Dernière mise à jour	Fiche Torseurs	Denis DEFAUCHY
28/11/2016	Cinématique - Statique	Les indispensables

Torseurs cinématiques et statiques des liaisons usuelles parfaites

Schéma	Liaison	Eléments Géom	2D	3D	$\{\mathcal{V}_{2/1}\}$	$\{T_{2/1}\}$	Validité <i>P</i>	\mathfrak{B}	I_c	I_{S}
soudure 2	Encastrement <i>E</i>	RAS	2 1	\vec{z} \vec{v}	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{P}^{\mathfrak{B}} $	$ \begin{pmatrix} X_{2/1} & \boldsymbol{L}_{2/1} \\ Y_{2/1} & \boldsymbol{M}_{2/1} \\ Z_{2/1} & \boldsymbol{N}_{2/1} \end{pmatrix}_{P}^{\mathfrak{B}} $	∀P		0	6
$\frac{1}{x} = \frac{Rx}{y}$	Pivot P	(O, \vec{x})		\vec{z} \vec{v} \vec{v}	$ \left\{ $	$ \begin{cases} X_{2/1} & 0 \\ Y_{2/1} & \mathbf{M}_{2/1} \\ Z_{2/1} & \mathbf{N}_{2/1} \end{cases}_{P} $	(O, \vec{x})	\vec{x} -	1	5
Z TX	Glissière <i>Gl</i>	\vec{x}	① ②	1 0 2 y	$ \left\{ $		∀P	\vec{x} $ -$	1	5

Dernière mise à jour	Fiche Torseurs	Denis DEFAUCHY
28/11/2016	Cinématique - Statique	Les indispensables

1 écrou x 2 vis	Hélicoïdale <i>He</i>	$(0,\vec{x})$		pas à droite 1 v v v v v	$\begin{cases} P_{2/1} & U_{2/1} \\ 0 & 0 \\ 0 & 0 \end{cases}_P^{\mathfrak{B}}$ $U_{2/1} = \frac{pas}{2\pi} P_{2/1}$	$\begin{cases} X_{2/1} & L_{2/1} \\ Y_{2/1} & M_{2/1} \\ Z_{2/1} & N_{2/1} \end{pmatrix}_{P} \\ L_{2/1} \\ = -\frac{pas}{2\pi} X_{2/1} \end{cases}$	(O, \vec{x})	\vec{x} –	1	5
TX RX	Pivot Glissant PG	(O,\vec{x})	1 0	1 0 2 v v v v v v v v v v v v v v v v v v	$ \left\{ \begin{cases} P_{2/1} & U_{2/1} \\ $		(O, \vec{x})	\vec{x} –	2	4
2 1	Rotule à doigt Sphérique à doigt	O Rainure (O, \vec{x}, \vec{z}) Doigt \vec{z}	2	2 0 1 y	$ \left\{ $	$\begin{cases} X_{2/1} & L_{2/1} \\ Y_{2/1} & 0 \\ Z_{2/1} & 0 \\ \end{pmatrix}_{P}$ $Ref \ \mathfrak{B}_{1} \ \& \ \mathfrak{B}_{2}$	0	\vec{x} \vec{y} \vec{z}	2	4
$\begin{bmatrix} 1 & & & & \\ & & & & \\ & & & & \\ & & & &$	Rotule <i>R</i> Sphérique <i>S</i>	0	1	Ž (2)	$ \left\{ \begin{cases} P_{2/1} & 0 \\ $	$ \begin{cases} X_{2/1} & 0 \\ Y_{2/1} & 0 \\ Z_{2/1} & 0 \end{cases}_{P} $	0		3	3

Dernière mise à jour	Fiche Torseurs	Denis DEFAUCHY
28/11/2016	Cinématique - Statique	Les indispensables

$\frac{2}{x} - \frac{1}{x}y$	Appui plan <i>AP</i>	$ec{z}$	2	2 0 v	$ \left\{ $	$ \left\{ $	∀P	_ _ _ _ Z	3	3
sphère dans cylindre	Linéaire annulaire <i>LA</i> Sphère cylindre <i>SC</i>	(O, \vec{x})	<u>1</u>	2	$\begin{cases} P_{2/1} & U_{2/1} \\ Q_{2/1} & 0 \\ R_{2/1} & 0 \\ \end{cases}_{P}$ $Ref \mathfrak{B}_{1}$	$\begin{cases} 0 & 0 \\ Y_{2/1} & 0 \\ Z_{2/1} & 0 \end{pmatrix}_{P}$ $Ref \ \mathfrak{B}_{1}$	0	\vec{x} $ -$	4	2
$X = \begin{bmatrix} z \\ y \\ 1 \end{bmatrix}$	Linéaire rectiligne <i>LR</i> Cylindre Plan <i>CP</i>	$\{(O,\vec{x}),\vec{z}\}$	<u>i</u>	$\tilde{\mathbf{x}}$	$\begin{cases} P_{2/1} & \textbf{\textit{U}}_{2/1} \\ 0 & \textbf{\textit{V}}_{2/1} \\ R_{2/1} & 0 \end{pmatrix}_{P} \\ \textit{Ref } \mathfrak{B}_{1} \& \mathfrak{B}_{2} \end{cases}$	$ \left\{ \begin{matrix} 0 & 0 \\ 0 & \mathbf{M_{2/1}} \\ Z_{2/1} & 0 \end{matrix} \right\}_{P} $ Ref $\mathfrak{B}_1 \& \mathfrak{B}_2$	(O, \vec{x}, \vec{z})	\vec{x} \vec{y} \vec{z}	4	2
1 2 sphère sur plan	Ponctuelle <i>Pct</i> Sphère plan <i>SP</i>	(O,\vec{x})	1	2 x y y		$ \begin{cases} X_{2/1} & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{P} $ $Ref \mathfrak{B}_{1} $	(O,\vec{x})	\vec{x} $ -$	5	1

Dernière mise à jour	Fiche Torseurs	Denis DEFAUCHY		
28/11/2016	Cinématique - Statique	Les indispensables		

Ancienne norme

Liaison non usuelle parfois rencontrée

Ex: 2 arbres – Cannelures sur faible longueur / Disques d'embrayages ou freins

Page 4 sur 5

Dernière mise à jour	Fiche Torseurs	Denis DEFAUCHY
28/11/2016	Cinématique - Statique	Les indispensables

Liaisons planes dans le plan $(0, \vec{x}, \vec{y})$

Encastrement	\vec{y} \vec{x}	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\forall P}^{\mathfrak{B}_0} $		∀P	$I_c^{2D} = 0$	$I_s^{2D}=3$
Glissière \vec{x}	\vec{y} \vec{x}	$ \left\{ \begin{matrix} 0 & U_{2/1} \\ 0 & 0 \\ 0 & 0 \end{matrix} \right\}_{\forall P}^{\mathfrak{B}_0} $		∀P	$I_c^{2D} = 1$	$I_s^{2D} = 2$
Pivot $(0, \vec{z})$	\vec{y} \vec{x}	$ \left\{ $	$ \left\{ \begin{cases} X_{2/1} & 0 \\ $	(O, \vec{z})	$I_c^{2D} = 1$	$I_s^{2D} = 2$
Ponctuelle $(0, \vec{y})$	y	$\begin{cases} 0 & U_{2/1} \\ 0 & 0 \\ R_{2/1} & 0 \\ P \in (0, \vec{y}) \end{cases}^{\mathfrak{B}_{0}}$	$ \left\{ $	(O, \vec{y})	$I_c^{2D}=2$	$I_s^{2D} = 1$