PYTHON程序设计

计算机学院 王纯

十 数据预处理

- ■数据缺失值的处理
- ■异常值的处理
- ■数据归一化
- ■数据连续属性离散化

数 据 预 处 理

概述

采集的原始数据里存在着各种不利于分析与建模工作的因素,比如数据不完整,格式不正确,数据之间存在矛盾,异常值等。这些因素不仅会影响建模的执行过程,更有甚者在不知不觉间给出错误的建模结果,这就使得数据的预处理显得尤为重要。

通过爬虫取得的二手房数据

```
"house_info": ["2室1厅
                                                                     102.28平米
 2
                                           "house_info":
                                                                  45.49平米
                                                                                                                     "price_info": ["258"]}
                                                         ["1室1厅
 3
                                         "house_info": ["3室2厅
                                                                 119.39平米
                                                                                                                         "price_info": ["685"
 4
                                            "house info": 「"2室1厅
                                                                    104.9平米
                                                                                                                           "price info": ["753"
 5
        {"location": ["玉皇庄小区 ", "丰台其它"]
                                            "house_info": ["2室1厅
                                                                                                                      "price_info": ["179"]}
 6
                                           "house_info": ["4室1厅
                                                                                                                        "price_info": ["1290"
                                        "house_info": ["2室1厅
 8
                                            "house_info": ["2室1厅 |
                                                                                                                             "price_info": ["31
 9
                                                                                                                         "price info": ["1400"
10
                                         "house_info": ["3室2厅 |
                                                                 164.98平米
                                            "house_info": ["3室2厅
                                                                                                                            "price_info": ["1æ
11
                                                                                                                      "price_info": ["1200"]}
12
                                           "house info":
        "location":
        {"location": ["晨光家园B区 ", "石佛营"]
                                            "house_info": ["3室2厅
                                                                                                   2008年建
                                                                                                                    "price_info": ["880"]}
13
                                                                   133.96平米
        {"location": ["金隅山墅 "
                                          "house_info": ["4室4厅 |
                                                                 224.81平米
                                                                                                                            "price_info": ["16@
14
15
```

JSON文件->CSV文件

问题	处理
名字: 有空格	去掉空格
价格:字符串,不方便后续计算	转换为数字
描述部分: 内容太杂,格式不规整	分成多列,分别是房型、面积、朝向、装修情况等 增加一列单价,并按降序排列

作业一

- 把通过爬虫爬下来的新房数据,进行预处理:
 - 最终的csv文件,应包括以下字段: 名称,地理位置(3个字段分别存储),房型(只保留最小房型),面积(按照最小值),总价(万元,整数),均价(元,整数);
 - 对于所有字符串字段,要求去掉所有的前后空格;
 - 如果有缺失数据,不用填充。

新房数据预处理

名称,地理位置´(3个字段分别存储),房型 (只保留最小房型),面积 (按照最小值,整数),均价 (元,整数),总价 (万元,整数)。注:放大显示的也可能有总价,爬取该元素的值并判断是总价还是均价,填入相应字段,相应的另一字段由填入的数值与面积计算获得。

雾霾数据预处理

Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
No	year	month	day	hour	season	PM_Dongsi	PM_Dongsil	PM_Nongzh	PM_US Po:	DEWP	HUMI	PRES	TEMP	cbwd	lws	precipitation	Iprec
33927	2013	11	14	14	3	25	22	28	27	-15	11	1017	14	1 NW	39.79	0	0
33928	2013	11	14	15	3	38	20	26	27	-16	11	1017	14	1 NW	48.73	0	0
33929	2013	11	14	16	3	71	46	61	69	-16	11	1017	14	1 NW	55.88	0	0
33930	2013	11	14	17	3	75	62	83	64	-16	11	1017	13	3 NW	59.9	0	0
33931	2013	11	14	18	3	75	61	56	65	-12	17	1018	12	2 SE	3.13	0	0
33932	2013	11	14	19	3	95	59	70	65	-11	20	1018	1:	l SE	6.26	0	0
33933	2013	11	14	20	3	98	54	67	76	-9	30	1018	•	7 cv	0.89	0	0
33934	2013	11	14	21	3	89	67	75	72	-10	24	1019	(9 cv	2.68	0	0
33935	2013	11	14	22	3	85	68	73	78	-10	23	1019	10	SE	1.79	0	0
33936	2013	11	14	23	3	94	74	70	81	-10	24	1019	(NW 9	1.79	0	0

No: 记录编号	Season: 季节	DEWP: 露点 (摄氏温度) 指在固定气压	TEMP: 温度 (摄氏)
Year: 年份	PM: PM2.5浓度	之下,空气 中所含的气态水达到饱和而	cbwd: 组合风向
Month: 月份	(ug/m^3)	凝结成液态水所需要 降至的温度。	lws: 累计风速 (m/s)
Day: 日期	HUMI: 湿度 (%)	Precipitation: 降水量/时 (mm)	
Hour: 小时	PRES: 气压 (hPa)c	lprec: 累计降水量 (mm) m	

作业二

- 计算北京空气质量数据
 - 汇总计算PM指数年平均值的变化情况
 - 汇总计算每年中I-I2月的PM指数数据变化情况

No: 记录编号 Year: 年份 Month: 月份	Season: 季节 PM: PM2.5浓度 (ug/m^3)	DEWP: 露点 (摄氏温度) 指在固定气压之下,空气 中所含的气态水达到饱和而凝结成液态水所需要 降至的温度。	TEMP: 温度 (摄氏) cbwd: 组合风向 lws: 累计风速 (m/s)
Day: 日期	HUMI: 湿度 (%)	Precipitation: 降水量/时 (mm)	
Hour: 小时	PRES: 气压 (hPa)c	lprec: 累计降水量 (mm) m	

数据缺失值的处理

- 忽略,不参与计算
- ■删除
- 插值 (下列为针对单元格数据的插值方法)
 - interpolate: 线性插值
 - ■fill:前向填充
 - bfill: 后向填充

■ 沈阳空气质量数据,计算PM指数年平均值的变化情况

lo	year	month	day	hour	se	eason PM_	Taiyua P	M_US P	o: PM_Xiaoh	DEWP	HU	MI	PRES	TEMP		cbwd	lws	precipitat	ticIprec
1	2010	1		1	0	4 NA	N	Α	NA		-26	69.79	102	4 -	22	NE	1.0289	NA	NA
2	2010	1		1	1	4 NA	N	Α	NA		-26	76.26	102	4 -	23	NE	2.5722	NA	NA
3	2010	1		1	2	4 NA	N	Α	NA		-27	69.56	102	3 -	23	NE	5.1444	NA	NA
4	2010	1		1	3	4 NA	N	Α	NA		-27	69.56	102	3 -	23	NE	7.7166	NA	NA
5	2010	1		1	4	4 NA	N	Α	NA		-27	69.56	102	2 -	23	NE	9.7744	NA	NA
6	2010	1		1	5	4 NA	N	Α	NA		-26	76.26	102	2 -	23	NE	11.8322	NA	NA
7	2010	1		1	6	4 NA	N	Α	NA		-25	76.46	102	1 -	22	NE	14.4044	NA	NA
8	2010	1		1	7	4 NA	N	Α	NA		-24	70.26	102	1 -	20	NE	16.9766	NA	NA
9	2010	1		1	8	4 NA	N	Α	NA		-23	70.49	102	1 -	19	NE	19.0344	NA	NA
10	2010	1		1	9	4 NA	N	Α	NA		-22	70.71	102	1 -	18	NE	21.6066	NA	NA
11	2010	1		1	10	4 NA	N	Α	NA		-20	77.39	102	2 -	17	NE	24.1788	NA	NA
12	2010	1		1	11	4 NA	N	Α	NA		-18	77.75	102	1 -	15	NE	27.2655	NA	NA
13	2010	1		1	12	4 NA	N	Α	NA		-17	77.92	102	0 -	14	NE	29.8377	NA	NA
14	2010	1		1	13	4 NA	N	Α	NA		-16	78.1	101	9 -	13	NE	32.9244	NA	NA
15	2010	1		1	14	4 NA	N	Α	NA		-15	84.87	101	9 -	13	NE	35.4966	NA	NA
16	2010	1		1	15	4 NA	N	Α	NA		-15	78.27	101	9 -	12	NE	38.5833	NA	NA
17	2010	1		1	16	4 NA	N	Α	NA		-15	78.27	101	9 -	12	NE	41.1555	NA	NA
18	2010	1		1	17	4 NA	N	Α	NA		-15	78.27	102	0 -	12	NE	43.2133	NA	NA
19	2010	1		1	18	4 NA	N	Α	NA		-16	78.1	102	0 -	13	NE	45.7855	NA	NA
20	2010	1		1	19	4 NA	N	Α	NA		-17	77.92	102	1 -	14	NE	48.3577	NA	NA
21	2010	1		1	20	4 NA	N	Α	NA		-17	84.62	102	1 -	15	NE	50.4155	NA	NA
22	2010	1		1	21	4 NA	N	Α	NA		-19	77.57	102	2 -	16	NE	51.9588	NA	NA
23	2010	1		1	22	4 NA	N	Α	NA		-20	77.39	102	2 -	17	NE	53.5021	NA	NA
24	2010	1		1	23	4 NA	N	Α	NA	NA	NA		NA	NA		NA	NA	NA	NA
25	2010	1		2	0	4 NA	N	Α	NA	NA	NA		NA	NA		NA	NA	NA	NA

异常值的处理

- 异常值是指一组测定值中与平均值的偏差超过两倍标准差的测定值;
- 与平均值的偏差超过三倍标准差的测定值, 称为高度异常的异常值。

一个正态分布的横轴区间(μ-3σ,μ+3σ) 内的面积为99.7%。若是不服从正态分布, 可以使用原理n倍标准差来描述,如果不 合适,可以考虑使用**箱型图**,箱型图的 四分位距(IQR)对异常值进行检测,也 叫Tukey's Test。

■发现异常值

- ■观察df的统计信息,使用describe和info函数,查看平均值、最小值和最大值,
 - 是否有明显的错误
- ■计算两倍标准差和三倍标准差
- ■使用图形化方式对数据进行展示和分析
- ■异常值的处理
 - ■直接替换为合理的数据
 - 先置为空,再使用插值的方法进行填充

作业三

- 处理北京空气质量数据
 - 对HUMI、PRES、TEMP三列,进行线性插值处理。并对其中超过3倍标准差的高度异常数据,修改为3倍标准差的数值。
 - 假设PM指数最高为500,对PM_Dongsi、PM_Dongsihuan、 PM_Nongzhanguan 三列中超过500的数据,修改为500PM指数 进行异常值的处理。
 - 修改cbwd列中值为 "cv"的单元格,其值用后项数据填充。

数据的归一化

长度1000cm

直径1cm

- 一个钢筋的样品,直径是0.95cm,长度是1010cm
- 直径和标准的差距是-0.05,取平方后是0.0025
- 长度和标准的差距是10,取平方后是100
- 直径的残差被忽略,而长度的残差会带来极大的影响
- 需要统一量纲 (类别、单位、量级。。。)

优点

- ■归一化后加快了梯度下降求最优解的速度。
- 归一化有可能提高精度(归一化是让不同维度之间的特征 在数值 上有一定的比较性)。

Rescaling (Min-Max归一化,最大最小标准化,离差标准化): 这是一种最简单的归一化,将特征线性映射到[0,1]的范围。

$$x' = \frac{x - minA}{maxA - minA}$$

Standardization (Z-score 归一化,标准化): 在这种归一化中,对特征进行缩放,使其均值为零,方差为1。

$$x' = \frac{x - \mu}{\sigma}$$

两种归一化的比较

Rescaling (Min-Max归一化)

Standardization (Z-score归一化)

$$x' = \frac{x - minA}{maxA - minA}$$

$$x' = \frac{x - \mu}{\sigma}$$

梯度下降收敛效果好

保留了样本原来的分布

Min-Max归一化

```
from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() #x是df中的某一列,即series对象。
x_reshape = x.values.reshape(-1, 1) #变成n行1列的二维矩阵形式
x2 = scaler.fit_transform(x_reshape) #调用MinMaxScaler的fit_transform转
换方法,进行归一化处理
```

Z-score归一化

```
from sklearn.preprocessing import StandardScaler scaler_std = StandardScaler()
x_reshape = x.values.reshape(-1, 1) #变成n行1列的二维矩阵形式 x3 = scaler_std.fit_transform(x_reshape) #调用StandardScaler的 fit_transform转换 方法,进行归一化处理
```


数据的连续属性离散化

- ■数据的特征
 - 数据的属性分为连续和离散两大类。
 - 离散属性比连续属性更接近于知识级的表达。通过对数据连续属性的离散化,数据可以被减少并被简化。对用户而言,离散的数据更易理解、使用和解释。
- 数据的离散化
 - 所谓离散化,就是把无限空间中有限的个体映射到有限的空间中。数据离散化操作大多是针对连续数据进行的,处理之后的数据值域分布将从连续属性变为离散属性,这种属性一般包含2个或2个以上的值域。

数据的连续属性离散化

- 数据离散化的好处
 - 节约计算资源,提高计算效率
 - 算法模型的计算需要
 - 增强模型的稳定性和准确度
 - 特定数据处理和分析的必要步骤
 - 模型结果应用和部署的需要
- 如何离散化
 - 时间数据离散化
 - 多值离散数据离散化
 - 连续数据离散化

空气质量数据

Α	В	С	D	Е	F	G	
No	year	month	day	hour	season	PM_Dongsi	PI
37546	2014	4	14	9	1	299	
37547	2014	4	14	10	1	299	
37548	2014	4	14	11	1	214	
37549	2014	4	14	12	1	280	
37550	2014	4	14	13	1	297	
37551	2014	4	14	14	1	277	
37552	2014	4	14	15	1	234	
37553	2014	4	14	16	1	177	
37554	2014	4	14	17	1	231	
37555	2014	4	14	18	1	245	
37556	2014	4	14	19	1	248	
37557	2014	4	14	20	1	275	
37558	2014	4	14	21	1	193	
37559	2014	4	14	22	1	80	
37560	2014	4	14	23	1	57	
37561	2014	4	15	0	1	50	

表 1 空气质量指数 (AQI) 分级相关信息

AQI 数值	AQI 级别	0.0000000000000000000000000000000000000	I 类别 示颜色	对健康影响情况	建议采取的措施
0~50	一级	优	绿色	空气质量令人满意,基 本无空气污染	各类人群可正常活动
51~100	二级	良	黄色	空气质量可接受,但某 些污染物可能对极少数 异常敏感人群健康有较 弱影响	极少数异常敏感人群应 减少户外活动
101~150	三级	轻度 污染	橙色	易感人群症状有轻度加 剧,健康人群出现刺激 症状	儿童、老年人及心脏病、 呼吸系 统疾病 患者应减 少长时间、高强度的户外 锻炼
151~200	四级	中度污染	红色	进一步加剧易感人群症 状,可能对健康人群心 脏、呼吸系统有影响	儿童、老年人及心脏病、 呼吸系 统疾病 患者避免 长时间、高强度的户外锻 炼,一般人群适量减少户 外运动
201~300	五级	重度	紫色	心脏病和肺病患者症状 显著加剧,运动耐受力 降低,健康人群普遍出 现症状	儿童、老年人和心脏病、 肺病患者应停留在室内, 停止户外运动,一般人群 减少户外运动
>300	六级	严重污染	褐红色	健康人运动耐受力降 低,有明显强烈症状, 提前出现某些疾病	儿童、老年人和病人应当 停留在室内,避免体力消 耗,一般人群应避免户外 活动

cut方法:按值切割,根据数据值的大小范围分成n组,落入这个范围的分别进入到该组。

- 设定区间的个数,每个区间的间距相等
- 也可自定义每个区间的长度

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')

x:数据集,这里一般是pandas的Series

bins:为一个整数或数组,代表切割成几组或者具体的切割方式

labels:代表切割后的分组名称

right:表示区间右端点的数据是否包含在内,默认为包含

qcut方法:按个数切割,使得每个区间里的元素个数基本相同

pandas.qcut(x, q, labels=None, retbins=False, precision=3,duplicates='raise')

x:数据集,这里一般是pandas的Series

q:为一个整数或分位数数组

labels: 代表切割后的分组名称

cut方法: 按值切割

- 设定区间的个数,每个区间的间距相等
- 自定义每个区间的长度

 3
 1
 2
 9
 5
 10
 6
 4
 0
 8
 7

5等份: 0-2-4-6-8-10: (0,1,2),(3,4),(5,6),(7,8),(9,10)

4等份: 0-2.5-5.0-7.5-10: (0,1,2),(3,4,5),(6,7),(8,9,10)

指定区间: 0,2,7,10: (1,2),(3,4,5,6,7),(8,9,10)


```
sections = [0,50,100,150,200,300,1200]
#划分为不同长度 的区间
section_names=["green","yellow","orange","red","purple", "Brownish red"]
#设置每个区间的标签
result = pd.cut(df.ave,sections,labels=section_names)
print(pd.value_counts(result))
```

green 11587
yellow 8006
orange 3190
red 1518
purple 1121
Brownish red 463
Name: ave, dtype: int64

作业四

- 处理北京空气质量数据
 - 对DEWP和TEMP两列,进行0-1归一化及Z-Score归一化处理。 结果使用散点图的 形式表示(参考PPT第19页图形上半部分的表现形式)。
 - 将北京的空气质量数据进行离散化,按照空气质量指数分级标准,计算出每个级别 (或颜色值)对应的天数各有多少

- ■数据缺失值的处理
- ■异常值的处理
- ■数据归一化
- ■数据连续属性离散化

数 据 预 处 理

谢谢