

planetmath.org

Math for the people, by the people.

Cauchy product

Canonical name CauchyProduct
Date of creation 2013-03-22 13:37:14

Last modified on $2013-03-22 \ 13:37:14$

Owner msihl (2134) Last modified by msihl (2134)

Numerical id 7

Author msihl (2134) Entry type Definition Classification msc 40-00 Let a_k and b_k be two sequences of real or complex numbers for $k \in \mathbb{N}_0$ (\mathbb{N}_0 is the set of natural numbers containing zero). The Cauchy product is defined by:

$$(a \circ b)(k) = \sum_{l=0}^{k} a_l b_{k-l}.$$
 (1)

This is basically the convolution for two sequences. Therefore the product of two series $\sum_{k=0}^{\infty} a_k$, $\sum_{k=0}^{\infty} b_k$ is given by:

$$\sum_{k=0}^{\infty} c_k = \left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{k=0}^{\infty} \sum_{l=0}^{k} a_l b_{k-l}.$$
 (2)

A sufficient condition for the resulting series $\sum_{k=0}^{\infty} c_k$ to be absolutely convergent is that $\sum_{k=0}^{\infty} a_k$ and $\sum_{k=0}^{\infty} b_k$ both converge absolutely.