#### **ALGEBRAIC STRUCTURES**

#### Introduction

- Some sets of numbers, such as Z, Zn, Zn\*, Zp, Zp\*
- Cryptography requires sets of integers and specific operations that are defined for those sets.
- The combination of the set and the operations that are applied to the elements of the set is called an algebraic structure.

#### Introduction



Common algebraic structure

- A group (G) is a set of elements with a binary operation (•)
  that satisfies four properties (or axioms).
- A commutative group satisfies an extra property, commutativity:
- Closure
- Associativity
- Commutativity
- Existence of identity
- Existence of inverse

- Closure
  - If a and b are elements of G, then c = a•b is also an element of G.
- Associativity
  - If a, b and c are elements of G, then(a•b)•c=a•(b•c)
- Existence of identity
  - For all a in G, there exist an element e, called the identity element, such that e•a=a•e=a
- Existence of inverse
  - For each a in G, there exists an element a', called the inverse of a, such that a•a'=a'•a=e

- A Commutative group (Abelian group) is group in which the operator satisfies four properties plus an extra property that is commutativity.
  - For all a and b in G, we have  $a \bullet b = b \bullet a$

- Example:
- The set of residue integers with the addition operator,

$$G = \langle Z_n, + \rangle$$

 is a commutative group. We can perform addition and subtraction on the elements of this set without moving out of the set.

- Application
  - Although a group involves a single operation, the properties imposed on the operation allow the use of a pair of operations!!!!

The set Zn\* with the multiplication operator, G = <Zn\*,</li>
 x>, is also an abelian group.

- Finite Group
- Order of a Group
- Subgroups

- Finite Group:
  - If the set has a finite number of elements; otherwise, it is an infinite group.
- Order of a Group |G|
  - The number of elements in the group.
  - If the group is finite, its order is finite
- Subgroups
  - A subset H of a group G is a subgroup of G if H itself is a group with respect to the operation on G

- Subgroups(cont.)
  - If G=<S, •> is a group, H=<T, •> is a group under the same operation, and T is a nonempty subset of S, then H is a subgroup of G
  - If a and b are members of both groups, then c=a•b is also member of both groups
  - The group share the same identity element
  - If a is a member of both groups, the inverse of a is also a member of both groups
  - The group made of the identity element of G, H=<{e},</li>
    is a subgroup of G
  - Each group is a subgroup of itself

• Find all subgroups of Group  $G = \langle Z_6, + \rangle$ 

- Find all subgroups of Group  $G = \langle Z_6, + \rangle$
- $Z_6 = \{0,1,2,3,4,5\}$  has subgroups
- {0}
- {0,3}
- {0,2,4}
- {0,1,2,3,4,5}
- {0,1,5} -> valid subgroup?

• Find all subgroups of Group  $G = \langle Z_{10*}, X \rangle$ 

- Find all subgroups of Group  $G = \langle Z_{10*}, X \rangle$
- $Z_{10*} = \{1,3,7,9\}$  has subgroups
- {1}
- {1,9}
- {1,3,7,9}

• Is the group  $H = \langle Z_{10}, + \rangle$  a subgroup of the group  $G = \langle Z_{12}, + \rangle$ ?

- Is the group  $H = \langle Z_{10}, + \rangle$  a subgroup of the group  $G = \langle Z_{12}, + \rangle$ ?
- Solution: No.
- Although H is a subset of G, the operations defined for these two groups are different.
- The operation in H is addition modulo 10; the operation in G is addition modulo 12.

 If a subgroup of a group can be generated using the power of an element, the subgroup is called the cyclic subgroup.

$$a^n \to a \bullet a \bullet \dots \bullet a \quad (n \text{ times})$$

Four cyclic subgroups can be made from the group G
 = <Z6, +>.

- $H_1 = \langle \{0\}, + \rangle$
- $H_2 = \langle \{0, 2, 4\}, + \rangle$
- $H_3 = <\{0, 3\}, +>,$
- $H_4 = G$ .

• Four cyclic subgroups can be made from the group  $G = \langle Z6, + \rangle$ . They are  $H1 = \langle \{0\}, + \rangle$ ,  $H2 = \langle \{0, 2, 4\}, + \rangle$ ,  $H_3 = \langle \{0, 3\}, + \rangle$ , and H4 = G.

$$0^0 \bmod 6 = 0$$

$$1^{0} \mod 6 = 0$$
  
 $1^{1} \mod 6 = 1$   
 $1^{2} \mod 6 = (1 + 1) \mod 6 = 2$   
 $1^{3} \mod 6 = (1 + 1 + 1) \mod 6 = 3$   
 $1^{4} \mod 6 = (1 + 1 + 1 + 1) \mod 6 = 4$   
 $1^{5} \mod 6 = (1 + 1 + 1 + 1 + 1) \mod 6 = 5$ 

$$2^{0} \mod 6 = 0$$
  
 $2^{1} \mod 6 = 2$   
 $2^{2} \mod 6 = (2 + 2) \mod 6 = 4$ 

$$3^0 \mod 6 = 0$$
  
 $3^1 \mod 6 = 3$ 

$$4^{0} \mod 6 = 0$$
  
 $4^{1} \mod 6 = 4$   
 $4^{2} \mod 6 = (4 + 4) \mod 6 = 2$ 

$$5^{0} \mod 6 = 0$$
  
 $5^{1} \mod 6 = 5$   
 $5^{2} \mod 6 = 4$   
 $5^{3} \mod 6 = 3$   
 $5^{4} \mod 6 = 2$   
 $5^{5} \mod 6 = 1$ 

• Find all cyclic subgroups from the group  $G = \langle Z_{10}^*, \times \rangle$ .

• Find all cyclic subgroups from the group  $G = \langle Z10^*, \times \rangle$ .

• G has only four elements: 1, 3, 7, and 9. The cyclic subgroups are  $H1 = \langle \{1\}, \times \rangle$ ,  $H2 = \langle \{1, 9\}, \times \rangle$ , and H3 = G.

$$1^0 \mod 10 = 1$$

$$3^0 \mod 10 = 1$$
  
 $3^1 \mod 10 = 3$   
 $3^2 \mod 10 = 9$   
 $3^3 \mod 10 = 7$ 

$$7^0 \mod 10 = 1$$
  
 $7^1 \mod 10 = 7$   
 $7^2 \mod 10 = 9$   
 $7^3 \mod 10 = 3$ 

$$9^0 \mod 10 = 1$$
  
 $9^1 \mod 10 = 9$ 

 A cyclic group is a group that is its own cyclic subgroup.

$$\{e, g, g^2, \dots, g^{n-1}\}\$$
, where  $g^n = e$ 

- Three cyclic subgroups can be made from the group G = <Z10\*, ×>.
- G has only four elements: 1, 3, 7, and 9. The cyclic subgroups are  $H1 = \langle \{1\}, \times \rangle$ ,  $H2 = \langle \{1, 9\}, \times \rangle$ , and H3 = G.
- The group  $G = \langle Z6, + \rangle$  is a cyclic group with two generators, g = 1 and g = 5.
- The group G = <Z10\*, ×> is a cyclic group with two generators,
   g = 3 and g = 7.

- Lagrange's Theorem
- Assume that G is a group, and H is a subgroup of G. If the order of G and H are |G| and |H|, respectively, then, based on this theorem, |H| divides |G|.
- Order of an Element
- The order of an element is the order of the cyclic group it generates.

- In the group  $G = \langle Z6, + \rangle$ , the orders of the elements are:
- ord(0) = 1,
- ord(1) = 6,
- ord(2) = 3,
- ord(3) = 2,
- ord(4) = 3,
- ord(5) = 6.

• In the group  $G = \langle Z_{10}^*, \times \rangle$ , the orders of the elements are:

ord(1) = 1, ord(3) = 4, ord(7) = 4, ord(9) = 2.

### Ring

 A ring, R = <{...}, •, >, is an algebraic structure with two operations.



### Ring

- The set Z with two operations, addition and multiplication, is a commutative ring.
- We show it by R = <Z, +, ×>. Addition satisfies all of the five properties; multiplication satisfies only three properties.

#### **Field**

• A field, denoted by  $F = \langle \{...\}, \bullet, \Box \rangle$  is a commutative ring in which the second operation satisfies all five properties defined for the first operation except that the identity of the first operation has no inverse.



Field

- Finite Field: A field with a finite number of elements
- Galois showed that for a field to be finite, the number of elements should be  $p^n$ , where p is a prime and n is a positive integer.

A Galois field, GF(p<sup>n</sup>), is a finite field with p<sup>n</sup> elements.

- When n = 1, we have GF(p) field.
- This field can be the set  $Z_p$ , {0, 1, ..., p 1}, with two arithmetic operations. Addition and multiplication
- In this set, each element has an additive inverse and that all nonzero elements have a multiplicative inverse (no multiplicative inverse for 0).

A very common field in this category is GF(2) with the set {0,
 1} and two operations, addition and multiplication.



GF(2) field

Addition/Subtraction in GF(2) is the same as XOR operation;
Multiplication/division is the same as the AND Operation.

• We can define GF(5) on the set  $Z_5$  (5 is a prime) with addition and multiplication operators.



| '     | 0 | 1 | 2                | 3 | 4   |
|-------|---|---|------------------|---|-----|
| 0     | 0 | 1 | 2<br>3<br>4<br>0 | 3 | 4   |
| 1     | 1 | 2 | 3                | 4 | 0   |
| 2 3 4 | 2 | 3 | 4                | 0 | - 1 |
| 3     | 3 | 4 | 0                | 1 | 2   |
| 4     | 4 | 0 | 1                | 2 | 3   |

Addition



Multiplication



| a  | 0 | 1 | 2 | 3 | 4 |
|----|---|---|---|---|---|
| -a | 0 | 4 | 3 | 2 | 1 |

$$\frac{a}{a^{-1}} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 \\ -1 & 3 & 2 & 4 \end{vmatrix}$$

Multiplicative inverse

# Summary

| Algebraic<br>Structure | Supported<br>Typical Operations   | Supported<br>Typical Sets of Integers |
|------------------------|-----------------------------------|---------------------------------------|
| Group                  | $(+ -) \text{ or } (\times \div)$ | $\mathbf{Z}_n$ or $\mathbf{Z}_n^*$    |
| Ring                   | (+ −) and (×)                     | Z                                     |
| Field                  | $(+ -)$ and $(\times \div)$       | $\mathbf{Z}_p$                        |

- In cryptography, we often need to use four operations (addition, subtraction, multiplication, and division).
- In other words, we need to use fields.
- However, when we work with computers, the positive integers are stored in the computers as n-bit words in which n is usually 8,16,32,64 and so on.
- Range of integers is 0 to  $2^n 1$
- Hence modulus is ???
  - $-2^n$
- What if we want to use field????

#### Solution 1

- Use GF(p), with the set  $Z_p$ , where p is the largest prime number less than  $2^n$
- But the problem ???
  - It is inefficient because we cannot use the integers from p to 2<sup>n</sup>-1.
  - For example, if n=4, the largest prime less than  $2^4(=16)$  is 13.
    - Means, we cannot use integers 13, 14, and 15.
  - If n=8, the largest prime less than 28 is 251.
    - Means, we cannot use 251, 252, 253, 254, and 255.

- Solution 2
  - Use GF(2<sup>n</sup>)
  - Use a set of 2<sup>n</sup> words
  - The elements in this set are n-bit words
  - E.g. for n=3, the set is {000,001,010,011,100,101,110,111}

#### Problem:

- We cannot interpret each element as an integer between 0 to 7. because regular four operations cannot be applied
- Modulus 2<sup>n</sup> is not prime
- Need to define operations on the set of elements in GF(2<sup>n</sup>)

• Let us define a GF(2<sup>2</sup>) field in which the set has four 2-bit words: {00, 01, 10, 11}.

 We can redefine addition and multiplication for this field in such a way that all properties of these operations are

Addition

satisfied.

| $\bigoplus$ | 00 | 01 | 10 | 11 |
|-------------|----|----|----|----|
| 00          | 00 | 01 | 10 | 11 |
| 01          | 01 | 00 | 11 | 10 |
| 10          | 10 | 11 | 00 | 01 |
| 11          | 11 | 10 | 01 | 00 |

**Identity: 00** 

| $\otimes$ | 00 | 01 | 10 | 11 |
|-----------|----|----|----|----|
| 00        | 00 | 00 | 00 | 00 |
| 01        | 00 | 01 | 10 | 11 |
| 10        | 00 | 10 | 11 | 01 |
| 11        | 00 | 11 | 01 | 10 |

Multiplication

**Identity: 01** 

An example of GF(2<sup>2</sup>) field

A polynomial of degree n – 1 is an expression of the form

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x^1 + a_0x^0$$

• where  $x^i$  is called the ith term and  $a_i$  is called coefficient of the *i*th term.

 represent the 8-bit word (10011001) using a polynomials.

 we can represent the 8-bit word (10011001) using a polynomials.



First simplification 
$$1x^7 + 1x^4 + 1x^3 + 1x^0$$

Second simplification 
$$x^7 + x^4 + x^3 + 1$$

$$x^7 + x^4 + x^3 + 1$$

• find the 8-bit word related to the polynomial  $x^5 + x^2 + x$ 

- To find the 8-bit word related to the polynomial  $x^5 + x^2 + x$ , we first supply the omitted terms.
- Since n = 8, it means the polynomial is of degree 7.
- The expanded polynomial is

$$0x^7 + 0x^6 + 1x^5 + 0x^4 + 0x^3 + 1x^2 + 1x^1 + 0x^0$$

This is related to the 8-bit word 00100110.

- Operations on polynomials
  - Actually involves two operations
  - Operation on coefficients and operation on polynomials
- Hence, need to define two fields
  - What for coefficient??
  - What for polynomials???

• GF(2) and GF(2<sup>n</sup>) is the answer....

Polynomial Addition

Addition and subtraction operations on polynomials are the same operation.

# Polynomial Addition - Example

- Let us do  $(x^5 + x^2 + x) \oplus (x^3 + x^2 + 1)$  in GF(28).
- We use the symbol ⊕ to show that we mean polynomial addition.

# Polynomial Addition - Example

- Let us do  $(x^5 + x^2 + x) \oplus (x^3 + x^2 + 1)$  in GF(28).
- We use the symbol ⊕ to show that we mean polynomial addition.
- The following shows the procedure:

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 0x^{3} + 1x^{2} + 1x^{1} + 0x^{0} \oplus 0x^{7} + 0x^{6} + 0x^{5} + 0x^{4} + 1x^{3} + 1x^{2} + 0x^{1} + 1x^{0}$$

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 1x^{3} + 0x^{2} + 1x^{1} + 1x^{0} \rightarrow x^{5} + x^{3} + x + 1$$

# Polynomial Addition - Example

- There is also another short cut.
- Because the addition in GF(2) means the exclusive-or (XOR) operation.
- So we can exclusive-or the two words, bits by bits, to get the result.
- In the previous example,  $x^5 + x^2 + x$  is 00100110 and  $x^3 + x^2 + 1$  is 00001101.
- The result is 00101011 or in polynomial notation  $x^5 + x^3 + x + 1$ .

#### Modulus

- For the sets of polynomials in  $GF(2^n)$ , a group of polynomials of degree n is defined as the modulus.
- Such polynomials are referred to as irreducible polynomials.

- irreducible polynomials.
  - No polynomial in the set can divide this polynomial
  - Can not be factored into a polynomial with degree of less than n

| Degree | Irreducible Polynomials                                                                                                              |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1      | (x+1),(x)                                                                                                                            |
| 2      | $(x^2 + x + 1)$                                                                                                                      |
| 3      | $(x^3 + x^2 + 1), (x^3 + x + 1)$                                                                                                     |
| 4      | $(x^4 + x^3 + x^2 + x + 1), (x^4 + x^3 + 1), (x^4 + x + 1)$                                                                          |
| 5      | $(x^5 + x^2 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1),$<br>$(x^5 + x^4 + x^3 + x^2 + 1), (x^5 + x^4 + x^2 + x + 1)$ |

• Prove that  $(x^2+x+1)$  is an irreducible polynomial of degree 2.

- Prove that  $(x^2+x+1)$  is an irreducible polynomial of degree 2.
- Solution:
  - A polynomial f(x) of degree n is reducible if  $f(x) = g(x) \times h(x)$ , where g and h are two polynomials, each with the degree greater than zero and degree less than the highest degree of f(x).
  - According to this definition we have degree (f) = degree (g) + degree (h).
  - Based on this, a reducible polynomial of degree 2 can be factored only as two polynomials of degree 1 (2 = 1 + 1).
  - In other words, a factors of a reducible polynomial of degree 2 can be only x or (x+1) (the only two polynomials of degree 1).

- Prove that (x²+x+1) is an irreducible polynomial of degree 2.
- Solution:

```
(x^2) = (x) \times (x) \rightarrow (x^2) is reducible

(x^2 + 1) = (x + 1) \times (x + 1) \rightarrow (x^2 + 1) is reducible

(x^2 + x) = (x) \times (x + 1) \rightarrow (x^2 + x) is reducible

(x^2 + x + 1) cannot be factored. \rightarrow (x^2 + x + 1) is irreducible
```

#### Multiplication:

- The coefficient multiplication is done in GF(2).
- The multiplying  $x^i$  by  $x^j$  results in  $x^{i+j}$ .
- The multiplication may create terms with degree more than n-1, which means the result needs to be reduced using a modulus polynomial.

## Polynomial Multiplication - Example

• Find the result of  $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$  in GF(28) with irreducible polynomial  $(x^8 + x^4 + x^3 + x + 1)$ .

## Polynomial Multiplication - Example

- Find the result of  $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$  in GF(2<sup>8</sup>) with irreducible polynomial  $(x^8 + x^4 + x^3 + x + 1)$ .
- Note that we use the symbol ⊗ to show the multiplication of two polynomials.

$$P_{1} \otimes P_{2} = x^{5}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x^{2}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x(x^{7} + x^{4} + x^{3} + x^{2} + x)$$

$$P_{1} \otimes P_{2} = x^{12} + x^{9} + x^{8} + x^{7} + x^{6} + x^{9} + x^{6} + x^{5} + x^{4} + x^{3} + x^{8} + x^{5} + x^{4} + x^{3} + x^{2}$$

$$P_{1} \otimes P_{2} = (x^{12} + x^{7} + x^{2}) \mod (x^{8} + x^{4} + x^{3} + x + 1) = x^{5} + x^{3} + x^{2} + x + 1$$

• To find the final result, divide the polynomial of degree 12 by the polynomial of degree 8 (the modulus) and keep only the remainder.

## Polynomial Multiplication - Example

$$x^{4} + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

$$x^{12} + x^{7} + x^{2}$$

$$x^{12} + x^{8} + x^{7} + x^{5} + x^{4}$$

$$x^{8} + x^{5} + x^{4} + x^{2}$$

$$x^{8} + x^{4} + x^{3} + x + 1$$
Remainder 
$$x^{5} + x^{3} + x^{2} + x + 1$$

Polynomial division with coefficients in GF(2)

 Let us define a GF(2<sup>2</sup>) field in which the set has four 2-bit words: {00, 01, 10, 11}.

 We can redefine addition and multiplication for this field in such a way that all properties of these operations are satisfied.

 Addition
 Multiplication

An example of GF(22) field

• In GF (2<sup>4</sup>), find the inverse of  $(x^2 + 1)$  modulo  $(x^4 + x + 1)$ .

• In GF (2<sup>4</sup>), find the inverse of  $(x^2 + 1)$  modulo  $(x^4 + x + 1)$ .

#### Solution:

– The answer is -  $(x^3 + x + 1)$ .

| q           | $r_I$           | $r_2$       | r   | $t_I$           | $t_2$           | t               |
|-------------|-----------------|-------------|-----|-----------------|-----------------|-----------------|
| $(x^2 + 1)$ | $(x^4 + x + 1)$ | $(x^2 + 1)$ | (x) | (0)             | (1)             | $(x^2 + 1)$     |
| (x)         | $(x^2 + 1)$     | (x)         | (1) | (1)             | $(x^2 + 1)$     | $(x^3 + x + 1)$ |
| (x)         | (x)             | (1)         | (0) | $(x^2 + 1)$     | $(x^3 + x + 1)$ | (0)             |
|             | (1)             | (0)         |     | $(x^3 + x + 1)$ | (0)             |                 |

Euclidean algorithm

• In GF(2<sup>8</sup>), find the inverse of (x<sup>5</sup>) modulo ( $x^8 + x^4 + x^3 + x + 1$ ).

# Multiplicative Inverse



$$r_{1} \leftarrow n; \quad r_{2} \leftarrow b;$$

$$t_{1} \leftarrow 0; \quad t_{2} \leftarrow 1;$$
while  $(r_{2} > 0)$ 

$$\{q \leftarrow r_{1} / r_{2};$$

$$r \leftarrow r_{1} - q \times r_{2};$$

$$r_{1} \leftarrow r_{2}; \quad r_{2} \leftarrow r;$$

$$t \leftarrow t_{1} - q \times t_{2};$$

$$t_{1} \leftarrow t_{2}; \quad t_{2} \leftarrow t;$$

$$\}$$
if  $(r_{1} = 1)$  then  $b^{-1} \leftarrow t_{1}$ 

a. Process

b. Algorithm

Using extended Euclidean algorithm to find multiplicative inverse

# Multiplicative Inverse

• Find the multiplicative inverse of 11 in Z<sub>26</sub>.

| q | $r_{I}$ | $r_2$ | r | $t_1$ $t_2$      | t          |
|---|---------|-------|---|------------------|------------|
| 2 | 26      | 11    | 4 | 0 1              | -2         |
| 2 | 11      | 4     | 3 | 1 -2             | 5          |
| 1 | 4       | 3     | 1 | -2 5             | <b>-</b> 7 |
| 3 | 3       | 1     | 0 | 5 -7             | 26         |
|   | 1       | 0     |   | <del>-7</del> 26 |            |

The gcd (26, 11) is 1; the inverse of 11 is -7 or 19.

- In GF(2<sup>8</sup>), find the inverse of (x<sup>5</sup>) modulo ( $x^8 + x^4 + x^3 + x + 1$ ).
- Solution:
  - The answer is  $(x^5 + x^4 + x^3 + x)$

| q                 | $r_I$                     | $r_2$                | r                     | $t_I$               | $t_2$                   | t                       |
|-------------------|---------------------------|----------------------|-----------------------|---------------------|-------------------------|-------------------------|
| $(x^3)$           | $(x^8 + x^4 + x^3 + x^3)$ | $(x+1) \qquad (x^5)$ | $(x^4 + x^3 + x + 1)$ | (0)                 | (1)                     | $(x^3)$                 |
| (x+1)             | $(x^5)$ $(x^4)$           | $+x^3+x+1)$          | $(x^3 + x^2 + 1)$     | (1)                 | $(x^3)$                 | $(x^4 + x^3 + 1)$       |
| (x)               | $(x^4 + x^3 + x + 1)$     | $(x^3 + x^2 + 1)$    | (1)                   | $(x^3)$             | $(x^4 + x^3 + 1)$       | $(x^5 + x^4 + x^3 + x)$ |
| $(x^3 + x^2 + 1)$ | $(x^3 + x^2 + 1)$         | (1)                  | (0)                   | $(x^4 + x^3 + 1)$   | $(x^5 + x^4 + x^3 + x)$ | (0)                     |
|                   | (1)                       | (0)                  |                       | $(x^5 + x^4 + x^3)$ | +x) (0)                 |                         |

- A better algorithm: Obtain the result by repeatedly multiplying a reduced polynomial by x.
- Find the result of multiplying  $P_1 = (x^5 + x^2 + x)$ by  $P_2 = (x^7 + x^4 + x^3 + x^2 + x)$  in  $GF(2^8)$  with irreducible polynomial  $(x^8 + x^4 + x^3 + x + 1)$

#### Solution:

- We first find the partial result of multiplying  $x^0$ ,  $x^1$ ,  $x^2$ ,  $x^3$ ,  $x^4$ , and  $x^5$  by  $P_2$ .
- Note that although only three terms are needed, the product of  $x^m \otimes P_2$  for m from 0 to 5 because each calculation depends on the previous result.

| Powers                                                                                                                       | Operation                                        | New Result                  | Reduction |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|-----------|--|--|--|
| $x^0 \otimes P_2$                                                                                                            |                                                  | $x^7 + x^4 + x^3 + x^2 + x$ | No        |  |  |  |
| $x^1 \otimes P_2$                                                                                                            | $x \otimes (x^7 + x^4 + x^3 + x^2 + x)$          | $x^5 + x^2 + x + 1$         | Yes       |  |  |  |
| $x^2 \otimes P_2$                                                                                                            | $x \otimes (x^5 + x^2 + x + 1)$                  | $x^6 + x^3 + x^2 + x$       | No        |  |  |  |
| $x^3 \otimes P_2$                                                                                                            | $x \otimes (x^6 + x^3 + x^2 + x)$                | $x^7 + x^4 + x^3 + x^2$     | No        |  |  |  |
| $x^4 \otimes P_2$                                                                                                            | $\boldsymbol{x} \otimes (x^7 + x^4 + x^3 + x^2)$ | $x^5 + x + 1$               | Yes       |  |  |  |
| $x^5 \otimes P_2$                                                                                                            | $x \otimes (x^5 + x + 1)$                        | $x^6 + x^2 + x$             | No        |  |  |  |
| $\mathbf{P_1} \times \mathbf{P_2} = (x^6 + x^2 + x) + (x^6 + x^3 + x^2 + x) + (x^5 + x^2 + x + 1) = x^5 + x^3 + x^2 + x + 1$ |                                                  |                             |           |  |  |  |

An efficient algorithm

• Find the result of multiplying P1 =  $(x^3 + x^2 + x + 1)$ 1) by P2 =  $(x^2 + 1)$  in GF(2<sup>4</sup>) with irreducible polynomial  $(x^4 + x^3 + 1)$ 

- Which of the following is a valid Galois Field?
  - GF(12)
  - GF(13)
  - GF(16)
  - GF(17)
- For following n-bit words, find the polynomial that represent that word:
  - -10010
  - -00011
  - -100001

- Find the n-bit word that is represented by each of the following polynomials:
  - $X^2 + 1 \text{ in } GF(2^4)$
  - $X^7 \text{ in } GF(2^8)$
  - $X+1 in GF(2^3)$
- In the field GF(7), find the result of
  - -5+3
  - -5-4
  - -5X3
  - -5/3

- In the filed GF( $2^3$ ), perform the following operation with irreducible polynomial ( $x^3+x^2+1$ ).
  - -(100)/(010)
  - -(100)/(000)
  - -(101)/(011)
  - -(000)/(111)

- In the filed GF( $2^3$ ), perform the following operation with irreducible polynomial ( $x^3+x^2+1$ ).
  - -(100)/(010)
    - Solution:  $(100)X(010)^{-1} = (100)X(110) = (010)$
  - -(100)/(000)
    - Solution: operation is impossible because (000) has no inverse
  - -(101)/(011)
  - -(000)/(111)

• Find the result of multiplying (10101) by (10000) in  $GF(2^5)$  using  $(x^5 + x^2 + 1)$  as modulus.