Demand Estimation for Subscription Models

Identifying Willingness to Pay without Price Variation

Vineet Kumar

Yale University, USA

Summer Institute in Competitive Strategy
UC Berkeley, CA
June 2023

- Subscription market is fast growing and potentially huge
 - ullet Growth rate > 100% each year in the past 5 years
 - Multibillion revenue per year
 - Across a wide range of product categories (digital + physical)
 - Pay upfront and consume over time

Frontier Airlines Now Has an Unlimited Pass for Summer — Here's How to Score One

"For people with flexible schedules, this is a terrific opportunity to have a truly epic summer and then some, soaking up rays on the beach, exploring national parks and visiting new cities."

By Alison Fox Updated on February 1, 2023

Subscriptions are an increasingly common way to buy products and services online.

Note: Figures may not sum to 100%, because of rounding.

Which of the following have you purchased or subscribed to in the past 12 months? % of those selecting online subscription-box service that delivers products regularly (eg, Blue Apron, Dollar Shave Club, Ipsy, Stitch Fix), subscription-based media (eg, ClassPass, Hulu, Netflix, Spotify), both, or neither.

E-commerce subscriptions, %		Key consumer Description value		Example companies	
Subscribe for replenishment	32	Save time and money	Replenish the same or similar items Primary categories are commodity items such as razors, vitamins	Amazon Subscribe & Save, Dollar Shave Club, and Ritual	
Subscribe for curation	55	Be surprised by product variety	Receive a curated selection of different items, with varying levels of consumer decision making required Primary categories are apparel, food,	Birchbox, Blue Apron and Stitch Fix	
Subscribe for access	13	Gain exclusive access	Membership provides access and can convey additional "VIP" perks	JustFab, NatureBox, and Thrive Market	
	100%		Primary categories are		

Industry	Product or Service	Price (\$)	Period	Total subscribers
	Netflix	9.99	Monthly	23 million (US)
Media & Entertain- ment	Spotify	9.99	Monthly	70 million (World)
	New York Times	3.75	Weekly	4 million (US)
	MoviePass	19.95	Monthly	2 million
	Kindle Unlimited	9.99	Monthly	_
	Apple News	9.99	Monthly	36 million
Software-as- a-Service	Microsoft Office 365	9.99	Monthly	120 million
	Adobe Creative Cloud (One App)	20.99	Monthly	15 million
	Dropbox Premium	9.99	Monthly	>11 million
Membership Clubs	Costco (Basic)*	60	Annual	94 million
	Amazon Prime	119	Annual	90 million
	24 hour fitness (Gym)	40	Monthly	4 million
eCommerce	Harry's	35	Monthly	-
	Birchbox	15	Monthly	2 million
	Rent the Runway	159	Monthly	6 million
Transportation	Public Transit Pass (MTA)	121	30-days	_
	Uber Ride Pass*	14.99	Monthly	-
	Jetblue "All You can Jet" Pass	699	Monthly	_

• Design product + pricing in subscription markets:

- Design product + pricing in subscription markets:
 - Which plans to offer?

- Design product + pricing in subscription markets:
 - Which plans to offer?
 - What feature or value dimensions to offer in each plan?

- Design product + pricing in subscription markets:
 - Which plans to offer?
 - What feature or value dimensions to offer in each plan?
 - How to price the plans?

- Design product + pricing in subscription markets:
 - Which plans to offer?
 - What feature or value dimensions to offer in each plan?
 - How to price the plans?
 - How to design plans for specific demographic segments (e.g. students).

- Design product + pricing in subscription markets:
 - Which plans to offer?
 - What feature or value dimensions to offer in each plan?
 - How to price the plans?
 - How to design plans for specific demographic segments (e.g. students).
- Everything relies on knowing the distribution of willingness to pay (WTP) for subscription service.

- Design product + pricing in subscription markets:
 - Which plans to offer?
 - What feature or value dimensions to offer in each plan?
 - How to price the plans?
 - How to design plans for specific demographic segments (e.g. students).
- Everything relies on knowing the distribution of willingness to pay (WTP) for subscription service.
 - Demand curve

- Design product + pricing in subscription markets:
 - Which plans to offer?
 - What feature or value dimensions to offer in each plan?
 - How to price the plans?
 - How to design plans for specific demographic segments (e.g. students).
- Everything relies on knowing the distribution of willingness to pay (WTP) for subscription service.
 - Demand curve
 - Elasticities

• WTP has been a topic of interest in marketing and economics

- WTP has been a topic of interest in marketing and economics
- Conjoint typically helps in figuring out valuation or part-worths for attributes (Green and Rao, 1971)

- WTP has been a topic of interest in marketing and economics
- Conjoint typically helps in figuring out valuation or part-worths for attributes (Green and Rao, 1971)
- Revealed preference stream uses transaction data for demand estimation, with individual data (Guadagni and Little 1983) or aggregate data (Berry 1994, BLP 1995)

- WTP has been a topic of interest in marketing and economics
- Conjoint typically helps in figuring out valuation or part-worths for attributes (Green and Rao, 1971)
- Revealed preference stream uses transaction data for demand estimation, with individual data (Guadagni and Little 1983) or aggregate data (Berry 1994, BLP 1995)
- Comprehensive Survey: Breidert (2007)

- WTP has been a topic of interest in marketing and economics
- Conjoint typically helps in figuring out valuation or part-worths for attributes (Green and Rao, 1971)
- Revealed preference stream uses transaction data for demand estimation, with individual data (Guadagni and Little 1983) or aggregate data (Berry 1994, BLP 1995)
- Comprehensive Survey: Breidert (2007)

- WTP has been a topic of interest in marketing and economics
- Conjoint typically helps in figuring out valuation or part-worths for attributes (Green and Rao, 1971)
- Revealed preference stream uses transaction data for demand estimation, with individual data (Guadagni and Little 1983) or aggregate data (Berry 1994, BLP 1995)
- Comprehensive Survey: Breidert (2007)

What's common to above?

All these cases have price variation!

• Models in marketing and economics typically focus on Purchase

- Models in marketing and economics typically focus on Purchase
- Consumption data typically an afterthought often unobserved

- Models in marketing and economics typically focus on Purchase
- Consumption data typically an afterthought often unobserved
- Vast majority of applications in consumer packaged goods where usage is not observed by the researcher

- Models in marketing and economics typically focus on Purchase
- Consumption data typically an afterthought often unobserved
- Vast majority of applications in consumer packaged goods where usage is not observed by the researcher
 - Gupta (1988), Sun (2005), Hendel and Nevo (2006a, 2006b...)

- Models in marketing and economics typically focus on Purchase
- Consumption data typically an afterthought often unobserved
- Vast majority of applications in consumer packaged goods where usage is not observed by the researcher
 - Gupta (1988), Sun (2005), Hendel and Nevo (2006a, 2006b...)
- Consumption in above is inferred, treated like nuisance

- Models in marketing and economics typically focus on Purchase
- Consumption data typically an afterthought often unobserved
- Vast majority of applications in consumer packaged goods where usage is not observed by the researcher
 - Gupta (1988), Sun (2005), Hendel and Nevo (2006a, 2006b...)
- Consumption in above is inferred, treated like nuisance
 - Limited exceptions with consumption data: Nevo, Turner and Williams (2016), Huang, Khwaja and Sudhir (2015)

- Models in marketing and economics typically focus on Purchase
- Consumption data typically an afterthought often unobserved
- Vast majority of applications in consumer packaged goods where usage is not observed by the researcher
 - Gupta (1988), Sun (2005), Hendel and Nevo (2006a, 2006b...)
- Consumption in above is inferred, treated like nuisance
 - Limited exceptions with consumption data: Nevo, Turner and Williams (2016), Huang, Khwaja and Sudhir (2015)

- Models in marketing and economics typically focus on Purchase
- Consumption data typically an afterthought often unobserved
- Vast majority of applications in consumer packaged goods where usage is not observed by the researcher
 - Gupta (1988), Sun (2005), Hendel and Nevo (2006a, 2006b...)
- Consumption in above is inferred, treated like nuisance
 - Limited exceptions with consumption data: Nevo, Turner and Williams (2016), Huang, Khwaja and Sudhir (2015)

Big Picture Idea:

Leverage high frequency usage data for identification.

Usage is captured at higher frequency than purchase.

Main contribution:

 Novel method to identify & estimate the distribution of WTP given customer characteristics and product features when only usage variation is present.

- Novel method to identify & estimate the distribution of WTP given customer characteristics and product features when only usage variation is present.
- We also obtain the conditional WTP distribution (so, we can get WTP based on observables like gender / age / student etc.)

- Novel method to identify & estimate the distribution of WTP given customer characteristics and product features when only usage variation is present.
- We also obtain the conditional WTP distribution (so, we can get WTP based on observables like gender / age / student etc.)
- No existing research that demonstrates how to obtain the WTP distribution in the absence of price variation.

- Novel method to identify & estimate the distribution of WTP given customer characteristics and product features when only usage variation is present.
- We also obtain the conditional WTP distribution (so, we can get WTP based on observables like gender / age / student etc.)
- No existing research that demonstrates how to obtain the WTP distribution in the absence of price variation.
 - Nevo, Turner and Williams (ECTA, 2016) leverages an "overage charge"

- Novel method to identify & estimate the distribution of WTP given customer characteristics and product features when only usage variation is present.
- We also obtain the conditional WTP distribution (so, we can get WTP based on observables like gender / age / student etc.)
- No existing research that demonstrates how to obtain the WTP distribution in the absence of price variation.
 - Nevo, Turner and Williams (ECTA, 2016) leverages an "overage charge"
 - Gentzkow (2007)...

Research questions

Focus:

Obtain WTP estimates for a subscription service with high frequency usage data

More specifically:

In absence of price variation, under what conditions on usage is it possible to identify distribution of WTP?

Research questions

Focus:

Obtain WTP estimates for a subscription service with high frequency usage data

More specifically:

- In absence of price variation, under what conditions on usage is it possible to identify distribution of WTP?
- Is price variation the same as usage variation or is there additional value?

Research questions

Focus:

Obtain WTP estimates for a subscription service with high frequency usage data

More specifically:

- In absence of price variation, under what conditions on usage is it possible to identify distribution of WTP?
- Is price variation the same as usage variation or is there additional value?
- What demand responses and profits to counterfactual product and pricing choices by the firm can be determined?

With Price Variation – Notation

Cross section data with price variation.

Notation

- *i* indicates a consumer
- Subscription decision: $S_i = 1$ (sub) and = 0 (not).
- WTP: W_i
- Price: P_i

Decision rule:

$$\underbrace{W_i - P_i}_{\text{money-metric}} \text{ vs } \underbrace{\mu = 0}_{\text{money-metric utility}} \Rightarrow$$

$$S_i = \begin{cases} 1, & W_i > P_i \\ 0, & W_i \le P_i. \end{cases}$$

or
$$S_i = \mathbb{I}(W_i > P_i)$$
.

• When $W_i \perp \!\!\! \perp P_i$, for any w in the support of P_i

$$\underbrace{\Pr(W_i > w)} = \underbrace{\Pr(S_i = 1 \mid P_i = w)}.$$

Should we model greater utility and WTP with greater usage? Model is based on microfoundations of usage based on leisure, aggregated over time

• **High frequency Usage:** Consumer has a daily "leisure" time budget, allocated between focal good and everything else

Should we model greater utility and WTP with greater usage? Model is based on microfoundations of usage based on leisure, aggregated over time

- **High frequency Usage:** Consumer has a daily "leisure" time budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget

Should we model greater utility and WTP with greater usage? Model is based on microfoundations of usage based on leisure, aggregated over time

- **High frequency Usage:** Consumer has a daily "leisure" time budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables

Should we model greater utility and WTP with greater usage? Model is based on microfoundations of usage based on leisure, aggregated over time

- **High frequency Usage:** Consumer has a daily "leisure" time budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables
 - Rational expectations (or perfect foresight)

Should we model greater utility and WTP with greater usage? Model is based on microfoundations of usage based on leisure, aggregated over time

- **High frequency Usage:** Consumer has a daily "leisure" time budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables
 - Rational expectations (or perfect foresight)
- Low frequency Purchase: Consumer makes purchase (subscription) decisions every T periods at constant price P

Should we model greater utility and WTP with greater usage? Model is based on microfoundations of usage based on leisure, aggregated over time

- **High frequency Usage:** Consumer has a daily "leisure" time budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables
 - Rational expectations (or perfect foresight)
- Low frequency Purchase: Consumer makes purchase (subscription) decisions every T periods at constant price P
 - Form expectations about future usage in purchase decision

Model is based on microfoundations of usage based on leisure, aggregated over time

 High frequency Usage: Consumer has a daily leisure budget, allocated between focal good and everything else

- High frequency Usage: Consumer has a daily leisure budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget

- High frequency Usage: Consumer has a daily leisure budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables

- High frequency Usage: Consumer has a daily leisure budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables
 - Rational expectations (or perfect foresight)

- High frequency Usage: Consumer has a daily leisure budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables
 - Rational expectations (or perfect foresight)
- Low frequency Purchase: Consumer makes purchase (subscription) decisions every *T* periods at constant price *P*

- High frequency Usage: Consumer has a daily leisure budget, allocated between focal good and everything else
 - Exogenous shifters impact leisure budget
 - Form expectations over the daily leisure process, conditional on observables
 - Rational expectations (or perfect foresight)
- Low frequency Purchase: Consumer makes purchase (subscription) decisions every T periods at constant price P
 - Form expectations about future usage in making purchase decision

Consider the consumer allocating leisure time:

ullet consumer leisure time spent in focal activity, e.g. listening to streaming music q_{it} ,

Consider the consumer allocating leisure time:

- consumer leisure time spent in focal activity, e.g. listening to streaming music q_{it} ,
- Other "leisure" activities (e.g. playing outdoors) q_{0it} .

Consider the consumer allocating leisure time:

- consumer leisure time spent in focal activity, e.g. listening to streaming music q_{it} ,
- Other "leisure" activities (e.g. playing outdoors) q_{0it} .
- Specify a money-metric utility function:

$$u_{it}(q_{it}, q_{0it}) = D_{it}u^{(1)}(q_{it}, q_{0it}; \theta_{im(t)}) + (1 - D_{it})u^{(0)}(q_{0it}; \theta_{im(t)})$$

Consider the consumer allocating leisure time:

- consumer leisure time spent in focal activity, e.g. listening to streaming music q_{it} ,
- Other "leisure" activities (e.g. playing outdoors) q_{0it} .
- Specify a money-metric utility function:

$$u_{it}(q_{it}, q_{0it}) = D_{it}u^{(1)}(q_{it}, q_{0it}; \theta_{im(t)}) + (1 - D_{it})u^{(0)}(q_{0it}; \theta_{im(t)})$$

• $D_{it} \in \{0,1\}$ is an indicator for whether the focal activity is present or absent \implies rationalizes zero usage in many periods

We need to characterize usage at the daily level and relate to the monthly level WTP

ullet Daily leisure is modeled as depending on exogenous factors Z_{it} :

$$\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it},$$

We need to characterize usage at the daily level and relate to the monthly level WTP

ullet Daily leisure is modeled as depending on exogenous factors Z_{it} :

$$\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it},$$

• μ_i is heterogeneous across individuals

We need to characterize usage at the daily level and relate to the monthly level WTP

ullet Daily leisure is modeled as depending on exogenous factors Z_{it} :

$$\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it},$$

- μ_i is heterogeneous across individuals
- Z_{it} includes example variables like weekend or holiday dummy variables or weather

We need to characterize usage at the daily level and relate to the monthly level WTP

• Daily leisure is modeled as depending on exogenous factors Z_{it} :

$$\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it},$$

- μ_i is heterogeneous across individuals
- Z_{it} includes example variables like weekend or holiday dummy variables or weather
- Leisure shocks ε_{it} can be serially correlated (ignore for now)

We need to characterize usage at the daily level and relate to the monthly level WTP

• Daily leisure is modeled as depending on exogenous factors Z_{it} :

$$\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it},$$

- μ_i is heterogeneous across individuals
- Z_{it} includes example variables like weekend or holiday dummy variables or weather
- Leisure shocks ε_{it} can be serially correlated (ignore for now)
- Monthly expected leisure $L_{im} \equiv \sum_{im} (\mu_i + \gamma' Z_{it})$

$$L_{im} \equiv \sum_{t:m(t)=m} (\mu_i + \gamma' Z_{it})$$

Connecting daily usage of focal service to monthly indirect utility:

Theorem (Usage to Indirect Utility)

For any utility function homogeneous of degree 1, the difference between the expected monthly indirect utilities with and without a subscription, W_{im} , satisfies

$$W_{im} = \alpha_{im}L_{im}$$
 or $\ln W_{im} = \ln \alpha_{im} + \ln L_{im}$,

Connecting daily usage of focal service to monthly indirect utility:

Theorem (Usage to Indirect Utility)

For any utility function homogeneous of degree 1, the difference between the expected monthly indirect utilities with and without a subscription, W_{im} , satisfies

$$W_{im} = \alpha_{im} L_{im}$$
 or $\ln W_{im} = \ln \alpha_{im} + \ln L_{im}$,

• The daily usage of the subscription satisfies

$$Q_{it} = D_{it}r_{im(t)}\ell_{it},$$

Connecting daily usage of focal service to monthly indirect utility:

Theorem (Usage to Indirect Utility)

For any utility function homogeneous of degree 1, the difference between the expected monthly indirect utilities with and without a subscription, W_{im} , satisfies

$$W_{im} = \alpha_{im}L_{im}$$
 or $\ln W_{im} = \ln \alpha_{im} + \ln L_{im}$,

• The daily usage of the subscription satisfies

$$Q_{it} = D_{it}r_{im(t)}\ell_{it},$$

• What class of utility functions are included?

Connecting daily usage of focal service to monthly indirect utility:

Theorem (Usage to Indirect Utility)

For any utility function homogeneous of degree 1, the difference between the expected monthly indirect utilities with and without a subscription, W_{im} , satisfies

$$W_{im} = \alpha_{im}L_{im}$$
 or $\ln W_{im} = \ln \alpha_{im} + \ln L_{im}$,

The daily usage of the subscription satisfies

$$Q_{it} = D_{it} r_{im(t)} \ell_{it},$$

- What class of utility functions are included?
 - Cobb-Douglas, CES, perfect substitutes, perfect complements,

Leontief

◆ロト ◆個ト ◆意ト ◆意ト 美国 めんの

Subscription Decisions

We know that WTP is: $W_{im} = \alpha_{im} L_{im}$

• account of consumer heterogeneity, both observed X_{im} and unobserved U_{im} . Consider a linear projection of $\ln \alpha_{im}$ onto X_{im} as:

$$\ln \alpha_{im} = \beta_0 + \beta_1' X_{1im} + U_{im},$$

where
$$\beta' = (\beta_0, \beta'_1)$$
 and $X'_{im} = (1, X'_{1im})$.

Subscription Decisions

We know that WTP is: $W_{im} = \alpha_{im} L_{im}$

• account of consumer heterogeneity, both observed X_{im} and unobserved U_{im} . Consider a linear projection of $\ln \alpha_{im}$ onto X_{im} as:

$$\ln \alpha_{im} = \beta_0 + \beta_1' X_{1im} + U_{im},$$

where
$$\beta' = (\beta_0, \beta'_1)$$
 and $X'_{im} = (1, X'_{1im})$.

• Subscription choice $S_{im} = \mathbb{I}(\ln W_{im} > \ln P)$ becomes

$$S_{im} = \mathbb{I}(\ln L_{im} + \beta' X_{im} - \ln P + U_{im} > 0).$$

Exogenous Variation

What exogenous variations are required for identification?

Assumption (Exogenous Variation)

$$\mathbf{Z}_{im} \perp \mathcal{U}_{im} \mid (X_{im}, \mu_i),$$

• Above implies monthly expected leisure $L_{im} \perp \!\!\! \perp U_{im} \mid (X_{im}, \mu_i)$ because the randomness of L_{im} only comes from \mathbf{Z}_{im} and μ_i .

• Usage model [High frequency]:

- Usage model [High frequency]:
 - ullet Leisure shifters \Longrightarrow Daily leisure \Longrightarrow Usage

- Usage model [High frequency]:
 - ullet Leisure shifters \Longrightarrow Daily leisure \Longrightarrow Usage
 - Usage / Leisure parameters are separately identified.

- Usage model [High frequency]:
 - ullet Leisure shifters \Longrightarrow Daily leisure \Longrightarrow Usage
 - Usage / Leisure parameters are separately identified.
- Purchase model [Low frequency]:

- Usage model [High frequency]:
 - ullet Leisure shifters \Longrightarrow Daily leisure \Longrightarrow Usage
 - Usage / Leisure parameters are separately identified.
- Purchase model [Low frequency]:
 - Expectation of Leisure shifters ⇒ Aggregate Leisure

- Usage model [High frequency]:
 - ullet Leisure shifters \Longrightarrow Daily leisure \Longrightarrow Usage
 - Usage / Leisure parameters are separately identified.
- Purchase model [Low frequency]:
 - Expectation of Leisure shifters ⇒ Aggregate Leisure
 - Aggregate Leisure + Consumer-level variables (vary across

Model Components – Overview

• We capture across consumer heterogeneity in a couple of ways:

Model Components – Overview

- We capture across consumer heterogeneity in a couple of ways:
 - Usage: Unobservable heterogeneity captured by μ_i

Model Components – Overview

- We capture across consumer heterogeneity in a couple of ways:
 - Usage: Unobservable heterogeneity captured by μ_i
 - Purchase: Observed heterogeneity captured by X_{im} and Unobserved heterogeneity by U_{im}

Main Result

Theorem (Parametric Identification of WTP)

We have the following results when $U_{im} \mid (X_{im}, \mu_i) \sim \mathcal{N}(\sigma_{u,\mu}\mu_{im}^*, \sigma_u^2)$

- The unknown parameters $(\beta, \sigma_u, \sigma_{u,u})$ are identified.
- The distribution of WTP is identified, and

$$F_W(w|X_{im},\mu_i,L_{im}) = \Phi\left[\frac{1}{\sigma_u}\left(\ln w - \ln L_{im} - \beta'X_{im} - \sigma_{u,\mu}\mu_{im}^*\right)\right].$$

We do not need this parametric assumption above.

Boundary conditions of method

What happens without usage data? Subscription equation

$$S_{im} = \mathbb{I}(\ln L_{im} - \ln P + \beta' X_{im} + U_{im} > 0)$$

= $\mathbb{I}[(\beta_0 - \ln P) + \beta'_1 X_{1im} + (\ln L_{im} + U_{im}) > 0]$

Cannot distinguish between L_{im} and U_{im}

Boundary conditions of method

• What happens without usage data? Subscription equation

$$S_{im} = \mathbb{I}(\ln L_{im} - \ln P + \beta' X_{im} + U_{im} > 0)$$

= $\mathbb{I}[(\beta_0 - \ln P) + \beta'_1 X_{1im} + (\ln L_{im} + U_{im}) > 0]$

Cannot distinguish between L_{im} and U_{im}

ullet Without exogenous shifters Z_{it} , again this approach will not work

Boundary conditions of method

• What happens without usage data? Subscription equation

$$S_{im} = \mathbb{I}(\ln L_{im} - \ln P + \beta' X_{im} + U_{im} > 0)$$

= $\mathbb{I}[(\beta_0 - \ln P) + \beta'_1 X_{1im} + (\ln L_{im} + U_{im}) > 0]$

Cannot distinguish between L_{im} and U_{im}

- ullet Without exogenous shifters Z_{it} , again this approach will not work
- Need both usage data and exogenous shifters

Is Usage Variation the Same as Price Variation

• If we want to identify switching costs, no amount of usage variation is sufficient...

Switching Cost

Need at least 2 price levels to identify switching cost.

Is Usage Variation the Same as Price Variation

- If we want to identify switching costs, no amount of usage variation is sufficient..
 - Why?

Switching Cost

Need at least 2 price levels to identify switching cost.

Is Usage Variation the Same as Price Variation

- If we want to identify switching costs, no amount of usage variation is sufficient..
 - Why?
- Consider a more general subscription choice with δ :

$$S_{im} = \mathbb{I}(\ln L_{im} - \ln(P_{im} - \delta' X_{2im}) + \beta_0 + \beta_1' X_{1im} + U_{im} > 0).$$

Switching Cost

Need at least 2 price levels to identify switching cost.

• YBOX is a music streaming service targeting Southeast Asia.

- YBOX is a music streaming service targeting Southeast Asia.
- 1 million users data (Jan 2015–Feb 2017):

- YBOX is a music streaming service targeting Southeast Asia.
- 1 million users data (Jan 2015–Feb 2017):
 - subscription history

- YBOX is a music streaming service targeting Southeast Asia.
- 1 million users data (Jan 2015–Feb 2017):
 - subscription history
 - daily # of seconds listening music with the service

- YBOX is a music streaming service targeting Southeast Asia.
- 1 million users data (Jan 2015–Feb 2017):
 - subscription history
 - daily # of seconds listening music with the service
 - basic demographics (age and gender)

- YBOX is a music streaming service targeting Southeast Asia.
- 1 million users data (Jan 2015–Feb 2017):
 - subscription history
 - daily # of seconds listening music with the service
 - basic demographics (age and gender)
- No price variation for monthly music streaming service over time

- YBOX is a music streaming service targeting Southeast Asia.
- 1 million users data (Jan 2015-Feb 2017):
 - subscription history
 - daily # of seconds listening music with the service
 - basic demographics (age and gender)
- No price variation for monthly music streaming service over time
- Average daily listening hours range from 45 mins to > 6 hours

- YBOX is a music streaming service targeting Southeast Asia.
- 1 million users data (Jan 2015-Feb 2017):
 - subscription history
 - daily # of seconds listening music with the service
 - basic demographics (age and gender)
- No price variation for monthly music streaming service over time
- Average daily listening hours range from 45 mins to > 6 hours
- Average monthly listening hours range from less than 1 hour to more than 150 hours.

Estimation – Usage

• Leisure: $\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it}$ and Usage $Q_{it} = D_{it} r_{im(t)} \ell_{it}$

Estimation – Usage

- Leisure: $\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it}$ and Usage $Q_{it} = D_{it} r_{im(t)} \ell_{it}$
- Step 1: Estimate the usage model using finite mixture heterogeneity. Let $(\hat{\mu}_i, \hat{r}_{im}, \hat{\gamma}')$ be the estimates of (μ_i, r_{im}, γ')

Estimation – Usage

- Leisure: $\ell_{it} = \mu_i + \gamma' Z_{it} + \varepsilon_{it}$ and Usage $Q_{it} = D_{it} r_{im(t)} \ell_{it}$
- Step 1: Estimate the usage model using finite mixture heterogeneity. Let $(\hat{\mu}_i, \hat{r}_{im}, \hat{\gamma}')$ be the estimates of (μ_i, r_{im}, γ')
- Step 2: Estimate monthly expected leisure L_{im} by substituting the unknown parameters (μ_i, γ') with the estimates $(\hat{\mu}_i, \hat{\gamma}')$. Denote this estimator by \hat{L}_{im} .

Estimation – Subcription

WTP for the service: $W_{im} = \alpha_{im} L_{im}$

$$\ln \alpha_{im} = \beta_0 + \beta_1' X_{1im} + U_{im}$$

$$S_{im} = \mathbb{I}(\ln L_{im} + \beta' X_{im} - \ln P + U_{im} > 0)$$

• Step 3: For each month m, implement a linear regression of $\hat{\mu}_i$ on X_{im} and obtain the residuals $\hat{\mu}_{im}^*$. These residuals are the estimates of μ_{im}^* .

Estimation – Subcription

WTP for the service: $W_{im} = \alpha_{im} L_{im}$

$$\ln \alpha_{im} = \beta_0 + \beta_1' X_{1im} + U_{im}$$

$$S_{im} = \mathbb{I}(\ln L_{im} + \beta' X_{im} - \ln P + U_{im} > 0)$$

- **Step 3:** For each month m, implement a linear regression of $\hat{\mu}_i$ on X_{im} and obtain the residuals $\hat{\mu}_{im}^*$. These residuals are the estimates of μ_{im}^* .
- Step 4: Run the probit regression of S_{im} on $\ln(\hat{L}_{im}/P)$, X_{im} , and $\hat{\mu}_{im}^*$. The probit regression provides estimates of σ_u^{-1} , β/σ_u , $\sigma_{u,\mu}/\sigma_u$. Then the estimates of β and $\sigma_{u,\mu}$ are obtained easily.

	All Users	Never Cancelled	Ever Cancelled
Monthly Usage (Hours)	41.73	44.25	18.48
	(50.65)	(52.07)	(24.76)
Daily Usage (Hours): Weekend	1.31	1.39	0.57
	(2.21)	(2.27)	(1.41)
Daily Usage (Hours): Weekdays	1.39	1.47	0.62
	(2.28)	(2.35)	(1.30)
Age	30.91	31.12	29.69
	(9.09)	(9.32)	(7.56)
Female (%)	42.00	42.35	40.00
Number of Users	300	255	45

Figure: Estimates of the Distribution of WTP for the Monthly Plan

	Parameters	Estimates	Std Err
	$\mu_{Type\ 1}$	0.8279	(0.0471)
	r_{Type1}	2.1130	(0.1566)
	$\gamma_{Holiday,Type1}$	0.0297	(0.0157)
	$\gamma_{Weekend,Type1}$	0.0257	(0.0142)
Usage eq.	μ_{Type2}	0.8339	(0.0539)
	r_{Type2}	5.3138	(0.9502)
	$\gamma_{Holiday,Type2}$	-0.0365	(0.0223)
	$\gamma_{Weekend,Type2}$	-0.0369	(0.0251)
	$\gamma_{Humidity}$	-0.0010	(0.0005)
	$\gamma_{Precipitation}$	0.0004	(0.0002)
Subscription eq.	eta_0/σ_u	5.9226	(1.4853)
	$1/\sigma_u$	2.5261	(0.7895)
	eta_{Age}/σ_u	0.0115	(0.0039)
	β_{Female}/σ_u	0.1095	(0.0698)
	$\sigma_{u,\mu}/\sigma_u$	-6.2721	(4.0592)

Segment	Price I	Elasticity	Revenue Max Price	Mean Usage	Median WTP ($\$$)
All Users	-0.31	(0.10)	206	1.37	280.00
Male	-0.33	(0.11)	202	1.43	275.00
Female	-0.27	(0.08)	212	1.29	288.00
$\mathrm{Age} \leq 22$	-0.37	(0.13)	197	1.45	268.00
${\rm Age~2330}$	-0.34	(0.11)	201	1.55	273.00
$\mathrm{Age} > 30$	-0.26	(0.08)	214	1.22	290.00

User Groups	Humidity Only	Precipitation Only	Both
All Users	-0.307	-0.367	-0.366
	(0.098)	(0.106)	(0.105)
Male	-0.332	-0.397	-0.396
	(0.111)	(0.122)	(0.121)
Female	-0.273	-0.326	-0.325
	(0.083)	(0.090)	(0.089)
$\mathrm{Age} \leq 22$	-0.368	-0.439	-0.437
	(0.129)	(0.142)	(0.141)
Age~23–30	-0.339	-0.405	-0.403
	(0.114)	(0.125)	(0.124)
Age > 30	-0.261	-0.313	-0.312
	(0.078)	(0.083)	(0.083)

	All Users	Never Cancelled	Ever Cancelled
Monthly Usage (Hours)	41.73	44.25	18.48
	(50.65)	(52.07)	(24.76)
Daily Usage (Hours): Weekend	1.31	1.39	0.57
	(2.21)	(2.27)	(1.41)
Daily Usage (Hours): Weekdays	1.39	1.47	0.62
	(2.28)	(2.35)	(1.30)
Age	30.91	31.12	29.69
	(9.09)	(9.32)	(7.56)
Female (%)	42.00	42.35	40.00
Number of Users	300	255	45

WTP variation with age / college status

-Age < 19 (before college)--Age between 19 and 22 (college)--Age between 23 and 30- Greater 30

Conclusions

Without Price variation, can we obtain WTP?

- A: Qualified Yes.
- What big data on usage tracking can tell us?
 - The distribution of WTP under some restrictions
- Can design counterfactual products and pricing strategies
- Cannot replace the role of price variation, even limited, in identifying switching costs

Strategic Plan Duration

Firms offer plans of different durations, e.g. Amazon offers
 Prime monthly and annual plans

- Firms offer plans of different durations, e.g. Amazon offers
 Prime monthly and annual plans
- What's the distribution of the WTP for the longer / shorter plan?

- Firms offer plans of different durations, e.g. Amazon offers
 Prime monthly and annual plans
- What's the distribution of the WTP for the longer / shorter plan?
- One idea is to examine whether we can use duration effectively as a segmentation device

- Firms offer plans of different durations, e.g. Amazon offers
 Prime monthly and annual plans
- What's the distribution of the WTP for the longer / shorter plan?
- One idea is to examine whether we can use duration effectively as a segmentation device
- When does it work well and when does it not?

Identify interesting mechanisms based on plan duration

• Shorter plans allow flexibility and could increase consumer WTP

- Shorter plans allow flexibility and could increase consumer WTP
 - WTP for Prime might be higher during holiday season, maybe I just buy then?

- Shorter plans allow flexibility and could increase consumer WTP
 - WTP for Prime might be higher during holiday season, maybe I just buy then?
- Longer plans:

- Shorter plans allow flexibility and could increase consumer WTP
 - WTP for Prime might be higher during holiday season, maybe I just buy then?
- Longer plans:
 - Can lock in consumers in the presence of switching costs, firms have to discount

- Shorter plans allow flexibility and could increase consumer WTP
 - WTP for Prime might be higher during holiday season, maybe I just buy then?
- Longer plans:
 - Can lock in consumers in the presence of switching costs, firms have to discount
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity

• Longer plans:

- Longer plans:
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity

- Longer plans:
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity
 - Firm is deciding between 1 month plan and 2 month plans

- Longer plans:
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity
 - Firm is deciding between 1 month plan and 2 month plans
 - Consumer A has high utility v_H in month 1 and low utility v_L in month 2, so is HL type

- Longer plans:
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity
 - Firm is deciding between 1 month plan and 2 month plans
 - Consumer A has high utility v_H in month 1 and low utility v_L in month 2, so is HL type
 - If we offer a 2 month plan, then both consumers should have WTP: $(v_L + v_H)$

- Longer plans:
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity
 - Firm is deciding between 1 month plan and 2 month plans
 - Consumer A has high utility v_H in month 1 and low utility v_L in month 2, so is HL type
 - If we offer a 2 month plan, then both consumers should have WTP: $(v_L + v_H)$
 - Might make it easier to extract surplus

- Longer plans:
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity
 - Firm is deciding between 1 month plan and 2 month plans
 - Consumer A has high utility v_H in month 1 and low utility v_L in month 2, so is HL type
 - If we offer a 2 month plan, then both consumers should have WTP: $(v_L + v_H)$
 - Might make it easier to extract surplus
 - But, wait . . . including 3rd month ⇒ heterogeneity ↑

- Longer plans:
 - (Bundling-like) Pool over time periods and can help reduce across consumer heterogeneity
 - Firm is deciding between 1 month plan and 2 month plans
 - Consumer A has high utility v_H in month 1 and low utility v_L in month 2, so is HL type
 - If we offer a 2 month plan, then both consumers should have WTP: $(v_L + v_H)$
 - Might make it easier to extract surplus
 - ullet But, wait ... including 3rd month \Longrightarrow heterogeneity \uparrow
- Can we characterize the optimal duration as a function of heterogeneity distribution?

A bigger picture (of a fridge)

• Essentially, we need the separation of purchase (subscription) and consumption (usage).

A bigger picture (of a fridge)

- Essentially, we need the separation of purchase (subscription) and consumption (usage).
- Such separation also holds in packaged goods (beer)—but we did not track the usage.