ساختمانهای گسسته

گراف

Dr. Aref Karimiafshar A.karimiafshar@ec.iut.ac.ir

گراف

• فراهم آوردن یک مدل انتزاعی

تعریف گراف

- یک گراف را به صورت G=(V, E) نمایش می دهیم.
 - V مجموعه همه رئوس
 - می تواند یک مجموعه نامتناهی باشد
 - E مجموعه همه يالها
 - یک یال می تواند <mark>یک</mark> یا دو راس را به هم متصل کند
 - می تواند یک مجموعه نامتناهی باشد

نمونهای از یک گراف

• یک گراف را به صورت G=(V, E) نمایش می دهیم.

گراف ساده

- یک گراف ساده
- هریال دو راس متفاوت را به هم متصل می کند
- بین هر دو راس متفاوت فقط یک یال وجود داشته باشد

گراف چندگانه (multigraphs)

گراف ساده

نمونهای از یک گراف

گراف چندگانه

گراف جهت دار

- یک گراف را به صورت G=(V, E) نمایش می دهیم.
 - V مجموعه همه رئوس
 - E مجموعه همه يالها
 - (U,V) یک یال به صورت زوج مرتب از U شروع و به V ختم می شود

گراف جهت دار ساده

- گراف جهت دار ساده

 - فاقد طوقه– فاقد چند یالی

نمونهای از یک گراف

انواع گراف (واژه شناسی)

TABLE 1 Graph Terminology.			
Туре	Edges	Multiple Edges Allowed?	Loops Allowed?
Simple graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudograph	Undirected	Yes	Yes
Simple directed graph	Directed	No	No
Directed multigraph	Directed	Yes	Yes
Mixed graph	Directed and undirected	Yes	Yes

کاربردهای گراف

• شبکه های اجتماعی – گراف دوستی

– گراف تاثیر

کاربردهای گراف

طراحی نرم افزار
 گراف همزمانی و روابط تقدم و تاخر

$$S_1$$
 $a := 0$

$$S_2 b := 1$$

$$S_3$$
 $c := a + 1$

$$S_4$$
 $d := b + a$

$$S_5 = e := d + 1$$

$$S_6 \quad e := c + d$$

کاربردهای گراف

• تشکیل مسابقات – مسابقات تک حذفی

برخی تعاریف (در رابطه با گراف)

- همسایه یا مجاور
- دو راس که در انتهای یک یال (دریک گراف غیر جهت دار) قرار دارند

A همسایه B است

A همسایه D نیست

برخی تعاریف (در رابطه با گراف)

- \vee مجموعه همه همسایه های راس N(v)
 - اگر A یک زیر مجموعه از ۷ باشد
- A مجموعه همه همسایه های رئوس موجود در N(A)

$$N(A) = \bigcup_{v \in A} N(v)$$

- (در گراف غیرجهت دار) **deg(**
 - تعداد همه همسایه های یک راس
 - طوقه دوبار شمارش می شود

درجه یک راس

H

deg(a) = 2

 $\deg(b) = \deg(c) = \deg(f) = 4$

 $\deg(g) = 0$

 $N(a) = \{b, f\}$

 $N(b) = \{a, c, e, f\}$

Discrete Mathematics

deg(a) = 4deg(b) = deg(e) = 6 $N(b) = \{a, b, c, d, e\}$

IUT

قضیه (درجه رئوس)

اگر G = (V, E) یال باشد، آنگاه • اگر G = (V, E) اگر •

$$2m = \sum_{v \in V} \deg(v)$$

- این قضیه شامل وجود حلقه و چندیالی نیز می شود.
- مثال: چند یال در گرافی با 10 راس که درجه هر کدام 6 است وجود دارد؟

$$6 \cdot 10 = 60$$

$$2m = 60$$

$$m = 30$$

$$2m = \sum_{v \in V} \deg(v)$$

• یک گراف غیرجهت دار تعداد زوجی رئوس از درجه فرد دارد - اثبات:

$$2m = \sum_{v \in V} \deg(v) = \sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v)$$

برخی تعاریف (در رابطه با گراف جهت دار)

- اگر (u,v) یک یال در گراف جهت دار G باشد
 - u مجاور به ۷
 - u مجاور از u
 - − ۱ را راس آغازین و ۷ را راس پایانی گویند
 - این تعریف شامل حلقه نیز می شود.

برخی تعاریف (در رابطه با گراف جهت دار)

- رجه رئوس در گراف جهت دار $deg^-(v)$ درجه ورودی -
- تعداد یالهایی که ۷ به عنوان راس انتهای ظاهر می شود
 - deg⁺(*v*) درجه خروجی –
- تعداد یالهایی که ۷ به عنوان راس آغازین ظاهر می شود

$$deg^{-}(a) = 2$$
, $deg^{-}(b) = 2$, $deg^{-}(c) = 3$

$$\deg^+(a) = 4, \deg^+(b) = 1, \deg^+(c) = 2$$

$$\deg^-(f) = 0 \quad \deg^+(f) = 0$$

برخی تعاریف (در رابطه با گراف جهت دار)

- درجه رئوس در گراف جهت دار
 - $\deg^-(v)$ درجه ورودی –
- تعداد یالهایی که ۷ به عنوان راس انتهای ظاهر می شود
 - deg⁺(v) درجه خروجی –
- تعداد یالهایی که ۷ به عنوان راس آغازین ظاهر می شود

$$\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|$$

• گراف کامل

- بین هر دو راس دقیقا یک یال وجود داشته باشد

Discrete Mathematics

IUT

$$C_n, n \ge 3$$
 v_1, v_2, \dots, v_n v_1, v_2, \dots, v_n $v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}, \text{ and } \{v_n, v_1\}$

$$C_n, \ n \geq 3 \longrightarrow W_n$$
 چرخ ۔
اضافه کردن یک راس جدید و همه یالهای آن به یک دور.

 Q_n

n-Cubes •

- راس، متناظر با رشته های n بیتی 2^n
- دو راس مجاور هستند اگر رشته های متناظر با آنها فقط <mark>در یک بیت اختلاف</mark> داشته باشد

$$Q_n \longrightarrow Q_{n+1}$$

n-Cubes

- $oldsymbol{Q_n}$ ایجاد دو کپی از –
- اضافه کردن صفر به ابتدای رشته های یک کپی و اضافه کردن یک به رشته های کپی دوم
 - اضافه کردن یال بین رئوسی که فقط در بیت اول رشته ها با هم تفاوت دارند

گراف دوبخشی

- یک گراف دوبخشی است اگر
- بتوان مجموعه رئوس (۷) را به دو بخش (V_1,V_2) افراز کرد به نحوی که یالهای گراف، یک راس از V_1 را به یک راس از V_2 متصل کند.
- بین رئوس موجود در هر کدام از بخشها نباید یالی وجود داشته باشد

گراف دوبخشی

مثال

گراف دوبخشی کامل

 $K_{m,n}$ گراف دوبخشی کامل \bullet

• انتساب کارها به متقاضیان

requirements, architecture, implementation, and testing Alvarez, Berkowitz, Chen, and Davis

Alvarez ----- requirements, and testing

Berkowitz — architecture, implementation, and testing

Chen —— requirements, architecture, and implementation

Davis — requirements

مثال

• انتساب کارها به متقاضیان

مثال

• انتساب کارها به متقاضیان

تطابق

- یک تطابق M روی گراف G
- زیر مجموعهای از یالها است به نحوی که:
 - انتهای هیچ دو یالی یکسان نباشد
 - V_2 به V_1 به V_2
- هر راس موجود در √ انتهای یک یال قرار گیرد
 - $|M| = |V_1|$ به صورت معادل –
- مسئله انتساب کارها همانند پیدا کردن یک تطابق در مدل گراف است

قضيه HALL

• گراف دوبخشی G با دو بخش V_1 و V_2 دارای یک تطابق کامل از V_1 به V_2 است، اگر و فقط اگر برای هر زیرمجموعه V_1 داشته باشیم:

$$|N(A)| \ge |A|$$

زیرگراف

H = (W,F)گرافی همانند G = (V,E) • یک زیرگراف از گراف G = (V,E)

$$W \subseteq V$$

$$F \subseteq E$$

است G اگر $H \neq G$ آنگاه H یک زیرگراف سره از H

زيرگراف القايي

H = (W,F)گرافی همانند G = (V,E) • یک زیرگراف القایی از گراف G = (V,E)

$$W \subseteq V$$

و F هر یالی از E که دو سر آن در W قرار دارد را شامل شود.

حذف و اضافه کردن یال

• حذف یک یال از گراف و تولید یک زیرگراف جدید

$$G - e = (V, E - \{e\})$$

- حذف مجموعهای از یالها و تولید یک زیرگراف جدید
 - همان مجموعه رئوس
 - $E-E^\prime$ مجموعه یالهای جدید –
 - اضافه کردن یک یال جدید به گراف

$$G + e = (V, E \cup \{e\})$$

حذف کردن راس

• حذف یک راس از گراف و تولید یک زیرگراف جدید

$$G - v = (V - v, E')$$

- حذف مجموعهای از رئوس و تولید یک زیرگراف جدید
 - $V-V^\prime$ مجموعه رئوس جدید -
 - E-E'مجموعه يالهاى جديد –

اجتماع دو گراف

 $G_2 = (V_2, E_2)$ و $G_1 = (V_1, E_1)$ و •

 $G_1 \cup G_2$

 $V_1 \cup V_2$ مجموعه رئوس جدید –

 $E_1 \cup E_2$ مجموعه يالهاى جديد –

 G_2

 $G_1 \cup G_2$

• نمایش هندسی گراف ساده

• لیست مجاورت گراف ساده

Vertex	Adjacent Vertices
а	b, c, e
b	а
С	a, d, e
d	c, e
e	a, c, d

• لیست مجاورت گراف جهت دار

Initial Vertex	Terminal Vertices
а	(b, c, d, e)
b	b, d
c	a, c, e
d	
e	b, c, d

- ماتریس مجاورت گراف ساده
- |V|=nاگر G=(V,E) یک گراف ساده باشد و G=(V,E)
- :• ماتریس مجاورت به صورت ${\bf A}=[a_{ij}]$ تعریف می شود که

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

مجموعه رئوس با یک ترتیب مشخصی مرتب می شوند.

ماتریس مجاورت

• مثال: ماتریس مجاورت گراف زیر را بدست آورید. a,b,c,d

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

ماتریس مجاورت

• مثال: گراف متناظر با ماتریس مجاورت زیر را رسم کنید.

a, b, c, d	رئوس:	ترتیب	
------------	-------	-------	--

0	1	1	0
1	0	0	1
1	0	0	1
$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$	1	1	0_

 $a_{ij}=a_{ji}$. ماتریس مجاورت یک گراف ساده متقارن است. •

ماتریس مجاورت

• مثال: ماتریس مجاورت گراف زیر را بدست آورید. a, b, c, d

Γ	0 3 0 2	3	0	2 1 2 0
	3	0	1	1
	0	1	1	2
	2	1	2	0

- v_1,v_2,\ldots,v_n ماتریس وقوع گراف ساده
- $e_1,e_2,\ldots,e_m \stackrel{n\times m}{=}$ اگر G=(V,E) یک گراف ساده باشد
 - ماتریس وقوع به صورت $\mathbf{M} = [m_{ij}]$ تعریف می شود که:

$$m_{ij} = \begin{cases} 1 & \text{when edge } e_j \text{ is incident with } v_i, \\ 0 & \text{otherwise.} \end{cases}$$

مجموعه رئوس و یالها با یک ترتیب مشخصی مرتب می شوند.

ماتریس وقوع

• مثال: ماتریس وقوع گراف زیر را بدست آورید.

						e_6
v_1	1	1	0	0	0	0 1 1 0 0
v_2	0	0	1	1	0	1
v_3	0	0	0	0	1	1
v_4	1	0	1	0	0	0
v_5	0	1	0	1	1	0 _

ماتریس وقوع

• مثال: ماتریس وقوع گراف زیر را بدست آورید.

								<i>e</i> 8
v_1	1	1	1	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
v_2	0	1	1	1	0	1	1	0
v_3	0	0	0	1	1	0	0	0
v_4	0	0	0	0	0	0	1	1
v_5	0	0	0	0	1	1	0	0

- دو گراف $G_1 = (V_1, E_1)$ و $G_2 = (V_2, E_2)$ و را یکریخت گویند اگر و فقط اگر تابعی یک به یک و پوشا از V_1 به V_2 وجود داشته باشد به نحوی که:
 - و b در G_1 مجاور هستند اگر و فقط اگر f(a) و f(a) در G_1 مجاور باشند $a-v_1$ موجود در v_1
 - یعنی یک تناظر یک به یک بین روئوس دو گراف وجود دارد که رابطه مجاورت را حفظ می کند.
 - یک ویژگی که تحت یکریختی حفظ شود graph invariant گفته می شود

يكريختي

• دو گراف یکریخت

$$f(u_1) = v_1$$
, $f(u_2) = v_4$, $f(u_3) = v_3$, and $f(u_4) = v_2$

• آیا دو گراف زیر یکریخت هستند؟

غیر یکریخت

• آیا دو گراف زیر یکریخت هستند؟

• آیا دو گراف زیر یکریخت هستند؟

$$f(u_1) = v_6$$
, $f(u_2) = v_3$, $f(u_3) = v_4$, $f(u_4) = v_5$, $f(u_5) = v_1$, $f(u_6) = v_2$

یکریخت

• آیا دو گراف زیر یکریخت هستند؟

$$f(u_1) = v_6$$
, $f(u_2) = v_3$, $f(u_3) = v_4$, $f(u_4) = v_5$, $f(u_5) = v_1$, $f(u_6) = v_2$

$$\mathbf{A}_{G} = \begin{bmatrix} u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} \\ u_{1} & 0 & 1 & 0 & 1 & 0 & 0 \\ u_{2} & 1 & 0 & 1 & 0 & 0 & 1 \\ u_{3} & 0 & 1 & 0 & 1 & 0 & 0 \\ u_{4} & 1 & 0 & 1 & 0 & 1 & 0 \\ u_{5} & 0 & 0 & 0 & 1 & 0 & 1 \\ u_{6} & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}_{H} = \begin{bmatrix} v_{6} & v_{3} & v_{4} & v_{5} & v_{1} & v_{2} \\ v_{6} & v_{3} & v_{4} & v_{5} & v_{1} & v_{2} \\ v_{3} & 1 & 0 & 1 & 0 & 0 \\ v_{3} & 1 & 0 & 1 & 0 & 0 \\ v_{4} & 0 & 1 & 0 & 1 & 0 \\ v_{5} & 1 & 0 & 1 & 0 & 1 \\ v_{1} & 0 & 0 & 0 & 1 & 0 \\ v_{2} & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

پایان

موفق و پیروز باشید