K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING **ELECTRONIC CIRCUITS**

Oscillator Circuits

Numerical 1:

In a Hartley oscillator, amplifier components are $R_1 = 100k\Omega$, $R_2 = 18k\Omega$, $R_C = 12k\Omega$, $R_E = 1k\Omega, C_{C_1} = 1\mu F, C_{C_2} = 1\mu F, C_E = 1\mu F, V_{CC} = 10V$. Select the LC tank circuit elements such that frequency of oscillation is close to 100kHz.

BJT transistor: 2N2222

Figure 1: Circuit 1

Solution:

$$f_o = 100Hz$$

For Hartley's Oscillator,

$$f_o = \frac{1}{2\pi\sqrt{L_{eq}C_3}}$$
, where $L_{eq} = L_1 + L_2$

Assume,
$$C_3 = 47 \text{nF}$$

Assume,
$$C_3 = 47 \text{nF}$$

$$100kHz = \frac{1}{2\pi\sqrt{(L_1 + L_2) \times 47nF}}$$

$$\sqrt{(L_1 + L_2) \times 47nF} = \frac{1}{2\pi \times 100kHz}$$

$$L_1 + L_2 = \frac{2.533 \times 10^{-12}}{47nF}$$

$$L_1 + L_2 = \mathbf{5.389} \times \mathbf{10^{-5}}$$

Let
$$L_1 = L_2$$

$$\therefore 2L_1 = 5.389 \times 10^{-5}$$

$$L_1 = 26.95 \mu F = L_2$$

Feedback Fraction (k) =
$$\frac{L_2}{L_1} = 1$$

Time period of oscillator = $\frac{1}{f_o}$ = $10\mu s$ Phase shift offered by LC tank circuit = 180°

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 2: Circuit Schematic

Figure 3: Output of Hartley Oscillator

Figure 4: Output & Feedback Voltage of Hartley Oscillator

Comparison of Theoretical and Simulated results:

Parameters	Theoretical	Simulated
Frequency of Oscillation f_o	100kHz	99.54kHz
Time period of Oscillations	$10\mu s$	$10.04 \mu s$
Amplitude of Oscillations	_	6.425Vp-p
Feedback signal V_f amplifude &		6.263Vp-p
phase w.r.t V_{out}		180°[out of phase]
Feedback Fraction	1	0.974
Phase shift offered by LC tank circuit	180°	180°

Table 1: Numerical 1

Numerical 2:

In a Colpitts oscillator, amplifier components are $R_1 = 100k\Omega$, $R_2 = 18k\Omega$, $R_C = 12k\Omega$, $R_E=1k\Omega,\,C_{C_1}=1\mu F,\,,\,C_{C_2}=1\mu F,\,,\,C_E=150\mu F,\,V_{CC}=10V.$ Select the LC tank circuit elements such that frequency of oscillation is close to 400kHz.

BJT transistor: 2N2222. Comment on phase shift offered by LC tank circuit.

Figure 5: Circuit 2

Solution:

$$f_o = 400Hz$$

For Colpitts Oscillator,

$$f_o = \frac{1}{2\pi\sqrt{C_{eq}L_3}}$$
, where $C_{eq} = \frac{C_1 \times C_2}{C_1 + C_2}$

Assume
$$L_0 = 1\mu \, \text{F}$$

Assume,
$$L_3 = 1\mu$$
 F

$$400 \times 10^3 = \frac{1}{2\pi\sqrt{(10^{-6}) \times C_{eq}}}$$

$$C_{eq} = \mathbf{0.158}\mu\mathbf{F}$$

Let
$$C_1 = C_2$$

$$\therefore C_{eq} = \frac{C_1}{2} = 0.158 \mu F$$

$$C_1 = C_2 = 0.316 \mu F$$

Feedback Fraction (k) =
$$\frac{C_1}{C_2} = 1$$

Time period of oscillator =
$$\frac{1}{f_o} = 2.5 \mu s$$

Phase shift offered by LC tank circuit = 180°

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 6: Circuit Schematic

Figure 7: Output of Colpitts Oscillator

Figure 8: Output & Feedback Voltage of Colpitts Oscillator

Comparison of Theoretical and Simulated results:

Parameters	Theoretical	Simulated
Frequency of Oscillation f_o	400kHz	397.156kHz
Time period of Oscillations	$2.5\mu s$	$2.517 \mu s$
Amplitude of Oscillations	_	2.727Vp-p
Feedback signal V_f amplifude	_	2.727Vp-p
& phase w.r.t V_{out}		180°[out of phase]
Feedback Fraction	1	1
Phase shift offered by LC tank circuit	180°	180°

Table 2: Numerical 2
