Package 'gamlss.inf'

October 13, 2022

Type Package
Title Fitting Mixed (Inflated and Adjusted) Distributions
Version 1.0-1
Date 2019-03-12
Depends R (>= 2.2.1), gamlss, gamlss.dist
Suggests MASS, survival, gamlss.cens, gamlss.tr
Imports methods
Author Marco Enea [aut, cre, cph], Mikis Stasinopoulos [aut], Bob Rigby [aut], Abu Hossain [aut]
Maintainer Marco Enea <marco.enea@unipa.it></marco.enea@unipa.it>
Description This is an add-on package to 'gamlss'. The purpose of this package is to allow users to fit GAMLSS (Generalised Additive Models for Location Scale and Shape) models when the response variable is defined either in the intervals [0,1), (0,1] and [0,1] (inflated at zero and/or one distributions), or in the positive real line including zero (zero-adjusted distributions). The mass points at zero and/or one are treated as extra parameters with the possibility to include a linear predictor for both. The package also allows transformed or truncated distributions from the GAMLSS family to be used for the continuous part of the distribution. Standard methods and GAMLSS diagnostics can be used with the resulting fitted object.
License GPL-2 GPL-3
<pre>URL http://www.gamlss.com/</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2019-03-12 18:02:56 UTC
R topics documented:
gamlss.inf-package

2 gamlss.inf-package

gaml	ss.inf-package	Мо	del	s fo	r I	Miz	xea	! (Ii	nfl	ate	ed	an	d 1	Ad	ju.	ste	?d)	R	esp	201	nse	e V	/ar	ria	bl	es.		
Index																												25
	predict.gamlssinf0to predict.gamlssZadj sda summary.gamlssinf0 term.plotInf0to1 term.plotZadj	 Oto1 	 				 		 				· · · · · ·														 	 16 18 19 21
	gamlssZadj gen.Inf0to1 gen.Zadj																											10

Description

This package allows mixed distribution fitting in GAMLSS. A mixed distribution is one containing both continuous and discrete parts, see Chapter 5 of Stasinopoulos et al. (2017). There are some mixed distribution in the GAMLSS implementation in R like the BEINF, BEINF1 for data defined on [0,1] or ZAGA, ZAIG for data defined on a positive real line but the choice is very limited. This package enhance the availability of mixed distribution within the GAMLSS framework.

For historical reasons the authors use the terminology "Inflated" for models on [0,1], "Adjusted" for models on [0,Inf]. We will follow the same terminology here. So this package allows the fit of an inflated GAMLSS model when the response variable is defined in the intervals [0,1), (0,1] and [0,1] and the fit of zero adjusted models when the response variable is defined in the positive real line, (but where there are zeros in the data).

For models with inflated proportion response variables the package provides up to two extra parameters, a mass point at zero and a mass point at one. Adding an extra inflation point at zero (or at one), is equivalent to fit two separate GAMLSS models, a GAMLSS model with a continuous distribution defined at the interval (0,1), and a logit model for zero (or ones). When both zero and one are present, i.e. [0,1], a multinomial model is needed to fit the non-(0,1) part.

For the zero adjusted models with a response defined on the positive real line (but where zeros exist in the data), the actual fitting can be achieved by fitting two separate GAMLSS models one with a distribution on the real positive line and one binomial model for the zeros and non-zeros.

This package uses the two models fitting procedures but the resulting fitted object behaves like a typical GAMLSS object so a lot of standard GAMLSS diagnostics can be used with it. It also allows transformed or truncated gamlss.family distributions to be used for the continuous part of the distribution therefore giving a great flexibility of the type of mixed distribution to be used.

The functions gamlssInf0to1() and gamlssZadj() can fit the Inflated and Adjusted models, respectively, and they are described in the two vignettes available with the package.

gamlss.inf-package 3

Details

Package: gamlss.inf
Type: Package
Version: 1.0-1
Date: 2019-03-12
License: GPL-2 | GPL-3

Author(s)

Marco Enea <marco.enea@unipa.it>, Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Abu Hossain

Maintainer: Marco Enea <marco.enea@unipa.it>

References

Hossain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. *Statistics in Medicine*, doi: 10.1002/sim.6748.

Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, Statistical Papers, 23, 111-126.

Rigby R.A. and Stasinopoulos D.M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. https://www.crcpress.com/Flexible-Regression-and-Smoothing-Using-GAMLSS-in-R/Stasinopoulos-Rigby-Heller-Voudouris-Bastip/book/9781138197909.

See Also

gamlss

```
# An artificial example using simulated data in [0,1)

# Firstly, we use function gen.Family() to create

# the logit skew student t (logitSST) distribution which is defined in the (0,1)

# interval. Then we use function gen.Inf0to1() to create the 0-inflated logitSST

# distribution defined in [0,1).
```

4 centiles.Inf0to1

centiles.Inf0to1

Plotting centile curves for a gamlssInf0to1 and gamlssZadj object

Description

Function centiles.Inf0to1() plots centile curves for distributions belonging to the GAMLSS family of distributions defined in the intervals (0,1],[0,1) and [0,1]. The function also tabulates the sample percentages below each centile curve (for comparison with the model percentages given by the argument cent). A restriction of the function is that it applies to models with one explanatory variable only.

Usage

```
centiles.Inf0to1(obj, xvar = NULL, cent = c(0.4, 2, 10, 25, 50, 75,
    90, 98, 99.6), legend = TRUE, ylab = "y", xlab = "x", main = NULL,
    main.gsub = "@", xleg = min(xvar), yleg = max(obj$y), xlim = range(xvar),
    ylim = range(obj$y), save = FALSE, plot = TRUE, points = TRUE,
    pch = 15, cex = 0.5, col = gray(0.7), col.centiles = 1:length(cent) +
        2, lty.centiles = 1, lwd.centiles = 1, ...)

centiles.Zadj(obj, xvar = NULL, cent = c(0.4, 2, 10, 25, 50, 75,
    90, 98, 99.6), legend = TRUE, ylab = "y", xlab = "x", main = NULL,
    main.gsub = "@", xleg = min(xvar), yleg = max(obj$y), xlim = range(xvar),
    ylim = range(obj$y), save = FALSE, plot = TRUE, points = TRUE,
    pch = 15, cex = 0.5, col = gray(0.7), col.centiles = 1:length(cent) +
    2, lty.centiles = 1, lwd.centiles = 1, ...)
```

Arguments

obj a fitted gamlss object from fitting a gamlss distribution xvar the unique explanatory variable

centiles.Inf0to1 5

cent	a vector with elements the % centile values for which the centile curves have to be evaluated
legend	whether a legend is required in the plot or not, the default is legent=TRUE
ylab	the y-variable label
xlab	the x-variable label
main	the main title here as character. If NULL the default title "centile curves using NO" (or the relevant distributions name) is shown
main.gsub	if the main.gsub (with default "@") appears in the main title then it is substituted with the default title.
xleg	position of the legend in the x-axis
yleg	position of the legend in the y-axis
xlim	the limits of the x-axis
ylim	the limits of the y-axis
save	whether to save the sample percentages or not with default equal to FALSE. In this case the sample percentages are printed but are not saved
plot	whether to plot the centiles
points	whether the data points should be plotted, default is TRUE
pch	the character to be used as the default in plotting points see par
cex	size of character see par
col	plotting colour see par
col.centiles	Plotting colours for the centile curves
lty.centiles	line type for the centile curves
lwd.centiles	The line width for the centile curves
	for extra arguments

Details

Centiles are calculated using the fitted values in obj and xvar must correspond exactly to the predictor in obj to plot correctly.

col.centiles, lty.centiles and lwd.centiles may be vector arguments and are recycled to the length cent if necessary.

Value

A centile plot is produced and the sample centiles below each centile curve are printed (or saved)

Warning

This function is appropriate only when one continuous explanatory variable is fitted in the model

Author(s)

 $\label{lem:mikis_stasinopoulos@gamlss.org>}, Bob\ Rigby < r.\ rigby @londonmet.ac.uk> with contribution\ from\ Steve\ Ellison$

6 gamlssInf0to1

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Houssain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. Accepted for publication on *Statistics in Medicine*.

See Also

```
gamlssInf0to1, gamlss, centiles.split, centiles.com
```

Examples

```
## Not run:
gen.Family("SST", "logit")
gen.Inf0to1("logitSST", "One")
set.seed(30)
x < - seq(0,1,1=2000)
dat <- data.frame(x)</pre>
dat$Y <- rlogitSSTInf1(2000,mu=-3+10*x-0.7*x^2,sigma=0.9,nu=0.5,
                        tau=5,xi1=plogis(-0.5*ifelse(x>0.7,-1,13)),log=FALSE)
m1 <- gamlssInf0to1(y=Y,mu.formula=~pb(x), sigma.formula=~pb(x),</pre>
                     nu.formula=\simpb(x), tau.formula=\simpb(x),
                     xi1.formula=~pb(x),
                     data=dat, family=logitSST)
centiles.Inf0to1(m1,xvar= dat$x, cent=c(2,10,25,50,75,90,98),
col.centiles=c(1,7:2),
ylab="proportion", xlab="x",legend=FALSE,main="(c) Inf. logitSST")
## End(Not run)
```

gamlssInf0to1

GAMLSS model for a proportion response variable with point(s) mass at 0 and or 1.

gamlssInf0to1 7

Description

Function gamlssInf0to1() allows to fit inflated gamlss models when the response variable distribution is defined in the intervals [0,1), (0,1] and [0,1]. The gamlssInf0to1 model for inflated proportion variables is a gamlss model provided of up to two extra parameters for the mass point(s). In the case of inflation point at zero (one), this is equivalent to fit two separate models, a gamlss model for the (0,1) part, and a logit model for zero (one) vs non-zero (non-one) part. When both zero and one are present, a multinomial model is involved to fit the non-(0,1) part.

Usage

Arguments

У	the proportion response variable with inflation at zero and/or one
mu.formula	a model formula for mu
sigma.formula	a model formula for sigma
nu.formula	a model formula for nu
tau.formula	a model formula for tau
xi0.formula	a model formula for the probability at zero
xi1.formula	a model formula for the probability at one
data	a data frame containing the variables occurring in the formula.
family	any gamlss distribution family defined in $(0,1)$
weights	a vector of weights as in gamlss
trace	logical, if TRUE information on model estimation will be printed during the fitting
	for extra parameters

Details

The default family is a Beta distribution (BE), but other (0,1) distributions can be used, e.g. those generated from existing continuous gamlss family distributions by using gen. Family with link "logit".

Value

returns a gamlssInf0to1 object which has its own methods

Author(s)

Mikis Stasinopoulos, Robert Rigby, Abu Hossain and Marco Enea

8 gamlssInf0to1

References

Hossain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. *Statistics in Medicine*, doi: 10.1002/sim.6748.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

```
gamlss.family, BEINF, BE, BEo, BEZI, BEOI
```

```
# 1. An artificial example using simulated data
# Firstly, we use function gen. Family() to create the logit skew
# student t (logitSST) distribution defined in the (0,1) interval,
# and function gen.Inf0to1() to create the 0-inflated logitSST
# distribution defined in [0,1).
gen.Family("SST", "logit")
gen.Inf0to1("logitSST", "Zero")
#now we can generate the data and run the model
set.seed(10)
Y <- rlogitSSTInf0(500, mu=0.5, sigma=0.7, nu=0.5, tau=5, xi0=0.5, log=FALSE)
dat <- data.frame(Y)</pre>
dat$x <- rnorm(500)
m1 <- gamlssInf0to1(y=Y,mu.formula=~x, sigma.formula=~x,
                    nu.formula=~x, tau.formula=~x,
                    xi0.formula=~x,data=dat, family=logitSST)
summary(m1)
# 2. Example of equivalent gamlss models for an inflated-at-1 Beta distribution
Y <- rBEINF1(500, mu=0.5, sigma=0.7, nu=0.5)
m2 <- gamlss(Y~1,sigma.formula=~1,nu.formula=~1,family=BEINF1)
m3.1 <- gamlss(Y[Y<1]~1, sigma.formula=~1, family=BE)
m3.2 \leftarrow gamlss(I(Y==1)^1, family=BI)
m4 <- gamlssInf0to1(Y,mu.formula=~1,sigma.formula=~1,xi1=~1,family=BE)</pre>
stopifnot(all.equal(deviance(m2),(deviance(m3.1)+deviance(m3.2))),
          all.equal(deviance(m2),deviance(m4)))
```

gamlssZadj 9

gamlssZadj	Fitting positive real line response variable with zeros.

Description

Function gamlssZadj() allows to fit zero adjusted gamlss models when the response variable distribution is defined on the positive real line. The gamlssZadj model for adjusted positive variables is a gamlss model provides one extra parameters for the mass point at zero. This is equivalent to fit two separate models, a gamlss model for the (0,Inf) part, and a logit model for zero part versus the non-zero part. The function works similarly but provides one fitted object.

Usage

Arguments

У	the response variable
mu.formula	a model formula for mu
sigma.formula	a model formula for sigma
nu.formula	a model formula for nu
tau.formula	a model formula for tau
xi0.formula	a model formula for xi0
data	a data frame containing the variables occurring in the formula.
family	any gamlss distribution family defined on the rael line
weights	a vector of weights as in gamlss
trace	logical, if TRUE information on model estimation will be printed during the fitting
	for extra arguments to pass to gamlss

Details

The default family is a gamma distribution (GA), but other distributions on the positive rael line can be used, e.g. those generated from existing continuous gamlss.family distributions using say gen.Family() with "log" or gen.trun() from package gamlss.tr

Value

. Returns a gamlssZadj object which has its own methods

10 gen.Inf0to1

Author(s)

Mikis Stasinopoulos, Robert Rigby and Marco Enea

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. https://www.crcpress.com/Flexible-Regression-and-Smoothing-Using-GAMLSS-in-R/Stasinopoulos-Rigby-Heller-Voudouris-Bastip/book/9781138197909.

See Also

```
gamlss.family, ZAGA, ZAIG
```

Examples

```
y0 <- rZAGA(1000, mu=.3, sigma=.4, nu=.15)# p0=0.13
g0 <- gamlss(y0~1, family=ZAGA)
t0 <- gamlssZadj(y=y0, mu.formula=~1, family=GA, trace=TRUE)
AIC(g0,t0, k=0)</pre>
```

gen.Inf0to1

Functions to generate inflated 0-to-1 distributions from existing continuous gamlss family distributions defined in (0,1).

Description

There are six functions here. Only the function gen.Inf0to1() should be used. The remaing five functions will be automatically created once gen.Inf0to1() has been run.

Usage

gen.Inf0to1

Arguments

```
family a continuous (0,1) distribution (extremes not included) gamlss.family distribution

type.of.Inflation
the type of inflation
for passing extra arguments
```

Details

Functions Inf0to1.d, Inf0to1.p, Inf0to1.q and Inf0to1.r allow to create the density function, distribution function, quantile function and random generation, respectively. Function plotInf0to1 can be used to create the plot the distributions.

Alternatively, the function gen. Inf0to1 creates the all the standard d,p,q,r functions plus the plotting function.

For example, let us take the case of the logit SST distribution with inflation at 1. First generate the "logitSST" distribution by using gen.Family("SST", "logit"), and then, by use gen.Inf0to1("logitSST", "One"). The functins dlogitSSTInf1, plogitSSTInf1, qlogitSSTInf1, rlogitSSTInf1 and plotlogitSSTInf1 will be automatically generated. Note that gen.Inf0to1 never creates a fitting function of the type "logitSSTInf1", but the existing logitSST must be specified instead as an argument family of function gamlssInf0to1().

Value

The function gen. Inf0to1 returns the d, p, q and r functions plus the plotting function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Marco Enea

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

12 gen.Zadj

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. https://www.crcpress.com/Flexible-Regression-and-Smoothing-Using-GAMLSS-in-R/Stasinopoulos-Rigby-Heller-Voudouris-Bastip/book/9781138197909.

Examples

```
# 1.
gen.Inf0to1("BE","Zero&One")
rBETAInf0to1 <- Inf0to1.r("BE","Zero&One")</pre>
all.equal(rBETAInf0to1, rBEInf0to1)
plotBEInf0to1()
plotBEInf0to1(mu=0.3, sigma=0.35, xi0=0.5, xi1=0.3)
# 2.
gen.Family("SST", "logit")
gen.Inf0to1("logitSST","One")
set.seed(30)
args(rlogitSSTInf1)
y <- rlogitSSTInf1(1000,mu=0.2,sigma=0.5,nu=1,tau=5,xi1=0.2)
quantile(y,c(0.1,0.25,0.5,0.75,0.9))
args(qlogitSSTInf1)
qlogitSSTInf1(p=c(0.1,0.25,0.5,0.75,0.9),mu=0.2,sigma=0.5,nu=1,tau=5,xi1=0.2)
plotlogitSSTInf1(mu=0.2, sigma=0.5, nu=1, tau=5, xi1=0.2)
```

gen.Zadj

Functions to generate zero adjusted distributions from existing continuous gamlss.family distributions defined on positive real line.

Description

There are six functions here. Only the function gen.Zadj() should be used. The remaing four functions will be automatically created once gen.Zadj() has been run.

Usage

```
gen.Zadj(family = "GA", ...)
Zadj.d(family = "GA", ...)
Zadj.p(family = "GA", ...)
Zadj.q(family = "GA", ...)
Zadj.r(family = "GA", ...)
plotZadj(family = "GA", ...)
```

Arguments

```
family a continuous positive rael line distribution
... for additional arguments
```

gen.Zadj 13

Details

Functions Zadj.d, Zadj.p, Zadj.q and Zadj.r allow to create the density function, distribution function, quantile function and random generation, respectively. Function plotZadj can be used to create a plot for the distribution.

Alternatively, the function gen. Zadj creates the all the standard d,p,q,r functions plus the plotting function.

Value

The function gen. Zadj returns the d, p, q and r functions plus the plotting function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Marco Enea

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. https://www.crcpress.com/Flexible-Regression-and-Smoothing-Using-GAMLSS-in-R/Stasinopoulos-Rigby-Heller-Voudouris-Bastip/book/9781138197909.

See Also

```
gamlssZadj, ~~~
```

```
# 1.
gen.Zadj("BCT")

plotBCTZadj()
plotBCTZadj(mu=3,sigma=0.35,xi0=0.5)

# 2.
gen.Family("SST", "log")
gen.Zadj("logSST")
plotlogSSTZadj()
```

14 predict.gamlssinf0to1

Description

predict.gamlssinf0to1 is the gamlssinf0to1 specific method which produce predictors for a new data set for a specified parameter from a gamlssinf0to1 objects. The predict.gamlssinf0to1 can be used to extract the linear predictors, fitted values and specific terms in the model at new data values in the same way that the predict.lm() and predict.glm() functions can be used for lm or glm objects. Note that linear predictors, fitted values and specific terms in the model at the current data values can also be extracted using the function lpred() (which is called from predict if new data is NULL).

Usage

```
## S3 method for class 'gamlssinf0to1'
predict(object, parameter = c("mu", "sigma", "nu", "tau", "xi0","xi1"),
newdata = NULL, type = c("link", "response", "terms"),
terms = NULL, se.fit = FALSE,data = NULL, ...)
```

Arguments

object	a gamlssinf0to1 fitted model
parameter	which distribution (or inflation) parameter is required, default parameter="mu"
newdata	a data frame containing new values for the explanatory variables used in the model
type	the default, gets the linear predictor for the specified distribution (or inflation) parameter. type="response" gets the fitted values for the parameter while type="terms" gets the fitted terms contribution
terms	if type="terms", which terms to be selected (default is all terms)
se.fit	if TRUE the approximate standard errors of the appropriate type are extracted if exist
data	the data frame used in the original fit if is not defined in the call
	for extra arguments

Details

The predict function assumes that the object given in newdata is a data frame containing the right x-variables used in the model. This could possible cause problems if transformed variables are used in the fitting of the original model. For example, let us assume that a transformation of age is needed in the model i.e. nage<-age^.5. This could be fitted as mod<-gamlss(y~cs(age^.5), data=mydata) or as nage<-age^.5; mod<-gamlss(y~cs(nage), data=mydata). The later could more efficient if

predict.gamlssinf0to1 15

the data are in thousands rather in hundreds. In the first case, the code predict(mod, newdata=data.frame(age=c(34,56))) would produce the right results. In the second case a new data frame has to be created containing the old data plus any new transform data. This data frame has to be declared in the data option. The option newdata should contain a data.frame with the new names and the transformed values in which prediction is required, (see the last example).

Value

A vector or a matrix depending on the options.

Author(s)

Abu Hossain, Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Marco Enea

References

Hossain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. *Statistics in Medicine*, doi: 10.1002/sim.6748.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

```
gamlssInf0to1
```

16 predict.gamlssZadj

Description

predict.gamlssZadj is the specific method which produce predictors for a new data set for a specified parameter from a gamlssZadj objects. The predict.gamlssZadj can be used to extract the linear predictors, fitted values and specific terms in the model at new data values in the same way that the predict.lm() and predict.glm() functions can be used for lm or glm objects. Note that linear predictors, fitted values and specific terms in the model at the current data values can also be extracted using the function lpred() (which is called from predict if new data is NULL).

Usage

```
## S3 method for class 'gamlssZadj'
predict(object, parameter = c("mu", "sigma", "nu", "tau", "xi0"),
newdata = NULL, type = c("link", "response", "terms"),
terms = NULL, se.fit = FALSE,data = NULL, ...)
```

Arguments

object	a gamlssZadj fitted model
parameter	which distribution (or inflation) parameter is required, default parameter="mu"
newdata	a data frame containing new values for the explanatory variables used in the model
type	the default, gets the linear predictor for the specified distribution (or inflation) parameter. type="response" gets the fitted values for the parameter while type="terms" gets the fitted terms contribution
terms	if type="terms", which terms to be selected (default is all terms)
se.fit	if TRUE the approximate standard errors of the appropriate type are extracted if exist
data	the data frame used in the original fit if is not defined in the call
	for extra arguments

Details

The predict function assumes that the object given in newdata is a data frame containing the right x-variables used in the model. This could possible cause problems if transformed variables are used in the fitting of the original model. For example, let us assume that a transformation of age is needed in the model i.e. nage<-age^.5. This could be fitted as mod<-gamlss(y~cs(age^.5),data=mydata) or as nage<-age^.5; mod<-gamlss(y~cs(nage), data=mydata). The later could more efficient if the data are in thousands rather in hundreds. In the first case, the code predict(mod,newdata=data.frame(age=c(34,56)) would produce the right results. In the second case a new data frame has to be created containing the old data plus any new transform data. This data frame has to be declared in the data option. The option newdata should contain a data.frame with the new names and the transformed values in which prediction is required, (see the last example).

predict.gamlssZadj 17

Value

A vector or a matrix depending on the options.

Author(s)

Abu Hossain, Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Marco

References

Hossain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. *Statistics in Medicine*, doi: 10.1002/sim.6748.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

```
gamlssZadj
```

```
set.seed(3210)
x <- (runif(800)*4)-2
data(sda)
fmu <- splinefun(sda$x, sda$mu)</pre>
curve(fmu, -2,2)
fsigma <- splinefun(sda$x, sda$sigma)</pre>
curve(fsigma, -2,2)
fnu <- function(x)</pre>
  {f <- splinefun(sda$x, sda$nu)</pre>
f(x)/6
}
curve(fnu, -2,2)
set.seed(321)
y0 < - rZAGA(800, mu=fmu(x), sigma=fsigma(x), nu=fnu(x))
da <- data.frame(y0,x)</pre>
g0p \leftarrow gamlss(y0\sim pb(x), sigma.fo=\sim pb(x), nu.fo=\sim pb(x), data=da, family=ZAGA)
t0p \leftarrow gamlssZadj(y=y0, mu.fo=pb(x), sigma.fo=pb(x), data=da,
                    trace=TRUE, xi0.fo=~pb(x), family="GA")
plot(predict(g0p, "nu", type="link"),
     predict(t0p, "xi0", type="link"))
```

18 sda

sda

Data for using for simulation

Description

Those data values are used to create simaulated data

Usage

```
data("sda")
```

Format

A data frame with 120 observations on the following 5 variables.

```
x the explanatory variablemu the fitted musigma the fitted sigmanu the fitted nutau the fitted tau
```

Source

The data are fitted values of model

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. https://www.crcpress.com/Flexible-Regression-and-Smoothing-Using-GAMLSS-in-R/Stasinopoulos-Rigby-Heller-Voudouris-Bastip/book/9781138197909.

summary.gamlssinf0to1 19

Examples

```
data(sda)
fmu <- splinefun(sda$x, sda$mu)
curve(fmu, -2,2)
fsigma <- splinefun(sda$x, sda$sigma)
curve(fsigma, -2,2)
fnu <- splinefun(sda$x, sda$nu)
curve(fnu, -2,2)
ftau <- splinefun(sda$x, sda$tau)
curve(ftau, -2,2)</pre>
```

summary.gamlssinf0to1 Summarizes an inflated GAMLSS fitted model

Description

These are specific methods for the generic function summary which summarize objects retuned by gamlssinf0to1 or gamlssZadj.

Usage

Arguments

object	a gamlssinf0to1 or gamlssZadj fitte	d model
--------	-------------------------------------	---------

type the default value vcov uses the vcov() method for gamlss to get the variance-

covariance matrix of the estimated beta coefficients, see details below. The alternative qr is the original method used in gamlss to estimated the standard errors but it is not reliable since it do not take into the account the inter-correlation between the distributional parameters mu, sigma, nu and tau, while the inflation

parameters xi0 and xi1 are uncorrelated anywway.

robust whether robust (sandwich) standard errors are required

save whether to save the environment of the function so to have access to its values

hessian.fun whether when calculate the Hessian should use the "R" function optimHess()

or a function based on Pinheiro and Bates nlme package, "PB".

digits the number of digits in the output

... for extra arguments

Details

Using the default value type="vcov", the vcov() method is used to get the variance covariance matrix (and consequently the standard errors) of the beta parameters. The variance covariance matrix is calculated using the inverse of the numerical second derivatives of the observed information matrix. This is a more reliable method since it take into the account the inter-correlation between the all the parameters. The type="qr" assumes that the parameters are fixed at the estimated values. Note that both methods are not appropriate and should be used with caution if smoothing terms are used in the fitting.

Value

Print summary of a gamlssinf0to1 or a gamlssZadj object

Author(s)

Abu Hossain, Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Marco Enea

References

Houssain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. Accepted for publication on *Statistics in Medicine*.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

```
gamlssInf0to1, gamlssZadj
```

term.plotInf0to1 21

```
\label{eq:continuous_sigma} \begin{split} \text{y0} &<- \text{rZAGA}(1000, \text{mu=fmu}(x), \text{sigma=fsigma}(x), \text{nu=fnu}(x)) \\ \text{da} &<- \text{data.frame}(\text{y0}, \text{x}) \\ \text{t0p} &<- \text{gamlssZadj}(\text{y=y0}, \text{mu.fo=$^{\text{pb}}(x)}, \text{sigma.fo=$^{\text{pb}}(x)}, \text{data=da}, \\ & \text{trace=TRUE}, \text{xi0.fo=$^{\text{pb}}(x)}, \text{family=$''GA$''}) \\ \text{summary}(\text{t0p}) \end{split}
```

term.plotInf0to1

Plot regression terms for a specified parameter of a fitted gamlss-Inf0to1 object

Description

This is a wrapper to function term.plot. term.plotInf0to1 produces term plots for a specified parameter from a gamlssinf0to1 object.

Usage

Arguments

object a gamlssinf0to1 fitted model

parameter which distribution (or inflation) parameter is required, default parameter="mu"

extra arguments, the same of term.plot (except 'what')

Details

see function term.plot

Value

A plot of fitted terms.

Author(s)

Marco Enea, Mikis Stasinopoulos, Bob Rigby and Abu Hossain

References

Hossain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. *Statistics in Medicine*, doi: 10.1002/sim.6748.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

22 term.plotZadj

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

```
gamlssInf0to1
```

Examples

term.plotZadj

Plot regression terms for a specified parameter of a fitted gamlssZadj object

Description

\ This is a wrapper to function term.plot. codeterm.plotZadj produces term plots for a specified parameter from a gamlssZadjobject.

Usage

```
term.plotZadj(object, parameter = c("mu", "sigma", "nu", "tau", "xi0"),...)
```

term.plotZadj 23

Arguments

```
object a gamlssZadj fitted model

parameter which distribution (or inflation) parameter is required, default parameter="mu"

extra arguments, the same of term.plot (except 'what')
```

Details

see function term.plot

Value

A plot of fitted terms.

Author(s)

Marco Enea, Mikis Stasinopoulos, Bob Rigby and Abu Hossain

References

Hossain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. *Statistics in Medicine*, doi: 10.1002/sim.6748.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), *Appl. Statist.*, **54**, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

```
gamlssZadj
```

24 term.plotZadj

```
curve(fnu, -2,2)
set.seed(321)
y0 \leftarrow rZAGA(1000, mu=fmu(x), sigma=fsigma(x), nu=fnu(x))
da <- data.frame(y0,x)</pre>
g0p \leftarrow gamlss(y0pb(x), sigma.fo=pb(x), nu.fo=pb(x), data=da, family=ZAGA)
t0p \leftarrow gamlssZadj(y=y0, mu.fo=pb(x), sigma.fo=pb(x), data=da,
                  trace=TRUE, xi0.fo=~pb(x), family="GA")
# term.plot for the mu parameter
term.plot(g0p);title("gamlss")
term.plot(t0p$dist,"mu");title("gamlssZadj")
term.plotZadj(t0p,"mu",col.shaded = 3);title("gamlssZadj")
# term.plot for the sigma parameter
term.plot(g0p, "sigma");title("gamlss")
term.plot(t0p$dist,"sigma");title("gamlssZadj")
term.plotZadj(t0p, "sigma", col.shaded = 3);title("gamlssZadj")
# term.plot for the binomial parameter
term.plot(g0p, "nu");title("gamlss")
term.plot(t0p$binom,"mu");title("gamlssZadj")
term.plotZadj(t0p,"xi0",col.shaded = 3);title("gamlssZadj")
```

Index

```
* datasets
                                                 Inf0to1.p (gen. Inf0to1), 10
    sda, 18
                                                 Inf0to1.q (gen.Inf0to1), 10
* distribution
                                                 Inf0to1.r (gen.Inf0to1), 10
    gen.Inf0to1, 10
                                                 plotInf0to1 (gen.Inf0to1), 10
    gen.Zadj, 12
                                                 plotZadj (gen.Zadj), 12
* package
                                                 predict.gamlssinf0to1, 14
    gamlss.inf-package, 2
                                                 predict.gamlssZadj, 16
* regression
    centiles.Inf0to1,4
                                                 sda, 18
    gamlssInf0to1, 6
                                                 summary.gamlssinf0to1, 19
    gamlssZadj, 9
                                                 summary.gamlssZadj
    gen. Inf0to1, 10
                                                          (summary.gamlssinf0to1), 19
    gen.Zadj, 12
    predict.gamlssinf0to1,14
                                                  term.plot, 21-23
    predict.gamlssZadj, 16
                                                  term.plotInf0to1, 21
    summary.gamlssinf0to1, 19
                                                 term.plotZadj, 22
    term.plotInf0to1, 21
    term.plotZadj, 22
                                                 Zadj.d (gen.Zadj), 12
                                                 Zadj.p (gen.Zadj), 12
BE, 8
                                                 Zadj.q (gen.Zadj), 12
BEINF, 8
                                                 Zadj.r (gen.Zadj), 12
BEo, 8
                                                 ZAGA, 10
BEOI, 8
                                                 ZAIG, 10
BEZI, 8
centiles.com. 6
centiles.Inf0to1,4
centiles.split, 6
centiles.Zadj (centiles.Inf0to1), 4
gamlss, 3, 6, 7, 9
gamlss.family, 8, 10
gamlss.inf(gamlss.inf-package), 2
gamlss.inf-package, 2
gamlssInf0to1, 6, 6, 15, 20, 22
gamlssZadj, 9, 13, 17, 20, 23
gen.Family, 7, 9
gen. Inf0to1, 10
gen.Zadj, 12
Inf0to1.d (gen.Inf0to1), 10
```