Second Semester 2023- 2024 Course Handout (Part II)

Date: 09-01-24

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : PHY F341

Course Title : Solid State Physics Instructor-in-charge : Souri Banerjee

Scope and Objective:

This is an introductory course on Solid State Physics. It aims at providing physical as well as mathematical understanding of a wide range of phenomena associated with crystalline matter. Its objective is to lay the foundation for a working understanding of solids through fundamental theoretical concepts.

Learning outcomes: At the end of the course students must gain knowledge on the following points -

- ➤ Differentiating between different types of solid materials; their structure and the structure determination
- ➤ Applying the vibrations and waves (learnt fromMechanics, Oscillations and Waves course) in understanding the lattice waves and Brillouin zones
- ➤ Different models of thermal and electrical transport.
- ➤ Explaining the electrical properties such as conductivity and Hall Effect using the classical and quantum models
- ➤ How the energy bands are formed and understanding density of states
- ➤ Theory and applications of some important materials (semiconductors, magnetic materials and superconductors) in use today

Text Book:

Introduction to Solid State Physics, C. Kittel, 7th ed., Wiley (1997)

Reference Book:

Solid State Physics, N W Ashcroft and N D Mermin, 1st ed., Thomson (1976)

Course Plan:

	Learning Objectives	Topics to be covered	Reference to
Lecture			text book
s			
1-5	Crystal Structure	Bravais Lattices, Miller Indices	Chapter 1
6-9	Diffraction of waves	Bragg Law, Reciprocal Lattice, Laue	Chapter 2
	by crystals	Equations, Brillouin Zones	
10-11	Crystal binding	Van der waals bond, ionic bond,	Chapter 3
		metallic, and covalent bond	
12-14	Crystal Vibrations	Monatomic and Diatomic Crystals	Chapter4
15-18	Thermal Properties	Einstein and Debye Models of Heat	Chapter 5
		Capacity	
19-23	Free Electron Fermi	Density of States, Heat Capacity,	Chapter 6
	Gas	Electrical Conductivity, Hall Effect	
24-28	Nearly free electron	Energy Bands, Bloch Functions, Kronig-	Chapter 7
	Model	Penney Model, Boltzmann Transport	and
		Equation	Appendix F
29-32	Semiconductors and	Intrinsic Carrier Concentration, Mobility,	Chapter 8
	their applications	Donor and Acceptor States, p-n junctions	and Chapter
		and conductivity	19
33-37	Superconductivity	Meissner Effect, London Equation, Type	Chapter 12
		I and Type II superconductors, Theory of	
		Superconductivity	
38-42	Magnetism	Diamagnetism, Paramagnetism,	Chapter 15
		Ferromagnetism and Anti-	
		ferromagnetism	

Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Nature
		(%)		
Mid-Sem	90 min	30	16/03 - 2.00 -	Open Book
			3.30PM	
Quiz *	30 min	30		closed Book
Comprehensive Examination	180 min	40	18/05 FN	Closed Book

*Note: Three quizzes will be conducted and the best two will be considered while assigning the final grade. There will be no make up for the quizzes.

Make-up Policy: Make-up will be given only in genuine cases with **prior permission** from the IC.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge PHY F341