Une loterie comporte un très grand nombre de billets valant chacun $1 \in$.

Parmi ces billets, 0, 2% sont des billets gagnants à $100 \in$, 1% à $50 \in$, 2% à $10 \in$ et les autres sont perdants.

Manon, qui est la première à choisir ses billets, en prend 3 au hasard.

On appelle X la variable aléatoire donnant le gain algébrique d'un ticket et S la variable aléatoire donnant le gain algébrique de Manon.

- 1. Donner un argument permettant de considérer que les 3 billets de Manon sont le résultat d'un tirage avec remise.
- 2. Sous cette condition, donner la loi de X et calculer E(X) puis $\sigma(X)$.
- **3.** En déduire le gain que pourrait espérer en moyenne Manon en tirant 3 billets et l'écart-type de S.

Réponse:

- 1. L'énoncé dit qu'il y a un très grand nombre de billets. Donc on peut considérer que les probabilités ne changent pas et que les tirages sont indépendants.
- 2. On $X \in \{-1; 9; 49; 89\}$. On en déduit la loi de probabilité avec le tableau (probabilités données dans l'énoncé).

x_i	-1	9	49	99
$p(X=x_i)$	0,969	0,02	0,01	0,001

On a
$$E(X) = -1 \times 0.969 + 9 \times 0.02 + 49 \times 0.01 + 99 \times 0.001 = -0.2$$
.
 $V(X) = E(X^2) - [E(X)]^2 = (-1)^2 \times 0.969 + 9^2 \times 0.02 + 49^2 \times 0.01 + 99^2 \times 0.001 - (-0.2)^2 = 36.36$ d'où $\sigma(X) = \sqrt{36.36}$ donc $\sigma(X) \simeq 6.03$.

3. $E(S) = E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3)$ d'après la linéarité de l'espérance. E(S) = 3E(S) car $E(X_1) = E(X_2) = E(X_3)$.

On en déduit que $E(S) = 3 \times (-0, 2) = -0, 6$: en moyenne, en répétant un grand nombre de fois cette expérience, Mona perd en moyenne sur une partie $0, 6 \in$.

 $V(S) = V(X_1) + V(X_2) + V(X_3)$ car X_1, X_2 et X_3 sont indépendantes.

On en déduit également que V(S) = 3V(X) et donc $\sigma(S) = \sqrt{3V(X)} \simeq 10, 4$.