LIST OF CLAIMS

1. (Currently Amended) A heat-developable image-recording material comprising on a support:

a silver-supplying layer comprising an organic silver salt, a reducing agent, an organic binder and photosensitive silver halide in an amount that is 10 wt% or less of a coated amount of photosensitive silver halide in a separate photosensitive layer; and

a <u>said</u> separate photosensitive layer comprising a
photosensitive silver halide and substantially no organic silver
salt;

the heat-developable image-recording material further containing an electron-transfer agent.

- 2. (Original) The heat-developable image-recording material according to Claim 1 wherein the organic binder is formed from a polymer latex dispersed in an aqueous medium.
- 3. (Original) The heat-developable image-recording material according to Claim 2, wherein the reducing agent has been incorporated in the form of microparticles dispersed as a solid in an aqueous medium.

- 4. (Original) The heat-developable image-recording material according to Claim 2, wherein the silver-supplying layer contains a halogen precursor.
- 5. (Original) The heat-developable image-recording material according to Claim 3, wherein the silver-supplying layer contains a halogen precursor.
- 6. (Original) The heat developable image-recording material according to Claim 4, wherein the halogen precursor has been incorporated in the form of microparticles dispersed as a solid in an aqueous medium.
- 7. (Original) The heat-developable image-recording material according to Claim 5, wherein the halogen precursor has been incorporated in the form of microparticles dispersed as a solid in an aqueous medium.
- 8. (Original) The heat-developable image-recording material according to Claim 1, wherein the electron-transfer agent is a compound selected from the group consisting of hydrazine

derivatives, alkene derivatives, isooxazole derivatives and acetal compounds.

- 9. (Original) The heat-developable image-recording material according to Claim 2, wherein the electron-transfer agent is a compound selected from the group consisting of hydrazine derivatives, alkene derivatives, isooxazole derivatives and acetal compounds.
- 10. (Original) The heat developable image-recording material according to Claim 1, wherein the electron-transfer agent is a hydrazine derivative represented by the general formula below:

$$\begin{array}{ccc} R_{02} - N - N - G_1 - R_{01} \\ I & I \\ A_1 & A_2 \end{array} \tag{1}$$

wherein R_{02} denotes an aliphatic group or an aromatic group, R_{01} denotes hydrogen, alkyl, aryl, an unsaturated heterocyclic group, alkoxy, aryoxy, amino or hydrazino, G_1 denotes -CO-, -SO₂-, -SO-, -P(O)-, -R₀₃P(O)-, -COCO-, thionylcarbony or iminomethylene, and A_1 and A_2 independently denote hydrogen, or substituted or unsubstituted alkylsulfonyl and R_{03} is chosen from the groups defined for R_{01} and may be the same as or different from R_{01} .

11. (Original) The heat-developable image-recording material according to Claim 2, wherein the electron-transfer agent is a compound selected from the group consisting of substituted alkene derivatives, substituted isoxazole derivatives and acetal compounds represented by the following general formulae (3) to (5)

$$R_1$$
 Z
 R_3
 R_4
 Q
 N
 (4)
 Z
 CH
 CH
 CH
 B
 (5)

wherein general formula (3) R_1 , R_2 and R_3 independently denote hydrogen or a substituent, and Z denotes an electron withdrawing group or a silyl group, in general formula (3), R_1 and Z, R_2 and R_3 , R_1 and R_2 , or R_3 and Z may be bonded together to form a cyclic structure, in general formula (4), R_4 denotes a substituent, in general formula (5), X and Y independently represent hydrogen or a substituent; A and B independently denote alkoxy, alkylthio, alkylamino, aryloxy, arylthio, anilino, heterocyclic oxy, heterocyclic thio or heterocyclic amino, and in general formula (5), X and Y, and A and B may be bonded together to form a cyclic structure.

12. (Original) A method for forming an image by heat development comprising:

imagewise exposing a heat-developable image-recording material
comprising, on a support,

a silver-supplying layer containing an organic silver salt, a reducing agent, and an organic binder, and

a separate photosensitive layer containing a photosensitive silver halide, the heat-developable image-recording material further containing an electron-transfer agent; and then

heat-developing the heat-developable image-recording material; whereby development of the photosensitive layer forms a silver image in the silver-supplying layer.

- 13. (Original) The method for forming an image by heat development according to Claim 12, wherein the silver-supplying layer contains substantially no photosensitive silver halide.
- 14. (Original) The method for forming an image by heat development according to Claim 12, wherein the silver-supplying layer contains a halogen precursor.
- 15. (Currently Amended) The method for forming an image by heat development according to Claim 12, wherein the photosensitive layer contains a reducing agent.

16. (Canceled)

- 17. (Previously Presented) The heat-developable imagerecording material according to claim 1, wherein a coated amount of
 photosensitive silver halide in the silver-supplying layer is 1 wt%
 or less of a coated amount of photosensitive silver halide in the
 photosensitive layer.
- 18. (Previously Presented) The heat-developable imagerecording material according to claim 1, wherein the silversupplying layer contains no photosensitive silver halide.

19. (Canceled)

20. (Previously Presented) The heat-developable image recording material of claim 1, wherein the coated amount of the photosensitive silver halide in the separate photosensitive layer is from 0.01 g/m^2 to 5.0 g/m^2 .