Линейни операции с вектори

Определение 1 Нека v е вектор и \overrightarrow{AB} е представител на v. Тогава векторът с представител \overrightarrow{BA} се нарича *противоположен на* v и се означава с -v.

Коректност: Трябва да се провери, че горното определение е коректно, тоест -v не зависи от избора на представителя \overrightarrow{AB} на v.

Нека и \overrightarrow{CD} е представител на v. Трябва да проверим, че \overrightarrow{BA} и \overrightarrow{DC} са представители на един и същ вектор, тоест че $\overrightarrow{BA} = \overrightarrow{DC}$. Това се доказва лесно и с дефиницията на равенство на свързани вектори, но ние ще го направим чрез свойството на успоредника, защото така става съвсем механично и тривиално.

Щом \overrightarrow{AB} и \overrightarrow{CD} са представители на v, то $\overrightarrow{AB} = \overrightarrow{CD}$. От свойството на успоредника тогава получаваме $\overrightarrow{AC} = \overrightarrow{BD}$. Следователно $\overrightarrow{BD} = \overrightarrow{AC}$. И отново от свойството на успоредника следва $\overrightarrow{BA} = \overrightarrow{DC}$.

Значи определението на -v е коректно.

Значи определението на u + v е коректно.

Пример 1 -0 = 0.

Това е така, защото: Нека O е произволна точка. Тогава \overrightarrow{OO} е представител на 0 и като обърнем реда на точките получаваме, че \overrightarrow{OO} е представител и на -0. Значи 0 и -0 имат общ представител, така че -0 = 0.

Определение 2 (събиране на вектори) Нека u и v са вектори, O е произволна точка, \overrightarrow{OP} е представител на u с начало O, \overrightarrow{PQ} е представител на v с начало P. Векторът с представител \overrightarrow{OQ} се нарича c сор или c и u v и се означава с u+v.

Коректност: Трябва да се провери, че определението на u + v не зависи от избора на точката O.

Нека O' е друга точка. Повтаряме конструкцията, тръгвайки с O': Нека $\overrightarrow{O'P'}$ е представител на u с начало O', $\overrightarrow{P'Q'}$ е представител на v с начало P'. Трябва да проверим, че \overrightarrow{OQ} и $\overrightarrow{O'Q'}$ са представители на един и същ вектор, тоест че $\overrightarrow{OQ} = \overrightarrow{O'Q'}$. Доказателството на това с дефиницията на равенство на свързани вектори е неприятно. Но тук ще ни се отплати трудът, който положихме за доказването на свойството на успоредника, защото чрез него доказателството е съвсем механично и тривиално.

От това, че \overrightarrow{OP} и $\overrightarrow{O'P'}$ са представители на u следва $\overrightarrow{OP} = \overrightarrow{O'P'}$, откъдето по свойството на успоредника получаваме $\overrightarrow{OO'} = \overrightarrow{PP'}$. А от това, че \overrightarrow{PQ} и $\overrightarrow{P'Q'}$ са представители на v следва $\overrightarrow{PQ} = \overrightarrow{P'Q'}$, откъдето по свойството на успоредника получаваме $\overrightarrow{PP'} = \overrightarrow{QQ'}$. Значи имаме $\overrightarrow{OO'} = \overrightarrow{PP'}$ и $\overrightarrow{PP'} = \overrightarrow{QQ'}$, така че $\overrightarrow{OO'} = \overrightarrow{QQ'}$. От това пак по свойството на успоредника следва $\overrightarrow{OQ} = \overrightarrow{O'Q'}$.

Определение 3 (*изваждане на вектори*) *Разлика на векторите и и v* е векторът u-v:=u+(-v).

Определение 4 (умножение на вектор с число) Произведение на числото $\lambda \in \mathbb{R}$ с вектора u се нарича векторът v, определен по следния начин:

- а) ако $\lambda = 0$ или u = 0, то v = 0.
- б) ако $\lambda \neq 0$ и $u \neq 0$, то: Нека O е произволна точка и нека P е такава, че $\overrightarrow{OP} = u$. Считайки, че е фиксирана единична отсечка, избираме точката Q върху правата OP така, че $|OQ| = |\lambda| |OP|$ и

$$\overrightarrow{OQ} \uparrow \uparrow \overrightarrow{OP}$$
, ako $\lambda > 0$
 $\overrightarrow{OQ} \uparrow \downarrow \overrightarrow{OP}$, ako $\lambda < 0$.

Тогава v е векторът с представител \overrightarrow{OQ} .

Векторът v се означава с $\lambda.u$ (или λu).

Коректност: Трябва да се провери, че определението на $\lambda.u$ в случая б) не зависи от избора на единичната отсечка и от избора на точката O.

1. Независимост от избора на единичната отсечка.

Да вземем друга единична отсечка и да означаваме дължината спрямо нея на отсечката AB с $\|AB\|$. Тогава съществува константа c>0 такава, че за всяка отсечка AB имаме $\|AB\|=c.|AB|$. Следователно

$$||OQ|| = c.|OQ| = c.|\lambda|.|OP| = |\lambda|.c.|OP| = |\lambda|.||OP||.$$

Значи наистина определението на $\lambda.u$ не зависи от избора на единичната отсечка.

2. Независимост от избора на точката O.

Нека O' е друга точка. Повтаряме конструкцията, тръгвайки с O': Нека P' е такава, че O'P' = u. Избираме точката Q' върху правата O'P' така, че $|O'Q'| = |\lambda| |O'P'|$ и

$$\overrightarrow{O'Q'} \uparrow \uparrow \overrightarrow{O'P'}, \text{ ako } \lambda > 0$$

$$\overrightarrow{O'Q'} \uparrow \downarrow \overrightarrow{O'P'}, \text{ ako } \lambda < 0$$

От това, че \overrightarrow{OP} и $\overrightarrow{O'P'}$ са представители на u следва $\overrightarrow{OP} = \overrightarrow{O'P'}$, тоест |OP| = |O'P'| и $\overrightarrow{OP} \uparrow \uparrow \overrightarrow{O'P'}$.

Следователно $|O'Q'| = |\lambda|.|O'P'| = |\lambda|.|OP| = |OQ|.$

Ако $\lambda>0$, то $\overrightarrow{OQ}\uparrow\uparrow\overrightarrow{OP}$ и $\overrightarrow{O'Q'}\uparrow\uparrow\overrightarrow{O'P'}$ и тъй като $\overrightarrow{OP}\uparrow\uparrow\overrightarrow{O'P'}$, то $\overrightarrow{OQ}\uparrow\uparrow\overrightarrow{O'Q'}$.

Ако $\lambda < 0$, то $\overrightarrow{OQ} \uparrow \downarrow \overrightarrow{OP}$ и $\overrightarrow{O'Q'} \uparrow \downarrow \overrightarrow{O'P'}$ и тъй като $\overrightarrow{OP} \uparrow \uparrow \overrightarrow{O'P'}$, то $\overrightarrow{OQ} \uparrow \uparrow \overrightarrow{O'Q'}$.

Значи и в двата случая имаме $\overrightarrow{OQ} \uparrow \uparrow \overrightarrow{O'Q'}$. От това и |O'Q'| = |OQ| следва $\overrightarrow{OQ} = \overrightarrow{O'Q'}$, тоест \overrightarrow{OQ} и $\overrightarrow{O'Q'}$ са представители на един и същ вектор. Значи наистина определението на $\lambda.u$ не зависи от избора на точката O.

Теорема 1 С така дефинираните операции събиране на вектори и умножение на вектор с число векторите в пространството (а и в равнината, а също и върху права) образуват реално линейно пространство (като нулевият вектор и противоположеният вектор са също дефинираните по-горе).

За да докажем тая теорема трябва да проверим осемте свойства от дефиницията на линейно пространство. При това в свойствата, в които участва умножение с число, се налага да се разглеждат по няколко случая. Така че доказателството става дълго и затова ще го пропуснем. Иначе няма нищо трудно в него. (Дори би било хубаво да се опитате да докажете поне четирите свойства, в които участва само събирането. Техните доказателства са съвсем кратки.)