Colles semaine 17

1 Convergence en loi

1.1 Généralités

Définition

Une suite de v.a. (X_n) converge en loi vers celle de X si, pour $x \in \mathbb{R}$, on a : $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$. (convergence pour $n \to \infty$ des fonctions de répartition)

▶ Cas de la limite continue

Si F_X est continue, alors, pour $a \le b \in \mathbb{R}$, on a : $\lim_{n \to \infty} \mathbb{P}(a \le X_n \le b) = \mathbb{P}(a \le X \le b)$.

▶ Cas de variables discrètes (à valeurs entières)

Si
$$X_n(\Omega) \subset \mathbb{Z}$$
 alors, pour avoir : $X_n \xrightarrow{\mathcal{L}} X$ il suffit, $\forall k \in \mathbb{Z}$, que : $\lim_{n \to \infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k)$.

1.2 Cas de convergence en loi

- ▶ **Limite d'Euler** Savoir démontrer, pour $x \in \mathbb{R}$, et utiliser la limite : $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \exp(x)$.
- ▶ Exemple de convergence en loi de min / max
- ► **Théorème central limite** Si les (X_k) admettent un moment d'ordre 2 et sont indépendantes, alors la moyenne empirique normalisée : $\overline{X_n}^* = \frac{1}{\sqrt{n} \cdot \sigma_X} \cdot \left(\sum_{k=1}^n X_k n \cdot \mathbb{E}[X]\right)$ converge en loi vers la loi normale $\mathcal{N}(0,1)$.
- ► **Loi des événements rares** Si $\lim_{n\to\infty} n \cdot p_n = \lambda$, alors il y a convergence en loi : $\mathcal{B}(n,p_n) \xrightarrow{\mathcal{L}} \mathcal{P}(\lambda)$

2 Calcul différentiel à deux variables

2.1 Calcul de dérivées

Exemples fondamentaux

Fonctions coordonnées $(x,y) \mapsto x$ et $(x,y) \mapsto y$, polynomiales (affines, quadratiques)

- ▶ **Régularité** (Justification semblable au cas des fonctions d'une variable réelle) Notion de fonction de deux variables : continue, de classe C^1 ou C^2 .
- ▶ **Dérivées partielles** notées $\partial_1 f(x, y)$ et $\partial_2 f(x, y)$
- ► **Champ de gradient** $\nabla f(x,y) = \begin{pmatrix} \partial_1 f \\ \partial_2 f \end{pmatrix}(x,y) = \begin{pmatrix} \partial_1 f(x,y) \\ \partial_2 f(x,y) \end{pmatrix} \in \mathbb{R}^2$ (vecteur des dérivées)
- ► Champ de Hessienne $\nabla^2 f(x,y) = \begin{bmatrix} \partial_{1,1}^2 f & \partial_{1,2}^2 f \\ \partial_{2,1}^2 f & \partial_{2,2}^2 f \end{bmatrix} \in \mathcal{M}_{2,2}(\mathbb{R})$ (matrice des dérivées partielles secondes)

 Schwarz : Pour f de classe \mathcal{C}^2 , la Hessienne est symétrique, et s'écrit $\nabla^2 f(x,y) = \begin{bmatrix} r & s \\ s & t \end{bmatrix}$.

2.2 Recherche de points critiques

- ▶ **Point critique de** f: $[(x_0, y_0) \text{ point critique de } f] \iff [\nabla f(x_0, y_0) = \vec{0}.]$
- Écriture de la Hessienne en un point critique par spécialisation en (x_0, y_0) de l'expression générale trouvée.

3 Questions de cours

1. Écrire le champ de gradient et de hessienne d'une fonction f(x,y).

2. Définir : la suite de variables aléatoires (X_n) converge en loi vers X.

3. Calcul, pour $x \in \mathbb{R}$, de la limite : $\lim_{n \to \infty} (1 + \frac{x}{n})^n$.

4. Énoncé du théorème central limite.

5. Principe de l'étude du min/max indépendant.

