§ 4. Прогрессии. Суммирование. Бином Ньютона. Числовые неравенства

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Числовая последовательность.

1) Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x_n , то говорят, что задана числовая последовательность (или просто последовательность)

$$x_1, x_2, ..., x_n, ...$$

Кратко последовательность обозначают символом $\{x_n\}$ или (x_n) , число x_n называют членом или элементом этой последовательности, n — номером члена x_n .

2) Последовательность обычно задается либо формулой, с помощью которой можно вычислить каждый ее член по соответствующему номеру, либо формулой, позволяющей находить члены последовательности по известным предыдущим (рекуррентной формулой).

2. Арифметическая прогрессия.

1) Арифметическая прогрессия — последовательность $\{a_n\}$ — определяется рекуррентной формулой

$$a_{n+1} = a_n + d,$$

где a_1 и d — заданные числа; число d называется разностью арифметической прогрессии.

2) Формула n-го члена арифметической прогрессии:

$$a_n = a_1 + d(n-1).$$

3) Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому его соседних членов, т. е. при $k\geqslant 2$ справедливо равенство $a_k=\frac{a_{k-1}+a_{k+1}}{2}\,.$

4) Сумма n первых членов арифметической прогрессии выражается формулой $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + d(n-1)}{2} \cdot n.$

3. Геометрическая прогрессия.

1) Геометрическая прогрессия— последовательность $\{b_n\}$ — определяемая рекуррентной формулой

$$b_{n+1}=b_nq,$$

где b_1 и q — заданные числа, отличные от нуля; число q называют знаменателем геометрической прогрессии.

2) Формула n-го члена геометрической прогрессии:

$$b_n = b_1 q^{n-1}.$$

В частности, если Q(x)=x-a, где a — заданное число ($a\in R$ или $a\in C$), а $P(x)=Q_n(x)$, где $Q_n(x)$ — многочлен степени n, то в формуле (2) частное $T(x)=\widetilde{Q}_{n-1}(x)$ — многочлен степени n-1, а R(x)=r — некоторое число. Итак, формула деления многочлена $Q_n(x)$ степени n на двучлен x-a имеет вид

$$Q_n(x) = (x - a)Q_{n-1}(x) + r. (3)$$

5) Теорема Безу. Число а является корнем многочлена $Q_n(x)$ тогда и только тогда, когда этот многочлен делится без остатка на x-a, т. е. справедливо равенство

$$Q_n(x) = \widetilde{Q}_{n-1}(x)(x-a).$$

6) Число a называют корнем многочлена $Q_n(x)$ кратности k, если существует число $k \in \mathbb{N}$ и многочлен $Q_{n-k}^*(x)$ такие, что для всех x ($x \in \mathbb{R}$ или $x \in \mathbb{C}$) справедливо равенство

$$Q_n(x) = (x - a)^k Q_{n-k}^*(x), (4)$$

где

$$Q_{n-k}^*(a) \neq 0. \tag{5}$$

Если $a \in R$ и коэффициенты многочлена $Q_n(x)$ — действительные числа, то условия (4), (5) выполняются тогда и только тогда, когда

$$Q_n(a) = 0$$
, $Q'_n(a) = 0$, ..., $Q_n^{(k-1)}(a) = 0$, $Q_n^{(k)}(a) \neq 0$.

7) Если $Q(x) = x^2 + px + q$, где $p \in R$, $q \in R$, $p^2 - 4q < 0$, то корни x_1 и x_2 многочлена Q(x) — комплексно сопряженные числа:

$$x_1 = -\frac{p}{2} + i\sqrt{q - \frac{p^2}{4}}, \quad x_2 = -\frac{p}{2} - i\sqrt{q - \frac{p^2}{4}}.$$

- 8) Если $Q_n(x)$ многочлен с действительными коэффициентами, а $x_0 = \gamma + i\delta$, $\delta \neq 0$, его корень, то число $\overline{x}_0 = \gamma i\delta$ также является корнем этого многочлена.
- 9) Целые корни алгебраического уравнения $Q_n(x) = 0$, где $Q_n(x)$ многочлен с целыми коэффициентами, являются делителями его свободного члена.

2. Разложение многочлена на множители.

- 1) Теорема Гаусса (основная теорема алгебры). Алгебраическое уравнение степени $n \geqslant 1$, т. е. уравнение $Q_n(x) = 0$, где $Q_n(x)$ многочлен (1) степени n, с действительными или комплексными коэффициентами имеет n корней при условии, что каждый корень считается столько раз, какова его кратность.
- 2) Пусть $Q_n(x)$ многочлен (1) степени n с действительными коэффициентами, a_j (j=1,2,...,k) все действительные корни этого многочлена, α_j кратность корня a_j . Тогда

$$Q_n(x) = C_n(x - a_1)^{\alpha_1} \dots (x - a_k)^{\alpha_k} R(x),$$

где R(x) — многочлен с действительными коэффициентами степени $t=n-\sum_{j=1}^k \alpha_j$, не имеющий действительных корней. Если t> > 1, то многочлен R(x) должен делиться на многочлен $x^2+px+q=(x-x_0)(x-\overline{x}_0)$, где $x_0=\gamma+i\delta$ $(\delta\neq 0)$ — комплексный корень многочлена R(x).

Пусть x_j и \overline{x}_j — пара комплексно сопряженных корней многочлена $R(x),\ \beta_j$ — кратность этих корней,

$$x^2 + p_j x + q_j = (x - x_j)(x - \overline{x}_j), \quad p_j \in R, \quad q_j \in R,$$

 x_j, \overline{x}_j (j=1,2,...,s) — все пары комплексно сопряженных корней многочлена R(x). Тогда

многочлена
$$R(x)$$
. Тогда
$$Q_n(x) = C_n(x-a_1)^{\alpha_1}...(x-a_k)^{\alpha_k}(x^2+p_1x+q_1)^{\beta_1}...(x^2+p_sx+q_s)^{\beta_s},$$
 $\sum_{j=1}^k \alpha_k + 2\sum_{j=1}^s \beta_j = n.$ (6)

- 3. Разложение правильной рациональной дроби на элементарные.
- 1) Пусть $P_m(x)$ и $Q_n(x)$ многочлены степени m и n. Если m < n, то функцию $\frac{P_m(x)}{Q_n(x)}$ называют правильной рациональной дробью, а при $m \geqslant n$ неправильной.
- 2) Если T(x) частное, а R(x) остаток от деления многочлена $P_m(x)$ на многочлен $Q_n(x)$, то

$$\frac{P_m(x)}{Q_n(x)} = T(x) + \frac{R(x)}{Q_n(x)},$$

где либо R(x)=0 (в случае, когда многочлен $P_m(x)$ нацело делится на многочлен $Q_n(x)$), либо $R(x)\neq 0$, а дробь $\frac{R(x)}{Q_n(x)}$ является правильной.

3) Пусть $P_m(x)$ и $Q_n(x)$ — многочлены с действительными коэффициентами, $\frac{P_m(x)}{Q_n(x)}$ — правильная дробь, число a — действительный корень кратности k многочлена $Q_n(x)$. Тогда существуют действительные числа $A_1,\ A_2,\ ...,\ A_k$ такие, что

$$\frac{P_m(x)}{Q_n(x)} = \frac{A_k}{(x-a)^k} + \frac{A_{k-1}}{(x-a)^{k-1}} + \dots + \frac{A_1}{x-a} + \frac{P^*(x)}{Q_{n-k}^*(x)},$$

где $P^*(x)$ — многочлен с действительными коэффициентами или нуль, $Q^*_{n-k}(x)$ — частное от деления $Q_n(x)$ на $(x-a)^k$ при $P^*(x)\not\equiv 0$. Дробь $\frac{P^*(x)}{Q^*_{n-k}(x)}$ является правильной, а числа A_j (j=1,2,...,k) и многочлен $P^*(x)$ определяются однозначно.