Galala University, Faculty of Computer Science and Engineering

CSE 131 Logic Design

Dr Gamal Fahmy

Homework 5 sol

Problem 18:

Convert the following to the other canonical form:

(a)
$$F(x, y, z) = \Sigma(1,3,7)$$

(b)
$$F(A,B,C,D) = \Pi(0,1,2,3,4,6,12)$$

Solution:

(a)
$$F(x, y, z) = \Sigma(1,3,7) = \Pi(0,2,4,5,6)$$

 $F(x, y, z) = (x + y + z) \bullet (x + y + z)$

(b)
$$F(A,B,C,D) = \prod (0,1,2,3,4,6,12) = \sum (5,7,8,9,10,11,13,14,15)$$

$$F(A,B,C,D)=$$

$$(\overline{A}\overline{B}\overline{C}D) + (\overline{A}\overline{B}\overline{C}D) + (A\overline{B}\overline{C}D) + (A\overline{B}\overline{C}D)$$

Problem 21:

Show that the dual of the exclusive-OR is equal to its complement.

Dual of XOR:
$$= (X + Y') \bullet (X' + Y)$$

Complement of XOR (XNOR) = $(X \oplus Y)'$

Solution:

XOR:
$$X \oplus Y = XY' + X'Y$$

Dual of XOR:
$$= (X + Y') \bullet (X'+Y)$$
$$= XX' + XY + X'Y' + YY'$$
$$= XY + X'Y'$$

Complement of XOR (XNOR) =
$$(X \oplus Y)'$$

= $(XY' + X'Y)'$
= $(X'+Y) \bullet (X+Y')$
= $XX' + XY + X'Y' + YY'$
= $XY + X'Y'$

Problem 23:

Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

Solution:

Truth table for a NAND gate:

Х	Υ	Z
0	0	1
0	1	1
1	0	1
1	1	0

Truth table for positive logic NAND gate (L = 0 H = 1) with H and L:

Х	Υ	Z
L	Г	Н
L	Н	Н
Н	L	Н
<u>H</u>	Н	L

Truth table for negative logic let L = 1, H = 0

Χ	Υ	Z
1	1	0
1	0	0
0	1	0
0	0	1

This resulting truth table is that of the NOR gate using negative logic.