Безопасность жизнедеятельности Семинар № 7 Оценка химической обстановки

Аварийно химически опасные вещества (AXOB) – химические вещества, которые при выходе в окружающую среду способны заражать воздух (почву) с поражающей концентрацией (плотностью);

Химическая обстановка – масштабы и степень заражения отравляющими веществами или АХОВ воздуха, местности, водоемов, сооружений, техники и т. п.

Оценка химической обстановки — это определение масштабов и характера заражения АХОВ окружающей среды, а также анализ влияния АХОВ на деятельность объектов и сил ГО и установление степени опасности для населения.

Авария - нарушения технологического процесса, повреждения трубопроводов, емкостей, хранилищ, транспортных средств при осуществлении перевозок, приводящие к выбросу АХОВ в атмосферу в количествах, представляющих опасность массового поражения людей.

Разрушение – ситуация, связанная с полной разгерметизацией всех имеющихся на предприятии емкостей и нарушением технологических коммуникаций (наиболее вероятны при крупномасштабных землетрясениях, мощных взрывах или в результате военного воздействия).

Подлежат определению:

- глубина зоны заражения;
- площадь возможного заражения;
- площадь территории, над которой пройдет облако;
- время прихода зараженного облака к определенному рубежу;
- продолжительность заражения.

<u>Допущения:</u>

- 1. Внешние границы зон заражения рассчитываются по пороговой токсодозе АХОВ.
- 2. Определение глубины зоны заражения проводится по единой для всех АХОВ таблице.

<u>Допущения:</u>

3. Для того, чтобы пользоваться единой таблицей для всех АХОВ, производится пересчет исходных данных и характеристик вещества к веществу, выбираемому эталоном. Эталонным веществом в используемой методике прогнозирования выбран XAOD.

Допущения:

4. Основная таблица составлена для аварий с выходом хлора при следующих метеоусловиях: инверсия, температура воздуха 20°С.

Эквивалентное количество AXOB - это такое количество хлора, масштаб заражения которым при инверсии и температуре 20°С эквивалентен масштабу заражения данным AXOB при конкретных метеоусловиях.

Исходные данные:

- метеорологические условия (степень вертикальной устойчивости воздуха, скорость приземного ветра и температура воздуха);
- виды, количество и способ хранения АХОВ, в ёмкостях на объекте;
- характер разлива АХОВ (свободно на подстилающую поверхность или в поддон, обваловку);
- время, на которое делается прогноз.

Задание метеоусловий

Степень вертикальной устойчивости:

- инверсия температура воздуха в приземном слое возрастает с высотой;
- конвекция температура воздуха в приземном слое понижается с высотой;
- изотермия температура воздуха в приземном остаётся постоянной.

12

Задание метеоусловий

- 2 случая задания метеоусловий:
- 1) при оценке по факту ЧС метеоусловия берутся **реальные**;

Задание метеоусловий

2 случая задания метеоусловий:

2) при оценке виртуальной ЧС, поскольку метеоусловия неизвестны, то они предполагаются наихудшими с точки зрения возможных последствий, т.е. в наибольшей степени благоприятствующие распространению ядовитого облака:

СВУ — инверсия, V = 1 м/с, t°С — максимальная в данной местности в данное время года.

Учёт вида происшествия

• <u>авария</u> – прогноз ведется исходя из объема наибольшей емкости;

• разрушение – прогноз ведется по совокупному объему всех емкостей с АХОВ на рассматриваемом химически опасном объекте (ХОО). Прогноз на разрушение объекта ведется для сейсмоопасных районов и для ЧС военного времени.

1) Количество АХОВ, вышедшего при ЧС

При хранении (транспортировке) в газообразном

состоянии

$$m_0 = \frac{P}{98.1} \rho_{\Gamma} V \frac{n\%}{100}$$
, T

Р – давление в резервуаре, кПа;

 ρ_r – плотность газа, т/м³;

V – объем резервуара, м 3 ;

n – процентная концентрация АХОВ, если оно находится в смеси с другими газами, %.

1) Количество АХОВ, вышедшего при ЧС

При хранении (транспортировке) <u>в жидком</u> состоянии

$$m_0=c_{
m san}V
ho_{
m ж}$$
, т

с_{зап} – коэффициент стандартного заполнения резервуара;

V – объем резервуара, м³;

 $\rho_{\rm w}$ – плотность жидкости, т/м³;

- 2) Высота слоя жидкости (в зависимости от условий хранения)
 - 1) При стандартно залитом резервуаре высоту слоя жидкости в поддоне или обваловке принимают равной

$$h = H - 0.2$$
, M

Н – высота поддона или обваловки, м;

h – высота слоя испарения, м

- 2) Высота слоя жидкости (в зависимости от условий хранения)
 - 2) В случае общей обваловки для нескольких резервуаров при виртуальной аварии высота слоя жидкости вычисляется по формуле

$$h = (H - 0.2) \frac{max\{m_{0i}\}}{\sum_{i} m_{0i}}, M$$

 m_{0i} – масса AXOB в каждом резервуаре, т.

- 2) Высота слоя жидкости (в зависимости от условий хранения)
 - 3) При <u>свободном разливе АХОВ на</u> подстилающую поверхность (земля, бетон, асфальт и т.п.) высота слоя жидкости принимается равной h = 0.05 м.

3) Расчёт эквивалентного количества AXOB Коэффициенты

 К₁ – коэффициент, определяющий относительное количество АХОВ, переходящее при аварии в газ;

Способ хранения	Вещество, агрегатное состояние	K_1	
1	Все низкокипящие вещества, хранящиеся	См.	
	под давлением в виде жидкости	таблицу	
2	Аммиак, хранящийся изотермически в виде	См.	
	жидкости	таблицу	
	Другие АХОВ, хранящиеся изотермически в	0	
	виде жидкости	O	
3	Низкокипящие АХОВ, хранящиеся под	1	
	давлением в виде газа		
4	Высококипящие жидкости, хранящиеся при	0	
	нормальных условиях	0	

- 3) Расчёт эквивалентного количества AXOB Коэффициенты
 - K_2 удельная скорость испарения вещества количество испарившегося вещества в тоннах с площади 1 м. кв. за 1 час, (т/м 2 ч);
 - *K*₃ отношение пороговой токсодозы хлора к пороговой токсодозе данного AXOB;
 - K_4 коэффициент, учитывающий влияние скорости ветра на интенсивность испарения AXOB;

3) Расчёт эквивалентного количества AXOB Коэффициенты

• K_5 – коэффициент, учитывающий влияние степени вертикальной устойчивости воздуха на интенсивность рассеивания AXOB:

для инверсии $K_5 = 1$, для изотермии $K_5 = 0.23$,

для конвекции $K_5 = 0.08$.

- 3) Расчёт эквивалентного количества АХОВ Коэффициенты
 - К₆ коэффициент, учитывающий соотношение времени, на которое осуществляется прогноз $(T_{\rm прог})$ и продолжительности испарения АХОВ $(T_{\rm исп})$: $K_6 = \min \{ T_{\text{MCH}}; T_{\text{DDOF}} \}^{0.8} ,$ при $T_{\rm исп} \geq 1$ часа при $T_{\rm исп}$ < 1 часа $K_6 = 1.$

Если необходимо рассчитать максимальные размеры зон заражения, то Т_{прог} условно принимается бесконечно большим. 25

- 3) Расчёт эквивалентного количества АХОВ Коэффициенты
 - K_7 коэффициент, учитывающий влияние температуры воздуха в момент аварии на интенсивность испарения АХОВ при формировании первичного ($K_{7\pi}$) и вторичного облака (K_{78}):

для газообразных АХОВ $K_7 = 1$, для жидкостей и сжиженных газов $K_{7\pi}$, K_{7B} из таблицы

3) Расчёт эквивалентного количества АХОВ

В первичном облаке

$$m_{91} = K_1 K_3 K_5 K_{7\Pi} m_0$$

3) Расчёт эквивалентного количества АХОВ Во вторичном облаке (за счёт испарения жидкой фазы АХОВ)

Время испарения
$$T_{\text{исп}} = \frac{h
ho_{\text{ж}}}{K_2 K_4 K_{7B}}$$
, ч

При $T_{\text{исп}}$ < 1 во всех дальнейших расчетах принимаем T=1 ч.

3) Расчёт эквивалентного количества АХОВ Во вторичном облаке (за счёт испарения жидкой фазы АХОВ)

Эквивалентное количество

$$m_{92} = (1-K_1)K_2K_3K_4K_5K_6K_{7B}\frac{m_0}{h\rho_{x}}$$
, т

- 4) Расчёт глубины зоны заражения при аварии на XOO
 - В основной таблице приведены значения глубин зон заражения первичным Г₁ или вторичным Г₂ облаком АХОВ в зависимости от эквивалентного количества вещества и скорости ветра. Соотношение между значениями Г₁ и Г₂ для каждого АХОВ индивидуально.

- 4) Расчёт глубины зоны заражения при аварии на XOO
 - Глубина зоны заражения, обусловленная первичным и вторичным облаками, определяется формулой: Γ_{o6} = max { Γ_1 ; Γ_2 } + 0,5 min { Γ_1 ; Γ_2 } , км.
 - Глубина переноса облака $\Gamma_{\rm пер} = V_{\rm пер} T_{\rm прог}$, км $V_{\rm пер}$ средняя скорость ветра на высоте переноса облака км/ч;
 - $T_{\text{прог}}$ время прогноза.

- 4) Расчёт глубины зоны заражения при аварии на XOO
 - за окончательную расчетную глубину зоны заражения (Г_{ок}) принимается минимальная из величин Г_{об} и Г_{пер}

$$\Gamma_{o\kappa}$$
 = min { Γ_{o6} ; Γ_{nep} }, κΜ

время формирования зоны $T_{\Phi}=rac{\Gamma_{
m ok}}{V_{
m nep}}$, ч

5) Определение площади зоны заражения и нанесение её на карту

Зона возможного заражения – это пространство , в котором может распространиться АХОВ при данных метеорологических условиях.

На картах зона возможного заражения изображается в виде секторов окружности радиуса Г_{ок}. Биссектриса секторов ориентирована по направлению ветра и проходит через центр аварии.

5) Определение площади зоны заражения и нанесение её на карту

Скорость ветра в приземном	Форма и размеры зоны
cΛoe, v <i>M/c</i>	возможного заражения
v ≤ 0,5	сектор с центральным углом 360°
	(окружность)
0,6 < v ≤ 1	сектор с центральным углом 180°
1,1 < v ≤ 2	сектор с центральным углом 90°
v > 2	сектор с центральным углом 45°

5) Определение площади зоны заражения и нанесение её на карту

Площадь зоны возможного заражения облаком АХОВ:

$$S_{\rm B} = 8.73 \cdot 10^{-3} \Gamma_{
m oK}^{2} \varphi = \frac{\pi \Gamma_{
m oK}^{2} \varphi}{360}$$
, km²

arphi – угловые размеры зоны, град

5) Определение площади зоны заражения и нанесение её на карту

Зона фактического заражения – это территория, воздушное пространство которой заражено АХОВ в опасных для жизни пределах

Конфигурация зоны фактического заражения близка к эллипсу, который не выходит за пределы зоны возможного заражения и может перемещаться в ее пределах под воздействием ветра.

5) Определение площади зоны заражения и нанесение её на карту

Из-за возможного перемещения зоны фактического заражения на карту **ее не наносят.** Ее размеры используют для определения возможной численности пораженного населения и необходимого запаса сил и средств, необходимых для проведения спасательных работ.

5) Определение площади зоны заражения и нанесение её на карту

При расчетах зоны используется коэффициент K_8 , учитывающий влияние степени вертикальной устойчивости воздуха на интенсивность рассеивания АХОВ:

```
для инверсии K_8 = 0.081, для изотермии K_8 = 0.133, для конвекции K_8 = 0.235.
```

5) Определение площади зоны заражения и нанесение её на карту

Площадь зоны фактического заражения облаком АХОВ:

$$S_{\Phi} = K_8 \Gamma_{\text{ok}}^2 \theta^{0,2}, \text{ KM}^2$$

heta – время формирования зоны на момент прогноза

$$\theta = \min\{T_{\Phi}; T_{\text{прог}}\}$$

5) Определение времени подхода заражённого облака к заданной границе (объекту)

$$T_{
m подx}=rac{R}{V_{
m пер}}$$
, ч

где *R* – расстояние от источника заражения до выбранного рубежа, км;

6) Определение продолжительности заражения

Время поражающего действия АХОВ (продолжительность заражения) $T_{\rm зар}$ определяется максимальным временем испарения из всех вышедших АХОВ.

Методика расчёта при разрушении Допущения

- 1) Все вещества находятся в жидком агрегатном состоянии.
- 2) Все вещества не вступают между собой в химические реакции.

Методика расчёта при разрушении

- 1) Расчет T_i для і от 1 до n, где n число различных АХОВ в ЧС.
- 2) Определение наборов коэффициентов $(K_1 K_8)_i$ для каждого *i*-го AXOB.

Методика расчёта при разрушении

3) Определение обобщенного эквивалентного количества АХОВ:

$$m_{\text{3}} = 20K_4K_5 \sum_{i} \frac{K_2K_3K_6K_{7\text{B}}m_0}{\rho_{\text{XK}}}$$

(При расчете первичными облаками пренебрегаем, k_7 берем для вторичного облака).

Методика расчёта при разрушении

- 4) Расчет глубин зон аналогично расчету при авариях.
- 5) Расчет площадей.
- 6) Расчет продолжительности заражения по формуле:

$$T_{\text{sap}} = \max \{T_{\text{исп }i}\}.$$