Practice Book UNIT 13 Graphs, Equations and *Inequalities*

Answers

13.1 Linear Inequalities

(d)
$$-4 -3 -2 -1 0 1 2 3$$

2. (a)
$$x \ge -2$$

(b)
$$x < 2$$

(c)
$$-2 < x < 3$$

(d)
$$-3 \le x < -1$$

$$-3 \le x < -1$$
 (e) $-4 < x \le 2$

(b)
$$x > 9$$
 8 9 10 11 12 13 14 15

(c)
$$x \le 5$$
 -1 0 1 2 3 4 5 6

(d)
$$x \ge 2$$
 1 2 3 4 5 6 7 8

(e)
$$x \ge 2$$
 1 2 3 4 5 6 7 8

(f)
$$x \le 3$$
 -3 -2 -1 0 1 2 3 4

(g)
$$x \le -3$$
 -9 -8 -7 -6 -5 -4 -3 -2

(h)
$$x \ge 6$$
 4 5 6 7 8 9 10 11

(i)
$$x \le -4$$
 $-10 -9 -8 -7 -6 -5 -4 -3$

1

13.1 Answers

(b)
$$x > 2$$

(c)
$$x < 5$$

(d)
$$x \le 7$$

(e)
$$x \le -2$$

(f)
$$x > -2$$

(g)
$$x > -2$$

(h)
$$x \le -10$$

(i)
$$x \le -4$$

5. (a)
$$-1 \le x \le 5$$

(b)
$$x > -3$$

(c)
$$x \le 2$$

(d)
$$4 \le x \le 5$$

(e)
$$x > 2$$

(f)
$$x \le 4$$

(g)
$$x \ge -3$$

(h)
$$-3 \le x \le -1$$

13.1 Answers

6.
$$(x + 8) + x + (x + 8) + x < 44 \implies 4x + 16 < 44$$

 $\implies 4x < 28$
 $\implies x < 7$

7.
$$21 < (x + 1) + (x + 2) + (x + 3) \le 30 \implies 21 < 3x + 6 \le 30$$

 $\implies 15 < 3x \le 24$
 $\implies 5 < x \le 8$

8.
$$10 \le 5(x+4) < 50 \implies 10 \le 5x + 20 < 50$$
$$\implies -10 \le 5x < 30$$
$$\implies -2 \le x < 6$$

9.
$$3 < \frac{30}{v} < 5 \implies 6 < v < 10$$

10.
$$10 \le \pi r^2 < 20 \implies \sqrt{\frac{10}{\pi}} \le r < \sqrt{\frac{20}{\pi}}$$

 $\implies 1.784124116 \text{ m} \le r < 2.523132522 \text{ m}$
 $\implies 1.78 \text{ m} < r < 2.52 \text{ m} \text{ (to the nearest cm)}$

(b)
$$y < x, y > 2 \text{ and } x < 4$$

13.2 Answers

13.2 Graphs of Quadratic Functions

1. (a)

(b) Gradient = 2

2.

3. (a

(b) The transformation is a reflection in the *y*-axis.

13.2 Answers

4. (a)

(b) The graph $y = x^2 - 1$ is a translation of the graph $y = x^2$ along the vector $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$.

5. (a)

(b) The graph $y = x^2 - 1$ is a translation of the graph $y = x^2 + 3$ along the vector $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$.

 $y = x^2 + 1$ is a translation of the graph $y = x^2 - 5$ along the vector $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$.

 $y = x^2 + 1$ is a translation of the graph $y = x^2 + 6$ along the vector $\begin{pmatrix} 0 \\ -5 \end{pmatrix}$.

 $y = x^2 - 5$ is a translation of the graph $y = x^2 + 6$ along the vector $\begin{pmatrix} 0 \\ -11 \end{pmatrix}$.

7. (a)

х	-4	- 3	-2	- 1	0	1	2	3	4
$x^2 + 2x$	8	3	0	- 1	0	3	8	15	24

(b)

Graph $y = x^2 + 2x$ is a (c) translation of the graph $y = x^2$ along the vector $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$.

13.2 Answers

8. (a) and (b)

(c) $y = 2x^2 - 1$ is a translation of the graph $y = 2x^2$ along the vector $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$.

> $y = 2x^2 + 2$ is a translation of the graph $y = 2x^2$ along the vector $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$.

 $y = 2x^{2} - 1$ is a translation of the graph $y = 2x^{2} + 2$ along the vector $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$.

9. (a)

(b) The graph $y = 2 - x^2$ is a reflection of the curve of $y = x^2 + 4$ in the line y = 3.

13.2 Answers

10. (a)

(b) The graph $y = x^{2} + 2x + 3 \text{ is a}$ translation of the graph $y = x^{2} - 4x \text{ along the}$ $\text{vector } \begin{pmatrix} -3 \\ 6 \end{pmatrix}.$

11. (a)

(b)
$$y = -x^2$$

(c)
$$y = x^2 + 1$$

(d)
$$y > x^2 \text{ and } y < 2$$

Answers

13.3 Graphs of Cubic and Reciprocal Functions

1. (a)

(b) $y = x^3 - 1$ is a translation of the graph

$$y = x^3 + 5$$
 along the vector $\begin{pmatrix} 0 \\ -6 \end{pmatrix}$.

 $y = x^3 - 4$ is a translation of the graph

$$y = x^3 + 5$$
 along the vector $\begin{pmatrix} 0 \\ -9 \end{pmatrix}$.

 $y = x^3 - 1$ is a translation of the graph

$$y = x^3 - 4$$
 along the vector $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$.

2. (a)

(b) The curve has rotational symmetry of order 2 about the origin.

Answers

3. (a)

(b) $y = (x + 1)^3$ is a translation of the graph

$$y = x^3$$
 along the vector $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$

(c) The curve has rotational symmetry of order 2 about (-1, 0).

4. (a)

(b) The curve has rotational symmetry of order 2 about (2, 0).

5.

13.3 Answers

6. (a)

X	-4	-2	-1	$-\frac{1}{2}$	1/2	1	2	4
$\frac{1}{x}$	$-\frac{1}{4}$	$-\frac{1}{2}$	- 1	- 2	2	1	$\frac{1}{2}$	1/4

(c) The curve is symmetrical about the lines y = x and y = -x.

The curve has rotational symmetry of order 2 about the origin.

7.

8.

(a)

(b) The line y = 7 - x and the curve $y = \frac{6}{x}$ meet at (6, 1) and (1, 6).

13.3 Answers

9. (a)

(b) The line y = x - 3 meets the curve $y = \frac{10}{x}$ at the points (5, 2) and (-2, -5).

10. (a) The curve $y = x^2$ meets the curve $y = \frac{1}{x}$ at the point (1, 1).

(b) The curve $y = x^3$ meets the curve $y = \frac{1}{x}$ at the points (1, 1) and (-1, -1).

(a)

13.4 Solving Non-Linear Equations

1. (a)

(b) The solutions are x = -3 and x = 2.

2.

(b) (i) x = 2.25 or -1.75

(ii) x = 1.85 or -1.35

0

3. The following are the correct answers to the given equations to 2 decimal places; the answers obtained visually from the graph are in brackets.

(a)
$$x = 3.43$$
 (3.6)

(b)
$$x = -2.66 \quad (-2.7)$$

(c)
$$x = -1.76, -0.36$$
 or 3.12 $(-1.75, -0.35 \text{ or } 3.2)$

(d)
$$x = -2.32$$
, 0.64 or 2.68 (-2.3, 0.65 or 2.7)

4.

Trial x	$x^3 + x$	Comment
9	738	9 < x
10	1010	9 < x < 10
9.8	950.992	9.8 < x < 10
9.9	980.199	9.9 < x < 10
9.94	992.047784	9.94 < x < 10
9.95	995.024875	9.95 < x < 10
9.96	998.007936	9.96 < x < 10
9.97	1000.99697	9.96 < x < 9.97
9.965	999.50170713	9.965 < x < 9.97

So the solution is x = 9.97 (to 2 decimal places)

Answers

5	•	

Trial x	$x + \sqrt{x}$	Comment
3.1	4.86068169	3.1 < x
3.2	4.98885438	3.2 < x
3.3	5.11659021	3.2 < x < 3.3
3.21	5.00164729	3.20 < x < 3.21
3.205	4.99525138	3.205 < x < 3.21

So the solution is x = 3.21 (to 2 d.p.).

6. From the graph,

$$x = 1.1$$
 or -7.1

Trial x	$x^2 + 6x$	Comment
1	7	1 < x
2	16	1 < x < 2
1.1	7.81	1.1 < x < 2
1.2	8.64	1.1 < x < 1.2
1.11	7.8921	1.11 < x < 1.2
1.12	7.9744	1.12 < x < 1.2
1.13	8.0569	1.12 < x < 1.13
1.125	8.015625	1.12 < x < 1.125

Trial x	$x^2 + 6x$	Comment
-7	7.00000000	x <-7
-8	16.00000000	-8 < x < -7
- 7.1	7.81000000	-8 < x < -7.1
-7.2	8.64000000	-7.2 < x < -7.1
-7.11	7.89210000	-7.2 < x < -7.11
-7.12	7.97440000	-7.2 < x < -7.12
-7.13	8.05690000	-7.13 < x < -7.12
-7.125	8.01562500	-7.125 < x < -7.12

So the solution is x = 1.12 or -7.12 (to 2 decimal places).

7. (a) From the graph the solutions are x = 0.2 and 7.8

4.			
(b)	Trial x	$x + \frac{1}{x}$	Comment
	0.1	10.1	0.1 < x
	0.2	5.2	0.1 < x < 0.2
	0.15	6.81666667	0.1 < x < 0.15
	0.14	7.28285714	0.1 < x < 0.14
	0.13	7.82230769	0.1 < x < 0.13
	0.12	8.45333333	0.12 < x < 0.13
	0.125	8.125	0.125 < x < 0.13

Trial x	$x + \frac{1}{x}$	Comment
7.8	7.92820513	7.8 < x
7.9	8.02658228	7.8 < x < 7.9
7.85	7.97738854	7.85 < x < 7.9
7.86	7.98722646	7.86 < x < 7.9
7.87	7.99706480	7.87 < x < 7.9
7.88	8.00690355	7.87 < x < 7.88
7.875	8.00198413	7.87 < x < 7.875

So the solution to $x + \frac{1}{x}$ is x = 0.13 or 7.87 (to 2 decimal places).

8.

Trial x	$8x^2 - x^3$	Comment
0	0	0 < x
1	7	0 < x < 1
0.7	3.577	0.7 < x < 1
0.8	4.608	0.8 < x < 1
0.9	5.751	0.8 < x < 0.9
0.85	5.165875	0.8 < x < 0.85

Trial x	$8x^2 - x^3$	Comment
0	0	x < 0
- 1	9	-1 < x < 0
- 0.6	3.096	-0.6 < x < 0
- 0.7	4.263	-0.7 < x < 0
- 0.8	5.632	-0.8 < x < -0.7
- 0.75	4.921875	-0.8 < x < -0.75

Trial x	$8x^2 - x^3$	Comment
7.7	17.787	7.7 < x
7.8	12.168	7.8 < x
7.9	6.241	7.9 < x
8	0	7.9 < x < 8
7.95	3.160125	7.9 < x < 7.95

Graph on next page.

So the complete solution to $8x^2 - x^3 = 5$ is x = -0.8, 0.8 or 7.9 (to 1 decimal place).

9. The graph shows that the solution is between x = -1 and -2, and is approximately -1.3.

Trial x	$\frac{1}{x} + x^2$	Comment
- 1	0	x < -1
-2	3.5	-2 < x < -1
-1.3	0.92076923	-2 < x < -1.3
- 1.4	1.24571429	-1.4 < x < -1.3
1.32	0.98482424	-1.4 < x < -1.32
1.33	1.0170203	-1.33 < x < -1.32
1.325	1.00090802	-1.325 < x < -1.32

The solution to $\frac{1}{x} + x^2 = 1$ is x = -1.32 (to 2 decimal places).

10. The graph shows that one solution is between x = -1 and -2, another between x = -1 and 0, and the other between x = 2 and 3.

By trial and improvement, the complete solution to $x^3 - 4x = 2$ is x = -1.68, -0.54 or 2.21 (to 2 decimal places).

Trial x	x^3-4x	Comment
-1	3	x <-1
-2	0	-2 < x < -1
- 1.6	2.304	-2 < x < -1.6
- 1.7	1.887	-1.7 < x < -1.6
- 1.67	2.022537	-1.7 < x < -1.67
- 1.68	1.978368	-1.68 < x < -1.67
- 1.675	2.00057813	-1.68 < x < -1.675

Trial x	x^3-4x	Comment
0	0	x < 0
- 1	3	-1 < x < 0
- 0.6	2.184	-0.6 < x < 0
- 0.5	1.875	-0.6 < x < -0.5
- 0.54	2.002536	-0.54 < x < -0.5
- 0.53	1.971123	-0.54 < x < -0.53
- 0.535	1.98686963	-0.54 < x < -0.535

Trial x	x^3-4x	Comment
2	0	2 < x
3	15	2 < x < 3
2.2	1.848	2.2 < x < 3
2.3	2.967	2.2 < x < 2.3
2.21	1.953861	2.21 < x < 2.3
2.22	2.061048	2.21 < x < 2.22
2.215	2.00728838	2.21 < x < 2.215

Answers

11.	(a)	x	-2	- 1	0	1	2	3	
		$y = x^2 + x - 5$	- 3	-5	- 5	- 3	1	7	

(b)	Trial x	$x^2 + x - 5$	Comment
	1	-3	1 < x
	2	1	1 < x < 2
	1.6	- 0.84	1.6 < x < 2
	1.7	- 0.41	1.7 < x < 2
	1.8	0.04	1.7 < x < 1.8
	1.75	-0.1875	1.75 < x < 1.8

So the solution to $x^2 + x - 5 = 0$ is x = 1.8 (to 1 d.p.).

- 12. (a) There is a root between x = 0 and x = 1 because the difference is positive when x = 0 and it is negative when x = 1.
 - (b) The root lies between x = 0.5 and x = 0.6.

()				
(c)	x	$2x^2$	10x - 5	Difference
	0.54	0.5832	0.4	0.1832
	0.55	0.605	0.5	0.105
	0.56	0.6272	0.6	0.0272
	0.57	0.6498	0.7	- 0.0502
	0.58	0.6728	0.8	- 0.1272

So the solution to $2x^2 = 10x - 5$ lies between x = 0.56 and x = 0.57.

- 13, (a) The solutions to $x^2 + 4x 2 = 0$ are x = -4.5 and x = 0.5.
 - (b) Any equation of the form $x^2 + 4x + k = 0$ where $k \le 4$.
 - (c) $x^2 + 4x + 5 = 0$ is equivalent to the equation $x^2 + 4x = -5$, which has no solution because the curve $y = x^2 + 4x$ does not meet the line y = -5.

(d)
$$x^2 + 4x = 2 \implies x(x+4) = 2 \implies x = \frac{2}{x+4}$$

- :. the values of the iterative equation $x_{n+1} = \frac{2}{x_n + 4}$ should approach a solution of the equation $x^2 + 4x = 2$.
- (e) $x_2 = -2$ $x_3 = -5$ $x_4 = -4.4$ $x_5 = -4.45454545$

13.5 Quadratic Inequalities

1.

(c)
$$-3 < x < 1$$

(b) $x \le -3 \text{ or } x \ge 1$

2.

(a)

The solution is x < -1 or x > 1.

3.

The solution is $-4 \le x \le 1$.

-5·

(a) $x^2 - 5x = x(x-5)$ 4.

> The solution is 0 < x < 5. (c)

5. x < -5 or x > 0(a)

(b) $0 \le x \le 3$

(c)

(d) $0 \le x \le 2$

(b)

(c)
$$x < -7 \text{ or } x > 7$$

(a)
$$-6 < x < 6$$

(b)
$$-10 \le x \le 10$$

(c)
$$-4 \le x \le 4$$

(d)
$$x < -9 \text{ or } x > 9$$

8. (a)
$$x^2 - 5x - 14 = (x - 7)(x + 2)$$

(b)

7.

(c)
$$x \le -2$$
 or $x \ge 7$

9. (a)
$$-3 < x < 9$$
 (b) $-4 \le x \le -3$

(b)
$$-4 \le x \le -3$$

(c)
$$x < 5 \text{ or } x > 8$$

(c)
$$x < 5 \text{ or } x > 8$$
 (d) $x \le -2 \text{ or } x \ge 9$

10. (a)
$$-x^2 + 12x - 27 = (-x + 3)(x - 9) = -(x - 3)(x - 9)$$

(c) x < 3 or x > 9

11. (a)

$\frac{n(n+1)}{2}$
253
276
300
325
351
378
406

(b)

So $300 < \frac{n(n+1)}{2} < 360$ for n = 25 or n = 26, giving triangular numbers 325 and 351.

(b)	n	$\frac{n(n+1)}{2}$
	70	2485
	71	2556
	72	2628
	73	2701
	74	2775
	75	2850
	76	2926
		•

So $2700 < \frac{n(n+1)}{2}$ for $n \ge 73$, giving the two smallest triangular numbers over 2700 as 2701 and 2775.

13.6 Equations of Perpendicular Lines

(a) and (c)

- Lines C and E 2. (a)
 - (b) Line D

Gradient of CD =
$$\frac{6-1}{5-3} = \frac{5}{2}$$

As $\frac{-1}{\left(\frac{-2}{5}\right)} = \frac{5}{2}$, it follows that AB is perpendicular to CD.

4. Gradient of QR = $\frac{5-3}{6-7} = \frac{2}{-1} = -2$ Gradient of RS = $\frac{3-5}{2-6} = \frac{-2}{-4} = \frac{1}{2}$

Gradient of RS =
$$\frac{3-5}{2-6} = \frac{-2}{-4} = \frac{1}{2}$$

Gradient of ST = $\frac{1-3}{3-2} = \frac{-2}{1} = -2$ Gradient of TQ = $\frac{1-3}{3-7} = \frac{-2}{-4} = \frac{1}{2}$

Gradient of TQ =
$$\frac{1-3}{3-7} = \frac{-2}{-4} = \frac{1}{2}$$

 \therefore QR \perp RS \perp ST \perp TQ and QR \parallel ST and RS \parallel TQ, so QRST is a rectangle.

y = x - 15.

Yes the lines are perpendicular because the first line has gradient $=\frac{1}{3}$, the second has gradient =3, 6.

and
$$\frac{-1}{\left(\frac{1}{3}\right)} = -3$$

13.6 Answers

7. (a)
$$y = \frac{-4}{7}x$$
 or $7y + 4x = 0$

(b)
$$y = \frac{-4}{7}x + 9\frac{2}{7}$$
 or $7y + 4x = 65$

8. (a)
$$y = 9 - 2x$$

9.
$$y = 22 - 4x$$
 and $y = \frac{1}{4}x + 5$

10. The line through the origin has gradient $\frac{5}{6}$ so the perpendicular line has gradient $\frac{-6}{5}$ and equation $y = \frac{-6}{5}x + 12\frac{1}{5}$, or 5y + 6x = 61. This second line crosses the *x*-axis at the point $\left(10\frac{1}{6}, 0\right)$.