



### **Requirement Engineering**

**Lecture 4: Requirements Elicitation**Part 2

Prof. Dr. Benjamin Leiding M.Sc. Anant Sujatanagarjuna





#### **General Requirements Engineering Process**

#### **Overview**

|             | Requirements Engineering |               |            |                         |         |
|-------------|--------------------------|---------------|------------|-------------------------|---------|
|             | Requirements Analysis    |               |            | Requirements Management |         |
| Elicitation | Negotiation              | Documentation | Validation | Change Management       | Tracing |





### Lecture 4: Requirements Elicitation Content

- 1 Elicitation Techniques
- 2 Assistance/Support Techniques



#### **Overview**

| Survey<br>Techniques | Creativity<br>Techniques | Document-<br>centric<br>Techniques | Observation<br>Techniques | Support<br>Techniques        |
|----------------------|--------------------------|------------------------------------|---------------------------|------------------------------|
| Interviews           | Brainstorming            | System<br>Archaeology              | Field<br>Observation      | Mind Mapping                 |
| Questionnaires       | Brainstorming<br>Paradox | Perspective-<br>based Reading      | Apprenticing              | Workshops                    |
|                      | Change of Perspective    | Reuse                              |                           | CRC Cards                    |
|                      | Analogy<br>Technique     |                                    |                           | Audio and Video<br>Recording |
|                      |                          |                                    |                           | Use Case<br>Modeling         |
|                      |                          |                                    |                           | Prototypes                   |





#### **Document-centric Techniques**

Reuse of solutions and experiences made with existing systems

- Used when a legacy system is replaced
  - Make sure that the new system covers all important features of the legacy system
- Should be combined with other techniques
  - Validation of the elicited requirements
  - Discovery of new requirements impossible





#### **Document-centric Techniques**

Document analysis is an important part of requirements elicitation

#### Typical types of documents:

- Development documents (of current or earlier systems)
- Standards & Norms
- Compliance (legal information)



#### **Document-centric Techniques - System Archaeology**

- Extracts information from documentation or implementations of existing systems
  - Legacy systems or competitor's system

- Can recover lost knowledge about system logic
  - System logic is elicited anew
- Yields large amount of detailed requirements





#### **Document-centric Techniques - Reuse**

- Assumption:
  - Documented requirements are available
  - The requirements have a high quality
- Such requirements do not have to be reelicited
- Instead → just reuse the existing requirements
  - Saves costs and time!





#### **Document-centric Techniques - Perspective-based Reading**

Analyzes documents from a certain perspective → e.g., implementer or tester

All aspects not related to the perspective are ignored

Allows analysis focused on particular aspects

 Can separate technology-related or implementation- related aspects from operational aspects







### **Document-centric Techniques - Prepare Perspective-based Reading**

- Define goals and expected results
- Define perspectives based on the goals
- Pick documents based on the defined perspectives and goal
- Choose stakeholders matching the perspectives to do the reading





### **Document-centric Techniques - Conduct Perspective-based Reading**

- The two methods to conduct perspective-based reading are sequenced reading and top-down reading.
- Sequenced reading
  - The whole documents are read with the defined perspectives
- Top-down reading
  - The documents must have structuring means (table of contents, index, list of figures etc.)
  - Only relevant text passages found with the structuring means and the perspective are read





**Document-centric Techniques - Post-process Perspective-based Reading** 

- Documenting the requirements
  - Document the gained requirements
  - Ensure the traceability between the requirements and the text passages



#### **Overview**

| Survey<br>Techniques | Creativity<br>Techniques | Document-<br>centric<br>Techniques | Observation<br>Techniques | Support<br>Techniques        |
|----------------------|--------------------------|------------------------------------|---------------------------|------------------------------|
| Interviews           | Brainstorming            | System<br>Archaeology              | Field<br>Observation      | Mind Mapping                 |
| Questionnaires       | Brainstorming<br>Paradox | Perspective-<br>based Reading      | Apprenticing              | Workshops                    |
|                      | Change of Perspective    | Reuse                              |                           | CRC Cards                    |
|                      | Analogy<br>Technique     |                                    |                           | Audio and Video<br>Recording |
|                      |                          |                                    |                           | Use Case<br>Modeling         |
|                      |                          |                                    |                           | Prototypes                   |



#### **Observation Techniques**

- Observation of stakeholders during their work
  - Instead of a stakeholder or domain expert describing their work
  - Active demonstration or passive observation both possible
- Requirements engineer documents all steps
  - Elicits the business process
  - Observes mistakes, risks, and open questions
  - Question the existing process in order to determine how the process should look like
    - Avoids documenting an outdated or suboptimal process
- Well-suited to obtain dissatisfiers
- Not well-suited for the development of new requirements





#### **Observation Techniques - Field Observation**

- Requirements engineer is on location
- Observes and documents processes
  - May be supported by video and audio recordings
- Well-suited for requirements and processes that are difficult to describe verbally
  - Instead, they are simply shown





#### **Observation Techniques - Field Observation / Preparation**

- Purpose
  - Decide on the purpose of the observation
- Object
  - Decide on the object of the observation
- Work results
  - Define the planed work results





#### **Observation Techniques - Field Observation / Conducting**

- Guideline for an observation
  - Gain the trust of the observed stakeholders
  - Pay attention to details
  - Write down your expressions immediately
  - Check the objectivity of your documentation
  - Check the authenticity of the observed activities
- Forms of documentation
  - Writing
  - Audio recording
  - Video recording



#### **Observation Techniques - Field Observation / Conducting**

Observation of stakeholders in their environment:

- Can be done by observer, camera or computer monitoring
- Objectives are:
  - Identify fundamental knowledge, that nobody is going to mention (implicit knowledge)
  - Find hidden requirements / causes
  - Get a better understanding for the real situation on the side of the requirements engineers
- Disadvantages:
  - Large amounts of irrelevant data
  - Time consuming
  - Rare events may be eventually disregarded





#### **Observation Techniques - Field Observation / Post-processing**

- Post process the records
- Link the records of your observation with the gained requirements
- Adjust your results together with the participating stakeholders (for example with an interview or a workshop)





### $\Rightarrow$

#### **Observation Techniques - Apprenticing**

- The requirements engineer actively learns and performs the procedures of the stakeholders
  - Like an apprentice
  - Encouraged to question unclear and complex procedures
- Allows the elicitation of requirements the stakeholders take for granted

 Reverses the balance of power between the requirements engineer and the domain specialist





### **ASSISTANCE / SUPPORT TECHNIQUES**



#### **Overview**

| Survey<br>Techniques | Creativity<br>Techniques | Document-<br>centric<br>Techniques | Observation<br>Techniques | Support<br>Techniques        |
|----------------------|--------------------------|------------------------------------|---------------------------|------------------------------|
| Interviews           | Brainstorming            | System<br>Archaeology              | Field<br>Observation      | Mind Mapping                 |
| Questionnaires       | Brainstorming<br>Paradox | Perspective-<br>based Reading      | Apprenticing              | Workshops                    |
|                      | Change of Perspective    | Reuse                              |                           | CRC Cards                    |
|                      | Analogy<br>Technique     |                                    |                           | Audio and Video<br>Recording |
|                      |                          |                                    |                           | Use Case<br>Modeling         |
|                      |                          |                                    |                           | Prototypes                   |





# **Assistance / Support Techniques Support Techniques**

Support the previously presented elicitation techniques

General techniques not only related to requirements

- Not every support technique is suitable for every elicitation technique
  - Should improve the efficiency, balance out weakness, or prevent pitfalls of a technique





### **Assistance / Support Techniques Support Techniques - Mind Mapping**

- Graphical representation
  - Shows relationships and interdependencies between terms







# **Assistance / Support Techniques Support Techniques - Workshop**

Joint meeting of requirements engineer and stakeholders

- Use meeting to elaborate on goals
  - May also go into details

- Example:
  - Use a workshop to design the user interfaces





### **Assistance / Support Techniques Support Techniques - Prepare Workshop**

- Objective
  - Define the objective of the workshop explicitly
- Work results and procedure
  - Decide the work results explicitly
  - Define the procedure to gain and develop the work results
  - Combine them to an agenda
  - Plan regular breaks





## **Assistance / Support Techniques Support Techniques - Prepare Workshop**

- Participants
  - Choose the participants based on the work results
  - Make sure your selection of participants is representative
  - Invite the participants early enough
  - Agree with the participants upon the work results





### **Assistance / Support Techniques Support Techniques - Prepare Workshop**

- Location
  - Ensure the location has enough room for the participants
  - Provide the proper atmosphere
  - Organize technical equipment (whiteboard, projector etc.)
- Moderator and transcript writer
  - Invite an external moderator and an external transcript writer





#### **Assistance / Support Techniques**

#### **Support Techniques - Conduct Workshop**

- Introduction
  - Present the workshops object and work results
  - Give the participants the opportunity to discuss them
  - Explain the procedure
  - Set the discussion rules explicitly
  - Let the participants vote on the application of these rules one by one
- Working part
  - Make sure that the participants adhere to the agenda and the discussion rules
  - Protocol the results
  - Document and identify conflicts and try to solve them
  - Document decisions explicitly





### **Assistance / Support Techniques Support Techniques - Conduct Workshop**

#### Finish

- Be sure to gather all remaining topics
- Define the further procedure for each remaining topic
- Allow your participants to give a feedback about the workshop (participants have the last word)
- Thank the participants for their attendance





# **Assistance / Support Techniques Support Techniques - Post-processing Workshop**

- Consolidate the work results
- Ask the participants for their approval of the transcript
- Let each participant approve on the consolidated work results





### **Assistance / Support Techniques Support Techniques - Prototypes for Illustrations**

Well-suited to illustrate requirements

Allows clarification of vague requirements

Consequences of new or changed requirements can be identified

Mostly used for user interface prototypes





## **Assistance / Support Techniques Support Techniques - Prototypes**

#### <u>Prototypes can be very different:</u>

- Paper prototypes
  - e.g. for graphical user interfaces
- "Wizard of Oz" Prototype
  - Development of a graphical user interface (GUI), but input will be sent directly to an operator, who is simulating the systems behavior and who produces the appropriate output.
- Software prototypes
  - e.g. realized in Visual Basic (throw-away prototypes)





# **Assistance / Support Techniques Support Techniques - Focus Group**

Special form of workshop (6-10 participants)

- Start with problems
  - e.g. map collection, flipchart
  - Collect reasons
- Then focus on optimal solution
  - But not only opposites of the problems
  - Collect reasons, too
- Then group the issues
  - Should be about 40 issues
- Then priorities
  - e.g. distribute 10 points
  - e.g. in groups according to stakeholder roles
- Finish with a review of the results







# **Assistance / Support Techniques Support Techniques - CRC Cards**



CRC = Class Responsibility Collaboration

Denote context aspects and their attributes on index cards

Formulate requirements based on the cards





### **Assistance / Support Techniques Support Techniques - Audio and Video Recordings**



- Recordings as substitute for actual contact with the stakeholders
  - If the stakeholders are not available
  - The budget is tight
  - The system is highly critical
- Especially useful for field observations
- Stakeholders might feel supervised
  - Changes behavior
  - Might refuse to participate





### **Assistance / Support Techniques Support Techniques - Modeling Action Sequences**



- Use cases are the external view of how the system will be used
  - Have a trigger event
  - Have an expected result
- Describe functionality that the system must support





### **SUMMARY**





#### **Summary**

#### **Planning Requirement Elicitation**



#### Not shown:

- Application of analysis techniques
- Often overlapping and parallel activities



#### **Summary**

- Elicitation is a core activity of requirements engineering
  - Without good elicitation, requirements will be wrong or missing
- Stakeholders, documents and existing systems as requirements sources
  - Missing a source leads to missing the requirements of the source
- Many techniques for requirements elicitation
  - Not every technique is good in every scenario
  - Select the techniques depending on the project
  - Usually, a combination of multiple techniques yields the best results





### **Questions?**