An Introduction to Political Economy

Volume I: Formal Mathematical Models

Kevin Lingfeng Li

Table of contents

Pı	reface	3
Ι	Fundamentals and Background	4
1	Introduction to Political Economy	5
2	Concepts in Probability 2.1 Basics of Sets	66 66 77 78
3	Introduction to Game Theory 3.1 Modelling and Game Theory 3.2 Properties of Games 3.3 Types of Games 3.4 Game Theory Notation	9 10 10 11
II	Static Games of Complete Information	12
4	Dominant Strategy Equilibrium4.1 Dominant Strategies4.2 Dominant Strategies in Prisoner's Dilemma4.3 Solution Concepts4.4 Dominant Strategy Equilibrium	13 13 13 15 15
5	Nash Equilibrium and Pareto Efficiency5.1Best Response5.2Finding Best Responses5.3Nash Equilibrium5.4Finding Nash Equilibrium5.5Pareto Efficiency	16 16 16 17 18
6	Applications of Nash Equilibria 6.1 Prisoner's Dilemma as a Category of Games 6.2 Public Goods Games 6.3 Election Games 6.4 Election Games 6.5 Election Games	20 20 21 21
7	Extensions of Nash Equilibrium 7.1 Multiple Nash Equilibrium and Focal Points	22 22 23

8 Downsian Spatial Models	25
9 Mixed Strategies	26
III Dynamic Games	27
10 Dynamic Games of Complete Information	28
11 Elections as Incentive Devices	29
IV Bayesian Games	30
12 Dynamic Games of Incomplete Information	31
13 Perfect Bayesian Equilibrium	32
14 Signalling Games	33
V Advanced Games	34

Preface

This series, **An Introduction to Political Economy**, introduces the use economic models and mathematical models to the study political topics. This series goes hand-in-hand with the Empirical Political Economy series, which introduces ways to use real-world data to test the models we are developing in this series.

An Introduction to Political Economy has 2 volumes:

- Volume I: Formal Mathematical Models (this book) is an introduction to how we model political situations with game theory. Topics include solution concepts like Nash Equilibrium and Dominant Strategy Equilibrium, different types of games like Static Games, Dynamic Games, and Bayesian Games, as well as some coalition theory.
- Volume II: Models in Political Economy, applies these models to actual topics in
 political economy. Before starting this volume, it is useful to read through the first volume
 of Empirical Political Economy.

This book is meant to be a relatively approachable introduction to the field. However, as Political Economy depends on many economic tools, an rough understanding of Algebra, Single Variable Calculus, and simple Linear Algebra is required. You do not need to be a math wizard, or even good at solving mathematical problems - you simply need an understanding of the intuition behind some key techniques. This book comes with a companion manual - Essential Mathematics for Political Economy. It is recommended that anyone interested in Political Economy glance at the topics covered in the manual, to ensure that they have the mathematical background necessary to succeed.

I created this book as a way to revise for my exams, as well as provide a handy booklet where I could reference all the things I learned throughout my undergraduate and postgraduate degrees. I hope that this guide to Political Economy can be useful to not just me, but others also interested in the field.

Part I

Fundamentals and Background

Introduction to Political Economy

There are currently three major approaches to Political Economy - who all agree that Political Economy is somewhere between Political Science and Economics - but disagree on the approaches to studying this intersection of disciplines. First, there is the more "economics" side of Political Economy, focusing on how government and power inequalities affect economics and the distribution of resources. Second, there is the field of International Political Economy, which studies how economics interacts with International Relations. Finally, there is the field that applies economic models and methods to the study of Political phenomena.

This book mainly focuses on the third approach of Political Economy. For this book, Political Economy is a field that uses tools from economics, primarily economic/mathematical models and econometrics, and applies these tools to study how political institutions, actors, and choices. However, what exactly does that mean? How do we use these methods?

In the Social Sciences, there are two parts to any research - the hypothesis/theory, and the empirical data that either supports or refutes the theory. Economic tools perfectly fit into this framework. Political Economists will often use economic and formal mathematical models to make predictions about potential outcomes of political situations. Then, Political Economists will gather real-world data, and test their hypothesis with statistical/econometric methods.

This book focuses on the economic modelling and creating hypotheses part of the Political Economy research process. I explore the fundamentals of Game Theory and Formal Mathematical Modelling. These include the properties of games, solution concepts, as well as different types of common games.

While this book goes over the creation of economic models of political situations, it does not go over how we use empirical data to prove/reject our models. The sister series - Empirical Political Economy, covers these topics.

Let us begin!

Concepts in Probability

2.1 Basics of Sets

A set is the collection of objects, while the **elements** of the set are the specific objects within a set. A capital letter is used to represent a set, for example, set A. A lowercase letter represents an element within the set. For example, element a is a part of set A.

There are a few common types of sets we use often:

- N is the set of natural numbers the numbers we use to count from 1: $\{1, 2, 3...\}$
- Z is the set of integers non-decimal numbers both negative and positive: $\{..., -2, -1, 0, 1, 2...\}$
- R is the set of all real numbers any numbers that are on the number line, including decimals

We can define sets in multiple ways.

- We can list out each element of a set. For example $A = \{1, 2, 4, 6\}$
- We can define them with an interval. For example, A = [0,1] means all values within the range of 0 to 1, including 0 and 1.
- We can define them in formal notation. For example, $A = \{x : 0 \le x \le 1, x \in R\}$. This literally means: x such that x is between 0 and 1, including 0 and 1, and x is in the set of all real numbers R.

Useful notation tips: \in means "in" or "belongs to", : means "such that", |A| means number of elements in A.

2.2 Set Operators

There are a few different set operators that are important to understand.

An **intersection** of sets A and B, formally notated $A \cap B$, indicates the elements that are both within A and B at the same time.

• For example, if $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $A \cap B = \{2, 3\}$, since those are the elements that are contained in both A and B at the same time.

A union of sets A and B, formally notated as $A \cup B$, indicates elements that are in either A, B, or both A and B.

- For example, if $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $A \cap B = \{1, 2, 3, 4\}$.
- $A \cup B = A + B A \cap B$. We subtract $A \cap B$ since that part is counted twice in both A and B, so we need to get rid of it once to avoid over-counting.

The **complement** of set A is everything that is not in A, but still within the universal set. The complement is denoted as A' or A^c .

• For example, if the universal set contains $\{1, 2, 3, 4, 5\}$, and $A = \{1, 2\}$, then $A' = \{3, 4, 5\}$

A subset A has all its elements belonging to another set B. This is notated $A \subset B$.

• For example, if $A = \{1, 2\}$, and $B = \{1, 2, 3\}$, then A is a subset of B since all of A's elements belong to set B as well.

2.3 Basic Properties of Probability

Kolmogrov's Axioms are the key properties of probability:

- 1. For any event A, the probability of A occurring is between 0 and 1.
- 2. The probability of all events in the sample space S is 1. Mathematically: Pr(S) = 1. The sample space is the set of all possible events.
- 3. If we have a group of mutually exclusive events $A_1, A_2, ..., A_k$, then the probability of those events all occurring is the sum of their probabilities. Mathematically, $Pr(\bigcup A_i) = \sum Pr(A_i)$
 - Note: mutually exclusive events are events that cannot occur at the same time together.

Other important properties to note include:

- Pr(A') = 1 Pr(A) the probability of the complement of A, is equal to 1 minus the probability of A
- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$ this is because of a property of unions, as shown in section 2.2

2.4 Joint and Conditional Probability

Joint Probability is the probability of two or more events occurring simultaneously. The joint probability of events A and B is notated $Pr(A \cap B)$.

For example, in a deck of cards, A could be the event of drawing an ace, and B could be the event of drawing a spade. Thus, $Pr(A \cap B)$ would be the probability of drawing a card that was both an ace and a spade.

Conditional Probability is the probability of one event occurring, given another has already occurred. Probability of event A, given event B has occurred, is notated as Pr(A|B)

To calculate the conditional probability, we use the following formula:

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

2.5 Bayes' Theorem

Bayes' theorem is arguable the most important theorem in all of probability and statistics. Thus, instead of just telling you Bayes' theorem, we will actually derive it.

We start with the definition of conditional probability, as seen in the last lesson

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

Let us rearrange the equation by solving for $Pr(A \cap B)$. We will get:

$$Pr(A \cap B) = Pr(A|B) \times P(B)$$

Now, let us consider the conditional probability of B|A (the opposite way around). We use the same conditional probability formula, but switch the B and A. We get:

$$Pr(B|A) = \frac{Pr(B\cap A)}{Pr(A)}$$

Let us rearrange the equation by solving for $Pr(B \cap A)$. We will get:

$$Pr(B \cap A) = P(B|A) \times P(A)$$

Now we have two different equations, one for $Pr(A \cap B)$, and one for $Pr(B \cap A)$. Based on the commutative property of sets, we know that $Pr(A \cap B) = Pr(B \cap A)$. Thus, the other parts of the equation must also be equal to each other:

$$Pr(A|B) \times Pr(B) = Pr(B|A) \times Pr(A)$$

Now, let us solve for Pr(A|B). After we do this, we will get the final form of **Bayes' Theorem**:

$$Pr(A|B) = \frac{Pr(B|A) \times Pr(A)}{Pr(B)}$$

Each part of Bayes' Theorem has a name. They are commonly referenced, so it is useful to know their names:

- Pr(A|B) is the conditional probability
- Pr(B|A) is the posterior probability
- Pr(A) is the prior probability
- Pr(B) is the marginal probability

Introduction to Game Theory

3.1 Modelling and Game Theory

A model is a simplified version of reality to help us understand the complex world around us. This is especially useful in the complex world of the social sciences.

To simplify reality, models make **assumptions**. These assumptions should be similar to reality, so we can draw conclusions to the real world. However, these assumptions should also make the model simple, and only focus on the relevant features and details.

For example, a driving map is a model. It does not contain all the information in the world - it does not record the height of buildings, the colour of the terrain, and so on. It even simplifies the spherical earth into a 2-dimensional flat map.

However, despite simplifications of reality, a driving map is amazing for navigation. If you are trying to get from point A to point B by car, you do not care about the spherical nature of the globe. The simplifying assumptions on a driving map allow us to navigate the world around us, without being a perfect copy of reality.

There are different forms of modelling in the social sciences, including decision theory, competitive equilibrium, and game theory. This book will mainly focus on game theory.

Game Theory is the study of mathematical models of conflict and cooperation between rational players. The key property of game theory is that <u>one player's actions</u>, <u>affect another player's outcomes/gains/payoffs</u>.

Other key properties of Game Theory include:

- There is **common knowledge** of the rules of the game. This basically means that every player knows that every other player knows the rules of the game.
- A player will predict what their opponents will do, and will react to their opponents.
- The optimal decision of a player, depends on their beliefs on what the other players will do.

3.2 Properties of Games

Games are the environment in which strategic interaction between players occurs. For each game, it must consist of:

- 1. A set of players
- 2. For each player, a set of actions and strategies
- 3. For each player, **preferences** over the outcomes associated with the actions, such that they have an opinion on every possible outcome of the game

Players will take actions, and they yield some outcomes. The pathway between actions and outcomes is the **environment** - essentially the function that takes your action input, and outputs your outcome.

A player's belief on the environment - which includes the rules of the game, the other players' strategies, and the other players' beliefs, influence a player's choice of actions.

A player's preferences over the outcomes of games, in game theory, must be both **complete** and **transitive**.

- Complete preferences means that given any 2 outcomes, you can always compare them. Or in more intuitive terms, the player always has an opinion on the outcome - they are never "not sure" about how they feel about one outcome compared to another (however, they can be indifferent).
- Transtive preferences means that if you prefer a over b, and b over c, then you prefer a over c. It is basically that your preferences make sense and are consistent.

Preferences over outcomes can either be ordinal or cardinal

- Ordinal preferences means that you can rank your preferences of the potential outcomes, but you cannot give a specific value to that preference. For example, you can say you like a more than b, but you cannot say exactly how much you like a over b
- Cardinal preferences means that not only can you rank your preferences, you can also describe the magnitude of your preferences. For example, if you say you like a 3 times better than b, then you have cardinal preferences

We can assign numbers to both cardinal and ordinal preferences. Just be aware, if preferences are ordinal (and they often are), the numbers represent relative rankings, not specific magnitudes of preference.

• For example, if preferences are ordinal, the "distance" between preference values 1 and 2, may not be equal to the distance between 2 and 3

3.3 Types of Games

Games in Game Theory can be categorised according to two key properties: the **timing** of a game, and the **availability of information** in the game.

The timing of the game determines how players move relative to each other:

- A static game is when all players move "simultaneously". This does not actually mean they have to move at the exact same moment it simply means that when one player moves, they cannot yet observe how the other player has moved. Thus, the players must anticipate the other players moves.
- A **dynamic game** is when players move sequentially, in an order. These are also called extensive form games. This means that players can see how their opponents moved, before they choose their move. For example, Chess is a dynamic game.

The availability of information is another distinction between types of games:

- A game of **complete information** is one where all payoffs are known to all players.
- A game of **incomplete information** is when some payoffs or some actions are not common knowledge. These games are quite a bit more complex.

We will start with static games of complete information - the simplest form and the best type of game to introduce core concepts.

3.4 Game Theory Notation

Before we start discussing games, we need to discuss notation. Notation is key, because it allows us to be very precise and concise in defining our games.

Players are denoted i = 1, 2, ...N.

- When we say player i, we are referring to any specific player in the game.
- When we say player 1, or player 2..., we are referring to a specific player in the game.
- N represents the total number of players in a game.

The actions of a player i are denoted a_i

• So, the actions of player 1 are denoted a_1 , and so on

The strategies of a player i are denoted s_i

- A player's selected strategy, if applicable, is denoted with a star: s_i^*
- All other strategies are denoted with an apostrophe (more specifically, a set complement sign): s_i'

The action profile (of all players' actions) is a vector $a = (a_1, a_2, ..., a_N)$

• We can split this vector into 2 different parts. a_i denotes player i's actions, while a_{-i} denotes the action profiles of all other players not player i

Preferences are represented by a payoff function $u_i(a_i, a_{-i})$

• Essentially, u_i is a function with the inputs of player i's actions a_i , and the actions of everyone else a_{-i}

Part II

Static Games of Complete Information

Dominant Strategy Equilibrium

4.1 Dominant Strategies

As we have established, game theory is when one person's actions affect another's payoffs. Thus, players have to anticipate what other players will do, and act accordingly.

However, sometimes, one of the actions available to a player i, is always better than any of the other actions available to them, no matter what their opponent decides to do. This strategy that is always better than the alternatives, no matter what the other player does, is called a **dominant strategy**.

Formally, a dominant strategy, notated s_i^D , is a dominant strategy, if it is player i's best strategy, no matter the strategies the other players pick. No matter what the opponent does, the payoff is highest for player i when they play s_i^D

Mathematically, we can represent that statement as following:

$$u_i(s_i^D, s-i) > u_i(s_i', s_{-i})$$

Which translates into words as - the utility of player i choosing their dominant strategy s_i^D , is always greater than the utility of player i choosing another strategy s_i' , no matter the strategies chosen by the opponents s_{-i}

If player i has a dominant strategy s_i^D , then their other strategies s_i' are considered to be **dominated**.

4.2 Dominant Strategies in Prisoner's Dilemma

An example of a dominant strategy is the famous game: prisoner's dilemma. The story is as follows:

Two suspects are arrested. The police holds the suspects in separate cells and explains the consequences of their actions. If they both remain quiet (cooperate with each other), then both will be convicted for minor offences and sentenced to 1 month in jail. If both rat each other out (defect),

then both will be sentenced to jail for 8 months. Finally, if one defects but the other does not, then the confessor is immediately released and the other is sentenced to 10 months, 8 for the crime and 2 for obstructing justice.

We can represent this game in a matrix, which is often called the normal form of the game. Note, the first value in each cell is the payoff of player 1 (p1), and the second value in each cell is the payoff of player 2 (p2).

	Cooperate (p2)	Defect (p2)
Cooperate (p1)	-1, -1	-10, 0
Defect (p1)	0, -10	-8, -8

Let us look at player 1. What is the best move for player 1?

Pretend player 2 plays cooperate. Thus, we can hide the defect column:

	Cooperate (p2)
Cooperate (p1)	-1, -1
Defect (p1)	0, -10

What is player 1's best strategy? Well, it is to defect, since a payoff of 0 is greater than a payoff of 1. So, when player 2 picks cooperate, player 1 should pick defect.

Now, pretend player 2 plays defect. Thus, we can hide the cooperate column:

	D-f+ (0)
	Defect (p2)
Cooperate (p1)	-10, 0
Defect (p1)	-8, -8

What is player 1's best strategy? Well, it is to defect, since a payoff of -8 is greater than a payoff of -10. So, when player 2 picks defect, player 1 should pick defect.

So, we have established that player 1 will pick strategy defect, for both the scenarios that player 2 picks cooperate or player 2 picks defect. So, player 1 should always pick defect.

Thus, player 1's strategy of defect is the strategy that maximises their payoff, regardless of the strategy of player 2. Thus, player 1's strategy of defect is a dominant strategy.

We can do the same thing for player 2. We first pretend player 1 will pick cooperate, and we find player 2 should pick defect as their best strategy. Then we pretend player 1 will play defect, and we find player 2 should also pick defect as their best strategy. Thus, player 2 also has a dominant strategy of defect.

The Prisoner's Dilemma thus has a dominant strategy for both players - defect.

4.3 Solution Concepts

One of the key things about modelling situations is that, well, we want to find a likely outcome. An equilibrium solution concept is a concept that shows a likely solution to a game, by restricting potential strategies being played to the most reasonable one.

Any equilibrium solution concept has a few assumptions:

- 1. Players are rational they choose actions that maximise their own payoffs. Without this assumption, it is very difficult to find a likely outcome
- Structure of the game and player's rationality is common knowledge. If players do not know about the structure of the game, they well, cannot make best response decisions to their opponents
- 3. Any predictions must be self-enforcing essentially, if we end up in a solution outcome, the players should not have any reason to want to leave that outcome, or else it would not be a final solution.

4.4 Dominant Strategy Equilibrium

A dominant strategy equilibrium is a solution concept where all players play dominant strategies.

After all, if everyone has a best response to all other strategies of other players, and everyone
is playing their best response, that is a very likely outcome of the game.

Formally, a strategy profile of all players $S^D=(S^D_1,S^D_2,...,S^D_N)$ is a dominant strategy equilibrium, if for all players $i,\ u_i(S^D_i,s_{-i})>u_i(s'_i,s_{-i})$ for all s_{-i}

• This second part is the definition of dominant strategy. So, this basically says that a a set of strategies (strategy profile) is a dominant strategy equilibrium, given every player is playing a dominant strategy.

For example, take the **prisoner's dilemma**. We have already established that for both players, defect is a dominant strategy. Thus, if both players play defect, that is a dominant strategy equilibrium.

There, at most, can only be one dominant strategy equilibrium in a game. This makes dominant strategy equilibrium a great solution concept for predicting - as there will always only be one solution.

However, many games do not have any dominant strategies, and thus, many games do not have a dominant strategy equilibrium. As a result, this solution concept is not possible on a vast majority of games.

Nash Equilibrium and Pareto Efficiency

5.1 Best Response

We previously discussed that dominant strategies do not appear in most games, and thus, we need an alternate way of determining a solution.

Thus, we need to introduce the concept of a **best response**. We already introduced the intuition of a best response in the section on the prisoner's dilemma.

A strategy for player i is a best response to another strategy played by the other players, if that chosen strategy for player i gives more payoff than any other strategy player i could choose.

• Essentially, we hold the other player's strategies constant. Then, we find what player i should play. We do this for every combination of other player's strategies.

More formally, the strategy s_i is a best response to the opponents specific strategy s_{-i} , if $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, where s_i' are the other strategy profiles of player i that are not the chosen s_i

A strategy profile cannot be a best response, if there exists a **profitable deviation**.

• Essentially, given the opponent plays a certain strategy, if you can switch to a more profitable strategy, then the original strategy is not a best response.

5.2 Finding Best Responses

To find the best responses for player 1, do the following:

- 1. Assume player 2 plays a specific strategy
- 2. Find which player 1 strategy maximises player 1's payoff, given player 2 plays that specific strategy
- 3. Now assume player 2 plays another strategy

- 4. Now, find which player 1 strategy maximises player 1's payoff, given player 2 plays that specific strategy
- 5. Continue until all you have a best response to ever potential strategy of player 2

For example, let us find the best responses for player 1 in the following game (called the stag-hunt game)

	Stag (p2)	Hunt (p2)
Stag (p1)	2, 2	0, 1
Hunt (p1)	1, 0	1, 1

First, let us assume player 2 plays stag. Thus, let us hide the hunt (p2) column.

	Stag (p2)
Stag (p1)	2, 2
Hunt (p1)	1, 0

What is player 1's best response to player 2 playing stag? Well, since 2 > 1, stag is the best response of player 1.

Now, let us assume player 2 plays hunt. Thus, let us hide the stag (p2) column.

	Hunt (p2)
Stag (p1)	0, 1
Hunt (p1)	1, 1

What is player 1's best response to player 2 playing hunt? Well, since 1 > 0, hunt is the best response of player 1.

Thus, we have found all the best responses for player 1. You would do the same for player 2, and for any other players in any other game.

5.3 Nash Equilibrium

Nash Equilibrium is another solution concept. This solution concept is obtained when both players are playing a best response to the other player's chosen strategy.

As we discussed previously, a best response means a player has no profitable deviation. Thus, when both players are playing a best response to each other in a Nash Equilibrium, neither player has a profitable deviation.

• Thus, no player can do better by choosing a different strategy. That means the Nash Equilibria is stable: once we enter the equilibria, no one wants to leave it.

More formally, strategy profile s^* is a Nash Equilibrium, when $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i', s_{-i}^*)$ for all s_i' and for all players i

• Or in more intuitive terms, a strategy profile is a Nash Equilibrium, when the chosen strategy of player i, given an opponents strategies yields a higher payoff than any other strategy that player i could choose.

All dominant strategy equilibria are Nash Equilibria, but not all Nash Equilibria are dominant strategy equilibria.

However, there are a few important caveats of Nash Equilibria:

- Nash Equilibria do not always make sense as sensible outcomes we will see this throughout the book
- Often, there is more than one Nash Equilibria, and we are not sure which solution is the likely outcome of the game
- Sometimes, Nash Equilibria do not exist in a game (although this is less frequent than Dominant Strategy Equilibria)
- Finally, Nash Equilibria have many issues when it comes to dynamic/sequential games, which
 we will cover later.

5.4 Finding Nash Equilibrium

Finding Nash Equilibria is quite simple: we find the best responses for both players, just like we did in the "finding best responses" section previously.

For example, take this following game (game of chicken):

	Swerve (p2)	Straight (p2)
Swerve (p1)	0, 0	-1, 1
Straight (p1)	1, -1	-9, -9

Let us first find the best responses of player 1, while fixing player 2's strategies. The best responses are underlined/bolded

	Swerve (p2)	Straight (p2)
Swerve (p1)	0, 0	<u>-1</u> , 1
Straight (p1)	<u>1,</u> -1	-9, -9

Next, let us find the best responses of player 2, while fixing player 1's strategies. The best responses are underlined/bolded

	Swerve (p2)	Straight (p2)	
Swerve (p1)	0, 0	<u>-1, 1</u>	
Straight (p1)	<u>1</u> , <u>-1</u>	-9, -9	

We can see that the strategy profiles, where both players are playing best responses, are (Swerve, Straight), and (Straight, Swerve). Thus, these are the two Nash Equilibria.

5.5 Pareto Efficiency

Pareto efficient outcomes are outcomes that may or may not be feasible from a solution concept wise, but in theory, offer the best case for both players.

The definition of a **Pareto Efficient** outcome is that, given that outcome, it is impossible to move to any other outcome that makes at least one player better off, without making anyone else worse off.

For example, let us take the classic prisoner's dilemma game:

	Cooperate (p2)	Defect (p2)
Cooperate (p1)	-1, -1	-10, 0
Defect (p1)	0, -10	-8, -8

The outcomes that are pareto efficient are (Cooperate, Cooperate), (Cooperate, Defect), and (Defect, Cooperate). All three are outcomes where it is impossible to move to another potential outcome, without making someone worse off.

The opposite of pareto efficient is **pareto inefficient** - an outcome where it is possible to make at least one player better off, without making anyone worse off.

• In the prisoner's dilemma, (Defect, Defect) is pareto inefficient, since we can move to (Cooperate, Cooperate), which makes both players better off, and no one worse off.

Applications of Nash Equilibria

6.1 Prisoner's Dilemma as a Category of Games

A **Prisoner's dilemma** is not just one specific game with the storyline of the prisoners. It refers to all games that meet the following criteria:

- Each player has 2 strategies: cooperate or defect
- Each player has a dominant strategy of defecting
- The Nash Equilibrium that arises is thus (Defect, Defect), and that is the outcome of the game
- However, while (Defect, Defect) is the outcome of the game, it is pareto inefficient both players in theory could be better off with (Cooperate, Cooperate), but because of the structure of the game, they both have the incentive to defect.

Prisoner's Dilemma games are used to show how individual rationality and group rationality differ.

- The group can get the best outcome if they all cooperate.
- However, if you choose to cooperate, you run the risk that someone else is going to defect, undercutting you and giving you the worst payoff.
- Thus, it is in individual's incentives to always defect.

The Prisoner's Dilemma is frequently used to explain issues of **Public Goods**. Public goods are non-excludable - you cannot exclude people from using the good. An example of a Public Good is National Defence, or the air around us.

- Since these goods are non-excludable, people cannot be prevented from using the good, even if they do not contribute to the upkeep. Thus, there is a incentive for individuals to underinvest in the upkeep of public goods, reducing the quality for everyone.
- An example is Air Quality individuals and companies poluate and refuse to contribute to the upkeep of good air quality, despite the fact that poor air quality is worse for everyone (pareto inefficient)

Other examples of the application of Prisoner's Dilemmas include:

- Overuse of common resources (like fisheries), due to individual incentives, resulting in a pareto-inefficient outcome
- Training of workers because firms are afraid that workers will leave and join a rival, firms do not train their workers properly, resulting in a less-than-optimal economy for everyone.
- Cartels cartels can make the most money when everyone makes very little of a product (raising prices). However, if one person defects and makes a lot, they get a huge increase in profits, while every one else loses. Thus, fearful of others defecting, everyone defects, making production very high, and making everyone worse off (pareto inefficient)

6.2 Public Goods Games

6.3 Election Games

Extensions of Nash Equilibrium

7.1 Multiple Nash Equilibrium and Focal Points

We discussed how one of the weaknesses of Nash Equilibrium is the fact that multiple can exist in a single game (as we have shown with both the chicken, and stag-hunt game).

In theory, all Nash Equilibria are supposed to be equally likely to occur - there is no mathematical proof that one would occur more frequently than others.

However, there are two ways in which one Nash Equilibria may stand above the rest, and be the most likely outcome of the game.

First, if one Nash Equilibria is Pareto efficient, when the others are not, then that one is likely to be the outcome.

- This is because all players know the payoffs, since that is common knowledge, and all players
 are able to calculate Nash Equilibria.
- Since Pareto Efficient outcomes mean no player can do better without making anyone worse, and pareto-inefficient outcomes mean that at least one player can do better without making anyone worse, it generally makes sense for players to choose the Nash Equilibria that is Pareto Efficient.

Second, is the concept proposed by Schelling - Focal Points

- Sometimes, some Nash Equilibria are culturally more "notable" and likely than the other Nash Equilibria.
- For example, take the following game: You want to meet a friend in Paris, but your phones are both dead. If you both choose the same place, then you get a full payoff. if you two choose different places to meet, then neither get any payoff.
- In theory, any location in Paris is a Nash Equilibria since as long as both of you are at the same place, you are getting the optimal outcome.
- However, culturally, there are some locations in Paris that are more "obvious". For example, many people would probably meet at the Eiffel Tower. Thus, the Eiffel Tower is a focal point
 a likely solution to the game, due to cultural reasons.

7.2 Trembling Hand Perfect Equilibrium

Game theory, as we know, assumes players are rational, and play optimal outcomes. Empirical evidence has shown that this is sort-of true: on average, a large amount of people, when their actions are aggregated and averaged, do tend to make rational decisions.

• Of course, there are key exceptions to this (which is the topic of study for the fields of Behvioural Economics and Behvaioural Political Economy).

However, in no world is every single individual a rational one. Since Game Theory and models is often about predicting likely outcomes, we want to make sure our solution concepts, like Nash Equilibria, will survive even in the real world, where not everyone is rational.

 Essentially, we want our predictions to have some robustness. We want to make sure our model was not "cherry picked" just to make a certain prediction come true.

The **Trembling Hand Perfect Equilibrium**, proposed by economist Reinhard Selten, is a way to test the robustness of Nash Equilibria.

Essentially, we assume that one player of a game plays the "suboptimal" strategy at a probability of ϵ . Or in other words, they make a "mistake" at probability ϵ , and play the "correct" strategy at probability $1 - \epsilon$.

Given one player does this, we see how the other player reacts, and if they still decide to go with the Nash Equilibrium strategy. If the other player decides to still go with the Nash Equilibrium strategy despite the suboptimal strategy of one player, the Nash Equilibrium is robust.

For example, let us take the following game:

	Left (p2)	Right (p2)
Up (p1)	1, 1	2, 0
Down (p1)	0, 2	2, 2

The two Nash Equilibria of the game are (Up, Left), and (Down, Right).

Let us test the robustness of the (Up, Left) equilibrium.

Assume that player 1 might be irrational at probability ϵ and select "Down". That means they will be rational at probability $1 - \epsilon$, and select "Up". Let us call this probability of playing up at $1 - \epsilon$ and probability of playing down at ϵ as the strategy profile s_1^{ϵ}

Let us assume player 2 is still rational. Does (Up, Left) remain a Nash Equilibria? To test this, let us find player 2's utilities for playing "left" and "right", given player 1 does what was listed above. If player 2 still prefers "left", then it is a robust Nash Equilibria.

The expected utility of player 2, when they play left, is defined as $u_2(L, s_1^{\epsilon}) = 1 \times Pr(Up) + 2 \times Pr(Down)$

- Where $Pr(Up) = 1 \epsilon$ is the probability player 1 plays up, and $Pr(Down) = \epsilon$ is the probability that player 1 plays down.
- Plugging in the probabilities, we get: $u_2(L, s_1^{\epsilon}) = 1(1-\epsilon) + 2\epsilon = 1+\epsilon$

The expected utility of player 2, when they play right, is defined as $u_2(R, s_1^{\epsilon}) = 0 \times Pr(Up) + 2 \times Pr(Down)$

- Where $Pr(Up) = 1 \epsilon$ is the probability player 1 plays up, and $Pr(Down) = \epsilon$ is the probability that player 1 plays down.
- Plugging in the probabilities, we get $u_2(R, s_1^{\epsilon}) = 0(1 \epsilon) + 2\epsilon = 2\epsilon$

Thus, when player 2 plays left, they expect a utility of $1-\epsilon$, and when the play right, they expect a utility of 2ϵ . The Nash Equilibrium (Up, Left) is only true of player 2 plays left, it is only true of $1-\epsilon>2\epsilon$. Let us solve for ϵ

$$1 > 3\epsilon \to \epsilon < 1/3$$

Thus, the Nash Equilibrium (Up, Left) remains true as long as player 1 is irrational less than 1/3 of the time.

- This is usually considered quite robust. We usually assume ϵ is quite a small value, such as 0.01, or perhaps at most, 0.1.
- Thus, the (Up, Left) Nash Equilibria is quite robust against irrational play.

We can test the other Nash Equilibrium (Down, Right) with the same parameters:

- When player 2 plays left, $u_2(L, s_1^{\epsilon}) = 1\epsilon + 2(1 \epsilon) = 2 \epsilon$
- When player 2 plays right, $u_2(R, s_1^{\epsilon}) = 0\epsilon + 2(1 \epsilon) = 2 2\epsilon$

(Down, Right) is only a Nash Equilibrium when player 2 plays right. Thus, $2-2\epsilon > 2-\epsilon$. Let us solve for ϵ :

$$2-2>-\epsilon+2\epsilon\to\epsilon<0$$

So, (Down, Right) is only a Nash Equilibrium when player 2 is irrational less than 0% of the time, which is impossible. Thus, (Down, Right) is not a robust Nash Equilibrium

Downsian Spatial Models

Mixed Strategies

Part III

Dynamic Games

Dynamic Games of Complete Information

Elections as Incentive Devices

Part IV

Bayesian Games

Dynamic Games of Incomplete Information

Perfect Bayesian Equilibrium

Signalling Games

Part V Advanced Games