This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-194277

(43) Date of publication of application: 21.07.1999

(51)Int.CI.

G02B 21/00 G02B 21/06

(21) Application number: 09-368744

(71) Applicant: NIKON CORP

(22)Date of filing:

26.12.1997

(72)Inventor: KAWAHITO TAKASHI

(54) INVERTED MICROSCOPE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an inverted microscope capable of easily combining a television adaptor, a camera, etc., with it in a conventional type

inverted microscope.

SOLUTION: In an inverted microscope provided with a microscope body 10, a transmission illumination means 80 provided on the illumination support 20 of the microscope body 10, a filter block 50 provided under the stage 30 of the microscope body 10 and a mounting part 260 capable of attaching/ detaching an illumination/projection unit for projecting illuminating light on a sample 5 through the filter block 50, a hollow cylinder 61, an image forming lens 62 and an image pickup element 63a (CCD camera 63) are mounted on the part 260 instead of the illumination/projection unit and a light beam from the sample 5 is received by the image pickup element 63a.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公房番号

特開平11-194277

(43)公開日 平成11年(1999)7月21日

(51) Int.Cl.⁶

識別記号。

 $.\mathbf{F}$ I

G 0 2 B 21/00 21/06 G 0 2 B 21/00 21/06

審査請求 未請求 請求項の数5 FD (全 6 頁)

(21)出願番号

特麗平9-368744

(71)出顧人 000004112

株式会社ニコン

(22)出願日 平成9年(1997)12月26日

東京都千代田区丸の内3丁目2番3号

(72) 発明者 川人 敬

東京都千代田区丸の内3丁目2番3号 株

式会社ニコン内

(74)代理人 弁理士 木内 修

(54) 【発明の名称】 倒立顕微鏡

(57)【要約】

【課題】 いわゆる普及型の倒立顕微鏡において、容易にTVアダプタやカメラ等を組み合わせることができる 倒立顕微鏡を提供する。

【解決手段】 顕微鏡ボディ10と、顕微鏡ボディ10の照明支柱20に設けられた透過照明手段80と、顕微鏡ボディ10のステージ30の下方に設けられたフィルタブロック50を介して標本5に照明光を投光する照明投光ユニットを着脱可能な装着部260とを備える倒立顕微鏡において、中空の筒61、結像レンズ62及び撮像素子63a(CCDカメラ63)を照明投光ユニットに代えて装着部260に装着し、標本5からの光を撮像素子63aで受光する。

【特許請求の範囲】

【請求項1】 顕微鏡本体と、前記顕微鏡本体の照明支柱に設けられた透過照明手段と、前記顕微鏡本体のステージ下方に設けられたフィルタブロックと、前記フィルタブロックを介して標本に照明光を投光する照明投光ユニットを着脱可能な装着部とを備える倒立顕微鏡において

前記照明投光ユニットに代えて前記装着部に装着され、 前記標本からの光を受光する受光手段を備えていること を特徴とする倒立顕微鏡。

【請求項2】 前記受光手段は中空の筒と、前記中空の 筒に内蔵される結像レンズと撮像素子とを備えることを 特徴とする請求項1に記載の倒立顕微鏡。

【請求項3】 前記フィルタブロックに、ハーフミラー 又はハーフプリズムが配置されていることを特徴とする 請求項1に記載の倒立顕微鏡。

【請求項4】 前記フィルタブロックにダイクロイックミラーが配置されていることを特徴とする請求項1に記載の倒立顕微鏡。

【請求項5】 顕微鏡本体と、前記顕微鏡本体の照明支柱に設けられた透過照明手段と、前記顕微鏡本体のステージ下方に設けられたフィルタブロックと、前記フィルタブロックを介して標本に照明光を投光する照明投光ユニットを着脱可能な装着部とを備える倒立顕微鏡において、

前記照明投光ユニットに代えて前記装着部に装着され、 前記標本の観察像を形成する観察手段を備えていること を特徴とする倒立顕微鏡。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は倒立顕微鏡に関する。

[0002]

【従来の技術】図4は従来の倒立顕微鏡の側面図である。

【0003】倒立顕微鏡は、顕微鏡ボディ210と、顕微鏡ボディ210の照明支柱220に設けられた透過照明系280と、顕微鏡ボディ210のステージ230の下方に設けられたフィルタブロック250と、フィルタブロック250を介して標本205に照明光を投光する照明投光ユニット261を着脱可能な装着部260とを備える。

【0004】ステージ230とフィルタブロック250 との間には対物レンズ240が配置されている。

【0005】上記照明投光ユニット261としては、例えば落射蛍光照明光学ユニットが用いられる。

【0006】落射蛍光照明光学ユニットはランプハウス263と照明光投光装置262とを備える。

【0007】 ランプハウス263には例えば水銀ランプ が収容される。

【0008】照明光投光装置262には集光レンズ26 2aや視野絞り(図示せず)が設けられる。

【0009】フィルタブロック250は可動部255に保持され、ホルダ251に設けられている。フィルタブロック250にはダイクロイックミラー252と、励起フィルタ253と、吸収フィルタ等の補助フィルタ254が設けられている。

【0010】このフィルタブロック250は複数個をスライダ(図示せず)に並列に装着され、任意のフィルタブロック250を切換機構(図示せず)によって対物レンズ240の光軸上に挿入することができる。

【0011】落射蛍光観察の場合、ランプハウス263からの光は照明光投光装置262、フィルタブロック250及び対物レンズ240を通じて蛍光試薬によって染色された標本205で反射され、標本205で反射された光は対物レンズ240及びフィルタブロック250を通じて接眼レンズ271に導かれ、標本205の蛍光像が観察される。

[0012]

【発明が解決しようとする課題】ところで、倒立顕微鏡 のユーザは必ずしも落射蛍光照明光学ユニットを用いた 顕微鏡観察だけを行う訳ではなく、落射蛍光照明光学ユニットを用いない様々な観察を行なう。

【0013】例えば、医学や生物学等のバイオテクノロジー分野では、落射蛍光照明光学ユニットを用いず、人口受精における卵やマイクロマニピュレータの操作状態の観察を行ったり、組織培養における培養標本の培養過程をチェックしたりする。

【0014】このとき、倒立顕微鏡にTVアダプタを組合わせて 精密な測光や画像解析を行ったり、カメラやティーチングヘッド(補助鏡筒)を組合わせて高品位の像の写真撮影や複数人での観察を行ったりすることができれば好都合である。

【0015】しかし、上記のように用いられる倒立顕微鏡は接眼レンズ以外に観察像を出力できないいわゆる普及型のものであり、サイドポートやフロントポート等の出力ポート(光の取出口)を備えておらず、TVアダブタやカメラ等を組合わせたりすることはできない。また、ティーチングヘッドも、接眼レンズを横に増設する、いわゆるサイドパイサイドタイプしかなく、広い場所を必要とする。

【0016】この発明はこのような事情に鑑みてなされたもので、その課題はいわゆる普及型の倒立顕微鏡において、容易にTVアダプタやカメラ等を組み合わせることができる倒立顕微鏡を提供することである。

[0017]

【課題を解決するための手段】上記課題を解決するために請求項1に記載の発明は、顕微鏡本体と、前記顕微鏡本体の照明支柱に設けられた透過照明手段と、前記顕微鏡本体のステージ下方に設けられたフィルタブロック

と、前記フィルタブロックを介して標本に照明光を投光する照明投光ユニットを着脱可能な装着部とを備える倒立顕微鏡において、前記照明投光ユニットに代えて前記装着部に装着され、前記標本からの光を受光する受光手段を備えていることを特徴とする。

【0018】受光手段を照明投光ユニットに代えて装着 部に装着したとき、フィルタブロックで反射された標本 からの光は受光手段で受光され、電気信号に変換され る。

【0019】請求項2に記載の発明は、請求項1に記載の倒立顕微鏡において、前記受光手段は中空の筒と、前記中空の筒に内蔵される結像レンズと撮像案子とを備えることを特徴とする。

【0020】受光手段は中空の筒と、中空の筒に内蔵される結像レンズと撮像素子とを備えるので、中空の筒を装着部に装着したとき、フィルタブロックで反射された標本からの光は結像レンズで形成される一次像面に配置された撮像素子に集光する。

【0021】請求項3に記載の発明は、請求項1に記載の倒立顕微鏡において、前記フィルタブロックに、ハーフミラー又はハーフブリズムが配置されていることを特徴とする。

【0022】フィルタブロックに、ハーフミラー又はハーフプリズムが配置されているので、標本からの光はハーフミラー又はハーフプリズムで反射率に応じて分割され、接眼レンズと受光手段との両方に導かれる。

【0023】請求項4に記載の発明は、請求項1に記載の倒立顕微鏡において、前記フィルタブロックにダイクロイックミラーが配置されていることを特徴とする。

【0024】フィルタブロックにダイクロイックミラーが配置されているので、標本からの光はダイクロイックミラーの波長特性に応じて選択され、接眼レンズと受光手段との両方に導かれる。

【0025】請求項5に記載の発明は、顕微鏡本体と、前記顕微鏡本体の照明支柱に設けられた透過照明手段と、前記顕微鏡本体のステージ下方に設けられたフィルタブロックと、前記フィルタブロックを介して標本に照明光を投光する照明投光ユニットを着脱可能な装着部とを備える倒立顕微鏡において、前記照明投光ユニットに代えて前記装着部に装着され、前記標本の観察像を形成する観察手段を備えていることを特徴とする。

【0026】観察手段を照明投光ユニットに代えて装着部に装着したとき、フィルタブロックで反射された標本からの光は観察手段に導かれる。尚、フィルタブロックとは、通常、蛍光観察を行なう場合に顕微鏡光路に配置される、励起フィルタ、ダイクロイックミラー、及び吸収フィルタを保持するブロック形状の保持部材のことを言うが、本明細售において述べる「フィルタブロック」とはこれに限らず、例えば、励起フィルタ、吸収フィルタを備えておらず、ダイクロイックミラーの代わりに例

えばハーフミラーや全反射ミラー等が設けられているような、特別なブロックも含むものである。具体的には、標本から接眼レンズまでの顕微鏡光路から分離した光路を形成するための各種ミラーを保持するブロック形状の保持部材として定義する。

[0027]

【発明の実施の形態】以下、この発明の実施の形態を図面に基づいて説明する。

【0028】図1はこの発明の第1実施形態に係る倒立 顕微鏡の側面図であり、一部を破断して示している。

【0029】この倒立顕微鏡は、顕微鏡ボディ(顕微鏡本体)10と、照明支柱20と、ステージ30と、対物レンズ40と、フィルタブロック50と、装着部260と、鏡筒70を備える。

【0030】顕微鏡ボディ10にはベース11の一端に 形成された照明支柱20が設けられている。

【0031】照明支柱20は垂直部21とこの垂直部21の上端から水平方向へ延びる水平部22とで構成される。垂直部21の上端の背面側にはランプハウス23が設けられ、水平部22には取付部24を介してコンデンサレンズ25が設けられている。

【0032】ランプハウス23には例えばハロゲンランプが収容される。

【0033】照明支柱20、ランプハウス23、ミラー26及びコンデンサレンズ25で透過照明光学系(透過 照明手段)80が構成される。

【0034】また、ペース11の他端には鏡筒70が設けられ、鏡筒70には対物レンズ40によって生じた像を肉眼で観察できるように拡大する接眼レンズ71が設けられている。

【0035】ベース11にはL字形状の上下動部15が 設けられ、この上下動部15は顕微鏡ボディ10の側面 に設けられた焦準ハンドル16の操作によって上下方向 に移動できる。

【0036】上下動部15にはレボルバ41が装着され、レボルバ41には異なる種類の複数の対物レンズ40が取り付けられている。なお、対物レンズ40としては無限遠系対物レンズが用いられる。

【0037】対物レンズ40の上方には標本5を載置したステージ30が設けられ、ステージ30の両端はベース11と支持部31とに固定されている。

【0038】対物レンズ40の下方(ステージ30下方)にはフィルタブロック50が設けられている。

【0039】フィルタブロック50はハーフミラー52を保持する。このフィルタブロック50は可動部53に保持されており、可動部53は顕微鏡の光軸に直交する方向(図1の紙面に垂直な方向)に移動可能にホルダ51に保持されている。可動部53を移動させることにより、フィルタブロック50を異なる種類の光学素子を保持するフィルタブロックに変更することができる。

【0040】装着部260にはフィルタブロック50で 分岐された標本5からの光を外部へ導く中空の筒61が 装着されている。

【0041】中空の筒61には、標本5からの光を集光する結像レンズ (第2対物レンズ) 62と、この受光した光を電気信号に変換するCCD撮像素子63 aを有するCCDカメラ63等とが収容されている。

【0042】CCD撮像索子63aは結像レンズ62で 形成される一次像面に配置され、CCDカメラ63はT Vモニタ(図示せず)に接続されている。

【0043】なお、中空の筒61、結像レンズ62及び 撮像素子63a(CCDカメラ63)で受光手段が構成 される。また、結像レンズ62の焦点距離は顕微鏡ボディ10に内蔵される第2対物レンズ12の焦点距離と独 立に設定できる。

【0044】透過照明観察の場合、ランプハウス23から出射された光はミラー26、コンデンサレンズ25を通じて標本5へ入射する。標本5を透過した光は対物レンズ40を通り、ハーフミラー52に達する。

【0045】ハーフミラー52で反射された光はミラーブロック53を透過し、結像レンズ62によってCCD 撮像索子63aに結像し、光量に応じた電気信号に変換されてTVモニタに出力される。

【0046】一方、ハーフミラー52を透過した顕微鏡像は顕微鏡ボディ10に内蔵される第2対物レンズ12等の光学系を介して接眼レンズ71に導かれる。本実施形態の装着部260は、図4に示す装着部260と同じ構成である。従って、本実施形態の倒立顕微鏡は、筒61を取り外して図4に示す照明投光ユニット261を装着することも可能である。この時、フィルタブロックとして図4に示すフィルタブロック250を可動部53に取り付けておけば、簡単にフィルタブロックを交換することができ、落射照明観察を行なうことができる。すなわち、必要最小限の構成により、必要に応じた観察を適宜行なうことができる。

【0047】この第1実施形態に係る倒立顕微鏡によれば、接眼レンズ71を通して顕微鏡像を肉眼観察できるとともに、CCDカメラ63 に接続されたTVモニタによっても顕微鏡像の観察や測光を行うことができる。【0048】また、焦点距離の異なる結像レンズ62を備える中空の筒61を複数用意することによって、ユーザは目的に応じて観察倍率を容易に変更することができる。

【0049】なお、結像レンズ62をズームレンズで構成すれば、CCDカメラ63による顕微鏡像の倍率を連続的に変えることができる。

【0050】図2はこの発明の第2実施形態に係る倒立 顕微鏡の側面図であり、第1実施形態と同一部分には同 一符号を付してその説明を省略する。

【0051】この第2実施形態は、フィルタブロック1

50にハーフミラー152と結像レンズ162とを内蔵 した点で第1実施形態と異なる。

【0052】なお、中空の筒61内にはCCD撮像案子63a(CCDカメラ63)が結像レンズ162の焦点位置に配置されている。

【0053】この第2実施形態に係る倒立顕微鏡によれば、第1実施形態と同様に接眼レンズ71を通して顕微鏡像を肉眼観察できるとともに、CCDカメラ63に接続されたTVモニタによっても顕微鏡像の観察を行うことができる。

【0054】図3はこの発明の第3実施形態に係る倒立 顕微鏡の側面図であり、第1実施形態と同一部分には同 一符号を付してその説明を省略する。

【0055】この第3実施形態は中空の筒61にCCDカメラ63を収容する代わりに、ティーチングヘッド(補助鏡筒)(観察手段)90を組合わせた点で第1実施形態と異なる。

【0056】この第3実施形態によれば、ティーチング ヘッド90を顕微鏡の後側に配置できるため、広いスペースを必要とせず、複数人での観察が可能となる。

【0057】なお、上記各実施形態において、フィルタブロック50,150を対物レンズ40の光軸上から外したときには100%の光が接眼レンズ71に導かれる。

【0058】また、ハーフミラー52,152を全反射 ミラーとしたときには、このハーフミラー52,152 を備えるフィルタブロック50,150を光路上に挿入 することによって100%の光をCCDカメラ63やティーチングヘッド90に導くことができる。

【0059】更に、フィルタブロック50,150にダイクロイックミラーを設けることで、標本5からの光はダイクロイックミラーの波長特性に応じて選択され、波長特性に応じた光量を接眼レンズ71とCCDカメラ63との両方に導くことができる。 また、上記各実施形態においてはフィルタブロック50,150にハーフミラー52,152の代わりに、例えばハーフブリズムを用いてもよい。【0060】更に、上記実施形態では対物レンズ40としては無限違系対物レンズが用いたが、有限系対物レンズを用いるとともに一点鎖線で示すように(図1)凹レンズ42をレボルバ40に設け、有限系対物レンズとしてもよい。このときでも無限系対物レンズを用いたときと同様の効果を発揮することができる。

[0061]

【発明の効果】以上に説明したように請求項1記載の発明によれば、受光手段を照明投光ユニットに代えて装着部に装着したとき、フィルタブロックで反射された標本からの光を受光手段で受光し、電気信号に変換する。したがって、接眼レンズ以外に観察像を出力できない倒立

顕微鏡であっても、受光手段を照明投光ユニットに装着するだけで、顕微鏡像の観察や光量の検出を行うことができる。

【0062】請求項·2記載の発明によれば、中空の筒を 装着部に装着したとき、フィルタブロックで反射された 標本からの光は結像レンズで形成される一次像面に配置 された撮像索子に集光する。

【0063】請求項3記載の発明によれば、標本からの 光はハーフミラー又はハーフプリズムで反射率に応じて 分割され、分割比に応じた光量を接眼レンズと受光手段 との両方に導く。

【0064】請求項4記載の発明によれば、標本からの 光はダイクロイックミラーの波長特性に応じて選択さ れ、波長特性に応じた光量を接眼レンズと受光手段との 両方に導く。

【0065】請求項5記載の発明によれば、観察手段を 照明投光ユニットに代えて装着部に装着したとき、フィ ルタブロックで反射された標本からの光を観察手段で受 光できる。したがって、接眼レンズ以外に観察像を出力 できない倒立顕微鏡であっても、観察手段を照明投光ユ ニットに装着するだけで、顕微鏡像の観察を行うことが できる。

【図面の簡単な説明】

【図1】図1はこの発明の第1実施形態に係る倒立顕微鏡の側面図である。

【図2】図2はこの発明の第2実施形態に係る倒立顕微鏡の側面図である。

【図3】図3はこの発明の第3実施形態に係る倒立顕微鏡の側面図である。

【図4】図4は従来の倒立顕微鏡の側面図である。 【符号の説明】

5 · 標本

- 10 顕微鏡ボディ(顕微鏡本体)
- 20 照明支柱
- 30 ステージ
- 50 フィルタプロック
- 52 ハーフミラー
- 61 中空の筒
- 62 結像レンズ
- 63a 撮像案子
- 80 透過照明系(透過照明手段)
- 90ティーチングヘッド(観察手段)

【図1】

[図2]

【図4】

[図3]

31

