课程编号___1800440087_____

深圳大学实验报告

课程名称:大学物理实验(一)	
实验名称:磁性综合实验	
学 院: <u>数学科学学院</u>	
指导教师: 郭树青	
报告人:刘俊熙组号:18	_
学号 <u>2023193004</u> 实验地点 <u>致原楼 213</u>	
实验时间:2024年5_月14日	
提交时间:2024年5月21日	

1

一、实验目的

- 1. 掌握磁滞、磁滞回线和磁化曲线的概念,加深磁性材料主要物理量的理解,如矫顽力、剩磁和磁导率:
- 2. 比较不同频率下磁滞回线的区别,在某一频率下确定饱和磁感应强度 B_s 、剩磁 B_r 和矫顽力 H_c 的数值。

二、实验原理

1. 磁化曲线

磁化曲线是物质中的磁感应强度B与所施加磁场强度H的关系,

$$B = \mu H$$

其中, μ 是磁导率,对铁磁物质而言 $\mu \gg 1$ 。

铁磁物质的磁导率 μ 并非常数,而是随H的变化而改变,即

$$\mu = f(H)$$

为非线性函数。所以如图 1 所示, **B**与**H**也是非线性关系。

图 1 磁化曲线和 $\mu\sim H$ 曲线

2. 磁滞回线

铁磁材料的磁化达到饱和之后,若将磁化场减少,则铁磁材料内部的B和H也随之减少,但其减少的过程并不沿着图 1 磁化时的 OS 段退回。

从图 2 可知当磁化场撤消,H=0时,磁感应强度仍然保持一定数值 $B=B_r$ 称为剩磁。

图 2 起始磁化曲线与磁滞回线

若要使被磁化的铁磁材料的磁感应强度 B 减少到 0,必须加上一个反向磁场并逐步增大。当铁磁材料内部反向磁场强度增加到 $H=H_c$ 时,磁感应强度 B=0,达到退磁。bc 段曲线为退磁曲线, H_c 为矫顽磁力;

H按

$$0 \rightarrow H_s \rightarrow 0 \rightarrow -H_c \rightarrow -H_s \rightarrow 0 \rightarrow H_c \rightarrow H_s$$

变化,则B按

$$0 \rightarrow B_s \rightarrow B_r \rightarrow 0 \rightarrow -B_s \rightarrow -B_r \rightarrow 0 \rightarrow B_s$$

顺序变化。

图中的 0a 段曲线称起始磁化曲线,所形成的封闭曲线 abcdefa 称为磁滞回线。 由图 2 可知:

- a) 当H=0时, $\mathbf{B}\neq \mathbf{0}$,这说明铁磁材料还残留一定值的磁感应强度 B_r ,称之为铁磁物质的剩余感应强度(剩磁)。
- b) 若使铁磁物质完全退磁,即B=0,必须加一个反方向磁场 H_c ,称之为该铁磁材料的矫顽磁力。
- c) B 的变化始终落后于 H 的变化,这种现象称为磁滞现象。
- d) H上升与下降到同一数值时,铁磁材料内的 B 值并不相同,退磁化过程与铁磁材料过去的磁化 经历有关。
- e) 当从初始状态 H=0, B=0 开始周期性地改变磁场强度的幅值时,在磁场由弱到强地单调增加过

程中,可得到面积由小到大的一簇磁滞回线,如图 3 所示。其中最大面积的磁滞回线称为极限磁滞回线。图 3 中原点 O 和各个磁滞回线的顶 a_1,a_2,…a 所连成的曲线,称为铁磁性材料的基本磁化曲线。

f) 由于铁磁材料磁化过程的不可逆性及具有剩磁的特点,在测定磁化曲线和磁滞回线时,必须将铁磁材料预先退磁,以保证外加磁场 H=0, B=0;退磁方法:逐渐减少磁化电流,直到 B 和 H 都减小为零。

图 3 基本磁化曲线 $aa_1a_2a_3$

3. 示波器测量 B-H 曲线

本实验研究的铁磁物质是一个环状试样。在试样上绕有励磁线圈 N_1 匝和测量线圈 N_2 匝。若在线圈 N_1 中通过磁化电流 i_1 ,此电流在式样内产生磁场,根据安培环路定律 $HL=N_1i_1$,磁场强度 H 的大小为:

$$H = \frac{N_1 i_1}{L} \tag{1}$$

其中, L是为环状式样的平均磁路长度。

图 4 B一H 曲线的实验线路

由图 4 可知,示波器 X 轴偏转板的电压为

$$U_X = U_{R1} = i_1 R_1 \tag{2}$$

由式(1)和式(2)得

$$U_X = \frac{LR_1}{N_1}H\tag{3}$$

上式表明在交变磁场下,任一时刻示波器 X 轴的输入正比于磁场强度 H。为了测量磁感应强度 B,在次级线圈 N_2 上串联一个电阻 R_2 与电容 C 构成一个回路, R_2 与 C 构成一个积分电路。取电容 C 两端电压 $U_{\rm C}$ 至示波器 Y 轴输入。若适当选择 R_2 和 C 的值,使 $R_2\gg \frac{1}{\omega C}$,则次级电流为

$$I_2 = \frac{E_2}{[R_2^2 + (1/\omega C)^2]^{1/2}} \approx \frac{E_2}{R_2}$$

式中 ω 为电源的角频率, E_2 为次级线圈的感应电动势:

$$E_2 = N_2 \frac{d\Phi}{dt} = N_2 S \frac{dB}{dt}$$

式中 ϕ 为磁通量,S为环状式样的截面积,示波器Y输入电压为

$$U_Y = U_C = \frac{Q}{C} = \frac{1}{C} \int I_2 dt = \frac{1}{CR_2} \int E_2 dt = \frac{N_2 S}{CR_2} \int \frac{dB}{dt} dt = \frac{N_2 S}{CR_2} B$$
 (4)

上式表明接在示波器 Y 轴输入的 U_V 正比于 B。

由(3)和(4)得

$$\begin{cases} H = \frac{N_1}{LR_1} U_X \\ B = \frac{CR_2}{N_2 S} U_Y \end{cases}$$
 (5)

由(5)式可知,只要读出电阻和电容的值,然后通过示波器测出电压 U_X 和 U_Y ,即可绘出磁滞回线。 样品 1 参数:

平均磁路长度 L=0.130m

磁芯样品截面积 $S=1.24\times10^{-4}\,\text{m}^2$

线圈匝数 $N_1 = N_2 = N_3 = 150$

样品2参数:

平均磁路长度 L=0.075m

磁芯样品截面积 $S=1.20\times10^{-4}\,m^2$

线圈匝数 $N_1 = N_2 = N_3 = 150$

三、实验仪器:

DH4516N 磁特性综合实验测试仪、示波器

图 5 DH4516N 磁特性综合实验测试仪

图 6 示波器

四、实验内容:

图 7 DH4516N 磁特性综合实验测试仪示意图

红色箭头表示接线方向。

1. 观察样品的磁滞回线

打开电源前,先将信号源输出幅度调节旋钮逆时针调到底,使信号输出最小。

(注意:由于信号源、电阻 R1 和电容 C 的一端已接地,故不能与其他接线端相连接。否则会短路信号源、电阻或电容,从而无法正确做出实验。)

观察两种样品在25Hz、50Hz、100Hz、150Hz交流信号下的磁滞回线图形。

频率越高,相同幅度的磁滞回线包围面积越大。

- i. 按图 4 所示连接好电路
- ii. 逆时针调节幅度旋钮至最小
- iii. 调节示波器显示方式为 X-Y 方式
- iv. 示波器 X 和 Y 输入选择为 DC 方式,X 测量电阻 R_1 的电压,Y 测量电容 C 的电压
- v. 缓慢增加磁化电流,使示波器显示的磁滞回线上 B 的值增加缓慢,达到饱和。调节 $X \times Y$ 增益和电阻 $R_1 \times R_2$ 的大小,使示波器上显示典型美观的磁滞回线图形。示波器上显示磁化电流对应的水平方向格数为 (-5,5) 格。
- 2. 测量样品的磁化曲线(频率为 50Hz 时)
 - i. 示波器上磁化电流在水平方向的格数为(-5, 5) 格时,逐渐减小磁化电流至 0,使示波器上磁滞回线成为一个点,此后保持 X、Y 增益和其它参数不变。
 - ii. 缓慢顺时针调节幅度调节旋钮,单调增加磁化电流,使磁化电流在 X 方向的读数为 0、0.2、

0.4、0.6、0.8、1.0、2.0、3.0、4.0、5.0,单位为格,记录磁滞回线顶点在 Y 方向上的读数 如表 1,单位为格。

- iii. 记录电阻 R_1 、 R_2 和电容 C 的值,根据样品参数和公式(5)计算 H 和 B 的值,绘制磁化曲线。
- 3. 测量样品的磁滞回线(频率为 50Hz 时)
 - i. 调节参数式示波器上磁化电流在水平方向的格数为(-5, 5) 格,在Y竖直方向上的格数为(-4,4)。
 - ii. 记录示波器显示的磁滞回线在 X 坐标为 5.0、4.0、3.0、2.0、1.0、0、-1.0、-2.0、-3.0、-4.0、-5.0 格时,对应的 Y 坐标格数,同时记录 Y 坐标为 4.0、3.0、2.0、1.0、0、-1.0、-2.0、-3.0、-4.0 格时对应的 X 坐标格数,填入表 2。
 - iii. 记录电阻 R_1 、 R_2 和电容 C 的值,根据样品参数和公式(5)计算 H 和 B 的值,绘制磁滞回线。

记录每次测量对应的电阻和电容的值,比如 R_1 =5 Ω 、 R_2 =30K Ω , C=5 μF 。

五、数据记录: (原始数据再抄一份附在这部分)

组号: ___18___; 姓名___刘俊熙___

X(mV)	672.00	608.00	568.00	512.00	488.00	432.00
Y(mV)	48.80	48.00	45.60	41.60	40.80	35.20
X(mV)	280.00	256.00	232.00	224.00	200.00	168.00
Y(mV)	17.60	13.60	12.00	11.20	9.60	6.40
X(mV)	416.00	392.00	376.00	360.00	336.00	304.00
Y(mV)	32.80	30.40	28.00	25.60	24.80	20.00
X(mV)	144.00	128.00	112.00	56.00	16.00	0.00
Y(mV)	5.60	4.80	4.00	1.60	0.80	0.00

表 1 磁化曲线数据记录

X(mV)	Y(mV)	X(mV)	Y(mV)
520.00	44.80	-560.00	-46.40
440.00	40.80	-472.00	-41.60
376.00	37.60	-400.00	-39.20
304.00	36.00	-328.00	-36.00
272.00	34.40	-288.00	-35.20
216.00	32.00	-256.00	-33.60
168.00	30.40	-176.00	-31.20
96.00	27.20	-104.00	-28.00
40.00	24.00	-56.00	-24.80
0.00	22.40	0.00	-23.20
-40.00	19.20	32.00	-19.20
-88.00	16.80	88.00	-16.00
-136.00	12.00	136.00	-12.00
-184.00	8.00	176.00	-8.00
-240.00	0.00	240.00	0.00
-288.00	-7.20	288.00	7.20
-320.00	-15.20	328.00	15.20
-368.00	-22.40	368.00	21.60
-392.00	-28.00	392.00	27.20
-416.00	-31.20	408.00	29.60
-440.00	-34.40	456.00	36.00
-480.00	-37.60	480.00	39.20

表 2 磁滞回线数据记录

六、数据处理

根据公式,处理得到磁感应强度B与所施加磁场强度H的数据:

X(mV)	672.00	608.00	568.00	512.00	488.00	432.00
H/(A/m)	268.80	243.20	227.20	204.80	195.20	172.80
Y(mV)	48.80	48.00	45.60	41.60	40.80	35.20
B/mT	162.67	160.00	152.00	138.67	136.00	117.33
X(mV)	416.00	392.00	376.00	360.00	336.00	304.00
H/(A/m)	166.40	156.80	150.40	144.00	134.40	121.60
Y(mV)	32.80	30.40	28.00	25.60	24.80	20.00
B/mT	109.33	101.33	93.33	85.33	82.67	66.67
X(mV)	280.00	256.00	232.00	224.00	200.00	168.00
H/(A/m)	112.00	102.40	92.80	89.60	80.00	67.20
Y(mV)	17.60	13.60	12.00	11.20	9.60	6.40
B/mT	58.67	45.33	40.00	37.33	32.00	21.33
X(mV)	144.00	128.00	112.00	56.00	16.00	0.00
H/(A/m)	57.60	51.20	44.80	22.40	6.40	0.00
Y(mV)	5.60	4.80	4.00	1.60	0.80	0.00
B/mT	18.67	16.00	13.33	5.33	2.67	0.00

表 3 磁化曲线数据处理表

图 8 磁化曲线图

X(mV)	H/(A/m)	Y(mV)	B/mT	X(mV)	H/(A/m)	Y(mV)	B/mT
520.00	208.00	44.80	149.33	-560.00	-224.00	-46.40	-154.67
440.00	176.00	40.80	136.00	-472.00	-188.80	-41.60	-138.67
376.00	150.40	37.60	125.33	-400.00	-160.00	-39.20	-130.67
304.00	121.60	36.00	120.00	-328.00	-131.20	-36.00	-120.00
272.00	108.80	34.40	114.67	-288.00	-115.20	-35.20	-117.33
216.00	86.40	32.00	106.67	-256.00	-102.40	-33.60	-112.00
168.00	67.20	30.40	101.33	-176.00	-70.40	-31.20	-104.00
96.00	38.40	27.20	90.67	-104.00	-41.60	-28.00	-93.33
40.00	16.00	24.00	80.00	-56.00	-22.40	-24.80	-82.67
0.00	0.00	22.40	74.67	0.00	0.00	-23.20	-77.33
-40.00	-16.00	19.20	64.00	32.00	12.80	-19.20	-64.00
-88.00	-35.20	16.80	56.00	88.00	35.20	-16.00	-53.33
-136.00	-54.40	12.00	40.00	136.00	54.40	-12.00	-40.00
-184.00	-73.60	8.00	26.67	176.00	70.40	-8.00	-26.67
-240.00	-96.00	0.00	0.00	240.00	96.00	0.00	0.00
-288.00	-115.20	-7.20	-24.00	288.00	115.20	7.20	24.00
-320.00	-128.00	-15.20	-50.67	328.00	131.20	15.20	50.67
-368.00	-147.20	-22.40	-74.67	368.00	147.20	21.60	72.00
-392.00	-156.80	-28.00	-93.33	392.00	156.80	27.20	90.67
-416.00	-166.40	-31.20	-104.00	408.00	163.20	29.60	98.67
-440.00	-176.00	-34.40	-114.67	456.00	182.40	36.00	120.00
-480.00	-192.00	-37.60	-125.33	480.00	192.00	39.20	130.67

表 4 磁滞回线数据处理表

图 9 磁滞回线图

七、实验结果与总结

7.1 结果陈述

在本次磁性综合实验中,我们成功测量了环状磁性试样的磁化曲线和磁滞回线,并通过示波器记录了 B-H 曲线。通过测量数据和分析,我们得出以下结论:

- 1. **磁化曲线分析**:实验数据显示,磁化曲线呈现出明显的非线性特征,表明铁磁物质的磁导率不 是常数,而是随着磁场强度的变化而变化。这与实验原理中提到的铁磁物质的磁导率特性相符。
- 2. **磁滞回线观测**:在实验中,我们观察到了清晰的磁滞回线,特别是在不同频率下,磁滞回线的 形状和大小有所变化。这表明磁滞现象不仅与材料本身的性质有关,还受到外界磁场频率的影响。
- 3. **饱和磁感应强度、剩磁和矫顽力的确定**:在某一特定频率下,我们确定了环状试样的饱和磁感应强度、剩磁和矫顽力的具体数值。这些数值为我们提供了对材料磁性能的直接量化评估。
- 4. **频率对磁滞回线的影响**:通过比较不同频率下的磁滞回线,我们发现频率的增加会导致磁滞回线面积的增加,即磁滞现象更为明显。这为我们理解频率对材料磁性能的影响提供了实验依据。

综上所述,通过本次实验,我们加深了对磁滞、磁滞回线和磁化曲线的理解,并成功获得了关于环 状磁性试样磁性能的具体数据。这些数据为我们进一步分析材料的磁性能提供了有力支持。

7.2、 实验总结

在实验过程中,我掌握了使用示波器测量 B-H 曲线的方法,并学会了如何通过数据分析和图像解读来提取有用的信息。

在测量的过程中,调节磁化电流时需要时刻留意示波器磁滞回线的形状,如果在曲线两端出现多余的突出,就表明磁滞回线出于过饱和的状态,此时数据的物理意义将会发生改变,这是我们需要避免的情况。

在具体读数的过程中,当磁化电流较小时,示波器的图形会比较小,测量精度会收到影响。对此, 我们应该将示波器的分度值调大,以便优化测量的精度。

八、思考题

- 1. 从定义和量纲两个方面,简述磁场强度 H 和磁感应强度 B 的区别与联系。 定义:
 - 磁场强度 H: 是描述磁源产生磁场强弱的物理量,与磁介质无关,是磁场本身的属性。它定义为磁场中某点处磁感应强度 B 与介质磁导率 μ 的比值,即 H = B/μ。
 - 磁感应强度 B: 是描述磁场强弱和方向的物理量,是矢量,其方向为该点的磁场方向。它反映了磁场中某点处磁场的强弱和方向。

量纲方面:

- 磁场强度 H: 在国际单位制中, 其单位为安培/米(A/m)。
- 磁感应强度 B: 在国际单位制中, 其单位为特斯拉(T), 或者韦伯/平方米(Wb/m²)。

联系:

两者在磁介质中密切相关,通过介质磁导率 μ 相联系,即 $B = \mu H$ 。在真空中, $\mu = \mu \omega$ (真空磁导率),此时 H 与 B 成正比。

2. 本实验使用的交变电流在磁滞回线中体现在哪里?如果频率无限小结果会怎样?

在本实验中,交变电流通过线圈产生交变磁场,该交变磁场使铁磁材料产生磁化,进而形成磁滞回线。磁滞回线反映了铁磁材料在交变磁场下的磁化特性。

如果交变电流的频率无限小,即磁场变化非常缓慢,那么铁磁材料将有足够的时间来响应磁场的变化,磁滞现象将不明显,磁滞回线将趋近于一个单值函数,即磁化曲线。

3. 从测得的磁滞回线阐述磁导率随磁场的变化规律,并说明不同的电阻、电容值对磁导率的影响。

变化规律: 从测得的磁滞回线可以看出,磁导率 μ 随磁场的变化而变化。在磁场较小时, μ 随磁场的增加而增加; 当磁场增加到一定程度时, μ 达到一个最大值(饱和磁导率),之后随磁场的增加而略有下降。这是因为铁磁材料在磁场作用下,其内部磁畴发生转动和排列,导致磁化增强,磁导率增加; 但当磁场过强时,磁畴的排列趋于饱和,磁导率变化不再明显。

电阻、电容值对磁导率的影响: 电阻和电容值主要影响线圈中电流的大小和相位,进而影响产生的磁场强度和相位。一般来说,电阻值的变化会影响线圈中电流的大小,从而影响磁场强度;而电容值的变化会影响电流的相位,进而影响磁场的相位。这些变化都会通过磁滞回线反映出来,从而影响磁导率的测量结果。但是,在理想情况下(电阻、电容值稳定),它们对磁导率本身没有直接影响。

-	10	므	* /-	· IIE	Fit	仏	1,74	意	П	
1	Ħ	\neg	27 X	7/1	IJ1	Иι	lπi	尽	יזעי	٠.

成绩评定:

预习 (20 分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	思考题 10 分	报告整体 印象	总分