Practical No - 01

Aim - Making a Raspberry Pi headless, and reaching it from the network using WiFi and SSH.

Windows Configuration:

- Step 1: Download putty and open, Host application for SSH
- **Step 2:** Select SSH as connection type,

Raspberry pi configuration:

Step 3: Click on start menu,

Step 4: Go to Preferences -> Raspberry pi configuration -> Enter

Raspberry Pi Configuration • *							
System	Display	Interfaces	Performance	Localisation			
Password:	Change Password						
Hostname:		raspbe	rrypi				
Boot	• 1	To Desktop	O To CLI				
Auto login:	• L	.ogin as user 'pi	O Disabled				
Network at Boot	Wait for network		Do not wait				
Splash Screen:	• Enable		O Disable				
			Cancel	OK			

Step 5: Interface -> Enable SSH and VNC Connections press OK.

	Raspt	perry Pi Config	uration	~ ^ ×	
System	Display	Interfaces	Performance	Localisation	
Camera:	O E	O Enable		Disable	
SSH:	• E	Enable		O Disable	
VNC:	Enable		O Disable		
SPI:	• Enable		O Disable		
12C:	O E	O Enable		Disable	
Serial Port	O E	O Enable		Disable	
Serial Console:	(e) E	Enable		O Disable	
1-Wire:		O Enable		Disable	
Remote GPIO:	O Er	O Enable		Disable	
			Cancel	QК	

Step 6: Open New terminals and type below command, >>>ifconfig

Note: Make sure both PCs are connected with same network.

Step 7: Connection Part,

- ->Go to putty, Enter ip and click on open.
- ->Enter requested Username(pi) and Password(raspberry):
- ->For finding Username type below command on terminal, \$whoami

```
inet6 2401:4900:laa9:uul0.13632 prefixlen 64 scope1d 0x204
inet6 fe80::cb36:a7b3:c003:1552 prefixlen 64 scope1d 0x204
ether b8:27:eb:c7:04:de txqueuelen 1000 (Ethernet)
exter b8:27:eb:c7:de txqueuelen 1000 (Ethernet)
exter b8:27:eb:c7:de txqueuelen 1000 (Ethern
```

Connected Successfully.

Step 8: For checking connection run below commands,

Output: "try" folder name are showing which is present on another system desktop.

Practical No - 02

Aim: Using sftp upload files from PC

Software required:-Filezilla, Github

Step 1: Install the Raspberry Pi Imager

Step 2: Set Host Name, enable SSH, Set Username and Password.

Step 3: Set SSID and Password of hotspot which is used .

Raspberry Pi Imager v1.7.4

(ii) X

(iii) X

on

Step 4: Connect Raspberry Pi WIFI and Laptop WIFI to Mobile

Step 5: Open CMD and tyepe following command

- I) ping raspberrypi or ping 162.168.207.244
- II) ssh admin@ raspberrypi or sshadmin@ 162.168.207.244
 And type the password

```
Request timed out.

Ping statistics for 192.168.207.244:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\Users\admin>ping 192.168.207.244

Pinging 192.168.207.244 with 32 bytes of data:
Reply from 192.168.207.244 bytes=32 time=21ms TTL=64
Reply from 192.168.207.244: bytes=32 time=91ms TTL=64
Reply from 192.168.207.244: bytes=32 time=10ms TTL=64
Reply from 192.168.207.244: bytes=32 time=10ms TTL=64
Reply from 192.168.207.244: bytes=32 time=10ms TTL=64
Ping statistics for 192.168.207.244: bytes=32 time=10ms TTL=64
Ping statistics for 192.168.207.244: bytes=32 time=10ms TTL=64
Ping statistics for 192.168.207.244
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Reproximate round trip times in milli-seconds:
Minimum = 9ms, Maximum = 21ms, Average = 12ms

C:\Users\admin>ssh admin@192.168.207.244
The authenticity of host '192.168.207.244 (192.168.207.244)' can't be established.
ECDSA key fingerprint is SHA256:quvalxcb81PnFDFJHHtXANXSKbGF1/X9PLVqS/HD0.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Harning: Permanently added '192.168.207.244' (ECDSA) to the list of known hosts.
admin@192.168.207.244's password:
inux raspberrypi 6.1.21-v7+ #1642 SNP Mon Apr 3 17:20:52 BST 2023 armv71
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
Dermitted by applicable law.
ast login: Wed May 3 06:07:06 2023
admin@raspberrypi:~ $
```

Step:6 Download the FileZilla (Client)

Practical No – 03

Aim: - Write a python code to test motor.

Prequest: THINKERcard make a account on tinkercad

- Arduino UNO
- L293D
- DC MOTOR
- Battery

```
Code:
// C++ code
//
void setup()
{
 pinMode(LED_BUILTIN, OUTPUT);
}
void loop()
{
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000); // Wait for 1000 millisecond(s)
 digitalWrite(LED_BUILTIN, LOW);
 delay(1000); // Wait for 1000 millisecond(s)
}
```

Aim:-Write the script to follow the pre-determined path.

Prequest: Proteus Design Suite, Arduino IDE

Step 1) First open proteus software and select ISIS and click on it.

Step 2) Select the following components-

- Arduino UNO
- L293D
- DC MOTOR

3)Select terminal and choose ground.

4)Select generators as DC

CONNECTION

DC generators properties

Write code on Arduino

Save file

Double click on Arduino and select the path Arduino hex file.

After selecting the path click on "ok"

Click on run and you will see the o/p:-

Aim: Develop Python code for testing the sensors

Prequest: THINKERcard make a account on tinkercad

- Arduino UNO
- Ultrasonic distance sensor
- Piezo

```
Code:
int trigger_pin = 2;
int echo_pin = 3;
int buzzer_pin = 10;
int time;
int distance;
void setup()
{
     Serial.begin(9600);
     pinMode (trigger_pin, OUTPUT);
     pinMode (echo_pin, INPUT);
     pinMode (buzzer pin, OUTPUT);
}
void loop()
{
     digitalWrite (trigger_pin,HIGH);
     delayMicroseconds (10);
     digitalWrite (trigger_pin, LOW);
     time = pulseIn (echo pin, HIGH);
     distance = (time * 0.034)/2;
 if (distance <= 10)
 {
  Serial.println("Door Open");
  Serial.print ("Distance=");
```

```
Serial.println (distance);
digitalWrite (buzzer_pin, HIGH);
delay (500);
}
else
{
Serial.println("Door Close");
Serial.print ("Distance=");
Serial.println (distance);
digitalWrite (buzzer_pin, LOW);
delay (500);
}
```

Aim: Add the sensors to the Robot object and develop the line-following behavior code

Prequest: Proteus Design Suite, Arduino IDE

- Arduino UNO
- L298 Motor Driver
- DC MOTOR
- IR OBSTACLE SENSOR

```
Code:
int IR1 = 2;
int IR2 = 3;
int mt1f = 9;
int mt1b = 8:
int mt2f = 10;
int mt2b = 11;
void setup() {
 // put your setup code here, to run once:
 pinMode(IR1, INPUT);
 pinMode(IR2, INPUT);
 pinMode(mt1f, OUTPUT);
 pinMode(mt1b, OUTPUT);
 pinMode(mt2f, OUTPUT);
 pinMode(mt2b, OUTPUT);
void loop() {
 // put your main code here, to run repeatedly:
 int st1 = digitalRead(IR1);
 int st2 = digitalRead(IR2);
 if (st1 == 1 \&\& st2 == 1) {
  digitalWrite(mt1f, HIGH);
  digitalWrite(mt2f, HIGH);
else if(st1 == 0 \&\& st2 == 1){
  digitalWrite(mt1b, HIGH);
  digitalWrite(mt2f, HIGH);
```

```
}
else if(st1 ==1 && st2==0){

digitalWrite(mt1f, HIGH);
   digitalWrite(mt2b, HIGH);
}
else {

digitalWrite(mt1b, LOW);
   digitalWrite(mt2b, LOW);
}
```

Aim:-Using Light strip to develop and debug the line follower robot

Components required:

Raspberry pr ,Strip rgb led

Circuit connection:-

Source Code in python

```
from goto import with goto
from stddef import *
import var
import pio
import resource
from datetime import datetime
# Peripheral Configuration Code (Do Not Edit)
#---CONFIG_BEGIN---
import cpu
import FileStore
import timer
import VFP
import Generic
def peripheral_setup():
# Peripheral Constructors
 pio.cpu=cpu.CPU ()
 pio.storage=FileStore.FileStore ()
 pio.timer=timer.Timer ()
 pio.server=VFP.VfpServer ()
 pio.RGBLED1=Generic.RgbLedCa (pio.GPIO19, pio.GPIO20, pio.GPIO26)
 pio.storage.begin ()
 pio.server.begin (0)
# Install interrupt handlers
def <u>peripheral_loop</u> (<u>) :</u>
pio.timer.poll ()
pio.server.poll ()
#---CONFIG_END-
def variables_setup ():
# Flowchart Variables
# Flowchart Routines
@with_goto
def chart_SETUP ():
return
@with_goto
def chart LOOP ():
pio.RGBLED1.set (True, True, True)
sleep((500)*0.001)
pio.RGBLED1.set (True, False, False)
sleep((500)*0.001)
pio.RGBLED1.set (True, True, False)
sleep((500)*0.001)
pio.RGBLED1.set (False, True, False)
sleep((500)*0.001)
pio.RGBLED1.set (False, True, True)
sleep((500)*0.001)
pio.RGBLED1.set (False, False, True)
sleep((500)*0.001)
pio.RGBLED1.set (True, False, True)
sleep((500)*0.001)
pio.RGBLED1.set (False, False, False)
sleep((500)*0.001)
return
# Main function
def main (<u>)</u> :
# Setup
variables_setup()
peripheral_setup()
chart_SETUP ()
```

```
# Infinite loop
while <u>True</u>:
peripheral loop ()
chart LOOP ()
# Command line execution
if __name__ == '_main_<u>'</u>:
main()
```

Flowchart of project:

OUTPUT:-

Conclusion:-

Hence we have programmed the rbg strip led for the observation of various colors used to identify the paths.

Practical No - 10

Aim - Detect faces with Haar cascades.

Step 1: Need to be Download

"haarcascarde_frontalface_default.xml" in same folder of code file and Web cam connected to system.

Step 2: Install create and activate Virtual Environment by using venv Package.

Use below command to download virtual environment by using CMD,

>>>pip install venv

Command to Create virtual environment,

>>>Virtualenv env

Command to Activation of virtual environment,

For Linux: \$sources environment_name/bin/activate

For Windows: >env\scripts\activate

Step 3: Install Open CV Package,

>>>pip install opency-python

Step 4: Use any Editor for code writing (e.g: VS Code, Python IDLE)

For open VS code type in same CMD shell,

>>>code .

Step 5: For running program here we used VS Code, Write below code and run.

Source Code:

import cv2

```
face classifier = cv2.CascadeClassifier(cv2.data.haarcascades
+ "haarcascade frontalface default.xml")
video capture = cv2.VideoCapture(0)
def detect bounding box(vid):
  gray image = cv2.cvtColor(vid, cv2.COLOR BGR2GRAY)
  faces = face classifier.detectMultiScale(gray image, 1.1, 5,
minSize=(40,40))
  for (x,y,w,h) in faces:
     cv2.rectangle(vid, (x,y),(x+w,y+h),(0,255,0),4)
  return faces
while True:
  result, video frame = video capture.read() #read frames
from the video
  if result is False:
     break #terminate the loop if the frame is not read
successfully
  faces = detect bounding box(video frame) #apply the
function we created to the video frame
  cv2.imshow("My Face Detection Project", video frame)
#display the processed frame in a window named "My Face
Detection Project"
  if cv2.waitKey(1)\& 0xFF == ord("q"):
     break
video capture.release()
cv2.destroyAllWindows()
```

Output:

