PARUL UNIVERSITY - Faculty of Engineering and Technology

Department of Computer Science & Engineering SYLLABUS FOR 4th Sem BTech PROGRAMME Competetive Coding Level -2A

Type of Course: BTech

Prerequisite: Computer Programming and Basic Syntaxes

Rationale: Learner will be able to attempt all the coding examinations in the market

:

Teac	hing Scl	neme		Examination Scheme					
Lect Hrs/	Tut Hrs/	Lab Hrs/	Credit	External		Internal			Total
				Т	Р	Т	CE	Р	
3	0	0	3	60	-	20	20	-	100

Lect - Lecture, Tut - Tutorial, Lab - Lab, T - Theory, P - Practical, CE - CE, T - Theory, P - Practical

Contents:

Sr.	Торіс	Weightage	Teaching Hrs.
1	Introduction: Stacks -Construction -Operations -Stack stacked Queues -Construction -Operations -Queue Queued	10%	6
2	LinkedLists -Construction -operations -Merging Two Sorted Lists -Merge Point of Two Sorted Lists -nth node from the end -Swap Nodes Pair wise	15%	8
3	Trees -Introduction -Types of Trees -Binary Trees -Tree Traversals -Views of Binary Tree(Top view, Bottom View)	10%	5

Printed on: 19-10-2021 02:53 PM Page 1 of 3

	Binary Trees		
4	-Mirrored Trees -Sum Tree or Not -Height and Diameter of a Binary Tree -Sum from Root to leaf Path -Ancestors of a Binary tree -Lowest Common Ancestor of a Binary Tree -Binary Search Tree -Construction -Insertion and Deletion	10%	5
5	Priority Queues -Construction -Max Heap -Min Heap -Heap Sort	10%	4
6	Introduction to Hashing. Index Mapping (or Trivial Hashing) Separate Chaining for Collision Handling. Open Addressing for Collision Handling. Double Hashing. Load Factor and Rehashing.	15%	8
	Introduction to Tries, Making a Trie Node Insert, Search and Remove operation implementation in Tries, Types of Tries, Huffman Coding	10%	5
8	Longest Word with all Prefixes Number of Distinct Substrings in a String Maximum XOR of Two numbers in an Array Count Words in a Trie	15%	9

*Continuous Evaluation:

It consists of Assignments/Seminars/Presentations/Quizzes/Surprise Tests (Summative/MCQ) etc.

Reference Books:

Introduction to Algorithms By Thomas H . Cormen, Charles E. Leiserson: ...

Competitive Programming 3 by Steven Halim: ...

Guide to Competitive Programming by Antti Laaksonen: ...

Programming Challenges by Steven S Skiena: ...

The Algorithm Design Manual By Steven S Skiena:

Course Outcome:

- 1. Judge time complexity rules during problem solving.
- 2. Apply sorting algorithms to data structures to solve problems.
- 3. Select the best data structure to solve the given problem.
- 4. Solve given problems using different Problem Solving Techniques.

Printed on : 19-10-2021 02:53 PM Page 2 of 3

Printed on: 19-10-2021 02:53 PM Page 3 of 3