

BATCH

LESSON

DATE

B107 AWS DevOps

Network

28.12.2022

SUBJECT: IP Subnetting

ZOOM GİRİŞLERİNİZİ LÜTFEN **LMS** SİSTEMİ ÜZERİNDEN YAPINIZ

Previous Session

- •IP Address Blocks
- Network ID/Address
- Host ID/Address
- Subnet ID/Address
- Subnet Mask
- AND operation
- •NAT

Contents

- IP Subnetting
- CIDR

What is IP Subnetting?

A subnetwork
 or subnet is a
 logical subdivision
 of an IP network.
 The practice of
 dividing a network
 into two or more
 networks is
 called subnetting.

Why IP Subnetting?

- Subnetting helps to reduce the network traffic and conceals network complexity. This way, traffic doesn't have to flow through unnecessary routes, increasing network speeds.
- **Subnetting** is essential when a single network number has to be allocated over numerous segments of a local area network (LAN).
- Subnets were initially designed for solving the shortage of IP addresses over the Internet.
- Routers are used to communicate between subnets.
- Routers use subnet IDs to route traffic.

How does it work?

 A subnet mask is used to identify the part of the address that should be used as the Subnet ID. The subnet mask is applied to the full network address using a binary AND operation. AND operations operate, assuming and output is "TRUE" only when both inputs are "TRUE". Otherwise, the output is "FALSE" only when two bits are both 1.

	128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1
IP Address				17	72							1	6							2	2							1	5			
IP Address	1	0	1	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1
Culou et Bando				25	55							25	55							25	55							C)			
Subnet Mask	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Network Address	1	0	1	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

How does it work?

- IP subnetting results in the logical division of an IP address into two fields: the network number or routing prefix and the rest field or host identifier.
- In subnetting we borrow some bits from host-identifier to use as subnetwork.

	8 bits	8 bits	8 bits	8 bits
Class A:	Network	Host	Host	Host
		22		
Class B:	Network	Network	Host	Host
Class C:	Network	Network	Network	Host
Class C.	Network	Network	Network	поѕі
_	8 bits	8 bits	8 bits	8 bits
Class A:	Network = 8 Bits —	→	Host = 24 Bits	
Class B:	Network	= 16 Bits -	Host = 1	16 Bits
Class C:		Network = 24 Bits		Host = 8 Bits

- A network created by Class A,B,C IP address can be divided into subnets by a system admin.
- It is done by borrowing bits from host part
- Borrowing 1 Host Bit makes 2¹=2 subnets,
 borrowing 2 Host Bits makes 2²=4 subnets, etc.

Binary (N.N.N.H)	Decimal	CIDR	# Subnets (2 ^x)	Block Size (2 ^y)	# Hosts (2 ^y - 2)
N.N.N.00000000	255.255.255.0	/24	$2^0 = 1$	$2^8 = 256$	$2^8 - 2 = 254$
N.N.N.10000000	255.255.255.128	/25	$2^1 = 2$	$2^7 = 128$	$2^7 - 2 = 126$
N.N.N.11000000	255.255.255.192	/26	$2^2 = 4$	$2^6 = 64$	$2^6 - 2 = 62$
N.N.N.11100000	255.255.255.224	/27	$2^3 = 8$	$2^5 = 32$	$2^5 - 2 = 30$
N.N.N.11110000	255.255.255.240	/28	24 = 16	24 = 16	$2^4 - 2 = 14$
N.N.N.11111000	255.255.255.248	/29	$2^5 = 32$	$2^3 = 8$	$2^3 - 2 = 6$
N.N.N.11111100	255.255.255.252	/30	$2^6 = 64$	$2^2 = 4$	$2^2 - 2 = 2$

Number of Subnets (2x)

X = number of host bits we borrow to create subnets

Block Size (2^y)

Y = number of remaining host bits left that are used for the subnet IP addresses

Hosts per Subnet (2^y – 2)

- There are two addresses per network (or subnet) that we cannot use to assign to hosts on that network:
 - Network Address: This is the address used to uniquely identify the network (or subnet).
 - Broadcast Address: Address reserved for broadcast communication on the network.

Details & Requirements

Network Address: 192.168.1.0

Default Subnet Mask: 255.255.255.0

Requires 2 Subnets

How many host bit do we need to borrow?

1 host bit, 2¹ = 2 Subnets

How many addresses hosts per subnet?

- 7 host bits left, 2⁷ = 128 Addresses / Subnet
- 2⁷ 2= 126 Addresses / Subnet

What are the valid subnets?

192.168.1.0 and 192.168.1.128

New Subnet Mask?

- 1111111.11111111.1111111.10000000
- 255.255.255.128 or /25

Subnet	#1	#2
Network Address	192.168.1.	192.168.1.
First Host IP	192.168.1.	192.168.1.
Last Host IP	192.168.1.	192.168.1.
Broadcast Address	192.168.1.	192.168.1.

See Subnet Calculator

192.168.1.1 and Mask 255.255.255.192

Broadcast address

→ 192.168.1.63

A Host/ip address

→ 192.168.1.62

Network address/id

→ 192.168.1.0

CIDR Classless Inter Domain Routing

IP address 192.168.1.0 and Mask 255.255.255.0

This IP address is in CIDR notation, which is a compact way of including the subnet mask along with the address. The /24 tells you that the first 24 bits of the IP address are used for network routing.

CIDR

192.168.1.0 / 24

Total number of Hosts: $2^{32-24}-2 = 254$

CIDR

192.168.1.0 / 23

Total number of Hosts: $2^{32-23}-2 = 510$

Examples

*A corporate network which has 4 subnets

Examples

Examples

Private IP address space						
From	То					
10.0.0.0	10.255.255.255					
172.16.0.0	172.31.255.255					
192.168.0.0	192.168.255.255					

10.0.0.1	192.168.1.1
10.0.0.2	192.168.1.2
10.0.1.1	192.168.10.10
10.0.1.2	192.168.10.11
10.10.10.1	192.168.11.10
10.10.10.2	192.168.11.11

Do you have any questions?

Send it to us! We hope you learned something new.