

UNIT III

Relational Database Design

Canonical Form

Canonical Form/ Minimal FD Set

A set of FD F is **minimal** if it satisfies the following conditions:

- (1) Every dependency in F has a single attribute for its RHS.
- (2) We cannot remove any dependency from F and have a set of dependencies that is equivalent to F.
- (3) No extraneous attribute

Canonical Form (Cont.)

- Every set of FDs has an equivalent minimal set
- There can be several equivalent minimal sets

• Example:

$$F = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, AB \rightarrow A, AC \rightarrow B\}$$

From transitivity property $A \rightarrow C$ Thus, $A \rightarrow C$ is redundant

 $\therefore Fm = \{ A \rightarrow B, B \rightarrow C \}$

Trivial FD, always implied

 $A \rightarrow B$ From augmentation property

 $AC \rightarrow BC$

From split rule

$$AC \rightarrow B, AC \rightarrow C$$

Thus, $AC \rightarrow B$ is redundant

Extraneous Attribute

then "Y" is extraneous in $XY \rightarrow Z$

• Example:

$$F = \{XY \rightarrow Z, X \rightarrow Y\}$$

Here, Y is extraneous attribute

Thus, Fm =
$$\{X \rightarrow Z, X \rightarrow Y\}$$

Check if F and Fm are equivalent?

Extraneous Attribute Example

$$F = \{ABCD \rightarrow E, AB \rightarrow F, F \rightarrow C\}$$

Find extraneous attribute?

$$A+=A$$
 $AB+=A$, B, F, C

$$B+=BAD+=A,D$$

$$C+=CBD+=B, D$$

$$D+ = DABD+ = A, B, C, D, E, F : C is extraneous$$

Extraneous Attribute Drill

Find extraneous attribute in the below FD set

$$F = \{ PQRS \rightarrow T, QR \rightarrow U, U \rightarrow P, R \rightarrow U \}$$

Solution Extraneous Attribute Drill

• $F = \{ PQRS \rightarrow T, QR \rightarrow U, U \rightarrow P, R \rightarrow U \}$

$$P+=P$$

$$Q+=Q$$

$$R+=R,U,P$$

$$S+=S$$

$$QR+=Q, R, U, P$$

$$RS+=R, S, U, P$$

$$QS+=Q, S$$

$$R \rightarrow U$$

∴ Q is Extraneous

Also, P is Extraneous

Steps for Canonical Cover

- 1) Split FDs such that RHS of every FD has single attribute.
- 2) Discard trivial FDs
- 3) Remove extraneous attributes from LHS of every FD

i.e. if XY \rightarrow Z and X+ determines Y or Z in FD set F,

then "Y" is extraneous in XY -> Z

4) Remove redundant FDs

i.e.
$$F - \{X \rightarrow Y\} = F$$

Canonical Cover Drill

Given FD set $F = \{a, b, c \rightarrow c, d, e, f; c \rightarrow e; a \rightarrow b; d \rightarrow f\}$

Solution

- $a,b,c \rightarrow c$ $a,b,c \rightarrow d$ $a,b,c \rightarrow e$ $a,b,c \rightarrow f$
- Remove a,b,c \rightarrow c (trivial FD)

Now,
$$F = \{a,b,c \rightarrow d ; a,b,c \rightarrow e; a,b,c \rightarrow f; c \rightarrow e; a \rightarrow b; d \rightarrow f\}$$

Finding extraneous attributes:

- b is extraneous in a,b,c \rightarrow d and a,b,c \rightarrow e and a,b,c \rightarrow f as a \rightarrow b
- a is extraneous in a,c \rightarrow e as c \rightarrow e

Thus,
$$F = \{a, c \rightarrow d; c \rightarrow e; a, c \rightarrow f; c \rightarrow e; a \rightarrow b; d \rightarrow f\}$$

• Remove a,c \rightarrow f (since it is implied by a,c \rightarrow d and d \rightarrow f)

$$F = \{a, c \rightarrow d; c \rightarrow e; a \rightarrow b; d \rightarrow f\}$$

Canonical Cover Drill

Consider the following set F of functional dependencies:

• F= { A
$$\rightarrow$$
 BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C }

• Consider the following set F of functional dependencies: $F = \{$

$$AB \rightarrow C$$
, $BC \rightarrow D$, $A \rightarrow BCD$, $BC \rightarrow BCD$

Solution Canonical Cover Drill

1. $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$

 $A \rightarrow B$ is redundant in $A \rightarrow BC$

Now,
$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow C\}$$

$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow C\}$$

Thus,
$$Fm = \{ A \rightarrow B, B \rightarrow C \}$$

Solution Canonical Cover Drill

2. $F = \{AB \rightarrow C, BC \rightarrow D, A \rightarrow BCD, BC \rightarrow BCD\}$

 $BC \rightarrow BC$ is trivial in $BC \rightarrow BCD$

$$F = \{AB \rightarrow C, BC \rightarrow D, A \rightarrow BCD, BC \rightarrow D\}$$

 $BC \rightarrow D$ is redundant

$$F = \{AB \rightarrow C, BC \rightarrow D, A \rightarrow B, A \rightarrow C, A \rightarrow D\}$$

B is extraneous in AB \rightarrow C as A \rightarrow B

$$F = \{A \rightarrow C, BC \rightarrow D, A \rightarrow B, A \rightarrow D\}$$

 $A \rightarrow D$ is redundant as $A \rightarrow C$, $A \rightarrow B$, $BC \rightarrow D$ (property of transitivity)

$$\therefore Fm = \{ A \rightarrow BC, BC \rightarrow D \}$$

Thanks!!

