Complex integration:

Let f(z) be a continuous function of the complex variable z=x+iy and C be a curve in the x-y plane. The integral of f(z) along the path C is called the complex line integral, usually denoted by $\int f(z)dz$. If C is any simple closed curve, the notation of f(z)dz is also used.

Properties:

- 1) If -c denotes the curve traversed in the anticlockwise direction, then $\int_{-c}^{c} f(z)dz = -\int_{c}^{c} f(z)dz$.
- 2) If c is split into a number of parts C1, C2, C3, --, then \(\)
- 3) $\frac{\pi}{4}$ $\frac{\pi}{2}$ are constant then, $\int \left[\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} \right] dz = \frac{\pi}{2}, \int \frac{\pi}{2} dz + \frac{\pi}{2} \int \frac{\pi}{2} \left[\frac{\pi}{2} \right] dz = \frac{\pi}{2}.$

Line integral of a complex valued function:

Let $f(2) = U(\chi, y) + i V(\chi, y)$ be a complex valued function defined over a legion R and C be a curve in the region. Then $\int f(2) d2 = \int (U+iV) (d\chi+idy)$

ie [f(2) dZ = [(udx - vdy) + i [vdx + udy]

This shows that the evaluation of a line integral of a complex valued function is nothing but the evaluation of line integral of leal & valued function.

 $= \int_{0}^{1} |8y^{2}| dy + i \int_{0}^{1} 26y^{2} dy = |8y^{3}|_{0}^{1} + 26i \frac{y^{3}}{3}|_{0}^{1}$

 $\int_{C} z^{2} dz = 6 + \frac{26}{3}i$ along the gluen path.

Scanned with CamScanner

b) line segments from Z=0 to Z=3 & then from Z=3 to 3+; ie (x,y) values from (0,0) to (3,0) and then from (3,0) to (3,1)

Now along (i: y = 0 =) dy = 0 and X values from 0 to 3.

Along C2: x=3 > dx 20 & y varies from 0 to 1.

$$\int_{C} z^{2} dz = \int_{3}^{3} x^{2} dx + i \int_{3}^{1} (3+iy)^{2} dy$$

$$= \frac{x^{3}}{3} \Big|_{3}^{3} + i \int_{3}^{1} (9-y^{2}+6iy) dy$$

$$= \frac{(3)^{3}}{3} + i \left(9y - \frac{y^{3}}{3} + 6i\frac{y^{2}}{2}\right)$$

$$= 9 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 9 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 2 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 2 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 2 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$= 3 + i \left(9 - \frac{1}{3} + 3i\right)$$

$$=$$

2) Evaluate SIZI2dz, where C & a square with the following vertices (0,0)(1,0)(1,1)(0,1).

John: The curve C is as shown in the figure (0,1) (0,1

we have 1212= (x2+y2) (dx+idy)

: 1212dz=x2dx

(i) Along OA(W): Y=0 => dy=0 y x values from oto 1. "12/dz=((+y2)) Pdy
(ii) Along AB(W): X=1 => dx zo y y ratios from oto 1. "12/dz=((+y2)) Pdy
(05451)

(ii) Along BC (C3): Y=1=>dy=0 y X valing from 1 to 0. and 1212 dz= (x2+1) dx (15x40) (is) Along co (Cy): X=0=)dx=0 & yvaries from 1 to 0. = 121 dz = y2; dy (1540) Use these in egy (1) we get [1212dz= [22dx+ [(+42)idy+ [(x2+1)dx+ [42idy $= \frac{\chi^{2}}{3} \Big|_{0}^{1} + i \Big[\frac{9 + \frac{1}{3}}{3} \Big]_{0}^{1} + \Big[\frac{\chi^{3}}{3} + \chi \Big]_{0}^{2} + i \Big[\frac{y^{3}}{3} \Big]_{0}^{2}$ > = + i [1+ =] + = [0-1] 2 サイドナダーサートージ SIZIZOZ = - 1+i along the given path. 3) Evaluate ((2,4) dx + (3x-y) dy along the following paths: (a) The palebola x=2t, y=t2+3 (5) The estraight line from (0,3) to (2,4). Sol? (2,4)

Let I = 1 (2y+x2) dx + (3x-y) dy, x valies from 3 to 4. x validifim ot (a) liven x=2t, y=+2+3. => dx=2dt, dy=2tdt y x=0, 30=2t à t=0 x=2 =1 2=2t ie t=1 : I = [2(+2+3)+(+)2]2d+(3.2+-(+2+3)] ded+ $= \int (2t^2 + 6 + 4t^2)^2 dt + (6t - t^2 - 3) 2t dt$ = 5 (12t2+12+12+2+2+3-6+)d+

$$= \int (24t^{2} - 2t^{3} - 6t + 12) dt$$

$$= \left[24 \frac{t^{3}}{3} - 2 \frac{t^{4}}{6} - 6 \frac{t^{2}}{2} + 12t \right]_{0}^{1}$$

$$= 8 - \frac{1}{2} - 3 + 12$$

$$= 17 - \frac{1}{2}$$

$$= \frac{33}{2}$$

(b) Equation of the straight line joining (0,3) and (2,4) in given by
$$\frac{y-3}{x-0} = \frac{4-3}{2-0}$$

$$\frac{y-3}{x} = \frac{1}{2} \implies x = 2y-6$$

$$dx = 2dy$$

$$I = \int_{0}^{4} [2y+(2y-6)^{2}] 2dy + [3(2y-6)-y] dy$$

$$= \int_{0}^{4} [2y+4y^{2}+36-24y] 2dy + [6y-18-y] dy$$

$$= \int_{0}^{4} (8y^{2}+72-44y+5y-18) dy$$

$$= \int_{0}^{4} (8y^{2}-39y+54) dy$$

$$= \int_{0}^{4} [3y^{2}-39y+54) dy$$

$$= \int_{0}^{4} [3y^{2}-39y+54] dy$$

$$= \int_{0}^{4} [3y^{2}-3y+54] dy$$

$$= \int_{0}^{4} [3y^{2}-3y+5$$

```
4) Evaluate 12th (2x+iy+1)dz along the following paths:
  (a) x=t+1, y=2t^2-1
(b) storaight line joining (1-i) and (2+i)
                                      (ie X Vaeires from (1,2)
solz: Ciun I= (axtiy+1)dz
@ x=t+1, y=2+2-1 => dx=dt, dy=4+td+
 y = 0, 1 = t + 1 = 0 t = 0 } t = 0 t = 1.
                                               & dz=dx+idy
                                                  d2= d++i4+d+
I= [2(+1)+i(2+2-1)+1][d'++i4+d+]
   = 5'(2++2+2;+2;+2-i+)(1+i4+)d+
  = ('(2t+2it2-i+3+8it2+8i2t3-4i2t+12it)d+
  = ('(-8t3+10it2+6t-i+3+12it) dt
  = -8 \pm \frac{14}{4} + 10i \pm \frac{13}{3} + 6 \pm \frac{1}{2} - it + 3t + 12i \pm \frac{1}{2} \Big|_{n}^{1}
   = -2 + \frac{10i}{3} + 3 - i + 3 + 6i
   2 4+10i +5i
I = 4 + \frac{25}{3}i
```

b) Equation of the straight line joining
$$(1,-1)$$
 and (a,i) in given by $\frac{y+1}{x-1} = \frac{1+1}{a-1}$
 $\Rightarrow \frac{y+1}{x-1} = \frac{2}{a}$
 $\Rightarrow \frac{y+1}{a} = \frac{2a}{a}$
 $\Rightarrow \frac{(2a)}{(ax+1)(2x-3)+1} = \frac{(ax+1)(1+1a)}{(ax+1)(2x-3)+1}$
 $\Rightarrow \frac{(2ax+2)(2x-3)+1}{(2ax+2)(2x-3)+1} = \frac{(ax+4)(2a+1)}{(ax+2)(2a+1)}$
 $\Rightarrow \frac{(ax+2)(2x-3)}{(ax+2)(2x-3)+1} = \frac{2a}{a}$
 $\Rightarrow \frac{(ax+2)(2x-3)}{(2x-2)(2x-3)+1} = \frac{2a}{a}$
 $\Rightarrow \frac{(ax+2)(2x-3)}{(2x-2)(2x-3)+1} = \frac{2a}{a}$
 $\Rightarrow \frac{(ax+2)(2x-3)}{(2x-3)+1} = \frac{2a}{a}$

I If c is a circle with centre a y radius y Solo: Given curve is

12-a1=8 12-01=121 3 Z-a= re10 of dz=ireio , 0→ oto 2×. a) $\int \frac{d2}{2-a} = \int \frac{ir\dot{e}^{0}do}{9r\dot{e}^{0}} = i \int \frac{d0}{00} = 2\pi i$ $\int \frac{d^2}{z-a} = 2\pi i$ (B) Also [(z-a)]dz= [(reie)] i reiedo = i xn+1 ser ei(n+1)0 do = i 2n+) (e (n+1)0 yar = 7ⁿ⁺⁾ [eⁱ⁽ⁿ⁺¹⁾& [-1] But eintiser = cos (n+1) ar + i sin (n+1) ar = 1+i(0) = 1 but Cos2 kox =1 & sinakx =0 for k=1,2,3, --Henre ((2-a) dz = xn+) [1-1] $\int_{c}^{\infty} (2-a)^{n} dz = 0$, $n \neq -1$