НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ ИМЕНИ Д.В.СКОБЕЛЬЦЫНА

На правах рукописи УДК xxx.xxx

Брильков Иван Анатольевич

ОПРЕДЕЛЕНИЕ РАДИАЦИОННОЙ НАГРУЗКИ В КОСМИЧЕСКОМ АППАРАТЕ ПРИ ПОЛЕТЕ ПО ВЫСОКОШИРОТНОЙ ОРБИТЕ

Специальность 05.26.02 — «Безопасность в чрезвычайных ситуациях (авиационная и ракетно-космическая техника)»

Диссертация на соискание учёной степени кандидата технических наук

> Научный руководитель: кандидат физико-математических наук Бенгин Виктор Владимирович

Оглавление

		Стр.					
Введен	ие	4					
Глава 1	I. Обзор Литературы	6					
1.1	Радиационная обстановка на высокоширотных околоземных						
	орбитах. Вопросы, требующие детального исследования	6					
1.2	Ссылки	7					
1.3	Формулы	7					
	1.3.1 Ненумерованные одиночные формулы	7					
	1.3.2 Ненумерованные многострочные формулы	8					
	1.3.3 Нумерованные формулы	9					
Глава 2	2. Оформление различных элементов	10					
2.1	Форматирование текста	10					
2.2	Ссылки	10					
2.3	Формулы	10					
	2.3.1 Ненумерованные одиночные формулы	10					
	2.3.2 Ненумерованные многострочные формулы	11					
	2.3.3 Нумерованные формулы	12					
Глава 3	3. Длинное название главы, в которой мы смотрим на						
	примеры того, как будут верстаться изображения и списки	14					
3.1	Одиночное изображение	14					
3.2	Длинное название параграфа, в котором мы узнаём как сделать						
	две картинки с общим номером и названием	14					
3.3	Пример вёрстки списков						
3.4	Пробелы						
3.5	Математика						
3.6	Кавычки	16					
3.7	Тире	17					
3.8	Дефисы и переносы слов	17					
3.9	Текст из панграмм и формул						

Глава 4	l. Вёрстка таблиц	22				
4.1	Таблица обыкновенная	22				
4.2	Таблица с многострочными ячейками и примечанием	23				
4.3	Параграф - два	25				
4.4	Параграф с подпараграфами	25				
	4.4.1 Подпараграф - один	25				
	4.4.2 Подпараграф - два	25				
Заключ	иение	26				
Список	а литературы	27				
Список	г рисунков	27				
Список	таблиц	28				
Прилох	кение А. Примеры вставки листингов программного кода	29				
Прилох	кение Б. Очень длинное название второго приложения, в					
	котором продемонстрирована работа с длинными	. .				
Б.1	таблицами					
Б.1	Подраздел приложения					
Б.2	Ещё один подраздел приложения					
Б.3	Б.3 Очередной подраздел приложения					
Б.4	И ещё один подраздел припожения					

Введение

Актуальность работы обусловлена планами создания пилотируемого транспортного корабля нового поколения, работающего на высокоширотных и лунных орбитах. Проект транспортного корабля активно разрабатывается с 2010 г. и к настоящему времени, начата работа по выпуску рабочей конструкторской документации на составные части корабля, в том числе и на дозиметр бортовой.

Несмотря на непрерывный дозиметрический контроль всех российских космических миссий, начиная с первого полета человека в космос и заканчивая полетами экспедиций на МКС, не вызывает сомнений необходимость продолжения ряда исследований радиационной обстановки на каждом пилотируемом и на многих беспилотных космических аппаратах.

Именно поэтому необходимо разработать приборы для проведения дозиметрического мониторинга области околоземного пространства, в которой планируется проведение перспективных пилотируемых полетов. Данная работа направлена на создание основ для осуществления такого мониторинга.

Целью данной работы является разработка методов исследования распределения мощности дозы космической радиации и создание на основе этих методов современных приборов, предназначенных для космических аппаратов работающих на высокоширотных орбитах

исследование распределения мощности дозы космической радиации на высокоширотной траектории на фазе роста 24-го цикла солнечной активности.

Для достижения поставленной цели в работе необходимо было решить следующие задачи задачи:

- 1. Исследовать, разработать, вычислить и т. д. и т. п.
- 2. Разработать бортовой дозиметр для нового пилотируемого транспортного корабля.
- 3. Разработать прибор для дозиметрического мониторинга на борту космического аппарата «Ломоносов»
- 4. разработать прибор для

Основные положения, выносимые на защиту:

1. Первое положение

- 2. Второе положение
- 3. Третье положение
- 4. Четвертое положение

Научная новизна:

- 1. Впервые ...
- 2. Впервые ...
- 3. Было выполнено оригинальное исследование ...

Научная и практическая значимость . . .

Степень достоверности полученных результатов обеспечивается ... Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на: перечисление основных конференций, симпозиумов и т. п.

Личный вклад. Автор принимал активное участие ...

Публикации. Основные результаты по теме диссертации изложены в XX печатных изданиях [?;?;?], X из которых изданы в журналах, рекомендованных ВАК [?;?], XX — в тезисах докладов [?;?].

Объем и структура работы. Диссертация состоит из введения, четырёх глав, заключения и двух приложений. Полный объём диссертации составляет 41 страницу с 3 рисунками и 7 таблицами. Список литературы содержит 0 на-именований.

Глава 1. Обзор Литературы

1.1 Радиационная обстановка на высокоширотных околоземных орбитах. Вопросы, требующие детального исследования.

Исследования радиационной обстановки в космическом пространстве связано с началом полетов автоматических аппаратов и человека в космос. Широкое распространение технологий, связанных с использованием космической техники, а также непрерывные пребывание человека в космическом пространстве во время миссий на космических станциях МИР и МКС позволило выявить ряд опасностей космических полетов, среди которых особое внимание следует уделить радиационной опасности [Логачев Ю.И. 2007].

Запуск 2-го и 3-го спутников Земли, с приборами, изготовленными в НИ-ИЯФ МГУ, показал принципиальную возможность полета человека в космос, однако, как можно заметить из данных полученных при начальных исследованиях радиационной обстановки, на орбите земли существуют отдельные области повышения радиационного фона (Рисунок . . .). Существование данных областей связано с неоднородностями магнитного поля Земли и приводит к формированию области повышения потоков частиц в Южно Атлантической области, названной Южно-Атлантической Аномалией (ЮАА) [Вернов С.Н., Савенко И.А., Шаврин П.И., Писаренко Н.Ф. Обнаружение внутреннего радиационного пояса на высоте 320 км в районе южно-атлантической магнитной аномалии. ДАН СССР, 1961, т. 140, N 5, с. 1041-1044]. В первом приближении для описания магнитного поля Земли на высотах до 2000 км можно использовать представление модели смещенного диполя, этот подход позволяет учитывать ЮАА [Модель космоса 3 том 20стр].

1.2 Ссылки

Сошлёмся на библиографию. Одна ссылка: [?, с. 54] [?, с. 36]. Две ссылки: [?;?]. Много ссылок: [?;?;?, с. 54] [?;?;?;?;?;?;?;?;?;?;?;?;?;?;?;?]. И ещё немного ссылок: [?;?;?;?;?;?;?;?;?;?;?]. [?;?;?;?;?;?;?;?;?;?]

Сошлёмся на приложения: Приложение А, Приложение Б.2.

Сошлёмся на формулу: формула (2.1).

Сошлёмся на изображение: рисунок 3.2.

1.3 Формулы

Благодаря пакету *icomma*, \LaTeX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

1.3.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt(2) + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

 $\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\lambda mu\nu\xi\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

1.3.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$
$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Выровнять систему ещё и по переменной x можно, используя окружение alignedat из пакета amsmath. Вот так:

$$|x| = \begin{cases} x, & \text{если } x \geqslant 0 \\ -x, & \text{если } x < 0 \end{cases}$$

Здесь первый амперсанд означает выравнивание по левому краю, второй — по x, а третий — по слову «если». Команда \quad делает большой горизонтальный пробел.

Ещё вариант:

$$|x| = \begin{cases} x, \text{если } x \geqslant 0 \\ -x, \text{если } x < 0 \end{cases}$$

Можно использовать разные математические алфавиты:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\left(\begin{array}{ccc}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\right)$$

1.3.3 Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.1}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.2}$$

Впоследствии на формулы (2.1) и (2.2) можно ссылаться.

Сделать так, чтобы номер формулы стоял напротив средней строки, можно, используя окружение multlined (пакет mathtools) вместо multline внутри окружения equation. Вот так:

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + \dots + + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + \dots + + 96 + 97 + 98 + 99 + 100 = 5050$$
(1.3)

Глава 2. Оформление различных элементов

2.1 Форматирование текста

Мы можем сделать жирный текст и курсив.

2.2 Ссылки

Сошлёмся на библиографию. Одна ссылка: [?, с. 54] [?, с. 36]. Две ссылки: [?;?]. Много ссылок: [?;?;?, с. 54] [?;?;?;?;?;?;?;?;?;?;?;?;?;?;?]. И ещё немного ссылок: [?;?;?;?;?;?;?;?;?;?;?]. [?;?;?;?;?;?;?;?;?;?]

Сошлёмся на приложения: Приложение А, Приложение Б.2.

Сошлёмся на формулу: формула (2.1).

Сошлёмся на изображение: рисунок 3.2.

2.3 Формулы

Благодаря пакету *icomma*, LATEX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

2.3.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt(2) + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

αβγδεεζηθθικλπινξπωρρσςτυφφχψωΓΔΘΛΞΠΣΥΦΨΩ

2.3.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$
$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Выровнять систему ещё и по переменной x можно, используя окружение alignedat из пакета amsmath. Вот так:

$$|x| = \begin{cases} x, & \text{если } x \geqslant 0 \\ -x, & \text{если } x < 0 \end{cases}$$

Здесь первый амперсанд означает выравнивание по левому краю, второй — по x, а третий — по слову «если». Команда \quad делает большой горизонтальный пробел.

Ещё вариант:

$$|x| =$$

$$\begin{cases} x, \text{если } x \geqslant 0 \\ -x, \text{если } x < 0 \end{cases}$$

Можно использовать разные математические алфавиты:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPORSTUVWXYZ

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\left(\begin{array}{ccc}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{array}\right)$$

2.3.3 Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{2.1}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{2.2}$$

Впоследствии на формулы (2.1) и (2.2) можно ссылаться.

Сделать так, чтобы номер формулы стоял напротив средней строки, можно, используя окружение multlined (пакет mathtools) вместо multline внутри окружения equation. Вот так:

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + \dots + + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + \dots + + 96 + 97 + 98 + 99 + 100 = 5050$$
(2.3)

Глава 3. Длинное название главы, в которой мы смотрим на примеры того, как будут верстаться изображения и списки

3.1 Одиночное изображение

3.2 Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

Рисунок 3.2 — Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

Те же две картинки под общим номером и названием, но с автоматизированной нумерацей подрисунков посредством пакета subcaption:

На рисунке 3.3а показан Дональд Кнут без головного убора. На рисунке 3.3б показан Дональд Кнут в головном уборе.

а) Первый подрисунок

б) Второй подрисунок

Подрисуночный текст, описывающий обозначения, например. Согласно ГОСТ 2.105, пункт 4.3.1, располагается перед наименованием рисунка.

Рисунок 3.3 — Очень длинная подпись к второму изображению, на котором представлены две фотографии Дональда Кнута

3.3 Пример вёрстки списков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

3.4 Пробелы

В русском наборе принято:

- единицы измерения, знак процента отделять пробелами от числа: 10 кВт, 15 %;
- tg 20°, но: 20 °С;
- знак номера, параграфа отделять от числа: № 5, § 8;
- стандартные сокращения: т. е., и т. д., и т. п.;
- неразрывные пробелы в предложениях.

3.5 Математика

Русская традиция начертания греческих букв отличается от западной. Это исправляется серией \renewcommand.

До: $\epsilon \geq \phi$, $\phi \leq \epsilon$, $\kappa \in \emptyset$.

После: $\varepsilon \geqslant \varphi$, $\varphi \leqslant \varepsilon$, $\varkappa \in \emptyset$.

Кроме того, принято набирать греческие буквы вертикальными, что решается подключением пакета upgreek и аналогичным переопределением в преамбуле.

3.6 Кавычки

В английском языке приняты одинарные и двойные кавычки в виде '...' и "...". В России приняты французские («...») и немецкие ("...") кавычки (они называются «ёлочки» и «лапки», соответственно). «Лапки» обычно используются внутри "ёлочек", например, «... наш гордый "Варяг"...».

Французкие левые и правые кавычки набираются как лигатуры << и >>, а немецкие левые и правые кавычки набираются как лигатуры , , и " (' ').

Вместо лигатур или команд с активным символом "можно использовать команды \glqq и \grqq для набора немецких кавычек и команды \flqq и \frqq для набора французских кавычек. Они определены в пакете babel.

3.7 Tupe

Команда "--- используется для печати тире в тексте. Оно несколько короче английского длинного тире. Кроме того, команда задаёт небольшую жёсткую отбивку от слова, стоящего перед тире. При этом, само тире не отрывается от слова. После тире следует такая же отбивка от текста, как и перед тире. При наборе текста между словом и командой, за которым она следует, должен стоять пробел.

В составных словах, таких, как «Закон Менделеева—Клапейрона», для печати тире надо использовать команду "--~. Она ставит более короткое, по сравнению с английским, тире и позволяет делать переносы во втором слове. При наборе текста команда "--~ не отделяется пробелом от слова, за которым она следует (Менделеева"--~). Следующее за командой слово может быть отделено от неё пробелом или перенесено на другую строку.

Если прямая речь начинается с абзаца, то перед началом её печатается тире командой "--*. Она печатает русское тире и жёсткую отбивку нужной величины перед текстом.

3.8 Дефисы и переносы слов

Для печати дефиса в составных словах введены две команды. Команда "~ печатает дефис и запрещает делать переносы в самих словах, а команда "= печатает дефис, оставляя ТЕХ'у право делать переносы в самих словах.

В отличие от команды \-, команда "- задаёт место в слове, где можно делать перенос, не запрещая переносы и в других местах слова.

Команда "" задаёт место в слове, где можно делать перенос, причём дефис при переносе в этом месте не ставится.

Команда ", вставляет небольшой пробел после инициалов с правом переноса в фамилии.

3.9 Текст из панграмм и формул

Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) – вдрызг! Любя, съешь щипцы, – вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) – вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг!Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен

Ку кхоро адолэжкэнс волуптариа хаж, вим граэко ыкчпэтында ты. Граэкы жэмпэр льюкяльиюч квуй ку, аэквюы продыжщэт хаж нэ. Вим ку магна пырикульа, но квюандо пожйдонёюм про. Квуй ат рыквюы ёнэрмйщ. Выро аккузата вим нэ.

$$\Pr(F(\tau)) \propto \sum_{i=4}^{12} \left(\prod_{j=1}^{i} \left(\int_{0}^{5} F(\tau) e^{-F(\tau)t_{j}} dt_{j} \right) \prod_{k=i+1}^{12} \left(\int_{5}^{\infty} F(\tau) e^{-F(\tau)t_{k}} dt_{k} \right) C_{12}^{i} \right) \propto \sum_{i=4}^{12} \left(-e^{-1/2} + 1 \right)^{i} \left(e^{-1/2} \right)^{12-i} C_{12}^{i} \approx 0.7605, \quad \forall \tau \neq \overline{\tau}$$

Квуй ыёюз омниюм йн. Экз алёквюам кончюлату квуй, ты альяквюам ёнвидюнт пэр. Зыд нэ коммодо пробатуж. Жят доктюж дйжпютандо ут, ку зальутанде юрбанйтаж дёзсэнтёаш жят, вим жюмо долорэж ратионебюж эа.

Ад ентэгры корпора жплэндидэ хаж. Эжт ат факэтэ дычэрунт пэржыкюти. Нэ нам доминг пэрчёус. Ку квюо ёужто эррэм зючкёпит. Про хабэо альбюкиюс нэ.

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}$$

$$\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{vmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Про эа граэки квюаыквуэ дйжпютандо. Ыт вэл тебиквюэ дэфянятйоныс, нам жолюм квюандо мандамюч эа. Эож пауло лаудым инкедыринт нэ, пэрпэтюа форынчйбюж пэр эю. Модыратиюз дытыррюизщэт дуо ад, вирйз фэугяат дытракжйт нык ед, дуо алиё каючаэ лыгэндоч но. Эа мольлиз юрбанйтаж зигнёфэрумквюы эжт.

Про мандамюч кончэтытюр ед. Трётанё прёнкипыз зигнёфэрумквюы вяш ан. Ат хёз эквюедым щуавятатэ. Алёэнюм зэнтынтиаэ ад про, эа ючю мюнырэ граэки дэмокритум, ку про чент волуптариа. Ыльит дыкоры аляквюид еюж ыт. Ку рыбюм мюндй ютенам дуо.

$$2 \times 2 = 4$$
 $6 \times 8 = 48$ $3 \times 3 = 9$ $a + b = c$ $10 \times 65464 = 654640$ $3/2 = 1,5$

$$2 \times 2 = 4$$
 $6 \times 8 = 48$ $3 \times 3 = 9$ $a + b = c$ (3.1) $10 \times 65464 = 654640$ $3/2 = 1,5$

Пэр йн тальэ пожтэа, мыа ед попюльо дэбетиз жкрибэнтур. Йн квуй аппэтырэ мэнандря, зыд аляквюид хабымуч корпора йн. Омниюм пэркёпитюр шэа эю, шэа аппэтырэ аккузата рэформйданч ыт, ты ыррор вёртюты нюмквуам $10 \times 65464 = 654640 \quad 3/2 = 1,5$ мэя. Ипзум эуежмод a+b=c мальюизчыт ад дуо. Ад фэюгаят пытынтёюм адвыржаряюм вяш. Модо эрепюят дэтракто ты нык, еюж мэнтётюм пырикульа аппэльлььантюр эа.

Мэль ты дэлььынётё такематыш. Зэнтынтиаэ конклььюжионэмквуэ ан мэя. Вёжи лебыр квюаыквуэ квуй нэ, дуо зймюл дэлььиката ку. Ыам ку алиё путынт.

$$\left. \begin{array}{c}
2 \times x = 4 \\
3 \times y = 9 \\
10 \times 65464 = z
\end{array} \right\}$$

Конвынёры витюпырата но нам, тебиквюэ мэнтётюм позтюлант ед про. Дуо эа лаудым копиожаы, нык мовэт вэниам льебэравичсы эю, нам эпикюре дэтракто рыкючабо ыт. Вэрйтюж аккюжамюз ты шэа, дэбетиз форынчйбюж жкряпшэрит ыт прё. Ан еюж тымпор рыфэррэнтур, ючю дольор котёдиэквюэ йн. Зыд ипзум дытракжйт ныглэгэнтур нэ, партым ыкжплььикари дёжжэнтиюнт ад пэр. Мэль ты кытэрож молыжтйаы, нам но ыррор жкрипта аппарэат.

$$\frac{m_t^2}{L_t^2} = \frac{m_x^2}{L_x^2} + \frac{m_y^2}{L_y^2} + \frac{m_z^2}{L_z^2}$$

Вэре льаборэж тебиквюэ хаж ут. Ан пауло торквюатоз хаж, нэ пробо фэугяат такематыш шэа. Мэльёуз пэртинакёа юлламкорпэр прё ад, но мыа рыквюы конкыптам. Хёз квюот пэртинакёа эи, ельлюд трактатоз пэр ад. Зыд ед анёмал льаборэж номинави, жят ад конгуы льабятюр. Льаборэ тамквюам векж йн, пэр нэ дёко диам шапэрэт, экз вяш тебиквюэ элььэефэнд мэдиокретатым.

Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ, доминг лаборамюз эи ыам. Чэнзэрет мныжаркхюм экз эож, ыльит тамквюам факильизиж нык эи. Квуй ан элыктрам тинкидюнт ентырпрытаряш. Йн янвыняры трактатоз зэнтынтиаэ зыд. Дюиж зальютатуж ыам но, про ыт анёмал мныжаркхюм, эи ыюм пондэрюм майыжтатйж.

Глава 4. Вёрстка таблиц

4.1 Таблица обыкновенная

Так размещается таблица:

Таблица 4.1 — Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min})$, K
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

Таблица 4.2

Оконная функция	2N	4N	8N
Прямоугольное	8.72	8.77	8.77
Ханна	7.96	7.93	7.93
Хэмминга	8.72	8.77	8.77
Блэкмана	8.72	8.77	8.77

Таблица 4.3—пример таблицы, оформленной в классическом книжном варианте или очень близко к нему. ГОСТу по сути не противоречит. Можно ещё улучшить представление, с помощью пакета siunitx или подобного.

Таблица 4.3 — Наименование таблицы, очень длинное наименование таблицы, чтобы посмотреть как оно будет располагаться на нескольких строках и переноситься

Оконная функция	2N	4N	8N
Прямоугольное	8.72	8.77	8.77
Ханна	7.96	7.93	7.93
Хэмминга	8.72	8.77	8.77
Блэкмана	8.72	8.77	8.77

4.2 Таблица с многострочными ячейками и примечанием

Таблицы 4.4 и 4.5 — пример реализации расположения примечания в соответствии с ГОСТ 2.105. Каждый вариант со своими достоинствами и недостатками. Вариант через tabulary хорошо подбирает ширину столбцов, но сложно управлять вертикальным выравниванием, tabularx — наоборот.

Таблица 4.4 — Нэ про натюм фюйзчыт квюальизквюэ

доминг лаборамюз эи ыам (Общий съём цен шляп (юфть))	Шеф взъярён	адвыр- жаряюм	тебиквюэ элььэеф- энд мэдиокре- татым	Чэнзэ- рет мны- жарк- хюм
Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф Плюш изъят. Бьём чуждый цен хвощ!	pprox	~	\approx	+
Эх, чужак! Общий съём цен	+	+	+	_
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео	pprox	_	_	_
Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч.	_	+	+	\approx
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ.	+	_	\approx	_

Примечание — Плюш изъят: «+» — адвыржаряюм квуй, вим емпыдит; «-» — емпыдит коммюны ат; « \approx » — Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф?

Из-за того, что таблица 4.4 не помещается на той же странице (при компилировании pdflatex), всё её содержимое переносится на следующую, ближайшую, а этот текст идёт перед ней.

Таблица 4.5 — Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч

доминг лаборамюз эи ыам (Общий съём цен шляп (юфть))	Шеф взъярён	адвыр- жаряюм	тебиквюэ элььэеф- энд мэдио- крета- тым	Чэнзэрет мны- жарк- хюм
Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф Плюш изъят. Бьём чуждый цен хвощ!	\approx	\approx	\approx	+
Эх, чужак! Общий съём цен	+	+	+	_
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео	\approx	_	_	_
Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч.	_	+	+	\approx
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ.	+	_	\approx	

Примечание — Плюш изъят: «+» — адвыржаряюм квуй, вим емпыдит; «-» — емпыдит коммюны ат; « \approx » — Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф?

4.3 Параграф - два

Некоторый текст.

4.4 Параграф с подпараграфами

4.4.1 Подпараграф - один

Некоторый текст.

4.4.2 Подпараграф - два

Некоторый текст.

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа . . .
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало . . .
- 4. Для выполнения поставленных задач был создан . . .

И какая-нибудь заключающая фраза.

Список рисунков

3.1	TeX	14
3.2	Очень длинная подпись к изображению, на котором	
	представлены две фотографии Дональда Кнута	14
3.3	Очень длинная подпись к второму изображению, на котором	
	представлены две фотографии Дональда Кнута	15

Список таблиц

4.1	Название таблицы
4.2	
4.3	Наименование таблицы, очень длинное наименование таблицы,
	чтобы посмотреть как оно будет располагаться на нескольких
	строках и переноситься
4.4	Нэ про натюм фюйзчыт квюальизквюэ
4.5	Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч
Б.2	Наименование таблицы средней длины

Приложение А

Примеры вставки листингов программного кода

Для крупных листингов есть два способа. Первый красивый, но в нём могут быть проблемы с поддержкой кириллицы (у вас может встречаться в комментариях и печатаемых сообщениях), он представлен на листинге A.1.

Листинг А.1 Программа "Hello, world" на С++

```
#include <iostream>
using namespace std;

int main() //кириллица в комментариях при xelatex и lualatex име
    em проблемы с пробелами
{
    cout << "Hello, world" << endl; //latin letters in
        commentaries
    system("pause");
    return 0;
}</pre>
```

Второй не такой красивый, но без ограничений (см. листинг А.2).

Листинг А.2 Программа "Hello, world" без подсветки

```
#include <iostream>
using namespace std;

int main() //кириллица в комментариях
{
    cout << "Привет, мир" << endl;
}</pre>
```

Можно использовать первый для вставки небольших фрагментов внутри текста, а второй для вставки полного кода в приложении, если таковое имеется.

Если нужно вставить совсем короткий пример кода (одна или две строки), то выделение линейками и нумерация может смотреться чересчур громоздко.

В таких случаях можно использовать окружения lstlisting или Verb без ListingEnv. Приведём такой пример с указанием языка программирования, отличного от заданного по умолчанию:

```
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
```

Такое решение — со вставкой нумерованных листингов покрупнее и вставок без выделения для маленьких фрагментов — выбрано, например, в книге Эндрю Таненбаума и Тодда Остина по архитектуре

Наконец, для оформления идентификаторов внутри строк (функция main и тому подобное) используется lstinline или, самое простое, моноширинный текст (\texttt).

Пример А.3, иллюстрирующий подключение переопределённого языка. Может быть полезным, если подсветка кода работает криво. Без дополнительного окружения, с подписью и ссылкой, реализованной встроенным средством.

Листинг А.3 Пример листинга с подписью собственными средствами

```
## Caching the Inverse of a Matrix
  ## Matrix inversion is usually a costly computation and there may
     be some
5 | ## benefit to caching the inverse of a matrix rather than compute
     it repeatedly
  ## This is a pair of functions that cache the inverse of a matrix.
  ## makeCacheMatrix creates a special "matrix" object that can
     cache its inverse
10 makeCacheMatrix <- function(x = matrix()) {#кириллица в комментари
     ях при xelatex b lualatex имеет проблемы с пробелами
      i <- NULL
      set <- function(y) {</pre>
           x <<- y
           i <<- NULL
15
      get <- function() x</pre>
      setSolved <- function(solve) i <<- solve</pre>
      getSolved <- function() i</pre>
      list(set = set, get = get,
20
      setSolved = setSolved,
      getSolved = getSolved)
```

```
}
25
  ## cacheSolve computes the inverse of the special "matrix"
     returned by
  ## makeCacheMatrix above. If the inverse has already been
     calculated (and the
  ## matrix has not changed), then the cachesolve should retrieve
     the inverse from
  ## the cache.
30
  cacheSolve <- function(x, ...) {</pre>
       ## Return a matrix that is the inverse of 'x'
      i <- x$getSolved()</pre>
      if(!is.null(i)) {
           message("getting cached data")
35
           return(i)
      }
      data <- x$get()</pre>
      i <- solve(data, ...)</pre>
      x$setSolved(i)
40
       i
  }
```

Листинг А.4 подгружается из внешнего файла. Приходится загружать без окружения дополнительного. Иначе по страницам не переносится.

Листинг А.4 Листинг из внешнего файла

```
library(plyr) # for mapvalues
15
  #getting common data
  features <- read.csv("UCI HAR Dataset/features.txt", sep=" ",
     header = FALSE,
                        colClasses = c("numeric", "character"))
  activity_labels <- read.csv("UCI HAR Dataset/activity_labels.txt",
     sep="",
20
                                header = FALSE, colClasses = c("numeric
                                   ", "character"))
  #getting train set data
  subject_train <- read.csv("UCI HAR Dataset/train/subject_train.txt</pre>
                              header = FALSE, colClasses = "numeric",
                                 col.names="Subject")
25 y_train <- read.csv("UCI HAR Dataset/train/y_train.txt", header =
     FALSE,
                       colClasses = "numeric")
  x_train <- read.csv("UCI HAR Dataset/train/X_train.txt", sep="",</pre>
     header = FALSE,
                       colClasses = "numeric", col.names=features$V2,
                          check.names = FALSE)
30 activity_train <- as.data.frame(mapvalues(y_train$V1, from =
     activity_labels$V1,
                                               to = activity_labels$V2)
                                                  )
  names(activity_train) <- "Activity"</pre>
35
  #getting test set data
  subject_test <- read.csv("UCI HAR Dataset/test/subject_test.txt",</pre>
                             header = FALSE, colClasses = "numeric", col
                                .names="Subject")
  y_test <- read.csv("UCI HAR Dataset/test/y_test.txt", header =</pre>
     FALSE,
```

```
40
                      colClasses = "numeric")
  x_test <- read.csv("UCI HAR Dataset/test/X_test.txt", sep="",</pre>
     header = FALSE,
                      colClasses = "numeric", col.names=features$V2,
                         check.names = FALSE)
  activity_test <- as.data.frame(mapvalues(y_test$V1, from =</pre>
     activity labels$V1,
                                             to = activity_labels$V2))
45
  names(activity_test) <- "Activity"</pre>
  # Forming full dataframe
50 data_train <- cbind(x_train, subject_train, activity_train)
  data_test <- cbind(x_test, subject_test, activity_test)</pre>
  data <- rbind(data_train, data_test)</pre>
  # Cleaning memory
55 rm(features, activity_labels, subject_train, y_train, x_train,
     activity_train,
     subject_test, y_test, x_test, activity_test, data_train, data_
        test)
  # Part 2. Extracts only the measurements on the mean and standard
     deviation for each measurement.
60
  cols2match <- grep("(mean|std)", names(data))</pre>
  # Excluded gravityMean, tBodyAccMean, tBodyAccJerkMean,
     tBodyGyroMean,
  # tBodyGyroJerkMean, as these represent derivations of angle data,
65 # opposed to the original feature vector.
  # Subsetting data frame, also moving last columns to be first
  Subsetted_data_frame <- data[ ,c(562, 563, cols2match)]
70 # Part 5. From the data set in step 4, creates a second,
     independent tidy data set
```

Приложение Б

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

Б.1 Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
	<u> </u>		_
			продолжение следует

Параметр	Умолч.	Тип	(продолжение) Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
RICK	1	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
KICK	1	1111	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
RICK	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
&SURFPAI		1111	т. пинциализация модели для планеты туще
kick	1	int	0: инициализация без шума ($p_s = const$)
KICK	1	IIIt	1: генерация белого шума (<i>p_s</i> = <i>const</i>)
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
KICK	1	1111	1: генерация белого шума $(p_s = const)$
			2: генерация белого шума симметрично относительно
			экватора
more	0	int	
mars kick	1	int	1: инициализация модели для планеты Марс 0: инициализация без шума $(p_s = const)$
KICK	1	IIII	0: инициализация оез шума ($p_s = const$) 1: генерация белого шума
			2: генерация белого шума симметрично относительно
marc		int	экватора
mars biok	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			продолжение следует

	(продолжение)					
Параметр	Умолч.	Тип	Описание			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
more	0	int	экватора			
mars kick	0	int int	1: инициализация модели для планеты Марс 0: инициализация без шума ($p_s = const$)			
KICK	1	1111	0. инициализация без шума ($p_s = const$) 1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
more	0	int	экватора			
mars	U	IIII	1: инициализация модели для планеты Марс			

Б.2 Ещё один подраздел приложения

Нужно больше подразделов приложения! Пример длинной таблицы с записью продолжения по ГОСТ 2.105

Таблица Б.2 — Наименование таблицы средней длины

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно

Продолжение таблицы Б.2

Параметр	Умолч.	Тип	Описание
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума

Продолжение таблицы Б.2

Параметр	Умолч.	Тип	Описание
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
&SURFPA	R		
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс

Продолжение таблицы Б.2

Параметр	Умолч.	Тип	Описание
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс

Б.3 Очередной подраздел приложения

Нужно больше подразделов приложения!

Б.4 И ещё один подраздел приложения

Нужно больше подразделов приложения!