Statistics for Business and Economics 6th Edition

Chapter 3

Describing Data: Numerical

Chapter Goals

After completing this chapter, you should be able to:

- Compute and interpret the mean, median, and mode for a set of data
- Find the range, variance, standard deviation, and coefficient of variation and know what these values mean
- Apply the empirical rule to describe the variation of population values around the mean
- Explain the weighted mean and when to use it
- Explain how a least squares regression line estimates a linear relationship between two variables

Chapter Topics

- Measures of central tendency, variation, and shape
 - Mean, median, mode, geometric mean
 - Quartiles
 - Range, interquartile range, variance and standard deviation, coefficient of variation
 - Symmetric and skewed distributions
- Population summary measures
 - Mean, variance, and standard deviation
 - The empirical rule and Bienaymé-Chebyshev rule

Chapter Topics

(continued)

- Five number summary and box-and-whisker plots
- Covariance and coefficient of correlation
- Pitfalls in numerical descriptive measures and ethical considerations

Describing Data Numerically

Measures of Central Tendency

- The arithmetic mean (mean) is the most common measure of central tendency
 - For a population of N values:

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$
Population values
Population size

For a sample of size n:

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Chap 3-7

Arithmetic Mean

(continued)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

Median

 In an ordered list, the median is the "middle" number (50% above, 50% below)

Not affected by extreme values

Finding the Median

The location of the median:

Median position =
$$\frac{n+1}{2}$$
 position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that $\frac{n+1}{2}$ is not the *value* of the median, only the *position* of the median in the ranked data

Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may may be no mode
- There may be several modes

Review Example

Five houses on a hill by the beach

House Prices:

\$2,000,000 500,000 300,000 100,000 100,000

Review Example: Summary Statistics

House Prices:

\$2,000,000 500,000 300,000 100,000

Sum 3,000,000

Mean: (\$3,000,000/5)

= \$600,000

Median: middle value of ranked data= \$300,000

Mode: most frequent value

= \$100,000

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

Shape of a Distribution

- Describes how data are distributed
- Measures of shape
 - Symmetric or skewed

Measures of Variability

Range

- Simplest measure of variation
- Difference between the largest and the smallest observations:

Range =
$$X_{largest} - X_{smallest}$$

Example:

Range =
$$14 - 1 = 13$$

Disadvantages of the Range

Ignores the way in which data are distributed

Sensitive to outliers

Interquartile Range

- Can eliminate some outlier problems by using the interquartile range
- Eliminate high- and low-valued observations and calculate the range of the middle 50% of the data
- Interquartile range = 3^{rd} quartile 1^{st} quartile IQR = $Q_3 Q_1$

Interquartile Range

Example:

Quartiles

 Quartiles split the ranked data into 4 segments with an equal number of values per segment

- The first quartile, Q₁, is the value for which 25% of the observations are smaller and 75% are larger
- Q₂ is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the observations are greater than the third quartile

Quartile Formulas

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position: $Q_1 = 0.25(n+1)$

Second quartile position: $Q_2 = 0.50(n+1)$

(the median position)

Third quartile position: $Q_3 = 0.75(n+1)$

where **n** is the number of observed values

Quartiles

Example: Find the first quartile

Sample Ranked Data: 11 12 13 16 16 17 18 21 22

$$(n = 9)$$

$$Q_1 = is in the 0.25(9+1) = 2.5 position of the ranked data$$

so use the value half way between the 2nd and 3rd values,

so
$$Q_1 = 12.5$$

Population Variance

 Average of squared deviations of values from the mean

Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N-1}$$

Where μ = population mean

N = population size

 $x_i = i^{th}$ value of the variable x

Sample Variance

 Average (approximately) of squared deviations of values from the mean

Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Where X =arithmetic mean

n = sample size

 $X_i = i^{th}$ value of the variable X

Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N-1}}$$

Sample Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Calculation Example: Sample Standard Deviation

Sample

Data (x_i) :

$$n = 8$$
 Mean $= \overline{x} = 16$

$$s = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{x})^2 + (14 - \overline{x})^2 + \dots + (24 - \overline{x})^2}{n - 1}}$$

$$= \sqrt{\frac{(10-16)^2 + (12-16)^2 + (14-16)^2 + \dots + (24-16)^2}{8-1}}$$

$$=\sqrt{\frac{126}{7}} = \boxed{4.2426} \Longrightarrow$$

A measure of the "average" scatter around the mean

Measuring variation

Comparing Standard Deviations

Mean = 15.5s = 3.338

Mean = 15.5S = 0.926

Mean = 15.5S = 4.570

Advantages of Variance and Standard Deviation

 Each value in the data set is used in the calculation

Values far from the mean are given extra weight

(because deviations from the mean are squared)

Chebyshev's Theorem

 For any population with mean μ and standard deviation σ, and k > 1, the percentage of observations that fall within the interval

$$[\mu + k\sigma]$$

Is at least

$$100[1-(1/k^2)]$$
%

Chebyshev's Theorem

(continued)

- Regardless of how the data are distributed, at least (1 1/k²) of the values will fall within k standard deviations of the mean (for k > 1)
 - Examples:

At least	within
$(1 - 1/1^2) = 0\%$. k=1 (μ ± 1σ)
$(1 - 1/2^2) = 75\%$	k=2 (μ ± 2σ)
$(1 - 1/3^2) = 89\%$. $k=3 \ (\mu \pm 3\sigma)$

The Empirical Rule

- If the data distribution is bell-shaped, then the interval:
- $\mu \pm 1\sigma$ contains about 68% of the values in the population or the sample

The Empirical Rule

- $\mu \pm 2\sigma$ contains about 95% of the values in the population or the sample
- $\mu \pm 3\sigma$ contains about 99.7% of the values in the population or the sample

Coefficient of Variation

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

$$CV = \left(\frac{s}{\overline{x}}\right) \cdot 100\%$$

Comparing Coefficient of Variation

Stock A:

- Average price last year = \$50
- Standard deviation = \$5

$$CV_A = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = \frac{10\%}{10\%}$$

Stock B:

- Average price last year = \$100
- Standard deviation = \$5

$$CV_B = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% \neq 5\%$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

Using Microsoft Excel

- Descriptive Statistics can be obtained from Microsoft® Excel
 - Use menu choice:
 - tools / data analysis / descriptive statistics
 - Enter details in dialog box

Using Excel

•Use menu choice: tools / data analysis /

descriptive statistics

Using Excel

(continued)

Enter dialog box _ details

 Check box for summary statistics

Click OK

Excel output

Microsoft Excel descriptive statistics output, using the house price data:

House Prices:

\$2,000,000 500,000 300,000 100,000

	А		В		
1	House Prices				
2					
3	Mean		600000		
4	Standard Error		357770.8764		
5	Median		300000		
6	Mode		100000		
7	Standard Deviation		800000		
8	Sample Variance		6.4E+11		
9	Kurtosis		4.130126953		
10	Skewness		2.006835938		
11	Range		1900000		
12	Minimum		100000		
13	Maximum		2000000		
14	Sum		3000000		
15	Count		5		
16					
17					

Weighted Mean

The weighted mean of a set of data is

$$\overline{X} = \frac{\sum_{i=1}^{n} w_{i} X_{i}}{\sum w} = \frac{w_{1} X_{1} + w_{2} X_{2} + \dots + w_{n} X_{n}}{\sum w_{i}}$$

- Where w_i is the weight of the ith observation
- Use when data is already grouped into n classes, with w_i values in the ith class

Approximations for Grouped Data

Suppose a data set contains values m_1, m_2, \ldots, m_k , occurring with frequencies f_1, f_2, \ldots, f_K

For a population of N observations the mean is

$$\mu = \frac{\sum_{i=1}^{K} f_i m_i}{N}$$

where
$$N = \sum_{i=1}^{K} f_i$$

For a sample of n observations, the mean is

$$\overline{x} = \frac{\sum_{i=1}^{K} f_i m_i}{n}$$

where
$$n = \sum_{i=1}^{K} f_i$$

Approximations for Grouped Data

Suppose a data set contains values m_1, m_2, \ldots, m_k , occurring with frequencies $f_1, f_2, \ldots f_K$

For a population of N observations the variance is

$$\sigma^2 = \frac{\sum_{i=1}^K f_i (m_i - \mu)^2}{N}$$

For a sample of n observations, the variance is

$$s^{2} = \frac{\sum_{i=1}^{K} f_{i} (m_{i} - \overline{x})^{2}}{n-1}$$

The Sample Covariance

- The covariance measures the strength of the linear relationship between two variables
- The population covariance:

$$Cov(x,y) = \sigma_{xy} = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N}$$

The sample covariance:

$$Cov(x,y) = s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

- Only concerned with the strength of the relationship
- No causal effect is implied

Interpreting Covariance

Covariance between two variables:

 $Cov(x,y) > 0 \longrightarrow x$ and y tend to move in the same direction

 $Cov(x,y) < 0 \longrightarrow x$ and y tend to move in opposite directions

 $Cov(x,y) = 0 \longrightarrow x$ and y are independent

Coefficient of Correlation

- Measures the relative strength of the linear relationship between two variables
- Population correlation coefficient:

$$\rho = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

Sample correlation coefficient:

$$r = \frac{Cov(x,y)}{s_x s_y}$$

Features of Correlation Coefficient, r

- Unit free
- Ranges between –1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

Scatter Plots of Data with Various Correlation Coefficients

Using Excel to Find the Correlation Coefficient

- Select
 - Tools/Data Analysis
 - Choose Correlation from the selection menu
- Click OK . /

Using Excel to Find the Correlation Coefficient

(continued)

- Input data range and select appropriate options
- Click OK to get output

		А	В	С	
	1		Test #1 Score	Test #2 Score	
	2	Test #1 Score	s1		
ı	3	Test #2 Score	0.733243705	1	
	4				
ı			1		

Interpreting the Result

- r = .733
- There is a relatively strong positive linear relationship between test score #1 and test score #2

 Students who scored high on the first test tended to score high on second test

Obtaining Linear Relationships

An equation can be fit to show the best linear relationship between two variables:

$$Y = \beta_0 + \beta_1 X$$

Where Y is the dependent variable and X is the independent variable

Least Squares Regression

- Estimates for coefficients β₀ and β₁ are found to minimize the sum of the squared residuals
- The least-squares regression line, based on sample data, is

$$\hat{y} = b_0 + b_1 x$$

Where b₁ is the slope of the line and b₀ is the y-intercept:

$$b_1 = \frac{Cov(x,y)}{s_x^2} = r \frac{s_y}{s_x}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

Chapter Summary

- Described measures of central tendency
 - Mean, median, mode
- Illustrated the shape of the distribution
 - Symmetric, skewed
- Described measures of variation
 - Range, interquartile range, variance and standard deviation, coefficient of variation
- Discussed measures of grouped data
- Calculated measures of relationships between variables
 - covariance and correlation coefficient