FINITE DIFFERENCES

Dr. Ndung'u Reuben M.

Finite Difference Operators

Consider a tabulated function f(x) i.e. $(x_i, f(x_i))$ given in tabular form as

Table 2.1: Table of tabulated values of a function y = f(x)

х	0.0	0.2	0.4	0.6	0.8	1.0	1.2
y = f(x)	1.5	1.8936	2.2616	2.6136	2.9936	3.5000	4.2456

If we let,	<u>then</u>	But if we let	<u>then</u>
$x_0 = 0.0$	$f_0 = 1.5$	$x_{-2} = 0.0$	$f_{-2} = 1.5$
$x_1 = 0.2$	$f_1 = 1.8936$	$x_{-1} = 0.2$	$f_{-1} = 1.8936$
:	:	$x_0 = 0.4$	$f_0 = 2.2616$
$x_6 = 1.2$	$f_6 = 4.2456$	$x_1 = 0.6$	$f_1 = 2.6136$
		: ((U)
		$x_4 = 1.2$	$f_4 = 4.2456$

 x_i are called *tabular points* or *base points* or *arguments*.

 f_i are called *entries* or *tabular values*.

$$i = \cdots - 2, -1, 0, 1, 2, \cdots$$

 $x_{i+1} - x_i = h$, is called the interval or step – length

If we define the consecutive values of x to be $a, a+h, a+2h, a+3h, \cdots, a+nh$ differing by h, then the corresponding values of the function f(x) are:

$$f(a), f(a+h), f(a+2h), f(a+3h), \dots, f(a+nh)$$

We now introduce finite difference operators:

Note: An operator acts on a function to yield another function.

1) Identity Operator, I

Is defined as $If_i = f_i$

The identity operator can also be defined by Δ^0 , i.e. $\Delta^0 f(x) = f(x)$. e.g. in Table 2.1 above $If_2 = f_2$.

Δ⁰ is the forward difference operator defined later in this section

2) Shift Operator, *E* (Also called displacement operator)

The shift operator shifts the function value f(x) to the nest higher value f(x+h). E is defined as

$$Ef_i = f_{i+1}$$
, or $Ef(x) = f(x+h)$

e.g. If $x_0 = 0.0$ in Table 2.1 above, then

$$Ef(x_0) = f(x_1) = 1.8936$$

Similarly, the inverse shift operator,

$$E^{-1}f(x) = f(x-h)$$
 or $E^{-1}y_i = y_{i-h}$
 $\therefore E^{-1}f(x_4) = f(x_3) = 2.6136$

DEKUT-MPS Page 1 of 5

The second shift operator gives

$$E^{2}f_{i} = E(Ef_{i}) = Ef_{i+1} = Ef_{i+2}$$

$$E^{2}f_{1} = E(Ef_{i}) = Ef_{2} = f_{3}$$

In general then,

$$E^k f(x) = f(x + kh)$$
 or $E^k y_i = y_{i+k}$

where k is positive as well as negative rationals.

3) Forward difference Operator, Δ

Defined as

$$\Delta y_i = y_{i+1} - y_i$$
 or $\Delta f(x) = f(x+h) - f(x)$

 Δy_i is referred to as the *first forward difference*.

i.e.
$$f(x_0 + h) - f(x_0) = \Delta f(x_0)$$
, $f(x_0 + 2h) - f(x_0 + h) = \Delta f(x_0 + h) \equiv \Delta f(x_1)$, \vdots \vdots \vdots $f(x_0 + nh) - f(x_0 + (n-1)h) = \Delta f(x_0 + (n-1)h) \equiv \Delta f(x_{n-1})$ are called *first forward differences*.

Illustration (Using <u>Table 2.1</u>)

If we let
$$x_0 = 0.0$$
, then $f(x_0) = 1.2$ and so on. Therefore,
$$\Delta f(x_0) = f(x_0 + h) - f(x_0) = f(x_1) - f(x_0) \\ = 1.8936 - 2.2616 = 0.368$$

$$\Delta f(x_1) = f(x_2) - f(x_1) = 2.6136 - 2.2616 = 0.352$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\Delta f(x_5) = f(x_6) - f(x_5) = 4.2456 - 3.50 = 0.7456$$
 are the first forward differences of the data in the table.

The differences of the first forward differences are called *second forward differences*, i.e.

$$\Delta^{2}f(x) = \Delta(\Delta f(x))$$

$$= \Delta(f(x+h) - f(x))$$

$$= \Delta f(x+h) - \Delta f(x)$$

$$= (f(x+2h) - f(x+h))$$

$$- (f(x+h) - f(x))$$

$$= f(x+2h) - 2f(x+h) + f(x)$$

$$\Delta^{2}f_{i} = \Delta(\Delta f_{i})$$

$$= \Delta(f_{i+1} - f_{i})$$

$$= (f_{i+1} - \Delta f_{i})$$

$$= (f_{i+2} - f_{i+1}) - (f_{i+1} - f_{i})$$

$$= f_{i+2} - 2f_{i+1} + f_{i}$$

In the second differences, the index 2 does not denote power 2 but indicates the second difference and in general the k^{th} differences are denoted as

$$\Delta^k f_i = \Delta^{k-1} f_{i+1} - \Delta^{k-1} f_i$$

DEKUT-MPS Page 2 of 5

Forward	dif	ference	lavor	ut/table
1 UI WUI U	uu	ieience	uuvu	u/iuvie

x	f	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$	$\Delta^5 f$
x_{-2}	f_{-2}					
		Δf_{-2}				
x_{-1}	f_{-1}		$\Delta^2 f_{-2}$			
		Δf_{-1}		$\Delta^3 f_{-2}$		
x_0	f_0		$\Delta^2 f_{-1}$		$\Delta^4 f_{-2}$	
		Δf_0		$\Delta^3 f_{-1}$		$\Delta^5 f_{-2}$
x_1	f_1		$\Delta^2 f_0$		$\Delta^4 f_{-1}$	
		Δf_1		$\Delta^3 f_0$		
x_2	f_2		$\Delta^2 f_1$			
		Δf_2				
x_3	f_3					

A forward difference table is also called a *Diagonal difference table* (The entries along a forward diagonal are the forward differences of various order at the corresponding points in the table).

Thus in general
$$\Delta^k f_i = \Delta^{k-1}(\Delta f_i)$$
$$= \Delta^{k-1} f_{i+1} - \Delta^{k-1} f_i$$

The values of the forward differences can be displayed in a horizontal difference table.

					- 17	
x	f	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$	$\Delta^{5} f$
x ₋₂	f_{-2}	Δf_{-2}	$\Delta^2 f_{-2}$	$\Delta^3 f_{-2}$	$\Delta^4 f_{-2}$	$\Delta^5 f_{-2}$
x_{-1}	f_{-1}	Δf_{-1}	$\Delta^2 f_{-1}$	$\Delta^3 f_{-1}$	$\Delta^4 f_{-1}$	
x_0	f_0	Δf_0	$\Delta^2 f_0$	$\Delta^3 f_0$		
x_1	f_1	Δf_1	$\Delta^2 f_1$			
x_2	f_2	Δf_2				
x_3	f_3	\wedge				

Activity 2.1

- i) What does leading term and leading differences mean?
- ii) Using Table 2.1, construct a forward difference table. Taking $x_0 = 0.0$, find $\Delta f(x_1)$, $\Delta^2 f(x_3)$, $\Delta^3 f(x_3)$.
- iii) What do you notice from the difference table?

4) Backward difference Operator, ∇

Defined as

$$\nabla f_i = f_i - f_{i-1}$$
 or $\nabla f(x) = f(x) - f(x-h)$

Backward difference layout/table

х	f	∇f	$\nabla^2 f$	$\nabla^3 f$	$ abla^4 f$	$\nabla^5 f$
x_{-2}	f_{-2}					
		∇f_{-1}				
x_{-1}	f_{-1}		$\nabla^2 f_0$			
		∇f_0		$\nabla^3 f_1$		
x_0	f_0		$\nabla^2 f_1$		$\nabla^4 f_2$	
		∇f_1		$\nabla^3 f_2$		$ abla^5 f_3$
x_1	f_1		$\nabla^2 f_2$		$\nabla^4 f_3$	
		∇f_2		$\nabla^3 f_3$		
x_2	f_2		$\nabla^2 f_3$			
		∇f_3				
x_3	f_3					

DEKUT-MPS Page 3 of 5

The entries along the backward diagonal are the backward differences of various orders at the corresponding source point in the table.

Consider the point f_1 , $\Delta f_0 = \nabla f_1$, $\Delta^2 f_{-1} = \nabla^2 f_1$, $\Delta^3 f_{-2} = \nabla^3 f_1$, $\Delta^4 f_{-3} = \nabla^4 f_1$

The values of the backward differences can be displayed in a horizontal difference table.

x	f	∇f	$\nabla^2 f$	$\nabla^3 f$	$ abla^4 f$	$\nabla^5 f$
x_{-2}	f_{-2}					
x_{-1}	f_{-1}	∇f_{-1}				
x_0	f_0	∇f_0	$\nabla^2 f_0$			
x_1	f_1	∇f_1	$\nabla^2 f_1$	$\nabla^3 f_1$		
x_2	f_2	∇f_2	$\nabla^2 f_2$	$\nabla^3 f_2$	$ abla^4 f_2$	
x_3	f_3	∇f_3	$\nabla^2 f_3$	$\nabla^3 f_3$	$ abla^4 f_3$	$ abla^4 f_3$

Activity 2.2

- i) Using Table 2.1 construct a backward difference table. Taking $x_0 = 0.0$ in difference table, determine (x_0) , $\nabla^2 f(x_4)$. $\nabla^3 f(x_6)$.
- ii) How do the backward and forward difference tables compare?

5) Central Difference Operator, δ

Is defined as

$$\delta f_{i} = f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}} \quad or \quad \delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$$

$$e.g. \quad \delta f_{1} = f_{1+\frac{1}{2}} - f_{1-\frac{1}{2}}$$

$$= f_{\frac{3}{2}} - f_{\frac{1}{2}}$$

Only the even central differences use the tabular point values (x_i, y_i) .

6) Average Operator, μ

Defined as

$$\mu f_i = \frac{f_{i+\frac{1}{2}} + f_{i-\frac{1}{2}}}{2} \quad or \quad \mu f(x) = \frac{f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right)}{2}$$

Properties of the operator Δ .

- 1. If c is a constant then $\Delta c = 0$.
- 2. Δ is distributive, i.e. $\Delta[f(x) \pm g(x)] = \Delta f(x) \pm \Delta g(x)$.
- 3. If c is a constant, then $\Delta[cf(x)] = c\Delta f(x)$.
- 4. If m and n are positive integers then $\Delta^m \Delta^n f(x) = \Delta^{m+n} f(x)$.
- 5. $\Delta[f_1(x) + f_2(x) + \dots + f_n(x)] = \Delta f_1(x) + \Delta f_2(x) + \dots + \Delta f_n(x)$
- 6. $\Delta[f(x)g(x)] = f(x)\Delta g(x) + g(x)\Delta f(x)$
- 7. $\Delta \frac{f(x)}{g(x)} = \frac{f(x)\Delta f(x) f(x)\Delta g(x)}{g(x)g(x+h)}$

DEKUT-MPS Page 4 of 5

Error Propagation in a Difference Table.

Worked example (Relationship between difference operators)

1. Show that $\nabla = I - E^{-1}$.

Solution

By definition,

$$\nabla f(x) = f(x) - f(x+h)$$

$$= f(x) - Ef(x)$$

$$= (I - E)f(x)$$

$$\therefore \quad \nabla = I - E$$

2. Show that $\Delta = E - I$

Solution

By definition,

$$\Delta f(x) = f(x+h) - f(x)$$

$$= Ef(x) - If(x)$$

$$= (E-I)f(x)$$

$$\therefore \quad \Delta \in E-I$$

3. If Δ and ∇ are the forward and backward differences of a function f(x), show that $(\Delta - \nabla) = \Delta \nabla$.

Solution

By definition, $\Delta f(x) = f(x+h) - f(x)$ and $\nabla f(x) - f(x) - f(x-h)$

where h is the interval of differencing,

Therefore,

$$\Delta - \nabla f(x) = \Delta f(x) - \nabla f(x)$$

$$= \Delta f(x) - [f(x) - f(x - h)]$$

$$= \Delta f(x) - \nabla f(x)$$

$$= \Delta f(x) - \Delta f(x - h)$$

$$= \Delta (f(x) - f(x - h))$$

$$= \Delta \nabla f(x)$$

Exercises

- 1. Show that $E\nabla = \nabla E = \Delta$.
- 2. Prove that $(I + \Delta)(I \nabla) = I$
- 3. Prove that $\Delta \nabla = \Delta \nabla$.

DEKUT-MPS Page 5 of 5