Exam
Social Choice Theory
Fall 2013
Solution

Problem 1: Arrow's Theorem for SWFs

(a) (i) The preferences are single-peaked with respect to x > w > z > y:

- (ii) Voters 1 and 3 are median voters. They both have the peak z. There are 3 > n/2 voters with peak z or y, and there are 4 > n/2 voters with peak z, w or x.
- (iii) The following table contains the number of votes for the row alternative in each of the pairwise comparisons:

	w	\boldsymbol{x}	y	z
\overline{w}		4	3	2
\overline{x}			3	2
y				1
z				

We obtain the social preference zPwPxPy.

Alternative z wins every pairwise vote, hence is the Condorcet winner.

Alternative y loses every pairwise vote, hence is a Condorcet loser.

- (b) U: This axiom is violated. A counterexample can be found in Exercise 2.1.
 - I: This axiom is satisfied, because the social ranking of any two alternatives depends only on their pairwise comparison.
 - P: This axiom is satisfied, because xP_iy for all $i \in N$ implies that x wins the pairwise vote against y unanimously.
 - D: This axiom is satisfied, because pairwise majority voting is clearly not a dictatorship.

(c) (i) Consider the following example:

	preferences
Voter 1	$w P_1 x P_1 y P_1 z$
Voter 2	$w P_2 y P_2 z P_2 x$
Voter 3	$w P_3 z P_3 x P_3 y$

Alternative w is top-ranked by all voters, hence is the Condorcet winner. Among the remaining alternatives we obtain a cycle (compare to Exercise 2.1).

(ii) If the outcome of pairwise majority voting is transitive, then the top-ranked alternatives cannot be defeated in any pairwise vote. However, a Condorcet winner must win every pairwise vote. There is a difference between the two statements if there are several top-ranked alternatives (among which society is indifferent), such that none of them is a Condorcet winner. Example:

$$\begin{array}{c|c} \# & \text{preferences} \\ \hline 2 & x \ I \ y \ P \ z \end{array}$$

Problem 2: May's Theorem

(a) The following table describes the procedure's progress, where the rows correspond to the iteration steps:

k	$\alpha^{(k)}$									n - (k - 1)	n^+	n^-	stop?
1	0	+1	-1	+1	-1	+1	-1	-1	0	9	3	4	no
2		+1	-1	+1	-1	+1	-1	-1	0	8	3	4	no
3			-1	+1	-1	+1	-1	-1	0	7	2	4	no
4				+1	-1	+1	-1	-1	0	6	2	3	no
5					-1	+1	-1	-1	0	5	1	3	no
6						+1	-1	-1	0	4	1	2	no
7							-1	-1	0	3	0	2	yes

Hence the procedure yields the social preference yPx.

- (b) See p. 102, 105 and 109 in the presentation slides (spring 2016).
- (c) U: This axiom is satisfied. The procedure is always applicable and necessarily results in an outcome $f(\alpha) \in \{-1, 0, +1\}$.
 - N: This axiom is satisfied. The procedure stops at the same step k for α and $-\alpha$, but yields an outcome of opposite sign.
 - PR: This axiom is violated. Counterexample:

$$\alpha = (+1, 0, -1, 0, 0)$$
 yields $f(\alpha) = 0$.

$$\alpha' = (+1, +1, -1, 0, 0)$$
 still yields $f(\alpha') = 0$.

A: This axiom is violated. Counterexample:

$$\alpha = (+1, +1, -1, -1)$$
 yields $f(\alpha) = -1$.

$$\alpha' = (-1, -1, +1, +1)$$
 yields $f(\alpha) = +1$, despite being a permutation of α .

Problem 3: Social Evaluation Functions

- (a) See p. 171 and 172 in the presentation slides (spring 2016).
- (b) (i) The following table computes RA for each alternative in the example:

	x	y	z
U_1	5	1	0
U_2	0	2	2
U_3	2	2	3
$\max\{U\}$	5	2	3
$\min\{U\}$	0	1	0
RA	5	1	3

Hence we obtain the social preference $y e^{RA}(\mathbf{U}) z e^{RA}(\mathbf{U}) x$.

(ii) The following example satisfies that x strictly Pareto-dominates y, while e^{RA} yields the opposite social ranking:

	x	y
U_1	2	0
U_2	1	0
$\max\{U\}$	2	0
$\min\{U\}$	1	0
RA	1	0

- (c) Consider the three information structures separately:
- CM-LC: Suppose U' is obtained from U by a common positive affine transformation $\varphi(u) = \alpha + \beta u$, where $\beta > 0$. Then, for any alternative $x \in X$ we have

$$RA(x, \mathbf{U}') = \max\{U'_{1}(x), \dots, U'_{n}(x)\} - \min\{U'_{1}(x), \dots, U'_{n}(x)\}$$

$$= \max\{\alpha + \beta U_{1}(x), \dots, \alpha + \beta U_{n}(x)\} - \min\{\alpha + \beta U_{1}(x), \dots, \alpha + \beta U_{n}(x)\}$$

$$= \alpha + \beta \max\{U_{1}(x), \dots, U_{n}(x)\} - \alpha - \beta \min\{U_{1}(x), \dots, U_{n}(x)\}$$

$$= \beta RA(x, \mathbf{U}).$$

Hence the induced social preferences are identical for U and U'.

CM-UC: In the following example, \mathbf{U}' is obtained from \mathbf{U} by positive affine transformations $\varphi_i(u) = \alpha_i + \beta u$ for $\beta = 1$, $\alpha_1 = 0$, $\alpha_2 = 1$. We obtain $e^{RA}(\mathbf{U}) \neq e^{RA}(\mathbf{U}')$.

\mathbf{U}	x	y	\mathbf{U}'	x	y
U_1	2	0	U_1	2	0
U_2	1	0	U_2	2	1
RA	1	0	RA	0	1

OM-LC: In the following example, \mathbf{U}' is obtained from \mathbf{U} by the common strictly increasing transformation $\varphi(u) = u^2$. We obtain $e^{RA}(\mathbf{U}) \neq e^{RA}(\mathbf{U}')$.

\mathbf{U}	x	y	\mathbf{U}'	x	y
U_1	2	4	U_1	4	16
U_2	1	5	U_2	1	25
RA	1	1	RA	3	9