Project Planning Phase Project Planning Details(Product Backlog, Sprint Planning, Stories, Story points)

Date	27-10-2023	
Team ID	EXT2023TMID591615	
Project Name	Car Purchase Prediction Model	
Maximum Marks	5 Marks	

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Member s
Sprint-1	Project Setup & Environment	USN-1	Set up the development environment with the required tools and frameworks to start the Car Purchase Prediction Model.	1	High	Saxam
Sprint-1	Data Collection	USN-2	Gather a diverse dataset of features such as age, income, and historical purchase patterns for accurate forecasts.	2	High	Vedang
Sprint-2	Data Preprocessing	USN-3	Preprocess the collected data.	2	High	Vedang
Sprint-2	Model Development	USN-4	Explore and evaluate different deep learning architecture(e.g. CNNs) to select the most suitable model for car purchase		High	Saxam

			prediction.			
Sprint-3	Model Development	USN-5	Train the selected deep learning model using the preprocessed dataset and monitor its performance on the validation set.			
Sprint-3	Training	USN-6	Implement data augmentation techniques(e.g. Rotation, flipping) to improve the model's robustness and accuracy.	6	Medium	Saxam
Sprint-4	Model deployment & Integration	USN-7	Deploy the trained deep learning model as an API or web service to make it accessible for garbage classification. integrate the model's API into a user-friendly web interface for users to upload images and receive garbage classification results.	1	Medium	Vedang
Sprint-5	Testing & quality assurance	USN-8	Conduct thorough testing of the model and web interface to identify and report any issues or bugs. fine-tune the model hyperparameters and optimize its performance based on user feedback and testing results.	1	Medium	Saxam

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Start Date	End Date	Story Points Completed	Sprint Release Date (Actual)
Sprint-1	3	2 Days	28 Oct 2023	29 Oct 2023	20	27 Oct 2023
Sprint-2	5	2 Days	30 Oct 2023	31 Oct 2023		
Sprint-3	10	2 Days	1 Nov 2023	2 Nov 2023		
Sprint-4	1	2Days	3 Oct 2023	4 Oct 2023		
Sprint-5	1	3 Days	5 Oct 2023	6 Oct 2023		

Velocity:

Imagine we have a 29-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV= 11/20 = 0.55