模型无关元学习

在小样本学习上的应用

论文: Model-Agnostic Meta-Learning for Fast Adaption of Deep Network

什么是元学习?

传统的深度学习方法训练模型

是否每个技能都要从头开始训练?

训练元学习器

MAML:模型无关元学习

• 目标:

从多个不同的学习任务中,学习到一个模型,这个模型能够快速学习 如何解决一个只含有少量训练样本的新任务。

• 核心思想:

寻找一个模型的初始值,使得该模型能在新任务的少量训练数据上进行快速学习,获得一个较好的效果。

什么是小样本学习?

为什么要进行小样本学习?

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

airplane automobile bird

cat deer

dog frog horse ship truck

N-way K-shot

• N-way 指随机抽取训练数据集中 N 个类别

• K-shot 指每个类别用于训练的标记样本数量

• 目标是要求模型从 N*K 个数据中学会如何区分这 N 个类别。

Task

- T <support set, qurey set>
 - NK shot for support set --> train set
 - NK' shot for qurey set --> test set

• 假设场景

$$M_{base-learner}$$

$$P_1 \sim P_5$$
 (20个样本)

$$M_{meta}$$

$$C_1 \sim C_{10}$$
 (30个样本)

计算细节

T <support set, qurey set>

NK个样本 NK'个样本
$$T_1 o heta_1' o loss_1$$
 $T_2 o heta_2' o loss_2$ $T_3 o heta_2' o loss_3$

Algorithm

meta learner

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: **end for**
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

训练base learner

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	-	-2
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	<u></u>	
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

portulation of the resolution of the second	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	$48.07 \pm 1.75\%$	$63.15 \pm 0.91\%$	
MAML (ours)	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$	

实验

- 5 way 5 shot
- 训练 meta learner Accuracy
 - minilmageNet train classes A组support set 20%, B组 query set 72%
- 训练 base learner Accuracy
 - minilmageNet test classes 62.8%
 - cifar-10 test 48%
- 5 way 10 shot
- 训练 meta learner Accuracy
 - minilmageNet train classes A组 support set 20%, B组 query set 78%
- 训练 base learner Accuracy
 - minilmageNet test classes 68%
 - cifar-10 test 50%

谢谢大家!