目录

1	特殊	分布	3
	1.1	泊松分布	3
	1.2	正态分布	5
	1.3	Gamma 分布	8
	1.4	指数分布	10
	1.5	Beta 分布	11
2	大样	本抽样	12
	2.1	大数定律	12
	2.2	中心极限定理	13
3	估计		14
	3.1	statistical inference	14
4		分布	15
	4.1	χ^2 分布 \dots	15
	4.2	t Distributions	
	4.3	置信区间	17
5	假设	: 检验	19
	5.1	Problems of Testing Hypotheses 假设检验问题	19

第1章 特殊分布

1.1 泊松分布

the family of Poisson distributions is used to model the number of such arrivals that occur in a **fixed time period**.

定义 1.1. Poisson Distribution 泊松分布

oisson Distribution. Let > 0. A random variable X has the Poisson distribution with mean λ if the p.f. of X is as follows:

$$f(x|\lambda) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda} & \text{for x in } 0, 1, \dots \\ 0 & \text{otherwise} \end{cases}$$
 (1.1)

定理 1.1. Poisson Mean

The mean of the distribution with p.f. equal to λ .

 \odot

证明

$$E(X) = \sum_{x=0}^{\infty} x f(x|\lambda)$$

$$= \sum_{x=1}^{\infty} x f(x|\lambda)$$

$$= \sum_{x=1}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$= \lambda \sum_{y=0}^{\infty} \frac{e^{-\lambda} \lambda^{y}}{y!}$$

$$= \lambda$$
(1.2)

定理 1.2. Poisson Variance

The variance of the Poisson distribution with mean λ is also λ .

~

证明

$$E[X(X-1)] = \sum_{x=0}^{\infty} x(x-1)f(x|\lambda)$$

$$= \sum_{x=2}^{\infty} x(x-1)f(x|\lambda)$$

$$= \sum_{x=2}^{\infty} x(x-1)\frac{e^{-\lambda}\lambda^x}{x!}$$

$$= \lambda^2 \sum_{y=0}^{\infty} \frac{e^{-\lambda}\lambda^y}{y!}$$

$$= \lambda^2$$

$$E(X^2) - E(X) = \lambda^2$$
(1.3)

因此,

$$Var(X) = E(X^{2}) - E^{2}(X)$$

$$= \lambda^{2} + E(x) - E^{2}(X)$$

$$= \lambda$$
(1.4)

定理 1.3. Poisson Moment Generating Function

The m.g.f. of the Poisson distribution with mean λ is

$$\psi(t) = e^{\lambda(e^t - 1)} \tag{1.5}$$

证明 对于所有的 $t(-\infty < t < \infty)$,

$$\psi(t) = E(e^{tX})$$

$$= \sum_{x=0}^{\infty} \frac{e^{tx}e^{-\lambda}\lambda^x}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{((\lambda e^t))^x}{x!}$$

$$= e^{-\lambda}e^{\lambda e^t}$$

$$= e^{\lambda(e^t - 1)}$$
(1.6)

定理 1.4

If the random variables X_1,\cdots,X_k are independent and if X_i has the Poisson distribution with mean $\lambda_i(i=1,...,k)$, then the sum $X_1+\cdots+X_k$ has the Poisson distribution with mean $\lambda_1+\cdots+\lambda_k$.

证明 let $\psi_i(t)$ 记为 X_i 的概率密度函数, $i=1,\cdots,k$, 令 $\psi(t)$ 为 $X_1+\cdots+X_k$ 的概率密度函数, 因为 X_1,\cdots,X_k 是独立的, 因此

$$\psi(t) = \prod_{i=1}^{k} \psi(t) = \prod_{i=1}^{k} e^{\lambda_i (e^t - 1)} = e^{(\lambda_1 + \dots + \lambda_k)(e^t - 1)}$$
(1.7)

定理 1.5. Closeness of Binomial and Poisson Distributions

For each integer n and each 0 , let <math>f(x|n,p) denote the p.f. of the binomial distribution with parameters n and p. Let $f(x|\lambda)$ denote the p.f. of the Poisson distribution with mean λ . Let $\{p_n\}_{n=1}^\infty$ be a sequence of numbers between 0 and 1 such that $\lim_{n\to\infty} np_n = \lambda$. Then

$$\lim_{n \to \infty} f(x|n, p_n) = f(x|\lambda)$$

for all $x = 0, 1, \dots$

 \Diamond

证明

$$f(x|n,p_n) = \frac{n(n-1)\cdots(n-x+1)}{x}p_n^x(1-p_n)^{n-x}$$

$$= \frac{\lambda_n^x}{x!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-x+1}{n}(1-\frac{\lambda_n}{n})^n(1-\frac{\lambda_n}{n})^{-x} \quad \text{iet } \lambda_n = nP_n, \text{ so that } \lim_{n \to \infty} \lambda_n^{(1.8)} = \lambda_n^{(1.8)}$$

对于所有的 $x \ge 0$,

$$\lim_{n \to \infty} \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-x+1}{n} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{-x} = 1$$
 (1.9)

定义 1.2. Poisson Process 泊松过程

Poisson process with rate λ per unit time is a process that satisfs the following two properties:

- 1. The number of arrivals in every fixed interval of time of length t has the Poisson distribution with mean λt .
- 2. The numbers of arrivals in every collection of disjoint time intervals are independent.

*

1.2 正态分布

定义 1.3. Normal Distribution

A random variable X has the normal distribution with mean and variance 2 (< < and > 0) if X has a continuous distribution with the following p.d.f.

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (1.10)

for $-\infty < x < \infty$

2

定理 1.6

正态分布的概率密度函数积分为1。

$$\int_{-\infty}^{\infty} f(x|\mu, \sigma^2) dx = 1 \tag{1.11}$$

证明 let $y = \frac{x-\mu}{\sigma}$, then

$$\int_{-\infty}^{\infty} f(x|\mu, \sigma^2) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

$$\tag{1.12}$$

let $I = \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy$, then

$$I^{2} = \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} dy \int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2}} dz$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{y^{2}+z^{2}}{2}} dy dz$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r dr d\theta$$

$$= \int_{0}^{2\pi} 1 d\theta$$

$$= 2\pi$$

$$let y = r \cos \theta, z = r \sin \theta$$

$$then dy dz = r dr d\theta \qquad (1.13)$$

故有,原式=1

定理 1.7. Moment Generating Function

The m.g.f. of the distribution with p.d.f. given by Eq. (5.6.1) is

$$\psi(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2} \tag{1.14}$$

for $-\infty < t < \infty$

 \circ

证明

$$\psi(t) = E(e^{tX})$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} e^{tx} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{tx - \frac{(x-\mu)^2}{2\sigma^2}} dx$$
(1.15)

下面来分析 $tx - \frac{(x-\mu)^2}{2\sigma^2}$

$$tx - \frac{(x-\mu)^2}{2\sigma^2} = -\frac{x^2 - 2\mu x + \mu^2 - 2t\sigma^2 x}{2\sigma^2}$$

$$= -\frac{x^2 - (2\mu + 2t\sigma^2)x + \mu^2}{2\sigma^2}$$

$$= -\frac{[x - (\mu + t\sigma^2)]^2 + \mu^2 - (\mu + t\sigma^2)^2}{2\sigma^2}$$

$$= \mu t + \frac{1}{2}t^2\sigma^2 - \frac{[x - (\mu + t\sigma^2)]^2}{2\sigma^2}$$
)简化

因此,原式 $\psi(t)$ 为

$$\psi(t) = e^{\mu t + \frac{1}{2}t^2\sigma^2} \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{[x - (\mu + t\sigma^2)]^2}{2\sigma^2}}$$

$$= e^{\mu t + \frac{1}{2}t^2\sigma^2}$$
(1.17)

定理 1.8. Mean and Variance

The mean and variance of the distribution with p.d.f. given by Eq. (5.6.1) are and 2, respectively.

证明 $\psi(t)$ 的一阶导数和二阶导数为:

$$\psi'(t) = (\mu + t\sigma^2)e^{\mu t + \frac{1}{2}t^2\sigma^2}$$

$$\psi''(t) = ([\mu + t\sigma^2]^2 + \sigma^2)e^{\mu t + \frac{1}{2}t^2\sigma^2}$$

在t=0处,

$$\psi'(0) = \mu$$
$$\psi''(0) = \mu^2 + \sigma^2$$

因此,

$$E(X) = \psi'(0) = \mu$$
$$Var(X) = \psi''(0) - [\psi'(0)]^{2} = \sigma^{2}$$

定理 1.9. Linear Transformations

If X has the normal distribution with mean and variance 2 and if Y = aX + b, where a and b are given constants and a = 0, then Y has the normal distribution with mean a + b and variance a 2 2.

证明 已知
$$X$$
 的 $m.g.f$ 为 $\psi(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$,令 ψ_Y 记作 Y 的 $m.g.f$,则有
$$\psi_Y(t) = E(e^{t(aX+b)})$$

$$= e^{tb}E(e^{taX})$$

$$= e^{tb}\psi(at)$$

$$= e^{tb}e^{a\mu t + \frac{1}{2}a^2\sigma^2 t^2}$$

$$= e^{(a\mu+b)t + \frac{1}{2}a^2\sigma^2 t^2}$$

因此,均值为 $a\mu + b$,方差为 $a^2\sigma^2$

定义 1.4. Standard Normal Distribution

The normal distribution with mean 0 and variance 1 is called the **standard normal distribution**. The p.d.f. of the standard normal distribution is usually denoted by the symbol ϕ , and the c.d.f. is denoted by the symbol Φ . Thus,

$$\phi(x) = f(x|0,1) = \frac{1}{\sqrt{2\pi}e^{-\frac{x^2}{2}}} \quad \text{for } -\infty < x < \infty$$
 (1.19)

and

$$\Phi(x) = \int_{-\infty}^{x} \phi(u) du \quad \text{for} -\infty < x < \infty$$
 (1.20)

定理 1.10. Consequences of Symmetry

For all x and all 0

$$\Phi(-x) = 1 - \Phi(x) \quad and \quad \Phi^{-1}(p) = -\Phi^{-1}(1-p)$$
(1.21)

证明 由于 $\phi(x)$ 是关于 y 轴的偶函数。因此, 对于所有的 $x(-\infty < x < \infty)$, $p(X \le x) = p(X \ge x)$, 即 $\Phi(x) = 1 - \Phi(-x)$

第二个公式,
$$x = \Phi^{-1}(p)$$
, $-x = \Phi^{-1}(1-p)$

定理 1.11. Converting Normal Distributions to Standard

Let X have the normal distribution with mean and variance 2. Let F be the c.d.f. of X. Then Z = (X) / has the standard normal distribution, and, for all x and all 0 ,

$$F(x) = \Phi(\frac{x - \mu}{\sigma}) \tag{1.22}$$

$$F^{-1}(p) = \mu + \sigma \Phi^{-1}(p) \tag{1.23}$$

证明 $\diamondsuit Z = \frac{X-\mu}{\sigma}$,

$$F(x) = p(X \leqslant x) = p(\frac{X - \mu}{\sigma}) \leqslant \frac{x - \mu}{\sigma} = p(Z \leqslant \frac{x - \mu}{\sigma}) = \Phi(\frac{x - \mu}{\sigma})$$
(1.24)

定理 1.12. Linear Combinations of Normally Distributed Variables

If the random variables X_1,\ldots,X_k are independent and if X_i has the normal distribution with mean μ_i and variance $\sigma_i^2 (i=1,\cdots,k)$, then the sum X_1,\cdots,X_k has the normal distribution with mean μ_1,\cdots,μ_k and variance $\sigma_1^2,\cdots,\sigma_k^2$.

证明 已知, X_i 的 m.g.f 为 $\psi_i(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$, 设 $X_1 + \dots + X_k$ 的 m.g.f 为 $\psi(x)$ 。由于独立性,可得

$$\psi(t) = \prod_{i=1}^{k} \psi_i(t)$$

$$= e^{(\sum_{i=1}^{k} \mu_i)t + \frac{1}{2}(\sum_{i=1}^{k} \sigma_i^2)t^2}$$
(1.25)

定义 1.5. Sample Mean

Let X_1, \ldots, X_n be random variables. The average of these n random variables, $\frac{1}{n} \sum_{i=1}^{n} X_i$, is called their sample mean and is commonly denoted \bar{X}_n .

推论 1.1

Suppose that the random variables X_1, \ldots, X_n form a random sample from the normal distribution with mean μ and variance σ^2 , and let \bar{X}_n denote their sample mean. Then \bar{X}_n has the normal distribution with mean μ and variance $\frac{\sigma^2}{n}$.

7

1.3 Gamma 分布

定义 1.6. The Gamma Function

For each positive number , let the value $\Gamma(\alpha)$ be dened by the following integral:

$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx \tag{1.26}$$

The function Γ dened by Eq. (5.7.2) for $\alpha > 0$ is called the gamma function.

定理 1.13

if $\alpha > 1$, then

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1) \tag{1.27}$$

We shall apply the method of integration by parts to the integral in Eq. (5.7.2). If we let $u=x^{\alpha-1}$ and $dv=e^{-x}dx$, then $du=(\alpha-1)x^{\alpha-2}dx$ and $v=-e^{-x}$. Therefore,

$$\Gamma(\alpha) = \int_0^\infty u dv = [uv]_0^\infty - \int_0^\infty v du$$

$$= [-x^{\alpha - 1}e^{-x}]_0^\infty + (\alpha - 1)\int_0^\infty x^{\alpha - 2}e^{-x} dx$$

$$= 0 + (\alpha - 1)\Gamma(\alpha - 1)$$
(1.28)

定理 1.14

For every positive integer n,

$$\Gamma(n) = (n-1)! \tag{1.29}$$

证明

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

$$= (n-1)(n-2)\Gamma(n-2)$$

$$= (n-1)(n-2)\cdots(1)\Gamma(1)$$

$$= (n-1)!$$
(1.30)

定理 1.15

For each > 0 and each > 0,

$$\int_0^\infty x^{\alpha - 1} e^{-\beta x} dx = \frac{\Gamma(\alpha)}{\beta^{\alpha}}$$
 (1.31)

证明 令 $y = \beta x$,则有 $x = y/\beta$,以及 $dx = dy/\beta$ 。

$$\int_{0}^{\infty} x^{\alpha-1} e^{-\beta x} dx = \int_{0}^{\infty} \frac{y^{\alpha-1}}{\beta^{\alpha-1}} e^{-y} \frac{1}{\beta} dy$$

$$= \frac{1}{\beta^{\alpha}} \int_{0}^{\infty} y^{\alpha-1} e^{-y} dy$$

$$= \frac{\Gamma(\alpha)}{\beta^{\alpha}}$$
(1.32)

定义 1.7. Gamma Distributions

Let α and β be positive numbers. A random variable X has the gamma distribution with parameters α and β if X has a continuous distribution for which the p.d.f. is

$$f(x|\alpha,\beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \text{for } x > 0\\ 0 & \text{for } x \leqslant 0 \end{cases}$$
 (1.33)

定理 1.16. Moments

Let X have the gamma distribution with parameters α and β . For k = 1, 2, ...

$$E(X^k) = \frac{\Gamma(\alpha + k)}{\beta^k \Gamma(\alpha)} = \frac{\alpha(\alpha + 1) \cdots (\alpha + k - 1)}{\beta^k}$$
(1.34)

特别的, $E(X) = \frac{\alpha}{\beta}$, $Var(X) = \frac{\alpha}{\beta}$

证明

$$E(X^{k}) = \int_{0}^{\infty} x^{k} f(x|\alpha, \beta) dx = \int_{0}^{\infty} x^{k} \cdot \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha + k - 1} e^{-\beta x} dx$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha + k)}{\beta^{\alpha + k}}$$

$$= \frac{\Gamma(\alpha + k)}{\Gamma(\alpha)\beta^{k}}$$
(1.35)

因此,
$$E(X) = \frac{\Gamma(\alpha+1)}{\Gamma(\alpha)\beta} = \frac{\alpha}{\beta}$$
, $Var(X) = E(X^2) - E^2(X) = \frac{(\alpha+1)\alpha}{\beta^2} - \frac{\alpha^2}{\beta^2} = \frac{\alpha}{\beta^2}$

定理 1.17. Moment Generating Function

Let X have the gamma distribution with parameters and . The m.g.f. of X is

$$\psi(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha} \quad \text{for } t < \beta \tag{1.36}$$

证明

$$\psi(t) = E(e^{tX}) = \int_0^\infty e^{tx} \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} dx$$

$$= \frac{\beta^\alpha}{\Gamma(\alpha)} \int_0^\infty x^{\alpha - 1} e^{-(\beta - t)x} dx$$

$$= \frac{\beta^\alpha}{\Gamma(\alpha)} \frac{(\Gamma(\alpha))}{(\beta - t)^\alpha}$$

$$= (\frac{\beta}{(\beta - t)})^\alpha$$
(1.37)

定理 1.18

If the random variables $X1, \ldots, Xk$ are independent, and if Xi has the gamma distribution with parameters i and $(i = 1, \ldots, k)$, then the sum $X1 + \ldots + Xk$ has the gamma distribution with parameters $1 + \ldots + k$ and .

证明 If $\psi_i(t)$ denotes the m.g.f. of Xi, then it follows from Eq. (5.7.15) that for $i = 1, \ldots, k$,

$$\psi(t) = \prod_{i=1}^{k} \psi_i(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha_1 + \dots + \alpha_k} \quad \text{for } t < \beta$$
 (1.38)

The m.g.f. can now be recognized as the m.g.f. of the gamma distribution with parameters $1 + \ldots + k$ and . Hence, the sum $X1 + \ldots + Xk$ must have this gamma distribution.

1.4 指数分布

定义 1.8. Exponential Distributions

Let $\beta > 0$. A random variable X has the exponential distribution with parameter β if X has a continuous distribution with the p.d.f.

$$f(x|\beta) = \begin{cases} \beta e^{-\beta x} & \text{for } x > 0\\ 0 & \text{for } x \le 0 \end{cases}$$
 (1.39)

定理 1.19

The exponential distribution with parameter β is the same as the gamma distribution with parameters $\alpha=1$ and β . If X has the exponential distribution with parameter β , then $E(X)=\frac{1}{\beta}$ and $Var(X)=\frac{1}{\beta^2}$ and the m.g.f. of X is

$$\psi(t) = \frac{\beta}{\beta - t} \quad \text{for } t < \beta \tag{1.40}$$

证明 根据 Gamma 分布,指数分布是 Gamma 的一个特例, $Gamma(\alpha=1,\beta)$,因此期望 $E(X)=\frac{\alpha}{\beta}=\frac{1}{\beta}$, $Var(X)=\frac{\alpha}{\beta^2}=\frac{1}{\beta^2}$, $\psi(t)=(\frac{\beta}{\beta-t})^{\alpha}=\frac{\beta}{\beta-t}$

定理 1.20. Memoryless Property of Exponential Distributions

Let X have the exponential distribution with parameter β , and let t > 0. Then for every number h > 0,

$$p(X \geqslant t + h|X \geqslant t) = p(X \geqslant h) \tag{1.41}$$

证明 for each t > 0,

$$p(X \geqslant t) = \int_{t}^{\infty} \beta e^{-\beta x} dx = e^{-\beta t}$$
(1.42)

因此,对于所有的t>0以及h>0,

$$p(X \ge t + h|x \ge t) = \frac{p(x \ge t + h)}{p(X \ge t)}$$

$$= \frac{e^{-\beta(t+h)}}{e^{-\beta t}}$$

$$= e^{-\beta h}$$

$$= p(X \ge h)$$
(1.43)

定理 1.21

Suppose that the variables X_1, \ldots, X_n form a random sample from the exponential distribution with parameter β . Then the distribution of $Y_1 = \min\{X_1, \ldots, X_n\}$ will be the exponential distribution with parameter $n\beta$.

证明 for every number t > 0,

$$p(Y_1 > t) = p(X_1 > t, \dots, X_n > t)$$

$$= p(X_1 > t) \cdots p(X_n > t)$$

$$= e^{-\beta t} \cdots e^{-\beta t}$$

$$= e^{-n\beta t}$$
(1.44)

1.5 Beta 分布

定义 1.9. The Beta Function

for each positive α and β , define

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx \tag{1.45}$$

the function B is called the *beta function*.

定理 1.22

for all $\alpha, \beta > 0$,

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$
 (1.46)

定义 1.10. Beta Distributions

Let $\alpha, \beta > 0$ and let X be a random variable with p.d.f

$$f(x|\alpha,\beta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & \text{for } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$
 (1.47)

定理 1.23. Moments

Suppose that X has the beta distribution with parameters α and β . Then for each positive integer k,

$$E(X^k) = \frac{\alpha(\alpha+1)\cdots(\alpha+k-1)}{(\alpha+\beta)(\alpha+\beta+1)\cdots(\alpha+\beta+k-1)}$$
(1.48)

特别地,

$$E(X) = \frac{\alpha}{\alpha + \beta} \tag{1.49}$$

$$Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$
 (1.50)

证明 for $k = 1, 2, \dots$

$$E(X^{k}) = \int_{0}^{1} x^{k} f(x|\alpha, \beta) dx$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{1} x^{\alpha + k - 1} (1 - x)^{\beta - 1} dx$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(\alpha + k)\Gamma(\beta)}{\Gamma(\alpha + k + \beta)}$$
(1.51)

因此,
$$E(X) = \frac{\alpha}{\alpha + \beta}$$
, $E(X^2) = \frac{\alpha(\alpha + 1)}{\alpha + \beta + 1}$, $Var(X) = E(X^2) - E^2(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

第2章 大样本抽样

2.1 大数定律

定理 2.1. Markov Inequality

Suppose that X is a random variable such that $p(X \ge 0) = 1$. Then for every real number t > 0,

$$p(X \geqslant t) \leqslant \frac{E(X)}{t} \tag{2.1}$$

证明 离散情况下

$$E(X) = \sum_{x} x f(x) = \sum_{x < t} x f(x) + \sum_{x > t} x f(x)$$
 (2.2)

由于 $X \ge 0$, 所有项都大于 0。因此

$$E(X) \geqslant \sum_{x \geqslant t} x f(x) \geqslant \sum_{x \geqslant t} t f(x) = t \cdot p(X \geqslant t)$$
 (2.3)

连续情况下

$$E(X) = \int_0^\infty x f(x) dx$$

$$= \int_0^t x f(x) dx + \int_t^\infty x f(x) dx$$

$$\geqslant \int_t^\infty x f(x) dx$$

$$\geqslant \int_t^\infty t f(x) dx$$

$$= t \cdot p(X \geqslant t)$$
(2.4)

定理 2.2. Chebyshev Inequality

Let X be a random variable for which Var(X) exists. Then for every number t>0,

$$p(|X - E(X)| \ge t) \le \frac{Var(X)}{t^2} \tag{2.5}$$

证明 令 $Y = [X - E(X)^2]$, 则 E(Y) = Var(X),

$$p(|X - E(X)| \ge t) = p(Y \ge t^2) \le \frac{E(Y)}{t^2} = \frac{Var(X)}{t^2}$$
 (2.6)

定理 2.3. Mean and Variance of the Sample Mean

Let X_1,\ldots,X_n be a random sample from a distribution with mean μ and variance σ^2 . Let \bar{X}_n be the sample mean. Then $E(\bar{X}_n)=\mu$ and $Var(\bar{X}_n)=\frac{\sigma^2}{n}$.

定义 2.1. Convergence in Probability

A sequence Z_1, Z_2, \ldots of random variables converges to b in probability if for every number $\varepsilon > 0$,

$$\lim_{n \to \infty} p(|Z_n - b| < \varepsilon) = 1 \tag{2.7}$$

This property is denoted by

$$Z_n \xrightarrow{p} b$$
 (2.8)

and is sometimes stated simply as Z_n converges to b in probability.

定理 2.4. Law of Large Numbers

Suppose that X_1, \ldots, X_n form a random sample from a distribution for which the mean is μ and for which the variance is nite. Let \bar{X}_n denote the sample mean. Then

$$\bar{X}_n \xrightarrow{p} \mu$$
 (2.9)

证明 Let the variance of each X_i be σ^2 . It then follows from the Chebyshev inequality that for every number $\varepsilon > 0$,

$$p(|\bar{X}_n - \mu| < \varepsilon) \geqslant 1 - \frac{\sigma^2}{n\varepsilon^2}$$
 (2.10)

因此,

$$\lim_{n \to \infty} p(|\bar{X}_n - \mu| < \varepsilon) = 1 \tag{2.11}$$

which means that $\bar{X}_n \xrightarrow{p} \mu$.

定理 2.5. Continuous Functions of Random Variables

If $Z_n \xrightarrow{p} b$, and if g(z) is a function that is continuous at z = b, then $g(Z_n) \xrightarrow{p} g(b)$.

2.2 中心极限定理

中心极限定理部分。

第3章 估计

3.1 statistical inference

统计推断

第4章 抽样分布

4.1 χ^2 分布

定义 4.1. χ^2 分布

For each positive number m, the gamma distribution with parameters $\alpha = \frac{m}{2}$, and $\beta = \frac{1}{2}$ is called the χ^2 distribution with m degrees of freedom.

If a random variable X has the χ^2 distribution with m degrees of freedom, the p.d.f. of X for x>0 is

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} = \frac{1}{2^{m/2} \Gamma(\frac{m}{2})} x^{\frac{m}{2} - 1} e^{-\frac{x}{2}}$$
(4.1)

Also, f(x) = 0 for $x \leq 0$.

定理 4.1. Mean and Variance

f a random variable X has the χ^2 distribution with m degrees of freedom, then E(X) = m and Var(X) = 2m.

m.g.f. of X is

$$\psi(t) = \left(\frac{1}{1 - 2t}\right)^{m/2} \quad \text{for } t < \frac{1}{2} \tag{4.2}$$

定理 4.2

If the random variables X_1, \ldots, X_k are independent and if X_i has the χ^2 distribution with m_i degrees of freedom $(i=1,\ldots,k)$, then the sum $X_1+\cdots+X_k$ has the χ^2 distribution with m_1,\ldots,m_k degrees of freedom.

证明 证明可用 Γ 分布

定理 4.3

Let X have the standard normal distribution. Then the random variable $Y=X^2$ has the χ^2 distribution with one degree of freedom.

证明 需要证明 $Y \sim \chi(1)$, 或者说, 服从 $Y \sim Gamma(\frac{1}{2}, \frac{1}{2})$

Let f(y) and F(y) denote, respectively, the p.d.f. and the c.d.f. of Y . Also, since X has the standard normal distribution, we shall let $\psi(x)$ and $\Psi(x)$ denote the p.d.f. and the c.d.f. of X. Then for y > 0,

$$p(Y \leqslant y) = p(X^{2} \leqslant y)$$

$$= p(-y^{1/2} \leqslant X \leqslant y^{1/2})$$

$$= \Phi(y^{1/2}) - \Phi(-y^{1/2})$$
(4.3)

(4.4)

由于 f(y) = F'(y) 以及 $\phi(x) = \Phi'(x)$,因此 $f(y) = \Phi'(y^{1/2})(\frac{1}{2}y^{-1/2}) - \Phi'(-y^{1/2})(-\frac{1}{2}y^{-1/2})$

同时,因为
$$\phi(y^{1/2}) = \phi(-y^{1/2}) = \frac{1}{\sqrt{2\pi}}e^{-y/2}$$
, $\Gamma(\frac{1}{2}) = \pi^{1/2}$ 此时,
$$f(y) = \frac{1}{\sqrt{2\pi}}y^{-1/2}e^{-y/2}$$

$$\sim Gamma(\frac{1}{2}, \frac{1}{2})$$
 $\sim \chi^2(1)$ (4.5)

推论 4.1. I

the random variables X_1,\ldots,X_m are i.i.d. with the standard normal distribution, then the sum of squares $X_1^2+\cdots+X_m^2$ 服从 χ^2 分布,自由度为 m。

If the random variables $X1, \ldots, Xm$ are i.i.d. with the standard normal distribution, 2 has the 2 distribution with m degrees of then the sum of squares $X12 + \ldots + Xm$ freedom.

4.2 t Distributions

定义 4.2. t Distributions

Consider two independent random variables Y and Z, such that Y has the 2 distribution with m degrees of freedom and Z has the standard normal distribution. Suppose that a random variable X is dened by the equation

$$X = \frac{Z}{(\frac{Y}{m})^{1/2}} \tag{4.6}$$

Then the distribution of X is called the t distribution with m degrees of freedom.

定理 4.4. Probability Density Function

t 分布在 $m\frac{a}{b}$ 自由度下的概率密度函数为:

$$\frac{\Gamma(\frac{m+1}{2})}{(m\pi)^{1/2}\Gamma(\frac{m}{2})} \left(1 + \frac{x^2}{m}\right)^{-(m+1)/2} \quad \text{for } -\infty < x < \infty \tag{4.7}$$

定理 4.5

Suppose that X_1,\ldots,X_n form a random sample from the normal distribution with mean μ and variance σ^2 . Let \bar{X}_n denote the sample mean, and dene

$$\sigma' = \left[\frac{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2}{n-1} \right]^{1/2}$$
(4.8)

则
$$\frac{n^{1/2}(\bar{X}_n - \mu)}{\sigma'} \sim t(n-1)$$

证明 定义 $S_n^2 = \sum_{i=1}^n (X_i - \bar{X}_n)^2$,定义 $Z = \frac{\bar{X}_n - \mu}{\sigma/n}$ 以及 $Y = \frac{S_n^2}{\sigma^2}$

由于 Y 与 Z 独立,且
$$Y\sim\chi^2(n-1)$$
, $Z\sim N(0,1)$,定义 U 为
$$U=\frac{Z}{\left(\frac{Y}{n-1}\right)^{1/2}} \tag{4.9}$$

4.3 置信区间

定义 4.3. Condence Interval

Let $X=(X_1,\ldots,X_n)$ be a random sample from a distribution that depends on a parameter (or parameter vector) . Let g() be a real-valued function of . Let $A\leqslant B$ be two statistics that have the property that for all values of ,

$$p(A < g(\theta) < B) \geqslant \gamma \tag{4.10}$$

Then the random interval (A,B) is called a coefficient γ condence interval for g() or a 100γ percent condence interval for g(). If the inequality " $\geqslant \gamma$ " in Eq. (8.5.4) is an equality for all θ , the condence interval is called exact. After the values of the random variables X_1,\ldots,X_n in the random sample have been observed, the values of A=a and B=b are computed, and the interval (a,b) is called the observed value of the condence interval.

定义 4.4. One-Sided Condence Intervals/Limits

Let X=(X1,...,Xn) be a random sample from a distribution that depends on a parameter (or parameter vector) θ . Let $g(\theta)$ be a real-valued function of θ . Let A be a statistic that has the property that for all values of θ ,

$$p(A < g(\theta)) \geqslant \gamma \tag{4.11}$$

. Then the random interval (A,∞) is called a one-sided coeffcient γ condence interval for $g(\theta)$ or a one-sided 100γ percent condence interval for $g(\theta)$. Also, A is called a coefcient γ lower condence limit for $g(\theta)$ or a 100γ percent lower condence limit for $g(\theta)$. Similarly, if B is a statistic such that

$$p(g(\theta) < B) \geqslant \theta \tag{4.12}$$

then (∞,B) is a one-sided coefcient γ condence interval for $g(\theta)$ or a one-sided 100γ percent condence interval for $g(\theta)$ and B is a coefcient g upper condence limit Condence Intervals for $g(\theta)$ or a 100γ percent upper condence limit for $g(\theta)$. If the inequality " $\geqslant \gamma$ " in either Eq. (8.5.5) or Eq. (8.5.6) is equality for all θ , the corresponding condence interval and condence limit are called exact.

定理 4.6. One-Sided Condence Intervals for the Mean of a Normal Distribution

Let X_1, \ldots, X_n be a random sample from the normal distribution with mean μ and variance. For each $0 < \gamma < 1$, the following statistics are, respectively, exact lower and upper coefcient γ condence limits for μ :

$$A = \bar{X}_n - T_{n-1}^{-1}(\gamma) \frac{\sigma'}{n^{1/2}}$$

$$B = \bar{X}_n + T_{n-1}^{-1}(\gamma) \frac{\sigma'}{n^{1/2}}$$
(4.13)

定义 4.5. p-value

In general, the p-value is the smallest level α_0 such that we would reject the null-hypothesis at level α_0 with the observed data.

An experimenter who rejects a null hypothesis if and only if the p-value is at most α_0 is using a test with level of signicance α_0 . Similarly, an experimenter who wants a level α_0 test will reject the null hypothesis if and only if the p-value is at most α_0 . For this reason, the p-value is sometimes called *the observed level of signicance*.

第5章 假设检验

5.1 Problems of Testing Hypotheses 假设检验问题

定义 5.1. Null and Alternative Hypotheses/Reject.

The hypothesis H_0 is called the null hypothesis and the hypothesis H_1 is called the alternative hypothesis. When performing a test, if we decide that θ lies in Ω_1 , we are said to reject H_0 . If we decide that θ lies in Ω_0 , we are said not to reject Ω_0 .

定义 5.2. power function

Let δ be a test procedure. The function $\pi(\theta|\delta)$ is called the power function of the test δ . If S_1 denotes the critical region of δ , then the power function $\pi(\theta|\delta)$ is determined by the relation

$$\pi(\theta|\delta) = p(X \in S_1|\theta) \quad \text{for } \theta \in \Omega$$
 (5.1)

定义 5.3. Type I/II Error

An erroneous decision to reject a true null hypothesis is a *type I error*, or an error of the rst kind. An erroneous decision not to reject a false null hypothesis is called a *type II error*, or an error of the second kind.

Null Hypothesis	True	False
reject	I类错误	
not reject		II类错误

两类错误无法同时避免,我们尽可能的避免第一类错误(这种错误更严重)。即,使拒绝 H_0 出错的概率最低。或者,在一些情况下,有要证明的理论时,把要证明的结果放在备择假设 (H_1)中。

定义 5.4. Level/Size

A test that satises (9.1.6) is called a level α_0 test, and we say that the test has level of signicance α_0 . In addition, the size $\alpha(\delta)$ of a test δ is dened as follows:

$$\alpha(\delta) = \sup_{\theta \in \Omega_0} \pi(\theta|\delta) \tag{5.2}$$

推论 5.1

A test δ is a level α_0 test if and only if its size is at most α_0 (i.e., $\alpha(\delta) \leq \alpha_0$). If the null hypothesis is simple, that is, $H_0: \theta = \theta_0$, then the size of δ will be $\alpha(\delta) = \pi(\theta_0|\delta)$.

定理 5.1. Level and Unbiasedness of t Tests

令 $X = (X_1, ..., X_n)$ 来自于均值为 μ ,方差为 σ^2 的正态分布。令 U 为统计量

$$U = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{s} \tag{5.3}$$

其中, $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X}_n)^2}$,令c为t(n-1)分布的 $1 - \alpha_0$ 分位数,令 δ 为检验过

程: 如果 $U \ge c$ 则拒绝 H_0 。则 power function $\pi(\mu, \sigma^2 | \delta)$ 有以下性质:

- 1. $\pi(\mu, \sigma^2 | \delta) = \alpha_0$ when $\mu = \mu_0$,
- 2. $\pi(\mu, \sigma^2 | \delta) < \alpha_0$ when $\mu < \mu_0$,
- 3. $\pi(\mu, \sigma^2 | \delta) > \alpha_0$ when $\mu > \mu_0$,
- 4. $\pi(\mu, \sigma^2 | \delta) \to 0$ when $\mu \to -\infty$,
- 5. $\pi(\mu, \sigma^2 | \delta) \to 1$ when $\mu \to \infty$,

另外, 检验过程 δ 的 size 为 α_0 并且无偏。

证明 如果 $\mu = \mu_0$, 则 U 服从 t 分布, 自由度为 n-1, 因此,

$$\pi(\mu_0, \sigma^2 | \delta) = p(U \geqslant c | \mu_0, \sigma^2) = \alpha_0. \tag{5.4}$$

以上,证明了1.,对于2.和3.,定义:

$$U^* = \frac{n^{1/2}(\bar{X}_n - \mu)}{s} \quad \text{and} \quad W = \frac{n^{1/2}(\mu_0 - \mu)}{s}$$
 (5.5)

构建 $U = U^* - W$, 首先, 假设 $\mu < \mu_0$, 所以 W > 0, 以下有:

$$\pi(\mu, \sigma^{2}|\delta) = p(U \geqslant c|\mu, \sigma^{2})$$

$$= p(U^{*} - W \geqslant c|\mu, \sigma^{2})$$

$$= p(U^{*} \geqslant c + W|\mu, \sigma^{2})$$

$$< p(U^{*} \geqslant c|\mu, \sigma^{2})$$

$$= \alpha_{0}$$

$$\downarrow U^{*} \sim t(n-1)$$

$$\downarrow U^{*} \sim t(n-1)$$

同理, 当 $\mu > \mu_0$ 时, 即W < 0, 所以可推导出 $\pi(\mu, \sigma^2 | \delta) > \alpha_0$ when $\mu > \mu_0$

推论 5.2. t Tests for Hpotheses

 $X=(X_1,\ldots,X_n)$ 来自于均值为 μ ,方差为 σ^2 的正态分布。令 U 为统计量

$$U = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{s} \tag{5.7}$$

其中, $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X}_n)^2}$,令 c 为 t(n-1) 分布的 $1 - \alpha_0$ 分位数,令 δ 为检验过

程: 如果 $U \leq c$ 则拒绝 H_0 。则 power function $\pi(\mu, \sigma^2 | \delta)$ 有以下性质:

- 1. $\pi(\mu, \sigma^2 | \delta) = \alpha_0$ when $\mu = \mu_0$,
- 2. $\pi(\mu, \sigma^2 | \delta) > \alpha_0$ when $\mu < \mu_0$,
- 3. $\pi(\mu, \sigma^2 | \delta) < \alpha_0$ when $\mu > \mu_0$,
- 4. $\pi(\mu, \sigma^2 | \delta) \to 1$ when $\mu \to -\infty$,
- 5. $\pi(\mu, \sigma^2 | \delta) \to 0$ when $\mu \to \infty$,

另外, 检验过程 δ 的 size 为 α_0 并且无偏。

定理 5.2. p-value for t test

假设我们在检验一个假设,假设为 $\mu \geqslant \mu_0$ 或 $\mu \leqslant \mu_0$,令 $U = n^{1/2} \cdot \frac{X_n - \mu_0}{s}$,令 u 为 U 的观测值。令 $T_{n-1}(\cdot)$ 为 n-1 个自由的 t 分布的 c.d.f.,假设($H_0: \mu \leqslant \mu_0$)的 p-value 为 $1-T_{n-1}(u)$,同时假设($H_0: \mu \geqslant \mu_0$)的 p-value 为 $T_{n-1}(u)$ 。

证明 令 $T_{n-1}^{-1}(\cdot)$ 表示 n-1 个自由度的 t 分布的分位数。这是 T_{n-1} 是严格的增函数。拒绝原假设 $H_0: \mu \leq \mu_0$ 当且仅当 $u \geq T_{n-1}^{-1}(1-\alpha_0)$,等价于 $T_{n-1}(u) \geq 1-\alpha_0$,等价于 $\alpha_0 \geq 1-T_{n-1}(u)$