3.5

Part A

Proof. Let $a, b \in \mathbb{R}$. Consider both directions.

- \Rightarrow) Assume that $|b| \le a$. If $b \ge 0$, then $|b| = b \le a$. If b < 0, then $|b| = -b \le a$ or equivalently $b \ge -a$. Therefore for any $b, -a \le b \le a$.
- \Leftarrow) Assume that $-a \le b \le a$. Note this implies that $b \le a$ and that $-b \le a$ by using both sides of the inequality. Since both -b and b are less than a, $|b| \le a$.

Part B

Proof. Let $a, b \in \mathbb{R}$. Note that $|a| = |(a-b)+b| \le |a-b|+|b|$ by the triangle inequality, giving $|a|-|b| \le |a-b|$. Equivalently, $|b|-|a| \le |b-a|$, meaning $|a|-|b| \ge -|a-b|$. Since $-|a-b| \le |a|-|b| \le |a-b|$, by 3.5,

$$||a| - |b|| \le |a - b|$$

4.1 / 4.2

	A	В	E	F	Н	I	K	N	$\mid \mathbf{T} \mid$	U
LB	-1	-1	-1	-1	-1	-2	О	-2	DNE	-3
UB	5	4	2	1	DNE	3	DNE	2	10	DNE
inf	О	0	О	0	2	О	0	$-\sqrt{2}$	DNE	0
sup	1	1	1	o	DNE	1	DNE	$\sqrt{2}$	2	DNE

4.5

Proof. Let $S \subset \mathbb{R}$ be non-empty that is bounded above. Assume that $\sup S = M \in S$. Since M is the supremum, $s \leq M$ for all $s \in S$. Since $s \leq M$ for all $s \in S$ and $M \in S$, M is by definition the max of S, hence $\sup S = \max S$.

4.7

Part A

Proof. Let $S, T \subset \mathbb{R}$ be non empty and bounded. Assume that $S \subset T$. Let $x \in S$. Note that inf $T \leq s$ for all $s \in S$ since every member of S is a member of T. This means that inf T is a lower bound of S implying inf $T \leq \inf S$. Equivalently, $\sup T \geq s$ for

all $s \in S$, meaning $\sup T$ is an upper bound of S and therefore $\sup T \ge \sup S$. Since $\inf S \le \sup S$, these inequalities combine to

$$\inf T \le \inf S \le \sup S \le \sup T$$

Part B

Proof. Let $S,T\subset\mathbb{R}$ be non empty and bounded. Note that $S,T\subset S\cup T$. Therefore from (A) it follows that $\sup S,\sup T\leq \sup(S\cup T)$ meaning $\max\{\sup S,\sup T\}\leq \sup(S\cup T)$. Let $s\in S$. Then $s\leq \sup S\leq \max\{\sup S,\sup T\}$. Let $t\in T$. Then $t\leq \sup T\leq \max\{\sup S,\sup T\}$. Therefore for an element $x\in S\cup T, x\leq \max\{\sup S,\sup T\}$. Therefore $\max\{\sup S,\sup T\}$ admits an upper bound on $S\cup T$ meaning $\sup(S\cup T)\leq \max\{\sup S,\sup T\}$. Since $\sup(S\cup T)\leq \max\{\sup S,\sup T\}$ and $\max\{\sup S,\sup T\}\leq \sup(S\cup T),\sup(S\cup T)=\max\{\sup S,\sup T\}$.

4.10

Proof. Let a>0. By applying the archimedean property twice, $\exists N_1,N_2$ such that $a>\frac{1}{N_1}$ and $a< N_2$. Let $N=\max\{N_1,N_2\}$. Note that $\frac{1}{N_1}\leq \frac{1}{N}$ and $N_2\leq N$, therefore $\frac{1}{N}< a< N$.

4.11

Let $a, b \in \mathbb{R}$ with a < b. By the denseness of \mathbb{Q} , there is a rational r_1 such that $a < r_1 < b$. Since $r_1 \in \mathbb{R}$, the denseness of \mathbb{Q} can be applied to the range $a < r_1$ to give an r_2 such that $a < r_2 < r_1$. This leads to an infinite sequence of r_n 's that are between a and b. Hence there are infinitely many rationals between a and b.

4.12

Proof. Let $a, b \in \mathbb{R}$ such that a < b. Consider $r + \sqrt{2}$ where $r = \frac{p}{q} \in \mathbb{Q}$. Assume towards contradiction that $r + \sqrt{2}$ is rational. That is there is an $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that

$$\frac{p}{q} + \sqrt{2} = \frac{m}{n}$$

However, this implies that $\sqrt{2} = \frac{mq - np}{nq}$ which is rational. Therefore $r + \sqrt{2}$ is irrational for all $r \in \mathbb{Q}$. Since a < b, $a - \sqrt{2} < b - \sqrt{2}$. By the denseness of \mathbb{Q} , there exists $h \in \mathbb{Q}$ such that $a - \sqrt{2} < h < b - \sqrt{2}$, or equivalently $a < h + \sqrt{2} < b$. Note that $h + \sqrt{2}$ is irrational and hence there is an irrational between a and b.

5.1

$$\{x \in \mathbb{R} : x < 0\} = (-\infty, 0)$$
$$\{x \in \mathbb{R} : x^3 \le 8\} = (-\infty, 2]$$
$$\{x^2 : x \in \mathbb{R}\} = [0, \infty)$$
$$\{x \in \mathbb{R} : x^2 < 8\} = (-\sqrt{8}, \sqrt{8})$$

5.2

$$\inf \{x \in \mathbb{R} : x < 0\} = -\infty$$

$$\inf \{x \in \mathbb{R} : x^3 \le 8\} = -\infty$$

$$\inf \{x^2 : x \in \mathbb{R}\} = 0$$

$$\sup \{x \in \mathbb{R} : x^3 \le 8\} = 2$$

$$\sup \{x^2 : x \in \mathbb{R}\} = \infty$$

$$\inf \{x \in \mathbb{R} : x^2 < 8\} = -\sqrt{8}$$

$$\sup \{x \in \mathbb{R} : x^2 < 8\} = \sqrt{8}$$

5.5

Proof. Let $S \subset \mathbb{R}$ be non-empty. If S is unbounded, $\inf S = -\infty$ and $\sup S = \infty$ meaning that $\inf S \leq \sup S$. If S is bounded below but unbounded above, $\inf S = m \leq \infty = \sup S$ meaning $\inf S \leq \sup S$. Alternatively, if S is bounded above but unbounded below, $\sup S = M \geq -\infty = \inf S$ meaning $\inf S \leq \sup S$. If S is bounded, $\inf S = m$ and $\sup S = M$. For all $s \in S$, $m \leq s \leq M$, meaning $m \leq M$ and therefore $\inf S \leq \inf S$.