Universidad de Granada

Análisis Matemático II Ejercicios resueltos

Doble Grado de Informática y Matemáticas $$\operatorname{Curso}\ 2016/17$$

Ejercicio 1. Probar que el espacio $C_B(A, \mathbb{R}^M)$ es un espacio de Banach, esto es, un espacio normado y completo.

Demostración. Empezamos probando que $(\mathcal{C}_B(A,\mathbb{R}^M),\|\cdot\|_{\infty})$ es un espacio normado:

- Positividad. En primer lugar puesto que la norma se ha definido como supremo de un conjunto de numeros positivos, tendremos que $||f||_{\infty} \geq 0$ para toda $f \in (\mathcal{C}_B(A, \mathbb{R}^M)$. Además, $|f||_{\infty} = 0 \iff sup_{x \in A}|f(x)| = 0 \iff f(x) = 0, \ \forall x \in A \iff f$ es la función 0.
- Homogeneidad. Si $k \in \mathbb{R}$ entonces $||kf||_{\infty} = |k|||f||_{\infty} \iff \sup_{x \in A} |kf(x)| = \sup_{x \in A} |k||f(x)| = |k|\sup_{x \in A} |f(x)| = |k|||f||_{\infty}$.
- Desigualdad triangular. $|f + g|_{\infty} \leq |f|_{\infty} + |g|_{\infty} \iff \sup_{x \in A} |f(x) + g(x)| \leq \sup_{x \in A} |f(x)| + \sup_{x \in A} |g(x)|$. para cualesquiera $f, g \in \mathcal{C}_B(A, \mathbb{R}^M)$.

Para demostrar que $f_n \to f$ c.u. en A $\iff f_n \to f$ en $\mathcal{C}_B(A, \mathbb{R}^M)$, solo tenemos que observar que $f_n \to f$ c.u. en A significa que:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon, \ \forall x \in A,$$

lo cual equivale a decir

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow ||f_n - f||_{\infty} = \sup_{x \in A} |f_n - f| \le \varepsilon, \ \forall x \in A,$$
es decir, $f_n \to f$ en $\mathcal{C}_B(A, \mathbb{R}^M)$.

Por último, $C_B(A, \mathbb{R}^M)$ es de Banach si es completo, es decir si toda sucesión $\{f_n\}$ (de funciones en $C_B(A, \mathbb{R}^M)$) de Cauchy converge. La prueba es análoga a la que se hizo para ver que $C(A, \mathbb{R}^M)$, con $A \subseteq \mathbb{R}^N$ compacto, era completo. La única diferencia será que tras probar la convergencia uniforme de f_n a una función f, deberemos probar que $f \in C_B(A, \mathbb{R}^M)$, es decir que el límite uniforme de la sucesión $\{f_n\}$ de funciones continuas y acotadas es una función continua y acotada. Veámoslo.

Recordemos que ya sabemos por teoría que f es continua. Para la acotación, tomando $\varepsilon = 1$ en la definición de convergencia uniforme, obtenemos un $n_0 \in \mathbb{N}$ tal que $n \geq n_0 \Rightarrow |f_n(x) - f(x)| < 1 \ \forall x \in A$. Por otro lado, como f_{n_0} es acotada, existe un M > 0 tal que $|f_{n_0}(x)| \leq M \ \forall x \in A$. Entonces, se tiene que:

$$|f(x)| = |f(x) - f_{n_0}(x) + f_{n_0}(x)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x)| < 1 + M, \quad \forall x \in A$$

Por tanto, f está acotada.

Ejercicio 2. Sea $\{f_n\}$ una sucesión de funciones reales uniformemente continuas en todo \mathbb{R} que converge uniformemente a una función real f. ¿Puede concluirse que la función f es necesariamente uniformemente continua?.

Solución. La respuesta es afirmativa. Veamos la prueba.

Dado $\varepsilon > 0$, como $f_n \to f$ converge uniformemente, $\exists k > 0$ tal que

$$n > k \Rightarrow |f_n(x) - f(x)| < \varepsilon/3, \ \forall x \in A.$$

De otro lado, por ser f_k uniformemente continua en $A, \exists \delta > 0$ tal que

$$\forall x, y \in A \ con \ |x-y| < \delta, \ se \ tiene \ |f_k(x) - f_k(y)| < \varepsilon/3$$

Juntando ambas informaciones:

$$|f(x) - f(y)| \le |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)| < \varepsilon$$

Es decir, hemos probado que dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$\forall x, y \in A \ con \ |x - y| < \delta \ se \ verifica \ |f(x) - f(y)| < \varepsilon$$

Por tanto, f es uniformemente continua.

Ejercicio 3. Estudiar la convergencia puntual y uniforme de la sucesión de funciones f_n definidas en [0,1] mediante $f_n(x) = x - x^n$ para todo $x \in [0,1]$.

Solución. Sabemos que para $0 \le x < 1$, $f_n(x) = x - x^n \to x$, y para x = 1, tenemos que $f_n(x) = 1 - 1^n = 0 \to 0$. Por tanto, el límite puntual es:

$$f(x) = \begin{cases} x & si \quad 0 \le x < 1 \\ 0 & si \quad x = 1 \end{cases}$$

Como cada f_n es continua y f no es continua, no hay convergencia uniforme.

Ejercicio 4. Estudiad la convergencia uniforme de la sucesión de funciones f_n definidas en [0,99999] mediante $f_n(x) = x^n$ para todo $x \in [0,99999]$.

Solución. En efecto, la sucesión de funciones converge uniformemente. En primer lugar, $\{f_n\} \xrightarrow{c.p} f = 0$ por ser potencia de base menor que 1. Además, por ser una función potencial, el valor máximo que toma es $0,99999^n$. Por tanto: $|x^n| \le 0,99999^n \to 0$, luego $\{f_n\}$ converge uniformemente a f = 0.

Ejercicio 5. Estudiad la convergencia puntual y uniforme de la sucesión de funciones f_n definidas en [0,1] mediante $f_n(x) = (x - \frac{1}{n})^2$ para todo $x \in [0,1]$.

Solución. Sabemos que $\{\frac{1}{n}\}\to 0$, por lo que podemos afirmar que $\{f_n(x)\}\to x^2$ puntualmente en [0,1]. Veamos que también hay convergencia uniforme:

$$|f_n(x) - x^2| = \left| -\frac{2x}{n} + \frac{1}{n^2} \right| \le \frac{2}{n} + \frac{1}{n^2} \to 0, \ \forall x \in [0, 1].$$

Ejercicio 6. Estudiar el caracter de la siguientes series de funciones.

$$\sum_{n\geq 1} \frac{1}{x^2+n^2}$$

•
$$\forall x \in (-1,1)$$
 $\frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1}$

1

$$|sen(nx)| < 1 \implies |\frac{sen(nx)^2}{n^2}| \le \frac{1}{n^2}.$$

$$\left|\frac{sen(nx)^{2}}{n^{2}}\right| \leq \frac{1}{n^{2}}$$

$$\sum_{n\geq 1} \frac{1}{n^{2}}$$

$$\Rightarrow \sum \left|\frac{sen^{2}(nx)}{n^{2}}\right| c.u \iff \sum_{n\geq 1} \frac{sen^{2}(nx)}{n^{2}} \text{ es abs. convergente. } \Longrightarrow$$

$$\sum \frac{sen^{2}(nx)}{n^{2}} \text{ converge uniformamente.}$$

$$\frac{\frac{x^{2n}}{(n!)^2} \le \frac{M^{2n}}{(n!)^2} \ con \ |x| \le M}{\frac{M^{2n}}{(n!)^2} \ converge} \implies (\frac{x^n}{(n!)})^2 \ \text{es c.u en } [-M, M]$$

Por que,
$$\lim_{\substack{\frac{M^{2(n+1)}}{(n+1)!^2}}} \frac{M^{2(n+1)}}{M^{2n}} = \lim_{\substack{\frac{M^2}{(n+1)^2}}} \frac{M^2}{(n+1)^2} = 0 < 1.$$

Ejercicio 7. Teorema de Divi.

 $A \subset \mathbb{R}^n$ compacto.

 $f_k:A\to R$ continua.

$$f_k \ge 0, \ f_k(x) \ge f_{k+1}(x) \ \ \forall x \in A \ (\{f_k\} \ monotona \ convergente \}$$
 $\Longrightarrow f_k \to 0 \text{ c.u. en } A$

Solución:

 $f_k(x) \to f(x) \ \forall x \in A \implies \forall \ x \in A, \forall \varepsilon > 0 \ \exists k_x \in \mathbb{N} \ \text{t.q.} \ k \ge k_x \implies |f_k(x) - f(x)| < \varepsilon$ $f_{k_x} \text{ cont. en A.} \implies f_{k_x} \text{ continua en x} \implies \exists U_x \text{ entorno abierto de x en A t.q.}$ $|f_{k_x}(y) - f_{k_x}(x)| < \varepsilon \ \forall y \in U_x$

 $A \subset \bigcup_{x \in A} U_x \implies \{U_x | x \in A\}$ es un recub. por abiertos de A. Entonces, $\exists x_1,...,x_n \in A : A \bigcup_{i=1}^n U_{x_i}$ Por cada x_i existe un k_{x_i} naturales. Sea $k_0 = \max\{k_{x_1},...,k_{x_n}\}$

Si
$$k \ge k_0 \implies f_k(x_i) = |f_k(x_i) - f(x_i)| < \varepsilon/2$$
 y $|f_{k_{x_i}}(y) - f_{k_{x_i}}(x_i)| < \varepsilon/2$ $\forall y \in U_{x_i}$ Sea $y \in A \implies \exists i \in \{1, ..n\}$ t.q $y \in U_{x_i} \implies |f_{k_{x_i}}(y) - f_{k_{x_i}}(x_i)| < \varepsilon/2 \implies f_{k_{x_i}}(x_i) < \varepsilon/2$

Sumando: $f_k(y) \ge f_{k_{x_i}}(y) \ge |f_{k_{x_i}}(x_i) + f_{k_{x_i}}(y) - f_{k_{x_i}}(x_i) < \varepsilon$

Hemos probado que $\forall \varepsilon > 0 \ \exists k_0$ (dep. de ε y $x_1,...,x_n \in \mathbb{N}$ t.q. $k \geq k_0 \implies |f_k(y)| = f_k(y) < \varepsilon \ \forall y \in A$

Ejercicio 8. Encontrar un ejemplo de una función que cumpla:

$$\{f_k\} \to 0$$
 c.u.

$$\int_A f_k \not\to \int_A 0 = 0$$

 $con A \subset R$

Una solución es:
$$f_k(x) = \begin{cases} 1/k & x < k \\ 0 & x \ge k \end{cases}$$