Embedded Systems Specification and Design

David Kendall

Introduction

- Recap of Propositional Logic
- Linear-time Temporal Logic (LTL)
- Specifying properties with LTL
- LTL specification patterns
- LTL, ProMela and SPIN

Propositional Logic: Recap

Definition (Proposition, Propositional Variable)

A proposition is a statement that is either true or false.

A propositional variable is a variable that has one of two possible values: true and false. Propositional variables are used to represent propositions.

- Propositions
 - "It rained in Newcastle on 17th October 2008".
 - "Mike Ashley is an excellent football club chairman"
 - n <= 1, len(buffer) == MAX_BUF_SIZE
- Propositional variables
 - rain, ashley, p, q, . . .
- Not propositions
 - "Pass the salt"
 - "Does Joe Kinnear know what he's doing?"

Propositional Logic: Recap

Definition (Logical Connective)

Compound propositions can be formed from simpler propositions using logical connectives, whose meaning can be given by a truth table.

р	q	¬ p	$p \lor q$	$p \wedge q$	$p \Rightarrow q$	$p \Leftrightarrow q$
false	false	true	false	false	true	true
false	true	true	true	false	true	false
true	false	false	true	false	false	false
true	true	false	true	true	true	true

 Modify our view of LTS with the idea that each state provides a valuation for a set of propositional variables. Ignore labels.

Definition (Transition System)

A transition system is a tuple $(S, s^0, \longrightarrow, Prop, P)$, where

- S is the set of states
- $s^0 \in S$ is the initial state
- ullet $\longrightarrow \subseteq S \times S$ is the transition relation
- Prop is the set of propositions
- ullet $\mathcal{P}: \mathcal{S}
 ightarrow \mathbf{2}^{\textit{Prop}}$ labels states with true propositions

Consider the transition system TE given by

with $Prop = \{m_is_2, m_is_3, m_is_4, n_is_0, n_is_2, n_is_4\}$ and $\mathcal{P} = \{X \mapsto \{m_is_2, n_is_0\}, Y \mapsto \{m_is_3, n_is_2\}, Z \mapsto \{m_is_4, n_is_4\}\}$

TE may arise from the Promela model given by

or more naturally from

 so we will usually assume that the elements of *Prop* are simple propositions involving program variables.

Traces

Definition (Trace)

Given a transition system T, a trace of T is a (possibly infinite) sequence of states s_0, s_1, s_2, \ldots such that for i > 0, $s_{i-1} \longrightarrow s_i$.

Example

 $s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, \dots$ is a trace of the transition system TE where

```
s_i = X, if i \mod 3 = 0
```

$$s_i = Y$$
, if $i \mod 3 = 1$

$$s_i = Z$$
, if $i \mod 3 = 2$

Timing diagrams

- Propositions are associated with the states in a trace.
- So they can change their truth value over time.
- Timing diagrams can be useful to show this change.

- Each propositional variable's value is shown as a line of the timing diagram.
- Line high proposition is true.
- Line low proposition is false.

State formulas

- Now we can start to make formal statements about what happens in a trace.
- State formulas are the simplest statements about traces. They are
 propositional formulas constructed from *Prop* and the logical
 connectives; e.g. n_is_4, m_is_3 ∧ n_is_2, p ⇒ q, etc.
- For a trace s and state formula f, we can ask whether f is true at some state s_i in s, if it is we write $s_i \models f$

which *i* do we have (a) $s_i \models p \land q$, (b) $s_i \models p \lor q$, and (c) $s_i \models p \Rightarrow q$?

Temporal Connectives

How can we say something about traces as they evolve over time?

- □ Always: □φ is true at moment i if φ is true from moment i onwards
- \Diamond **Eventually**: $\Diamond \phi$ is true at moment i if ϕ is eventually true at i or some time later
- \mathcal{U} **Strong Until**: $\phi \mathcal{U} \psi$ is true at moment i if ψ is eventually true and ϕ is true until then.
- $\mathcal{W}-$ Weak Until: Like strong until except we don't require that ψ is eventually true

Always ($\Box \phi$)

Definition (Always)

$$s_i \models \Box \phi \text{ iff } \forall j \geq i \bullet s_j \models \phi$$

- $s_3 \models \Box p$
- $s_0 \not\models \Box p$

Eventually $(\diamondsuit \phi)$

Definition (Eventually)

$$s_i \models \Diamond \phi \text{ iff } \exists j \geq i \bullet s_i \models \phi$$

- $s_0 \models \Diamond p$
- $s_6 \models \Diamond p$
- s₇ ⊭ ⋄ p

Exercises

• Which of the following claims are true of the trace shown in the diagram below?

- 0 $s_9 \models \Box q$
- $s_9 \models \Box \neg p$
- $\circ s_0 \models \Box(p \Rightarrow q)$
- \circ $s_0 \models \Diamond q$

Strong Until $(\phi \mathcal{U} \psi)$

Definition (Strong Until)

$$\mathbf{s}_i \models \phi \ \mathcal{U} \ \psi \ \text{iff} \ \exists \ \mathbf{k} \geq i \bullet \mathbf{s}_k \models \psi \land \forall j \mid i \leq j < \mathbf{k} \bullet \mathbf{s}_i \models \phi$$

- $s_2 \models p \mathcal{U} q$
- $s_7 \models p \mathcal{U} q$
- $s_0 \not\models p \mathcal{U} q$
- $s_9 \not\models p \mathcal{U} q$

Weak Until $(\phi \mathcal{W} \psi)$

- Define weak until in the style of the other definitions.
- Define weak until using the other temporal connectives.

Classifying temporal properties

- Safety "Nothing bad happens"
 □¬ (in_cs1 ∧ in_cs2)
- Liveness "Something good happens"
 □(request ⇒ ◊receive)
- Fairness "Computation is fair"
 □◇coffee_ordered ⇒ □◇coffee_delivered

Specification Patterns

- It is easier to write specifications using temporal logic rather than automata.
- But it is still not easy.
- Specification patterns can help just as design patterns can help in programming.
- Alavi, H. et al., SPEC Patterns, 2005

Main specification patterns for LTL

- Invariance (□¬ P)
 - $\Box \neg$ (systemState == DANGEROUS) $\Box \neg$ ((crossing == OCCUPIED) \land (gate == OPEN))
- Bounded Response ($\Box(P \Rightarrow \Diamond Q)$)
 - $\Box(\text{waitingForService} \Rightarrow \Diamond \text{serviceReceived})$ $\Box(\text{facingObstacle} \Rightarrow \Diamond(\text{distanceFromObstacle} >= 5))$
- Nearly all of the specifications that you write will be either an invariance property or a bounded response property.
- Much more practice in writing LTL specifications to come in the lab sessions.

Acknowledgements

These slides are based on material in Barland, I.; Vardi, M.; Greiner, J. *Model Checking Concurrent Programs*, Connexions Web site. http://cnx.org/content/col10294/1.3/, Oct 27, 2005.