$\mathbf{ET_{F}X}$ - α

LATEX Meets Wolfram

LATEX a is a LATEX package which incorporates the type setting ease and control of LATEX with the power of the Wolfram Language. The goal of **LATEX** is to provide the most complete, powerful and self-sufficient type setting environment.

\usepackage{latexalpha}

Calculations

LATEX- α allows for inline calculations, making scientific or mathematical document typesetting simpler and more streamlined. The examples below show that **LATEX-** α has the full capabilities of the Wolfram Language, and thus knows mathematical constants, can solve integrals and can differentiate symbolically.

A basic example:

 $3+4=\calc{3+4}$

Some more advanced examples:

 $3\times \sin\left(\frac{\pi}{4}\right)=\frac{3*4 \sin[Pi/4]}$

$$3 \times 4 \sin\left(\frac{\pi}{4}\right) = 6\sqrt{2}$$

 $\int_{35} e^{5x} dx=\int_{10}^{35} e^{5x} dx=\int_{$

$$\int_{10}^{35} e^{5x} dx = 2.00708 \times 10^{75}$$

 $\frac{d}{dx}x^2\log(x)=\operatorname{D[x^2 Log[x], x]}$

$$\frac{d}{dx}x^2\log(x) = x + 2x\log(x)$$

 $\cos(\frac{\pi^{4}})\approx $\sum_{n=0}^3 \frac{(-1)^n \left(\frac{\pi^{4}\right)^{2n} }{(2n)!} = \frac{Total[Table[(-1)^n (Pi/4)^(2 n)/((2 n)!), {n, 0, 3}]] // N}$$

$$\cos(\frac{\pi}{4}) \approx \sum_{n=0}^{3} \frac{(-1)^n \left(\frac{\pi}{4}\right)^{2n}}{(2n)!} = 0.707103$$

Some Useful Wolfram Language Functions

N[]

If you wrap your calculation in this function it will return a numerical value. For example, e^2 would become 7.38906 .

ScientificForm[Expression, Precision]

This will give you a value in scientific notation. For example ScientificForm[142342123342., 3] will become 1.42×10^{11} .

Graphics

the \graphic command generates a graphic and saves it to your directory to be used later in your LATEX document.

 $\proonup {\tt Tan[x], {x, 0, 2*Pi}]}{\tt tan}$

\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{tan.png}
\caption{Plot of \$\tan(x)\$ generated with the Wolfram API}
\end{figure}

Figure 1: Plot of tan(x) generated with the Wolfram API

```
\graphic{ListPlot[ {1,2,2.5,2.9,3} ,PlotStyle->Red,Axes->False,Frame->True]}{plot}
```

```
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{plot.png}
\caption{Some points plotted with the Wolfram API}
\end{figure}
```


Figure 2: Some points plotted with the Wolfram API

Additionally, $\mathbf{L}^{\mathbf{A}}\mathbf{T}_{\mathbf{E}}\mathbf{X}$ - α supports error bars.

```
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{plot.png}
\caption{Error Plot generated with the Wolfram API}
\end{figure}
```

The \graphic command is (as the name would suggest) not restricted to scientific or mathematical plots.

\graphic{GeoGraphics[Frame->True]}{map}

```
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{map.png}
\caption{A map}
\end{figure}
```


Figure 3: Error Plot generated with the Wolfram API

Figure 4: A map

Using Data Files

If you would like to make a plot using data stored in files on your computer, you can use LATEX- α 's $\dataplot TXT$ command.

The file data.txt contains a list of numbers generated using the Wolfram Language.

\dataplotTXT{data.txt}{ListLinePlot}{dataplot}

\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{dataplot.png}
\caption{Plot of random dataset stored in a separate file}

\end{figure}

Figure 5: Plot of random dataset stored in a separate file

3D Graphics

LATEX- α also allows for remote 3D graphics, such as this quadratic, this sphere and this sinusoid. This functionality requires that the CDF plugin is installed on you computer

Wolfram Alpha

Additionally, LATEX- α can take Wolfram Alpha input and insert the results into your document.

The biggest city in China is \$\WolframAlpha{ biggest city in china }\$.

The biggest city in China is Shanghai.