Report No. cg-D-19-90

AD-A231 004

SIDE-BY-SIDE SEAKFEPING AND POWER PLANT **COMPARISONS OF THE SURFACE EFFECT SHIPS (SES) USCGC SEA HAWK AND USN SES-200**

Thomas Coe

U.S. Coast Guard Research and Development Center **Avery Point** Groton, CT 06340-6096

FINAL REPORT JUNE 1990

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for:

U.S. Department Of Transportation **United States Coast Guard** Office of Engineering, Logistics. and Development Washington, DC 20593-0001

91 1 10 00.

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research and Development Center, which is responsible for the facts and accuracy of data presented. This report does not constitute a standard, specification, or regulation.

SAMUEL F. POWEL, III

Technical Director

U.S. Coast Guard Research and Development Center Avery Point, Groton, Connecticut 06340-6096

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
CG-D-19-90		
4. Title and Subtitle Side-by-Side Seakeepi	5. Report Date June 1990	
Comparisons of the St (SES) USCGC SEA HAWK		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Thomas Coe		R&DC 06/90
9. Performing Organization Name and A		10. Work Unit No. (TRAIS)
United States Coast G		
Research and Development Center Avery Point		11. Contract or Grant No.
Groton, CT 06340-6096		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Addre	, and a support and a single consider	
Department of Transpo	Final	
U.S. Coast Guard		114 - Canada - Anna - Ca
Office of Engineering	t, Logistics and ston, D.C. 20593-0001	14. Sponsoring Agency Code
Development, washing	COM, D.C. 20000	

15. Supplementary Notes

16. Abstract

The performance characteristics of the U.S. Coast Guard 110' Surface Effect Ship (SES) CGC SEA HAWK and 160' U.S. Navy SES-200 are documented and compared. Engine performance in calm water and side-by-side rough water seakeeping performance tests were conducted in the Atlantic Ocean south of Key West, Florida. The SES-200 ride control system was evaluated in the seaway. The NASA Ride Quality Meter and Bruel and Kjaer Human Response Vibration Meter are compared and were utilized to document the discomfort level and human fatigue on board the SEA HAWK.

SES, SES-200	Seakeeping USCGC SEA HAWK Ride Control System	public thro	available to a sugh the Nation S	ional
19. Security Classif. (of this report) Unclassified	20. SECURITY CLAS Unclassi		21. No. of Pages	22. Price

METRIC CONVERSION FACTORS

When You Know					22				
	Multiply By	To Find	Symbol ®		Symbol	When You Know	Multiply By	To Find	Symbol
1	LENGTH		,		z e	LENGTH	GTH		
inches	* 2.5	centimeters	ES		E E	millimeters	0.04	inches	ē
feet	30	centimeters	Cm	 	e ca	centimeters	4.0	inches	≘
yards	6.0	meters	Ε	 '		meters	က • က •	feet	= '
miles	1.6	kilometers	km '		٤ غ د ا	merers	- 6	yards	D.A.
	AREA		6		91	A3EA		504	•
square inches	6.5	square centimeter	ဌာ	- '1'	cm ²	square centimeters	0.16	square inches	· ·
square feet	60.0	square meters	m ²			square meters	1.2	square yards	, p.k
square yards	9.0	square meters	m ²	ur H	t km²	square kilometers	0.4	square miles	Ē
square miles	5.6	square kilometers			B B	hectares(10,000 m^2)	2.5	acres	
acres	4.0	hectares	ha		:1	(THOISH) SS W	WEIGHT)		
MA	MASS (WEIGHT)		'		15	COVIN	9000	3000	•
ounces	28	orams	c	.2018 '11'	5 ¥	grams	2.2	oounds	Z - 2
spunoa	0.45	kilograms	4 , 0 X) _ 1	tonnes (1000 kg)	1.1	short tons	
short tons (2000 lb)	0.9	tonnes	· _		Or	•			
	VOLUME		•		6	VOLUME	JME		
teaspoons	5	milliliters	3 E	 	E 1	milititers	0.03	fluid ounces	fl 02
tablespoons	15	milliliters	E		-	liters	0.125	cnps	၁
fluid ounces	30	milliliters	Ē	 - 	- 4	liters	. 2.1	pints	ρţ
cnbs	0.24	liters	-			liters	90''	quarts	ţ
pints	0.47	liters	_		_ 9	liters	0.26	gallons	; · · 6
quarts	96.0	liters	2	; 		cubic meters	35	cubic feet	- =
gallons	3.8	liters	- '		S E	cubic meters	1.3	cubic yards	, px
cubic feet	0.03	cubic meters	E		1				
cubic yards	0.76	cubic meters	ິເຣ	- - - - - - - -	7	TEMPERATURE (EXACT)	JRE (EXACT)		
TEMPER	TEMPERATURE (EXACT)	XACT)	1		္ခင	Celsius	9/5 (then	Fahrenheit	iT.
Fahrenheit 5 temperature si	5/9 (after subtracting	Cetsius temperature	inc		5	temperature	add 32)	temperature	
3	(2)		:he		ί u	40°F 0 32	98.6	212-F	

Table of Contents

	<u>Page</u>
INTRODUCTION	1
BACKGROUND AND DESCRIPTIONS	1
TESTS AND DATA COLLECTION	3
Tests	7
Data Collection	7
Engine Performance	7
Hors power	10
Fuel Consumption/Range	13
Noise Levels	15
Tactical Data (USCGC SEA HAWK)	19
Side-by-Side Seakeeping	22
USCGC SEA HAWK Ride Quality Evaluation	31
ISO Fatigue Standard	33
NASA Discomfort Standard	37
SES-200 Ride Control System Evaluation	40
SUMMARY	48
UPDATE	51
RECOMMENDATIONS	58
ACKNOWLEDGEMENTS	59
REFERENCES	R-1
APPENDIX A - DESCRIPTION OF INSTRUMENTATION	A-1
APPENDIX B - TABULATED DATA	B-1
APPENDIX C - NASA RIDE QUALITY MEASUREMENTS ON BOARD COAST GUARD VESSEL SEA HAWK	C-1
Accession For	.
NTIS GRA&I	
DTIC TAB	
Unannounced Justification	
By	
Availability Codes	
Avail and/or	
Dist Special	

List of Illustrations

Figure		Page
1	SES Plan and Profile Views	6
2	Block Diagram of Data Acquisition Systems on Both Vessels	9
3	Propulsion System with Torque and RPM Measurement Instrumentation	11
4	Comparison of Shaft Horsepower	12
5	Total Fuel Consumption vs Speed	14
6	Range vs Speed	16
7	Endurance vs Speed	17
8	Fuel Efficiency vs Speed	<u>1</u> 8
9	Sound Level Exposure Limits for Selected Compartments.	20
10	Typical Turning Path Plot of CGC SEA HAWK	2_
11	CGC SEA HAWK Sensor Locations	24
12	USN SES-200 Sensor Locations	25
13	Polar Plot Comparison of Roll Angle in 4 Ft. Seas, 31 January 1985	27
14	Polar Plot Comparison of Pitch Angle in 4 Ft. Seas, 31 January 1985	28
15	Polar Plot Comparison of Heave Acceleration in 4 Ft. Seas, 31 January 1985	29
16	Bridge and CG Accelerations Compared in 3.4 Ft. Head Seas, 2 February 1985	32
17	Vertical "Longitudinal" Acceleration Limits as a Function of Frequency and Exposure Time	34
18	SES-200 RCS Effect on Heave Spectrum at cg in 3.9 Ft. Seas	45
19	SES-200 RCS Effect on Heave Spectrum at Bridge in 3.9 Ft. Seas	4 6
20	SES-200 RCS Effect on Heave Spectrum at Bridge in 6.4 Ft. Seas	47

	<pre>List of Illustrations (Cont'd.)</pre>	
Figure		Page
21	Exposure Limits RCS ON vs RCS OFF	53
22	Vertical Heave, RCS ON	54
B-XIX	Wave PSD Plot, 4.4 Ft. Seas, 27 January 1985	B-19
B-XX	3-D Directional Wave Plot, 4.4 Ft. Seas, 27 January 1985	B-20
B-XXI	Wave PSD Plot, 2.2 Ft. Seas, 28 January 1985	B-21
B-XXII	3-D Directional Wave Plot, 2.2 Ft. Seas, 28 January 1985	B-22
B-XXIII	Wave PSD Plot, 4.0 Ft. Seas, 31 January 1985	B-23
B-XXIV	3-D Directional Wave Plot, 4.0 Ft. Seas, 31 January 1985	₿ - 24
B-XXV	Wave PSD Plot, 6.4 Ft. Seas, 31 January 1985	B-25
B-XXVI	3-D Directional Wave Plot, 6.4 Ft. Seas, 31 January 1985	B-26
B-XXVII	Wave PSD Plot, 3.9 Ft. Seas, 2 February 1985	B-27
B-XXVIII	3-D Directional Wave Plot, 3.9 Ft. Seas, 2 February 1985	B-28

B-28

List of Tables

Table		Page
I	Comparison of USCGC SEA HAWK (WSES-2) and USN SES-200 Principal Characteristics	4-5
II	Tests Conducted	8
III	Summary of Human Response Vibration Meter Measurements on the CGC SEA HAWK Starboard Berthing Area	36
IV	RCS Effectiveness on the SES-200	43
v	RCS Heave Reduction	52
VI	USCGC SEA HAWK Seakeeping Data, 3 Ft. Seas	55
VII	USCGC SEA HAWK Seakeeping Data, 6 Ft. Seas	57
B-I	USCGC SEA HAWK Speed Power	B-1
B-II	SES-200 Speed Power	B-2
B-III	USCGC SEA HAWK Fuel Consumption With Two Lift Engines	B-3
B-IV	SES-200 Fuel Consumption With Four Lift Engines.	B-4
B-V	USCGC SEA HAWK Range and Fuel Efficiency Data	B-5
B-VI	SES-200 Range and Fuel Efficiency Data	B-6
B-VII	Noise Levels USCGC SEA HAWK (WSES-2)	B-7
B-VIII	Noise Levels USN SES-200	B-8
B-IX	USCGC SEA HAWK (WSES-2) Tactical Data	B-9
B-X	USN SES-200 Tactical Data	B-10
B-XI	USCGC SEA HAWK Seakeeping, 3.5-4.4 Ft. Significant Seas, 27 January 1985	B-11
B-XII	SES-200 Seakeeping, 3.5-4.4 Ft. Significant Seas, 27 January 1985	
B-XIII	USCGC SEA HAWK and SES-200 Seakeeping, 2.2 Ft. Significant Head Seas, 28 January 1985	B-13
B-XIV	USCGC SEA HAWK Seakeeping, 4.0 Ft. Significant Seas, 31 January 1985	B-14

List of Tables (Cont'd.)

<u>Table</u>		Page
B-XV	SES-200 Seakeeping, 4.0 Ft. Significant Seas, 31 January 1985	B-15
B-XVI	USCGC SEA HAWK and SES-200 Seakeeping, 6.4 Ft. Significant Seas, 31 January 1985	B-16
B-XVII	USCGC SEA HAWK Seakeeping, 3.4-3.9 Ft. Significant Seas, 2 February 1985	B-17
B-XVIII	SES-200 Seakeeping, 3.4-3.9 Ft. Significant Seas, Seas, 2 February 1985	B-18

[BLANK]

INTRODUCTION

The U.S. Coast Guard Office of Research and Development is in the process of evaluating advanced surface craft concepts well as documenting the performance of present cutters support the vessel aquisition process. The Coast Guard Research and Development Center has been directed under the Advanced Marine Vehicle (AMV) Project's 9207.2 Ship Test and Evaluation element to conduct simultaneous technical evaluations on two surface effect ships (SES). Side-by-side seakeeping and calm water power plant performance tests were conducted on the USN 160' SES-200 and USCG 110' CGC SEA HAWK (WSES-2) in the Atlantic Ocean south of Key West, Florida. An evaluation of the ride control system on the SES-200 was required to assess the utility of adding a similar system to a 110' Coast Guard SES in order to improve ride quality and reduce high frequency vertical accelerations which cause crew fatigue.

This data will be incorporated into the AMV data base to support the vessel evaluation and acquisition process. Performance information will also be utilized by headquarters personnel when evaluating proposed craft in the upcoming patrol boat and buoy tender replacement efforts. The Research and Development Center will also utilize the data as input for various operations analysis computer models which evaluate a vessel's ability to perform Coast Guard missions.

BACKGROUND AND DESCRIPTIONS

Surface Effect Ships (SES) are a catamaran-type hull which can operate at low speeds on its two side hulls like a displacement ship or cushionborne by pressurizing the region between the side hulls with air. When cushionborne the ship partially rides on its side hulls and on a drag-reducing cushion of air contained by the sidehulls and flexible bow and stern seals. When cruising on cushion the center portion of the hull is clear of

the water and supported by the air cushion and some reduced buoyancy from the side hulls. This configuration reduces the wetted surface area and thus decreases the resistance enabling higher speeds.

The air cushion exerts both a lift and a drag force on the hull as it moves over the water surface. The drag force, known as cushion wave making drag, represents a significant percentage of total SES resistance and hence, the required propeller thrust. Selection of cushion length-to-beam proportions is a fundamental part of SES design because the ratio of these dimensions determines the wave making resistance characteristics.

The Navy has been conducting research on the effect of length-to-beam proportions on SES performance, seakeeping and maneuvering since 1970. For ocean capable vessels, research showed that length-to-beam ratios of 4 to 1 or greater offer efficient operation at task force speeds without compromising the SES advantage of operating at significantly higher speeds. This balanced performance is attributable to shifting the peak of the high wave drag region known as "hump" to higher speeds outside the operating envelope. The name "High Length-to-Beam SES" has been given to these vessels to distinguish them from SES which had generation of Navy the previous length-to-beam ratios and has to be propelled through a high drag speed regime in order to attain efficient cruise speeds. The three 110' Coast Guard SES's are classified as length-to-beam ratio vessels with a ratio of 2.65.

To validate high length-to-beam research, the Navy procured a 110' commercial Bell Halter, Inc. (BH) SES, the same class vessel the Coast Guard later purchased. After extensive testing, the Navy increased its length-to-beam ratio from 2.65 to 4.25 by installing a 50' hull extension amidships. This vessel is the SES-200.

The Coast Guard tested the Navy 110' SES in 1981 before it was extended to 160' (Reference 1). Subsequently, three 110' Bell Halter, Inc. SES's were purchased by the Coast Guard and placed into service in the newly formed SES Division out of Key West, Florida. These vessels have the same main engines as the SES-200 and a low cushion length-to-beam ratio of 2.65 compared to 4.25 of the SES-200. The CGC SEA HAWK must be propelled through hump (22 knots) in order to reach design speed of 28 knots while the SES-200 operates below the high wave drag hump speed which is in the 30+ knot range. The SES-200 has four lift engines, and the SEA HAWK has two of the same make and horsepower. Of the four fans driven by the lift engines on the SES-200, two are identical to the two centrifugal fans installed on the SEA HAWK.

Powering and seakeeping performances of the SES-200 and CGC SEA HAWK can be easily compared because they have identical power plants, seal systems, and midship section hull shapes. The propellers are slightly different. The moior differences are the length-to-beam ratios, displacement, range and lift engine configuration where the SES-200 has two more lift engines which were added to support a larger cushion volume and displacement. A comparison of the principal characteristics and plan and profile views of the CGC SEA HAWK and SES-200 are presented in Table I and Figure 1.

TESTS AND DATA COLLECTION

The objective of this side-by-side technical evaluation was to quantify and compare the calm water power plant and rough water seakeeping performance of the two vessels. An evaluation of the USN SES-200 ride control system (RCS) was also conducted during all seakeeping tests. A similar RCS is being considered for installation on one of the Coast Guard SES's. Human response to ship motions were studied mainly on the CGC SEA HAWK.

TABLE I

COMPARISON OF USCGC SEA HAWK (WSES-2) AND USN SES-200 PRINCIPAL CHARACTERISTICS

LIST OF PARTICULARS

Туре	CGC SEA HAWK	USN SES-200
Length, Overall	109 ft. 3/4 in.	159 ft. 1 in.
Beam, Overall	39 ft. 0 in.	Same
Length, Cushion	83 ft. 2-1/2 in.	133 ft. 4 in.
Beam, Cushion	31 ft. 9-1.2 in.	Same
Cushion Length/Beam Ratio	2.65	4.25
Cushion Area	2644 ft. ²	4236 ft. ²
Max. Draft, On Cushion 3.5 Deg. Bow-up Trim	5 ft. 6 in.	Same
Max. Draft, Off Cushion Max., O Deg. Trim	9 ft. 3 in.	Same
Displacement, Light	130 long tons	150 long tons
Displacement, Max.	150 long tons	205 long tons
Fuel Capacity (100%)	23.8 long tons (7342 gal.)	59.6 long tons (18,389 gal.)
Design Speed, On Cushion	30 knots, sea state 0 25 knots, sea state 3	Same
Design Range, On Cushion	1100 nm in sea state 3	2200 nm in sea state 3
Hull Construction	Welded Aluminum (5086)	Same
Crew	18 (2 officers, 1 chief petty officer, 15 enlisted)	Same
Main Engines	Two Detroit Diesel 16V-149TI 1600 shp at 1900 rpm	Same

TABLE I (continued)

LIST OF PARTICULARS

<u>Type</u>	CGC SEA HAWK	USN SES-200
Reduction Gears	Two ZF Model BW455, 2:1 ratio	Same
Propellers	Two Three-bladed 42" dia by 49" pitch	Two three-bladed 40" dia by 48" pitch
Lift Engines	Two GM 8V-92 diesel 350 shp at 2100 rpm	Four (Same)
Lift Fans	Two Bell 40" dia centrifugal fans	Two (Same) Two Neu LILLE FRANCE rotating diffuser fans
Bow Seals	Two-dimensional elastomer- coated fingers (8 total)	Same
Stern Seals	Three lobe elastomer- coated bag	Same
Steering	Twin rudder, differential thrust and reverse with propellers	Same

FIGURE 1. SES PLAN AND PROFILE VIEW

SES-200

Tests

Tests defined herein are referenced by number relating to the USCG Research and Development Center's "General Test Plan for Marine Vehicle Testing (GTP)". Table II is a list of all tests conducted during the technical evaluation. Details of the test procedures can be seen in the GTP (Reference 2).

Data Collection

Data was collected utilizing identical sensors and data Oacquisition systems on both vessels. A computerized data acquisition system with analog tape recorder backup was used to collect ship motion, cushion pressure, shaft rpm, torque and Sound level readings and in-line fuel horsepower information. flow measurements were recorded by hand. Human responses to ship motion were measured two ways each with self-recording and documenting capability. Two engineers from the National Aeronautics and Space Administration (NASA) conducted measurements on the SEA HAWK using their ride quality meter. second method utilized International Standard Organization (ISO) vertical acceleration standards. A directional wave buoy was deployed from the SEA HAWK before and after seakeeping tests. It transmitted wave height and buoy tilt North-South and East-West to the receiver on the vessel. On board SEA HAWK, a microcomputer analyzed the buoy data for significant wave height directionality and frequency components of the wave field. directional information assisted the test directors in choosing the desired headings during seakeeping runs. Figure 2 presents the data acquisition equipment systems used on both vessels. Test equipment specifications are listed in Appendix A.

Engine Performance

Main engines and lift engines were outfitted with in-line fuel flow meters. Flow into and return flow from the diesels

TABLE II

TESTS CONDUCTED

GTP Test No.Description

- 1 Principal Characteristics
- 13* Side-by-side motions in waves and in calm water. Wave heights 3-6 feet at the maximum sustained speed of the slowest vessel approximately 23 knots. These tests were conducted with and without the ride control system activated on the SES-200. Vertical accelerations on the bridge, Center of Gravity (cg), berthing area and mess deck on both vessels were measured along with roll and pitch angles and rates.
 - 38 Cushion pressure (concurrent with ship motions runs).
 - 3 Speed vs Power in calm water.
 - 4 Fuel consumption and endurance in calm water.
- 37 Human fatigue response to ship motions. Two discomfort standards were utilized and results compared using the NASA ride quality meter and the Bruel and Kjaer Human response meter on the CGC SEA HAWK.
 - Noise levels (concurrent with speed and power tests).
 - 7 Tactical Data (USCGC SEA HAWK only)
- * Tests conducted side-by-side

Figure 2. BLOCK DIAGRAM OF DATA ACQUISITION SYSTEMS ON BOTH VESSELS

were measured and recorded for each rpm level incrementally increased during the power plant testing. Shaft torque was measured with strain gauges epoxied to both main shafts at the closest possible point to hull penetration as seen in Figure 3. The Acurex system transmitted the torque signals from the shaft to the antenna surrounding the shaft using FM telemetry and processed the signals along with shaft rpm transducer outputs to compute shaft horsepower. The system is calibrated utilizing a shunt resistor simulating a known strain level across the strain gauge bridge. Speed/power/fuel consumption tests were conducted independently on both vessels in calm water. The horsepower (HP) meters were transferred to the SEA HAWK after the SES-200 was tested since only two HP meters were available for testing.

Horsepower

Both ships were at displacements considered medium to heavy range during speed/power/fuel consumption tests. Shaft horsepower tests verified that the SES-200 is operating below primary hump speed as expected. The SEA HAWK, which is designed to operate above hump speed at speeds greater than 22 knots, was not able to exceed this speed. This has been a problem with the three Coast Guard SES's which have been loaded down by additional weight since their commissioning. structural equipment and Although the 16V Detroit Diesels on both vessels are identical, the SES-200 was able to extract more horsepower from them than the SEA HAWK as seen in Figure 4 and Tables B-I and B-II. attributed different to slightly propellers hull/cushion resistance characteristics. The CGC SEA HAWK has never attained more than 1300 shaft hp at 1617 rpm during this and one previous evaluation on engines rated at 1600 shp at 1900 Recently after this evaluation, the engines were modified on all three Coast Guard SES's to obtain an additional 200 shp each. The SES's can now routinely attain speeds of 26-30 knots.

Figure 3. PROPULSION SYSTEM (Port & Starboard) WITH TORQUE & RPM MEASUREMENT INSTRUMENTATION

SES 200 VS CGC SEA HAWK

Figure 4. COMPARISON OF SHAFT HORSEPOWER

Sidehull, rudder and seal drag on a SES typically increases linearly with speed while cushion wave drag has one small secondary hump and one large primary hump at a higher speed. The secondary hump speed is seen in Figure 4 at 8-10 knots for both vessels. The crest of the primary drag hump for the SEA HAWK is seen at 18-22 knots.

During the two week test period, the SES-200 was able to go approximately two knots faster than the SEA HAWK, while 50 foot longer and 46 long tons heavier, for one main reason. The SES-200 does not have to transit primary hump speed as the SEA HAWK must at 22 knots, because its high cushion length to beam ratio of 4.25 causes that hump to exist a speed above its design speed (30+ knots). The geometry of the hull being 50 feet longer allows it to plane out at approximately 1.5 degrees up by the bow while the SEA HAWK planes at 3.5 degrees trim up. This lower planing attitude may enable the propellers to be more efficient in developing usable thrust on the SES-200.

Care should be taken to ballast the vessels properly to adjust the longitudinal center of gravity to obtain optimum trim operation. The 110' surface effect ship operator's manual states: "For best performance and most comfortable ride, the vessel should be loaded to place the longitudinal center of gravity (cg) approximately 1.5 feet aft of amidships, and the lateral cg on the centerline. This cg location will result in a trim of 3 to 4 degrees bow up deck angle at cruise and zero heel." Trim adjustments are controlled by ballasting and can make the difference as to whether or not the vessel can transit and remain above hump speed (22 knots).

Fuel Consumption/Range

As seen in Figure 5, the SEA HAWK consumes less fuel than the SES-200 at low speeds; however, above 18 knots the SES-200 consumes less fuel. This relates to the hump drag speed which

USCGC SEA HAWK WSES-2 / US NAVY SES-200

Figure 5. TOTAL FUEL CONSUMPTION vs SPEED

the SEA HAWK must overcome in the 18-22 knot range in order to get to the most economical operating speeds in the 23-28 knot range. The SES-200 always operates at speeds below primary hump speed which exists in the 30+ knot range.

When the Navy 110' SES-160 was stretched 50 feet and became the SES-200, it was modified to carry an additional 11,000 gallons, 60% more fuel. This extra fuel capacity along with the fuel efficiency gained due to reduced wave drag when the vessel was lengthened provides the SES-200 with far superior range and endurance over that of the CGC SEA HAWK as seen in Figures 6 and 7. This change also improved the ride quality and is discussed in detail in the Side-by-Side Seakeeping section.

Fuel efficiency is defined here as the number of gallons consumed per nautical mile traveled (gal/nm). Both SES's tested exhibited small changes in fuel efficiency over their entire speed range compared to conventional displacement hulls which dramatically lose efficiency at high speeds. It is clear that SES's should be operated at top speeds since there is not a significant fuel efficiency advantage to run at moderate or slow speeds. At speeds above 18 knots, the SES-200 is more fuel efficient than the SEA HAWK, as seen in Figure 8. Fuel consumption, range, and fuel efficiency data tables for the SEA HAWK and SES-200 are presented in Appendix B, Tables B-III through B-VI, respectively.

Noise Levels

A sound survey was conducted on both vessels during the speed/power runs in calm water. Both vessels exceed OSHA standards in all engine room and some living compartments at high speeds. It may be prudent to have personnel sleeping in after berthing compartments on the SEA HAWK wear some type of ear protection during high speed transits. Additional sound proofing of the bulkhead between the engine room and the berth-

USCGC SEA HAWK WSES-2 / US NAVY SES-200

Figure 6. RANGE vs SPEED

USCGC SEA HAWK WSES-2 / US NAVY SES-200

Figure 7. ENDURANCE vs SPEED

USCGC SEA HAWK WSES-2 / US NAVY SES-200

Figure 8. FUEL EFFICIENCY vs SPEED

ing area would improve the situation. Noise levels for both vessels in selected compartments are plotted along the OSHA standard 29 CFR 1910 noise endurance curve in Figure 9. More data is presented in Appendix B, Tables B-VII and B-VIII.

Tactical Data

Constant power rudder turns were performed on the CGC SEA HAWK; however, the data was not collected on the SES-200 because it was already completed by previous Navy testing. The procedure followed was to set the engines on matched rpm levels to attain the desired speed. All tests were done on cushion. They were started on a straight base course and the helm was shifted to the desired rudder angle of 10, 20 or 30 degrees and maintained throughout a 360 degree turn.

A RAYNAV 750 Loran receiver was utilized to determine ship's position. A computer program collected data on the ship's position every four seconds and plotted the turns on the computer terminal screen. The computer operator marked when the rudder was shifted and at the 90 degree and 360 degree course changes.

The SEA HAWK, like any SES, tends to side slip more than conventional displacement crafts in high speed turns. For that reason, additional data is presented to document this. The traditionally defined advance and transfer of the vessel at the standard 90 degree yaw angle (course heading) change is presented along with the "Maximum" path advance and transfer distances measured to the point where the path of the ship reaches a 90 degree change from base course. This is defined in a typical turning path plot, Figure 10. CGC SEA HAWK tactical data is presented in Table B-IX. The SES-200 tactical data extracted from Reference 3 is presented in Table B-X.

At 20 knots the SEA HAWK has much smaller tactical diame-

FIGURE 10. TYPICAL TURNING PATH PLOT OF CGC SEA HAWK

eters than the SES-200. At 30 degrees rudder, SEA HAWK tactical diameters are approximately 50% smaller, while at 10 degrees rudder, the SEA HAWK has tactical diameters 70% smaller than those of the SES-200.

Side-by-Side Seakeeping

SES-200 USN The USCGC SEA HAWK and were side-by-side during four seakeeping test days. Identical sensor packages and data acquisition systems were used on both vessels. An Endeco directional wave buoy was deployed by the SEA HAWK before and after each test period in order to define the wave environment. The objective of these tests were to compare the of seakeeping characteristics both vessels proceeding the same cruise in five different side-by-side at speed orientations to the major swell direction; head, bow quarter, beam, stern quarter, and following seas. All seakeeping data is presented in Appendix B, Tables B-XI to B-XVIII. Directional 3-D wave energy and wave power spectral density (PSD) plots for each seakeeping test are presented in Figures B-XIX to B-XXVIII.

The vessels proceeded side-by-side, 100 to 400 yards apart, at the fastest speed attainable by both vessels (approximately 20 knots). Data was collected for 20 to 30 minutes during each of the five seakeeping legs. The SES-200 ride control system (RCS) was evaluated during these seakeeping runs by operating with the system off for half of each leg of the course, then on. Although data tables and graphs are presented here for both ride conditions (RCS on and off), the discussion of RCS effectiveness is presented in the section entitled "SES-200 Ride Control System Evaluation". The RCS effects are not addressed in this section so that there is a clear determination of the ride quality gained by the larger length, displacement, and cushion length-to-beam ratio of the SES-200 compared to the CGC SEA HAWK.

Sensors were placed on both vessels as indicated in Figures 11 and 12. The ship motion package on the SEA HAWK could not be placed at the center of gravity (cg) because its large cables could not be run through water-tight doors. It was placed ten feet forward of the cg. In order to compensate for this, a separate vertical accelerometer was placed at the cg. It is assumed that surge and sway accelerations measured in the motion package ten feet forward of the cg are not significantly different from those at the cg.

In addition to the motion package sensors, accelerometers were hard mounted vertically on the bridge, mess deck, berthing area, and at the center of gravity as previously mentioned. In this way, a comparison of motions at equivalent operational sites on the vessels could be made. Note that the bridge, mess deck, and berthing areas of the SES-200 are further away from the cg when compared to those spaces on the SEA HAWK (shown in Figures 11 and 12.) This is a result of the 50 foot section which was added to the SES-200 just forward of the original 110' configuration longitudinal center of gravity between frames 8 and 9.

There were some sensor malfunctions during the test period; however, none made a significant impact on the seakeeping data because redundant vertical accelerometers were utilized, as well as a replacement ship roll angle gyro. Two vertical accelerometers, located on the mess deck and berthing area on the SES-200, did not operate properly. Since accelerometers at the bridge functioned well and bracketed malfunctioning sensors located between them, there was significant loss of information. The roll angle sensor in the SEA HAWK motion package was discovered drifting excessively during the first test day underway. It was replaced by a backup motion package roll angle gyro.

The first test day underway, 27 January 1985, was utilized

FIGURE 11. CGC SEA HAWK SENSOR LOCATIONS

FIGURE 12. USN SES-200 SENSOR LOCATIONS

as a shake down seakeeping cruise to check out all sensors, data acquisition hardware and software. Although there were some equipment problems this first day out, in addition to a disrupted schedule because of a law enforcement case, some useful data was collected at 18 knots in 3.5 to 4.4 foot significant waves. This seakeeping data is presented in tabular form in Appendix B, Tables B-XI and B-XII. Wave PSD and direction data collected is presented in Figures B-XIX and B-XX for 4.4 foot unidirectional seas.

The second seakeeping test day was conducted in relatively calm water. For this reason, only head seas runs were conducted on 28 January in 4 second period, 2.2 foot significant waves. Seakeeping data for both vessels is presented in Table B-XIII. Vertical accelerations at the cg on the SES-200 are substantially less than compared to the SEA HAWK, even though the seas were relatively calm. Wave PSD and direction plots are presented in Figures B-XXI and B-XXII.

Seakeeping runs were conducted at 20 knots, in five directions relative to the major swells, in 4.0 foot significant seas on the morning of 31 January 1985. Results are presented in Table B-XIV and Table B-XV. Roll, pitch, and heave on the SES-200 were generally less than that on the SEA HAWK; however, there are some exceptions at certain headings. Polar plots are used to present a comparison of ride quality results relating to ship motions at various headings relative to major swells. Figures 13-15 graphically show the ship motion response to 4 foot seas of both vessels. Surge acceleration on the SES-200 was 4.5 to 5 times higher than that experienced on the SEA HAWK in bow quarter and head sea runs. This was not expected. It is unusual in ship tests to get higher surge accelerations than vertical accelerations at the cq. This was very often the case during the test period on the SES-200 in head and bow quarter seas runs. Test team members noted that surging motion often required them to hold on during seakeeping runs on the SES-200.

POLAR PLCT COMPARISON OF ROLL ANGLE IN 4 FT. SEAS, 31 JAN 1985 FIGURE 13.

POLAR PLOT COMPARISON OF PITCH ANGLE IN 4 FT. SEAS, 31 JAN 1985 FIGURE 14.

POLAR PLOT COMPARISON OF HEAVE ACCELERATION IN 4 FT. SEAS, 31 JAN 1985 FIGURE 15.

The RMS surge on the SEA HAWK was 11% of its heave in head seas, while surge was 127%, or 27% greater than the heave value on the SES-200 at its cg. Wave PSD and direction information is presented in Figures B-XXIII and B-XXIV. The seas were multi-directional as seen in Figure B-XXIV.

The sea state increased the afternoon of 31 January, and additional testing was completed in 6.4 foot significant unidirectional seas, Figures B-XXV and B-XXVI. The three dimensional directional wave data plotted in Figure B-XXVI shows the unidirectional characteristics and wave period content of the seas. Both vessels conducted head seas runs. The runs were conducted thirty minutes apart because of engineering problems on one vessel; however, they are compared since the sea state did not substantially change in that short period of time. The SES-200 continued to do additional seakeeping runs at other headings in order to evaluate the ride control system in heavy seas. All of the seakeeping data for both vessels is presented in Table B-XVI.

Vertical accelerations measured on the SEA HAWK increased substantially from the morning runs in 4 foot seas when compared to afternoon runs in 6.4 foot seas, while the SES-200's accelerations rose only slightly. During two head seas runs in 4 and 6.4 foot seas, vertical accelerations on the SES-200 increased 4% at the cg and 1% on the bridge, while vertical accelerations on the SEA HAWK increased by 27% at the cg and 15% on the bridge.

The last seakeeping test day was completed in 3.4 to 3.9 foot significant seas. The seakeeping data obtained in side-by-side tests conducted on 2 February 1985 are presented in Tables B-XVII and B-XVIII. Wave PSD and direction plots are presented in Figures B-XXVII and B-XXVIII for 3.9 foot seas. The same trend of vertical acceleration on the SES-200 being less than accelerations at corresponding locations on the SEA

HAWK continued; however, the difference between accelerations at the cg and bridge of those vessels is quite different. seas RMS heave accelerations on the SEA HAWK bridge are only 24% than those on the SES-200 with RCS off, accelerations at the SEA HAWK cg are 120% higher. This trend is consistent for all head and bow quarter seakeeping conducted and can be seen in Figure 16 for the 3.4 foot head seas run.

The bridge on the SES-200 is approximately 39 foot forward of the cg compared to 26 foot forward of the cg on the SEA HAWK. Vertical acceleration on the bridge is comparable to the whole body acceleration encountered at the cg plus the acceleration caused by the pitch action of the vessel which pivots close to the cg. The further forward from the cg you are, the more vertical acceleration is encountered. The vertical acceleration at all comparative selected sites is less on the SES-200 due to larger displacement and greater hull/water dampening than the SEA HAWK. The acceleration differences are not as great on the bridge as they are at the cg, because the bridge on the SES-200 is further forward of the cg than the relative bridge location on the SEA HAWK.

Cushion pressure was measured on both vessels. Nominal mean cushion pressure is 0.54 PSI on the SES-200 and 0.65 PSI on the SEA HAWK. Less pressure is required on the SES-200 for several reasons. Although the SES-200 is about 25% heavier, it has 37% more cushion area and also more buoyancy created by the additional 50 foot section of the two side hulls.

USCGC SEA HAWK Ride Quality Evaluation

Two methods were utilized to quantify the ride quality of the CGC SEA HAWK. A similar analysis of the SES-200 was not conducted because it is not an operational cutter in Coast Guard service and duplicate equipment was not available. Ride quality

SPEED 20 KTS HIGHEST 1/3 HEAVE ACCELERATIONS 3.4 FT. SIGNIFICANT HEAD SEAS SES200 RCS ON SES 200 RCS OFF HEAVE H1/3 SINGLE AMPLITUDE G'S SEA HAWK .15 .05 .45 .25 4. .35 ь. 7

BRIDGE AND CG ACCELERATIONS COMPARED IN 3.4 FT. HEAD SEAS, 2 FEB 1985 FIGURE 16.

BRIDGE

SENSOR LOCATION 02 FEBRUARY 1985

is very often a subjective evaluation; however, it is quantifiable when using a standard scale which evaluates how ship motions and noise levels affect comfort. The two methods utilized have quite different standards and data analysis Despite this difference, both methods obtained similar levels of discomfort aboard the SEA HAWK. standards utilized were the International Organization for 2631-178(E) and Standardization (ISO) No. the Administration Aeronautics and Space (NASA) algorithm, References 4 and 5 respectively. Both standards address the effect of high frequency vibrations above .5 Hz on subjects. This type of motion causes discomfort, and over a period of time, fatigue and decreased proficiency. The ride quality evaluation here does not address low frequency (.05 to .5 Hz) motions which typically cause motion sickness or seasickness. The SEA HAWK along with the SES-200 and other air cushion vehicles experience relatively high frequency (2 Hz) vertical accelerations which are related to air cushion dynamics. motions are not usually experienced on conventional displacement vessels below moderate speeds (25 knots).

ISO Fatique Standard

The ISO standard is based upon subjective tests of many subjects exposed to vertical accelerations at various frequencies while in the seated position. According to ISO, Reference 4, the four factors responsible for determining the human response to vibration are intensity, frequency, direction (vertical or horizontal), and duration (exposure time) of the vibration. The three quantifiable human responses to vibrations are the preservation of work efficiency, health or safety, and comfort.

The ISO fatigue-decreased proficiency boundary, Figure 17, specified a limit beyond which exposures to vibrations can be regarded as carrying a significant risk of impairing work effi-

FIGURE 17. VERTICAL "LONGITUDINAL" ACCELERATION LIMITS AS A FUNCTION OF FREQUENCY AND EXPOSURE TIME

(From Reference 4)

m/s2

ciency in many time-dependent tasks (such as watchstanding aboard ship). Although individuals may respond differently to vibrations, the fatigue limits showed the general level of onset of such degradation. The exposure limit for health or safety is similar to the fatigue decreased proficiency boundary but corresponds to acceleration levels two times (6 dB) higher. The exposure limit is defined as half the level considered to be the threshold of pain.

The Bruel and Kjaer (B&K) Human Response Vibration Meter Type 2512 was utilized to measure these fatigue limits using ISO weighting filters on the vertical acceleration signal. The unit displays the exposure limit, the equivalent continuous vibration level (Leq), and the maximum peak vibration level.

It is well known and documented that operation in increasingly higher sea states increases incidents of sea sickness caused by low frequency accelerations. This does not always hold true when evaluating human fatigue caused by high frequency vertical accelerations because short crested seas vessel's response to those wave encounters are the dominant Fourteen measurements were taken during three days in sea conditions ranging from 2 to 6.4 foot significant seas. During two of those days (30 and 31 January 1985), concurrent measurements were made by NASA personnel using their own ride quality meter. All measurements were made in the starboard berthing area adjacent to the mess deck on the SEA HAWK. B&K meter (ISO Standard) results are presented in Table III. Head sea runs in 4 to 5 foot seas are generally the most The wave period as well as height seems to have a fatiguing. dramatic effect on human fatigue on the SEA HAWK in head seas. Head seas runs on 31 January and 2 February in 4 foot seas resulted in quite different fatigue times in similar conditions. The time to reach 100% of the exposure limit was 4.5 hours on 2 February in 4.7 second period 3.9 foot waves, compared to 10.2 hours on 31 January in 6.2 second period 4 foot waves.

TABLE III

SUMMARY OF HUMAN RESPONSE VIBRATION METER* MEASUREMENTS ON CGC SEA HAWK STBD BERTHING AREA

MAXIMUM PEAK VERTICAL ACCELERATIONS (G's)	.265 .340 .367	.340 .330 .158 .158	2.30 0.36 1.70 1.1	.654
"Leg" AVERAGE WEIGHTED VERTICAL ACCELERATION (G's)	.031 .038 .051	.051 .051 .025 .024	.058 .046 .045	.043 6's
TIME TO REACH 100% EXPOSURE LIMIT (HRS)	25.0 15.5 9.0	10.2 10.2 20.7 28.7 31.2	4.5 12.5 5.6 25.0 20.7	16.1 HRS
TIME TO REACH 100% FATIGUE DECREASED PROFICIENCY LIMIT (HRS)	10.0 6.2 3.6	4.1 8.3 12.5 3.1	1.8 5.0 2.2 4.8 8.3	6.1 HRS
VESSEL HEADING	Various Various Various	Head Seas Bow Qtr. Beam Stern Qtr. Following	Head Bow Qtr. Beam Stern Qtr. Following	MEAN
WAVE PERIOD	3 sec.	6.2 sec.	4.7 sec.	
SIGNIFICANT SEAS (FT)	2.0 Chop 2.0 Chop 2.5 Chop	44444 0.00 % % 4	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	
SPEED (KTS)	222	222222	91 91 91 91	
DISPLACEMENT LONG TONS	143.5 (HEAVY)	138.6 (MEDIUM)	143.8 (HEAVY)	
DATE 1985	30 JAN	31 JAN	2 FEB	

Bruel & Kjaer Type 2512 Human Response Vibration Meter utilized, Whole Body 1-80 Hz range. Vertical accelerations were measured.

shorter period waves are causing larger heave accelerations at high frequencies because the encounter frequency in head seas is exciting the natural heave frequency of the vessel at 2 cycles per second. The head seas run in short crested 4 foot seas with a 4.7 second period was more fatiguing than the 6.4 foot head seas run in 6.2 second period waves. The time to reach 100% exposure limit in 6.4 foot seas was 7.7 hours compared to 4.5 hours in short crested 3.9 foot waves.

The mean time to reach 100% of the exposure limit for the three day testing was 16.1 hours. This is approximately the same level obtained in five previous test days conducted in 1983 and 1984 as documented in Reference 6. The mean time to reach 100% of the exposure limit was 15.1 hours during those previous tests conducted in 1-4 foot seas.

These ISO standards are time-dependent and relate mainly to fatigue caused by vertical accelerations. The NASA meter addresses a discomfort limit which is not time-dependent by using motions in five degrees of freedom as well as sound level effects.

NASA Discomfort Standard

The NASA Langley Research Center has developed a generalized ride comfort model for estimating passenger ride comfort in the presence of complex vehicle vibration and interior noise. As part of this research NASA has developed a portable, self-contained ride quality meter for use in obtaining real-time estimates of passenger ride comfort during actual vehicle operations. This meter is a direct hardware and software implementation of the generalized ride comfort model.

The NASA model was developed in a research program that obtained subjective ratings from more than 3000 persons who were exposed to controlled combinations of vehicle vibration and in-

terior noise using the NASA ride quality simulator. This research resulted in a model with the unique capability of transforming individual elements of the combined noise and vibration environment into subjective units and then summing the subjective units to produce a single discomfort index typifying passenger acceptance of the environment.

The ride quality meter contains a sensor package for simultaneously measuring five axes of vehicle vibration and a microphone for measuring interior vehicle noise. The vibration sensor package can be placed on the floor of a vehicle at a location selected by the user. At the selected location it will measure vehicle vibration (acceleration) in the vertical. lateral, longitudinal, roll, and pitch axes. Similarly, the microphone can be placed at a user selected location. from the sensor package and microphone are fed to the ride quality meter which conditions and processes each one according to the NASA comfort algorithm. Meter output provides the user a number of options for use in assessing vehicle ride comfort as well as identifying particular contributing sources of passenger These options include: total overall discomfort, vibration component of total discomfort, noise component of due to individual axes of total discomfort, vibration. discomfort due to individual octave bands of noise, discomfort corrected for trip duration. These outputs are provided via an internal printer. The ride quality meter can be operated off of vehicle power when available or by use of rechargeable battery packs.

No other method is known to exist that can provide such detailed ride comfort information during actual vehicle operations. This meter provides the first known capability to directly sum the effects of noise and vibration into a single objective comfort index. The meter, in essence, acts as a reliable and accurate passenger jury.

Two NASA engineers from Langley Research Center, Hampton, VA conducted ride quality tests aboard the SEA HAWK on 30 and 31 January. Their findings were similar to the ISO method in that the ride of the SEA HAWK was above the discomfort level 53% of the time on 30 January in 2 foot chop and in the discomfort range 81% of the time on 31 January in 4 foot seas. The unique aspects of their results is that it identifies the primary factors contributing to that total discomfort index. considered uncomfortable if the total subjective discomfort level is above 2.5. The NASA algorithm was designed for comfort evaluations on vehicles and is valid for short term (less than two hour) rides. It is not intended to be a time-dependent measurement of fatigue effects which the ISO standards address. The NASA ride quality measurements on board the SEA HAWK are documented by the NASA preliminary information report (PIR) No. SD-5 attached as Appendix C to this report.

The NASA report identifies the major contributing factors to the discomfort index measured on the SEA HAWK. On both days, the highest discomfort levels were made during high speed runs while low measurements were obtained on "ride conditions" when the vessel was dead in the water. On 30 January in relatively low sea states (2 foot chop) the dominant contributor to vibration discomfort was roll axis vibration while vertical axis vibration generally was the second longest contributor followed by lateral accelerations.

During measurements in 4-6 foot seas taken on 31 January, the dominant contributor to vibration discomfort was vertical acceleration. Roll vibration discomfort varied slightly compared to 30 January tests while lateral vibration discomfort was similar both days. Sound levels contributed significantly to total discomfort on both test days. Noise contribution to total discomfort depends upon the level of ship vibration which is simultaneously present. To improve ride quality requires mea-

sures taken to control noise transmission into living spaces as well as reduction of ship vibration.

SES-200 Ride Control System Evaluation

The SES-200 ride control system (RCS) is a prototype unit built by Maritime Dynamics, Inc. for the Navy. The purpose of the RCS on the vessel is to modulate cushion airflow to smooth out cushion pressure and thus reduce vertical acceleration. system uses one to four pressure signals for control law feedback. A microprocessor manipulates the data using algorithm to output a single control signal to the four vent The four vent valves are located on the main deck centerline as seen in Figure 12. The effective open area of the four vent valves is 9 square feet each. A set of louvered valves allows the ship's air cushion to be vented vertically in order to minimize pressure changes caused by passing waves and cushion venting. This system is designed to attenuate high frequency whole body vibrations in the 1 to 4 Hz range which causes crew fatigue. The low frequency (.05 to .6 Hz) ship motions caused by encountering swells are not attenuated because the motion is related to hull interactions with the waves not air cushion dynamics. These low frequency motions which are not affected by the RCS typically cause seasickness.

The SES-200, as well as the 110' Coast Guard SES's, have a relatively high resonant or natural heave frequency approximately 2 Hz which is a major contributor to vertical accelerations in calm water to 4 foot seas. These high frequency heave motions are most pronounced in high speed runs in head and bow quarter seas. As demonstrated in Reference 6, this high frequency energy is most pronounced on a 110' Coast Guard SES at speeds above hump speed (22 knots). The SEA HAWK could not attain speeds above 22 knots during these tests. SES-200 was tested below its primary hump speed which exists in the 30+ knot range and could not attain speeds above 23 knots during these tests. With the higher length to beam ratio, the

SES-200 is not designed to operate above its hump speed.

When seas get larger, above 4 feet, and wave periods get longer, the wave encounter frequencies (.05 to .6 Hz) become the major contributor to vertical accelerations and thus the ride control system is less effective because it is not designed to control these low frequency ship motions. As sea states increase above five feet, waves start to slam the wet deck area of the hull. Voluntary speed reduction usually occurs when slamming starts.

In order to evaluate the RCS on the SES-200 during on-cushion operations, the system was turned on and then off for half of each 30 minute seakeeping leg conducted side-by-side the USCGC SEA HAWK on four separate days. Headings relative to the waves were varied from head to following seas in 45 degree increments. In addition to these side-by-side runs at different orientations to the major seas, one period of time on 31 January was devoted to the Navy for 12 independent runs to evaluate the RCS. The Coast Guard test team recorded and analyzed ship motions during all testing aboard the Navy SES-200.

Most of the seakeeping tests were conducted in sea state III (3.0 to 5.7 foot significant wave heights). One test set for the Navy was conducted in sea state IV with 6.4 foot significant waves. A calm water evaluation was also conducted for head seas runs only, in 2.2 foot waves. All seakeeping data collected is presented in Appendix B, Tables B-XI to B-VIII. The wave field directional data and PSD plots collected during seakeeping tests are presented in Figures B-XIX to B-XXVIII.

Based on previous evaluations conducted by the Navy and the company which designed the RCS (Maritime Dynamics, Inc.) documented in Reference 3, we were anticipating a 30% attenuation of vertical accelerations at the center of gravity (cg) due to the RCS in sea state III tests. While proceeding at

18 to 20 knots, the RCS attenuated vertical accelerations at the cg to varying degrees over the four seakeeping test days. One day, 31 January, the RCS failed to attenuate accelerations in 4 foot and 6 foot head and bow quarter seas. On two other days the system attenuated vertical accelerations at the cg 36% on 27 February in 3.7 foot head seas and attenuated accelerations 20% on 2 February in 4 foot head seas. Occasionally, the RCS caused an amplification of vertical accelerations.

A summary of RCS performance is presented in Table IV. can be seen from this data table that the ride control system performed intermittently. The Coast Guard test team director noted that on 31 January a control card used in the RCS electronics package had malfunctioned and the Maritime Dynamics, representative made attempts to compensate component failure. The RCS did not attenuate acceleration that It was also noted that the partly opened (bias) setting of the vent valves was about 30% on the first test day (27 January) and each day thereafter the valves had decreased bias opening. During the last seakeeping day (2 February), the bias of the vent valves were closed except for venting actions. most effective when there is a significant bias open setting on This allows for control of the wet deck the vent valves. cushion pressure to reduce positive pressure spikes as well as reducing low pressure troughs. With no bias opening, the system can only control pressure in one direction (positive spikes).

The RCS is designed to attenuate relatively high frequency 1 to 4 Hz vertical accelerations of the ship by controlling air cushion pressure. It cannot affect low frequency .05 to .6 Hz motions caused by wave encounters on the hull. The RCS is thus most effective in low to moderate short crested seas (2 to 4 feet significant seas) where a good part of the energy contributing to vertical accelerations is at the natural heave frequency response of the vessel at 2 Hz. As the sea states increase above four feet, the major energy contributing to

TABLE IV

RCS EFFECTIVENESS ON THE SES-200

		ATT	ENUATION OF VER	TICAL ACCE	LERATIONS	
		CENTER	OF GRAVITY	BRI	DGE	
DATE 1985 (SPEED)	RELATIVE HEADING TO THE SEAS	ATTENU- ATION	REFERENCE H 1/3 ACCEL. RCS OFF (G's)	ATTENU- ATION	REFERENCE H 1/3 ACCEL. RCS OFF (G's)	SEA STATE/ WAVE HEIGHT
27 JAN (18kts)	HEAD BOW QTR. STERN QTR.	36% 7% 7%	.153 .061 .077	n/a n/a n/a	n/a n/a n/a	III 3.7 ft. significant waves
28 JAN (20 kts)	HEAD	-12%	.032	0	.461	II 2.2 Ft. significant waves
31 JAN 0900 (20kts)	HEAD BOW QTR. BEAM STERN QTR.	-2.5% -16% 37% 21%	.121 .119 .099 .046	1% 2% 1.5% 0.5%	.438 .446 .439 .437	III 4.0 ft. significant waves
31 JAN 1600 (20kts)	HEAD BOW QTR. BEAM STERN QTR. FOLLOWING	2% 0 38% 21% -134%	.116 .103 .118 .053 .036	0 0 -5% 0 0	.435 .434 .425 .437 .440	IV 6.4 ft. significant waves
2 FEB (20kts)	HEAD BOW QTR. BEAM STERN QTR. FOLLOWING	20% 16% 56% 2% -20	.09 .084 .071 .074 .024	17% 18% n/a 14% 16%	.391 .309 n/a .422 .242	III 3.9 ft. significant waves

 $^{\ \,}$ Attenuation indicates the amount accelerations were amplified when the RCS was turned on compared to levels with the RCS off.

n/a - Data Not Available

vertical accelerations is at the low frequency hull encounters with the swells. For this reason, the RCS is not effective in attenuating vertical accelerations in high sea states.

The effectiveness of the RCS and its limitations can be seen by looking at a vertical acceleration signal frequency domain. In this way, the heave power which is attenuated can be seen and evaluated. The most dramatic effect of heave power attenuation at the cg can be seen during a head seas run on 2 February at 19 knots in 3.9 foot seas, Figure 18. The majority of power attenuated is centered around 2 Hz, the natural heave frequency of the vessel. Note that there is some power attenuated as low as .5 Hz, however, no power attenuated in the wave encounter low frequencies centered around Heave power is larger on the bridge .25 Hz (4 second period). compared to the cq because of the additional acceleration caused by the pitch action of the vessel, Figure 19. The power centered at .25 Hz, the wave encounter frequency, has increased the most on the bridge compared to the 2 Hz power. still reduces the higher frequency heave power; however, there is a smaller percent reduction in total heave power on the This is because the low frequency motion which is not bridge. affected by the RCS is more pronounced due to pitch action experienced on the bridge centered at a pivot point close to the center of gravity.

During runs in 6.4 foot significant seas, the major power was at 0.3 Hz (3.3 second encounter period). There is little room for RCS effectiveness in this case, as seen in Figure 20. This is because very little heave power was present between 1 and 3 Hz to be attenuated by the RCS. This plot dramatically demonstrates that in rough seas (6.4 foot), the RCS is not effective on the SES-200.

Recent R&D Center tests conducted in February 1986 on the air cushion pressure and fan system of the CGC SHEARWATER

FIGURE 18. SES-200 RCS EFFECT ON HEAVE SPECTRUM AT CG IN 3.9 FT. SEAS

FIGURE 19. SES-200 RCS EFFECT ON HEAVE SPECTRUM AT BRIDGE IN 3.9 FT. SEAS

FIGURE 20. SES-200 RCS EFFECT ON HEAVE SPECTRUM AT BRIDGE IN 6.4 FT. SEAS

(WSES-3) show that air flow was lower than expected and cushion pressure control by lift engine rpm changes was marginal because the fans are operating in a stall region. Addition of an RCS will add a parallel flow out of the wet deck. Through control of the bias opening of the vent valves that parallel air flow may change the air system's resistance enough to get the fans operating in a stable region. This would improve the ride quality and possibly improve fan efficiency.

SUMMARY

The 160' U.S. Navy SES-200 has many advantages over the 110' U.S. Coast Guard SES. These SES-200 advantages all relate to the increased length, displacement and payload benefits when compared to the smaller CGC SEA HAWK. The SES-200 has lower wave making drag, better seakeeping and longer range, with essentially the same speed and fuel efficiency characteristics of the CGC SEA HAWK. The SES-200 has more than twice the range of the SEA HAWK. Despite a 25% larger displacement, the SES-200, with essentially the same power plant configuration, has slightly less fuel consumption than the SEA HAWK at 22 This seemingly contrary relationship is possible because the additional 50 foot length of the SES-200 reduces wave making drag of the vessel. Both vessels have fairly flat fuel efficiency curves which indicate that routine full operation is an effective operating profile for these surface effect ships.

The liabilities of the SES-200 are that turning diameters are twice as large as the SEA HAWK and thus has slower turning rates. The SES-200 has four lift engines and fans in order to maintain proper cushion pressure and air flow compared to two fans on the CGC SEA HAWK. Both vessels have marginal noise levels in living compartments at moderate and fast speeds.

The seakeeping characteristics of the SES-200 without ride

control are better than the SEA HAWK with the exception of surge acceleration. Surge accelerations on the SES-200 in head and bow quarter seas are of the same order of magnitude as the vertical accelerations at the cg. This translates to walking tasks being more difficult on the SES-200 compared to the SEA HAWK as reported by test team members. Surge acceleration on the SEA HAWK are one order of magnitude below its heave accelerations at its cg.

Roll and pitch amplitudes on both vessels are very low and are considered very good. Vertical accelerations at the cg of the SES-200 with the ride control system off are approximately 70% lower than those encountered on the SEA HAWK. That benefit, however, is mitigated to some extent on the bridge of the SES-200 because it is further forward of its cg compared to the bridge location on the SEA HAWK. Vertical accelerations on the SES-200 bridge is dropped down to approximately 33% below those experienced on the bridge of the SEA HAWK.

The ride control system on the SES-200 intermittently attenuated vertical accelerations during the two week test period. On one seakeeping day it did not function and it occasionally amplified accelerations. When it was operational it attenuated vertical accelerations 20 to 36% in sea state III (4 ft.) head seas at the cg and 17% on the bridge while proceeding at 20 knots. The ride control system (RCS) does not attenuate low frequency wave encounters and so it is not effective in sea states IV (6 ft.) and above where those low frequency motions dominate. The RCS reduces the high frequency (2 Hz) vertical accelerations which are responsible for fatigue effects on crew members. The RCS is most effective in head and bow guarter moderate seas of 2-4 feet in height.

Ride quality was evaluated on the SEA HAWK. According to ISO standards, high frequency vertical accelerations cause human fatigue and decreased proficiency within 16 hours underway

in sea state III (4 foot waves). The NASA ride quality meter substantiated the vertical accelerations are the major contributor to ride discomfort and that noise levels added to that discomfort level.

UPDATE

Many power plant performance improvements have been completed on the three Coast Guard SESs since these tests were completed on the USCGC SEA HAWK in February 1985. As of July 1987, all three 110' SEA BIRD class SESs were routinely attaining a design speed of 28 to 30 knots at full displacement in sea state 2, (Reference 7). Total fuel consumption (main engines, lift engines and generator) at this speed is 180 gallons per hour. This improved speed and fuel consumption performance is attributed to:

- a. decreasing propeller pitch from 49" to 46", now enabling the vessels to easily transit hump speed in higher sea states. The SEA HAWK engines were load limited by the 49" pitch propeller as tested in 1985 at 22 knots. The main engines are now RPM limited at 1900 RPM (voluntarily) at 30 knots.
- b. main engine modifications made in February 1986 to increase horsepower by 200 HP on each engine. Consistent top speed performance, however, was not obtained until propeller pitch was reduced.
- main engine intake fuel temperature being reduced from worse case conditions of 145 F to 95 F through installation of fuel coolers (heat exchangers). Exhaust system back pressure relieved when an original piping system problem discovered. Lift fan efficiency was improved replacement of smaller profile intake screens on the SEA HAWK only. Installation of turning vanes below the fans improved flow to ducts which supply air to the seals. Stern seals are now trimmed to fit each vessel to prevent material folding which allowed undesired pressure loss. Forced air ventilation to engine room was improved dropping air temperature by 30°F to an average of 105 F-110 F.

In September of 1988, the Coast Guard Research and Development Center tested the USCGC SEA HAWK (WSES-2) to analyze the Ride Control System (RCS) that was installed on the ship. The data were obtained in 3 foot and 6 foot significant seas during a normal patrol operation. The following information is provided as the RCS is reflective of an improvement of this class of vessels. It should be noted that only the USCGC SEA HAWK is currently configured with the RCS.

Tests indicate that there is little variation in roll and pitch either in "angle" or "rate" with the RCS on or off. There is, however, significant reduction in heave at the Center of Gravity (CG) and the Wheelhouse with the RCS on versus off. The difference is as shown in Table V, and Figures 21 and 22.

Analysis of the three foot seakeeping data show that normally there is an amplification of approximately 1.15 - 1.20 on vertical heave values between the CG and the Wheelhouse. This is true because the Wheelhouse is located approximately six feet forward of the CG sensing point. Visual observations of the USCGC SEA HAWK in motion indicate that the center of rotation is located 33 feet (10.1 meters) aft of the CG.

	Location	
<u>Seas</u>	CG	Wheelhouse
HEAD	-20%	-24%
BOW	-30%	-29%
BEAM	-35%	-30%
QTR	-26%	-20%
FOLLOWING	-16%	-15%

Table V: RCS Heave Reduction

Table VI shows the engineering data for the three wave height

FIGURE 21: EXPOSURE LIMITS RCS ON VS RCS OFF

FIGURE 22: VERTICAL HEAVE; RCS ON

Table VI. USCGC SEA HAWK Seakeeping Data (3 foot seas)

		Roll Armie	Colle	Pitch Angle	Sofe	Rolf	Rote	Pitch	Rate			¥	elerat	8,9) w			
Relative	Averaging	(848)	3	8	G) (deg	(388C)) (0 0 0)	(386)	Heave C	3r idge)	HERNE	Ê	Surge	(93)	- Ximis	ŝ
See Direction	ĝ.	9	8	9££	8	ij.	8	330	8	350	8	OFF	ð	Œ.	8	330	8
	1/10	0.896	0.894	0.418	0.462	1.385	1.257	1.011	1.058	0.290	0.235	0.276	0.227	0.030	0.028	0.027	0.030
	1/3	0.726	0.732	0.333	0.344	1.077	0.961	0.787	0.813	0.222	0.174	0.208	0.169	0.023	0.022	0.021	0.023
#EAD	RMS	0.512	0.522	0.241	0.246	0.732	0.640	0.551	0.573	0.155	0.121	0.146	0.118	0.016	0.016	0.015	0.016
	MEAN	0.453	0.472	0.221	0.220	0.620	0.534	0.486	0.503	0.135	0.103	0.125	0.102	0.014	0.014	0.014	0.015
	HIGH	1.178	1.208	0.633	0.819	2.014	1.878	1.942	2.055	0.513	0.462	0.503	0.361	0.045	0.045	0.042	0.081
	1/10	0.862	1.038	787.0	0.454	1.258	1.471	1.119	1.069	0.273	0.197	0.261	0.186	0.025	0.025	0.031	0.033
2	1/3	989.0	0.772	0.364	0.352	0.951	1.127	0.852	0.824	0.205	0.146	0.193	0.135	0.020	0.019	0.023	0.025
CHARTER	RMS	0.485	0.542	0.254	0.255	0.638	0.772	0.593	0.572	0.142	0.101	0.135	0.094	0.014	0.014	0.015	0.016
	MEAN	0.431	0.474	0.226	0.232	0.536	0.655	0.516	0.498	0.122	0.086	0.115	0.080	0.013	0.013	0.015	0.016
	HIGH	1.225	1.555	0.735	0.654	1.869	2.693	2.295	1.951	0.506	0.421	0.516	0.442	0.037	0.038	0.058	0.049
	1/10	3.776	3.719	0.815	0.688	5.140	4.952	1.403	1.232	0.202	0.140	0.206	0.133	0.027	0.027	0.042	0.040
	1/3	3.034	2.990	0.642	0.519	3.797	3.726	1.070	0.920	0.147	0.101	0.148	0.094	0.021	0.020	0.032	0.031
- EA	RMS	2.185	2.115	0.436	0.355	2.611	2.536	0.724	0.628	0.102	0.071	0.101	990.0	0.015	0.014	0.022	0.021
	MEAN	1.958	1.870	0.374	0.306	2.161	2.104	0.615	0.532	0.087	0.061	0.085	0.056	0.013	0.013	0.019	0.018
	HIGH	5.119	4.650	1.153	1.019	8.236	6.553	1.894	2.119	0.453	0.292	0.366	0.255	0.038	0.040	0.080	0.058
	1/10	1.891	1.659	0.940	0.833	1.731	1.549	1.334	1.304	0.138	0.110	0.117	0.089	0.028	0.027	0.032	0.029
STERN	1/3	1.496	1.275	0.738	0.670	1.310	1.153	0.965	0.932	0.107	0.083	0.00	0.067	0.022	0.027	0.024	0.022
LUARTER	RMS	1.029	0.875	0.516	0.461	0.870	0.764	0.652	0.631	0.074	0.059	0.064	0.047	0.015	0.015	0.017	0.016
	PEAN	0.891	0.752	0.452	0.402	0.706	0.621	0.542	0.542	0.065	0.051	0.056	0.042	0.014	0.013	0.015	0.014
	F1GH	2.615	2.142	1.270	1.268	2.447	2.450	5.405	2.117	0.219	0.214	0.218	0.168	0.075	0.048	0.050	0.045
	1/10	1.056	1.292	269.0	0.736	1.364	1.261	1.301	1.289	0.126	0.110	0.104	060.0	0.031	0.030	0.028	0.029
	1/3	0.839	1.009	0.561	0.576	1.056	0.971	0.975	996.0	0.096	0.082	0.080	0.067	0.024	0.023	0.022	0.022
OCLOW!#G	RMS	0.603	0.715	0.396	0.394	0.718	0.647	0.660	0.658	0.067	0.057	0.057	0.043	0.017	0.016	0.015	0.014
	MEAN	0.537	0.632	0.355	0.342	0.603	0.539	0.557	0.555	0.059	0.050	0.050	0.042	0.015	0.015	0.014	0.014
	нісн	1.774	1.915	0.956	1.009	2.107	1.856	2.056	2.117	0.251	0.1%	0.217	0.170	0.045	0.045	0.046	0.047

seakeeping test. The table shows the average of the largest H $^1/_{10}$, H $^1/_3$, RMS, mean and highest value recorded for all runs in head, bow quarter, beam, stern quarter and following seas.

Table VII shows the engineering data for the six foot seakeeping tests. Due to the heavy sea conditions, all runs were not completed as noted in the data tables. The seakeeping analysis shows that the six to seven foot (1.8 to 2.1 meter) significant wave height is the point at which the RCS stops being effective in reducing ship motion. At this point, the motion of the ship becomes great enough that the bow seals break contact with the water, causing the boat to lose cushion and slam down into the waves with personnel on board leaving their feet [8].

Table VII. USCGC SEA HAWK Seakeeping Data (6 foot seas)

See Direction Type DFF 1/10 8.774 1/3 6.351	8		•								X				
1/10 1/3		OFF	ð	#	3	9	8		3 8	150 150) 8		3 8	1 150	3 8
	ŧl	3.694	2.735	6.546	6.781	8.375	7.608	0.363	0.274	0.398	0.367	0.073	0.072	0.083	0.000
		2.776	1.837	4.470	5.345	6.085	5.773	0.246	0.183	0.282	0.245	0.053	0.056	0.059	0.064
		1.922	1.274	3.048	3.583	4.237	4.039	0.174	0.126	0.191	0.147	0.037	0.038	0.040	0.042
		1.673	1.036	2.453	2.993	3.494	3.432	0.134	0.098	0.153	0.134	0.031	0.033	0.032	0.034
·	8 10.280	4.384	3.999	10.093	7.989	18.422	11.581	0.433	0.735	0.891	0.585	0.153	0.093	0.206	0.118
T	ι	2.096	3.2%	5.337	5.248	8.285	ر. 00.5	0.326	0.303	0.425	0.447	0.068	0.071	0.063	690.0
		1.590	2.485	4.081	4.051	6.285	6.360	0.218	0.195	0.291	0.309	0.490	0.052	0.048	0.052
_		1.110	1.73.1	2.851	2.768	4.385	4.459	0.151	0.136	0.196	0.20	0.034	0.035	0.032	0.035
MEAN		0.960	1.503	2.457	2.343	3.726	3.804	0.119	0.102	0.154	0.159	0.028	0.030	0.027	0.029
	•	2.858	3.695	7.668		11.617	10.301	0.886	0.677	0.830	0.612	0.103	0.109	0.107	0.110
T	l	N.A.	4.963	Z. A.	-	N.A.	8.481	N.A.	0.259	N.A.	0.445	N.A.	0.082	N.A.	0.118
		K. A.	3.622	N. A.	_	N.A.	7.133	N.A.	0.173	N.A.	0.322	N.A.	0.039	¥. ¥.	0.083
		N.A.	2.528	N.A.		N.A.	5.125	Α.Α.	0.117	Α.Α.	0.214	×.	0.040	N.A.	0.054
MEAN		N. N.	2.167	Α.Α.	_	¥, X	7.607	¥. ¥.	0.089	X. Y.	0.171	X. X.	0.033	Α.Α.	0.042
_	•	N. A.	5.887	× ×	11.914	¥.A.	9.572	N.A.	0.582	A. A.	0.529	N. A.	0.136	Α.Α.	0.198
Г	l	1.832	1.643	7.914	8.625	2.497	3.354	0.048	0.122	0.194	0.220	0.048	0.043	0.087	0.095
1/3		1.404	1.407	6.911	6.783	1.876	2.608	0.036	0.087	0.130	0.160	0.036	0.032	0.063	0.072
		0.971	0.993	3.916	4.695	1.220	1.738	0.054	0.059	0.087	0.108	0.054	0.022	0.041	0.049
MEAN		0.833	0.854	3.141	4.021	0.955	1.401	0.000	0,000	0.069	0.087	0.020	0.019	0.032	0.041
Ť		2.631	1.875	. 280.01	1.766	11.766	5.121	90.0	0.255	0.419	0.390	0.066	0.054	0.013	0.132
T	Į.	N.A.	N.A.	N.A.	2.923	N.A.	2.934	 ¥. ¥.	0.114	N.A.	0.115	N.A.	0.053	N.A.	0.045
		Υ.	¥. ¥.	N. A.	2.177	N,A.	2.226	Α.Α.	0.086	N. N.	0.086	N. A.	0.036	N.A.	0.031
		N.A.	¥. ¥.	N. A.	1.462	Α.Α.	1.467	N.A.	0.059	A. A.	0.059	N. A.	0.026	N. A.	0.021
MEAN		N.A.	¥. ¥.	N. A.	1.182	K.A.	1.171	N.A.	0.051	N.A.	0.051	¥.	0.019	N. A.	0.018
	4.637	N. A.	N.A.	N.A.	4.292	Α.Α.	3.725	N.A.	0.223	N.A.	0.183	N.A.	0.080	N.A.	0.072

NOTE: N.A. = Not Available

RECOMMENDATIONS

Consideration should be given to reducing noise transmission from the engine room to the aft berthing compartment on the CGC SEA HAWK and the other two Coast Guard SESs. Presently, ISO duration time is exceeded after 13 hours exposure in aft berthing while proceeding at 20 knots. Although this is within acceptable limits, it is a marginal condition.

This technical evaluation and other tests conducted by the Coast Guard on the SES Sea Bird Class indicate that a ride control system is necessary in order to improve ride quality, reduce human fatigue and possibly extend the life of the hull and the lift system. Experience gained by retrofitting the Navy SES-200 and Coast Guard Cutter SEA HAWK with active ride control systems (RCS) demonstrate that it is difficult and expensive to accomplish after the ship is designed and built. Future procurements of SESs should include some form of an RCS as a standard design requirement.

The air cushion itself must be considered as an integral system of the ship rather than an isolated element in order to design, operate and maintain an efficient air cushion vehicle. exhibits a 2-3 Hz bounce caused by the compressibility and resiliency of the air cushion itself even in calm water operations. This cushion instability measured on the SEA HAWK varied from 72 to 128 PSF. The lift fans, ducting system, seals, RCS, cushion volume, required flow rate, and pressure must be properly matched as a system to insure stable, steady Once a stable cushion is obtained, state operation. immediate benefits are improved ride quality, less human fatigue, and a more efficient lift and propulsion system. The long-term benefits obtained by reducing high frequency whole ship oscillations are an extended hull life through reduction in hull cracking and reduced maintenance on fans and seals.

ACKNOWLEDGEMENTS

I wish to acknowledge the superior effort and thoroughness in which Mr. Robert Desruisseau reduced the vast majority of the seakeeping data presented in this report. Many data sets were evaluated twice to ensure data integrity. He performed valuable data editing and some plotting functions as well which enhanced the quality of this report.

Mr. James Bellemare did an outstanding job as test director of the SES-200. This effort involved a great deal of technical expertise and test team coordination between the two vessels, which Mr.Bellemare handled admirably well. He was very helpful in conducting a technical review of this report.

The cooperation of the U.S. Coast Guard SES Division, U.S. Navy, and the officers and crews of both vessels enabled this test series to be completed successfully one week earlier than planned.

REFERENCES

- 1. Goodwin, M.J., "Technical and Operational Evaluation of US CGC DORADO (WSES-1)", USCG Report No. CG-D-44-82, NTIS Accession No. AD-A121-314, (August 1982).
- Goodwin, M.J., "General Test Plan for Marine Vehicles", USCG Research and Development Center Internal Document.
- 3. Adams, John D. et. al., "SES-200 Technical Evaluation Test Report", USCG Report No. CG-D-1-85, NTIS Accession No. AD-A152-344, (January 1984).
- 4. International Organization for Standardization Guide For The Evaluation of Human Exposure to Whole-Body Vibration" Ref. No. ISO 2631-1978(E) (1978).
- 5. Leatherwood, Jack D., Barker, Linda K., "A User-Oriented and Computerized Model for Estimating Vehicle Ride Quality". NASA Technical Paper 2299, (1978).
- 6. Coe, Thomas J., "Seakeeping and Vibration Tests of the Coast Guard 110' Surface Effect Ship SEA BIRD Class (WSES)", USCG Report No. CG-D-32-84, NTIS Accession No. AD-A154150 (September 1984).
- 7. McCollum, Joe B., CWO3, SES Division Engineering Officer, Key West, FL, Personal Communication, July 1987.
- 8. Swensen, Eric E., "Human Factors Analysis of the USCGC SEA HAWK (WSES-2) Ride Control System", USCG R&DC Report No. 13/89, January 1990.

APPENDIX A DESCRIPTION OF INSTRUMENTATION

APPENDIX A

DESCRIPTION OF INSTRUMENTATION

EQUIPMENT

DESCRIPTION

SHIP MOTION PACKAGES (2) HUMPHREY, Inc.

This unit consists of a vertical gyro, a vertically stabilized three-axis accelerometer assembly, a directional gyroscope, a three-axis rate gyro assembly and all necessary power supplies and power switching relays. Nine outputs are available at + 1 or + 5 volts full scale with or without a 10 Hz low pass filter. Full-scale outputs can be varied as the table below indicates.

Pitch Angles
Roll Angles
Yaw Angles
Pitch and Roll Rate
Yaw Rate
Surge & Sway Acceleration
Heave Acceleration

+ 450, 250 or 100 + 450, 250 or 100

∓ 175Ó

- 60, 30 or 10 deg/sec 30, 10 or 5 deg/sec + 1.0 or 0.5 G's + 2.0 or 0.5 G's

STORE 14D ANALOG TAPE RECORDER Lockheed Electronics Company

This analog tape recorder can record up to 14 channels including one voice channel which records on channel 14 and overruns data if recorded on that channel. It has seven variable speeds from 15/16 IPS up to 60 IPS. It can attenuate signals from 0.1 to 20 volts peak to peak normalizing the recorded signal to 1 volt peak to peak output.

ENDECO 956 WAVE TRACK BUOY

This orbital following wave buoy measures wave height and direction. It transmits three digital signals; wave height, buoy tilt (East-West), and buoy tilt (North-South) to a remote receiver usually deployed with the vessel. The digital signals recorded and analyzed using an Otrona 8:16 microcomputer. The data can be analyzed using either a "LONGUEST-HIGGONS" or "DIGITAL BAND PASS FILTERING" The output method. is Significant Wave Height (H 1/3) significant period as well as a plot of wave energy vs. frequency and direction. allows for a determination of the major swell direction and quantification of the extent of undirectional or confused sea state. Directional accuracy is + 100. It can be moored with an accumulator mooring system for long-term monitoring situations.

HUMAN-RESPONSE VIBRATION METER Type 2512 Bruel & Kjaer (B&K) Marion, MA Measures vibration from a tri-axial accelerometer for the evaluation of vibration on the human body in agreement with current ISO for Hand-Arm standarus and Whole-Body (including motion sickness) measurement. The complex relationship between level, frequency and time is automatically taken into account in the compututation of equivalent continuous vibration level and exposure dose. are printed on thermal paper with the use of a Alphanumeric Printer type 2312. automatically printed at preselected intervals in the form of: Current Time. Elapsed Time. Peak Acceleration Equivalent Exposure (dB) and Percent of a particular ISO standard selected which has been reached at that elapsed time.

TRIAXIAL SEAT ACCELEROMETER Type 4322 (used with B&K Meter Type 2512)

This accelerometer is especially designed for detecting vibration motion in connection with the measurement of whole-body vibration and can be put under the buttocks of a seated person.

Frequency Range: Charge Sensitivity: Piezoelectric Material:

0.1 H_z to 2 kHz (+ 5%) 1 pC/ms⁻² + 2% 10 pC/g PZ27

Delta Shear Configuration

ACCELEROMETER CHARGE AMPLIFIERS Type 2635 and 2651 Bruel & Kjaer Marion, MA

Various ship vibration measurements are made using Bruel & Kjaer (B&K) accelerometers and The output of the charge charge amplifiers. amplifiers are recorded on magnetic tape. Two types of B&K accelerometers are used; they are the 4368 and the 4384. Two types of charge amplifiers are used; they are the Model 2635 and the Model 2651. The 2365 is a operated (stand alone) charge batterv amplifier with transducers sensitivity conditioning from 0.1 to 10.99 pC/ms^{-2} .

Frequency Range:
Acceleration
Velocity
Displacement

.2Hz to 100kHz 1Hz to 10kHz 1Hz to 1kHz

The Model 2651 charge amplifier needs a power supply (and is packaged in a pack of four amplifiers with the power supply); transducer sensitivity conditioning settings of 0.1, 1, and 10 mV/pC.

Frequency Range:

Acceleration

.003 to 200kHz

General B&K accelerometer information follows:

<u>Model</u>	Charge	Frequency	Temperature
	Sensitivity	Range	Range (deg. C)
4368	4.8 pC/ms ⁻²	.2 to 5000	-74 to 250
4384	1 <u>+</u> 2%	.2 to 9200	-74 to 250

FUEL FLOW METERS HEDLAND Racine, WI In-line flow meters are direct reading units requiring no electrical connections or readout devices. Scales are based on a specific gravity of 0.84 for fuel oil. Accuracy is within + 5% of full scale.

HORSEPOWER METER 1202A (2) ACUREX AUTODATA, Mountain View, CA The 1202A measurement system measures shaft torque and rpm and calculates horsepower from that information (HP = Torque x rpm x Constant). The shaft is strain gauged for torque. A transmitter collar and antenna are bolted to the shaft in order to power and transmit FM signals from the strain gauge bridge. Three simultaneous analog outputs are provided at the readout box (Torque, HP and rpm). Calibration using a shunt resister is usually conducted because a known torque load is difficult to apply to a vessel in the water. This method simulates a torque load by shunting a gauge with a known value of resistance.

SPECIFICATIONS Accuracy: Torque

rpm Horsepower + 1% of full scale + 0.25% of full scale + 1.5% of full scale

SOUND LEVEL METER TYPE 213H

Bruel and Kjaer Marlborough, MA This hand-held sound level meter measures levels from 50 to 130 dB with A or C weighting filters. It can be used with fast or slow response. Calibration is done by using a Sound Level Calibration unit Type 4230. The sound pressure level of the calibrator is 93.6 dB.

NASA RIDE QUALITY METER SPECIFICATIONS

Input Power:

12Vdc @ 3.5 A

Size:

6"H x 16"W x 14"D

Weight:

30 1bs

Environment:

10 - 40°C

5 - 95% R.H. (Noncondensing)

Signal Inputs:

Accelerometers (Max Levels)

Vertical <u>+</u> 2g

Lateral + 2g

Longitudinal $\pm 2g$ Pitch $\pm 2 \text{ Rad/Sec}^2$ Roll $\pm 2 \text{ Rad/Sec}^2$

Microphone (Range)

50 - 100 dB

Sensitivity:

Accelerometer Inputs

 \pm 0.1 V to \pm 10.0 V Full Scale

Microphone Input

<u>+</u> 0.05 to <u>+</u> 5.0 V Full Scale

Input Independence:

20K OHMS

Filters:

Acceleration

Per NASA developed discomfort model (1-30 Hz)

<u>Microphone</u>

"A" - weighting

Six octave bands (63 - 2000 Hz)

Internal Computer:

DEC LSI - 11

Display Type:

3 1/2 Digit LCD

NASA RIDE QUALITY METER SPECIFICATIONS (continued)

Display Output:

Total Discomfort

Individual axis and noise discomfort

Printer Type:

20 - column alphanumeric

Printer Output:

Total discomfort

Vibration component of discomfort Noise component of discomfort Individual axis discomfort

Individual octave band discomfort Discomfort corrected for trip duration

[BLANK]

APPENDIX B
TABULATED DATA

TABLE B-I

USCGC SEA HAWK SPEED POWER WITH TWO LIFT FANS

30 January 1985

DRAFTS 8'0" Fwd; 9'1" Aft DISPLACEMENT 148.5 LT (Heavy)

SPEED KTS	P	MAIN ORT	ENGINES S	TBD	TOTAL MAIN ENGINE	PORT	ENGINES STBD
	SRPM	НЬ	SRPM	НР	HORSEPOWER	ERPM	ERPM
7	365	190	310	103	293	1070	1100
11	480	385	470	315	700	1360	1360
17.5	590	679	520	430	1109	1550	1490_
19.2	700	1005	700	1000	2005	1576	1625
20.5	720	1035	750	1125	2160	1576	1625
21.5	750	1058	800	1177	2235	1576	1625
22	760	1090	800	1230	2320	1950	1975

TABLE B-II

SES 200 SPEED POWER WITH FOUR LIFT FANS

28 January 1985

DRAFTS 6'7" Fwd; 8'10" Aft DISPLACEMENT 189.5 LT (Heavy) LCG 0.67 Ft Aft Centerline RCS OFF

							LIFT EN	NGINES	
SPEED		MAIN	ENGINES		TOTAL	F\	٧D	AF	7
KTS		ORT		TBD	MAIN ENGINE	PORT	STBD	PORT	STBD
	SRPM	HP	SRPM	HP	HORSEPOWER	ERPM	ERPM	ERPM	E RPM
6.3	325	201	337	151	352	1400	1400	700	800
9	498	495	528	545	1040	1600	1600	700	.800
13	598	753	595	707	1460	1600	1600	700	800
18	701	980	700	952	1932	1800	1800	700	800
19.7	748	1137	745	1103	2204	1800	1800	700	800
21	804	1336	806	1360	2696	1900	1900	700	800
22.5	828	1452	815	1375	2827	1900	1900	700	800

TABLE B-III

USCGC SEA HAWK FUEL CONSUMPTION WITH TWO LIFT ENGINES

30 January 1985

DRAFTS 8'0" Fwd; 9'1" Aft DISPLACEMENT 148.5 LT (Heavy)

TOTAL FUEL	ВРН	49	75	103	140	164	185	196
GENERATOR**	ВРН	2	2	2	2	2	2	2
* STBD	СРИ	7	œ	8,5	တ	6	6	10
GINES* ST	ERPM	1100	1360	1490	1625	1625	1625	1975
LIFT ENGINES*	СРН	7	æ	8.5	6	6	6	10
0	ERPM	1070	1360	1550	1576	1576	1576	1950
S STBD	СРН	15	21	30	54	99	84	06
MAIN ENGINES T	SRPM	310	470	520	700	750	800	800
MAIN E	ВРН	18	36	54	99	78	18	84
POR	SRPM	365	480		700	720	750	760
SPEED KTS		7	=	17.5	19.2	20.5	21.5	22

^{*} From data collected on CGC SEA HAWK, 9 August 1984

** Estimated fuel consumption for generator

TABLE B-IV

SES-200 FUEL CONSUMPTION WITH FOUR LIFT ENGINES

28 January 1985

DRAFTS 6'7" Fwd; 8'10" Aft DISPLACEMENT 189.5 LT (Heavy) LCG 0.67 Ft Aft Centerline RCS OFF

	TOTAL Fuel	CONSUMPTION	55	73	101	114	139.5	165	178
	GENERATOR*** CONSUMPTION		2	2	2	2	2	2	2
j	STBD	СРН	7.5	7.5	7.5	7.5	7.5	7.5	7.5
		ERPM	800	800	800	800	800	800	800
,	AFT**	ВРН	7.5	7.5	7.5	7,5	7.5	7.5	7.5
LIFT ENGINES	o G	ERPM	700	700	700	700	700	700	700
LIFT E	 	СРН	8	6	်တ်	9.5	9.5	9.5	10
	ARD* STRD	ERPM	1400	1600	1600	1800	1800	1800	1900
	FORWARD	СРН	80	6	6	9.5	9.5	5 ° 6 .	10
	PORT	ERPM	1400	1600	1600	1800	1800	1800	1900
	STRN	СРН	10	17	36	39	46.5	63	69
MAIN ENGINES	5	SRPM	330	540	569	700	745	805	815
MAIN E	Tana	СРН	12	21	30	39	57	99	72
	S	SRPM	325	499	009	700	748	804	827
	SPEED KTS	2	6,3	6	13	18	19.7	21	22.5

^{*} From data collected during previous tests. Fwd lift engine fuel flow meters were not operating properly.

^{**} Aft lift engines were run at idle speed because they were out of balance and would vibrate excessively at normal operating RPM (i.e., 1400-1800 ERPM).

^{***} Estimated fuel consumption for generator.

TABLE B-V

USCGC SEA HAWK RANGE AND FUEL EFFICIENCY DATA TWO MAIN ENGINES AND TWO LIFT ENGINES

30 January 1985

DRAFTS 8'0" Fwd; 9'1" Aft DISPLACEMENT 148.5 LT (Heavy) LCG 1.4 Ft Fwd Centerline

Fuel 7342 Gal. % Usable 95% Usable 6975 Gal.

SPEED (KNOTS)	TOTAL FUEL CONSUMPTION (GPH)	RANGE (NM)	ENDURANCE (DAYS)	FUEL EFFICIENCY (GAL/NM)
7.0	49.0	996	5.9	7.00
11.0	75.0	1023	3.9	6.82
17.5	103.0	1185	2.8	5.89
19.2	140.0	957	2.1	7.29
20.5	164.0	872	1.8	8.00
21.5	185.0	811	1.6	8.60
22.0	196.0	783	1.5	8.91

TABLE B-VI

SES-200 RANGE AND FUEL EFFICIENCY DATA TWO MAIN ENGINES AND FOUR LIFT ENGINES

29 January 1985

DRAFTS 6'7" Fwd; 8'10" Aft DISPLACEMENT 189.5 LT (Heavy) LCG 0.67 Ft Aft Centerline RCS OFF

Fuel 18390 Gal. % Usable 95% Usable 17470 Gal.

SPEED (KNOTS)	TOTAL FUEL CONSUMPTION (GPH)	RANGE (NM)	ENDURANCE (DAYS)	FUEL EFFICIENCY (GAL/NM)
6.3	55.0	2001	13.2	8.73
9.0	73.0	2154	10.0	8.11
13.0	101.0	2249	7.2	7.77
18.0	114.0	2759	6.4	6.33
19.7	139.5	2467	5.2	7.08
21.0	165.0	2224	4.4	7.86
22.5	178.0	2208	4.1	7.91

TABLE B-VII

NOISE LEVELS USCGC SEA HAWK (WSES-2) 2 February 1985

	Speed 7 Kts	7 Kts	Speed	Speed 20 Kts
	TWO ENG	TWO ENGINES TWO LIFT FANS	TWO ENGINES	GINES T FANS
	Mains 80	DO ERPM	Mains 14	75 ERPM
	Lifts 1	300 ERPM	Lifts 19	00 ERPM
COMPARTMENT	WEIGHT	WEIGHTING (dB)*	WEIGHTI	WEIGHTING (dB)*
OR LOCATION	V V	ပ	A	د
Main Deck Passageway	69.3	86.5	80.0	97.0
Mess Deck	72.0	84.5	82.5	ગ 96
Aft Berthing	0.97	91.5	86.5	0.66
Bridge**	71.0	89,5	83.0	97.0
Engine Room	105.0	109.0	115.0	118.0
Generator Room	102.0	104.5	98.5	106.5
Phone Booth (Gen. Room)	86.5	0.66	92.0	108.5

^{*} Meter used in slow response mode.

^{**} Calm water operation, wind light and variable, bridge outside doors open.

TABLE B-VIII

NOISE LEVELS SES-200 28 January 1985

TWO MAIN ENGINES AND FOUR LIFT ENGINES

	Speed 6.3 Kts	Speed 13 Kts	Speed 19.7 Kts	Speed 22.5 Kts
	Mains 650 ERPM	Mains 1200 ERPM	Mains 1500 ERPM	Mains 1680 ERPM
	Fwd Lifts 1400 ERPM	Fwd Lifts 1400 ERPM	Fwd Lifts 1900 ERPM	Fwd Lifts 1900 ERPM
	Aft Lifts 750 ERPM	Aft Lifts 750 ERPM	Aft Lifts 750 ERPM	Aft Lifts 750 ERPM
	WEIGHTING (dB)*	WEIGHTING (dB)*	WEIGHTING (dB)*	WEIGHTING (dB)*
	A C	A C	A C	A C
Main Deck Passageway** Mess Deck Bridge** Engine Room Outside Main Deck (Next to	76 91 78 87 72 89 100 105	79 97 80 89 76 93 102 111	82 96 85 92 78 94 94 100 97 108	83 97 86 95 77 93 104 109 96 107

^{*} Meter used in slow response mode.

^{**} Normal operations with outside doors open.

⁻⁻ Data not collected.

TABLE B-IX
USCGC SEA HAWK (WSES-2)
TACTICAL DATA

	DISTANCE IN METERS				TIME IN SECONDS		
Degrees Rudder	Advance at 90° Course Change	Maximum Path Advance	Transfer at 900 Course Change	Maximum Path Transfer	Tactical Diameter	Time to 900 Course Change	Time to 360° Course Change
		SPEED 8 KTS MAINS 1000 R		O LIFT ENGIN 1200 RPM	ES		
10 Right 10 Left	320 300	330 370	140 160	185 180	. 300 550	92 	360
2 OR 2 OL 3 OR 3 OL	220 215 165 170	280 230 200 270	40 110 40 50	110 180 90 140	190 340 140 250	72 51 55 49	232 268 196 196

Note: A 12-knot wind off port beam at start of turn caused a significant increase of tactical diameters when turning to the left.

		SPEED 16 KTS MAINS 1350 RP		TWO LIFT ENGINES 1400 RPM			-
10 Right 10 Left 20R 20L 30R 30L	470 430 220 330 230 220	610 510 250 380 300 350	110 80 35 20 0 30	290 180 170 120 110 120	620 360 290 230 210 210	72 72 44 41 32 40	251 224 171 153 128 144
		SPEED 17 KTS MAINS 1400 RP		ONE LIFT ENGINE 1400 RPM			
10 Right 10 Left 20R 20L 30R 30L	380 460 205 380 260 310	440 550 320 440 330 350	110 135 35 65 25 35	380 330 180 130 90	700 580 330 340 260 200	63 64 39 28 32 32	244 224 144 136 124 126
		SPEED 20 KTS MAINS 1450 RP		TWO LIFT ENGINES 1500 RPM			
10 Right 10 Left 20R 20L 30R 30L	495 460 330 270 250 310	560 570 400 650 320 340	105 30 85 0 40 40	220 120 100 120 80 75	440 305 260 260 180 200	55 36 40 36 31 32	140 120 112

TABLE B-X

USN SES-200

TACTICAL DATA - (From Reference 3)

Degrees Rudder	Tactical Diameter (meters)	Time to 180 ⁰ Course Change (seconds)
	SPEED 10 KTS	
10 Right 10 Left 20 Right 20 Left 30 Right 30 Left	1158 896 460 460 320 320	270 222 120 120 90 90
	SPEED 20 KTS	
10 Right 10 Left 20 Right 20 Left 30 Right 30 Left	1400 1160 762 670 426 305	264 210 126 120 72 72
	SPEED 29 KTS	
10 Right 10 Left 20 Right 20 Left 30 Right 30 Left	1676 1700 868 675 395 460	183 190 120 108 69 81

TABLE B-XI
USCGC SEA HAWK SEAKEEPING
3.5 - 4.4 FT SIGNIFICANT SEAS
SPEED 18 KNOTS
27 JANUARY 1985

		VTE					
		PITCH RATE DEG/SEC	3.645 2.892 2.059 1.847 5.270	2.763 2.147 1.532 1.374 3.803	1.70 1.36 .98 .89 2.24	2.253 1.813 1.309 1.192 2.859	2.938 2.236 1.564 1.371 4.481
		ROLL RATE DEG/SEC	2.026 1.534 1.105 .96,	4.600 3.674 2.60 2.31 7.134	4.72 3.68 2.63 2.34 6.97	3.262 2.504 1.787 1.589 4.447	2.713 2.173 1.550 1.388 4.502
		SWAY CG	.052 .041 .030 .027	.106 .085 .061 .055	.066 .052 .036 .032	.082 .064 .046 .041	.075 .059 .041 .037
		SURGE CG	.080 .064 .046 .042	.070 .055 .041 .037	.047 .037 .026 .023	.054 .044 .032 .029	.067 .053 .038 .034
	5,5	VERTICAL BRIDGE	.490 .348 .244 .206	.557 .401 .271 .225 .876	.475 .350 .232 .195	.419 .298 .207 .177	.436 .313 .213 .180
MOTIONS	ACCELERATIONS IN	VERTICAL MESS DECK	.412 .311 .217 .191	.390 .296 .206 .181	.186 .154 .115 .108	.299 .223 .161 .145	.277 .208 .151 .136
AMPLITUDE SHIP MOTIONS	ACCE	VERTICAL BERTHING	4 : : :	X : : : . A	A::::	X : : :	X : : : :
SINGLE A		VERTICAL CG	.319 .239 .172 .154	.355 .265 .186 .164	.150 .127 .097 .092	. 264 . 185 . 135 . 120	.228 .166 .121 .110
		PITCH ANGLE DEG	N/A ::::	A.:::	A/1 : : :	Α.:::	A'::::
		ROLL ANGLE DEG	₹::::	%:::: 4::::	X::::	Z:::	X : : :
		AVERAGING TYF	H 1/10 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 H 1/3 MEAN HEGHEST	H 1/10 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 RMS MEMS MEAN HIGHEST
		RELATIVE SEA DIRECTION/(H 1/3)*	HEAD (4.4 FT)	BOW QUARTER (3.5 FT)	BEAM (3.7 FT)	STERN QUARTER (3.5 FT)	FOLLOWING (3.5 FT)

* (H 1/3) = Significant Wave Height

TABLE B-XII
SES-200 SEAKEEPING
3.5 - 4.4 FT SIGNIFICANT SEAS
SPEED 18 KNOTS
27 JANUARY 1985

				SINGLE	SINGLE AMPLITUDE SHIP MOTIONS	TP MOTIONS					
					ACC	ACCELERATIONS IN	8,9 N				
RELATIVE SEA DIRECTION/(H 1/3)*	AVERAGING * TYPE RCS	ROLL ANGLE DEG OFF ON	PITCH ANGLE DEG OFF ON	VERTICAL CG OFF ON	VERTICAL BERTHING OFF ON	VERTICAL MESS DECK OFF ON	VERTICAL BRIDGE OFF ON	SURGE CG OFF ON	SWAY CG OFF ON	ROLL RATE DEG/SEC OFF ON	PITCH RATE DEG/SEC OFF ON
HEAD (4.4 FT)	H 1/10 H 1/3 RMS RMS MEAN HIGHEST	1.877/2.028 1.459/1.552 1.005/1.059 2.598/3.328	6.015/3.466 3.876/2.105 2.625/1.531 1.964/1.113 12.009/8.723	.236/.125 .153/.098 .103/.067 .079/.025	Y ::::	A::::	X::::	.083/.098 .065/.074 .044/.051 .038/.043	.108/.118 .084/.095 .059/.068 .051/.061	1.867/1.936 1.418/1.473 .971/1.024 .838/ .893 2.824/3.303	1.413/1.370 1.105/1.011 .785/ .722 .704/ .639 2.273/3.888
BOW QUARTER (3.5 FT)	H 1/10 H 1/3 RMS RMS MEAN MEAN HIGHEST	4.408/3.702 3.424/2.946 2.341/2.068 1.984/1.822 5.605/5.066	1.467/1.926 1.196/1.538 .875/1.063 .805/ .937 1.710/2.511	.077/.077 .061/.057 .042/.038 .037/.032	*****	====	= = = =	.221/.209 .165/.160 .106/.105 .083/.384	.082/.095 .062/.073 .043/.051 .038/.045	1,446/1,596 1,111/1,249 770/,863 -677/,759 1,868/2,220	1.088/ .947 .839/ .751 .603/ .543 .545/ .497 2.069/1.446
BEAM (3.7 FT)	H 1/10 H 1/3 RMS MEAN MEAN HIGHEST	3.752/ - 2.985/ - 2.121/ - 1.867/ - 5.081/ -	1.225/ - 1.030/ - .761/ - .708/ - 1.542/ -	.063/ - .050/ - .034/ - .030/ -		i = = = =		.190/ - .145/ - .095/ - .076/ -	.080/ - .063/ - .044/ - .039/ -	1.383/ - 1.079/ - 757/ - 673/ -	1.096/ - .797/ - .571/ - .507/ - 2.088/ -
STERN QUARTER (3.5 FT)	H 1/10 H 1/3 RMS MEAN MEAN	2.737/2.592 2.110/2.090 1.465/1.432 1.269/1.243 3.783/3.560	1.887/1.756 1.569/1.421 1.112/1.011 1.004/ .913 2.315/2.328	.096/.091 .077/.072 .053/.048 .045/.040				.130/.138 .097/.104 .066/.070 .055/.059	.105/.079 .078/.058 .054/.040 .046/.034 .163/.114	1.815/1.455 1.345/1.095 .928/ .762 .799/ .668 2.659/2.089	.897/ .968 .690/ .703 .505/ .505 .461/ .450
FOLLOWING (ABORTED)											

* (H 1/3) = Significant Wave Height - Data Not Collected

TABLE B-XIII
USCGC SEA HAWK AND SES-200 SEAKEEPING
2.2 FT SIGNIFICANT SEAS
SPEED 18 KNOTS
28 JANUARY 1985

		ROLL RATE PITCH RATE DEG/SEC	2.08 1.27 1.64 1.00 1.17 .72 1.05 .65 2.61 1.93			SWAY ROLL RATE PITCH RATE CG DEG/SEC DEG/SEC FF ON OFF ON	.049/.079 .89/1.27 6.9/5.1 .039/.055 .73/1.04 5.0/3.4 .028/.048 .53/ .75 3.1/2.3 .026/.044 .50/ .70 2.9/1.9 .081/.118 1.45/1.82 13.5/11.3
		SWAY	.060 .044 .034 .029			- 6	
		SURGE	.083 .023 .021 .093			SURGE CG OFF ON	.086/.105 .065/.083 .044/.058 .038/.051 .131/.154
IONS	5,9	VERTICAL BRIDGE	. 82 . 39 . 39 . 28 . 1 . 97	ONS	6'5	VERTICAL BRIDGE OFF ON	.520/.525 .462/.461 .384/.380 .375/.370
USCGC SEA HAWK SINGLE AMPLITUDE SHIP MOTIONS	ACCELERATIONS IN G'S	VERTICAL MESS DECK	.276 .191 .133 .114	USN SES-200 SINGLE AMPLITUDE SHIP MOTIONS	ACCELERATIONS IN G'S	VERTICAL MESS DECK OFF ON	.163/.164 .143/.144 .117/.117 .114/.114
SINGLE AMPLI	ACC	VERTICAL BERTHING	.236 .158 .116 .102	INGLE AMPLIT	ACCE	VERTICAL BERTHING OFF ON	.07u/.076 .063/.068 .052/.061 .050/.051
GC SEA HAWK		VERTICAL CG	.151 .118 .084 .074	SN SES-200 SI		VERTICAL CG OFF ON	.036/.043 .028/.032 .020/.023 .019/.021
OSN		PITCH ANGLE DEG	. 77 . 58 . 44 . 41	SA I		PITCH ANGLE DEG OFF ON	2
		ROLL ANGLE DEG	1.46 .99 .78 .60 6.47			ROLL ANGLE DEG OFF ON	1.60/1.49 1.28/1.18 .93/ .86 .86/ .79 2.02/2.10
		AVERAGING TYPE	H 1/10 H 1/3 RMS MEAN HIGHEST			AVERAGING TYPE RCS	H 1/10 H 1/3 RMS MEAN HIGHEST
		RELATIVE SEA DIRECTION/(H 1/3)*	USCGC SEA HAWK HEAD (2.2 FT)			RELATIVE SEA DIRECTION/(H 1/3*)	<u>SE3-200</u> HEAD (2.2 FT)

* (H 1/3) = Significant Wave Height

[THIS PAGE LEFT INTENTIONALLY BLANK]

TABLE B-XIV
USCGC SEA HAWK SEAKEEPING
4.0 FT S.GNIFICANT SEAS
SPEED 20 KNOTS
31 JANUARY 1985

RELATIVE SEA DIRECTION/(H 1/3)* HEAD (4.0 FT)	AVERAGING TYPE H 1/10 H 1/3 RMS MEAN	ROLL ANGLE DEG 2.301 1.719 1.170 .985 4.241	9.350 3.350 2.747 1.991 1.812 4.466	SINGLE AM VERTICAL CG .383 .283 .201 .178	SINGLE AMPLITUDE SHIP MOTIONS RTICAL VERTICAL VERTICAL CG BERTHING MESS DI 383 .394 .560 .283 .302 .430 .201 .215 .300 .178 .192 .262 .741 .691 .839	S IN	6'S VERTICAL BRIDGE 719 509 351 292	SURGE CG .038 .023 .022	SWAY CG .100 .077 .053 .046	ROLL RATE DEG/SEC 5.422 3.945 2.798 2.444 9.340	PITCH RATE DEG/SEC 5.531 4.531 3.224 2.908 7.651
BOW QUARTER (4.0 FT)	H 1/10 H 1/3 BMS MEAN HIGHEST	3.635 2.873 1.898 1.554 5.228	3.313 2.642 1.888 1.702 4.731	.388 .287 .202 .176	.390 .296 .208 .184 .678	.546 .419 .292 .255	.644 .459 .318 .267 1.121	.040 .032 .024 .023	.068 .056 .040 .037	5.166 4.100 2.966 2.669 6.823	5.910 4.682 3.372 3.042 9.390
BEAM (4.0 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	5.810 4.194 2.790 2.188 10.811	2.378 1.822 1.268 1.101 4.964	.28] .199 .143 .126	.256 .188 .137 .123 .546	.321 .238 .172 .153	.664 .469 .318 .256 1.503	.031 .026 .020 .019	.074 .059 .042 .037	6.992 5.413 3.809 3.327	2.272 1.276 1.264 1.125 3.791
STERN QUARTER (4.0 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	2.880 2.167 1.436 1.182 3.860	3.725 2.660 1.881 1.543 9.242	.199 .148 .110 .100	.083 .077 .067 .067 .087	.195 .153 .114 .106	.548 .377 .260 .216 .861	.039 .031 .023 .022	.064 .049 .035 .031	4.663 3.703 2.592 2.285 7.076	1.697 1.329 .935 .828 3.174
FOLLOWING (4.0 FT)	H 1/10 H 1/3 RMS MEAN MEAN HIGHEST	2.804 2.115 1.400 1.146 3.770	2.883 2.230 1.521 1.302 4.486	.187 .140 .104 .096	.081 .0.75 .066 .065	.174 .138 .105 .099	.511 .341 .233 .187	.037 .028 .021 .020	.058 .046 .032 .029	4.203 3.231 2.239 1.933 7.641	1.697 1.303 .913 .803 3.196

* (H 1/3) = Significan' Wave Height

TABLE B-XV
SFS-200 SEAKEPING
4.0 FT SIGNIFICANT SEAS
SPEED 20 KNOTS
31 JANUARY 1985

				SINGLE	AMPLITUDE SH	SHIP MOTIONS					
					AC	ACCELERATIONS	IN 6'S				
RELATIVE SEA DIRECTION/(H 1/3)*	AVERAGING TYPE RCS	ROLL ANGLE DEG OFF ON	PITCH ANGLE DEG OFF ON	VERTICAL CG OFF ON	VERTICAL BERTHING OFF ON	VERTICAL MESS DECK OFF ON	VERTICAL BRIDGE OFF ON	SURGE CG OFF ON	SWAY CG OFF ON	ROLL RATE DEG/SEC OFF ON	PITCH RATE DEG/SEC OFF ON
HEAD (4.0 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	3.3/2.4 2.6/1.9 1.9/1.4 1.7/1.3 4.9/4.0	2.7/2.7 2.2/2.3 1.6/1.9 1.4/1.8 3.5/3.5	.139/.129 .116/.114 .092/.091 .089/.088	X::::	X	.491/.491 .435/.434 .362/.362 .354/.354	.211/.151 .165/.121 .117/.085 .104/.073	.136/.128 .111/.105 .081/.072 .074/.062	2.56/2.43 2.08/1.93 1.41/1.26 1.16/1.02 3.76/3.73	1.22 /.947 .900/.708 .613/.479 .511/.399 2.39 /1.57
BOW QUARTER (4.0 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	3.0/3.1 2.4/2.5 1.7/1.8 1.5/1.6 4.5/4.7	2.4/2.3 7.9/1.9 1.4/1.4 1.3/1.3 3.5/3.4	.127/.120 .103/.102 .077/.077 .072/.073 .189/.168		====	.490/.494 .434/.436 .364/.364 .356/.356	.186/.193 .149/.157 .108/.119 .099/.113	.145/.138 .119/.118 .093/.094 .089/.091	2.44/2.50 1.85/2.02 1.19/1.33 922/1.06 4.10/3.51	1.037/.914 .759/.675 .5217.459 .435/.383 2.562/2.219
BEAM (4.0 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	5.9/5.1 4.5/4.1 3.1/2.9 2.6/2.5 8.8/6.5	1.6/2.3 1.1/1.8 1.1/1.3 1.0/1.1	.127/.103 .099/.073 .068/.047 .059/.037		1	.474/.500 .425/.440 .358/.367 .351/.359 .558/.666	.040/.020 .031/.017 .023/.014 .020/.014	.195/.065 .173/.052 .132/.036 .125/.031	2.05/1.16 1.64/ .836 1.12/ .561 .95/ .458 2.72/1.81	1.18 / .776 .857/ .617 .568/ .476 .452/ .448 1.93 /1.71
STERN QUARTER (4.0 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	3.9/3.8 3.0/3.0 2.1/2.1 1.8/1.8 5.7/7.3	2.9/2.6 2.4/2.0 1.7/1.4 1.5/1.2 3.6/3.1	.127/.106 .028/.060 .053/.042 .037/.030	1111		.491/.496 .437/.439 .365/.366 .358/.359	.014/.014 .010/.011 .007/.007 .006/.006	051 / .048 .040 / .038 .028 / .027 .025 / .024 .075 / .065	.851/ .843 .644/ .636 .445/ .440 .382/ .373	.502/.455 .378/.346 .264/.241 .230/.210
FOLLOWING (4.0 FT)	H 1/10 H 1/3 RMS/3 MEAN HIGHEST	3.8/3.3 2.9/2.5 2.0/1.8 1.7/1.5 5.7/5.3	2.6/2.5 1.8/2.0 1.2/1.4 1.0/1.3 3.7/4.0	.091/.138 .050/.117 .036/.083 .026/.075			.495/.492 .440/.439 .367/.371 .360/.364	.019/.019 .016/.017 .014/.014 .013/.013	.051/.054 .039/.046 .028/.038 .025/.037	.859/ .801 .649/ .619 .449/ .431 .387/ .373	.465/.596 .353/.469 .248/.374 .218/.363

* (H 1/3) = Significant Wave Height

TABLE B-XVI
USCGC SEA HAWK AND SES-200 SEAKEEPING
6.4 FT SIGNIFICANT SEAS
SPEED 20 KN°1TS
31 JANUARY 1985

			νSΠ	USCGC SEA HAWK	SINGLE AMPL	AMPLITUDE SHIP MOTIONS ACCELERATIONS IN G'S	OTIONS IN G'S					
RELATIVE SEA DIRECTION/(H 1/3)*	AVERAGING TYPE	ROLL ANGLE DEG	PITCH ANGLE DEG	VERTICAL CG	VERTICAL BERTHING	VERTICAL MESS DECK	VERTICAL BRIDGE	SURGE CG	SWAY	ROLL RATE DEG/SEC	PITCH RATE DEG/SEC	(ATE
USCGC SEA HAMK HEAD (6.4 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	3.425 2.500 1.713 1.440 4.688	5.813 4.417 3.147 2.796 8.484	.538 .388 .268 .229	. 535 . 404 . 280 . 242 . 919	.876 .633 .436 .366	.911 .598 .403 .315	.059 .045 .033 .030	.083 .067 .048 .043	5.137 4.091 2.902 2.574 10.335	10.098 7.520 5.393 4.797 15.565	
			n	USN SES-200 S	SINGLE AMPLIT	AMPLITUDE SHIP MOTIONS	IONS					
					AC	ACCELERATIONS	IN G'S					
RELATIVE SEA DIRECTION/(H 1/3)*	AVERAGING TYPE RCS	ROLL ANGLE DEG OFF ON	PITCH ANGLE DEG OFF ON	VERTICAL CG OFF ON	VERTICAL BERTHING OFF ON	VERTICAL MESS DECK OFF ON	VERTICAL BRIDGE OFF ON	SURGE CG OFF ON	SWAY CG CG	NO	ROLL RATE P DEG/SEC OFF ON	PITCH RATE DEG/SEC OFF ON
SES-200 HEAD (6.4 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	1.827/2.647 1.444/2.036 1.072/1.456 .989/1.319 2.339/3.403	.509/.650 .454/.543 .342/.419 .323/.402	.154/.149 .121/.124 .088/.096 .078/.092	N/A::::	A/# :: :	.502/.490 .438/.434 .364/.360 .356/.352	.096/.090 .076/.071 .055/.051 .051/.046	.146/.171 .123/.132 .084/.090 .073/.076		2.818/3.219 2.388/2.498 1.528/1.718 1.405/1.464 3.165/4.456	1.597/1.775 1.057/1.256 1.057/1.256 1.331/ .894 .577/ .758 2.987/4.998
SES-200 BOW QUARTER (6.4 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	2.420/4.154 1.935/3.166 1.365/2.203 1.220/1.927 2.887/5.203	.734/.672 .610/.534 .434/.369 .432/.326 .796/.775	.160/.169 .119/.138 .083/.101 .072/.094 .208/.196			.509/.498 .446/.438 .370/.368 .361/.360	.087/.133 .070/.099 .051/.070 .046/.062 .138/.192	.193/.197 .141/.152 .098/.105 .0827.090 .304/.267		3.593/3.726 2.677/2.843 1.8f6/1.910 1.586/1.584 5.661/5.166	1.575/1.588 1.154/1.184 1.154/1.184 1.164/1.336 1.708/1.730 3.159/3.668
SES-200 BEAM (6.4 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	3.214/5.605 2.413/4.280 1.700/2.968 1.516/2.584 3.843/6.954	.539/.378 .423/.306 .310/.219 .286/.199	.124/.088 .099/.062 .069/.040 .060/.031			.489/.483 .439/.433 .367/.364 .359/.357	.106/.120 .082/.099 .058/.071 .053/.065	.147/.089 .118/.073 .082/.051 .072/.045		.750 .369 .919 .782 .090	1.532/1.312 1.187/.995 1.331/.707 734/.633 3.110/1.840
SES-200 STERN QUARTER (6.4 FT)	H 1/10 H 1/3 RMS MEAN HIGHEST	4.972/3.659 3.934/2.855 2.684/2.001 2.324/1.732 6.511/5.768	.294/.297 .218/.208 .143/.133 .114/.096	.069/.062 .046/.036 .030/.026 .023/.020			.455/.496 .437/.435 .364/.366 .356/.358	.116/.082 .093/.062 .065/.045 .059/.041	.076/.043 .061/.035 .043/.025 .038/.023	.043 1.427/ .035 1.161/ .025 .784/ .023 .678/	. 857 . 672 / .480 / .438 /1.190	1.354/1.333 1.039/ .973 .739/ .681 .660/ .594 2.283/2.313

* (H 1/3) = Significant Wave Height

[THIS PAGE LEFT INTENTIONALLY BLANK]

TABLE B-XVII USCGC SEA HAWK C.AYELPING 3.4 - 3.9 FT SIGNIF.CANT SEAS SPEED 20 KNOTS ? FEBRUARY 1985

		PITCH RATE DEG/SEC	2.812 2.233 1.600 1.440 4.150	3.161 2.466 1.772 1.595 4.509	2.162 1.720 1.239 1.120 3.112	4.077 3.295 2.368 2.136 5.436	2.219 1.650 1.164 1.025 3.316
		ROLL RATE DEG/SEC	5.580 4.415 3.105 2.746 7.647	4.856 3.826 2.672 2.345 7.473	5.211 3.932 2.799 2.474 8.283	5.783 4.579 3.298 2.960 7.661	5.216 4.009 2.801 2.444 7.519
		SWAY	.059 .047 .035 .032	.055 .044 .032 .029	.056 .050 .036 .032	.064 .052 .037 .034	.061 .046 .032 .028
		SURGE CG	.051 .041 .030 .028 .073	.055 .043 .031 .029	.050 .039 .028 .026	.057 .046 .033 .031	.047 .038 .027 .025 .062
	8,9	VERTICAL BRIDGE	.655 .476 .330 .272 2.18	.674 .477 .325 .268 1.168	.698 .495 .341 .281	.617 .462 .312 .262 .837	.438 .314 .216 .182 .757
MOTIONS	ACCELERATIONS IN	VERTICAL MESS DECK	.364 .286 .200 .178	.374 .280 .197 .173	.409 .306 .218 .193	.391 .299 .212 .189	. 245 . 184 . 133 . 120 . 489
SINGLE AMPLITUDE SHIP MOTIONS	ACCEL	VERTICAL BERTHING	.276 .215 .155 .141	.282 .208 .151 .136	.289 .214 .156 .142	.298 .221 .156 .139	.234 .167 .122 .110
SINGLE AM		VERTICAL CG	.293 .225 .162 .146	.284 .209 .151 .135	.279 .205 .147 .131	.320 .230 .163 .143	.258 .177 .128 .113
		PITCH ANGLE DEG	1.858 1.492 1.078 .980 2.724	2.248 1.758 1.256 1.126 3.408	2.276 1.714 1.181 1.021 3.472	2.608 2.080 1.497 1.353 3.818	2.171 1.710 1.189 1.046 2.696
		ROLL ANGLE DEG	3.821 2.985 1.980 1.630 5.806	3.760 2.594 1.753 1.337 7.594	3.451 2.529 1.723 1.387 8.722	3.513 2.778 1.869 1.562 5.635	4.585 3.404 2.189 1.694 7.597
		AVERAGING TYPE	TISKE	H 1/10 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 RMS MEAN HIGHEST
		RELATIVE SEA	HEAD (3.4 FT)	EOM (UARTER (3.9 FT)	BEAM (3.9 FT)	STERN QUARTER (3.4 FT)	FOLLOWING (3.4 FT)

* (H 1/3) = Significant Wave Height

TABLE B-XVIII
SES-200 SEAKEEPING
3.4 - 3.9 FT SIGNIFICANT SEAS
SPEED 20 KNOTS
2 FEBRUARY 1985

		PITCH RATE DEG/SEC OFF ON	1.84/2.06 1.45/1.64 1.01/1.13 .89/.98	1.83/1.92 1.49/1.45 1.04/.96 .91/.80 2.45/2.78	2.47/1.29 1.97/ .99 1.31/ .68 1.09/ .59 3.24/1.87	2.48/2.52 1.92/1.96 1.36/1.35 1.20/1.16 3.32/3.59	1.13/1.67 .93/1.37 .65/ .98 .59/ .88
		ROLL RATE DEG/SEC OFF ON	4,45/5.08 3,62/4.19 2,63/2.99 2,3//2.68 5,97/7.22	2.41/2.06 1.88/1.69 1.35/1.25 1.22/1.15 2.83/2.70	2.46/2.32 1.96/1.84 1.38/1.32 1.22/1.18 3.82/3.03	2.20/2.28 1.76/1.80 1.28/1.30 1.17/1.17 2.94/3.45	4.20/3.39 3.37/2.45 2.33/2.22 2.00/1.08 6.77/5.13
		SWAY CG OFF ON	.025/ - .021/.016 .017/.012 .017/.012	. 012/.012 .012/.011 .011/.011 .012/.012	- / .024 .012/.021 .011/.017 .011/.016	. / .022 .013/.019 .011/.014 .011/.014	.015/ .014/.014 .012/.012 .012/.012
		SURGE CG OFF ON	.037/.040 .030/.032 .022/.024 .021/.022	.040/.039 .032/.031 .023/.023 .022/.021	034/.033 028/.027 .021/.020 .020/.019	.)40/.04 .)32/.031 .)24/.023 .)22/.022	. 034/.032 .028/.026 .021/.020 .020/.019 .339/.044
	IN G'S	VERTICAL BRIDGE OFF ON	.525/.451 .391/.326 .267/.221 .228/.184	.415/.329 .309/.254 .216/.177 .188/.157	.347/ .265/ .185/ .162/ .549/	.422/.351 .304/.260 .211/.181 .177/.157	.352/.275 .242/.204 .184/.145 .146/.129
IP MOTIONS	ACCELERATIONS	VERTICAL MESS DECK OFF ON	A/	2 2 5 2 2			
SINGLE AMPLITUDE SHIP MOTIONS	AC	VERTICAL BERTHING OFF ON	A::::	: : : :	****		
SINGLE		VERTICAL CG OFF ON	.108/.085 .090/.072 .072/.061 .070/.060	.099/.075 .084/.071 .068/.061 .067/.061	.075/.039 .071/.031 .061/.024 .060/.023	.084/.093 .074/.073 .063/.050 .062/.044 .098/.126	.029/.048 .024/.29 .018/.22 .018/.19
		PITCH ANGLE DEG OFF ON	1.83/1.99 1.51/1.54 1.07/1.12 36/1.02 2.27/2.57	2.11/2.34 1.66/1.83 1.15/1.25 1.01/1.10 2.90/2.89	2.06/2.10 1.69/1.5 1.21/1.08 1.11/0.92 2.50/3.5	2.17/2.13 1.70/1.59 1.21/1.14 1.07/1.01 3.22/3.71	1.36/1.63 1.11/1.42 .83/1.02 .77/ .93 1.64/1.91
		ROLL ANGLE DEG OFF ON	4.36/4.57 3.40/3.69 2.40/2.59 2.13/2.30 5.38/5.47	4.48/4.00 3.54/3.14 2.49/2.20 2.20/1.94 5.21/5.18	4.03/3.74 3.24/2.98 2.27/2.10 1.18/1.88 6.88/5.68	4.07/3.98 3.17/3.00 2.26/2.13 2.01/1.87 5.55/6.24	4.67/4.09 3.71/3.31 2.60/2.33 2.29/5.08 5.52/5.30
		AVERAGING TYPE RCS	H 1/10 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 RMS MEAN HIGHEST	H 1/10 H 1/3 RMS PEAN MEAN HIGHEST	H 1/10 H 1/3 PMS MEAN HIGHEST
		RELATIVE SEA DIRECTIVN/(H 1/3)*	HEAD (3.4 FT)	BOW QUARTER (3.9 FT)	BEAM (3.9 FT)	STERN QUARTEF (3.4 F [*])	FOLLOWING (3.4 FT)

* (SWH) = Significant Wave Height - Data not available because fewer than ten peaks in record exceeded the defined epsilon limit.

WAVE POWER SPECTRUM DENSITY SEAKEEPING RUN 27 JAN 1985

FIGURE B-XIX WAVE PSD PLOT, 4.4 FT. SEAS, 27 JAN 85

FIGURE B-XX 3-D DIRECTIONAL WAVE PLOT, 4.4 FT. SEAS, 27 JAN 85

WAVE POWER SPECTRUM DENSITY SEAKEEPING RUN 28 JAN 1985

FIGURE B-XXI WAVE PSD PLOT, 2.2 FT. SEAS, 28 JAN 85

FIGURE B-XXII 3-D DIRECTIONAL WAVE PLOT, 2.2 FT. SEAS, 28 JAN 85

WAVE POWER SPECTRUM DENSITY SEAKEEPING RUN 31 JAN 1985

B**-**23

FIGURE B-XXIV 3-D DIRECTIONAL WAVE PLOT, 4.0 FT. SEAS, 31 JAN 85

WAVE POWER SPECTRUM DENSITY SEAKEEPING RUN 31 JAN 1985

FIGURE B-XXV WAVE PSD PLOT, 6.4 FT. SEAS, 31 JAN 85

FIGURE B-XXVI 3-D DIRECTIONAL WAVE PLOT, 6.4 FT. SEAS, 31 JAN 85

WAVE POWER SPECTRUM DENSITY SEAKEEPING RUN 02 FEB 85

FIGURE B-XXVII WAVE PSD PLOT, 3.9 FT. SEAS, 2 FEB 85

FIGURE B-XXVIII 3-D DIRECTIONAL WAVE PLOT, 3.9 FT. SEAS, 2 FEB 85

[BLANK]

APPENDIX C

NASA RIDE QUALITY MEASUREMENTS ONBOARD COAST GUARD CUTTER SEA HAWK

STRUCTURES DIRECTORATE - LANGLEY RESEARCH CENTER

PRELIMINARY INFORMATION REPORT

PIR NO.: SD-5

TITLE: NASA Ride Quality Measurements Onboard Coast Guard Vessel Seahawk

AUTHOR: Dr. Jack D. Leatherwood

ORGANIZATION: Acoustics Division

Structural Acoustics Branch

DATE: March 1985

NASA Ride Quality Measurements Onboard Coast Guard Vessel Seahawk Background

At the request of the U.S. Coast Guard Research and Development Center,
Avery Point, Groton, CT, NASA personnel participated in tests of a 110-foot
Surface Effect Ship (Seahawk) at Key West, Florida during the week of January
29 - February 1, 1985. Specific purposes of NASA involvement were to (1)
utilize the NASA ride quality meter to obtain detailed measurements of
passenger ride quality for comparison with other ride quality measurement
instruments and procedures and (2) to provide a data base for future vessel
acquisition and support. Original plans called for the NASA measurements to be
made on January 29, 30, and 31. Engine problems prevented acquisition of data
on January 29 but extensive data were obtained during vessel operations on
January 30 and 31.

Results of the NASA ride quality measurements are presented and discussed in the remaining sections of this writeup. Consideration is limited to examination of the various subjective discomfort indices output by the meter. The physical vibration and noise parameters output by the meter are given in the accompanying tables but are not directly addressed. First, however, a brief discussion of the basic concepts embodied within the NASA meter is given in order to facilitate understanding of the various parameters provided as routine output by the meter.

Description of Ride Quality Meter

The NASA ride quality meter is a direct implementation of a comprehensive comfort algorithm developed at Langley Research Center. More than 3,000 people rode in the Langley Ride Quality simulator where they were exposed to

controlled combinations of vehicle vibration and noise. Each completed a questionnaire detailing the level of discomfort experienced. These data provided the basis for development of a computer model, which transforms individually measured vibration/noise elements into subjective comfort units, then combines the subjective units to produce an overall discomfort index that typifies passenger comfort within the total vibration/noise environment. It is this computer model that is directly implemented within the ride quality meter.

The meter consists of sensing elements to measure vibration in five axes (vertical, lateral, longitudinal, roll, and pitch) and interior noise. The vibration and noise data are frequency—weighted in accordance with the specialized and detailed psychophysical functions that define human response to noise and vibration. These functions were determined during the course of the NASA research. The frequency—weighted noise and vibration data are then applied to the NASA comfort algorithm which outputs via, an internal printer, the following subjective discomfort indices:

- DTOT Total subjective discomfort index, a single index incorporating the effects of multiple frequency, multiple axis vibrations and vehicle interior noise
- DVIB Subjective discomfort due to the vibration environment
- DN Subjective discomfort due to the noise within the combined noise and vibration environment
- DIN Subjective discomfort due to noise if vibration is absent (DVIB = 0)

 (NOTE: DTOT = DVIB + DN)
- DLONG Subjective discomfort due to longitudinal axis vibrations
- DPITCH Subjective discomfort due to pitch axis vibrations
- DROLL Subjective discomfort due to roll axis vibrations
- DLAT Subjective discomfort due to lateral axis vibrations
- DVERT Subjective discomfort due to vertical axis vibrations

Additional printer outputs are the weighted rms acceleration levels (GLONG, GPITCH, GROLL, GLAT, GVERT) and the subjective discomfort indices due to each of six octave bands (63, 125, 250, 500, 1000, 2000 Hz) of noise.

Interpretation of the absolute levels of subjective discomfort output by the meter relies to some extent upon contextual factors within a given mode of transportation as well as the prior experience and judgements of the ride quality investigators. Extensive measurements made onboard other transport vehicles such as helicopters, trucks, automobiles, and railcars have indicated that the transition between a comfortable and uncomfortable ride usually occurred at subjective discomfort levels between approximately 2 to 2.5 subjective units. Whether or not the above guidelines apply to the shipboard environment is uncertain and subject to future confirmation. For comparative evaluations of ride quality, however, absolute levels of the subjective indices are not of concern and direct, reliable assessments of relative ride quality within and between vessels can be readily made.

It is also important to note that the NASA discomfort indices do not reflect the influence of vibration energy at frequencies that produce motion sickness. The ranges of vibration frequencies for which the NASA comfort algorithm is applicable are given below.

	Minimum Freq, Hz	Maximum Freq, Hz
Vertical	1	30
Lateral	•5	10
Longitudinal	•5	6.5
Roll	.5	10
Pitch	•5	6.5
Noise	50	2500

Measurement Procedure

At the direction of the Coast Guard Project Manager the NASA instrumentation was set up within a two-berth compartment located on the mess deck adjacent to the galley area. The five axis accelerometer box was placed on the floor near the forward end of the lower bunk. The microphone was placed about one foot above the top surface of the upper bunk approximately two feet from its forward end. Also located on the upper bunk were the ride quality meter, an audio tape recorder, and a seven channel instrumentation recorder. These recorders were used to obtain backup data to be used in the event of ride quality meter failure. At this location the meter was operated almost continuously throughout the tests. The meter was turned off during long stops (e.g., lunch) and to change printer paper when required. On the first day of testing the meter was inadvertantly turned off for 52 minutes. This is noted in Table 1.

Results from Day 1

A summary of the meter output quantities for Day 1 is given in Table 1. This table contains approximately one-fourth of the meter output for Day 1. Included in the table are the various discomfort indices described earlier as well as the weighted root-mean-square acceleration levels for each axis of vibration. The left-most columns contain the numbered ride conditions and clapsed meter time (measured from initial turn on and subsequent meter resets to zero time). Each discrete time is arbitrarily defined as a ride condition and provides a convenient parameter for subsequent plotting of the data. This is particularly useful since information required to relate meter events (e.g., time) to specific test and/or operating conditions was not available at the

time of measurement. Thus, the discussion and comments that follow, as well as implications derived from these results, must be treated as objective observations base upon examination of the "face value" of the data. No attempt is made to explain fluctuations and/or trends in the data or to account for the significant differences between the results of Day 1 and Day 2 (to be discussed later). This is left up to the cognizant Coast Guard test personnel familiar with the actual conditions under which these results were obtained.

The meter output parameter that typifies overall human subjective comfort response is the total discomfort index, DTOT. This parameter is plotted in Figure 1 for each of the ride conditions of Table 1. Also shown in Figure 1 is the noise discomfort index, DN, which represents the contribution of noise to the total discomfort index. (Since DTOT = DVIB + DN, the difference between the two curves in figure 1 is the vibration contribution to total discomfort). These data indicate that human comfort response within the measured environments is influenced most by the vibration components of the environments. It is also evident that total measured discomfort varied considerably over the range of ride conditions on Day 1. Highest levels of discomfort were obtained during cruise away from the harbor (rides 4-14) and return to the harbor (rides 50-71). The least discomfort occurred during turning maneuvers (rides 15-31) and during the stop for lunch (rides 38-44).

Recall that the measurement of ride quality within other transport vehicles has indicated that discomfort threshold generally corresponded to discomfort values between 2.0 and 2.5. Using this range as a tentative guideline, it was found that 38 of the 71 ride conditions would be classified as uncomfortable, with the degree of discomfort increasing as the value of the discomfort index increases. Examination of Figure 1 may also give the impression that the noise

component of discomfort would be totally acceptable for all ride conditions. This, however, would be erroneous. The reason for this is due to a fundamental interaction between noise and vibration discovered in the course of the NASA ride quality research and incorporated in the comfort algorithm. The nature of this interaction is such that the noise contribution to total subjective discomfort depends upon the level of vibration simultaneously present in the environment. This means that, for a given level of noise, the noise discomfort index will be greater for an environment with low vibration than for an environment having high levels of vibration. This is important since it means that reducing vibration alone will not necessarily solve a ride quality problem since the crew and/or occupants then pay more attention to the noise. To assess this effect the ride quality meter provides an additional output (DIN) which is the noise discomfort index that would occur if vibration were totally eliminated from the environment. In this case the noise discomfort index would be identical to the total discomfort index (i.e., DTOT = DIN when DVIB = 0). This index is presented in Figure 2 for comparison with the actual noise discomfort indices measured in the presence of vibration. This comparison implies that, even if vibration could be greatly reduced (by a ride control system, for example), the noise discomfort would increase for many of the ride conditions so that, in many instances, the ride environment would still be only marginally acceptable. Achievement of an acceptable environment would require that measures also be taken to control noise transmission into the interior environment. The ability to provide this type of ride assessment is one of the more powerful features of the ride quality meter.

A detailed examination of the effects of individual axes of vibration on the measured discomfort response for Day 1 is presented in Figure 3. Shown in this figure is the vibration discomfort index, DVIB, and the relative values of the single axis discomfort indices from which DVIB is derived. Only the vertical, lateral, and roll vibration discomfort indices are presented since the pitch and longitudinal discomfort indices were relatively small (see Table 1). These data indicate that roll axis vibration was the dominant contributor to vibration discomfort for many of the ride conditions (4-14, 32-37, 57-71) and had the least influence at other ride conditions (16-31 and 38-44). Vertical axis vibration generally was the second largest contributor to vibration discomfort followed by the lateral vibration component. Both the vertical and lateral discomfort components exhibited less fluctuation between ride conditions than did roll discomfort. As will be discussed later these results are somewhat different from those obtained on Day 2. Explanation of the fluctuations of the data in Figure 3 and the relative levels of the several discomfort indices must await subsequent analysis of the physical vibration data and identification of the ride conditions by the Coast Guard.

Results from Day 2

The meter output quantities for Day 2 measurements are given in Table 2. A total of 69 ride conditions are given which cover a total test duration of approximately 7 hours. The data presented in Table 2 represents about one-seventh of the meter data obtained and is representative of the discomfort history for the Day 2 testing. The total discomfort index, DTOT, and noise discomfort index, DIN, are plotted in Figure 4 for each of the ride conditions of Table 2. These data indicate that total discomfort remained relatively constant throughout the test and generally did not reach the peak levels attained on Day 1 (see Figure 1). The pronounced dips in DTOT represent measurements made when the vessel was dead in the water. Comparison of Day 2

and Day I results also shows that the discomfort due to noise was higher on Day 2. This is likely due to the noise/vibration interaction described earlier and not to a significant increase in interior noise level. If the vibration levels could be reduced to zero then the noise discomfort index would take on the marginally acceptable values represented by the open symbols of Figure 5. This further illustrate that reduction of vibration only may not be sufficient to achieve acceptable crew ride comfort.

The various vibration discomfort components for Day 2 that most influenced ride comfort are illustrated in Figure 6. These results differ from those of Day 1 (Figure 3) in several aspects. These include:

- (a) Vibration discomfort for Day 2 did not attain the high levels measured on Day 1.
- (b) The dominant component of vibration discomfort for Day 2 was vertical vibration. One Day 1 (see Figure 3) the dominant discomfort component was roll vibration.
- (c) Roll discomfort on Day 2 varied only slightly over the various ride conditions as compared to the large fluctuations in roll discomfort observed on Day 1.
- (d) The lateral component of vibration discomfort for Day 2 was similar to that measured on Day 1.

Explanation of the difference between Day 1 and Day 2 discomfort measurements must await future evaluation of the physical ride data by the Coast Guard.

Summary Comments

It has been seen that the NASA ride quality meter provided a variety of output parameters characterizing passenger comfort within the SES environment. Many of these parameters are unique in that they represent subjective indices of comfort and hence permit direct identification of the particular physical parameters of the environment that most contribute to passenger discomfort. This is not always apparent from analysis of physical noise and vibration factors alone. The ultimate usefulness and/or applicability of the NASA discomfort indices in the evaluation of shipboard ride quality is a matter that must be decided by the Coast Guard after careful correlation of the data contain herein with the physical data characterizing the operating conditions throughout the tests.

C-11

FIGURE ?

FIGURE 3

70 09 RIDE QUALITY MEASUREMENTS - SEAHAWK 50 30 40 Ride Condition Total discomfort, DTOTNoise discomfort (DAY 2) DTOT=DVIB+DN 20 Ŋ 2 က Discomfort Index

FIGURE 4

C-14

RIDE QUALITY MEASUREMENTS - SEAHAWK (DAY 2)

FIGURE G

Page 1-06-4

TABLE 1
TABLE 1
TABLE 1

MERSUREMENTS
NAETER
VESSEL: SERHAWK

CONNTION DISCOMFORT	DISCOME	DISCOME	7 M o		JRT	IMDICES	CES			Ac	1979 J	WEIGHTER ACTION	1	RINS		
TIME DTOT DVIB DNOVE DLONG DRITCH DROLL	9	DVIB DHOUSE DLUKE DPTICU DI	DNOVE DLONG DPTCU DI	DLONG DPCTCH DI	שבחבט שי	اة		DLAT DVER	DVERT	Stok	CP17CF	GROLL	GLOVE CPITCH GROLL GLAT GVERT	ĢV⊌R _T	DEN	
1 275, 215, 0 592 272 14:PI	293 0 315,273	5 CA. 315, D	1315,2N3	273	\neg	-	301.	1,59.	1.950	17:10	1.63.7	1, J.J.K.	ኒኮ07.	60f0"		BPCKING OU!
20:33 227 229 O 120 212 313 1	SIE. 216. 0 PE.E.	SIE. 216. 0 PE.E.	हाट. टाइ.	SIL			. 495	595,	1,12,1	500	1650, 6200	1,1564	4900.	1600.		CRUISE OUT
- वाक	2.25 0 1246 1246	2.25 0 1246 1246	13.10 JANO	1910	_ :	- 1	4110	67.	11.1	CAPI	8860.	1155	.0080	· Lieo.	_	
21.17 1. 10. Jas 18.3 1.13	1. 71, 70, de.E	1, 71, 70, 46	112	3	113		1.7	.59	1.32	11/100	9510	11271	1,200.	Hea.	66.1	
71. 71. EE. 486 Post 9:22	2.86 .33 .17 .	.33 .17 .	.12	-	<u>-</u> -		1.12	.59	1.e.1	21,00.	6 10.	3623	7,700	05 70	1.85	
NI 06, 0 38 4.58 WITH	11.56 0 32.11	11.56 0 32.11	111, 00,	1117			1.4.7	65	1.30	1653	2010	9389	500'	9850	2.01	
19:45 3.16 0 day dale dire	3.10k 2.66 0 .16 .16	11. 31. 0 30	11: 31:	116			1.45	143	11.7	1013	0810	4114		1900	2.14	
1.38 3.00 2.17 .53 .17 .20	2.19 . 53 .17 .	2.19 . 53 .17 .	. 53 1.7	7	96,	\neg	30.	20	1.37	5/100	.62 23.	187.6	7500'	11150.	1.97	
27:30 409 4.09 0 118 1.15 E	409 4-09 0 18 1.15	31.81.0	21.81.0	.15		10	3.30	617	1.21	31.00	11.10	2710	4354	8860,	1.83	
1 31, 06, 70, 252 5.85 CX:85	3.33 3.25 ,09 ,30 ,15	3.25 107 130 15	30, 06,	. 15	극	_	د//ي	65	1.30	509	ניום	1380	8900.	25 60	11.5	
11. 19. 60. CHE 348 11. LE	31.81. 60. 34.81.8	11, 11, 80, 31	91. 81.	16		1	1,10	. 63	1.25	11,00	C 810.	81911	71,00	58,60	1.94	
30.06 4.34 11 31 0 11 11 13 3	1.31 1.31 0 1.17 1.13	31 0 .17 .13	.17 .13	.13	\neg	(0)	3.60	15.	1.17	51,00,	1.510	1633	95001		31.18	
31:51 4.09 4.09 0 1.31 1.16 3	41.09 C . 31 .16	91, 15, 0 10	जा ह	9		CO)	a.30	رواد	1.33	8120,	510159		5812 ,000b	Carca.	41.5	
33:35 445 4.45 0 35. 36	445 41.45 0 32. 40	0p. 2c. 0 st	00. SE.	900.		101	31.6	1.1.	41.	1/500	18101		15580,00716 DESE	Hiter	7.17	
11. KI. 11. "2.1 166 11:35	, גוי ווי, יזפיו וביב	, בוי ווי'	۲۱.		917	- !	53	777	18.	ENGO	68.83		5930,4565	11.00	1.40	
37." 181 .83 Libe .157 111	1.87 1.83 1.66 1.07 .	1.66 157	157	-1	=			61,	157	(t.8.c)	5.610	7,50	Chao.	5970	1,39	
ा २०४	1 87 167 KUE	16'8 13	119	4	7,7		. 17	117	- 35	28.00	7000		PE34. 5194	1510	1.12	
ユ	1.54 114 , 10 .05	20. 01. 111	20.	-	9		7	2	14.	1807	०।	5001	2,120	-2010	39.	Turits
11, 110, 72, 02, El.1 8c.92	1. 1m, 72. dZ,	1. 1m, 72. dZ,	1 10 1	_	目		=	130	.33	7100	MOKA	77.7.7	9300:	171,917	٤	
81. 10. 21. 99, 31, 10.112	1. 10. 21. 11.	1. 10. 21. 11.	101	-	<u>8</u>		81.	QJ 1	,59	6500	हें उस्ता		1900, 6900	5800	0,	
55.116 1.55 1.01 27 .07 38.1	1.55 1.01 1.57 1.07	1.01 .54 .07	.07		0,0		17.	12	50	Tear	8500	3,101.5	1,11,11	न,तक	38	
11. E. ols. 30.1 Pill	11. E. ols. 30.1 Pill	11. 61, als. Ac.1	111 611	7,17	11		123	151	32.	(C. 2).	1910		0912 ACS	Ehio!	85	
52. 61. 81. 801 921 11:12	150 138 18	1:0% 118	\dashv	CE C1.	<u> </u>		ماد ر	14.	.63	277	एक्टन सन्न	नद्वा ।	17.00.	Lela	3	
121 126 35 105	30, 35, 101	126 35 105	50.		10,		- 5	-9	120	4015	1.690.	Mago	1700	AC:00.	.35	
121-180:125,127:101:131	150 175 61: 1011	150:175,121:1	1:03	_	_131_	ı		50	٦,	FICTO	, ומין יי	וויטצוו	מויספין מאנטין ונפטון? ויומין בוכטי	1,00-13	50	

NASA-Laugley Form to (AUG 1965)

TEST DATE: 1/30/85 (DAY)NASA RIDE QUALITY VESSEL: SEPHAWK

Page 206"

MEASUREMENTS NAETER

	ځ	2															į	7			F	6141			
	CUMMENT	TURNS																	ALL STOP	5100	The exect.	ונפו			
	UIL	.54	.55	ρ <u>γ</u> .	Ch.	٦,	.58	1.19	11.5	د. د.	2.27	2.19	21.2	\$	%	Ŋ.	ج.	\$	0	၁	ئا				
																					ne Report				
RINS Level	GVUR	1,110.	5010	5110.	87.00	0901	5110	59ea	75 ld	9510	16101		6110	STO.		11,00	9500	7500. 2000 81.80. 5800.	1,500		2 MINUTELI OCHRILT				
	GLAT	6900	07.00, 4270,	9900	2000 Brro.	£1.00°	1.05.27 1.05.27	25th 1078	21.00	8 100.8551	4500	135 003A	3 736 65 30 BES	1,500.	7800	1500.	21,00	9500	7 100 2110 3000		30 1.5				
WEIGHTER GLERATION	GROLL	(91,2	75,0	1,011		1,950	83°Q		X558		11/11	_			11.167	1779	41160.	81.80.	371.0		7				
MCS GLER ATION	GLOUGGPITCH GROLL GLAT	81.00	1810.	Tied	7,960 8100	1510	1,110	द्वारता	45 EU	₹110°	5310	9510, 31.00	1111 01 15500	Crear	791.11 0500, 11.100	7779 JOGE 2779	21.001 MIP 0. 04100, 11100	£300	3000°		الا الا		<u> </u>		•
20	Glore	,000,	Cedo .	JE 00:	8100	9107	Disco.	(A/V)	1100	וינטטי	E 800	31.00.	2003	0033	1.100.	6190	1,100	9100	7,000		2 2				
																					3				
	OVER	175	16.	% %	15.	راء ا	.75	1.38	<u>5</u>	16.	68	16.	.29	173	138	λÇ.	35	011	₹,	.18	FURBONOXITY OF				
	DLAT OVER	155	9	. 57	.58	166	.53	168	,38	611.	32	Se	J J	-117	97,	1,7,7	181	11	4	56.	חנישו				
CES	DPITCH DROLL	.93	ec	Ger	<u></u>	.17	.17	1.51	1.39	1.8	a 03	(ç	1.56	28	.18	61.	55	97	900	16					
MOICES	DPTCU	<u>ر</u>	=	617	55	.13	ů.	1,1,	٥٤.	.13	13	ر. ري	0	9	10.	90.	901	107	11.	<u></u>	INTERROPTED				
) RT	שוחם	2	01:	113	901	.05	91:	19.1	9	.13	=	. 18	٦,	611	101	10	10	50,	eo.	7	3				
1SCOMFORT	VIB DHOUSE DLUKE	Ş	-35	55	33	.33	13.1	١٩.	28	36	6-	1.83	56	18.	.39	511,	01.	1111	0	0	1007				
DISC	DVIB	1.15	91:1	1.37	96.	96'	.15	3.17	3.1	3.05	3.23	वहा	2.13	9	66'	1,91	1.06	.75	09,	811.	28.				
•	CTOT	6.1.	1.49	193	1.97	66.	011.1	3.29	3.99	3111	3.11	309	3.04	7117	1.38	1,0,1	91:1	61:1	071	8 H.	eTeR				
3/2		\$1.59	08:89	11:51	15:22	18:51	25.48	85:57	87:27	13.51	4.32		163:37	107:08	111:40	115/13	113.44	11:00	1.0:91.1	<u>इस</u>	Σ)			
COMPINE		3/6	22 6	28 2	23	30 7	31 8	33.8	33 8	311.5	35.9	36 100:04	37 11	38 11	37 11	110	17	4/8/1	13	=					

HASA-Langley Form 10 (AUG 1969)

NAETER MERSUREMENTS TABLE 1 RIDE GUALITY TEST DATE : 1130/85 (DATI) NASA VESSEL: SEPHAWK

Page 3-of 4

	COMMENT	MeireTim	(रेट}रूर ⊤					METER TIME	Relet																
		5	٦.	1.21	1.37	1.35	1.10	1:41	1:32	119	1.64	1,05	1,63	72.2	11.5	11.2	2.31	2.30	2:37	2.20	<i>§</i> 07.2	1.0.2		İ	
																				!			İ		1
5	GVURT	2510,	211101	8/10	71117	ड्राक	21,10	1,610	हाक	1510	1510	7610	11,10	alco.	7610	51,10	प्रदाता	1510	4310	15101	5419		•		
R RINS	GLOUGGRICH GROLL GLAT GVERT	200	8900		aí'do,	20073	01700, 1410C.		10013	A 100 18 C.	31,00	38.70	3110	11:00, 01:211,	28130016			11565 1032	1152 2011	11.00	3500				1
WEIGHTER GLERATION	GROLL		.30%	0800, 8466.	1634	1,1100	14,95	1900. Nace.	12.42	333	1785	t the	1935	0611		01.00,83PL 3PLO.	4 40 840 840 8X00		251	2830 00.79	2338				
WEIGHTER ATION	SPITCH	886 700 2000	8990, 5702, Buch	1,050	9150,	1,119 1110.	,015?	1,680.	, ८६। व	1,1110	17.17	3 5 101 9500	5.510	1000	0110. 0500	SHO	5300	0010, 5500	1010	वात ।	12.10				
Acs	GLOK	16.50 1	.0631	600	CH 30	9000	600,	1,800	1100	1,500	01,00	9500	Czgo	2500	05'00.	المناح	ויפסס	2500	II.cm	1:02:1	45.03				
	DVER	45	88	d.	95.	٠.	1.00	33	01:	73,1	35	1.0	1:01	الما	1.15	1.0.	40'	23	1.0.	Ξ,	. <u></u> .	1.			
	DLAT	.80	į	Lat.	78	101	.78	.7.	69	180	वव	مالاد	, ૧સ	رعار	181	16	الخد	33	69	167	15,	120			1
CES	DVIB DNOVE DLOVE DETCH DROLL DLAT DVERT	59	817	18,	53	ع ا	17.	18	511	08,	150	95	9	1.8-1	2.12	3.03.	3.0E	1.86	71	1.5	1,29	1.13			
IMDICE	שנתכח	5 1	11	113	5-	. 13	13	20	77	12	-15	7	413	13	9	.13	70	901	51	.13	77	J.			Ī
17	ואחת	=	=	511	81	60.	51	গ্ৰ	116	Ŧ.	517	51	15	187	-19	15	80.	100	2	5	Ξ	9		<u> </u>	
SCOMFORT	BOON	£,	ابرة	.50	ا5يا	83	=	,59	119	35	96	131	,57	10	0	.03	=	133	ee	112	73	08			
2186	DVIB	180	3.18	90.	1.73	1.33	1.97	130	2.72	.97	1.2	1.1.e	708	3.34	1.19	344	3.30	3.48	3,12	11.6	9.16	J. 67			Ì
	DToT	20.7		2,10	2.31		85,6	3,15	1	273	A.17	3.68	H 9.18	3.4	4.19	3.17	3.4	2.27	334	3.18	288	A.82			Ī
7 2	1,40	52:50 207	55:28 2.43	59:00	52:33	50: 47	141:89	0	1,21	71.9	9:43	51.51	11.11	7111	25:37	60.PC	34:22	38:52	13:17	112.11	53.10.	78:35			
COMBRION		5 51	ع ال	3 24	17%	113	50	5	54	53	5.1	3	36	5	28	59	Lat	19	۲,	63	1.9	59			

HASA-Langley Form 10 (AUG 1969)

RIDE GUALITY TABLE 1 130185 (DATI) NASA VESSEL: SEPHAMY TEST DATE

Page -1Lof4

MEASUREMENTS NETER

COMPERT 2,20 75.5 2.34 2.4 2.26 21.60. 2750 GLOW CATTCH GROLL GLAT GVERT 21150 3800 0015 2110 2500 1250 13 400 6224 c1261 530 88.50 5 200. Add2. 0810. 0200 111.01 CTOOL 4816 . 8010, 520. WEIGHTER RMS ACGULERATION LEVEL 8400. 4511. 9110. 1700. 1700 1150 1810 11500 1.56 TIME DTOT DVIB DNOVE DLOUG DPITCH DROLL DLAT DVERT 1.33 1,73 153 1.3% 17.1 01. 1971 31. .75 79 . ص a:01 2.65 111.18 2.34 1.00 IMBICES , 15 7 . 15 GE. EL BEE 02.8 13:00 40 2 ,26 2 17. DISCOMFORT त ८१ 3.50 105:12 4.26 U.26 01.12 11.70 11.70 4.08 41.08 47.49 4.96 4.96 81:16 3:12 78.37 COMBRION 69 10 7/

MASA-Langley Form to (AUG 1969)

Page 1-063

THEST DATE: 1/31/85 (DAYS) NASA RIDE QUALITY
VESSEL: SERHAWK NASTER MERSUREMENTS

COMPITION	100		DISC	COMFORT	ORT	INDICE	ICES				Acç	METERATION ACTION	PTH:	i	RINS		
	1,40	OTOT	DV1B	DNONG	DVIB DNOVE DLUK	ВРПСН	OPITCH DROLL OLAT DVER	DLAT	OVER		Store	PITCH	GROLL	GLAT	GLOW GRITCH GROLL GLAT GVERT	DIM	COMMENT
	135	106	75	1110	9	ולוו.	101	1.80	120		F000	2010.	5010	1,000	Oraci	1.50	
ro	31.01	1.10	1.10	0	Leo.	135	179	918	801,		11/2/1	יווייטי	11110	1.100	6500	2.40	
3	11:27	17.	13	0	710.	35	200	356	1.50.		100	0510.	1177	11.00	1,500	0	
4	18:34	.94	69	35	,036	190	123	we,	428		:100	orear	3170	HOO	0062	£.	
ß	20:56	96,	96.	0	. 066	131	1333	15211	01/13.		0000	6210	14 60	0100	1.000.	0	
ģ	15:31	.75	.75	0	560'	080	175	583	1117		0100	5 600'	PLIC	1990	3600	0	
:	91.22	3.16	2.65	151	51,2	255	_	133.1	1.0.1		H1, 00	2110	1 5 L	011	6800	11:	
V	271:11	9.18	9.56	69.	305.	.197	orl,	8115	- -			8000	ושני	6600	1600	26.2	~
7	11.86	271	2.37	,51	নে .	11.0	1:19	123	1.1.7		00le/c	8860	33	2000	5100	1.96	
9	04.66	3.15	2.73	. 43	.355	296	och	.703	1.13		3 200	1.1.60.	1307	0800	0330	2.16	
_\$	1:15	186	3.40	181	986,	61.	91.1.	1,8	1.31		11,00	Jeeo.	1366	0010	45CV'	2.11	RESET TO
7	5.15	3.22	2.73	119	395	₹9°	BPH.	F%.	191		, 400t	1000	112.11	2010	1,080	2.34	
Ş	1:38	298	8.54	144	10.	86	413	1,8	1.51		_	27.50	1391	0010	5810	1.18	
Ξ	111.54	2.93	द्व ह	30	13.1	12%	36,	100	51.1		2 800	10314	1265	0110. 20111	9/10	1:12	
Ĉ	01:00	2.87	2.15	72	L'C'	7	811	717.	17:-1		0900	lieo'	1151.	28.8	0540	1.84	
9	21:56	.52	S.	0	201	10.	Ξ	25	35		1000	1,000	31.50	01,00	2500	d	
5	1,0.80	٠40	아	9	101	90	La	1,6	21		800	3900	£180	1033	1,100	0	
80	67.85	33	9.59	وم	38	Je.	156	187	1.50		0/,00	0100	1.1/1.	0010	7860'	21.2	61
Ξ	73:1b	3.30	3.60	09,	30	96	.53	01,	15.		51,00	0 336	1,57	2)010.	6860	Oh 2	
30	20,17.	3.41	29.6	.73	.33	3.5	59.	30 30	1.5.1		1800	H),€ 0.	1853	,6010	مردم	9L.2	
re	13.33	305	258	11	38.	46	مار	181	15.2		51,00	1.450.	13:21	5.710	Laco,	2,05	
77	3:30		1.71	1.16	20	. 13	139	63	1.03		1,1,0	91.10		1336 0079	46101	2:30	Actor To 0
13	15:07	114.0	2.1.6	50	96.	.38	53	1.0.1	136		1000	01.3%	219	11.75	15850	1.93	
3	26.26	a. 17	4	56	38	000	16.3	121	1.29		2000	2520	1771	8,719	54.77	2.06	
35	25.46	मराट	1.90	1.34	12	=	B14.	1,0	1:15		ND 5 W	6119	153	\$1,00	600	2.75	2

MASA-Langley Form to (AUG 1969)

TEST DATE: 1/31/85 (DAY) NASA RIDE QUALITY
VESSEL: SERHAWK NETER MEASUREMENTS

Page 2 up 2

																			•	ار در ارد ارد ارد ارد ارد ارد ارد ارد ارد ارد ارد						
	CUMPENT																			MINING WE	ENGINES	Sangeres				
	UID	11.5	₹.5	2,00	7.37	٥٠٥	1.85	2.73	42.5	2.43	2.13	2.5	46.1	ري و	2.53	2,42	2.08	2.28	197	2.25	0	2.31	2.01	1.9	2.46	72.2
ر کا ک	GVURT	12101	8410	0182	6110	9510	91.10	1510	8510	01 10	101101	1310.	6510	1010	16101	1810	0710	1510		1510	6107	L	21.60	3550	0336	2360
RENS	-	01,00	900	2006 %	0036	1,500	.0052.	51.00	3110	4059	7.500	,0047	1001	050)		8 8120		9500	11100	~	83,00'	0153			9210	5260, 0313 1919 10139 12363
HT60	ROLL	15.87	1977	11.11.1	1507,0036	1673	7000	1,181	1865	1850	141	1675	1189	2100	11 85	9611.	118779,00117	11118	1813	('88)	64.10	2010	nere	1.Poc.	21.15	1013
WEIGHTER ATION	PITCH	6810	7,1110	יטוטי	_	8810	10128	اجهاه	4710	1,080	21.10	ב ויום	171,10		2,560	1910	2000	2510				78116	1210 JEAC. 050'0,	951.0	153	0313
Acc	GLOUGGPITCH GROLL GLAT	0050	11,00	100,16	1110, 0500	81,00	1597	SES 20122	5092. DILL	1000	2110,010	3636,0115,1675	וויריוני	1653 .0221	14 00, 38 11, 6,560, 4800,	00'11	וויסס	1200	0 510, 8800	1.610 1200	1,103	5 210, 000 Jon 18 200	WIO ,	1,100	0076 0153	0800
			•);	-7			- 3	7			Ţ	7												
	VERT	108	19	100	77.7	76	30	.87	195	1.07	×	22	1,2%	33	83	17	يع	186	·	112	35	851	1.99	1.83	87,1	7,11
	DLAT DVER	lai.	35	Ŋ	3	48	91.	39	113	52	9	160	163	1-1	.30	.3.1	17.	.22	.39	स्	4.	1.12	11:1	101	<u> </u>	30.1
CES.	_	15	89	85	117	154	63	9//-	67	روي		55	.33	56	911	64.	1,91	511	19	LOJ.	ณ	173	179	13	176	•
INDICES	OUSE DLULE DETEN DROLL	9	r	15	011	2			14	8	6	51	5	36	8		17	21	51.		9	717	4 14	710	59,	
ייד	מאמין	6	5	81.		5	=	7	91	06,	51	61.	601	12	4	15	611	<u>.</u>		1	1,0,	.33	36	01,	36	_
DISCOMFORT	1 BSION	86	113	95	33	1.53	95	1.76	113	3	5	51.1	I.a.i	151	1.67	1.46	1.09	1.15	911	86.	9	5	,52	601	10.	T :
1800	DVIBON	1.78	1.91	1.72	¥.	1.53	35.	1:31	1.57	181	1.54	1.59	91:10	15.1	TCI	1.33	1.59	1,8,1	1,33	1.47	1,14	3,0	3.29	3.24	3.21	89 C
-	DToT	3.76	3.03	29.68	2.72	306	0.53		299			2.72	\neg	द्	3.18	3,36	8 9. C	69%	3.119	a.75	1.14	3.21	335	3.27	3.3	
1	T.Me	85,06	जात.	13,17	48.33 2.72	59:58 306	56.39 2.53	41:16 3.06	66.681:54	17:56 3.96	72:26 2.76	15:51	81:07 3:18	23.53 3.62	811.38 3.38	87:16 3.36	89:08 3:08	91.40	93:25 2.19	811:1	11111		69.33	21:03		211:30
COMPTION		ا ا	97	1 80	39	ક	7	గ్గ	न्त	3.1	35	36	37 8	33	39 8	3 01,	=	, 7/1	, 511	li li	115	91,	1	- 82 ,		65

VESSEL: SEPHRIWK NASTER MERSUREMENTS

Page 🪣

COMMENT A PITE TIME Reser To 0 DIN 2.30 2.04 2.01 2.74 2.05 80.2 57.7 2.36 24.2 7.7.7 62. 2,00 9 29. مه مه 1.93 2.03 2.26 1250 8.910. 2610 1,510° 1,1,10 07.20 6619 7510 2710 5710 1,050 1.010 1,810 1710, 0100, A181, 2210, 8600 623 00 6200 ESBI. 0810 dala 2180 O(110)[210, 5000, 2011, 0510, 21:00 10: しられかり 121.001 0000 ונשטי 1200 11.00 1500 11.611 1581.0010 1813 10032 10076 5100, 1201. 2510, 8500 13183,005 8500, 0115. 2800 171311 GLOW GPITCH GROLL GLAT 1500 1881 11 50 1000 Merenation Acterenation 97,61 SISS 1954 8027 8981 0780 8601 HHI. 16074 0323 1681 1023 385.130 62.60 61 60 1,017.1 1910 10344 8150 00€0' 109411 15:cm 1210 18101 (S10) 01,00 12501 15007 (X15A Jul 1997 61.00 8500. 25.00 1200 2013 12.00 25.78 10034 OLAT DVERT 1.17 1.03 7.17 501 1 38 35 25 % S 1.07 3 774 , 97 . چ .92 184 3.6 \mathfrak{D} 63 55 28 &. E 54 .56 .53 .53 104 لهرا ,23 .43 ۲e, 5 PG. = 5 DTOT DVIB DNOVED DLOW DRITCH DROLL 65 3 86 7.5 .e. .75 33 5 07. اوا **7**9. E. છુ -.14 13 IMPICES ल 30 415 33 51 .13 , 17 3 رة ا Ξ 55 19 5 7 8 01: 36 113 129 دروا 3 11 ٩ 35 9 119 <u>*</u> DISCOMFORT Ξ. = 38 1.25 1.05 1.03 1.35 1.53 1.63 1.08 30, 1,13 2.95 2.23 35 1.09 lol 133 133 ر% 6 2.68 1.955 88.1 . 5 1.30 1.36 1.98 1.82 1.41 1,76 1:31 89 200 23 1.61 1.38 1.19 81.3 2.16 2.60 3,23 10:00 2 65 2.89 3.06 294 96:24 3.05 15:31 2 15:01 00:00 A 67 3:30 2.53 2.13 13,47 2.97 9.91 10:07 78:06 3.17 27 m:25 2.71 074:53 60 9.37 hh.S1 1. M. P. M. N. 71 \$6:13 45:04 HJ.CI 41:10 83. ft COMPRIME 23 54 8 3 2 69 \overline{z}_{0}

HASA-Langley Form 10 (AUG 1969)

PAGE 1 08 4		Comment	Noiseasin	o b i	->	Nove a		>		-	-		 ,	INXX - Represent Moise			1		OKA - N-Weighter Weiter	1.6461.						
7.5	2000	dlan DNA				11.94 160	11, 877	64.80 ,100	12. 30.02	11.06 .71	17.30 .71	90.86 1.08	68.38 ,83	68.18 183	17.30 .71	68.57 .83	68.59 .83	0000	00 0000	20000	CKON 120	صفض صف	कळ ठाव	2010 Qa	GC (01)	TC OCK
NASH BIDE QUITLITY METER MENSOREMENTS FREGUENCY, ITZ	1000	ALMO ABA ANNO LABA DOSNO LABA LABA LABA LABA LABA DOSNO				.81 72.12 101 93 40 ,71 44 94	10. 623 401 11.52 23.14 (2.3) 401	021. 68.44 Par. 641.27 Tat. 18.81 18. 14.62 101. 12.11	3.76 144 67.75	23.14 .61 13.10 .64 12.00	3 71.59 . 21 11.15 . 46 72.57 . 47 12.53 . 44 69.30 . 71	14. CE.E! 04	12.36 27	00 12 661. 90 13.00 181 13.37 67 12.64 68 18	17.1 18.4 1.30 dr. 1.35 92.4 de. 1.84 18.41 17.30	93. 44, 46, 34.60 84. 44.00	00 19.01 63 49.0 53 129.1 1.1. 1.1. 60.04 68.59	68 38 115 72 12 12 10 18 84 13	20 1100 1 6 12 34 61. 3817 221 21.16 21. 18 21.	50 0000 1.2. 142. 12. 182. 18. 2. 12. 12. 14. 24 Doco	14.10 122 122 1244 124 124 22 22 20 20	CO WAD 15. 83 14 COL 11014 85. 181. 42	25 520 12 12 14 4 15 19 19 19 19 19 19 19 19 19 19 19 19 19	00 2000 La 1680 1.5. 68 M 0000 1000	00. 1200 00 00 10 10 10 10 10 10 10 10 10 10 1	20 15 61 15 10 10 10 10 10 10 10 10 10 10 10 10 10
RIDE QUALITY SIL MERSONEMEN	200	1A DASOG		-		901 21	3.19 4.1	1.83 167 12	84 71156 . 13 72.17	14 1.61.17	1. 1.4. 1.6.	916	C.O. 121.61 71.37 . 606 12.78 . 4.6 72.36 . 71	37, 67,1	1 49 97	199 195	11.3 14.4	16 160	7 67: 3	27 - 32 6	7 17 7 34	7 6.1 1.9	7 7: 1 71.7	7 1.0 63	1.1. 101.	7 55 33
	_	DN350 dl						1,81		.73	13	C1, 56. 0	11. 010).	81 33	1.73 94		152 les	7 31-	171 321	37 57	1.22. 4.9	1.23 121	23 12	14 COCX	17.1. 17.	(3)
Octobe	4	2 den	_			73.43	11.11	1.23.14	10.04	12.40	91.19	92.46	1 71.37	23.00	11. 77.	86.67,	21.67	5 608 33	71.16	2 46.57	01,777		F4 8.4	7000	10:06	0.77
Followith October	13.5	GING BA	-		 	00. Misp	12.19 .90	101 75 117	13.12 21.51	92.14 49	11.59 . 91	49 CH 20. 04.00 PT. PIET	21 501	72 150 - 96	7.1 7.77.	101 1011	77 111.67	1.00 · 1.9	01 - 15 97	4000	1.46.45	01. 31.114 00	1.9 27 5	22 29.22	1000 100	٠, ١
SEA	3	-				281	7	197	44	13	5	7			_	S	00			Ş	č				100	00
	٠	480				112.17	77, 577	24.01 66.99	25 46 Lag 18	36.36 65.78	49 33 4196	52 17 CE 36	11 Carco	35.36 6.20	क्षामा स्थार	33:37 55:66	1,000	=	न्य <u>म्</u>	2	C. 17 45.02	54 .11 000	CF 1 0 77 1.55	57:33 Citt	Z6:17	3.7.7.7 80:19
-	100 E 1000	11.00 €	11.1.1	30 33	3 21.25	11 23:17	8 33:09	10 15 4	7 25.46	× 36 16	1 27.33	10 3 8:33	11 63 11	12 35 M	त्याः स्	111 33:3	15 35 11	37.04	14.86	17 118.43	11 50:20	5.4	55.4°	57.3	7.45	0:19

Dack 3. 0P		(Jumme UT																							:		
27	2000	CIBA DNAK	00000	0000	65.64 50	G C C C C	2020	00000	00 000	11. 111.7	36. 95.	07. 18.42	17. 11.7.51	17: 21-67	. 44 CCC 00	00000	COND. CC.	CONT. 0.0	200	CYCCO (2) 22	00.100						-
TRAKE 3 WASH BIDE QUINLITY MATER DEASONEMENTS FRE GUENCY HE	1000	SING ARA DINS IRA DINSO LIBA DINSO JOBA JOBA BUIK CLOBA JUNE	00 4.6 19 410 6000 600 4.1.16 4.2.16 00 00 Creck Co	Ī		110.12.24	10801 27 1089	74	118 11221 811	- ;	18C CX 11 CI.	14.7 11.69 14.	17.	12.17. 12.17.	112 10221 211	20 0000 46, 42 20 121	112 45.06 34 COM CV	5.2 45 06 37 6238 . 27 6536 . 34 6650	2000000 60 000 311 911911 00	2 1 Carry 22 Arres 0 2	00 (200 20 DAND) 20		;	:		!	
TRIBLE 3 MASH BIDE QUIDIT	200	ISO dBA DNS	20 42.24 00	33 105.06 JAT 18888 39 2000 W	ET - 21. 121 1.E.	3.7 10.71 C.	3 68.01 3.29	27 62.86 . 32 6500	70,77		٥٢. الا	123 2.4	7574	19: 10: 20 18	11. 45 Pu 20	169.20	3.7 6.9.80	7. 23:18 - 27	211 1 1011 5	Ca. 020 1		: 	: :			· : : - :	
		CNO 1801, 26	0 0000 000	2 65.06 3	0 105 64 13'	E 12 201 00	CC 88 30 CC	45.64	4 20.16 . 54	1 9334 -13	77: 65.11	130 10 93 .5%	68 05 117 1191 11 30 11 18		0007	16. Has. Call	00 16:31 00	3 45 Ole 3		ובהבה	מככב		- :		-		-
130/8 5 SEOMOWN	125	UNS LAR DIN	0 6.6.19 11	1 45.64	01 6187 00	7.0.7	C 62:37 00	DO 45.99 433 6564	Par 1944 194	17. 182.51 17	84 1953 1.11 91.59	ET 01.91 ET.	4 19761	15.00 1.01 12.77	00 000 00	40 400 00 45.44	10 (000) DI	5 105 34 00	0000 827 1030 00	20 part 00	ם סכיסט ריים	1 1 1 1	- -			- ! -	1 (MIC 10) 1
	6.3	489	0 0000 68.04 46	11.18:20 000 00 05.14	38 11:51 6000 00	51.5	,0,	31. 32:25 acou	32 85:57 Lete 22 16	33 89:29 6135 T	34 43:01 Lay. 48 . 8	35 46:32 W1 80	8 22 80 40:001 35	1. 103:37 LE 201 12	TO TOUCH BUILDING	37 111 :10 (117 18	7 (184)	118:44 6000	4.2 133:17 GOOC CH	13 126:14 6:1	0.0 0000 -00. 200 Setter 7.7					1	= - - - - -
TEST DATE	Gown Line	Time	3. 4. 2. S.	.87 LY	38 111.	A:21	30 18:54	3. 32:	32 85:	13 89:	3.1 .13	35 46:	36 100	11/103	744 107	37 111	40 115:13	811 11,	1.7)er 8 1,	E /, /,		-	:		.]_	-

VA66 - 25 - 0K - 1		Comments																							
7.5	2000	den Dazi	am 00.	00 00 00	00 aso	24 0000 00	000 0000	000 000	00 0000 00	0.00 0.00	2.18 37	05. do 24	Caro. 00	00 02 V 31	121 68.07 183	16. 81601	171.86 L. 1.1	11, 81.701 491	183	11. 81.09	(11) (20)	0) 1. 19	Ub 70 40		
WAST BIDE QUITLY METER WENEVENENTS	1000	THE GRA DING ABL CAND OSEND ARE LINE ARE LINE	22 acros 00 0878 37 67.46 34 arm 00	00 0000 PE 8580 75,	00 asco 0000 56.119 CE.	437 69.86 24	341 MB7 Ch	415	39 0000 00	31. 40.24 12.	81.34 15. 37 82.18	-45	34 54.64 124 11.91 52 144 1 6P. W. SI	69.62		1.09 71.38 66 1339 169 9284 144 6218	191	07:57	8189 +41 12.50 1201 54.50 821 ECAN PLL 55.21	81.14 44 14.21 Dec. 12.21 date cent	12 11 11 11 51	11. 12. 18. 19. 14.	166 12.27 11. We The		
ASI BIDE ETER IN	200	dan DAS	12 36 30				C1- 3114 EE	SP. 1924			12.78 35	हमा क्यान	1.031	69.111.113	29: 180-27,	13 31 1.	12. Cl. 100 1.20	93 60	Jun (54.57)	44. P. 12.	12. 12.101.42	1.12 36.27 87	97. 1.3.72		
MAST RIDE QUITE	250	DELM DASS	00.000	12. 16.34		EE 133	46.10 33	16.144 34	12.2 42 36 121 6207	15.11.17	11.53 34	6264 J32	411.52	69.69 3 2 49.11 21 3 69.69	711 1.09 17207. 73 12.08 .67 13.55	171.38 66	1038 59	401. 18.11	By real,	alalı CCIL	12:47 33				
	125	SKING AR	127.96 .42	1953 112 65 31 37 12.09	112 84 90 146.15	C1: 64111	11 19 1 410 TO	40.24 St. 19014 34 14101 St. 25.21	40 10 123	13: 81,11,	75 25 119 17.53 37 12.78 39 128 98	22.22 90	06. 01.81.	99. 100.60	71.91 1.69	HH	201 11.01	15 64 117	11.1 55.21	PLA 02.27 5	12:16 1.19	13.68 49 19.21	17. 11.5.1	-	
SEA	(, 3	ABA DN63	d	15.	00 0000	يَن	101 57 161	CLO . CLD	101.	131 6531	1.8. 36.80 11.3	143 6286 13	4.	77.	11:12 63 59 (4:11	JE 37 167.53 173	18 15-87600	41	3852 M. 1911 C. 17	C	1.8: 21. 30	17. 01.10 11.03	12.		-
VESSEL:	Lavoi Tions	Trail	415 52:50 CUDD	416 55:28 10536	00 14 Pr	48 6233 6879	149 - 46'15 66.51	50 (02.11) 21.00	21	52 6.21 15.92	13 611	54 1.43	१०५७। वाहर - इड	156 110 1109 103	J.11 -65	58 0537	59 2000	1,191, 1,512 30	C58E 10)	18.11. 17.EL E9	81, 187 (11.11) 184 118	11. (.) 11	1.1. 57.37		

THBLE 3

1/30/85

TEST DATE

Orce . 4. all . 4.	Connero																			- -
	2000	1)N.21.	19.		10:31.	.50														-
inty intents	0 20	DNIK CLBA	164 66.45	12.	178 (16.59	16 801 401.														; -
THRLE 3 MASH BIDE QUETLITY MATER MERSOREMENTS FRE QUENCY, D.S.	500 1000	11. 11. 12. 12. 12. 12. 12. 12. 12. 12.	73.66 .69 9201	13.00 st.	17. 0627 1.11 38.	16801 401. 123.59 1.64 169.21			 									-	:	-
	0 50	OC 21, PS.	14.86 93.46		18:			i i		<u> </u>	-		-	-	<u> </u> -	1				
c, (*)eThuE	250	81.01 CL	03.17 71.80		139.67 01.				_								1	:		
1130/85	3.5	Scind 181 6 54N	75.75	10.01	12. 18. CO								- +	+						-
	5	480	08.80	25 20	70.14	148 74									-				1	-
TEST DATE	CONDITION CONDIENCES	100 6057	67.50		70 . 18 31	i	19												_i_	: : :

s d 1 3/10	1			CommENTS					Nore			UNXX - Replie react	Noise discorpora		XX 341 VI	OCIENT SENS	dBA - A-waighted	Marie Love												
		5.1	2000	den DNAK					000	00 00	11. 14.00	00° 00.70	106.70 . C.C.	,	17, 2114	18.09 183	- 63 B737	-04. C3.401	004103	ww on	00 1 200	837 8530	11. 11.7.9	12. 84.8	77 8347	11. 21.77	(4) 30 di	09. 01.01	100 180	
. د ا	Zu niiry	1 SUREMEN	1000	CIRA DNIK					41112	00 000	17	11.25 58	85. 67.17	11. 12. 41.	77	12:17 160	24.46 228	12:10 164	13.4	ממטוטיים	00 100	7416 28	11.1.7 8 1.7 15 1.1.	11. 30.51	ī	41. 01.61	21. 1974	10011	1300 1000	
TNBLE	MASA BIDE QUALITY	MELEK MENSONEMENTS FREGUENCY NE	200	dan Duss dan Dwsk dan Duik dan Dusk		\ <u>`</u>			0.7 7.0	C1. 7.1	131 1181,	06.44 82, 26.11: 04. 16.61	12.24 1. 100 1 1. 188 100.10	12 61 00 15el	1247 24 7234	04, 92.61	2253 154 24.46 228 68.68 283	11 W. S. 4 12816 LA 101.83	361.01 811. 2401	000	7777	04. 1E.C.	13 12021 146	11.80 .5.1	" " " " " " " " " " " " " " " " " " "	1.19 13.08 62	Ch. 19654	12.54 64 12.09	04. [59.42] 440 [00.60] 70. [00.61.	
(5140)		Dellave F.	_	16.0 DNJSP				,	andrea	00 000	1,13	441 503.11	5	. 6.	<u>e</u> S1	10.00		19: 52.11.	,53	00	7.7	1,8,	13.84 213	181 6881 191	-111.	1093 5.9	31.	1.8. 19 1.(,	11140 1.66	
1131185 (ACABA O		125	DNN3 APA DNISS		\			1000	00 0000	111 11.51	11. 1 11.11.	12.82 99 90.62	511 2731	72.82 1.41 12.80	25.1. 11.71.	08 M3 CC	13. 7211.	116.12 1 30 6401	מצעה סם מצה	CASCAS CASCAS	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	16.46 1.30	1.4.1 1.01.1	71.61 1.01 62.12	1460, 130 1943	11 20 109 68.98	21, 130,	31	(AUG. 1969)
	- G		6.3	ARA DNUS			\	\ \	7.5	70	137	101	84	41.7	1.33	.13	:73	-1	191.	0.0	0.00	14	8 4	717	17.7	47.44 113	1,31	111	.52	
Des pare			River to J.	Ine ten	1.135	2 39.01	20:11 E	1 148.37	5 - 92.56 3.00	16. 75:21 GOOD	10 22 Land	8 94.11 66.41	9 (18.49 62.49)	1.97.19 OF PP OI	45.11 24.1 11.34	12 5.15 (214)	13. 1.38 67.84	14 1H 54 LL 216	15 20:16 66:10	16 21:56 0110	CX 174 10.86 LI	18 67.55 14.911	13.87 OLEL. U	20 20 12 62 20	11. 11. 11.	13. 15	23 15 09 45, 28	131 30 36 W. 15.	145 25_49 6141	TWO Log to y Porm 10

3
aR
23
PACE

	90	DNAK	16.	89.	64.	6.8.	//.	.50	95,	νη.	96.	.83	100	12.		091.	<i>IL</i> :	507	٥٥٠٠	63.	11.	717		56.3		57.1
Y NTS	2000	K CLBM DNAK	67.30		164 4432	62.53	.58 67.04		1.5.78	01.75 11.		68.38.83	10019	10.04	72.84 we 72.59 we beng .84	CH 19 85	16:(0)	201, 11941 158 1196117	7.6.8.3	158 10807	17. 81.60 831	רים בננט סם בנט הים מסני הים מססם הם מסס	117 201 13 67 21.80 58 10.00 11	3539 11.	11. 101.4 14	25.1 60.50 83.
TUBLE 4. MASH BIDE QUIDLITY METER INFASOREMENTS OFTANE FREGUENCY, H.Z.	1000	den Duzso dan DNSmalen DNIK	12.67 144	18. 01 44. 48.67 14. GE.89 18.	101 164	11.80 58 68.17		13.39 141 12.94 165.78	1327 147 1920 14 45.78	!	١ - ا	49, 65.	11. 301	11.94 ,58	191 16%	_ [21.52 .58	92, 19.	11.52 .58	85. NOTE	85 03	22 00	85 08	13.18	M C1:00	
DE LYLL MEMS ENCY	- -	1/2 00 C/E		67 74.	166 12 66 60 7209	$\neg \neg$	13.08 167 11.86	11 22	127 33	72.84 66 23.55	146 93		166 7308	TU UN	100 72	59 12 12 160 123	107 71	_	10 24.	15 74.	08.11.00	70 - Oc	17 21	15	22 24	54 1243 42 2131
SII NI ETER REGU	200	dBA !!	13 172.79 169	73.32	12.60	18. 13 al 18.	13.08	13.39	1339	12.24	13 43 - 166	45.67	13.84	72.84	7284	21:01	23.32	. 10 12. 160	93.03	73.33		7 0,000	13.66	17116	04: 15 OF EL	12.13
NII MI	2.50	DNJSB	.03			1	36.	25. 4cli	96	.73	18'	.8	491	315	18	. 1	18:		.81	.64.		0.0	30			59
CETA		18h	2298	1397	21.25	5333	7573	- 1	75.96	192.10	7332	130	11.08	168 59	13.55	0841	73.39	2180	173.40	180	11.33	מססט	11.32	11. 42.119	11.2 169.44	
3(0	125	CINU	59.99	97.40 141 9399	17 .99	32 1.19	28.42 1.53	33 ₹	79-16 1 64 75-96	28 7.6 1.53	715.55 1.17	74.46 1.09 73.08 .81	11.26 1.07 11.08	21.90	78.KM 1.53	55 153	91.19	1.03	15.23 1.17	01: 10	15.13 1.19	2007	11.0			90 12
SCOMUNIS	<u>-</u>	Scind AR LING	73.55	73 77.4	12.19	1.10 9539 9.19 13.33	186 48	18.CC 48.	8.4 79.1	.73 28	.217 119.	19.	47 74	97 13.07	173 78	97 1855 153	1.23 9246 1.19	18.1 02 11.03	17 15	12.21		000		9.2 [13.1]	TT. 12.20	90 127 77
3	(,3	ARA DA	16. JEP4	67.15			}	4.86		19.19			<u> </u>	- 1						18. 11.18	_			-1		12. 52 1.989 197
F1. :	3	1,6	20.58 69	36:14 6'	4319 68119	18:33 70:73	52.58 6849	54.29 68.98	1,0801 98.10	7 8130	35 10 48 61	12.20 05.61	15:51 49.35	26.09 (09.18	क्षाड्य किया	84.38 1935	87:16 91:23	8134 12818	17. 19 69.11	93.25 66.14	1.40 69 80	62411000	42.17.52	11. 07 E.C. 64	58757 BWIL.	17 62.69
VESS.F1.	RIOG CONDITION		76 7	,	علا	۲,	30	7		33	[36	37	3 6,	3.5	16	1	2	3	4.4		1/4	1.1	> 1	119

ap 3	
4	
PAGE	

Once 3 0.9		Comments																							
		24																							
	2000	WAS GAR DINS GAR DUSSO GAR DINSO GAR DUIL GAR DUIL	6.89.8977	49 83	14. 30	16. 38	17.18.19	56 (66.76 . 60	11. 141.1	190.94 160	17 ,95	12.1 56.19	11. 81.60	99, 06	00, 00	33,60	05,862	36.1 1251 1.35	05,43501 12.	201, 91, 001, 21, 09.80 101, 115 CT 24. (1.1.80) 19. 18021, 18.	60, 62				
TNBLE 4 WASA RIDE QUALITY METER MEASUAEMENTS FREQUENCY, HE	2	NIK dr	117 SS'	73.11 147 11.31 1.58 68.49	51 63.06	.8" 17.59 1.4" 11.33 .66 175.14 is 9.20 1.4" 1820	158 62	58 66	.58 6.	51 100	3. 49 167 JUS 56 4891 791 87	164 21		158 66.70	58 66.90	cs.4) 34.	511	127	34 12	115 66	1579 85	l			
TNBLE 4 WASA BIDE QUBLITY METER MERSUREMEN FREQUENCY, HZ	1000	den lo	71.59	11.31	70.86	92.01	21.31	21.8"	71.38	30.18	70.16	72.21					1.6.61		75 92	09.80	11911				
TNBLE 4 SIDE QUB MENSUR,	00	DNSAO	93.99.47 91.59	167		7.00	11.63 .73 21.91	13.07 50. 12.11. 50. 170.60	91.35 72 DE38	21.26 27. 19.18	167	15.00 51. 100.21	16.7	194 72.08 .81 74.56 .73 7146	10.10 Ta.	8\$ 76 6H 1.30 71.46 .166 711.30 .73 69.71	13 69.97	M. 1867 63. 108.29	.60	166	09'			,	
ISH R RTER	500	dBA		13:11	22, 13 .47	115.14	24.63	12.11	911.35	24.21	73.49	15.00			7360	74.30	171.35	15.30	67253 . 60	1234	09, 19546				
m		DNASO	84 9332 99 20.79 .59	59	133	99	71.16 .61	56. 1	99. 18.117	10.16 159	72.01 73	22. 1927	130 922 12	38	.73	dol.	2	12.	.73	, 145	.93				
131/85 (0442) MAUJK (Octave	r	dan	20.7	\$ 70.35	12.29	91.33	91.16	12.0	9.3	41,0%			02.0	72.08	12.01	21.66	72.53		72.16	1.80	12.94	1		-	
1185 2K	12.5	SKING	<u> </u>	90,	1.39	7 1.4.1	51 94.46 1.09	99.	8119	111 1/0/14	10 15.00 1.01	1.09	3.136			1.30	9 160 1.09	25.12 1.19	₹.	6.	60.	1		<u> </u>	
SEN HAWNE	<u>-</u>	3 d.A.A	133	23 72.166	13.11	170.5	17.1.1	99 1341 99	84 45.12		15.6	.84 71.75	26.39	193 73.82	1/6.8	26 6	19 180	17.7.	89 1366	081.	PH. 87 10		_		
SE	3	- 2						-1	- 1	5.1.5		-	3 ,101				141	1.73	- 1	- (<u></u>		
	,	480	26.97	78:06 71.08	169.35	10 2.1 B	45.36	89:35 69 53	36.87	107.18	96.24 10.2a	99.53 1.8.51	10:31 Vol. 33	צבנין שימו	14.00	00:00	3.30 160	6.07 1070	12.98	16:31	1 to 6. 52				
VESEL	RIDE CONDITION	יוייני פון	K:16	30.36	E11:08	83:19	45.01	69:25	01.16	11. 50	46.24	99.53	10:31	W.01	16:07	00:00	3,30	10.07	9:39	61.71					
TEST VE	6000	7	<u>x</u>	الحرا	. K	, y	S.		57	58	ے۔ اح	00		4	63	وَ	ିନ୍ଦ୍ର	- Pa	3	و	54	L	_		L_L

HATA LONGLEY FORM TO (AUG. 1969)

•