آمار و احتمال مهندسي

امید ریاضی شرطی – نمونهبرداری (Ross 5.6, 6.5)

1 of 30 🕥

مشترک برای n متغیر تصادفی pmf

. بردار تصادفی \vec{X} را به صورت زیر تعریف می کنیم:

$$\vec{X} = [X_1, X_2, \dots, X_n]$$

تابع pmf مشترک برای بردار \overrightarrow{X} به صورت زیر تعریف می شود:

$$P_{\vec{X}}(\vec{x}) = P_{X_1 X_2 \dots X_n}(x_1, x_2, \dots, x_n) = P\{X_1 = x_1, X_2 = x_2 \dots, X_n = x_n\}$$

که در آن:

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

آمار و احتمال مهندسی بهنام بهرک

2 of 30 >

تابع توزیع تجمعی مشترک (Joint CDF)

نابع توزیع مشترک (joint CDF) برای بردار \overrightarrow{X} به صورت زیر تعریف می شود:

$$F_{\vec{X}}(\vec{x}) = F_{X_1 X_2 \dots X_n}(x_1, x_2, \dots, x_n) = P\{X_1 \le x_1, X_2 \le x_2 \dots, X_n \le x_n\}$$

- مقدار این تابع همواره بین صفر و یک است.
- o تابع CDF مشترک به ازای تمام آرگومانها صعودی است.
- $\circ F(-\infty, -\infty, \dots, -\infty) = 0$
- $\circ F(+\infty, +\infty, ..., +\infty) = 1$

اگر به جای برخی از آرگومانها بینهایت بگذاریم، CDF مشترک سایر متغیرهای تصادفی
 حاصل می شود. برای مثال:

$$F_{X_1X_2X_3}(+\infty, x_2, x_3) = F_{X_2X_3}(x_2, x_3)$$

مار و احتمال مهندسی هنام بهرک

3 of 30

تابع چگالی احتمال مشترک (Joint PDF)

$$\begin{split} f_{\vec{X}}(\vec{x}) &= f_{\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_n}(x_1, x_2, \dots, x_n) = \frac{\partial^n F_{\vec{X}}(\vec{x})}{\partial x_1 \partial x_2 \dots \partial x_n} \\ &= \frac{\partial^n}{\partial x_1 \partial x_2 \dots \partial x_n} F_{\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_n}(x_1, x_2, \dots, x_n) \end{split}$$

 \circ به این ترتیب روابط زیر برقرار خواهند بود:

$$f_{\vec{X}}(\vec{x})dx_1dx_2 \dots dx_n = P\{x_1 < X_1 < x_1 + dx_1, \dots, x_n < X_n < x_n + dx_n\}$$

$$F_{X_1X_2...X_n}(x_1, x_2, ..., x_n) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} ... \int_{-\infty}^{x_n} f_{\vec{X}}(u_1, u_2, ..., u_n) du_n ... du_2 du_1$$

آمار و احتمال مهندسی بهنام بهرک

∢ 4 of 30 **>**

تابع چگالی احتمال مشترک (Joint PDF)

مقدار تابع pdf همواره مثبت است و انتگرال nگانه آن از ∞ تا ∞ یک می شود. \circ

٥ همچنین داریم:

$$\begin{split} \forall D \subset \mathbb{R}^n : P\{(x_1, x_2, \dots, x_n) \in D\} &= \int_D f_{\vec{X}}(\vec{x}) d\vec{x} \\ &= \int_D \dots \int_D f_{X_1 X_2 \dots X_n}(x_1, x_2, \dots, x_n) \, dx_1 dx_2 \dots dx_n \end{split}$$

○ اگر از ∞ — تا ∞ + روی برخی از آرگومانها انتگرال بگیریم، $\cot 2$ مشتر $\cot 2$ سایر متغیرهای تصادفی حاصل می شود. برای مثال:

$$f_{X_2X_3}(x_2, x_3) = \int_{-\infty}^{+\infty} f_{X_1X_2X_3}(x_1, x_2, x_3) dx_1$$

آمار و احتمال مهندسی بهنام بهرک

< 5 of 30

توزیع شرطی n–بعدی

0 مطابق حالت دو بعدی داریم:

$$f_{X_1X_2...X_k}(x_1, x_2, ..., x_k | X_{k+1} = x_{k+1}, ..., X_n = x_n) = \frac{f_{X_1X_2...X_n}(x_1, x_2, ..., x_n)}{f_{X_{k+1}...X_n}(x_{k+1}, ..., x_n)}$$

رای مثال داریم:

$$f_{X_1X_2}(x_1, x_2 | x_3, x_4) = \frac{f_{X_1X_2X_3X_4}(x_1, x_2, x_3, x_4)}{f_{X_3X_4}(x_3, x_4)}$$

○ با استفاده از رابطه بالا می توان نشان داد:

$$f_{X_1X_2...X_n}(x_1, x_2, ..., x_n) = f_{X_1}(x_1)f_{X_2}(x_2|x_1)...f_{X_n}(x_n|x_1x_2...x_{n-1})$$

این رابطه به قاعده زنجیرهای معروف است.

مار و احتمال مهندسی هنام بهرک

∢ 6 of 30 **>**

حذف متغیر سمت چپ در چگالی شرطی

میدانیم که اگر $f_{X_1X_2}(x_1,x_2)$ را داشته باشیم و بخواهیم f_{X_1} را به دست آوریم، کافی است روی $f_{X_1X_2}$ از $-\infty$ تا $+\infty$ نسبت به $+\infty$ انتگرال بگیریم. $+\infty$ در چگالی شرطی نیز به همین ترتیب عمل می کنیم.

اگر بخواهیم از $f_{X_1}(x_1|x_3)$ مقدار $f_{X_1}(x_1|x_3)$ مقدار وریم، خواهیم داشت: $g_{X_1}(x_1|x_3)$

$$f_{X_1}(x_1|x_3) = \int_{-\infty}^{+\infty} f_{X_1X_2}(x_1, x_2|x_3) \, dx_2$$

 \circ برای اثبات این رابطه می توانید از تعریف چگالی شرطی و رابطه چگالی مشتر \circ حاشیهای استفاده \circ کنید.

مار و احتمال مهندسی هنام بهرک

7 of 30

حذف متغیر سمت راست در چگالی شرطی

اگر بخواهیم از $f_{X_1}(x_1|x_3)$ به $f_{X_1}(x_1|x_2,x_3)$ برسیم، داریم: \circ

$$f_{X_1}(x_1|x_3) = \int_{-\infty}^{+\infty} f_{X_1}(x_1|x_2, x_3) f_{X_2}(x_2|x_3) dx_2$$

زيرا:

$$f_{X_1}(x_1|x_2,x_3)f_{X_2}(x_2|x_3) = f_{X_1X_2}(x_1,x_2|x_3)$$

در نتیجه داریم:

$$f_{X_1}(x_1|x_3) = \int_{-\infty}^{+\infty} f_{X_1}(x_1|x_2,x_3) f_{X_2}(x_2|x_3) dx_2$$

o معادله بالا به معادله چاپمن-کولموگروف (Chapman-Kolmogorov) معروف است.

آمار و احتمال مهندسی بهنام بهرک

∢ 8 of 30 **>**

امید ریاضی شرطی

اگر X_i ها مستقل باشند، چگالی مشروط بعضی از آنها بر بعضی دیگر با چگالی غیر مشروط یکسان است:

$$f_{X_1X_2}(x_1x_2|x_3,x_4) = f_{X_1X_2}(x_1,x_2)$$

مید ریاضی شرطی متغیر تصادفی Y به شرط داشتن مقدار متغیرهای تصادفی X_1,\dots,X_n به صورت زیر تعریف میشود:

$$E(Y | X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = E(Y | x_1, x_2, ..., x_n)$$

$$= \int_{-\infty}^{+\infty} y f_Y(y | x_1, x_2, ..., x_n) dy$$

y که تابعی از x_1 ، x_2 ، x_2 ، x_1 است و نه

آمار و احتمال مهندسی بهنام بهرک

9 of 30

امید ریاضی شرطی

به طور مشابه داریم:

$$E(g(Y)|x_1, x_2, ..., x_n) = \int_{-\infty}^{+\infty} g(y) f_Y(y|x_1, x_2, ..., x_n) dy$$

: با تعریف بردار
$$\vec{X}=(X_1,X_2,\dots,X_n)$$
 با تعریف بردار

$$E\left(Y\middle|\vec{X}=\vec{x}\right) = h(\vec{x})$$

 $h(ec{X})$ متناظر با این تابع میnوانیم متغیر تصادفی $n(ec{X})$ را به صورت زیر تعریف کنیم:

$$E\left(Y\middle|\vec{X}\right) = h(\vec{X})$$

آمار و احتمال مهندسی بهنام بهرک

< 10 of 30 >

امید ریاضی شرطی

○ مشابه قبل به سادگی می توان نشان داد که:

$$E\left(E\left(Y\middle|\vec{X}\right)\right) = E(Y)$$

و اگر \overrightarrow{X} و Y مستقل باشند، داریم:

$$E\left(Y\middle|\vec{X}\right) = E(Y)$$

ست. \vec{X} در واقع تخمین بهینه (به معنی mse) برای Y بر مبنای مشاهده $E\left(Y\middleec{X}
ight)$

آمار و احتمال مهندسی بهنام بهرک

< 11 of 30 >

مجموعهای تصادفی (Random Sums)

- و فرض کنید $Y=\sum_{i=1}^N X_i$ باشد که در آن X_i ها متغیر تصادفی مستقل بوده و نیز داریم: $\forall i: E(X_i)=\mu_X$, ${
 m var}(X_i)=\sigma_X^2$
- از طرف دیگر خود N نیز یک متغیر تصادفی با میانگین μ_N و واریانس σ_N^2 باشد و X_i باشد و X_i باشد.
- N مثلاً N میتواند سود روزانه یک مغازه، N سود حاصل از هر مشتری و N تعداد مشتریهایی که در روز مراجعه میکنند، باشد.
- و یا Y می تواند تعداد افراد کشته شده در سوانح رانندگی سالانه، X_i تعداد افراد کشته شده در یک تصادف و N تعداد کل تصادفها در یک سال باشد.

آمار و احتمال مهندسی بهنام بهرک

12 of 30 >

ميانگين مجموع تصادفي

می خواهیم میانگین و واریانس Y را به دست آوریم:

E(Y) = E(E(Y|N))

$$E(Y|N=n) = E\left(\sum_{i=1}^{n} (X_i|n)\right) = \sum_{i=1}^{n} E(X_i|n) = \sum_{i=1}^{n} E(X_i)$$

از آنجایی که برای همه X_i ها داریم: \circ

 $\forall i : E(X_i) = \mu_X$

0 پس داریم:

$$E(Y|N = n) = n\mu_X \Rightarrow E(Y|N) = N\mu_X$$

$$\Rightarrow E(Y) = E[E(Y|N)] = E(N\mu_X) = \mu_X E(N) = \mu_X \mu_N$$

آمار و احتمال مهندسی بهنام بهرک

13 of 30

واريانس مجموع تصادفي

$$E(Y^{2}|N=n) = E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right] = E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_{i} X_{j}]$$

و به دلیل استقلال X_i ها، برای $i \neq j$ داریم:

$$E(X_iX_j) = E(X_i)E(X_j)$$

٥ در نتيجه:

$$E(Y^{2}|N=n) = \sum_{i=1}^{n} E(X_{i}^{2}) + \sum_{i=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} E(X_{i})E(X_{j})$$

آمار و احتمال مهندسی بهنام بهرک

14 of 30 >

واريانس مجموع تصادفي

$$E(Y^{2}|N=n) = \sum_{i=1}^{n} E(X_{i}^{2}) + \sum_{i=1}^{n} \sum_{j\neq i}^{n} E(X_{i})E(X_{j})$$

داشت: $\mathrm{var}(X_i) = \sigma_X^2$ ، خواهیم داشت ، ولی از آنجا که برای هر i داریم،

$$E(Y^{2}|N=n) = n(\sigma_{X}^{2} + \mu_{X}^{2}) + (n^{2} - n)\mu_{X}^{2} = n\sigma_{X}^{2} + n^{2}\mu_{X}^{2}$$

$$\Rightarrow E(Y^2|N) = N \sigma_X^2 + N^2 \mu_X^2$$

$$E(Y^2) = E[E(Y^2|N)] = \sigma_X^2 E(N) + \mu_X^2 E(N^2) = \sigma_X^2 \mu_N + \mu_X^2 (\sigma_N^2 + \mu_N^2)$$

$$\Rightarrow \sigma_Y^2 = E(Y^2) - (E(Y))^2 = \sigma_X^2 \mu_N + \mu_X^2 \sigma_N^2 + \mu_X^2 \mu_N^2 - \mu_X^2 \mu_N^2$$
$$= \sigma_X^2 \mu_N + \mu_X^2 \sigma_N^2$$

مار و احتمال مهندسی هنام بهرک

15 of 30 >

مثال

 Δ_B فرستندههای A و B پیامهایی را با توزیعهای پواسون با نرخهای A_A و B به یک گیرنده خاص میفرستند. تعداد کلمات هر پیام مستقل از یکدیگر و با تابع جرمی احتمال

$$P_W(w=1)=rac{1}{3}$$
 , $P_W(w=2)=rac{1}{2}$, $P_W(w=3)=rac{1}{6}$. توزیع شده است.

الف) احتمال این که در بازهای به طول t دقیقاً ۹ پیام به گیرنده برسد، چقدر است؟

فرض کنید R متغیر تصادفی باشد که تعداد پیامهای دریافتی در بازهای به طول t را نمایش بدهد. مشخص است که R یک متغیر تصادفی پواسون با نرخ $\lambda_A + \lambda_B$ است.

بنابراین احتمال دریافت ۹ پیام برابر است با:

$$\frac{e^{-(\lambda_A + \lambda_B)t} ((\lambda_A + \lambda_B)t)^9}{9!}$$

آمار و احتمال مهندسی بهنام بهرک

ادامه مثال

ب) امید ریاضی تعداد کلمات دریافتی N در بازهای به طول t را محاسبه کنید.

اگر R تعداد پیامهای دریافتی باشد، داریم:

$$N = W_1 + W_2 + ... + W_R$$

یک مجموع تصادفی است، بنابراین: N

$$E(N) = E(W)E(R)$$

$$E(N) = \left(1 \times \frac{1}{3} + 2 \times \frac{1}{2} + 3 \times \frac{1}{6}\right) \times (\lambda_A + \lambda_B)t = \frac{11}{6}(\lambda_A + \lambda_B)t$$

آمار و احتمال مهندسی بهنام بهرک

< 17 of 30 >

نمونهبرداری (Sampling)

 f_X و اگر متغیر تصادفی X، قطر پیچهای تولیدی یک کارخانه باشد و فرض کنیم دارای چگالی باشد، این مدلی است که طبق فرض برای کلیه پیچها صادق است. پس اگر X_i پیچ نمونه باشد، داریم:

$$f_{X_i}(x) = f_X(x)$$

و X_i ها (با فرض استقلال آزمایشها) مستقل هستند.

- به طور کلی، متغیرهای تصادفی که مستقل و دارای توزیع یکسان باشند را i.i.d. مینامیم که مخفف عبارت Independent Identically Distributed است.
- (population) به دنباله متغیرهای تصادفی i.i.d. i.i.d. i.i.d. که از یک جامعه آماری با توزیع F انتخاب شده باشند، یک نمونه (sample) از توزیع i.d. می گوییم.

آمار و احتمال مهندسی بهنام بهرک

< 18 of 30 >

نمونهبرداري

- حامعه آماری: مثلا جامعه پیچها در مثال قبلی
- میدهد. n پیچ منتخب از جامعه پیچها که قطر آنها n متغیر تصادفی i.i.d
 - می گوییم. (sample size) می گوییم. n
 - چون X_i ها مستقل هستند، داریم:

$$f_{X_i}(x) = f_X(x)$$

$$\Rightarrow E(X_i) = E(X) = \mu$$
 : میانگین جامعه

$$\Rightarrow {
m var}(X_i) = {
m var}(X) = \sigma^2$$
 : واریانس جامعه

بحث نمونهبرداری نقش اساسی در آمار دارد.

آمار و احتمال مهندسی بهنام بهرک

< 19 of 30 >

طبق تعریف، میانگین نمونه برابر است با:

میانگین نمونه (Sample Mean)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

داريم:

$$E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \times n\mu = \mu$$

$$\sigma_{\bar{X}}^2 = \frac{1}{n^2} \sum_{i=1}^n \sigma_{X_i}^2 = \frac{1}{n^2} \times n\sigma^2 = \frac{\sigma^2}{n}$$

پس هر چقدر n زیادتر شود، مقدار \overline{X} به μ واقعی نزدیکتر خواهد بود. \overline{X} میانگین نمونه است، در حالی که μ میانگین جامعه است.

آمار و احتمال مهندسی بهنام بهرک

میانگین نمونه

- . غالبا μ را در اختیار نداریم و با نمونهبرداری و محاسبه \overline{X} آن را تخمین میزنیم. μ مینامیم. \overline{X} متغیر تصادفی \overline{X} را تخمینگر μ مینامیم.
- اگر امید ریاضی تخمینگر $\hat{\theta}$ از پارامتر θ برابر با این پارامتر باشد ($E[\hat{\theta}]=\theta$)، تخمین را بیغرض (unbiased) یا نااریب می نامیم.
 - ست. μ است. $E[ar{X}] = \mu$ است. دیدیم که
 - در آینده خواهیم دید که توزیع متغیر تصادفی $ar{X}$ برای nهای بزرگ برابر است با:

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

مار و احتمال مهندسی بهنام بهرک

< 21 of 30 >

واریانس نمونه (Sample Variance)

۰ دیدیم که میانگین نمونه به صورت زیر تعریف می شود:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- $(\overline{X}-X_i)$ انحراف هر نمونه X_i برابر است با: \circ
 - 🔾 واریانس نمونه به صورت زیر تعریف میشود:

$$S^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \bar{X})^{2}}{n - 1}$$

میتوان نشان داد که S^2 (واریانس نمونه) یک تخمینگر نااریب برای σ^2 (واریانس جامعه) است، به عبارت دیگر:

$$E[S^2] = \sigma^2$$

آمار و احتمال مهندسی بهنام بهرک

اثبات نااريب بودن واريانس نمونه

$$E[S^{2}] = E\left[\sum_{i=1}^{n} \frac{(X_{i} - \bar{X})^{2}}{n - 1}\right] \Rightarrow (n - 1)E[S^{2}] = E\left[\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}\right]$$

$$(n-1)E[S^2] = E\left[\sum_{i=1}^n (X_i - \mu + \mu - \bar{X})^2\right]$$

$$= E\left[\sum_{i=1}^{n} (X_i - \mu)^2 + \sum_{i=1}^{n} (\mu - \bar{X})^2 + 2\sum_{i=1}^{n} (X_i - \mu)(\mu - \bar{X})\right]$$

$$= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 + n(\mu - \bar{X})^2 + 2(\mu - \bar{X}) \sum_{i=1}^{n} (X_i - \mu) \right]$$

^امار و احتمال مهندسی بهنام بهرک

< 23 of 30

اثبات نااريب بودن واريانس نمونه

$$(n-1)E[S^{2}] = E\left[\sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\mu - \bar{X})^{2} + 2(\mu - \bar{X})\sum_{i=1}^{n} (X_{i} - \mu)\right]$$

$$= E\left[\sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\mu - \bar{X})^{2} + 2(\mu - \bar{X})(n\bar{X} - n\mu)\right]$$

$$= E\left[\sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\mu - \bar{X})^{2}\right]$$

$$= \sum_{i=1}^{n} E[(X_{i} - E[X_{i}])^{2}] - nE[(E[\bar{X}] - \bar{X})^{2}] = n\sigma^{2} - n. \text{var}(\bar{X})$$

$$= n\sigma^{2} - n\left(\frac{\sigma^{2}}{n}\right) = (n-1)\sigma^{2} \implies E[S^{2}] = \sigma^{2}$$

مار و احتمال مهندسی هنام بهرک

آماره رتبه (Order Statistic)

- فرض کنید که یک آزمایش تصادفی را n بار انجام دهیم (X_i ها طبق تعریفی که داشتیم تعریف شده باشند) و مقادیر x_i در این آزمایشها ظاهر شوند (i=1,2,...,n)
 - این اعداد را به ترتیب صعودی مرتب می کنیم:

 $x_{r_1} \le x_{r_2} \le \dots \le x_{r_n}$

- :تنون نام مرتب شده آنها را y_i مینامیم، یعنی $y_i=x_{r_i}$ یعنی مینامیم داشت: $y_1\leq y_2\leq \cdots \leq y_n$
 - مثلاً اگر اعداد x_i به ترتیب زیر به دست آمده باشند، داریم:

$$(x_1 = 12, x_2 = 7, x_3 = 13, x_4 = 8, x_5 = 9)$$

 $(y_1 = x_{r_1} = x_2 = 7, y_2 = x_{r_2} = x_4 = 8, ..., y_5 = x_{r_5} = x_3 = 13)$

آمار و احتمال مهندسی بهنام بهرک

25 of 30 >

آماره رتبه

- متغیرهای تصادفی Y_i را آمارههای رتبه (آمارگان رتبه) X_i ها مینامند.
 - مینامند. ام طور خاص متغیر تصادفی Y_k را آماره رتبه kام مینامند. \circ
- ⊙ آمارههای رتبه کاربرد بسیاری در آشکارسازی و تخمین پارامتری دارند و در طراحی
 الگوریتمهای تصادفی مورد استفاده قرار می گیرند.
- تابعی از یک یا چند متغیر تصادفی را که به پارامتر نامعلومی بستگی نداشته باشند، آماره
 (statistic) گویند.
- $\vec{X} = [X_1, X_2, ..., X_n]$ در بحث نمونهبرداری تابعی از بردار متغیرهای تصادفی نمونه آماره می گوییم.
 - . آماره رتبه از آنجا که تابعی از \vec{X} است، یک نوع آماره به شمار میرود.

آمار و احتمال مهندسی بهنام بهرک

₹ 26 of 30 **>**

آماره رتبه اول

یم: Y_1 داریم: Y_2 داریم:

$$Y_1 = X_{min} = \min(X_1, X_2, \dots, X_n)$$

بنابراین:

$$\begin{split} F_{Y_1}(y) &= P\{Y_1 \leq y\} = P\{X_{min} \leq y\} = 1 - P\{X_{min} > y\} \\ &= 1 - P\{X_1 > y, X_2 > y, ..., X_n > y\} \\ &= 1 - P\{X_1 > y\} P\{X_2 > y\} ... P\{X_n > y\} \\ &= 1 - [1 - F_X(y)]^n \end{split}$$

مار و احتمال مهندسی هنام بهرک

آماره رتبه آخر

یم: کاریم: حالت خاص برای Y_n داریم: \circ

$$Y_n = X_{max} = \max(X_1, X_2, \dots, X_n)$$

بنابراين:

$$F_{Y_n}(y) = P\{Y_n \le y\} = P\{X_{max} \le y\}$$

$$= P\{X_1 \le y, X_2 \le y, ..., X_n \le y\}$$

$$= P\{X_1 \le y\}P\{X_2 \le y\} ... P\{X_n \le y\}$$

$$= [F_X(y)]^n$$

$$\Rightarrow f_{Y_n}(y) = n[F_X(y)]^{n-1}f_X(y)$$

آمار و احتمال مهندسی بهنام بهرک

< 28 of 30 >

آماره رتبه

٥ در حالت كلى داريم:

$$f_{Y_k}(y)dy = P\{y < Y_k \le y + dy\}$$

n-k ،y این پیشامد را خواهیم داشت که از n عدد x_i عدد این پیشامد را خواهیم داشت که از تا بزرگتر از y + dy و یکی بین y و یکی باشد.

 A_2 توزیع چندجملهای: احتمال این که در n بار آزمایش، پیشامد k_1 ، A_1 بار، پیشامد \circ برابر ($P(A_i)=p_i$, $k_1+k_2+k_3=n$) برابر k_3 ، k_3 ، k_3 برابر k_2

$$p = \frac{n!}{k_1! \, k_2! \, k_3!} \, p_1^{k_1} p_2^{k_2} p_3^{k_3}$$

آماره رتبه

٥ در نتيجه داريم:

$$f_{Y_k}(y)dy = \frac{n!}{(k-1)!(n-k)!} [F_X(y)]^{k-1} [1 - F_X(y+dy)]^{n-k} f_X(y)dy$$

و با میل دادن
$$dy$$
 به سمت صفر $(dy \to 0)$ خواهیم داشت:
$$f_{Y_k}(y) = \frac{n!}{(k-1)!\,(n-k)!\,1!} [F_X(y)]^{k-1} [1-F_X(y)]^{n-k} f_X(y)$$

برای k=1 توزیع X_{min} و برای k=n توزیع X_{min} به دست می آید:

$$f_{X_{min}}(y) = n[1 - F_X(y)]^{n-1}f_X(y)$$
, $1 - F_{X_{min}}(y) = [1 - F_X(y)]^n$

$$f_{X_{max}}(y) = n[F_X(y)]^{n-1}f_X(y)$$
, $F_{X_{max}}(y) = [F_X(y)]^n$

آمار و احتمال مهندسی بهنام بهرک

< 30 of 30 >