Quantum Criptograhy With a look at Quantum Key Distribution

Michele Beretta

UniBG

2021

Table of Contents

- Introduction
 - Basics
 - Notation
 - No-cloning theorem
- Quantum Cryptography
 - Why
 - Quantum Key Distribution
 - Security

The Qubit

The bit is the fundamental concept of classical computation - it can be either 0 or 1.

In a quantum world, where *superposition of states* is a thing, we use an analogous concept - the *quantum bit*, or **qubit**.

A qubit can be in any linear combination of two base states.

The Qubit

A classical bit is like a coin - either head or tail.

A qubit can be both *head* or *tail* at the same time - that is, until observed.

Observing a qubit makes it *decay* in one of the base states. Hence, measurement *changes* the real world.

Making a Quantum Computer

Making a qubit is hard - for example, nuclear spin can be mantained for long, but it's hard to measure.

A good quantum computer has to be *well isolated*, but its qubits have to be *accessible* in order to be manipulated.

A Mathematical Representation

Qubit

Given two states $|0\rangle$ and $|1\rangle$ a qubit is defined as

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \quad \alpha, \beta \in \mathbb{C}$$

For our purposes, it's safe to assume $\alpha, \beta \in \mathbb{R}$.

Some Linear Algebra

A qubit can be thought as a *vector* in a 2-dimensional vector space. The states $|0\rangle$ and $|1\rangle$ are the basis of this space.

One example could be

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \implies |\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Hence, the dot product between two qubits $|\psi\rangle$ and $|\varphi\rangle$ is $\langle\psi|\varphi\rangle$, and the tensor product is given by $|\psi\rangle\otimes|\varphi\rangle$, or the shorter variant $|\psi\rangle\,|\varphi\rangle$.

Note that $\langle \psi | = | \psi \rangle^T$.

Measuring

When measuring a qubit, we can get:

- A 0 with probability $|\alpha|^2$
- A 1 with probability $|\beta|^2$

Hence, since the probabilities must sum to 1, it has to be

$$|\alpha|^2 + |\beta|^2 = 1$$

Or, in other words, the qubit's state must be normalized.

So what is a qubit?

Mathematical Representation of a Qubit

A qubit is a unit vector in a two-dimensional complex vector field.

For example

$$|\psi
angle = rac{1}{\sqrt{2}}|0
angle + rac{1}{\sqrt{2}}|1
angle$$

is a qubit that, when measured, gives either 0 or 1 fifty-percent of the time.

More qubits?

We can combine multiple qubits. For example, a two qubit system has four *computational basis*

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$$

In this system, a qubit can be in a superposition on 4 states.

In general, if we have n qubits, then the system can be in a superposition of 2^n states.

Gates

How do we modify qubits? With quantum gates.

Quantum Gate

A quantum gate is a *complex matrix* which must be unitary.

For example, suppose we define the **NOT** gate as

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Then it's easy to show that

$$X \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

Hence, a **NOT** gate inverts the probabilities of measuring 0 and 1.

More gates

Two other important gates are:

ullet The **Z** gate, which flips the sign of the $|1\rangle$ state

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

 The H gate, or Hadamard gate, used to bring the qubit in a superposition

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

A multi-qubit gate: CNOT

A controlled-not or **CNOT** gate is a two-qubit input gate, the control qubit and the target qubit.

The target qubit is flipped if the control qubit is set to 1. Its matrix is

$$U_{CN} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

And its effect is such that

$$|A,B\rangle \rightarrow |A,B\oplus A\rangle$$

Where \oplus is addition modulo two.

Can we copy a qubit?

If we measure a qubit we destroy its superposition - but can we copy the qubit itself?

The answer is **no**. It is impossible to make a copy of an unknown quantum state.

Proof (1)

Suppose we have a copying machine and we want to copy a qubit $|\psi\rangle$ into another qubit $|s\rangle$. Thus, the initial state of this machine is

$$|\psi
angle\otimes|{\it s}
angle$$

Proof (1)

Suppose we have a copying machine and we want to copy a qubit $|\psi\rangle$ into another qubit $|s\rangle$. Thus, the initial state of this machine is

$$|\psi\rangle\otimes|s\rangle$$

Suppose we have a unitary evolution $\it U$ that effects the copying procedure, ideally

$$|\psi\rangle\otimes|s\rangle\rightarrow U(|\psi\rangle\otimes|s\rangle)=|\psi\rangle\otimes|\psi\rangle$$

Proof (1)

Suppose we have a copying machine and we want to copy a qubit $|\psi\rangle$ into another qubit $|s\rangle$. Thus, the initial state of this machine is

$$|\psi\rangle\otimes|s\rangle$$

Suppose we have a unitary evolution $\it U$ that effects the copying procedure, ideally

$$|\psi\rangle\otimes|s\rangle\rightarrow U(|\psi\rangle\otimes|s\rangle)=|\psi\rangle\otimes|\psi\rangle$$

Now, suppose this procedure works for two particular states, $|\psi\rangle$ and $|\varphi\rangle.$ Hence we have

$$U(|\psi\rangle \otimes |s\rangle) = |\psi\rangle \otimes |\psi\rangle$$
$$U(|\varphi\rangle \otimes |s\rangle) = |\varphi\rangle \otimes |\varphi\rangle$$

Proof (2)

Taking the inner product of these two equations gives us

$$\langle \psi | \varphi \rangle = (\langle \psi | \varphi \rangle)^2$$

Proof (2)

Taking the inner product of these two equations gives us

$$\langle \psi | \varphi \rangle = (\langle \psi | \varphi \rangle)^2$$

But $x = x^2$ has only two solutions - 0 and 1.

Proof (2)

Taking the inner product of these two equations gives us

$$\langle \psi | \varphi \rangle = (\langle \psi | \varphi \rangle)^2$$

But $x = x^2$ has only two solutions - 0 and 1.

So $|\psi\rangle = |\varphi\rangle$ or $|\psi\rangle$ and $|\varphi\rangle$ are orthogonal.

Hence we can only clone orthogonal states, making general quantum cloning impossible.

Table of Contents

- Introduction
 - Basics
 - Notation
 - No-cloning theorem
- Quantum Cryptography
 - Why
 - Quantum Key Distribution
 - Security

Why

Why

QKD

QKD

Security

Security

Bibliography

Michale Nielsen and Isaac Chuang. *Quantum Computation and Quantum Information*.

Cambridge University Press, 2010.

ISBN 9781107619197.