# Best practices: bar plots

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2



**Rick Scavetta**Founder, Scavetta Academy



# In this chapter

- Common pitfalls in Data Viz
- Best way to represent data
  - For effective explanatory (communication), and
  - For effective exploratory (investigation) plots

# **Bar plots**

- Two types
  - Absolute values
  - Distributions

# Mammalian sleep

```
Observations: 76

Variables: 3

$ vore <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi", "carni", ...

$ total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 10.1, 3.0, 5.3, 9.4, ...

$ rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, 2.9, NA, 0.6, 0.8, 0.7, 1.5...
```

# Dynamite plot

```
d <- ggplot(sleep, aes(vore, total)) +</pre>
# ...
d +
  stat_summary(fun = mean,
                geom = "bar",
                fill = "grey50") +
  stat_summary(fun.data = mean_sdl,
                fun.args = list(mult = 1),
                geom = "errorbar",
                width = 0.2)
```



# Individual data points



# geom\_errorbar()

```
d +
  geom_point(...) +
  stat_summary(fun = mean,
               geom = "point",
               fill = "red") +
  stat_summary(fun.data = mean_sdl,
               fun.args = list(mult = 1),
               geom = "errorbar",
               width = 0.2,
               color = "red")
```



# geom\_pointrange()



# Without data points



# Bars are not necessary



# Ready for exercises!

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2



# Heatmaps use case scenario

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2



**Rick Scavetta**Founder, Scavetta Academy



# The barley dataset

head(barley, 9)

```
yield
          variety year
                                  site
27.00000 Manchuria 1931 University Farm
48.86667 Manchuria 1931
                                Waseca
27.43334 Manchuria 1931
                                Morris
39.93333 Manchuria 1931
                             Crookston
32.96667 Manchuria 1931
                          Grand Rapids
28.96667 Manchuria 1931
                                Duluth
43.06666
          Glabron 1931 University Farm
55.20000
          Glabron 1931
                                Waseca
28.76667
          Glabron 1931
                                Morris
```



# A basic heat map



# A dot plot



#### As a time series





# Using dodged error bars



# Using ribbons for error



# Coding Time!

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2



# When good data makes bad plots

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2



**Rick Scavetta**Founder, Scavetta Academy



# Bad plots: style

- Color
  - Not color-blind-friendly (e.g. primarily red and green)
  - Wrong palette for data type (remember sequential, qualitative and divergent)
  - Indistinguishable groups (i.e. colors are too similar)
  - Ugly (high saturation primary colors)
- Text
  - Illegible (e.g. too small, poor resolution)
  - Non-descriptive (e.g. "length" -- of what? which units?)
  - Missing
  - Inappropriate (e.g. comic sans)

### Bad plots: structure and content

- Information content
  - Too much information (TMI)
  - Too little information (TLI)
  - No clear message or purpose
- Axes
  - Poor aspect ratio
  - Suppression of the origin
  - Broken x or y axes
  - Common, but unaligned scales
  - Wrong or no transformation

- Statistics
  - Visualization doesn't match actual statistics
- Geometries
  - Wrong plot type
  - Wrong orientation
- Non-data Ink
  - Inappropriate use
- 3D plots
  - Perceptual problems
  - Useless 3rd axis

# Wrong orientation



#### Highest and lowest life expectancies, 2007









# Broken y-axes



# Broken y-axes, replace with transformed data



# Broken y-axes, use facets





# 3D plots, without data on the 3rd axis





# 3D plots, with data on the 3rd axis



# Double y-axes





# Double y-axis for transformations

log10 trans of raw values





#### Guidelines not rules

- Use your common sense:
  - Is there anything on my plot that obscure a clear reading of the data or the take-home message?

# Let's practice!

INTERMEDIATE DATA VISUALIZATION WITH GGPLOT2

