Tilastomatematiikka, Harjoitus X

Tehtävä 1.

Vastusten valmistaja ilmoittaa tuotteensa resistanssin varianssin olevan korkeintaan $\sigma 2 = 81~\Omega 2$. Asian tutkimiseksi otettiin 12 vastuksen otos ja saatiin otosvarianssiksi s2 = 112, 03. Resistanssi voidaan olettaa kyllin tarkasti normaalijakautuneeksi. Testaa valmistajan väitettä riskitasolla $\alpha = 0, 05$ käyttämällä luottamusrajaa. Kirjoita näkyviin myös testattava hypoteesipari.

Ratkaisu:

Otetaan aluksi tehtävän muuttujat ylös

```
sigma2 = 81.2;

s2 = 112.03;

n = 12;

a = 0.05;
```

Nollahypoteesi H0 on σ 2 = 81 Ω 2, eli että valmistajan väite pitää paikkansa.

Koska s2>sigma2, niin hypoteesi H1 on että σ 2 > 81 Ω 2, eli varianssi on oikeasti suurempi kuin valmistajan väite.

Lasketaan siis luottamusalaraja kaavalla $\hat{\sigma}_L^2 = \frac{(n-1)S^2}{h_{2,\alpha}}$. Täytyy siis ensin etsiä $h_{2,\alpha}$.

```
va = n-1
va = 11

h2a = chi2inv(1-a, va)

h2a = 19.6751

sigma2Lower = ((n-1)*s2)/h2a

sigma2Lower = 62.6339
```

Vastaus:

Luottamusalarajaksi saatiin 62.6339. Tämä on pienempi kuin valmistajan antama varianssi, joten on syytä uskoa että valmistajan väite ja H0 pitävät paikkansa.

Tehtävä 2.

Edellisen tehtävän tilanteessa vastusten resistanssin odotusarvon pitäisi olla 200 ohmia.

Otoskeskiarvoksi realisoitui x = 194, 75 ohmia. Testaa odotusarvoa koskevaa hypotee-

```
sia \mu = 200 riskitasolla \alpha = 0, 05.
```

- a) käyttämällä a-kohdassa annettua populaatiovarianssia σ2
- b) käyttämällä a-kohdassa annettua otosvarianssia s2.

Ratkaisu:

Kirjataan tehtävän muuttujat ylös

```
mu = 200;

x = 194.75;

a = 0.05;

sigma2 = 81.2;

s2 = 112.03;

n = 12;
```

Kuten tehtävänannossa sanottiin, H0: μ =200. Koska realisoitunut otoskeskiarvo on pienempi, asetetaan vaihtoehtoiseksi hypoteesiksi H1: μ < 200.

a)

Lasketaan luottamusyläraja kaavalla $\hat{\mu}_U = \overline{X} + z_{\alpha} \sigma / \sqrt{n}$

```
z_a = norminv(1-a, 0, 1)

z_a = 1.6449

mu_u = x + z_a*sqrt(sigma2)/sqrt(n)

mu_u = 199.0287
```

Vastaus:

Luottamusylärajaksi saatiin 199.0287. Koska luku on pienempi kuin annettu odotusarvo, H0 tuskin pitää paikkaansa (joten jatketaan hypoteesilla H1).

b)

Tehdään muuten samat laskut, paitsi että annetun populaatiovarianssin sijasta käytetään otosvarianssia.

```
mu_u = x + z_a*sqrt(s2)/sqrt(n)

mu_u = 199.7758
```

Vastaus:

Tälläkin kertaa luottamusylärajan arvo -- 199.7758 -- on pienempi kuin annetun odotusarvon, joten H0 tuskin pitää paikkaansa tälläkään kertaa.

Tehtävä 3.

Tutkittiin kahden eri valmistajan valmistamien lamppujen kestoa. Kerättiin 10 kappaleen otos valmistajan A lamppuja ja 11 kappaleen otos valmistajan B lamppuja. Saatiin otoskeskiarvot xA = 1400 tuntia ja xB = 1250 tuntia sekä otoshajonnat sA = 120 tuntia ja sB = 80 tuntia. Lamppujen kesto voidaan olettaa normaalijakautuneeksi. Muodosta 95 prosentin luottamusväli populaatiovarianssien suhteelle $\sigma A2/\sigma B2$ ja tutki tämän välin avulla voidaanko populaatiovariansseja olettaa samoiksi. Kirjoita näkyviin myös testattava hypoteesipari.

Ratkaisu:

```
n_A = 10;

n_B = 11;

s_A = 120;

s_B = 80;

a = 0.05;
```

Nollahypoteesi on että populaatiovarianssit ovat samat H0: $\sigma_A^2 = \sigma_B^2$

Vaihtoehtoinen hypoteesi on että varianssit eivät ole samat H1: $\sigma_A^2 \neq \sigma_B^2$

Jos populaatiovarianssit ovat samat, niiden suhde on 1. Nollahypoteesilla voidaan jatkaa jos 1 sijoittuu luottamusvälille.

Varianssien suhdetta laskiessa käytetään F-jakautunutta muuttujaa $F=\frac{\sigma_A^2}{\sigma_B^2}*\frac{S_A^2}{S_B^2}$, joten luonnollisesti käytetään F jakaumaa.

Luottamusvälin rajat saadaan kaavalla $\frac{1}{f_{x,\alpha/2}}*\frac{S_A^2}{S_B^2}$, jossa x on joko 1 tai 2 riippuen lasketaan ylä- vai alarajaa.

```
va_A = n_A-1
va_A = 9

va_B = n_B-1
va_B = 10

f_1a2 = finv(a/2, va_A, va_B)
```

```
f 2a2 = 3.7790
```

```
u_limit = (1/sqrt(f_1a2))*(va_A/va_B)

u_limit = 1.7919

l_limit = (1/sqrt(f_2a2))*(va_A/va_B)

l_limit = 0.4630
```

Vastaus:

Luottamusväliksi saatiin 0.4630 - 1.7919. 1 kuuluu välille, joten voidaan pitää todennäköisenä että populaatiovarianssit ovat yhtäsuuret, eli jatketaan hypoteesilla H0.

Tehtävä 4.

Testaa edellisen tehtävän tilanteessa riskitasolla α = 0, 05 hypoteesiparia H0 : μ A = μ B ja H1 : μ A > μ B olettaen, että σ A = σ B . Tee testaus käyttämällä sekä luottamusrajaa että testisuuretta.

Ratkaisu:

```
a = 0.05;
x_A = 1400;
x_B = 1250;
n_A = 10;
n_B = 11;
s_A = 120;
s_B = 80;
```

Tarkastellaan odotusarvojen erotusta. Jos ne keskiarvot ovat samat, niiden erotuksen tulisi olla 0. Jos taas H1 pitää paikkansa, erotus on positiivinen. Etsitään luottamusalaraja

kaavalla $x_A - x_B - t_\alpha s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}$. Etsitään ensin t_a ja s_p. s_p saadaan kaavalla $s_p^2 = \frac{(n_A - 1) * s_A^2 + (n_B - 1) * s_B^2}{n_A + n_B - 2}$

va = 19

```
t_a = tinv(1-a, va)
```

t a = 1.7291

$$s_p = sqrt(((n_A-1)*s_A^2+(n_B-1)*s_B^2)/(n_A+n_B-2))$$

```
s_p = 100.9429
```

$$u_L = x_A-x_B - t_a*s_p*sqrt(n_A^-1 + n_B^-1)$$

$$u_L = 73.7364$$

Vastaus:

Koska saatu alaraja on paljon nollaa isompi, luottamusrajan perusteella päädytään hypoteesiin H1.