Design of a high-performance tensor-matrix multiplication with BLAS

Cem Savaş Başsoy^{a,*}

^a Hamburg University of Technology, Schwarzenbergstrasse 95, 21071, Hamburg, Germany

Abstract

The tensor-matrix multiplication is a basic tensor operation required by various tensor methods such as the HOSVD. This paper presents flexible high-performance algorithms that compute the tensor-matrix product according to the Loops-over-GEMM (LoG) approach. Our algorithms are able to process dense tensors with any linear tensor layout, arbitrary tensor order and dimensions all of which can be runtime variable. We discuss two slicing methods with orthogonal parallelization strategies and propose four algorithms that call BLAS with subtensors or tensor slices. We provide a simple heuristic which selects one of the four proposed algorithms at runtime. All algorithms have been evaluated on a large set of tensors with various tensor shapes and linear tensor layouts. In case of large tensor slices, our best-performing algorithm achieves a median performance of 2.47 TFLOPS on an Intel Xeon Gold 5318Y and 2.93 TFLOPS an AMD EPYC 9354. Furthermore, it outperforms batched GEMM implementation of Intel MKL by a factor of 2.57 with large tensor slices. For the majority of our test tensors, our implementation is on average 25.05% faster than other state-of-the-art approaches, including actively developed libraries like Libtorch and Eigen. This work is an extended version of the article "Fast and Layout-Oblivious Tensor-Matrix Multiplication with BLAS" (Bassoy, 2024)[1].

1 1. Introduction

Tensor computations are found in many scientific fields such as computational neuroscience, pattern recognition, signal processing and data mining [2, 3]. These computations use basic tensor operations as building blocks for decomposing and analyzing multidimensional data which are represented by tensors [4, 5]. Tensor contractions are an important subset of basic operations that need to be fast for efficiently solving tensor methods.

There are three main approaches for implementing ten-11 sor contractions. The Transpose Transpose GEMM Trans-12 pose (TGGT) approach reorganizes tensors in order to 13 perform a tensor contraction using optimized implementa-14 tions of the general matrix multiplication (GEMM) [6, 7]. 15 GEMM-like Tensor-Tensor multiplication (GETT) method $_{16}$ implement macro-kernels that are similar to the ones used 17 in fast GEMM implementations [8, 9]. The third method 18 is the Loops-over-GEMM (LoG) or the BLAS-based ap-19 proach in which Basic Linear Algebra Subprograms (BLAS) 20 are utilized with multiple tensor slices or subtensors if pos-21 sible [10, 11, 12, 13]. The BLAS are considered the de facto 22 standard for writing efficient and portable linear algebra 23 software, which is why nearly all processor vendors pro-24 vide highly optimized BLAS implementations. Implemen-25 tations of the LoG and TTGT approaches are in general 26 easier to maintain and faster to port than GETT imple-27 mentations which might need to adapt vector instructions

 $_{\rm 28}$ or blocking parameters according to a processor's microar- $_{\rm 29}$ chitecture.

In this work, we present high-performance algorithms 31 for the tensor-matrix multiplication (TTM) which is used 32 in many numerical methods such as the alternating least 33 squares method [4, 5]. It is a compute-bound tensor oper-34 ation and has the same arithmetic intensity as a matrix-35 matrix multiplication which can almost reach the practical 36 peak performance of a computing machine. To our best 37 knowledge, we are the first to combine the LoG-approach 38 described in [13, 14] for tensor-vector multiplications with 39 the findings on tensor slicing for the tensor-matrix mul-40 tiplication in [11]. Our algorithms support dense tensors 41 with any order, dimensions and any linear tensor layout 42 including the first- and the last-order storage formats for 43 any contraction mode all of which can be runtime variable. 44 They compute the tensor-matrix product in parallel using 45 efficient GEMM without transposing or flattening tensors. 46 In addition to their high performance, all algorithms are 47 layout-oblivious and provide a sustained performance in-48 dependent of the tensor layout and without tuning. We 49 provide a single algorithm that selects one of the proposed 50 algorithms based on a simple heuristic.

Every proposed algorithm can be implemented with 52 less than 150 lines of C++ code where the algorithmic 53 complexity is reduced by the BLAS implementation and 54 the corresponding selection of subtensors or tensor slices. 55 We have provided an open-source C++ implementation of 56 all algorithms and a python interface for convenience.

The analysis in this work quantifies the impact of the tensor layout, the tensor slicing method and parallel ex-

Email address: cem.bassoy@gmail.com (Cem Savaş Başsoy)

^{*}Corresponding author

⁵⁹ ecution of slice-matrix multiplications with varying con-⁶⁰ traction modes. The runtime measurements of our imple-⁶¹ mentations are compared with state-of-the-art approaches ⁶² discussed in [8, 9, 15] including Libtorch and Eigen. While ⁶³ our implementation have been benchmarked with the In-⁶⁴ tel MKL and AMD AOCL libraries, the user choose other ⁶⁵ BLAS libraries. In summary, the main findings of our work ⁶⁶ are:

- Given a row-major or column-major input matrix, the tensor-matrix multiplication with tensors of any linear tensor layout can be implemented by an inplace algorithm with 1 GEMV and 7 GEMM instances, supporting all combinations of contraction mode, tensor order and tensor dimensions.
- The proposed algorithms show a similar performance characteristic across different tensor layouts, provided that the contraction conditions remain the same.
 - A simple heuristic is sufficient to select one of the proposed algorithms at runtime, providing a nearoptimal performance for a wide range of tensor shapes.
- Our best-performing algorithm is a factor of 2.57 faster than Intel's batched GEMM implementation for large tensor slices.
- Our best-performing algorithm is on average 25.05% faster than other state-of-the art library implementations, including LibTorch and Eigen.

The remainder of the paper is organized as follows. Section 2 presents related work. Section 3 introduces some 7 notation on tensors and defines the tensor-matrix multises plication. Algorithm design and methods for slicing and 89 parallel execution are discussed in Section 4. Section 5 of describes the test setup. Benchmark results are presented 1 in Section 6. Conclusions are drawn in Section 7.

92 2. Related Work

67

68

70

71

72

73

74

75

76

77

78

80

81

Springer et al. [8] present a tensor-contraction gen-94 erator TCCG and the GETT approach for dense tensor 95 contractions that is inspired from the design of a high-96 performance GEMM. Their unified code generator selects 97 implementations from generated GETT, LoG and TTGT 98 candidates. Their findings show that among 48 different 99 contractions 15% of LoG-based implementations are the 100 fastest.

Matthews [9] presents a runtime flexible tensor con-102 traction library that uses GETT approach as well. He de-103 scribes block-scatter-matrix algorithm which uses a special 104 layout for the tensor contraction. The proposed algorithm 105 yields results that feature a similar runtime behavior to 106 those presented in [8].

Li et al. [11] introduce InTensLi, a framework that generates in-place tensor-matrix multiplication according to the LOG approach. The authors discusses optimization

⁵⁹ ecution of slice-matrix multiplications with varying con-⁶⁰ traction modes. The runtime measurements of our imple-⁶¹ mentations are compared with state-of-the-art approaches ⁶² discussed in [8, 9, 15] including Libtorch and Eigen. While

Başsoy [13] presents LoG-based algorithms that com115 pute the tensor-vector product. They support dense ten116 sors with linear tensor layouts, arbitrary dimensions and
117 tensor order. The presented approach contains eight cases
118 calling GEMV and DOT. He reports average speedups of
119 6.1x and 4.0x compared to implementations that use the
120 TTGT and GETT approach, respectively.

Pawlowski et al. [14] propose morton-ordered blocked l22 layout for a mode-oblivious performance of the tensor-vector multiplication. Their algorithm iterate over blocked tensors and perform tensor-vector multiplications on blocked tensors. They are able to achieve high performance and mode-oblivious computations.

127 3. Background

128 3.1. Tensor Notation

An order-p tensor is a p-dimensional array where ten¹³⁰ sor elements are contiguously stored in memory[16, 4].
¹³¹ We write a, \mathbf{a} , \mathbf{A} and $\underline{\mathbf{A}}$ in order to denote scalars, vec¹³² tors, matrices and tensors. If not otherwise mentioned,
¹³³ we assume $\underline{\mathbf{A}}$ to have order p > 2. The p-tuple $\mathbf{n} =$ ¹³⁴ (n_1, n_2, \ldots, n_p) will be referred to as the shape or dimen¹³⁵ sion tuple of a tensor where $n_r > 1$. We will use round
¹³⁶ brackets $\underline{\mathbf{A}}(i_1, i_2, \ldots, i_p)$ or $\underline{\mathbf{A}}(\mathbf{i})$ to denote a tensor ele¹³⁷ ment where $\mathbf{i} = (i_1, i_2, \ldots, i_p)$ is a multi-index. For con¹³⁸ venience, we will also use square brackets to concatenate
¹³⁹ index tuples such that $[\mathbf{i}, \mathbf{j}] = (i_1, i_2, \ldots, i_r, j_1, j_2, \ldots, j_q)$ ¹⁴⁰ where \mathbf{i} and \mathbf{j} are multi-indices of length r and q, respec¹⁴¹ tively.

142 3.2. Tensor-Matrix Multiplication (TTM)

Let $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ be order-p tensors with shapes $\mathbf{n}_a = {}^{_{144}}\left([\mathbf{n}_1,n_q,\mathbf{n}_2]\right)$ and $\mathbf{n}_c = ([\mathbf{n}_1,m,\mathbf{n}_2])$ where $\mathbf{n}_1 = (n_1,n_2,n_2,\ldots,n_{q-1})$ and $\mathbf{n}_2 = (n_{q+1},n_{q+2},\ldots,n_p)$. Let \mathbf{B} be a male trix of shape $\mathbf{n}_b = (m,n_q)$. A q-mode tensor-matrix product is denoted by $\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_q \mathbf{B}$. An element of $\underline{\mathbf{C}}$ is defined by

$$\underline{\mathbf{C}}([\mathbf{i}_1, j, \mathbf{i}_2]) = \sum_{i_q=1}^{n_q} \underline{\mathbf{A}}([\mathbf{i}_1, i_q, \mathbf{i}_2]) \cdot \mathbf{B}(j, i_q)$$
(1)

with $\mathbf{i}_1=(i_1,\ldots,i_{q-1})$, $\mathbf{i}_2=(i_{q+1},\ldots,i_p)$ where $1\leq i_r\leq 1$ for and $1\leq j\leq m$ [11, 5]. The mode q is called the 151 contraction mode with $1\leq q\leq p$. TTM generalizes the 152 computational aspect of the two-dimensional case $\mathbf{C}=1$ for $\mathbf{B}\cdot\mathbf{A}$ if p=2 and q=1. Its arithmetic intensity is 154 equal to that of a matrix-matrix multiplication which is 155 compute-bound for large dense matrices.

In the following, we assume that the tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ have the same tensor layout π . Elements of matrix $\underline{\mathbf{B}}$ can 158 be stored either in the column-major or row-major format. 159 With i_q iterating over the second mode of \mathbf{B} , TTM is also

160 referred to as the q-mode product which is a building block 213 $\min(\pi_{u,v})$ and $\tau_k = \pi_{k+j_k} - s_k$ for $k \neq u$ with $s_k = 1$ $_{164}$ if indices j and i_q of matrix ${\bf B}$ are swapped.

165 3.3. Subtensors

A subtensor references elements of a tensor **A** and is denoted by $\underline{\mathbf{A}}'$. It is specified by a selection grid that con- $_{168}$ sists of p index ranges. In this work, an index range of a $_{169}$ given mode r shall either contain all indices of the mode r or a single index i_r of that mode where $1 \leq r \leq p$. Sub-171 tensor dimensions n'_r are either n_r if the full index range $_{172}$ or 1 if a a single index for mode r is used. Subtensors are 173 annotated by their non-unit modes such as $\underline{\mathbf{A}}'_{u,v,w}$ where 174 $n_u > 1$, $n_v > 1$ and $n_w > 1$ for $1 \le u \ne v \ne w \le p$. The 175 remaining single indices of a selection grid can be inferred 176 by the loop induction variables of an algorithm. The num-177 ber of non-unit modes determine the order p' of subtensor where $1 \le p' < p$. In the above example, the subten-179 sor $\underline{\mathbf{A}}'_{u,v,w}$ has three non-unit modes and is thus of order 180 3. For convenience, we might also use an dimension tuple 181 **m** of length p' with $\mathbf{m}=(m_1,m_2,\ldots,m_{p'})$ to specify a $_{^{182}}$ mode-p' subtensor $\underline{\mathbf{A}}'_{\mathbf{m}}.$ An order-2 subtensor of $\underline{\mathbf{A}}'$ is a $_{183}$ tensor slice $\mathbf{A}'_{u,v}$ and an order-1 subtensor of $\underline{\mathbf{A}}'$ is a fiber 184 **a**₁₁'.

185 3.4. Linear Tensor Layouts

We use a layout tuple $\pi \in \mathbb{N}^p$ to encode all linear tensor 187 layouts including the first-order or last-order layout. They $_{\mbox{\scriptsize 188}}$ contain permuted tensor modes whose priority is given by 189 their index. For instance, the general k-order tensor layout 242 stride w_{π_r} . Hence, with increasing recursion level and de-₁₉₀ for an order-p tensor is given by the layout tuple π with ₂₄₃ creasing r, indices are incremented with smaller strides as $_{191}$ $\pi_r = k - r + 1$ for $1 < r \le k$ and r for $k < r \le p$. The $_{244}$ $w_{\pi_r} \le w_{\pi_{r+1}}$. The second if statement in line number 4 192 first- and last-order storage formats are given by $\pi_F = 245$ allows the loop over mode π_1 to be placed into the base $\pi_{193}(1,2,\ldots,p)$ and $\pi_L=(p,p-1,\ldots,1)$. An inverse layout 246 case which contains three loops performing a slice-matrix 194 tuple π^{-1} is defined by $\pi^{-1}(\pi(k)) = k$. Given a layout 247 multiplication. In this way, the inner-most loop is able to 195 tuple π with p modes, the π_r -th element of a stride tuple 248 increment i_{π_1} with a unit stride and contiguously accesses ₁₉₆ **w** is given by $w_{\pi_r} = \prod_{k=1}^{r-1} n_{\pi_k}$ for $1 < r \le p$ and $w_{\pi_1} = 1$. ₂₄₉ tensor elements of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$. The second loop increments ¹⁹⁷ Tensor elements of the π_1 -th mode are contiguously stored ²⁵⁰ i_q with which elements of **B** are contiguously accessed if 198 in memory. Their location is given by the layout function 251 B is stored in the row-major format. The third loop in-199 $\lambda_{\mathbf{w}}$ which maps a multi-index i to a scalar index such that 252 crements j and could be placed as the second loop if \mathbf{B} is $\lambda_{\mathbf{w}}(\mathbf{i}) = \sum_{r=1}^{p} w_r(i_r - 1)$, see also [17].

201 3.5. Reshaping

The reshape operation defines a non-modifying refor-203 matting transformation of dense tensors with contiguously 204 stored elements and linear tensor layouts. It transforms 205 an order-p tensor $\underline{\mathbf{A}}$ with a shape \mathbf{n} and layout π tu- $_{206}$ ple to an order- p^{\prime} view $\underline{\mathbf{B}}$ with a shape \mathbf{m} and layout ₂₀₇ $\boldsymbol{\tau}$ tuple of length p' with p' = p - v + u and $1 \leq u < v$ 208 $v \leq p$. Given a layout tuple π of $\underline{\mathbf{A}}$ and contiguous 209 modes $\hat{\boldsymbol{\pi}} = (\pi_u, \pi_{u+1}, \dots, \pi_v)$ of $\boldsymbol{\pi}$, reshape function $\varphi_{u,v}$ 210 is defined as follows. With $j_k=0$ if $k\leq u$ and $j_k=1$ $_{211}v - u$ if k > u where $1 \le k \le p'$, the resulting lay-212 out tuple ${m au}=(au_1,\ldots, au_{p'})$ of ${f B}$ is then given by $au_u=$

161 for tensor methods such as the higher-order orthogonal 214 $|\{\pi_i \mid \pi_{k+j_k} > \pi_i \land \pi_i \neq \min(\hat{\pi}) \land u \leq i \leq p\}|$. Elements of 162 iteration or the higher-order singular value decomposition 215 the shape tuple **m** are defined by $m_{\tau_u} = \prod_{k=u}^v n_{\pi_k}$ and 163 [5]. Please note that the following method can be applied, $n_{\tau_k} = n_{\pi_{k+j}}$ for $k \neq u$. Note that reshaping is not related 217 to tensor unfolding or the flattening operations which re-²¹⁸ arrange tensors by copying tensor elements [5, p.459].

219 4. Algorithm Design

220 4.1. Baseline Algorithm with Contiguous Memory Access

The tensor-times-matrix multiplication (TTM) in equa-222 tion 1 can be implemented with a single algorithm that 223 uses nested recursion. Similar the algorithm design pre-224 sented in [17], it consists of if statements with recursive 225 calls and an else branch which is the base case of the al-226 gorithm. A naive implementation recursively selects fibers 227 of the input and output tensor for the base case that com-228 putes a fiber-matrix product. The outer loop iterates over 229 the dimension m and selects an element of \mathbf{C} 's fiber and $_{230}$ a row of B. The inner loop then iterates over dimension n_q and computes the inner product of a fiber of $\underline{\mathbf{A}}$ and 232 the row B. In this case, elements of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are ac-233 cessed non-contiguously whenever $\pi_1 \neq q$ and matrix **B** 234 is accessed only with unit strides if it elements are stored 235 contiguously along its rows.

A better approach is illustrated in algorithm 1 where 237 the loop order is adjusted to the tensor layout π and mem-238 ory is accessed contiguously for $\pi_1 \neq q$ and p > 1. The 239 rearrangement of the loop order is accomplished in line $_{240}$ 5 which uses the layout tuple π to select a multi-index $_{241}$ element i_{π_r} and to increment it with the corresponding 253 stored in the column-major format.

While spatial data locality is improved by adjusting 255 the loop ordering, slices $\underline{\mathbf{A}}'_{\pi_1,q}$, fibers $\underline{\mathbf{C}}'_{\pi_1}$ and elements $\underline{\mathbf{B}}(j,i_q)$ are accessed m, n_q and n_{π_1} times, respectively. 257 The specified fiber of \mathbf{C} might fit into first or second level 258 cache, slice elements of $\underline{\mathbf{A}}$ are unlikely to fit in the local 259 caches if the slice size $n_{\pi_1} \times n_q$ is large, leading to higher 260 cache misses and suboptimal performance. Instead of at-261 tempting to improve the temporal data locality, we make 262 use of existing high-performance BLAS implementations $_{263}$ for the base case. The following subsection explains this 264 approach.

```
\mathtt{ttm}(\underline{\mathbf{A}},\mathbf{B},\underline{\mathbf{C}},\mathbf{n},\boldsymbol{\pi},\mathbf{i},m,q,\hat{q},r)
 1
 2
                   if r = \hat{a} then
                            \mathsf{ttm}(\underline{\mathbf{A}}, \mathbf{B}, \underline{\mathbf{C}}, \mathbf{n}, \boldsymbol{\pi}, \mathbf{i}, m, q, \hat{q}, r-1)
 3
                   else if r > 1 then
 4
                              for i_{\pi_r} \leftarrow 1 to n_{\pi_r} do
 5
                                       ttm(\underline{\mathbf{A}}, \mathbf{B}, \underline{\mathbf{C}}, \mathbf{n}, \boldsymbol{\pi}, \mathbf{i}, m, q, \hat{q}, r-1)
  6
                              for j \leftarrow 1 to m do
 8
                                         for i_q \leftarrow 1 to n_q do
 9
10
                                                    for i_{\pi_1} \leftarrow 1 to n_{\pi_1} do
                                                        \underline{\mathbf{C}}([\mathbf{i}_1, j, \mathbf{i}_2]) \stackrel{\cdot}{+=} \underline{\mathbf{A}}([\mathbf{i}_1, i_q, \mathbf{i}_2]) \cdot \mathbf{B}(j, i_q)
```

Algorithm 1: Modified baseline algorithm for TTM with contiguous memory access. The tensor order p must be greater than 1 and the contraction mode q must satisfy $1 \le q \le p$ and $\pi_1 \ne q$. The initial call must happen with r = p where **n** is the shape tuple of $\underline{\mathbf{A}}$ and m is the q-th dimension of $\underline{\mathbf{C}}$.

265 4.2. BLAS-based Algorithms with Tensor Slices

The following approach utilizes the CBLAS gemm func-267 tion in the base case of Algorithm 1 in order to perform 320 268 fast slice-matrix multiplications¹. Function gemm denotes 269 a general matrix-matrix multiplication which is defined as C:=a*op(A)*op(B)+b*C where a and b are scalars, A, B and 271 C are matrices, op(A) is an M-by-K matrix, op(B) is a K-by-N 272 matrix and C is an N-by-N matrix. Function op(x) either 273 transposes the corresponding matrix x such that op(x)=x, $_{274}$ or not op(x)=x. The CBLAS interface also allows users to 275 specify matrix's leading dimension by providing the LDA, 276 LDB and LDC parameters. A leading dimension specifies 277 the number of elements that is required for iterating over 278 the non-contiguous matrix dimension. The leading dimen-279 sion can be used to perform a matrix multiplication with 280 submatrices or even fibers within submatrices. The lead-281 ing dimension parameter is necessary for the BLAS-based

The eighth TTM case in Table 1 contains all argu-284 ments that are necessary to perform a CBLAS gemm in 285 the base case of Algorithm 1. The arguments of gemm are 286 set according to the tensor order p, tensor layout π and 287 contraction mode q. If the input matrix **B** has the row-288 major order, parameter CBLAS_ORDER of function gemm is 289 set to CblasRowMajor (rm) and CblasColMajor (cm) otherwise. The eighth case will be denoted as the general case 291 in which function gemm is called multiple times with dif-292 ferent tensor slices. Next to the eighth TTM case, there $_{293}$ are seven corner cases where a single gemv or gemm call suf-294 fices to compute the tensor-matrix product. For instance 295 if $\pi_1 = q$, the tensor-matrix product can be computed 296 by a matrix-matrix multiplication where the input tensor $\underline{\mathbf{A}}$ can be reshaped and interpreted as a matrix without $_{349}$ major version can be derived from the row-major version 298 any copy operation. Note that Table 1 supports all linear 299 tensor layouts of A and C with no limitations on tensor 300 order and contraction mode. The following subsection de-

 $_{301}$ scribes all eight TTM cases when the input matrix **B** has 302 the row-major ordering.

4.2.1. Row-Major Matrix Multiplication

The following paragraphs introduce all TTM cases that 305 are listed in Table 1.

Case 1: If p = 1, The tensor-vector product $\mathbf{A} \times_1 \mathbf{B}$ can $_{307}$ be computed with a gemv operation where **A** is an order-1 308 tensor **a** of length n_1 such that $\mathbf{a}^T \cdot \mathbf{B}$.

Case 2-5: If p = 2, **A** and **C** are order-2 tensors with n_1 and n_2 . In this case the tensor-matrix prod-311 uct can be computed with a single gemm. If ${\bf A}$ and ${\bf C}$ have 312 the column-major format with $\pi=(1,2),$ gemm either ex-313 ecutes $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}^T$ for q = 1 or $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ for q = 2. $_{314}$ Both matrices can be interpreted C and A as matrices in 315 row-major format although both are stored column-wise. 316 If **A** and **C** have the row-major format with $\pi = (2,1)$, gemm either executes $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ for q = 1 or $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}^T$ for $g_{18} q = 2$. The transposition of **B** is necessary for the TTM 319 cases 2 and 5 which is independent of the chosen layout.

Case 6-7: If p > 2 and if $q = \pi_1(\text{case } 6)$, a single 321 gemm with the corresponding arguments executes $\mathbf{C} = \mathbf{A}$. ₃₂₂ \mathbf{B}^T and computes a tensor-matrix product $\mathbf{\underline{C}} = \mathbf{\underline{A}} \times_{\pi_1} \mathbf{B}$. Tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are reshaped with $\varphi_{2,p}$ to row-major ₃₂₄ matrices **A** and **C**. Matrix **A** has $\bar{n}_{\pi_1} = \bar{n}/n_{\pi_1}$ rows and ₃₂₅ n_{π_1} columns while matrix **C** has the same number of rows 326 and m columns. If $\pi_p = q$ (case 7), $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are reshaped 327 with $\varphi_{1,p-1}$ to column-major matrices **A** and **C**. Matrix ₃₂₈ **A** has n_{π_p} rows and $\bar{n}_{\pi_p} = \bar{n}/n_{\pi_p}$ columns while **C** has $_{329}$ m rows and the same number of columns. In this case, a 330 single gemm executes $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ and computes $\mathbf{C} = \mathbf{A} \times_{\pi_n} \mathbf{B}$. 331 Noticeably, the desired contraction are performed without 332 copy operations, see subsection 3.5.

Case 8 (p > 2): If the tensor order is greater than 2 334 with $\pi_1 \neq q$ and $\pi_p \neq q$, the modified baseline algorithm $_{\text{335}}$ 1 is used to successively call $\bar{n}/(n_q\cdot n_{\pi_1})$ times gemm with 336 different tensor slices of $\underline{\mathbf{C}}$ and $\underline{\mathbf{A}}$. Each gemm computes $_{337}$ one slice $\underline{\mathbf{C}}'_{\pi_1,q}$ of the tensor-matrix product $\underline{\mathbf{C}}$ using the $_{\mbox{\scriptsize 338}}$ corresponding tensor slices $\underline{\mathbf{A}}'_{\pi_1,q}$ and the matrix $\mathbf{B}.$ The 339 matrix-matrix product $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ is performed by inter- $_{340}$ preting both tensor slices as row-major matrices **A** and **C** 341 which have the dimensions (n_q, n_{π_1}) and (m, n_{π_1}) , respec-342 tively.

343 4.2.2. Column-Major Matrix Multiplication

The tensor-matrix multiplication is performed with the $_{345}$ column-major version of gemm when the input matrix ${f B}$ is 346 stored in column-major order. Although the number of 347 gemm cases remains the same, the gemm arguments must be 348 rearranged. The argument arrangement for the column-350 that is provided in table 1.

The CBLAS arguments of M and N, as well as A and B is $_{352}$ swapped and the transposition flag for matrix **B** is toggled. 353 Also, the leading dimension argument of A is adjusted to 354 LDB or LDA. The only new argument is the new leading 355 dimension of B.

¹CBLAS denotes the C interface to the BLAS.

Case	Order p	Layout $\pi_{\underline{\mathbf{A}},\underline{\mathbf{C}}}$	Layout $\pi_{\mathbf{B}}$	$\mathrm{Mode}\ q$	Routine	T	М	N	K	A	LDA	В	LDB	LDC
1	1	-	rm/cm	1	gemv	-	m	n_1	-	В	n_1	<u>A</u>	-	-
2	2	cm	rm	1	gemm	В	n_2	m	n_1	<u>A</u>	n_1	В	n_1	m
	2	cm	cm	1	gemm	-	m	n_2	n_1	\mathbf{B}	m	$\underline{\mathbf{A}}$	n_1	m
3	2	cm	rm	2	gemm	-	m	n_1	n_2	\mathbf{B}	n_2	$\underline{\mathbf{A}}$	n_1	n_1
	2	cm	cm	2	gemm	\mathbf{B}	n_1	m	n_2	$\underline{\mathbf{A}}$	n_1	\mathbf{B}	m	n_1
4	2	rm	rm	1	gemm	-	m	n_2	n_1	\mathbf{B}	n_1	$\underline{\mathbf{A}}$	n_2	n_2
	2	rm	cm	1	gemm	\mathbf{B}	n_2	m	n_1	$\underline{\mathbf{A}}$	n_2	\mathbf{B}	m	n_2
5	2	rm	rm	2	gemm	\mathbf{B}	n_1	m	n_2	$\underline{\mathbf{A}}$	n_2	\mathbf{B}	n_2	m
	2	rm	cm	2	gemm	-	m	n_1	n_2	В	m	$\underline{\mathbf{A}}$	n_2	m
6	> 2	any	rm	π_1	gemm	В	\bar{n}_q	m	n_q	<u>A</u>	n_q	В	n_q	m
	> 2	any	cm	π_1	gemm	-	m	\bar{n}_q	n_q	\mathbf{B}	m	$\underline{\mathbf{A}}$	n_q	m
7	> 2	any	rm	π_p	gemm	-	m	\bar{n}_q	n_q	\mathbf{B}	n_q	$\mathbf{\underline{A}}$	\bar{n}_q	$ar{n}_q$
	> 2	any	cm	π_p	gemm	В	\bar{n}_q	m	n_q	<u>A</u>	\bar{n}_q	$\overline{\mathbf{B}}$	m	\bar{n}_q
8	> 2	any	rm	$\pi_2,, \pi_{p-1}$	gemm*	-	m	n_{π_1}	n_q	В	n_q	<u>A</u>	w_q	w_q
	> 2	any	cm	$\pi_2,, \pi_{p-1}$	gemm*	В	n_{π_1}	m	n_q	$\underline{\mathbf{A}}$	w_q	\mathbf{B}	m	w_q

Table 1: Eight TTM cases implementing the mode-q TTM with the gemm and gemv CBLAS functions. Arguments of gemv and gemv (T, M, N, dots) are chosen with respect to the tensor order p, layout π of $\underline{\mathbf{A}}$, $\underline{\mathbf{B}}$, $\underline{\mathbf{C}}$ and contraction mode q where T specifies if \mathbf{B} is transposed. Function gemm* with a star denotes multiple gemm calls with different tensor slices. Argument \bar{n}_q for case 6 and 7 is defined as $\bar{n}_q = (\prod_r^p n_r)/n_q$. Input matrix \mathbf{B} is either stored in the column-major or row-major format. The storage format flag set for gemm and gemv is determined by the element ordering of \mathbf{B} .

Given case 4 with the row-major matrix multiplication $\underline{\mathbf{A}}$ in Table 1 where tensor $\underline{\mathbf{A}}$ and matrix \mathbf{B} are passed to $\underline{\mathbf{A}}$ and $\underline{\mathbf{A}}$. The corresponding column-major version is attained when tensor $\underline{\mathbf{A}}$ and matrix \mathbf{B} are passed to $\underline{\mathbf{A}}$ and $\underline{\mathbf{A}}$ where the transpose flag for $\underline{\mathbf{B}}$ is set and the remaining dimensions are adjusted accordingly.

362 4.2.3. Matrix Multiplication Variations

The column-major and row-major versions of gemm can 364 be used interchangeably by adapting the storage format. This means that a gemm operation for column-major ma-365 trices can compute the same matrix product as one for row-major matrices, provided that the arguments are re-368 arranged accordingly. While the argument rearrangement 369 is similar, the arguments associated with the matrices A 370 and B must be interchanged. Specifically, LDA and LDB as 371 well as M and N are swapped along with the corresponding 372 matrix pointers. In addition, the transposition flag must 373 be set for A or B in the new format if B or A is transposed 374 in the original version.

For instance, the column-major matrix multiplication $_{376}$ in case 4 of table 1 requires the arguments of **A** and **B** to $_{377}$ be tensor $\underline{\mathbf{A}}$ and matrix \mathbf{B} with \mathbf{B} being transposed. The $_{378}$ arguments of an equivalent row-major multiplication for **A**, $_{379}$ B, M, N, LDA, LDB and T are then initialized with \mathbf{B} , $\underline{\mathbf{A}}$, m, $_{380}$ n_2 , m, n_2 and \mathbf{B} .

Another possible matrix multiplication variant with 382 the same product is computed when, instead of $\bf B$, ten- 383 sors $\bf \underline{A}$ and $\bf \underline{C}$ with adjusted arguments are transposed. We assume that such reformulations of the matrix multi- 385 plication do not outperform the variants shown in Table 386 1, as we expect BLAS libraries to have optimal blocking 387 and multiplication strategies.

388 4.3. Matrix Multiplication with Subtensors

Algorithm 1 can be slightly modified in order to call general with reshaped order- \hat{q} subtensors that correspond to larger tensor slices. Given the contraction mode q with q < q < p, the maximum number of additionally fusible modes is $\hat{q} - 1$ with $\hat{q} = \pi^{-1}(q)$ where π^{-1} is the inverse layout tuple. The corresponding fusible modes are theresoften $q = \pi^{-1}$, $q = \pi^{-1}$, $q = \pi^{-1}$.

The non-base case of the modified algorithm only iterates over dimensions that have indices larger than \hat{q} and thus omitting the first \hat{q} modes. The conditions in line 299 2 and 4 are changed to $1 < r \leq \hat{q}$ and $\hat{q} < r$, respectively. Thus, loop indices belonging to the outer π_r -th 401 loop with $\hat{q}+1 \leq r \leq p$ define the order- \hat{q} subtensors $\underline{\mathbf{A}}'_{\pi'}$ and $\underline{\mathbf{C}}'_{\pi'}$ of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ with $\pi' = (\pi_1, \dots, \pi_{\hat{q}-1}, q)$. Reshaping the subtensors $\underline{\mathbf{A}}'_{\pi'}$ and $\underline{\mathbf{C}}'_{\pi'}$ with $\varphi_{1,\hat{q}-1}$ for the modes 404 $\pi_1, \dots, \pi_{\hat{q}-1}$ yields two tensor slices with dimension n_q or 405 m with the fused dimension $\bar{n}_q = \prod_{r=1}^{\hat{q}-1} n_{\pi_r}$ and $\bar{n}_q = w_q$. Both tensor slices can be interpreted either as row-major 407 or column-major matrices with shapes (n_q, \bar{n}_q) or (w_q, \bar{n}_q) in case of $\underline{\mathbf{A}}$ and (m, \bar{n}_q) or (\bar{n}_q, m) in case of $\underline{\mathbf{C}}$, respectatory tively.

The gemm function in the base case is called with al- most identical arguments except for the parameter M or 12 N which is set to \bar{n}_q for a column-major or row-major mul- tiplication, respectively. Note that neither the selection of 14 the subtensor nor the reshaping operation copy tensor elements. This description supports all linear tensor layouts 16 and generalizes lemma 4.2 in [11] without copying tensor 17 elements, see section 3.5.

418 4.4. Parallel BLAS-based Algorithms

Most BLAS libraries provide an option to change the number of threads. Hence, functions such as gemm and gemv can be run either using a single or multiple threads. The

Algorithm 2: Function ttm<par-loop<slice> is an optimized version of Algorithm 1. The reshape function transforms the order-p tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ with layout tuple π and their respective dimension tuples \mathbf{n} and \mathbf{m} into order-4 tensors $\underline{\mathbf{A}}'$ and $\underline{\mathbf{C}}'$ with layout tuple π' and their respective dimension tuples \mathbf{n}' and \mathbf{m}' where $\mathbf{n}' = (n_{\pi_1}, \hat{n}_{\pi_2}, n_q, \hat{n}_{\pi_4})$ and $m_3' = m$ and $n_k' = m_k'$ for $k \neq 3$. Each thread calls multiple single-threaded gemm functions each of which executes a slice-matrix multiplication with the order-2 tensor slices $\underline{\mathbf{A}}'_{ij}$ and $\underline{\mathbf{C}}'_{ij}$. Matrix \mathbf{B} has the row-major storage format.

⁴²² TTM cases one to seven contain a single BLAS call which ⁴²³ is why we set the number of threads to the number of ⁴²⁴ available cores. The following subsections discuss parallel ⁴²⁵ versions for the eighth case in which the outer loops of ⁴²⁶ algorithm 1 and the gemm function inside the base case can ⁴²⁷ be run in parallel. Note that the parallelization strategies ⁴²⁸ can be combined with the aforementioned slicing methods.

429 4.4.1. Sequential Loops and Parallel Matrix Multiplication

Algorithm 1 is run for the eighth case and does not an eed to be modified except for enabling gemm to run multithreaded in the base case. This type of parallelization strategy might be beneficial with order- \hat{q} subtensors where the contraction mode satisfies $q=\pi_{p-1}$, the inner dimentation $n_{\pi_1},\ldots,n_{\hat{q}}$ are large and the outer-most dimension n_{π_p} is smaller than the available processor cores. For smaller than the available processor cores. For the traction mode q with q=p-1 and $n_p=2$, the dimensions of reshaped order-q subtensors are $\prod_{r=1}^{p-2} n_r$ and n_{p-1} . This allows gemm to perform with large dimensions multiple threads increasing the likelihood to reach high throughput. However, if the above conditions are high throughput might lead to an suboptimal utilization of the

 $_{459}$ 4.4.2. Parallel Loops and Sequential Matrix Multiplication Instead of sequentially calling multi-threaded gemm, it is $_{451}$ also possible to call single-threaded gemms in parallel. Sim- $_{452}$ ilar to the previous approach, the matrix multiplication $_{453}$ can be performed with tensor slices or order- \hat{q} subtensors.

445 available cores. This algorithm version will be referred to

446 as <par-gemm>. Depending on the subtensor shape, we will

447 either add <slice> for order-2 subtensors or <subtensor>

448 for order- \hat{q} subtensors with $\hat{q} = \pi_q^{-1}$.

 454 Matrix Multiplication with Tensor Slices. Algorithm 2 with 455 function ttm<par-loop><slice> executes a single-threaded 456 gemm with tensor slices in parallel using all modes except 457 π_1 and $\pi_{\hat{q}}$. The first statement of the algorithm calls 458 the reshape function which transforms tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$

459 without copying elements by calling the reshaping oper-460 ation $\varphi_{\pi_{\hat{q}+1},\pi_p}$ and $\varphi_{\pi_2,\pi_{\hat{q}-1}}$. The resulting tensors $\underline{\mathbf{A}}'$ 461 and $\underline{\mathbf{C}}'$ are of order 4. Tensor $\underline{\mathbf{A}}'$ has the shape $\mathbf{n}'=$ 462 $(n_{\pi_1},\hat{n}_{\pi_2},n_q,\hat{n}_{\pi_4})$ with the dimensions $\hat{n}_{\pi_2}=\prod_{r=2}^{\hat{q}-1}n_{\pi_r}$ 463 and $\hat{n}_{\pi_4}=\prod_{r=\hat{q}+1}^p n_{\pi_r}$. Tensor $\underline{\mathbf{C}}'$ has the same shape as 464 $\underline{\mathbf{A}}'$ with dimensions $m'_r=n'_r$ except for the third dimen-465 sion which is given by $m_3=m$.

The following two parallel for loops iterate over all 467 free modes. The outer loop iterates over $n_4'=\hat{n}_{\pi_4}$ while 468 the inner one loops over $n_2'=\hat{n}_{\pi_2}$ calling gemm with ten-469 sor slices $\underline{\mathbf{A}}_{2,4}'$ and $\underline{\mathbf{C}}_{2,4}'$. Here, we assume that matrix 470 \mathbf{B} has the row-major format which is why both tensor 471 slices are also treated as row-major matrices. Notice that 472 gemm in Algorithm 2 will be called with exact same argu-473 ments as displayed in the eighth case in Table 1 where 474 $n_1'=n_{\pi_1}, n_3'=n_q$ and $w_q=w_3'$. For the sake of simplicity, we omitted the first three arguments of gemm which are 476 set to CblasRowMajor and CblasNoTrans for A and B. With 477 the help of the reshaping operation, the tree-recursion has 478 been transformed into two loops which iterate over all free 479 indices.

480 Matrix Multiplication with Subtensors. An alternative al-481 gorithm is given by combining Algorithm 2 with order- \hat{q} 482 subtensors that have been discussed in 4.3. With order- \hat{q} 483 subtensors, only the outer modes $\pi_{\hat{q}+1},\ldots,\pi_p$ are free for 484 parallel execution while the inner modes $\pi_1,\ldots,\pi_{\hat{q}-1},q$ are 485 used for the slice-matrix multiplication. Therefore, both 486 tensors are reshaped twice using $\varphi_{\pi_1,\pi_{\hat{q}-1}}$ and $\varphi_{\pi_{\hat{q}+1},\pi_p}$. 487 Note that in contrast to tensor slices, the first reshaping 488 also contains the dimension n_{π_1} . The reshaped tensors are 489 of order 3 where $\underline{\mathbf{A}}'$ has the shape $\mathbf{n}'=(\hat{n}_{\pi_1},n_q,\hat{n}_{\pi_3})$ with 490 $\hat{n}_{\pi_1}=\prod_{r=1}^{\hat{q}-1}n_{\pi_r}$ and $\hat{n}_{\pi_3}=\prod_{r=\hat{q}+1}^{p}n_{\pi_r}$. Tensor $\underline{\mathbf{C}}'$ has 491 the same dimensions as $\underline{\mathbf{A}}'$ except for $m_2=m$.

Algorithm 2 needs a minor modification for support-493 ing order- \hat{q} subtensors. Instead of two loops, the modified 494 algorithm consists of a single loop which iterates over di-495 mension \hat{n}_{π_3} calling a single-threaded gemm with subtensors 496 $\underline{\mathbf{A}}'$ and $\underline{\mathbf{C}}'$. The shape and strides of both subtensors as 497 well as the function arguments of gemm have already been 498 provided by the previous subsection 4.3. This ttm version 499 will referred to as <par-loop<subtensor>.

Note that functions <par-gemm> and <par-loop> implement opposing versions of the ttm where either gemm or the for fused loop is performed in parallel. Version <par-loop-gemm some executes available loops in parallel where each loop thread executes a multi-threaded gemm with either subtensors or for tensor slices.

506 4.4.3. Combined Matrix Multiplication

The combined matrix multiplication calls one of the previously discussed functions depending on the number of available cores. The heuristic assumes that function par-gemm> is not able to efficiently utilize the processor to cores if subtensors or tensor slices are too small. The corresponding algorithm switches between par-loop> and

 $\hat{n} = \prod_{r=1}^{\hat{q}-1} n_{\pi_r}$ and $\hat{n}' = \sum_{r=1}^{\hat{q}-1} n_{\pi_r}$ $_{515}\prod_{r=1}^{p}n_{\pi_r}/n_q$, respectively. Given the number of physical $_{568}$ together with the threading runtime library libiomp5 has 516 processor cores as ncores, the algorithm executes <par-loop>569 been used for the three BLAS functions gemv, gemm and 517 with <subtensor> if ncores is greater than or equal to \hat{n} 570 gemm_batch. For the AMD CPU, we have compiled AMD 518 and call <par-loop> with <slice> if ncores is greater than 571 AOCL v4.2.0 together with set the zen4 architecture con-₅₁₉ or equal to \hat{n}' . Otherwise, the algorithm will default to ₅₇₂ figuration option and enabled OpenMP threading. 520 <par-gemm> with <subtensor>. Function par-gemm with ten-521 sor slices is not used here. The presented strategy is differ-522 ent to the one presented in [11] that maximizes the number 523 of modes involved in the matrix multiply. We will refer to 575 allelized using the OpenMP directive omp parallel for to-524 this version as <combined> to denote a selected combination 576 gether with the schedule(static), num_threads(ncores) and 525 of <par-loop> and <par-gemm> functions.

526 4.4.4. Multithreaded Batched Matrix Multiplication

The multithreaded batched matrix multiplication ver-528 sion calls in the eighth case a single gemm_batch function 529 that is provided by Intel MKL's BLAS-like extension. With 582 single- and multi-threaded gemm calls for different TTM 530 an interface that is similar to the one of cblas_gemm, func- 583 cases when using AMD AOCL. 531 tion gemm_batch performs a series of matrix-matrix op- 584 532 erations with general matrices. All parameters except 533 CBLAS_LAYOUT requires an array as an argument which is 534 why different subtensors of the same corresponding ten- $_{535}$ sors are passed to gemm_batch. The subtensor dimensions 536 and remaining gemm arguments are replicated within the 537 corresponding arrays. Note that the MKL is responsible 538 of how subtensor-matrix multiplications are executed and 539 whether subtensors are further divided into smaller sub-540 tensors or tensor slices. This algorithm will be referred to 541 as <mkl-batch-gemm>.

542 5. Experimental Setup

543 5.1. Computing System

The experiments have been carried out on a dual socket 545 Intel Xeon Gold 5318Y CPU with an Ice Lake architec-546 ture and a dual socket AMD EPYC 9354 CPU with a 547 Zen4 architecture. With two NUMA domains, the Intel 548 CPU consists of 2×24 cores which run at a base fre-549 quency of 2.1 GHz. Assuming a peak AVX-512 Turbo 550 frequency of 2.5 GHz, the CPU is able to process 3.84 551 TFLOPS in double precision. We measured a peak double-552 precision floating-point performance of 3.8043 TFLOPS 553 (79.25 GFLOPS/core) and a peak memory throughput 554 of 288.68 GB/s using the Likwid performance tool. The 555 AMD EPYC 9354 CPU consists of 2×32 cores running at 556 a base frequency of 3.25 GHz. Assuming an all-core boost 557 frequency of 3.75 GHz, the CPU is theoretically capable 558 of performing 3.84 TFLOPS in double precision. We mea-559 sured a peak double-precision floating-point performance 560 of 3.87 TFLOPS (60.5 GFLOPS/core) and a peak memory throughput of 788.71 GB/s.

We have used the GNU compiler v11.2.0 with the high-563 est optimization level -03 together with the -fopenmp and 564 -std=c++17 flags. Loops within the eighth case have been 565 parallelized using GCC's OpenMP v4.5 implementation.

513 <par-gemm> with subtensors by first calculating the par- 566 In case of the Intel CPU, the 2022 Intel Math Kernel Li-

573 5.2. OpenMP Parallelization

The loops in the par-loop algorithms have been par-577 proc_bind(spread) clauses. In case of tensor-slices, the 578 collapse(2) clause has been added for transforming both 579 loops into one loop which has an iteration space of the 580 first loop times the second one. We also had to enable nested parallelism using omp_set_nested to toggle between

The num_threads(ncores) clause specifies the number 585 of threads within a team where ncores is equal to the 586 number of processor cores. Hence, each OpenMP thread is responsible for computing \bar{n}'/ncores independent slice-588 matrix products where $\bar{n}'=n_2'\cdot n_4'$ for tensor slices and 589 $\bar{n}' = n_4'$ for mode- \hat{q} subtensors.

The schedule(static) instructs the OpenMP runtime 591 to divide the iteration space into almost equally sized chunks. 592 Each thread sequentially computes \bar{n}'/ncores slice-matrix 593 products. We have decided to use this scheduling kind 594 as all slice-matrix multiplications exhibit the same num-595 ber of floating-point operations with a regular workload 596 where one can assume negligible load imbalance. More-597 over, we wanted to prevent scheduling overheads for small 598 slice-matrix products were data locality can be an impor-599 tant factor for achieving higher throughput.

The OMP_PLACES environment variable has not been ex-601 plicitly set and thus defaults to the OpenMP cores setting 602 which defines an OpenMP place as a single processor core. 603 Together with the clause num_threads(ncores), the num-604 ber of OpenMP threads is equal to the number of OpenMP 605 places, i.e. to the number of processor cores. We did 606 not measure any performance improvements for a higher 607 thread count.

The proc_bind(spread) clause additionally binds each 609 OpenMP thread to one OpenMP place which lowers inter-610 node or inter-socket communication and improves local 611 memory access. Moreover, with the spread thread affin-612 ity policy, consecutive OpenMP threads are spread across 613 OpenMP places which can be beneficial if the user decides 614 to set ncores smaller than the number of processor cores.

615 5.3. Tensor Shapes

We evaluated the performance of our algorithms with 617 both asymmetrically and symmetrically shaped tensors to 618 account for a wide range of use cases. The dimensions of 619 these tensors are organized in two sets. The first set con-620 sists of $720 = 9 \times 8 \times 10$ dimension tuples each of which has 621 differing elements. This set covers 10 contraction modes 675 subtensors achieves a mean throughput of 17.62 GFLOP-₆₂₂ ranging from 1 to 10. For each contraction mode, the ₆₇₆ S/core (846.16 GFLOPS) and is on average 9.89% faster 623 tensor order increases from 2 to 10 and for a given ten- 677 than the <slice> version. The performances of both func-624 sor order, 8 tensor instances with increasing tensor size 678 tions are monotonically decreasing with increasing tensor ₆₂₅ are generated. Given the k-th contraction mode, the cor- ₆₇₉ order, see plots (1.c) and (1.d) in Figure 1. The average 626 responding dimension array N_k consists of 9×8 dimen-680 performance decrease of both functions can be approxi-627 sion tuples $\mathbf{n}_{r,c}^k$ of length r+1 with $r=1,2,\ldots,9$ and 681 mated by a cubic polynomial with the coefficients -35, $_{628}$ $c=1,2,\ldots,8$. Elements $\mathbf{n}_{r,c}^k(i)$ of a dimension tuple are $_{682}$ $640,\;-3848$ and 8011. The decreasing performance beeither 1024 for $i = 1 \land k \neq 1$ or $i = 2 \land k = 1$, or $c \cdot 2^{15-r}$ for 683 havior for symmetrically shaped tensors has also been de- $_{630}$ $i = \min(r+1, k)$ or 2 otherwise, where i = 1, 2, ..., r+1. 684 scribed in [1]. 631 A special feature of this test set is that the contraction 685 632 dimension and the leading dimension are disproportion- 686 GFLOPS/core (1.74 TFLOPS) and achieves up to 57.91 $_{633}$ ately large. The second set consists of $336=6\times8\times7$ $_{687}$ GFLOPS/core (2.77 TFLOPS) with asymmetrically shaped 634 dimensions tuples where the tensor order ranges from 2 to 688 tensors. With subtensors, function cpar-gemm> exhibits al- $_{\it 635}$ 7 and has 8 dimension tuples for each order. Each tensor $_{636}$ dimension within the second set is 2^{12} , 2^{8} , 2^{6} , 2^{5} , 2^{4} and $_{637}$ 2^3 . A similar setup has been used in [13, 17].

638 6. Results and Discussion

639 6.1. Slicing Methods

This section analyzes the performance of the two pro-641 posed slicing methods <slice> and <subtensor> that have 642 been discussed in section 4.4. Figure 1 contains eight per-643 formance contour plots of four ttm functions <par-loop> 644 and <par-gemm> that either compute the slice-matrix prod-645 uct with subtensors <subtensor> or tensor slices <slice>. 646 Each contour level within the plots represents a mean 647 GFLOPS/core value that is averaged across tensor sizes.

Every contour plot contains all applicable TTM cases 649 listed in Table 1. The first column of performance values 650 is generated by gemm belonging to the TTM case 3, except 651 the first element which corresponds to TTM case 2. The 652 first row, excluding the first element, is generated by TTM 653 case 6 function. TTM case 7 is covered by the diagonal 654 line of performance values when q = p. Although Figure $_{655}$ 1 suggests that q>p is possible, our profiling program 656 ensures that q = p. TTM case 8 with multiple gemm calls 657 is represented by the triangular region which is defined by 658 1 < q < p.

Function <par-loop> with <slice> runs on average with 660 34.96 GFLOPS/core (1.67 TFLOPS) with asymmetrically 661 shaped tensors. With a maximum performance of 57.805 662 GFLOPS/core (2.77 TFLOPS), it performs on average 663 89.64% faster than function with <subtensor>. The slowdown with subtensors at q = p-1 or q = p-2 can 665 be explained by the small loop count of the function that 666 are 2 and 4, respectively. While function <par-loop> with 667 tensor slices is affected by the tensor shapes for dimensions $_{668} p = 3$ and p = 4 as well, its performance improves with 669 increasing order due to the increasing loop count. The 670 performance drops and their corresponding locations on the performance plots have also been mentioned in [1].

Function <par-loop> with tensor slices achieves on av-673 erage 17.34 GFLOPS/core (832.42 GFLOPS) with sym-674 metrically shaped tensors. In this case, <par-loop> with

Function par-gemm> with tensor slices averages 36.42 689 most identical performance characteristics and is on av-690 erage only 3.42% slower than its counterpart with tensor 691 slices.

For symmetrically shaped tensors, <par-gemm> with sub-693 tensors and tensor slices achieve a mean throughput 15.98 694 GFLOPS/core (767.31 GFLOPS) and 15.43 GFLOPS/-695 core (740.67 GFLOPS), respectively. However, function 696 <par-gemm> with <subtensor> is on average 87.74% faster 697 than the slice which is hardly visible due to small perfor-698 mance values around 5 GFLOPS/core or less whenever $_{699} q < p$ and the dimensions are smaller than 256. The 700 speedup of the <subtensor> version can be explained by the 701 smaller loop count and slice-matrix multiplications with 702 larger tensor slices.

703 6.2. Parallelization Methods

This section discusses the performance results of the 705 two parallelization methods <par-gemm> and <par-loop> us-706 ing the same Figure 1.

With asymmetrically shaped tensors, both cpar-gemm> 708 functions with subtensors and tensor slices compute the 709 tensor-matrix product on average with 36 GFLOPS/core 710 and outperform function <par-loop> with <subtensor> on 711 average by a factor of 2.31. The speedup can be ex-712 plained by the performance drop of function <par-loop> 713 (subtensor) to 3.49 GFLOPS/core at q = p - 1 while 714 both <par-gemm> functions operate around 39 GFLOPS/-715 core. Function <par-loop> with tensor slices performs bet-716 ter for reasons explained in the previous subsection. It is 717 on average 30.57% slower than its par-gemm> version due 718 to the aforementioned performance drops.

In case of symmetrically shaped tensors, <par-loop> 720 with subtensors and tensor slices outperform their corre-721 sponding regemm> counterparts by 23.3% and 32.9%, 722 respectively. The speedup mostly occurs when 1 < q < p723 where the performance gain is a factor of 2.23. This per-724 formance behavior can be expected as the tensor slice sizes 725 decreases for the eighth case with increasing tensor order 726 causing the parallel slice-matrix multiplication to perform 727 on smaller matrices. In contrast, <par-loop> can execute 728 small single-threaded slice-matrix multiplications in par-

Figure 1: Performance contour plots in double-precision GFLOPS/core of the proposed TTM algorithms par-loop> and par-gemm> with varying tensor orders p and contraction modes q. The top row of maps (1x) depict measurements of the <par-loop> versions while the bottom row of maps with number (2x) contain measurements of the cpar-gemm> versions. Tensors are asymmetrically shaped on the left four maps (a,b) and symmetrically shaped on the right four maps (c,d). Tensor $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ have the first-order while matrix \mathbf{B} has the row-major ordering. All functions have been measured on an Intel Xeon Gold 5318Y.

730 6.3. Loops Over Gemm

734 methods only affect the eighth case, while all other TTM 763 with asymmetrically or symmetrically shaped tensors. The 735 cases apply a single multi-threaded gemm. The following 764 observable superior performance distribution of <combined> 736 analysis will consider performance values of the eighth case 765 can be attributed to the heuristic which switches between 738 cussion of the loops over gemm implementations. Figure 2 767 outer loop count. 739 contains cumulative performance distributions of all the 740 proposed algorithms including the <mkl-batch-gemm> and <combined> functions for case 8 only. Moreover, the ex-742 periments have been additionally executed on the AMD 743 EPYC processor and with the column-major ordering of 772 tensors outperform <mkl-batch-gemm> on average by a facthe input matrix as well.

746 function for a given algorithm corresponds to the number 775 and <mkl-batch-gemm> show a similar performance behav-747 of test instances for which that algorithm that achieves 776 ior in the plot (1c) and (1d) for symmetrically shaped ten- $_{751}$ stances with equal to or less than 10 GFLOPS/core. Please $_{780}$ p > 3, i.e. when the tensor dimensions are less than 64. 752 note that the four plots on the right, plots (c) and (d), have 781 These observations have also been mentioned in [1]. 753 a logarithmic y-axis for a better visualization.

6.3.1. Combined Algorithm and Batched GEMM

755

759 up to 46.96 and 45.68 GFLOPS/core, it is on par with The contour plots in Figure 1 contain performance data 760 par-gemm> with subtensors and cpar-loop> with tensor that are generated by all applicable TTM cases of each 761 slices and outperforms them for some tensor instances. ttm function. Yet, the presented slicing or parallelization 762 Note that both functions run significantly slower either

Function <mkl-batch-gemm> of the BLAS-like extension 769 library has a performance distribution that is akin to the 770 <par-loop> with subtensors. In case of asymmetrically 771 shaped tensors, all functions except <par-loop> with sub-773 tor of 2.57 and up to a factor 4 for $2 \le q \le 5$ with The probability x of a point (x,y) of a distribution $\pi_4 q + 2 \le p \le q + 5$. In contrast, <par-loop> with subtensors a throughput of either y or less. For instance, function 777 sors, running on average 3.55 and 8.38 times faster than <mkl-batch-gemm> computes the tensor-matrix product with 778 <par-gemm> with subtensors and tensor slices, respectively.

782 6.3.2. Matrix Formats

The cumulative performance distributions in Figure 2 Given a row-major matrix ordering, the combined func- 784 suggest that the storage format of the input matrix has 756 tion <combined> achieves on the Intel processor a median 785 only a minor impact on the performance. The Euclidean 757 throughput of 36.15 and 4.28 GFLOPS/core with asym-786 distance between normalized row-major and column-major 758 metrically and symmetrically shaped tensors. Reaching 787 performance values is around 5 or less with a maximum

Figure 2: Cumulative performance distributions in double-precision GFLOPS/core of the proposed algorithms for the eighth case. Each tensor slices, par-gemm> () and <par-loop> () using subtensors. The top row of maps (1x) depict measurements performed on an Intel Xeon Gold 5318Y with the MKL while the bottom row of maps with number (2x) contain measurements performed on an AMD EPYC 9354 with the AOCL. Tensors are asymmetrically shaped in (a) and (b) and symmetrically shaped in (c) and (d). Input matrix has the row-major ordering (rm) in (a) and (c) and column-major ordering (cm) in (b) and (d).

789 ilarity between the corresponding row-major and column- 814 rically shaped order-7 tensors that has a k-order tensor 790 major data sets. Moreover, their respective median values 815 layout. The 1-order and 7-order layout, for instance, are 791 with their first and third quartiles differ by less than 5% 816 the first-order and last-order storage formats of an order-7 792 with three exceptions where the difference of the median 817 tensor². Note that <combined> only calls <par-loop> with values is between 10% and 15%.

6.3.3. BLAS Libraries

796 that use Intel's Math Kernel Library (MKL) on the In-797 tel Xeon Gold 5318Y processor with those that use the 798 AMD Optimizing CPU Libraries (AOCL) on the AMD EPYC 9354 processor. Limiting the performance evalua-800 tion to the eighth case, MKL-based functions with asym-801 metrically shaped tensors run on average between 1.48 and 2.43 times faster than those with the AOCL. For symmet-803 rically shaped tensors, MKL-based functions are between 1.93 and 5.21 times faster than those with the AOCL. In $_{805}$ general, MKL-based functions achieve a speedup of at least 1.76 and 1.71 compared to their AOCL-based counterpart 807 when asymmetrically and symmetrically shaped tensors 808 are used.

809 6.4. Layout-Oblivious Algorithms

Figure 3 contains four subfigures with box plots sum-811 marizing the performance distribution of the <combined> 812 function using the AOCL and MKL. Every kth box plot

788 dissimilarity of 11.61 or 16.97, indicating a moderate sim- 813 has been computed from benchmark data with symmet-818 subtensors.

The reduced performance of around 1 and 2 GFLOPS 820 can be attributed to the fact that contraction and lead-This subsection compares the performance of functions 821 ing dimensions of symmetrically shaped subtensors are at 822 most 48 and 8, respectively. When <combined> is used 823 with MKL, the relative standard deviations (RSD) of its 824 median performances are 2.51% and 0.74%, with respect 825 to the row-major and column-major formats. The RSD $_{826}$ of its respective interquartile ranges (IQR) are 4.29% and 827 6.9%, indicating a similar performance distributions. Us-828 ing <combined> with AOCL, the RSD of its median per-829 formances for the row-major and column-major formats $_{830}$ are 25.62% and 20.66%, respectively. The RSD of its re-831 spective IQRs are 10.83% and 4.31%, indicating a similar 832 performance distributions.

> A similar performance behavior can be observed also 834 for other ttm variants such as par-loop with tensor slices 835 or par-gemm. The runtime results demonstrate that the 836 function performances stay within an acceptable range in-837 dependent for different k-order tensor layouts and show

²The k-order tensor layout definition is given in section 3.4

Figure 3: Box plots visualizing performance statics in double-precision GFLOPS/core of the function with row-major (left) or column-major matrices (right). Box plot number k denotes the k-order tensor layout of symmetrically shaped tensors with order 7.

s38 that our proposed algorithms are not designed for a spes39 cific tensor layout.

836 rically shaped tensors other libraries on the right plot in
s37 Figure 2 run at least 2 times slower than TLIB except

840 6.5. Other Approaches

This subsection compares our best performing algoThis subsection compares our best performing algoTCL implements the TTGT approach with a high-perform tensor-transpose library HPTT which is discussed in [8].
TBLIS (v1.2.0) implements the GETT approach that is akin to BLIS' algorithm design for the matrix multiplication [9]. The tensor extension of Eigen (v3.4.9) is used by the Tensorflow framework. Library LibTorch (v2.4.0) is the C++ distribution of PyTorch [15]. TLIB denotes our library which only calls the previously presented algotithm <combined>. We will use performance or percentage tuples of the form (TCL, TBLIS, LibTorch, Eigen) where each tuple element denotes the performance or runtime percentage of a particular library.

Figure 2 compares the performance distribution of our implementation with the previously mentioned libraries. Using MKL on the Intel CPU, our implementation (TLIB) achieves a median performance of 38.21 GFLOPS/core (1.83 TFLOPS) and reaches a maximum performance of 51.65 GFLOPS/core (2.47 TFLOPS) with asymmetrically shaped tensors. It outperforms the competing libraries for almost every tensor instance within the test set. The mesed dian library performances are (24.16, 29.85, 28.66, 14.86) GFLOPS/core reaching on average (84.68, 80.61, 78.00, 865 36.94) percent of TLIB's throughputs. In case of symmet-

sof rically shaped tensors other libraries on the right plot in Figure 2 run at least 2 times slower than TLIB except for TBLIS. TLIB's median performance is 8.99 GFLOP-869 S/core, other libraries achieve a median performances of 870 (2.70, 9.84, 3.52, 3.80) GFLOPS/core. On average their performances constitute (44.65, 98.63, 53.32, 31.59) per-872 cent of TLIB's throughputs.

On the AMD CPU, our implementation with AOCL 874 computes the tensor-times-matrix product on average with 875 24.28 GFLOPS/core (1.55 TFLOPS) and reaches a maxi-876 mum performance of 45.84 GFLOPS/core (2.93 TFLOPS) 877 with asymmetrically shaped tensors. TBLIS reaches 26.81 878 GFLOPS/core (1.71 TFLOPS) and is slightly faster than 879 TLIB. However, TLIB's upper performance quartile with 880 30.82 GFLOPS/core is slightly larger. TLIB outperforms 881 other competing libraries that have a median performance 882 of (8.07, 16.04, 11.49) GFLOPS/core reaching on average 883 (27.97, 62.97, 54.64) percent TLIB's throughputs. In case 884 of symmetrically shaped tensors, TLIB outperforms all 885 other libraries with 7.52 GFLOPS/core (481.39 GFLOPS) 886 and a maximum performance of 47.78 GFLOPS/core (3.05) 887 TFLOPS). Other libraries perform with (2.03, 6.18, 2.64, 888 5.58) GFLOPS/core and reach (44.94, 86.67, 57.33, 69.72) 889 percent of TLIB's throughputs. We have observed that 890 TCL and LibTorch have a median performance of less than 891 2 GFLOPS/core in the 3rd and 8th TTM case which is $_{892}$ less than 6% and 10% of TLIB's median performance with 893 asymmetrically and symmetrically shaped tensors, respec-894 tively.

Figure 4: Cumulative performance distributions of TTM implementations in double-precision GFLOPS/core. Each distribution corresponds to a library: TLIB[ours] (---), TCL (---), TBLIS (--), LibTorch (---), Eigen (---). Libraries have been tested with asymmetrically-shaped (left plot) and symmetrically-shaped tensors (right plot).

TLIB across all TTM cases, there are few exceptions. On 924 linear tensor layout all of which can be runtime variable. 897 the AMD CPU, TBLIS reaches 101% of TLIB's perfor-898 mance for the 6th TTM case and LibTorch performs as fast tensors. One unexpected finding is that LibTorch achieves 96% of TLIB's performance with asymmetrically shaped 902 tensors and only 28% in case of symmetrically shaped ten-903 SOTS.

On the Intel CPU, LibTorch is on average 9.63% faster 905 than TLIB in the 7th TTM case. The TCL library runs 933 large set of tensor instances of different shapes, we have $_{906}$ on average as fast as TLIB in the 6th and 7th TTM cases . 907 The performances of TLIB and TBLIS are in the 8th TTM 935 5318Y and an AMD EPYC 9354 CPUs. 908 case almost on par, TLIB running about 7.86% faster. In 936 909 case of symmetrically shaped tensors, all libraries except 910 Eigen outperform TLIB by about 13%, 42% and 65% in 911 the 7th TTM case. TBLIS and TLIB perform equally well 912 in the 8th TTM case, while other libraries only reach on 940 gorithm is able to outperform Intel's BLAS-like extension 913 average 30% of TLIB's performance.

914 7. Conclusion and Future Work

We have presented efficient layout-oblivious algorithms 916 for the compute-bound tensor-matrix multiplication that 917 is essential for many tensor methods. Our approach is 918 based on the LOG-method and computes the tensor-matrix 919 product in-place without transposing tensors. It applies 920 the flexible approach described in [13] and generalizes the 921 findings on tensor slicing in [11] for linear tensor layouts. 922 The resulting algorithms are able to process dense ten-

While all libraries run on average 25% slower than 923 sors with arbitrary tensor order, dimensions and with any

The base algorithm has been divided into eight dif-926 ferent TTM cases where seven of them perform a single as TLIB for the 7th TTM case for asymmetrically shaped 927 cblas gemm. We have presented multiple algorithm vari-928 ants for the general TTM case which either calls a single-929 or multi-threaded cblas_gemm with small or large tensor 930 slices in parallel or sequentially. We have developed a sim-931 ple heuristic that selects one of the variants based on the 932 performance evaluation in the original work [1]. With a 934 evaluated the proposed variants on an Intel Xeon Gold

> Our performance tests show that our algorithms are 937 layout-oblivious and do not need layout-specific optimiza-938 tions, even for different storage ordering of the input ma-939 trix. Despite the flexible design, our best-performing al-941 function cblas_gemm_batch by a factor of 2.57 in case of 942 asymmetrically shaped tensors. Moreover, the presented 943 performance results show that TLIB is able to compute the 944 tensor-matrix product on average 25% faster than other 945 state-of-the-art implementations for a majority of tensor 946 instances.

> Our findings show that the LoG-based approach is a 948 viable solution for the general tensor-matrix multiplica-949 tion which can be as fast as or even outperform efficient 950 GETT-based implementations. Hence, other actively de-951 veloped libraries such as LibTorch and Eigen might benefit 952 from implementing the proposed algorithms. Our header

953 only library provides C++ interfaces and a python module 1017 which allows frameworks to easily integrate our library.

In the near future, we intend to incorporate our im- $_{956}$ plementations in TensorLy, a widely-used framework for $_{1021}$ 957 tensor computations [18, 19]. Using the insights provided 1022 [17] 958 in [11] could help to further increase the performance. Ad-959 ditionally, we want to explore to what extend our approach 960 can be applied for the general tensor contractions.

961 7.0.1. Source Code Availability

Project description and source code can be found at ht 963 tps://github.com/bassoy/ttm. The sequential tensor-matrix 964 multiplication of TLIB is part of Boost's uBLAS library.

965 References

- [1] C. S. Başsoy, Fast and layout-oblivious tensor-matrix multi-966 plication with blas, in: International Conference on Computational Science, Springer, 2024, pp. 256-271. 968
- 969 E. Karahan, P. A. Rojas-López, M. L. Bringas-Vega, P. A. Valdés-Hernández, P. A. Valdes-Sosa, Tensor analysis and fu-970 sion of multimodal brain images, Proceedings of the IEEE 971 103 (9) (2015) 1531–1559. 972
- E. E. Papalexakis, C. Faloutsos, N. D. Sidiropoulos, Tensors for 973 data mining and data fusion: Models, applications, and scal-974 able algorithms, ACM Transactions on Intelligent Systems and 975 Technology (TIST) 8 (2) (2017) 16. 976
- 977 N. Lee, A. Cichocki, Fundamental tensor operations for largescale data analysis using tensor network formats, Multidimen-978 sional Systems and Signal Processing 29 (3) (2018) 921-960. 979
- 980 [5] T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM review 51 (3) (2009) 455-500. 981
- B. W. Bader, T. G. Kolda, Algorithm 862: Matlab tensor classes 982 [6] for fast algorithm prototyping, ACM Trans. Math. Softw. 32 983 (2006) 635-653 984
- E. Solomonik, D. Matthews, J. Hammond, J. Demmel, Cyclops 985 986 tensor framework: Reducing communication and eliminating load imbalance in massively parallel contractions, in: Parallel & 987 988 Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, IEEE, 2013, pp. 813–824. 989
- P. Springer, P. Bientinesi, Design of a high-performance gemm-990 like tensor-tensor multiplication, ACM Transactions on Math-991 ematical Software (TOMS) 44 (3) (2018) 28. 992
- [9] D. A. Matthews, High-performance tensor contraction without 993 transposition, SIAM Journal on Scientific Computing 40 (1) 994 (2018) C1-C24. 995
- E. D. Napoli, D. Fabregat-Traver, G. Quintana-Ortí, P. Bien-996 tinesi, Towards an efficient use of the blas library for multilinear tensor contractions, Applied Mathematics and Computation 998 235 (2014) 454 - 468.
- 1000 [11] J. Li, C. Battaglino, I. Perros, J. Sun, R. Vuduc, An input-1001 adaptive and in-place approach to dense tensor-times-matrix multiply, in: High Performance Computing, Networking, Stor-1002 age and Analysis, 2015, IEEE, 2015, pp. 1-12. 1003
- 1004 [12] Y. Shi, U. N. Niranjan, A. Anandkumar, C. Cecka, Tensor contractions with extended blas kernels on cpu and gpu, in: 2016 100 IEEE 23rd International Conference on High Performance Com-1006 1007 puting (HiPC), 2016, pp. 193–202.
- 1008 [13] C. Bassoy, Design of a high-performance tensor-vector multiplication with blas, in: International Conference on Computa-1009 tional Science, Springer, 2019, pp. 32-45. 1010
- 1011 [14] F. Pawlowski, B. Uçar, A.-J. Yzelman, A multi-dimensional 1012 morton-ordered block storage for mode-oblivious tensor com-1013 putations, Journal of Computational Science 33 (2019) 34-44.
- 1014 [15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., 1015 Pytorch: An imperative style, high-performance deep learning 1016

- library, Advances in neural information processing systems 32
- L.-H. Lim, Tensors and hypermatrices, in: L. Hogben (Ed.), Handbook of Linear Algebra, 2nd Edition, Chapman and Hall,
- C. Bassoy, V. Schatz, Fast higher-order functions for tensor calculus with tensors and subtensors, in: International Conference on Computational Science, Springer, 2018, pp. 639-652.
- 1025 [18] J. Cohen, C. Bassoy, L. Mitchell, Ttv in tensorly, Tensor Computations: Applications and Optimization (2022) 11.
- 1027 [19] J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in python, Journal of Machine Learning Research 20 (26) (2019) 1-6.

1028

1029