Fundamentals of Solid State Physics

Crystal Diffraction 晶体衍射

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Determination of Crystal Structures

- Crystallinity
 - Single crystal? polycrystal? amorphous?

diamond? glass?

- Lattice type
 - □ BCC, FCC, ...?
- Lattice parameter

$$\Box a = ?$$

- Other properties
 - Defects? Melting points? ...

Determination of Crystal Structures

- X-ray diffraction (XRD) X光晶体衍射
 - □ the Bragg law 布拉格定律
 - cubic systems
 - XRD for polycrystals

Other methods

- electron diffraction
- electron microscopy
- neutron diffraction
- **---**

History

Discovery of X-ray

W. Rontgen (伦琴) Nobel Prize in 1901

X-ray diffraction of crystals

M. von Laue (劳厄) Nobel Prize in 1914

Bragg's law

Bragg & Bragg (布拉格父子) Nobel Prize in 1915

the Bragg Law 布拉格定律

- X-ray diffraction (XRD) X光晶体衍射
 - constructive interference among each atomic layer

$$2d\sin\theta = n\lambda$$

- d interplanar spacing
- θ Bragg angle
- 2θ Deflection angle
- λ X-ray wavelength n = 1, 2, 3, ...

Typically, the first order diffraction (n = 1) has the strongest intensity.

von Laue Formulation

Real Space vs. Reciprocal Space

XRD of Crystals

IGURE 3.20 Diffraction pattern for polycrystalline α -iron.

For cubic systems (SC, BCC, FCC)

$$d_{(hkl)} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$2d \sin \theta = n\lambda$$

$$\sin^2 \theta = \frac{n^2 \lambda^2}{4a^2} (h^2 + k^2 + l^2)$$

angle	θ_{1}	θ_{2}	θ_3	θ_{4}	$ heta_{\! extsf{5}}$	θ_{6}	
plane	100	110	111	200	210	211	•••
(hkl)							

Commonly used x-ray wavelength λ = 0.154 nm generated by electrons hitting a copper metal

- What determines the amplitude of the peaks?
- Where are other peaks like (100) and (111) here?

- What determines the amplitude of the peaks?
 - **□** geometrical structure factor S (几何结构因子)
 - □ atomic form factor f (原子形状因子)
 - crystal orientation
 - crystal size
 - **---**

Geometrical Structure Factor S

- Systematic Absences 系统消光
 - \Box when S = 0, peaks are absent
 - destructive interference

Ashcroft & Mermin p.104-p.107

- Allowed index
 - □ SC

$$h, k, l = \text{all integers}$$

BCC

$$h + k + l = \text{even}$$

□ FCC

h, k, l are all even or odd

Allowed list of $h^2 + k^2 + l^2$ for cubic crystals

Forbidden numbers	Primitive, P	Face Centered, F	Body Centered, I	Corresponding hkl
	1			100
	1 2		2	110
	3	3		111
	4	4	4	200
	5			210
	6		6	211
7				
	8	8	8	220
	9			221, 300
	10		10	310
	11	11		311
	12	12	12	222
1	13			320
1	14		14	321
15				
	16	16	16	400

Geometrical Structure Factor S

Geometrical Structure Factor S

Allowed index for Diamond Structure (C, Si, Ge)

h, k, l are all even and h + k + l = 4n(220), (400), (422), ...

Atomic Form Factor f

- **Example: KCI and KBr**
 - **□** FCC lattice, similar lattice parameter *a*

K⁺ and Cl⁻ are very similar KCI looks like a simple cubic with a/2 KBr is a normal FCC with a

K⁺ and Br[−] are very different

Crystal Orientation

Aligned crystals show strong orientation preference

Crystal Orientation

Aligned crystals show strong orientation preference

Co nanowires

Crystal Size

 Smaller crystals lead to lower diffraction intensity and larger peak width.

Amorphous Materials 非晶

Crystalline: anisotropic (各向异性)

Amorphous: isotropic (各向同性)

History of Discovery

X-ray diffraction of crystals

M. von Laue (劳厄) **Nobel Prize in 1914**

Bragg's law

Bragg & Bragg (布拉格父子) **Nobel Prize in 1915**

Crystal Structure

Diffraction Pattern

Research

The Structure of DNA

DNA structure

J. Waston, F. Crick and M. Wilkins

1962 Nobel Prize in Physiology / Medicine

R. Franklin died in 1958

p = 3.4 nm h = 0.34 nm $\theta = 32^{\circ}$

J. Watson, F. Crick, *Nature* **171**, 737 (1953)
M. Wilkins, *et al.*, *Nature* **171**, 738 (1953)
R. Franklin, R. Gosling, *Nature* **171**, 740 (1953)

Electron Beam Diffraction

- Electron Beam is also a wave
 - also follows the Bragg law

wave-particle duality

$$\lambda = \frac{h}{\text{momentum}}$$

diffraction patterns

single crystal

polycrystal

amorphous

Electron Microscopy

HRTEM

High Resolution Transmission Electron Microscope

quantum dot

Neutron Diffraction 中子衍射

- Neutron Beam is also a wave
 - Lower energy
 - No charge
- Need a nuclear reactor

散裂中子源,东莞

wave-particle duality

$$\lambda = \frac{h}{\text{momentum}}$$

Thank you for your attention