The t distribution

- When working with small samples, and the population standard deviation is unknown (almost always), the uncertainty of the standard error estimate is addressed by using a new distribution: the t distribution.
- This distribution also has a bell shape, but its tails are thicker than the normal model's.
- Therefore observations are more likely to fall beyond two SDs from the mean than under the normal distribution.
- These extra thick tails are helpful for resolving our problem with a less reliable estimate the standard error (since *n* is small)

The *t* distribution (cont.)

- Always centered at zero, like the standard normal (z) distribution.
- Has a single parameter: degrees of freedom (df).

What happens to shape of the t distribution as df increases? Approaches normal.

Recap: Inference using a small sample mean

- If n < 30, sample means follow a t distribution with $SE = \frac{s}{\sqrt{n}}$.
- Conditions:
 - independence of observations (often verified by a random sample, and if sampling without replacement, n < 10% of population)
 - n < 30 and no extreme skew
- Hypothesis testing:

$$T_{df} = \frac{\text{point estimate} - \text{null value}}{SE}$$
, where $df = n - 1$

Confidence interval:

point estimate
$$\pm t_{df}^{\star} \times SE$$

Test statistic for inference on the difference of two small sample means

The test statistic for inference on the difference of two small sample means ($n_1 < 30$ and/or $n_2 < 30$) mean is the T statistic.

$$T_{df} = \frac{\text{point estimate} - \text{null value}}{SE}$$

where

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
 and $df = min(n_1 - 1, n_2 - 1)$

Note: The calculation of the df is actually much more complicated. For simplicity we'll use the above formula to estimate the true df when conducting the analysis by hand.

Recap: Inference using difference of two small sample means

- If $n_1 < 30$ and/or $n_2 < 30$, difference between the sample means follow a t distribution with $SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_1}}$.
- Conditions:
 - independence within groups (often verified by a random sample, and if sampling without replacement, n < 10% of population)
 - independence between groups
 - $n_1 < 30$ and/or $n_2 < 30$ and no extreme skew in either group
- Hypothesis testing:

$$T_{df} = \frac{\text{point estimate - null value}}{SE}$$
, where $df = min(n_1 - 1, n_2 - 1)$

Confidence interval:

point estimate
$$\pm t_{df}^{\star} \times SE$$