CS 3510 Section C: Design & Analysis of Algorithms

October 3rd 2023

HW 5: Dynamic Programming

YOUR NAME HERE Due: October 11th 2023

• Please type your solutions using LaTeX or any other software. Handwritten solutions will not be accepted.

• If we ask for a specific running time, a correct solution achieving it will receive full credit even if a faster solution exists. If no target running time is provided, faster solutions will earn more credit.

- 1.) (20 points) A monkey is organizing a banana heist. Every day that the monkey chooses to go into the store, he steals every single banana that day. Unfortunately, there are three problems:
 - 1. The number of bananas in stock changes from day to day.
 - 2. He can't go two days in a row, they might catch on.
 - 3. He can't go on both the first and the last day.¹

Fortunately, the monkey has the inventory sheet, and knows the number of bananas that will be available in the following days. The array $B = [b_1, ..., b_n]$ of positive integers tells us that on day i, there will be b_i bananas. Design a dynamic programming algorithm to compute the max number of bananas he can eat in n days.

Example:

Input: A = [5, 7, 8, 10, 9, 4, 2, 11, 6, 1]

Output: 33

Explanation: the monkey can steal 5 bananas on the 1st day, 8 on the 3rd day, 9 on the 5th day and 11 bananas on the 8th day. He chose to go on day 1 and not go on day 10.

Example:

Input: A = [3, 4, 3]

Output 4

Explanation: the monkey can steal 4 bananas on the 2nd day. He can't steal bananas on the first day and last day.

(a) Define the entries of your table in words. E.g. T[i] or T[i][j] is ...

Solution: T[i] is the maximum total number of bananas that our monkey can steal from days 1 to i.

(b) State recurrence for entries of the table in terms of smaller subproblems. Briefly explain in words why it is correct.

Solution: $T[i] = \max(T[i-1], T[i-2] + a_i)$

Since the monkey is looking for maximizing the sum of b_i on alternate days, as he cannot steal bananas on two consecutive days, we take the maximum from our DP table from the $(i-1)^{th}$ day or $(i-2)^{th}$ day plus the cookies he can buy today.

The base case for this problem is for T[0] = B[0] and $T[1] = \max(B[0], B[1])$.

(c) Write **pseudocode** for your algorithm to solve this problem.

¹He has to do community service on one of those days, for stealing bananas previously

Solution: Pseudo-code omitted, but it is required to make two calls to our problem to ensure we meet condition 3 (first and last day). We first call our function on B[0...n-1], and then B[1...n], and take the maximum result.

(d) Analyze the running time of your algorithm.

Solution: The runtime is $\mathcal{O}(n)$ as we are iterating over the size of the input array B.

2.) (20 points) You are given a integer n in base 10. Define a "step" as choosing a digit from n and subtracting it from n. You want to find the minimum number of steps required to reach 0.

Example: Given n = 17, the shortest sequence is $17 \rightarrow 10 \rightarrow 9 \rightarrow 0$ which takes 3 steps.

(a) Define the entries of your table in words. E.g. T[i] or T[i,j] is ...

Solution: T[i] represents the minimum number of steps to take i to 0.

(b) State recurrence for entries of the table in terms of smaller subproblems. Briefly explain in words why it is correct.

Solution: $T[i] = min_{d \in i}(T[i-d])$ where we iterate through all digits d of i. We start by computing the minimum amount of steps for smaller numbers, and then work our way up to n.

(c) Write **pseudocode** for your algorithm to solve this problem.

Solution: Pseudocode omitted.

(d) Analyze the running time of your algorithm.

Solution: $\mathcal{O}(10n) = \mathcal{O}(n)$.

3.) (20 points) You are given two strings X and Y, of length n and m respectively. You want to find the length of the longest common "substringquence" of these two strings, i.e., you want to find the length of the longest string that appears as a substring of X and a subsequence of Y.

Example:

If X = "helloworld" and Y = "longwayhome", you should return 4, since "lowo" is the longest string that appears as a substring of X and as a subsequence of Y.

(a) Define the entries of your table in words. E.g. T[i] or T[i,j] is ...

Solution: Define a 2-D table T where T[i][j] is the longest common substringquence of $X = [x_0, x_1, ..., x_{i-1}]$ (ending at and including X[i]) and $Y = [y_0, y_1, ..., y_{j-1}]$.

(b) State recurrence for entries of the table in terms of smaller subproblems. Briefly explain in words why it is correct.

Solution:

$$T[i][j] = \begin{cases} T[i-1][j-1] + 1, & \text{if } X[i] == Y[j] \\ T[i][j-1], & \text{else} \end{cases}$$
 (1)

for $0 \le i \le n-1$ and $0 \le j \le m-1$ where n is the length of X and m is the length of Y.

The base cases are:

$$T[i][0] = \begin{cases} 1, & \text{if } X[i] == Y[0] \text{ for } 0 \le i \le n-1\\ 0, & \text{else} \end{cases}$$
 (2)

$$T[0][j] = \begin{cases} 1, & \text{if } X[0] == Y[j] \text{ for } 1 \le j \le m-1 \\ T[0][j-1], & \text{else} \end{cases}$$
 (3)

(c) Write **pseudocode** for your algorithm to solve this problem.

Solution: Pseudo-code omitted.

(d) Analyze the running time of your algorithm.

Solution: Since we have two nested loops of size $\mathcal{O}(n)$ and $\mathcal{O}(m)$, and filling each entry of the table is $\mathcal{O}(1)$, we get $\mathcal{O}(n) * \mathcal{O}(1) + \mathcal{O}(m) * \mathcal{O}(1) + \mathcal{O}(m) * \mathcal{O}(n) = \mathcal{O}(mn)$

4.) (20 points) Suppose we have a list L containing k base strings. Given a string w of length n, determine if you can split up w into a sequence of base strings. Note that base strings may be re-used.

Example: Consider L = ["georgia", "tech"], and w = "georgiatechgeorgia". Your algorithm would return True. If w was "ttechgeorgia", the algorithm would return False.

(a) Define the entries of your table in words. E.g. T[i] or T[i,j] is ...

Solution: T[i] represents a boolean value that determines whether it is possible to split up s[1...i] using words in L.

(b) State recurrence for entries of the table in terms of smaller subproblems. Briefly explain in words why it is correct.

Solution: $T[i] = \bigvee_{a \in L} (s[i - len(a) + 1 \dots i] == a \wedge T[i - len(a)])$. Each time we calculate T[i] we iterate through words in L to check if it is the rightmost characters in s. If so, we need to check if the previous characters before the word can be split up, which is given by T[i - len(a)].

(c) Write **pseudocode** for your algorithm to solve this problem.

Solution: Pseudocode omitted.

(d) Analyze the running time of your algorithm.

Solution: $\mathcal{O}(nk)$.

5.) (20 points) We call a sequence of integers $a_1, ..., a_n$ noisy when the signs of the differences between two consecutive terms in the sequence strictly alternate between + and - (the difference is never zero). So the sequence either follows $a_1 < a_2 > a_3 < a_4 > ...$ or it follows $a_1 > a_2 < a_3 > a_4 < ...$ You are given an array of integers $A = [a_1, ..., a_n]$.

Design a dynamic programming algorithm to find the length of the longest noisy subsequence in A.

Example:

Input: A = [2, 4, -1, -5, -9, 7, 9, 0, 5, 5, -2]

Output: 7

Hint: a $1 \times n$ table will not be sufficient, but it doesn't have to be an $n \times n$ table!

(a) Define the entries of your table in words. E.g. T[i] or T[i,j] is ...

Solution: Assume the sequence $a_1, a_2, ..., a_n$. Define a 2D table of size T[n+1][2].

T[0][j] = the longest noisy subsequence ending at index i and last element is greater than its previous element.

T[1][j] = contains the longest noisy subsequence ending at index i and last element is smaller than its previous element.

(b) State recurrence for entries of the table in terms of smaller subproblems. Briefly explain in words why it is correct.

Solution:

 $T[0][j] = \max(T[0][j], T[1][k] + 1)$; for all k < j and $a_k < a_j$. Note that T[1][k] is the longest noisy subsequence that ends at index k and a_k is smaller than the previous element we took. Therefore, we need the next element, a_j to be larger than a_k . Out of all indices that satisfy this constraint, we will pick the best (max) one and add 1 as we are appending a_k .

 $T[1][j] = \max(T[1][j], T[0][m] + 1)$; for all m < j and $a_m > a_j$. A similar reasoning can be used as above.

The base case is that all table entries should be initialized with value 1 as taking one element is always a valid noisy subsequence.

(c) Write **pseudocode** for your algorithm to solve this problem.

Solution: Pseudo-code omitted.

(d) Analyze the running time of your algorithm.

Solution: Since we must iterate $\mathcal{O}(n)$ times to fill up the table, and filling one entry of the table takes $\mathcal{O}(n)$ time, we get $\mathcal{O}(n) * \mathcal{O}(n) = O(n^2)$.