

ECSS Staff TrainingComet Virtual Clusters

XSEDE 15 Saint Louis, MO July 26-30

Rick Wagner
San Diego Supercomputer Center

Comet Network Architecture InfiniBand compute, Ethernet Storage

SAN DIEGO SUPERCOMPUTER CENTER

Virtualized Clusters on Comet

Goal:

Provide a near bare metal HPC performance and management experience

Target Use

Projects that could manage their own cluster, and:

- · can't fit our batch environment, and
 - don't want to buy hardware or
 - have bursty or intermittent need

Concepts, Ideas, Design

- Projects have persistent VM for cluster management
 - Modest: single core, 1-2 GB of RAM
- Standard compute nodes will be scheduled as containers via batch system
 - One virtual compute node per container
- Virtual disk images stored as ZFS datasets
 - Migrated to and from containers at job start and end
- VM use allocated and tracked like regular computing

SAN DIEGO SUPERCOMPUTER CENTE

Enabling Technologies

- KVM—Let's us run virtual machines (all processor features)
- SR-IOV—Makes MPI go fast on VMs
- Rocks—Systems management
- ZFS—Disk image management
- VLANs—Isolate virtual cluster management network
- pkeys—Isolate virtual cluster IB network
- Nucleus—Coordination engine (scheduling, provisioning, status, etc.)

Yes, we have a lot of work to do.

Single Root I/O Virtualization in HPC

- Problem: Virtualization generally has resulted in significant I/O performance degradation (e.g., excessive DMA interrupts)
- Solution: SR-IOV and Mellanox ConnectX-3 InfiniBand host channel adapters
 - One physical function → multiple virtual functions, each light weight but with its own DMA streams, memory space, interrupts
 - Allows DMA to bypass hypervisor to VMs
- SRIOV enables virtual HPC cluster w/ nearnative InfiniBand latency/bandwidth and minimal overhead

MPI bandwidth slowdown from SR-IOV is at most 1.21 for medium-sized messages & negligible for small & large ones

MPI latency slowdown from SR-IOV is at most 1.32 for small messages & negligible for large ones

WRF Weather Modeling – 15% Overhead with SR-IOV IB

- 96-core (6-node)
 calculation
- Nearest-neighbor communication
- Scalable algorithms
- SR-IOV incurs modest (15%) performance hit
- 2% slower w/ SR-IOV vs native IB!
- Still 20% faster than EC2
 Despite 20% slower CPUs

SAN DIEGO SUPERCOMPUTER CENTER

Quantum ESPRESSO: 28% Overhead

- 48-core (3 node) calculation
- CG matrix inversion irregular communication
- 3D FFT matrix transposes (all-to-all communication)
- 28% slower w/ SR-IOV vs native IB
- 8% slower w/ SR-IOV vs native IB!
- SR-IOV still > 500% faster than EC2 Despite 20% slower CPUs

SAN DIEGO SUPERCOMPUTER CENTER

Deploying and Using a Cluster (User View)

- 1. Provision front end (management node) from ISO
- 2. Request compute nodes
- Install compute nodes automated or manually (PXE or from ISO)
- 4. Shut down compute nodes for later use
- 5. Request compute nodes to be booted as needed

Expected Users

Large projects and research groups that have dedicated IT staff and need more customization and control

Examples

- XSEDE SD&I
 - Testing software in different environments
- Campuses
 - Provide consistent environment

- Gateways
- SDSC
 - Continuous integration of cluster applications

Intended Usage Modes

Mode 1: Bursty

- Sporadic workload
- Asynchronous batch processing
- Request nodes as needed

Mode 2: Minimum Footprint

- Some nodes always running
- Continuous computing or data processing
- Can grow when needed

Allocations granted and tracked just like standard compute cycles. Running a VM means spending SUs

Development Roadmap

- Now
 - Deploying development cluster
- August
 - Manual cluster provisioning
 - Scheduler integration
- September
 - Testing and usage by IU staff
 - Initial interface
- October
 - Network configuration
 - Refine interface

- November
 - Friendly user testing
- December
 - Deployment
- January 2016
 - Production
- Later
 - Expose API

Future Features

- Network storage
 - Lustre
 - NFS
- API
 - Needed for automated workflows

Potential ECSS Engagements

- Potentially, lots of new applications
 - VMs allow for new operating systems in HPC
- Performance tuning
- Workflows
- Data management
- Porting disk images

