Statistics Ph.D. Qualifying Exam: Part I

November 11, 2006

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

1. Let X and Y have joint pdf

$$f(x,y) = \frac{1}{4}(x+2y), \quad 0 \le x \le 2, \quad 0 < y < 1.$$

- (a) Find the marginal pdf of X.
- (b) Find the pdf of $Z = (2X 1)^2$.
- (c) Find the pdf of W = X + Y.

2. Let X and Y be two independent random variables following exponential distributions with means a and b, respectively. Define the $Z = \min(X, Y)$ and

$$W = \begin{cases} 1, & \text{if } Z = X \\ 0, & \text{if } Z = Y. \end{cases}$$

- (a) Find P(W=1).
- (b) Find the p.d.f. of Z.
- (c) Find the joint distribution of W and Z. That is, $P(Z \le z, W = w)$, where z > 0 and w = 0, 1.
- (d) Are W and Z independent? Justify your answer.

4. Let X_1, \ldots, X_n be a random sample from a Poisson probability distribution

$$f(x;\theta) = \frac{\theta^x e^{-\theta}}{x!}, x = 0, 1, 2, \dots,$$

where $\theta > 0$. Let \bar{X} and S^2 be the sample mean and sample variance, respectively.

- (a) Show that \bar{X} and S^2 are unbiased estimators of θ .
- (b) Show that $E(S^2|\bar{X}) = \bar{X}$ and $Var(S^2) > Var(\bar{X})$. Justify your argument.

- 5. Let X_1, \ldots, X_n be a random sample from a geometric probability distribution $f(x; \theta) = \theta(1-\theta)^{x-1}$, where $0 < \theta < 1$ and $x = 1, 2, 3, \cdots$.
 - (a) Show that X_1 is an unbiased estimator of $1/\theta$.
 - (b) Find the Cramér-Rao lower bound for the variance of unbiased estimators of $1/\theta$.
 - (c) Find the UMVUE of $1/\theta$.

6. Let X_1, X_2, \dots, X_n be a random sample from the following distribution

$$f(x|\theta) = \begin{cases} \theta e^{2\theta x}, & x < 0\\ \frac{\theta}{2}e^{-\theta x}, & x \ge 0, \end{cases}$$

where $\theta > 0$ is unknown parameter. Derive the UMP test for $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$.

- 7. Let $\{X_1, X_2\}$ be distributed as a 2-dimensional multinomial random vector with parameters $\{n; p_1, p_2\}$, where $0 < p_i, i = 1, 2, p_1 + p_2 < 1$ and n an integer. Put $Y_i = \log\{X_i/(n X_1 X_2)\}, i = 1, 2$.
 - (a) Assuming that n is very large, derive the asymptotic joint pdf (Probability Density Function) of $\{(X_1 np_1)/\sqrt{n}, (X_2 np_2)/\sqrt{n}\}.$
 - (b) Assuming that n is very large, derive the asymptotic pdf of Y_i , (i = 1, 2). What are the asymptotic mean value and the asymptotic variance of Y_i (i = 1, 2)? What is the asymptotic covariance between Y_1 and Y_2 ?
 - (c) Assuming $p_1 = p_2$, derive the asymptotic distribution of $Z = (Y_1 Y_2)^2$.

- 8. Let $\{X_1, \ldots, X_m\}$ be a random sample from the normal distribution with mean μ_1 and variance $4 \times \sigma^2$. Let $\{Y_1, \ldots, Y_n\}$ be a random sample from the normal distribution with mean μ_2 and variance $9 \times \sigma^2$. Define the statistics $\{\bar{X} = \frac{1}{m} \sum_{i=1}^m X_i, \bar{Y} = \frac{1}{n} \sum_{j=1}^n Y_j, S_X^2 = \sum_{i=1}^m (X_i \bar{X})^2, S_Y^2 = \sum_{j=1}^n (Y_j \bar{Y})^2\}$.
 - (a) Show that $\{\bar{X}, \bar{Y}, S_X^2, S_Y^2\}$ is a set of jointly sufficient but not complete statistics for $\{\mu_1, \mu_2, \sigma^2\}$. Obtain a set of jointly sufficient and complete statistics for $\{\mu_1, \mu_2, \sigma^2\}$.
 - (b) Derive the UMVUE (Uniformly Minimum-Varianced Unbiased estimator) of $\mu_1 \mu_2$. What is the UMVUE of σ^2 ?
 - (c) Assuming a non-informative prior $P(\mu_1, \mu_2, \sigma^2) \propto {\{\sigma^2\}^{-1}}$ for ${\{\mu_i, i = 1, 2, \sigma^2\}}$, derive the Bayesian estimator of $\mu_1 \mu_2$ and the Bayesian estimator of σ^2 under squared loss function.

- 9. Let $\{X_1, \ldots, X_m\}$ be a random sample from the population with density $f(x; \beta_1, \sigma_1^2) = \frac{1}{\sigma_1^2} e^{-\frac{1}{\sigma_1^2}(x-\beta_1)}, x > \beta_1$. Let $\{Y_1, \ldots, Y_n\}$ be a random sample from the population with density $f(y; \beta_2, \sigma_2^2) = \frac{1}{\sigma_2^2} e^{-\frac{1}{\sigma_2^2}(y-\beta_2)}, y > \beta_2$, independently of $\{X_1, \ldots, X_m\}$.
 - (a) Derive the size α likelihood ratio testing procedure for testing $H_0: \sigma_1^2 = \sigma_2^2$ vs $H_1: \sigma_1^2 \neq \sigma_2^2$, $(0 < \alpha < 1)$.
 - (b) Derive the power function of your test.
 - (c) Derive a $100(1-\alpha)$ % confidence interval for $\theta = \sigma_1^2/\sigma_2^2$. If you use this confidence interval to test the above hypothesis H_0 , how is it compared with the procedure derived in (a)?

10. Let X_1, \ldots , be a sequence of independent random variables with the logistic (cumulative) distribution function

$$F(x) = \frac{1}{1 + e^{-x}}, \quad -\infty < x < \infty.$$

Let N be a geometric random variable with probability function

$$P(N = n) = p(1 - p)^{n-1}, n = 1, 2, \dots$$

Assume that N is independent of the X's.

- (a) Prove that $X_{(N)} + \log p$ also has a logistic distribution function, where $X_{(N)} = \max(X_1, \dots, X_N)$.
- (b) Using the fact that the logistic distribution given above is symmetric about 0, what does the above result say about the distribution of $\min(X_1, \ldots, X_N)$?

11. Let Y_1, \ldots, Y_n be random variables satisfying the linear model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n,$$

where x_1, \ldots, x_n are fixed constants, and $\epsilon_1, \ldots, \epsilon_n$ are i.i.d Normal $(0, \sigma^2)$. Assume that σ^2 is unknown.

- (a) Find the jointly sufficient statistics for $(\beta_0, \beta_1, \sigma^2)$
- (b) Find the MLE of β_1 and σ^2 and show whether or not they are biased or unbiased.
- (c) Construct a likelihood ratio test of $H_0: \beta_1 = 0$ versus $H_1: \beta_1 \neq 0$ at level of significance α . Give the critical value of the rejection region in terms of a percentile of a tabulated distribution.
- (d) Explain how you would compute the power of the test.

- 12. (a) Write a careful proof of the Neyman-Pearson Lemma.
 - (b) Let X_1, \ldots, X_{2n+1} be a random sample from a population with density

$$f(x;\theta) = e^{-(x-\theta)}, \quad x \ge \theta.$$

You wish to test $H_0: \theta = 0$ versus $H_1: \theta = 1$

- i. For each of the following procedures, compute the probability of Type I and the power of the tests at $\theta = 1$.
 - A. Reject H_0 if $X_{(1)} > .5$.
 - B. Reject H_0 if $0.5 < X_{(n)} < 1$
- ii. Construct the most powerful test of these hypotheses, when you set level of significance at 0.05.