2006-2007 学年第二学期 《模拟电子技术》试卷 A 卷

- 一、(8分)电路如图所示,设二极管是理想的,
- (1) 试判断图中的二极管 D_1 是导通还是截止的,并求出 AB 两端的电压 V_{AB} ;
- (2) 当 E=5V, u_i =10sin ω tV 时, 试画出 u_i 、 u_o 的波形。

- 二、(16 分) 图示电路中,已知晶体管的电流放大系数 $\beta = 50$, V_{BE} 忽略不计。
- (1) 画出 C_1 、 C_2 、 C_3 和 C_4 的极性;
- (2) 试估算各静态值 I_B 、 I_C 和 V_{CE} ;
- (3) 画出微变等效电路;
- (4) 求电压放大倍数 Av = Vo/Vi,
- (5) 求该放大电路的输入电阻 R_i 和输出电阻 R_0 ;
- (6) 不接电容 C3, 对电路性能有什么变化?

三、(10) 电路如图所示,已知 R_L =8 Ω ,设 v_i 为正弦波,BJT 的饱和压降 V_{CES} 可以忽略不计,电源电压 V_{CC} =12V。

- (1) 画出电解电容 C 的极性;
- (2) 电容耐压至少应为多少?
- (3) 每只BJT的 Icm至少应为多少?
- (4) 试求最大输出功率 Pom 。

四、(8分)设计一个直流稳压电源,要求将交流电网 220V、50Hz 的正弦电压变成+5V 直流电压。电路有几个环节组成?每一个环节作用是什么?请画出电路图。

五、(16 分) 下图是一个双端输出的差分式放大电路。已知 Vcc=10V, $-V_{EE}=-10V$, $R_{c1}=R_{c2}=5.6k\Omega$, $R_e=3k\Omega$, $R_L=11.2k\Omega$, $\beta=60$, $V_{BE}=0.6V$ 。

- (1) 求Q点(*I*_{B1}、*I*_{C1}、*V*_{CE1});
- (2) 若 V_{i1} =0.01V, V_{i2} =-0.01V, 求输出电压 v_o 值;
- (3) 求电路的差模输入电阻 R_{id}、共模输入电阻 R_{ic} 和输出电阻 R₀;
- (4) 为什么集成电路运算放大器的输入级一般都采用差分式放大电路?

六、 $(15 \, \mathcal{G})$ 图示电路中的 A_1 、 A_2 为理想的集成运放。(1) 试说明级间反馈而是正反馈还是负反馈? 是电压反馈还是电流反馈? 是串联反馈还是并联反馈? 是交流反馈还是直流反

馈?(2) 求深负反馈条件下的闭环电压增益 $\mathbf{A}_{\mathrm{VF}} = \frac{V_o}{V_i}$ (设电容的容抗对交流信号可以忽略)。

七、 $(12\,
m 分)$ 48. 由运放组成的 BJT 电流放大系数 $m \beta$ 的测试电路如图所示,设 BJT 的 $m V_{BE}$ =0. 7V。(1) 求出 BJT 的 m e、m b、m c 各极的电位值;(2) 若电压表读数为 120mV,试求 BJT 的 $m \beta$ 值。

八、(15分)电路如图所示,设运放是理想的,运放 A₁组成正弦振荡电路,

- (1) 为满足振荡条件, 试在图中用+、-标出运放 A₁的同相端和反相端;
- (2) 为能起振, 电阻 R_f 和 R_1 应满足什么关系?
- (3) 求此电路的振荡频率 fo;
- (4) 为稳定正弦波幅度, R_1 采用热敏电阻,请问该热敏电阻是正温度系数还是负温度系数电阻,请说明稳幅原理。
- (5) 画出 v_{o1}、 v_{o2}的波形

