10/570554

1AP20 Rec'd PCT/FTO 03 MAR 2006

CD103PCT.ST25.txt

SEQUENCE LISTING

<110>	CropDesign N.V.															
<120>	Plants having modified growth characteristics and method for making the same															
<130>	CD-103-PCT ·															
<150> <151>	EP 03077811.2 2003-09-05															
<160>	21															
<170>	PatentIn version 3.3															
<210><211><211><212><213>	1 930 DNA Arabidopsis thaliana															
<400> atggaga gcgatgg gaagaag tcgatct caatcta ttcatcg aggtgatc gatttgg actcttt gacatgt ggtgatt cagcaag cagcaat caagact atgctca <210> <211>	gaga a gggta to cate a a ggtt to cate a a ggtt to cate a a ggtt a a a ggtt a a a a a a a a a a	aagga teca tegtt aatec teagt teagt taga etgtt aggtt egggt etett	actigo ccaac cgatt aaggaa cttto cagaa gctco ggtto cagca gttto gctgto gctgto	g tage to tage to the tage to tage to tage the tage that tage the tage the tage that tage the tage that tage the tage that tage the tage the tage that tage the tage tage that tage tage the tage tage tage the tage tage tage the tage tage tage tage tage tage tage tag	aget getet atet gaege ttee gaage ttee gaage ttee teet gaage	tegtt tegtt tegtt ttaat ttett ttett tteat teett teat gegt	get gas gas tto gas ato gas tto gas tto gas ato gas ato gas ato gas tto gas tt	ctga gatet gagt gaaag gcatt gaaag ctta gatgg gatgg	aga cgc gttc gtc gtc gtc gtc gtc gtc gtc gt	aaad ttcga ttgga atag atag ctta ggag ttgct ttta	tegt cease acca acca acca get acca acca acca acca acca acca acca ac	gat gates a section of the section o	cgaga gttat gttat accta tttga ttaaga acttga acttt acctaa gtggg tctca	atggac caaca aaatct aagaaa attcag cttcac attgct attgtt ggtgtt ctcct actgag gagccg	60 120 180 240 300 420 480 540 600 720 780 930	
<212> <213>	PRT Arabi	dops	is tl	hali	.ana											
<400> Met Glu	2 1 Lys	-	Glu I 5	Lys	Leu	Glu	Lys	Val 10	Gly	Glu	Gly	Thr	Tyr 15	Gly		
Lys Va	l Tyr	Lys . 20	Ala N	Met	Glu	Lys	Gly 25	Thr	Gly	Lys	Leu	Val 30	Ala	Leu		
Lys Lys	Thr 35	Arg :	Leu (Glu	Met	Asp 40	Glu	Glu	Gly	Ile	Pro 45	Pro	Thr	Ala		
Leu Arg	g Glu	Ile	Ser I	Leu	Leu 55	Gln	Met	Leu	Ser	Thr 60	Ser	Ile	Tyr	Val		
Val Arg	g Leu	Leu	-	Val 70	Glu	His		His age	75	Pro	Ser	Thr	Lys	Ser 80		

										,						
Gln	Ser	Thr	Lys	Ser 85	Asn	Leu	Tyr	Leu	Val 90	Phe	Glu	Tyr	Leu	Asp 95	Thr	
Asp	Leu	Lys	Lys 100	Phe	Ile	Asp	Ser	Tyr 105	Arg	Lys	Gly	Pro	Asn 110	Pro	Lys	
Pro	Leu	Glu 115	Pro	Phe	Leu	Ile	Gln 120	Lys	Leu	Met	Phe	Gln 125	Leu	Cys	Lys	
Gly	Val 130	Ala	His	Cys	His	Ser 135	His	Gly	Val	Leu	His 140	Arg	Asp	Leu	Lys	
Pro 145	Gln	Asn	Leu	Leu	Leu 150	Val	Lys	Asp	Lys	Glu 155		Leu	Lys	Ile	Ala 160	
Asp	Leu	Gly	Leu	Gly 165	Arg	Ala	Phe	Thr	Val 170	Pro	Leu	Lys	Ser	Tyr 175	Thr	
His	Glu	Ile	Val 180	Thr	Leu	Trp	Tyr	Arg 185	Ala	Pro	Glu	Val	Leu 190	Leu	Gly	
Ser	Thr	His 195	Tyr	Ser	Thr	Gly	Val 200	Asp	Met	Trp	Ser	Val 205	Gly	Cys	Ile	
Phe	Ala 210	Glu	Met	Val	Arg	Arg 215	Gln	Ala	Leu	Phe	Pro 220	Gly	Asp	Ser	Glu	
Phe 225	Gln	Gln	Leu	Leu	His 230	Ile	Phe	Arg	Leu	Leu 235	Gly	Thr	Pro	Thr	Glu 240	
Gln	Gln	Trp	Pro	Gly 245	Val	Ser	Thr	Leu	Arg 250	Asp	Trp	His	Val	Tyr 255	Pro	
Lys	Trp	Glu	Pro 260	Gln	Asp	Leu	Thr	Leu 265	Ala	Val	Pro	Ser	Leụ 270	Ser	Pro	
Gln	Gly	Val 275	Asp	Leu	Leu	Thr	Lys 280	Met	Leu	Lys	Tyr	Asn 285	Pro	Ala	Glu	
Arg	Ile 290	Ser	Ala	Lys	Thr	Ala 295	Leu	Asp	His	Pro	Tyr 300	Phe	Asp	Ser	Leu	
Asp 305	Lys	Ser	Gln	Phe												
<210 <211 <212 <213	l > 9	3 936 DNA Arabi	idops	sis t	hali	iana										
<400		3														
															acaaa	120
															atggac cctcaa	120 180
															cgact	240
gttt	ctca	act o	ctccc	caaat	C Ca	aatct	ctat	cto	gtti	ttg	agta	atcto	cga d	cact	gatctc	300
															ctctt	360
grad	-ayag	yyı T	Late	JLLEC	a go	ししじてし	Laaa		gtg		attg	Jicat	ag (cate	ggtgtg	420

CD103FC1.S125.CXC											
cttcaccgtg atcttaaacc gcagaatctt ctattggata aggataaagg gattcttaag attgctgatt tgggtcttag tcgtgctttt actgtgcctc ttaaggctta tacacatgag attgttactc tttggtatag agctcctgaa gttttgcttg gttctactca ttactctact gctgttgata tttggtctgt tggatgcatc tttgccgaga tgattaggag gcaagctctt ttccctggtg attctgagtt tcagcaacta cttcatattt tcagattgtt aggaacacca actgagcagc aatggccggg tgtaatggca ttgcgtgact ggcatgtcta tccaaagtgg gagccgcaag acttatcacg tgctgttcca tctctatctc ctgaaggaat tgatcttctc acgcaaatgt tgaagtacaa tccagcagaa agaatttcag caaaagcagc tctcgatcat ccctactttg acagccttga caaatctcag ttctga											
<210> 4 <211> 311 <212> PRT <213> Arabidopsis thaliana											
<pre><400> 4 Met Glu Lys Tyr Glu Lys Leu Glu Lys Val Gly Glu Gly Thr Tyr Gly 1 5 10 15</pre>											
Lys Val Tyr Lys Ala Met Glu Lys Thr Thr Gly Lys Leu Val Ala Leu 20 25 30											
Lys Lys Thr Arg Leu Glu Met Asp Glu Glu Gly Ile Pro Pro Thr Ala 35 40 45											
Leu Arg Glu Ile Ser Leu Leu Gln Met Leu Ser Gln Ser Ile Tyr Ile 50 55 60											
Val Arg Leu Leu Cys Val Glu His Val Ile Gln Ser Lys Asp Ser Thr 65 70 75 80											
Val Ser His Ser Pro Lys Ser Asn Leu Tyr Leu Val Phe Glu Tyr Leu 85 90 95											
Asp Thr Asp Leu Lys Lys Phe Ile Asp Ser His Arg Lys Gly Ser Asn 100 105 110											
Pro Arg Pro Leu Glu Ala Ser Leu Val Gln Arg Phe Met Phe Gln Leu 115 . 120 . 125											
Phe Lys Gly Val Ala His Cys His Ser His Gly Val Leu His Arg Asp 130 135 140											
Leu Lys Pro Gln Asn Leu Leu Leu Asp Lys Asp Lys Gly Ile Leu Lys 145 150 155 160											
Ile Ala Asp Leu Gly Leu Ser Arg Ala Phe Thr Val Pro Leu Lys Ala 165 170 175											
Tyr Thr His Glu Ile Val Thr Leu Trp Tyr Arg Ala Pro Glu Val Leu 180 185 190											
Leu Gly Ser Thr His Tyr Ser Thr Ala Val Asp Ile Trp Ser Val Gly 195 200 205											
Cys Ile Phe Ala Glu Met Ile Arg Arg Gln Ala Leu Phe Pro Gly Asp 210 215 220											
Ser Glu Phe Gln Gln Leu Leu His Ile Phe Arg Leu Leu Gly Thr Pro											

Page 3

225 230 240 Thr Glu Gln Gln Trp Pro Gly Val Met Ala Leu Arg Asp Trp His Val 245 250 Tyr Pro Lys Trp Glu Pro Gln Asp Leu Ser Arg Ala Val Pro Ser Leu Ser Pro Glu Gly Ile Asp Leu Leu Thr Gln Met Leu Lys Tyr Asn Pro 280 Ala Glu Arg Ile Ser Ala Lys Ala Ala Leu Asp His Pro Tyr Phe Asp 295 Ser Leu Asp Lys Ser Gln Phe <210> 5 <211> 948 <212> DNA <213> Arabidopsis thaliana <400> 5 atggacaaca atggagttaa accegetgtt teegecatgg aageetttga aaagettgag 60 aaagtaggtg aagggactta tgggaaagtt tacagagcaa gagagaaagc tactgggatg 120 ategttgett tgaagaagae gegteteeat gaggatgaag aaggtgttee teecactaet 180 cttcgcgaga tctctatctt gcgtatgctc gctcgtgatc ctcacatcgt taggttgatg 240 gatgttaagc aaggaataaa caaagaagga aaaactgtac tttaccttgt tttcgagtat 300 gttgatactg atctcaagaa attcatcaga agctttcgtc aagctggaca gaacattcca 360 caaaatactg tcaagtgctt gatgtaccag ttatgcaaag gcatggcttt ttgccatggt 420 catggagtgt tgcacaggga tcttaagcct cacaatctct tgatggaccg gaagacaatg 480 acgctcaaaa tagcagatct tggattagcc agagccttca ctctcccaat gaaaaagtat 540 acacatqaqa ttctaactct atqqtataqa qctccqqaaq ttcttcttqq aqcaacccat 600 tactctactg gagtggatat gtggtctgtt ggctgtattt ttgctgaact agtgaccaag 660 caagcaatct ttgcgggaga ctctgagctc caacagctcc tccgtatatt caggttgttg 720 ggaacaccaa acgaagaagt ttggcctgga gtaagcaaac tcaaggactg gcatgaatac 780 ccgcaatgga aaccgttgag tctctccaca gctgtgccaa acctcgacga ggctggactt 840 gatctcttat ctaaaatgct ggagtacgag ccagcaaaac gaatctcagc aaagaaagct 900 atggagcatc cttacttcga tgatttgcct gacaagtcct ctctctga 948 <210> 6 <211> 315 <212> PRT <213> Arabidopsis thaliana Met Asp Asn Asn Gly Val Lys Pro Ala Val Ser Ala Met Glu Ala Phe Glu Lys Leu Glu Lys Val Gly Glu Gly Thr Tyr Gly Lys Val Tyr Arg 25 Ala Arg Glu Lys Ala Thr Gly Met Ile Val Ala Leu Lys Lys Thr Arg Leu His Glu Asp Glu Glu Gly Val Pro Pro Thr Thr Leu Arg Glu Ile 50 55

Ser Ile Leu Arg Met Leu Ala Arg Asp Pro His Ile Val Arg Leu Met

Page 4

Asp Val Lys Gln Gly Ile Asn Lys Glu Gly Lys Thr Val Leu Tyr Leu 85 90 95

Val Phe Glu Tyr Val Asp Thr Asp Leu Lys Lys Phe Ile Arg Ser Phe
100 105 110

Arg Gln Ala Gly Gln Asn Ile Pro Gln Asn Thr Val Lys Cys Leu Met 115 120 125

Tyr Gln Leu Cys Lys Gly Met Ala Phe Cys His Gly His Gly Val Leu 130 135 140

His Arg Asp Leu Lys Pro His Asn Leu Leu Met Asp Arg Lys Thr Met 145 150 155 160

Thr Leu Lys Ile Ala Asp Leu Gly Leu Ala Arg Ala Phe Thr Leu Pro 165 170 175

Met Lys Lys Tyr Thr His Glu Ile Leu Thr Leu Trp Tyr Arg Ala Pro 180 185 190

Glu Val Leu Gly Ala Thr His Tyr Ser Thr Gly Val Asp Met Trp 195 200 205

Ser Val Gly Cys Ile Phe Ala Glu Leu Val Thr Lys Gln Ala Ile Phe 210 215 220

Ala Gly Asp Ser Glu Leu Gln Gln Leu Leu Arg Ile Phe Arg Leu Leu 225 230 235 240

Gly Thr Pro Asn Glu Glu Val Trp Pro Gly Val Ser Lys Leu Lys Asp 245 250 255

Trp His Glu Tyr Pro Gln Trp Lys Pro Leu Ser Leu Ser Thr Ala Val 260 265 270

Pro Asn Leu Asp Glu Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Glu 275 280 285

Tyr Glu Pro Ala Lys Arg Ile Ser Ala Lys Lys Ala Met Glu His Pro 290 295 300

Tyr Phe Asp Asp Leu Pro Asp Lys Ser Ser Leu 305 310 315

<210> 7

<211> 1115

<212> DNA

<213> Oryza sativa

<400> 7

acctetecte egattaatee ectecetee tetteetee acttetgege etgetettee 60 teecetegee gaccetacet actegegeeg eegeegtege attgggegge aaaeggaggg 120 ggggttaace etgatggage agtacgagaa ggaggagaag attggggagg gcacgtacgg 180 ggtggtgtac agggegegg acaaggteae caaeggageg ategegetea agaagateeg 240 gettgageag gaggatgagg gegteeete eacegeaate egegagatet egeteetaa 300 ggagatgeat caeggeaaca tegteaggtt acaeggatgt atecaeagtg agaagegeat 360

420

480

540

600

660

720

780

840

900

960

1020

1080

1115

```
atatettqte tttqaqtate tqqatetqqa cetaaaqaaq tteatqqaet ettqteeaqa
gtttgcgaaa aaccccactt taattaagtc atatctctat cagatactcc gcggcgttgc
ttactgtcat tctcatagag ttcttcatcg agatttgaaa cctcagaatt tattgataga
teggegtaet aatgeaetga agettgeaga etttggttta geeagggeat ttggaattee
tgtccgcacg tttactcacg aggttgtaac cttgtggtat agagctccag agatccttct
tggatcaagg cagtattcta caccagttga tatgtggtca gttggttgta tctttgcaga
aatggtgaac cagaaaccac tgttccctgg tgattctgag attgatgaat tatttaagat
attcagggta ctaggaactc caaatgaaca aagttggcca ggagttagct cattacctga
ctacaagtct gctttcccca agtggcaagc acaggatctt gcaactattg tccctactct
tgaccctgct ggtttggacc ttctctctaa aatgcttcgg tacgagccaa acaaaaggat
cacagetaga caggetettg ageatgaata etteaaggae ettgagatgg tacaatgaee
ctgctatggc tttacattgg attggcatat gtatgggctg ggctcctcat ttcattcctt
ctgtgaacgc tgtgcccttc gtttgggcat ttttg
<210> 8
<211> 294
<212> PRT
<213> Oryza sativa
<400> 8
Met Glu Gln Tyr Glu Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly
Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Ile Ala Leu
            20
                                25
Lys Lys Ile Arg Leu Glu Glu Glu Asp Glu Gly Val Pro Ser Thr Ala
Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val
Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Val Phe
Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu
Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu
Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu
                            120
Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Lys Leu
Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Ile Pro Val Arg Thr Phe
145
                    150
                                        155
                                                            160
Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu
Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp Ser Val Gly Cys
            180
                                185
                                                    190
Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser
        195
                            200
                                                205
```

CD103PCT.ST25.txt Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn 210 Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 250 Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Arg Tyr Glu Pro Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His Glu Tyr Phe Lys 280 Asp Leu Glu Met Val Gln 290 <210> 9 <211> 294 <212> PRT <213> Oryza sativa <400> 9 Met Glu Gln His Glu Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Ile Ala Leu 20 25 Lys Lys Ile Arg Leu Glu Gln Glu Asp Glu Gly Val Pro Ser Thr Ala Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Asp Phe Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu 120 Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Lys Leu 135 Ala Asp Phe Gly Leu Ala Arg Thr Phe Gly Ile Pro Val Arg Thr Phe 150 155 Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu

Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp Ser Val Gly Cys

185

170

165

180

Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser 200 Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 250 Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Arg Tyr Glu Pro Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His Glu Tyr Phe Lys 280 285 Asp Leu Glu Met Val Gln 290 <210> 10 <211> 294 <212> PRT <213> Oryza sativa <400> 10 Met Glu Gln Tyr Glu Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Thr Ala Leu Lys Lys Ile Arg Leu Glu Gln Glu Asp Glu Gly Val Pro Ser Thr Ala Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Val Phe Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu 115 120 Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Lys Leu 135 Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Ile Pro Val Arg Thr Phe

150

155

Page 8

`Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu

CD103PCT.ST25.txt 165 170 Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp Ser Val Gly Cys 180 185 Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 245 250 Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Arg Tyr Glu Pro Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His Glu Tyr Phe Lys 280 285 Asp Leu Glu Met Val Gln 290 <210> 11 <211> 294 <212> PRT <213> Oryza sativa <400> 11 Met Glu Gln Tyr Val Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Ile Ala Leu Lys Lys Ile Arg Leu Glu Gln Glu Asp Glu Gly Val Pro Ser Thr Ala Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Val Phe Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu

Arg Gly Val Ala Tyr Cys His Ser His Ser Val Leu His Arg Asp Leu 115 120 125

Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Glu Leu 130 140

145	Asp	Phe	Gly	Leu	Ala 150	Arg	Ala	Phe	Gly	Ile 155	Pro	Val	Arg	Thr	Phe 160
Thr	His	Glu	Val	Val 165	Thr	Leu	Trp	Tyr	Arg 170	Ala	Pro	Glu	Ile	Leu 175	Leu
Gly	Ser	Arg	Gln 180	Tyr	Ser	Thr	Pro	Val 185	Asp	Met	Trp	Ser	Val 190	Gly	Cys
Ile	Phe	Ala 195	Glu	Met	Val	Asn	Gln 200	Lys	Pro	Leu	Phe	Pro 205	Gly	Asp	Ser
Glu	Ile 210	Asp	Glu	Leu	Phe	Lys 215	Ile	Phe	Arg	Val	Leu 220	Gly	Thr	Pro	Asn
Glu 225	Gln	Ser	Trp	Pro	Gly 230	Val	Ser	Ser	Leu	Pro 235	Asp	Tyr	Lys	Ser	Ala 240
Phe	Pro	Lys	Trp	Gln 245	Ala	Gln	Asp	Leu	Ala 250	Thr	Ile	Val	Pro	Thr 255	Leu
Asp	Pro	Ala	Gly 260	Leu	Asp	Leu	Leu	Ser 265	Lys	Met	Leu	Arg	Tyr 270	Glu	Pro
Asn	Lys	Arg 275	Ile	Thr	Ala	Arg	Gln 280	Ala	Leu	Glu	His	Glu 285	Tyr	Phe	Lys
Asp	Leu 290	Glu	Met	Val	Gln										
<210 <210 <210	1 > 2 2 > 1	12 294 PRT	a sat	-iva											
<213 <213 <213	1 > 2 2 > 1 3 > 0	294 PRT Oryza	a sat	iva											
<213 <213 <213	1 > 2 2 > 1 3 > 0 0 > 3	294 PRT Oryza			Lys	Glu	Glu	Lys	Ile 10	Gly	Glu	Gly	Thr	Tyr 15	Gly
<213 <213 <213 <400 Met 1	1 > 2 2 > 1 3 > 0 0 > 1 Glu	294 PRT Oryza 12 Gln	Tyr	Glu 5					10				Thr Ile 30	15	
<21: <21: <21: <400 Met 1 Val	1> 2 2> I 3> 0 0> 1 Glu	294 PRT Dryza 12 Gln Tyr	Tyr Arg 20	Glu 5 Ala	Arg	Asp	Lys	Val 25	10 Thr	Asn	Glu	Thr	Ile 30	15 Ala	
<21: <21: <21: <400 Met 1 Val	1 > 2 2 > 1 3 > 0 3	294 PRT Dryza 12 Gln Tyr Ile 35	Tyr Arg 20 Arg	Glu 5 Ala Leu	Arg Glu	Asp Gln	Lys Glu 40	Val 25 Asp	10 Thr Glu	Asn Gly	Glu Val	Thr Pro 45	Ile 30	15 Ala Thr	Leu Ala
<21: <21: <21: <400 Met 1 Val Lys	1 > 2 2 > 1 3 > 0 6 Glu Val Lys Arg 50	294 PRT Dryza 12 Gln Tyr Ile 35	Tyr Arg 20 Arg	Glu 5 Ala Leu Ser	Arg Glu Leu	Asp Gln Leu 55	Lys Glu 40 Lys	Val 25 Asp Glu	10 Thr Glu Met	Asn Gly His	Glu Val His	Thr Pro 45 Gly	Ile 30 Ser	15 Ala Thr	Leu Ala Val
<21: <21: <400 Met 1 Val Lys Ile Arg 65	1> 2 2> 1 3> 0 3> 0 Glu Val Lys Arg 50 Leu	294 PRT Dryza 12 Gln Tyr Ile 35 Glu His	Tyr Arg 20 Arg Ile Asp	Glu 5 Ala Leu Ser	Arg Glu Leu Ile 70	Asp Gln Leu 55 His	Lys Glu 40 Lys Ser	Val 25 Asp Glu	Thr Glu Met	Asn Gly His Arg	Glu Val His 60 Ile	Thr Pro 45 Gly Tyr	Ile 30 Ser Asn	15 Ala Thr Ile Val	Leu Ala Val Phe 80
<21: <21: <400 Met 1 Val Lys Ile Arg 65 Glu	1 > 2 2 > 1 3 > 0 3 > 0 Glu Val Lys Arg 50 Leu	294 PRT PRT PRT Il2 Gln Tyr Ile 35 Glu His	Tyr Arg 20 Arg Ile Asp	Glu 5 Ala Leu Ser Val Leu 85	Arg Glu Leu Ile 70 Asp	Asp Gln Leu 55 His	Lys Glu 40 Lys Ser	Val 25 Asp Glu Glu Lys	Thr Glu Met Lys Phe	Asn Gly His Arg 75 Met	Glu Val His 60 Ile Asp	Thr Pro 45 Gly Tyr Ser	Ile 30 Ser Asn Leu Cys	15 Ala Thr Ile Val Pro 95	Leu Ala Val Phe 80
<21: <21: <400 Met 1 Val Lys Ile Arg 65 Glu Phe	1 > 2 2 > 1 3 > 0 3 > 0 Clu Val Lys Arg 50 Leu Tyr Ala	294 PRT Dryza 12 Gln Tyr Ile 35 Glu His Leu Lys	Tyr Arg 20 Arg Ile Asp Asp Asn 100	Glu 5 Ala Leu Ser Val Leu 85	Arg Glu Leu Ile 70 Asp	Asp Gln Leu 55 His Leu	Lys Glu 40 Lys Ser Lys	Val 25 Asp Glu Glu Lys Lys	Thr Glu Met Lys Phe 90 Ser	Asn Gly His Arg 75 Met	Glu Val His 60 Ile Asp	Thr Pro 45 Gly Tyr Ser	Ile 30 Ser Asn Leu Cys	15 Ala Thr Ile Val Pro 95 Ile	Leu Ala Val Phe 80 Glu Leu

Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn 130 135 140	Ala Leu Lys Leu
Ala Asp Phe Gly Leu Ala Arg Ala Phe Arg Ile Pro 145 150 155	Val Arg Thr Phe
Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro 165 170	Glu Ile Leu Leu 175
Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp 180 185	Ser Val Gly Cys 190
Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe 195 200	Pro Gly Asp Ser 205
Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu 210 215 220	Gly Thr Pro Asn
Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp 225 230 235	Tyr Lys Ser Ala 240
Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile 245 250	Val Pro Thr Leu 255
Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu 260 265	Arg Tyr Glu Pro 270
Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His 275 280	Glu Tyr Phe Lys 285
Asp Leu Glu Met Val Gln 290	
<210> 13 <211> 294 <212> PRT <213> Oryza sativa	
<400> 13	
Met Glu Pro Tyr Glu Lys Glu Glu Lys Ile Gly Glu 1 5 10	Gly Thr Tyr Gly 15
Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu 20 25	Thr Ile Ala Leu 30
Lys Lys Ile Arg Leu Ala Gln Glu Asp Glu Gly Val 35 40	Pro Ser Thr Ala 45
Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His 50 55 60	Gly Asn Ile Val
Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile 65 70 75	Tyr Leu Val Phe 80
Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp 85 90	Ser Cys Pro Glu 95
Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu	Tyr Gln Ile Leu

Page 11

100 105 110 Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu 120 Lys Pro Gln Asn Leu Leu Ile Asp Leu Arg Thr Asn Ala Leu Lys Leu Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Ile Pro Val Arg Thr Phe Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu Gly Ser Arg Gln Tyr Ala Thr Pro Val Asp Met Trp Ser Val Gly Cys 185 Thr Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser 200 195 Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn 215 Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala 225 230 235 Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 250 Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Val Leu Arg Tyr Glu Pro Asn Lys Arg Ile Thr Ala Gln Gln Ala Leu Glu His Glu Tyr Phe Lys 280 Asp Leu Glu Met Val Gln 290 <210> 14 <211> 1243 <212> DNA <213> Oryza sativa <400> 14 aaaaccaccg agggacctga tctgcaccgg ttttqataqt tqaqqqaccc qttqtqtctq 60 gttttccgat cqaqqqacqa aaatcqqatt cqqtqtaaaq ttaaqqqacc tcaqatqaac ttattccgga gcatgattgg gaagggagga cataaggccc atgtcgcatg tgtttggacg 180 gtccagatct ccagatcact cagcaggatc ggccgcgttc gcgtagcacc cgcggtttga 240 tteggettee egeaaggegg eggeeggtgg eegtgeegee gtagetteeg eeggaagega 300 gcacgccgcc gccgccgacc cggctctgcg tttgcaccgc cttgcacgcg atacatcggg 360 atagataget actactetet cegitteaca atgiaaatea tietaetatt tiecaeatte 420 atattgatgt taatgaatat agacatatat atctatttag attcattaac atcaatatga 480 atgtaggaaa tgctagaatg acttacattg tgaattgtga aatggacgaa gtacctacga 540 tggatggatg caggatcatg aaagaattaa tgcaagatcg tatctgccgc atgcaaaatc 600 ttactaattg cgctgcatat atgcatgaca gcctgcatgc gggcgtgtaa gcgtgttcat 660 ccattaggaa gtaaccttgt cattacttat accagtacta catactatat agtattgatt 720 tcatgagcaa atctacaaaa ctggaaagca ataagaaata cgggactgga aaagactcaa 780

Page 12

840

900

cattaatcac caaatatttc gccttctcca gcagaatata tatctctcca tcttgatcac

tgtacacact gacagtgtac gcataaacgc agcagccagc ttaactgtcg tctcaccgtc

```
gcacactqqc Cttccatctc aqqctaqctt tctcaqccac ccatcqtaca tqtcaactcq
                                                                     960
gegegegeac aggeacaaat taegtacaaa aegeatgace aaateaaaac caeeggagaa
                                                                     1020
gaategetee egegegege ggegaegege aegtaegaae geaegeaege aegeecaaee
                                                                     1080
ccacgacacg ategegegeg acgeeggega caceggeegt ccaecegege ceteaceteg
                                                                     1140
ccgactataa atacgtaggc atctgcttga tcttgtcatc catctcacca ccaaaaaaaa
                                                                     1200
aaggaaaaaa aaacaaaaca caccaagcca aataaaagcg aca
                                                                     1243
<210> 15
<211>
      2191
<212>
      DNA
<213> Oryza sativa
<400> 15
aatccgaaaa gtttctgcac cgttttcacc ccctaactaa caatataggg aacgtgtgct
                                                                      60
aaatataaaa tgagacctta tatatgtagc gctgataact agaactatgc aagaaaaact
                                                                     120
catccaccta ctttagtggc aatcgggcta aataaaaaag agtcgctaca ctagtttcgt
                                                                     180
tttccttagt aattaagtgg gaaaatgaaa tcattattgc ttagaatata cgttcacatc
                                                                     240
tctgtcatga agttaaatta ttcgaggtag ccataattgt catcaaactc ttcttgaata
                                                                     300
aaaaaatctt tctagctgaa ctcaatgggt aaagagagag atttttttta aaaaaataga
                                                                     360
atgaagatat tctgaacgta ttggcaaaga tttaaacata taattatata attttatagt
                                                                     420
ttgtgcattc gtcatatcgc acatcattaa ggacatgtct tactccatcc caatttttat
                                                                     480
ttagtaatta aagacaattg acttattttt attatttatc ttttttcgat tagatgcaag
                                                                     540
gtacttacgc acacactttg tgctcatgtg catgtgtgag tgcacctcct caatacacgt
                                                                     600
tcaactagca acacatctct aatatcactc gcctatttaa tacatttagg tagcaatatc
                                                                     660
tgaattcaag cactccacca tcaccagacc acttttaata atatctaaaa tacaaaaaat
                                                                     720
aattttacag aatagcatga aaagtatgaa acgaactatt taggtttttc acatacaaaa
                                                                     780
aaaaaaagaa ttttgctcgt gcgcgagcgc caatctccca tattgggcac acaggcaaca
                                                                     840
acagagtggc tgcccacaga acaacccaca aaaaacgatg atctaacgga ggacagcaag
                                                                     900
teegeaacaa cettttaaca geaggetttg eggeeaggag agaggaggag aggeaaagaa
                                                                     960
aaccaagcat cctcctcctc ccatctataa attcctcccc ccttttcccc tctctatata
                                                                    1020
ggaggcatcc aagccaagaa gagggagagc accaaggaca cgcgactagc agaagccgag
                                                                     1080
cgaccgcctt cttcgatcca tatcttccgg tcgagttctt ggtcgatctc ttccctcctc
                                                                    1140
cacctcctcc tcacagggta tgtgcccttc ggttgttctt ggatttattg ttctaggttg
                                                                    1200
tgtagtacgg gcgttgatgt taggaaaggg gatctgtatc tgtgatgatt cctqttcttg
                                                                    1260
gatttgggat agaggggttc ttgatgttgc atgttatcgg ttcggtttga ttagtagtat
                                                                    1320
ggttttcaat cgtctggaga gctctatgga aatgaaatgg tttagggtac ggaatcttgc
                                                                    1380
gattttgtga taccttttgt ttgaggtaaa atcagagcac cggtgatttt gcttggtgta
                                                                    1440
ataaaagtac ggttgtttgg tcctcgattc tggtagtgat gcttctcgat ttgacgaagc
                                                                    1500
tatcctttgt ttattcccta ttgaacaaaa ataatccaac tttgaagacg gtcccgttga
                                                                    1560
tgagattgaa tgattgattc ttaagcctgt ccaaaatttc gcagctggct tgtttagata
                                                                    1620
cagtagtccc catcacgaaa ttcatggaaa cagttataat cctcaggaac aggggattcc
                                                                    1680
ctgttcttcc gatttgcttt agtcccagaa ttttttttcc caaatatctt aaaaagtcac
                                                                    1740
tttctggttc agttcaatga attgattgct acaaataatg cttttatagc gttatcctag
                                                                    1800
ctgtagttca gttaataggt aataccccta tagtttagtc aggagaagaa cttatccgat
                                                                    1860
ttctgatctc catttttaat tatatgaaat gaactgtagc ataagcagta ttcatttgga
                                                                    1920
ttattttttt tttagctctc accccttcat tattctgagc tgaaagtctg gcatgaactg
                                                                    1980
tecteaattt tgtttteaaa tteacatega ttatetatge attateetet tgtatetaee
                                                                    2040
tgtagaagtt tctttttggt tattccttga ctgcttgatt acagaaagaa atttatgaag
                                                                    2100
ctgtaatcgg gatagttata ctgcttgttc ttatgattca tttcctttqt qcaqttcttg
                                                                    2160
gtgtagcttg ccactttcac cagcaaagtt c
                                                                    2191
<210> 16
<211> 57
<212> DNA
<213> Artificial sequence
<220>
<223> sense primer: prm0350
```

<400> ggggaca	16 aagt ttgtacaaaa aagcaggctt cacaatggag aagtacgaga agctaga	57
<210>	17	
<211>	51	
	DNA	
	Artificial sequence	
<220>		
<223>	antisense primer: prm0351	
<400>	17	
ggggaco	cact ttgtacaaga aagctgggtt cagaactgag acttgtcaag g	51
<210>	18	
<211>	55	
	DNA	
<213>	Artificial sequence	
<220>		
<223>	sense primer: prm439	
<400>	18	
ggggaca	aagt ttgtacaaaa aagcaggctt cacaatggag aaatacgaga agctc	55
<210>	19	
<211>	49	
<212>		
<213>	Artificial sequence	
<220>		
<223>	antisense primer: prm440	
<400>	19	
	cact ttgtacaaga aagctgggtg gtcagaactg agatttgtc	49
<210>	20	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	sense primer: prm2213	
<400>	20	
ggggaca	aagt ttgtacaaaa aagcaggctt cacaatggac aacaatggag ttaa	54
<210>	21	
<211>	49	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	antisense primer: prm2214	
<400>	21	
ggggaco	cact ttgtacaaga aagctgggtt cagagagagg acttgtcag	49

10/570554 IAP20 Rec'd PCT/PTO 0 3 MAR 2006

SEQUENCE LISTING

<110>	Fran Hatz	ekaert,W nkard, V zfeld, Y onov, Vl	aler ves	rie							
<120>	Plants having modified growth characteristics and method for making the same										
<130> <140>	1187-44 2006-03-03										
<150> <151>	PCT/EP2004/052035 2004-09-03										
<150> <151>	EP 03077811.2 2003-09-05										
<160>	21										
<170>	Pate	entIn ve	rsic	on 3.3							
<210><211><212><212><213>	1 930 DNA Arab	oidopsis	tha	aliana							
<400> atggaga	1 aagt	acgagaa	.gct	agagaaggtc	ggagaaggaa	catacgggaa	agtctacaaa	60			
gcgatgg	gaga	aaggaac	tgg	taagcttgtt	gctctgaaga	aaactcgtct	cgagatggac	120			
gaagaag	ggta	ttccacc	aac	tgctcttcgt	gagatctcgc	ttctccagat	gttatcaaca	180			
tcgatct	atg	ttgttcg	att	actctgcgtc	gaacatgttc	atcaaccatc	aaccaaatct	240			
caatcta	acca	aatccaa	tct	ctatctcgtt	ttcgagtatc	tcgatactga	tcttaagaaa	300			
ttcatco	gatt	cgtatag	gaa	aggacctaat	cctaagcctc	ttgagccttt	tttgattcag	360			
aagttga	atgt	ttcagct	ttg	taaaggtgtt	gcgcattgtc	atagtcatgg	tgtgcttcac	420			
cgtgato	ctta	aaccgca	gaa	tcttcttctg	gtgaaagata	aagagcttct	taagattgct	480			
gatttgg	ggtc	ttggtcg	tgc	ttttactgtt	cctcttaagt	cttatacgca	tgagattgtt	540			
actctt	ggt	atagago	tcc	tgaagttctt	cttggatcta	ctcattattc	aactggtgtt	600			
gacatgt	ggt	ctgttgg	ttg	tatctttgct	gagatggttc	ggaggcaagc	tcttttccct	660			
ggtgatt	ctg	agtttca	gca	attgcttcat	atcttcaggt	tgctaggaac	accaactgag	720			
cagcaat	ggc	cgggtgt	ttc	cacactgcgt	gactggcatg	tttaccctaa	gtgggagccg	780			
caagact	taa	ctcttac	tat	teettetet	tcacctcaag	gagttgatct	teteaccaaa	840			

<210> 2

<211> 309

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Glu Lys Tyr Glu Lys Leu Glu Lys Val Gly Glu Gly Thr Tyr Gly 10

Lys Val Tyr Lys Ala Met Glu Lys Gly Thr Gly Lys Leu Val Ala Leu 20 25

Lys Lys Thr Arg Leu Glu Met Asp Glu Glu Gly Ile Pro Pro Thr Ala 40

Leu Arg Glu Ile Ser Leu Leu Gln Met Leu Ser Thr Ser Ile Tyr Val 50 55

Val Arg Leu Cys Val Glu His Val His Gln Pro Ser Thr Lys Ser 70

Gln Ser Thr Lys Ser Asn Leu Tyr Leu Val Phe Glu Tyr Leu Asp Thr

Asp Leu Lys Lys Phe Ile Asp Ser Tyr Arg Lys Gly Pro Asn Pro Lys 100 105

Pro Leu Glu Pro Phe Leu Ile Gln Lys Leu Met Phe Gln Leu Cys Lys 115 120

Gly Val Ala His Cys His Ser His Gly Val Leu His Arg Asp Leu Lys 130 135 140

Pro Gln Asn Leu Leu Leu Val Lys Asp Lys Glu Leu Leu Lys Ile Ala 145 150 155

Asp Leu Gly Leu Gly Arg Ala Phe Thr Val Pro Leu Lys Ser Tyr Thr 165 170 175

His Glu Ile Val Thr Leu Trp Tyr Arg Ala Pro Glu Val Leu Leu Gly

180 185 190

Ser Thr His Tyr Ser Thr Gly Val Asp Met Trp Ser Val Gly Cys Ile 195 200 Phe Ala Glu Met Val Arg Arg Gln Ala Leu Phe Pro Gly Asp Ser Glu 215 220 Phe Gln Gln Leu Leu His Ile Phe Arg Leu Leu Gly Thr Pro Thr Glu 225 230 235 Gln Gln Trp Pro Gly Val Ser Thr Leu Arg Asp Trp His Val Tyr Pro 245 250 255 Lys Trp Glu Pro Gln Asp Leu Thr Leu Ala Val Pro Ser Leu Ser Pro Gln Gly Val Asp Leu Leu Thr Lys Met Leu Lys Tyr Asn Pro Ala Glu 275 280 Arg Ile Ser Ala Lys Thr Ala Leu Asp His Pro Tyr Phe Asp Ser Leu 295 Asp Lys Ser Gln Phe 305 <210> 3 <211> 936 <212> DNA <213> Arabidopsis thaliana <400> atggagaaat acgagaagct cgaaaaggtc ggtgaaggaa cctatggaaa agtctacaaa 60 gcaatggaga aaaccaccgg aaaactcgtc gctctgaaga aaactaggct cgaaatggac 120 gaagaaggta taccaccaac ggctctccgt gagatctctc ttctccaaat gctttctcaa 180 tcaatctaca tcgttcgtct cctctgcgtc gaacatgtta ttcaatcgaa agattcgact 240 gtttctcact ctcccaaatc caatctctat ctcgttttttg agtatctcga cactgatctc 300 aagaaattta tagattotoa tagaaagggo togaatoota gaccgottga ggottotott 360 gtgcagaggt ttatgtttca gctttttaaa ggtgtggctc attgtcatag ccatggtgtg 420

cttcaccgtg atcttaaacc gcagaatctt ctattggata aggataaagg gattcttaag

480

attgctgatt tgggtcttag tcgtgctttt actgtgcctc ttaaggctta tacacatgag 540 attgttactc tttggtatag agctcctgaa gttttgcttg gttctactca ttactctact 600 gctgttgata tttggtctgt tggatgcatc tttgccgaga tgattaggag gcaagctctt 660 ttccctggtg attctgagtt tcagcaacta cttcatattt tcagattgtt aggaacacca 720 actgagcagc aatggccggg tgtaatggca ttgcgtgact ggcatgtcta tccaaagtgg 780 gagccgcaag acttatcacg tgctgttcca tctctatctc ctgaaggaat tgatcttctc 840 acgcaaatgt tgaagtacaa tccagcagaa agaatttcag caaaagcagc tctcqatcat 900 ccctactttg acagccttga caaatctcag ttctga 936

<210> 4

<211> 311

<212> PRT

<213> Arabidopsis thaliana

<400> 4

Met Glu Lys Tyr Glu Lys Leu Glu Lys Val Gly Glu Gly Thr Tyr Gly
1 5 10 15

Lys Val Tyr Lys Ala Met Glu Lys Thr Thr Gly Lys Leu Val Ala Leu 20 25 30

Lys Lys Thr Arg Leu Glu Met Asp Glu Glu Gly Ile Pro Pro Thr Ala 35 40 45

Leu Arg Glu Ile Ser Leu Leu Gln Met Leu Ser Gln Ser Ile Tyr Ile 50 55 60

Val Arg Leu Leu Cys Val Glu His Val Ile Gln Ser Lys Asp Ser Thr 65 70 75 80

Val Ser His Ser Pro Lys Ser Asn Leu Tyr Leu Val Phe Glu Tyr Leu 85 90 95

Asp Thr Asp Leu Lys Lys Phe Ile Asp Ser His Arg Lys Gly Ser Asn 100 105 110

Pro Arg Pro Leu Glu Ala Ser Leu Val Gln Arg Phe Met Phe Gln Leu
115 120 125

Phe Lys Gly Val Ala His Cys His Ser His Gly Val Leu His Arg Asp

135 140

Leu Lys Pro Gln Asn Leu Leu Leu Asp Lys Asp Lys Gly Ile Leu Lys
145 150 155 160

Ile Ala Asp Leu Gly Leu Ser Arg Ala Phe Thr Val Pro Leu Lys Ala 165 170 175

Tyr Thr His Glu Ile Val Thr Leu Trp Tyr Arg Ala Pro Glu Val Leu 180 185 190

Leu Gly Ser Thr His Tyr Ser Thr Ala Val Asp Ile Trp Ser Val Gly
195 200 205

Cys Ile Phe Ala Glu Met Ile Arg Arg Gln Ala Leu Phe Pro Gly Asp 210 215 220

Ser Glu Phe Gln Gln Leu Leu His Ile Phe Arg Leu Leu Gly Thr Pro 225 230 235 240

Thr Glu Gln Gln Trp Pro Gly Val Met Ala Leu Arg Asp Trp His Val \$245\$ \$250\$ \$255\$

Tyr Pro Lys Trp Glu Pro Gln Asp Leu Ser Arg Ala Val Pro Ser Leu 260 265 270

Ser Pro Glu Gly Ile Asp Leu Leu Thr Gln Met Leu Lys Tyr Asn Pro 275 280 285

Ala Glu Arg Ile Ser Ala Lys Ala Ala Leu Asp His Pro Tyr Phe Asp 290 295 300

Ser Leu Asp Lys Ser Gln Phe 305 310

<210> 5

<211> 948

130

<212> DNA

<213> Arabidopsis thaliana

<400> 5

atggacaaca atggagttaa accegetgtt teegecatgg aageetttga aaagettgag

aaagtaggtg aagggactta tgggaaagtt tacagagcaa gagagaaagc tactgggatg

120

60

atogttgctt tgaagaagac gcgtctccat gaggatgaag aaggtqttcc tcccactact 180 cttcgcgaga tctctatctt gcgtatgctc gctcgtgatc ctcacatcgt taggttgatg 240 gatgttaagc aaggaataaa caaagaagga aaaactgtac tttaccttgt tttcgagtat 300 gttgatactg atctcaagaa attcatcaga agctttcgtc aagctggaca gaacattcca 360 caaaatactg tcaaqtqctt qatqtaccaq ttatqcaaaq qcatqqcttt ttqccatqqt 420 catggagtgt tgcacaggga tcttaagcct cacaatctct tgatggaccg gaagacaatg 480 acgctcaaaa tagcagatct tggattagcc agagccttca ctctcccaat gaaaaagtat 540 acacatgaga ttctaactct atggtataga gctccggaag ttcttcttqq aqcaacccat 600 tactctactg gagtggatat gtggtctgtt ggctgtattt ttgctgaact agtgaccaag 660 caagcaatct ttgcgggaga ctctgagctc caacagctcc tccgtatatt caggttgttg 720 ggaacaccaa acgaagaagt ttggcctgga gtaagcaaac tcaaggactg gcatgaatac 780 ccgcaatgga aaccgttgag tctctccaca gctgtgccaa acctcgacga ggctggactt 840 gatctcttat ctaaaatgct ggagtacgag ccagcaaaac gaatctcagc aaagaaagct 900 atggagcatc cttacttcga tgatttgcct gacaagtcct ctctctga 948

<210> 6

<211> 315

<212> PRT

<213> Arabidopsis thaliana

<400> 6

Met Asp Asn Asn Gly Val Lys Pro Ala Val Ser Ala Met Glu Ala Phe 1 5 10 15

Glu Lys Leu Glu Lys Val Gly Glu Gly Thr Tyr Gly Lys Val Tyr Arg 20 25 30

Ala Arg Glu Lys Ala Thr Gly Met Ile Val Ala Leu Lys Lys Thr Arg 35 40 45

Leu His Glu Asp Glu Glu Gly Val Pro Pro Thr Thr Leu Arg Glu Ile 50 55 60

Ser Ile Leu Arg Met Leu Ala Arg Asp Pro His Ile Val Arg Leu Met 65 70 75 80

Asp Val Lys Gln Gly Ile Asn Lys Glu Gly Lys Thr Val Leu Tyr Leu

Val Phe Glu Tyr Val Asp Thr Asp Leu Lys Lys Phe Ile Arg Ser Phe
100 105 110

Arg Gln Ala Gly Gln Asn Ile Pro Gln Asn Thr Val Lys Cys Leu Met
115 120 125

Tyr Gln Leu Cys Lys Gly Met Ala Phe Cys His Gly His Gly Val Leu 130 135 140

His Arg Asp Leu Lys Pro His Asn Leu Leu Met Asp Arg Lys Thr Met 145 150 155 160

Thr Leu Lys Ile Ala Asp Leu Gly Leu Ala Arg Ala Phe Thr Leu Pro 165 170 175

Met Lys Lys Tyr Thr His Glu Ile Leu Thr Leu Trp Tyr Arg Ala Pro 180 185 190

Glu Val Leu Leu Gly Ala Thr His Tyr Ser Thr Gly Val Asp Met Trp
195 200 205

Ser Val Gly Cys Ile Phe Ala Glu Leu Val Thr Lys Gln Ala Ile Phe 210 215 220

Ala Gly Asp Ser Glu Leu Gln Gln Leu Leu Arg Ile Phe Arg Leu Leu 225 230 235 240

Gly Thr Pro Asn Glu Glu Val Trp Pro Gly Val Ser Lys Leu Lys Asp 245 250 255

Trp His Glu Tyr Pro Gln Trp Lys Pro Leu Ser Leu Ser Thr Ala Val 260 265 270

Pro Asn Leu Asp Glu Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Glu 275 280 285

Tyr Glu Pro Ala Lys Arg Ile Ser Ala Lys Lys Ala Met Glu His Pro 290 295 300

Tyr Phe Asp Asp Leu Pro Asp Lys Ser Ser Leu 305 310 315

<210> 7 <211> 1115 <212> DNA <213> Oryza sativa

<400> 7 acctetecte egattaatee ecteecetee tetteeteee acttetgege etgetettee 60 teceetegee gaccetacet actegegeeg eegeegtege attgggegge aaaeggaggg 120 ggggttaacc ctgatggagc agtacgagaa ggaggagaag attggggagg gcacgtacgg 180 ggtggtgtac agggcgcggg acaaggtcac caacgagacg atcgcgctca agaagatccg 240 gcttgagcag gaggatgagg gcgtcccctc caccgcaatc cgcgagatct cgctcctcaa 300 ggagatgcat cacggcaaca tegtcaggtt acacgatgtt atccacagtg agaagcgcat 360 atatettgte tttgagtate tggatetgga eetaaagaag tteatggaet ettgteeaga 420 gtttgcgaaa aaccccactt taattaagtc atatctctat cagatactcc gcggcgttgc 480 ttactgtcat tctcatagag ttcttcatcg agatttgaaa cctcagaatt tattgataga 540 teggegtaet aatgeaetga agettgeaga etttggttta geeagggeat ttggaattee 600 tgtccgcacg tttactcacg aggttgtaac cttgtggtat agagctccag agatccttct 660 tggatcaagg cagtattcta caccagttga tatgtggtca gttggttgta tctttgcaga 720 aatggtgaac cagaaaccac tgttccctgg tgattctgag attgatgaat tatttaagat 780 attcagggta ctaggaactc caaatgaaca aagttggcca ggagttagct cattacctga 840 ctacaagtet gettteecca agtggeaage acaggatett geaactattg teectactet 900 tgaccctgct ggtttggacc ttctctctaa aatgcttcgg tacgagccaa acaaaaggat 960

<210> 8 <211> 294 <212> PRT <213> Oryza sativa

<400> 8

ctgtgaacgc tgtgcccttc gtttgggcat ttttg

Met Glu Gln Tyr Glu Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly
1 5 10 15

cacagctaga caggctcttg agcatgaata cttcaaggac cttgagatgg tacaatgacc

ctgctatggc tttacattgg attggcatat gtatgggctg ggctcctcat ttcattcctt

1020

1080

1115

Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Ile Ala Leu 20 25 30

Lys Lys Ile Arg Leu Glu Gln Glu Asp Glu Gly Val Pro Ser Thr Ala 35 40 45

Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val 50 55 60

Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Val Phe 65 70 75 80

Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu 85 90 95

Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu 100 105 110

Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu 115 120 125

Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Lys Leu 130 135 140

Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Ile Pro Val Arg Thr Phe 145 150 155 160

Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu 165 170 175

Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp Ser Val Gly Cys 180 185 190

Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser 195 200 205

Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn 210 215 220

Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala 225 230 235 240 Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 245 250 255

Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Arg Tyr Glu Pro 260 265 270

Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His Glu Tyr Phe Lys 275 280 285

Asp Leu Glu Met Val Gln 290

<210> 9

<211> 294

<212> PRT

<213> Oryza sativa

<400> 9

Met Glu Gln His Glu Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly
1 5 10 15

Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Ile Ala Leu 20 25 30

Lys Lys Ile Arg Leu Glu Gln Glu Asp Glu Gly Val Pro Ser Thr Ala 35 40 45

Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val
50 60

Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Asp Phe 70 75 80

Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu 85 90 95

Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu 100 105 110

Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu 115 120 125

Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Lys Leu 130 135 140 Ala Asp Phe Gly Leu Ala Arg Thr Phe Gly Ile Pro Val Arg Thr Phe 145 150 155 160

Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu 165 170 175

Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp Ser Val Gly Cys 180 185 190

Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser 195 200 205

Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn 210 215 220

Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala 225 230 235 240

Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 245 250 255

Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Arg Tyr Glu Pro
260 265 270

Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His Glu Tyr Phe Lys 275 280 285

Asp Leu Glu Met Val Gln 290

<210> 10

٠, . . .

<211> 294

<212> PRT

<213> Oryza sativa

<400> 10

Met Glu Gln Tyr Glu Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly

1 10 15

Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Thr Ala Leu 20 25 30

Lys Lys Ile Arg Leu Glu Gln Glu Asp Glu Gly Val Pro Ser Thr Ala 35 40 45

Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val 50 55 60

Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Val Phe 65 70 75 80

Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu 85 90 95

Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu 100 105 110

Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu 115 120 125

Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Lys Leu 130 135 140

Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Ile Pro Val Arg Thr Phe 145 150 155 160

Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu
165 170 175

Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp Ser Val Gly Cys 180 185 190

Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser 195 200 205

Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn 210 215 220

Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala 225 230 235 240

Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 245 250 255

Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Arg Tyr Glu Pro

260 265 270

Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His Glu Tyr Phe Lys 275 280 285

Asp Leu Glu Met Val Gln 290

<210> 11

<211> 294

<212> PRT

<213> Oryza sativa

<400> 11

Met Glu Gln Tyr Val Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly
1 5 10 15

Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Ile Ala Leu 20 25 30

Lys Lys Ile Arg Leu Glu Gln Glu Asp Glu Gly Val Pro Ser Thr Ala 35 40 45

Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val
50 60

Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Val Phe 70 75 80

Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu 85 90 95

Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu 100 105 110

Arg Gly Val Ala Tyr Cys His Ser His Ser Val Leu His Arg Asp Leu 115 120 125

Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Glu Leu 130 135 140

Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Ile Pro Val Arg Thr Phe 145 150 155 160 Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu 165 170 175

Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp Ser Val Gly Cys 180 185 190

Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser 195 200 205

Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn 210 215 220

Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala 225 230 235 240

Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 245 250 255

Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Arg Tyr Glu Pro 260 265 270

Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His Glu Tyr Phe Lys 275 280 285

Asp Leu Glu Met Val Gln 290

<210> 12

<211> 294

<212> PRT

<213> Oryza sativa

<400> 12

Met Glu Gln Tyr Glu Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly
1 5 10 15

Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Ile Ala Leu 20 25 30

Lys Lys Ile Arg Leu Glu Glu Glu Asp Glu Gly Val Pro Ser Thr Ala 35 40 45

Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val

Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Val Phe

Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu

Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu

Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu

Lys Pro Gln Asn Leu Leu Ile Asp Arg Arg Thr Asn Ala Leu Lys Leu

Ala Asp Phe Gly Leu Ala Arg Ala Phe Arg Ile Pro Val Arg Thr Phe

Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu

Gly Ser Arg Gln Tyr Ser Thr Pro Val Asp Met Trp Ser Val Gly Cys

Ile Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser

Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn

Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala

Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu

Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Met Leu Arg Tyr Glu Pro

Asn Lys Arg Ile Thr Ala Arg Gln Ala Leu Glu His Glu Tyr Phe Lys

Asp Leu Glu Met Val Gln 290

<210> 13

<211> 294

<212> PRT

<213> Oryza sativa

<400> 13

Met Glu Pro Tyr Glu Lys Glu Glu Lys Ile Gly Glu Gly Thr Tyr Gly
1 5 10 15

Val Val Tyr Arg Ala Arg Asp Lys Val Thr Asn Glu Thr Ile Ala Leu 20 25 30

Lys Lys Ile Arg Leu Ala Gln Glu Asp Glu Gly Val Pro Ser Thr Ala 35 40 45

Ile Arg Glu Ile Ser Leu Leu Lys Glu Met His His Gly Asn Ile Val
50 60

Arg Leu His Asp Val Ile His Ser Glu Lys Arg Ile Tyr Leu Val Phe 70 75 80

Glu Tyr Leu Asp Leu Asp Leu Lys Lys Phe Met Asp Ser Cys Pro Glu 85 90 95

Phe Ala Lys Asn Pro Thr Leu Ile Lys Ser Tyr Leu Tyr Gln Ile Leu 100 105 110

Arg Gly Val Ala Tyr Cys His Ser His Arg Val Leu His Arg Asp Leu 115 120 125

Lys Pro Gln Asn Leu Leu Ile Asp Leu Arg Thr Asn Ala Leu Lys Leu 130 135 140

Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Ile Pro Val Arg Thr Phe 145 150 155 160

Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala Pro Glu Ile Leu Leu 165 170 175

Gly Ser Arg Gln Tyr Ala Thr Pro Val Asp Met Trp Ser Val Gly Cys 180 185 190

Thr Phe Ala Glu Met Val Asn Gln Lys Pro Leu Phe Pro Gly Asp Ser 195 200 205

Glu Ile Asp Glu Leu Phe Lys Ile Phe Arg Val Leu Gly Thr Pro Asn 210 215 220

Glu Gln Ser Trp Pro Gly Val Ser Ser Leu Pro Asp Tyr Lys Ser Ala 225 230 235 240

Phe Pro Lys Trp Gln Ala Gln Asp Leu Ala Thr Ile Val Pro Thr Leu 245 250 255

Asp Pro Ala Gly Leu Asp Leu Leu Ser Lys Val Leu Arg Tyr Glu Pro 260 265 270

Asn Lys Arg Ile Thr Ala Gln Gln Ala Leu Glu His Glu Tyr Phe Lys 275 280 285

Asp Leu Glu Met Val Gln 290

<210> 14

<211> 1243

<212> DNA

<213> Oryza sativa

<400> 14

aaaaccaccg agggacctga tctgcaccgg ttttgatagt tgagggaccc gttgtgtctg 60 gttttccgat cgagggacga aaatcggatt cggtgtaaag ttaagggacc tcagatgaac 120 ttattccgga gcatgattgg gaagggagga cataaggccc atqtcqcatq tqtttqqacq 180 gtccagatct ccagatcact cagcaggatc ggccgcgttc gcgtagcacc cgcggtttga 240 tteggettee egeaaggegg eggeeggtgg eegtgeegee gtagetteeg eeggaagega 300 gcacgccgcc gccgccgacc cggctctgcg tttgcaccgc cttgcacgcg atacatcggg 360 atagataget actactetet cegttteaca atgtaaatea ttetaetatt ttecaeatte 420 atattgatgt taatgaatat agacatatat atctatttag attcattaac atcaatatga 480 atgtaggaaa tgctagaatg acttacattg tgaattgtga aatggacgaa gtacctacga 540 tggatggatg caggatcatg aaagaattaa tgcaagatcg tatctgccgc atgcaaaatc 600

ttactaattg cgctgcatat atgcatgaca gcctgcatgc gggcgtgtaa gcgtgttcat 660 ccattaggaa gtaaccttgt cattacttat accagtacta catactatat agtattgatt 720 tcatgagcaa atctacaaaa ctggaaagca ataagaaata cgggactgga aaagactcaa 780 cattaatcac caaatatttc gccttctcca gcagaatata tatctctcca tcttgatcac 840 tgtacacact gacagtgtac gcataaacgc agcagccagc ttaactgtcg tctcaccgtc 900 gcacactggc cttccatctc aggctagctt tctcagccac ccatcgtaca tgtcaactcg 960 gcgcgcgcac aggcacaaat tacgtacaaa acgcatgacc aaatcaaaac caccggagaa 1020 gaategetee egegegege ggegaegege aegtaegaae geaegeaege aegeceaaee 1080 ccacgacacg ategegegeg acgeeggega caceggeegt ccaeeeggege ceteaceteg 1140 ccgactataa atacgtaggc atctgcttga tcttgtcatc catctcacca ccaaaaaaaa 1200 aaggaaaaaa aaacaaaaca caccaagcca aataaaagcg aca 1243

<210> 15

<211> 2191

<212> DNA

<213> Oryza sativa

<400> 15

aatccgaaaa gtttctgcac cgttttcacc ccctaactaa caatataggg aacgtgtgct 60 aaatataaaa tgagacctta tatatgtagc gctgataact agaactatgc aagaaaaact 120 catccaccta ctttagtggc aatcgggcta aataaaaaag agtcgctaca ctagtttcgt 180 tttccttagt aattaagtgg gaaaatgaaa tcattattgc ttagaatata cgttcacatc 240 tctgtcatga agttaaatta ttcgaggtag ccataattgt catcaaactc ttcttgaata 300 aaaaaatctt tctagctgaa ctcaatgggt aaagagagag atttttttta aaaaaataga 360 atgaagatat totgaacgta ttggcaaaga tttaaacata taattatata attttataqt 420 ttgtgcattc gtcatatcgc acatcattaa ggacatgtct tactccatcc caatttttat 480 ttagtaatta aagacaattg acttattttt attatttatc ttttttcgat tagatgcaag 540 gtacttacgc acacactttg tgctcatgtg catgtgtgag tgcacctcct caatacacgt 600 tcaactagca acacatctct aatatcactc gcctatttaa tacatttagg tagcaatatc 660 tgaattcaag cactccacca tcaccagacc acttttaata atatctaaaa tacaaaaaat 720 aattttacag aatagcatga aaagtatgaa acgaactatt taggtttttc acatacaaaa 780 aaaaaaagaa ttttgctcgt gcgcgagcgc caatctccca tattgggcac acaggcaaca 840 acagagtggc tgcccacaga acaacccaca aaaaacgatg atctaacgga ggacagcaag 900 tccgcaacaa ccttttaaca gcaggctttg cggccaggag agaggaggag aggcaaagaa 960 aaccaagcat cetecteete ceatetataa attecteece cetttteece tetetatata 1020 1080 ggaggcatcc aagccaagaa gagggagagc accaaggaca cgcgactagc agaagccgag cgaccgcctt cttcgatcca tatcttccgg tcgagttctt ggtcgatctc ttccctcctc 1140 cacctcctcc tcacagggta tgtgcccttc ggttgttctt ggatttattg ttctaggttg 1200 tgtagtacgg gcgttgatgt taggaaaggg gatctgtatc tgtgatgatt cctgttcttg 1260 gatttgggat agaggggttc ttgatgttgc atgttatcgg ttcggtttga ttagtagtat 1320 ggttttcaat cgtctggaga gctctatgga aatgaaatgg tttagggtac ggaatcttgc 1380 gattttgtga taccttttgt ttgaggtaaa atcagagcac cggtgatttt gcttggtgta 1440 ataaaagtac ggttgtttgg tcctcgattc tggtagtgat gcttctcgat ttgacgaagc 1500 tatcctttgt ttattcccta ttgaacaaaa ataatccaac tttgaagacg gtcccgttga 1560 tgagattgaa tgattgattc ttaagcctgt ccaaaatttc gcagctggct tgtttagata 1620 cagtagtccc catcacgaaa ttcatggaaa cagttataat cctcaggaac aggggattcc 1680 ctgttcttcc gatttgcttt agtcccagaa ttttttttcc caaatatctt aaaaagtcac 1740 tttctggttc agttcaatga attgattgct acaaataatg cttttatagc gttatcctag 1800 ctgtagttca gttaataggt aataccccta tagtttagtc aggagaagaa cttatccgat 1860 ttctgatctc catttttaat tatatgaaat gaactgtagc ataagcagta ttcatttgga 1920 ttatttttt tttagctctc accccttcat tattctgagc tgaaagtctg gcatgaactg 1980 tcctcaattt tgttttcaaa ttcacatcga ttatctatgc attatcctct tgtatctacc 2040 tgtagaagtt tctttttggt tattccttga ctgcttgatt acagaaagaa atttatgaag 2100 ctgtaatcgg gatagttata ctgcttgttc ttatgattca tttcctttgt gcagttcttg 2160 gtgtagcttg ccactttcac cagcaaagtt c 2191

<210> 16

<211> 57

<212> DNA

<213> Artificial sequence

<220>

<223> sense primer: prm0350

<400> 16

```
ggggacaagt ttgtacaaaa aagcaggctt cacaatggag aagtacgaga agctaga
                                                              57
<210> 17
<211> 51
<212> DNA
<213> Artificial sequence
<220>
<223> antisense primer: prm0351
<400> 17
ggggaccact ttgtacaaga aagctgggtt cagaactgag acttgtcaag g
                                                                    51
<210> 18
<211> 55
<212> DNA
<213> Artificial sequence
<220>
<223> sense primer: prm439
ggggacaagt ttgtacaaaa aagcaggctt cacaatggag aaatacgaga agctc
                                                                    55
<210> 19
<211> 49
<212> DNA
<213> Artificial sequence
<220>
<223> antisense primer: prm440
<400> 19
ggggaccact ttgtacaaga aagctgggtg gtcagaactg agatttgtc
                                                                    49
<210> 20
<211> 54
<212> DNA
<213> Artificial sequence
<220>
<223> sense primer: prm2213
<400> 20
ggggacaagt ttgtacaaaa aagcaggctt cacaatggac aacaatggag ttaa
                                                                    54
<210> 21
<211> 49
<212> DNA
<213> Artificial sequence
```

<220>

<223> antisense primer: prm2214

<400> 21 ggggaccact ttgtacaaga aagctgggtt cagagagagg acttgtcag

49