MATH S1202: Calculus IV Quiz 5 June 21, 2018

- 1. Let E be the solid region above the xy-plane, inside the cylinder $x^2 + z^2 = 9$, and bounded by the planes y = -4 and y = 4. Let S_1 be the portion of the boundary of E lying along the cylinder $x^2 + z^2 = 9$.
 - (a) Use cylindrical coordinates about the y-axis with fixed radius r = 3 to give a parametrization $\mathbf{r}(\theta, y)$ of S_1 . In particular, specify the domain D of your parametrization $\mathbf{r}(\theta, y)$.
 - (b) Find the area of S_1 using (a).
 - (c) If a thin sheet occupies S_1 with density $\rho(x,y,z)=1$, find the z-coordinate \bar{z} of the center of mass $(\bar{x},\bar{y},\bar{z})$.

.

- **2.** Let S_1 be as above and equip S_1 with the induced orientation as a portion of the boundary of the solid region E. Let \mathbf{F} be the vector field $\mathbf{F}(x,y,z) = (x,x+y,z)$.
 - (a) Compute the flux of \mathbf{F} across S_1 . (Hint: Pay attention to orientation. In particular, is the parametrization $\mathbf{r}(\theta, y)$ of S_1 you gave in Problem 1 compatible with the orientation specified on S_1 ? If not, you may need a minus sign somewhere.)
- (b) Let C_1 be the boundary curve of S_1 with induced orientation. Compute the work done by \mathbf{F} on a particle traveling along C_1 . (Hint: Again, pay attention to the orientation of C_1 .)