ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

7. Dźwięk o częstotliwości f przechodzi w czasie t z głośnika znajdującego się na wysokości h₁ nad lustrem wody, do mikrofonu zanurzonego na głębokości h₂ – pionowo pod głośnikiem. Prędkość dźwięku w powietrzu wynosi V₁. Obliczyć zmianę długości fali odbieranej przez mikrofon oraz prędkość fali dźwiękowej w wodzie.

Aby rozwiazać to zadanie, musisz obliczyć dwie rzeczy: zmiana długości fali dźwiekowej po przejściu z powietrza do wody oraz predkość fali dźwiekowej w wodzie.

- 1. **Predkość dźwieku w wodzie:** Predkość dźwieku w wodzie można przyjać jako około 1500 m/s, chociaż wartość ta może sie nieco różnić w zależności od temperatury i zasolenia.
- 2. **Zmiana długości fali:** Długość fali w powietrzu: $\lambda_1 = \frac{V_1}{f}$ Długość fali w wodzie: $\lambda_2 = \frac{V_2}{f}$ Zatem zmiana długości fali: $\Delta \lambda = \lambda_2 \lambda_1$
- 3. **Czas przejścia dźwieku:** Suma wysokości: $h=h_1+h_2$ Czas przejścia: $t=\frac{h_1}{V_1}+\frac{h_2}{V_2}$ Aby uzyskać dokładne wyniki, podstaw wartości $h_1,\ h_2,\ f,\ V_1$ i V_2 (jeśli różni sie od 1500 m/s) do odpowiednich wzorów.