第一册

大青花鱼

目录

4 目录

第一章 数列初步

1.1 数列的基本概念

例子 1.1.1.

1. 把自然数的倒数排成一列:

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots$$

2. 把圆周率按个位,十分位、百分位、千分位截断,得到一列数:

$$3, 3.1, 3.14, 3.141, 3.1415, \cdots$$

3. 把班上同学的身高(厘米)按学号排列:

$$165, 173, 169, 178, 171.5, 176, \cdots$$

把数按照一定顺序排列起来,叫做**数列**。数列中的每一个数叫做数列的一**项**。按照顺序,各项分别称为数列的第 1 项、第 2 项,等等。比如,例 1 中的数列第 2 项是 $\frac{1}{2}$,例 2 中的数列第 3 项是 3.14。

数列的项和序数有一一对应的关系,这告诉我们,数列的本质是正整数集或其子集 [1...N] 到数域的函数。定义域是 [1...N] 的数列,项数有

限,称为**有穷数列**;定义域是正整数集的数列,项数无限,叫做**无穷数列**。 我们一般把数列记作:

$$a_1, a_2, \cdots, a_n, \cdots$$

其中 a_n 是数列的第 n 项。项数 n 也叫做**下标**。为了方便,我们在行文中会把以上数列记作 $\{a_n\}_{n\in\mathbb{Z}^+}$ (无穷数列) 或 $\{a_n\}_{n\in[1...N]}$ (有穷数列),或简单记作 $\{a_n\}$ 。比如,例 1 中的数列可以记为 $\{\frac{1}{n}\}_{n\in\mathbb{Z}^+}$ 。作为函数,如果某数列的序数和项之间的对应关系可以用一个公式来表示,我们就把这个公式称为该数列的**通项公式**。比如,例 1 中的数列,通项公式是 $a_n=\frac{1}{n}$;而例 3 中的数列,我们不知道通项公式。有通项公式的数列,只要把序数代入公式,就能得到该项的值。比如,例 1 中的数列,第 100 项是 $\frac{1}{100}$ 。

我们把各项不断增大(减小)的数列称为**单调递增(递减)数列**。"单调"一词,表示数列各项增减方向保持一致。换句话说,如果数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 从第二项起,总有 $a_{n+1} \ge a_n$,就说它是**单调递增数列**;如果总有总有 $a_{n+1} \le a_n$,就说它是**单调递减数列**。如果要求不能有相等的项,就称为**严格单调递增**(**递减**)数列。

研究数列的一个基本目的,是对数列进行求和。比如,一垛炮弹有 8 层,顶层有 1 个炮弹,第 2 层有 4 个,第 3 层有 9 个,……,第 8 层有 64 个,我们希望知道一共有几个炮弹。把各层炮弹个数记为数列: $a_1 = 1$

$$a_1 = 1, a_2 = 4, \cdots, a_8 = 64$$

我们把数列的和记为 $S_8 = a_1 + a_2 + \cdots + a_8$ 。为了方便,我们也用求和符号表示数列的和: $S_8 = \sum_{i=1}^8 a_i$ 。对于无穷数列,我们还无法定义数列的和,只能定义它的部分和: $S_N = \sum_{i=1}^N a_i$ 。我们把 S_N 称为数列 $\{a_n\}$ 的前 N 项和。比如,例 1 中的数列的前 4 项和为:

$$S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}.$$

习题 1.1.1.

1. 根据以下数列的通项公式,写出数列的前5项:

1.1.
$$a_n = n^2$$

1.2.
$$a_n = (-1)^n \cdot n$$

1.3.
$$a_n = \frac{n}{n+3}$$

1.4.
$$a_n = 2^n - 1$$

1.5.
$$a_n = \frac{(-2)^n + n - 1}{n^2 + 1}$$

2. 根据以下数列的通项公式, 计算数列的前 5 项和与前 7 项和:

2.1.
$$a_n = n^2$$

2.2.
$$a_n = (-1)^{n+1} \cdot n$$

2.3.
$$a_n = \frac{2}{n(n+1)}$$

2.4.
$$a_n = 2^n$$

2.5.
$$a_n = (n+1)2^n$$

3. 已知数列 $\{a_n\}_{n\in\mathbb{Z}^+}$,如何构造一个数列 $\{b_n\}_{n\in\mathbb{Z}^+}$,使得它的前 n 项和是 a_n ?

无穷数列(或项数相同的有穷数列)作为函数,可以进行函数之间的四则运算。比如,设无穷数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式分别是 $a_n = n - 1$ 、 $b_n = 2n$,那么对任意正整数 n, $a_n + b_n = 3n - 1$ 。我们定义通项公式为 $c_n = 3n - 1$ 的数列 $\{c_n\}$ 为 $\{a_n\}$ 与 $\{b_n\}$ 的和,也就是说,我们定义数列的加法: $\{a_n\} + \{b_n\} = \{a_n + b_n\}$ 。

可以验证,数列的加法满足交换律和结合律。我们称每项都等于同一个数的数列为**常数列**,任何数列加上常数列 {0} 都等于自己。

同理,我们可以定义数列的减法和乘法。它们满足的运算律和有理数的运算律一致。任何数列乘以 $\{1\}$ 都得到自己。如果我们把所有取值为实数的数列的集合记为 $\mathbb{R}^{\mathbb{N}}$,那么 $\mathbb{R}^{\mathbb{N}}$ 和 \mathbb{Z} 一样,可以"装载"加法、减法和乘法。其中的常数列 $\{0\}$ 、 $\{1\}$ 就相当于整数0和1。

此外,给定数列 $\{a_n\}$ 和实数 t,我们可以把 $\{a_n\}$ 的每一项乘以 t 得到一个新数列: $t \cdot \{a_n\} = \{t \cdot a_n\}$,这个运算称为**数乘运算**。数乘运算和数、

数列的四则运算相容。

$$\forall s, t \in \mathbb{R}, \ \forall \{a_n\}, \ s \cdot (t \cdot \{a_n\}) = (s \cdot t) \cdot \{a_n\},$$
$$(s+t) \cdot \{a_n\} = (s \cdot \{a_n\}) + (t \cdot \{a_n\}).$$
$$\forall t \in \mathbb{R}, \ \forall \{a_n\}, \ \{b_n\}, \ t \cdot (\{a_n\} + \{b_n\}) = (t \cdot \{a_n\}) + (t \cdot \{b_n\}).$$

无穷数列还可以进行函数操作,与函数复合。比如,我们定义函数 $f: x \mapsto x^2 - 3$,数列 $\{a_n\}$ 的每一项经过 f 映射到 $f(a_n) = f(n-1) = (n-1)^2 - 3 = n^2 - 2n - 2$ 。那么数列 $\{n^2 - 2n - 2\}$ 就可以称为 $\{a_n\}$ 经过 f 的**像数列**。换句话说,我们用实值函数 f 定义了一个 $\mathbb{R}^{\mathbb{N}}$ 到 $\mathbb{R}^{\mathbb{N}}$ 的映射。

另一种对数列的操作方法是通过下标。设 g 是从正整数集映射到正整数集的函数,比如 $g: n \mapsto 3n-2$ 。从 $\{a_n\}$ 出发,考虑数列 $\{u_n\}$: $u_n = a_{g(n)} = a_{3n-2}$ 。这样定义的 $\{u_n\}$ 称为用 g 从 $\{a_n\}$ 中提取的数列。要注意的是,g 不一定把 $\{a_n\}$ 中每项恰好提取一次,比如

$$a_1, a_1, a_2, a_2, a_3, a_3, a_4, a_4, \cdots$$

这样的数列也是从 $\{a_n\}$ 中提取的。如果对任何正整数 n,函数 g 满足 g(n+1) > g(n),用 g 从 $\{a_n\}$ 中提取的数列就可以看作是从前到后挑出一部分项得到的。这样的数列称为 $\{a_n\}$ 的**子列**。

思考 1.1.1.

- 1. 给定数列 $\{a_n\}$,它的前 n 项和可以构成一个数列 $\{S_n\}$,如何用 $\{S_n\}$ 中的项表示 a_n ? 记 v_n 为 $\{a_n\}$ 前 n 项乘积,能否用数列 $\{v_n\}$ 中的项表示 a_n ?
- 2. 记平面向量的集合为 \mathbb{V} , 所有从 $\mathbb{R}^{\mathbb{N}}$ 到 $\mathbb{R}^{\mathbb{N}}$ 的映射的集合为 $\mathfrak{F}(\mathbb{R}^{\mathbb{N}})$ 。 $\mathfrak{F}(\mathbb{R}^{\mathbb{N}})$ 和 \mathbb{V} 、 \mathbb{Z} 有什么共同点? 有什么不同点?
- 3. 记所有从正整数集到正整数集的函数的集合为 $\mathfrak{F}(\mathbb{Z}^+)$,数列 $\{a_n\}$ 经过 $\mathfrak{F}(\mathbb{Z}^+)$ 中某个函数 g 可以提取出数列 $\{b_n\}$ 。g 满足什么条件时,可以找到另一个 $\mathfrak{F}(\mathbb{Z}^+)$ 中的函数 h,用 h 可以从 $\{b_n\}$ 中提取出 $\{a_n\}$?

习题 1.1.2.

- 1. 计算: $\{6n-1\} \{3k^2 k + 2\} \cdot \{2^m + 1\}$ 。
- 2. 已知定义在全体实数上的函数 $f: x \mapsto 2x^2 x 4$, 数列 $\{a_n\}$ 的 通项公式为 $a_n = n + \frac{1}{n}$, 计算 $\{f(a_n)\}$ 。
 - 3. 另有定义在全体实数上的函数 $g: x \mapsto 1 \frac{1}{x}$, 计算 $\{(f-g)(a_n)\}$ 。

研究实际问题的时候,我们可能不会直接得到数列的通项公式,而是 各项之间的关系。来看以下的例子:

例题 1.1.1. 培养一种乳酸菌,初始从 3 个单位起培养。每过一定时间,等 乳酸菌数量翻倍后,取出 1 个单位的样本做化验观察,其余继续培养。问 每次取出化验后,乳酸菌的数量是几个单位?

解答. 设初始数量为 a_0 ,第 n 次取出化验后乳酸菌数量为 a_n 个单位。则数列 $\{a_n\}$ 中的项满足以下的关系:

$$\forall n \in \mathbb{N}, \quad a_{n+1} = 2a_n - 1.$$

这样的关系称为数列的**递推关**系,相关公式称为**递推公式**。以上公式中,已知 a_0 的值,就能推出 a_1 ,继而次第推出 a_2 、 a_3 ,等等。 $a_0 = 3$,所以 $a_1 = 2 \cdot 3 - 1 = 5$, $a_2 = 2 \cdot 5 - 1 = 9$, $a_3 = 2 \cdot 9 - 1 = 17 \cdot \cdots$

根据递推关系,已知 a_1 ,想要算出 a_{100} ,就必须依次算出 a_2, a_3, \cdots, a_{99} 。 很多时候,我们希望从各项之间的关系,推出通项公式,以更方便地了解数 列的性质。

如何从递推关系得出通项公式呢?并没有简便的统一方法。常见的做 法是将递推关系转化为一些已知通项公式的数列的递推关系,再反推出原 数列的通项公式。我们在后面会详细介绍。

习题 1.1.3.

已知数列的递推公式如下,求数列的前7项:

1.
$$a_1 = 1$$
, $\forall n \ge 1$, $a_{n+1} = 1 - 2a_n$.

2.
$$a_1 = 1$$
, $\forall n \ge 1$, $a_{n+1} = 1 + \frac{1}{a_n - 1}$.

3.
$$a_1 = 1$$
, $a_2 = 3$, $\forall n \ge 1$, $a_{n+2} = 4 + a_n - a_n^2$.

4.
$$a_1 = 1$$
, $a_2 = 1$, $\forall n \ge 1$, $a_{n+2} = a_n + a_{n+1}$.

5.
$$a_1 = 1$$
, $a_2 = 3$, $\forall n \ge 1$, $a_{n+2} = a_n(4 - a_{n+1})$.

1.2 等差数列

来看这样一个数列:

这个数列有一个特点:从第二项起,每一项减去前一项的差总是 2。

一般地,如果某个数列从第二项起,每一项减去前一项的差是同一个常数,就说这个数列是**等差数列**。这个常数叫做等差数列的**公差**,通常用字母 d 表示。比如,数列 2,5,8,11,14 的公差是 3,19,15,11,7,3,-1 的公差是 -4。

如果数列 $\{a_n\}$ 的公差是 d, 那么:

$$a_2 = a_1 + d$$

 $a_3 = a_2 + d = a_1 + 2d$
 $a_4 = a_3 + d = a_1 + 3d$
 \vdots
 $a_n = a_1 + (n-1)d$

等差数列的通项公式是: $a_n = a_1 + (n-1)d$ 。

例题 1.2.1. 已知无穷等差数列 1, 8, 15,…, 求它的第 30 项。

解答. 等差数列第一项是 1, 公差是 8-1=7, 所以通项公式是 $a_n=1+(n-1)\cdot 7=7n-6$ 。第 30 项 $a_{30}=7\cdot 30-6=204$ 。

1.2 等差数列 11

例题 1.2.2. 已知 $\{a_n\}_{n\in\mathbb{N}}$ 是等差数列, $a_1=4$, $a_3=9$,问 94 是否在数列中? 如果是的话,是第几项?

解答. 设公差为 d,则 $a_3 = a_1 + 2d$ 。代入 a_1 、 a_3 的值,解得 d = 2.5。于是通项公式为 $a_n = 4 + (n-1) \cdot 2.5 = 2.5n + 1.5$ 。如果有 $a_n = 94$,即 2.5n + 1.5 = 94,解得 n = 37。因此 94 在数列中,是第 37 项。

设等差数列 $\{a_n\}$ 的前 n 项和为 S_n 。能否方便地表示 S_n 呢? 我们可以这样思考:

$$a_1 + a_n = a_1 + a_1 + (n-1)d = 2a_1 + (n-1)d$$

$$a_2 + a_{n-1} = a_1 + d + a_n - d = a_1 + a_n = 2a_1 + (n-1)d$$

$$\vdots$$

$$a_{n-1} + a_2 = a_1 + (n-2)d + a_n - (n-2)d = a_1 + a_n = 2a_1 + (n-1)d$$

$$a_n + a_1 = a_1 + a_n = 2a_1 + (n-1)d$$

把以上n个等式分边相加,就得到:

$$S_n + S_n = n(a_1 + a_n) = 2na_1 + n(n-1)d.$$

也就是说, 前 n 项和 S_n 可以写成

$$S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d.$$

这样我们可以方便地计算等差数列的前 n 项和。比如,求前 n 个自然数的和: $a_n = n - 1 = 0 + (n - 1) \cdot 1$,所以 $S_n = 0 + \frac{n(n - 1)}{2} \cdot 1 = \frac{n(n - 1)}{2}$ 。

习题 1.2.1.

- 1. 在8和36之间插入6个数,使得这8个数成等差数列。
- 2. 设数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 为等差数列,证明 $a_{n+2}+a_n=2a_{n+1}$ 。
- 3. 等差数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 中, $a_1=0.3$, $a_n=85.5$, d=0.6, 求 n 和 S_n 。
- 4. 求前 n 个奇数 $1, 3, 5, \dots, 2n-1$ 的和。
- 5. 直角三角形的三边成等差数列, 求三边比例。
- 6. 等差数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 满足 $a_1=1$, $a_{10}=43.3$, 求 S_{20} 。

1.3 等比数列

来看这样一个数列:

这个数列有一个特点:从第二项起,每一项除以前一项的商总是 2。

一般地,如果某个数列从第二项起,每一项与前一项的比值是同一个常数,就说这个数列是**等比数列**。这个常数叫做等比数列的**公比**,通常用字母 q 表示。比如,数列 2,6,18,54,162 的公比是 3,192,-48,12,-3,0.75 的公比是 -0.25。

如果数列 $\{a_n\}$ 的公比是 q, 那么:

$$a_2 = a_1 q$$

$$a_3 = a_2 q = a_1 q^2$$

$$a_4 = a_3 q = a_1 q^3$$

$$\vdots$$

$$a_n = a_1 q^{n-1}$$

等比数列的通项公式是: $a_n = a_1 q^{n-1}$ 。

例题 1.3.1. 已知无穷等比数列 1.2, 1.8, 2.7,…, 求它的第 30 项。

解答. 等比数列第一项是 1, 公比是 $1.8 \div 1.2 = 1.5$, 所以通项公式是

$$a_n = 1.2 \cdot 1.5^{n-1} = \frac{6 \cdot 3^{n-1}}{5 \cdot 2^{n-1}} = \frac{3^n}{5 \cdot 2^{n-2}}.$$

第 30 项 $a_{30} = \frac{3^{30}}{5 \cdot 2^{28}}$ 。

例题 1.3.2. 已知 $\{a_n\}_{n\in\mathbb{N}}$ 是等比数列, $a_1=3$, $a_3=12$,问 1536 是否在数列中? 如果是的话,是第几项?

1.3 等比数列 13

解答. 设公比为 q,则 $a_3 = a_1 q^2$ 。代入 a_1 、 a_3 的值,解得 q = 2。于是通项公式为 $a_n = 3 \cdot 2^{n-1}$ 。如果有 $a_n = 1536$,即 $3 \cdot 2^{n-1} = 1536$,解得 n = 10。因此 1536 在数列中,是第 10 项。

设等比数列 $\{a_n\}$ 的前 n 项和为 S_n 。能否方便地表示 S_n 呢? 已知:

$$S_n = \sum_{i=1}^n a_i = \sum_{i=1}^n a_i q^{i-1} = a_1 \sum_{i=1}^n q^{i-1}$$

如果公比 q=1, 那么 $S_n=na_1$ 。

如果公比 $q \neq 1$, 两边乘以 q, 得到

$$qS_n = q \cdot a_1 \sum_{i=1}^n q^{i-1} = a_1 \sum_{i=1}^n q^i.$$

也就是说,

$$qS_n = a_1 \sum_{i=2}^{n+1} q^{i-1} = a_1 q^n + a_1 \sum_{i=1}^{n} q^{i-1} - a_1 = a_1 q^n + S_n - a_1$$

把右边的 S_n 移到左边,解得:

$$S_n = a_1 \frac{q^n - 1}{q - 1}.$$

由于 $a_n = a_1 q^{n-1}$, 所以上式也可以写成:

$$S_n = \frac{qa_n - a_1}{q - 1}.$$

这样我们可以方便地计算等比数列的前 n 项和。比如,求 2 的前 n 个乘方的和: $a_n=2^n=2\cdot 2^{n-1}$,所以 $S_n=2\frac{2^n-1}{2-1}=2^{n+1}-2$ 。

习题 1.3.1.

- 1. 在 16 和 36 之间插入 3 个数, 使得这 5 个数成等比数列。
- 2. 设数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 为等比数列,证明 $a_{n+2}\cdot a_n=a_{n+1}^2$ 。

- 3. 等比数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 中, $a_1=1$, 公比 q=0.5, 求前 n 项和 S_n 。
- 4. 等比数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 中, $a_1=6$, $a_n=393216$, q=2, 求 n 和 S_n 。
- 5. 请用 a_1 、 a_n 和 q 表示等比数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 的前 n 项和 S_n 。
- 6. 等比数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 满足 $a_6=4,\ a_8=9,\ 求\ S_{10}$ 。

第二章 实变函数初步

上一章中,我们学习了出发集为 \mathbb{Z}^+ 的函数。现在我们来学习出发集为 \mathbb{R} 的函数。我们把这样的函数称为**实变函数**。

我们已经接触过一些简单的实变函数。正比例函数 $(x \mapsto ax)$ 、一次函数 $(x \mapsto ax + b)$ 、反比例函数 $(x \mapsto \frac{a}{x})$ 、二次函数 $(x \mapsto ax^2 + bx + c)$ 都是实变函数的例子。这些函数都来自简单的代数式。我们把这样的函数称为**显式函数**,也就是能用表达式写出对应关系的函数。下面来看另外几种显式函数。

2.1 整幂函数和有理函数

一元整式是变量 x 和数经过有限次加、减、乘法得到的式子。把 x 对应到关于 x 的一元整式,就得到一个整式函数。正比例函数、一次函数、二次函数等都是整式函数。一类简单的整式函数是**整幂函数**:

$$f_n: x \mapsto x^n$$

其中 n 是自然数。

任何数的 0 次方都是 1, 所以, $f_0: x \mapsto 1$ 是常函数。以下我们不研究它。 f_1 和 f_2 分别是一次和二次函数。选择几个不同的 n, 我们可以用描

点法大致画出 f_n 的图像。

从图像中可以发现,n 是奇数的时候,函数图像关于原点对称。n 是偶数的时候,函数图像关于 y 轴对称。我们说具有前一种性质的函数是奇函数,具有后一种性质的函数是偶函数。

定义 2.1.1. 给定实变函数 f。如果对 f 定义域中任何 x,都有 f(-x) = f(x),就说 f 是偶函数。如果对 f 定义域中任何 x,都有 f(-x) = -f(x),就说 f 是奇函数。

要注意的是,奇(偶)函数的定义中隐含了"函数定义域关于 0 对称"的要求。因为如果 f(-x) 没有定义,就不存在 f(-x) = f(x) 或 f(-x) = -f(x) 的性质了。

由奇 (偶) 函数的定义,研究奇 (偶) 函数时,我们往往只需要研究半个定义域,另外一半的性质通过对称就可以得到。比如,研究区间 (-3,3)上的偶函数 g,我们只需要研究 g 在 [0,3) 上的性质。g 在区间 (-3,0] 上的性质,可以通过 g(-x) = -g(x) 得到。

任何奇函数 f, 如果在 0 处有定义,总有 f(0) = -f(-0) = -f(0),所以 f(0) = 0。偶函数在 0 处的值则不一定是 0。

对定义域关于 0 不对称,但在对称范围内是奇(偶)函数的函数,也可以将其自然补全。比如,在区间 [-1,2] 上定义函数 $f: x \mapsto x^2$ 。 f 在 [-1,1] 上是偶函数,但定义域不对称。我们可以自然地将 f 的定义域补全到 [-2,2]。定义在区间 [-2,2] 上的新函数 $f: x \mapsto x^2$ 就是偶函数了。

从图像中还可以发现,n 是偶数的时候, f_n 总大于等于 0。我们说 f_n 有下界 0。n 是奇数的时候, $f_n(x)$ 可以大于任何给定的数,也可以小于任何给定的数。我们说 f_n 无上界也无下界,是无界函数。

定义 2.1.2. 给定实变函数 f。如果有某个数 b,使得对 f 定义域中任何 x,都有 $f(x) \leq b$,就说 f **有上界** b。如果不存在这样的 b,就说 f **无上界**。如

果有某个数 b, 使得对 f 定义域中任何 x, 都有 $f(x) \ge b$, 就说 f **有下界** b。如果不存在这样的 b, 就说 f **无下界**。既有上界又有下界的函数称为**有 界函数**,既无上界又无下界的函数称为**无界函数**。

此外,从图像中还可以观察到,对任何正整数 n, $f_n(0) = 0$ 。 x > 0 时, f_n 总随着 x 的增大不断增大。我们称 f_n 在 $(0, +\infty)$ 上严格单调递增,或称 f_n 在在 $(0, +\infty)$ 上是严格增函数。如果 n 是奇数,那么 f_n 在 \mathbb{R} 上严格单调递增;如果 n 是偶数,x < 0 时, f_n 总随着 x 的增大不断减小。我们称 f_n 在 $(-\infty, 0)$ 上严格单调递减,或称 f_n 在在 $(-\infty, 0)$ 上是严格减函数。

定义 2.1.3. 给定实变函数 f。如果 f 定义域中任意两个数 $x_1 < x_2$,总有 $f(x_1) \le f(x_2)$,就说 f 在定义域上单调递增,或者说 f 是增函数;如果 f 定义域中任意两个数 $x_1 < x_2$,总有 $f(x_1) \ge f(x_2)$,就说 f 在定义域上单调递减,或者说 f 是减函数。如果 f 定义域中任意两个数 $x_1 < x_2$,总有 $f(x_1) < f(x_2)$,就说 f 在定义域上严格单调递增,或者说 f 是严格增函数;如果 f 定义域中任意两个数 $x_1 < x_2$,总有 $f(x_1) < f(x_2)$,就说 f 在定义域上严格单调递增,或者说 f 是严格增函数;如果 f 定义域中任意两个数 $x_1 < x_2$,总有 $f(x_1) > f(x_2)$,就说 f 在定义域上严格单调递减,或者说 f 是严格减函数。

(严格)单调递增、递减函数,统称为(严格)单调函数。如果 f 在某个区间中(严格)单调,就把这个区间称为 f 的**单调区间**,或者说 f 在该区间上单调。

用以上的定义,我们梳理整幂函数的基本性质如下:

- 1. n 是奇数时, f_n 是奇函数;n 是偶数时, f_n 是偶函数。因此只需研究它们在 $[0, +\infty)$ 上的性质。
- 2. 对任何正整数 n, $f_n(0) = 0$ 。 f_n 在 $(0, +\infty)$ 上严格单调递增。
- 3. n 是偶数时, f_n 有下界,最小值是 0,值域是 $[0, +\infty)$ 。n 是奇数时, f_n 是无界函数,值域是 \mathbb{R} 。
- 4. 如果 n > 1, 那么 x > 0 时, 随着 x 增大, f_n 增大得越来越快。

5. 对于给定的 x, 若 x > 1, 那么 n 越大, $f_n(x)$ 越大; 若 0 < x < 1, 那么 n 越大, $f_n(x)$ 越小。

不同的整幂函数,乘以常数(常函数)再相加,就得到一般的整式函数。一般的整式函数可以写成:

$$p: \quad \mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$$

$$x \mapsto a_0 + a_1 x + \dots + a_n x^n$$

其中 \mathfrak{D} 为其定义域。和整式一样,我们仍把 n 称为整式函数的次数,把 a_n 称为最高次项,等等。

一元有理式是变量 *x* 和数经过有限次加、减、乘、除法得到的式子,化简之后总能得到一元分式或整式。一元分式对应的显式函数称为**分式函数**。反比例函数就是分式函数。分式函数和整式函数合称为**有理函数**。一般的有理函数可以写成:

$$q: \quad \mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

整式函数的定义域 \mathfrak{D} 可以是 \mathbb{R} 或它的任何子集。分式函数的定义域则有一定约束。如果某个实数 c 使得作为分母的整式等于 0:

$$b_0 + b_1 c + \dots + b_m c^m = 0,$$

那么分式函数 q 在 c 处没有定义。我们把这样的 c 称为 q 的**奇点**¹。分式函数的定义域不应包含奇点。

一类特殊的分式函数是形如:

$$f_{-n}: x \mapsto x^{-n}$$

¹ "奇" 通"畸", 读音同"奇数"的"奇"。

的函数。其中 n 是正整数。它们也是整幂函数,但对应的幂次是负整数。它们也可以写成

$$f_{-n}: x \mapsto \frac{1}{x^n}$$

显然,0 是 f_{-n} 的奇点。它的定义域是 $(-\infty, 0) \cup (0, +\infty)$ (简记作 \mathbb{R}^*)。

选择几个不同的 n, 通过描点法画出 f_{-n} 的图像。

观察函数图像可以发现:

- 1. n 是奇数时, f_{-n} 是奇函数;n 是偶数时, f_{-n} 是偶函数。因此只需研究它们在 $(0, +\infty)$ 上的性质。
- 2. 对任何正整数 n, f_{-n} 在 $(0, +\infty)$ 上严格单调递减。
- 3. n 是偶数时, f_{-n} 有下界,无最小值,值域是 $(0, +\infty)$ 。n 是奇数时, f_{-n} 是无界函数,值域是 \mathbb{R}^* 。
- 4. 如果 n > 1,那么 x > 0 时,随着 x 增大, f_{-n} 减小得越来越慢。
- 5. 对于给定的 x, 若 x > 1, 那么 n 越大, $f_{-n}(x)$ 越小; 若 0 < x < 1, 那么 n 越大, $f_{-n}(x)$ 越大。

2.2 分幂函数和无理函数

以上的函数是关于整式和分式的。它们是 x 和数加减乘除得到的代数式。如果再添加开方运算,我们就能得到一元无理式。当然,开方得到的式子不总是无理式,比如 $\sqrt{(x+1)^4} = (x+1)^2$ 就不是无理式。我们除开其中有理式的部分,把剩余的称为无理式。

把 *x* 对应到一元无理式,得到的函数叫做**无理函数**。一类简单的无理 函数有着和整幂函数类似的形式:

$$f_r: x \mapsto x^r.$$

其中 r 是有理数。我们称它为分幂函数。把 r 写成既约分数的形式。r>0 时,记 $r=\frac{p}{a}$,分幂函数就写成:

$$f_r: \quad x \mapsto x^{\frac{p}{q}} = \sqrt[q]{x^p}.$$

r < 0 时,记 $r = -\frac{p}{q}$,分幂函数就写成:

$$f_r: \quad x \mapsto x^{-\frac{p}{q}} = \frac{1}{\sqrt[q]{x^p}}.$$

我们不讨论 r=0 和 q=1 的情况 (前者是常函数,后者是整幂函数)。

选择几个正有理数 $r = \frac{p}{a} > 0$,用描点法大致画出 f_r 的图像:

观察图像可以发现:

- 1. p,q 是奇数时, f_r 是奇函数;p 是偶数 q 是奇数时, f_r 是偶函数。因此只需研究它们在 $[0, +\infty)$ 上的性质。
- 2. p 是奇数 q 是偶数时, f_r 只在 $[0, +\infty)$ 上有定义。
- 3. 对任何 r > 0, $f_r(0) = 0$ 。 f_r 在 $(0, +\infty)$ 上严格单调递增。
- 4. p,q 之一是偶数时, f_r 有下界,最小值是 0,值域是 $[0, +\infty)$ 。p,q 是 奇数时, f_r 是无界函数,值域是 \mathbb{R} 。
- 5. x > 0 时,如果 r > 1,随着 x 增大, f_r 增大得越来越快;如果 0 < r < 1,随着 x 增大, f_r 增大得越来越慢。
- 6. 对于给定的 x, 若 x > 1, 那么 r 越大, $f_r(x)$ 越大; 若 0 < x < 1, 那 么 r 越大, $f_r(x)$ 越小。

对比整幂函数,可以发现,除了定义域以外,大多数时候 f_r 的性质与 f_n 的性质相符。

选择几个正有理数 $r = -\frac{p}{a} < 0$,用描点法大致画出 f_r 的图像:

观察图像可以发现:

1. p,q 是奇数时, f_r 是奇函数; p 是偶数 q 是奇数时, f_r 是偶函数。因此只需研究它们在 $(0, +\infty)$ 上的性质。

- 2. p 是奇数 q 是偶数时, f_r 只在 $(0, +\infty)$ 上有定义。
- 3. 对任何 r < 0, f_r 在 $(0, +\infty)$ 上严格单调递减。
- 4. p,q 之一是偶数时, f_r 有下界,无最小值,值域是 $(0, +\infty)$ 。p,q 是 奇数时, f_r 是无界函数,值域是 \mathbb{R}^* 。
- 5. x > 0 时,如果 r > 1,随着 x 增大, f_r 增大得越来越快;如果 0 < r < 1,随着 x 增大, f_r 增大得越来越慢。
- 6. 对于给定的 x, 若 x > 1, 那么 r 越大, $f_r(x)$ 越小; 若 0 < x < 1, 那 么 r 越大, $f_r(x)$ 越大。

对比整幂函数,可以发现,除了定义域以外,大多数时候 f_r 的性质与 f_{-n} 的性质相符。

不讨论过于复杂的 $x \le 0$ 的情况,设定义域为 $(0, +\infty)$,我们可以把整幂函数和分幂函数一起考虑,称为**幂函数**:

$$f_r: (0, +\infty) \to \mathbb{R}$$

$$x \mapsto x^r.$$

这样,我们就可以整理出整幂函数和分幂函数的共性。

- 1. f_r 的值域是 $(0, +\infty)$
- 2. r > 0 时, f_r 严格单调递增; r < 0 时, f_r 严格单调递减。
- 3. r > 1 时,随着 x 增大, f_r 增大得越来越快;0 < r < 1 时,随着 x 增大, f_r 增大得越来越慢。
- 4. 对于给定的 x, 若 x > 1, 那么 r 越大, $f_r(x)$ 越小; 若 0 < x < 1, 那 么 r 越大, $f_r(x)$ 越大。

除了分幂函数,我们还可以了解以下几类简单的无理函数。

 $\sqrt{ax+b}$ 型函数。这类函数是将一次函数开方得到的。一般形式为:

$$x \mapsto \sqrt{ax + b}$$
.

其中 a,b 是常数系数。比如, $x \mapsto \sqrt{2x-3}$ 就是 $\sqrt{ax+b}$ 类函数。

 $\sqrt{ax^2+bx+c}$ 型函数。这类函数是将二次函数开方得到的。一般形式为:

$$x \mapsto \sqrt{ax^2 + bx + c}$$
.

其中 a,b 是常数系数。比如, $x\mapsto \sqrt{x^2+2x-3}$ 就是 $\sqrt{ax^2+bx+c}$ 类函数。

 $\frac{\sqrt{ax+b}}{\sqrt{cx+d}}$ 型函数。这类函数是两个 $\sqrt{ax+b}$ 类函数的商。一般形式为:

$$x \mapsto \frac{\sqrt{ax+b}}{\sqrt{cx+d}}.$$

其中 a,b 是常数系数。比如, $x \mapsto \frac{2x-3}{\sqrt{x+3}}$ 就是 $\frac{\sqrt{ax+b}}{\sqrt{cx+d}}$ 类函数。

处理无理函数定义域的时候需要注意以下几点。首先,写成分式的无理函数,分母同样可能包含奇点,定义域中不包含这些奇点。其次,偶数次开方的代数式中,根号下的值需要大于等于 0。因此,定义域只包括使得这些值大于等于 0 的 x。

例题 2.2.1. 求以下函数的定义域:

(1)
$$x \mapsto \frac{\sqrt{x^2 - 3x + 2}}{x + 3}$$
 (2) $x \mapsto \frac{\sqrt[4]{x + 1}}{\sqrt{-x^2 - 2x + 3}}$
(3) $x \mapsto \frac{\sqrt{5 - 2x}}{(x - 1)\sqrt{x + 3}}$ (4) $x \mapsto \frac{\sqrt{2 - x^2}}{(x^2 - 1)\sqrt{x + 0.3}}$

解答.

1. 这个函数包含了 $\sqrt{ax^2 + bx + c}$ 型函数作为分子。要求根号下的值大于等于 0, 即

$$x^2 - 3x + 2 \geqslant 0.$$

对左边的二次式做因式分解,得到

$$(x-1)(x-2) \geqslant 0.$$

23

解集为 $(-\infty, 1] \cup [2, +\infty)$ 。又函数分母为 $x \mapsto x + 3$,有奇点 -3。即 -3 不能在定义域里。于是定义域为 $(-\infty, -3) \cup (-3, 1] \cup [2, +\infty)$ 。

2. 这个函数的分子为偶数次开方无理函数,要求根号下的值大于等于 0。另外,分母为 $\sqrt{ax^2+bx+c}$ 型函数,因此要求根号下的值大于 0。于是有不等式组:

$$\begin{cases} x+1 & \ge 0 \\ -x^2 - 2x + 3 & > 0 \end{cases}$$
 (1)

- (1) 的解集为 $[-1, +\infty)$, (2) 的解集为 (-3, 1)。于是定义域为两者交集: [-1, 1)。
- 3. 这个函数可以看作 $\sqrt{\frac{ax+b}{\sqrt{cx+d}}}$ 型函数与一次函数的商。处理前者时,通常将分母有理化。比如这里就变为

$$x \mapsto \frac{\sqrt{(5-2x)(x+3)}}{(x-1)(x+3)}.$$

这个函数有两个奇点: 1、-3。分子为偶数次开方根式,要求根号下的值大于等于 0,即:

$$(5-2x)(x+3) \geqslant 0$$

解集为 [-3, 2.5], 去掉奇点, 得到定义域; (-3, 1)∪(1, 2.5]。

4. 这个函数涉及了 $\sqrt{ax+b}$ 型和 $\sqrt{ax^2+bx+c}$ 型函数。要求分子根号下的值大于等于零,分母根号下的值大于零,并去除奇点。于是有不等式组:

$$\begin{cases} 2 - x^2 & \geqslant 0 \\ x + 0.3 & > 0 \\ x^2 - 1 & \neq 0 \end{cases}$$
 (1)
(2)
(3)

(1) 的解集为 $[-\sqrt{2}, \sqrt{2}]$, (2) 的解集为 $(-0.3, +\infty)$ 。由 (3) 知 $x \neq \pm 1$ 。于是定义域为: $(-0.3, 1) \cup (1, \sqrt{2}]$ 。

2.3 三角函数

我们已经学习过正弦、余弦、正切、余切等三角函数。下面我们进一步 整理并探讨它们的性质。

按照各种三角函数定义,我们用描点法画出它们的图像:

这里我们使用**弧度制**代替角度制。也就是说,我们的自变量不再是角度,而是弧度,也就是角度在单位圆中对应的圆心角的弧长。角度和弧度的转换可以用以下公式:

弧度 = 角度·
$$\frac{\pi}{180}$$
, 角度 = 弧度· $\frac{180}{\pi}$.

比如,30 角度对应 $\frac{30\pi}{180} = \frac{\pi}{6}$ 弧度,90 角度对应 $\frac{90\pi}{180} = \frac{\pi}{2}$ 弧度,1 弧度对应 $\frac{180}{\pi} \approx 57.3$ 角度, $\sqrt{2}$ 弧度对应 $\frac{180\sqrt{2}}{\pi} \approx 81.03$ 角度,等等。

从图中可以看到,正弦函数和余弦函数是有界函数,定义域是 \mathbb{R} ,值域是 [-1,1]。正切函数和余切函数是无界函数。正切函数的定义域是 $\{x \in \mathbb{R} | x \neq (k+\frac{1}{2})\pi, k \in \mathbb{Z}\}$,值域是 [-1,1]。余切函数的定义域是 $\{x \in \mathbb{R} | x \neq k\pi, k \in \mathbb{Z}\}$ 。正弦函数和正切、余切函数是奇函数,余弦函数是偶函数。

2.3 三角函数 25

此外,对任意实数 x,任意整数 n,都有 $\sin(x+2n\pi)=\sin x$, $\cos(x+2n\pi)=\cos x$ 。对各自定义域中任意实数 x,任意整数 n,都有 $\tan(x+n\pi)=\tan x$, $\cot(x+n\pi)=\cot x$ 。我们把这样的函数称为周期函数。

定义 2.3.1. 给定函数 f。如果有某个正数 T,使得其定义域中任何 x,都满足

$$f(x+T) = f(x),$$

就说 f 是**周期函数**, T 是 f 的**周期**。

注意到,如果 T 是周期函数 f 的周期,那么 2T、3T、4T……都是 f 的周期。f 所有周期中若有最小的,就称它为 f 的最小周期,简称 "f 的周期是 T"。若不存在最小周期,就说 f 的周期为 0。常函数是一种特殊的周期函数,任何正数 T 都是它的周期,我们说常函数的周期是 0。另一个例子是所谓的**示理函数** h,它的定义是:

$$h(x) = \begin{cases} 1 & \text{m} \mathbb{R} x \in \mathbb{Q} \\ 0 & \text{m} \mathbb{R} x \notin \mathbb{Q} \end{cases}$$

任何有理数 r > 0 都是 h 的周期: 如果 x 是有理数,那么 x + r 也是有理数,于是 h(x+r) = 1 = h(x); 如果 x 是无理数,那么 x + r 也是无理数,于是 h(x+r) = 0 = h(x)。

正弦和余弦函数的周期都是 2π 。正切和余切函数的周期都是 π 。

下面来研究三角函数的增减规律。由于三角函数是周期函数,只需要研究一个周期内的增减即可。又因为三角函数总是奇函数或偶函数,其增减规律关于原点或 y 轴对称,所以只需要研究半个周期。也就是说,对于正弦函数和余弦函数,我们只需研究区间 $[0, \pi]$; 对于正切函数,只需研究区间 $[0, \pi]$; 对于余切函数,只需研究区间 $[0, \pi]$ 。

我们学习过正弦与余弦函数、正切与余切函数的关联。这里仅举几例:

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$
$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$
$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

这些关联关系可以让我们在不同的三角函数之间转换,从不同的三角函数之间转换,从不同的角度看待问题。比如,根据第二个公式,正弦函数在区间 $[0, \pi]$ 上的图像和余弦函数在 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上的图像是一样的。根据第三个公

式,正切函数和余切函数关于直线 $x = \frac{\pi}{4}$ 对称。

现在来看正弦函数在区间 [0, π] 上的图像。

可以看到,正弦函数的图像总在直线 y=x 下方。在 x=0 附近,函数 值 $\sin(x)\approx x$,但随着 x 增大,x 的正弦值增大得比 y=x 慢,到了 $x=\frac{\pi}{2}$ 时不再继续增大,而逐渐减小,最终在 $x=\pi$ 时再次变成 0。

正弦函数是奇函数,所以区间 $[-\pi, 0]$ 上的函数图像与 $[0, \pi]$ 上的图像关于原点对称。查看整个周期 $[-\pi, \pi]$,正弦函数在 $[-\pi, -\frac{\pi}{2}]$ 上严格单调递减;然后在 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上严格单调递增,又在 $[\frac{\pi}{2}, \pi]$ 上严格单调递减。用变化表可以概括为:

余弦函数的增减规律和正弦函数几乎一样。发生在正弦函数 $x=x_0$ 处的事情,在余弦函数 $x=x_0-\frac{\pi}{2}$ 处发生。因此,在周期区间 $[-\pi,\pi]$ 上,余

弦函数的增减规律可以用以下变化表概括:

正切函数在单个周期内严格单调递增,但在整个定义域中并不是单调 函数。同样,余切函数在单个周期内严格单调递减,但在整个定义域中并不 是单调函数。

2.4 复合函数和反函数

设有映射 f 将出发集 A 中元素逐个对应到到达集 B 中元素,又有映射 g 将 f 在 B 中的目标再次对应到集合 C 中元素,那么我们可以定义两者的**复合**:

$$g \circ f: A \to C$$

 $x \mapsto g(f(x))$

如果 $A \, \cdot B \, \cdot C$ 都是数集,我们就说函数 f 和 g 复合成为 $g \circ f$ 。要使得映射的复合有意义,f 的值域 \mathcal{V}_f 应该是 g 的定义域 \mathcal{D}_g 的子集。这样我们才能把 f(x) 对应到 C 中。如果 \mathcal{V}_f 超出了 \mathcal{D}_g 的范围,那么我们可以"缩小"f 的定义域 \mathcal{D}_f ,即找到 \mathcal{D}_f 的子集 \mathcal{D}' ,使得 $f(\mathcal{D}') \subseteq \mathcal{D}_g$ 。

要注意的是,出于书写习惯,不少人会把这个复合映射写成 $f \circ g$,因为在我们的认知中,A 中元素先经过 f 映射到 B 中,再经过 g 映射到 C 中。不过我们书写函数的时候,自变量在函数符号的右侧,因此,为了和 g(f(x)) 的书写顺序一致,我们把这个复合映射记作 $g \circ f$ 而不是 $f \circ g$ 。

设函数 $f: x \mapsto \sqrt{x}$, $g: x \mapsto 2x-1$ 。则复合函数 $g \circ f$ 为 $x \mapsto g(f(x)) = 2\sqrt{x}-1$ 。注意到 f 的定义域是 $[0, +\infty)$,值域是 $[0, +\infty)$,g 的定义域是 \mathbb{R} , $g \circ f$ 的定义域是 $[0, +\infty)$ 。

另一方面,复合函数 $f \circ g$ 为 $x \mapsto \sqrt{2x-1}$ 。由于 g 的定义域和值域都是 \mathbb{R} ,而 f 的定义域是 $[0, +\infty)$,我们需要缩小 g 的定义域,使得g 的值域落在 f 的定义域中。也就是说,我们把 g 的定义域缩小到集合: $\{x \mid 2x-1 \in [0, +\infty)\}$ 。这个集合可以化简成 $[0.5, +\infty)$ 。因此复合函数 $f \circ g$ 为:

$$f \circ g: [0.5, +\infty) \to [0, +\infty)$$

 $x \mapsto \sqrt{2x-1}$

- 一般情况下, $g\circ f\neq f\circ g$ 。甚至,大多数时候,我们无法比较两者,因为 f 的出发集 g 的到达集不同。只有当 C 和 A "重合"的时候,我们才有可能比较 $g\circ f$ 和 $f\circ g$ 。
- 一种特殊情况是 $g \circ f$ 为恒等函数,即对任何 $x \in \mathcal{D}_f = \mathcal{V}_g$,总有 g(f(x)) = x。我们说这样的 g 是 f 的反函数。f 把某个元素 x 对应到目标函数 y,而 g 把 f 的目标元素 g "返还"到原来的 g.

要使得 f 的反函数有定义,我们要求 f 的定义域 \mathcal{D}_f 等于 g 的值域 \mathcal{V}_g ,且对任意 \mathcal{D}_f 中元素 $a \neq b$, $f(a) \neq f(b)$ 。可以想象,如果有 $a \neq b$ 使得 f(a) = f(b),那么 a = g(f(a)) = g(f(b)) = b,自相矛盾!我们把满足这个条件的 f 称为**单射**。

如果 $g \circ f$ 是恒等函数, $f \circ g$ 也是恒等函数,就说 f 和 g 互为反函数。这时 f 的值域 \mathcal{V}_f 应当等于 g 的定义域 \mathcal{D}_g 。我们说 f 是 \mathcal{D}_g 上的**满射**。同样地,g 也是单射和满射。我们把既是单射又是满射的映射称为**双射**或一一**对应**。如果 f 和 g 互为反函数,那么 f 和 g 都必须是双射。

举例来说, $f: x \in [0, +\infty) \mapsto x^2 - 1$ 是双射。它的值域是 $[-1, +\infty)$ 对某个 $x \ge 0$,记 $y = f(x) = x^2 - 1$,于是 $x = \sqrt{y+1}$ 。定义函数 $g: x \in$

2.5 反三角函数 29

 $[-1, \infty) \mapsto \sqrt{x+1}$ 。那么 $\forall x \ge 0, \ g(f(x)) = \sqrt{x^2-1+1} = x, \ f(g(x)) = (\sqrt{x+1})^2 - 1 = x$ 。于是 f 和 g 互为反函数。

反函数和本函数有什么联系? 我们来看它们在平面直角坐标系中的图像。设 (x,y) 是 f 的图像上一点,则 y=f(x),因此 g(y)=x。这说明 (y,x) 是 g 的图像上一点。反过来,如果 (x,y) 是 g 的图像上一点,则 y=g(x),因此 f(y)=x。这说明 (y,x) 是 f 的图像上一点。简而言之,交换函数图像上一点的横坐标和纵坐标,就得到它的反函数的图像上一点的坐标。

比如,我们用描点法画出 $f: x \in [0, +\infty) \mapsto x^2 - 1$ 的图像,交换每个点的横坐标和纵坐标,得到的新坐标可以描出函数 $g: x \in [-1, \infty) \mapsto \sqrt{x+1}$ 的图像。如果我们作直线 l: y = x,会发现 f 和 g 的图像关于直线 l 对称。这不难证明:

设 P(a,b) 为 f 图像上一点,则 Q(b,a) 为 g 图像上一点。过两点的直线为 l': x+y=a+b。l' 与 l 垂直,相交于点 $M(\frac{a+b}{2},\frac{a+b}{2})$,而 $|PM|=\frac{|a-b|}{\sqrt{2}}=|QM|$,因此 l 是 P,Q 中垂线,P,Q 关于 l 对称。从 g 图像上一点出发,结论相同。这就说明两者图像关于 l 对称。

2.5 反三角函数

第三章 二项式

我们知道整式分为单项式和多项式,而多项式中最简单的是二项式。很多实际问题中,我们可以把感兴趣的对象分成两部分的和,写成 a+b 的形式,这使得数学家对表达式 $(a+b)^n$ 展开了研究。

3.1 杨辉三角形

 $(a+b)^n$ 展开是什么样子? n=1,2,3 时, 我们知道,

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + 3b^{3}$$

继续让 n = 4, 5, 6, 可以算出

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$
$$(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^4b^2 + 6a^5b + b^6$$

观察这些式子中各项, 我们可以发现一些规律。

首先, $(a+b)^n$ 的展开式一共有 n+1 项。将它们按 a 的幂次从高到低排列,第 k 项可以写成 a^kb^{n-k} 乘以常数系数的形式。也就是说, $(a+b)^n$ 的展开式恰好包含了 a,b 构成的所有 n 次齐次式,没有遗漏。

其次,首项 a^n 和末项 b^n 的系数总是 1。此外,每项前的系数有对称性。 a^kb^{n-k} 的系数和 $a^{n-k}b^k$ 的系数总相同。我们把这些系数排列成如下三角形的样子(第一行代表 $(a+b)^0=1$ 的系数 1):

$(a+b)^0$							1						
$(a+b)^1$						1		1					
$(a+b)^2$					1		2		1				
$(a+b)^3$				1		3		3		1			
$(a+b)^4$			1		4		6		4		1		
$(a+b)^5$		1		5		10		10		5		1	
$(a+b)^6$	1		6		15		20		15		6		1

可以看到,每一行相邻的两个系数之和,等于下一行位于它们"中间"的数。例如,第5行第2个数4和第3个数6的和等于10,也就是第6行第3个数。

继续算出 n=7,8 时 $(a+b)^n$ 的系数,可以验证,以上规律仍然成立。

公元 1261 年,南宋数学家杨辉所著的《详解九章算术》中就出现了这个三角数阵,我们把它称为**杨辉三角形**。使用杨辉三角形,我们可以方便地查出 $(a+b)^n$ 各项的系数。下面我们归纳法证明以上规律。

记 $(a+b)^n = \sum_{k=0}^n w_{k,n} a^k b^{n-k}$,其中 w_k 是各项系数。设立命题 P(n): $w_{0,n} = w_{n,n} = 1$; $\forall k \in [1 \dots n-1]$, $w_{k,n} = w_{k,n-1} + w_{k-1,n-1}$ 。

$$n=2$$
 时, $w_{1,2}=2=1+1=w_{1,1}+w_{0,1}$ 。 因此 $P(2)$ 为真。

3.2 二项式定理 33

若 P(n) 对某个自然数 $n \ge 2$ 为真,根据归纳假设,

$$(a+b)^{n+1} = (a+b) \cdot (a+b)^n = (a+b) \cdot \left(\sum_{k=0}^n w_{k,n} a^k b^{n-k}\right)$$

$$= \sum_{k=0}^n w_{k,n} a^{k+1} b^{n-k} + \sum_{k=0}^n w_{k,n} a^k b^{n-k+1}$$

$$= w_{n,n} a^{n+1} + \sum_{k=0}^{n-1} w_{k,n} a^{k+1} b^{n-k} + \sum_{k=1}^n w_{k,n} a^k b^{n-k+1} + w_{0,n} b^{n+1}$$

$$= a^{n+1} + \sum_{k=1}^n w_{k-1,n} a^k b^{n-k+1} + \sum_{k=1}^n w_{k,n} a^k b^{n-k+1} + b^{n+1}$$

$$= a^{n+1} + \sum_{k=1}^n (w_{k-1,n} + w_{k,n}) a^k b^{n-k+1} + b^{n+1}$$

因此 $w_{0,n+1}=w_{n+1,n+1}=1; \ \forall k\in[1\dots n],\ w_{k,n+1}=w_{k,n}+w_{k-1,n}$ 。于是 P(n+1) 为真。因此,对任何为真大于等于 2 的自然数,P(n) 为真。

根据以上递推公式,我们可以算出杨辉三角形任一行的数。以此为系数,我们可以写出任何 $(a+b)^n$ 的展开式。

3.2 二项式定理

设 n = 100,我们想知道 $(a + b)^n$ 的展开式。仅仅根据递推公式,为了算出 $(a + b)^n$,我们要先推出前 100 行。这样的计算太繁琐了。我们希望对每个系数有直接了解。能否有计算指定系数的"通项公式"?

我们先从比较小的 n 开始找规律。展开 $(a+b)^2$ 的时候,我们根据分配律,得到

$$(a+b)^2 = a \cdot a + b \cdot a + a \cdot b + b \cdot b.$$

然后把 ab 和 ba 合并同类项。展开 $(a+b)^3$ 的时候,我们根据分配律,得到

$$(a+b)^3 = a \cdot a \cdot a + b \cdot a \cdot a + a \cdot b \cdot a + b \cdot b \cdot a$$
$$+ a \cdot a \cdot b + b \cdot a \cdot b + a \cdot b \cdot b + b \cdot b \cdot b$$

然后把 baa、aba、aab 合并同类项,把 bba、bab、abb 合并同类项。

一般来说,展开 $(a+b)^n$ 时,我们已经知道所有的项都是 a^kb^{n-k} 乘以相应系数,其中的 a 和 b 来自于每次使用配律时 "选" a 还是 b,而系数来自选择的方法数。具体来说,我们可以认为,展开 $(a+b)^n$ 时,我们从 n 个连乘的 a+b 中不断 "选择",把 n 次选择的结果乘起来,然后合并到某个 a^kb^{n-k} 中,成为它的系数中的 "1"。所有的 "1" 加起来,就变成了展开式中 a^kb^{n-k} 的系数。

对特定的 k 来说, a^kb^{n-k} 的系数来自于我们展开时"选择"了 k 次 a,n-k 次 b。因此, a^kb^{n-k} 的系数就等于选出 k 个 a 和 n-k 个 b 的方法数。它等于组合数 C_n^k 。也就是说, $(a+b)^n$ 的展开式中, a^kb^{n-k} 的系数为 C_n^k ,叫做二项式系数。我们可以完整地写出 $(a+b)^n$ 的展开式:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k} = n! \sum_{k=0}^n \frac{a^k b^{n-k}}{k!(n-k)!}.$$

这个结论称为二项式定理,右边的式子称为 n 次二项展开式。其中为了方便,约定 $C_n^0 = \frac{n!}{0!n!} = C_n^n$ 。

从二项式定理,可以推导出组合数的一些基本性质。比如,由前面的结论可知: $C_n^k = C_n^{n-k}$, $C_{n+1}^k = C_n^k + C_n^{k-1}$ 。又如,令 a = b = 1,可得到: $\sum_{k=0}^n C_n^k = 2^n$ 。令 -a = b = 1,可得到: $\sum_{k=0}^n (-1)^k C_n^k = 0$ 。

观察杨辉三角形,还可以发现二项式系数的性质: 从 $C_n^0=1$ 起,随着 k 增大, C_n^k 先是不断增大,然后不断减小,最终回到 $C_n^n=1$ 。n=2m+1 为奇数的时候, $C_n^m=C_n^{m+1}$ 是数值最大的;n=2m 为偶数时, C_n^m 是数值最大的。这些性质可以用以下关系式解释:

$$C_n^k = \frac{n!}{k!(n-k)!} = \frac{n-k+1}{k} \cdot \frac{n!}{(k-1)!(n-k+1)!} = \frac{n-k+1}{k} C_n^{k-1}.$$

k < n - k + 1 的时候, $C_n^k > C_n^{k-1}$;k > n - k + 1 的时候, $C_n^k < C_n^{k-1}$ 。分 水岭是 $\frac{n+1}{2}$ 。

具体来说, C_n^k 大概有多大呢? 我们知道最大的项是 C_n^m 。使用渐进估计(需要用到较高深的知识,这里不展开介绍)可以知道,n 足够大之后, C_n^m 大致等于 $\frac{2^n}{\sqrt{2\pi n}}$ 。也就是说,所有二项式系数之和大致是最大的二项式系数的 $2.5\sqrt{n}$ 倍。二次项系数从 1 变成 n, 再变成 $\frac{n(n-1)}{2}$,增长越来越慢,最终在 m 处达到最大值,大约是 $\frac{2^n}{\sqrt{2\pi n}}$,然后逐渐变小。

3.3 二项式的应用

3.3.1 二项分布

我们已经学习过单一实验中的二项分布。比如,抛一枚硬币,硬币正面向上的概率是 p,向下的概率是 1-p,就说实验结果服从系数为 p 的二项分布。现在来看独立重复这个实验的分布。

假设重复抛掷 n 次硬币,任何两次之间互不干扰。这个独立重复实验中,每次抛掷正面向上的概率为 p,向下的概率为 1-p。于是,n 次抛掷中有 k 次正面向上的概率就是 $C_n^k p^k (1-p)^{n-k}$,也就是二项式 $(p+1-p)^n$ 展开中第 k+1 项。这样的分布称为系数为 p 的 n 次二项分布。n 次抛掷的终态有 n+1 个,其分布列为:

k	ℙ(k次正面向上)						
0	$C_n^0 p^0 (1-p)^n$						
1	$C_n^1 p^1 (1-p)^{n-1}$						
i i	:						
n-1	$C_n^n p^{n-1} (1-p)^1$						
n	$C_n^n p^n (1-p)^0$						

比如, n = 20, p = 0.4 的时候, 分布可以用以下直方图表示:

3.3.2 同余计算

数论中, 我们会遇到类似这样的问题: 7¹⁰³ 模 25 的余数是多少? 使用二项式展开, 我们可以这样求解:

$$7^{113} = 7 \cdot 49^{61} = 7 \cdot (50 - 1)^{61} = 7 \cdot \sum_{k=0}^{61} C_{61}^{k} 50^{k} (-1)^{61-k}$$

50 是 25 的倍数,所以右边的和式中,k > 0 的项都能被 25 整除。因此 $7^{103} \equiv_{25} 7 \cdot (-1)^{61} \equiv_{25} -7 \equiv_{25} 18$ 。

此外还可以通过讨论二项式系数的同余性质来求解类似的问题。这里不作展开。

3.3.3 近似计算

例题 3.3.1. 已知某合金的热膨胀关系满足半经验公式: $l = l_0(1 + \eta \frac{T - T_0}{T_0})^5$,原材料长度 $l_0 = 25$ 厘米,系数 $\eta = 0.5$ 。当温度 T 从 $T_0 = 650K$ 升到 654K 的时候,材料长度增加了多少厘米?将误差保持在 1%以内。

解答. 关键在于计算 $(1 + \eta \frac{T - T_0}{T_0})^5$ 。 $\eta \frac{T - T_0}{T_0} = \frac{2}{650} \approx 0.00308$ 。 因此需要计算 $1 + 5 \cdot 0.00308 + 10 \cdot 0.00308^2 + 10 \cdot 0.00308^3 + 5 \cdot 0.00308^4 + 0.00308^5$.

我们注意到 0.00308 是一个很小的数,它的平方、立方……只会迅速变得非常非常小。而二项式系数最大不超过 10,因此,上式左起第 3 项开始相对前两项非常小。

由于 $5 \cdot 0.00308 = 0.0154$,而 $10 \cdot 0.00308^2 \approx 0.00009$,大概是 0.0154 的千分之六,在 1% 以内,因此它之后的项就可以忽略了。我们可以说

$$(1 + \frac{T - T_0}{T_0})^5 \approx 1 + 5 \cdot 0.00308 + 10 \cdot 0.00308^2 = 1.0155$$

37

因此,升温后材料长度约为 $25 \cdot 1.0155 = 25.387$ 厘米,增加了 0.387 厘米。精确计算的结果是 $0.38699 \dots$ 厘米,可以看出误差在 1% 以内,未造成额外误差。

我们把这样的问题称为微扰估计问题,即估计一个形如 $(1+x)^n$ 的式子在 x 很接近 0 的时候大约和 1 差多少。其中 x 一般称为扰动项。

考虑 $(1+x)^n$ 的展开式。前文已经介绍过,展开式中第 k+1 项 $C_n^k x^k$ 的 "大小"大约是 $\frac{2^n x^k}{\sqrt{2\pi n}}$ 。而 x 接近 0 的时候,二项式系数增长比起幂函数 要 "慢",即 x^k 远比 2^n 小。因此,展开式中 x 次数越高的项,越快速接近 0 ,在 x 次数较低的项前面,小得可以忽略。

比如,在前面的例子里, $x \approx 0.003$, x^1 就已经远远小于 2^5 ,

$$C_5^2 x^2 = \left(\frac{C_5^2}{C_5^1} x\right) \cdot C_5^1 x^1$$

括号中的 $\frac{C_5^2}{C_5^2}x$ 远小于 1, 因此 $C_5^2x^2$ 远小于 $C_5^1x^1$, 其后的 $C_5^3x^3$ 、 $C_5^4x^4$ 、 $C_5^5x^5$ 更是如此。于是,我们可以根据精度要求,适当舍掉靠后的大部分项,只保留靠前 x 次数较低的项,快速估计出近似值。

实践中,我们只保留前一到两项,精度不够时,再逐步尝试。比如先计算 $1+C_n^1x=1+nx$,再计算 $1+C_n^1x+C_n^2x^2=1+nx+\frac{n(n-1)}{2}x^2$ 。如果两者之差在精度要求的误差范围内,就可以用后一个作为估计结果。

例题 3.3.2. 计算 $(1-0.0082)^{14}$,相对误差在 1% 以内。

解答. n=14, x=-0.0082, 计算 1+nx 和 $1+nx+\frac{n(n-1)}{2}x^2$ 的值,分别得到 0.8852 和 0.8913。两者之差为 0.0061,小于 1%,因此认为精度已达到要求,取 0.8913 为估计结果。经验证,精确结果为 0.89112...,相对误差在 1% 以内。

例题 3.3.3. 计算 1.9926¹⁹,相对误差在 1% 以内。

解答. 将问题转化为求 $2^{19} \cdot (1 - \frac{2-1.9926}{2})^{19}$ 。这时 n = 19, $x = -\frac{2-1.9926}{2} = -0.0037$ 。计算 1 + nx 和 $1 + nx + \frac{n(n-1)}{2}x^2$ 的值,分别得到 0.9297 和 0.9320。两者之差为 0.0023,小于 1%,因此认为精度已达到要求。估计结果为 $2^{19} \cdot 0.9320 = 488636.416$ 。经验证,精确结果为 488632.549...,相对误差在 1% 以内。

第四章 不等式

4.1 不等式的基本概念

我们已经接触过一元一次、一元二次和二元一次不等式。当变量取某些值的时候,不等式成立;取另一些值的时候,不等式不成立。这样的不等式称为**条件不等式**。如果无论变量取什么值,不等式都成立,这样的不等式称为**绝对不等式**。

先来复习一下不等关系的基本规则:

这些性质基于数的运算法则,对我们熟知的数域: N、Z、Q、ℝ 都成立。此外,从数的运算法则,还可以给出以下的不等关系:

- 1. 任何数的平方大于等于 0。
- 2. 同号的数相乘大于 0。异号的数相乘小于 0。

利用这些性质,我们可以得出一些有用的结论,称为常用不等式。

4.2 排序不等式

给定两列数: $a_1 \ge a_2 \ge \cdots \ge a_n$ 和 $b_1 \ge b_2 \ge \cdots \ge b_n$ 。它们都按从大到小的顺序排列。我们把数列 $\{a_k\}$ 中最大的数乘以 $\{b_k\}$ 中最大的数,把

 $\{a_k\}$ 中次大的数乘以 $\{b_k\}$ 中次大的数,以此类推,再全部加起来,把得到的和称为两列数的**顺序和**:

$$a_1b_1 + a_2b_2 + \dots + a_nb_n$$

我们把数列 $\{a_k\}$ 中最大的数乘以 $\{b_k\}$ 中最小的数,把 $\{a_k\}$ 中次大的数乘以 $\{b_k\}$ 中次小的数,以此类推,再全部加起来,把得到的和称为两列数的**逆序和**:

$$a_1b_n + a_2b_{n-1} + \dots + a_nb_1$$

按照其它顺序把两列数两两配对(不重复也不遗漏),加起来的和,称为两列数的**乱序和**:

$$a_1b_{g(1)} + a_2b_{g(2)} + \dots + a_nb_{g(n)}$$

其中 g 是某个 [1...n] 到自身的双射。

定理 4.2.1. 排序不等式

两列数的顺序和大于等于乱序和,乱序和大于等于逆序和。

证明: 我们用归纳法证明。设命题 P(n): 若有 $a_1 \ge a_2 \ge \cdots \ge a_n$ 和 $b_1 \ge b_2 \ge \cdots \ge b_n$, 那么

$$\sum_{i=1}^{n} a_i b_i \geqslant \sum_{i=1}^{n} a_i b_{g(i)} \geqslant \sum_{i=1}^{n} a_i b_{n+1-i}.$$

其中 g 是 [1...n] 到自身的双射。

P(1) 显然为真。来看 P(2)。顺序和为 $a_1b_1 + a_2b_2$,乱序和与逆序和都是 $a_1b_2 + a_2b_1$ 。两者作差:

$$a_1b_1 + a_2b_2 - (a_1b_2 + a_2b_1) = (a_1 - a_2)(b_1 - b_2)$$

右侧的 $a_1 - a_2$ 和 $b_1 - b_2$ 都大于等于零,因此乘积大于等于零。这就证明 $a_1b_1 + a_2b_2 \ge a_1b_2 + a_2b_1$ 。于是 P(2) 为真。

4.2 排序不等式 41

假设 P(n) 为真。下面证明 P(n+1) 为真。设有两列数: $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1}$ 和 $b_1 \ge b_2 \ge \cdots \ge b_n \ge b_{n+1}$ 。设 $c_1, c_2, \cdots, c_{n+1}$ 是打乱顺序后的数列 $\{b_k\}$ 。考虑乱序和 $\sum_{i=1}^{n+1} a_i c_i$ 。先证明乱序和小于等于顺序和。

对 c_1 分情况讨论。

如果 c_1 就是 b_1 , 那么

$$\sum_{i=1}^{n+1} a_i c_i = a_1 b_1 + \sum_{i=2}^{n+1} a_i c_i.$$

 c_2, \dots, c_{n+1} 是 b_2, \dots, b_{n+1} 打乱顺序。所以根据归纳假设 $P(n), \sum_{i=2}^{n+1} a_i c_i \leq \sum_{i=2}^{n+1} a_i b_i$ 。 因此

$$\sum_{i=1}^{n+1} a_i c_i \leqslant \sum_{i=1}^{n+1} a_i b_i.$$

如果 c_1 不是 b_1 ,某个 c_j 是 b_1 ,我们希望把 c_1 调成 b_1 ,这样就回到了上一种情况。只要保证这样调整之后乱序和不变小就可以了。由于 $a_1 \ge a_j$, $c_1 \le c_j = b_1$,根据 P(2),逆序和 $a_1c_1 + a_jc_j$ 小于等于顺序和 $a_1c_j + a_jc_1$ 。所以把 c_1 和 c_j 互换,得到的乱序和比原来的乱序和更大。而新的乱序和中 c_1 就是 b_1 ,因此小于等于顺序和。这说明原来的乱序和小于等于顺序和。

综上所述,任何情况下,乱序和小于等于顺序和。

再来证明逆序和小于等于乱序和。如果 c_1 是 b_{n+1} , 那么

$$\sum_{i=1}^{n+1} a_i c_i = a_1 b_{n+1} + \sum_{i=2}^{n+1} a_i c_i.$$

 c_2, \cdots, c_{n+1} 是 b_1, \cdots, b_n 打乱顺序。所以根据归纳假设 P(n), $\sum_{i=2}^{n+1} a_i c_i \ge \sum_{i=2}^{n+1} a_i b_{n+2-i}$ 。因此

$$\sum_{i=1}^{n+1} a_i c_i \geqslant \sum_{i=1}^{n+1} a_i b_{n+2-i}.$$

如果 c_1 不是 b_{n+1} , 某个 c_j 是 b_{n+1} , 我们希望把 c_1 调成 b_{n+1} , 这样就回到了上一种情况。只要保证这样调整之后乱序和不变大就可以了。由于 $a_1 \ge a_j$,

 $c_1 \ge c_j = b_{n+1}$,根据 P(2),顺序和 $a_1c_1 + a_jc_j$ 大于等于逆序和 $a_1c_j + a_jc_1$ 。 所以把 c_1 和 c_j 互换,得到的乱序和比原来的乱序和更小。而新的乱序和中 c_1 就是 b_{n+1} ,因此大于等于逆序和。这说明原来的乱序和大于等于逆序和。

综上所述,任何情况下,乱序和大于等于逆序和。

因此,对任何正整数
$$n$$
, $P(n)$ 为真。

4.3 内积不等式

我们已经看过平面向量的内积不等式:

$$(a_1^2 + a_2^2)(b_1^2 + b_2^2) = (a_1b_1 + a_2b_2)^2 + (a_1b_2 - a_2b_1)^2 \geqslant (a_1b_1 + a_2b_2)^2$$

向量模长平方之积等于内积和面积的平方和,因此大于内积的平方。这个 不等式也可以写成:

$$\sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2)} \geqslant |a_1b_1 + a_2b_2|$$

对于多元有序数组 (a_1, a_2, \dots, a_n) 和 (b_1, b_2, \dots, b_n) ,

$$(a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2)$$

$$= (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (a_ib_j - a_jb_i)^2$$

$$\geqslant (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2$$

4.4 诸均值不等式

43

其中 $\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}(a_{i}b_{j}-a_{j}b_{i})^{2}$ 的"来历"为:

$$\left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{j=1}^{n} b_j^2\right) - \left(\sum_{i=1}^{n} a_i b_i\right)^2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i^2 \cdot b_j^2 - \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_i \cdot a_j b_j$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j)^2 + \sum_{i=1}^{n} \sum_{j=1}^{n} (a_j b_i)^2 - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j b_i b_j\right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left((a_i b_j)^2 + (a_j b_i)^2 - 2 a_i b_j \cdot a_j b_i \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2.$$

因此,对一般的 n,也有内积不等式:

$$\sqrt{(a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2)} \geqslant |a_1b_1 + a_2b_2 + \dots + a_nb_n|$$

4.4 诸均值不等式

平均值是一种描述数据的方法。我们已经学习过算术平均值。给定 n个正数: a_1, a_2, \dots, a_n ,它们的算术平均值是:

$$m_A: a_1, a_2, \cdots, a_n \mapsto \frac{a_1 + a_2 + \cdots + a_n}{n}.$$

除了算术平均值,生产实践中还会用到其它几种平均值。几何平均值来自 射影定理,用乘积开方得到结果:

$$m_G: a_1, a_2, \cdots, a_n \mapsto (a_1 a_2 \cdots a_n)^{\frac{1}{n}}.$$

调和平均值来自音乐中对和弦的研究,它是倒数的算术平均值的倒数:

$$m_H: a_1, a_2, \cdots, a_n \mapsto \left(\frac{a_1^{-1} + a_2^{-1} + \cdots + a_n^{-1}}{n}\right)^{-1}.$$

这三种平均值都源自古典数学,是研究平面与空间形体、音律、天文地理时常见的工具。它们之间有什么联系呢?

首先来看两个数的情况。给定两个正数 a_1 、 a_2 ,它们的算术平均值是 $\frac{a_1+a_2}{2}$,几何平均值是 $\sqrt{a_1a_2}$,调和平均值是 $\frac{2a_1a_2}{a_1+a_2}$ 。我们发现:

$$\frac{a_1 + a_2}{2} - \sqrt{a_1 a_2} = \frac{1}{2} (\sqrt{a_1} - \sqrt{a_2})^2 \geqslant 0$$

$$\sqrt{a_1 a_2} - \frac{2a_1 a_2}{a_1 + a_2} = \frac{2\sqrt{a_1 a_2}}{a_1 + a_2} \left(\frac{a_1 + a_2}{2} - \sqrt{a_1 a_2} \right) \geqslant 0$$

任意两正数 a_1 、 a_2 的算术平均值总大于等于几何平均值,几何平均值总大于等于调和平均值。

再来看三个数的情况给定两个正数 a_1 、 a_2 、 a_3 ,它们的算术平均值是 $\frac{a_1+a_2+a_3}{3}$,几何平均值是 $\sqrt[3]{a_1a_2a_3}$,调和平均值是 $\frac{3a_1a_2a_3}{a_1a_2+a_2a_3+a_3a_1}$ 。

$$\frac{a_1 + a_2 + a_3}{3} - \sqrt[3]{a_1 a_2 a_3}$$

$$= \frac{1}{6} (\sqrt[3]{a_1} + \sqrt[3]{a_2} + \sqrt[3]{a_3}) ((\sqrt[3]{a_1} - \sqrt[3]{a_2})^2 + (\sqrt[3]{a_2} - \sqrt[3]{a_3})^2 + (\sqrt[3]{a_3} - \sqrt[3]{a_1})^2)$$

$$\geqslant 0.$$

$$\sqrt[3]{a_1 a_2 a_3} - \frac{3a_1 a_2 a_3}{a_1 a_2 + a_2 a_3 + a_3 a_1}
= \frac{3\sqrt[3]{a_1 a_2 a_3}}{a_1 a_2 + a_2 a_3 + a_3 a_1} \left(\frac{a_1 a_2 + a_2 a_3 + a_3 a_1}{3} - \sqrt[3]{a_1^2 a_2^2 a_3^2} \right)
= \frac{3\sqrt[3]{a_1 a_2 a_3}}{a_1 a_2 + a_2 a_3 + a_3 a_1} \left(\frac{a_1 a_2 + a_2 a_3 + a_3 a_1}{3} - \sqrt[3]{(a_1 a_2)(a_2 a_3)(a_3 a_1)} \right)
\geqslant 0.$$

于是,任意三正数 a_1 、 a_2 、 a_3 的算术平均值总大于等于几何平均值,几何平均值总大于等于调和平均值。

这让我们猜想,是否任何 n 个正数 a_1, a_2, \dots, a_n ,它们的算术平均值 总大于等于几何平均值,几何平均值总大于等于调和平均值?

先证明算术平均值总大于等于几何平均值。设命题 P(n): n 个正数的 算术平均值总大于等于几何平均值。对于 n=2,3 的情况,我们使用了因式分解来证明。这种方法难以推广。使用 P(2),我们可以证明以下较"弱"的结论: 如果 P(n) 成立,那么 P(2n) 成立。

$$\frac{a_1 + a_2 + \dots + a_{2n}}{2n} \geqslant \frac{1}{2} \left((a_1 a_2 \dots + a_n)^{\frac{1}{n}} + (a_{n+1} a_{n+2} \dots + a_{2n})^{\frac{1}{n}} \right)$$

$$\geqslant \sqrt{(a_1 a_2 \dots + a_n)^{\frac{1}{n}} \cdot (a_{n+1} a_{n+2} \dots + a_{2n})^{\frac{1}{n}}}$$

$$= (a_1 a_2 \dots + a_{2n})^{\frac{1}{2n}}$$

因此,通过归纳法我们可以证明,只要 n 是 2 的乘方,那么 P(n) 为真。对于剩余的 n,我们要另想办法。由于已经证明了 P(n) 对足够大的 n 为真,我们可以把归纳法"反过来用": 假设 P(n) 对某个 n 为真,可以证明 P(n-1) 为真。

若 P(n) 为真,给定正数 a_1, a_2, \dots, a_{n-1} ,我们补上第 n 个数 a_n ,以便使用归纳假设。令 a_n 为 n-1 个数的算术平均值: $a_n = \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}$ 。这样,将 a_n 补到前 n-1 个数里,不改变算术平均值。

$$\frac{a_1 + a_2 + \dots + a_n}{n} = \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} = a_n.$$

P(n) 为真,所以

$$a_n = \frac{a_1 + a_2 + \dots + a_n}{n} \geqslant (a_1 a_2 \cdots a_n)^{\frac{1}{n}}.$$

两边取 n 次方,消去右侧 a_n ,得到 $a_n^{n-1} \geqslant a_1 a_2 \cdots a_{n-1}$ 。因此

$$\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} = a_n \geqslant (a_1 a_2 \dots a_{n-1})^{\frac{1}{n-1}}.$$

于是 P(n-1) 也为真。

整理一下以上的讨论。我们首先证明了,只要 n 是 2 的乘方,那么 P(n) 为真。接下来我们证明了,若 P(n) 为真,P(n-1) 也为真。给定任何正整数 n>1,如果 n 是 2 的乘方,那么 P(n) 为真。如果 n 不是 2 的乘方,那

么总可以找到 2 的乘方 2^m 大于 n。P(n) 为真,因此 $P(2^m-1)$ 为真,因而 $P(2^m-2)$ 为真……如此类推, 2^m-n 步之后,就得到 P(n) 为真。因此,无论 n 是不是 2 的乘方,P(n) 都为真。

以上证明可算是归纳法的一种"升级改良"。我们无法直接用 P(n) 到 P(n+1) 来归纳出所有 P(n) 为真,于是先通过归纳法解决一部分 n,再通过反向"补漏"的方法,解决剩余的 n。

证明了算术平均值总大于等于几何平均值,再证明几何平均值总大于等于调和平均值。

给定 n 个正数 a_1, a_2, \dots, a_n ,记它们的几何平均值为 G,另外构造 n 个正数: $\frac{G}{a_1}, \frac{G}{a_2}, \dots, \frac{G}{a_n}$ 。它们的算术平均值大于等于几何平均值:

$$\frac{G}{a_1} + \frac{G}{a_2} + \dots + \frac{G}{a_n} \geqslant n \left(\frac{G}{a_1} \frac{G}{a_2} \dots \frac{G}{a_n} \right)^{\frac{1}{n}} = \frac{nG^{\frac{n}{n}}}{(a_1 a_2 \dots a_n)^{\frac{1}{n}}} = n.$$

因此

$$G \geqslant n \left(a_1^{-1} + a_2^{-1} + \dots + a_n^{-1} \right)^{-1} = \left(\frac{a_1^{-1} + a_2^{-1} + \dots + a_n^{-1}}{n} \right)^{-1}.$$

除了算术平均值、几何平均值和调和平均值,生产实践中还会用到不少别的平均值。不少平均值之间也存在类似的绝对不等关系。