## MAT1320 LINEAR ALGEBRA EXERCISES IX-X

| 1911                       |            |
|----------------------------|------------|
| Name Surname:              | Group No:  |
|                            | -          |
| Student No:                | Duration:  |
|                            |            |
| Department:                | Date:      |
| Lecturer: Dr. Mustafa SARI | Signature: |
|                            |            |

- 1. (A points) Let  $\vec{u}$  and  $\vec{v}$  be two unit vectors. If  $\vec{u} + 2\vec{v}$  is orthogonal to  $5\vec{u} - 4\vec{v}$ , then which of the followings is the angle between the vectors  $\vec{u}$  and  $\vec{v}$ ?
  - b)  $90^{\circ}$  c)  $30^{\circ}$  d)  $\arccos\left(\frac{1}{3}\right)$  e)  $\arccos\left(\frac{2}{7}\right)$

Since II. I = | II and II = | II | 2 and | II = | II | , and | II = | II |

Let I= ( u, u, u).

$$\vec{u} \cdot \vec{0} = 0 \Rightarrow 2u_1 + 0.u_2 + 1.u_3 = 0 \Rightarrow 2u_1 + u_3 = 0$$

$$\vec{e} \times \vec{b} = \begin{vmatrix} \vec{7} & \vec{J} & \vec{k} \\ \vec{u} & -3 & 7 \end{vmatrix} = (-10, -3, 7)$$

$$\vec{u} \times \vec{b} = \begin{bmatrix} \vec{\tau} & \vec{j} & \vec{k} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ 4 & 4 & 4 \end{bmatrix} = \begin{pmatrix} \alpha_2 - \alpha_3 & \alpha_4 - \alpha_3 & \alpha_4 - \alpha_2 \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 - \alpha_4 \end{pmatrix}$$

$$u_1 - u_3 = -3$$
 of  $2u_1 = -u_3 = 1$   $u_1 - 2u_2 = -3 = 1$   $u_3 = 2$ 

$$u_1 - u_2 = 7 \Rightarrow \overline{\left[u_2 = -8\right]} \Rightarrow \overline{u} = \left(-1, -8, 2\right)$$

- 2. (D points) Let  $\vec{a} = 2\mathbf{i} + \mathbf{k}$ ,  $\vec{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$  and  $\vec{c} = 4\mathbf{i} 3\mathbf{j} + 7\mathbf{k}$ . If  $\vec{u} \times \vec{b} = \vec{c} \times \vec{b}$  and  $\vec{u} \cdot \vec{a} = 0$ , then which of the followings is the vector  $\vec{u}$ ?

  - a)  $\mathbf{i} + 8\mathbf{j} + \mathbf{k}$  b)  $\mathbf{i} + 8\mathbf{j} + 2\mathbf{k}$
- c) 2i + j 8k
- $(\mathbf{d}) \mathbf{i} 8\mathbf{j} + 2\mathbf{k}$  e)  $\mathbf{i} 8\mathbf{j} + \mathbf{k}$

3. (C points) For the following parallelogram ABCD. the points L and M are the middle points of and CD, respectively. sides BCThen, which of the followings is the vector AL + AM?



- a)  $\frac{1}{2}AC$  b) AC c)
- e) None of them

$$\overrightarrow{AL} = \overrightarrow{AB} + \overrightarrow{BL}$$
 $\overrightarrow{AM} = \overrightarrow{AD} + \overrightarrow{OM}$ 

$$= \overrightarrow{AL} + \overrightarrow{AM} = \underbrace{\overrightarrow{AB} + \overrightarrow{AD}}_{\overrightarrow{AC}} + \underbrace{\overrightarrow{BL} + \overrightarrow{DM}}_{\overrightarrow{2}} = \underbrace{\frac{3}{2}}_{\overrightarrow{AC}} \cdot \overrightarrow{AC}$$

Ti 3+2eT, 34eT but 3+2+34¢T = T is not subspace of h.

A: 
$$a_1 t^2 + b_1 t + c_1 + a_2 t^2 + b_2 t + c_2 \in A$$
. Then,  
 $b_1 = 3c_1$ ,  $b_2 = 3c_2$ .

4. (A points) Let  $P_2$  be the set of all polynomials over real numbers whose degrees are at most 2. Recall that  $P_2$  is a vector space with usual addition and multiplication by a scalar on polynomials. Then, which of the following subsets is a subspace of  $P_2$ ?

$$\mathcal{M} = \{at^2 + bt + c \mid c = 0\}$$

$$\mathcal{A} = \{at^2 + bt + c \mid b = 3c\}$$

$$\times \mathcal{T} = \{at^2 + bt + c \mid a + b + c = 3\}$$

b)  $\mathcal{M}$  and  $\mathcal{T}$  c)  $\mathcal{A}$  and  $\mathcal{T}$ d) Only  $\mathcal{M}$  e) All of them

5. Which of the following subsets are subspaces of the given vector spaces?

$$\mathcal{Y} = \left\{ \begin{bmatrix} x \\ x^2 \end{bmatrix} \mid x \in \mathbb{R} \right\} \subset \mathbb{R}^2$$

$$\mathcal{T} = \left\{ \begin{bmatrix} x \\ x+1 \\ 0 \end{bmatrix} \mid x \in \mathbb{R} \right\} \subset \mathbb{R}^3$$

$$\mathcal{U} = \left\{ \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} \mid x \in \mathbb{R} \right\} \subset \mathbb{R}^3$$
 a) Only  $\mathcal{T}$  b) Only  $\mathcal{T}$  d)  $\mathcal{Y}$  and  $\mathcal{T}$  e)  $\mathcal{T}$  and  $\mathcal{U}$ 

- (c) Only U

$$Y$$
;  $\binom{1}{1}$ ,  $\binom{2}{u} \in Y$  but  $\binom{1}{1}$ ,  $\binom{2}{2}$ ,  $\binom{3}{5}$ ,  $\notin Y$  because  $3^2 \neq 5$ .

$$T: \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \in T \quad \text{but} \quad \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 5 \end{pmatrix} \notin T \quad \text{Since} \quad 5 \neq 3 \neq 1$$

=) Then, see that U is object under addition and multiplication by scoolers.