

Sep 23, 2024

T4 Ligation

DOI

dx.doi.org/10.17504/protocols.io.q26g71po8gwz/v1

Carolina Lopez¹

¹Washington University

Cecilia Escudero

wustl

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.q26g71po8gwz/v1

Protocol Citation: Carolina Lopez 2024. T4 Ligation. protocols.io https://dx.doi.org/10.17504/protocols.io.q26g71po8gwz/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's

working

Created: May 28, 2024

Last Modified: September 23, 2024

Protocol Integer ID: 100755

Abstract

Protocol for DNA ligation using T4 ligase

Materials

Reagents:

- T4 ligase (Thermofisher, 15224041)
- 5x T4 ligation Buffer
- Competent E. coli cells (NEB, C3040H)
- LB plates with necessary antibiotic

T4 Ligation Protocol (Thermofisher, 15224041):

1h 39m

T4 DNA Ligase catalyzes the joining of two cohesive- or blunt-ended strands of DNA between the 5´-phosphate and the 3´-hydroxyl groups of adjacent nucleotides.

2 1. For initial reaction, Mix:

1h 39m

Component	Volume (uL)
5x reaction Buffer	4
Vector DNA	X
Insert DNA	Y
H20	15-X-Y
T4 DNA Ligase	1

X and Y should be calculated for 3 Insert:1 vector molar ratio

Example of Molar Ratio calculation for 3000bp vector with 500bp PCR product insert:

A	В	С	D	E
Component	Length of DN A (bp)	Molar ratio	ng of DNA	Volume of 50 ng/ul solution
Vector	3000	1	50	1 ul
PCR Fragment	500	3	25	0.5 ul
H20				8.5 ul

- 2. Incubate at room temperature for 00:15:00.
- 3. Transform Product into E. coli
- a) Add \perp 2 μ L of product to \perp 50 μ L of TOP10 cells and pipette up and down slowly to mix.
 - b) Incubate for 00:20:00 on ice.
 - c) Heat shock bacteria in 🔓 42 °C | waterbath for 🚫 00:01:00 .
 - d) Incubate on Ice for 00:03:00 .
 - e) Add \perp 100 μ L of SOC media and shake in warm room for $\langle \cdot \rangle$ 01:00:00 .
- f) Plate bacteria onto LB-Antibiotic Plate and spread cells with plate spreader to get individual colonies.
 - g) Incubate overnight in 🖁 37 °C warm room.
 - h) Pick colonies for miniprep growth and sequencing.