ARMY MATERIALS & MECHANICS RESEARCH CENTER TECHNICAL INTOKMATION BRANCH WATERTOWN, MASSACHUSETTS 02172

ADA-012265

AMMRC CTR 75-10

Production Engineering Measures Program Manufacturing Methods and Technology

PRODUCIBILITY AND SERVICEABILITY OF KEVLAR-49 STRUCTURES MADE ON HOT LAYUP TOOLS

May 1975

R. Head, J. Leach, R. Goodall, C. Sitterly
Hughes Helicopters - Division of Summa Corporation
Culver City, California

Final Report, Contract DAAG46-74-C-0100

Approved for public release; distribution unlimited.

Prepared for ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

U.S. ARMY AVIATION SYSTEMS COMMAND St. Louis, Missouri 63166

This project has been accomplished as part of the U. S. Army Manufacturing Methods and Technology Program, which has as its objective the timely establishment of manufacturing processes, techniques or equipment to insure the efficient production of current or future defense programs.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.

Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AMMRC CTR 75-10		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Producibility and Serviceability	of Kevlar-49	May 31 1974 to April 30 1975
Structures Made on Hot Layup T	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
R. Head, J. Leach, R. Goodall,	C. Sitterly	DAAG46-74-C-0100
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Hughes Helicopters div. of Sumr	n a Corp.	D/A Project:
Centinela Ave. and Teale St.		AMCMS Code:
Culver City, CA 90230		Agency Accession:
11. CONTROLLING OFFICE NAME AND ADDRESS	anah Cantan	May 1975
Army Materials and Mechanics Rese Watertown, Massachusetts 02172	arch Center	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>
Approved for public release; dist		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different tro	m Keport)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary ar	nd identify by block number,)
Composite Materials Inlet F	airing	
Helicopters Hot La	yup Tools (HLI	Γ)
Kevlar-49		
20. ABSTRACT (Continue on reverse side if necessary an	d identify by block number)	
This report covers work perfor	med under cont	ract DAAG46-74-C-0100.
"Producibility and Serviceability		
Layup Tools." The pruposes of	_	
• Evaluate the producibi made from Keylar-49		oter structural component

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- Demonstrate the low cost aspects of using Hot Layup Tools (HLT) to fabricate composite structures.
- Evaluate the serviceability of the Kevlar-49 structure in actual field operations.

These purposes were achieved by redesigning of the aft air inlet fairing of the OH-6A to be built from Kevlar-49 fibers on an HLT. The costs of the tool and part fabrication were monitored to demonstrate the low cost aspects of this manufacturing approach. The fairing was installed on a bailed OH-6A helicopter and flight tested to evaluate the serviceability of the Kevlar-49 structure. The HLT was easily fabricated. It performed very satisfactorily and showed good cost savings over the existing fabrication methods. The fairing's serviceability during flight test was judged comparable to the existing fiberglass fairing.

SUMMARY

The U.S. Army Materials and Mechanics Research Center (USAMMRC) has recognized the potential benefits that could be realized in manufacturing aircraft components on a new type of tool, a Hot Layup Tool (HLT). Accordingly, AMMRC awarded Hughes Helicopters (HH) a development program to investigate this improved manufacturing technology. The contract (DAAG46-74-C-0100) included the development of a tool, fabrication of the upper fairing of the OH-6A helicopter and its evaluation in flight. Another requirement of the contract was the application of Kevlar-49 in the fabrication of typical airframe components and determination of its associated producibility characteristics. The HLT is a low cost tool fabricated from wire-reinforced concrete matrix cast with copper tubing for alternate heating with live steam and cooling with cold water to achieve a rapid cure cycle for composite layups. It is nickel-lined for permanence.

The program resulted in a reduction in manhours for fabrication of the fairing of approximately 70% (10 hours in lieu of 32.2 hours). A large portion of this manhour saving was due to fairing design changes in adapting it to the process. The use of HLT also resulted in an energy cost saving (oven curing vs steam) of approximately \$15.00 per fairing. In addition, it was determined that a tooling and facilities cost saving of \$4.14 per fairing would result in a production rate of 250 fairings per year, (HLT vs standard plastic tool). These savings are summarized as follows:

Labor, 22.4 hours @ 20.00	\$448.00
Energy	15.00
Tooling and Facilities (Based on 250 parts/year)	4.14
TOTAL SAVING	\$467.14

The portion of the above saving ascribed entirely to use of the HLT is estimated to be approximately \$86.34 per fairing [15% of labor Δ (\$67.20) + energy saving (\$15.00) + tooling and facilities savings (\$4.14)]

This program also successfully applied Kevlar-49 cloth, replacing the standard E glass used in the existing fairing. Methods were successfully developed for drilling, routing and sawing Kevlar-49. The fairing assembly was judged equal to the standard fairing during handling and flight test evaluations. In addition to the part design revision, tooling development, and flight test, a materials strength evaluation was made and a total of nine fairings were manufactured, of these, five were flightworthy.

Substitution of the Kevlar-49 for fiberglass as the primary material for the fairing reduced the fairing weight 0.67 pounds (3.89 lb vs 4.56 lb) but increased the material cost approximately \$53.00. This results in a weight saving cost of \$79.10 per pound of weight saved. This cost per pound of weight saved would not normally be considered cost effective by HH.

The details of the program development are described in this report along with the rationale for the cost effectiveness estimates described above. Dr. Bernard Halpin of AMMRC was the Government technical advisor and coordinator for the program.

TABLE OF CONTENTS

	Page
SUMMARY	i
LIST OF ILLUSTRATIONS	v
LIST OF TABLES	vi
INTRODUCTION	1
FAIRING LOADS AND DESIGN ALLOWABLES	5
FAIRING DESIGN AND ANALYSIS	9
TOOLING DESIGN AND FABRICATION	13
EVALUATION OF TRIMMING DRILLING AND CUTTING	20
FABRICATION OF INLET FAIRING	26
FLIGHT TESTING	30
COST ANALYSIS	33
CONCLUSIONS	38
RECOMMENDATIONS	39
REFERENCES	40
APPENDIX A - FAIRING AND TOOL DRAWINGS	41
APPENDIX B - DETAILED FAIRING FABRICATION PLANNING	47
APPENDIX C - HUGHES PROCESS SPECIFICATIONS AND LABORATORY REPORT	60
APPENDIX D - DRILLING AND TRIMMING PHOTOGRAPHS	76
APPENDIX E - DETAILED COST BREAKDOWN	90
APPENDIX F - LIMIT LOADS	93

LIST OF ILLUSTRATIONS

Figure		Page
la	Kevlar-49 Fairing on an OH-6A	2
lb	Kevlar-49 Fairings Fabricated in HLT	2
2	Program Summary of Events	4
3	Section Through HLT and Fairing	8
4	Functions Performed by the Fairing	10
5	Exploded View of Fairing	12
6	Hot Layup Tool (HLT)	14
7	HLT Plumbing Schematic	14
8	Fabrication Sequence for HLT	16
9	HLT Temperature Evaluation	18
10	Curing Cycle Comparisons	19
11	Cutting, Trimming, and Drilling Operations on Fairing	21
12	Fabrication Sequence	27
13	Collapsed Honeycomb Edge	29
14	Flight Testing Kevlar Fairing	31

LIST OF TABLES

Table		Page
1	Compressive Bending Final Test Results	6
2	Typical Composite Material Property	7
3	Wirand Mortar Proportions (1 Mix)	17
4	Drilling and Countersinking Evaluation	23
5	Routing and Sawing Evaluation	24
6	Flight Spectrum	32
7	Burdened Facility and Maintenance Costs	33
7 a	Energy Cost	33
8	Cost of Molds	34

INTRODUCTION

Advanced composite materials have been given more and more emphasis in recent years because of their versatility and potential weight and cost savings. This has led to a steady improvement in composite design and manufacturing techniques. Hughes Helicopters developed a new technique for assembling and curing composite structures called the Hot Layup Tool (IILT). This resulted in a contract award from USAMMRC in Watertown, Massachusetts, to demonstrate the effectiveness of a low-cost, low-lead time, metal reinforced concrete mold (HLT) in the fabrication of an air-craft component from the advanced composite material, Kevlar-49. The part chosen for evaluation was the engine inlet aft fairing on the Army OH-6A helicopter (Figures 1a and 1b).

The detailed scope of the program was:

- Design and fabricate a low-cost, low-lead time Hot Layup Tool on which to build the fairing. The tool has a metal face to facilitate part removal, and incorporates integral heating and cooling capabilities.
- Fabricate the OH-6A engine inlet aft fairing from the advanced composite Kevlar-49.
- Develop the techniques on small samples for machining, drilling, trimming and cutting Kevlar-49 epoxy needed to fabricate the inlet fairing.
- Fabricate nine fairings.
 - The first four were for contractor evaluation.
 - The remaining five were flightworthy and complete in all hardware details.
 - One of these five was flight tested on an OH-6A.
 - Deliver all assemblies, including the one flight tested, to the Army.
- Submit a final report.

Figure la. Kevlar-49 Fairing on an OH-6A.

Figure 1b. Kevlar-49 Fairings Fabricated in HLT.

The program was broken down into ten tasks for easy monitoring and reporting. Figure 2 is a pictorial summary of the major tasks that made up the total program.

The program started by determining the stress allowables and core thickness in Kevlar-49/Nomex homeycomb structures by testing coupons representative of the facing and core configuration intended for use. The fairing was designed to use Nomex core and Kevlar-49 facings. The HLT was designed and fabricated from nickel-faced reinforced concrete. Copper tubing embedded in the concrete gave the tool an integral heating and cooling capability. Nine fairings were manufactured. The sixth fairing was installed on an OH-6A to assess serviceability by flight testing. A thorough trim and drilling evaluation was conducted late in the program. The delay in performing this task was due to difficulty in procuring the recommended tools. The cost effectiveness study was finalized using manufacturing data recorded throughout the fabrication of the fairings.

This final report together with delivery of nine fairings to USAMMRC concludes the effort under contract DAAG46-74-C-0100.

Figure 2. Program Summary of Events.

FAIRING LOADS AND DESIGN ALLOWABLES

The critical fairing loading occurs in a yawed flight condition combined with internal inlet pressure. This is the same condition that designed the present OH-6A fairing. Figure F-1 in Appendix F shows the loading, shear, and bending moment diagrams. The fairing has been found to be critical in compressure bending. The design limit loads are:

$$M = -42.2$$
 inch-pounds
 $P = 5.61$ pounds

The test panels shown in F-2, Appendix F, were made from an 0.40-inch thick Nomex honeycomb and faced with a variety of Kevlar-49 epoxy prepreg cloth. These panels were subjected to bending tests to determine bending allowables. See Figure F-3, Appendix F, for the loading method. Table 1 lists the results of the tests.

The allowable stress is as follows:

Mean Value = 14,743 psi

$$3\sigma$$
 (St'd Deviation) = $\frac{4,227}{4,227}$ psi
 F_{c} = 10,516 psi

Other tests were performed using a variety of facings and type of cloth. Table F-1, Appendix F, tabulates the results. As can be seen, none of these variables gave any increase of allowable compressive bending stress over the least expensive configuration, one laminate 181 cloth on both faces of the Nomex core. The height of the core was sized to withstand the applied moment thusly:

$$f_c = \frac{42.2 \times 1.5}{0.635 \times 0.01} = 9921 \text{ psi}$$

$$MS = \frac{10,516}{9921} - 1 = 0.06$$

TABLE 1. COMPRESSIVE BENDING FINAL TEST RESULTS

Config	P* (lbs)	h (in.)	A or B (in.)	W* (in.)	c (in.)	M/Inch*	f or f
1A1	337	0.430	0.010	7.00	0.420	72	17143
1 A 2	247	0.380		7.00	0.370	53	14324
1A3	202	0.342	}	6.44	0.332	47	14156
1A4	247	0.393	li i	6.44	0.383	58	15143
1C1	288	0.420		7.00	0.410	62	15121
1C2	284	0.420	\	7.00	0.410	61	14878
1 C3	239	0.420	0.010	7.00	0.410	51	12439

*For P, M, and W see Figure F-3, Appendix F.

The radius in the upper corner of fairing could limit the thickness of Nomex honeycomb (see Figure 3). However, it was shown that 0.625-inch thick core could be formed into these corners, so this with 0.010-inch thick single laminate facings of 181-type Kevlar-49 was selected.

For comparison purposes, typical composite material properties are compared in Table 2. These values are for the fiber with 50 percent volume of epoxy resin.

TABLE 2. TYPICAL COMPOSITE MATERIAL PROPERTY				
	E-Glass	S-Glass	Kevlar-49	
Density, lb/in. 3	0.0666	0.0656	0.0468	
Fiber volume fraction	0.50	0.50	0.50	
Unidirectional Properties				
Tension strength, psi	138,000	163,000	190,000	
Compression strength, psi	138,000	163,000	40,000	
Shear strength, psi	9,000	9,000	8,000	
Tension modulus, 10 ⁶ psi	5.3	6.3	9.5	
Shear modulus, 10 ⁶ psi	0.52	0.53	0.22	
Poisson's ratio	0.285	0.285	0.285	
μ Poisson's ratio	0.098	0.080	0.023	
Crossply (±45°) Properties				
Tension strength, psi	34,000	40,000	16,400	
Compression strength, psi	29,100	34, 400	6,000	
Shear strength, psi	36,700	12,000	10,000	
Tension modulus, 10 ⁶ psi	1.6	1.7	0.8	
Shear modulus, 10 ⁶ psi	1.7	1.8	2.5	

NOTE: HLT ROTATED 180^o
TO SHOW FAIRING
IN INSTALLED POSITION

Figure 3. Section Through HLT and Fairing.

FAIRING DESIGN AND ANALYSIS

The OH-6A aft inlet fairing is a good candidate for experimenting with new materials and new manufacturing techniques. It is 35 inches long, 21 inches wide, 15 inches high, and its weight is approximately 5 pounds. The standard fiberglass fairing in production for the Hughes Helicopters Model 500 is made of fiberglass and foam construction.

The fairing is a lightly loaded secondary structure with a relatively large surface area and has second degree contours. This fairing is located behind the rotor mast above the fuselage. It fairs the aft end of the air inlet for the OH-6A engine (see Figure 1) and performs the following functions (also see Figure 4):

- Shape and position reduces aerodynamic drag.
- Supplies the mounting surface for two types of air filters: inertial particle separator or a barrier filter.
- Scavenge door for the inertial particle separator is installed on the right-hand side.
- Contains an air bypass door that serves as an alternate inlet when the filter is plugged.
- Mounts one flashing aircraft warning light.
- Contains an integral VHF/UHF antenna in the rear portion.
- Has a static pressure port in the aft surface.

Figure 4. Functions Performed by the Fairing.

The fairing was redesigned as part of this program for the following reasons:

- Replace foam with Nomex honeycomb to allow better heat transfer from HLT to inner skin; see Figure 3.
- Reduce number of parts, thus simplifying the overall fairing.

 Take advantage of the Nomex honeycomb by incorporating integral integral conduits for wires, pressure lines, and control cables.
- Decrease manufacturing costs.

Tables 1 and F-1 of Appendix F show that 1/8-inch cell Nomex has higher compressive allowables than 1/4-inch cell Nomex. They also show that the addition of one or two more laminates to the compressive side of the

test samples does not increase the allowables. Commercial 281 Kevlar-49 cloth was considered for use because of its low cost, but it has lower strength allowables than 181 cloth and has a very porous surface when cured as a single laminate. Therefore, it was discarded in favor of 181-type cloth which has the following characteristics:

- Cures with a sealed surface.
- Gives the highest allowable compressive stress with 1/8-inch Nomex core.
- Is the least expensive since it requires only one laminate per face.
- Has minimum weight.

These good traits together with the fact that the 0.625-inch thick Nomex can form into the corner radius of the fairing (see Figure 3) determined the configuration: one laminate of 181-type Kevlar-49/epoxy cloth on each side of a 0.625-inch thick 1/8-inch cell Nomex honeycomb core. Prior to the fabrication of the bending test specimens, it was also found that solvent-deposited rather than hot-dipped prepreg cloth gave a better bond to the Nomex core. Solvent-deposited prepreg was used exclusively thereafter.

The layout drawing for the new inlet fairing is shown in Appendix A. Figure 5 shows a breakdown of all parts that make up the inlet fairing. New parts designed and fabricated in this program are the Kevlar-49 parts; i.e., the fairing skins, filter attach frame, and door skins. The Nomex honeycomb (a new part) replaced the existing foam that stiffens the skin. The remaining parts are the same as those used in the existing fairing: sheet metal antenna, aluminum doublers bonded between the skins for rivet and screw edge support, door hinges, and epoxy blocks for filter attach bolts.

Figure 5. Exploded View of Fairing.

TOOLING DESIGN AND FABRICATION

The Hot Layup Tool (HLT) is shown schematically in Figure 6. It is a female mold that forms the outer contour of the inlet fairing. The cavity of the HLT is lined with an electro-deposited nickel skin 0.10 inch thick. The outside of the nickel liner has a wire-reinforced concrete backing with imbedded copper tubes. The concrete is reinforced with tiny steel wires (WIRAND*). The copper tubes circulate either steam or cold water to cure or cool the composite structure in the most expeditious cycle. The nickel liner gives the tool a hard smooth surface into which composite parts are laid, vacuum-bagged, and heat cured. An insulating blanket around the complete tool decreases the heat losses, thus improving the curing cycle efficiency and protecting workers from the hot tool. Figure 7 shows a schematic of the HLT plumbing system. This heating/cooling system uses steam from the factory's boiler and cold water from the plant's water supply.

The principal advantages of the HLT are

- Provides a very accurate, highly finished surface to cure parts against.
- Reduce cycle time for curing and unloading by using the heating/ cooling feature provided by the imbedded coils.
- Uses minimum factory floor space by eliminating the need for a curing oven. Further, the tool does not require room to move to and from the oven.
- Costs substantially less than core-drilled or hole-cored-and-cast metal molds.
- Reduces lead time for fabricating the tool and setting it into operation, versus the all metal mold.
- Requires fewer personnel to operate the tool and fabricate composite parts.

The disadvantages are

- Steam may not be available
- Normally would not be cost effective for low production quantities.

^{*}TM - Batelle Memorial Institute.

Figure 6. Hot Layup Tool (HLT)

Figure 7. HLT Plumbing Schematic.

The drawings showing the HLT are in the Appendix A. A pictorial HLT fabrication sequence is shown in Figure 8. The plastic plating pattern was made from existing Tool Masters that define the shape of the fairing. Special care was taken to produce a smooth surface for electrodepositing the nickel on the pattern, which was the next operation. Copper tubing was positioned around the outside of the plated pattern in contact with the nickel surface.

Stacrete #8 cement was used to cover the tubes and nickel surfaces. Then 533 pounds of concrete reinforced with chopped wire was poured into the mold built around the plated pattern (see Table 3 for WIRAND Mortar Proportions). The mold was agitated and cured in a wet steam atmosphere maintained at 130°F for 24 hours. The plaster pattern was removed and the nickel surface was cleaned and polished. The sealing ring for the vacuum disphragm and positioning pins for locating the door openings were installed. This completed the tool with one exception: To keep on schedule, the filter bulkhead positioning fixture was not installed. Instead, the existing standard tool was used to position the blocks and bulkheads during the cure cycle.

The finished HLT weighed 816 pounds with overall dimensions: 5 feet long, 2.5 feet wide, and 2 feet high. The total installation, including incoming and outgoing steam and water lines and work area, was 90 square feet. Two people could easily work around the periphery loading or unloading the tool.

A record of the time to heat up, cure, and cool down is shown in Figure 9. Stabilization temperatures were 304°F for the outer skin and 282°F for inner skin. The steam temperature was supplied at 328°F and 80 psig. These measurements were made with Kevlar/Nomex honeycomb panels instrumented with thermocouples while they were cured in the HLT. A typical time-history of the temperatures of the two surfaces, Figure 9, measured during the curing of the panels proved that the HLT has an effective cure cycle.

The HLT cure cycle was further evaluated after the fairings were fabricated by comparison with the oven cycle. Figure 10 shows two HLT curves (X and Y) and one typical oven cure cycle. The HLT curves reflect 100 psig saturated steam with curve X allowed to stabilize at 308° F, while curve Y had the steam pressure reduced to 60 psig at 236° F approximately 23 minutes into the heating cycle.

Figure 8. Fabrication Dequence for HLT.

	TABLE 3. WIRAN	ND MORTAR I	PROPORTIO	NS (1 MIX)
Item No.	Material	Weight Fraction	Weight, lb	Estimated Cost
1	Cement (Chem Comp brand)	0.248	32.2	\$0.45 at 1.40¢/1b
2	Water	0.106	13.8	\$0
3	Sand #16	0.388	50.5	\$0.73 at 1.45¢/1b
4	Sand #60	0.191	24.8	\$0.36 at 1.45¢/1b
5	Chopped wire 0.010 in. dia \times 1.0 in. long	0.067	8.7	\$3.48 at 0.40¢/lb
Totals		1.000	130.0	\$5.02 at 3.86¢/1b avg

The thermocouple monitoring the temperature was positioned on the top of the inner skin approximately 12 inches aft of the forward fairing flange. The heatup cycle in all cases is shown from A to B, while the cure cycle from B to C is followed by a cooling cycle C to D. The HLT curing cycle was shorter by approximately 50 minutes. The steam flow used was measured for curve X by weighing the condensed steam on the boiler side of the HLT. The total flow was 41.3 pounds of water at position C prior to turning on the cooling water.

The HLT cure time could undoubtedly be reduced after conducting a more extensive temperature survey over the HLT surface area. But for this program the fairings were subjected to a cure time of approximately 70 minutes to ensure that no uncured areas would exist.

Figure 9. HLT Temperature Evaluation.

Figure 10. Curing Cycle Comparisons.

EVALUATION OF TRIMMING DRILLING AND CUTTING

An evaluation of the trimming, drilling, and cutting operations used in fabricating the inlet fairings was conducted. The evaluation was made on specimens fabricated from Kevlar-49 to match the fairings built under this contract and on fiberglass (E-glass) for comparison. Figure 11 shows these operations and where they occur on the fairing. Tables 4 and 5 describe the results of this evaluation. Their headings are generally self-explanatory, i.e., define the operation and tool used, etc. The quality rating has this definition:

- Excellent cut edges and surfaces need little or no sanding
- Good cut edges and surfaces need light sanding similar to fiberglass
- Poor cut edges and surfaces need much sanding
- Inferior cut edges and surfaces burned -- need heavy sanding

The sanding operation for composites is not too much unlike deburring sheet metal. The sanding cleans up the surface and removes protruding fibers which, if left, could lead to delamination resulting from easier water absorption, or be caught while handling, thus prying the laminates apart. The best sanding method found for Kevlar-49 was using aluminum oxide paper, grit 80 to 120, and sanding under a flow of water. In general, cutting, drilling, and trimming Kevlar-49 takes more time than a similar operation on standard fiberglass.

The best drilling was accomplished with Technology Associates spade drill. (See Appendix A.) This drill required the use of a drill bushing and was easily broken, but it produced excellent holes. The jig saw gave the best results for sawing and required a minimum amount of sanding. The jig saw cut on the downstroke, cooled and cleaned itself on the upstroke. Both the spade drill and jig saw need more tooling than are needed for the drilling and routing procedures currently used on fiberglass.

In making the nine fairings for this program, the standard tools used in producing the current production fiberglass fairings were used. The finished product was a very acceptable fairing.

Figure 11. Cutting, Trimming, and Drilling Operations on Fairing.

Routing and sawing Kevlar-49 resulted in overheated tools and burned edges of the composite. Cooling was obviously indicated to prevent burning. Air cooling was tried unsuccessfully. A liquid coolant would have been satisfactory but would have required additions to the existing routing fixtures. This would have disrupted the program to build nine fairings, and the idea was dismissed.

Evaluation of the tools recommended in the DuPont handbook and in Tables 4 and 5 did not take place until after the fairings were completed because of tool delivery problems. The description of the fairing fabrication describes in more detail the problems and their solutions regarding fabrication of a Kevlar part.

The photographs of the samples shown in Appendix D are grouped as described below unless otherwise specified.

- The first seven photographs show samples of sandwich construction having two laminates of 181 style Kevlar-49 on each side of 0.40 thick Nomex Honeycomb core. The drill speeds used were 1500, 2000 and 2500 RPM.
- Photographs 8 through 19 inclusive show samples of 9 laminates of 181 Kevlar-49 or 9 laminates of 181 Polyester fiberglass. The drill speeds were also 1500, 2000 and 2500 RPM.
- The remaining photographs are the same as 8 through 19 except the samples are routed or saber sawed.
- The remaining photograph, #25, shows the different saw blades used to saw the samples in the successful power jig saw.

TABLE 4. DRILLING AND COUNTERSINKING EVALUATION						
Operation	Tool	Sample	Photo No. in Appendix D	Quality	Remarks	
Drilling	Technology Assoc. Spade Drill	Kevlar - Nomex Sandwich	1, 2, 5, 6	Excellent	Very clean holes	
Drilling	59° Standard Drill	Kevlar - Nomex Sandwich	3, 4, 7	Poor	Fuzzy hole edges	
Drilling	Technology Assoc. 0.250 Dia Spade Drill	9 laminates Kevlar	8, 15	Good	Fairly clean holes with little fuzzing	
Drilling	59° Standard Drill	9 laminates Kevlar	9	Poor	Fuzzy holes both on entering and leaving	
Drilling	Technology Assoc. 0.190 Dia Spade Drill	9 laminates Kevlar	10, 16	Poor	Fairly clean holes on entering, fuzzy on leaving	
Drilling	59° Standard Drill	9 laminates Fiberglass	11, 12, 13, 14	Good	Clean holes with some delamination (feed too fast)	
Drilling	59° Standard Drill	9 laminates Kevlar Plywood Support	17 and 18	Good	Holes show small amounts of fuzzing	
Drill and CSK	59° Std Drill, Std countersinking tool	9 laminates Kevlar	19	Poor	CSK holes very fuzzy	

TABLE 5. ROUTING AND SAWING EVALUATION							
Operation	Tool	Sample	Photo No. in Appendix D	Quality	Remarks		
Routing	Tool No. 501 - 1/4" Fullerton Router Bit	9 laminates Fiberglass	20	Good	Small amount of delamination on edges		
Routing	Std 2600-1 Fullerton Router Bit	9 laminates Kevlar	21	Inferior	Fuzzy areas with burned edges. Replace tool after 30" cut		
Routing	Std 2600-1 Fullerton Router Bit	9 laminates Fiberglass	21	Good	Fairly clean edges		
Routing	Technology Assoc. No. TAI-1/4 Router	9 laminates Kevlar	22	Inferior	Edges fuzzy and burnt. Tool clogs and overheats		
Routing	Technology Assoc. No. TAI-1/4 Router	9 laminates Fiberglass	22	Good	Fairly clean edge		
Saber Sawing	Technology Assoc. No. 49491-321 Blade	9 laminates Kevlar	23	Good	Little fuzziness. Slightly burnt edges		
Power Jig Saw	Tungsten Carbide Tipped Blade	9 laminates Kevlar	24	Excellent	Excellent. Clean edges		
Sawing	Std Band Saw	Kevlar-Nomex sandwich	1, 2	Poor	Much fuzziness with Kevlar strands		

TABLE 5. ROUTING AND SAWING EVALUATION (CONT)							
Operation	Tool	Sample	Photo No. in Appendix D	Quality	Remarks		
Sawing	Tungsten Carbide Tipped Band Saw	Kevlar-Nomex Sandwich	3, 4, 5, 6, 7	Poor	Much fuzziness on edges with many Kevlar strands		
Sawing	Std Band Saw	9 laminates of Kevlar	8, 9	Poor	Small burned areas, fuzzy edges with Kevlar strands		
Sawing	Tungsten Carbide Tipped Band Saw	9 laminates Kevlar	10	Poor	Fuzzy edges with many Kevlar strands		
Sawing	Std Band Saw	9 laminates Fiberglass	11	Good	Edges have some fabric strands		
Sawing	Std Band Saw	9 laminates Fiberglass	12	Good	Edges good except for some delamination		
Sawing	Tungsten Carbide Tipped Band Saw	9 laminates Fiberglass	13, 14	Poor	Edges have some strands with some delamination		
Sawed	Std Band Saw	9 laminates Kevlar supported by 1/4 plywood both sides	15, 16, 17,	Inferior	Edges burned. Fuzzy with Kevlar strands		
Routing	Tool #501-1/4 in. Fullerton Router Bit	9 laminates Kevlar	20	Inferior	Fuzzy and burnt edges. Overheated tool		

FABRICATION OF INLET FAIRING

The fabrication task consisted of manufacturing nine fairings. The first four were used to develop the process so that the last five fairings could be certificated for flight.

The fabrication sequence is depicted in Figure 12, which shows the eleven basic steps to build the fairing, with a minimum pressure of 22 inches of Mercury per Hughes Process 15-42 shown in Appendix C. Each fairing had a thermocouple attached to the fairing inner skin line and a time temperature recording was made. This assured each fairing was properly monitored and cured completely.

The first fairing was sectioned and tested in the Process Laboratory to prove the effectiveness of the HLT and the cure cycle. The laboratory report is shown in Appendix C. The curing cycle, as shown in Figure 10, was conservatively altered to increase time at 250°F to 70 minutes. The minimum required time per HP 15-42 is 45 minutes. This extra 25 minutes ensured a total cure and was done expeditiously to eliminate the many hours needed to survey the tool, time-history-wise and determine through fabrication experience a shorter curing time.

The fabrication of the fairing, pictorially represented in Figure 12, started by cutting the Nomex honeycomb and dinking the uncured prepreg Kevlar-49 outer skin to size. The HLT is loaded with the outer skin, honeycomb, and sheet metal parts. These are cured. The filter bulkhead and attach blocks were then secondary bonded into the assembly. The final operation has the tubes and conduits set into the honeycomb and the inner skin laid over the part, and cured. The fairing is removed from the tool; trimmed, routed, and drilled. The air bypass door, controls, anchor nuts, and inserts are added to complete the assembly.

The fabrication of the first four fairings presented several problems. The majority were minor dimensional differences with the drawing and were easily corrected. The two problems of significance were:

• The outer skin would not set down firmly into the corner radius shown in Figure 5. This condition was termed skin bridging and the problem was solved by setting the outer skin tight to the nickel surface prior to adding the honeycomb (see Operation 080 in detailed planning Appendix B) and using a two step honeycomb cure as shown in steps 3 and 9 in Figure 12.

4 LOAD HLT WITH DETAILS 123

•

Figure 12. Fabrication Sequence.

The edge of the Nomex honeycomb creeped during cure. This condition was caused by the vacuum pressure on the Nomex edge causing it to creep along the skin line, collapsing the honeycomb cells and wrinkling the skin as shown in Figure 13. This problem was solved by adding supports to the honeycomb edges during the curing cycles 3 and 9 Figure 12, which bond the skin to the honeycomb.

This two-step skin/honeycomb cure solved these two problems, but for future work a single-step cure should be worked out in the interest of economy. With these problems solved by the two-step cure process, the HLT could be used to fabricate the remaining assemblies. The step by step procedure is outlined in the detailed planning found in Appendix B.

The routed forward edges of the fairing where they mate with the fuselage (see Figure 12, step 11) were left long to facilitate installation on the helicopter.

The HLT functioned perfectly during the fabrication phase of this program. Loading and unloading the HLT was accomplished easily with little lost motion. The different fabrication phases were time monitored giving good basic information for the effectiveness in the Cost Analysis Section.

Figure 13. Collapsed Honeycomb Edge.

FLIGHT TESTING

The sixth fairing was installed on an OH-6A helicopter (S/N 17143) at Hughes Helicopters' flight test facility. The helicopter with its Kevlar-49 fairing is shown being flight tested in Figure 14. The only installation problem was obtaining clean rivet holes using the standard tools normally used with sheet metal and fiberglass. The hole edges were quite fuzzy and required much clean up. This typical edge fuzziness was found in the drilling evaluation as outlined on page 20. However, it is very difficult to drill unbushed holes with the recommended spade drill; so, rather than make drill bushings, the standard tools were used necessitating the extra clean up time.

The flight testing was conducted at Hughes Helicopters' flight test center at Hughes Airport, Culver City, California. The tests were conducted in the ambient conditions prevailing at Culver City in January. No special effort was made to fly in extremes of temperature or weather.

The flight test program consisted of 5 hours of flight conducted to the spectrum given in Table 6. The basis of this table is the unpublished report USAAMRDL TR 74-74. The flight portion was conducted successfully. The Kevlar fairing performed excellently as attested by the flight test report in Appendix C. It was subjected to the same type of ground handling as that of the standard fairing. No problems occurred. The Kevlar fairing performed with the following systems installed and operational:

- Air filter
- Filter bypass door
- Warning light
- Static port for airspeed.

The flight test program can be summed up by stating that the Kevlar fairing performed both in the flight test and ground handling conditions equally as well as the standard fiberglass fairing.

Figure 14. Flight Testing Kevlar Fairing.

TABLE 6. FLIGHT SPECTRUM						
Flight Condition	Airspeed (knots)	Percent - Time	Elapsed Time Minutes			
Hover	0	2	6			
Air Taxi	10	2	6			
Left Sideward Flight	10, maximum	2, 2	6, 6			
Right Sideward Flight	10, maximum	2, 2	6, 6			
Rearward Flight	10, maximum	2, 2	6, 6			
Pop-up	0	1	3			
Left Hover Turn	Maximum Rate	2	6			
Right Hover Turn	Maximum Rate	2	6			
Vertical Climb	Maximum Rate	3	9			
Maximum Rate Climb	Best Climb Speed	8	24			
Level Flight	5, 100, V _{NE}	10, 15, 15	30, 45, 45			
Acceleration	Hover to ${ m V}_{ m NE}$	2	6			
Deceleration	V _{NE} to Hover	2	6			
Left Yawed Flight	50, 100, V _{NE}	2, 2, 2	6, 6, 6			
Right Yawed Flight	50, 100, V _{NE}	2, 2, 2	6, 6, 6			
Dive	$v_{ m NE}$	3	9			
Autorotation	Minimum Descent	4	12			
Autorotation Power Recover	Minimum Descent	1	3			
Autorotation Flare and Land		1	3			
Process Desir Organica		97	291			
Bypass Door Operation Dive	V	1	3			
	$ m v_{NE}$	1	J			
Right Sideward Flight	Maximum	1	3			
Hover-Filter Blocked	0	0	0			
Diocheu	·	100	300			

COST ANALYSIS

The effectiveness of the HLT to cure and produce flightworthy parts for helicopters has been demonstrated in the preceding sections entitled "Flight Test" and "Fairing Fabrication." This section establishes quantitative cost comparisons for fabrication in the HLT and by the present oven method using the plastic tool shown in Figure 14. For comparison purposes the part rate is assumed to be 250 units per year. The two major cost savings attributable to the HLT are labor and heat energy. The HLT is more thermodynamically efficient since the heat energy is used directly and only when needed. The oven wastes much heat energy since it is maintained at the high cure temperatures whether fully utilized or not. See the analysis in Appendix E.

Table 7 compares the recurring and Table 8 the nonrecurring costs for fabricating the aft inlet fairing by the HLT and oven-cured methods using the same composite material in both cases.

TABLE 7. BURDENED FACILITY AND MAINTENANCE COSTS						
Item	Burden Cost Items HLT Cure	Burden Cost Items Oven Cure				
Tool Maintenance	Negligible - Mold Life estimate at 10,000 Parts	\$ 0.50/Part				
Floor Space	\$0.40/Part	3.38/Part				
Equipment (Prorated Amortization 10,000 Parts	0.27/Part	0.42/Part				
Total	\$0.67/Part	\$ 4.30/Part				

	TABLE 7A. FNERGY COST	
Item	HLT Cure	Oven Cure
Natural Gas (Domestic Rate 1974-75)	\$1.11/Part	\$16.10/Part

7	TABLE 8.	COST OF	MOLDS	
Item		HLT Mol	d	Oven Cure Plastic Mold
Mold Life		10,000 Pa	rts	1250 Parts
Assumed Quantity I	Per Year	250 Pa:	rts	250 Parts
Rate/Tool		4/Shift		1/Shift
Number of Molds R for 250 Units Per Y	•	1		3
Mold Cost/Part	$\frac{933}{10000}$ =	\$0.93	$\frac{8 \times 1800}{10000}$	\$1.44

For comparison purposes daily rate of 4/day is held constant and tools are amortized for 10000 part life.

In addition to the preceding costs the overall labor savings due to the redesign and the more efficient HLT was (22.4 hours @ \$20.00/hr) = \$448.00. The total savings of the HLT over the present plastic tool is summarized as follows.

Labor		\$448.00
Facilities and Maintenance	(\$4.30 - \$0.67) =	3.63
Energy	(\$16.10 - \$1.11) =	15.00
Mold Costs	(\$1.44 - \$0.93) =	0.51
HLT total savings per	fairing	\$467.14

The labor savings attributed to the HLT alone was ($$448.00 \times 0.15$) = \$67.20 giving a total savings of \$86.34 per fairing (\$67.20 + \$15.00 + \$4.14).

The use of Kevlar-49 versus fiberglass to fabricate the redesigned fairing has shown that either material can be used with either tooling approach. The only difference would be the approximately 10 percent additional labor needed for trimming, routing, and drilling the Kevlar fairing. A full study of ways and means to reduce this additional labor was felt to be beyond the scope of this contract. However, integrally cooled routers, drills, etc, together with more tooling for accurate drilling with the spade drill would go a long way toward reducing the labor difference.

The fabrication lead time for the HLT and for the present plastic tooling used in Model 500 production is about the same, based on the tools constructed for this contract and those procured for the present Model 500 production fairing. The lead time for making the HLT is estimated to be approximately one-half the lead time needed for an aluminum cored tool. This estimate is based on a preliminary review with casting vendors who stated that close dimensional control equal to that of the HLT would be

difficult to achieve, thus limiting the accuracy of the finished part. In comparison, the plaster used for the HLT plating pattern has a very low shrinkage rate, and the nickel, which is electrodeposited, duplicates the outer surface of the plating pattern very accurately.

Kevlar-49 is a much more costly material than fiberglass (\$8.00 per pound versus \$0.75 per pound). To show cost effectiveness, material cost, labor costs, and weight savings must be considered.

Measured weights of fiberglass and Kevlar-49 fairings, both made to the improved configuration shown in Appendix A, show that weight difference is:

$$\Delta W = W_{\text{fiberglass}} - W_{\text{Kevlar-49}}$$

$$\Delta W = 4.56 - 3.89 = 0.67 \text{ pounds}$$

In computing material costs, a realization factor of 80 percent must be included since approximately 20 percent of the initial material is wasted. Then the cost increase, using Kevlar for the fairing, would be:

$$\left[\text{Added Cost} = \frac{\text{Added Labor for}}{\text{Trimming, etc.}} + \frac{\text{Kevlar Material}}{\text{Cost}} - \frac{\text{Fiberglass}}{\text{Cost}} \right]$$

$$\text{Added Cost} = \left[.9 \text{ Hr x } \$20.00 + \frac{3.89 \times 8.00}{0.80} - \frac{4.56 \times 0.75}{0.80} \right] = \$53 / \text{Fairing}$$

$$\left[\frac{\text{Added Kevlar Cost}}{\text{Weight Saved}} \right] = \frac{\$53}{0.67 \text{ lb}} = \$79.10 / \text{pound}$$

The estimated cost as shown (\$79.10 per pound) would be considered high. Values of \$30 to \$40 per pound are normally the price most companies will pay to meet their helicopter empty weight. Projected Kevlar-49 price decreases due to future increased use could easily make this excellent material very competitive with the presently used composite materials.

The preceding cost analysis was performed by using the redesigned fairing as a constant parameter in comparing costs, either using the HLT versus the standard plastic tool or in comparing costs due to materials by substituting fiberglass for Kevlar-49. The cost comparison between the standard design and the redesigned fairing shows significant savings due to the simplification of the design itself. The average number of hours to

fabricate the standard aft fairing (Figure 15) in 1974 was 33.19 hours. The redesigned fairing which is based on the use of a honeycomb sandwich construction instead of a foam-block reinforced shell, and substitutes buried conduits for pulleys, pulley brackets, and wire ties required only 10.80 hours to fabricate. This represents a saving of 22.39 man-hours for each fairing.

OUTER SKIN

INSERTS

INNER SKIN

Figure 15. Assembly Procedures for the Standard Fairing

CONCLUSIONS

It is concluded that the HLT program was highly successful in that it resulted in the identification of significant cost savings that can be achieved by use of a newly developed tool. It also initiated cost saving design changes for a typical airframe composite part and established improved machining practices for Kevlar-49. Some of the more significant conclusions are further amplified as follows:

- 1. The Kevlar-49 fairing performed as well as the conventional fiberglass fairing in the flight testing and ground handling environment; thus it can replace fiberglass for equivalent types of structures if allowance is made for its compressive strength characteristics.
- 2. The HLT would have a relatively long production life since the nickel is wear resistant and the coefficient of thermal expansion of the concrete and nickel are very close to the same. This reduces the possibility of cracking and separation between the nickel and concrete mating surfaces.
- 3. HLT lead time versus existing plastic tool is the same. The lead time for HLT is one-half that of comparable cast aluminum tools.
- 4. The HLT is easily made to excellent shape and size accuracy because of the low shrinkage of the plaster pattern used for plating the interior of the die.
- 5. Without proper tooling Kevlar-49 composite parts can have unique problems compared with fiberglass components. Cutting, routing and drilling can leave very fuzzy and burned edges unless the proper tool and process is used. However, the following processes were established:
 - Dink dies used for cutting uncured Kevlar-49 prepreg gives an excellent sheared edge.
 - Heat problems when cutting Kevlar-49 (tool and stock burning) can be alleviated by using a coolant.
 - Hole drilling can easily be accomplished with a spade drill, but requires a bushing for drill support and accurate drilling.
- 6. The process is already being adopted on the production line of the fairing for the commercial version of the OH-6A, the Model 500, now being manufactured at HH.

RECOMMENDATIONS

It is recommended that the HLT process be considered for other helicopter components, both at HII and at other helicopter companies. The process should also be expanded in its capability and applications. The following programs are suggested:

- 1. Develop a single cure process for fabricating the aft fairings to further demonstrate the effectiveness of the HLT.
- 2. Investigate HLT applications to a filament winding mandrel or curing mold with heatup and cooling capabilities.
- 3. Investigate extending HLT technology to the matched multiple die tooling approach. This would produce more accurate parts cured from both sides without use of a vacuum bag.
- 4. Investigate the application of HLT's in the manufacture of composite fuselages, blades, landing gears, stabilizers, etc.
- 5. Investigate optimum heating/cooling tube configuration in the HLT, i.e., tube diameter limitations, manifolding with two or more tubing systems, etc.
- 6. Develop alternate methods for reducing the cost of depositing the hard nickel surface on the HLT. Deposition methods that should be evaluated include vapor deposition, metal spraying, and electron beam metal melt for drip casting of the nickel shell onto a water cooled pattern. Determine HLT size limitations by considering nickel deposition limitations, rigidity of the reinforced concrete die, dimensional accuracy of the HLT, etc.
- 7. Investigate and develop special tools that incorporate a cooling capability for working Kevlar-49. Improve the use of spade drills by incorporating a bushing with the drill motor to give drill support and allow accurate hole drilling.

REFERENCES

- 1. Design and Fabrication of an RPV Wing Panel With PRD-49/Epoxy Skins, Dickard H.E., Williams R.T., Banuk R E et al AFFDL-TR-73-31, March 1973.
- 2. Plastics for Aerospace Vehicle Part I Reinforced Plastics MIL-HDBK-17A, June 1971.
- 3. Structural Sandwich Composites MIL-HDBK-23A, December 1968.
- 4. Kevlar 49 Data Manual E. I. DuPont, De Nemours and Company, April 1974.
- 5. Development of a Low-Cost Composite Die Using High-Energy-Rate-Forming (HERF) AMMRC CRT 73-43, November 1973.
- 6. Steam Its Generation and Use By Babock and Wilcox.
- 7. Mechanical Engineers Handbook by Lionel S. Marks, 5th Edition, McGraw Hill Book Company.

APPENDIX A FAIRING AND TOOLING DRAWINGS

		-
		-

ESPINA A CHANGED BACK TO 1 In 14 PRIMARY CHANGED SAVE PROMA - CHANGED SAVE BUILD BACK TO 10 OCCUM. BUILD BACK TO			at w proped		
BREAMS - CHARGES	1	\mathbf{z}	EXPAN	بدعب	7
BREAMS - CHARGES				النا	
Superior of the second		A	#### . 400 TO . 665 . AUS 60		
			SHE ME FIRST SHE SHE		مند

		-						•				
												1
		_		- T								一
-	\vdash		+									
• •	Н		교		~~~	·		DOUBLER				
·	<u> </u>		14		M. 20.			NUTPLATE	S-1-0-10V	COR PORATION		
9	-	•			~ <u>~27</u>			NXRT	1900 E NO	EMANDY PLACE !		-
હ	_	2	-			O4 4 · C		NSERT	M ATME	A CALIF		
	-	\vdash	統			10 40 5		RIVET				-
•	\vdash	1	AE	-		14 40 5	-	RIVET				-
	\vdash	7		-+		4-3-3	\dashv	FORMING TARE	(2)			1-1
	-	-			1770-1870	156-078	400	SUSHING				-
		7				202 (VASHER				
			4		w		-+	NUT PLATE				-
			3			390,01						-
· · · · · · · · · · · · · · · · · · ·	E				444 6			SCREW				1-1
		È			11.00	45-153		COTTER PIN				 '
·**	F	1				56 · LB		SEREN				<u> </u>
•		Ē	H	-+		2067-7		CLIP				1
	E			\dashv		3014-63	- 1	ANGLE				1-
• · · · · · · · · · · · · · · · · · · ·			1	-+		3016 -53		ANTENNA				1
			F	-	2004		-	CLIP				1
	E	FF			34 4 A		-	LATCH ASSY				1
	-	12		_	2004			HING C				
	-		1.1			3023-11	_	SEAL	 			
	=	-	Z			-1		PLATE	 	 		1
્રિક	1=		1		_			SPACER	 	f		
2	1		1			- !	51	SPACED				
	1	T	11				19	SPACER		l		
· ·			1				36	MICLE		1		
		-	ī				ee	ANGLE	 			
		E	1				25	PLATE		1		T
	E	1	1			- :	,	PLATE_		1		
		E	12		-	-2	7	PLATE				
	F	1	12				25	PLATE	†	-		T
in the second		Ŧ	T,		80.9	19093 .	23	PLATE	1			
	E	F	1				- 35	ANGLE	9RY 81 (80)	KENAR 49	60	!
MBLIES ARE TO	E	T	1			-	·33	ANGLE	3 PLT 181 (MO	KEVAR 49	(-15)	Ī.
	F.		Ti				- 34	BULKHEAD	SRY IN LAID	KENUAR 49	(-12)	
NT OF TECHNIQUES	E	1	I				. 23	COLECER	Z PLY 18 (010)	KENAR 40	9_	I
OVERALL APPEARANCE		1					· 10	RICTES	SE 180-140			
STHER DEVELOPMENT		. 1					-25	SKIN (ower)	ZPLT IBH COID	KEMAR-49		
-		r					-13	SHUM (OUTEU)	2 PLY 18 (000	CEVLAR 49	9	1
D NA FLIGHT TEST			1.			-	-21	DOOR ASSAY				
YUT EVALUATION			1				-13	CABLE 495Y		36948435		<u> </u>
SE DELIVERED TO THE ARMY		I	1			-	-11	TUBE	MAC. 303	(6)	90% 16	
·	· [_		1.				-1%	TUBE.	175 00 e. 35	(3)	1 2000 15	
ANGLE IS IDENTICAL TO			11				⊣3	HOUSING	1	[3]	ī	٠
HOS - INCOPE FOL HATERIAL	_		11				-(1	FILLER (MY)	ART (TO-HO	\$484.001 PO	1001 1000	-
PERM 4 PROCESSING)			,		L		-9	EILTES (LAD)		445 1 6 0 1 1 3 7 7 7 1		
11	-	1	1.	1				FILLER (MAN)				
O CLAM'S		1	1.	1			-3	SKIN (MNEQ)				
	٦Ľ		1	_			٠3	שונו (שודבע)	181 B (0)	EV-88.49		
00	1						-1	FAIRING ASSY			i	_
THERON UNICE	Ţ	1-1	· [- ·	=		~~' ~			948	BESCHANGE	Jan. 202.40	
	****			٠	┺			UST OF		CHITCH ITEM A		
L++			-+		+			G. 100	7. 9.10	Hughes Helk	cooters	
TEPPTICALS ACE:			-+		+	\dashv		200	22	ONC ICO	1107 6414	
NCMER WINGTOOMS			-+		+					181 NC 7221-		
OK WSERTS			-+		+			287	-12-1 x	EVLAR 49	FIBEZO	

TEPPTICALS ACE!
LAR 49
ACMER WUNETCOMB
JOK IN SERTS
45 FOR CARLE TO
SY CONDUIT TUBES

02731

? INSTALL FRIENC TO FUELAGE AS THOUN ON MANAGE MATERIAL: NATION RESOURE TUBING CONFORMING TO LIFE PRINTING AND THAT THE ADDITION OF

IL MUR LOW MAKETS FEE HE IS TO

GERATE BY MASS DOOR - HAVE BEEN REPLACED !

NOTE:

HING TAPE AS REQ. PER HAS 6-IIII TYPE IE

D

M_ 2 F

359A3055-115 3EV BOND PER UP 16-7 SESABAST HINGE ZOD - LECATE FROM DODG - AS SHOWN - INSTAL 3 SLEOT-5-G-C (NSERT 6 REQ ANSPOPPIOL WATHER 5 REQ INSTALL S-CERT 6 REQ - SHOW AS REQUIRED ASE CHURCH ASSOCIATED THE STATE LUTTH ASTY 1 (180)

THE STAMP OF SOUTH PART 1 (180)

THE SOL SOUTH PART 1 (180)

THE SOL SOUTH PART 1 (180)

SA SOL SOL PART 1 (180)

AN IMPOPOL VASHER 1 (180)

NAS 673-7-3 SCREV 2 (180) 4 DOOR ASSEMBLY S OUTER SKN 30 am 35 HANER SHIN - CERLIPED CA MI WAKE NEW DOOR TO REP. SEPA 2099 - TO FIT OPEN NEW HOT LAYUP TOOL RE USE SEALS THE WORLD OF SEAL SE SEAL OF SEALS TO INSIDE OF DODE FUSELAGE CONTOUR (RE SCHOOL SEMILAR TO DOM SHOWN ON SESSIONS SETION E-E **:** "...."

rod 1 and .

187

· ·
17 2 2.3° 1/1000
16 27/17 4 . 10/16
15 2 4/2/2 / 10/19 19
12 20 12 13 FM MINE ANDS
12 3 Spare Const See
A - LOCALI, France
4 24 3 cicous 1 4912
- Fancicareo primo
7 - 100/100/000 2000
ナンラナイン・アンスン・アンフ
3 42 W MO MO WE
to as the language Some
1 178 42000 See True
BLONES TOOL COLUMN A A PART GIVEON
TOOL DESIGN
DEPT.
CURING MOLD SIN FAIR NG
Cat Count Ingramseered
am Sairen 1117 Manie
1 1/3 · ·
100
3696342000-21201

Reeses Drawne 45/46

10N THEN & OF MOLD

TYPICAL 4 PLACES કે THE NE ADMITE 3 CONTINUOUS \$ DIA COPPLE TOOMS) CONTOUR TO BE JETERMINED 569 A 3053-501 1'APPROX (H.M.) 5001

:

DETAILED FAIRING FABRICATION PLANNING

APPENDIX B

Hughes Helicopters PLANNING SHEET

	VAL	IE (CODE			P	ROJECT 369		DWG, LTR		NUMBE					SHEET 1
C			YPE NTER REV	. LTR.			NGINEERING OF	RDERS		A . R T	NAME	FAIRIN	YUP-KEV 2000-1	ЛAR 49		8 REV. N
OPER NO.	DEPT CC	WURK STA				OPERATI	ONS PERFORME	D				SETUP	RUN	TOO	L NO.	REV NO.
010	1 303		FURNISH PA	RTS PER 92	270 A							1	R			
020	1304		FURNISH MA	TL.PER 92	70 A							1	R			
030	1300		INSPECT										l I			
040	2825		MOLD 369A3	053-49-51	& 53	USING	A1177B M	OLDING COMPO	ממ			00.1	0.060	369A3053	-21202	-
		-	TRIM EXCES	S COMPOUN	D AS 1	REQ'D		1				1	1			
			DRILL (1)	.25 DIA.	HOLE :	IN EACH	369A305	3 -49-51 & -5	3				1	369A3053	-71 201	
050	2823		LAYUP (9)					BLK'HD AND	·33 & -3!	5 A	NGLE	00.2	0.378	369A3053	-21-01001	
			ATTEL DIAG									1 1	 			
						-						1	1			
	ASSEMBLY ITEM	R&D	PROGRAM.		ату.	CHANGE	EFFECTIVE TO	RI PRODUCTION	REASON FOR CH			2	PLANNED I REVISED B	D.S.	2-3-7 DATE 2-5-7	:

FORM NO. 9733, REV. 6/74

Hughes	Helicopters	ΡI	ANNING	SHEET

					iugiles i	PROJECT	אואואוי יא פ	DWG. LTR		NUMBER	2/2/2-			SHEET
	VALU					ENGINEERING O	RUEBS	<u> </u>	١,		JOYASI	2000-	L	3/8
	PAR	TT	YPE						Ř	NAME				REV. NO.
(COST	CEI	NTER REV	/. LTR.										1
OPER NO.	DEPT CC	WORK STA			01	PERATIONS PERFORME	ED				SET UP	RUN	TOOL NO.	REV. NO.
	,										!	1		
080	(CONT		369A3053-3	6 ANGLE	AND (2) 3	69A3053-111	PLATES				1	! !		
			COVER META	L DETAILS	s WITH (1) PLY 181 KI	EVLAR 49				 	1		
			A DOWN DO DO	PED AND 1	TA CITIBA DA	a ma sem Ma'	IL. AGAINST MO	חז ח			1	1		
			APPLI DLEE	DER AND	VACOUM BA	G TO SET PIR.	IL. AUAINDI M	, m,			1	!		
			REMOUE VAC	TUUM BAG A	AND BLEED	ER					1	 		-
			POSITION -	7-9 & -11	L HONEYCO	MB FILLERS					f 	! !		-
			COVER -11	FILLER WI	гтн 181 к	EVLAR 49 (II	NNER SKIN)				1	† 		-
			APPLY BLEF	DER & VA	CUUM BAG						1	i I		
			CURE PER H	IP 15-42							 	 		
											1	! !		-
			STRIP BLEE	DER & VAC	CUUM BAG	FOR NEXT ASS	SY.	······································			<u>i</u> !	i !		
						<u> </u>					1	! !		
											1	1		
					 						<u> </u>	i i		
NEXT /	ASSEMBLY			 T	QTY. CH	IANGE EFFECTIVE	[REASON FOR C	HANG	E	1	PLANNED	DA DA	TE
												REVISED B	Y DA	TE
					FR	OM TO						1.E.		

Hughes Helicopters PI ANNING SHEET

	VALU	JE (CODE	,			PROJECT		DWG. LTR		NUMBE	r 369ask	2000-1			SHEET 14
	PAR	TI	YPE				ENGINEERING O	DRDERS		ART	NAME					REV. NO.
C	OST	CE	NTER RE	/. LTR.												1.
OPER NG.	DEPT CC	WORK STA				OPERA	TIONSPERFORM	ED				SET UP	RUN	TOOL NO.		REV. NO.
												į	1			
						21	D STAGE					 				
												1			\rightarrow	
090	2833		ROUT DOOR	, AIR OUT	LET A	ND LIGH	T OPENIN	G AREAS THRU O	UTER SK	ЦŊ	AND	00.1	0.177		\rightarrow	
			FILLER									1	1		-+	
			TRIM FILL	מים וסגריעי יו	O DOTT	ים מיוו	ALEG VG D	TO! D					! !			
			IUTH LIIT	ER DAUR I	.О ДОО.	DIEL EI	ATEN AN R	15Q · D					<u>. </u>			
100	2823		LOCATE AS	SY. IN FI	XTURE	FOR LC	CATING P	OSITIONING AND	BONDIN	IG	-31	1	l I			
								3 -49-51 & 53					1		\perp	
				•								-				
			SECONDARY	BOND DET	AILS	PER HP1	6-25 CLA	SS 2 (SCOTCHWE	rb)			i			-	
												1	! !		\rightarrow	
			REMOVE FR	DM MOLD									!			
			POSITION	& IMBED -	15 TU	BE -17	TUBE & -	13 HOUSING IN	HONEYCO	MB	PER		l I			
			ENG. DWG.									!	!			
			www.										<u> </u>			
		-	REMOVE TU	BES AND W	RAP W	ITH FOA	MING TAP	E AND REINSTAL	ւ.			i	i			
		$\ \cdot\ $!			
													1			
												<u> </u> 			_	
NEXT A	SSEMBLY				QTY.	CHANG	E EFFECTIVE	RE	ASON FOR CI	HANG	iE	•	PLANNED BY		DATE	
													REVISED BY		DATE	
						FROM	то						I.E.			

FORM NO. 9733, REV. 6/74

Hughes Helicopters PI ANNING SHEET SHEET VALUE CODE 5/8 369ASK 2000-1 ENGINEERING ORDERS PART TYPE REV. NO. NAME COST CENTER REV. LTR. REV. NO. SET UP OPERATIONS PERFORMED TOOL NO. 100 (CONT) BUILD UP AREA AT (REF.) SECT. DD AS REQ'D TO ENCASE -13 HOUSING NOTE: -15 TUBE EXTENDS THRU -5 INNER SKIN (REF.) SECT. DD. LAYUP (1) PLY OF 181 KEVLAR 49 OVERALL (REF.) -5 INNER SKIN APPLY BLEEDER AND VACUUM BAG. CURE PER HP15-42 STRIP BLEEDER & VACUUM BAG AND REMOVE ASSY. FROM MOLD 00.3 1.013 36943053-00301 110 2823 ROUT PERIPHERY AND CUTOUTS PER RTB DRILL (4) .165/.177 DIA. HOLES (8) #49 (.073) DIA. &
(3) #40 DIA. (.098) DIA. HOLES IN 369A3053-31 DOUBLER AREA. NEXT ASSEMBLY CHANGE EFFECTIVE REASON FOR CHANGE PLANNED BY DATE REVISED BY DATE FROM TO

51

FORM NO. 9733, REV. 6/74

)		Hugh	ies Helicopter	S PHINNI	NG SHEI	E [100	
	VALI	JE (CODE		PROJECT		DWG. LTR	NUMBE			,	SHEET 8
	PAR	T 1	YPE		ENGINEERING O	RDERS		A NAME	369ASK	2000-1		REV. N
	COST	CE	NTER REV	. LTR.			[7				'
OPER	DEPT	WORK STA			OBS BATIONS BS DS DS DAME		L		T	T I		1.
OPER NO.	CC	STA			OPERATIONS PERFORME	:U			SET UP	RUN	TOOL NO.	REV. NO.
110	(CONT		DRILL (2)	.198/.204 DIA	. HOLES IN LWR.	AFT SECTION			1	1		
<u> </u>			(a)	-00-1		,	<u> </u>		1	1		
]	-	DRILL (3)	.280 /.291 DI	LA. HOLES (K DRI	L) (3) .217/	.229 DIA.	HOLES	1	i		
		\vdash	("2 DRILL)	AND (6) "40	DIA. HOLES IN -	B1 BULKHEAD	,		i			
			POSITION IN	NSIDE SECTION	OF DRILL FIXTUR	RE AND PIN TO	-31 BULK	HEAD	<u> </u> 			
					A. HOLES. COUNTE				.			
			100°					J A	1	1		
120	2823		CAND AND D	LEND ASSY AS	PEOLD				-	1 0 000		-
120	2025		SAIN AIN DI	CA ICCA UNAL	KEÑ.D				1 00.1	0.083		
130	2823		INSTALL (4)) NAS697 A06	NUTPLATES WITH (18) MS20L26	A2-lı RTVE	TS	00.1	0.153		
				13053-33 DOUB								
			TRIM AND IN	ISTALL 369A30	53-113 SEAL ON D	OOR OPENTING.	BOND PE	R HP16-	1			
			,	_					1	1		
		\vdash							i	<u>i</u>		

									1	1		
NEXT A	SSEMBLY			QTY.	CHANGE EFFECTIVE		REASON FOR CHA	NGE		PLANNED BY	0/	ATE
										REVISED BY	D	ATE
	NO 9733				FROM TO							

	VALU	JE C	ODE			PROJECT		OWG. LTR		NUMBER 369AS	K 20	···		SHEE 7/8
	PAR		/PE TER REV	/ ITP		ENGINEERING OR	DERS	A	-	NAME .	N 20	500-1		REV. N
OPER NO.		WORK	IEN NEV		OPERA	TIONS PERFORMED			_	SET	JP	RUN	TOOL NO.	REV.
NO.	CC	STA		<u>*</u>		.) -21 DOOR			-	<u> </u>	1			NU.
140	2823		TRIM -27 I	TILLER AND			• ICCA I		_	00.	2 0	0.596	369ASK 2000-27-20	901
			LAYUP (1)	PLY #181 K	EVLAR 49	(REF.) -23	SKIN		_				369ASK 2000-21-2]	1501
			POSITION -	-27 FILLER	& (1) PLY	181 KEVLAI	R 49 (REF.) -2	25 INNER	S	KIN	1			-
			LAYUP (2)	PLIES 181	kevlar 49	(REF.) -29	9 DOUBLER			t I	1			
			BAG & CURE	PER HP 15	-42					1	1			
		t — t —	LOCATE ANI 369H2O87 I		.452/.45	7 DIA. HOLI	ES THRU -23 SI	KIN ONLY	P	ER	1			-
						,				1	1			
			INSTALL &	BOND (2) S	L 607-06-6	S-C INSERTS	S PER HP15-32		_	<u> </u>	<u>i</u>			-
			INSTALL 36	9н2087-7 с	LIP TO DOC	OR ASSY. W	ITH (2) MS 519	958-28 Sc	RI	ews	į į			
							•			1	-			
										1	+			-
										1	i			
NEXT A	SSEMBLY			a	TY. CHANG	E EFFECTIVE	RE	ASON FOR CHAN	GE		Pi	LANNED B	Y DATE	
												EVISED BY	DATI	E
					FROM	то					Ī.	Ε.		

	1			Hug	hes He	licopters	s PIANNIN	IG SHEI	ET						(* .	
	VAL	JE (CODE			PROJECT		DWG. LTR		NUMB	ER		,	•	٦,	SHEET
	PAR	T 1	ГҮРЕ			ENGINEERING O	ORDERS		P A	NAME	369AS	K 200	0-1			8/8
(NTER REV	/. LTR.					Ÿ	NAME						REV. NO
OPER NO.	DEPT	WORK STA		•	OPERA	TIONS PERFORME	ED				SET	JP RL	IN	TOOL NO).	REV. NO.
150	2823		INSTALL &	BOND (12) SI	L 607-3-6	-C INSERT	TS COMMON HING	ES & LAT	СНІ	es pi	ER 00	.2 0.5	300			
				INGES AND LA	TCH ASSY.	PER SECT	r. e-e of eng.	DWG.				1				
			ASSEMBLE A	ND INSTALL -	-19 CABLE	ASSY. NO	OTE: USE 369A	8435 DWG	. 1	AS RI	ef.	1				
			IDENTIFY -	INK STAMP	HP 8-5							1				
1 60	2800		INSPECT	,												
100	2000		INSTRUT									I				
							· · · · · · · · · · · · · · · · · · ·									
170	1301		CLOSE ORDE	R												
											1 .	1				
			•								!	1				
	_										1	1				
			······································								<u> </u> 	<u> </u>				
NEXT A	SSEMBLY			ату	CHANGE	EFFECTIVE	R	EASON FOR CHA	NGE		<u> </u>	PLANE			DATE	
					FROM	то						REVIS I.E.	ED BY		DATE	

		cc	- । उर्	080	Inoc C	ONTRO	L NO. [PART/	ASSY	
С Н G	WORK AUTH NO. MJO	1		0.00				0 2	369ASB	2000	-1	
С	ACGT AMT ACCT	AMT	A	CCT	i	AMT		7	FAIRIN	IG ASSY	. AFT.	
D .		1						E	KEVLAF	R 49		
SPL	IT BAL SPLIT BAL	SPLIT	BAL		SPLI	T B	AL		ASSY			
							ANNER		SEE 9	733		SHEET
STAR	T DUE ORDER RELEASED SCHEDU	LE NO.	POSTED	GOV	'T PRO	- 1				MATT	PLN'G	1
н		MATIL		4-	QŤ		Meek			L L COST	TOTAL CO	
OPER		CODE	S/OPER/AS	SSY R	EQ'D	ISSUED	UNIT	UNIT PI	RICE 133	UE COST	TOTAL	
1												
2	369A2081 DOUBLER	MP	7					1				<u> </u>
3	369A3053-23 PLATE	MP	1									
4	369A3053-25 PLATE	мР	4					-			1	_
5	369A3053-33 PLATE	MP	_1_	-				1	<u> </u>			-
6	369A3053-35 ANGLE	sc	1_	-							1 1	-
7	369A3053-36 ANGLE	sc	1	_								-
8	369A3053-111 PLATE	MP	2	_						1	1 1	
9	(REF-19)									<u> </u>	1 1	
10	369A8433 STOP	MP	1_	+						<u> </u>	1 .1	-
11	369A8437 HINGE	MP	2	-				-	<u> </u>		<u> </u>	
12	369A8LLL2 LATCH ASSY_	SC	1				+			i	1 1	
13	369A8461 CLIP	MP	1_			-		+-			1 1	-
14								+			<u>'</u>	_
15	369H2O87-7 CLIP	MP	1_				-	+ †	<u>'</u> _		<u> </u>	
16		+		-							<u>-</u>	
17	80-369A3053-31 PLATE	MP	1				+	 	<u>-</u>	1		
"	91-369A3014-53 ANTENNA	MP	1			I			MATER	IAL ISSUE	:D	
OPE	ER WK STAMP ACCEPT SCRAP ITR NO.	COUNT	WK DEPT. ST	TAMP A	CCEPT	SCRAP	ITR N	o.				
		ļ										
-								[FINISH	ED PART	5	
					i		1					
<u> </u>			+								STORES	

с	w	ORK	AUTH	NO.	М.	0	. c c		\top	QTYO	R D	Doc	CONT	ROL NO.	1			P A R	745	5 Y	
H G	٠,														0 2	369A	SK	2000-	l		
С D , Т	ACCT	•	1	мт	A	ССТ		МТ	•	ACC	Т			мт	N		RING	ASSY		T.	
SPL	IT	8	A L	S F	- LIT	BAL	SPL	ΙT		BAL	I	\$ P L	-17	BAL		EXT AS	S S Y				
																SEE		3			
TART	r Du	E	ORDE	RRE	LEASE	DSCHE	DULEN	٥. ا	POS"	TED	g o v '	TPR		L. MEE		2-3-		MAT'L	-	PLN°G	2
PER		MATI	RIAL	DES	CRIPT	10 N	MAT'I CODE		s/ope	R/ASSY	RE		T Y ISSUE	DUNIT	וואט	PRICE	E ISS	UE COST	то	TAL COST	SHOP
1																					
2	AN6	5402	TER	MIN	AL (R	EF 19)	PP	\prod	2				A/1	₹				1			
3	AN S	960P	D 10	L_W	ASHER	1	PP	_	1:	2			A/1	:							-
4								_			ļ									<u> </u>	ļ
5	MS 2	2466	5 - 15	3 P.	IN		PP	-	1		-		A/I	≀			1	<u> </u>			-
6	MS !	5195	8-28	SC	REW _		PP	-	2		ļ.		A/I	2					-		-
7	MS 2	2042	6 A2	-4 1	RIVET	1	PP	-	8		-		A/1	?	-		!		<u> </u>		-
8	MS 2	2042	6 AD	3-3	RIVE	T	PP	-	2	4	-		A/I	1					<u> </u>		
9	HS :	13D1	<u>56-0</u>	78-1	406		sc	+	1		-		A/1	2	-				<u> </u>		-
0	HS	306-	302L	WAS	SHER		sc	-	2		-		A/1	2			<u> </u>		<u> </u>		-
11							-	+			-						1	<u> </u>	<u> </u>		-
12	NAS	623	<u>-3-1</u>	sa	REW		PP	+	10	<u> </u>	-		A/1	1			1				
13	NAS	623	-3-3	SÇ	REW		PP	\downarrow	2		\perp		A/ī	2			<u> </u>		<u> </u>		
14	NAS	697	A06	NUT	PLAT	E	PP	1	_4		-		A/I	.			<u> </u>		<u> </u>	<u> </u>	-
15	NAS	697	A3 N	UTP	LATE		PP	+	_1;	2	+-		A/I	₹			<u> </u>		<u> </u>	<u> </u>	-
i i	SC 6	507-	<u>06-6</u>	_C :	INSER	T	PP	+	_2		-		A/1	-			<u> </u>		1		-
- 1	SC 6	507-	3-6-	CI	NSERT		PP	-	1	0	-		A/1	1	-				1		-
18											1		<u></u>		!		<u> </u>		<u> </u>		
OPER COUNT	WK DEPT.	STAR	1P ACC	EPT R	SCRAP	ITR NO	OPER		WK EPT.	STAMP	ACCI	EPT .	SCR AP RE WORK	ITR NO		MAT	TERIA	L ISSUE	O		
,					•••••				·				••••••								
				-																	
												-				FIN	IISHE	D PARTS	·		
	-			-				-+ 				+				DATE	F		STOF		

с	w	RK	AUTI	H NO.	1	AJ O			cc		TYOR	D	Doc	CONT	ROL	NO.	N			PAR		5 \$ Y		
G C .	ACCT			AMT		A C C	т		AMI		ACC	,		1	мт		" FA	9AS IRII VLAI	NG .	000 -1 ASSY. 9	AF	T.		
SPL	. IT	E	AL	s	PLIT		BAL	T^L	SPLIT		BAL	T	SPL	.17	ВА	Ĺ		TAS						
STAR	T D U	E	ORD	ER RI	ELEAS	SE D	SCHE	סטגו	E NO.	POST	ED G	0 V.	T PR	OP.	P L A	NNEF		DAT	E	Τ-	-1			HEET
н														- }			<u>cs</u> 2	-3-	75	MAT'	_	PLN'		3
IT		MAT	ERIA	LDE	SCRIP	T 10	Z.	M C	AT'L P	CS/OPE	R/ASSY	RE	δ. D δ.	ISSUEL	, .	TINI	UNIT F	RICE	155	UE COST	. 1	OTAL	COST	SHORT
1										SQ.	IN.				\perp									
2	181_	PRE	IMP	REGN	ATED				RM	14,	000				_		1					- 1		
3	ORGA	NI	FI	BER																				
4	KEVI	AR	49																		1			
5	HMS			2																	-			
6					-29-	31.	-33-39	5)											<u> </u>	1				
7			-				III-I	- 1	STYL	E EF	OXY-	250	F	URE			-				1			
8											IN.						ļ				1			
9	*J100) <u>+</u> .(006	NOME	EX (R	EF.	-9)		RM								1				1	1		
10	HONI																1					1		
11					8#	ואמ	T	1													1			
12	,,,	111111	1-10														1							
13								7		SO.	IN.								1		1			
14	601	·+	206	NOME					RM	170											-	·		+-
15				NOME	2 X				rm.	110	<u> </u>	-			\top				i					
<u> </u>	HON				#							-		<u> </u>	+		1		<u> </u>	<u> </u>	_ <u>-</u> -	<u>'</u>		
17	-/8	HR	H -1 0	0 0 1	L.8 [#]	DE.	N					+			+		<u> </u>		<u></u> 		_ <u>_</u> _			1
-								+				+-			+		<u> </u>		<u>.</u> 1	<u>-</u>	Ť			+-
18			·····								1						<u></u> _	MAT	TER	AL ISSU	ED.			
COUN	WK T DEPT	. sT	AMPA	CCEPT	SCRA		ITR NO	o. ∦	COUNT	DEPT.	STAMP	AC C	EPT	REWORK	-	ITR NO								
													-											
	+	+-	+			+						T							<u> </u>					
ļ	"										-	-					_							
l 					ļ													FIN	IISHE	D PART	's			
<u> </u>	+	+	\dashv		-	+						-			\dagger						51	ORES		
						•••				1								DAT	E			CT		

MANUFACTURING SHOP ORDER

	wo	RK AU	TH NO.	MJO		сc	٥	TYOR	0 000	CONTR	OL NO.	· I N			PART	/ A 55 Y		
															000-1			
	ACCT		AMT	ACC	τ	AM		ACCT			AT.	E	ŒVLA	R 4	assy. 9	AFT.		
SPL	IT I	BAL	S	PLIT	BAL	SPLIT	1	BAL	S P	LIT	BAL	NEX	(T ASS	Y				
		1			SCHEDU	II E NO	Leost	ED G	OV'T P	ROP. F	LANNE	R	DATE				s	HEET
ART	DUE	J OR	UER RI	ELEASEU	SCHEDO	, EE 140.					. MEE		2-3		MAT*L	PLN	·G	5
-						MAT'L				2 T Y	_	T	1		E COST	TOTAL	COST	SHOR
ER		ATER	IAL DE	SCRIPTIO) N	CODE	-(5) 0 - 2	R/ A331	REQ'D	ISSUED		1	ا		1	 		
_						 	LIN.	FT.			-	 				!		
	.063	CABL	e-non	-MAG.		RM	6,	0								<u> </u>		
	CMA TI	ממת זו	cm										{			1		
-			STL.			1				1						.		
- 1	MIL-	C -1 83	75							+	+	+				<u> </u>	<u>'</u> -	-
	(REF	19)				-			-		+	 					1	-
												11						
												1	ļ		1	1		
十										1					1			
-	A117	7 B M	OLDIN	G COMP	OUND	OS	2	LBS.	-	+	A/F	1				1	<u>'</u>	+
,	(REF	369A	3053-	49-51-	53)	ļ			 		-	+				<u> </u>		-
0						}										<u> </u>		_
7																1		
\dashv	·					 				+		+ ;					1	
12	.187	DIA.	NYLO	N CASI	NG	RM	6.0	LIN.	FT.	+	-	+				1	1	+-
13	WITH	.080	ID D	ELCRON					ļ	-		11				<u> </u>	!	_
			ON LI									1					1	
,,,			<u> ப</u> ப									1						
\dashv	(REF	-1 3)				-	-		+	+	+	+ -		·	-	<u> </u>	i	+
16											-	-		1	1	1	1	+
		ING T				os	A/	'n		A/1	R					1	<u> </u>	1
	HMS		II TY	PE III										1		1	1	
	END	OF LI	21		· · · · · ·	 		····	· · · · ·	SCRAP			MAT	ERIA	L ISSUE	D		
OPER	WK DEPT.	STAMP	ACCEPT	SCRAP REWORK	ITR NO.	COUNT	WK	STAMP	ACCEPT	REWORK	ITR	NO.						
																		
	<u> </u>					-		ļ		-	-							
														·				
	<u> </u>	ļ	ļ	ļ			-		-	-	 							
						ļ					·		FIN	15HE	PART:	· ———		
	-			 		-			-	+	+	-i						
	ı	1	1	1	ı	11	1	1	1	1	1	1	1			STORES	:	

APPENDIX C

HUGHES PROCESS 15-42

LABORATORY REPORT

FLIGHT TEST REPORT

	REVISIONS	
LTR	DESCRIPTION	DATE APPROVED
A.	Released on E.O. 114178	4/2/69
В	Released on E.O. 119620	1/6/70
C	Released on E.O. 125990	4/12/74
D	Released on E.O. 127397	2/7/25

SCOPE: This specification provides the requirements and

and procedures for fabrication of fiberglass laminated

parts.

CHANGES:

Revised 3.5.1.3; WAS:

HMS 16-112 material 60,000 psi (413.7 MPa)

Change bars indicate changes.

PREP APPD	Ja Jante	Hughes Helicopters division	on of summa corporation
2/3/75 2/3/75 2/3-75	More worth	TITLE FABRICATION OF REINFOR	RCED PLASTICS
2/3/75	-M Vague	SIZE CODE IDENT NO. NO.	P 15-42 D
2/5/75	Mulio		SHEET 1 of 12

FORM 565 REV. 8/73

Hughes Helicopters division of summa corporation PROCESS SPECIFICATION

FORM 566 REV. 8/73

1.	SCOPE			
1.1		ecification provides t tion of reinforced pla	the requirements and prostic laminated parts.	ocedure for
2.	APPLIC	CABLE DOCUMENTS		
2.1	extent s	specified herein. In a specification, the re	m a part of this specifica case of conflict between t equirements of this speci	these documents
	Specific	cations		
	Federa	1		
	O-T-62	20	Trichloroethane - 1, 1,	, l, Technical
	Militar	y		
	MIL-P	-265	Polyvinyl Alcohol, Gra	nular
!	MIL-R	-7575	Resin, Polyester, Low Laminating	-Pressure
	MIL-R	-9300	Resin, Epoxy, Low-Pr Laminating	essure
	MIL-P	-8116	Putty, Zinc Chromate, Purpose	General
	MIL-C	-23377	Primer Coating, Epoxy Chemical-and Solvent-	
<u> </u>	Hughes	Helicopters		
	HP 4-5	7	Chemical Films for Al- Aluminum Alloys	uminum and
	HP 4-1	100	Adhesive Primer, App. Control	lication and
NO. HP	15 - 42 D	1	CATION OF CED PLASTICS	CODE IDENT NO. 02731
SHEET 2	of 12			<u> </u>

Hughes Helicopters division of summa corporation PROCESS SPECIFICATION

	HP 9-20	Ś	Etch for Corrosio	on-Resistant Steel
	HMS 15	-1100	Catalyzed Epoxy	Primer
	HMS 16	-1072	Polyester, Prein	npregnated Fiberglass
	HMS 16	-1079	Epoxy, Preimpro	egnated Fiberglass
	HMS 16	-1112		y Preimpregnated ganic Fiber (Kelvar)
	HMS 16	-1113	Uni-directional C Resin Prepreg	Glass Cloth/Epoxy
	Standar	ds		
	Federa	1		
	FED-S	ΓD-406	Methods of Testi	ng Plastics
3.	REQUIE	REMENTS		
3,1	Genera	1		
3.1.1	drawing High qu	g and shall be ality and good	oe within the tolerances of of uniform quality and goo workmanship are evidenced by requirements of this	od workmanship. ced by conformance
3.1.2	clean a laminat	rea designated es. All detai e kept covered	brication operations shall for the fabrication of rei ls, primed parts and lami for wrapped in plastic or	nforced plastic nating materials
3.2	Thickne	ess		
3.2.1	parts fa of Tabl (12.7 m	abricated to the e I, except that	sion requirements for the is specification shall mee at along the surface of radue thickness shall not except of laminates.	t the requirements lii or 0.50 inch
		·		
CODE IDE			ABRICATION OF	NO. HP 15-42 D
02731		REIN	SHEET 3 of 12	

FORM 566-A REV. 8/73

Hughes Helicopters division of summa corporation PROCESS SPECIFICATION

Table L. Thickness Requirements for Plastic Laminates

	Number of Plies	181 Prepreg Fabric	ss Requirement 120 Prepreg Fabric	181 Wet Construction	120 Wet Construction
	1 2 3 4 5 6	0.0115 ±0.005 0.0207 ±0.005 0.0308 ±0.005 0.0420 ±0.008 0.0520 ±0.010 0.0640 ±0.012	0.0140 ±0.005 0.0175 ±0.005 0.0210 ±0.005	0.0200 ±0.005 0.0275 ±0.005	0.0035 ±0.005 0.0065 ±0.005 0.0100 ±0.005 0.0128 ±0.005 0.0165 ±0.005 0.0200 ±0.005
3.3	Res	sins			
3.3.1				onform to the rec Forms A and B.	quirements of
3.3.2		e polyester/glas 1072.	s prepreg mate	rials shall confo	rm to HMS
3.3.3		1 2	sed shall conformated O, Forms	rm to the requir A and B.	ements of MIL-
3.3.4	The	e epoxy/glass p	repreg material	s shall conform	to HMS 16-1079.
3.3.5	The	e epoxy/organic	fiber prepreg s	hall conform to	HMS 16-1112.
3.3.6		e epoxy/uni-dire S 16-1113.	ectional glass cl	loth prepreg sha	ll conform to
3.4	Tes	sting		•	
3.4.1	loca tha	ations on each p n three plies sh nimum acceptab	part. The meas all be a tag-alor le value is 75 w	urement on part	ding to 5.1.1.2.
3.5	Min	imum Paguirar	nents and Allow	abla Dafacts	
3.5.1		•			ng to 5.1.1.1 shall be
3.5.1			rial 25,000 psi		
3.5.1			rial 40,000 psi		
3, 5, 1	. 3 HM	S 16-1112 mate	rial 60,000 psi	(413.7 MPa), 40) psi (275.8 kPa)	
3. 5. 1	.4 HM	IS 16-1113 mate	rial 150,000 ps	i (1034 MPa)	
NO. H	P 15-42 D		FABRICATION EINFORCED PI		CODE IDENT NO. 02731

FORM 566 REV. 8/73

Hughes Helicopters division of summa corporation PROCESS SPECIFICATION

3.5.2	The laminated parts shall be within the tolerances of the engineering drawing and shall be of high quality workmanship.
3.5.3	The laminate shall be fully cured and free of surface tackiness.
3.5.4	The final surface of the part shall not be sanded or abraded in such a manner that the outer layer of glass fabric is damaged to the extent that the continuity of the woven fiber is broken.
4.	PROCEDURE
4.1	General
4.1.1	The selection of the manufacturing methods will depend upon the type of tooling required for a particular part and the required properties of the part. Several factors may influence this; for example, configuration or size of part, quantity to be manufactured, and specific requirements of finished part.
4.2	Metal Treatment
4.2.1	Metal inserts of aluminum and aluminum alloys shall be processed in accordance with HP 4-57 and then coated with either MIL-P-23377 primer, HMS 15-1100 Type I or adhesive primer per HP 4-100. Large sheets may be prepared and sheared into small detail parts.
4.2.2	Corrosion-resistant steel alloys shall be etched and primed in accordance with HP 9-26.
4.2.3	Prepared parts shall be wiped with O-T-620 trichlorethane or equivalent immediately prior to fabrication.
4.3	Laminate Fabrication
4.3.1	Apply release agents to the tooling; use carnauba-based wax or 5-to 10-percent MIL-P-265 polyvinyl alcohol or equivalent. Wax should be buffed smooth.
CODE IDE	NO. Un
0273	
	SHEET 5 of 12

FORM 566 A REV. 8/73

Hughes Helicopters division of summa corporation

PROCESS SPECIFICATION

4.3.2	The laminated parts may be fabricated with a gel resin overlay,
	0.010 inch thick maximum, integrally molded or otherwise fabri-
	cated with the part.

- 4.3.3 Preimpregnated glass cloth shall be fabricated as follows:
- 4.3.3.1 Place the impregnated cloth in or on the tool, one ply at a time, and smooth out wrinkles and airpockets in each ply before addition of the next ply.
- 4.3.3.2 Necessary laps shall be 0.5 to 1.0 inch (12.7 to 25.4 mm) wide and shall not be superimposed, except when the contour of the part required crosslapping.
- 4.3.3.3 Tailoring shall be done prior to addition of each succeeding ply, and no gaps shall be allowed between cut or matched edges.
- 4.3.3.4 Preimpregnated cloth may be warmed to provide greater flexibility.
- 4.3.4 Wet layup or nonpreimpregnated fiberglass cloth shall be fabricated as follows:
- 4.3.4.1 Place fiberglass cloth in or on tool one ply at a time.
- 4.3.4.2 Apply resin (mixed with catalyst, as required) to the cloth with a brush or squeegee.
- 4.3.4.3 Continue adding cloth and resin until desired thickness has been achieved.

NOTE

As an option, cloth may be prewet with the resin prior to placement on the tooling.

- 4.3.5 Vacuum bag pressure shall be applied as follows.
- 4.3.5.1 Place bleeder material or wire spring around the edge of the tool in a manner that the layup is not touched.

NO.	P 15-42 D	FABRICATION OF REINFORCED PLASTICS	CODE IDENT NO. 02731
SHEET	6 of 12		

FORM 566 REV. 8/73

Hughes Helicopters division of summa corporation PROCESS SPECIFICATION

- 4.3.5.2 Enclose the entire assembly (mold, layup, and bleeder material) in MIL-P-265 polyvinyl alcohol (PVA) sheet or equivalent sealed to the mold surface with MIL-P-8116 zinc chromate compound or equivalent. As an alternate, the bag may be sealed by mechanical methods, in the event the tool is so designed.
- 4.3.5.3 Connect and seal a vacuum line to the bag opening, taking care to protect the end of the line from possible clogging by excess resin. Additional bleeder strips or flexible tubing may be installed at this time, if necessary.
- 4.3.5.4 Evacuate the bag gradually.
- 4.3.5.5 Keep wrinkles from forming as much as possible by working the bag surface with the fingers. Prevent any small wrinkles that do develop from bridging the gap between the laminate and the bleeder strips or any other direct connection to the vacuum line. Care shall be exercised to prevent formation of a seal between the layup and the bleeder strips.
- 4.3.5.6 After the PVA sheet has completely contacted the laminate and mold, slowly wipe air and excess resin out of the laminate, using rollers, paddles, spatulas, or hands. Sweep the air bubbles (visible through the transparent bag) from the laminate in the waves of excess resin. Continue this wiping process until all entrapped air has moved past the edge of the laminate and the impregnated fabric plies are firmly pressed together. Wiping should not be carried to the point of resin starvation as evidenced by whitening and loss of transparency of the laminate. Care should be exercised during wiping to avoid puncturing the bag. If a leak should develop, repair the hole with Scotch cellophane tape or zinc chromate compound, and work any air that may have penetrated into the bag away from the laminate.

NOTE

Mineral oil may be used to provide lubrication on the vacuum bag surface during the void-free processing of the laminate. This use of oil shall be carefully controlled, since even small quantities of oil, if allowed to work into the laminate, either through a pin hole in the bag or from the operator's hands, during layup will seriously affect the quality of the part.

CODE IDENT NO.	FABRICATION OF REINFORCED PLASTICS	NO. HP 15-42 D
02731	REINFORCED FLASTICS	SHEET 7 of 12

FORM 566-A REV. 8/73

Hughes Helicopters division of summa corporation

PROCESS SPECIFICATION

4.3.5.7 Vacuum pressure of 10 psig (69 kPa) minimum shall be maintained throughout the entire curing cycle and as required until the laminate has cooled to 130°F (54.4°C) or lower or has been removed from the ultraviolet lamps.

WARNING

Care shall be exercised in using ultraviolet lamps, as burns are possible from either direct or reflected light. Special caution is required in protecting the operator's eyes. Special goggles must be worn during operation of curing units.

- 4.3.6 Matched metal molds shall be used for simple designs and flat panels. The layup may be made outside the mold and then placed in position while the dies are hot. Close dies immediately. For complicated designs, the layup may be made directly on the cool dies.
- 4.4 Curing of Laminates
- 4.4.1 Laminates requiring vacuum bag pressure shall be cured in an oven, or under heat lamps, sunlamps, or ultraviolet, depending on the resin system. Laminates made with an expandable punch or matched metal molds shall be cured by direct heated dies.
- 4.4.2 The cure temperature for oven-cured laminates shall be 250° to 275°F (121.1° to 135°C) and the time shall be established as follows:
- 4.4.2.1 A cure temperature curve shall be established for all laminates at the time of curing of the initial unit during prototype development. The part shall be cured with a minimum of three calibrated thermocouples contacting the surface of the laminate at representative points. Temperature readings shall be taken at suitable time intervals so that a smooth time-temperature curve may be plotted indicating the start of the exothermic polymerization reaction and the subsequent curing time. Oven or die temperature shall be recorded at the same intervals. Subsequent parts shall be cured according to the temperature schedule established by the curve.

NO. HP 15-42 D FABRICATION OF REINFORCED PLASTICS 02731

FORM 566 REV. 8/73

Hughes Helicopters division of summa corporation PROCESS SPECIFICATION

4.4.3	Molding cycle.	pressure shall be maintained throughou	t the entire cure			
4.4.4	establis	tes cured using ultraviolet lamps shall he shed for each design during prototype devenits shall be cured according to the tin	velopment. Sub-			
4.5	Removi	ng Laminates				
4.5.1	whenev	ninates should be allowed to cool below ler practical, before removal from the toon. Suitable apparatus may be used for	ooling to minimize			
4.5.2	without	al of the laminates from the tooling shall damage to either the part or the tooling, aid separation between the tooling surfa	. Air jets may be			
4.6	Seconda	ary Bonding				
4.6.1	Areas for secondary bonding may be prepared by incorporating a tear ply of type-128 fabric or light weight nylon on the surface of the laminate during the layup operation. Prior to bonding, the tear ply is removed and the surface wiped lightly with an approved solvent.					
4.6.2	the are	Surfaces for secondary bonding may also be prepared by sanding the area free of gloss with 180-grit emery and wiping with an approved solvent.				
4.7	Trimm	rimming				
4.7.1	All parts shall be trimmed to the required engineering dimensions, unless otherwise specified. Laminate surfaces in contact with PVA film may be uneven and require minor smoothing. Sanding, as required, shall be performed with care to avoid damaging the glass fabric.					
CODE ID	ENT NO.	FABRICATION OF	NO. HP 15-42 I			
02731		REINFORCED PLASTICS	OUEET			
DRM 566 A REV. 8			SHEET 9 of 12			

Hughes Helicopters division of summa corporation

PROCESS SPECIFICATION

- 4.8 Repairs and Rework
- 4.8.1 Repairs and rework shall be accomplished in such a manner that the repaired or reworked part meets all the requirements stated in 3.4.1. Repairable defects shall consist of those that can be repaired without adversely affecting the serviceability of the part. Laminates may be repaired using only the same materials as in the original laminates, with minimum overlap of 0.5 inch (12.7 mm).
- 4.8.1.1 Surface defects such as starved areas, cracks, checks, and porosity not extending through the part may be repaired by lightly sanding the surface, taking care to avoid damage to the glass fabric, and applying a light coat of applicable resin mixture or prepreg fiberglass cloth to the sanded area. The part shall then be recured in accordance with 4.4.
- 4.8.1.2 Major surface defects such as blisters, delamination, and excessive starved areas or porosity may be repaired by carefully stripping off the outer layer of glass fabric after cutting around the defective area with a sharp knife. Extreme care shall be taken not to damage the next glass fabric layer during this operation. The exposed area shall then be sanded and a contoured piece of glass fabric fitted into place, with 0.5-inch (12.7 mm) overlap, and the part then recurred in accordance with 4.4.
- 4.8.1.3 Defects such as small blisters, delaminated areas, air or gas pockets, and dry spots may be repaired by drilling several small holes into (not through) the defective area and injecting a catalyzed resin mixture by use of a hypodermic needle. The part shall then be recured, with application of pressure if possible, in accordance with 4.4.
- 4.8.1.4 Repair of Delaminations
 - a. Using a sharp knife, carefully cut around the area to be repaired, leaving a margin of 1/4 inch (6.35 mm) for each ply of fabric to be removed. The depth of cut produced by the knife shall be adjusted in such a manner that no more than the uppermost single ply of glass fabric will be cut. Remove this layer by inserting the knife blade under the cut edge and carefully prying the fabric loose.

NO. P 15-42 D FABRICATION OF REINFORCED PLASTICS 02731

FORM 566 REV. 8/73

Hughes Helicopters division of summa corporation PROCESS SPECIFICATION

- b. Repeat the operation above, moving the cut margin in 1/4 inch (6.35 mm) toward the center of the area to be repaired.
- c. Continue the above "step-stripping" procedure until all damaged plies have been removed.
- d. Sand the exposed plies to remove excess cured resin and wipe with a cloth dampened (not saturated) with O-T-620 trichloroethane or equivalent.
- e. Cut glass fabric patches to fit each of the step-stripping openings in the laminate, with minimum overlap of 0.5 inch (12.7 mm). Impregnate the tailored patches. Fit each successively larger patch into its respectively larger opening until all patches are in place. Lay a piece of cellophane over the wet layup, apply pressure, and cure in accordance with 4.4
- 5. QUALITY ASSURANCE PROVISIONS
- 5.1 First Article Qualifications
- 5.1.1 The first article (cure temperature curve part) shall be tested completely for conformance to paragraphs 3.2 and 3.5.
- 5.1.1.1 Tensile strength shall be determined according to method 1011 (type 2 specimen) of FED-STD-406.
- 5.1.1.2 The Durometer hardness shall be determined by a direct Type D Durometer.
- 5.1.2 Finished parts shall be inspected for conformance to the requirements of 3.
- 6. NOTES
- 6.1 Fiberglass laminated parts require careful handling.
- 6.1.2 Completed assemblies shall be cushioned or supported in adequate racks, storage bins, or boxes to prevent damage.
- 6.2 In case of conflict, the engineering drawing takes precedence over this specification.

CODE IDENT NO.

FABRICATION OF
REINFORCED PLASTICS

NO.

SHEET 11 of 12

FORM 566-A REV. 8/73

Hughes Helicopters division of summa corporation PROCESS SPECIFICATION

7.	APPROVED VENDORS		
7.1	Only vendors listed in AVL 15-42 s	hall perform this	process.
}			
}			
NO. HP	15-42 D FABRICATION	v of	CODE IDENT NO.
SHEET	REINFORCED PI		02731
FORM 566 REV. 8/			L

HUGHES TOOL COMPANY--AIRCRAFT DIVISION

TEST MACHINE DATA AND RESULTS

	T 15 MARS	12-	lab 11-74 . Crist				7-12	-/322
r MAC	CHINE OPERATO	OR	. (//5/					
CCDIDT		NE TEST	369 AS	K 20	OOD AL	+ inte	+ fai	11/17
	OR OR THE		369 AS) 4 Ergla	<u> </u>	onsile	<u> </u>		0
	 †				UH.	UH.		
pc.	w	7	Area	•	load.	P.S.1.		
1								
ΙB	.504	.0115	.00580		233	40,200		
				-				
<u> </u>	.503	.012	100604		261	43,200		
TP	504	0172	.00615		281	45,700		
<u> </u>	.507	,0122	.000/0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
OR	. 5025	.0117	.00589		3 <i>35</i>	56,900		
					-			<u> </u>
IL	.504	.0116	.00585		294	50,300		· · · · · ·
01	<i>C</i> 02	013	.00602		794	48,200		
UL.	.502	.012	10002			75,000	·	
	inside				ļ			
	outside		 					
	bottom							
	left right					 		
	right							
	_							<u> </u>

HUGHES TOOL COMPANY - AIRCRAFT DIVISION CULVER CITY, CALIFORNIA

J Leach Kile

STANDAPOS, MATERIALS AND PROCESS ENGINEERING

	LA	BOR	ATORY	REPORT
--	----	-----	-------	--------

•		LABORATORT REPOR	X 1	ACAIA
	•			No. <u>ASA 64</u>
	4x c\(\) \ = ==	~ ^ / A	Till Line	
PART NUMBER -	364) HSK 2000	PART NAME / /	12.11-1 FAITZUA	7
SUBMITTED BY		ORG. CODE 41-		
NUMBER OF SAI	MPLES -	LOT SIZE	MJOMJO	6 cc 862
FORM 9778 DATE	12/10/12	ITR No.	P.O	R.R
VENDOR	1-11-1	HEAT TREAT CO.		
Why is labora	TORY EXAMINATION DES	SIRED? Test contal	Linance IJP 1	5-42
		First	- Nelicle	
BLUE PRINT REQUIREMENTS	RESULTS OF LAE	SORATORY EXAMINATION		
415 16-1112		Tensile Shear	psi	
(sile Share	·	40,200		
10,000 psi		43,200	,	
	•	45,760		
		56,900		
		50,300		
		48,800		
:				• .
	,	•		
Pocessine	(entern	s-le	PREPARED BY	
2 guilli	Auts.		SHEETS ATTACHED	
•	~ \ \ (1	() () ()	716 D	1 147.7
APPROVED BY .	Schult p	ATE - 1/15/75 APPROV	ED BY Y CHUCH	DATE 1-15 /
FORM 9130			•	

February 3, 1975

Ralph Goodall,

369 ASKZOCE, Aft Intel Earning beind was rectioned so that bound areas. Fairing was sectioned so that bound areas could be observed.

Resin showed good cure as evidend be the test values listed in but Report 45464. Thersile test values are vure good considering that the shins tested were (1) ply.

Schla

HUGHES HELICOPTERS

ENGINEERING FLIGHT TEST REPORT

5336A

Date: 1/29,1/30,1/31/75 Pilot: Ferry/Zimmerman A/C No.: 68-17143 F1t. No.: 326 & 327 FTE: Bardell (491103) Model: OH-6A Total Time: 5.6 Hr. 326 327 OAT Range: 40-70° F. Test Request: F-369-1227 TOGW: 1817 1887 Bar.: -----Wind: -----MJO: 9436 TOCG: M1d Mid

Purpose: Flight Evaluation of Kevlar-49 Aft Engine Inlet Fairing

Pilot's Comments:

Zimmerman (5.4 Hr):

 Aircraft handling characteristics were satisfactory and unchanged by installation of the Kevlar -49 Aft Engine Inlet Fairing.

Ferry (0.2 Hr):

1. Concur with Zimmerman.

FTE's Comments:

- 1. The aircraft was in standard OH-6A configuration with the Kevlar-49 Engine Inlet Aft Fairing installed in place of the standard fairing. The fairing installation included the engine inlet particle separator with cockpit operated by pass door, static system line and port and upper flashing anticollision light.
- Installation of the Kevlar fairing was routine and no major problems were experienced. It was noted that the Kevlar materia tended to powder when drilled but otherwise had similar working characteristics to fiberglass.
- The five hour flight test program specified in the flight test plan attachment to E.T.R. F-569-1227 was satisfactorily completed. Post test inspection of the Kevlar-49 Fairing revealed no discrepancies.

Pilot Pilot Pilot

APPENDIX D

PHOTOS OF TRIMMING, DRILLING AND CUTTING SAMPLES

PHOTO NO. 1 - DRILL: .250 DIA TECHNOLOGY ASSOCIATES SPADE DRILL

SAW: S

STANDARD BAND SAW AT SAW SPEED OF

4000 FT/MIN

NOTE. TREPANNING OF EXIT HOLES

PHOTO NO. 2 - DRILL: .190 DIA TECHNOLOGY ASSOCIATES SPADE DRILL

SAW: STANDARD BAND SAW AT SAW SPEED OF

4000 FT/MIN

PHOTO NO. 3 - DRILL: .250 DIAMETER STANDARD DRILL

TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN SAW:

PHOTO NO. 4 - DRILL: .190 STANDARD DRILL

SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW

SPEED OF 2000 FT/MIN

PHOTO NO. 5 - DRILL: .250 SPADE DRILL

SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW

SPEED OF 2000 FT/MIN

NOTE: KEVLAR SAMPLE SUPPORTED BOTH SIDES WITH

.25 PLYWOOD

PHOTO NO. 6 — THESE SAMPLES SAME AS PHOTO NO. 5 EXCEPT .190 SPADE DRILL WAS USED

PHOTO NO. 3 - DRILL: .250 DIAMETER STANDARD DRILL

SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW

SPEED OF 2000 FT/MIN

PHOTO NO. 4 - DRILL: .190 STANDARD DRILL

SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW

SPEED OF 2000 FT/MIN

PHOTO NO. 5 - DRILL: .250 SPADE DRILL

SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW

SPEED OF 2000 FT/MIN

NOTE: KEVLAR SAMPLE SUPPORTED BOTH SIDES WITH

.25 PLYWOOD

PHOTO NO. 6 — THESE SAMPLES SAME AS PHOTO NO. 5 EXCEPT .190 SPADE DRILL WAS USED

PHOTO NO. 7 — THESE SAMPLES SAME AS PHOTO NO. 5 EXCEPT .250 STANDARD DRILL WAS USED

PHOTO NO. 8 - DRILL: .250 SPADE DRILL

SAW: STANDARD BAND SAW AT SAW SPEED OF

4000 FT/MIN

PHOTO NO. 9 — THESE SAMPLES SAME AS PHOTO NO. 8 EXCEPT .25 STANDARD DRILL AT SPEEDS OF 2000 AND 3000 RPM WAS USED

PHOTO NO. 10 - DRILL: .190 SPADE DRILL

SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT

SAW SPEED OF 2000 FT/MIN

PHOTO NO. 11 - MATERIAL: 9 PLY 181 FIBERGLASS .25 STANDARD DRILL

DRILL:

STANDARD BAND SAW AT SAW SPEED SAW:

OF 4000 FT/MIN

MATERIAL: 9 PLY 181 FIBERGLASS PHOTO NO. 12 -

.190 STANDARD DRILL DRILL:

STANDARD BAND SAW AT SAW SPEED SAW:

OF 4000 FT/MIN

PHOTO NO. 13 - MATERIAL: 9 PLY 181 FIBERGLASS

DRILL:

.250 STANDARD DRILL

SAW:

TUNGSTEN CARBIDE TIPPED BAND SAW

AT SAW SPEED OF 2000 FT/MIN

PHOTO NO. 14 - MATERIAL: 9 PLY 181 FIBERGLASS

DRILL:

.190 STANDARD DRILL

SAW:

TUNGSTEN CARBIDE TIPPED BAND SAW

AT SAW SPEED OF 2000 FT/MIN

PHOTO NO. 15 - .25 PLYWOOD SUPPORT USED ON BOTH SIDES OF SAMPLE

DRILL:

.25 DIA SPADE DRILL

SAW:

STANDARD BAND SAW AT SAW SPEED

OF 4000 FT/MIN

PHOTO NO. 16 - .25 PLYWOOD SUPPORT USED ON BOTH SIDES OF SAMPLE

DRILL:

.190 DIA SPADE DRILL

SAW:

STANDARD BAND SAW AT SAW SPEED OF

4000 FT/MIN

PHOTO NO. 17 - .25 PLYWOOD SUPPORT USED ON BOTH SIDES OF SAMPLE

DRILL:

.250 STANDARD DRILL

SAW:

STANDARD BAND SAW AT SAW SPEED OF

4000 FT/MIN

PHOTO NO. 18 - .25 PLYWOOD SUPPORT USED ON BOTH SIDES OF SAMPLE

DRILL:

.190 STANDARD DRILL

SAW:

STANDARD BAND SAW AT SAW SPEED OF

4000 FT/MIN

PHOTO NO. 19 - DRILL: .250 DIA STANDARD DRILL

COUNTERSINK: STANDARD

SAW: STANDARD BAND SAW AT SAW SPEED OF

4000 FT/MIN

PHOTO NO. 20 - MATERIAL: TOP SAMPLE 181 KEVLAR 40

BOTTOM 181 FIBERGLASS

ROUTER: TOOL NO. 501 - 1/4 FULLERTON

SPEED 24000 RPM

FEED: KEVLAR 49 - 15" IN 35 SEC

FIBERGLASS - 6" IN 15 SEC

PHOTO NO. 21 - MATERIAL: TOP SAMPLE 181 KEVLAR 49

BOTTOM 181 FIBERGLASS

STANDARD NO. 2600-1 FULLERTON SPEED 24000 RPM **ROUTER:**

FEED: **KEVLAR 49, 15 INCHES IN 21 SEC**

> **REPLACE TOOL AFTER 30 INCH CUT** FIBERGLASS; 8.5 INCHES IN 10 SEC

PHOTO NO. 22 - MATERIAL: TOP SAMPLE 181 KEVLAR 49

BOTTOM 181 FIBERGLASS

TAI - 1/4 TECHNOLOGY ASSOCIATES SPEED 24000 RPM **ROUTER:**

FEED: **KEVLAR 49 15 INCHES IN 45 SEC**

FIBERGLASS 8.5 INCHES IN 15 SEC

NOTE: **TOOL BADLY OVERHEATED**

PHOTO NO. 23 - SABER SAW: NO. 49491-321 BLADE

TECHNOLOGY ASSOCIATES

SPEED - FEED: 2250 STROKES/MINUTE - 5 INCHES

IN 36 SEC

2500 STROKES/MINUTE - 10 INCHES

IN 90 SEC

3000 STROKES/MINUTE - 5 INCHES

IN 20 SEC

REMARKS: TOOL HEATED UP EVEN WHEN AIR

COOLED, CAUSING TOOL DISCOLORATION

PHOTO NO. 24 - SAW: POWER JIG SAW

SPEED 1000 STROKES/MIN

BLADES: 10 TEETH/INCH, 26 TEETH/INCH.

CARBIDE TIPPED BLADE

REMARKS: EXCELLENT SAWED EDGES WITH NO BLADE

HEATING OR DAMAGE

PHOTO NO. 25 - SAWS USED IN THE POWER JIG SAW

1ST (TOP): 10 TEETH PER INCH BLADE

2ND : TUNGSTEN CARBIDE BLADE

3RD : 26 TEETH PER INCH BLADE

4TH (BOTTOM): TECHNOLOGY ASSOCIATES SABEL SAW BLADE

APPENDIX E

DETAILED COST BREAKDOWN

Heat Energy Cost Determination

HLT Cure

Energy Used per cure cycle =
$$\frac{41.3 \text{ #Steam x } 879 \text{ Btu/lb}}{0.40 \text{ (Boiler Efficiency)}} = 90,755 \text{ Btu}$$

or

0.907 Therms * at \$1.22 = \$1.11 per part

Oven Cure

Oven Model DF 1587 Bacon - Blakdeslee uses 660,000 Btu per hour

Estimated Heat/Part = $660,000 \times 0.5 = 330,000 \text{ Btu/hr}$ (use 50% of oven)

or

13.20 therms at \$1.22 = \$16.10 per part.

Amortization of Capital Equipment

HLT Cure

Steam cost at Hughes is negligible on a pound basis. However, cost of a separate boiler is used for a more realistic comparison.

Small single use McKenna Marine Model #5 would cost \$2,651.00, installed.

Cost/Part over 10 years =
$$\frac{$2651.00}{10,000}$$
 = \$0.27/Part

^{*}l Therm = 100,000 Btu's

Oven Cure

Cost of Oven Model DF 1587 Bacon-Blakeslee would be \$8,272.00 installed. Assume 50 percent use for fairing

Cost/part over 10 years =
$$\$8,272.00 \times 0.5 \times \frac{1}{10000} = \$0.42/part$$

Mold Costs

The standard plastic tool used for the fairing and shown in Figure 14 has the following cost:

Vendor Purchased Mold Plaster form supplied by HH labor Design hours amortized over 4 molds	= 40 hr at \$20/hr = 40 hr at \$20/hr 4		\$ 750 \$ 800 \$ 200 \$1750
Plaster Materials		=	\$ 50
Total standard plastic mold		=	\$1800

The HLT costs for materials are summarized in Table E-1.

Materials Labor - 251 hours at \$20.00 Design and Liaison 80 hr at \$20/hr	= =	\$2711 \$5020 \$1600
Total HLT Cost	=	\$9331

TABLE E-1. MOLD COST					
Purchased Materials					
Nickel Shell (Electroforms, Inc.) (Actual Cost)	\$2,500.00				
Copper Tubing and Fittings (100 ft cu 3/8 dia tubing, actual cost)	39.00				
Miscellaneous Steel Fittings, Brackets, Clamps etc (estimated)	50.00				
Silicone Diaphragm Material (Actual Cost)	75.00				
Chopped Wire Mortar Mix (Actual Cost) 715 lb at 3.86¢ lb (5-1/2 mixes at 130 lb each)	27 . 60				
Lumber for Forms (Casting Chopped Wire Mix) (Estimated Cost)	20.00				
Total Purchased Material (Unburdened)	\$2,711.60				

APPENDIX F LIMIT LOADS

LOADING DIAGRAM

SHEAR DIAGRAM

MOMENT DIAGRAM

Figure F-1. Limit Loads.

- 5. INSPECTION REQ'D
- 4. FAB PER HP 15-42 CURE TIME 1.0 TO 1.5 HRS
- 3. EDGES OF CORE MAY BE UNCOVERED
- 2. SPECIMEN TO BE VACUUM BAGGED AGAINST FLAT SURFACE AND CURED
- 1. FACING MATERIAL TO BE KEVLAR-49 EPOXY PREPREG

Figure F-2. Test Panels.

$$M/INCH = \frac{P}{2} \times 3 \times \frac{1}{W}$$

Figure F-3. Compressive Bending Tests Loading Method.

Commander, U. S. Army Aeronautical Depot Maintenance Center, Corpus Christi, Texas 78419

1 ATTN: SAVAE-EFT

Commander, U. S. Army Electronics Command, 225 South 18th Street, Philadelphia, Pennsylvania 19103

1 ATTN: AMSEL-PP/P-IM

Commander, U. S. Army Missile Command, Redstone Arsenal, Alabama 35809 1 ATTN: AMSMI-IIE

Commander, U. S. Army Troop Support Command, 4300 Goodfellow Boulevard, St. Louis, Missouri 63120

1 ATTN: AMSTS-PLC

Commander, U. S. Army Armament Command, Rock Island Arsenal, Rock Island, Illinois 61201

1 ATTN: AMSAR-PPR-IW

Commander, U. S. Army Tank-Automotive Command, Warren, Michigan 48090

1 ATTN: AMSTA-RCM.1

Commander, Frankford Arsenal, Bridge and Tacony Streets, Philadelphia, Pennsylvania 19137

1 ATTN: SARFA-T1000

Commander, Rock Island Arsenal, Rock Island, Illinois 61201

1 ATTN: SWERI-PPE-5311

Commander, Watervliet Arsenal, Watervliet, New York 12189

1 ATTN: SWEWV-PPP-WP

Director, Production Equipment Agency, Rock Island Arsenal, Rock Island, Illinois 61201

3 ATTN: AMXPE-MT

Commander, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, Maryland 20783

1 ATTN: AMXDO-PP

OIC: U. S. Naval Materiel Industrial Resources Office, Philadelphia, Pennsylvania 19112

1 ATTN: Code 227

Commander, U. S. Air Force Materials Lab, Manufacturing Technology Division, Wright Patterson AFB, Ohio 45433

2 ATTN: AFML-MAT-P

1 AFML-MBC, T. J. Reinhart, Jr.

DISTRIBUTION LIST

No. of To Copies Commander, U. S. Army Materiel Command, 5001 Eisenhower Avenue, Alexandria, Virginia 22333 6 ATTN: AMCRD-EA Commander, U. S. Army Materiel Command, P. O. Box 209, St. Louis, Missouri 63166 ATTN: AMCPM-ASC 1 1 AMCPM-CO 1 AMCPM-IAP AMCPM-CH4FM 1 1 AMC -HLH 1 AMC-AAH AMC-UA 1 12 Commander, Defense Documentation Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, Virginia 22314 Commander, U. S. Army Aviation Systems Command, P. O. Box 209, St. Louis, Missouri 63166 ATTN: AMSAV-ERE 1 AMSAV-LE 1 AMSAV-ZDR 1 AMSAV-SIA AMSAV-SI Director, U. S. Army Air Mobility R&D Lab, Ames Research Center, (Mail Stop 207-5), Moffett Field, California 94035 1 ATTN: SAVDL-AS Director, Ames Directorate, U. S. Army Air Mobility R&D Lab, (Mail Stop 215-1), Ames Research Center, Moffett Field, California 94035 1 ATTN: SAVDL-AM Director, Lewis Directorate, U. S. Army Air Mobility R&D Lab, Lewis Research Center (Mail Stop 500-317), 21000 Brook Park Road, Cleveland, Ohio 44135 1 ATTN: SAVDL-LE Director, Eustis Directorate, U. S. Army Air Mobility R&D Lab, Fort Eustis, Virginia 23604 1 ATTN: SAVDL-EU-TAS Director, Langley Directorate, U. S. Army Air Mobility R&D Lab, Langley Research Center (Mail Stop 124), Hampton, Virginia 23365 1 ATTN: SAVDL-L

1

1

C. Swindlehurst

R. Foye

TABLE F-1. PRELIMINARY TESTS								
NOMEX CORE .0135 = 3 LAM 120 CLOTH .010 = 1 LAM 181 .0145 = 1 LAM 181 + 1 LAM 120 COMPRESSION APPLIED)								
Config	P(lb)	h(in.)	A(in.)	B(in.)	W(in.)	M/in.	f _c	f _t
The fol	llowing	g had 18	31 or 12	0 Facing	gs and N	Nomex 1	/8 cell at	1.8 lb/ft. ³
1B	391			0.0145		84	13620	20150
1 C	213	0.500	0.009	0.009	1	46	10409	10409
1 D	443	0.470		0.0135		95	15119	23040
2C	110	0.344		0.009		31	10281	10281
2D	243	0.344	₩	0.0135	₩	57	12445	19070
3 D	288	0.374	0.009	0.0135	7.00	60	12033	18410
The following had 281 Facings 1 Laminate and Nomex 1/8 cell at 1.8 lb/ft ³								
1 D1	189	0.415	0.010	0.010	7.00	41	10123	10123
2D1	180	0.415	1	1	↓	39	9524	9524
3D1	195	0.415	0.010	0.010	7.00	42	10317	10317
The following had 120 or 181 Facings and Nomex 1/4 cell at 1.5 lb/ft ³								
1	139	0.36	0.010	0.010	7.00	28	8000	8000
2	154	0.36	0.010	0.010		33	9429	9429
3	234	0.37	0.010	0.0145		50	9430	13987
4	110	0.36	0.009	0.009	↓	24	7597	7597
5	235	0.37	0.009	0.0135	7.00	50	10153	15541

1 Commander, U. S. Army Foreign Science and Technology Center, 220 Seventh Street, N.E., Charlottesville, Virginia 22901

Commander, Picatinny Arsenal, Dover, New Jersey 07801

- 1 ATTN: SMUPA-RT-S
- 1 SARPA-FR-M-D, A. M. Anzalone, Bldg. 176
- 1 W. Powers
- 1 A. Slobodzinski, PLASTEC

Rockwell International, Tulsa Division, P. O. Box 5130E, Tulsa, Oklahoma 74151

1 ATTN: J. H. Powell

Director, Army Materials and Mechanics Research Center, Watertown, Massachusetts 02172

- 2 ATTN: AMXMR-PL
- 1 AMXMR-PR
- 1 AMXMR-CT
- 1 AMXMR-XC
- 1 AMXMR-AP
- 2 AMXMR-M
- 1 AMXMR-R
- 25 AMXMR-RD