PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-322490

(43)Date of publication of application: 22.11.1994

(51)Int.CI.

C22C 38/00 C22C 38/44

(21)Application number: 05-156645

(71)Applicant: SUMITOMO METAL IND LTD

(22)Date of filing:

28.06.1993

(72)Inventor: AZUMA SHIGEKI

YAMANAKA KAZUO HONCHI MASAHIRO YAMAGUCHI YOJI

(30)Priority

Priority number: 05 60053

Priority date: 19.03.1993

Priority country: JP

(54) STAINLESS STEEL FOR HIGH PURITY GAS EXCELLENT IN WORKABILITY AND MACHINABILITY (57) Abstract:

PURPOSE: To provide stainless steel for high purity gas excellent in workability and machinability. CONSTITUTION: This stainless steel for high purity gas excellent in workability and machinability is, one having a compsn. contg. 10 to 25% Ni, 15 to 30% Cr, 2 to 7% Mo and 0.10 to 0.30% N and in which the content of C in impurities is regulated to $\leq 0.03\%$, Si to $\leq 0.5\%$, Mn to $\leq 0.5\%$, P to $\leq 0.01\%$ S to $\leq 0.003\%$, O to $\leq 0.005\%$, Ti to $\leq 0.02\%$ and Al to less than (0.01/N(%)) and Ni-bal. value given by the following formula is regulated to O to $\leq 0.00\%$ Nieq. = 1.1% ICreq. = 1.1% Where Nieq. = 1.1% Nieq. = 1.1

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-322490

(43)公開日 平成6年(1994)11月22日

(51) Int.Cl.5

庁内整理番号 識別記号

302 Z

FI

技術表示箇所

C 2 2 C 38/00

38/44

請求項の数2 OL (全 8 頁)

)出願人 000002118
住友金属工業株式会社
大阪府大阪市中央区北浜4丁目5番33号
)発明者 東 茂樹
大阪府大阪市中央区北浜4丁目5番33号住
友金属工業株式会社内
)発明者 山中 和夫
大阪府大阪市中央区北浜4丁目5番33号住
友金属工業株式会社内
)発明者 本地 雅宏
大阪府大阪市中央区北浜4丁目5番33号住
友金属工業株式会社内
)代理人 弁理士 穂上 照忠 (外1名)
最終頁に続く

(54)【発明の名称】 加工性および被削性に優れた高純度ガス用ステンレス鋼

(57)【要約】

【目的】加工性と被削性にも優れた高純度ガス用ステン レス鋼を提供する。

【構成】Ni:10~25%、Cr:15~30%、Mo:2~7%、 N:0.10~0.30%を含有し、不純物中のCが0.03%以*

Ni-bal. = Ni eq. -1.1Cr eq. $+8.2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \odot$

ただし、Ni eq. =Ni(%) + 0.5Mp(%) +30 (C(%) + N(%))

Cr eq. =Cr(%) + 1.5Si(%) + Mo(%)

上記網は加えて更に、Cu: 0.20~0.80%を含有すること

*下、Siが 0.5%以下、Maが 0.5%以下、Pが0.01%以 下、Sが 0.003%以下、O(酸素)が 0.005%以下、Ti が0.02%以下、Alが〔0.01 / N(%)〕未満で、かつ下 記式①で与えられるNi-bal.値が0以上3未満である加 工性と被削性に優れた高純度ガス用ステンレス鋼。

ができる。

【効果】本発明鋼は、優れた低パーティクル発生特性 (清浄性)、耐食性、熱間と冷間の加工性および被削性 を併せ持つ高純度ガス用ステンレス鋼である。

【特許請求の範囲】

【請求項1】重量%で、Ni:10~25%、Cr:15~30%、 Mo: 2 ~ 7 %およびN:0.10~0.30%を含有し、残部は Feおよび不可避的不純物からなり、不純物中のCが0.03 %以下、Siが 0.5%以下、Muが 0.5%以下、Pが0.01%*

Ni-bal. = Ni eq. -1.1Cr eq. $+8.2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \bigcirc$

ただし、 Ni eq. = Ni(%) + 0.5Mn(%) + 30 (C(%) + N(%))

Cr eq. =Cr(%) + 1.5Si(%) +Mo(%)

【請求項2】重量%で、Ni:10~25%、Cr:15~30%、 Mo: 2~7%、Cu: 0.20~0.80%およびN: 0.10~0.30 %を含有し、残部はFeおよび不可避的不純物からなり、※

Ni-bal. = Ni eq. -1.1Cr eq. $+8.2 \cdot \bigcirc$

ただし、 Ni eq. =Ni(%) + 0.5Mn(%) +30 (C(%) + N(%)]

Cr eq. = Cr(%) + 1.5Si(%) + Mo(%)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体製造プロセスな どで使用される高純度ガス用ステンレス鋼に関する。 [0002]

【従来の技術】半導体製造分野においては近年、高集積 化が進み、超LSIと称されるディバイスの製造では、 1 μ Β 以下の微細パターンの加工が必要とされている。 このような超LSI製造プロセスでは、微少な塵や微量 不純物ガスが配線バターンに付着、吸着されて回路不良 の原因となるため、使用する反応ガスおよびキャリアー ガスは共に高純度であること、すなわちガス中の微粒子 および不純物ガスが少ないことが必要である。したがっ て、高純度ガス用配管および部材においては、その内面 から放出される汚染物としての微粒子 (パーティクル) およびガスが極力少ないことが要求される。

【0003】また、半導体製造用ガスとしては、窒素、 アルゴンなどの不活性ガス以外に塩素、クロロシラン類 などの腐食性のガスも使用されるので、これらの腐食性 ガスに接する部材には当然、高い耐食性も必要となる。

【0004】従来、このような半導体製造用ガス配管お よび継手などの部材は、塵や水分などの付着および吸着 を低減するため、その内面粗さがRmax として1μm.以 下となるまで平滑化されている。この内面平滑化の方法 40 として電解研磨が適用され、その後、高純度水による洗 浄、高純度ガスによる乾燥が施されて製品となる。

【0005】半導体製造用ガス配管および継手などの部 材の材質としては通常、オーステナイト系ステンレス 鍋、中でもSUS316Lが主流となっており、配管には維 目無し鋼管が、継手などの部材には棒鋼などからの「切 削加工」ないしは「熱間鍛造+切削加工」仕上品が、そ れぞれ使用されている。

【0006】上記の規格鋼以外では、特開昭63-161145 号公報に、前述のような管内面からのパーティクル発生 50 *以下、Sが 0.003%以下、O(酸素)が 0.005%以下、 Tiが0.02%以下およびAlが (0.01 /N(%))未満で、 かつ下記式①で与えられるNi-bal.値がO以上、3未満 であることを特徴とする加工性および被削性に優れた高

※不純物中のCが0.03%以下、Siが 0.5%以下、Maが 0.5 %以下、Pが0.01%以下、Sが 0.003%以下、O(酸素)が 0.005%以下、Tiが0.02%以下およびAIが (0.01 10 /N(%)] 未満で、かつ下記式①で与えられるNi-bal. 値が0以上、3未満であることを特徴とする加工性およ び被削性に優れた高純度ガス用ステンレス鋼。

を低減することを目的として、Mn、Si、Al、O(酸素) などの含有量を規制することにより非金属介在物を低減 したクリーンルーム用鋼管が開示されている。

[0007]

【発明が解決しようとする課題】高純度ガス配管用ステ ンレス鋼管などの性能として不可欠なパーティクル発生 20 低減の有効な対策としては、管内面の平滑化、さらに前 記の特開昭63-161145号公報に示されるような非金属介 在物の低減がある。配管用ステンレス鋼管の性能として は、前述したパーティクル発生特性と耐食性のほか、溶 接性、ガス放出特性が重視される。ガス配管系には、溶 接継手、パルブ、流量計等の配管部品が不可欠であり、 これら配管部品も高純度ガス用としての高清浄性が必要 であることから、鋼管の素材と同様のパーティクル発生 が低減されたステンレス鋼から製造されることとなる。

【0008】配管部品の製造は、主として棒鋼を素材と し、旋盤、ドリルなどを用いる機械加工により行われる ため、その素材となるステンレス鋼では、被削性も特に 重要な性能である。従来の一般用途での快削ステンレス 鋼では、P、S、Se、Pb、Biなどを添加し、これらの元 素がステンレス鋼組織中に形成する非金属介在物あるい は析出物により被削性を付与する。しかし、高純度ガス 用ステンレス鋼では、前記の必要性能上これらの介在物 などを極力低減せざるを得ないため、被削性が著しく劣 り、配管部品の機械加工が困難であるという問題があ

【0009】したがって、上記配管部品の製造にあたっ ては、切削加工の度合いを極力少なくすることが重要で あり、熱間もしくは冷間鍛造を導入することが窒まし い。しかし、熱間鍛造と冷間鍛造を比べると、冷間鍛造 の方が切削工数の削減度合い、寸法精度、表面品質およ び材料歩留り、作業コストなどで総合評価して有利であ るので、「冷間鍛造+切削加工」方式の導入が可能な高 純度ガス用ステンレス鋼素材の開発が待望されている。

【0010】さらに、素材となる棒鋼や鋼管を製造する ためには当然、良好な熱問加工性を備えたステンレス鋼 であることも必要である。

3

【0011】本発明は上記の課題を解決するためになさ れたものであり、本発明の目的は、高純度ガス用ステン レス鋼として不可欠な低パーティクル発生特性(清浄 性)と耐食性を有し、さらに優れた熱間または熱間およ び冷間での加工性と被削性を併せ持つステンレス鋼を提 供することにある。

[0012]

【課題を解決するための手段】本発明の要旨は、次の (1)、(2)の加工性および被削性に優れた高純度ガス用 ステンレス鋼にある。

* 10 [0014] Ni-bal. = Ni eq. - 1.1Cr eq. +8.2 · · · · · · · ①

ただし、Ni eq. =Ni(%) + 0.5Mn(%) +30 [C(%) + N(%)

Cr "eq. = Cr(%) + 1.5Si(%) + Mo(%)

(2)上記(1) に記載の化学組成に加えてさらに、Cu: 0.2 · 0~0.80%を含有する上記(1) の加工性および被削性に 優れた高純度ガス用ステンレス鋼。

【0015】本発明者らは、前記の課題を解決するた め、種々の化学組成を有するステンレス鋼を用いて、高 純度ガス用配管としての代表的性能であるパーティクル 発生特性、ならびに素材鋼としての性能を表す熱間、冷 間での加工性および被削性を調査した。その結果、バー ティクル発生特性を劣化させることなく熱間、冷間加工 性および被削性を向上させるには、次の①~④が有効で あるとの知見を得た。

【0016】①パーティクル発生特性を向上させるため に、不純物元素の含有量を一定値以下に抑制する。

【0017】②被削性を向上させるために、Nを適量で 含有させ、さらにこのNと窒化物を形成しやすいAI含有 量を調整する(オーステナイトステンレス鋼の場合、N は低C鋼の強度低下を補うための固溶強化元素として知 られているが、被削性改善効果についてはこれまで検討 されていない。)。

【0018】③冷間鍛造時の加工性を向上させるため に、Cuを適量で含有させる。

【0019】 ④熱間加工性を向上させるために、Ni-ba 1. 値を一定の範囲に調整する。

[0020]

【作用】本発明のステンレス鋼の化学組成を上述のよう に定めた理由を述べる。以下、%は重量%を意味する。

【0021】Ni、Cr、Mo:Ni、Cr、Moはいずれも、網の 耐食性および組織調整に重要な元素である。オーステナ イトステンレス鋼としての組織と、さらに高い耐食性と を維持させるために、Niは10~25%、Crは15~30%、Mo は2~7%とした。これらの範囲を外れると、望ましい 耐食性や金属組織が得られない。

【0022】Cu:Cuは本発明の目的の一つである冷間加 工性を改善する重要な合金元素であり、必要に応じて含 有させる。すなわち、Cuはオーステナイト相を安定化さ せ、加工硬化率を低下させる作用を有する。さらに、被 50

* 【0013】(1)重量%で、Ni:10~25%、Cr:15~30 %、Mo: 2~7%およびN:0.10~0.30%を含有し、残 部はFeおよび不可避的不純物からなり、不純物中のCが 0.03%以下、Siが 0.5%以下、Mnが 0.5%以下、Pが0. 01%以下、Sが 0.003%以下、O(酸素)が 0.005%以 下、Tiが0.02%以下およびAIが (0.01 / N(%)) 未満 で、かつ下記式ので与えられるNi-bal.値がO以上、3 未満であることを特徴とする加工性および被削性に優れ た高純度ガス用ステンレス鋼。

削性に対しても改善効果を有する元素である。Cu含有量 が0.20%未満では良好な冷間加工性と被削性が得られな い。一方、0.80%を超えるとCuの固溶化作用により脆化 が著しくなり、熱間加工性を劣化させるため、鋼管およ び棒鋼などの製造が困難となる。よって、Cuを含有させ る場合の含有量の範囲は0.20~0.80%とした。

【0023】N:Nは本発明の目的の一つである被削性 を改善する重要な合金元素である。被削性が向上するの は、ドリル穿孔の場合、高N化によって切削時の切り屑 20 が破断しやすくなり、穿孔時に孔外へ容易に排出される ためであると考えられる。

【0024】N含有量が0.10%未満の場合には、上記の 効果が少なく良好な被削性が得られない。一方、0.30% を超えると熱間加工性が劣化し、鋼管および棒鋼などの 製造が困難となる。よって、Nの含有量の範囲は0.10~ 0.30%とした。

【0025】C:Cは、Cr炭化物の析出により耐食性を 低下させるため、その含有量は低いことが望ましい。本 発明鋼の強い腐食性ガスに対する用途も考慮して、0.03 %以下とした。

【0026】Si、Mo:Si、Moは脱酸効果を有し、ステン レス鋼の高清浄化に有効な元素である。しかし、Si、Mo とも鋼中の〇、Sと化合して非金属介在物を形成しやす く、高純度ガス用ステンレス鋼としては、これらの含有 量はともに低いことが望ましい。よって、SiとMaの含有 量は、いずれも0.5%以下とした。

【0027】P、S:Pの含有量が0.01%を、Sの含有 量が 0.003%を、それぞれ超えると、ともに耐食性およ び熱間加工性に対して有害である。特にSは極微量でも MnS を生成し、耐食性に極めて有害である。よって、P の含有量は0.01%以下、Sの含有量は0.003%以下とし

【0028】Al:AlもSi、Mnと同様に脱酸効果を有し、 かつ非金属介在物を形成しやすい元素である。また、N を前記範囲で含有させた場合、過剰のAIが存在するとAI 窒化物を生成し、鋼の清浄度を悪化させパーティ クル発 生特性が劣化する。

【0029】AI窒化物の生成の有無は、NとAIとの含有 量から予測できる。本発明者らがその窒化物折出の関係 5

を系統的に調査したところ、 $N \ge A1 \ge 0$ 合有量の関係を、 $\{N(\$) \times A1(\$)\}$ で0.01未満に維持すれば、高N合有ステンレス鋼でもA1窒化物は析出しないことが判明した。よって、A1合有量は $\{0.01 / N(\$)\}$ 未満とした。

【0030】〇:〇(酸素)はSと並んで非金属介在物を形成する元素であり、極力少なくする必要がある。耐食性に悪影響を及ぼさない範囲として、〇含有量は0.005%以下とした。

【0031】Ti:Tiは窒化物を極めて生成しやすい元素 10 であり、前記の高N含有量の範囲では極微量でも有害である。よって、Ti含有量は0.02%以下とした。

【0032】Ni-bal.値:Ni-bal.値が0未満になると、フェライト相を含む不安定なオーステナイト組織しか得られないため、機械的性質、耐食性が劣化する。一方、3以上では熱間加工性が低下し、実験室での小規模な鋼塊等の製造では支障はないものの、商用レベルの大

量製造では、鋼塊の熱間鍛造、熱間圧延時に割れが起こりやすい。よって、本発明鋼の合金元素含有量から計算されるNi-bal.値を、0以上、3未満と定めた。

【0033】本発明網では、さらに3%以下のWを含有させると耐食性が向上し、また0.01%以下のB、Ca、希土類元素をそれぞれ含有させると熱間加工性が向上する。

[0034]

【実施例】表 1、表 2 に示す化学組成を有するステンレス網を溶製し、肉厚10mmの板材、外径 6.4mm、肉厚 1 mm、長さ 4 mm の継目無鋼管および外径20mmの棒鋼を熱間加工により成形後、1100℃→水冷の固溶化処理を施し、板材は被削性試験と熱間加工後の硬度測定試験に、管材はパーティクル発生特性試験に、棒鋼は冷間加工性試験に、それぞれ供した。

【0035】 【表1】

. 8

7
1

	羅	妆	1	€ 8	8K B	F 8	2			丑	1	¥	窒			
		Nibal.	1.55	1.09	2.78	2.56	1.96	0.38	1.78	0.10	3.764	2.53	2.70	2.51	1.28	
	į	Cr. eq.	20.53	21.15	23.47	30.10	30.93	19.28	20.21	21.83	20.35	21.16	22.45	24.85	21.51	
		Ni eq.	15.94	16.16	83. 83.	27.46	27.73	13.40	15.88	15.92	17.94	17.61	19.20	21.65	16.74	
	(1	N×AI	0.0014	0.0039	0.0039	0.0015	0.0074	0.000	0.0003	0.000	0.0024	0.01564	0.0143	0.0188*	0.0017	
	: Fe 不動	0	0.0011	0.0004	0.0002	0.0009	0.0008	0.0012	9000.0	0.0006	0.0012	0.0012	0.0008	0.00	0.0011	
	图	Z	0.113	0.112	0.186	0.136	0.231	0.002*	0.072*	0.003#	0.114	0.125	0.231	0.261	0. 121	
	(Wt%,	Ti	0.004	0.001	900.0	0.011	0.001	0.003	0.005	0.004	90.004	0.011	0.001	0.014	0.036#	
- 	ゼ	IV	0.012	0.035	0.021	0.011	0.032	0.012	0.004	0.007	0.021	0.125	0.062	0.072	0.014	
18		23	1	1	ı	٠ إ	١.	1	ı	1	1	١	1	1	1	
	翼	Mo	2.91	27.2	3.65	2 12	5.86	232	2.68	3.15	2.68	264	2 92	388	2.89	
	钟		Cr	17.5	17.8	19. 5	27.3	24.5	16.9	17.5	18.2	17.2	17.8	18.9	20.6	17.9
		Ni	12.4	12.6	14.6	23.2	20.5	13.1	13.6	15.6	14.1	13.2	12.2	13.5	12.8	
		S	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001	
	72	Ğ٠	0.008	0.008	0.005	0.007	0.007	0.008	0.008	0.004	900.0	0.003	0.006	0.003	0.004	
		폡	0.02	0.04	0.12	0.06	0.23	0. 12	0.02	0.09	0.11	0.42	0.02	0.46	0.14	
		. Si	o. 88	0. 42	0.21	0.45	0.38	0.04	0.08	0.32	0.31	0.48	0. 42	0.42	0.48	
		O	0.004	0.006	0.005	0.002	0.008	900.0	0.003	0.006	0.012	0.015	0.002	0.003	0.008	
L	S	麗	∢	В	Ŋ	Ω	ப		2	က	4	2	တ	2	∞	

(注) * 印は本発明の範囲外

【0036】 【表2】

₩ 絮 塞 **开数**室 Nibal. 8 8 બ o 8 83 83 83 ଷ 2 ន æ ଞ୍ଚ 햔 ಸ တ္တံ 8 'n යු g 27. 13 Z 7 5 0074 ਫ਼ 8 800 ᅙ 0 8 ئو ö o. 133 88 bal Z ន ö 0 ķ ö ö ≢ 옳 8 용 Ġ Ö 10 8 ខ្ល 弦 ₹ 9 Ö ö 얾 92 23 왚 ଷ 3 \mathbf{S} 8 ö ö 22 2 ಹ æ 88 얾 盎 £ બ ~ં က 27.3 S 'n ರ 6 24. 16. ∞: 扑 Z 2 2 꺜 ន ಜ ಣ <u>κ</u> ഒ ខ ᅙ ᅙ ᅙ ᅙ S ď Ö য় 8 8 8 8 8 ď 0.09 ജ Q `≥ 0 o 雷 紀 は本芸 8 \$ 88 8 ឆ S Ö ď Ö 5 ğ 8 8 8 8 Ġ \mathfrak{H} ď ď ď 疆 歷

C)

НX

【0037】鋼管は、内面を電解研磨によってRmax が 0.7μm となるように平滑化した後、高純度水によって 洗浄し、80℃で99.999%Arガスを通して乾燥した。パーティクル発生特性は、図1に示す装置を用い、上記の電解研磨管にプラスチックハンマーによる打撃を与えた後、高純度窒素ガスを通して 0.1μm 以上のパーティクル発生数を測定し、パーティクル発生がなくなる測定回数で評価した。

【0038】被削性は、上記の板材をそれぞれ2枚用意 10 して表3に示す工具と穿孔条件でドリル穿孔試験を行う ことにより、各板材毎に新品の1本のドリルで穿孔可能 であった孔個数と切屑性状で評価した。

[0039]

【表3】

20

表 3

	工具	SKH5I製ドリル、φ5mmi-/i-型
翠	送り	0.15 mm/rev.
孔	回転数	980 rpm
条	孔深さ	φ10mm貫通孔
#	潤滑	水溶性潤滑剤 4リットル/min

【0040】熱間加工性は、800~1200℃で厚さ30mm、幅80mmの素材を厚さ5mmに圧延し、板材のへり部に生じる割れの有無で評価した。

【0041】冷問加工性は、上記の棒鋼から外径6㎜、 長さ11.5㎜の試験片を切り出し、冷間アプセット加工時 の割れ発生限界歪み(対数歪み)を、試料:12の場合を 30 100とした相対値で評価した。

【0042】熱間加工性、冷間加工性、パーティクル発生特性および被削性の評価結果をまとめて表4および表5に示す。

【0043】 【表4】

10

表 4

	Ţ						
鋼	熱間加工性	硬度	被	削 性	冷間	パーティクルゼロ	備
種	然随加工压	Hv10kg	穿孔個数	切屑性状	加工性	となるハンマリング	考
Α	良 好	168	>100 : >100	良好	100	4	
В	良好	176	>100 、>100	良 好	90	1	本
С	良 好	172	>100 、>100	良好	90	3 .	発
D	良好	168	>100 、>100	良 好	95	5.	明
Е	良好	- 182	>100 、>100	良 好	80	4	1501
1	良 好·	143	2 3	ドリルに絡み付く	100.	6	
2	良 好	156	10 、 19	ドリルに絡み付く	95	2	
3	良 好	151	4 . 7	ドリルに絡み付く	100	. 4	比
4	熱延板へり.部割れ	168	>100 、>100	良 好	100	. 6	
5	良好	162	>100 、>100	良 好	90	12	較
6	良 好	174	>100 、>100	良 好	90	18	例
7	良 好	182	>100 、>100	良 好	80	21	
8	良 好	156	21 , 9	ドリルに絡み付く	100	13	

[0044]

20【表5】

表 5

_			124	•			•
鋼	熱間加工性	硬度	. 被	削 性	冷間	パーティクルゼロ	備
種	※はずかてほ	Hv10kg	穿孔個数	切屑性状	加工性	となるハンマリング 回数	考
F	良 好	168	>100 、>100	良 好	115	4	
G	良好	176	>100 、>100	良 好	120	1	本
Н	良 好	172	>100 、>100	良 好	120	3	発
I	良 好	168	>100 、>100	良 好	130	5	明
J	良 好	182	>100 、>100	良 好	120	4	例
9	良 好	143	2, 3	ドリルに絡み付く	120	6 .	比
10	. "良 好	151	4, 7	ドリルに絡み付く	120	4 .	比較例

【0045】表4からわかるように、本発明で定める範囲内の化学組成を有するステンレス鋼では、熱間加工性が良好で、しかも優れたパーティクル発生特性と被削性を示した。

【0046】表5からわかるように、本発明で定める範囲内の化学組成を有するステンレス鋼では、熱問加工性、冷間加工性が良好で、しかも優れたパーティクル発生特性と被削性を示した。

[0047]

【発明の効果】本発明鋼は、高純度ガス用として不可欠な低パーティクル発生特性(清浄性)、耐食性、優れた熱間、冷間での加工性および被削性を併せ持つステンレス鋼である。この鋼を素材鋼として用いれば、棒鋼から「冷間加工+切削加工」仕上により、継手などの高純度ガス配管用部材も製造することができる。

【図面の簡単な説明】

② 【図1】鋼管内面のパーティクル発生特性を評価する装置を模式的に示す概略図である。

[図1]

フロントページの続き

(72) 発明者 山口 洋治 北九州市小倉北区許斐町1番地住友金属工 業株式会社小倉製鉄所内