Valós függvények

Korlátosság, monotonitás, folytonosság

1. Definíció. Legyen $D \subset \mathbb{R}$ egy nemüres halmaz, ekkor az $f: D \to \mathbb{R}$ függvényt valós függvénynek nevezzük.

Korlátosság

2. Definíció. Azt mondjuk, hogy az $f:D\to\mathbb{R}$ függvény **alulról/felülről korlátos**, ha létezik olyan $K\in\mathbb{R}$ konstans, hogy

$$f(x) \geqslant K$$
, illetve $f(x) \leqslant K$

teljesül minden $x \in D$ esetén. Azt mondjuk továbbá, hogy az $f: D \to \mathbb{R}$ függvény **korlátos**, ha mind alulról, mind felülről korlátos.

1. Megjegyzés. $Az \ f : D \to \mathbb{R}$ függvény pontosan akkor korlátos (alulról/felülről), ha az $f(D) \subset \mathbb{R}$ halmaz korlátos (alulról/felülről).

Monotonitás

3. Definíció. Azt mondjuk, hogy az $f: D \to \mathbb{R}$ valós függvény **monoton növekedő/csökkenő**, ha minden olyan $x, y \in D$ esetén, melyre $x \leq y$,

$$f(x) \le f(y)$$
, illetve $f(x) \ge f(y)$

teljesül. Ha a fenti egyenlőtlenségek minden $x \neq y$ esetén szigorúak, akkor szigorú monoton növekedésről, illetve szigorú monoton csökkenésről beszélünk.

Folytonosság

- **4. Definíció.** $Az \ f: D \to \mathbb{R}$ függvény **folytonos az** $x_0 \in D$ **pontban**, ha bármely $\varepsilon \geqslant 0$ esetén van olyan $\delta \geqslant 0$, hogy ha $x \in D$ és $|x x_0| \leqslant \delta$, akkor $|f(x) f(x_0)| \leqslant \varepsilon$ teljesül.
- **1. Tétel (Átviteli elv).** $Az \ f : D \to \mathbb{R}$ függvény pontosan akkor folytonos az $x_0 \in D$ pontban, ha tetszőleges (x_n) D-beli elemekből álló, x_0 -hoz konvergáló sorozat esetén $\lim_{n\to\infty} f(x_n) = f(x_0)$.
- **2. Megjegyzés.** $Az \ f : D \to \mathbb{R}$ függvény pontosan akkor **nem folytonos** $az \ x_0 \in D$ pontban, ha van olyan (x_n) D-beli elemekből álló, x_0 -hoz konvergáló sorozat, melyre $\lim_{n\to\infty} f(x_n) \neq f(x_0)$.
- **5. Definíció.** Azt mondjuk, hogy az $f: D \to \mathbb{R}$ függvény az $A \subset D$ halmazon **egyenletesen folytonos**, ha bármely $\varepsilon \geqslant 0$ esetén létezik olyan $\delta \geqslant 0$, hogy ha $x, y \in A$ és $|x y| \leqslant \delta$, akkor $|f(x) f(y)| \leqslant \varepsilon$ teljesül.
- **3.** Megjegyzés (Egyenletes folytonosság) \Rightarrow folytonosság). Ha az $f: D \to \mathbb{R}$ függvény az $A \subset D$ halmazon egyenletesen folytonos, akkor az A halmaz minden pontjában folytonos.
- **2. Tétel (Folytonosság és műveletek).** Ha az $f, g: D \to \mathbb{R}$ függvények folytonosak az $x_0 \in D$ pontban, akkor
 - (i) $az f + g f \ddot{u} g g v \acute{e} n y$ is folytonos $az x_0$ pontban;
- (ii) tetszőleges $\lambda \in \mathbb{R}$ esetén a λf függvény is folytonos az x_0 pontban;
- (iii) az $f \cdot g$ függvény is folytonos az x_0 pontban;

- (iv) ha tetszőleges $x \in D$ esetén $g(x) \neq 0$, akkor az $\frac{f}{g}$ függvény is folytonos az x_0 pontban.
- **3. Tétel (Az összetett függvény folytonossága).** Legyenek $f: D \to \mathbb{R}$ és $g: f(D) \to \mathbb{R}$ adott függvények. Ha az f függvény folytonos az $x_0 \in D$ pontban, a g pedig az $f(x_0) \in f(D)$ pontban, akkor a $g \circ f$ függvény folytonos az x_0 pontban.
- **4. Tétel.** Legyen $f: D \to \mathbb{R}$ folytonos függvény, $K \subset D$ kompakt halmaz. Ekkor az f(K) halmaz is kompakt.
- **5. Tétel.** Legyen $K \subset \mathbb{R}$ kompakt halmaz, $f: K \to \mathbb{R}$ folytonos függvény. Ekkor f felveszi K-n a minimumát és a maximumát.
- **6. Tétel (Heine).** Legyen $K \subset \mathbb{R}$ kompakt halmaz, $f: K \to \mathbb{R}$ folytonos függvény, ekkor f egyenletesen folytonos a K halmazon.

Feladatok

1. Feladat. Legyenek $a, b \in \mathbb{R}$, $a \neq 0$ rögzítettek. Vizsgáljuk meg korlátosság és monotonitás szempontjából az

$$f(x) = ax + b \qquad (x \in \mathbb{R})$$

módon értelmezett függvényt.

2. Feladat. Legyenek $a, b, c \in \mathbb{R}$, $a \neq 0$. Vizsgáljuk meg az

$$f(x) = ax^2 + bx + c \qquad (x \in \mathbb{R})$$

függvényt korlátosság szempontjából.

3. Feladat. Vizsgáljuk meg az alábbi függvényeket korlátosság szempontjából.

(a)
$$f(x) = \frac{1}{x}$$
 $(x \in]0, +\infty[)$

(c)
$$f(x) = 5 - x^2$$
 $(x \in \mathbb{R})$

(b)
$$f(x) = x^2 - 4x + 6$$
 $(x \in \mathbb{R})$

(d)
$$f(x) = -\frac{2x+3}{x-1}$$
 $(x \in]1, +\infty[)$.

4. Feladat. Vizsgáljuk meg az alábbi függvényeket monotonitás szempontjából.

(a)
$$f(x) = \frac{1}{x}$$
 $(x \in]0, +\infty[)$

(b)
$$f(x) = |x - \pi|$$
 $(x \in \mathbb{R})$

5. Feladat. Legyen $n \in \mathbb{N}$ tetszőleges, de rögzített. Vizsgáljuk meg monotonitás szempontjából az

$$f(x) = x^n \quad (x \in \mathbb{R})$$

módon megadott f : $\mathbb{R} \to \mathbb{R}$ *függvényt.*

- **6. Feladat.** Adjunk példát olyan $f, g: D \to \mathbb{R}$ függvényekre, melyekre az alábbiak egyidejűleg teljesülnek.
- (a) f, g nem folytonos az $x_0 \in D$ pontban és f + g folytonos x_0 -ban.
- (b) f, g nem folytonos az $x_0 \in D$ pontban és f + g nem folytonos x_0 -ban.
- (c) f, g nem folytonos az $x_0 \in D$ pontban és $f \cdot g$ folytonos x_0 -ban.
- (d) f, g nem folytonos $az, x_0 \in D$ pontban és $f \cdot g$ nem folytonos x_0 -ban.
- (e) f a D halmaz egyetlen pontjában sem folytonos, és az |f| függvény a D minden pontjában folytonos.

- (f) f a D halmaz egyetlen pontjában sem folytonos, és az f^2 függvény a D minden pontjában folytonos.
- **7. Feladat.** Legyen $\emptyset \neq D \subset \mathbb{R}$ és $f,g:D \to \mathbb{R}$ függvények, $x_0 \in D$.
- (a) Igaz-e, hogy az f + g függvénynek az x_0 szakadási helye, ha f folytonos az x_0 pontban, g azonban nem?
- (b) Igaz-e, hogy az f + g függvénynek az x_0 szakadási helye, ha az x_0 pont szakadási helye mind az f, mind a g függvénynek?
- (c) Igaz-e, hogy az $f \cdot g$ függvénynek az x_0 szakadási helye, ha f folytonos az x_0 pontban, g azonban nem?
- (d) Igaz-e, hogy az $f \cdot g$ függvénynek az x_0 szakadási helye, ha az x_0 pont szakadási helye mind az f, mind a g függvénynek?
- (e) Igaz-e, hogy az $f \circ g$ függvénynek az x_0 szakadási helye, ha f folytonos az x_0 pontban, g azonban nem?
- (f) Igaz-e, hogy az $f \circ g$ függvénynek az x_0 szakadási helye, ha az x_0 pont szakadási helye mind az f, mind a g függvénynek?
- **8. Feladat.** Legyen $[a,b] \subset \mathbb{R}$ és $f:[a,b] \to \mathbb{R}$ egy folytonos függvény. Igazoljuk, hogy ekkor az

(a)
$$m(x) = \inf \{ f(\xi) \mid a \leqslant \xi \leqslant x \}$$
 $(x \in [a,b])$ $M(x) = \sup \{ f(\xi) \mid a \leqslant \xi \leqslant x \}$ $(x \in [a,b])$

módon megadott m, $M: [a,b] \to \mathbb{R}$ függvények is folytonosak.

9. Feladat. Legyen $[a,b] \subset \mathbb{R}$ és $f,g:[a,b] \to \mathbb{R}$ folytonos függvények. Igazoljuk, hogy ekkor az

(a)
$$\phi(x) = \min\{f(x), g(x)\} \qquad (x \in [a, b]) \qquad \psi(x) = \max\{f(x), g(x)\} \qquad (x \in [a, b])$$

módon megadott ϕ , ψ : $[a,b] \to \mathbb{R}$ függvények is folytonosak.

10. Feladat. Vizsgáljuk meg az alábbi függvényeket folytonosság szempontjából.

(a)
$$f(x) = |x| \quad (x \in \mathbb{R})$$
 (d) $f(x) = |x^2 - 4| \quad (x \in \mathbb{R})$

(b) f(x) = ax + b $(x \in \mathbb{R}, a, b \in \mathbb{R} \text{ r\"ogz\'itettek})$

(c)
$$f(x) = ax^2 + bx + c$$
 $(x \in \mathbb{R}, a, b, c \in \mathbb{R} \text{ r\"ogz\'(tettek)})$ (e) $f(x) = x^r$ $(x \in]0, +\infty[, r \in \mathbb{Q} \text{ r\"ogz\'(tettek)}]$

11. Feladat. Vizsgáljuk meg az alábbi függvényeket folytonosság szempontjából.

(a)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x + 2} & ha \ x \neq -2 \\ 0 & ha \ x = -2 \end{cases}$$
 (b)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x + 2} & ha \ x \neq -2 \\ -4 & ha \ x = -2 \end{cases}$$

12. Feladat. Vizsgáljuk meg az alábbi függvényeket folytonosság szempontjából.

$$f(x) = \begin{cases} 2x - 1, & ha \quad x \ge 0 \\ x^2 - 2x, & ha \quad x < 0 \end{cases}$$

$$f(x) = \begin{cases} 2x - 1, & ha \quad x \le 1 \\ x^2 - 5x, & ha \quad x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x - 1 & ha \ x < 4 \\ 2 & ha \ x = 4 \\ x^2 - 12x + 39 & ha \ x > 4 \end{cases}$$

$$f(x) = \begin{cases} \sin(\pi x) & ha \ x < 2 \\ 2 & ha \ x = 2 \\ \frac{1}{2} & ha \ x < 2 \end{cases}$$

13. Feladat. Vizsgáljuk meg az alábbi függvényeket folytonosság szempontjából.

$$f(x) = \begin{cases} 1 & ha \ x \in \mathbb{Q} \\ 0 & ha \ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \qquad f(x) = \begin{cases} x^2 & ha \ x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & ha \ x \in \mathbb{Q} \end{cases} \qquad f(x) = \begin{cases} x^2, & ha \ x \in \mathbb{Q} \\ \sqrt{|x|}, & ha \ x \notin \mathbb{Q} \end{cases}$$

14. Feladat. Vizsgáljuk meg az alábbi függvényeket folytonosság szempontjából.

(a)
$$f(x) = \operatorname{sgn}(x) \quad (x \in \mathbb{R})$$

$$f(x) = \{x\} \quad (x \in \mathbb{R}),$$
 (b)
$$f(x) = [x] \quad (x \in \mathbb{R})$$

$$f(x) = \operatorname{sgn}(x^2 - 3x + 2) \quad (x \in \mathbb{R})$$

ahol [x] az x valós szám egészrészét, míg $\{x\}$ az x valós szám törtrészét jelöli.

15. Feladat. Vizsgájuk meg az alábbi függvényeket folytonosság szempontjából.

(a)
$$f(x) = \operatorname{sgn}(3x^2 - x) \qquad (x \in \mathbb{R})$$

$$f(x) = \begin{cases} x, & ha \ x \in [-1, 1] \\ 1, & egy\'ebk\'ent \end{cases}$$
 (b)
$$f(x) = \operatorname{sgn}(x(1 - x^2)) \qquad (x \in \mathbb{R})$$

$$f(x) = \begin{cases} x, & ha \ x \in [-1, 1] \\ x^3, & egy\'ebk\'ent \end{cases}$$
 (c)
$$f(x) = \begin{cases} x, & ha \ x \in [-1, 1] \\ x^3, & egy\'ebk\'ent \end{cases}$$

$$f(x) = \begin{cases} x^2, & ha \ x \in [0, 1] \\ 2 - x, & egy\'ebk\'ent \end{cases}$$
 (f)
$$f(x) = \begin{cases} x^2 + 1, & ha \ x \in [0, 1] \\ -\sqrt{|x|}, & egy\'ebk\'ent \end{cases}$$