Chemistry (NCERT)					
		CHEMISTRY	(052) (E)	Set No. 5	
	IEMISTRY	BOARD Q. PAPER-1 (Self Practice)		Standard-12	
Time: 3 Hours		AUGUST	. 2020	Total Marks: 100	
•	Part-A : Time	1 hour / Marks 50 ·	Part-B : Time 2 l	nour / Marks : 50	
Tim	e: 1 Hour]	PART August:		laximum marks : 50	
Inst	ruction: (1)	There are total 50 object	2020 [197	eastions in port-A and	
		all questions are compul	ive type (MCQ) qi sorv.	uestions in part-A and	
	(2)	The questions are serially	numbered from 1	to 50 and each carries	
		· mark.			
	(5)	Read each question care the OMR Sheet.	fully, select proper	option and answer in	
			for answering the	questions. The answer	
	(4) The OMR Sheet is given for answering the questions. The answer of each questions is represented by (A) O, (B) O, (C) O, (D) O.				
	barken the circle • of the correct answer with ball-pen.				
	(5) Rough work is to be done in the space provided for this purpose in the Test booklet only.				
				pper most right side of	
μ.	(6) Set No. of question paper printed on the upper most right side of the question paper is to be written in the column provided in the				
	7/2=	OMR Sheet.			
1.	Which of the	Use of simple calculato	r and log table is	allowed if required.	
•		following compound doe		olic "-OH" group in it.	
	OH 	CH ₂ OH	OH L	CH ₃	
	(A)	(B) (C)	(0)	(D) OH	
			ОН		
2.		ylic is present in vineg	ar?		
	(A) Benzoic A		(B) Ethanoic A	cid	
L	(C) Methanoid		(D) Oxalic Aci		
3.		strength of ethyl substitu			
	` '	1° (B) 1° > 2° > 3°		° (D) $3^{\circ} > 1^{\circ} > 2^{\circ}$	
4.		following protein is w		(D) All Cal at	
	(A) Insulin	(B) Myosin	(C) Albumin	()	
5.	•	for making of combs a		aldehyde Resin	
	(A) Nylon-2-1		(D) Bakelite	andenyue Resin	
	(C) Melamine	ined by the reaction of		nenvialanine shows which	
6.	Aspartam obtained by the reaction of aspartic acid and phenylalanine shows which type of methyl ester? For More Papers Visit www.VisionPapers.in!!!				
	(A) dipeptide		(C) diester	(D) Phosphodieste	
	(A) dipopulate			· · · · · · · · · · · · · · · · · · ·	

	Starr	dire the terms of			
2	When cation of higher oxidation	on. State is added in Ionic s	solid substance, then		
7.	When cation of higher which type of defect is formed	u III 16.			
	(A) Schottky defect	(B) impanty derec			
	(C) Frenkel defect	(D) Metal Excess			
	Which of the following process	is responsible for the format	tion of delta at place		
8.	where rivers meet the sea?				
	(A) Coagulation (B) Dialys		(D) None		
9.	In which crystal system, edge	length is not $a \neq b \neq c$?			
′	(A) Monoclinic (B) Hexag	onal (C) Orthorhombic	(D) Triclinic		
10.	K_B Value for $Ar_{(g)}$, $CO_{2(g)}$, $HCHO_{(g)}$ and CH_{2g} are 40, 39, 1.67, 1.82 × 10				
10.	and 0.413 respectively. Arrunge these gases in the order of their incrensing				
	solubility.				
	(A) HCHO $<$ CH ₄ $<$ CO ₂ $<$.	Ar (B) HCHO $<$ CO ₂	< CH ₄ < Ar		
	(C) $Ar < CO_2 < CH_4 < HCHO$ (D) $Ar < CH_4 < CO_2 < HCHO$		O ₂ < HCHO		
11.	The rate constant of a reaction		tivation Energy (E _a)		
	is 18.230 KJ. Calculate Arrhe				
	(A) 1.2 (B) 1.4	(C) 1.3	(D) 1.6		
12.	In Hall-Heroult process for pre	paration of Aluminium from	Al ₂ O ₃ , why Na ₃ AlF ₆		
	is added.	6.11.0			
	(A) To reduce melting points				
	 (B) To protect graphite rod present on anode. (C) To reduce rate of reaction of Al₂O₃ 				
	(D) To obtain Extra Pure Alu				
13.	How many lone pair of electrons		m) 11		
	(A) 8 (B) 12	(C) 10	(D) 14		
14.		reagent does not produces PC	Cl ₃ as a product in		
	the reaction?	оон (с) с.н.он	(D) SO.CI.		
15.	(A) H ₂ O (B) CH ₃ COOH (C) C ₂ H ₂ OH (D) SO ₂ Cl ₂ Which of the following is a most stable complex compound?				
15.		7			
16.	(A) $[Fe(H_2O)_4]^{3+}$ (B) $[Fe(C_2O_4)]^{3-}$ (C) $[Fe(NH_3)_6]^{3+}$ (D) $[FeCl_4]^{3-}$ Which of the following complex does not form coloured solution?				
10.	(A) $[CoCl(NH_3)_5]^{2+}$ (B) $[Cu(H_2O)_4]^{2+}$ (C) $[Ti(H_3O)_6]^{3+}$ (D) $[Ni(CO)_4]$				
17.			(D) [M(CO)4]		
	(A) Dichloromethane		(B) Tri lodomethane		
	(C) Trichloromethane	r visi i o a mara	(D) Tetrachloromethane		
18.	()				
	(A) Sodium metal	(B) Anhydrous Zne	10.2		
	(C) Neutral FeCl ₃	(D) All of them			
19.			imary, secondary and		
		Papers Visit www.Vision			
	(A) Hinsberg's reagent	(B) Fehling reagen			
	(C) Etard reagent	(D) Tollen's reage			

31.	Which of the following statement is true for	the formation of X	enon compounder Standar		
	(A) both O ₂ and Xe have same size				
	(B) both O ₂ and Xe are gases				
	(C) both O2 and Xe have same electron gain enthalpy				
	(D) both O ₂ and Xe have First lonization enthalpy almost same What is the equivalent weight of K ₂ Cr ₂ O ₇ in acidic medium, If its molecular weight is taken as "M".				
32.	What is the equivalent weight of $K_2C \Gamma_2C_7$ if is taken as "M".	i acidic medium, if it	s molecular weight		
		M	44.		
	(A) M (B) $\frac{M}{5}$	(C) $\frac{M}{3}$	(D) $\frac{M}{6}$		
33.	IUPAC name of [Co(NH ₃) ₄ (H ₂ O)Cl]Cl ₂ complex compound is				
	(A) Tetraammine aquachlorido cobalt (II	(A) Tetraammine aquachlorido cobalt (III) chloride			
	(B) Tetraammine aquachlorido cobaltate	(III) chloride	- 1		
	(C) Aquatetraammine chlorido cobalt (III) dichloride				
		(D) Aquatetraammine chlorido cobalt (III) chloride			
34.	Reaction of C ₆ H ₅ CH ₂ Br with aqueous s	sodium hydroxide fo	ollows		
	(A) Nucleophilic	(B) S _N 2 mechanism	n		
35	(C) S _N 1 mechanism	(D) Saytzeff rule			
35.	Which product is obtained when one m mole of HX ?	ole of ether (R-O-R) is reacted with one		
	(A) Only $R-X$ (B) $R-X + R-OH$	(C) Only R-OH	(D) $2R-X + H_2O$		
36.	Which type of hydrogen should be pre- for Aldol condensation reaction?	esent in Aldehyde o	or Ketone compounds		
	(A) α (B) γ	(C) β	(D) δ		
37.	Which product is obtained when 2 mole amine?	of methyl chloride	is reacted with methyl		
	(A) N, N - Dimethylethanamine	(B) N - Ethylme	thenamine		
	(C) N - Methylethanamine		nethylmethenamine		
38.	How many Chiral Carbons are presen	nt in Fructose?	ion's modernamme		
	(A) 1 (B) 3	(C) 2	(D) 4		
39.	***	` '			
	(A) Nylon-6 (B) Polypropene				
40.	(~) VI-obeme		(D) Teflon		
41.		(C) Flielleizine	(D) Bithional		
12.	An element has a body-centred cubic Calculate diameter of an particle.	structure with a	cell edge of 4 × 10 ⁻⁴ cm		
	(A) 1.73×10^{-8} cm	(B) 6.92×10^{-1}	0 ⁻⁸ cm		
	(C) 3.46×10^{-8} cm	(D) 0.865 ×	10 ⁻⁸ cm		
42.	Which of the following is an exan				
	(A) Chloroform - Acetone	(B) Water -	Nitric Acid		
	(C) Ethanol - Water	(D) Benzene	- Toluene		

For More Papers Visit www.VisionPapers.in !!!

-	PART-B
Time : 2 Hou	August 2020 : 052 (E) [Maximum marks :
Instructions :	 Write in a clear legible handwriting. There are three sections in Part-B of the questions paper and to 18 question are there. All the questions are compulsory. Internal options are given. The numbers at right side represent the marks of the question Start new section on new page.
	(6) Maintain sequence.(7) Use of simple calculator and log table is allowed, if required.

SECTION-A

Answer the following Q.No. 1-8 in brief. 2 marks for each question.

 A solution of CuSO₄ is electrolysed for 8 minutes 45 seconds with a current of 5 amperes. What is the mass of copper deposited at the cathode?

OR

Write Anodic and Cathodic reaction for Dry cell and Lead storage cell (discharging).

2. What is meant by pseudo first order reaction? Explain giving example.

OR

A first order reaction takes 40 minutes for 30% decomposition. Calculate $t_{\frac{1}{2}}$.

- 3. Explain Froth Floatation Method for concentration of ores in metallurgy. (Figure is not necessary).
- 4. Explain Lanthanoid contraction.
- 5. Which of the 3d series of the transition metals exhibits the largest number of oxidation states and why?
- 6. Explain Carbyl Amine Test giving reactions.
- 7. Prove the presence of Aldehyde group in glucose molecule giving reaction? Write the name of product obtained.
- 8. State the monomers present in terylene and draw their structures.

SECTION-B

- Answer the following Q.No. 9-14 in detail. 3 marks for each question. 18
- Write the reaction mechanism of dehydration of ethanol in presence of acid to form ethene.

OR

Explain Williamson synthesis to prepare ether and state the limitation of the process. State all reactions.

 Write three chemical reactions for preparation of Alkyl halides from Alcohols. (Indicate byproducts if any).

For More Papers Visit www.VisionPapers.in !!!

- Explain contact process for preparation of sulphuric acid with reaction. (Figure is not necessary).
- 12. Classify and explain colloids on the basis "Nature of interaction between dispersed phase and dispersion medium" giving examples (5)
- 13. The following results have been obtained during the kinetic studies of the reaction $2A + B \rightarrow C + D$.

$2A + B \rightarrow C$	+ D.	a stion of	
Experiment	[A]/mol L ⁻¹	[B]/mol L ⁻¹	Initial rate of formation of D/mol L ⁻¹ min ⁻¹
· I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2 × 10 ⁻²
III	0.3	0.4	2.88 × 10 ⁻¹
IV	0.4	0.1	2.40×10^{-2}

Determine the rate law and the rate constant for the reaction.

14. Derive packing efficiency in face centred cubic close packed structures.

SECTION-C

Answer the following Q.No. 15-18 essay type questions in detail. 4 marks for each question.

16

- 15. An organic compound (A) (molecular formula C₈H₁₆O₂) was hydrolysed with dilute sulphuric acid to give a carboxylic acid (B) and an alcohol (C), Oxidation of (C) with chromic acid produced (B). (C) on dehydration gives but-l-ene. Write equations for the reaction involved. State IUPAC name of compound (A).
- 16. On the basis of valence bond theory state electronic configuration, Hybridization, Magnetic property with calculation of magnetic dipole value and state type of spin present in [Fe(CN)₆]⁻³ complex.

OR

- (a) Draw optical and geometrical isomers of [CoCl2(en)2]+.
- (b) Give evidence that [Co(NH₃)₅Cl]SO₄ and [Co(NH₃)₅(SO)₄]Cl are ionisation isomers.
- 7. (a) Explain corrosion of iron in atmosphere with reactions. (Figure is not necessary).
 - (b) What is meant by conductivity and resistivity? State their units.
- 8. Calculate the depression in the Freezing point of water when 10g of CH₃CH₂CHClCOOH is added to 250 g of water.

$$K_4 = 1.4 \times 10^{-3}$$
, $K_f = 1.86 \text{ kg mol}^{-1}$.