

Imperial Iranian Navy

DD 993 Class

SEAKEEPING REPORT 2

January 1976

Prepared by

Donald McCallum

Naval Ship Engineering Center

Hull Form and Fluid Dynamics Branch (SEC 6136)

Hyattsville, Maryland 20782

COPY AVAILABLE TO DOC DOES NOT PERMIT FULLY LEGISLE PRODUCTION.

DDC

PROCESSIV SL

PARA

Deliverable No. C5-D

NAVSEC Report No-6136-76-5

JC FILE COPY

JUN 0 6 1977

Naval Sea Systems Command Public Minis 2002 Charge for public release. Distribution Statement A

f, *f*

401.499

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

RIIS	White Section
aac	fett Section (
UNASSOUNCE	1 0
JUSTIFICATIO	JY
DISTRIBUTE	ON/AVAILABILITY COUNT
	AVAIL AND MY SPECIAL
Pist.	Acres and a create

					NAVSEC		
Task (Group	Leade	r-1.0	rest !	Willed	(str.	1/29/76
Head,	SEC	6136 .	Rita	7.1	Cane	2.	2/6/76
Head,	IIN	DD 993		Cidle	11. 2	1.5%	76

ABSTRACT

This report contains experimental and analytical predictions of the seakeeping characteristics applicable to the DD 993 in accordance with a ship displacement of 8000 tons. Random wave experimental results are presented for various sea states at various ship speeds and headings. Roll motions are predicted for irregular, short-crested seas for various sea states at various ship speeds and headings. Roll is largest at the 70 degree heading; while the 100 degree heading results in the largest heave. For the IIN DD 993, there are no performance requirements for seakeeping. Those predictions contained herein are provided for ship operator information.

TABLE OF CONTENTS

		Page	No.
NOMENCLATUR	E		1
DEFINITIONS			2
INTRODUCTIO	M M	•••	3
DISCUSSION			4
REFERENCES			5
	LIST OF TABLES		
TABLE 1 PA	RTICULARS OF THE IIN DD 993		6
S A	IGNIFICANT WAVE HEIGHT (DOUBLE AMPLITUDE), IGNIFICANT SHIP MOTIONS (SINGLE AMPLITUDES), ND MEAN YAW AND SWAY FOR THE DD 993 IN ANDOM WAVES	7	,8,9
	LIST OF FIGURES		
	ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS. DD 993 FULL LOAD CONDITION. SHIP SPEED 0.0 KNOTS	•••	10
	ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS. DD 993 FULL LOAD CONDITION. SHIP SPEED 8.0 KNOTS	•••	11
	ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS. DD 993 FULL LOAD CONDITION. SHIP SPEED 16.0 KNOTS	•••	12
	ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS. DD 993 FULL LOAD CONDITION. SHIP SPEED 20.0 KNOTS		13
	ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS. DD 993 FULL LOAD CONDITION. SHIP. SPEED 24.0 KNOTS	•••	14

			Page	2 No
FIGURE	6	-	SIGNIFICANT ROLL AMPLITUDE FOR SHORT CRESTED SEAS AT WORST HEADING ANGLES	
			AS A FUNCTION OF SHIP SPEED	15
FIGURE	7	-	SIGNIFICANT ROLL AMPLITUDE FOR SHORT CRESTED SEAS AT WORST HEADING ANGLES AS A	
			FUNCTION OF SIGNIFICANT WAVE HEIGHTS	16

NOMENCLATURE

В	Maximum beam .
GM _T	Transverse metacentric height
H _{1/3}	Significant wave height
KG	Distance from baseline to vertical center of gravity
КӨ	Pitch gyradius
Kø .	Roll gyradius
LCG	Longitudinal center of gravity as referenced to midship
Lpp	Length between perpendiculars
T	Draft
Δ	Displacement (weight) of ship in long tons (one long ton = 2240 pounds)

DEFINITIONS

Short crested seas A sea condition which is most representative

of real life. The waves are multidirectional, as opposed to unidirectional. Represented by a

Pierson-Moscowitz sea spectrum.

Long crested seas A sea condition which has irregular waves, all

travelling in the same direction (unidirectional, represented by a Pierson-Moscowitz sea spectrum).

Does not occur often in real life.

Significant amplitude Term used in statistical analysis. Defined as

the mean value of the one-third highest amplitudes. The significant roll amplitude is 1.6 times the

average roll value.

Ship heading Ship heading is defined on the basis of

head seas 180°

beam seas 90° and 270°

following seas 0°

0° (following seas)

INTRODUCTION

This report contains experimental and analytical predictions of the seakeeping characteristics which are applicable for the DD 993 in accordance with the ship particulars listed in TABLE 1. Although the results contained herein are for a ship displacement of 8000 tons, it is felt that no significant changes would be realized for a displacement change of \pm 400 tons.

Random wave experiments were conducted in waves representative of a Sea State 4 ($\rm H_{1/3}$ = 6.9 feet) at ship speeds of 0, 8, 16, 24 and 30 knots for headings of 220, 200, and 180 degrees; Sea State 5 ($\rm H_{1/3}$ = 10.0 feet) at ship speeds of 12, 16, 20 and 24 knots for headings of 220, 200 and 180 degrees; and Sea State 6 ($\rm H_{1/3}$ = 15.0 feet) at ship speeds of 0, 8, 16 and 24 knots for headings of 220, 200, 180, 120, 110, 100, 90, 70, 40 and 0 degrees. TABLE 2 presents the measured significant amplitudes of the motions representative of the DD 993 in random long-crested waves.

The predicted roll motions in irregular, short-crested seas are presented in FIGURES 1 - 5 for ship speeds of 0, 8, 16, 20 and 24 knots. Significant roll amplitudes in degrees are shown as a function of ship heading angle for the four sea states of interest (4, 5, 6 and 7).

The significant roll amplitudes at the worst heading angles (heading angle with maximum roll response) for short-crested seas are shown as a function of ship speed in FIGURE 6. The significant roll amplitudes at the worst heading angles for short-crested seas are presented as a function of significant wave height (double amplitude) in FIGURE 7.

It should be pointed out that TABLE 2 represents the results of Model Testing. FIGURES 1 through 7 are based upon Computer Predictions which use a roll decay coefficient obtained from Model Test. Notwithstanding this, the curves shown in FIGURES 1 through 7 are more realistic, since they are given for Short Crested Seas (see definition).

DISCUSSION

TABLE 2 contains mean values of yaw angle and sway displacement, in addition to significant values of Pitch, Roll, Heave and Relative Bow Motion. When reading the values of yaw and sway, the correct sign conventions for yew (bow to starboard is positive) and sway (positive to starboard) should be applied.

As expected, the highest Sea State generates the highest amplitudes of motion. The most critical ship speed, however, is not so obvious. TABLE 2 does not show any particular speed for which all of the motions are largest, although roll motion decreases with increased ship speed. The table does show, however, that the pitch is greatest for headings between 220 and 110 degrees, with all of the headings within that range resulting in about the same pitch motion. The roll is largest at the 70 degree heading; while the 100 degree heading seems to result in the largest heave. The largest relative bow motion is at the 0 degree heading, with the second largest at the 220 degree heading; although the differences between the results at the 220, 200 and 180 degree heading seem to be slight.

The predicted roll motions in short-crested seas, for random headings can be found in FIGURES 1 - 5. These roll angles range from a significant roll value of \pm 5.08 degrees in Sea State 4 to \pm 21.6 degrees in Sea State 7.

FIGURE 6 shows significant roll amplitude at worst heading plotted against ship speed. It should be noted that, in the higher Sea States (above S.S. 5), the rolling decreases with increase in ship speed.

FIGURE 7 shows the increase of rolling motion with significant wave height.

REFERENCES

- 1. Rossignol, Grant A., Lawrence C. Ruth, and Everett L. Woo, "Experimental Evaluation of the Seaworthiness Characteristics of the DD 963 Class Destroyer as Represented by Model 5265-1A," NSRDC T and E Report SPD-P-311-35, February 1975,
- 2. Barr, Roderick A., and Vladimir Ankudinov, "Calculated Roll Motions for the DD 963 Class Destroyer," Hydronautics, Incorporated Technical Report 7522-1, May 1975.

SHIP PARTICULARS

B, feet	55.2
GM _T , feet	3.9
KG, feet	22.3
K _θ % Lpp	25.0
Kø, % B	37.0
LCG (aft of midship), feet	7.3
Lpp, feet	529.0
T, feet	19.6
Δ, tons sea water	8000.0
NUMBER OF PROPELLERS	2
NUMBER OF RUDDERS	2
RUDDER TYPE	SPADE
RUDDER AREA (PER RUDDER), square feet	162.0
TRIM, feet	EVEN KEEL

TABLE 1 - PARTICULARS OF THE DD 993

with the second

(Experimental Results in Long Crested Seas)

TABLE 2 - SIGNIFICANT WAVE HEIGHT (DOUBLE AMPLITUDE), SIGNIFICANT
SHIP MOTIONS (SINGLE AMPLITUDES), AND MEAN YAW

AND SWAY FOR THE DD 993 IN PANDOM WAVES

AND SWAY FOR THE DD 993 IN RAIDOM WAVES											
Cond	itions			Signi	icant Val	1125	Mean Values				
Heading	Sea State	Ship Speed	Wave Height	Pitch	Roll	Heave	Relative Bow Motion	Mean Yaw #	Mean Sway *		
Degrees		Knots	Feet	Degrees	Degrees	Feet	Feet	Degrees	Feet		
220	4	0	6.46	0.59	2.68	1.13	5,33	+0.58	÷ 5.06		
		. 8	7.03	0.73	1.87	1.23	5.17	-1.93	+ 1.87		
		16	7.10	0.75	1.31	1.44	5.32	-0.28	+ 1.76		
		24	7.14	0.69	1.43	1.66	5.67	+0.06	- 0.29		
		30	6.95	0.57	2.04	1.63	5.35	-0.44	+ 2.76		
	5	12	10.04	1.34	2.79	2.40	8.63	-0.59	+ 4.17		
		16	9.81	1.36	2.25	2.80	9.02	+0.71	-10.59		
		20	9.85	1.25	2.24	3.15	9.11	+0.14	~ 4.51		
		24	10.07	1.20	2.38	2.95	9.13	4-0.54	- 8.43		
	6	0	14.49	1.67	7.5,7	6.58	12.10	-0.18	4 5.46		
		8	15.30	2.12	6.38	4.58	13.52	-1.23	+ 6.47		
		16	15,19	2.24	3.73	4.86	14.06	+0.52	- 0.92		
		24	14.79	2.05	3.22	5.47	14.35	-0.25	4 4.20		
200	4	0	7.46	0.45	1.80	1.20	4.95	+2.69	+ 2.21		
		8	7.12	0.57	1.12	1.02	4.66	-1.25	+14.25		
		16	7.21	0.61	0.72	1.12	5.06	-0.93	413.49		
		24	6.68	0.51	0.92	1.20	4.63	-0.35	+ 4.02		
		30	6.90	0.48	1.25	1.29	4.77	-0.21	+ 2.37		
	5	12	9.74	1.02	1.54	1.86	7.40	-0.14	- 0.31		
		16	9.56	1.04	1.33	1.97	7.61	+0.13	- 3.83		
		20	9.23	1.08	1.30	2.18	7.94	-0.16	₹ 0.98		
		24	9.85	1.00	1.30	2.29	7.92	-0.03	- 2.18		
	6	0	15.29	1.64	4.70	5.35	12.00	+2.64	+ 3,39		
		8	14.72	1.66	3.38	3.40	11.72	-1.01	-10.46		
		16	14.42	1.88	2.04	3.88	12.18	-0.25	+ 2.30		
		24	14.07	2.01	2.27	4.73	14.17	-1.21	+ 2.93		

(Experimental Results in Long Crested Seas)

TABLE 2 - SIGNIFICANT WAVE REIGHT (DOUBLE AMPLITUDE), SIGNIFICANT SHIP MOTIONS (SINGLE AMPLITUDES), AND MEAN YAW AND SWAY FOR THE DD 993 IN RANDOM WAVES

		AI	ND SWAL F	OR THE DE	tinued)		AVES		
Con	dirions	-		Signi	ricant V	lues		<u> </u>	n i gan
Heading Degrees	Sea State	Ship Speed Knots	Wave Height Feet	Pitch Degrees	Roll Dagrees	Heave Feet	Relative Bow Motion Feet	Mean Yaw * Degrees	Mean Sway * Feet
180	4	0	6.13	0.42	0.94	0.70	4.53	-0.64	- 5.18
		8	6.26	0.44	1.64	1.18	4.38	-0.32	-12.30
		16	5.62	0.46	0.39	0.93	3.88	+0.39	+ 0.04
		24	5.65	0.51	0.78	1.13	4.37	-0.23	+ 2.51
		30	5.88	0.49	1.13	1.22	4.32	-0.68	+ 5.53
	5	12	8.75	0.90	0.68	1.72	6.58	-0.63	+ 8.93
		16	€.83	1.00	0.56	1.93	7.38	-0.22	+ 1.16
		20	8.76	0.99	0.60	2.01	7.23	-0.42	÷ 4.65
		24	8.75	0.96	0.98	2.16	7.77	-0.53	+ 5.69
	6	0	14.86	1.65	2.00	3.86	11.03	-1.40	+ 3.21
		8	13.33	1.55	1.52	3.42	10.45	+0.23	- 6.69
		1.6	13.97	1.92	0.93	3.99	12.71	10.05	- 2.45
COR MANAGEMENT	-	24	14.11	2.19	1.49	5.15	15.00	-0.19	- 1.63
120	6	0	16.36	2.12	12.48			-0.22	+14.42
		8	1.5.81	2.19	10.05	5.77		+5.91	+ 7.49
		16	1.5.38	2.13	6.12	5.74		+2.86	+ 4.35
		24	15.49	2.27	5.39	6.87		+2.40	- 5.71
110		0	13.55	1.88	11.75	5.55		-2.15	+1.2.25
		8	16.00	2.21	12,43	6.65		+4.51	- 4.17
		16	16.88	2.08	6.93	7.31		+1.65	+ 2.84
	~	24	15.01	1.76	5.87	9.09		+1.72	+ 4.17
100		0	16.06	1.67	11.66	2.26		12.36	+ 1.71
		8	15.84	1.73	11.32	9.36		+4.80	- 0.60
		16	16.02	1.36	7.53	8.52	-	+1.41	+ 8.36
		24	16.40	1.26	7.63	10.15		10.75	- 8.10

(Experimental Results in Long Crested Seas)

TABLE 2 - SIGNIFICANT WAVE HEIGHT (DOUBLE AMPLITUDE), SIGNIFICANT SHIP MOTIONS (SINGLE AMPLITUDES), AND MEAN YAW AND SWAY FOR THE DD 993 IN RANDOM WAVES (Continued)

· Condi	(Continued)										
Conditions				Signi	~~~	Vean Values					
Heading S	Sea State	Ship Speed Knots	Wave Height Feet	Pitch Degrees	Roll Degrees	Heave Feet	Relative Bow Motion Feet	Yaw * Degrees	Sway * Feet		
90	6	0	15.06	0.75	13.28			+0.66	- 6.29		
		8	15.46	0.67	7.97	8.86		+3.38	+ 9.30		
		16	15.96	0.64	7.77	8.31		+1.06	+ 6.25		
		24	15.20	0.61	7.39	7.81		+0.64	+ 9.44		
70		0	17.79	2.30	14.48			+0.52	+ 6.41		
		8	11.92	1.79	10.95	5.28		+2.30	- 1.15		
		16	15.32	1.70	15.54	5.55		+0.37	+15.59		
		24	14.50	1.61	15.90	8.52		+0.59	÷ 3.85		
40		0	13.88	1.45	8.17	3.81		-6.17	- 8.65		
		8	15.26	1.46	7,77	3.85		-4.50	+ 8.64		
		16	12.12	1.39	6.11	3.87		-1.71	+ 1.24		
		2.4	13.51	0.93	10.91	3.74		-0.84	+ 9.91		
0		0	13.68	1.40	1.59	3.20	8.30	-1.73	÷ 1.57		
		8	14.17	1.35	1.38	3.03	17.51	+0.05	- 6.57		
		16	14.98	1.01	0.90	2.63	17.42	+0.07	+ 0.74		
		24	16.35	1.09	2.67	2.81	16.67	+0.29	- 0.22		

^{*}The values of yaw and sway indicate the effectiveness of the automatic steering system more than the actual sway and yaw that the ship would experience.

FIGURE 1 - ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS DD 993 FULL LOAD CONDITION

BASED UPON COMPUTER PREDICTIONS

FIGURE 2 - ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS DD 993 FULL LOAD CONDITION

SHIP SPEED 8.0 KNOTS

FIGURE 3 - ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS DD 993 FULL LOAD CONDITION

SHIP SPEED 16.9 KNOTS
BASED UPON COMPUTER PREDICTIONS

FIGURE 4 - ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS DD 993 FULL LOAD CONDITION

SHIP SPEED 20.0 KNOTS
BASED UPON COMPUTER PREDICTIONS

FIGURE 5 - ROLL MOTION VS. HEADING INTO SHORT CRESTED SEAS DD 993 FULL LOAD CONDITION

SHIP SPEED 24.0 KNOTS
BASED UPON COMPUTER PREDICTIONS

FIGURE 6 - SIGNIFICANT ROLL AMPLITUDE FOR SHORT-CRESTED SEAS AT WORST HEADING ANGLES AS A FUNCTION OF SHIP SPEED

BASED UPON COMPUTER PREDICTIONS

FIGURE 7 SIGNIFICANT ROLL AMPLITUDE FOR SHORT-CRESTED SEAS
AT WORST HEADING ANGLES AS A FUNCTION OF
SIGNIFICANT WAVE HEIGHTS
BASED UPON COPPUTER PREDICTIONS

ROUTE SLIP AND OFFICE MEMO NAVSEC 5216/4 (REV. 9-71) FRONT

DO NOT DITACH FROM OFFICIAL CORRESPONDENCE

ROUTE O COLLARD				INDICATE ACTION BY USING A	PROPRIATE NUMBER			
TO CODE	DATE MO. DAY YE.			1. ACTION 2. COMMENT	3. INFORMATION 4. APPROVAL		5. SIGNATUR	
1. mc dra 227								
6135			-					
11.00		++						
	-	+				-		
						•		
		+- -	-					
	<u></u>			If a (dilienal space is require	ed uso revense side			
BY CODE		INDIC	ATE HU	MEER OF COMES DETACHED O EFEARDOWN OF MATERIAL	SIGNATU		EXTN.	
						*		
						,	1 1	
FCFIVEDIN								
ILE. Unle urther route nd initialin						NCLASS	SIFIED	