FGI 2 Hausaufgaben 12

Mareike Göttsch, 6695217, Gruppe 2 Paul Hölzen, 6673477, Gruppe 1 Sven Schmidt, 6217064, Gruppe 1

22. Januar 2017

Aufgabe 12.3

1.

ba(b(a+b)c+ba(b+c))		(b+	b)(ab(a	ac+bc)+ab(ab+ac)	
\downarrow b		↓b ↓b			
a(b(a+b)c+ba(b+c))		ab(ac+bc)+ab(ab+ac)			
↓a		↓a		↓a	
b(a+b)c+ba(b+c)		b(ac+bc)		b(ab+ac)	
↓b	↓b	↓b		↓b	
(a+b)c	a(b+c)	ac+bc		ab+ac	
↓a ↓b	↓a	↓a	↓b	↓a	↓a
c	b+c	c	\mathbf{c}	b	\mathbf{c}
$\downarrow c$	\downarrow b \downarrow c	↓c	$\downarrow c$	↓b	↓c
$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	

2.

3.

Ja, s.o..

4.

12.4

1.

$$\frac{a \xrightarrow{a} A_{0}, \sigma_{1}}{a \xrightarrow{a} \sqrt{T_{+L}}, \sigma_{2}}$$

$$\frac{(b+a) \xrightarrow{a} \sqrt{T_{+L}}, \sigma_{2}}{(b+a)(cd+d) \xrightarrow{a} (cd+d)} T_{\bullet}, \sigma_{3}$$

$$\frac{(b+a)(cd+d)b \xrightarrow{a} (cd+d)b}{T_{+L}, \sigma_{5}} T_{+L}, \sigma_{5}$$

$$\frac{(da+(a+b)c)+(b+a)(cd+d)b \xrightarrow{a} (cd+d)b}{(da+(a+b)c)+(b+a)(cd+d)b+(a(c+d)+b) \xrightarrow{a} (cd+d)b} T_{+R}, \sigma_{6}$$

$$\frac{\sigma_{1}: v \mapsto a}{(da+(a+b)c)+(b+a)(cd+d)b+(a(c+d)+b) \xrightarrow{a} (cd+d)b} T_{+R}, \sigma_{6}$$

$$\frac{\sigma_{1}: v \mapsto a}{(a+b)c} \xrightarrow{a} \xrightarrow{b} (cd+d) \xrightarrow$$

2.

$$t_7 = (\underline{b+b})((ab)(ac+bc) + a((ab+ac)b))$$

$$\xrightarrow{\text{R3}} b((ab)(ac+bc) + a(\underline{(ab+ac)b}))$$

$$\xrightarrow{\text{R4}} b((ab)(ac+bc) + a(abb+acb))$$

$$\xrightarrow{\text{R5}} b(a(b(ac+bc)) + a(abb+acb))$$

$$\xrightarrow{\text{R4}} b(a(\overline{bac + bbc}) + a(abb + acb))$$

$$\xrightarrow{\text{R4}} b(\overline{abac + abbc} + \overline{aabb + aacb})$$

$$\xrightarrow{\text{R4}} \overline{babac + babbc + baabb + baacb}$$

3.

$$t_8 = b(a(a(cb) + a(bb)) + a((b(b+a))c)) \xrightarrow{\mathbf{R4}} b(a(acb + abb) + a((bb + ba)c))$$

$$\xrightarrow{\text{R4}} b(a(acb + abb) + a(bbc + bac))$$

$$\xrightarrow{\text{R4}} b(aacb + aabb + abbc + abac)$$

$$\xrightarrow{\text{R4}} \overline{baacb + baabb + babbc + babac}$$

$$\xrightarrow{\text{R1}} babac + babbc + baabb + baacb$$

 t_7 und t_8 sind äquivalent, da sie auf gleiche Normalformen gebracht werden können und sie somit nach Satz 9.17 äquivalent sind.

12.5

1.

$$A1, A2, A3 \Rightarrow A6$$

$$(x+y) + z \stackrel{A1}{=} (y+x) + z \stackrel{A2}{=} y + (x+z) \stackrel{A1}{=} y + (z+x) \stackrel{A3}{=} (y+y) + (z+x)$$

2.

$$A1 \Leftarrow A3, A6$$

$$(x+y) + z \stackrel{A6}{=} (y+y) + (z+x)$$

12.6

Der ACP-Kalkül mit geschützter Rekursion ist korrekt bezüglich Bisimulation, aber nicht vollständig.
 Wahr oder falsch?
 (Lesestoff Woche 12)

• Die Kommunikationsfunktion γ ist weder kommutativ noch assoziativ. Wahr oder falsch? (Lesestoff Woche 12)