Class 65

Chap 4: Duality (of spaces & operators)

Chap 5: Spectral theory for compact operators

Chap 6: Spectral theory for normal operators

Chap. 5 Compact operators

X, Y normed spaces, $T: X \rightarrow Y$ linear

Def. T is compact if $\forall A \subseteq X \text{ bdd} \Rightarrow \overline{TA} \text{ compact.}$

Note 1. T compact $\Leftrightarrow \forall \{x_n\} \subseteq X \text{ bdd seq. } \exists Tx_{n_i} \text{ conv. (in norm).}$

Reason: " \Rightarrow " Y normed space

Let
$$A = \{x_n\}$$

 $\therefore \overline{TA}$ compact \Leftrightarrow sequentially compact.

Note 2. T compact $\Rightarrow T$ bdd

Pf.: Let $A = \{x \in X : ||x|| \le 1\} \Rightarrow \overline{TA} \text{ compact} \Rightarrow \overline{TA} \text{ bdd} \Rightarrow T \text{ bdd.}$

Note 3. $T: X \to Y$ has finite rank & bdd

 $\Rightarrow T \text{ compact (Ex.5.1.1)}$

Pf.: Let $A \subseteq X$ be bdd

$$\left(:: \|Tx\| \le \|T\| \cdot \|x\| \right)$$

 $\therefore \overline{TA}$ closed & bdd in finite-dim $\overline{TX} = TX$

 $\Rightarrow TA$ compact.

Note 4. $T: X \to \square$ linear $\Rightarrow T$ bdd.

Ex. Let $\{x_{\alpha}\}$ be Hamel basis of X, dim $X = \infty$

Let
$$Tx_{\alpha_n} = n \& Tx_{\alpha} = 0$$
 for $\alpha \neq \alpha_n$

Then *T* linear, but unbdd.

Note 5. $T: X \to Y$ linear, dim $X < \infty \Rightarrow T$ compact.

Pf.: dim
$$X < \infty \Rightarrow T$$
 bdd & rank $T < \infty$
 $\Rightarrow T$ compact.

Thm. $T: X \to Y$ compact

Then $\{x_n\}$ weakly conv. $\Rightarrow \{Tx_n\}$ strongly conv.

Pf.: Assume $x_n \to x_0$ weakly.

&
$$Tx_n \rightarrow Tx_0$$
 strongly

Then
$$\exists Tx_{n_k}, \varepsilon > 0 \ni ||Tx_{n_k} - Tx_0|| \ge \varepsilon \ \forall k$$

$$x_{n_k} \to x_0$$
 weakly.

 $\therefore \{x_{n_k}\}$ bdd by unif. bddness principle.

Note
$$1. \Rightarrow \exists x'_{n_k} \ni Tx'_{n_k}$$
 conv., say, to y_0 (strongly)

But $x'_{n_k} \to x_0$ weakly

$$\Rightarrow Tx'_{n_k} \to Tx_0 \text{ weakly (Ex. 4.10.11)}$$
(Reason: $\forall y^* \in Y^*, y^*T \in X^* \Rightarrow (y^*T)(x'_{n_k}) \to (y^*T)(x_0)$)

$$y^*(Tx'_{n_k}) \qquad y^*(Tx_0)$$

Conclusion: $y_0 = Tx_0$

i.e.,
$$Tx'_{n_k} \to Tx_0$$
 strongly $\to \leftarrow \|Tx_{n_k} - Tx_0\| \ge \varepsilon \quad \forall k$
: $T \text{ bdd}: X \to X$

Note: $T \text{ bdd}: X \to X$

Then (1)
$$x_n \to x_0$$
 in $\|\cdot\| \Rightarrow Tx_n \to Tx_0$ in $\|\cdot\|$

(2)
$$x_n \to x_0$$
 weakly $\Rightarrow Tx_n \to Tx_0$ weakly (Ex. 4.10.11)

(3)
$$x_n \to x_0$$
 in $\|\cdot\| \Rightarrow Tx_n \to Tx_0$ weakly: trivial

(4)
$$x_n \to x_0$$
 weakly $\Rightarrow Tx_n \to Tx_0$ in $\|\cdot\|$

$$\begin{cases} \text{Ex. } X = l^2 \\ T = I \end{cases}$$

$$x_n = (0, ..., 0, 1, 0, ...), \ n \ge 1.$$

$$\text{n-th}$$

$$\text{Then } x_n \to 0 \text{ weakly,}$$

$$\text{but } T_{2n} = 0 \text{ on } \| \cdot \| \cdot \|$$

Thm. X normed space, Y Banach space.

$$T_n$$
,: $X \to Y$ compact, $T: X \to Y \& T_n \to T$ in $\|\cdot\|$

Then T compact.

Pf.: Let $A \subseteq X$ be bdd.

Check: \overline{TA} compact

Check: \overline{TA} totally bdd (cf. p.109; complete metric space)

i.e.,
$$\forall \varepsilon > 0$$
, \exists finitely many $B(x_i, \varepsilon) \ni \bigcup_i B(x_i, \varepsilon) \supseteq \overline{TA}$.

(Idea: Find T_n close to T & use total bddness of $\overline{T_nA}$)

$$\therefore \forall \varepsilon > 0, \exists \ T_n \ni \|T_n x - Tx\| \le \|T_n - T\| \cdot \|x\| < \varepsilon \quad \forall x \in A$$

$$: \overline{T_n A}$$
 compact

$$\Rightarrow \overline{T_n A}$$
 totally bdd

$$\therefore \exists B(x_i,\varepsilon) \ni \bigcup_i B(x_i,\varepsilon) \supseteq \overline{T_n A}.$$

Check:
$$\bigcup_{i} B(x_i, \varepsilon) \supseteq \overline{TA}$$
 (cf. Ex.3.5.2)

Let
$$y \in \overline{TA}$$

$$\therefore \exists Tx, x \in A, \exists \|y - Tx\| < \varepsilon$$

$$\& \|Tx - T_n x\| < \varepsilon$$

&
$$||T_n x - x_i|| < \varepsilon$$
 for some *i*

$$\Rightarrow ||y-x_i|| < 3\varepsilon$$

 $\therefore \overline{TA}$ totally bdd \Rightarrow compact $\Rightarrow T$ compact.

Thm. X normed space.

$$T, S. X \rightarrow X$$
 operator.

 $T \text{ compact} \Rightarrow TS \& ST \text{ compact.}$

Pf.: (1) Let $A \subseteq X$ be bdd

$$:: S \text{ operator} \Rightarrow SA \text{ bdd}$$

 $T \text{ compact} \Rightarrow \overline{TSA} \text{ compact}$

:. TS compact.

(2) $: T \text{ compact} \Rightarrow \overline{TA} \text{ compact}$

$$:: S \text{ conti.} \Rightarrow S\overline{TA} \text{ compact.}$$

But
$$\overline{STA} \subseteq \overline{STA}$$
 & closed

 $\Rightarrow \overline{STA}$ compact.

Note: Ex.5.1.2 says, S, T compact $\Rightarrow \alpha S + \beta T$ compact

Let *X* be a Banach space

Let
$$K = \{T \in B(X) : T \text{ compact}\}$$

Then K is a closed ideal containing all finite-rank operators in B(X)

Next thm says "*K* is self-adjoint."

Thm. X Banach space, Y Banach space.

$$T: X \to Y \text{ compact} \Leftrightarrow T^*: Y^* \to X^* \text{ compact.}$$

Pf.: " \Rightarrow ": (true for *Y* normed spaces).

Let
$$\left\{ y_n^* \right\} \subseteq Y^*$$
 bdd.

Check:
$$\exists y_{n_i}^* \ni T^* y_{n_i}^*$$
 conv. strongly.

(1) Check: \overline{TX} separable

Let
$$A_n = \{Tx : ||x|| \le n\} \ \forall n$$

 $\therefore \overline{TA_n}$ compact

- $\Rightarrow \overline{TA_n}$ separable (cf. p.109; metric space)
- \Rightarrow $TA_n \subseteq \overline{TA_n}$ separable (: metric space by Ex.3,5,7)
- $TX = \bigcup_{n} TA_n$ separable
- $\Rightarrow \overline{TX}$ separable (: nbd of pt in \overline{TX} contains a pt in $TX \Rightarrow$ nbd of a pt in TX contains a pt in countable dense set)

Let A be dense seq. in \overline{TX} .

(2)
$$\therefore \forall y \in A, \{y_n^*(y)\} \text{ bdd} \Rightarrow \exists \{y_{n_k}^*\} \ni y_{n_k}^*(y) \text{ conv.}$$

Note: Alaoglu says. $\overline{\left\{\begin{array}{c} y_n^* \\ \end{array}\right\}}$ weak-* compact $\Rightarrow \overline{\left\{\begin{array}{c} y_n^* \\ \end{array}\right\}}$ weak-* sequen. compact

Diagonal method $\Rightarrow \exists \{y_n^*\} \ni y_n^*(y) \text{ conv. } \forall y \in A.$