

CRAb

Métodos Numéricos 1 (MN1)

Unidade 3: Sistemas de Equações Parte 5: Método de Gauss-Jordan

Joaquim Bento Cavalcante Neto

joaquimb@lia.ufc.br

Grupo de Computação Gráfica, Realidade Virtual e Animação (CRAb)

Departamento de Computação (DC)

Universidade Federal do Ceará (UFC)

UFC

Introdução

- Método da eliminação de Gauss:
 - Consiste em transformar sistema linear original em um sistema equivalente com a matriz dos coeficientes triangular superior
- Método de Gauss-Jordan:
 - Consiste em transformar sistema linear original em um sistema equivalente no qual a matriz dos coeficientes seja a matriz identidade

Obs: Pode ser também matriz diagonal

Eliminação de Gauss

 Consiste em transformar o sistema linear original em um sistema equivalente com matriz dos coeficientes triangular superior

$$Ax = b \sim Ux = d$$

Solução Ux = d ⇒ substituições retroativas

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} \sim \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{bmatrix}$$

Gauss-Jordan

 Consiste em transformar o sistema linear original em um sistema equivalente onde matriz dos coeficientes é a matriz identidade

$$Ax = b \sim Ix = e$$

Solução Ix = e ⇒ próprio vetor e calculado

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_n \end{bmatrix}$$

- Etapa 1:
 - Transformar o pivô em 1: divide a primeira linha pelo pivô

Pivô.

Divide-se a primeira
$$\begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Etapa 1:

- Eliminar a coluna abaixo (e acima) do pivô, utilizando operações l-elementares (gerar sistema equivalente)

$$m_{21} = -a_{21} = -1 \Rightarrow L_2' = L_2 + (-1)L_1$$

$$ightharpoonup m_{31} = -a_{31} = -4 \Rightarrow L_3' = L_3 + (-4)L_1$$

- Etapa 2:
 - Transformar o pivô em 1: divide a segunda linha pelo pivô

Transformar o pivô em 1

$$\begin{bmatrix} 1 & 2/3 & 4/3 & 1/3 \\ 0 & 1/3 & 2/3 & 5/3 \\ 0 & 1/3 & -22/3 & 5/3 \end{bmatrix}$$

Divide-se a linha 2 por 1/3

Etapa 2:

- Eliminar a coluna abaixo (e acima) do pivô, utilizando operações l-elementares (gerar sistema equivalente)

Eliminar
$$\begin{bmatrix} 1 & 2/3 & 4/3 & 1/3 \\ 0 & 1 & 2 & 5 \\ \hline & 1/3 & -22/3 & 5/3 \end{bmatrix}$$

•
$$m_{12} = -a_{12} = -(2/3) \Rightarrow L_1'' = -2/3L'_2 + L'_1$$

•
$$m_{32} = -a_{32} = -(1/3) \Rightarrow L_3'' = -1/3L'_2 + L'_3$$

- Etapa 3:
 - Transformar o pivô em 1: divide a terceira linha pelo pivô

Transformar o pivô em 1

$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & -8 & 0 \end{bmatrix}$$

Divide-se a linha 3 por -8

Etapa 3:

- Eliminar a coluna abaixo (e acima) do pivô, utilizando operações l-elementares (gerar sistema equivalente)

Eliminar
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
 $\begin{bmatrix} -3 \\ 5 \\ 0 \end{bmatrix}$

•
$$m_{13} = -a_{13} = 0 \Rightarrow L'''_1 = L''_1$$

•
$$m_{23} = -a_{23} = -2 \Rightarrow L'''_2 = -2L''_3 + L''_2$$

$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• O vetor solução é o vetor mais à direita da matriz aumentada

$$x = \begin{bmatrix} -3 \\ 5 \\ 0 \end{bmatrix}$$

Caso geral

- Estratégia:
 - Eliminação por colunas
 - Etapa k: fase para remover a coluna k
 - Divide a linha k por akk
 - Eliminam-se elementos acima e abaixo do pivô
 - Atualizam-se a matriz A e do vetor b

Caso geral

Etapa k: Transformar pivô em 1 e eliminar coluna k

Eliminar	$\begin{bmatrix} 1 & 0 & \dots & a_{1k}^{(k-1)} \end{bmatrix}$	X	$a_{1n}^{(k-1)}$	$\left[\begin{array}{c}b_1^{(k-1)}\end{array}\right]$
	$0 1 \dots a_{2k}^{(k-1)}$	VA	$a_{2n}^{(k-1)}$	$b_2^{(k-1)}$
Pivô				
Eliminar	$0 0 \dots a_{kk}^{(k-1)}$	W	$a_{kn}^{(k-1)}$	$b_k^{(k-1)}$
		٠.) : I
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$a_{nn}^{(k-1)}$	$b_n^{(k-1)}$

Caso geral

Etapa k:

$$b_k^{(k)} = \frac{b_k^{(k-1)}}{a_{kk}^{(k-1)}}$$

Divide a linha k por a^(k-1)kk

$$b_k^{(k)} = rac{b_k^{(k-1)}}{a_{kk}^{(k-1)}}$$
 $a_{kj}^{(k)} = rac{a_{kj}^{(k-1)}}{a_{kk}^{(k-1)}}, j = k+1, \dots, n.$

Elimina os elementos acima e abaixo de a^(k)_{kk}

• Linhas i, onde i ≠ k

$$\begin{vmatrix}
a_{ij}^{(k)} = -a_{ik}^{(k-1)} a_{kj}^{(k-1)} + a_{ij}^{(k-1)} \\
b_i^{(k)} = -a_{ik}^{(k-1)} b_k^{(k-1)} + b_i^{(k-1)}
\end{vmatrix} i = 1, \dots, n, i \neq k; \quad j = k+1, \dots, n.$$

Algoritmo

```
<u> Algoritmo:Gauss Jordan</u>
Entrada: n, A, b
Saída: x
  para k ← 1 até n faça:
    para j ← k+1 até n faça:
       A[k][j] \leftarrow A[k][j]/A[k][k]
    fim para
    b[k] \leftarrow b[k]/A[k]k
    A[k][k] \leftarrow 1
     para i ← 1 até n faça:
       se i ≠ k então:
         para j ← k+1 até n faça:
          A[i][j] \leftarrow A[i][j] - A[i][k]*A[k][j]
         fim para
         b[i] \leftarrow b[i] -A[i][k]*b[k]
         A[i][k] \leftarrow 0
     fim para
  fim para
  x \leftarrow b
fim algoritmo
```

Exercício

 Resolva o sistema linear abaixo usando o método de eliminação de Gauss-Jordan:

$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ x_1 + x_2 + 2x_3 = 2 \end{cases}$$
 $\{x\}$

$$4x_1 + 3x_2 - 2x_3 = 3$$

 O método de eliminação de Gauss-Jordan nos permite calcular a matriz inversa ao mesmo tempo que calculamos a matriz identidade propriedade importante!!!

 Aplicam-se na matriz identidade as mesmas operações elementares executadas na matriz dos coeficientes

Cálculo da matriz inversa

$$A = \left[egin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array}
ight] \sim \left[egin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{array}
ight]$$

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \sim \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = A^{-1}$$

 Usando o método de Gauss-Jordan, determine a matriz inversa de A dada:

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -1 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

• Inicialmente constrói-se a matriz aumentada (A, I)

$$\begin{bmatrix} 2 & 1 & 3 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 3 & 0 & 0 & 1 \end{bmatrix}$$

 Depois aplica-se passos do método de eliminação de Gauss-Jordan

Divide-se a linha 1 por 2

 Depois aplica-se passos do método de eliminação de Gauss-Jordan

Transformar o pivô em 1
$$\begin{bmatrix} 1 & 1/2 & 3/2 & 1/2 & 0 & 0 \\ 0 & -1/2 & 3/2 & -1/2 & 0 & 1 \\ 0 & -1/2 & 3/2 & -1/2 & 0 & 1 \end{bmatrix}$$

Divide-se a linha 2 por -1

$$\begin{bmatrix} 1 & 1/2 & 3/2 & 1/2 & 0 & 0 \\ 0 & 1 & -1 & 0 & -1/2 & 0 & 1 \\ 0 & -1/2 & 3/2 & -1/2 & 0 & 1 \end{bmatrix} L'_{1} = L_{1} - (1/2)L_{2}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1/2 & 1/2 & 0 \\ 0 & 1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1/2 & -1/2 & 1 \end{bmatrix}$$
L' 1= L1-(2)L3

L' 2= L2+L3

$$\begin{bmatrix} 1 & 0 & 0 & 3/2 & 3/2 & -2 \\ 0 & 1 & 0 & -1/2 & -3/2 & 1 \\ 0 & 0 & 1 & -1/2 & -1/2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 3/2 & 3/2 & -2 \\ -1/2 & -3/2 & 1 \\ -1/2 & -1/2 & 1 \end{bmatrix}$$

Exercício

 Usando método de eliminação de Gauss-Jordan, determine a matriz inversa de A:

$$A = \begin{bmatrix} 1 & 4 & -2 \\ 5 & 7 & -5 \\ -3 & 2 & -6 \end{bmatrix}$$

 Modifique o algoritmo de Gauss-Jordan tal que receba uma matriz como entrada e calcule a sua inversa (inversa de A)

Observações finais

- Vantagens: ©
 - Evita uso da retro-substituição no cálculo
 - Permite calcular a matriz inversa de [A]

- Mantém as mesmas vantagens de Gauss

Observações finais

- Desvantagens: ☺
 - É mais caro computacionalmente que Gauss normal
 - Faz mais eliminações para chegar na matriz [I]
 - Número de passos continua fixo, não pode ser menor
 - Ainda não funciona bem para as matrizes esparsas