# Almost sure convergence of sample version of Half Space depth

Rohan Shinde

M. Stat 2<sup>nd</sup> Year Project

April 20, 2024

## Half Space Depth

#### Half Space Depth (Sample Version)

For a given data cloud  $\Omega_n = \{\mathbf{X}_1, \mathbf{X}_2, \cdots, \mathbf{X}_n\}$ , the Tukey's half space depth at a point  $\mathbf{x} \in \mathbb{R}^d$  with respect to given data cloud  $\Omega_n$  is given by

$$\begin{aligned} \mathsf{HD}(\mathbf{x},\Omega_n) &= \inf_{\substack{||\alpha||=1}} \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ \alpha'(\mathbf{X}_i - \mathbf{x}) \geq 0 \right\} \\ &= 1 - \sup_{\substack{||\alpha||=1}} \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ \alpha'(\mathbf{X}_i - \mathbf{x}) \leq 0 \right\} \end{aligned}$$

## Half Space Depth

#### Half Space Depth (Population Version)

For a given  $\mathbf{x} \sim F$ , the Tukey's half space depth at a point  $\mathbf{x} \in \mathbb{R}^d$  with respect to given distribution F is given by

$$\begin{aligned} \mathsf{HD}(\mathbf{x}, F) &= \inf_{\substack{\alpha \\ ||\alpha|| = 1}} \mathbb{P}\left(\alpha'(\mathbf{X}_i - \mathbf{x}) \geq 0\right) \\ &= 1 - \sup_{\substack{\alpha \\ ||\alpha|| = 1}} \mathbb{P}\left(\alpha'(\mathbf{X}_i - \mathbf{x}) \leq 0\right) \end{aligned}$$

#### Goal

#### Goal

Suppose  $\mathbf{X}_1, \cdots, \mathbf{X}_n \stackrel{\text{iid}}{\sim} F$ . Let  $HD(\mathbf{x}, F_n)$  be the half space depth of  $\mathbf{x}$  with respect to  $\Omega_n = \{\mathbf{X}_1, \mathbf{X}_2, \cdots, \mathbf{X}_n\}$ . Then as  $n \to \infty$ 

$$HD(\mathbf{x}, F_n) \stackrel{\text{a.s}}{\rightarrow} HD(\mathbf{x}, F)$$

#### Goal

#### Goal

Suppose  $\mathbf{X}_1, \cdots, \mathbf{X}_n \stackrel{\text{iid}}{\sim} F$ . Let  $HD(\mathbf{x}, F_n)$  be the half space depth of  $\mathbf{x}$  with respect to  $\Omega_n = \{\mathbf{X}_1, \mathbf{X}_2, \cdots, \mathbf{X}_n\}$ . Then as  $n \to \infty$ 

$$\mathsf{HD}(\mathbf{x}, F_n) \stackrel{\mathsf{a.s}}{\to} \mathsf{HD}(\mathbf{x}, F)$$



## Towards the goal

## Towards the goal

#### Proposition 1

Suppose  $\mathbf{X}_1, \cdots, \mathbf{X}_n \stackrel{\text{iid}}{\sim} F$  and  $\mathbf{X} \sim F$  independently of  $\mathbf{X}_1, \cdots, \mathbf{X}_n$ . Then

$$\mathbb{P}\left(\sup_{\substack{\alpha\\||\alpha||=1}}\left|\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{\alpha'(\mathbf{X}_{i}-\mathbf{x})\geq0\right\}-\mathbb{P}(\alpha'(\mathbf{X}-\mathbf{x})>0)\right|>\epsilon\right)$$

$$$$

where K is a constant independent of n

## Towards the goal

#### Proposition 1

Suppose  $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} F$  and  $X \sim F$  independently of  $X_1, \dots, X_n$ . Then

$$\mathbb{P}\left(\sup_{\substack{\alpha\\||\alpha||=1}}\left|\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{\alpha'(\mathbf{X}_{i}-\mathbf{x})\geq0\right\}-\mathbb{P}(\alpha'(\mathbf{X}-\mathbf{x})>0)\right|>\epsilon\right)$$

$$$$

where K is a constant independent of n

#### Borel Cantelli Lemma

For a sequence of events  $\{E_n\}_{n\geq 1}$  in some probability space,

if 
$$\sum_{i=1}^n \mathbb{P}(E_n) < \infty$$
 then  $\mathbb{P}\left(\limsup_{n \to \infty} E_n\right) = 0$ 



#### Proof of Goal

Note that

$$\begin{aligned} \left| \mathsf{HD}(\mathbf{x}, F_n) - \mathsf{HD}(\mathbf{x}, F) \right| &= \left| 1 - \sup_{\substack{\alpha \\ ||\alpha|| = 1}} \frac{1}{n} \sum_{i=1}^n \mathbb{I} \left\{ \alpha'(\mathbf{X}_i - \mathbf{x}) \le 0 \right\} \\ &- 1 + \sup_{\substack{\alpha \\ ||\alpha|| = 1}} \mathbb{P} \left( \alpha'(\mathbf{X}_i - \mathbf{x}) \le 0 \right) \right| \\ &= \left| \sup_{\substack{\alpha \\ ||\alpha|| = 1}} \frac{1}{n} \sum_{i=1}^n \mathbb{I} \left\{ \alpha'(\mathbf{X}_i - \mathbf{x}) \le 0 \right\} - \sup_{\substack{\alpha \\ ||\alpha|| = 1}} \mathbb{P} \left( \alpha'(\mathbf{X}_i - \mathbf{x}) \le 0 \right) \right| \end{aligned}$$

But note that for any  $\epsilon > 0$ ,

$$\begin{aligned} & \Big| \sup_{\substack{\alpha \\ ||\alpha||=1}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ \alpha'(\mathbf{X}_{i} - \mathbf{x}) \geq 0 \right\} - \sup_{\substack{\alpha \\ ||\alpha||=1}} \mathbb{P}(\alpha'(\mathbf{X} - \mathbf{x}) > 0) \Big| > \epsilon \end{aligned}$$

$$\Rightarrow \sup_{\substack{\alpha \\ ||\alpha||=1}} \Big| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ \alpha'(\mathbf{X}_{i} - \mathbf{x}) \geq 0 \right\} - \mathbb{P}(\alpha'(\mathbf{X} - \mathbf{x}) > 0) \Big| > \epsilon$$

## Proof of Goal (Contd.)

Thus using Proposition 1, along with this, we get that

$$\mathbb{P}\left(\left|\sup_{\substack{\alpha\\||\alpha||=1}}\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{\alpha'(\mathbf{X}_{i}-\mathbf{x})\geq0\right\}-\sup_{\substack{\alpha\\||\alpha||=1}}\mathbb{P}(\alpha'(\mathbf{X}-\mathbf{x})>0)\right|>\epsilon\right)$$

$$<\mathcal{K}n^{d}e^{-2n\epsilon^{2}}$$

Now, 
$$\frac{K(n+1)^d e^{-2(n+1)\epsilon^2}}{Kn^d e^{-2n\epsilon^2}} = e^{-2\epsilon^2} \left(1+\frac{1}{n}\right)^d$$
 and hence

$$\limsup_{n\to\infty} \ \frac{K(n+1)^d e^{-2(n+1)\epsilon^2}}{Kn^d e^{-2n\epsilon^2}} = e^{-2\epsilon^2} < 1$$

Thus by ratio test 
$$\sum_{i=1}^{\infty} K n^{d} e^{-2n\epsilon^{2}} < \infty$$

## Proof of Goal (Contd.)

And hence

$$\sum_{n=1}^{\infty} \mathbb{P}\left(\left|\sup_{\substack{\boldsymbol{\alpha}\\||\boldsymbol{\alpha}||=1}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{\boldsymbol{\alpha}'(\mathbf{X}_{i} - \mathbf{x}) \geq 0\right\} - \sup_{\substack{\boldsymbol{\alpha}\\||\boldsymbol{\alpha}||=1}} \mathbb{P}(\boldsymbol{\alpha}'(\mathbf{X} - \mathbf{x}) > 0)\right| > \epsilon\right) < \infty$$

By Borel Cantelli Lemma, we thus get that

$$\limsup_{n \to \infty} \left\{ \left| \sup_{\substack{\boldsymbol{\alpha} \\ ||\boldsymbol{\alpha}|| = 1}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ \boldsymbol{\alpha}'(\mathbf{X}_{i} - \mathbf{x}) \ge 0 \right\} - \sup_{\substack{\boldsymbol{\alpha} \\ ||\boldsymbol{\alpha}|| = 1}} \mathbb{P}(\boldsymbol{\alpha}'(\mathbf{X} - \mathbf{x}) > 0) \right| > \epsilon \right\} = 0$$

Thus

$$\left| \mathsf{HD}(\mathsf{x}, F_n) - \mathsf{HD}(\mathsf{x}, F) \right| \stackrel{\text{a.s.}}{\to} 0 \quad \text{as } n \to \infty$$



## Prerequisites

#### Shattering property

A class  $\mathcal D$  is said to shatter a set of points F if it can pick out every possible subset (the empty subset and the whole of F included); that is,  $\mathcal D$  shatters F if each of the subsets of F has the form  $D \cap F$  for some D in  $\mathcal D$ 

#### Shattering number

A binary function on a space  $\mathcal Z$  is a function  $f:\mathcal Z\to\{0,1\}$ . Let  $\mathcal F$  be a class of binary functions on  $\mathcal Z$ . For any  $z_1,\cdots,z_n$  define  $\mathcal F_{z_1,\cdots,z_n}=\{(f(z_1),\cdots,f(z_n)):f\in\mathcal F\}$   $\mathcal F_{z_1,\ldots,z_n}$  is a finite collection of binary vectors and  $|\mathcal F_{z_1,\ldots,n}|\leq 2^n$ . The set  $\mathcal F_{z_1,\ldots,n}$  is called the projection of  $\mathcal F$  onto  $z_1,\cdots,z_n$ . The growth function or shattering number is defined by

$$s(\mathcal{F},n) = \sup_{z_1,\cdots,z_n} |\mathcal{F}_{z_1,\cdots,z_n}|$$

# Prerequisites

#### VC Dimension

VC dimension of a class of binary functions  ${\mathcal F}$  is

$$VC(\mathcal{F}) = \sup\{n : s(\mathcal{F}, n) = 2^n\}$$

## Theorem(Vapnik and Chervonenkis)

Let  $\mathcal{F}$  be a class of binary functions. For any  $\epsilon > \sqrt{2/n}$ ,

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}|(P_n(f)-P(f)|>\epsilon\right)\leq 4s(\mathcal{F},2n)\mathrm{e}^{-n\epsilon^2/8}$$

# Sauer's lemma

For  $n \ge VC(\mathcal{F}) = d$ 

$$s(\mathcal{F}, n) \leq \sum_{i=0}^{\mathsf{VC}(\mathcal{F})} \binom{n}{i} \leq \left(\frac{ne}{\mathsf{VC}(\mathcal{F})}\right)^{\mathsf{VC}(\mathcal{F})} < n^{\mathsf{VC}(\mathcal{F})}$$

## Proof of Proposition 1

From Hoeffding's lemma for i.i.d. random variables, for any fixed  ${\bf x},\, {\pmb \alpha}$  and for every  $\epsilon>0$  we have

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{\boldsymbol{\alpha}'(\mathbf{X}_{i}-\mathbf{x})\geq0\right\}-\mathbb{P}(\boldsymbol{\alpha}'(\mathbf{X}-\mathbf{x})>0)\right|>\epsilon\right)<2e^{-2n\epsilon^{2}}$$

Now, the set of halfspaces  $\{\mathbf{X}: \boldsymbol{\alpha}'(\mathbf{X}-\mathbf{x})>0\}$  in  $\mathbb{R}^d$  with varying  $\boldsymbol{\alpha}$  has VC dimension =d.

## Proof of proposition 1 (contd.)

Now note that

$$\mathbb{P}\left(\sup_{\substack{\boldsymbol{\alpha}\\||\boldsymbol{\alpha}||=1}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{\boldsymbol{\alpha}'(\mathbf{X}_{i} - \mathbf{x}) \geq 0\right\} - \mathbb{P}(\boldsymbol{\alpha}'(\mathbf{X} - \mathbf{x}) > 0) \right| > \epsilon\right) \\
= \mathbb{P}\left(\sup_{\boldsymbol{f_{\alpha}} \in \mathcal{F}} |(P_{n}(\boldsymbol{f_{\alpha}}) - P(\boldsymbol{f_{\alpha}})| > \epsilon\right)$$

where  $\mathcal{F} = \{\mathbf{X} \mapsto f_{\alpha}(\mathbf{X}) := \mathbb{1}\{\alpha'(\mathbf{X} - \mathbf{x}) > 0\} | \alpha \in \mathbb{R}^d\}$ Using the theorem by Vapnik and Chervonenkis, we get that

$$\mathbb{P}\left(\sup_{f_{\boldsymbol{\alpha}}\in\mathcal{F}}|(P_n(f_{\boldsymbol{\alpha}})-P(f_{\boldsymbol{\alpha}})|>\epsilon\right)\leq 4s(\mathcal{F},2n)e^{-n\epsilon^2/8}$$

## Proof of Proposition 1(contd.)

But by Sauer's lemma,  $s(\mathcal{F}, 2n) < (2n)^{VC(\mathcal{F})} = 2^d n^d$ . Thus

$$\mathbb{P}\left(\sup_{\substack{\alpha\\||\alpha||=1}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{ \alpha'(\mathbf{X}_{i} - \mathbf{x}) \ge 0 \right\} - \mathbb{P}(\alpha'(\mathbf{X} - \mathbf{x}) > 0) \right| > \epsilon \right)$$

$$< Kn^{d} e^{-n\epsilon^{2}/8}$$

where K is constant independent of n.



## Halfspace VC dimension

#### Result

Let  $\mathcal{F} = \{x \in \mathbb{R}^d : \operatorname{sign}(\mathbf{w}^\top \mathbf{x}) = y \mid \mathbf{w} \in \mathbb{R}^d\}$  be the class of linear classifiers (or halfspaces) in  $\mathbb{R}^d$ . The VC dimension of  $\mathcal{F}$  is d. If we allow for a bias term, then the VC dimension is d+1.

To prove this, let's first describe a set S of d points that is shattered by the class. Consider the set of points  $\mathbf{x}_i = \mathbf{e}_i$  for  $i \in [d]$  where  $\mathbf{e}_i$  is the ith standard basis vector that has 1 at coordinate i and 0 everywhere else. In order to show that these points can be shattered, for all labeling  $y_1,\ldots,y_d \in \{-1,1\}$  we need to show the existence of  $f \in \mathcal{F}$  that realizes it. Consider labeling  $y_1,\ldots,y_d \in \{-1,1\}$  then choosing  $\mathbf{w}$  as below suffices.

$$\mathbf{w} = \sum_{i=1}^d y_i \mathbf{e}_i$$

## Halfspace VC dimension (Contd.)

Then we have, that for all  $i \in [d]$ ,  $sign(\mathbf{w}^{\top}\mathbf{x}_i) = y_i$ . Thus it generates the labeling  $(y_1, \dots, y_d)$ . Since we can do this for any labeling, these points can be shattered.

Now we need to show that no d+1 points can be shattered. In order to show this, let us consider any set of d+1 points  $\mathbf{x}_1,\dots,\mathbf{x}_{d+1}$ . We know that no set of d+1 d-dimensional vectors can be linearly independent, thus there exists some  $j\in[d+1]$  such that

$$\mathbf{x}_j = \sum_{i \neq j} \alpha_i \mathbf{x}_i,$$

such that at least one  $\alpha_i \neq 0$ .

## Halfspace VC dimension (Contd.)

Suppose we consider the labeling where  $y_j = -1$  and for all  $i \neq j$   $y_i = \operatorname{sign}(\alpha_i)$  if  $\alpha_i \neq 0$  else  $y_i = 1$ . We will show that no  $\mathbf{w}$  can achieve this labeling. Suppose there is a  $\mathbf{w}$  that achieves this labeling then we have for all  $i \neq j$  if  $\alpha_i \neq 0$  then  $\alpha_i(\mathbf{w}^\top \mathbf{x}_i) > 0$  since  $\operatorname{sign}(\mathbf{w}^\top \mathbf{x}_i) = y_i = \operatorname{sign}(\alpha_i)$ . This gives us,

$$\mathbf{w}^{\top}\mathbf{x}_{j} = \sum_{i \neq j} \alpha_{i}\mathbf{w}^{\top}\mathbf{x}_{i} > 0.$$

Thus **w** would label  $\mathbf{x}_j$  incorrectly as positive when  $y_j = -1$ . This proves that no d+1 points can be shattered.