云南大学资源环境与地球科学学院

《__________________________________》课程实验报告

实验序号 02 实验名称 离散序列的运算 指导教师 杨海燕

学号<u>20201020425</u>姓名<u>邓其</u>实验日期<u>3.29</u>

请	实验指导教师根据实验情况,自行选择以下内容进行填写并留适当空白	成绩
•	实验目的(<u>必填</u>)	
	求已知两离散序列的卷积,采用对位相乘相加法、列表法以及	
	fortran77 编程的方法求解,并用 GMT 绘制结果图像。	
•	实验原理(请用自己的语言简明扼要地叙述)	
	利用卷积定义式:	
•	y(n)=x(n)*h(n)=Σ _m x(m)h(n-m) (-∞ <m<∞) ,="" th="" 去计算两个已知的离散序列的卷积。本题中给出的是两个有限长度长度的序列,可以使用列表法或者对为相乘相加法计算。="" 实验内容与数据来源(简明写出实验方法、关键步骤和要测量的参<=""><th></th></m<∞)>	
	数)	
	已知序列: x(n)={1,2,4,3,6} h(n)={2,1, <u>5</u> ,7}	

• 列表法:

m	-2	-1	0	1	
h(m)					
x(n-m)					
n	2	1	5	7	y(n)
-2	1	0	0	0	2
-1	2	1	0	0	5
0	4	2	1	0	15
1	3	4	2	1	27
2	6	3	4	2	49
3		6	3	4	49
4			6	3	51
5				6	42

对位相乘相加法:

1 2 4 3 6 2 1 5 7 7 14 28 21 42

5 10 20 15 30

1 2 4 3 6

248612

2 5 15 27 49 49 51 42

• 程序代码(必填)

GMT代码:

#!/usr/bin/env -S bash -e

GMT modern mode bash template

Date: 2022-03-29T16:46:57

User: sirius

Purpose: Purpose of this script

export GMT SESSION NAME=\$\$ # Set a uniquesession

name

gmt begin T2

Place modern session commands here

gmt basemap -R-5/5/0/60 -Baf gmt subplot begin 3x1 -Fs10c/5c

gmt subplot set 0,0

#gmt basemap -R-5/7/0/60

```
gmt plot -R-5/7/0/10 -Sb0.08cb0 -Gblack x.dat
     gmt plot -Sc0.2c -Gblack x.dat
     gmt subplot set 1,0
     gmt plot -R-5/7/0/10 -Sb0.08cb0 -Gblack h.dat
     gmt plot -Sc0.2c -Gblack h.dat
     gmt subplot set 2,0
     gmt plot -R-5/7/0/60 -Sb0.08cb0 -Gblack t2.dat
     gmt plot -Sc0.2c -Gblack t2.dat
     gmt subplot end
gmt end show
Fortran 代码:
     program test02!对位相乘向加法
          integer :: x(5),h(4),y(8)=0,a,b
          !integer,dimension(5) :: x
          a=1
          b=3
          x=(/1,2,4,3,6/)
          h=(/2,1,5,7/)
          do i=5,1,-1
          do i=4,1,-1
               y(i+j-1)=y(i+j-1)+x(i)*h(j)
          end do
          end do
          open(1,FILE="t2.dat",status='replace')
          open(2,FILE="x.dat",status='replace')
          open(3,FILe="h.dat",status='replace')
          doi=1.5
          write(2,"(2I4)") i-a,x(i)
          end do
          do i=1,4
          write(3,"(2I4)") j-b,h(j)
          end do
          do i=1.8
          write(1,"(214)") i-a-b+1,y(i)
          end do
          close(1)
          close(2)
          close(3)
          end program test03
实验结论(必填)
```

得出 y(n)=x(n)*h(n) y(n)={2,5,15,27,49,49,51,42}

• 实验体会及建议、思考

在本次实验中给出简单的两个离散序列,进行卷积的运算,在一定程 度上加深了对与卷积这种新运算的理解。