

Status Report on Track-based Alignment

Jim Pivarski

Texas A&M University

9 February, 2007

Overview

Our goal: to improve high- p_T muon resolution at

14 TeV (primary) and 0.9 TeV (secondary)

Deliverables: muon alignment data stream, software, well-studied

HIP procedure, and alignment constants

- Events of interest
 - $W \rightarrow \mu \nu$ and $Z \rightarrow \mu \mu$ for 14 TeV
 - ▶ $b \rightarrow \mu X$, beam halo, and/or cosmics for 0.9 TeV
 - ▶ Just $Z \rightarrow \mu\mu$ for now

- Events of interest
 - $W \to \mu \nu$ and $Z \to \mu \mu$ for 14 TeV
 - $b \rightarrow \mu X$, beam halo, and/or cosmics for 0.9 TeV
 - ▶ Just $Z \rightarrow \mu\mu$ for now

Background studies

- Define cuts, optimize signal/rate
- $Z \rightarrow \mu\mu$ like sign minus opposite sign

- Events of interest
 - $W \rightarrow \mu \nu$ and $Z \rightarrow \mu \mu$ for 14 TeV
 - ▶ $b \rightarrow \mu X$, beam halo, and/or cosmics for 0.9 TeV
 - ▶ Just $Z \rightarrow \mu\mu$ for now

- Background studies
 - Define cuts, optimize signal/rate
 - $Z \rightarrow \mu\mu$ like sign minus opposite sign
- Deweight muon chamber hits in alignment track fit
 - \blacktriangleright Muon hits introduce a bias, though bias \rightarrow 0 with iteration
 - ▶ Need fewer muons: $N_{\text{muons}} \propto \sigma_{\text{resid}}^2$
 - Weight = 0 for now (tracker only)

- Events of interest
 - $W \rightarrow \mu \nu$ and $Z \rightarrow \mu \mu$ for 14 TeV
 - ▶ $b \rightarrow \mu X$, beam halo, and/or cosmics for 0.9 TeV
 - ▶ Just $Z \rightarrow \mu\mu$ for now

- Background studies
 - Define cuts, optimize signal/rate
 - $Z \rightarrow \mu\mu$ like sign minus opposite sign
- Deweight muon chamber hits in alignment track fit
 - \blacktriangleright Muon hits introduce a bias, though bias \rightarrow 0 with iteration
 - ▶ Need fewer muons: $N_{\text{muons}} \propto \sigma_{\text{resid}}^2$
 - Weight = 0 for now (tracker only)
- AlCaReco format
 - Currently includes only local muon reconstruction
 - We need tracker fits and global muons!

Software: updated AlignmentProducer

- Included muon chamber alignables and removed tracker-dependent assumptions
- Regured a reorganization of track refitter and Trajectory-calculating code

CMS Week

Updates are in CVS, but not all bug-fixes

Software: updated AlignmentProducer

- Included muon chamber alignables and removed tracker-dependent assumptions
- Regured a reorganization of track refitter and Trajectory-calculating code

Now

Updates are in CVS, but not all bug-fixes

CommonAlignment framework can now...

- move muon geometry (DT and CSC)
- calculate muon residuals.

Accessible to all 3 algos: HIP, MillePede, and Kalman

CommonAlignment framework can now. . .

- move muon geometry (DT and CSC)
- calculate muon residuals.

Accessible to all 3 algos: HIP. MillePede, and Kalman

HIP Algorithm: move geometry to weighted mean of residuals (track minus hit), transformed to parameter space $(x, y, z, \phi_x, \phi_y, \phi_z)$,

alignment corrections =
$$\begin{pmatrix} \\ \end{pmatrix} \begin{pmatrix} \text{weighted mean} \\ \text{of residuals} \end{pmatrix} \begin{pmatrix} \\ \\ \end{pmatrix}^{-1}$$

chamber-by-chamber.

Corrected treatment of 1-dimensional hits

Our first alignment moved DTs by tens of cm, but not CSCs...

- CSA06 HIP assumed all sensors are 2D
- Axial DT hits have no v information

We modified the algorithm such that these hits contribute to x alignment but not y alignment (we set $1/\sigma_{r_y}^2 = 0$)

Demonstration of muon alignment!

Demonstration of muon alignment!

Alignment output, starting from...

Alignment Uncertainties

- Derive purely from residual uncertainties
- ▶ Too small to account for RMS of chamber corrections

Monitoring Alignment for Quality Control

- ▶ Need to produce constants *and* confidence that they are correct, on a regular basis
- ▶ Include all helpful plots in the HIP alignment package
- Present the most useful for routine monitoring
- ▶ HIP can diagnose and validate MillePede and Kalman

Monitoring: Trends in Residual Profiles

Monitoring: Convergence

► Corrections should get smaller with every iteration

Local |x| alignment corrections at each iteration (log-x)

▶ Unknown problem with some chambers in iteration 3...

Monitoring: Coverage

- ► Keep track of which chambers see no/too few hits
- \triangleright Versus η and ϕ

W and Z data needed at 14 TeV

First projection using a complete alignment simulation!

Conservative: muon chambers excluded from track-fit

Schedule (copied from CMS Week talk)

Deadline	Task
1 Jan, 2007	Finish integrating muon chambers into alignment framework
1 Mar, 2008	Transition CSA06Alignment to HIPAlignment and develop low-level diagnostics suite
1 Apr	Prototype and study realistic alignment procedure, assuming a source of muons
1 May	Evaluate possible sources ($W \to \mu \nu, Z \to \mu \mu,$ cosmics, or good muon) and finalize routine
1 Jun	Document everything

21/23

Relationship with hardware alignment

▶ Limitations of track-based alignment for 2007 data (0.9 TeV, low lumi) are still unknown

Relationship with hardware alignment

- ▶ Limitations of track-based alignment for 2007 data (0.9 TeV, low lumi) are still unknown
- ▶ Hardware alignment is sensitive to shorter time intervals

Alignment system can resolve edges of natural alignment datasets

Relationship with hardware alignment

- ▶ Limitations of track-based alignment for 2007 data (0.9 TeV, low lumi) are still unknown
- ▶ Hardware alignment is sensitive to shorter time intervals

Alignment system can resolve edges of natural alignment datasets

- ► Error ellipses are not collinear
- ▶ Different systematic uncertainties

weighted mean