Question #1

(i) Let $x, y \in S$, $g_1, g_2 \in \partial f(x)$, $\lambda \in [0, 1]$. Define $g = \lambda g_1 + (1 - \lambda)g_2$. From the subgradient inequality:

$$\lambda f(y) \ge \lambda f(x) + \lambda g_1^{\top}(y - x)$$
$$(1 - \lambda)f(y) \ge (1 - \lambda)f(x) + (1 - \lambda)g_2^{\top}(y - x)$$

By combining the two equations:

$$f(y) = \lambda f(y) + (1 - \lambda)f(y) \ge \lambda f(x) + \lambda g_1^{\top}(y - x) + (1 - \lambda)f(x) + (1 - \lambda)g_2^{\top}(y - x)$$

$$= f(x) + \lambda g_1^{\top}(y - x) + (1 - \lambda)g_2^{\top}(y - x)$$

$$= f(x) + g^{\top}(y - x)$$

So $g \in \partial f(x)$, meaning $\partial f(x)$ is convex.

(ii) Let $x, y \in S$, $\lambda \in [0, 1]$, $z = \lambda x + (1 - \lambda)y$, $g \in \partial f(z)$. From the subgradient inequality:

$$\lambda f(x) + (1 - \lambda)f(y) \ge \lambda f(z) + \lambda g^{\top}(x - z) + (1 - \lambda)f(z) + (1 - \lambda)g^{\top}(y - z)$$

$$= f(z) + \lambda g^{\top}(x - z) + (1 - \lambda)g^{\top}(y - z)$$

$$= f(z) + g^{\top}(\lambda x - \lambda z + (1 - \lambda)y + (1 - \lambda)z)$$

$$= f(z) + g^{\top}(\lambda x + (1 - \lambda)y - z)$$

$$= f(z) = f(\lambda x + (1 - \lambda)y)$$

(iii) Let $x, y \in S$, $g_x \in \partial f(x)$, $g_y \in \partial f(y)$. From the subgradient inequality:

$$f(y) + f(x) \ge f(x) + g_x^{\top}(y - x) + f(y) + g_y^{\top}(x - y)$$
$$0 \ge g_x^{\top}(y - x) + g_y^{\top}(x - y)$$
$$0 \le (+g_y - +g_x)^{\top}(y - x)$$

(iv) Let b = f(0), h(x) = -b, g(x) = f(x) + h(x).

g is a sum of two convex and concave, and therefore g is also convex and concave. we'll prove that g is linear.

Homogeneity: Let $x \in \mathbb{R}^d$.

Let $\lambda \in [0,1]$.

$$g(0) = f(0) + h(0) = b - b = 0$$

Since g is both convex and concave,

$$g(\lambda x + (1 - \lambda)0) = \lambda g(x) + (1 - \lambda)g(0)$$

$$g(\lambda x) = \lambda g(x)$$

Let $\lambda > 1$. $\lambda^{-1} \in [0, 1]$

$$\lambda g(x) = \lambda g(\lambda^{-1}\lambda x) = \lambda \lambda^{-1}g(\lambda x) = g(\lambda x)$$

Let $\lambda < 0$. Let $y \in \mathbb{R}^d$.

$$0.5g(y) + 0.5g(-y) = g(0.5y - 0.5y) = g(0) = 0$$
$$-g(y) = g(-y)$$
$$\lambda g(x) = -(-\lambda)g(x) = -g(-(\lambda x)) = -(-g(\lambda x)) = g(\lambda x)$$

Additivity: Let $x, y \in \mathbb{R}^d$.

$$g(x+y) = g(0.5(2x) + 0.5(2y) = 0.5g(2x) + 0.5g(2y) = g(x) + g(y)$$

So g is linear, meaning there exists $a \in \mathbb{R}^d$, such that $g(x) = a^{\top}x$. And now:

$$f(x) = g(x) - h(x)$$
$$f(x) = a^{\mathsf{T}}x + b$$

Question #2

(i) We'll define $f_x(z) = f(z) - \nabla f(x)^T \cdot z$ and $f_y(z) = f(z) - \nabla f(y)^T \cdot z$. Calculating their gradients we get:

$$\nabla f_x(z) = \nabla f(z) - \nabla f(x)$$
$$\nabla f_y(z) = \nabla f(z) - \nabla f(y)$$

From the fact that f is β -smooth, we get that ∇f is β -Lipschitz, and so both $\nabla f_x(z)$ and $\nabla f_y(z)$ are β -Lipschitz. We can also see that z=x, z=y are minimizers of $f_x(z)$ and $f_y(z)$ respectively $(\nabla f_x(x)=0, \nabla f_y(y)=0)$.

We've seen that given f is β -smooth and x^* is its minimizer:

$$\forall x \in \mathbb{R}^d, \ \frac{1}{2\beta} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{\beta}{2} \|x - x^*\|^2$$

From the left hand side of that inequality we get:

$$f(y) - f(x) - \nabla f(x)^{T} \cdot (y - x) = f_{x}(y) - f_{x}(x) \ge \frac{1}{2\beta} \|\nabla f_{x}(y)\|^{2}$$
$$= \frac{1}{2\beta} \|\nabla f(y) - \nabla f(x)\|^{2}$$

And similarly because z = y is a minimizer for $f_y(z)$ we get:

$$f(x) - f(y) - \nabla f(y)^T \cdot (x - y) \ge \frac{1}{2\beta} \|\nabla f(y) - \nabla f(x)\|^2$$

Combining the two inequalities we get:

$$\frac{1}{2\beta} \|\nabla f(y) - \nabla f(x)\|^2 + \frac{1}{2\beta} \|\nabla f(y) - \nabla f(x)\|^2 \le f(y) - f(x) - \nabla f(x)^T \cdot (y - x) + f(x) - f(y) - \nabla f(y)^T \cdot (x - y)$$

$$\Rightarrow \frac{1}{\beta} |\nabla f(y) - \nabla f(x)|^2 \le (\nabla f(y) - \nabla f(x))^T \cdot (y - x)$$

As required.

(ii)

$$||x_{1}^{+} - x_{2}^{+}||^{2} = ||(x_{1} - x_{2}) - \eta(\nabla f(x_{1}) - \nabla f(x_{2}))||^{2}$$

$$= ||x_{1} - x_{2}||^{2} - \eta(\nabla f(x_{1}) - \nabla f(x_{2})) \cdot (x_{1} - x_{2}) + \eta^{2} ||\nabla f(x_{1}) - \nabla f(x_{2})||^{2}$$

$$\leq ||x_{1} - x_{2}||^{2} - \eta \cdot \frac{1}{\beta} \cdot ||\nabla f(x_{1}) - \nabla f(x_{2})||^{2} + \frac{\eta}{\beta} ||\nabla f(x_{1}) - \nabla f(x_{2})||^{2}$$

$$= ||x_{1} - x_{2}||^{2}$$

- (*) Inequality from co-coercity and the fact that $\eta \leq \frac{1}{\beta}$
- (iii) x^* is a minimizer, so $\nabla f(x^*) = 0$, and so $(x^*)^+ = x^* \eta \nabla f(x^*) = x^*$. Using (ii) we get that:

$$||x^{+} - x^{*}|| = ||x^{+} - (x^{*})^{+}|| \le ||x - x^{*}||$$

Question #3

(i) We'll prove it. The function $g(x) = \frac{\beta}{2} ||x||^2$ is β -strongly convex. So we have for all $x, y \in \mathbb{R}^d$:

$$\begin{split} g(y) - g(x) - \nabla g(x) \cdot (y - x) &\geq \frac{\beta}{2} ||y - x||^2 \\ |f(y) - f(x) - \nabla f(x) \cdot (y - x)| &\leq \frac{\beta}{2} ||y - x||^2 \end{split}$$

And so we get:

$$\begin{split} h(y) - h(x) - \nabla h(x) \cdot (y - x) &= f(y) - f(x) - \nabla f(x) \cdot (y - x) + g(y) - g(x) - \nabla g(x) \cdot (y - x) \\ &\geq -\frac{\beta}{2} \|y - x\|^2 + \frac{\beta}{2} \|y - x\|^2 = 0 \\ &\Rightarrow h(y) \geq h(x) + \nabla h(x) \cdot (y - x) \end{split}$$

Meaning, h is convex, as required.

(ii) We'll disprove it: We've seen that a $(\beta - \alpha)$ -smooth function h satisfies for every $x, y \in \mathbb{R}^d$:

$$-\frac{\beta}{2}||y - x||^2 \le f(y) - f(x) - \nabla f(x) \cdot (y - x) \le \frac{\beta}{2}||y - x||^2$$

Let $f(x) = \frac{1}{2}x^T Ax$ where $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Because $A \leq 1$, we conclude that f is 1-smooth and convex. So we get that $h(x) = \frac{1}{2}x^T Ax - \frac{\alpha}{2}||x||^2$, and calculating the gradient we get:

$$\nabla h(x) = Ax - \alpha x$$

We'll set $\alpha = \frac{3}{4} < \beta, x = 0, y = e_2$, then we get:

$$-\frac{1}{8} = -\frac{1}{8} \|y\|^2 = -\frac{(\beta - \alpha)}{2} \|y - x\|^2 \stackrel{?}{\leq} h(y) - h(x) - \nabla h(x) \cdot (y - x)$$

$$= \frac{1}{2} y^T A y - \frac{\alpha}{2} \|y\|^2 - \frac{1}{2} x^T A x + \frac{\alpha}{2} \|x\|^2 - A x + \alpha x$$

$$= 0 - \frac{3}{2} \cdot 1 - 0 + \frac{3}{2} \cdot 0 - 0 + 0 = -\frac{3}{2}$$

Meaning we got that $-\frac{1}{8} \le -\frac{3}{2}$, in contradiction to the lower bound of the alternative characterization of smooth functions.

Question #4

(i)
$$f(0) = \frac{1}{n} \sum_{i=1}^{n} \max\{1 - y_i(0^{\top} x_i), 0\} + \lambda \|0\|^2 = \frac{1}{n} \sum_{i=1}^{n} \max\{1, 0\} + 0 = 1$$
$$f(w^*) = \frac{1}{n} \sum_{i=1}^{n} \max\{1 - y_i(w^{*\top} x_i), 0\} + \lambda \|w^*\|^2 \ge \lambda \|w^*\|^2$$
$$1 = f(0) \ge f(w^*) \ge \lambda \|w^*\|^2$$
$$\|w^*\|^2 \le \frac{1}{\lambda}$$

(ii) Since $||w^*||^2 \le \frac{1}{\lambda}$, we can take $S = \{w : ||w||^2 \le \frac{1}{\lambda}\}$. Define $h_i(w) = \max\{1 - y_i(w^\top x_i), 0\}$. Let $w \in S, g_i \in \partial h_i(w)$. From what we've seen in class about subgradients of finite maximum: if $1 - y_i(w^\top x_i) > 0$, $\partial h_i(w) = \{-y_i x_i\}$, and $||g_i|| = ||x_i||$. if $1 - y_i(w^\top x_i) < 0$, $\partial h_i(w) = \{0\}$, and $||g_i|| = 0$. if $1 - y_i(w^\top x_i) = 0$, $\partial h_i(w) = \{\lambda(-y_i x_i) : \lambda \in [0, 1]\}$, and $||g_i|| = \lambda ||x_i|| \le ||x_i||$. So in any case $||g_i|| \le ||x_i||$.

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} h_i(w) + \lambda ||w||^2$$

$$\partial f(w) = \frac{1}{n} \sum_{i=1}^{n} \partial h_i(w) + \{2\lambda w\}$$

Let $g \in \partial f(w)$. there exist g_1, \ldots, g_n such that $g = \frac{1}{n} \sum_{i=1}^n g_i + 2\lambda w$.

$$||g|| = \frac{1}{n} \sum_{i=1}^{n} ||g_i|| + 2\lambda ||w|| \le \frac{1}{n} \sum_{i=1}^{n} ||x_i|| + 2\sqrt{\lambda}$$

So f is G-Lipschitz for $G = \frac{1}{n} \sum_{i=1}^{n} ||x_i|| + 2\sqrt{\lambda}$.

(iii) The algorithm would be PGD:

$$w_{t+1} = \Pi_S[w_t - \eta_t \nabla g_t]$$

initialization - $w_0 = 0$

Subgradient oracle - $g_t = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i(w_t^T x_i) < 1\}} + 2\lambda w$ Adaptive step size - $\eta_t = \frac{\lambda}{2t}$ Since f is G-Lipschitz and 2λ -strongly convex, the convergence rate is

$$\frac{G^2 \log T}{2\lambda T} = O\left(\frac{\log T}{T}\right)$$