Natural Language Processing: Classify Amazon reviews based on the customer's ratings.

By: JOE ANSON R. AQUINO

August 18, 2023

Introduction

Many times, ratings are represented by a numerical value (************). However, the text feedback holds more value than the quantified ratings. Sometimes, the rating given may not accurately reflect the experience of the product. Given the text of the review of a product, we want to build a supervised, binary classifier model with the actual review text as the core predictor.

Approach

First, will gather data from Amazon Dataset contains the customer reviews for all listed *Electronics*, will do NLP Pre-Processing, Tokenization, Phrase Modeling, Vectorization before exploring the data before utilizing a machine-learning algorithm to predict if the review is negative or positive review. To justify this work, I conducted a comparative study and analysis using various classification algorithms, including Random Forest Classifier, xgBoost Classifier.

Amazon Dataset

- Contains customer reviews for all listed Electronics products from May 1996 up to July 2014.
- ▶ 1,689,188 reviews by 192,403 customers on 63,001 unique products

Data Wrangling - NLP Pre-Processing

- ▶ The Final dataframe for the model will be drawn from the reviewText column.
- ► The overall column will serve as the ground truth labels

Let just start off by saying that I have tried the Kindle and although an OK hardware device, the interface was ter rible. It felt like the early days of the internet, with textual interfaces, underlined words, fiddling with butto ns and keyboard to navigate, and all sorts of annoyances that got in the way of reading and enjoying the device. We returned it within 3 days.Next we tried the original Nook Black&White;, and interface was much better, but the scre en had poor contrast. (not the nice Pearl screen as the Kindle has)Enter Nook Touch. WOW. This thing has a top no tch interface... they totally put their minds and heart into this one... it is PERFECT. Touchscreen makes a world of a difference, and enables the slick interface that allows you to browse the store, personal library, and more. On-screen Buttons and finger gestures make the magic happen, and this is one device you are sure to LOVE TO USE. The screen is the new Pearl, so it looks just as good as the Kindle, with the added benefit of touchscreen!The size? PERFECT! Not too big, not too small. Very thin. Well built. Feels durable.All I can say is this is finally the ereader I've been waiting for... excellent battery life, good Pearl screen, touchscreen, and perfect size.To boot, the price is dead on! \$139 with Wifi. If it gets stolen, I am buying another one immediately!

NLP Pre-Processing

- HTML Entities
- Lemmatization
- Accents
- Punctuations
- Lowercasing
- Stop Words
- Single Whitespaces

Tokenization

the document is broken down individually into words or tokens.

['im', 'big', 'fan', 'brainwavz', 's1', 'actually', 'headphone', 'yet', 'disappoint', 'product', 's1', 'main', 'set', 'active', 'use', 'e', 'g', 'workouts', 'run', 'etc', 'since', 'flat', 'cable', 'durable', 'resistant', 'tangle', 's5', 'keep', 'good', 'feature', 's1', 'add', 'sound', 'quality', 'rich', 'well', 'define', 'thats', 'say', 's1', 'sound', 'poor', 'quite', 'good', 'fact', 's5', 'well', 'high', 'well', 'define', 'midrange', 'punch', 'bass', 'come', 'clearly', 'without', 'move', 'harsh', 'territory', 'volume', 'push', 's1s', 'overall', 'sound', 'quality', 'please', 'build', 'quality', 'seem', 'solid', 's0lid', 's1', 'good', 'love', 'flat', 'cable', 'know', 'thats', 'something', 'appreciate', 'everyone', 'work', 'wonderfully', 'although', 'brainwavz', 'headset', 'come', 'excellent', 'hard', 'shell', 'case', 'usually', 'tote', 'earbuds', 'wrap', 'around', 'mp3', 'player', 'pocket', 'easy', 'carry', 'stressful', 'cable', 'lead', 'tangle', 'round', 'wire', 'flat', 'wire', 'especially', 'thick', 'jacket', 'survive', 'abuse', 'zero', 'problem', 'earbuds', 'sleekly', 'shape', 'style', 's1', 'comfort', 'line', 'customary', 'brainwavz', 'style', 'say', 'outstanding', 'come', 'wide', 'range', 'tip', 'fit', 'pretty', 'much', 'ear', 'plus', 'comply', 'foam', 'tip', 'favorite', 'fit', 'properly', 'end', 'zero', 'ear', 'irritation', 'plus', 'excellent', 'sound', 'isolation', 'bass', 'response', 'ear', 'design', 'much', 'like', 's1', 'never', 'use', 'design', 'prior', 's1', 'take', 'little', 'time', 'get', 'accustom', 'become', 'second', 'nature', 'quickly', 'design', 'lot', 'stable', 'exercise', 'conventional', 'ear', 'design', 'expensive', 's1', 'hear', 'difference', 'price', 'still', 'look', 'keep', 'cost', 'bit', 's1', 'excellent', 'performer', 'well', 'great', 'sound', 'great', 'comfort', 'wonderful', 'cable', 'design', 'come', 'solidly', 'make', 'case', 'lot', 'eartips', 'highly', 'recommend', 'sample', 'provide', 'review']

Phase Modeling

Bi-grams

['hdmi_dvi', 'lens_without', 'time_forget', 'like_return', '2_00', 'fast_run', 'make_convenient', 'point_think', 'matter_fact', 'although_make', 'actually_see', 'sure_problem', 'course_good', 'get_catch', 'take_find', 'include_product', 'problem_design', 'work_everything', 'standard_camera', '1080p_120hz', 'make_give', 'set_ipad', 'control_cable', 'nikon_brand', 'really_beat', 'game_also', 'tiny_size', 'tiny_camera', 'use_default', 'color_come', 'get_12', 'plug_network', 'piece_technology', 'light_fit', 'button_click', '4kb_qd', 'wheel_click', 'wish_purchase', 'hold_device', 'ipod_phone', 'might_break', 'work_need', 'big_small', 'tell_would', 'lot_high', 'noise_ratio', 'less_200', 'star_seem', 'design_camera', 'camera_function']

Tri-grams

['play_blu_ray', 'samsung_galaxy_s4', 'old_macbook_pro', 'quality_top_notch', 'b_w_filter', 'one_living_room', 'mac_os_x', 'far_exceed_expectation', 'nexus_7_2013', 'cell_phone_use', 'customer_service_great', '5d_mark_iii', 'cell_phone_camera', 'macbook_pro_work', 'first_blu_ray', 'case_nexus_7', 'double_sided_tape', 'price_highly_recommended', 'almost_non_existent', '2_4ghz_5ghz', 'macbook_pro_13', 'customer_service_rep', 'samsung_840_pro', 'blu_ray_disk', 'use_third_party', 'n_uuml_vi', 'home_theater_pc', 'complete_waste_money', 'small_form_factor', 'use_home_theater', 'fast_forward_rewind', 'wi_fi_connection', 'amazon_return_policy', 'new_kindle_fire', '192_168_1', 'aps_c_sensor', 'ear_bud_come', 'mp3_player_work', 'mp3_player_use', 'use_macbook_pro', 'run_os_x', 'canon_5d_mark', 'blu_ray_movie', 'western_digital_passport', 'dd_wrt_firmware', 'inch_macbook_pro', 'heart_rate_monitor', 'great_mp3_player', 'kindle_fire_hd', 'samsung_galaxy_tab']

Count-based Feature Engineering

Bag of Words

Word: address, Frequency: 1 Word: around, Frequency: 1 Word: arrive,

Frequency: 1 Word: back, Frequency: 1

Word: bad,

Frequency: 1 Word: big, Frequency: 2

Word: come,

Frequency: 1 Word: contact, Frequency: 1

Word: could,

Frequency: 1 Word: day, Frequency: 1

Word: earlier,

Frequency: 1 Word: ease, Frequency: 2

Word: ect,

Frequency: 1 Word: email, Frequency: 2 Word: exception, Frequency: 1 Word: exchange, Frequency: 1 Word: expect,

TF-IDF

Word: address, Weight: 0.113 Word: around,

Weight: 0.060 Word: arrive, Weight: 0.093 Word: back, Weight: 0.051 Word: bad, Weight: 0.068 Word: big, Weight: 0.126 Word: come,

Weight: 0.046 Word: contact, Weight: 0.103 Word: could, Weight: 0.054 Word: day, Weight: 0.061 Word: earlier, Weight: 0.141 Word: ease, Weight: 0.220 Word: ect, Weight: 0.181 Word: email, Weight: 0.213 Word: exception,

Weight: 0.131 Word: exchange, Weight: 0.132 Word: expect, Weight: 0.067 Word: freeze,

Weight: 0.259 Word: get, Weight: 0.028 Word: glitch, Weight: 0.141 Word: gps, Weight: 0.102 Word: great,

Weight: 0.059 Word: however, Weight: 0.064

Class Distributions:
0 is Positive review 87%

1 is Negative review 13%

Classification Report

Classification Report for TRAINING Data

	Precision	Recall	F1-Score	Support
Negative	0.00	0.00	0.00	132
Positive	0.88	1.00	0.93	924
Accuracy			0.88	1056
Macro avg	0.44	0.50	0.47	1056
Weighted avg	0.77	0.88	0.82	1056

Classification Report for TEST Dat	:a
------------------------------------	----

	Precision	Recall	F1-Score	Support
Negative	0.00	0.00	0.00	39
Positive	0.85	1.00	0.92	265
Accuracy			0.85	265
Macro avg	0.43	0.50	0.46	265
Weighted avg	0.73	0.85	0.79	265

Classification Prediction Report

Classification Report for TRAINING Data							
	Precision	Recall	F1-Score	Support			
Negative	0.00	0.00	0.00	128			
Positive	0.87	1.00	0.93	862			
Accuracy			0.87	990			
Macro avg	0.44	0.50	0.47	990			
Weighted avg	0.76	0.87	0.81	990			

Classification Report for TEST Data							
	Precision	Recall	F1-Score	Support			
Negative	0.00	0.00	0.00	43			
Positive	0.87	1.00	0.93	288			
Accuracy			0.87	331			
Macro avg	0.44	0.50	0.47	331			
Weighted avg	0.76	0.87	0.81	331			

The difference in Accuracy [Test - Train]

Logistic Regression Classifier

Logistic Regression Classifier Accuracy: 0.8701				Logistic Regression with GridSearchCV Accuracy: 0.8701					
	Precision	Recall	F1-Score	Support		Precision	Recall	F1-Score	Support
0	0.00	0.00	0.00	0	0	0.00	0.00	0.00	0
1	1.00	0.87	0.93	331	1	1.00	0.87	0.93	331
Accuracy			0.87	331	Accuracy			0.87	331
Macro avg	0.50	0.44	0.47	331	Macro avg	0.50	0.44	0.47	331
Weighted avg	1.00	0.87	0.93	331	Weighted avg	1.00	0.87	0.93	331

Light GBM Classifier

LGBM Classifier Accuracy: 0.861				LGBM Classifier with GridSearchCV Accuracy: 0.864					
	Precision	Recall	F1-Score	Support		Precision	Recall	F1-Score	Support
0	0.00	0.00	0.00	3	0	0.00	0.00	0.00	2
1	0.99	0.87	0.93	328	1	0.99	0.87	0.93	328
Accuracy			0.86	331	Accuracy			0.86	331
Macro avg	0.49	0.43	0.46	331	Macro avg	0.50	0.43	0.46	331
Weighted avg	0.98	0.86	0.92	331	Weighted avg	0.99	0.86	0.92	331

XGBoost Classifier

XGBoost Classifier Accuracy: 0.861					XGBoost Classifier Accuracy with GridSearchCV Accuracy				
	Precision	Recall	F1-Score	Support		Precision	Recall	F1-Score	Support
0	0.05	0.29	0.08	7	0	1.00	0.13	0.23	330
1	0.98	0.87	0.92	324	1	0.00	1.00	0.01	1
Accuracy			0.86	331	Accuracy			0.13	331
Macro avg	0.51	0.58	0.50	331	Macro avg	0.50	0.57	0.12	331
Weighted avg	0.96	0.86	0.91	331	Weighted avg	1.00	0.13	0.23	331

index	Train_Accuracy	Test_Accuracy	Train_Precision	Test_Precision	Train_Recall	Test_Recall	Train_F1-score	Test_F1-score
Logistic_Regression	0.870707	0.870090	0.870707	0.870090	1.0	1.0	0.810528	0.809648
LGBM	0.870707	0.870091	0.870707	0.870091	1.0	1.0	0.810529	0.80
XGBoost	0.870707	0.870091	0.870707	0.870091	1.0	1.0	0.810529	0.809648

Results

Model	Default	With GridSearchCV
Logistic Regression	0.870091	0.870091
LGBM	0.861027	0.864048
XGBoost	0.861027	0.132931

Test and Model Tuning Test Results for each Model

Conclusion and Recommendation

- Various NLP techniques and concepts were explored in the study.
- Though word embedding was central to building the model, pre-processing steps were crucial.
- ► The model extracts and quantifies context; therefore, the essence of a review by its words is the final Dataframe.
- Using deep learning techniques to predict more accurate review.

- It is recommended to have **Additional data** from many sources could be taken so that the models would be able to predict more accurate reviews.
- Use Logistic Regression and XGBoost, which had the best performance, could be deployed in real-time to provide doctors with faster inference results. This could aid in the diagnosis of whether a person is suffering from heart disease or not.