CS 241, Lecture 10 - Context Free Grammars, Parse Trees, and Parsing

Thurs, Feb 07, 2019

1 CFGs

- Consider the arithmetic operations over $\Sigma = \{a, b, c, +, -, *, /, (,)\}$. Find a CFG for the following:
 - L_1 : Arithmetic expressions from Σ without parentheses
 - L_2 : Well formed arithmetic expressions from Σ with balanced parentheses

Also, find a derivation for a - b in the first language and for (a - b) in the second one.

• Solutions:

For L_1 : Arithmetic expressions from Σ without parentheses

$$S \rightarrow a | b | c | SRS$$

 $R \rightarrow + |-|*|/$

For L_2 : Arithmetic expressions from Σ with balanced parentheses

$$S \rightarrow a | b | c | (SRS)$$

 $R \rightarrow + |-|*|/$

Derivations:

$$S \Rightarrow SRS \Rightarrow aRS \Rightarrow a - S \Rightarrow a - b$$

 $S \Rightarrow (SRS) \Rightarrow (SRb) \Rightarrow (S - b) \Rightarrow (a - b)$

• Using the above language, let us create a **parse tree** for the input of a - b:

$$a-b$$
 in
$$S \rightarrow a \mid b \mid c \mid SRS$$
 $R \rightarrow + \mid -\mid *\mid /$

• Another example: using aaabbb in $S \to \epsilon|aSb$: aaabbb in $S \to \epsilon|aSb$

- We note that for every left/right-most derivation, there exists a unique parse tree, and vice versa.
- We also note that given a grammar, every left/right derivation for a string is NOT unique. For example, consider two left-most a-b*c:

$$S \Rightarrow SRS \Rightarrow aRS \Rightarrow a - S \Rightarrow a - SRS$$

 $\Rightarrow a - bRS \Rightarrow a - b * S \Rightarrow a - b * c$

$$S \Rightarrow SRS \Rightarrow SRSRS \Rightarrow aRSRS \Rightarrow a - SRS$$

 $\Rightarrow a - bRS \Rightarrow a - b * S \Rightarrow a - b * c$

- We define a grammar for which some word has more than one distinct leftmost/rightmost derivation/parse tree is called an **ambiguous grammar**. Our example above is an ambiguous example.
- So how can we remove ambiguity? Well, we covered this in rustce create precedence to

force your parse tree to understand, say, a - b * c as a - (b * c), NOT (a - b) * c!

- This make it unambiguous. This is what L_2 does in our earlier example.
- What we can also do is insist on what associativity we are using (ie: force right associative grammar for a b * c.
- If L is a context-free language, is there always an unambiguous grammar s.t. L(G) = L?
- Can we write a computer program to recognize whether a grammar is ambiguous or not? No!
- This means that given two CFGs G_1 and G_2 , we cannot determine if $L(G_1) == L(G_2)$ or even something easier like $L(G_1)\hat{L}(G_2) = \varnothing$. They are both undecideable problems.
- What we *can* do is use pushdown automation, which are just machines that are basically DFAs with an additional stack that we can process in LIFO order.
- But we also need to find the **derivation** finding this derivation is called **parsing**.

2 Parsing

- Top-down Parsing:
 - Start with S and store intermediate derivations in a stack, and match characters to w.
 - Then every time we pop from the stack, we will have that consumed input + reverse of stack is equal to a intermediate step in our derivation that is, a step is an α_i where $S \Rightarrow \cdots \Rightarrow \alpha_i \Rightarrow \cdots \Rightarrow w$.
 - We will augment our grammar to include \vdash and \dashv symbolizing the beginning and end of the file. We also include a new start state, S', to begin our parsing.
 - Our original CFG $G = (N, \Sigma, P, S)$ becomes

$$G = (N \cup \{S'\}, \Sigma \cup \{\vdash, \dashv\}, P \cup \{S' \rightarrow \vdash S \dashv\}, S')$$

- The algorithm can be coded as follows:

Algorithm 1 Top-Down Parsing

```
1: Push S' onto the stack
 2: while stack is non-empty do
       \alpha = \mathsf{pop} \; \mathsf{from} \; \mathsf{stack}
        if \alpha \in N \cup \{S'\} then
           Push symbols of \beta of a valid production rule \alpha \to \beta in reverse order on the
 5:
           stack (note derivation)
        else
 6:
           c = read\_char()
 7:
           if c \neq \alpha then
 8:
               Reject
 9:
           end if
10:
        end if
11:
12: end while
13: if read_char() = EOF then
14:
        Accept
15: else
        Reject
16:
17: end if
```

ullet Example: Let us determine whether or not w=abcdef is inside L(G) where

$$G = (\{S, A, B\}, \{a, b, c, d, e, f\}, P, S)$$

is defined with P given by:

$$S \to AcB$$

$$A \to ab$$

$$A \to ff$$

$$B \to def$$

$$B \to ef$$

• Solution: We first augment the grammar with $S' \to \vdash S \dashv$, and look for $w = \vdash abcdef \dashv$ in this augmented grammar:

Stack	Read	Processing	Action
S'	ϵ	⊢ abcdef ⊣	Pop S', push \dashv , S , \vdash
$\exists S \vdash$	ϵ	⊢ abcdef ⊣	$Match \vdash$
$\exists S$	⊢	abcdef ⊣	Pop S push B, c then A
$\dashv BcA$	\vdash	abcdef ⊣	Pop A push b then a
\dashv Bcba	⊢	abcdef ⊣	match <i>a</i>
\dashv <i>Bcb</i>	⊢ <i>a</i>	<i>bcdef</i> ⊣	match <i>b</i>
\dashv Bc	⊢ ab	cdef ⊣	match c
$\dashv B$	⊢ abc	def ⊣	Pop B , push f , e then d
\dashv fed	⊢ abc	def ⊣	match <i>d</i>
\dashv fe	⊢ abcd	ef ⊣	match <i>e</i>
$\dashv f$	⊢ abcde	$f \dashv$	$match\ f$
\dashv	⊢ abcdef	-	$match \dashv$
ϵ	\vdash abcdef \dashv	ϵ	$Accept\ (stack = input = \epsilon)$

3 Correction

• Determining if $L(G) = \emptyset$ is decideable.