A U-Net Framework for Detecting K-Wires in Fluoroscopic Images

Josh Friede, Johnny Golec, & Dominik Mattioli

Deep Learning Application Project
Industrial Engineering
Iowa City, IA, USA
The University of Iowa

Course Project Final Presentation TBD SC May 7, 2019

- 1 Introduction
- 2 Methods
- Results
- **4** Conclusions

- 1 Introduction
- 2 Methods

[Introduction]

- 3 Results
- 4 Conclusions

Methods

Background

- Dr. Geb Thomas (IE) & Dr. Don Anderson (BME) run a research team for creating orthopedic simulators.
 - * Mimic surgical procedures, score participant.
 - Long-term goal:
 - Reduce surgery training costs and risks.
 - Improve surgical skills and understanding

Motivation

- Establish methodology for objective evaluation of decisions made during surgery.
 - * Requires a reliable mechanism for processing images, specifically:
 - The wire's progression across consecutive images, and
 - The final location of the wire, relative to its destination.
 - The issue:
 - Access to this data is not readily available.
 - Processing this data is time consuming.
- Objective:
 - * Implement a model that identifies wire's relative wire location.
 - Do without a ground-truth dataset (use synthetic images).

Wire Example

Figure: Real Image (Left); Synthetic Image, 0 Gray Intensity (Right).

- 1 Introduction
- 2 Methods
- 3 Results
- 4 Conclusions

The Data

- A study revealed some merit to training biomed. models w/ synthetic data
 - * Source Images:
 - 1 25% 385 hip surgery images (in-house).
 - 25% 385 X-Ray images (MedPix Database, 7,470 total).
 - 3 50% 770 Random Images (Coco Dataset, 5,000 total).
 - * 12,463 synthetic images.
- Random image data augmentations $(8 \frac{aug}{img})$ include:
 - * Bend $(\frac{\pi}{20})$.
 - * Duplication (2 aug. wires per image).
 - * Translation (x- & y- directions).
 - * Reflection (x- & y- directions).
 - * Assign gray intensity between 0 (black) and 128 (gray) to wire.
 - * 10% chance of being "negative" (e.g. no wire).

¹Tremblay, J., Prakash, A. Acuna, Brophy, M., et al. *Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization*. Workshop on Autonomous Driving, CVPR-Workshops' 18, https://arxiv.org/pdf/1804.06516.pdf

The Templates

Figure: Original Wire Templates (Initial Template -> Bottom Right).

The Augmentations

Figure: Wire Augmentations (Initial Template -> Bottom Right).

Example Augmentations

Figure: Images of Augmented Wires (Y_Train).

Example Augmentations

Figure: Images w/ Overlaid Augmented Wires (X_Train).

Heterogeneity of Augmentations

Figure: Augmentation Randomness.

The Model

- U-Net: A fully convolutional network shown to train with high accuracy in biomedical imaging applications.²
 - * Images resized to [256, 256], normalized.
 - * 50 Epochs (twice)
 - * Batch Size = 32
 - * Validation split = 0.20
 - * Adam Optimizer, lr = .0005
 - Layers:
 - ① One initial Gaussian Noise (stddev = 0.10)
 - 2 Contraction Path
 - Contains Dropout to prevent over-fitting
 - Expansion Path
 - * Dice Coefficient = similarity (loss) measurement

$$DSC = \frac{2|X \cap Y|}{X+Y}$$

²Olaf Ronneberger, Philipp Fischer, and Thomas Brox. *U-net: Convolutional networks for biomedical image segmentation*. CoRR, abs/1505.04597, 2015.

U-Net: Convolutional Networks for Biomedical Image Segmentation

Figure: U-Net Architecture

- 1 Introduction
- 2 Methods
- 3 Results
- 4 Conclusions

Results

Figure: Validation & Loss per Epoch

Introduction Methods Results Conclusions

Synthetic Data

Figure: Model Predictions on Untrained Synthetic Images.

Introduction Methods Results Conclusions

Validation Data

Figure: Model Predictions on Validation Images (Real, No GT).

- 1 Introduction
- 2 Methods
- 3 Results
- **4** Conclusions

Implications

- Synthetic data can be used to train for real medical images (in this context).
- My research:
 - * Can begin to track wire over duration of surgeries
 - Better understand decision making of surgeon.

Conclusions

Future Work

- Should work on methodology for generating the synthetic data.
- Should integrate other features.
 - * Classify image view (AP v. Lateral).
 - * Include other anatomical features.
 - Femoral Head, Neck
 - Pediatric Elbows
 - Wire Nav. etc.
- Might use larger data sets.
- Train on RGB instead of grayscale images?

Acknowledgements

-> Thank you to Dr. Baek and Joseph Choi for their guidance.