Krzysztof Pszeniczny nr albumu: 347208 str. 1/1 Seria: 2

1 Zadanie

1.1 Wynikanie w prawo

Dowód. Załóżmy, że $P(\bigcup A) = \{\emptyset\}$. Chcemy udowodnić, że $A = \emptyset$ lub $A = \{\emptyset\}$. W tym celu załóżmy nie wprost, że $A \neq \emptyset$ i $A \neq \{\emptyset\}$.

Jest to równoważne temu, że istnieje takie $A \in \mathcal{A}$, że istnieje $a \in A$. Jednak wtedy $a \in \bigcup \mathcal{A}$, a więc $\{a\} \in P(\bigcup \mathcal{A}) \stackrel{\mathbf{zal}}{=} \{\varnothing\}$, quod est absurdum.

1.2 Wynikanie w lewo

 $\textit{Dow\'od}. \ \ \text{Za\'l\'o\'zmy, \'ze} \ \mathcal{A} = \varnothing \ \text{lub} \ \mathcal{A} = \{\varnothing\}. \ \ \text{W obu przypadkach mamy, \'ze} \ \bigcup \mathcal{A} = \varnothing, \ \text{skąd} \ \ P(\bigcup \mathcal{A}) = \{\varnothing\}. \ \ \Box$

2 Zadanie

Lemat 1. $\bigcup P(A) = A$

Dowód. Udowodnimy najpierw zawieranie w prawo. Jeśli $x \in \bigcup P(A)$, to istnieje takie $Z \in P(A)$, że $x \in Z$. Jednak skoro $Z \in P(A)$, to $Z \subseteq A$, skąd $x \in A$.

Aby udowodnić zawieranie w lewo, weźmy $x \in A$. Wtedy zauważmy, że $x \in \{x\} \in P(A)$, a więc $x \in JP(A)$.

2.1 Część a

Dowód. Jak łatwo widać z lematu 1, hipoteza jest równoważna $\bigcup \bigcap A \subseteq \bigcap \bigcup A$.

Weźmy jednak niepustą rodzinę $\mathcal{A}: \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))$, daną jako $\mathcal{A} = \{\{\{0\}, \{1\}\}\}\}$. Wtedy mamy $\bigcup \bigcap \mathcal{A} = \bigcup (\{\{0\}, \{1\}\}\}) = \{0, 1\}$. Jednak $\bigcap \bigcup \mathcal{A} = \bigcap (\{\{0\}, \{1\}\}\}) = \emptyset$.

Ale jednak $\{0,1\} \not\subseteq \varnothing$. Co dowodzi, że nieprawdą jest, że hipoteza jest prawdziwa dla wszystkich niepustych rodzin \mathcal{A} .

2.2 Część b

Dowód. Jak łatwo widać z lematu 1, hipoteza jest równoważna $\bigcap \bigcup A \subseteq \bigcup \bigcap A$.

Weźmy jednak niepustą rodzinę $\mathcal{A}: \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))$, daną jako $\mathcal{A}=\{\{\{0\}\},\{\{0,1\}\}\}\}$. Wtedy mamy $\bigcap \bigcup \mathcal{A}=\bigcap (\{\{0\},\{0,1\}\})=\{0\}$. Jednak $\bigcup \bigcap \mathcal{A}=\bigcup (\varnothing)=\varnothing$.

Ale jednak $\{0\} \not\subseteq \varnothing$. Co dowodzi, że nieprawdą jest, że hipoteza jest prawdziwa dla wszystkich niepustych rodzin \mathcal{A} .

2.3 Część c

Dowód. Zauważmy, że $\varnothing \subseteq \bigcup \mathcal{A}$, a więc $\varnothing \in P(\bigcup \mathcal{A})$. Stąd jednak mamy, że $\varnothing = \bigcap P(\bigcup \mathcal{A})$, gdyż gdyby pewnien $x \in \bigcap P(\bigcup \mathcal{A})$, to w szczególności byłoby $x \in \varnothing$, quod est absurdum.

Stąd wiemy, że lewa strona zawierania jest zbiorem pustym. Jednak zbiór pusty jest podzbiorem dowolnego zbioru, skąd w szczególności $\varnothing \subseteq \bigcap \mathcal{A}$. Stąd zawieranie z zadania zachodzi dla wszystkich niepustych rodzin \mathcal{A} .

2.4 Część d

Dowód. Weźmy $X \in \bigcup A \times \bigcap B$. Wtedy X jest postaci $(\mathfrak{a}, \mathfrak{b})$, gdzie $\mathfrak{a} \in \bigcup A$ oraz $\mathfrak{b} \in \bigcap B$.

Stąd jednak mamy, że istnieje takie $\mathfrak{A} \in \mathcal{A}$, że $\mathfrak{a} \in \mathfrak{A}$. Mamy także, że dla dla każdego $\mathfrak{B} \in \mathcal{B}$ zachodzi, że $\mathfrak{b} \in \mathfrak{B}$. Jednak \mathcal{B} jest niepusta, więc istnieje choć jedno takie \mathfrak{B} .

Zauważmy teraz, że $(\mathfrak{a},\mathfrak{b}) \in \mathfrak{A} \times \mathfrak{B}$. Jednak $\mathfrak{A} \times \mathfrak{B} \in \{\mathfrak{a} \times \mathfrak{b} \mid \mathfrak{a} \in \mathcal{A} \wedge \mathfrak{b} \in \mathcal{B}\}$. Stąd $X = (\mathfrak{a},\mathfrak{b}) \in \bigcup \{\mathfrak{a} \times \mathfrak{b} \mid \mathfrak{a} \in \mathcal{A} \wedge \mathfrak{b} \in \mathcal{B}\}$.

Stąd zawieranie zadania zachodzi dla wszystkich niepustych rodzin \mathcal{A} , \mathcal{B} .

Podstawy matematyki Termin: 2013-10-21