

IIC1253 — Matemáticas Discretas — 1' 2019

Ayudantía 9

Notación asintótica

Problema 1

Demuestre usando la definición de notación \mathcal{O} que

$$\log(a_k n^k + \ldots + a_1 n + a_0) \in \mathcal{O}(\log(n))$$

con $k \ge 0$ y $a_i \ge 0$ para todo $i \le k$.

Solucion propuesta.

Debemos obtener una constante real c>0 y un natural n_0 tales que

$$\log(a_k n^k + \ldots + a_1 n + a_0) \le c \log(n), \ \forall n \ge n_0$$

para probar lo pedido. Para ello, primero notamos que

$$a_k n^k + \ldots + a_1 n + a_0 \le a_k n^k + \ldots + a_1 n^k + a_0 n^k$$

para todo $n \geq 1$. Luego,

$$\log(a_k n^k + \ldots + a_1 n + a_0) \leq \log(a_k n^k + \ldots + a_1 n^k + a_0 n^k) \quad \text{logaritmo creciente}$$

$$= \log\left(\sum_{i=0}^k a_i n^k\right) \quad \text{agrupando}$$

$$= \log\left(\sum_{i=0}^k a_i\right) + \log(n^k) \quad \text{logaritmo de un producto}$$

$$= \log\left(\sum_{i=0}^k a_i\right) + k\log(n) \quad \text{logaritmo de una potencia}$$

Notemos que $\log(n) \ge 1$ para todo $n \ge b$, donde b es la base del logaritmo. Entonces, para todo $n \ge b$ se tiene

$$\log\left(\sum_{i=0}^k a_i\right) + k\log(n) \leq \log\left(\sum_{i=0}^k a_i\right)\log(n) + k\log(n) \text{ pues } \log(n) \geq 1$$

$$= \left(\log\left(\sum_{i=0}^k a_i\right) + k\right)\log(n) \text{ factorizando}$$

Como lo que acompaña a $\log(n)$ no depende de n, es la constante c que estábamos buscando, y dado que esta inecuación es válida para $n \geq b$, tenemos $n_0 = b$. La existencia de c y n_0 demuestran que la función original es $\mathcal{O}(\log(n))$.

Problema 2

Sea $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$ donde \mathbb{R}^+ son todos los reales positivos mayores que 0. Demuestre que si $f \in \mathcal{O}(g)$ entonces existe $c^* > 0$ tal que para todo $n \in \mathbb{N}$ se cumple que $f(n) \leq c^* \cdot g(n)$.

Solución propuesta.

A diferencia de la definición de \mathcal{O} -grande, la inecuación $f(n) \leq c^* \cdot g(n)$ debe cumplirse para cualquier natural n y no solo para aquellos a partir de un cierto n_0 . Para demostrar que esto es posible, usaremos la definición de \mathcal{O} -grande.

Por enunciado, sabemos que $f \in \mathcal{O}(g)$ y por lo tanto, existen c, n_0 tales que para todo $n \ge n_0$, se tiene que $f(n) \le c \cdot g(n)$. Si $n_0 = 0$, basta tomar $c^* = c$ y se demuestra lo pedido. Ahora nos concentramos en el caso $n_0 > 0$.

Dado que ninguna de las funciones es cero, en particular g, el cociente f(n)/g(n) está bien definido y nos indica qué tanto más grande es f que g para cada n. Luego, consideremos la constante

$$c' = \max_{n \in \{0, \dots, n_0 - 1\}} \left\{ \frac{f(n)}{g(n)} \right\}$$

Esta constante nos indica el máximo de las razones entre ambas funciones para el tramo donde no conocíamos una constante adecuada. En efecto, definiendo

$$c^* = \max\{c, c'\}$$

obtenemos la constante pedida:

- Si $n < n_0$, entonces $c^* \cdot g(n) \ge c' \cdot g(n) \ge \frac{f(n)}{g(n)}g(n) = f(n)$.
- Si $n \ge n_0$, entonces $c^* \cdot g(n) \ge c \cdot g(n) \ge f(n)$.

Por lo tanto, para todo $n \in \mathbb{N}$, se tiene que $f(n) \leq c^* \cdot g(n)$.

Problema 3

Demuestre que $\log_2(n!) \in \Theta(n \log_2(n))$ usando la definición de notación Θ (no puede usar límites). Para esta demostración, puede asumir la fórmula de Stirling:

$$n! \in \Theta\left(\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n\right)$$

Solución propuesta

Debemos probar que $\log_2(n!) \in \mathcal{O}(n \log_2(n))$ y que $n \log_2(n) \in \mathcal{O}(\log_2(n!))$.

■ Desarrollando el factorial, notamos que

$$n! = 1 \cdot 2 \cdot \dots \cdot n \le n \cdot n \cdot \dots \cdot n = n^n$$

por lo cual, y dado que el logaritmo es creciente,

$$\log_2(n!) \le \log_2(n^n) = n \log_2(n)$$

Luego, las constantes que atestiguan la definición de \mathcal{O} -grande pedida son c=1 (pues obtuvimos exactamente la función $n \log_2(n)$ como cota superior de $\log_2(n!)$) y $n_0=1$ (pues en cero no está definido el logaritmo).

• Omitiremos la base del logaritmo por simplicidad. De la fórmula de Stirling sabemos que existen c', n'_0 tales que para todo $n \ge n_0$,

$$\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \le c \cdot n! \quad \Leftrightarrow \quad \frac{1}{c} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \le n!$$

Por simplicidad definimos la constante d=1/c. Aplicando logaritmo y separando los productos, obtenemos

$$\log\left(d\cdot\sqrt{2\pi n}\cdot\left(\frac{n}{e}\right)^n\right) \le \log(n!)$$

$$\Leftrightarrow \quad \log(d) + \frac{1}{2}\log(\pi) + \frac{1}{2}\log(n) + \log(n^n) - \log(e^n) \le \log(n!)$$

Reagrupando, y usando que $\log(n) \ge 1$ para todo $n \ge 2$, obtenemos

$$\log(n^n) - \log(e^n) \le \log(n!) - \log(d) - \frac{1}{2}\log(\pi) - \frac{1}{2}\log(n) \le \log(n!)$$

Como $e^n \in \mathcal{O}(n!)$, hay constantes c'', n_0'' tales que $e^n \leq c''n!$ para todo $n \geq n_0''$. Con esto,

$$\log(n^n) \le \log(n!) + \log(e^n) \le (c'' + 1)\log(n!)$$

Con esto, podemos definir c = (c'' + 1) y tomar $n_0 = \max\{n'_0, 2, n''_0\}$ de forma que

$$n\log(n) \le c\log(n!), \quad \forall n \ge n_0$$

lo que prueba que $n \log(n) \in \mathcal{O}(\log(n!))$.

Problema 4

Considere el siguiente algoritmo:

Function theavengersaredead (n)

$$\begin{array}{l} k := 1 \\ \textbf{for } i = 1 \ \textbf{to} \ n \ \textbf{do} \\ k := k * n \\ i := 1 \\ \textbf{while } i \leq k \ \textbf{do} \\ i := i * 2 \\ \textbf{return } i \end{array}$$

Encuentre una función f y demuestre (usando la definición formal de la notación Θ) que el tiempo de theavengersaredead en términos de n es $\Theta(f(n))$.

Solución propuesta.

Sea T(n) el tiempo (en número de pasos) del algoritmo con input n. El **for** del algoritmo se ejecuta n veces, luego de las cuales la variable k tiene valor $k = n^n$.

Luego, en cada iteración del bloque **while** la variable i es de la forma $i=2^{\ell}$, donde ℓ es el número de iteraciones del **while** en ese momento. El número de iteraciones se deduce de la condición del **while** apenas deja de satisfacerse, i.e.

$$2^{\ell} > n^n \quad \Leftrightarrow \quad \ell > n \log_2(n)$$

por lo que deducimos que el bloque **while** ejecuta $n \log(n)$ iteraciones.

Con lo anterior, el número de iteraciones del algoritmo completo es

$$T(n) = n + n\log(n) + \mathcal{O}(1)$$

donde el término $\mathcal{O}(1)$ alude a las operaciones que se ejecutan una cantidad fija de veces, no dependiente del input n (por ejemplo, la instrucción k := 1 al comienzo del algoritmo).

Tomando $f(n) = n \log(n)$, tenemos que $T(n) \in \Theta(f(n))$. En efecto,

■ $T(n) \in \mathcal{O}(f(n))$ pues para $n \ge 1$, $\log(n) \ge 1$ y por lo tanto $n \le n \log(n)$. Luego, como además cualquier constante m cumple $m \in \mathcal{O}(n \log(n))$,

$$n + n\log(n) + \mathcal{O}(1) \le c \cdot n\log(n)$$

• $n \log(n) \in \mathcal{O}(T(n))$ pues basta tomar c = 1 y $n_0 = 1$,

$$n\log(n) \le n + n\log(n) + \mathcal{O}(1) = T(n)$$