Color measurements with the spectrometer

Friederike Wölke (frieda.woelke@gmail.com) iDiv Summer School 2022, Leipzig

Setup

PX-2 Pulsed Xenon Lamp (220-750nm)

Reflection Probe Holder for 6.35mm probes

"QR400-7-UV-BX" Reflection probe (at 45° angle)

OceanView software

Spectrometer "FLAME-S-UV-VIS"

Diffuse Reflectance Standard

Workflow for measuring color (reflectance)

How to measure

1. Dark background reference

- Uncheck "Enable lightsource" in the software.
- Close all opening in the probe holder
- •click $\widehat{\boldsymbol{w}}$ to take the background reference

3. Reflectance measurement (color)

- place fruit under the probe holder
- •press to save reflectance measurement

2. White reference

- •enable light again
- •place diffuse standard under probe
- •click to take the white reference

= File writer: click after calibration and before reflectance measurement (remember to change the file name before!!)

Some things to keep in mind

- Consistent labelling (e.g., sp1-i1-r1)
 - Edit file name with every new measurement
- Take new calibration after all replicates for an individual
- Clean reflection probe (detector) when needed
- Exclude external light from the measurement

Processing reflectance spectra

OW TO CALCULATE HUE, CHROMA AND BRIGHTNESS FOR OBJECTS
(COLOR)

Friederike Wölke (frieda.woelke@gmail.com) iDiv Summer School 2022, Leipzig

Color is...

- "...the visual <u>perceptual</u> property deriving from the <u>spectrum of</u> <u>light</u> interacting with the <u>photoreceptor cells</u> of the eyes" (wikipedia)
- ... all frequencies of the visible light spectrum that are reflected back from the object into the observer's eye
- depends on the <u>type</u> and <u>sensitivity</u> of different types of cone cells in the retina
- Human visible spectrum 380 750 nm (3 types of cones: blue, green, red)
- Bird visible spectrum 300 750 nm
 (4 types of cones: UV, blue, green, red)

Reflectance

The reflectance spectrum shows the <u>distribution of photons</u> that can be potentially reflected towards the eye/detector at each wavelength

Reflectance (R [%]): relative measure, depends on the spectrum of the incident light

Transmission or Reflectance
$$\longrightarrow$$
 %T _{λ} = $\frac{S_{\lambda} - D_{\lambda}}{R_{\lambda} - D_{\lambda}}$ x 100%

Where:

$$S_{\lambda = \, Sample \, intensity \, at \, wavelength} \, \lambda \qquad \qquad Measurement \\ D_{\lambda = \, Background \, intensity \, at \, wavelength} \, \lambda \qquad \qquad Dark \, calibration \\ R_{\lambda = \, Reference \, intensity \, at \, wavelength} \, \lambda \qquad \qquad Light \, calibration$$

Properties of color

Brightness

- = average or total intensity of reflected wavelengths
- the higher the reflectance amplitudes, the brighter it is perceived
- \circ $R_{average}$

Hue

- = color that is predominantly perceived by the observer
- peak wavelength (λ at R_{max})

Chroma

- = saturation, function of how rapidly R% changes horizontally along wavelengths
- steeper slopes indicate higher saturation
- $\circ \frac{R_{max} R_{min}}{R_{average}}$

Properties of color in the reflectance spectrum

Brightness

• $R_{average}$

Hue

• peak wavelength $(\lambda \text{ at } R_{max})$

Chroma

 $\frac{R_{max} - R_{min}}{R_{average}}$

Computing colorimetric variables in R

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2013, 4, 906-913

doi: 10.1111/2041-210X.12069

APPLICATION

pavo: an R package for the analysis, visualization and organization of spectral data

Rafael Maia¹*, Chad M. Eliason¹, Pierre-Paul Bitton², Stéphanie M. Doucet² and Matthew D. Shawkey¹

¹Department of Biology, Integrated Bioscience Program, University of Akron, Akron, OH, 44325–3908, USA; and ²Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Biology Building, Windsor, Ontario, N9B 3P4, Canada

A) Calculating brightness, hue and chroma

1) For replicates individually

First, we have to subset the reflection data into species data frames for the separate calculation of the metrics. Pavo has a modified version of subset() which uses partial matching of strings. You can indicate any sequence of letter/signs/numbers that you would like to filter for in the column names of your reflection measurement.

Hide

Hide

```
refl_sp1 <- subset(specs, "sp1") # based on species id in names in reflectance df
refl_sp2 <- subset(specs, "sp2")
refl_sp3 <- subset(specs, "sp3")</pre>
```

Next we will calculate brightness, hue and chroma using the *summary()* function for each replicate (we can also do it for each species or each individual tree that was sampled, see below).

If we use the *subset* = *T* argument inside the function, it will automatically calculate the three desired variables. There is a diversity of other measures the function can calculate but those three are the most commonly used in comparative studies.

again we cut out some more of the spectral noise (needed here. may not be needed for your data. Remove wlmin/wlmax argumen
ts if not needed)

col_sp1 <- summary(refl_sp1, subset =T, wlmin = 300, wlmax= 680)

Hide

col_sp2 <- summary(refl_sp2, subset =T, wlmin = 300, wlmax= 680)

Hide

col_sp3 <- summary(refl_sp3, subset =T, wlmin = 300, wlmax= 680)</pre>

- * Change species/samples labels and folder structure for your own purposes from the provided R script
- * script includes some techniques for visualization

Helpful information

pavo package:

- https://rafaelmaia.net/pavo/articles/pavo.html (tutorial)
- https://rdrr.io/cran/pavo/ (description of functions)

Information about the formulas and arguments in R and *pavo* can be found on their help page:

• Type ?[your function]() into the R console, where [your function] has to be replaced with the function you want to read more about: e.g., ?summary.rspec()

Information about the difficulties of measuring color with a spectrometer:

© 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 772-778 doi:10.1242/jeb.124008

COMMENTARY

How to measure color using spectrometers and calibrated photographs
Sönke Johnsen*