Random Variables and Expectations

Vladimir Podolskii

Computer Science Department, Higher School of Economics

Outline

Random Variables

Average

Expectation

• We have studied probability distributions

- We have studied probability distributions
- Studied events (subsets of outcomes) and their probabilities

- We have studied probability distributions
- Studied events (subsets of outcomes) and their probabilities
- Events correspond to yes or no questions

- We have studied probability distributions
- Studied events (subsets of outcomes) and their probabilities
- Events correspond to yes or no questions
- It is important to study numerical characteristics of random outcomes

- We have studied probability distributions
- Studied events (subsets of outcomes) and their probabilities
- Events correspond to yes or no questions
- It is important to study numerical characteristics of random outcomes
- So we introduce random variables

• Random variable f is a variable whose value is determined by a random experiment

- Random variable f is a variable whose value is determined by a random experiment
- We have a probability distribution on the finite set X of k outcomes

- Random variable f is a variable whose value is determined by a random experiment
- We have a probability distribution on the finite set X of k outcomes
- Outcomes have probabilites p_1,\dots,p_k

- Random variable f is a variable whose value is determined by a random experiment
- We have a probability distribution on the finite set X of k outcomes
- Outcomes have probabilites p_1, \dots, p_k
- To define f we assign a number a_i to each outcome

- Random variable f is a variable whose value is determined by a random experiment
- We have a probability distribution on the finite set X of k outcomes
- Outcomes have probabilites p_1, \dots, p_k
- To define f we assign a number a_i to each outcome
- Then f has value a_i with probability p_i

Looks familiar

- · Looks familiar
- · We have already done this!

- · Looks familiar
- · We have already done this!
- Outcomes of the dice throw are labeled by numbers

wikimedia.org

Other examples:

Tossing a coin: heads=0, tail=1

- Tossing a coin: heads=0, tail=1
- An age of a random person in the class

- Tossing a coin: heads=0, tail=1
- An age of a random person in the class
- Grade of a random person in the class

- Tossing a coin: heads=0, tail=1
- An age of a random person in the class
- Grade of a random person in the class
- Sum of outcomes of two dice throws

Outline

Random Variables

Average

Expectation

• What is an average salary in a country?

- What is an average salary in a country?
- The total salary of all population divided by the number of employees

- What is an average salary in a country?
- The total salary of all population divided by the number of employees
- This is the standard notion of average

- What is an average salary in a country?
- The total salary of all population divided by the number of employees
- This is the standard notion of average
- It is called arithmetic mean in mathematics

Problem

Student got scores 78,72 and 87 on three tests. What is his average score?

Problem

Student got scores 78, 72 and 87 on three tests. What is his average score?

Have to add all scores and divide by their number

Problem

Student got scores 78, 72 and 87 on three tests. What is his average score?

- Have to add all scores and divide by their number
- · Here it is:

$$\frac{78+72+87}{3} = \frac{237}{3} = 79$$

Problem

Student got scores 78, 72 and 87 on three tests. What is his average score?

- Have to add all scores and divide by their number
- · Here it is:

$$\frac{78+72+87}{3} = \frac{237}{3} = 79$$

 We got lucky and the answer is integer; this is not guaranteed

Problem

Problem

Suppose HR management in some company uses the following strategy: fire everyone who performs below average. What will be a result of such strategy?

Might sound reasonable, but ...

Problem

- Might sound reasonable, but ...
- Unless everyone works equally (extremely rare case) ...

Problem

- Might sound reasonable, but ...
- Unless everyone works equally (extremely rare case) ...
- There is always someone who works below average!

Problem

- Might sound reasonable, but ...
- Unless everyone works equally (extremely rare case) ...
- There is always someone who works below average!
- If we fire them, the average performance will grow

Problem

- Might sound reasonable, but ...
- Unless everyone works equally (extremely rare case) ...
- There is always someone who works below average!
- If we fire them, the average performance will grow
- New people get below average!

Problem

- Might sound reasonable, but ...
- Unless everyone works equally (extremely rare case) ...
- · There is always someone who works below average!
- If we fire them, the average performance will grow
- New people get below average!
- We will fire everyone except one best employee

Problem

Suppose we throw a dice many times. What is the average outcome?

Problem

Suppose we throw a dice many times. What is the average outcome?

Can we give a precise answer?

Problem

Suppose we throw a dice many times. What is the average outcome?

- Can we give a precise answer?
- No, it is a random variable

Problem

Suppose we throw a dice many times. What is the average outcome?

- · Can we give a precise answer?
- No, it is a random variable
- But we can give an approximation that is good with high probability

- Suppose we throw a dice n times for a very large n

- Suppose we throw a dice n times for a very large n
- Then among outcomes there are approximately n/6 ones, n/6 twos, and so on

- Suppose we throw a dice n times for a very large n
- Then among outcomes there are approximately n/6 ones, n/6 twos, and so on
- The sum of results is then approximately

$$\frac{n}{6} \times 1 + \frac{n}{6} \times 2 + \frac{n}{6} \times 3 + \frac{n}{6} \times 4 + \frac{n}{6} \times 5 + \frac{n}{6} \times 6$$
$$= \frac{n(1+2+3+4+5+6)}{6} = \frac{21n}{6} = 3.5n$$

- Suppose we throw a dice n times for a very large n
- Then among outcomes there are approximately n/6 ones, n/6 twos, and so on
- The sum of results is then approximately

$$\frac{n}{6} \times 1 + \frac{n}{6} \times 2 + \frac{n}{6} \times 3 + \frac{n}{6} \times 4 + \frac{n}{6} \times 5 + \frac{n}{6} \times 6$$
$$= \frac{n(1+2+3+4+5+6)}{6} = \frac{21n}{6} = 3.5n$$

• The average can be obtained by division by the number of throws \boldsymbol{n}

- Suppose we throw a dice n times for a very large n
- Then among outcomes there are approximately n/6 ones, n/6 twos, and so on
- The sum of results is then approximately

$$\frac{n}{6} \times 1 + \frac{n}{6} \times 2 + \frac{n}{6} \times 3 + \frac{n}{6} \times 4 + \frac{n}{6} \times 5 + \frac{n}{6} \times 6$$
$$= \frac{n(1+2+3+4+5+6)}{6} = \frac{21n}{6} = 3.5n$$

- The average can be obtained by division by the number of throws \boldsymbol{n}
- Thus the average is approximately 3.5

- Suppose we throw a dice n times for a very large n
- Then among outcomes there are approximately n/6 ones, n/6 twos, and so on
- The sum of results is then approximately

$$\frac{n}{6} \times 1 + \frac{n}{6} \times 2 + \frac{n}{6} \times 3 + \frac{n}{6} \times 4 + \frac{n}{6} \times 5 + \frac{n}{6} \times 6$$
$$= \frac{n(1+2+3+4+5+6)}{6} = \frac{21n}{6} = 3.5n$$

- The average can be obtained by division by the number of throws \boldsymbol{n}
- Thus the average is approximately 3.5
- This is an expected value or expectation of a dice throw

Outline

Random Variables

Average

• Let's consider the general case

- Let's consider the general case
- Suppose we have a random variable f on the distribution with 4 outcomes

- Let's consider the general case
- Suppose we have a random variable f on the distribution with 4 outcomes
- Probabilities of outcomes are p_{1} , p_{2} , p_{3} , p_{4}

- Let's consider the general case
- Suppose we have a random variable f on the distribution with 4 outcomes
- Probabilities of outcomes are p_1 , p_2 , p_3 , p_4
- Values of f are a_1 , a_2 , a_3 , a_4

- Let's consider the general case
- Suppose we have a random variable f on the distribution with 4 outcomes
- Probabilities of outcomes are p_1 , p_2 , p_3 , p_4
- Values of f are a_1 , a_2 , a_3 , a_4
- Let's repeat the random experiment many times

$$p_1$$
 p_2 p_3 p_4

$$p_1$$
 p_2 p_3 p_4

$$p_1$$
 p_2 p_3 p_4

- Repeat n times, where n is large

- Repeat n times, where n is large

- Repeat n times, where n is large
- What is the average value of f on these outcomes?

• We have n experiments

- We have n experiments
- Value a_i occurs about $p_i n$ times

- We have n experiments
- Value a_i occurs about $p_i n$ times
- On average we have

$$\sim \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- We have n experiments
- Value a_i occurs about $p_i n$ times
- On average we have

$$\sim \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- This is denoted by ${\sf E} f$ and called the expectation of f

- We have *n* experiments
- Value a_i occurs about $p_i n$ times
- On average we have

$$\sim \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- This is denoted by $\mathsf{E} f$ and called the expectation of f
- Does not depend on n

- We have *n* experiments
- Value a_i occurs about $p_i n$ times
- On average we have

$$\sim \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- This is denoted by $\mathsf{E} f$ and called the expectation of f
- Does not depend on n
- An approximation to what we would expect as an average outcome of an experiment repeated many times

- In the general case, outcomes a_1,\dots,a_k with probabilities p_1,\dots,p_k

- In the general case, outcomes a_1,\dots,a_k with probabilities p_1,\dots,p_k
- To compute the expectation multiply $\boldsymbol{a}_i \times \boldsymbol{p}_i$ over all i

Expectation

- In the general case, outcomes a_1,\dots,a_k with probabilities p_1,\dots,p_k
- To compute the expectation multiply $\boldsymbol{a}_i \times \boldsymbol{p}_i$ over all i
- And add up through 1 to k

Expectation

- In the general case, outcomes a_1,\dots,a_k with probabilities p_1,\dots,p_k
- To compute the expectation multiply $\boldsymbol{a}_i \times \boldsymbol{p}_i$ over all i
- And add up through 1 to k
- Expectation is a number!

Expectation

- In the general case, outcomes a_1,\dots,a_k with probabilities p_1,\dots,p_k
- To compute the expectation multiply $\boldsymbol{a}_i \times \boldsymbol{p}_i$ over all i
- And add up through 1 to k
- Expectation is a number!
- · An important characteristic of a random variable

Suppose f obtains values $a_1,\,a_2,\,a_3,\,a_4$ with probabilities p_1,p_2,p_3,p_4

Suppose f obtains values a_1, a_2, a_3, a_4 with probabilities $% \left({{a_1},a_2} \right) = {a_2}, a_3, a_4$

 $\begin{aligned} p_1, p_2, p_3, p_4 \\ \mathsf{E}f &= a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4 \end{aligned}$

Suppose f obtains values a_1, a_2, a_3, a_4 with probabilities

$$\begin{split} &p_1, p_2, p_3, p_4 \\ &\mathsf{E} f = a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4 \end{split}$$

$$\begin{split} &p_1, p_2, p_3, p_4 \\ &\mathsf{E} f = a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4 \end{split}$$

$$\begin{split} &p_1, p_2, p_3, p_4 \\ &\mathsf{E} f = a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4 \end{split}$$

$$\begin{split} &p_1, p_2, p_3, p_4 \\ &\mathsf{E} f = a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4 \end{split}$$

Suppose f obtains values a_1, a_2, a_3, a_4 with probabilities

$$\begin{split} p_1, p_2, p_3, p_4 \\ \mathsf{E} f &= a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4 \end{split}$$

Ef is the area of the gray region

Expectations occur everywhere in statistics and sociology

- Expectations occur everywhere in statistics and sociology
- Average age

- Expectations occur everywhere in statistics and sociology
- Average age
- Life expectancy

- Expectations occur everywhere in statistics and sociology
- Average age
- Life expectancy
- Average grades and evaluations