Computer Systems Lecture 18

Overview

- Floating Point Numbers
- Floating Point Formats
- Excess-*n* notation
- Normalisation of floating point numbers
- Floating point in binary
- IEEE standard 754

Floating Point Numbers

- It is not always possible to express numbers in integer form.
- Real, or **floating point** numbers are used in a computer when:
 - The number to be expressed is outside of the integer range of the computer, like 5.375×10^{25}
 - Or, when the number contains a fraction, like 345.0256

Exponential notation (base 10)

- In general, this notation represents numbers in a form $a \times 10^b$.
- Example: $12345 = 12345 \times 10^0 =$

$$0.12345 \times 10^5 =$$

$$1234500 \times 10^{-2}$$

Components of exponential notation

- The **sign** of the number.
- The **magnitude** of the number, known as the **mantissa**.
- The sign of the **exponent**.
- The magnitude of the exponent.

•

- Two additional pieces of information:
 - The **base** of the exponent (e.g., 10 or 2).
 - The location of the decimal point.

Floating point formats

• Any format for floating point numbers should specify how the components of an exponential notation are stored (in a word, or several words).

• The base of the exponent and the location of the binary point are standardised as part of the format and, therefore, do not have to be stored at all.

Floating Point Formats (cont.)

• Example: Suppose, that the standard code consists of space for seven digits and a sign:

SEEMMMMM

- So, we have two digits for the **exponent** and 5 digits for the **mantissa**.
- Trade-off: precision (mantissa) vs. range (exponent).
- Most commonly, the mantissa is stored using **sign-magnitude** format.
- What about the sign of the exponent?

Excess-*n* notation for the exponent

• Excess-50 notation for the 2-digit decimal representation of the exponent:

- Offset the value of the exponent by a chosen amount (here it is 50).
- It is simpler to use for exponents than the complementary form.

Floating point formats

• Thus, 5-digit excess-50 notation allows us a magnitude range of

$$0.00001 \times 10^{-50} < \dots < 0.99999 \times 10^{+49}$$

 We assume that the decimal point is located at the beginning of five-digit mantissa.

Normalisation of floating point numbers

- To maximise the precision for a given number of digits, numbers are, usually, stored with no leading zeros.
- Process of transformation the numbers into such a form is called **normalisation**.
- Example.
 - A number: 0.00123×10^7
 - Its normalised form: 1.23×10^4

Floating point in the computer: binary representation

- Typically, 4, 8 or 16 bytes are used to represent a floating point number.
- Typical floating point format: 32 bits are used to provide a range of approximately 10^{-38} to 10^{+38} .
 - − 1 bit is used for sign of mantissa.
 - 8 bits are used to store the exponent in excess 128 notation.
 - 23 bits are used for mantissa.

Floating point in binary

- Assuming **normalised** representation one can omit the storage of most significant bit (it is always 1!).
 - So, 23 bits provide 24 bits of precision.
- Binary point should be specified.
 - Most common choice is after the most significant bit, i.e. 1.???.
 - Notice, this bit itself is not stored!

Example (excess-128)

• Consider the code:

 $0\ 10000001\ 11001100000000000000000$

- Sign of mantissa is '+' (leftmost bit is 0)
- Exponent is 00000001 (=10000001-10000000)
- The number represented is +11.10011000...000

Another example (excess-128)

Consider the code:

1 10000100 10001111000000000000000

- Sign of mantissa is '-' (leftmost bit is 1)
- Exponent is 00000100 (=10000100-10000000)
- The number is -11000.1111000...000

One more example (excess-128)

Consider the code:

 $1\ 011111110\ 1010101010101010101010101$

- Sign of mantissa is '-' (leftmost bit is 1)
- Mantissa is 1.10101010101010101010101
- Exponent is -00000010 (=01111110-10000000)

Assumed

• The number represented is -0.0110101000...000

IEEE standard 754

Single-precision floating point format:

- Almost the same format as we have just described, with some exceptions.
- 32-bits: 1 bit for sign, 8 bits of exponent, 23 of mantissa.
- The exponent is formatted using excess-127 notation.
- Overall, the standard allows approximately 7 decimal digit precision and approximate value range 10⁻⁴⁵ to 10³⁸.

Exponent biasing

- The exponent is biased by 2^{8-1} -1, that is, biased by 127.
- Exponents in the range -127 to +127 are representable.
- e=128 reserved for NaN, infinity

Single-precision 32 bit IEEE 754

• The represented number has value *v*:

$$v = s \times 2^e \times m$$
, where

- -s = +1 (positive number) when the sign bit is 0;
- -s = -1 (negative number) when the sign bit is 1;
- -e = exponent 127;

31

- -m = 1.fraction in binary. (The leading '1' is not stored.) Therefore, $1 \le m < 2$.
- In the above example, where s = 1, e = -3, m = 1.01 (in binary, which is 1.25 in decimal).
- The represented number is therefore $+1.01 \times 2^{-3}$ (in binary), which is +0.15625.

Special cases (e = 128)

- If exponent is 0 and fraction is 0, the number is ± 0 (depending on the sign bit).
- If exponent = $2^8 1$ and fraction is 0, the number is \pm infinity (again depending on the sign bit).
- If exponent = $2^8 1$ and fraction is not 0, the number being represented is not a number (NaN).

IEEE standard 754 (cont.)

Double-precision floating point format:

- 64-bits: 1 bit for sign, 11 bits of exponent, 52 of mantissa.
- The exponent is formatted using excess-1023 notation.
- Overall, the standard allows approximately 15 decimal digit precision and approximate value range 10⁻³²⁴ to 10³⁰⁸.

Double-precision 64 bit IEEE 754

- Q. Under the IEEE 754 standard...
 - how many bits are required to specify the sign of the magnitude?
 - how many bits are required to specify the sign of the exponent?

• Q. Under the IEEE 754 standard, how many bits are required to specify the decimal point position?

• Q. Does IEEE standard 754 provide a specification for NaN?

• Q. Under the IEEE 754 standard for single-precision floating point format, what type of excess notation is used for exponent specification?

• Q. Under the IEEE 754 standard for double-precision floating point format, what type of excess notation is used for exponent specification?

Readings

- [Wil06] Section 5.6.
- Wikipedia article on floating point systems:
 - http://en.wikipedia.org/wiki/Flo ating point
- Wikipedia article on IEEE 754 standard:
 - http://en.wikipedia.org/wiki/IEE
 E_754