An Efficient and Generic Construction for Signal's Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable

Keitaro Hashimoto
Tokyo Tech/AIST, JP

Shuichi Katsumata AIST, JP

Kris Kwiatkowski PQShield, UK

Thomas Prest PQShield, UK/FR

PKC 2021

Outline

The first <u>practical</u> and <u>post-quantum</u> Signal protocol

- 1. Backgrounds: Instant Messaging and Signal
- 2. Formalization of Signal-conforming AKE (SC-AKE)
- 3. Generic construction of post-quantum SC-AKE
- 4. Implementation results

Background: Instant Messaging and Signal

Instant Messaging

Communicate messages asynchronously through the server

Instant Messaging

Communicate messages asynchronously through server

Secure Instant Messaging

- Malicious server may reveal messages
 - Ex. Sever helped an intelligence agency with collecting messages

- Outlook.com encryption unlocked even before official launch
- Skype worked to enable Prism collection of video calls
- Company says it is legally compelled to comply

Secure Instant Messaging

- Malicious server may reveal messages
 - Ex. Sever helped an intelligence agency with collecting messages
- To ensure security and privacy, secure instant messaging is widely used

Signal

- Widespread secure instant messaging application
- Use Signal protocol based on Diffie-Hellman assumption
- Signal protocol is deployed in Signal, WhatsApp, Facebook Messenger, etc.
 - Billions of users in the world

Source of photo:

- https://commons.wikimedia.org/wiki/File:Signal_ultramarine_icon.png
- https://commons.wikimedia.org/wiki/File:WhatsApp.svg
- https://commons.wikimedia.org/wiki/File:Facebook_Messenger_logo_2020.svg

Signal protocol

X3DH

"Establish shared secret key"

Double Ratchet

"Encrypted communication"

Related works

Related works

2016 2017

Double Ratchet protocol [MP16a] were proposed in white paper X3DH protocol [MP16b]

Cohn-Gordon et al. [CGC+17] analyzed Signal protocol

2019

Alwen et al. [ACD19]

- formalized security models of Double Ratchet
- proposed generic construction of DR protocol instantiable from post-quantum assumptions ©

As for X3DH protocol:

- Security models has not been formalized (White paper [MP16b] provides overview of its security)
- Constructions from other than DH assumption are unknown (Generic construction does not exist either)

Related works

Double Ratchet protocol [MP16a] were proposed in white paper X3DH protocol [MP16b]

Cohn-Gordon et al. [CGC+17] analyzed Signal protocol

Alwen et al. [ACD19]
- formalized security models of Double Ratchet

- 2019
- proposed generic construction of DR protocol instantiable from post-quantum assumptions ©

Purpose

- Formalize security models of X3DH protocol
- Design generic construction of X3DH protocol

Design and Implementation of generic construction as alternative to X3DH protocol

Theory

Design and Implementation of generic construction as alternative to X3DH protocol

- Formalize X3DH protocol as a specific type of AKE
 - Call <u>Signal-conforming AKE</u> (SC-AKE)
- Define functionality and security for SC-AKE

Theory

Design and Implementation of generic construction as alternative to X3DH protocol

Theory

- Formalize X3DH protocol as a specific type of AKE
 - Call <u>Signal-conforming AKE</u> (SC-AKE)
- Define functionality and security for SC-AKE
- Propose generic construction of post-quantum SC-AKE based on KEM & SIG

Design and Implementation of generic construction as alternative to X3DH protocol

Theory

- Formalize X3DH protocol as a specific type of AKE
 - Call <u>Signal-conforming AKE</u> (SC-AKE)
- Define functionality and security for SC-AKE
- Propose generic construction of post-quantum SC-AKE based on KEM & SIG

- Implement our SC-AKE using NIST PQC candidates
- Evaluate computation and communication costs

Design and Implementation of generic construction as alternative to X3DH protocol

Theory

- Formalize X3DH protocol as a specific type of AKE
 - Call <u>Signal-conforming AKE</u> (SC-AKE)
- Define functionality and security for SC-AKE
- Propose generic construction of <u>post-quantum</u> SC-AKE based on KEM & SIG

Practice

- Implement our SC-AKE using NIST PQC candidates
- Evaluate computation and communication costs

Realize the first practical and post-quantum Signal protocol!

Contribution 1

Theory: Formalizing SC-AKE

Asynchronous key exchange protocol with the help of server

- 1. Gen long-term key (g^a, a)
- 2. Gen first message g^x
- 3. Store x as state

Key pair (g^a, a) State x

Asynchronous key exchange protocol with the help of server

Asynchronous key exchange protocol with the help of server

Asynchronous key exchange protocol with the help of server

Asynchronous key exchange protocol with the help of server

 $= \operatorname{Hash}((g^{x})^{b}, (g^{a})^{y}, (g^{x})^{y})$

On a closer look

Person-in-the-middle

$$= \text{Hash}((g^b)^x, (g^y)^a, (g^y)^x)$$

X3DH protocol looks like a general authentication key exchange (AKE)

Starting point: X3DH ≈ Authenticated Key Exchange

Consider X3DH protocol as a specific type of AKE protocol Signal-conforming AKE (SC-AKE)

By viewing "server" as "AKE adversary controlling channel", X3DH protocol can be considered as an AKE protocol

Starting point: X3DH ≈ Authenticated Key Exchange

Consider X3DH protocol as a specific type of AKE protocol

Signal-conforming AKE (SC-AKE)

Requirement (1): Functionality of SC-AKE

- 1. 2-round
- 2. First-message must be independent from communication partners

Key pair (g^a, a) State x

Requirement (1): Functionality of SC-AKE

- 1. 2-round
- 2. First-message must be independent from communication partners

Requirement (1): Functionality of SC-AKE

State *x*

- 1. 2-round
- 2. First-message must be independent from communication partners

Requirement (2): Security of SC-AKE

Double Ratchet protocol is secure against state leakage

⇒ SC-AKE also needs the same level of security

Key pair (g^a, a) State x

Requirement (2): Security of SC-AKE

Double Ratchet protocol is secure against state leakage

⇒ SC-AKE also needs the same level of security

- 1. Gen long-term key (g^a, a)
- 2. Gen first message g^x
- 3. Store x as state

State Leakage Secure

Contribution 2

Theory: Generic construction of SC-AKE

Existing post-quantum AKE are insufficient for Signal

Constructions (2-round)	Post-quantum	Receiver obliviousness	State leakage secure
DH-type construction [BFG+20, dKGV20, KTAT20]	△ Gap-CSIDH	0	*
SIG-KEM-SIG construction [Shoup99]	0	0	*
KEM-KEM construction [FSXY12, FSXY13, XLL+18, HKSU20, XAY+20]	0	X	0

^{*:} NAXOS trick makes it secure against state leakage (NAXOS trick: store ephemeral randomness instead of actual state and reconstruct state)

Proposed construction

Proposed construction satisfies all necessary requirements

Constructions (2-round)	Post-quantum	Receiver obliviousness	State leakage secure
DH-type construction [BFG+20, dKGV20, KTAT20]	▲ Gap-CSIDH	0	*
SIG-KEM-SIG construction [Shoup99]		0	X *
KEM-KEM construction [FSXY12, FSXY13, XLL+18, HKSU20, XAY+20]	0	X	0
Proposed generic construction	0	0	0

^{*:} NAXOS trick makes it secure against state leakage (NAXOS trick: store ephemeral randomness instead of actual state and reconstruct state)

Starting point: Existing generic construction of post-quantum AKE

SIG-KEM-SIG

KEM-KEM-KEM

Cons of existing generic construction

If state (dec. key dk_T) is exposed, session key is also exposed

 (ek_B, dk_B)

Cons of existing generic construction

If state (dec. key dk_T) is exposed, session key is also exposed

First message depends on the peer

Pros of existing generic construction

SIG-KEM-SIG (vk_A, sk_A) (vk_B, sk_B) $(ek_T, dk_T) \leftarrow \text{KEM.Gen}()$ $\sigma_A \leftarrow \text{SIG. Sign}(sk_A, ek_T)$ ek_T, σ_A Verify σ_A $(K_T, C_T) \leftarrow \text{KEM.Enc}(ek_T)$ $\sigma_B \leftarrow \text{SIG. Sign}(sk_B, sid)$ \mathcal{F} = Hash (K_T) C_T , σ_B Verify σ_R $K_T \leftarrow \text{KEM.Dec}(dk_T, C_T)$ $*sid = id_A||id_B||vk_A||vk_B||ek_T||C_T$ = Hash (K_T)

KEM-KEM-KEM (ek_A, dk_A) (ek_B, dk_B) $(ek_T, dk_T) \leftarrow \text{KEM.Gen}()$ $(K_B, C_B) \leftarrow \text{KEM.Enc}(ek_B)$ ek_T , C_B $(K_T, C_T) \leftarrow \text{KEM.Enc}(ek_T)$ $(K_A, C_A) \leftarrow \text{KEM.Enc}(ek_A)$ $K_B \leftarrow \text{KEM.Dec}(dk_T, C_T)$ $\mathcal{L} = \operatorname{Hash}(K_T, K_A, K_B)$ $K_T \leftarrow \text{KEM.Dec}(dk_T, C_T)$

 $K_A \leftarrow \text{KEM.Dec}(dk_A, C_A)$

= Hash (K_T, K_A, K_B)

Pros of existing generic construction

SIG-KEM-SIG (vk_B, sk_B) (vk_A, sk_A) $(ek_T, dk_T) \leftarrow \text{KEM.Gen}()$ $\sigma_A \leftarrow \text{SIG. Sign}(sk_A, ek_T)$ ek_T, σ_A Verify σ_A $(K_T, C_T) \leftarrow \text{KEM.Enc}(ek_T)$ $\sigma_B \leftarrow \text{SIG. Sign}(sk_B, sid)$ = Hash (K_T) C_T , σ_B Verify σ_R $K_T \leftarrow \text{KEM.Dec}(dk_T, C_T)$ * $sid = id_A ||id_B||vk_A||vk_B||ek_T||C_T$ = Hash (K_T)

Pros of existing generic construction

SIG-KEM-SIG (vk_B, sk_B) (vk_A, sk_A) $(ek_T, dk_T) \leftarrow \text{KEM.Gen}()$ $\sigma_A \leftarrow \text{SIG. Sign}(sk_A, ek_T)$ ek_T, σ_A Verify σ_A $(K_T, C_T) \leftarrow \text{KEM.Enc}(ek_T)$ $\sigma_B \leftarrow \text{SIG. Sign}(sk_B, sid)$ \mathcal{F} = Hash (K_T) C_T , σ_B Verify σ_R $K_T \leftarrow \text{KEM.Dec}(dk_T, C_T)$ * sid = id $||id_{P}||vk_{A}||vk_{P}||ek_{T}||C_{T}$ $^{\sim}$ Hash(K_{\rightarrow}

KEM-KEM-KEM

neceiver oblivious

State leakage Secure

Recap: existing generic construction of post-quantum AKE

SIG √

Authenticate Alice "explicitly"

KEM

SIG

Receiver oblivious

Insecure if Alice's state is exposed

KEM

KEM

KEM

Recap: existing generic construction of post-quantum AKE

Authenticate Alice "explicitly"

KEM

SIG

Receiver oblivious

Insecure if Alice's state is exposed

KEM

Authenticate Bob "implicitly" + session key

KEM

session key

KEM

Authenticate Alice "implicitly" + session key

State leakage secure

First message depends on Bob for authentication

SIG

Authenticate Alice "explicitly"

KEM

Authenticate Bob
"implicitly"
+ session key

KEM

session key

KEM

SIG

Authenticate Bob "explicitly"

KEM

Authenticate Alice "implicitly" + session key

SIG

Authenticate Alice "explicitly"

KEM

session key

SIG

Authenticate Bob "explicitly"

KEM

Authenticate Bob "implicitly" + session key

KEM

session key

KEM

Authenticate Alice "implicitly" + session key

State leakage secure

Authenticate Alice "explicitly"

KEM

Authenticate Bob
"implicitly"
+ session key

KEM

SIG

Authenticate Bob "explicitly"

Receiver oblivious

KEM

KEM

Authenticate Alice "implicitly" + session key

State leakage secure

Proposed = \bot -KEM-(KEM, SIG) construction

Proposed = \bot -KEM-(KEM, SIG) construction

- (1) Receiver obliviousness
- (2) State leakage secure

To compute the session key, both dk_A and dk_T are needed

Proposed = \bot -KEM-(KEM, SIG) construction

(1) Receiv

We can make the best of both worlds!

(2) State

To compute the session key, both dk_A and dk_T are needed

Summary of our results

- 1. Generic construction of Signal-conforming AKE based on KEM and SIG
 - ✓ 2-round and receiver oblivious
 - State leakage secure
- 2. <u>Deniable SC-AKE using ring signatures and NIZKs</u>

The first post-quantum Signal protocol!

Contribution 3

Practice: Implementation of proposed SC-AKE

Implementation details

- Use post-quantum KEMs and signature schemes submitted for the NIST PQC standardization
- Pair variants of KEMs and signature schemes corresponding to the same security level (levels 1, 3 and 5)
 - Obtain 128 different instantiations of post-quantum SC-AKE
- Evaluate computation cost (CPU cycles) and communication cost (data size)

Implementation results (only 4 instantiations, NIST level I)

Computation cost (in CPU cycle)

Conclusion

Design and implementation of generic construction of Signal-conforming AKE protocol

Theory

- Formalization of X3DH protocol as a specific type of AKE (SC-AKE)
 - Define required functionality and security
- Generic construction of <u>post-quantum</u> SC-AKE from KEM and signature

Practice

- Implementation of proposed SC-AKE with NIST PQC candidates
 - Evaluate computation and communication costs

Realize the first practical and post-quantum Signal protocol!

References

- [Shoup99] V. Shoup, On Formal Models for Secure Key Exchange, Theory of Cryptography Library, https://www.shoup.net/papers/skey.pdf, 1999.
- [FSXY12] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama. Strongly secure authenticated key exchange from factoring, codes, and lattices. PKC 2012, pp. 467–484.
- [FSXY13] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama. Prac-tical and post-quantum authenticated key exchange from one-way secure key encapsulation mechanism. ASIACCS 13, pp. 83–94.
- [MP16a] M. Marlinspike and T. Perrin. The Double Ratchet Algorithm. https://signal.org/docs/specifications/doubleratchet/.
- [MP16b] M. Marlinspike and T. Perrin. The x3dh key agreement protocol. https://signal.org/docs/specifications/x3dh/.
- [CGC+17] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila, "A Formal Security Analysis of the Signal Messaging Protocol," in 2017 IEEE European Symposium on Security and Privacy (EuroS&P), 2017, pp. 451–466.

References

- [XLL+18] H. Xue, X. Lu, B. Li, B. Liang, and J. He. Understanding and constructing AKE via double-key key encapsulation mechanism. ASIACRYPT 2018, pp. 158–189.
- [ACD19] J. Alwen, S. Coretti, and Y. Dodis. The double ratchet: Security notions, proofs, and modularization for the Signal protocol. EUROCRYPT 2019, pp. 129–158.
- [BFG+20] J. Brendel, M. Fischlin, F. Günther, C. Janson, and D. Stebila. Towards post-quantum security for signal's x3dh hand- shake. In SAC 2020.
- [dKGV20] B. d Kock, K. Gjøsteen, and M. Veroni. Practical isogeny-based key exchange with optimal tightness. In SAC 2020.
- [KTAT20] T. Kawashima, K. Takashima, Y. Aikawa, and T. Takagi. An efficient authenticated key exchange from random self-reducibility on csidh. In ICISC 2020.
- [HKSU20] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh. Generic authenticated key exchange in the quantum random oracle model. PKC 2020, pp. 389–422.
- [XAY+20] H. Xue, M. H. Au, R. Yang, B. Liang, and H. Jiang. Com- pact authenticated key exchange in the quantum random or- acle model. Cryptology ePrint Archive, Report 2020/1282.

References

- [MP16a] M. Marlinspike and T. Perrin. The Double Ratchet Algorithm. https://signal.org/docs/specifications/doubleratchet/.
- [MP16b] M. Marlinspike and T. Perrin. The x3dh key agreement protocol. https://signal.org/docs/specifications/x3dh/.
- [CGC+17] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila, "A Formal Security Analysis of the Signal Messaging Protocol," in 2017 IEEE European Symposium on Security and Privacy (EuroS&P), 2017, pp. 451–466.
- [ACD19] J. Alwen, S. Coretti, and Y. Dodis. The double ratchet: Security notions, proofs, and modularization for the Signal protocol. EUROCRYPT 2019, pp. 129–158.