Stochastic Calculus Distance/Metric. Calculus: number. (Limit) essence of calculus. Absolute Value (=> Euclidean. Xn * X(n>0) <>] {>0, YNEN, s.t] n>N, [xn-x| > { $X_n \in \mathbb{R}^n$, $\forall \leq >0$, $\exists N > 0$, $s.t. \forall n > N$, $\|X_n - X\| \leq \mathcal{E}$, $\|X_n - X\| = \left(\frac{N}{k-1}(X_n(k) - X_k(k))^2\right)^{1/2}$ {Xn} Numbers Stochastic Sense Random Variables. Γ.V.: Ω-> | R Function (Limit of Functions, Distance, Metric Stochastically) Sample Space Limits of Functions in #' case: $\{f_n(x)\}$, $f_n(x) \rightarrow f(x)$ $(n \rightarrow \infty)$ f_n , $f: A \rightarrow B$. i) Pointwise: $\forall x \in A$, $\forall x \in$ ii) Uniformly: HE>O, =NEN, HXEA, St n>N, |fn(x)-f(x)|=E

iii) [ntegration: $||f_n - f||^2 = \int_A |f_n(x) - f(x)|^2 dx \rightarrow 0 \quad (n \rightarrow \infty)$ Fourier Series.

=) Understand Stochastic Approximation based on previous function approximation." $\{X_n\}$ r.v. : 1) Mean Square Convergence (Distance $d(X,Y) = (E|X-Y|^2)^{1/2}$)

 $\times_n \xrightarrow{\text{menn square}} X : \forall \leq >0, \exists N >0, \forall n > N, d(x_n, x) \leq \leq$

Purpose of Mean Square Pistance: Triangle Inequality. $\chi_n \xrightarrow{m.s.} \chi$, $\chi_n \xrightarrow{m.s.} \gamma$, i) $\chi_n + \chi_n \xrightarrow{m.s.} \chi + \gamma$. $d(\chi_n + \chi_n, \chi + \gamma) \leq d(\chi_n, \chi) + d(\chi_n, \chi) \xrightarrow{\eta \to \infty} 0$

 $||X_{n}Y_{n} \xrightarrow{m.s.} XY| ||X_{n}Y_{n} - XY|| = ||X_{n}Y_{n} - X_{n}Y + X_{n}Y - XY|| \leq ||X_{n}Y_{n} - X_{n}Y|| + ||X_{n}Y - XY||$ = [[Xn]] [|Yn-Y|]+ [|Xn-X|] ||Y|] -> 0

Cauchy Criterion $||X_n - X_m|| \rightarrow o(n, m \rightarrow \infty) \rightarrow \exists X, X_n \xrightarrow{m.s.} X$ (Works in Stuchastic Calculus as well)

Introducing Pointwise into St	ochastic Calculus:		
2) Almost Surely Convergence. (A		$\omega \in \Omega \mid X_{n}(\omega) \rightarrow X(\omega)^{2}) = 1$	$\left\{ \left\langle \left\langle \right\rangle \right\} \right\} \xrightarrow{\alpha_{1} \cdot s} \left\langle \left\langle \right\rangle \right\rangle$
Almost Surely (**) Mean Squar		approximation inside	
Construct. $\{X_n\}: [0,1] \rightarrow \mathbb{R}$	Borel Probability: S.t. $\times n \xrightarrow{a.s.} 0 \times n \xrightarrow{mx}$	P((c.d)) = d-c	
$X_1: [0,1] \rightarrow \{a_i\} (Constant value)$	×4		$n>N$, $\times_{n}(\omega)=0$
$\chi_2 : [0,1] \rightarrow \{a_2,0\}$	X ₃		= 0) : Almost Shrely
$X_3: [0,1] \rightarrow \{a_3, o\}$ $X_4: [0,1] \rightarrow \{a_4, o\}$	a X2	$\times \qquad \qquad \times \qquad \qquad \times \qquad \qquad \times \qquad \qquad \times \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
X_4 : $[0,1] \rightarrow \{0_4,0\}$ $\vdots \qquad E[X_n($	$(\omega) - 0 \Big[^2 - E \Big[\times_{n} (\omega) \Big]^2 - \Big[$	$\int_{\Omega} \left $	$\int_{\Omega} X_{n}(w) ^{2} dw = \int_{\Omega} X_{n}(w) ^{2} dw$
Jot a.	$= \int_0^{2^{1-n}} a_n^2 dw =$	2^{1-n} . α_n^2	
	(=2 ⁿ , Lim E Xww ² n→∞	- 2 .2 =2 - 60	
almost surely: Bill (loca		+ bounded (Xn = C)	contains Menn Square.
Mean Square: \$14 (enti			
	$u(0) - u(\frac{1}{2})$ $x_4:$ $u(\frac{1}{2}) - u(1)$ $x_5:$	u(4) - u(1) X8=	$u(0) - u(\frac{1}{8})$ $u(\frac{1}{8}) - u(\frac{1}{4})$
YWE[0.1], YNZO, In>N	, (X, IW) [= 1 , l	imit is not D (not	AS. Convergent)
while $\times_n \xrightarrow{m.s.} o$ (the area	under Xn -> 0)		
3) Convergence in Probabilit	y: 4 5>0, P(Swa	Est: Xn(w)-X1w) > 23)	→ o(n→∞) directly on {Xn}
Prove: Almost Swely P{wen			
$X_n \not \nearrow X \iff \exists \ge >0. \ \forall N \in \mathbb{N}, \ \exists n$ $ nterpret \ this \ Clause \ in$	>N, xn-x > { (=) }("Group" sense:	E>O NEIN NON	$(\omega) - \chi(\omega) > \xi^{2} = 0$

```
P( ) {we ( : | Xn(w) - X(w) | > £ }) = 0
       = : WEAUB(exists)
                       WEANB (intersect)
                fixed \xi

V(N) = 1 \times 10^{-1} \times 10
          intersection of B. B. B. B. -- BN . then BN = BN42 = BN43 -- (decreasing)
                            intersection of a set of decreasing sets => B_n(n \rightarrow \infty)
         =) lim P(V fw: |Xnw)-X(w)|>E3) = 0 Almost Surely Convergence.
     take the subset of \lim_{N\to\infty} P(\{w \in \Omega : |x_{N+1}(w) - x_n(w)| > \xi\}) = 0
|x_{N+1}(w) - x_n(w)| > \xi\} = 0
                                                                                                                                                                                                                                   · Convergence in Probability 

Almost Surely
Convergence in Probability: YE>0, lim P(\sw: |Xn(w)-X(w)|>Eq)=0
                                                                                                                                                                                                                                                                  / Mon-zero range decreasing (-> 0),
   eg. 2 => not Almost Surely -> 0. but convergence to 0 in prob. lim pfnen: |Xn(w)-X(w)|>5/3 =0, 45>0|
                                    Convergence in prob. * almost surely convergence
                                                                                                                                                                                                                                                 SStrong Law of Large Numbers SLLN
   X_1, \dots, X_n : i.i.d. \frac{1}{n} [X_1 + \dots + X_n] = \frac{1}{n} \sum_{k} X_k \xrightarrow{n \to \infty} E[X_1]
                                                                                                                                                                                                                                                      Weak Law of Large Numbers WLLN
       Strong: almost surely (a.s.)
      Weak: in probability (p.)
    E\left[\frac{1}{n}\sum_{i=1}^{n}X_{k}-EX_{i}\right]^{2}=\frac{1}{n^{2}}E\left[\sum_{k}(X_{k}-EX_{i})\right]^{2}=\frac{1}{n^{2}}\left[\sum_{k}E[X_{k}-EX_{i})^{2}+2\sum_{i=1}^{n}E[(X_{i}-EX_{i})(X_{j}-EX_{i})]\right]
                  = \frac{1}{n^2} \sum_{k} \text{Var}(X_k) = \frac{1}{n} \text{Var}(X_1) \xrightarrow{n \to \infty} 0 \quad (m. s. \quad \text{convergence})
 To prove WLLN. we need Tchebyshev Inequality: \forall a>0, P(|x|\geq a)\leq \frac{E|x|^2}{a^2} (Concentration)
  Proof of Tchebysher: E[X]^2 = \int_{\mathbb{R}} x^2 f_X(x) dx = (\int_{|x| \ge a} + \int_{|x| \le a}) x^2 f_X(x) dx = \int_{|x| \ge a} x^2 f_X(x) dx = \int_{|x| \ge a} x^2 f_X(x) dx
                                                                                                                                                                                                                      = a2 P(|x|2a)
                                                            (-|X|^2 > a^2 P(|X| > a), |et X = X' - E[X'] \Rightarrow P(|X' - EX'| > a) \leq \frac{Var(X)}{a^2} 
    代为上式: P(| 六三Xk - EX, 35) = = + var(X,), H 5>0
```

```
i.e. P(\left|\frac{1}{n}\sum_{k}X_{k}-EX_{i}\right| \geq \sum_{k}\sum_{i=1}^{n}\frac{1}{n} \operatorname{var}(X_{i}) \xrightarrow{n\to\infty} 0
                                                                                                                                                                                                                                                                   WLLN
                                                                                                                                                                                                                                                          X_n \sim F_{X_n}(x) = P(X_n \leq x)
  (4) Convergence in Pistribution:
                                                                                                                                                                                                                                                                X \sim F_{X}(x) = P(X \leq x)
            X_n \xrightarrow{f} X \Leftrightarrow F_{X_n}(x) \xrightarrow{n \to \infty} F_{X}(x)
                                                                                                                                                                                                                                             at f_{\chi}(x) continuous pts.
     e.g. X~ N(0,1), Xn=(-1)"X=(-x, x, -x, x...)
                                                                                                                                                                                                                                                                                                                                                                                                     preserves some randomness
                         (=) - X~ N(0,1)
   Convergence in Distribution
       n: no randomness transition? In In(In 1)
                                (Some randomness)
                              \{X_n\} \xrightarrow{P} X \Rightarrow \{X_n\} \xrightarrow{L} X \Leftrightarrow F_{X_n}(x) \Rightarrow F_{X}(x)
                                                       probability. distribution
                 F_Xn(x) = P(Xn ≤ x) = P(Xn ≤ x, XEIR) = P(Xn ≤ x, X>y) + P(Xn ≤ x, X=y) ≤ P{(Xn-x) y-x) + P{X ≤ y}
                                                                                                                                                                                                                           =) |Xn-X|>y-x
                                                                                                                                                                                i.e. \{\xn = \x. \x > y\} \le \{\xn - \x\| > y - \x\} \frac{1}{2} \quad \text{P\{\xn - \x\\ \x\\ \y - \x\\}}
                                                                                                                                                             limsup Fxn(x) = Fx(y) (y>x)
        [x(z) = P{X ≤ z} = P{X ≤ z, Xn ∈ |R] = P{Xn ≤ z, X>x} + P{Xn ≤ z, X ≤ x} ≤ P(|Xn-X|>x-z) + P(Xn ≤ x)
                                                                                                                                                                       F_{X}(z) \leq \liminf_{n} F_{X_{n}}(x) |z < x|
                                                                   F_{X}(z) \leq (i m inf F_{X_n}(x) \leq lim sup F_{X_n}(x) \leq F_{X}(y)) \begin{cases} z \to x \\ y \to x \end{cases} \xrightarrow{-} n \to \infty F_{X_n}(x) \to F_{X_n}(x)
\begin{array}{c} X_{n} \xrightarrow{a.s.} X \\ \end{array} \Rightarrow \begin{array}{c} X_{n} \xrightarrow{p.} X \\ \end{array} \Rightarrow \begin{array}{c} X_{n} \xrightarrow{p.} X \\ \end{array} \Rightarrow \begin{array}{c} X_{n} \xrightarrow{a.s.} X \\ \end{array} \Rightarrow \begin{array}{c} X_{n} \xrightarrow{p.} X \\ \Rightarrow X_{n} \xrightarrow{p.}
  P(X_n \xrightarrow{\alpha.s.} X) = 1 P(|X_n - X| \ge \varepsilon) \Rightarrow 0 f_{X_n}(x) \rightarrow f_{X_n}(x)
                                                                                                                                                                                                                                                                                       E|X_n-X|^2 \rightarrow 0
```

$$\times_{n} \xrightarrow{m.s.} \times \Rightarrow \times_{n} \xrightarrow{P.} \times$$
, Tchebyshev: $P(|\times_{n}-\times| \leq \epsilon) \leq \frac{1}{\epsilon^{2}} E|\times_{n}-\times|^{2}$