Reese Ford – Lab 9 Report

04/09/2024

Q 📔 🛛 Q	25 18 14	N 12 27 4									100.000 r	
Name	Value	0.000 ns	10.000 ns	20.000 ns	30.000 ns	40.000 ns	50.000 ns	60.000 ns	70.000 ns	80.000 ns	90.000 ns	
> W tc[31:0]	11	2	3	4	5	6	7	8	9	10	11	
▼ ts[31:0]	3	3	1 / 3	1 3	1 / 3	1 (4	1 (4	1 2	1 2	1 3	1 3	
cur_pc[63:0]	36	0	4	8	12	16	20	24	28	32	36	
read_data1[63:0]	16	16	10	30	16	88	99		38	30	16	
read_data2[63:0]	30	10	20	30	*	0	20		99	¥ •	30	
sign_exteput[63:0	88	64		38	96	-5	8	64	-55	*	88	
♦ branch_target[63:0]	388	256	356	360	396	-4	52	280	-192	384	388	
▼ alu_result[63:0]	16	80	30	0	112	•	20	1	87	30	16	
le zero	0											
▼ alu_op[1:0]	10	00	10		00	•	01		00		10	
opcode[10:0]	10001010000	11111000010	10001011000 11001011000		11111000000	10110100XXX		000101000000		10101010000	10001010000	
U alu_src	0											
<pre># er_branchget[63:0</pre>	-192			x		-4	52	280	*	-192		
er_alu_result[63:0]	16	80	30	0	112	0	X	20		30	16	
₩ er_zero	0											

****** BEGIN TEST RESULTS ******

```
Test Case 1: | LDUR X9, [X22, #64]

+++ Step 1: Pass: |alu_result| time = 5 ns | er = 80 | ar = 80 | er_bits = 64 | ar_bits = 64 +++

+++ Step 2: Pass: |zero| time = 5 ns | er = 0 | ar = 0 | er_bits = 1 | ar_bits = 1 +++

Test Case 2: | ADD X10, X19, X9

+++ Step 1: Pass: |alu_result| time = 15 ns | er = 30 | ar = 30 | er_bits = 64 | ar_bits = 64 +++

+++ Step 2: Pass: |zero| time = 15 ns | er = 0 | ar = 0 | er_bits = 1 | ar_bits = 1 +++
```

```
Test Case 3: | SUB X11, X20, X10
+++ Step 1: Pass: |alu result | time = 25 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |zero| time = 25 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
Test Case 4: | STUR X11, [X22, #96]
+++ Step 1: Pass: |alu result | time = 35 ns | er = 112 | ar = 112 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |zero| time = 35 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
Test Case 5: | CBZ X11, -5
+++ Step 1: Pass: |branch target| time = 45 ns | er = -4 | ar = -4 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |alu result | time = 45 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
+++ Step 3: Pass: |zero| time = 45 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
Test Case 6: | CBZ X9, 8
+++ Step 1: Pass: |branch target| time = 55 ns | er = 52 | ar = 52 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |alu result | time = 55 ns | er = 20 | ar = 20 | er bits = 64 | ar bits = 64 +++
+++ Step 3: Pass: |zero| time = 55 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
Test Case 7: | B 64
+++ Step 1: Pass: |branch target| time = 65 ns | er = 280 | ar = 280 | er bits = 64 | ar bits = 64 +++
Test Case 8: | B -55
+++ Step 1: Pass: |branch target | time = 75 ns | er = -192 | ar = -192 | er bits = 64 | ar bits = 64 +++
Test Case 9: | ORR X9, X10, X21
+++ Step 1: Pass: |alu result | time = 85 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |zero| time = 85 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
```

```
Test Case 10: | AND X9, X22, X10
```

+++ Step 1: Pass: |alu_result| time = 95 ns | er = 16 | ar = 16 | er_bits = 64 | ar_bits = 64 +++

+++ Step 2: Pass: |zero| time = 95 ns | er = 0 | ar = 0 | er_bits = 1 | ar_bits = 1 +++

Pass Count = 20

Fail Count = 0

****** END TEST RESULTS ******

****** BEGIN TEST RESULTS ******

Test Case 1: | LDUR X9, [X22, #64]

+++ Step 1: Pass: |cur_pc| time = 10 ns | er = 0 | ar = 0 | er_bits = 64 | ar_bits = 64 +++

+++ Step 2: Pass: |instruction| time = 10 ns | er = f84402c9 | ar = f84402c9 | er_bits = 32 | ar_bits = 32 +++

```
+++ Step 3: Pass: | opcode | time = 10 ns | er = 11111000010 | ar = 11111000010 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: |sign extended output | time = 10 ns | er = 40 | ar = 40 | er bits = 64 | ar bits = 64 +++
+++ Step 5: Pass: |reg2 | loc | time = 10 | er = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 6: Pass: |uncondbranch| time = 10 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |branch| time = 10 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem read | time = 10 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 9: Pass: |mem| to reg| time = 10 ns |er| = 1 |er| bits = 1 |er| bits = 1 |er|
+++ Step 10: Pass: |alu op | time = 10 ns | er = 0 | ar = 0 | er bits = 2 | ar bits = 2 +++
+++ Step 11: Pass: |mem write| time = 10 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |alu src| time = 10 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |reg write| time = 10 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 14: Pass: |read data1| time = 10 ns | er = 16 | ar = 16 | er bits = 64 | ar bits = 64 +++
+++ Step 15: Pass: |alu result| time = 10 ns | er = 80 | ar = 80 | er bits = 64 | ar bits = 64 +++
+++ Step 16: Pass: |zero| time = 10 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
Test Case 2: | ADD X10, X19, X9
+++ Step 1: Pass: |cur pc| time = 20 ns | er = 4 | ar = 4 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 20 ns | er = 8b09026a | ar = 8b09026a | er bits = 32 | ar bits = 32 +++
+++ Step 3: Pass: | opcode | time = 20 ns | er = 10001011000 | ar = 10001011000 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: | reg2 | loc| time = 20 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 5: Pass: |uncondbranch| time = 20 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |branch| time = 20 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
```

```
+++ Step 7: Pass: |mem read | time = 20 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem| to reg| time = 20 ns |er| = 0 | |er| bits = 1 | |er| bits = 1 +++
+++ Step 9: Pass: |alu op | time = 20 ns | er = 10 | ar = 10 | er bits = 2 | ar bits = 2 +++
+++ Step 10: Pass: |mem write| time = 20 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |alu src| time = 20 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |reg_write| time = 20 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |read data1| time = 20 ns | er = 10 | ar = 10 | er bits = 64 | ar bits = 64 +++
+++ Step 14: Pass: |read data2| time = 20 ns | er = 20 | ar = 20 | er bits = 64 | ar bits = 64 +++
+++ Step 15: Pass: |alu result | time = 20 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 16: Pass: |zero| time = 20 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
Test Case 3: | SUB X11, X20, X10
+++ Step 1: Pass: |cur pc| time = 30 ns | er = 8 | ar = 8 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 30 ns | er = cb0a028b | ar = cb0a028b | er bits = 32 | ar bits = 32 +++
+++ Step 3: Pass: | opcode | time = 30 ns | er = 11001011000 | ar = 11001011000 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: |reg2 | loc| time = 30 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 5: Pass: |uncondbranch| time = 30 ns |er = 0| ar = 0 |er| bits = 1 |er| ar bits = 1 +++
+++ Step 6: Pass: |branch| time = 30 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |mem read | time = 30 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem| to reg| time = 30 ns |er| = 0 |ar| = 0 |er| bits = 1 |ar| bits = 1 +++
+++ Step 9: Pass: |alu op | time = 30 ns | er = 10 | ar = 10 | er bits = 2 | ar bits = 2 +++
+++ Step 10: Pass: |mem write| time = 30 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
```

```
+++ Step 11: Pass: |alu src| time = 30 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |reg write | time = 30 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |read data1| time = 30 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 14: Pass: |read data2| time = 30 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 15: Pass: |alu result| time = 30 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
+++ Step 16: Pass: |zero| time = 30 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
Test Case 4: | STUR X11, [X22, #96]
+++ Step 1: Pass: |cur pc| time = 40 ns | er = 12 | ar = 12 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 40 ns | er = f80602cb | ar = f80602cb | er bits = 32 | ar bits = 32 +++
+++ Step 3: Pass: | opcode | time = 40 ns | er = 11111000000 | ar = 11111000000 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: |sign extended output | time = 40 ns | er = 60 | ar = 60 | er bits = 64 | ar bits = 64 +++
+++ Step 5: Pass: |reg2 | loc| time = 40 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
+++ Step 6: Pass: |uncondbranch| time = 40 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |branch| time = 40 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem read | time = 40 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 9: Pass: |mem| to reg| time = 40 ns |er| = 0 |er| bits = 1 |er| bits = 1 +++
+++ Step 10: Pass: |alu op | time = 40 ns | er = 0 | ar = 0 | er bits = 2 | ar bits = 2 +++
+++ Step 11: Pass: |mem write| time = 40 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |alu src| time = 40 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |reg write | time = 40 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 14: Pass: |read data1| time = 40 ns | er = 16 | ar = 16 | er bits = 64 | ar bits = 64 +++
```

```
+++ Step 15: Pass: |read data2| time = 40 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
+++ Step 16: Pass: |alu result | time = 40 ns | er = 112 | ar = 112 | er bits = 64 | ar bits = 64 +++
+++ Step 17: Pass: |zero| time = 40 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
Test Case 5: | CBZ X11, -5
+++ Step 1: Pass: |cur pc| time = 50 ns | er = 16 | ar = 16 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 50 ns | er = b4ffff6b | ar = b4ffff6b | er bits = 32 | ar bits = 32 +++
+++ Step 3: Pass: | opcode | time = 50 ns | er = 10110100111 | ar = 10110100111 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: |sign_extended_output| time = 50 ns | er = ffffffffffffb | ar = ffffffffffffb | er bits = 64 | ar bits = 64 +++
+++ Step 5: Pass: |reg2 | loc | time = 50 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
+++ Step 6: Pass: |uncondbranch| time = 50 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |branch| time = 50 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem_read| time = 50 ns | er = 0 | ar = 0 | er_bits = 1 | ar_bits = 1 +++
+++ Step 9: Pass: |mem| to reg| time = 50 ns |er| = 0 |ar| = 0 |er| bits = 1 |ar| bits = 1 +++
+++ Step 10: Pass: |alu op | time = 50 ns | er = 1 | ar = 1 | er bits = 2 | ar bits = 2 +++
+++ Step 11: Pass: |mem write| time = 50 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |alu src| time = 50 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |reg write| time = 50 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 14: Pass: |read data2| time = 50 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
+++ Step 15: Pass: |branch target | time = 50 ns | er = -4 | ar = -4 | er bits = 64 | ar bits = 64 +++
+++ Step 16: Pass: |alu result| time = 50 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
+++ Step 17: Pass: |zero| time = 50 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
```

```
Test Case 6: | CBZ X11, 8
+++ Step 1: Pass: |cur pc| time = 60 ns | er = 20 | ar = 20 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 60 ns | er = b4000109 | ar = b4000109 | er bits = 32 | ar bits = 32 +++
+++ Step 3: Pass: | opcode | time = 60 ns | er = 10110100000 | ar = 10110100000 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: |sign extended output | time = 60 ns | er = 8 | ar = 8 | er bits = 64 | ar bits = 64 +++
+++ Step 5: Pass: |reg2 | loc| time = 60 ns | er = 1 | ar = 1 | er | bits = 1 | ar | bits = 1 +++
+++ Step 6: Pass: |uncondbranch| time = 60 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |branch| time = 60 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem read | time = 60 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 9: Pass: |mem to reg| time = 60 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |alu op | time = 60 ns | er = 1 | ar = 1 | er bits = 2 | ar bits = 2 +++
+++ Step 11: Pass: |mem write| time = 60 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |alu src| time = 60 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |reg write | time = 60 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 14: Pass: |read data2| time = 60 ns | er = 20 | ar = 20 | er bits = 64 | ar bits = 64 +++
+++ Step 15: Pass: |branch target | time = 60 ns | er = 52 | ar = 52 | er bits = 64 | ar bits = 64 +++
+++ Step 16: Pass: |alu result| time = 60 ns | er = 20 | ar = 20 | er bits = 64 | ar bits = 64 +++
+++ Step 17: Pass: |zero| time = 60 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
Test Case 7: | B 64
+++ Step 1: Pass: |cur pc| time = 70 ns | er = 24 | ar = 24 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 70 ns | er = 14000040 | ar = 14000040 | er bits = 32 | ar bits = 32 +++
```

```
+++ Step 3: Pass: |opcode| time = 70 ns | er = 10100000 | ar = 10100000 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: |sign extended output | time = 70 ns | er = 40 | ar = 40 | er bits = 64 | ar bits = 64 +++
+++ Step 5: Pass: |reg2 | loc | time = 70 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 6: Pass: |uncondbranch| time = 70 ns|er = 1|ar = 1|er bits = 1|ar bits = 1+++
+++ Step 7: Pass: |branch| time = 70 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem read | time = 70 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 9: Pass: |mem| to reg | time = 70 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |alu op | time = 70 ns | er = 0 | ar = 0 | er bits = 2 | ar bits = 2 +++
+++ Step 11: Pass: |mem write| time = 70 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |alu src| time = 70 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |reg write| time = 70 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 14: Pass: |branch target | time = 70 ns | er = 280 | ar = 280 | er bits = 64 | ar bits = 64 +++
Test Case 8: | B -55
+++ Step 1: Pass: |cur pc| time = 80 ns | er = 28 | ar = 28 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 80 ns | er = 17ffffc9 | ar = 17ffffc9 | er bits = 32 | ar bits = 32 +++
+++ Step 3: Pass: |opcode| time = 80 ns | er = 10111111 | ar = 10111111 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: Isign extended output time = 80 ns | er = fffffffffffffc9 | ar = ffffffffffffffc9 | er bits = 64 | ar bits = 64 +++
+++ Step 5: Pass: |reg2 | loc | time = 80 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 6: Pass: |uncondbranch| time = 80 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |branch| time = 80 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem_read| time = 80 ns | er = 0 | ar = 0 | er_bits = 1 | ar_bits = 1 +++
```

```
+++ Step 9: Pass: |mem to reg| time = 80 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 10: Pass: |alu op | time = 80 ns | er = 0 | ar = 0 | er bits = 2 | ar bits = 2 +++
+++ Step 11: Pass: |mem write| time = 80 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |alu src| time = 80 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |reg write | time = 80 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 14: Pass: |branch target| time = 80 ns | er = -192 | ar = -192 | er bits = 64 | ar bits = 64 +++
Test Case 9: | ORR X9, X10, X21
+++ Step 1: Pass: |cur pc| time = 90 ns | er = 32 | ar = 32 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 90 ns | er = aa150149 | ar = aa150149 | er bits = 32 | ar bits = 32 +++
+++ Step 3: Pass: | opcode | time = 90 ns | er = 10101010000 | ar = 10101010000 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: |reg2 | loc | time = 90 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 5: Pass: |uncondbranch| time = 90 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |branch| time = 90 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |mem read | time = 90 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem| to reg| time = 90 ns |er| = 0 |ar| = 0 |er| bits = 1 |ar| bits = 1 +++
+++ Step 9: Pass: |alu op | time = 90 ns | er = 10 | ar = 10 | er bits = 2 | ar bits = 2 +++
+++ Step 10: Pass: |mem write| time = 90 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |alu src| time = 90 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |reg write | time = 90 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |read data1| time = 90 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 14: Pass: |read data2| time = 90 ns | er = 0 | ar = 0 | er bits = 64 | ar bits = 64 +++
```

```
+++ Step 15: Pass: |alu result| time = 90 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 16: Pass: |zero| time = 90 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
Test Case 10: | AND X9, X22, X10
+++ Step 1: Pass: |cur pc| time = 100 ns | er = 36 | ar = 36 | er bits = 64 | ar bits = 64 +++
+++ Step 2: Pass: |instruction| time = 100 ns | er = 8a0a02c9 | ar = 8a0a02c9 | er bits = 32 | ar bits = 32 +++
+++ Step 3: Pass: |opcode| time = 100 ns | er = 10001010000 | ar = 10001010000 | er bits = 11 | ar bits = 11 +++
+++ Step 4: Pass: |reg2 | loc| time = 100 ns | er = 0 | ar = 0 | er | bits = 1 | ar | bits = 1 +++
+++ Step 5: Pass: |uncondbranch| time = 100 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 6: Pass: |branch| time = 100 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 7: Pass: |mem read | time = 100 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 8: Pass: |mem to reg| time = 100 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 9: Pass: |alu op | time = 100 ns | er = 10 | ar = 10 | er bits = 2 | ar bits = 2 +++
+++ Step 10: Pass: |mem write | time = 100 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 11: Pass: |alu src| time = 100 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
+++ Step 12: Pass: |reg write | time = 100 ns | er = 1 | ar = 1 | er bits = 1 | ar bits = 1 +++
+++ Step 13: Pass: |read data1| time = 100 ns | er = 16 | ar = 16 | er bits = 64 | ar bits = 64 +++
+++ Step 14: Pass: |read data2| time = 100 ns | er = 30 | ar = 30 | er bits = 64 | ar bits = 64 +++
+++ Step 15: Pass: |alu result| time = 100 ns | er = 16 | ar = 16 | er bits = 64 | ar bits = 64 +++
+++ Step 16: Pass: |zero| time = 100 ns | er = 0 | ar = 0 | er bits = 1 | ar bits = 1 +++
```

Pass Count = 159

Fail Count = 0

***** END TEST RESULTS ******