

Description

The VSM6003 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. This device is suitable for use as a Battery protection or in other switching application.

General Features

V_{DS} =60V,I_D =3A

 $R_{DS(ON)}$ <105m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 125m Ω @ V_{GS} =4.5V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Application

- Battery switch
- ●DC/DC converter

SOT-23-3

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM6003-S2	VSM6003	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _G S	±20	V
Drain Current-Continuous	I _D	3	Α
Drain Current-Pulsed (Note 1)	I _{DM}	10	А
Maximum Power Dissipation	P _D	1.7	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	$R_{\theta JA}$	73.5	°C/W
· ·		,	1

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μΑ	

Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.0	1.3	2.0	V	
Drain-Source On-State Resistance	D	V_{GS} =10V, I_D =3A	-	78	105	mΩ	
Diain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =1.5A	-	95	125	mΩ	
Forward Transconductance g _F		V _{DS} =15V,I _D =2A	-	3	-	S	
Dynamic Characteristics (Note4)							
Input Capacitance	C _{lss}	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	510	-	PF	
Output Capacitance	Coss		-	34	-	PF	
Reverse Transfer Capacitance	C _{rss}	r-1.0ivinz	-	26	-	PF	
Switching Characteristics (Note 4)							
Turn-on Delay Time	t _{d(on)}	V _{DD} =30V,I _D =1.5A	-	6	-	nS	
Turn-on Rise Time	t _r		-	15	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =1 Ω	-	15	-	nS	
Turn-Off Fall Time	t _f		-	10	-	nS	
Total Gate Charge	Qg	V _{DS} =30V,I _D =3A, V _{GS} =10V	-	14.6	-	nC	
Gate-Source Charge	Q _{gs}		-	1.6	-	nC	
Gate-Drain Charge	Q_{gd}	v _{GS} -10v	-	3	-	nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	V_{GS} =0 V , I_{S} =3 A	-	-	1.2	V	
Diode Forward Current (Note 2)	Is		-	-	3	Α	
	•		•	•		•	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

 T_J -Junction Temperature (°C) Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

T_J-Junction Temperature(°C)

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

Vgs Gate-Source Voltage (V)

Figure 11 Gate Charge

Figure 8 Drain-Source On-Resistance

Figure 10 Capacitance vs Vds

Figure 12 Source- Drain Diode Forward

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance