Name

Calculus I. Section 4.1 Classwork

Due

Submit one file in online course

4.1 Exercises

1. a. By reading values from the given graph of f, use five rectangles to find a lower estimate and an upper estimate for the area under the given graph of f from x=0 to x=10. In each case sketch the rectangles that you use.

$$R_{5} = 2 \left[\frac{1}{5} (2) + \frac{1}{5} (4) + \frac{1}{5} (6) + \frac{1}{5} (8) + \frac{1}{5} (10) \right]^{\frac{1}{5}} = 2 \left(\frac{1}{5} (4) + \frac{1}{5} (4$$

3. a. Estimate the area under the graph of f(x) = 1/x from x = 1 to x = 2 from to using four approximating rectangles and right endpoints. Sketch the graph and the rectangles. Is your estimate an underestimate or an overestimate?

 $\frac{1}{4}\left(1+\frac{1}{1.25}+\frac{1}{1.75}\right)$

L5≈ 7595

- a. Estimate the area under the graph of $f(x) = \sin x$ from x = 0 to $x = \pi/2$ from to using four approximating rectangles and right endpoints. Sketch the graph and the rectangles. Is your estimate an underestimate or an overestimate?
 - b. Repeat part (a) using left endpoints.

a. Estimate the area under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2 from to using three 5. rectangles and right endpoints. Then improve your estimate by using six rectangles. Sketch the curve and the approximating rectangles.

$$\frac{2+1}{3} = 1 \quad \frac{2+1}{4} = \frac{1}{4}$$

$$[-1,2] = [-1,-\frac{1}{2}] [-\frac{1}{2}] [0,\frac{1}{2}] [\frac{1}{2},] [0,\frac{1}{2}] [\frac{1}{2},] [0,\frac{1}{2}] [\frac{1}{2},] [0,\frac{1}{2}] [\frac{1}{2},] [0,\frac{1}{2},] [\frac{1}{2},] [0,\frac{1}{2},] [\frac{1}{2},] [0,\frac{1}{2},] [\frac{1}{2},] [0,\frac{1}{2},] [\frac{1}{2},] [\frac{1}{2},] [0,\frac{1}{2},] [\frac{1}{2},] [\frac{1}{$$

Repeat using left endpoints and midpoints.

$$I(f(-1)+f(0)+f(1))$$

$$I_{s}=5$$

$$I(f(-.5)+f(.5)+f(1.5))$$

$$I_{s}=1.25+3.25$$

$$=$$

$$M_{s}=5.75 \text{ midpoin}+$$

$$\frac{1}{2} (-1) + f(0) + f(1)$$

$$\frac{1}{2} (f(-1) + f(-\frac{1}{2}) + f(1) + f(1$$

13. The velocity graph of a braking car is shown. Use it to estimate the distance traveled by the car while the brakes are applied.

7(20) + 10 150ft 15. In a person infected with measles, the virus level N (measured in number of infected cells per mL of blood plasma) reaches a peak density at about t=12 days (when a rash appears) and then decreases fairly rapidly as a result of immune response. The area under the $\underline{\text{graph}}$ of N(t) from t=0 to t=12 (as shown in the $\underline{\text{figure}}$) is equal to the total amount of infection needed to develop symptoms (measured in density of infected cells \times time). The function N has been modeled by the function

$$f(t) = -t(t-21)(t+1)$$

Use this model with six subintervals and their midpoints to estimate the total amount of infection needed to develop symptoms of measles.

Source: J. M. Heffernan et al., "An In-Host Model of Acute Infection: Measles as a Case Study," Theoretical Population Biology 73 (2006): 134–47.

2 (114+ 340+ 630+ 936 +1210+1404) 2 (f(2)+f(4)+f(6)+f(8)+f(10)+f(11) 2 (114+ 340+ 630+ 936 +1210+1404)

2 (f(0)+f(2)+f(4)+f(6+f(9)+f(10))

R6= 9268

L6=6460