the data challenge in music information retrieval

alexander lerch

education

- Electrical Engineering (Technical University Berlin)
- Tonmeister (music production, University of Arts Berlin)

professional

- Associate Professor at the School of Music, Georgia Institute of Technology
- 2000-2013: CEO at zplane.development

■ background

- audio algorithm design (20+ years)
- commercial music software development (10+ years)
- entrepreneurship (10+ years)

vww.linkedin.com/in/lerch

ESRM 2023

- field: music information retrieval, audio content analysis
 - audio classification
 - genre, instrument, auto-tagging, . . .
 - music transcription
 - pitch, chord, performance data, . . .
 - music processing
 - separation, . . .
 - sound and music generation
 - controllability
- technical areas of interest
 - representation learning
 - machine learning with insufficient data
 - evaluation of generative systems

- field: music information retrieval, audio content analysis
 - audio classification
 - genre, instrument, auto-tagging, . . .
 - music transcription
 - pitch, chord, performance data, . . .
 - music processing
 - separation, . . .
 - sound and music generation
 - controllability
- technical areas of interest
 - representation learning
 - machine learning with insufficient data
 - evaluation of generative systems

introduction audio classification — traditional

feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

content_nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf.

FSRM 2023 3 / 24

¹ J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," *Journal of the Audio Engineering Society (JAES)*, vol. 52, no. 7/8, pp. 724–739, 2004, [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

introduction audio classification — traditional

feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

content_nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf.

FSRM 2023 3 / 24

¹J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," Journal of the Audio Engineering Society (JAES), vol. 52,

no. 7/8, pp. 724-739, 2004. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

introduction audio classification — traditional

feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

no. 7/8, pp. 724-739, 2004. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

 ${\tt content_nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf.}$

FSRM 2023 3 / 24

¹ J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," Journal of the Audio Engineering Society (JAES), vol. 52,

introduction neural network based approaches

Georgia Center for Music Tech Technology

- no custom-designed features anymore
- learn features from basic inputs (like spectrograms)

- less required expert-knowledge, more complex systems
- less expert-tweaking, more rigorous experimental requiremen
- much higher data requirements

Fig.: towardsdatascience.com

introduction neural network based approaches

Georgia Center for Music Tech Technology

- no custom-designed features anymore
- learn features from basic inputs (like spectrograms)

- less required expert-knowledge, more complex systems
- less expert-tweaking, more rigorous experimental requirement
- much higher data requirements

data importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- model success largely depends on training data
- general challenges concerning data
 - subjectivity
 - noisiness
 - imbalance & bias
 - diversity & representativeness
 - amount

ESRM 2023

data importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- general challenges concerning data
 - subjectivity
 - noisiness
 - imbalance & bias
 - diversity & representativeness
 - amount

data importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- general challenges concerning data
 - subjectivity
 - noisiness
 - imbalance & bias
 - diversity & representativeness
 - amount

Tech 🛚 Technology

- an input to an output
 - mapping function is learned from patterns and characteristics from data
 - ⇒ model success largely depends on training data
- **general challenges** concerning data
 - subjectivity
 - noisiness
 - imbalance & bias
 - diversity & representativeness
 - amount

insufficient data

insufficient data in music

6 / 24 **FSRM 2023**

insufficient data in music

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections

FSRM 2023 6 / 24

insufficient data in music

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections
- detailed musical annotations are hard to come by, because
 - time consuming & tedious annotation process
 - experts needed for annotations

FSRM 2023 6 / 24

data
previous work on insufficient data

Georgia Center for Music Tech Technology

- literature proposes many ways of dealing with insufficient data
 - data synthesis
 - data augmentation²
 - transfer learning
 - semi- and self-supervised approaches
 - . . .

10.1109/ICASSP.2019.8683340. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

 ${\tt content_nondefault/uploads/2019/04/Qin-and-Lerch-2019-Tuning-Frequency-Dependency-in-Music-Classificatio.pdf.}$

FSRM 2023 7 / 24

²Y. Qin and A. Lerch, "Tuning Frequency Dependency in Music Classification," en, in *Proceedings of the International Conference on Acoustics Speech and Signal Processing (ICASSP)*, Brighton, UK: Institute of Electrical and Electronics Engineers (IEEE), 2019, pp. 401–405. DOI:

data
previous work on insufficient data

- literature proposes many ways of dealing with insufficient data
 - data synthesis
 - data augmentation
 - transfer learning²
 - semi- and self-supervised approaches
 - . . .

FSRM 2023 7 / 24

²S. Gururani, M. Sharma, and A. Lerch, "An Attention Mechanism for Music Instrument Recognition," in *ISMIR*, Delft, 2019.

data previous work on insufficient data

- literature proposes many ways of dealing with insufficient data
 - data synthesis
 - data augmentation
 - transfer learning
 - semi- and self-supervised approaches²³
 - . . .

FSRM 2023 7 / 24

²C.-W. Wu and A. Lerch, "Automatic drum transcription using the student-teacher learning paradigm with unlabeled music data," in *ISMIR*, Suzhou. 2017.

³S. Gururani and A. Lerch, "Semi-Supervised Audio Classification with Partially Labeled Data," in *Proceedings of the IEEE International Symposium on Multimedia (ISM)*, online: Institute of Electrical and Electronics Engineers (IEEE), 2021. [Online]. Available: https://arxiv.org/abs/2111.12761.

overview overview

Georgia Center for Music Tech Technology

- **■** self-supervised representation learning
 - utilize pre-trained features to improve classification
- 2 reprogramming
 - utilize pre-trained model to improve classification
- 3 data challenge revisited

FSRM 2023 8 / 24

reprogramming introduction

observation

 pre-trained deep models can be very powerful if trained with sufficient data, even for different tasks

■ idea

re-using pre-trained models for a new task without re-training

goals

- keep number of training parameters minimal
- utilize unmodified network trained on different task

FSRM 2023 9 / 24

reprogramming introduction

observation

 pre-trained deep models can be very powerful if trained with sufficient data, even for different tasks

■ idea

• re-using pre-trained models for a new task without re-training

goals

- keep number of training parameters minimal
- utilize unmodified network trained on different task

FSRM 2023 9 / 24

reprogramming overview

Georgia Center for Music Tech Technology

- inspired by
 - transfer learning
 - adversarial learning
- allows for small trainable model (input and output processing)

FSRM 2023 10 / 24

reprogramming experimental setup: data

Georgia Center for Music Tech Tech College of Design

OpenMic:

- 20 classes of musical instruments
- 10 s audio snippets (20000)

FSRM 2023 11 / 24

Tech 🛚 Technology

■ Baseline AST:

- good performance on audio event classification⁴
- ablation study:
 - CNN only
 - U-Net only
 - CNN + AST + FC
 - U-Net + AST + FC

FSRM 2023 12 / 24

⁴Y. Gong, Y.-A. Chung, and J. Glass, "AST: Audio Spectrogram Transformer," in *Proceedings of Interspeech*, arXiv: 2104.01778, Brno, Czechia, Jul. 2021. [Online]. Available: http://axxiv.org/abs/2104.01778 (visited on 04/17/2022).

reprogramming

results: classification metrics

method	F1 (macro)	train. param. (M)
AST + simple output mapping	62.03	0.001
CNN	60.77	0.017
U-Net	62.73	0.017
CNN + AST + FC	78.08	0.017
$U extsf{-}Net + AST + FC$	81.60	0.018

- a powerful model trained on a different task cannot easily be used directly
- proper input and output processing can significantly improve performance
- re-programming can beat the state-of-the-art with a fraction of trainable parameters (at least factor 10)

ESRM 2023 13 / 24

⁵H.-H. Chen and A. Lerch, "Music Instrument Classification Reprogrammed," in *Proceedings of the International Conference on Multimedia* Modeling (MMM), Bergen, Norway, 2023. [Online]. Available: https://arxiv.org/abs/2211.08379.

question:

• how can we provide extra training information without additional data labels

■ idea:

• use proven pre-trained embeddings (e.g., VGGish, OpenL3, ...)

goals:

- impart knowledge of pre-trained deep models
- improve model generalization by utilizing pre-trained embeddings
- reduce model complexity

■ general approach:

combine transfer learning and knowledge distillation ideas

FSRM 2023 14 / 24

question:

• how can we provide extra training information without additional data labels

■ idea:

• use proven pre-trained embeddings (e.g., VGGish, OpenL3, ...)

■ goals:

- impart knowledge of pre-trained deep models
- improve model generalization by utilizing pre-trained embeddings
- reduce model complexity

■ general approach:

combine transfer learning and knowledge distillation ideas

FSRM 2023 14 / 24

question:

• how can we provide extra training information without additional data labels

■ idea:

• use proven pre-trained embeddings (e.g., VGGish, OpenL3, ...)

■ goals:

- impart knowledge of pre-trained deep models
- improve model generalization by utilizing pre-trained embeddings
- reduce model complexity

■ general approach:

combine transfer learning and knowledge distillation ideas

FSRM 2023 14 / 24

embeddings as teachers method overview

- **■** transfer learning
 - use embeddings from a different task for the target task
- **■** knowledge distillation
 - use a teacher to train a less complex student on the same task

FSRM 2023 15 / 24

embeddings as teachers experimental setup

Georgia Center for Music Tech Technology

- task: auto-tagging
 - MagnaTagATune (MTAT) dataset:
 - ► 50 music tags
 - ▶ 30 s audio snippets (≈ 21000)
- systems:
 - baseline: student without teacher
 - teacher: embedding plus logistic regression
 - ▶ VGGish
 - ► OpenL3
 - ► PaSST
 - ► PANNs
 - KD: student trained with soft targets from teacher
 - EAsT: student regularized with teacher embeddings

FSRM 2023 16 / 24

Georgia Center for Music Tech Technology

- student model consistently outperforms baseline
- student model consistently outperforms knowledge distillation
- student model outperforms teacher for "old" embeddings
- modern embeddings are powerful but complex

FSRM 2023 17 / 24

⁶Y. Ding and A. Lerch, "Audio Embeddings as Teachers for Music Classification," in *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, Milan, Italy, 2023. DOI: 10.48550/arXiv.2306.17424. [Online]. Available: http://arxiv.org/abs/2306.17424 (visited on 07/03/2023).

data challenge revisited insufficiency vs. representativeness

Georgia | Center for Music Tech | Technology

moderate improvements can be made to deal with insufficient data, but

FSRM 2023 18 / 24

data challenge revisited insufficiency vs. representativeness

Georgia Center for Music Tech Tech College of Design

moderate improvements can be made to deal with insufficient data, but

is the amount of data really the main issue

- maybe not...
 - a closer look at example music datasets for popular tasks

FSRM 2023 18 / 24

data challenge revisited dataset example 1: chord detection

- Beatles dataset for chord detection
 - contains all Beatles albums
 - chord vocabulary
 - problem stylistic homogeneity (timbre, harmony progressions, release times, ...)
 - problem imbalance (get numbers), leads to only the top classes being classified, potential key dependence

FSRM 2023 19 / 24

data challenge revisited dataset example 2: music genre classification

Georgia Center for Music Tech Tech Technology

- GTZAN dataset for genre classification
 - 10 classes what are the most important music genres
 - problem labels don't match 'real' task (categories and single label classification)

FSRM 2023 20 / 24

data challenge revisited dataset example 3: source separation

Georgia Center for Music Tech Tech Technology

- MUSDB dataset for source separation
 - 4 tracks what tracks are most important
 - problem tracks do not reflect real needs for source separation

FSRM 2023 21 / 24

data challenge revisited dataset examples: summary

- false homogeneity/non-representativeness impacts generalization
 - system cannot learn what is hasn't seen or what seems irrelevant
- imbalance can lead to unwanted bias
 - training: system wrongly favors certain categories
 - testing: results may imply good performance yet cannot be generalized
- mismatch between dataset labels and real task may feign good performance
 - misleading results
 - architectural bias

FSRM 2023 22 / 24

conclusion data challenge

- we presented 2 recent approaches
 - a novel self-supervised regularization loss
 - reprogramming for audio classification
- all approaches perform at or above the state-of-the-art with different trade-offs between
 - training complexity
 - inference complexity
 - classification accuracy
- **but:** maybe we tried to solve the wrong challenges

FSRM 2023 23 / 24

Georgia Center for Music Tech Technology

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

zplane.development: www.zplane.de

music informatics group: musicinformatics.gatech.edu

github.com/alexanderlerch