Computer Vision for HCI

Image Pyramids

1

Image Pyramids

- Multi-resolution image representations
- Useful for image coding/compression (and motion analysis coming later!)

Image Pyramids Operations: General Theory

- Two fundamental operations
 - Approximately inverses of one another
 - Linear operations
- First operation <u>blurs</u> and <u>samples</u> the input
- Second "reverse" operation <u>interpolates</u> the blurred and sampled input to estimate the original
- First examine 1-D signal, then move on to 2-D images

3

3

Blurring/Sampling Operation

- First operation convolves input signal with a smoothing mask/kernel, then samples the result
 - Blurring and sampling go together
- Blurring creates <u>smoother</u> version of original (reducing aliasing), containing fewer high-frequency components
- Thus can represent blurred data with <u>fewer</u> <u>samples</u> than in original
 - Sample blurred signal at every other value

Original signal = low-frequency + high-frequency info

4

Pyramid Construction

- To create **pyramid**, repeat blurring and sampling on each resulting signal
 - Original signal s₁
 - Blur and sample s₁ to create s₂
 - Blur and sample s₂ to create s₃
 - And so on...
- Each successive level contains half as many sample values as the previous level
 - For an image, sampling every other row and column, each successive level contains one-quarter of the samples as the previous level

6

Interpolation (Reverse) Operation

- Approximate inverse of blurring/sampling operation
- Make an <u>informed guess</u> of original signal from the reduced signal
 - Approximate s_n from s_{n+1}
- First up-sample s_{n+1} to the size of s_n
 - Place data from s_{n+1} into every other entry of a vector s_n
- Next interpolate new empty values between the given values
 - For example, use the average of the given neighbor values

,

7

Error Signal as Laplacian Pyramid

- Error is difference between estimate (low-frequency) and original
 - Interpolated estimate and original
- Sequence of error signals forms the "error pyramid"
 - This error pyramid is called a "<u>Laplacian</u> pyramid"
 - Burt and Adelson 1983
- From Laplacian/error pyramid, can reconstruct original signal s₁ without any error
 - Add interpolated s₂ and the error e₁
 - Error e_1 is difference between s_1 and the interpolated s_2 to (s_1)
 - low-frequency (s_2) + high-frequency (e_1)

Reconstruction

- Original signal can be recovered <u>exactly</u> by interpolating, then summing all the levels of the error pyramid
- Hence only the error pyramid is needed to represent the original signal completely
- Why do this?
 - Useful for coding/compression (we'll see soon)

Images

- None of the previous methods/principles change when dealing with 2-D images
- Use Gaussian blurring
 - -G(m,n) = w(m)w(n) separable!
 - where w = [.25 .5a, .25, a, .25, .25 .5a]
- Sub-sample rows and columns
- Useful for image coding
- Applicable to progressive transmission

Image Sizes

• From Burt & Adelson:

The dimensions (R,C) of the original image are appropriate for pyramid construction if integers M_C , M_R , and N exist such that

$$C = M_C 2^N + 1$$
$$R = M_R 2^N + 1$$

N is the number of levels desired (original image is level-0)

• Example

If $M_C = 3$, $M_R = 3$, and N = 5 levels, then the original image size is 97 x 97 pixels

13

13

Gaussian Pyramid

Image Coding/Compression

Is this a good image for high compression without perceptual loss?

17

17

Compression and Coding

- Could just encode the original image
 - But histogram of values is broad (not well suited to compression methods)
- Laplacian pyramid is useful for this
- Error signals are distributed over smaller range (around zero) than original image
 - Easier to compress (more compact) in LOSSLESS/LOSSY manner
 - Can be represented very efficiently
- Quantization of error distribution further reduces data without perceptual loss
 - Divide range of pixel values into bins

Progressive Transmission

- Progressive image transmission
 - Coarse rendition of image sent first to give early impression of image content
 - Further transmissions provide image detail of progressively finer resolution
 - Can terminate transmission when user sees enough detail
- Laplacian pyramid well suited for progressive image transmission
 - Topmost level of pyramid sent first (low-res)
 - Next lower level is then transmitted and added to the first, and so on
- On receiving end, see image steadily coming into focus

21

21

Progressive Transmission

Progressive Transmission

Progressive Transmission

Progressive Transmission

25

25

Summary

- Image pyramids as multi-resolution image representations
 - Gaussian pyramid
 - Laplacian pyramid
- Two fundamental operations for pyramids
 - First operation <u>blurs</u> and <u>samples</u> the input
 - Second operation <u>interpolates</u> the blurred and sampled image to estimate the original
- Laplacian error pyramid
 - Error is difference between interpolated estimate and original
 - Original signal can be recovered exactly by interpolating, then summing all the levels of the error pyramid
 - Can be represented very efficiently (easier to compress)
- Useful for image coding/compression and progressive transmission
- Gaussian pyramid useful for other tasks (e.g., motion calculation)

26