

Physics 4

Tran Nguyen Lan, Ph.D

Department of Physics, HCMIU-VNU

Phone: 0905 623 462, email: lantrann@gmail.com

Office: room A1.503

Week 08

Review: theory

1. Mechanical waves

Wave Equation:

$$y = A \sin\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x\right) = A \sin\left(\omega t - Kx\right)$$

The wavelength: $\lambda = vT$ (*T*: period)

The wave number :
$$K = \frac{2\pi}{\lambda}$$

Speed of wave on a string

$$v = \sqrt{\frac{T}{\mu}}$$

 μ : linear mass density

T: string tension force

Superposition of waves

$$y = y_1 + y_2 = 2A\cos\left(\frac{\phi}{2}\right)\sin(\omega t - Kx_1 + \frac{\phi}{2})$$

$$\phi = K(x_1 - x_2) = K\delta$$
: Phase difference $\delta = x_1 - x_2$: Path difference

Constructive interference: $\phi = K\delta = k2\pi$; $\frac{2\pi}{\lambda}\delta = k2\pi$; $\delta = k\lambda$

Destructive interference: $\phi = K\delta = (2k+1)\pi$; $\frac{2\pi}{\lambda}\delta = (2k+1)\pi$;

$$\delta = \left(k + \frac{1}{2}\right)\lambda$$

2. Standing waves

General consideration

Position of nodes:

$$x = n\lambda/2$$
 (n = 1, 2, 3,...)

Position of antinodes:

$$x = \left(n + \frac{1}{2}\right)\lambda / 2$$

String fixed at both ends

$$\lambda_n = \frac{2L}{n} \quad n = 1, 2, 3, \dots$$

$$f_1 = \frac{1}{2L} \sqrt{\frac{F}{\mu}}$$
; $f_n = nf_1 = \frac{n}{2L} \sqrt{\frac{F}{\mu}}$

(Fundamental frequency)

Air columns

Both open end

Third harmonic:
$$\lambda_3 = \frac{2}{3} L$$
, $f_2 = 3f_1$

One closed end

First harmonic:
$$\lambda_1 = 4L$$
, $f_1 = \frac{v}{4L}$

Third harmonic:
$$\lambda_3 = \frac{4}{3} L$$
, $f_3 = 3f_1$

Fifth harmonic:
$$\lambda_5 = \frac{4}{5} L$$
, $f_5 = 5f_1$

3. Sound waves

Intensity

$$I = \frac{\Delta E}{A \ \Delta t} = \frac{P}{A}$$

 (W/m^2)

Audile range: 20 Hz – 20,000 Hz

Intensity sound level

$$\beta = 10 \log \frac{I}{I_o}$$

Normal conversation's intensity level is about 50 dB.

$$I_0 = 1 \times 10^{-12} \text{ W/m}^2$$

Doppler effect

$$f' = \frac{V + V_O}{V - V_S} f$$

 v_s , $v_o > 0$ observer and source move towards together v_s , $v_o < 0$ observer and source move far away each other

4. Light

Young's double-slit interference

Path difference:

$$\delta \approx d \sin \theta$$

$$\delta \approx d \frac{y}{L}$$

Bright region:

$$\delta = d \sin \theta = k\lambda$$

$$y_{BRIGHT} = k \frac{L}{d} \lambda = ki$$

$$i = \frac{L}{d}\lambda$$

Dark region:

$$\delta = d\sin\theta = (k + \frac{1}{2})\lambda$$

$$y_{DARK} = \left(k + \frac{1}{2}\right)i$$

Thin-film interference

Refraction index:
$$n = \frac{c}{v}$$

$$\lambda_n = \frac{v}{f} = \frac{c}{nf}$$
; $\lambda_n = \frac{\lambda}{n}$

Constructive interference:

$$2nt=(m+\frac{1}{2})\lambda$$

Destructive interference:

$$2nt = m\lambda$$
 $m = 0; 1; 2; 3; ...$

Single-slit diffraction

Condition for destructive interference:

$$\sin \theta = m \frac{\lambda}{a}$$
; $m = \pm 1; \pm 2; \pm 3;...$

Position of dark fringes:

$$y_m = m \frac{L\lambda}{a}$$
; $m = \pm 1; \pm 2; \pm 3;...$

Grating

Condition for maxima:

 $d\sin\theta = m\lambda$

m = 0;1;2;...