at the origin which is contained in the strip must be determined
- This problem can be solved with standard convex optimization techniques

"Invariant terminal set" (Skokaert & Rawlings, 1996)

How can be defined the set Ω_{LO}

We can start using ellipsoidal shape

$$\mathcal{E}_{W} = \left\{ \boldsymbol{x} : \boldsymbol{x}^{T} \boldsymbol{W} \boldsymbol{x} \leq 1 \right\}, \, \boldsymbol{W} \geq 0$$

In order to obtain positive invariance

$$x(k+1)^{T}Wx(k+1) \leq x(k)^{T}Wx(k)$$

$$\rightarrow x(k)^{T}[(A-BK_{LQ})]^{T}W(A-BK_{LQ})x(k) \leq x(k)^{T}Wx(k)$$

$$\rightarrow [(A-BK_{LQ})]^{T}W(A-BK_{LQ})-W \leq 0$$

Moreover constraint satisfaction must be guaranteed

Model Predictive Control – M. Canale

MPC_L4 38

"Invariant terminal set" (Skokaert & Rawlings, 1996)

In this case the set Ω_{LQ} is represented by the ellipsoid \mathcal{E}_W and the terminal state constraint is no more linear (solution with SOCP)

If polyhedral descriptions of Ω_{LO} are used the constraint is linear

"Contraction constraint" (Zheng, 1995)

$$\min_{U} J(x(k \mid k), U) =$$

$$= \min_{U} \sum_{i=0}^{H_{p}} x(k+i \mid k)^{T} Qx(k+i \mid k) + u(k+i \mid k)^{T} Ru(k+i \mid k)$$

s.t.

$$x(k+i+1|k) = Ax(k+i|k) + Bu(k+i|k), i \ge 0$$

$$U(k) \in \mathbb{U}$$

$$x(k+i|k) \in \mathbb{X}, i = 1,..., H_p - 1$$

$$u(k+i|k) = u(k+H_c-1|k), i = H_c,..., H_p - 1$$

$$x(k+1|k)^T Px(k+1|k) \le \lambda^2 x(k|k)^T Px(k|k), \lambda < 1, P : A^T PA + Q = P$$

Hp: stable system

MPC_L4 41

"Contraction constraint" (Zheng, 1995)

Note that stability of the system to be controlled ensures feasibility of the zero input sequence:

$$J(x(k \mid k), U^{O}) \leq J(x(k \mid k), 0) = \sum_{i=0}^{H_{\rho}} x(k + i \mid k)^{T} Qx(k + i \mid k) =$$

$$\sum_{i=1}^{H_{\rho}} x(k + i \mid k)^{T} (A^{i})^{T} QAx(k + i \mid k) + x(k \mid k)^{T} Qx(k \mid k)$$

$$\leq x^{T} (k \mid k) Px(k \mid k) \left(1 - \frac{\underline{\sigma}((A^{i})^{T} QA)}{\overline{\sigma}(P)} \right) \leq \lambda^{2} x^{T} (k - 1 \mid k - 1) Px(k - 1 \mid k - 1) \left(1 - \frac{\underline{\sigma}((A^{i})^{T} QA)}{\overline{\sigma}(P)} \right)$$

$$\lambda^{2k} x^{T} (0) Px(0) \left(1 - \frac{\underline{\sigma}((A^{i})^{T} QA)}{\overline{\sigma}(P)} \right)$$

therefore $\lim_{k\to\infty} J(k) = 0$ and, since Q > 0, it follows $\lim_{k\to\infty} x(k) = 0$

"Contraction constraint" (Zheng, 1995)

Sketch of the proof:

Given system stability it can be shown that constraints are always feasible (provided that suitable softening on the state constraints are introduced)

In particular, since in such a context the zero sequence is always feasible it can be shown that for a given λ in the interval $\lambda^* \leq \lambda < 1$ the contraction constraint is feasible for sure

$$x^{T}(k+1|k)Px(k+1+|k) = x^{T}(k|k)A^{T}PAx(k|k) = x^{T}(k|k)(P-Q)x(k|k)$$

$$= x^{T}(k|k)Px(k|k) - x^{T}(k|k)Qx(k|k) = x^{T}(k|k)Px(k|k)\left(1 - \frac{x^{T}(k|k)Qx(k|k)}{x^{T}(k|k)Px(k|k)}\right) \le x^{T}(k|k)Px(k|k)\left(1 - \frac{\underline{\sigma}(Q)}{\underline{\sigma}(P)}\right) = \lambda^{2}x^{T}(k|k)Px(k|k)$$

Model Predictive Control – M. Canale

MPC L4 42

"Contraction constraint" (Zheng, 1995)

Remarks

- Contraction constraints introduces quadratic constraints → solution with SOCP
- In order to reduce th online computational burden (avoiding SOCP):
 - solve QP without taking into account the contraction constraint
 - if the contraction constraint is satisfied → OK
 - If the constraint is not satisfied \rightarrow add a penality term $\rho x^T(k) P x(k)$ in the cost function and tune (i.e. increase r) until the constraint is not satisfied

Stability analysis for nonlinear MPC

Model Predictive Control – M. Canale

The optimization problem

... to this aim the feedback controller

$$u(k) = \mathcal{K}(x(k))$$

will be designed using the RH strategy based on the following optimization problem

$$\operatorname{min}_{U(k)} J(x(k \mid k), U(k)) = \operatorname{min}_{U(k)} \sum_{i=0}^{H_{\rho}-1} L(x(k+i \mid k), u(k+i \mid k)) + \Phi(x(k+H_{\rho} \mid k))$$
s.t.
$$x(k+1) = f(x(k), u(k))$$

$$U(k) \in \mathbb{U}$$

$$x(k+i \mid k) \in \mathbb{X}, i = 1, ..., H_{\rho} - 1$$

$$x(k+H_{\rho} \mid k) \in \mathbb{X}_{F} \subset \mathbb{X}$$

Problem formulation

Given the discrete time, time invariant model

$$M: x(k+1) = f(x(k), u(k))$$
$$x(k) \in \mathbb{R}^n, u(k) \in \mathbb{R}^m$$

which admits the origin of the state space as an equilibrium state for null input, i.e.:

$$f(0,0) = 0$$

consider the design of a predictive controller that aims at regulating at the origin the system state in the presence of input and state constraint

Model Predictive Control - M. Canale

MPC L4 - 46

Assumptions on $\mathcal{P}_{Hp}(x)$: part I

Let us recall the assumptions already made on the model, on the cost function terms and on the constraint sets

- $f(\cdot)$, $L(\cdot)$, $\Phi(\cdot) \in C^1$
- $\mathbb{U}\subset\mathbb{R}^m$ compact, $\mathbb{X}\subset\mathbb{R}^n$, $\mathbb{X}_\digamma\subset\mathbb{R}^n$ closed, all containing the origin on their interiors

For simplicity, it will be assumed $H_p = H_c < \infty$

The minimizer of problem $\mathcal{P}_{Hp}(x)$ and the corresponding state sequence at time k will be indicated as:

$$U^{O}(k) = [u^{O}(k|k), u^{O}(k+1|k), ..., u^{O}(k+H_{D}-1|k)]^{T}$$

$$X^{\scriptscriptstyle O}(k) = [x^{\scriptscriptstyle O}(k\,|\,k\,),\,x^{\scriptscriptstyle O}(k\,+\,1\,|\,k\,),\,\ldots\,,\,x^{\scriptscriptstyle O}(k\,+\,H_{\scriptscriptstyle D}\,|\,k\,)]^{\scriptscriptstyle T}$$

Assumptions on $\mathcal{P}_{Hp}(x)$: part II

The following Assumptions on problem $\mathcal{P}_{HD}(x)$ will be made:

1. L(x,u) satisfies

$$L\left(0,0\right)=0\ \&\ \|L\left(x,u\right)\|>\gamma\left(\|x\|\right)\ \forall x\in\mathbb{S}_{H_{D}},\ u\in\mathbb{U}\ \text{where}$$

$$\gamma: \mathbb{R}^+ \to \mathbb{R}^+$$
, $\gamma(t) > 0$, $\forall t > 0$, $\lim_{t \to \infty} \gamma(t) = \infty$

- 2. There exists an "auxiliary" controller $u(k) = \mathcal{K}_F(x(k))$ such that $\mathcal{K}_F(x(k)) \in \mathbb{U}, \ \forall x \in \mathbb{X}_F$
- 3. X_F is a positively invariant set for $x(k+1) = f(x(k), \mathcal{K}_F(x(k)))$
- 4. $\Phi(x)$ satisfies
 - a. Φ (0) = 0, Φ (x) \geq 0 $\forall x \in X_F$
 - b. $\Phi(f(x,\mathcal{K}_F(x)) \Phi(x) \le L(x,\mathcal{K}_F(x)), \forall x \in \mathbb{X}_F$

Model Predictive Control - M. Canale

MPC_L4 - 49

MPC L4 - 51

Asymptotic stability of MPC

Suppose that Assumptions 1. – 4. are met, then the **closed loop system**

$$x(k+1) = f(x(k), \mathcal{K}(x(k)))$$

obtained using the control law:

$$u(k) = \mathcal{K}(x(k))$$

as the result of the application of the RH strategy on problem $\mathcal{P}_{HD}(x)$

is asymptotically stable

Assumptions on $\mathcal{P}_{Hp}(x)$: part II

Remarks

An example of function L(x, u) satisfying hypothesis 1. is the quadratic form:

$$L(x,u) = x^TQx + u^TRu, Q = Q^T \succeq 0, R = R^T > 0$$

where
$$\gamma(t) = \lambda_{\min}(Q)t^2$$
 and $\lambda_{\min}(Q) = \min_{i} \lambda_{i}(Q)$

An example of the "triple" $\Phi(x)$, $\mathcal{K}_F(x)$, \mathbb{X}_F satisfying hypotheses 2. 3. and 4. is:

$$\Phi(x) = 0$$

$$\mathcal{K}_{\varepsilon}(x(k)) = 0$$

$$\mathbb{X}_{\varepsilon} = \{0\}$$

Model Predictive Control - M. Canale

MPC L4 - 50

Sketch of the proof

Let $x(0) = x_0 \in \mathbb{S}_{H_0}$ be the initial state at time instant k = 0 and

$$U_0^{\circ} = [u_0^{\circ}, u_1^{\circ}, ..., u_{H_0-1}^{\circ}]^{\mathsf{T}}$$
 and $X_0^{\circ} = [x_0^{\circ}, x_1^{\circ}, x_2^{\circ}, ..., x_{H_0}^{\circ}]^{\mathsf{T}}$

be the minimizer and the corresponding state sequence respectively obtained solving problem $\mathcal{P}_{HD}(x)$

At the next time instant k = 1 consider the following sequence which is certainly feasible but, in general, not optimal:

$$U_1 = [u_1^{\, \circ}, \, ..., \, u_{H_D-1}^{\, \circ}, \, \mathcal{K}_F(x_{H_D}^{\, \circ})]^{\mathsf{T}}$$

the corresponding state sequence is

$$X_1 = [x_1^0, x_2^0, ..., f(x_{H_0}^0, \mathcal{K}_F(x_{H_0}^0))]^T$$

Note that all the components of X_I belong to \mathbb{S}_{Ho} .

Iterating the same reasoning for the future time instants k = 2, 3, ... feasibility of the sequences X_2 , X_3 ,... is obtained thus **proving** the (positive) **invariance of** \mathbb{S}_{Hp}

Sketch of the proof

... the next step consists in proving that the optimal cost function $J^{o}(x)$ is a Lyapunov function for asymptotic stability of the closed loop system

$$x(k+1) = f(x(k), \mathcal{K}(x(k)))$$

What we need to show are the two properties:

1)
$$J^{O}(x) > 0$$

2)
$$\Delta J^{O}(x) = J^{O}(x(k+1)) - J^{O}(x(k)) < 0$$

Recalling that $J^{0}(x) = L(x(k|k), U^{0})$, we have that satisfaction of hypotesis 1. leads to

$$L(0,0) = 0$$
, $\Phi(0) = 0 \Rightarrow J^{0}(x) = 0$
 $J^{0}(x) > L(x(k|k), U^{0}) \ge \gamma (||x(k|k)||) \forall x \in \mathbb{S}_{H_{0}}$

 \Rightarrow $J^{0}(x) = 0$ positive definite

MPC L4 - 53

Sketch of the proof

... now consider the change in value:

$$\Delta J^{O}(x) = J^{O}(x(k+1)) - J^{O}(x(k)) = J^{O}(X_{k+1}^{O}, U_{k+1}^{O}) - J^{O}(X_{k}^{O}, U_{k}^{O}) \le$$

$$\leq J^{O}(X_{k+1}, U_{k+1}) - J^{O}(X_{k}^{O}, U_{k}^{O}) =$$

$$= -L(x(k \mid k), u(k \mid k)) + L(x(k + H_{p} \mid k), K_{F}(x(k + H_{p} \mid k))) +$$

$$+\Phi(f(x(k + H_{p} \mid k), K_{F}(x(k + H_{p} \mid k))) - \Phi(f(x(k + H_{p} \mid k)))$$

On the basis of 4. the sum of the last three terms is nonpositive. Therefore using Hypothesis 1:

$$\Delta J^{\mathcal{O}}(X) \leq -L(X(k \mid k), U(k \mid k)) < -\gamma(||X||) < 0, \forall X \in \mathbb{S}_{H_{\rho}}$$

i.e. the increment $\Delta J^{o}(x)$ is negative definite

It is then possible to conclude that the optimal cost function $J^0(x)$ is a **Lyapunov function** for asymptotic stability of the origin of the closed loop system, moreover the **region of attraction** is \mathbb{S}_{Hp}

MPC_L4 - 54