Statistics Ph.D. Qualifying Exam: Part I

November 7, 2009

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary. **Do not** write your answers on the back.
- 3. Assemble your work in right order and in the original problem order. (Including the ones that you do not select)

- 1. Let X_1, \ldots, X_N be a random sample from an exponential distribution with parameter 1, and $N \sim \text{Geometric}(\alpha)$. Let $X_{(1)} < \ldots < X_{(N)}$ be the order statistics.
 - (a) Find $Var(\sum_{i=1}^{N} X_i)$.
 - (b) Find $P(X_{(N)} > a)$.
 - (c) Find $E(X_{(1)})$.

2. In order to decide the appropriate amount to charge as premium, insurance companies often use the exponential principle defined as follows: If X is the random amount that it will have to pay in claims, then the premium charged by the insurance company should be

$$P = \frac{1}{a} \ln(E[e^{aX}]),$$

where a > 0 is a fixed specified constant. Suppose that an insurance company assumes that X has a uniform distribution distribution on $[0, \theta]$.

- (a) Find P.
- (b) An insurance company wishes to find a maximum likelihood estimator \hat{P} of P, by taking a random sample X_1, \ldots, X_n from a large set of previous payments. Assuming that the X's are a random sample from Uniform $[0, \theta]$, where θ is unknown. Find \hat{P} .

- 3. Let Y_1, \ldots, Y_n be a random sample from $Poisson(\theta)$. Let $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ be the sample mean and $S^2 = \sum_{i=1}^n (Y_i \bar{Y})^2 / (n-1)$ be the sample variance.
 - (a) Prove that \bar{Y} is a complete and sufficient statistic for θ .
 - (b) Prove that both \bar{Y} and S^2 are unbiased estimators of θ .
 - (c) Prove that $E(S^2|\bar{Y}) = \bar{Y}$.
 - (d) Prove that $Var(S^2) > Var(\bar{Y})$.
 - (e) Is S^2 an admissible estimator of θ ?

- 4. Let $\{X_1, \ldots, X_n\}$ be a random sample from the normal distribution with mean μ_1 and variance σ_x^2 and $\{Y_1, \ldots, Y_m\}$ a random sample from the normal distribution with mean μ_2 and variance σ_y^2 . Assume that the X_i 's are independently distributed of the Y_j 's. Put $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$, $\bar{Y} = \frac{1}{m} \sum_{i=1}^m Y_i$, $S_y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i \bar{Y})^2$, $\hat{\sigma}^2 = \frac{1}{n} S_x^2 + \frac{1}{m} S_y^2$.
 - (a) What are a and b if one approximates the sampling distribution of $\hat{\sigma}^2$ by $a\chi_b^2$ by equating the first two cumulants (i.e, the expected value and the variance), where χ_b^2 is a central Chi-square random variable with degrees of freedom b. (Notice that b may not be an integer.)
 - (b) Derive a $100(1-\alpha)\%$ approximate confidence interval for $\mu_1 \mu_2$ by using the approximation in (a).

- 5. Let $\{X_1, \ldots, X_n\}$ be a random sample from the probability distribution with density $f(x, \theta, \phi) = \frac{1}{\phi} e^{-\frac{1}{\phi}(x-\theta)}, x \ge \theta$, where $\phi > 0$.
 - (a) Derive the MLE (Maximum Likelihood Estimator) of θ and the MLE of ϕ . Are these MLEs forming a set of sufficient and complete statistics for (θ, ϕ) .
 - (b) Derive the UMVUE (Uniformly Minimum Varainced Unbiased Estimator) of θ . What is the UMVUE of ϕ ?

- 6. Let $\{X_1, \ldots, X_n\}$ be a random sample from the Bernoulli distribution with density $f(x,\theta) = \theta^x (1-\theta)^{1-x}, x = 0, 1$, where $0 < \theta < \frac{1}{2}$.
 - (a) Derive the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ .
 - (b) Show that the MSE (Mean Squared Error) of $\hat{\theta}$ is uniformly \leq the MSE of $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

- 7. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be independently and identically distributed as (X, Y), where (X, Y) follows a bivariate normal distribution with means $E(X) = \mu_1$ and $E(Y) = \mu_2$ and with variances and covariance as $Var(X) = \sigma_1^2$, $Var(Y) = \sigma_2^2$ and $Cov(X, Y) = \rho\sigma_1\sigma_2$, respectively. Put $Z_i = X_i Y_i$, $i = 1, \ldots, n$.
 - (a) Based on the observed Z values, derive the likelihood ratio test (LRT) for testing $H_0: \mu_1 = \mu_2$ against the alternative hypothesis $H_1: \mu_1 \neq \mu_2$.
 - (b) Derive the probability distribution of your test statistic under H_0 . What is the p-value of the LRT test?

8. Let X_1, X_2, \dots, X_n be a random sample from a distribution with pdf

$$f(x;\theta) = \theta e^{-\theta x}, x > 0; \theta > 0.$$

Find UMVUEs for $\,$

- (a) $1/\theta$
- (b) θ
- (c) $e^{-k\theta}$, where k is a known constant.

9. Let X_1, X_2, \dots, X_n be a random sample from a uniform distribution with pdf

$$f(x; \alpha, \beta) = \frac{1}{2\beta}, \quad \alpha - \beta < x < \alpha + \beta.$$

Find estimators of α and β based on

- (a) method of moments
- (b) maximum likelihood principle
- (c) UMVUE.

10. Let B and C be two iid random variables with U(-1,1) distribution. Find the probability that $x^2 + 2Bx + C = 0$ has two real roots.

11. Let Y be a random variable.

- (a) Show that the quantity $E(Y-c)^2$ is minimized when c=E(Y). Thus, the "best" predictor of a random variable's value in the sense of minimizing mean-squared prediction error is the mean of the random variable.
- (b) Assume that Y is a continuous random variable with pdf f(y). Show that the quantity E|Y-c| is minimized when c=m, median(Y), where $\int_{-\infty}^{m} f(y)dy=1/2$. Thus, the "best" predictor of a random variable's value in the sense of minimizing mean-absolute prediction error is the median of the random variable.

- 12. Suppose that the primary endpoint of a clinical trial is survival time T and the distribution of T is exponential istribution with p.d.f. $f(t;\theta) = \frac{1}{\theta}e^{-\frac{t}{\theta}}, t > 0$. Suppose further that the study primary objective is formulated into testing $H_0: \theta = 3$ vs $H_1: \theta = 1$. Describe how to find the sample size for the clinical trial to obtain a level of 5% test with power 80%, by using
 - (a) the exact method, and
 - (b) the normal approximation.