H2 II. Representing and Manipulating Information

H3 §2.1 Information Storage

- Bytes: blocks of 8 bits, the smallest addressable unit of memory
- Virtual memory: machine-level program views memory as a very large array of bytes
- Virtual address space: set of all possible addresses
 - conceptual image presented to the machine-level program
 - actual implementation=DRAM + flash memory + disk storage + special hardware + OS

H5 ¶2.1.1 Hexadecimal Notation

- 1 byte = 8 bits
 - $00000000_2 \sim 111111111_2$
 - $0_{10} \sim 255_{10}$
 - Base-16 or **hexadecimal** is commonly used for convenience
 - $00_{16} \sim FF_{16}$
 - In C, numeric constants starting with 0x or 0X are interpreted as being in hexadecimal
 - characters 'A' ~ 'F' may be written in either upper or lowercase

H5 ¶2.1.2 Data Sizes

- Word size: nominal size of pointer data
 - virtual address is encoded by words
 - determines the maximum size of the virtual address space
 - machine with a w-bit word size gives the program access to at most 2^w bytes
- In recent years, widespread shift from 32-bit machines to 64-bit machines
 - 32-bit: virtual address space \approx 4GB (4 \times 10⁹ bytes)
 - 64-bit: virtual address space ≈ 16 EB (1.84 \times 10¹⁹ bytes)
 - Most 64-bit machines can also run programs compiled for use on 32-bit machines (backward compatibility)
 - 64-bit programs will only run on a 64-bit machine

```
1 linux> gcc -m32 prog.c // runs on either a 32-bit or a 64-
bit machine
2
3 linux> gcc -m64 prog.c // runs only on a 64-bit machine
```

- C language supports multiple data formats for both integer and floating point data
 - exact numbers of bytes for some data types depends on how the program is compiled
 - most of the data types encode signed values, unless prefixed by the keyword unsigned
 - char: C standarad does not gurantee it to be encoded as signed
 - use **signed char** to guarantee a 1-byte signed value
 - **pointer**: uses the full word size of the program

C Declaration		Bytes	
Signed	Unsigned	32-bit	64-bit
[signed] char	unsigned char	1	1
short	unsigned short	2	2
int	unsigned	4	4
long	unsigned long	4	8
int32_t	uint32_t	4	4
int64_t	uint64_t	8	8
char*		4	8
float		4	4
double		8	8

1 - For portability, make the program insensitive to the exact sizes of the different data types

H5 ¶2.1.3 Addressing and Byte Ordering

- For program objects that span mutliple bytes, need to establish two conventions:
 - 1. what the address of the object will be
 - 2. how we will order the bytes in memory
 - Two common conventions
 - 1. Little endian
 - store the object in memory ordered from least significant byte to most
 - Most Intel-compatible machines
 - 2. Big endian
 - store the object in memory ordered from most significant byte to least
 - IBM, Oracle (Sun Microsystems)
 - E.g. variable x of type int at address 0x100 has a hexadecimal value of 0x1234567
 - Big endian

```
0x100 0x101 0x102 0x103
01 23 45 67
```

• Little endian

```
0x100 0x101 0x102 0x103
67 45 23 01
```

- recent microprocessor chips are **bi-endian** (configurable)
- no technological reason to choose one byte ordering convention over the other
- Byte ordering becomes an **issue** when...
 - 1. binary data are communicated over a **network** between different machines
 - make sure sending machine converts its internal representation to the network standard, while the receiving machine converts the network standard to its internal representation
 - 2. looking at the **byte sequences** representing integer data
 - insepecting machine-level programs

```
1 4004d3: 01 05 43 0b 20 00 add %eax, 0x200b45(%rip)
```

- line generated by a disassembler
 - : tool that determines the instruction sequence represented by an executable program file
 - adds a word of data to the value stored at an address computed by adding

0x200b43 to the current value of the **program counter**, the address of the next instruction to be executed

- 3. programs are written that circumvent the normal type system
 - using cast or a union to allow an object to be referenced according to a different data type from which it was created

```
#include <stdio.h>

typedef unsigned char *byte_pointer;

void show_bytes(byte_pointer start, size_t len) {
    int i;
    for(i = 0; i < len; i++)
        printf(" %.2x", start[i]);
    printf("\n");

    void show_int(int x) {
        show_bytes((byte_pointer) &x, sizeof(int));

    void show_float(float x) {
        show_bytes((byte_pointer) &x, sizeof(float));

    }

void show_pointer(void *x) {
        show_bytes((byte_pointer) &x, sizeof(void *));

    }

void show_pointer(void *x) {
        show_bytes((byte_pointer) &x, sizeof(void *));
}</pre>
```

- in the code above, functions pass show_bytes a pointer &x to their argument x, casting the pointer to be of type **unsigned char ***
 - indicates to the compiler that the program should consider the pointer to be a sequence of bytes rather than to an object of the original data type

H5 ¶2.1.5 Representing Code

- instruction codings are different
 - different machine types use different and incompatible instructions and encodings
 - even identical processors running different OS have differences in their coding conventions. --> not binary compatible
- Fundamental concpet of computer system: **program**, from the perspective of the machine, **is simply a sequence of bytes**

H5 ¶2.1.6 Introduction to Boolean Algebra

- George Boole observed that by eoncoding logic values TRUE and FALSE as binary
 values 1 and 0, he could formulate an algebra that captures the basic principles of logical
 reasoning
- Operations of Boolean algebra

```
    1 ~
    & 0 1
    | 0 1
    ^ 0 1

    2 ------
    -------
    -------

    3 0 1 0 0 0 0 0 1 0 0 1

    4 1 0 1 0 1 1 1 1 1 0
```

- ~: logical operation **NOT**
 - ~TRUE = FALSE / ~FALSE = TRUE
- &: logical operation AND
 - p & q == 1 only when p = 1 and q = 1
- |: logical operation OR
 - $p \mid q == 1$ when either p = 1 or q = 1
- - $p \land q == 1$ when either p = 1 and q = 0 or p = 0 and q = 1
- Boolean algebra still plays a central role in the design and analysis of digital systenedms
- Boolean algebra can be extended on bit vectors

```
1 0110 0110 0110

2 & 1100 | 1100 ^ 1100 ~ 1100

3 ---- ---- -----

4 0100 1110 1010 0011
```

H5 ¶2.1.7 Bit-Level Operations in C

• C supports bitwise Boolean operations applied to any "integral data type"

C expression	Binary expression	Binary result	Hexadecimal result
~0x41	~[0100 0001]	[1011 1110]	0xBE
~0x00	~[0000 0000]	[1111 1111]	0xFF
0x69 & 0x55	[0110 1001] & [0101 0101]	[0100 0001]	0x41
0x69 0x55	[0110 1001] & [0101 0101]	[0111 1101]	0x7D

- commonly used to implement **masking** operations
 - mask: bit pattern that indicates a selected set of bits within a word
 - e.g. **0xFF**: the lower-order byte of a word
 - => x & 0xFF returns the least significant byte of x with all other bytes set to 0
 - if x = 0x89ABCDEF, x & 0xFF = 0x000000EF

H5 ¶2.1.8 Logical Operations in C

- C provides a set of logical operators ||, &&, and !
 - correspond to the OR, AND, and NOT operations
- Logical operations treat any nonzero argument as TRUE and argument 0 as FALSE, then return either 1 (TRUE) or 0 (FALSE)

H5 ¶2.1.9 Shift Operations in C

- C provides a set of shift operations for shifting bit patterns to the left and to the right
 - if \mathbf{x} = [$x_{w-1}, x_{w-2}, \ldots, x_0$], \mathbf{x} << \mathbf{k} yields [$x_{w-1-k}, x_{w-k-2}, \ldots, x_0, 0, \ldots, 0$]
 - x is shifted **k** bits to the left, dropping off the **k** most significant bits and filling the right end with **k** zeros
 - Shift operations associate from left to right
 - x << j << k is equivalent to (x << j) << k
- Note that machines support two forms of right shift [x >> k]
 - Logical: fills the left end with k zeros
 - $[0,\ldots,0,x_{w-1},x_{w-2},\ldots,x_k]$
 - Arithmetic: fills the left end with k repetitions of the most significant bit
 - $[x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_k]$
 - useful for operating on signed integer data

- C standards do not precisely define which type of right shift should be used with signed numbers -- either arithmetic or logical shifts may be used
 - Almost all use arithmetic right shifts for signed data
 - logical right shifts for unsigned data

H3 §2.2 Integer Representations

- two different ways bits can be used to encode integers
 - 1. only representing nonnegative numbers
 - 2. representing negative, zero, and positive numbers
- strongly related both in their mathematical properties and their machine-level implementations

H5 ¶2.2.1 Integral Data Types

- C supports a variety of integral data types -- ones that represent finite ranges of integers
 - each type can specify a size with keywords, char, short, long
 - can indicate whether the represented numbers are all **nonnegative** (declared as **unsigned**) or **negative** (by **default**)
- different sizes allow different ranges of values to be represented
- long is the only machine-dependent range indicator
- Note that ranges are not symmetric
 - range of negative numbers extends one further than the range of positive numbers

H5 ¶2.2.2 Unsigned Encodings

ullet consider an integer data type of $oldsymbol{w}$ bits and write a bit vector as $ec{x}$

For vector
$$ec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$$
:

$$B2U_w(ec{x}) := \sum_{i=0}^{w-1} x_i 2^i$$

where $B2U_{w}$ is a function that interprets binary to unsigned

for example,

$$B2U_4([0001]) = 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 0 + 0 + 0 + 1 = 1$$

$$B2U_4([0101]) = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 0 + 4 + 0 + 1 = 5$$

$$B2U_4([1011]) = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 8 + 0 + 2 + 1 = 11$$

 $B2U_4([1111]) = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 2 + 1 = 15$

- ullet Function $B2U_w$ is a bijection
- $UMax_w := \sum_{i=0}^{w-1} 2^i = 2^w 1$

H5 ¶2.2.3 Two's-Complement Encodings

to represent negative values, Two's complement form uses the most significant bit
of the word to have negative weight

For vector $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$:

$$B2T_w(ec{x}) := -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

where $B2T_w$ is a function that interprets binary to two's complement

for example,

$$egin{aligned} B2T_4([0001] &= -0\cdot 2^3 + 0\cdot 2^2 + 0\cdot 2^1 + 1\cdot 2^0 = 0 + 0 + 0 + 1 = 1) \ B2T_4([0101] &= -0\cdot 2^3 + 1\cdot 2^2 + 0\cdot 2^1 + 1\cdot 2^0 = 0 + 4 + 0 + 1 = 5) \ B2T_4([1011] &= -1\cdot 2^3 + 0\cdot 2^2 + 1\cdot 2^1 + 1\cdot 2^0 = -8 + 0 + 2 + 1 = -5) \ B2T_4([1111] &= -1\cdot 2^3 + 1\cdot 2^2 + 1\cdot 2^1 + 1\cdot 2^0 = -8 + 4 + 2 + 1 = -1) \end{aligned}$$

- Function $B2T_w$ is a bijection
- ullet $TMin_w := -2^{w-1}$
- $TMax_w: \sum_{i=0}^{w-2} 2^i = 2^{w-1} 1$
- Note that...
 - $oxed{1}$. Two's complement range is asymmetric: |TMin| = |TMax| + 1
 - half the bit patterns represent negative numbers, while half represent nonnegative numbers (including 0)
 - 2. Maximum unsigned value is just over twice the maximum two's complement value: UMax = 2TMax + 1
 - 3. -1 has the same bit representation as UMax

H5 ¶2.2.4 Conversions between Signed and Unsigned

- C allows casting between different numeric data types
 - suppose x is declared as int and u as unsigned
 - (unsigned) x : converts x to an unsigned value
 - (int) u: converts u to signed integer
 - Conversions are done based on a bit-level perspective
 - with the same word size, the n umeric values might change, but the bit patterns stay the same

given an integer x in the range $0 \le x < UMax_w$, the function $U2B_w(x)$ gives the unique w-bit unsigned representation of x.

Similarly, when x is in the range $TMin_w \le x \le TMax_w$, the function $T2B_w(x)$ gives the unique w-bit two's-complement representation of x.

Now, define the function $T2U_w(x) := B2U_w(T2B_w(x))$.

this function takes a number between $TMin_w$ and $TMax_w$ and yields a number between 0 and $UMax_w$

the two numbers have identical bit representations, except that the argument has a two's-complement representation while the result is unsigned.

Similar for the function $U2T_w(x) := B2T_w(U2B_w(x))$

Hence, conversion from two's-complement to unsigned

For x such that $TMin_w \leq x \leq TMax_w$:

$$T2U_w(x) = egin{cases} x+2^w, & x<0\ x, & x\geq 0 \end{cases}$$

For example,
$$T2U_{16}(-12,345)=-12,345+2^{16}=53,191$$

$$T2U_{w}(-1)=-1+2^{w}=UMax_{w}$$

Similarly, conversion from unsigned to two's-complement

For u such that $0 \le u \le UMax_w$:

$$U2T_w(u) = egin{cases} u, & u \leq TMax_w \ u-2^w, & u > TMax_w \end{cases}$$

H5 ¶2.2.5 Signed vs. Unsigned in C

- almost all machines use two's-complement
 - most numbers are signed by default
 - needs to add 'U' or 'u' as a suffix to create unsigned constants
 - 12345U or 0x1A2Bu
- explicit casting

```
1 int tx, ty;
2 unsigned ux, uy;
3
4 tx = (int) ux;
5 uy = (unsigned) ty;
```

implicit casting

```
1 int tx, ty;
2 unsigned ux, uy;
3
4 tx = ux; // cast to signed
5 uy = ty; // cast to unsigned
```

using <u>printf</u>

```
1 int x = -1;
2 unsigned u = 2147483648; // 2^31
3
4 printf("x = %u = %d\n", x, x);
5 printf("u = %u = %d\n", u, u);
6
7 /* On 32-bit machine, it will print
8 x = 4294967295 = -1
9 y = 2147483648 = -2147483648 /*
```

- When an operation is performed where one operand is signed and the other is unsigned,
 - C implicitly casts the signed argument to unsigned and performs the operations assuming the numbers are nonnegative
 - quite accurate for standard arithmetic operations, but..

- weird results for relational operators < and >
 - e.g. -1 < 0U returns **False**
 - because C casts -1 to 4294967295U

H5 ¶2.2.6 Expanding the Bit Representation of a Number

- Conversion between integers having different word sizes while retaining the same numeric value
 - may not be possible when the destination data type is too small to represent the desired value
 - smaller to larger data type should always be possible
 - 1. **Zero extension**: for converting an unsigned number to a larger data type
 - add leading zeros

```
Define bit vectors \vec{u}=[u_{w-1},u_{w-2},\ldots,u_0] of width w and \vec{u}'=[0,\ldots,0,u_{w-1},u_{w-2},\ldots,u_0] of width w', where w'>w. Then B2T_w(\vec{x})=B2T_{w'}(\vec{x}').
```

- 2. Sign extension: for converting a two's-complement number to a larger data type
 - add copies of the most significant bit

```
Define bit vectors ec x=[x_{w-1},x_{w-2},\dots,x_0] of width w and ec x'=[x_{w-1},x_{w-1},\dots,x_{w-1},x_{w-2},\dots,x_0] of width w', where w'>w. Then B2T_w(ec x)=B2T_{w'}(ec x').
```

```
1  // When run as a 32-bit program on a big-endian machine that
    uses a two's complement representation,
2
3  sx = -12345:    cf c7
4  usx = 53191:    cf c7
5  x = -12345:    ff ff cf c7    // ff ff = 1111..1111
6  ux = 53191:    00 00 cf c7
```

H5 ¶2.2.7 Truncating Numbers

• Used to reduce the number of bits representing a number

```
1 int x = 53191;
2 short sx = (short) x;  // -12345
3 int y = sx;  // -12345
```

- casting x to be short will truncate a 32-bit int to a 16-bit short
- When truncating a w-bit number $ec x = [x_{w-1}, x_{w-2}, \dots, x_0]$ to a k-bit number, **drop the** high-order w-k bits
 - can alter its value -- OVERFLOW!

Truncation of an <u>unsigned number</u>

Let \vec{x} be the bit vector $[x_{w-1}, x_{w-2}, \dots, x_0]$, and let \vec{x}' be the result of truncating it to k bits: $\vec{x}' = [x_{k-1}, x_{k-2}, \dots, x_0]$.

Let
$$x=B2U_w(\vec{x})$$
 and $x'=B2U_k(\vec{x}')$. Then $x'=xmod2^k$

ullet all of the bits that were truncated have weights of the form $\,2^i$, where $\,i\geq k$

• Truncation of a two's-complement number

Let \vec{x} be the bit vector $[x_{w-1}, x_{w-2}, \dots, x_0]$, and let \vec{x}' be the result of truncating it to k bits: $\vec{x}' = [x_{k-1}, x_{k-2}, \dots, x_0]$.

Let
$$x = B2T_w(\vec{x})$$
 and $x' = B2T_k(\vec{x}')$. Then $x' = U2T_k(xmod2^k)$

- Applying function $U2T_k$ will have the effect of converting the most significant bit x_{k-1} from having weight 2^{k-1} to having weight -2^{k-1}
- For example,

Converting x = 53,191 from int to short.

Since
$$2^{16} = 65,536 > x$$
, we have $x \mod 2^{16} = x$.

But since we need to convert it to a 16-bit two's complement number, we get $x^\prime=53,191-65,536=-12,345$

H5 ¶2.2.8 Advice on Signed versus Unsigned

- Implicit casting of signed to unsigned leads to some non-intuitive behavior
 - program bugs & difficult to identify it
- To avoid errors or vulnerabilities...

1. NEVER use unsigned numbers

- few languages other than C support unsigned integers
 - other language designers viewed unsigned integers as more trouble than

2. or use it for collections of bits with no numeric interpretation

- flags describing various Boolean conditions
- implementing mathematical packages for modular arithmetic & multiprecision arithmetic

H3 §2.3 Integer Arithmetic

- adding two positive numbers can yield a negative result
- x-y can yield something other than x-y < 0
- NEED to understand Computer arithmetic to write more reliable codes

H5 ¶2.3.1 Unsigned Addition

Consider two nonnegative integers x and y, such that $0 \le x, y < 2^w$.

Each of these values can be represented by a w-bit unsigned number.

However, if we compute their sum, $0 \le x + y \le 2^{w+1} - 2$.

Representing this sum could require w+1 bits

 "Word size inflation": cannot place any bound on the word size required to fully represent the results of arithmetic operations

Now, let $+^u_w$ for arguments x and y, where $0 \le x, y < 2^w$, be the result of truncating the integer sum x+y to be w bits long and viewing the result as an unsigned number

ullet form of modular arithmetic: computing the sum modulo 2^w by discarding any bits with weight greater than 2^{w-1}

Then, **Unsigned Addition** can be formularized as...

For x and y such that $0 \le x, y < 2^w$:

$$x+_w^uy=\left\{egin{array}{ll} x+y, & x+y<2^w & Normal\ x+y-2^w, & 2^w\leq x+y<2^{w+1} & Overflow \end{array}
ight.$$

In addition, to detect overflow of unsigned additions,

For x and y in the range $0 \le x, y \le UMax_w$, let $s := x +_w^u y$.

Then the computation of s overflowed if and only if s < x (or equivalently, s < y)

E.g.
$$9+_4^u 12=5$$
. ==> OVERFLOW! ($::5<9$)
$$(1001_2+1100_2=10101_2=>0101_2) (::word\ size=4)$$

Similarly, for **Unsigned negation**,

For any number x such that $0 \le x < 2^w$, its w-bit unsigned negation $-\frac{u}{w}x$ is given by the following:

$$-_w^u x = \left\{egin{array}{ll} x, & x=0 \ 2^w-x, & x>0 \end{array}
ight.$$

E.g.
$$-\frac{u}{4}4=12$$
 (
$$-0100_2=1100_2=(-1)\cdot 1\cdot 2^3+1\cdot 2^2+0\cdot 2^1+0\cdot 2^0=-8+4+0+0=-4)$$
 But since we are taking unsigned negation, $1100_2=8+4+0+0=12$

H5 ¶2.3.2 Two's-Complement Addition

• for two's complement addition, results can be either **too large** (positive) or **too small** (negative) to represent

Let us define $x +_w^t y$ be the result of **truncating** the integer sum x + y to be w bits long.

For integer values x and y in the range $-2^{w-1} \le x, y \le 2^{w-1} - 1$:

$$x+_w^t = egin{cases} x+y-2^w, & 2^{w-1} \leq x+y & Positive \ overflow \ x+y, & -2^{w-1} \leq x+y < 2^{w-1} & Normal \ x+y+2^w, & x+y < -2^{w-1} & Negative \ overflow \end{cases}$$

• when x + y exceeds $TMax_w$, => positive overflow!

e.g.
$$x=5=[0101], y=[0101]=>x+y=10=[01010], \ \ x+_4^ty=-6=[1010]$$
 $10-2^4=-6$

• when x - y is less than $TMin_w \Rightarrow$ negative overflow!

e.g.
$$x=-8=[1000]$$
 , $y=-5=[1011]$ => $x+y=-13=[10011]$, $x+_4^ty=3=[0011]$ $-13+2^4=3$

To detect overflow in two's-complement addition

For x and y in the range $TMin_w \leq x, y \leq TMax_w$, let $s := x +_w^t y$.

Then the computation of s has had positive overflow if and only if x>0 and y>0 but $s\leq 0$.

The computation has had negative overflow if and only if x<0 and y<0 but $s\geq 0.$

H5 ¶2.3.3 Two's-Complement Negation

• Every number x in the range $TMin_w \le x \le TMax_w$ has an additive inverse under $+^t_w$, which we denote $-^t_w x$ as follows:

For x in the range $TMin_w \leq x \leq TMax_w$, its two's-complement negation $-^t_w x$ is given by the formula

$$-_w^t x = egin{cases} TMin_w, & x = TMin_w \ -x, & x > TMin_w \end{cases}$$

Note that $TMin_w + TMin_w = -2^{w-1} + -2^{w-1} = -2^w ==> { t Negative }$ overflow!

 Bit-level representation can be used to find two's-complement negation examples with a 4-bit word size:

$ec{x}$	$ extstyle ilde{x}$	incr($\sim ec{x}$)
[0101]=5	[1010]=-6	[1011]=-5
[0111]=7	[1000]=-8	[1001]=-7
[0000]=0	[1111]=-1	[0000]=0
[1000]=-8	[0111]=7	[1000]=-8

H5 ¶2.3.4 Unsigned Multiplication

Integers x and y in the range $0 \le x, y \le 2^w-1$ can be represented as w-bit unsigned numbers, but their product $x \cdot y$ can range between 0 and $(2^w-1)^2=2^{2w}-2^{w+1}+1, \text{ requiring } 2w \text{ bits to represent}$

Let's define $x *_w^u y$ be the w-bit value given by the low-order w bits of the 2w-bit integer product.

Then, **Unsigned multiplication** can be formularized as:

For \overline{x} and y such that $0 \le x, y \le UMax_w$:

$$xst_w^uy=(x\cdot y)\ mod\ 2^w$$

H5 ¶2.3.5 Two's-Complement Multiplication

Integers x and y in the range $-2^{w-1} \le x, y \le 2^{w-1} - 1$ can be represented as w-bit two's complement numbers, but their product $x \cdot y$ can range between $-2^{w-1} \cdot (2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$ and $-2^{w-1} \cdot -2^{w-1} = 2^{2w-2}$, requiring as many as 2w bits to represent in two's complement form

Let's define $x *_w^t y$ be the w bit result after trancating the 2w-bit product.

Then, **Two's-complement multiplication** can be formularized as:

For x and y such that $TMin_w \leq x, y \leq TMax_w$:

$$x *^t = U2T_w((x \cdot y) \bmod 2^w)$$

• However, note that the **bit-level representation** of the product operation is **identical** for both unsigned and two's-complement multiplication

H5 ¶2.3.6 Multiplying by Constants

- Historically, the integer multiply instructions on many machines was fairly slow
 - Other integer operations (+, -, bitwise, shifting) require ≈ 1 clock cycle, while multiplication takes ≈ 3 clock cycles even on the Intel Core i7 Haswell.
- To optimize multiplications, compilers replace multiplications by constant factors with shift & addition operations
 - e.g. x*14 can be rewritten as (x<<3)+(x<<2)+(x<<1) since $14=2^3+2^2+2^1$

or,
$$(x << 4) - (x << 1)$$
 $(\because 14 = 2^4 - 2^1)$

Multiplication by a power of 2

Let x be the unsigned integer represented by bit pattern $[x_{w-1}, x_{w-2}, \dots, x_0]$.

Then for any $k\geq 0$, the w+k-bit unsigned representation of $x2^k$ is given by [$x_{w-1},x_{w-2},\ldots,x_0,0,\ldots,0$], where k zeros have been added to the right

When shifting left by k for a fixed word size, the high-order k bits are discarded, yielding

$$[x_{w-k-1}, x_{w-k-2}, \dots, x_0, 0, \dots, 0]$$

Unsigned multiplication by a power of 2

For C variables x and k with unsigned values x and k, such that $0 \le k < w$, the C expression x << k yields the value $x*^u_w 2^k$

Two's-complement multiplication by a power of 2

For C variables x and k with two's-complement value x and unsigned value k, such that $0 \le k < w$, the C expression x << k yields the value $x *_w^t 2^k$

H5 ¶2.3.7 Dividing by Powers of 2

- Integer division is even slower than integer multiplication --> ≈30 or more clock cycels
 - Use Right shifts!
 - logical right shifts -- unsigned
 - arithmetic right shifts -- two's-complement
- Integer division always rounds toward zero

Unsigned division by a power of 2

For C variables x and k with unsigned values x and k, such that $0 \le k < w$, the C expression x >> k yields the value $|x/2^k|$.

-- Note that for unsigned divisions, use Logical Right Shifts!

Two's-complement division by a power of 2, rounding down

For C variables x and k have two's-complement value x and unsigned value k, respectively, such that $0 \le k < w$. The C expression x >> k, when the shift is performed **arithmetically**, yields the value $\lfloor x/2^k \rfloor$

Two's complement division by a power of 2, rounding up

Let C variables x and k have two's-complement value x and unsigned value k, respectively, wuch that $0 \le k < w$. The C expression (x + (1 << k) - 1) >> k, when the shift is performed **arithmetically**, yields the value $\lceil x/2^k \rceil$

$$(: \lceil x/y \rceil = \lfloor (x+y-1)/y \rfloor)$$