Lattice Reduction with LLLplus.jl

July 2021 1/19

Why should I care about lattices?

Lattice tools are often used in places where one would normally use linear algebra, but an integer-valued solution is desired

There are practical uses:

- Post-quantum cryptography (LWE)
- ► Integer programming
- Cryptanalysis (cracking SSH, HTTPS)
- ► Digital communication
- Encrypted ML (FHE in Julia)
- Coding theory
- Finding anagrams :-)

And there are theoretical uses

- Disproving Merten's Conjecture
- Sphere packing (with Julia!)
- ▶ Diophantine eqns (more)
- Geometry of flat tori
- ► Finding Spigot formulas
- ► Factoring Polynomials
- Computing the Riemann theta function
- Physics (Feynman integrals)

These slides are online at github.com/christianpeel/pub/blob/master/juliacon2021.pdf

July 2021 2/19

Outline

Background
Basics, Definitions
Lattice Reduction

LLLplus.jl
What's in it?

Demo (toy) Applications Subset Sum

July 2021 3/19

What's a Lattice?

- A full-rank discrete additive subgroup of (say) \mathbb{R}^n or \mathbb{C}^n
- $ightharpoonup \mathbb{Z}^n$ is a lattice in \mathbb{R}^n

A practical definition

For a basis matrix B, and a vector of integers \mathbf{z} , the set of points \mathbf{y} reachable by $\mathbf{y} = B\mathbf{z}$ is a lattice:

$$\mathcal{L}(B) = \{B\mathbf{z} : \mathbf{z} \in \mathbb{Z}^n\}$$

July 2021 4/19

How did you generate the green lattice point?

```
julia> B=[2.5 1.5
          0.866025 0.866025] # hexagonal lattice
2\times2 Array{Float64,2}:
2.5 1.5
0.866025 0.866025
julia> zgreen=[1
               11
2-element Array{Int64,1}:
julia> ygreen=B*zgreen
2-element Array{Float64,1}:
4.0
1.73205
julia> Pkg.add("Plots"); using Plots;
julia> plot([ygreen[1]],[ygreen[2]], markershape = :circle,
           markersize = 10.
           markercolor = RGB(0.376, 0.678, 0.318))
```

July 2021 5/19

For a lattice, how many bases are possible?

There are an infinite number of bases for a lattice; which one should we use?

$$B_{red} = \begin{bmatrix} 2.5 & 1.5 \\ .86602 & .86602 \end{bmatrix}$$

$$B_{green} = \begin{bmatrix} 1.0 & .5 \\ 0.0 & .86602 \end{bmatrix}$$

In many problems, we want a short, close-to-orthogonal basis, like the green basis

July 2021 6/19

How can we find a good basis?

Use lattice reduction

Given lattice with basis B_1 , the goal of lattice reduction is to find another basis B_2 for the same lattice which has short, closer-to-orthogonal basis vectors

Often, "short" and "orthogonal" are defined according to the Euclidian norm. So $B_2^T B_2$ is closer to diagonal than $B_1^T B_1$, and the diagonal elements of $B_2^T B_2$ are smaller than those of $B_1^T B_1$

'Lattice reduction is like QR for integer problems.' Jack Poulson

Instead of an orthonormal Q, we have a close-to-orthogonal reduced basis, and instead of a triangular R we have a unimodular matrix T: $B_1 = B_2 T$

July 2021 7/19

How does one do lattice reduction?

The most important lattice reduction technique is from Lenstra, Lenstra, and Lovász¹, known as the LLL algorithm

LLL in pseudocode

Input: a basis $(\mathbf{b}_1, \dots, \mathbf{b}_d)$ of a lattice L.

Output: the basis $(\mathbf{b}_1, \dots, \mathbf{b}_d)$ is LLL-reduced with factor δ .

- 1: Size-reduce $(\mathbf{b}_1, \dots, \mathbf{b}_d)$
- 2: **if** there exists an index j which does not satisfy Lovász' condition
- 3: swap \mathbf{b}_{j} and \mathbf{b}_{j+1} , then return to Step 1.
- 4: **end if**

Lovász' condition is $||\mathbf{b}_{j+1}||^2 \ge (\delta - \mu_{j+1,j}^2)||\mathbf{b}_j||^2$ where the coeficients μ are Gram-Schmidt coefficients from size reduction

July 2021 8/19

¹A. K. Lenstra; H. W. Lenstra Jr.; L. Lovász; "Factoring polynomials with rational coefficients". Mathematische Annalen 261, 1982.

Size Reduction? Gram-Schmidt? Do I need to know this?

No, most LLL users can skip previous, current, next slides :-)

Size Reduction pseudocode²

```
Input: A basis (\mathbf{b}_1, \dots, \mathbf{b}_d) of a lattice L.
Output: A size-reduced basis (\mathbf{b}_1, \dots, \mathbf{b}_d).
 1: Compute all the Gram-Schmidt coefficients \mu_{i,j}
 2: for i = 2 to d do
 3:
         for j = i - 1 downto 1 do
 4: \mathbf{b}_i \leftarrow \mathbf{b}_i - \lceil \mu_{i,j} \rfloor \mathbf{b}_i
 5:
             for k = 1 to j do
 6:
                  \mu_{i,k} \longleftarrow \mu_{i,k} - \lceil \mu_{i,i} \rfloor \mu_{i,k}
 7:
              end for
 8:
         end for
 9: end for
```

There are LLL variants which use

- Gram-Schmidt (shown)
- Givens rotations
- ► Householder rotations
- ► A Cholesky decomposition (fastest)

Size reduction is GS with rounding

July 2021 9/19

²The LLL and size reduction pseudocode are from P. Q. Nguyen "Hermite's constant and lattice algorithms," a chapter of The LLL Algorithm, Springer, Berlin, Heidelberg, 2009, pp 19-69

Givens-based LLL in Julia

```
function 111(H::Matrix{Td},δ::Float64=3/4) where {Td<:Number}
   B = copy(H); N,L = size(B); _,R = qr(B)
   1x = 2
   while 1x <= L
        for k=1x-1:-1:1
            rk = R[k,1x]/R[k,k]
            mu = round(rk)
            if abs(mu)>0
                B[:,1x] -= mu * B[:,k]
                R[1:k.lx] = mu * R[1:k.k]
            end
        end
        nrm = norm(R[1x-1:1x.1x])
        if \delta*abs(R[1x-1,1x-1])^2 > nrm^2
            B[:,[1x-1,1x]] = B[:,[1x,1x-1]]
            R[1:lx,[lx-1,lx]] = R[1:lx,[lx,lx-1]]
            cc = R[1x-1,1x-1] / nrm
            ss = R[lx.lx-1] / nrm
            \Theta = [cc' ss; -ss cc] \# Givens rotation
            R[1x-1:1x,1x-1:end] = 0 * R[1x-1:1x,1x-1:end]
            1x = max(1x-1.2)
        else; lx = lx+1; end
    end
   return B
end
```

July 2021 10/19

What should I remember about the LLL?

Remember two things:

- ▶ LLL runs fast; $O(d^5)$ for bases of size d
- ▶ LLL reduces the basis: $||\mathbf{b}_1|| \leq (\frac{2}{\sqrt{4\delta-1}})^{d-1}\lambda_1(\mathcal{L})$

The LLL is a baseline lattice tool. Its polynomial speed and acceptable reduction quality is what brought interest to lattice tools

July 2021 11/19

Outline

Background
Basics, Definitions
Lattice Reduction

LLLplus.jl What's in it?

Demo (toy) Applications Subset Sum

July 2021 12/19

Lattice Tools in LLLplus.jl

Lattice Tool	Function	Use case
LLL lattice reduction	111	most lattice problems
Seysen lattice reduction	seysen	math, WiFi
Brun lattice reduction	brun	math, WiFi
CVP solver	cvp	WiFi, GGH
SVP solver	svp	NTRU, RLWE

Toy (Demo) function	Application
subsetsum	cryptanalysis, integer relations
integerfeasibility	integer programming feasibility
rationalapprox	find rational approx for vector
spigotBBP	spigot formulas for irrationals

July 2021 13/19

How about an LLL demo?

```
julia> Br=[2.5 1.5; 0.866025 0.866025];
julia> Pkg.add("LLLplus"); using LLLplus
julia > B,T,_ = 111(Br); B
2\times2 Array{Float64,2}:
-1.0 -0.5
 0.0 0.866025
julia> T
2\times2 Array{Int64,2}:
-1 -2
julia> [det(T) det(inv(T))]
1\times2 Array{Float64,2}:
-1.0 -1.0
julia> islllreduced(B)
true
```

July 2021 14/19

What types does LLLplus.111 work on?

LLLplus.111 works on bases over all Signed integers, AbstractFloats, Complex, and user-defined subtypes like BitIntegers. I've tried around 34 types.

To have LLLplus. III work with a new type, check that LinearAlgebra.qr works, then add a method to LLLplus.getIntType for float types

July 2021 15/19

Outline

Background
Basics, Definitions
Lattice Reduction

LLLplus.jl What's in it?

Demo (toy) Applications Subset Sum

July 2021 16/19

Subset-Sum and Integer Relations

(Cryptographer's) Subset-Sum

Given a vector \mathbf{a} of integers, and a sum s, if there is a binary vector \mathbf{x} such that $\mathbf{x}^T \mathbf{a} = s$, find it.

The LLL-based technique from Lagarias and Oldyzko was designed to solve low-density subset-sum problems. It breaks the Merkle–Hellman knapsack cryptosystem and can also solve related problems such as...

Integer Relations

Given a vector \mathbf{a} of real numbers, if there is an integer vector \mathbf{x} such that $\mathbf{x}^T \mathbf{a} = \mathbf{0}$, find it.

Integer relations solvers can be used to make spigot algorithms, say giving the nth digit of π without computing any of the other digits

July 2021 17/19

Solving a BigInt subset-sum problem

```
julia> setprecision(BigFloat, 300); N=50; Bitdepth=190;
julia> # Bitdepth can be 256+, just doesn't fit on screen
       a=rand(0:2^BigInt(Bitdepth)-1,N);
julia > a[1:3]
3-element Array{BigInt,1}:
 911200129391658686469201173324473216271570073348033300075
 666563007748951582781404496296235427608875017772431026416
 832622399672004543019820919656212490862510181960061392073
julia> xtrue=rand(Bool,N); s=a'*xtrue;
julia> @elapsed x,_=LLLplus.subsetsum(a,s)
2.535546165
julia> s-x'*a
0.0
```

JuMP+solver would need BigInt support and possibly a lattice solver to solve this

LLLplus.subsetsum is much faster than JuMP+GLPK using 64-bit math (N = 20, 25 bits deep) in preliminary tests

July 2021 18/19

Thank You!

Lattice tools are esoteric, yet interesting and powerful!

LLLplus.jl provides a few of these tools in Julia

Possible projects if you want more esotericity:

- Ask for my Block Korkine Zolotarev (BKZ) code and check that it's correct
- ► Use CxxWrap to wrap the fpLLL C++ library
- ► Write SVP+CVP solvers that use discrete Gaussian sampling

July 2021 19/19