

(Established under Karnataka Act No. 16 of 2013)

100 Feet Ring Road
BSK III Stage
Bengaluru – 560085
Department of Science and Humanities

Course Title: Linear Algebra Course Code: UE21MA241B

Contact hours: 75 **LPTSC :** (4-0-0-4-4)

Lesson Plan

Class No.	Chapter Title / Reference	Portions to be Covered	Percenta ge of Syllabus Covered	Percentage of Syllabus Covered (Cumulative)
1		Introduction to Linear Algebra		
2-3		The Geometry of Linear Equations – Row and Column Pictures		
4	Unit 1: Matrices and Gaussian Elimination	Singular cases in two and three dimensions	20	20
5-7		Gaussian Elimination, The breakdown of elimination		
8		Elimination Matrices		
9-10	T1:pg :3-9, Pg: 11-15, Pg:21- 22, pg: 32-39, pg :45-47, pg: 49-51	Triangular Factors (LU and Cholesky method) and Row Exchanges		
11		Inverse by Gauss -Jordan Method, Transposes		
12		Applications		
13		Matlab Class Number 1 – Introduction		
14		Classwork/Assignment		
15		ISA1		
16-17	Unit 2: Vector Spaces T1: pg 69-71, pg 78-81, pg 92-98, pg 102-105, R2: 7.6 -R1:Pg 178-179	Vector Spaces and Subspaces (Definition only), Column Space and Null Space, Examples	20	40
18-19		Echelon Form, Row Reduced Form, Pivot Variables, Free variables		
20		Sum of subspaces, Direct sums		
21-23		Linear Independence, Basis and Dimensions		
24		The Four Fundamental Subspaces		
25		Uniqueness and Existence of Inverses Rank Nullity theorem		
26		Applications		
27		Matlab Class Number 2 – Gaussian Elimination		
28		Matlab Class Number 3 -Inverse of a Matrix by Gauss Jordan Method		
29		Classwork/Assignment		
30		ISA2		

31,32		Linear Transformations , Examples,		
31,32		Transformations Represented by Matrices		
33	_	Algebra of Linear Transformations, Invertible		
		maps, Isomorphisms		
34,35		Rotations, Reflections and Projections		
36,37	Unit 3: -Orthogonality -T1: pg 125-127, pg 127-129, pg 130-	Orthogonal Vectors and Subspaces, Orthogonal Bases	20	60
38,39		Cosines and Projections onto Lines		
40		Projections and Least Squares		
41		Applications		
42	132, pg 141-148, pg 152-157, pg 160-	Classwork/Assignment		
43	167	Matlab Class Number 4 – LU Decomposition		
44	R2: 11.1 to 11.4 R1:Pg 250-251	Matlab Class Number 5,6 - Span of Column Space of A, Four Fundamental Subspaces of A		
45		ISA3		
46-48		Orthogonalization - Orthogonal Matrices, Properties, Rectangular Matrices		
49-50		with orthonormal columns The Gram- Schmidt Orthogonalization, A = QR		
49-30	Unit 4:	Factorization		
51-53	Orthogonalization	Introduction to Eigen values and Eigenvectors,		
	, Eigen Values and Eigen Vectors	Properties of eigenvalues and		
	T1: pg 174-178, pg	Eigen vectors, Spectral theorem, Symmetric Matrices, Cayley-Hamilton theorem(Statement		
	179-182,	only)	20	80
54,55	R3: pg 55-60,	Diagonalization of a Matrix, Powers and		
	R1: pg 465-468 T1: pg 245-247,	Products of Matrices		
56	T1: pg 248-249,Pg	Applications		
57	285 R1: Pg 452	Matlab Class Number 7 - Projections by Least Squares		
58	8	Matlab Class Number 8 - The Gram- Schmidt		
59	_	process. Classwork/Assignment		
		•		
60		ISA4 Matlab Class Number 9 - QR Factorization Matlab Class Number 10 - Eigen Values and		
		Eigen Vectors		
61		Matlab Class Number 9 - QR Factorization		
62	-Unit 5: Singular Value	Matlab Class Number 10 - Eigen Values and		
62.65	- Decomposition	Eigen Vectors Overdretic Forms, Definitions of positive		
63-65	D4 454 454 455	Quadratic Forms, Definitions of positive definite, negative definite, positive semi-		
	R1: pg 471-472, 477 T1: pg 318-319	definite, negative semi-definite, Indefinite forms		
	T1: pg 319-321	and Matrices		
66	T1: pg 331-332	Tests for Positive Definiteness	20	
67-68	R1: pg 487-494	Problems on Positive Definite Matrices and		100
	R1: pg 500-501 T1:Pg 335-336	Least Squares, Problems on		100
69-71		Semi-definite Matrices The Singular Value Decomposition of a Matrix,		
		Examples		
72		Pseudoinverse		
73	1	Applications		
74	1	Matlab - In Semester Assessment		
75	+	ISA5		

Text Book:

T1: "Linear Algebra and its Applications", Gilbert Strang, 4th Edition, Thomson Brooks/ Cole, Second Indian Reprint 2007..

Reference Books:

R1: Linear Algebra and its Applications, David .C lay, Publication by Pearson, 5th Edition, 2015.

R2: Linear Algebra, Schaum's outlines, Seymour Lipschutz and Marc Lipson, 4th Edition, McGraw-Hill publications, 2009.

R3: Higher Engineering Mathematics, B S Grewal, 44th Edition, Khanna Publishers,2020.

R4: Practical Linear Algebra, Gerald Farin and Dianne Hansford, 3rd Edition, CRC Press, Taylor & Francis Group, 2013.

MATLAB:

- 1. Introduction and Gaussian Elimination.
- 2. Inverse of a Matrix by the Gauss- Jordan Method
- 3. The LU Decomposition
- 4. The Span of Column Space of a Matrix
- 5. The Four Fundamental Subspaces
- 6. The Gram-Schmidt Orthogonalization.
- 7. QR factorization
- 8. Projections by Least Squares
- 9. Eigen values and Eigen Vectors of a Matrix.

Reference Books:

- 1: Getting started with MATLAB, Rudra Pratap, Oxford University Press, 7th Edition, 2016.
- 2: MATLAB for Engineers, Holly Moore, Pearson Publications, New Jersey, 5th Edition, 2018.