Numerical Optimiziation

Michael Lebacher Johannes Stoiber Ken Schröder

Numerical Introductory Course Seminar Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin

Outline

- 1. Motivation
- 2. Methods of optimization
- 3. Practical examples
- 4. Algorithms
 - Newton-Raphson
 - Gradient descent
 - Nelder-Mead
- 5. Apply algorithm to solve a maximum likelihood problem for real data
- 6. Compare results
- 7. Conclusion

Motivation — 1-1

Motivation

- Optimize some objective function
 - Cost function of a business
- - Analytical solution might not exist
 - Too complex to deal with manually
 - ▶ Computer cannot provide closed form solutions, in general

Optimization problems

- Discrete vs. continuous
 - ▶ Integer programming
- Constrained vs. non constrained
 - Linear optimization
- - Convex programming
- - Newton methods
 - Nelder-Mead
 - BFGS

Gradient and non gradient methods

- Gradient based
 - Direction
 - Stepsize
- Non gradient based
 - ▶ Works with non-differentiable functions
 - Less knowledge required
 - Computationally intensive

Structure of algorithms

- \odot Objective function f(x)
- Starting value for x
- Define updater function
- Define termination criterion
- 1. $x_{new} = x_{old} + updater$
- 2. Convergence criterion satisfied?
 - ightharpoonup \Rightarrow No: start over at step 1.
 - ightharpoonup \Rightarrow Yes: terminate procedure.

Our algorithms

- Normalized for stability
- Termination criterion
 - $||\mathbf{x}_{new} \mathbf{x}_{old}|| < t^*$
 - $||f(\mathbf{x}_{new}) f(\mathbf{x}_{old})|| < t^*$
- Compared performance to optim()-package in R.
 - Number of iterations required
 - Accuracy of approximation

Practical examples

- Operations research
- Finance
- Statistics
 - Principal components
 - Least squares
 - Maximum likelihood etc.

Algorithms — 4-1

Algorithms

- Gradient descent

Algorithms ——————————————————————4-2

Gradient descent

- Standard procedure for the numerical solution of nonlinear equations
- Method for unconstrained optimization problems in n-dimensional spaces
- ☐ Requires the first derivative of the objective function (gradient)

Gradient descent

Problem

Minimize a function f(x), $x \in \mathbb{R}^n$ $f \in C^1(\mathbb{R}^n, \mathbb{R}), n > 1$

Idea

Gradient descent is based on the idea that a differentiable function decreases fastest if one goes in the direction of the negative gradient. Hence the iteration at the (n+1)th step works as following:

$$x^{n+1} = x^n - \alpha^n \nabla f(x^n)$$

Notation

- \odot Objective function: f(x)
- □ Gradient: ∇ f(x)
- \Box The learning parameter α^n determines the step size

Speed of convergence depends crucially on the learning parameter

- \Box $\alpha^n = h(n)$ where h(n) gradually decreases with each iteration.
- ·

$$f(x) = x^2$$
, $\nabla f(x) = 2x$, $\alpha = 0.25$
 $x^{n+1} = x^n - 0.25 \nabla f(x^n)$

$$f(x) = x^2$$
, $\nabla f(x) = 2x$, $\alpha = 0.25$
 $x_0 = 6$

$$f(x) = x^2$$
, $\nabla f(x) = 2x$, $\alpha = 0.25$, $x_0 = 6$
 $x_1 = 6 - 0.5 * 6 = 3$

$$f(x) = x^2$$
, $\nabla f(x) = 2x$, $\alpha = 0.25$, $x_1 = 3$
 $x_2 = 3 - 0.5 * 3 = 1.5$

$$f(x) = x^2$$
, $\nabla f(x) = 2x$, $\alpha = 0.25$, $x_2 = 1.5$
 $x_3 = 1.5 - 0.5 * 1.5 = 0.75$

$$f(x) = x^2$$
, $\nabla f(x) = 2x$, $\alpha = 0.25$, $x_3 = 0.75$
 $x_4 = 0.75 - 0.5 * 0.75 = 0.375$

Algorithms —————————————————4-11

Newton-Raphson

- Named after Sir Isaac Newton and Joseph Raphson
- Very popular procedure for the numerical solution of nonlinear equations
- Method for unconstrained optimization problems in n-dimensional spaces
- Requires derivatives of the objective function (gradient and hessian)

Algorithms — 4-12

Newton-Raphson

Problem

Minimize a function f(x), $x \in \mathbb{R}^n$

$$f \in C^2(\mathbb{R}^n, \mathbb{R}), n \geq 1$$

Idea

Solve the minimization problem by application of a local linearization which can be solved easily

Newton-Raphson

Apply a Taylor expansion of second order near the optimum x^* :

$$f(x) \approx f(x^*) + \nabla f(x^*)'(x - x^*) + 0.5(x - x^*)'\nabla^2 f(x^*)(x - x^*)$$

This linearization can be differentiated w.r.t. x

$$\nabla f(x) \approx \nabla f(x^*) + \nabla^2 f(x^*)(x - x^*)$$

A minimizer must satisfy $\nabla f(x) = 0$. Therefore we get

$$\nabla f(x^*) + \nabla^2 f(x^*)(x - x^*) = 0$$

This results after rearrangement (given a nonsingular hessian) in the following expression

$$x = x^* - [\nabla^2 f(x^*)]^{-1} \nabla f(x^*)$$

Algorithms — 4-14

Newton-Raphson

Updater function

$$x^{n+1} = x^n - [\nabla^2 f(x^n)]^{-1} \nabla f(x^n)$$

- **□** Can be interpreted as gradient descent algorithm employing the hessian as learning parameter: $α^n = [∇^2 f(x^n)]^{-1}$

$$f(x) = x^4$$
, $\nabla f(x) = 4x^3$, $\nabla^2 f(x) = 12x^2$

$$f(x) = x^4$$
, $\nabla f(x) = 4x^3$, $\nabla^2 f(x) = 12x^2$

$$f(x) = x^4$$
, $\nabla f(x) = 4x^3$, $\nabla^2 f(x) = 12x^2$

$$f(x) = x^4$$
, $\nabla f(x) = 4x^3$, $\nabla^2 f(x) = 12x^2$

$$f(x) = x^4$$
, $\nabla f(x) = 4x^3$, $\nabla^2 f(x) = 12x^2$

$$f(x) = x^4$$
, $\nabla f(x) = 4x^3$, $\nabla^2 f(x) = 12x^2$

$$f(x) = x^4$$
, $\nabla f(x) = 4x^3$,

$$f(x) = x^4$$
, $\nabla f(x) = 4x^3$,

Algorithms ————————————————4-23

Nelder-Mead method

- Proposed by John Nelder and Roger Mead in 1965
- □ Also known as downhill simplex method
- Method for unconstrained optimization problems in n-dimensional spaces
- Does not require derivatives of objective function (non gradient)
- Compare objective function on a set of parameters to identify optimal parameters

Algorithms — 4-24

Nelder-Mead method

Problem

Minimize a function f(x), $x \in \mathbb{R}^n$

$$f \in C(\mathbb{R}^n, \mathbb{R}), n \geq 2$$

Simplex

A Simplex is a n dimensional polytope which is the convex hull of its n+1 vertices, more formally

$$\Delta = \{x^1, \cdots, x^{n+1}\} \subset \mathbb{R}^n$$

Examples

- □ A 0-Simplex is a point
- □ A 2-Simplex is a triangle

Algorithms 4-25

Nelder-Mead algorithm

Step 1 (ordering)

Choose an initial simplex and and evaluate the function at all x^i and identify indices $b, sw, w \in \{1, \dots, n+1\}$, where

```
:= \operatorname{argmax} \{ f(x) : x \in \Delta \}
                                                            worst point
x^{sw} := \operatorname{argmax} \{ f(x) : x \in \Delta, sw \neq w \} second worst point
x^b := argmin\{f(x): x \in \Delta, b \neq sw, w\} best point
```


Algorithms — 4-26

Nelder-Mead algorithm

Step 2 (centroid and reflection point)

Compute the centroid of the best n points: $z:=\frac{1}{n}\sum_{i\neq w}x^i$ Compute a reflection point $r:=z+\alpha(z-x^w)$, with $\alpha=1$

Algorithms — 4-27

Nelder-Mead algorithm

Figure 1: Reflection of worst point.

Nelder-Mead algorithm

Step 3 (reflection)
If
$$f(x^b) \le f(r) \le f(x^{sw})$$
, replace x^w by r

Figure 2: Simplex after replacing x^w by r.

Nelder-Mead algorithm

Step 4 (expansion)

If $f(r) < f(x^b)$, compute expansion point $e := z + \beta(z - x^w)$, with $\beta > \alpha$ (common practice: $\beta = 2$) If f(e) < f(r), replace x^w by e, else replace x^w by r

Figure 3: Simplex after replacing x^w by e.

Nelder-Mead algorithm

Step 5 (contraction)

- - If $f(r) > f(x^w) \ k := z + \gamma(x^w z)$
 - ightharpoonup else $k := z + \gamma(z x^w)$
 - with $0 < \gamma < \alpha$ (common practice: $\gamma = 0.5$)
- else replace contract simplex by x^b : $x^i := \frac{(x^i + x^b)}{2}$

Figure 4: Simplex after replacing x^w by k.

Figure 5: Visualization of Nelder-Mead approach.

Source: https://www.youtube.com/watch?v=HUqLxHfxWqU

Application of the algorithm to the data set Mroz.dta

- □ Data from: Mroz (1987)
- Relationship of interest: Relationship between female labor force participation (inlf), education (educ) and the income of the husband (huswage).

Summary statistics

	inlf	educ	huswage	
Description	labor force dummy	years of schooling	wage/h husband	
Min.	0	5	0.412	
1st Qu.	0	12	4.788	
Median	1	12	6.976	
Mean	0.568	12.290	7.482	
3rd Qu.	1	13	9.167	
Max.	1	17	40.510	

Note: for better performance of the numerical methods, the data has been transformed by $x^* = \frac{x - min(x)}{max(x) - min(x)}$

Numerical Optimization

Application of the algorithm: The Logit Model

We model the relationship between the probability of being in the labor force and our explanatory variables as follows

$$P(infl_i = 1) = \Lambda(\beta_0 + \beta_1 educ_i + \beta_2 huswage_i) = \Lambda(x_i'\beta)$$

where $\Lambda(x)$ gives the logistic link function:

 $\Lambda(x) = \exp(x)/(1 + \exp(x))$ and x_i is the vector of covariates for the observational unit i and $\beta = (\beta_0 \ \beta_1 \ \beta_2)^T$

Application of the algorithm: The Logit Model

In order to maximize the likelihood function $L(\beta)$ w.r.t. to β we have to maximize the Likelihood-function

$$L(\beta) = \prod_{i=1}^{N} \Lambda(x_i'\beta)^{y_i} [1 - \Lambda(x_i'\beta)]^{(1-y_i)}$$

Since In(.) is a monotone transformation, this is equivalent to the maximization of the log-likelihood

$$\mathcal{L}(oldsymbol{eta}) = \sum_{i=1}^{N} \left[y_i \ln \left[\Lambda(x_i'oldsymbol{eta}) \right] + (1-y_i) \ln \left[1 - \Lambda(x_i'oldsymbol{eta}) \right]
ight]$$

Application of the algorithm: The Logit Model

A maximum would be reached by setting the score $s(\beta)$ (gradient of $\mathcal{L}(\beta)$ w.r.t. to β) to zero:

$$s(\beta) = \sum_{i=1}^{N} (y_i - \Lambda(x_i'\beta)) x_i \stackrel{!}{=} 0$$

However, no closed form solution is available. Therefore we have to rely on numeric methods.

Visualization of a log-likelihood function

Figure 6: Visualization of a log-likelihood function.

Table 1: Model Comparison

	β_0	β_1	β_2	Iterations	Log-Likelihood
optim()*	-0.783	2.571	-2.778	156	-494.798
Nelder-Mead	-0.783	2.569	-2.770	1,575	-494.798
Newton-R.	-0.782	2.570	-2.774	6	-494.798
Grad. des.**	-0.783	2.568	-2.769	3, 227	-494.798
Grad. des.***	-0.782	2.570	-2.775	1,191	-494.798

Note:

* Nelder-Mead optimization, ** fixed learning parameter, *** flexible learning parameter

Compare results

- □ optim() package performs best
- performance depend on information (gradient, hessian, only function)
- self implemented algorithms are able to identify almost the same parameter

For further reading

The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions Econometrica, 55, 765-799

Nelder, John A. and R. Mead (1965)

A simplex method for function minimization

Computer Journal 7, 308-313

For Further Reading

Winkelmann, Rainer, and Stefan Boes (2006) *Analysis of microdata* Springer Science Business Media, 2006

