EO Africa **EXPLORERS** -**EO MAJI**

Progress Meeting Towards Milestone 2

Recap from Milestone 1

- DHI leading two deliverables:
 - D02 African Early Adopters Characterisation and Benefit Analysis Report
 - D05 Agile Development Plan

D02 User Requirements: Burkina Faso

Area of Interest

- Crop: rice. (maize and potato as secondary)
- Irrigation practice: Floodplain
- Objective:
 - Managing existing irrigation schemes with better insight and monitoring methods
 - Supporting farmer associations by capacity building

D02 User Requirements: Botswana

Area of Interest

- Crop: Vegetables and fruits.
 (potato as secondary)
- Irrigation practice: drip and sprinkler
- Objective:
 - Support development of irrigation licensing schemes
 - Map irrigated areas outside the irrigation schemes

D02 User Requirements: South Africa

Area of Interest

- Crop: Wheat and maize.
 (Soybean as secondary)
- Irrigation practice: Mostly rainfed, some irrigation implemented
- Objective:
 - Co-development of algorithms and product evaluation
 - Improve water crop-yield efficiency in better resolution (current resolution is not sufficient for smallscale farms), especially for dryer years

D02 Product Specification

	Irrigation delimitation	Irrigation accounting	Crop yield
Physical unit	Binary (Presence/absence)	mm/ha or m ³	kg/ha
Spatial Coverage	Regional	Regional	Regional, provided for a given crop
Spatial Resolution	20 m	100 m	20 m
Temporal Coverage	2021-2023	2021-2023	2021-2023
Temporal Resolution	Annual	Monthly	Annual or 2 per year

esa

Plans for Milestone 2 (and beyond)

- 1) Prototype development and testing
 - Integrate models and tools into a consistent software package
 - Deploy it in Copernicus Data Space Ecosystem using openEO
 - Documentation of software (D8v1)
- 2) ECOSTRESS and Sentinel data fusion
 - daily field-scale LST and ET
- 3) ET gap-filling methods
- 4) Irrigation delineation and accounting

Prototype development and testing

- Copernicus Data Space Ecosystem (CDSE)
 - openEO seamless access to Sentinel and third-party data
 - Jupyterhub Jupyter notebooks run within CDSE infrastructure

Prototype development and testing

- Currently implementing two notebooks
 - Data fusion using **Data Mining Sharpener** (DMS https://github.com/radosuav/pyDMS) and DMS-bias correction (https://github.com/hectornieto/dms-bias-correction)
 - Evapotranspiration modelling with TSEB model (https://github.com/hectornieto/pyTSEB)
- More tools will be implemented as they become ready
- The architecture will be documented in D8v1

ECOSTRESS and Sentinel data fusion

 Fusion of Sentinel-2, Sentinel-3 and Landsat for daily fieldscale ET estimation

International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103587

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and Geoinformation

journal homepage: www.elsevier.com/locate/jag

Improving field-scale crop actual evapotranspiration monitoring with Sentinel-3, Sentinel-2, and Landsat data fusion

Radoslaw Guzinski ^{a,*}, Héctor Nieto ^b, Rubén Ramo Sánchez ^c, Juan Manuel Sánchez ^d, Ihab Jomaa ^e, Rim Zitouna-Chebbi ^f, Olivier Roupsard ^{g,h,i}, Ramón López-Urrea ^j

ECOSTRESS and Sentinel data fusion

esa

- Replace / complement Landsat LST with dense ECOSTRESS timeseries
 - Both as explanatory variable and in post-processing step
- Compare against in-situ or high-resolution satellite LST
- Implement necessary changes in pyDMS and DMS-biascorrection Python modules

esa

ET gap-filling methods

- Traditionally using a ratio of ET to a reference quantity
 - Does not take rainfall into account
- We are developing a method which uses a simple water balance model to account for rainfall

esa

Irrigation delineation and accounting

- Modify a method first developed for soil-moisture
 - If ratio of actual to potential ET increases locally but not regionally then irrigation probably occurred
- Daily probabilities can be summed to monthly values to improve robustness
- Accounting based on difference in sum of ET in irrigated and nonirrigated parcels

