

MANUEL Kit Z précision BallScrews

Suivi des évolutions

Rédacteur		Responsable X	Qualité	
FBR		FBR	FBR	
Indice	Date	Description de l'évolution		Auteur
0.0	07/09/2021	Création, v1.3 Beta	Création, v1.3 Beta	
0.1	13/09/2021	Update v1.4 Alpha	Jpdate v1.4 Alpha	
0.2	25/09/2021	Update v1.5 Allègements	Jpdate v1.5 Allègements	
0.3	27/09/2021	Update v1.6 Option de réglas Version anglaise	Ipdate v1.6 Option de réglages NEMA Version anglaise FBR	
/	28/09/2021	Update v1.7 Adaptation Vcore-Pro FBR		FBR

Etat	Beta 1.3	Alpha 1.4	V1.5	V1.6	V1.7
Statut	Fonctionnel	Fonctionnel, POW	Fonctionnel	Fonctionnel	En cours
	POC	Artefacts légers Z	Allègement matériel	Réglages NEMA	

Manuel d'installation Kit de Précision

BRS-Engineering

Attention, certaines photos font partie d'ancienne révisions de pièces, cela ne bloque pas le process de montage

Le kit nécessite :

Pieces Imprimées

	V1
Bras broit	X1
Bras gauche	X1
Bras arrière	X1
D. D.C. Dottoiner	X1
R BF_Retainer	X1
L BF_Retainer	
B BF_retainer v2.3	X1
R SFU Bracket	X1
	X1
L SFU Bracket	
	X1
B SFU Bracket	

Wing bottom	X3
Wing top	X2
Wing top mirrored	X1
Caches roulements avant (optionnel)	X2
Bras haut chaine (optionnel	X1
Bras bas chaine (optionnel)	X1

Matériel ·

Matériel :	
SFU-1204	X3
400mm > Vcore300	
500mm > Vcore400	
600mm > Vcore500	
SFU-1204 Nuts	X3
BK10	X3
Roulement 608-ZZ (inclus dans le BF10)	X3
Goupilles circlip 7mm (optionnel)	X3
Contre Ecrou BK10	X3
Coupleur 5-8mm (Fournis avec la Vcore3)/	X3
Oldham coupleur 5-8mm bore	
Aimant 8x3mm	X15
Bille acier inox 6 ou 7mm MAGNETIQUE	X9
Graisseur M6 OU vis sans tête M6x5	X3
Inserts laiton m3 Ruthex	X16
Inserts laiton m2 Ruthex	X4
Inserts laiton m5 Ruthex	X12
Vis pans creux M6 12mm	X14
Vis pans creux M6 20mm	X15
Vis pans creux M6 60mm	X2
Rondelle M5 (optionnel)	X20
Rondelle M6 (optionnel)	X20
Vis pans creux M5 40mm	X12
Vis pans creux M4 20mm	X12
Vis tête plate m4x20 (optionnel)	Х9
Vis pans creux M3 12mm	X4
Vis pans creux M3 35mm	X11
Vis pans creux M3 10mm	X8
Vis M2 8mm	x4

Ecrou hammer/T nut M5	/
Ecrou hammer/T nut M6	X6

1-Installation des retainers haut des vis a billes

Avant montage contrôler le passage des roulements dans les blocs, les pre-inserer avant montage afin de faire le premier passage. Les caches viendront les mettre en butée sur la partie finale, pour éviter d'avoir à forcer en fin de montage, contrôler également le passage du roulement sur le haut de vis

Chaque bloc vient se fixer sous les plaques alu des XY idlers :

Pour les montages non faits, suivre le manuel RR et rajouter la pièce au vissage Pour les montages déjà faits, un désassemblage des XY idler sera nécessaire

!!! Ne pas insérer les roulement 608ZZ maintenant !!!

Insérer deux inserts laiton 2mm

2-Installation des blocs moteurs bas R+L

Couper les axes des NEMA afin que le coupleur 5mm arrive a 0.2mm (lame de cutter) en fonction de vos moteurs ou taille de structure, une valeur différente sera peut-être plus adaptée. Fixez la partie basse du coupler et insérer le spider rouge

Détail pour la découpe de l'axe

Il n'est pas nécessaire de mettre les butées à bille originale, le BK10 supporte la vis et le lit.

Fixer le NEMA sur le bloc, ne pas trop serrer les vis afin de pouvoir gérer l'alignement plus tard. Ne moteur doit quand même ne pas avoir trop de jeu.

Insérer à chaud les inserts laiton M5, CETTE ETAPE NECESSITE UNE GRANDE PRECISION dans les 4 orifices supérieurs, ils doivent arriver à fleur voire légèrement en dessous. Ebavurer l'excédent si nécessaire à la lame de cutter.

Insérer 4 vis M5 de 40mm, prendre le filetage sans serrer.

Placer le bloc sur l'angle de la machine et inserer 4 vis M6 15mm et une M6 50mm, laisser desserré

Fixation m6x20 pour l'alignement au cadre Z

3-Installation du blocs moteur arrière

Monter le NEMA de la même manière que les blocs avant.

Insérer à chaud les 4 inserts M5

Une fois assemblés, joindre 2 vis M6 12mm avec deux écrous hammer sur les trous du bas et serrer en conservant un bon alignement

Insérer en biais et venir positionner les autres inserts à la main, l'opération n'est pas évidente mais faisable! L'utilisation d'écrous en T autobloquants peux simplifier la tâche.

De même ne pas serrer pour les réglages d'après

4-Préparation des SFU + Wings + bras :

Ci-dessus les détails de l'assemblages des wings : Deux sont identiques, une est le miroir des deux autres, Les vis de maintien à l'écrou de la vis a bille sont 3x M4x20, les écrous réciproques sont des M4.

Il y a 4 inserts laiton m3 à insérer par aile.

Les aimants doivent s'attirer, attention à leurs polarités. Les maintenir en place avec une colle type cyanocrylate (Loctite Superglue-3 Power Easy qui ne laisse pas de marque blanche). Les aimants doivent arriver en butée et leur surface parallèle à la pièce ; une absence de parallélisme peut engendre des artefacts sur les impressions

Les aimants doivent être propre, san trace de colle ou autre, une goute d'huile de précision est possible.

Insérer une bille sur les 3 aimants centraux

Le bras vient se visser avec 4 vis m3 de 35mm, par le dessus. Il faudra lui appliquer le montage de l'aimant et des axes de maintien de la bille du lit

Répétez l'opération pour le bras gauche, et le principe est le même pour le bras arrière

Pour le bras arrière même logique, les 4 vis M3 se vissent à travers les orifices dans l'étape suivante.

5-Installation des Axes Z

Retirer les vis des BK10 et insérer ces derniers sur les le pas inferieur de la vis à bille, glisser l'écrou de maintien, le visser mais partiellement (laisser 5-10mm). Pre-positionner desserré, la deuxième partie du coupleur en le remontant au maximum contre le contre écrou de serrage. Insérer le haut de la vis dans l'anneau (sans roulement) des retainer haut. Basculer l'axe pour déposer le BK10 sur la plateforme à inserts du support bas, en modifiant l'angle tout devrait rentrer sans problèmes. Sécuriser le BK10 avec les écrous m5 sans les serrer

Répéter l'opération sur chaque axe

IMPORTANT Contrôler un alignement cohérent NEMA/BK10/Vis à bille/retainer.

Si aucune erreur de montage n'a été fait sur la structure de la Vcore, ou sur l'impression des pièces, ou sur l'insertion des insert m5, l'alignement devrait être correct. Insérer partiellement les roulement 608zz pour finir le contrôle. Vous pouvez jouer sur les jeux des pièces pour y arriver. Une fois que cela correspond, enlever les 3 ensembles et serrer

le maintien des NEMA. Cela peut nécessiter du temps et de nombreuse reprise. PRENDRE LE TEMPS SUR CETTE ETAPE

*Depuis la dernière révision 1.6 des pièces de support (légères différences) des ouvertures obliques latérales viennent aider le serrage des Nemas ; utiliser une clé allen à bout rond.

Réinsérer les 3 ensembles.

Insérer les 3 roulements 608ZZ, utiliser une douille pour forcer la rentrée dans la pièce imprimée. L'ajustement est très serré, il faudra venir forcer son insertion, c'est normal, attention à ne pas abimer le blindage du roulement. Appliquer le circlip à l'aide d'une pince spécifique. S'il ne rentre pas c'est que l'assemblage est mal réalisé, le circlip n'est pas obligatoire mais est conseillé

Un écart est possible entre le BK10 et le support moteur, une marge est faite pour le réglage, cela est donc normal

Serrer les 4 vis de chaque BK10, les coupleurs, les supports.

Visser les bras aux charriots des 3 rails linéaires.

Recontrôler rigoureusement l'alignement de la vis par rapport au montant de l'imprimante, finir le serrage des supports bas dès que les dimensions sont satisfaites

Contrôler une rotation sans points durs, sans déviations trop importantes (Il y en aura).

-Nettoyer les vis a bille avec un chiffon propre et graissez les avec une graisse type HIWIN GS04 ou tout autre graisse au lithium compatible roulements

<u>ATTENTION, les graisse chargée en particules type Graphite,..., sont a proscrire, n'utilisez pas de WD40 (sauf nettoyage), les lubrifiant sec au PTFE sont à proscrire également</u>

-Fermer les ouvertures m6 des écrous à bille avec des vis sans tête ou des graisseur M6

Positionner les écrous des vis en bas, contrôler la montée des bras en décollant l'accouplement du découpleur magnétique, contrôler un mouvement fluide et linéaire, sans point dur et sans que le bras frotte le SFU1204. Répéter l'alignement si cas contraire.

Contrôler le parallélisme des ailes de découplage, les 3 billes doivent êtres en interface des 6 aimants. Une absence de parallélisme viendra au fil du temps déformer par sur contrainte les pièces et compromettre les fonctions.

Les ailes de découplages sont capables d'encaisser jusqu'à 2.4mm déviation circulaire. Cela est largement assez pour des grades C7. Si la vis à bille ou son écrou touchent l'aile, alors soit le Grade n'est pas C7 soit vis défectueuse, soit mauvais montage

Revérifier deux fois les serrages de vis.

Pour la vis arrière, fixer le retainer arrière, il faudra enlever la cornière de droite, la pièce imprimée se chargera de faire le remplacement. Attention à enlever cette cornière uniquement avec la plaque arrière électronique pour bloquer son alignement

4 vis M6x20 avec écrous hammer m6 sont nécessaires, 3 vis m3x10 tête fraisées et écrous hammer m3 réciproques sur la partie haute

Les glisser à l'aide d'une clé alen aimanté.

Contrôler et/ou ajuster la profondeur du endstop Y pour que la distance entre l'arrière de l'EVA n'entre pas en collision avec la barre arrière er le haut de la fixation. Tel quel le volume d'impression avec un EVA Mono 5015 est de 410x410x364

Pour le dual 5015 compter 410x385x364*

Pour le Mod 7530 compter 410x375*

*(en fonction)

ATTENTION: Ces chiffres concernent mon montage sur une 400mm^3

Il est obligatoire de faire vos propre limites et mesures pour les intégrer au printer.cfg de Klipper. La casse de la machine ou des vis a billes est un risque si cette étape n'est pas réalisée rigoureusement. Pour l'axe Z, il est OBLIGATOIRE de modifier la ligne [Stepper_Z] position_max : 364(+-5mm)(votre valeur). Une vis a bille peut littéralement torde le châssis ou broyer les éléments du fait de son couple élevé, L'ERREUR SERAIT FATALE pour la machine ou vos doigts.

Monter les 3 vis a la main pour mettre le lit au niveau de la buse pour contrôles les marges. Une distance de sécurité est prévue pour le Tilt adjust et pour une marge d'erreur.

Vous pouvez fixer les protèges roulement sur le dessus des retainers (sauf arrière) et les visser avec 2x m2x8mm

6-Vérifications finales :

- 1- Contrôler les serrages de vis, nema etc
- 2- Contrôler les alignements, notamment le duo RAIL/VIS
- 3- Contrôles des points durs
- 4- Contrôles de la Propreté/lubrification (Rails + BS) : Utiliser une graisse type Hiwin GS04 au lithium ou équivalent qualitatif.

- 5- Contrôle du câblage moteur, ordre sur les stepper !!!! Si non fait ; casse du système possible
- 6- Vérifier les fonctions moteurs dans Klipper avec « STEPPER_BUZZ STEPPER=stepper_z »
- 7- Contrôle de Z-probe, contrôle du Z position max <-+364mm !!! si non casse possible
- 8- Vérification des Endstops (pannes possible), câblage moteur Gauche et droit
- 9- Revérifier tout avant mise sous tension!

7-Options:

1- La chaine de Lit:

Trois pièces sont nécessaires ; une Chaine 1020, les deux supports imprimés

2- Module HEPA/Filtre charbon actif (Bientôt)

8-Disclaimer:

Le système est conçu pour fonctionner sur une Vcore 3 (vérification en cours pour adaptation sur Vcore Pro) correctement assemblée. Une erreur de montage même légère peut amener à l'impossibilité de faire l'upgrade.

Si les pièces à imprimer sont faites par le client, vérifier les respects des dimensions en sortie d'imprimante. : une mauvaise côte bloquera (+-0.25mm) le montage.

La machine perdra entre 30 et 45mm de débattement Z (en fonction des vis utilisée sur les BK10, de la précision des pièces et du montage) (32mm sur le prototype), valeur identique pour la 300, 400, 500.

Le kit s'installe de la manière la plus simple sans modifications destructives de la machine, sauf axe des NEMA à raccourcir l'ancien système pourra être réinstallé

Ce kit est une upgrade optionnelle, destiné à un public averti et ayant une expérience avancée, son assemblage et/ou sa fonction et/ou sa qualité d'exécution sont a la responsabilité du client et ne sont pas garantie à la vue du grand nombre de paramètres

par BRS-E. BRS-Engineering se décharge de toute responsabilités en cas de mauvais sourcing (sfu de mauvaise qualité et/ou de mauvaise dimensions), mauvais assemblage par le client, ou mauvais montage de la Vcore de base.

Le kit a prouvé sont POC et son POW en contrôles qualité à BRS-E ainsi que chez un client test, Tel quel, la conception fonctionne avec les attentes escomptées

En achetant le kit, ou en le faisant faire par BRS-Engineering vous accepter les CGV ainsi que le disclaimer précédent

10-License:

Attribution-NonCommercial 4.0 International

Cette upgrade s'inscrit dans le Creative commons CC BY-NC 4.0, Tout les droits sont exclusifs à Florent BROISE /BRS-TECH.

Pour une demande concernant un cas particulier seul Florent BROISE /BRS-TECH peut donner l'accord d'une dérogation.

- **Share** copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material
- Attribution You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial You may not use the material for <u>commercial</u> <u>purposes</u>.

Droit d'utilisation, de partage, de modifications, INTERDICTION à l'usage commercial Pour plus de détails, suivre ce lien.

https://creativecommons.org/licenses/by-nc/4.0/

11-FIN

Si vous êtes satisfait du design et de la fonction de cette upgrade, et si vous partez pour la solution dématérialisée sans passer par mes services d'impression, considérez une petite donation symbolique sur mon site web pour me permettre de continuer la R&D, particulièrement chronophage (425h pour cette upgrade)

Merci à vous et votre soutien

Scannez. Payez. C'est réglé.

n _____

12-Divers

Je tiens à remercier Pierre DEVOS, Ami et Admin du groupe non officiel Ratrig FR, qui m'a aidé à tester et valider cette mise à jour

Un merci très spécial à MirageC, qui gere le projet HEVORT, pour ses incroyables compétences en particulier pour le système d'ailes qui m'a beaucoup inspiré.

Merci à ma copine, qui me soutient même avec le temps consacré au projet et au service d'impression 😉