Università di Catania Corso di Laurea in Fisica Compito scritto di Fisica Generale I M.G. Grimaldi – A. Insolia

Catania, 7 Settembre 2022

Per la prova in itinere (2 ore) svolgere i problemi: 3, 4, 5 Per la prova completa (3 ore) svolgere i problemi: 1, 2, 3, 4

Problema n.1

Un corpo viene lanciato verso l'alto. Raggiunto il punto di quota massima h all'istante t=0, esso si divide in tre parti di massa uguale. Uno dei tre frammenti, di velocità iniziale v_1 diretta verticalmente (vedi figura) raggiunge il suolo all'istante $t_1=4$ s, gli altri due atterrano insieme all'istante $t_2=5$ s. Determinare:

- a) la quota massima h raggiunta dal corpo prima dell'esplosione;
- b) le componenti lungo y delle velocità dei tre frammenti al momento dell'esplosione.

Problema n.2

Gli assi di due cilindri pieni, aventi lo stesso raggio R=20 cm e masse m_1 =20 kg e m_2 =30 kg, sono collegati da una sbarra rigida di massa trascurabile (vedi figura). Ciascun cilindro può ruotare liberamente attorno al proprio asse. All' asse del cilindro 1 è applicato un momento di modulo M ed il pavimento su cui sono appoggiati i cilindri presenta un coefficiente di attrito statico μ_s =0.50. Determinare:

- a) la massima accelerazione (dei centri di massa), a_{max}, con cui i due cilindri avanzano di puro rotolamento;
- b) il valore di M, M_{max}, che deve agire sul cilindro 1 nella situazione del punto a).

[Si noti che, a causa dell'asta che connette i due cilindri, questi hanno la stessa accelerazione angolare]

Problema n.3

Un corpo di volume V e avente densità ρ_C =0.800 g/cm³, partendo dalla quiete e dopo aver percorso in caduta libera in aria una distanza h_A =1.00 m, entra in una vasca contenente acqua. Trascurando la viscosità, calcolare la massima profondità h_B (rispetto alla superficie libera dell'acqua) raggiunta dal corpo.

Problema n.4

Una mole di gas ideale monoatomico, partendo dallo stato A caratterizzato da V_A =8 dm³ e T_2 = 500 K, compie un ciclo termodinamico reversibile costituito, nell'ordine, da: una trasformazione isoterma fino allo stato B con V_B =2 V_A , una espansione adiabatica fino allo stato C caratterizzato da T_0 =260 K, una trasformazione isoterma fino allo stato D con V_D =6 V_B , una compressione adiabatica fino allo stato E con T_1 =360 K, una compressione isoterma fino allo stato F e quindi una compressione adiabatica che riporta il sistema alla condizione iniziale A.

- a) Scelto un valore arbitrario di riferimento per l'entropia del sistema in A, disegnare il ciclo termodinamico su un diagramma S-T (con S entropia del sistema).
- b) Calcolare il calore totale scambiato nel ciclo.
- c) Determinare il rendimento del ciclo.

Problema n.5

Un pezzetto di ghiaccio di massa m e alla temperatura di T_1 =250 K viene immerso in m_2 =60 g di acqua a temperatura di T_2 =330 K. Se il sistema e contenuto in un recipiente a pareti adiabatiche:

- a) si determini per quali valori della massa m il pezzetto di ghiaccio fonde completamente;
- di equilibrio del b) calcolare la temperatura sistema se la massa del cubetto di ghiaccio vale 35 g. specifico il Ш calore del vale $c_g = 2051$ J/KgK, calore specifico ghiaccio dell'acqua vale c_a=4186.8 J/KgK ed il calore latente di fusione del ghiaccio e pari a $\lambda_f=3.3\times10^5$ J/Kg.