

Tg (DSC) of cast PU resin based on 4 different polyols with different amounts of glycerin

FIG. 1

Flexural modulus of cast PU resin based on 4 different polyols with different amounts of glycerin

FIG. 2

Tensile strength of cast PU resin based on 4 different polyols with different amounts of glycerin

FIG. 3

Compressive strength of cast PU resin based on 3 different polyols with different amount of glycerin

FIG. 4

Hardness of cast PU resin based on 4 different polyols with different amount of glycerin

FIG. 5

Effect of temperature on gel time

Temperature

FIG. 6

Effect of amount of catalyst on gel time at 30C

FIG. 7

Effect of NCO/OH ratio on mechanical strength of polymer concrete

FIG. 8

Effect of resin amount on mechanical strength of polymer concrete

FIG. 9

Effect of amount of fine powder on mechanical strength of polymer concrete

FIG. 10

Effect of amount of pea gravel on mechanical strength of polymer concrete

FIG. 11

Effect of sand type on mechanical strength of polymer concrete

FIG. 12

Effect of amount of glycerin on mechanical strength of polymer concrete (with pea gravel)

FIG. 13

Effect of amount of glycerin on mechanical strength of polymer concrete (without pea gravel)

FIG. 14

Effect of curing temperature on mechanical strength of polymer concrete

FIG. 15

Effect of amount of catalyst on mechanical strength of polymer concrete (cured for a week)

FIG. 16

**Effect of amount of catalyst on mechanical strength
of polymer concrete (cured for 24 hours)**

FIG. 17

**Effect of amount of catalyst on mechanical strength
of polymer concrete (cured for a week)**

FIG. 18

**Effect of catalyst on mechanical strength of
polymer concrete**
(room temperature cured for 2 weeks,)

FIG. 19

**Effect of catalyst on mechanical strength of
polymer concrete**
(room temperature cured for 1 month)

FIG. 20

**Effect of catalyst on mechanical strength of polymer concrete
(room temperature cured for 2 month)**

FIG. 21

**Effect of catalyst on mechanical strength of polymer concrete
(room temperature cured for 3 month)**

FIG. 22

**Effet of curing time on the mechanical properties
of Soy-based PU concrete samples cured at room temperature
without catalyst**

FIG. 23

**Effet of curing time on the mechanical properties
of Soy-based PU concrete samples cured at room temperature
with 0.3% cocure 55 as a catalyst**

FIG. 24

Tg of polymer concrete samples based on different matrix resins

FIG. 25

Splitting tensile strength of polymer concrete samples based on different matrix resins

FIG. 26

Compressive strength of polymer concrete samples based on different matrix resins

FIG. 27

Bending strength (MOR) of polymer concrete samples based on different matrix resins

FIG. 28

**Flexural modulus of polymer concrete samples
based on different matrix resins**

FIG. 29

**Abrasion resistance of polymer concrete samples
based on different matrix resins**

FIG. 30

Effect of water on mechanical strength of polymer concrete

FIG. 31

Density of Soy-based PU polymer concrete and conventional concrete

FIG. 32

Splitting tensile strength of Soy-based PU polymer concrete and conventional concrete

FIG. 33

Flexural strength of Soy-based PU polymer concrete and conventional concrete

FIG. 34

Compressive strength of Soy-based PU polymer concrete and conventional concrete

FIG. 35

Abrasion resistance of Soy-based PU polymer concrete and conventional concrete

FIG. 36