预览输出

题目名称	小球
题目类型	传统型
目录	ball
可执行文件名	ball
输入文件名	ball.in
输出文件名	ball.out
每个测试点时限	1.0 秒
内存限制	512 MiB
子任务数目	10
测试点是否等分	是

提交源程序文件名

对于 C++ 语言	ball.cpp
对于 C 语言	ball.c
对于 Pascal 语言	ball.pas

编译选项

对于 C++ 语言	-02 -std=c++14		
对于 C 语言	-02 -std=c11		
对于 Pascal 语言	-02		

预览输出
小球(ball)

小球 (ball)

【题目描述】

考虑一个略微倾斜的平面上有 n 个大小一致的凹槽。若我们随机地选择一个凹槽,并在这个凹槽上方落下一个比凹槽稍微小一些的小球,则:

- 若凹槽是空的,小球会落到这个凹槽内并占据整个凹槽空间。
- 若凹槽不是空的,则小球会沿倾斜的平面滚动,直到遇到一个空的凹槽并占据它,或者滚出这个斜面。

已知在连续地落下了 m 个小球后,有 k 个小球滚出了斜面。求可能的方案个数。令 n 个凹槽沿斜面从下至上的编号分别为 $1 \sim n$,则一个落下了 m 个小球的方案可以被描述为一个长度为 m 的序列 $p(p_1, p_2, \ldots, p_m)$,其中 $p_i \in \{1, \ldots, n\}$,表示第 i 个小球是从编号为 p_i 的凹槽上方开始落下的。两个方案被认为相同,当且仅当描述它们的序列是相同的。

【输入格式】

从文件 ball.in 中读入数据。

输入的第一行包含两个正整数 n, m,描述凹槽的个数和落下小球的个数。接下来一行一个非负整数 k,描述最终滚出斜面的小球个数。

【输出格式】

输出到文件 ball.out 中。

输出一行一个整数,描述满足条件的方案个数对 109+7 取模后的结果。

【样例输入】

3 2

0

【样例输出】

8

预览输出 小球 (ball)

【子任务】

测试点	n	m	k
1	= 8	= 4	= 0
2,3	≤ 18	$\leq n + k$	≤ 18
4,5		l	= 0
6	≤ 50	= n + k	≤ 50
7,8			≥ 50
9,10	≤ 200	$\leq n+k$	≤ 200