

(ENG) Reward Distribution Model Ver. 1.0

- 1. Introduction
- 2. Assumptions and Terminology

Assumptions

Terminology

- 3. Design
 - 3-1. Constant Decrement of Rewards
 - 3-2. The Basic Concept of Distribution
 - 3-3. Strategy

RewardUnit, R_u

RewardLane

Storing the previous RewardLane

4. Test Case

Simple Result Validation

1. Introduction

Distribution Model Contract ("DMC") distributes reward to the users who have contributed to a token ecosystem. The contributions are measured by how much a user deposited the Contribution Tokens ("CTokens") to DMC. DMC calculates and distributes the Reward Tokens ("RTokens") depending on the contributions. The reward of a user is accumulated as proportionally to the deposited period and the relative portion of the deposited amount compared to the total amount at the moment.

2. Assumptions and Terminology

Assumptions

- DMC has enough balance of RTokens for all users.
- · RTokens are calculated in every block.
- At every moment (block), the portion of distributing RTokens of a user is the same as the portion of CTokens of the user.
- The amount of RTokens that are distributed in a single block constantly decreases every block.

Terminology

- ullet R_b: The total amount of RTokens for all users in a single block. It decrements constantly every block.
- D_t : The total amount of deposited CTokens in DMC.
- R_u : The rate of RTokens that a single CToken can earn in a single block, i.e., $R_u=rac{R_b}{D_t}$.
- R_{user} : The amount of RTokens to be rewarded to a user in the block.
- d: The decrement amount of R_b per block.
- D_{user} : The amount of CTokens deposited by a user.
- $H_{current}$: The current block height
- H_{latest}: The block height when the latest action happens (before the current block)

3. Design

3-1. Constant Decrement of Rewards

- For every block, R_b constantly decrements by d.
- Whenever an action occurs, DMC calculates R_b again.

3-2. The Basic Concept of Distribution

Assuming rewards per block is constant in this figure.

- User's rewards in a block, $R_{user}=R_b*rac{D_{User}}{D_t}$ = $D_{User}*rac{R_b}{D_t}.$
- For instance, at BH:2 (Block Height No 2) of the figure above:
 - The ratio of the deposited CTokens among users: 1:2:3
 - R_b at BH:2: 10
 - R_{user} for each user: 1.66 : 3.33 : 5
- Requirement: for smart contracts, calculating the rewards for all users every block is inefficient. Hence, we let the rewards be updated only when the balance of CTokens changes.

3-3. Strategy

RewardUnit, R_u

- R_u depends on R_b and D_t of the current block, (i.e., $R_u = rac{R_b}{D_t}$).
- To calculate the RToken for each user (R_{user}) in that block, DMC simply multiplies the R_u by the user's deposit amount (D_{user}) as follows:

$$R_{user} = D_{user} * R_u = D_{user} * \frac{R_b}{D_t} = R_b * \frac{D_{user}}{D_t}$$

RewardLane

- Definition: The accumulated sum of all RewardUnit for all blocks.
- At the beginning of every user action, RewardUnit is added to RewardLane.
- When the RewardLane is calculated, we accumulate RewardUnits from the block of latest action to the current block because we may not have any action every block.

- For example, assume that an action updates RewardLane from BH:1 to BH:4.
 - Note that $R_{b,i}$ denotes the R_b at the i-th block.

$$\sum_{i=1}^{4} RewardUnit_i = rac{R_{b,1}}{D_t} + rac{R_{b,2}}{D_t} + rac{R_{b,3}}{D_t} + rac{R_{b,4}}{D_t}$$

• Since there is no action between the last action and the current action, the value of D_t is the same.

$$\frac{R_{b,1} + R_{b,2} + R_{b,3} + R_{b,4}}{D_t}$$

- Since R_b is a regularly decreasing sequence, the equation can be simplified as following:

$$rac{2nR_{b,1}+n(n-1)d}{2D_t}, ext{where } n=4$$

• DMC can directly access the values of $R_{b,1}$, d, and D_t . It can derive n by subtracting the block height recorded by the previous action, H_{latest} , from the current block height, $H_{current}$.

Storing the previous RewardLane

- DMC stores the current *RewardLane* value, referred to as *AssignedLane*, for the user (tx sender) at the end of action execution for future actions.
- Regardless of what the action is or when the action was executed, DMC can calculate the R_{user} as follows:

$$R_{user} = D_{user} * (RewardLane - AssignedLane)$$

• The result of RewardLane - AssignedLane implies the accumulated RewardUnit between the latest action and current action of the user. Therefore, the user can receive the accrued rewards at once.

4. Test Case

Test

<u>Aa</u> User	≡ blockNum	≡ rewardPerBlock	≡ decrement	≡ totalDeposit	■ Global Lane	User Lane	i≣ Action	≡ RewardAmount
<u>admin</u>	0	140	4	0	0	-	-	-
1	10	140 → 100	4	0	0	-	100 Deposit	-
2	15	100 → 80	4	100	0 → 4.6	-	100 Deposit	-
<u>3</u>	20	80 → 60	4	200	4.6 → 6.4	-	200 Deposit	-
<u>admin</u>	25	60 → 40	4	400	6.4 → 7.05	-	setRewardVelocity	-
<u>1</u>	30	100 → 75	5	400	7.05 → 8.175	0	WithdrawAll	[817.5, 0, 0]
2	35	75 → 50	5	300	8.175 → 9.25833	4.6	WithdrawAll	[817.5, 465.833, 0]
<u>3</u>	40	50 → 25	5	200	9.25833 → 10.25833	6.4	WithdrawAll	[817.5, 465.833, 771.66]

Simple Result Validation

• According to the table above, the sum of each user's rewards in total period is equal to the follow:

$$817.5 + 465.833 + 771.66 = 2054.993$$

- Expected Result
 - In the first period, BH:11 ~ BH:25:
 - Number of blocks: 15
 - Starting rewards per block: 100
 - Decrement: 4
 - ullet Total reward in this period: $rac{15*2*100+15(15-1)(-4)}{2} = 1080$
 - In the second period, BH:26 ~ BH:40:
 - Number of blocks: 15
 - Starting reward per block: 100
 - Decrement: 5
 - Total reward in this period: $\frac{15*2*100+15(15-1)(-5)}{2}=975$
 - ullet Total reward amount in the whole period: 1080+975=2055