ADMT 2018 - Project report

Group 02: Andreas Vieider (13177) & Laurin Stricker (13412) January 9, 2019

Contents

Li	st of	Figures	2
Li	st of	Tables	2
1	Intr 1.1	Business processes	3
		1.1.1 CRM - Showroom visit	3
2		aceptual Design	3
	2.1 2.2	Showroom visit	4 5
3	\mathbf{Log}	ical Design	6
	3.1	Star schemas	6
	3.2	Two business questions	7
		3.2.1 Fact: Showroom visit	7
		3.2.2 Fact: Production	9
4	Imp	olementation	11
	4.1	ROLLUP	11
		4.1.1 SQL query using ROLLUP for business process 1 (showroom visit) .	11
		4.1.2 SQL query with ROLLUP for business process 2 (production)	12
	4.2	CUBE	13
		4.2.1 SQL query using CUBE for business process 1 (showroom visit)	13
		4.2.2 SQL query using CUBE for business process 2 (production)	14
	4.3	GROUPING SETS	15
		4.3.1 SQL query using GROUPING SETS for business process 1 (showroom visit)	15
		4.3.2 SQL query using GROUPING SETS for business process 2 (production)	15

5	Que	m erying
	5.1	NTILE
		5.1.1 SQL query using NTILE for business process 1 (showroom visit) 16
		5.1.2 SQL query using NTILE for business process 2 (production) 16
	5.2	RANK
		5.2.1 SQL query using RANK for business process 1 (showroom visit) 16
		5.2.2 SQL query using RANK for business process 2 (production) 16
	5.3	Windowing Clause
		5.3.1 SQL query using a windowing clause for business process 1 (showroom
		visit)
		5.3.2 SQL query using a windowing clause for business process 2 (production) 17
	5.4	Period-to-period Comparison
		5.4.1 SQL query using period-to-period comparison for business process 1
		(showroom visit)
6	Dat	a Analysis Tool 18
T,	ist	of Figures
	100	01 1 18 01 00
	1	DFM of the showroom visit
	2	DFM of the production
	3	Dimension fact model (DFM) of the showroom visit with attributes 5
	4	Dimension fact model (DFM) of the production with attributes
	5	Star schema of the showroom visit
	6	Star schema of the production
T,	ist	of Tables
	100	or rabies
	1	Fact table
	2	Fact table
	3	Fact table
	4	Showroom visit
	5	Visitor
	6	Showroom
	7	Date
	8	Result of the query
	9	Production
	10	Machine
	11	Product
	12	Result of the query
	13	Showroom ROLLUP Result
	14	Production ROLLUP Result
	15	Showroom CUBE Result
	16	Production CUBE Result
		–

1 Introduction

The domain of our fictional company is the one of furniture production and retail. The company is located in the province of Bolzano and has several showrooms in the area and one production center.

1.1 Business processes

1.1.1 CRM - Showroom visit

One CRM process is the collection of data about visitors at the different showrooms. A visitor can either be one who is just looking around without intention of buying anything (Seeleute), a future potential customer or an already existing customer. A visit can lead to an order.

Business questions:

- Which is the best running showroom (most visitors, most orders, etc.)
- Where are the customers from (with different granularity)
- Which department are the customers the most interested in
- Compare the number of visitors for a time period and/or showroom

1.1.2 Production

The company logs every step in the production process, especially duration, defects and machine failures.

Business questions:

- What is the average time to produce a particular product
- Which is the product with the highest/lowest quality
- How much does a product cost in terms of raw material cost
- Compare the machines inn terms of quality and/or production time
- How many products have been produced in a certain time period

2 Conceptual Design

Table 1: Fact table

Fact	Dimensions	Measures
Showroom visit	Date, Showroom, Visitor, Order, Detail, Department, Sales repre- sentative	\ //

Fact	Dimensions	Measures
Production	Start Date, End date, Prod-	(//
	uct, Production Stage, Machine,	material cost (AVG)
	Quality control, Operator	

Figure 1: DFM of the showroom visit

Figure 2: DFM of the production

2.1 Showroom visit

Table 2: Fact table

Dimension Attributes

Dimension	Attributes
Date	Day, Month, Year, Quartal, Week, Day of Week, Season, Holiday
Showroom	Name, City, District, Province, Region, Country, Manager, Address, Telephone, Size
Visitor	Name, City, District, Province, Region, Country, Language, Telephone, E-Mail, Type, Sector, Gender, Customer number
Order	Order Number, Total Price, Discount
Order Detail	Quantity, Quantity Type, Product, Unit price, Total price
Department	Name
Sales representative	Name, City, District, Province, Region, Country, Language, Telephone, E-Mail, Gender

Figure 3: Dimension fact model (DFM) of the showroom visit with attributes

2.2 Production

Table 3: Fact table

Dimension	Attributes
Start date	Day, Month, Year, Week
End date	Day, Month, Year, Week
Product	Product number, Name, Department, Category
Production stage	Name
Machine	Name, Purchasing year, Vendor
Quality control	Grade
Operator	Name

Figure 4: Dimension fact model (DFM) of the production with attributes

3 Logical Design

3.1 Star schemas

The following star schema fig. 5 represent the first business process, namely the showroom visit.

Instead, the star schema fig. 6 represents the production business process.

Figure 5: Star schema of the showroom visit

3.2 Two business questions

3.2.1 Fact: Showroom visit

In order to be able to make the right marketing decisions, it is very important for the management to know from which sector the various customers or interested parties of a particular showroom come from. So, for example the management wants to know, from which sectors the various customers of showroom "Showroom-Bozen" were coming in the last year.

SQL query:

- 1 SELECT v.visitor_sector, count(*)
- 2 FROM warehouse.visitor v
- 3 INNER JOIN warehouse.showroom_visit sv on v.visitor_id = sv.visitor_id
- 4 INNER JOIN warehouse.showroom s on sv.showroom_id = s.showroom_id
- 5 INNER JOIN warehouse.date d on sv.date_id = d.date_id
- 6 WHERE s.showroom_name = 'Showroom-BOZEN'
- 7 AND d.date_actual >= '2018-01-01' AND d.date_actual <= '2018-12-31'
- gROUP by v.visitor_sector

Figure 6: Star schema of the production

Table 4: Showroom visit

ID	Visitor_id	Sales_rep_id	l Showrid	Departid	Date_id	Type_id	Duration	Nrof_visit.
1282369	570822	6	5	4	20180323	2	90	2
1282370	570823	5	5	2	20160107	4	167	4
1282371	570823	7	5	1	20130526	3	173	6
1282372	570823	11	5	6	20150806	3	100	10
1282373	570823	7	5	1	20121116	4	169	5
1282374	570824	7	5	1	20171210	3	57	3
1282375	570824	18	5	2	20110212	3	166	7
1282376	570824	9	5	4	20130811	3	84	5
1282377	570825	11	5	6	20170507	3	184	10
1282378	570825	12	5	2	20111127	2	26	2
1282379	570825	7	5	1	20150425	3	141	10
1282380	570826	11	5	6	20130208	2	8	2
1282381	570826	12	5	1	20111214	3	61	8
1282382	570827	12	5	1	20170202	3	139	9
1282383	570827	12	5	2	20121012	3	71	7

Table 5: Visitor

ID	Name	Telephone	E-Mail	Sector	Sex	Lang.	Locid
570999	Molonio			Castronomy	E	COMPO O D	0

ID 2	Name Showroom- MÜHLBACH	Telephone 0474 039227	Address Platzerstr. 58	Size 349	Manager Christoph Steiner	Locid 54
3	Showroom-MÖLTEN	0470 429676	Vernag 97	857	Christoph Steiner	51
4	Showroom-SALURN	0475 248487	Gewerbezone 44	198	Johannes Egger	77
5	Showroom-BOZEN	0473 723301	St. Urban 73	447	Sabine Schneider	9

Table 7: Date

ID		Date	Day_week	Day	Month	Quartal	Year	Holiday	Season
20160	0102	2010-01-02	6	Saturday	January	First	2016	false	Winter
20170	0103	2010-01-03	7	Sunday	January	First	2017	false	Winter
20180	0108	2018-01-08	5	Friday	January	First	2018	false	Winter
20190)109	2010-01-09	6	Saturday	January	First	2019	false	Winter
20200)110	2010-01-10	7	Sunday	January	First	2020	false	Winter

Table 8: Result of the query

Sector	Number of visitors
Gastronomy	2985
Hotel	4223
Private	5629
Public	1371

3.2.2 Fact: Production

The company's quality control is always interested in optimizing processes. It is therefore interesting for employees to know whether a machine has significant time differences in production in relation to a particular product in comparison to the other machines.

SQL query:

- 1 SELECT m.machine_name, avg(p.duration) AS avg_production_duration
- 2 FROM warehouse.machine m
- 3 INNER JOIN warehouse.production p ON m.machine_id = p.machine_id
- 4 INNER JOIN warehouse.product o ON p.product_id = o.product_id
- 5 WHERE o.product_number = 'Warteraum-Couch∟-∟10'
- GROUP BY m.machine_id
- 7 ORDER BY avg_production_duration DESC LIMIT 10

Table 9: Production

Operator* Machine* Stage* Product* Start_date* End_date* Duration Raw_mat._cost ID 591814 779 591815 780 591816 775 591817 770 591818 722 591819 755 591820 740 591821 756

Note: all columns with the * are foreign key columns and are carrying only the id

Table 10: Machine

ID	$Machine_name$	$Machine_vendor$	Purchasing_year
1172	Melichár	Durán	1998
1173	Horn	Lóntos	2009
1174	Chihaia	Murtazaev	2002
1175	Korčák	Durán	2006
1176	Ramóna	Barbora	1996

Table 11: Product

ID	$Product_name$	$Product_number$	Product_department	Product_category
361013	Warteraum- Couch	Warteraum-Couch - 7	Büro	Arztpraxis-Set
361014	Warteraum- Couch	Warteraum-Couch - 8	Büro	Arztpraxis-Set
361015	Warteraum- Couch	Warteraum-Couch - 9	Büro	Arztpraxis-Set

ID	Product_name	Product_number	Product_department	Product_category
361016	Warteraum-	Warteraum-Couch -	Büro	Arztpraxis-Set
	Couch	10		
361017	Warteraum- Couch	Warteraum-Couch - 11	Büro	Arztpraxis-Set

Table 12: Result of the query

Machine_name	AVG_Production_duration
Vajda	152.00
Ramóna	133.00
Papandreou	96.00
Kontoléon	70.00
Mitu	54.00
Bercu	49.00
Heinrich	36.00
Martinez	30.00
Pál	18.00
Aguilar	14.00

4 Implementation

4.1 ROLLUP

4.1.1 SQL query using ROLLUP for business process 1 (showroom visit)

The following sql query shows the number of visitors per showroom, in the different areas and in the different seasons. In addition there are the different partial sums. For example, for the showroom in Bolzano, first the number of visitors for the 'bedroom' area in autumn is shown, then the total number of visitors for the 'bedroom' area, regardless of the season, and finally the total number of visitors for the showroom in Bolzano, regardless of the area and the season.

```
SELECT showroom_name, department_name, season, count(visitor_id)
FROM warehouse.showroom_visit
JOIN warehouse.showroom using (showroom_id)
JOIN warehouse.department using (department_id)
JOIN warehouse.date using (date_id)
GROUP BY ROLLUP(showroom_name, department_name, season);
```

Table 13: Showroom ROLLUP Result

$showroom_name$	$department_name$	season	count
Showroom-BOZEN	Badezimmer	Frühling	2579
Showroom-BOZEN	Badezimmer	Herbst	3285
Showroom-BOZEN	Badezimmer	Sommer	1311
Showroom-BOZEN	Badezimmer	Winter	4708
Showroom-BOZEN	Badezimmer	*	11883
Showroom-BOZEN	Büro	Frühling	298
Showroom-BOZEN	Büro	Herbst	281
Showroom-BOZEN	Büro	Sommer	156
Showroom-BOZEN	Büro	Winter	480
Showroom-BOZEN	Büro	*	1215
Showroom-BOZEN	Hotel	Frühling	4032
Showroom-BOZEN	Hotel	Herbst	4472
Showroom-BOZEN	Hotel	Sommer	2022
Showroom-BOZEN	Hotel	Winter	6808
Showroom-BOZEN	Hotel	*	17334

4.1.2 SQL query with ROLLUP for business process 2 (production)

The following sql query shows the average machining time for a particular production stage of a particular product of a particular product category. The query also returns the average machining times of the higher levels, in other words, a granularity is removed step by step. For example, the average machining time of 'table XY' is shown first for the 'fine grinding' process. Then you get the average machining time of all processes on 'table XY' and finally the average machining time of all processes on all table models, thus of the whole product category 'table'.

```
SELECT product_category, product_name,
production_stage_name, ROUND(avg(duration)::numeric,2) as avg
FROM warehouse.production
JOIN warehouse.product using (product_id)
JOIN warehouse.production_stage using (production_stage_id)
GROUP BY ROLLUP(product_category, product_name, production_stage_name);
```

Table 14: Production ROLLUP Result

$product_category$	$product_name$	production_stage_name	avg
AdsH-Set	AdsH-Fähnchen	Ausführung	44.28

product_category	product_name	production_stage_name	avg
AdsH-Set	AdsH-Fähnchen	Feinschliff	44.18
AdsH-Set	AdsH-Fähnchen	Vorbereitung	43.35
AdsH-Set	AdsH-Fähnchen	*	43.94
AdsH-Set	AdsH-Goldabzeichen	Ausführung	45.11
AdsH-Set	AdsH-Goldabzeichen	Feinschliff	44.15
AdsH-Set	AdsH-Goldabzeichen	Vorbereitung	43.71
AdsH-Set	AdsH-Goldabzeichen	*	44.32
AdsH-Set	AdsH-Goldpokal	Ausführung	46.37
AdsH-Set	AdsH-Goldpokal	Feinschliff	43.60
AdsH-Set	AdsH-Goldpokal	Vorbereitung	47.80

4.2 CUBE

4.2.1 SQL query using CUBE for business process 1 (showroom visit)

The following query shows the number of visitors from the province of Bolzano and its commercial sector in the different districts of the showrooms. In addition, the query shows all possible sub-totals, removing step by step different granularities. In other words, for each combination of values, the sum is shown, finally the total sum of all visits from visitors from the province of Bolzano.

```
SELECT visitor_sector, vl.district as visitor_district, sl.district as sh sum(number_of_visitors)
FROM warehouse.showroom_visit
JOIN warehouse.visitor using (visitor_id)
JOIN warehouse.location as vl
on warehouse.visitor.location_id = vl.location_id
JOIN warehouse.showroom using (showroom_id)
JOIN warehouse.location as sl
on warehouse.showroom.location_id = sl.location_id
WHERE vl.province = 'Bozen'
GROUP BY CUBE(vl.district, visitor_sector, sl.district)
ORDER BY visitor_sector, vl.district, sl.district;
```

Table 15: Showroom CUBE Result

visitor_sector	$visitor_district$	$showroom_district$	sum
Gastronomy	Bozen	Bozen	55749
Gastronomy	Bozen	Burggrafenamt	2574
Gastronomy	Bozen	Eisacktal	1554

visitor_sector	$visitor_district$	$showroom_district$	sum
Gastronomy	Bozen	Pustertal	2887
Gastronomy	Bozen	Salten Schlern	3501
Gastronomy	Bozen	Überetsch-Südtiroler Unterland	1842
Gastronomy	Bozen	Vinschgau	2278
Gastronomy	Bozen	Wipptal	3031
Gastronomy	Bozen	*	73416

4.2.2 SQL query using CUBE for business process 2 (production)

The following query shows the average grade of the quality control for a machine and for the product category. Also all partial average values of all different combinations and groupings can be read off.

```
SELECT product_department, machine_name,
ROUND(avg(quality_control_grade)::numeric,2) as avg
FROM warehouse.production
JOIN warehouse.product using (product_id)
JOIN warehouse.machine using (machine_id)
JOIN warehouse.quality_control using (quality_control_id)
WHERE quality_control_grade is not NULL
GROUP BY CUBE(product_department, machine_name)
ORDER BY product_department;
```

Table 16: Production CUBE Result

$product_department$	$machine_name$	avg
Badezimmer	José Alberto Córdova	5.00
Badezimmer	Herrera	4.59
Badezimmer	Dzurjanin	4.46
Badezimmer	Şchiopu	4.44
Badezimmer	Groșescu	4.53
Badezimmer	Văcăroiu	4.46
Badezimmer	Germanós	4.47
Badezimmer	Holuby	4.42
Badezimmer	Bogza	4.31
Badezimmer	Păcurariu	4.34
Badezimmer	Giurescu	4.42

_product_department	machine_name	avg
Badezimmer	Raudsepp	4.63
Badezimmer	Argeşanu	4.67
Badezimmer	Ciupe	4.14
Badezimmer	Linda	4.53

4.3 GROUPING SETS

4.3.1 SQL query using GROUPING SETS for business process 1 (showroom visit)

The following query shows the number of visitors per language served by a sales representative in a showroom. Also the total number of visitors can be taken from a language in that showroom as well as the total number of visitors served by that sales representative.

```
SELECT showroom_name, sales_rep_name,

visitor_language, sum(order_total_price)

FROM warehouse.showroom_visit

JOIN warehouse.visitor using (visitor_id)

JOIN warehouse.sales_representative using (sales_rep_id)

JOIN warehouse.order using (order_id)

JOIN warehouse.showroom using (showroom_id)

GROUP BY GROUPING SETS(

(showroom_name, sales_rep_name, visitor_language),

(showroom_name, visitor_language),

(showroom_name, sales_rep_name));
```

Table 17: Showroom CUBE Result

$showroom_name$	$sales_rep_name$	$visitor_language$	sum
Showroom-BOZEN	Caroline Eder	english	277049.23
Showroom-BOZEN	Elisabeth Schwarz	english	240820.64
Showroom-BOZEN	Noemi Bruno	english	8688.9
Showroom-BOZEN	Simone Serra	english	265751.20
Showroom-BOZEN	Valerio Adami	english	184714.18
Showroom-BOZEN	*	english	977024.15
Showroom-BOZEN	Caroline Eder	german	5384090.56
Showroom-BOZEN	Elisabeth Schwarz	german	8917292.85
Showroom-BOZEN	Mario Lang	german	2448919.46
Showroom-BOZEN	Martina Lehner	german	3255981.32

showroom_name	sales_rep_name	visitor_language	sum
Showroom-BOZEN	Noemi Bruno	german	6188561.63
Showroom-BOZEN	Simone Serra	german	4546093.16
Showroom-BOZEN	Valerio Adami	german	5940355.45
Showroom-BOZEN	*	german	36681294.43
•••			

4.3.2 SQL query using GROUPING SETS for business process 2 (production)

The following query shows the number of a certain grade for a product category in a specific year. The query also shows the number of a certain rating in a certain year.

```
SELECT product_category, year_actual,
quality_control_grade, count(product_id)
FROM warehouse.production
JOIN warehouse.product using (product_id)
JOIN warehouse.date ON date.date_id = production.end_date_id
JOIN warehouse.quality_control using (quality_control_id)
GROUP BY GROUPING SETS(
(product_category, year_actual, quality_control_grade),
(year_actual, quality_control_grade));
```

5 Querying

5.1 NTILE

5.1.1 SQL query using NTILE for business process 1 (showroom visit)

The following sql statement calculates the number of visitors coming from a particular location of the province of Bolzano and assigns each row to a group from 1-4, depending on the size of the number of visitors.

```
SELECT vl.city, count(visitor_id),

NTILE(4) OVER (ORDER BY count(visitor_id)) AS TILE4

FROM warehouse.showroom_visit

JOIN warehouse.visitor using (visitor_id)

JOIN warehouse.location as vl

on warehouse.visitor.location_id = vl.location_id

WHERE vl.province = 'Bozen'

GROUP BY vl.city;
```

5.1.2 SQL query using NTILE for business process 2 (production)

The next sql query averages all processing times of an operator and groups them to 4 groups, were each operators gets assigned to a specific group relatively to the average of duration of all production steps.

```
SELECT operator_name, ROUND(avg(duration)::numeric,2), NTILE(4) OVER (ORD FROM warehouse.production

JOIN warehouse.operator using (operator_id)

GROUP BY operator_name;
```

5.2 RANK

5.2.1 SQL query using RANK for business process 1 (showroom visit)

The following query identifies the overall total number of visitors per showroom and ranks them according to their number of visitors.

```
SELECT showroom_name, count(distinct visitor_id),
RANK() OVER (ORDER BY count(distinct visitor_id) DESC)
FROM warehouse.showroom_visit
JOIN warehouse.showroom using (showroom_id)
GROUP BY showroom_name;
```

5.2.2 SQL query using RANK for business process 2 (production)

The following sql query ranks the different products with respect to their average raw material costs.

```
SELECT product_category, ROUND(avg(raw_material_cost)::numeric,2),
RANK() OVER (ORDER BY (avg(raw_material_cost)) DESC)
FROM warehouse.production
JOIN warehouse.product using (product_id)
GROUP BY product_category;
```

5.3 Windowing Clause

5.3.1 SQL query using a windowing clause for business process 1 (showroom visit)

```
(text missing)

SELECT date_actual, this_day, average_last_week
FROM (
SELECT date_actual, year_actual, sum(order_total_price) as this_day,
ROUND(AVG(SUM(order_total_price))

OVER (ORDER BY date_actual
ROWS BETWEEN 7 PRECEDING
```

```
AND CURRENT ROW)::numeric,2) as average_last_week
7
          FROM warehouse.showroom_visit
           JOIN warehouse.date using (date_id)
           JOIN warehouse.order using (order_id)
10
           GROUP BY date_actual, year_actual
           ORDER BY date_actual) as res where year_actual > 2017;
12
        SQL query using a windowing clause for business process 2 (production)
  (text missing)
1 SELECT year_actual, month_actual, this_month, average_last_months
 FROM (
  SELECT year_actual, month_actual, sum(raw_material_cost) as this_month,
                   ROUND(AVG(SUM(raw_material_cost))
                            OVER ( ORDER BY year_actual, month_actual
                            ROWS BETWEEN 6 PRECEDING
                            AND CURRENT ROW)::numeric,2) as average_last_mont
           FROM warehouse.production
           JOIN warehouse.date ON date.date_id = production.end_date_id
           GROUP BY year_actual, month_actual
10
           ORDER BY year_actual, month_actual) as res where year_actual = 20
11
       Period-to-period Comparison
        SQL query using period-to-period comparison for business process 1 (show-
        room visit)
  (text missing)
  SELECT year_actual, quarter_actual,
           visitors_this_year, visitors_last_year,
2
           visitors_this_year - visitors_last_year as difference
3
          FROM (
                   SELECT year_actual, quarter_actual,
                            count(visitor_id) as visitors_this_year,
                            LAG(count(visitor_id), 4) OVER (ORDER BY year_acts
                   FROM warehouse.showroom_visit
                            JOIN warehouse.date using (date_id)
                            JOIN warehouse.order using (order_id)
10
                            GROUP BY year_actual, quarter_actual
11
```

6 Data Analysis Tool

12

13

WHERE year_actual > 2010;

ORDER BY year_actual, quarter_actual) as last_year