MC102 - Algoritmos e Programação de Computadores

Lab 07

Data da Primeira Chance: 15 de maio de 2023

Peso: 3

Nossos satélites captaram um sinal incomum vindo de algum lugar do universo. Esse sinal é provavelmente a tentativa de contato de alguma civilização extraterrestre. Por isso, precisamos entender melhor se essa mensagem possui alguma intenção hostil ou se eles vêm em paz. Nossos cientistas conseguiram decodificar o sinal para o formato de texto seguindo a tabela ASCII, porém as informações parecem estar criptografadas. O que esses seres querem nos dizer?

A representação de caracteres alfanuméricos pelo computador pode ser feita de diversas formas. Uma das formas mais comuns é o ASCII (sigla de *American Standard Code for Information Interchange*), que representa caracteres imprimíveis (letras, algarismos e pontuação) e caracteres de controle por meio de uma codificação binária. Isto é, internamente para o computador, cada caractere possui uma representação binária. Por exemplo, o caractere "!" é representado pelo código binário 0010 0001 (ou 33 em decimal), enquanto o caractere de controle "\n", que indica o fim de uma linha, tem a representação 0000 1010 (ou 10 em decimal). Abaixo se encontra uma cópia da tabela ASCII.

	Control Characters				Graphic Symbols											
Name	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40	,	96	1100000	60	
SOH	1	0000001	01	!	33	0100001	21	A	65	1000001	41	a	97	1100001	61	
STX	2	0000010	02		34	0100010	22	В	66	1000010	42	ь	98	1100010	62	
ETX	3	0000011	03	#	35	0100011	23	C	67	1000011	43	c	99	1100011	63	
EOT	4	0000100	04	S	36	0100100	24	D	68	1000100	44	d	100	1100100	64	
ENQ	5	0000101	05	%	37	0100101	25	E	69	1000101	45	e	101	1100101	65	
ACK	6	0000110	06	&	38	0100110	26	F	70	1000110	46	f	102	1100110	66	
BEL	7	0000111	07	,	39	0100111	27	G	71	1000111	47	g	103	1100111	67	
BS	8	0001000	08	(40	0101000	28	H	72	1001000	48	h	104	1101000	68	
HT	9	0001001	09)	41	0101001	29	I	73	1001001	49	i	105	1101001	69	
LF	10	0001010	0A		42	0101010	2A	J	74	1001010	4A	j	106	1101010	6A	
VT	11	0001011	OB	+	43	0101011	2B	K	75	1001011	4B	k	107	1101011	6B	
FF	12	0001100	0C	,	44	0101100	2C	L	76	1001100	4C	1	108	1101100	6C	
CR	13	0001101	0D	-	45	0101101	2D	M	77	1001101	4D	m	109	1101101	6D	
SO	14	0001110	0E		46	0101110	2E	N	78	1001110	4E	n	110	1101110	6E	
SI	15	0001111	0F	/	47	0101111	2F	0	79	1001111	4F	o	111	1101111	6F	
DLE	16	0010000	10	0	48	0110000	30	P	80	1010000	50	P	112	1110000	70	
DC1	17	0010001	11	1	49	0110001	31	Q	81	1010001	51	q	113	1110001	71	
DC2	18	0010010	12	2	50	0110010	32	R	82	1010010	52	r	114	1110010	72	
DC3	19	0010011	13	3	51	0110011	33	S	83	1010011	53	S	115	1110011	73	
DC4	20	0010100	14	4	52	0110100	34	T	84	1010100	54	t	116	1110100	74	
NAK	21	0010101	15	5	53	0110101	35	U	85	1010101	55	u	117	1110101	75	
SYN	22	0010110	16	6	54	0110110	36	V	86	1010110	56	v	118	1110110	76	
ETB	23	0010111	17	7	55	0110111	37	W	87	1010111	57	w	119	1110111	77	
CAN	24	0011000	18	8	56	0111000	38	X	88	1011000	58	x	120	1111000	78	
EM	25	0011001	19	9	57	0111001	39	Y	89	1011001	59	y	121	1111001	79	
SUB	26	0011010	1A	:	58	0111010	3A	Z	90	1011010	5A	z	122	1111010	7A	
ESC	27	0011011	1B	;	59	0111011	3B	[91	1011011	5B	{	123	1111011	7B	
FS	28	0011100	1C	<	60	0111100	3C	١ ١	92	1011100	5C		124	1111100	7C	
GS	29	0011101	1D	=	61	0111101	3D]]	93	1011101	5D	}	125	1111101	7D	
RS	30	0011110	1E	>	62	0111110	3E	^	94	1011110	5E	~	126	1111110	7E	
US	31	0011111	1F	?	63	0111111	3F	_	95	1011111	5F	Del	127	1111111	7F	

Mensagens criptografadas requerem a utilização de uma chave de criptografia (k) e de uma função de criptografia f(c,k), onde c é o caractere sendo criptografado. Analogamente, para

descriptografar a mensagem codificada, basta aplicar a função com a chave inversa, isto é f(c,-k). Idealmente, tanto a chave como a função de criptografia deve ser conhecida apenas pelo receptor e remetente da mensagem. A criptografia alienígena segue um padrão alfanumérico onde os caracteres são interpretados como números ("A" \rightarrow 65, "B" \rightarrow 66, ...), igual à tabela ASCII. Felizmente, a engenharia reversa nos permitiu descobrir a função de criptografia. Percebemos que a mensagem original é **criptografada** por meio da **subtração** entre a representação alfanumérica do caractere e a chave k, e codificando esse novo valor de volta para o caractere correspondente na tabela ASCII. Portanto, a decodificação é alcançada pela **soma** da chave. Por exemplo, suponha que o texto criptografado seja "?'_a_vg", com chave k = 2. A decodificação deve ser a palavra "Abacaxi". **Lembre-se que** o caractere resultante da decodificação deve estar entre os caracteres imprimíveis, com exceção do DEL (32 a 126).

Embora a chave k não seja conhecida por nós, por meio de muito esforço, os cientistas conseguiram encontrar o padrão para encontrar k. O valor de k é calculado por meio de uma operação matemática aplicada em determinadas posições (índices) do texto. As possíveis operações matemáticas são: soma ("+"), subtração ("-") ou multiplicação ("*"). Os índices de interesse são determinados da seguinte forma: a mensagem lhe dará o primeiro caractere a ser buscado no texto ou um marcador de seu tipo ("vogal", "consoante" ou "número"), em seguida lhe dará o segundo caractere a procurar **a partir da posição do primeiro, incluindo o próprio**. Por exemplo, suponha que a operação matemática seja de soma, e as posições sejam do caractere "h" e uma "vogal", respectivamente. No texto criptografado: "UJe%4 fh2_efgik?", a primeira ocorrência do caractere "h" está no **índice 7** (começando do 0) e o índice da primeira vogal **após o caractere** "h" é 10 (letra e). Portanto, a chave de criptografia é 17 (7+10). **Mas fique atento, a decodificação é** *case sensitive*, **isto é**, a **letra "a" é diferente de "A", por exemplo!**

Agora, precisamos de você, nosso(a) melhor programador(a) para desenvolver um programa que irá decifrar rapidamente todas as mensagens. O planeta inteiro está contando com você!

Entrada

A entrada do programa consiste em um caractere indicando 1) o tipo da operação matemática a ser usada para cálculo da chave de criptografia ("+", "-" ou "*"), 2) os caracteres ou marcadores de tipo para a busca (<caractere>, "vogal", "consoante" ou "numero"), 3) o número de linhas da mensagem e 4) a mensagem em si. Cada entrada está em uma linha diferente.

Importante: Apesar da mensagem não ser contínua (ou seja, é uma string quebrada em linhas), a contagem dos índices deve continuar na próxima linha. Por exemplo, para a mensagem:

Abcde 1234

O índice do caractere "1" é 5.

Importante 2: Considere que o caractere a ser buscado existe na mensagem em todos os testes.

Importante 3: Os caracteres devem estar no intervalo imprimível da tabela ASCII, ou seja, de 32 até 126 (inclusive).

Formato da entrada:

```
<operador>
<operando1>
<operando2>
<n_linhas>
<linha_1>
<linha_2>
...
<linha_n>
```

Saída

Seu programa deve imprimir a chave encontrada seguida das mensagens decodificadas na ordem em que foram apresentadas na entrada.

Formato da saída:

```
<chave>
linha_1 decodificada>
<linha_2 decodificada>
...
linha_n decodificada>
```

Exemplos

Exemplo 1:

Entrada

```
+
f
Z
1
J\vmfZ\v\jkXvc\e[fv`jjf#vfvi\jlckX[fv\jkXvZfii\kfw
```

Saída

```
9
Se voce esta lendo isso, o resultado esta correto!
```

Exemplo 2:

Entrada

```
-
numero
!
1
p0!p!Updb!brvj!p0!p!Px!updb!brvj!p0]p
```

Saída

```
-1 o/ o Toca aqui o/ o Ow toca aqui o/\o
```

Exemplo 3:

Entrada

```
+
a
vogal
2
-kYQXT[^kYa_UOMkP[kYaZP[kQT&kT``\_&zzcccye[a`aNQyO[YzcM`OT+b)P=c
c%CSDO=qMNKOTMZZQX)>UOW-_`XQe
;XTMkQ__QkXUZW&kT``\_&zzS[[ySXzYM\_z~Y9!3M@!e<FfA[aF%
```

Saída

```
20
A melhor musica do mundo eh:
https://www.youtube.com/watch?v=dQw4w9WgXcQ&ab_channel=RickAstley
Olha esse link: https://goo.gl/maps/3mM5GaT5yPZzUouZ9
```

Regras e Avaliação

Neste laboratório, você não pode usar bibliotecas (isto é, o comando *import*) exceto pela biblioteca typing para melhorar a clareza e escrita do código.

Todos os casos de teste estão disponíveis no seguinte link: testes labor.

Seu código será avaliado não apenas pelos testes do CodePost, mas também pela qualidade. Dentre os critérios subjetivos de qualidade de código iremos analisar neste laboratório: o uso apropriado de listas e strings, e de documentação; a escolha de bons nomes de funções e variáveis; a ausência de diversos trechos de código repetidos desnecessariamente. Note, porém, que essa não é uma lista exaustiva, pois outros critérios podem ser analisados dependendo do código apresentado visando mostrar ao aluno como o código poderia ser melhor.

Submissão

Você deverá submeter no CodePost, na tarefa Lab 07, um arquivo com o nome lab07.py. Após a correção da primeira entrega, será aberta uma tarefa Lab 07 - Segunda Chance, com prazo de entrega apropriado.