MATLAB - Elementare mathematische Operationen

1. Zahlendarstellung und arithmetische Ausdrücke

* Multiplikation; ^ Potenz; / rechte Division; \ linke Division; help +; round; fix abrunden

1. Berechnen Sie folgende Ausdrücke

```
10/2; 10 \ 2; 10/2 * 5; 10/(2 * 5); (1 + 2 + 3) * 4/5; 4^{-2}; 10^{4000}; 10^{-200}; 10^{-300}; 1/0 round(1.5); round(2.5); fix(1.5); round(-1.5)
```

format short, format long, format hex, format short e, format long e, format rat

- 2. Stellen Sie x = 4/3 bzw. x = 1.2345e-6 in den verschiedenen Formaten dar (Format als Kommando).
- 3. Führen Sie folgende Anweisungen aus: a = 4/3 b = a 1 c = b + b + b e = 1 c und stellen Sie e als *format long* dar.
- 4. Stellen Sie unter *format rat* die Zahl π (als **pi** eingeben) dar. Berechnen Sie rat(pi). Verfahren Sie analog für e (als exp(1) eingeben).

2. Elementare mathematische Funktionen

sqrt Wurzel; exp e-Funktion; log natürl. Log; log10 dekad. Log; sin, cos, tan, cot; asin Arcus sinus;.atan2 Arctan in 4 Quadranten; sinh hyperbol. Sinus; asinh Inverse zu sinh; weitere elementare Funktionen: help elfun

5. Berechnen Sie

$$\sqrt{3}$$
; $\ln(10^{-80})$; $\ln(10^{-800})$; $\lg(10^{-80})$; e^1 ; e^0 ; e^{-1} ; $\ln(e^1)$; $\lg(1000)$

- π , $\sin(\pi/2)$, $\sin(90^{\circ})$, $\sin(1e^{\circ}10)$, $\sin(1e^{\circ}20)$ (π als **pi** eingeben, Grad in Radiant umrechnen!) $\tan(\pi/4)$; $\tan(\pi/2)$; $\tan(0)$; $4 * \tan(1)$; $\tan(1)$; $\tan(1)$, $\tan(1)$,
- 6. Rechnen Sie die Ergebnisse der Funktionen atan und atan2 in Grad um. Vergleichen Sie die Ergebnisse der atan2-Funktion mit denen der entsprechenden atan-Funktion.

3. Rechengenauigkeit

- 7. Überprüfen Sie die Genauigkeit (*format long*) von 1-0.2-0.2-0.2-0.2; $\sin(\pi)$; 0.3/0.1; 3/1; 1/3; 0.1/0.3; 3/4; 0.3/0.4; 1-1/3-1/3-1/3
- 8. Berechnen Sie

Informieren Sie sich über die kleinste und größte im Rechner darstellbare Zahl.

realmax	realmin	eps	Inf	NaN	l

4. Komplexe Zahlen

Imaginäre Einheit: i oder j
Betrag: abs(); Argument: angle(), Konjugierte: conj(), Realteil: real(), Imaginärteil: imag()

9. Berechnen Sie für u = 3 + 4i, v = -i - 1 Betrag, Argument, die konjugiert komplexen Zahlen sowie ihre Summe, ihr Produkt und ihren Quotienten und weisen Sie jedes Ergebnis einer Variablen zu.

MATLAB – Elementare mathematische Operationen

10. Stellen Sie die komplexen Zahlen in der Gaußschen Zahlenebene grafisch dar. (compass(); durch hold on kann man Grafiken überlagern; durch gtext('string') kann man Text an Maus-Position einfügen, s. auch help gtext.

Geben Sie $z = 3 \cdot e^{i\pi}$ in der algebraischen Darstellung an. Finden Sie die Eulersche Darstellung der Zahlen z = 3 + 4i, w = -i.

5. Wurzeln aus komplexen Zahlen

- 11. Berechnen Sie $\sqrt{-1}$, \sqrt{u} .
- 12. Geben Sie die trigonometrische Darstellung aller 4. und 6. Einheitswurzeln an. Berechnen Sie alle n-ten Wurzeln aus u = 3+4i für n = 3, 4 und stellen Sie sie jeweils grafisch dar. Beschriften Sie die beiden Grafiken.

gleiches Ergebnis liefert **roots(c)**, wobei c der Koeffizientenvektor des entsprechenden Polynoms ist, geordnet nach fallenden Potenzen z.B. $c=[1\ 0\ 0\ -u]$ für Berechnung der 3. Wurzeln aus u

13. Berechnen Sie die Wurzeln noch einmal über *roots* und vergleichen Sie die Ergebnisse. Rechnen Sie die Probe.