

心 전자공학전공 교과목해설

교과목해설

학부 공통 교과목

학년-학기	교과목명	교과목 설명	권장 선이수 교과목
1-1	소프트웨어개론 (Introduction to Software)	컴퓨터의 역사, 주요 구성요소인 CPU, 메모리, 보조기 억장치, 입출력 장치 등의 동작 원리 및 특성들을 배운 후, 프로그래밍 언어, 운영체제, 데이터베이스 등 소프트 웨어 개념, 정보통신 및 네트워크, 인공지능, 빅데이터, IoT, 로봇 등 새로운 IT 분야의 흐름에 대하여 학습	
	가상현실콘텐츠기초 (Basic Virtual Reality Contents)	가상현실 컨텐츠를 제작하기 위한 Alice 프로그래밍 언 어 이해 및 실습	
	전자공학개론 (Introduction to Electronics)	전자공학 관련 물리적 법칙 이해를 통한 전기전자통신 공학의 기초지식을 습득 및 능력 함양	
1-2	C프로그래밍 (C Programming)	C언어 프로그래밍 기초	
	파이썬응용 (Python Programming Application)	파이썬 응용을 위한 활용 프로그램 이해 및 실습	
	프로그래밍언어 (Programming Language)	디지털시스템설계/임베디드시스템 신호및시스템/디지털영상처리이론과실습	

전자공학전공 교과목

학년-학 기	교과목명	교과목설명	권장 선이수 교과목
2-1	디지털시스템설계 (Digital System Design)	디지털 논리, 논리회로 설계, 컴퓨터구조 등을 학습하여 IoT 시스템의 해석 및 설계에 필요한 기초지식을 습득한 다.	프로그래밍언어
	반도체공학입문 (Introduction to Semiconductors)	반도체의 기본적인 물리적, 화학적, 전기적 성질 및 응용 에 대하여 학습한다.	
	전자기학 I (Electromagnetics I)	정전기장/정자기장 관련된 법칙 및 원리 이해와 실전 문제를 통해 전자 · 전기공학 전반의 정전 · 자기장의 전문지식과 활용 능력을 함양한다.	
	회로이론 I (electronic circuit theory I)	전자회로의 기초로서 DC 저항회로, Kirchhoff's 법칙, superposition원리 등의 기초 설계 및 분석이론의 이해 목적.	
	기초전자실험 (Basic Electronic Experiment)	전자 · 전기회로의 기본 법칙 및 원리를 학습하고, 소자 특성 이해, 실험 및 계측, 보고서작성 등 전공 근본 지식 및 현장 실무능력을 함양한다.	회로이론I
2-2	loT임베디드시스템 (loT Embedded System)	상용 32비트 마이크로컨트롤러의 구조, 임베디드 펌웨어 개발에 관한 실무 등을 학습하여 마이크로컨트롤러기반 IoT 임베디드 시스템의 설계 능력을 향상시킨다.	디지털시스템설계
	회로이론II (Electonis Cicuit Theory II)	전자회로의 기초로서 AC회로, 주파수 및 시간 응답, Fourier series, Laplace변환 이론을 이해하고, resonance circuit, Op-Amp설계를 통해 설계 응용 능력 배양 목적	회로이론I
	IoT반도체 및 센서공학 (IoT Semiconductor Engineering)	반도체소자의 기본 동작원리와 IoT분야를 중심으로 한 미래반도체소자에 대하여 학습한다.	반도체공학 입문
3-1	전자기학II (Electromagnetism II)	시변 전자장 멕스웰 방정식과 전자기파의 원리 및 적용 등 학습을 통해 전자 · 전기공학 전반의 전자기파 전문지 식과 활용 능력을 함양한다.	전자기학
		Created with PDFCrowd HTML to PDF API	

	교과목명	교과목 설명	권장 선이수 교과목
	통신신호처리 (Communicstion Signal Processing)	푸리에변환, 시간영역 및 주파수영역에서의 신호처리 알고리즘, 유무선 변복조 방식 등을 학습하여 IoT 신호처 리 시스템의 설계 능력을 향상시킨다.	IoT임베디드시스템
	자동제어 (Automatic Control I)	자동제어 기초이론으로 laplace변환, 2차 system 설계 및 분석, 주파수 영역 및 시간영역에서의 설계 이론 능력 배양 목적.	
	전자회로및실험I (Electronid Circuits I)	수동전자소자와 능동전자소자로 구성된 기본적인 전자 회로의 직류와 교류회로 동작원리를 학습한다.	
3-2	마이크로파공학 (Microwave engineering)	마이크로파공학의 이론과 원리 등 학습을 통해 RF 영역 의 회로 설계 및 분석 능력을 함양.	전자기학I,II 회로이론I,II
	IoT영상통신시스템 (IoT Image Communication System)	영상개선, 영상복원, 영상해석, 영상인식, 영상압축, 딥러닝 등에 관련된 영상처리 알고리즘을 학습하여 loT 디지털 영상처리 시스템의 설계 능력을 향상시킨다.	통신신호처리
	IoT자동차제어시스템 (automobile electronics system based IoT)	자동차 전자 기기와 제어 기초, IoT와 자동차 연결 system분석 및 설계, 자율 주행 자동차를 위한 제어 시 스템 설계 및 응용, 제어시스템 설계 및 해석방법 (stability, 주파수 영역 설계, 기본 제어기 설계-PID)	자동제어I
	전자회로및실험II (Electronic Circuits 2)	연산증폭기회로를 중심으로 한 응용 전자회로의 동작원 리를 학습한다.	전자회로및실험I
4-1	RF 센서및회로설계 (RF Sensor and Circuit Design)	RF 회로설계에 필요한 이론을 학습하고, 설계 tool 활용과 구현 및 계측 능력을 함양함.	loT무선통신시스템
	디지털통신 시스템 (Digital Communication System)	디지털 변복조, 통신 프로토콜, 통신 네트워크 등을 학습 하여 IoT 유무선 통신시스템의 설계 능력을 향상시킨다.	loT영상통신시스템

	교과목명	교과목설명	권장 선이수 교과목
	IoT컴퓨터시스템구조및응 용 (IoT Computer System Architecture and Application)	computer system구조(CPU, Memory, I/O) 및 설계 방법, computer based IoT설계 및 응용(smartphone O/S, Apps, Driver)	
	전자정보소자공학 (Electronic Device Engineering)	반도체 물잘을 기반으로 한 전자소자의 구조 및 특성, 제 조 공정을 학습하여 특정의 기능을 수행하기 위한 전자 소자를 설계할 수 있음.	반도체공학입문 IoT반도체 및 센서공학 회로이론I,II
4-2	이동통신및네트워크 (Mobile Communication and Network)	이통통신의 기본 이론 및 시스템 구조 등 이해와 무선망 설계의 기본지식 및 시스템 성능분석 등 학습함.	loT RF센서및회로설계
	인공지능 (Artificial intelligence)	창의종합설계 1,2 / 반도체캡스톤설계 1,2	loT임베디드시스템, loT디지털통신시스템
	loT전자시스템 설계 (loT Electronic System Design)	IoT 전자시스템 설계(Idea to product, V-Model design), 자율주행 자동차 algorithm 설계 및 자체 project 설계.	
	집적회로공학 (Integrated Circuits)	고학년 전자공학학생들을 위한 교육과정 및 교수학습방 법의 특수성 및 일반성에 대해 부합하도록 학습을 진행, 아날로그 및 디지털 집적회로를 해석할 수 있고, 요구하 는 성능을 낼 수 있는 회로를 설계할 수 있도록 한다.	
	캡스톤디자인(loT) (Capstone Design loT) (팀티칭)	팀(또는 개인)별 선정한 주제에 대해 이론 및 실무에 대한 제반 능력을 검증하고 평가함.	

개인정보처리방침

경기도 용인시 기흥구 강남로 40(구갈동) 우(16979), 대표전화 : 031-280-3114, 031-280-3500, 팩스번호 : 031-281-3604 Copyright ©2019 Kangnam University. All right reserved.

