Introduction

My research question for this project is, "How are the locations of COVID-19 testing centers in Chicago related to COVID cases and demographic patterns?" I aimed to discover whether the distribution of COVID testing sites was related to COVID case rates or demographic trends (proxied by racial demographics).

I conducted this research using data from Chicago's Open Data portal. My data layers display COVID case rates by Chicago zip code, racial breakdowns by Census tract, and the locations of COVID testing sites. I loaded in sidewalk data that I hoped to use to create service areas of COVID testing sites, but I ultimately had to use buffers of the testing sites due to time and open source software constraints.

My method of statistical analysis was ANOVA (analysis of variance). This method illustrates the statistical significance of mean-differences between groups.

Background Literature

Literature throughout the pandemic has shown disparities in the impacts of COVID-19, particulary across racial and ethnic lines. A recent study looking at 6 cities in the U.S. (including Chicago) showed that a 10 percentage point increase in a zip code's Black population is associated with 9.2 additional COVID cases per 10,000 people, and a similar increase in Hispanic residents is associated with 20.6 additional cases. Potential explanations for this increase are disparities in types of jobs (frontline employment vs. employment that can move online), ability (or lack thereof) to move outside of the city during COVID peaks, access to healthcare and testing during the pandemic, and longterm preexisting health disparities (Benitez, Courtemanche, & Yelowitz 2020).

It is also important to examine literature about the history of segregation in the United States and Chicago specifically. Chicago has been used as a model for prototypical American cities (Park and Burgess 1925) and is quite segregated between its predominantly-white suburbs and its predominantly-Black "South Side". In recent decades, however, Chicago has become more diverse overall and has undergone complex racial change including an increase in Hispanic/Latino identifying residents (Onésimo Sandoval 2011).

One resource about segregation in the US that I find particularly interesting and important is the web map "Mapping Inequality" that was developed by scholars at the University of Richmond, Virginia Tech University, and the University of Maryland. The interactive mapping tool can be found here: https://dsl.richmond.edu/panorama/redlining/#loc=5/39.1/-94.58. Below is a screenshot of Chicago's redlining maps as found on the Mapping Inequality resource. It shows that most neighborhoods in southern and central Chicago were deemed "Definitely Declining" or "Hazardous" by redlining maps in the 1950s, whereas suburbs to the north and outskirts of the city were deemed "Best" or "Still Desirable". These designations were highly racially charged and illustrate the legacy of segregation on racial breakdowns in Chicago today.

Data and Data Processing

Import Packages

```
In [1]:
         #!pip install momepy
         import geopandas as gpd
         import fiona
         import matplotlib
         import matplotlib.pyplot as plt
         import pandas as pd
         from shapely import wkt
         import networkx as nx
         import osmnx as ox
         import momepy
         import scipy.stats as stats
         #!pip install statsmodels
         import statsmodels.api as sm
         from statsmodels.formula.api import ols
         !pip install bioinfokit
         from bioinfokit.analys import stat
```

/Users/kearadennehy/miniconda3/lib/python3.9/site-packages/geopandas/_compat.py:106: UserW arning: The Shapely GEOS version (3.8.0-CAPI-1.13.1) is incompatible with the GEOS version PyGEOS was compiled with (3.9.1-CAPI-1.14.2). Conversions between both will be slow. warnings.warn(

Requirement already satisfied: bioinfokit in /Users/kearadennehy/miniconda3/lib/python3.9/site-packages (2.0.6)

Requirement already satisfied: scikit-learn in /Users/kearadennehy/miniconda3/lib/python3. 9/site-packages (from bioinfokit) (0.24.2)

Requirement already satisfied: textwrap3 in /Users/kearadennehy/miniconda3/lib/python3.9/s ite-packages (from bioinfokit) (0.9.2)

Requirement already satisfied: matplotlib in /Users/kearadennehy/miniconda3/lib/python3.9/

```
site-packages (from bioinfokit) (3.4.2)
Requirement already satisfied: scipy in /Users/kearadennehy/miniconda3/lib/python3.9/site-
packages (from bioinfokit) (1.7.1)
Requirement already satisfied: numpy in /Users/kearadennehy/miniconda3/lib/python3.9/site-
packages (from bioinfokit) (1.21.1)
Requirement already satisfied: pandas in /Users/kearadennehy/miniconda3/lib/python3.9/site
-packages (from bioinfokit) (1.3.1)
Requirement already satisfied: tabulate in /Users/kearadennehy/miniconda3/lib/python3.9/si
te-packages (from bioinfokit) (0.8.9)
Requirement already satisfied: seaborn in /Users/kearadennehy/miniconda3/lib/python3.9/sit
e-packages (from bioinfokit) (0.11.2)
Requirement already satisfied: adjustText in /Users/kearadennehy/miniconda3/lib/python3.9/
site-packages (from bioinfokit) (0.7.3)
Requirement already satisfied: matplotlib-venn in /Users/kearadennehy/miniconda3/lib/pytho
n3.9/site-packages (from bioinfokit) (0.11.6)
Requirement already satisfied: statsmodels in /Users/kearadennehy/miniconda3/lib/python3.
9/site-packages (from bioinfokit) (0.12.2)
Requirement already satisfied: cycler>=0.10 in /Users/kearadennehy/miniconda3/lib/python3.
9/site-packages (from matplotlib->bioinfokit) (0.10.0)
Requirement already satisfied: pyparsing>=2.2.1 in /Users/kearadennehy/miniconda3/lib/pyth
on3.9/site-packages (from matplotlib->bioinfokit) (2.4.7)
Requirement already satisfied: kiwisolver>=1.0.1 in /Users/kearadennehy/miniconda3/lib/pyt
hon3.9/site-packages (from matplotlib->bioinfokit) (1.3.1)
Requirement already satisfied: python-dateutil>=2.7 in /Users/kearadennehy/miniconda3/lib/
python3.9/site-packages (from matplotlib->bioinfokit) (2.8.2)
Requirement already satisfied: pillow>=6.2.0 in /Users/kearadennehy/miniconda3/lib/python
3.9/site-packages (from matplotlib->bioinfokit) (8.3.1)
Requirement already satisfied: six in /Users/kearadennehy/miniconda3/lib/python3.9/site-pa
ckages (from cycler>=0.10->matplotlib->bioinfokit) (1.16.0)
Requirement already satisfied: pytz>=2017.3 in /Users/kearadennehy/miniconda3/lib/python3.
9/site-packages (from pandas->bioinfokit) (2021.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/kearadennehy/miniconda3/lib/
python3.9/site-packages (from scikit-learn->bioinfokit) (2.2.0)
Requirement already satisfied: joblib>=0.11 in /Users/kearadennehy/miniconda3/lib/python3.
9/site-packages (from scikit-learn->bioinfokit) (1.0.1)
```

Data Wrangling

site-packages (from statsmodels->bioinfokit) (0.5.1)

I loaded in Chicago's COVID data by zip code and merged it with geospatial data about each zip code.

Requirement already satisfied: patsy>=0.5 in /Users/kearadennehy/miniconda3/lib/python3.9/

```
In [2]: covidCasesLink = "https://data.cityofchicago.org/api/geospatial/yhhz-zm2v?method=export&fccasesdf = gpd.read_file(covidCasesLink)

In [3]: casesdf = casesdf.dropna()

In [4]: casesdf = casesdf.sort_values(by="date_week_", ascending=False)

In [5]: casesdf = casesdf.drop(labels="geometry", axis=1)

In [73]: casesdf.head()

Out[73]: zip_code week_numbe date_week_ time_week_ date_wee_2 time_wee_2 cases_week cases_cun
```

	4271	60633	33.0	2021-08-15	5 00:00	0:00.000 20)21-08-21	00:00:00.000	12.0	1422		
	4268	60619	33.0	2021-08-15	5 00:00	0:00.000 20)21-08-21	00:00:00.000	82.0	5348		
	4267	60653	33.0	2021-08-15	5 00:00	0:00.000 20)21-08-21	00:00:00.000	49.0	3020		
	4265	60638	33.0	2021-08-15	5 00:00	0:00.000 20)21-08-21	00:00:00.000	47.0	8265		
	5 rows ×	22 column	S									
In [7]:	_		_	data.cityof le(zipCodes		go.org/api,	/geospat:	ial/gdcf-axmw	?method=exp	ort&form		
In [8]:	zipcod	<pre>zipcodesdf = zipcodesdf.merge(casesdf, right_on="zip_code", left_on="zip")</pre>										
In [9]:	zipcod	zipcodesdf.head()										
Out[9]:	objectid shape_a		oe_area	shape_len	zip	geometry	zip_code	week_numbe	date_week_	time_we		
	0 3	33.0 1.0605	23e+08 42	720.044406	60647	POLYGON ((-87.67762 41.91776, -87.67761 41.917	60647	33.0	2021-08-15	00:00:00		
	1 3	33.0 1.0605	23e+08 42	720.044406	60647	POLYGON ((-87.67762 41.91776,						
						-87.67761 41.917	60647	32.0	2021-08-08	00:00:00		
	2 3	33.0 1.0605	23e+08 42	720.044406	60647	-87.67761	60647 60647		2021-08-08			
					60647 60647	-87.67761 41.917 POLYGON ((-87.67762 41.91776, -87.67761		31.0		00:00:00		

time_week_ date_wee_2 time_wee_2 cases_week cases_cun

zip_code week_numbe date_week_

5 rows × 27 columns

I then chose which columns I was interested in and created a new dataframe with those columns. I then isolated data from the first week of August (the most recent week when I started working on this project). I

```
In [10]:
           geometryseries = zipcodesdf["geometry"]
           zipseries = zipcodesdf["zip"]
           areaseries = zipcodesdf["shape area"]
           lenseries = zipcodesdf["shape len"]
           cumucasesseries = zipcodesdf["cases cumu"]
           zipcodesseries = zipcodesdf["zip"]
           datesseries = zipcodesdf["date week "]
           populationseries = zipcodesdf["population"]
           frame = {"zip": zipcodesseries, "week": datesseries, "shape area": areaseries, "shape len'
           cumulativecasesdf = pd.DataFrame(frame)
In [11]:
           cumulativecasesdf.set geometry("geometry")
Out[11]:
                    zip
                          week
                                   shape_area
                                                  shape_len
                                                                             geometry cumu_cases population
                                                                   POLYGON ((-87.67762
                          2021-
              0 60647
                                 1.060523e+08 42720.044406
                                                                                            9433.0
                                                                                                      87509.0
                          08-15
                                                              41.91776, -87.67761 41.917...
                                                                   POLYGON ((-87.67762
                          2021-
                60647
                                 1.060523e+08 42720.044406
                                                                                            9324.0
                                                                                                      87509.0
                          80-80
                                                              41.91776, -87.67761 41.917...
                          2021-
                                                                   POLYGON ((-87.67762
              2 60647
                                 1.060523e+08 42720.044406
                                                                                            9224.0
                                                                                                      87509.0
                          08-01
                                                              41.91776, -87.67761 41.917...
                          2021-
                                                                   POLYGON ((-87.67762
              3 60647
                                 1.060523e+08 42720.044406
                                                                                            9140.0
                                                                                                      87509.0
                          07-25
                                                              41.91776, -87.67761 41.917...
                                                                   POLYGON ((-87.67762
                          2021-
                                                                                            9071.0
                60647
                                 1.060523e+08 42720.044406
                                                                                                      87509.0
                          07-18
                                                              41.91776, -87.67761 41.917...
                                                                  POLYGON ((-87.58592
                          2020-
                 60619
                                 1.678720e+08
                                               53040.907078
                                                                                             432.0
                                                                                                      61258.0
           4315
                          04-12
                                                             41.75150, -87.58592 41.751...
                          2020-
                                                                  POLYGON ((-87.58592
           4316
                 60619
                                 1.678720e+08
                                               53040.907078
                                                                                             339.0
                                                                                                      61258.0
                          04-05
                                                             41.75150, -87.58592 41.751...
                          2020-
                                                                  POLYGON ((-87.58592
           4317
                 60619
                                 1.678720e+08
                                               53040.907078
                                                                                             242.0
                                                                                                      61258.0
                          03-29
                                                             41.75150, -87.58592 41.751...
                          2020-
                                                                  POLYGON ((-87.58592
           4318
                 60619
                                 1.678720e+08
                                               53040.907078
                                                                                             130.0
                                                                                                      61258.0
                          03-22
                                                             41.75150, -87.58592 41.751...
                          2020-
                                                                  POLYGON ((-87.58592
                                              53040.907078
          4319
                 60619
                                 1.678720e+08
                                                                                              31.0
                                                                                                      61258.0
                          03-15
                                                             41.75150, -87.58592 41.751...
          4320 rows × 7 columns
In [12]:
           cumulativecasesdf = cumulativecasesdf[cumulativecasesdf["week"] == "2021-08-01"]
In [13]:
           cumulativecasesdf["CasesPer10000"] = cumulativecasesdf["cumu cases"] / cumulativecasesdf[
In [14]:
           cumulativecasesgdf = gpd.GeoDataFrame(
                cumulativecasesdf, geometry=cumulativecasesdf["geometry"])
In [15]:
           testingSitesLink = "https://data.cityofchicago.org/api/views/thdn-3grx/rows.csv?accessType
           testingsitesdf = pd.read csv(testingSitesLink)
```

```
In [16]:
           testingsitesdf = testingsitesdf.dropna()
In [17]:
           testingsitesdf['Location'] = gpd.GeoSeries.from wkt(testingsitesdf['Location'])
           testingsitesgdf = gpd.GeoDataFrame(testingsitesdf, geometry="Location")
In [72]:
           cumulativecasesgdf.head()
Out[72]:
                  zip
                       week
                                shape_area
                                               shape_len
                                                             geometry
                                                                       cumu_cases population CasesPer10000
                                                             POLYGON
                                                          ((1162710.570
                       2021-
               60647
                              1.060523e+08 42720.044406
                                                                             9224.0
                                                                                       87509.0
                                                                                                  1054.063011
                       08-01
                                                           1913303.050,
                                                          1162715.690...
                                                             POLYGON
                                                          ((1149304.490
                       2021-
            78 60639
                              1.274761e+08
                                            48103.782721
                                                                            14817.0
                                                                                       90517.0
                                                                                                  1636.930079
                       08-01
                                                           1914985.850,
                                                          1149278.070...
                                                             POLYGON
                       2021-
                                                          ((1165664.482
               60622
                              7.085383e+07
                                           42527.989679
                                                                            5438.0
                                                                                       52793.0
                                                                                                  1030.060804
                       08-01
                                                           1902791.860,
                                                          1165664.480...
                                                             POLYGON
                       2021-
                                                          ((1154894.670
          269
                60651
                             9.903962e+07
                                            47970.140153
                                                                             8168.0
                                                                                       63218.0
                                                                                                  1292.037078
                       08-01
                                                           1905152.880,
                                                          1154849.960...
                                                             POLYGON
                                                          ((1180096.830
                60611
                             2.350606e+07
                                           34689.350631
          344
                                                                            2434.0
                                                                                      32426.0
                                                                                                   750.632209
                                                          1904616.840,
                                                          1180186.790...
         I loaded sidewalk data from Cook County (Chicago's county) into a geodataframe as well.
In [19]:
           sidewalksLink = 'https://datahub.cmap.illinois.gov/dataset/93394557-3315-4b93-ab53-9fd576k
           sidewalksdf = gpd.read file(sidewalksLink)
In [20]:
           sidewalksgdf = gpd.GeoDataFrame(sidewalksdf, geometry="geometry")
         I set all geodataframes to EPSG 3435 (NAD83 / Illinois East (ftUS)).
In [21]:
           print(sidewalksgdf.crs)
           print(cumulativecasesgdf.crs)
           print(testingsitesgdf.crs)
          epsg:3435
          None
          None
In [22]:
           cumulativecasesgdf = cumulativecasesgdf.set crs('EPSG:4326')
           cumulativecasesgdf = cumulativecasesgdf.to crs('EPSG:3435')
           testingsitesgdf = testingsitesgdf.set crs('EPSG:4326')
           testingsitesgdf = testingsitesgdf.to crs('EPSG:3435')
```

I clipped my sidewalk data by the COVID cases (Chicago boundaries).

```
In [23]:
           sidewalksgdf = gpd.clip(sidewalksgdf, cumulativecasesgdf)
          Then, I loaded Census tract geospatial data into a geodataframe.
In [24]:
           censusTractsLink = "https://data.cityofchicago.org/api/geospatial/5jrd-6zik?method=export8
           censustractsgdf = gpd.read file(censusTractsLink)
In [74]:
           censustractsgdf.head()
Out [74]:
              commarea commarea_n countyfp10
                                                       geoid10 name10 namelsad10
                                                                                     notes statefp10 tractce10
                                                                             Census
           0
                     44
                                 44.0
                                             031 17031842400
                                                                  8424
                                                                                                   17
                                                                                                        842400
                                                                                      None
                                                                          Tract 8424
                                                                                                                 11
                                                                             Census
                                                                                                                 ((1
           1
                     59
                                 59.0
                                              031 17031840300
                                                                  8403
                                                                                      None
                                                                                                        840300
                                                                          Tract 8403
                                                                                                                 11
                                                                             Census
                                                                                                                 (('
           2
                     34
                                 34.0
                                                   17031841100
                                                                   8411
                                                                                                   17
                                                                                                         841100
                                                                                      None
                                                                           Tract 8411
                                                                                                                 11:
                                                                             Census
           3
                     31
                                 31.0
                                                  17031841200
                                                                   8412
                                                                                                   17
                                                                                                         841200
                                                                                      None
                                                                           Tract 8412
                                                                                                                  1
                                                                                                                 11
                                                                             Census
                                                                                                                 ((1
           4
                     32
                                 32.0
                                              031 17031839000
                                                                  8390
                                                                                                        839000
                                                                                      None
                                                                          Tract 8390
                                                                                                                 11
```

Census demographic data was unable to load in via link. Instead, I found a table here: https://data.census.gov/cedsci/advanced?q=chicago. I downloaded tract-level race data for all of Chicago to my local computer.

I created columns for percent of the population that is white and percent of the population that is of color. I made a new dataframe called "simpleracedf" with these columns, then merged that dataframe back into my Census geodataframe.

```
In [28]:
           convert dict = {"Total": float,
                             "Total!!Population of one race!!White alone": float
           racedf = racedf.astype(convert dict)
           racedf["PctWhite"] = racedf["Total!!Population of one race!!White alone"] / racedf["Total"]
           racedf["PctPOC"] = 1.0 - racedf["PctWhite"]
In [29]:
           idseries = racedf["id"].str.split(pat="1400000US", expand=True)[1]
           nameseries = racedf["Geographic Area Name"]
           totalpopseries = racedf["Total"]
           pctwhiteseries = racedf["PctWhite"]
           pctpocseries = racedf["PctPOC"]
           frame2 = {"id": idseries, "Name": nameseries, "Population": totalpopseries, "PctWhite": pd
           simpleracedf = pd.DataFrame(frame2)
           simpleracedf
Out[29]:
                         id
                                                          Name Population PctWhite
                                                                                       PctPOC
               17031010100
                                Census Tract 101, Cook County, Illinois
                                                                    4854.0 0.372888
                                                                                      0.627112
             1 17031010201 Census Tract 102.01, Cook County, Illinois
                                                                    6450.0 0.358450 0.641550
             2 17031010202 Census Tract 102.02, Cook County, Illinois
                                                                    2818.0 0.438964
                                                                                     0.561036
               17031010300
                                Census Tract 103, Cook County, Illinois
                                                                    6236.0 0.523894
                                                                                     0.476106
               17031010400
                               Census Tract 104, Cook County, Illinois
                                                                    5042.0 0.662634 0.337366
          1314 17031843800
                              Census Tract 8438, Cook County, Illinois
                                                                     2110.0
                                                                            0.291943 0.708057
          1315 17031843900
                              Census Tract 8439, Cook County, Illinois
                                                                           0.036513 0.963487
                                                                    3533.0
          1316 17031980000
                              Census Tract 9800, Cook County, Illinois
                                                                       0.0
                                                                                NaN
                                                                                          NaN
```

1319 rows × 5 columns

1317 17031980100

1318 17031990000

In [30]: simpleracedf

Out[30]:		id	Name	Population	PctWhite	PctPOC
	0	17031010100	Census Tract 101, Cook County, Illinois	4854.0	0.372888	0.627112
	1	17031010201	Census Tract 102.01, Cook County, Illinois	6450.0	0.358450	0.641550
	2	17031010202	Census Tract 102.02, Cook County, Illinois	2818.0	0.438964	0.561036
	3	17031010300	Census Tract 103, Cook County, Illinois	6236.0	0.523894	0.476106
	4	17031010400	Census Tract 104, Cook County, Illinois	5042.0	0.662634	0.337366
	•••					
	1314	17031843800	Census Tract 8438, Cook County, Illinois	2110.0	0.291943	0.708057
	1315	17031843900	Census Tract 8439, Cook County, Illinois	3533.0	0.036513	0.963487

Census Tract 9801, Cook County, Illinois

Census Tract 9900, Cook County, Illinois

0.0

0.0

NaN

NaN

NaN

NaN

	id	Name	Population	PctWhite	PctPOC
1316	17031980000	Census Tract 9800, Cook County, Illinois	0.0	NaN	NaN
1317	17031980100	Census Tract 9801, Cook County, Illinois	0.0	NaN	NaN
1318	17031990000	Census Tract 9900, Cook County, Illinois	0.0	NaN	NaN

1319 rows × 5 columns

```
In [31]: censustractsgdf = censustractsgdf.merge(simpleracedf, right_on="id", left_on="geoid10")
In [32]: censustractsgdf = censustractsgdf.to_crs('EPSG:3435')
```

			Census tract g e population tl			olumns to	r percent or t	пе рор	ulation tha	is write
C	census	stractsg	df							
	co	ommarea	commarea_n	countyfp10	geoid10	name10	namelsad10	notes	statefp10	tractce10
	0	44	44.0	031	17031842400	8424	Census Tract 8424	None	17	842400
	1	59	59.0	031	17031840300	8403	Census Tract 8403	None	17	840300
	2	34	34.0	031	17031841100	8411	Census Tract 8411	None	17	841100
	3	31	31.0	031	17031841200	8412	Census Tract 8412	None	17	841200
	4	32	32.0	031	17031839000	8390	Census Tract 8390	None	17	839000
	•••									
7	96	7	7.0	031	17031070400	704	Census Tract 704	None	17	070400

	commarea	commarea_n	countyfp10	geoid10	name10	namelsad10	notes	statefp10	tractce10
797	7	7.0	031	17031070500	705	Census Tract 705	None	17	070500
798	13	13.0	031	17031130300	1303	Census Tract 1303	None	17	130300
799	29	29.0	031	17031292200	2922	Census Tract 2922	None	17	292200
800	63	63.0	031	17031630900	6309	Census Tract 6309	None	17	630900

801 rows × 15 columns

Below is my final COVID cases geodataframe. It includes cumulative cases per 10,000 people for each zip code.

Tn	Γ-	7 A I	
T-11	L /	0]	

cumulativecasesgdf

t[70]:		zip	week	shape_area	shape_len	geometry	cumu_cases	population	CasesPer10000
	2	60647	2021- 08-01	1.060523e+08	42720.044406	POLYGON ((1162710.570 1913303.050, 1162715.690	9224.0	87509.0	1054.063011
	78	60639	2021- 08-01	1.274761e+08	48103.782721	POLYGON ((1149304.490 1914985.850, 1149278.070	14817.0	90517.0	1636.930079
	193	60622	2021- 08-01	7.085383e+07	42527.989679	POLYGON ((1165664.482 1902791.860, 1165664.480	5438.0	52793.0	1030.060804
	269	60651	2021- 08-01	9.903962e+07	47970.140153	POLYGON ((1154894.670 1905152.880, 1154849.960	8168.0	63218.0	1292.037078
	344	60611	2021- 08-01	2.350606e+07	34689.350631	POLYGON ((1180096.830 1904616.840, 1180186.790	2434.0	32426.0	750.632209
	419	60638	2021- 08-01	1.661663e+08	67710.646739	POLYGON ((1145038.120 1877098.200, 1145038.830	8119.0	58797.0	1380.852765

	zip	week	shape_area	shape_len	geometry	cumu_cases	population	CasesPer10000
494	60652	2021- 08-01	1.283098e+08	48187.949880	POLYGON ((1161676.040 1854860.750, 1161677.220	5605.0	43907.0	1276.561824
569	60626	2021- 08-01	4.917058e+07	33983.913306	POLYGON ((1166067.060 1951048.980, 1166072.700	4564.0	49730.0	917.755882
644	60615	2021- 08-01	6.656545e+07	38321.313769	POLYGON ((1189361.370 1872142.680, 1189398.870	2610.0	41563.0	627.962370
719	60621	2021- 08-01	1.047468e+08	42299.920391	POLYGON ((1177515.860 1857917.930, 1177516.630	2504.0	29042.0	862.199573
794	60645	2021- 08-01	6.218147e+07	32075.599421	POLYGON ((1159502.470 1950363.100, 1159637.750	5033.0	47732.0	1054.428895
869	60643	2021- 08-01	1.830131e+08	59337.807440	POLYGON ((1173133.650 1825945.560, 1173155.640	4715.0	49870.0	945.458191
944	60643	2021- 08-01	3.136688e+06	7175.092168	POLYGON ((1173372.620 1818761.500, 1173322.720	4715.0	49870.0	945.458191
1019	60660	2021- 08-01	3.798439e+07	27307.813836	POLYGON ((1168745.010 1942680.340, 1168763.980	3055.0	43242.0	706.489062
1094	60640	2021- 08-01	7.730525e+07	48985.871304	POLYGON ((1169889.620 1937438.500, 1169879.180	5117.0	69715.0	733.988381
1169	60614	2021- 08-01	9.446063e+07	50587.347380	POLYGON ((1175249.530 1918946.000, 1175250.880	6206.0	71308.0	870.309082
1245	60631	2021- 08-01	1.071176e+08	68289.751577	POLYGON ((1113850.780 1937277.680, 1113851.310	3359.0	29529.0	1137.525822
1320	60646	2021- 08-01	1.178901e+08	62633.139821	POLYGON ((1131758.090 1943202.870, 1131787.480	2900.0	27987.0	1036.195376
1395	60628	2021- 08-01	3.452417e+08	83748.991990	POLYGON ((1188501.500 1842031.460, 1188493.500	5831.0	66724.0	873.898447
1470	60625	2021- 08-01	1.058309e+08	42524.110478	POLYGON ((1162224.950 1929224.820, 1162177.660	7440.0	79243.0	938.884192

	zip	week	shape_area	shape_len	geometry	cumu_cases	population	CasesPer10000
1545	60641	2021- 08-01	1.139033e+08	42682.982947	POLYGON ((1149241.150 1918317.690, 1149178.660	9327.0	71023.0	1313.236557
1620	60657	2021- 08-01	6.354776e+07	45646.488028	POLYGON ((1173407.570 1924468.300, 1173430.380	5767.0	70052.0	823.245589
1696	60636	2021- 08-01	1.041147e+08	42448.282844	POLYGON ((1169622.050 1854989.950, 1168296.990	3549.0	32203.0	1102.071236
1771	60649	2021- 08-01	8.052608e+07	55092.863293	POLYGON ((1199827.780 1853229.590, 1199131.600	3801.0	46024.0	825.873457
1846	60617	2021- 08-01	4.528374e+08	102528.036078	POLYGON ((1199893.750 1853181.290, 1199898.480	8528.0	82534.0	1033.271137
1921	60633	2021- 08-01	1.875267e+08	59703.215815	POLYGON ((1184469.530 1824765.270, 1189067.610	1403.0	12871.0	1090.047393
1994	60612	2021- 08-01	1.067189e+08	42663.196676	POLYGON ((1162929.220 1905244.080, 1162930.540	3753.0	34311.0	1093.818309
2069	60604	2021- 08-01	4.294902e+06	12245.808402	POLYGON ((1174762.920 1899362.320, 1174763.850	110.0	782.0	1406.649616
2139	60624	2021- 08-01	9.941812e+07	40394.410008	POLYGON ((1155213.880 1894533.120, 1155157.680	3591.0	36158.0	993.141214
2214	60656	2021- 08-01	8.951588e+07	84430.973216	POLYGON ((1108622.090 1933078.350, 1108639.180	3343.0	27579.0	1212.154175
2289	60644	2021- 08-01	9.909222e+07	40030.838529	POLYGON ((1145868.800 1894304.080, 1145867.800	4769.0	47712.0	999.538900
2365	60655	2021- 08-01	1.153801e+08	77392.322613	POLYGON ((1162125.840 1838922.770, 1162129.420	3562.0	28804.0	1236.633801
2439	60603	2021- 08-01	4.560229e+06	13672.682289	POLYGON ((1179499.190 1900447.100, 1179495.570	84.0	1174.0	715.502555
2506	60605	2021- 08-01	3.630128e+07	37973.346105	POLYGON ((1178341.150 1898593.570, 1179224.086	2067.0	27519.0	751.117410
2069 2139 2214 2289 2365	60604 60624 60656 60644 606655	2021- 08-01 2021- 08-01 2021- 08-01 2021- 08-01 2021- 08-01 2021- 08-01	4.294902e+06 9.941812e+07 8.951588e+07 9.909222e+07 1.153801e+08 4.560229e+06	12245.808402 40394.410008 84430.973216 40030.838529 77392.322613 13672.682289	POLYGON ((1162929.220 1905244.080, 1162930.540 POLYGON ((1174762.920 1899362.320, 1174763.850 POLYGON ((1155213.880 1894533.120, 1155157.680 POLYGON ((1108622.090 1933078.350, 1108639.180 POLYGON ((1145868.800 1894304.080, 1145867.800 POLYGON ((1162125.840 1838922.770, 1162129.420 POLYGON ((1179499.190 1900447.100, 1179495.570 POLYGON ((1178341.150 1898593.570, 1898593.570, 1898593.570, 1898593.570, 1898593.570, 1806	110.0 3591.0 3343.0 4769.0 3562.0	782.0 36158.0 27579.0 47712.0 28804.0	1406.64 993.14 1212.15 999.538 1236.63

	zip	week	shape_area	shape_len	geometry	cumu_cases	population	CasesPer10000
2581	60653	2021- 08-01	6.775983e+07	34316.361543	POLYGON ((1183378.140 1881936.210, 1183399.440	2932.0	31972.0	917.052421
2656	60609	2021- 08-01	2.134903e+08	58540.920413	POLYGON ((1176844.900 1881764.500, 1176846.710	7539.0	61495.0	1225.953330
2731	60618	2021- 08-01	1.412359e+08	47847.080382	POLYGON ((1162376.170 1923907.580, 1162377.950	8873.0	94395.0	939.986228
2807	60616	2021- 08-01	1.096671e+08	45823.539838	POLYGON ((1183367.490 1881980.950, 1182507.860	3995.0	54464.0	733.512045
2882	60602	2021- 08-01	4.847125e+06	14448.174993	POLYGON ((1181225.660 1901279.920, 1181224.750	115.0	1244.0	924.437299
2953	60601	2021- 08-01	9.166246e+06	19804.582109	POLYGON ((1177741.840 1902882.940, 1177849.890	1145.0	14675.0	780.238501
3028	60608	2021- 08-01	1.765055e+08	53169.217720	POLYGON ((1171293.470 1892289.680, 1171295.330	8332.0	79205.0	1051.953791
3103	60607	2021- 08-01	6.466429e+07	39143.639517	POLYGON ((1173173.090 1898448.860, 1173267.180	2792.0	29591.0	943.530127
3178	60661	2021- 08-01	9.357756e+06	13132.565490	POLYGON ((1173041.650 1902921.770, 1173037.700	931.0	9926.0	937.940762
3252	60606	2021- 08-01	6.766411e+06	12040.440235	POLYGON ((1174680.590 1902381.080, 1174681.080	344.0	3101.0	1109.319574
3345	60630	2021- 08-01	1.310738e+08	49198.940283	POLYGON ((1142186.810 1937012.780, 1142450.930	6033.0	57344.0	1052.071708
3420	60642	2021- 08-01	4.796149e+07	31296.227144	POLYGON ((1165664.482 1902791.860, 1165657.780	2165.0	20201.0	1071.729122
3494	60659	2021- 08-01	6.969841e+07	38931.526661	POLYGON ((1162029.240 1937153.010, 1159312.660	4290.0	41068.0	1044.608941
3569	60634	2021- 08-01	1.940626e+08	77647.318007	POLYGON ((1138557.480 1918057.610, 1138459.640	10747.0	75995.0	1414.171985

	zip	week	shape_area	shape_len	geometry	cumu_cases	population	CasesPer10000
3644	60613	2021- 08-01	5.399089e+07	31196.320656	POLYGON ((1173142.110 1925167.220, 1172089.300	4083.0	50113.0	814.758645
3720	60610	2021- 08-01	3.159816e+07	24208.698879	POLYGON ((1176224.670 1905728.050, 1176224.667	3761.0	39019.0	963.889387
3796	60654	2021- 08-01	1.586996e+07	17119.698877	POLYGON ((1176224.670 1905728.050, 1176227.120	2198.0	19135.0	1148.680429
3871	60632	2021- 08-01	2.117553e+08	63253.238669	POLYGON ((1158274.840 1881316.350, 1158294.680	13623.0	91039.0	1496.391656
3946	60623	2021- 08-01	1.552855e+08	53406.915617	POLYGON ((1158274.840 1881316.350, 1158257.320	11337.0	85979.0	1318.577792
4021	60629	2021- 08-01	2.111148e+08	58701.325375	POLYGON ((1161671.610 1855025.450, 1161672.220	17757.0	111850.0	1587.572642
4096	60620	2021- 08-01	2.116961e+08	58466.160298	POLYGON ((1177968.250 1841966.540, 1177926.720	5932.0	68096.0	871.123120
4172	60637	2021- 08-01	1.254243e+08	52377.854541	POLYGON ((1190513.200 1868834.400, 1190490.030	3883.0	47454.0	818.266110
4247	60619	2021- 08-01	1.678720e+08	53040.907078	POLYGON ((1188196.100 1852924.880, 1188196.210	5178.0	61258.0	845.277352

Below is my final testing sites geodataframe.

In [71]:

testingsitesgdf

Out[71]:		Facility	Phone	Address	Web Site	Location	buffered	
	0	Heartland Health Center - Edgewater	(773) 751- 7800	1300 W Devon Ave Chicago, IL 60660	https://www.heartlandhealthcenters.org/covid- 1	POINT (1166403.189 1942634.785)	POLYGON ((1169043.189 1942634.785, 1169030.477	(
	1	University of Chicago Hospital - Hyde Park	(773) 702- 2800	901 E 58th St Chicago, IL 60637	https://www.uchicagomedicine.org/patients- visi	POINT (1183231.010 1866746.946)	POLYGON ((1185871.010 1866746.946, 1185858.298	1

	Facility	Phone	Address	Web Site	Location	buffered	
2	Near North Health Service Corporation: Chicago	(773) 227- 8022	1734 W Chicago Ave Chicago, IL 60622	https://www.nearnorthhealth.org/	POINT (1164527.323 1905394.543)	POLYGON ((1167167.323 1905394.543, 1167154.611	
3	Aayu Clinics - Lakeview	(773) 227- 3669	1645 A W School St Chicago, IL 60657	https://www.aayuclinics.com/services-1	POINT (1164655.887 1921973.142)	POLYGON ((1167295.887 1921973.142, 1167283.175	(
4	Loretto Hospital	(773) 854- 5475	645 S Central Ave Chicago, IL 60644	https://www.lorettohospital.org/covid-19- testing/	POINT (1139191.328 1896475.545)	POLYGON ((1141831.328 1896475.545, 1141818.615	
•••	•••				•••	•••	
142	Lurie Children's Hospital	(312) 227- 5300	225 E Chicago Ave, IL 60611	https://www.luriechildrens.org/en/news- stories	POINT (1177937.863 1905767.195)	POLYGON ((1180577.863 1905767.195, 1180565.150	1
143	PCC Community Wellness Center - Salud	(773) 295- 3347	5359 W Fullerton Ave Chicago, IL 60639	https://www.pccwellness.org/covid-19?id=177	POINT (1140143.113 1915425.287)	POLYGON ((1142783.113 1915425.287, 1142770.401	,
144	PrimeCare - Northwest Health Center	(312) 633- 5841	1649 N Pulaski Rd Chicago, IL 60639	https://primecarehealth.org/northwest-health- c	POINT (1149453.628 1910853.567)	POLYGON ((1152093.628 1910853.567, 1152080.916	(
145	John H. Stroger, Jr. Cook County Hospital	(312) 864- 6000	1969 W Ogden Ave Chicago, IL 60612	https://cookcountyhealth.org/locations/john- h	POINT (1163307.419 1897094.229)	POLYGON ((1165947.419 1897094.229, 1165934.707	1
146	Mile Square Health Center UIC - Back of the Yards	(312) 996- 2000	4630 S Bishop St Chicago, IL 60609	https://hospital.uillinois.edu/patients-and-vi	POINT (1167454.161 1873852.019)	POLYGON ((1170094.161 1873852.019, 1170081.449	1

128 rows × 7 columns

Data Analysis

I pulled one testing site out of my testing sites geodataframe to try and complete my network analysis. I ultimately was unable to perform network analysis, but I kept the small sidewalk visualizations I made to give a glimpse into my process and to show the sidewalk data that I loaded into the notebook.

In [34]:

testingsitesgdf.loc[0]

```
Out[34]: Phone
                                                            (773) 751-7800
          Address
                                      1300 W Devon Ave Chicago, IL 60660
          Web Site
                     https://www.heartlandhealthcenters.org/covid-1...
                             POINT (1166403.189108892 1942634.785260455)
          Location
          Name: 0, dtype: object
In [35]:
          samplesite = gpd.GeoDataFrame(testingsitesgdf.loc[0])
          samplesite = samplesite.transpose()
          samplesite
                           Phone
                                       Address
                                                                             Web Site
                                                                                                Location
Out [35]:
                   Facility
                                                                                                  POINT
                            (773)
                                   1300 W Devon
                 Heartland
                                                https://www.heartlandhealthcenters.org/covid-
                                                                                      (1166403.189108892
          O Health Center -
                             751- Ave Chicago, IL
                 Edgewater
                            7800
                                                                                      1942634.785260455)
In [36]:
          samplesite = samplesite.set geometry("Location")
          samplesite = samplesite.set_crs('EPSG:3435')
          samplesite.plot()
          <AxesSubplot:>
Out[36]:
               le6
          2.025
          2.000
          1.975
          1.950
          1.925
          1.900
          1.875
          1.850
                    1.15
                           120
In [37]:
          samplesite.crs
          <Projected CRS: EPSG:3435>
Out[37]:
          Name: NAD83 / Illinois East (ftUS)
          Axis Info [cartesian]:
          - X[east]: Easting (US survey foot)
          - Y[north]: Northing (US survey foot)
          Area of Use:
          - name: United States (USA) - Illinois - counties of Boone; Champaign; Clark; Clay; Coles;
          Cook; Crawford; Cumberland; De Kalb; De Witt; Douglas; Du Page; Edgar; Edwards; Effingham;
          Fayette; Ford; Franklin; Gallatin; Grundy; Hamilton; Hardin; Iroquois; Jasper; Jefferson;
          Johnson; Kane; Kankakee; Kendall; La Salle; Lake; Lawrence; Livingston; Macon; Marion; Mas
          sac; McHenry; McLean; Moultrie; Piatt; Pope; Richland; Saline; Shelby; Vermilion; Wabash;
```

Wayne; White; Will; Williamson.

- method: Transverse Mercator Datum: North American Datum 1983

- Prime Meridian: Greenwich

Coordinate Operation:

- Ellipsoid: GRS 1980

- bounds: (-89.28, 37.06, -87.02, 42.5)

- name: SPCS83 Illinois East zone (US Survey feet)

```
In [38]: fig, ax = plt.subplots()
    ax.set_aspect('equal')
    ax.set_title('Sidewalks & Testing Sites')
    sidewalksgdf.plot(ax=ax, color='cornflowerblue', linewidth=1, zorder=0)
    #testingsitesgdf.plot(ax=ax, color='crimson', zorder=10, markersize=20)
    samplesite.plot(ax=ax, color='crimson', zorder=10, markersize=20)
    plt.show();
```


I tested a buffer on the sample site once I realized I would be unable to complete network analysis.

```
In [39]: samplesite["buffered"] = samplesite.buffer(2640)

In [40]: fig, ax = plt.subplots()
    ax.set_aspect('equal')
    ax.set_title('Sidewalks & Sample Site Buffer')
    sidewalksgdf.plot(ax=ax, color='cornflowerblue', linewidth=1, zorder=0)
    #testingsitesgdf.plot(ax=ax, color='crimson', zorder=10, markersize=20)
    samplesite["buffered"].plot(ax=ax, color='crimson', zorder=10, markersize=20)
    plt.show();
```


I decided to go with a half mile buffer for each testing site to get a sense of areas that have readily accessible testing sites.

```
In [41]:
    testingsitesgdf["buffered"] = testingsitesgdf.buffer(2640)
    buffered_sites = gpd.GeoDataFrame(data=testingsitesgdf, geometry=testingsitesgdf["buffered"]

In [42]:
    fig, ax = plt.subplots(figsize=(15, 10))
    ax.set_aspect('equal')
    ax.set_title('Cases per 10,000 & Testing Site Buffers')
    cumulativecasesgdf.plot(ax=ax, column="CasesPer10000", legend=True, cmap="OrRd", scheme="Normalizesgdf.plot(ax=ax, color='crimson', zorder=10, markersize=20)
    buffered_sites.plot(ax=ax, color='cornflowerblue', zorder=10, markersize=20)
    plt.show();
```


I then created 'near' and 'not near' layers based on the buffers and merged them together. That way, I have one layer with polygons that are near and not near testing sites. This layer will be used for ANOVA analysis.

```
In [43]:    near_sites = gpd.overlay(censustractsgdf, buffered_sites, how='intersection')
    not_near_sites = gpd.overlay(censustractsgdf, near_sites, how='difference')

In [44]:    near_sites["near_site"] = "Yes"
    not_near_sites["near_site"] = "No"

In [45]:    merged = near_sites.append(not_near_sites)

In [46]:    merged.plot(column="near_site", figsize=(15,10))

Out[46]:    <a href="AxesSubplot">AxesSubplot</a>:>
```


variable

near

not_near 0.590946

0.556351

```
anova table = sm.stats.anova lm(model)
          anova table
Out[50]:
                      df
                           sum_sq mean_sq
                                                       PR(>F)
          variable
                     1.0
                                    0.513134 5.094665
                                                     0.024119
                           0.513134
          Residual 1803.0 181.598055 0.100720
                                                 NaN
                                                         NaN
In [51]:
          near sites cases = gpd.overlay(cumulativecasesgdf, buffered sites, how='intersection')
          not near sites cases = gpd.overlay(cumulativecasesgdf, near sites, how='difference')
In [52]:
          near sites cases["near site"] = "Yes"
          not near sites cases["near site"] = "No"
In [53]:
          merged cases = near sites cases.append(not near sites cases)
In [54]:
          merged cases.plot(column="near_site", figsize=(15,10))
          <AxesSubplot:>
Out[54]:
              le6
          1.94
```


model = ols('value ~ variable', data=df melt).fit()

In [50]:

```
In [55]:
          near_site_cases_pctpoc = near_sites_cases["CasesPer10000"]
          not near site pctpoc cases = not near sites cases["CasesPer10000"]
          frame4 = {"near": near site cases pctpoc, "not near": not near site pctpoc cases}
          analysisdf cases = pd.DataFrame(frame4)
           df melt cases = pd.melt(analysisdf cases.reset index(), id vars=['index'], value vars=['ne
          df melt cases = df melt cases.drop("index", axis=1)
          df melt cases
Out[55]:
               variable
                              value
            0
                   near
                        1054.063011
            1
                        1030.060804
                   near
            2
                        1054.063011
                   near
            3
                   near
                       1030.060804
            4
                         870.309082
                  near
            ...
                        1318.577792
          645 not_near
                        1587.572642
          646 not_near
          647
               not_near
                          871.123120
          648
              not_near
                          818.266110
          649 not_near
                         845.277352
         650 rows × 2 columns
In [56]:
           averages cases = df melt cases.groupby('variable').mean()
          averages cases
Out[56]:
                         value
           variable
              near 1026.245390
          not_near 1029.456764
In [57]:
          model cases = ols('value ~ variable', data=df melt cases).fit()
          anova table cases = sm.stats.anova lm(model cases)
          anova table cases
Out[57]:
                     df
                                                              PR(>F)
                              sum_sq
                                          mean_sq
          variable
                     1.0 4.859926e+02
                                        485.992648 0.00959
                                                            0.922049
          Residual 327.0
                         1.657140e+07 50677.058446
                                                                NaN
```

Visualization

```
In [76]: cumulativecasesgdf.plot(column="CasesPer10000", figsize=(15,10), legend=True, edgecolor="%"
Out[76]: <AxesSubplot:>
```


In [60]: testingsitesgdf.plot(figsize=(15,10), legend=True)

Out[60]: <AxesSubplot:>


```
In [77]:
    fig, ax = plt.subplots(figsize=(15,10))
    ax.set_aspect('equal')
    ax.set_title('COVID Testing Sites & Cases Per 10,000 by Chicago Zip Code (as of 8/7/21)')
    cumulativecasesgdf.plot(ax=ax, column="CasesPer10000", legend=True, cmap="OrRd", scheme="Itestingsitesgdf.plot(ax=ax, marker='o', color='cornflowerblue', markersize=30)
    plt.show();
```

COVID₁Testing Sites & Cases Per 10,000 by Chicago Zip Code (as of 8/7/21)


```
In [62]:
    fig, ax = plt.subplots(figsize=(15,10))
    ax.set_aspect('equal')
    ax.set_title('COVID Testing Sites & Census Tracts by Percent POC')

censustractsgdf.plot(ax=ax, column="PctPOC", figsize=(20,15), legend=True, edgecolor="black cmap="RdPu", scheme="NaturalBreaks")

testingsitesgdf.plot(ax=ax, marker='o', color='cornflowerblue', markersize=40)

plt.show();
```



```
In [63]:
    fig, ax = plt.subplots(figsize=(15,10))
        ax.set_aspect('equal')
        ax.set_title('COVID Testing Sites Buffers & Census Tracts by Percent POC')
        censustractsgdf.plot(ax=ax, column="PctPOC", legend=True, edgecolor="black", cmap="RdPu",
        merged.plot(ax=ax, column="near_site", alpha=0.6, cmap="Pastell")
        plt.show();
```



```
In [64]:
    fig, ax = plt.subplots(figsize=(15,10))
        ax.set_aspect('equal')
        ax.set_title('COVID Testing Sites Buffers & Cases Per 10,000')
        cumulativecasesgdf.plot(ax=ax, column="CasesPer10000", legend=True, edgecolor="black", cmaterial column="cases.plot(ax=ax, column="near_site", alpha=0.6, cmap="Pastel1")
        plt.show();
```


Analysis and Results

Residual 1803.0 181.598055

```
In [65]:
            averages
Out[65]:
                         value
            variable
                     0.556351
               near
                     0.590946
           not_near
In [66]:
            anova table
Out[66]:
                         df
                               sum_sq mean_sq
                                                              PR(>F)
           variable
                        1.0
                               0.513134
                                         0.513134
                                                   5.094665
                                                             0.024119
```

My results indicate that the areas near Chicago's COVID-19 testing sites (within a half mile) are on average about 4% whiter than areas not near testing sites. This difference is small but statistically significant, with a

NaN

NaN

0.100720

```
In [67]:
           averages cases
Out[67]:
                          value
           variable
              near 1026.245390
           not_near 1029.456764
In [68]:
           anova table cases
Out[68]:
                      df
                                                            F
                                                                 PR(>F)
                               sum_sq
                                            mean_sq
           variable
                      1.0 4.859926e+02
                                          485.992648 0.00959
                                                               0.922049
                          1.657140e+07 50677.058446
           Residual 327.0
                                                          NaN
                                                                   NaN
```

I did not find any statistically significant difference between the COVID case rate near testing sites and not near testing sites. There was an average of just 3 more cases per 10,000 people in the "not near" group, and the p-value of 0.922 clearly indicates no relationship.

Conclusions

p-value of 0.024.

A large benefit of this project was the discovery of a statistically significant difference between racial breakdowns near and not near COVID testing sites. I found that areas with accessible testing sites are 4% whiter than areas without accessible testing. This finding is an example of the allocation of health resources being disparate along racial lines, which has of course contributed to disparate impacts of the pandemic.

Though I did not find a statistically significant difference between COVID case rates near and not near testing sites, this finding is not too surprising. It illustrates that, perhaps, Chicago did not purposely add testing sites to areas that had more COVID cases. That may be an area for future work for health officials in cities.

One large limitation of this project was the method of calculating what is "near" a testing site. I wanted to create service areas using network analysis, but the timescale of the project and available open source packages did not allow for this method. Instead, I used half-mile buffers. These buffers can still give us a sense of what is within walking distance, especially since Chicago's sidewalks are close to a uniform grid, but they do not fully encompass what it means for a location to be accessible. People may access COVID-19 testing by driving, biking, using public transportation, getting a ride from a friend, or (now that over the counter rapid tests are available) by ordering pharmacy delivery. I acknowledge this limitation of my analysis but still find it useful to investigate the physical locations of testing sites and the demographics of people who live near them.

Another limitation is the way that I measured COVID distribution across Chicago. The most granular data available was at the zip code level, and it would have been helpful to have data at the Census tract level, especially to stay consistent with my demographic data. Additionally, I chose to use the measure of cumulative cases for each zip code and create a measure of cases-to-date per 10,000. This measure does not reflect fluctuations throughout the pandemic or movements of testing sites throughout the city. It is, however, a snapshot of the cumulative impact of COVID throughout the city.

References

Benitez, J., Courtemanche, C. & Yelowitz, A. (2020). Racial and Ethnic Disparities in COVID-19: Evidence from Six Large Cities. J Econ Race Policy 3, 243–261. https://doi.org/10.1007/s41996-020-00068-9.

Nelson, R., Madron, J., Ayers, N., Winling, L., Marciano, R., Jansen, G., Lee, M., Shah, S., Kending, M. & Connolly, N. D. B. Mapping Inequality: Redlining in New Deal America. University of Richmond's Digital Scholarship Lab. https://dsl.richmond.edu/panorama/redlining/#loc=5/39.1/-94.58.

Onésimo Sandoval, J. S. (2011). Neighborhood Diversity and Segregation in the Chicago Metropolitan Region, 1980-2000. Urban Geography, 32(5), 609-640. https://doi.org/10.2747/0272-3638.32.5.609.