Intelligent Malware Defense for Insider Threats in Mobile Networks

Errin W. Fulp and Joseph V. Antrosio

Department of Computer Science nsg.cs.wfu.edu

April 28, 2005

Malware

- Interconnected networks offer many benefits
 - Also enabled an increasing number of security threats
- Malware is unwanted software that exploits flaws
 - Worm is the most prevalent and dangerous
 - No human interaction is required
- Why are worms successful?
 - Homogeneous software and high-speed networks
- Worm stages
 - Target selection
 - Exploitation
 - Infection

Mobile Networks

- Security threats are more difficult to defend
 - Users can easily bypass standard security devices
 - Internal threat becomes more important
 - Heterogeneous environment, which is difficult to control
 - Personal firewalls are not feasible
- User authentication offers no protection
 - Does not authenticate the security of the machine
 - Authenticated user can compromise the internal network
- Administrator has limited control
 - Cannot patch vulnerable systems
 - Cannot enforce compliance

Mitigation Approaches

1. Prevention

Prevent vulnerabilities via better engineering

Treatment

- Fix vulnerabilities, patch software
- Time to develop patch may be too long
- What do you do in the interim?

Confinement

- Contain malware via software/infrastructure
- Allows time for proper patching

While prevention and treatment are important, they are not sufficient. Confinement is the most promising

Confinement Strategies

- Content Filtering (malware oriented solution)
 - Database of signatures applied to all traffic
 - If fingerprint matches then packet is dropped
 - Scalable since individual hosts are not identified
 - What if fingerprints change?
 - Requires constant filtering of all traffic
- Containment (host oriented solution)
 - Identify infected hosts
 - Drop traffic associated with infected ports
 - Does not rely on fingerprints
 - All malware associated with the vulnerability is managed

Desired System Requirements

Detection characteristics

- Preventative not reactive
- Not dependent on signatures
- Not dependent on infected machines
- No client software

Containment

- Immediate containment
- Suitable for mobile and high-speed networks
- Defend before acquisition phase
- Internal defense

Adaptive Malware Containment

- Contain vulnerable and infected machines
 - Focus on vulnerabilities, Why? Addresses malware variants and other exploits
 - Provide secure access and maximize system utility
 - Internal and external defense with no host software
- System consists of three parts
 - Security authentication
 - Containment system
 - Policy manager

Security Authentication

- Remotely detects system vulnerabilities
 - Scans for services and possibly perform mock exploit
 - Returns vulnerability status (security authentication)
 - Want to differentiate vulnerable from infected
 - User authentication can augment security authentication
- Done periodically since system status changes
 - Results are given to the policy manager
 - Authentication determines appropriate containment
 - Contain individually, one group, or as multiple groups?

Containment System

- Prevents infection and/or infecting others
 - Containment done before acquisition stage
 - Does not require a successful attack
- Isolation using only the network infrastructure
 - Performed using OSI layers 2 and 3 (MAC and network)
 - No host software, applies to heterogeneous networks
- Provide containment and maximize utility
 - Protect the vulnerable and disable the infected
 - Machines operate safely until patched/updated
 - Can be used to safeguard defense system components

Policy Manger

Directs system components, performs three tasks

- Consider a new machine entering the network
 - Machine placed in highly restrictive containment
 - Scanning performed, determine security authentication
 - Policy manager assigns appropriate security group
 - Done periodically, allows for changing systems
 - Depends on the security policy

Security Policies

one group everyone is a unique group (blacklist)

- A simple policy has only two access types
 - Full access (no vulnerabilities or malware present)
 - Severely restricted access (to patch servers)
- Blacklisting
 - Every vulnerable/infected machine protected individually
 - As a result, security group of one (not scalable)
- Security Groups
 - Group machines with same security authentication
 - Scalable approach compared to blacklists
 - Not as secure since group can be at risk...

Security Groups

- Security group is a collection of similar machines
 - Systems with same security authentication
 - More scalable, for example requires fewer ACL entries
- Consider the following groups
 - Apache worm carriers, file sharing vulnerable, and general population

Can groups can be too conservative

User and Security Authentication

- Combine security and user authentication
 - Allows more groups interaction (trust associations)
- Consider dividing general population

Management becomes more difficult

Security by Contract

- Allow negotiation of security contract with host
 - Describe the services available and protected
- System has a more detail description of services
 - Can have a more directed scan
 - Reduces the burden on security authentication
 - Does require client software to negotiate contract

System Implementation

- Vulnerability detector, evaluates vulnerabilities
 - Nmap is quick, but Nessus provides more detail
 - Include IDS to detect slow worms
- Containment restricts network connectivity
 - Use packet filters (ACL) for layer 3 containment
 - Can market packets or use network addressing
 - VLAN's provide layer 2 protection, but still vulnerable
- Policy manager
 - Daemon process interacting with vulnerability detector and containment system

Security Group Management

Should scale to a variety of networks

- Groups are virtual
 - located across network (subnet boundaries)
 - Management issues become more difficult

Policy Evaluation

- Evaluate policy types using following criteria
 - Complexity
- Implementation and management
- Correctness
- Internal safeguard ability

Risk

- Risk associated of mischaracterization

Utility

- Usefulness regardless of state

Policy	Complex	Correct	Risk	Utility
User authentication	Low	Low	High	High
2 groups	Low	High	Low	Low
<i>n</i> groups	Medium	High	Medium	High
blacklist	High	High	Low	High

Conclusions

- Internal malware threats continue to increase
 - Securing mobile networks is more challenging
- Malware defense system
 - Focus on vulnerabilities
 - Provide controlled access to the network
 - No signatures, client software, good for mobile networks
 - Can implement using open source software
- Future directions
 - Scalability across large networks
 - Wireless containment
 - Security group management
 - Integration with more proactive detection methods

