Transductores térmicos

Juan J. Rojas

Instituto Tecnológico de Costa Rica 29 de octubre de 2025

Transductores térmicos Juan J. Rojas 1/39

Definición de Temperatura

- La temperatura es una manifestación del promedio de energía cinética, ondulatoria y de traslación de las moléculas de una sustancia.
- Es una propiedad física que determina si un sistema se encuentra o no en equilibrio térmico con otros sistemas (Ley cero de la termodinámica)

Ciclo de la máquina térmica descrita por Carnot, , el calor entra al sistema a través de una temperatura inicial (aquí se muestra como T_h) y fluye a través del mismo obligando al sistema a ejercer un trabajo sobre sus alrededores, y luego pasa al medio frío, el cual tiene una temperatura final (T_r).

Transductores térmicos Juan J. Rojas 2/39

Escala de Temperatura

- Lo que se necesita para construir una medida de temperatura, son puntos fijos. Es decir, procesos en los cuales la temperatura es constante.
- Existen varias escalas de temperaturas:
 - Kelvin K
 - Celsius °C
 - Farenheit °F
 - Rankine R
 - Reamur Re

Transductores térmicos Juan J. Rojas 3/39

Escalas de Temperatura

Escala	Cero Absoluto	Fusión del hielo	Evaporación
Kelvin	0 K	273 K	373,2K
Rankine	0R	491,7R	671,7R
Reamur	$-285,\!5\mathrm{Re}$	0Re	80Re
Centígrada	$-273,2^{\circ}\mathrm{C}$	0°C	100° C
Farenheit	$-459,7^{\circ}{ m F}$	$32^{\circ}\mathrm{F}$	212,0°F

Tabla: Distintas escalas de temperatura [1]

Transductores térmicos Juan J. Rojas 4/39

Conversión entre escalas

Kelvin a Celsius ${}^{\circ}\mathrm{C} = \mathrm{K} - 273{,}15$	${}^{\circ}\mathrm{F} = \frac{9(\mathrm{K} - 273,15)}{5} + 32$
Farenheit a Celsius ${}^{\circ}\mathrm{C} = \frac{5({}^{\circ}\mathrm{F} - 32)}{9}$	${\rm K} = \frac{{\rm Farenheit~a~Kelvin}}{5(^{\circ}{\rm F}-32)} + 273{,}15$
Celsius a Kelvin ${\rm K} = {^{\circ}{\rm C}} + 273{,}15$	Celsius a Farenheit ${}^{\circ}\mathrm{F} = \frac{9({}^{\circ}\mathrm{C})}{5} + 32$

Tabla: Distintas escalas de temperatura [1]

Transductores térmicos Juan J. Rojas 5/39

Formas de medición de temperatura

Transductores térmicos Juan J. Rojas 6/39

Termómetros

- El termómetro es uno de los instrumentos más utilizados para la medición de temperatura.
- Se compone de dos partes importantes:
 - transductor de temperatura
 - escala numérica de conversión
- Los principios sobre los que operan estos instrumentos son conocidos desde la cultura griega.

Figura: Tipos de termómetros [2]

Transductores térmicos Juan J. Rojas 7/ 39

Termómetros de vidrio

- Contiene un depósito de vidrio que contiene una sustancia, e.g. mercurio, y que al calentarse se expande y sube en el tubo capilar.
- Márgenes de operación [2]
 - Mercurio: -35°C hasta 280°C
 - Mercurio (tubo capilar lleno de gas): -35°C hasta 450°C
 - Pentano: -200°C hasta 20°C
 - Alcohol: -110°C hasta 50°C
 - Tolueno: -70° C hasta 100° C

Tomado de aquí

Transductores térmicos Juan J. Rojas 8/39

Termómetros bimetálicos

- Se basan en el distinto coeficiente de dilatación de dos metales diferentes e.g.latón y una aleacción de ferroníquel.
- La diferencia en el coeficiente de expasión de cada metal hace que el elemento bimetálico se doble.
- La exactitud del instrumento es de 1 % y su campo de medida es de −200°C hasta 500°C

Tomado de aquí

$$\alpha = \frac{360}{\pi} \cdot \frac{a \cdot l}{s} \cdot (t_2 - t_1)$$

Termopares(Termocuplas)

- Se basa en el efecto Seebeck (Thomas Seebeck, 1821).
- Un termopar, se componen dos metales diferentes cuyas uniones, producen una pequeña tensión cuando la junta se calienta.
- Está tensión solo depende de las características de los materiales y la temperatura.

Transductores térmicos Juan J. Rojas 10/39

Leyes de los termopares

Se caracterizan por tres leyes fundamentales:

- Ley de circuito homogéneo: En un conductor metálico homogéneo no puede sostenerse la circulación de una corriente eléctrica por la aplicación exclusiva de calor.
- Ley de las temperaturas intermedias: En un termopar con las juntas de los metales A y B a las temperaturas T1 y T2 la fem termoeléctrica generada es independiente de las temperaturas intermedias en los conductores A y B.

Tomado de aquí

Transductores térmicos | Juan I, Roias | 11/39

Leyes de los termopares

Continua...

■ Ley de los metales intermedios: Si en un termopar insertamos un segmento de conductor de un tercer metal C, en alguno de los dos conductores metálicos A ó B, la fem generada será independiente de la existencia de este tercer conductor siempre que las temperaturas de las juntas del mismo sean iguales.

Tomado de aquí

Transductores térmicos Juan I. Roias 12/39

Termopares(Termocuplas)

- El diamétro de los cables varia entre 0.1 y 3mm. A menor diámetro mayor tiempo de respuesta.
- La selección de los alambres para termopares se hace de forma que tengan una resistencia eléctrica y que el aumento de f.e.m sea paralelo al aumento de temperatura.
- Existen distintos tipos de acople de temperatura.

Insulated thermocouple twisted and welded

Butt-welded thermocouple with fish-spine insulator

[3]

Transductores térmicos Juan J. Rojas 13/39

Tipos de termopares

Transductores térmicos Juan J. Rojas 14/39

Tipos de termopares

Tipo	Material	Rango medida [°C]	Rango trabajo [°C]	Uso
E	Cromel-Constatán	$-100 \sim 1270$	$-40 \sim 900$	Puede usarse en vacío
Т	Cobre-Constatán	$-200 \sim 371$	$-40\sim350$	Resiste la corrosión
J	Hierro-Constatán	$-190 \sim 760$	$-40 \sim 750$	Atmósferas inertes.
K	Cobre-Alumel	$-190\sim1260$	$-40 \sim 1000$	Atmósferas oxidantes
R	Platino-Rodio	$0 \sim 1450$	$0 \sim 1200$	Atmósferas oxidantes
S	Platino-Rodio	$0 \sim 1450$	$0 \sim 1200$	Similar a R
В	Platino-Rodio	$0 \sim 1950$	$0 \sim 1800$	Altas Temperaturas
N	Cobre-Constatán	$0 \sim 2316$	$0 \sim 2100$	Sustituto de K

Tabla: Comparación entre distintos tipos de sensores[2]

Transductores térmicos Juan J. Rojas 15/39

Tipos de termopares https://srdata.nist.gov/its90/download/download.html

Termopar tipo B - f.e.m. en mV (ITS-90)

°C	0	1	2	3	4	5	6	7	8	9	10
0	0.000	0.000	0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002
10	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003
20	-0.003	-0.003	-0.003	-0.003	-0.003	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
30	-0.002	-0.002	-0.002	-0.002	-0.002	-0.001	-0.001	-0.001	-0.001	-0.001	0.000
40	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.002
50	0.002	0.003	0.003	0.003	0.004	0.004	0.004	0.005	0.005	0.006	0.006
60	0.006	0.007	0.007	0.008	0.008	0.009	0.009	0.010	0.010	0.011	0.011
70	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.017	0.017
80	0.017	0.018	0.019	0.020	0.020	0.021	0.022	0.022	0.023	0.024	0.025
90	0.025	0.026	0.026	0.027	0.028	0.029	0.030	0.031	0.031	0.032	0.033
100	0.033	0.034	0.035	0.036	0.037	0.038	0.039	0.040	0.041	0.042	0.043
110	0.043	0.044	0.045	0.046	0.047	0.048	0.049	0.050	0.051	0.052	0.053
120	0.053	0.055	0.056	0.057	0.058	0.059	0.060	0.062	0.063	0.064	0.065
130	0.065	0.066	0.068	0.069	0.070	0.072	0.073	0.074	0.075	0.077	0.078
140	0.078	0.079	0.081	0.082	0.084	0.085	0.086	0.088	0.089	0.091	0.092
150	0.092	0.094	0.095	0.096	0.098	0.099	0.101	0.102	0.104	0.106	0.107

Transductores térmicos Juan J. Rojas 16/39

Tipos de termopares

ANCI	ANSI Alloy Combination		Colour C	Coding	Magnetic	Tolerances
CODE	+ Lead	- Lead	Thermocouple Grade	Extension Grade		Standard Limits Special Limits
٦	IRON Fe (magnetic)	CONSTANTAN Cu-Ni		F :	Yes No	± 2.2°C or .75% ± 1.1°C or .40%
	CHROMEL Ni-Cr	ALUMEL Ni-Al (magnetic)		\$:	No Yes	± 2.2°C or .75% ± 1.1°C or .40%
т	COPPER Cu	CONSTANTAN COPPER-NICKEL Cu-Ni	<u> </u>	S.	No No	± 1.0°C or .75% ± 0.5°C or .40%
Е	CHROMEL L NICKEL-CHROMIUM Ni-Cr	CONSTANTAN COPPER -NICKEL Cu-Ni		F	No No	± 1.7°C or .50% ± 1.0°C or .40%
N	NICROSIL Ni-Cr-Si	NISIL Ni-Si-Mg		E :	No No	± 2.2°C or .75% ± 1.1°C or .40%
R	PLATINUM 13% RHODIUM Pt-13% Rh	PLATINUM Pt	NONE ESTABLISHED		No No	± 1.5°C or .25% ± 0.6°C or .10%
s	PLATINUM 10% RHODIUM Pt-10% Rh		NONE ESTABLISHED		No No	± 1.5°C or .25% ± 0.6°C or .10%
U	COPPER Cu	COPPER LOW NICKEL Cu Ni	NONE ESTABLISHED		No No	
В	PLATINUM 30% RHODIUM Pt 30% Rh	Pt 6% Rh	NONE ESTABLISHED	F	No No	± .50% ± .25%
G ⊗	TUNGSTEN W	TUNGSTEN 26% RHENIUM VV-26% Re	NONE ESTABLISHED	6	No No	

Tomado de aquí

Transductores térmicos Juan J. Rojas 17/39

Tubos de protección

Tomado de aquí

Transductores térmicos Juan J. Rojas 18/39

Lectura de datos termocoupla

- El voltaje de salida es muy bajo, por lo que se requiere un sistema de acondicionamiento de la señal, para amplificar dicha señal.
- La sensibilidad es muy baja. Pero presentan una respuesta muy lineal. Además no requieren alimentación de ningún tipo.
- El sistema a de acondicionamiento selecciona en función del sensor.

[3]

Transductores térmicos Juan J. Rojas 19/39

Compensación de la unión fría (CJC)

- Los voltajes de referencia están referidas a una unión fría, por lo que se requiere una compensación.
- Esta compensación se puede realizar de varias maneras, incluso en software.
- Siempre es necesario integrar este tipo de integración de sistemas de adquisición de datos (recientemente se puede realizar de forma digital)

Tomado de aquí

Transductores térmicos Juan J. Rojas 20/39

Detector de temperatura por Resistencia (RTD)

- Estos detectores de temperatura dependen de la variación de la resistencia del material en función de la temperatura.
- El elemento consiste en un arrollamiento de hilo muy fino del conductor adecuado bobinado entre capas de material aislante y protegido con un revestimiento de vidrio o cerámica.
- Relación dada por:

$$R_T = R_0 \cdot (1 + \alpha \cdot T)$$

Tomado de aquí

Transductores térmicos Juan J. Rojas 21/39

Fabricación RTD

Tomado de aquí

- Hilo bobinado: el embobinado de platino es soportado por un vidrio resistente de alta temperatura dentro de un tubo de cerámica.
- Película fina: Regularmente fabricados de platino y aceros que son depositados en una membrana de silicio.

Transductores térmicos Juan J. Rojas 22/39

Características sondas RTD

Elemento	Intervalo Útil	Resistencia básica	Sensibilidad $[\Omega/^{\circ}\text{C de }0^{\circ}\text{C a }100^{\circ}\text{C}]$	Ventajas	Desventajas
Platino	-260° C a 850° C	100Ω a 0° C	0,39	Mayor intervalo, me- jor estabilidad, bue- na linealidad	Costo
Cobre	-100° C a 260° C	10Ω a 25° C	0,04	Buena linealidad	Baja resistividad
Níquel	−100°C a 260°C	100Ω a 0° C	0,62	Bajo Costo, Alta sen- sibilidad	Falta de linealidad, variaciones coefi- ciente de resistencia
Níquel- Hierro	$-100^{\circ}\mathrm{C}$ a $204^{\circ}\mathrm{C}$	604Ω a 0° C	3,13	Bajo costo, muy alta sensibilidad	Relación reducida

Tabla: Comparación entre distintos tipos de sensores[2]

Transductores térmicos Juan J. Rojas 23/39

Estándar de tolerancias RTD

- Los RTD son construidos bajo distintos estándares y curvas. La más común es la DIN/IEC 60751.
- Este estándar divide por clases en función de la respuesta de la resistencia del platino por temperatura.
- Clase A
 - Tolerancia de Temperatura: $\pm (0.15 + .002|T|^{\circ}CC)$
- Clase B
 - Tolerancia de Temperatura: $\pm (0.30 + .005|T|^{\circ}CC)$
- Clase C
 - Tolerancia de Temperatura: $\pm (1.2 + .005|T|^{\circ}CC)$

Transductores térmicos Juan J. Rojas 24/39

Algunas consideraciones RTD

- Son especiales en precisión en linealidad.
- No se requieren recalibraciones anuales, y se mantienen estables por muchos años.
- Requieren una fuente de corriente precisa.

Transductores térmicos Juan J. Rojas 25/39

Conexiones RTD (2 hilos)

Tomado de aquí

- Proporciona una conexión eléctrica a la salida de cada elemento.
- Solución más económica
- Requieren una fuente de corriente precisa.

Transductores térmicos Juan J. Rojas 26/39

Conexiones RTD (3 hilos)

- Se obtiene mayor precisión, ya que se contrarrestra el efecto del puente de *Wheatstone*
- Es la forma más utilizada en la industria.
- El cable 3 no conduce corriente.

Tomado de aquí

Transductores térmicos Juan J. Rojas 27/39

Conexiones RTD (4 hilos)

Tomado de aquí

- Son especiales en precisión en linealidad.
- No se requieren recalibraciones anuales, y se mantienen estables por muchos años.
- Requieren una fuente de corriente precisa.

Transductores térmicos Juan J. Rojas 28/39

Termistores

- Es una contracción de las palabras thermal y resistor
- Este tipo de medidores son semiconductores de partículas de óxido de metal.
- Existen dos grupos: NTC (Negative Temperature Coeficient) y PTC (Positive Temperature Coeficient)

Tomado de aquí

Transductores térmicos Juan J. Rojas 29/39

Curvas Termistores

$$R_t = R_0 e^{\beta(\frac{1}{T_1})(\frac{1}{T_2})}$$

$$\frac{1}{T} = A + B \cdot \ln R_1 + C \cdot (\ln R_1)^3$$

Transductores térmicos Juan J. Rojas 30/39

Termistores

- Se les denominad *Sensor on a chip* por su tamaño reducido y facilidad para encapsular en vidrio o epoxi.
- Su tiempo de respuesta depende de la capacidad térmica y masa del termistor, variando de 0,5 a 10 segundos.
- La precisión de un termistor se encuentra entre ± 0.1 °C a ± 0.2 °C. Con un rango de -50°C a 200°C.
- Se usan para la protección contra calentamiento de PC, baterías de litio o regular contraste en un LCD.

Tomado de aquí

Transductores térmicos Juan J. Rojas 31/39

Medición de termistores

Tomado de aquí

- La curva de un termistor no es lineal.
- Con circuitos sencillos se puede linealizar su característica de forma deseable.
- Se requiere de una fuente de precisión y una resistencia fija de precisión también.
- La fuente puede ser de corriente también

Transductores térmicos Juan J. Rojas 32/39

Pirómetros

- Este tipo de dispositivos se utiliza por medios eléctricos y sin contacto.
- Se clasifican en función del fenómeno físico:
 - Pirómetros de radiación
 - Pirómetro ópticos
 - De resistencia y termoeléctricos

Tomado de aquí

Transductores térmicos Juan J. Rojas 33/39

Pirómetros de radiación

■ Se fundan en la ley de Stefan-Boltzmann, que dice que la intensidad de energía radiante emitida por la superficie de un cuerpo aumenta proporcionalmente a la cuarta potencia de la temperatura absoluta (Kelvin) del cuerpo.

$$W = K \times T^4$$

■ El pirómetro dirigido sobre una superficie incandescente no nos dará su verdadera temperatura si la superficie no es perfectamente negra, es decir, que absorba absolutamente todas las radiaciones y no refleje ninguna.

Tomado de aquí

Transductores térmicos Juan J. Rojas 34/39

Pirómetros ópticos

Tomado de aquí

- Se basan en la comparación visual de la luminosidad del objeto radiante con el filamento de una lámpara incandescente.
- El sistema óptico del pirómetro restringe el ancho de onda de 0,65 µm a 0,66 µm (zona roja del espectro) y dispone de filtros para reducir la intensidad de la radiación recibida, permitiendo la medida de un amplio margen de temperaturas.
 - La exactitud de los pirómetros ópticos es del $\pm 1 \%$ al $\pm 2 \%$

Transductores térmicos Juan J. Rojas 35/39

Criterios de Selección

Criterios selección

- Exactitud
- Rango
- Estabilidad
- Instalación
- Costo
- Ambiente

Transductores térmicos Juan J. Rojas 36/39

Criterios de Selección

Tomado de aquí

Transductores térmicos Juan J. Rojas 37/39

Criterios de Selección

Tipo de Sensor	Exactitud	Rango típico	Tiempo de respuesta	Costo
Termopares	Ваја	-200°C a 1800°C	1 <i>s</i>	Вајо
RTD Clase A, Estándar IEC	Alta	-200°C a 800°C	1-5 <i>s</i>	Alto
Termistor NTC	Alta	-200°C a 1800°C	< 1 s	Alto
Sensores Infrarrojos	Mediana	-20°C a 1370°C	< 1 s	Вајо

Tabla: Comparación entre distintos tipos de sensores

Transductores térmicos Juan J. Rojas 38/39

Referencias

- [1] Y. A. Cengel, M. A. Boles, V. Campos Olguín, M. T. Colli Serrano et al., *Termodinámica*. Mc Graw Hill, 2003.
- [2] A. C. Solé, *Instrumentación industrial*. Marcombo, 2005.
- [3] J. Fraden, *Handbook of Modern Sensors*. Springer International Publishing, 2016.

Transductores térmicos Juan J. Rojas 39/39