	Abundance estimate		Abundance Estimate		
Scenario	precsision	Abundance estimate bias	performance	Rank (1-4)	Value (0-100)
			No estimates could be		
	Estimate not very	Abundance estimates more	made (Performance =		
Baseline	precise CV > 25%	than 5000 fish off	0)	4	0
Abundance			No estimates could be		
estimate	Estimate very precise	Abundance estimates more	made (Performance =		
precsision	CV ~ 1%	than 5000 fish off	0)		
			No estimates could be		
Abundance	Estimate not very	Abundance estimates within	made (Performance =		
estimate bias	precise CV > 25%	10 fish of true abundance	0)		
Abundance					
Estimate	Estimate not very	Abundance estimates more	All estimates made		
performance	precise CV > 25%	than 5000 fish off	(Performance = 100)		

- 1) Rank each of the the rows with the baseline the worst rank. For rankings 1 is best and 4 is the worst.
- 2) Assign the scenario that you ranked 1 with a value of 100
- 3) Assign a value, from 0 to 100, to the remaining scenarios (0 is worst and 100 is the best).
- ** Values do not need to sum to 100 but do need to increase with ranking.
- ** Do not change the shaded cells in the table above

		Probability of having		
	Probablity to detect age-1	sufficient catch to		
Scenario	recruits given recruitment	estimate occupancy	Rank (1-3)	Value (0-100)
	Probability to detect	Probability of having		
	recruitment that occurred is	enough catch to run		
Baseline	0	the analysis is 0	3	0
Probablity to detect				
age-1	Probability to detect	Probability of having		
recruits given	recruitment that occurred is	enough catch to run		
recruitment	100	the analysis is 0		
Probability of having	Probability to detect	Probability of having		
sufficient catch to	recruitment that occurred is	enough catch to run		
estimate occupancy	0	the analysis is 100		

- 1) Rank each of the the rows with the baseline the worst rank. For rankings 1 is best and 2 is the worst.
- 2) Assign the scenario that you ranked 1 with a value of 100
- 3) Assign a value, from 0 to 100, to the remaining scenarios (0 is worst and 100 is the best).
- ** Values do not need to sum to 100 but do need to increase with ranking.
- ** Do not change the shaded cells in the table above

Scenario	Trend estimate precsision	Trend estimate bias	Trend Estimate performance	Rank (1-4)	Value (0-100)
	Variation and address				
	Variation around estimates				
	of pallid sturegon				
	population trend is large,		No pallid sturgeon population		
	coefficient of variation	Estimates of trend are biased,	trend estimates could be		
Baseline	exceeding 50%	greater than 30%	made (Performance = 0)	4	0
	Variation around estimates				
	of pallid sturegon				
	population trend is small,		No pallid sturgeon population		
Trend estimate	coefficent of variation is	Estimates of trend are biased,	trend estimates could be		
precsision	10% or less	greater than 30%	made (Performance = 0)		
	Variation around estimates	Estimates of pallid sturegon			
	of pallid sturegon	population trend are unbiased			
	population trend is large,	biased, estimates expected to	No pallid sturgeon population		
Trend estimate	coefficient of variation	be within 1% of the population	trend estimates could be		
bias	exceeding 50%	trend	made (Performance = 0)		
	Variation around estimates				
	of pallid sturegon				
	population trend is large,				
Trend Estimate	coefficient of variation	Estimates of trend are biased,	All estimates made		
performance	exceeding 50%	greater than 30%	(Performance = 100)		

- 1) Rank each of the the rows with the baseline the worst rank. For rankings 1 is best and 4 is the worst.
- 2) Assign the scenario that you ranked 1 with a value of 100
- 3) Assign a value, from 0 to 100, to the remaining scenarios (0 is worst and 100 is the best).
- ** Values do not need to sum to 100 but do need to increase with ranking.
- ** Do not change the shaded cells in the table above

		Quantify PS		Maintain		
	Quantify PS	population trend	Provide	compatibility		
	recruitment to	(natural and	relevant PS	with legacy		
Scenario	age-1	hatchery origin)	model inputs	PSPAP data	Rank (1-5)	Value (0-100)
	Monitoring	Monitoring	Monitoring			
	program cannot	program has no	program	Monitoring		
	detect	power to annual	estimates no	program is not		
	recruitment	trend accurately,	pallid sturgeon	comparable to		
	reliably even if it	precisely and	population	previous PSPAP		
Baseline	occurred	reliably	model inputs	data	5	0
	Monitoring	Monitoring	Monitoring			
	program can	program has no	program	Monitoring		
	detect	power to annual	estimates no	program is not		
Quantify PS	recruitment	trend accurately,	pallid sturgeon	comparable to		
recruitment to age-	reliably even if it	precisely and	population	previous PSPAP		
1	occurred	reliably	model inputs	data		
	Monitoring	Monitoring	Monitoring			
	program cannot	program can	program	Monitoring		
Quantify PS	detect	estimate annual	estimates no	program is not		
population trend	recruitment	trend accurately,	pallid sturgeon	comparable to		
(natural and	reliably even if it	precisely and	population	previous PSPAP		
hatchery origin)	occurred	reliably	model inputs	data		
	Monitoring	Monitoring	Monitoring			
	program cannot	program has no	program	Monitoring		
	detect	power to annual	estimates all	program is not		
	recruitment	trend accurately,	pallid sturgeon	comparable to		
Provide relevant	reliably even if it	precisely and	population	previous PSPAP		
PS model inputs	occurred	reliably	model inputs	data		
				Estimates from		
				Monitoring		
	Monitoring	Monitoring	Monitoring	program can be		
	program cannot	program has no	program	directly or		
	detect	power to annual	estimates no	indirectly		
Maintain	recruitment	trend accurately,	pallid sturgeon	compared to		
compatibility with	reliably even if it	precisely and	population	previous PSPAP		
legacy PSPAP data	occurred	reliably	model inputs	data		

- 1) Rank each of the the rows with the baseline the worst rank. For rankings 1 is best and 5 is the worst.
- 2) Assign the scenario that you ranked 1 with a value of 100
- 3) Assign a value, from 0 to 100, to the remaining scenarios (0 is worst and 100 is the best).
- ** Values do not need to sum to 100 but do need to increase with ranking.
- ** Do not change the shaded cells in the table above