0

Spinning up A PILOS PLANT

catalyst A on B? Feedstock Reactor = Response = yield (% max conversion)

Goal: find best operating conditions.

We consider all 3 factors.
What else are we ignoring?
- Pressure
- flow rate (pesidence time)

Asking only if catalyst A better than B requires
-fixing all other variables
-ignoring interactions b/w variables.

FACTURIAL DESIGNS OFAT = one factor at a time 1. OFAT assumes all other factors don't matter 2. OFAT does not generalize (ie. not nobust) Factor = independent variable mutti-factorial = >1 factor Response = output under study = dependent variable We won't cover multi-response During Experiment, factors are set at levels Facus on 2-level to start - Smaller Experiments - quant & qual variables handled the same 2-level factors A, B, C, ... have levels +1 = + = "high" -1 = - = "low"For continuous/quant factors, - Cevel is usually the smaller number. For qual factors, Cevels are aristrary
- If we have a "baseline" usually
we set this -. (wt, no done)

		FAT O	lesign	Temp	prature T(oc)	160	180
		4	0		entration C(070)	20	40
7		Co	ded units	Cab	alyst K	A	B
		T	C	K	yield (y)		
			_		60		
dust		+		ー	72		
mat	nut "	7 -	+	- which	54	August 1	n = 12 to 11 to 12 to 1
		-	-	+ 3	52		
			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.5			
		T(°C)	C(90)	K(AOUB)	girld (%)		
		160	20	A	60	-234025	
plann	ng	180	20	A	72	3 30	
mat	pur	3 160	40	A	54		
		160	20	B	52		
	1						

Replicating the -, -, - would add a run but not a treatment.

Problem w/ OFAT:

- Everything compared to baseline,

but what if there is no baseline?

- New process

- Genetic variants

Table 5.2. A 2³ Factorial Design: Pilot Plant Investigation

/		107		Soul 5	8 - 5	Jeso Cre	CMM	1 200			COMITORIA	TO TOPAT	Called a	Down In I	Summ is								
The data w	O	o ~	7 0	N U	n 42	<u>.</u>) K	·		Run Number					,								
ere from a real exan	180	160	180	160	180	160	180	160		Temperature, T (°C)	+	1	+	I	+	1 .	- 1	T	1	160 180	+	Temperature, T (°C)	
The data were from a real example that has, however, been considerably si	40	40	20	20	40	40	20	20	Operational Levels of Factors	Concentration, C (%)	+	+	PARAME.	1	+ -	+	įį	С	Coded Units of Factors	20 40	+	Concentration, C (%)	
, been considerabl	В	В	В	В	A	A	A	A	of Factors	Catalyst, K (A or B)	+	+	+	+	1	l :		K	rs	A B	+	Catalyst, K	
The data were from a real example that has, however, been considerably simplified to allow us to	80	45	83	52	68	54	72	60		Yield, y (%)	80	45	83	>	ON 1	\$4 \$4	60	from Duplicate Runs	Average Yield v	2 lewels	"cooled units"	3 tactures	>
		(Syconomy)	- Company		Morrison) os mino	•	ئ ر	(SXCMINI) d	250	Mossim			Sesian		ر			2		

Figure 5.3. Display of the results from a pilot plant investigation employing a 2^3 factorial design to study the effects of T (temperature), C (concentration), and K (catalyst) on yield: (a) the 2^3 factorial with runs identified in standard order; (b) observed percent yields; (c) 12 treatment comparisons.

Optimizing W/ OFAT:

max y = 72 @ T+, K-, C-

max y = 83 @ T+, K+, C-

This gets worse with more factors

add F: flow nate

P: pressure

F = Runs in OFAT

Calculating Main Effects

OFAT

FOR reactor problem

$$ME(T) = \overline{y}(T+) - control$$

$$= 72 - 60 = 12$$

$$ME(C) = y(C+) - control =$$

$$= 54 - 60 = -6$$

$$m_{E}(K) = y(K+) - control$$

$$= 52 - 60 = -8$$

Switching T from - to + increased yield by 12 %.

Switching C from - to + decreased yield by 6%.

Issues

- Each effect depends heavily on the + case. Replication is Essential!

- Findings are not Robust

- Data suggest we Run at high T.

When T=+, how should we set C & K?

All our data for C+K were collected

when T=-!

OFAT "recommends" T=+, C=-, K=-. y(T+, C-, K-) = 72.

FACTORIAL DESIGN

ME(A) = Y(A+) - Y(A-)

all other factor settings

FOR Reactor problem $ME(T) = \overline{Y}(T+) - \overline{Y}(T-)$

= 72+68+83+80 60+54+52+45 = Z3

m=(c) = y(c+) - y(c-)

= 54+68+45+80 60+72+52+83. _ -5

= 52+83+45+80 _ 60+72+54+68 = 1.5

ME FACTORIAL

FACTOR ME OFAT 23

1.5

FACTORIAL Suggests T+, C-, K+, Y(T+, C-, K+) = 83

Why did OFAT fail?

Maybe: we didn't explore enough Actually: The variables interact

Remember: OFAT gave the wrong sign for ME(K); if it were covered, it would have suggested T+, C-, K+ like the factorial.

IF T interacts with K, then ME(T) should depend on the level of K, and vice versa.

INT(TK) = ME(T/K+)-ME(T/K-)

Conditional main effects

(CME)

ME(T|K+) = ME(T) given K=+ ME(T) conditioned on K=+

 $K = + \ln \tau \text{ trung } 5 - 8, 50$ $ME(T|K+) = \frac{1}{2}6 + \frac{1}{2}8 - \frac{1}{2}5 + \frac{1}{2}7$ $= \frac{83 + 80}{2} = \frac{52 + 45}{2}$ $= \frac{81.5 - 48.5}{2} = \frac{33}{2}$

Using Runs 1-4 (K-)
$$ME(T|K-) = 92+94 91+93$$

$$= 72+68 60+54$$

$$= 70-57 = 1.3$$

: INT(TK) =
$$ME(T|K+) - ME(T|K-)$$

= $32 - 20$
= $12(33-13) = 10$
The effect of moving T from $-$ to $+$ 15 greater
when $K=+$ (10°70 more yield)

Symmetry

$$INT(TK) = \frac{1}{2} [ME(T|K+) - ME(T|K-)]$$

$$= \frac{1}{4} (\frac{1}{4}6 + \frac{1}{4}8 - \frac{1}{4}5 - \frac{1}{4}7 + \frac{1}{4}7 +$$

Interactions as a contrast

INT(TC) =
$$\frac{1}{9}(TC+) - \frac{1}{9}(TC-)$$

= $\frac{1}{9}$ + $\frac{1}{9}$

INT(CK) =
$$\overline{y}(CK+) - \overline{y}(CK-)$$

= $y_1 + y_2 + y_3 + y_8$ $y_3 + y_4 + y_5 + y_6$
 4 4
 $-60+72+45+80$ $54+68+52+83$
 4 4
= $\frac{1}{4}(257-257) = 0$

Couldn't all 3 factors interact?

INT(TCK)={\int(TC|K+) - INT(TC|K-)\} =\frac{1}{2}\INT(TK|C+) - Int(TK|C-)\} =\frac{1}{2}\INT(CK|T+) - Int(CK|T-)\}

07, using the TCK centrast.

INT(TCK) = 4 (yz+y3+y5+y8-y1-y4-y6-y7)

= 4 (72+54+52+80-60-68-83-45)

= 2/4 = 0.5

2-way interactions (2WI) are not common, so 3WI are Even Marer.

Ī		Contrast	Effect Size	
	Marin (T	23	What matters most?
	effects ?	C	-5	Definitely
	30 (K	11.5	T, C, TK
				Probably
		TC	1.5	K,TC
	ZWI	TK	10	Unlikely
		CK	0	CK, TCK
-				

3WI TCK

0.5

Table 5.6. A 2³ Factorial Design to Study Effect of A (Length of Specimen), B (Amplitude of Load Cycle), and C (Load) in Investigation of Strength of Yarn

			Levels					
	Factor		+					
A	Length, m		250	350				
В	Amplitude	, mm	8	10				
C	Load, g		40	50				
Run		Factors		Durance				
Number	A	В	C	y				
1		_		28				
2	+	_	-	36				
3	_	+	_	22				
4	+	+	_	31				
5			+	25				
6	+	_	+	33				
7		+	+	19				
8	+	+	+	26				

mean	27.5		Since only ME are
A	8	*	significant, optimum
B	-6	*	significant, optimum should be at
C	-3.5	*	A+, B-, C-
AB	0		· Ed. 1.
AC	-0.5		More difficult to
BC	-0.5		More difficult to decipher w/ interactions
ABC	-0.5		

Hidden Replication

			1 2500						
Run	T	C	K					K	,
1	_	-	_			_)==
7	+	-			3		+	_	1 22 in
3		+	_	11.55-31	5			+	CK
4	+	+			7	!	+	+	1
5		_	+		2				
6	+	_	+		4	+	+		7_
7	· ·	+	+		6	+		+	2 in
8	+	+	+	100000000000000000000000000000000000000	8	+	+	+	CK
									J. State Sta

- Each effect (ME or INT) 15 a contrast

covolving all 8 runs.

- In OFAT Each effect contrasts 2 runs.

- Facturials have "hidden replication"

Why are factorials 1706ust? $ME(K) = \overline{y}(K+) - \overline{y}(K-)$

			K	A			
Run	T	C	K	Run	T	0	K
5	-		} +	1 '			-
6	+	_	1+	2)	+	_	-
7	-	+	+	3		+	1
8	+	+	; +	4	+	+	-
			0 1	0 1		^	

for T+C!