BI-PST Domácí úkol

Patrik Jantošovič Tomáš Zvara Tomáš Janecký 11. prosince 2018

1 PARAMETRY A DATOVÝ SOUBOR

Reprezentant: Patrik Jantošovič

K = den narození = 16

L = počet písmen v příjmení = 10

 $M = ((K+L)*46) \mod 11 + 1 = 2$

Výsledkem je tedy datový soubor: case0102, mzda dle pohlaví

1.1 VYTVOŘENÍ DATOVÉHO SOUBORU

Řešení úloh předpokladá úspěšnou instalaci knihovni Sleuth2 a vytvoření .csv souboru s příslušnými daty.

Postup uvedeme jednou na začátku abychom jsme se neopakovali.

- » install.packages("Sleuth2")
 - Instalace package Sleuth2
- » library(Sleuth2)
 - Načítaní package Sleuth2
- » write.table(case0102,"C:/data.csv",row.names=F,sep=";",dec=",")
 - Zápis dat do .csv souboru

2 ŘEŠENÍ ÚKOLÚ

2.1 ÚKOL ČÍSLO 1

(1b) Načtěte datový soubor a rozdělte sledovanou proměnnou na příslušné dvě pozorované skupiny. Data stručně popište. Pro každu skupinu zvlášť odhadněte střední hodnotu, rozptyl a medián příslušného rozdělení.

- » data<-read.table("C:/data.csv",header=TRUE,sep=";")
 - Načteme data z připraveného souboru
- » female<-data[1:61,]
 - Načítaní dat pro pozorovanou skupinu: Female
- » male<-data[62:93,]
 - Načítaní dat pro pozorovanou skupinu: Male
- » female<-female[,1]
 - Odřiznutí sloupce s pohlavím pro pozorovanou skupinu: Female
- » male<-male[,1]
 - Odřiznutí sloupce s pohlavím pro pozorovanou skupinu: Male
- » length(male)
 - Velikost dat pro pozorovanou skupinu: Male
- » length(female)
 - Velikost dat pro pozorovanou skupinu: Female
- » var(male)
 - Rozptyl pro pozorovanou skupinu: Male
- » var(female)
 - Rozptyl pro pozorovanou skupinu: Female
- » mean(male)
 - Střední hodnota pro pozorovanou skupinu: Male
- » mean(female)
 - Střední hodnota pro pozorovanou skupinu: Female
- » median(male)
 - Medián pro pozorovanou skupinu: Male

- » median(female)
 - Medián pro pozorovanou skupinu: Female

Výsledky zapíšeme do následujíci tabulky:

Pohlaví	Velkost dat	Střední hodnota	Rozptyl	Medián
Male	32	5956.875	477112.5	6000
Female	61	5138.852	291460.3	5220

2.2 ÚKOL ČÍSLO 2

(1b) Pro každou skupinu zvlášť odhadněte hustotu a distribuční funkci pomocí histogramu a empirické distribuční funkce.

- » hist(female, freq=FALSE)
 - Vykreslení histogramu female. freq=FALSE používame jako přepínač pro hustotu
- »hist(male, freq=FALSE)
 - Vykreslení histogramu female. freq=FALSE používame jako přepínač pro hustotu
- »plot(density(male))
 - Vykreslení hustoty Male
- »plot(density(female))
 - Vykreslení hustoty Female
- »plot(ecdf(male))
 - Vykreslení empirické distribuční funkce pro Male
- »plot(ecdf(female))
 - Vykreslení empirické distribuční funkce pro Female

Výsledkem jsou grafy přiložené na následující stránce.

Obrázek 2.1: Hustota

Obrázek 2.2: Histogram

Obrázek 2.3: Empirická distribuční funkce

2.3 ÚKOL ČÍSLO 3

(3b) Pro každou skupinu zvlášť najděte nejbližší rozdělení: Odhadněte parametry normálního, exponenciálního a rovnoměrného rozdělení. Zaneste příslušné hustoty s odhadnutými parametry do grafů histogramu. Diskutujte, které z rozdělení odpovídá pozorovaným datům nejlépe.

- Male
 - » hist(male, freq=FALSE)
 - * Porovnávame distribuční funkce různých rozdělení na histogramu.
 - Normální rozdělení
 - * » maleV<-seq(min(male),max(male),10)
 - · vytvoříme si sekvenci hodnot od nejmenší po největší hodnoty
 - * » maleNorm<-dnorm(maleV, mean = mean(male), sd = sd(male))
 - · využijeme funkci dnorm na převod pro body normálního rozdělení
 - * » lines(maleV,maleNorm, col="blue")
 - · vykreslíme normální rozdělení na histogram
 - Exponenciální rozdělení
 - * » lambdaMale<-1/mean(male)
 - vypočteme si parametr pro exponenciální rozdělení jako $\frac{1}{střední~hodnota}$
 - * » maleExp<-dexp(maleV, lambdaMale)</p>
 - · využijeme funkci dexp na vypočet bodu exponenciálního rozdělení
 - * » lines(maleV,maleExp, col="red")

- · vykreslíme exponencionální rozdělení na histogram
- Uniformní rozdělení
 - * » aMale<-mean(male)-sqrt(3*var(male))
 - * » bMale<-sqrt(3*var(male))+mean(male)
 - vypočteme si parametr 'a' a 'b' pro uniformní rozdělení podle vztahu k střední hodnote a rozptylu ze cvičení
 - * » maleUnif<-dunif(maleV, aMale,bMale)
 - · využijeme funkci dunif na výpočet bodu uniformního rozdělení
 - * » lines(maleV,maleUnif, col="yellow")
 - · vykreslíme uniformní rozdělení na histogram

• Female

- » hist(female, freq=FALSE)
 - * Porovnávame distribuční funkce různých rozdělení na histogramu.
- Normálni rozdělení
 - * » femaleV<-seq(min(female),max(female),10)
 - · vytvoříme si sekvenci hodnot od nejmenší po největší hodnoty
 - * » femaleNorm<-dnorm(femaleV, mean = mean(female), sd = sd(female))
 - · využijeme funkci dnorm na převod pro body normálního rozdělení
 - * » lines(femaleV,femaleNorm, col="blue")
 - · vykreslíme normální rozdělení na histogram
- Exponenciální rozdělení
 - * » lambdaFemale<-1/mean(female)
 - · vypočteme si parametr pro exponenciální rozdělení jako $\frac{1}{st \check{r}edn\acute{n}hodnota}$
 - * » femaleExp<-dexp(femaleV, lambdaFemale)
 - · využijeme funkci dexp na výpočet bodu exponenciálního rozdělení
 - * » lines(femaleV,femaleExp, col="red")
 - · vykreslíme exponencionální rozdělení na histogram
- Uniformní rozdělení
 - * » aFemale<-mean(female)-sqrt(3*var(female))
 - * » bFemale<-sqrt(3*var(female))+mean(female)
 - vypočteme si parametr 'a' a 'b' pro uniformní rozdělení podle vztahu ke střední hodnotě a rozptylu ze cvičení
 - * » femaleUnif<-dunif(femaleV, aFemale,bFemale)

- · využijeme funkci dunif na výpočet bodu uniformního rozdělení
- * » lines(femaleV,femaleUnif, col="yellow")
 - · vykreslíme uniformní rozdělení na histogram

Výsledkem jsou následujíci grafy:

Obrázek 2.4: Porovnání rozdělení

Došli jsme k záveru, že se u obou datasetu jedná o Normální rozdělení.

2.4 ÚKOL ČÍSLO 4

(1b) Pro každou skupinu zvlášť vygenerujte náhodný výběr o 100 hodnotách z rozdělení, které jste zvolili jako nejbližší, s parametry odhadnutými v předchozím bodě. Porovnejte histogram simulovaných hodnot s pozorovanými daty.

- Male
 - » maleRand100 = rnorm(100, mean(male), sd(male))
 - * vybereme 100 náhodných hodnot použitím funkce rnorm
 - » hist(maleRand100)
 - * vykreslíme z náhodně vybraných dat histogram
- Female
 - » femaleRand100 = rnorm(100, mean(female), sd(female))
 - * vybereme 100 náhodných hodnot použitím funkce rnorm
 - » hist(femaleRand100)
 - vykrelslíme z náhodně vybraných dat histogram

Výsledkem jsou následujíci grafy:

Obrázek 2.5: Vygenerované histogramy

Došli jsme k závěru, že zatímco vygenrovaný graf pro male se velmi liší od původního histogramu což je způsobeno malým množstvím dat. U female kde máme $\approx 2x$ více dat se histogramy velmi podobají i přes relativně malé množství dat.

2.5 ÚKOL ČÍSLO 5

- (1b) Pro každou skupinu zvlášť spočítejte oboustranný 95% konfidenční interval pro střední hodnotu.
 - » working on it
 - working on it