Obsah

lektrický proud v elektrolytech, plynech a ve vakuu	1
9.1 Elektrolytický vodič	1
19.1.1 Disociace	1
19.1.2 Faradayovy zákony elektrolýzy	1
19.1.3 Galvanický článek	
19.1.4 Využití	3
9.2 Výboj plynu	3
19.2.1 Elektrický výboj	
19.2.2 Výboj podle doby trvání	
19.2.3 Využití	
9.3 Proud ve vakuu	5
19.3.1 Elektronka	

19 Elektrický proud v elektrolytech, plynech a ve vakuu

19.1 Elektrolytický vodič

- Elektrolyt roztok/tavenina, která vede elektrický proud
- nosičem proudu ionty vodiče II. řádu
- vodivost nižší než u kovů

19.1.1 Disociace

- proces elektrolýza
- štěpení molekul nebo komplexů
- rozpuštění iontových sloučenin v polárních rozpouštědlech
- opak disociace rekombinace slučování iontů zpět do molekul
- vznik více molekul, **iontů** (kationtů a aniontů) nebo radikálů
- disociace kyselin, zásad nebo solí

19.1.2 Faradayovy zákony elektrolýzy

• zákony popisující elektrolýzu

První Faradayův zákon

- hmotnost látky vyloučené na elektrodě přímo úměrná el. proudu I a čase t

m = AIt = AQ

- A elektrolytický ekvivalent dané látky
- Q elektrický náboj

Druhý Faradayův zákon

- látkové množství vyloučená stejným nábojem pro všechny látky stejné
- $\bullet\,$ elektrolytický ekvivalent Apřímo úměrný molární hmotnosti látky

$$A = \frac{M_{\rm m}}{Fz}$$

- $-F = 9.6485 \cdot 10^4 \,\mathrm{C \cdot mol^{-1}} \mathrm{Faradayova\ konstanta}$
- z počet elektronů potřeba při vyloučení molekuly (Cu $^{2+} \Rightarrow z = 2)$

Obr. 19.1: Elektrolýza vodného roztoku $CuSO_4$

19.1.3 Galvanický článek

- chemický zdroj elektrického napětí
- zdroj stejnosměrného proudu, několik voltů
- využití ionizace
- vznik napětí z rozdílu potenciálů na elektrodách
 - el. potenciál důsledkem chem. reakce
 - * samovolné reakce
 - * reakce vyvolané el. proudem
- typy
 - primární články jednorázové, reakce nevratná
 - sekundární články / akumulátory znovupoužitelné, reakce vratná
- svorkové napětí nižší než celkové kvůli vnitřnímu odporu: $U=U_{\rm e}-R_{\rm i}I$
 - $-U_{\rm e}$ elektromotorické napětí

Stavba

- záporná elektroda anoda
 - Zn, Li, Cd, hybridy kovů
- kladná elektroda katoda
 - MnO₂, NiO(OH) (oxid-hydroxid hlinitý), Ag₂O
- elektrolyt
 - roztoky alkalických hydroxidů (KOH), silné kyseliny nebo jejich soli

Elektrolytická polarizace

- vznik elektrické dvojvrstvy
 - uvolnění i
ontů z elektrody, ty zbylým nábojem přitahovány
 - vznik elektrického pole, brání vylučování iontů
 - elektroda se polarizovala
- vznik elektrického potenciálu
 - hodnota určena vzhledem k vodíkové elektrodě (u ní $\varphi = 0$)

Druhy

- existují různé druhy článků podle použitý materiálů
- jiné vlastnosti (náboj, výdrž, životnost...)

Název	Elektrody	Elektrolyt	Poznámka
Voltův článek	$+\operatorname{Cu},-\operatorname{Zn}$	$\mathrm{H}_2\mathrm{SO}_4$	první galvanický článek
zinko-uhlíkový článek (Leclancheův) článek	$+\mathrm{MnO}_2, -\mathrm{Zn}$	$\mathrm{NH_4Cl}$	obyčejné baterie
alkalický článek	$+MnO_2, -Zn$	КОН	nejběžnější
lithiový článek	$+ {\rm MnO_2}, -{\rm Li}$	lithiová sůl v organickém rozpouštědle	dlouhá životnost

Tab. 19.1: Různé druhy galvanických článků

Obr. 19.2: Voltampérová charakteristika roztoku

19.1.4 Využití

- elektrolýza
 - výroba prvků a sloučenin
 - rozklad chemických látek
 - pokovování / čištění
 - leptání
- galvanický článek
 - baterie (hodinky, senzory, kuchyňská váha...)
 - akumulátory (auto, telefony, notebooky, dobíjecí baterie...)

19.2 Výboj plynu

- nosičem proudu e^- a ionty
- plyn se stává vodivým *ionizací*
 - -vnější zásah, vyražení elektronů z molekul plynu \rightarrow volné elektrony a ionty
- opakem rekombinace slučování elektronů a iontů
- plynem prochází proud elektrický výboj

Obr. 19.3: Voltampérová charakteristika plynu

19.2.1 Elektrický výboj

- při ionizovaném plynu mezi elektrodami
 - elektrony(-) \rightarrow anoda(+)
 - $\text{ kationty(+)} \rightarrow \text{katoda(-)}$

Nesamostatný výboj

potřeba vnější ionizátor (ionizační komora, elektronky)

Samostatný výboj

- vytváří si vlastní ionty a elektrony
- není třeba ionizátor
- dodání zápalného napětí $U_z\to samovolné vyrážení elektronů z atomů <math>\to$ řetězová reakce \to prudké zvýšení napětí
- dosažené dostatečné energie \rightarrow elektrický průraz
 - z nesamostatného náboje se stává samostatný

19.2.2 Výboj podle doby trvání

- jiskrový výboj
 - $-\,$ krátké dosažení $U>U_{\rm z},$ zdroj není schopen udržet, rychlé zhasnutí
 - blesk, zážehový motor
- · obloukový výboj
 - -dosažení a udržení $U>U_{\rm z},$ vysoká teplota, dlouhé trvání
 - sváření, výbojky veřejného osvětlení
- koróna
 - trsovitý výboj v nehomogenním poli
 - na hranách a hrotech
- doutnavý výboj
 - dlouhodobý výboj za sníženého tlaku plynu
 - ve výbojkách či zářivkách
 - barva výboje ovlivněna plynem vyplňujícím trubici

19.2.3 Využití

- sváření, řezání plazmou
- oblouková lampa v projektorech
- oblouková pec

19.3 Proud ve vakuu

- nositele náboje elektrony z elektrod
- použití skleněné trubice se dvěma elektrodami výbojka
- nepozorujeme světlo, pouze slabé záření u katody
 - emise elektronů \rightarrow katodové záření

19.3.1 Elektronka

- zařízení pracující na bázi proudu ve vakuu
- katoda, anoda, mřížka
- amplifikace napětí, vytváření záření...