索引存储引擎

- 索引存储引擎
 - 。 设计目标
 - 。 概要设计
 - 缓存方案
 - 重做日志
 - 内存操作
 - 持久化
 - 从磁盘中读入
 - 故障恢复
 - 碎片整理
 - 启动流程
 - 。 索引文件存储协议
 - 元数据页结构
 - 数据页结构
 - 非叶子节点数据页结构
 - 叶子节点数据页结构

设计目标

- 数据持久化到磁盘中
- 支持可配置的固定长度的key
- 查询效率要高,使用缓存
 - 。 支持精确查找,时间复杂度 0(logn)
 - 。 支持范围查找,时间复杂度 O(logn+m)
- 插入效率要高
 - 。支持插入删除
 - 。 支持任意时刻断电恢复
 - 。 故障允许短时间或少量数据的丢失
- 文件大小理论上无限值(最大2^64)

概要设计

使用B+树来构建索引,操作磁盘的粒度为页(默认16k),也就是B+树的一个结点 由于写回磁盘的代价过高,所以采用异步的方式将修改或新增的节点写回磁盘 为了简化设计,每个索引文件对应一个进程处理;本文描述的都是针对单个索引文件的操作。

缓存方案

在进行数据(<K,V>)操作(插入/修改/删除)时,必然涉及读写数据。这里使用三个两类LRU缓存(下文称 LRU)进行磁盘数据的缓存:

- 第一类缓存(unchangedCache):存放在执行一系列操作过程中没有发生更改的节点(也就是与磁盘中的数据一致的数据)。
 - 。 这样的LRU需要1个。
 - 。这些数据都是从磁盘中读取而来的
- 第二类缓存(changedCache): 存放发生修改的节点(也就是与磁盘不一致或者磁盘不存在的数据)
 - 。 这样的LRU需要2个,每次使用1个,当一个满了之后,将会异步做持久化操作,另一个启用工作
 - 。 这些数据都是 unchangedCache 发生修改的数据在淘汰时添加而来的
 - 。 工作中的LRU叫做 changeCacheWork
 - 。 持久化中的LRU叫做 changeCacheFreeze

重做日志

同时由于数据延时异步刷磁盘,所以要使用重做日志(Redo log)防止数据丢失

- 每个第二类缓存对应一个重做日志文件,
- 当一个第二类缓存在使用中,对象的写操作将追加到重做日志中
- 当一个第二类缓存持久化完成后就可以清空对应的重做日志

内存操作

针对操作大概流程如下

- 收到一个操作
- 一、先读 changeCache
- changeCacheFreeze 查找操作节点,存在则拷贝一份
 - 。 若发生更改,放入 changeCacheWork
 - 。 若没有发生更改忽略
- changeCacheFreeze 不存在
- changeCacheWork 中查找,存在,返回该节点引用,直接修改即可
- changeCacheWork 不存在
- 向 unchangeCache 中查找,存在,返回该节点引用,直接修改即可
- unchangeCache 不存在
- 二、再读 unchangeCache
- 从磁盘中读入,插入 unchangeCache 并返回
 - 。 插入过程中若发生淘汰,淘汰的节点若发生修改则插入 changeCacheWork

。 当 changeCacheWork 满,且 changeCacheFreeze 持久化完成,则交换两者身份后,异步对 changeCacheFreeze 进行持久化

注意所有发生修改的节点都要分配新的页Id

持久化

持久化过程的思路是,在持久化过程中,要维护两棵树在磁盘中。这样若在持久化过程中发生故障;在启动 后可以通过原树+重做日志恢复数据。

既然需要维护两棵树,则每个逻辑上的B+tree节点在磁盘中可能存在两个页,每个页都包含数据,同一时刻这两个页有一个是有效数据,另外的为无效数据。持久化版本号大的为有效数据。这两个页分为一下两种:

- 被链接页 该节点的父亲直接指向该页
- 影子页 该节点的必须通过链接页的 after 字段找到页

unchangeCache 仅存放一种节点: oldNode

changeCacheFreeze 中的节点分为3类:

• 第一类节点(newNode):新创建的节点,内存存在,磁盘不存在

• 第二类节点(updateNode):更新的节点,内存存在新的,磁盘存在旧的

• 第三类节点(removeNode):被删除的节点,内存存被标记删除,磁盘存在

状态转换图如下:

changeCacheFreeze 两种状态:

- 第一种状态:正在进行持久化
 - 。 此时不能进行两个 changeCache 的切换
 - 。 且必须先读 changeCacheFreeze 再读 changeCacheWork
- 第二种状态:可以进行持久化
 - 。 此时可以进行两个 changeCache 的切换
 - 。 不需要读 changeCacheFreeze ,直接读 changeCacheWork

每一次持久化都会创建一个递增版本号,所有新增加的页都会写入这个版本号(nodeVersion),用于故障恢复。

大概执行过程为

- 修改磁盘中文件某字段标记正在进行持久化
- 需要对 changeCacheFreeze 进行几次遍历
- 第一次遍历:
 - 。 将所有 newNode 写入磁盘
- 第二次遍历:
 - 。 将所有 updateNode
 - 。 将数据写入无效数据页,
 - 。 修改 after 指针
- 将磁盘中文件的部分元数据备份到备份区域
- 修改磁盘中文件某字段标记为正在进行元数据修改
- 修改元数据(切换树,因为有两个树)
- 恢复所有标记字段

从磁盘中读入

需要注意的是,根据版本号(nodeVersion),决定读取当前页还是 effect 页,则直接读 effect 指向的页

- 如果 effect==0 返回当前页
- 否则,如果 effect.nodeVersion>=meta.nextNodeVersion 返回 effect 页

故障恢复

故障分为几种情况

- 没有线程进行持久化操作:
 - 。 直接执行重做日志
- 线程持久化操作中,但没有进行修改元数据:
 - 。 遍历,将所有遍历到的废弃标记清空
 - 。 直接执行重做日志
- 线程持久化操作中,正在元数据修改:
 - 。 从元数据备份区进行元数据恢复
 - 。 遍历,将所有遍历到的废弃标记清空
 - 。 直接执行重做日志

碎片整理

由于持久化操作会产生大量副本,且删除仅仅标记为废弃,所以磁盘文件会无限膨胀,所以需要进行文件碎 片整理

碎片整理有两个方案:

• 方案一: 遍历树,将所有废弃节点创建一个可用页链表

• 方案二: 在方案一的基础上进行数据迁移

为了效率,选择方案一

启动流程

- 检测状态,进行故障恢复
- 执行重做日志
- 进行碎片整理

索引文件存储协议

使用B+树数据结构

- 索引文件划分为多个连续的页(Page)
- 每个页大小可配置(pageSize , 默认 16k),取值范围为 [64,2^64]
- 每个页按顺序进行编号,从 0 开始
- 第 0 页,存放元数据 (meta)
- 其他页存放数据(data)
- 所有数据以网络字节序存储(大端)

索引文件整体结构

pageId	0	1	2			
内容	meta	data	data	data		
大小	pageSize	pageSize	pageSize	pageSize		

元数据页结构

Meta结构

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	ma	gic			vers	sion		pageSize flag							
	۷	1			۷	1		4 4							
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	degree depth								key	Len			valu	eLen	
4 4								4 4					1		
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
				unt								ot			
				3								3			
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
40	49	30			55	34	33	50	37					02	0.5
				qt R				nextPageId 8							
8 8															
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
			edPa	igeC	nt			nextNodeVersion							
				3				8							
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
	flag	Bak		(deptl	nBak		countBak							
	۷	1			۷	1		8							
										1					
96	97	98		100	101	102	103	104	105	106			109	110	111
			root					sqtBak							
				3				8							
110	112	114	11.5	11.6	117	110	110	120	101	100	100	104	105	100	107
112	113					118	119	120				<u> </u>		126	127
	nextPageIdBak							usedPageCntBak							
8												3			
128	129	130	131	132	133	134	135			136	.ทล๑	eSiz	e-1		
120				ersio			133	5 136pageSize-1 未使用							
				3											

Flag位说明

31~4	1	3	2	1	0
未使用	3	isCreating	isSwitchTree	isPersistence	isUnique

- magic 4字节 魔数 0x960729db 表示该文件是索引存储文件
- version 4字节 文件版本号 目前为 1
- pageSize 4字节 页大小 默认为 16k
- flag 4字节 标志
 - 。 flag[0] isUnique 表示该索引文件是否唯一
 - 。 flag[1] isPersistence 是否正在进行持久化
 - flag[2] isSwitchTree 是否正在进行切换树
 - 。 flag[3] isCreating 是否正在进行创建文件
 - 。 flag[31..4] 未定义
- degree 4字节 B+树的度,根据 pageSize 计算和 data 页结构计算
- depth 4字节 树的深度,用于判断树叶子节点
- keyLen 4字节 键字节数 长度,简单起见 小于 (页长度-链接数据页控制字段)/3
- valueLen 4字节 值字节数,简单起见 小于 (页长度-叶子数据页控制字段-keyLen)
- count 8字节 该索引数据计数
- root 8字节 根节点所在的页
- sqt 8字节 第一个叶子节点所在的页
- nextPageId 8字节 下一个可用页的号
- usedPageCnt 8字节 [1, nextPageId) 已将使用的页的数目,结合 nextPageId 在达到一定情况下进行自动磁盘整理
- nextNodeVersion 8字节 下一次磁盘持久化使用的版本号
- xxxBak 重要数据的备份,用于断电恢复

注意: keyLen 和 valueLen 的限制是为保证一个页至少放下一对 кv

数据页结构

非叶子节点数据页结构

非叶子节点数据页

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
			pr	ev			next										
			{	3			8										
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		
			af	ter				nodeVersion									
			{	3				8									
	•																
32	33	34	35	36	37	38	39	40									
	si	ze			fla	ag											
	2	1			2	1											
	key									child							
	keyLen								8								
	- '																
	KV对直到页尾																

- prev 8字节 表示左兄弟所在的页
- next 8字节 表示右兄弟所在的页
- after 8字节
 - 。 @ 没有影子节点
 - 。 !0 影子节点所在位置
- nodeVersion 8字节 该节点在持久化的版本号
- size 4字节 该页已使用的key的数目,不能大于 degree
- flag 4字节 标志
 - 。 flag[0] 该页是否被废弃
 - 。 flag[31..1] 未定义
- key keyLen 字节 键
- child 8字节 键指向孩子所在的页

叶子节点数据页结构

简单起见规定一个页能放下所有的 kv 对

叶子节点数据页

0	1	2	3	4	5	6	7	8 9 10 11 12 13 14 1								
			pr	ev			next									
			8	3			8									
16	16 17 18 19 20 21 22 23									26	27	28	29	30	31	
	-		af	ter						noc	leV	ers	ion			
			8	3				8								
	'															
32	33	34	35	36	37	38	39	40								
	si	ze			fla	ag										
	2	1			2	1										
key									value							
keyLen								valueLen								
	KV对直到页尾															

与非叶子节点数据页区别在于

• value valueLen 字节 存放的是数据