

Fakultät Mathematik Institut für Geometrie, Professur für Nichtlineare Analysis

PARTIELLE DIFFERENTIALGLEICHUNGEN

Übungen

Prof. Dr. Friedemann Schuricht

Sommersemester 2020

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Partielle Differentialgleichungen – Übungsblatt 1

Aufgabe 1. Es sei $U \subset \mathbb{R}^n$ ein Gebiet, $u \in C^2(U, \mathbb{R}^n)$, $A \in C^1(U, \mathbb{R}^{m \times n})$, $\varphi \in C^1(U)$ und $c \in \mathbb{R}^m$. Zeigen Sie:

- (a) $\operatorname{div}((Du)^{\top}) = (D(\operatorname{div} u))^{\top},$
- (b) $\operatorname{div}(cA) = c \operatorname{div} A$,
- (c) $\operatorname{div}(\varphi A) = A \cdot D\varphi + \varphi \operatorname{div} A$.

Hinweis: Wir betrachten Vektoren im \mathbb{R}^n als Zeilenvektoren, · ist das Skalarprodukt im \mathbb{R}^n , $Du = (\partial_j u_i)_{i,j=1,\dots,n}$, div und · wirken auf eine Matrix *zeilenweise*.

Es seien nun $u, v: U \to \mathbb{R}$ hinreichend glatt. Beweisen Sie die Formel von Leibniz:

$$D^{\alpha}(uv) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\beta} u D^{\alpha - \beta} v$$

wobei für Multiindizes α, β gilt:

$$D^{\alpha}u = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}u, \qquad \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\alpha!}{\beta!(\alpha-\beta)!}, \qquad \alpha! = \alpha_1! \cdot \alpha_2! \cdot \dots \cdot \alpha_n!$$

und $\beta \leq \alpha$ genau dann, wenn $\beta_i \leq \alpha_i$ für i = 1, ..., n.

(zu a) Sei $u=(u_1,u_2,\ldots,u_n)\in C^2$. Wir notieren Vektoren verkürzt $(u_i)_i=(u_i)_{i=1,\ldots,n}=(u_1,u_2,\ldots,u_n)$. Es ist

$$\operatorname{div}\left((Du)^{\top}\right) = \operatorname{div}\begin{pmatrix} \partial_{1}u_{1} & \partial_{2}u_{1} & \cdots & \partial_{n}u_{1} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1}u_{n} & \partial_{2}u_{n} & \cdots & \partial_{n}u_{n} \end{pmatrix}^{\top} = \operatorname{div}\left(\partial_{j}u_{i}\right)_{i,j}^{\top} = \operatorname{div}\left(\partial_{i}u_{j}\right)_{i,j}$$
$$= \begin{pmatrix} \partial_{11}u_{1} & \partial_{12}u_{2} & \cdots & \partial_{1n}u_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{n1}u_{1} & \partial_{n2}u_{2} & \cdots & \partial_{nn}u_{n} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} \partial_{ij}u_{j} \\ \sum_{j=1}^{n} \partial_{ij}u_{j} \end{pmatrix}_{i}$$

und außerdem

$$(D(\operatorname{div} u))^{\top} = \left(D\left(\sum_{i=1}^{n} \partial_{i} u_{i}\right)\right)^{\top} = \begin{pmatrix} \partial_{11} u_{1} + \partial_{21} u_{2} + \dots + \partial_{n1} u_{n} \\ \vdots \\ \partial_{1n} u_{1} + \partial_{2n} u_{2} + \dots + \partial_{nn} u_{n} \end{pmatrix} = \left(\sum_{j=1}^{n} \partial_{ji} u_{j}\right)_{i}$$

Wegen $u \in \mathbb{C}^2$ sind alle partiellen Ableitungen stetig und können somit vertauscht

werden. Daraus folgt die (zeilenweise) Gleichheit mit

$$\operatorname{div}\left(\left(Du\right)^{\top}\right) = \left(\sum_{j=1}^{n} \partial_{ij} u_{j}\right)_{i} = \left(\sum_{j=1}^{n} \partial_{ji} u_{j}\right)_{i} = \left(D(\operatorname{div} u)\right)^{\top}$$

(zu b) Es ist

$$\operatorname{div}(cA) = \operatorname{div}\left(\sum_{j=1}^{n} c_{j} a_{ij}\right)_{i} = \sum_{i=1}^{n} \partial_{i} \sum_{j=1}^{n} c_{j} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{i} c_{j} a_{ij}$$
$$c \cdot \operatorname{div}(A) = c \cdot \left(\sum_{j=1}^{n} \partial_{j} a_{ij}\right)_{i} = \sum_{i=1}^{n} c_{i} \sum_{j=1}^{n} \partial_{j} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{j} c_{j} a_{ij}$$

und somit $\operatorname{div}(cA) = c \cdot \operatorname{div}(A)$.

(zu c) Man hat

$$A \cdot D\varphi = A \cdot (\partial_i \varphi)_i = \left(\sum_{j=1}^n a_{ij} \ \partial_j \varphi\right)_i$$
$$\varphi \operatorname{div}(A) = \varphi \cdot \left(\sum_{j=1}^n \partial_j a_{ij}\right)_i = \left(\sum_{j=1}^n \varphi \ \partial_j a_{ij}\right)_i$$
$$\operatorname{div}(\varphi A) = \operatorname{div}\left(\left(\varphi a_{ij}\right)_{i,j}\right) = \left(\sum_{j=1}^n \partial_j (\varphi a_{ij})\right)_i$$

Für fixiertes i (also zeilenweise) erhält man mit der Produktregel für (partielle) Ableitungen

$$\sum_{j=1}^{n} \partial_{j}(\varphi a_{ij}) = \sum_{j=1}^{n} ((\partial_{j}\varphi)a_{ij} + \varphi(\partial_{j}a_{ij})) = \sum_{j=1}^{n} (\partial_{j}\varphi)a_{ij} + \sum_{j=1}^{n} \varphi(\partial_{j}a_{ij})$$

und somit $\operatorname{div}(\varphi A) = A \cdot (D\varphi) + \varphi \cdot \operatorname{div}(A)$.

Leibnitz-Formel: Vollständige Induktion über $|\alpha| = k$.

(IA) k = 0: Für $|\alpha| = 0$, also $\alpha = 0$ ist

$$D^0(uv) = uv = \begin{pmatrix} 0 \\ 0 \end{pmatrix} D^0 u \ D^0 v$$

(IV) Für
$$|\alpha| = \sum_{i=1}^n \alpha_i = k$$
 gilt $D^{\alpha}(uv) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} D^{\beta} u D^{\alpha-\beta} v$.

(IS) $k \to k+1$: Seien $|\alpha| = |(\alpha_1, \alpha_2, \dots, \alpha_n)| = k+1$ und $\alpha' = (\alpha_1, \dots, \alpha_{n-1}, \alpha_n - 1)$ sowie $\beta' = (\beta_1, \dots, \beta_{n-1}, \beta_n + 1)$. Dann ist $|\alpha'| = k$ und $|\beta'| = |\beta| + 1$. Es gilt

$$D^{\alpha}(uv) = \partial_{x_{1}}^{\alpha_{1}} \dots \partial_{x_{n}}^{\alpha_{n}}(uv) = \partial_{x_{n}} \left(\partial_{x_{1}}^{\alpha_{1}} \dots \partial_{x_{n}}^{\alpha_{n}-1}(uv) \right)$$

$$= \partial_{x_{n}} \left(D^{\alpha'}(uv) \right)$$

$$\stackrel{\text{IV}}{=} \partial_{x_{n}} \left(\sum_{\beta \leq \alpha'} \binom{\alpha'}{\beta} D^{\beta} u \ D^{\alpha'-\beta} v \right)$$

$$= \sum_{\beta \leq \alpha'} \binom{\alpha'}{\beta} \left(\partial_{x_{n}}(D^{\beta} u) \ D^{\alpha'-\beta} v + D^{\beta} u \ \partial_{x_{n}}(D^{\alpha'-\beta} v) \right)$$

$$= \sum_{\beta \leq \alpha'} \binom{\alpha'}{\beta} \left(D^{\beta'} u \ D^{\alpha'-\beta} v + D^{\beta} u \ D^{\alpha-\beta} v \right)$$

$$= \dots$$

$$= \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} D^{\beta} u \ D^{\alpha-\beta} v$$

Aufgabe 2. Ermitteln Sie jeweils eine nichttriviale Lösung der folgenden partiellen Differentialgleichungen:

- (a) $v_y(x,y) = xy \cdot v(x,y)$
- (b) $u_x(x,y) + y \cdot u(x,y) = 0$

(zu a) Wir gehen analog zur Vorlesung vor und betrachten die Gleichung für fixiertes x = const.Dann erhalten wir eine gewöhnliche Differentialgleichung

$$u'(y) = xy \cdot u(y)$$

und lösen entweder durch geübtes Hinschauen oder mit Trennung der Variablen: sei f(u(y)) = u(y) und $g(y) = x \cdot y$. Der Ansatz

$$\int^{u(y)} \frac{1}{f(\xi)} d\xi = \int^{y} g(\xi) d\xi \implies \ln(|u(y)|) = \frac{1}{2} x y^{2} + C$$

Beachte, dass die unteren Integralgrenzen dabei in der Konstante C zusammengefasst sind, da wir keinen Anfangswert vorgegeben haben. Die Gleichung "umgestellt" ergibt eine Lösung

$$u(y) = \exp\left(\frac{1}{2}xy^2\right)$$
 bzw. $v(x,y) = \exp\left(\frac{1}{2}xy^2\right)$

Eine kurze Probe ergibt

$$v_y(x,y) = xy \cdot \exp\left(\frac{1}{2}xy^2\right) = xy \cdot v(x,y)$$

(zu b) Wir fixieren erneut eine Variable, diesmal $y={\rm const.}$ Diesmal sehen wir direkt eine Lösung, nämlich

$$u(x,y) = \exp(-xy)$$

Eine kurze Probe ergibt $u_x(x,y) + y \cdot u(x,y) = -y \cdot \exp(-xy) + y \cdot \exp(-xy) = 0.$

Zusatzaufgabe 3. Klassifizieren Sie die nachstehenden partiellen Differentialgleichungen nach folgenden Gesichtspunkten:

- (a) Ist die Differentialgleichung linear, semilinear, quasilinear oder voll nichtlinear?
- (b) Welche Ordnung hat die Differentialgleichung?

$$\Delta u = 0$$

$$-\Delta u = f(u)$$

$$|Du| = 1$$

$$u_t + \sum_{i=1}^n b^i u_{x_i} = 0$$

$$\det(D^2 u) = f$$

$$\det\left(\frac{Du}{\sqrt{1 + |Du|^2}}\right) = 0$$

$$u_t - \Delta u = f(u)$$

$$u_{tt} - \Delta u = 0$$

$$u_t + \operatorname{div} F(u) = 0$$

$$u_t + uu_x + u_{xxx} = 0$$

$$u_t + uu_x + u_{xxx} = 0$$

$$u_t + H(Du, x) = 0$$

$$u_t - \Delta(u^{\gamma}) = 0$$

$$-\Delta u = \lambda u$$

$$\operatorname{div}(|Du|^{p-2}Du) = 0$$

$$u_t + uu_x = 0$$

Hausaufgaben

Matr.-Nr. 4679202

Thema: Charakteristikenmethode

Ich bitte um Entschuldigung, dass meine Lösung so lang geworden ist. Aber ich habe mich bemüht mein Vorgehen detailliert zu beschreiben. ©

Aufgabe 4. Finden Sie Lösungen $u \in C^1$ der folgenden linearen Randwertprobleme:

- (a) $-3u_x + 2u_y = 0$ mit $u(x,y) = y^2 + 1$ auf $\Gamma = \{(1,s) \in \mathbb{R}^2 \mid s \in \mathbb{R}\}$
- (b) $u_x+u_y-u_z=xe^{y-z}$ mit u(0,y,z)=g(y,z) für alle $y,z\in\mathbb{R},$ wobei $g\in C^1(\mathbb{R}^2)$ beliebig ist
- (c) $2u_x u_y = 2u xe^x$ mit $u(0, y) = y^2$ für alle $y \in \mathbb{R}$

Erläutern Sie dabei Ihr Vorgehen und überprüfen Sie abschließend, ob die von Ihnen gefundene Lösung wirklich das Problem löst.

(zu a) Wir betrachten die Charakteristiken

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + t \cdot \begin{pmatrix} -3 \\ 2 \end{pmatrix} \implies \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

Sei $\alpha(t) := u(x(t), y(t))$, d.h. α beschreibt u entlang der Charakteristiken. Es gilt

$$\alpha'(t) = u_x \cdot \dot{x}(t) + u_y \cdot \dot{y}(t) = -3u_x + 2u_y = 0$$

und somit ist u konstant entlang der Charakteristiken. Parametrisiere die Kurve Γ durch $x_0(s)=1$ und $y_0(s)=s$. Dann ergibt sich die Randwertbedingung zu $g(s)=s^2+1$. Wir prüfen nun die nichtcharakteristische Bedingung, d.h. ob die Kurve Γ auch alle Charakteristiken $\Xi_{(x_0,y_0)}$ durchläuft. Dazu prüfen wir den Tangentenvektor von Γ , nämlich $\begin{pmatrix} \dot{x}_0 \\ \dot{y}_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, und den Tangentenvektor der Charakteristik $\Xi_{(x_0,y_0)}$, nämlich $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$, auf lineare Unabhängigkeit:

$$\det \begin{pmatrix} 0 & -3 \\ 1 & 2 \end{pmatrix} = 3 \neq 0$$

Somit schneidet Γ alle Charakteristiken $\Xi_{(x_0,y_0)}$. Somit können wir die Schar der Charakteristiken beschreiben durch

$$x(s,t) = x_0(s) - 3t = 1 - 3t \quad \Rightarrow \quad t(x,y) = \frac{1-x}{3}$$
$$y(s,t) = y_0(s) + 2t = s + 2t \quad \Rightarrow \quad s(x,y) = y - 2t = y - \frac{2}{3}(1-x) = y + \frac{2}{3}x - \frac{2}{3}$$

Nach Konstruktion in der Vorlesung erhalten wir damit eine Lösung

$$u(x,y) = g(s(x,y)) = \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 + 1$$

Die Probe liefert mit den partiellen Ableitungen

$$\begin{array}{rcl} u_x(x,y) & = & \frac{4}{3} & \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 \\ u_y(x,y) & = & 2 & \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 \end{array} \right\} \quad \Rightarrow \quad -3 \cdot \frac{4}{3} \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 + 4 \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 = 0$$

und außerdem $u(1,y) = y^2 + 1$ für den Anfangswert. Somit ist u also Lösung der Differentialgleichung.

(zu b) Wir betrachten die partielle Differentialgleichung $u_x + u_y - u_z = x \cdot e^{y-z}$ mit der Randbedingung u(0, y, z) = g(y, z) für beliebiges $g \in C^1(\mathbb{R}^2)$. Definieren wir den "Rand" als die Fläche $\Gamma = \{(0, y, z) \in \mathbb{R}^3 : y, z \in \mathbb{R}\}$. Diese lässt sich parametrisieren mit

$$\gamma(\sigma,\tau) = \begin{pmatrix} x_0(\sigma,\tau) \\ y_0(\sigma,\tau) \\ z_0(\sigma,\tau) \end{pmatrix} = \begin{pmatrix} 0 \\ \sigma \\ \tau \end{pmatrix}$$

Für die Tangentialebene erhalten wir die Spannvektoren

$$\gamma_{\sigma}(\sigma, \tau) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \gamma_{\tau}(\sigma, \tau) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \Rightarrow \quad \dot{\gamma}(\sigma, \tau) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Betrachten wir die Charakteristiken $\Xi_{\sigma,\tau} = \operatorname{Im}(\xi)$ mit

$$\xi(t,\sigma,\tau) = \begin{pmatrix} x(t,\sigma,\tau) \\ y(t,\sigma,\tau) \\ z(t,\sigma,\tau) \end{pmatrix} = \begin{pmatrix} x_0(\sigma,\tau) + t \\ y_0(\sigma,\tau) + t \\ z_0(\sigma,\tau) - t \end{pmatrix} = \begin{pmatrix} t \\ \sigma + t \\ \tau - t \end{pmatrix}$$
(2.1)

Prüfen wir die nichtcharakteristische Bedingung um sicherzustellen, dass auch jede Charakteristik $\Xi_{\sigma,\tau}$ von Γ durchlaufen wird:

$$\det(\dot{\gamma} \mid \dot{\xi}) = \det \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} = 1 \neq 0$$

Bezeichne mit $f(u, x, y, z) = x \cdot e^{y-z}$ die rechte Seite der Differentialgleichung. Schreibe $\xi(t) = \xi(t, \sigma, \tau)$ für fixiertes σ und τ (x, y, z) analog). Sei $\alpha(t) := u(\xi(t))$ die Funktion u entlang einer Charakteristik $\Xi_{\sigma,\tau}$. Dann gilt

$$\dot{\alpha}(t) = Du \cdot \dot{\xi} = f(u(\xi(t)), \xi(t)) = f(\alpha(t), t, \sigma + t, \tau - t) = t \cdot e^{(\sigma + t) - (\tau - t)}$$

$$= t \cdot e^{\sigma - \tau + 2t}$$
(2.2)

und dem Anfangswert $\alpha(0) = \alpha(0, \sigma, \tau) = g(\sigma, \tau)$. Lösen wir also dieses Anfangswert-

problem und integrieren dazu die rechte Seite in Gleichung (2.2) partiell:

$$\alpha(t) = \int t \cdot e^{\sigma - \tau + 2t} dt = \left(\frac{1}{2}e^{\sigma - \tau + 2t}\right) t - \int \frac{1}{2}e^{\sigma - \tau + 2t} dt$$
$$= \frac{1}{2}t \cdot e^{\sigma - \tau + 2t} - \frac{1}{4}e^{\sigma - \tau + 2t} + C(\sigma, \tau)$$
$$= \left(\frac{1}{2}t - \frac{1}{4}\right)e^{\sigma - \tau + 2t} + C(\sigma, \tau)$$

Mit dem Anfangswert $\alpha(0) = g(\sigma, \tau)$ ergibt sich die Konstante

$$\alpha(0) = \frac{1}{4}e^{\sigma-\tau} + C(\sigma,\tau) \stackrel{!}{=} g(\sigma,\tau) \ \Rightarrow \ C(\sigma,\tau) = \frac{1}{4}e^{\sigma-\tau} + g(\sigma,\tau)$$

und somit die konkrete Lösung

$$\alpha(t) = \left(\frac{1}{2}t - \frac{1}{4}\right)e^{\sigma - \tau + 2t} + \frac{1}{4}e^{\sigma - \tau} + g(\sigma, \tau)$$

Aus Gleichung (2.1) erhalten wir die Inverse von ξ als

$$\xi^{-1}(x,y,z) = \begin{pmatrix} t(x,y,z) \\ \sigma(x,y,z) \\ \tau(x,y,u) \end{pmatrix} = \begin{pmatrix} x \\ y-x \\ z+x \end{pmatrix}$$

Nach Konstruktion in der Vorlesung erhalten wir die Lösung

$$\begin{split} u(x,y,z) &= \alpha(\xi^{-1}(x,y,z)) \\ &= \left(\frac{1}{2}x - \frac{1}{4}\right)e^{(y-x)-(z+x)+2x} + \frac{1}{4}e^{(y-x)-(z+x)} + g(y-x,z+x) \\ &= \left(\frac{1}{2}x - \frac{1}{4}\right)e^{y-z} + \frac{1}{4}e^{y-z-2x} + g(y-x,z+x) \end{split}$$

Nun prüfen wir noch, dass die gefundene Funktion auch wirklich eine Lösung der Differentialgleichung ist. Für die partiellen Ableitungen gilt

$$u_x(x,y,z) = \frac{1}{2}e^{y-z} - \frac{1}{2}e^{y-z-2x} - \partial_1 g(y-x,z+x) + \partial_2 g(y-x,z+x)$$

$$u_y(x,y,z) = \left(\frac{1}{2}x - \frac{1}{4}\right)e^{y-z} + \frac{1}{4}e^{y-z-2x} + \partial_1 g(y-x,z+x)$$

$$u_z(x,y,z) = -\left(\frac{1}{2}x - \frac{1}{4}\right)e^{y-z} - \frac{1}{4}e^{y-z-2x} + \partial_2 g(y-x,z+x)$$

Einsetzen liefert

$$\begin{split} &\frac{1}{2}e^{y-z} - \frac{1}{2}e^{y-z-2x} - \partial_1 g(y-x,z+x) + \partial_2 g(y-x,z+x) \\ &+ \left(\frac{1}{2}x - \frac{1}{4}\right)e^{y-z} + \frac{1}{4}e^{y-z-2x} + \partial_1 g(y-x,z+x) \\ &+ \left(\frac{1}{2}x + \frac{1}{4}\right)e^{y-z} + \frac{1}{4}e^{y-z-2x} - \partial_2 g(y-x,z+x) \\ &= e^{y-z} \cdot \left(\frac{1}{2} + \frac{1}{2}x - \frac{1}{4} + \frac{1}{2}x - \frac{1}{4}\right) - e^{y-z-2x} \left(\frac{1}{2} - \frac{1}{4} - \frac{1}{4}\right) \\ &= x \cdot e^{y-z} \end{split}$$

Außerdem ist die Randwertbedingung erfüllt, denn

$$u(0,y,z) = -\frac{1}{4}e^{y-z} + \frac{1}{4}e^{y-z} + g(y,z) = g(y,z)$$

und somit u tatsächlich Lösung der partiellen Differentialgleichung.

(zu c) Gegeben sei die partielle Differentialgleichung $2u_x - u_y = 2u + x \cdot e^x$ und die Randwertbedingung $u(0,y) = y^2$ für alle $y \in \mathbb{R}$. Bezeichnen wir mit $f(u,x,y) = 2u - xe^x$ die rechte Seite. Die Randwerte werden auf der Kurve $\Gamma = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}$ angenommen. Diese können wir parametrisieren mit

$$\gamma(s) = \begin{pmatrix} x_0(s) \\ y_0(s) \end{pmatrix} = \begin{pmatrix} 0 \\ s \end{pmatrix} \implies \dot{\gamma}(s) = \begin{pmatrix} \dot{x}_0(s) \\ \dot{y}_0(s) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Damit wird die Randwertbedingung zu $g(s) = s^2$. Betrachten wir die Charakteristiken Ξ_s mit

$$\xi(t,s) = \begin{pmatrix} x(t,s) \\ y(t,s) \end{pmatrix} = \begin{pmatrix} x_0(s) + 2t \\ y_0(s) - t \end{pmatrix} = \begin{pmatrix} 2t \\ s+t \end{pmatrix}$$
 (2.3)

Die nichtcharakteristische Bedingung ist hier erfüllt, denn

$$\det \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix} = -2 \neq 0$$

Betrachte nun die Funktion u entlang der Charakteristiken Ξ_s für fixiertes s beschrieben durch $\alpha(t) = u(\xi(t))$. Differenzieren ergibt

$$\dot{\alpha}(t) = u_x \cdot \dot{x} + u_y \cdot \dot{y} = f(u(\xi(t)), \xi(t)) = f(\alpha(t), 2t, s + t) = 2\alpha - 2t \cdot e^{2t}$$
 (2.4)

bei $\alpha(0,s)=g(s)=s^2$. Dieses Anfangswertproblem lösen wir mit Variation der Konstanten. Das zugehörige homogene Problem besitzt offensichtlich die Lösung $\alpha(t)=c(t)\cdot e^{2t}$. Differenzieren wir diese Gleichung erhalten wir $\dot{\alpha}(t)=\dot{c}(t)\cdot e^{2t}+2c(t)\cdot e^{2t}$. Setzen wir dies nun in Gleichung (2.4) ein, dann erhalten wir für ein $\hat{c}\in\mathbb{R}$

$$\dot{c}(t) \cdot e^{2t} + 2c(t) \cdot e^{2t} = 2c(t) \cdot e^{2t} - 2t \cdot e^{2t} \implies \dot{c}(t) = -2t \implies c(t) = \hat{c} - t^2$$

Damit ergibt sich die allgemeine Lösung $\alpha(t)=e^{2t}(\hat{c}-t^2)$. Durch den Anfangswert gilt $\alpha(0)=\hat{c}=s^2$ und somit ist $\alpha(t)=e^{2t}(s^2-t^2)$ konkrete Lösung des Anfangswertproblems, was sich auch leicht überprüfen lässt:

$$\dot{\alpha}(t) = 2\underbrace{e^{2t}(s^2 - t^2)}_{=\alpha(t)} - 2t \cdot e^{2t} = 2\alpha(t) - 2t \cdot e^{2t}$$
 und $\alpha(0) = s^2$

Aus Gleichung (2.3) erhalten wir

$$\xi^{-1}(x,y) = \begin{pmatrix} t(x,y) \\ s(x,y) \end{pmatrix} = \begin{pmatrix} \frac{1}{2}x \\ \frac{1}{2}x + y \end{pmatrix}$$

Damit folgt nach Konstruktion in der Vorlesung eine Lösung

$$u(x,y) = \alpha(s(x,y)) = e^x \left(\left(\frac{1}{2}x + y \right)^2 - \frac{1}{4}x^2 \right)$$
$$= e^x \left(\frac{1}{4}x^2 + xy + y^2 - \frac{1}{4}x^2 \right)$$
$$= e^x \left(y^2 + xy \right)$$

Dann gilt für die partiellen Ableitungen

$$u_x = e^x (y^2 + xy) + y \cdot e^x$$
$$u_y = e^x (2y + x)$$

und somit

$$2u_x - u_y = 2e^x(y^2 + xy) + 2y \cdot e^x - e^x(2y + x)$$
$$= 2u + e^x(2y - 2y - x)$$
$$= 2u - x \cdot e^x$$

und $u(0,y)=e^0(y^2+0\cdot y)=y^2$. Damit ist also u tatsächlich Lösung der partiellen Differentialgleichung.

Partielle Differentialgleichungen – Übungsblatt 3

Aufgabe 6. Bestimmen Sie eine Lösung $u \in C\dot{z}(U)$ des quasilinearen Randwertproblems

$$uu_x + u_y = 1$$

$$u(x, x) = \frac{1}{2}x \quad \forall x \in \mathbb{R} \setminus \{\xi\}$$

wobei $\xi \in \mathbb{R}$ geeignet gewählt und U eine geeignet gewählte Umgebung der Menge ist, auf der u vorgegeben ist. Nutzen Sie dazu die Methode der Charakteristiken, überprüfen Sie Ihr Ergebnis und skizzieren Sie einige Charakteristiken in der Nähe des Punktes (ξ, ξ) .

Aus der Vorlesung kennen wir die Notation $a(u(x),x)\cdot Du+b(u(x),x)=0$. Wir notieren a(u(x,y),x,y)=(u(x,y),1) und b(u(x,y),x,y)=-1. Aus der Randwertbedingung erhalten wir eine Kurve $\Gamma=\left\{(x,x)\in\mathbb{R}^2:x\in\mathbb{R}\setminus\{\xi\}\right\}$ mit Parametrisierung $\gamma(s)=\left(\begin{smallmatrix}x_0(s)\\y_0(s)\end{smallmatrix}\right)=\left(\begin{smallmatrix}s\\s\end{smallmatrix}\right)$, auf der $g(s)=\frac{1}{2}s$ gilt. Wir überprüfen die nichtcharakteristische Bedingung gemäß Konstruktion in der Vorlesung als

$$\det\left(\dot{\gamma}\mid a(g(s),\gamma(s))\right) = \det\begin{pmatrix}1 & g(s)\\1 & 1\end{pmatrix} = \det\begin{pmatrix}1 & \frac{1}{2}s\\1 & 1\end{pmatrix} = 1 - \frac{1}{2}s \neq 0 \ \forall s \neq 2$$

Wähle somit also $\xi = 2$, um die Regularität zu sichern. Betrachten wir $\alpha(t, s) = u(x(t, s), y(t, s)$ als die Funktion u entlang der Charakteristiken. Da die partielle Differentialgleichung quasilinear ist, reichen die beiden folgenden charakteristischen Gleichungen zu lösen aus:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = a(\alpha, x, y) = \begin{pmatrix} \alpha \\ 1 \end{pmatrix}$$

$$\dot{\alpha} = -b(\alpha, x, y) = 1$$

mit den Anfangswerten $\alpha(0, s) = \frac{1}{2}s$, x(0, s) = s und y(0, s) = s. Lösen wir diese gewöhnlichen Differentialgleichungen:

$$\begin{array}{lll} \alpha(t) = t + c(s) & \stackrel{\mathrm{AW}}{\Rightarrow} & c(s) = \frac{1}{2}s & \Rightarrow & \alpha(t,s) = t + \frac{1}{2}s \\ y(t) = t + c(s) & \stackrel{\mathrm{AW}}{\Rightarrow} & c(s) = s & \Rightarrow & y(t,s) = t + s \\ x(t) = \frac{1}{2}t^2 + \frac{1}{2}st + c(s) & \stackrel{\mathrm{AW}}{\Rightarrow} & c(s) = s & \Rightarrow & x(t,s) = \frac{1}{2}t^2 + \frac{1}{2}st + s \end{array}$$

Wegen der charakteristischen Bedingung können wir dieses Gleichungssystem nach t und s auflösen:

$$y(t,s) = t + s \implies s = y - t$$

$$x(t,s) = \frac{1}{2}t^2 + \frac{1}{2}st + s = \frac{1}{2}t^2 + \frac{1}{2}(y - t)t + y - t = t\left(\frac{1}{2}y - 1\right) + y$$

also

$$t(x,y) = \frac{x-y}{\frac{1}{2}y-1}$$
 und $s(x,y) = y - \frac{x-y}{\frac{1}{2}y-1}$

Setzen wir dies als Lösung $u(x,y) = \alpha(t(x,y),s(x,y))$ zusammen, erhalten wir

$$u(x,y) = \alpha \left(\frac{x-y}{\frac{1}{2}y-1}, \ y - \frac{x-y}{\frac{1}{2}y-1} \right)$$

$$= \frac{x-y}{\frac{1}{2}y-1} + \frac{1}{2}y - \frac{1}{2}\frac{x-y}{\frac{1}{2}y-1}$$

$$= \frac{x-y}{y-2} + \frac{1}{2}y \qquad \forall x, y \in \mathbb{R}, y \neq 2$$

Überprüfen wir unser Ergebnis: Es gilt

$$u(x,y) = \frac{x-y}{y-2} + \frac{1}{2}y$$

$$u_x(x,y) = \frac{1}{y-2}$$

$$u_y(x,y) = \frac{-1}{y-2} - \frac{x-y}{(y-2)^2} + \frac{1}{2} = \frac{2-x}{(y-2)^2} + \frac{1}{2}$$

Setzen wir dies in die partielle Differentialgleichung ein, so erhalten wir

$$u(x,y) \cdot u_x(x,y) + u_y(x,y) = \left(\frac{x-y}{y-2} + \frac{1}{2}y\right) \cdot \frac{1}{y-2} + \frac{2-x-2y}{(y-2)^2} + \frac{1}{2}$$

$$= \frac{x-y}{(y-2)^2} + \frac{1}{2}y\frac{1}{y-2} + \frac{2-x}{(y-2)^2} + \frac{1}{2}$$

$$= \frac{2-y}{(y-2)^2} + \frac{1}{2}y\frac{1}{y-2} + \frac{1}{2}$$

$$= \left(\frac{1}{2}y-1\right)\frac{1}{y-2} + \frac{1}{2}$$

$$= 1$$

und für die Randwerte $u(x,x) = \frac{1}{2}x$ für alle $x \neq 2$.

Betrachten wir die Charakteristiken beschrieben mit einer Parametrisierung für fixiertes $s \neq 2$ und betrachten das Gleichungssystem

$$x(t) = \begin{pmatrix} \frac{1}{2}t^2 + \frac{1}{2}st + s \\ t + s \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \implies t = 2 - s \implies 2 = \frac{1}{2}(2 - s)^2 + \frac{1}{2}s(2 - s) + s = 2$$

Somit sind die Gleichungen unabhängig von $s \in \mathbb{R} \setminus \{2\}$ erfüllt und alle Charakteristiken gehen durch den Punkt (2, 2).

