ROBÓTICA

Primeiros Passos

AULA L A

Simulando Circuitos

E DO ESPORTE

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

André Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

Produção de Conteúdo

Michelle dos Santos

Leitura Crítica e Normalização Bibliográfica

Ricardo Hasper

Validação de Conteúdo

Cleiton Rosa

Revisão Textual

Adilson Carlos Batista

Projeto Gráfico e Diagramação

Edna do Rocio Becker

Ilustração

Jocelin Vianna (Educa Play)

2022

SUMÁRIO

Introdução Objetivos desta Aula	2
Habilidades do Século XXI a Serem Desenvolvidas Lista de Materiais	4
1. Contextualização	5
2. Conteúdo	7
3. Feedback e Finalização	13
Referências	14

Introdução

Você conhece a expressão "o que é visto, em geral, também pode ser apreendido"? Esta expressão está relacionada ao poder de visualizar e experimentar para uma maior assimilação dos conteúdos. Isto significa que quanto menos passivo o ensino, mais ativo é o aprendizado.

Nesta aula, exploraremos o simulador Tinkercad e aplicaremos suas funcionalidades para construir um circuito elétrico.

Objetivos desta Aula

- Explorar as funcionalidades da ferramenta virtual Tinkercad;
- Montar um circuito elétrico com Motor CC (Corrente Contínua);
- Simular o funcionamento de Motor CC no Tinkercad.

Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens - verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

Simulando Circuitos I

Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência:
- Resolução de problemas;
- · Colaboração;
- Comunicação;
- · Criatividade.

Lista de Materiais

- Notebook:
- Software Tinkercad.

1. Contextualização:

Na aula anterior, **Aula 17 - Robótica com Tinkercad**, você conheceu o simulador Tinkercad, suas funcionalidades, e esquematizou um projeto utilizando alguns componentes do Kit de Robótica.

Como foi a experiência de aprender através do Tinkercad?

Você teve alguma dificuldade em montar os componentes propostos na aula?

Houve algum momento que você não conseguiu compreender o que estava sendo solicitado?

Para esta aula, te desafiamos a montar um circuito elétrico contendo entre os componentes, um motor CC, e simular o funcionamento deste motor.

2. Conteúdo:

Motor CC é um motor acionado por uma fonte de alimentação de Corrente Contínua como o nome indica. Também é conhecido como motor DC (do inglês Direct Current Motor). Ele converte energia elétrica em energia mecânica que pode funcionar tanto como motores quanto geradores de energia elétrica.

Você sabia que o Motor CC é vastamente usado no nosso cotidiano e encontramos em muitos brinquedos?

Como contêm fácil controle da velocidade de acordo a com a tensão aplicada, o Motor CC atende a uma infinidade de aplicações em atividades com velocidade controlada e constante, como em equipamentos industriais, elevadores, guinchos, em veículos elétricos, ferramentas, eletrodomésticos e até em brinquedos de pilha ou bateria, e muitos outros aparelhos de controle remoto.

Ele é capaz de levar um carrinho de brinquedo a uma velocidade bem significativa!!

Agora que você conheceu algumas características do Motor CC, vamos ao desafio desta aula?

A Simulando Circuitos I

O primeiro passo para realizar o desafio proposto é acessar o simulador Tinkercad pelo link https://www.TinkerCad.com/.

Figura 1 - Clique em Circuitos

Fonte: TinkerCad, 2022

Logo após clique em Criar Novo Circuito, conforme figura 2.

A Simulando Circuitos I

É neste espaço que você poderá criar seus projetos.

Vamos começar selecionando a placa Protoboard na barra lateral dos componentes e arrastando até a área de construção do circuito, conforme figura 3.

Figura 3 - Seleção da placa Protoboard

A seguir selecione e arraste a bateria 9V, conforme figura 4.

Figura 4 - Seleção da bateria

AULA]

A Simulando Circuitos I

Selecione o Motor CC e encaixe na linha central da Protoboard. Para rotacionar cada componente basta clicar no ícone da barra superior à esquerda, conforme figura 5.

Figura 5 - Seleção do Motor CC e encaixe na Protoboard

🖰 Simulando Circuitos I

Agora, vamos conectar os componentes selecionados com Jumpers. Clique na saída positiva da bateria e ligue com a linha positiva da Protoboard.

Para facilitar a diferenciação dos Jumpers, defina uma cor para as ligações positivas (como padrão, geralmente é aplicado o vermelho) e outra para as negativas (como padrão, geralmente é aplicado o preto), para isto basta clicar no ícone na barra superior, conforme figura 6.

Figura 6 - Ligação do Jumper na saída positiva da bateria com a Protoboard

Agora, interligue o polo negativo da bateria com a linha superior negativa da Protoboard, conforme figura 7.

Figura 7 - Ligando o polo negativo da bateria e a Protoboard

AULA]

Simulando Circuitos I

A seguir, vamos conectar o Motor CC na Protoboard, para isso, basta clicar no terminal 2 do Motor CC até a linha superior positiva da Protoboard, a qual foi conectada a bateria, conforme figura 8.

Figura 8 - Conexão do Motor CC na Protoboard

Com outro Jumper, conecte o terminal 1 do Motor CC até a linha negativa da Protoboard, conforme figura 9.

Figura 9 - Interligando o polo negativo do Motor à Protoboard

AULA]

💾 Simulando Circuitos I

Pronto, seu circuito está montado. Agora, é só clicar em **iniciar simulação** e verá o motor rodar, conforme figura 10.

Fabrica Louis

| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis
| Fabrica Louis

Figura 10 - Motor CC funcionando

Fonte: TinkerCad, 2022

- **1.** Que tal adicionar ao circuito elétrico um interruptor para acionar o Motor CC?
- **2.** Que tal testar mais componentes e montar outros circuitos simples, como ligar uma lâmpada ou um LED?

Atenção! Caso utilize um LED, é necessário incluir no projeto um resistor de 500 Ohm (Ω) .

Como foi sua experiência neste desafio? Deu certo?

Na próxima aula, você conhecerá um circuito elétrico paralelo com interruptor.

3. Feedback e Finalização:

- a. Confira e mostre ao seu colega de classe a sua criação do circuito;
- **b.** Analise e troque informações se os projetos desenvolvidos pelos seus colegas seguiram as instruções e estão funcionando de acordo com o projetado;
 - c. Reveja se você entendeu o funcionamento do circuito elétrico;
 - d. Reflita se as seguintes situações ocorreram:
 - i. Você e os seus colegas trocaram ideias no momento da criação e montagem do circuito?
 - **ii.** Você teve problemas ao fazer e montar o projeto no Tinkercad? Quais? Quais foram as soluções encontradas?

Simulando Circuitos I

BELMIRO, Marcia. **Estudo ativo x estudo passivo, o que significa?** ICI-Instituto de Crescimento Infantojuvenil. Disponível em: https://institutoinfantojuvenil.com.br/estudo-ativo-x-estudo-passivo-o-que-significa/#:~:text=Apesar%20de%20haver%20diverg%-C3%AAncias%20entre,o%20ensinamos%20a%20outras%20pessoas. Acesso em: 15 mar. 2022.

BRASIL. Ministério da Educação. **Base Nacional Comum Curricular.** Brasília, 2018. Disponível em: http://basenacionalcomum.mec.gov.br/images/BNCC_EL_EF_110518_versaofinal_site.pdf. Acesso em: 18 mar. 2022.

TINKERCAD. **Autodesk.** Site oficial. Cadastro. Disponível em: <u>www.tinkercad.com</u>. Acesso em: 18 mar. 2022

DIRETORIA DE TECNOLOGIAS E INOVAÇÃO (DTI) COORDENAÇÃO DE TECNOLOGIAS EDUCACIONAIS (CTE)

EQUIPE ROBÓTICA PARANÁ

Adilson Carlos Batista
Cleiton Rosa
Darice Alessandra Deckmann Zanardini
Edna do Rocio Becker
Marcelo Gasparin
Michelle dos Santos
Ricardo Hasper
Roberto Carlos Rodrigues
Simone Sinara de Souza

Os materiais, aulas e projetos da "Robótica Paraná", foram produzidos pela Coordenação de Tecnologias Educacionais (CTE), da Diretoria de Tecnologia e Inovação (DTI), da Secretaria de Estado da Educação e do Esporte do Paraná (Seed), com o objetivo de subsidiar as práticas docentes com os estudantes por meio da Robótica.

Este material foi produzido para uso didático-pedagógico exclusivo em sala de aula.

Este trabalho está licenciado com uma Licença Creative Commons – CC BY-NC-SA Atribuição - NãoComercial - Compartilhalgual 4.0

Diretoria de Tecnologia e Inovação

