

# Deep Learning





1

인공지능의 의미와 함께 지능의 특징을 살펴본다.

2

인공지능이 사용되는 분야를 이해한다.

3

인공지능의 역사를 이해한다.













## 인공지능 사례







## 인공지능 사례





AlphaGo

자율주행



번역 시스템



인공지능 스피커





| 약인공지능<br>(Weak Al)   | -특정 목적을 위해 인간의 지능 중 일부를 모방해 구현된 인공지능 -특정 분야의 작업에 특화되어 있고, 그 외의 작업에는 유용하지 않음 -자율 주행 자동차, 구글번역, 페이스북 추천 등 -구글 AlphaGo, Apple Siri, 얼굴 인식 시스템 등 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 강인공지능<br>(Strong AI) | -인간처럼 다양한 작업을 수행할 수 있는 인공지능 -사고를 통해 문제 해결 -<에이아이> '데이빗', <아이 로봇> '써니', <아이언맨> '자비스'                                                          |
| 초인공지능<br>(Super AI)  | -인간의 지능을 크게 뛰어넘는 인공지능<br>-인간을 월등히 뛰어넘는 인공지능<br>-<매트릭스> '아키텍트', <터미네이터> '스카이넷', <어벤져스> '비전'                                                   |



#### 인공지능이란?

## 지능(Intelligence)

- 일반적으로 학습, 추론, 문제 해결, 인지, 언어 이해 등의 능력을 포함하는 매우 포괄적인 개념으로 이해



· 과거의 패턴들로부터 학습할 수 있는 능력을 가짐

- 빅데이터(Big Data)
- · 아주 큰 용량의 변화는 데이터를 처리할 수 있음

- 문제해결(Problem Solving)
- · 복잡한 문제를 분석하고 해결할 수 있는 능력을 가짐

- 추론(Reasoning)
  - · 주위의 상황으로부터 추론할 수 있는 능력을 가짐



## 인공지능(Artificial Intelligence)

- 인공지능의 4가지 정의(Russel & Norvig)

| 인간처럼 행동하기<br>(Acing Humanly)        | - 인간처럼 행동하는 컴퓨터로 구현하는 것이 인공지능                                |
|-------------------------------------|--------------------------------------------------------------|
| 인간처럼 사고하기<br>(Thinking Humanly)     | -인간이 어떻게 사고하는지를 인지 과학이나 신경 과학을 통하여 밝힌 후에 이 과정을 프로그램으로 구현     |
| 합리적으로 사고하기<br>(Thinking Rationally) | -삼단논법과 같은 사고의 법칙(논리학)을 이용하여 지능적인 시스템을 구현                     |
| 합리적으로 행동하기<br>(Acting Rationally)   | -자율적으로 행동하고, 자신의 환경을 인지하고, 변화에 적응하는 합리적인 에이전<br>트를 만드는 것이 목표 |





- 지능(Intelligence)
- 1. 인간이 사물을 이해하고 학습하는 능력(Learning)
- 2. 어떤 문제가 주어졌을 때, 합리적으로 사고하여 문제를 해결하는 능력(Problem solving)

- 인공지능(Artificial Intelligence)
  - 인간의 인지적인 기능을 흉내내어서 문제를 해결하기 위하여 학습하고 이해하는 기계(컴퓨터)



# 답러닝 개념





## 인공지능, 머신러닝, 딥러닝



## 인공지능(Artificial Intelligence)

인간의 지적 능력을 컴퓨터를 통해 구현하는 기술







사람의 신경망을 모방하여 기계가 병렬적 다층 구조를 통해 학습하도록 만든 기술







신경세포(Neurun)







신경세포(Neurun)





$$y = W_1 X_1 + W_2 X_2 + b$$



인공 신경 세포 (Artificial Neurun)

신경세포(Neurun)







인공 신경 세포 (Artificial Neurun)









대량의 데이터에서 복잡한 패턴이나 규칙을 찾아내는 능력이 뛰어나다.





## 딥러닝(Deep Learning) 활용 사례

## 자연어 처리



## 컴퓨터 비전



## 음성 인식





# 기존 머신러닝과의 비교





## 기존 머신러닝(선형모델)과 딥러닝의 공통점







## 기존 머신러닝(선형모델)과 딥러닝의 차이점

규칙 기반 전문가 시스템(Rule-based expert system)



기존 머신러닝



딥러닝 : feature engineering이 거의 필요 없음 (사람의 개입 최소화)









## 머신러닝이 더 적합한 상황

- 1. 데이터 양이 적을 때
- 2. 해석 가능성이 중요한 경우
- 3. 특징이 잘 정의된 경우
- 4. 연산 자원이 제한되는 경우
- 5. 비선형성이 강하지 않은 경우



#### 학습 로드맵

Part 1.

퍼셉트론 (Perceptron) 다층 퍼셉트론 (Multi Layer Perceptron) 오차 역전파 (Backpropagation)

Part 2.

합성곱 신경망 (Convolutional Neural Network) 순환 신경망 (Recurrent Neural Network)

Part 3.

이미지/영상 데이터 관련 알고리즘 음성 데이터 관련 알고리즘 텍스트 데이터 관련 알고리즘

생산적 적대 신경망

(Generative Adversarial Networks)

심층 강화 학습 (Deep Reinforcement Learning)

















theano











# K Keras

- Keras에서는 다양한 뉴럴 네트워크 모델을 미리 지원해주고 있으므로, 그냥 블록을 조립하듯이 네트워크를 만들면 되는 식이라, 전반적인 네트워크 구조를 생각하고 작성한다면 빠른 시간 내에 코딩을 할 수 있는 엄청난 장점
- 현재는 TensorFlow 위에서 Keras가 동작하도록 설계되어 있고, 2.x부터는 Keras를 TensorFlow 안에 포함시켜 표준 라이브러리로 지원하고 있음





## 딥러닝 개발환경 구축 – 가상환경 생성







### 딥러닝 개발환경 구축 - 가상환경 생성







### 딥러닝 개발환경 구축 - 가상환경 생성







## 딥러닝 개발환경 구축 - 가상환경 생성











구글에서 제공하는 클라우드 기반의 개발환경 제공 서비스



























3. 복사한 권한허가 코드 붙여넣기하고 엔터





## keras 맛보기 : 학생 성적데이터 예측 (성별, 나이, 부모의 교육수준/직업, 결석 횟수 등)

https://www.kaggle.com/janiobachmann/math-students





keras 맛보기: 학생 성적데이터 예측

모델 만들기 (입력 특성 1개)



| i Oi | Deep     |
|------|----------|
| 4000 | Learning |

| x1(study) | y(score) |  |
|-----------|----------|--|
| 9         | 90       |  |
| 8         | 80       |  |
| 4         | 40       |  |
| 2         | 20       |  |
| 시험성적 데이터  |          |  |

$$y = 100 X_1 + 0$$







keras 맛보기: 학생 성적데이터 예측

모델 만들기 (입력 특성 2개 이상)



| Learning |  | Deep<br>Learning |
|----------|--|------------------|
|----------|--|------------------|

| x1<br>(study) | x2<br>(sleep) | y<br>(score) |
|---------------|---------------|--------------|
| 9             | 5             | 90           |
| 8             | 8             | 80           |
| 4             | 7             | 40           |
| 2             | 3             | 20           |

$$y = W_1 X_1 + W_2 X_2 + b$$

$$X_1 \qquad W_1$$

$$X_2 \qquad W_2 \qquad \Sigma \qquad y$$

