Vorlesungszusammenfassung

Schematheorie

erstellt von

Stefan Hackenberg Maximilian Huber

gehalten von

Prof. Dr. Marco Hien

Stand

16. März 2013

Inhaltsverzeichnis

1	Loka	al geringt	e	R	äu	m	е																			4
	1.1	Garben						 																 		4

1

Lokal geringte Räume

1.1 Garben

Definition 1.1 (Prägarbe). –

Sei X ein topologischer Raum. Eine Prägarbe \mathcal{F} auf X ist eine Zuordnung

$$\mathcal{F}: U \mapsto \mathcal{F}(U)$$
,

die jedem offenen $U\subset X$ eine abelsche Gruppe $\mathcal{F}(U)$ zuordnet, zusammen mit Homomorphismen

$$\rho_{UV}: \mathcal{F}(U) \to \mathcal{F}(V)$$

für jedes Paar $V \subset U$, so dass

Bei mir steht hier im Skript $s \big|_{U}$. Offenbar ein Fehler!?

kommutiert.

Wir nennen ρ_{UV} Restriktion, schreiben meist $s|_{V} := \rho_{UV}(s)$.

Man nennt $s \in \mathcal{F}(U)$ auch Schnitt über U.

Beispiel 1.1.

$$\mathcal{C}_X^{\circ}: U \mapsto \mathcal{C}_X^{\circ}(U) := \{f: U \to \mathbb{R} \mid f \text{ stetig}\}$$

 $\mathrm{mit}\ \rho_{VU}:\mathcal{C}_X^\circ(V)\mapsto\mathcal{C}_X^\circ(U),\, f\mapsto f\big|_U.$

Bemerkung 1.2. Ist Ab die Kategorie der abelschen Gruppen und

$$\mathbf{Top}_X := \begin{cases} \mathrm{Obj} : U \subset X \text{ offen} \\ \mathrm{Morph} : \mathrm{Hom}(U,V) = \begin{cases} \emptyset & U \not\subset V, \\ U \to V & U \subset V, \end{cases}$$

dann ist eine Prägarbe gerade ein kontravarianter Funktor

$$\begin{array}{cccc} \mathcal{F}: & \mathbf{Top}_X & \to & \mathbf{Ab} \\ & U & \mapsto & \mathcal{F}(U) \\ & (U \to V) & \mapsto & (\mathcal{F}(V) \to \mathcal{F}(U)). \end{array}$$

Oder anders ausgedrückt: Es ist

$$\begin{array}{cccc} \mathcal{F}: & \mathbf{Top}_X^{\mathrm{op}} & \to & \mathbf{Ab} \\ & U & \mapsto & \mathcal{F}(U) \\ & (V \to U) & \mapsto & (\mathcal{F}(V) \to \mathcal{F}(U)). \end{array}$$

ein kovarianter Funktor.

Definition 1.2 (Morphismus von Prägarben). -

Ein Morphismus von Prägarben $\mathcal{F} \xrightarrow{\phi} \mathcal{G}$ auf X ist eine natürliche Transformation der Funktoren \mathcal{F} und \mathcal{G} , d.h. für alle $U \subset X$ offen gibt es einen Morphismus $\mathcal{F}(U) \xrightarrow{\phi_U} \mathcal{G}(U)$, so dass für $U \subset V$

$$\mathcal{F}(U) \xrightarrow{\phi_U} \mathcal{G}(U)$$

$$\uparrow \qquad \uparrow$$

$$\mathcal{F}(V) \xrightarrow{\phi_U} \mathcal{G}(V)$$

kommutiert.