Purchasing Police Badges

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

The police commissioner must purchase police badges for his team of officers. Their trip can be modeled as a movement in the positive x-direction starting at X = 0. Along the positive x-axis, there are N stores, labeled 1 through N, positioned at P_i selling B_i of these badges for A_i dollars each. At K points X_i along the way, a cyber criminal appears forcing the commissioner to pay R dollars for each badge that has already been bought. Given that the commissioner must purchase M badges, stopping the second he finishes his purchases, what is the minimum cost required to obtain all the necessary badges?

Input

Output

Line 1: Minimum cost to purchase M badges - guaranteed to fit into a 32-bit signed integer

Example

standard input	standard output
2 5 3 2	20
2 9 2	
3 8 1	
2	
1	
4	

Note

 $1 \le N, M, K \le 1,000$ $1 \le R \le 100$ $0 \le A_i, B_i \le 1,000$ $0 \le X_i, P_i \le 100,000$

If the criminal and the commissioner are at the same spot, the commissioner must pay the criminal before buying any badges.