Title

D. Zack Garza

Thursday 20th August, 2020

Contents

1 Thursday, August 20

1

1 Thursday, August 20

References: https://www.daniellitt.com/tale-cohomology

Prerequisites:

- Homological Algebra
 - Abelian Categories
 - Derived Functors
 - Spectral Sequences (just exposure!)
- Sheaf theory and sheaf cohomology
- Schemes (Hartshorne II and III)

Outline/Goals:

- Basics of etale cohomology
 - Etale morphism
 - Grothendieck topologies
 - The etale topology
 - Etale cohomology and the basis theorems
 - Etale cohomology of curves
 - Comparison theorems to singular cohomology
 - Focused on the case where coefficients are a constructible sheaf.
- Prove the Weil Conjectures (more than one proof)
 - Proving the Riemann Hypothesis for varieties over finite fields
 - One of the greatest pieces of 20th century mathematics!
- Topics
 - Weil 2 (Strengthening of RH, used in practice)
 - Formality of algebraic varieties (topological features unique to varieties)
 - Other things (monodromy, refer to Katz' AWS notes)

What is Etale Cohomology? Suppose X/\mathbb{C} is a quasiprojective variety: a finite type separated integral \mathbb{C} -scheme.

If you take the complex points, it naturally has the structure of a complex analytic space $X(\mathbb{C})^{\mathrm{an}}$: you can give it the Euclidean topology, which is much finer than the Zariski topology.

For a nice topological space, we can associate the singular cohomology $H^i(X(\mathbb{C})^{\mathrm{an}}, \mathbb{Z})$, which satisfies several nice properties:

- Finitely generated Z-modules
- Extra Hodge structure when tensored up to \mathbb{C} (same as \mathbb{C} coefficients)
- Cycle classes (i.e. associate to a subvariety a class in cohomology)

Goal of etale cohomology: do something similar for much more general "nice" schemes. Note that some of these properties are special to complex varieties

E.g. finitely generated: not true for a random topological space

We'll associate X a "nice scheme" $\rightsquigarrow H^i(X_{\operatorname{et}}, \mathbb{Z}/\ell^n\mathbb{Z})$. Take the inverse limit over all n to obtain the ℓ -adic cohomology $H^i(X_{\operatorname{et}}, \mathbb{Z}_{\ell})$. You can tensor with \mathbb{Q} to get something with \mathbb{Q}_{ℓ} coefficients. And as in singular cohomology, you can also "twisted coefficients"