AI1103: Challenging Problem 2

Chitneedi Geetha Sowmya CS20BTECH11011

Download all latex codes from

https://github.com/Geetha495/AI1103/ Challenging_Problems/Challenging_Problem2 /blob/main/Challenging_Problem2.tex

1 Problem

Suppose *X* is a random variable such that E(X) = 0, $E(X^2) = 2$, $E(X^4) = 4$. Then

- 1) $E(X^3) = 0$
- 2) $Pr(X \ge 0) = \frac{1}{2}$
- 3) $X \sim N(0, 2)$
- 4) *X* is bounded with Probability 1.

2 Solution

Let $Y = X^2$ be a random variable, Then

$$\sigma(Y) = E(Y^{2}) - (E(Y))^{2}$$
$$= E(X^{4}) - (E(X^{2}))^{2}$$
$$= 0$$

So, Y is a constant random variable.

Thus, for all $x \in X$, $x^2 = c$, where c is constant.

1)

$$E(X^{3}) = \sum_{x \in X} x^{3} p_{X}(x)$$

$$= c \times \sum_{x \in X} x p_{X}(x)$$

$$= c \times E(X)$$

$$= 0$$

Option 1 is correct.

$$E(X) = \sum_{x \in X} x p_X(x)$$

$$0 = \sqrt{c} \Pr(X \ge 0) + \left(-\sqrt{c} \Pr(X < 0)\right)$$

$$\Pr(X \ge 0) = \Pr(X < 0)$$

As
$$\sum_{x \in X} p_X(x) = 1$$
$$Pr(X \ge 0) + Pr(X < 0) = 1$$
$$Pr(X \ge 0) = \frac{1}{2}$$

1

Option 2 is correct.

3)

$$p_X(x) = \begin{cases} \frac{1}{2} & x = \pm \sqrt{c} \\ 0 & \text{otherwise} \end{cases}$$

Hence X forms a discrete probability distribution. So, it can't be normal distribution Option 3 is wrong.

4) As $p_X(x)$ takes only values $\frac{1}{2}$ and 0, X is bounded.

Option 4 is correct.

Thus, correct options are 1,2,4.