COM1006 Devices and Networks (Autumn) COM1090 Computer Architectures

Lecture #1

Dr Dirk Sudholt Department of Computer Science University of Sheffield

d.sudholt@sheffield.ac.uk
http://staffwww.dcs.shef.ac.uk/~dirk/campus_only/com1006/

Aims of this lecture

- To explain the distinction between analog and digital systems
- To show how data is stored in a computer
- To introduce binary and hexadecimal numbers
- To show how numbers can be converted between number systems

Analog systems

- Analog electronic circuits represent physical quantities in terms of voltages and currents:
 - Analog variables are continuous, vary between maximum and minimum values by arbitrarily small amounts

Can you think of examples of analog systems?

Digital systems

- Information in a computer is represented in digital form:
 - Digital variables are discrete in value and time.
 - Variables in a digital system take a value from a set of values called an alphabet.
 - Digital computers use a binary system in which the alphabet is composed of two symbols, 0 and 1 (logical false and true, low and high, off and on).

Logic values and signal levels

- Logic variables assume one of two discrete states, 0 or 1.
- Represented by low/high voltage.
- In a system using a 5V power supply you might expect a variable to be represented by exactly 0V or 5V:
 - Such precise electronic devices cannot be made cheaply
 - In practice, two ranges of voltage are used to represent logic values,
 e.g. 0-0.4V for 0 state and 2.8-5V for 1 state.

What is the advantage of representing data in digital form? Why do computers use only two values, 0 and 1?

► Bits, words and bytes

- A bit is the smallest unit of information in a computer, and takes the value 0 or 1.
- Computers store information as groups of bits called words.
- The trend is towards increasing word length (1st generation microprocessors were 8 bit; 4th generation are 64 bit).
- What is the advantage of a 64-bit word length over an 8-bit word length?
- A group of 8 bits is called a byte.

Representing data in binary

- An n-bit word can take the value of 2^n unique bit patterns.
- These bit patterns have no intrinsic meaning; the meaning of the bits is determined by the programmer.

What entities could a word represent?

- Natural numbers
- Text
- Computer programs
- Pictures
- Music, sound, voice, movies, ...

Representing text

How to represent text in a computer?

26 letters A...Z can be encoded by 5 bits.

THISALPHABETMIGHTBEABITSMALL

- What's missing: lower case letters, punctuation, digits, ...
- ASCII Code (American Standard Code for Information Interchange)
 - established in 1963 by the American Standards Organization
 - uses 7 bits to represent 128 characters

► ASCII Code

	000	001	010	011	100	101	110	111
0000	NUL	SOH	STX	ETX	EOT	ENQ	ACK	$_{ m BEL}$
0001	BS	HT	$_{ m LF}$	VT	$\mathbf{F}\mathbf{F}$	$^{\mathrm{CR}}$	SO	SI
0010	DLE	DC1	XON	DC3	XOF	NAK	SYN	ETB
0011	CAN	$\mathbf{E}\mathbf{M}$	SUB	ESC	FS	GS	RS	US
0100		!	"	#	\$	%	&	,
0101	()	*	+	,	-		/
0110	0	1	2	3	4	5	6	7
0111	8	9	:	;	<	=	>	?
1000	0	\mathbf{A}	В	\mathbf{C}	D	\mathbf{E}	F	G
1001	Н	I	J	K	\mathbf{L}	\mathbf{M}	N	О
1010	P	Q	\mathbf{R}	\mathbf{S}	T	U	V	W
1011	X	Y	\mathbf{Z}	[\]	\wedge	
1100	٤	a	b	c	d	e	\mathbf{f}	g
1101	h	i	j	\mathbf{k}	1	m	n	О
1110	p	q	r	S	t	u	v	w
1111	x	y	z	{		}	\sim	DEL

ASCII Code: Extensions

- 7 bits leaves one more bit of a byte
- Further 128 characters can be encoded
- Different extensions are available:
- ISO-8859-1 or ISO Latin1 includes
 - £
 - umlauts: äöüÄÖÜß
 - accented characters

Unicode

- International standard with 1,112,064 codepoints
- Unicode characters can have 1-6 bytes.
- UTF-8 is a standard in Java, E-Mail, WWW, etc.
- First 128 characters in UTF-8 are ASCII codes.

Number bases

- Numbers can be represented in different number systems.
- Decimal system uses digits 0,1,...,9.
- The decimal number 904531_{10} (base 10) can be written:

$$9x10^5 + 0x10^4 + 4x10^3 + 5x10^2 + 3x10^1 + 1x10^0$$

- The **position** of a digit and the **base** of the representation determine the magnitude.
- Computers use base 2 (**binary**), e.g. the binary number 1011010₂ has a value:

$$1x2^6+0x2^5+1x2^4+1x2^3+0x2^2+1x2^1+0x2^0$$

 Manual conversion between number bases is a useful skill, e.g. for assembly programming.

► Counting in binary

decimal	binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010

Conversion: decimal to binary

- How to convert decimal numbers to binary numbers?
- What is 3_{10} in binary?

$$3_{10} = 11_2$$

• What is 18_{10} in binary?

$$18_{10} = 10010_2$$

• What is 245_{10} in binary?

Conversion: decimal to binary

Algorithm:

- Successively divide the number by 2 and record the remainder (which is either 0 or 1).
- Stop when the result of the division is 0.
- Remainders read "backwards" give binary number.

Example:

Convert 245₁₀ to binary

The result is read upwards:

$$245_{10} = 11110101_2$$

►Why does this work?

Convert 245₁₀ to binary

245 / 2 = 122	R = 1	$245_{10} = 11110101_{2}$
122 / 2 = 61	R = 0	$122_{10} = 1111010_{2}$
61/2 = 30	R = 1	$61_{10} = 111101_{2}$
30 / 2 = 15	R = 0	$30_{10}^{10} = 11110_{2}^{1}$
15 / 2 = 7	R = 1	$15_{10}^{10} = 1111_{2}^{1}$
7/2 = 3	R = 1	$7_{10} = 111_{2}$
3/2 = 1	R = 1	$3_{10} = 11_{2}$
1/2 = 0	R = 1	$1_{10}^{10} = 1_{2}^{10}$
		——————————————————————————————————————

- Remainder of division by 2 identifies last bit
- Integer division by 2 removes last bit
- Algorithm successively identifies bits from right to left

Conversion: binary to decimal

Conversion: binary to decimal

Algorithm:

- Multiply the first non-zero bit by 2 and add the bit on its right.
- Continue with the remaining bits and stop after adding the smallest bit.

• Convert 1010111₂ to decimal:

• Therefore $1010111_2 = 87_{10}$

► Why does this work?

Binary	Decimal
1 <mark>0</mark> 2	2*1+ <mark>0</mark> =2
101 ₂	2*2+ <mark>1</mark> =5
101 <mark>0</mark> 2	2*5+ <mark>0</mark> =10
1010 <mark>1</mark> ₂	2*10+ 1 =21
10101 <mark>1</mark> ₂	2*21+ <mark>1</mark> =43
101011 <mark>1</mark> ₂	2*43+ <mark>1</mark> =87

- Multiplication by 2 shifts all bits to the left.
- Add the next bit in decimal also adds it in binary.
- Subsequently converting bits from left to right.

Hexadecimal numbers

- **Exercise**: remember 00111010000011111₂
- Binary numbers can be long and cumbersome!
- Hexadecimal system: base 16
- Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- One hexadecimal digit represents 4 bits.
- One byte can be expressed by 2 hexadecimal digits.
- Common notations: $3B_{16} = 0x3B = $3B$

Hexadecimal vs. binary

Binary	Hexadecimal
00002	0 ₁₆
00012	1 ₁₆
00102	2 ₁₆
00112	3 ₁₆
01002	4 ₁₆
0101 ₂	5 ₁₆
01102	6 ₁₆
01112	7 ₁₆

Binary	Hexadecimal
1000 ₂	8 ₁₆
1001 ₂	9 ₁₆
1010 ₂	A ₁₆
1011 ₂	B ₁₆
1100 ₂	C ₁₆
1101 ₂	D ₁₆
1110 ₂	E ₁₆
1111 ₂	F ₁₆

- Conversion: look up blocks of 4 bits in the above table.
- What is 0011 1010 0000 1111₂ in hexadecimal?

▶Summary

- Analog variables are continuous, digital variables are discrete
- Boolean variables (0 and 1) can be used to encode numbers, text, programs, and much more.
- Learned how to convert decimal numbers into binary and vice versa.
- Hexadecimal numbers are a more compact representation for binary numbers.