Sensor Data-Driven Road Geometry Extraction and Correction

Soojung Hong

March 14. 2023

Map

Image credit: TomTom

Road Network Layers

Image credit: HERE Technologies

Data Collection for Road Network

Satellite (e.g NASA Landsat 8) or Aircraft

Aerial Image

Radar, Lidar, Image data collection

Vehicle location data (GPS data, Probe data)

Road Detection using Semantic Segmentation

Input remote sensing image

Label (Ground Truth)

Predicted Road by DNN

Prior art for deriving road geometry from probe (sensor) data

- K-means trajectory clustering
- Trajectory merging
- Kernel density Estimation (KDE)
- Principal Curves (using moving direction, vehicle speed, position data)

Lane center restoration from probe data

Re-think: Road geometry creation as Deblurring process

Road geometry extraction using DeblurGAN

Deblurred image example by DeblurGAN

Blurred Image

Deblurred Image by DeblurGAN

Sharp Image

✓ Performance measure :

SSIM: structural similarity index measure

FLOPs: floating point operations per second

Generative Adversarial Networks (GAN)

DeblurGAN ver1 architecture

Critic network D architecture of critic network is identical to PatchGAN

DeblurGAN ver2 architecture

DeblurGAN ver1 Loss Function

Loss function: combination of content loss and adversarial loss

$$L = \underbrace{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \mathop{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}$$

Wasserstein GAN - GP

- ✓ WGAN-GP improve stability during training model
- ✓ WGAN-GP is robust to the choice of generator architecture
- ✓ Loss function helps to generate higher quality result

"content" loss function: L1 or MAE loss, L2 or MSE loss on raw pixels. content loss can lead to the **blurry artifacts** on generated images

Instead, proposed **Perceptual loss** (a simple L2-loss,) but based on the difference of **the generated and target image CNN feature maps**

$$\mathcal{L}_X = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^S)_{x,y} - \phi_{i,j}(G_{\theta_G}(I^B))_{x,y})^2$$

Feature map by j-th convolution before ith maxpooling layer in VGG19 network

DeblurGAN ver2 Loss Function

$$L_G = 0.5 * L_p + 0.006 * L_X + 0.01 * L_{adv}$$

Pixel-space loss (simplest L1 or L2 distance)

Lp term was not included in ver 1

It helps correct color and texture distortions

Content loss

Again, using perceptual distance

(Euclidean loss on the VGG19 conv3 3 feature maps)

$$\mathcal{L}_X = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^S)_{x,y} - \phi_{i,j}(G_{\theta_G}(I^B))_{x,y})^2$$

Feature map by j-th convolution before ith maxpooling layer in VGG19 network

Relativistic GAN loss

$$L_D^{RaLSGAN} = \mathbb{E}_{x \sim p_{data}(x)} \left[(D(x) - \mathbb{E}_{z \sim p_z(z)} D(G(z)) - 1)^2 \right]$$
$$+ \mathbb{E}_{z \sim p_z(z)} \left[(D(G(z)) - \mathbb{E}_{x \sim p_{data}(x)} D(x) + 1)^2 \right]$$

- ✓ notably faster
- ✓ more stable compared to WGAN-GP objective
- empirically the generated results possess higher perceptual quality and overall sharper outputs

Evaluation Metric (quality metric)

PSNR (Peak Signal to Noise ratio)

$$PSNR = 10 \cdot \log_{10} \left(\frac{MAX_I^2}{MSE} \right)$$

$$= 20 \cdot \log_{10} \left(\frac{MAX_I}{\sqrt{MSE}} \right)$$

$$= 20 \cdot \log_{10} \left(\frac{MAX_I}{\sqrt{MSE}} \right)$$

$$= 20 \cdot \log_{10} (MAX_I) - 10 \cdot \log_{10} (MSE)$$
power of distorting noise

MAX_f is the maximum signal value that exists in our original "known to be good" image

✓ strictly on numeric comparison and does not actually take into
account any level of biological factors of the human vision system

Original SSIM=1

PSNR=26.547 SSIM=0.988

PSNR=26.547 SSIM=0.840

PSNR=26.547 SSIM=0.694

SSIM (similarity structure Index measure)

$$SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\gamma}$$

- ✓ SSIM is more perceptual metric
- SSIM is a newer measurement tool based on three factors (i.e. luminance, contrast, and structure to better suit the workings of the human visual system)

10

Performance comparison

Model	PSNR	SSIM
DeblurGAN ver1	21.75	0.903
DeblurGAN ver2	23.56	0.9217

Missing or Wrong geometry

Why? Hint

Road geometry correction by Image Inpainting model

Image Inpainting Methods

Ground Truth Corrupted Ours

DeepFill v1 (Generative Image Inpainting with contextual attention) 2018

Context Encoder (1st GAN-based inpainting, 2016)

(Globally and Locally Consistent Image Completion) 2017 DeepFill v2 (Free form image inpainting with Gated Convolution)

Model Enhancement: From GLCIC To GLCRC+L

Globally and Locally
Consistent Image
Completion (GLCIC)

Globally and Locally Consistent Road map Completion (GLCRC)

Globally and Locally
Consistent Road map
Completion (GLCRC+L)

Vanilla (Baseline) Model

Architectural Improvement

Architectural Improvement &
Quality enhancement
with new loss functions

Globally and locally consistent image completion. ACM Trans. Graph., 36(4):107:1–107:14, 2017

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.

Architecture of GLCRC

GLCRC: Globally and Locally Consistent Road map Completion

Why deeper Dilated Convolution layers?

Loss function

☐ Loss Function for Generator : Avoiding blurriness via Perceptual loss

$$MSE = \frac{1}{MN} \sum_{n=0}^{M} \sum_{m=1}^{N} \left[\widehat{g}(n, m) - g(n, m) \right]^{2} \quad \Longrightarrow \quad \mathcal{L}_{P} = \frac{1}{W_{i,j} H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^{O})_{x,y} - \phi_{i,j}(G_{\theta_{G}}(I^{R}))_{x,y})^{2}$$

Loss Function for Discriminator: Increase the sharpness of line via Relativistic Least Square GAN loss

$$L = -\sum_{i \in I} \left(y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i) \right) \qquad \Longrightarrow \qquad \mathcal{L}_D^{\text{RaLSGAN}} = \mathbb{E}_{x \sim p_{\text{data}}} [(D(x) - \mathbb{E}_{z \sim p_z} D(G(z)) - 1)^2] \\ + \mathbb{E}_{z \sim p_z} [(D(G(z)) - \mathbb{E}_{x \sim p_{\text{data}}} D(x) + 1)^2].$$

two greyscale images which are flattened to 1d arrays: $y=(y_1,y_2,\ldots,y_n)$ and $\hat{y}=(\hat{y}_1,\hat{y}_2,\ldots,\hat{y}_n)$ with pixel values in [0,1]

Loss function improves quality

* Mask area is the target area to correct

Performance Metric

Method	Correctness	Completeness	Quality
Vanilla GLCIC	0.787	0.803	0.664
GLCRC	0.789	0.811	0.668
GLCRC+L (Ours)	0.795	0.831	0.671

Road type	Method	Correctness	Completeness	Quality
Straight	Vanilla GLCIC	0.787	0.786	0.649
	GLCRC	0.750	0.806	0.635
	GLCRC+L (Ours)	0.894	0.898	0.811
Curvy	Vanilla GLCIC	0.762	0.757	0.613
	GLCRC	0.723	0.789	0.606
	GLCRC+L (Ours)	0.754	0.766	0.613
T-junction	Vanilla GLCIC	0.775	0.788	0.642
	GLCRC	0.785	0.792	0.651
	GLCRC+L (Ours)	0.842	0.849	0.733
Intersection	Vanilla GLCIC	0.775	0.788	0.642
	GLCRC	0.785	0.792	0.651
	GLCRC+L (Ours)	0.786	0.793	0.652

$$\text{Correctness} = \frac{TP}{TP + FN}$$

$$Completeness = \frac{TP}{TP + FP}$$

$$Quality = \frac{TP}{TP + FN + FP}$$

Road Geometry Inpainting Results

Summary

- ☐ Road geometry derivation using probe data (GPS data)
- ☐ Geometry derivation via deblurring method (DeblurGAN)
- Post-processing for faulty road geometry correction using Image Inpainting
- ☐ GLCRC-L : Architectural and new loss adoption
- ☐ Single data source is not enough for road geometry derivation

Caveat: Research project (not applied in production, yet!)