# Assignment 14-Probability and Random Variable

## Annu-EE21RESCH01010

#### Download latex code from here-

https://github.com/annu100/AI5002-Probabilityand-Random-variables/tree/main.tex/ ASSIGNMENT 114

#### I. Gate-24 Solution

A fair coin is tossed till a head appears for the first time. The probability that the number of requried tosses is odd,is .......

### II. SOLUTIONS

As we know For odd no of tosses We can get number of tosses like this 1, 3,5,7.....

Then the probability for getting head for the first time is-

$$Pr(\text{Head 1st time}) = (1/2)^1 + (1/2)^3 + (1/2)^5 + (1/2)^5$$

As we can see this is decreasing G.P series So sum ut upto infinity.

Sum is given by-

 $S = \frac{a}{(1-r)}$  where. a is first term of the series= $\frac{1}{2}$ r is common. Ratio= $\frac{1}{4}$ 

$$Pr(\text{Head 1st time}) = \frac{1/2}{(1-1/4)} = \frac{2}{3}$$
 (2)

So answer is 0.50/0.75 = 2/3

#### A. MARKOV CHAIN APPROACH

Probabilities at nth toss Probabilities at zero toss-  $P_0 = (1, 0, 0)$ 

Probabilities after one toss- $P_0 = (0.5, 0.5, 0)$  Each state has the vector of probabilities for going to another state -

collecting it together to form matrix



1

Note that: Above drawn markov chain is 3 states first order time homogeneous markov chain as  $Pr(\text{Head 1st time}) = (1/2)^1 + (1/2)^3 + (1/2)^5 + (1/2)^7 \text{ transition probabilities are depending only on last}$ one state.

> Note that: Above drawn markov chain is 3 states first order time homogeneous markov chain as transition probabilities are depending only on last one state.

We can get  $P_1$  by multiplying  $P_0$  with  $M_3$ .  $P_1 = P_0 \times M_3$ 

Similarly to get  $P_2$ , we can multiply  $P_1$  with  $M_3$  $P_2 = P_1 \times M_3 = P_0 \times M_3^2$ 

So,in general  $P_n = P_0 \times M_3^n$ 

here,n is number of tosses.

but n should be odd for our problem.

It is calculated for upto 100 tosses in python program.