МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра цивільної безпеки

РОЗРАХУНКОВО-ГРАФІЧНА РОБОТА

з дисципліни "Професійна та цивільна безпека"

Прогнозування та оцінка хімічного становища під час аварій на хімічно-небезпечних об'єктах

Варіант №___7___

Виконала	a:
студентка	а групи_КНСП-11_
	шифр групи
Йовба	к_Андріанна
	прізвище, ім'я
Перевіри	в:
Козій_	O. I.
	прізвище викладача

Львів-2020р.

 Тип НХРсірководень
2. Кількість HXP (Q), т 300
 Кількість HXP (Q), т300 Висота обвалування ємності з HXP (H), м1,0
4. Відстань від XHO до ОГ (L), км 1,5
5. Температура повітря, ⁰ C 20
 5. Температура повітря, ⁰C
7. Азимут напрям вітру вітру (A), град135
8. Астрономічний час аварії (T _{ав),} год16:00
9. Хмарність (бали) 6
10.Кількість персоналу ОГ, осіб680
11.Забезпеченість персоналу ЗІЗ, %100
Правильне виконання оцінюється в 20 балів, з них:
Хід розрахунку:
Визначаємо ступінь вертикальної стійкості повітря:конвекція 1 бал
1. Розраховуємо глибину прогнозованої зони хімічного забруднення:
а) розраховуємо еквівалентну кількість НХР в первинній хмарі:
$Q_{E1} = _0,23$
де $K_1 = _0,27$; $K_3 = \0,036$; $K_5 = \0,08$; $K_7 = _1$
б) розраховуємо глибину зони первинної хмари хімічного забруднення:
Г.— 1 18
$\Gamma_1 = 1,18$ 1 бал
в) розраховуємо еквівалентну кількість НХР у вторинній хмарі:
$Q_{E2} = 0.14$
де $K_2 = _0,042$; $K_4 = _1,33$; $d = _0,964$; $h = _0,8$;
Т _{вип} =13,81
$K_6 =3,03_$
г) розраховуємо глибину зони вторинної хмари хімічного забруднення:
Γ_2 =0,95
д) визначаємо розрахункову глибину зони забруднення:
$\Gamma_P = \underline{\hspace{1cm}} 1,66\underline{\hspace{1cm}}$ 1 бал
де $\Gamma_{12} = _1,18$; $\Gamma_{21} = _0,95$;

Вихідні дані для прогнозування:

е) визначаємо глибину перенесення повітряних мас:
Γ_{Π} =56
є) визначаємо глибину зони хімічного забруднення:
$\Gamma_{\Pi 3X3} = _1,66_$
2. Визначаємо ширину прогнозованої зони хімічного забруднення:
$\coprod_{\Pi 3X3} = \0,49$
3. Визначаємо площу зони прогнозованого хімічного забруднення :
а) площа прогнозованої зони хімічного забруднення (ПЗХЗ):
$S_{\Pi 3X3} = \0,85_$
де: $K_8 = _0,235;$
б) площа зони можливого хімічного забруднення (ЗМХЗ):
$S_{3MX3} =2,16_{_}$
де: Ф =90;
4. Визначаємо час підходу хмари хімічно забрудненого повітря до ОГД:
$t_{\text{підх}} = \6,6_x_B\$
5. Визначаємо тривалість дії фактора хімічного забруднення :
t _{уР} =13,8_год
6. Визначаємо можливі втрати працівників в осередку хімічного ураження: (кількість осіб)
а) при перебуванні на відкритій місцевості68
б) при перебуванні в укриттях27
Структура уражень людей на ОГ (на відкритій місцевості):
а) легкого ступеня17
б) середнього ступеня28
в) смертельні ураження23

7. Висновки:

2 бали

- 1. Оскільки $L(1,5 \text{ км}) < \Gamma$ пзхз (1,66 км), то ОГ може опинитися у зоні хімічного забруднення.
- 2. Хмара зараженого повітря підійде до об'єкта через 6,6 хв., що не дає змоги вивести людей із зони забруднення.
 - 3. Тривалість уражальної дії НХР відносно велика –13,8 год.
 - 4. Основні заходи щодо захисту людей:
- негайне оповіщення виробничого персоналу про загрозу хімічного забруднення;
- термінова зупинка виробництва і розміщення людей у сховищі із ввімкненою системою повітропостачання в режимі фільтровентиляції;
- постійне здійснення хімічної розвідки на об'єкті;
- забезпечення виробничого персоналу протигазами на 100 відсотків.

8. Графічна частина

4 бали

(схема хімічного зараження місцевості згідно вибраного мірила)

