BubbleRank: Safe Online Learning to Re-Rank via Implicit Click Feedback

Chang Li^1 Branislav Kveton 2 Tor Lattimore 3 Ilya Markov 1 Maarten de Rijke 1 Csaba Szepesvári 3,4 Masrour Zoghi 2

 1 University of Amsterdam 2 Google Research 3 DeepMind 4 University of Alberta

Motivations

- Learning to rank: using machine learning to build ranking systems for application domains, e.g. information retrieval.
- Offline approaches lack exploration and limit to the provided training data.
- Online approaches:
 - Balance exploration and exploitation;
 - Learn from the user feedback, e.g., clicks;
 - □ Tend to learn from scratch: safety issue.

BubbleRank

A safe online learning to re-rank algorithm that combines the strength of both offline and online approaches.

Stochastic Click Bandit

- ▶ Item set $\mathcal{D} = [L]$ and $K \leq L$ positions
- ▶ Action set $\mathcal{R} \in \Pi_K(\mathcal{D})$: $\mathcal{R}(k)$ is the item at position k
- ► Click at any $k \in [K]$: $c_t(k) = X_t(\mathcal{R}_t, k)A_t(\mathcal{R}_t(k))$
- ► Each time step *t*:
 - riangleright The agent chooses an action $\mathcal{R}_t \in \Pi_K(\mathcal{D})$
 - \triangleright Observe the click feedback $\boldsymbol{c}_t \in \{0,1\}^K$
- \blacktriangleright Goal: maximize the expect number of clicks in top K positions
- \triangleright Or minimize the expected cumulative regret in n steps:

$$R(n) = \sum_{t=1}^{n} \mathbb{E} \left| \max_{\mathcal{R} \in \Pi_K(\mathcal{D})} r(\mathcal{R}, \alpha, \chi) - r(\mathcal{R}_t, \alpha, \chi) \right|.$$

Assumptions

For any lists $\mathcal{R},\mathcal{R}'\in\Pi_K(\mathcal{D})$ and positions $k,\ell\in[K]$ such that $k < \ell$:

- A1. $r(\mathcal{R}, \alpha, \chi) \leq r(\mathcal{R}^*, \alpha, \chi)$, where $\mathcal{R}^* = (1 \dots K)$ is the optimal ranking;
- A2. $\{\mathcal{R}(1), \dots, \mathcal{R}(k-1)\} = \{\mathcal{R}'(1), \dots, \mathcal{R}'(k-1)\}$ $\implies \chi(\mathcal{R}, k) = \chi(\mathcal{R}', k);$
- A3. $\chi(\mathcal{R}, k) \geq \chi(\mathcal{R}, \ell)$;
- A4. If $\mathcal R$ and $\mathcal R'$ differ only in that the items at positions k and ℓ are exchanged, then
 - $\alpha(\mathcal{R}(k)) \leq \alpha(\mathcal{R}(\ell)) \iff \chi(\mathcal{R},\ell) \geq \chi(\mathcal{R}',\ell);$ and
- A5. $\chi(\mathcal{R}, k) \geq \chi(\mathcal{R}^*, k)$.

BubbleRank

Methodology: start with an *initial base list* \mathcal{R}_0 and improve it online by gradually exchanging higher-ranked less attractive items for lower-ranked more attractive items.

- ► At each step t:
- $\triangleright h \leftarrow t \mod 2$
- \triangleright For $k \in [(K h)/2]$:
- Randomly exchange items $\mathcal{R}_t(2k-1+h)$ and $\mathcal{R}_t(2k+h)$ in list \mathcal{R}_t , if $s_{t-1}(i,j) \leq 2 | n_{t-1}(i,j) \log(1/\delta)|$
- hd Display $oldsymbol{\mathcal{R}}$ and observe clicks $oldsymbol{c}_t \in \{0,1\}^K$
- \triangleright For $k \in [(K-h)/2]$ and $i \leftarrow \mathcal{R}_t(2k-1+h), j \leftarrow \mathcal{R}_t(2k+h)$: update $\boldsymbol{s}_t(i,j)$ and $\boldsymbol{n}_(i,j)$ if $|\boldsymbol{c}_t(2k-1+h)-\boldsymbol{c}_t(2k+h)|=1$
- \triangleright For $k \in [(K-h)/2]$ and $i \leftarrow \mathcal{R}_t(2k-1+h), j \leftarrow \mathcal{R}_t(2k+h)$: Permanently exchange $\mathcal{R}_{t+1}(k)$ and $\mathcal{R}_{t+1}(k+1)$ if $s_t(j,i) > 2 | n_t(j,i) \log(1/\delta) |$

Main Results

Theorem 1 (Upper Bound). The expected n-step regret of BubbleRank is bounded as

$$R(n) \le 180K \frac{\chi_{\text{max}} K - 1 + 2|\mathcal{V}_0|}{\chi_{\text{min}}} \log(1/\delta) + \delta^{\frac{1}{2}} K^3 n^2.$$

Lemma 2 (Safety). Let

$$\mathcal{V}(\mathcal{R}) = \{(i, j) \in [K]^2 : i < j, \mathcal{R}^{-1}(i) > \mathcal{R}^{-1}(j)\}$$

be the set of *incorrectly-ordered item pairs* in list \mathcal{R} . Then

$$|\mathcal{V}(\mathcal{R}_t)| \leq |\mathcal{V}(\mathcal{R}_0| + K/2)$$

holds uniformly over time with probability of at least $1-\delta^{\frac{1}{2}}K^2n$.

Experimental setup

- \blacktriangleright Yandex Click logs: at least one query in each session with 10 ranked items and 30M search sessions in total;
- \blacktriangleright We randomly choose 100 frequent search queries and learn their CMs, DCMs and PBMs;
- ▶ L = 10 items with K = 10 positions;
- \triangleright Goal: place 5 most attractive items in the descending order of attractiveness at the 5 highest positions

Experimental results: regret

Figure: The n-step regret of BubbleRank (red), CascadeKL-UCB (green), BatchRank (blue), TopRank (orange), and Baseline (grey).

Experimental results: safety

Experimental results: NDCG

Conclusion

Remember:

- BubbleRank fills the gap between online and offline LTR approaches in literature;
- BubbleRank explores under a safety constraint;
- ► BubbleRank learns slower than TopRank but can learn the optimal ranking eventually.
- ► Future work: further theoretical and experimental validation on BubbleRank in the online learning to rank setup.

