RECTIFICATION OF INTEGER ARITHMETIC CIRCUITS

Arpitha Srinath

A Master's Thesis Defense

Electrical and Computer Engineering University of Utah

Outline

- Problem Statement: Rectification of integer arithmetic circuits
 - · Focus: Integer multiplier circuits
- Contributions
- Notation and Background
- Verification of arithmetic circuits
- Identifying potentially rectifiable nets
- Rectification check
- Computing rectification function

Problem Statement

- Given a word-level specification polynomial $f \in \mathbb{Z}[x_1, \dots, x_n]$.
- Given a buggy k-bit integer multiplier C₁.

Once the presence of bug(s) is detected:

- Identify potentially rectifiable nets.
- Identify single-fix rectification target net x_i.
- Compute single-fix rectification function $x_i = U(X_{PI})$.

Problem Description

Given specification : $Z = A \cdot B$

Figure: Buggy (b) 2-bit integer multiplier

Contributions

- Identify the primary outputs affected by the bug(s).
- Identify a set of potentially rectifiable target nets.
- Ascertain whether or not a net admits single-fix rectification.
- Compute a rectification function.
- Synthesize rectification function and rectify the circuit.

Notation and Background

Model: Symbolic Computer Algebra

- Polynomial Ring $R = \mathbb{Q}[x_1, \dots, x_n]$
- Polynomial $f \in R$, $f = c_1 X_1 + c_2 X_2 + \cdots + c_t X_t$
- $F = \{f_1, \dots, f_s\} \in R$, Ideal $J = \langle F \rangle = \langle f_1, \dots, f_s \rangle = \{\sum_{i=1}^s h_i \cdot f_i : h_i \in R\}$.
- Gröbner Basis (GB)
 - Canonical representation of the ideal
 - f is reduced with respect an ideal: $f \xrightarrow{GB(J)}_+ r$
 - Ideal membership test: $f \in J \iff f \xrightarrow{GB(J)} 0$.

Notation and Background

- $F = \{f_1, \dots, f_s\}$
 - $J = \langle f_1, \ldots, f_s \rangle$
 - Ideal generated by the circuit
- $F_0 = \{x_I^2 x_I : I = 1, ..., n\}$
 - $J_0 = \langle F_0 \rangle$
 - Restrict solutions to Boolean values {0,1}
- Reverse Topological Term Order (RTTO) [Lv. et al,TCAD 2013]
 - $\exists RTTO \text{ s.t. } \{F, F_0\} = GB(F, F_0)$

Reverse Topological Term Order

lex:
$$\{a_0 < a_1 < b_0 < b_1\} < \{g_3 < g_2 < g_1\} < \{g_4\} < \{z_3 < z_3 < z_1 < z_1\}$$

Ring Model

From [D. Ritirc et al, FMCAD17]

- $R = \mathbb{Q}[x_1, \ldots, x_n]$ • $\mathbb{Z} \subset \mathbb{Q}$
- $\{x_1, \dots, x_n\}$ nets from circuit
- Gates are modeled as polynomials as follows:

•
$$u = \sim v \implies 0 = u - 1 + v$$

•
$$u = v \wedge w \implies 0 = u - vw$$

•
$$u = v \lor w \implies 0 = u - v - w + vw$$

•
$$u = v \oplus w \implies 0 = u - v - w + 2vw$$

- System of polynomials $F = \{f_1, \dots, f_s\}$
- Set of vanishing polynomials $F_0 = \{x_I^2 x_I : I = 0, \dots, n\}$
- Verification test: $f \xrightarrow{GB(F \cup F_0)} +r$

$$Ckt = Spec \iff r = 0$$

Verification of arithmetic circuits

Figure: Buggy 2-bit integer multiplier

$$\begin{split} f_1 &= z_0 - a_0 \cdot b_0 & f_2 &= z_1 - g_1 - g_2 + 2 \cdot g_1 \cdot g_2 \\ f_3 &= z_2 - g_3 - g_4 + 2 \cdot g_3 \cdot g_4 & f_4 &= z_3 - g_3 \cdot g_4 \\ f_5 &= g_4 - g_1 - g_2 + 2 \cdot g_1 \cdot g_2 & f_6 &= g_3 - a_1 \cdot b_1 \\ f_7 &= g_2 - a_0 \cdot b_1 & f_8 &= g_1 - b_0 \cdot a_1 \end{split}$$

Verification of arithmetic circuits

RTTO:

Lexicographic order:

$${z_0 > z_1 > z_2 > z_3} > {g_4} > {g_3 > g_2 > g_1} > {a_0 > a_1 > b_0 > b_1}$$

Polynomial Ring:

$$R = \mathbb{Q}[z_0, z_1, z_2, z_3, g_4, g_3, g_2, g_1, a_0, a_1, b_0, b_1]$$

Specification polynomial:

$$f: -(8 \cdot z_3 + 4 \cdot z_2 + 2 \cdot z_1 + z_0) + (2 \cdot a_1 + a_0) \cdot (2 \cdot b_1 + b_0)$$

Verification of arithmetic circuits

•
$$F = \{f_1, \dots, f_8\}$$

•
$$F_0 = \{x_1^2 - x_1, \dots, x_n^2 - x_n\}$$

Result of verification:

$$f \xrightarrow{F \cup F_0} 12 \cdot a_0 \cdot a_1 \cdot b_0 \cdot b_1 - 4 \cdot a_0 \cdot b_1 - 4 \cdot a_1 \cdot b_0 \neq 0$$

$$r \neq 0 \implies bug!$$

Identify Potentially Rectifiable Targets

Figure: Buggy 2-bit integer multiplier

Identify Potentially Rectifiable Targets

$$r = 12 \cdot a_0 \cdot a_1 \cdot b_0 \cdot b_1 - 4 \cdot a_0 \cdot b_1 - 4 \cdot a_1 \cdot b_0$$

$$= 2^3 (a_0 \cdot a_1 \cdot b_0 \cdot b_1 - 4 \cdot a_0 \cdot b_1) + 2^2 (a_0 \cdot a_1 \cdot b_0 \cdot b_1 - a_0 \cdot b_1 - 4 \cdot a_1 \cdot b_0)$$

$$Z = 2^3 z_3 + 2^2 z_2 + 2^1 z_1 + 2^0 z_0$$

Affected outputs: z₂ and z₃.

Identify Potentially Rectifiable Targets

Figure: Intersection of fanin cones of z_2 and z_3 .

Single-fix rectification check

Theorem 5.1

• Single-fix rectification at net x_i:

$$J = \langle f_1, \dots, f_s \rangle$$
$$J_0 = \langle \chi_1^2 - \chi_1 \rangle$$

Construct two ideals:

•
$$J_L = \langle f_1, \dots, f_i : x_i - 1, \dots, f_s \rangle$$

•
$$J_H = \langle f_1, \dots, f_i : x_i - 0, \dots, f_s \rangle$$

Compute:

•
$$f \xrightarrow{J_L + J_0} + r_L$$

•
$$f \xrightarrow{J_H + J_0} {}_+ r_H$$

Single-fix rectification possible if and only if $GB((r_L \cdot r_H) + J_0) = J_0$.

[Proved in thesis]

Rectification check

Figure: Rectification check at g₄

Rectification check

Single-fix rectification check at net g_4 :

- $J_L = \langle f_1, f_2, f_3, f_4, f_5 : g_4 1, f_6, f_7, f_8 \rangle$
- $J_H = \langle f_1, f_2, f_3, f_4, f_5 : g_4 0, f_6, f_7, f_8 \rangle$
- $f \xrightarrow{J_L + J_0} {}_+ r_L = 4 \cdot a_0 \cdot a_1 \cdot b_0 \cdot b_1 4$
- $f \xrightarrow{J_H + J_0} {}_+ r_H = 4 \cdot a_0 \cdot a_1 \cdot b_0 \cdot b_1$
- $GB((r_L \cdot r_H) + J_0) = \{a_0^2 a_0, a_1^2 a_1, b_0^2 b_0, b_1^2 b_1\}$

Figure: The Unknown Component Problem

From [V.Rao et al, FMCAD 2018]

• $f \in \langle f_1, \dots, f_i, \dots, f_s \rangle$

- $f \in \langle f_1, \ldots, f_i, \ldots, f_s \rangle$
- $f \in \langle f_1, \ldots, f_i : x_i U, \ldots, f_s \rangle$

- $f \in \langle f_1, \ldots, f_i, \ldots, f_s \rangle$
- $f \in \langle f_1, \ldots, f_i : x_i U, \ldots, f_s \rangle$
- $\bullet \ f = h_1 f_1 + \dots + h_{i-1} f_{i-1} + h_i x_i h_i U + \dots + h_s f_s$

- $f \in \langle f_1, \ldots, f_i, \ldots, f_s \rangle$
- $f \in \langle f_1, \ldots, f_i : X_i U, \ldots, f_s \rangle$
- $f = h_1 f_1 + \dots + h_{i-1} f_{i-1} + h_i x_i h_i U + \dots + h_s f_s$
- Reduce f in a specific order

- $f \in \langle f_1, \ldots, f_i, \ldots, f_s \rangle$
- $f \in \langle f_1, \ldots, f_i : x_i U, \ldots, f_s \rangle$
- $\bullet \ f = h_1 f_1 + \dots + h_{i-1} f_{i-1} + h_i x_i h_i U + \dots + h_s f_s$
- Reduce f in a specific order
- Record quotients and remainders

- $f \in \langle f_1, \ldots, f_i, \ldots, f_s \rangle$
- $f \in \langle f_1, \ldots, f_i : x_i U, \ldots, f_s \rangle$
- $f = h_1 f_1 + \cdots + h_{i-1} f_{i-1} + h_i x_i h_i U + \cdots + h_s f_s$
- Reduce f in a specific order
- Record quotients and remainders
- h'_i computed as quotient of division

- $f \in \langle f_1, \ldots, f_i, \ldots, f_s \rangle$
- $f \in \langle f_1, \ldots, f_i : X_i U, \ldots, f_s \rangle$
- $f = h_1 f_1 + \cdots + h_{i-1} f_{i-1} + h_i x_i h_i U + \cdots + h_s f_s$
- Reduce f in a specific order
- Record quotients and remainders
- h'_i computed as quotient of division
- $U = h'_i$: Rectification polynomial

• The rectification polynomial:

$$h_i' = U(X_{PI}) = a_0 \cdot a_1 \cdot b_0 \cdot b_1$$

• This polynomial is equivalent to the function $a_0 \wedge a_1 \wedge b_0 \wedge b_1$

Computing rectification function: Challenge

Figure: 3-bit multiplier from [D.Ritric et al, FMCAD2017].

- A bug is introduced a net n₃₈.
- Rectification attempted at net *n*₃₈.

Computing rectification function: Challenge

$$\begin{split} n_{38} &= n_{30} \cdot n_{31} - \frac{1}{2} \cdot n_{30} - \frac{1}{2} \cdot n_{31} + \frac{1}{2} \cdot n_{17} \cdot n_{22} - \frac{1}{4} \cdot n_{17} - \frac{1}{4} \cdot n_{22} - \frac{1}{4} \cdot n_{14} - \frac{1}{4} \cdot n_{14} - \frac{1}{4} \cdot n_{14} - \frac{1}{8} \cdot n_{14} - \frac{1}{8} \cdot n_{15} + \frac{1}{8} \cdot a_0 \cdot b_1 + \frac{1}{4} \cdot a_0 \cdot b_2 + \frac{1}{8} \cdot a_1 \cdot b_0 + \frac{1}{4} \cdot a_1 \cdot b_1 + \frac{1}{2} \cdot a_1 \cdot b_2 + \frac{1}{4} \cdot a_2 \cdot b_0 + \frac{1}{2} \cdot a_2 \cdot b_1 + a_2 \cdot b_2 \end{split}$$

Contains fractional coefficients

Computing rectification function: Challenge

$$n_{38} = n_{30} \cdot n_{31} - \frac{1}{2} \cdot n_{30} - \frac{1}{2} \cdot n_{31} + \frac{1}{2} \cdot n_{17} \cdot n_{22} - \frac{1}{4} \cdot n_{17} - \frac{1}{4} \cdot n_{22} - \frac{1}{4} \cdot n_{14} - \frac{1}{4} \cdot n_{22} - \frac{1}{4} \cdot n_{14} - \frac{1}{4} \cdot n_{22} - \frac{1}{4} \cdot n_{23} \cdot n_{24} - \frac{1}{4} \cdot n_{23} - \frac{1}{8} \cdot n_{14} - \frac{1}{8} \cdot n_{15} + \frac{1}{8} \cdot a_{0} \cdot b_{1} + \frac{1}{4} \cdot a_{0} \cdot b_{2} + \frac{1}{8} \cdot a_{1} \cdot b_{0} + \frac{1}{4} \cdot a_{1} \cdot b_{1} + \frac{1}{2} \cdot a_{1} \cdot b_{2} + \frac{1}{4} \cdot a_{2} \cdot b_{0} + \frac{1}{2} \cdot a_{2} \cdot b_{1} + a_{2} \cdot b_{2}$$

- Contains variable $X_i \subset \{x_1, \dots, x_n\}$.
- $X_i < x_i$ in RTTO.
- Maps from $\{0,1\}^{|X_j|} \to \{0,1\}.$

- $U \xrightarrow{J+J_0} U(X_{PI})$
- $U(X_{Pl})$ maps from $\{0,1\}^{|X_{Pl}|} \to \{0,1\}$
- Monomials are multi-linear expression.
- Polynomial has integral coefficients.

$$n_{38} = -a_0 \cdot a_1 \cdot a_2 \cdot b_0 \cdot b_1 \cdot b_2 + a_0 \cdot a_1 \cdot a_2 \cdot b_0 \cdot b_2$$

$$-a_0 \cdot a_1 \cdot a_2 \cdot b_1 \cdot b_2 + a_0 \cdot a_1 \cdot b_1 \cdot b_2$$

$$+a_0 \cdot a_2 \cdot b_0 \cdot b_1 \cdot b_2 - a_1 \cdot a_2 \cdot b_0 \cdot b_1 \cdot b_2$$

$$+a_1 \cdot a_2 \cdot b_1 \cdot b_2$$

Computing rectification function: Synthesis

- Compute $U(X_{PI}) \pmod{2}$.
- Interpret addition (+) as XOR operation and multiplication (⋅) as AND operation.
- Rectification function in Reed-Muller's form.
- Synthesize AND-XOR expression as a logic circuit.

$$n_{38} = a_0 \wedge a_1 \wedge a_2 \wedge b_0 \wedge b_1 \wedge b_2 \oplus a_0 \wedge a_1 \wedge a_2 \wedge b_0 \wedge b_2 \oplus a_0 \wedge a_1 \wedge a_2 \wedge b_1 \wedge b_2 \oplus a_0 \wedge a_1 \wedge b_1 \wedge b_2 \oplus a_0 \wedge a_2 \wedge b_0 \wedge b_1 \wedge b_2 \oplus a_1 \wedge a_2 \wedge b_0 \wedge b_1 \wedge b_2 \oplus a_1 \wedge a_2 \wedge b_1 \wedge b_2 \oplus a_1 \wedge a_2 \wedge b_1 \wedge b_2$$

Experimental Results

k	<i>t</i> ₁	<i>t</i> ₂	<i>t</i> ₃	t ₄
2	0.002	0.003	0.007	0.005
4	0.005	5.820	0.024	5.824
8	0.027	9.103	0.206	9.111
12	0.120	23.137	0.641	23.158
16	0.400	42.915	1.782	42.981
18	0.647	48.964	2.479	49.060
28	6.329	288.448	26.707	289.860
32	12.119	368.319	44.965	370.579
56	292.203	980.283	1221.654	1040.504
64	577.162	16.049	28.597	20.147

Table: Single-fix rectification of integer multiplier against polynomial specification. Time in seconds; k = Datapath size, $t_1 = v$ erification time, $t_2 = t$ ime to find potentially rectifiable nets, $t_3 = t$ ime for rectification check, $t_4 = t$ ime to compute rectification function. Time Out = 10800 seconds.

Experimental Results

k		area	delay
16	correct	1408.00	88.00
	b1	3	2
	b2	169.00	19.00
	b3	200.00	18.00
32	correct	5888.00	328.00
	b1	3	2
	b2	62.00	10.00
	b3	152.00	14.00
56	correct	18368.00	184.00
	b1	3	2
	b2	312.00	19.00
	b3	TO(computation)	TO(computation)

Table: Synthesis Results. *area* in sq. units. *delay* = No. of gates.

Limitations

- Focus on single-fix rectification only.
- Practical only for array multipliers.
 - Booth multiplier: TO at 8-bits.
- Efficiency depends on location of bug.
- Rectification polynomial computed in primary inputs only.
- Computation of a single rectification function
 - Many functions may exist

Conclusion

Once bug(s) are detected in the circuit:

- Identify primary outputs affected by the bug(s)
- Identify set of potentially rectifiable target nets
- Ascertain if a net admits single-fix rectification.
- Compute a rectification polynomial in primary inputs
- Synthesize the rectification function and rectify the circuit

- $f \xrightarrow{f_1} \xrightarrow{f_2} \xrightarrow{f_3} \xrightarrow{f_4} \xrightarrow{g_4} r$: $r = -z_0 - 2 \cdot z_1 - 4 \cdot g3 + a_0 \cdot b_0 + 2 \cdot a_0 \cdot b_1 + 2 \cdot a_1 \cdot b_0 + 4 \cdot a_1 \cdot b_1$
- Quotient $h_i = -4$
- $r \in \langle h_i, f_6, f_7, f_8 \rangle$
- $\bullet \ \ r = h_i' h_i + h_6' f_6 + h_7' f_7 + h_8' f_8$

- Automated Diagnosis
 - Boolean Reasoning [Madre. et al, ICCAD89][Liaw. et al, ICCAD90]
- Engineering Change Order (ECO)
 - Analogous to Rectification [Marek-Sadowska. et al, DAC95][Huang. et al, ICCAD10][Tang. et al, DAC11]
- Partial Synthesis
 - Quantified Boolean Formula(QBF) [Fujita. et al, IEEE12]][Scholl. et al ICCD13]
 - Iterative incremental SAT [Fujita. et al, IEEE15]

Figure: The Unknown Component Problem

- Unknown component modeled as QBF
- Let logic function *U* be the unknown component

$$\exists U \,\forall P.I. \, Ckt = Spec \tag{1}$$

- Solved using CNF-SAT iteratively [Fujita. et al, IEEE15]
- SAT/QBF models infeasible for arithmetic circuits

- Rectification of finite field circuits [U.Gupta et al, VLSI-SOC 2018].
 - Craig Interpolants alternative to Quantified Elimination.
 - Defined only for finite fields.
 - Craig Interpolants over infinite sets an unresolved problem.
- Rectification of finite field circuits [V.Rao et al,FMCAD2018]
 - Using Gröbner Basis Reduction
 - Application over integers remainder explosion.

Example: Polynomial Reduction

$$f_1: z+fd-f-d$$

$$f_2: f+ec-e-c$$

$$f_3: e+ba-b-a$$

$$z \xrightarrow{f_1} -fd + f + d$$

$$\xrightarrow{f_2} ecd - ec - ed + e - cd + c + d$$

$$\xrightarrow{f_3} -abcd + abc + abd - ab + acd - ac - ad + a + bcd$$

$$-bc - bd + b - cd + c + d$$

- [1] D. Kaufmann, A. Biere, and M. Kauers, "Incremental column-wise verification of arithmetic circuits using computer algebra," *Formal Methods in System Design*, Feb 2019. [Online]. Available: https://doi.org/10.1007/s10703-018-00329-2
- [2] V. Rao, U. Gupta, I. Ilioaea, A. Srinath, P. Kalla, and F. Enescu, "Post-verification debugging and rectification of finite field arithmetic circuits using computer algebra techniques," in 2018 Formal Methods in Computer Aided Design (FMCAD), Oct 2018, pp. 1–9.