

# **RAB1 – SENSORFUSION User Manual**







### **Versions**

| Version | Date             | Rationale                                                             |
|---------|------------------|-----------------------------------------------------------------------|
| 0.1     | April 04, 2022   | First draft. Author: GDR                                              |
| 1.0     | April 20, 2023   | New structure, software and firmware description is added. Autor: KOA |
| 1.1     | November 3, 2023 | Update of Running a Demo. Author: KOA                                 |

# **Legal Disclaimer**

The evaluation board is for testing purposes only and, because it has limited functions and limited resilience, is not suitable for permanent use under real conditions. If the evaluation board is nevertheless used under real conditions, this is done at one's responsibility; any liability of Rutronik is insofar excluded.



# **Table of Contents**

| Overview                             | 4  |
|--------------------------------------|----|
| Features                             | 4  |
| Component Placement                  | 5  |
| Applicable Boards                    | 5  |
| Hardware                             | 6  |
| I2C Addresses                        | 6  |
| Solder Bridges                       | 6  |
| Fuses                                | 7  |
| Changing the Fuses or Solder Bridges | 8  |
| Board Pinout                         | 8  |
| Software and Firmware                | 9  |
| Getting Started                      | 9  |
| Running a Demo                       | 10 |
| Firmware Examples                    | 13 |
| Production Data                      | 13 |
| Schematics                           | 13 |
| BOM                                  | 13 |
| Mechanical Layout                    | 14 |



### **Overview**

#### **Features**

RAB1-SENSORFUSION is an Arduino shield adapter board for the environment and inertial sensors from Infineon, Sensirion and Bosch evaluation and prototyping.

It is powered via Arduino headers with a single 3.3V supply. No overvoltage, polarity protection or voltage regulator included. All the sensors are configured to work with the I2C interface only, except the DPS310XTSA – it can be used with SPI as well as with I2C [I2C is default]. All the I2C addresses are fixed for all the sensors and cannot be reconfigured. Every particular sensor could be disconnected from the power supply and I2C circuits by unsoldering solder bridges. The interrupts of BMI270 and BMP581 could be connected to almost any Arduino pin using solder bridges configuration or simply using wires [the holes at every pin are provided for that purpose].

- DPS310 Infineon's digital XENSIV<sup>™</sup> barometric pressure sensor.
- BMP581 Bosch's digital pressure sensor.
- SGP40 Sensirion's indoor air quality sensor for VOC measurements.
- BME688 Bosch's digital low power gas, pressure, temperature and humidity sensor with AI.
- SHT41 Sensirion's high-accuracy and low power relative humidity and temperature sensor.
- BMI270 Bosch's 6-axis, smart, low power inertial measurement unit.
- I2C and SPI interface via Arduino compatible ADAM-TECH connectors.
- A Keystone Electronics Test Point connector for a ground signal.



#### **Component Placement**



### **Applicable Boards**

The following Rutronik System Solution boards are compatible with Sensorfusion and can be connected to it to provide the additional functionality.





## Hardware

### **I2C Addresses**

| Designator | Device        | 7-bit Hex I2C Address |
|------------|---------------|-----------------------|
| U1         | DPS310XTSA1   | 0x77                  |
| U2         | SGP40-D-R4    | 0x59                  |
| U3         | BMI270        | 0x68                  |
| U5         | BME688        | 0x76                  |
| U6         | BMP581        | 0x47                  |
| U7         | SHT41-AD1B-R2 | 0x44                  |

# **Solder Bridges**

| Designator | Circuit                                       | Default |
|------------|-----------------------------------------------|---------|
| SB1        | BMI270 INT1 connection with Arduino INT1.     | Closed  |
| SB2        | BMI270 INT2 connection with Arduino INT1.     | Opened  |
| SB3        | BMP581 INT connection with Arduino INT1.      | Opened  |
| SB4        | SB4 BMI270 INT1 connection with Arduino INT2. |         |
| SB5        | SB5 BMI270 INT2 connection with Arduino INT2. |         |
| SB6        | SB6 BMP581 INT connection with Arduino INT2.  |         |
| SB7        | SGP40 I2C SDA connection.                     | Closed  |
| SB8        | SB8 SHT41 +3.3V power supply.                 |         |
| SB9        | SHT41 I2C SCL connection.                     | Closed  |
| SB10       | SGP40 +3.3V power supply.                     | Closed  |
| SB11       | SGP40 I2C SCL connection.                     | Closed  |
| SB12       | BMI270 +3.3V power supply.                    | Closed  |
| SB13       | BMI270 INT1 connection with Arduino INT3.     | Opened  |
| SB14       | BMI270 INT2 connection with Arduino INT3.     | Opened  |
| SB15       | SHT41 I2C SDA connection.                     | Closed  |
| SB16       | BMP581 +3.3V power supply.                    | Closed  |
| SB17       | BMP581 I2C SCL connection.                    | Closed  |
| SB18       | BME688 +3.3V power supply.                    | Closed  |
| SB19       | BMP581 INT connection with Arduino INT3.      | Closed  |
| SB20       | I2C SCL Pull-up resistor R1 enable.           | Closed  |
| SB21       | I2C SDA Pull-up resistor R2 enable.           | Closed  |
| SB22       | BMP581 I2C SDA connection.                    | Closed  |
| SB23       | BMI270 I2C SCL connection.                    | Closed  |
| SB24       | BMI270 I2C SDA connection.                    | Closed  |
| SB25       | BME688 I2C SDA connection.                    | Closed  |
| SB26       | BME688 I2C SCL connection.                    | Closed  |
| SB27       | DPS310 SPI CS connection with Arduino IO.     | Opened  |
| SB28       | DPS310 SPI MISO connection with Arduino IO.   | Opened  |



| SB29 | DPS310 SPI SCK connection with Arduino IO.                | Opened |
|------|-----------------------------------------------------------|--------|
| SB30 | DPS310 +3.3V power supply.                                | Closed |
| SB31 | DPS310 I2C SDA connection.                                | Closed |
| SB32 | DPS310 I2C SCL connection.                                | Closed |
| SB33 | DPS310 SPI MOSI connection with Arduino IO.               | Opened |
| SB34 | SB34 Arduino SPI CS select between P4[3] and P1[3]. Opene |        |
| SB35 | Arduino SPI CS select between P4[3] and P1[3].            | Opened |

The locations of the solder bridges can be found in <u>3D model</u> and <u>assembly drawings</u> of Sensorfusion.



How to find a component on the layout

#### **Fuses**

The RAB1-SENSORFUSION board has only one 2A fast acting fuse F1 in a 1206 package; Part No: CC12H2A-TR "Eaton".



## **Changing the Fuses or Solder Bridges**

The SMD "Chipping Tool" is recommended to use for SMD solder bridges or fuses soldering on the RAB1-SENSORFUSION development board.

### **Board Pinout**





## **Software and Firmware**

#### **Getting Started**

- 1. Register or/and login at <u>Infineon</u> website (myInfineon tab). License generation takes up to several days.
- 2. Download and install the latest version of ModusToolbox™ software.
- 3. Mount the RAB1 SensorFusion board on the RDK2 Arduino headers.
- 4. Ensure the switch SW1 of RDK2 is set to "3.3V" and connect the Micro USB cable (A to Micro B) to "KitProg3". Connect the RDK2 and SENSORFUSION assembly with a PC via cable.
- 5. Follow the procedure described in the paragraph "Running a Demo".





#### **Running a Demo**

- 1. Run Modus Toolbox application.
- 2. Go File New Modus Toolbox Application and wait for a while.



3. Open PSoC 6 block, select RDK2 and press Next.





4. Open Sensing block, check RDK2 SensorFusion Example and press Create.



5. Open Library Manager, press Update and Close (this step is optional).



6. Build and Debug the project.





7. Check the number of KitProg3 COM port in Windows Device Manger.



8. Open **Terminal** tab, press **Open a Terminal**, select the serial port with the number from previous step and press **OK**.



9. The sensor data is refreshed every second in the COM terminal window.



## **Firmware Examples**

All these examples can be found at GitHub.

|                               | This project demonstrates how RAB1-              |
|-------------------------------|--------------------------------------------------|
| RDK3_SensorFusionAdapter_Demo | SENSORFUSION adapter board works together        |
|                               | with <u>RDK3</u> .                               |
|                               | This code example demonstrates the Android OS    |
|                               | "CySmart" application's custom BLE service       |
| RDK3_BLE_SensorHub            | "Sensor Hub". The accelerometer, barometer,      |
|                               | thermometer, and battery voltage data may be     |
|                               | monitored using this service.                    |
| DDK2 DAD4                     | This firmware example running on the RDK2        |
| RDK2_RAB1-                    | initiates and tests all the sensors on the RAB1- |
| SENSORFUSION_Demo             | SENSORFUSION board.                              |

## **Production Data**

#### **Schematics**

You'll find the schematics of Sensorfusion here.

#### **BOM**

You'll find the **BOM** for Sensorfusion here.



## **Mechanical Layout**

View from Front side



View from Left side





