Soluzione tema d'esame 20 b. Esercizio 1: Ferrovie

Il problema consiste nel determinare il flusso ottimo, che permetta allo spedizioniere di aumentare il proprio profitto, da un nodo s a un nodo t in un grafo orientato, dove le capacità degli archi sono date dal prodotto di tre fattori: il numero di treni/giorno, il numero di vagoni/treno e la capacità/vagone.

Le merci da trasportare sono tre (problema di flusso *multicommodity*). Perciò occorrono variabili diverse per rappresentare il flusso dei materiali su ciascuno dei 16 archi, cioè 48 variabili. Con x(i,j,k) si indica il flusso di merce k (k=A...C) lungo l'arco (i,j).

La funzione obiettivo risulta quindi essere la seguente:

$$\max \sum_{i,j,k} X_{i,j,k} * V_k$$

dove v_k indica il valore in euro/ton della merce \bar{k} , che viene fornito come dato; in Lindo la funzione si presenta così: max 80 xs1A + 80 xs2A + 50 xs1B + 50 xs2B + 65 xs1C + 65 xs2C. La funzione richiede di massimizzare il valore complessivo del flusso[euro/giorno], cioè la somma pesata delle quantità di merce spedite, ciascuna moltiplicata per un coefficiente dato che è il valore unitario della merce.

1. I vincoli di conservazione del flusso sono gli stessi dei problemi con una sola *commodity*: per ciascuna delle merci bisogna imporre che la quantità entrante in ogni nodo sia uguale alla quantità uscente, fatta eccezione per i due nodi estremi.

```
Vincoli di conservazione del flusso per ogni tipo di merce
```

```
nodo 1A) xs1A - x13A - x14A = 0
nodo\ 1B) xs1B - x13B - x14B = 0
nodo\ 1C) \ xs1C - x13C - x14C = 0
nodo 2A) xs2A - x24A - x25A = 0
nodo\ 2B)  xs2B - x24B - x25B = 0
nodo\ 2C) xs2C - x24C - x25C = 0
nodo 3A) x13A - x36A - x37A = 0
\frac{1}{100} nodo 3B) x13B - x36B - x37B = 0
nodo 3C)  x13C - x36C - x37C = 0
nodo 4A) x14A + x24A - x46A - x47A - x48A = 0
\frac{1}{100} nodo \frac{1}{100} x14B + x24B - x46B - x47B - x48B = 0
\frac{1}{1000} nodo \frac{1}{100} x14C + x24C - x46C - x47C - x48C = 0
nodo 5A)  x25A - x57A - x58A = 0
nodo 5B)  x25B - x57B - x58B = 0
nodo 5C)  x25C - x57C - x58C = 0
nodo^{-}6A) x36A + x46A - x6tA = 0
nodo 6B) x36B + x46B - x6tB = 0
nodo^{-}6C) x36C + x46C - x6tC = 0
     7A) x37A + x47A + x57A - x7tA = 0
     _{2}7B) _{2}37B + _{3}47B + _{3}57B - _{3}7tB = 0
nodo
     7C) x37C + x47C + x57C - x7tC = 0
nodo
nodo 8A) x48A + x58A - x8tA = 0
nodo_8B)  x48B + x58B - x8tB = 0
nodo 8C) x48C + x58C - x8tC = 0
```

2. I vincoli di capacità invece devono imporre che su ogni arco il flusso complessivo, che è la somma di tre termini relativi alle tre diverse merci, non superi la capacità dell'arco.

```
Vincoli di capacità sugli archi [ton/giorno]
cap s1) xs1A + xs1B + xs1C <= 800
cap s2) xs2A + xs2B + xs2C <= 480
cap 13) x13A + x13B + x13C <= 400
cap 14) x14A + x14B + x14C \le 360
cap^{24}) x24A + x24B + x24C <= 256
cap 25) x25A + x25B + x25C \le 128
cap 36) x36A + x36B + x36C \le 320
cap 37) x37A + x37B + x37C \le 384
cap 46) x46A + x46B + x46C <= 240
cap^{-}47) x47A + x47B + x47C <= 192
cap^{-}48) x48A + x48B + x48C <= 240
cap 57) x57A + x57B + x57C <= 720
cap 58) x58A + x58B + x58C <= 400
cap 6t) x6tA + x6tB + x6tC <= 486
cap 7t) x7tA + x7tB + x7tC \le 300
cap 8t) x8tA + x8tB + x8tC <= 396
```

3. Esistono anche dei vincoli di capacità sui nodi, che si possono esprimere imponendo che per ogni tipo di merce e per ogni nodo (inclusi *s* e *t*) il totale flusso entrante nel o uscente dal nodo sia non superiore al limite dato. Il vincolo può essere imposto sul flusso entrante o sul flusso uscente indifferentemente, dato che i due devono essere uguali per effetto dei vincoli di conservazione del flusso.

```
Vincoli di capacità sui nodi [ton/giorno]
cap sA) xs1A + xs2A <= 1000
cap sB) xs1B + xs2B <= 1000
cap sC) xs1C + xs2C \le 1000
cap^{-}1A) xs1A <= 300
cap 1B) xs1B <= 1800
cap 1C) xs1C <= 1400
cap 2A) xs2A \le 250
cap 2B) xs2B <=
                 900
cap_2C) xs2C <=
                 100
cap 3A) x13A <=
                 900
cap 3B) x13B <= 650
cap 3C) x13C \le 1400
cap 4A) x14A + x24A \le 2000
cap 4B) x14B + x24B \le 1500
cap 4C) x14C + x24C \le 2000
cap 5A) x25A <= 1000
cap 5B) x25B \le 1000
cap 5C) x25C \le 1000
cap 6A) x6tA <= 1200
cap 6B) x6tB <= 1200
cap 6C) x6tC <= 1400
cap^{-}7A) x7tA <= 600
cap 7B) x7tB <=
cap^{-}7C) x7tC <= 950
cap 8A) x8tA <= 300
cap 8B) x8tB <= 1700
cap 8C) x8tC <= 1900
cap tA) x6tA + x7tA + x8tA <= 1000
cap tB) x6tB + x7tB + x8tB <= 1000
cap tC) x6tC + x7tC + x8tC \le 1000
```

Il valore ottimo è: (OBJECTIVE FUNCTION VALUE) 82100.00

Risposte

1) Se diminuisse il termine noto dei vincoli di capacità sulle singole stazioni, la soluzione non cambierebbe poiché nessuno dei vincoli è attivo, quindi non utilizzo tutta la capacità delle stazioni, con l'eccezione di soli tre casi critici che corrispondono agli unici tre vincoli attivi di questo tipo: essi riguardano le operazioni di carico e scarico della merce A nelle stazioni 1 e 2 e della merce C nella stazione 2.

ROW	SLACK OR SURPLUS	DUAL PRICES
CAP SA)	450.000000	0.000000
CAP SB)	966.000000	0.000000
CAP SC)	440.000000	0.000000
CAP 1A)	0.000000	15.000000
CAP 1B)	1800.000000	0.000000
CAP_1C)	940.00000	0.000000
CAP_2A)	0.00000	30.000000
CAP_2B)	866.000000	0.000000
CAP_2C)	0.000000	15.000000
CAP_3A)	600.000000	0.000000
CAP_3B)	650.000000	0.000000
CAP_3C)	1300.000000	0.000000
CAP_4A)	1984.000000	0.000000
CAP_4B)	1500.000000	0.000000
CAP_4C)	1400.000000	0.000000
CAP_5A)	990.000000	0.000000
CAP_5B)	966.000000	0.000000
CAP_5C)	916.000000	0.000000
CAP_6A)	714.000000	0.000000
CAP_6B)	1200.000000	0.000000
CAP_6C)	1400.000000	0.000000
CAP_7A)	546.000000	0.000000
CAP_7B)	700.000000	0.000000
CAP_7C)	704.000000	0.000000
CAP_8A)	290.000000	0.000000
CAP_8B)	1666.000000	0.000000
CAP_8C)	1586.000000	0.000000
CAP_TA)	450.000000	0.000000
CAP_TB)	966.000000	0.000000
CAP_TC)	440.000000	0.000000

Il prezzo ombra (dual prices) dei vincoli è pari rispettivamente a 15, 30 e 15 Euro/tonnellata. Tale è il massimo prezzo che lo scaricatore dovrebbe essere disposto a pagare per mantenere i termini noti dei vincoli attivi ai valori attuali.

2) Le tratte critiche sono quelle corrispondenti agli archi il cui vincolo di capacità è attivo e il prezzo duale è strettamente positivo. Essi sono (1,3), (1,4), (2,4), (2,5) ed identificano il taglio di minima capacità nel grafo della rete ferroviaria.

ROW	SLACK OR SURPLUS	DUAL PRICES
CAP S1)	40.000000	0.00000
CAP S2)	96.000000	0.00000
CAP_13)	0.00000	65.000000
CAP_14)	0.00000	65.000000
CAP_24)	0.00000	50.000000
CAP_25)	0.00000	50.000000
CAP_36)	74.000000	0.00000
CAP_37)	230.000000	0.00000
CAP_46)	0.00000	0.000000
CAP 47)	56.000000	0.00000

Il vincolo non è attivo perché ho un valore nullo nel prezzo d'ombra, quindi non pagherei nulla per avere un'unità in più di questa risorsa.

CAP_48)	0.00000	0.000000
CAP 57)	710.000000	0.000000
CAP 58)	282.000000	0.000000
CAP 6T)	0.00000	0.000000
CAP 7T)	0.00000	0.000000
CAP 8T)	38.000000	0.000000

3) Con l'analisi parametrica sul vincolo di capacità della tratta (6,t) si ricava che i punti di discontinuità della retta spezzata che lega la funzione obiettivo al termine noto del vincolo hanno coordinate (476,82100), (442,80400) e (0, 51670) ed il coefficiente angolare dei tratti lineari tra di essi è pari a 50 e 65.

Da questi dati si ricava con qualche semplice calcolo che il valore di ascissa, cioè di capacità, corrispondente ad una diminuzione del 10% del valore ottimo, cioè a 73890 anziché 82100 Euro/giorno è compreso tra 378 ton/giorno (due vagoni in meno per ogni treno) e 324 ton/giorno (tre vagoni in meno per ogni treno). La risposta quindi è: 2 vagoni.

RIGHTHANDSIDE PARAMETRICS REPORT FOR ROW: CAP 6T

	AR UT	VAR IN		PIVOT ROW	RHS VAL	DUAL PRICE BEFORE PIVOT	OBJ VAL
					486.000	0.000000E+00	82100.0
	X57C	SLK	6	66	476.000	0.00000E+00	82100.0
	X24C		X14A	12	460.000	50.0000	81300.0
	Х25В		X13B	61	442.000	50.0000	80400.0
	X46B		X14B	55	442.000	65.0000	80400.0
	X24B	SLK	4	58	442.000	65.0000	80400.0
	X13C		X24C	15	324.000	65.0000	72730.0
	X36A		X46B	8	240.000	65.0000	67270.0
	Х36В	SLK	10	64	240.000	65.0000	67270.0
	X25C		X47A	62	232.000	65.0000	66750.0
SLK	11	SLK	5	26	150.000	65.0000	61420.0
	X7TC		X48A	68	122.000	65.0000	59600.0
	X6TA	ART		63	0.00000E+0	0 65.0000	51670.0