c.
$$\overline{X} \sim N(4.59, \frac{16}{0.10})$$

d.
$$\overline{X} \sim N\left(4.59, \frac{\sqrt{16}}{0.10}\right)$$

7.2 The Central Limit Theorem for Sums

- 72. Which of the following is NOT TRUE about the theoretical distribution of sums?
 - a. The mean, median and mode are equal.
 - b. The area under the curve is one.
 - c. The curve never touches the *x*-axis.
 - d. The curve is skewed to the right.
- 73. Suppose that the duration of a particular type of criminal trial is known to have a mean of 21 days and a standard deviation of seven days. We randomly sample nine trials.
 - a. In words, $\Sigma X =$
 - b. ΣX ~ ____(_____)
 - c. Find the probability that the total length of the nine trials is at least 225 days.
 - d. Ninety percent of the total of nine of these types of trials will last at least how long?
- 74. Suppose that the weight of open boxes of cereal in a home with children is uniformly distributed from two to six pounds with a mean of four pounds and standard deviation of 1.1547. We randomly survey 64 homes with children.
 - a. In words, X =
 - b. The distribution is .
 - c. In words, $\Sigma X =$ _____

 - e. Find the probability that the total weight of open boxes is less than 250 pounds.
 - f. Find the 35th percentile for the total weight of open boxes of cereal.
- 75. Salaries for teachers in a particular elementary school district are normally distributed with a mean of \$44,000 and a standard deviation of \$6,500. We randomly survey ten teachers from that district.
 - a. In words, X =
 - b. *X* ~ ____(___,___)
 - c. In words, $\Sigma X =$
 - d. $\Sigma X \sim ___(__,__)$
 - e. Find the probability that the teachers earn a total of over \$400,000.
 - f. Find the 90th percentile for an individual teacher's salary.
 - g. Find the 90th percentile for the sum of ten teachers' salary.
 - h. If we surveyed 70 teachers instead of ten, graphically, how would that change the distribution in part d?
 - i. If each of the 70 teachers received a \$3,000 raise, graphically, how would that change the distribution in part b?

7.3 Using the Central Limit Theorem

- 76. The attention span of a two-year-old is exponentially distributed with a mean of about eight minutes. Suppose we randomly survey 60 two-year-olds.
 - a. In words, *X* = _____
 - b. *X* ~ ____(___,___)
 - c. In words, \overline{X} = _____
 - d. $\overline{X} \sim \underline{\hspace{1cm}}(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$
 - e. Before doing any calculations, which do you think will be higher? Explain why.
 - i. The probability that an individual attention span is less than ten minutes.
 - ii. The probability that the average attention span for the 60 children is less than ten minutes?
 - f. Calculate the probabilities in part e.
 - g. Explain why the distribution for \overline{X} is not exponential.