More

Next Blog»

Create Blog Sign Ir

ELECTRICAL ENGG. CONCEPTS

A blog about electrical engineering concepts, formulas, solved problems and books for electrical engineering students.

Saturday, 21 November 2015

A.C. Fundamentals (Solved problems)

Example A sinusoidal alternating voltage of 50 Hz has an r.m.s. value of 200 V. Write down its equation for instantaneous value. Sol. R.M.S. value of voltage, $E_{r.m.s.} = 200 \text{ V}$ Frequency, f = 50 HzMaximum value, $E_m = \sqrt{2} \times 200 = 282.84 \text{ V}$ Angular velocity, $\omega = 2\pi f$ $= 2\pi \times 50 = 314.16 \text{ rad/s}$ Instantaneous value is given by the equation, $e = E_m \sin \omega t$ or $e = 282.84 \sin 314.16 \text{ t}$ (Ans.)

Example An alternating current is given by the equation i=100 sin 314 t. Find :-(i) Maximum value of current; (ii) Frequency; (lii) Time period; (iv) R.M.S. value of current; (v) Value of current after t=0.005 second. Sol. Given that $i=100 \sin 314 t$...(i) Instantaneous value of current is given by the equation: $i=I_m \sin \omega t$...(ii) Comparing equation (i) and (ii) (i) Co-efficient of sin wt i.e. $I_m = 100 A (Ans.)$

Search This Blog

Search

Translate

மொழியைத் தேர்வுசெய்

இயக்குவது ெழியாக்கம்

Popular Posts

D.C. Machines (Solved Problems)

Synchronous Machines (I)

Electromagnetism (Solved Problems)

A.C. Series Circuits

Basic concepts of electricity

A.C. Parallel Circuits

D.C . Circuits

A.C. Fundamentals (Solved problems)

Electromagnetism

Transformers (II)

Total Pageviews

3 2 0 4 9

Basic Electricity

This book contains following

Chapters

- Basic Concelpts of Electricity
- Units--Work,Power and Energy
- D.C. Circuits
- Battries
- Magnetism
- Electromegnetism
- Electromegnetism (Solved Problems)
- Electromagnetic Induction
- Electromagnetic Induction (Solved Problems)
- A.C. Fundamentals
- A.C. Fundamentals (Solved Problems)
- A.C. Series Circuits
- A.C. Circuits (Solved Probles)
- A.C. Parallel Circuits
- Complex Algebra
- Poly-phase Circuits

Electric Machines

This book contains following

Example An alternating current is given by the expression i=20 sin 628 t. Determine:—

- (i) Maximum value of current;
- (ii) R.M.S. value of current;
- (iii) Frequency of current;
- (iv) Value of current after t=0.00625 seconds;
- (v) Time taken by the current to reach a value of 10 A.

Sol. Given that $i=20 \sin 628 t$

Instantaneous value of current is given by the equation;

 $i=I_m \sin \omega t$ Camparing equation (i) and (ii);

- (i) Maximum value of current, Im=20 A (Ans.)
- (ii) R.M.S. value of current, $I = \frac{I_m}{\sqrt{2}} = \frac{20}{\sqrt{2}} = 14.142 \text{ A}$ (Ans.)
- (iii) $\sin \omega t = \sin 628 t$
- · ω=628
- or $2\pi f = 628$
- or $f = \frac{628}{2\pi} = 100 \text{ Hz}$ (Ans.)
- (iv) When t=0.00625 seconds

$$i=20 \sin 2\pi f t$$

 $=20 \sin 2\pi \times 100 \times 0.00625$

= 20 sin 1.25π

$$=20 \sin\left(\pi + \frac{\pi}{4}\right)$$

$$=20 \left(-\sin \frac{\pi}{4}\right)$$

$$=-20 \times 0.7071 = -14.142 \text{ A} \quad (Ans.)$$

$$i = 20 \sin 2\pi f t$$

$$10 = 20 \sin 2\pi f t$$
or
$$\sin 2\pi f t = 0.5$$
or
$$\sin 2\pi f t = \sin \frac{\pi}{6}$$
or
$$2\pi f t = \frac{\pi}{6}$$

$$t = \frac{\pi}{6 \times 2\pi \times 100} = \frac{1}{1200} \text{ s} \quad (Ans.)$$

Chapters

- D.C. Generator
- D.C. Motors
- D.C. Machines (Solved Problems)
- Transformers (1)
- Transformers (2)
- Transformers (Solved Problems)
- Synchronous Machines (I)
- Synchronous Machines (II)
- Synchronous Machines (Solved Problems)

About me

...(i)

...(ii)

I am Ajay Sharma, electrical engineer, working at Noida (India). My talent is to write articles about electrical engineering.

Contact me

ajaysharma171273@gmail.com

Theme Support

Buying, Selling, Renting, & Leasing made easy at iQuippo, India's first equipment e-services.

KNOW MORE

Example 'An alternating current of frequency 60 Hz has a maximum value of 120 A. Write down the equation for its instantaneous value. Reckoning time from the instant the current is zero and is becoming positive, find;

- (i) the instantaneous value after 1/360 seconds and
- (ii) the time taken to reach 96 A for the first time.

Sol. Maximum value of current, I_m=120 A

Frequency,

$$f=60 \text{ Hz}$$

Instantaneous value of current is given by the equation;

$$i=I_m \sin \omega t = I_m \sin 2 \pi f t$$

= 120 sin 2 π × 60 t
= 120 sin 377 t (Ans.)

When the reckoning time is taken from the instant the current is zero and becoming positive, equation for current is

$$i=120 \sin 377 t$$

(i) Instantaneous value of current after $t = \frac{1}{360}$ s

$$i=120 \sin 2\pi \times 60 \times \frac{1}{360}$$

= 120 \sin \frac{\pi}{3}
= 120 \times 0.866 = 103.92 A (Ans.)

(ii) Let t seconds be the time taken to reach the current to 96 A for the first time. Then

96=120 sin
$$2\pi \times 60 t$$

or $\sin 2\pi \times 60 t = \frac{96}{120}$
 $\sin 2 \times 180^{\circ} \times 60 t = 0.8$
 $2 \times 180^{\circ} \times 60 t = \sin^{-1} 0.8$ (: $\pi = 180^{\circ}$)

$$2 \times 180^{\circ} \times 60 \ t = 53.13^{\circ}$$

$$t = \frac{53.13}{2 \times 180 \times 60} = 0.00246 \text{ s} \quad (Ans.)$$

Note. On both the sides the angle must be in the same units i.e. either in degrees or in radians.

Example Calculate (i) the maximum value and (ii) the rootmean-square value of the following quantities:

- (i) 40 sin ωt
- (ii) B sin ($\omega t \pi/2$)
- (iii) 10 sin ωt-17.3 cos ωt

Draw the vectors showing the phase difference with respect to A sin $(\omega t - \pi/6).$

Sol. The instantaneous value of an alternating quantity is given by the relation.

$$i=I_m \sin \omega t$$
 or $v=V_m \sin \omega t$

- (i) The given alternating quantity is 40 sin ωt
 - 2. Maximum value=40 (Ans.)

R.M.S. value
$$= \frac{\text{Max. value}}{\sqrt{2}}$$
$$= \frac{40}{\sqrt{2}} = 28.284 \quad (Ans.)$$

The vector lies on the hosizontal axis as shown in fig. 7.28.

(ii) The given alternating quantity is B sin ($\omega t - \pi/2$)

R.M.S. value
$$=\frac{B}{\sqrt{2}}$$
 (Ans.)

The vector lags behind the horizontal axis by 90° as shown in fig. 7.28.

(iii) The given alternating quantity is 10 sin ωt—17.3 cos ωt. In fact, this quantity has two components displaced from each other by 90° as shown in fig. 7.27.

Resultant maximum value=
$$\sqrt{(\overline{10})^2+(\overline{17.3})}$$

Let the phase angle of the resultant with the horizontal be θ° .

$$\therefore \tan \theta = \frac{17.3}{10} = 1.73$$

or
$$\theta = \tan^{-1}1.73 = \frac{\pi}{3} = 60^{\circ}$$
.

Hence, this vector lags behind the horizontal axis by 60° as shown in fig. 7.27.

The quantity A sin ($\omega t - \pi/6$) makes an angle of lag, $\theta_1 = \frac{\pi}{6} = 30^{\circ}$

with the horizontal as shown in fig. 7.28.

All the said quantities are shown vectorially in fig. 7.27.

The phase difference between first

quantity (i.e. 40) and
$$A=\theta_1=\frac{\pi}{6}$$

The phase difference between second quantity (i.e. B) and $A = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3} = 60^{\circ}$ (Ans.)

The phase difference between third quantity (i.e. 20) and

$$A = \theta_3 = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} = 30^{\circ}$$
 (Ans.)

Example Three voltages represented by $e_1=20 \sin \omega t$, $e_2=30 \sin (\omega t + \pi/4)$ and $e_3=40 \cos (\omega t - \pi/6)$ act together in a circuit. Find an expression for the resulting voltage.

Sol. The three voltages are represented vectorially in fig. 7.32. The third voltage (40 V) makes an angle of 30° with the vertical.

Resolving the components along X-axis.

$$E_{xx} = 20 + 30 \cos 45^{\circ} + 40 \cos 60^{\circ}$$

= $20 + 30 \times 0.707 + 40 \times 0.5$

Resolving the components along

$$E_{YY} = 0 + 30 \sin 45^{\circ} + 40 \sin 60$$

$$=0+30\times0.707+40\times0.866$$

=55.85 V Maximum value of resultant voltage,

Fig. 7.32

$$E_{mr} = \sqrt{E_{XX}^2 + E_{YY}^2}$$

$$=\sqrt{(61.21)^2+(55.85)^2}$$

Let ϕ be the angle which the resultant voltage makes with X-axis;

$$\tan \phi = \frac{E_{yy}}{E_{xx}} = \frac{55.85}{61.21} = 0.9124$$

:. Expression for the resultant voltage,

$$e_r = \mathbb{E}_{mr} \sin(\omega t + \phi)$$

$$=82.86 \sin (\omega t + 42.38^{\circ})$$
 (Ans.)

Download This to PDF

Convert doc to pdf and pdf to doc Go to downloadconverternow.com/PDF/Converter

Template images by Iuoman. Powered by Blogger.