Sprawozdanie

Geostatystyka ćw 7

KLASTERYZACJA DANYCH PRZESTRZENNYCH I CZASO-PRZESTRZENNYCH Natalia Gadocha 304165

Geoinformatyka II

I Klasteryzacja przestrzenna

1

sasq <- readRDS("C:/Users/natal/Desktop/sasquatch.rds")</pre>

2 summary(sasq)

```
C:/Users/natal/Desktop/
> summary(sasq)
Marked planar point pattern: 423 points
Average intensity 2.097156e-09 points per square unit
*Pattern contains duplicated points*
Coordinates are given to 1 decimal place i.e. rounded to the nearest multiple of 0.1 units
Mark variables: date, year, month
Summary:
        date
          :1990-05-03
 Min.
                               Y2004
                                         : 41
                                                              : 59
                                                    Sep
 1st Qu.:2000-04-30
                                Y2000
                                          : 36
                                                   Oct
                                                                56
 Median :2003-11-05
                                Y2002
                                                                 54
                                          : 30
                                                    Aug
          :2003-08-11
                                Y2005
                                          : 30
                                                    Jul
                                                              : 50
 Mean
  3rd Qu.:2007-11-02
                                Y2001
                                                    Nov
 Max. :2016-04-05
                                Y2008
                                         : 26
                                                                41
                                (other):234
                                                    (Other):120
window: polygonal boundary single connected closed polygon with 64 vertices enclosing rectangle: [368187.8, 764535.6] x [4644873, 5434933] units (396300 x 790100 units)
window area = 2.01702e+11 square units
Fraction of frame area: 0.644
```

3 plot(unmark(sasg))

Czy punkty są rozmieszczone regularnie, równomiernie czy grupują się przestrzennie?

Powyższe punkty nie układają się regularnie. Można zauważyć, że najwięcej znajduje się w środkowej części wyznaczonego obszaru. W miejscu tym jest wiele punktów, które na siebie wzajemnie nachodzą. W dolnej części natomiast występują sporadycznie, jest ich tam niewielka ilość.

unmark(sasq)

Dla bardziej dokładnej i rzetelnej odpowiedzi przeprowadziłam jeszcze test zgodności chi-kwadrat. Użyłam do tego komendy:

quadrat.test(sasq, alternative = "clustered") badając skupienie punktów. Jako tezę alternatywną przyjęłam,, iż punkty są skupione. Wynik jaki otrzymałam to:

Można dostrzec, że wartość p-value jest bardzo niewielka, a więc możemy odrzucić hipotezę zerową.

Nasze dane nie są jednorodnym procesem Poissona.

Możemy jednak po powyższych badaniach stwierdzić, że istnieje pewien rodzaj grupowania przestrzennego.

II Klasteryzacja czasowa

Czy liczba obserwacji wzrasta/ maleje? Czy zmienia się w ciągu roku, wykazując pewną sezonowość?

plot(sasq, which.marks = "date")

sasq

Na powyższym obrazie możemy prawdopodobnie dostrzec, iż w przeważającej części jest ilość okręgów odpowiadająca późniejszym latom. Znajdują się one głównie w środkowej części obszaru. Badanie to jest jednak zdecydowanie niewystarczające. Dokładność jego jest niewielka ze względu na mały rozmiar punktów dla wcześniejszych lat i nachodzenie się punktów na siebie.. Nie są one zatem dobrze widoczne, zwłaszcza jeżeli chodzi o środkową część.

hist(marks(sasq)\$date, "years", freq = TRUE)

Histogram of marks(sasq)\$date

Na powyższym histogramie widzimy, iż największa liczba pomiarów była jednak wykonana w latach 1999 - 2004. Najmniej pomiarów obserwujemy po 2014 roku. Jest ich zdecydowanie mniej niż na początku zbierania danych, czyli w okolicach początków lat dziewięćdziesiątych XX w. Ogólnie jednak widać, że ilość pomiarów początkowo lekko rośnie, później widać gwałtowne zwiększenie tych liczb, a następnie ponownie maleje.

5
plot(table(marks(sasq)\$month))

Na powyższym wykresie można dostrzec, iż największa ilość obserwacji ma miejsce na przełomie lata i jesieni (sierpień - październik). Najmniejsza natomiast jest dla miesięcy zimowych (grudzień - marzec). Począwszy od lutego widzimy też stopniowy wzrost liczby pomiarów. Największą miesięczną różnicą jest ta pomiędzy listopadem i grudniem.

6,7
sasq_by_month <- split(sasq, "month", un = TRUE)
plot(sasq_by_month)

sasq_by_month

III Klasteryzacja czaso-przestrzenna

Czy liczba obserwacji wzrasta/ maleje? Czy zmienia się w ciągu roku, wykazując pewną sezonowość?

9

Przygotowane dane:

Wyodrębnione współrzędne obserwacji w postaci macierzy: sasqXY <- as.matrix(coords(sasq))</p>

Rozmiar powstałej macierzy:

dim(sasqXY)

> dim(sasqxy) [1] 423 2

- Czas dla każdej obserwacji w postaci wektora sasq_t <- marks(sasq)\$date</p>
- Macierz określająca współrzędne okna sasq_Window <- as.matrix(as.data.frame(Window(sasq))) Rozmiar powstałej macierzy

- ➤ dodanie l dnia przed obserwacjami i l dnia po obserwacjach tplus <- range(sasq_t) + c(-1, 1)</p>
- ➤ Wektor s skanujący obszar od 100 m do 20 km co 400m oraz wektor tm skanujący obszar od 1 tygodnia do 31 tygodni co 14 dni

$$s \leftarrow seq(100, 20000, by = 400)$$

 $tm \leftarrow seq(7, 217, by = 14)$

10

 $ggplot(data.frame(sasq_sym), aes(x = t)) + geom_histogram(binwidth = 1e13, fill="white", col="red") + geom_vline(aes(xintercept = t0))$

Wynik interpretujemy przy pomocy testu Monte Carlo jak i wcześniej powstałych wykresów. Nasze uzyskane p wynosi 0,051, a więc możemy odrzucić hipotezę dotyczącą grupowania nieprzestrzenno - czasowego.