[учебный проект]

Определение стоимости автомобилей

1 Введение:

Сервис по продаже автомобилей с пробегом разрабатывает приложение для привлечения новых клиентов. В нём можно быстро узнать рыночную стоимость своего автомобиля. В вашем распоряжении исторические данные: технические характеристики, комплектации и цены автомобилей. Вам нужно построить модель для определения стоимости.

2 Цель проекта

Требуется построить модель машинного обучения для определения стоимости автомобиля.

3 Описание данных

Признаки

- DateCrawled дата скачивания анкеты из базы
- VehicleType тип автомобильного кузова
- RegistrationYear год регистрации автомобиля
- Gearbox тип коробки передач
- Power мощность (л. с.)
- Model модель автомобиля
- Kilometer пробег (км)
- RegistrationMonth месяц регистрации автомобиля
- FuelType тип топлива
- Brand марка автомобиля
- NotRepaired была машина в ремонте или нет
- DateCreated дата создания анкеты
- NumberOfPictures количество фотографий автомобиля
- PostalCode почтовый индекс владельца анкеты (пользователя)
- LastSeen дата последней активности пользователя

Целевой признак

4 План работы

- 1. Загрузить и подготовить данные.
- 2. Обучить разные модели.
- 3. Проанализировать скорость работы и качество моделей.

5 Подготовка данных

Ввод [1]:

```
import pandas as pd
 2 | import numpy as np
 3 import seaborn as sns
4 import matplotlib.pyplot as plt
 5 | from sklearn.preprocessing import OrdinalEncoder
 6 | from sklearn.model_selection import train_test_split
 7
   from sklearn.model_selection import cross_val_score
   from sklearn.metrics import make_scorer
 8
 9
10
   from sklearn.preprocessing import StandardScaler
   from sklearn.model_selection import GridSearchCV
11
12
   from sklearn.linear_model import LinearRegression
13
14 from sklearn.tree import DecisionTreeRegressor
15 from sklearn.ensemble import RandomForestRegressor
16 | from sklearn.model_selection import RepeatedKFold
17
   from lightgbm import LGBMRegressor
18
   import lightgbm as lgb
19
```

C:\Users\Admin\.conda\envs\praktikum_env_win_new\lib\site-packages\statsmode
ls\tools_testing.py:19: FutureWarning: pandas.util.testing is deprecated. U
se the functions in the public API at pandas.testing instead.
import pandas.util.testing as tm

Ввод [2]:

```
1 df = pd.read_csv('autos.csv')
```

Ввод [3]:

```
# функция для изучения данных
2
  def see(df):
3
      print(df.shape)
4
      print()
5
       print(df.columns)
6
       print()
7
       print(df.info())
8
      display(df.head())
9
       display(df.describe())
```

Ввод [4]:

```
see(df)
 1
(354369, 16)
Index(['DateCrawled', 'Price', 'VehicleType', 'RegistrationYear', 'Gearbox',
       'Power', 'Model', 'Kilometer', 'RegistrationMonth', 'FuelType', 'Bran
d',
       'NotRepaired', 'DateCreated', 'NumberOfPictures', 'PostalCode',
       'LastSeen'],
     dtype='object')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 354369 entries, 0 to 354368
Data columns (total 16 columns):
    Column
#
                       Non-Null Count
                                        Dtype
    ____
                       -----
 0
    DateCrawled
                       354369 non-null object
 1
    Price
                       354369 non-null int64
 2
    VehicleType
                       316879 non-null object
    RegistrationYear
 3
                       354369 non-null int64
 4
    Gearbox
                       334536 non-null object
 5
    Power
                       354369 non-null int64
 6
    Model
                       334664 non-null object
 7
    Kilometer
                       354369 non-null int64
    RegistrationMonth 354369 non-null int64
 8
                       321474 non-null object
    FuelType
 10 Brand
                       354369 non-null object
 11 NotRepaired
                       283215 non-null object
 12 DateCreated
                       354369 non-null object
 13 NumberOfPictures
                       354369 non-null int64
 14 PostalCode
                       354369 non-null int64
15 LastSeen
                       354369 non-null object
dtypes: int64(7), object(9)
memory usage: 43.3+ MB
```

None

	DateCrawled	Price	VehicleType	RegistrationYear	Gearbox	Power	Model	Kilometer	Regi
0	2016-03-24 11:52:17	480	NaN	1993	manual	0	golf	150000	_
1	2016-03-24 10:58:45	18300	coupe	2011	manual	190	NaN	125000	
2	2016-03-14 12:52:21	9800	suv	2004	auto	163	grand	125000	
3	2016-03-17 16:54:04	1500	small	2001	manual	75	golf	150000	
4	2016-03-31 17:25:20	3600	small	2008	manual	69	fabia	90000	

	Price	RegistrationYear	Power	Kilometer	RegistrationMonth	Numt
count	354369.000000	354369.000000	354369.000000	354369.000000	354369.000000	
mean	4416.656776	2004.234448	110.094337	128211.172535	5.714645	
std	4514.158514	90.227958	189.850405	37905.341530	3.726421	
min	0.000000	1000.000000	0.000000	5000.000000	0.000000	
25%	1050.000000	1999.000000	69.000000	125000.000000	3.000000	
50%	2700.000000	2003.000000	105.000000	150000.000000	6.000000	
75%	6400.000000	2008.000000	143.000000	150000.000000	9.000000	
max	20000.000000	9999.000000	20000.000000	150000.000000	12.000000	
4						•

Выводы:

Колонка RegistrationYear: есть аномальные значения (min = 1000 или max = 9999 это когда?)

Колонка Power: есть аномальные значения (max = 20000 л.с. - это ракета, будем счиать её выбросом)

Пропуски в колонках: VehicleType, Gearbox, Model, FuelType, NotRepaired.

Аномалии исключим, пропуски возможно тоже, но это не точно. сначала посмотрим на графики этих фичей.

Ввод [6]:

```
1 df['RegistrationYear'].hist(bins=100)
2 plt.title('Визуальная проверка аномалии')
3 plt.xlabel('Год регистрации автомобиля')
4 plt.ylabel('Количество записей в таблице');
```


Ввод [7]:

```
df['RegistrationYear'].hist(bins=100, range=(1955, 2030), figsize=(10, 5))
plt.title('Проверка настроенного фильтра')
plt.xlabel('Год регистрации автомобиля')
plt.ylabel('Количество записей в таблице');
```


Ввод [8]:

```
df = df[(df['RegistrationYear']>1955) & (df['RegistrationYear']<2030)]</pre>
```

Ввод [9]:

```
1 df['RegistrationYear'].describe()
```

Out[9]:

count	353939.00000
mean	2003.13762
std	7.26471
min	1956.00000
25%	1999.00000
50%	2003.00000
75%	2008.00000
max	2019.00000

Name: RegistrationYear, dtype: float64

Выводы:

Аномалии по году регистрации (RegistrationYear) удалены

Удалим аномалии по полю Мощность (Power)

Ввод [10]:

```
1 df['Power'].hist(bins=100)
2 plt.title('Визуальная проверка аномалии')
3 plt.xlabel('Мощность (л. с.)')
4 plt.ylabel('Количество записей в таблице');
```


Ввод [11]:

```
df['Power'].hist(bins=100, range=(0, 800), figsize=(10, 5));
plt.title('Проверка настроенного фильтра')
plt.xlabel('Мощность (л. с.)')
plt.ylabel('Количество записей в таблице');
```


Ввод [12]:

```
plt.figure(figsize=(10,5))
plt.ylim(0, 330)
sns.boxplot(x='VehicleType', y='Power', data=df)
plt.title('Анализ зависимости типа кузова от мощности автомобиля')
plt.xlabel('тип автомобильного кузова')
plt.ylabel('Мощность (л. с.)');
```


Ввод [13]:

```
1 df[df['Power']>330]['Power'].count()/len(df)
```

Out[13]:

0.005707198133011621

Ввод [14]:

```
1 df = df[df['Power']<330]</pre>
```

Выводы:

Аномалии по полю Мощность (Power) удалены

Заполним пропуски в колонках: VehicleType, Gearbox, Model, FuelType, NotRepaired.

За данные о названии модели автомобиля, типе коробки передач и типе кузова бороться не будем, т.к. велика вероятность ошибки.

Просто удалим их из выборки.

```
Ввод [15]:
   df.shape
Out[15]:
(351869, 16)
Ввод [16]:
 1 df = df.dropna(subset = ['Model'])
Ввод [17]:
 1 df.shape
Out[17]:
(332584, 16)
Ввод [18]:
 1 # создадим справочник, по которому можно подобрать тип топлива
    df_bm = df.groupby(['Brand','Model','Gearbox','VehicleType'])['Price'].count().reset_ir
 3 df_bm['BM'] = df_bm['Brand']+df_bm['Model']
 4 | df_bm = df_bm.drop(['Price', 'Brand', 'Model'], axis=1)
 5 # справочники для склеивания
 6 df_bm_v = df_bm.drop(['Gearbox'], axis=1).drop_duplicates('BM').reset_index(drop=True)
 7 df_bm_g = df_bm.drop(['VehicleType'], axis=1).drop_duplicates('BM').reset_index(drop=Tr
```

Ввод [19]:

```
df_v0 = df[df['VehicleType'].isna()].drop(['VehicleType'], axis=1) # nponycκu
df_v0['BM'] = df_v0['Brand']+df_v0['Model'] # nponycκu

df_v2 = df[~df['VehicleType'].isna()] # 6e3 nponycκo6
df_tmpv = df_v0.merge(df_bm_v, how = 'left', on='BM').drop(['BM'], axis=1)
# maк мы заполнили 'VehicleType'
df = pd.concat([df_v2, df_tmpv])
```

Ввод [20]:

```
1 df.info()
```

```
Int64Index: 332584 entries, 2 to 30426
Data columns (total 16 columns):
    Column
#
                      Non-Null Count
                                       Dtype
    ----
---
0
    DateCrawled
                       332584 non-null object
    Price
1
                      332584 non-null int64
2
    VehicleType
                      332584 non-null object
    RegistrationYear
3
                      332584 non-null int64
4
    Gearbox
                      317026 non-null object
5
    Power
                      332584 non-null int64
    Model
                      332584 non-null object
6
7
                      332584 non-null int64
    Kilometer
8
    RegistrationMonth 332584 non-null int64
9
    FuelType
                      307099 non-null object
10 Brand
                      332584 non-null object
11 NotRepaired
                      270949 non-null object
12 DateCreated
                      332584 non-null object
13 NumberOfPictures
                      332584 non-null int64
                      332584 non-null int64
14 PostalCode
15 LastSeen
                      332584 non-null object
dtypes: int64(7), object(9)
memory usage: 43.1+ MB
```

<class 'pandas.core.frame.DataFrame'>

Ввод [21]:

```
df_g0 = df[df['Gearbox'].isna()].drop(['Gearbox'], axis=1) # nponycκu
df_g0['BM'] = df_g0['Brand']+df_g0['Model'] # nponycκu

df_g2 = df[~df['Gearbox'].isna()] # 6e3 nponycκo8
df_tmpg = df_g0.merge(df_bm_g, how = 'left', on='BM').drop(['BM'], axis=1)
# mak мы заполнили 'Gearbox'
df = pd.concat([df_g2, df_tmpg])
```

```
Ввод [22]:
```

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 332584 entries, 2 to 15557
Data columns (total 16 columns):
    Column
                     Non-Null Count
                                     Dtype
    ----
                     -----
---
                     332584 non-null object
0
    DateCrawled
                     332584 non-null int64
    Price
1
    VehicleType 332584 non-null object
2
    RegistrationYear 332584 non-null int64
3
4
    Gearbox
                     332584 non-null object
5
    Power
                     332584 non-null int64
6
    Model
                     332584 non-null object
    Kilometer 332584 non-null int64
7
    RegistrationMonth 332584 non-null int64
8
9
    FuelType 307099 non-null object
10 Brand
                    332584 non-null object
11 NotRepaired
                    270949 non-null object
12 DateCreated
                    332584 non-null object
13 NumberOfPictures 332584 non-null int64
                     332584 non-null int64
14 PostalCode
15 LastSeen
                     332584 non-null object
dtypes: int64(7), object(9)
memory usage: 43.1+ MB
```

5.1 Заполнение пропущенных значений для FuelType

Ввод [23]:

```
1 #Объединим бензин из UK и USA
2 df.loc[(df.FuelType == 'petrol'), 'FuelType'] = 'gasoline'
3 df['FuelType'].value_counts()
```

Out[23]:

gasoline 301344 lpg 4814 cng 541 hybrid 207 other 129 electric 64

Name: FuelType, dtype: int64

Ввод [24]:

```
1 # создадим справочник, по которому можно подобрать тип топлива
2 | df_fuel = df.groupby(['Brand','Model','Gearbox','VehicleType','FuelType'])['Price'].cou
3 df_fuel = df_fuel.rename(columns = {'Price': 'Moda'}, inplace = False)
4 df fuel.head(3)
```

Out[24]:

	Brand	Model	Gearbox	VehicleType	FuelType	Moda
0	alfa_romeo	145	manual	coupe	gasoline	11
1	alfa_romeo	145	manual	other	gasoline	1
2	alfa romeo	145	manual	sedan	nasoline	13

Ввод [25]:

```
1 | df_fuel.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3208 entries, 0 to 3207
Data columns (total 6 columns):
                 Non-Null Count Dtype
#
    Column
                 3208 non-null object
0
    Brand
1
    Model
                 3208 non-null object
```

2 3208 non-null object Gearbox 3 VehicleType 3208 non-null object 4 FuelType 3208 non-null object 3208 non-null

dtypes: int64(1), object(5) memory usage: 150.5+ KB

Ввод [26]:

Moda

5

```
1 # выделим таблицу с незвестным видом топлива
2 df0 = df[df['FuelType'].isna()]
3 df0 = df0.drop(['FuelType'], axis=1)
4 # 'BMGV' - это ключ, по которому будет выполненно совмещение таблиц (выбор по справочни
  df0['BMGV'] = df0['Brand']+df0['Model']+df0['Gearbox']+df0['VehicleType']
  df0.shape
```

int64

Out[26]:

(25485, 16)

Ввод [27]:

```
1 | # упростим справочник (оставим только ключ и таргет)
2 df fuel['BMGV'] = df fuel['Brand'] + df fuel['Model'] + df fuel['Gearbox'] + df fuel['\
3 | df_fuel = pd.DataFrame(df_fuel, columns=['BMGV', 'FuelType'])
```

Ввод [28]:

```
# процедура выбора типа топлива по справочнику
df0 = df0.merge(df_fuel, on='BMGV', how='inner')
df0 = df0.drop(['BMGV'], axis=1)
df0.shape
```

Out[28]:

(66183, 16)

Ввод [29]:

1 df0.head(3)

Out[29]:

	DateCrawled	Price	VehicleType	RegistrationYear	Gearbox	Power	Model	Kilometer	Regis
0	2016-03-17 10:53:50	999	small	1998	manual	101	golf	150000	
1	2016-03-17 10:53:50	999	small	1998	manual	101	golf	150000	
2	2016-03-17 10:53:50	999	small	1998	manual	101	golf	150000	
4									•

Ввод [30]:

```
1 # исключим из основной таблицы строки с неизвестным типом топлива
2 df = df[~df['FuelType'].isna()]
```

Ввод [31]:

```
1 df = pd.concat([df,df0], sort=False, axis=0).reset_index(drop=True)
2 # данные о типе топлива востановлены
```

Ввод [32]:

```
1 df['NotRepaired'] = df['NotRepaired'].fillna('?')
```

Ввод [33]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 373282 entries, 0 to 373281

Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	DateCrawled	373282 non-null	object
1	Price	373282 non-null	int64
2	VehicleType	373282 non-null	object
3	RegistrationYear	373282 non-null	int64
4	Gearbox	373282 non-null	object
5	Power	373282 non-null	int64
6	Model	373282 non-null	object
7	Kilometer	373282 non-null	int64
8	RegistrationMonth	373282 non-null	int64
9	FuelType	373282 non-null	object
10	Brand	373282 non-null	object
11	NotRepaired	373282 non-null	object
12	DateCreated	373282 non-null	object
13	NumberOfPictures	373282 non-null	int64
14	PostalCode	373282 non-null	int64
15	LastSeen	373282 non-null	object

dtypes: int64(7), object(9)
memory usage: 45.6+ MB

Выводы:

Данные готовы к работе

Ввод [34]:

```
1 df['Price'].describe()
```

Out[34]:

```
373282.000000
count
           4228.332542
mean
std
           4415.470195
              0.000000
min
25%
           1000.000000
50%
           2500.000000
75%
           5999.000000
          20000.000000
max
Name: Price, dtype: float64
```

Ввод [36]:

```
df[df['Price']<200]['Price'].hist()
plt.title('Автомобили с ценой ниже 200 евро')
plt.xlabel('Цена (евро)')
plt.ylabel('Количество записей в таблице');</pre>
```


Ввод [37]:

```
1 df[df['Price'] < 100]['Price'].count()</pre>
```

Out[37]:

14564

Ввод [38]:

```
plt.xlim(-200, 14000)
sns.boxplot(df['Price'])
plt.title('Диаграмма размаха для признака Price');
```

Диаграмма размаха для признака Price

Ввод [39]:

```
1  df = df[(df['Price'] > 100)&(~df['Price'].isna())]
2  df = df.dropna().reset_index(drop=True)
```

Ввод [40]:

```
1 df['Price'].describe()
```

Out[40]:

```
357408.000000
count
           4415.516315
mean
std
           4420.217824
            101.000000
min
           1190.000000
25%
50%
           2750.000000
75%
           6290.000000
          20000.000000
max
Name: Price, dtype: float64
```

Ввод [41]:

Ввод [42]:

```
sns.set_style('whitegrid')
   df_vehicletype = (df.pivot_table(index='VehicleType', values='Price', aggfunc='mean')
 2
 3
                      .sort_values('Price', ascending=False)
4
                      .reset index())
 5
   plt.figure(figsize=(10,5))
 6
   sns.barplot(x='VehicleType', y='Price', data=df_vehicletype);
 7
8
   plt.title('Зависимость цены от типа автомобильного кузова');
9
   plt.xlabel('Тип автомобильного кузова')
   plt.ylabel('Ср.цена (евро)');
10
```


Ввод [43]:

```
1 (
2 df.pivot_table(index='Brand', values='Price', aggfunc='median')
3 .sort_values('Price',ascending=False).plot(grid=True, kind='bar', figsize=(10, 5))
4 );
5 
6 plt.title('Зависимость цены от брэнда')
7 plt.xlabel('Брэнд автомобиля')
8 plt.ylabel('Цена (евро)');
```


Ввод [44]:

```
Gearbox = df['Gearbox'].value_counts(normalize=True)
print(Gearbox)
Gearbox.plot(kind='bar');
plt.legend(loc='best');

plt.title('Сравнение авто по типу коробки передач')
plt.xlabel('Тип коробки передач')
plt.ylabel('Доля ед.');
```

manual 0.77207 auto 0.22793

Name: Gearbox, dtype: float64

Ввод [45]:

```
Gearbox = df['NotRepaired'].value_counts(normalize=True)
print(Gearbox)
Gearbox.plot(kind='bar');
plt.legend(loc='best');

plt.title('Соотношение авто без ремонта и с ремонтом')
plt.xlabel('Авто без ремонта')
plt.ylabel('Доля ед.');
```

no 0.700757 ? 0.200065 yes 0.099178

Name: NotRepaired, dtype: float64

Ввод [46]:

```
plt.figure(figsize=(10,5))
sns.lineplot(data=df, x="Power", y="Price")

plt.title('Зависимость цены от мощности двигателя');
plt.xlabel('Можность (л.с.)')
plt.ylabel('Ср.цена (евро)');
```


Выводы:

Из графиков стало понятно как цена зависит от количества лошадинных сил, какие бренды автомобилей дороже остальных и что 80% водителей предпочитают коробку автомат.

В базе нашего магазна всего 10% не битых и не крашенных автомобилей.

6 Обучение моделей

```
Ввод [47]:
```

```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 357408 entries, 0 to 357407
```

Data columns (total 10 columns):

Column	Non-Null Count	Dtype
Price	357408 non-null	int64
VehicleType	357408 non-null	object
RegistrationYear	357408 non-null	int64
Gearbox	357408 non-null	object
Power	357408 non-null	int64
Model	357408 non-null	object
Kilometer	357408 non-null	int64
FuelType	357408 non-null	object
Brand	357408 non-null	object
NotRepaired	357408 non-null	object
	Price VehicleType RegistrationYear Gearbox Power Model Kilometer FuelType Brand	Price 357408 non-null VehicleType 357408 non-null RegistrationYear 357408 non-null Gearbox 357408 non-null Power 357408 non-null Model 357408 non-null Kilometer 357408 non-null FuelType 357408 non-null Brand 357408 non-null

dtypes: int64(4), object(6)
memory usage: 27.3+ MB

Ввод [48]:

```
# Выделим числовые и категориальные признаки:
categorical_columns = [c for c in df.columns if df[c].dtype.name == 'object']
numerical_columns = [c for c in df.columns if df[c].dtype.name != 'object']
print(categorical_columns)
print(numerical_columns)
```

```
['VehicleType', 'Gearbox', 'Model', 'FuelType', 'Brand', 'NotRepaired']
['Price', 'RegistrationYear', 'Power', 'Kilometer']
```

Ввод [49]:

```
df01 = df[categorical_columns]
df02 = df[numerical_columns]
# для категориальных признаков применим порядковое кодирование
encoder = OrdinalEncoder()
data_ordinal = pd.DataFrame(encoder.fit_transform(df01), columns=categorical_columns)
data_ordinal.head(3)
```

Out[49]:

	VehicleType	Gearbox	Model	FuelType	Brand	NotRepaired
0	6.0	0.0	117.0	2.0	14.0	0.0
1	5.0	1.0	116.0	2.0	37.0	1.0
2	5.0	1.0	101.0	2.0	31.0	1.0

Ввод [50]:

```
1  df = data_ordinal.join(df02)
2  df.shape
```

Out[50]:

(357408, 10)

Ввод [51]:

```
1 df.head(3)
```

Out[51]:

	VehicleType	Gearbox	Model	FuelType	Brand	NotRepaired	Price	RegistrationYear	Powei
0	6.0	0.0	117.0	2.0	14.0	0.0	9800	2004	163
1	5.0	1.0	116.0	2.0	37.0	1.0	1500	2001	75
2	5.0	1.0	101.0	2.0	31.0	1.0	3600	2008	69
4									•

Ввод [52]:

```
target = df['Price']
features = df.drop(['Price'] , axis=1)
features_train, features_valid, target_train, target_valid = train_test_split(
features, target, test_size=0.25, random_state=12345)
```

Ввод [53]:

```
# смасштабируем данные
scaler = StandardScaler()
scaler.fit(features_train)
features_train = scaler.transform(features_train)
features_valid = scaler.transform(features_valid)
```

Ввод [54]:

```
# φγκιμια μεπρικι
def rmse(targets, predictions):
    differences = predictions - targets
    differences_squared = differences ** 2
    mean_of_differences_squared = differences_squared.mean()
    rmse_val = np.sqrt(mean_of_differences_squared)
    return rmse_val
```

Ввод [55]:

```
RMSE LinearRegression = 3223.021392413865 Wall time: 113 ms
```

Ввод [56]:

```
1 rmse_score = make_scorer(rmse, greater_is_better = False)
```

Ввод [57]:

```
%%time
 2
   model3 = DecisionTreeRegressor(random_state=12345)
   param = {'max_depth': range(1,5,1),
 4
            'min_samples_leaf':range(1,6),
            'min_samples_split':range(2,4)}
 5
   grid = GridSearchCV(model3, param, cv=5, scoring=rmse_score)
 6
 7
   grid.fit(features_train, target_train)
   param = grid.best_params_
 8
 9
   model3.fit(features_train, target_train)
10
   predicted_valid = model3.predict(features_valid)
11
   rmse3 = rmse(target_valid, predicted_valid)
12
13
14 print('RMSE DecisionTreeRegressor =', rmse3)
```

```
RMSE DecisionTreeRegressor = 1848.660145493719
Wall time: 36.8 s
```

Ввод [58]:

```
RMSE RandomForestRegressor = 1965.2847151525846 Wall time: 44.6 s
```

Ввод [59]:

```
1 # теперь попробуем бустингом
2 print("Версия LightGBM : ", lgb.__version__)
```

Beрсия LightGBM : 3.2.1

Ввод [60]:

RMSE LGBMRegressor = 1723.9286646829898 Wall time: 40.8 s

7 Анализ моделей

Выводы:

В ходе исследования были рассмотрены 4 ML модели:

RMSE LinearRegression = 3223.021392413865 | Wall time: 113 ms

RMSE DecisionTreeRegressor = 1848.660145493719 | Wall time: 36.8 s

RMSE RandomForestRegressor = 1965.2847151525846 | Wall time: 44.6 s

RMSE LGBMRegressor = 1723.9286646829898 | Wall time: 40.8 s

Линейная регрессия выделяется как своей быстротой, так и низкой точностью. Не удовлетворяет условию задачи.

Дерево решений удовлетворяет условиям задачи за приемлемое время

Случайный лес немного точнее и чуть медленее дерева решений

LGBMR от Майкрософт показал похожее время и лучшее качество (рекомендован к внедрению).