Inference Cheatsheet

James Lee

1 Convergence in Probability

Definition 1 (Convergence in Probability). $Y_n \stackrel{p}{\to} c$ if for every $\epsilon > 0$ and $\delta > 0$, $\exists n_0(\epsilon, \delta)$ such that $\forall n > n_0(\epsilon, \delta) P(|Y_n - c| > \epsilon) < \delta$.

Theorem 1 (Chebyshev Inequality). For random variable, Y, a > 0, and c,

$$P(|Y - c| \ge a) \le \frac{\mathbf{E}(Y - c)^2}{a^2} \tag{1}$$

Definition 2 (Markov Inequality). If X is a nonnegative random variable and a > 0 then

$$P(X \ge a) \le \frac{\mathbf{E}X}{a} \tag{2}$$

Theorem 2. If $\mathbf{E}(Y-c)^2 \to 0$, then $Y_n \xrightarrow{p} c$.

Theorem 3. If X_1, \ldots, X_n iid, $\mathbf{E}X_i = \mu$, $\mathbf{Var}X_i = \sigma^2 < \infty$, then

$$\bar{X} \xrightarrow{p} \mu$$
 (3)