Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ИПММ

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Отчет по лабораторной работе №7 по дисциплине «Математическая статистика»

Выполнил студент гр. 3630102/80201

Кирпиченко С. Р.

Руководитель

Баженов А. Н.

Санкт-Петербург 2021

Содержание

		Страни	ща
1	Пос	становка задачи	4
2	Teo	рия	4
	2.1	Метод максимального правдоподобия	4
	2.2	Проверка гипотезы о законе распределения генеральной	
		совокупности. Метод хи-квадрат	5
3	Pea	лизация	6
4	Рез	ультаты	6
	4.1	Проверка гипотезы о законе распределения генеральной	
		совокупности. Метод хи-квадрат	6
	4.2	Исследование на чувствительность	7
5	Обо	суждение	8

Список таблиц

	Страни	ща
1	Проверка гипотезы H_0 на нормальной выборке	6
2	Проверка гипотезы H_0 на выборке, сгенерированной по	
	распределению Лапласа	7
3	Проверка гипотезы H_0 на выборке, сгенерированной по	
	равномерному распределению	7

1 Постановка задачи

Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x,0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x,\hat{\mu},\hat{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$. Привести таблицу вычислений χ^2 .

Исследовать точность (чувствительность) критерия χ^2 - сгенерировать выборки равномерного распределения и распределения Лапласа малого объема (20 элементов). Проверить их на нормальность.

2 Теория

2.1 Метод максимального правдоподобия

 $L(x_1,...,x_n,\theta)$ — функция правдоподобия $(\Phi\Pi)$, рассматриваемая как функция неизвестного параметра θ :

$$L(x_1, ..., x_n, \theta) = f(x_1, \theta) f(x_2, \theta) ... f(x_n, \theta).$$
(1)

Оценка максимального правдоподобия:

$$\widehat{\theta}_{\text{MII}} = \arg\max_{\theta} L(x_1, ..., x_n, \theta). \tag{2}$$

Система уравнений правдоподобия (в случае дифференцируемости функции правдоподобия):

$$\frac{\partial L}{\partial \theta_k} = 0$$
 или $\frac{\partial \ln L}{\partial \theta_k} = 0$, $k = 1, ..., m$. (3)

2.2 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Выдвинута гипотеза H_0 о генеральном законе распределения с функцией распределения F(x).

Рассматриваем случай, когда гипотетическая функция распределения F(x) не содержит неизвестных параметров.

Правило проверки гипотезы о законе распределения по методу χ^2

- 1. Выбираем уровень значимости α .
- 2. По таблице [1, с. 358] находим квантиль $\chi^2_{1-\alpha}(k-1)$ распределения хи-квадрат с k-1 степенями свободы порядка $1-\alpha$.
- 3. Вычисляем вероятности $p_i = P(X \in \Delta_i), i = 1, ..., k$, с помощью гипотетической функции распределения F(x).
- 4. Находим частоты n_i попадания элементов выборки в подмножества $\Delta_i, i=1,...,k.$
- 5. Вычисляем выборочное значение статистики критерия χ^2 :

$$\chi_{\rm B}^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}.$$

- 6. Сравниваем $\chi_{\rm B}^2$ и квантиль $\chi_{1-\alpha}^2(k-1)$.
 - (а) Если $\chi_{\rm B}^2 < \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 на данном этапе проверки принимается.
 - (b) Если $\chi_{\rm B}^2 \ge \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется.

3 Реализация

Лабораторная работа выполнена на языке Python 3.9 с использованием библиотек numpy, scipy, matplotlib, seaborn.

4 Результаты

4.1 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Метод максимального правдоподобия:

$$\hat{\mu} \approx 0.08 \quad \hat{\sigma} \approx 1.08$$

Критерий согласия χ^2 :

- 1. Количество промежутков $k = 1.72\sqrt[3]{n} = 8$
- 2. Уровень значимости $\alpha=0.05$

3.
$$\chi^2_{1-\alpha}(k-1) = \chi^2_{0.95}(7) = 14.07$$

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -1.1)$	11	0.138	13.8	-2.8	0.5674
2	(-1.1, -0.73)	9	0.0886	8.86	0.14	0.0022
3	(-0.73, -0.37)	14	0.114	11.4	2.6	0.5928
4	(-0.37, 0.0)	16	0.1309	13.09	2.91	0.6478
5	(0.0, 0.37)	9	0.1341	13.41	-4.41	1.4486
6	(0.37, 0.73)	11	0.1225	12.25	-1.25	0.1282
7	(0.73, 1.1)	15	0.0999	9.99	5.01	2.5094
8	$(1.1, \infty)$	15	0.172	17.2	-2.2	0.2815
Σ	_	100	1	100	0	$6.18 = \chi_B^2$

Таблица 1: Проверка гипотезы H_0 на нормальной выборке

 $\chi_B^2 < \chi_{0.95}^2(7) \Rightarrow$ на текущем этапе гипотеза H_0 о том, что генеральная выборка имеет распределение $N(x,\hat{\mu},\hat{\sigma})$, принимается.

4.2 Исследование на чувствительность

Рассмотрим выборку, сгенерированную по распределению Лапласа.

$$\hat{\mu} \approx -0.09 \quad \hat{\sigma} \approx 0.89$$

Критерий согласия χ^2 :

- 1. Количество промежутков $k = 1.72\sqrt[3]{n} = 5$
- 2. Уровень значимости $\alpha=0.05$

3.
$$\chi^2_{1-\alpha}(k-1) = \chi^2_{0.95}(4) = 9.49$$

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(\infty, -1.1)$	4	0.1292	2.58	1.42	0.7753
2	(-1.1, -0.37)	2	0.2495	4.99	-2.99	1.7916
3	(-0.37, 0.37)	8	0.3171	6.34	1.66	0.4336
4	(0.37, 1.1)	4	0.213	4.26	-0.26	0.0159
5	$(1.1, \infty)$	2	0.0912	1.82	0.18	0.0171
Σ	_	20	1.0	20.0	0	$3.03 = \chi_B^2$

Таблица 2: Проверка гипотезы H_0 на выборке, сгенерированной по распределению Лапласа

Рассмотрим выборку, сгенерированную по равномерному распределению.

$$\hat{\mu} \approx -0.09 \quad \hat{\sigma} \approx 0.88$$

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(\infty, -1.1)$	3	0.127	2.54	0.46	0.0836
2	(-1.1, -0.37)	6	0.2516	5.03	0.97	0.1863
3	(-0.37, 0.37)	4	0.3207	6.41	-2.41	0.9087
4	(0.37, 1.1)	5	0.2128	4.26	0.74	0.1297
5	$(1.1, \infty)$	2	0.0879	1.76	0.24	0.0333
Σ	_	20	1.0	20.0	0	$1.34 = \chi_B^2$

Таблица 3: Проверка гипотезы H_0 на выборке, сгенерированной по равномерному распределению

Видим, что в обоих случаях гипотеза принимается.

5 Обсуждение

Оценки максимального правдоподобия показали свою состоятельность на выборке из 100 элементов, распределенной нормально. Погрешность найденных параметров наблюдается во втором знаке после запятой. На малых выборках метод хи-квадрат при проверке на нормальность не различает выборки, распределенные равномерно и по закону Лапласа, подтверждая гипотезу в обоих случаях. Это обусловлено теоремой К. Пирсона: статистика критерия χ^2 асимптотически при $n \to \infty$ распределена по закону χ^2 с k-1 степенями свободы. То есть на малых выборках теория ничего не гарантирует.

Примечание

С исходным кодом работы и данного отчета можно ознакомиться в репозитории https://github.com/Stasychbr/MatStat

Список литературы

[1] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. — СПб.: Изд-во Политехн. ун-та, 2009. — 395 с. (Математика в политехническом университете).