Arquitectura de Computadoras para Ingeniería

(Cód. 7526) 1° Cuatrimestre 2018

Dra. Dana K. Urribarri DCIC - UNS

Operaciones Aritméticas

Implementación de las operaciones aritméticas básicas:

- 1) Suma
- 2) Resta
- 3) Multiplicación
- 4) División

Multiplicadores

Multiplicadores

- Enteros
 - No signados
 - Signados

- Dos números de n dígitos en base b
 - Multiplicando: $M = m_{n-1} m_{n-2} \dots m_0$
 - Multiplicador: $X = X_{n-1} X_{n-2} ... X_0 = \sum_{i=0}^{n-1} X_i b^i$
- El producto P (de 2n dígitos) será
 - $P = M X = M (\sum_{i=0}^{n-1} x_i b^i)$
- El producto P (de 2n dígitos) en binario
 - $P = M X = M (\sum_{i=0}^{n-1} x_i 2^i)$
- Se resuelve con n sumas de operandos de n bits.
 Por lo tanto, sería de O(n²)

Algoritmo secuencial

Parte de la expresión

$$P = M \cdot X = M \left(\sum_{i=0}^{n-1} x_i \ 2^i \right) = \sum_{i=0}^{n-1} M x_i \ 2^i$$

Donde $x_i = 0$ o $x_i = 1$

- Arranca con el producto parcial en 0.
- Consiste de n pasos, donde el paso j multiplica el bit x_j por M y lo suma al producto parcial acumulado.

Enteros no signados

 El producto de dos enteros no signados de n bits, puede dar como resultado máximo P_{max}

$$(2^{n}-1)(2^{n}-1) = 2^{2n}-2^{2n+1}+1=2^{2n-1}+(2^{2n-1}-2^{n+1}+1)$$
\(>0, n \ge 3 \)

Luego

$$2^{2n-1} < P_{\text{max}} < 2^{2n}$$

El resultado tiene como máximo 2n bits

Algoritmo secuencial

• M X = ?

				0	1	1	0	
			×	1	1	0	1	Suma parcial:
				0	1	1	0	00000110
			0	0	0	0		00000110
		0	1	1	0			00011110
+	0	1	1	0				01001110
0	1	0	0	1	1	1	0	Producto

Hardware del algoritmo secuencial

- El registro Producto P es un registro doble A | MQ
 - Donde A y MQ son registros de n bits
- La ALU suma los registros de n bits A y Multiplicando

Dana K. Urribarri ACI 2018

Hardware del algoritmo secuencial

- Inicio: Copiar el multiplicador en el registro MQ (parte derecha de P). Inicializar A (parte izq.) en 0.
- Repetir n veces
 - Paso 1: Si $P_0 = 0$, ir al paso 3
 - Paso 2:A ← A + Multiplicando
 - Paso 3: Desplazar
 P 1 bit a derecha.

El registro doble P contiene el resultado

Ejemplo

Hardware del algoritmo secuencial + carry

- Las sumas parciales pueden generar carry-out.
- Agregar el carry en el hw básico

Dana K. Urribarri ACI 2018

Hardware del algoritmo secuencial

Inicio: Copiar el multiplicador en el registro MQ.
 Inicializar A en 0.

Repetir n veces

- Paso 1: Si $P_0 = 0$, poner el carry en cero e ir al paso 3

Paso 2:A ← A + Multiplicando

 Paso 3: Desplazar P 1 bit a derecha incluyendo el carry.

Ejemplo

Dana K. Urribarri ACI 2018

- Si los números están en signo-magnitud
 - Calcular el producto sin signo|p| = |M| · |X|
 - Calcular el signo de forma separada $p_{2n-1} = y_{n-1} \oplus x_{n-1}$
- En el caso de complemento a 2 y complemento a uno.

Distinguir entre multiplicando M negativo y multiplicador X negativo

Multiplicando negativo

- $M = 2^{n} |M|$
- $P' = M \cdot X = (2^n |M|) \cdot X = 2^n X |M| \cdot X$
- $-P=-|M|\cdot X$

Solución 1:

- La diferencia entre P y P' es 2^n X ∴ P = P' 2^n X
- Como P es un registro de 2n bits, 2ⁿ X en 2 complemento es 2²ⁿ 2ⁿ X
- Corregir el resultado del algoritmo restando X de la parte más significativa del registro P (esto no requiere ALU de 2n bits).

Solución 2:

- Considerar A de doble precisión: $M = 2^{2n} |M|$
- $P' = M \cdot X = (2^{2n} |M|) \cdot X = 2^{2n} X |M| \cdot X$
- 2²ⁿ X es mayor que la longitud del registro P ∴ es carry que se descarta.
- $P' = X \cdot M = 2^{2n} X |M| \cdot X$ $\equiv 2^{2n} - |M| \cdot X$
 - (+11)

No implica ALU de 2n bits.

1	1	1	1	1	0	0	1	1	
0	0	0	0	0	0	0	0		
1	1	1	0	0	1	1			
0	0	0	0	0	0				
,	•	•	•	•		•	•	•	

1 1 0 1 1 1 0 0 1 (-143)

Dana K. Urribarri **ACI 2018**

- Multiplicando negativo: Solución 2 √
 - Si solo el multiplicando es negativo, no hay necesidad de cambiar el algoritmo.
 - Se suma un número negativo.
 - El hardware debe extenderse de forma tal que provea extensión de signo en el producto parcial.
 - Antes de la primera suma, en la extensión de signo ingresa
 0.
 - Luego de la primera suma, en la extensión de signo ingresa m_{n-1}

Ejemplo: complemento a 2

$$M = -5$$

 $M_{n-1} = 1$
 $X = 3$
 $M = 7$

- Multiplicador negativo
 - $X = 2^{n} |X|$
 - $P' = M \cdot X = M \cdot (2^{n} |X|) = 2^{n} M M \cdot |X|$
 - $-P=-M\cdot |X|$

Solución 1:

- La diferencia entre P y P' es 2^n M ∴ P = P' 2^n M
- Como P es un registro de 2n bits, 2ⁿ M en 2 complemento es 2²ⁿ 2ⁿ M
- Corregir el resultado del algoritmo restando M de la parte más significativa del registro P (esto no requiere ALU de 2n bits).

Solución 2:

- Asumir X de doble precisión: X = 2²ⁿ |X|
- P' = M · X = M · $(2^{2n} |X|) = 2^{2n} M M · |X|$ = $2^{2n} - M · |X|$
- ¿Problema?
 - Multiplicador de doble precisión implica el doble de iteraciones.
- Multiplicador Negativo: Solución 1 ✓

24

Ejemplo: complemento a 2

$$M = -7$$

 $M_{n-1} = 1$
 $X = -5$
 $M X = ?$

Dana K. Urribarri ACI 2018

Ejemplo: complemento a 2

$$M = -5$$

 $m_{n-1} = 1$
 $X = -4$
 $M X = ?$

Bibliografía

 <u>Capítulo 3 y 6</u>. Computer Arithmetic Algorithms. Israel Koren, 2da Edición, A K Peters, Natick, MA, 2002.

Adapted from Koren, UMass. Copyright 2008 Koren, UMass and A.K. Peters.

- <u>Capítulo 10 y 11.</u> Computer Arithmetic: Algorithms and Hardware Designs. Behrooz Parhami, Oxford University Press, New York, 2002.
- <u>Apéndice J</u>. J. Hennessy & D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers INC. 2011, 5ta Ed.

Suplementaria

 <u>Capítulo 42.</u> Editor Wai-Kai Chen. The VLSI Handbook. CRC Press. (2da Ed. 2007)