Real-Time Communication System Powered by Al for Specially Abled

Submitted By

TEAM ID : PNT2022TMID28222

TEAM LEADER : DHARANI THARAN M [312419106029]

TEAM MEMBERS : DEEPAK KUMAR S [312419106021]

DINESH BABU S [312419106034]

GOWTHAM S [312419106042]

Project Report Format

1. INTRODUCTION

- 1.1. Project Overview
- 1.2. Purpose

2. LITERATURE SURVEY

- 2.1. Existing problem
- 2.2. References
- 2.3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1. Empathy Map Canvas
- 3.2. Ideation & Brainstorming
- 3.3. Proposed Solution
- 3.4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1. Functional requirement
- 4.2. Non-Functional requirements

5. PROJECT DESIGN

- 5.1. Data Flow Diagrams
- 5.2. Solution & Technical Architecture
- 5.3. User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1. Sprint Planning & Estimation
- 6.2. Sprint Delivery Schedule
- 6.3. Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1. Feature 1
- 7.2. Feature 2
- 7.3. Database Schema (if Applicable)

8. TESTING

- 8.1. Test Cases
- 8.2. User Acceptance Testing

9. RESULTS

9.1. Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- **12. FUTURE SCOPE**
- 13. APPENDIX

Source Code, GitHub & Project Demo Link

1. <u>INTRODUCTION</u>

1.1 Project Overview

Real-time communications (RTC) are any mode of telecommunications in which all users can exchange information instantly. Communication plays a significant role in making the world a better place. It creates a bonding and relations among the people. People get to know one another by sharing their ideas, thoughts, and experiences with those around them. There are numerous ways to accomplish this, the best of which is the gift of "Speech." Everyone can very convincingly transfer their thoughts and understand each other through speech. It will be unjust if we overlook those who are denied this priceless gift: the deaf and dumb. In such cases, the human hand has remained the preferred method of communication.

1.2 Purpose

The Project's purpose is to create a system that translates sign language into a human understandable language so that ordinary people may understand it. In our society, we have people with disabilities. The technology is developing day by day but no significant developments are undertaken for the betterment of these people. Communication between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people. Since normal people are not trained in hand sign language. In emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used. Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language. The project aims to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. We are making use of a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.

2. <u>LITERATURE SURVEY</u>

A literature review is a comprehensive summary of previous research on a topic. The literature review surveys scholarly articles, books, and other sources relevant to an area of research. The review should enumerate, describe, summarize, objectively evaluate and clarify this previous research.

In our project, We have taken the literature survey on IEEE papers. An intelligent communication device is developed to assist nonverbal, motor-disabled persons in the generation of written and spoken messages. The device is centered on a knowledge base of the grammatical rules and message elements. A belief reasoning scheme based on both the information from external sources and the embedded knowledge issued to optimize the process of message search

2.1 Existing problem

Some of the existing solutions for solving this problem are:

Communication between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people.

Technology

One of the easiest ways to communicate is through technology such as a phone or laptop. A deaf person can type out what they want to say and a person who is blind or has low vision can use a screen reader to read the text out loud.

A blind person can also use voice recognition software to convert what they are saying into text so that a person who is Deaf can then read it.

Interpreter

If a sign language interpreter is available, this facilitates easy communication if the person who is deaf is fluent in sign language. The deaf person and person who is blindcan communicate with each other via the interpreter. The deaf person can use sign language and the interpreter can speak what has been said to the person who is blind and then translate anything spoken by the blind person into sign language for the deaf person.

However, this is often not the most effective form of communication, as it is very dependent on the individual circumstances of both people and their environment (for example, some places may have too much background noise).

2.2 References

- 1. Upendran, S., and Thamizharasi, A., "American Sign Language interpreter system for deaf and dumb individuals", In the Proceedings of the International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 1477- 1481, 2014
- 2. Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., and Melchiorri, C., "UBH 3: an anthropomorphic hand with simplified endo-skeletal structure and soft continuous fingerpads", In Proceedings IEEE International Conference on Robotics and Automation, 2004 (ICRA'04), Vol.5, pp. 4736-474, IEEE, 2004.
- 3. Rajamohan, A., Hemavathy, R., and Dhanalakshmi, M., "Deaf-Mute Communication Interpreter", International Journal of Scientific Engineering and Technology, Vol.2, No.5, pp.336-341, 2013.

https://ieeexplore.ieee.org/document/8493808 https://ieeexplore.ieee.org/abstract/document/9396030 https://ieeexplore.ieee.org/document/8725244

2.3 Problem statement definition

Only specially abled people are taught sign language and the common person is unaware its working causing a communication gap. Under emergency situations, it is even more difficult for specially abled people to get help. Non-Emergency normal environments can also be hard for them to navigate needing special assistance. In this project we have designed and developed a system which lowers the communication gap betweenspeech hearing impaired people and normal people that is we have built a system that enables communications between deaf-dumb person and a normal person. A convolution neural network is being used to develop a model that is trained on various hand movements. This model is used to create an app. This program allows deaf and hard of hearing persons to communicate using signs that are then translated into human readable text.

Ideation is the process where you generate ideas and solutions through techniques such as Empathy Map Canvas, Brainstorming. Ideation is also the third stage in the Design Thinking Process.

3.1 Empathy map canvas

3.3 Proposed Solution

Proposed Solution Template:

S.No	Parameter	Description
1.	Problem Statement (Problem to besolved)	Sign Language is a visual means of communicating using gestures, facial expressions, and body language with specially abled. Since normal people are not trained in sign language, in times of emergency conveying their message is very difficult. Hence, there is a need for a system that recognizes different signs and empowers them in communicating with normal people
2.	Idea / Solution description	The idea is to create an end-end application that predicts the ISL signs from a live video and translates the same to voice such that conversing is at ease
3.	Novelty / Uniqueness	We are making use of a convolution neural network to create a model that is trained on different hand gestures.
4.	Social Impact / Customer Satisfaction	 Communication is achieved without the help of additional human intervention. No additional hardware support is needed to use the application Improve their career opportunities in the industry Can provide instant results to users

5.	Business Model (Revenue Model)	This business model truly revolutionizes accessibility and people with disabilities can drastically improve their everyday lives. We can associate the application with organizations to provide support for the specially abled. Creating an association with other medical applications to utilize our product in their app.
6.	Scalability of the Solution	This is an application people can access from any device (Mobile, Desktop, laptop, etc.), and used by everyone across the world. As it is hosted in IBM Cloud, it could be scaled up and down as per demand

Proposed solution is the one in which we are making use of a convolution neural network to create a model that is trained on different hand gestures. A website is built which uses this model. The proposed solution section should offer the solution specifically, with enough detail so that the reader understands exactly what we're

proposing.

3.4 Problem solution fit:

Maximum Marks: 2 Marks

PROBLEM SOLUTION FIT

Team ID: PNT2022TMID25445

1.CUSTOMER SEGMENT(CS)	6.CUSTOMERCONSTRAINTS (CC)	5.AVAILABLE SOLUTIONS (AS)	
Specially abled persons such as deaf and dumb people. The normal people who are trying to communicate with themare the customers	The sign language is not understandable to all. The difficulty in understanding the sign language by normal people	Using text type writers and Al Based devices i.e. Voice recognition.	
2.JOBS-TO-BE-DONE/ PROBLEMS (J&P)	9.PROBLEM ROOT CAUSE (RC)	7.BEHAVIOUR (BE)	
Create a communication link between deaf dumb and normal people Understanding inputs from the user may take a lot of efforts.	The communication barrier is the root cause. During emergency the specially abled people cannot contact orexpress their feelings to others (normal people). The feeling cannot be shared with other they feel stressed.	Customers try to find a device that helps in emergency situation.	
3.TRIGGERS (TM) An ability of the customers to communicate	10.YOUR SOLUTION (SL) This device helps in emergency situations to contact.	8.CHANNELS of BEHAVIOUR (CH) ONLINE	
efficiently at serious and necessary situations. 4.EMOTIONS:BEFORE/AFTER (EM)	The customer can share their feelings and also helps in expressingemotions and their motives .	Using online translation OFFLINE	
After: Customer gain a better understanding of the needs of specially abledThey feel secured and it brings confident in them . Before: Lacking of self- confidence. Feeling anxious of interacting with people .		They buy devices that helps in translating signed language to textand vice versa .	

The Problem-Solution Fit is based on the principles of Lean Startup and User Experience design. It helps us to identify behavioral patterns and recognize what would work and why. It is used to identify solutions with higher chances of solution adoption, reduce time spent on testing.

4. **REQUIREMENT ANALYSIS**

4.1 Functional requirement:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	User Verification	The user should receive a verification e-mail which theyhave to confirm to complete the registration.
FR-4	Compliance to rules or laws	Terms and conditions, Privacy policy, End user licensing agreement.
FR-5	Authorization levels	There are two levels of authorization namely standard access level and advanced access level.
FR-6	Legal Requirements	Medical Certificate is produced

4.2 Non Functional requirement:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional Requirement	Description
No.		
NFR-	Usability	The designed system is easy to use for specially abled
1		persons as it is portable and
		platform independent.
NFR-	Security	Converted information using signs into speech is accessed
2		only by the user.
NFR-	Reliability	System is tested with a large amount of data and Provides
3		Insight into issues.
NFR-	Performance	Quick Launch time of application and faster in converting
4		signs into speech
NFR-	Availability	Provides automatic recovery and
5		User access.
NFR-	Scalability	Standard network condition the device should convert
6		information within seconds.

5. **PROJECT DESIGN**

Project design is an early phase of the project lifecycle where ideas, processes, resources, and deliverables are planned out. A project design comes before a project plan as it's a broad overview whereas a project plan includes more detailed information.

5.1 Data Flow Diagrams

A data flow diagram is a traditional visual representation of the information flow within a system. It shows how data enters and leaves the system. It uses defined symbols like rectangles, circles and arrows, plus short text labels, to show data inputs, outputs, storage points and the routes between each destination.

5.2 Solution Architecture & Technical Architecture

Solution Architecture:

Solution architecture is the process of developing solutions based on predefined processes, guidelines and best practices with the objective that the developed solution fits within the enterprise architecture in terms of information architecture, system portfolios, integration requirements and many more.

Technical Architecture:

Technical Architecture is a form of Information Technology(IT) architecture that is used to design a system. It involves the development of a technical blueprint with regard to the arrangement, interaction, and interdependence of all elements so that system- relevant requirements are met.

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Chat bot user interface	HTML, CSS, Python.
2.	Application Logic	Logic for a process in the application	Python
3.	Application Logic	Logic for a process in the application	IBM Watson STT service & TTS service
4.	Cloud Database	Database Service on Cloud	IBM Cloudant

5.	File Storage	File storage requirements	Local File system
6.	Machine Learning Model	Neural Networks –CNN model, ANN model	Object Recognition Model – CNNmodel
7.	Infrastructure (Server / Cloud)	Application Deployment on Local System	Local, Cloud Foundry, Kubernetes.
8.	External Interfaces	Any interface that is transmitting information from the product to a third-party may contain informationthat is useful for an attack	Operating System - Windows, Mac, Linux; CPU & GPU (for training), WebCam, Scanners, Speakers and PC

Table-2: Application Characteristics:

S.N	Characteristics	Description	Technology
0			
1.	Open-Source Frameworks	Numpy, Pandas , Keras, Tensorflow, NLTK,Sonnet.	Python framework
2.	Security Implementations	Security access controls ,Use of	SHA-256
		firewalls	
3.	Scalable Architecture	Scalable AI	SEI Digital library
4.	Availability	Use of Cloud Virtual assistant	IBM Cloud
4.	Availability	Use of Cloud, Virtual assistant	IBM Watson Assistant
5.	Performance	Image pre-processing and CNN	Python

User Stories:

User Type	Functional Requiremen t (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priorit y	Release
Normal people and Deaf- mute people		USN-1	As a user, I can register for the application by entering my email, and password, and confirming my password	I can access my account/ dash boar d	High	Sprint-1
		USN-2	As a user, I will receive a confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1

Normal people	USN-3	Give access to camera to recognize the gestures Give access to microphone to give our message through voice	I can access messages given by the Deaf- mute people	High	Sprint-1
Deaf- mute peopl e		Give access to display to view the message sent by normal people.	I can access messages given by the Norma I people	High	Sprint-1
Administrator	USN-4	Admin side in the company should take care	all the requireme nts are there.	High	Sprint 1
Sign up	USN-5	Need to sign up to use it.	Need valid credentials.	High	Sprint-1
Wish list	USN-6	Before availing the service can be kept aside.	As a user can review anduse the service.	Low	Sprint-2

A user story is an informal, general explanation of a design feature written from the perspective of the end user. Its purpose is to articulate how a design will provide value to the end user. A key component of agile software development is putting people first, and a user story puts end users at the center of the conversation. These stories use non-technical language to provide context for the development team and their efforts.

6 PROJECT PLANNING & SCHEDULING

Planning and scheduling are distinct but inseparable aspects of managing the successful project. The process of planning primarily deals with selecting the appropriate policies and procedures in order to achieve the objectives of the project. Scheduling converts the project action plans for scope, time cost and quality into anoperating timetable.

6.1 Sprint Planning & Estimation

To create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Logesh Lingakumar
Sprint-1	Registration	USN-2	As a user, I will receive confirmation emailonce I have registered for the application	1	High	Balaji Harish
Sprint-2	Registration	USN-3	As a user, I can register for the application through phone number	2	Mediu m	Lingakumar
Sprint-2	User interface	USN-4	Professional responsible for user requirements & needs	2	Mediu m	Balaji Harish
Sprint-3	Login	USN-5	As a user, I can log into the applicationby entering email & password		High	Logesh
Sprint-3	Dashboard	USN-6	As a user, I must receive any 2 High updates orpop ups in my dashboard		Lingakumar Balaji	
Sprint-4	Details	USN-7			Mediu m	Harish
Sprint-4	Privacy	USN-8	The developed application should be secure forthe users	2	High	Lingakumar Logesh

Sprint planning & Estimation is the process for estimating the effort required to complete a prioritized task in the product backlog. This effort is usually measured withrespect to the time it will take to complete that task, which, in turn, leads to accurate sprint planning.

6.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	30 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	29 Nov 2022

Since sprints take place over a fixed period of time, it's critical to avoid wasting time during planning and development.

6.3 Reports from JIRAROADMAP

Sprint-1

Sprint-2

Sprint-3

Sprint-4

This are the final reports that is been generated from the jira software. Initially with the help of the jira software we have made a plan for the sprint delivery. By using it so we are getting the four phase sprint report with roadmap.

7 CODING & SOLUTIONING

In order to design website that coverts sign language into English alphabets we need to develop the website. For developing the website, primarly we need a platform that is uesful for developing the code. Coding is nothing that which are the applications developed by the developers in a certain computer language. Here we are using Python language for developing the website.

Feature 2

```
Testing the model
In [22]: from keras.models import load_model
               import numpy as np
import cv2
In [23]: from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import numpy as np
In [34]: model=load_model("aslpng.h5")
   img = image.load_img(r"/content/drive/MyDrive/IBM project/test_set/D/10.png",target_size=(64,64))
   img
Out[34]:
In [35]: x = image.img_to_array(img)
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
                        [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                         [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
                        [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                         [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                        ...,
                        [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                         [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                        [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                         [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
                        [[0., 0., 0.],
                         [0., 0., 0.],
[0., 0., 0.],
                         [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]], dtype=float32)
In [36]: x.shape
Out[36]: (64, 64, 3)
In [37]: x = np.expand_dims(x,axis=0)
x.shape
Out[37]: (1, 64, 64, 3)
In [38]: pred = model.predict(x)
             1/1 [======] - 0s 63ms/step
In [39]: pred
Out[39]: array([[0., 0., 0., 1., 0., 0., 0., 0., 0.]], dtype=float32)
In [45]: class_name=["A","B","C","D","E","F","G","H","I"]
    pred_id = pred.argmax(axis=1)[0]
    pred_id
Out[45]: 3
```

8. <u>TESTING</u>

A Test report is an organized summary of testing objectives, activities, and results. Test Report is a document which contains a summary of all test activities and final test results of a design. Test report is an assessment of how well the Testing is performed. Based on the test report, we understand the designs quality and its performance.

8.1 Test cases

100			39	Team ID Project Kama	12Ainor21 FMT0022TMC01158 Fmcccc Real time communication system concred by Al for specially delet Armsha		W			8/	0:		
TestesselD	Feeture Type	Feeture Type Correponent	Test Scenario	Pre-Requisite	Steps Ta Execute	Testbera	Expected Result	AttualResuk	3110.00	Comments	TC for Automation (Y/N)	BUSIO	ExecutedBy
Log rPage_TC_001	Functional	HomoPage	Verify user is able to see the homepage	Mozillo Firefox Bronser	Enter URL in browser and chouge	http://127.0.0.15003	Hamepage should be displayed	Morking as expected	Pen	Steps are clear to lallow	NO	HA	SHALIM A KAGA NANDHIW RHIVEDH MSNEKA PRASHAS
LogisPage_TC_002	w	Нати Рази	Vecily the Utalierneria in homegoaga	Manilla Fierlas Browner	Literia IIII. and de la go 2 Verlaffannaga artha per III demons Reformezones access des layanesteción toproject	http://127.0.0.15003	Application should show below III elements: 3 Reference 3 conversacemodiquity 5 Introduction to project	Working as expected	Para	Siege are clear to lottow	NO	NA.	SHALIWA KAGA KANDHIN RIMEDU AGNIKA PRASHAS
Log rPage,10,003	. UI	Home page	Verify whether reference page is working	Modilla Facico Brawser	1. Enter USL(H1): //1777.0.0.1:5000) and disk go 2. Olick on reference burron	htp://127.0.0.15002	Dam should navigate to reference page where askudphates image is steplayed	working as expected	Pass	Steps we clear to follow	Yes	NA	SHALIN A MAGA MANDHIR INHIBEDIO MSWEKA PRASHAS
Logis Page_TC_004	Runcsberal	НапеРаде	Verily Camera access	Mozi la Firefox Browser,Web- Camera	LErrer (PR) http://127.010.1150000 and click go 2.Click allow current access	Mowcarners access	Carneta access is allowed and image is displayed	working as, expected	Pasa	Steps are clear to lollow	Ves	NA.	SHALIMIA KAGA KANDHINIR HIVEDU MISNIXA PRABIKA S
Log rNage, 10,004	Functional	НотмРере	Costane detection	Mousia-Fredus,CKN	I. Errer Visit (1917/1922) 0.0 1 5000) and disk go 2 Cick cames access 2 brage distributed 4 Defaction of gashine occurs	Detection of gestures	Hand gestures needs to be detected and predicted	working as expected	Paro	Stepa are clear to lottow	Yes	NA	SIDLIN A KAGA KANDHIV MHINED-U MSNEKAPRASHAS
Log/Poge_TG_005	Functional	Home page	Output prediction	CNN trained model	I. Ernet UR <u>(1):197-197-00 1-92000</u> and dick go 2Clab careva aroses 3 haraper dicalysed 4 Decertion of Jesure occur's 5 Guisep medicine	Precised gestures	Hand gerautes are detected and predicted ASIL_alphabets are skiplayed	working as expected	Pen	Predicted output is displayed	Yes	На	SHALIM A KAGA KANDHIN AHMEDH MSMEKAFRASHAS

A test case is nothing but a series of step executed on a design, using a predefined set of input data, expected to produce a pre-defined set of outputs, in a given environment. It describes "how" to implement those test cases.

8.2 User Acceptance Testing

User acceptance testing (UAT), also called application testing or end-user testing, is a phase of software development in which the software is tested in the real world by its intended audience.

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of project-Real Time Communication System Powered By AI For Specially Abled at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	0	0	2	2
Duplicate	1	0	0	0	1
External	0	0	1	0	1
Fixed	0	1	1	0	2
Not Reproduced	0	1	0	0	1
Skipped	0	0	0	0	0
Won't Fix	0	1	0	0	1
Totals	1	3	2	2	8

3 Test Case

Analysis This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass	
View Home Page	7	0	1	6	
Click Reference	15	0	3	12	
Image displayed	12	0	0	12	
Allow camera	11		2	0	
access	11	0	4	9	
PrintEngine	8	0	0	8	
ClientApplication	49	0	0	49	
Security	4	0	0	4	
OutsourceShipping	4	0	0	4	
ExceptionReporting	11	0	0	11	
FinalReportOutput	2	0	0	2	
VersionControl	1	0	0	1	

9. <u>RESULT</u>

Finally we got the output for the desired input.our ultimate aim is to convert sign language into English alphabets. We have created the user interface for implementing it so. Thus the website was created successfully. As a result both the deaf and dump along with normal people can able to understand the desired language that is required for them.

9.1 Performance metrics

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot					
1.	Model Summary	Model - Sequential model Layers: Conv2D-(None,62,62,32) MaxPooling2D-(None,31,31,32) Flatten-(None,30752) Dense-(None,200) Dense_1 -(None,9)	model.summary() Layer (type) conv2d (Conv2D) (None, 62, 62, 32) 896 max_pooling2d (MaxPooling2D (None, 31, 31, 32) 0) flatten (Flatten) (None, 30752) 0 dense (Dense) (None, 200) 6150600 dense_1 (Dense) (None, 9) 1809 Total params: 6,153,305 Total params: 6,153,305 Non-trainable params: 0					
2.	Accuracy	Training Accuracy - 0.9622 Validation Accuracy -0.9826	Omdel.fit/s, train,ecode=10,validation data= test,steps per apocx=len(s,train)/10,validation steps=len(s,test)) ⊕ Front 1/16 95/95 [====================================					
3	Confidence Score	Class Detected – N/A Confidence Score -N/A	N/A					

The proposed procedure was implemented and tested with a set of images. The set of15750 images of Alphabets from "A" to "I" are used for training the database and a set of 2250 images of Alphabets from "A" to "I" are used for testing the database. Once the gesture is recognized the equivalent Alphabet is shown on the screen.

10. ADVANTAGES & DISADVANTAGES

Advantages:

- 1. Create a mobile application to bridge the communication gap between deaf and dumb persons and the general public.
- 2. Sign language standards exist, their dataset can be added, and the usercan choose which sign language to read.

Disadvantages:

- 1. Model only works from alphabets A to I.
- 2. Absence of gesture recognition, alphabets from J cannot be identified.
- 3. As the quantity/quality of images in the dataset is low, the accuracy is not great.

11. **CONCLUSION**

Sign language is a useful tool for facilitating communication between deaf and hearing people. Because it allows for two-way communication, the system aims to bridge the communication gap between deaf people and the rest of society. The proposed methodology translates language into English alphabets that are understandable to humans. This system sends hand gestures to the model, who recognises them and displays the equivalent Alphabet on the screen. Deaf-mute peoplecan use their hands to perform sign language, which will then be converted into alphabets, thanks to this project.

12. FUTURE SCOPE

Having a technology that can translate hand sign language to its corresponding alphabet is a game changer in the field of communication and AI for the specially abledpeople such as deaf and dumb. With introduction of gesture recognition, the web app can easily be expanded to recognize letters beyond 'I', digits and other symbols plus

gesture recognition can also allow controlling of software/hardware interfaces.

We can develop a model for ISL word and sentence level recognition. This will require a system that can detect changes with respect to the temporal space. We can also develop a complete product that will help the speech and hearing-impaired people, andthereby reduce the communication gap.

13. APPENDIX

Source Code for Model Training and Saving:

GITHUB LINK

https://github.com/IBM-EPBL/IBM-Project-23554-1659886103

DEMO LINK

https://drive.google.com/file/d/1r7t_r21j3l_toY5_S-T9-XweHdZBz82f/view?usp=share_link