Math 775: Homework 6

Alex Dewey

May 11, 2016

1 Notes

2. Input Data 6.2. 2.13.

2 Exercises

We observe independent Bernoulli variables X_i which depend on draws from unobservable normal variables $Z_i \sim N(\zeta, \sigma^2) - X_i = 1 \iff Z_i > u$ for some known u. We're interested in MLEs for ζ and σ^2 .

Exercise 1.

a. The likelihood is $p^S(1-p)^{n-S}$ pretty much by construction. We draw exchangeable pairs $X_i=1$ $Z_i>u$ with probability equal to a standard normal draw from $p=P(Y(\sim N(0,1))>\frac{u-\zeta}{\sigma})$ and $S=\sum X_i$ is just the natural sufficient statistic for this process.

b. If we consider z_i to be the complete data, then we're drawing n IID values from $N(\zeta, \sigma^2)$.

The form

$$\prod \frac{1}{\sqrt{2\pi}\sigma} \exp{-\frac{1}{2\sigma^2}(z_i - \zeta)^2}$$

is just the product of those n independent distributions.

To get the log-likelihood we just take the logarithm of the above:

$$\log(p(z_i|x_i,\zeta,\sigma^2)) = \log\frac{1}{(\sqrt{2\pi}\sigma)^n} + -\frac{1}{2\sigma^2}\sum_i(z_i-\zeta)^2 = -\frac{n}{2}\log\frac{1}{2\pi\sigma^2} + -\frac{1}{2\sigma^2}\sum_i(z_i^2 - 2\zeta z_i + \zeta^2)$$

Since we're interested in the log-likelihood given only the observed variables x_i , we get the expected log-likelihood by replacing z_i, z_i^2 in the above with $E[z_i|x_i], E[z_i^2|x_i]$

c. We've already done the expectation step, now we need to do the maximization step by taking derivatives and finding the posterior mode for ζ, σ^2 . ζ is easier to start with.

$$\frac{d}{d\zeta}E[\log(p(z_i|x_i,\zeta,\sigma^2))] = -\frac{1}{2\sigma^2}\sum(2E[z_i|x,\zeta,\sigma^2] - 2\zeta)$$

Setting this equal to zero yields $\hat{\zeta} = E[z_i|X,\zeta,\sigma^2]$.

$$\frac{d}{d\sigma^2} E[\log(p(z_i|x_i,\zeta,\sigma^2))] = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i} (E[z_i^2|x,\zeta,\sigma^2] - 2\zeta E[z_i|x,\zeta,\sigma^2] + \zeta^2)$$

Now, for σ we use the mode for $\hat{\zeta}$ to simplify the quadratic expression to $E[z_i^2|x,\zeta,\sigma^2]-E[z_i|x,\zeta,\sigma^2]^2$. Setting this equal to zero, and rearranging:

$$\frac{n}{\sigma^2} = \frac{1}{(\sigma^2)^2} \sum (E[z_i^2 | x, \zeta, \sigma^2] - E[z_i | x, \zeta, \sigma^2]^2)$$
$$n\sigma^2 = \sum (E[z_i^2 | x, \zeta, \sigma^2] - E[z_i | x, \zeta, \sigma^2]^2)$$

We get

$$\hat{\sigma^2} = \frac{1}{n} \left[\sum E[z_i^2 | x, \zeta, \sigma^2] - \frac{1}{n} \sum [z_i | x, \zeta, \sigma^2]^2) \right]$$

through simple manipulations of the interior. This is the maximization step, so this completes the algorithm.

d. First note that the function $H_i(t) = \frac{\psi(t)}{1-\phi(t)}$ if $X_i = 1$, and $H_i(t) = -\frac{\psi(t)}{\phi(t)}$ if $X_i = 0$.

is just a censored normal above and below the standardized score $t = \frac{u-\zeta}{\sigma}$. So it represents the two possible expected values that Z_i can take on when we know (because we know the value of x_i) that Z_i is either above or below u, and we have no other information, so all we can do is take the expected value for a given draw from the left- or right-truncated normal.

This is made much more obvious

$$E[z_i|x,\zeta,\sigma^2] = \zeta + \sigma H_i(\frac{u-\zeta}{\sigma})$$

simply if it's written as:

$$\frac{E[z_i|x,\zeta,\sigma^2]-\zeta}{\sigma}=H_i(\frac{u-\zeta}{\sigma})$$

As for:

$$E[z_i^2|x,\zeta,\sigma^2] = \zeta^2 + \sigma^2 + \sigma(u+\zeta)H_i(\frac{u-\zeta}{\sigma})$$

We're interested in the expectation of Z_i^2 over the truncated left- or right-normal.

This is a common distribution but normal integrals are notoriously difficult to integrate analytically (it's just integration by parts), so I looked up the variance for a right-truncated normal distribution to demonstrate that the above is right. $t = \frac{u-\zeta}{\sigma}$ for space constraints.

The expectation is

$$E(Z|Z_i < u) = \zeta - \sigma \frac{\psi(t)}{\phi(t)}$$

and the variance is

$$Var(Z|Z_i < u) = \sigma^2 (1 - t \frac{\psi(t)}{\phi(t)} - (\frac{\psi(t)}{\phi(t)})^2$$

$$E[Z^2] = Var[Z] + E[Z]^2.$$

$$E(Z^{2}|Z_{i} < u) = \zeta^{2} - 2\zeta\sigma\frac{\psi(t)}{\phi(t)} + \sigma^{2}\frac{\psi(t)}{\phi(t)}^{2} + \sigma^{2}[1 - t\frac{\psi(t)}{\phi(t)} - (\frac{\psi(t)}{\phi(t)})^{2}] =$$

$$\zeta^{2} - 2\zeta\sigma\frac{\psi(t)}{\phi(t)} + \sigma^{2} - \sigma^{2}\frac{u - \zeta}{\sigma}\frac{\psi(t)}{\phi(t)} = \zeta^{2} + 2\zeta\sigma h(t) + \sigma^{2} + \sigma(u - \zeta)h(t) =$$

$$\zeta^{2} + \zeta\sigma h(t) + \sigma^{2} + \sigma u h(t) = \zeta^{2} + \sigma^{2} + \sigma(\zeta + u)h(t)$$

e. By Theorem 5.3.5 in (Robert/Casella, 1999, pp. 215), we know that as long as our expected complete data-likelihood $Q(\theta|\theta_0, x)$ is continuous in our prior $\zeta_0 \sigma_0$ and our parameters ζ, σ , "every limit point of an EM sequence" is a stationary point of $L(\theta|x)$.

Robert/Casella have a neat proof which analytically computes the iterative steps, but in this case, it suffices to note Theorem 5.3.5 and that every stationary point is an MLE in this model.

Proof: The Z_i are normal and IID so we're effectively computing a linear regression on with spherical errors Z_i . Takeaway: One or more MLEs for $(\hat{\zeta}, \hat{\sigma}^2)$ are guaranteed to exist, so it's a well-defined question to ask if they will converge to one of these MLEs.

Furthermore: If a point $(\hat{\zeta}, \hat{\sigma}^2)$ is a fixed point after iterating in part (c.), then it also satisfies the ordinary least squares equations for those parameters, and so it is an MLE.

Finally: If a point is not stationary after the iteration in part (c), Theorem 5.3.5 guarantees that it will converge to a fixed point (which by the argument in the above paragraph) is an MLE.