ASK – LABORATORIUM SPRAWOZDANIE ZADANIE 3

1. Zadanie

Tematem zadania trzeciego jest napisanie aplikacji uzależnionej od czasu. Jednym z zadań aplikacji ma być możliwie precyzyjny pomiar lub odmierzanie czasu. Wykorzystując dowolny język programowania (wykorzystano język python z biblioteką PyQt5) dla komputerów w standardzie PC napisać aplikację spełniającą funkcję testera sprawności psychomotorycznej np. kandydatów na kierowców. Na aplikację powinna się składać seria różnych testów badających prosty i złożony czas reakcji na bodźce optyczne i akustyczne. Każdy test właściwy powinna poprzedzać informacja o przebiegu testu oraz faza szkoleniowa, w trakcie której osoba badana wykona te same czynności co w trakcie testu, ale bez oceny. Po wykonaniu serii testów osoba poddana badaniom powinien zostać poinformowana o osiągniętych wynikach w formie syntetycznej i analitycznej z wykorzystaniem wartości liczbowych i reprezentacji graficznej.

2. Założenia projektowe

- stworzenie głównego okienka prowadzącego do 'podokienek' z poszczególnymi testami psychomotorycznymi
- stworzenie podokienka zawierającego wykresy pokazujące wyniki z poszczególnych testów ze średnim czasem reakcji użytkownika
- użycie plików tekstowych do zapisu wyników z konkretnych testów
- ponowne kliknięcie na przycisk otwierania okienka resetuje je jeśli jest już otwarte
- każdy test powinien posiadać tryb testowy i szkoleniowy
- podczas trybu szkoleniowego wyniki nie są zapisywane do plików tekstowych
- z testu można wyjść w każdym momencie zamykając okienko

3. Działanie programu

Rys.1 Okno programu

Na starcie programu zostaje inicjalizowane okienko z pięcioma przyciskami oraz tekstem – informacją o przeznaczeniu programu. Cztery górne guziki służą do przejścia (otworzenia okienka) do wybranego testu psychomotorycznego. Dolny przycisk otwiera okienko z wykresami przedstawiającymi osiągnięte wyniki w poszczególnym teście, jeśli brakuje wyników – użytkownik zostanie poproszony o wykonanie wszystkich testów.

Rys.2 Okno prostego testu optycznego

Pierwszy test (prosty test optyczny) polega na reagowaniu na zmieniający się kolor na środku okienka. Przed testem użytkownik dostaje informacje o jego przebiegu (to tyczy się wszystkich testów), po kliknięciu przycisku 'Dalej' znajduje się już właściwe okno z testem. Po kliknięciu 'Start' test się zaczyna – środek okienka zmienia kolor na niebieski, w tle startuje też timer, który po losowym czasie od 2 do 10 sekund zmienia kolor okienka na czerwony. Wtedy też przycisk 'Kolor' zostaje odblokowany, po kliknięciu przez użytkownika wymienionego przycisku zostaje zmierzony czas reakcji użytkownika i wyświetlony obok przycisku 'Kolor'. Test następnie zaczyna się od nowa. W każdej chwili użytkownik może zmienić tryb testu optycznego ze szkolenia na test. W trybie testowym wyniki zapisywane są do pliku testowego 'optic1.txt'.

Rys.3 Okno testu optycznego złożonego

Test optyczny złożony – po kliknięciu przycisku 'Start' kolory na środku okienka zmieniają się na losowo wybrane z listy: żółty, czerwony lub niebieski. Zadaniem użytkownika jest zaznaczenie odpowiadających checkboxów pod kolorami. Po odpowiednim zaznaczeniu użytkownik dostaje informację o swoim czasie reakcji i test zaczyna się od nowa.

Rys.4 Okno testu akustycznego prostego

Test akustyczny prosty – celem testu jest zbadanie czasu reakcji użytkownika na dźwięk. Użytkownik wciela się w tłum osób z kawiarni, po pewnym losowym czasie (od 2 do 10 sekund) słychać dźwięk tłuczonej szklanki, po kliknięciu 'Reakcja' mierzony jest czas reakcji oraz miny osób z kawiarni zmieniają się na zdegustowane. Następnie odlicza się czas do kolejnej iteracji testu, wyświetlane przez '3,2,1,start!' na ekranie i test zaczyna się od nowa.

Rys.5 Okno testu akustycznego złożonego

Test akustyczny złożony – po kliknięciu przez użytkownika przycisku 'Start', zostają wykonane 4 sygnały głosowe odliczające start testu, po 4 sygnale startuje timer, który po losowym czasie od 2 do 10 sekund puszcza dźwięk jednego z 3 zwierząt podanych na ekranie. Zadaniem użytkownika jest wybranie odpowiedniego zwierzęcia po usłyszeniu jego odgłosu poprzez kliknięcie odpowiedniego przycisku pod zdjęciem.

4. Podsumowanie

Rys.6 ilustracja pętli okienek testowych

Wszystkie testy polegają na tej samej pętli programu. Po przejściu przez okienko informacyjne, a następnie kliknięcie przycisku 'Start' w danym teście, zostaje wykonana 'pętla testu', w której losowy timer zmienia pewne działanie w okienku, na które użytkownik powinien zareagować. Jeśli wybierze złą opcję (o ile taka w danym teście występuje) to zostanie o tym poinformowany. W okienkach akustycznych występuje również timer pomocniczy, służący do odliczania czasu do testu na zasadzie '3, 2, 1, Start!'.

Do odmierzania czasu reakcji w każdym teście jest używany dodatkowy timer, który uruchamia się przy zmianie właściwości okienka i resetuje przy każdej iteracji testu.

Rys.7 ilustracja wykresów z wynikami z poszczególnych testów (czas odmierzany w ms)

5. Dyskusja osiągniętych wyników

Aplikacja spełnia założenia przyjęte w punkcie nr 1 sprawozdania. Symulacja działania testów psychomotorycznych została zrealizowana. Do utworzenia okienek aplikacji została użyta biblioteka PyQt5, Qt5 jest standardem dla wielu nowoczesnych aplikacji i posiada wsparcie dla wielu języków programowania.

Aplikacja jest prosta i przejrzysta, na bieżąco informuje użytkownika o swoim działaniu.

Pomijając test akustyczny prosty, testy w aplikacji są zdecydowanie kreatywne.

Okienka mogłyby być trochę większe, zdecydowanie checkboxy w teście optycznym złożonym są zbyt małe (z drugiej strony każdy użytkownik posiada to utrudnienie, więc wydaje się to sprawiedliwe).

Niektóre testy w aplikacji można 'oszukać':

- w teście optycznym prostym oraz teście akustycznym prostym użytkownik może 'spamować klikanie' na przycisk, który jest nieaktywny i w ten sposób kliknąć na niego od razu kiedy się uaktywni i w ten sposób uzyskać lepszy, niemal natychmiastowy wynik
- w teście akustycznym złożonym przed sygnałem dźwiękowym użytkownik może ustawić położenie kursora myszy, żeby być bliżej przycisków

4. Wnioski

Aplikacja spełnia założenia przyjęte w punkcie nr 1 sprawozdania. Symulacja działania przesyłu danych przez RS232 została zrealizowana. Do utworzenia okienek aplikacji została użyta biblioteka PyQt5, Qt5 jest standardem dla wielu nowoczesnych aplikacji i posiada wsparcie dla wielu języków programowania.

Aplikacja nie bierze pod uwagę problemów, które mogłyby wystąpić w rzeczywistym przesyle danych przez RS232.

Kodowanie danych nie jest optymalne – zdecydowanie można by znaleźć sposób, żeby znaki ASCII, które składają się jedynie z 8 bitów nie musiały być konwertowane niepotrzebnie na 2 ciągi po 8 bitów.

Aplikacja jest prosta i przejrzysta, a nielegalne wyrazy zostają wykryte nawet jeśli słowa są ze sobą połączone.

W celu optymalizacji można by używać biblioteki numpy do niektórych operacji na listach, ponieważ biblioteka numpy jest napisana w C.