CII3012 Data Mining

Non-Hierarchical Clustering (Partitioning Method)

Jong-Seok Lee

Sungkyunkwan University

Partitioning Method

- Predefine the number of clusters (k).
- Divide data objects into non-overlapping subgroups (clusters) such that each object is in exactly one cluster.
- Initial bad clustering can be recovered later.
- Useful for a large dataset
- Often-used Methods
 - k-means clustering
 - k-medoids clustering
 - PAM (Partitioning Around Medoids)
 - Model-based clustering (Mixture of Gaussian)
 - Grid-based clustering
 - SOM (Self-Organizing Map)

- A partitional clustering approach
- Each cluster is associated with a centroid (center point; mean)
- Each object is assigned to the cluster with the closest centroid.
- The number of clusters is predefined.
- Its objective is to minimize the compactness (SSW) of clusters.

Mathematical formulation

Minimize
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{k} d(\mathbf{x}_i, \mathbf{c}_j) \cdot a_{ij}$$

subject to

$$\mathbf{c}_{j} = \frac{\sum_{i=1}^{n} \mathbf{x}_{i} a_{ij}}{\sum_{i=1}^{n} a_{ij}}, \quad j = 1, 2, ..., k$$

$$\sum_{i=1}^{k} a_{ij} = 1 , \quad i = 1, 2, \dots, n$$

$$\sum_{i=1}^{n} a_{ij} \ge 1 , \quad j = 1, 2, ..., k$$

$$a_{ij} = 1 \text{ or } 0 , \quad i = 1, 2, ..., n; \ j = 1, 2, ..., k$$

$$a_{ij} = \begin{cases} 1, & \text{if } i \text{th object belongs to cluster } j \\ 0, & \text{otherwise} \end{cases}$$

- Find clusters (a_{ij} 's) that minimize the objective function.
- Enumerating all possible (feasible) solutions is impossible in practice. (NP-Hard problem)
- We can have a nearoptimal solution by employing a heuristic algorithm.

- Algorithm
- Step o
 - Select *k* objects as initial centroids.
- Step 1 (Assignment)
 - For each object, compute the distances to k centroids.
 - Assign each object to the cluster to which it is the closest.
- Step 2 (New Centroids)
 - Compute new centroids for each cluster.
- Step 3 (Convergence)
 - Stop if the selected stopping criterion is satisfied.
 - Otherwise, go to Step 1.

- Stopping criteria
 - No change in centroids
 - If the newly updated centroids are the same with the previous ones, then stop.
 - Objective function value
 - If the objective function value is less than a predefined value, then stop.
 - Number of iterations
 - Repeat Step 1 and Step 2 *m* times, where *m* is a predefined number of iterations.

Example

$$- k=2$$

6

object	X_1	X_2
1	50	150
2	53	130
3	80	90
4	85	120
5	70	115

76

126

Initial	seeds
IIIIIIai	seeus

• Example (cont'd)

	Cluster 1	Cluster 2		
Objects	O ₁ , O ₂ , O ₆	O ₃ , O ₄ , O ₅		
Coordinates	(59.6, 135.3)	(78.3, 108.3)		

object	c ₁	c ₂
1	17.56	50.40
2	8.46	33.33
3	49.63	18.38
4	29.65	13.48
5	22.81	10.67
6	18.85	17.85

• Demo (k=5)

Demo (Initial clusters)

• Demo (Iteration 1)

• Demo (Iteration 2)

• Demo (Iteration 3)

• Demo (Iteration 4)

• Demo (Iteration 5)

Importance of choosing initial centroids

- Solutions to the initial centroids problem
 - Multiple runs with randomly chosen centroids
 - Sample objects and use hierarchical clustering to determine initial centroids.
 - Select most widely separated (farthest) objects.
- Limitations of k-means clustering
 - Not working for irregular shaped clusters

R Example

k-means clustering

```
> # a 2-dimensional example
> x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
           matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
> colnames(x) <- c("x", "y")
> cl <- kmeans(x, 2)
> plot(x, col = cl$cluster)
> points(cl$centers, col = 1:2, pch = 8, cex=2)
> kmeans(x,1)$withinss
[1] 62.9905
> kmeans(dt.cars, 2, iter.max=10, nstart=3)
> # see the results
                                                -0.5
                                                      -0.5
                                                           0.0
                                                               0.5
                                                                    1.0
                                                                         1.5
```

Х

k-medoids Clustering

• A medoid is less influenced by outliers or other extreme values than a centroid.

- A medoid can be defined as the object of a cluster, whose average distance to all objects in the cluster is minimal.
- After finding a set of medoids, each object in data is assigned to the closest medoid.
- The *k* medoids should minimize the objective function, which is the sum of the distances of all objects to their nearest medoid.

k-medoids Clustering

Mathematical formulation

Minimize
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} d(\mathbf{x}_i, \mathbf{x}_j) \cdot a_{ij}$$

subject to

$$\sum_{j=1}^{n} a_{ij} = 1 , \quad i = 1, 2, \dots, n$$

$$a_{ij} = \begin{cases} 1, \\ 0, \end{cases}$$

$$a_{ii} \le b_i$$
, $i, j = 1, 2, ..., n$

$$\sum_{j=1}^{n} b_j = k$$

$$a_{ij} = 1$$
 or 0, $i = 1, 2, ..., n$; $j = 1, 2, ..., n$

$$b_i = 1 \text{ or } 0, \quad j = 1, 2, ..., n$$

$$a_{ij} = \begin{cases} 1, & \text{if } j \text{th object is the closest medoid of object } i \end{cases}$$

$$a_{ij} \le b_j$$
, $i, j = 1, 2, ..., n$ $b_j = \begin{cases} 1, & \text{if } j \text{th object is a medoid} \\ 0, & \text{otherwise} \end{cases}$

PAM (Partitioning Around Medoids)

- It operates on a distance matrix of the given dataset, or the algorithm first computes a distance matrix when the data is presented with an $n \times p$ data matrix.
- The algorithm proceeds in two steps:
- BUILD step:
 - This step sequentially selects the *k* objects to be used as initial medoids.
- SWAP step:
 - If the objective function can be reduced (improved) by interchanging (swapping) a selected object with an unselected object, then the swap is carried out. This is continued until the objective function can no longer be decreased.

Notation

- A set of objects in data: $S = \{O_1, O_2, \dots, O_n\}$
- A set of selected objects as medoids: M
- A set of unselected objects: $U = S \setminus M$
- Distance between object j and its closest object in M: D_i
- Distance between object j and its second closest object in M: E_j
- Amount (distance) of contribution of object *j* to the decision of selecting object *i* as a medoid: C_{jj}
- Amount (distance) of contribution of object j to the decision of swapping object i and h, where $O_i \in M$ and $O_h \in U$: C_{jih}
- Note that $D_{j} = 0 \text{ if and only if } O_{j} \in M$ $D_{j} \leq E_{j}$

BUILD

- Step o. Initialize M by adding to it an object for which the sum of the distances to all other objects is minimal.
- Step 1. Consider an object i in U as a candidate for inclusion into M.
- Step 2. For an object j in $U \setminus \{O_i\}$, compute D_j , which is the distance between object j and the closest object in M.
- Step 3. If $D_j > d(j,i)$, object j will contribute to the decision to select object i as a medoid. Let $C_{ii} = \max(D_i d(j,i), 0)$, $i, j \in U$.
- Step 4. Compute the total gain obtained by adding object i to M: $g_i = \sum_{i \in U} C_{ji}$

- BUILD (cont'd)
 - Step 5. Choose the object i that maximizes g_i , and update M and U by $M \leftarrow M \cup \{O_i\}$ and $U \leftarrow U \setminus \{O_i\}$.
 - Step 6. If the number of objects in *M* is *k*, stop. Otherwise, go to Step 1.

SWAP

- This step is done by considering all pairs of (O_i, O_h) , $O_i \in M$, $O_h \in U$ consisting of computing the effect T_{ih} on the sum of distances between objects and the closest medoid (objective function), caused by swapping i and h, that is, transferring i from M to U and transferring h from U to M.
- The computation of T_{ih} involves the computation C_{jih} of each object $O_j \in U \setminus \{O_h\}$ to the swap of object i and h. Note that we have either $d(j,i) > D_i$ or $d(j,i) = D_i$.
- Step 1. Compute C_{iih} with consideration of the following 4 cases.

- SWAP (cont'd)
 - Step 1. (cont'd)
 - (a) if $d(j,i) > D_i$, then two subcases occur:
 - (i) if $d(j,h) \ge D_i$, then $C_{iih} = 0$.
 - (ii) if $d(j,h) < D_j$, then $C_{jih} = d(j,h) D_j$.
 - In both subcases, $C_{iih} = \min \{d(j,h) D_i, 0\}$.
 - (b) if $d(j,i) = D_i$, then two subcases occur:
 - (i) if $d(j,h) < E_j$, then $C_{jih} = d(j,h) D_j$. In this case, C_{jih} can be either positive or negative.
 - (ii) if $d(j,h) \ge E_j$, then $C_{jih} = E_j D_j$. In this case, C_{jih} is always positive.
 - In both above subcases, $C_{jih} = \min \{d(j,h), E_j\} D_j$.

- SWAP (cont'd)
 - Step 2. Compute $T_{ih} = \sum_{j \in U \setminus \{O_h\}} C_{jih}$.
 - Step 3. Select a pair of (O_i, O_h) that minimizes T_{ih} .
 - Step 4. If $T_{ih} < 0$, the swap is carried out. Also update the clustering result and D_i and E_i , and go to Step 1. Otherwise, stop.

- (a) if $d(j,i) > D_j$, then two subcases occur:
 - (i) if $d(j,h) \ge D_j$, then $C_{iih} = 0$.
 - (ii) if $d(j,h) < D_j$, then $C_{jih} = d(j,h) D_j$.
 - In both subcases, $C_{iih} = \min \{d(j,h) D_i, 0\}$.
- (b) if $d(j,i) = D_i$, then two subcases occur:
 - (i) if $d(j,h) < E_j$, then $C_{jih} = d(j,h) D_j$. In this case, C_{jih} can be either positive or negative.
 - (ii) if $d(j,h) \ge E_j$, then $C_{jih} = E_j D_j$. In this case, C_{jih} is always positive.
 - In both above subcases, $C_{jih} = \min \{d(j,h), E_j\} D_j$.

Example

$$- k=2$$

object	X ₁	<i>X</i> ₂	
1	3	3	
2	5	4	
3	11	8	
4	13	6	
5	14	6	
6	15	7	

Distance matrix

object	1	2	3	4	5	6	Sum
1	0.00	2.24	9.43	10.44	11.40	12.65	46.16
2	2.24	0.00	7.21	8.25	9.22	10.44	37.35
3	9.43	7.21	0.00	2.83	3.61	4.12	27.20
4	10.44	8.25	2.83	0.00	1.00	2.24	24.75
5	11.40	9.22	3.61	1.00	0.00	1.41	26.64
6	12.65	10.44	4.12	2.24	1.41	0.00	30.86

Build

• Step o.
$$M = \{O_4\}$$

• Example (cont'd)

i	j	D_i	d(j,i)	$D_i - d(j,i)$	C_{ii}
1		8.25	2.24	6.01	6.01
1	3	2.83	9.43	-6.61	0
1	5	1	11.4	-10.4	0
1	6	2.24	12.65	-10.41	0
				$g_i =$	6.01
2	1	10.44	2.24	8.2	8.2
2	3	2.83	7.21	-4.38	0
2		1	9.22	-8.22	0
2	6	2.24	10.44	-8.2	0
				$g_i =$	8.2
3	1	10.44	9.43	1.01	1.01
3		8.25	7.21	1.04	1.04
3		1	3.61	-2.61	0
3	6	2.24	4.12	-1.89	0
				$g_i =$	2.05
5		10.44	11.4	-0.96	0
5		8.25	9.22	-0.97	0
5		2.83	3.61	-0.78	0
5	6	2.24	1.41	0.82	0.82
				$g_i =$	0.82
6	1	10.44	12.65	-2.21	0
6		8.25	10.44	-2.19	0
6		2.83	4.12	-1.29	0
6	5	1	1.41	-0.41	0
				$g_i =$	0

Build

- Step 1. ~ 4.
- Step 5.

$$M = \left\{O_2, O_4\right\}$$

• Step 6. Stop, because k=2.

• Example (cont'd)

Swap (<u>Iteration 1.</u>)

- Step 1. ~ 3.
- Step 4.

$$M = \left\{O_2, O_5\right\}$$

i				-	d(j,i)	* /	,	E_{j}	Case	C_{jih}
	2	1	1	3	7.21	9.43	2.83	7.21	a(i)	0.00
				5	9.22	11.40	1.00	9.22	a(i)	0.00
				6	10.44	12.65	2.24	10.44	a(i)	0.00
									$T_{ih} =$	0.00
		3	3	1	2.24	9.43	2.24	10.44	b(i)	7.19
				5	9.22	3.61	1.00	9.22	a(i)	0.00
				6	10.44	4.12	2.24	10.44	a(i)	0.00
									$T_{ih} =$	7.19
		5	5	1	2.24	11.40	2.24	10.44	b(ii)	8.20
				3	7.21	3.61	2.83	7.21	a(i)	0.00
				6	10.44	1.41	2.24	10.44	a(ii)	-0.83
									$T_{ih} =$	7.37
		6	5	1	2.24	12.65	2.24	10.44	b(ii)	8.20
				3	7.21	4.12	2.83	7.21	a(i)	0.00
				5	9.22	1.41	1.00	9.22	a(i)	0.00
									$T_{ih} =$	8.20
	4	1	1	3	2.83	9.43	2.83	7.21	b(ii)	4.38
				5	1.00	11.40	1.00	9.22	b(ii)	8.22
				6	2.24	12.65	2.24	10.44	b(ii)	8.20
									$T_{ih} =$	20.81
		3	3	1	10.44	9.43	2.24	10.44	a(i)	0.00
				5	1.00	3.61	1.00	11.40	b(i)	2.61
				6	2.24	4.12	2.24	12.65	b(ii)	10.41
									$T_{ih} =$	13.02
		5	5	1	10.44	11.40	2.24	10.44	a(i)	0.00
				3	2.83	3.61	2.83	9.43	b(i)	0.78
				6	2.24	1.41	2.24	12.65	b(i)	-0.83
									$T_{ih} =$	-0.05
		6	ŝ	1	10.44	12.65	2.24	10.44	a(i)	0.00
				3	2.83	4.12	2.83	9.43	b(i)	1.29
				5	1.00	1.41	1.00	11.40	b(i)	0.41
									$T_{ih} =$	1.71

• Example (cont'd)

Iteration 2.

Fill in the next table and see which objects should be swapped.

i		h	j	d(j,i)	d(j,h)	D_{j}	E_{j}	Case	C_{jih}
	2	1		3					
			2	1					
			6	5					
		_							
		3							
			4	! -					
			6	•					
		4	. 1						
		4	3						
			6	5					
		6	5 1	ı					
		_	3	3					
			4	1					
	5	1	. 3	3					
			4	1					
			6	5					
		3							
			4	1					
			6	5					
		_							
		4	1	L					
			3	3 -					
			6)					
		6	5 1	1					
		U	3						
			2	1					

• Demo (k=5)

Demo (BUILD)

• Demo (SWAP: Iteration 1)

• Demo (SWAP: Iteration 2, Converged)

R Example

Partitioning Around Medoids

```
> library(cluster)
> ## generate 25 objects, divided into 2 clusters.
> x < - rbind(cbind(rnorm(10,0,0.5), rnorm(10,0,0.5)),
           cbind(rnorm(15, 5, 0.5), rnorm(15, 5, 0.5)))
> pamx <- pam(x, 2)
> pamx
Medoids:
    ΙD
[1,] 9 0.03925164 0.05020356
[2,] 18 5.07522377 5.18310846
Clustering vector:
 Objective function:
   build
             swap
0.8288646 0.6135317
> plot(pamx)
```


These two components explain 100 % of the point variability.