ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа 3.3.4 **Эффект Холла в полупроводниках.**

Цель работы: измерение подвижности и конуентрации носителей заряда в проводниках.

В работе используются: электромагнит с регулируемым источником питания; вольтетр; амперметр; миллиамперметр; милливебберметр; источник питания (1.5 В); Образец легированного германия.

1 Теоретическая справка

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\pi} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B}$$

где е- абсолютный заряд электро-

на, \vec{E} - напряженность электрического поля, \vec{B} голе индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$. В установившемся режиме $F_E = F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$\mathscr{E}_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a} \tag{1}$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p - концентрации электронов и дырок, b_e b_p - их подвижности.

2 Экспериментальная установка

Рис. 2: Электрическая установка для измерения ЭДС Холла.

Работа 3.3.4 3 Ход работы:

3 Ход работы:

Настроим приборы

1) Построим калибровочную кривую электромагнита (параметр милливебберметра $S \cdot N = 72 \text{cm}^2$):

I, A	В, Тл
0.27	0.21
0.54	0.42
0.81	0.625
1.08	0.79
1.35	0.94
1.62	1.04
1.89	1.125
2.13	1.16

Зависимость B(I).

2) Вычислим зависимость:

$$B = ((0.52 \pm 0.04) \text{T} \pi/A) \cdot I + (0.16 \pm 0.02) \text{T} \pi$$

Вставим образец в зазор выключенного электромагнита и определим начато отсчета напряжения $(U_0 = -0.017 \text{ B})$ между Холловскими кантактами при минимальном точке через образец (I = 0.3 мA).

Измереним ЭДС Холла

Получим зависимость холловского напряжения U_{34} от тока через электромагнит I_M для разных токов I через образец:

 Работа 3.3.4
 3 Ход работы:

І, мА	U0, мВ	Ім, А	U34, мВ
0.3	-0.017	0.27	-0.04
		0.54	-0.065
		0.81	-0.089
		1.08	-0.111
		1.35	-0.130
		1.62	-0.140
		1.89	-0.150
		2.11	-0.155
0.4		0.27	0.013
		0.54	0.044
		0.81	0.074
	-0.017	1.08	0.102
0.4	-0.017	1.35	0.123
		1.62	0.138
		1.89	0.148
		2.08	0.153
		0.27	0.013
	-0.025	0.54	0.052
		0.81	0.094
0.5		1.08	0.127
		1.35	0.152
		1.62	0.170
		1.89	0.183
		2.07	0.190
	-0.03	0.27	0.016
0.6		0.54	0.064
		0.81	0.110
		1.08	0.151
		1.35	0.184
		1.62	0.205
		1.89	0.220
		2.06	0.228

І, мА	U0, мВ	Ім, А	U34, мВ
1, 1/1/1	00, MD	0.27	0.017
0.7 -0.03	-0.037	$0.27 \\ 0.54$	0.017
		0.81	0.074
		1.08	0.126 0.175
		1.35	0.113
		1.62	0.214
		1.89	0.240
		2.04	0.267 0.265
		0.27	0.209
		$0.27 \\ 0.54$	0.019
		0.81	0.030 0.145
		1.08	0.143
0.8	-0.042	1.35	0.240
		1.62	0.240
		1.89	0.210
		$\frac{1.03}{2.04}$	0.232
		0.27	0.022
		0.27 0.54	0.022
		0.81	0.165
0.9 -0.0		1.08	0.100 0.222
	-0.05	1.35	0.275
		1.62	0.306
		1.89	0.328
		2.03	0.339
1 -0.0		0.27	0.027
		0.54	0.103
		0.81	0.180
		1.08	0.250
	-0.055	1.35	0.302
		1.62	0.340
		1.89	0.365
		2.03	0.375

Построим графики U(B) на одном чертеже:

Работа 3.3.4 3 Ход работы:

По МНК получим линейную зависимость $U=k\cdot B+b$. Полученные коэффициенты:

I, м A	k, мВ/Тл
0.3	0.135 ± 0.006
0.4	0.139 ± 0.007
0.5	0.168 ± 0.008
0.6	0.204 ± 0.01
0.7	0.244 ± 0.01
0.8	0.264 ± 0.007
0.9	0.302 ± 0.011
1.0	0.340 ± 0.015

Получим заыисимость k(B):

Работа 3.3.4 3 Ход работы:

Зависимость k (I)

Аппроксимируем: $k=(0.31\pm0.014)\frac{\mathrm{B}}{\mathrm{Тл}\cdot A}\cdot I+(0.025\pm0.003)\mathrm{мB/Tл},$ где По формуле:

$$a = \frac{U34}{B \cdot I} = \frac{R_H}{h}$$

Вычислим постоянную Холла (Учитывая h = 1.5mm):

$$R_H = a \cdot h = (0.47 \pm 0.02) \ 10^{-3} \frac{B \cdot m}{T_{\pi} \cdot A}$$

А по формуле:

$$R_H = \frac{1}{n \cdot e}$$

Получим значение концентрации n свободных носителей заряда в образце:

$$n = (1.33 \pm 0.31) \ 10^{-22} m^{-3}$$

Найдем удельную проводимость образца. По формуле:

$$\sigma = \frac{I \cdot L_{35}}{U_{35}al}$$

Взяв изначения ($I=1.0\,$ мА, $U_{35}=1.681\,$ мВ), учтем параметры образца ($L_{35}=3.0\,$ $mm,h=1.5\,$ $mm,l=1.7\,$ mm), получим:

$$\sigma = (699.8 \pm 81) (\Omega \cdot m)^{-1}$$

Найдем подвижность носителей заряда по формуле:

$$b = \frac{\sigma}{en} = \sigma \cdot R_H = (3285 \pm 395) \frac{\text{cm}^2}{\text{B} \cdot s}$$

Работа 3.3.4 4 Выводы

4 Выводы

В работы мы исследовали эффект Холла в легированном германии (полупроводник). Были экспериментально получены постоянная Холла для исследуемого образца $R_H = (0.47 \pm 0.02)~10^{-3} \frac{\text{B·}m}{\text{Тл·}A}$ и концентрация свободных носителей заряда $n = n = (1.33 \pm 0.31)~10^{-22} m^{-3}$. Мы измерели удельная проводимость образца:

 $\sigma = (699.8 \pm 81) (\Omega \cdot m)^{-1}.$

По направлению тока в образце и направлению силовых линий электромагнита можно заключить, что образец обладает электронной проводимостью. В работе рассчитали подвижность носителей заряда в образце: $b = (3285 \pm 395) \, \frac{\text{см}^2}{\text{B·}s}$. Полученный результат отличается от табличного значения $b_0 = 3900 \, \frac{\text{см}^2}{\text{B·}s}$, но не очень сильно. Возможно, это из-за неточности измерения приборов из-за нагревы и наличия примесей в образце.