This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

JP2000345299 Biblio Drawing

 \boxtimes

SLIDING PARTS

Patent Number:

JP2000345299

Publication date:

2000-12-12

Inventor(s):

TODA KAZUHISA

Applicant(s):

KOYO SEIKO CO LTD

Application Number: JP19990159347 19990607

Priority Number(s):

IPC Classification:

C22C38/00; C23C8/22; F16C33/12

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To improve wear resistance without deteriorating toughness and to prevent the occurrence of seizure. SOLUTION: The sliding parts are obtained by applying heat treatment including carburizing treatment to a stock composed of steel. The content of C in the surface part is 0.9-3.0 wt.%, and surface hardness is >=63 Rockwell C hardness. Fine spheroidal carbides are precipitated in the carburized layer, and the average grain size of the spheroidal carbides is <=10 &mu m and the amount of the spheroidal carbides is <=40% by area ratio. Moreover, the grain size of >=70% of the spheroidal carbides is <=10 &mu m, and the amount of residual austenite in the carburized layer is 13-40%.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-345299 (P2000-345299A)

(43)公開日 平成12年12月12日(2000.12.12)

(51) Int.Cl. ⁷		識別記号	F I		5	7](多考)
C 2 2 C	38/00	301	C 2 2 C	38/00	301Z	3 J O 1 1
C 2 3 C	8/22		C 2 3 C	8/22		4K028
F16C	33/12		F 1 6 C	33/12	Α	
// C21D	1/08		C 2 1 D	1/06	A	

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出顧番号	特顧平11-159347	(71)出廢人 000001247
(o.c.) Harrier	TT-04 (M. O. T. B. D. (1000, O. D.)	光洋精工株式会社
(22)出願日	平成11年6月7日(1999.6.7)	大阪府大阪市中央区南船場3丁目5番8号
		(72)発明者 戸田 一寿
		大阪市中央区南船場三丁目5番8号 光洋
		精工株式会社内
		(74)代理人 100060874
		弁理士 岸本 瑛之助 (外4名)
		Fターム(参考) 3J011 QA03 SB02 SE02
		4K028 AAO1 ABO6 ACO8

(54) 【発明の名称】 摺動部品

(57)【要約】

【課題】 **靭性を損なうことなく、耐摩耗性を向上させる。焼付きを起こりにくくする。**

【解決手段】 鋼よりなる素材に浸炭処理を含む熱処理を施したものである。表面部のCが0.9~3.0重量%、表面硬さがロックウェルC硬さで63以上である。浸炭層に微細球状炭化物が析出しているとともに、球状炭化物の平均粒径が10μm以下でかつ球状炭化物の量が面積率で40%以下である。球状炭化物の70%以上の粒径が10μm以下である。浸炭層の残留オーステナイト量が13~40%である。

1

【特許請求の範囲】

【請求項1】 鋼よりなり、浸炭処理を含む熱処理が施 されて表面部のCが0.9~3.0重量%となされると ともに、表面硬さがロックウェルC硬さで63以上とな され、浸炭層に微細球状炭化物が析出させられ、球状炭 化物の平均粒径が10μm以下でかつ球状炭化物の量が 面積率で40%以下となされているとともに、球状炭化 物の70%以上の粒径が10μm以下となされており、 さらに浸炭層の残留オーステナイト量が13~40%と なされていることを特徴とする摺動部品。

【請求項2】 浸炭層における平均粒径10μm以下の 球状炭化物の量が、面積率で25%以下となされている 請求項1の摺動部品。

【請求項3】 浸炭層の球状炭化物の平均粒径が、3 μ m以下となされている請求項1の摺動部品。

【請求項4】 浸炭層における球状炭化物の平均粒径が 3μm以下で、かつ球状炭化物の量が面積率で25%以 下となされている請求項1の摺動部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は摺動部品に関し、 さらに詳しくは、たとえばすべり軸受部品、自動車エン ジン用ロッカアームのローラ支持軸、ローラカムフォロ ワ、自動車エンジン用カムリフタ、もしくは一方向クラ ッチ等として用いられるのに適した摺動部品に関する。 [0002]

【従来の技術】この種摺動部品として、従来、JIS S U J2等の高硬度鋼よりなり、表面部にショットピーニン グを施して表面硬さを増大させたものが用いられてい た。

[0003]

【発明が解決しようとする課題】しかしながら、従来の 摺動部品には次のような問題があることが判明した。す なわち、ショットピーニングによる表面硬さの増大は、 靭性の低下を招き、耐摩耗性は向上するものの耐衝撃性 が低下したり、亀裂進展速度が増加したりするという問 題があった。また、使用中に摺動部品が発熱して焼戻し 現象が生じた場合には、残留オーステナイトがマルテン サイト変態を起こし、寸法が膨張して焼付きが発生する という問題があった。

【0004】との発明の目的は、上記問題を解決し、靭 性を損なうことなく、耐摩耗性が向上し、しかも焼付き が起こりにくくなる摺動部品を提供することにある。 [0005]

【課題を解決するための手段と発明の効果】との発明に よる摺動部品は、鋼よりなり、浸炭処理を含む熱処理が 施されて表面部のCが0.9~3.0重量%となされる とともに、表面硬さがロックウェルC硬さで63以上と なされ、浸炭層に微細球状炭化物が析出させられ、球状 が面積率で40%以下となされているとともに、球状炭 化物の70%以上の粒径が10μm以下となされてお り、さらに浸炭層の残留オーステナイト量が13~40 %となされていることを特徴とするものである。

【0006】上記において、通常、摺動部品は、摺動面 に数十~数百μm程度の研磨仕上げ処理が施されて使用 される。したがって、上記においてCが0.9~3.0 重量%となされている表面部とは、研磨仕上げ処理が施 された後の最表面から50μmの深さの部分までを意味 10 するものとする。なお、浸炭層の深さは、上記研磨量に 比べてかなり深く、したがって上記研磨により浸炭層の 性状が影響を受けることはない。

【0007】上記摺動部品において、表面部のCの量、 表面硬さ、球状炭化物の平均粒径および球状炭化物中の 粒径10 μm以下のものの量、球状炭化物の量(面積 率)、ならびに浸炭層の残留オーステナイト量の限定理 由は、次の通りである。

【0008】表面部のC量

表面部のCの量が0. 9重量%未満であると炭化物を均 20 一に分散させることができず、3.0重量%を越えると 表面部の粗大炭化物量や残留オーステナイト量が多くな って強度が低下する。摺動部品の表面部にCが集まる と、ここに生成する炭化物が粗大化するので、実際には 粒径が10μmを越えた球状炭化物が全体の40%程度 となり、場合によっては最大粒径が20μmとなり、そ の結果粒径が10μmを越えた球状炭化物に応力が集中 し、この部分から破壊が生じるおそれがある。したがっ て、表面部のC量は0.9~3.0重量%の範囲内で選 ぶべきである。

【0009】表面硬さ

40

表面硬さがロックウェルC硬さ(以下、HRCと称す る)で63未満であると表面硬さが十分ではなく、耐摩 耗性が低下して摺動部品の寿命が短くなる。したがっ て、表面硬さはHRC63以上とすべきである。なお、 表面硬さの上限は、靭性を考慮するとHRC68程度で あることが好ましい。

【0010】球状炭化物の平均粒径および球状炭化物中 の粒径10μm以下のものの量

球状炭化物の平均粒径が10μmを越えると、粒径が1 0μmを越える球状炭化物の量が全体の80%程度とな り、その結果粒径が10μmを越えた球状炭化物に応力 が集中し、この部分から破壊が生じるおそれがある。し たがって、球状炭化物の平均粒径は10μm以下、好ま しくは3μm以下とすべきである。また、球状炭化物中 の粒径が10μm以下のものの量が70%未満であると 粒径が10μmを越えた球状炭化物の量が全体の30% 以上となり、場合によっては最大粒径が20μmとな り、その結果粒径が10µmを越えた球状炭化物に応力 が集中し、この部分から破壊が生じるおそれがある。し 炭化物の平均粒径が10μm以下でかつ球状炭化物の量 50 たがって、球状炭化物中の粒径10μm以下のものの量

は球状炭化物全体の70%以上とするべきである。 【0011】球状炭化物の量(面積率)

球状炭化物の量が面積率で40%を越えると浸炭層マト リックスの強度が低下するので、球状炭化物の量は面積 率で40%以下、好ましくは25%以下とすべきであ る。なお、球状炭化物の量の下限は、必要な表面硬さを 確保するために、面積率で5%程度が好ましい。ここ で、面積率とは、3000倍で観察した40×30µm の視野5箇所の面積率を各々画像解析によって観察し、 上記5箇所の面積率の平均値をいうものとする。

【0012】残留オーステナイト量

残留オーステナイト量が13%未満であると靭性が低下 するとともに亀裂進展速度が速くなって摺動部品の寿命 が低下し、40%を越えると必要な硬さを確保すること ができない。したがって、残留オーステナイト量は1.3 ~40%の範囲内で選ぶべきである。

【0013】との発明の摺動部品において、材料となる 鋼に施される浸炭処理を含む熱処理としては、たとえば 漫炭処理または漫炭焼入れ処理を施す第1工程と、焼入 れ処理を施して浸炭層に微細球状炭化物を析出させる第 20 理を施すとともに、残りの4個分に図2に示す条件(熱 2工程と、表面部の炭素濃度が上記第1工程で得られた 表面部の炭素濃度よりも髙濃度になるように髙濃度浸炭 焼入れ処理を施す第3工程とよりなる方法がある。上記 第3工程における加熱温度は、上記第2工程の加熱温度 以下であることが好ましい。上記第3工程の加熱温度が 上記第2工程の加熱温度よりも高くなると、第2工程に おいて析出した炭化物の一部がマトリックス中に溶解す るおそれがあるからである。このような方法をより具体 的に説明すると、次の通りである。すなわち、C、H。 を10~17vol %含む浸炭雰囲気中において930~ 30 950℃の温度で3~5時間加熱した後、油冷する第1 工程と、800~840℃の温度で0.5~0.8時間 加熱した後、油冷する第2工程と、C。H。を10~1 7 vo1 %含む浸炭雰囲気中において790~840℃の 温度でかつ第2工程の加熱温度以下の温度で3~5時間 加熱した後、油冷する第3工程とよりなる方法である。 上記第3工程において、C, H, を10~17vo1%含 む浸炭雰囲気中において790~820℃の温度でかつ 第2工程の加熱温度以下の温度で3~5時間加熱した 後、温度を上げて830~840℃の温度で0.5~ 0. 8時間加熱し、その後油冷することが好ましい。こ の場合、炭化物の粗大化を伴わずに、炭化物量を増加さ せることが可能になる。

【0014】との発明による摺動部品によれば、鋼より なり、浸炭処理を含む熱処理が施されて表面部のCが 0.9~3.0重量%となされるとともに、表面硬さが ロックウェルC硬さで63以上となされ、浸炭層に微細 球状炭化物が析出させられ、球状炭化物の平均粒径が1 0μm以下でかつ球状炭化物の量が面積率で40%以下 となされているとともに、球状炭化物の70%以上の粒 50 して浸炭焼入れ処理を施す第1工程と、流動化ガスとし

径が10μm以下となされており、さらに浸炭層の残留 オーステナイト量が13~40%となされているので、 心部の強度および硬さが確保されるとともに、靭性の低 下が防止される。特に、表面部のCが0.9~3.0重 量%となされるとともに、表面硬さがロックウェルC硬 さで63以上となされ、浸炭層に微細球状炭化物が析出 させられ、球状炭化物の平均粒径が10 μm以下でかつ その量が面積率で40%以下となされているとともに、 球状炭化物の70%以上の粒径が10μm以下となされ 10 ており、さらに残留オーステナイト量が13~40%と なされているので、この摺動部品の耐摩耗性が向上して 寿命が延びる。しかも、靭性の低下が防止される。

[0015]

【発明の実施の形態】以下、この発明の具体的実施例を 比較例とともに説明する。

【0016】実施例1~8

SAE5120を用いて自動車エンジン用ロッカアーム のローラ支持軸の素材を8個分つくり、これらの素材の うちの4個分に図1に示す条件(熱処理条件1)で熱処 処理条件2)で熱処理を施した。ついで、各素材に16 0℃で2時間加熱して焼戻し処理を施した後、各素材の 表面を研磨し、その研磨量を変えることにより、表面部 の性状の異なる8個のローラ支持軸を製造した。なお、 上記焼戻しは、焼入れ処理の後、素材の靭性を向上させ るために一般的に行われている工程であるので、図示は 省略している。

【0017】上記熱処理条件1は、流動層炉を用いて行 ったものであり、流動化ガスとしてN,ガスを流量が 4. 5×10-1m³/sとなるように供給するとともに C, H。ガスを流量が0.5×10-4m3/sとなるよ うに供給しつつ(雰囲気中のC, H。濃度は10 vol % である)、930℃で3時間加熱した後、80℃に油冷 して浸炭焼入れ処理を施す第1工程と、流動化ガスとし てN、ガスを流量が5. 0×10⁻¹ m³/s となるよう に供給しつつ、840℃で0.5時間加熱した後、80 ℃に油冷して焼入れ処理を施す第2工程と、流動化ガス としてN、ガスを流量が4.2×10⁻⁴m³/sとなる ように供給するとともにC、H。ガスを流量がO.8× 10⁻¹m³/sとなるように供給しつつ(雰囲気中のC , H, 濃度は16 vol %である)、830℃で5時間加 熱した後、80℃に油冷して高濃度浸炭焼入れ処理を施 す第3工程とよりなる。

【0018】上記熱処理条件2は、流動層炉を用いて行 ったものであり、流動化ガスとしてN。ガスを流量が 4. 5×10⁻¹m³/sとなるように供給するとともに C, H。ガスを流量が0.5×10⁻⁴m³/sとなるよ うに供給しつつ(雰囲気中のC, H。濃度は10 vol % である)、930℃で3時間加熱した後、80℃に油冷

している。

てN, ガスを流量が5. 0×10⁻⁴ m³/sとなるよう に供給しつつ、840℃で0.5時間加熱した後、80 ℃に油冷して焼入れ処理を施す第2工程と、流動化ガス としてN, ガスを流量が4.5×10⁻⁴m¹/sとなる ように供給するとともにC、H。ガスを流量がO.5× 10⁻⁴m³/sとなるように供給しつつ(雰囲気中のC , H。濃度は10 vo1 %である)、830 ℃で5 時間加 熱した後、80℃に油冷して高濃度浸炭焼入れ処理を施 す第3工程とよりなる。

【0019】実施例9~16

JIS SUJ2を用いて自動車エンジン用ロッカアームの ローラ支持軸の素材を8個分つくり、これらの素材のう ちの4個分に熱処理条件1で熱処理を施すとともに、残 りの4個分に熱処理条件2で熱処理を施した。ついで、 各素材に160℃で2時間加熱して焼戻し処理を施した 後、各素材の表面を研磨し、その研磨量を変えることに より、表面部の性状の異なる8個の自動車エンジン用ロ ッカアームのローラ支持軸を製造した。なお、上記焼戻 しは、焼入れ処理の後、素材の靭性を向上させるために いる。

【0020】比較例1~4

JIS SUJ2を用いて自動車エンジン用ロッカアームの ローラ支持軸の素材を4個分つくり、これらの素材に図 3に示す条件(熱処理条件3)で熱処理を施した。つい で、各素材の表面を研磨し、その研磨量を変えることに より、表面部の性状の異なる4個の自動車エンジン用ロ ッカアームのローラ支持軸を製造した。

【0021】上記熱処理条件3は、830℃で0.5時 間加熱した後油冷して焼入れ処理を施す第1工程と、1 80℃で2時間加熱して焼戻し処理を施す第2工程とよ りなる。

【0022】比較例5~8

JIS SUJ2を用いて自動車エンジン用ロッカアームの ローラ支持軸の素材を4個分つくり、これらの素材に図 4に示す条件(熱処理条件4)で熱処理を施した。つい

で、各素材に160℃で2時間加熱して焼戻し処理を施 した後、各素材の表面を研磨し、その研磨量を変えると とにより、表面部の性状の異なる4個の自動車エンジン 用ロッカアームのローラ支持軸を製造した。なお、上記 焼戻しは、焼入れ処理の後、素材の靭性を向上させるた めに一般的に行われている工程であるので、図示は省略

【0023】上記熱処理条件4は、流動層炉を用いて行 ったものであり、流動化ガスとしてN、ガスを流量が 10 3.5×10⁻¹m³/sとなるように供給するとともに C, H, ガスを流量が1. 5×10-4m³/sとなるよ うに供給しつつ (雰囲気中のC, H。濃度は30 vol % である)、930℃で3時間加熱した後、80℃に油冷 して浸炭焼入れ処理を施す第1工程と、流動化ガスとし てN、ガスを流量が5.0×1.0 m1/sとなるよう に供給しつつ、830℃で0.5時間加熱した後、80 ℃に油冷して焼入れ処理を施す第2工程と、流動化ガス としてN₂ ガスを流量が5. 0×10⁻⁴m³ / s となる ように供給しつつ、830℃で0.5時間加熱した後、 一般的に行われている工程であるので、図示は省略して 20 80℃に油冷して焼入れ処理を施す第3工程と、流動化 ガスとしてN, ガスを流量が4.2×10-4m3/sと なるように供給するとともにC。H。ガスを流量がO. 8×10-4m3/sとなるように供給しつつ(雰囲気中 のC, H。濃度は16 vol %である)、930 ℃で5 時 間加熱した後、80℃に油冷して高濃度浸炭焼入れ処理 を施す第4工程と、流動化ガスとしてN, ガスを流量が 5. 0×10⁻⁴m³/sとなるように供給しつつ、83 0℃で0.5時間加熱した後、80℃に油冷して焼入れ 処理を施す第5工程とよりなる。

> 【0024】上記実施例1~16および比較例1~8の ローラ支持軸の表面部の表面硬さ、表面部のC量、浸炭 層の炭化物面積率、同じく炭化物の平均粒径、同じく粒 径10μm以下の球状炭化物量、および同じく残留オー ステナイト量(γR)を表1および表2に示す。

[0025]

【表1】

表面硬さ	.ما	表面部C	联化物 画	炭化物平均	粒径10m以下の球	, D (g)	熱処理	研磨量	専然窓み	ピーリング	
HRC E(IEX)	量(重数	_	(%) 幸)	松径(m)	状炭化物量(%)		松	(88)	(01)	の有無	
1 65.9 1.38	1.3%		27.5	2.48	82.0	14.0	1		1.9	兼	
2 63.8 0.94	0.94		8.8	2.52	78.0	23.0			3.0	蕉	
3 63.8 1.30	1.30		9.4	2.68	85.0	38.0	1		3.0	葉	
4 55.6 3.00	3.00		38.7	9.82	78.0	39.0	1		2.0	誰	
5 55.5 1.31	1.31		21.7	1.91	72.0	26.0	2		2.3	無	
6 64.2 1.17	1.17		13.5	1.84	91.0	27.0	2		2.8	赛	
7 65.6 1.35	1.35		30.1	3.16	89.0	13.0	2	1	2.0	锥	
8 64.0 1.19	1.19		17.1	1.83	82.0	33.0	2		2.9	無	
9 64.5 1.42	1. 42		25.3	2.06	74.0	34.0	1		2.7	無	
10 65.2 1.30	1.30		34.0	3.44	72.0	33.0	1		7.4	無	
11 65.6 2.37	2.37		33.0	5.17	85.0	26.0	1		2.1	推	
12 65.5 1.11	1.11		27.1	2.45	0 .17	28.0	1		2.2	兼	
13 65.3 1.23	1.23		18.9	2. 22	91.0	33.0	2		2.4	鎌	
14 65.9 1.33	1.33		25.4	2.32	7 3 · 0	36.0	2		1.8	群	
15 64.2 1.17	1.17		19, 5	2.33	87.0	37.0	2		2.8	#	
16 64.5 1.20	1.20		26.0	2. 45	6 <i>L</i>	38.0	2		2.7	錐	
		ı									

【0026】 【表2】

HRC 1 61.0	(編) 年 つ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	欠七割十匹	社会10年以上の共	7 R (5)	まがま	1	444	
		数 格 (%)	粒径(4m)	状炭化物量(%)		茶年	(ES)	(km)	の有無
֡	1.02	6.0	2.0	96.0	10.5	3		0.8	有
比 2 61.1	1 0.88	7.0	2.2	. 1.96	10.8	3		0.77	有
3 : 62.2	1.01	7.8	2.5	99.0	9.0	es.		0.85	单
t₹ 4 61.9	9 1.00	8.0	2.3	0.78	9.1	ဗ		0.85	单
5 63.5	5 2.45	40.8	5.5	18.5	39.0	4		0.92	有
9 6 63.2	2 2.73	41.2	5.4	17.2	41.0	4		0.87	单
7 65.2	3, 32	42.2	11.5	20.8	39.0	4		1.01	有
8 64.7	7 3.24	41.8	10.3	21.2	40.0	4		0.98	柜

*【0.027】評価試験

上記実施例1~16および比較例1~8のローラ支持軸 を用いて、次のようにして摩耗試験を行った。すなわ ち、まずJIS SUJ2を用いて自動車エンジン用ロッカ アームのローラの素材を24個分つくり、これらの素材 に図3に示す条件(熱処理条件3)で熱処理を施した 後、各素材の表面を研磨し、その研磨量を変えるととに より、表面部の性状の異なる24個の自動車エンジン用 ロッカアームのローラを製造した。ついで、実施例1~ 10 16 および比較例1~8のローラ支持軸に上記ローラを 取付けてなるロッカアームを自動車用ガソリンエンジン に組み付けた。そして、潤滑油としてモータオイル(1 0₩-30)を使用し、油温を60℃に設定してエンジ ンをかけ、200時間経過した後のローラ支持軸の摩耗 深さを測定するとともに、ビーリング発生の有無を観察 した。その結果も表1および表2に示す。また、表面硬 さと摩耗深さとの関係を図5に示す。

【0028】表1および表2、ならびに図5から明らかなように、本発明品は、耐摩耗性が優れていることが分20 かる。しかも、表1および表2から明らかなように、本発明品は、ビーリングが発生しておらず、損傷抑制効果が、従来品に比べて著しく向上し、長寿命化を達成できることが分かる。

【0029】上記実施例においては、材料となる鋼として、SAE5120およびJIS SUJ2だけが挙げられているが、これに限定されるものではない。

【図面の簡単な説明】

【図1】実施例の熱処理条件1を示す線図である。

【図2】実施例の熱処理条件2を示す線図である。

30 【図3】比較例の熱処理条件3を示す線図である。

【図4】比較例の熱処理条件4を示す線図である。

【図5】実施例および比較例における表面硬さと摩耗深 さとの関係を示すグラフである。

*

【図1】

[図3]

[図2]

[図4]

【図5】

