LECTURES 8/9

IMPLICIT DIFFERENTIATION \$ 14.5

In first-year calculus, functions are defined explicitly, $y(x) = x^3 + 2x + 1.$

For such functions, to find the slope of tangent line to the graph of (x, y(x)), it suffices to differentiate:

y'(x) = 3x2+2

At a point $(x_0, y(x_0))$, the slope of the tangent line is simply $y'(x_0) = 3x_0^2 + 2$.

However, some functions are defined implicitly. A famous $e \times ample$ is: $2^2 + y^2 = 25$,

which represents the circle of radius 5 centered on (0,00).
How to find the slope of the tangent line at the point (3,-4)

One way to proceed is to note that (+3,-4) lies on the graph of $y(x) = -\sqrt{25-2c^2}$. Then the slope is: $0 = f(x,y) = \chi^2 + \gamma^2 - 2S$ $y'(3) = \frac{x}{\sqrt{25-12}}\Big|_{x=3} = \frac{3}{4}$ $0 = \frac{3}{3x} + \frac{3}{3y} \cdot \frac{3}{3x} = 2x + 2y \cdot \frac{3}{2x}$ Unfortunately, this is not always possible. For example; Hedx - x equation $x^2y^3 + x^3y^2 - 2y = 0$ (x). Cannot be solved explicitely for y inthe terms of x. The point (1,4) patisfies (*). How to find dy/dx at the point (1,4)? The idea is to apply $\frac{d}{dx}$ to both sides of (x): $\frac{d}{dx}(x^2y^3 + x^3y^2 - 2y) = \frac{d}{dx}(0)$ not $\frac{2}{2x}$ $\Rightarrow y^3 \frac{dx^2}{dx} + x^2 \frac{dy^3}{dx} + y^2 \frac{dx^3}{dx} + x^3 \frac{dy^2}{dx} - 2 \frac{dy}{dx} = 0$ $\Rightarrow 2xy^3 + 3x^2y^2 \frac{dy}{dx} + 3x^2y^2 + 2x^3y \frac{dy}{dx} - 2\frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{-2xy^3 - 3x^3y^2}{2 + 3x^2y^2 + 2x^3y}.$ Solving for dy/dx gives: At the point (1,1), we find $\frac{dy}{dx}\Big|_{(1,1)} = \frac{-2-3}{2+3+2} = \frac{-5}{7}.$

More generally, if y and a satisfy F(x,y) = 0, then at a point (x_0, y_0) such that $F(x_0, y_0) = 0$, we find the slope dy/dx at (20, 40) by using the chain-rule:

$$dF(x,y) = dO = 0$$

So:
$$\frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy = 0$$

$$\frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y}$$
 implicit differentiation.

Find dy/dx for $e^{xy} = e^{4x} - e^{5y}$. Example:

Set $F(x,y) = e^{xy} - e^{4x} + e^{5y}$, so F(x,y) = 0.

Then:
$$\int \frac{\partial F}{\partial x} = ye^{2y} - 4e^{4x}$$
$$\frac{\partial F}{\partial y} = xe^{2y} + 5e^{5y}.$$

 $\frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y} = -\frac{ye^{2xy} - 4e^{4x}}{xe^{2xy} + 5e^{5y}}$ Therefore:

Question: Find the slope of the tangent line to the $xy^2 + y^4 = 4 - 2x$ at (1,-1).

Curve given by

Answer:

Define
$$f(x,y) = xy^2 + y^4 - 4 + 2x$$
.

Then, our curve is defined by

$$F(x,y) = 0$$

$$0 = \frac{do}{dx} = \frac{dF}{dx} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \cdot \frac{dy}{dx}$$

$$= (y^{2} + 2) + (2xy + 4y^{3}) \cdot \frac{dy}{dx}$$

$$\frac{dy}{dx} \left[- \frac{y^{2} + 2}{2xy + 4y^{3}} \right]_{(1,-1)} = - \frac{3}{-2 - 4}$$

$$=\frac{1}{2}$$

Directional Devivative and Gradient.

Let's say we have

A naive way to define a derivative is "directional" derivative with respect to direction it

$$D_{\vec{u}} f = \lim_{h \to 0} \frac{f(\vec{x} + h\vec{u}) - f(\vec{x})}{h}$$

Problem!!

$$D_{0}f = \lim_{h \to 0} \frac{f(\vec{x} + h\vec{v}) - f(\vec{x})}{h}$$

=
$$\lim_{2h \to 0} \frac{f(\vec{x} + h \cdot 2\vec{u}) - f(\vec{x})}{2h} \cdot 2$$

DIRECTIONAL DERIVATIVES AND GRADIENTS § 146

Definition: The directional derivative of a differentiable function $f(x_1y)$ at the point (x_0, y_0) in the direction of the vector $u = (u_1, u_2)$ is:

$$D_u f(x_0, y_0) = \frac{d}{ds} \left(f(y(s)) \right)_{s=0}$$

Where $\mathcal{T}(s) = (\chi_0, y_0) + su$ is the curve through (χ_0, y_0) in the direction of $\hat{u} = \frac{u}{|u|}$. We use Λ for a unit vector

The directional derivative $Duf(no,y_0)$ measures the rate of change of the function f(x,y) at the point (x_0,y_0) in the direction of the vector u.

• $Duf(x_0,y_0)>0 \Rightarrow f$ increasing at (x_0,y_0) in the direction of u• $Duf(x_0,y_0)<0 \Rightarrow f$ decreasing at (x_0,y_0) in the direction of u

We call $|D_{u}f(x_0,y_0)|$ the rate of change (ROC) of f at (x_0,y_0) in the direction of the vector u.

Definition; The gradient of a differentiable function
$$f(x,y)$$
 at the point (x_0, y_0) is the VECTOR:

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right).$$

Theorem: If
$$f(x,y)$$
 is differentiable at (x_0,y_0) and if u is a vector in \mathbb{R}^2 , then: $\widehat{X} | \nabla f | \cos \theta$ the vertical of u $\widehat{U} | \nabla f | \cos \theta$ and u $\widehat{U} | \nabla f | \cos \theta$ and u $\widehat{U} | \nabla f | \cos \theta$ and u $\widehat{U} | \nabla f | \cos \theta$ and u $\widehat{U} | \nabla f | \cos \theta$ and u $\widehat{U} | \widehat{U} | \nabla f | \cos \theta$ and u $\widehat{U} | \widehat{U} | \widehat{U}$

$$\begin{aligned} \operatorname{D}_{u}f(x_{o},y_{o}) &= \left[\frac{\partial f}{\partial x} \left(x_{o} + s \widehat{u}_{i} , y_{o} + s \widehat{u}_{i} \right) \frac{d}{ds} \left(x_{o} + s \widehat{u}_{i} \right) \right. \\ &+ \left. \frac{\partial f}{\partial y} \left(x_{o} + s \widehat{u}_{i} , y_{o} + s \widehat{u}_{i} \right) \frac{d}{ds} \left(y_{o} + s \widehat{u}_{i} \right) \right]_{s=0} \\ &= \left[\widehat{u}_{i} \frac{\partial f}{\partial x} \left(x_{o} + s \widehat{u}_{i} , y_{o} + s \widehat{u}_{i} \right) + \widehat{u}_{i} \frac{\partial f}{\partial y} \left(x_{o} + s \widehat{u}_{i} , y_{o} + s \widehat{u}_{i} \right) \right]_{s=0} \\ &= \widehat{u}_{i} \frac{\partial f}{\partial x} \left(x_{o}, y_{o} \right) + \widehat{u}_{i} \frac{\partial f}{\partial y} \left(x_{o}, y_{o} \right) \\ &= \widehat{u} \cdot \nabla f(x_{o}, y_{o}) \quad , \quad \text{as announced} . \end{aligned}$$

Example: Find the rate of change of $f(my) = x^2 \sin y$ at (1,T) in the direction u = (1,3).

Answer: Since f is differentiable we have $D_{u}f(1,\pi) = \hat{u} \cdot \nabla f(1,\pi)$ (*).

We have: $\hat{u} = \frac{1}{\sqrt{1^2+3^2}} = \frac{1}{\sqrt{10}} (1,3)$.

and $\nabla f = \left(2\pi \sin y, \pi^2 \cos y\right)$, so $\nabla f(1,\pi) = (0,-1)$.

Putting this into (*) shows:

 $Duf(1,T) = \frac{1}{\sqrt{10}}(1,3) \cdot (0,-1) = -\frac{3}{\sqrt{10}}$ Therefore, ROC is $\frac{3}{\sqrt{10}}$.

Question: What is the meaning of the result of the previous example?

Answer: At $(1, \pi)$, the function decreases $\frac{3}{10}$ per unit travel in the direction of (1.3).

Theorem: The maximum rate of change of a function f(my) at a point (26, yo) is the magnitude | \(\nabla f(26, yo) \], with f(n,y) increasing [decreasing] at the maximum day rate in the direction $\nabla f(x_0, y_0) \left[- \nabla f(x_0, y_0) \right]$.

Proof: Choose a direction re. Since û has magnitude 1, we $\widehat{\mathcal{U}} \cdot \frac{\nabla f(\chi_0, y_0)}{|\nabla f(\chi_0, y_0)|} = \frac{\widehat{\mathcal{U}} \cdot \nabla f(\chi_0, y_0)}{|\widehat{\mathcal{U}}| |\nabla f(\chi_0, y_0)|} = coo_0,$

Where O is the angle between û and $\nabla f(x_0, y_0)$.

0 < 0 < T → Vf(20,y0)

Since $D\hat{u}f(x_0,y_0) = \hat{u} \cdot \nabla f(x_0,y_0)$, we have:

 $\frac{D\hat{u}f(x_0,y_0)}{|\nabla f(x_0,y_0)|} = \cos \theta$ this is the direction $\nabla f(x_0,y_0)$

 $D\hat{u}f(x_0,y_0)$, take $\theta=0$ to find:

 $\widehat{Du}f(x_0,y_0) = |\nabla f(x_0,y_0)|$

this is the direction To minimize Dûf(xo, yo), take $\theta = \pi$ to find: of $-\nabla f(x_0, y_0)$

 $\mathcal{D}\widehat{u}f(x_0,y_0) = - |\nabla f(x_0,y_0)|$

Question: The temperature at a point $(x,y) \in \mathbb{R}^2$ is given by: $T(x,y) = x^2 - 2y^2$

At the point (2,-1), in what direction must one move to cool off at the fastest rate possible?

Answer:

$$\nabla T = \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right) = \left(2x, -4y\right)$$

Since the gradient is the direction where the temperature increases the fastest,

the direction where the temperature decreases fastest $3 - \nabla T|_{(2,-1)} = -(4,4)$

Ans - (4,4)

An important fact:

Theorem: If f(x,y) is differentiable at (x_0,y_0) and the gradient $\nabla f(x_0,y_0) \neq (0,0)$, then $\nabla f(x_0,y_0)$ is orthogonal to the level curre of f(x,y) that passes through the point (x_0,y_0) .

 $\frac{Proof}{(x_0, y_0)}$; Suppose the point (x_0, y_0) lies on the level curve f(x,y) = c

for some constant c, so that $f(x_0, y_0) = c. \text{ We parametrize the level curve by } \{f(t) = (r_0, y_0)\}$ so that $f(r_1(t), r_2(t)) = c. \text{ Differentiating in t on both sides:}$ $\frac{d}{dt} f(r_1(t), r_2(t)) = \frac{dc}{dt} = 0$

(n., yo) f(x,y)=c

i.e. $\Gamma_i' \frac{\partial f}{\partial x} \left(\Gamma_i(t), \Gamma_i(t) \right) + \Gamma_{i'} \frac{\partial f}{\partial y} \left(\Gamma_i(t), \Gamma_i(t) \right) = 0$

 $\Rightarrow \frac{dr}{dt} \cdot \nabla f(r(t)) = 0 \qquad r(0)$

At t=0, $\frac{dr}{dt}|_{t=0}$ is orthogonal to $\nabla f(x_0, y_0)$. Since $\frac{dr}{dt}|_{t=0}$ is tangent to the curve r(t) at (x_0, y_0) , we're done.

The previous theorem has an obvious extension to higher dimension. For example, if F(x,y,z) is differentiable at (x_0,y_0,z_0) , the gradient $\nabla F(x_0,y_0,z_0) = \begin{pmatrix} \frac{\partial F}{\partial z}, \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial z}, \frac{\partial F}{\partial z} \end{pmatrix} \begin{pmatrix} \chi_0,y_0,z_0 \\ \chi_0,y_0,z_0 \end{pmatrix}$, then $\nabla F(x_0,y_0,z_0)$ is a vector (in \mathbb{R}^3) orthogonal to the level surface passing through (x_0,y_0,z_0) F(x,y,z)=0

A special case is when

$$F(x,y,z) = z - f(x,y)$$
. $F=0 \Leftrightarrow z=f(x,y)$

The corresponding 0-level surface is the graph z = f(x, y).

It passes through
$$(26, y_0, 3_0) = (x_0, y_0, f(x_0, y_0))$$
. The vector $\nabla F(x_0, y_0, 3_0) = \left(-\frac{\partial f}{\partial x}(x_0, y_0), -\frac{\partial f}{\partial y}(x_0, y_0), 1\right)$

is therefore orthogonal to the graph of z=f(x,y) at the point $(x_0,y_0,f(x_0,y_0))$. This is not a surprise, as we have already encountered this fact in Lecture 6.

Example: Find a vector tangent to the curre of intersection of the two cylinders $x^2 + y^2 = 2$ and $y^2 + z^2 = 2$ at the point (1,-1,1).

Answer:

$$\begin{cases} F_1(x,y,3) = x^2 + y^2 - 2 \\ F_2(x,y,3) = y^2 + 3^2 - 2 \end{cases}$$

T = n, x n2: tangent vector to intersection curve at P

By the previous observation:

$$\begin{cases} n_1 = \nabla F_1(1,-1,1) = (2x,2y,0) |_{(1,-1,1)} = (2,-2,0) \\ n_2 = \nabla F_2(1,-1,1) = (0,2y,2z) |_{(1,-1,1)} = (0,-2,2). \end{cases}$$

Hence:

$$T = n_1 \times n_2 = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -4 \\ -4 \\ -4 \end{pmatrix}$$

Question: Let $f(x,y) = x-y^2$ and consider the level curve f(x,y) = 0.

What is the geometric significance of the vector $\nabla f(1,1)$?

Answer: " ∇ ": notion $\nabla f(1,1)$ is orthogonal to $\{(x,y): f(x,y)=0\}$ This means, $\nabla f(1,1)$ is orthogonal to the curve $x=y^2$ at (1,1).

√f(1,1) = (1,2y) |_(1,1) = ((,-2)