FCC 47 CFR PART 15 SUBPART C: 2009 AND ANSI C63.4: 2003

TEST REPORT

For

N+ High Power Broadband Router - All Broadbands

Model Number: GR290n

Brand Name: ETOP

Issued for

E-Top Network Technology Inc.

No. 82 ,Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc.

Tainan Lab.

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

TEL: 886-6-580-2201 FAX: 886-6-580-2202

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

Total Page: 138

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	March 25, 2011	Initial Issue	ALL	Leah Peng

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
2.1 DESCRIPTION OF EUT & POWER	5
3. DESCRIPTION OF TEST MODES	7
4. TEST METHODOLOGY	8
5. FACILITIES AND ACCREDITATIONS	8
5.1 FACILITIES	8
5.2 EQUIPMENT	8
5.3 LABORATORY ACCREDITATIONS LISTINGS	8
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	9
6. CALIBRATION AND UNCERTAINTY	10
6.1 MEASURING INSTRUMENT CALIBRATION	10
6.2 MEASUREMENT UNCERTAINTY	10
7. SETUP OF EQUIPMENT UNDER TEST	11
7.1 SETUP CONFIGURATION OF EUT	11
7.2 SUPPORT EQUIPMENT	12
7.3 EUT OPERATING CONDITION	13
8. APPLICABLE LIMITS AND TEST RESULTS	14
8.1 6DB BANDWIDTH	14
8.2 MAXIMUM PEAK OUTPUT POWER	29
8.3 MAXIMUM PERMISSIBLE EXPOSURE	33
8.4 POWER SPECTRAL DENSITY	35
8.5 CONDUCTED SPURIOUS EMISSION	54
8.6 RADIATED EMISSIONS	83
8.7 POWERLINE CONDUCTED EMISSIONS	
9. ANTENNA REQUIREMENT	134
9.1 STANDARD APPLICABLE	
9.2 ANTENNA CONNECTED CONSTRUCTION	
APPENDIX I SETUP PHOTOS	13
APPENDIX II PHOTOGRAPHS OF FUT	Δ.

1. TEST REPORT CERTIFICATION

Applicant : E-Top Network Technology Inc.

Address : No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.

Date of Issue: March 25, 2011

Manufacture : E-Top Network Technology Inc.

Address : No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.

Equipment Under Test: N+ High Power Broadband Router - All Broadbands

Model Number : GR290n

Brand Name : ETOP

Date of Test : March 3, 2011 – March 13, 2011

APPLICABLE STANDARD				
STANDARD	TEST RESULT			
FCC Part 15 Subpart C : 2009 AND ANSI C63.4 : 2003	No non-compliance noted			

Approved by:

Jeter Wu

Assistant Manager

Eric Huang

Reviewed by:

Assistant Section Manager

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	N+ High Power Broadband Router - All Broadbands			
Model Number	GR290n			
Brand Name	ETOP			
Frequency Range	IEEE 802.11b/g, 802.11n HT20 (DTS Band):2412MHz~2462MHz IEEE 802.11n HT40 (DTS Band):2422MHz~2452MHz			
Transmit Power	IEEE 802.11b Mode: 13.10dBm (DTS Band) (20.4174 mW) IEEE 802.11g Mode: 19.73dBm (DTS Band) (93.9723 mW) IEEE 802.11n HT20 Mode: 19.28dBm (DTS Band) (84.7465 mW) IEEE 802.11n HT40 Mode: 18.75dBm (DTS Band) (74.915 mW)			
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz			
Channel Number	IEEE 802.11b/g, 802.11n HT20:11 Channels IEEE 802.11n HT40 :7 Channels			
Transmit Data Rate	IEEE 802.11b: 11, 5.5, 2, 1 Mbps IEEE 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps IEEE 802.11n HT20: 65, 58.5, 52, 39, 26, 19.5, 13, 6.5 Mbps IEEE 802.11n HT40: 135, 121.5, 108, 81, 54, 40.5, 27, 13.5 Mbps			
	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)			
Type of Modulation	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)			
Frequency Selection	By software / firmware			
Antenna Type	Two antennas 2Tx 2Rx Manufacture: YONG-SHUN TECHNOLOGY CO., LTD. Model: S22-XY30925 Type: Dipole Gain: 5 dBi Connector: i-pex			
Power Source	SWITCHING ADAPTOR Manufacture: Keen Ocean Industrial Ltd. Model: S02-012-0120-01000 SWP-21426-00 Input: 100-240Vac, 50/60Hz, 0.40A max. Output: 12.0Vdc, 1A			
Temperature Range	0 ~ 40°C			

REMARK:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

Date of Issue: March 25, 2011

- 2. This submittal(s) (test report) is intended for FCC ID: <u>U6A-GR290N</u> filing to comply with Section 15.207,15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. Client consigns one model sample and two adapters to test (Model Number: GR290n). Therefore, the testing Lab. just guarantees the unit, which has been tested.
- 4. For more details, please refer to the User's manual of the EUT.
- 5. To add a series model is for business necessary, just for marketing purpose only.
- 6. The different of the each model is shown as below:

Multiple listing:

Company & Address	Brand	Model	Product Name	
E-Top Network Technology Inc. No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.	ETOP	GR290n GR291d GS298d	N+ High Power Gigabit Broadband Router - All Broadbands Wireless-N Concurrent Gigabit Router Wireless-N Concurrent Gigabit Server Router	
Amigo Technology Inc. 5F., No.63, Lane 77, Xing-Ai Road, Neihu Dist., Taipei City 114, Taiwan (R.O.C.)	Amigo	GR290n GR291d GS298d	High Power 11n Giga Router 11n Gigabit Broadband Router 11n Gigabit Server Router	
CNet Technology Inc. 1F,No.30,Industry E.RD.IX,Science-Based Industrial Park,Hsin-Chu,Taiwan,R.O.C.	CNet	CHR-990(A) CHR-991 CHR-998	Wireless-N High Power Gigabit Router Wireless-N High Power Gigabit Router Pro Wireless-N High Power Gigabit Server Router Pro	
Sapido Technology Inc. No. 383., Sec. 2, Minsheng Rd., West Central District, Tainan 700, Taiwan, R.O.C.	SAPIDO	RB-1733 DR-1733 DS-1763	N+Gigabit High Power Broadband Router - All Broadbands Simultaneous Dual-N Gigabit Router - All Broadbands Simultaneous Dual-N Gigabit NES Server - All Broadbands	

3. DESCRIPTION OF TEST MODES

The EUT is a 11n router. It has two transmitter chains and two receive chains (2x2 configurations). The 2x2 configuration is implemented with two outside chains (Chain 0 and Chain 1).

Date of Issue: March 25, 2011

The RF chipset is manufactured by Realtek Semiconductor Corp.

The antenna peak gain 5dBi (highest gain) were chosen for full testing.

IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2412	
Middle	2437	
High	2462	

IEEE 802.11b mode: 11Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 13Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2422	
Middle	2437	
High	2452	

IEEE 802.11n HT40 mode: 27Mbps data rate (worst case) were chosen for full testing.

The worst-case data rates are determined according to the description above, based on the investigations by measuring the PSD, peak power and average power across all the data rates, bandwidths, modulations and spatial stream modes.

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2462 MHz.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Date of Issue: March 25, 2011

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW-1037).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC TW-1037
Taiwan	TAF	CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, EN 60601-1-2, CISPR 22, CNS 13438, EN 55022, EN 55024, AS/NZS CISPR 22 CISPR 14, EN 55014-1, EN 55014-2, CNS 13783-1, CISPR 22, CNS 13439, EN 55013, FCC Method-47 CFR Part 15 Subpart B, IC ICES-003, VCCI V-3 & V-4 FCC Method-47 CFR Part 15 Subpart C and ANSI C63.4, LP 0002 EN / IEC 61000-4-2 / -3 / -4 / -5 / -6 / -8 / -11 EN 61000-3-2, EN 61000-3-3 EN 61000-6-3, EN 61000-6-1, AS/NZS 4251.1, EN 61000-6-4, EN 61000-6-2, AS/NZS 4251.2, EN 61204-3, EN 50130-4, EN 62040-2, EN 50371, EN 50385, AS/NZS 4268, ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 301 893, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 301 893, ETSI EN 300 220-2/-1 ETSI EN 301 357-2/-1 RSS-310, RSS-210 Issue 7, RSS-Gen Issue 2	Testing Laboratory 1109
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS13439	SL2-IN-E-0039 SL2-R1/R2-0039 SL2-A1-E-0039
Canada	Industry Canada	RSS210, Issue 8	Canada IC 2324H-1

^{*} No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Date of Issue: March 25, 2011

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY		
Radiated Emission, 30 to 200 MHz Test Site : OATS-6	±3.38dB		
Radiated Emission, 200 to 1000 MHz Test Site : OATS-6	±3.04dB		
Radiated Emission, 1 to 26.5 GHz	± 3.20dB		
Power Line Conducted Emission	± 2.01dB		

Uncertainty figures are valid to a confidence level of 95%, K=2

7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

Above 1GHz Test Setup:

7.2 SUPPORT EQUIPMENT

Above 1GHz Test Setup:

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Note Book	IBM	T43	DOC	Power cable, unshd, 1.6m

Date of Issue: March 25, 2011

No.	Signal cable description			
Α	DC input Unshielded, 1.8m, 1pcs			
В	LAN cable	Unshielded, 10m, 1pcs.		

Below 1GHz Test Setup:

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Note Book	IBM	R51	R33026	Power cable, unshd, 1.6m
2	Note Book	IBM	T43	DOC	Power cable, unshd, 1.6m
3	3G Modem		Qualcomm 3G CDMA	PKRNVWMC 727	N/A
4	HUB	BARRICAD	SMC7008BR	DOC	Power cable, unshd, 1.6m

No.	Signal cable description					
Α	LAN cable	Unshielded, 10m, 1pcs.				
В	LAN cable	Unshielded, 10m, 1pcs.				
С	LAN cable	Unshielded, 1.8m, 3pcs.				
D	Power cable	Unshielded, 1.8m, 1pcs.				

REMARK:

- 1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7.3 EUT OPERATING CONDITION

RF Setup

- 1. Set up all computers like the setup diagram.
- 2. The "Realtek MP Test Program" software was used for testing

(1)TX Mode:

- ⇒ Tx Mode:CCK · OFDM · HT MixMode (Bandwidth: 20 · 40)
- ⇒ Tx Data Rate: 11Mbps long (IEEE 802.11b mode, TX)

6Mbps (IEEE 802.11g mode, TX)

13Mbps (IEEE 802.11n HT20 mode ,chain 0, chain 1 TX) **27Mbps** (IEEE 802.11n HT40 mode, chain 0, chain 1 TX)

Date of Issue: March 25, 2011

Power control mode

Target Power: IEEE 802.11b Channel Low (2412MHz) = 32

IEEE 802.11b Channel Middle (2437MHz) = **32**

IEEE 802.11b Channel High (2462MHz) = 32

Target Power: IEEE 802.11g Channel Low (2412MHz) = 40

IEEE 802.11g Channel Middle (2437MHz) = **40** IEEE 802.11g Channel High (2462MHz) = **40**

Target Power: IEEE 802.11n HT20 Channel Low (2412MHz) = **33 (Chain 0)**

IEEE 802.11 n HT20 Channel Middle (2437MHz) = **33 (Chain 0)**

IEEE 802.11 n HT20 Channel High (2462MHz) = 33 (Chain 0)

IEEE 802.11n HT20 Channel Low (2412MHz) = 33 (Chain 1)

IEEE 802.11 n HT20 Channel Middle (2437MHz) = **33 (Chain 1)**

IEEE 802.11 n HT20 Channel High (2462MHz) = 33 (Chain 1)

Target Power: IEEE 802.11n HT40 Channel Low (2422MHz) = 33 (Chain 0)

IEEE 802.11 n HT40 Channel Middle (2437MHz) = **33 (Chain 0)**

IEEE 802.11 n HT40 Channel High (2452MHz) = **33 (Chain 0)**

IEEE 802.11n HT40 Channel Low (2422MHz) = **33 (Chain 1)**

IEEE 802.11 n HT40 Channel Middle (2437MHz) = 33 (Chain 1)

IEEE 802.11 n HT40 Channel High (2452MHz) = 33 (Chain 1)

(2) RX Mode:

Start RX

- 3. All of the function are under run.
- 4. Start test.

Normal Link Setup

- 1. Set up all computers like the setup diagram.
- All of the function are under run.
- 3. Notebook PC (2) ping 192.168.0.10 –t to Notebook PC (1).
- 4. Notebook PC (1) ping 192.168.0.20 –t to Notebook PC (2).
- 5. Notebook PC (1) ping 192.168.0.50 -t to Wireless Access Point (3).
- 6. Start test.

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6DB BANDWIDTH

LIMIT

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

Date of Issue: March 25, 2011

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2011

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 100 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

No non-compliance noted.

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	10321	500	PASS
Middle	2437	10321	500	PASS
High	2462	10321	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 11Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Date of Issue: March 25, 2011

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16733	500	PASS
Middle	2437	16733	500	PASS
High	2462	16733	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode (Two TX)

Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit (kHz)	Pass / Fail	
	(MHz)	Chain 0	Chain1	(KHZ)		
Low	2412	17936	17836	500	PASS	
Middle	2437	17936	17836	500	PASS	
High	2462	17936	17836	500	PASS	

NOTE:

- 1. At finial test to get the worst-case emission at 13Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Date of Issue: March 25, 2011

IEEE 802.11n HT40 mode (Two TX)

Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain1	(kHz)		
Low	2422	36874	36673	500	PASS	
Middle	2437	36874	36673	500	PASS	
High	2452	36874	36673	500	PASS	

NOTE:

- 1. At finial test to get the worst-case emission at 27Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

6dB BANDWIDTH (802.11b MODE)

Date of Issue: March 25, 2011

11.MAR.2011 16:19:52

6dB BANDWIDTH (802.11g MODE)

Date of Issue: March 25, 2011

11.MAR.2011 16:22:55

6dB BANDWIDTH (802.11n HT20 MODE) Chain 0

Date of Issue: March 25, 2011

11.MAR.2011 16:24:59

6dB BANDWIDTH (802.11n HT20 MODE) Chain 1

6dB BANDWIDTH (802.11n HT40 MODE) Chain 0

Date of Issue: March 25, 2011

11.MAR.2011 16:27:32

6dB BANDWIDTH (802.11n HT40 MODE) Chain 1

8.2 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

Date of Issue: March 25, 2011

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2487A	6K00003888	MAY. 11, 2011

TEST SETUP

TEST PROCEDURE

Connect the EUT to spectrum analyzer, set the center frequency of the spectrum analyzer to the channel center frequency. Set the RBW to 1MHz and VBW to 3MHz.

Set sweep time=auto

Use detector max peak mode

Measurement of Digital Transmission Systems Operating under Section 15.247

TEST RESULTS

No non-compliance noted

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Margin (dBm)	Pass / Fail
Low	2412	13.03	30.00	-16.97	PASS
Middle	2437	13.10	30.00	-16.90	PASS
High	2462	12.93	30.00	-17.07	PASS

Date of Issue: March 25, 2011

NOTE:

- 1. At finial test to get the worst-case emission at 11Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was

Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

incle out. Tig mode							
Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Margin (dBm)	Pass / Fail		
Low	2412	19.50	30.00	-10.50	PASS		
Middle	2437	19.68	30.00	-10.32	PASS		
High	2462	19.73	30.00	-10.27	PASS		

NOTE:

- 1.At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was

Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode(Two TX)

Channel	Channel Frequency	Peak Power (dBm)		Peak Power	Peak Power	Margin	Pass /
Onamie	(MHz)	Chain 0	Chain 1	Total (dBm)	Limit (dBm)	(dBm)	Fail
Low	2412	14.68	17.02	19.02	30	-10.98	PASS
Middle	2437	14.45	17.55	19.28	30	-10.72	PASS
High	2462	13.92	17.04	18.76	30	-11.24	PASS

NOTE: 1.At finial test to get the worst-case emission at 13Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Date of Issue: March 25, 2011

IEEE 802.11n HT40 mode (Two TX)

Channel	Channel Frequency	Peak Power (dBm)		Peak Power	Peak Power	Margin	Pass /
Onamici	(MHz)	Chain 0	Chain 1	Total (dBm)	Limit (dBm)	(dBm)	Fail
Low	2422	14.01	16.80	18.64	30	-11.36	PASS
Middle	2437	13.96	16.83	18.64	30	-11.36	PASS
High	2452	13.82	17.06	18.75	30	-11.25	PASS

NOTE: 1. At finial test to get the worst-case emission at 27Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Date of Issue: March 25, 2011

IEEE 802.11b mode

Average Power Data

Average	Channel	
Channel	Frequency (MHz)	Average Power (dBm)
Low	2412	10.83
Middle	2437	10.89
High	2462	10.71

IEEE 802.11g mode Average Power Data

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	10.10
Middle	2437	10.27
High	2462	10.33

IEEE 802.11n HT20 mode

Average Power Data

Channel	Channel Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 1 (dBm)	
Low	2412	5.86	8.18	
Middle	2437	5.71	8.18	
High	2462	5.56	8.05	

IEEE 802.11n HT40 mode

Average Power Data

Channel	Channel Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 1 (dBm)
Low	2422	5.42	7.92
Middle	2437	5.40	7.93
High	2452	5.37	7.78

8.3 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Date of Issue: March 25, 2011

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time		
(A) Limits for Occupational / Control Exposures						
300-1,500	00 F/300		F/300	6		
1,500-100,000		5		6		
(B) Limits for General Population / Uncontrol Exposures						
300-1,500		F/1500		6		
1,500-100,000			1	30		

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

LIMIT

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

No non-compliance noted.

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

G=5.0dBi=3.1622777mW

IEEE 802.11b =0.0796*20.41738*3.16227766/400=0.012849 IEEE 802.11g =0.0796*93.97233*3.16227766/400=0.059136 IEEE 802.11n HT20 =0.0796*84.74650*3.16227766/400=0.053330 IEEE 802.11n HT40 =0.0796*74.91500*3.16227766/400=0.047144

Mode	Minimum separation distance (cm)	Output Power (dBm)	Output Power (mw)	Antenna Gain (dBi)	Power Density Limit (mW/cm²)	Power Density at 20cm (mW/cm²)
IEEE 802.11b	20	13.10	20.42	5.00	1.00	0.012849
IEEE 802.11g	20	19.73	93.97	5.00	1.00	0.059136
IEEE 802.11n HT20	20	19.28	84.75	5.00	1.00	0.053330
IEEE 802.11n HT40	20	18.75	74.91	5.00	1.00	0.047144

Date of Issue: March 25, 2011

REMARK: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

8.4 POWER SPECTRAL DENSITY

<u>LIMIT</u>

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Date of Issue: March 25, 2011

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2011

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=3KHz and VBW≧RBW, set sweep time=span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

Total peak power calculation formula: 10 log (10^ (Chain 0 PPSD / 10)).

No non-compliance noted.

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	PPSD (dBm)	Maximum Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-19.48	8.00	-27.48	PASS
Middle	2437	-19.30	8.00	-27.30	PASS
High	2462	-19.46	8.00	-27.46	PASS

Date of Issue: March 25, 2011

- **NOTE**: 1. At finial test to get the worst-case emission at 11Mbps.
 - 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	PPSD (dBm)	Maximum Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-19.13	8.00	-27.13	PASS
Middle	2437	-19.08	8.00	-27.08	PASS
High	2462	-19.03	8.00	-27.03	PASS

- **NOTE**: 1. At finial test to get the worst-case emission at 6Mbps.
 - 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode

Channel	Channel Frequency	PPSD(dBm) Maximum Limit		PPSD(dBm)		Margin	Pass /
	(MHz)	Chain 0 Chain 1 Total		(dBm) (dB)		Fail	
Low	2412	-21.92	-19.69	-17.65	8.00	-25.65	PASS
Middle	2437	-21.17	-19.76	-17.40	8.00	-25.40	PASS
High	2462	-21.28	-19.85	-17.50	8.00	-25.50	PASS

Date of Issue: March 25, 2011

NOTE: 1. At finial test to get the worst-case emission at 13Mbps.

- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and
- 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode

Channel	Channel Frequency	PPSD(dBm)		Maximum Limit	Margin (dB)	Pass / Fail	
	(MHz)	Chain 0	Chain 0 Chain 1 Total		(dBm)	(ub)	I all
Low	2422	-25.87	-23.77	-21.68	8.0	-29.68	PASS
Middle	2437	-26.10	-23.75	-21.76	8.0	-29.76	PASS
High	2452	-26.15	-23.51	-21.62	8.0	-29.62	PASS

NOTE: 1. At finial test to get the worst-case emission at 27Mbps.

- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and
- 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Combined mode

Channel		Channel Frequency (MHz)	PPSD (dBm)	Maximum Limit (dBm)	Margin (dB)	Pass / Fail
	CH Low	2412	-17.32	8	-25.32	
802.11n HT20 Combined mode	CH Middle	2437	-17.37	8	-25.37	PASS
	CH High	2462	-17.52	8	-25.52	
	CH Low	2422	-21.11	8	-29.11	
802.11n HT40 Combined mode	CH Middle	2437	-21.12	8	-29.12	PASS
	CH High	2452	-21.09	8	-13.09	

POWER SPECTRAL DENSITY (IEEE 802.11b MODE)

POWER SPECTRAL DENSITY (IEEE 802.11g MODE)

POWER SPECTRAL DENSITY (802.11n HT20 MODE)

POWER SPECTRAL DENSITY (802.11n HT20 MODE)

POWER SPECTRAL DENSITY (802.11n HT40 MODE)

POWER SPECTRAL DENSITY (802.11n HT40 MODE)

POWER SPECTRAL DENSITY (802.11n HT20 Combined MODE)

POWER SPECTRAL DENSITY (802.11n HT40 Combined MODE)

8.5 CONDUCTED SPURIOUS EMISSION

LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Date of Issue: March 25, 2011

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST SETUP

TEST RESULTS

No non-compliance noted.

802.11b Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	94.88	106.58	N/A	N/A
2400	11.7	58.37	70.07	86.58	-16.51
1735.52786	11.7	41.03	52.73	86.58	-33.85
6955.91182	11.7	44.19	55.89	86.58	-30.69

Date of Issue: March 25, 2011

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	94.34	106.04	N/A	N/A
2400	11.7	40.47	52.17	86.04	-33.87
1750.1002	11.7	40.06	51.76	86.04	-34.28
6673.34669	11.7	43.42	55.12	86.04	-30.92

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	94.91	106.61	N/A	N/A
2400	11.7	39.65	51.35	86.61	-35.26
1012.06413	11.7	39.75	51.45	86.61	-35.16
6955.91182	11.7	44.87	56.57	86.61	-30.04

802.11g Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	90.67	102.37	N/A	N/A
2400	11.7	60.75	72.45	82.37	-9.92
1428.69739	11.7	40.07	51.77	82.37	-30.60
6673.34669	11.7	44.64	56.34	82.37	-26.03

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	90.77	102.47	N/A	N/A
2400	11.7	40.53	52.23	82.47	-30.24
1791.76353	11.7	40.94	52.64	82.47	-29.83
6626.25251	11.7	44.02	55.72	82.47	-26.75

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	90.54	102.24	N/A	N/A
2400	11.7	40.37	52.07	82.24	-30.17
1714.38878	11.7	41.43	53.13	82.24	-29.11
6720.44088	11.7	44.20	55.9	82.24	-26.34

802.11n HT20 Mode Chain 0

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	86.38	98.08	N/A	N/A
2400	11.7	55.08	66.78	78.08	-11.30
1756.0521	11.7	40.44	52.14	78.08	-25.94
6955.91182	11.7	43.79	55.49	78.08	-22.59

Date of Issue: March 25, 2011

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	86.21	97.91	N/A	N/A
2400	11.7	39.26	50.96	77.91	-26.95
2261.96393	11.7	40.72	52.42	77.91	-25.49
6908.81764	11.7	44.67	56.37	77.91	-21.54

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	85.55	97.25	N/A	N/A
2400	11.7	40.07	51.77	77.25	-25.48
1976.27255	11.7	40.74	52.44	77.25	-24.81
13407.81563	11.7	43.64	55.34	77.25	-21.91

802.11n HT20 Mode Chain 1

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	88.67	100.37	N/A	N/A
2400	11.7	58.58	70.28	80.37	-10.09
357.3547094	11.7	49.42	61.12	80.37	-19.25
13360.72144	11.7	44.83	56.53	80.37	-23.84

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	88.69	100.39	N/A	N/A
2400	11.7	41.16	52.86	80.39	-27.53
315.6913828	11.7	48.36	60.06	80.39	-20.33
6767.53507	11.7	44.00	55.7	80.39	-24.69

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	88.36	100.06	N/A	N/A
2400	11.7	40.07	51.77	80.06	-28.29
315.6913828	11.7	49.98	61.68	80.06	-18.38
6955.91182	11.7	44.85	56.55	80.06	-23.51

802.11n HT40 Mode Chain 0

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	11.7	82.40	94.1	N/A	N/A
2400	11.7	54.82	66.52	74.10	-7.58
1678.67735	11.7	40.46	52.16	74.10	-21.94
6955.91182	11.7	45.02	56.72	74.10	-17.38

Date of Issue: March 25, 2011

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	82.39	94.09	N/A	N/A
2400	11.7	39.56	51.26	74.09	-22.83
1714.38878	11.7	40.75	52.45	74.09	-21.64
6955.91182	11.7	44.40	56.1	74.09	-17.99

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	11.7	82.01	93.71	N/A	N/A
2400	11.7	39.59	51.29	73.71	-22.42
1845.33066	11.7	41.09	52.79	73.71	-20.92
6955.91182	11.7	45.09	56.79	73.71	-16.92

802.11n HT40 Mode Chain 1

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	11.7	84.64	96.34	N/A	N/A
2400	11.7	56.63	68.33	76.34	-8.01
315.6913828	11.7	50.28	61.98	76.34	-14.36
6955.91182	11.7	43.94	55.64	76.34	-20.70

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	84.97	96.67	N/A	N/A
2400	11.7	42.24	53.94	76.67	-22.73
315.6913828	11.7	48.57	60.27	76.67	-16.40
6955.91182	11.7	44.14	55.84	76.67	-20.83

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	11.7	84.72	96.42	N/A	N/A
2400	11.7	40.13	51.83	76.42	-24.59
315.6913828	11.7	50.98	62.68	76.42	-13.74
6955.91182	11.7	43.90	55.6	76.42	-20.82

802.11n HT20 Combined Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	15.2	87.85	103.05	N/A	N/A
2400	15.2	58.05	73.25	83.05	-9.80
357.3547094	15.2	49.41	64.61	83.05	-18.44
6955.91182	15.2	43.70	58.9	83.05	-24.15

Date of Issue: March 25, 2011

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	15.2	87.50	102.7	N/A	N/A
2400	15.2	39.37	54.57	82.70	-28.13
315.6913828	15.2	48.47	63.67	82.70	-19.03
6532.06413	15.2	44.33	59.53	82.70	-23.17

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	15.2	88.75	103.95	N/A	N/A
2400	15.2	39.45	54.65	83.95	-29.30
315.6913828	15.2	50.43	65.63	83.95	-18.32
14161.32265	15.2	43.87	59.07	83.95	-24.88

802.11n HT40 Combined Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	15.2	85.65	100.85	N/A	N/A
2400	15.2	55.59	70.79	80.85	-10.06
315.6913828	15.2	49.84	65.04	80.85	-15.81
6908.81764	15.2	43.91	59.11	80.85	-21.74

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	15.2	85.06	100.26	N/A	N/A
2400	15.2	42.03	57.23	80.26	-23.03
315.6913828	15.2	49.46	64.66	80.26	-15.60
6861.72345	15.2	45.34	60.54	80.26	-19.72

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	15.2	85.62	100.82	N/A	N/A
2400	15.2	39.35	54.55	80.82	-26.27
315.6913828	15.2	51.07	66.27	80.82	-14.55
6955.91182	15.2	44.54	59.74	80.82	-21.08

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (IEEE 802.11b MODE)

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (802.11g MODE)

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (802.11n HT20 MODE)

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (802.11n HT20 MODE)

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (802.11n HT40 MODE)

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (802.11n HT40 MODE)

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

Date of Issue: March 25, 2011

(802.11n HT20 Combined Mode)

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

Date of Issue: March 25, 2011

(802.11n HT40 Combined Mode)

