Université Pierre et Marie Curie - LM223 - Année 2012-2013

Correction de l'Interro nº 1

Exercice 1 :(1 point pour le déterminant, 3 points pour l'inverse)

$$\operatorname{Det}(M) = 1, \text{ donc comme le déterminant est non nul}, M \text{ est inversible, et } M^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -3 & 0 & 2 \\ 2 & 0 & -1 \end{pmatrix}.$$

Exercice 2:

- 1. $(\frac{1}{2} \ point) \ \dim(\mathbf{F}) = 2$. On vérifie par exemple que $\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\}$ forme une base.
- 2. $(\frac{1}{2}\ point$) On vérifie que $f(\lambda M+N)=\lambda f(M)+f(N).$
- 3. (1 point) f est clairement bijective. En effet : si $f\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a + ib = 0$ alors a = b = 0, donc $\operatorname{Ker}(f) = \{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\}$ donc f est injective.

Et par définition, f est surjective : si $z \in \mathbb{C}$, z = a + ib avec $a, b \in \mathbb{R}$, donc $z = f\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

4.
$$(1 \ point)$$
 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ $=$ $\begin{pmatrix} ax - by & ay + bx \\ -(ay + bx) & ax - by \end{pmatrix}$

5. (1 point) Donc
$$f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\begin{pmatrix} x & y \\ -y & x \end{pmatrix}\right) = f\left(\begin{pmatrix} ax - by & ay + bx \\ -(ay + bx) & ax - by \end{pmatrix}\right) = (ax - by) + i(ay + bx) = (a + ib)(x + iy) = f\begin{pmatrix} a & b \\ -b & a \end{pmatrix} f\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$$

Exercice 3:

- 1. (1 point) $P_M(X) = \text{Det}(XId M) = X^3 + 3X^2 4 = (X 1)(X + 2)^2$.
- 2. (3 points) Les valeurs propres sont 1 (de multiplicité 1) et -2 (de multiplicité 2). Après calcul, l'espace propre associé à -2 est

$$E_{-2} = \{(x, y, z) \in \mathbb{K}^3 \mid x + y + z = 0\} = \operatorname{Vect}\left(\begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix}\right).$$

De même,
$$E_1 = \text{Vect}\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
).

3. (1 point) Donc M est diagonalisable, car la multiplicité algébrique des valeurs propres correspond à la dimension des espaces propres associés. Et $P = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ convient.

Exercice 4:

1. (1 point) F est un hyperplan, i.e. le noyau d'une forme linéaire non nulle, en l'occurence le noyau de la forme

$$\Psi: \quad \mathbb{C}^4 \quad \to \quad \mathbb{C}$$
$$(x, y, z, t) \quad \mapsto \quad x + y + z + t$$

Donc $\dim(F) = 4 - 1 = 3$.

- 2. (1 point) On vérifie que c'est une famille libre, dont le nombre d'éléments, 3, est la dimension de F
- 3. (1 point) Si $(x, y, z, t) \in F$, alors si on note $\varphi(x, y, z, t) = (a, b, c, d)$, on obtient:

$$a+b+c+d = (x+3y+t)+(3x-2y)+(-2x+2y+z)+(-y+z+t) = 2(x+y+z+t) = 2.0 = 0$$

Donc $\varphi(x, y, z, t) \in F$. Ensuite, φ est clairement linéaire, et

$$\begin{array}{lll} \varphi(e_1) &= (0,3,-2,-1) &= 0e_1 + 3e_2 - 2e_3 \\ \varphi(e_2) &= (2,-2,2,-2) &= 2e_1 - 2e_2 + 2e_2 \\ \varphi(e_3) &= (-1,0,1,0) &= -e_1 + 0e_2 + e_3 \end{array}$$

On en déduit que
$$M = \operatorname{Mat}_{\mathcal{B}}(\varphi) = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$
.

4. (3 points) $P_M(X) = X^3 + X^2 - 10X + 8 = (X - 1)(X - 2)(X + 4)$. C'est une polynôme scindé à racines simples donc M est diagonalisable. En notant v_{λ} un vecteur propre pour λ , on obtient par exemple :

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -4 \\ -3 \\ 2 \end{pmatrix}$, et $v_{-4} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$ pour les vecteurs propres de M , i.e les cooordonées

des vecteurs propres de φ dans la base \mathcal{B} .

Si on veut être précis, en réutilisant la base \mathcal{B} , en en déduit que

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -3 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} -4 \\ -3 \\ 2 \\ 5 \end{pmatrix}$, et $u_{-4} = \begin{pmatrix} 2 \\ -3 \\ 2 \\ -1 \end{pmatrix}$ forment une base de vecteurs propres de φ pour los velours propres 1.2.4

Exercice 5:

- 1. (1 point) Si $M, N \in \mathcal{C}_A, \mu \in \mathbb{C}$, alors $(\mu M + N)A = \mu(MA) + NA = A(\mu M) + AN = A(\mu M + N)$ donc $\mu M + N \in \mathcal{C}_A$.
- 2. (1 point) Si $Au = \lambda u$ alors $A(Mu) = AMu = MAu = M(\lambda u) = \lambda(Mu)$, donc $Mu \in E_{\lambda}$.
- 3. (3 points) On distingue trois cas:

trois valeurs propres distinctes Supposons que A ait trois valeurs propres différentes $\lambda_1, \lambda_2, \lambda_3$, pour des vecteurs propres respectifs v_1, v_2, v_3 qui forment une base de \mathbb{C}^3 . Cela signifie que si on regarde l'endomorphisme de \mathbb{C}^3 associé à A dans la base $\mathcal{B} = \{v_1, v_2, v_3\}$, on obtient

la matrice diagonale
$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$
. Par ailleurs, si M commute avec A , i.e. si $M \in \mathcal{C}_A$, la

question précédente nous dit

puisque v_1 est une valeure propre de A (pour la valeur propre λ_1), i.e. $v_1 \in E_{\lambda_1}$, alors $Mv_1 \in E_{\lambda_1} = \text{Vect}(v_1)$. Donc il existe $a \in \mathbb{C}$ tel que $Mv_1 = av_1$

Le même raisonnement nous donne $M(v_2) \in E_{\lambda_2}$ donc il existe $b \in \mathbb{C}$ tel que $Mv_2 = bv_2$ et $Mv_3 \in E_{\lambda_3}$ donc il existe $c \in \mathbb{C}$ tel que $Mv_3 = cv_3$. Ainsi la matrice de M, vue dans la base

$$\mathcal{B} \text{ doit être } \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}.$$

Réciproquement, les matrices de cette forme commutent à A, i.e. si $M(v_1) = av_1$, alors $MA(v_1) = M(\lambda_1 v_1) = \lambda_1 M v_1 = \lambda_1 av_1$ et $AM(v_1) = A(av_1) = \lambda_1 av_1$, donc $AM(v_1) = MA(v_1)$. On montre de même que $AM(v_2) = MA(v_2)$ et $AM(v_3) = MA(v_3)$. Donc comme $\{v_1, v_2, v_3\}$ est une base de \mathbb{C}^3 , AM = MA.

Si on veut résumer de manière précise, notons P la matrice de passage de la base canonique de \mathbb{C}^3 à la base \mathcal{B} . Alors

$$M \in \mathcal{C}_A \Leftrightarrow P^{-1}MP \in \mathcal{D}$$

où
$$\mathcal{D} = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{C} \right\}$$
. \mathcal{D} est clairement un sous-espace vectoriel de dimension

3 de $M_3(\mathbb{C})$, donc \mathcal{C}_A est aussi de dimension 3.

Quelque part, on utilise le fait que comme P est une matrice inversible, l'application

$$M_3(\mathbb{C}) \to M_3(\mathbb{C})$$

 $M \mapsto P^{-1}MP$

est un isomorphisme, donc en particulier préserve les dimensions.

si on a une valeur propre double, et une simple Disons que λ_1 est valeur propre double de A avec u,v comme base de E_{λ_1} et λ_2 valeur propre simple avec vecteur propre w. On note encore $\mathcal{B} = \{u,v,w\}$ et P la matrice de passage de la base canonique de \mathbb{C}^3 à \mathcal{B} . Alors le même raisonnement qui dans le cas précédent nous dit que

$$M \in \mathcal{C} \Leftrightarrow P^{-1}MP \in \mathcal{F}$$

où
$$\mathcal{F} = \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix} \middle| a, b, c, d, e \in \mathbb{C} \right\}$$

On en déduit de même que $\dim(\mathcal{C}_A)$ dans ce cas est 5.

trois valeurs propres identiques Dans ce cas, si λ est la valeur propre triple, cela signifie que $A = \lambda Id$. Dans ce cas toutes les matrices M commutent à A. Donc $\mathcal{C}_A = M_3(\mathbb{C})$ est de dimension 9.

Pour résumer : suivant les éventuelles multiplicités des valeurs propres on obtient

Multiplicité des valeurs propres de A	$\dim(\mathcal{C}_A)$
3 valeurs propres distinctes $\lambda_1, \lambda_2, \lambda_3$	3
2 valeur propres : une double λ_1 et une simple λ_2	5
1 valeur propre triple λ (et $A = \lambda Id$)	9

4. (1 point) Ici on est justement dans le 1° cas, avec trois valeurs propres distinctes, et comme la base canonique est une base de vecteurs propres, ici avec les notations de la question précédente,

$$P = Id \text{ et } \mathcal{C}_D = \mathcal{D} = \left\{ \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix} \middle| \alpha, \beta, \gamma \in \mathbb{C} \right\}$$
 le sous-espace des matrices diagonales, qui est de dimension 3.

En fait on peut trouver ce résultat à la main en prenant une matrice quelconque $M = \begin{pmatrix} r & s & t \\ u & v & w \\ x & y & z \end{pmatrix}$.

Alors
$$DM = \begin{pmatrix} ar & as & at \\ bu & bv & bw \\ cx & cy & cz \end{pmatrix}$$
 et $MD = \begin{pmatrix} ar & bs & ct \\ au & bv & cw \\ ax & by & cz \end{pmatrix}$ et on déduit que $u = x = y = s = t = t$

w=0. Par exemple en identifiant le coefficient (2,1), i.e. sur la 2° ligne et la 1° colonne, on obtient bu=au soit (b-a)u=0, mais comme $a\neq b$ par hypothèse, il ressort que u=0, donc

$$M = \begin{pmatrix} r & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & z \end{pmatrix} \text{ i.e. } M \in \mathcal{D}.$$