Precalcolo

SUPSI Dipartimento Tecnologie Innovative

Gianni Grasso

26 ottobre 2024

Classe: I1B

Anno scolastico: 2024/2025

Indice

1	Fun	zioni
	1.1	Introduzione
		1.1.1 Esempi
	1.2	Dominio
		1.2.1 Esempi
	1.3	Insieme immagini
		1.3.1 Esempi
	1.4	Grafico di una funzione
	1.5	Operazioni con le funzioni
		1.5.1 Somma - Sottrazione
		1.5.2 Prodotto
		1.5.3 Divisione
		1.5.4 Composizione di funzioni
	1.6	Funzione inversa
		1.6.1 Definizioni
		1.6.2 Proprietà
	1.7	Funzioni elementari
		1.7.1 La funzione affine
		1.7.2 La funzione valore assoluto
		1.7.3 Funzioni quadratiche
		1.7.4 La funzione polinomiale
		1.7.5 La funzione razionale fratta
		1.7.6 Funzioni esponenziali e logaritmiche

1 Funzioni

1.1 Introduzione

Una funzione f è una legge che associa ad ogni elemento x di un insieme di partenza A un **unico** elemento y di un insieme di arrivo B.

x è detto elemento di A associato a y, elemento di B.

1.1.1 Esempi

1.

$$\begin{split} f: \mathbb{R} &\longrightarrow \mathbb{R} \\ x &\longmapsto y = 3x - 2 \\ x &= 5 \Rightarrow y = 3 \cdot 5 - 2 = 13 \\ &\Rightarrow f \text{ è una funzione} \end{split}$$

2.

$$\begin{split} f: \mathbb{R} &\longrightarrow \mathbb{R} \\ x &\longmapsto y = \sqrt{x} \\ x &= 4 \Rightarrow y = \sqrt{4} = 2 \\ x &= -4 \Rightarrow y = \sqrt{-4} \\ \sqrt{-4} \text{ non esiste in } \mathbb{R} \\ &\Rightarrow f \text{ non è una funzione} \end{split}$$

3.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto y = \pm x^2$$

$$x = 3 \Rightarrow y = \pm 3^2 = \pm 9$$

$$x = +9$$

$$x = -9$$

L'argomento possiede due immagini, f non è una funzione

1.2 Dominio

Sia f una funzione. Il suo dominio D(f) è l'insieme di tutti gli elementi x per i quali f(x) è ben definita.

1.2.1 Esempi

1.

$$f:D(f)\to\mathbb{R}$$

$$x\mapsto f(x)=1/x$$

$$D(f)=\mathbb{R}\backslash\{0\}$$

2.

$$f:D(f)\to\mathbb{R}$$

$$x\mapsto y=\sqrt{x+2}\Rightarrow D(f)=[-2;+\infty[$$

3.

$$f:D(f)\to\mathbb{R}$$

$$x\mapsto\frac{1}{\sqrt{x+2}}\Rightarrow D(f)=]-2;+\infty[$$

4.

$$f: D(f) \to \mathbb{R}$$

 $x \mapsto y = 3x - 1 \Rightarrow D(f) = \mathbb{R}$

Nota: il dominio è l'insieme di partenza più grande possibile, per trovarlo occorre innanzitutto analizzare le limitazioni della funzione, escludere i valori non validi e riportare l'insieme più grande possibile che non comprenda quei valori.

1.3 Insieme immagini

Sia $f:A\to B$ una funzione. Il suo insieme delle immagini è definito come segue:

$$Im(f) = \{ y = f(x) | x \in A \}$$

Generalmente x indica gli argomenti e y le immagini, nello schema visto nell'introduzione B rappresenta l'insieme delle immagini. Tutti gli elementi di A sono associati ad un elemento di B, ma non per forza viceversa.

1.3.1 Esempi

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto y = 3x - 1$$
$$\Rightarrow Im(f) = \mathbb{R}$$

In questo caso per trovare Im guardiamo il grafico.

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x^2 - 2$$

$$\Rightarrow Im(g) = [-2; +\infty[$$

$$= [y_v; +\infty[$$

In questo caso trattandosi di una **parabola**, per determinare Im(g) guardiamo il vertice.

Nota: Non esiste una ricetta o una procedura precisa per trovare l'Im di una funzione, non è come per il dominio.

1.4 Grafico di una funzione

Sia $f:A\to B$ una funzione. Il suo grafico G(f) è l'insieme dei punti

$$G(f) = \{(a; f(a)) | a \in A\}$$

 $(a;b)\in G(f)\Leftrightarrow b=f(a),$ Un punto appartiene al grafico se e solo se b=f(a)

Osservazione:

Questo grafico non rappresenta una funzione, per alcuni argomenti ci sono più immagini.

1.5 Operazioni con le funzioni

1.5.1 Somma - Sottrazione

Esempio:

$$f(x) = \sqrt{x+1} \Rightarrow D(f) = [-1; +\infty[$$

$$g(x) = \frac{1}{x} \Rightarrow D(g) = \mathbb{R} \setminus \{0\}$$

$$(f \pm g)(x) = \sqrt{x+1} \pm \frac{1}{x}$$

$$\Rightarrow D(f+g) = [-1; +\infty[\setminus \{0\}]$$

$$= D(f) \cap D(g)$$

$$f \qquad 0$$

$$g \qquad 0$$

$$f \pm g \qquad 0$$

In generale

$$(f \pm g)(x) = f(x) \pm g(x)$$
$$D(f \pm g) = D(f) \cap D(g)$$

1.5.2 Prodotto

Esempio:

$$f(x) = \sqrt{x+1} \Rightarrow D(f) = [-1; +\infty[$$

$$g(x) = x \Rightarrow D(g) = \mathbb{R}$$

$$\Rightarrow (f \cdot g)(x) = x \cdot \sqrt{x+1}$$

$$\Rightarrow D(f \cdot g) = [-1; +\infty[$$

In generale

$$(f \cdot g)(x) = f(x) \cdot g(x)$$
$$D(f \cdot g) = D(f) \cap D(g)$$

1.5.3 Divisione

Esempio:

$$f(x) = \frac{1}{x} \Rightarrow D(f) = \mathbb{R}^*$$

$$g(x) = \sqrt{x+2} \Rightarrow D(g) = [-2; +\infty[$$

$$\Rightarrow \frac{f}{g}(x) = \frac{1/x}{\sqrt{x+2}} = \frac{1}{x \cdot \sqrt{x+2}}$$

$$D(\frac{f}{g}) =]-2; +\infty[\setminus\{0\}$$

Nota: Il dominio non è dato solo dall'intersezione, nell'esempio sopra va anche escluso il -2 che non si può dividere per 0.

In generale

$$\begin{split} &(\frac{f}{g})(x) = &\frac{f(x)}{g(x)} \\ &D(\frac{f}{g}) = &D(f) \cap D(g) \backslash \{x \in D(g) | g(x) = 0\} \end{split}$$

1.5.4 Composizione di funzioni

Esempio:

$$\begin{split} f(x) = & \sqrt{x} & \Rightarrow D(f) = [0; +\infty[\\ g(x) = & x+1 & \Rightarrow D(g) = \mathbb{R} \\ \Rightarrow & (f \circ g)(x) = & f(g(x)) = f(x+1) = \sqrt{x+1} \\ & D(f \circ g) = & [-1; +\infty[\end{cases} \end{split}$$

Nota: Non c'è un modo per calolare il dominio senza conoscere le due funzioni, l'unico indizio che abbiamo è che questo dominio deve essere incluso in D(g).

In generale date due funzioni

$$f: B \longrightarrow C$$
$$g: A \longrightarrow B$$

la funzione

$$\begin{split} f\circ g: A &\longrightarrow C \\ x &\longrightarrow (f\circ g)(x) = f(g(x)) \end{split}$$

è detta composizione di f con g (f composto g).

Nota: In generale $f\circ g\neq g\circ f$, la composizione di funzioni non è commutativa.

1.6 Funzione inversa

Sia $f:A\to B$ una funzione

Ci chiediamo se esiste una funzione $g: B \longrightarrow A$ che fa "il contrario" di f, in questo caso g è detta **funzione inversa** di f.

1.6.1 Definizioni

- Una funzione $f:A\longrightarrow B$ è detta **iniettiva** se

$$f(x_1) \neq f(x_2) \forall x_1 \neq x_2 \in A$$

Nota: una funzione può sempre essere resa iniettiva restringendo l'insieme di partenza.

 $f(x_1) = f(x_2) = f(x_3)$, questa funzione **non** è iniettiva.

Nota: una funzione è iniettiva se il suo grafico tocca al massimo ina volta qualsiasi retta orizzontale, altrimenti significa che elementi diversi di A hanno la stessa immagine in B.

• Una funzione $f:A\longrightarrow B$ è detta suriettiva se

$$B = Im(f)$$

Nota: una funzione può sempre essere resa usriettiva restringendo l'insieme d'arrivo dell'insieme immagini.

Ci sono delle y non definite, questa funzione ${\bf non}$ è iniettiva

• Una funzione $f:A\longrightarrow B$ è detta **biettiva** se è sia iniettiva che suriettiva. In questo caso possiamo definire $g:B\longrightarrow A$ come segue:

$$g(x) = y \Leftrightarrow f(y) = x$$

La funzione

$$id: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto id(x) = x$

è detta funzione identità ed è l'elemento neutro della composizione di funzioni.

Nota:

$$(f \circ id)(x) = f(id(x)) = f(x)$$
$$(id \circ f)(x) = id(f(x)) = f(x)$$

Sia $f:A\longrightarrow B$ una funzione. Se esiste una funzione $g:B\longrightarrow A$ tale che $f\circ g=id$ e $g\circ f=id$ allora g è detta **inversa** di f e scriviamo $g=f^{-1}$.

1.6.2 Proprietà

Il dominio di una funzione diventa l'insieme immagini della sua funzione inversa, viceversa l'insieme delle immagini di una funzione diventa il dominio della sua funzione inversa:

$$\begin{array}{c} f:D(f)\longrightarrow \!\! Im(f) \\ f^{-1}:Im(f)\longrightarrow \!\! D(f) \end{array}$$

e quindi

$$D(f^{-1}) = Im(f)$$

$$Im(f^{-1}) = D(f)$$

Alcune proprietà sulla composizione di funzioni e sulla funzione inversa:

- $f \circ g \neq g \circ f$
- $(f \circ g) \circ h = f \circ (g \circ h)$
- $f \circ f^{-1} = id, f^{-1} \circ f = id$
- $(f \circ g)^{-1} = f^{-1} \circ g^{-1}$

1.7 Funzioni elementari

1.7.1 La funzione affine

Una funzione

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto y = mx + q$$

è detta funzione affine.

- m è detta pendenza (o coefficiente angolare)
 - $m = \frac{\Delta y}{\Delta x} = \frac{y_B y_A}{x_B x_A}$
 - Determina la pendenza se m>0 sarà positiva, se m<0 sarà negativa
- q è detta ordinata all'origine (f(0) = q)
 - Se q=0, f è detta funzione lineare
- $D(f) = \mathbb{R}$
- $Im(f) = \mathbb{R}$, se $m \neq 0$
- $Im(f) = \{q\}, \text{ se } m = 0$

Intersezioni con gli assi:

- \cap asse y: (0;q)
- \cap asse x(zeri): y = 0 mx + q = 0
 - Caso 1: $m \neq 0$ $x = -\frac{q}{m}$, un solo zero $(-\frac{q}{m}; 0)$
 - Caso 2: m=0 e $q \neq 0$ $0 \cdot x = -q$, nessuno zero
 - Caso 3: m=0 e q=0 $0 \cdot x=0$, ogni punto $(x;0), x \in \mathbb{R}$ è uno zero

Condizioni di parallelismo e perpendicolarità:

- Due rette di funzione affine sono parallele (f//g) se e solo se $m_f=m_g$
- Sono invece perpendicolari $(f \perp g)$ se e solo se $m_f \cdot m_g = -1$ e quindi $m_g = -\frac{1}{m_f}$

1.7.2 La funzione valore assoluto

La funzione valore assoluto è definita come segue:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto y = |x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

- $D(f) = \mathbb{R}$
- $Im(f) = \mathbb{R}_+$

1.7.3 Funzioni quadratiche

Una funzione

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto y = ax^2 + bx + c$$

dove $a \neq 0, b, c \in \mathbb{R}$ è detta funzione quadratica.

- a definisce il "verso" della parabola, se a>0 sorride, se a<0 è triste
- c definisce l'intersezione con l'asse $y, I_y = (0; c)$
 - se b = 0 corrisponde al vertice
- b è il punto sulla quale "ruota" la parabola
 - se c=0 il vertice è definito come $V(x_v; f(x_v)) = (-\frac{b}{2a}; f(-\frac{b}{2a}))$

In generale per trovare il vertice di una parabola vale:

$$V = (-\frac{b}{2a}; f(-\frac{b}{2a})) = (-\frac{b}{2a}; \frac{\Delta}{4a})$$

dove ovviamente

$$\Delta = 4ac - b^2$$

Si può inoltre dimostrare che per una parabola $f(x) = ax^2 + bx + c$ con vertice $V(x_v; y_v)$ vale

$$f(x) = a(x - x_v)^2 + y_v$$

Per trovare gli zeri di una parabola possiamo usare

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Inoltre Δ determina il numero di soluzioni di una parabola:

- se $\Delta>0$ l'equazione ha due soluzioni reali distinte
- se $\Delta = 0$ l'equazione ha come unica soluzione il punto x_v e il vertice sarà $V = (x_v; 0)$
- se $\Delta < 0$ l'equazione non ha soluzioni in \mathbb{R} , la parabola non interseca l'asse x

Se $\Delta x \geq 0$ allora

- $x_1 + x_2 = -\frac{b}{a}$
- $x_1 \cdot x_2 = \frac{c}{a}$
- $ax^2 + bx + c = a(x x_1)(x x_2)$

1.7.4 La funzione polinomiale

Una funzione

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto y = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

dove

$$n \in \mathbb{N}, c_0, c_1, ..., c_n \in \mathbb{R}, c_n \neq 0$$

è detta funzione polinomiale.

Nota: l'indice n è detto grado di f.

Il grafico delle funzioni polinomiali è così rappresentato:

Inoltre se consideriamo ad esempio:

$$f(x) = (x+3)(x+1)^{2}(x-1)^{3}(x-3)^{4}$$

Con zeri: (-3;0), (-1;0), (1;0), (3;0)

- Se $(x-x_0)^n$ ha n dispari la funzione **attraverserà** il punto
- Se $(x-x_0)^n$ ha n pari la funzione **toccherà** il punto e tornerà indietro

Operazioni con i polinomi

Somma-Differenza Esempi:

$$(2x^3 + 3x - 2) + (3x^3 + 2x^2 - x + 3)$$

= $5x^3 + 2x^2 + 2x + 1$

$$(2x^3 + 3x - 2) - (3x^3 + 2x^2 - x + 3)$$

= $-x^3 - 2x^2 + 4x - 5$

Nota: $grado(f \pm g) = max(grado(f); grado(g))$

Prodotto Esempio:

$$(2x^3 + x - 1) \cdot (3x^2 - 2x + 4)$$

$$= 6x^5 - 4x^4 + 8x^3 + 3x^3 - 2x^2 + 4x - 3x^2 + 2x - 4$$

$$= 6x^5 - 4x^4 + 11x^3 - 5x^2 + 6x - 4$$

Nota: $grado(f \cdot g) = grado(f) + grado(g)$

Divisione Esempio:

• $N(x) = 14x^3 - 29x^2 - 5$

• $D(x) = 2x^2 - 3x + 1$

• N(x): D(x) = ?

$$N(x) = 14x^{-3} - 29x^{-2} + 0x - 5$$
 $-7x \cdot D(x) = -14x^{-3} + 21x^{-2} - 7x$
 $-7x \cdot D(x) = -14x^{-3} + 21x^{-2} - 7x$
 $-7x \cdot D(x) = -14x^{-3} + 21x^{-2} - 7x$
 $-7x \cdot D(x) = -14x^{-3} + 21x^{-2} - 7x$

Step 1: quante volte ci sta $2x^{-2}$ in $14x^{-3}$
 $-7x - 4$

Quoziente $Q(x)$

Step 2: sottrazione in colonna

 $-19x - 1$

Resto $R(x)$

Step 4 sottrazione in colonna

Il risultato si scrive

$$N(x) = (7x - 4) \cdot D(x) - 19x - 1$$

oppure

$$\frac{N(x)}{D(x)} = 7x - 4 + \frac{-19x - 1}{D(x)}$$

1.7.5 La funzione razionale fratta

Una funzione

$$f:D(f)\longrightarrow Im(f)$$

$$x\longmapsto f(x)=\frac{N(x)}{D(x)}$$

dove N(x) e D(x) sono polinomi, è detta funzione razionale fratta.

- Se grado(N(x)) < grado(D(x)), la frazione $\frac{N(x)}{D(x)}$ è detta **propria**
- Se $grado(N(x)) \ge grado(D(x))$, la frazione $\frac{N(x)}{D(x)}$ è detta **impropria** In questo caso possiamo eseguire una divisione polinomiale **Nota:** ricorda che:

$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$

Funzione omografica L'esempio più semplice di funzione razionale fratta è la funzione omografica. Una funzione

$$f: D(f) \longrightarrow Im(f)$$

 $x \longmapsto f(x) = \frac{ax+b}{cx+d}$

dove $a, b, c, d \in \mathbb{R}$ e $c \neq 0$ è detta funzione omografica. Il grafico di una funzione di questo tipo è detto **iperbole**.

Nota: se $c = 0 \Rightarrow f(x) = \frac{ax+b}{d} = \frac{a}{d}x + \frac{b}{d}$ (è una retta).

In generale se $f(x) = \frac{ax+b}{cx+d}$

• *D*(*f*):

$$cx+d\neq 0$$

$$D(f)=\mathbb{R}\backslash\{-\frac{d}{c}\}$$

$$\Rightarrow \text{La retta } x=-\frac{d}{c} \text{ è un asintoto verticale}.$$

• Im(f):

$$Im(f) = D(f^{-1}) = \mathbb{R} \setminus \{\frac{a}{c}\}$$

• \cap asse x:

Altri esempi di funzioni razionali fratte Esempio 1

$$f(x) = \frac{x^2 + xb}{x - 4}$$

Dominio

$$D(f) = \mathbb{R} \backslash \{4\}$$

 \bigcap asse y

$$f(0) = \frac{0^2 + 0 - 6}{0 - 4} = \frac{3}{2} \Rightarrow Iy(0; \frac{3}{2})$$

 \bigcap asse x (zeri)

$$f(x) = 0$$

$$\frac{x^2 + x - 6}{x - 4} = 0$$

$$x^2 + x - 6 = 0(x \neq 4)$$

$$(x + 3)(x - 2) = 0$$

$$x = -3 \lor x = 2$$

$$\Rightarrow Ix_1(-3; 0), Ix_2(2; 0)$$

Tabella dei segni, eventuali asintoti verticali

Divisione polinomiale, eventuali asintoti orizzonatli e obliqui

$$f(x) = \frac{x^2 + x - 6}{x - 4}$$
 è una frazione impropria

 $\Rightarrow \! \mathrm{possiamo}$ eseguire la divisione polinomiale

$$\Rightarrow \frac{x^2 + x - 6}{x - 4} = x + 5 + \frac{14}{x - 4}$$

$$\Rightarrow \frac{x^2 + x - 6}{x - 4} \simeq x + 5 \text{ per "x grande"}$$

$$\Rightarrow y = x + 5 \text{ è un asintoto obliquo}$$

Nota: $\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$

Grafico

Osservazione sugli asintoti orizzontali e obliqui:

$$\begin{split} f(x) &= \frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)} \\ grado(R(x)) &< grado(D(x)) \\ &\Rightarrow \frac{R(x)}{D(x)} \approxeq 0 \text{"per x grande"} \\ &\Rightarrow f(x) = \frac{N(x)}{D(x)} \approxeq Q(x) \text{"per x grande"} \end{split}$$

- Caso 1: Q(x) = 0 $(\frac{N(x)}{D(x)}$ è una funzione propria) $\Rightarrow y = 0$ è un A.O.R
- Caso 2: $Q(x) = Q \in \mathbb{R}$ $(N(x) \in D(x)$ hanno lo stesso grado) $\Rightarrow y = Q$ è un A.O.R
- Caso 3: Q(x) = mx + q $\Rightarrow y = mx + q$ è un A.O.B
- Caso 4: $grado(Q(x)) \ge 2$ \Rightarrow Nessun A.O.R, A.O.B

Disequazioni In generale per ogni disequazione

1. Scriviamo la disequazione nella forma

$$f(x) \ge 0$$

$$>$$

$$<$$

$$\leq$$

- 2. Completiamo la tabella dei segni di f(x)
- 3. Indichiamo l'insieme delle soluzioni

Equazioni fratte

$$\frac{2x-1}{x^2+5x+6} = \frac{3}{x^2+x-2}$$
 ...
$$\frac{2(x-4)(x+1)}{(x+2)(x-3)(x-1)} = 0 \quad \text{V.E } x \in \{-2;3;1\}$$

$$2(x-4)(x+1) = 0$$

$$x = 4 \lor x = -1 \quad \text{Entrambi validi}$$

$$\Rightarrow S = \{4;-1\}$$

In generale, per ogni equazione fratta

1. Scriviamo l'equazione nella forma

$$\frac{N(x)}{D(x)} = 0$$

2. Indichiamo le condizioni di esistenza (valori eccezionali)

$$D(x) \neq 0$$

- 3. Risolviamo l'equazione N(x) = 0
- 4. Verifichiamo se le soluzioni soddisfano le condizioni di esistenza e indichiamo l'insieme delle soluzioni

1.7.6 Funzioni esponenziali e logaritmiche

Sia a>0 e $a\neq 1$. La funzione

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = a^x$$

è detta funzione esponenziale.

Il valore di a è detto <u>base</u>.

Nota: perchè a > 0 e $a \neq 1$?

- $a=1 \Rightarrow 1^x=1$
- $a < 0 \Rightarrow a = (-2) \Rightarrow (-2)^{\frac{1}{2}} = \sqrt{2}$ Non esiste in \mathbb{R}

In generale

$$\begin{split} D(f) = & \mathbb{R} \\ Im(f) = &]0; + \infty[\\ f(0) = & a^0 = 1 \Rightarrow I_y(0;1) & \bigcap \text{ asse } y \\ & \text{Non ci sono zeri} \\ y = & 0 \text{ (asse } x) \text{ è un A.O.} \end{split}$$

Per a>1

$$y = 0$$
 A.O. per $x \to -\infty$

Per 0 < a < 1

$$y = 0$$
 A.O. per $x \to +\infty$

In entrambi i casi $f:\mathbb{R}\longrightarrow]0;+\infty[$ è biettiva e quindi <u>invertibile</u>.

La funzione inversa

$$\begin{split} f^{-1} &= \log_a: \qquad]0; +\infty [\longrightarrow \mathbb{R} \\ & x \longmapsto y = \log_a(x) \end{split}$$

è detta funzione logaritmica.

Nota: $\log_a = \text{logaritmo in base } a$.

Grafico e proprietà di log

$$\begin{split} D(\log_a) = &]0; +\infty[\\ Im(\log_a) = &\mathbb{R}\\ \log_a(1) = &0 \quad a^0 = 1\\ \Rightarrow & \mathsf{zero:}\ (1;0)\\ 0 \in D(\log_a) \Rightarrow \quad \text{Nessuna ordinata all'origine}\\ x = &0 \ (\mathsf{asse}\ y) \ \grave{\mathsf{e}}\ \mathsf{un}\ \mathsf{A.V}\ (\mathsf{destro}) \end{split}$$

Ricordiamo che

$$\begin{split} \log_a(x) = & y \Leftrightarrow a^y = x, a > 0, a \neq 1 \\ & x > 0 \\ & y \in \mathbb{R} \end{split}$$

Altre proprietà fondamentali dei logaritmi

$$1. \ \log_a(1) = 0 \Leftrightarrow a^0 = 1$$

2.
$$\log_a(a) = 1 \Leftrightarrow a^1 = a$$

3.
$$\log_a(a^x) = x \Leftrightarrow a^x = a^x$$

4.
$$a^{\log_a(x)} = a^z = x$$
 $\log_a(x) = z \Leftrightarrow a^z = x$

5.
$$\log_a(x) + \log_a(y) = \log_a(x \cdot y)$$

6.
$$\log_a(x) - \log_a(y) = \log_a(\frac{x}{y})$$

7.
$$\log_a(\frac{1}{x}) = -\log_a(x)$$

8.
$$\log_a(x^n) = n \cdot \log_a(x)$$