Architecture matérielle d'un ordinateur Bus de communication, carte mère, processeur et mémoire

Michel Salomon

IUT de Belfort-Montbéliard Département d'informatique

Concept de bus

Architecture des ordinateurs (von Neumann / Turing - 1945)

- On distingue 3 éléments :
 - l'unité centrale de traitement ou processeur (on utilise également les termes microprocesseur ou Central Processing Unit);
 - ② la mémoire centrale ou principale (contenant programmes et données - informations codées en binaire sous forme de bits 0 et 1); Mémoire vive (RAM) et mémoire morte (ROM)
 - les interfaces d'Entrées/Sorties (liens entre le processeur et les périphériques externes/internes);
- reliés par des canaux de communication appelés bus

Que peut transporter un bus de communication?

- des adresses :
- des données :
- des commandes (ou instructions de contrôle)

Concept de bus

Aujourd'hui le bus parallèle est "obsolète"

Avènement des bus série et série / parallèle (plusieurs liaisons série)

Qu'est-ce qu'un bus de communication?

- Un chemin électrique faisant communiquer ensemble
 - des composants électroniques
 - ou des périphériques électroniques
- Exemples
 - des composants de la carte mère
 - \rightarrow processeur et barrettes mémoire, etc.
 - un composant et des périphériques internes ou externes
 - → carte graphique, disque, imprimante, etc.

Citer quelques bus de communication

- Universal Serial Bus;
- Peripheral Component Interconnect Express abrégé par PCle;
- Serial Advanced Technology Attachment; Serial-Attached SCSI;
- etc.

Généralement chaque bus existe en plusieurs versions / générations

Un bus achemine des bits d'information entre composants / périphériques

- Un bus est composé d'un certain nombre de lignes
 - Chaque ligne transporte un bit à la fois via un signal numérique
 - Signal numérique \rightarrow grandeur discrète appartenant à $\{0,1\}$
- Les bits se suivent sur une même ligne

Synchronisation des éléments d'un ordinateur via un signal d'horloge

- Un quartz génère un signal d'horloge commun (Clock / CLK)
- Signal périodique comportant une alternance de 1 et de 0
- ullet Chronogramme o évolution du signal dans le temps

Synchronisation des éléments d'un ordinateur via un signal d'horloge

- ullet Cycle (ou battement) d'horloge o une période de durée T
- ullet Fréquence d'horloge o nbre de cycles par unité de temps
- ullet Durée T d'un cycle o définie par la fréquence d'horloge f

$$f$$
 (en Hz) = $\frac{1}{T$ (en secondes)

Exemple : $f = 200 \text{ MHz} \rightarrow T = 5 \text{ ns (nanosecondes)}$

- Signal utilisé pour obtenir de nombreuses fréquences réelles
 - Processeur, puces mémoire, etc.
 - Bus de communication

(souvent via un circuit appelé Phase-Locked Loop)

Un cycle d'horloge réelle permet de transporter un ou plusieurs bits

Différents "types" de bits circulent dans un bus

- Un bus peut transporter 3 types de bits :
 - des bits de donnée
 - → l'information à acheminer;
 - des bits d'adresse
 - → identifient l'origine / le destinataire de l'information ;
 - des bits de contrôle
 - \rightarrow signaux de synchronisation, sens du transfert, etc.

Types de bus de communication

- Parallèle ("obsolète")
 - → transport séparé des bits (bus de donnée, adresse, contrôle)
- Série
 - → transport "unifié" de tous les bits
- Série / parallèle \rightarrow plusieurs transports sérialisés en parallèle

Caractéristiques d'un bus / 1. Type et largeur

Parallèle

- Unidirectionnel à l'alterna (half-duplex)
 - → transmission dans les 2 sens, alternativement
- Plusieurs lignes pour transporter les bits
- Cadencement sur une fréquence d'horloge commune
 - ightarrow à l'émetteur et au récepteur

Série

- Une voie (lane) est composée de 2 liaisons séries
 - ightarrow 1 émission et 1 réception (ex. : 7 fils dans un câble SATA)
- Bidirectionnel simultané (full-duplex) (pas tous les bus série)
 - → transmission simultanée dans les 2 sens
- Transport d'un bit à la fois dans un sens
 - ightarrow une donnée sur plusieurs bits est sérialisée

Caractéristiques d'un bus / 1. Type et largeur

Série (suite)

- Plus de distinction entre bit de donnée, d'adresse, de contrôle
 - → bits regroupés dans des "paquets" qui sont transportés
- Fonctionne comme le transport de paquets dans les réseaux
- PCIe Gen 1.0 et 2.0 (PCI Express)
 - Utilisent un encodage dit 8b/10b
 - \bullet Pour envoyer 8 bits \rightarrow émission de 10 bits
- PCle Gen 3.0, 4.0 et 5.0
 - Utilisent un encodage dit 128b/130b
 - Pour envoyer 128 bits → émission de 130 bits

Série / parallèle

- Plusieurs liaisons séries unidirectionnelles en parallèle
 - \rightarrow plusieurs voies en parallèle

Caractéristiques d'un bus / 1. Type et largeur

Série / parallèle (suite)

- Quelques exemples (il en existe d'autres...)
 - Intel
 - ∘ **D**irect **M**edia **I**nterface $3.0 \approx PCle \times 4$ Gen 3.0
 - \circ *Direct Media Interface* 4.0 \approx PCle $\times 8$ Gen 4.0
 - Quick Path Interconnect (20 voies)
 - AMD
 - \circ *Unified Media Interface* \approx PCIe \times 4 Gen 2.0
 - o $\it CPU/APU$ Link \approx PCle $\times 4$ Gen 3.0 puis Gen 4.0
- Bus DMI et CPU/APU Link
 - Utilisés par les dernières générations de proc. Intel et AMD
 - Processeurs intégrant les contrôleurs mémoire, graphique, ...

Largeur ⇒ nombre de bits transférables simultanément dans un sens

- ullet Bus parallèle o largeur > 1; Bus série o largeur = 1
- ullet Bus série / parallèle o largeur = nbre de liaisons séries > 1

Caractéristiques d'un bus / 2. Nombre de Transferts par seconde

Basé sur la fréquence d'horloge réelle du bus (F_R)

Dépend du nombre de cycles d'horloge réelle du bus par seconde

- Au départ
 - ightarrow 1 transfert par cycle (front montant)
- Double Data Rate (Dual pumped)
 - → 2 transferts par cycle (front montant et descendant)
- Quad Data Rate (Quad pumped)
 - \rightarrow 4 transferts par cycle (front montant et descendant, plus 2 fronts obtenus par déphasage du signal d'horloge)

S'exprime de façon équivalente en Hertz

- Utilisation du terme fréquence d'horloge effective (F_E)
- d'où 1 T/s = 1 Hz

Calcul du débit (unidirectionnel)

Que représente le débit binaire?

- Quantité de bits pouvant y transiter par unité de temps
 → reflète l'efficacité du bus
- S'exprime en octets ou unité basée sur les octets par seconde
 → Mo/s, Mio/s, etc.

Attention!! Formule valable si 1 octet sur le bus = 8 bits

 $d\acute{e}bit = (nbre\ de\ transferts\ par\ seconde\ imes\ largeur)\ /\ 8\ octets/s$

Attention!!

- Usage abusif du terme bande passante à la place de débit
- Les constructeurs donnent souvent un débit bidirectionnel

Calcul du débit (unidirectionnel) (suite)

Exemple : débit du bus AGP 4× - ancêtre lointain du PCle

- Caractéristiques
 - Type parallèle
 - Largeur de 32 bits
 - Bus QDR
 - Fréquence réelle $F_R = 66,66$ MHz
- Calcul du débit (1 Mo = $1000 \text{ ko} = 1000 \times 1000 \text{ octets}$)
 - $d\acute{e}bit = ((66660000 \times 4) \times 32) = 8532480000 \text{ bits/s}$
 - $d\acute{e}bit = (66660000 \times 4 \times 32)/8 = 1066560000 \text{ octets/s}$
 - $débit = (((66660000 \times 16)/1000)/1000) = 1066,56 \text{ Mo/s}$
 - $d\acute{e}bit = (((66660000 \times 16)/1024)/1024) = 1017, 15 \text{ Mio/s}$

Souvent en Gigaoctets ou Mégaoctets par sec. (Go/s ou Mo/s)

Bus parallèle versus bus série

Un avantage, mais de nombreux inconvénients

- Avantage d'un bus parallèle
 - En théorie, plus un bus parallèle est large, plus il peut transporter de données
- Défauts d'un bus parallèle
 - Encombrant et coûteux \rightarrow prend plus de place
 - Fabrication délicate → longueur des lignes identiques, sinon désynchronisation des transmissions
 - Interférences électromagnétiques susceptibles de perturber les signaux → compétitif sur de petites distances
 - Pénalisant car généralement partagé → défaut majeur

Bus série ⇒ corrige les défauts du bus parallèle

Requiert des composants supplémentaires car les données sont acheminées sous forme de "paquets" (comme dans un réseau)

Exemples de bus actuels

Bus PCI Express (PCI-E ou PCIe) - Périphériques internes

- Gen. 3.0 (2010), 4.0 (2017), 5.0 (2019), 6.0 (2022), 7.0 (?)
- Caractéristiques
 - Type série (série/parallèle si plusieurs voies)
 - Connecteur de taille variable (1, 2, 4, 8, 16 ou 32 voies)
 - Voie composée de 2 liaisons : émission et réception
 - Bidirectionnel simultané, avec un contrôle de l'intégrité
- Débits
 - PCle Gen. 3.0 8 GT/s
 - $1 \times \Rightarrow 984, 6 \text{ Mo/s}; \dots; 16 \times \Rightarrow 15,754 \text{ Go/s}$
 - PCle Gen. 4.0 16 GT/s
 - $1 \times \Rightarrow 1969, 23 \text{ Mo/s}; \dots; 16 \times \Rightarrow 31,504 \text{ Go/s}$
 - PCle Gen. 5.0 32 GT/s
 - $1 \times \Rightarrow 3938,46 \text{ Mo/s}; \dots; 16 \times \Rightarrow 63,015 \text{ Go/s}$

Exemples de bus actuels

Bus USB (*Universal Serial Bus*) - Unifie les connexions bas débit

- Compaq, Intel, IBM, Microsoft, NEC & al. 1996
- Débits
 - ullet Norme 1.1 / FULL-SPEED o débit de 1,5 Mo/s \Leftrightarrow 12 Mbit/s
 - Norme 2.0 / HI-Speed \rightarrow débit de 60 Mo/s \Leftrightarrow 480 Mbit/s
 - Norme 3.0 / 3.1 Gen. 1 / SUPER-SPEED (2008) \rightarrow débit de 5 Gbit/s (8b/10b)
 - Norme 3.1 / 3.1 Gen. 2 / SUPER-SPEED+ (2013) \rightarrow débit de 10 Gbit/s (128b/132b) - Type-A,B,C et Micro-A,B,AB
 - Norme 3.2 Gen. 2x2 / SUPER-SPEED++ (2017) \rightarrow débit de 20 Gbit/s (128b/132b) Type-C uniquement (Gen. 1x1 = 3.1 Gen. 1, Gen. 1x2, Gen. 2x1 = 3.1 Gen. 2)
 - Norme 4 Gen. 2x2 / 4 Gen. 3x2 (Thunderbolt 3) (2019) \rightarrow débit de 20 Gbit/s (64b/66b) pour Gen. 2x2 Type-C
 - \rightarrow débit de 40 Gbit/s (128b/132b) pour Gen. 3x2

Carte mère et chipset

Carte mère

- Regroupe plusieurs éléments
 - Processeur
 - Mémoire
 - Ports
 - etc..
- Caractérisée par son chipset (lié au type de processeur)
- Format ATX, Mini-ATX, Micro-ATX, Flex-ATX, Mini-ITX, etc.

Les différents formats de carte mère (unité = inch / pouce)

Carte mère et chipset

Chipset ou jeu de composants

Contrôleur(s) chargé(s) d'aiguiller les données entre les différents bus de communication

Rôle et évolution du chipset

- Organise les transferts de données au sein de l'ordinateur
- Historiquement architecture à deux puces
 - 1 Pont Nord Northbridge (GMCH)
 - Pont Sud Southbridge (ICH)
- Passage à une architecture à une seule puce (PCH)

Disparition du pont nord suite à l'intégration des contrôleurs mémoire et graphique dans le processeur

- Intégration "complète" dans le processeur (System on Chip)
 - Plateforme mobile / embarquée (Desktop) au départ, mais...

Chipset (ou jeu de composants)

Pont Nord ou Graphic Memory Controller Hub

- Communications entre éléments requérant un grand débit
 - Processeur
 - Mémoire

Contrôleur mémoire intégré par les processeurs actuels

- Carte(s) graphique(s) ou encore puce graphique intégrée
 Contrôleur graphique intégré par certains processeurs actuels chez AMD et Intel Core iX (depuis 2^e gen.), mais pas tous
- Autres périphériques PCI Express

Pont Sud ou I/O Controller Hub

- Com. avec les éléments qui ont un débit plus réduit
 - Anciens ports PATA (ou IDE), parallèle, série
 - PCI Express, SATA, USB, etc.

Architecture d'une carte mère

Carte pour proc. Intel - Socket 1151 / H4 - à une puce ou Platform CH

Bus de communication entre processeur et chipset

- Intel → bus série/parallèle Ultra Path Interconnect, Quick PI, DMI Flexible Interface Display pour lier cœur graphique et chipset
- AMD \rightarrow bus série/parallèle *UMI* et *CPU/APU Link*

Architecture d'une carte mère pour processeurs Intel

Carte pour proc. Intel - Socket 1700 / V - à une puce ou Platform CH

- Lien fabricant de la carte mère CPU socket (LGA / PGA)
- Lien manuel de la carte à base du chipset B660

Architecture d'une carte mère pour processeurs Intel

Quizz - Carte mère pour proc. Intel - Socket 1700 / V

Principaux fondeurs de processeurs : AMD et Intel

Distinction ordinateur personnel / station de travail et serveur

- Ordinateur de type PC
 - Gamme AMD
 - Socket AM4 : Ryzen 3, 5, 7, 9 (Zen+, Zen 2 et Zen 3)
 - Socket sTR4X: Ryzen Threadripper (Zen 2)
 - Socket sWRX8 : Ryzen Threadripper Pro (Zen 3)
 - Socket AM5 à venir : PCle Gen. 5 et uniquement DDR5
 - Gamme Intel
 - Socket 1151 / H4: Celeron, Pentium Gxxx0, Core i3, i5, i7, i9 (Kaby Lake, Coffee Lake Refresh → avec contrôleur graphique)
 - Socket 1200 / H5 : Celeron Gxxx0, Core i3, i5, i7, i9
 (Comet Lake, Rocket Lake → avec contrôleur graphique)
 - Socket 2066 / R4 : Core i7 et i9 (grand nombre de cœurs) (Kaby Lake-X, Cascade Lake-X → sans contrôleur graphique)
 - Socket 1700 / V: Celeron, Pentium Gxxx0, Core i3, i5, i7, i9 (Alder Lake, Raport Lake à venir)

Principaux fondeurs de processeurs : AMD et Intel

Distinction ordinateur personnel / station de travail et serveur

• Station de travail - Serveur

Multi-processeur, grand nombre de cœurs, mémoire cache plus importante, ...

- $\bullet \;\; Gamme \;\; AMD \;\; \rightarrow \;\; Epyc \;\; (\mathsf{Naples} \; / \;\; \mathsf{Rome} \; / \;\; \mathsf{Milan} \; / \;\; \mathsf{Genoa} \;\; \rightarrow \;\; \mathsf{Zen} \;\; 1 \; / \; 2 \; / \;\; 3 \; / \; 4)$
 - Processeurs ayant de 8 à 96 cœurs
 - Configuration à 1 ou 2 processeur(s)
 - Socket SP3, SP5 à venir
- ullet Gamme Intel o Xeon
 - Déclinaison de chaque génération de processeur Intel Core (Skylake, Kaby Lake, Coffee Lake, Comet Lake, Cascade Lake, Cooper Lake, Ice Lake, Rocket Lake)
 - Sockets 1151, 1200, 2066, 3647, 4189, 4677 à venir

Quels processeurs dans les smartphones et tablettes?

- Architectures ARM **SoC** (CPU+GPU+DSP+...) vendues sous licence
- Chaque fabricant personnalise, voire mixe, des composants

Comparaison de processeurs

Spécifications constructeurs

	RYZEN		
Référence	AMD Ryzen 9 5950X	Intel Core i9-12900KS	
Support	Socket AM4	Socket 1700	
Micro-architecture	Zen 3	Alder Lake	
Cœur - Date de sortie	Castle Peak - Q1'20	Alder Lake-S - Q1'22	
Nb de cœurs	16	16 (8 P-Cores+8 E-Cores)	
Finesse de gravure	7 nm (12 nm)	7 nm (10 nm)	
Fréquence	3,4 / 4,9 GHz	2,5 / 5,5+3,4 GHz	
Horloge réelle	100 MHz	100 MHz	
Coefficient	×34	×34	
Bus processeur	CPU/APU 8 GT/s	DMI 4.0 ×8 link	
Cache L1 Inst. / Data	16 × 32 Kio / 16 × 32 Kio	8×32 Kio $/$ 8×48 Kio - P(erformance)	
		8 × 64 Kio / 8 × 32 Kio - E(fficient)	
Cache L2	8 Mio (16 × 512 Kio)	14 Mio (8 × 1, 25 + 2 × 2)	
Cache L3	64 Mio (2 × 32)	30 Mio $(8 \times 3 + 2 \times 3)$	
Dissipation (TDP)	105 W	Long 150 W / Short 251 W	
Prix	750 euros	1000 euros	

Exercices sur les bus de communication

1 Bus Intel DMI 4.0

- Caractéristiques du Core i7 12700KF Socket 1700 Q4'21
 - Fréquence d'horloge réelle du proc. = 100 MHz; 12 cœurs;
 - spécification des modes Turbo (coefficients)
 - ullet Turbo Boost Max Technology 3.0 (TBMT3) = 14;
 - ullet P-core / E-core Max Turbo Freq. (TBT2) = 13 / 11
 - bus processeur DMI 4.0 (8 voies sur le proc. considéré)
 - fréquence d'horloge réelle du bus = 8 GHz;
 - opérant en DDR, 8 voies et encodage 128b/130b;
 - coefficient Xteur du proc. (P-core) = 36 (E-core = 27);
 - largeur du bus d'adresses = 39 bits (mémoire physique) et 48 bits (mémoire virtuelle).

Calculer

- 1 Le nombre de transferts par seconde du bus pour 1 voie;
- 2 le débit unidirec. du bus proc. (8 voies) en Mo/s, Mio/s, Go/s;
- 3 les fréquences de fonctionnement du processeur;
- les fréquences max. grâce aux Turbo TBT2 et TBMT3;
- 6 la taille de la mémoire physique adressable.

Exercices sur les bus de communication

- 2 Bus mémoire d'une barrette de type DDR4
 - Comment calculer la fréquence réelle du bus
 - À partir de la fréquence d'horloge réelle des puces DRAM
 - DDR $\rightarrow F_R = F_{DRAM}$;
 - DDR2 \rightarrow $F_R = 2 \times F_{DRAM}$;
 - DDR3 \rightarrow $F_R = 4 \times F_{DRAM}$;
 - DDR4 \rightarrow $F_R = 8 \times F_{DRAM}$;
 - DDR5 \rightarrow $F_R = 16 \times F_{DRAM}$.
 - obtenue à partir de la fréquence d'horloge réelle du processeur. Dans le cas de la DDR4, on a F_{DRAM} qui est un multiple de $\frac{1}{15}$ GHz, soit : $F_{DRAM} = \frac{\lambda}{15}$ GHz = $\left(\frac{\lambda}{15} \times 10^9\right)$ Hz où $\lambda \geq 1$ définit le débit.
 - 2 Caractéristiques de la barrette étudiée
 - Coefficient $\lambda = 3$:
 - largeur du bus de données = 64 bits
 - Calculer
 - 1 Les fréquences d'horloge réelle et effective du bus mémoire;
 - 2 le débit de la barrette mémoire en Go/s et Gio/s;
 - en déduire la désignation de la barrette.

Exercices sur les bus de communication

3 Bus PCle Gen. 2.0

- Caractéristiques du bus série $1 \times$ (à une voie)
 - Fréquence d'horloge "réelle" du bus = 2,5 GHz
 - bus pouvant être vu comme opérant en DDR;
 - pour 8 bits de données, 10 bits envoyés (encodage 8b/10b)

2 Calculer

- Le nombre de transferts par seconde;
- 2 le débit du bus (largeur = 1 bit);
- 3 la perte de débit unidirectionnel due aux bits supplémentaires;
- à titre de comparaison, donner le pourcentage de perte pour l'encodage 128b/130b.

Vision "DDR" du PCI Express : simplification qui n'est pas la réalité

- ullet Bus réel isosynchrone o pas de signal d'horloge explicite
- Aussi "équivalent" à un bus avec $F_R = 5$ GHz, ni DDR, ni QDR

Unités de mesure

Le bit (0 ou 1) est la plus petite unité de mesure

Unités de mesure basées sur l'octet

- Principalement utilisées pour parler du stockage de données
- Deux types d'unités : en puissances de 2; en puissances de 10

Puissances de 2				
1 Kibioctet	Kio ou KiB	1024 octets	2 ¹⁰	
1 Mébioctet	Mio ou MiB	1024 Kio	2 ²⁰	
1 Gibioctet	Gio ou GiB	1024 Mio	2 ³⁰	
1 Tébioctet	Tio ou TiB	1024 Gio	2 ⁴⁰	
Puissances de 10				
1 kilooctet	ko ou kB	1000 octets	10 ³	
1 Mégaoctet	Mo ou MB	1000 ko	10 ⁶	
1 Gigaoctet	Go ou GB	1000 Mo	10 ⁹	
1 Téraoctet	To ou TB	1000 Go	1012	

• 1 Kibioctet = 1 "Kilo binaire octet"

Exercices sur les bus de communication - Corrections

1 Bus Intel DMI 4.0

Nombre de transferts par seconde (N) pour 1 voie égal à

$$N=$$
 fréquence d'horloge réelle du bus (Hz) \times 2 (car DDR)
= $(8 \times 10^9) \times 2 = 16 \times 10^9$ T/s = 16 GT/s

2 Débit (unidirectionnel) du bus processeur

$$\begin{array}{lll} \text{d\'ebit} & = & (\text{nombre de transferts par seconde} \times \text{largeur}) \text{ bits/s (sans encodage)} \\ & = & ((16 \times 10^9) \times 8) \text{ bits/s} = 128 \text{ Gbit/s (sans encodage)} \\ & = & \left(((16 \times 10^9) \times 8) \times \frac{128}{130}\right)/8 = 15753846153, 8 \text{ octets/s} \\ & = & 15753846, 1538 \text{ ko/s (} = 15384615, 3846 \text{ Kio/s)} \\ & \approx & 15753, 85 \text{ Mo/s (} \approx 15024, 04 \text{ Mio/s)} \\ & \approx & 15,75 \text{ Go/s} \end{array}$$

- Remarques (sur le calcul du débit)
 - Largeur égale à 8 car 8 voies.
 - Multiplication par $\frac{128}{130}$ car encodage 128b/130b.

Exercices sur les bus de communication - Corrections

- 1 Bus Intel DMI 4.0 (suite)
 - **3** Fréquences de fonctionnement du processeur $(F_P \text{ et } F_E)$

$$F_P = {
m fréq. réelle \ du \ proc. \ (Hz) \times coeff. \ multiplicateur \ P-cores} = (100 \times 10^6) \times 36 = 3600 \times 10^6 = 3600 \ {
m MHz} = 3,6 \ {
m GHz}$$
 $F_E = (100 \times 10^6) \times 27 = 2700 \times 10^6 = 2700 \ {
m MHz} = 2,7 \ {
m GHz}$

- Fréquences max. grâce aux Turbo TBT2 et TBMT3 (en MHz)
 - Max Turbo Frequency $(F_{M2P} \text{ et } F_{M2E})$ $F_{M2P} = 3600 + (13 \times 100) = 4900 \text{ MHz} = 4,9 \text{ GHz}$ $F_{M2E} = 2700 + (11 \times 100) = 3800 \text{ MHz} = 3,8 \text{ GHz}$
 - Turbo Boost Max Technology 3.0 (F_{M3}) $F_{M3} = 3600 + (14 \times 100) = 5000 \text{ MHz} = 5 \text{ GHz}$
- 5 Taille de la mémoire physique adressable
 - Mémoire vive

 — "bibliothèque" dont chaque emplacement, repéré par une une adresse, permet de stocker un octet;
 - Une adresse = un nombre binaire \rightarrow il y a autant d'adresses que de nombres binaires représentables

Exercices sur les bus de communication - Corrections

1 Bus Intel DMI 4.0 (suite)

- Taille de la mémoire physique adressable (suite)
 - Nombre d'adresses défini par le nombre de bits utilisés :
 - 1 bits \rightarrow 2¹ = 2 adresses possibles \Rightarrow 0 et 1;
 - 2 bits \rightarrow 2² = 4 adresses possibles \Rightarrow 00, 01, 10 et 11;
 - 3 bits $\rightarrow 2^3 = 8$ addresses possibles \Rightarrow 000, 001, ..., 110, 111;
 - etc.:
 - 39 bits $\rightarrow 2^{39}$ adresses physiques.
 - Taille de la mémoire physique adressable $= 2^{39}$ octets (une adresse par octet)
 - Soit 512 Gio en unités en puissances de 2;
 - Soit \approx 549,756 Go en puissances de 10.
 - Remarques :
 - Généralement un SE ne gère pas autant de mémoire;
 - Habituellement c'est de l'ordre des Gio ou quelques dizaines de Tio avec dans ce cas plusieurs processeurs;
 - Les périphériques se voient également attribués des adresses.