Efficient brute-force marginalisation of discrete variables in Stan: an epidemic model of sub-critical transmission as a case study

Luiz Max Carvalho ¹ Gytis Dudas ² Andrew Rambaut ³

Tanja Stadler⁴

Trevor Bedford⁵

¹School of Applied Mathematics, Getúlio Vargas Foundation

²Independent consultant

³Institute of Evolutionary Biology, University of Edinburgh

⁴Department of Biosystems Science and Engineering, ETH Zürich

⁵Vaccine and Infectious Disease Division, Fred Hutch Cancer Centre

Motivation

As is widely known, the HMC algorithm underlying Stan cannot handle discrete latent variables (parameters). Thus, when for one to be able to fit a model containing latent variables in Stan, these need to be marginalised over, either analytically or by brute-force. Let X be the discrete latent variables of interest, Y be the data and other variables in the model and heta be the model parameters. We can write

$$\Pr\left(\boldsymbol{\theta} \mid \boldsymbol{Y}\right) \propto \sum_{i \in \boldsymbol{\Omega}} \Pr\left(\boldsymbol{\theta} \mid \boldsymbol{Y}, X = i\right) = \sum_{i \in \boldsymbol{\Omega}} \Pr\left(\boldsymbol{Y}, X = i \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta}),$$

which usually takes the more familiar form

$$\Pr\left(\boldsymbol{\theta} \mid \boldsymbol{Y}\right) \propto \sum_{i=0}^{\infty} \Pr\left(\boldsymbol{Y}, X = i \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta}). \tag{1}$$

Here we will discuss a few ways to do the marginalisation in (1) and discuss what is, to the best of our knowledge, a new technique for truncating infinite sums while controlling approximation error.

A motivating example: sub-critical transmission chains

Here are interested in the model Blumberg & Lloyd-Smith, (2013a), in which subcritical transmission leads to "stuttering" chains of transmission.

- Birth-death. The model assumes a birth-death process in which an initial single infection results in a distribution of offspring infections.
- Secondary infection distribution for each infection follows a negative binomial distribution with mean R_0 and over-dispersion parameter ω . When $\omega \to \infty$, the secondary infection distribution is Poisson distributed and when $\omega=1$ the secondary infection distribution is an exponential distribution.
- Total number of cases within a transmission chain, c, that are caused by a single introduction (including the index case) has limiting distribution:

$$\Pr(C = c \mid R_0, \omega) = \frac{\Gamma(\omega c + c - 1)}{\Gamma(\omega c)\Gamma(c + 1)} \frac{(R_0/\omega)^{c - 1}}{(1 + R_0/\omega)^{\omega c + c - 1}}.$$

- An outbreak may be comprised of multiple concurrent transmission chains resulting from multiple introduction events. Each chain i comprises a count of cases c_i and the vector of case counts within distinct transmission chains is $\mathbf{C} = (c_1, \dots, c_K)$.
- Total number of cases in the outbreak by $N = \sum_{i=1}^{K} c_i$.
- MLE. When C are observed directly, the maximum likelihood estimator of R_0 is $\widehat{R_0}^{\text{MLE}} = 1 - \frac{K}{N}.$

Modelling observation error

The main issue with estimating $\{R_0,\omega\}$ from data is that the clusters (and cluster sizes) are observed imperfectly. Here we explore the so-called size-independent model of observation error, which motivates the employment of truncation techniques.

Binomial (size-independent) observation error

Each case in chain/cluster c_i is observed independently with probability ψ such that we now observe a set $\mathbf{S} = (s_1, \dots, s_J)$ of cases. Thus we have

$$P(S = s_i \mid C = c_i, \psi) = \binom{c_i}{s_i} \psi^{s_i} (1 - \psi)^{c_i - s_i}.$$
(3)

When $s_i = 0$, the cluster is not observed. The conditional probability that a cluster is not observed is $\Pr(S=0 \mid C=c_i, \psi) = (1-\psi)^{c_i}$, while the marginal probability is

$$\Pr(S = 0 \mid \psi, R_0, \omega) = \sum_{j=1}^{\infty} \Pr(S = 0 \mid C = j, \psi) \Pr(C = j \mid R_0, \omega). \tag{4}$$

After some manipulation we get

$$\sum_{k=1}^{\infty} \kappa(k,\omega)b^k = \frac{a}{1+a},\tag{5}$$

with $a:=R_0/\omega$, $b=a/(1+a)^{(1+\omega)}$ and $\kappa(c,\omega):=\frac{\Gamma(\omega c+c-1)}{\Gamma(\omega c)\Gamma(c+1)}$. Whilst the mapping $a\mapsto b$ is not invertible analytically, it can be easily inverted numerically via Newton solver. Hence for the case $s_i = 0$, we can write

$$P(S = 0 \mid R_0, \omega, \psi) = \sum_{k=1}^{\infty} \frac{1+a}{a} \kappa(k, \omega) b^k (1-\psi)^k,$$

$$= \frac{\omega + R_0}{R_0} \frac{u}{(1+u)},$$
(6)

where $b \cdot (1 - \psi) = u/(1 + u)^{(1+\omega)}$ and u can be obtained by numerical inversion. The marginal probability when S>0 is not available in closed-form, and we discuss a strategy to marginalisation in **Adaptive truncation**.

Adaptive truncation

Let $p(j) := \Pr(\boldsymbol{\theta} \mid \boldsymbol{Y}, X = j)$ let $Q = \sum_{j=s}^{\infty} p(j)$ be the sum of interest, with ϵ the desired approximation error. Define $L := \lim_{n \to \infty} p(n)$. The algorithm can be summarised as follows:

- Find \dot{N} such that p(j+1)/p(j) < 1 for all $j > \dot{N}$;
- Compute $\dot{Q} = \sum_{j=s}^{N} p(j)$;
- Let $z_j = \frac{p(j+1)p(j)}{p(j)-p(j+1)};$
- Find $\ddot{N} \geq \dot{N}$ such that $p(j)\left(\frac{L}{1-L}\right) + z_j =: \Delta_j < 2\epsilon$ for all $j > \ddot{N}$;
- Compute $\ddot{Q} = \sum_{j'=\dot{N}}^{\dot{N}} p(j')$;
- Compute the estimate $\hat{Q} = \dot{Q} + \ddot{Q} + \frac{1}{2}\Delta_{\ddot{N}}$.

For the model discussed here, $L = [(1+\omega)/(R_0+\omega)]^{1+\omega} R_0(1-\psi)$, but usually we have L=0.

Priors

- Independent priors. $\pi(R_0, \omega, \psi) = \pi_R(R_0)\pi_H(\omega)\pi_S(\psi)$;
- Reproduction number: $\pi_R(R_0)$, Beta(1,1) or a boundary-avoiding Beta(2,2) reference prior is available when ω is fixed;
- Dispersion: $\pi_H(\omega)$, Gamma(1, 1);
- Observation probability: $\pi_S(\psi)$, Beta(1,1);

Including information about the number of unobserved clusters

- How many unobserved clusters? We do not observe the number of size zero clusters, $n_0 = K - J$, directly. Since we know the number of observed clusters J, we can also choose to model the true number of clusters K instead of n_0 , and this is the route we take here.
- Marginalising over K
- Let $p_0 := \Pr(S = 0 \mid R_0, \omega, \psi);$
- Then for k>J we have $\Pr(K=k\mid \pmb{\theta})=\Pr(K=k\mid p_0)=p_0^{k-J};$ Fix a total (case) count sum: $N=\sum_{i=1}^K c_i;$
- Then $K \in [J, U]$, where U = J + N T and $T = \sum_{i=1}^{J} s_i$.

Using a doubly-truncated Poisson prior on K, the marginalisation is now

$$m''(J, U, p_0, \lambda_K) := \sum_{k=J}^{U} \Pr(K = k \mid p_0) \pi_2(K = k \mid \lambda_K)$$
$$= \frac{\exp(\lambda_K(p_0 - 1))}{p_0^J}.$$

Prelimnary results

Figure 1. Posterior distributions and posterior predictives for quantities of interest in the model.