

Digital Logic Circuit (SE273 – Fall 2020) Lecture 1: Admin

Jaesok Yu, Ph.D. (jaesok.yu@dgist.ac.kr)

Assistant Professor

Department of Robotics Engineering, DGIST

Instructor

Jaesok Yu, Ph.D.

Assistant Professor, Department of Robotics Engineering, DGIST Advanced Ultrasound Research Laboratory

Office: E5-309 / E-mail: jaesok.yu@dgist.ac.kr

- Ultrasound-based Multi-modal Imaging Technologies
- Novel Ultrasound Imaging and Therapeutic Technologies
- Deep-learning based Ultrasound Image Processing and Diagnosis

B-mode

Ultrafast Doppler

Super-resolution

Instructor – Research

Doppler imaging Real-time blood-flow

Hemodynamics

Morphological imaging
3D Real-time non-invasive
anatomical information

1

Mechanical property

Shear-wave / Strain elasticity imaging
Tissue stiffness

Breast imaging: Malignant invasive ductal carcinoma (Score 5)

Thermal strain imaging

Fat vs Water-based tissue

Fat identification in NAFLD

Hemo-

dynamics

Photoacoustic imaging Optical absorption

Course objectives

- Understanding the digital system (Midterm / Final)
 - ~ Midterm: Combinational logic design
 - ~ Final: Sequential logic and System design
- Learning skills to design the basic digital system (Term project)
 - Design a simple calculator (processor) by using HDL

Term project

- When: Will be assigned after Midterm (~3 wks)
- What: You will design a simple processor based on HDL
- How: 2 Students/team Random mating
- To be determined further detail due to Covid-19 situation

Logistics

- Weekly lectures: Mon & Wed 2:30 4:00 PM, Online lecture
- Grading (TBD): Midterm (30%), Final (30%), Term projects (30%), Attendance (10%) + Engagement (bonus 5%)
- Term projects: A simple processor design using VHDL
- Office hours: Mon/Wed after class or by appointment
- Holidays: 9/7 (Anniversary), 9/30 (Thanksgiving)

Logistics

- > Handout:
 - Some materials courtesy of Jaeha Kung (DGIST)
- > Textbook:
 - "Logic and Computer Design Fundamentals", Mano, Kime, Martin, Pearson
 - "Digital Design", Mano, Ciletti, Pearson
 - "Fundamentals of Digital Logic with VHDL design", Brown, McGraw-Hill

Academic Integrity

- Don't cheat. (Zero Tolerance)
- All work is to be done individually unless stated otherwise by the professor
- Talking things over is generally OK and even encouraged, exchanging or copying files or written work is NEVER ALLOWED.
- If you are having trouble with the assignments, come to us for help (and we mean it).
- Regardless of reasons, cheating will significantly affect your grade.

Note for disability

If you have a disability for which you are or may be requesting an accommodation, you are encouraged to contact me via e-mail jaesok.yu@dgist.ac.kr, as early as possible in the term. We will determine reasonable accommodations for this course.

Questions?

Comments? and

Any suggestion?

What Are Digital Computers?

We are living in the "information age" with a number of computing

devices

Computers Are Everywhere

Computers are involved in business transactions, transportation, medical treatment, communications, etc.

- Types of Digital Computers
 - General Purpose Processors (CPU, GPU, NPU?)

- Types of Digital Computers
 - General Purpose Processors (CPU, GPU, NPU?)
 - Field Programmable Gate Array (FPGA)

Types of Digital Computers

- General Purpose Pro
- Field Programmable
- Application-Specific

Flexibility, Programming Abstraction

Performance, Area and Power Efficiency

CPU:

- Market-agnostic
- Accessible to many programmers (C++)
- Flexible, portable

FPGA:

- Somewhat Restricted Market
- Harder to Program (Verilog)
- More efficient than SW
- More expensive than ASIC

ASIC

- Market-specific
- Fewer programmers
- Rigid, less programmable
- Hard to build (physical)

Source: Altera

Fairchild 4500 (IBM & Texas Instruments)
ASIC prototype using computer-aided design for mass production of ICs

Moore's Law

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

► Semiconductor Foundry Process Roadmap (~2015)

► Semiconductor Foundry Process Roadmap (2015~)

Logic/Foundry Process Roadmaps (for Volume Production)

Note: What defines a process "generation" and the start of "volume" production varies from company to company, and may be influenced by marketing embelishments, so these points of transition should only be seen as very general guidelines.

Sources: Companies, conference reports, IC Insights

MIT Technology Review Topics Ma

Computing / Quantum computing

We're not prepared for the end of Moore's Law

It has fueled prosperity of the last 50 years. But the end is now in sight.

by **David Rotman**

February 24, 2020

Gordon Moore's 1965 forecast that the number of components on an integrated circuit would double every year until it reached an astonishing 65,000 by 1975 is the greatest technological prediction of the last half-century. When it proved correct in 1975, he revised what has become known as Moore's Law to a doubling of transistors on a chip every two years.

Since then, his prediction has defined the trajectory of technology and, in many ways, of progress itself.

Beyond Moore's Law

40 years of Processor Performance

Beyond Moore's Law

Beyond Moore's Law

Three potential paths forward to realize continued performance improvements for digital electronics technology

- What's the future? Technologies
- Alternative Materials
 - Galium Nitride

- Alternative Methodology
 - Liquid Metal Transistor Robot, Fabrics.. Etc.
 - Nanomagnetics Ultra-low energy
- New models of Computing
 - Light Computing
 - Quantum Computing
 - Neuro copmuting

Liquid Metal Transistor (@ CMU)

- What's the future? Architecture
 - Complex Instruction Set Computer(CISC) vs Reduced Instruction Set Computer (RISC)
 - Fixed Instruction length in RISC
 - Pros: Fast pipelining, Low power consumption
 - Cons: Complicated compiler optimization
 - No TRUE CISC processor
 - The current x86 works as RISC Internally.
 - Emulate CISC for compatibility.

Apple Silicon,

Apple announces Mac transition to Apple Silicon from CISC to RISC

What's the future? - Architecture

- Deep pipelining can solve all problems?
 - Heat problem!

Year	Microarchitecture	Pipeline stages
1993	P5 (Pentium)	5
1995	P6 (Pentium Pro/2)	14
2000	NetBurst - Willamette	20
2002	NetBurst - Northwood	20
2004	NetBurst – Prescott	31
2006	Core	14
2008	Bonnell	16
2011	Sandy Bridge	14
2013	Haswell	14
2015	Skylake	14
2016	Kabylake	14

so-called "PresHOT"

Intel acquires Altera

In June this year, Intel announced that it was acquiring FPGA maker Altera. Among the many op-eds trying to explain the rationale behind this deal, the one that resonated the most was the one by Kurt Marko (<u>Link</u>).

"The only way the Altera deal makes sense is if we are on the precipice of a secular shift in system design, not unlike the transition from proprietary RISC CPUs to x86, in which rapid hardware customization is the best path to faster performance. If true, the Altera deal is Intel's acknowledgement that the benefits of brute force, Moore's Law scaling have shrunk and that continuing an upward performance trajectory is more dependent on system design than semiconductor physics."

One way to extend the performance gains: Hardware Accelerator by pairing with FPGA/GP-GPU

now part of Intel

Intel acquires Altera

In June this year, Intel announced that it was acquiring FPGA maker Altera. Among the many op-eds trying to explain the rationale behind this deal, the one that resonated the most was the one by Kurt Marko (Link).

"The only way the Altera deal makes sense is if we are on the precipice of a secular shift in system design, not unlike the transition from proprietary RISC CPUs to x86, in which rapid hardware customization is the best path to faster performance. If true, the Altera deal is Intel's acknowledgement that the benefits of brute force, Moore's Law scaling have shrunk and that continuing an upward performance trajectory is more dependent on system design than semiconductor physics."

Reduces total cost of ownership (TCO) by using standard server infrastructure Increases flexibility by allowing for rapid implementation of customer IP and algorithms

Intel® Xeon® Processor Scalable Family

Most Agile Al Platform

Scalable performance for widest variety of Al & other datacenter workloads including breakthrough deep learning training & inference.

Datacenter

Highly-parallel

Intel® Xeon Phi™ Processor (Knights Mill)

Faster DL Training

Scalable performance optimized for even faster deep learning training and select highly-parallel datacenter workloads*

Flexible acceleration

Intel® FPGA

Enhanced DL Inference

Scalable acceleration for deep learning inference in real-time with higher efficiency, and wide range of workloads & configurations

Deep Learning

Crest Family

Deep Learning By Design

Scalable acceleration with best performance for intensive deep learning training & inference, period