Health Risk and Insurance Over the Lifecycle

Juergen Jung Towson University, Maryland

Chung Tran Australian National University

CBE - Conference May 2015

Disclaimer

This project was supported by the Agency for Healthcare Research and Quality (AHRQ, Grant No.: R03HS019796), the Australian Research Council (ARC, Grant No.: CE110001029), CBE-Towson University Summer Research Support, and funds from the Centers for Medicare & Medicaid Services, Office of the Actuary (CMS/OACT).

The content is solely the responsibility of the authors and does not represent the official views of the funding institutions.

U.S. Medical vs. Non-Medical Consumption

Figure 1: MEPS 1996-2007

Healthcare Financing in OECD Economies

Figure 2: OECD (2004)

U.S. Health Spending

Figure 3: CBO (2010)

Our Research Program

- Develop macroeconomic models with micro-foundations of health
- Analyze economic aspects of health-related behavior
- Study implications of healthcare policies
 - The distributional effects: health inequality and wealth inequality
 - The macroeconomic aggregates and welfare.

This Paper

- Develop a stochastic dynamic general equilibrium **overlapping** generations model with
 - endogenous health expenditures and insurance choice
 - and a realistic structure of health insurance systems

that accounts for the patterns of

- health expenditures and insurance over the life cycle
- the distribution of income and health expenditures observed in the data
- **Goal**: quantify the effects of social health insurance on
 - macroeconomic aggregates and
 - welfare.

Results Preview

- Lifecycle health risk induces demand for health insurance
- Private health insurance: very limited
 - Competitive markets fail to insure lifecycle health risk
 - Introduction of market regulations improves
 - insurance coverage (up to 70%)
 - small welfare gains(2.3%)
- Public (social) health insurance: important
 - The European-style heath insurance system
 - Aggregate output loss (9%)
 - but large welfare gains (5.5%)
 - The American-style insurance system: Mix of public and private insurance
 - Aggregate output loss (7.5%)
 - and welfare gain (between 3 and 4%)

Related Literature

- Micro-health economics
 - Grossman (1972a,1972b), Grossman (2000)
 - Pauly(1974), Rothschild and Stiglitz (1976)
 - Besley (1989), Selden (1993), Blomqvist and Johansson (1997)
- Quantitative macroeconomics/public finance
 - Ayagari (1994), Imrohoroglu et al (1995), Hugget (1996)
- Macro-health economics:
 - Exogeneous health expenditure shocks: Kotlikoff (1988), Leven (1985), Palumbo (1999), Attanasio, Kitao and Violante (2008), Jeske and Kitao (2009), Pashchenko and Porapakkarm (2010), Janicki (2011)
 - Endogenous health expenditures and insurance: Suen (2006), Feng (2009), and Jung and Tran (2008, 2010, 2013)

MODEL

The Model: Bewley (1986) and Grossman (1972)

- Overlapping generations model with
 - heterogeneous agents
 - lifespan: age 20 to 90
 - idiosyncratic shocks: labor productivity and health shocks
 - health capital accumulation
 - health as consumption and investment goods
 - endogenous health spending
 - endogenous health insurance choice
- Maket structure: goods, capital, labor markets, and incomplete financial markets
- Government-run health insurance systems
- Dynamic stochastic general equilibrium

The Model: Preferences and technology

• Preferences:

$$u(c_j, l_j, h_j)$$

Health capital:

$$h_j = h\left(m_j, h_{j-1}, \delta^h, \epsilon_j^h\right)$$

Human capital ("labor"):

$$e_{j} = e\left(\vartheta, h_{j}, \epsilon_{j}^{l}\right)$$

• Health and labor income shocks:

$$\Pr\left(\epsilon_{j+1}^{h}|\epsilon_{j}^{h}\right)\in\Pi_{j}^{h}\text{ and }\Pr\left(\epsilon_{j+1}^{l}|\epsilon_{j}^{l}\right)\in\Pi_{j}^{l}$$

The Model: Health Insurance Arrangements

- Private health insurance
- Public (social) health insurance
- Health insurance status:

$$in_j = \begin{cases} 0 & \text{if no insurance} \\ 1 & \text{if private insurance} \\ 2 & \text{if public insurance} \end{cases}$$

The Model: Out-of-pocket Health Spending

• Agent's out-of-pocket health expenditures depend on insurance state

$$o\left(m_{j}\right) = \begin{cases} p_{m}^{in_{j}} \times m_{j}, & \text{if } in_{j} = 0\\ \rho^{in_{j}} \left(p_{m}^{in_{j}} \times m_{j}\right), & \text{if } in_{j} > 0 \end{cases}$$

The Model: Technology and Firms

• Final goods C production sector for price $p_C = 1$:

$$\max_{\{K, L\}} \left\{ F(K, L) - qK - wL \right\}$$

• Medical services M production sector for price p_m :

$$\max_{\left\{K_{m},\ L_{m}\right\}}\left\{p_{m}F_{m}\left(K_{m},L_{m}\right)-qK_{m}-wL_{m}\right\}$$

- \bullet p_m is a base price for medical services
- Price paid by households depends on insurance state:

$$p_{j}^{\mathit{in}_{j}}=\left(1+
u^{\mathit{in}_{j}}
ight)p_{\mathit{m}}$$

- ullet u^{in_j} is an insurance state dependent markup factor
- Profits are redistributed to all surviving agents

The Model: Household Problem - Timing

Insurance Sector

$$\begin{split} &\left(1+\omega^{\mathsf{in}}\right)\sum_{j=1}^{J}\mu_{j}\int\left[\mathbf{1}_{\left[\mathit{in}_{j}\left(\mathsf{x}_{j}\right)=1\right]}\left(1-\rho^{\mathsf{in}}\right)\rho_{m}^{\mathsf{in}}m_{j}\left(\mathsf{x}_{j}\right)\right]d\Lambda\left(\mathsf{x}_{j}\right)\\ &=&R\sum_{j=1}^{J}\mu_{j}\int\left(\mathbf{1}_{\left[\mathit{in}_{j}\left(\mathsf{x}_{j}\right)=1\right]}\mathsf{prem}^{\mathsf{in}}\right)d\Lambda\left(\mathsf{x}_{j}\right), \end{split}$$

Government Budget

$$G + T^{\mathsf{SI}} + T^{\mathsf{Med}} = \sum_{j=1}^{J} \mu_{j} \int \left[\tau^{\mathsf{C}} c\left(x_{j} \right) + tax_{j}\left(x_{j} \right) \right] d\Lambda\left(x_{j} \right),$$

where
$$T^{SI} = \sum_{j=1}^{J} \mu_j \int t_j^{SI}(x_j) d\Lambda(x_j)$$
 and

$$T^{\mathsf{Med}} = \sum_{j=1}^{J} \mu_{j} \int \left(1 - \rho^{\mathsf{Med}}\right) p_{m}^{\mathsf{Med}} m_{j}\left(x_{j}\right) d\Lambda\left(x_{j}\right) - \sum_{j=1}^{J} \mu_{j} \int \mathsf{prem}^{\mathsf{Med}}\left(x_{j}\right) d\Lambda\left(x_{j}\right).$$

Pensions and Bequests

Pensions:

$$\sum_{j=J_1+1}^{J} \mu_j \int t_j^{\mathsf{Soc}}(x_j) d\Lambda(x_j)$$

$$= \sum_{j=1}^{J_1} \mu_j \int \tau^{\mathsf{Soc}} \times (e_j(x_j) \times l_j(x_j) \times w) d\Lambda(x_j)$$

Accidental Bequests:

$$\sum_{j=1}^{J_1} \mu_j \int t_j^{\mathsf{Beq}}(x_j) \, d\Lambda(x_j) = \sum_{j=1}^{J} \int \tilde{\mu}_j a_j(x_j) \, d\Lambda(x_j)$$

A Competitive Equilibrium

Given the transition probability matrices and the exogeneous government policies, a competitive equilibrium is a collection of sequences of distributions of household decisions, aggregate capital stocks of physical and human capital, and market prices such that

- Agents solve the consumer problem
- The F.O.Cs of firms hold
- The budget constraints of insurances companies hold
- All markets clear
- All government programs and the general budget clear
- The distribution is stationary

CALIBRATION

Parameterization and Calibration

- Goal: to match U.S. data pre-ACA (before 2010)
- Data sources:
 - MEPS: labor supply, health shocks, health expenditures, coinsurance rates
 - PSID: initial asset distribution
 - CENSUS: demographic profiles
 - Previous studies: income process, labor shocks, aggregates

The U.S. Health Insurance System

- Mixed system:
 - Private health insurance for working population
 - Individual based health insurance (IHI)
 - Group based health insurance (GHI)
 - Public health insurance
 - Medicare for retirees
 - Medicaid for the poor: 2/3 is retirees
- Key Facts:
 - Low coverage: 47 million uninsured in 2010 ($\approx 15\%$)
 - High cost: 16% of GDP on health in 2010 and close to 20% by 2015

Moment Matching: Health Expenditures

Figure 4: Moment matching: Model vs. Data

Moment Matching: Insurance Take-up Rates

Figure 5: Moment matching: Model vs. Data

Income Distribution

Income distribution SS1 with FPL

Figure 6: Moment matching: Model vs. Data

Calibration: Matched Moments

Moments	Model	Data	Source
- Medical expenses HH income	17.6%	17.07%	CMS communication
- Workers IHI	6.7%	7.6%	MEPS 1999/2009
- Workers IHI	62.2%	63.6%	MEPS 1999/2009
- Workers Medicaid	9.0%	9.2%	MEPS 1999/2009
- Capital output ratio: K/Y	2.9	2.6 - 3	NIPA
- Interest rate: R	4.2%	4%	NIPA
 Size of Social Security: SocSec/Y 	5.9%	5%	OMB 2008
- Size of Medicare: Medicare/Y	3.1%	2.5 - 3.1%	U.S. Department of Health 2007
- Payroll tax Social Security: $ au^{Soc}$	9.4%	10 - 12%	IRS
- Consumption tax: $ au^{ extsf{C}}$	5.0%	5.7%	Mendoza et al. (1994)
- Payroll tax Medicare: $ au^{Med}$	2.9%	1.5 - 2.9%	Social Security Update (2007)
-Total tax revenue/ Y	21.8%	28.3%	Stephenson (1998) and BarroSahasakul (1986)
- Medical spending profile		see figure	
 Medical spending distribution 		see figure	
- Insurance take-up ratios		see figure	
Total number of moments			

EXPERIMENTS

Experiments

- Construct a benchmark economy with no health insurance for comparison
- Introduce alternative insurance regimes
 - O Private insurance
 - Public health insurance
 - A mix of private and public health inusurance
- Quantify the macroeconomic and welfare imiplications

Private Insurance

- Unregulated market (IHI)
 - Price discrimination: age and health status $prem = prem(j, h_j)$
 - No government subsidy
- Regulated market (GHI)
 - No price discrimination: community rating
 - Premium payment is tax deductible

Private Insurance: Aggregates and Welfare

	[1] No Ins.	[2] Private Health Insurance Only		
		(a) Unregulated	(b) Regulated	
Insured (%)	0.00	8.03	70.62	
+ IHI (%)	0.00	9.76	0.00	
+ GHI (%)	0.00	0.00	70.62	
Capital (K)	100.00	100.15	99.40	
Output (GDP)	100.00	100.36	100.75	
Welfare	0.00	-0.26	2.31	

Table 1: The Effects of Private Health Insurance.

Public Insurance

- The European/Canadian/Australian health insurance system
 - Mandatory membership
 - Open enrollment
 - Community rating
 - financed by payroll or consumption tax

Public Insurance: Aggregate and Welfare

	[1] No Ins.	[3] Public Health Insurance Only		
		(a) Medicaid for all	(b) Medicare for all	
Insured (%):	0.00	100.00	100.00	
+ Medicaid (%)	0.00	100.00	00.00	
+ Medicare (%)	0.00	00.00	100.00	
Cons. tax - τ_C (%)	4.31	23.36	17.02	
Capital (K_c)	100.00	86.11	86.71	
Output (Y _c)	100.00	90.42	91.41	
Welfare	0.00	5.59	5.81	

Table 2: The Effects of Social Health Insurance

Mix of Private and Public Insurance

- The U.S. health insurance system
 - Partial coverage
 - Private insurance for workers
 - Public insurance for retirees and the poor
- Two arrangements
 - Pre-ACA
 - Post-ACA

Mix of Private and Public Insurance

	[1] No Ins.	[4] Public and Private Ins.		
		(a) Pre-ACA	(b) After-ACA	
Insured (%):	0.00	80.42	92.09	
+ IHI (%)	0.00	4.56	10.19	
+ GHI (%)	0.00	20.23	49.70	
+ Medicaid (%)	0.00	7.91	14.52	
+ Medicare (%)	0.00	17.68	17.68	
Capital (K _c)	100.00	85.72	84.86	
Output (Y _c)	100.00	92.40	90.55	
Welfare	0.00	4.06	3.71	

Table 3: The effects of mixed public and private health insurance systems

Consumption Variation

Coefficient of variation of C by skill group

Out-of-Pocket Health Spending Variation

Coefficient of variation of OOP expenses by skill group

Health Capital Variation

Coefficient of variation of H capital by skill group

Insurance Take-up Variation

Coefficient of variation of income by skill group

Labor Variation

Coefficient of variation of Labor by skill group

Conclusion

- Construct a heterogeneous agents macro-model with health as a durable good
- Account for lifecycle patterns of health expenditures and private insurance take up rates
- Quantify the macroeconomic and distributional effects of different health insurance systems