Handling Missing Data

Ravikiran Srinivasulu SOFTWARE CONSULTANT ravikirans.com | go.ravikirans.com/YouTube

Agenda

We cannot control for missing data

Approach the problem in a systematic way

Understand the types of missingness

- Listwise deletion

In this module:

- Custom Substitution
- Single Imputation methods
- MICE

Complete dataset

Reasons Why Data Is Missing

Reasons of Missing Data

Missing Completely at Random (MCAR)

Missing at Random (MAR)

Missing Not at Random (MNAR)

Missing Completely at Random (MCAR)

Country	Degree
United States	Bachelors
Cambodia	Masters
India	Preschool
Mexico	Bachelors
?	Masters
Germany	Doctorate
?	Masters
England	9 th
Italy	11 th
Columbia	HS-grad

Missing at Random (MAR)

Age	Gender
35	Male
25	Male
32	Female
?	Female
?	Female
30	Male
?	Male
55	Male
?	Female
35	Male

Missing Not at Random (MNAR)

Occupation Priv-house-serv Handlers-cleaners **Armed-Forces** Farming-fishing Other-service **Exec-managerial** Sales

Demo

Listwise Deletion

Problems in Deleting Rows

Problems in Deleting Rows

Deleting records introduces bias

Data missing at prediction time

Loss of data impacts high variance models

Problems in Deleting Rows

Deleting records introduces bias

Listwise deletion works only if the assumption is MCAR

- MAR Women not revealing their age
- MNAR High-salaried people not disclosing their incomes

Additional Observations help the model

Additional Features help the model

Demo

Using Indicator variables

Replace with Mean, Median and Mode

Ordinal

Levels of Measurement

Interval

Levels of Measurement

But, 6/2 \(\neq \) 16/12

Ratio

Levels of Measurement

Heights of people

Nomina

Ordinal

nterv

Single Imputation methods do not preserve relationships between variables

Education	Label
Doctorate	1
1st_4th	0
Masters	1
Bachelors	1
Doctorate	1
Bachelors	0
10 th	1
Preschool	0
Doctorate	1
Preschool	0

Education	Label
Doctorate	1
?	0
Masters	1
Bachelors	1
Doctorate	1
Bachelors	0
?	1
Preschool	0
Doctorate	1
?	0

Education	Label
Doctorate	1
Doctorate	0
Masters	1
Bachelors	1
Doctorate	1
Bachelors	0
Doctorate	1
Preschool	0
Doctorate	1
Doctorate	0

So, it weakens the relationship with other variables

Reduces variance in the dataset

Demo

How MICE Works?

Age	Income	Gender
33	?	М
18	\$40-60K	М
15	\$60-80K	F
?	\$40-60K	F

Single Imputation

Age	Income	Gender
33	?	M
18	\$40-60K	М
15	\$60-80K	F
20.5	\$40-60K	F

Age	Income	Gender
33	\$40-60K	М
18	\$40-60K	М
15	\$60-80K	F
20.5	\$40-60K	F

Age back to '?'

Age	Income	Gender
33	\$40-60K	М
18	\$40-60K	М
15	\$60-80K	F
?	\$40-60K	F

Age	Income	Gender
33	\$40-60K	М
18	\$40-60K	М
15	\$60-80K	F
35.3	\$40-60K	F

Income back to '?'

Age	Income	Gender
33	?	M
18	\$40-60K	М
15	\$60-80K	F
35.3	\$40-60K	F

Age	Income	Gender
33	\$40-60K	M
18	\$40-60K	M
15	\$60-80K	F
35.3	\$40-60K	F

Age	Income	Gender
33	\$40-60K	M
18	\$40-60K	М
15	\$60-80K	F
35.3	\$40-60K	F

Age	Income	Gender
33	\$60-80K	M
18	\$40-60K	M
15	\$60-80K	F
34.0	\$40-60K	F

Age	Income	Gender
33	\$40-60K	M
18	\$40-60K	М
15	\$60-80K	F
34.2	\$40-60K	F

Age	Income	Gender
33	\$60-80K	M
18	\$40-60K	М
15	\$60-80K	F
33.8	\$40-60K	F

Summary

Asking questions help

Missing data methods influence accuracy

Try different methods to test assumptions

