UNCLASSIFIED

AD 285 273

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOLTR 62-112

THE DESIGN AND TESTING OF THE NAVAL ORDNANCE LABORATORY'S 2-IN. TWO-STAGE GUN

CATALOTER BY POSTER

RELEASED TO ASTIA
BY THE NAVAL ORDNANCE LABORATORY
Without restrictions

- E) For Telende to Military and Government
 Acer 179.
- to contractors.
- Approval by Bulleps required for all subsequent release.

001 - 11 12

29 JUNE 1962

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

WOLTR 62-112

_O⁴

Best Available Copy

UNCLASSIFIED NOLTR 62-112

Ballistics Research Report 71

THE DESIGN AND TESTING OF THE NAVAL ORDNANCE LABORATORY'S 2-IN. TWO-STAGE GUN

Prepared by:

H. L. Carter

D. A. Oakes

R. Piacesi

B. M. Shepard

ABSTRACT: A 2 in. two-stage gun has been successful in launching complex models in the Naval Ordnance Laboratory's 1,000-ft. Hyperballistics Range No. 4 at velocities in excess of 15,000 fps. The design of the 2-inch gun and the results of the first 44 shots are reviewed.

PUBLISHED SEPTEMBER 1962

U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

1 UNCLASSIFIED This report presents the successful results of the application of extensive theoretical interior ballistics research to the design of a hypervelocity gun. The purpose of this research was to obtain high-speed aerodynamic data by launching complex missile models in the Naval Ordnance Laboratory's 1,000-ft. Hyperballistics Range No. 4. This work was sponsored by the Re-entry Body section of the Special Projects Office, Bureau of Naval Weapons, under the Applied Research Program in Aeroballistics.

The authors wish to acknowledge the theoretical interior ballistic research of Dr. A. E. Seigel and Mr. D. F. Gates as being the basis for the design of this gun. Acknowledgement is also extended to Mr. E. O. Stengard, formerly of the Naval Weapons Plant, for coordinating the gun design and manufacture.

W. D. COLEMAN Captain, USN Commander

A. E. SEIGEL By direction

CONTENTS

		Page
The De Shaked Labora	uction	1 1 3 4
	ILLUSTRATIONS	
Figure	Title	
1 2 3 4 5 6 7 8 9 10	2-in. Two-Stage Light Gas Gun in the Naval Ordna Laboratory's 1,000-ft. Hyperballistics Range No. 2-in. Two-Stage Light Gas Gun Calculated Strength Values of the 2-inch Gun Primary Chamber Breech Assembly Primary Chamber - Pump Tube Assembly Pump Tube - Barrel Assembly Two-Stage Gun Time-Distance Plot Pressure Behind Model vs Bore Travel in Calibers Projectile Velocity vs Bore Travel in Calibers Typical Shadowgraph of Model in Flight in Naval Ordnance Laboratory's 1,000-ft. Hyperballistics Range No. 4 Sabot and Model	
Table		
1	Computer Performance Calculations for 240 Gram Projectile	
2	Computer Performance Calculations for 120 Gram Projectile	
3	Computer Performance Calculations for 60 Gram Projectile	
4	Firings at the Naval Weapons Laboratory	
5	Firings at the Naval Ordnance Laboratory	

INTRODUCTION

A two-stage, light-gas gun was desired for launching complex models in the Naval Ordnance Laboratory's 1,000-ft. Hyperballistics Range No. 4 at velocities in excess of 12,000 fps. The gun was designed to minimize modifications to the existing gun mount and to the 1,000-ft. range. Space limitations, along with interior and exterior ballistic requirements, resulted in the selection of a 2-inch bore diameter. The installation of the 2-inch gun in the 1,000-ft. range is shown in figure 1:

THE DESIGN OF THE GUN

The 2-inch gun and mount are illustrated in figure 2. Calculated strength values of the 2-inch gun are shown in figure 3. The primary chamber is closed at the rear by a steel cup containing expanding lips on the forward end of the cup as shown in figure 4. The screw box liner, breech plug, and breech plug operating mechanism are standard 12-inch naval gun parts. Primers are attached to a steel rod which is bolted to the breech cup. The bag of gunpowder is placed around the primer rod. The primer ignition wire, piston-type strain-gage connection, and gas-fill lines are brought out through the sealing cup and then through the center of the breech plug.

Illustrated in figure 5 are the piston, the obturating ring for the front end of the primary chamber, the diaphragm, and the diaphragm transition piece. The final version of the piston is a 24-inch-long, low-density polyethylene cylinder with a phenolic sealing plug at the rear.

For the heavy piston firings, a 40 included angle piston buffer was inserted into the high-pressure section of the pump tube as shown in figure 6.

SHAKEDOWN TESTS OF THE GUN AT THE NAVAL WEAPONS LABORATORY. DAHLGREN, VIRGINIA

Initial firings of the 2-inch gun were made at the Naval Weapons Laboratory, Dahlgren, Virginia for reasons of safety and so that existing programs in the 1,000-ft. range could continue. Instrumentation included pressure gages in both chambers and a high-speed camera to measure velocity. A convenient and efficient test procedure evolved at the Naval Weapons Laboratory. Three ordnancemen, two electronics

technicians, and two photographers required about two hours of preparation to fire the gun. The ordnancemen first loaded the missile and locked the barrel up with the pump tube. Next, the piston and primary chamber diaphragm were installed, and the pump tube with attached barrel was locked up with the rear chamber. While this was being done, the photographers loaded and checked out the high-speed camera. Also, the electronics technicians checked the firing circuit and pressure gage circuits. The area was then cleared of personnel and the assembled breech cup, primer red, and powder bag were brought out of the magazine and inserted into the rear chamber. The breech was then locked and the gas-fill lines were connected. About 15 minutes were required to load gas into both chambers. A sequence timer fired the gun after first starting the camera.

After the shot, powder gas trapped in both chambers by the piston, which was swedged into the piston buffer, was vented. The gun loading procedure was essentially reversed after the shot. At the Naval Weapons Laboratory, the piston was removed with jacks which required from one to three hours. The condensed powder combustion products were removed as soon as possible to prevent rusting. Within three hours after the shot, the film was ready for viewing. A black background, with white vertical lines spaced at one-foot intervals, was placed parallel to the flight path. The projectile velocity could be computed since the film framing speed was known.

Computations were made by the analysis group utilizing the IBM 7090 computer to predict the performance of the 2-in. two-stage gun. This was done using a hydrodynamics computer code based on the Lagrangian scheme. The code solves numerically the problem of one-dimensional flow through ducts of varying cross section including the automatic treatment of multiple shocks. A more detailed report on the method of calculation will be published separately*.

Many calculations were made varying each of the effective parameters of the system, these being the back chamber conditions, the piston weight, the pump tube conditions, the projectile weight and the projectile release pressure. In choosing the initial leading conditions for the shots on the basis of the calculations, two things were kept in mind: the tapered section of the gun could only withstand 125,000 psi and the pressure on the base of the model must not exceed about 35,000 psi.

^{*} NOLTR 62-87, "Computer Analysis of Two-Stage Hypervelocity Launchers" (in preparation)

Tables 1, 2, and 3 list the results of the computer calculations for a 240 gram, 120 gram, and 60 gram projectile, respectively. It is seen from these tables that a neavy piston produces lower model acceleration than the light piston. Figure 7 is a typical distance time plot as obtained from the computer showing the trajectories of shocks between the piston and projectile, the piston trajectory, and the projectile trajectory. Figure 8 is a plot of pressure behind the model as a function of distance along the barrel. Figure 9 is a velocity distance plot of the projectile and shows clearly the impingements of the shocks on the back of the model.

Ten shots were made using the light-piston shock-compressed driver-gas method. The piston was a 0.6-caliber-long polyethylene cylinder. The primary chamber pressure was varied from 17,000 psi to 25,000 psi, obtained by burning gunpowder in the presence of helium. The pump tube was loaded with helium at pressures from 1,500 psi down to 750 psi. Gun functioning and proofing were the main objectives of the first 10 shots since only a 48-caliber-long barrel was available.

Before the 11th shot, a 240-caliber-long barrel was installed. On the first shot with a heavy piston, several inches of the piston buffer were torn off so it was shortened by machining a short 20° angle on the leading edge of the piston buffer as shown in figure 5.

Fifteen heavy piston shots were made. The piston weight was varied from 3,000 grams to 9,000 grams. Primary chamber pressures ranged from 14,000 psi to 25,000 psi. Pump tube loading pressures varied from 300 psi to 1,500 psi of hydrogen. Results of the firings at the Naval Weapons Laboratory are listed in table 4. The over-all performance of the 2-inch gun during the heavy piston shots was satisfactory so test firings at the Naval Weapons Laboratory were concluded after a total of 25 shots.

RESULTS OF FIRINGS AT THE NAVAL ORDNANCE LABORATORY

An urgent, high-velocity program for Project Polaris was awaiting the 2-in. two-stage gun, so installation in the Naval Ordnance Laboratory's 1,000-ft. Hyperballistics Ringe No. 4 was accomplished in a minimum of time. One test shot was fired and then a series of 19 program shots followed as snown in table 5. Two of the 19 program shots were unsuccessful due to improper model design and the two highest velocity attempts failed. In 15 of the 19 shots, models were launched

successfully up to 15,200 fps. A large percentage of the 19 shadowgraph stations installed in the 1,000-ft. Hyperballistics Range No. 4 operated properly. Aerodynamic coefficients were obtained at Mach numbers 10, 12, and 14. A typical shadowgraph is snown in figure 10. The salot and model used for the 19 program shots are illustrated in figure 11. The tapered skirt on the sabot serves as a gas seal and as a diaphragm with a release pressure of 5,000 psi. Computations had dictated the unexpectedly high pump tube loading pressure of 1,500 psi. For a heavy missile weight of 250 grams, lower initial pressure causes excessively nigh accelerations and a rapid loss of driving pressure in the last half of the barrel. The piston was loosened with hydraulic pressure and then driven back out of the pump tube by high-pressure gas. Piston removal can be accomplished in 30 minutes.

CONCLUSIONS

The computer was invaluable as an aid in selecting initial loading conditions to minimize projectile acceleration for a required velocity. Calculations confirmed the fact that a low release pressure for a heavy projectile reduced peak acceleration with little loss in velocity. As can be seen from figure 7, at high initial pump tube pressures, the piston enters the tapered piston buffer too late in the interior ballistic process for the swedging action of the piston to increase the missile velocity.

The 2-inch gun was designed early in 1959. Firing results indicate that the primary chamber is stronger than necessary. Bore erosion is low due to the use of hydrogen at high loading pressures as the driver gas, therefore a spare set of barrels is being made of autofrettaged monobloc construction.

The 2-in. two-stage gun operated with a minimum of mechanical trouble at the Naval Ordnance Laboratory. With improved operations, a firing rate of one completely instrumented program shot per day in the 1,000-ft. Hyperballistics Range No. 4 has been attained.

Velocity 240 Calibers (ft/sec)	18,200	14,600 17,400* 18,200	13,900 17,350 17,600	12,650 15,200 15,000	19,200 17,200	18,500 17,100 14,900	17, 400 23,650 18,700	
Maximum Pressure In Taper (psi)	125,000 195,000	118,600 121,200 125,000 123,650	122,906 107,306 112,300	82,600 78,900 81,400	155,700 129,200	128,000 112,500 115,350	136,700 246,500 173,600	
Pressure Felt By Projectile (psi)	82,000 175,000	116,900 91,350 82,000 91,840	1111,900 63,000 64,600	61,500 59,450 29,800	69,300 52,000	53,700 42,700 32,000	107,500 1114,000 76,400	r i
Projectile Release Pressure (psi)	ي بري 000ء 000	<i>www</i> 0000 0000 0000	000 000 000 000 000 000	0000 0000 0000	5,000 5,000	10,000 10,000 5,000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Piston Weight (gm)	045°5	11,000 12,000 10,000,000 10,000,000	900°0	1,000 00,000 0000	9,00 000,00	13,000 17,000 18,000	7 L C 6 C 6 C	temperature 300°K
Pump Tube Pressure (ps1 H2)	750 500	750 750 750	1,000	1,500	1,500	1,500 2,000 2,00	2,000 2,500 2,500	Cal.) pump tuhe bem
Back Gramber Pressure (ps1).	20,000	20,000 20,000 20,000	20,000 20,000 20,000	20,000 20,000 20,000	30,000	30,000 30,000 30,000	000,04 000,004 00,000	* (200 Car

COMPUTED PERFORMANCE CALCULATIONS FOR 240 GRAM PROJECTILE TABLE 1

(5)

Chamber Tube Pressure Pressure (ps1) (ps1:3)		Prodection	Pressure	Nax1mum	
	Piston Weight (gm)	Release Pressure (pst)	Felt. By Projectile (psi)	Pressure In Taper (psi)	Velocity 240 Calibers (ft/sec)
100	2,000	5,000	178,000	213,000	22,800
200	000°6 .	5,000	63,000	125,100	20,000
300	000,6	5,000	57,300	101,200	20,500
500 500 500	900 000 000 000	NNN 0000 0000	87,000 68,030 56,400	121,700 126,300 121,600	22,300 22,000 20,600
750	2,000	5,000	54,250	98,200	20,400
1,000 1,000 1,000	188,000 188,000 100,000 100,000	00000 00000 10101000 10101000	21,750 41,600 15,600 41,800	64,300 105,800 80,600 87,400	17,800 20,700 17,100 19,300
1,000 1,000 1,000	900 000 000 000 000	0.00 0.00 0.00 0.00 0.00 0.00	42,000 37,700 23,000	67,900 106,700 102,500	17,500 19,900 19,500
1,500	18,000	5,000	9,300	·000°89	12,600

Initial pump tube temperature 300°K

COMPUTER PERFORMANCE CALCULATIONS FOR 120 GRAM PROJECTILE.

TABLE 2

COMPUTER PERFORMANCE CALCULATIONS FOR 60 GRAM PROJECTILE

TABLE 3

er's		NOLTR 6	Ź=1	12		١
Velocity 240 Calibers (ft/sec)	25,600 25,700 23,200	25,300 27,000 24,400	25,200	19,700	20,100 12,600	
Maximum Pressure In Taper (ps1)	72,000 83,000 122,000	101,200 117,700 95,300	117,700	104,000 98,300	161,700 82,600	
Pressure Felt By Projectile (ps1)	49,000 69,600 900,000	76,000 117,700 35,670	35,200	13, 600 28, 700	29,000 8,700	
Projectile Release Pressure (ps1)	,000 000,000 000	www 0000 0000	5,000	5,000	5,000 5,000	K
Piston Weight (gm)	300 1,000 9,000	1,000 9,000	000,6	000.6	000 %	N 3000 on the monday of the smith
Pump Tube Pressure (ps1 H2)	100	300	500	1,000	1,500	mot of the contr
Back Snamber Pressine (psi)	000,000 20,000 20,000	70,000 20,000 20,000	0,0,0	000,00	0000	0 6

(7)

•	-				ŊÕ	LTŘ	62-	112									
-	REMARKS	Missile broke up	£		Chronograph failed		7.7	Chronograph failed	Nylon broke up		Camera falled	H2, leaked: into bore before shot					
MUZZIE	VELOCITY (FT./SEC.)) 	-		6,500	.7,000	1		5,400		22,000	13,600	13, 600	12,500	12,500	
PISTON	WEIGHT (grome)	525	525	8	<u>0</u>	006	006	<u>8</u>	006	006	006 -6	0601	6950	2680	2650	5650	
PUMP TUBE	W .	1,500 He	1, 200 He	900 He	900 Не	900 He	750. He	750: Не	900 Не	900 не	900 не	300 нг	300 H2.	300 Hz	. 000 H2	750° H2	
PRIMARY CHAMBER	PEAK PRESSURE (PS.I.)	17,000	21,000	!	23,000		ì	25,,000	24,000	24,,000	24,300	14,300	3/4,,600:	15,000	18,700	21,000	2
MISSILE	JdAL	Nylon Cyl.	Ê	ž.	Lexan Cyl.	±	**	ž.	Mg base / Nylon Cyl.	Saboted Mod.	Ē	Mg. Cyl.	Mg. Cyll.	=	i i	z z	
	WEIGHT (grams)	117	125	125	130	130	130	130	130	198	193	75	167	236	240	017	
SHOT	<u>5</u>	71	Ŋ	m	#	Ñ	9	(8)	æ	σ̈́	97	ជ	ટ્રં	ğ	77	15	

The second of th

	REMARKS	Missile broke up	Piston dismeter and seal was changed for shots 17 - 23	NO	LTR	62-	112			Missile broke up	Clearance between sabot and bore was reduced over previous shot
41ZZNM	ZP.		11,100	10,500	9,500	10,800	10,900	12,400	11,400	1	11,800
PISTON	WEIGHT (grams)	0295	2830	2880	2880	2880	3070	3070	3070	7850	0993
PUMP TUBE	LOADING PRESSURE WEIGHT (Grams)	500 H ₂	700 H ₂	E	E	ŧ	£	\$	t	1,500 Hz	1,500 H2
PRIMARY CHAMBER	PEAK PRESSURE (PS.I.)	22,000	18,800	20,000	22,000	19,500	17,800	18,800	!	!	23,400
MISSILE	TYPE	Saboted Model	Mg Cyl.	E	E	: :	r =	: :	E	Saboted Model	=
•	WEIGHT (groms)	50	01 2	r	£	=	5	:	•	2,52	230
SHOT	2	37.	t:	18	~) ₀ €	23	55	23	77.	25

The first 10 stats were made in a 43-caliber-long barrel. A 240-caliber-long barrel was used for stats 11 - 25. Bare contained air atmospheric pressure except shot no. 11 Note:

TABLE 4 FIRINGS AT 114E NAVAL WEAPONS LABORATORY

250 253 245 245 254 257 257 257 257 257 257 257 257		MISSILE WEIGHT (grams)	PRIMARY CHAMBER PEAK PRESSURE (PS.1.)	RANGE PRESSURE (mm Hg)	MUZZLE VELOCITY (F i./ SEC)
23,000 287 Model Fal 20,000 20,000 16,100 15,200 15,700 15,700 15,000 16,100 16,100 17,000 188 11,00 11,30 11,30 11,30 11,30 11,30 11,40 11,100 11,40		230 253	17,800	193 98	11,500
22,600 20,800 16,100 15,800 11,90 11,90 12,500 11,60 12,000 11,00 11,30		1 0 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23,000	2 (2) 2 (2) 2 (2)	(%)
15,800 15,800 15,800 15,700 15,700 15,500 888 Model Fall 14,100 15,200 85 11,30 11,30 11,30 11,30 85 11,30		- # C	22,600	~ (V I	=
15,800 112 15,700 112 15,700 113,60 17,000 27,200 92 Model Fall 10,90 27,500 90 11,30 14,100 85 11,30 11,30 11,30		CYE NIA W E	20,300 16,100	လ လ လထ	13,000
15,700 70 15,700 16,000 15,000 15,000 16,100 14,100 11,000 11		ው ያ ያ ያ ያ	15,800	96 97	000,11
15,500 88 12,000 27,200 92 Model Fall 30 11,30 15,000 90 11,30 10,90 11,30 11,30 11,00 15,200 85 11,40		000 000 000 000 000	15,700) - C	11,600
27,200 92 Model Fai 90 11,30 27,500 90 Model Fai 85 11,30 14,100 84 11,00 15,200 85 11,40		า (ก) กุก ก (ก้	S	88	98
15,000 91 10,90 27,500 90 Model Fall 14,100 84 11,00 15,200 85 11,40		0,00 0,12 1,12 1,12 1,13 1,13 1,13 1,13 1,13 1	()	92	Fa1
27,500 90 Model Fai 14,100 84 11,00 85 11,00 15,200 85 11,40		225	15,000	95	10,900
14,100 84 11, 85 15, 15,200 85		0 0 0 0 0 0	27,500	0 g	Fat 1 20
15,200 85 15,		253	14,100	ე დ	11,000
15,200 85 11,	_	265	l 1	& &	15,200
		259	15,200	85	11,400

Piston weight was 3,600 grams

Bore contained air at the range pressure listed for each shot except hellum was used on shots 2 and 3

TABLE 5

FIRINGS AT THE NAVAL ORDNANCE LABORATORY

FIG. I TWO INCH TWO-STAGE LIGHT GAS GUN
IN NAVAL ORDNANCE LABORATORY'S
I,000 FOOT HYPERBALLISTICS RANGE NO.4

FIG.2 TWO-INCH TWO-STAGE LIGHT GAS GUN

TWO INCH TWO-STAGE LIGHT GAS GUN

ASSEMBLY

FIG.6 PUMP TUBE - BARREL ASSEMBLY

DISTANCE, CENTIMETERS

FIG. 7 TWO-STAGE GUN, TIME-DISTANCE PLOT

F'G. 8 PRESSURE BEHIND MODEL VS BORE TRAVEL IN CALIBERS

FIG.9 PROJECTILE VELOCITY VS BORE TRAVEL IN CALIBERS

FIS 10. TYPICAL SHADOWGRAPH OF MODEL IN FLIGHT
IN NAVAL ORDNANCE LABORATORY'S 1,000 FOOT
HYPERBALLISTICS RANGE NO.4

INSERT FINGERS (PHENOLIC)

INSERT BASE (T:TANIUM)

SABOT BASE (ALUMINUM)

FIG. 11 SABOT AND MODEL

NOLTR /2-112

External Distribution List

	No. of Copies
Chief, Bureau of Naval Weapons Department of the Navy Washington 25, D. C. Attn: RMMO Attn: RMGA Attn: RRMA	1 1 1
Director, Special Projects Department of the Navy Washington 25, D. C. Attn: SP-20 Attn: SP-27 Attn: SP-272	4 2 1
Office of Naval Research Room 2709 - T-3 Washington 25, D. C Attn: Head, Mechanics Br.	1
Commanding Officer Office of Naval Research Branch Office, Box 39, Navy 100 Fleet Post Office, New York, N. Y.	5
Director, DTMB Aerodynamics Laboratory Washington 7, D. C. Attn: Library	1
Naval Weapons Laboratory Dahlgren, Va. Attn: Library	1
Commander U. S. Naval Ordnance Test Station China Lake, Calif. Attn: Technical Library	1
Director Naval Research Laboratory Washington 25, D. C. Attn: Code 2027 Attn: Mr. Edward Chapin, Code 6310	1

	No. of Copies
Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico Attn: Dr. Donald F. MacMillan N-1 Group Leader	1
Institute for Defense Analyses Advanced Research Projects Agency Washington 25, D. C. Attn: Mr. W. G. May General Sciences Branch	1
Kaman Aircraft Corporation Nuclear Division Colorado Springs, Colorado Attn: Dr. A. P. Bridges	í
U. S. Atomic Energy Commission P. O. Box 62 Oak Ridge, Tennessee Attn: TEI:NLP:ATD:10-7	1
Sandia Corporation Livermore Laboratory P. O. Box 969 Livermore, Calif.	1
United Aircraft Corporation Research Laboratories East Hartford 3, Conn. Attn: Mr. H. J. Charette Attn: Mr. H. Tayler	1 1
Sandia Corporation Sandia Base Albuquerque, New Mexico Attn: Mr. Alan Pape	1
Defense Metals Information Center Battelle Memorial Institute 505 King Avenue Columbus, 1, Onio	1
Commanding General Army Rocket and Juided Missile Agency Redstone Arsonal, Alabama Attn: Joan Morrow	1

	No. of Copies
NA SA	
Langley Research Center Langley Field, Va.	
Attn: Librarian	1
Attn: Librarian Attn: C. H. McLellan	1
Attn: J. J. Stack	1
Attn: Adolf Busemann	1
Attn: Rodger W. Peters (Structures Re	s.D1v.)1
Attn: Russell Hopko, PARD	1
NA SA	
Ames Research Center	
Moffett Fiels, Calif.	1
Attn: Librarian	1
NA SA	
Lewis Research Center	
21000 Brookpart Rd.	
Cleveland, Ohio Attn: Chief, Propulsion Aerodynamics	Div. 1
Attn: Mr. George Mandel, Chief, Libra	rv 2
- ·	
Office of the Assistant	
Secretary of Defense (R and D)	
Room 3E1041, The Pentagon	•
Washington 25, D. C. Attn: Library (Technical)	1
Attn: blorary technical)	1
Research and Development Board Room 3D1041, The Pentagon	
Room 3D1041, The Pentagon	
Washington 25, D. C.	2
Attn: Library	٤
ASTIA	
Arlington Hall Station	
Arlington 12, Va.	10
Attn: TIPDR	10
Commander, NMC	
Point Mugu, Calif.	•
Attn: Technical Library	1
Commanding General	
Aberdeen Proving Ground, Md.	_
Attn: Technical Info. Br.	1 28 1
Attn: Ballistics Research Lateratorie	.5 1

	No. of Copies
APL/JHU 8621 Georgia Ave. Silver Spring, Md. Attn: Tech. Reports Group Attn: Dr. D. Fox Attn: Dr. Freeman Hill Attn: Dr. L. L. Cronvich	2 1 1 1
Attn: Librarian AVCO Manufacturing Corp. Research and Advanced Development Div. 201 Lowell Street Wilmington, Mass.	
Attn: Librarian AVCO Manufacturing Corp.	1
Everett, Mass. Attn: Dr. Kantrowitz	1
General Electric Co. Space Vchicle and Missiles Dept. 21 South 12th St. Philadelphia, Pa. Attn: Dr. J. Stewart Attn: Dr. Otto Klima Attn: Mr. E. J. Nolan Attn: Mr. L. McCreight	1 1 1
General Electric, Research Lab. 3198 Chestnut St. Philadelphia, Pa. Attn: Dr. Leo Steg	1
National Aeronautics and Space Admin. 1520 H Street, N. W. Washington, D. C.	5
NASA High-Speed Flight Station Edwards Field, Calif. Attn: W. C. Williams	1
Aerospace Corporation El Segundo, Calif. Attn: Dr. Bitondo	1

	No. of Copies
Director of Intelligence Headquarters, USAF Washington 25, D. C. Attn: AFOIN-3B	1
Commander Aeronautical Systems Division Wright-Patterson Air Force Base, Ohio Attn: WCOSI-3 WCLSW-5 WCRRD	2 1 3
Commander, FBMD Air Res. and Develop. Command P. O. Box 262 Inglewood, Calif. Attn: WDTLAR	1
BSD (BSRF) A. F. Unit Post Office Los Angeles 45, Calif.	. 5
Chief, DASA The Pentagon Washington, D. C. Attn: Document Library	1
Headquarters Arnold Engineering Development Center Air Research and Development Center U. S. Air Force	
Arnold Air Force Station, Tenn. Attn: Technical Library Attn: AEOR	1
Commanding Officer, DOFL Washington 25, D. C. Attn: Library RM. 211, Bldg. 92	1
NASA George C. Marshall Space Flight Center Huntsville, Alabama Attn: M-S and M-PT (Mr. H. A. Connell Attn: Dr. W. R. Lucas (M-SFM-M) Attn: Dr. Ernst Geissler	. 5 1
Office, Chief of Ordnance Department of the Army	ī
Washington 25, D. C. Attn: ORDTU	1

	No. of Copies
Lockheed Aircraft Corp. Missiles and Space Div. P. O. Box 504 Sunnyvale, Calif. Attn: Dr. L. H. Wilson	1
Lockheed Aircraft Corp. Research Lab. Palo Alto, California Autn: W. Griffith	1
Atomic Energy Commission Engineering Development Branch Division of Reactor Development Headquarters, US AEC Washington 25, D. C. Attn: Mr. J. M. Simmons Attn: Mr. M. J. Whitman Attn: Mr. J. Conners	1 1 1
University of California Lawrence Radiation Laboratory P. C. Box 808 Livermore, Calif. Attn: Mr. W. M. Wells, Propulsion Div. Attn: Mr. Carl Kline	1 1
Oak Ridge National Laboratory P. O. Box E, Oak Ridge, Tenn. Attn: Mr. W. D. Manly	1
General Applied Sciences Laboratories, Inc. Merrick and Stewart Avenues East Meadow, New York Attn: Mr. helent Pyrne	1
Jet Propulsion Lakeravery 4800 Cak Greve Drive Pasadena 3, Calif. Attn: I. R. Kowlan, Chief, Reports Gre Attn: Dr. L. Jaffee	oup l

	No. of Copies
National Burëau of Standards Washington 25, D. C. Attn: Dr. Galen B. Schubauer	1
Córnell Aeronaútical Laboratory 4455 Genesee Street Búffaló, New York Attn: Dr. Gordon Hall	1
Dept. of Mechanical Engineering University of Delaware Newark, Delaware	
Attn: Dr. James P. Hartnett	1

"ATALIJGING INFORMATION FOR LIBRARY USE

				BIBLIOGRAFHIC INFORMATION	HIPORMATION.			
	ACC CAN CAN CAN CAN CAN CAN CAN CAN CAN	אמר מ		CODES			DESCRIPTORS	CODES
	10: Tuchmical Report			NOLTR	SECURITY CLASSIFICATION AND CODE COUNT		Unclassifiec - 2	UZZI
arthor, p. 1974	21 - 2 :		•	 62Ø112	CIRCULATION LIMITATION			
: 4	2 June 1962			g662	CIRCULATION L'MITATION. OR BIBLICGRAPHIC	TATION.		
					BIBLIOGRAPHIC (SUPPL., VOL., ETC.)	Ü		
				SUBJECT ANAL	SUBJECT ANALYSIS OF REPORT		4	
30	015000000000000000000000000000000000000	SECOD		DI, SCRIPTORS		CODE	DESCRIPTORS	cones
2784-CH.		TxOS	Aerodynamics	ics		AERD		
as		GASE	Hypervelocity	cisv		AdāH]		
(4) 1801 F		GINED	Mach			おしずだ		
0.30		GUNST	υ <u>τ</u>			10%00		
		T::00	30			9.2%dd		
700		TNOH	í			021.1		
14 - 27 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 1	and the second s	8 618	Firings			FIRT	•	
erica - pastre		9219	, aurchings	v		7:14:1		
		rest	1.15S116			, MTS:		
Fact 1 to tog		ļ- ::				400#		
	,	50.1	coleanny fari	101		76.37		
		85.13				ب د		
02HC 400 10HC 0	A 13	95.11	2002					

1. Hypervelocity, guns — Design Suns — Design Guns — Interior or ballistics I. Title II. Carter, H. L.	1. Hypervelocity guns - Design Buns - Design Guns - Interior or ballistics. I. Title II. Carter, H.L.
Waval Ordnance Laboratory, White Oak, Md. (NOLIR report 62-112) THE DESIGN AND TESTING OF THE NAVELORD- NUMBER LABORATORY'S Z-IN, TWO-STACE GUN(U), by H. L. Carter and others, 29 June 1962, 4p, tables, (Ballistics Research report 71), A Z-in, two-stake gun has been successful in launching complex models in the Naval Ordnance Laboratory's 1,50C-fr, Hy- perballistics Range No, 4 at Velocities in excess of 15,000 fps, The design of the Z-inch gun and the results of the first 44 shots are reviewed. Abstract card is unclassified	Naval Ordnance Laboratory, White Oak, Md. (NOLTR report 62-112) THE DESIGN AND TESTING OF THE NAVAL ORD- NANCE LABORATORY'S 2-IN, TWO-STACE GUN(U), by H.L. Carter and others, 29 June 1962, 49, tables, (Ballistics Research report 71), the lamorating complex models in the Naval Ordnance .aboratory's 1,000-ft. Hy- perballistics Range No. 4 at velocities in excess of 15,000, ps. The design of the 2-inch gun and the results of the first 44 shots are reviewed.
Manager Control of the control of th	L. Hypervelocity Z. Hypervelocity Z. Hypervelocity Zms - Design Gms - Interi- or ballistics Title Title Title Title
A THE TOTAL OF THE TRY WHITE IN MAIL ON THE TANK ON TH	NAVA. Ordnance Laboratory, White Cak, Md. NOUTR report 62-127. THE DESCRIPTION OF THE NAVAL URD- NAVOR LABORATORY'S 2-IN, TWO-STATE CUNIU'), by His, Carter and thers, 29 June 1962, 49, tables, (Ballistics Research report 71, A 7-in, two-stage dur has been success- ful in launching complex models in the Naval thinance Laboratory's 1,000-ft, Hy- nerbillistics Range No. 4 at 'elocities in ercess of 15,000 fps, the design of the 7-in h gum and the results of the 8-in h gum and the results of the 8-in h gum and the results of the first 44 8-bits are reviewed.

- Aprile Con