1179: Probability Lecture 22 — Bivariate Normal and MGF

Ping-Chun Hsieh (謝秉均)

December 3, 2021

Clarification: Cauchy-Schwarz Inequality

• Cauchy-Schwarz Inequality: Let X, Y be two random variables. Then, we have

$$E[X^2] \cdot E[Y^2] \ge (E[XY])^2$$

Question: Under what condition do we have "="?

There exists some
$$t \in \mathbb{R}$$
 such that
$$P(S_{\omega}: Y(\omega) = t \cdot X(\omega)) = 1 \iff E[X^2] \cdot E[Y^2] = (E[XY])^2$$

Quick Overview

- Given 2 random variables X, Y: what have we learned so far?
 - 1. Joint CDF
 - 2. Marginal CDF
 - 3. Joint PMF / PDF
 - 4. Marginal PMF / PDF
 - 5. Independence
 - 6. Conditional distribution
 - 7. Expected value involving both X, Y
 - 8. Bivariate normal
 - 9. Distribution of X + Y
 - 10. Covariance and correlation

This Lecture

1. Construction of Bivariate Normal

2. Moment Generating Functions

Reading material: Chapter 10.5 and 11.1

Review: Construction of Bivariate Normal R.V.

- Idea: Let Z,W be 2 independent standard normal r.v.s and

Moea: Let
$$Z$$
, W be 2 independent standard normal r.v.s and $\rho \in [-1,1]$. Define two random variables
$$\begin{cases} X_1 = \sigma_1 Z + \mu_1 \\ X_2 = \sigma_2 \left(\rho Z + \sqrt{1 - \rho^2 W} \right) + \mu_2 \end{cases} \times_{\mathbb{Z}} \mathcal{N}(\mathcal{M}_2, \sigma_2^2)$$

• Question: Is it possible to find the joint PDF of X_1, X_2 ?

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

Bivariate Normal R.V.s (Formally)

• Bivariate Normal: X_1 and X_2 are said to be bivariate normal random variables if the joint PDF of X_1, X_2 is

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

The joint PDF can be written in matrix form as

$$f_{X_1X_2}(x_1, x_2) \Rightarrow \boxed{\frac{1}{2\pi\sqrt{|\det(\Sigma)|}} \exp\left[-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right]}$$
 where

matrix
$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

Notation for bivariate normal: $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim \mathcal{N}(\mu, \Sigma)$

Linear Transformation of 2 Random Variables

Bivariate Normal and Linear Transformation

Z, W standard normal

For simplicity, assume $\mu_1 = \mu_2 = 0$ (can be handled via translation)

$$X_1 = \sigma_1 Z$$

$$X_2 = \sigma_2 \left(\rho Z + \sqrt{1 - \rho^2 W}\right)$$

$$X_1 = \sigma_1 Z$$

$$X_2 = \sigma_2 \left(\rho Z + \sqrt{1 - \rho^2 W}\right) \quad f_{X_1 X_2}(x_1, x_2) = \frac{1}{|\det(A)|} \left(f_{ZW} A^{-1} [x_1, x_2]^T\right)$$

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \rho_3 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} \begin{bmatrix} \sigma_2 \\ \rho_3 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \rho_2 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \rho_3 \end{bmatrix} \begin{bmatrix} \sigma_1$$

$$\int_{ZW}(z,w) = \int_{Z}(z) \cdot \int_{W}(w)$$

$$= \frac{z^{2}}{\sqrt{z\pi\sigma_{2}^{2}}} - \frac{w^{2}}{\sqrt{z\pi\sigma_{2}^{2}}}$$

$$\det(A) = \sigma_1 \sigma_2 \cdot \int_{-\rho^2}^{2}$$

$$A = \frac{1}{\det(A)} \begin{bmatrix} \sigma_2 \int_{-\rho^2}^{2} \rho & \sigma_1 \\ -\sigma_2 \cdot \rho & \sigma_1 \end{bmatrix}$$

 $\frac{\chi_{2} = \sigma_{2}(M_{2}) + M_{2}}{\text{There are still a few remaining questions:}}$

(Q1) Is X_2 a normal random variable? What is the PDF? Sum of independent random variables -

(Q2) What is " ρ " in the joint PDF of bivariate normal?

Covariance

(Q3) Why is bivariate normal useful? Any nice properties?

Conditional PDF and beyond

(Q1) Sum of Independent Random Variables and Moment Generating Functions (MGF)

Z = X + Y and X, Y Independent — Discrete Case

- Question: X, Y are two independent discrete random variables.
 - Define Z = X + Y
 - What's the PMF of Z?

Convolution Theorem: Let X, Y be two independent discrete random variables with PMF $p_X(x)$ and $p_Y(y)$.

Define Z = X + Y. Then, the PMF of Z is

$$p_Z(z) = P(Z = z) = \sum_{x} p_X(x) p_Y(z - x)$$

- ► Recall: $X \sim \text{Poisson}(\lambda_1, T)$, $Y \sim \text{Poisson}(\lambda_2, T)$, Z = X + Y
 - ▶ What's the PMF of Z?

Z = X + Y and X, Y Independent — Continuous Case

For continuous random variables:

Convolution Theorem: Let X, Y be two continuous independent random variables with PDF f_1 and f_2 . Define Z = X + Y. Then, the PDF of Z is

$$f_Z(z) = \int_{-\infty}^{\infty} f_1(x) f_2(z - x) dx$$

Any Issue With Convolution Theorem?

- Issue: Sometimes it is quite tedious to do convolution
- Question: Any other approach?
- ldea: Borrow ideas from signal processing Laplace transform

Frequency domain

In Probability, this is called "Moment Generating Function"

Moment Generating Function (Formally)

Moment Generating Function (MGF): For a random variable

$$X$$
, define

$$M_X(t) = E[e^{tX}], t \in \mathbb{R}$$

If there exists $\delta>0$ such that $M_X(t)<\infty$ for all $t\in (-\delta,\delta)$, then $M_X(t)$ is called the moment generating function of X

Remark: If X is discrete with PMF $p_X(x)$, then

$$M_X(t) = \sum_{\alpha | \gamma} e^{t \gamma} (\gamma)$$

• Remark: If X is continuous with PDF $f_X(x)$, then

$$M_X(t) = \int_{-\infty}^{\infty} \int_{X} \langle x \rangle e^{tx} dx$$

Example: Find MGF of Normal Random Variables

Nice Properties of MGF?

Let X_1, X_2 be two random variables:

- 1. ____ Suppose $M_{X_1}(t) = M_{X_2}(t)$, for all $t \in \mathbb{R}$. Do X_1 and X_2 always have the same distribution (i.e., the same CDF)?
- 2. ____ Could we find moments $E[X_1^n]$ by using $M_{X_1}(t)$?
- 3. ____ Suppose X_1, X_2 are independent. Could we express $M_{X_1+X_2}(t)$ in terms of $M_{X_1}(t), M_{X_2}(t)$?

Nice Property (I): MGF Uniqueness Theorem

• MGF Uniqueness Theorem: Let X_1 and X_2 be two random variables with MGFs $M_{X_1}(t)$ and $M_{X_2}(t)$, respectively. If $M_{X_1}(t) = M_{X_2}(t)$ for all t in some interval $(-\alpha, \alpha)$, then X_1 and X_2 follow the same distribution, i.e.

$$P(X_1 \le u) = P(X_2 \le u)$$
, for all $u \in \mathbb{R}$

- Remark: More details in the following reference
 - J. H. Curtiss, "A note on the theory of moment generating functions," 1942
 - https://projecteuclid.org/download/pdf_1/euclid.aoms/1177731541

Example: Find CDF from MGF

ightharpoonup Example: Suppose the MGF of a random variable X is

$$M_X(t) = \frac{1}{6}e^{-2t} + \frac{1}{3}e^{-t} + \frac{1}{4}e^t + \frac{1}{4}e^{2t}$$

• Question: $P(|X| \le 1) = ?$

MGF of Special Random Variables

Distribution	Moment-generating function ${\cal M}_X(t)$
Degenerate δ_a	e^{ta}
Bernoulli $P(X=1)=p$	$1-p+pe^t$
Geometric $(1-p)^{k-1}p$	$egin{aligned} rac{pe^t}{1-(1-p)e^t}\ orall t<-\ln(1-p) \end{aligned}$
Binomial $B(n,p)$	$(1-p+pe^t)^n$
Negative Binomial $NB(r,p)$	$rac{(1-p)^r}{\left(1-pe^t ight)^r}$
Poisson $Pois(\lambda)$	$e^{\lambda(e^t-1)}$
Uniform (continuous) $U(a,b)$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
Uniform (discrete) $DU(a,b)$	$rac{e^{at} - e^{(b+1)t}}{(b-a+1)(1-e^t)}$
Laplace $L(\mu, b)$	$rac{e^{t\mu}}{1-b^2t^2},\; t <1/b$
Normal $N(\mu,\sigma^2)$	$e^{t\mu+\frac{1}{2}\sigma^2t^2}$

Example: If $M_X(t) = \frac{1}{2} + \frac{1}{2}e^t$, then what kind of r.v. is X?

► Example: If $M_Z(t) = e^{2t^2-t}$, then what kind of r.v. is Z?

Nice Property (II): From Sum to Product

• MGF and Sum of 2 Independent Random Variables: Given 2 independent random variables X_1, X_2 with MGFs $M_{X_1}(t)$ and $M_{X_2}(t)$, the MGF of X_1+X_2 is

$$M_{X_1+X_2}(t) = M_{X_1}(t) \cdot M_{X_2}(t)$$

Proof:

Example: MGF of Sum of 2 Normal R.V.s

- Example: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$
 - lacksquare X_1 and X_2 are assumed to be independent
 - Question: What is the MGF of $X_1 + X_2$? What is the PDF of $X_1 + X_2$?

Nice Property (III): Why Is $M_X(t)$ Called the Moment Generating Function?

▶ Recall: What is the "*n*-th moment" of *X*?

▶ Use MGF to Find Moments: Let X be a random variable with MGF $M_X(t)$. Then, for every $n \in \mathbb{N}$, we have

$$E[X^n] = \frac{d^n}{dt^n} M_X(t)|_{t=0}$$

Proof:

Example: Moments of $Exp(\lambda)$

- Example: Suppose $X \sim \text{Exp}(\lambda)$
 - What is the MGF of X?
 - Use MGF to verify that $E[X] = \frac{1}{\lambda}$ and $Var[X] = \frac{1}{\lambda^2}$?