

Ostfalia Fakultät Fahrzeugtechnik

Laborbericht Regelungstechnik

SS 2022 Labor 3:

Prüfer: Jan-Hendrik Aschen, M. Eng

1 Inhaltsverzeichnis

1	INH	ALTSVERZEICHNIS	2 -
2	ABB	ILDUNGSVERZEICHNIS	3 -
3	TAB	ELLENVERZEICHNIS	4 -
4		IITTLUNG DES GÜLTIGKEITSBEREICHES DES LINEAREN MODELLS	
5		RTRAGUNGSFUNKTION DES GLEICHSTROMMOTORS	
6		TIMMUNG DER MODELLPARAMETER $(a,k/b)$	
7	ENT	WURF EINES PI-REGLERS	7 -
	7.1	Pol/Nullstellenkürzung	7 -
	7.2	NEUER DOMINANTER POL	
	7.3	Berechnung von KP_neu	
	7.4	Berechnung von KIneu	
	7.5	Berechnung der Regler Parameter	
	7.6	Messkurve für Drehzahlsollwert 2500 rpm	
	7.7	MESSKURVE MIT SPRUNGFÖRMIGER EINGANGSSTÖRUNG	- 10 -

2 Abbildungsverzeichnis

ABBILDUNG 1: MOTORKENNLINIE	5
Abbildung 2: Sprungantwort bei $1,\!8V$	6
Abbildung 3: Sprungantwort mit PI-Regler	9
ARRII DUNG 4. SPRUNGANTWORT MIT FINGANGSSTÖRUNG	- 10

SoSe 2022 - 3 -

^		•		
٦.	Iahai	lenverz	MOICH	nic
J	lavei	iciiveiz	CILI	11113

TABELLE 1: GÜLTIGKEITSBEREICH DES LINEAREN MODELLS.....-5 -

SoSe 2022 - 4 -

Bearbeitung der Laboraufgaben - Labor 3

4 Ermittlung des Gültigkeitsbereiches des linearen Modells

Im ersten Schritt des Labors haben wir den Gültigkeitsbereich des linearen Modells bestimmt. Dafür haben wir die Drehzahl bei verschiedenen Spannungsniveaus untersucht und in einer Tabelle festgehalten (siehe Tab. 01).

Tabelle 1: Gültigkeitsbereich des linearen Modells

Messnr.	U [V]	V [V]	y(0) [rpm]	Messdauer [sek]	y(10) [rpm]
1	0	0	0	10	0
2	1,4	0	0	10	900
3	1,5	0	0	10	1310
4	1,8	0	0	10	2700
5	2,1	0	0	10	4100
6	2,4	0	0	10	4100
7	2,7	0	0	10	4100
8	3,0	0	0	10	4100

Aus den zuvor gewonnen Messwerten wird eine Motorkennlinie erstellt (siehe Abb. 01).

Aus Abbildung 01 kann man nun das Fenster ablesen, in dem die Regelstrecke als linear angenommen werden kann:

$$\Delta U = U_{lin.max} - U_{lin.min}$$

$$\Delta U = 2.1V - 1.4V = 0.7V$$

SoSe 2022 - 5 -

5 Übertragungsfunktion des Gleichstrommotors

Nun wird die Übertragungsfunktion des Gleichstrommotors von u nach y (Ankerspannung nach Drehzahl) ermittelt:

$$G_{uy}(s) = \frac{k}{(s+a)\cdot(s+b)}$$

Mit $|a| \ll b$, a ist der dominante Pol.

6 Bestimmung der Modellparameter (a, k/b)

Mit der $t_{5\%}$ -Formel kann der dominante Pol a bestimmt werden:

$$|s_D| = a \approx \frac{3}{t_{5\%}} = 1,36s$$

Mit dem Endwertsatz kann der Faktor k/b bestimmt werden:

$$\lim_{s \to 0} G_{uy}(s) = \frac{y_{\infty}[rpm]}{\Delta u[Volt]} = \frac{2150}{0.7V} = 3071.43 = \frac{k}{b}$$

Nun kann die Sprungantwort bei u = 1.8V des offenen Regelkreises erzeugt werden:

Abbildung 2: Sprungantwort bei 1,8V

Aus der Sprungantwort wird $t_{5\%}$ abgelesen:

$$95\%$$
 von $2150rpm = 2042,5$

$$t_{5\%} = 2,2sek$$

SoSe 2022 - 6 -

7 Entwurf eines PI-Reglers

7.1 Pol/Nullstellenkürzung

Zuallererst wird eine Pol-/Nullstellenkürzung von a mithilfe von K_I und K_P durchgeführt. Im Anschluss wird die neue Übertragungsfunktion des offenen Regelkreises $G_o(s)$ bestimmt:

$$G_o(s) = \frac{K_p * (s + \frac{K_I}{K_P})}{s} * \frac{K}{(s+a)(s+b)}$$

Mit
$$a = \frac{K_I}{K_P}$$

$$G_o(s) = \frac{K_p * (s+a)}{s} * \frac{K}{(s+a)(s+b)}$$

$$G_o(s) = \frac{K_p * (s+a)}{s} * \frac{K}{(s+a)(s+b)}$$

$$G_o(s) = \frac{K_p * K}{s * (s+b)}$$

7.2 Neuer dominanter Pol

Nun wird der neue Dominante Pol $S_{D,neu} = a_{neu}$ berechnet:

$$t_{5\%} \approx \frac{6}{|a_{neu}|} \approx 6 \ sec$$

$$|a_{neu}| = 1$$

7.3 Berechnung von K_{P_neu}

Mit der Gleichung der Polvorgabe wird $K_{P neu}$ bestimmt:

$$K_{P_{neu}} = \frac{-1}{GO(s_{neu} = a_{neu}; K_P = 1)}$$

$$K_{P_{neu}} = -\frac{1}{\frac{K_P * K}{s * (s + b)}}$$

$$K_{P_{neu}} = -\frac{1}{\frac{1 * K}{-1 * (-1 + b)}}$$

$$K_{P_{neu}} = -\frac{1}{\frac{K}{-b + 1}}$$

SoSe 2022 - 7 -

Unter Anwendung von Hinweis 2:

$$\frac{k}{-b+1} \approx -\frac{k}{b}$$
$$-\frac{1}{\frac{k}{b}} = \frac{b}{k}$$
$$\frac{1}{3071.43} = 3,26 * 10^{-4}$$

7.4 Berechnung von $K_{I_{neu}}$

$$K_{I_{neu}} = a_{alt} * K_{p,neu}$$
 $K_{I_{neu}} = 1,36 * 3,26 * 10^{-4}$
 $K_{I_{neu}} = 4,336 * 10^{-4}$

7.5 Berechnung der Regler Parameter

Nun werden die Regler Parameter K_r und T_r für die Software SC30 durch den Vergleich der beiden Übertragungsfunktionen berechnet:

$$G_R(s) = \frac{K_r * T_r * \left(b + \frac{1}{T_r}\right)}{S} = \frac{K_P * \left(s + \frac{K_I}{K_P}\right)}{S}$$

$$\frac{K_I}{K_P} = \frac{1}{T_r} \to T_r = \frac{1}{a}$$

$$\frac{1}{1,36} = 0,74$$

$$K_R = \frac{K_P}{T_R}$$

$$K_R = \frac{3,26 * 10^{-4}}{0,74} = 0,0004405$$

SoSe 2022 - 8 -

7.6 Messkurve für Drehzahlsollwert 2500 rpm

Um die Sprungantwort zu erzeugen, werden der Übertragungsfunktion die errechneten Werte von K_r und T_r übergeben. Damit lässt sich die Sprungantwort mit dem ermittelten PI-Regler erzeugen:

Abbildung 3: Sprungantwort mit PI-Regler

SoSe 2022 - 9 -

7.7 Messkurve mit Sprungförmiger Eingangsstörung

Zuletzt wird der Sprungantwort händisch eine Eingangsstörung M_L hinzugefügt:

Abbildung 4: Sprungantwort mit Eingangsstörung

Der allgemeine Verlauf wir durch das hinzuschalten der Eingangsstörung nicht beeinflusst. Diese machen sich lediglich durch die kurzen Ausschwinger bemerkbar, die sofort wieder ausgeregelt werden (siehe Abb. 04). Folglich funktioniert der im Verlaufe des Labors ermittelte PI-Regler einwandfrei.

SoSe 2022 - 10 -