Mandatory Assignment 1 for FunAn

Problem 1

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|)$ be (non-zero) normed vector spaces over \mathbb{K}

a) Let $T: X \to Y$ be a linear map, and set $||x||_0 = ||x||_X + ||Tx||_Y$ for all $x \in X$. We want to show that $||\cdot||_0$ is a norm on X:

$$||x + y||_0 = ||x + y||_X + ||T(x + y)||$$

$$\leq ||x||_X + ||y||_X + ||Tx||_Y + ||Ty||_Y$$

$$= ||x||_0 + ||y||_0, \quad x, y \in X$$

since $\|\cdot\|_X, \|\cdot\|_Y$ are norms and T is linear, so the triangular inequality holds.

$$\|\alpha x\|_{0} = \|\alpha x\|_{X} + \|T(\alpha x)\|_{Y}$$

$$= |\alpha| \|x\|_{X} + |\alpha| \|Tx\|_{Y}$$

$$= |\alpha| \|x\|_{0}, \quad \alpha \in \mathbb{K}, x \in X$$

again since $\|\cdot\|_X, \|\cdot\|_Y$ are norms and T is linear.

Let x = 0 then $||0||_0 = 0 + ||T0||_Y = 0$. And if $||x||_0 = 0$ then $||x||_X = -||Tx||_Y$ so x = 0. Thus $||\cdot||_0$ is a norm on X.

We want to show that $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent iff T is bounded.

Assume there exists c_1, c_2 where $0 < c_1 \le c_2$ s.t $c_{\parallel} x \parallel_X \le \|x\|_0 \le c_2 \|x\|_X$ for $x \in X$. So $\|x\|_X + \|Tx\|_Y \le c_2 \|x\|_X$.

But then $||Tx||_Y \le c_2 ||x||_X - ||x||_X \le c_2 ||x||_X + ||x||_X = (c_2 + 1)||x||_X$, where $c_2 + 1 > 0$. So T is bounded.

Assume T is bounded. So there exists a C > 0 s.t. $||Tx||_Y \le C||x||_X$ for all $x \in X$.

We then have that $||x||_X + ||Tx||_Y \le ||x||_X + C||x||_X = (C+1)||x||_X$, where C+1>0.

And $||x||_X \le ||x||_X + ||Tx||_Y$, since $||Tx||_Y \le 0$. So we have that $||x||_X \le ||x||_0 \le (C+1)||x||_X$ where $0 < 1 \le C+1$. Thus $||\cdot||_X$ and $||\cdot||_0$ are equivalent.

b) We want to show that if X is finite dimensional then any linear map $T:X\to Y$ is bounded.

Assume X is finite dimensional (dimX = n). Let $\{e_1, \ldots, e_n\}$ be a basis for X. Given $x \in X$ there exists unique scalars $x_1, \ldots, x_n \in \mathbb{K}$ s.t. $x = \sum_{i=1}^n x_i e_i$.

$$||Tx||_{Y} = ||T\left(\sum_{i=1}^{n} x_{i}e_{i}\right)||_{Y} = ||\sum_{i=1}^{n} x_{i}Te_{i}||_{Y}$$

$$\leq \sum_{i=1}^{n} |x_{i}|||Te_{i}||_{Y} \leq ||x||_{\infty} \sum_{i=1}^{n} ||Te_{i}||_{Y}$$

$$= C||x||_{\infty}$$

where $C = \sum_{i=1}^{n} ||Te_i||_Y$. But since X is finite dimensional we have by theorem 1.6 that any two norms on X are equivalent.

So there exists $c_1, c_2, 0 < c_1 \le c_2$ s.t

$$c_1 ||x||_x \le ||x||_\infty \le c_2 ||x||_X$$

So $||Tx||_Y \le C||x||_\infty \le C \cdot c_2||x||_X$, where $C \cdot c_2 = K > 0$. Thus T is bounded.

c) Suppose X is infinite dimensional. We want to show that there exists a linear map $T:X\to Y,$ which is not bounded.

Take a Hamel basis $(e_i)_{i \in I}$ for X. So $(\lambda_i)_{i \in I}$ is unique family with $x = \sum_{i \in I} \lambda_i e_i$ and $\{i \in I : \lambda_i \neq 0\}$ is finite.

Let $\left(\frac{e_i}{\|e_i\|_X}\right)_{i\in I}$ be a family of elements in X. Then we have that $(\lambda_i\|e_i\|_X)_{i\in I}$ is a unique family in \mathbb{K} where $\sum_{i \in I} (\lambda_i ||e_i||) \frac{e_i}{||e_i||_X} = \sum_{i \in I} \lambda_i e_i = x$ and $\{i \in I : e_i\}$ $\lambda_{i}\|e_{i}\|_{X} \neq 0\}. \text{ So } \left(\frac{e_{i}}{\|e_{i}\|_{X}}\right)_{i \in I} \text{ also a Hamel basis for } X \text{ with } \left\|\frac{e_{i}}{\|e_{i}\|_{X}}\right\|_{X} = 1.$ So we can chose a Hamel basis $(e_{i})_{i \in I}$ s.t $\|e_{i}\|_{X} = 1$ for all $i \in I$. Let $\left(\frac{iy_{i}}{\|y_{i}\|_{Y}}\right)_{i \in I}$ be a family in Y where $\left\|\frac{iy_{i}}{\|y_{i}\|_{Y}}\right\|_{Y} = i$ for all $i \in I$, but since X is

infinite dimensional we have that I contains infinite elements. So $\left\|\frac{iy_i}{\|y_i\|_Y}\right\|_Y \to \infty$ as $i \to \infty$. Then we can choose a family $(y_i)_{i \in I}$ in Y where $\|y_i\|_Y \to \infty$ as $i \to \infty$.

Because $(e_i)_{i\in I}$ is Hamel basis we have there exists a linear map $T: X \to Y$ s.t. $T(e_i) = y_i \text{ for all } i \in I.$

Let $N \in \mathbb{N}$, then there exists a $n \in I$ s.t. $||y_i||_Y > N$ for all $i \ge n$.

But then $||T(e_i)||_Y = ||y_i||_Y > N = N||e_i||_X$ since $||e_i||_X = 1$ for all $i \ge n$. So T is not bounded.

d) Suppose X is infinite dimensional. Then there exists a norm $\|\cdot\|_0$ on X, which is not equivalent to $\|\cdot\|_X$ and which satisfies $\|x\|_X \leq \|x\|_0$.

Let $\|\cdot\|_0$ be as in (a) with the linear map T from (c) then $\|x\|_X \leq \|x\|_0$ for all $x \in X$. Since X is infinite dimensional we have that by (c) that T is not bounded, and then by (a) we have that $\|\cdot\|_X$ and $\|\cdot\|_0$ are not equivalent.

We now want to show that if $(X, \|\cdot\|_X)$ is a Banach space then $(X, \|\cdot\|_0)$ is not complete. Let $f:(X,\|\cdot\|_0)\to (X,\|\cdot\|_X)$ given by f(x)=x in the other norm. Since $||f(x)||_X = ||x||_X \le ||x||_0$ we have that f is continuous by Proposition 1.10. We have that f is not homeomorphism since the norms $\|\cdot\|_0$ and $\|\cdot\|_X$ are not equivalent. But then f is not open.

Assume that $(X_{\parallel} \cdot \parallel_X)$ is a Banach space, and assume for contradiction that $(X, \|\cdot\|_0)$ is also a Banach space.

Since f is continuous we have $f \in \mathcal{L}((X, \|\cdot\|_0), (X, \|\cdot\|_X))$ and f is surjective so by Theorem 3.15 (the Open mapping theorem) we have that f is open, but this a contradiction. So $(X, \|\cdot\|_0)$ is not complete.

(A) Take $(X, \|\cdot\|) = (\ell_1(\mathbb{N}), \|\cdot\|_1)$ and $\|\cdot\|' = \|\cdot\|_{\infty}$. Let $(x_n)_{n\geq 1} \in \ell_1(\mathbb{N})$.

$$\|(x_n)_{n\geq 1}\|_{\infty} = \max\{|x_n| : n \in \mathbb{N}\} \le \sum_{n=1}^{\infty} |x_n| = \|(x_n)_{n\geq 1}\|_1$$

We have that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are not equivalent.

Assume for contradiction that there exists C > 0 s.t $||(x_n)_{n\geq 1}||_1 \leq C||(x_n)_{n\geq 1}||_{\infty}$. Take the sequence

$$x_n = \begin{cases} 1 & n \le \lceil C + 1 \rceil \\ 0 & otherwise \end{cases}$$

This is imprecise

Then we have that $\|(x_n)_{n\geq 1}\| = \lceil C+1 \rceil > C = C\|(x_n)_{n\geq 1}\|_{\infty}$, since $\|(x_n)_{n\geq 1}\|_{\infty} = 1$. So $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are not equivalent.

We have that $(\ell_1(\mathbb{N}), \|\cdot\|_1)$ is a Banach space. Assume for contradiction that $(\ell_1, \|\cdot\|_{\infty})$ is a Banach space. We repeat the argument from (d) with the function $f: (\ell_1(\mathbb{N}), \|\cdot\|_{\infty}) \to (\ell_1(\mathbb{N}), \|\cdot\|_1)$ given by f(x) = x. And get a contradiction. And so $(\ell_1, \|\cdot\|_{\infty})$ is not complete.

Problem 2

Let $1 \leq p < \infty$ be fixed, and consider the subspace M of the Banach space $(\ell_p(\mathbb{N}), \|\cdot\|_p)$, considered as a vector space over \mathbb{C} , given by

$$M = \{(a, b, 0, \dots) : a, b \in \mathbb{C}\}\$$

Let $f: M \to \mathbb{C}$ be given by f(a, b, 0...) = a + b for all $a, b \in \mathbb{C}$

a) We want to show that f is bounded on $(M, \|\cdot\|_p)$. We have that

$$|f(a,b,0,\ldots)| = |a+b| \le |a| + |b| = (|a|^p)^{\frac{1}{p}} + (|b|^p)^{\frac{1}{p}}$$

But $(|a|^p)^{\frac{1}{p}} \le (|a|^p + |b|^p)^{\frac{1}{p}}$, since $|b|^p \le 0$. The same inequality holds for $(|b|^p)^{\frac{1}{p}}$. So

$$(|a|^p)^{\frac{1}{p}} + (|b|^p)^{\frac{1}{p}} \le (|a|^p + |b|^p)^{\frac{1}{p}} + (|a|^p + |b|^p)^{\frac{1}{p}}$$
$$= 2(|a|^p + |b|^p)^{\frac{1}{p}} = 2||(a, b, 0, \dots)||_p$$

Hence $|f(a, b, 0, ...)| \le 2||(a, b, 0, ...)||_p$, so f is bounded. \checkmark Now we want to compute ||f||. We spilt it up in two cases.

For p = 1: Since f is bounded, we have by Remark 1.11 that:

$$||f|| = \sup\{|f(a, b, 0, \dots)| : ||(a, b, 0, \dots)||_1 = 1\}$$

= $\sup\{|a + b| : |a| + |b| = 1\}$

Then for |a| + |b| = 1 we have that $|a + b| \le |a| + |b| = 1$, so $||f|| \le 1$. And we see that $|f(1,0,...)| \ne 1$ where $||(1,0,...)||_1 = 1$ so $||f|| \ge 1$. Then for p = 1 we have that ||f|| = 1.

For 1 : Again by Remark 1.11 we have that

$$||f|| = \sup\{|f(a, b, 0, \dots)| : ||(a, b, 0, \dots)||_p = 1\}$$

$$= \sup\{|a + b| : (|a|^p + |b|^p)^{\frac{1}{p}} = 1\}$$

$$= \sup\{|a + b| : |a|^p + |b|^p = 1\}$$

We see for
$$a = b = \frac{1}{2^{\frac{1}{p}}}$$
 that $\left\| \left(\frac{1}{2^{\frac{1}{p}}}, \frac{1}{2^{\frac{1}{p}}}, 0, \dots \right) \right\|_p = \left| \frac{1}{2^{\frac{1}{p}}} \right|^p + \left| \frac{1}{2^{\frac{1}{p}}} \right|^p = 1.$

We also have that $\left| f\left(\frac{1}{2^{\frac{1}{p}}}, \frac{1}{2^{\frac{1}{p}}}\right) \right| = \frac{2}{2^{\frac{1}{p}}}$. Thus $||f|| \ge \frac{2}{2^{\frac{1}{p}}} = 2^{\frac{p-1}{p}}$.

Now we want to show that $||f|| \le 2^{\frac{p-1}{p}} = 2^{\frac{1}{q}}$ for where we have assumed that

 $\frac{1}{p} + \frac{1}{q} = 1.$

Recall Hölder's inequality from HW1. For $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$ we have

$$\sum_{n=1}^{\infty} |x_n y_n| \le \|(x_n)_{n \ge 1}\|_p \|(y_n)_{n \ge 1}\|_q$$

where $(x_n)_{n\geq 1}\in \ell_p(\mathbb{N})$ and $(y_n)_{n\geq 1}\in \ell_q(\mathbb{N})$. We use Hölder's inequality for $(a,b,0,\ldots) \in \ell_p(\mathbb{N})$ and $(1,1,0\ldots) \in \ell_q(\mathbb{N})$. We then get

$$|a+b| \le |a| + |b| \le (|a|^p + |b|^p)^{\frac{1}{p}} \cdot (1+1)^{\frac{1}{q}}$$

And $(|a|^p + |b|^p)^{\frac{1}{p}} \cdot (1+1)^{\frac{1}{q}} = 1 \cdot 2^{\frac{1}{q}}$ for $|a|^p + |b|^p = 1$. This means that $||f|| \le 2^{\frac{1}{q}} = 2^{\frac{p-1}{p}}$. Thus $||f|| = 2^{\frac{p-1}{p}}$ for 1 .

b) We want to show that for 1 there is a unique linear functional Fon $\ell_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

We know such a functional exists by Corollary 2.6. Since by (a) we have that fis bounded so $f \in \mathcal{L}(M, \mathbb{K})$, and the conditions follows from Corollary 2.6.

Show we want to show uniqueness. By HW1 Pb 5 we have that $(\ell_p(\mathbb{N}))^* \cong \ell_q(\mathbb{N})$ isometrically isometric when $\frac{1}{p}+\frac{1}{q}=1$. Let $F:\ell_p(\mathbb{N})\to\mathbb{C}$ be extension. Then by HW1 Pb 5

$$F((y_n)_{n\geq 1}) = \sum_{n=1}^{\infty} x_n y_n, \quad \text{for some } (x_n)_{n\geq 1} \in \ell_q(\mathbb{N})$$

We see that for $(1, 0, ...), (0, 1, 0, ...) \in M$

$$x_1 = F(1, 0, \dots) = f(1, 0, \dots) = 1$$

 $x_2 = F(0, 1, 0, \dots) = f(0, 1, 0, \dots) = 1$

 $x_2 = F(0,1,0,\dots) = f(0,1,0,\dots) = 1$ $\text{Since } (\ell_p(\mathbb{N}))^* \cong \ell_q(\mathbb{N}) \text{ isometrically isometric we have that } \|(x_n)_{n\geq 1}\| = \|F\|,$ $\text{and } \|F\| = \|f\| = 2^{\frac{1}{q}}, \text{ thus } \|(x_n)_{n\geq 1}\| = 2^{\frac{1}{q}}. \text{ We also have that}$

$$||(x_n)_{n\geq 1}|| = \left(\sum_{n=1}^{\infty} |x_n|^q\right)^{\frac{1}{q}} = \left(x_1 + x_2 \sum_{n=3}^{\infty} |x_n|^q\right)^{\frac{1}{q}}$$
$$= \left(2 + \sum_{n=3}^{\infty} |x_n|^q\right)^{\frac{1}{q}}$$

Since $(2 + \sum_{n=3}^{\infty} |x_n|^q)^{\frac{1}{q}} = \|(x_n)_{n\geq 1}\| = 2^{\frac{1}{q}}$ then $\sum_{n=3}^{\infty} |x_n|^q = 0$ so $x_n = 0$ for $n \geq 2$. Thus $F((y_n)_{n\geq 1}) = y_1 + y_2$

c) We want to show that if p=1 then there are infinitely many linear functional F in $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

So assume p=1. Let $F_t: \ell_1(\mathbb{N}) \to \mathbb{N}$. We want to show that $F_t((y_n)_{n\geq 1}) = y_1 + y_2 + \frac{1}{2}y_t$ for $t\geq 3$ is an infinite family of such extensions.

We see that $F_t|_M = f$. We have that

$$||F_t|| = \sup\{|F_t((y_n)_{n\geq 1}) : ||(y_n)_{n\geq 1}||_1 = 1\}$$

$$= \sup\left\{|y_1 + y_2 + \frac{1}{2}y_t| : \sum_{n=1}^{\infty} |y_n| = 1\right\}$$

$$\leq \sup\left\{|y_1| + |y_2| + \frac{1}{2}|y_t| : |y_1| + |y_2| + |y_t| \le 1\right\}$$

$$< 1$$

since if $\sum_{n=1}^{\infty} |y_n| = 1$ then we must have that $|y_1| + |y_2| + |y_t| \le 1$, and since $|y_1| + |y_2| + \frac{1}{2}|y_t| \le |y_1| + |y_2| + |y_t| \le 1$. We also see that $\|(1,0,\dots)\|_1 = 1$ and $|F_t(1,0,\dots)| = 1$ so $\|F_t\| \ge 1$. This means that $\|F_t\| = 1 = \|f\|$.

Problem 3

Let X be an infinite dimensional normed vector space over \mathbb{K} .

a) Let $n \geq 1$ be an integer. We want to show that no linear map $F: X \to \mathbb{K}^n$ is injective.

Let $x_1, x_2, \ldots, x_{n+1} \in X$ be linear independent. The we have that $span\{x_1, x_2, \ldots, x_{n+1}\} \subset X$. But this is n+1 dimensional so there is no injective linear map $span\{x_1, x_2, \ldots, x_{n+1}\} \to \mathbb{K}^n$. And any injective map $F: X \to \mathbb{K}^n$ would restrict to injective linear map on the subspace. So there is no such injective map $F: X \to \mathbb{K}^n$.

b) Let $n \geq 1$ be an integer, and let $f_1, \ldots, f_n \in X^*$. We want to show that

$$\bigcap_{j=1}^{n} \ker f_j \neq \{0\}$$

Consider the map $F: X \to \mathbb{K}^n$ given by $F(x) = (f_1(x), f_2(x, \dots, f_n(x)))$ for $x \in X$. We have that

$$\ker F = \{x \in X : F(x) = 0\}$$

$$= \{x \in X : (f_1(x), \dots, f_n(x) = 0)\}$$

$$= \{x \in X : f_j(x) = 0 \text{ for all } j = 1, \dots, n\}$$

$$= \left\{x \in X : \bigcap_{j=1}^n f_j(x) = 0\right\}$$

$$= \bigcap_{j=1}^n \ker f_j \neq \{0\}$$

since $\ker F \neq \{0\}$ since by (a) F is not injective.

c) Let $x_1, \ldots, x_n \in X$. We want to show there exists a $y \in X$ s.t. ||y|| = 1 and $||y - x_j|| \ge ||x_j||$ for all $j = 1, 2, \ldots, n$.

Assume $x_1, x_2, \ldots, x_n \neq 0$. Since if $x_j = 0$ for $j = 1, \ldots, n$ then let y be an unit vector, and then the two conditions are met.

So since $x_j \neq 0$ for all $j = 1, \ldots, n$ we have by Theorem 2.7 (b) that for each x_j there exists $f_j \in X^*$ where $||f_j|| = 1$ and $f_j(x_j) = ||x_j||$ for $j = 1, \ldots, n$.

So there exists $x' \neq 0$ since by (b) we can choose $x' \in \bigcap \ker f_j \neq \{0\}$. Then let

 $y = \frac{x'}{\|x'\|}$, so $\|y\| = \left\|\frac{x'}{\|x'\|}\right\| = 1$. Note $y - x_j \in X$. Then since f_j are bounded for all $j = 1, \dots, n$, we have that $|f(y-x_j)| \le ||f_j|| ||y-x_j|| = ||y-x_j||$, since by Remark 1.11 $||f_j|| = \inf\{C > 1\}$ $0: |f_j(z)| \le C||z||, z \in X\} \text{ and } ||f_j|| = 1.$ We have that

$$|f(y-x_j)| = |f(y)-f(x_j)| = |-f(x_j)| = f(x_j)$$

since f_j are linear, and f(y) = 0 since f(x') = 0. And so we have that

$$||y - x_j|| \ge f(x_j) = ||x_j||$$

for all $j = 1, \ldots, n$.

d) We want to show that we cannot cover the unit sphere $\mathbb{S} = \{x \in X : ||x|| = 1\}$ with a finite family of closed balls in X s.t. none of the balls contains 0. Assume we can cover S with a finite family of closed balls $\{\overline{B_j}(x_j,r_j)\}_{j=1}^n$ where we let x_1, \ldots, x_n be the center of these balls. Then by (c) we know there exists a $y \in X$ s.t. ||y|| = 1. This means that $y \in \mathbb{S}$, and since the balls cover \mathbb{S} we have that y much lie in one of these balls. So assume $y \in \overline{B_j}(x_j, r_j)$. Then $||y-x_j|| \le r_j$, but then $||x_j-0|| \le r_j$, since by (c) we have that $||y-x_j|| \ge ||x_j-0||$ for all j = 1, ..., n. So $0 \in \overline{B_j}(x_j, x_j)$.

Thus we have that if we have that a finite family of closed ball cover the unit sphere, then one of the balls much contain 0. So we cannot cover the unit sphere with a family of closed balls, where none contain zero.

e) We want to show that S is non-compact. Let $\{B(x,\frac{1}{2})\}_{x\in\mathbb{S}}$ be a open cover

Assume for contradiction that the sets $B(x_1, \frac{1}{2}), \dots, B(x_n, \frac{1}{2})$ are a finite subcover. Then we have that the sets $\overline{B}(x_1, \frac{1}{2}), \dots, \overline{B}(x_n, \frac{1}{2})$ also are a finite subcover of S but none of these balls contain 0, which contradicts (d). So S is non-compact.

What about B(0,1) ?

Problem 4

Let $L_1([0,1],m)$ and $L_3([0,1],m)$ be Lebesgue spaces on [0,1]. For $n \geq 1$, define

$$E_n := \left\{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \right\}$$

a) Given $n \geq 1$. We have that the $E_n \subset L_1([0,1],m)$ is not absorbing. If $E_n \subset L_1([0,1],m)$ was absorbing then for all $0 \neq f \in L_1([0,1],m)$ there exists $t > 0 \text{ s.t. } t^{-1} f \in E_n.$

Take $f \in L_1([0,1], m)$ but where $f \notin L_3([0,1], m)$. We can choose such a f since

finish detining

 $L_3([0,1],m) \subsetneq L_1([0,1],m)$ by HW2 Pb 2.

This means that $\left(\int_{[0,1]} |f|^3 dm\right)^{\frac{1}{3}} = \infty$, but then $\int_{[0,1]} |f|^3 dm = \infty$. And so we cannot find a t > 0 s.t. $t^{-1} f \in E_n$. So E_n is not absorbing.

b) We want to show that E_n has empty interior in $L_1([0,1],m)$ for all $n \ge 1$. Let $f \in E_n$. Then we take an open ball with f as its center.

So
$$B(f,r) = \{g \in L_1([0,1],m) : ||f-g|| < r\}.$$

Let $g \in L_1([0,1],m)$ be given by $g(x) := f(x) + \frac{r}{2x^{\frac{1}{3}}}$.

We then have that

$$\begin{split} \|f-g\|_1 &= \left\|\frac{r}{2x^{\frac{1}{3}}}\right\|_1 = \int_{[0,1]} \left|\frac{r}{2x^{\frac{1}{3}}}\right| dm & \text{Justify why} \\ &= \frac{r}{r} \int_{[0,1]} x^{-\frac{1}{3}} dm = \frac{r}{2} \left[\frac{3}{2} x^{\frac{2}{3}}\right]_0^1 & \text{improper Riemann} \\ &= \frac{3r}{4} < r & \text{integral.} \end{split}$$

So $g \in B(f,r)$. Now we want to show that $g \notin E_n$.

It is enough to so that $\left(\int_{[0,1]} \left| f(x) + \frac{r}{2x^{\frac{1}{3}}} \right|^3 dm \right)^{\frac{1}{3}} = \infty.$

We have that

$$\left(\int_{[0,1]} \left| f(x) + \frac{r}{2x^{\frac{1}{3}}} \right|^3 dm \right)^{\frac{1}{3}} = \left\| f + \frac{r}{2x^{\frac{1}{3}}} \right\|_3 \le \left| \|f\|_3 - \left\| \frac{r}{2x^{\frac{1}{3}}} \right\|_3 \right| = \infty$$

where we uses the reverse triangular inequality and that $||f||_3 < \infty$ since $f \in E_n$. But we have that $\int_{[0,1]} \left| \frac{r}{2x^{\frac{1}{3}}} \right|^3 dm = \left(\frac{r}{2} \right)^3 \int_{[0,1]} \frac{1}{x} dm = \infty$, so $\left\| \frac{r}{2x^{\frac{1}{3}}} \right\|_3 = \infty$. Therefore $g \notin E_n$. So E_n has empty interior.

c) Show that E_n is closed in $L_1([0,1],m)$ for all $n \ge 1$. Since we are in a metric space it is enough to show that for $f_n \to f$ as $n \to \infty$, where $(f_n)_{n \ge 1} \subset E_n$ and $f \in L_1([0,1],m)$ we have that $f \in E_n$. Let $(f_k)_{k \ge 1} \subset E_n$ be convergent in $L_1([0,1],m)$ so $||f_k - f||_1 \to 0$ as $k \to \infty$. Then $|f_n - f| \to 0$ as $n \to \infty$. Now we want to show that $f \in E_n$.

Now we want to show that $j \in \mathcal{L}_n$. We have there exists a subsequence $(f_t)_{t\geq 1} \subset (f_k)_{k\geq 1}$ s.t $|f_t(x) - f(x)| \to 0$ as $t \to \infty$ a.e for all $x \in [0,1]$.

Let $g:[0,1]\to [0,1]$ be given by $g(x)=|x|^3$, which is continuous. Since g is continuous we have that

$$\lim_{t \to \infty} |f_t(x)|^3 = \lim_{t \to \infty} g(f_t(x)) = g(\lim_{t \to \infty} f_t(x)) = g(f(x)) = |f(x)|^3 \ a.e.$$

This means that

$$\int_{[0,1]} |f|^3 dm = \int_{[0,1]} \lim_{t \to \infty} |f_t|^3 dm \le \lim_{t \to \infty} \int_{[0,1]} |f_t|^3 dm$$

where we use Fatou's lemma. We can do this since $|f_t|^3$ is positive measureble function. But then since $f_t \in E_n$ we have that $\lim_{t\to\infty} \int_{[0,1]} |f_t|^3 dm \le$

 $\lim_{t\to\infty} n=n$. So $\int_{[0,1]} |f|^3 dm \leq n$. Hence $f\in E_n$. So E_n is closed.

d) We want to conclude that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$. We have that $L_3([0,1], m)$ is of first category in $L_1([0,1], m)$ if it is a countable union of nowhere dense sets.

By (c) we have E_n is closed so its closure is itself E_n which has empty interior by (b) so E_n is nowhere dense. So now we just need to show that $L_3([0,1],m) = \bigcup_{n\geq 1}^{\infty} E_n.$

Assume $f \in L_3([0,1], m)$. Then $\left(\int_{[0,1]} |f|^3 dm \right)^{\frac{1}{3}} < \infty$.

So we set $k:=\left(\int_{[0,1]}|f|^3dm\right)^{\frac{1}{3}}$. Then $\int_{[0,1]}|f|^3dm=k^3$, but that means that for some $c\geq k^3$ we have $\int_{[0,1]}|f|^3dm\leq c$. Hence $f\in E_c$, so $f\in\bigcup_{n\geq 1}^\infty E_n$.

Assume $f\in\bigcup_{n\geq 1}^\infty E_n$. Then $f\in E_k$, so $\int_{[0,1]}|f|^3dm\leq k$. But then $\left(\int_{[0,1]}|f|^3dm\right)^{\frac{1}{3}}\leq k^{\frac{1}{3}}<\infty$. And so $f\in L_3([0,1],m)$.

Problem 5

But then

Let H be an infinite dimensional separable Hilbert space with associated norm $\|\cdot\|$, let $(x_n)_{n\geq 1}$ be a sequence in H, and let $x\in H$.

a) Suppose that $x_n \to x$ in norm, as $n \to \infty$. This means that $||x_n - x|| \to 0$ as $n \to \infty$.

By the reverse triangular inequality we have that $||x_n - x|| \ge |||x_n|| - ||x|||$.

So $0 \le ||x_n|| - ||x||| \le ||x_n - x|| \to 0 \text{ as } n \to \infty.$ So $||x_n|| - ||x||| \to 0 \text{ as } n \to \infty.$ This means that $||x_n|| \to ||x||$ as $n \to \infty$

b) Suppose that $x_n \to x$ weakly, as $n \to \infty$.

Let $(e_n)_{n\geq 1}$ be a countable orthonormal basis in H. H is separable so there is such a basis. Assume $e_n \to x$ weakly, as $n \to \infty$ for $x \in H$. Then by HW4 Pb 2 we have that $f(e_n) \to f(x)$ as $n \to \infty$ for all $f \in H^*$.

By Riesz representation (HW2 Pb 1) we have that there exists a $y \in H$ s.t $f(e_n) = \langle e_n, y \rangle$ for $e_n \in H$. So by Bessel's inequality we have that

$$\sum_{n=1}^{\infty}|f(e_n)|^2=\sum_{n=1}^{\infty}|\langle e_n,y\rangle|^2\leqslant \|e_n\|^2=1$$
 This is not what

since $(e_n)_{n\leq 1}$ is a orthonormal basis. Because the series is bounded, we have that the tail goes of $|\langle e_n, y \rangle$ to zero. So $\lim_{n \to \infty} |f(e_n)| = \lim_{n \to \infty} |\langle e_n, y \rangle| = 0$ for all $f \in H^*$. So $e_n \to 0$ weakly, as $n \to \infty$.

 $1=\lim_{n o\infty}\|e_n\|
eq\|\lim_{n o\infty}e_n\|=\|0\|=0$ reserved for norm-com

c) Suppose $||x_n|| \le 1$, for all $n \ge 1$, and that $x_n \to x$ weakly, as $n \to \infty$. Assume $0 \neq 0 \in H$. Then by Theorem 2.7 (b) we have there exists a $f \in H^*$ s.t. ||f|| = 1 and f(x) = ||x||. Since $x_n \to x$ weakly, as $n \to \infty$ we have by HW4 Pb 2 that $f(x_n) \to f(x)$ for all $f \in H^*$. So $|f(x_n) - f(x)| \to 0$ as $n \to \infty$.

Since $||x_n|| \le 1$ we have that $|f(x_n)| \le ||f|| = 1$. Then $|f(x)| - |f(x_n)| \le |f(x_n) - f(x)|$ so $|f(x)| \le |f(x_n) - f(x)| + |f(x_n)| \le 1$, as $n \to \infty$. But then we have that $||x|| = f(x) \le |f(x)| \le 1$.