Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»	
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,	
информационн	ые технологии»	

Лабораторная работа №2

«Графический метод решения задачи математического программирования»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-72Б			Сафронов Н.С.	
_	(подпись)		(Ф.И.О.)	
Проверил:		_ (_	Никитенко У.В.	
	(подпись)		(Ф.И.О.)	
Дата сдачи (защиты):				
Результаты сдачи (защиты):				
- Балльная оценка:				
- Оценка:				

Цель работы: изучение математического аппарата математического программирования на примере задач небольшой размерности, допускающих графическое решение.

Постановка задачи

Вариант 14

Для функционирования завода необходимо пополнять его склад расходными материалами. Ежедневно на склад должно быть доставлено не менее 9 ед. расходного материала №1, 8 ед. расходного материала №2 и 11 ед. расходного материала №3. Для пополнения склада были заключены договоры с двумя автопредприятиями. Их возможности представлены в таблице:

Во околин во моторио и и	Количество доставленных материалов			
Расходные материалы	Предприятие №1	Предприятие №2		
Расходный материал №1	3	1		
Расходный материал №2	1	2		
Расходный материал №3	1	6		

Стоимость перевозки по договору с Предприятием №1 - 4 д.е., с Предприятием №2 - 6 д.е. Составьте план перевозок, имеющий минимальную стоимость.

С помощью графического анализа чувствительности определите, как изменится значение целевой функции при изменении минимального уровня перевозок Предприятием №1.

Результаты выполнения работы

Составим математическую модель.

Введём переменные:

 x_1 – уровень перевозок предприятием №1,

 x_2 – уровень перевозок предприятием №2,

z – стоимость плана перевозок.

Получаем следующую систему уравнений:

$$\begin{cases} 3x_1 + x_2 \ge 9 \\ x_1 + 2x_2 \ge 8 \\ x_1 + 6x_2 \ge 11 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

$$z = 4x_1 + 6x_2 \to min$$

Найдём оптимальный план перевозок:

Рисунок 1 – Найденный оптимальный план перевозок

Получаем, оптимальную точку B, где $x_1 = 2$, $x_2 = 3$ — план перевозок, имеющий минимальную стоимость — 26 д.е.

Увеличим минимальный уровень перевозок Предприятия №1 (см. рис 2). При его изменении, начиная с $x_1 = 2$, точка B будет передвигаться вдоль отрезка BC, а затем, начиная с $x_1 = 6.5$, вдоль CD.

Вычислим стоимость перевозки Предприятием N1 на отрезке BC:

$$y_1 = \frac{30.8 - 26}{6.5 - 2} = 1.07$$
 д. е. на 1 уровень перевозок

Вычислим стоимость перевозки Предприятием $N \ge 1$ на отрезке CD:

$$y_1 = \frac{44 - 30.8}{11 - 6.5} = 2.03$$
 д. е. на 1 уровень перевозок

Рисунок 2 – Изменение плана при увеличении минимального уровня перевозок предприятия №1

Вывод: в ходе выполнения лабораторной работы был изучен математический аппарат математического программирования на примере задач небольшой размерности, допускающих графическое решение.

приложения

Листинг программы

```
# Вариант 14
from functools import reduce
import matplotlib.lines
import matplotlib.pyplot as plt
import numpy as np
if name == " main ":
   conditions = [
        lambda x, y: 3 * x + y >= 9,
        lambda x, y: x + 2 * y >= 8,
       lambda x, y: x + 6 * y >= 11
    ]
    equalities = [
        lambda x, y: 3 * x + y - 9,
        lambda x, y: x + 2 * y - 8,
        lambda x, y: x + 6 * y - 11
    ]
    explicit equalities = [
        lambda x: 9 - 3 * x,
        lambda x: 4 - x / 2,
        lambda x: (11 - x) / 6,
    1
    labels = [
        '$3x 1 + x 2 = 9$',
        '$x 1 + 2x 2 = 8$',
        $x_1 + 6x 2 = 11$
    1
    colors = [
       "k-.",
       "k--",
       "k:"
    1
    figure, axis = plt.subplots()
   x = np.arange(0, 12, 0.01)
   plan = (26 - 4 * x) / 6
   plt.plot(x, plan, "r--", label=f'$z = 4x 1 + 6x 2 = 26$')
   plan = (30.8 - 4 * x) / 6
   plt.plot(x, plan, "r-.", label=f'$z = 4x 1 + 6x 2 = 30.8$')
   plan = (44 - 4 * x) / 6
   plt.plot(x, plan, "r-.", label=f'$z = 4x 1 + 6x 2 = 44$')
   point_name = ord('A')
    for i in range(len(explicit equalities)):
       previous i = i - 1 if i != 0 else len(explicit equalities) - 1
       previous f = explicit equalities[previous i](x)
        f = explicit equalities[i](x)
```

```
idx = np.argwhere(np.diff(np.sign(previous f - f))).flatten()[0]
    plt.plot(x, f, colors[i], label=labels[i])
    plt.plot(x[idx], f[idx], 'ko')
    axis.annotate(
        f'\{chr(point name)\} (\{x[idx]:.1f\}, \{f[idx]:.1f\})',
        (x[idx] - 0.5, f[idx] + 0.3),
        backgroundcolor='#fffffB0'
    point name += 1
for i in range(len(explicit equalities)):
    if i != 2:
        continue
    f = explicit equalities[i](x)
    idx = np.argwhere(np.diff(np.sign(f))).flatten()[0]
    plt.plot(x[idx], f[idx], 'ko')
    axis.annotate(
        f'\{chr(point name)\} (\{x[idx]:.1f\}, \{f[idx]:.1f\})',
        (x[idx] - 0.5, f[idx] + 0.3),
        backgroundcolor='#fffffB0'
    point name += 1
plt.axvline(2, color='b', linestyle='--', label='$x 1=2$')
plt.axvline(6.5, color='b', linestyle='-.', label='$x 1=6.5$')
plt.axvline(11, color='b', linestyle=':', label='$x 1=11$')
axis.set ylim(0, 7)
axis.set xlim(0, 12)
plt.xlabel("$x 1$")
plt.ylabel("$x 2$")
xs, ys = np.meshgrid(x, x)
regions = [condition(xs, ys) for condition in conditions]
intersection = np.array(reduce(lambda _x, _y: _x & _y, regions))
extent = (x.min(), x.max(), x.min(), x.max())
plt.imshow(
    intersection.astype(int),
    extent=extent,
    origin="lower",
    cmap="Greens",
    alpha=0.25
plt.legend()
plt.show()
```