PREDICT CATEGORY

Based Models

Dr. Chelsea Parlett-Pelleriti

Decision Trees

Twenty Questions

Simple Tree

More Complicated Tree

Data Types

Gini Impurity and Entropy

$$GI = 1 - \sum_{i=1}^{n} (p_i)^2$$
 $E = -\sum_{i=1}^{n} p_i * log(p_i)$

Categorical

cats	pet	wfh	children	income
1	0	1	1	34
0	1	0	1	58.3
1	1	1	0	71.5
0	0	0	1	74.9
0	0	0	1	75.3
1	0	0	1	75.6
0	0	0	1	81
1	1	1	0	82.3
1	1	1	0	85.6
1	1	1	1	95.4

Categorical

cats	pet	wfh	children	income
1	0	1	1	34
0	1	0	1	58.3
1	1	1	0	71.5
0	0	0	1	74.9
0	0	0	1	75.3
1	0	0	1	75.6
0	0	0	1	81
1	1	1	0	82.3
1	1	1	0	85.6
1	1	1	1	95.4

Continuous

cats	pet	wfh	children	income
1	0	1	1	34
0	1	0	1	58.3
1	1	1	0	71.5
0	0	0	1	74.9
0	0	0	1	75.3
1	0	0	1	75.6
0	0	0	1	81
1	1	1	0	82.3
1	1	1	0	85.6
1	1	1	1	95.4

Continuous

cats	pet	wfh	children	income
1	0	1	1	34
0	1	0	1	58.3
1	1	1	0	71.5
0	0	0	1	74.9
0	0	0	1	75.3
1	0	0	1	75.6
0	0	0	1	81
1	1	1	0	82.3
1	1	1	0	85.6
1	1	1	1	95.4

Basic Steps

- 1. Calculate Gini Impurity (or Entropy/Information Gain) for each node
- Choose Node with lowest score
- 3. If the parent node has the lowest score, it is a leaf.

Example

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

Regression Trees

Regression Trees

ONE

VS. MANY

- Bootstrap Aggregating (Bagging)
- Random Feature Selection

BOOTSTRAPPING

- Bootstrap Aggregating (Bagging)
- Random Feature Selection

Important Hyperparameters

- # of trees
- # of features per tree

	Age	Initial Guess	Residual
Person 1	20		
Person 2	19		
Person 3	21		
Person 4	20		

	Age	Initial Guess	Residual
Person 1	20	20	
Person 2	19	20	
Person 3	21	20	
Person 4	20	20	

	Age	Initial Guess	Residual
Person 1	20	20	0
Person 2	19	20	-1
Person 3	21	20	1
Person 4	20	20	0

Actual Value = Prediction + Residual

	Age	Initial Guess	Residual
Person 1	20	20	0
Person 2	19	20	-1
Person 3	21	20	1
Person 4	20	20	0

In class question

- Which is more parallelizable?
- At inference, which is more parallelizable?