Successfully learning networks from undersampled neuroimaging data

D. Danks, S.M. Plis, C. Freeman, A. Caprihan, V. D. Calhoun Carnegie Mellon University, The Mind Research Network

Abstract

- Many structure learning algorithms are based on Granger causality
- Granger causality is unreliable given undersampled time series data
- We developed RASL to learn structure from undersampled data
- In simulated data, RASL algorithms reveal causal timescale structure and improved measurement timescale learning
- RASL algorithms provide additional insight on fMRI data

Problems with "Granger Causality"

- Granger causality: X Granger-causes $Y \equiv X$'s history provides information about Y's current state (beyond Y's history)
- Mathematically: $Y^t = \sum_{i=1}^k \left[\alpha_i Y^{t-i} + \beta_i X^{t-i} \right]$ is a significantly better predictor of Y^t than $Y^t = \sum_{i=1}^k \alpha_i Y^{t-i}$ (perhaps with covariates)
- Granger causality only reliable if key assumptions hold:
 - Linearity (but hemodynamic convolution does not create problems)
 - Causal sufficiency (but becoming less of a problem)
 - Equal timescales for both measurement and underlying causation
- Undersampling: Measurement timescale significantly slower than causal or communication timescale
 - Intermediate time points are unobserved
- Granger causality can be arbitrarily wrong given undersampling
 - ► X GC Y even though Y actually causes X
 - ► X GC Y even though no direct causal connection
 - X doesn't GC Y even though X actually causes Y
- Undersampling is a ubiquitous, persistent feature of fMRI data
- Conclusion: Structure learning algorithms based on Granger causality are likely unreliable given fMRI data

How to Overcome the Problems

put figure 1 here and describe succinctly

Synthetic Data

Talk about results and include pictures:

NOTE: do not forget UNM and CMU logo (already added to logo folder but not sure where to place in poster)

FMRI Data

Talk about results and include pictures:

Conclusions

Conclude stuff here

References

[1] Authors Title In *Journal*, year.