Lambdas & Pebbles

What is Lambda Calculus?

- Allows one to describe computation from a functional point of view.
- Invented by Alonzo Church in the late 1920s.

What is Lambda Calculus?

- Allows one to describe computation from a functional point of view.
- Invented by Alonzo Church in the late 1920s.

Historical Side Note

- Allows one to describe computation from state machine point of view.
- Invented by Alan Turing in the mid 1930s.

Grammar of Lambda Calculus

```
<Expression> ::= <identifier>
<Expression> ::= \(\lambda\)
<Expression> ::= <Expression> <Expression>
<Expression> ::= (<Expression>)
```

What's the point?

- Functional programming is all the rage.
 - Lambda calculus provides the foundation.

What's the point?

- Functional programming is all the rage.
 - Lambda calculus provides the foundation.

- Lambda calculus can encode any computable function.
 - Equivalent to a turing machine.

What's the point?

- Functional programming is all the rage.
 - Lambda calculus provides the foundation.

- Lambda calculus can encode any computable function.
 - Equivalent to a turing machine.

 It's simplicity and compositional power is <u>awesomeness</u> <u>in its purest form</u>.

$$(\lambda x.\lambda y. x + y)$$

 $(\lambda x.\lambda y. x + y)$ 13 9

$$(\lambda x.\lambda y. x + y) 13 9$$

13
$$\rightarrow$$
 $\lambda x. \lambda y. x + y$

$$(\lambda x.\lambda y. x + y)$$
 13 9

$$(\lambda y. 13 + y) 9$$

$$(\lambda y. 13 + y) 9$$

$$(\lambda y. 13 + y) 9$$

13
$$\rightarrow$$
 $\lambda x. \lambda y. x + y$
9 \rightarrow $\lambda y. 13 + y$

$$(13 + 9)$$

22

Church Numerals

 Given all we have are functions. How do we encode the notion of number?

Church Numerals

- Given all we have are functions. How do we encode the notion of number?
 - Really no choice... we have to use functions and function applications!

First 5 Church Numerals

- 0: λf.λx. x
- 1: λf.λx. f x
- 2: $\lambda f.\lambda x. f(f x)$
- 3: $\lambda f.\lambda x. f(f(fx))$
- 4: $\lambda f.\lambda x. f(f(f(x)))$

First 5 Church Numerals

- $0: \lambda f. \lambda x. x$
- 1: $\lambda f.\lambda x. f x$
- 2: $\lambda f.\lambda x. f(fx)$
- 3: $\lambda f. \lambda x. f(f(fx))$
- 4: $\lambda f.\lambda x. f(f(f(x)))$

First 5 Church Numerals

0: λf.λx. x

1: λf.λx. f x

2: λf.λx. f (f x)

3: $\lambda f.\lambda x. f(f(fx))$

4: $\lambda f. \lambda x. f(f(f(x)))$

Let's encode these in Scheme!

How do we operate with these numerals?

- How do we operate with these numerals?
 - Lambda Functions!

- How do we operate with these numerals?
 - Lambda Functions!

SUCC: $\lambda n.\lambda f.\lambda x. f(n f x)$

- How do we operate with these numerals?
 - Lambda Functions!

SUCC: $\lambda n.\lambda f.\lambda x. f(n f x)$

```
f ffff....fff
```

- How do we operate with these numerals?
 - Lambda Functions!

SUCC: $\lambda n.\lambda f.\lambda x. f(n f x)$ $f\{fff....fff\}_n$

ADD: $\lambda m.\lambda n.\lambda f.\lambda x. m f(n f x)$

- How do we operate with these numerals?
 - Lambda Functions!

SUCC: $\lambda n.\lambda f.\lambda x. f(n f x)$

ADD: $\lambda m.\lambda n.\lambda f.\lambda x. m f (n f x)$

f {fff.....fff}

ff..ff ff..ff

- How do we operate with these numerals?
 - Lambda Functions!

SUCC: $\lambda n.\lambda f.\lambda x. f(n f x)$

ADD:

 λ m. λ n. λ f. λ x. m f (n f x)

MULT: $\lambda m.\lambda n.\lambda f.\lambda x. m (n f) x$

f {fff.....fff}_n

ff..ff ff..ff

- How do we operate with these numerals?
 - Lambda Functions!

SUCC: $\lambda n.\lambda f.\lambda x. f(n f x)$

ADD:

 λ m. λ n. λ f. λ x. m f (n f x)

MULT: $\lambda m.\lambda n.\lambda f.\lambda x. m (n f) x$

f {fff.....fff}_n

{ff..ff}_m {ff..ff}_n

 $\{ff..ff\}_n..\{ff..ff\}_n\}_m$

Arithmetic with Church Nun

- How do we operate with thes
 - Lambda Functions!

Let's encode these in Scheme!

SUCC: $\lambda n.\lambda f.\lambda x. f(n f x)$

ADD: $\lambda m.\lambda n.\lambda f.\lambda x. m f$ (1

MULT: $\lambda m.\lambda n.\lambda f.\lambda x. m$ (n

And now....

 $\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$

 $\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

$$Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$$

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

$$Y g = (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) g$$

- Also called a fixed point combinator
 - o x = f(x); x is a fixed point of f

$$Y g = (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) g$$

$$\rightarrow$$
 $(\lambda x.g(x x))(\lambda x.g(x x))$

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

$$Y g = (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) g$$

$$\rightarrow$$
 $(\lambda x.g(x x))(\lambda x.g(x x))$

$$\longrightarrow$$
 g(($\lambda x.g(x x)$)($\lambda x.g(x x)$))

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

$$Y g = (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) g$$

$$\rightarrow$$
 $(\lambda x.g(x x))(\lambda x.g(x x))$

$$\longrightarrow$$
 g(($\lambda x.g(x x)$)($\lambda x.g(x x)$))

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

$$Y g = (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) g$$

$$\longrightarrow$$
 $(\lambda x.g(x x))(\lambda x.g(x x))$

$$\longrightarrow$$
 g(($\lambda x.g(x x)$)($\lambda x.g(x x)$)) \longrightarrow g(g(($\lambda x.g(x x)$)($\lambda x.g(x x)$)))

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

 \rightarrow g(g(g(($\lambda x.g(x x)$)($\lambda x.g(x x)$)))) \rightarrow

Y g =
$$(\lambda f.(\lambda x.f(x x))(\lambda x.f(x x)))$$
 g

 $\longrightarrow (\lambda x.g(x x))(\lambda x.g(x x))$
 $\longrightarrow g((\lambda x.g(x x))(\lambda x.g(x x))) \longrightarrow g(g((\lambda x.g(x x))(\lambda x.g(x x))))$

- Also called a fixed point combination
 - o x = f(x); x is a fixed point of f

$$Y g = (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) g$$

$$\longrightarrow$$
 $(\lambda x.g(x x))(\lambda x.g(x x))$

$$\longrightarrow$$
 g(($\lambda x.g(x x)$)($\lambda x.g(x x)$)) \longrightarrow

$$\longrightarrow$$
 g(g(g(($\lambda x.g(x x)$)($\lambda x.g(x x)$))))

- Also called a fixed point combina
 - \circ x = f(x); x is a fixed point of f

$$Y g = (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) g$$

$$\longrightarrow (\lambda x.g(x x))(\lambda x.g(x x))$$

$$\longrightarrow$$
 g(($\lambda x.g(x x)$)($\lambda x.g(x x)$)) \longrightarrow

$$\rightarrow$$
 g(g(g(($\lambda x.g(x x)$)($\lambda x.g(x x)$))))

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

$$Y(g) = g(Y(g)) = g(g(Y(g)) = ...$$

- Also called a fixed point combinator
 - \circ x = f(x); x is a fixed point of f

$$Y(g) = g(Y(g)) = \dots$$

- Also called a fixed point com
 - \circ x = f(x); x is a fixed point

$$Y(g) = g(Y(g)) = \dots$$

Let's do factorial in Scheme!

(caveat: using the Z combinator)

- Also called a fixed point com
 - \circ x = f(x); x is a fixed point

$$Y(g) = g(Y(g)) = \dots$$

Historical Side Note

Y Combinator is an American seed accelerator, started in March 2005. Y Combinator is consistently ranked at the top of U.S. accelerators

https://www.ycombinator.com

Why did you choose the name "Y Combinator?"

The Y combinator is one of the coolest ideas in computer science. It's also a metaphor for what we do. It's a program that runs programs; we're a company that helps start companies.

Lambdas & Pebbles

 $\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$