Dear Jan,

Here is my computation of what could be called the "rigid cohomology groups" of $\overline{S}_0 := \operatorname{Spec}(O_{\overline{K}}/pO_{\overline{K}})$, where K is a complete discretely valued field of mixed characteristics (0,p), with perfect residue field k. This is what I briefly told Berger in an e-mail last year, and what has led to the reference [3] in his thesis (cf. [Berger01, I.2, p. 19, l. 19]). I will use here Fontaine's notations, and I will give the dictionnary with Berger's notations at the end.

First, note that there is no a priori definition of such cohomology groups. Indeed, the construction of rigid cohomology for an algebraic variety X over k uses embeddings of X into smooth formal schemes over W = W(k), and is based upon the de Rham cohomology of the generic fiber of such formal schemes. Thus, it is assumed that X is locally of finite type over k. Since this hypothesis is not satisfied by \overline{S}_0 , we must provide an ad hoc definition.

One might think of writing $O_{\overline{K}}$ as the direct limit of $O_{K'}$ for finite sub-extensions K' of K, and try to define the rigid cohomology of \overline{S}_0 as $\varinjlim_{K'} H^*_{\mathrm{rig}}(\mathrm{Spec}(O_{K'}/p))$. That would only give the maximal unramified extension K_0^{nr} of $K_0 = \mathrm{Frac}(W(k))$. This is because rigid cohomology ignores infinitesimal deformations, hence $\mathbb{R}\Gamma_{\mathrm{rig}}(\mathrm{Spec}(O_{K'}/p)) = K'_0$ for all K', where $K'_0 = \mathrm{Frac}(W(k'))$, k' being the residue field of K'.

It seems to be a better idea to treat \overline{S}_0 as if it was a proper k-scheme, since it is at least universally closed over $\operatorname{Spec}(k)$. For a proper k-scheme X, there is a crystalline description of $\mathbb{R}\Gamma_{\operatorname{rig}}(X)$ which does not use embeddings into formal schemes, and still makes sense for arbitrary schemes. Namely, one can consider for every $m \geq 0$ the crystalline site of level m, defined as the usual crystalline site, except that thickenings carry a partial divided power structure of level m [Berthelot96] instead of a full divided power structure (the usual site is obtained for m = 0). Then there exists a canonical isomorphism

$$\mathbb{R}\Gamma_{\mathrm{rig}}(X) \xrightarrow{\sim} \mathbb{R} \varprojlim_{m} (\mathbb{R}\Gamma_{\mathrm{cris},(m)}(X/W) \otimes \mathbb{Q}).$$

So we can define the rigid cohomology of \overline{S}_0 by setting

$$\mathbb{R}\Gamma_{\mathrm{rig}}(\overline{S}_0) := \mathbb{R} \varprojlim_{m} (\mathbb{R}\Gamma_{\mathrm{cris},(m)}(\overline{S}_0/W) \otimes \mathbb{Q}).$$

With this definition, we get the following results:

a) There exists a canonical isomorphism

$$H^0_{\mathrm{rig}}(\overline{S}_0) \simeq B^+,$$

where B^+ is the period ring defined by Fontaine in [Fontaine82];

b)
$$H_{\mathrm{rig}}^n(\overline{S}_0) = 0$$
 for all $n > 0$.

To prove these, one first observes that the computation of $\mathbb{R}\Gamma_{\mathrm{cris},(m)}(\overline{S}_0/W)$ can be done exactly as in the case m=0: if $R=\lim_{F}O_{\overline{K}}/p$ is Fontaine's ring, then, for all i, the W_i -scheme $\operatorname{Spec}(W_i(R))$ is formally étale over $\operatorname{Spec}(W_i)$; thus, the canonical surjection $W_i(R) \to O_{\overline{K}}/p$ defines a closed immersion such that the corresponding PD-neighbourhood is a final object in the crystalline site. It follows that $H^0_{\mathrm{cris},(m)}(\overline{S}_0/W_i) = P_{(m)}(J_i)$, where $P_{(m)}(J_i)$ is the divided power envelope of level m of $J_i = \operatorname{Ker}(W_i(R) \to O_{\overline{K}}/p)$, while $H_{\mathrm{cris},(m)}^n(\overline{S}_0/W_i)=0 \text{ for } n\geq 1.$

The classical map $\theta: W(R) \to O_C$ is a lifting of $W_i(R) \to O_{\overline{K}}/p$. Let $\theta_i: W_i(R) \to O_{\overline{K}}$ $O_{\overline{K}}/p^iO_{\overline{K}}$ be the reduction of θ mod p^i , $I = \text{Ker}(\theta)$, $I_i = \text{Ker}(\theta_i)$. Note that $J_i = \text{Ker}(\theta_i)$ $I_i + pW_i(R)$. Thanks to the compatibility with the divided powers of p imposed in the construction of the divided power envelopes $P_{(m)}$, we have

$$P_{(m)}(J_i) = P_{(m)}(I_i) = P_{(m)}(I)/p^i P_{(m)}(I).$$

Since $\mathbb{R}\Gamma_{\mathrm{cris},(m)}(\overline{S}_0/W) \simeq \mathbb{R}\varprojlim_{i}\mathbb{R}\Gamma_{\mathrm{cris},(m)}(\overline{S}_0/W_i)$, it follows that $H^0_{\mathrm{cris},(m)}(\overline{S}_0/W) =$ $\underline{\lim}_{i} P_{(m)}(J_{i})$ is equal to the p-adic completion $\widehat{P}_{(m)}(I)$ of $P_{(m)}(I)$, and $H^{n}_{\mathrm{cris},(m)}(\overline{S}_{0}/W) = 0$

Let $A_{\operatorname{cris},(m)} = \widehat{P}_{(m)}(I), \ B_{\operatorname{cris},(m)}^+ = \widehat{P}_{(m)}(I) \otimes \mathbb{Q}$ (so that $A_{\operatorname{cris},(0)} = A_{\operatorname{cris}}, \ B_{\operatorname{cris},(0)}^+ = A_{\operatorname{cris},(0)}$ $B_{\rm cris}^+$ with Fontaine's notations [Fontaine94]). We want to check now that the transition maps $A_{\text{cris},(m+1)} \rightarrow A_{\text{cris},(m)}$ are injective. By construction, $P_{(m)}(I) = P_{(0)}(I^{(p^m)})$ $P_{(0)}(I^{(p^m)}+pW(R))$, where $I^{(p^m)}$ is the ideal generated by the p^m -th powers of elements of I. Therefore, the m-th iterate ϕ^m of the Frobenius automorphism of W(R) induces a semi-linear isomorphism $A_{\text{cris},(0)} \xrightarrow{\sim} A_{\text{cris},(m)}$. Thus the claim results from the fact that ϕ is injective on A_{cris} (in fact, it could also be checked directly using the structure theorem [Berthelot96, Prop. 1.5.3] since, for all i, I_i is generated by a regular element, and $W_i(R)/I_i$ is flat over W_i). We also get that the canonical homomorphism $A_{cris,(m)} \to A_{cris}$ is an isomorphism on the image of ϕ^m inside A_{cris} .

Using this identification to work inside B_{cris}^+ , statements a) and b) are reduced to :

- a') $\bigcap_{m} B_{\text{cris},(m)}^{+} = B^{+};$ b') $R^{1} \varprojlim_{m} B_{\text{cris},(m)}^{+} = 0.$

Let me now recall Fontaine's definition of the ring B^+ . For any ideal $\mathfrak{a} \subset R$, let $S_{\mathfrak{a}} \subset W(R) \otimes \mathbb{Q}$ be the subring of elements of the form $\sum_{n \gg -\infty} p^n[v_n]$, where, for all $n < 0, v_n \in \mathfrak{a}^{-n}$ and $[v_n]$ is the Teichmüller representative of v_n , and let $\widehat{S}_{\mathfrak{a}}$ be its p-adic completion. Then Fontaine shows that, for $\mathfrak{a} \subset \mathfrak{a}'$, the map $\widehat{S}_{\mathfrak{a}} \to \widehat{S}_{\mathfrak{a}'}$ is injective, and defines $B^+ := \bigcap_{\mathfrak{a}} B_{\mathfrak{a}}^+$, where $B_{\mathfrak{a}}^+ = \widehat{S}_{\mathfrak{a}} \otimes \mathbb{Q}$.

Let $u \in R$ be an element such that $u^{(0)} = -p$ (using the description of R as the set of families $(u^{(n)})_{n\geq 0}$, $u^{(n)}\in O_C$, such that $(u^{(n+1)})^p=u^{(n)}$. Then $\alpha:=[u]+p$ is a generator of I, and the ideal $\mathfrak{a} := (u) \subset R$ is the set of elements of valuation ≥ 1 . If $\mathfrak{a}_n = (u^{p^n})$, then $B^+ = \bigcap_n B_{\mathfrak{a}_n}^+$. On the other hand, it follows from [Fontaine82, 4.2] that $S_{\mathfrak{a}_n} =$ $W(R)[\alpha^{p^n}/p]$. Now, for all $m \geq 0$, there is a natural map $W(R)[\alpha^{p^{m+1}}/p] \to P_{(m)}(I) =$ $P_{(0)}((\alpha^{p^m}))$, sending $\alpha^{p^{m+1}}$ to $(p-1)!(\alpha^{p^m})^{[p]}$, and a natural map $P_{(m)}(I) \to W(R)[\alpha^{p^m}/p]$, sending $(\alpha^{p^m})^{[k]}$ to $(p^k/k!)(\alpha^{p^m}/p)^k$. These maps extend to the p-adic completions. If we

view these rings as sub-rings of A_{cris} , it follows that

$$\widehat{S}_{\mathfrak{a}_{m+1}} \subset \widehat{P}_{(m)}(I) \subset \widehat{S}_{\mathfrak{a}_m},$$

which proves assertion a').

To prove b'), one can adapt an argument of Kiehl [Kiehl67]. For $m' \leq m$, let $\rho_{m',m} : B_{\mathrm{cris},(m)}^+ \to B_{\mathrm{cris},(m')}^+$ be the canonical map. Define

$$C_m = \prod_{m' \le m} B^+_{\mathrm{cris},(m')}, \qquad D_m = \prod_{m' < m} B^+_{\mathrm{cris},(m')}.$$

Let $\delta_m: B^+_{\mathrm{cris},(m)} \to C_m$ be the diagonal map defined by the $\rho_{m',m}$, let $\pi_m: C_m \to D_m$ be the projection, and let $\rho_m: C_m \to D_m$ be defined by $\rho_m(x)_{m'} = \rho_{m',m'+1}(x_{m'+1})$. The exact sequences

$$0 \rightarrow B_{\mathrm{cris},(m)}^+ \xrightarrow{\delta_m} C_m \xrightarrow{\pi_m - \rho_m} D_m \rightarrow 0$$

define a \varprojlim -acyclic resolution of the projective system $(B_{\mathrm{cris},(m)}^+)_{m\geq 0}$. Using this, b') is reduced to proving that, if one denotes $C = \varprojlim_m C_m \simeq \prod_m B_{\mathrm{cris},(m)}^+$, and $\rho = \varprojlim_m \rho_m : C \to C$, the map $\mathrm{Id} - \rho : C \to C$ is surjective.

For each m, we define a norm on the \mathbb{Q}_p -vector space $B^+_{\mathrm{cris},(m)}$ by setting, for $x \neq 0$,

$$v(x) = \sup\{n | x \in p^n A_{cris,\{m\}}\}, \qquad ||x|| = p^{-v(x)}.$$

This insures that $\|\rho_{m',m}\| \leq 1$ for all $m' \leq m$. Fix some real number $\eta < 1$, and let $E \subset C$ be the subspace of families (x_m) such that $\eta^{-m}\|x_m\| \to 0$ for $m \to \infty$. Endow E with the norm defined by $\|x\| = \sup_m \eta^{-m} \|x_m\|$. Then E is a Banach space, stable under ρ , and on which $\|\rho\| \leq \eta$. Thus $\mathrm{Id} - \rho$ is surjective on E.

Observe now that $W(R) \otimes \mathbb{Q}$ is dense in $B^+_{\mathrm{cris},(m)}$ for all m. Given any $x = (x_m) \in C$, this allows to construct inductively a sequence of elements $y = (y_m) \in C$ such that $y_0 = 0$, and

$$\|(x_m - y_m) + \rho_{m,m+1}(y_{m+1})\| < \eta^{2m}$$

Then $x' = (x_m - y_m + \rho_{m,m+1}(y_{m+1}))$ belongs to E. Thus, there exists $z \in E$ such that $x' = z - \rho(z)$. We now have $x = (\mathrm{Id} - \rho)(y + z)$, which ends the proof.

Let me finally indicate the correspondance with Berger's notations (\mathfrak{a} denotes the ideal of R used above) :

Fontaine	Berger
R	$\widetilde{\mathbf{E}}^{+}$
W(R)	$\widetilde{\mathbf{A}}^+$
$W(R)\otimes \mathbb{Q}$	$\widetilde{\mathbf{B}}^{+}$
$B_{\mathfrak{a}}^+$	$\widetilde{\mathbf{B}}_{ ext{max}}^+$
B^+	$\widetilde{\mathbf{B}}_{\mathrm{rig}}^{+}$

I don't know whether this remark is useful. At least, I hope it answers your question. Best regards,

Pierre

References

- [Berger01] L. Berger, Représentations p-adiques et équations différentielles, Thèse Université Paris 6 (2001).
- [Berthelot96] P. Berthelot, *D-modules arithmétiques I. Opérateurs différentiels de niveau fini*, Ann. Scient. École Norm. Sup. **29**, p. 185-272 (1996).
- [Fontaine82] J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Annals of Maths 115, p. 529-577 (1982).
- [Fontaine94] J.-M. Fontaine, Le corps des périodes p-adiques, Astérisque 223, p. 59-111 (1994).
- [Kiehl67] R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Inventiones Math. 2, p. 256-273 (1967).