LOAN DOCUMENT

DTIC ACCESSION NUMBER	LEVEL K Plan for a reatability 3 DOCUMENT IDENTIFICATION Sep 95	INVENTORY tudy in
,	DISTRIBUTION STATEMENT Approved for Public Release Distribution Unlimited	r
/	DISTRIBUTION STATEMENT]
DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP	DA	ATE ACCESSIONED
	L.,	DATE RETURNED
		DATE RETURNED
20001122	025	
DATE RECEIV	/ED IN DTIC REGISTERE	D OR CERTIFIED NUMBER
PHO DTIC FORM 70A	OTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC	Previous editions may be used until.
	DOCUMENT PROCESSING SHEET	STOCK IS EXHAUSTED.

Work Plan for a Treatability Study in Support of the Intrinsic Remediation Option at PS-2

Fairchild Air Force Base Spokane, Washington

Prepared For

Air Force Center for Environmental Excellence Technology Transfer Division Brooks Air Force Base San Antonio, Texas

and

92 CES/CEVR Fairchild Air Force Base Spokane, Washington

September 1995

DEFENSE TECHNICAL INFORMATION CENTER REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS AFCEE COLLECTION 1. Report Availability (Please check one box) 2a. Number of 2b. Forwarding Date Copies Forwarded This report is available. Complete sections 2a - 2f. ☐ This report is not available. Complete section 3. 2c. Distribution Statement (Please check ONE DOX) DaD Directive 5230.24, "Distribution Statements on Technical Documents." 18 Mar 87, contains seven distribution statements, as described briefly below. Technical documents MUST be assigned a distribution statement. DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited. DISTRIBUTION STATEMENT B: Distribution authorized to U.S. Government Agencies only. DISTRIBUTION STATEMENT C: Distribution authorized to U.S. Government Agencies and their contractors. DISTRIBUTION STATEMENT D: Distribution authorized to U.S. Department of Defense (DoD) and U.S. DoD contractors only. ☐ DISTRIBUTION STATEMENT E: Distribution authorized to U.S. Department of Defense (DoD) components only. DISTRIBUTION STATEMENT F: Further dissemination only as directed by the controlling DoD office indicated below or by higher authority. DISTRIBUTION STATEMENT X: Distribution authorized to U.S. Government agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoD Directive 5230.25, Withholding of Unclassified Technical Data from Public Disclosure, 6 Nov 84. 2d. Reason For the Above Distribution Statement (in accordance with DoD Directive 5230.24) 2e. Controlling Office 2f. Date of Distribution Statement Determination HQ AFLEC NOV 3. This report is NOT forwarded for the following reasons. (Please check appropriate box ☐ It was previously forwarded to DTIC on (date) and the AD number is It will be published at a later date. Enter approximate date if known. in accordance with the provisions of DoD Directive 3200.12, the requested document is not supplied because: Print or Type Name Signature Telephone (For DTIC Use Only AQ Number 401 - 01-0309

WORK PLAN FOR A TREATABILITY STUDY IN SUPPORT OF THE INTRINSIC REMEDIATION OPTION AT PS-2

for

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE TECHNOLOGY TRANSFER DIVISION BROOKS AIR FORCE BASE SAN ANTONIO, TEXAS

and

92 CES/CEVR FAIRCHILD AIR FORCE BASE SPOKANE, WASHINGTON

September 1995

by

Parsons Engineering Science, Inc. 1700 Broadway Suite 900 Denver, Colorado 80290

022/722450/FCWP/8.WW6

AGM01-01-0309

TABLE OF CONTENTS

		Page
1 1.1 1.2	Introduction	1-2
2	Data Review and Conceptual Model Development	2-1
2.1	Data Review	2-1
	2.1.1 Topography, Surface Hydrology, and Climate	2-2
	2.1.2 Overview of Geology and Hydrogeology	2-4
	2.1.2.1 Regional Geology and Hydrogeology	2-4
	2.1.2.2 PS-2 Geology and Hydrology	2-8
	2.1.3 Summary of Analytical Data for PS-2	2-16
	2.1.3.1 Soil Gas Sampling and Analytical Results	2-16
	2.1.3.2 Soil Sampling and Analytical Results	2-19
	2.1.3.3 Groundwater Sampling and Analytical Results	2 22
2.2	Development of Conceptual Site Model	2-32
	2.2.1 Intrinsic Remediation and Groundwater Flow and Solute	2_33
	Transport Models	2-33
	2.2.3 Initial Conceptual Site Model	2-34
	2.2.4 Potential Pathways and Receptors	2-35
	2.2.4 Folential Faulways and Receptors	
3	Collection of Additional Data	3-1
3.1	Soil Sampling	3-3
	3.1.1 Soil Sample Locations and Required Analyses	3-3
	3.1.2 Sample Collection Using the Geoprobe® System	3-3
	3.1.3 Datum Survey	3-8
	3.1.4 Site Restoration	3-8
	3.1.5 Equipment Decontamination Procedures	3-8
3.2	Monitoring Point Installation	3-9
	3.2.1 Monitoring Point Locations and Completion Intervals	3-9
	3.2.2 Monitoring Point Installation Procedures	3-10
	3.2.2.1 Pre-Placement Activities	2 10
	3.2.2.2 Monitoring Point Materials Decontamination	2 10
	3.2.2.3 Installation and Materials	2 12
	3.2.2.4 Monitoring Point Completion	2 12
	3.2.3 Monitoring Point Development and Records	3_13
	3.2.4 Monitoring Point Location and Datum Survey	3_13
2.2	Groundwater Sampling Procedures	3_13
3.3	3.3.1 Preparation for Sampling	3-15
	3.3.1.1 Equipment Cleaning	3-15
	3.3.1.2 Equipment Calibration	3-16
	3 3.2 Sampling Procedures	3-16

TABLE OF CONTENTS (Continued)

		3.3.2.1	Preparation of Location	3-16
			Water Level and Total Depth Measurements	
		3.3.2.3	Monitoring Point/Well Purging	3-19
		3.3.2.4	Sample Extraction	
	3.3.3		Froundwater Parameter Measurement	
		3.3.3.1	Dissolved Oxygen Measurements	3-20
			pH, Temperature, and Specific Conductance	
		3.3.3.3	Alkalinity Measurements	3-20
			Nitrate- and Nitrite-Nitrogen Measurements	
		3.3.3.5	Carbon Dioxide Measurements	3-21
		3.3.3.6	Sulfate Measurements	3-21
		3.3.3.7		
		3.3.3.8	· · · · · · · · · · · · · · · · · · ·	
			Reduction/Oxidation Potential	
3.4	Sample		ng for Laboratory Analysis	
	3.4.1		Preservation	
	3.4.2	Sample	Container and Labels	3-22
	3.4.3		Shipment	
	3.4.4	Chain-o	f-Custody Control	3-23
	3.4.5	Samplin	g Records	3-23
		Laborate	ory Analyses	3-24
3.5	Aquife	er Testing	J	3-24
	3.5.1	Definition	ons	3-24
	3.5.2		ent	
	3.5.3	General	Test Methods	3-25
	3.5.4		Head Test	
	3.5.5	Rising I	Head Test	3-28
	3.5.6	Slug Te	st Data Analysis	3-28
		_		
4	Remed	ial Optio	on Evaluation and TS Report	4-1
_	0 114		/One-lites Comercia	5 1
5	Qualit	y Assurai	nce/Quality Control	3-1
6	Refere	ences		6-1
A DDI	ENDIX A	A Con	tainers, Preservatives, Packaging and Shipping	
AFFI			uirements for Groundwater Samples	
		•	•	
APPI	ENDIX 1	B Add	itional Site Data	

TABLE OF CONTENTS (Continued)

LIST OF TABLES

No.	<u>Title</u>	Page
2.1	Summary of Well Installation Details and Groundwater Elevation Da Site PS-2	
2.2	Soil Gas Concentrations Measured at Site PS-2	2-18
2.3	Summary of Soil Analytical Data for Site PS-2	
2.4	Summary of Groundwater Analytical Data for Site PS-2	2-26
3.1	Analytical Protocol for PS-2 Groundwater and Soil Samples	
4.1	Example TS Report Outline	
5.1	QA/QC Sampling Program	
	LIST OF FIGURES	
No.	<u>Title</u>	Page
1.1	Base Location	1-4
1.2	Site Location	
1.3	Site PS-2 Layout	1-6
2.1	Regional Topographic Base Map	2-3
2.2	Surface Geologic Map and Location of Regional	
	Cross Section A-A'	2-5
2.3	Regional Geologic Cross Section A-A'	2-6
2.4	Basewide Groundwater Surface Elevation Contour Map	
2.5	Location of Site-Specific Cross Sections A-A' and B-B'	
2.6	PS-2 Site-Specific Cross Section A-A'	2-10
2.7	PS-2 Site-Specific Cross Section B-B'	2-11
2.8	Groundwater Surface Elevations at Site PS-2	2-15
2.9	Locations of Soil and Soil Gas Samples Collected During	
	RI and Bioventing Pilot Test	2-17
2.10	Extent of Soil BTEX Contamination Measured in 1986 and 1988	
2.11	Extent of Mobile LNAPL at PS-2	
2.12	Extent of Dissolved Total BTEX Contamination at PS-2	
2.13	Extent of Benzene Contamination in Groundwater	
3.1	Proposed Sampling and Monitoring Point Locations	3-4
3.2	Cross Section of Geoprobe	3-6
3.3	Geologic Boring Log	
3.4	Monitoring Point Installation Record	3-11
3.5	Monitoring Point Development Record	5-14
3.6	Groundwater Sampling Records	3-17
3.7	Aquifer Test Data Form	3-27

SECTION 1

INTRODUCTION

This work plan, prepared by Parsons Engineering Science, Inc. (Parsons ES), formerly Engineering Science, Inc. (ES), presents the scope of work required for the collection of data necessary to conduct a treatability study (TS) for remediation of groundwater contaminated with petroleum hydrocarbons at the Flightline Operable Unit PS-2 (PS-2) located at Fairchild Air Force Base (AFB), 12 miles west of Spokane, Washington (the Base). Several groundwater remedial options will be evaluated as a part of the TS report, including: bioslurping; groundwater extraction, treatment, and disposal (i.e., pump and treat); biosparging; and natural contaminant attenuation (intrinsic remediation) with long-term monitoring. Hydrogeologic and groundwater chemical data necessary to evaluate the various remedial options will be collected under this program; however, this work plan is oriented toward the collection of hydrogeologic data to be used as input into groundwater flow and solute transport models in support of intrinsic remediation for restoration of groundwater contaminated with benzene, toluene, ethylbenzene, and xylene (BTEX).

As used in this report, the term "intrinsic remediation" refers to a management strategy that relies on natural attenuation mechanisms to remediate contaminants dissolved in groundwater and to control receptor exposure risks associated with contaminants in the subsurface. "Natural attenuation" refers to the actual physical, chemical, and biological processes that facilitate intrinsic remediation. Mechanisms for natural attenuation of BTEX include advection, dispersion, dilution from recharge, sorption, volatilization, and biodegradation. Of these processes, biodegradation is the only mechanism working to transform contaminants into innocuous byproducts. Intrinsic bioremediation occurs when indigenous microorganisms work to bring about a reduction in the total mass of contamination in the subsurface without the addition of nutrients. Patterns and rates of intrinsic remediation can vary markedly from site to site depending on governing physical and chemical processes.

As part of the TS, the contaminant fate and transport modeling effort has three primary objectives: 1) predict the future extent and concentration of dissolved contaminant plumes by modeling the effects of advection, dispersion, sorption, and biodegradation; 2) assess the possible exposure of potential downgradient receptors to contaminant concentrations that exceed levels intended to be protective of human health and the environment; and 3) to provide technical support for selection of the intrinsic remediation option as the best remedial alternative at regulatory negotiations, as appropriate. The modeling efforts for the PS-2 site at Fairchild AFB will involve completion of several tasks, which are described in the following sections.

This work plan was developed following discussions among representatives from the Air Force Center for Environmental Excellence (AFCEE), 92nd Civil Engineering Squadron--Environmental (92 CES/CEVR), and Parsons ES at a meeting held at the Base on July 11, 1995, to discuss the statement of work (SOW) for this project, and on a review of existing site characterization data. All field work will follow the health and safety procedures presented in the program *Health and Safety Plan for Bioplume II Modeling Initiative* (ES, 1993), and the site-specific addendum to the program Health and Safety Plan. This work plan was prepared for AFCEE and 92 CES/CEVR.

1.1 SCOPE OF CURRENT WORK PLAN

The ultimate objective of the work described herein is to provide a TS for remediation of groundwater contamination at PS-2. However, this project is part of a larger, broad-based initiative being conducted by AFCEE in conjunction with the US Environmental Protection Agency (USEPA) and Parsons ES to document the biodegradation and resulting attenuation of fuel hydrocarbons and solvents dissolved in groundwater, and to model this degradation using numerical and analytical groundwater model codes. For this reason, the work described in this work plan is directed toward the collection of data in support of this initiative. Data required to develop a 30percent design of an alternate groundwater remediation system, should intrinsic remediation not prove to be a viable remedial option at this facility, also will be collected under this program. This work plan describes the site characterization activities to be performed by personnel from Parsons ES and the USEPA's Subsurface Protection and Remediation Division, formerly the USEPA's Robert S. Kerr Environmental Research Laboratory, in support of the TS and the groundwater modeling effort. Field activities will be performed to determine the extent of mobile and residual light nonaqueous-phase liquid (LNAPL) and dissolved contamination at PS-2. The data collected during the TS will be used along with data from previous investigations to complete the characterization of contamination at the site, and for use in the groundwater flow and solute transport models to make predictions of the future concentrations and extent of contamination.

Site characterization activities in support of the TS will include: 1) determination of preferential contaminant migration and potential receptor exposure pathways; 2) soil sampling using the Geoprobe® direct- push technology; 3) groundwater monitoring point placement; 4) groundwater sampling; and 5) aquifer testing. The materials and methodologies to accomplish these activities are described herein. Previously reported site-specific data and data collected during the supplemental site characterization activities described in this work plan will be used as input for the groundwater flow and solute transport models. Where site-specific data are not available, conservative values for the types of aquifer materials present at the site will be obtained from widely accepted published literature and used for model input. Sensitivity analyses will be conducted for the parameters that are known to have the greatest influence on the model results, and where possible, the model will be calibrated using historical site data. Upon completion of the modeling, Parsons ES will provide technical assistance at regulatory negotiations to support the intrinsic remediation option if the results of the modeling indicate that this approach is warranted. If it is shown that intrinsic remediation is not the most appropriate remedial option, Parsons ES will recommend the most appropriate groundwater remedial technology on the basis of available data.

This work plan consists of six sections, including this introduction. Section 2 presents a review of available previously reported, site-specific data and conceptual models for the site. Section 3 describes the proposed sampling strategy and procedures to be used for the collection of additional site characterization data. Section 4 describes the remedial option evaluation procedure and TS report format. Section 5 describes the quality assurance/quality control (QA/QC) measures to be used during this project. Section 6 contains the references used in preparing this document. There are two appendices to this work plan. Appendix A contains a listing of containers, preservatives, packaging, and shipping requirements for soil and groundwater samples. Appendix B contains summary site data, including available well logs, and summaries of historical soil and groundwater analytical data from previous field investigation work.

1.2 BACKGROUND

Fairchild AFB occupies an area of approximately 4,300 acres 12 miles west of Spokane, Washington (Figure 1.1). The Base is divided roughly in half by the main northeast/southwest runway (Figure 1.2). Aircraft operational facilities, approximately 1,600 Base housing units, an elementary school, a hospital, and support facilities for the tenants housed on-Base lie north of the runway. The air traffic control tower, weapons storage area, and survival training school lie to the south of the runway [Halliburton NUS (HNUS), 1993].

The Base was established in 1942 as an Army repair depot and transferred to the Strategic Air Command (SAC) in 1947. In 1992, Base control was transferred to the Air Combat Command (ACC). Currently, the Base is operated by the Air Mobility Command (AMC) and serves as host to the 92nd Air Refueling Wing. The Base is also the current home of the 141st Air Refueling Wing of the Washington Air National Guard (WANG), aircraft operational facilities, a weapons storage area, and a survival training school. Base operations employ approximately 5,000 civilian and military personnel (ES, 1994).

PS-2 is an active aircraft fueling/defueling station located on the flightline in the western portion of the Base and is a part of the flightline operational unit (OU-1). More specifically, PS-2 is located along Taxiway 1, in front of Buildings 1029, 1033, and 1037 in the WANG portion of Fairchild AFB (Figure 1.3). The site is covered by a broad expanse of asphalt and concrete with five refueling/defueling pits (Pits 17 through 21) located within the site boundaries (ES, 1994).

Two fuel spills have been documented at PS-2. In 1984, the fuel tank at defueling/refueling Pit 18 is known to have leaked up to 120 gallons of JP-4 jet fuel (HNUS, 1993). In 1985, an estimated 5,000 gallons of JP-4 was spilled when a fuel line flange cracked at Pit 21, located south of Building 1037. Reportedly, 4,000 gallons of fuel were recovered during the following 4 days. The spill overflowed the storm sewer system at the manhole in front of Building 1033, 400 feet downgradient. Fuel was also detected in a sewer junction box an additional 600 feet further downgradient from the release point. Approximately 100 gallons of fuel was pumped from this sewer junction box onto a grassy area east of Building 1029. Areas reportedly affected by the spills are indicated on Figure 1.3.

Investigations were initiated at PS-2 as a result of the reported spills and the identification of petroleum product in the groundwater during flightline foundation drilling. The groundwater contamination later was confirmed in the Installation Restoration Program (IRP) Phase II study by Battelle Laboratories (1989). Since that time, a remedial investigation (RI) has been completed by HNUS (1993), a long-term monitoring report has been completed by ICF Technology (ICF, 1995), a source removal TS has been completed by HNUS (1994, 1995a and 1995b), an interim bioventing report has been completed by ES (1994), and an analytical informal technical information report (ITIR) for long-term groundwater monitoring has been submitted by EA Engineering, Science, and Technology and Montgomery Watson Americas, Inc. (ES&T and MWA), (1995).

To date, mobile LNAPL has been identified in the vicinity of monitoring wells MW-177 and MW-176 (HNUS, 1993). LNAPL also was found in a vapor monitoring point during the installation of a bioventing pilot test system in the vicinity of defueling/refueling Pit 19. The soils near defueling/refueling Pit 19 were heavily contaminated with fuel hydrocarbons and residual LNAPL and are a probable continuing source of groundwater contamination (ES, 1994). The relationship between these three source areas and the former spills is unclear. The three source areas are identified on Figure 1.3. It is suspected that other unidentified sources also may be present at the site; all previously documented fuel distribution facilities are identified on Figure 1.3.

SECTION 2

DATA REVIEW AND CONCEPTUAL MODEL DEVELOPMENT

Previously reported site-specific data were reviewed and used to develop a conceptual site model (CSM) for the groundwater flow and contaminant transport conditions at PS-2. The CSM guides the development of sampling locations and analytical data requirements needed to support the modeling efforts and to evaluate potential remediation technologies, including intrinsic remediation. Section 2.1 presents a synopsis of available site characterization data. Section 2.2 presents the preliminary conceptual groundwater flow and contaminant transport model that was developed based on these data.

2.1 DATA REVIEW

The following sections are based upon review of data from the following sources:

- Remedial Investigation/Feasibility Study (RI/FS) Site Characterization Summary Report Priority 1 Sites Fairchild AFB [Science Applications International Corporation (SAIC), 1990];
- IRP Remedial Investigation Report (HNUS, 1993);
- Bioventing Pilot Test Results Report for PS-2, PS-1A, PS-1B, Building 2034, and Building 2035 (ES, 1994);
- Work Plan for Floating Free Product Passive Recovery TS (HNUS, 1994a);
- Floating Free Product Passive Recovery TS Letter Reports 07, 08, and 09 (HNUS, 1994b, 1995a, and 1995b);
- Long Term Monitoring Report For Priority 1 Sites SW-1 (LF-01), PS-2 (SS-18), and PS-8 (SS-26) at Fairchild AFB, Washington (ICF, 1995); and
- Analytical ITIR: Long-Term Monitoring, April Sampling Craig Road Landfill and Priority Sites SQ-1 PS-2, PS-8, and FT-01 (ES&T and MWA, 1995).

Several other reports contain site information that may be useful during the development of fate and transport models. These documents, which were unavailable during the development of this work plan, include:

• IRP Phase II, Stage 1 Confirmation/Qualification, Stage 1 Fairchild AFB (Battelle Laboratories, 1989); and

• IRP Phase I Records Search, 92nd Bombardment Wing, Fairchild AFB (JRB Associates, 1985).

2.1.1 Topography, Surface Hydrology, and Climate

Fairchild AFB is located within the Columbia Basin in the northeastern corner of the 55,000-square-mile Columbia Plateau Physiographic Province (ICF, 1995). Columbia Plateau is bordered by mountains and highlands on all side. The northern edge of the Plateau gives way to the Okanogan Highlands roughly 75 miles north of Fairchild AFB, while the eastern end of the Plateau is bordered by the Rocky Mountains, approximately 75 miles east of Fairchild AFB. The Plateau extends approximately 250 miles to the south and west of the Base; the Blue Mountains border the Plateau on the south, and the Cascade Mountains border the Plateau on the west. There is a watershed divide in the center of the Plateau that causes streams north of this divide to flow in a northerly direction, and streams south of the divide to flow in a southerly direction. The topography of the region was shaped by glacial flood waters which deeply that eroded the surface of the Columbia Plateau during the Pleistocene Epoch (approximately 22,000 years ago) (HNUS, 1993). The surface topography of the Base and surrounding region is generally flat to gently rolling grasslands sloping slightly to the east-northeast. Ground surface elevations on the Base range from 2,400 to 2,460 feet above mean sea level (ft msl) (Figure 2.1).

Fairchild AFB is locate in the northern half of the Columbia Plateau, north of the of the watershed divide. All surface water drainage in this region of the Columbia Plateau generally flows to the north or northwest (Flint, 1936). The Base is approximately 7 miles west-southwest of the Spokane River, which flows through the city of Spokane (USGS, 1973a, 1973b, 1986a, and 1986b). Two other drainages in the vicinity of the Base are Deep Creek and Marshall Creek, located approximately 2 miles northwest and 8 miles southeast of the Base, respectively. These creeks flow northwest and join the Spokane River, which drains this region of the Plateau. Surface water on the Base is generally limited to precipitation runoff. Surface water drainage is controlled within a series of manmade ditches. Reportedly, water collected in the ditch system does not leave Base property and surface water either infiltrates the subsurface or evaporates (HNUS, 1993).

Surface runoff at PS-2 is controlled through storm sewers that run parallel to Ladder Taxiway No. 1 (Figure 1.3). Three storm sewer lines drain the tarmac to the northeast where one main line collects all three storm sewer lines and eventually flows southeast into the wastewater lagoons (WW-1) located in the southern corner of the base. A map of these sewer lines is included in Appendix B. Buildings 1027, 1033, and 1029 have floor drains which pass through oil/water separators. The effluent from the separators flows into the storm sewer network (HNUS, 1993).

Fairchild AFB is surrounded by semi-arid grasslands common to this area of the Columbia Basin. The Base receives approximately 16 inches of rainfall during the warm dry summers, and 40 inches of snowfall during the cool, damp winter months. The prevailing wind direction in the region is to the northeast at an average speed of 8 miles per hour (ICF, 1995). The average evapotranspiration rate for the region is reported at 12.8 inches per year (JRB Associates, 1985). Maximum infiltration rates usually occur during the early spring when snow melt runoff combines with

2-3

precipitation while temperatures are still cool and evapotranspiration is low (SAIC, 1990).

2.1.2 Overview of Geology and Hydrogeology

2.1.2.1 Regional Geology and Hydrogeology

The shallow subsurface geology at Fairchild AFB is a mixture of Quaternary sediments consisting of eolion, glacial, fluvial, lacustrine, and catastrophic flood deposits (Figure 2.2). Flood waters from the glacial-era Missoula Lake scoured the basalt bedrock of this region of the Columbia Plateau. Coarse sediments were deposited during the early recession of flood waters, followed by finer sediments during the later stages of floodwater recession. The alluvium in the vicinity of the Base generally consists of fine-grained sediments deposited by receding glacial flood waters. Clays and silts are intermixed with sandy silts, clays, and gravels (SAIC, 1990). Additionally, loess (windblown silt) deposits are interbedded in portions of the alluvium. Alluvial deposits are generally follow the slope of the underlying basalt bedrock (ICF, 1995).

Bedrock in the vicinity of the Base is mostly Tertiary Basalts of the Columbia River Group. Basalts below Fairchild AFB are of the Wanampum Formation (HNUS, 1993). The basalt flows in the region are interbedded with sedimentary clay and silt units of the of the Latah Formation. These layers were deposited when stream beds were isolated by the volcanic basalt flows (Cline, 1969). The Wanampum Basalt flow below the Base appears to be divided into an upper and lower flow sequence by an interbed of the Latah Formation (Figure 2.3). The upper basalt flow is 166 feet to 193 feet thick across the Base. The surface of the upper basalt flow is vesiculated, deeply fractured, and highly weathered in places. Just east of the Base the upper basalt layer was completely eroded away by the Missoula Lake flood waters. The middle of this flow contains few vesicles and fractures; the formation becomes more massive and The underlying Latah Formation deposits consist of an competent with depth. extensive silty claystone that ranges in thickness from 8.5 to 10 feet (SAIC, 1990). Information on the geologic characteristics of the lower basalt flow was not available in the previous reports reviewed as part of this work plan; however, information on the lower basalt flow is not considered to be vital to the formation of the CSM for data collection in support intrinsic remediation at PS-2.

Groundwater in the vicinity of the Base is encountered between 8 to 12 feet below ground surface (bgs) and is found in both the alluvial overburden material and the underlying basalt bedrock. Groundwater flow in the alluvium is through intergranular pore space, while flow in the basalt is through interconnecting fractures (HNUS, 1993). Flow across the Base is generally to the east and east-northeast, but local variations may result from local changes in bedrock topography (Figure 2.4). Groundwater in the overburden and shallow bedrock is generally unconfined, with some local semiconfined areas. The overburden and the shallow basalt are hydraulically connected by fractures, vesicles, and weathered zones. The middle region of the shallow basalt flow is more competent with less fracturing, and acts as an aquitard. The interbedded claystone between the basalt flows also acts as a confining layer (HNUS, 1993).

Recharge of the aquifer under the Base is expected to come from upgradient flow and surface runoff infiltration. Shallow groundwater in the vicinity of the Base is not known to be used as a drinking water supply. Neighborhoods to the east and northeast of the Base obtain domestic and agricultural water primarily from private wells which tap aquifers in the deeper basalt flows. The closest residential neighborhoods are roughly 1.5 miles downgradient from the site, near the eastern boundary of the Base. Base drinking water is primarily supplied from a Base-owned well field 10 miles northwest of the Base. Additionally, there is a water supply well located in the southern area of the Base. This well also produces water from the basalt aquifer and supplies roughly 10 percent of the Base's needs (HNUS, 1993).

2.1.2.2 PS-2 Geology and Hydrology

Most of the ground surface at PS-2 is covered by concrete and asphalt pavement for parking, maintenance, and fueling of aircraft. The thicknesses of the concrete and asphalt are not available at this time; however, the concrete pavement is expected to be at least 8 inches thick. On the basis of information collected during the RI and other previous investigations, the overburden at PS-2 is from 15 to 24 feet thick. Sediments at PS-2 consist primarily of poorly sorted silty and gravelly sands and sandy gravels. A clay and sandy clay layer was encountered just above the overburden basalt interface in several wells installed as part of the RI. The upper flow zone basalt layer below the alluvial deposits is massive, moderately fractured, and shows traces of weathering near the overburden basalt interface (HNUS, 1993). Figure 2.5 shows the location of stratigraphic cross sections A-A' and B-B'. Figure 2.6 presents cross section A-A' which is oriented in a northeast-southwest direction along the axis of groundwater flow. Figure 2.7 presents cross section B-B', oriented perpendicular to the direction of groundwater flow in a northwest-southeast direction.

Borehole logs from the vent well (VW-1) and vapor monitoring points (VMPs) installed during the bioventing pilot test near defueling pit 19 showed that soils from the surface to 2 feet bgs were a gray to grayish-green gravelly sand. Below 2 feet soils were mostly a brown to greenish-gray silty sand with minor gravel. Soils from both intervals exhibited a noticeable fuel odor. A clean sand lens was encountered roughly 5 feet bgs, and a dark-brown clay lens was encountered at a depth of 9 feet bgs in the borehole associated with VW-1. The clay lens also exhibited a noticeable fuel odor (ES, 1994).

There are currently twenty-two groundwater monitoring wells at PS-2 including 3 wells with screening in the shallow basalt bedrock, and 17 wells with screening in the unconsolidated deposits. These wells were installed as part of the RI/FS site characterization investigation, the RI, the long-term monitoring program, and the mobile LNAPL recovery TS. Groundwater at the site resides in the Quaternary alluvium and in the underlying basalt bedrock. Available monitoring well construction details and recent well level data are presented in Table 2.1. Figure 2.8 shows the groundwater surface for PS-2 in October 1993. The groundwater surface shown on Figure 2.8 is very similar to those reported in previous site investigations reports, implying that groundwater flow patterns remained consistent.

In the immediate vicinity of the site, groundwater flows to the east-northeast, which is consistent with the regional flow direction. Groundwater elevations typically are

2-11

TABLE 2.1 SUMMARY OF WELL INSTALLATION DETAILS AND GROUNDWATER ELEVATION DATA, SITE PS-2 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

	Sampling	PVC Casing	Depth to Bottom of	Screened	Elevation	Ground	Groundwater	
Well	Event or	Size	Well	Interval	Top of PVC	Elevation	Elevation	
Identification	Date	(inches)	(feet bgs)	(feet bgs)	(feet amsl)	(feet amsl)	(feet amsl)	Source
MW-55	1988	2	16.6	6.35-16.60	NA b/	NA	NA	4
	11/17/92	2	16.19		2,439.36	2,439.72	2,431.66	3
	4/29/93	2	16.19		2,439.36	2,439.72	2,432.48	3
	7/27/93	2	16.19		2,439.36	2,439.72	2,432.16	3
	10/5/93	2	16.19		2,439.36	2,439.72	2,431.22	3
	2/8/94	2	16.19		2,439.36	2,439.72	2,431.82	3
	11/3/94	2	16.19		2,439.36	2,439.72	2,431.82	3
	04/04/95	2	15.95		2,439.36	2,439.72	2,432.78	2
MW-56	1988	2	13.0	7.75-13.00	NA	NA	NA	4
	11/17/92	2	12.70		2,442.18	2,442.55	2,433.39	3
	7/27/93	2	12.70		2,442.18	2,442.55	2,434.10	3
	10/5/93	2	12.70		2,442.18	2,442.55	2,433.11	3
	2/8/94	2	12.70		2,442.18	2,442.55	2,433.70	3
	5/5/94	2	12.70		2,442.18	2,442.55	2,433.86	3
	8/3/94	2	12.70		2,442.18	2,442.55	2,433.53	3
	11/3/94	2	12.70		2,442.18	2,442.55	2,434.00	3
	04/04/95	2	12.55		2,442.18	2,442.55	2,434.64	2
MW-105	1988	2	17.72	7.47-17.72	NA	NA	NA	4
	11/17/92	2	15.26		2,434.95	2,435.37	2,428.54	3
	4/29/93	2	15.26		2,434.95	2,435.37	2,429.36	3
	7/27/93	2	15.26		2,434.95	2,435.37	2,429.08	3
	10/5/93	2	15.26		2,434.95	2,435.37	2,428.57	3
	2/8/94	2	15.26		2,434.95	2,435.37	2,428.80	3
	5/5/94	2	15.26		2,434.95	2,435.37	2,428.85	3
	8/3/94	2	15.26		2,434.95	2,435.37	2,428.50	3
	11/3/94	2	15.26		2,434.95	2,435.37	2,428.65	3
MW-106	1988	2	12.69	2.44-12.69	NA	NA	NA	4
MW-109	1988	2	15.99	5.99-15.99	NA	NA	NA	4
	11/17/92	2	14.95		2,440.39	2,440.79	2,433.12	3
	4/29/93	2	14.95		2,440.39	2,440.79	2,433.88	3
	7/27/93	2	14.95		2,440.39	2,440.79	2,433.68	3
	10/5/93	2	14.95		2,440.39	2,440.79	2,432.63	3
	2/8/94	2	14.95		2,440.39	2,440.79	2,432.77	3
	5/4/94	2	14.95		2,440.39	2,440.79	2,433.08	3

TABLE 2.1 (Continued)

SUMMARY OF WELL INSTALLATION DETAILS AND

GROUNDWATER ELEVATION DATA, SITE PS-2

INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

Well	Sampling Event or	PVC Casing Size	Depth to Bottom of Well	Screened Interval	Elevation Top of PVC	Ground Elevation	Groundwater Elevation	
Identification	Date	(inches)	(feet bgs)	(feet bgs)	(feet amsl)	(feet amsl)	(feet amsl)	Source a/
MW-109	11/3/94	2	14.95		2,440.39	2,440.79	2,432.34	3
	04/04/95	2	14.65		2,440.39	2,440.79	2,433.94	2
MW-110	1988	2	16.27	6.27-16.27				4
	11/17/92	2	14.57		2,440.56	2,440.82	2,432.38	3
	4/29/93	2	14.57		2,440.56	2,440.82	2,433.58	3
	7/27/93	2	14.57		2,440.56	2,440.82	2,432.96	3
	10/5/93	2	14.57		2,440.56	2,440.82	2,431.84	3
	2/8/94	2	14.57		2,440.56	2,440.82	2,432.44	3
	11/3/94	2	14.57		2,440.56	2,440.82	2,434.34	3
	04/04/95	2	14.35		2,440.56	2,440.82	2,433.76	2
MW-176	09/91-12/91	2	10.0	5-9	2,439.09	NA	NA	1
MW-177	09/91-12/91	2	12.0	6.7-11.7	2,440.70	NA	NA	1
MW-177A	1995	4	14.5	NA	NA	NA	NA	5
MW-178	09/91-12/91	4	32.0	20.5-30.5	2,440.61	NA	NA	1
	11/17/92	4	29.29		2,440.45	2,440.83	2,433.60	3
	4/29/93	4	29.29		2,440.45	2,440.83	2,433.32	3
	7/27/93	4	29.29		2,440.45	2,440.83	2,434.27	3
	10/5/93	4	29.29		2,440.45	2,440.83	2,433.76	3
	2/11/94	4	29.29		2,440.45	2,440.83	2,433.12	3
	5/4/94	4	29.29		2,440.45	2,440.83	2,433.55	3
	8/2/94	4	29.29		2,440.45	2,440.83	2,432.83	3
	11/15/94	4	29.29		2,440.45	2,440.83	2,415.14	3
	04/04/95	4	29.32		2,440.45	2,440.83	2,434.63	2
MW-179	09/91-12/91	4	33.5	20.5-30.5	2,440.59	NA	NA	1
	11/17/92	4	30.35		2,440.52	2,440.83	2,411.37	3
	4/29/93	4	30.35		2,440.52	2,440.83	2,440.51	3
	7/27/93	4	30.35		2,440.52	2,440.83	2,440.46	3
	10/5/93	4	30.35		2,440.52	2,440.83	2,440.46	3
	2/11/94	4	30.35		2,440.52	2,440.83	2,418.10	3
	8/2/94	4	30.35		2,440.52	2,440.83	2,414.47	3
	11/15/94	4	30.35		2,440.52	2,440.83	2,427.99	3
	04/04/95	4	30.25		2,440.52	2,440.83	2,416.92	2

TABLE 2.1 (Concluded)

SUMMARY OF WELL INSTALLATION DETAILS AND

GROUNDWATER ELEVATION DATA, SITE PS-2

INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

			Depth to					
	Sampling	PVC Casing	Bottom of	Screened	Elevation	Ground	Groundwater	
Well	Event or	Size	Well	Interval	Top of PVC	Elevation	Elevation	
Identification	Date	(inches)	(feet bgs)	(feet bgs)	(feet amsl)	(feet amsl)	(feet amsl)	Source a/
MW-180	09/91-12/91	4	62.0	45-55	2,439.20	NA	NA	1
	11/17/92	4	54.63		2,438.97	2,439.45	2,428.02	3
	4/29/93	4	54.63		2,438.97	2,439.45	2,429.39	3
	7/27/93	4	54.63		2,438.97	2,439.45	2,429.09	3
	10/5/93	4	54.63		2,438.97	2,439.45	2,428.33	3
	2/11/94	4	54.63		2,438.97	2,439.45	2,428.13	3
	5/4/94	4	54.63		2,438.97	2,439.45	2,428.15	3
	8/2/94	4	54.63		2,438.97	2,439.45	2,427.95	3
	04/04/95	4	54.55		2,438.97	2,439.45	2,429.81	2
MW-222	1995	4	15.48	NA	NA	NA	NA	5
MW-223	NA	4	NA	NA	NA	NA	NA	5
MW-224	1995	4	15	NA	NA	NA	NA	5
MW-228	1995	4	15.93	NA	NA	NA	NA	5
MW-228A	1995	4	20.04	NA	NA	NA	NA	5
MW-228B	1995	4	16	NA	NA	NA	NA	5
MW-229	11/18/94	4	15.52	NA	2,436.36	2,436.74	2,428.17	3
MW-230	11/22/94	4	11.45	NA	2,435.93	2,436.26	2,427.47	3

a/ Sources:

^{1.} HNUS, 1993.

^{2.} ES&T and MWA, 1995.

^{3.} ICF, 1995.

^{4.} SAIC, 1988.

^{5.} Verbal corrospondance with bioventing pilot test field personnel.

b/ NA = Information not available.

lower during August through November, and higher during April through July. Water table elevation fluctuations of up to 2 feet have been observed from November 1992 to November 1994 (ICF, 1995). Groundwater elevations measured in April 1992 indicate the hydraulic gradient in the vicinity of PS-2 steepens from 0.003 foot per foot (ft/ft) in the southwestern portion of the site to 0.006 ft/ft in the northeastern portion of the site (HNUS 1993). Similar gradients are suggested by the 1993 groundwater elevation data presented in Figure 2.8 (ICF, 1995).

Three groundwater monitoring wells (MW-178, MW-179, and MW-180) were installed into the shallow basalt bedrock during previous investigations Figure 2.6). Groundwater data collected as part of the RI and the long-term monitoring program suggest that shallow bedrock groundwater elevations at MW-179 and MW-180 are consistently below groundwater elevations measured in surrounding alluvial wells. The groundwater elevation measured in MW-179 was nearly 5 feet lower than the groundwater elevation measured in the adjacent alluvial well MW-109, in November 1994. Additionally, the groundwater elevation measured in MW-180 was approximately 3.5 feet below the adjacent alluvial well MW-55, in February 1994. These data suggests vertical hydraulic gradients of 0.37 and 0.13 ft/ft in the vicinity of MW-179 and MW-180, respectively.

When pump testing was performed as part of the RI at alluvial well MW-55. drawdown was not observed in the two closest alluvial wells (MW-176 and MW-109). Using a semilog analysis (Theis 1935), estimates of transmissivity and hydraulic conductivity were calculated from residual drawdown observed in the pumping well, MW-55. Transmissivity was estimated at 212 square feet per day (ft²/day) and hydraulic conductivity was estimated at 24 feet per day (ft/day) (HNUS, 1993). Another pump test was performed as part of the RI in the alluvial well, MW-67 at site PS-8, approximately 0.75/4 of a mile downgradient from PS-2. Again, drawdown was not measured in the closest observation, well and same analytical method was used to estimate the transmissivity and hydraulic conductivity from residual drawdown measurements collected from the pumping well. The estimated transmissivity and hydraulic conductivity from data collected at MW-67 were 2353 ft²/day and 233 ft/day, respectively. The estimated values of transmissivity and hydraulic conductivity for the unconsolidated material at site PS-8 are significantly higher than the values estimated for the unconsolidated material at site PS-2. Other aquifer testing results were not available for review.

2.1.3 Summary of Analytical Data for PS-2

2.1.3.1 Soil Gas Sampling and Analytical Results

Both the SAIC (1990) site investigation and the ES (1994) bioventing pilot study included soil gas measurements. A quantitative soil gas survey was conducted in 1990 by SAIC. However, the results of this survey were not available in reports reviewed as part of the preparation of this work plan. Limited soil gas measurements also were collected as part of the bioventing pilot test at PS-2 (Figure 2.9). Analytical sampling of soil gas for BTEX and total volatile hydrocarbons (TVH) was performed. Results of initial soil gas sampling during the pilot test indicated that soil gas in the immediate vicinity of Defueling Pit 19 had elevated concentrations of BTEX and TVH, and very low concentrations of oxygen. Table 2.2 presents the analytical results of BTEX and

SOIL GAS CONCENTRATIONS MEASURED AT SITE PS-2
INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

Sample Location - Depth	TVH	Benzene	Toluene	Ethylbenzene	Ethylbenzene Xylenes, Total
(feet bgs) ^{a/}	(bpmv) b/	(nmdd)	(bpmv)	(bbmv)	(hmdd)
VW1 - 7.5	110,000	150	< 3.7	24	130
VMP1-4	78,000	160	< 2.3	31	130
VMP3-7	170,000	400	93	42	190

Source: ES, 1994.

Note: Soil gas analyzed according to EPA Method TO-3.

^{a/}bgs = below ground surface.

^{b/} TVH = total volatile hydrocarbons measured as jet fuel; ppmv = parts per million, volume per volume.

TVH soil gas samples collected during initial soil gas measurements for the bioventing pilot test. The elevated concentrations of soil gas BTEX and TVH indirectly suggest the presence of soil contamination in the area immediately surrounding defueling pit 19. Analysis of discrete soil samples collected during the installation of the VW and VMPs for the bioventing pilot test confirmed the presence of elevated soil concentrations of total petroleum hydrocarbons (TPH) and BTEX compounds (ES, 1994).

2.1.3.2 Soil Sampling and Analytical Results

Historical soil sampling data are available for sampling events that took place in 1986, 1988, 1990, 1991, 1993, and 1994. In 1986, 20 soil samples were collected from boreholes B-1 through B-10 at PS-2. Two years later, SAIC (1990)collected 6 additional soil samples during the installation of monitoring wells MW-55 and MW-56. In 1990, SAIC collected 8 additional soil samples during the installation of monitoring wells MW-105, MW-106, MW-109, and MW-110. In 1991, HNUS (1993) collected fifteen additional soil samples during the installation of soil borings 001 through 010. In 1993, ICF (1995) collected three soil samples during the installation of MW-229 and MW-230. Three additional samples were collected by ES (1994) in 1993 during the installation of the VW and VWPs for the bioventing pilot test. At a minimum, soil samples collected during these sampling events were analyzed for BTEX and TPH. Some soil sample were analyzed for additional contaminants; however, results reported for additional analytes are not of primary importance for completion of this TS and are not summarized in this work plan. Table 2.3 summarizes BTEX and TPH results for all soil samples collected during these sampling efforts. Locations of soil samples collected during the 1991 RI and the 1993 bioventing pilot test are shown on Figure 2.9. Locations and results of soil samples collected during the 1986, 1988, and 1990 SAIC investigations are presented on Figure 2.10.

Elevated BTEX and TPH concentrations were detected in several soil samples collected near defueling pit 19 and in one soil sample collected near defueling pit 18. Significant concentrations of BTEX and TPH in unsaturated soils appear to be limited to the soils in the vicinity of defueling pit 19. Vadose zone contamination at this location was detected by SAIC in 1986 and confirmed during the bioventing pilot test investigations in 1993. The maximum TPH concentration, 1,278 milligrams per kilogram (mg/kg), was measured in vadose soils during the 1986 investigation in borehole B-2 (SAIC, 1990). The maximum total BTEX contamination measured in unsaturated soils, 145.1 mg/kg, was detected during the 1993 bioventing pilot test investigation (ES, 1994) (Table 2.3). Unsaturated soil contamination in the region of defueling pit 18 is limited to isolated zones of TPH. A maximum TPH concentration of 180 mg/kg was detected by HNUS (1993) during the installation of borehole 5 in 1991. Soil sampling near MW-177 and MW-178 indicate that vadose soils in that area do not contain elevated concentrations of TPH or BTEX (HNUS, 1993). concentrations of BTEX and TPH contamination appear to be limited to saturated soils immediately downgradient from defueling pit 19, and appear to coincide with areas of mobile LNAPL and elevated concentrations of BTEX and TPH in groundwater.

TABLE 2.3
SUMMARY OF SOIL ANALYTICAL DATA FOR SITE PS-2
INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

	Sampling					Total	Total		:			Unknown	
Soil Boring	Event or	Depth	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	TPH2	$TRPH^{b'}$	TPH-diesel	TPH-Jet Fuel	Hydrocarbons	
Identification	Date	(feet bgs) ^{c/}	(mg/kg) ^{d/}	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source 6/
B-1	1986	2.5-4.0	ND ff		3.4	19.5	24.7	QN	$NA^{g'}$	NA	NA	NA	1
B-1	1986	5.0-5.5	2.4	S	2.1	11.5	16	887	NA	AN	NA	NA	1
B-2	1986	3.5-5.0	2	S	2.7	16.5	19.2	1278	NA	NA	NA	NA	1
B-2	1986	3.5-5.0	Q.	S	2.1	8.9	11	525	NA	NA	ΝΑ	NA	1
B-2	1986	5.0-6.0	S	Q	QN	R	R	R	NA	NA	NA	NA	1
B-3	1986	2.5-4.0	<u>R</u>	Q	1.8	6.6	11.7	1151	NA	NA	NA	NA	-
B-3	1986	4.0-5.5	Ð	2.2	7.5	41.2	50.9	475	NA	Ν	NA	NA	1
B-4	1986	2.5-4.0	R	2	Q	R	S	R	NA	NA	NA	NA	1
B-4	1986	8.5-10.5	N N	2.1	QN ON	14.1	16.2	126	NA	NA	NA A	NA	1
B-5	1986	4.0-5.5	Q.	2	QN ON	R	R	168	NA	NA	NA	NA	1
B-5	1986	8.5-10.0	R	9.4	QX	92.1	101.5	879	NA	NA	NA	NA	1
B-6	1986	5.0-6.0	R	QN N	S	R	S	370	NA	Ŋ	NA	NA	1
B-6	1986	10.0-10.75	S	Ð	QN ON	Ð	S	2	NA	NA	NA	NA	1
B-7	1986	5.0-6.5	S	<u>R</u>	QN QN	R	S	R	NA	NA	NA	NA	1
B-7	1986	8.0-9.5	Ð	3.9	10.8	46.5	61.2	786	NA	NA	NA	NA	1
B-8	1986	5.0-6.5	S	R	Q.	R	2	466	NA	NA	NA	N A	1
B-8	1986	8.0-9.5	N	R	N	R	S	R	NA	NA	NA	NA	1
B-9	1986	5.0-6.5	R	S	QN QN	R	S	238	NA	NA	NA	NA	1
B-9	1986	5.0-6.5	R	R	S	R	R	377	NA	NA	NA	NA	-
B-9	1986	8.0-9.5	Ð	R	S	R	R	R	NA	NA	NA	NA	1
B-10	1986	5.0-6.5	S	R	S	R	S	R	NA	NA	NA	NA	1
B-10	1986	8.0-9.5	Ð	R	S	N N	R	R	NA	NA	NA	NA	1
PS2-BH1	1988	3.0-3.5	S	R	Q.	R	R	R	NA	NA	NA	NA	1
MW-55	1988	3.5-4.0	QN	Ð	S	N N	Ð	13	NA	NA	NA	NA	1
MW-55	1988	8.0-8.5	S	Ð	S	R	Q	R	NA	NA	NA	NA	1
MW-55	1988	13.0-13.5	QN	R	QX	Q	Q	R	NA	NA	NA	N A	1
MW-56	1988	3.0-3.5	S	R	Q	R	R	R	NA	NA	NA	NA	1
MW-56	1988	8.0-8.5	R	QN.	ΩN	R	Q.	N	NA	NA	NA	NA	-

TABLE 2.3 (Continued)
SUMMARY OF SOIL ANALYTICAL DATA FOR SITE PS-2
INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

		Source	1		-	-	1	-	-	1	1	-	-	1	_	1	-	1	-	1	-	-	1	1	-	_	2	2	7
Unknown	Hydrocarbons	(mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA AN	NA	NA	NA	NA	NA	NA	NA	NA
	TPH-Jet Fuel	(mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TPH-diesel	(mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝĄ	NA	NA	NA	NA	NA	NA	NA	NA
	TRPH ^{b/}	(mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	250	280	086
	TPH ^{a/}	(mg/kg)	Ð.	R	N N	N N	R	460	170	R	R	Q.	R	R	NA	N	R	S	180	R	R	1,200	S	S	Q.	R	NA	NA	NA
Total	BTEX	(mg/kg)	Æ	R	N	S	S	4.2	R	R	S	S	0.007	0.014	R	R	R	S	R	0.011	6.4	Ð	S	S	S	R	55.4	145.1	4.65
Total	Xylenes	(mg/kg)	R	R	S	S	S	3.2	S	S	Q N	S	0.007	0.014	R	S	R	Q	S	Q	4.7	R	R	Q	2	S	47	120	3.8
	Ethylbenzene	(mg/kg)	QN	QN ON	QN	ΩN	QZ	1.0	QN	QN	Q.	QN	QN ,	QZ QZ	QZ	Q.	QN ON	QZ	QN	0.005	1.7	QN ON	Q.	QN.	S	QN ON	7.2	21	0.71
	Toluene	(mg/kg)	Q.	N	N Q	S S	R	R	N N	R	R	N N	R	R	Z	S	R	N Q	N N	R	N	N N	R	S	N N	S S	0.5	N Q	N Q
		(mg/kg) ^{d/}	Æ	N Q	N Q	R	Q	R	R	R	R	R	R	R	R	R	R	Q.	R	900.0	Q.	N N	R	N N	Q.	R	0.7	4.1	0.14
	Depth	(feet bgs) ^{c/}	13.0-13.5	7.0-8.5	5.5-6.0	10.5-11.0	11.0-11.5	6.0-6.5	10.5-11.0	5.5-6.0	10.5-11.0	0-2	2-6	6-10	0-5	2-6	Composite	0-2	2-6	2-6	6-10	Composite	2-6	0-5	9-0	9-0	7.5	4	4
Sampling	Event or	Date	1988	1990	1990	1990	1990	1990	1990	190	1990	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1994	1994	1994
	Soil Boring	Identification	MW-56	MW-105	MW-106	MW-106	MW-106	MW-109	MW-109	MW-110	MW-110	001	000	000	003	003	900	900	900	900	900	000	800	600	600	010	VW-1	VMP-1	VMP-2

SUMMARY OF SOIL ANALYTICAL DATA FOR SITE PS-2 FAIRCHILD AFB, WASHINGTON INTRINSIC REMEDIATION TS TABLE 2.3 (Concluded)

	Sampling					Total	Total					Unknown	
Soil Boring	Event or	Depth	Benzene	Toluene	Ethylbenzene	Xylenes		$\mathrm{TPH}^{a\prime}$	$TRPH^{b'}$	TPH-diesel	Ξ	Hydrocarbons	
Identification	Date	(feet bgs) ^{c/}	(mg/kg) ^{d/} (mg/kg	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source
MW-229	1994	5.5-6.0	S	QN	QN	QN.	ŀ	NA	NA	QN		QN	3
MW-229	1994	8.0-9.0	Ð	Q.	QN	R		NA	NA	N Q		820	က
MW-230	1994	7.0-8.0	Ð	Q	QN	R		NA	NA	N Q		800	3
MW-230	1994	7.0-8.0	R	Q.	Q.	ND		NA	NA	ND		ND	3

Notes:

²/ TPH = Total Petroleum Hydrocarbons

^{b/} TRPH = Total Recoverable Petroleum Hydrocarbons

o' feet bgs = feet below ground surface

mg/kg = milligrams per kilogram

Sources:

1. HNUS, 1993 2. ES, 1994.

3. ICF, 1995.

 $^{f'}$ ND = Not detected.

 $^{8'}$ NA = Not analyzed.

2.1.3.3 Groundwater Sampling and Analytical Results

A total of 20 monitoring wells have been installed at PS-2. SAIC (1990) installed 2 wells (MW-55 and MW-56) in 1988, and four additional wells (MW-105, MW-106, MW-109, and MW-110) in 1990. Five wells (MW-176, MW-177, MW-178, MW-179, and MW-180) were installed during the RI in 1992 (HNUS, 1993). Limited information regarding installation of the floating free product recovery TS wells (MW-177A, MW-222, MW-223, MW-224, MW-228, MW-228A, and MW-228B) were available for inclusion in this work plan. However, it is believed that the Floating Fee Product TS wells were installed in 1993. Two additional monitoring wells (MW-229 and MW230) were installed in 1994 (ICF, 1995). Available well construction details are presented in Table 2.1. All of the monitoring wells at PS-2 are in front of Buildings 1029 and 1033 or adjacent to Taxiway No. 1 (Figure 2.11). Monitoring wells MW-178, MW-179, and MW-180 are screened in the shallow bedrock while all other monitoring wells are screened in the unconsolidated alluvial material.

Groundwater quality data have been collected from PS-2 wells on at least an annual basis since 1989 as part of long-term monitoring activities at the site. BTEX and TPH results for all site investigations and available ground water sampling events are presented in Table 2.4.

Mobile LNAPL at PS-2 has been observed near MW-176 and near MW-177 (Figure 2.11). Mobile LNAPL was first documented at PS-2 in MW-176 and MW-177 during the 1993 RI investigation. Product thicknesses in 1992 were 0.18 inch and 1.44 inches at MW-176 and MW-177, respectively (HNUS, 1993). The zones of the mobile LNAPL shown in Figure 2.11 appear to be physically and chemically different from each other. The LNAPL near MW-176 is amber in color, while the LNAPL collected from MW-177 is black (HNUS, 1993). Chemical analysis of the LNAPL present at the site was not been reported in available site investigation reports. However, groundwater samples collected from wells near MW-176 contained a significantly higher mass fraction of benzene than groundwater samples collected from wells near MW-177. This suggests that the two mobile LNAPL plumes are from two different sources, and that the product found in MW-177 is more weathered than the product found in MW-176. Additionally, mobile LNAPL was detected near defueling pit 19 during the installation of VMP-1 (ES, 1994). However, the thickness and physical characteristics of the free product detected at this location have not been documented.

Elevated concentrations of BTEX in groundwater correspond with regions of mobile LNAPL at PS-2 (Figures 2.11 and 2.12). Total BTEX concentrations in excess of 100 micrograms per liter (μg/L) were detected in groundwater samples collected from MW-177, MW-109, MW-176, MW-222, MW-224, MW-228 and MW-228A (Table 2.4). All of these sampling locations are within regions where mobile LNAPL has been observed. The leading edge of the BTEX plume appears to have higher concentrations of benzene than of the other BTEX compounds (Figure 2.13). This is consistent with theoretical predictions indicating that benzene is the most mobile of the other BTEX compounds.

Low BTEX concentrations have been detected in groundwater samples collected from MW-178, which is screened in the shallow bedrock. Although, early samples collected from MW-178 exhibited low concentrations of BTEX and TPH

SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR SITE PS-2 FAIRCHILD AFB, WASHINGTON INTRINSIC REMEDIATION TS TABLE 2.4

	Sampling				Total	Total					Unknown	
	Event or	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX		TPH-gas	TPH-diesel	TPH-Jet Fuel	Hydrocarbons	
Location	Date	(μg/L) ^{/a}	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	Source 1c
MW-55	11/88	15		19	72	106		NA e/	NA	NA	NA	1
	11/88	14	QN	21	72	107		NA	NA	NA	NA	1
	04/89	53	QN ON	35	150	214		NA	NA	NA	NA	1
	06/90	12	R	12	QN	24		NA	NA	NA	NA	1
	06/80	53	Q N	180	270	503		NA	NA	NA	NA	1
	11/91	10.00	QN O	13.00	25.00	48.00		NA	NA	NA	NA	-
	11/91	41.00	ND	59.00	130.00	230.00		NA	NA	NA	NA	1
	08/94	20	5 U	31	13	69		0.89 J ^{f/}	0.20	NA	NA	4
	11/94	∞	8, N S	12	10 UJ ^{/h}	35		0.12	0.25 U	NA	NA	ю
	11/94	11.0	1.0 U	18	1.0 U	31		NA	NA	NA	NA	5
	11/94	10	1.0 U	18	1.0 U	30		NA	NA	NA	NA	5
	04/95	16	N N	19	1.7	36.7		NA	NA	ΝΑ	NA	7
MW-56	11/88	QN	QN QN	QN QN	QN QN	S	ND	NA	NA	NA	NA	П
	04/89	Q	N	ND QN	ND	S S		NA	NA	NA	NA	1
	06/90	S	N	ND QN	ND	Ą		NA	NA	NA	NA	1
	06/80	R	N N	QN QN	ND	N N		NA	NA	NA	NA	1
	11/91	QN	R	N QN	N N	N N		NA	NA	NA	NA	1
	11/94	0.50 U	1.0 U	1.0 U	1.0 U	3.5 U		NA	NA	NA	NA	5
	11/94	0.50 U	1.0 U	1.0 U	1.0 U	3.5 U		NA	NA	NA	NA	2
	6	ģ	Ş	Ę	Ž	Ş		Y X	V	V	V	-
COI-WW	16/70	Š	S	ב	2	באַ		Y.	ZV.	C I	V.	7
	04/91	S	2	QN S	2	2		Ϋ́	ΝĄ	NA	NA	1
	11/94	0.50	1.0 U	1.0 U	1.0 U	3.5	NA	NA	NA	NA	NA	S

SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR SITE PS-2 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON TABLE 2.4 (Continued)

	Sampling		:		Total						Unknown	
	Event or		Benzene Toluene	Ethylbenzene	Xylenes			TPH-gas	TPH-diesel	TPH-Jet Fuel	Hydrocarbons	
Location	Date		(µg/L)	$(\mu g/L)$	(µg/L)			(mg/L)	(mg/L)	(mg/L)	(mg/L)	Source 1c
MW-106	02/91	Ð	ı	QN ON	QN			NA	NA	NA	NA	Į.
	04/91	QN N		N ON	QN Q			NA	NA	NA	NA	1
	11/91	ND		2.00	12.00			NA	NA	NA	NA	
MW-109	02/91	150		530	1.200			Ϋ́	AN	NA	NA	
	04/91	34		ND	290			NA	NA	NA	NA	—
	11/91	40.00 J		190.00 J	420.00 J			NA	NA	NA	NA	-
	11/91	40.00		170.00	240.00			NA	NA	NA	NA	-
	11/94	12		550	935 UJ			4.80	2.10	NA	NA	က
	11/94	10 U		530	780			NA	NA	NA	NA	5
	11/94	10 U		380	029			NA	NA	NA	NA	5
	04/95	23		160	224			NA	3.9	NA	NA	7
MW-109A	04/95	21	1.2	120	152.6	294.8	NA	NA	5.3	NA	NA	2
MW-110	02/91	ND		QN	ON.			NA	NA	NA	NA	1
	04/91	N N		QN ON	ND			NA	NA	NA	NA	1
	08/94	5 U		5 U	10 U			0.26J	$0.10 \mathrm{U}$	NA	NA	4
	11/94	5 U		5 U	10 U			0.20	$0.25 \mathrm{U}$	NA	NA	3
	11/94	2.7		1.0 U	5 6			NA	NA	NA	NA	5
	11/94	1.8		1.0 U	22			NA	NA	NA	NA	5
	04/95	2.2		3.0	1.0			NA	0.72	NA	NA	7

SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR SITE PS-2 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON TABLE 2.4 (Continued)

	Sampling				Total	Total					Unknown	
	Event or		Benzene Toluene	Ethylbenzene	Xylenes		TPH	TPH-gas	TPH-diesel	TPH-diesel TPH-Jet Fuel	Hydrocarbons	
Location	Date	(µg/L) 'a	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	(mg/L) /b			(mg/L)	(mg/L)	Source 1c
MW-176	11/91	2,600.00		1,200.00	_	8,800.00	110		NA	NA	NA	
	08/94	1,200		580	4,500	8,780	NA	25.00 J	100.00	NA	NA	4
	11/94	2,100	200 U	2,400		16,500	NA	22.00	75.00	NA	NA	æ
MW-177	11/91	240.00	N N	520.00	2,200.00	2,960.00	27	NA	NA	NA	NA	1
	08/94	120 U	120 U	590	2,520	3,350	NA	11.00 J	7.80 J	NA	NA	4
	11/94	100 U	100 U	420	2,000	2,620	NA	11.00	13.00 J	NA	NA	ю
MW-177A	08/94	5 U	5 U	S U	10 U	25 U	NA	0.36 J	0.10 U	NA	NA	4
	08/94	5 U	5 U	5 U	10 U	25 U	NA	0.55 J	$0.10~\mathrm{U}$	NA	NA	4
	11/94	5	5 U	S U	10 UI	25	NA	0.27	0.25 U	NA	NA	n
MW-178	11/91	7.00	QN	11.00	40.00	58.00	< 0.2	NA	NA	NA	NA	-
	11/91	7.00	N N	10.00	38.00	55.00	< 0.2	NA	NA	NA	NA	
	11/94	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	NA	NA	NA	NA	NA	S
	04/95	QN QN	NO	ND	1.3	1.3	NA	NA	0.27	NA	NA	7
MW-179	11/94	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	NA	NA	NA	NA	NA	ν.
	04/95	NA	NA	NA	NA	NA	NA	NA	0.27	NA	NA	7
MW-180	11/91	ND		QN	N	N	< 0.2	NA	NA	NA	NA	Н
	11/94	0.50 U	1.0 U	1.0 U	1.0 U	3.5 U	NA	NA	NA	NA	NA	2
	04/95	ΩN		QN	1.7	1.7	NA	NA	NA	NA	NA	2
MW-222	08/94	4	5 U	14	14	77	NA	6.905	1.00	NA	NA	4
	11/94	79	5 U	26	10 U	120	NA	8.50	0.38	NA	NA	т

SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR SITE PS-2 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON TABLE 2.4 (Concluded)

	Sampling				Total	Total					Unknown	
Location	Event or	_	Toluene	Ethylbenzene	Xylenes	BTEX (1104/L)	TPH (ma/l) h	TPH-gas	TPH-diesel	TPH-Jet Fuel	Hydrocarbons (mg/I)	Source le
LOCATION NAW 224	Date 08/04	(M8/L)	- 1	(48/1) 0/1	(HB/L)	(HB/L)	(mg/L)		(mg/L)	(mg/L)	(mg/L)	Source
1VI W - 2.24	100	11	2	+	f	177			6.00		QNI	r
	11/94	25	5 U	140	185	382	NA		1.10	NA	NA	m
MW-228	08/94	220	120 U	240	1,090	1,670	NA	25.00 J	100.00 J	NA	NA	4
	11/94	490	83 U	420	2,083	3,076	NA	31.00	54.00	NA	NA	ю
MW-228A	08/94	410	250 U	430	2,250	3,340	NA	490.00 J	190.00 J	NA	NA	4
	11/94	2,000	250 U	1,400	5,650	9,300	NA	45.00	110.00	NA	NA	n
MW-228B	08/94	<i>L</i> 9	5 U	<i>L</i> 9	197	336	NA	1.60 J	0.77	NA	NA	4
	08/94	99	5 U	89	187	326	NA	2.10J	0.71	NA	NA	4
	11/94	28 J	S U	22 J	82 UJ	137 UJ	NA	1.30	0.40	NA	NA	60
MW-229	11/94	3.2	3.9	21	7.4	35.5	NA	NA	0.50 U	0.50 U	0.87	S
MW-230	11/94	0.50 U	1.0 U	2.7	1.0 U	5.2	NA	NA	0.50 U	0.50 U	0.50	\$
	11/94	0.50 U	1.0 U	3.7	1.0 U	6.2	NA	NA	0.50 U	0.50 U	0.53	5
$m = \pi/\Gamma = m$	$\mu v/L = \text{micrograms per liter.}$	er liter.										İ

 $\mu g/L = micrograms$ per liter. TPH = total petroleum hydrocarbons; mg/L = milligrams per liter. 4

c' Sources:

1. HNUS, 1993.

ES&T AND MWA, 1995.
 HNUS, 1995b.
 HNUS, 1994.
 ICF, 1995.

 $^{d'}$ ND = not detected.

 $^{e'}$ NA = not analyzed.

f' J = estimated value.

 $^{\text{b/}}$ U = analyte not detected above method detection limit.

U = estimated not detected.

BUILDINGS ROADS

MW-178 ALLUMAL WELLS

NOT MEASURED

non-detect, value represents detection umit

CONCENTRATIONS IN ug/L

NOTE: DATA FROM EACH WELL IS FROM ITS MOST RECENT SAMPLING EVENT (SEE TABLE 4-4).

Sources: ICF Technology Inc., 1995.

FIGURE 2.13

EXTENT OF BENZENE CONTAMINATION IN GROUNDWATER NOVEMBER, 1994

Intrinsic Remediation TS Fairchild AFB, Washington

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

contamination, more recent results of groundwater sampling at MW-178 indicate that BTEX contamination is declining at this location. BTEX and TPH have not been detected in groundwater samples collected from MW-179 or MW-180. Currently, no shallow bedrock wells have been installed beneath the body of free product detected near MW-176.

The data suggest that two separate and distinct dissolved BTEX plumes are present at PS-2. The two regions of mobile LNAPL detected at the site appear to be acting as continuing sources of BTEX contamination for the each of the dissolved BTEX plumes. Elevated concentrations of BTEX are not found in unsaturated soil samples collected above the dissolved BTEX plumes. Current analytical data also suggests that significant downward vertical migration in groundwater does not appear to be occurring at PS-2, although more data are required to confirm that such migration is not occurring near MW-176. Currently, the areal extents of the dissolved BTEX plumes at PS-2 are not fully delineated. Additional data will be necessary to fully delineate the dissolved plumes in the downgradient and crossgradient directions. Upgradient groundwater sampling also will be performed in order to measure geochemical data essential for evaluating intrinsic remediation at PS-2. Additionally, the poor correlation of reported source areas to current dissolved plume locations may require that more soil and groundwater data be collected to acquire a better understanding of plume dynamics.

2.2 DEVELOPMENT OF CONCEPTUAL SITE MODEL

A CSM is a three-dimensional representation of a site's hydrogeologic system based on available geological, hydrological, climatological, and geochemical data. A CSM is developed to provide an understanding of the mechanisms controlling contaminant fate and transport and to identify additional data requirements. The model describes known and suspected sources of contamination, types of contamination, affected media, and contaminant migration pathways. The model also provides a foundation for formulating decisions regarding additional data collection activities and potential remedial actions. The CSM for PS-2 will be used to aid in selecting additional data collection points and to identify appropriate data needs for modeling and hydrocarbon degradation using groundwater flow and solute transport models.

Successful conceptual model development involves:

- Defining the problem to be solved;
- Integrating available data, including
 - Local geologic and topographic data,
 - Hydraulic data,
 - Site stratigraphic data,
 - Contaminant concentration and distribution data;
- Evaluating contaminant fate and transport characteristics;

- Identifying contaminant migration pathways;
- Identifying potential receptor and receptor exposure points; and
- Determining additional data requirements.

2.2.1 Intrinsic Remediation and Groundwater Flow and Solute Transport Models

After a site has been adequately characterized, fate and transport analyses can be performed to determine the potential for contaminant migration and whether any pathway for exposure of human or ecological receptors to site contaminants may be complete. Groundwater flow and solute transport models have proven useful for predicting BTEX plume migration and contaminant attenuation by natural biodegradation. Analytical solute transport models and the Bioplume II numerical model (Rifai et al., 1988) can be used to evaluate critical groundwater fate and transport processes that may be involved in some of the migration pathways to human and ecological receptors. Quantitative fate and transport analyses can be used to determine what level and extent of remediation is required.

An accurate estimate of the potential for natural biodegradation of BTEX compounds in groundwater is important to consider when determining whether fuel hydrocarbon contamination presents a substantial threat to human health and the environment, and when deciding what type of remedial alternative will be most costeffective in eliminating or abating these threats. Over the past two decades, numerous laboratory and field studies have demonstrated that subsurface microorganisms can degrade a variety of hydrocarbons (Lee, 1988). This process occurs naturally when sufficient oxygen (or other electron acceptors) and nutrients are available in the groundwater. The rate of natural biodegradation is generally limited by the lack of oxygen (or other electron acceptors) rather than by the lack of nutrients such as The supply of oxygen to unsaturated soil is constantly nitrogen or phosphorus. renewed by the vertical diffusion from the atmosphere. The supply of oxygen to a shallow, fuel-contaminated aquifer is constantly renewed by the influx of oxygenated, upgradient flow and recharge from precipitation and by the vertical diffusion of oxygen from the unsaturated soil zone into the groundwater (Borden and Bedient, 1986). The rate of natural biodegradation in unsaturated soil and shallow aquifers is largely dependent upon the rates at which oxygen and other electron acceptors enter the contaminated media.

2.2.2 Biodegradation of Dissolved BTEX Contamination

The positive effect of natural attenuation processes (e.g., advection, dispersion, sorption, and biodegradation) on reducing the actual mass of fuel-related contamination dissolved in groundwater has been termed intrinsic remediation. Advantages of intrinsic remediation include: (1) contaminants are transformed to innocuous byproducts (e.g., carbon dioxide and water), not just transferred to another phase or location within the environment; (2) current pump-and-treat technologies are energy-intensive and generally not as effective in reducing residual contamination; (3) the process is nonintrusive and allows continuing use of infrastructure during remediation; (4) current engineered remedial technologies may pose a greater risk to potential receptors than intrinsic remediation because contaminants may be transferred into the

atmosphere during remediation activities; and (5) intrinsic remediation is far less costly than conventional, engineered remedial technologies.

To estimate the impact of natural attenuation on the fate and transport of BTEX compounds dissolved in groundwater at a site, two important lines of evidence must be demonstrated (Wiedemeier et al., 1995). The first is a documented loss of contaminants at the field scale. Dissolved concentrations of biologically recalcitrant tracers found in most fuel contamination are used in conjunction with aquifer hydrogeologic parameters, such as groundwater seepage velocity and dilution, to demonstrate that a reduction in contaminant mass is occurring at the site. The second line of evidence involves the use of chemical analytical data in mass-balance calculations to show that areas with BTEX contamination can be correlated to areas with depleted electron acceptor (e.g., oxygen, nitrate, and sulfate) concentrations and increases in metabolic fuel degradation byproduct concentrations (e.g., methane and With this site-specific information, groundwater flow and solute ferrous iron). transport models can be used to simulate the fate and transport of dissolved BTEX compounds under the influence of natural attenuation.

Analytical and numerical models are available for modeling the fate and transport of fuel hydrocarbons under the influence of advection, dispersion, sorption, and natural aerobic and anaerobic biodegradation. Analytical models may be used in conjunction with the Bioplume II numerical model, as appropriate. The Bioplume II numerical model is based upon the USGS two-dimensional (2-D) solute transport model, which has been modified to include a biodegradation component that is activated by a superimposed plume of dissolved oxygen. Bioplume II solves the USGS 2-D solute equation twice, once for hydrocarbon concentrations in the groundwater and once for a dissolved oxygen plume. The two plumes are then combined using superimposition at every particle move to simulate biological reactions between fuel products and oxygen. As appropriate, biodegradation of contaminants by anaerobic processes is simulated using a first-order anaerobic decay rate.

The analytical solute transport models are derived from advection-dispersion equations given by Wexler (1992) and Van Genuchten and Alves (1982). These models provide exact, closed-form solutions and are appropriately used for relatively simple hydrogeologic systems that are homogeneous and isotropic. Each model is capable of simulating advection, dispersion, sorption, and biodegradation (or any first-order decay process). These models can simulate continuous or decaying sources. A continuous source model is useful for determination of the worst-case distribution of the dissolved contaminant plume. A decaying source model is useful for simulating source removal scenarios, including natural weathering processes and engineered solutions.

2.2.3 Initial Conceptual Site Model

Site PS-2 geologic data were previously integrated to produce two geologic cross-sections of the site. Cross sections A - A' and B - B' (Figures 2.6 and 2.7) show the dominant hydrostratigraphic units present at the site and the elevation of the water table. Figure 2.8 is a groundwater surface map prepared using October 1993 groundwater elevation data (ICF, 1995).

The surface of the groundwater table is present at approximately 6 to 9 feet bgs in the silty and gravelly sand, and gravel deposits in the vicinity of the site. Groundwater also occurs in shallow bedrock, which is present at 18 to 25 feet bgs. Groundwater flow in the alluvium is to the east-northeast, with an average gradient of 0.0045 ft/ft. On the basis of the available data, Parsons ES will model the site as an unconfined, fine- to coarse-grained sand and gravel aquifer. This CSM will be modified as necessary as additional site hydrogeologic data become available. Vertical migration of site contaminants in groundwater will be further investigated in the area of MW-176.

Mobile LNAPL is present at PS-2, and it will be necessary to use the fuel/water partitioning models of Bruce et al. (1991) or Cline et al. (1991) to provide a conservative source term to model the partitioning of BTEX from the mobile LNAPL into the groundwater. In order to use one of these models, samples of free product will be collected and analyzed for mass fraction of BTEX. Parsons ES also will collect additional groundwater samples from immediately below the LNAPL layer. Figure 2.11 shows the locations of the mobile LNAPL, and Figure 2.12 shows the extent of BTEX groundwater contamination at the site. Information from these maps and historical soil contamination data for the site (Table 2.3) will be used to select the locations of new monitoring wells to fully define the extents of the LNAPL and the dissolved BTEX plumes at PS-2.

Because of it solubility and relative toxicity benzene is the primary chemical of interest in groundwater at PS-2. However, the synergistic effects of all of the BTEX compound on attenuation rates make site data on all of the BTEX compounds important. Therefore, all of the BTEX compound will be the primary focus of this intrinsic remediation TS. The Bioplume II model will be used to simulate the degradation of these chemicals at PS-2 and to predict the concentrations and extent of the contaminant plumes in the groundwater over time.

Dissolved BTEX at the site are expected to leach from contaminated soils containing fuel residuals, to dissolve from mobile LNAPL into the groundwater, and to migrate downgradient as a dissolved contaminant plume. In addition to the effects of mass transport mechanisms (volatilization, dispersion, diffusion, and adsorption), these dissolved contaminants will likely be removed from the groundwater system by destructive attenuation mechanisms, such as biodegradation. The effects of these fate and transport processes on the dissolved groundwater plume will be investigated using the quantitative groundwater analytical data and the solute transport models. Data collection and analysis requirements are discussed in Section 3 of this work plan.

2.2.4 Potential Pathways and Receptors

Potential preferential contaminant migration pathways such as groundwater discharge points and subsurface utility corridors (artificial conduits) will be identified during the field work phase of this project. The primary potential migration path for contaminants at PS-2 is from the residual LNAPL in contaminated soils and mobile LNAPL at the site into the groundwater, and from the groundwater to potential receptors via ingestion or incidental contact.

Shallow groundwater beneath PS-2 flows toward the east-northeast. There are no known operating potable or nonpotable water wells (other than monitoring wells)

located within 1 mile downgradient or crossgradient from the site. Surface drainage by overland flow from the site is collected in the Base storm sewer network and transported to the wastewater lagoon in the southeastern corner of the Base. Surface soil contamination at the site is limited, and is not expected to impact surface water quality.

The potential for exposure to contaminated water originating from the site through ingestion is low because Base access is restricted and Base drinking water does not come from wells located downgradient from PS-2. There are residential areas that rely on domestic wells for drinking water near the eastern boundary of the Base. The closest known residential housing downgradient from the site is across Rambo Road adjacent to the eastern Base boundary, approximately 6,000 feet from the site. Site contaminants are not expected to migrate to these drinking water wells at concentrations exceeding regulatory levels intended to be protective of human health and the environment. However, the potential impacts on these wells will be of primary importance for assessing the feasibility of intrinsic remediation at PS-2 and will be considered in greater detail once additional site data essential for the evaluation of intrinsic remediation have been collected.

SECTION 3

COLLECTION OF ADDITIONAL DATA

To complete the TS and to demonstrate that intrinsic remediation of fuel-related contaminants is occurring, additional site-specific hydrogeologic data will be collected. The physical and chemical hydrogeologic parameters listed below will be determined during the field work phase of the TS.

Physical hydrogeologic characteristics to be determined include:

- Depth from measurement datum to the groundwater surface in site monitoring wells;
- Locations of potential groundwater preferential flow pathways and recharge and discharge areas;
- Locations of downgradient wells and their uses;
- Hydraulic conductivity through slug tests, as required;
- Estimate of dispersivity, where possible;
- Stratigraphic analysis of subsurface media;
- Groundwater temperature; and
- Determination of extent and thickness of mobile and residual LNAPL.

Chemical hydrogeologic characteristics to be determined include:

- Dissolved oxygen concentration;
- Specific conductance;
- pH;
- Chemical analysis of mobile LNAPL to determine mass fraction of BTEX; and
- Additional chemical analysis of groundwater and soil for the parameters listed in Table 3.1.

TABLE 3.1 ANALYTICAL PROTOCOL FOR PS-2 GROUNDWATER AND SOIL SAMPLES

INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

MATRIX Analyte	METHOD	FIELD (F) OR FIXED-BASE LABORATORY (L
WATER		
Total Iron	Colorimetric, HACH Method 8008	F
Ferrous Iron (Fe ²⁺)	Colorimetric, HACH Method 8146	F
Ferric Iron (Fe ³⁺)	Difference between total and ferrous iron	F
Manganese	Colorimetric, HACH Method 8034	F
Sulfate	Colorimetric, HACH Method 8051	F
Nitrate	Titrimetric, HACH Method 8039	F
Nitrite	Titrimetric, HACH Method 8507	F
Redox Potential	A2580B, direct reading meter	F
Oxygen	Direct reading meter	F
pН	E150.1/SW9040, direct reading meter	F
Conductivity	E120.1/SW9050, direct reading meter	F
Temperature	E170.1, direct reading meter	F
Carbon Dioxide	Titrimetric, HACH Method 1436-01	F
Alkalinity (Carbonate [CO ₃ ²]	F = Titrimetric, HACH Method 8221	F
and Bicarbonate [HCO3-])	L = EPA method 310.1	L
Nitrate + Nitrite	EPA Method 353.1	L
Chloride	Waters Capillary Electrophoresis Method N-601	L
Sulfate	Waters Capillary Electrophoresis Method N-601	L
Methane, Ethane, Ethene	RSKSOP-147	L
Dissolved Organic Carbon	RSKSOP-102	L
Aromatic Hydrocarbons	RSKSOP-148	L
Fuel Carbon	RSKSOP-148	L
SOIL	•	
Total Organic Carbon	RSKSOP-102 & RSKSOP-120	L
Moisture	ASTM D-2216	L
Aromatic Hydrocarbons	RSKSOP-124, modified	L
Total Hydrocarbons	RSKSOP-174	L
FREE PRODUCT		
BTEX Mass Fraction	GC/MS, Direct Injection	L

In order to obtain these data, soil, groundwater, free product samples will be collected and analyzed. The following sections describe the procedures that will be followed when collecting additional site-specific data. Soil sampling and monitoring point installation will be accomplished using the Geoprobe system as described in Sections 3.1 and 3.2. Soil core sample collection procedures are described in Section 3.1. Monitoring point installation procedures are described in Section 3.2. Groundwater sampling procedures for monitoring wells and newly installed groundwater monitoring points are described in Section 3.3. Measurement procedures for aquifer parameters (e.g., hydraulic conductivity) are described in Section 3.4.

3.1 SOIL SAMPLING

The following sections describe sampling locations, sample collection techniques, equipment decontamination procedures, site restoration, and management of investigation-derived waste materials.

3.1.1 Soil Sample Locations and Required Analyses

Soil samples will be collected at all Geoprobe[®] and monitoring point installation locations. Figure 3.1 identifies the proposed locations for soil sample collection at PS-2. Table 3.1 presents an analytical protocol for groundwater and soil samples, and Appendix A contains detailed information on the analyses and methods to be used during this sampling effort.

A minimum of two samples will be collected from each Geoprobe[®] hole location. One sample will be taken at the water table, and one will be taken at the depth of maximum BTEX contamination as determined by soil headspace screening. Sampling locations include suspected source areas in the vicinity of the monitoring well cluster MW-177/MW-178, monitoring well cluster MW-176/MW-228, and the bioventing system near defueling pit 19. Soil samples also will be collected from at least one location upgradient and downgradient from each of these suspected source areas. Additional samples will be collected at the discretion of the Parsons ES field scientist.

A portion of each sample will be used to measure soil headspace, and another portion of selected samples will be sent to the USEPA mobile laboratory for analytical analysis. Each laboratory soil sample will be placed in an analyte-appropriate sample container and hand-delivered to USEPA field personnel for analysis of total hydrocarbons, aromatic hydrocarbons, and moisture content using the procedures presented in Table 3.1. In addition, at least two samples will be analyzed for total organic carbon (TOC) from locations upgradient, crossgradient, or far downgradient from the contaminant source. Each headspace screening sample will be placed in a sealed plastic bag or mason jar and allowed to sit for at least 5 minutes. Volatile organic compounds (VOCs) in soil headspace will then be determined using an organic vapor meter (OVM), and the results will be recorded in the field records by the Parsons ES field scientist.

3.1.2 Sample Collection Using the Geoprobe® System

Soil samples will be collected using a Geoprobe® system, a hydraulically powered percussion/probing machine capable of advancing sampling tools through

unconsolidated soils. This system allows the rapid collection of soil, soil gas, and groundwater samples at shallow depths while minimizing the generation of investigation-derived waste materials. Figure 3.2 is a diagram of the Geoprobe system.

Soil samples will be collected using a probe-drive sampler. The probe-drive sampler serves as both the driving point and the sample collection device and is attached to the leading end of the probe rods. To collect a soil sample, the sampler is pushed or driven to the desired sampling depth, the drive point is retracted to open the sampling barrel, and the sampler is subsequently pushed into the undisturbed soils. The soil cores are retained within brass, stainless steel, or clear acetate liners inside the sampling barrel. The probe rods are then retracted, bringing the sampling device to the surface. The soil sample can then be extruded from the liners for lithologic logging, or the liners can be capped and undisturbed samples can be submitted to the analytical laboratory for testing.

If the probe-drive sampling techniques described above are inappropriate, inadequate, or unable to efficiently provide sufficient soil samples for the characterization of the site, continuous soil samples will be obtained from conventional soil boreholes using a hand auger or similar method judged acceptable by the Parsons ES field scientist. Procedures will be modified, if necessary, to ensure good sample recovery.

The Parsons ES field scientist will be responsible for observing all field investigation activities, maintaining a detailed descriptive log of all subsurface materials recovered during soil coring, photographing representative samples, and properly labeling and storing samples. An example of the proposed geologic log form is presented in Figure 3.3. The descriptive log will contain:

- Sample interval (top and bottom depth);
- Sample recovery;
- Presence or absence of contamination;
- Lithologic description, including relative density, color, major textural
 constituents, minor constituents, porosity, relative moisture content, plasticity of
 fines, cohesiveness, grain size, structure or stratification, relative permeability, and
 any other significant observations; and
- Depths of lithologic contacts and/or significant textural changes measured and recorded to the nearest 0.1 foot.

Base personnel will be responsible for identifying the location of all utility lines, USTs, fuel lines, or any other underground infrastructure prior to any sampling activities. All necessary digging permits will be obtained by Base personnel prior to mobilizing to the field. Base personnel will also be responsible for acquiring drilling and monitoring point installation permits for the proposed locations. Because PS-2 is located on a part of the Base used by the National Guard, Base personnel will be

GEOLOGIC BORING LOG

BORING NO.:	CONTRACTOR:	 DATE SPUD:	
CLIENT:	RIG TYPE:	 DATE CMPL.:	
JOB NO.:	DRLG METHOD:	ELEVATION:	
LOCATION:	BORING DIA.:	 TEMP:	
GEOLOGIST:	DRLG FLUID:	 WEATHER:	
COMENTS:			

Elev	Depth	Pro-	US		S	ample	Sample	Penet			TOTAL	TPH
(ft)	(ft)	file	cs	Geologic Description	No.	Depth (ft)	Туре	Res	PID(ppm)	TLV(ppm)	BTEX(ppm)	(ppm)
	- 1 -				1	1			L			
Ì	<u> </u>					J				<u> </u>		ļ
	\vdash				1]						
	$\vdash \vdash \vdash$	ļ										
	- 5 -							Ì				
												-
	$\vdash \vdash \vdash$]						
		- 1										
	-10-	- 1			1							
		i										
					1	ļ						
	\Box	- 1			Ì							
	-15-											
						1						
- 1		i			1							
				•								
}												
	-20-		İ									
ł			-		i							
1		l			1 .			}				
ľ			1		1			ı				
	-25-	ł	- 1					İ				
	-25						l					
[1	[
			}				ĺ					
								ļ				
	-30-	1		•				}				
}		1					.	}		—— ļ		
}		,						}				
}		'					i	ŀ				
F	-35-						l	ŀ				

NOTES

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.3

GEOLOGIC BORING LOG

Intrinsic Remediation TS Fairchild AFB, Washington

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

responsible for alerting appropriate WANG personnel of upcoming investigations. Parsons ES will be responsible for providing trained operators for the Geoprobe.

3.1.3 Datum Survey

The horizontal location of all soil sampling locations relative to established Base coordinates will be measured by a surveyor. Horizontal coordinates will be measured to the nearest 0.1 foot. The elevation of the ground surface also will be measured to the nearest 0.1 foot relative to USGS msl data.

3.1.4 Site Restoration

After sampling is complete, each sampling location will be restored as closely to its original condition as possible. Holes created by the Geoprobe[®] in sandy soils similar to those found at the Base tend to cave in soon after extraction of the drive sampler. However, any test holes remaining open after extraction of the probe-drive will be sealed with hydrated bentonite chips, pellets, or grout to eliminate any creation or enhancement of contaminant migration pathways to the groundwater. Concrete will be used to top off holes punched through asphalt or concrete. The concrete plug will be flush with and at least as thick as the surrounding asphalt or concrete Soil sampling using the Geoprobe[®] creates low volumes of soil waste. Soil not used for sampling will be placed in 55-gallon drums, labeled, and transported to a Base-designated holding location while disposal is being arranged.

3.1.5 Equipment Decontamination Procedures

Prior to arriving at the site, and between each sampling location, probe rods, tips, sleeves, pushrods, samplers, tools, and other downhole equipment will be decontaminated using a high-pressure, steam/hot water wash or Alconox® wash with a potable water rinse. Between each soil sample, the sampling barrel will be disassembled and decontaminated with Alconox® and potable water. The barrel then will be rinsed with deionized water and reassembled with new liners. Between uses, the sampling barrel will be wrapped in clean plastic or foil to prevent contamination. Only potable water will be used for decontamination.

All rinseate will be collected in 55-gallon drums. Filled 55-gallon drums will be labeled and transported to a Base-designated holding location while disposal is being arranged. The Base will be responsible for signing required waste shipping and disposal manifests.

Potable water to be used during equipment cleaning, decontamination, or grouting will be obtained from one of the Base water supplies. Water use approval will be verified by contacting the appropriate facility personnel. The field scientist will make the final determination as to the suitability of site water for these activities. Precautions will be taken to minimize any impact to the surrounding area that might result from decontamination operations.

3.2 MONITORING POINT INSTALLATION

To further characterize site hydrogeologic conditions, up to 18 groundwater monitoring points may be installed at PS-2 to supplement the site monitoring wells. The following sections describe the proposed monitoring point locations and completion intervals, monitoring point installation, monitoring point development, and equipment decontamination procedures.

3.2.1 Monitoring Point Locations and Completion Intervals

The locations of 18 proposed groundwater monitoring points at PS-2 are identified on Figure 3.1. The proposed locations for the new monitoring points were determined from a review of data gathered during previous site activities. Monitoring point locations were selected to provide hydrogeologic data necessary for successful implementation of the Bioplume II model and to monitor potential fuel hydrocarbon migration from the site. Monitoring point locations were selected to define four aspects of the site: 1) the magnitude of the mobile LNAPL and dissolved BTEX concentrations within suspected source areas, 2) the extent of contamination, 3) the horizontal distribution of dissolved BTEX, and 4) the hydrogeology and groundwater flow direction at the site. The proposed locations shown on Figure 3.1 may be modified in the field as a result of encountered field conditions and acquired field data.

Three monitoring points will be installed in suspected source areas A shallow and deep monitoring point will be installed in the vicinity of VMP-1 near defueling pit 19. A single deep monitoring point will be installed in the area of mobile LNAPL associated with the monitoring wells MW-176, -228, -228A, and -228B. These points have the dual purpose of evaluating source area concentrations as well as the vertical extent of contamination within the source areas. Twelve shallow monitoring points are proposed to define the extent and configuration of the BTEX and mobile LNAPL plumes emanating from the suspected source areas. An additional two shallow monitoring points have been designated for areas upgradient from the dissolved BTEX plumes in order to evaluate background conditions at PS-2. A monitoring point screened near the bottom of the unconsolidated alluvium is proposed to be installed adjacent to monitoring well MW-229 in order to investigate the vertical extent of dissolved BTEX downgradient from the MW-176/228 source area. conditions cannot always be predicted with complete accuracy prior to performance of the field work, two optional monitoring points have been reserved to further define the extent of contamination, the source areas, or the background site conditions.

Each shallow monitoring point will have a screened interval of approximately 3 feet placed near the top of the saturated zone. Deep monitoring points will be placed immediately above the bedrock basalt. The exact depth and location of monitoring points will be determined by the Parsons ES field scientist on the basis of site conditions. The proposed screened intervals of approximately 3 feet or less will help mitigate the dilution of water samples from potential vertical mixing of contaminated and uncontaminated groundwater in the monitoring point casing. Adjustments of the depth and length of the screened interval of the monitoring points may be necessary in response to actual aquifer conditions and contaminant distribution identified during Geoprobe testing.

3.2.2 Monitoring Point Installation Procedures

3.2.2.1 Pre-Placement Activities

All necessary digging, coring, and drilling permits will be obtained prior to mobilizing to the field. In addition, all utility lines will be located, and proposed Geoprobe locations will be cleared prior to any intrusive activities. Responsibilities for these permits and clearances are discussed in Section 3.1.1.

Water to be used in monitoring point installation and equipment cleaning will be obtained from one of the Base water supplies. Water use approval will be verified by contacting the appropriate facility personnel. The field scientist will make the final determination as to the suitability of site water for these activities.

3.2.2.2 Monitoring Point Materials Decontamination

Monitoring point installation and completion materials will be inspected by the field scientist and determined to be clean and acceptable prior to use. If not factory sealed, the well points and tubing will be cleaned prior to use with a high-pressure, steam/hot-water cleaner using approved water. Materials that cannot be cleaned to the satisfaction of the field scientist will not be used.

3.2.2.3 Installation and Materials

This section describes the procedures to be used for installation of monitoring points. Monitoring points will be installed using either 0.375-inch Teflon® tubing connected to a 0.5-inch-diameter stainless steel screen or a 0.5-inch inside-diameter (ID)/0.75-inch outside-diameter (OD) polyvinyl chloride (PVC) screen and casing.

If subsurface conditions permit, shallow monitoring points will be constructed of 0.75-inch OD-/0.5-inch-ID PVC casing and well screen to provide additional water level information. Approximately 3 feet of factory-slotted screen will be installed for each shallow monitoring point. Effective installation of the shallow monitoring points requires that the boreholes remain open upon completion of drilling. Shallow 0.5-inch-ID PVC monitoring points will be installed by punching and sampling a borehole with the Geoprobe[®]. Upon removing the rods, the borehole depth will be measured to determine if the hole remains open. If the borehole remains open, the 0.5-inch-ID PVC casing and screen will be placed at the appropriate depths. The annular space around the screen will be filled with sand filter pack, and the annulus around the casing will be filled with grout or bentonite. Monitoring point construction details will be noted on a Monitoring Point Installation Record form (Figure 3.4). This information will become part of the permanent field record for the site.

Monitoring point screens will be constructed of flush-threaded, Schedule 40 PVC with an ID of 0.5 inch. The screens will be factory slotted with 0.01-inch openings. Shallow monitoring point screens will be placed to sample and provide water level information at or near the water table. Blank monitoring point casing will be constructed of Schedule 40 PVC with an ID of 0.5 inch. All monitoring point casing sections will be flush-threaded; joints will not be glued. The casing at each monitoring point will be fitted with a bottom cap and a top cap constructed of PVC.

•	MONITORING P	OINT INST	TALLATION REC	ORD
JOB NAME				NUMBER
				ATION
				LEVATION
DATUM FOR WATER	R LEVEL MEASUREMENT			
SCREEN DIAMETER	& MATERIAL			SLOT SIZE
				IETER
CONE PENETROMET	ER CONTRACTOR		ES REPRESENTA	ATIVE
	GROUND SURFACE 7	1	NTED CAP	
	CONCRETE THREADED COUPLING —			
			LENGTH OF SOLID	
	SOLID RISER —			TOTAL DEPTH OF MONITORING POINT:
			LENGTH OF SCREEN: SCREEN SLOT	
	SCREEN —		SIZE: 0.01"	
	CAP —		LENGTH OF BACKFILI	
			BACKFILLED WITH:	- * · · · · · · · · · · · · · · · · · ·
	. (1	NOT TO SCALE)		
			FI	IGURE 3.4
	•			ORING POINT ATION RECORD
STABILIZED W BELOW DATUM	ATER LEVEL	FEET		Remediation TS AFB, Washington
BELOW DATUM		FEET	PARSON	
GROUND SURI	FACE	FEET		ver Colorado

If subsurface conditions do not permit the boreholes to remain open (i.e. the formation collapses in the hole), monitoring points will be constructed of a sacrificial drive point attached to a length of 0.5-inch-diameter stainless steel mesh that functions as the well screen, which in turn is connected to 0.375-inch Teflon[®] tubing. Holes are less likely to remain open for the installation of the deeper top-of-bedrock wells than the shallower top-of-water-table wells. To install tubing-cased monitoring points, the borehole is punched and sampled to several feet above the target depth for the monitoring point. The probe rods are withdrawn from the borehole, and the soil sampler is replaced with the well point assembly. An appropriate length of Teflon® tubing is threaded through the probe rods and attached to the well point. The assembly is lowered into the borehole and then driven down to the target depth and sampling zone. The probe rods are removed, leaving the sacrificial tip, screen assembly, and tubing behind. The soil is likely to cave in around the screen and tube assembly; where this does not occur, silica sand will be emplaced to create a sand pack around the well point, and the borehole annular space around the tubing above the sand pack will be filled with granular bentonite or grout to seal it. Monitoring point construction details will be noted on a Monitoring Point Installation Record form (Figure 3.4).

Should 0.5-inch-ID PVC shallow monitoring points not be installed, the only resulting data gap would be the lack of water level information for that particular location. The decision to install 0.5-inch-ID PVC monitoring points will be made in the field once the open-hole stability of subsurface soils and Geoprobe® equipment can be evaluated.

The field scientist will verify and record the total depth of the monitoring point, the lengths of all casing sections, and the depth to the top of all monitoring point completion materials. All lengths and depths will be measured to the nearest 0.1 foot.

3.2.2.4 Monitoring Point Completion

Monitoring points will be completed at grade with the protective cover cemented in place using concrete blended into the existing pavement. Additional specifications for completion of monitoring points along the flight-line will be provided by 92 CES/CEVR personnel. Where pavement is not present, the protective cover will be raised slightly above the ground surface, with a 2-foot-square concrete pad that will slope gently away from the cover to facilitate runoff during precipitation events. After monitoring point completion, each site will be restored as closely as possible to its original condition.

3.2.3 Monitoring Point Development and Records

The new monitoring points will be developed prior to sampling to remove fine sediments from the portion of the formation adjacent to the screen. Development will be accomplished by lowering high density polyethylene (HDPE) tubing into the well or attaching Teflon® tubing to the pump lines and removing water with a peristaltic pump until pH, temperature, specific conductivity, and water clarity (turbidity) stabilize. At a minimum, 10 casing volumes of water will be developed from the monitoring point. In the event that 10 casing volumes of water cannot be recovered as a result of low water production, the water volume recovered and the deficiency will be noted in the

development records. Monitoring point development will occur a minimum of 24 hours prior to sampling.

A development record will be maintained for each new monitoring point. The development record will be completed in the field by the field scientist. Figure 3.5 is an example of a development record used for similar well installations. Development records will include:

- Monitoring point number;
- Date and time of development;
- Development method;
- Monitoring point depth;
- Volume of water produced;
- Description of water produced;
- Post-development water level and monitoring point depth (0.5-inch ID PVC monitoring points only); and
- Field analytical measurements, including pH and specific conductivity.

Development waters will be collected in 55-gallon drums. Filled 55-gallon drums will be labeled and transported to a Base-designated holding location while disposal is being arranged. The Base will be responsible for signing required shipping and disposal manifests.

3.2.4 Monitoring Point Location and Datum Survey

The location and elevation of the monitoring points will be surveyed by a registered surveyor soon after completion. Horizontal coordinates will be measured to the nearest 0.1 foot relative to established Base coordinates. The elevation of the flush-mount casing and measurement datum (top of interior casing) will be measured to the nearest 0.01 foot relative to USGS msl data.

3.2.5 Water Level Measurements

Water levels at all site monitoring points and wells will be measured within a short time period so that the water level data are comparable. The depth to water below the measurement datum will be measured to the nearest 0.01 foot using an electric water level probe or if mobile LNAPL is present an oil-water interface probe.

3.3 GROUNDWATER SAMPLING PROCEDURES

This section describes the scope of work required for collection of groundwater quality samples. Samples will be collected from previously installed monitoring wells and newly installed monitoring points. A peristaltic pump with dedicated HDPE tubing will be used to collect groundwater samples at monitoring points and wells. In order to maintain a high degree of QC during this sampling event, the procedures described in the following sections will be followed.

Job Number: 722450.18 Location:	Job Name: Fairchild AFB, Washington By Date
Well Number	
Pre-Development Information	Time (Start):
Water Level:	Total Depth of Well:
Water Characteristics	
Odor: None \ Any Films or Immiscible N pH	Clear Cloudy Weak Moderate Strong Material Temperature(oF oC)
Interim Water Characteristics Gallons Removed	
pH	
Temperature (oF oC)	
Specific Conductance(μS/cm)	
Post-Development Information	Time (Finish):
Water Level:	Total Depth of Well:
Approximate Volume Removed:	
Water Characteristics	
Any Films or Immiscible N	Clear Cloudy Weak Moderate Strong Material Temperature(oF oC) S/cm)
Comments:	FIGURE 3.5
	MONITORING POINT DEVELOPMENT RECORD
	Intrinsic Remediation TS Fairchild AFB, Washington
	PARSONS ENGINEERING SCIENCE,

Denver, Colorado

Sampling will be conducted by qualified scientists and technicians from Parson ES and the USEPA RSKERL who are trained in the conduct of groundwater sampling, records documentation, and chain-of-custody procedures. In addition, sampling personnel will have thoroughly reviewed this work plan prior to sample acquisition and will have a copy of the work plan available onsite for reference. Groundwater sampling includes the following activities:

- Assembly and preparation of equipment and supplies;
- Inspection of the monitoring well/point integrity including:
 - Protective cover, cap, and lock,
 - External surface seal and pad,
 - Monitoring well/point stick-up, cap, and datum reference, and
 - Internal surface seal;
- Groundwater sampling, including:
 - Water level and product thickness measurements,
 - Visual inspection of sample water,
 - Monitoring well/point casing evacuation, and
 - Sample collection;
- Sample preservation and shipment, including:
 - Sample preparation,
 - Onsite measurement of physical parameters, and
 - Sample labeling;
- Completion of sampling records: and
- Sample disposition.

Detailed groundwater sampling and sample handling procedures are presented in following sections.

3.3.1 Preparation for Sampling

All equipment to be used for sampling will be assembled and properly cleaned and calibrated (if required) prior to arriving in the field. In addition, all record-keeping materials will be gathered prior to leaving the office.

3.3.1.1 Equipment Cleaning

All portions of sampling and test equipment that will contact the sample matrix will be thoroughly cleaned before each use. This includes the split-spoon soil samplers, sampling pumps, water level probe and cable, test equipment for onsite use, and other equipment or portions thereof that will contact the samples. Given the types of sample analyses to be conducted, the following cleaning protocol will be used:

- Wash with potable water and phosphate-free laboratory detergent (HP-II detergent solutions, as appropriate);
- Rinse with potable water;
- Rinse with isopropyl alcohol;
- Rinse with distilled or deionized water; and
- Air dry.

Any deviations from these procedures will be documented in the field scientist's field notebook and on the groundwater sampling record (Figure 3.6).

If precleaned disposable sampling equipment is used, the cleaning protocol specified above will not be required. Laboratory-supplied sample containers will be cleaned and sealed by the laboratory. The type of container provided and the method of container decontamination will be documented in the USEPA mobile laboratory's permanent record of the sampling event.

3.3.1.2 Equipment Calibration

As required, field analytical equipment will be calibrated according to the manufacturers' specifications prior to field use. This applies to equipment used for onsite measurements of dissolved oxygen (DO), pH, electrical conductivity, temperature, redox potential, sulfate, nitrate, ferrous iron (Fe²⁺), and other field parameters listed on Table 3.1.

3.3.2 Sampling Procedures

Special care will be taken to prevent contamination of the groundwater and extracted samples. The primary ways in which sample contamination can occur is through contact with improperly cleaned sampling equipment. To prevent such contamination, the water level probe and cable used to determine static water levels and total well/point depths will be thoroughly cleaned before and after field use and between uses at different sampling locations according to the procedures presented in Section 3.3.1.1. Dedicated tubing will be used at each well/point developed, purged, and/or sampled with the peristaltic pump. In addition to the use of properly cleaned equipment, a clean pair of new, disposable nitrile or latex gloves will be worn each time a different monitoring point or well is sampled. The following paragraphs present the procedures to be followed for groundwater sample collection from groundwater monitoring points and wells. These activities will be performed in the order presented below. Exceptions to this procedure will be noted in the field scientist's field notebook or on the groundwater sampling record.

3.3.2.1 Preparation of Location

Prior to starting the sampling procedure, the area around the monitoring points/wells will be cleared of foreign materials, such as brush, rocks, and debris. These procedures will prevent sampling equipment from inadvertently contacting debris around the monitoring point/well.

GROUNDWATER SAMPLING RECORD

	SA	AMPLING LOCATION _	
	SA	AMPLING DATE(S)	
	M	ONITORING WELL	
REASON F	OR SAMPLING: [] Regular Sampling; [] Special TIME OF SAMPLING:, 19 of of	1 Sampling	(number)
WEATHER	C. OI		•
	OR WATER DEPTH MEASUREMENT (Describe):		
211101111	ok with being in the Aboreland (Describe)		
MONITOR	ING WELL CONDITION:		
	[] LOCKED:	[] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT		
	STEEL CASING CONDITION IS:		
	INNER PVC CASING CONDITION IS:		
	WATER DEPTH MEASUREMENT DATUM (IS -		
	[] DEFICIENCIES CORRECTED BY SAMPLE (
	[] MONITORING WELL REQUIRED REPAIR (lescribe):	
Check-off			
1[]	EQUIPMENT CLEANED BEFORE USE WITH		
	Items Cleaned (List):		
	*		
2.1.2	PROPILOT PERMI		
2[]	PRODUCT DEPTH		FT. BELOW DATUM
	Measured with:		
	WATER DEPTH		ET BEI OWDATIM
	Measured with:	· · · · · · · · · · · · · · · · · · ·	P1. DELOW DATOM
		NA	
3[]	WATER-CONDITION BEFORE WELL EVACUA	TION (Describe):	
	Appearance:		
	Odor:		
	Other Comments:		
4[]	WELL EVACUATION:		
* L J			
	Volume Removed:		
	Observations: Water (slightly - very	v) cloudy	
	Water level (rose - fe		
	Other comments:		

FIGURE 3.6

GROUNDWATER SAMPLING RECORD

Intrinsic Remediation TS Fairchild AFB, Washington

Denver, Colorado

			MONITORING WELL	
SAN	IPLE EXTRACTION 1	METHOD:		
	[] Bailer ma	ade of:		
	[] Pump, ty	pe:		
	[] Other, de	scribe:		
	Sample obtain	ned is [] GRAB; []	COMPOSITE SAMPLE	-
OM	SITE MEASUREMEN			
ON-	Temp		Measured with:	
	pH:		Measured with:	
	Conductivity:		Measured with:	
	Dissolved Oxy	ygen:	Measured with:	
	Redox Potenti	al:	Measured with:	
	Salinity:		Measured with:	
	Nitrate:		Measured with:	
	Sulfate:		Measured with:	
	Ferrous Iron:		Measured with:	
	Outer:			
SAM	IPLE CONTAINERS (material, number, size):		
	SITE SAMPLE TREA			
		TMENT: Method	Containers:	
ON-	SITE SAMPLE TREA	TMENT: Method Method	Containers:Containers:	
ON-	SITE SAMPLE TREA	TMENT: Method Method	Containers:	
ON-	SITE SAMPLE TREA	TMENT: Method Method Method	Containers:Containers:	
ON- []	SITE SAMPLE TREA' Filtration:	TMENT: Method Method Method	Containers: Containers: Containers:	
ON- []	SITE SAMPLE TREA' Filtration:	TMENT: Method Method added: Method	Containers: Containers: Containers:	
ON- []	SITE SAMPLE TREA' Filtration:	TMENT: Method Method added: Method	Containers: Containers: Containers: Containers: Containers:	
ON- []	SITE SAMPLE TREA' Filtration:	TMENT: Method Method added: Method Method Method	Containers: Containers: Containers: Containers: Containers:	
ON- []	SITE SAMPLE TREA' Filtration:	Methodadded: Methodadded: MethodMethodMethodMethodMethodMethodMethodMethodMethod	Containers: Containers: Containers: Containers: Containers: Containers:	
ON- []	Filtration: Preservatives a	Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method	Containers: Containers: Containers: Containers: Containers: Containers:	
ON- []	Filtration: Preservatives:	Method	Containers: Containers: Containers: Containers: Containers: Containers:	
ON- []	Filtration: Preservatives: TTAINER HANDLING [] Contain [] Contain	Method	Containers: Containers: Containers: Containers: Containers: Containers:	
ON- [] []	Filtration: Preservatives: TTAINER HANDLING [] Contain [] Contain [] Contain	Method	Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers:	
ON- [] []	Filtration: Preservatives: TTAINER HANDLING [] Contain [] Contain [] Contain	Method	Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers:	
ON- [] []	Filtration: Preservatives: TTAINER HANDLING [] Contain [] Contain [] Contain	Method	Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers:	
ON- [] []	Filtration: Preservatives: TTAINER HANDLING [] Contain [] Contain [] Contain	Method	Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers:	
ON- [] []	Filtration: Preservatives: TTAINER HANDLING [] Contain [] Contain [] Contain	Method	Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers:	

FIGURE 3.6 (Continued)

GROUNDWATER SAMPLING RECORD

Intrinsic Remediation TS Fairchild AFB, Washington

Denver, Colorado

3.3.2.2 Water Level and Total Depth Measurements

Prior to removing water from the monitoring point/well, the static water level will be measured. An electric water level probe or oil/water interface probe will be used to measure the depth to groundwater below the datum to the nearest 0.01 foot. After measuring the static water level, the water level probe will be slowly lowered to the bottom of the monitoring point/well and the depth will be measured to the nearest 0.01 foot. If free-phase product (mobile LNAPL) is present, the total depth of the well from installation records will be used to avoid excessive contamination of the water level probe and cord. Based on these measurements, the volume of water to be purged from the monitoring point/well will be calculated. If mobile LNAPL is encountered, the thickness of the product will be measured with an oil/water interface probe.

3.3.2.3 Monitoring Point/Well Purging

The volume of water contained within the monitoring point/well casing at the time of sampling will be calculated, and at least three times the calculated volume will be removed from the well. A peristaltic pump will be used for monitoring point/well purging. All purge waters will be collected in 55-gallon drums. Filled 55-gallon drums will be labeled and transported to a Base-designated holding location while disposal is being arranged. The Base will be responsible for signing required shipping and disposal manifests.

If a monitoring point or well is evacuated to a dry state during purging, the point/well will be allowed to recharge, and the sample will be collected as soon as sufficient water is present in the monitoring point/well to obtain the necessary sample quantity. Sample compositing or sampling over a lengthy period by accumulating small volumes of water at different times to obtain a sample of sufficient volume will not be allowed.

3.3.2.4 Sample Extraction

Dedicated HDPE tubing and a peristaltic pump will be used to extract groundwater samples from monitoring points and wells. The tubing will be lowered through the casing into the water gently to prevent splashing. This step is omitted if the monitoring point is constructed of Teflon[®] tubing. The sample will be transferred directly into the appropriate sample container. The water will be carefully poured down the inner walls of the sample bottle to minimize aeration of the sample.

Unless other instructions are given by the USEPA mobile laboratory, sample containers will be completely filled so that no air space remains in the container. Excess water collected during sampling will be disposed of in the same manner as purge water.

3.3.3 Onsite Groundwater Parameter Measurement

As indicated on Table 3.1, many of the groundwater chemical parameters will be measured onsite by USEPA staff. Some of the measurements will be made with direct-reading meters, while others will be made using a HACH[®] portable colorimeter in

accordance with specific HACH[®] analytical procedures. These procedures are described in the following subsections.

All glassware or plasticware used in the analyses will have been cleaned prior to sample collection by thoroughly washing with a solution of laboratory-grade, phosphate-free detergent (e.g., Alconox®) and water, and rinsing with isopropyl alcohol and deionized water to prevent interference or cross-contamination between measurements. If concentrations of an analyte are above the range detectable by the titrimetric or colorimetric methods, the analysis will be repeated by diluting the groundwater sample with distilled water until the analyte concentration falls to a level within the range of the method. All rinseate and sample reagents accumulated during groundwater analysis will be collected in glass containers fitted with screw caps and properly disposed.

3.3.3.1 Dissolved Oxygen Measurements

DO measurements will be made using a meter with a downhole oxygen sensor or a sensor in a flow-through cell before and immediately following groundwater sample acquisition. When DO measurements are taken in monitoring points/wells that have not yet been sampled, the monitoring points/wells will be purged until DO levels stabilize.

3.3.3.2 pH, Temperature, and Specific Conductance

Because the pH, temperature, and specific conductance of a groundwater sample can change significantly within a short time following sample acquisition, these parameters will be measured in the field in unfiltered, unpreserved, "fresh" water collected by the same technique as the samples taken for laboratory analyses. The measurements will be made in a flow-through cell or a clean glass container separate from those intended for laboratory analysis, and the measured values will be recorded in the groundwater sampling record (Figure 3.6).

3.3.3.3 Alkalinity Measurements

Alkalinity in groundwater helps buffer the groundwater system against acids generated through both aerobic and anaerobic biodegradation processes. Alkalinity of the groundwater sample will be measured in the field by experienced USEPA RSKERL scientists via titrimetric analysis using USEPA-approved HACH® Method 8221 (0 to 5,000 mg/L as calcium carbonate) or a similar method. Alkalinity of the groundwater sample also will be measured at the fixed-based laboratory using USEPA method 310.1.

3.3.3.4 Nitrate- and Nitrite-Nitrogen Measurements

Nitrate-nitrogen concentrations are of interest because nitrate can act as an electron acceptor during hydrocarbon biodegradation under anaerobic soil or groundwater conditions. Nitrate-nitrogen is also a potential nitrogen source for biomass formation for hydrocarbon-degrading bacteria. Nitrite-nitrogen is an intermediate byproduct in both ammonia nitrification and in nitrate reduction in anaerobic environments.

Nitrate- and nitrite-nitrogen concentrations in groundwater will be measured in the field by experienced USEPA RSKERL scientists via colorimetric analysis using a HACH® DR/700 Portable Colorimeter. Nitrate concentrations in groundwater samples will be analyzed after preparation with HACH® Method 8039 (0 to 30.0 mg/L NO₃). Nitrite concentrations in groundwater samples will be analyzed after preparation with EPA-approved HACH® Method 8507 (0 to 0.35 mg/L NO₂) or a similar method.

3.3.3.5 Carbon Dioxide Measurements

Carbon dioxide concentrations in groundwater will be measured in the field by USEPA RSKERL scientists via titrimetric analysis using HACH[®] Method 1436-01 (0 to 250 mg/L as CO₂). Sample preparation and disposal procedures are the same as outlined at the beginning of Section 3.3.3.

3.3.3.6 Sulfate Measurements

Sulfate in groundwater is a potential electron acceptor for fuel-hydrocarbon biodegradation in anaerobic environments. A USEPA RSKERL scientist will measure sulfate concentrations via colorimetric analysis with a HACH $^{\otimes}$ DR/700 Portable Colorimeter. After appropriate sample preparation. EPA-approved HACH $^{\otimes}$ Method 8051 (0 to 70.0 mg/L SO₄) or similar will be used to prepare samples and analyze sulfate concentrations.

3.3.3.7 Total Iron, Ferrous Iron, and Ferric Iron Measurements

Iron is an important trace nutrient for bacterial growth, and different states of iron can affect the redox potential of the groundwater and act as an electron acceptor for biological metabolism under anaerobic conditions. Iron concentrations will be measured in the field via colorimetric analysis with a HACH® DR/700 Portable Colorimeter after appropriate sample preparation. HACH® Method 8008 (or similar) for total soluble iron (0 to 3.0 mg/L Fe³⁺ + Fe²⁺) and HACH® Method 8146 (or similar) for ferrous iron (0 to 3.0 mg/L Fe²⁺) will be used to prepare and quantitate the samples. Ferric iron will be quantitated by subtracting ferrous iron levels from total iron levels.

3.3.3.8 Manganese Measurements

Manganese is a potential electron acceptor under anaerobic environments. Manganese concentrations will be quantitated in the field using colorimetric analysis with a HACH® DR/700 Portable Colorimeter. USEPA-approved HACH® Method 8034 (0 to 20.0 mg/L) or similar will be used for quantitation of manganese concentrations. Sample preparation and disposal procedures are outlined earlier in Section 3.3.3.

3.3.3.9 Reduction/Oxidation Potential

The reduction/oxidation (redox) potential of groundwater is an indication of the relative tendency of a solution to accept or transfer electrons. Redox reactions in groundwater are usually biologically mediated; therefore, the redox potential of a groundwater system depends upon and influences rates of biodegradation. Redox potential can be used to provide real-time data on the location of the contaminant

plume, especially in areas undergoing anaerobic biodegradation. The redox potential of a groundwater sample taken inside the contaminant plume should be somewhat less than that taken in an upgradient location.

The redox potential of a groundwater sample can change significantly within a short time following sample acquisition and exposure to atmospheric oxygen. As a result, this parameter will be measured in the field in unfiltered, unpreserved, "fresh" water collected by the same technique as the samples taken for laboratory analyses. The measurements will be made as quickly as possible in a clean glass container separate from those intended for laboratory analysis or in a flow through cell.

3.4 SAMPLE HANDLING FOR LABORATORY ANALYSIS

This section describes the handling of samples from the time of sampling until the samples are delivered to USEPA field laboratory.

3.4.1 Sample Preservation

The USEPA mobile laboratory support personnel will add any necessary chemical preservatives prior to filling the sample containers. Samples will be prepared for transportation to the analytical laboratory by placing the samples in a cooler containing ice to maintain a shipping temperature of as close to 4 degrees centigrade (°C) as possible. Samples will be delivered promptly to USEPA field laboratory personnel, who will be responsible for shipment of appropriate samples to the RSKERL in Ada, Oklahoma for analysis.

3.4.2 Sample Container and Labels

Sample containers and appropriate container lids will be provided by the USEPA field laboratory (see Appendix A). The sample containers will be filled as described in Section 3.3.2.4, and the container lids will be tightly closed. The sample label will be firmly attached to the container side, and the following information will be legibly and indelibly written on the label:

- Facility name;
- Sample identification;
- Sample type (e.g., groundwater, soil);
- Sampling date;
- Sampling time;
- Preservatives added;
- Sample collector's initials; and
- Requested analyses.

3.4.3 Sample Shipment

After the samples are sealed and labeled, they will be packaged for transport to the onsite USEPA field laboratory. The following packaging and labeling procedures will be followed:

- Package sample so that it will not leak, spill, or vaporize from its container;
- · Cushion samples to avoid breakage; and
- Add ice to container to keep samples cool.

The packaged samples will be delivered by hand to the USEPA field laboratory. Delivery will occur as soon as possible after sample acquisition.

3.4.4 Chain-of-Custody Control

Chain-of-custody documentation for the shipment of samples from the USEPA field laboratory to the RSKERL analytical laboratory in Ada, Oklahoma, will be the responsibility of the USEPA field personnel.

3.4.5 Sampling Records

In order to provide complete documentation of the sampling event, detailed records will be maintained by the field scientist. At a minimum, these records will include the following information:

- Sample location (facility name);
- Sample identification;
- Sample location map or detailed sketch;
- Date and time of sampling;
- Sampling method;
- Field observations of
 - Sample appearance, and
 - Sample odor;
- Weather conditions;
- Water level prior to purging (groundwater samples only);
- Total monitoring well/point depth (groundwater samples only);
- Sample depth (soil samples only);
- Purge volume (groundwater samples only);
- Water level after purging (groundwater samples only);
- Monitoring well/point condition (groundwater samples only);
- Sampler's identification;

- Field measurements of pH, temperature, DO, and specific conductivity (groundwater samples only); and
- Any other relevant information.

Groundwater sampling information will be recorded on a groundwater sampling form. Figure 3.6 shows an example of the groundwater sampling record. Soil sampling information will be recorded in the field log book.

3.4.6 Laboratory Analyses

Laboratory analyses will be performed on all groundwater and soil samples as well as the QA/QC samples described in Section 5. The analytical methods for this sampling event are listed in Table 3.1. Prior to sampling, USEPA RSKERL personnel will provide a sufficient number of analyte-appropriate sample containers for the samples to be collected. All containers, preservatives, and shipping requirements will be consistent with USEPA protocol or those reported in Appendix A of this plan.

USEPA laboratory support personnel will specify the necessary QC samples and prepare appropriate QC sample bottles. For samples requiring chemical preservation, preservatives will be added to containers by the laboratory. Containers, ice chests with adequate padding, and cooling media will be provided by USEPA RSKERL laboratory personnel. Sampling personnel will fill the sample containers and return the samples to the field laboratory.

3.5 AQUIFER TESTING

Slug tests will be conducted on selected monitoring wells to estimate the hydraulic conductivity of unconsolidated deposits at the site. This information is required to accurately estimate the velocity of groundwater and contaminants in the shallow saturated zone. A slug test is a single-well hydraulic test used to determine the hydraulic conductivity of an aquifer in the immediate vicinity of the tested well. Slug tests can be used for both confined and unconfined aquifers that have a transmissivity of less than 7,000 ft²/day. Slug testing can be performed using either a rising head or a falling head test; at this site, both methods will be used in sequence.

3.5.1 Definitions

- Hydraulic Conductivity (K). A quantitative measure of the ability of porous material to transmit water; defined as the volume of water that will flow through a unit cross-sectional area of porous or fractured material per unit time under a unit hydraulic gradient.
- Transmissivity (T). A quantitative measure of the ability of an aquifer to transmit water. It is the product of the hydraulic conductivity and the saturated thickness.
- Slug Test. Two types of testing are possible: rising head and falling head tests. A slug test consists of adding a slug of water or a solid cylinder of known volume to the well to be tested or removing a known volume of water or cylinder and measuring the rate of recovery of water level inside the well. The slug of a known volume acts to raise or lower the water level in the well.

- Rising Head Test. A test used in an individual well within the saturated zone to estimate the hydraulic conductivity of the surrounding formation by lowering the water level in the well and measuring the rate of recovery of the water level. The water level may be lowered by pumping, bailing, or removing a submerged slug from the well.
- Falling Head Test. A test used in an individual well to estimate the hydraulic conductivity of the surrounding formation by raising the water level in the well by insertion of a slug or quantity of water, and then measuring the rate of drop in the water level.

3.5.2 Equipment

The following equipment will be used to conduct a slug test:

- Teflon®, PVC, or metal slugs;
- Nylon or polypropylene rope;
- Electric water level indicator;
- Pressure transducer/sensor;
- Field logbook/forms; and
- Automatic data recording instrument (such as the Hermit Environmental Data Logger*, In-Situ, Inc. Model SE1000B, or equivalent).

3.5.3 General Test Methods

Aquifer hydraulic conductivity tests (slug tests) are accomplished by either removal of a slug or quantity of water (rising head) or introduction of a slug (falling head), and then allowing the water level to stabilize while taking water level measurements at closely spaced time intervals.

Slug testing will proceed only after multiple water level measurements over time show that static water levels are in equilibrium. During the slug test, the water level change should be influenced only by the introduction (or removal) of the slug volume. Other factors, such as inadequate well development or extended pumping may lead to inaccurate results; in addition, slug tests will not be performed on wells with free product. The field scientist will determine when static equilibrium has been reached in the well. The pressure transducer, slugs, and any other downhole equipment will be decontaminated prior to and immediately after the performance of each slug test using the procedures described in Section 3.3.1.1.

3.5.4 Falling Head Test

The falling head test is the first step in the two-step slug testing procedure. The following steps describe procedures to be followed during performance of the falling head test.

- 1. Decontaminate all downhole equipment prior to initiating the test.
- 2. Open the well. Where wells are equipped with watertight caps, the well should be unsealed at least 24 hours prior to testing to allow the water level to stabilize. The protective casing will remain locked during this time to prevent vandalism.
- 3. Prepare the aquifer slug test data form (Figure 3.7) with entries for:
 - Borehole/well number.
 - Project number,
 - Project name,
 - Aquifer testing team,
 - Climatic data,
 - Ground surface elevation,
 - Top of well casing elevation,
 - Identification of measuring equipment being used,
 - Page number,
 - Static water level, and
 - Date.
- 4. Measure the static water level in the well to the nearest 0.01 foot.
- 5. Lower the decontaminated pressure transducer into the well and allow the displaced water to return to its static level. This can be determined by periodic water level measurements until the static water level in the well is within 0.01 foot of the original static water level.
- 6. Lower the decontaminated slug into the well to just above the water level in the well.
- 7. Turn on the data logger and quickly lower the slug below the water table, being careful not to disturb the pressure transducer. Follow the owner's manual for proper operation of the data logger.
- 8. Terminate data recording when the water level stabilizes in the well. The well will be considered stabilized for termination purposes when it has recovered 80 to 90 percent from the initial displacement.

AQUIFER SLUG TEST DATA SHEET

Location:	Client: AFCEE	Well No.
Job No.: 722450.18	Field Scientist	Date
Water Level	Total Well Depth	
Measuring Datum	Elevation of Datum	
Weather	Temp	
Comments		
,		

Beginning Time	Ending Time	Initial Head Reading	Ending Head Reading	Test Type (Rise/Fall)	File Name	Comments
· · · · · · · · · · · · · · · · · · ·						
,						
	·					

FIGURE 3.7

AQUIFER TEST DATA FORM

Intrinsic Remediation TS Fairchild AFB, Washington

3.5.5 Rising Head Test

After completion of the falling head test, the rising head test will be performed. The following steps describe the rising head slug test procedure.

- 1. Measure the water level in the well to the nearest 0.01 foot to ensure that it has returned to the static water level.
- 2. Initiate data recording and quickly withdraw the slug from the well. Follow the owner's manual for proper operation of the data logger.
- 3. Terminate data recording when the water level stabilizes in the well, and remove the pressure transducer from the well and decontaminate. The well will be considered stabilized for termination purposes when it has recovered 80 to 90 percent from the initial displacement.

3.5.6 Slug Test Data Analysis

Data obtained during slug testing will be analyzed using AQTESOLVTM and the method of Bouwer and Rice (1976) and Bouwer (1989) for unconfined aquifer conditions.

SECTION 4

REMEDIAL OPTION EVALUATION AND TS REPORT

Upon completion of field work, the Bioplume II numerical groundwater model will be used to determine the fate and transport of BTEX dissolved in groundwater at the site. On the basis of model predictions of contaminant concentration and distribution through time, and of potential receptors and exposure pathways, the potential for receptor to be exposed to BTEX concentrations above those intended to be protective of human health and the environment will be assessed. If it is shown that intrinsic remediation of BTEX compounds at the sites is sufficient to reduce the potential risk to human health and the environment to acceptable levels, Parsons ES will recommend implementation of the intrinsic remediation option. If intrinsic remediation is chosen, Parsons ES will prepare a site-specific, long-term monitoring plan that will specify the locations of point-of-compliance monitoring wells and sampling frequencies.

If the intrinsic remediation remedial option is deemed inappropriate for use at these sites, institutional controls such as groundwater or land use restrictions will be evaluated to determine if they will be sufficient to reduce the threat to human health and the environment to acceptable levels. If institutional controls are inappropriate, remedial options which could reduce risks to acceptable levels will be evaluated and the most appropriate remedial options will be recommended. Potential remedial options include, but are not limited to, bioslurping, groundwater pump-and-treat, enhanced biological treatment, bioventing, air sparging, and in situ reactive barrier walls. The reduction in dissolved BTEX that should result from remedial activities will be used to produce new input files for the groundwater models. The models will then be used to predict the BTEX source and plume (and risk) reduction that should result from remedial actions.

Upon completion of Bioplume II modeling and remedial option selection, a TS report detailing the results of the modeling and remedial option selection will be prepared. This report will follow the outline presented in Table 4.1 and will contain an introduction, site descriptions, identification of remediation objectives, description of remediation alternatives, an analysis of remediation alternatives, and the recommended remedial approach for each site. This report will also contain the results of the site characterization activities described herein and a description of the models developed for each site.

TABLE 4.1 EXAMPLE TS REPORT OUTLINE

INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

INTRODUCTION

Scope and Objectives Site Background

SITE CHARACTERIZATION ACTIVITIES

Sampling and Aquifer Testing Procedures

PHYSICAL CHARACTERISTICS OF THE STUDY AREA

Surface Features Regional Geology and Hydrogeology Site Geology and Hydrogeology Climatological Characteristics

NATURE AND EXTENT OF CONTAMINATION

Source Characterization

Soil Chemistry

Residual Contamination

Total Organic Carbon

Groundwater Chemistry

LNAPL Contamination

Dissolved Contamination

Groundwater Geochemistry

Expressed Assimilative Capacity

GROUNDWATER MODEL

Model Description

Conceptual Model Design and Assumptions

Initial Model Setup

Model Calibration

Sensitivity Analysis

Model Results

Conclusions

COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES

Remedial Alternative Evaluation Criteria

Long-Term Effectiveness

Implementability (Technical, Administrative)

Cost (Capital, Operating, Present Worth)

Factors Influencing Alternatives Development

Program Objectives

Contaminant Properties

Site-Specific Conditions

Brief Description of Remedial Alternatives

Intrinsic Remediation with Long-Term Monitoring

TABLE 4.1 EXAMPLE TS REPORT OUTLINE

INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

Other Alternatives
Evaluation of Alternatives
Recommended Remedial Approach

LONG-TERM MONITORING PLAN

Overview Monitoring Networks Groundwater Sampling

CONCLUSIONS AND RECOMMENDATIONS

APPENDICES: Supporting Data and Documentation
Site-Specific Bioplume II Model Input and Results

SECTION 5

QUALITY ASSURANCE/QUALITY CONTROL

Field QA/QC procedures will include collection of field duplicates and rinseate, field and trip blanks; decontamination of all equipment that contacts the sample medium before and after each use; use of analyte-appropriate containers; and chain-of-custody procedures for sample handling and tracking. All samples to be transferred to the mobile analytical laboratory for analysis will be clearly labeled to indicate sample number, location, matrix (e.g., groundwater), and analyses requested. Samples will be preserved in accordance with the analytical methods to be used, and water sample containers will be packaged in coolers with ice to maintain a temperature of as close to 4°C as possible.

All field sampling activities will be recorded in a bound, sequentially paginated field notebook in permanent ink. All sample collection entries will include the date, time, sample locations and numbers, notations of field observations, and the sampler's name and signature. Field QC samples will be collected in accordance with the program described below, and as summarized in Table 5.1.

QA/QC sampling will include collection and analysis of duplicate groundwater and soil samples, rinseate blanks, field/trip blanks, and matrix spike samples. Internal laboratory QC analyses will involve the analysis of laboratory control samples (LCSs) and laboratory method blanks (LMBs). QA/QC objectives for each of these samples, blanks, and spikes are described below.

Soil and groundwater samples collected with the Geoprobe[®] sampling tips should provide sufficient volume for some duplicate analyses. Refer to Appendix A for further details on sample volume requirements.

One rinseate sample will be collected for every 10 or fewer groundwater samples collected from existing wells. Because disposable bailers may be used for this sampling event, the rinseate sample will consist of a sample of distilled water poured into a new disposable bailer or run through a new set of pump tubing and subsequently transferred into a sample container provided by the laboratory. Rinseate samples will be analyzed for VOCs only.

A field blank will be collected for every 20 or fewer groundwater samples to assess the effects of ambient conditions in the field. The field blank will consist of a sample of distilled water poured into a laboratory-supplied sample container while sampling activities are underway. The field blank will be analyzed for VOCs.

TABLE 5.1
QA/QC SAMPLING PROGRAM
INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

d Analytical Methods	VOCs, TPH	VOCs	VOCs	amples VOCs	VOCs	Laboratory Control Charts (Method Specific)	Laboratory Control Charts (Method Specific)
Frequency to be Collected and/or Analyzed	3 Groundwater and 2 Soil Samples (10%)	2 Samples (5% of Groundwater Samples)	2 Samples (5% of Groundwater Samples)	One per shipping cooler containing VOC samples	Once per sampling event	Once per method per medium	Once per method per medium
QA/QC Sample Types	Duplicates/Replicates	Rinseate Blanks	Field Blanks	Trip Blanks	Matrix Spike Samples	Laboratory Control Sample	Laboratory Method Blanks

A trip blank will be analyzed to assess the effects of ambient conditions on sampling results during the transportation of samples. The trip blank will be prepared by the laboratory. A trip blank will be transported inside each cooler which contains samples for VOC analysis. Trip blanks will be analyzed for VOCs.

Matrix spikes will be prepared in the laboratory and used to establish matrix effects for samples analyzed for VOCs.

LCSs and LMBs will be prepared internally by the laboratory and will be analyzed each day samples from the site are analyzed. Samples will be reanalyzed in cases where the LCS or LMB are out of the control limits. Control charts for LCSs and LMBs will be developed by the laboratory and monitored for the analytical methods used.

SECTION 6

REFERENCES

- Battelle Laboratories, 1985, National Perspective on Sediment Quality. Prepared for USEPA, Criteria and Standards Division, EPA Contract No 68-01-6986.
- Battelle Denver Operations, 1989, Installation Restoration Program, IRP Phase II, Stage I Confirmation/Quantification, Fairchild AFB, Washington. Prepared for the USAF, Occupational and Environmental Health Laboratory, Brooks AFB, Texas.
- Borden, R.C., and Bedient, P.B. 1986. Transport of dissolved hydrocarbons influenced by oxygen limited biodegradation theoretical development. *Water Resources Research*, vol. 22, no. 13. p. 1973-82.
- Bouwer, H., 1989, The Bouwer and Rice slug test an update: *Ground Water*, 27(3), p. 304-309.
- Bouwer, H., and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: *Water Resources Research*, 12(3), p. 423-428.
- Bruce, L., Miller, T., and Hockman, B., 1991, Solubility versus equilibrium saturation of gasoline compounds a method to estimate fuel/water partition coefficient using solubility or K_{OC...} In, A. Stanley (editor), NWWAI/API Conference on Petroleum Hydrocarbons in Ground Water: NWT/API, p. 571-582.
- Cline, D.R., 1969, Groundwater Resources and Related Geology North-central Spokane and Southeastern Stevens Counties of Washington. State of Washington Department of Water Resource Water Supply Bulletin, No. 27.
- Cline, P.V., Delfino, J.J., and Rao, P.S.C., 1991, Partitioning of aromatic constituents into water from gasoline and other complex solvent mixtures: *Environmental Science and Technology*: v. 17, no. 4, p. 227-231.
- EA Engineering, Science, and Technology and Montgomery Watson Americas, Inc. (ES&T and MWA), 1995, Analytical Data Informal Technical Information Report: Long Term Monitoring -- April 1995 Sampling Craig Road Landfill and Priority 1 Sites SW-1, PS-2, PS-8, WW-1, FT-01, Fairchild AFB, Washington. May.

- Engineering-Science, Inc., (ES) 1993, Health and Safety Plan for the Bioplume Modeling Initiative. Prepared for the Air Force Center for Environmental Excellence, Environmental Restoration Division, USAF Contract F41624-92-D-8036.
- ES, 1994, Part I: Bioventing Pilot Test Work Plan for PS-2, PS-1A, PS-1B, Building 2034, Building 2035 and Part II: Draft Bioventing Pilot Test Interim Results Report for PS-2, PS-1A, PS-1B, Building 2034, Building 2035. June.
- Flint, R. I., 1936, Stratified Drift and Deglaciation of Eastern Washington. USGS Bulletin Vol. 47.
- Halliburton NUS (HNUS), 1993, Installation Restoration Program (IRP) Remedial Investigation Report Priority One Operable Units: LF-01 (SW-1); SD-05 (IS-1); SS-18 (PS-2); SS-28 (PS-6); SS-27 (PS-8); WP-03 (WW-1); FT-04 (FT-1), Fairchild AFB, Washington. February.
- HNUS, 1994a, Work Plan: Floating Free Product Passive Recovery Treatability Study, On-Base Priority One Operable Unit Flightline, Fairchild AFB, March.
- HNUS, 1994b, Treatability Study Letter Report 07: Floating Free Product Passive Recovery Treatability Study, On-Base Priority One Operable Unit Flightline Operable Unit, Site PS-2, Fairchild AFB. December.
- HNUS, 1995a, Treatability Study Letter Report 08: Floating Free Product Passive Recovery Treatability Study, On-Base Priority One Operable Unit Flightline Operable Unit, Site PS-2, Fairchild AFB. January.
- HNUS, 1995b, Treatability Study Letter Report 09: Floating Free Product Passive Recovery Treatability Study, On-Base Priority One Operable Unit Flightline Operable Unit, Site PS-2, Fairchild AFB. January.
- Hvorslev, M. J., 1951, *Time Lag and Soil Permeability in Ground-Water Observations:* United States Corps of Engineers Waterways Experiment Station Bulletin 36, Vicksburg, Mississippi. 50p.
- ICF Technology, Inc. (ICF), 1995, Long Term Monitoring Report for Priority 1 Sites SW-1 (LF-01), PS-2 (SS-18), and PS-8 (SS-26) at Fairchild AFB, Washington. June.
- JRB Associates, 1985, Installation Restoration Program IRP Phase I Records Search, 92nd Bombardment Wing (Heavy) Fairchild AFB, Washington. Prepared for the USAF, Occupational and Environmental Health Laboratory, Brooks AFB, Texas.
- Konikow, L. F., and Bredehoeft, J. D., 1978, Computer model of two-dimensional solute transport and dispersion in ground water: United States Geological Survey, Techniques of Water Resources Investigations of the United States Geological Survey, Book 7, Chapter C2.
- Lee, M.D. 1988. Biorestoration of aquifers contaminated with organic compounds. CRC Critical Reviews in Environmental Control, v. 18. p. 29-89.

- Rifai, H.S., Bedient, P.B., Wilson, J.T., Miller, K.M., and Armstrong, J.M. 1988. Biodegradation modeling at aviation fuel spill site," *Journal of Environmental Engineering*, v. 114, no. 5, p. 1007-1029.
- Science Applications International Corporation (SAIC), 1990, Site Characterization Summary Priority One Sites. December.
- Theis, C. V., 1935, The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage. Trans. Amer. Geophys. Union, Vol. 16.
- US Geological Survey (USGS), 1973a, 7.5 Minute Quadrangle Map of the Four Lakes Quadrangle, Washington.
- USGS, 1973b, 7.5 Minute Quadrangle Map of the Medical Lake Quadrangle, Washington.
- USGS, 1986a, 7.5 Minute Quadrangle Map of the Airway Heights Quadrangle, Washington.
- USGS, 1986b, 7.5 Minute Quadrangle Map of the Deep Creek Quadrangle, Washington.
- van Genuchten, M. T., and Alves, W. J., 1982, Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation: US Department of Agriculture, Technical Bulletin Number 1661, 151p.
- Wexler, 1992, Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow: *United States Geological Survey, Techniques of Water-Resources Investigations of the United States Geological Survey, Book 3*, Chapter B7, 190p.
- Wiedemeier, Todd H., Downey, Douglas C., Wilson, John T., Kampbell, Donald H.,
 Miller, Ross N., and Hansen, Jerry E., 1995, Draft Technical Protocol for Implementing the Intrinsic Remediation (Natural Attenuation) with Long-term Monitoring Option for Dissolved-phase Fuel Contamination in Ground Water.
 Prepared by the Air Force Center for Environmental Excellence.

APPENDIX A

CONTAINERS, PRESERVATIVES, PACKAGING, AND SHIPPING REQUIREMENTS FOR GROUNDWATER SAMPLES

APPENDIX A

Field or Fixed-Base Laboratory	Fixed-base	Field	Fixed-base	Fixed-base
Sample Volume, Sample Container, Sample Preservation	- To	Collect 100 g of soil in a glass container	Collect 100 g of soil in a glass container with Teflon-lined cap; cool to 4°C	Collect 100 g of soil in a glass container with Teflon-lined cap; cool to 4°C
Recommended Frequency of Analysis	Each sampling round	At the beginning of the project	Each sampling round	Each sampling round
Data Use	Data is used to determine the extent of chlorinated solvent and aromatic hydrocarbon contamination, contaminant mass present, and the need for source removal	An indicator of the presence of soil microbes, which are necessary for bioremediation to occur	Data is used to determine the extent of soil contamination, the contaminant mass present, and the need for source removal	Data are used to determine the extent of soil contamination, the contaminant mass present, and the need for source removal
Comments	Handbook method	Reduction of added triphenyltetrazolium chloride by soil microbes is measured colorimetrically; analyze immediately	Handbook method modified for field extraction of soil using methanol	Handbook method; reference is the California LUFT manual
Method/Reference	Gas chromatography/ mass spectrometry method SW8240.	Colorimetric RSKSOP-100	Purge and trap gas chromatography (GC) method SW8020	GC method SW8015 [modified]
Analysis	Volatile organics	Dehydrogenase enzyme activity (optional)	Aromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylene [BTEX]; trimethylbenzene isomers)	Total hydrocarbons, volatile and extractable
Matrix	Soil	Soil	Soil	Soil

					Kecommenaea	Sample volume,	riela or
					Frequency of	Sample Container,	Fixed-Base
Matrix	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
	Total organic	SW9060 modified for	Procedure must be	Relatively high amounts of	At initial	Collect 100 g of soil in	Fixed-base
	carbon (TOC)	soil samples	accurate over the	IOC may be indicative of a	sampling	a glass container with	
			range of 0.5-	reducing environment and		leflon-lined cap; cool	
			15 percent 10C	may indicate the need for		to 4°C	
				analysis of electron			
				acceptors associated with			
				that environment; the rate			
•				of migration of petroleum			
				contaminants in			
				groundwater is dependent			
				upon the amount of TOC in			
				the saturated zone soil; the			
				rate of release of petroleum			
-				contaminants from the			
				source into proundwater is			
				denendent (in nart) on the			
***				amount of TOC in the			
				vadose zone soil			
Soil	Moisture	ASTM D-2216	Handbook method	correct soil	Each soil	Use a portion of soil	Fixed-base
	and the Problems of Suffedbooks				sampling round	sample collected for	
				moisture content)	another analysis	
				(e.g., report results on a dry		×	
				weight basis)			
	Grain size	ASTM D422	Procedure provides	Data are used to infer	One time during	Collect 250 g of soil in	Fixed-base
	distribution		a distribution of	hydraulic conductivity of	life of project	a glass or plastic	
			grain size by sieving	aquifer, and are used in		container; preservation	
				calculating sorption of		is unnecessary	
				contaminants			
Soil gas	Carbon dioxide	Nondispersive infrared	Soil gas carbon	Data used to understand the	Each sampling	N/A	Field
	content of soil	instrument operating	dioxide may be	carbon dioxide	round		
	gas	over the range of	produced by the	concentration gradient with			
)	approximately 0.1-	degradation of	depth and to infer the			
		15 percent	petroleum	biological degradation of			
			hydrocarbons	netroleum contaminants			

					Recommended	Sample Volume,	Field or
		Mash od /D of connect	om monte	Doto Has	Frequency of	Sample Container,	Fixed-Base
Alialysis	2	Flottochomisel enice	The contraction	Date and model to an desired	Foot compliant	Sample Preservation	Laboratory
Ē,	Oxygen content	Electrochemical oxygen	The concentration is	Data are used to understand	racii sampiing	N/A	ricia
ण ५०गा धुक्र		the range of 0-	often related to the	eradient with depth and to	וממוות		
	·	25 percent of oxygen in	amount of	determine the presence or			
		the soil gas sample	biological activity,	absence of aerobic			
		1	such as the	degradation processes			
			degradation of				
			petroleum				
			hydrocarbons; soil				
			gas oxygen				
			concentrations may				
			decrease to the point				
			where anaerobic				
			pathways dominate				
2	Methane content	Total combustible	Methane is a	Soil gas methane can be	Each sampling	N/A	Field
of soil gas		hydrocarbon meter	product of the	used to locate contaminated	round		
		using a platinum	anaerobic	soil and to determine the			
		catalyst with a carbon	degradation of	presence of anaerobic			
		trap, and operating in	petroleum	processes; see discussion of			
		the low parts per	hydrocarbons	data use for methane in			
		million volume (ppmv)		water			
		range					
roce	Fuel hydrocarbon	Total combustible	Soil gas	Data used to understand the	Each sampling	N/A	Field
onten	vapor content of	hydrocarbon meter	hydrocarbons	petroleum hydrocarbon	round		
		operating over a wide	indicate the	concentration gradient with			
		ppmv range	presence of these	depth and to locate the most			
)	contaminants in the	heavily contaminated soils			
			soil column	•			
Ferrous (Fe ⁺²)	+2)	Colorimetric	Field only	May indicate an anaerobic	Each sampling	Collect 100 ml of water	Field
		A3500-Fe D	,	degradation process due to	. punu	in a plass container:	
				denletion of oxygen	1	acidify with	
				nitrate and manages		hudrochloric coid nor	
				marc, and manganese		nymochionic acid pel	
				Illian, and illusburge			method

					Recommended	Sample Volume,	Field or
					Frequency of	Sample Container,	Fixed-Base
	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
Fe	Ferrous (Fe ⁺²)	Colorimetric	Alternate method;	Same as above	Each sampling	Collect 100 ml of water	Field
	,	HACH Method # 8146	field only		round	in a glass container	
Ţ	Total Iron	Colorimetric	Field only		Each sampling	Collect 100mL of water	Field
		HACH Method # 8008			round	in a glass container	
ž	Manganese	Colorimetric	Field only		Each sampling	Collect 100 mL of	Field
)	HACH Method # 8034	•		round	water in a glass	
						container	
<u>੯</u>	Chloride	Mercuric nitrate	Ton chromatography	General water quality	Each sampling	Collect 250 ml. of	Field
3	}		(IC) method F300	narameter used as a marker	Lound	water in a place	
		titration A4500-CI ⁻ C	Section (31)	manusis and manusi		water in a grass	
			or method SW9050	to verify that site samples		container	
			may also be used	are obtained from the same			
				groundwater system			
<u>ځ</u>	Chloride	HACH Chloride test kit	Silver nitrate	Same as above	Each sampling	Collect 100mL of water	Field
<u></u>	201101	TI 9 D	41441		S		
		model 8-P	titration		ronna	in a glass container	
ố	Oxygen	Dissolved oxygen meter	Refer to	The oxygen concentration	Each sampling	Collect 300 mL of	Field
			method A4500	is a data input to the	round	water in biochemical	
			for a comparable	Bioplume model;		oxygen demand bottles;	
			laboratory	concentrations less than		analyze immediately:	
i y			out passage	1 mg/L generally indicate		alternately measure	
			pioceduic	Lingle generally indicate		ancinacity, measure	
質 () ·				an anaerobic pathway		dissolved oxygen in situ	
ర	Conductivity	E120.1/SW9050, direct	Protocols/Handbook	General water quality	Each sampling	Collect 100-250 mL of	Field
		reading meter	methods	parameter used as a marker	round	water in a glass or	
				to verify that site samples		plastic container	
				are obtained from the same			
				groundwater system			
Water Al	Alkalinity	HACH Alkalinity test	Phenolphthalein	General water quality	Each sampling	Collect 100mL of water	Field
		kit model AI AP MG-I	method	narameter used (1) as a		in plass container	
				marker to verify that all site		0	
				committee one obtained from			
				samples are cotallied from			
				the same groundwater			
				system and (2) to measure			
				the buffering capacity of			
90. 90.				groundwater			

					Recommended Frequency of	Sample Volume, Sample Container,	Field or Fixed-Base
Analysis Method/Reference Comments Data Use	ce Comments		Data Use		Analysis	Sample Preservation	Laboratory
Alkalinity A2320, titrimetric; Handbook method Same as above E310.2, colorimetric	ic Handbook method		Same as above		Each sampling round	Collect 250 mL of water in a glass or plastic container; analyze within 6 hours	Field
Nitrate (NO ₃ -1) IC method E300 or Method E300 is a Substrate for microbial method SW9056; Handbook method, respiration if oxygen is colorimetric, method SW9056 is depleted	Method E300 is a Handbook method; method SW9056 is		Substrate for microb respiration if oxyger depleted	ial 1 is	Each sampling round	Collect up to 40 mL of water in a glass or plastic container; cool	Fixed-base
method E353.2 an equivalent procedure Nitrate ONO -1, HACH method # 8039 Colonimetric Same as above	an equivalent procedure # 8039 Colorimetric	ent ic	Same as above		Each sampling	to 4°C; analyze within 48 hours Collect 100mL of water	Field
for high range method # 8192 for low range	h range 1# 8192 for low				round	in a glass container	
HACH method #8040 Colorimetric	method #8040 Colorimetric		Substrate for mirespiration if oxydepleted	crobial ygen is	Each sampling round	Collect 100mL of water in a glass container	Field
Sulfate (SO ₄ -²) IC method E300 or Method E300 is a Substrate for anaerobic method SW9056 Handbook method; microbial respiration method SW9056 is an equivalent	Method E300 is a Handbook method; method SW9056 is an equivalent	+ · · · · ·	Substrate for ar microbial respi	naerobic ration	Each sampling round	Collect up to 40 mL of water in a glass or plastic container; cool to 4°C	Fixed-base
Sulfate (SO ₄ -2) HACH method # 8051 Colorimetric Same as above	procedure Colorimetric		Same as above		Each sampling round	Collect up to 40 mL of water in a glass or plastic container, cool to 4°C	Field
Dissolved sulfide HACH method # 8131 Colorimetric Product of sulfate-based (S-2) (S-2) respiration; analyze in conjunction with sulfate analysis	1 Colorimetric		Product of sulfi- anaerobic micro respiration; ana conjunction wit analysis	tte-based obial lyze in h sulfate	Each sampling round	Collect 100 mL of water in a glass container; analyze immediately	Field

Field or	Fixed-Base	Laboratory		Field
Sample Volume,		Sample Preservation		Collect 100 mL of water in a glass container
Recommended	Frequency of	Analysis		Each sampling round
		Data Use	Ethane and ethene are products of the biotransformation of chlorinated hydrocarbons under anaerobic conditions. The presence of these chemicals may indicate that anaerobic degradation is occurring	The presence of free carbon dioxide dissolved in groundwater is unlikely because of the carbonate buffering system of water, but if detected, the carbon dioxide concentrations should be compared with background to determine whether they are elevated; elevated concentrations of carbon dioxide could indicate an aerobic mechanism for bacterial degradation of petroleum
		Comments	Ethane and ethene are analyzed in addition to the other analytes only if chlorinated hydrocarbons are contaminants suspected of undergoing biological transformation	Titrimetric; alternate method
		Method/Reference	RSKSOP-114 (cont'd)	HACH test kit model CA-23 or CHEMetrics Method 4500
		Analysis	Ethane, ethene	Carbon dioxide
		Matrix	Water	Water

Matrix	Analysis	Method/Reference	Comments	Data Use	Recommended Frequency of Analysis	Sample Volume, Sample Container, Sample Preservation	Field or Fixed-Base Laboratory
Water	Aromatic hydrocarbons (BTEX, trimethylbenzene isomers)	Purge and trap GC method SW8020	Handbook method; analysis may be extended to higher molecular weight alkyl benzenes	Method of analysis for BTEX, which is the primary target analyte for monitoring natural attenuation; BTEX concentrations must also be measured for regulatory compliance; method can be extended to higher molecular weight alkyl benzenes, trimethylbenzenes are used to monitor plume dilution if degradation is primarily anaerobic	Each sampling round	Collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2	Fixed-base
Water	Total hydrocarbons, volatile and extractable	GC method SW8015 [modified]	Handbook method; reference is the California LUFT manual	Data used to monitor the reduction in concentrations of total fuel hydrocarbons (in addition to BTEX) due to natural attenuation; data also used to infer presence of an emulsion or surface layer of petroleum in water sample, as a result of sampling	One time per year or as required by regulations	Volatile hydrocarbons-collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2 Extractable hydrocarbons-collect 1 L of water in a glass container; cool to 4°C; add hydrochloric acid to pH 2	Fixed-base
Water	Polycyclic aromatic hydrocarbons (PAHs) (optional)	GC/mass spectroscopy method SW8270; high-performance liquid chromatography method SW8310	Analysis needed only for several samples per site	PAHs are components of fuel and are typically analyzed for regulatory compliance, data on their concentrations are not used currently in the evaluation of natural attenuation	At initial sampling and at site closure or as required by regulations	Collect 1 L of water in a glass container, cool to 4°C	Fixed-base

Matrix	Analysis	Method/Reference	Comments	Data Use	Recommended Frequency of Analysis	Sample Volume, Sample Container, Sample Preservation	Field or Fixed-Base Laboratory
Water	Total fuel carbon (optional)	Purge and trap GC method SW8020 modified to measure all volatile aromatic hydrocarbons present in the sample	A substitute method for measuring total volatile hydrocarbons; reports amount of fuel as carbon present in the sample; method available from the U.S. EPA Robert S. Kert Laboratory	Data used to monitor the reduction in concentrations of total fuel hydrocarbons (in addition to BTEX) due to natural attenuation	At initial sampling and at site closure	Collect 40 mL of water in glass vials with Teffon-lined caps; add sulfuric acid to pH 2; cool to 4°C	Fixed-base
Water	Volatile Organics	GS/MS method SW8240	Handbook method	Method of analysis for chlorinated solvents and aromatic hydrocarbons for evaluation of cometabolic degradation; measured for regulatory compliance when chlorinated solvents are known site contaminants	Each sampling round	Collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2	Fixed-base
Water	Dissolved organic carbon (DOC) (optional)	A3310 C	An oxidation procedure whereby carbon dioxide formed from DOC is measured by an infrared spectrometer. The minimum detectable amount of DOC is 0.05 mg/L	An indirect index of microbial activity	Each sampling round	Collect 100 mL of water in an amber glass container with Teflonlined cap; preserve with sulfuric acid to pH less than 2; cool to 4°C	Fixed-base
Water	Н	E150.1/SW9040, direct reading meter	Protocols/Handbook methods	Aerobic and anaerobic processes are pH-sensitive	Each sampling round	Collect 100–250 mL of water in a glass or plastic container; analyze immediately	Field

Comments
Field only Well development
Measurements The redox potential of
are made with groundwater influences and
electrodes; results is influenced by the nature
are displayed on a of the biologically mediated
meter; samples degradation of
should be protected contaminants; the redox
from exposure to potential of groundwater
atmospheric oxygen may range from more
than 200 mV to less
than -400 mV

NOTES:

- "HACH" refers to the HACH Company catalog, 1990.
- "A" refers to Standard Methods for the Examination of Water and Wastewater, 18th edition, 1992.
- "E" refers to Methods for Chemical Analysis of Water and Wastes, U.S. Environmental Protection Agency, March 1979.
- "Protocols" refers to the AFCEE Environmental Chemistry Function Installation Restoration Program Analytical Protocols, 11 June 1992.
- "Handbook" refers to the AFCEE Handbook to Support the Installation Restoration Program (IRP) Remedial Investigations and Feasibility Studies (RI/FS), September 1993.
- "SW" refers to the Test Methods for Evaluating Solid Waste, Physical, and Chemical Methods, SW-846, U.S. Environmental Protection Agency, 3rd edition, 1986. ø.
- 7. "ASTM" refers to the American Society for Testing and Materials, current edition.
- "RSKSOP" refers to Robert S. Kerr (Environmental Protection Agency Laboratory) Standard Operating Procedure.
- "LUFT" refers to the state of California Leaking Underground Fuel Tank Field Manual, 1988 edition.
- International Journal of Environmental Analytical Chemistry, Volume 36, pp. 249-257, "Dissolved Oxygen and Methane in Water by a Gas Chromatography Headspace Equilibration Technique," by D. H. Kampbell, J. T. Wilson, and S. A. Vandegrift.

APPENDIX B

ADDITIONAL SITE DATA

APPENDIX B - 1a

BOREHOLE LOGS & WELL COMPLETION DETAILS

page 1 of 1

Project FAFB Location FS2 - NWS5 Geologic Log by Jemes Moore Driller Lynn Barkoloman Weather Clear & mill Pene. Gircy Blow A HNU Cts Genmi Intel Cts Genm						T		11.15	STAR	FINISH
Geologic Log by James Moore Driller Lynn Barkoloman Geophysics by Jone Weather Lear & mill Depth Rater lation Recovery Recovery Recovery Do 3 - Asplicat - All reference lation Recovery Do 3 - Asplicat - All reference lation Recovery Do 3 - Asplicat - All reference lation Recovery Do 3 - Asplicat - All reference lation Recovery Do 3 - Asplicat - All reference lation Recovery Do 3 - Asplicat - All reference lation Recovery R	Projec	1 <u>r4 r</u>	2 1/1	سے سی در		-	Total Depti	h 10.63	l	
Driller Lynn Barkoloman Geophysics by None Weather Clean & mill Pane. Gircy Blow D. HNU Cts (9km) None	Location 152 - 140033						Borehole C)ia 8	1	
Geophysics by None Weather Clear & mill Pane. Gircy Rate/ lation (OVA) Bate/ lation (DVA) Cts (ORM) Inte O O S Bitts) Finger bit Fluid — Geologic and Hydrologic Description Recovery # Core Recovery # Core Recovery # Core Recovery O-3 - Askult - fill reduced summing 30-7.5 - Organic rich Sith **Tery fine grand, well sorted O-3 - St. Sithy sand, fine O-1 - Sithy sand, fine O-2 - Sithy sand, fine O-3 - Sithy sand, or or or or or or or or or or or or or						_	Depth to F	luid 8.6 863	-	
Weather Lear & mill Pene. Gircy Rate/ lation OVA Rate/ lation OVA Cts (gkm) Interval O	Driller	Lynn	Bart	oloma	W_	_				
Pene. Rate/ latin OVA HNU Cts / General Rate/ latin OVA HNU Cts / General Rate/ latin OVA HNU Cts / General Rate/ latin OVA HNU Cts / General Rate/ latin OVA HNU Cts / General Rate Recovery Rate/ General Rate Recovery Rate/ General Rate Recovery Rate Recovery Rate Rate Rate Rate Rate Rate Rate Rate							Bit(s) fin	ser bit	ground we	ell_
Depth Blow Hall Depth Blow Hall Hall Hall Blow Grant Hall Market Junior Recovery O-2 - Asplat - fill referred Junior Recovery 30-35 - Asplat - fill referred Junior Recovery 30-35 - Organic rich Sitt Pery fine granted well sorted \$18,71,8	Weath	ner <u>/</u>	ear &	mill			Fluid		completion	ч
Blow Cis Agam hile " later val Symbol Cis Agamether of the symbol Cis Agamether of the		Rate/		OVA	Sar	nple		Geologic and Hydrologic	Description	
03"- 18 plate - till natural summy 30-35 - Organic rich 5ith 3' 18.77.8 5 3.45 Very fine granich well sorted \$12.51 blank 5! thoist (02) 35-415 5! lty sand, fine gr. Sand well sorted sub againer, gtz sand, and chase not slottle 5! maist 5' 1/1 Sk gramy (5m) 95% 8-7.77 2.5 8-9.5 8-9.5 - 5ith stand - pedanically 5!h - well sorted w/ miner 1-100 gr. Sand wat mica, very 10058 - increasing maishire contact - proposic vich 57 2.51; black (5m) 100% 13 5/0245 2.00 13-185 13-18.75 clay very plastic moist 504; 564/2 gray ish great(c) 15.75-14.25 - Sand w/ pures 5!h well sorted mad-course gr. 5sh well sorted mad-course gr. 5sh well sorted mad-course gr. 5sh well sorted mad-course gr. 5sh well sorted mad-course gr. 5sh well sorted mad-course gr. 5sh well sorted mad-course gr. 5sh well sorted sorted mad-course gr. 5sh well sorted mad-course gr.		Blow	1 / 1		#	i				1 1
3 Birs 5 3.45 3 Birs 5 3.45 18 18 18 18 18 18 18 18 18 18 18 18 18 1								0-3 - Asphalt - fill not	erial survey	
5/25/ bink 5/ Moist (02) 3.5-41.5 Silty send, fine ar. Sand well sorted so mist angular, alt 2 and ned chase not slostic sl. maist 5/4/ Jk grang (sm) 75% 8 7.7.7 2.5 8-9.5 8 -9.5' - Silty stand - predaminally Silt - well sorted wy miner Fine gr. Sand. and mica, very loose - increasing maistare context - granic rich 5/2 2.5/ black (sm) 60% 13 (1026) 2.0 13-185 13-18.75 clay very plastic moist, sold, 56 4/2 gray ish great(ct) 13.75-14.25 - Sand who mo silt well sorted med-coarse gr. sub angular predaminating yte bisher increasing dise Green (SP) 80% Very had								3.0-3.5 - Organic ric	4 5iH	
3.5-4.5 Silty sand, fine gr. sand well sorted sub compiler, glz sand ned duse not slastic, sl. moist SYY, Ik group (sm) 95% 8 7,7,7 2.5 8-9.5 8-9.5 - Silty stand - predominally Silt - well sorted wy thiner Fine gr. sand and mica, very loose - increasing maisture catent - organic rich SY 2.51, black (sm) bogo 13 (1026) 2:00 13-115 15-13.75 clay very plastic moist soft, 56 4/2 goog ish greated 13 15-14.25 - Sand up from 11 10 15 15-14.25 - Sand up from 11 15 15-14.25 - Sand up from 11 15 15 14 15 Sorted mode course gr. 12 15 wood sorted mode course gr. 13 16 16 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	3	18,7,B		5		3 - 4,5	_			
agr. Sand well sorted sub angular, at 2 sand and druge not slastic st. majet 57 Yt Jk grang (sm) 95% 8 7,7,7 2.5 8,9,5 Sit well sorted w/ minor 10080 increasing majetre carted - organic vich 57 2.51, black (sm) 100% 13 6,0% 13 13.75 clay very plastic majet, sold, 56 t/sa granjsh green(CL) 13.75-14.25 - Sand and rouse gr. sub angular, predominately ytz bisalt siniar very druge Saturated 56 y y/ Jk grangish Green (SP) 16.6 7.0 6 16.6 8it prich and basult? 0% Very field							57			
acquer, ste sand not direct struct st	-						-			
duse not slastic st. maist SYYL Sk grang (M) 95% 8 7,7,7 2.5 8-9.5 8-9.5 - Sith stand - predaminally Sith - well sorted by thiner Line gr. stand and mica, very loose increasing mistare catend - organic vish Sy 2.5/L black (Im) 100% 13-15.75 clay very plastic moist, sold, 56 4/2 green ish green (CL) 13.75-14.25 - Sand by funcer silt well sorted mod-conse gr. sub angular, predaminately gla besalt taken vany duse Saturated Sty y/L Jk grayth Green (SP) 16.6 2.0 16 Way had										
8 7,77 2.5 8-9.5 8-9.5' - Silty thront - predominally Sity - well sorted w/ thin ex Fine gr. 5 and ond mich, very loose - increasing moishire content - organic vich SY 2.51, black (5m) 100% 13 6,024' 2:0 13-15:75 clay very plastic moist, soft, 56 4/2 grayish green(ct) 13.75-14.25 - Sand w/ prince silt well sorted med-conse gr. sub angular, predominately gita bisalt finice. vary dasse Saturated 56-44/1 Jk grayish Green (5 P) 16.6 2:0 16 Very field Very field										
Sitt - well sorted by miner Timp gr. 5 and and mice, very loose - increasing meishre content - promise vich Sy 2.51, black (5m) 100% 13-18.75 clay very plastic moist, soft, 56 4/2 gray ish green(CL) 13.75-14.25 - Sad by funer silt well sorted, med-course gr. sub angular, predominately gitz bosalt i, nice - very dase Saturated 56 y y/, It grayish Green (SP) 16.6 2.0 K Very but	<u></u>						_		7.	95%
Fine gr. 5md. and mica, very loose - increasing moishre content - organic vich Sy 2.51, black (sm) 100% 13 6/026; 2:0 13-185 13-18.75 clay very plastic moist, soft, 56 4/2 grayish green(CL) 13.75-14.25 - Sad in fine silt well sorted, mad-course gr. sub angular, predminitally ytz bisalt finice very dasse Saturated SGY 4/1 JL grayish Green (SP) 16.6 2:0 6 16.6 8it vertical basult? 04, Very had	-8 -	7,7,7		2.5		8-9.5		7		
10050 - increasing moisture content - organic vich SY 2.51, 6/ack (5m) 100% 13 6/056 200 13-155 13-15.75 clay very plastic moist 504/2 googish grow(CL) 13.75-14.25 - Sad in Inno silt woll sorted mod-conse gr. sub angular, predominately yte basalt i price. vary danse Saturated 56441, Jk gouych Green (5P) 16.6 2.0 16 Very had							_			
Content - piganic vich Sy 2.51, black (5m) 100 % 13 610 % 5 2.0 13-165 13-18.75 c/ay very plastic Moist, solt, 56 4/2 gray ish gran(CL) 13.75-14.25 - Sand uf musor silt woll sorted mad-course gr. sub angular, predominately gite basalt i nice. very dasse Saturated 56 y y/, Jk grayth Green (5P) 16.6 2.0 & 16.6 8 80 % Very field							7	1 . <i>U</i>	, ,	
57 2.5/1 black (5m) 10% 13 6,1026; 2:0 13-15.5 13-13.75 clay very plastic 10:5t, 505t, 564/2 gray ish gran(CL) 13.75-14.25 - Sod uf minor 5:1t well sorted, mad-course gr. 50 soly finice. very dase 50 saturated 56+4/1, Jk grayish Green (5P) 16.6 2.0 16 10.6 16 16 17 vertical basult? 046 Very had										
Moist, Solt, 56 4/2 groy ish green(CL) 13.75-14.25 - Sand in formor Sift woll sorted mod-course gr. Sub angular, predominately ytz basalt inica. very danse Saturated 564 yl/ Jk groupsh Green (SP) 16.6 2.0 & He Vertugal basalt? 0% Very find	L]	57 2.5/1 6/ack (5	m)	100 %
13.75-14.25 - Sand w/ parisor silt woll sorted mad-course gr. sub angular, predominately yta besolt sinica very danse Saturated 54 y // Jk graysh Green (SA) 16.6 7.0 6 16.6 10.	13	C, 10 245°		2,0		13-14.	<u> </u>			
silt well sorted med-course gr. sub omgeter, predominately gtz besalt inica. very dense Saturated 564 y/, Jk genyish Green (SP) 16.6 2.0 16.6	-						-	40ist SN4, 564/2	grey ish	cec(CL)
sub angular, prodominately gift besalt i, nice - very dense Saturated 56-4 4/1 Jk grayish Green (SP) 16.6 2.0 E 16.6 Very had	/									
besalt s, aica. very dense Saturated 564 y/, Jk grayish Green (5P) 16.6 2.0 16.6 16.										
Green (SA) 16.6 2.0 16.6 1]	basalt sinica. very d	-se	
16.6 2.0 16 16.6 18it vertugal basult? 046 Very had							-	saturated 5644/1	Jkgocy84	
Vey had	101						-		. // ?	
	16.6			7.0		16	-	16.6 Bit vetusal ba	Selt.	0%
Source: SAIC, 1990				· .			-	or hice		
Source: SAIC, 1990							-			
Source: SAIC, 1990]			
Source: SAIC, 1990							_			
Source: SAIC, 1990	\vdash \dashv	•					4			
Source: SAIC, 1990							-	0 0		
							┪	Source: SAIC,	1990	
							┦			

	Well Construction Sur	mmary	
0.25	Location: <u>PS2-MWS5</u> Personnel: <u>J. Mouro</u>	Elevation: Ground Level Top of Casing	
	DRILLING SUMMARY:	CONSTRUCTION TI	
2	Total Depth <u>16.6</u> Borehole Diameter <u>8"</u>	-	Start Finish
	Driller Mike (Borthstonen Bros)	Drilling: "	ate Time Date Time
4	Rig Canterra 150 Bit(s) tinger bit > hollowsking	Geophys. Log-	
5.0	Surface Casing below and completen	1	30 0900 10/30 0407
6.35	WELL DESIGN: Basis: Geologic Log Geophysical Log	Filter Placement 10/1 Cementing: 10/1 Bentonite Seat 10/1	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Casing String(s): C=Casing S=Screen -0.25 - 6.35 C1	Other:	
10			
	Casing: C1 2" PUC SCH 40	Movit Uncle	¿ flush completion
/4	Screen: S1 2" skinless item/ 82 0.020" 5/0+		
	Centralizers <u>FONC</u>	Key:	
u Company	Filter Material 10-20 Columbo Silica Sand	Bentonite	Sand
16.65	bertonite pellets	Cement/Grout Sand Pack	Silt Clay
1 1 12	Other Type I/II Poltland	Drill Cuttings	Screen
		Gravel	

START FINISH

Log of Borehole

Project FAFB Total Depth 13.0	
Project <u>FAFB</u> Location <u>PS-2 - MWS6</u> Borehole Dia 8 Date 10/30	88 <u>10/30</u>
	1243
Driller Nike (B. Bix) Rig Cantern 150 How Left	
	- Alston
1 1	-
Weather Clew Fluid	
Pene. Circu/ PAN Sample Geologic and Hydrologic Description Death Rate/ lation OVA/	
Deptit Blow A HNU # Inter- Lith.	% Core
O Cts (gp/p) holy val Symbol	Recovery
0-,5 As Dialt	3
15-3.0 Silly said m/growel (Fill: 3.0-3.5 Organic rich 5./t	1
8,13,10 1,2 3.0-3.5 Organic vich 5./t	
nice sy 2.5% block (of	
3.5-4.5-5:/4y sand -ned-	
Coasse gr. sub angular, gtz,	
med.danse - V. sl. moist	40.0
15,18,10 7.0 8.0-18.5 gravel sand clay	100%
15,18,10 7.0 B.D-8.5 gravel sand clay	
w/ gtr, nice basult, - poorly	
Sorted, Sl. moist 5%	
plastic 564 4/1 dk greening	4
gray (GC)	<u> </u>
A.S-9.0 - Grovel sand mix	- 0.
w/ large - 2" clasts of basals (vesicular) - sound: V.c course	10%
Subangler, gtz plag minor	
I have covide & K-same college	!
w/ Ital 13-14 Gravel sand mix -> sloft Saturated w/ H2O - very course grained, subangular sond - qtz plag k-spar hasalt, mica, noll sortal (GW)	
13-14 Gravel sand mix -> 5/6ff	?
Saturated w/H2O - very	
course grand suborque	
some - GTZ plag R-spw hosalt	+
mica, well sorte (6-W)	1
4	
	

.1		Well Construction Sun	nmary
,. 0		Den Musi	levation: Ground Level
		Personnel: J. Moare	Top of Casing
		DRILLING SUMMARY:	CONSTRUCTION TIME LOG:
		Total Depth 13.0	Start Finish
		Borehole Diameter 8"	Task Date Time Date Time
		Driller Mike (Bothelman)	Drilling: 8 10/2/13 1145 6/36/13 1243
∡ 🎗	\otimes	Rig Crifterry 150	
* [\aleph	Bir(s) freque bit - Dilot hollow Stem dagers	Geophys. Log-
		Drilling Fluid Rone	ging: Casing: 2" 18/30 13/30 13/30 13/30 13/30
		Surface Casing byon ground comp.	
6	A A		
		WELL DESIGN: Basis:	Filter Placement 15/30 13:3 10/30 1332
		Geologic Log Geophysical Log	Cementing: 10/30 1700 16/30 1710 Bentonite Seat: 10/30 1370 10/30 1345
7.75		Casing String(s): C=Casing S=Screen	Other:
8 -		7.75-13.0 5/	
4.35 🗸			
4.9 ▼			
10			
15			Comments:
		Casing: C1 <u>2" PVC SCH 46</u>	Below ground well campletion
		93	40 @ 9.35 BGS
12		Ç/F	
13		Screen: S1 2" Stainless Steel	
		51 0.020° 5/0f	
14		\$3 84	
		Centralizers None	Key:
,			Bentonite Sand
		Filter Material 10-20 Coloredo Silica Sand	
	. 4	Cement Type I/II fortal	
		Other Enviroplus pollets	Sand Pack Clay
-		Rentonite 1	Drill Cuttings Screen
			Gravel
		· · · · · · · · · · · · · · · · · · ·	l l

Project _ FAIRCHILD AFB

Geophysics by NA

Location OUI - MW105

Geologic Log by Catherne Olsen

Driller Anderma Cirillina / Robbie

Total Depth 17.72 FT PGL START FINISH

Borehole Dia 8-Inch Date 8-23-90 8-24-90

Depth to Fluid Time 1618 0802

Rig Mobile Drill B-80 How Left Flush

Bit(s) Continuous Car Sample Hounted protective

Fluid None Steel casina

Weath	er 70	o°F,	Sunny		_ F	luid <u> </u>	Jone	<u>Steel casi</u>	ra
	Pene.	Circu-			nple		Geologic and Hydrologic	Description	
Depth ft 0	ft/	lation Q (gpm)	HNu PPM	#	Inter- val	Lith. Symbol			
<u> </u>			B=2				0.0-1.0 FT : Sandy silt "		
			H=1				Cine mate bsit clets &	30mm.	· · · · ·
-							10 VR 6/2. Fill		
			·		<u> </u>		1.0-5.0 FT: Silty snd.	fn to med.	
-5-							soorin graded, motited.		52
	<u> </u>						104 3/2, Occas. 5 34		
			1	1	7.0-8.5		5.0 - 7.0 FT : V. CTS Snd	. 104R-14.	
			e= 2			1	1005c. occas > 50 mm b 7.0 - 8.0 FT : Crs Snd		
<u> </u>			H = 1		 		OTZ. K-Sour Plag., well		50
-10-			1		1	•	10 VR 5/1		
		<u> </u>			 				
├	-					1	9.0-17.0 FT : Sandu	5.1+. V.	
						•	dry, westhered . fin	o m-d	
			B=2]	arnin Occos. = 10 m	im belt	
-15-			H=2			}	cist drilling become	יש אטטפיר	<u> </u>
		·				1	and move diccirolt		
						1			
	<u> </u>						T.D. = 17.72 FT		
-20-			<u> </u>		1				
	<u> </u>		1						
<u> </u>						1			
<u> </u>									
					-				•
 - -					i	1			
	 					1			
1]			
					<u> </u>	1			
ļ	,	,				-			
ļ									
					• •				
L					<u> </u>	1		1	

Total Depth	12.69 FT EGL	START	FINISH
Borehole Dia	-	Date 8-24-90	8-7490
Depth to Fluid _	7.53 FT RGL	Time 1054	122
D: 04 1 1			1325

Project _ FAIRCHILD AFB OILI-MW106 Location___ Geologic Log by Catherine Olean Driller forderes Cirilina / Robbie Rig Mabile Drill P.-90 How Left Flush Bit(s) Continuous Care Sompler Mounted Anotective Geophysics by NA

Wea	Weather 72° F. Sunna						Fluid None		
	Pene	Circu-		Sa	mple		Geologic and Hydrologic Description		
Dept ft	[1 L/	lation Q (gpm)	1	#	Inter val	Lith. Symbol	,	Description	070 Core Recovery
		<u> </u>	8=2				0.0-1.0 FT : Organic Sil	+ w/occas	11colory
			<u> </u>				≤10 mm bs1+ clas+. rn	14 to sun-	
\vdash					ļ	_	rnd-1. 10 VR 2/2, roots		
<u></u>	-	-				4			
1-2-	 					- }	1.0-5.0 FT: Sandy Sil	L. med to	•
						-	Course orn ENd WI OTZ.	hslt.	
						1 }	mica K-spar. lonso	m,	
			8=2			1	10 ya 2/z, Gravish so	il a account	
4			H=8			1 .	3.0 ET W/ filel DANK		
						1			
] [50
	0.56				5.0-6.5		F.0-8.0 Ft : Samu Sil	L med to	- 30
							Bourse orn. Subona to an	o dry.	
-6-	i 		3=2			Ц	oose. mottled (10 VR7	11 10VR 4	
			H = 3			Щ	OVR %) light arou to	oran 1	
						19	areas hove V. strong C	iel odar	
	·		$\neg \dagger$			-	•		
-8-	Wolf	er Leve	1 2	8.0 F	7	-			
						8	1.0-10.0 FT : Basalt ar		
						4	= 20 mm . Subradd to c	ivel.	
							. Weothered, 20% cla	ingano .	
	0.83		.=200			علا	nse, love 3/2 occas	> 50 mJ	
-10-	0.03		=2	2 10	-11.5	<u> </u>	isalt clost (weathered)	90 m.	50
			-300	3 110	-11.5				
						10	0.0-12.0 FT : No Care	لهلرااات	
			_			10	brilling rough and ilmo	VI -	
12-19	0.13	В	= 2			l w	enthered zone (?)		
	1		= 10			R	it Refuent it is		20
						٦	it Recural at 12.7 FT ID. = 12.69 FT		
		,					16.01 FT		
						· [•		
 Bcc			L_						

B = Background

H = Borehole

C = core

page 1 of 1

Proje	ct_FAI	RCHILD) AFB		-	Total Dept	h 15.99 FT BGL	STAR	T FINISH
Location OUL-MWIO9 (PSZ)				(PS	2) 1	Borehole [Dia 8-irch	Date 8-21-9	0 8-27-90
1		by Mili			- 1		luid	Time 1030	
1	Driller Francis Critico / Franklik							How Left _(
ł	Geophysics by 11A							moint-4	
1	-	1°F. 5		,	1	Fluid 15	·	Steel	
1		Circu-		T 50					
Danth		lation		381	nple	 	Geologic and Hydrologic D	escription	
Depth	ft/	(gpm)	PPM	#	inter-	Lith. Symbol			40 Core
⊢ ^{ft}	 	(gpiri)	 		Vai	Symbol			Recovery
<u> </u>	15.07		β=φ			-	0.0.0.33 FT: Asphalt		
<u> </u>			H= Ø	 		-	0.5-3.0 FT: Fill Mai.		
				-	! 	-	End Comes order occas		
						1	3.5-5.0 FT: 511-1 Sand.	Course orn	
			i –				men Anson		
						1	1005e, 4.0-5.0 FT ord	t clash	
						1	V. course sand silkang	T C105+	
						1	wel	-s ans.	
-5-	1.63		P = Ø] .			FO
			4:47		5.0.6.5		5.0-10.0 FT : SACAU S	S.H. Anel	
			C=40	2 2	5.0%-		to course orn rold in	5 1- 200 ·	
							Posni provet. & 40 mm	85-	·
	\\1514						10.0 FT Wet 1905e ?	5 y 4/0	
	Wate	r බ	3.0 E				Strong fuel odor		
									
						}			
-10-		i	B=0.1						<u> </u>
70-1			H: 72	i			10.0-15.0 FT: Possit		50
			C-150				<. Ity = 25 mm v wet 12	mse.	
	0.03					[2.544/0 (oray), At 11.5 1	it color	
							change to love 5/6 yell	auth	
- +						Ĺ	train bosoft weathered		
							(Come sumple collected for		
						-	40 11.5 ET).		
						}	Bit refusal a 15.9 FT		
-15						}	T. 15.00		
-/3-1						}	TO = 15.99 FT		
						}			
$-$ _						}			
		<u>. · </u>				.			

		Well Construction Sumn	nary
	Flush Moured		ation: Ground Level
		Personnel: Carrerine Men	Top of Casing
-	11/11	DRILLING SUMMARY:	CONSTRUCTION TIME LOG:
		Total Depth 15.99 FT EGL	Start Finish
	ИИ	Borehole Diameter 8-inch	Task Date Time Date Time
i.75 —		Driller Fordamen Crilling -	Drilling: -27-93 1030 8:27-90 1315
		Porti Milis	
		Rig My le CVII D-RA	Construction —
3.33 -		Bit(s) Continuous Care Sampler	Geophys. Log-
		Drilling Fluid None	Casing: 8-27-90 1502
		Surface Casing Fro ective Steel	
		WELL DESIGN:	Filter Placement: 8 27-90 1505 8-27-90 1527
		Basis:	Cementing: 27.40 1605 9-27.50 1625
£.99 —		Geologic Log X Geophysical Log Casing String(s): C=Casing S=Screen	Development: 8-27-90 :529 3-27-90 1535
			Other:
	1 1-1-1	0.0 - 5.99 C	Flush Mount 3-25-90 1125 3-25-90 1120
	1 4-14		Comments:
	1 -1 -1	Casing: C1 2-in dia. Sch 40 F/C	
		52 First Transed	
	- - -	<u>ca</u>	
		C4	
	- -	Screen: S1 2-in dia Scr. 40	
		87 stores steel	
	1 11-11	S4 ~/ 0.020 " Slots	
		Centralizers None	Key:
			Bentonite Sand
		Filter Material 10-20 Polando Silica Sond 3-100 le Sociel	Cement/Grout Silt
!5.99-		Cement friend The I + I Socies?	Sand Pack
:2-17-		Other Nona Error Lange	Drill Cuttings Screen
		6" FIC CONCIUS	Gravel

		SIARI FINISH
Project _ FAIRCHILD AFB	Total Depth 16.27 FT GGL.	
Location OUI-MWIIO (PS-2)	Borehole Dia 8-Inch	Date <u>8-28-95</u> <u>8-28-95</u>
Location	Depth to Fluid	Time 0730 0910
Geologic Log by Catherine Olsen		How Left Flush
Driller Grance Crilling / Robbi	Rig Mobile Drill B-97	j
Geophysics by NA	Bit(s) Continuox Core Spiriter	mounted Protective
	Fluid None	Steel
Weather 80°F. Sunny		J

Weather 80°F. Sunny Fluid						uidb		
Popo Circu- Sample							Geologic and Hydrologic Description	
Depth	Rate ft/	lation Q (gpm)	HNu PPM	#	Inter- val	Lith. Symbol		
<u> </u>	0.14						0-5 inches: Asphalt	
	5.1	l					D.10- F. C FT: Sandy Sult. (40-	
						į	50% snd), crs arn. Inose. dru,	
			£=0.1		ļ	1	Posnot Gravel = 30mm. Sirrat	50
5-	0.63		H=7		<u> </u>	-	10VR 4/2, SI CHI OTAY	
	<u> </u>		C=5	1	5.0.6.5	4	5.0-10.0 FT : Sarrhu 5.17. fine	
	<u> </u>		ļ		 	-	to cre orain, subradtas itano. mad. must oradina to saturated.	
	l M	Ler Le			 	1	57 HI	
	 	 	B=01		10.0-11.	 	3 4 11	50
-io-	10.71		H=0.3	1 2	110.0-11.	3	11.0-15.0 FT : Sorring silt w/	
-	+	 	10	1	1	1	60-70 % v. crs sm. right to	
-		 		1	·	1	subano, Soturated ionse.	
	†] .	occas. Easait clast = 40 mm,	
			8=0.1]	Subrand in Eutano 544/0	50
15-			H= 1.1	Ti .	<u> </u>	_	15.0-16.0 FT: Bosnit aravel =	
		· .	C=8			4	45 mm, Very Warthered fine	
	↓	<u> </u>		!		4	to crs snd suhmito subono	-
-				-			minor day (10%). 1048 5/6.	
-20	 	 	<u> </u>	 	+	-	mod moist.	
-			1	-		-		
-	1	-		+		-	T.D. = 16.27 FT BSC	
-	_	 		+	-	1		
	 	 	+	 	1	7		•
一 .	 		i			7		<u> </u>
	1					3		
								
						_		
_						_		
-		 				_		+
_		-						+
	_					_		1
-		-				-		
L		!		_!				

Source: SAIC, 1990

•		Well Construction Summ	nary
	Flush Mount		ation: Ground Level
	Arotective Steel	Personnel: Nitherine Dicer	Top of Casing
0 -	11-18	DRILLING SUMMARY:	CONSTRUCTION TIME LOG:
		Total Depth 16.27 Fr EGL	Start Finish
		Borehole Diameter R-inch	Task Date Time Date Time
1.33-			Drilling:
0.51		Driller <u>Forderness Critina</u> -	3.77.43 07.30 07.77.30 OSIO
2.21-		Rig Mobile Crill F-80	
		Bit(s) Coringinal Pare Someter	Geophys. Log-
			ging:
		Drilling Fluid 110c =	Casing: 8-2840 28-16 5-28-90 8947
		Surface Casing Cited transfer to the surface Casing Cited to the surface of the s	
		WELL DESIGN:	
		Basis:	Filter Placement: 9:78-92 0949 5:27-90 1036 Cementing: 37-2 1046 5:27-90 1059
		Geologic Log Geophysical Log	Cementing: 1727 1046 1049 1
6.27 -		Casing String(s): C=Casing S=Screen	Estionic Fila
		<u>0.7 - 6.27</u> <u>C</u>	Other:
		6.77 - 16.27 S	F105F M 30F
			•
	1 / - 1 - 1		Comments:
		Casing: C1 2-irch Sch. 40 FVC	- Fand Eack Ezertied 24 in
		CZ	2.21 64-
	-	ß	
	1 (.1-)	G4	
	111-4	Screen: S1 2-och Sch 40	
		St Startest Sten	
	11:1-4	S3 Fire Tereston	
		\$4 <u>~/ 0 020 " 510+ 5</u>	
		Centralizers None	Кеу:
			Bentonite Sand
		Filter Material 10:20 Chinada Stick. Social (3:100) c social	Cement/Grout Silt
		Cement Formard TING THE	Sand Pack
16.27		Other 15 - 24 - 5 - 15 - 15 - 15 - 15 - 15 - 15 - 15	Drill Cuttings Screen
			Gravel
			[@@:# 5.555.

Source: SAIC, 1990

page _____ of ____

Project	ct	<u> </u>				Total Dep	oth		TI FINISH
Locat	ion <u>P</u>	5 2					Dia <u>8 *</u>	Date /F//	41 11-16-5
Geolo	gic Log	by Ca	Di Gora	a da		Depth to	Fluid 7		1915
	r Dan		_				osk Drill Bb1	•	graded
i	hysics b						9 Auger		t 10411
	ner Fee					Fluid	_	minumo	
Pene., Circuy Samul					mole		Geologic and Hydi		
Depth	Rate	lation	OVA		Ţ		Geologie and riyal	- Description	T
	Blow Cts	(gpm)	SOPP	#	Inte val				% Core Recovery
							come san and	coal unto	
							irtel, asg, =	Zoma (ned bus	,)
					 		governich gray co	he	
			45 45		-	_	•		
-2-			45		0-/		0.4		25%
					<u> </u>	1	Case sand of	minor gants	
							hazelt, gfz ;	CUs 11	
							greenist gray cel	cire	
-4-			45.		2-4	.			75%
						_	Coarse send i Gor	nd & 41 mm	
					ļ		Cag, and sorted,	busit, stai	
				•		-	feld: 4/ green	4 gray cotolog	
-6-			9533		4-4	7			75%
]]	Coore sand and	crard = 71 mm	
							Cases sond and	exclt of I feld.	
						<u>ア</u> .	tree indust a	7' 165	
			120/11		1 0	-	black oil appeare	ce	
-8 -			2111		6-8	1			75%
						1	sily sands con	<i>1</i> .	
						1	Grade to sill de	the 5 8.4"	
]	~ 0.9 and 6	cla 4 5,74	
-, -			100		8-18	4	still prote dana	good (free mole	+ 150 %
						-	TDC 8.9'		
						-			
						1			
		- 		$\neg \dashv$		1			
				c	OUTCO	e: HNUS	1993 ———		
				s	ourc	c. III103	, 1//0		
			 -			1 .			
!	ı	- 1	1	i		ı	1		

		Well Construction Sum	mary	
0		MW 176 Location: 1952 Ludy Himmer © Ele	evation: Ground Level	
		Personnel: G. D. Greener		
		DRILLING SUMMARY:	CONSTRUCTION T	IME LOG:
		Total Depth 19		Start Finish
2	[7] X.V.	Borehole Diameter 3	Task	Date Time Date Time
		÷	Drilling:	
		Driller Dan Charten Environment West		<u>।।।।। वृह्य विकास । इन्त</u>
		Rig Mobile Dell Bill		
4	-	Bit(s) <u>A. Jusc.</u>	Geophys. Log- ging:	
		Drilling Fluid		11-16 - 1628 11-11-11 1922
		Surface Casing 1'1		
1,		WELL DESIGN:	Filter Pleasment /	14.6. 0623 44.6. 0563
		1	Cementing:	1-16-91 0930 11-16-91 0542 11-16-91 1015 11-16-91 1015
		Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen		11.11.41 0944 11.11.41 0945
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Other:	
3				
				·
	~ :			
10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
10			Comments:	
		Casing: C1 <u>Schedule 4n 2 Co.</u>	indicked here	brite up 5 gels of
		Casing. C1	in the state	
-	.	C3	moundet	ch invested hell
		C4		
		Screen: S1 <u>-2/2/45 2 2 2 2</u>		
	!	\$2		
	-	Ś4		
٠		Centralizers	Key:	
			Bentonite	Sand
	-	Filter Material <u>CST 19/28</u>	Cement/G	rout Silt .
		Cement Rock of Town Town Town Town Town Town Association Services	Sand Pack	. Esse Clay
		Other Michay He walnut pelicity	Drill Cuttin	gs Screen
			Gravel	
		Source: HNUS, 1993	"""	

	MW 177
Borehole _	Lac # 1
· ^ page _	

Projec	t_F/	+FB			- 1	To	tal Dept	h	START	FINISH
ł	on P								e //-15-5	i <i>Uzu</i>
		by G.	1:60	·	_		pth to F		1203	
1		الديددور	~	•	_			-	v Left ہے	
		y _ <i>W</i>	•		_			!	•	MAHMET
Weather Guencest 40 F Jagy					-		iid		Place	THE PARTY
	Pene./	·		 		$\overline{}$				
Depth	Rate/	lation	OVA/	ــــــــــــــــــــــــــــــــــــــ	mple T	\dashv		Geologic and Hydrologic Description	ription	
	Blow C/ts	(dpm)	HNU	#	Inte		Lith. Symbol			% Core Recovery
<u> </u>	7.5	(85,	hole	1972	'-					
•				 		\dashv		Gravels can scand provide		
								Spam refused @ 1'	PALAS	
								unger catting color change	Lan	
_ Z_			<u>,</u>		0-1	<u>- </u>		bom to gray @ Z.		407.
					 	\dashv		clay 4/ leaves of sand of	'mre	
				 	<u> </u>	-		grain, well conted, my box		
						\dashv		oft i feds strong fuel or	. 1	
4			50 16	fe?	2-4	7		plactice to - some grayish green		150%
· ']								andy day med - care go		
						4	į	en, party sorted, 20%	-5%	
				1		-		sand, clay dence stiff	day	
			سبست		1. 1	\dashv		no place dat gray		40.01
- •	-		//10		4-6	\dashv		lay of sands dark gray un	• 4	100%
	ŀ							w/ ful appearance (slick) godin		
	-						Z	sand consegnin @ 8' gai		
	:		.40			_		gray		
- 8 -	<u> </u>		180 30		4-8	4	}			25%
						\dashv		cause and well sorted any,	becelf.	
	Ī					\dashv	ľ	ste i felde grayich some f	2	
						7	Ī	= t passa		
- 10-			P5110		8-10					50%
						_	Ļ	coarse sand up more grow	*/	
						-		sold sold, any woult of	; felds	
						\dashv	-	serve day leases stiff plant	<u>sc</u>	
,,			1950		10-12	,		coorse sand of more gover well sorted, any insult ofte : searce day leaves stiff plant greated gray 12' DC HIT BGS		15%
-12-				i	· - / C	4	ļ			
						_				·\.
						-	-			
<u></u>		<u></u>				L		Source: HNUS, 19)93 —	

0	Well Construction Sum	•					
	Personnel: G. D. Greece			,			
0.5	DRILLING SUMMARY:	CONSTRUCTION TIME LOG:					
z 🔯 🔯 :	Total Depth		Start	Finish			
	Borehole Diameter 2.	Task Drilling:	Date Time	Date Time			
	Driller Den Claassen		<u>11-15-91 2 45</u>	4.1561 1222			
2.6 🔯 🔼	Rig Mobile Dan 241						
4 -	Bit(s) S" Aurres	Geophys. Log- ging:					
	Drilling Fluid 1. A	Casing:	वन्द्रस्य रहेत्स	<u> </u>			
4	Surface Casing <u>\N_A</u>		·				
6.7	WELL DESIGN: Basis:	Filter Placement	11-15-11 :2:	11-19-41 272			
	Geologic Log Geophysical Log	Cementing: Bentonite Seal:		1/200 1200 1120 1200 1120 1200			
	Casing String(s): C=Casing S=Screen	Other:					
	<u>5.7 - 11.7 </u>	trole phag	<u>899548 1794</u>	<u>11-15-41 1205 </u>			
- ↑ .							
		Comments:	+ will min				
	Casing: C1	- n. 1- 1 :	ب نا در د	= - // 91			
21 22 2	C3		<u> : 42 </u>				
	Screen: S1						
	S2						
<u> </u> .	S3 S4			•			
	Centralizers	Кеу:					
		Bentonite		Sand			
-	Filter Material CST Stad	Cement/0	irout =	Silt			
	Other Townth (1)	Sand Pack		E Clay			
	Contract with Min	Drill Cuttin	ngs 📰	Screen			
		Gravel	Source: HN	US, 1993			

START FINISH

										START FINISH
	Projec	1 _ FAI	RCHILD	AFB					32'	}
	Locati	on PS	s-2 6	c363		_	Boreho	c C)ia_ <u>&"</u>	Date ulchi ulclas
	ŀ		by Chase		•	ا ي	Depth t	o Fi	luid <u>4-15'</u>	Time 0850 0152
•	Driller Dure Hanner-Powerson					Rig	<u>.P.3</u>	000	How Lets water tight	
	Geophysics by					Bit(s)_	<u>''</u> }	ricone - 8" rock hammen but		
	Weather forgy - 300 - slight drizzly			Fluid _	1	un/wrope	Desparading place w/o Los			
	Pene. Circu- Sample Rate lation HNu Inc					Description				
	Depth	Rate ft/	lation .Q	HNu		Inte	r- Litt	 1.		
	ft 0	1 ' '-/	(gpm)	PPM	#	val	`			
	<u> </u>								4" asphilt base	·
								İ		·
				·						
							_			
0853	-5-						-		sand med-coarse and	add 1. 422
							-		angular to sub angular.	•
							1	į	Kogan and satel	
						• -			strong potro odor ~ "	
60 60 0000	_/0_							•		
6855	,,						_	ļ	sandy gravel - crambles,	meular,
						•	-	ļ	bract .	
			·				-		·	
٠							-			
690S	—15 —						J~~	~	gravel - avanua to pebble	< 30mm - mod
		<u> </u>							antid, angular to pub and	
								J	Charcosting - fracturel-home	
•							-		weathered baselt reduct	1
0919	-20-						-		Bearing to firm up Baselt - slightly Laster Wack 2.5/2 54	D. have weather
		İ	<u>`</u>						Wack 2.5/2 54.	
0934	-25		<u> </u>				_		P 11	1 7 1
							-		Baselt massing-shelter	
		<u>-</u>					-		from weathern, 2.5/1 5	
							7			
0947	_ن 3									
-		!	!		4		4		Massio baselt- blust	2/0 2.54
0.952	1		<u> </u>				-		2 11 1 2	
	<u> </u>						\dashv		Boxelt in which	
	<u>'</u>						7	_		
									•	

		Well Construction Sumr	nary	
	. •	Location: PS-Z Loo3 TO Elev	ration: Ground Level	
		Personnel: CHuck Hours - SAIC	Top of Casing	
	r	DRILLING SUMMARY:	CONSTRUCTION TIME LO	DG:
:		Borehole Diameter 8"		rt Finish Time Date Time
		Driller Louis Hanne - Powogeosa	Drilling: AIMBUTARY INLINE	0850 11/4/1 0957
57		Rig CP 7000 Bit(s) 8" Treen / 4" Roch humer	Geophys. Log-	
		Drilling Fluid AIN/WATER	Casing:	11 May 1020
		Surface Casing 5 tex 3 + 3 - 10		
		WELL DESIGN: Basis: Geologic Log Geophysical Log	<u> </u>	450 11/11/51 1045
67		Casing String(s): C=Casing S=Screen	Other:	1045 116/4 1150
6.		30.5 - 20.5 <u>S</u>	setsurface	1150 11614 1150
15 - 75				
FRACTURES			·	
18		Casing: C1 4"x4" Puc end cap	Comments:	
20.5- /		C2 <u>H"Sch 40 PVC</u>		
		C4		
	· · =	Screen: S1 4 50440120C 070515t		
BASALT /		S3 S4		
	· : <u>=</u>	Centralizers Nowe	Кеу:	
	: <u>=</u>		Bentonite	Sand
		Cement Postission 1-11 + 572 bundant	Cement/Grout	Silt
30% tary -			Sand Pack	Clay
32-	1	Other	Drill Cuttings	Screen
		Source: HNUS 1993	Gravel	

page 1 of 1

START FINISH

Borehote Dia & Boreho	ſ	Project _ FAIRCHILD AFB						Total Depth	23.5	STATE PHOST		
Geologic Log by CHUCK March SAI Depth to Fluid M How Lets March SAI Driller Genic Harman Properties A Rig CP 7000 Rean A 10 And And And And And And And And And And	į					466] ;	Borehole Dia 8" Date 11 5 91 11/5				
Driller Course Harman Prospersor St. Geophysics by Weather 350 Arizalt Pene: Circum Depth Rate lation Opth Rt/ O PPM Wall Inter- Val Symbol OTS Some Gaologic and Hydrologic Description Grand, Ar carry and public 30 annual of carry and public 30 annual or carry and public 40 annual of carry and public 40 annual of carry and public 40 annual of carry and carr	İ							Depth to Fluid 11 - Time 0822 100				
Geophysics by								Rig CP 7000 How Left flush Suitage				
Weather 30° driank Fluid 410 later Pene: Circu- Depth Rate lation of the min (gpm) PPM # Inter- val Symbol OF25 -5							_ ,	Bills) 8" TRICONE /8" rick hame but monning to/				
Pene: Circu- Depth Rate lation ft/ Q		a ·										
Depth Rate lation HNU ft/ Q PPM # Inter- Lith. Symbol ft/ Q PPM # Inter- Lith. Symbol min (gpm) PPM # Inter- Lith. Symbol ft/ Q PPM # Inter- Lith. Symbol ft/ Coarse Sard, petition is 30 mm, capitals to such angular mod watel, built country, x-spm O825 10 10 10 10 and capitals to substitute the matter pulse angular the matter pulse angular the matter pulse angular the matter pulse angular the matter pulse angular the matter pulse angular the p					<u> </u>	\$20						
orse of min (gpm) PPM val Symbol orse o		Opensh	Rate	lation	HNu	Jai		Lieb	· .			
OFIS 5 Grand, it conversand, pelisas (30 mm anishen to entropy and mark), built grant, K-spec GP GRAND, K-spec GRAND, K-spec GRAND, K-spec GRAND, K-spec GRAND, March to entropy and to entropy and to entropy and to entropy and to entropy and to entropy and to entropy and the entr				_	PPM	#	i	1				
OF 25 - 17 Strong patro abor Sity Send, for coarse, sortly strain else OF 25 - 17 Send of the coarse, sortly state OF 25 - 18 Br. OF 26 - 18 - 10 Send of the coarse, sortly state OF 26 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1		-0-	111111	(ab)								
OF 25 - 17 Strong patro abor Sity Send, for coarse, sortly strain else OF 25 - 17 Send of the coarse, sortly state OF 25 - 18 Br. OF 26 - 18 - 10 Send of the coarse, sortly state OF 26 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1								1 .				
OF 25 - 17 Strong patro abor Sity Send, for coarse, sortly strain else OF 25 - 17 Send of the coarse, sortly state OF 25 - 18 Br. OF 26 - 18 - 10 Send of the coarse, sortly state OF 26 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1	·											
OF 25 - 17 Strong patro abor Sity Send, for coarse, sortly strain else OF 25 - 17 Send of the coarse, sortly state OF 25 - 18 Br. OF 26 - 18 - 10 Send of the coarse, sortly state OF 26 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1								_	<u> </u>			
O825 -17 10 O825 -17 10 O825 -17 10 O830 IS - Digital to and angular mod north, built country, K-span aroul, arounds to published 220 mm, baseled to quarte, sub-secretary and angula to autonomial to quantum pub angular to autonomial to quantum pub angular to autonomial to quantum pub angular to autonomial to quantum pub angular to autonomial to quantum pub angular to autonomial to quantum pub angular posterior posterior posterior posterior posterior posterior posterior pub angular pub angu	0875	<u>-5</u> -		•	<u> </u>			-	gravel to coarse sand or	bles 30mm		
O825 -17 10 O825 -17 10 O825 -17 10 O830 -15 - 15 - 16 - 16 - 16 - 16 - 16 - 16					[<u> </u> 	2					
O825 10 10 10 in aroul, granule to public (20 mm, baselt to mutty, sub-singulate to submounted) Som Sity Sand, fini-coarse, poorly antile Baselt - clipty fractivel - trace weathering e.m. O825 20 Manine baselt aluitty fractivel trace weathering: O455 25 Magnine baselt-black - trace weathering Baselt as above Baselt as above					· · · · ·			GP	quarty, K-span			
O 830 15 Br. Br. Baselt - object protection of the second												
OS30 IS Branch - aligning fraction of the court of the co	0828	- n-	<u> </u>		<u> </u>	<u> </u>			in a compat metal-	a < 70 mans baselt		
O820 15 BR Baselt - slightly freether - tree weathering e 15 O828 20 Marine handt slightly freethering trace weathering - Marine handt - black - trees weathering Marine handt - black - trees weathering Marine handt - black - trees weathering O855 Baselt as shore O856 Baselt as shore					McL	batar		-	+ counte sulo menta	to supremell		
0830 -15 BR. Baselt - slightly fractivel - tree weathering e. 15 Marine bonalt shiftly fraction 1 trace weathering. Marine bonalt - black - trace weathering Marine bonalt - black - trace weathering Baselt as shore 095% Baselt as shore -					1	1	<u> </u>	Tura.				
O 828 20 Maries beneft slightly fractions trace weathering. Magnic baneft black-trace weathing Magnic baneft black-trace weathing Baselt as shore O958 Baselt as whore					μ.			5m	Silty Sand fine-coarse	, roots satel		
O 808 20 Manie handt-deibthy hattand trace weathering. Manie handt-black-trace weathering Manie handt-black-trace weathering Bandt as whore O958 Bandt as whore	0830	-15-			<u> </u>	<u> </u>		Br.	Baselt - shorty fractive	- tree weathering el		
Magnin bosalt-black-Trace weathing 19452 - 30 Basalt as shore Basalt as whore -			1		<u> </u>	<u> </u>		-		·		
Magnin bosalt-black-Trace weathing 19452 - 30 Basalt as shore Basalt as whore -	,		<u> </u>		! !	<u>!</u> 	-	1				
Magnin bosalt-black-Trace weathing 19452 - 30 Basalt as shore Basalt as whore -												
Magnin bosalt-black-Trace weathing 19452 - 30 Basalt as shore Basalt as whore -	ה מטור	-20-	1		<u> </u>	1	<u>l.</u>	_		1 +)		
Magnin bosalt-black-Trace weathing 19452 - 30 Basalt as shore Basalt as whore -	0 00		<u> </u>		1	<u> </u>	<u> </u>	-	to se weather it	1 Marines		
Baselt as whore -		-	<u>• </u>		<u> </u>	 		-	The state of the s			
Baselt as whore -				•								
Baselt as whore -	0145	<u>_</u> 25-	<u> </u>					_	21 2 2 1 1 1 7			
Baselt as whose -							 	-	Masure bossett-black- h	LACE WEALTHERING		
Baselt as whose -			 				-	-				
Baselt as whose -			 		i	İ						
Dasalt as whore -	J 452	_30_						_]	2 4/			
Basalt as amore-	•	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	-	_	Dasalt as about			
TID BORING 33.5	0988	├	1	<u>! </u>	<u> </u>	 	-		Baselt as whose -			
		 	-		-	 	_		TO BORNY 33.	5		
				İ		İ						

]		Well Construction Sun	nmary
į		Location: PS-ZL-ZABR E	levation: Ground Level
). 			Top of Casing
6"Asphalt-	١٠٠١	DRILLING SUMMARY:	CONSTRUCTION TIME LOG:
	050	Total Depth 33,5	Start Finish
	3,03	Borehole Diameter <u>& "</u>	Task Date Time Date Time
	300	Driller Louis Hanner - PONDEROST	Drilling: <u>Air Foray</u> "1/5/71 0822 "1/5/41 1000
1	0000	Rig_CP 7000	
	3,000	Bit(s) TRI CONE/ ROCK HAMMEN	Geophys. Log-
	٥٠٠٠	Drilling Fluid 112/WATRA	Casing: " 5 91 1230 11 5 91 1045
	0.00	Surface Casing 8"Stacl +3-14	
	3.0.0	WELL DESIGN: Basis:	Filter Placement: 11/5/91 1045 11/5/91 1100
		Geologic Log Geophysical Log	Cementing: <u>USO 115 115 115 115 115 115 115 115 115 11</u>
	0	Casing String(s): C=Casing S=Screen	Other:
		<u>29 - 19 S </u>	monunut
14		19 - &	istalment 11/5/91 1230 11/5/91 1350
. 15 -	BASSET		changes 1
17-			Comments
		Casing: C1 4+x4+8/C end cap	Comments:
. In -		C2 4"sch 40 blank casing	
		C3	
		Screen: S1 4º Prasch 40 slot 020	
	\ \ :: =	S2	
		S3	
·			
		Centralizers Nove	Key:
74 _			Bentonite Sand
29 - 293 -		Filter Material 10-23 5 clien sand	Cement/Grout Silt
33.5		Cement Poetrono Tott + 572	Sand Pack
		Other <u>annular scal - 3/8"</u> <u>bentonite</u> pellets	Drill Cuttings Scree
			Gravel Source: HNUS, 1993

START FINISH

		EA1	rocuti r	AED.		- 1	Total Dept	th 62	START FINIS
	Proje	ct <u>. [A]</u>	[RCHILE - こ- ム	1 AFB	(C) Adm	-		Dia 8	Date 11/2/91 11/3/-1
								Fluid	Time 1230 1/930
•	1		by <u>CHU.</u> June -				Rig <u>CP</u>		How Left fluid
	i		Υ					TEICONA	anfice mornet
	i		react 2				-	e/waign_	Westerding end play
. · •	11000	Pene.	·	,	T 6-		7	Geologic and Hydrologic	
_	Denth	Rate	lation		29	mple		T Geologic and Trydrologic	Description
	9	1.0	(gpm)	PPM	#	Inter	- Lith. Symbol		
	ft 0_			-			<u> </u>		
							† .		
]		
			-				_	· · ·	
	-5-			d	<u> </u>	5	-	oilt on long on the	. 1 . 1
						3	1 .	with sand, are grande burnly antel, die gray b	ionin-
]		
							-	-	
1240	-×-		•	Q		10	-	sendy cilt, dk gray - blo	1 11
•.				- W-			1	CALLY CALLY SE WANT - CAL	ex , V fine pauso
						٠			
1242	 		·	×		15	G₽	and gravel, pubble + 60	-) (
						<u>, 7</u>		and indoubangelanto no	when baint life
		!							
246	-20-			8		20		sandy clay , any hom	1 . /
	I						ce	aft aft	- fine say
1301	-2S-			20		25		county sail track for	
- 1							Budrock	gravely sand the clay, for	there buselt ancular
							futual	Rudrack?	
Ì	-30-			৬		30		No zamole	
				_				na not a	
}								·	
}						Sourc	e: HNUS	, 1993	
Ĺ				!_					

!	Log	of B	oreh	ole					paga 2 d 2
	Projec	- FAI	RCHILD	AFB		7	Total Depth	62	START FINISH
	Locati	on <u>75</u>	- کے ۔	et Re	B MW	180 E	Borehole D	is <u>8</u> *	Date HISIM 11/5'
			by <u>Cym</u>				Depth to FI	uid	Time 1230 19/30
•			Luner:			_ F	Rig <u>CP-8</u>		How Left Surface
		ysics by					lit(s) <u>8"7</u>	`	mount Weepen -
٠	Weath		cast - c	zo°F_			luid Δι	WATER	end dag w/s lock
		Pene.	Circu- lation Q	HNu	Sai	nple		Geologic and Hydrologic	Description
	Depth ft 0	1 . 6/	D (gpm)	PPM	#	Inter-	Lith. Symbol		
							1		
	. 1								
·	—3 ≾ —					2-		Baselt- weather - fruit	med w/
				20		35	1	sendy clay, yellowith br	TIM WALDS
					·				
								,	
1300	12			Ø		40		Basalt - fractional, higher	, weatherd
							-	•	
					•		1		
1315	_US								might windherd
				ষ		45	1	Bacult- very conjubr, fracture	X, interbodded
. !									
							1		
1314	_ 5⇔			χ 2		50		nochency	
i							4		
				<u> </u> 					
1500	-55 -]		
				*		55	1	Basalt as abox	
							1		
							1		
1325	40-			70		60	1	Boselt a above	
								TD 67	
							<u> </u>		

	. •	Well Construction Sumi	mary	al a	
u"Asphett	<u></u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u>	Personnel: CHUCK Howh - SUC		ng	
		DRILLING SUMMARY:	CONSTRUCTION	TIME LOG:	
		Total Depth 62		Start	Finish
·	62.	Borehole Diameter	<u>Task</u> Drilling:	Date Time	Date Time
	5.00	Driller Louis Hanney - PONDEROSA	Ain Rosam	11/3h 1230	ग्रीऔ। १८५०
•	0.00	Rig <i>CP 7000</i>			
	"	Bit(s) 8" TRI CONSE	Geophys. Log- ging:		
	77.7	Drilling Fluid AIR/ W476L	Casing:)±50 <u> 450</u> //3/1	11/5/1 1500
	123	Surface Casing K" &- 17	•		
	Jun	WELL DESIGN:	Filter Placement:		11/5/91 1575
_	Bosatt Virac W/clag	Geologic Log Geophysical Log	Cementing: Development:	1515	
	Strage	Casing String(s): C=Casing S=Screen	Other:	17.70	
_		55.3 - 65 <u>C</u>	set monument	1184 1030	11/3/91 1500
		45 - a c			
40				<u> </u>	
_			Comments:		
42.5-	$\stackrel{\boxtimes}{\sim}$	Casing: C1 4"x4"+ Hreaded Duc ind cap			
	;	C2 <u>4" sch 40PVL</u>			
45 -		C4			
-	; =	Screen: S1 4" sch 40 PVC 070 Stot			
	=	S2			
•	=	S4			
	B. L.S	Centralizers Lbne	Key:		
55 <u>-</u> 55.3 –	asabae ;		Bentonite		Sand
55.3		Filter Material 10-20 51/14 Sand	Cement/	Grout =	Silt
TD 62 -		Cement PORTLAND 1-11 + 5%	Sand Pac	k 📴	Clay
, Ju - Ca		Other annular seel - 3/8" boutonite beliets	Drill Cutt	ings	Screen
			Gravel		••
		Source: HNUS, 1993			

0	Well Construction Sum	·	. • el	
	Personnel: G. D. Garacia		ng	(
	DRILLING SUMMARY:	CONSTRUCTION	TIME LOG:	
2	Total Depth 12 Borehole Diameter 37	<u>Task</u>	Start <u>Date Time</u>	Finish Date Time
3-5	Driller Den Cleasion Supermental West Rig Wester Den Blet	Drilling:	11:1441 28.6	<u>। । । । । । । । । । । । । । । । । । । </u>
4 F- · · . · . · .	Bit(s) <u>१० केन्द्रक</u> Drilling Fluid <u>Va</u>	Geophys. Log- ging: Casing:		
5.5	Surface Casing 1.2	Castrig.		
6	WELL DESIGN: Basis:	Filter Placement Cementing:	11-14-51 <u>0917</u>	
a - IIII	Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen 3.1 - 5.5 C.1	Bentonite Seal: Other:	432م ودستان	<u>11-19-5</u>
13 -				(
12	Casing: C1 <u>Sphedule 40 2 20 200</u> C2 C3 C4	Comments: in intil inch in intil In		
	Screen: S1 <u>Stanlage 45 2 Proc. 1.7.26</u> S2 <u>St. H.</u> S3			
	Centralizers	Key:	E	
	Filter Material CSI Sand 10/20	Bentonite Cement/0		Sand
	Cement i2c11a . l	Sand Pack		三 Clay
	Other Milcher Till 44" and	Drill Cuttin	ngs	Screen
. [Grave Sou	rce: HNUS,	1993

	(Date	. IIII.E	a cond	T		1		CAST COLD 35°F BREEZY		· · ·
	SAMPLE	9(FfH	Nows	SAMPLE	CHANGE		MA	TERIAL DESCRIPTION	0.0	•••
	40. & TYPE OR ROD	of 3 OR RUM NO.	6" OR 800 (%)	RECOVERY SAMPLE LENGTH	(Doorh.ft.) OR SCREENED INTERVAL	SOM, DENSITY CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION ASPHALT なら"	U # U U U U U U U U U U U U U U U U U U	REMARKS (1
	15-17		4424			MED MED		,	GM	S-1 (0.
		2.	44	1.5			GRAY GRN	SILT, WELL GROED SAND WISOME WANTES		TR CLAY MOIST
	5-2	α	(7	<u> </u>		MED	D. GRN	CANCLES S'/4" DIA, SURRE-NEED CLAT SILT WELL LANGE WE MYSOME GENERAL 51.5" DA	sw	S-Z HOIST
İ	10 17	4	20 /3	15		JFuse		±(1) MV		:
	5-3	1	17	2.3		SOFT	DOGRN	SILT CLAY som was was pink last	ML.	5-3
	10 25		17 50/.5°						 	SPOW RATHER 5.4
		6		1.0					1.	5,4
		8						TO: 4" SAMPLED TO G"	1-	
		0				,		4005.9	1	
								HLOG 5.4	1	
		10		<u> </u>					 	
					}				+-	
				 	1				-	
						<u> </u>			+-	
!				 	-	<u> </u>			┼	
!				 	1				+	
					-				╁	
		 					ļ		+	
		<u> </u>		<u> </u>	-			 	-	
					<u>}</u>				╂	<u> </u>
			<u> </u>		1		 		-	
					1		 		+-	
							<u> </u>	·	-	
		<u>.</u>		1						
		1		4	1	1		1		

CIRCLED -- APLE & INDICATES SAMPLE SENT TO LAB FOR AUNLYSIS

CIRCLEO SANTES A INDICATE TO LAG FOR ADALYSIS

REMARKS	CANTERA	R16 414 H-S.A.	2'14	aI	SPLIT SPOONS	With	Brass	inserts.
_		HAMMER DROP 30						
_	Asphalt	G" Thet.						

Source: HNUS, 1993

BORING SE CT-PS

PAGE_____ . = ____

 \mathfrak{F}

REMARKS CETTER & BID WILL N.S.A. Z'M ID THE SMOON WISCHE INCHES Hanner so inches PROP ASTHORT 6" MICK

BORING SBOOL-PS

PAGE ____

 (\mathcal{Y})

CAPPED INSPETS INDICATED BY V.

REMARKS	CANTERA	RIG 4/7	HSA, 2/49.5.	PORASS INSERTS MOIS NA	MACR D	numero 30"
•				0 44.00 PRC = 44.81		EASLEED OD MAN BBZ.

NOTE OF 6 MEMSURED 25 ppm @ HEAD SPECT IN RULER, MEASURED OLD MANUELS 2

BORING SPOOL PS ?

K CAPPRO INSERT SAR CHICATED WITH A CHECK MARK COMMEND SHOULD CHECK SHOULD SHOU

-	0	1	itions) /	LITHOLOGY		MA	TERIAL DESCRIPTION		
40 40 60	PLE 91PT 1 1 1 1 1 1 1 1 1	e on ago (N)	SAMPLE RECOVERY SAMPLE LENGTH	CHANGE (Deeth.it.) OR SCREENED- INTERVAL	SON, DENSITY CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION ASPHALT 26"	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REMARKS
(5)		17 20 91	ارارا	·	DENZE NECZ	GRET	SAMO, SILT, FINE CAMPLY 3,5" dia	· SP	S-{ (22*m- rtoist
5-2	; 2	27	2,0		YERY DRIVE	GRN GRET	CLATET SILT W/MAK CERSED SAND TR GERT EL ELS LA SUBROUND TO	5ر .	5-2 2'-2." 18ggg
3-3	4.5	50/4	20		STIFF	D-GAN	AS ABOVE CLAY, EVAL CIT + COLORS SHO	. CL	MICER G" MANUE MOTHED 2.5 STILL FROM REFLYAL, AUGUS MOTHS 5-3 G" MOTHS ANN, AUGUS O((50) TO 45" MOTHES S.S.
112	6	70	1.5 2.0						5-3:4.5-65 1017
S- 4 // 35	!	9	ر وا		P 80 Osura	9.GCL	GRUPED SHIP WHOLE THET TELLY	SP	G 8.4
-	8	70	7.0						
-							TD = 65 SHIPS TO 85"		
							COMPLETED AT 11.40		
-									
				1					
-			1		ļ ·	-			
			-						
-				+				+	
] .					
-			1-	-		-		-	
-			1	1			·		

+ CAPPED INSERTS ARE INDICATED BY A CHECK MARK
CIRCLED SAMPLE & INDICATES SAMPLE SENT TO LAB FOR CHAMICAL AMALYSIS

		LOG							NUS CORPORATION
PROJE ELEV <i>A</i>	CT NO	.: .32.8	₹ 6	· ••••••	DA	ATE: M.	BORING DRILLER DLOGIST: FreeD W Parisare	NO : THER	SBOOK, PSZ
(Date,	Time	& Cond	itions) 1	113	1 075	۶	OLO 28'F WHO' CLAR		
		stows	SAMPLE	LITHOLOGY CHANGE		MA	TERIAL DESCRIPTION	_ :	
10. 6 TVPE 08 800	otern or or nun no.	6° OR RGO (%)	RECOVERY SAMPLE LENGTH	(Deeth,ft.) OR SCREENED	SOM DENSITY CONSISTENCY OR ROCK HARDHESS	COLOA	MATERIAL CLASSIFICATION ASPHALT&6"	4 0 0 4 1 4 t C 0 4 1 C t 4 1	REMARKS SPLIT SPOON HNU-LA S-1 (a.
s-1 1005		50 59/ ₄ .	•	·	00/54	BRN'	SAID 4 SOME SICT + CRINTL 4.5"	· sw	S-1 (a. SLIGHT MOIST
5-2 10 15	2	60	1.0		Devse	D-CSRN	CILTY CLAY "/some SAND TTYCHURL ±,9"	CL	S-2 SLIGHTLY MUIN G.
10 15	4	1	0.7]	DENS				
(-3) 1030		9			STIFF	DLK	SLTY CLAY TR SMO+ MUFL	. <u>u</u>	5-3 MOIST (
S-4 1040	Ç	12	1.3 2.0		STIFF	D-CAN	CLAYBY SILTYSOME SALO+CRINEL	WH	5-7 December 17 79
	8	12	1.5 2.0		LED PHYS	Cen	GROOD SLED & 7.5 TO B.O.	SP	2
							TD= (" SAMPLED TO 8"		
							H ₂ 0@ 7.4°		
				4					
				-		├─		-	
				1					
]					
				- 	 		/	-	
				-{ ·		-			
			1	-					
]			*		<u> </u>
:	<u> </u>		1	_					
	-		1	-	-	-			
-	 		1	1		+			
							USCRIS (4016 WANNER DESPRES)		

* CAPPED INSERTS ARE INDICATED BY A CHECK MARK
LIGHT SAME TONCATES SAME TONE SEM FOR AUACTSIS

Source: HNUS, 1993

PAGE_____(

12MPLE 40 4 TVPE		1		LITHOLOGY		MA	TERIAL DESCRIPTION		PACECROLATO HAVE
04	OEPTH (ft 1 Off RUM NO.	400 800 810MP	SAMPLE RECOVERY SAMPLE LENGTH	CHANGE (Dooth,It.) OR -SCREENED INTERVAL	SOIL DENSITY CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	4 0 0 4 1 4 (CO N 1 C (REMARKS
(1)	-	/7			V Stiff		ASPHALT 26"	1	SPLIT SPOON
355	2	48	1.0	·	to iteep	GRET BAN	SILTY GROWD SOME GRAFTE TR CLAY	sw	·
1-2	2	18	*.0		V STIFF TO HAED	O-OMU	SILTY-CLAY - WHE CREDED SOND + GENERAL	cı	5-2 AUGER REFUSING DY
	4	20/1.	07/1.2						MOVED 3' TOWARD ME 5-2, 2-3.1
-3)		2]	STIFF	BLK	SILTY CLAY TR/COLO SINO 5:5.5'	a	1-3 MOIST TRIORCONICS
	6	10	1,2]	70.4	BLK	GRADED SULT 5.5 -6.0	SM	·
5-4 1430	<u> </u>	6			med Stiff	GRU	GRADED SAND + SILT W/GONG CONCL \$ 3"	SM	2.4 Chromen
	8	12	1,2					-	
	<u> </u>		 				TD-6 SLARCO TO B.O'	-	
				-			m0@7.5	-	
			}	-		-		-	
	-			1				-	
	-			1				1	·
	-			1		 -			
	1	二		1					
		-		1					·
								-	
			1			<u> </u>	·		
			1	_				-	
			 	_				+	
	<u> </u>			1	ŧ	1		·	
			 	4		 			1

CIRCLED SAMPLE & INDICATES CAMPA SPAT TO LAR FOR AUALYSIS

REMARKS	CANTERA	RIG 4/2 HSL	24 55.4	BEMSIVERETS,	MOLD HAMRER DEC	PRED 90"
Č	O ZERO	DEPTH @	" below	ASPLALT TO	P SURFACE	

BORING SBOID PS

PAGE______

CAPPED INSERTS ARE IN PICKTED BY A CHECK HARK.

CIRCLED SAMPLY & INDICATES SMIKE TO BE SAME TO LAB FOR AMALYERS

		ジェテラ	AF!)			Site: ng	-	Project	. 10.	PT 3:	
oject:						Contractor	<u> </u>					
		FUEE		_		Contractor:						
	_	: ENV			D -m-	<u></u>	ick MaCank		D MA		i avat	
			22-03	}								<u> </u>
							FICT SPECIA					
: S :	ل ال	:485 7	VAPE	Bore	nole Coordi	inates:			163 /	indiade.		
•	HE SP	AD ACE	CHE	MICAL IPLES		LITHOLO	GIC DESCRIPT	Ion		RAPHIC LOG	ISCS SOIL SSIFICATION	WELL L
Amo (pp	2	Interval (feet)	No.	Interval (feet)		 		بر تا				
3/0	8 4.0	24 25 30 35 60-65	, VW1- 7.5	73-84" 90-96" 96-902"	2'-2.5 SN:) DAMP, Wifi 2.5'-3 C SN 3'-C'-U.C A BROUNI EXEL OÓC 8.C-9.0 SN CLAY, DARK	DARK GREENS, LLRCCHASLD LO LLRCCHASLD LO LLD AS ABOVE S ABOVE SAN JO AND GRAV PCORLY ROUN L MAGGINS LANG SILT LBROWN WE	H-GRAY WELL S DOTE - UNICITIES IN WITH PEBBA DE PRAVEL, PEL, SILTY, MI DRA, POCRLY S MIDATES VIRY FINE GRA LL ROUNDES, U	CRTED, MIC DATCD FUR Y CRÁVEL MINOR CHÁ INOZ, CHÁI SORTAD, BA INOZD SAND IZLL SCRTED	MOCIS, CODÓR Y DARK MINICR DAMO	60 170 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	? 6	
				:								
			·					•		-		
						Source:	ES, 1994					
	Amorting Amorting 700 310 75 36	Amount (ppm)	HEAD SPACE Amount Interval (test) Amount 2.2.2.5 Size 2.2.5 Si	HEAD CHE SAM Amount Interval (test) Amount 22 2.5 Amount 22 2.5 Amount 3 5	HEAD CHEMICAL SAMPLES HEAD SPACE CHEMICAL SAMPLES Amount Interval (test) Amount (test)	Samplin STHUMAS TAYLOR BORENDE COORD HEAD SPACE CHEMICAL SAMPLES Amount Interval (teet) Amount (teet)	Sampling Method: S THOMAS TRYLOR Borehole Coordinates: HEAD SAMPLES LITHOLO Amount Interval (feet) No. Interval (feet) No. Interval (feet) Amount Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (feet) No. Interval (fe	Sampling Method: Spirit SPECIAL STHEMAS TAYLOR Borehole Coordinates: HEAD CHEMICAL SAMPLES LITHOLOGIC DESCRIPT Amount Interval (feet) Amount Inte	Sampling Method: SANT SPECIAL STRUMAN TAYLOR Borehole Coordinates: LITHOLOGIC DESCRIPTION LITHOLOGIC DESCRIPTION C-2: CANCELLY SAND, ORAY NOTINE FOR MY SERVED ANCHOR SPECIAL PROCESS OF ANCHOR SPECIAL PLANT	Sampling Method: Spirt Space Borehole Coordinates: LITHOLOGIC DESCRIPTION CHEMICAL SAMPLES CHEMICAL SAMPLES LITHOLOGIC DESCRIPTION CO-2: Chaveley Samp, Char No No Free Pack Of North Control Control Dang, Folk Of Control Control Dang, Folk Of Control Control Dang, Folk Of Control Control Dang, Folk Of Control Control Dang, Folk Of Control Dang, Folk Of Control Dang, Char Control Dang,	Sampling Method: Spart SPCCI Borehold die (4): STHUMAS TAYLOR Borehold Coordinates: LITHOLOGIC DESCRIPTION Amount Interval Communication of the Communica	Sampling Method: Spirt SPCCIA STHEMAS TAYLOR Borehole Coordinates: LITHOLOGIC DESCRIPTION CHEMICAL SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE

				all Mad	3//	19-1	1 of 1
			Bering/N			Site: PS-2 Project No: DA	2268
	tion:		RCILLO	V F (3	Contractor: ENGINEERING - SCIENCE	
	Proje		FCEE_			Drillers: FICK Mc COCKLE & TED MAY	
			ENV			Drilling Ended: 0 9-23-93 OSHA Protection	
	Meth		9-2			Sampling Method: SPAIT SPOON Borehole dia (a):	
rung	MELL	S = 1	AUGER	TAV	cs Bore	ola Coordinates: LS Altitude:	
Solo	136	3.11	, c.A.A.	17/			JE WELL L
GEPTH (feet)	VERY (X)		AU ACE	CHE	MICAL IPLES	LITHOLOGIC DESCRIPTION	USCS SOIL ASSIFICATION
5~	RECOVERY	Amount (ppm)	Interval (feet)	Na.	Interval (feet)	·	73
- - - 5-		824 1943 1945 1905	0-6" 24-27" 48-54"	PSZ- VANI- 4	53-35 54-60 60-64	CO-RO GRAVILLY SAUD, GRAY (NS-NO), VERY POOKLY SCLIED, ANGULAR, LOXER-UNICONSCLIDATED, ANIMA, FUEL COCK, PROBLEMY FILL MATERIAL RO-2.5 SILT WITH VERY FINE-GRAINED SAND, BOXIN ISH-BLACK, WILLSCRIED, DAMP, FUEL COCK, FIRM 2.5-3.3 SAND, GREENSH GRAY, FINE-GRAINED Z.5-3.3 SAND, GREENSH GRAY, FINE-GRAINED MINCL SILT, MOD SCRIING MOD ROENDED, DAMP IFUCL COCK 1355 SILTY SAND, SAND IS VERY FINEGRANICA	40 50 57 79 79 70 70 70 70 70 70 70 70 70 70
	1	340c 1624 420c 1304				DARK BIROWN, PERCHES, DAMP, FUEL ODER, UN- OCCASIONIAL PERCHES, DAMP, FUEL ODER, UN- CONSCINENTED. 515 -7.0 AS ABOVE BUT AVERAGE CRAIN SIZE INCREASING DEVINANCE OCCUPANTAL	72 24 90 55 4 14 30 50
10- 15-						SC-8.6 SILT AND CLAY, DARK BROWN, POSIBAY ORGANIC RICH, WET, FIRM, FUEL ODOR S.6-9.0 SIRD, GRAY, COARSE GRANED, WELL SCRTED, POORLY ROUNDED, WET, FUEL ODOR, UNCONSCI. DATED	
20	4					·	
25	-						
30	4 4 4					Source: ES, 1994	
	}						

IN I	NO I	.06	Boring/W	ell No.:	VA	19-2	Project	۸٥٠ ۷	1911	
	tion:		PCHIL) AF	В	Site: PS-2				<u> </u>
int/f	Prole		AFCEE			Contractor: ENGINCERING				
lling	Cont	ractor	ENV.	w & S	7	Orillers: RICK MCCOCKER	OSHA Pro			D
lling	Star	ted: ()	9-2	4-93		Orilling Ended: 0 4-24-93	Barehale			
Iling			Auger			Sampling Method: SPLIT SPOONS		Ititude:		
:olag	lat: '	5. T40	MAS T	AYLOR	Bore	hole Coordinates:				
(feel)	RECOVERY (X)	HE SP	ACE	CHEI	MICAL IPLES	LITHOLOGIC DESCRIPTION		GRAPHIC LOG	USCS SOIL LASSIFICATION	WELL LOG DATA
	RE	(ppel)	(feet)	Ha.	Interval (feet)	440	LAC DAMC	<u>مح.بر</u>	BLUS	
_		2760 689	C - C.5			OZ: C-CRAVEL, CRAY, POCRLY SETED, AND FURL COOR, UNCCNSCLIANTED. 6-27'SAND,	CRAY, MOD		12 12 10	
4		10,cr:4	z.c - z. s			WITH PERCENTACL CESILT INCREASING DOWN	MCD ROUNE	4	10.72	
4		924				GRAVEL IN DOTTOM SIX INCHES (42-48").		0 "	0	
5	1	830°	4.0 -4.5	FAPZ-	4.5-6.0	4-6 AS ABOVE WITH GRAIN SIZE DECREAS WARD, FUEL ODOR	ING DOLLAN -		بد رئ	
		zsai	6.0-6.1	. "			ROUNDED	1.	J	
	1	187			ł	6-72 VERY FINE GRAINER SAND AND LINE MCDERATE TO GOOD SCRING, DAMP, 44	AUTO CORRECT	1	37 5C	
-	•				-	FUEL ODOR COUNSIONAL PREGLAS	,,,,,		lent 2	
10-]					T.D. 7'2"				
•	-							.		
•	1	Ì	ļ							
•	1		İ	1	}					
15-]									
	4	1								
	1	ł								
	1				1					
20-	-		İ						1	
	1		}		1				1	
	1							1	1	
	1					·	•			
25-	1		1							
	4		1		1			1	-	
	4	1				1				
ĺ	1					Source: ES, 1994			기	
30			1							
"	4		1.							
1	4			1	1					}
	4									
ł	4	1		1						

	71.10	100	Dadas /u	al Ma	• 1/	MP-3								1 of 1	
								Site	PS-2		Proje	ect N	0:0(2	L8 ·	
			RCHILL				Contrac	tor: ENG				•• • •	•		arvi. A
			FCRE				Orillare	··RICK	Va Cana	16. 8	TED	MAY	٠.,		· · · ·
	_		ENV.			Delition	Ended:		8-93		AHED	Prati	ection	Level:	
			928					SPAIT			Boreh	ale d	ia (a):	2"	<i>L.</i> .
			LUGER					J			1	IL E.	itude:	**** * **.	
Geolog	lst:	S. THO	MAS TH	YLCK	Dore	hole Coord		<u> </u>					. :	. 2	· .
	8	HE	AD	CHE	HICAL							l	. 69	SOL	WELL L
돈모			ACE		PLES	٠	177	HOLOGIC D	escrip	TION	.•		볼.	SSC	
(feet)	RECOVERY			-		-	647			•	• • • • • • • • • • • • • • • • • • • •	1	SAAPHOC	SSI	
\$	3 E0	Amount (ppm)	Interval (feet)	No.	Interval (feet)									9	. •
		1100	0-05			0-1	5/W.3 G	RAT - GREA POCRLY I	ECHAN	KRSE GRAIN	ULI), ,	X.T-		50	
1		1 1 2 1 1 2 2 1	,			E A A	AIG S	SULL MAN	" 11 A)	へい ひらひょい	WATE)		21	:
• •		6200	2,0-25 3:-3.5	i		PROBABLI	FILL,	CKAVKE AF JKAU	20 /N 2	1777A.C		.	-	22 25 30	: Notice
,] -		10000+	4.5-5.0			2-4 5	CNA AND	SET, COAR ONAL PEB	SE BRA	NED, VEI	ty <i>120</i> 0.	RAY		7.	
5-		10 CCC 1	5.5-40			Nacia -		A HAICOA	ICAL INA	ተሥ ሕ				26 35	
]	7	2700	6.5-7.0		İ	4-6 SI	AND AND OF CLE	SILT A	AT 5'	EWIN		~		, <u> </u>	
	•.	HSO	7.5-8.0			1 0 00	TY CAN	A 28 A	BOVE 4	UTA S/LT	MORC	አ <u>የ</u> -		30 .	
Mar.	~~ ·					STRONG	HAN WILL	ND FUE	L UDOR	(SU-GHTL	Y LES	,	:		
10-															•
		•				1						:	•	•	
.]		**	.										•.		
٠ -	.:	us .													
15-				İ								l			
] .			•									İ		-
		٠٠						•					:	ŀ	
•	1	1	*		1	1					•			ļ ·	
20-	- 7	7.3			1]							*.		
- (i.e.								•			٠		100		. :: :
	•									•		•	200	.:	
۔ ء .	·		٠.	1			Sour	ce: ES, 19	004	•	•			.	
25-	1	1					Sout	cc. E3, 1	774			•			
]	:			1							•			
	:			1.	L	1	•			•		•	٠٠		
	4		, •	1								:			
30-	┧	y .				1					•	•••			
1	1			1		1					•			15.	
				1		1					. ·		···.	: :	
] ``.		1.	1.							•	•	3 3		.

e sign are are

WELL DRILLING LOG

PROJECT		FAF	B 41584-5	04-0	7		WELL ID.	MW-229	PA	GE 1	OF 2	2
DATE(S) DR	OILLED.		-14-94	-			RIG TYPE	INGERSOL RAN	D A300/14	10# C	ORE	DR.
GEOLOGIST/			CH HALL				LOCATION	F3-2				
			BUSH				WATER LEVEL	MOIST AT 5.5'	, SATURATE	D AT	8'	
GEOLOGIST/	UBCONTRACTOR	······································	/IRONMENTAL	wes			TOTAL DEPTH OF HOLE	16.5'				
	UBCUNIKACIOK		TIKOMINE ITTE	- "	,. 				T			\dashv
DEPTH (II) BGS AS DRILLED	RECOVERT (%) BLOWS/6in. 140f HAMMER	BOREHOLE METER READING	SAMPLE 10.	SAMPLES	CENERAL LITHOLOGY		MATERIALS DESCR			DIAG	RAM	
10 3 10 10	11 15 22 16 23 21 N5tab	2–3 ppm	PS02229S0			BOTTI BOTTI GRAN SANG AND CON SCANG (TRA	OM 2-4" WET IN CORE E OM 4" COARSE BASALTIC IULAR SAND ~30% GRANU - UPPER 6" MIXED TWO DLOGIES (SLOUGH?). MIXER % PEBBLOS. BOTTOM 1" \ 10 TO SILT. WET. WET (8' TO 9.5'). BASALT TINUED. SAMPLE = 24 pp - STIFF CLAYEY SILT FROI TERED SMALL GRAINS OF CE). LIGHT REDDISH-BRO' CLAY BECOMING REDUCE LIFES OF GRAY IN LOWER JT 10' DOWN.	Y. SLIGHTLY CLAYEY I. BARREL. GREEN TO GRAY. JILES. PREVIOUS D BASALTIC GRAVEL ~ 30% COARSE SAND JERY CLEAN, FINE IC GRAVEL JIC G	CON-CRETE BENT-ONITE SAND FLIER PACK	R-OER	P > C OCREEZ	10 10 10 10 10 10 10 10 10 10 10 10 10 1
E11 E12 E12	25 10 27 30	83 ppm		mhammhananh		SW GRA	CUNIFORM CONSISTENCY. — CORE = 0 ppm. UNIFO	OOMINATELY BASALTIC	0			12
10 11 12 13 14 15	3 20 v. 35	3 ppm		mulimm		RED STO	ORM VERY COARSE SAND HASIZES BASALTIC COMPO AND ORANGE GRAINS. PPED SPLIT SPOON. AUGE D SIMILAR TO ABOVE OBS G TO 16'.	ISITION, WITH YELLOW				11 12 13

Source: ICF, 1995

WELL DRILLING LOG

PROJECT	FAFB 41584-504-0	7	WELL ID.	MW-229	PAGE 2 OF 2
DATE(S) DRILLED	11-14-94		RIG TYPE	INGERSOL RANI	D A300/140# C.D.
GEOLOGIST/ENGINEER	MITCH HALL		LOCATION	PS-2	
GEOLOGIST/ENGINEER	JIM BUSH		WATER LEVEL	MOIST AT 5.5',	SATURATED AT 8'
DRILLING SUBCONTRACTOR	ENVIRONMENTAL WES	it	TOTAL DEPTH OF HOLE	16.5"	
		<u> </u>			
DEPTH (II) BCS AS DRILLED RECOVERY (X) BLOWS/6in 140J HAMNER BORHCLE METER PERADING	SAMPLE 1D. SAMPLES	GENERAL LITHOLOGY	MATERIALS DESCRIPTION		WELL DIAGRAM
100 116 117 121 138 14 151 16 17 18 19 19 19 19 19 19 19 19 19 19		SOME O BOTTO TOTAL O AS D	HEAVING SAND AT BOTTOM. (~ M) DEPTH = 16.5' BELOW GROUN RILLED. AGS SAND, 3 BAGS HOLE PLUG		SAND 161 162 173 184 185 195 195 195 195 195 195 195 195 195 19

Source: ICF, 1995

APPENDIX B - 1b GROUNDWATER BTEX AND TPH RESULTS

4-87

Tablo 4-19. Historical Analytical Results for Groundwater - Site OU-1 Total Petroleum Hydrocarbons, and Volatile Organic Compounds

ï

The Same of the	Fairchild AFB	Id AFB	;	,		dual	qual	TYND	מחאר.		qual	QUAL	QUAL
1,	Ground	cal Analytical Result ater Samples	ts, Site OU-	÷.	:	•	:	:	:			:	. :
SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 10744 THOROGRAMSONS. SAMPLE NAMBER AGDNCY SAMPLE 11/18/18	Total P. (ug/L),	etroleum Hydrocarbons Volatile Organic Com	s (ug/L), Co npounds (ug/	mmon Anions L)	: : :	:::	: : :		• • •		>		
CH-86-6782 DOD 11/18/86 2.7 J 34.2 6.4 U 619 4.8 28.7 1.1 GH-87-6782 DOD 11/18/86 4.9 J 6.9 U 6.0 U 6.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U 1.7 5.0 U	₩ B.L. No.	SAMPLE NUMBER	AGENCY	SAWPLE DATE ##/dd/yy	AL Roleum Rocarbons	1,2-DICF BENZENE 	LORO1,3-DI	CHL0R0	1,4-DICHLOROBEN BENZENE	¥ IZENE . 43-2	EHYL 8ENZENE 180-41-4	TOLUENE	
Chicago	M-38	GN-86-8282	000	11/18/86	2.7 J	Ŕ	4.2	9.4 C	619	8	7 86		"
PSS-GT-LW33-883 DOD 64/18/69 1.5 J 25 U 25 U 25 U 414	MY-38	GN-87-8382	000	11/19/87	Ø.5 U	_	8.5 U	0.5 U	9.5 U	8,5	5. 69	-	
PSB-CF-M733-8840 DOD 84/18/99 1.3 J 25 U 25 U 26 U 26 U 26 386 348 46.	M-38	PS8-CY-W739-663	000	64/18/83	4.9 J		5 U	O 9		17		· ɔ	2 2 3
PSB-GY-M738-885 DOD 81/26/89 1.8 J 5 U	M-36	PS8-CY-NY38-884D	6	64/18/89	1.3 J		25 U	25 U	25 U	41	448		33 R
CN-F7-2364 DOD 11/18/85 E-9 J 48 136 788 198 348 CN-F7-3364 DOD 11/28/87 E-5 J 18 J 418 27 18 J CN-F7-3364 DOD 11/28/87 E-5 J 13 J 428 65 J 13 J FSB-C7-M731-883 DOD 64/18/89 E-3 J 25 J 25 J 25 J 25 J 25 J 1308 FSB-C7-M731-883 DOD 64/18/89 E-3 J 25 J 25 J 25 J 25 J 25 J 25 J 25 J 25 J FSB-C7-M731-883 DOD 64/18/89 E-3 J 25 J 2	M-38	PS8-CM-WT38-885	<u>e</u>	67/28/89	1.8 J				6 U	26	306		32 R
CAN-CI-LOSA COLO 11/20/87 Colo 13 Colo 13 Colo 14 Colo Co	16-31	GM-80-8284	e e	11/18/88	D :		48	136	788	. 198	348		3.1
PSB-GT-LW13-883 DOD 84/126/99 9.3 J 25 U 25 U 25 U 1388 PSB-GT-LW13-884 DOD 87/126/99 6.3 J 25 U 25 U 25 U 25 U 1388 PSB-GT-LW13-884 DOD 87/126/99 6.4 J 25 U 25 U 25 U 25 U 25 U 25 U PSB-GT-LW13-885 DOD 87/126/99 9.2 U 9.5 U 25 U 25 U 25 U 25 U PSB-GT-LW13-885 DOD 87/126/99 9.2 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U PSB-GT-LW13-885 DOD 84/126/99 9.2 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U PSB-GT-LW15-891 DOD 84/126/99 9.2 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U PSB-GT-LW15-892 DOD 84/126/99 9.2 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U PSB-GT-LW16-891 DOD 84/126/99 9.2 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U PSB-GT-LW16-891 DOD 84/126/99 9.2 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U PSB-GT-LW16-891 DOD 84/126/99 9.2 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U PSB-GT-LW16-891 DOD 84/126/99 9.2 U 9.5 U	M-31	GN-87-6354D	8 8	11/28/87			18 U	0 5 0 5	410	27	18		10 O
PS8-CT-LW131-864 DOD 61725/89 5.4 J 25 U	LM-31	PS8-CW-LN131-863	8 8	64/18/89) e		25 U	25.0	974	20 c	5	-	ے ا
PSB-CM-MY31-885D DOD 87/25/89 4.9 J 25 U 25 U 25 U 538 138	KM-31	PS8-CW-LNT31-864	000	67/25/89	5.4 J		25 U	25 U	25 U 25 U	25 1			20 00
CAH-86-9283 DDD 11/18/96 1U 6.4 U 6.3 U 6.2 U 6.5 U 6.2 U 6.5 U	IVY-31	PS8-CW-MM31-8850	000	67/25/89	4.9 J		25 U	25 U	25 U	25 L			
PSS-CN-MYSS-681 DOD 64/18/69 6.8 J \$ 5 U \$ 6 U \$ 6.8 J \$ 6.8	MY-32	CN-86-8283	<u>0</u>	11/18/86	1 C		1.4 U	Ø.4 U	6.3 U	6.2 €			
PS2-CN-LWISS-881 DOD 64/25/89 6.8 J 5 U 5 U 14 13 1.6 PS2-CN-LWISS-882 DOD 84/25/89 6.6 J 6.0 J 6.0 J 14 21 6 PS2-CN-LWISS-882 DOD 84/25/89 6.6 J 6.5 U 6.5 U 6.5 U 8.5 U	M-32	PS8-CT-M32-882	000	64/18/89	0.5 N	9	1.5 U	6.6 U	Ø.5 U	6.5			89.
PS2-GT-LMTSS-882D D0D 84/25/89 8.6 J 6.6 J 6.5 U <td>M-55</td> <td>PS2-C#-M#55-881</td> <td>66</td> <td>64/25/89</td> <td>6.8 J</td> <td>give.</td> <td>5 U</td> <td>9 n</td> <td>5 U</td> <td>16</td> <td>19</td> <td></td> <td>. 8 JR</td>	M-55	PS2-C#-M#55-881	66	64/25/89	6.8 J	give.	5 U	9 n	5 U	16	19		. 8 JR
PS2-CM-LMT66-881 DOD 84/25/89 8.6 J 8.5 U	MT-55	PS2-CW-LW55-8820	000	64/25/89			n :	2 0	5 U	7	21		ec 10
PS2-CM-MYSG-882 DOD	25.75	DC2-CW-MESS-SSS	3 5	68/52/19	7 : 10 :	59 (9.5 0	9.5 U	53			.6 JR
PSS-CM-INT66-881 DOD #4/26/89 #5.10 #5.0 #5.0 #5.0 #5.0 PSB-CM-INT66-881 DOD #4/26/89 #5.10 #5.0 #5.0 #5.0 #5.0 #5.0 PSB-CM-INT66-881 DOD #4/26/89 #5.1 #5.0 #5	14-58 14-58	PS2-C#~WS6-882	3 8	62/52/83	0.20	S) : 		9.50 0.50	9. S			.6 JR
PS8-CM-LM766-001 DOD 04/26/89 0.2 U 0.5 U	M-56	PS2-CW-MW56-8830	•	62/52/09	0.2.6) = 0 =	o = 0		9.6			12 R
PSB-CW-AM66-882 DDD 87/25/89 8.2 U 8.5 U 6.5 U 8.5 U	M-68	PS8-CY-WY66-881		84/26/89	8.2 U		9 n	D 2 0		9 6			ع ج
PSB-GW-MM67-881 DOD 64/25/89 6.5 J 5 U 5 U 438 27 PSB-GW-MM68-881 DOD 97/25/89 3.7 J 25 U 25 U 25 U 418 25 PSB-GW-MM68-881 DOD 94/25/89 6.3 J 5 U	M-68	PS8-CW-MM66-662	000	07/25/89	8.2 U	65	.6 U	0.5 U	9.5 U	9.5 U	. 6		
PS8-GW-MM67-882 D0D 87/26/89 3.7 J 25 U 25 U 25 U 418 25 PS8-GW-MM68-881 D0D 84/25/89 6.3 J 5 U 5 U 5 U 5 D0D 87/25/89 1.8 J 5 U 5 U 5 U 158 5	M-67	PS8-CW-MM67-881	900	64/25/89	6.5 J		5 U	9 C	S U	2			
PSB-GW-MM68-001 000 04/25/89 6.3 J 5 U 5 U 5 U 5 SP 5 FSB-GM-MM68-002 000 07/25/89 1.8 J 5 U 5 U 5 U 150 5	M-67	PS8-CW-IM67-882	99	Ø7/26/89	3.7 J		25 U	25 U	25 U		418		
PS8-CM-LM68-882 DOD 87/25/89 1.8 J 5 U 5 U 5 U 5	M-68	PS8-CW-MM68-881	98	04/25/89	6.3 J		S U	5 U	5 U	S U	328		
	M-68	PS8-CW-LW68-662	8	07/25/89	1.8 J		5 U	o 0	2 C	S U	158		

Source: SAIC, 1990

1 4-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. (Continued)	
300		

						QUAL	MAL		GUAL
Fairchi	Fairchild AFB				qual	:	:		:
Histori	Historical Analytical Results, Site OU-1	s, Site OU-	-		:	:			;
Groundw	Groundwater Samples				:				
Total P	Total Petroleum Hydrocarbons (ug/L), Common Anions	(ug/L), Cor	MRON Anions		_	-		-	:
(ug/L),	(ug/L), Volatile Organic Compounds (ug/L)	1/6n) spunod	.			>>			: :
Ç		0	2			> :	•	>	:
1	SAMPLE NUMBER	AGENCY	SAMPLE	XMENES	P-XYLENE	XYLENE	•	0-XYLEVE	:
g			DATE	(TOTAL)	:	:	:		:
			mm/dd/yy		:	:	:		:
				1338-28-7	:	:	:		:
M-38	GN-86-8282	000	11/18/88		38.3		49.8	78.5	
M-38	GN-87-8382	000	11/19/87	268					
M-38	PS8-CW-WW38-663	000	64/18/89	538					
M-38	PS8-CW-WW38-884D	000	64/18/89	1188					
MM-38	PS8-CW-MM38-885	000	67/28/89	828					
MY-31	GN-88-8284	000	11/18/88		0.3 U	ם	3150	1188	
MY-31	GN-87-8384	000	11/20/87	1800					
MT-31	GN-87-8354D	600	11/20/87	2388					
M-31	PS8-CW-WW31-883	000	64/18/89	4400					
MY-31	PS8-CW-MW31-884	000	67/25/89	3488					
M-31	PS8-CW-MM31-085D	000	07/25/89	3888					
M-32	GN-86-8283	000	11/18/88		9.3 U	5	0.3 ∪	6.9	ם
M-32	PS8-CW-MM32-882	000	64/18/89	1 0	D				
M-55	PS2-CW-MW55-881	000	64/22/89	72	ننتر				
M-55	PS2-CW-MM55-8820	. 000	64/22/89	72	ا الم				
M-55	PS2-CW-MWS5-883	000	07/25/89	150					
MY-56	PS2-CM-MM56-001	000	04/25/89	7					
MY-58	PS2-CM-WY56-882	000	67/25/89	-					
MM-56	PS2-CW-MW56-883D	000	67/25/89	-	ם			į	
Mr-68	PS8-CW-MM86-001	90	04/26/89		J				
MY-68	PS8-CW-WW66-882	000	97/25/89	1 0	7				
M-67	PS8-CW-WW67-001	000	04/25/89	1988					
MY~67	PS8-CM-WW67-882	000	67/26/89	1600					
M-68	PS8-CW-MM68-881	000	04/25/89	996					
MY-68	PS8-CW-HW68-882	000	07/25/89	478					
	••							Source	Source: SAIC,

TABLE K-3.6

TOTAL PETROLEUM HYDROCARBON AND VOLATILE ORGANIC CHEMICAL MONITORING DATA. SITE PS-2 FAIRCHILD AFB, WASHINGTON

NCD					Sampling Round			
MCD NCD LLS mg/L	Montoning Well	R3	R4	R6	R7	R8	R9	. R11
HCD NCD HQL Rel 12 Rel 12 Rel 13 Rel 13 Rel 14 Rel 15 Rel 150 Rel	PGRADIENT	WELL						
mg/L TPH = 2 mg/L EB = 130	95		NCD	NCD	NCD			NCD
mg/L 1PH = 2 mg/L 8 = 53 EB = 12 EB = 12 X = 270 MCD MCD MCD MCD MCD MCD MCD MCD MCD MCD	OWNGRADIE	NT ALLUVIAL MOMT	ORING WELLS					
HCD HCD HCD TPH = 16 mg/L B = 150 EB = 530 X = 1,200 CB = 4	. %	TPH=6.8mg/L 8=15 E8=21		TPH = 2 mg/L B = 12 EB = 12	B = 53 EB = 180 X = 270	·		8 = 10 E8 = 13 X = 25
HCD 1PH = 16 mg/L 8 = 150 EB = 530 X = 1,200 CB = 4 CB = 4	301	7/ E V	201			NCD	NCD	
1PH = 16 mg/L B = 150 E = 530 X = 1,200 CB = 4	20					HCD	NCD	E8 = 5 X = 12
CB=4	109					TPH = 16 mg/L B = 150 EB = 530 X = 1.200	TPH = 6.8 mg/L B = 34 X = 290	TPH = 4.4 B = 40 EB = 190 X = 420
tus	9					C8=4	Ga 2	CB = 18
DOWNGRADIENT BASALT A MOMITORING WELLS 178	176		-			-		TPH = 110 B = 2,600 EB = 1,200 X = 5,000
DOVYNGRADIENT BASALT A MOMITORING WELLS 178	171							TPH = 27 8 = 240 EB = 520 X = 2,200
178	DOWNGRAD	ENT BASALT A MONIT	STIAM DINOL					
	178							E8=11 X=40
	9							¥C0

No VOCs detected Q V V

~ @ ≅ ~ <u>F</u>

Benzene (µg/L)
Chlorobenzene (µg/L)
Ethylbenzene (µg/L)
Xylenes (µg/L)
Total Petroleum Hydrocarbons (mg/L)

TABLE 3-6

QUARTERLY OVERBURDEN AQUIFER, GROUNDWATER SAMPLE RESULTS (μ g/L) AUGUST 1994

FLOATING FREE-PRODUCT RECOVERY TREATABILITY STUDY ON-BASE PRIORITY ONE OPERABLE UNIT, FLIGHTLINE OPERABLE UNIT, SITE PS-2 FAIRCHILD AIR FORCE BASE, WASHINGTON

Analyte	MW-55	MW-110	MW-176	MW-177	MW-177A	MW-177B*
Benzene	20	5 U	1200	120 U	5 U	5 U
Toluene	5 U	5 U	2500	120 U	5 U	5 U
Ethylbenzene	31	5 U	580	590	5 U	5 U
m/p Xylenes	8	5 U	2000	2400	5 U	5 U
o-Xylene	5 U	5 U	2500	120 U	5 U	5 U

Analyte	MW-222	MW-224	MW-228	MW-228A	MW-228B	MW-228C**
Benzene	44	11	220	410	67	66
Toluene	5 U	5 U	120 U	250 U	5 U	5 U
Ethylbenzene	14	94	240	430	67	68
m/p Xylenes	9	38	970	2000	190	180
o-Xylene	5 U	5 U	120 U	250 U	7	7

- Duplicate sample from MW-177A.
- ** Duplicate sample from MW-228B.

TABLE 3-5

AUGUST 1994 QUARTERLY GROUNDWATER SAMPLING RESULTS (μ g/L) FLOATING FREE-PRODUCT RECOVERY TREATABILITY STUDY ON-BASE PRIORITY ONE OPERABLE UNIT, FLIGHTLINE OPERABLE UNIT FAIRCHILD AIR FORCE BASE, WASHINGTON

	Gasoline Petroleum Hydrocarbons	Diesel Petroleum Hydrocarbons
MW-55	890 J	200
MW-110	260 J	100 U
MW-176	25,000 J	100,000
MW-177	11,000 J	7,800 J
MW-177A	360 J	100 U
MW-177B*	550 J	100 U
MW-222	6905	1000
MW-224	1,400 J	830 J
MW-228	25,000 J	100,000 J
MW-228A	490,000 J	190,000 J
MW-228B	1,600 J	770
MW-228C**	2,100 J	710

- Duplicate sample from MW-177A.
- ** Duplicate sample from MW-228B.

TABLE 3-6

QUARTERLY OVERBURDEN AQUIFER, GROUNDWATER SAMPLE RESULTS (μ g/L) NOVEMBER 1994

FLOATING FREE-PRODUCT RECOVERY TREATABILITY STUDY ON-BASE PRIORITY ONE OPERABLE UNIT, FLIGHTLINE OPERABLE UNIT, SITE PS-2 FAIRCHILD AIR FORCE BASE, WASHINGTON

Analyte	MW-55	MW-109	MW-110	MW-176	MW-177	MW-177A
Benzene	8	12	5 U	2100	100 U	5
Toluene	5 U	5 U	5 U	500 U	100 U	5 U
	12	550	5 U	2400	420	5 U
Ethylbenzene	5 UJ	930 J	5 U	11,000	1900	5 J
m/p Xylenes		5 U	5 U	500 U	100 U	5 U
o-Xylene	5 U			500 U	100 U	5 U
 Chlorobenzene 	5 U	5 U	44	300 0		

Analyte	MW-222	MW-224	MW-228	MW-228A	MW-228B
Benzene	79	52	490	2000	28 J
Toluene	5 U	5 U	83 U	250 U	5 U
	26	140	420	1400	22 J
Ethylbenzene	5 U	180	2000	5400	77 J
m/p Xylenes	5 U	5 U	83 U	250 U	5 U
o-Xylene		5 U	83 U	250 U	5 U
Chlorobenzene	5 U	5 0	000	1	

Source: HNUS, 1995b

TABLE 3-5

NOVEMBER 1994 QUARTERLY GROUNDWATER SAMPLING RESULTS (μ g/L) FLOATING FREE-PRODUCT RECOVERY TREATABILITY STUDY ON-BASE PRIORITY ONE OPERABLE UNIT, FLIGHTLINE OPERABLE UNIT FAIRCHILD AIR FORCE BASE, WASHINGTON

	Gasoline Petroleum Hydrocarbons	Diesel Petroleum Hydrocarbons
MW-55	120	250 U
MW-109	4800	2,100
MW-110	200	250 U
MW-176	22,000	75,000
MW-177	11,000	13,000 J
MW-177A	270	250 U
MW-222	8500	380
MW-224	1900	1100
· MW-228	31,000	54,000
MW-228A	45,000	110,000
MW-228B	1300	400

Source: HNUS, 1995b

Source: ICF, 1995

SUMMARY OF PURGEABLE AROMATIC VOLATILE ORGANICS (SW5030/SW8020) LABORATORY ANALYSIS OF SAMPLES COLLECTED AT PS-2 IN NOVEMBER 1994 TABLE 4-2.

		4		કુંદ	EN	ENVIRONMENTAL SAMPLE	MPLE 109		110	
	PRACTICAL	PS02055W221	PS02055W222	PS02056W23	PS02357W323	PS02105W24	PS02109W25	PS02109W25 ²	PS02110W26	PS02110W262
PARAMETERS	LIMIT	108467-0004-SA	108467-0004-SA	108467-0005-SA	108467-0010-SA	108467-0006-SA	108467-0004-SA 108467-0004-SA 108467-0005-SA 108467-0010-SA 108467-0006-SA 108467-0007-SA	108467-0007-SA	108467-0007-SA 108467-0008-SA	108467-0008-SA
				LABORATOR	LABORATORY ANALYSIS*					
Benzene	0.50 µg/L				1					1.8 µg/L
Toluene		1.0 U µg/L	_		1.0 U µg/l.	1.0 U µg/L	20 U pg/L	20 U 1/8/L		1.3 µg/L
Ethylbenzene	1.0 µg/L	18 JOA	18 µg/L						7	1.0 U µg/L
Xylenes, Total	1.0 µg/L	7						870 µg/L	26 µg/L	22:0 µg/L
Surrogate Bromofluorobenzene	29-137%	%98	% 98	101%	106%	100%	% 66	%06	%26	91%
Diesel Fuel #2	0.50 mg/L			NA V	¥2	A N	NA NA	A A	NA AA	NA
Jet Fuei Unknown Hydrocarbon	0.50 mg/L 0.50 mg/L	Y Y	₹ Ş							-
Surrogate o-Terphenyl	75-125%	¥	NA NA	NA	NA	NA	NA	NA	NA	NA
				FIELD A	FIELD ANALYSIS ^{\$}					
Conductivity pH Temperature	0-50,000 umhos/cm 1-14 0-100°C	шэ/sо	550 umhos/cm 6.88 11°C	s/cm	480 umhos/cm 6.55 13°C	800 umhos/cm 6.87 8°C	550 umhos/cm 8.89 11°C	550 umhos/cm 6.69 11°C	os/cm	850 umhos/cm 6.85 10°C
Turbidity	0-1,000 NTU	287 NTU		762 NIU					OIN CC2	OIN CC2

SUMMARY OF PURGEABLE AROMATIC VOLATILE ORGANICS (SW5030/SW8020) LABORATORY ANALYSIS OF SAMPLES COLLECTED AT PS-2 IN NOVEMBER 1994 (Continued) LE 4-2.

		95	** <u></u>	981	ENVIRONMENTAL SAMPLE	SAMPLE	230		
	PRACTICAL	PS02178W27	PS02179W28	PS02180W29	PS02229W30	Psoznagwao ²	PS07230W31	PS02230W312	PS02531W32 ⁶
PARAMETERS	COANTITATION	108781-0001-SA	108781-0002-SA	108467-0009-SA	108781-0003-SA	108781-0003-SA	108838-0002-SA	108781-0003-SA 108781-0003-SA 108838-0002-SA 108838-0002-SA	108838-0003-SA
)	LABORATORY ANALYSIS	82					
Benzene									Y?
Toluene									
Ethylbenzene	1.0 µg/l.	1.0 U J. J. J. J. J. J. J. J. J. J. J. J. J.	1.0 U 1.0 L	1.0 U µg/L	21 100/L 7.4 100/L	14 µg/L 8.0 µg/L	2.7 pg/L 1.0 U pg/L	1.0 U pg/L	Y Y
The County									
Surrogate Bromofluorobenzene	29-137%	85%	100%	100%	116%	102%	130%	106%	ĄV
Diesel Fuel #2				NA	0.50 U mg/L	NA	0.50 U mg/L		0.50 U mg/L
Jet Fuel Unknown Hydrocarbon	0.50 mg/L 0.50 mg/L	A A	N N	NA N	0.87 mg/L y		0.50 mg/L y	<u> </u>	0.53 mg/L y
Surrogate o-Terphenyl	75-125%	V	V	NA	88%	NA	100%	NA	116%
			FIELD ANALYSIS				:		
Conductivity pH	0-50,000 umhos/cm 1-14	mhos/cm	nhos/cm	180 umhos/cm 7.67	625 umhos/cm 8.22	625 umhos/cm 8.22	650 umhos/cm 7.02	650 umhos/cm 7.02	650 umhos/cm 7.02
Temperature Turbidity	0-1,000 NTU*	11°C 105 NTU	10°C 963 NTU	14°C 142 NTU	77	87.2 NTU	,		171 NTU

Source: ICF, 1995

Contract No.: F41624-94-D-8052 Delivery Order: 12 Baxe: Fairchild AFB
Site: PS-2
Method Extraction: WTPH-D
Method Analytical: WTPH-D

				,					
Units: µg/L									
Data Validation SDG: 950433)433								
			Envir	Environmental Samples	nples		Field blanks		Method blanks
			Field ID	Field ID	Field ID	Trip	Equip	Ambient	
		Action	Lab ID	Lab ID	Lab ID	Field ID	Field ID	Field ID	Field ID
Parameters	PQL		Column 1	Column 2	Primary	Lab ID	Lab ID	Lab ID	Lah ID
					0495PS2MW109				
					9504181				
TPH-Diesel	200	000			3900				
					1001/11/10043070				
					(495P52MW109A				
					9504182				
TPH-Diesel	200	0001			5300				
					0495PS2MW179				
					9504183				
TPH-Diesel	200	1000			270				
					0495PS2MW178				
					9504184				
TPH-Diesel	200	0001			270				
					0495PS2MW110				
					9504189				
TPH-Diesel	200	0001			720				

Surrogate: Octacosane, Limits 50-150

Analytical Results

Base: Fairchild AFB					•	Contract No.: F41624-94-D-8052	1624-94-D-80	152	
Site: PS-2					-	Delivery Order: 12	12		
Method Extraction: not applicable	plicab	ē							
Method Analytical: 8020									
Matrix: groundwater			,						
Units: ug/L									
Data Validation SDG: 950433)433								
	_		B	Environmental Samples	Samples		Field blanks	_	Method blanks
			Field ID	Field ID	Field ID	Trip	Equip	Ambient	
		Action	Lab ID	Lab ID	Lah ID	Field ID	Field ID	Field ID	Field ID
Parameters	POL	POL Level*	Column 1	Column 2	Primary	Lah ID	Lab ID	Lah ID	Lab ID
an an an an an an an an an an an an an a	<u> </u>								
					0495PS2MW55				
					9504188F				
Benzene	_	~			91				
Chulbenzene		*			61				
Meta P. Daes Vulenes	_	*			1.7				
ואובום כל רמום האוכווני									
-					0495PS2MW110				
•					9504189F				
Benzene		~			2.2				
7.1.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	_	*			2.1				
Chioronenzene	-				,				
Ethylbenzene		*			0.0				
Meia & Para Xylenes	_	*			1.0				

Surrogate: bromofluorobenzene, Limits 69-126

Method Extraction: not applicable Method Analytical: 8020 Matrix: groundwater Environmental Samples Data Validation SDG: 950433 Environmental Samples Parameters Action Lab ID Lab ID Lab ID Parameters PQL Level* Column 1 Column 2 Pri Parameters PQL Level* Column 2 Pri Parameters I *** 0495PS Benzenc I *** I Column 1 Column 2 Pri Benzenc I *** Orthox Yelenes I *** I.3-Dichlorobenzenc I *** I.2-Dichlorobenzenc I *** I.2-Dichlorobenzenc I *** I.2-Dichlorobenzenc I *** I.2-Dichlorobenzenc I *** I.2-Dichlorobenzenc I *** I.3-Dichlorobenzenc I *** I.3-Dichlorobenzenc I ***	action: not applicable ytical: 8020 adwater				7				
S + + + + + + + + + + + + + + + + + + +	ytical: 8020					,			
Environmental S	ndwater								
Action Lab ID Field ID Action Lab ID Lab ID Lab ID Lab ID Lab ID Lab ID Lavel* 5 ** ** ** ** ** ** ** ** **			÷			•			
Field ID Field ID Action Lab ID Lab ID Lab ID S *** *** *** *** *** *** *** *	502 CDG: 050413								
eters PQL Level* Column 1 Column 2 Kylenes 1 *** *** Kylenes 1 *** *** Kylenes 1 *** *** Kylenes 1 *** *** Kylenes 1 *** *** Kylenes 1 *** *** Kylenes 1 *** ***	1011 3DG: 7303		8	nvironmental	Samples		Field blanks		Method blanks
Action Lab ID Lab ID eters PQL Level* Column 1 Column 2 Kylenes 1 *** *** Kylenes 1 *** *** Enzene 1 *** *** Enzene 1 *** *** Kylenes 1 *** ***				Field ID	Field ID	Trip	Equip	Ambient	i
eters PQL Level* Column 1 Column 2 Kylenes 1 *** *** Kylenes 1 *** *** enzene 1 *** *** enzene 1 *** *** Kylenes 1 *** ***		Action	Lab ID	Lab ID	Lab ID	Field ID	Field ID	Field ID	Field ID
Xylenes 5	PQL	Level*	Column 1	Column 2	Primary	Lah ID	Lab ID	Lab ID	Lab ID
Xylenes 5									
Xylenes 1 5 1 ** 1 ** 1 ** enzene 1 ** enzene 1 ** enzene 1 ** Xylenes 1 **					0495PS2MW109A				
1 5 1 5 1 1 1 1 1 1					9504182				
Xylenes 1 ** 1 ** 1 ** 1 ** enzene 1 ** enzene 1 ** Xylenes 1 **	-	v			21				
Xylenes 1 ** s 1 ** enzene 1 ** enzene 1 ** xylenes 1 **	•	` #			1.2				
Xylenes 1 ** s 1 ** enzene 1 ** enzene 1 ** enzene 1 ** Xylenes 1 **	_	;			001				
* * * * * * *		*			071				
nzene ** nzene ** inzene ** sylenes **	Xylenes 1	*			000				
nzene ** inzene ** inzene ** inzene ** inzene ** inzene **	les l	*			7.0				
* * *	henzene 1	*			17				
* *	henzene I	*			4				
#	openzene l	*			37				
*					0495PS2MW178				
* *					9504184				
	a Xylenes 1	*			1.3				
	***				0495PS2MW180				
					9504180				
Meta & Para Xylenes	a Xvienes	*			1.7				

^{*} Numeric action level values from ROD ** Action level not specified in ROD

Table A-1 Analytical Results

Base: Fairchild AFB						Contract No.: F41624-94-D-8052	1624-94-D-80	152	
Site: PS-2						בנונים לוחמי	ı		
Method Extraction: not applicable	olicab	ဍ							
Method Analytical: 8020									
Matrix: groundwater									
Units: ug/L									
Data Validation SDG: 950433	433		!						
			EL CHI	Environmental Samples	Samples		Field blanks		Method blanks
			Field ID	Field ID	Field ID	Trip	Equip	Ambient	
		Action	Lah ID	Lab ID	Lah ID	Field ID	Field ID	Field ID	Field ID
Parameters	POL	POL Level*	Column 1	Column 2	Primary	Lab ID	Lab ID	Lab ID	Lab ID
						0495PS2FTB1			
						9504187F			
Toluene		*				5.2			
							-		
		-			0495PS2MW109				
					9504181				
Benzene	_	٧.			23				
Toluene	_	*			2.2				
Ethylbenzene	-	*			160				
Meta & Para Xylenes	_	*			170				
Ortho Xylenes	_	*			54				
1,3-Dichlorobenzene	_	*			76				
1.4-Dichlorohenzene	_	*			38				
1,2-Dichlorobenzene	_	*			33				

APPENDIX B - 1c

LNAPL MEASUREMENT RESULTS

R11 sampling event and during the March 1992 round of water level measurements. The depths of the floating products were measured as follows:

Well Number and Date	Floating Product Thickness ⁽¹⁾ (Feet)	Depth to Product ⁽²⁾ (Feet from ground surface)
MW176 01/09/92	0.17	8.57
MW176 04/02/92	0.18	8.68
MW177 01/09/92	0.55	7.40
MW177 04/02/92	1.44	7.55

- (1) Product thickness measured with clear bailer.
- (2) Depth to product calculated by measuring depth to H₂O with an M-Scope and subtracting product thickness.

Source: HNUS, 1993

TABLE 3-1 (Continued)
OVERBURDEN AQUIFER AND FLOATING FREE-PRODUCT ELEVATIONS AND RECOVERY
FLOATING FREE-PRODUCT RECOVERY TREATABILITY STUDY
ON-BASE PRIORITY ONE OPERABLE UNIT, FLIGHTLINE OPERABLE UNIT, SITE PS-2
FAIRCHILD AIR FORCE BASE, WASHINGTON

	T		
Monitoring Well	Water Level (feet above mean sea level)	Floating Free-Product Level (feet above mean sea level)	Floating Free Product Recovered
DECEMBER	27, 1994		
MW-55	2432.64	None observed.	No recovery attempted.
MW-56	2434.41	None observed.	No recovery attempted.
MW-105	No elevation data.	None observed.	No recovery attempted.
MW-106	No elevation data.	None observed.	No recovery attempted.
MW-109	2433.72	None observed.	No recovery attempted.
MW-110	2433.64	None observed.	No recovery attempted.
MW-176	2431.51	None observed.	No recovery attempted.
MW-177	2433.98	None observed.	Adsorbent wick replaced.
MW-177A	2434.14	None observed.	No recovery attempted.
MW-178	2434.12	None observed.	No recovery attempted.
MW-179	2413.13	None observed.	No recovery attempted.
MW-180	2428.92	None observed.	No recovery attempted.
MW-222	2430.78	None observed.	No recovery attempted.
MW-223	2431.51	None observed.	No recovery attempted.
MW-224	2431.60	None observed.	No recovery attempted.
MW-228	2431.25	2431.56	2000 ml FFP/water 7700 ml FFP
MW-228A	*	*	No recovery attempted.
MW-228B	2431.51	None observed.	No recovery attempted.

Billings corporation canister installed in MW-228A.

Source: HNUS, 1995b

APPENDIX B - 1d SOIL & SOIL GAS BTEX AND TPH RESULTS

•;

Source: SAiC, 1990

TABLE 4-10

CONTAMINANT OCCURRENCE AND DISTRIBUTION - SOIL BORING SAMPLES TPH AND BTEX RESULTS (mg/kg) ROUND 11 SITE PS-2 FAIRCHILD AFB, WASHINGTON

•										
					Soil Boring	<u>g</u>				
Parameter	-	2	ж	4	5	9	7	8	6	10
0- TO 2-FOOT INTERVAL	rerval								11500 0	
Benzene	0.003U(1)(3)		0.003∪		0.003∪				0.0030	
Toluene	0.0030		0:0030		0.003 ^U				0.0030	
Xviene	0.0030		0.003∪		0.003∪				0.003∪	
Ayrene Februario	0.0030		0.0030		0.0030				0.003 ^U	
Ethylbelizelie	500.0				<20				<20	
TPH	< 20(2)									
2. TO 6-FOOT INTERVAL	rerval								11000	116000
Renzene		0.003∪	0.004 U/ 0.004 U		0.0040	900.0		0.0040	0.0040	0.0030
		11600.0	0 0040/ 0 0040		0.0040	0.004∪		0.0040	0.004∪	0.003∪
Toluene		0.0030				117000		0.0040	0.0040	0.003U
Xylene		0.007	0.0040/0.0040	·	0.0040	0.0040		1000		11000
C+hulbonzone		0.0030	0.004U/ 0.004U		0.0040	0.005		0.0040	0.0040	0.0030
r til y i de l'ection		007	00//00/		180	<20		<20	<20	<20
ТРН		07.5	07 \ 107 \							
6- TO 10-FOOT INTERVAL	UTERVAL									
Вептепе		0.005∪				0.4600				
2		0.0050				0.460∪				
loluene		0.00								
Xylene		0.014				4.7				
Fthylhenzene		0.005∪				1.7				
		02.5				< 20				
Hdi		2								

Source: HNUS, 1993

CONTAMINANT OCCURRENCE AND DISTRIBUTION - SOIL BORING SAMPLES TPH AND BTEX RESULTS (mg/kg) **TABLE 4-10**

ROUND 11

FAIRCHILD AFB, WASHINGTON PAGE TWO SITE PS-2

מאון שמער										
					Soil Boring	g,				
								•		-
Parameter	-	2	m	4	ις.	9	7	æ	6	2
TESTOS										
COMPOSITE				0.0040			0.420 ^U			
Benzene							11000			
	Ŀ			0.004∪			0.420			
loluene							11000			
000				0.0040			0.4200			
Ayleric							11000			
Cottood Lides		_		0.0040			0.420			
ETHYLDENZENE							300			
TO.			· ·	07 V			007'1			
<u> </u>										

- U signifies a nondetected result or a detection limit result.
- 333
- 2-Hexanone was also detected in soil sample PS2-S5-001-001 at 0.007 mg/kg.
 Methylene chloride was detected in several subsurface soil samples (PS2-S5-002-002, PS2-S5-003-001, PS2-SS-002, PS2SS-SS-003-001, PS2SS-SS-001, PS2SS-SS-001, PS2-SS-003-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2-SS-001, PS2-SS-001, PS2-SS-001, PS2-SS-001, PS2SS-SS-001, PS2SS-SS-001, PS2 and P\$255009-002) at a concentration range of 0.011 to 0.110 mg/kg.
 Acetone was detected in P\$2-55-006-002 at 1.7 J mg/kg.
 Acetone was detected in P\$255007-001 at 1.2 J mg/kg.

Source: HNUS, 1993

Table 3.1 INITIAL CONDITIONS PS-2 Fairchild AFB, Washington

	jani. Ajja		SOIL GAS					SOIL		
	700 N 700 N 700 N	1000	TVH-It	TVH		Benzene	Toluene	•	Total Xylenes	Temp.
Well No depth	(%)	(%)	(ppmv)	(ppmv)	(mg/kg)	(mg/kg)_	(mg/kg)	(mg/kg)	(mg/kg)	(°F)
VW1-(5-10)	1.0	7.9	110,000	>10,000	250	0.7	0.5	7.2	47	
VMP1-4	2.5	4.8	78,000	>10,000	280	4.1	ND	21	120	62.8
VMP1-7.5	0.5	4.8		>10,000						63.3
VMP2-4	3.0	0.5		>10,000	980	0.14	ND	0.71	3.8	1
VMP2-6.5	0.5	5.2		>10,000						
VMP3-4	2.0	6.5		>10,000						
_VMP3-7	0.3	9.7	170,000	>10,000						

LEGEND

TRPH: Total Recoverable Petroleum Hydrocarbons (EPA 418.1)

TVH-jf: Total Volatile Hydrocarbons as jet fuel (EPA TO-3)
TVH: Total Volatile Hydrocarbons (THVA field instrument)

ND : not detected

mg/kg : milligrams per kilogram ppmv : parts per million by volume

NOTES

1. O₂/CO₂ measurements by field instrumentation.

2. Soil sample at VW-1 taken at a depth of 7.5 feet bgs.

3. Benzene, Toluene, Ethylbenzene, and Total xylenes by EPA Method 8020.

06/10/94

ps2.xl

Source: ES, 1994

TABLE 2.1 SOIL and SOIL GAS ANALYTICAL RESULTS PS-2 Fairchild AFB, Washington

ANALYTE	METHOD	UNITS	SAMPLE WELL NUMBER AN	LOCATION - D D FEET BELOW GR	
Soll Hydrocarbon			VW1-7.5	VMP1-4	VMP2-5 1
TRPH	EPA 418.1	(mg/kg) .	250	280	980
Benzene	SW8020	(mg/kg)	0.7	4.1	0.14
Toluene	SW8020	(mg/kg)	0.5	<0.49	<0.051
Ethylbenzene	SW8020	(mg/kg)	7.2	21	0.71
Xylenes, Total	SW8020	(mg/kg)	47	120	3.8
Soil Inorganics:			VW1-7.5	VMP1-4	VMP2-5 1
Iron	SW7380	(mg/kg dry wt.)	23,500	26,100	18,000
Total Alkalinity	SM403	(mg/kg as CaCO ₃)		360	74
pH	SW9045	(units)	7.6	8.1	7
TKN	E351.2	(mg/kg dry wt.)	610	190	130
Total Phosphorus	E365.2	(mg/kg dry wt.)	80	170	92
Soil Physical Par		<u>, , , , , , , , , , , , , , , , , , , </u>	VW1-7.5	VMP1-4	VMP2-5 1
Moisture Content		(% by wt.)	15	5.5	9.3
Gravel	ASTM D422	(% by wt.)	4.7	22.9	1.0
Sand	ASTM D422	(% by wt.)	46.6	54.1	64.9
Silt	ASTM D422	(% by wt.)	39.9	14.7	27.0
Clay	ASTM D422	(% by wt.)	8.9	8.2	7.2
Soil Gas Hydroca	rbons:		VW1	VMP1-4	VMP3-7
TVH-jf	EPA TO-3	(ppmv)	110,000	78,000	170,000
Benzene	EPA TO-3	(ppmv)	150	160	400
Toluene	EPA TO-3	(ppmv)	<3.7	<2.3	93
Ethylbenzene	EPA TO-3	(ppmv)	24	31	42
Xylenes, Total	EPA TO-3	(ppmv)	130	130	190

NOTES:

TRPH - Total recoverable petroleum hydrocarbons TVH-jf - Total volatile hydrocarbons as jet fuel

TKN - Total Kjeldahl nitrogen

ppmv - Parts per million by volume

1 - Sample labelled as VMP2-4, but collected at 5 ft bgs

CaCO₃ - Calcium carbonate mg/kg - milligrams per kilogram NA - Not Analyzed

06/20/94

pa2.xla

Source: ES, 1994

PETROLEUM HYDROCARBONS (WTPH-D) LABORATORY ANALYSIS FOR SOIL SAMPLES SUMMARY OF PURGEABLE AROMATIC VOLATILE ORGANICS (SW5030/SW8020) AND COLLECTED AT PS-2 WELL BORINGS MW-229 AND MW-230 IN NOVEMBER 1994 TABLE 4-3.

	PRACTICAL	Ą		ENVIRONMENTAL SAMPLE	TAL SAMPLE		FIELD BLANKS	ANKS	2	METHOD BLANKS	
	QUANTITATION LIMIT	ON LIMIT	PS02229S01	PS02229S02	PS02230S03	PS02531S041	PS02229E052	PS02FQCT063	22NOV94-A0	23NOV94-A1	23NOV94-A1X
	SOU MATER	- i	108692-0003-SA	108692-0004-SA	108692-0005-SA	108692-0006-SA	108692-0003-SA 108692-0004-SA 108692-0005-SA 108692-0005-SA 108692-0005-EB	108692-0001-18	108692	108692	108692
PARAMETERS	and and				*PIDY IAMA VOOTAGOGA	ANA! VOIG*					
					CABORATORY	AINAL I SIS					
				000	7 0-8.0	7.0-8.0	AN	¥ Z	Y.	٧X	∢ Z
Depth of Sample (feet)	¥ Z		0.0-0.0						42	AN	AA
170/ 011/01/01	ΨN		11.2	13.2	6.7	8.7	¥ Z	Y.			
Percent Moisture (a)						10000	100	1/0/11/09/0	0.50 U pq/L	0 0050 U mg/kg	0 25 U mg/kg
Benzene Toluene Ethylbenzene Xylenes, Total	0.0050 mg/kg 0.0050 mg/kg 0.0050 mg/kg 0.0050 mg/kg	0.50 µg/L) (1.0 µg/L) (1.0 µg/L) (1.0 µg/L)	0.0050 U mg/kg 0.25 U mg/kg 0.0050 U mg/kg 0.25 U mg/kg 0.0050 U mg/kg 0.25 U mg/kg 0.0050 U mg/kg 0.25 U mg/kg	0.25 U mg/kg 0.25 U mg/kg 0.25 U mg/kg 0.25 U mg/kg	0.0050 U mg/kg 0.0050 U mg/kg 0.0050 U mg/kg 0.0050 U mg/kg	0.0050 U mg/kg 0.0050 U mg/kg 0.0050 U mg/kg	10 U 19/L			0.0050 U mg/kg 0.0050 U mg/kg 0.0050 U mg/kg	0.25 U mg/kg 0.25 U mg/kg 0.25 U mg/kg
Surrogate				ì	900	78%	105%	103%	¥ X	٧	¥v.
Bromofluorobenzene	30-137%	(29.137%)	74%	10276	8				2	4N	AA
Diesel Fuel #2 Jet Fuel Unknown Hydrocarbon	0.50 mg/kg 0.50 mg/kg 0.50 mg/kg	(0.50 mg/L) (0.50 mg/L) (0.50 mg/L)	28 U mg/kg 28 U mg/kg 28 U mg/kg	29 U mg/kg 29 U mg/kg 850 mg/kg y	27 U mg/kg 27 U mg/kg 800 mg/kg y	27 U mg/kg 27 U mg/kg 27 U mg/kg	0.50 U mg/L 0.50 U mg/L 0.50 U mg/L	4 4 4 Z Z Z	(4 Y	4 4 2 2
Surrogate	75.105%	(75-125%)	%1 <u>8</u>	104%	118%	113%	102%	∢ Z	NA	ΝΑ	NA
o Terphenyl	20.0	(2.2.2.1)									

PS02531S04 is a field duplicate of PS0230S03.

PS02229E05 is an equipment blank.

PS02FGCT06 is a trip blank.

Laboratory analytical results are presented in Appendix A.

U = Not Detected. Value listed is the detection limit.

NA = Not Analyzed or not applicable.

y = Chromatographic profile is not consistent with pattern(s) exhibited by reference fuel standards. Quantitation of unknown hydrocarbons in sample is based on diesel fuel

y = Chromatographic profile is not consistent with pattern(s) exhibited by reference fuel standards.

APPENDIX B - 1e

ADDITIONAL SITE MAPS INCLUDING:

BEDROCK TOPOGRAPHY & STORM SEWER LINES

2 E FIGURE 1-3 OIL/WATER SEPARATOR - STORM SEWER LINE FREND O MANHOLE SSA SS 1619 30 EFUEL DEFINEL KNIMPY NO. 1 1034

Source: HNUS, 1993

D-49-9-92-11

1-12

SITE LAYOUT MAP

PS-2

EAIRCHILD AIR FORCE BASE, WASHINGTON —

