Análisis de Complejidad Simplicidad de Algoritmos

Celia Rubio Madrigal

Definición 1.1. (Algoritmo reticente)

A es un algoritmo reticente para el problema P sí, y solo sí, [1]

$$(\forall M) \ \mathcal{G}(A, t, M, P) \implies \bigwedge_{o \in \mathcal{T}} \mathcal{E}(M, o)$$

donde t es el tiempo, $\mathcal{G}(A, t, M, P)$ es el predicado

"A gasta un tiempo t de la manera M mientras resuelve P",

 ${\mathcal I}$ es el conjunto de observadores ingenuos y ${\mathcal E}({\mathit M},o)$ es el predicado

"M es suficientemente artificiosa como para engañar a o".

Ejemplo 1.1. La búsqueda de la llave correcta a la hora de abrir una cerradura.

Ejemplo 1.2. El recorrido de grafos en la Odisea de Homero.

Ejemplo 1.3. La vuelta atrás.

Ejemplo 1.4. La resolución de buscaminas de María.

Merge

Bubble

Quick

Algoritmo 1.1. (Bogo)


```
import random
def is_sorted(L) :
   return all (L[i] \le L[i+1] for i in range (len(L)-1)
def bogo(L):
    while not is sorted(L):
        random.shuffle(L)
    return L
```

Algoritmo 1.1. (Bogo)

(Versión probabilista *Las Vegas*)

```
def LV(x, y):
   v = x
   random.shuffle(y)
   return is_sorted(y)
def repetirLV(x):
   v = x
    exito = False
   while not exito:
       LV(x, y, exito)
   return y
```

Si |x| = n:

▶
$$p(x) = \frac{1}{n!}$$

▶
$$e(x) = f(x) = n$$

►
$$t(x) = e(x) + \frac{1 - p(x)}{p(x)} f(x)$$

= $n + (n!-1)n = n \cdot n!$

Algoritmo 1.1. (Bogo)

¿Generador aleatorio?

Arreglo 1.1. (☒ y ⊚)

En vez de permutar aleatoriamente, recorremos las permutaciones una a una.

```
from itertools import
    permutations

def bad(L) :
    P = permutations(L)
    for X in P :
        if is_sorted(X) :
        return X
    return
```

Arreglo 1.2. ([⇒]_{SOON})

En vez de recorrer las permutaciones, generamos todas ellas al principio.

```
def worse(L) :
    P = list(permutations(L))
    for X in P :
        if is_sorted(X) :
        return X
return
```

Arreglo 1.3. (\mathbb{Z})

Arreglo 1.3. (∑)

La permutación correcta es la lexicográficamente **menor** de ellas \implies podemos **ordenarlas** y tomar la primera permutación. [2]

Arreglo 1.3. (\mathbb{Z})

La permutación correcta es la lexicográficamente menor de ellas \implies podemos ordenarlas y tomar la primera permutación. [2]

¡Ordenación recursiva!

Algoritmo 1.2. (Worst Sort)

```
def multi(L, N):
    if N == 0:
       return sorted(L)
   P = list(permutations(L))
   P = multi(P, N-1)
   return P[0]
def worst(L):
   return multi(L, cota(len(L)))
```

```
ightharpoonup \Omega(\mathsf{n}!!\overset{\mathsf{f}(\mathsf{n})}{\cdots}!!)
```

Algoritmo 1.2. (Worst Sort)

```
def multi(L, N):
    if N == 0:
       return sorted(L)
   P = list(permutations(L))
   P = multi(P, N-1)
   return P[0]
def worst(L):
   return multi(L, cota(len(L)))
```

$$ightharpoonup \Omega(\mathsf{n}!!\overset{\mathsf{f}(\mathsf{n})}{\cdots}!!)$$

(multiplica y ríndete)

sort[0:n)

$$sort[0:n)$$

$$sort[0:\frac{n}{2})$$

$$sort[\frac{n}{2}:n)$$

$$(multiplica\ y\ r\'indete)$$

$$sort[0:n)$$

$$sort[0:n)$$

$$sort[0:\frac{n}{2}) \qquad sort[\frac{n}{2}:n)$$

$$max(max[0:\frac{n}{2}), max[\frac{n}{2}:n))$$

(multiplica y ríndete)
$$sort[0:n)$$

$$sort[0:\frac{n}{2}) \qquad sort[\frac{n}{2}:n)$$

 $\max(\max[0:\frac{n}{2}),\max[\frac{n}{2}:n))$

sort[0:n-1) + [n-1)

Algoritmo 1.3. (Slow Sort) 🗥

```
def slow(L, i, j):
    if i >= i:
       return
   m = (i+j) // 2
   slow(L, i, m)
   slow(L, m + 1, j)
   if L[j] < L[m]:
      L[j], L[m] = L[m], L[j]
   slow(L, i, j-1)
   return L
```

Referencias

- [1] Broder, A., Stolfi, J.

 Pessimal Algorithms and Simplexity Analysis, 1984.
- [2] Lerma, M. A. How inefficient can a sort algorithm be? 2014.

Código de las diapositivas (C++, Python)