Edinburgh Imaging www.ed.ac.uk/edinburgh-imaging

Biennial SPM course 2017

Statistical inferences in fMRI

Cyril Pernet, PhD
University of Edinburgh

Overview

- Multiple comparisons correction procedures
- Levels of inferences (set, cluster, voxel)
- Circularity issues

Error at a single voxel

Decision:

H₀, H₁: zero/non-zero activation

contrast of
estimated
parameters $t = \frac{}{}$ variance
estimate

Decision rule (threshold) h, determines related error rates $\varphi_{k} = \beta_{k}$

Convention: Penalize complexity Choose h to give acceptable α_h under H_0

Types of error

Decision

 H_1

 H_0

Reality

 H_0 H_1 False positive (FP) True positive (TP) True negative (TN) False negative (FN) β_h

specificity: 1- α_h sensitivity = TN / (TN + FP) = TP / (TP = proportion of actual = proportion of actual positives which are correctly identified identified

sensitivity (power): 1- β_h = TP / (TP + FN) = proportion of actual positives which are correctly

Multiple comparisons correction

Avoiding false positives

4-Dimensional Data

 1,000 multivariate observations, each with > 100,000 elements

• 100,000 time series, each with 1,000 observations

- Massively Univariate Approach
 - 100,000 hypothesis tests
- Massive MCP!

- Typical brain ~ 130000 voxels
- @ p = .05, it is expected = 6500 false positives!
- @ a more conservative value like p = .001 we still expect 130 false positives.
- Using extend threshold k without correction is not enough as it, by chance, can cluster as well.

- Bennet et al., 2009
- <u>Task</u>: take a decision about emotions on pictures
- Design: blocks of 12 sec activation/rest
- Analysis: standard data processing with SPM
- Subject: a dead salmon!

A t-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold.

• The cluster was 81mm³! – after multiple comparison corrections all false activations were removed.

Detect an effect of *unknown* extent & location

Bonferroni Correction

FWER is the prob. that any stats > u, is a FP FWER is therefore also the prob. that the max stats > u is a FP

Bonferroni correction allows to keep the FWER at 5% by simply dividing alpha by the number of tests

$$P(T_i \ge u | H0) \le \frac{\alpha}{m}$$
 Find u to keep the FWER $< \alpha/m$

FWER $= P(\bigcup_{i \in V} \{T_i \ge u\} | H_0) \le \alpha$
 $\le \sum P(T_i \ge u | H0)$ Boole's inequality

 $\le \sum_i \frac{\alpha}{m} = \alpha$

Bonferroni Correction

- 10000 Z-scores ; alpha = 5%
- alpha corrected = .000005; z-score = 4.42

Bonferroni Correction

- 10000 Z-scores ; alpha = 5%
- 2D homogeneous smoothing 100 independent observations
- alpha corrected = .0005; z-score = 3.29

Solutions for MCP

- An important feature of neuroimaging data is that we have a family of stat values that has topological features (Bonferroni for instance consider tests as independent)
- Why considering data as a smooth lattice? (Chumbley et al., 2009 Neurolmage 44)
- ➤ fMRI/PET are projection methods of data points onto the whole space — MEEG forms continuous functions in time and are smooth by the scalp (space)
- Neural activity propagate locally through intrinsic/lateral connections and is distributed via extrinsic connections / Hemodynamic correlates are initiated by diffusing signals (e.g. NO)

Random Field Theory

- 10000 Z-scores ; alpha = 5%
- Gaussian kernel smoothing –
- How many independent observations?

RFT

- RFT relies on theoretical results for smooth statistical maps (hence the need for smoothing), allowing to find a threshold in a set of data where it's not easy to find the number of independent variables. Uses the expected Euler characteristic (EC density)
- 1 Estimation of the smoothness = number of resel (resolution element) = f(nb voxels, FWHM)
- 2 expected Euler characteristic = number of clusters above the threshold
- 3 Calculation of the threshold

Random Field Theory

- The Euler characteristic can be seen as the number of blobs in an image after thresholding (p value that you select in SPM)
- At high threshold, EC = 0 or 1 per resel: E[EC] \approx p^{FWE}

E[EC] = R · (4 log_e 2) · $(2\pi)^{-2/3}$ · Z_t · e^{-1/2 Z²t} for a 2D image, more complicated in 3D

Random Field Theory

• For 100 resels, the equation gives E[EC] = 0.049 for a threshold Z of 3.8, i.e. the probability of getting one or more blobs where Z is greater than 3.8 is 0.049

α	number of resels	Bonfe	RFT	
	in the image	threshold	score Z	score Z
0.05	100	0.05 100	3.3	
	100			3.8

If the resel size is much larger than the voxel size then E[EC] only depends on the nb of resels otherwise it also depends on the volume, surface and diameter of the search area (i.e. shape and volume matter)

False Discovery Rate

 Whereas family wise approach corrects for any false positive, the FDR approach aim at correcting among positive results only.

- 1. Run an analysis with alpha = x%
- 2. Sort the resulting positive data
- 3. Threshold to remove the false positives

False Discovery Rate

Signal+Noise

FEW correction

FDR correction

False Discovery Rate for clusters

Under H0 the nb of voxels per cluster is known → uncorrected p value for clusters → apply FDR on the clusters (volume-wise correction)

Assumes that the volume of each cluster is independent of the number of clusters

Voxel, cluster and set

- 3 levels of inference can be considered:
- Voxel level (prob associated at each voxel)
- Cluster level (prob associated to a set of voxels)
- Set level (prob associated to a set of clusters)
- The 3 levels are nested and based on a single probability of obtaining c or more clusters (set level) with k or more voxels (cluster level) above a threshold u (voxel level): P_w(u,k,c)

 Set level: we can reject H0 for an omnibus test, i.e. there are some significant clusters of activation in the brain.

Cluster level: we can reject H0 for an area of a size k, i.e. a cluster of 'activated' voxels is likely to be true for a given spatial extend.

■ <u>Voxel level</u>: we can reject H0 at each voxel, i.e. a voxel is 'activated' if exceeding a given threshold

- Each level of inference is valid, but the inferences are different e.g. a set might be enough to check that subjects activated regions selected a priori for a connectivity analysis clusters might be good enough if hypotheses are about the use of different brain areas between groups
- Both voxel and cluster levels need to address the multiple comparison problem. If the activated region is predicted in advance, the use of corrected p values is unnecessary and inappropriately conservative — a correction for the number of predicted regions (Bonferroni) is enough

Uncorrected (bad)

set-level cluster-level			peak-level					_				
р	С	p _{FWE-corr}	q _{FDR-corr}	^k E	Puncorr	p _{FWE-corr}	q _{FDR-corr}	T	(Z _≡)	p _{uncorr}	mm mm mm	1
0.000	22	0.000	0.000	2519	0.000	0.000	0.000	19.07	Inf	0.000	-36 -18	-10
						0.000	0.000	13.63	Inf	0.000	-36 -54	-12
						0.000	0.000	12.28	Inf	0.000	-46 -50	-2
		0.000	0.000	2340	0.000	0.000	0.000	18.16	Inf	0.000	38 -44	-26
						0.000	0.000	17.50	Inf	0.000	40 -16	-20
						0.000	0.000	13.48	Inf	0.000	14 -56	-26
		0.000	0.000	285	0.000	0.000	0.000	12.54	Inf	0.000	-16 -40	50
		0.000	0.000	276	0.000	0.000	0.000	10.91	Inf	0.000	44 -50	44
						0.000	0.000	7.93	Inf	0.000	38 -38	44
						0.000	0.000	6.76	6.71	0.000	48 -58	56
		0.000	0.000	218	0.000	0.000	0.000	10.67	Inf	0.000	-22 10	66
						0.000	0.000	7.84	7.76	0.000	-34 22	54
						0.004	0.097	5.47	5.45	0.000	-28 18	62
		0.000	0.000	76	0.000	0.000	0.000	10.18	Inf	0.000	12 10	76
		0.000	0.000	248	0.000	0.000	0.000	9.23	Inf	0.000	38 -52	14
						0.000	0.000	7.65	7.58	0.000	34 -54	22
						0.000	0.000	7.52	7.46	0.000	38 -60	6
		0.000	0.000	172	0.000	0.000	0.000	8.03	Inf	0.000	-20 -56	28
						0.000	0.000	7.99	Inf	0.000	-22 -58	20
		0.000	0.000	66	0.000	0.000	0.000	7.27	7.21	0.000	-8 -58	44
						0.000	0.000	6.55	6.51	0.000	-14 -62	38
		0.000	0.000	76	0.000	0.000	0.000	7.01	6.96	0.000	-36 -20	58
		0.000	0.000	40	0.000	0.000	0.000	6.70 6.46	6.66 6.42	0.000	44 2 54 2	58
		0.000	0.000	92	0.000	0.000 0.000	0.000	6.63	6.58	0.000	60 -30	48
		0.000	0.000	68	0.000	0.000	0.000	6.54	6.58	0.000	46 -18	48 60
		0.000	0.000	00	0.000	0.000	0.000	5.73	5.71	0.000	46 -18 50 -8	56
		0.000	0.001	16	0.001	0.000	0.025	6.08	6.05	0.000	46 -44	4
		0.000	0.001			0.000	0.004	5.90	5.87	0.000	48 -34	0
		0.000	0.000	ž tabi	0.000 le shows 3 lecal	maxima more tha	an 8.0mm apan	3.90	3.07	0.000	40 -54	
leight thre	shold: T =	4.96, p = 0.000 (0	.050)		Z		f freedom = [1.0					_
	shold: k = (.6 7.1 6.7 mm r					
		duster, <k> = 1.10</k>					155888 = 14448					
		lusters, <c> = 0.0</c>					2.9.2.0 2.0 mn	n mm mm; (re	el = 39.21 vo:	xels)		
WEp: 4.9	59, FDRp:	5.735, FWEc: 1, F	DRc:5			Page 1						

RFT (Gaussian Random Fields)

- -> Prob of size
- -> Prob of cluster peak (max voxel)

Using p=.001 this creates an excursion set with topology that satisfies RFT → FDR clusters size and height

Circularity issues in fMRI

Definition

- Refers to the problem of selecting data for analysis
- How data (areas usually) are selected, analysed and sorted is key to avoid circularity
- Put forward by Vul et al. 2009, Perspectives on Psychological Science. 4
- Better explained in Kriegeskorte et al., 2009 Nat. Neuroscience 12

Circularity

- Double dipping pblm: "data are first analyzed to select a subset and then the subset is reanalyzed to obtain the results. In this context, assumptions and hypotheses determine the selection criterion and selection can, in turn, distort the results."
- Take a gp of subjects and measures RTs, then take 2 subgroups from the same subjects and re-do some analysis?? → increases the diff.
- Take fMRI data and get activated areas, extract ROI and re-do some analyses??

Circularity

 Selection and tests must be independent – non independence create spurious effects

Circularity

- Independence of the selection and tests
- 1. Anatomic ROI, analysis of fMRI
- 2. SPM, minimal requirement is orthogonality of the contrasts (e.g. find regions using A+B>0 C=[1 1] and test A vs B C=[1 -1]) but if N_A and N_B are different there is still a bias when testing A-B (across subjects independence is ensured by $C_{\text{selection}}^{T}(X^{T}X)^{-1}C_{\text{test}}$)
- Select using a subset of data, test with another one

Questions?