MATH 308 D200, Fall 2019

18. Duality of non-canonical LP problems (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

An upper bound on the optimal value of a non-canonical max LP problem

Some main constraints (I) are \leq -inequalities, the other constraints (E) are equalities. Some variables (C) are constrained to be > 0, the other variables (U) are unconstrained.

$$I \cup E = [1, \ldots, m], \quad I \cap E = \emptyset, \qquad \overline{C} \cup U = [1, \ldots, n], \quad C \cap U = \emptyset.$$

Non-canonical primal (P): maximize $\sum_{i=1}^{n} c_{i}x_{j}$

subject to:
$$\sum_{j=1}^{n} a_{ij} x_{j} \leqslant b_{i} \qquad \text{(for } i \in I\text{)}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \qquad \text{(for } i \in E\text{)}$$

$$x_{j} \geqslant 0 \qquad \text{(for } j \in C\text{)}$$

$$x_{j} \text{ unconst. (for } j \in U\text{)}$$

Multiply constraint i by y_i , and add them together.

(1)
$$\sum_{j=1}^{n} a_{ij} x_j \cdot y_i \leqslant b_i \cdot y_i, i \in I$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i / y_i, i \in E$$

$$\sum_{j=1}^{n} \left(\sum_{i \in I} a_{ij} y_i \right) x_j \leqslant \sum_{i \in I} b_i y_i \qquad \sum_{j=1}^{n} \left(\sum_{i \in E} a_{ij} y_i \right) x_j = \sum_{i \in E} b_i y_i$$

An upper bound on the optimal value of a non-canonical max LP problem

Some main constraints (I) are \leq -inequalities, the other constraints (E) are equalities.

Some variables (
$$C$$
) are constrained to be ≥ 0 , the other variables (U) are unconstrained. $I \cup E = [1, \dots, m], \quad I \cap E = \emptyset, \qquad C \cup U = [1, \dots, n], \quad C \cap U = \emptyset.$

Non-canonical primal (P): maximize $\sum_{i=1}^{n} c_{i}x_{j}$

subject to:
$$\sum_{j=1}^n a_{ij} x_j \leqslant b_i$$
 (for $i \in I$) (Dual *C*-Variable: y_i)
$$\sum_{j=1}^n a_{ij} x_j = b_i$$
 (for $i \in E$) (Dual *U*-Variable: y_i)
$$x_j \geqslant 0$$
 (for $j \in C$)
$$x_j \text{ unconst. (for } j \in U$$
)

Multiply constraint i by y_i , and add them together.

(1)
$$\sum_{j=1}^{n} a_{ij} x_j \cdot y_i \leqslant b_i \cdot y_i, i \in I$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i / y_i, i \in E$$

(2)
$$\sum_{i=1}^{n} \left(\sum_{i \in I} a_{ij} y_i \right) x_j \leqslant \sum_{i \in I} b_i y_i \qquad \sum_{i=1}^{n} \left(\sum_{i \in E} a_{ij} y_i \right) x_j = \sum_{i \in E} b_i y_i$$

An upper bound on the optimal value of a non-canonical max LP problem

(3)
$$f = \sum_{j=1}^{n} \boxed{c_j} x_j \leqslant \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j \leqslant \sum_{i=1}^{m} b_i y_i = g$$

Non-canonical dual LP: minimize
$$\sum_{i=1}^m b_i y_i$$
 subject to: $\sum_{i=1}^m a_{ij} y_i \geqslant c_j \ (j \in C)$ $\sum_{i=1}^m a_{ij} y_i = c_j \ (j \in U)$ $y_i \geqslant 0 \ (i \in I)$

SELI department of mathematics

Example

Write the dual LP for the following non-canonical LP:

maximize
$$x_1 - 2x_2 + x_3$$
 subject to: $2x_1 + 3x_2 - x_3 \leqslant 5$ $x_1 - x_2 + 3x_3 = 4$ $x_1 \leqslant 15$ $x_2 - 2x_3 \leqslant 1$ $x_3 \geqslant 0$

Duality in Non-canonical Tableaux

Definition (Dual Non-canonical Tableau)

A dual non-canonical tableau is a non-canonical tableau of the form

	(x_1)		(XI)	x_{l+1}		x _n	-1	
<u>//1</u>	$a_{1,1}$		$a_{1,I}$	$a_{1,l+1}$		$a_{1,n}$	b_1	= -0
:	:	4.	•	:	4.	•	:	
(y_k)	$a_{k,1}$		$a_{k,I}$	$a_{k,l+1}$		$a_{k,n}$	b_k	= -0
y_{k+1}	$a_{k+1,1}$		$a_{k+1,I}$	$a_{k+1,l+1}$		$a_{k+1,n}$	b_{k+1}	$=-t_{k+1}$
:	:	1.	:	:	1.	:	:	
Уm	$a_{m,1}$		$a_{m,I}$	$a_{m,l+1}$		$a_{m,n}$	b_m	$=-t_m$
-1	<i>c</i> ₁		CI	c_{l+1}		Cn	d	= f
	= 0		= 0	$= s_{l+1}$		$= s_n$	= g	•

SFU department of mathematics

Solve the dual non-canonical LP problems.

	<u>x</u> 1	<u>×2</u>	<i>x</i> ₃	-1	
<u>y</u> 1	1	-1	2	1	=-0
<i>y</i> ₂	2	2	0	1	$=-t_{2}$
<i>y</i> 3	0	1	2	-1	$=-t_3$
-1	1	-1	1	0	= f
	= 0	= 0	= 53	= g	•

Solve the dual non-canonical LP problems.

	<u>×1</u>	<i>x</i> ₂	<i>X</i> 3	-1	
<u>/1</u>	0	-1	-1	-1	= -0
<i>y</i> ₂	-1	-3	4	0	$=-t_{2}$
<i>y</i> 3	-1	2	-3	0	$=-t_{3}$
-1	-1	0	0	0	= f
	<u> </u>	— co	— co	_ ~	•

SFU department of mathematics