Total No. of	f Questions	:	4]
--------------	-------------	---	------------

P-5341

otal No. of Questions : 4]	SEAT No.:	
----------------------------	-----------	--

[Total No. of Pages: 3

[6187]-426A

T.E. (Computer Engineering) (Insem.)

THEORY OF COMPUTATION (Theory) (2019 Pattern) (Semester - I) (310242)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer the question of 1 or 2, 3 or 4.
- Neat diagrams must be drawn whenever necessary. *2*)
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Draw FA for the following language over **Q1**) a)

[8]

- Number of 1's is multiple of i)
- Number of 1's is not multiple of
- Covert following NFA into equivalent DFA and perform DFA minimization b) [7]

Q/Σ	0, 60.	1
\rightarrow P	{P, Q}	{P}
Q	(R)	{R}
R	{S}	
S*	{S}	{S}

OR

- Construct DFA for checking "whether a string over alphabet $\{a, b\}$ contains **Q2**) a) a substring aba". [5]
 - Differentiate between Moore machine and Mealy machine. b)
 - Construct Moore machine equivalent to the following Mealy machine. (Show it in transition Diagram)

 $M = (Q, \Sigma, \Delta, \delta, q0)$ where $Q = \{q0, p0, p1\}, \Sigma = \{0, 1\}, \Delta = \{y, n\}$ and δ is shown as given below.

	Input / Output		
States	0	1	
q0	p0/n	p1/n	
P0	p0/y	p1/n	
P1	p0/n	p1/y	

[5]

c) Convert the following DFA to its Minimized form (Minimization of DFA).

[5]

- Q3) a) Prove that LHS RE is equivalent to RHS RE (1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)* [5]
 - b) Find a regular expression corresponding to each of the following subsets of $\{0,1\}^*$
 - i) The language of all strings containing exactly two zeros
 - ii) The language of all strings containing at least two zeros
 - iii) The language of all strings that do not end with 01.
 - c) Write a note on Myhill Nerode theorem.

64

OF

Q4) a) Construct Regular expression for following DFA using Ardens theorem. [7]

- b) i) Write regular expression for a set of strings of 0s and 1s with even number of 0s.
 - ii) Write regular expression for a set of strings of 0s and 1s containing odd number of 1s.

[4]

- c) Choose any one option given below and give the justification "The regular expression 0*(10*)* denotes the same set as" [4]
 - i) (1*0)*1*
 - ii) 0+(0+10)*
 - iii) (0+1)*10(0+1)*
 - iv) none of these

OS. TO STATE OF THE STATE OF TH