${\it Math 1080} \\ {\it Unit~1~Formula~reference~sheet}$

Note: Let f(x) and g(y) represent the area between 2 functions where appropriate.

Note: L	Let $f(x)$ and	g(y) represent the area between	een 2 functions	where appropriate.	
Velocity	F(b) - F(b)	$(a) = \int_{a}^{b} f(x) dx \qquad \Longrightarrow \qquad$	J	U	
Disk/Washer πr^2	$ \begin{aligned} x - axis \\ y = 0 \end{aligned} $	$\int_{a}^{b} \pi (R^2 - r^2) dx$	y - axis $x = 0$	$\int_{c}^{d} \pi \left(R^{2} - r^{2}\right) dy$	
	y = c	$\int_{a}^{b} \pi ((R-c)^{2} - (r-c)^{2}) dx$	x = c	$\int_{c}^{d} \pi \left((R-c)^{2} - (r-c)^{2} \right) dy$	
			,	d y c	
Shell method $2\pi r \cdot h$	x - axis $y = 0$	$\int_{c}^{d} 2\pi y \cdot g(y) dy$	y - axis $x = 0$	$\int_{a}^{b} 2\pi x \cdot f(x) dx$	
	c < a $y = c$	$\int_{c}^{d} 2\pi (y - c) \cdot g(y) dy$	c < a $x = c$	$\int_{a}^{b} 2\pi (x - c) \cdot g(x) dx$	
	b < c $y = c$	$\int_{c}^{d} 2\pi (c - y) \cdot g(y) dy$	b < c $x = c$	$\int_{a}^{b} 2\pi (c-x) \cdot g(x) dx$	
		x y = 0		$a = x_k \int_{X} f(x_k^*)$	
$\frac{\text{Arc length}}{\sqrt{\left(\frac{dx}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^2}}$	L	$= \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^2} dx$			
Surface area $2\pi r \cdot h$	$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx$				
$\begin{array}{c} \text{Mass} \\ \rho \cdot d \end{array}$	$m = \int_{a}^{b} \rho dx$				
Work $F \cdot d$	$W = \int_{a}^{b} F(x) dx$				
Chain with load		$W = \int_0^L \rho g(L - y) dy + mgL$			
Pumping		$= \int_{a}^{b} \rho g A(y)(h-y) dy$			
Force-on-dam	F	$= \int_0^a \rho g \underbrace{(a-y)}_{\text{depth}} \underbrace{w(y)}_{\text{width}} dy$			
Integration by parts	$\int u dv$	$= uv - \int v du$			