ECON 490 003 Lab 1 - Portfolio Frontier and CAPM

Name : Saksham Sudershan Student Number: 31339427

Question 1

R Code:

```
df <- data.frame(read.csv("490lab1.csv"))

table1 <- data.frame()
table1[1,1] <- c("Average")
table1[1,2] <- c("Standard Deviation")
for (i in 2:11) {
   c(mean(df[ ,i])) -> table1[i,1]
   c(sd(df[ ,i])) -> table1[i,2]
}
```

1	Average	Standard Deviation			
2	0.0369687704918033	0.177106792817629			
3	0.00773663934426229	0.0343103697881718			
4	-0.0238158196721311	0.137042047055579			
5	0.015187737704918	0.0911762307523004			
6	-0.000795311475409836	0.0681983421840397			
7	0.0232769508196721	0.057808823624203			
8	0.0109065409836066	0.0590012983757063			
9	-0.00581501639344262	0.0710640400398335			
10	0.0147350163934426	0.0598658871516135			
11	0.00585240983606557	0.0388252323909667			

R Code:

```
table2 <- data.frame()
for (i in 1:10) {
      for (j in 1:10) {
        table2[i,j] <- cor(df[ ,i+1], df[, j+1])
      }
}</pre>
```

^	V1 *	V2 =	V3 *	V4 =	V5 =	V6 ÷	V7 =	V8 ÷	V9 [‡]	V10
1	1.00000000	0.23527394	0.13951241	0.140054895	0.09559122	-0.109976204	-0.18527662	0.119587221	0.260297115	-0.02617310
2	0.23527394	1.00000000	0.28845003	0.012769575	0.29669034	0.144721915	0.01482753	-0.016390053	0.278537026	0.14944393
3	0.13951241	0.28845003	1.00000000	0.132601990	0.44094083	0.068266694	-0.08130521	0.299570034	0.111295000	0.23718047
4	0.14005490	0.01276957	0.13260199	1.000000000	0.18835666	0.001623467	-0.04052272	0.181811283	0.078401488	0.12645863
5	0.09559122	0.29669034	0.44094083	0.188356656	1.00000000	0.074306771	-0.02277204	0.208469678	0.092285878	0.18034785
6	-0.10997620	0.14472192	0.06826669	0.001623467	0.07430677	1.000000000	0.26117219	-0.008068086	0.006570366	-0.01353587
7	-0.18527662	0.01482753	-0.08130521	-0.040522715	-0.02277204	0.261172191	1.00000000	-0.039303652	0.101050694	0.20828412
8	0.11958722	-0.01639005	0.29957003	0.181811283	0.20846968	-0.008068086	-0.03930365	1.000000000	0.034242569	0.02386917
9	0.26029711	0.27853703	0.11129500	0.078401488	0.09228588	0.006570366	0.10105069	0.034242569	1.000000000	0.04943904
10	-0.02617310	0.14944393	0.23718047	0.126458634	0.18034785	-0.013535874	0.20828412	0.023869172	0.049439042	1.00000000

R Code:

plot(table1[,2], table1[,1], xlab = "Standard Deviations", ylab = "Average
Returns", main = "Portfolio Frontier Question 3")

The stocks with the **largest positive correlation** are r3 and r5, which are Sherrit International Corp and Canada Natural Resources Limited. From table 1 we know the expected returns and standard deviation for the stocks of these firms, and from table 2 we can find correlation. So we can make a table with different levels of alpha.

R Code:

```
table3 <- data.frame()
alpha=0
for (i in 1:21) {
   table3[i,1] = alpha
   table3[i,2] =
alpha*(-0.0238158196721311)+(1-alpha)*(-0.000795311475409836)
   table3[i,3] =
(alpha^2)*((0.137042047055579)^2)+((1-alpha)^2)*((0.0681983421840397)^2)+2*alpha*(1-alpha)*(0.44094082538375)*(0.137042047055579)*(0.0681983421840397)
   alpha = alpha+0.05
}</pre>
```

The stocks with the largest negative correlation are r1 and r7, which are Air Canada and Loblaw Companies Ltd. respectively. From table 1 we know the expected returns and standard deviation for the stocks of these firms, and from table 2 we can find correlation. So we can make a table with different levels of alpha.

R Code:

```
table4 <- data.frame()
alpha=0
for (i in 1:21) {
  table4[i,1] = alpha
  table4[i,2] =
alpha*(0.0369687704918033)+(1-alpha)*(0.0109065409836066)
  table4[i,3] =
(alpha^2)*((0.177106792817629)^2)+((1-alpha)^2)*((0.0590012983757063)^2)+2*alpha*(1-alpha)*(-0.185276622851687)*(0.177106792817629)*(0.0590012983757063)
  alpha = alpha+0.05
}</pre>
```

*	V1 =	V2 =	V3 [‡]	-	V1 ÷	V2 [‡]	V3 [‡]
1	0.00	-0.0007953115	0.004651014	1	0.00	0.01090654	0.003481153
2	0.05	-0.0019463369	0.004635991	2	0.05	0.01220965	0.003036233
3	0.10	-0.0030973623	0.004696916	3	0.10	0.01351276	0.002784913
4	0.15	-0.0042483877	0.004833787	4	0.15	0.01481588	0.002727193
5	0.20	-0.0053994131	0.005046606	5	0.20	0.01611899	0.002863073
6	0.25	-0.0065504385	0.005335372	6	0.25	0.01742210	0.003192555
7	0.30	-0.0077014639	0.005700085	7	0.30	0.01872521	0.003715636
8	0.35	-0.0088524893	0.006140745	8	0.35	0.02002832	0.004432318
9	0.40	-0.0100035148	0.006657353	9	0.40	0.02133143	0.005342600
10	0.45	-0.0111545402	0.007249908	10	0.45	0.02263454	0.006446482
11	0.50	-0.0123055656	0.007918410	11	0.50	0.02393766	0.007743965
12	0.55	-0.0134565910	0.008662859	12	0.55	0.02524077	0.009235049
13	0.60	-0.0146076164	0.009483255	13	0.60	0.02654388	0.010919732
14	0.65	-0.0157586418	0.010379598	14	0.65	0.02784699	0.012798017
15	0.70	-0.0169096672	0.011351889	15	0.70	0.02915010	0.014869901
16	0.75	-0.0180606926	0.012400126	16	0.75	0.03045321	0.017135386
17	0.80	-0.0192117180	0.013524311	17	0.80	0.03175632	0.019594471
18	0.85	-0.0203627434	0.014724443	18	0.85	0.03305944	0.022247157
19	0.90	-0.0215137689	0.016000523	19	0.90	0.03436255	0.025093443
20	0.95	-0.0226647943	0.017352549	20	0.95	0.03566566	0.028133329
21	1,00	-0.0238158197	0.018780523	21	1.00	0.03696877	0.031366816

Table 3 (left); Table 4 (right)

We can make a portfolio frontier for both of these from table 3 and table 4 for each of the pairs of stocks. The portfolio frontier in **blue** is for the portfolio containing different alpha for Sherritt International Corp and Canada Natural Resources Limited (stocks with largest positive correlation). The portfolio frontier in **red** is for the portfolio containing different alpha for Air Canada and Loblaw Companies Ltd. (stocks with largest negative correlation).

R Code:

```
plot(table3[ ,3], table3[ ,2], main = "Comparative Portfolio Frontiers Question 4", xlab = "Standard Deviation", ylab = "Expected Returns", ylim = c(-0.030, 0.045), xlim = c(0, 0.030), col="blue") points(table4[ ,3], table4[ ,2], col="red") legend(x=.016 , y=0.027,legend = c("Portfolio Frontier for Stock Pair AC and L")) legend(x=.016 , y=-0.012,legend = c("Portfolio Frontier for Stock Pair S and CNQ"))
```


For this question I took r1, r5 and r7, which are namely Air Canada, Canadian Natural Resources Limited, and Loblaw Companies.

From table 1 we can find expected returns and standard deviation, while finding correlation between the stocks from table 2. Thus, plugging the values into the formula given we can draw the portfolio frontier.

R Code:

```
alpha = 0
beta = 0
ret1 = 0.0369687704918033
ret2 = -0.000795311475409836
ret3 = 0.0109065409836066
std1 = 0.177106792817629
std2 = 0.0681983421840397
std3 = 0.0590012983757063
cor12 = 0.0955912173496807
cor13 = -0.185276622851687
cor23 = -0.0227720369444608
rowcount = 1
table5 <- data.frame()</pre>
for (i in 1:21) {
 beta = 0
 while (beta<1.05) {</pre>
    if ((alpha + beta) > 1.05) break
    else {
      table5[rowcount,1] = alpha
      table5[rowcount,2] = beta
      table5[rowcount,3] = alpha*ret1+beta*ret2+(1-alpha-beta)*ret3
      table5[rowcount,4] =
alpha^2*std1^2+beta^2*std2^2+(1-alpha-beta)^2*std3^2+2*alpha*beta*cor
12*std1*std2+2*alpha*(1-alpha-beta)*cor13*std1*std3+2*beta*(1-alpha-b
eta) *cor23*std2*std3
      rowcount= rowcount+1
      beta = beta + 0.05
    }
  }
  alpha = alpha + 0.05
}
plot(table5[ ,4], table5[ ,3], main = "Portfolio Frontiers of 3
Stocks Question 5", xlab = "Standard Deviation", ylab = "Expected
Returns")
```

