Math 297 Discussion 3 Notes

Annie Xu

January 29, 2019

1 Topological Properties

1) Fine and coarse (relative)

Definition 1.1. Suppose that \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}' \supset \mathcal{T}$, we say that \mathcal{T}' is **finer** than \mathcal{T} ; if \mathcal{T}' properly contains \mathcal{T} , we say that \mathcal{T}' is **strictly finer** than \mathcal{T} . We also say that \mathcal{T} is **coarser** than \mathcal{T}' , or **strictly coarser**, respectively. We say \mathcal{T} is **comparable** with \mathcal{T}' if either $\mathcal{T}' \supset \mathcal{T}$ or $\mathcal{T} \supset \mathcal{T}$.

2) Continuity of a function in topological spaces

Definition 1.2. Let X and Y be topological spaces. A function $f: X \to Y$ is said to be **continuous** if for each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X.

Note: If the topology of the range space Y is given by a basis \mathcal{B} , then to prove continuity of f it suffices to show that the inverse image of every *basis element* is open. The arbitrary open set V of Y can be written as a union of basis elements

$$V = \bigcup_{\alpha \in J} B_{\alpha}$$

Then

$$f^{-1}(V) = \bigcup_{\alpha \in J} f^{-1}(B_{\alpha})$$

So that $f^{-1}(V)$ is open if each set $f^{-1}(B_{\alpha})$ is open.

If the topology on Y is given by a subbasis S, to prove continuity of f it will even suffice to show that the inverse image of each *subbasis* element is open. The arbitrary basis element B for Y can be written as a finite intersection $S_1 \cap \cdots \cap S_n$ of subbasis elements; it follows from the equation

$$f^{-1}(B) = f^{-1}(S_1) \cap \dots \cap f^{-1}(S_n)$$

that the inverse image of every basis element is open.

Exercise

1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

Proof. For each $x \in A$, by our hypothesis, $\exists U_x \in \mathcal{T}$ such that $x \in U \subset A$. Then $A = \bigcup_{x \in A} U_x$ is the union of elements of subcollection U_x in \mathcal{T} . By definition, A is open in X.

2. Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in Example 1 of §12. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is finer.

Solution. We compare pair-wisely from 1, 1, and skip the not comparable pairs. 1, 1 is comparable to all, and is coarser than all. 1, 2 is finer than 3, 1, 2, 1 is coarser than 3, 2 and 3, 3. 1, 3 is finer than 2, 1 and 3, 1, coarser than 2, 3 and 3, 3. 2, 1 is coarser than 2, 3, 3, 2, and 3, 3. 2, 2 is coarser than 3, 3. 2, 3 is finer than 3, 1, and coarser than 3, 3. 3, 1 is coarser than 3, 2 and 3, 3. 3, 2 is coarser than 3, 3.

- 3. Show that the collection \mathcal{T}_c of all subsets U of X such that $X \setminus U$ either is countable or is all of X. Show that \mathcal{T}_c is a topology on the set X. Is the collection $\mathcal{T}_{\infty} = \{U|X-U \text{ is infinite or empty or all of } X\}$ a topology on X?
- **Solution.** $\emptyset \in \mathcal{T}_c$ because its complement is all of X. $X \in \mathcal{T}_c$ because its complement is countable. For any collection of elements U_{α} in \mathcal{T}_c , $X - U_{\alpha}$ is countable, so $X - \bigcup U_{\alpha} = \bigcap (X - U_{\alpha})$ is countable. If U_1, \dots, U_n are nonempty elements of \mathcal{T}_c , $X - \bigcap_{i=1}^n U_i = \bigcup_{i=1}^n (X - U_i)$ is a finite union of countable sets and, therefore, countable.

- 4. (a) If \mathcal{T}_{α} is a family of topologies on X, show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X?
- (b) Let \mathcal{T}_{α} be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .
- (c) If $X = \{a, b, c\}$, let $\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\}$, and $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}$. Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 , and the largest topology contained in \mathcal{T}_1 and \mathcal{T}_2 .
- **Solution.** (a) Since \emptyset , X are in every \mathcal{T}_{α} , \emptyset , X are in their intersection. For any collection of elements U_{α} in $\bigcap \mathcal{T}_{\alpha}$, U_{α} is in every \mathcal{T}_{α} , so their union is in every \mathcal{T}_{α} , and thus in $\bigcap \mathcal{T}_{\alpha}$. If U_1, \dots, U_n are nonempty elements of $\bigcap \mathcal{T}_{\alpha}$, then U_1, \dots, U_n are elements of each \mathcal{T}_{α} , so their intersection is in each \mathcal{T}_{α} , and thus in $\bigcap \mathcal{T}_{\alpha}$.
- $\bigcup \mathcal{T}_{\alpha}$ is not a topology on X. For example, let $X = \{a, b, c\}$. $\mathcal{T}_{1} = \{\emptyset, X, \{a\}\}$, and $\mathcal{T}_{2} = \{\emptyset, X, \{b\}\}$. Then $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b\}\}\$ is not a topology on X.
- (b) By (a), the largest topology contained in all \mathcal{T}_{α} is $\bigcap \mathcal{T}_{\alpha}$. Let \mathcal{T} be the topology generated by the subbasis $\bigcup \mathcal{T}_{\alpha}$, then it is a topology containing all \mathcal{T}_{α} . To show that it is the smallest, suppose $\exists \mathcal{T}'$ s.t. $\mathcal{T}' \subset \mathcal{T}$ but $\mathcal{T}' \neq \mathcal{T}$. Then $\exists U \in \mathcal{T}$ but $U \notin \mathcal{T}'$. By definition of \mathcal{T} , U is the union of finite intersections of elements of $\bigcup \mathcal{T}_{\alpha}$, thus making \mathcal{T}' not a topology, contradiction!
- (c) Smallest containing: $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Largest contained: $\{\emptyset, X, \{a\}\}$.
- 5. Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} end the intersection of all topologies on X that contain \mathcal{A} . Prove the same if \mathcal{A} is a subbasis.

Solution. Let \mathcal{T} be the topology generated by \mathcal{A} . By Lemma 13.1, \mathcal{T} equals the collection of all unions of elements of \mathcal{A} . Since for any topology \mathcal{T}' containing \mathcal{A} , any union of elements of \mathcal{A} is in \mathcal{T}' , so $\mathcal{T} \subset \mathcal{T}'$. If $U \in \bigcap \mathcal{T}'$, then $U \in \mathcal{T}'$ for all \mathcal{T}' containing \mathcal{A} . If $U \notin \mathcal{T}$, U is not a union of elements of \mathcal{A} .

If \mathcal{A} is a subbasis, and \mathcal{T}_2 is generated by \mathcal{A} , it's easy to see that $\mathcal{T}_2 \in \bigcap \mathcal{T}'$ by definition.

6. Show that the topologies of \mathbb{R}_l and \mathbb{R}_K are not comparable.

Solution. From Lemma 13.4 we know that there is no open interval (a, b) that contains x and lies in [x, d). Then there can't be (a,b)-K that contains x and lies in [x,d). So $\mathbb{R}_l \not\subset \mathbb{R}_K$. On the other hand, given the basis element B = (-1,1) - K for \mathcal{T}'' and the point 0 of B, there is no [c,d) that contains 0 and lies in B. So $\mathbb{R}_K \not\subset \mathbb{R}_l$.

- 7. Consider the following topologies on \mathbb{R} :
- \mathcal{T}_1 = the standard topology,
- \mathcal{T}_2 = the topology of \mathbb{R}_K ,
- \mathcal{T}_3 = the finite complement topology,
- \mathcal{T}_4 = the upper limit topology, having all sets (a, b] as basis,
- \mathcal{T}_5 = the topology having all sets $(-\infty, a) = \{x | x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains.

Solution. \mathcal{T}_1 contains \mathcal{T}_3 and \mathcal{T}_5 ; \mathcal{T}_2 contains \mathcal{T}_1 , \mathcal{T}_3 , and \mathcal{T}_5 ; \mathcal{T}_3 contains nobody; \mathcal{T}_4 contains \mathcal{T}_1 , \mathcal{T}_5 ; \mathcal{T}_5 contains nobody.