Последнее обновление 14 сентября 2020 г. актуальная версия этого файла лежит по адресу http://mathcenter.spb.ru/nikaan/2020/topology3.pdf

Топология и геометрия-3, практика, СПбГУ 2020, факультет математики и компьютерных наук

Никита Сергеевич Калинин, Нина Дмитриевна Лебедева, Евгений Анатольевич Фоминых Для всех групп: 201,202,203

1 Самый животрепещущий вопрос: как будут считать рейтинг

Вместо рейтинга каждый предмет номинирует примерно 1/3 студентов как *отмичных* студентов, примерно 1/3 студентов как *хороших* студентов. Быть *отмичным* студентом раза в два-три почётнее, чем быть *хорошим* студентом. И ещё есть какие-то правила, что тройки и двойки на экзаменах получать плохо.

Итого, ваша стратегия, если хочется стипендию: не получать троек на экзаменах, по всем предметам желательно быть хорошим студентом, и по как можно большему числу любимых предметов быть отличным студентом.

На геометрии и топологии, разделение на отличных, хороших и остальных студентов будет основываться на ваших успехах в течение семестра. Нет никакой формулы. Учитывается ваша активность на занятиях, какие задачи вы решили в группе, какие задачи рассказали, какие сделали в дз, насколько сложные задачи решили. Может быть будут контрольные.

Общее правило: чем более сложные задачи вы решаете, тем лучше (тогда мы поверим, что простые задачи вам очевидны). Чем лучше вы их записываете или рассказываете, тем лучше (про плохо записанные/рассказанные задачи мы поставим плюсик, но для себя запишем, что человек не старался). Если вы решаете в группе, то предполагается, что любой участник группы может рассказать решение любой задачи из решённых группой. Мы будем это проверять.

Практика у нас по понедельникам, задачи с конкретного практического занятия можно сдавать в понедельник и на следующих день — вторник. Задачи со звёздочкой можно сдавать в течение недели — до воскресенья. Сдавать задачи нужно либо устно во время занятия, либо присылать письменное решение (там где удобно преподавателю — например, в Slack или в Microsoft teams, по ходу решим). Преподаватель может попросить устно рассказать то, что вы прислали письменно.

Если вы решили задачу в составе группы – пишите состав группы, когда присылаете решение. Никакого штрафа за совместное решение нет (но мы можем попросить кого-то из участников группы рассказать решение, и если человек не справится, то вся группы не получает плюсик за эту задачу).

В целом – занимайтесь, решайте сложные задачи, и всё будет хорошо.

Где-то в октябре мы скажем, каковы были бы рекомендации (кто хороший, а кто отличный) на этот момент, чтобы дать обратную связь.

2 Летнее задание

Задачи из летного задания надо сдавать в **Microsoft Teams до 27 сентября** (включительно), проверяет EA Фоминых.

- Задача 9. Докажите, что любое линейно связное трёхточечное пространство односвязно.
- **Задача 10.** Рассмотрим топологическое пространство $X = \{a, b, c, d\}$, в котором база топологии состоит из множеств $\{a\}, \{c\}, \{a, b, c\}$ и $\{a, c, d\}$.
 - 1. (2 балла) Докажите, что пространство X неодносвязно;
 - 2. (3 балла) Найдите $\pi_1(X)$.
- **Задача 11.** Пусть $X \subset \mathbb{R}^4$ множество симметричных (2×2) -матриц с отрицательным определителем. Докажите, что пространство X гомотопически эквивалентно S^1 .
- **Задача 12.** Докажите, что фундаментальная группа любой топологической группы коммутативна. *Топологической группой* называется множество G на котором заданы как топологическая, так и групповая структура. При этом требуется, чтобы отображения $G \times G : (x, y) \to xy$ и $G \to G : x \to x^{-1}$ были непрерывны.
- **Задача 13.** Пусть ℓ простая замкнутая кривая на стандартно вложенном в \mathbb{R}^3 торе, поднятие которой в универсальное накрытие тора задается уравнением pu=qv, где p и q взаимно простые натуральные числа. Выпишите задание фундаментальной группы пространства $\mathbb{R}^3 \setminus \ell$.
- **Задача 14.** Докажите, что к краю стандартно вложенной в \mathbb{R}^3 ленты Мёбиуса нельзя приклеить диск, который не пересекает эту ленту Мёбиуса.

Занятие коронавирусгеометрии-1, 7 сентября 2020, Задачи по теме "фундаментальная группа и накрытия"

Задача 1. Представьте сферу S^n как клеточное пространство: а) содержащее 2 клетки; б) чтобы его k-остовом для всякого целого неотрицательного k < n была стандартная сфера $S^k \subset S^n$.

Задача 2. Представьте $\mathbb{R}P^n$ как клеточное пространство, состоящее из n+1 клеток. Опишите приклеивающие отображения этих клеток.

Задача 3. Докажите, что $S^2 \times S^2$ — конечное клеточное пространство.

Pasбop: https://youtu.be/DWVg-KQGAC4

Задача 4. а) Если X и Y — локально конечные клеточные пространства (т.е. любая точка в X обладает окрестностью, пересекающейся лишь с конечным числом клеток), то топологическое пространство $X \times Y$ может быть естественным образом наделено структурой клеточного пространства. б)***Останется ли верным это утверждение, если не требовать локальной конечности клеточных пространств X и Y?

Разбор: задача 42.3- 42.4 в книге Виро-Иванов-Нецветаев-Харламов, разобрана на странице 343.

Задача 5. Пусть A — конечное клеточное пространство. Через $c_i(A)$ обозначим число его i-мерных клеток. Эйлеровой характеристикой пространства A называется альтернированная сумма чисел $c_i(A)$:

$$\chi(A) = \sum_{i=0}^{\infty} (-1)^i c_i(A).$$

Докажите, что эйлерова характеристика мультипликативна в следующем смысле. Если X и Y — конечные клеточные пространства, то $\chi(X\times Y)=\chi(X)\chi(Y)$.

Факт (не доказываем, но пользуемся). Эйлерова характеристика является инвариантом клеточного топологического пространства, то есть не зависит от способа представления в виде клеточного пространства.

Задача 6. Какое наименьшее число клеток необходимо для представления в виде клеточного пространства следующих пространств: а) ленты Мёбиуса; б) сферы с р ручками; в) сферы с q пленками?

Задача 7. Вычислите $\pi_1(\mathbb{R}P^n)$.

4 14 сентября

Задачи из летного задания надо сдавать в **Microsoft Teams до 27 сентября** (включительно), проверяет EA Фоминых.

Задача 8. Пространство X получается приклейкой к тору $S^1 \times S^1$ двух дисков: одного вдоль его параллели $S^1 \times \{1\}$, второго вдоль меридиана $\{1\} \times S^1$. а) Вычислите $\pi_1(X)$; б)Докажите, что X гомотопически эквивалентно сфере S^2 .

Задача 9. Пусть $p: X \to B$ — накрытие, причем $x_0 \in X, b_0 \in B, p(x_0) = b_0$ и пространства X, B линейно связны). Постройте естественную биекцию множества $p^{-1}(b_0)$ на множество правых смежных классов фундаментальной группы базы этого накрытия по группе накрытия.

Задача 10. Чему могут равняться числа листов накрытия: а) ленты Мёбиуса кольцом $S^1 \times I$; б) ленты Мёбиуса лентой Мёбиуса?

Задача 11. Чему могут равняться числа листов накрытия бутылки Клейна плоскостью?

Задача 12. Опишите с точностью до эквивалентности все накрытия окружности $S^1.$

Задача 13. Накрытие $p: X \to B$ ($x_0 \in X, b_0 \in B, p(x_0) = b_0$), где пространства X, B "хорошие", называется регулярным, если $p_*(\pi_1(X, x_0))$ нормальная подгруппа в $\pi_1(B, b_0)$. Является ли регулярным накрытие $S^1 \to S^1, z \to z^n$?

Задача 14. Докажите, что следующие условия эквивалентны:

- накрытие регулярно;
- все группы $p_*(\pi_1(X,x))$ с $x \in p^{-1}(b_0)$ совпадают;
- ullet группа автоморфизмов накрытия действует в слое $p^{-1}(b_0)$ транзитивно.

Задача 15. Докажите, что любое связное двулистное накрытие: а) обладает нетривиальным автоморфизмом; б) регулярно.

Задача 16. Докажите, что трёхлистное накрытие букета двух окружностей графом с тремя вершинами (см. рис. ниже) не является регулярным.

Задача 17. ***Докажите, что всякое конечное клеточное пространство метризуемо.