

线性代数笔记:基于 $\text{LAT}_{\mathbf{E}}\mathbf{X}$ 的个人知识总结

Linear Algebra: Based on LATEX

作者: 彭正萧 & PENG Zhengxiao

组织: 西北农林科技大学

时间: 始于 2023 年 11 月 20 日

版本:中国农业出版社

模板: ElegantNote

目录

第1章	矩阵	1
1.1	矩阵的概念	1
1.2	矩阵的运算	1
1.3	分块矩阵	1
第2章	n 阶矩阵的行列式	2
2.1	n 阶行列式的概念	2
2.2	行列式的性质	2
2.3	n 阶行列式的计算	2
第3章	n 阶矩阵的逆与矩阵的秩	3
3.1	n 阶矩阵的逆	3
3.2	矩阵的初等变换	3
3.3	初等矩阵与求 n 阶矩阵的逆	3
3.4	矩阵的秩	3
第4章	线性方程组与向量组的秩	4
4.1	线性方程组的消元法与解的存在性	4
	4.1.1 线性方程组解的存在性	4
4.2	向量组与矩阵	4
4.3	向量组的线性相关性	4
4.4	向量组的秩	4
4.5	线性方程解的结构	4
第5章	n 阶矩阵的对角化与二次型	5
5.1	向量的内积与正交矩阵	5
5.2	矩阵的特征值和特征向量	5
5.3	矩阵的对角化	5
5.4	实对称矩阵的对角化	5
5.5	二次型及其标准型	5
5.6	二次型的正定性	5
第6章	线性空间	6
6.1	线性空间的概念	6
6.2	满秩坐标变换	6
6.3	线性 变换	6

第1章 矩阵

1.1 矩阵的概念

矩阵的概念

1.2 矩阵的运算

矩阵的运算

1.3 分块矩阵

你是谁啊,我不知道啊

第2章 n 阶矩阵的行列式

- **2.1** n 阶行列式的概念
- 2.2 行列式的性质
- **2.3** n 阶行列式的计算

第3章 n 阶矩阵的逆与矩阵的秩

- **3.1** *n* 阶矩阵的逆
- 3.2 矩阵的初等变换
- 3.3 初等矩阵与求n 阶矩阵的逆
- 3.4 矩阵的秩

第4章 线性方程组与向量组的秩

4.1 线性方程组的消元法与解的存在性

4.1.1 线性方程组解的存在性

1. 非齐次线性方程组有解的充分必要条件

定理 4.1

线性方程组 $\mathbf{A}x = b$ 有解的充分必要条件是 $R(\mathbf{A}) = R(\bar{A})$. 当 $R(A) = R(\bar{A}) = n$ (n 为方程组中未知数的个数) 时,线性方程组有唯一解. 当 $R(A) = R(\bar{A}) < n$ (n 为方程组中未知数的个数) 时,线性方程组有无穷多个解.

- 4.2 向量组与矩阵
- 4.3 向量组的线性相关性
- 4.4 向量组的秩
- 4.5 线性方程解的结构

第5章 n 阶矩阵的对角化与二次型

- 5.1 向量的内积与正交矩阵
- 5.2 矩阵的特征值和特征向量
- 5.3 矩阵的对角化
- 5.4 实对称矩阵的对角化
- 5.5 二次型及其标准型
- 5.6 二次型的正定性

第6章 线性空间

- 6.1 线性空间的概念
- 6.2 满秩坐标变换
- 6.3 线性变换