

Object Detection

Viola-Jones Detector

Lecture presented by Amirhossein Dadashzadeh

Object Detection Techniques

- Line and circle detection: Techniques like the Hough Transform can be used to detect lines and circles in an image, which can indirectly help locate objects with specific geometric shapes.
- Colour-based detection: In some cases, objects can be detected based on their colour properties. This is especially useful when objects have distinct and consistent colors.
- Template matching: Using sliding a template over the input image and finding regions where the template best matches the local image content.
- Classifiers with sliding window detectors: Applying image classification on overlapped patches in the image.
- Deep learning-based object detectors: Object detector automatically learns image features required for detection tasks, and instance segmentation.

(out of scope in this unit)

Classifiers with sliding window detectors

- Example Algorithm: Viola & Jones' Real-time Method
 - Sliding Window Detectors
 - Haar-like Features
 - Feature Extraction and Integral Images
 - Weak Classifiers
 - Boosting and Classifier Evaluation
 - Cascades of Boosted Classifiers

Best description of full details available in consolidated paper by Viola and Jones, International Journal of Computer Vision, 2004

Haar-like Features

Viola & Jones' (2001)

feature = sum of white pixels – sum of black pixels

filter 1

-1	-1	1	1
-1	-1	1	1
-1	-1	1	1
-1	-1	1	1

hard edge feature1 = 2040

<u> 1e</u>	alure	; - 2	<u> 2040 </u>
0	0	255	255
0	0	255	255
0	0	255	255
0	0	255	255

soft edge feature1 = 1245

		4101 1210						
20	120	220	230					
25	125	205	225					
25	105	220	234					
24	110	215	250					

no edge feature1 = 17

218	230	220	230
200	230	205	225
220	234	220	244
210	250	215	250

Haar-like Features

Integral Images

$$\mathbf{II}(-1, y) = 0; \qquad \mathbf{I}$$

$$\mathbf{II}(x,y) = \mathbf{II}(x-1,y) + A(x,y);$$

$$A(x,-1) = 0;$$

$$A(x,y) = A(x,y-1) + \mathbf{I}(x,y).$$

x=0, y=0:
$$A(0,0) = A(0,-1) + I(0,0) = 0 + 1 = 1$$

 $II(0,0) = II(-1,0) + A(0,0) = 0 + 1 = 1$

x=0, y=1:
$$A(0,1) = A(0,0) + I(0,1) = 1 + 1 = 2$$

 $II(0,1) = II(-1,1) + A(0,1) = 0 + 2 = 2$

x=1, **y=0**:
$$A(1,0) = A(1,-1) + I(1,0) = 0 + 1 = 1$$

 $II(1,0) = II(0,0) + A(1,0) = 1 + 1 = 2$

x=1, y=1:
$$A(1,1) = A(1,0) + I(1,1) = 1 + 2 = 3$$
 $II(1,1) = II(0,1) + A(1,1) = 2 + 3 = 5$

. . .

Feature Extraction

				x							x=2
		0	1	2	3	4	5	6	7	8	9
	0	4	1	1	0	10	0	1	0	0	5
	1	3	5	7	1	4	1	8	9	4	0
	2	6	4	5	0	1	0	7	8	3	2
,	3	2	3	4	5	1	1	6	3	4	5
	4	9	9	10	1	5	3	1	4	5	4
	5	2	2	1	7	4	0	2	1	5	6
	6	8	1	1	4	2	3	2	3	1	0
	7	0	1	7	0	3	5	6	3	4	1
	8	1	5	6	3	5	9	10	4	2	0
	9	1	8	3	4	6	3	6	3	3	5

2, y=2							X				
_		0	1	2	3	4	5	6	7	8	9
	0	4	5	6	6	16	16	17	17	17	22
	1	7	13	21	22	36	37	46	55	59	64
	2	13	23	36	37	52	53	69	86	93	100
	3	15	28	45	51	67	69	91	111	122	134
] ,	4	24	46	73	80	101	106	129	153	169	185
У	5	26	50	78	92	117	122	147	172	193	215
	6	34	59	88	106	133	141	168	196	218	240
	7	34	60	96	114	144	157	190	221	247	270
	8	35	66	108	129	164	186	229	264	292	315
	9	36	75	120	145	186	211	260	298	329	357

Image

-1	-1	-1	1	1	1
-1	-1	-1	1	1	1
-1	-1	-1	1	1	1
-1	-1	-1	1	1	1
-1	-1	-1	1	1	1
-1	-1	-1	1	1	1

Integral Image

$$-(144+13-36-60) + (221+36-55-144) = -3$$

Haar filter

Viola & Jones' Real-time Method

https://medium.com/@Andrew_D./computer-vision-viola-jones-object-detection-d2a609527b7c

Training

13

(also see paper by Viola and Jones 2004)

(also see paper by Viola and Jones 2004)

Strong Classifier Output

(also see paper by Viola and Jones 2004)

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- One classifier $h_i(x)$ is trained by one feature $f_i(x)$
- θ_i is a threshold
- p_i is a sign + or -

Weak Classifier Output

Adaboost Algorithm

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where
$$\alpha_t = \log \frac{1}{\beta_t}$$

- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

Adaboost Algorithm

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}$, $\frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where
$$\alpha_t = \log \frac{1}{\beta_t}$$

• For t = 1, ..., T:

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i} \beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

Adaboost Algorithm

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where
$$\alpha_t = \log \frac{1}{\beta_t}$$

- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^n w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i} \beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

Visualisation

A post-processing step to remove redundant detections.

A post-processing step to remove redundant detections.

Algorithm 1 Non-Maximum Suppression Algorithm

Require: Set of predicted bounding boxes B, confidence scores S, IoU threshold τ , confidence threshold T

Ensure: Set of filtered bounding boxes F

```
1: F \leftarrow \emptyset
 2: Filter the boxes: B \leftarrow \{b \in B \mid S(b) \geq T\}
 3: Sort the boxes B by their confidence scores in descending order
 4: while B \neq \emptyset do
       Select the box b with the highest confidence score
       Add b to the set of final boxes F: F \leftarrow F \cup \{b\}
       Remove b from the set of boxes B: B \leftarrow B - \{b\}
       for all remaining boxes r in B do
          Calculate the IoU between b and r: iou \leftarrow IoU(b, r)
          if iou > \tau then
10:
             Remove r from the set of boxes B: B \leftarrow B - \{r\}
11:
          end if
12:
       end for
14: end while
```


https://browse.arxiv.org/pdf/2304.00501.pdf

1. take the largest probability box

2. remove others with IoU score < threshold value.

- 1. Filter Bounding Boxes by Probability:
- 2. Sort Bounding Boxes by Probability:
- 3. Non-Maximum Suppression Loop:

Performance Considerations

Predicted Class Positive Negative Sensitivity False Negative (FN) **Positive** True Positive (TP) TP Type II Error $\overline{(TP+FN)}$ **Actual Class** Specificity False Positive (FP) Negative True Negative (TN) TN Type I Error (TN + FP)**Negative Predictive** Accuracy Precision TP + TNValue TP (TP + TN + FP + FN)TN $\overline{(TP+FP)}$ $\overline{(TN+FN)}$

https://medium.com/@m.virk1/classification-metrics-65b79bfdd776

https://www.quickanddirt ytips.com/articles/peopleor-persons/

Performance Considerations

https://medium.com/@m.virk1/classification-metrics-65b79bfdd776

F-score

$$F_1 = 2rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{2 ext{tp}}{2 ext{tp} + ext{fp} + ext{fn}}$$

blue: actual positives (e.g. faces) yellow: actual negatives (e.g. background)

blue: actual positives (e.g. faces) yellow: actual negatives (e.g. background)

Next

Stereo: Epipolar Geometry

