Линейная алгебра

Аналитическая геометрия

Выполнили: Каренин Константин Темиров Тимур Гонин Сергей

Группа: М3104

Преподаватель: Сарычев Павел

Университет ИТМО

1 В основании призмы $1 \ ABCDA_1B_1C_1D_1$ лежит ромб с острым углом $A=60^\circ$. Точка K лежит на продолжении ребра AB за точку B, причем угол ADK прямой. Найти координаты точки пространства в системе координат $A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AA_1},$ если известны ее координаты x', y', z' в системе координат $K, \overrightarrow{KA}, \overrightarrow{KD}, \overrightarrow{KC_1}$

На всех графиках точки A_1, B_1, C_1, D_1 подписаны как E, F, G, H соответственно Тело в пространстве:

Система координат $A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AA_1}$:

Система координат $K, \overrightarrow{KA}, \overrightarrow{KD}, \overrightarrow{KC_1}$:

Обе системы координат:

По теореме о катете лежащем против угла в 30 градусов следует что:

$$AD = \frac{1}{2}AK$$

$$AB + \tilde{B}K = AK$$

$$AB = AD$$

$$AD + BK = AK$$

$$AD + BK = AK$$

$$BK = AK - AD = \frac{1}{2}AK$$

Пусть точка O имеет координы (x',y',z'), тогда найдем ради $\overrightarrow{AO}=x'\overrightarrow{AB}+y'\overrightarrow{AD}+z'\overrightarrow{AA_1}$ Выразим базисные векторы первого базиза через векторы второго

$$\begin{cases} \overrightarrow{AB} = -\frac{1}{2}\overrightarrow{KA} \\ \overrightarrow{AD} = \overrightarrow{KD} - \overrightarrow{KA} \\ \overrightarrow{AA_1} = \overrightarrow{KC_1} - \overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{KC_1} - \overrightarrow{KD} + 3\overrightarrow{KA} \end{cases}$$

$$\overrightarrow{AO} = -\overrightarrow{KA} + \overrightarrow{KO}$$

$$\overrightarrow{KO} = \overrightarrow{AO} - \overrightarrow{KA} = -\overrightarrow{KA} + x'\overrightarrow{AB} + y'\overrightarrow{AD} + z'\overrightarrow{AA_1} = -\overrightarrow{KA} - \frac{1}{2}x'\overrightarrow{KA} + y'\overrightarrow{KD} - y'\overrightarrow{KA} - z'\overrightarrow{KC_1} + 3z'\overrightarrow{KA} = \overrightarrow{KA}(-1 - \frac{1}{2}x' - y' + 3z') + (y' - z')\overrightarrow{KD} + z'\overrightarrow{KC_1}$$

$$O(-1 - \frac{1}{2}x' - y' + 3z', y' - z', z')$$

Для проверки построим точку X:

Переведя её координаты из системы координат $K, \overrightarrow{KA}, \overrightarrow{KD}, \overrightarrow{KC_1}$ в систему координат $A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AA_1}$, заметим что вычисленные координаты совпадают с реальными, значит всё верно

Составьте уравнение геометрического места центров окружностей, проходящих через точку M(3,4) и касающихся оси абсцисс

Изобразим условие задачи:

Радиус и центр окружности: Поскольку окружность касается оси абсцисс, ее радиус равен абсолютному значению ординаты ее центра. Пусть C(x,y) - центр такой окружности. Тогда радиус R=|y|. Прохождение через точку M(3,4): Расстояние от центра C(x,y) до точки M(3,4) должно быть равно радиусу окружности. Следовательно, мы можем использовать уравнение окружности для этого условия: $(x-3)^2 +$ $(y-4)^2 = R^2$

Решим уравнение:

$$|OM| = y_0$$

$$\frac{|OM|}{OM} \{3 - x_0, 4 - y_0\}
|OM| = \sqrt{(3 - x_0)^2 + (4 - y_0)^2}
|OM| = y_0^2
(3 - x_0)^2 + (4 - y_0)^2 = y_0^2
y_0 = \frac{1}{8}(3 - x_0)^2 + 2$$
Here

$$|OM| = \dot{y_0^2}$$

$$(3 - x_0)^2 + (4 - y_0)^2 = y_0^2$$

$$y_0 = \frac{1}{8}(3 - x_0)^2 + 2$$

Изобразим множество:

3 Даны T_1 и T_2 – тела, ограниченные поверхностями не выше второго порядка

3.1 Запишите уравнения и названия поверхностей, ограничивающих тело T_1

Заметим, что фигура T_1 состоит из полуокружности, двух параллельных прямых и наклонной прямой. Значит T_1 ограничена цилиндром, шаром и двухполосным гиперболоидом.

$$\begin{cases} \frac{1}{4}(y+6)^2 = x^2 + (z+1)^2 \text{ - двуполосный гиперболоид} \\ x^2 + z^2 = 1 \\ y < 0 \\ x^2 + y^2 + z^2 = 1 \\ y \geq 0 \end{cases}$$
 - шар

3.2 Изобразите тело T_2 и его проекции на координатные плоскости

Изображение в 3х плоскостях:

Проекция на O_{yx} :

Участник	Вклад в %
Каренин Константин	33.(3)
Гонин Сергей	33.(3)
Темиров Тимур	33.(3)