# Systematic Review & Meta-analysis (2)

Konstantinos I. Bougioukas, MSc, PhD

School of Psychology Faculty of Philosophy Aristotle University of Thessaloniki

# Meta-analysis (MA) Use of statistical techniques in a systematic review (SR) to integrate the results of included studies to conduct statistical inference

# **Key Points**

- 1. MA should not be used as a synonym for SR
- 2. An MA should be done in the context of an SR
- 3. An MA should not be assumed to always be an appropriate step in an SR. The decision to conduct an MA is neither purely analytical nor statistical in nature.



# Fixed-effect model



The observed effect  $Y_i$  for any study is given by the population mean plus the **sampling error** in that study:  $Y_i = \theta + e_i$ 

**Weight** assigned to each study  $W_i = rac{1}{V_{Y_i}}$ 

Summary effect:

$$\theta_F = \frac{\sum_{i=1}^k W_i Y_i}{\sum_{i=1}^k W_i}$$

Variance of the summary effect

$$V_{ heta_F} = rac{1}{\sum_{i=1}^k W_i}$$

# Random-effects model



The observed effect  $Y_i$  for any study is given by  $Y_i = \theta_i + e_i = \mu + u_i + e_i$ 

The variance of  $Y_i$  for any study is given

by 
$$V_{Y_i}^* = V_{Y_i} + au^2$$
 Between-study variance

Weight assigned to each study

$$W_i^* = rac{1}{V_{Y_i}^*} = rac{1}{V_{Y_i} + au^2}$$

Summary effect and variance:

$$heta_R = rac{\sum_{i=1}^k W_i^* Y_i}{\sum_{i=1}^k W_i^*} \qquad V_{ heta_R} = rac{1}{\sum_{i=1}^k W_i^*}$$

# **Forest plot**



# "Heterogeneity is Your Friend" (J. Berlin)



Fruit salad may, or may not, be tasty and interesting Which are the apples and oranges, and how do they differ?

### Definitions of Heterogeneity From a Health Care Perspective

#### Different types of heterogeneity:

- Clinical heterogeneity: Variability in participants, interventions and outcomes
- Methodological heterogeneity: Variability in study design and risk of bias
- Statistical heterogeneity: Variability in treatment effects, resulting from clinical and/or methodological diversity

Statistical heterogeneity is present if the observed treatment effects are more different from each other than would be expected due to chance alone

# Discuss Clinical/Methodological or "Substantive" Heterogeneity Prior To Analysis

- Think first: Are included studies similar with respect to treatment effect? Study design, subjects, treatments, etc. may affect results.
- Include in protocol: Sources of heterogeneity that you might stratify analysis on, or that you might include as independent variables in a meta-regression
- Do statistics later: Q statistic to test the hypothesis that the true (population) treatment effect is equal in all studies; and/or I-squared (I2) statistic; and prediction interval (PI)
- Remember: Tests for heterogeneity have low statistical power

# **Small-study effects in meta-Analysis**

"Small-study effects" is a generic term for the phenomenon that **smaller studies** sometimes show different, often larger, treatment effects than large ones.

# **Funnel-plot symmetry**



## **Funnel-plot asymmetry**



Individual study

#### **Statistical tests:**

Egger's test or the Begg and Mazumdar rank correlation (p<0.05)

### Potential sources of asymmetry in funnel plots

- Publication bias (the likelihood of a study being published—particularly a small study—increases if it shows a stronger, statistically significant, and favorable effect.
- Outcome reporting bias (selective reporting of the most favourable outcomes)
- Poor methodological design of small studies