Theorem 32.15. (Chinese Remainder Theorem) Given a commutative ring A, let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be any $n \geq 2$ ideals of A such that $\mathfrak{a}_i + \mathfrak{a}_j = A$ for all $i \neq j$. Then, the homomorphism $\theta \colon A/\mathfrak{a}_1 \cdots \mathfrak{a}_n \to A/\mathfrak{a}_1 \times \cdots \times A/\mathfrak{a}_n$ is an isomorphism.

Proof. The map $\theta: A/\mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n \to A/\mathfrak{a}_1 \times \cdots \times A/\mathfrak{a}_n$ is induced by the homomorphism $\varphi: A \to A/\mathfrak{a}_1 \times \cdots \times A/\mathfrak{a}_n$ given by

$$\varphi(x) = (\overline{x}_{\mathfrak{a}_1}, \dots, \overline{x}_{\mathfrak{a}_n}).$$

Clearly, $\operatorname{Ker}(\varphi) = \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n$, so θ is well-defined and injective. We need to prove that

$$\mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n = \mathfrak{a}_1 \cdots \mathfrak{a}_n$$

and that θ is surjective. We proceed by induction. The case n=2 is Theorem 32.14. By induction, assume that

$$\mathfrak{a}_2 \cap \cdots \cap \mathfrak{a}_n = \mathfrak{a}_2 \cdots \mathfrak{a}_n.$$

We claim that

$$\mathfrak{a}_1 + \mathfrak{a}_2 \cdots \mathfrak{a}_n = A.$$

Indeed, since $\mathfrak{a}_1 + \mathfrak{a}_i = A$ for i = 2, ..., n, there exist some $a_i \in \mathfrak{a}_1$ and some $b_i \in \mathfrak{a}_i$ such that

$$a_i + b_i = 1, \quad i = 2, \dots, n,$$

and by multiplying these equations, we get

$$a + b_2 \cdots b_n = 1$$
,

where a is a sum of terms each containing some a_j as a factor, so $a \in \mathfrak{a}_1$ and $b_2 \cdots b_n \in \mathfrak{a}_2 \cdots \mathfrak{a}_n$, which shows that

$$\mathfrak{a}_1 + \mathfrak{a}_2 \cdots \mathfrak{a}_n = A$$
,

as claimed. It follows that

$$\mathfrak{a}_1 \cap \mathfrak{a}_2 \cap \cdots \cap \mathfrak{a}_n = \mathfrak{a}_1 \cap (\mathfrak{a}_2 \cdots \mathfrak{a}_n) = \mathfrak{a}_1 \mathfrak{a}_2 \cdots \mathfrak{a}_n.$$

Let us now prove that θ is surjective by induction. The case n=2 is Theorem 32.14. Let x_1, \ldots, x_n be any $n \geq 3$ elements of A. First, applying Theorem 32.14 to \mathfrak{a}_1 and $\mathfrak{a}_2 \cdots \mathfrak{a}_n$, we can find $y_1 \in A$ such that

$$y_1 \equiv 1 \pmod{\mathfrak{a}_1}$$

 $y_1 \equiv 0 \pmod{\mathfrak{a}_2 \cdots \mathfrak{a}_n}.$

By the induction hypothesis, we can find $y_2, \ldots, y_n \in A$ such that for all i, j with $2 \le i, j \le n$,

$$y_i \equiv 1 \pmod{\mathfrak{a}_i}$$

 $y_i \equiv 0 \pmod{\mathfrak{a}_j}, \quad j \neq i.$