Álgebra Lineal I Tarea 08

Rubén Pérez Palacios Profesor: Rafael Herrera Guzmán

02 Marzo 2020

Problemas

1. Sea $v \in V$ luego

$$T(v) = [T]_b[v]_b$$

.

Tes invertible por definición si y sólo si

$$T^{-1}(T(v)) = v, \quad T(T^{-1}(v)) = v$$

esto por los teoremas 2.11 y 2.14esto es si y sólo si

$$[v]_{\beta} = [T^{-1}]_{\beta}[T]_{\beta}[v]_{\beta}, \quad [v]_{\beta} = [T]_{\beta}[T^{-1}]_{\beta}[v]_{\beta}$$

esto es si y sólo si

$$I_n = [T^{-1}]_{\beta}[T]_{\beta}, \quad I_n = [T]_{\beta}[T^{-1}]_{\beta}$$

esto es si y sólo si $[T]_{\beta}$ es invertible. Además de lo anterior obtenemos que

$$[T^{-1}]_{\beta} = ([T]_{\beta})^{-1}.$$

2. Por el problema anterior sabemos que si A es invertible entonces también L_A , ya que $L_A:F^n\to F^n$; además $(L_A)^{-1}=L_A^{-1}$.

3. Sea $w \in W$ y $\beta = \{v_1, \cdot, v_n\}$ una base de V,luego

$$T^{-1}(w) \in V$$
,

por lo que

$$T^{-1}(w) = \sum_{i=1}^{n} a_i v_i, a_i \in F,$$

por definición de función inversa y al ser esta lineal obtenemos que

$$w = \sum_{i=1}^{n} a_i T(v_i).$$

Ahora los $T(v_i)$ son linealmente independientes de no ser así v_i no serían linealmente independientes. Concluimos que $T(\beta)$ es base de W.

4. Al ser AB invertible entonces L_AL_B también lo es, por lo que L_AL_B es biyectiva. Por el problema 3 de la Tarea 7 L_A es supreyectiva y L_B es invectiva. Al ser sus dominios y codominios de misma dimensión (de hecho iguales), entonces L_A y L_B son biyectivas por lo tanto son ivertibles. Conlcuimos que A y B son invertibles. Cuando no son cuadradas no necesariamente son biyectivas el ejemplo es el siguiente:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Como L_A y L_B no son invertibles entonces A y B no lo son, pero AB si es invertible.