第1届GeekGame参赛WriteUp

昵称: wwzzj (汪汪吱吱叽)

签到

文件夹: signin

这道题打开之后是一个 pdf 文档, 下面的乱码应该就是 flag 的某种形式了, 直接复制发现复制不全。

于是用 Acrobat 的编辑模式将内容复制了出来。

fa{aeAGetTm@ekaev!

lgHv ra ieGeGm 1}

发现是竖着排列的 flag, 写了几行 python 调整格式, 得到答案!

小北问答 Remake

文件夹: QA

第一题: 共有几号理科楼, 凭借生活经验回答, 5

第二题, 上届比赛注册人数, 从 linux 俱乐部的公众号上找了, 407

第三题: geekgame 网站上一次 https 证书过期,这题我找了好久,不停变换关键词搜索,

希望找到一个有 https 证书记录的网站,结果最后还是在 google 上通过中文搜到的:

关键词: https 证书 历史

https://pc6a.com > ... · Translate this page

分享一个SSL证书签发历史查询网站

Mar 8, 2018 - 网址: https://crt.sh/可以查询自己网站什么时候,通过谁签发了SSL证书。我就查到一个COMODO,莫名其妙的签发历史。

可能是我的英文搜索技巧不够地道,或者是外国人没有这种需求,怎么用英文怎么搜都搜不到。2021-07-11T08:49:53+08:00

第四题: DEFCON 签到题的 flag,在网站 https://scoreboard2020.oooverflow.io/#/上,第一道题的 flag 竟然是点击就送。OOO{this_is_the_welcome_flag}

第五题:有嘉心糖在引流! 在 google 上一搜全是 asoul 的内容! 最后没有找到现成的答案。

使用恰好有几对皇后会互相攻击推了一下**容斥**的式子,发现计算恰好有两对时化简比较麻烦,感觉写了个 O(边长)的程序,结果怎么都不对。然后写了个暴力对拍,终于调对了。

第二阶段时被提醒可以用 https://www.wolframalpha.com/直接算, 感觉白白浪费了很多时间, 亏豹! 2933523260166137923998409309647057493882806525577536

第六题:看 qithub 上去年比赛的源码。Submits

第七题: 这题我一直以为是 AS24349 CERNET2 IX at Peking University,而且深信不疑,最后交了好多次才定位原来是这道题错了,重新搜,才发现原来还有 AS59201 Peking University in China。

第八题:信息官网上 2021 年 6 月 3 日有个招生简章,上面列了所有的实验室。找到最长的就行。区域光纤通信网与新型光通信系统国家重点实验室

共享的机器

这道题我也花了很多时间,竟然放得这么靠前,做出来的人这么多,看了一晚上连猜带蒙才做出来。

之前没有接触过智能合约完全不知道要做什么,查了发现智能合约上可以放代码,一开始以为要交互,按照说明配置 Remix 和 MetaMask,但一直跑不起来。

然后去看反编译的代码, Etherscan 和 Ethervm.io 上的竟然还不一样, 不过看起来 Ethervm.io 要专业一些, 看来代码大概知道是位运算操作, 看了看交易记录发现只有一条 Create, 还以为管理员没有设置参数, 所以两个参数都是默认的 0, 直接逆着位运算算了一下, 结果怎么都不对。

尝试了好久在网上查到一个 Writeup, 竟然还能在 Etherscan 上通过 parity trace 查看交易的输入和输出, 然后才发现还有一条 Internal 交易, 感觉输入应该是设置两个参数的, 但是位数不对, 猜他的编码方式是前面几位是函数名, 后面两个 256 位的整数, 尝试之后竟然真的解出了 flag。

翻车的谜语人

文件夹: car

做这道题也是我第一次用 WireShark,一开始看里面的流量记录出来 HTTP 协议的其他都看不懂。

先看 HTTP 协议的流量,发现应该是和 Jupiter Notebook 交互的记录,从中可以提取出一段代码,在 car/run.ipynb 里,大概就是怎么对 flag 进行异或运算加密的。

然后发现了 17s 的时候 GET 了 flag1 的文件,随后该文件以 json 返回,进行解密运算之后得到了 flag1.

	1121/ 1/.481109	192.108.17.128	192.108.17.1	HITP/J_	411 HTTP/1.1 200 OK , Javascript Object Notation (application/json)
	11262 17.506183	192.168.17.1	192.168.17.128	HTTP	858 GET /api/contents/flag1.txt?type=file&format=text&_=1636184605693 HTTP/1.1
	11265 17.509723	192.168.17.128	192.168.17.1	HTTP/J_	770 HTTP/1.1 200 OK , JavaScript Object Notation (application/json)
	11352 17.564007	192.168.17.1	192.168.17.128	HTTP	735 GET /custom/custom.js?v=20211106150620 HTTP/1.1
	11353 17.564796	192.168.17.128	192.168.17.1	HTTP	431 HTTP/1.1 304 Not Modified

之后想得到 flag2, 发现 flag2 最后被以一个 7z 的方式从 HTTP 中返回了, 我下载了这个 7z, 发现要密码。

在 21s~70s 中是没有 HTTP 流量的,所以应该是别的流量。

我发现大部分协议都是加密的,只有很少的一些 web socket 有一些 Line-based text data, 这是我唯一看得懂的了, 仔细查看, 发现像是命令行的指令和回应, 于是从头到尾筛查来看, 发现这些指令做了一些事:

- 1. 安装了一个 python lsp 隐写库。
- 2. 使用这个隐写库将 flag2.txt 写到一个 wav 里, flag 长 76bytes
- 3. 将这个 wav 打包,密码为: Wakarimasu! `date` `uname -nom` `nproc` 所以要恢复这个密码,uname 可以从之前的"mroot@you-kali-vm"找到,系统应该就是 x86_64 GNU/Linux 吧,nproc 看后面有 cpu 信息,但不知道这个虚拟机给了几核,可以枚举,date 也是可以枚举的,但 date 格式有多种,我尝试了:

Sat Nov 06 15:44:{} CST 2021

Nov 6, 2021 15:44:{} 中国标准时间

枚举了很久,最后还是没试出来,我一度以为 nproc 或是 uname 是其他情况。

结果,第二阶段公布提示后,才知道竟然是 12 小时制的,最后枚举得出答案为:

"Wakarimasu! Sat 06 Nov 2021 03:44:15 PM CST you-kali-vm x86_64 GNU/Linux 8"

叶子的新歌

文件夹: music

这道题高度好评, 花样非常多, 而且还有剧情!

由于受到 CTF-wiki 的启发,以为三个 flag 都是音频隐写,感觉不太熟悉,太难了,之前就没做这题。第二阶段才知道 metadata 中就有线索,才后悔莫及。

Metadata 中有 aHR0cDovL2xhYi5tYXh4c29mdC5uZXQvY3RmL2xlZ2FjeS50Ynoy, base64 解码得到网站: http://lab.maxxsoft.net/ctf/legacy.tbz2

下载得到一个 tbz2 压缩文件,一个 txt 提示另一个 img 是软盘镜像,我直接按照网上的方法改名为 bin 打开了

然后是一个 MEMORY.zip 的压缩文件,和一个密码提示"宾驭令诠怀驭榕喆艺艺宾庚艺怀喆 晾令喆晾怀",这个密码从网上可以找到解码规则,大概就是在数字和汉字之间做了一个映射。程序在 music/run.ipynb。密码为: 72364209117514983984

打开之后是一个 left.bin 和一个 right.bin,还有提示:"找不同","NES",用 010 Editor 打开两个 bin 发现只有一点点不同,写了个程序将不同的字符提出(run.ipynb)。发现文件开头是NES,我下载了一个超级玛丽的镜像,开头也是 NES,感觉这就是 NES 镜像了。

但放到 Fceux 模拟器里打不开,应该是找不同处理错了,一开始匹配时我只想前看来一位,结果出现了很多长度为 2 的不同字符,之后我改为多看几位,每次不同的长度就是 1 了,现在就能打开了。

没想到竟然也是一个超级玛丽的游戏,一开始我还跟随题目沉浸在怀旧的氛围中,决定手动通关,只开一个无线生命的外挂,但我实在是太菜了,恼羞成怒之后开了一大堆秘籍,跳关到8完成了游戏。

然后屏幕上出现了一个网址,这个网站需要填入一个密码,我试了之前的汉字密码发现不对,试了 metadata 也不对。

最后我觉得试着按照提示的"虚拟化工具"正式地打开一下软盘,用 VirtualBox 加载之后果然出现了密码,得到了 flag3。同时软盘直接给出了 flag2。

其实很很想多试试解出 flag1, 感觉 flag1 应该是真正和音频有关的, 但是研究生狗事情太多, 没有时间了。

在线解压网站

文件夹: unzip

发现服务器代码直接做的解压,没有什么安全措施。我从网上看了怎么把一个软连接压缩起来,好像用—symblink选项就行,然后压了一个指向根目录的软链接,看到了 flag。 然后又压了指向 flag 的软连接,得到了 flag。

Flag 即服务

想通过../看看能不能拿到别的文件,发现能拿到 package.json。在 https://prob11-flrde9t3.geekgame.pku.edu.cn/api/..%2fpackage.json 拿到了 package.json,里面有后端源码的链接,然后 index.js 里有关于 flag1 的信息:

if(FLAG0!==`flag{\${0.1+0.2}}`)
return;

直接在浏览器 console 里对`flag{\${0.1+0.2}}`进行求值,得到 flag1。

最强大脑

看了题学习了一下 brainfuck,先试了一个网上的 hello world,运行正常。我又试了一下走一步输出一下当前位置,竟然直接得到了一个 flag!

密码学实践

文件夹: passwd

看了源码,发现第一个 flag 和一句话都是用的 PublicKey 做的加密,查看加密操作只在 4x8 个 bits 内进行,主要是异或,模拟了一下,发现最后等价于每个数异或上一堆 Key,数的主体是 c, d, a^c, b^d。

这样的话, 完全可以通过明文和密文推断出异或那的一团东西, 然后进行逆运算, 就可以解密了, 顺利解出 flag1。

第二问主要是通过模数的长度不够,让我们可以构造与目标内容同余的数,然后利用长度相减得到负数,利用 python 的负下标特性,使得最终 dec 得到的 name 为 Alice。

同时可以让 info 和 P 同余,这样最终用来加密的 NewKey 还是 PublicKey。