Activité 1.

On admet qu'il existe une fonction g dérivable sur \mathbb{R} telle que g' = -g.

- 1. Démontrer que la fonction $h: x \mapsto e^x g(x)$ est une fonction constante sur \mathbb{R} .
- 2. On suppose de plus que g(0) = 1 Déterminer g.

Activité 2.

On admet qu'il existe une fonction f dérivable sur \mathbb{R} telle que f' = -f, f ne s'annule par sur \mathbb{R} et f(0) = 1. Démontrer que cette fonction f est unique.

Activité 1.

On admet qu'il existe une fonction g dérivable sur \mathbb{R} telle que g' = -g.

- 1. Démontrer que la fonction $h: x \mapsto e^x g(x)$ est une fonction constante sur \mathbb{R} .
- 2. On suppose de plus que g(0) = 1 Déterminer g.

Activité 2.

On admet qu'il existe une fonction f dérivable sur \mathbb{R} telle que f' = -f, f ne s'annule par sur \mathbb{R} et f(0) = 1. Démontrer que cette fonction f est unique.

Activité 1.

On admet qu'il existe une fonction g dérivable sur \mathbb{R} telle que g' = -g.

- 1. Démontrer que la fonction $h: x \mapsto e^x g(x)$ est une fonction constante sur \mathbb{R} .
- 2. On suppose de plus que g(0) = 1 Déterminer g.

Activité 2.

On admet qu'il existe une fonction f dérivable sur \mathbb{R} telle que f' = -f, f ne s'annule par sur \mathbb{R} et f(0) = 1. Démontrer que cette fonction f est unique.

Activité 1.

On admet qu'il existe une fonction g dérivable sur \mathbb{R} telle que g' = -g.

- 1. Démontrer que la fonction $h: x \mapsto e^x g(x)$ est une fonction constante sur \mathbb{R} .
- 2. On suppose de plus que g(0) = 1 Déterminer g.

Activité 2.

On admet qu'il existe une fonction f dérivable sur \mathbb{R} telle que f' = -f, f ne s'annule par sur \mathbb{R} et f(0) = 1. Démontrer que cette fonction f est unique.