AeroFit Study

April 3, 2024

1 AeroFit Case Study

1.1 Initial analysis of the data set

```
[1]: import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
[2]: df = pd.read_csv('aerofit_treadmill.csv')
    df.head(10)
                                                          Usage
[3]:
       Product
                      Gender
                               Education MaritalStatus
                                                                  Fitness
                                                                                    Miles
                 Age
                                                                            Income
         KP281
                  18
                        Male
                                       14
                                                  Single
                                                               3
                                                                             29562
     1
         KP281
                  19
                        Male
                                       15
                                                  Single
                                                               2
                                                                        3
                                                                             31836
                                                                                        75
     2
         KP281
                  19
                     Female
                                       14
                                              Partnered
                                                               4
                                                                        3
                                                                             30699
                                                                                        66
     3
         KP281
                  19
                        Male
                                       12
                                                  Single
                                                               3
                                                                        3
                                                                             32973
                                                                                        85
     4
         KP281
                  20
                        Male
                                       13
                                              Partnered
                                                               4
                                                                        2
                                                                             35247
                                                                                        47
     5
         KP281
                  20
                      Female
                                       14
                                              Partnered
                                                               3
                                                                        3
                                                                             32973
                                                                                        66
                                                               3
     6
         KP281
                     Female
                                              Partnered
                                                                        3
                                                                             35247
                                                                                        75
                  21
                                       14
     7
                                                               3
         KP281
                  21
                        Male
                                       13
                                                  Single
                                                                        3
                                                                             32973
                                                                                        85
                                                               5
     8
         KP281
                  21
                        Male
                                       15
                                                  Single
                                                                             35247
                                                                                       141
     9
         KP281
                  21 Female
                                       15
                                              Partnered
                                                               2
                                                                             37521
                                                                                        85
```

1.1.1 Data types of all the columns

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object

5 Usage 180 non-null int64 6 Fitness 180 non-null int64 7 Income 180 non-null int64 8 Miles 180 non-null int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

1.1.2 Shape of Data Frame

[5]: df.shape

[5]: (180, 9)

1.1.3 Checking missing values if any

[6]: df.isnull().any()

[6]: Product False Age False False Gender Education False MaritalStatus False Usage False Fitness False Income False Miles False

dtype: bool

count

unique

top

freq

[7]: df.describe(include = "all")

180.000000

NaN

NaN

NaN

[7]:		Product	Age	Gender	Education	MaritalStatus	Usage	_
	count	180	180.000000	180	180.000000	180	180.000000	
	unique	3	NaN	2	NaN	2	NaN	
	top	KP281	NaN	Male	NaN	Partnered	NaN	
	freq	80	NaN	104	NaN	107	NaN	
	mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	
	std	NaN	6.943498	NaN	1.617055	NaN	1.084797	
	min	NaN	18.000000	NaN	12.000000	NaN	2.000000	
	25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	
	50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	
	75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	
n	max	NaN	50.000000	NaN	21.000000	NaN	7.000000	
		Fitn	ess	Income	Miles			

180.000000

 ${\tt NaN}$

 ${\tt NaN}$

NaN

180.000000

NaN

NaN

NaN

```
3.311111
                      53719.577778
                                     103.194444
mean
          0.958869
                      16506.684226
                                      51.863605
std
min
          1.000000
                      29562.000000
                                      21.000000
25%
          3.000000
                      44058.750000
                                      66.000000
50%
          3.000000
                      50596.500000
                                      94.000000
75%
          4.000000
                      58668.000000
                                     114.750000
          5.000000
                     104581.000000
max
                                     360.000000
```

- There are no missing values in the dataset.
- There are 3 unique products in the dataset.
- KP281 is the most frequent product.
- Minimum & Maximum age of the customer is 18~&~50
- Mean is 28.79 and 75% of people have age less than or equal to 33.
- Out of 180 data points, 104 are of Male gender and rest are the female.
- Standard deviation for Income & Miles is very high. These variables might have outliers in it.

1.2 Detecting outliers

```
[8]: fig,axis = plt.subplots(nrows=3, ncols=2, figsize=(11, 10))
sns.boxplot(data=df, x="Age", ax =axis[0,0])
sns.boxplot(data=df, x="Education", ax =axis[0,1])
sns.boxplot(data=df, x="Usage", ax=axis[1,0])
sns.boxplot(data=df, x="Fitness", ax=axis[1,1])
sns.boxplot(data=df, x="Income", ax=axis[2,0])
sns.boxplot(data=df, x="Miles", ax=axis[2,1])
```

[8]: <Axes: xlabel='Miles'>

Age and education has few outliers

Income and miles have more outliers

1.3 Effects of features like Gender and Marital status on purchases

1.3.1 Relationship between the categorical variables and the output variables

```
[9]: fig, axis = plt.subplots(1,3, figsize=(14,5))
sns.countplot(data=df, x='Product', ax=axis[0])
sns.countplot(data=df, x='Gender', ax=axis[1])
sns.countplot(data=df, x='MaritalStatus', ax=axis[2])
```

[9]: <Axes: xlabel='MaritalStatus', ylabel='count'>

KP281 is most frequently purchased product

Men are more inclined to buy fitness equipment

Married couples are more likely to buy fitness equipment

1.3.2 Relationship between continuous variables and the output variables

```
[10]: x_axis = df['Age']
    fig, axis = plt.subplots(2,2, figsize=(11,8))
    sns.scatterplot(data=df, x="Age", y="Income", ax=axis[0, 0] )
    sns.scatterplot(data=df, x="Age", y="Miles", ax=axis[0, 1] )
    sns.scatterplot(data=df, x="Fitness", y="Usage", ax=axis[1, 0] )
    sns.scatterplot(data=df, x="Fitness", y="Miles", ax=axis[1, 1] )
```

[10]: <Axes: xlabel='Fitness', ylabel='Miles'>

1.4 Representing the Probability

1.4.1 Marginal probability of types of product sold

```
[11]: product_sold = pd.crosstab(index=df['Product'], columns='percentage')
  total_sold = product_sold['percentage'].sum()
  marginal_probability = (product_sold / total_sold) * 100
  marginal_probability
```

- [11]: col_0 percentage Product KP281 44.44444 KP481 33.333333 KP781 22.22222
 - KP281 was bought by 44.44% of people
 - KP481 was bought by 33.33% of people
 - KP781 was bought by 22.22% of people

1.4.2 Probaility of purchase based on other criterias

```
[12]: Gender = pd.crosstab(index=df['Gender'], columns='percentage')
  total_sold = Gender['percentage'].sum()
  percentage = (Gender / total_sold) * 100
  percentage
```

57.77% customers are Male and Feamle are other 42.22%

```
[13]: Martial_status = pd.crosstab(index=df['MaritalStatus'], columns='percentage')
  total_sold = Martial_status ['percentage'].sum()
  percentage = (Martial_status / total_sold) * 100
  percentage
```

59.44% of the customers are married and single people makeup the other 40.55%

1.4.3 Conditional probability

```
[14]: Gender
                Female
                             Male
                                        All Female_Conditionl_P Male_Conditionl_P
     Product
     KP281
              0.222222 0.222222 0.444444
                                                        0.526316
                                                                           0.384615
     KP481
              0.161111 0.172222 0.333333
                                                        0.381579
                                                                           0.298077
     KP781
              0.038889 0.183333 0.222222
                                                        0.092105
                                                                           0.317308
      All
              0.42222  0.577778  1.000000
                                                        1.000000
                                                                           1.000000
```

The probability of buying the following porgucts given they are Feamle are probability to buy: KP281 = 52.63% KP481 = 38.15% KP781 = 9.21%

The probability of buying the following porgucts given they are Male are probability to buy: KP281 = 38.46% KP481 = 29.80% KP781 = 31.71%

This shows Men are less biased towards the model of product and Women prefer the KP281 model.

1.5 Correlation among different factors

```
[15]: correlation = df.corr(numeric_only=True)
   plt.figure(figsize=(10, 10))
   sns.heatmap(correlation, annot=True, cmap='flare')
   plt.title('Correlation Matrix')
   plt.show()
```


Some of the highly correlated data are: - Miles & Fitness - Miles & Usage - Usage & Fitness -

1.6 Customer Profiling and recomendation

```
[16]: #Age Distribution
      product_df = df[df['Product'] == 'KP281']
      plt.figure(figsize=(10, 5))
      sns.histplot(product_df['Age'], bins=20, kde=True, color='skyblue')
      plt.title('Age Distribution for Product KP281')
      plt.xlabel('Age')
      plt.ylabel('Frequency')
      plt.show()
      #Gender distribution
      plt.figure(figsize=(6, 6))
      product_df['Gender'].value_counts().plot(kind='pie', autopct='%1.1f%%',_

→colors=['lightblue', 'lightgreen'])
      plt.title('Gender distribution for Product KP281')
      plt.ylabel('')
      plt.show()
      #Income distribution
      plt.figure(figsize=(10, 5))
      sns.histplot(product_df['Income'], bins=20, kde=True, color='salmon')
      plt.title('Income distribution for Product KP281')
      plt.xlabel('Income')
      plt.ylabel('Frequency')
      plt.show()
```


Gender distribution for Product KP281


```
[17]: #Age Distribution
      product_df = df[df['Product'] == 'KP481']
      plt.figure(figsize=(10, 5))
      sns.histplot(product_df['Age'], bins=20, kde=True, color='skyblue')
      plt.title('Age Distribution for Product KP481')
      plt.xlabel('Age')
      plt.ylabel('Frequency')
      plt.show()
      #Gender distribution
      plt.figure(figsize=(6, 6))
      product_df['Gender'].value_counts().plot(kind='pie', autopct='%1.1f%%',__
       ⇔colors=['lightblue', 'lightgreen'])
      plt.title('Gender distribution for Product KP481')
      plt.ylabel('')
      plt.show()
      #Income distribution
      plt.figure(figsize=(10, 5))
      sns.histplot(product_df['Income'], bins=20, kde=True, color='salmon')
      plt.title('Income distribution for Product KP481')
      plt.xlabel('Income')
      plt.ylabel('Frequency')
      plt.show()
```


Gender distribution for Product KP481


```
[18]: #Age Distribution
      product_df = df[df['Product'] == 'KP781']
      plt.figure(figsize=(10, 5))
      sns.histplot(product_df['Age'], bins=20, kde=True, color='skyblue')
      plt.title('Age Distribution for Product KP781')
      plt.xlabel('Age')
      plt.ylabel('Frequency')
      plt.show()
      #Gender distribution
      plt.figure(figsize=(6, 6))
      product_df['Gender'].value_counts().plot(kind='pie', autopct='%1.1f%%',__

¬colors=['lightblue', 'lightgreen'])
      plt.title('Gender distribution for Product KP781')
      plt.ylabel('')
      plt.show()
      #Income distribution
      plt.figure(figsize=(10, 5))
      sns.histplot(product_df['Income'], bins=20, kde=True, color='salmon')
      plt.title('Income distribution for Product KP781')
      plt.xlabel('Income')
      plt.ylabel('Frequency')
      plt.show()
```


Gender distribution for Product KP781

1.7 Recomendations

- Men are more likely to buy Fitness product so try marketing to women to expand your customer base.
- Married Coulples are more inclined to Fitness products so have target marketing to singles, this will help sales.
- KP281 is the most sold product across the board so focus on producing more KP281 to meet the demand.
- As the age increases the income also increases, hence older pople are more likely to buy more products.
- Women are more likly to buy the KP281 model and men dont particularly prefer a single model.
- Income is highly correlated with all other criterias like Fitness, Usage and Education.