3.1 Enolates: Electron Rich Carbons 2

How do you prepare electron rich carbon?

- metal-halogen exchange
- > metal-hydrogen exchange

For metal-hydrogen exchange

- use a base to remove H⁺
- > the C-H bond must be easy to cleave
 - → implies that the substrate must be acidic

CHEM202 (2025) Constructing Carbon Frameworks - Lucas

3.2 Acidity

For the reaction of any generalised acid HA, the acidity constant K_a is

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
 HA + $H_{2}O$ \longrightarrow H₃O⁺ + A⁻ (in water)

Because K_a s span a wide range, acid strengths are normally given using p K_a values

$$pK_a = -\log K_a = -\log \left[\frac{[H_3O^+][A^-]}{[HA]} \right]$$

acid strength	K a	p <i>K</i> _a
very strong acid	> 10	< -1
moderately strong acids	0.001 – 10	−1 − 3
weak acids	0.00001 - 0.001	3 – 5
very weak acids	10 ⁻¹⁵ – 10 ⁻⁵	5 – 15
extremely weak acids	< 10 ⁻¹⁵	> 15

3.2 Organic Acids

The most common organic acids are carboxylic acids (p K_a 3 – 5):

Alcohols:

Acid	Name	Ka	p <i>K</i> _a
HCI	hydrochloric acid	10,000,000	
CF ₃ CO ₂ H	trifluoroacetic acid	1.6	
CH ₃ CO ₂ H	acetic (ethanoic) acid	0.00002	
H ₂ O	water	1.8 x 10 ⁻¹⁶	
CH ₃ CH ₂ OH	ethanol	1 x 10 ⁻¹⁶	

CHEM202 (2025) Constructing Carbon Frameworks – Lucas

3.2 Factors Affecting Acid Strength

Organic acid strength depends on five factors:

- Size: as the atom attached to the hydrogen increases in size (down a column of the periodic table), the strength of acid increases
- Electronegativity: as the atom attached to the hydrogen increases in electronegativity, (across row of periodic table), the strength of acid increases

Hybridisation: the relative electronegativities of an atom are $sp > sp^2 > sp^3$

3.2 Factors Affecting Acid Strength

➤ Inductive effect: an electron-withdrawing group (EWG) increases acid strength; the more electronegative the EWG and the closer it is to the acidic hydrogen, the stronger the acid

$$\begin{array}{c|c} \text{most} \\ \text{acidic} \end{array} > \text{CH}_3\text{CHCH}_2\text{OH} > \text{CH}_3\text{CHCH}_2\text{OH} > \text{CH}_3\text{CHCH}_2\text{OH} > \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} } \\ \hline \text{Br} \end{array}$$

Electron delocalisation: an acid whose conjugate base has delocalised electrons is more acidic than a similar acid in which all electrons are localised

$$\begin{array}{c} \text{more} \\ \text{acidic} \\ \text{R} \\ \text{C} \\ \text{OH} \\ \text{OH} \\ \text{RCH}_2\text{OH} \\ \text{less} \\ \text{acidic} \\ \\ \text{more} \\ \text{stable} \\ \text{R} \\ \text{C} \\ \text{O}^{\delta-} \\ \text{RCH}_2\text{O}^- \\ \text{less} \\ \text{stable} \\ \end{array}$$

CHEM202 (2025) Constructing Carbon Frameworks - Lucas

3.2 Acidity and Carbon Acids

A compound that contains a *relatively* acidic hydrogen attached to carbon is called a **carbon acid**.

H H H H H H
$$K_a = 10^{-60}$$
 (p $K_a = 60$)

H Acid Conjugate base

Ethane is a very weak acid; its conjugate base is high energy.

Acetone is still a relatively weak acid but much stronger than ethane.

3.3 Keto-Enol Tautomerism

Tautomers are constitutional isomers that differ from one another through the rearrangement of a double bond and a hydrogen that is positioned α to the double bond.

$$X \stackrel{Y}{=} Z \longrightarrow X \stackrel{Z}{=} X$$

- interconversion of tautomers can be *catalysed* by acid or base
- the position of equilibrium is determined by the relative stability of the isomers

CHEM202 (2025) Constructing Carbon Frameworks - Lucas

3.3 Keto-Enol Tautomerism

Carbonyl compounds [aldehydes, ketones, carboxylic acids and acid derivatives] with at least *one* α -hydrogen can exist in either **keto** or **enol** tautomeric forms:

for the vast majority of carbonyl compounds, the keto form is greatly preferred

3.3 Keto-Enol Tautomerism

➤ In some cases the enol form is favoured:

$$H_3C$$
 H_2
 H_3C
 H

> the enol is stabilised by conjugation and intramolecular H-bonding

An extreme case:

CHEM202 (2025) Constructing Carbon Frameworks – Lucas

3.4 Enolate Anions

Conjugate base (**enolate anion**) is stabilised by resonance delocalisation through the *π*-electron system:

3.4 Enolate Anions - Structure

3.5 Carbon Acids

Generally, relatively strong carbon acids are noted if:

- > X=Y is electron withdrawing
- > can delocalise negative charge in the conjugate base

Y is more electronegative than X
$$Y = X - C$$

$$Y = X - C$$

$$Y = X - C$$

$$Y - X = C$$

$$Y - X = C$$

Other groups with similar properties:

$$N \equiv C - \begin{array}{ccc} O & O & O \\ II & & II \\ C & & -O \end{array}$$

3.5 Carbon Acid Dissociation Mono-functional/Carbonyl Carbon Acids pK_a $H_3C-CH_3 \longrightarrow H_3C-\overline{C}H_2 + H^*$ $R_3C-\overline{C}H_3 \longrightarrow R_3C-\overline{C}H_2 + H^*$ $R_3C-\overline{C}H_3 \longrightarrow R_3C-\overline{C}H_3 + H^*$

3.5 Carbon Acid Dissociation

N+-C + H+

pK_as for Some Organic Compounds and Water

Compound type	Typical compound structure	р <i>К</i> а	^
Alkane	CH ₃ CH ₃	60	
Dialkylamine	$HN(i-C_3H_7)_2$	35	BAS
Ester	CH₃COOR	25	
Ketone	CH ₃ COCH ₃	20	TT TT GAT
Aldehyde	CH₃CHO	17	ACIDITY
Alcohol	CH ₃ CH ₂ OH	16	
Water	H ₂ O	15.7	ASIN
1,3-Diester	RCOOCH ₂ COOR	13	N S
1,3-Keto ester	RCOOCH ₂ COCH ₃	11	ING
1,3-Diketone	CH ₃ COCH ₂ COCH ₃	9	7 7
Carboxylic acid	CH₃COOH	5	

CHEM202 (2025) Constructing Carbon Frameworks – Lucas

3.6 Bases

The proton is removed from the carbon acid by a base which must be sufficiently strong. The choice of base depends on the acidity of the substrate and reversibility options.

The equilibrium of an acid-base reaction favours **reaction** of the **strong** acid and **formation** of the **weak** acid.

Reversible Bases

3.6 Bases

Irreversible Bases

base	p $K_{ m a}$ of conjugate acid	conjugate acid
Na ⁺ H ⁻	35	H–H
Li ⁺ R ⁻		H–R
MgX ⁺ R⁻		H–R
Li ⁺ R ₂ N ⁻		HNR ₂

CHEM202 (2025) Constructing Carbon Frameworks – Lucas

3.7 Formation of Enolates

Kinetic and thermodynamic **deprotonation** can give different enolates from unsymmetrical ketones:

Kinetic → most accessible H removed

Thermodynamic → most substituted (stable) enolate formed

3.8 Reaction of Enolates with Alkyl Halides (RX)

- > S_N2 mechanistic features
 - reaction best if RX is S_N2 active
 - → methyl, primary (1°) or secondary (2°)
 - → X is a good leaving group
- > reaction is irreversible (kinetic control)

3.8 Reaction of Enolates with Alkyl Halides (RX)

- ➤ issue of C- vs O-alkylation
 - generally soft X in protic environments favors C-reaction

X	C-alkylation (%)	O-alkylation (%)
CI	45	55
Br	61	39
I	81	19

3.8 Reaction of Enolates with Alkyl Halides (RX)

for unsymmetrical ketones, can control which product predominates by choice of base and reaction conditions

$$CH_3$$
 LDA
 CH_3
 H_3C
 CH_3
 CH_3

- **Kinetic** conditions (-78°C) irreversibly generates 2,6-dimethylcyclohexanone
- Thermodynamic conditions (higher temp, unhindered base e.g. NaOEt) reversibly generates the more stable enolate, and thus 2,2-dimethylcyclohexanone

CHEM202 (2025) Constructing Carbon Frameworks – Lucas

3.9 1,3-Dicarbonyls

1,3-Dicarbonyls are relatively acidic molecules (p K_a 9-13) as their conjugate base is extensively delocalised.

As with the mono-carbonyl compounds discussed earlier, 1,3-dicarbonyl enolates can be **alkylated**:

3.9 Decarboxylation of 1,3-Dicarbonyls

1,3-Dicarbonyls are useful in organic synthesis as they can be **decarboxylated** to generate new carbonyl compounds:

CHEM202 (2025) Constructing Carbon Frameworks – Lucas

3.10 Malonic Ester Synthesis

This a combination of alkylation of an α -carbon and decarboxylation of a β -dicarboxylic acid

3.11 Acetoacetic Ester Synthesis

This is related to the malonic ester synthesis. An **alkylation** followed by **decarboxylation** gives a **methyl ketone** (rather than a carboxylic acid).

ethyl acetoacetate ("acetoacetic ester")
$$PK_{a} = 11$$

$$P$$

3.12 Reaction of Enolates with Carbonyls

> Reversible reaction (thermodynamic control)

General reaction:

Addition step is often followed by protonation and elimination

3.13 Aldol Reaction (Addition)

The enolate of acetaldehyde reversibly reacts with another molecule of acetaldehyde to give a β -hydroxyaldehyde known as **aldol**.

- > catalytic in base
- carbonyl activates C–H for deprotonation and is also the site of nucleophilic attack
- \triangleright p K_a of aldehyde = 17, p K_a of water = 15.7, so less than 10% of the aldehyde will be deprotonated to the enolate by hydroxide
- > acid catalysis possible

CHEM202 (2025) Constructing Carbon Frameworks – Lucas

3.13 Aldol Reaction

Generally, aldol addition is the reaction between two molecules of an *aldehyde* or two molecules of a *ketone*.

≥ 2 x aldehyde → β-hydroxyaldehyde

 \triangleright 2 x ketone → β -hydroxyketone

The aldehyde/ketone **must** have an α -hydrogen.

Good yields of the addition product are obtained only if it is removed from the solution as it is formed.

3.13 Aldol Reaction

The equilibrium for formation of the β -hydroxycarbonyl compound is:

favourable only for aldehydes with one α-substituent i.e. RCH₂CHO

favours starting materials for more substituted aldehydes and ketones

CHEM202 (2025) Constructing Carbon Frameworks - Lucas

3.13 Aldol Reaction - Examples & Mechanism

With an aldehyde:

$$HO^{-} CH_{3}$$

$$HO^{-} CH_{3}$$

$$H - OH$$

$$H - CH_{3}$$

$$A \beta - hydroxyketone$$

With a ketone:

$$H_{3}C + H$$

$$H_{3}C +$$

3.14 Aldol Condensation

Recall: Alcohols can undergo dehydration in the presence of base (or acid).

Under forcing conditions, an aldol addition product may undergo dehydration/elimination of water (E1_{cb} mechanism).

This process is known as aldol condensation.

CHEM202 (2025) Constructing Carbon Frameworks – Lucas

3.14 Aldol Condensation

Irrespective of the favourability for formation of the initial β -hydroxy aldehyde or ketone, under more forcing conditions which favour the elimination of water, the α , β -unsaturated aldehyde or ketone is usually obtained in good yield, e.g.

The product of the dehydration is a **conjugated enone**. It can be obtained directly from the aldol reaction without isolating the intermediate β -hydroxy carbonyl compound.

3.14 Aldol Condensation - Examples & Mechanism

With base-catalysed elimination step:

2
$$H_3C$$
 H_3C H_3C

With acid-catalysed elimination step:

3.15 Crossed (Mixed) Aldol Reaction

New C–C bond formed between α -carbon and carbonyl carbon of two **different** aldehydes/ketones. Without some "control", a mixture of products can be obtained \rightarrow not synthetically useful.

With ketones, the situation may be even more complex: recall that unsymmetrical ketones can generate two possible enolates.

3.15 Crossed (Mixed) Aldol Reaction

To obtain a single product from a crossed aldol reaction (under reversible conditions), the following conditions need to be met:

- > one partner only must be capable of enolisation, and
- > the other partner, as well as being incapable of enolisation, must be more electrophilic than the enolisable partner

Typical partners containing a highly reactive carbonyl group, but not being capable of enolisation, are aldehydes without α -hydrogens. formaldehyde pivalaldehyde

benzaldehyde A single major crossed aldol reaction product may be obtained using an excess of an non-enolisable aldehyde and slowly adding a second aldehyde. The product can then undergo dehydration.

CHEM202 (2025) Constructing Carbon Frameworks - Luca

3.16 Claisen Condensation

The Claisen condensation is the reaction of an (ester) enolate with an ester to give a 1,3-dicarbonyl compound.

Initial addition of the enolate to the carbonyl group is followed by extrusion of RO-.

3.16 Claisen Condensation

- \blacktriangleright as in the aldol reaction/addition, one molecule of a carbonyl compound is converted into an enolate anion when a strong base removes a proton at an α -carbon
- the enolate attacks the carbonyl carbon of a second molecule of ester
- ➤ after nucleophilic attack, the C=O bond re-forms and ¬OR is expelled (this last step is different to the aldol reaction)

3.17 Crossed (Mixed) Claisen Condensations

As with the crossed aldol condensation, two conditions need to be met for a successful crossed Claisen condensation:

- > one partner only must be capable of enolisation, and
- ➤ the other partner, as well as being *incapable* of enolisation, should be *more electrophilic* than the enolisable partner

Typical partners containing a reactive carbonyl group, but not being capable of enolisation are:

3.17 Crossed (Mixed) Claisen Condensations

Crossed Claisen condensation reactions are also possible with ketones (providing the enolate):