11-442 / 11-642: Search Engines

Best-Match Retrieval: Statistical Language Models

Jamie Callan Carnegie Mellon University callan@cs.cmu.edu

1

Outline

Statistical language models

- Introduction
- Query likelihood model
- Kullback-Leibler (KL) Divergence
- Indri

HW2 implementation (see notes posted online)

- Indri default beliefs
- Window operator

2

© 2020 Jamie Callar

Statistical Language Models

Language model

A statistical language model uses a probability distribution to determine the probability of terms or term sequences

Common types of models:

• <u>Unigrams</u>: $p(t_i | \theta)$ $p("search" | \theta)$

• Bigrams: $p(t_i | t_{i-1}, \theta)$ $p("engines" | "search", \theta)$

• Trigrams: $p(t_i | t_{i-2}, t_{i-1}, \theta)$ $p("class" | "search", "engines", \theta)$

Bigrams, trigrams, etc., haven't helped much for IR (so far)

• But they are a key idea in speech recognition

© 2020 Jamie Cal

3

Statistical Language Models

Word histogram		Unigram language model		tf. 1
Term	$\mathbf{tf_d}$	Term	$P(t \theta_d)$	$P(t \mid d) = \frac{tf_{t,d}}{length_d}$
camera	17	camera	0.09551	length _d
image	13	image	0.07303	
picture	11	picture	0.06180	
up	8	up	0.04494	
movie	8	movie	0.04494	
like	7	like	0.03933	
mode	7	mode	0.03933	
software	7	software	0.03933	
red	6	red	0.03371	
digital	5	digital	0.02809	
eye	5	eye	0.02809	
shutter	5	shutter	0.02809	
sony	5	sony	0.02809	
•		4		

A Language Model can be Created From <u>Any</u> Language Sample

Examples

- A document collection
- A document
- Also sentence, paragraph, chapter, ...
- A query

This is similar to the vector space

- A vector can be created for any sample of text
- A language model can be created for any sample of text

Term	$P(t \theta_d)$
camera	0.09551
image	0.07303
picture	0.06180
up	0.04494
movie	0.04494
like	0.03933
mode	0.03933
software	0.03933
red	0.03371
digital	0.02809
eye	0.02809
shutter	0.02809
sony	0.02809

© 2020 Jamie Calla

5

Terminology

d: A document

 θ_d : The language model for document d

q: A query

 θ_q : The language model for query q

d and θ_d are not the same thing

- The document and the model of the document are different
- However, to simplify notation, we will often treat them as the same
 - i.e., $p(d \mid q)$ instead of $p(d \mid \theta_a)$

6

Retrieval Model Based Upon Statistical Language Models

A document d defines a probability distribution $\boldsymbol{\theta}_d$ over index terms

• E.g., the probability of generating/observing an index term

<u>t</u>	p (t)
apple	0.0204
banana	0.0001
campaign	0.0034
dog	0.0102
:	:

A query q also defines a probability distribution θ_{q}

• A sparse distribution (more on this later)

Two common methods of using language modeling to rank document d

• Rank d by $p(d | \theta_a)$ "query likelihood"

• Rank d by the similarity of θ_d and θ_g "KL divergence"

_

© 2020 Jamie Calla

7

Outline

Statistical language models

- Introduction
- Query likelihood model
- Kullback-Leibler (KL) Divergence
- Indri

HW2 implementation (see notes posted online)

- Indri default beliefs
- Window operator

8

© 2020 Jamie Callan

Rank by P(d|q): The Query-Likelihood Approach

Task: Rank documents by p(d|q)

• Given a query q, what is the probability of document d?

Problems

- q is a very sparse language model (few terms)
- q contains little frequency information (qtf=1 for most terms)

Query: digital camera

Term $P(t|\theta_q)$ digital 0.5 camera 0.5

Solution

$$p(d \mid q) = \frac{p(q \mid d)p(d)}{p(q)}$$
 Bayes rule
 $\propto p(q \mid d)p(d)$ Drop document-independent term

Key issues

• How are p(q|d) and p(d) estimated?

9

Query-Likelihood Approach: Estimating *p(d)*

It is simple and convenient to assume that p(d) is uniform

• Later we will consider non-uniform p(d)

So...

$$p(d|q) \propto p(q|d)p(d)$$

 $\propto p(q|d)$ Drop the constant (uniform probability)

10 © 2020 Jamie Calla

What is p(q|d)? Simple Unigram Approach

Assume that a query is composed of independent terms

- Unjustified, but convenient
- Doesn't hurt effectiveness of other models (e.g., vector space)

Then ...

$$p(q | d) = \prod_{q_i \in q} p(q_i | d)$$
 q_i : term in query q

This should look a little familiar (although the notation differs)

- The score of (q, d) is based on the scores of (q_i, d)
- Similar to what we saw with BM25 and the vector space
- How is $p(q_i|d)$ calculated?

11

Estimating $p(q_i|d)$

Maximum likelihood estimation (MLE) is a simple approach

$$p_{MLE}(q_i \mid d) = \frac{tf_{q_i,d}}{length(d)}$$

Is this a good estimate?

- Estimates are based on small samples (a single document)
 - So, perhaps not very accurate
- $p_{MLE}(q_i|d) = 0$ if q_i isn't in document d

$$p(q \mid d) = \prod_{q_i \in q} p_{MLE}(q_i \mid d) = 0$$
 Boolean AND

- This is exact-match AND
- We would prefer <u>best-match</u> AND

12

© 2020 Jamie Callan

Estimating $p(q_i|d)$: Smoothing

Smoothing is used to solve two problems in the language modeling framework

- Imprecise probability estimates from MLE
 - E.g., for infrequent terms (few observations)
 - E.g., for short documents (small sample)
- Probability estimates for <u>unobserved terms</u>
 - E.g., query terms that don't occur in the document

But ... there are many smoothing methods ... which to use?

13 © 2020 Jamie Call

13

Linear interpolation with a reference language model

$$p(q_i \mid d) = (1 - \lambda)p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$$

Average an estimate from a small sample (document) with an estimate from a large sample (collection)

Smoothing decreases as $\lambda \rightarrow 0$

What value of λ is best?

- Small λ (little smoothing) is best for short queries
- Larger λ (more smoothing) is better for long queries
- We will see later in the lecture why this is true

© 2020 Jamie C

Estimating $p(q_i|d)$: Bayesian Smoothing With Dirichlet Priors

Method #2: Bayesian smoothing using Dirichlet priors

$$p(q_i|d) = \frac{tf_{q_i,d} + \mu p_{MLE}(q_i|C)}{length(d) + \mu}$$

$$p_{MLE}(q_i|C) = \frac{ctf_{q_i}}{length_{tokens}(C)}$$

Increase tf of terms that are expected to be frequent in d (small sample) because they are frequent in C (large sample)

What value of μ is best?

- μ in [1,000-10,000] seems best
- μ might be approximately related to average document length

© 2020 Jamie Cal

15

Estimating $p(q_i|d)$: Smoothing

We know that tf.idf weights are effective

...how do they relate to statistical language models

tf is easy to see

$$p_{MLE}(q_i \mid d) = \frac{tf_{q_i,d}}{length(d)}$$

idf is harder to see

- Smoothing provides an idf-like effect
- Next slides...

© 2020 Jamie Callan

No Smoothing Example:
$$p(q \mid d) = \prod p_{MLE}(q_i \mid d)$$

 $q_i \in q$

Two query terms: $p (apple \mid C) = 0.01$, $p (ipad \mid C) = 0.001$ "frequent" "rare"

Document d₁

ent d_1 $=50, tf_{apple} = 2, tf_{ipad} = 3$ Document d_2 $doclen = 50, tf_{apple} = 3, tf_{ipad} = 2$

 $(3/50) \times (2/50) =$

$$0.04 \times 0.06 =$$

 $0.06 \times 0.04 =$

$$p(q|d_1) = 0.0024$$

 $p(q|d_2) = 0.0024$

The model does not distinguish between frequent and rare terms

17

© 2020 Jamie Calla

17

Jelinek-Mercer Smoothing Example:

 $p(q \mid d) = \prod_{q_i \in q} (1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$

Two query terms: p (apple | C) = 0.01, p (ipad | C) = 0.001 $\lambda = 0.4$ "frequent" "rare"

Document d₁

Document d₂

doclen =50,
$$tf_{apple} = 2$$
, $tf_{ipad} = 3$ doclen =50, $tf_{apple} = 3$, $tf_{ipad} = 2$

$$(0.6 \times (2/50) + 0.4 \times 0.01) \times (0.6 \times (3/50) + 0.4 \times 0.001) \times (0.6 \times (3/50) +$$

$$(0.6 \times (3/50) + 0.4 \times 0.001) = (0.6 \times (2/50) + 0.4 \times 0.001) =$$

$$(0.6 \times 0.04 + 0.004) \times$$
 $(0.6 \times 0.06 + 0.004) \times$ $(0.6 \times 0.06 + 0.0004) =$ $(0.6 \times 0.04 + 0.0004) =$

$$(0.024 + 0.004) \times (0.036 + 0.0004) = \quad (0.036 + 0.004) \times (0.024 + 0.0004) = \quad (0.036 + 0.004) \times (0.024 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.036 + 0.0004) = \quad (0.036 + 0.0004) \times (0.0004) \times (0.0004) = \quad (0.036 + 0.0004) \times (0.0004) \times (0.0004) = \quad (0.0004) \times (0.0004) \times (0.0004) \times (0.0004) = \quad (0.0004) \times (0.0004) \times (0.0004) \times (0.0004) = \quad (0.0004) \times (0.0004) \times (0.0004) \times (0.0004) = \quad (0.0004) \times (0.0004) \times (0.0004) \times (0.0004) \times (0.0004) = \quad (0.0004) \times (0$$

$$p(q|d_1) = 0.001019$$
 $p(q|d_2) = 0.000976$

The model <u>does</u> distinguish between frequent and rare terms

© 2020 Jamie Callan

Dirichlet Smoothing Example:

$$p(q_i|d) = \frac{tf_{q_i,d} + \mu p_{MLE}(q_i|C)}{length(d) + \mu}$$

Two query terms: p (apple | C) = 0.01, p (ipad | C) = 0.001 u = 2000"rare" "frequent"

Document d₁

Document d₂

doclen =50, tf_{apple} = **2, tf**_{ipad} = **3**

$$(2 + 2000 \times 0.01) / (50 + 2000) \times$$

 $(3 + 2000 \times 0.001) / (50 + 2000) =$
 $(3 + 2000 \times 0.001) / (50 + 2000) =$
 $(2 + 2000 \times 0.001) / (50 + 2000) =$

$$(2+20)/2050 \times (3+20)/2050 \times (3+2)/2050 = (2+2)/2050 =$$

$$0.0107 \times 0.0024 = 0.0112 \times 0.0020 =$$

$$p(q|d_1) = 0.000026$$
 $p(q|d_2) = 0.000022$

The model does distinguish between frequent and rare terms

19

Why Does Smoothing Work? $p(q \mid d) = \prod (1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$

$$p(q \mid d) = \prod_{q_i \in q} (1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$$

doclen = 50, $tf_{apple} = 2$, $tf_{ipad} = 2$

p (apple | d) =
$$0.6 \times (2/50) + 0.4 \times 0.010 = 0.0280$$

p (ipad | d) =
$$0.6 \times (2/50) + 0.4 \times 0.001 = 0.0244$$

What is the effect of matching one additional instance of a term?

$$p_{\delta}$$
 (apple | d) = 0.6 × (1/50) = 0.012

$$p_{\delta} (ipad \mid d) = 0.6 \times (1/50) = 0.012$$

- The unsmoothed effect of each match is the same

The incremental value of matching a term is multiplied by the $p(q \mid d)$ of other query terms

$$- tf_{apple} = 3, tf_{ipad} = 2: p(q \mid d) = (0.028 + \underline{0.012}) \times 0.0244 = 0.000976$$

$$-tf_{apple} = 2$$
, $tf_{ipad} = 3$: $p(q \mid d) = 0.028 \times (0.0244 + \underline{0.012}) = 0.001019$

20

How Jelenick-Mercer smoothing has an idf-like effect

• Several steps of math manipulation are omitted for clarity

$$\begin{split} p(q|d) &= \prod_{q_i \in q} p(q_i|d) \\ &= \prod_{q_i \in q} \left((1-\lambda) p_{MLE}(q_i|d) + \lambda p_{MLE}(q_i|C) \right) \frac{\text{J-M}}{\text{smoothing}} \\ &\propto \prod_{q_i \in q} \left(\frac{(1-\lambda) p_{MLE}(q_i|d)}{\lambda p_{MLE}(q_i|C)} + 1 \right) \text{"tf effect"} \\ &\text{"idf effect"} \end{split}$$

© 2020 Jamie Callan

21

Estimating $p(q_i|d)$: Jelinek-Mercer ("Mixture Model") Smoothing

HW2 requires you to think about the effects of parameters

$$p(q_i \mid d) = (1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$$

What happens when λ approaches 0?

• There is no smoothing (no "idf like" effect)

$$p(q_i \mid d) = (1 - \lambda) p_{MLE}(q_i \mid d)$$

© 2020 Jamie Call

22

Estimating $p(q_i|d)$: Jelinek-Mercer ("Mixture Model") Smoothing

HW2 requires you to think about the effects of parameters

$$p(q_i \mid d) = (1 - \lambda)p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$$

How important is smoothing to queries of different lengths?

- Short queries
 - Few query terms, so (usually) every query term must match
 - "idf effect" is less important, so small λ is best
- Long queries
 - Many query terms, so (usually) most query terms must match
 - "idf effect" is more important
 - Give priority to the less common terms, so larger λ is best

23

© 2020 Jamie Callan

23

Estimating $p(q_i|d)$: Bayesian Smoothing With Dirichlet Priors

HW2 requires you to think about the effects of parameters

$$p(q_i \mid d) = \frac{tf_{q_i,d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu}$$

What happens when μ approaches 0?

• There is no smoothing (maximum likelihood only)

$$p(q_i \mid d) = \frac{tf_{q_i,d}}{length(d)}$$

© 2020 Jamie Call

24

Estimating p(q_i|d): Bayesian Smoothing With Dirichlet Priors

HW2 requires you to think about the effects of parameters

$$p(q_i \mid d) = \frac{tf_{q_i,d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu}$$

How important is smoothing to <u>documents</u> of different lengths?

- Short documents
 - Probabilities are more granular
 - Larger μ is more important
- Long documents
 - Probabilities are more smooth
 - Larger μ is less important

25

25

Estimating $p(q_i|d)$: Two-Stage Smoothing

Mixture modeling and Bayesian smoothing with Dirichlet priors are both effective and common ... which should you use?

- They do different things
 - Mixture model: Compensates for different word importance"idf effect"
 - Dirichlet prior: Improves the estimate of the document model"small sample", "unseen words"
- Two-stage smoothing gives the best effects of both methods

$$p(q_i \mid d) = (1 - \lambda) \frac{tf_{q_i,d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu} + \lambda \ p_{MLE}(q_i \mid C)$$

26

2020 Jamie Callan

Query Likelihood With Two-Stage Smoothing: Putting it All Together

$$\begin{split} p(q \mid d) &= \prod_{q_i \in q} p(q_i \mid d) \\ &= \prod_{q_i \in q} \left((1 - \lambda) \frac{t f_{q_i, d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu} + \lambda \ p_{MLE}(q_i \mid C) \right) \\ &= \prod_{q_i \in q} \left((1 - \lambda) \frac{t f_{q_i, d} + \mu \frac{ctf(q_i)}{length(c)}}{length(d) + \mu} + \lambda \frac{ctf(q_i)}{length(c)} \right) \end{split}$$

tf_{q,d}: Term frequency of term q in document d

ctf (q): Term frequency of term q in the entire collection
length (d): Total number of word occurrences in document d
length (c): Total number of word occurrences in collection c

ences in confection c

27

Estimating $p(q_i|d)$: Smoothing Comparison

How do different smoothing methods treat different types of terms? O.20 Assum tf:

Assumptions

• tf: 5
• Doc len: 450

Coll len: 530M
 λ: 0.6

• μ: 2,500

 λ and μ control the slope (more smoothing)

© 2020 Jamie Callan

28

Estimating $p(q_i|d)$: Smoothing Comparison

How do different smoothing methods treat different types of terms?

Assumptions

tf: 5 Doc len: 450 Coll len: 530M

λ: 0.4μ: 1,500

 λ and μ control the slope (less smoothing)

(less smoothing)

© 2020 Jamie Callan

29

Outline

Statistical language models

- Introduction
- Query likelihood model
- Kullback-Leibler (KL) Divergence
- Indri

HW2 implementation (see notes posted online)

- Indri default beliefs
- Window operator

30

© 2020 Jamie Calla

Retrieval Model Based Upon Statistical Language Models

How is a language model used to rank document d?

- Rank d by $p(d \mid \theta_a)$ "query likelihood"
- Rank d by the similarity of θ_d and θ_q "KL divergence"

In some cases, these approaches are equivalent...

1 © 2020 Jamie Callar

31

KL Divergence: Measuring the Similarity of Language Models

Kullback-Leibler divergence measures the relative entropy between two probability mass functions

$$KL(a||b) = \sum_{x \in X} a(x) log \frac{a(x)}{b(x)}$$

Language models are probability mass functions

- The probability of observing a term in a sample of text
- Why not use KL divergence to measure the similarity of q and d?

32 © 2020 Jamie Calla

Measuring the Similarity of Statistical Language Models

Ranking by (negative) KL-divergence

$$-KL(q \parallel d) = -\sum_{w \in V} p(w \mid q) \log \frac{p(w \mid q)}{p(w \mid d)}$$

33

33

Measuring the Similarity of **Statistical Language Models**

Ranking by (negative) KL-divergence
$$-KL(q || d) = -\sum_{w \in V} p(w | q) \log \frac{p(w | q)}{p(w | d)}$$

$$= -\sum_{q_i \in q} p(q_i | q) \log \frac{p(q_i | q)}{p(q_i | d)}$$

P(w|q) = 0 when $w \notin q$

Measuring the Similarity of Statistical Language Models

Ranking by (negative) KL-divergence

$$-KL(q || d) = -\sum_{w \in V} p(w | q) \log \frac{p(w | q)}{p(w | d)}$$

$$= -\sum_{q_i \in q} p(q_i | q) \log \frac{p(q_i | q)}{p(q_i | d)} \qquad \mathbf{P(w | q)} = \mathbf{0} \text{ when } \mathbf{w} \notin \mathbf{q}$$

$$= -\left(\sum_{q_i \in q} p(q_i | q) \log p(q_i | q) - \sum_{q_i \in q} p(q_i | q) \log p(q_i | d)\right)$$

35 © 2020 Jamie Callan

35

Measuring the Similarity of Statistical Language Models

Ranking by (negative) KL-divergence

$$-KL(q || d) = -\sum_{w \in V} p(w | q) \log \frac{p(w | q)}{p(w | d)}$$

$$= -\sum_{q_i \in q} p(q_i | q) \log \frac{p(q_i | q)}{p(q_i | d)} \qquad P(w | q) = 0 \text{ when } w \notin q$$

$$= -\left(\sum_{q_i \in q} p(q_i | q) \log p(q_i | q) - \sum_{q_i \in q} p(q_i | q) \log p(q_i | d)\right)$$

$$\propto \sum_{q_i \in q} p(q_i | q) \log p(q_i | d) \qquad Drop \text{ constant term}$$

36 © 2020 Jamie Callar

Measuring the Similarity of Statistical Language Models

Ranking by (negative) KL-divergence

$$-KL(q || d) = -\sum_{w \in V} p(w | q) \log \frac{p(w | q)}{p(w | d)}$$

$$= -\sum_{q_i \in q} p(q_i | q) \log \frac{p(q_i | q)}{p(q_i | d)}$$

$$= -\left(\sum_{q_i \in q} p(q_i | q) \log p(q_i | q) - \sum_{q_i \in q} p(q_i | q) \log p(q_i | d)\right)$$

$$\propto \sum_{q_i \in q} p(q_i | q) \log p(q_i | d)$$

$$\sum_{q_i \in q} p(q_i | q) \log p(q_i | d)$$

$$\sum_{q_i \in q} p(q_i | q) \log p(q_i | d)$$

$$\sum_{q_i \in q} p(q_i | q) \log p(q_i | d)$$
Assume uniform probabilities for query terms ($p(q_i | q) = \frac{1}{|q|}$)

7

© 2020 Jamie Callan

37

Measuring the Similarity of Statistical Language Models

Ranking by (negative) KL-divergence

$$-KL(q || d) = -\sum_{w \in V} p(w | q) \log \frac{p(w | q)}{p(w | d)}$$

$$= -\sum_{q_i \in q} p(q_i | q) \log \frac{p(q_i | q)}{p(q_i | d)} \qquad P(w | q) = 0 \text{ when } w \notin q$$

$$= -\left(\sum_{q_i \in q} p(q_i | q) \log p(q_i | q) - \sum_{q_i \in q} p(q_i | q) \log p(q_i | d)\right)$$

$$\propto \sum_{q_i \in q} p(q_i | q) \log p(q_i | d) \qquad Drop \text{ constant term}$$

$$\propto \sum_{q_i \in q} \frac{1}{|q|} \log p(q_i | d) \qquad Assume \text{ uniform probabilities} \text{ for query terms } (p(q_i | q) = \frac{1}{|q|})$$

$$\propto \sum_{q_i \in q} \log p(q_i | d) \qquad Drop \text{ constant term}$$

Two Different Paths to a Common Destination

Query likelihood ranks by
$$p(q | d) = \prod_{q_i \in q} p(q_i | d)$$

KL diverge ranks by
$$\sum_{q_i \in q} \log p(q_i \mid d)$$

These are rank equivalent
$$p(q | d) = \prod_{\substack{q_i \in q \\ q_i \in q}} p(q_i | d)$$

$$\propto \sum_{\substack{q_i \in q \\ q_i \in q}} \log p(q_i | d)$$

So...the <u>query likelihood</u> and <u>KL divergence</u> approaches are <u>equivalent</u> (when document priors are uniform)

39 © 2020 Jamie Callar

39

Outline

Statistical language models

- Introduction
- Query likelihood model
- Kullback-Leibler (KL) Divergence
- Indri

HW2 implementation (see notes posted online)

- Indri default beliefs
- Window operator

40

© 2020 Jamie Callan

Inference Nets + Language Models: Indri

The Indri retrieval model combines <u>statistical language models</u> with <u>Bayesian inference networks</u>

- A probabilistic retrieval model
- Structured queries
- Documents with multiple representations
- Documents with structure (a later lecture)

The theory is sophisticated, but the underlying ideas are familiar

1 © 2020 Jamie Callar

41

Inference Nets + Language Models: Indri

Documents

 (d_i)

. . . .

42

Inference Nets + Language Models: Indri

Representation Nodes (terms, #near/n, ...) r_1 r_2 r_3 r_4 r_j

43 © 2020 Jamie Callan

43

Inference Nets + Language Models: Indri

 (d_i)

 (α,β)

Smoothing parameters

Documents

Language Model

Representation Nodes (terms, #near/n, ...)

A document with one representation

© 2020 Jamie Callan

44

This isn't as complicated as it looks

Note: d_i doesn't contain query term 'siri'

50

C 2009 Innie Calin

Inference Nets + Language Models: Indri

This isn't as complicated as it looks

- Document + smoothing parameters (α,β)
 → language model (θ)
- The language model is defined by representation nodes (r_i)
 - Terms stored in the index
 - Query operators that <u>create index terms</u>
 - » QryIop (#SYN, #NEAR/n, #WINDOW/n, ...)
- Information needs are represented by queries
- Queries are composed of query operators that combine evidence
 - » QrySop (#AND, #OR, #SUM, #WSUM, ...)

© 2020 Jamie Calla

(#AND)

(#AND)

alexa apple siri cortana microsoft

(#AND)

#OR

#OR

#AND

alexa apple siri cortana microsoft

51

Inference Nets + Language Models: Indri

This isn't as complicated as it looks

- Document + smoothing parameters (α,β)
 → language model (θ)
- The language model is defined by representation nodes (r_i)
 - Terms stored in the index
 - Query operators that create index terms
 - » QryIop (#SYN, #NEAR/n, #WINDOW/n, ...)
- Information needs are represented by queries
- Queries are composed of query operators that combine evidence
 - » QrySop (#AND, #OR, #SUM, #WSUM, ...)

52

© 2020 Jamie Callan

53

Indri Term Weights

Indri can use any language modeling method to estimate $p(r_i|\theta)$

- This weight is equivalent to $p(q_i|d)$ in most language models
- Dirichlet smoothing is the most common choice

$$p(q_i \mid d) = \frac{tf_{q_i,d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu}$$

• Two-stage smoothing is also used

$$p(q_i \mid d) = (1 - \lambda) \frac{tf_{q_i,d} + \mu p_{MLE}(q_i \mid C)}{length(d) + \mu} + \lambda p_{MLE}(q_i \mid C)$$

© 2020 Jamie Callan

54

Indri Query Operators

Operators that map inverted lists to an inverted list are easy

- E.g., InvertedList+ → InvertedList
- E.g., #NEAR/n, #WINDOW/n, #SYN, ...
- To the language model these look just like ordinary terms

What about operators that combine scores?

- E.g., ScoreList+ → ScoreList
- E.g., #AND, #OR, ...
- Indri views these as operators that combine evidence
 - "evidence" means "conditional probabilities"

© 2020 Jamie Callar

55

Indri Query Operators

55

AND is the default query operator for most language modeling systems

• Typically implemented as the product of the argument weights

$$p_{and}(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)$$

- This is pleasing theoretically, but it has a problem
 - Typically #AND (a b c d) < #AND (e f)

Indri's AND operator uses the geometric mean

$$p_{and}(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)^{\frac{1}{|q|}}$$

AND AND

Which AND operator has more impact on the score of the OR operator?

© 2020 Jamie Callar

Indri Query Operators

We may want to give different weight to different evidence

#wand (

0.7 #and (time traveler wife)

0.2 #and (#near/1 (time traveler) #near/1 (traveler wife))

0.1 #and (#window/8 (time traveler) #window/8 (traveler wife)))

Indri's WAND operator (also called WEIGHT) gives this control

• WAND: weighted AND

$$p_{wand}(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)^{\frac{w_i}{\sum w_i}}$$

© 2020 Jamie Cal

57

Indri Query Operators

Indri provides an OR operator

$$p_{or}(q | d) = 1 - \prod_{q_i \in q} (1 - p(q_i | d))$$

58

0 2020 Jamie Callan

Indri Query Operators

The AND operator assumes that its arguments are estimates of independent **probabilities**

• E.g., #AND (buy ipad)

The WSUM operator assumes that its arguments are different ways of estimating the same probability

- E.g., the probability that this document is about "apple") #WSUM (0.3 apple.title 0.1 apple.url 0.6 apple.body)
- WSUM takes a weighted average of the estimates
 - It should be called WAVG the name is a historical artifact

$$p_{wsum}(q \mid d) = \sum_{q_i \in q} \frac{w_i}{\sum w_i} p(q_i \mid d)$$

59

Indri Query Operators

AND, COMBINE:
$$p_{and}(q | d) = \prod_{q_i \in q} p(q_i | d)^{\frac{1}{|q|}}$$

WAND, WEIGHT: $p_{wand}(q | d) = \prod_{q_i \in q} p(q_i | d)^{\frac{w_i}{w}}, \quad w = \sum w_i$

OR: $p_{or}(q | d) = 1 - \prod_{q_i \in q} (1 - p(q_i | d))$

WAND, WEIGHT:
$$p_{wand}(q \mid d) = \prod p(q_i \mid d)^{\frac{w_i}{w}}, \quad w = \sum w_i$$

OR:
$$p_{or}(q | d) = 1 - \prod_{i=1}^{n-1} (1 - p(q_i | d))$$

WSUM:
$$p_{wsum}(q \mid d) = \sum_{q_i \in q} \frac{w_i}{w} p(q_i \mid d), \quad w = \sum w_i$$
NOT:
$$p_{not}(q \mid d) = 1 - p(q \mid d)$$

NOT:
$$p_{not}(q | d) = 1 - p(q | d)$$

60

Outline

Statistical language models

- Introduction
- Query likelihood model
- Kullback-Leibler (KL) Divergence
- Indri

HW2 implementation (see notes posted online)

- Indri default beliefs
- Window operator

© 2020 Jamie Callar

61

Retrieval Models Summary

We have discussed the following retrieval models

- Unranked Boolean
- Ranked Boolean, using tf scoring
- Vector Space, using Inc.ltc scoring
- Okapi BM25
- Language Models
 - Query likelihood, with two-stage smoothing
 - KL Divergence and Jensen-Shannon Divergence
 - Indri

That's a lot of material ... what's important?

62

© 2020 Jamie Callan

Retrieval Models Summary

Important differences among the models that you should know

- Unranked vs. ranked retrieval
- Exact-match vs. best-match (partial-match) retrieval
- The kinds of statistics used by most ranking functions
 - The theories are different, but the stats are mostly the same
- How well the different models support query operators
 - Inverted-list operators vs. score operators
 - Strict Boolean vs. probabilistic Boolean
- Which models you could use (or not use) for different types of tasks

© 2020 Jamie Callan

63

Retrieval Models Summary

All of these retrieval models are used widely

• There must be a reason why ... you should know what it is

© 2020

64