ELEC 221 Lecture 15 Time and frequency domain analysis I

Thursday 27 October 2022

Announcements

- Midterms available for pickup after class (or at my office)
- Assignment 4 due on Saturday at 23:59
- (Bonus) Assignment 4.5 due on Saturday at 23:59
- Quiz 7 on Tuesday (will focus on today's content)

Complex exponential signals are eigenfunctions of LTI systems in both continuous time and discrete time.

If
$$x(t) = e^{st}$$
, for complex s

We have considered so far only $s=j\omega$

This is the **frequency response** of the system.

When we input a linear combination of signals,

We have seen some simple frequency response of ideal filters:

We have also seen more realistic ones.

If $v_s(t)=e^{j\omega t}$, then a solution is $v_c(t)=H(j\omega)e^{j\omega t}$ for some scaling $H(j\omega)$.

We found that

If we look at $H(j\omega)$ we can see that this is also a filter. The frequencies it attenuates depends on R and C.

In general $H(j\omega)$ has both a magnitude and a phase component.

Increasing *RC* cuts off more frequencies, but there are design tradeoffs involved.

We haven't looked much at the phase response...

You hopefully learned from the hands-on that phase can be important!

Really important...

So we should probably consider this more in our analysis of systems.

Today

Learning outcomes:

- express a frequency response in the magnitude-phase representation
- differentiate between linear and non-linear phase responses
- compute the group delay of a frequency response
- plot the frequency response using a Bode plot

The magnitude-phase representation

Since Fourier spectra are complex numbers, we can express them in terms of their magnitude and phase.

Frequency response of LTI systems

Recall the convolution property of the Fourier transform:

What happens to the output?

How does passing through the system with $H(j\omega)$ affect $|X(j\omega)|$ and $\not < X(j\omega)$?

Frequency response of LTI systems

Try it yourself. Given

$$X(j\omega) = |X(j\omega)|e^{j \not \subset X(j\omega)}$$

 $Y(j\omega) = H(j\omega)X(j\omega)$

Determine

$$|Y(j\omega)| =$$
 $\langle Y(j\omega) =$

Frequency response of LTI systems

We give these names:

- $|H(j\omega)|$ is the gain
- $\not \subset H(j\omega)$ is the phase shift

Depending on what these are, the result can be either good, or bad (distortion).

Linear frequency response

If $|H(j\omega)| = 1$ everywhere, the system is called *all-pass* and is characterized by its phase response.

It is nicest when the phase shift is a *linear* function of the frequency.

Can you think of a system that causes a linear shift in phase? (Hint: think back to properties of Fourier transform)

Linear frequency response

Time shift (or, a delay system):

Let's consider the ideal lowpass filter,

What is its impulse response? (inverse Fourier transform of frequency response)

Recall what this looks like graphically:

Image credit: Oppenheim 6.3

What happens if we add a linear phase?

The result is a shifted version of the original impulse response

Image credit: Oppenheim 6.3

Consider the following frequency response:

Figure P6.21

- What is $H(j\omega)$?
- Sketch $|H(j\omega)|$ and $\not \subset H(j\omega)$

Image credit: Oppenheim Problem 6.21

$$H(j\omega) = |H(j\omega)| = |H(j\omega)| = |H(j\omega)| = |H(j\omega)|$$

Suppose a signal x(t) with spectrum $X(j\omega) = \frac{1}{2+j\omega}$ is input into the system.

Figure P6.21

What is the output signal y(t)? (Hint: recall what happens to a Fourier spectrum of a function when you take its derivative)

Group delay

Linear phase: same delay at all frequencies (shift the response).

Non-linear phase: different amount of delay at different frequencies

If we look at a small enough band of frequencies, we can make an approximation that it is...

Then:

Group delay

$$Y(j\omega) \approx X(j\omega)|H(j\omega)|e^{-j\phi}e^{-j\omega\alpha}$$

The parameter α represents an effective common delay of the frequencies in this small band.

It is called the group delay:

Non-linear phase and group delay has a lot of real-world implications.

Consider a filter with frequency response

$$H(j\omega) = \frac{1}{1+j\omega}$$

- What are $|H(j\omega)|$ and $\not \subset H(j\omega)$
- What is the group delay?

$$H(j\omega) = \frac{1}{1+j\omega}$$

- What are $|H(j\omega)|$ and $\not \subset H(j\omega)$
- What is the group delay?

$$H(j\omega) = \frac{1}{1+j\omega}$$

- What are $|H(j\omega)|$ and $\not \subset H(j\omega)$
- What is the group delay?

Bode plots

Recall:

Magnitude is multiplicative and phase is additive... would be nicer if both were additive.

Rather than making plots of $|H(j\omega)|$ and $\not\subset H(j\omega)$, it is common to make plots of $20\log_{10}|H(j\omega)|$ and $\not\subset H(j\omega)$ against $\log_{10}\omega$.

Bode plots

These are called *Bode plots*:

We will see more of these on Tuesday.

Image credit: Oppenheim 6.2

Ideal filter step response

Ideal filter step response

It is also important to consider step response of filters.

Recall that

By linearity, if we put this in a system, the result is

Ideal filter step response

By changing the design of the filters, we can limit the amount of ringing. More on Tuesday!

Today

Learning outcomes:

- express a frequency response in the magnitude-phase representation
- differentiate between linear and non-linear phase responses
- compute the group delay of a frequency response
- plot the frequency response using a Bode plot

Oppenheim practice problems:

- (DT) 6.2, 6.4, 6.37, 6.39 (choose a couple)
- (CT) 6.21a-c, 6.23, 6.27, 6.42

For next time

Content:

- Properties of non-ideal filters
- Filters described by first/second-order difference equations

Action items:

- 1. Quiz 7 Tuesday
- 2. Assignment 4 due Saturday 23:59
- 3. Bonus activity due Saturday 23:59

Recommended reading:

■ For next class: Oppenheim 6.4-6.7