Rational Ehrhart Theory

Sophie Rehberg joint work with Matthias Beck & Sophia Elia

arXiv:2110.10204

34th International Conference on Formal Power Series & Algebraic Combinatorics

Ehrhart (Quasi-)Polynomials

P a *d*-polytope in \mathbb{R}^d , $n \in \mathbb{Z}_{>0}$.

$$nP := \{ n\mathbf{x} \in \mathbb{R}^d : \mathbf{x} \in P \}$$

 $ehr_P(n) := \# (\mathbb{Z}^d \cap nP)$

Example: unit square $[0,1]^2$

ehr
$$([0,1]^2; n) = (n+1)^2$$

Theorem (Ehrhart 1962)

P an integral d-polytope. Then ehr(P; n) agrees with a polynomial of degree d.

Ehrhart (Quasi-)Polynomials

P a *d*-polytope in \mathbb{R}^d , $n \in \mathbb{Z}_{>0}$.

$$nP := \{ n\mathbf{x} \in \mathbb{R}^d : \mathbf{x} \in P \}$$

 $ehr_P(n) := \# (\mathbb{Z}^d \cap nP)$

Example: unit square $[0,1]^2$

ehr
$$([0,1]^2; n) = (n+1)^2$$

Theorem (Ehrhart 1962)

P a integral rational d-polytope. Then, ehr(P; n) agrees with a quasipolynomial of degree d, period $p \mid k$.

quasipolynomial: $q(x) = c_0(x) + c_1(x)x + \cdots + c_d(x)x^d$, $c_i(x)$ periodic functions

denominator k of P is lcm of denominators of coordinates of vertices

Ehrhart Series

Theorem (Stanley 1980)

 $\mathsf{P} \subset \mathbb{R}^d$ a rational *d*-polytope with denominator *k*. Then

$$\mathsf{Ehr}(\mathsf{P};t) := 1 + \sum_{n \ge 1} \mathsf{ehr}(\mathsf{P};n) t^n = \frac{\mathsf{h}^*(\mathsf{P};t)}{(1-t^k)^{d+1}}$$

and $h^*(P; t)$ is a polynomial with nonnegative coefficients.

Literature

- Linke (2011) $|\lambda P \cap \mathbb{Z}^d|$ for $\lambda \in \mathbb{Q}_{>0}$ is quasipolynomial, coefficients are piece-wise polynomial and related by derivatives,...
- Baldoni-Berline-Köppe-Vergne (2013) intermediate sums on polyhedra, with $|\lambda P \cap \mathbb{Z}^d|$ as special case.
- Stapledon (2008,2017) introduced weighted h*-polynomials, investigated a Ehrhart series counting points on boundaries for polytopes with $\mathbf{0} \in \mathsf{P}$

Definitions and Examples

For $P \subset \mathbb{R}^d$ define the **rational Ehrhart counting function** as $\operatorname{rehr}(P;\lambda) := |\lambda P \cap \mathbb{Z}^d| \quad \text{for } \lambda \in \mathbb{Q}_{>0}$.

Definitions and Examples

For $\mathsf{P} \subset \mathbb{R}^d$ define the **rational Ehrhart counting function** as

$$\operatorname{rehr}(\mathsf{P};\lambda)\coloneqq |\lambda\mathsf{P}\cap\mathbb{Z}^d|\quad \text{for }\lambda\in\mathbb{Q}_{>0}\,.$$

$$\mathsf{P}_1 = [0,1] \subset \mathbb{R}$$

$$\mathsf{rehr}\big(\mathsf{P}_1;\lambda\big) \; = \; \big\lfloor\lambda\big\rfloor + 1$$

Definitions and Examples

For $\mathsf{P} \subset \mathbb{R}^d$ define the **rational Ehrhart counting function** as

$$\operatorname{rehr}(\mathsf{P};\lambda) \coloneqq |\lambda\mathsf{P} \cap \mathbb{Z}^d| \quad \text{for } \lambda \in \mathbb{Q}_{>0} \,.$$

$$P_2=[1,2]\subset \mathbb{R}$$

$$\operatorname{rehr}(\mathsf{P}_2;\lambda) = \lfloor 2\lambda \rfloor - \lceil \lambda \rceil + 1$$

Definitions and Examples

Let

$$\mathsf{P} = \left\{ \mathbf{x} \in \mathbb{R}^d : \ \mathbf{A}\mathbf{x} \le \mathbf{b} \right\}$$

with $\mathbf{A} \in \mathbb{Z}^{n \times d}$, $\mathbf{b} \in \mathbb{Z}^n$ and every row is in lowest terms.

We define the **codenominator** r:

$$r = \operatorname{lcm}(\mathbf{b})$$
.

Definitions and Examples

Let

$$\mathsf{P} = \left\{ \mathbf{x} \in \mathbb{R}^d : \ \mathbf{A}\mathbf{x} \le \mathbf{b} \right\}$$

with $\mathbf{A} \in \mathbb{Z}^{n \times d}$, $\mathbf{b} \in \mathbb{Z}^n$ and every row is in lowest terms.

We define the **codenominator** r:

$$r = \operatorname{lcm}(\mathbf{b})$$
.

$$\begin{aligned} \mathsf{P}_1 &= [0,1] \\ &= \{x \in \mathbb{R} \colon \quad -x \leq 0, \\ &\quad x \leq 1 \} \end{aligned}$$
 so $r = 1$.

Definitions and Examples

Let

$$\mathsf{P} = \left\{ \mathbf{x} \in \mathbb{R}^d : \ \mathbf{A}\mathbf{x} \le \mathbf{b} \right\}$$

with $\mathbf{A} \in \mathbb{Z}^{n \times d}$, $\mathbf{b} \in \mathbb{Z}^n$ and every row is in lowest terms.

We define the **codenominator** r:

$$r = \operatorname{lcm}(\mathbf{b})$$
.

$$P_2 = [1, 2]$$

= $\{x \in \mathbb{R} : x \le 2,$
 $-x \le -1\}$
so $r = 2$.

Discretizing counting

Proposition

Let $P \subset \mathbb{R}^d$ be a rational *d*-polytope with codenominator *r*. Then

- **1** rehr(P; λ) is constant for $\lambda \in \left(\frac{n}{r}, \frac{n+1}{r}\right), n \in \mathbb{Z}_{\geq 0}$.
- ② If $\mathbf{0} \in \mathsf{P}$, then $\mathsf{rehr}(\mathsf{P};\lambda)$ is monotone and constant for $\lambda \in \left[\frac{n}{r},\frac{n+1}{r}\right), \ n \in \mathbb{Z}_{\geq 0}.$

Discretizing counting

Proposition

Let $P \subset \mathbb{R}^d$ be a rational *d*-polytope with codenominator *r*. Then

- **1** rehr(P; λ) is constant for $\lambda \in \left(\frac{n}{r}, \frac{n+1}{r}\right), \ n \in \mathbb{Z}_{\geq 0}$.
- ② If $\mathbf{0} \in \mathsf{P}$, then $\operatorname{rehr}(\mathsf{P};\lambda)$ is monotone and constant for $\lambda \in \left[\frac{n}{r},\frac{n+1}{r}\right), \ n \in \mathbb{Z}_{\geq 0}.$

We define the (refined) rational Ehrhart series as

$$\mathsf{REhr}(\mathsf{P};t) := 1 + \sum_{n \in \mathbb{Z}_{>1}} \mathsf{rehr}\left(\mathsf{P};\frac{n}{r}\right) t^{\frac{n}{r}}$$

RREhr (P; t) :=1 +
$$\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{rehr} \left(P; \frac{n}{2r}\right) t^{\frac{n}{2r}}$$

Recall the (refined) rational Ehrhart series as

$$\mathsf{REhr}\left(\mathsf{P};t\right) \coloneqq 1 + \sum_{n \in \mathbb{Z}_{>1}} \mathsf{rehr}\left(\mathsf{P};\frac{n}{r}\right) t^{\frac{n}{r}}$$

$$\mathsf{RREhr}\left(\mathsf{P};t\right) := 1 + \sum_{n \in \mathbb{Z}_{>1}} \mathsf{rehr}\left(\mathsf{P};\frac{n}{2r}\right) t^{\frac{n}{2r}}$$

Recall the (refined) rational Ehrhart series as

$$\begin{aligned} & \mathsf{REhr}\left(\mathsf{P};t\right) \coloneqq & 1 + \sum_{n \in \mathbb{Z}_{\geq 1}} \mathsf{rehr}\left(\mathsf{P};\frac{n}{r}\right) t^{\frac{n}{r}} \\ & \mathsf{RREhr}\left(\mathsf{P};t\right) \coloneqq & 1 + \sum_{n \in \mathbb{Z}_{\geq 1}} \mathsf{rehr}\left(\mathsf{P};\frac{n}{2r}\right) t^{\frac{n}{2r}} \end{aligned}$$

Theorem

Let P be a rational *d*-polytope with codenominator r, and let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{r}$ P is a lattice polytope. Then

$$\mathsf{REhr}\left(\mathsf{P};t\right) \ = \ \frac{\mathsf{rh}_{m}^{*}\left(\mathsf{P};t\right)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}$$

where $\operatorname{rh}^*(\mathsf{P};t)$ is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{r}}\right]$ with nonnegative coefficients.

Recall the (refined) rational Ehrhart series as

$$\begin{aligned} & \mathsf{REhr}\left(\mathsf{P};t\right) \coloneqq & 1 + \sum_{n \in \mathbb{Z}_{\geq 1}} \mathsf{rehr}\left(\mathsf{P};\frac{n}{r}\right) t^{\frac{n}{r}} \\ & \mathsf{RREhr}\left(\mathsf{P};t\right) \coloneqq & 1 + \sum_{n \in \mathbb{Z}_{\geq 1}} \mathsf{rehr}\left(\mathsf{P};\frac{n}{2r}\right) t^{\frac{n}{2r}} \end{aligned}$$

Theorem

Let P be a rational *d*-polytope with codenominator r, and let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{2r}$ P is a lattice polytope. Then

$$\mathsf{RREhr}(\mathsf{P};t) = \frac{\mathsf{rrh}_m^*(\mathsf{P};t)}{\left(1-t^{\frac{m}{2r}}\right)^{d+1}}$$

where rrh* (P; t) is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{2r}}\right]$ with nonnegative coefficients.

Theorem

Let P be a rational d-polytope with codenominator r, and let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{r}$ P is a lattice polytope. Then

$$\mathsf{REhr}\left(\mathsf{P};t\right) \; = \; \frac{\mathsf{rh}_{m}^{*}\left(\mathsf{P};t\right)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}$$

where rh* (P; t) is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{r}}\right]$ with nonnegative coefficients.

Proof:

$$\begin{aligned} \mathsf{REhr}\left(\mathsf{P};t\right) &= 1 + \sum_{n \in \mathbb{Z}_{>0}} \mathsf{rehr}\left(\mathsf{P};\frac{n}{r}\right) t^{\frac{n}{r}} \\ &= 1 + \sum_{n \in \mathbb{Z}_{>0}} \mathsf{ehr}\left(\frac{1}{r}\mathsf{P};n\right) \left(t^{\frac{1}{r}}\right)^n = \frac{\mathsf{h}^*\left(\frac{1}{r}\mathsf{P};t^{\frac{1}{r}}\right)}{\left(1 - t^{\frac{m}{r}}\right)^{d+1}} \,. \end{aligned}$$

Example (continued)

Recall:

RREhr(P, t) =
$$\frac{\operatorname{rrh}_{m}^{*}(P; t)}{\left(1 - t^{\frac{m}{2r}}\right)^{d+1}}.$$

$$P_2 = [1, 2]$$

$$r = 2$$

$$\frac{1}{4}P_2 = [\frac{1}{4}, \frac{1}{2}]$$

$$m = 4$$
so $\frac{m}{2r} = 1$

RREhr (P₂; t) =
$$\frac{1 + t^{\frac{1}{2}} + t^{\frac{3}{4}} + t^{\frac{5}{4}}}{(1 - t)^2}$$

Example (continued)

Recall:

RREhr
$$(P, t) = \frac{\operatorname{rrh}_{m}^{*}(P; t)}{\left(1 - t^{\frac{m}{2r}}\right)^{d+1}}.$$

$$P_2 = [1, 2]$$

$$r = 2$$

$$\frac{1}{4}P_2 = [\frac{1}{4}, \frac{1}{2}]$$

$$m = 4$$
so $\frac{m}{2r} = 1$

RREhr (P₂; t) =
$$\frac{1 + t^{\frac{1}{2}} + t^{\frac{3}{4}} + t^{\frac{5}{4}}}{(1 - t)^2}$$

Corollaries

Recall Theorem

P rational, codenominator r, $m \in \mathbb{Z}_{>0}$ s. t. $\frac{m}{r}$ P is lattice

$$\mathsf{REhr}(\mathsf{P};t) \; = \; \frac{\mathsf{rh}_m^*(\mathsf{P};t)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}} \,, \qquad \mathsf{rh}_m^*(\mathsf{P};t) \in \mathbb{Z}_{\geq 0}[t^{\frac{1}{r}}] \,.$$

Corollaries

- Period (Linke 2011): rehr (P; λ) is a quasipolynomial with period $\frac{j}{r}$ where $j \mid m$.
- **2** Reciprocity (Linke 2011): $(-1)^d$ rehr $(P; -\lambda) = |\lambda P^{\circ} \cap \mathbb{Z}^d|$
- 3 If $\frac{m}{r} \in \mathbb{Z}$ we can retrieve the h*-polynomial from rh $_m^*$ by extracting the terms with integer powers.

$$\mathsf{RREhr}(\mathsf{P}_2;t) = \ \frac{1 + t^{\frac{1}{2}} + t^{\frac{3}{4}} + t^{\frac{5}{4}}}{\left(1 - t\right)^2} \quad \to \quad \mathsf{Ehr}(\mathsf{P}_2;t) = \ \frac{1}{\left(1 - t\right)^2}$$

Gorenstein polytopes

 $\mathsf{C} \subset \mathbb{R}^{d+1}$ a pointed, rational, (d+1)-cone is called a **Gorenstein cone** if there is a **Gorenstein point** $(g,\mathbf{y}) \in \mathbb{Z}^{d+1}$ s.t.

$$\mathsf{C}^{\circ} \cap \mathbb{Z}^{d+1} = ((g,\mathbf{y}) + \mathsf{C}) \cap \mathbb{Z}^{d+1}$$
.

A lattice polytope $P \subset \mathbb{R}^d$ is called a **Gorenstein polytope** if hom (P) is a Gorenstein cone.

Gorenstein polytopes

 $\mathsf{C} \subset \mathbb{R}^{d+1}$ a pointed, rational, (d+1)-cone is called a **Gorenstein cone** if there is a **Gorenstein point** $(g,\mathbf{y}) \in \mathbb{Z}^{d+1}$ s.t.

$$\mathsf{C}^{\circ} \cap \mathbb{Z}^{d+1} = ((g, \mathbf{y}) + \mathsf{C}) \cap \mathbb{Z}^{d+1}$$
.

A lattice polytope $P \subset \mathbb{R}^d$ is called a **Gorenstein polytope** if hom (P) is a Gorenstein cone.

Nice properties, e.g.,

- gP has unique interior lattice point, for some $g \in \mathbb{Z}_{>0}$
- palindromic h*-polynomial

Rational Gorenstein

A rational polytope $P \subset \mathbb{R}^d$ is called γ -rational Gorenstein if hom $\left(\frac{1}{\gamma}P\right)$ is a Gorenstein cone.

A lattice polytope P is Gorenstein \Leftrightarrow it is 1-rational Gorenstein.

$$P_2 = [1, 2], r = 2,$$

 $\frac{1}{4}P_2 = [\frac{1}{4}, \frac{1}{2}], m = 4,$
so $\frac{m}{2r} = 1$

RREhr (P₂; t) =
$$\frac{1 + t^{\frac{1}{2}} + t^{\frac{3}{4}} + t^{\frac{5}{4}}}{(1 - t)^2}$$

 P_2 is 2r-rational Gorenstein.

Rational Gorenstein Polytopes

Theorem

Let P be a rational *d*-polytope with codenominator $r = lcm(\mathbf{b})$, $\mathbf{0} \in P$, as above. Then the following are equivalent:

- **1** P is r-rational Gorenstein with $(g, \mathbf{y}) \in \text{hom } (\frac{1}{r}P)$.
- 2 there exists a (necessarily unique) integer solution (g, \mathbf{y}) to $-\mathbf{a}_j \mathbf{y} = 1$ for $j = 1, \dots, i$ $b_i g r \mathbf{a}_i \mathbf{y} = b_i$ for $j = i + 1, \dots, n$
- $3 \text{ rh}^*(P; t)$ is palindromic:

$$t^{(d+1)\frac{m}{r}-\frac{k}{r}}\operatorname{rh}_m^*\left(\mathsf{P};\frac{1}{t}\right) = \operatorname{rh}_m^*\left(\mathsf{P};t\right).$$

- $(-1)^{d+1} t^{\frac{\underline{\beta}}{r}} \operatorname{REhr}(P; t) = \operatorname{REhr}(P; \frac{1}{t}).$
- **6** rehr $(P; \frac{n}{r}) = \text{rehr}(P; \frac{n+g}{r})$ for all $n \in \mathbb{Z}_{\geq 0}$.
- **6** hom $\left(\frac{1}{r}P\right)^{\vee}$ is the cone over a lattice polytope.

Rational Gorenstein Polytopes

Theorem

Let P be a rational d-polytope with codenominator $r = lcm(\mathbf{b})$, as above. Then the following are equivalent:

- **1** P is 2r-rational Gorenstein with $(g, \mathbf{y}) \in \text{hom } (\frac{1}{2r}P)$.
- 2 there exists a (necessarily unique) integer solution (g, y) to $-{\bf a}_i {\bf y} = 1$ for $j = 1, \dots, i$

$$|b_j|g-2r\mathbf{a}_j\mathbf{y}=|b_j|$$
 for $j=i+1,\ldots,n$

 $3 \text{ rrh}^*(P; t)$ is palindromic:

$$t^{(d+1)\frac{m}{2r}-\frac{k}{2r}}\operatorname{rrh}_m^*\left(\mathsf{P};\frac{1}{t}\right) = \operatorname{rrh}_m^*(\mathsf{P};t).$$

- **4** $(-1)^{d+1}t^{\frac{g}{2r}}$ RREhr(P; t) = RREhr (P; $\frac{1}{2}$).
- **6** rehr $(P; \frac{n}{2r})$ = rehr $(P; \frac{n+g}{2r})$ for all $n \in \mathbb{Z}_{>0}$.
- **6** hom $(\frac{1}{2r}P)^{\vee}$ is the cone over a lattice polytope.

This can be generalized to ℓr -rational Gorenstein for $\ell \in \mathbb{Z}_{>0}$. Rational Ehrhart Theory

•
$$\mathsf{P}_1 \coloneqq \left[-1, \frac{2}{3}\right]$$
 Compute: $r=2, \ m=6$
$$\mathsf{rh}_6^*(\mathsf{P}_1; t) = 1 + t^{\frac{1}{2}} + 2t + 3t^{\frac{3}{2}} + 4t^2 + 4t^{\frac{5}{2}} + 4t^3 + 4t^{\frac{7}{2}} + 3t^4 + 2t^{\frac{9}{2}} + t^5 + t^{\frac{11}{2}}$$
 If $\mathbf{0} \in \mathsf{P}^\circ$, then $(1,0,\ldots,0)$ is Gorenstein point in hom $\left(\frac{1}{r}\mathsf{P}\right)$.

• $P_1 := \left[-1, \frac{2}{3}\right]$ Compute: r = 2, m = 6 $\mathsf{rh}_6^*(\mathsf{P}_1; t) = 1 + t^{\frac{1}{2}} + 2t + 3t^{\frac{3}{2}} + 4t^2 + 4t^{\frac{5}{2}} \\ + 4t^3 + 4t^{\frac{7}{2}} + 3t^4 + 2t^{\frac{9}{2}} + t^5 + t^{\frac{11}{2}}$ If $\mathbf{0} \in \mathsf{P}^\circ$, then $(1, 0, \dots, 0)$ is Gorenstein point in hom $(\frac{1}{7}\mathsf{P})$.

• $\triangle = conv\{(0,0),(2,0),(0,2)\}$ is 2-rational Gorenstein

$$\mathsf{REhr}(riangle,t) \ = \ rac{1+3t^{rac{1}{2}}+3t+t^{rac{3}{2}}}{(1-t)^3}$$
 $\mathsf{h}^*(riangle,t) = 1+3t$

• $P_1 := \left[-1, \frac{2}{3}\right]$ Compute: r = 2, m = 6 $\mathsf{rh}_6^*(\mathsf{P}_1; t) = 1 + t^{\frac{1}{2}} + 2t + 3t^{\frac{3}{2}} + 4t^2 + 4t^{\frac{5}{2}} \\ + 4t^3 + 4t^{\frac{7}{2}} + 3t^4 + 2t^{\frac{9}{2}} + t^5 + t^{\frac{11}{2}}$ If $\mathbf{0} \in \mathsf{P}^\circ$, then $(1, 0, \dots, 0)$ is Gorenstein point in hom $(\frac{1}{7}\mathsf{P})$.

• $\triangle = \text{conv}\{(0,0),(2,0),(0,2)\}$ is 2-rational Gorenstein

$$\mathsf{REhr}(riangle,t) \ = \ rac{1+3t^{rac{1}{2}}+3t+t^{rac{3}{2}}}{(1-t)^3}$$
 $\mathsf{h}^*(riangle,t) = 1+3t$

•
$$P_1 := \left[-1, \frac{2}{3}\right]$$
 Compute: $r = 2$, $m = 6$
$$\mathsf{rh}_6^*(\mathsf{P}_1; t) = 1 + t^{\frac{1}{2}} + 2t + 3t^{\frac{3}{2}} + 4t^2 + 4t^{\frac{5}{2}} + 4t^3 + 4t^{\frac{7}{2}} + 3t^4 + 2t^{\frac{9}{2}} + t^5 + t^{\frac{11}{2}}$$

If $\mathbf{0} \in \mathsf{P}^{\circ}$, then $(1,0,\ldots,0)$ is Gorenstein point in hom $\left(\frac{1}{r}\mathsf{P}\right)$.

- $\triangle = \mathsf{conv}\{(0,0),(2,0),(0,2)\}$ is 2-rational Gorenstein
- $\nabla = \text{conv}\{(0,0),(0,2),(5,2)\}$ is not rational Gorenstein Thanks to Esme Bajo for suggesting this example.

$$\operatorname{rh}_{2}^{*}(\nabla;t) = 1 + 4t^{\frac{1}{2}} + 7t + 6t^{\frac{3}{2}} + 2t^{2}$$

Outlook

- What is a reasonable definition of "reflexive" in the rational setting?
- Connections to the Fine (1983) interior of a lattice polytope (Batyrev 2017, Batyrev–Kasprzyk–Schaller 2022)?
- Any other Ehrhart-theoretic question . . .

Outlook

- What is a reasonable definition of "reflexive" in the rational setting?
- Connections to the Fine (1983) interior of a lattice polytope (Batyrev 2017, Batyrev–Kasprzyk–Schaller 2022)?
- Any other Ehrhart-theoretic question . . .

Thank you for your attention!

Period collapse

Recall: The period p of (rational) Ehrhart quasipolynomial divides the denominator k of P.

Period collapse: if period p is strictly smaller than k (or equals 1).

Period collapse

Recall: The period p of (rational) Ehrhart quasipolynomial divides the denominator k of P.

Period collapse: if period p is strictly smaller than k (or equals 1).

More examples:

- **2** conv $\{(0,0,0),(\frac{1}{2},0,0),(0,\frac{1}{2},0),(\frac{1}{2},\frac{1}{2},0),(\frac{1}{4},\frac{1}{4},\frac{1}{2})\}$ Fernandes, de Pina, Ramırez Alfonsın, and Robins, *On the period collapse of a family of Ehrhart quasi-polynomials*, 2021, Preprint (arXiv:2104.11025). \rightarrow **integral** period collapse and **rational** period collapse
- **4** $\left[0, \frac{1}{2}\right]$
 - → no integral period collapse, no rational period collapse