Support Vector Regression using Deflected Subgradient Methods

FearEP Lord Gugger

January 22, 2021

 $A\ project\ presented\ for\ the$ $Computational\ Mathematics\ for\ Learning\ and\ Data\ Analysis$ course

Artificial Intelligence A.Y. 2020/2021

Abstract

Project aim is developing the implementation of a model which follows an SVR-type approach including 3 different kernels. The implementation uses as optimization algorithm a dual approach with appropriate choices of the constraints to be dualized, where the Lagrangian Dual is solved by an algorithm of the class of deflected subgradient methods.

1 Introduction

Per affrontare questo problema di regressione ci vogliamo affidare ad un modello di apprendimento supervisionato che è il Support Vector Regression. SVR ha come obiettivo trovare una funzione tale per cui ogni record assegnatoci per il training non devii da essa più di ε (per questo ogni valore all'interno del cosiddetto ε -tube non viene considerato come errore nella fase di ottimizzazione, rendendo la loss del modello ε -insensitive). Per fare ciò abbiamo bisogno di un certo parametro C (per capire il livello di regolarizzazione che desideriamo) ed un valore ε (per esprimere l'errore che accettiamo), oltre ad eventuali parametri necessari ad attuare i kernel (e.g. gamma per quanto riguarda il kernel RBF). Parte fondante del modello, oltre a ciò sopra descritto riguardo l' ε -tube, è dare allo stesso tempo importanza al mantenere la funzione as flat as possible, per evitare overfitting ed avere dunque un modello che sia un corretto tradeoff tra accuratezza e generalità.

Figure 1: a generic svr

La funzione risultante dall'ottimizzazione del modello è descritta genericamente come f(x) = wx + b

Obiettivo dell'ottimizzazione è dunque fare in modo che la curva sia, di nuovo, as flat as possible, ma questo è equivalente ad un problema di ottimizzazione dove vogliamo avere ||w|| minima. Per comodità di formulazione del problema possiamo minimizzare $||w||^2$ senza cambiare il significato. Questo ci permette di portarci in un problema di ottimizzazione quadratico, grazie al quale potremo approfittare del concetto di **strong duality** più tardi. Introduciamo a questo punto delle variabili dette slack per formulare la dual objective function, la quale rappresenta il nostro primal problem:

$$\min_{w,b,\xi_i,\xi_i^*} \frac{1}{2} \|w\|^2 + C \sum_i (\xi_i + \xi_i^*)$$
 (1)

Ciò che viene sommato a ||w|| è un elemento che ci permette di regolare l'errore, e di conseguenza la penalità, dovuti alla possibile presenza di elementi che non rimangono all'interno dell' ε -tube. Vediamo dunque come C funga da regolarizzatore in una metodica simile a L1. I vari ξ vengono detti slack variables e ci permettono di definire i vincoli del problema per qualsiasi i-esimo dato:

$$y_i - w^T \phi(x_i) - b \le \epsilon + \xi_i,$$

$$b + w^T \phi(x_i) - y_i \le \epsilon + \xi_i,$$

$$\xi_i, \xi_i^* \ge 0$$

x i-esimo input, y i-esimo output