GEOMETRY HOMEWORK 3

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

October 3, 2011

Problem 3 (P26: 16). Show that the knowledge of the vector function n = n(s) (normal vector) of a curve α , with nonzero torsion everywhere, determines the curvature $\kappa(s)$ and the torsion τ of α . (\vec{n} 能決定曲線嗎? 說明題目錯誤並找反例。)

Proof. Consider the helix $\alpha(s)=(a\cos\frac{s}{\sqrt{a^2+b^2}},a\sin\frac{s}{\sqrt{a^2+b^2}},\frac{bs}{\sqrt{a^2+b^2}})$ Then $n(s)=(-\cos\frac{s}{\sqrt{a^2+b^2}},-\sin\frac{s}{\sqrt{a^2+b^2}},0)$.

So if two helix has the same a^2+b^2 (e.g. $\alpha_1(s)=(\frac{1}{2}\cos s,\frac{1}{2}\sin s,\frac{\sqrt{3}}{2}s),$ $\alpha_2(s)=(\frac{\sqrt{3}}{2}\cos s,\frac{\sqrt{3}}{2}\sin s,\frac{1}{2}s))$, then they have same n(s), but they're not the same

Problem 4 (P26: 17, 另一種描述 Helix 的方式). In general, a curve α is called a helix if the tangent lines of α make a constant angle with a fixed direction. Assume that $\tau(s) \neq 0$, $s \in I$, and prove that:

- (a) α is a helix if and only if $\kappa/\tau = constant$.
- (b) α is a helix if and only if the lines containing n(s) and passing through $\alpha(s)$ are parallel to a fixed plane.
- (c) α is a helix if and only if the lines containing b(s) and passing through $\alpha(s)$ make a constant angle with a fixed direction.
- (d) The curve

$$lpha(s) = \left(rac{a}{c}\int\sin heta(s)ds,rac{a}{c}\int\cos heta(s)ds,rac{b}{c}s
ight),$$

where $c^2 = a^2 + b^2$, is a helix, and that $\kappa/\tau = a/b$.

Proof.

Problem 6. $\gamma(s)$ 長度參數。若將 T(s) 寫成 $(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$, ϕ, θ 是 s 的函數。說明 $\kappa(s) = \sqrt{\phi'^2 + \theta'^2 \sin^2 \phi}$ 。

Proof.

Problem 7. $\gamma: \mathbb{R} \to \mathbb{R}^3$,不妨假設是長度參數。

- (b) 若 $M^tM=I$, $\det(M)=-1$ 且 $\overline{\gamma}=M\gamma$, 討論 κ, τ 變化。
- (c) $\overline{\gamma}(s)=\gamma(-s)$,說明 κ, au 變化。

Proof.

Problem 8. 說明 $\overline{\gamma}(u) = \gamma(-s)$ 時,在對應點

$$\frac{\det(\overline{\gamma}',\overline{\gamma}'',\overline{\gamma}''')}{|\overline{\gamma}'\times\overline{\gamma}''|^2}(u) = \frac{\det(\gamma',\gamma'',\gamma''')}{|\gamma'\times\gamma''|^2}(t)$$

再用 chain rule 直接說明。

Proof.