컴퓨터 공학 기초 설계 및 실험1 결과 보고서

실험제목: Kirchhoff's current & voltage law

실험일자: 2023년 03월 10일 (금)

제출일자: 2023년 03월 11일 (토)

학 과: 컴퓨터정보공학부

담당교수: 신동화 교수님

실습분반: 03

학 번: 2022202065

성 명: 박나림

결과보고서

1. 제목 및 목적

A. 제목

Kirchhoff's current & voltage law

B. 목적

회로를 구성하는 node, branch, path, loop의 개념을 알아보도록 한다. 또한 전기회로의 기본 개념인 Kirchhoff's current law, Kirchhoff's voltage law에 대해서 이해하도록 한다. 이를 바탕으로 Kirchhoff's law를 이용하여 단일고리 회로실험을 진행할 수 있게 한다.

2. 실험 결과

<실험 1>

	Іт	Ir1	Ir2	Ікз
이론값 (A)	110	60	30	20
측정값 (A)	125	65	37	23

● Node A와 Node B에 흐르는 전류 도식화

<실험 2> (*자료 업데이트 전 내용으로 한 실험)

● 저항 R1, R2, R3에 흐르는 전류 I1, I2, I3

I ₁	I_2	Із
48.36	26.26	36.97

● KCL과 KVL을 이용하여 저항 R1, R2, R3에 흐르는 전류를 구하고 실험결과와 일치하는지 확인하기

KCL을 적용하면 $i_3 = i_1 - i_2$ 이고, KVL을 적용하여 풀면

위쪽 loop: $-5V + 0.027i_1 + 0.2i_2 = 0$

아래쪽 loop: $-5V - 0.2i_2 + 0.3(i_1 - i_2) = 0$ 이므로 두 식을 연립하면 아래 표처럼 나온다.

I ₁	I ₂	I ₃
47.56	18.58	28.98

실제 측정값과 이론값이 비슷하게 나오기는 하지만 차이가 발생한다. 이는 실제 도선자체의 저항이나 기계의 오차발생 등의 이유들이 있을 것이다.

<실험 2> (*업데이트 버전)

• KCL과 KVL을 이용하여 저항 R1, R2, R3에 흐르는 전류 구하기

KCL을 적용하면 $i_3 = i_1 - i_2$ 이고, KVL을 적용하여 풀면

위쪽 loop: -7V + $0.1i_1$ + $0.027i_2$ = 0

아래쪽 loop: $-0.027i_2 + 0.3(i_1 - i_2) = 0$ 이므로 두 식을 연립하면 아래 표처럼 나온다.

I ₁	I2	I ₃
18.70	17.16	1.54

<실험 3>

1) 저항 R1, R2, R3에 흐르는 전류 I1, I2, I3

I ₁	I2	I ₃
48.75	24.81	15.32

2) 저항 R1, R2, R3에 흐르는 전압 V1, V2, V3

V _{R1}	V_{R2}	V _{R3}
4.1	0.67	5.9

3) KCL과 KVL을 이용하여 저항 R1, R2, R3에 흐르는 전류를 구하고 실험결과와 일치하는 지 확인하기

KCL을 적용하면 $i_3 = i_1 - i_2$ 이고, KVL을 적용하여 풀면

위쪽 loop: $-5V + 0.1i_1 + 0.027i_2 = 0$

아래쪽 loop: -5V - $0.027i_2 + 0.3(i_1 - i_2) = 0$ 이므로 두 식을 연립하면 아래 표처럼 나온다.

I ₁	I2	Із
43.37	24.5	18.87

이도 실험 2와 마찬가지로 측정값과 이론값이 비슷하게 나오지만, 실제 다른 저항 같은 문제들로 오차가 발생할 수밖에 없을 것이다.

3. 고찰

실험2를 진행하는 과정에서, 업데이트 된 자료로 안하고 그 전 버전으로 실험을 진행하여서 2 가지 버전 전부 올렸다. 전 버전으로 한 실험이 끝난 직후 업데이트 된 자료로 다시 실험을 하면 시간이 부족할 것 같기에 바로 실험3으로 진행하였다. 그래서 업데이트 버전 실험2는 측정을 못하여서, 이론값만 구하여 적었다. 측정값과 비교를 못해 아쉽지만 다른 실험의 결과들로 볼 때 아마 이것도 오차가 조금 발생하고 결과는 비슷하게 나올 것으로 예상된다. 다음 실험에서는 자료숙지를 제대로 하여 이러한 문제들을 해결할 것이다.