Water of Water of

MSCI 719: Operations Analytics

Assignment 5: JOANNalytics: Inventory Demand Prediction and Optimal

Dynamic Allocation

Student: Advait Shah

Faculty: Engineering

Department: Management Sciences

Instructor: Prof. Hossein Abouee Mehrizi

Contents

1.	Pred	diction models	2
	1.1.	Use the first 5 weeks of 2019 as the testing data. Calculate MSE on test data for different	
	values	of α , which value minimizes the error?	2
	1.2.	Use 2017 and 2018 data as the training data. Consider the number of periods and the	
	numbe	er of weeks as predictors for demand in the year 2019. Fit a linear regression model to	
	predic	t demand for 2019. Calculate MSE on the same testing data set as part 1	3
	1.3.	Calculate the MSE for the model discussed in class on the testing data set. Which one of	
	these	three models performs best for predicting demand?	5
2.	. Wee	ekly allocation vs. 10-week allocation	5
	2.1.	What is the total cost under each scenario?	6
	2.2.	Which scenario is less expensive? How do you explain this?	9
٦,	eferenc	ec.	9

1. Prediction models

for a given $\alpha \in [0, 1]$.

In the model we discussed in class, we assumed that the demand for each week in 2019 is equal to the demand for the same week in 2018. Suppose that the demand of week n in 2019 is,

```
demand of week n in 2019 =\alpha(demand of week n in 2018 – Av. demand in 2018 up to week n-1) + (1-\alpha)(demand of week n in 2017 – Av. demand in 2017 up to week n-1) + Av. demand in 2019 up to week n-1
```

1.1. Use the first 5 weeks of 2019 as the testing data. Calculate MSE on test data for different values of α , which value minimizes the error?

We get following results when predictions are made using above model and trained for optimal alpha such that it minimizes combined SSE and MSE of all 3 stores demand predictions for first five weeks:

So, we get optimal alpha of 0.4395 which gives minimum MSE of 4907.51 on the test data for this model.

1.2. Use 2017 and 2018 data as the training data. Consider the number of periods and the number of weeks as predictors for demand in the year 2019. Fit a linear regression model to predict demand for 2019. Calculate MSE on the same testing data set as part 1.

If we want to create a single linear regression model for demand prediction for given store, week and year, we can pre-process given train dataset in power query and run model in R programming.

Head of processed dataset:

We can load this csv data in R programming and create a Linear regression model fit on it, whose summary can be seen below:

```
model1 = lm(Demand~Week+factor(Year)+Store_No.,df)
summary(model1)
Call:
lm(formula = Demand ~ Week + factor(Year) + Store_No., data = df)
Residuals:
      Min
                10
                     Median
                                   30
                                            Мах
 -197.900 -55.283
                               46.250 268.233
                      6.317
 Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                                 48.72 11.744 1.40e-15 ***
 (Intercept)
                     572.10
                                         7.690 7.42e-10 ***
WeekWeek10
                     464.67
                                 60.42
WeekWeek2
                     58.67
                                 60.42
                                          0.971
                                                  0.3366
WeekWeek3
                     115.33
                                 60.42
                                         1.909
                                                  0.0624
WeekWeek4
                     155.50
                                 60.42
                                         2.573
                                                  0.0133 *
                                        -0.199
WeekWeek5
                                 60.42
                    -12.00
                                                  0.8434
WeekWeek6
                    -87.83
                                 60.42
                                        -1.454
                                                  0.1527
WeekWeek7
                    -142.17
                                 60.42
                                         -2.353
                                                  0.0229 *
                     -63.17
                                 60.42
WeekWeek8
                                         -1.045
                                                  0.3012
                                 60.42
WeekWeek9
                    133.67
                                          2.212
                                                  0.0319 %
factor(Year)2018
                                 27.02
                     15.47
                                          0.572
                                                  0.5698
Store_No.Store2
                     217.10
                                  33.10
                                         6.560 3.81e-08 ***
Store_No.Store3
                      -6.60
                                 33.10 -0.199
                                                  0.8428
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 104.7 on 47 degrees of freedom
Multiple R-squared: 0.8145, Adjusted R-squared: 0.F-statistic: 17.19 on 12 and 47 DF, p-value: 2.615e-13
                                  Adjusted R-squared: 0.7671
```

However, we can do this model preparation in excel as well. And here we will create store-wise LR models with year and week as one hot encoded variables, as shown below:

Sample store 1 demand data with one hot encoded week and year categorical variables.

is_week1 ×	is_week2 ×	is_week3 💌	is_week4	is_week5 💌	is_week6	is_week7 💌	is_week8 💌	is_week9 ×	is_week10 💌	is_2017 ×	is_2018 ×	is_2019 ×	Demar ×
1	0	0	0	0	0	0	0	0	0	1	0	0	795
0	1	0	0	0	0	0	0	0	0	1	0	0	899
0	0	1	0	0	0	0	0	0	0	1	0	0	623
0	0	0	1	0	0	0	0	0	0	1	0	0	912
0	0	0	0	1	0	0	0	0	0	1	0	0	376
0	0	0	0	0	1	0	0	0	0	1	0	0	435
0	0	0	0	0	0	1	0	0	0	1	0	0	455
0	0	0	0	0	0	0	1	0	0	1	0	0	510
0	0	0	0	0	0	0	0	1	0	1	0	0	632
0	0	0	0	0	0	0	0	0	1	1	0	0	1150
1	0	0	0	0	0	0	0	0	0	0	1	0	567
0	1	0	0	0	0	0	0	0	0	0	1	0	632
0	0	1	0	0	0	0	0	0	0	0	1	0	505
0	0	0	1	0	0	0	0	0	0	0	1	0	750
0	0	0	0	1	0	0	0	0	0	0	1	0	500
0	0	0	0	0	1	0	0	0	0	0	1	0	510
0	0	0	0	0	0	1	0	0	0	0	1	0	550
0	0	0	0	0	0	0	1	0	0	0	1	0	382
0	0	0	0	0	0	0	0	1	0	0	1	0	673
0	0	0	0	0	0	0	0	0	1	0	1	0	986
1	0	0	0	0	0	0	0	0	0	0	0	1	820
0	1	0	0	0	0	0	0	0	0	0	0	1	995
0	0	1	0	0	0	0	0	0	0	0	0	1	720
0	0	0	1	0	0	0	0	0	0	0	0	1	1010

On creating separate models and calculating squared errors, we get following MSE result:

Week1 869 716.53333 502.0667 Week1 2401 3418.351 0.004444 1 Week2 983.66667 759.86667 547.4 Week2 128.4444 1691.951 134.56	SE
Week2 983.66667 759.86667 547.4 Week2 128.4444 1691.951 134.56	1375.73
Week3 757.66667 946.2 684.7333 Week3 1418.778 2621.44 68.33778	
Week4 1032.3333 826.2 711.4 Week4 498.7778 5446.44 108.16	
Week5 674 813.2 598.0667 Week5 2209 392.04 98.67111	

1.3. Calculate the MSE for the model discussed in class on the testing data set. Which one of these three models performs best for predicting demand?

In the model we discussed in class, we assumed that the demand for each week in 2019 is equal to the demand for the same week in 2018. So, we get MSE of 29273.8 in this prediction model, which is quite high compared to previous two models.

Model 3:	D11_2019	D12_2019	D13_2019		SE (Square	d Error)		MSE
Week1	567	820	550	Week1	64009	2025	2304	29273.8
Week2	632	870	579	Week2	131769	4761	400	
Week3	505	1150	721	Week3	46225	65025	784	
Week4	750	920	759	Week4	67600	400	3364	
Week5	500	865	632	Week5	48841	1024	576	

As we can see from the results of previous sections, Model 2 is performing the best in our demand prediction task, which gave MSE of just 1375.73, so we will use it in our subsequent sections.

2. Weekly allocation vs. 10-week allocation

We are using the best prediction model developed in Part 1 to predict the demand for 2019. So, below are our predicted demands for the product 1 in year 2019 for store 1,2 and 3 respectively for the weeks 1 to 10:

	Rounded-Up Predicted Demand:									
Week	D11_2019	D12_2019	D13_2019							
1	869	717	503							
2	984	760	548							
3	758	947	685							
4	1033	827	712							
5	674	814	599							
6	694	722	406							
7	730	597	337							
8	647	707	533							
9	847	879	747							
10	10 1313		1003							

Consider the following two scenarios:

- 1. At the beginning of week 1 in 2019, an allocation plan is created for the whole 10 weeks, and at the beginning of each week (week 1-10) inventory is allocated to stores based on the plan, independent of overstocking/understocking during each week.
- 2. At the beginning of each week, the allocation plan is updated by considering the available inventory at each store. Assume that the allocation to each store should not exceed the demand minus the available inventory at the store at the beginning of the week.

Suppose the following assumptions hold.

- The holding and shortage costs are 3 and 5 per unit, respectively.
- Each item that remains in the distribution center at the end of week 10, incurs 2-dollar cost.
- Target inventory at the beginning of week 1 (available inventory at the distribution center) is 20000.

- The inventory allocated to each store at the beginning of each week should be between 150 and 1000.
- Available inventory at the beginning of week 1, at stores 1, 2, and 3 are 55, 83, and 110, respectively.

2.1. What is the total cost under each scenario?

Here is our inventory allocation optimization model objective function and constraints:

Scenario 1:

Following optimization model was used in excel solver:

Other constraints:

```
$F$16:$F$25 >= $X$18:$X$27
$F$35:$F$44 <= $O$3:$O$12
```

we get following results by optimizing for maximum allocations such that it meets above requirements:

Decision Variable	es				
Store 1	Value	Store 2	Value	Store 3	Value
X1,1	814	X2,1	634	X3,1	393
X1,2	984	X2,2	760	X3,2	548
X1,3	758	X2,3	947	X3,3	685
X1,4	1000	X2,4	827	X3,4	712
X1,5	674	X2,5	814	X3,5	599
X1,6	694	X2,6	722	X3,6	406
X1,7	730	X2,7	597	X3,7	172
X1,8	647	X2,8	707	X3,8	150
X1,9	847	X2,9	879	X3,9	150
X1,10	1000	X2,10	1000	X3,10	150

Optimized Objective function results:

total Qty allocations = 20,000 units = max available inventory of the product for the year 2019

And below are the total lost sales (shortages) and unsold items under this allocation model:

Lost s	ales (Short	ages)			
	Store 1	Store 2	Store 3	Total	
Week 1	0	58	0	58	
Week 2	11	41	11	63	
Week 3	0	0	8	8	
Week 4	10	73	0	83	
Week 5	47	19	9	75	
Week 6	18	0	5	23	
Week 7	30	0	149	179	
Week 8	0	0	396	396	
Week 9	0	0	611	611	
Week 10	376	10	814	1200	
Total	492	201	2003	2696	

	Unsold Ite	Unsold Items (subject to holding charges)							
	Store 1	Store 2	Store 3	Total					
Week 1	49	0	1	50					
Week 2	0	0	0	0					
Week 3	38	52	0	90					
Week 4	0	0	11	11					
Week 5	0	0	0	0					
Week 6	0	22	0	22					
Week 7	0	1	0	1					
Week 8	25	7	0	32					
Week 9	37	4	0	41					
Week 10	0	0	0	0					
Total	149	86	12	247					

Therefore, below is the total cost for this allocation scenario:

total cost= 14221

Scenario 2:

In this model, we just use unsold inventory information to adjust each week allocations, and hence it can be called as a dynamic allocation model. We get following allocation results:

Optimized Objective function results:

total Qty allocations = 20,000 units = max available inventory of the product for the year 2019

Decision Variable	es				
Store 1	Value	Store 2	Value	Store 3	Value
X1,1	814	X2,1	634	X3,1	393
X1,2	935	X2,2	760	X3,2	547
X1,3	745	X2,3	947	X3,3	685
X1,4	1000	X2,4	775	X3,4	712
X1,5	658	X2,5	814	X3,5	588
X1,6	694	X2,6	722	X3,6	406
X1,7	730	X2,7	575	X3,7	232
X1,8	647	X2,8	700	X3,8	196
X1,9	822	X2,9	877	X3,9	196
X1,10	1000	X2,10	1000	X3,10	196

Other constraints:

```
$F$16:$F$25 >= $X$18:$X$27
$F$35:$F$44 <= $O$3:$O$12
```

Note that, we had to use here GRG non-linear optimization technique instead of simplex LP to solve this optimization problem in excel solver.

And below are the total lost sales (shortages) and unsold items under this allocation model:

	Lost sales					Unsold Ite	em		
	Store 1	Store 2	Store 3	Total		Store 1	Store 2	Store 3	Total
Week 1	0	58	0	58	Week 1	49	0	1	50
Week 2	11	41	11	63	Week 2	0	0	0	0
Week 3	0	0	8	8	Week 3	25	52	0	77
Week 4	0	73	0	73	Week 4	15	0	11	26
Week 5	48	19	9	76	Week 5	0	0	0	0
Week 6	18	0	5	23	Week 6	0	22	0	22
Week 7	30	0	89	119	Week 7	0	1	0	1
Week 8	0	0	350	350	Week 8	25	1	0	26
Week 9	0	0	565	565	Week 9	37	3	0	40
Week 10	339	7	768	1114	Week 10	0	0	0	0
Total	446	198	1805	2449	Total	151	79	12	242

Therefore, below is the total cost for this allocation scenario:

total cost= 12971

Note: If we keep our objective function as total cost minimization instead of maximum qty. allocation, we get following minimum costs for both scenarios (refer excel sheet 2.1.1/2_extra):

total cost= 12245

2.2. Which scenario is less expensive? How do you explain this?

On comparing results of both scenarios, we can easily notice that there is a significant cost saving in scenario 2 i.e. savings of about \$ 14221- \$ 12971 = \$ 1250. So, scenario 2 less expensive in this aspect. However, we must note that in order to run model as per scenario 2, we would need dynamic store demand data each week. And due to current digitalization trends, getting such dynamic data shouldn't pose any challenge for JOANN.

Now let us understand why scenario 2 is less expensive. The main difference is in scenario 1, we plan inventory for all weeks in the beginning of the year and do not take into consideration the actual demand and extra inventory each store would have at the end of each week in case of less demand then predicted, but we just dump the inventory every week as planned in the beginning of year. However, in scenario 2, we delay inventory allocation and that helps us to be more reactive to in season or weekly demand and learn about unsold quantity each store already has at the end of the week. And this actually help us to refrain from sending additional items which store ultimately would not be able to sell it. So this saves holding and shortage costs significantly in scenario 2 compared to scenario 1, and hence scenario 2 becomes comparatively cheaper and better alternative.

References:

[1] H A Mehrizi, eBook: MSCI 719 Winter 2023 Cases Multiple (ID: 9723713) Accessed: Jan. 22, 2023. [Online].

Available:

 $\frac{https://www.campusebookstore.com/integration/AccessCodes/default.aspx?permalinkId=ee044bf}{2-fe82-4db0-ad22-088e81954eef\&frame=YES\&t=permalink\&sid=4u2faw45zyslbp45bbqlpc55}$