Lecture 4 – Frequency Domain Transform (频率域变换)

This lecture will cover:

- 2D Discrete Fourier Transform (傅里叶变换)
- Frequency Domain Filtering(频率域滤波)
 - Lowpass Filtering(低通滤波器)
 - Highpass Filtering (高通滤波器)
 - Selective Filtering (选择性滤波)
- Other Transform
 - Discrete Cosine Transform (余弦变换)
 - Walsh-Hadamard Transform
 - Discrete Wavelet Transform (小波变换)

Lecture 4 – Frequency Domain Transform (频率域变换)

This lecture will cover:

- 2D Discrete Fourier Transform (傅里叶变换)
- Frequency Domain Filtering(频率域滤波)
 - Lowpass Filtering(低通滤波器)
 - Highpass Filtering (高通滤波器)
 - Selective Filtering (选择性滤波)
- Other Transform
 - Discrete Cosine Transform (余弦变换)
 - Walsh-Hadamard Transform
 - Discrete Wavelet Transform (小波变换)

2D Continuous Fourier Transform

2D Fourier Transform

$$F(\mu,\nu) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t,z)e^{-j2\pi(\mu t + \nu z)}dtdz$$

2D Inverse Fourier Transform

$$f(t,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\mu,\nu) e^{j2\pi(\mu t + \nu z)} d\mu d\nu$$

- (t,z): spatial variables
- (μ, ν) : frequency variables, defines the continuous frequency domain

2D Sampling

2D Sampling function (二维取样函数)

$$s_{\Delta T \Delta Z}(t, z) = \sum_{m = -\infty}^{\infty} \sum_{n = -\infty}^{\infty} \delta(t - m\Delta T, z - n\Delta Z)$$

2D Sampling Theorem (二维取样定理)

- > f(t,z) is band-limited (带限函数) if $F(\mu,\nu) = 0$, $|\mu| \ge \mu_{\max}$
- \succ The sampling rate: $\frac{1}{\Delta T} > 2\mu_{\max}$, $\frac{1}{\Delta Z} > 2\nu_{\max}$

Spatial Aliasing (空间混淆)

The sampling rate: $\frac{1}{\Delta T} > 2\mu_{\text{max}}$, $\frac{1}{\Delta Z} > 2\nu_{\text{max}}$

Spatial Aliasing (空间混淆)

Zoom

Zoom

Moire Patterns (莫尔模式)

Discrete Fourier Transform (离散傅里叶变换)

2D Discrete Fourier Transform (DFT)

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})}$$

2D Inverse Discrete Fourier Transform (IDFT)

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

• f(x,y): M*N input image

Properties of 2D DFT

- ➤ Spatial and frequency intervals (空间和频率间隔)
- ➤ Translation (平移)
- ➤ Periodicity (周期性)
- ➤ Rotation (旋转)
- ➤ Separability (可分性)
- ➤ Symmetry (对称性)
- ➤ Spectrum and Phase angle (频谱和相角)
- ➤ 2D Convolution theorem (卷积定理)

Spatial & Frequency Intervals (空间和频率间隔)

f(x,y): a $M \times N$ digital image sampled from a countinous 2D function f(t,z)

 ΔT , ΔZ : sampling interval in spatial domain

 Δu , Δv : sampling interval in frequency domain

$$\Delta u = \frac{\frac{1}{\Delta T}}{M} = \frac{1}{M\Delta T}$$

$$\Delta v = \frac{\frac{1}{\Delta Z}}{N} = \frac{1}{N\Delta Z}$$

Translation (平移)

Translation

$$f(x,y)e^{j2\pi(\frac{u_0x}{M}+\frac{v_0y}{N})} \Longleftrightarrow F(u-u_0,v-v_0)$$

$$f(x - x_0, y - y_0) \Leftrightarrow F(u, v)e^{-j2\pi(\frac{ux_0}{M} + \frac{vy_0}{N})}$$

When
$$u_0 = \frac{M}{2}$$
, $v_0 = \frac{N}{2}$

$$F\left(u - \frac{M}{2}, v - \frac{N}{2}\right) \Longleftrightarrow f(x, y)e^{j\pi(x+y)} = f(x, y)(-1)^{(x+y)}$$

Periodicity (周期性)

- $f(x,y) = f(x + k_1M, y) = f(x, y + k_2N) = f(x + k_1M, y + k_2N)$
- $F(u,v) = F(u + k_1 M, v) = F(u, v + k_2 N) = F(u + k_1 M, v + k_2 N)$

Where k_1 and k_2 are integers

Frequency spectrum (频谱)

Rotation (旋转)

Rotation

$$f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$$

Where $x = r\cos\theta$, $y = r\sin\theta$, $u = \omega\cos\varphi$, $v = \omega\sin\varphi$

Separability (可分性)

2D DFT to 1D DFT

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})} = \sum_{x=0}^{M-1} e^{-j2\pi\frac{ux}{M}} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi\frac{vy}{N}} = \mathcal{F}_{x} \{\mathcal{F}_{y} \{f(x,y)\}\}$$

Calculate IDFT by DFT

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

$$MNf^*(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u,v) e^{-j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

Symmetry (对称性)

• Even Function (偶函数)

$$w_e(x, y) = w_e(-x, -y)$$
 $w_e(x, y) = w_e(M - x, M - y)$

• Odd Function (奇函数)

$$w_o(x,y) = -w_o(-x,-y)$$
 $w_o(x,y) = -w_o(M-x,M-y)$

• Conjugate symmetric (共轭对称)

$$F^*(u,v) = F(-u,-v)$$
 $F^*(u,v) = F(M-u,M-v)$

Conjugate antisymmetric (共轭反对称)

$$F^*(u, v) = -F(-u, -v)$$
 $F^*(u, v) = -F(M - u, M - v)$

Symmetry (对称性)

	Spatial Domain [†]		Frequency Domain [†]
1)	f(x, y) real	\Leftrightarrow	$F^*(u,v) = F(-u,-v)$
2)	f(x, y) imaginary	\Leftrightarrow	$F^*(-u, -v) = -F(u, v)$
3)	f(x, y) real	\Leftrightarrow	R(u, v) even; $I(u, v)$ odd
4)	f(x, y) imaginary	\Leftrightarrow	R(u, v) odd; $I(u, v)$ even
5)	f(-x, -y) real	\Leftrightarrow	$F^*(u, v)$ complex
6)	f(-x, -y) complex	\Leftrightarrow	F(-u, -v) complex
7)	$f^*(x, y)$ complex	\Leftrightarrow	$F^*(-u-v)$ complex
8)	f(x, y) real and even	\Leftrightarrow	F(u, v) real and even
9)	f(x, y) real and odd	\Leftrightarrow	F(u,v) imaginary and odd
10)	f(x, y) imaginary and even	\Leftrightarrow	F(u,v) imaginary and even
11)	f(x, y) imaginary and odd	\Leftrightarrow	F(u, v) real and odd
12)	f(x, y) complex and even		F(u, v) complex and even
13)	f(x, y) complex and odd	\Leftrightarrow	F(u, v) complex and odd

Spectrum and Phase angle (频谱和相角)

2D DFT in polar form: $F(u,v) = |F(u,v)|e^{-j\Phi(u,v)}$, then

- > Fourier spectrum (频谱): $|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{\frac{1}{2}}$
- Phase angle (相角): $\Phi(u,v) = \arctan \frac{I(u,v)}{R(u,v)}$
- Power spectrum(功率谱): $P(u,v) = |F(u,v)|^2$
- > DC component(直流分量): $F(0,0) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) = MN\overline{f(x,y)}$

Fourier Spectrum (频谱)

Phase angle (相角)

Spectrum and Phase angle (频谱和相角)

2D Convolution theorem(卷积定理)

Convolution theorem

$$f(x,y) \star h(x,y) \Leftrightarrow F(u,v)H(u,v) \text{ or } f(x,y) h(x,y) \Leftrightarrow F(u,v) \star H(u,v)$$

➤ Zero padding (零填充)

$$f_p(x,y) = \begin{cases} f(x,y), & 0 \le x \le A - 1, 0 \le y \le B - 1 \\ 0, & A \le x \le P, B \le y \le Q \end{cases}$$

$$h_p(x,y) = \begin{cases} h(x,y), & 0 \le x \le C - 1, 0 \le y \le D - 1 \\ 0, & C \le x \le P, D \le y \le Q \end{cases}$$

Where f(x,y): $A \times B$ image; h(x,y): $C \times D$ image; $P \ge A + C - 1$; $Q \ge B + D - 1$

Name	Expression(s)
1) Discrete Fourier transform (DFT) of $f(x, y)$	$F(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi(ux/M + vy/N)}$
2) Inverse discrete Fourier transform (IDFT) of $F(u, v)$	$f(x, y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j2\pi(ux/M + vy/N)}$
3) Polar representation	$F(u, v) = F(u, v) e^{j\phi(u, v)}$
4) Spectrum	$ F(u, v) = [R^{2}(u, v) + I^{2}(u, v)]^{1/2}$ $R = \text{Real}(F); I = \text{Imag}(F)$
5) Phase angle	$\phi(u, v) = \tan^{-1} \left[\frac{I(u, v)}{R(u, v)} \right]$
6) Power spectrum	$P(u,v) = F(u,v) ^2$
7) Average value	$\overline{f}(x,y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) = \frac{1}{MN} F(0,0)$

Name	Expression(s)
8) Periodicity (k_1 and k_2 are integers)	$F(u, v) = F(u + k_1 M, v) = F(u, v + k_2 N)$ = $F(u + k_1 M, v + k_2 N)$
	$f(x, y) = f(x + k_1 M, y) = f(x, y + k_2 N)$ = $f(x + k_1 M, y + k_2 N)$ M = 1 N - 1
9) Convolution	$f(x, y) \star h(x, y) = \sum_{\substack{m=0 \ M-1 \ N-1}} \sum_{n=0}^{\infty} f(m, n) h(x - m, y - n)$
10) Correlation	$f(x, y) \approx h(x, y) = \sum_{m=0}^{m-1} \sum_{n=0}^{\infty} f^{*}(m, n) h(x + m, y + n)$
11) Separability	The 2-D DFT can be computed by computing 1-D DFT transforms along the rows (columns) of the image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.1.
12) Obtaining the inverse Fourier transform using a forward transform algorithm.	$MNf^*(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u, v) e^{-j2\pi(ux/M + vy/N)}$ This equation indicates that inputting $F^*(u, v)$ into an algorithm that computes the forward transform (right side of above equation) yields $MNf^*(x, y)$. Taking the complex conjugate and dividing by MN gives the desired inverse. See Section 4.11.2.

Name	DFT Pairs
Symmetry properties	See Table 4.1
2) Linearity	$af_1(x, y) + bf_2(x, y) \Leftrightarrow aF_1(u, v) + bF_2(u, v)$
3) Translation (general)	$f(x, y) e^{j2\pi(u_0x/M + v_0y/N)} \Leftrightarrow F(u - u_0, v - v_0)$ $f(x - x_0, y - y_0) \Leftrightarrow F(u, v) e^{-j2\pi(ux_0/M + vy_0/N)}$
4) Translation to center of the frequency rectangle, (M/2, N/2)	$f(x, y)(-1)^{x+y} \Leftrightarrow F(u - M/2, v - N/2)$ $f(x - M/2, y - N/2) \Leftrightarrow F(u, v)(-1)^{u+v}$
5) Rotation	$f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$ $x = r \cos \theta y = r \sin \theta u = \omega \cos \varphi v = \omega \sin \varphi$
6) Convolution theorem [†]	$f(x, y) \star h(x, y) \Leftrightarrow F(u, v)H(u, v)$ $f(x, y)h(x, y) \Leftrightarrow F(u, v) \star H(u, v)$

	Name	DFT Pairs	
7)	Correlation theorem [†]	$f(x, y) \not\approx h(x, y) \Leftrightarrow F^{*}(u, v) H(u, v)$ $f^{*}(x, y)h(x, y) \Leftrightarrow F(u, v) \not\approx H(u, v)$	
8)	Discrete unit impulse	$\delta(x, y) \Leftrightarrow 1$	
9)	Rectangle	$rect[a,b] \Leftrightarrow ab \frac{\sin(\pi ua)}{(\pi ua)} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+vb)}$	
10)	Sine	$\sin(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$	
		$j\frac{1}{2}\Big[\delta(u+Mu_0,v+Nv_0)-\delta(u-Mu_0,v-Nv_0)\Big]$	
11)	Cosine	$\cos(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$	
		$\frac{1}{2} \Big[\delta(u + Mu_0, v + Nv_0) + \delta(u - Mu_0, v - Nv_0) \Big]$	
The	The following Fourier transform pairs are derivable only for continuous variables,		

The following Fourier transform pairs are derivable only for continuous variables, denoted as before by t and z for spatial variables and by μ and ν for frequency variables. These results can be used for DFT work by sampling the continuous forms.

12) Differentiation (The expressions on the right assume that
$$f(\pm \infty, \pm \infty) = 0.$$
)
$$f(t, z) \Leftrightarrow (j2\pi\mu)^m (j2\pi\nu)^n F(\mu, \nu)$$

$$\frac{\partial^m f(t, z)}{\partial t^m} \Leftrightarrow (j2\pi\mu)^m F(\mu, \nu); \frac{\partial^n f(t, z)}{\partial z^n} \Leftrightarrow (j2\pi\nu)^n F(\mu, \nu)$$

