锐骐科技智慧停车场方案(LoRa)介绍

物联网低功耗广域网LoRa应用 解决方案

低功耗广域网LPWAN市场概况

国内市场概况

低功耗广域网络(LPWAN)作为近几年才开始商用的物联网接入技术,**在中国还处于刚刚起步的萌芽阶段。** 根据调查显示,这一市场具有巨大的潜力需求,各方参与者对该行业未来的发展具有充足的信心。

市场虽方兴,逐鹿者已跃跃。

欧美市场概况

低功耗广域网络(LPWAN)在欧美已经有初步的应用。

部分区域低功耗广域网络(LPWAN)的<mark>发展已经初具规模</mark>,产业链也基本成型,可以说,低功耗广域网络(LPWAN) 在物联网领域将会大有所为的发展趋势已成定局。

低功耗广域网LPWAN市场概况

国内LPWAN市场规模预测

2015年中国LPWAN市场整体规模约为 5.474亿元人民币,接入量为580万个;

预计到2020年,中国LPWAN整体市场接入量将达到接近2亿个。

表5: 2016-2020年中国LPWAN行业市场规模预测数据来源: 物联网智库 (www.iot101.com)

中国低功耗广域网LPWAN产业链情况

图2: LPWAN行业产业链示意图

么是LoRa

(www.iot101.com)

LoRa是LPWAN网络的代表性通讯技术

现有的短距离数据传输技术如BLE, ZigBee等虽然功耗较低, 但覆盖面积只 能解决个人网和局域网;现有的长距离数据传输技术如GPRS,LTE等等,在功 耗方面不能满足要求;

以LoRa为代表的LPWAN网络(Low-Power Wide-Area Network), 以超 长距低功耗低速率为特点,在IOT领域需求量巨大。据数据统计,到2020年 ,全球70亿物联网终端中,其中30亿需要蜂窝无线通信链接,而且其中的20 亿终端通信带宽要求在100Kbps量级,而

LoRa技术正是该20亿终端可供选择的方案

LoRa是一种先进的 超长距 低功耗 低速率 数据传输技术

LoRa是一种 开放的 物联网数据传输技术

无须运营商,个人或公司也可以购买LoRa基站,并且自主组网。

LoRa与其他网络技术的指标对比

Technology	802.11ah	WLAN	ZigBee	LTEM	Sigfox	LoRa
Sensitivity	-106 dBm	-92 dBm	-100 dBm	-117 dBm	-126 dBm	-148 dBm
Link Budget	126 dB	112 dB	108 dB	147 dB	146 dB	168 dB
Range (I=Indoor, O=Outdoor)	O: 700m I: 100m	O: 200m I: 30m	O: 150m I: 30m	2km urban 20km rural	2km urban 20km rural	>5km urban >15km rural
Data rate	100kbps	6 Mbps	250 kbps	1 Mbps	600 bps	5,468 bps
Tx current consumption	300 mA 20 dBm	350 mA 20 dBm	35 mA 8 dBm	800 mA 30 dBm	120 mA 20 dBm	40 mA 14 dBm
Standby current	NC	NC	0.003mA	3.5mA	0.001mA	0.0099mA
RX current	50 mA	7 0mA	26 mA	50 mA	10mA	14 mA
Battery ife 2000mAh				18 months	90 months	120 months
Localization	no	<1m	no	200m	no	10m
Interference Immunity	moderate	moderate	bad	moderate	bad	Excellent

LoRa终端设备类别

根据不同的使用场景,LaRa终端设备可以划分为三种类别:

- 单向数据传输
- 定时由终端设备端发起数据传输
- 服务器在预定时间接收数据
- 超低功耗,超长电池使用时间
- 有较长的时间延迟

适用于:依靠电池供电的感应器,如温湿度监测器

Class B – 低功耗 低延迟

- 双向数据传输
- 服务器在固定时间启动发送
- 终端根据指令发送数据
- 低功耗,较长电池使用时间
- 有一定时间延迟

适用于:依靠电池供电的设备,如智能水表

Class C - 无延迟

- 双向数据传输
- 服务器可以随时启动发送
- 终端设备不断接收,随时发送
- 高功耗,较长电池使用时间
- 没有时间延迟

适用于:有电源的设备,如智能工厂

LoRa在IOT物联网中的应用案例

LoRa适合的物联网有:

- 位置固定的、密度相对集中的场景, 如楼宇里面的智能表计、仓储管理、机场管理及其他设备数据采集系统;
- 长距离的、需要电池供电的应用,如智能停车、资产追踪和地质水文监测等
- 位置固定的,覆盖范围固定,郊区野外地区,如高速桥梁灯光控制、智能牧场农场管理等

LoRa在IOT物联网中的应用案例

智能

停车场

RIV锐智 智慧停车场

- ·地磁传感器
- ·无线路由器

RIV锐智LoRa解决方案类型

中型LoRa网络解决方案

- 适用于 100 < 300 的终端节点连接
- -<3KM 覆盖面积
- 适用场景如智慧停车场,物业管理,酒店管理,农场畜牧管理等中型网络。

案例:智能停车场解决方案

RIV LRN-1S 模块

RIV LRG-1L 网关

RIV锐智智能停车场解决方案

RIV锐智智能停车场解决方案

可实现功能

车位引导

- 查看车位占用情况

- 停车时: 系统规划路线并引导用户行驶到停车地点

- 取车时: 规划路线并引导用户达到停车地点

车位监控

- 进入车位后, 非用户驶离停车位, 终端将发出提示

停车支付

- 扫描入场卷二维码, 支付停车费用或 扫描停车位二维码, 支付停车费用

- 通过POS机或是现金支付

RIV锐智智能停车场解决方案

RIV锐智车辆监测传感器

RIV LRN-1

检测精度≥99%

设计寿命10年,实际寿命不低于5年

工作温度:-40~85℃

直径123mm,高度98.5mm

采用防水、防压设计,符合IP68防护标准

主要规格

频率范围	433Mhz、868Mhz、915Mhz
输出功率	+20dBm (100 MW)
电源	2.4V-3.6V
灵敏度	-147dBm
距离	1公里
硬件资源	UART/ IIC/ ADC/ GPIO
它只	φ123X98.5mm
工作温度	-40∽+85°C
功耗	超低功耗, 电池可工作10年

RIV锐智LoRa无线网关

RIV LRG-1

长距离,低功耗,大容量(支持2万节点)容易提高网络容量 自适应链路速度

主要规格

主处理器	高通LTE智能模块
网络	多模式接入:LTE / Wi-Fi / 以太网
电源	以太网供电
距离	5~10公里(非密集城区)
尺寸	250X250X90mm
工作温度	-40∽+85°C

频率范围: 433Mhz、868Mhz、915Mhz

LoRa 性能 输出功率: +28dBm (100 MW)

灵敏度:-158dBm

谢谢