Homework 10

Mark Petersen

Sections 18 and 19

18. THE EXTENDED EUCLIDEAN ALGORITHM

Exercise 18.1. For each pair of numbers a, b below, calculate GCD (a, b) and find $x, y \in \mathbb{Z}$ such that GCD (a, b) = ax + by.

a) Take a = 15 and b = 27.

Using the switching algorithm we can find the GCD (a, b)

$$27 = 1 \cdot 15 + 12$$

$$15 = 1 \cdot 12 + 3$$

$$12 = 4 \cdot 3$$

which shows that GCD (a,b)=3. We can solve for x and y using the steps in the switch algorithm.

$$3 = 15 - 12$$

$$= 15 - (27 - 15)$$

$$= 2 \cdot 15 - 1 \cdot 27$$

$$= x \cdot 15 + y \cdot 27,$$

with x = 2 and y = -1.

b) Take a = 29 and b = 23.

Using the switching algorithm we can find the GCD (a, b)

$$29 = 1 \cdot 23 + 6$$

$$23 = 3 \cdot 6 + 5$$

$$6 = 1 \cdot 5 + 1$$
,

which shows that GCD (a,b)=1. We can solve for x and y using the steps in the switch algorithm.

$$1 = 6 - 5$$

$$= 6 - (23 - 3 \cdot 6)$$

$$= 4 \cdot 6 - 23$$

$$= 4 (29 - 23) - 23$$

$$= 4 \cdot 29 - 5 \cdot 23$$

with x = 4 and y = -5.

c) Take a = 91 and b = 133.

Using the switching algorithm we can find the GCD (a, b)

$$133 = 1 \cdot 91 + 42$$

$$91 = 2 \cdot 42 + 7$$

$$42 = 6 \cdot 7 + 0$$

which shows that GCD (a, b) = 7. We can solve for x and y using the steps in the switch algorithm.

$$7 = 91 - 2 \cdot 42$$
$$= 91 - 2(133 - 91)$$
$$= 3 \cdot 91 - 2 \cdot 133$$

with x = 3 and y = -2.

d) Take a = 221 and b = 377

Using the switching algorithm we can find the GCD (a, b)

$$377 = 1 \cdot 221 + 156$$

$$221 = 1 \cdot 156 + 65$$

$$156 = 2 \cdot 65 + 26$$

$$65 = 2 \cdot 26 + 13$$

$$26 = 2 \cdot 13$$

which shows that GCD (a,b) = 13. We can solve for x and y using the steps in the switch algorithm.

$$13 = 65 - 2 \cdot 26$$

$$= 65 - 2 (156 - 2 \cdot 65)$$

$$= 5 \cdot 65 - 2 \cdot 156$$

$$= 5 (221 - 156) - 2 \cdot 156$$

$$= 5 \cdot 221 - 7 \cdot 156$$

$$= 5 \cdot 221 - 7 (377 - 221)$$

$$= 12 \cdot 221 - 7 \cdot 377$$

with x = 12 and y = -7.

Exercise 18.2. Let $a, n \in \mathbb{Z}$. Assume that GCD (a, n) = 1. Prove that there is some $b \in \mathbb{Z}$ such that $ab \equiv 1 \mod n$.

Proof: We suppose directly that $\operatorname{GCD}(a,n)=1$ with $a,n\in\mathbb{Z}$. From Thm 18.5 we know that the $\operatorname{GCD}(a,n)$ is the smallest positive integral linear combination of a and n. Thus we can write 1=ax+ny for some $x,y\in\mathbb{Z}$. Manipulating this equation yields 1-ax=ny. Thus we can see that $n\mid 1-ax$ which is equivalent to $ax\equiv 1 \bmod n$. By letting x=b, we have shown that if the $\operatorname{GCD}(a,n)=1$, then there exists some $b\in\mathbb{Z}$ such that $ab\equiv 1 \bmod n$.

Exercise 18.3. The following exercise proves the existence and uniqueness of the lowest terms representation of a rational number.

a) Let $a, b \in \mathbb{Z}$, not both zero, and let d = GCD(a, b). Prove that

$$\mathrm{GCD}\left(\frac{a}{d}, \frac{b}{d}\right) = 1.$$

Proof: We suppose directly that d = GCD(a, b). From Thm 18.5 we can write d = ax + by for some $x, y \in \mathbb{Z}$. We know d must be positive so we can divide both sides by d to get

$$1 = \frac{a}{d}x + \frac{b}{d}y.$$

Since $d \mid a$ and $d \mid b$ we know that $\frac{a}{d}, \frac{b}{d} \in \mathbb{Z}$. Thus, using Thm 18.10 we can conclude that

 $GCD\left(\frac{a}{d}, \frac{b}{d}\right) = 1.$

b) Prove that any rational number can be represented as a fraction $\frac{r}{s}$ with $r,s\in\mathbb{Z}$ and $s\neq 0$ and $\mathrm{GCD}\left(r,s\right)=1.$

Proof: Let $p_i \in \mathbb{Z}$ and $q_i \in \mathbb{Z} - \{0\}$ where $i \in \mathbb{N}$ is an indexing term. We suppose directly that m is a rational number of the form $\frac{p_1}{q_1}$. We have two cases.

Case 1. Let GCD $(p_1, q_1) = 1$, then $\frac{p_1}{q_1}$ is already in lowest terms.

Case 2. Let GCD $(p_1, q_1) = k_1$ for some $k_1 \in \mathbb{N} > 1$, then k_1 divides both p_1 and q_1 such that $p_1 = k_1 p_2$ and $q_1 = k q_2$. We can then write the rational number m as $\frac{p_2}{q_2}$. This process can be repeated until GCD $(p_n, q_n) = 1$. At this point we can write $m = \frac{p_n}{q_n}$.

Therefore, any rational number can be represented as a fraction $\frac{r}{s}$ such that $\mathrm{GCD}\left(r,s\right)=1.$

c) Prove that every rational number has a unique representation, as in part (b), with $s \in \mathbb{N}$.

Proof: We suppose by contradiction that m is a rational number that can be written as $\frac{r}{s}$ and $\frac{a}{b}$ where $r, a \in \mathbb{Z}, s, b \in \mathbb{N}, r \neq a, b \neq s, GCD <math>(r, s) = 1$, and GCD (a, b) = 1. This means that $m = \frac{r}{s} = \frac{a}{b}$. This statement gives us two equations: $r = \frac{sa}{b}$ and $a = \frac{rb}{s}$. From Thm 18.10 we also know that 1 = rx + sy and $1 = ak + b\ell$ for some $x, y, k, \ell \in \mathbb{Z}$. We can manipulate these equations to get

$$1 = rx + sy$$
$$1 = \frac{sa}{b}x + sy$$
$$b = s(ax + by),$$

which shows that $s \mid b$. In a similar manner we get

$$1 = ak + b\ell$$
$$1 = \frac{rb}{s}k + b\ell$$
$$s = b(rk + b\ell),$$

which shows that $b \mid s$. Since $s \mid b$ and $b \mid s$ we know that |s| = |b|. Using this with the fact that $\frac{r}{s} = \frac{a}{b}$, we know that |r| = |a|. Under the assumption that $r \neq a$, $b \neq s$, this means that r = -a and s = -b. This is a contradiction to the assumption that $s, b \in \mathbb{N}$. Thus we have shown by contradiction that every rational number has a unique representation $\frac{r}{s}$ where $r \in \mathbb{Z}$, $s \in \mathbb{N}$, and GCD (r, s) = 1.

Exercise 18.4. Let $a, b \in \mathbb{Z}$, with $b \neq 0$, and let d = GCD(a, b).

- a) Prove or disprove the equality GCD(a, b/d) = 1. Disproof: We will disprove the equality GCD(a, b/d) = 1 with a simple contradiction. Let a = 10, b = 4, then 2 = GCD(10, 4); however, 2 = GCD(10, 4/2). Hence the statement is not true.
- b) Prove or disprove: If c is a positive common divisor of a and b, and c=ax+by for some $x,y\in\mathbb{Z}$, then c=d.

Proof: We want to show that c = d under the prescribed conditions. To this this we will first show that $d \le c$, and then we will show that $c \le d$.

 $(d \le c)$: We suppose directly that $a,b \in \mathbb{Z}, \ b \ne 0, \ d = \operatorname{GCD}(a,b), \ c \mid a, \ c \mid b, \ c \in \mathbb{N}$, and c = ax + by for some $x,y \in \mathbb{Z}$. According to Thm 18.5 we know that d is the smallest positive integral linear combination of a and b. This implies that $d \le c$.

 $(c \le d)$: We suppose by contradiction that $c \mid a, c \mid b, c = ax + by$, d = GCD(a, b) and that c > d. Since $c \mid a$ and $c \mid b$, then c is a common divisor of a and b. Also since we assume that c > d, this means that GCD $(a, b) \neq d$. This is a contradiction. Therefore we know that c < d. We have shown that $d \le c$ and that $c \le d$. This means that c = d. therefore the statement is true.

Exercise 18.5. Let $a, b, c, d \in \mathbb{Z}$. Assume that GCD (a, b) = 1. Prove that if $c \mid a$ and $d \mid b$, then GCD (c, d) = 1.

Proof: We suppose directly that GCD (a,b) = 1, $c \mid a$ and that $d \mid b$ with $a,b,c,d\in\mathbb{Z}$. We can write a=ck and $b=d\ell$ for some $k,\ell\in\mathbb{Z}$. From Thm 18.5 we can write 1 = ax + by for some $x, y \in \mathbb{Z}$. Substituting in the equalities of a, b yields

$$1 = ax + by$$

$$= (ck) x + (d\ell) y$$

$$= c(kx) + d(\ell y),$$

which shows that GCD (c, d) = 1 according to Thm 18.5.

Exercise 18.6. Let a, b be positive integers. A common multiple of a and b is an integer n such that $a \mid n$ and $b \mid n$. The least common multiple of a and b, written as LCM (a, b), is the smallest positive common multiple of a and b.

a) Determine the LCM of 12 and 18.

$$LCM(12, 18) = 36$$

b) Determine the LCM of 21 and 35

$$LCM(21, 35) = 105$$

c) Prove that LCM $(a, b) = \frac{ab}{d}$, where d = GCD(a, b). *Proof:* We want to show that if d = GCD(a, b), then the LCM $(a, b) = \frac{ab}{d}$. We do this in two steps. We first show that LCM $(a,b) \leq \frac{ab}{d}$, and then we will show that LCM $(a, b) \ge \frac{ab}{d}$.

(\leq) :We suppose directly that d = GCD(a, b). Let $a' = \frac{a}{d}$ and $b' = \frac{b}{d}$ where $a', b' \in \mathbb{N}$ since $d \mid a$ and $d \mid b$. We can then write the term $\frac{ab}{d}$ as a'b or ab'. From these forms we can see that $a \mid \frac{ab}{d}$ and $b \mid \frac{ab}{d}$. This shows that $\frac{ab}{d}$ is a common multiple of a and b. Thus LCM $(a,b) \leq \frac{ab}{d}$.

 (\geq) : We suppose by contradiction that d = GCD(a, b) and LCM(a, b) < $\frac{ab}{d}$. Then there exists a number $m \in \mathbb{N} > 1$ such that LCM $(a,b) = \frac{ab}{dm} < \frac{ab}{d}$. This implies that $\frac{ab}{dm} = az$ and $\frac{ab}{dm} = bw$ for some $z, w \in \mathbb{N}$. Looking closely at the equation $\frac{ab}{dm} = az$ we can reduce it to $\frac{b}{dm} = \frac{b'}{m} = z$, and looking closely at the equation $\frac{ab}{dm} = bw$ we can reduce it to $\frac{a}{dm} = \frac{a'}{m} = w$. But this is a contradiction since it states that $m \mid a'$ and $m \mid b'$ which can be the case since d = GCD(a, b), and according to problem 18.3

$$\operatorname{GDC}\left(\frac{a}{d},\frac{b}{d}\right) = \operatorname{GDC}\left(a',b'\right) = 1.$$

Therefore, LCM $(a,b) \geq \frac{ab}{d}$. BecauseLCM $(a,b) \leq \frac{ab}{d}$ and LCM $(a,b) \geq \frac{ab}{d}$, LCM $(a,b) = \frac{ab}{d}$ if $a,b = \frac{ab}{d}$. are positive integers, and b = GCD(a, b).

19. PRIME NUMBERS

Exercise 19.1. For each of the following integers n, give its canonical prime factorization.

a) n=27. $27=3\cdot 3\cdot 3=3^3$ b) n=3072. $3072=2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 3=2^{10}\cdot 3$ c) n=60. $60=2\cdot 2\cdot 5\cdot 3$

Exercise 19.2. Let p be a prime number, $n \in \mathbb{N}$, and $a_1, \ldots, a_n \in \mathbb{Z}$. Prove that if

$$p \mid a_1 a_2 \cdots a_n$$

then $p \mid a_i$ for some $1 \leq i \leq n$.

Proof: We want to show that the open sentence

$$P(n)$$
: if $p \mid a_1 a_2 \cdots a_n$ then $p \mid a_i$ for some $1 \le i \le n$

is true with p a prime number, $n \in \mathbb{N}$, and $a_1, \ldots, a_n \in \mathbb{Z}$. We work this by induction.

Base Case: We verify P(1) and P(2). For P(1) we have that if $p \mid a_1$ then $p \mid a_i$ for some $1 \le i \le n$. Since we only have one a, then $p \mid a_1$. The statement P(2) was proven in Thm 19.5 of the book.

Induction Step: We suppose that $k \in \mathbb{N}$, and that P(k) is true. We want to show that P(k+1) is true which is the statement: if $p \mid a_1 \cdots a_{k+1}$, then $p \mid a_i$ for some $1 \leq i \leq k+1$. Let $b=a_1 \cdots a_k$ such that we can write $p \mid ba_{k+1}$. We know from Thm 19.5 that if $p \mid ba_{k+1}$, then $p \mid b$ or $p \mid a_{k+1}$. This gives us two cases.

Case 1. If $p \mid a_{k+1}$, then were done.

Case 2. If $p \mid b$, then since we suppose P(k) to be true, we know that $p \mid a_i$ for some $1 \leq i \leq k$.

Hence P(k+1) is true. Therefore the open sentence P(n) is true.

Exercise 19.3. Let n > 1 be a natural number. Prove that the smallest divisor d of n that is greater than 1 is prime.

Proof: We suppose directly that n > 1 is a natural number. Any composite divisor m of n can be factored into primes according to fundamental theorem of arithmetic. Since the prime factors of m are always less than m, we know that the a composite number cannot be the smallest divisor greater than 1 of n. Therefore, we only need to look at the unique prime factorization of n, which is

$$n = p_1 p_2 \cdots p_k$$

where $p_1 \leq p_2 \leq \cdots \leq p_k$ are prime numbers, and take the smallest prime number p_1 . Hence the smallest divisor d of n that is greater than 1 is prime.

Exercise 19.4. The goal of this exercise is to prove that there are infinitely many primes which are congruent to -1 modulo 3. We will do this in a series of steps.

a) Prove that, with only one exception, every prime number is congruent to either 1 or -1 modulo 3.

Proof: Let q be a prime number greater than 3. This means that $3 \nmid q$. Since every 3rd natural number is a multiple of 3, we know that $3 \mid (q+1)$ or $3 \mid (q+2)$ since either q+1 or q+2 will be a multiple of 3. If q+2 is a multiple of three, then q+2-3=q-1 is a multiple of 3. Thus $3 \mid q+1$ or $3 \mid q-1$. This is equivalent to saying that every prime number greater than 3 is congruent to either 1 or −1 modulo 3. The last two prime numbers that we need to investigate are 2 and 3. Well 2+1=3 which implies $3 \mid 2+1$ thus $2 \equiv -1 \mod 3$. Lastly $3 \mid 3$ which implies $3 \nmid (3\pm 1)$ and thus 3 is not congruent to either 1 or −1 modulo 3. Thus we have shown that every prime number other than 3 is congruent to either 1 or −1 modulo 3.

b) Prove that for any $n \in \mathbb{N}$ and any $a_1, \ldots, a_n \in \mathbb{Z}$, if each $a_i \equiv 1 \mod 3$, then the product $a_1 a_2 \cdots a_n \equiv 1 \mod 3$.

Proof: We want to show that the open sentence

$$P(n)$$
: if each $a_i \equiv 1 \mod 3$, then the product $a_1 a_2 \cdots a_n \equiv 1 \mod 3$

is true for any $n \in \mathbb{Z}$ and any $a_1, \ldots, a_n \in \mathbb{Z}$. We work this by induction. **Base Case**: We verify P(2). We assume that $a_1 \equiv 1 \mod 3$ and that $a_2 \equiv 1 \mod 3$ which is equivalent to saying $a_1 - 1 = 3m_1$ and $a_2 - 1 = 3m_2$ for some $m_1, m_2 \in \mathbb{Z}$. Using these identities, the product a_1a_2 can be written as

$$a_1 a_2 = (3m_1 + 1)(3m_2 + 1)$$

= $3 \cdot 3m_1 m_2 + 3m_1 + 3m_2 + 1$
= $3(3m_1 m_2 + m_1 + m_2) + 1$

which can be written as

$$a_1 a_2 - 1 = 3k$$

where $k=3m_1m_2+m_1+m_2$. This is equivalent to saying $a_1a_2\equiv 1\ \mathrm{mod}\ 3$. Hence $P\left(2\right)$ is true.

Induction Step: We suppose that P(j) is true for some $j \in \mathbb{N}$, and we want to show that P(j+1) is true. We begin with writing the product

$$a_1 a_2 \cdots a_i a_{i+1} = b a_{i+1}.$$

Since we assume P(j) to be true, we know that $b \equiv 1 \mod 3$. This means that $b = 3y_b + 1$ and $a_{j+1} = 3y_{j+1} + 1$ for some $y_b, y_{j+1} \in \mathbb{Z}$. Taking their product we get

$$ba_{j+1} = (3y_b + 1)(3y_{j+1} + 1)$$

= 3(3y_by_{j+1} + y_b + y_{j+1}) + 1

which can be written as

$$ba_{i+1} = 3\ell + 1$$

where $\ell=3y_by_{j+1}+y_b+y_{j+1}$. This is equivalent to saying $ba_{j+1}=a_1a_2\cdots a_ja_{j+1}\equiv 1\ \mathrm{mod}\ 3$. Hence $P\left(j+1\right)$ is true. Therefore the open sentence $P\left(n\right)$ is true for any $n\in\mathbb{N}$.

c) Suppose that $N \in \mathbb{N}$, and $N \equiv -1 \mod 3$. Prove that N is divisible by some prime p such that $p \equiv -1 \mod 3$.

Proof: We suppose directly that $N \in n$, and $N \equiv -1 \mod 3$. N can be factored out into primes according to the fundamental theorem of arithmetic as

$$N = p_1 p_2 \cdots p_k$$
.

From part a) we know that every prime other than 3 is congruent to either 1 or -1 modulo 3. Since N = 3m - 1 for some $m \in \mathbb{N}$, we know that

 $3 \nmid N$ such that $3 \neq p_i$ for any $1 \leq i \leq k$. Thus all the prime factors of N are either congruent to either 1 or -1 modulo 3. Let q denote the product of all the prime factors of N that are congruent to 1 modulo 3. From part b) we know that q is congruent to 1 module 3. Hence we can write N as

$$N = qx_1x_2\cdots x_i$$

where x_i denotes a prime that is congruent to 1 module 3 and $j \leq k$. If j=k, then let q=1 with no loss in generality. This just means that there are no prime factors of n that are congruent to 1 modulo 3. According to lemma A.2, the product $x_1x_2\cdots x_j$ is congruent to -1 modulo 3 if and only if j is odd. So if j is even, then $qx_1x_2\cdots x_j$ is congruent to 1 modulo 3 according to part b), and if j is odd, then $x_1x_2\cdots x_j$ can be written as $3\gamma-1$. Hence

$$N = qx_1x_2 \cdots x_j$$

= $(3m_q + 1)(3\gamma - 1)$
= $3(3m_qm_{\gamma} - m_q + \gamma) - 1$,

which is congruent to -1 modulo 3. Therefore, $N \equiv -1 \mod 3$, then the prime factorization of N contains an odd number of primes that are congruent to -1 modulo 3, and the prime factorization of N does not contain the prime number 3.

d) Prove that there are infinitely many primes p that are congruent to -1 modulo 3.

Proof: We suppose directly that S is any finite nonempty set of prime numbers that are congruent to -1 modulo 3. Let

$$N = 3 \underbrace{\prod_{p \in S} p - 1},$$

so N is divisible by some prime q that is congruent to -1 modulo 3 by Theorem 19.7 and part c) of this problem. Using the division algorithm to divide N by any prime $p \in S$ leaves a remainder of -1. So no prime in S divides N. Hence, q must be a prime that is not in S. Thus the set S cannot include the set of all primes that are congruent to -1 modulo S. Since no finite set can contain all of the primes that are congruent to S modulo S, then there must be an infinite number of these types of primes.

Exercise 19.5. Prove that there are infinitely many primes p such that

$$p \equiv -1 \mod 4$$
.

This proof will be broken up into steps.

a) Prove that, with only one exception, every prime number is congruent to either 1 or -1 modulo 4.

Proof: We suppose directly that q is a prime number greater than 2, then from lemma A.1 we know that q is an odd number so we can write it as

$$q = 2k + 1$$
,

where $k \in \mathbb{N}$. k can be either odd or even. This presents two cases.

Case 1. If k is odd, then $k = 2\alpha + 1$ where $\alpha \in \mathbb{N}$. Then

$$q = 2(2\alpha + 1) + 1$$

= $4\alpha + 3$,
= $4(\alpha + 1) - 1$

which is equivalent to $q \equiv -1 \mod 4$.

Case 2. If k is even, then $k = 2\alpha$. Then

$$q = 2 \cdot 2\alpha + 1$$
$$= 4\alpha + 1$$

which is equivalent to $q \equiv 1 \mod 4$.

Therefore every odd prime is congruent to either 1 or -1 modulo 4. The prime number 2 is neither congruent to either 1 or -1 modulo 4 since

$$2 \neq 4m - 1$$
, or $2 \neq 4m + 1$,

for any $m \in \mathbb{Z}$. Therefore, every prime number except 2 is congruent to either 1 or -1 modulo 4.

b) Prove that for any $n \in \mathbb{N}$ and any $a_1, \ldots, a_n \in \mathbb{Z}$, if each $a_i \equiv 1 \mod 4$, then the product $a_1 a_2 \cdots a_n \equiv 1 \mod 3$.

Proof: We want to show that the open sentence

$$Q(n)$$
: if each $a_i \equiv 1 \mod 4$, then $a_1 a_2 \cdots a_n \equiv 1 \mod 3$

is true for any $a_1,\ldots,a_n\in\mathbb{Z}$ and any $n\in\mathbb{N}$. We work this by induction. **Base Case**: We verify Q(2). Let $a_1=4m_1+1$ and $a_2=4m_2+1$ since $a_i\equiv 1 \bmod 4$ with $m_1,m_2\in\mathbb{N}$. Their product is

$$a_1 a_2 = (4m_1 + 1) (4m_2 + 1)$$

= $4 (4m_1 m_2 + m_1 + m_2) + 1$,

which is congruent to 1 modulo 4. Hence Q(2) is true.

Induction Step: Let $k \in \mathbb{N}$. We assume that Q(k) is true and want to show that Q(k+1) is true. We begin by writing the product

$$a_1 a_2 \cdots a_k a_{k+1} = b a_{k+1},$$

with $b=a_1a_2\cdots a_k$. Since we assume Q(k), we know that $b=4m_b+1$ for some $m_b\in\mathbb{N}$. We also assume that $a_{k+1}=4m_{k+1}+1$ for some $m_{k+1}\in\mathbb{N}$. We can then write the product as

$$ba_{k+1} = (4m_b + 1)(4m_{k+1} + 1)$$
$$= 4(4m_b m_{k+1} + m_b + m_k) + 1,$$

which is congruent to 1 modulo 4. Hence $Q\left(k+1\right)$ is true. Therefore the open sentence $Q\left(n\right)$ is true.

c) Suppose that $N \in \mathbb{N}$, and $N \equiv -1 \mod 4$. Prove that N is divisible by some prime p such that $p \equiv -1 \mod 4$.

Proof: We suppose directly that $N \in \mathbb{N}$ and $N \equiv -1 \mod 4$. According to the fundamental theorem of arithmetic we can write N as the product of prime

$$N=p_1p_2\cdots p_n,$$

we also not that since $N \equiv -1 \mod 4$, we can write N as

$$N = 4k - 1$$
,

for some $k \in \mathbb{N}$. Equating the two equations yields

$$4k - 1 = p_1 p_2 \cdots p_n,$$

which can be written as

$$4k = p_1 p_2 \cdots p_n + 1.$$

According to the division algorithm, at least one of the primes p_i with $1 \le i \le n$ divides 4k with a remainder of 1. Hence $p_i \equiv -1 \mod 4$. Therefore if $N \equiv -1 \mod 4$, then N is divisible by some prime p such that $p \equiv -1 \mod 4$.

d) Prove that there are infinitely many primes p that are congruent to -1 modulo 4.

Proof: We suppose directly that S is any finite nonempty set of prime numbers that are congruent to -1 modulo 4. Let

$$N = 4 \underbrace{\prod_{p \in S} p - 1}_{p \in S},$$

so N is divisible by some prime q that is congruent to -1 modulo 4 by Theorem 19.7 and part c) of this problem. Using the division algorithm to divide N by any prime $p \in S$ leaves a remainder of -1. So no prime in S divides N. Hence, q must be a prime that is not in S. Thus the set S cannot include the set of all primes that are congruent to -1 modulo 4. Since no finite set can contain all of the primes that are congruent to -1 modulo 4, then there must be an infinite number of these types of primes.

APPENDIX

Lemma A.1. Every prime number other than 2 is odd.

Proof: We suppose directly that p is a prime number and let q be a prime number greater than 2. Since the only positive divisors of a prime number is itself and 1 we know that $q \neq 2m$ for some $m \in \mathbb{N}$, otherwise the prime number q would have 2 as a divisor, at which point it wouldn't be a prime number. Therefore $2 \nmid q$ thus q is odd. Since the prime number 2 = 2k for some $k \in \mathbb{N}$, it is even. Thus we have shown that every prime number other than 2 is odd.

Lemma A.2. Let p_1, p_2, \ldots, p_k be prime numbers such that $p_i \equiv -1 \mod 3$ with $1 \leq i \leq k$. The product $p_1 p_2 \cdots p_k \equiv -1 \mod 3$ if and only if k is odd.

Proof: Since this is a biconditional statement we must prove both ways. (\Leftarrow) : We want to show that the open sentence

$$Q(k)$$
: If k is odd, then $p_1p_2\cdots p_k\equiv -1 \operatorname{mod} 3$

Since we are only concerned with proving the open sentence when k is odd, we can work with the open sentence $P\left(n\right)=Q\left(2n-1\right)$ where $n\in\mathbb{N}$. We work this by induction.

Base Case: We verify P(2).

$$\begin{aligned} p_1 p_2 p_3 &= \prod_{i=1}^3 \left(3m_i - 1\right) \\ &= \left(3m_1 - 1\right) \left(3m_2 - 1\right) \left(3m_3 - 1\right) \\ &= 3 \left(9m_1 m_2 m_3 - 3m_1 m_2 - 3m_1 m_3 - 3m_2 m_3 + m_1 + m_2 + m_3\right) - 1 \\ &= 3\alpha - 1, \end{aligned}$$

where $m_i \in \mathbb{N}$, which shows that P(2) is true.

Induction Step: Let $j \in \mathbb{N}$. We suppose that P(j) is true and we want to show that P(j+1) is true. We begin with the product

$$p_1p_2\cdots p_{2k-1}p_{2k}p_{2(k+1)-1},$$

where j=2k-1 and j+1=2(k+1) by how we defined P(n). Since we suppose P(j), we can replace $p_1p_2\cdots p_{2k-1}$ with $3\gamma-1$ with $\gamma\in\mathbb{N}$. This gives us the product

$$(3\gamma - 1) p_{2k} p_{2k+1} = (3\gamma - 1) (3m_{2k} - 1) (3m_{2k+1} - 1)$$

$$= 3 (9\gamma m_{2k} m_{2k+1} - 3 (\gamma m_{2k} + \gamma m_{2k+1} + m_{2k} m_{2k+1}) + \gamma + m_{2k} + m_{2k+1}) - 1$$

$$= 3\beta - 1,$$

with hence P(j+1) is true. Therefore the open sentence Q(k) is true.

(\Longrightarrow): We suppose by contradiction that $p_1p_2\cdots p_k\equiv -1\,\mathrm{mod}\,3$ and k is even. Then for k=2 we have

$$p_1 p_2 = (3m_1 - 1) (3m_2 - 1)$$

= $3 (3m_1 m_2 + m_1 m_2) + 1$
= $3\eta + 1$,

for some $m_1, m_2, \eta \in \mathbb{N}$. This is a contradiction since $3\eta + 1 \neq 3\xi - 1$ for some $\xi \in \mathbb{N}$. Hence if $p_1 p_2 \cdots p_k \equiv -1 \mod 3$ then k is odd.

Since we have proven both ways, the lemma is true.