	feature scalling will mak gradient descent much faster.
Feat	re Scaling:
	Get every feature into approximately -1 \(\times \) \(\times 1 \tange \).
Mean	normalization:
	Replace Xi with Xi - Hi to make features have
	approximately zero mean. (don't apply to X = 1)
	Xi-pli p:= average value of xi in traning set
	$X_i - \mu_i$ μ_i = average value of x_i in training set S_i : S_i = range of χ_i (max-min)
Des	Lugging: 1. gent J(0) should decrease after every iteration
	the result is a polinomial of +0, X + 0, X = 1
2.07 I	a cubic variable: $\theta_0 + \theta_1 X + \theta_2 X^2 + \theta_3 X^3$ add a $\sqrt{\frac{1}{2}}$ function: $\theta_0 + \theta_1 X + \theta_2 X^2 + \theta_3 \sqrt{X}$
	·