(12) STANDARD PATENT

(11) Application No. AU 2003261096 B2

(19) AUSTRALIAN PATENT OFFICE

(54)	Title Gene regulation in transgenic animals using a transposon-based vector
(51)	International Patent Classification(s) C12N 15/85 (2006.01)
(21)	Application No: 2003261096 (22) Date of Filing: 2003.06.26
(87)	WIPO No: WO04/003157
(30)	Priority Data
(31)	Number (32) Date (33) Country 60/441,392 2003.01.21 US 60/441,377 2003.01.21 US 60/441,405 2003.01.21 US 60/441,381 2003.01.21 US 60/441,447 2003.01.21 US 60/441,502 2003.01.21 US 60/392,415 2002.06.26 US
(43) (43) (44)	Publication Date: 2004.01.19 Publication Journal Date: 2004.03.04 Accepted Journal Date: 2008.10.02
(71)	Applicant(s) TransGenRx, Inc.;The Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
(72)	Inventor(s) Deboer, Kenneth F.;Cadd, Gary G.;Fioretti, William C.;Cooper, Richard K.
(74)	Agent / Attorney FB Rice & Co, Level 23 200 Queen Street, Melbourne, VIC, 3000
(56)	Related Art US 6, 218, 185 B1 Kozak et al; J Mol Bio (1987); Vol 196: 947-50 WO 1997/047739 A1 Schneider et al; Gene (1997); Vol 197: 337-41

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 8 January 2004 (08.01,2004)

PCT

(10) International Publication Number WO 2004/003157 A3

(51) International Patent Classification?: C07H 21/24, C12N 15/00

(21) International Application Number:

PCT/US2003/020389

(22) International Filing Date: 26 June 2003 (26.06.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/392,415	26 June 2002 (26.06.2002)	US
60/441,377	21 January 2003 (21.01.2003)	US
60/441,502	21 January 2003 (21.01.2003)	US
60/441,405	21 January 2003 (21.01.2003)	US
60/441,447	21 January 2003 (21.01.2003)	US
60/441,392	21 January 2003 (21.01.2003)	US
60/441,381	21 January 2003 (21.01.2003)	US

(71) Applicants (for all designated States except US): TRANS-GENRX, INC. [US/US]; Suite 300, 1755 Wittington Place Drive, Dallas, TX 75234 (US). THE BOARD OF SUPER-VISORS OF LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COLLEGE [US/US]; P.O. Box 25055, Baton Rouge, LA 70894-5055 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CCOPER, Richard, K. [US/US]; 111 Pecan Meadow Drive, Baton Rouge, LA 70810 (US). CADD, Gary, G. [US/US]; 501 Turner Road, Apartment 1111, Grapevine, TX 76051 (US). FIORETTI, William, C. [US/US]; 2225 Lakeridge Road Drive, Grapevine, TX 76051 (US). DEBOER, Kenneth, F. [US/US]; 10720 Gee Norman Road, Beigrade, MT 59714 (US).

(74) Agents: PRATT, John, S. et al.; Kilpatrick Stockton LLP, Suite 2800, 1100 Peachtree Street, Atlanta, GA 30309 (US). MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
 (84) Designated States (regional): ARIPO patent (GH, GM,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- earner application (Rule 4.1/(iii)) for all designations
 as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- --- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
 as to the applicant's entitlement to claim the priority of the
- earlier application (Rule 4.17(iii)) for all designations
 as to the applicant's entitlement to claim the priority of the
 earlier application (Rule 4.17(iii)) for all designations
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

-- with international search report

(88) Date of publication of the international search report: 28 October 2004

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: GENE REGULATION IN TRANSGENIC ANIMALS USING A TRANSPOSON-BASED VECTOR

(57) Abstract: Administration of modified transposon-based vectors has been used to achieve stable incorporation of exogenous genes into animals. These transgenic animals produce transgenic progeny. Further, these transgenic animals produce large quantities of desired molecules encoded by the transgene. Transgenic egg-laying animals produce large quantities of desired molecules encoded by the transgene and deposit these molecules in the egg.

5

10

15

20

25

30

35

GENE REGULATION IN TRANSGENIC ANIMALS USING A TRANSPOSON-BASED VECTOR

The U.S. Government has certain rights in this invention. The development of this invention was partially funded by the United States Government under a HATCH grant from the United States Department of Agriculture, partially funded by the United States Government with Formula 1433 funds from the United States Department of Agriculture and partially funded by the United States Government under contract DAAD 19-02016 awarded by the Army.

FIELD OF THE INVENTION

The present invention relates generally to cell-specific gene regulation in transgenic animals. Animals may be made transgenic through administration of a transposon-based vector through any method of administration including pronuclear injection, or intraembryonic, intratesticular, intraoviductal or intravenous administration. These transgenic animals contain the gene of interest in all cells, including germ cells. Animals may also be made transgenic by targeting specific cells for uptake and gene incorporation of the transposon-based vectors. Stable incorporation of a gene of interest into cells of the transgenic animals is demonstrated by expression of the gene of interest in a cell, wherein expression is regulated by a promoter sequence. The promoter sequence may be provided as a transgene along with the gene of interest or may be endogenous to the cell. The promoter sequence may be constitutive or inducible, wherein inducible promoters include tissue-specific promoters, developmentally regulated promoters and chemically inducible promoters.

BACKGROUND OF THE INVENTION

Transgenic animals are desirable for a variety of reasons, including their potential as biological factories to produce desired molecules for pharmaceutical, diagnostic and industrial uses. This potential is attractive to the industry due to the inadequate capacity in facilities used for recombinant production of desired molecules and the increasing demand by the pharmaceutical industry for use of these facilities. Numerous attempts to produce transgenic animals have met several problems,

ATLLIB02 133492.1

including low rates of gene incorporation and unstable gene incorporation. Accordingly, improved gene technologies are needed for the development of transgenic animals for the production of desired molecules.

Improved gene delivery technologies are also needed for the treatment of disease in animals and humans. Many diseases and conditions can be treated with gene-delivery technologies, which provide a gene of interest to a patient suffering from the disease or the condition. An example of such disease is Type 1 diabetes. Type 1 diabetes is an autoimmune disease that ultimately results in destruction of the insulin producing β-cells in the pancreas. Although patients with Type 1 diabetes may be treated adequately with insulin injections or insulin pumps, these therapies are only partially effective. Insulin replacement, such as via insulin injection or pump administration, cannot fully reverse the defect in the vascular endothelium found in the hyperglycemic state (Pieper et al., 1996. Diabetes Res. Clin. Pract. Suppl. \$157-S162). In addition, hyper- and hypoglycemia occurs frequently despite intensive home blood glucose monitoring. Finally, careful dietary constraints are needed to maintain an adequate ratio of consumed calories consumed. This often causes major psychosocial stress for many diabetic patients. Development of gene therapies providing delivery of the insulin gene into the pancreas of diabetic patients could overcome many of these problems and result in improved life expectancy and quality of life.

Several of the prior art gene delivery technologies employed viruses that are associated with potentially undesirable side effects and safety concerns. The majority of current gene-delivery technologies useful for gene therapy rely on virus-based delivery vectors, such as adeno and adeno-associated viruses, retroviruses, and other viruses, which have been attenuated to no longer replicate. (Kay, M.A., et al. 2001. Nature Medicine 7:33-40).

There are multiple problems associated with the use or viral vectors. First, they are not tissue-specific. In fact, a gene therapy trial using adenovirus was recently halted because the vector was present in the patient's sperm (Gene trial to proceed despite fears that therapy could change child's genetic makeup. The New York Times, December 23, 2001). Second, viral vectors are likely to be transiently incorporated, which necessitates re-treating a patient at specified time intervals. (Kay, M.A., et al. 2001. Nature Medicine 7:33-40). Third, there is a concern that a viral-based vector could revert to its virulent form and cause disease. Fourth, viral-based vectors require a dividing cell for stable integration. Fifth, viral-based vectors indiscriminately integrate into various cells and tissues, which can result in undesirable germline integration. Sixth, the required high titers needed to achieve the desired effect have resulted in the death of one patient and they are believed to be

5

10

15

20

25

30

responsible for induction of cancer in a separate study. (Science, News of the Week, October 4, 2002).

Accordingly, what is needed is a new vector to produce transgenic animals and humans with stably incorporated genes, which vector does not cause disease or other unwanted side effects. There is also a need for DNA constructs that would be stably incorporated into the tissues and cells of animals and humans, including cells in the resting state, which are not replicating. There is a further recognized need in the art for DNA constructs capable of delivering genes to specific tissues and cells of animals and humans.

When incorporating a gene of interest into an animal for the production of a desired protein or when incorporating a gene of interest in an animal or human for the treatment of a disease, it is often desirable to selectively activate incorporated genes using inducible promoters. These inducible promoters are regulated by substances either produced or recognized by the transcription control elements within the cell in which the gene is incorporated. In many instances, control of gene expression is desired in transgenic animals or humans so that incorporated genes are selectively activated at desired times and/or under the influence of specific substances. Accordingly, what is needed is a means to selectively activate genes introduced into the genome of cells of a transgenic animal or human. This can be taken a step further to cause incorporation to be tissue-specific, which prevents widespread gene incorporation throughout a patient's body (animal or human). This decreases the amount of DNA needed for a treatment, decreases the chance of incorporation in gametes, and targets gene delivery, incorporation, and expression to the desired tissue where the gene is needed to function.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

The present invention addresses the problems described above by providing new, effective and efficient compositions for producing transgenic animals and for treating disease in animals or humans. Transgenic animals include all egg-laying animals and milk-producing animals. Transgenic animals further include but are not limited to avians, fish, amphibians, reptiles, insects, mammals and humans. In a preferred embodiment, the animal is an avian animal. In another preferred embodiment, the animal is a milk-producing animal, including but not limited to bovine, porcine, ovine and equine animals. Animals are made transgenic through administration of a composition comprising a transposon-based vector designed for stable incorporation of a gene of interest for production of a desired protein, together

with an acceptable carrier. A transfection reagent is optionally added to the composition before administration.

The transposon-based vectors of the present invention include a transposase, operably-linked to a first promoter, and a coding sequence for a protein or peptide of interest operably-linked to a second promoter, wherein the coding sequence for the protein or peptide of interest and its operably-linked promoter are flanked by transposase insertion sequences recognized by the transposase. The transposon-based vector also includes the following characteristics: a) one or more modified Kozak sequences comprising ACCATG (SEQ ID NO:13) at the 3' end of the first promoter to enhance expression of the transposase; b) modifications of the codons for the first several N-terminal amino acids of the transposase, wherein the nucleotide at the third base position of each codon was changed to an A or a T without changing the corresponding amino acid; c) addition of one or more stop codons to enhance the termination of transposase synthesis; and/or, d) addition of an effective polyA sequence operably-linked to the transposase to further enhance expression of the transposase gene.

Use of the compositions of the present invention results in highly efficient and stable incorporation of a gene of interest into the genome of transfected animals. For example, transgenic avians have been mated and produce transgenic progeny in the G1 generation. The transgenic progeny have been mated and produce transgenic progeny in the G2 generation.

The present invention also provides for tissue-specific incorporation and/or expression of a gene of interest. Tissue-specific incorporation of a gene of interest may be achieved by placing the transposase gene under the control of a tissue-specific promoter, whereas tissue-specific expression of a gene of interest may be achieved by placing the gene of interest under the control of a tissue-specific promoter. In some embodiments, the gene of interest is transcribed under the influence of an ovalbumin, or other oviduct specific, promoter. Linking the gene of interest to an oviduct specific promoter in an egg-laying animal results in synthesis of a desired molecule and deposition of the desired molecule in a developing egg. The present invention further provides for stable incorporation and expression of genes in the epithelial cells of the mammary gland in milk-producing animals. Transcription of the gene of interest in the epithelial cells of the mammary gland results in synthesis of a desired molecule

5

10

15

20

25

and deposition of the desired molecule in the milk. A preferred molecule is a protein. In some embodiments, the desired molecule deposited in the milk is an antiviral protein, an antibody, or a serum protein.

In other embodiments, specific incorporation of the proinsulin gene into liver cells of a diabetic animal results in the improvement of the animal's condition. Such improvement is achieved by placing a transposase gene under the control of a liver-specific promoter, which drives integration of the gene of interest in liver cells of the diabetic animal.

The present invention advantageously produces a high number of transgenic animals having a gene of interest stably incorporated. These transgenic animals successfully pass the desired gene to their progeny. The transgenic animals of the present invention also produce large amounts of a desired molecule encoded by the transgene. Transgenic egg-laying animals, particularly avians, produce large amounts of a desired protein that is deposited in the egg for rapid harvest and purification. Transgenic milk-producing animals produce large amounts of a desired protein that is deposited in the milk for rapid harvest and purification.

Any desired gene may be incorporated into the novel transposon-based vectors of the present invention in order to synthesize a desired molecule in the transgenic animals. Proteins, peptides and nucleic acids are preferred desired molecules to be produced by the transgenic animals of the present invention. Particularly preferred proteins are antibody proteins.

This invention provides a composition useful for the production of transgenic hens capable of producing substantially high amounts of a desired protein or peptide. Entire flocks of transgenic birds may be developed very quickly in order to produce industrial amounts of desired molecules. The present invention solves the problems inherent in the inadequate capacity of fermentation facilities used for bacterial production of molecules and provides a more efficient and economical way to produce desired molecules. Accordingly, the present invention provides a means to produce large amounts of therapeutic, diagnostic and reagent molecules.

Transgenic chickens are excellent in terms of convenience and efficiency of manufacturing molecules such as proteins and peptides. Starting with a single transgenic rooster, thousands of transgenic offspring can be produced within a year. (In principle, up to forty million offspring could be produced in just three

5

ATILI5902 133492 1

10

15

20

25

generations). Each transgenic female is expected to lay at least 250 eggs/year, each potentially containing hundreds of milligrams of the selected protein. Flocks of chickens numbering in the hundreds of thousands are readily handled through established commercial systems. The technologies for obtaining eggs and fractionating them are also well known and widely accepted. Thus, for each therapeutic, diagnostic, or other protein of interest, large amounts of a substantially pure material can be produced at relatively low incremental cost.

A wide range of recombinant peptides and proteins can be produced in transgenic egg-laying animals and milk-producing animals. Enzymes, hormones, antibodies, growth factors, serum proteins, commodity proteins, biological response modifiers, peptides and designed proteins may all be made through practice of the present invention. For example, rough estimates suggest that it is possible to produce in bulk growth hormone, insulin, or Factor VIII, and deposit them in transgenic egg whites, for an incremental cost in the order of one dollar per gram. At such prices it is feasible to consider administering such medical agents by inhalation or even orally, instead of through injection. Even if bioavailability rates through these avenues were low, the cost of a much higher effective-dose would not be prohibitive.

In one embodiment, the egg-laying transgenic animal is an avian. The method of the present invention may be used in avians including Ratites, Psittaciformes, Falconiformes, Piciformes, Strigiformes, Passeriformes, Coraciformes, Ralliformes, Cuculiformes, Columbiformes, Galliformes, Anseriformes, and Herodiones. Preferably, the egg-laying transgenic animal is a poultry bird. More preferably, the bird is a chicken, turkey, duck, goose or quail. Another preferred bird is a ratite, such as, an emu, an ostrich, a rhea, or a cassowary. Other preferred birds are partridge, pheasant, kiwi, parrot, parakeet, macaw, falcon, eagle, hawk, pigeon, cockatoo, song birds, jay bird, blackbird, finch, warbler, canary, toucan, mynah, or sparrow.

In another embodiment, the transgenic animal is a milk-producing animal, including but not limited to bovine, ovine, porcine, equine, and primate animals. Milk-producing animals include but are not limited to cows, goats, horses, pigs, buffalo, rabbits, non-human primates, and humans.

Accordingly, it is an object of the present invention to provide novel transposon-based vectors.

5

10

15

20

25

It is another object of the present invention to provide novel transposon-based vectors that encode for the production of desired proteins or peptides in cells.

It is an object of the present invention to produce transgenic animals through administration of a transposon-based vector.

Another object of the present invention is to produce transgenic animals through administration of a transposon-based vector, wherein the transgenic animals produce desired proteins or peptides.

Yet another object of the present invention is to produce transgenic animals through administration of a transposon-based vector, wherein the transgenic animals produce desired proteins or peptides and deposit the proteins or peptides in eggs or milk.

It is a further object of the present invention to produce transgenic animals through intraembryonic, intratesticular or intraoviductal administration of a transposon-based vector.

It is further an object of the present invention to provide a method to produce transgenic animals through administration of a transposon-based vector that are capable of producing transgenic progeny.

Yet another object of the present invention is to provide a method to produce transgenic animals through administration of a transposon-based vector that are capable of producing a desired molecule, such as a protein, peptide or nucleic acid.

Another object of the present invention is to provide a method to produce transgenic animals through administration of a transposon-based vector, wherein such administration results in modulation of endogenous gene expression.

It is another object of the present invention to provide transposon-vectors useful for cell- or tissue-specific expression of a gene of interest in an animal or human with the purpose of gene therapy.

It is yet another object of the present invention to provide a method to produce transgenic avians through administration of a transposon-based vector that are capable of producing proteins, peptides or nucleic acids.

It is another object of the present invention to produce transgenic animals through administration of a transposon-based vector encoding an antibody or a fragment thereof.

5

10

15

20

25

Still another object of the present invention is to provide a method to produce transgenic avians through administration of a transposon-based vector that are capable of producing proteins or peptides and depositing these proteins or peptides in the egg.

Another object of the present invention is to provide transgenic avians that contain a stably incorporated transgene.

Still another object of the present invention is to provide eggs containing desired proteins or peptides encoded by a transgene incorporated into the transgenic avian that produces the egg.

It is further an object of the present invention to provide a method to produce transgenic milk-producing animals through administration of a transposon-based vector that are capable of producing proteins, peptides or nucleic acids.

Still another object of the present invention is to provide a method to produce transgenic milk-producing animals through administration of a transposon-based vector that are capable of producing proteins or peptides and depositing these proteins or peptides in their milk.

Another object of the present invention is to provide transgenic milkproducing animals that contain a stably incorporated transgene.

Another object of the present invention is to provide transgenic milkproducing animals that are capable of producing proteins or peptides and depositing these proteins or peptides in their milk.

Yet another object of the present invention is to provide milk containing desired molecules encoded by a transgene incorporated into the transgenic milk-producing animals that produce the milk.

Still another object of the present invention is to provide milk containing desired proteins or peptides encoded by a transgene incorporated into the transgenic milk-producing animals that produce the milk.

A further object of the present invention to provide a method to produce transgenic sperm through administration of a transposon-based vector to an animal.

A further object of the present invention to provide transgenic sperm that contain a stably incorporated transgene.

An advantage of the present invention is that transgenic animals are produced with higher efficiencies than observed in the prior art.

5

10

15

20

25

5

10

20

Another advantage of the present invention is that these transgenic animals possess high copy numbers of the transgene.

Another advantage of the present invention is that the transgenic animals produce large amounts of desired molecules encoded by the transgene.

Still another advantage of the present invention is that desired molecules are produced by the transgenic animals much more efficiently and economically than prior art methods, thereby providing a means for large scale production of desired molecules. particularly proteins and peptides.

According to the invention there is also provided a vector comprising:

- a) a modified transposase gene operably-linked to a first promoter; wherein the nucleic acid sequence 3' to the first promoter comprises the sequence as set forth in SEQ ID NO:13, wherein SEQ ID NO:13 contains the Kozak sequence and a start codon for the transposase, and wherein at least one of the first twenty codons for the transposase gene are modified from the wild-type sequence by changing a nucleotide at a third base position of the codon to an adenine or thymine without modifying the amino acid encoded by the codon, and
- b) one or more genes of interest operably-linked to one or more additional promoters; and wherein the one or more genes of interest and their operably-linked promoters are flanked by transposase insertion sequences recognized by the transposase encoded by the modified transposase gene.

According to the invention there is also provided a method of producing a transgenic animal comprising administering to the animal a vector according to the invention.

According to the invention there is also provided an egg produced by the transgenic avian animal according to the invention, wherein the egg contains one or more desired proteins encoded by the one or more genes of interest.

According to the invention there is also provided a transgenic sperm produced by the transgenic animal produced according to the invention.

According to the invention there is also provided a method for producing a 30 desired protein comprising:

- a) administering to the animal a vector according to the invention; and
- b) isolating the desired protein produced in the animal.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated 35 element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps. Any

discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and claims.

10

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 depicts schematically a transposon-based vector containing a transposase operably linked to a first promoter and a gene of interest operably-linked to a second promoter, wherein the gene of interest and its operably-linked promoter are flanked by insertion sequences (IS) recognized by the transposase. "Pro" designates a promoter. In this and subsequent figures, the size of the actual nucleotide sequence is not necessarily proportionate to the box representing that sequence.

Figure 2 depicts schematically a transposon-based vector for targeting deposition of a polypeptide in an egg white wherein Ov pro is the ovalbumin promoter, Ov protein is the ovalbumin protein and PolyA is a polyadenylation sequence. The TAG sequence includes a spacer, the gp41 hairpin loop from HIV I and a protein cleavage site.

Figure 3 depicts schematically a transposon-based vector for targeting deposition of a polypeptide in an egg white wherein Ovo pro is the ovomucoid promoter and Ovo SS is the ovomucoid signal sequence. The TAG sequence includes a spacer, the gp41 hairpin loop from HIV I and a protein cleavage site.

Figure 4 depicts schematically a transposon-based vector for targeting deposition of a polypeptide in an egg yolk wherein Vit pro is the vitellogenin promoter and Vit targ is the vitellogenin targeting sequence.

Figure 5 depicts schematically a transposon-based vector for expression of antibody heavy and light chains. Prepro indicates a prepro sequence from cecropin and pro indicates a pro sequence from cecropin.

Figure 6 depicts schematically a transposon-based vector for expression of antibody heavy and light chains. Ent indicates an enterokinase cleavage sequence.

Figure 7 depicts schematically egg white targeted expression of antibody heavy and light chains from one vector in either tail-to-tail (Figure 7A) or tail-to-head (Figure 7B) configuration. In the tail-to-tail configuration, the ovalbumin signal sequence adjacent to the gene for the light chain contains on its 3' end an enterokinase cleavage site (not shown) to allow cleavage of the signal sequence from the light chain, and the ovalbumin signal sequence adjacent to the gene for the heavy chain contains on its 5' end an enterokinase cleavage site (not shown) to allow cleavage of the signal sequence from the heavy chain. In the tail-to-head configuration, the ovalbumin signal sequence adjacent to the gene for the heavy chain and the light chain contains on its 3' end an enterokinase cleavage site (not shown) to allow cleavage of the signal sequence from the heavy or light chain.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a new, effective and efficient method of producing transgenic animals, particularly egg-laying animals and milk-producing animals, through administration of a composition comprising a transposon-based vector designed for stable incorporation of a gene of interest for production of a desired molecule.

30 Definitions

5

15

20

25

It is to be understood that as used in the specification and in the claims, "a" or "an" can mean one or more, depending upon the context in which it is used. Thus, for example, reference to "a cell" can mean that at least one cell can be utilized.

The term "antibody" is used interchangeably with the term "immunoglobulin" and is defined herein as a protein synthesized by an animal or a cell of the immune system in response to the presence of a foreign substance commonly referred to as an "antigen" or an "immunogen". The term antibody includes fragments of antibodies. Antibodies are characterized by specific affinity to a site on the antigen, wherein the site is referred to an "antigenic determinant" or an "epitope". Antigens can be naturally occurring or artificially engineered. Artificially engineered antigens include but are not limited to small molecules, such as small peptides, attached to haptens such as macromolecules, for example proteins, nucleic acids, or polysaccharides. Artificially designed or engineered variants of naturally occurring antibodies and artificially designed or engineered antibodies not occurring in nature are all included in the current definition. Such variants include conservatively substituted amino acids and other forms of substitution as described in the section concerning proteins and polypeptides.

As used herein, the term "egg-laying animal" includes all amniotes such as birds, turtles, lizards and monotremes. Monotremes are egg-laying mammals and include the platypus and echidna. The term "bird" or "fowl," as used herein, is defined as a member of the Aves class of animals which are characterized as warmblooded, egg-laying vertebrates primarily adapted for flying. Avians include, without limitation, Ratites, Psittaciformes, Falconiformes, Piciformes, Strigiformes, Passeriformes, Coraciformes. Ralliformes, Cuculiformes, Columbiformes. Galliformes, Anseriformes, and Herodiones. The term "Ratite," as used herein, is defined as a group of flightless, mostly large, running birds comprising several orders and including the emus, ostriches, kiwis, and cassowaries. The term "Psittaciformes", as used herein, includes parrots and refers to a monofamilial order of birds that exhibit zygodactylism and have a strong hooked bill. A "parrot" is defined as any member of the avian family Psittacidae (the single family of the Psittaciformes), distinguished by the short, stout, strongly hooked beak. The term "chicken" as used herein denotes chickens used for table egg production, such as egg-type chickens, chickens reared for public meat consumption, or broilers, and chickens reared for both egg and meat production ("dual-purpose" chickens). The term "chicken" also denotes chickens produced by primary breeder companies, or chickens that are the parents,

5

10

15

20

25

grandparents, great-grandparents, etc. of those chickens reared for public table egg, meat, or table egg and meat consumption.

The term "egg" is defined herein as a large female sex cell enclosed in a porous, calcarous or leathery shell, produced by birds and reptiles. The term "ovum" is defined as a female gamete, and is also known as an egg. Therefore, egg production in all animals other than birds and reptiles, as used herein, is defined as the production and discharge of an ovum from an ovary, or "ovulation". Accordingly, it is to be understood that the term "egg" as used herein is defined as a large female sex cell enclosed in a porous, calcarous or leathery shell, when a bird or reptile produces it, or it is an ovum when it is produced by all other animals.

The term "milk-producing animal" refers herein to mammals including, but not limited to, bovine, ovine, porcine, equine, and primate animals. Milk-producing animals include but are not limited to cows, llamas, camels, goats, reindeer, zebu, water buffalo, yak, horses, pigs, rabbits, non-human primates, and humans.

The term "gene" is defined herein to include a coding region for a protein, peptide or polypeptide.

The term "vector" is used interchangeably with the terms "construct", "DNA construct" and "genetic construct" to denote synthetic nucleotide sequences used for manipulation of genetic material, including but not limited to cloning, subcloning, sequencing, or introduction of exogenous genetic material into cells, tissues or organisms, such as birds. It is understood by one skilled in the art that vectors may contain synthetic DNA sequences, naturally occurring DNA sequences, or both. The vectors of the present invention are transposon-based vectors as described herein.

When referring to two nucleotide sequences, one being a regulatory sequence, the term "operably-linked" is defined herein to mean that the two sequences are associated in a manner that allows the regulatory sequence to affect expression of the other nucleotide sequence. It is not required that the operably-linked sequences be directly adjacent to one another with no intervening sequence(s).

The term "regulatory sequence" is defined herein as including promoters, enhancers and other expression control elements such as polyadenylation sequences, matrix attachment sites, insulator regions for expression of multiple genes on a single construct, ribosome entry/attachment sites, introns that are able to enhance expression, and silencers.

12

10

15

20

25

Transposon-Based Vectors

5

10

15

20

25

30

While not wanting to be bound by the following statement, it is believed that the nature of the DNA construct is an important factor in successfully producing transgenic animals. The "standard" types of plasmid and viral vectors that have previously been almost universally used for transgenic work in all species, especially avians, have low efficiencies and may constitute a major reason for the low rates of transformation previously observed. The DNA (or RNA) constructs previously used often do not integrate into the host DNA, or integrate only at low frequencies. Other factors may have also played a part, such as poor entry of the vector into target cells. The present invention provides transposon-based vectors that can be administered to an animal that overcome the prior art problems relating to low transgene integration frequencies. Two preferred transposon-based vectors of the present invention in which a tranposase, gene of interest and other polynucleotide sequences may be introduced are termed pTnMCS (SEQ ID NO:36) and pTnMod (SEQ ID NO:1).

The transposon-based vectors of the present invention produce integration frequencies an order of magnitude greater than has been achieved with previous vectors. More specifically, intratesticular injections performed with a prior art transposon-based vector (described in U.S. Patent No. 5,719,055) resulted in 41% sperm positive roosters whereas intratesticular injections performed with the novel transposon-based vectors of the present invention resulted in 77% sperm positive roosters. Actual frequencies of integration were estimated by either or both comparative strength of the PCR signal from the sperm and histological evaluation of the testes and sperm by quantitative PCR.

The transposon-based vectors of the present invention include a transposase gene operably-linked to a first promoter, and a coding sequence for a desired protein or peptide operably-linked to a second promoter, wherein the coding sequence for the desired protein or peptide and its operably-linked promoter are flanked by transposase insertion sequences recognized by the transposase. The transposon-based vector also includes one or more of the following characteristics: a) one or more modified Kozak sequences comprising ACCATG (SEQ ID NO:13) at the 3' end of the first promoter to enhance expression of the transposase; b) modifications of the codons for the first several N-terminal amino acids of the transposase, wherein the third base of each codon was changed to an A or a T without changing the corresponding amino acid; c)

addition of one or more stop codons to enhance the termination of transposase synthesis; and, d) addition of an effective polyA sequence operably-linked to the transposase to further enhance expression of the transposase gene. Figure 1 shows a schematic representation of several components of the transposon-based vector. The present invention further includes vectors containing more than one gene of interest, wherein a second or subsequent gene of interest is operably-linked to the second promoter or to a different promoter. It is also to be understood that the transposon-based vectors shown in the Figures are representational of the present invention and that the order of the vector elements may be different than that shown in the Figures, that the elements may be present in various orientations, and that the vectors may contain additional elements not shown in the Figures.

Transposases and Insertion Sequences

In a further embodiment of the present invention, the transposase found in the transposase-based vector is an altered target site (ATS) transposase and the insertion sequences are those recognized by the ATS transposase. However, the transposase located in the transposase-based vectors is not limited to a modified ATS transposase and can be derived from any transposase. Transposases known in the prior art include those found in AC7, Tn5SEQ1, Tn916, Tn951, Tn1721, Tn 2410, Tn1681, Tn1, Tn2, Tn3, Tn4, Tn5, Tn6, Tn9, Tn10, Tn30, Tn101, Tn903, Tn501, Tn1000 (y8), Tn1681, Tn2901, AC transposons, Mp transposons, Spm transposons, En transposons, Dotted transposons, Mu transposons, Ds transposons, dSpm transposons and I transposons. According to the present invention, these transposases and their regulatory sequences are modified for improved functioning as follows: a) the addition one or more modified Kozak sequences comprising ACCATG (SEQ ID NO:13) at the 3' end of the promoter operably-linked to the transposase; b) a change of the codons for the first several amino acids of the transposase, wherein the third base of each codon was changed to an A or a T without changing the corresponding amino acid; c) the addition of one or more stop codons to enhance the termination of transposase synthesis; and/or, d) the addition of an effective polyA sequence operably-linked to the transposase to further enhance expression of the transposase gene.

Although not wanting to be bound by the following statement, it is believed that the modifications of the first several N-terminal codons of the transposase gene increase transcription of the transposase gene, in part, by increasing strand

10

15

20

25

dissociation. It is preferable that between approximately 1 and 20, more preferably 3 and 15, and most preferably between 4 and 12 of the first N-terminal codons of the transposase are modified such that the third base of each codon is changed to an A or a T without changing the encoded amino acid. In one embodiment, the first ten N-terminal codons of the transposase gene are modified in this manner. It is also preferred that the transposase contain mutations that make it less specific for preferred insertion sites and thus increases the rate of transgene insertion as discussed in U.S. Patent No. 5,719,055.

In some embodiments, the transposon-based vectors are optimized for expression in a particular host by changing the methylation patterns of the vector DNA. For example, prokaryotic methylation may be reduced by using a methylation deficient organism for production of the transposon-based vector. The transposon-based vectors may also be methylated to resemble eukaryotic DNA for expression in a eukaryotic host.

Transposases and insertion sequences from other analogous eukaryotic transposon-based vectors that can also be modified and used are, for example, the Drosophila P element derived vectors disclosed in U.S. Patent No. 6,291,243; the Drosophila mariner element described in Sherman et al. (1998); or the sleeping beauty transposon. See also Hackett et al. (1999); D. Lampe et al., 1999. Proc. Natl. Acad. Sci. USA, 96:11428-11433; S. Fischer et al., 2001. Proc. Natl. Acad. Sci. USA, 98:6759-6764; L. Zagoraiou et al., 2001. Proc. Natl. Acad. Sci. USA, 98:11474-11478; and D. Berg et al. (Eds.), Mobile DNA, Amer. Soc. Microbiol. (Washington, D.C., 1989). However, it should be noted that bacterial transposon-based elements are preferred, as there is less likelihood that a eukaryotic transposase in the recipient species will recognize prokaryotic insertion sequences bracketing the transgene.

Many transposases recognize different insertion sequences, and therefore, it is to be understood that a transposase-based vector will contain insertion sequences recognized by the particular transposase also found in the transposase-based vector. In a preferred embodiment of the invention, the insertion sequences have been shortened to about 70 base pairs in length as compared to those found in wild-type transposons that typically contain insertion sequences of well over 100 base pairs.

While the examples provided below incorporate a "cut and insert" Tn10 based vector that is destroyed following the insertion event, the present invention also

5

10

15

20

25

encompasses the use of a "rolling replication" type transposon-based vector. Use of a rolling replication type transposon allows multiple copies of the transposon/transgene to be made from a single transgene construct and the copies inserted. This type of transposon-based system thereby provides for insertion of multiple copies of a transgene into a single genome. A rolling replication type transposon-based vector may be preferred when the promoter operably-linked to gene of interest is endogenous to the host cell and present in a high copy number or highly expressed. However, use of a rolling replication system may require tight control to limit the insertion events to non-lethal levels. Tn1, Tn2, Tn3, Tn4, Tn5, Tn9, Tn21, Tn501, Tn551, Tn951, Tn1721, Tn2410 and Tn2603 are examples of a rolling replication type transposon, although Tn5 could be both a rolling replication and a cut and insert type transposon.

Stop Codons and PolyA Sequences

In one embodiment, the transposon-based vector contains two stop codons operably-linked to the transposase and/or to the gene of interest. In an alternate embodiment, one stop codon of UAA or UGA is operably linked to the transposase and/or to the gene of interest. As used herein an "effective polyA sequence" refers to either a synthetic or non-synthetic sequence that contains multiple and sequential nucleotides containing an adenine base (an A polynucleotide string) and that increases expression of the gene to which it is operably-linked. A polyA sequence may be operably-linked to any gene in the transposon-based vector including, but not limited to, a transposase gene and a gene of interest. In one embodiment, a polyA sequence comprises the polynucleotide sequence provided in SEQ ID NO:28. A preferred polyA sequence is optimized for use in the host animal or human. In one embodiment, the polyA sequence is optimized for use in a bird, and more specifically, a chicken. The chicken optimized polyA sequence generally contains a minimum of 60 base pairs, and more preferably between approximately 60 and several hundred base pairs, that precede the A polynucleotide string and thereby separate the stop codon from the A polynucleotide string. A chicken optimized polyA sequence may also have a reduced amount of CT repeats as compared to a synthetic polyA sequence. In one embodiment of the present invention, the polyA sequence comprises a conalbumin polyA sequence as provided in SEQ ID NO:33 and as taken from GenBank accession # Y00407, base pairs 10651-11058.

10

15

20

25

Promoters and Enhancers

5

10

15

20

25

30

The first promoter operably-linked to the transposase gene and the second promoter operably-linked to the gene of interest can be a constitutive promoter or an inducible promoter. Constitutive promoters include, but are not limited to, immediate early cytomegalovirus (CMV) promoter, herpes simplex virus 1 (HSV1) immediate early promoter, SV40 promoter, lysozyme promoter, early and late CMV promoters, early and late HSV promoters, β-actin promoter, tubulin promoter, Rous-Sarcoma virus (RSV) promoter, and heat-shock protein (HSP) promoter. Inducible promoters include tissue-specific promoters, developmentally-regulated promoters and chemically inducible promoters. Examples of tissue-specific promoters include the glucose 6 phosphate (G6P) promoter, vitellogenin promoter, ovalbumin promoter, ovomucoid promoter, conalbumin promoter, ovotransferrin promoter, prolactin promoter, kidney uromodulin promoter, and placental lactogen promoter. In one embodiment, the vitellogenin promoter includes a polynucleotide sequence of SEQ ID The G6P promoter sequence may be deduced from a rat G6P gene NO:17. untranslated upstream region provided in GenBank accession number U57552.1. Examples of developmentally-regulated promoters include the homeobox promoters and several hormone induced promoters. Examples of chemically inducible promoters include reproductive hormone induced promoters and antibiotic inducible promoters such as the tetracycline inducible promoter and the zinc-inducible metallothionine promoter.

Other inducible promoter systems include the Lac operator repressor system inducible by IPTG (isopropyl beta-D-thiogalactoside) (Cronin, A. et al. 2001. Genes and Development, v. 15), ecdysone-based inducible systems (Hoppe, U. C. et al. 2000. Mol. Ther. 1:159-164); estrogen-based inducible systems (Braselmann, S. et al. 1993. Proc. Natl. Acad. Sci. 90:1657-1661); progesterone-based inducible systems using a chimeric regulator, GLVP, which is a hybrid protein consisting of the GAL4 binding domain and the herpes simplex virus transcriptional activation domain, VP16, and a truncated form of the human progesterone receptor that retains the ability to bind ligand and can be turned on by RU486 (Wang, et al. 1994. Proc. Natl. Acad. Sci. 91:8180-8184); CID-based inducible systems using chemical inducers of dimerization (CIDs) to regulate gene expression, such as a system wherein rapamycin induces dimerization of the cellular proteins FKBP12 and FRAP (Belshaw, P. J. et al. 1996. J.

Chem. Biol. 3:731-738; Fan, L. et al. 1999. Hum. Gene Ther. 10:2273-2285; Shariat, S.F. et al. 2001. Cancer Res. 61:2562-2571; Spencer, D.M. 1996. Curr. Biol. 6:839-847). Chemical substances that activate the chemically inducible promoters can be administered to the animal containing the transgene of interest via any method known to those of skill in the art.

Other examples of cell or tissue-specific and constitutive promoters include but are not limited to smooth-muscle SM22 promoter, including chimeric SM22alpha/telokin promoters (Hoggatt A.M. et al., 2002. Circ Res. 91(12):1151-9); ubiquitin C promoter (Biochim Biophys Acta, 2003. Jan. 3;1625(1):52-63); Hsf2 promoter; murine COMP (cartilage oligomeric matrix protein) promoter; early B cell-specific mb-1 promoter (Sigvardsson M., et al., 2002. Mol. Cell Biol. 22(24):8539-51); prostate specific antigen (PSA) promoter (Yoshimura I. et al., 2002, J. Urol. 168(6):2659-64); exorh promoter and pineal expression-promoting element (Asaoka Y., et al., 2002. Proc. Natl. Acad. Sci. 99(24):15456-61); neural and liver ceramidase gene promoters (Okino N. et al., 2002. Biochem. Biophys. Res. Commun. 299(1):160-6); PSP94 gene promoter/enhancer (Gabril M.Y. et al., 2002. Gene Ther. 9(23):1589-99); promoter of the human FAT/CD36 gene (Kuriki C., et al., 2002. Blood October 24, 2002); IL-10 promoter (Brenner S., et al., 2002. J. Biol. Chem. December 18, 2002).

Examples of avian promoters include, but are not limited to, promoters controlling expression of egg white proteins, such as ovalbumin, ovotransferrin (conalbumin), ovomucoid, lysozyme, ovomucin, g2 ovoglobulin, g3 ovoglobulin, ovoflavoprotein, ovostatin (ovomacroglobin), cystatin, avidin, thiamine-binding protein, glutamyl aminopeptidase minor glycoprotein 1, minor glycoprotein 2; and promoters controlling expression of egg-yolk proteins, such as vitellogenin, very low-density lipoproteins, low density lipoprotein, cobalamin-binding protein, riboflavin-binding protein, biotin-binding protein (Awade, 1996. Z. Lebensm. Unters. Forsch. 202:1-14). An advantage of using the vitellogenin promoter is that it is active during the egg-laying stage of an animal's life-cycle, which allows for the production of the protein of interest to be temporally connected to the import of the protein of interest into the egg yolk when the protein of interest is equipped with an appropriate targeting sequence.

5

10

15

20

25

Liver-specific promoters of the present invention include, but are not limited to, the following promoters, vitellogenin promoter, G6P promoter, cholesterol-7-alpha-hydroxylase (CYP7A) promoter, phenylalanine hydroxylase (PAH) promoter, protein C gene promoter, insulin-like growth factor I (IGF-I) promoter, bilirubin UDP-glucuronosyltransferase promoter, aldolase B promoter, furin promoter, metallothioneine promoter, albumin promoter, and insulin promoter.

Also included in the present invention are promoters that can be used to target expression of a protein of interest into the milk of a milk-producing animal including, but not limited to, β lactoglobin promoter, whey acidic protein promoter, lactalbumin promoter and casein promoter.

Promoters associated with cells of the immune system may also be used. Acute phase promoters such as interleukin (IL)-1 and IL-2 may be employed. Promoters for heavy and light chain Ig may also be employed. The promoters of the T cell receptor components CD4 and CD8, B cell promoters and the promoters of CR2 (complement receptor type 2) may also be employed. Immune system promoters are preferably used when the desired protein is an antibody protein.

Also included in this invention are modified promoters/enhancers wherein elements of a single promoter are duplicated, modified, or otherwise changed. In one embodiment, steroid hormone-binding domains of the ovalbumin promoter are moved from about -6.5 kb to within approximately the first 1000 base pairs of the gene of interest. Modifying an existing promoter with promoter/enhancer elements not found naturally in the promoter, as well as building an entirely synthetic promoter, or drawing promoter/enhancer elements from various genes together on a non-natural backbone, are all encompassed by the current invention.

Accordingly, it is to be understood that the promoters contained within the transposon-based vectors of the present invention may be entire promoter sequences or fragments of promoter sequences. For example, in one embodiment, the promoter operably linked to a gene of interest is an approximately 900 base pair fragment of a chicken ovalbumin promoter (SEQ ID NO:40). The constitutive and inducible promoters contained within the transposon-based vectors may also be modified by the addition of one or more modified Kozak sequences of ACCATG (SEQ ID NO:13).

As indicated above, the present invention includes transposon-based vectors containing one or more enhancers. These enhancers may or may not be operably-

5

10

15

20

25

linked to their native promoter and may be located at any distance from their operably-linked promoter. A promoter operably-linked to an enhancer is referred to herein as an "enhanced promoter." The enhancers contained within the transposon-based vectors are preferably enhancers found in birds, and more preferably, an ovalbumin enhancer, but are not limited to these types of enhancers. In one embodiment, an approximately 675 base pair enhancer element of an ovalbumin promoter is cloned upstream of an ovalbumin promoter with 300 base pairs of spacer DNA separating the enhancer and promoter. In one embodiment, the enhancer used as a part of the present invention comprises base pairs 1-675 of a Chicken Ovalbumin enhancer from GenBank accession #S82527.1. The polynucleotide sequence of this enhancer is provided in SEQ ID NO:37.

Also included in some of the transposon-based vectors of the present invention are cap sites and fragments of cap sites. In one embodiment, approximately 50 base pairs of a 5' untranslated region wherein the capsite resides are added on the 3' end of an enhanced promoter or promoter. An exemplary 5' untranslated region is provided in SEQ ID NO:38. A putative cap-site residing in this 5' untranslated region preferably comprises the polynucleotide sequence provided in SEQ ID NO:39.

In one embodiment of the present invention, the first promoter operably-linked to the transposase gene is a constitutive promoter and the second promoter operably-linked to the gene of interest is a tissue-specific promoter. In this embodiment, use of the first constitutive promoter allows for constitutive activation of the transposase gene and incorporation of the gene of interest into virtually all cell types, including the germline of the recipient animal. Although the gene of interest is incorporated into the germline generally, the gene of interest is only expressed in a tissue-specific manner. It should be noted that cell- or tissue-specific expression as described herein does not require a complete absence of expression in cells or tissues other than the preferred cell or tissue. Instead, "cell-specific" or "tissue-specific" expression refers to a majority of the expression of a particular gene of interest in the preferred cell or tissue, respectively.

When incorporation of the gene of interest into the germline is not preferred, the first promoter operably-linked to the transposase gene can be a tissue-specific promoter. For example, transfection of a transposon-based vector containing a transposase gene operably-linked to a liver-specific promoter such as the G6P

20 ATILLIB02 133492.1

10

15

20

25

promoter or vitellogenin promoter provides for activation of the transposase gene and incorporation of the gene of interest in the cells of the liver but not into the germline and other cells generally. In this second embodiment, the second promoter operably-linked to the gene of interest can be a constitutive promoter or an inducible promoter. In a preferred embodiment, both the first promoter and the second promoter are a G6P promoter. In embodiments wherein tissue-specific expression or incorporation is desired, it is preferred that the transposon-based vector is administered directly to the tissue of interest or to an artery leading to the tissue of interest.

Accordingly, cell specific promoters may be used to enhance transcription in selected tissues. In birds, for example, promoters that are found in cells of the fallopian tube, such as ovalbumin, conalbumin, ovomucoid and/or lysozyme, are used in the vectors to ensure transcription of the gene of interest in the epithelial cells and tubular gland cells of the fallopian tube, leading to synthesis of the desired protein encoded by the gene and deposition into the egg white. In mammals, promoters specific for the epithelial cells of the alveoli of the mammary gland, such as prolactin, insulin, beta lactoglobin, whey acidic protein, lactalbumin, casein, and/or placental lactogen, are used in the design of vectors used for transfection of these cells for the production of desired proteins for deposition into the milk. In liver cells, the G6P promoter may be employed to drive transcription of the gene of interest for protein production. Proteins made in the liver of birds may be delivered to the egg yolk.

In order to achieve higher or more efficient expression of the transposase gene, the promoter and other regulatory sequences operably-linked to the transposase gene may be those derived from the host. These host specific regulatory sequences can be tissue specific as described above or can be of a constitutive nature. For example, an avian actin promoter and its associated polyA sequence can be operably-linked to a transposase in a transposase-based vector for transfection into an avian. Examples of other host specific promoters that could be operably-linked to the transposase include the myosin and DNA or RNA polymerase promoters.

Directing Sequences

In some embodiments of the present invention, the gene of interest is operably-linked to a directing sequence or a sequence that provides proper conformation to the desired protein encoded by the gene of interest. As used herein, the term "directing sequence" refers to both signal sequences and targeting sequences.

5

10

15

20

25

An egg directing sequence includes, but is not limited to, an ovomucoid signal sequence, an ovalbumin signal sequence and a vitellogenin targeting sequence. The term "signal sequence" refers to an amino acid sequence, or the polynucleotide sequence that encodes the amino acid sequence, that directs the protein to which it is linked to the endoplasmic reticulum in a eukaryote, and more preferably the translocational pores in the endoplasmic reticulum, or the plasma membrane in a prokaryote, or mitochondria, such us for the purpose of gene therapy of mitochondrial diseases. Signal and targeting sequences can be used to direct a desired protein into, for example, the milk, when the transposon-based vectors are administered to a milk-producing animal.

Signal sequences can also be used to direct a desired protein into, for example, a secretory pathway for incorporation into the egg yolk or the egg white, when the transposon-based vectors are administered to a bird or other egg-laying animal. One example of such a transposon-based vector is provided in Figure 3 wherein the gene of interest is operably linked to the ovomucoid signal sequence. The present invention also includes a gene of interest operably-linked to a second gene containing a signal sequence. An example of such an embodiment is shown in Figure 2 wherein the gene of interest is operably-linked to the ovalbumin gene that contains an ovalbumin signal sequence. Other signal sequences that can be included in the transposon-based vectors include, but are not limited to the ovotransferrin and lysozyme signal sequences.

As also used herein, the term "targeting sequence" refers to an amino acid sequence, or the polynucleotide sequence encoding the amino acid sequence, which amino acid sequence is recognized by a receptor located on the exterior of a cell. Binding of the receptor to the targeting sequence results in uptake of the protein or peptide operably-linked to the targeting sequence by the cell. One example of a targeting sequence is a vitellogenin targeting sequence that is recognized by a vitellogenin receptor (or the low density lipoprotein receptor) on the exterior of an oocyte. In one embodiment, the vitellogenin targeting sequence includes the polynucleotide sequence of SEQ ID NO:18. In another embodiment, the vitellogenin targeting sequence includes all or part of the vitellogenin gene. Other targeting sequences include VLDL and Apo E, which are also capable of binding the vitellogenin receptor. Since the ApoE protein is not endogenously expressed in birds,

22

10

15

20

25

its presence may be used advantageously to identify birds carrying the transposonbased vectors of the present invention.

Genes of Interest Encoding Desired Proteins

A gene of interest selected for stable incorporation is designed to encode any desired protein or peptide or to regulate any cellular response. In some embodiments, the desired proteins or peptides are deposited in an egg or in milk. It is to be understood that the present invention encompasses transposon-based vectors containing multiple genes of interest. The multiple genes of interest may each be operably-linked to a separate promoter and other regulatory sequence(s) or may all be operably-linked to the same promoter and other regulatory sequences(s). In one embodiment, multiple gene of interest are linked to a single promoter and other regulatory sequence(s) and each gene of interest is separated by a cleavage site or a pro portion of a signal sequence.

Protein and peptide hormones are a preferred class of proteins in the present invention. Such protein and peptide hormones are synthesized throughout the endocrine system and include, but are not limited to, hypothalamic hormones and hypophysiotropic hormones, anterior, intermediate and posterior pituitary hormones, pancreatic islet hormones, hormones made in the gastrointestinal system, renal hormones, thymic hormones, parathyroid hormones, adrenal cortical and medullary hormones. Specifically, hormones that can be produced using the present invention include, but are not limited to, chorionic gonadotropin, corticotropin, erythropoietin, glucagons, IGF-1, oxytocin, platelet-derived growth factor, calcitonin, folliclestimulating hormone, leutinizing hormone, thyroid-stimulating hormone, insulin, gonadotropin-releasing hormone and its analogs, vasopressin, octreotide, somatostatin, prolactin, adrenocorticotropic hormone, antidiuretic hormone, thyrotropin-releasing hormone (TRH), growth hormone-releasing hormone (GHRH), dopamine, melatonin, thyroxin (T₄), parathyroid hormone (PTH), glucocorticoids such as cortisol, mineralocorticoids such as aldosterone, androgens such as testosterone, adrenaline (epinephrine), noradrenaline (norepinephrine), estrogens such as estradiol, progesterone, glucagons, calcitrol, calciferol, atrial-natriuretic peptide, gastrin, secretin, cholecystokinin (CCK), neuropeptide Y, ghrelin, PYY₃₋₃₆, angiotensinogen, thrombopoietin, and leptin. By using appropriate polynucleotide sequences, species-specific hormones may be made by transgenic animals.

5

10

15

20

25

In one embodiment of the present invention, the gene of interest is a proinsulin gene and the desired molecule is insulin. Proinsulin consists of three parts: a C-peptide and two long strands of amino acids (called the alpha and beta chains) that later become linked together to form the insulin molecule. Figures 2 and 3 are schematics of transposon-based vector constructs containing a proinsulin gene operably-linked to an ovalbumin promoter and ovalbumin protein or an ovomucoid promoter and ovomucoid signal sequence, respectively. In these embodiments, proinsulin is expressed in the oviduet tubular gland cells and then deposited in the egg white. One example of a proinsulin polynucleotide sequence is shown in SEQ ID NO:21, wherein the C-peptide cleavage site spans from Arg at position 31 to Arg at position 65.

Serum proteins including lipoproteins such as high density lipoprotein (HDL), HDL-Milano and low density lipoprotein, albumin, clotting cascade factors, factor VIII, factor IX, fibrinogen, and globulins are also included in the group of desired proteins of the present invention. Immunoglobulins are one class of desired globulin molecules and include but are not limited to IgG, IgM, IgA, IgD, IgE, IgY, lambda chains, kappa chains and fragments thereof; Fc fragments, and Fab fragments, Desired antibodies include, but are not limited to, naturally occurring antibodies, human antibodies, humanized antibodies, and hybrid antibodies. Genes encoding modified versions of naturally occurring antibodies or fragments thereof and genes encoding artificially designed antibodies or fragments thereof may be incorporated into the transposon-based vectors of the present invention. Desired antibodies also include antibodies with the ability to bind specific ligands, for example, antibodies against proteins associated with cancer-related molecules, such as anti-her 2, or anti-CA125. Accordingly, the present invention encompasses a transposon-based vector containing one or more genes encoding a heavy immunoglobulin (Ig) chain and a light Ig chain. Further, more than one gene encoding for more than one antibody may be administered in one or more transposon-based vectors of the present invention. In this manner, an egg may contain more than one type of antibody in the egg white, the egg yolk or both.

In one embodiment, a transposon-based vector contains a heavy Ig chain and a light Ig chain, both operably linked to a promoter. Figures 5 and 6 schematically depict exemplary constructs of this embodiment. More specifically, Figure 5 shows a

10

15

20

25

construct containing a cecropin pre-pro sequence and a cecropin pro sequence, wherein the pre sequence functions to direct the resultant protein into the endoplasmic reticulum and the pro sequences and the pro sequences are cleaved upon secretion of the protein from a cell into which the construct has been transfected. Figure 6 shows a construct containing an enterokinase cleavage site. In this embodiment, it may be required to further remove several additional amino acids from the light chain following cleavage by enterokinase. In another embodiment, the transposon-based vector comprises a heavy Ig chain operably-linked to one promoter and a light Ig chain operably-linked to another promoter. Figure 7 schematically depicts an exemplary construct of this embodiment. The present invention also encompasses a transposon-based vector containing genes encoding portions of a heavy Ig chain and/or portions of a light Ig chain. The present invention further includes a transposon-based vector containing a gene that encodes a fusion protein comprising a heavy and/or light Ig chain, or portions thereof.

Antibodies used as therapeutic reagents include but are not limited to antibodies for use in cancer immunotherapy against specific antigens, or for providing passive immunity to an animal or a human against an infectious disease or a toxic agent. Antibodies used as diagnostic reagents include, but are not limited to antibodies that may be labeled and detected with a detector, for example antibodies with a fluorescent label attached that may be detected following exposure to specific wavelengths. Such labeled antibodies may be primary antibodies directed to a specific antigen, for example, rhodamine-labeled rabbit anti-growth hormone, or may be labeled secondary antibodies, such as fluorescein-labeled goat-anti-chicken IgG. Such labeled antibodies are known to one of ordinary skill in the art. Labels useful for attachment to antibodies are also known to one of ordinary skill in the art. Some of these labels are described in the "Handbook of Fluorescent Probes and Research Products", ninth edition, Richard P. Haugland (ed) Molecular Probes, Inc. Eugene, OR), which is incorporated herein in its entirety.

Antibodies produced with using the present invention may be used as laboratory reagents for numerous applications including radioimmunoassay, western blots, dot blots, ELISA, immunoaffinity columns and other procedures requiring antibodies as known to one of ordinary skill in the art. Such antibodies include

5

10

15

20

25

primary antibodies, secondary antibodies and tertiary antibodies, which may be labeled or unlabeled.

Antibodies that may be made with the practice of the present invention include, but are not limited to primary antibodies, secondary antibodies, designer antibodies, anti-protein antibodies, anti-peptide antibodies, anti-DNA antibodies, anti-RNA antibodies, anti-hormone antibodies, anti-hypophysiotropic peptides, antibodies against non-natural antigens, anti-anterior pituitary hormone antibodies, anti-posterior pituitary hormone antibodies, anti-venom antibodies, anti-tumor marker antibodies, anti-bodies directed against epitopes associated with infectious disease, including, anti-viral, anti-bacterial, anti-protozoal, anti-fungal, anti-parasitic, anti-receptor, anti-lipid, anti-phospholipid, anti-growth factor, anti-cytokine, anti-monokine, anti-idiotype, and anti-accessory (presentation) protein antibodies. Antibodies made with the present invention, as well as light chains or heavy chains, may also be used to inhibit enzyme activity.

Antibodies that may be produced using the present invention include, but are not limited to, antibodies made against the following proteins: Bovine γ -Globulin, Serum; Bovine IgG, Plasma; Chicken γ -Globulin, Serum; Human γ -Globulin, Serum; Human IgA, Plasma; Human IgA, Myeloma; Human IgA, Myeloma; Human IgA, Plasma; Human IgB, Myeloma; Human IgG, Plasma; Human IgG, Fab Fragment, Plasma; Human IgG, F(ab')₂ Fragment, Plasma; Human IgG, Fc Fragment, Plasma; Human IgG, Myeloma; Human IgG, Myeloma; Human IgG, Myeloma; Human IgG, Myeloma; Human IgM, Plasma; Human Immunoglobulin, Light Chains κ and λ , Plasma; Mouse γ -Globulin, Serum; Mouse IgG, Serum; Mouse IgM, Myeloma; Rabbit γ -Globulin, Serum; Rabbit IgG, Plasma; and Rat γ -Globulin, Serum. In one embodiment, the transposon-based vector comprises the coding sequence of light and heavy chains of a murine monoclonal antibody that shows specificity for human seminoprotein (GenBank Accession numbers AY129006 and AY129304 for the light and heavy chains, respectively).

A further non-limiting list of antibodies that recognize other antibodies is as follows: Anti-Chicken IgG, heavy (H) & light (L) Chain Specific (Sheep); Anti-Goat γ-Globulin (Donkey); Anti-Goat IgG, Fc Fragment Specific (Rabbit); Anti-Guinea Pig γ-Globulin (Goat); Anti-Human Ig, Light Chain, Type κ Specific; Anti-Human Ig,

10

15

20

25

Light Chain, Type λ Specific; Anti-Human IgA, α-Chain Specific (Goat); Anti-Human IgA, Fab Fragment Specific; Anti-Human IgA, Fc Fragment Specific; Anti-Human IgA, Secretory; Anti-Human IgE, e-Chain Specific (Goat); Anti-Human IgE. Fc Fragment Specific; Anti-Human IgG, Fc Fragment Specific (Goat); Anti-Human IgG, y-Chain Specific (Goat); Anti-Human IgG, Fc Fragment Specific; Anti-Human IgG, Fd Fragment Specific; Anti-Human IgG, H & L Chain Specific (Goat); Anti-Human IgG1, Fc Fragment Specific; Anti-Human IgG2, Fc Fragment Specific; Anti-Human IgG2, Fd Fragment Specific; Anti-Human IgG3, Hinge Specific; Anti-Human IgG4, Fc Fragment Specific; Anti-Human IgM, Fc Fragment Specific; Anti-Human IgM, μ-Chain Specific; Anti-Mouse IgE, ε-Chain Specific; Anti-Mouse γ-Globulin (Goat); Anti-Mouse IgG, γ-Chain Specific (Goat); Anti-Mouse IgG, γ-Chain Specific (Goat) F(ab')₂ Fragment; Anti-Mouse IgG, H & L Chain Specific (Goat); Anti-Mouse IgM, µ-Chain Specific (Goat); Anti-Mouse IgM, H & L Chain Specific (Goat); Anti-Rabbit γ-Globulin (Goat); Anti-Rabbit IgG, Fc Fragment Specific (Goat); Anti-Rabbit IgG, H & L Chain Specific (Goat); Anti-Rat γ-Globulin (Goat); Anti-Rat IgG, H & L Chain Specific; Anti-Rhesus Monkey y-Globulin (Goat); and, Anti-Sheep IgG, H & L Chain Specific.

Another non-limiting list of the antibodies that may be produced using the present invention is provided in product catalogs of companies such as Phoenix Pharmaceuticals, Inc. (www.phoenixpeptide.com; 530 Harbor Boulevard, Belmont, CA), Peninsula Labs San Carlos CA, SIGMA, St.Louis, MO www.sigmaaldrich.com, Cappel ICN, Irvine, California, www.icnbiomed.com, and Calbiochem. La Jolla, California, www.calbiochem.com, which are all incorporated berein by reference in their entirety. The polynucleotide sequences encoding these antibodies may be obtained from the scientific literature, from patents, and from databases such Alternatively, one of ordinary skill in the art may design the as GenBank. polynucleotide sequence to be incorporated into the genome by choosing the codons that encode for each amino acid in the desired antibody. Antibodies made by the transgenic animals of the present invention include antibodies that may be used as therapeutic reagents, for example in cancer immunotherapy against specific antigens, as diagnostic reagents and as laboratory reagents for numerous applications including immunoneutralization, radioimmunoassay, western blots, dot blots, ELISA, immunoprecipitation and immunoaffinity columns. Some of these antibodies include,

5

10

15

20

25

but are not limited to, antibodies which bind the following ligands: adrenomedulin, amylin, calcitonin, amyloid, calcitonin gene-related peptide, cholecystokinin, gastrin, gastric inhibitory peptide, gastrin releasing peptide, interleukin, interferon, cortistatin, somatostatin, endothelin, sarafotoxin, glucagon, glucagon-like peptide, insulin, atrial natriuretic peptide, BNP, CNP, neurokinin, substance P, leptin, neuropeptide Y, melanin concentrating hormone, melanocyte stimulating hormone, orphanin, endorphin, dynorphin, enkephalin, enkephalin, leumorphin, peptide F, PACAP, PACAP-related peptide, parathyroid hormone, urocortin, corticotrophin releasing hormone, PHM, PHI, vasoactive intestinal polypeptide, secretin, ACTH, angiotensin, angiostatin, bombesin, endostatin, bradykinin, FMRF amide, galanin, gonadotropin releasing hormone (GnRH) associated peptide, GnRH, growth hormone releasing hormone, inhibin, granulocyte-macrophage colony stimulating factor (GM-CSF), motilin, neurotensin, oxytocin, vasopressin, osteocalcin, pancreastatin, pancreatic polypeptide, peptide YY, proopiomelanocortin, transforming growth factor, vascular endothelial growth factor, vesicular monoamine transporter, vesicular acetylcholine transporter, ghrelin, NPW, NPB, C3d, prokinetican, thyroid stimulating hormone, luteinizing hormone, follicle stimulating hormone, prolactin, growth hormone, betalipotropin, melatonin, kallikriens, kinins, prostaglandins, erythropoietin, p146 (SEQ ID NO:18 amino acid sequence, SEQ ID NO:19, nucleotide sequence), estrogen, testosterone, corticosteroids, mineralocorticoids, thyroid hormone, thymic hormones. connective tissue proteins, nuclear proteins, actin, avidin, activin, agrin, albumin, and prohormones, propeptides, splice variants, fragments and analogs thereof.

The following is yet another non-limiting of antibodies that can be produced by the methods of present invention: abciximab (ReoPro), abciximab anti-platelet aggregation monoclonal antibody, anti-CD11a (hu1124), anti-CD18 antibody, anti-CD20 antibody, anti-cytomegalovirus (CMV) antibody, anti-digoxin antibody, anti-hepatitis B antibody, anti-HER-2 antibody, anti-idiotype antibody to GD3 glycolipid, anti-IgE antibody, anti-IL-2R antibody, antimetastatic cancer antibody (mAb 17-1A), anti-rabies antibody, anti-respiratory syncytial virus (RSV) antibody, anti-Rh antibody, anti-TCR, anti-TNF antibody, anti-VEGF antibody and fab fragment thereof, rattlesnake venom antibody, black widow spider venom antibody, coral snake venom antibody, antibody against very late antigen-4 (VLA-4), C225 humanized antibody to EGF receptor, chimeric (human & mouse) antibody against TNFα,

5

10

15

20

25

antibody directed against GPIIb/IIIa receptor on human platelets, gamma globulin, anti-hepatitis B immunoglobulin, human anti-D immunoglobulin, human antibodies against S aureus, human tetanus immunoglobulin, humanized antibody against the epidermal growth receptor-2, humanized antibody against the a subunit of the interleukin-2 receptor, humanized antibody CTLA4IG, humanized antibody to the IL-2 R α-chain, humanized anti-CD40-ligand monoclonal antibody (5c8), humanized mAb against the epidermal growth receptor-2, humanized mAb to rous sarcoma virus. humanized recombinant antibody (IgG1k) against respiratory syncytial virus (RSV), lymphocyte immunoglobulin (anti-thymocyte antibody), lymphocyte immunoglobulin, mAb against factor VII, MDX-210 bi-specific antibody against HER-2, MDX-22, MDX-220 bi-specific antibody against TAG-72 on tumors, MDX-33 antibody to FcyR1 receptor, MDX-447 bi-specific antibody against EGF receptor, MDX-447 bispecific humanized antibody to EGF receptor, MDX-RA immunotoxin (ricin A linked) antibody, Medi-507 antibody (humanized form of BTI-322) against CD2 receptor on T-cells, monoclonal antibody LDP-02, muromonab-CD3(OKT3) antibody, OKT3 ("muromomab-CD3") antibody, PRO 542 antibody, ReoPro ("abciximab") antibody, and TNF-IgG fusion protein.

The antibodies prepared using the methods of the present invention may also be designed to possess specific labels that may be detected through means known to one of ordinary skill in the art. The antibodies may also be designed to possess specific sequences useful for purification through means known to one of ordinary skill in the art. Specialty antibodies designed for binding specific antigens may also be made in transgenic animals using the transposon-based vectors of the present invention.

Production of a monoclonal antibody using the transposon-based vectors of the present invention can be accomplished in a variety of ways. In one embodiment, two vectors may be constructed: one that encodes the light chain, and a second vector that encodes the heavy chain of the monoclonal antibody. These vectors may then be incorporated into the genome of the target animal by methods disclosed herein. In an alternative embodiment, the sequences encoding light and heavy chains of a monoclonal antibody may be included on a single DNA construct. For example, the coding sequence of light and heavy chains of a murine monoclonal antibody that show specificity for human seminoprotein can be expressed using transposon-based

5

10

15

20

25

constructs of the present invention (GenBank Accession numbers AY129006 and AY129304 for the light and heavy chains, respectively).

Further included in the present invention are proteins and peptides synthesized by the immune system including those synthesized by the thymus, lymph nodes, spleen, and the gastrointestinal associated lymph tissues (GALT) system. The immune system proteins and peptides proteins that can be made in transgenic animals using the transposon-based vectors of the present invention include, but are not limited to, alpha-interferon, beta-interferon, gamma-interferon, alpha-interferon A, alpha-interferon 1, G-CSF, GM-CSF, interlukin-1 (IL-1), IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, TNF-α, and TNF-β. Other cytokines included in the present invention include cardiotrophin, stromal cell derived factor, macrophage derived chemokine (MDC), melanoma growth stimulatory activity (MGSA), macrophage inflammatory proteins 1 alpha (MIP-1 alpha), 2, 3 alpha, 3 beta, 4 and 5.

Lytic peptides such as p146 are also included in the desired molecules of the present invention. In one embodiment, the p146 peptide comprises an amino acid sequence of SEQ ID NO:19. The present invention also encompasses a transposon-based vector comprising a p146 nucleic acid comprising a polynucleotide sequence of SEQ ID NO:20.

Enzymes are another class of proteins that may be made through the use of the transposon-based vectors of the present invention. Such enzymes include but are not limited to adenosine deaminase, alpha-galactosidase, cellulase, collagenase, dnasel, hyaluronidase, lactase, L-asparaginase, pancreatin, papain, streptokinase B, subtilisin, superoxide dismutase, thrombin, trypsin, urokinase, fibrinolysin, glucocerebrosidase and plasminogen activator. In some embodiments wherein the enzyme could have deleterious effects, additional amino acids and a protease cleavage site are added to the carboxy end of the enzyme of interest in order to prevent expression of a functional enzyme. Subsequent digestion of the enzyme with a protease results in activation of the enzyme.

Extracellular matrix proteins are one class of desired proteins that may be made through the use of the present invention. Examples include but are not limited to collagen, fibrin, elastin, laminin, and fibronectin and subtypes thereof. Intracellular

15

20

25

proteins and structural proteins are other classes of desired proteins in the present invention.

Growth factors are another desired class of proteins that may be made through the use of the present invention and include, but are not limited to, transforming growth factor-α ("TGF-α"), transforming growth factor-β (TGF-β), platelet-derived growth factors (PDGF), fibroblast growth factors (FGF), including FGF acidic isoforms 1 and 2, FGF basic form 2 and FGF 4, 8, 9 and 10, nerve growth factors (NGF) including NGF 2.5s, NGF 7.0s and beta NGF and neurotrophins, brain derived neurotrophic factor, cartilage derived factor, growth factors for stimulation of the production of red blood cells, growth factors for stimulation of the production of white blood cells, bone growth factors (BGF), basic fibroblast growth factor, vascular endothelial growth factor (VEGF), granulocyte colony stimulating factor (G-CSF), insulin like growth factor (IGF) I and II, hepatocyte growth factor, glial neurotrophic growth factor (GDNF), stem cell factor (SCF), keratinocyte growth factor (KGF), transforming growth factors (TGF), including TGFs alpha, beta, beta1, beta2, beta3, skeletal growth factor, bone matrix derived growth factors, bone derived growth factors, erythropoietin (EPO) and mixtures thereof.

Another desired class of proteins that may be made may be made through the use of the present invention include but are not limited to leptin, leukemia inhibitory factor (LIF), tumor necrosis factor alpha and beta, ENBREL, angiostatin, endostatin, thrombospondin, osteogenic protein-1, bone morphogenetic proteins 2 and 7, osteonectin, somatomedin-like peptide, and osteocalcin.

A non-limiting list of the peptides and proteins that may be made may be made through the use of the present invention is provided in product catalogs of companies such as Phoenix Pharmaceuticals, Inc. (www.phoenixpeptide.com; 530 Harbor Boulevard • Belmont, CA), Peninsula Labs San Carlos CA, SIGMA, St.Louis, MO www.sigma-aldrich.com, Cappel ICN, Irvine, California, www.icnbiomed.com, and Calbiochem, La Jolla, California, www.calbiochem.com. The polynucleotide sequences encoding these proteins and peptides of interest may be obtained from the scientific literature, from patents, and from databases such as GenBank. Alternatively, one of ordinary skill in the art may design the polynucleotide sequence to be incorporated into the genome by choosing the codons that encode for each amino acid in the desired protein or peptide.

5

10

15

20

25

Some of these desired proteins or peptides that may be made through the use of the present invention include but are not limited to the following: adrenomedulin. amylin, calcitonin, amyloid, calcitonin gene-related peptide, cholecystokinin, gastrin, gastric inhibitory peptide, gastrin releasing peptide, interleukin, interferon, cortistatin. somatostatin, endothelin, sarafotoxin, glucagon, glucagon-like peptide, insulin, atrial natriuretic peptide, BNP, CNP, neurokinin, substance P, leptin, neuropeptide Y, melanin concentrating hormone, melanocyte stimulating hormone, orphanin, endorphin, dynorphin, enkephalin, leumorphin, peptide F, PACAP, PACAP-related peptide, parathyroid hormone, urocortin, corticotrophin releasing hormone, PHM, PHI, vasoactive intestinal polypeptide, secretin, ACTH, angiotensin, angiostatin, bombesin, endostatin, bradykinin, FMRF amide, galanin, gonadotropin releasing hormone (GnRH) associated peptide. GnRH, growth hormone releasing hormone. inhibin, granulocyte-macrophage colony stimulating factor (GM-CSF), motilin, neurotensin, oxytocin, vasopressin, osteocalcin, pancreastatin, pancreatic polypeptide. peptide YY, proopiomelanocortin, transforming growth factor, vascular endothelial growth factor, vesicular monoamine transporter, vesicular acetylcholine transporter, ghrelin, NPW, NPB, C3d, prokinetican, thyroid stimulating hormone, luteinizing hormone, follicle stimulating hormone, prolactin, growth hormone, beta-lipotropin, melatonin, kallikriens, kinins, prostaglandins, erythropoietin, p146 (SEQ ID NO:19, amino acid sequence, SEQ ID NO:20, nucleotide sequence), thymic hormones, connective tissue proteins, nuclear proteins, actin, avidin, activin, agrin, albumin, and prohormones, propeptides, splice variants, fragments and analogs thereof.

Other desired proteins that may be made by the transgenic animals of the present invention include bacitracin, polymixin b, vancomycin, cyclosporine, anti-RSV antibody, alpha-1 antitrypsin (AAT), anti-cytomegalovirus antibody, anti-hepatitis antibody, anti-inhibitor coagulant complex, anti-rabies antibody, anti-Rh(D) antibody, adenosine deaminase, anti-digoxin antibody, antivenin crotalidae (rattlesnake venom antibody), antivenin latrodectus (black widow spider venom antibody), antivenin micrurus (coral snake venom antibody), aprotinin, corticotropin (ACTH), diphtheria antitoxin, lymphocyte immune globulin (anti-thymocyte antibody), protamine, thyrotropin, capreomycin, α -galactosidase, gramicidin, streptokinase, tetanus toxoid, tyrothricin, IGF-1, proteins of varicella vaccine, anti-TNF antibody, anti-IL-2r antibody, anti-HER-2 antibody, OKT3 ("muromonab-

32

5

10

15

20

25

CD3") antibody, TNF-IgG fusion protein, ReoPro ("abciximab") antibody, ACTH fragment 1-24, desmopressin, gonadotropin-releasing hormone, histrelin, leuprolide, lypressin, nafarelin, peptide that binds GPIIb/GPIIIa on platelets (integrilin), goserelin, capreomycin, colistin, anti-respiratory syncytial virus, lymphocyte immune globulin (Thymoglovin, Atgam), panorex, alpha-antitrypsin, botulinin, lung surfactant protein, tumor necrosis receptor-IgG fusion protein (enbrel), gonadorelin, proteins of influenza vaccine, proteins of rotavirus vaccine, proteins of haemophilus b conjugate vaccine, proteins of poliovirus vaccine, proteins of pneumococcal conjugate vaccine, proteins of meningococcal C vaccine, proteins of influenza vaccine, megakaryocyte growth and development factor (MGDF), neuroimmunophilin ligand-A (NIL-A), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), leptin (native), leptin B, leptin C, IL-1RA (interleukin-1RA), R-568, novel erythropoiesis-stimulating protein (NESP), humanized mAb to rous sarcoma virus (MEDI-493), glutamyl-tryptophan dipeptide IM862, LFA-3TIP immunosuppressive, humanized anti-CD40-ligand monoclonal antibody (5c8), gelsonin enzyme, tissue factor pathway inhibitor (TFPI), proteins of meningitis B vaccine, antimetastatic cancer antibody (mAb 17-1A), chimeric (human & mouse) mAb against TNFa, mAb against factor VII, relaxin, capreomycin, glycopeptide (LY333328), recombinant human activated protein C (rhAPC), humanized mAb against the epidermal growth receptor-2, altepase, anti-CD20 antigen, C2B8 antibody, insulin-like growth factor-1. atrial natriuretic peptide (anaritide), tenectaplase, anti-CD11a antibody (hu 1124), anti-CD18 antibody, mAb LDP-02, anti-VEGF antibody, fab fragment of anti-VEGF Ab, APO2 ligand (tumor necrosis factor-related apoptosis-inducing ligand), rTGF-β (transforming growth factor-β), alpha-antitrypsin, ananain (a pineapple enzyme), humanized mAb CTLA4IG, PRO 542 (mAb), D2E7 (mAb), calf intestine alkaline phosphatase, a-L-iduronidase, a-L-galactosidase (humanglutamic acid decarboxylase, acid sphingomyelinase, bone morphogenetic protein-2 (rhBMP-2), proteins of HIV vaccine, T cell receptor (TCR) peptide vaccine, TCR peptides, V beta 3 and V beta 13.1. (IR502), (IR501), BI 1050/1272 mAb against very late antigen-4 (VLA-4), C225 humanized mAb to EGF receptor, anti-idiotype antibody to GD3 glycolipid, antibacterial peptide against H. pylori, MDX-447 bispecific humanized mAb to EGF receptor, anti-cytomegalovirus (CMV), Medi-491 B19 parvovirus vaccine, humanized recombinant mAb (IgG1k) against respiratory syncytial virus (RSV), urinary tract

5

10

15

20

25

infection vaccine (against "pili" on Escherechia coli strains), proteins of lyme disease vaccine against B. burgdorferi protein (DbpA), proteins of Medi-501 human papilloma virus-11 vaccine (HPV), Streptococcus pneumoniae vaccine, Medi-507 mAb (humanized form of BTI-322) against CD2 receptor on T-cells, MDX-33 mAb to FcγR1 receptor, MDX-RA immunotoxin (ricin A linked) mAb, MDX-210 bispecific mAb against HER-2, MDX-447 bi-specific mAb against EGF receptor, MDX-22, MDX-220 bi-specific mAb against TAG-72 on tumors, colony-stimulating factor (CSF) (molgramostim), humanized mAb to the IL-2 R α-chain (basiliximab), mAb to IgE (IGE 025A), myelin basic protein-altered peptide (MSP771A), humanized mAb against the epidermal growth receptor-2, humanized mAb against the α subunit of the interleukin-2 receptor, low molecular weight heparin, anti-hemophillic factor, and bactericidal/permeability-increasing protein (r-BPI).

The peptides and proteins made using the present invention may be labeled using labels and techniques known to one of ordinary skill in the art. Some of these labels are described in the "Handbook of Fluorescent Probes and Research Products", ninth edition, Richard P. Haugland (ed) Molecular Probes, Inc. Eugene, OR), which is incorporated herein in its entirety. Some of these labels may be genetically engineered into the polynucleotide sequence for the expression of the selected protein or peptide. The peptides and proteins may also have label-incorporation "handles" incorporated to allow labeling of an otherwise difficult or impossible to label protein.

It is to be understood that the various classes of desired peptides and proteins, as well as specific peptides and proteins described in this section may be modified as described below by inserting selected codons for desired amino acid substitutions into the gene incorporated into the transgenic animal.

The present invention may also be used to produce desired molecules other than proteins and peptides including, but not limited to, lipoproteins such as high density lipoprotein (HDL), HDL-Milano, and low density lipoprotein, lipids, carbohydrates, siRNA and ribozymes. In these embodiments, a gene of interest encodes a nucleic acid molecule or a protein that directs production of the desired molecule.

The present invention further encompasses the use of inhibitory molecules to inhibit endogenous (i.e., non-vector) protein production. These inhibitory molecules include antisense nucleic acids, siRNA and inhibitory proteins. In one embodiment, a

15

20

25

transposon-based vector containing an ovalbumin DNA sequence, that upon transcription forms a double stranded RNA molecule, is transfected into an animal such as a bird and the bird's production of endogenous ovalbumin protein is reduced by the interference RNA mechanism (RNAi). Additionally, inducible knockouts or knockdowns of the endogenous protein may be created to achieve a reduction or inhibition of endogenous protein production.

Modified Desired Proteins and Pentides

"Proteins", "peptides," "polypeptides" and "oligopeptides" are chains of amino acids (typically L-amino acids) whose alpha carbons are linked through peptide bonds formed by a condensation reaction between the carboxyl group of the alpha carbon of one amino acid and the amino group of the alpha carbon of another amino acid. The terminal amino acid at one end of the chain (i.e., the amino terminal) has a free amino group, while the terminal amino acid at the other end of the chain (i.e., the carboxy terminal) has a free carboxyl group. As such, the term "amino terminus" (abbreviated N-terminus) refers to the free alpha-amino group on the amino acid at the amino terminal of the protein, or to the alpha-amino group (imino group when participating in a peptide bond) of an amino acid at any other location within the protein. Similarly, the term "carboxy terminus" (abbreviated C-terminus) refers to the free carboxyl group on the amino acid at the carboxy terminus of a protein, or to the carboxyl group of an amino acid at any other location within the protein.

Typically, the amino acids making up a protein are numbered in order, starting at the amino terminal and increasing in the direction toward the carboxy terminal of the protein. Thus, when one amino acid is said to "follow" another, that amino acid is positioned closer to the carboxy terminal of the protein than the preceding amino acid.

The term "residue" is used herein to refer to an amino acid (D or L) or an amino acid mimetic that is incorporated into a protein by an amide bond. As such, the amino acid may be a naturally occurring amino acid or, unless otherwise limited, may encompass known analogs of natural amino acids that function in a manner similar to the naturally occurring amino acids (i.e., amino acid mimetics). Moreover, an amide bond mimetic includes peptide backbone modifications well known to those skilled in the art.

Furthermore, one of skill will recognize that, as mentioned above, individual substitutions, deletions or additions which alter, add or delete a single amino acid or a

5

10

15

20

25

small percentage of amino acids (typically less than about 5%, more typically less than about 1%) in an encoded sequence are conservatively modified variations where the alterations result in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. The following six groups each contain amino acids that are conservative substitutions for one another:

- 1) Alanine (A), Serine (S), Threonine (T);
- 2) Aspartic acid (D), Glutamic acid (E);
- 3) Asparagine (N), Glutamine (Q);
- 10 4) Arginine (R), Lysine (K);

15

20

25

30

- 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and
- 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

A conservative substitution is a substitution in which the substituting amino acid (naturally occurring or modified) is structurally related to the amino acid being substituted, i.e., has about the same size and electronic properties as the amino acid being substituted. Thus, the substituting amino acid would have the same or a similar functional group in the side chain as the original amino acid. A "conservative substitution" also refers to utilizing a substituting amino acid which is identical to the amino acid being substituted except that a functional group in the side chain is protected with a suitable protecting group.

Suitable protecting groups are described in Green and Wuts, "Protecting Groups in Organic Synthesis", John Wiley and Sons, Chapters 5 and 7, 1991, the teachings of which are incorporated herein by reference. Preferred protecting groups are those which facilitate transport of the peptide through membranes, for example, by reducing the hydrophilicity and increasing the lipophilicity of the peptide, and which can be cleaved, either by hydrolysis or enzymatically (Ditter et al., 1968. J. Pharm. Sci. 57:783; Ditter et al., 1968. J. Pharm. Sci. 57:828; Ditter et al., 1969. J. Pharm. Sci. 58:557; King et al., 1987. Biochemistry 26:2294; Lindberg et al., 1989. Drug Metabolism and Disposition 17:311; Tunek et al., 1988. Biochem. Pharm. 37:3867; Anderson et al., 1985 Arch. Biochem. Biophys. 239:538; and Singhal et al., 1987. FASEB J. 1:220). Suitable hydroxyl protecting groups include ester, carbonate and carbamate protecting groups. Suitable amine protecting groups include acyl groups and alkoxy or aryloxy carbonyl groups, as described above for N-terminal protecting

groups. Suitable carboxylic acid protecting groups include aliphatic, benzyl and aryl esters, as described below for C-terminal protecting groups. In one embodiment, the carboxylic acid group in the side chain of one or more glutamic acid or aspartic acid residues in a peptide of the present invention is protected, preferably as a methyl, ethyl, benzyl or substituted benzyl ester, more preferably as a benzyl ester.

Provided below are groups of naturally occurring and modified amino acids in which each amino acid in a group has similar electronic and steric properties. Thus, a conservative substitution can be made by substituting an amino acid with another amino acid from the same group. It is to be understood that these groups are non-limiting, i.e. that there are additional modified amino acids which could be included in each group.

Group I includes leucine, isoleucine, valine, methionine and modified amino acids having the following side chains: ethyl, n-propyl n-butyl. Preferably, Group I includes leucine, isoleucine, valine and methionine.

15 Group II includes glycine, alanine, valine and a modified amino acid having an ethyl side chain. Preferably, Group II includes glycine and alanine.

Group III includes phenylalanine, phenylglycine, tyrosine, tryptophan, cyclohexylmethyl glycine, and modified amino residues having substituted benzyl or phenyl side chains. Preferred substituents include one or more of the following: halogen, methyl, ethyl, nitro, —NH₂, methoxy, ethoxy and — CN. Preferably, Group III includes phenylalanine, tyrosine and tryptophan.

Group IV includes glutamic acid, aspartic acid, a substituted or unsubstituted aliphatic, aromatic or benzylic ester of glutamic or aspartic acid (e.g., methyl, ethyl, n-propyl iso-propyl, cyclohexyl, benzyl or substituted benzyl), glutamine, asparagine, —CO—NH—alkylated glutamine or asparagines (e.g., methyl, ethyl, n-propyl and iso-propyl) and modified amino acids having the side chain —(CH₂)₃—COOH, an ester thereof (substituted or unsubstituted aliphatic, aromatic or benzylic ester), an amide thereof and a substituted or unsubstituted N-alkylated amide thereof. Preferably, Group IV includes glutamic acid, aspartic acid, methyl aspartate, ethyl aspartate, benzyl aspartate and methyl glutamate, ethyl glutamate and benzyl glutamate, glutamine and asparagine.

5

10

20

25

Group V includes histidine, lysine, omithine, arginine, N-nitroarginine, β-cycloarginine, γ-hydroxyarginine, N-amidinocitruline and 2-amino-4-guanidinobutanoic acid, homologs of lysine, homologs of arginine and homologs of ornithine. Preferably, Group V includes histidine, lysine, arginine and omithine. A homolog of an amino acid includes from 1 to about 3 additional or subtracted methylene units in the side chain.

Group VI includes serine, threonine, cysteine and modified amino acids having C1-C5 straight or branched alkyl side chains substituted with —OH or —SH, for example, —CH₂CH₂OH, —CH₂CH₂CH₂OH or -CH₂CH₂OHCH₃. Preferably, Group VI includes serine, cysteine or threonine.

In another aspect, suitable substitutions for amino acid residues include "severe" substitutions. A "severe substitution" is a substitution in which the substituting amino acid (naturally occurring or modified) has significantly different size and/or electronic properties compared with the amino acid being substituted. Thus, the side chain of the substituting amino acid can be significantly larger (or smaller) than the side chain of the amino acid being substituted and/or can have functional groups with significantly different electronic properties than the amino acid being substituted. Examples of severe substitutions of this type include the substitution of phenylalanine or cyclohexylmethyl glycine for alanine, isoleucine for glycine, a D amino acid for the corresponding L amino acid, or -NH-CH[(-CH2)5-COOH]-CO- for aspartic acid. Alternatively, a functional group may be added to the side chain, deleted from the side chain or exchanged with another functional group. Examples of severe substitutions of this type include adding of valine, leucine or isoleucine, exchanging the carboxylic acid in the side chain of aspartic acid or glutamic acid with an amine, or deleting the amine group in the side chain of lysine or ornithine. In yet another alternative, the side chain of the substituting amino acid can have significantly different steric and electronic properties that the functional group of the amino acid being substituted. Examples of such modifications include tryptophan for glycine, lysine for aspartic acid and --(CH₂)₄COOH for the side chain of serine. These examples are not meant to be limiting.

5

10

15

20

25

In another embodiment, for example in the synthesis of a peptide 26 amino acids in length, the individual amino acids may be substituted according in the following manner:

AA: is serine, glycine, alanine, cysteine or threonine;

5 AA₂ is alanine, threonine, glycine, cysteine or serine;

AA₃ is valine, arginine, leucine, isoleucine, methionine, omithine, lysine, N-nitroarginine, β-cycloarginine, γ-hydroxyarginine, N-amidinocitruline or 2-amino-4-guanidinobutanoic acid;

AA4 is proline, leucine, valine, isoleucine or methionine;

10 AA₅ is tryptophan, alanine, phenylalanine, tyrosine or glycine;

AA6 is serine, glycine, alanine, cysteine or threonine;

AA7 is proline, leucine, valine, isoleucine or methionine;

AA₈ is alanine, threonine, glycine, cysteine or serine;

AA9 is alanine, threonine, glycine, cysteine or serine;

15 AA₁₀ is leucine, isoleucine, methionine or valine;

AA11 is serine, glycine, alanine, cysteine or threonine;

AA₁₂ is leucine, isoleucine, methionine or valine;

AA₁₃ is leucine, isoleucine, methionine or valine;

AA₁₄ is glutamine, glutamic acid, aspartic acid, asparagine, or a substituted or unsubstituted aliphatic or aryl ester of glutamic acid or aspartic acid;

AA₁₅ is arginine, N-nitroarginine, β-cycloarginine, γ-hydroxy-arginine, N-amidinocitruline or 2-amino-4-guanidino-butanoic acid

AA₁₅ is proline, leucine, valine, isoleucine or methionine;

AA₁₇ is serine, glycine, alanine, cysteine or threonine;

25 AA₁₈ is glutamic acid, aspartic acid, asparagine, glutamine or a substituted or unsubstituted aliphatic or aryl ester of glutamic acid or aspartic acid;

AA₁₉ is aspartic acid, asparagine, glutamic acid, glutamine, leucine, valine, isoleucine, methionine or a substituted or unsubstituted aliphatic or aryl ester of glutamic acid or aspartic acid;

30 AA₂₀ is valine, arginine, leucine, isoleucine, methionine, omithine, lysine, N-nitroarginine, β-cycloarginine, γ-hydroxyarginine, N-amidinocitruline or 2-amino-4-guanidinobutanoic acid;

AA21 is alanine, threonine, glycine, cysteine or serine;

AA22 is alanine, threonine, glycine, cysteine or serine;

AAzz is histidine, serine, threonine, cysteine, lysine or ornithine;

AA₂₄ is threonine, aspartic acid, serine, glutamic acid or a substituted or unsubstituted aliphatic or aryl ester of glutamic acid or aspartic acid;

5 AA₂₅ is asparagine, aspartic acid,, glutamic acid, glutamine, leucine, valine, isoleucine, methionine or a substituted or unsubstituted aliphatic or aryl ester of glutamic acid or aspartic acid; and

AA₂₆ is cysteine, histidine, serine, threonine, lysine or omithine.

It is to be understood that these amino acid substitutions may be made for longer or shorter peptides than the 26 mer in the preceding example above, and for proteins.

In one embodiment of the present invention, codons for the first several N-terminal amino acids of the transposase are modified such that the third base of each codon is changed to an A or a T without changing the corresponding amino acid. It is preferable that between approximately 1 and 20, more preferably 3 and 15, and most preferably between 4 and 12 of the first N-terminal codons of the gene of interest are modified such that the third base of each codon is changed to an A or a T without changing the corresponding amino acid. In one embodiment, the first ten N-terminal codons of the gene of interest are modified in this manner.

When several desired proteins, protein fragments or peptides are encoded in the gene of interest to be incorporated into the genome, one of skill in the art will appreciate that the proteins, protein fragments or peptides may be separated by a spacer molecule such as, for example, a peptide, consisting of one or more amino acids. Generally, the spacer will have no specific biological activity other than to join the desired proteins, protein fragments or peptides together, or to preserve some minimum distance or other spatial relationship between them. However, the constituent amino acids of the spacer may be selected to influence some property of the molecule such as the folding, net charge, or hydrophobicity. The spacer may also be contained within a nucleotide sequence with a purification handle or be flanked by proteolytic cleavage sites.

Such polypeptide spacers may have from about 5 to about 40 amino acid residues. The spacers in a polypeptide are independently chosen, but are preferably all the same. The spacers should allow for flexibility of movement in space and are

15

20

25

therefore typically rich in small amino acids, for example, glycine, serine, proline or alanine. Preferably, peptide spacers contain at least 60%, more preferably at least 80% glycine or alanine. In addition, peptide spacers generally have little or no biological and antigenic activity. Preferred spacers are (Gly-Pro-Gly-Gly)_x (SEQ ID

NO:5) and (Gly₄-Ser)_y, wherein x is an integer from about 3 to about 9 and y is an integer from about 1 to about 8. Specific examples of suitable spacers include (Gly-Pro-Gly-Gly)₃

SEQ ID NO:6 Gly Pro Gly Gly Pro Gly Gly Pro Gly Gly (Gly4-Ser)3

10 SEQ ID NO:7 Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly Gly Gly Ser or (Gly4-Ser)4

Nucleotide sequences encoding for the production of residues which may be useful in purification of the expressed recombinant protein may also be built into the vector. Such sequences are known in the art and include the glutathione binding domain from glutathione S-transferase, polylysine, hexa-histidine or other cationic amino acids, thioredoxin, hemagglutinin antigen and maltose binding protein.

Additionally, nucleotide sequences may be inserted into the gene of interest to be incorporated so that the protein or peptide can also include from one to about six amino acids that create signals for proteolytic cleavage. In this manner, if a gene is designed to make one or more peptides or proteins of interest in the transgenic animal, specific nucleotide sequences encoding for amino acids recognized by enzymes may be incorporated into the gene to facilitate cleavage of the large protein or peptide sequence into desired peptides or proteins or both. For example, nucleotides encoding a proteolytic cleavage site can be introduced into the gene of interest so that a signal sequence can be cleaved from a protein or peptide encoded by the gene of interest. Nucleotide sequences encoding other amino acid sequences which display pH sensitivity or chemical sensitivity may also be added to the vector to facilitate separation of the signal sequence from the peptide or protein of interest.

In one embodiment of the present invention, a TAG sequence is linked to the gene of interest. The TAG sequence serves three purposes: 1) it allows free rotation of the peptide or protein to be isolated so there is no interference from the native

15

20

25

protein or signal sequence, i.e. vitellogenin, 2) it provides a "purification handle" to isolate the protein using column purification, and 3) it includes a cleavage site to remove the desired protein from the signal and purification sequences. Accordingly, as used herein, a TAG sequence includes a spacer sequence, a purification handle and a cleavage site. The spacer sequences in the TAG proteins contain one or more repeats shown in SEQ ID NO:25. A preferred spacer sequence comprises the sequence provided in SEQ ID NO:26. One example of a purification handle is the gp41 hairpin loop from HIV I. Exemplary gp41 polynucleotide and polypeptide sequences are provided in SEQ ID NO:24 and SEQ ID NO:23, respectively. However, it should be understood that any antigenic region may be used as a purification handle, including any antigenic region of gp41. Preferred purification handles are those that elicit highly specific antibodies. Additionally, the cleavage site can be any protein cleavage site known to one of ordinary skill in the art and includes an enterokinase cleavage site comprising the Asp Asp Asp Asp Lys sequence (SEQ ID NO:9) and a furin cleavage site. Constructs containing a TAG sequence are shown in Figures 2 and 3. In one embodiment of the present invention, the TAG sequence comprises a polynucleotide sequence of SEQ ID NO.22.

Methods of Administering Transposon-Based Vectors

In addition to the transposon-based vectors described above, the present invention also includes methods of administering the transposon-based vectors to an animal, methods of producing a transgenic animal wherein a gene of interest is incorporated into the germline of the animal and methods of producing a transgenic animal wherein a gene of interest is incorporated into cells other than the germline cells of the animal. The transposon-based vectors of the present invention may be administered to an animal via any method known to those of skill in the art, including, but not limited to, intraembryonic, intratesticular, intraoviduct, intraperitoneal, intraarterial, intravenous, topical, oral, nasal, and pronuclear injection methods of administration, or any combination thereof. The transposon-based vectors may also be administered within the lumen of an organ, into an organ, into a body cavity, into the cerebrospinal fluid, through the urinary system or through any route to reach the desired cells.

The transposon-based vectors may be delivered through the vascular system to be distributed to the cells supplied by that vessel. For example, the compositions may

42

5

10

15

20

25

be placed in the artery supplying the ovary or supplying the fallopian tube to transfect cells in those tissues. In this manner, follicles could be transfected to create a germline transgenic animal. Alternatively, supplying the compositions through the artery leading to the oviduct would preferably transfect the tubular gland and epithelial cells. Such transfected cells could manufacture a desired protein or peptide for deposition in the egg white. Administration of the compositions through the portal vein would target uptake and transformation of hepatic cells. Administration through the urethra and into the bladder would target the transitional epithelium of the bladder. Administration through the vagina and cervix would target the lining of the uterus. Administration through the internal mammary artery would transfect secretory cells of the lactating mammary gland to perform a desired function, such as to synthesize and secrete a desired protein or peptide into the milk.

In a preferred embodiment, the animal is an egg-laying animal, and more preferably, an avian. In one embodiment, between approximately 1 and 50 µg, preferably between 1 and 20 µg, and more preferably between 5 and 10 µg of transposon-based vector DNA is administered to the oviduct of a bird. Optimal ranges depending upon the type of bird and the bird's stage of sexual maturity. Intraoviduct administration of the transposon-based vectors of the present invention result in a PCR positive signal in the oviduct tissue, whereas intravascular administration results in a PCR positive signal in the liver. In other embodiments, the transposon-based vector is administered to an artery that supplies the oviduct or the liver. These methods of administration may also be combined with any methods for facilitating transfection, including without limitation, electroporation, gene guns, injection of naked DNA, and use of dimethyl sulfoxide (DMSO).

The present invention includes a method of intraembryonic administration of a transposon-based vector to an avian embryo comprising the following steps: 1) incubating an egg on its side at room temperature for two hours to allow the embryo contained therein to move to top dead center (TDC); 2) drilling a hole through the shell without penetrating the underlying shell membrane; 3) injecting the embryo with the transposon-based vector in solution; 4) sealing the hole in the egg; and 5) placing the egg in an incubator for hatching. Administration of the transposon-based vector can occur anytime between immediately after egg lay (when the embryo is at Stage X) and hatching. Preferably, the transposon-based vector is administered between 1 and

5

10

15

20

25

7 days after egg lay, more preferably between 1 and 2 days after egg lay. The transposon-based vectors may be introduced into the embryo in amounts ranging from about 5.0 µg to 10 pg, preferably 1.0 µg to 100 pg. Additionally, the transposon-based vector solution volume may be between approximately 1 µl to 75 µl in quail and between approximately 1 µl to 500 µl in chicken.

The present invention also includes a method of intratesticular administration of a transposon-based vector including injecting a bird with a composition comprising the transposon-based vector, an appropriate carrier and an appropriate transfection reagent. In one embodiment, the bird is injected before sexual maturity, preferably between approximately 4-14 weeks, more preferably between approximately 6-14 weeks and most preferably between 8-12 weeks old. In another embodiment, a mature bird is injected with a transposon-based vector an appropriate carrier and an appropriate transfection reagent. The mature bird may be any type of bird, but in one example the mature bird is a quail.

A bird is preferably injected prior to the development of the blood-testis barrier, which thereby facilitates entry of the transposon-based vector into the seminiferous tubules and transfection of the spermatogonia or other germline cells. At and between the ages of 4, 6, 8, 10, 12, and 14 weeks, it is believed that the testes of chickens are likely to be most receptive to transfection. In this age range, the blood/testis barrier has not yet formed, and there is a relatively high number of spermatogonia relative to the numbers of other cell types, e.g., spermatids, etc. See J. Kumaran et al., 1949. Poultry Sci., 29:511-520. See also E. Oakberg, 1956. Am. J. Anatomy, 99:507-515; and P. Kluin et al., 1984. Anat. Embryol., 169:73-78.

The transposon-based vectors may be introduced into a testis in an amount ranging from about 0.1 µg to 10 µg, preferably 1 µg to 10 µg, more preferably 3 µg to 10 µg. In a quail, about 5 µg is a preferred amount. In a chicken, about 5 µg to 10 µg per testis is preferred. These amounts of vector DNA may be injected in one dose or multiple doses and at one site or multiple sites in the testis. In a preferred embodiment, the vector DNA is administered at multiple sites in a single testis, both testes being injected in this manner. In one embodiment, injection is spread over three injection sites: one at each end of the testis, and one in the middle. Additionally, the transposon-based vector solution volume may be between approximately 1 µl to 75 µl in quail and between approximately 1 µl to 500 µl in chicken. In a preferred

44

5

10

15

20

25

embodiment, the transposon-based vector solution volume may be between approximately 20 μ l to 60 μ l in quail and between approximately 50 μ l to 250 μ l in chicken. Both the amount of vector DNA and the total volume injected into each testis may be determined based upon the age and size of the bird.

According to the present invention, the transposon-based vector is administered in conjunction with an acceptable carrier and/or transfection reagent. Acceptable carriers include, but are not limited to, water, saline, Hanks Balanced Salt Solution (HBSS), Tris-EDTA (TE) and lyotropic liquid crystals. Transfection reagents commonly known to one of ordinary skill in the art that may be employed include, but are not limited to, the following: cationic lipid transfection reagents, cationic lipid mixtures, polyamine reagents, liposomes and combinations thereof; SUPERFECT®, Cytofectene, BioPORTER®, GenePORTER®, NeuroPORTER®, and perfectin from Gene Therapy Systems; lipofectamine, cellfectin, DMRIE-C oligofectamine, and PLUS reagent from InVitrogen; Xtreme gene, fugene, DOSPER and DOTAP from Roche; Lipotaxi and Genejammer from Strategene; and Escort from SIGMA. In one embodiment, the transfection reagent is SUPERFECT®. The ratio of DNA to transfection reagent may vary based upon the method of administration. In one embodiment, the transposon-based vector is administered intratesticularly and the ratio of DNA to transfection reagent can be from 1:1.5 to 1:15, preferably 1:2 to 1:10, all expressed as wt/vol. Transfection may also be accomplished using other means known to one of ordinary skill in the art, including without limitation electroporation, gene guns, injection of naked DNA, and use of dimethyl sulfoxide (DMSO).

Depending upon the cell or tissue type targeted for transfection, the form of the transposon-based vector may be important. Plasmids harvested from bacteria are generally closed circular supercoiled molecules, and this is the preferred state of a vector for gene delivery because of the ease of preparation. In some instances, transposase expression and insertion may be more efficient in a relaxed, closed circular configuration or in a linear configuration. In still other instances, a purified transposase protein may be co-injected with a transposon-based vector containing the gene of interest for more immediate insertion. This could be accomplished by using a transfection reagent complexed with both the purified transposase protein and the transposon-based vector.

5

10

15

20

25

Testing for and Breeding Animals Carrying the Transgene

Following administration of a transposon-based vector to an animal, DNA is extracted from the animal to confirm integration of the gene of interest. Actual frequencies of integration are estimated both by comparative strength of the PCR signal, and by histological evaluation of the tissues by quantitative PCR. Another method for estimating the rate of transgene insertion is the so-called primed in situ hybridization technique (PRINS). This method determines not only which cells carry a transgene of interest, but also into which chromosome the gene has inserted, and even what portion of the chromosome. Briefly, labeled primers are annealed to chromosome spreads (affixed to glass slides) through one round of PCR, and the slides are then developed through normal in situ hybridization procedures. This technique combines the best features of in situ PCR and fluorescence in situ hybridization (FISH) to provide distinct chromosome location and copy number of the gene in question. The 28s rRNA gene will be used as a positive control for spermatogonia to confirm that the technique is functioning properly. Using different fluorescent labels for the transgene and the 28s gene causes cells containing a transgene to fluoresce with two different colored tags.

Breeding experiments are also conducted to determine if germline transmission of the transgene has occurred. In a general bird breeding experiment performed according to the present invention, each male bird was exposed to 2-3 different adult female birds for 3-4 days each. This procedure was continued with different females for a total period of 6-12 weeks. Eggs were collected daily for up to 14 days after the last exposure to the transgenic male, and each egg was incubated in a standard incubator. In the first series of experiments the resulting embryos were examined for transgene presence at day 3 or 4 using PCR.

Any male producing a transgenic embryo was bred to additional females. Eggs from these females were incubated, hatched, and the chicks tested for the exogenous DNA. Any embryos that died were necropsied and examined directly for the transgene or protein encoded by the transgene, either by fluorescence or PCR. The offspring that hatched and were found to be positive for the exogenous DNA were raised to maturity. These birds were bred to produce further generations of transgenic birds, to verify efficiency of the transgenic procedure and the stable

5

10

15

20

25

incorporation of the transgene into the germ line. The resulting embryos were examined for transgene presence at day 3 or 4 using PCR.

It is to be understood that the above procedure can be modified to suit animals other than birds and that selective breeding techniques may be performed to amplify gene copy numbers and protein output.

Production of Desired Proteins or Peptides in Egg White

In one embodiment, the transposon-based vectors of the present invention may be administered to a bird for production of desired proteins or peptides in the egg white. These trassposon-based vectors preferably contain one or more of an ovalbumin promoter, an ovomucoid promoter, an ovalbumin signal sequence and an ovomucoid signal sequence. Oviduct-specific ovalbumin promoters are described in B. O'Malley et al., 1987. EMBO J., vol. 6, pp. 2305-12; A. Qiu et al., 1994. Proc. Nat. Acad. Sci. (USA), vol. 91, pp. 4451-4455; D. Monroe et al., 2000. Biochim. Biophys. Acta, 1517 (1):27-32; H. Park et al., 2000. Biochem., 39:8537-8545; and T. Muramatsu et al., 1996. Poult. Avian Biol. Rev., 6:107-123. Examples of transposon-based vectors designed for production of a desired protein in an egg white are shown in Figures 2 and 3.

Production of Desired Proteins or Peptides in Egg Yolk

The present invention is particularly advantageous for production of recombinant peptides and proteins of low solubility in the egg yolk. Such proteins include, but are not limited to, membrane-associated or membrane-bound proteins, lipophilic compounds; attachment factors, receptors, and components of second messenger transduction machinery. Low solubility peptides and proteins are particularly challenging to produce using conventional recombinant protein production techniques (cell and tissue cultures) because they aggregate in water-based, hydrophilic environments. Such aggregation necessitates denaturation and refolding of the recombinantly-produced proteins, which may deleteriously affect their structure and function. Moreover, even highly soluble recombinant peptides and proteins may precipitate and require denaturation and renaturation when produced in sufficiently high amounts in recombinant protein production systems. The present invention provides an advantageous resolution of the problem of protein and peptide solubility during production of large amounts of recombinant proteins.

5

10

15

20

25

In one embodiment of the present invention, deposition of a desired protein into the egg yolk is accomplished by attaching a sequence encoding a protein capable of binding to the yolk vitellogenin receptor to a gene of interest that encodes a desired protein. This transposon-based vector can be used for the receptor-mediated uptake of the desired protein by the oocytes. In a preferred embodiment, the sequence ensuring the binding to the vitellogenin receptor is a targeting sequence of a vitellogenin protein. The invention encompasses various vitellogenin proteins and their targeting sequences. In a preferred embodiment, a chicken vitellogenin protein targeting sequence is used, however, due to the high degree of conservation among vitellogenin protein sequences and known cross-species reactivity of vitellogenin targeting sequences with their egg-yolk receptors, other vitellogenin targeting sequences can be substituted. One example of a construct for use in the transposonbased vectors of the present invention and for deposition of an insulin protein in an egg yolk is provided in SEQ ID NO:27. In this embodiment, the transposon-based vector contains a vitellogenin promoter, a vitellogenin targeting sequence, a TAG sequence, a pro-insulin sequence and a synthetic polyA sequence. The present invention includes, but is not limited to, vitellogenin targeting sequences residing in the N-terminal domain of vitellogenin, particularly in lipovitellin I. embodiment, the vitellogenin targeting sequence contains the polynucleotide sequence of SEQ ID NO:18.

In a preferred embodiment, the transposon-based vector contains a transposase gene operably-linked to a liver-specific promoter and a gene of interest operably-linked to a liver-specific promoter and a vitellogenin targeting sequence. Figure 4 shows an example of such a construct. In another preferred embodiment, the transposon-based vector contains a transposase gene operably-linked to a constitutive promoter and a gene of interest operably-linked to a liver-specific promoter and a vitellogenin targeting sequence.

Isolation and Purification of Desired Protein or Peptide

For large-scale production of protein, an animal breeding stock that is homozygous for the transgene is preferred. Such homozygous individuals are obtained and identified through, for example, standard animal breeding procedures or PCR protocols.

10

15

20

25

Once expressed, peptides, polypeptides and proteins can be purified according to standard procedures known to one of ordinary skill in the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis, high performance liquid chromatography, immunoprecipitation and the like. Substantially pure compositions of about 50 to 99% homogeneity are preferred, and 80 to 95% or greater homogeneity are most preferred for use as therapeutic agents.

In one embodiment of the present invention, the animal in which the desired protein is produced is an egg-laying animal. In a preferred embodiment of the present invention, the animal is an avian and a desired peptide, polypeptide or protein is isolated from an egg white. Egg white containing the exogenous protein or peptide is separated from the yolk and other egg constituents on an industrial scale by any of a variety of methods known in the egg industry. See, e.g., W. Stadelman et al. (Eds.), Egg Science & Technology, Haworth Press, Binghamton, NY (1995). Isolation of the exogenous peptide or protein from the other egg white constituents is accomplished by any of a number of polypeptide isolation and purification methods well known to one of ordinary skill in the art. These techniques include, for example, chromatographic methods such as gel permeation, ion exchange, affinity separation, metal chelation, HPLC, and the like, either alone or in combination. Another means that may be used for isolation or purification, either in lieu of or in addition to chromatographic separation methods, includes electrophoresis. Successful isolation and purification is confirmed by standard analytic techniques, including HPLC, mass spectroscopy, and spectrophotometry. These separation methods are often facilitated if the first step in the separation is the removal of the endogenous ovalbumin fraction of egg white, as doing so will reduce the total protein content to be further purified by about 50%.

To facilitate or enable purification of a desired protein or peptide, transposon-based vectors may include one or more additional epitopes or domains. Such epitopes or domains include DNA sequences encoding enzymatic or chemical cleavage sites including, but not limited to, an enterokinase cleavage site; the glutathione binding domain from glutathione S-transferase; polylysine; hexa-histidine or other cationic amino acids; thioredoxin; hemagglutinin antigen; maltose binding protein; a fragment of gp41 from HIV; and other purification epitopes or domains commonly known to one of skill in the art.

5

10

15

20

25

In one representative embodiment, purification of desired proteins from egg white utilizes the antigenicity of the ovalbumin carrier protein and particular attributes of a TAG linker sequence that spans ovalbumin and the desired protein. The TAG sequence is particularly useful in this process because it contains 1) a highly antigenic epitope, a fragment of gp41 from HIV, allowing for stringent affinity purification, and, 2) a recognition site for the protease enterokinase immediately juxtaposed to the desired protein. In a preferred embodiment, the TAG sequence comprises approximately 50 amino acids. A representative TAG sequence is provided below.

The underlined sequences were taken from the hairpin loop domain of HIV gp-41 (SEQ ID NO:23). Sequences in italics represent the cleavage site for enterokinase (SEQ ID NO:9). The spacer sequence upstream of the loop domain was made from repeats of (Pro Ala Asp Asp Ala) (SEQ ID NO:25) to provide free rotation and promote surface availability of the hairpin loop from the ovalbumin carrier protein.

Isolation and purification of a desired protein is performed as follows:

- Enrichment of the egg white protein fraction containing ovalbumin and the transgenic ovalbumin-TAG-desired protein.
 - 2. Size exclusion chromatography to isolate only those proteins within a narrow range of molecular weights (a further enrichment of step 1).
 - Ovalbumin affinity chromatography. Highly specific antibodies to ovalbumin
 will eliminate virtually all extraneous egg white proteins except ovalbumin
 and the transgenic ovalbumin-TAG-desired protein.
 - 4. gp41 affinity chromatography using anti-gp41 antibodies. Stringent application of this step will result in virtually pure transgenic ovalbumin-TAG-desired protein.
- 5. Cleavage of the transgene product can be accomplished in at least one of two ways:
 - a. The transgenic ovalbumin-TAG-desired protein is left attached to the gp41 affinity resin (beads) from step 4 and the protease enterokinase is

15

added. This liberates the transgene target protein from the gp41 affinity resin while the ovalbumin-TAG sequence is retained. Separation by centrifugation (in a batch process) or flow through (in a column purification), leaves the desired protein together with enterokinase in solution. Enterokinase is recovered and reused.

5

b. Alternatively, enterokinase is immobilized on resin (beads) by the addition of poly-lysine moieties to a non-catalytic area of the protease. The transgenic ovalbumin-TAG-desired protein eluted from the affinity column of step 4 is then applied to the protease resin. Protease action cleaves the ovalbumin-TAG sequence from the desired protein and leaves both entities in solution. The immobilized enterokinase resin is recharged and reused.

10

c. The choice of these alternatives is made depending upon the size and chemical composition of the transgene target protein.

15

6. A final separation of either of these two (5a or 5b) protein mixtures is made using size exclusion, or enterokinase affinity chromatography. This step allows for desalting, buffer exchange and/or polishing, as needed.

Cleavage of the transgene product (ovalbumin-TAG-desired protein) by enterokinase, then, results in two products: ovalbumin-TAG and the desired protein. More specific methods for isolation using the TAG label is provided in the Examples. Some desired proteins may require additions or modifications of the above-described approach as known to one of ordinary skill in the art. The method is scaleable from the laboratory bench to pilot and production facility largely because the techniques applied are well documented in each of these settings.

25

20

It is believed that a typical chicken egg produced by a transgenic animal of the present invention will contain at least 0.001 mg, from about 0.001 to 1.0 mg, or from about 0.001 to 100.0 mg of exogenous protein, peptide or polypeptide, in addition to the normal constituents of egg white (or possibly replacing a small fraction of the latter).

30

One of skill in the art will recognize that after biological expression or purification, the desired proteins, fragments thereof and peptides may possess a conformation substantially different than the native conformations of the proteins, fragments thereof and peptides. In this case, it is often necessary to denature and

reduce protein and then to cause the protein to re-fold into the preferred conformation. Methods of reducing and denaturing proteins and inducing re-folding are well known to those of skill in the art.

Production of Protein or Peptide in Milk

5

10

15

20

25

30

In addition to methods of producing eggs containing transgenic proteins or peptides, the present invention encompasses methods for the production of milk containing transgenic proteins or peptides. These methods include the administration of a transposon-based vector described above to a mammal. In one embodiment, the transposon-based vector contains a transposase operably-linked to a constitutive promoter and a gene of interest operably-linked to mammary specific promoter. Genes of interest can include, but are not limited to antiviral and antibacterial proteins and immunoglobulins.

Treatment of Disease and Animal Improvement

In addition to production and isolation of desired molecules, the transposonbased vectors of the present invention can be used for the treatment of various genetic disorders. For example, one or more transposon-based vectors can be administered to a human or animal for the treatment of a single gene disorder including, but not limited to, Huntington's disease, alpha-1-antitrypsin deficiency Alzheimer's disease, various forms or breast cancer, cystic fibrosis, galactosemia, congenital hypothyroidism, maple syrup urine disease, neurofibromatosis 1, phenylketonuria, sickle cell disease, and Smith-Lemli-Opitz (SLO/RSH) Syndrome. Other diseases caused by single gene disorders that may be treated with the present invention include, autoimmune diseases, shipping fever in cattle, mastitis, bacterial or viral diseases, alteration of skin pigment in animals. In these embodiments, the transposon-based vector contains a non-mutated, or non-disease causing form of the gene known to cause such disorder. Preferably, the transposase contained within the transposase-based vector is operably linked to an inducible promoter such as a tissuespecific promoter such that the non-mutated gene of interest is inserted into a specific tissue wherein the mutated gene is expressed in vivo.

In one embodiment of the present invention, a transposon-based vector comprising a gene encoding proinsulin is administered to diabetic animals or humans for incorporation into liver cells in order to treat or cure diabetes. The specific incorporation of the proinsulin gene into the liver is accomplished by placing the

transposase gene under the control of liver-specific promoter, such as G6P. This approach is useful for treatment of both Type I and Type II diabetes. The G6P promoter has been shown to be glucose responsive (Arguad, D., et al. 1996. Diabetes 45:1563-1571), and thus, glucose-regulated insulin production is achieved using DNA constructs of the present invention. Integrating a proinsulin gene into liver cells circumvents the problem of destruction of pancreatic islet cells in the course of Type I diabetes.

In another embodiment, shortly after diagnosis of Type I diabetes, the cells of the immune system destroying pancreatic β -cells are selectively removed using the transposon-based vectors of the present invention, thus allowing normal β -cells to repopulate the pancreas.

For treatment of Type II diabetes, a transposon-based vector containing a proinsulin gene is specifically incorporated into the pancreas by placing the transposase gene under the control of a pancreas-specific promoter, such as an insulin promoter. In this embodiment, the vector is delivered to a diabetic animal or human via injection into an artery feeding the pancreas. For delivery, the vector is complexed with a transfection agent. The artery distributes the complex throughout the pancreas, where individual cells receive the vector DNA. Following uptake into the target cell, the insulin promoter is recognized by transcriptional machinery of the cell, the transposase encoded by the vector is expressed, and stable integration of the proinsulin gene occurs. It is expected that a small percentage of the transposon-based vector is transported to other tissues, and that these tissues are transfected. However, these tissues are not stably transfected and the proinsulin gene is not incorporated into the cells' DNA due to failure of these cells to activate the insulin promoter. The vector DNA is likely lost when the cell dies or degraded over time.

In other embodiments, one or more transposon-based vectors are administered to an avian for the treatment of a viral or bacterial infection/disease including, but not limited to, Colibacillosis (Coliform infections), Mycoplasmosis (CRD, Air sac, Sinusitis), Fowl Cholera, Necrotic Enteritis, Ulcerative Enteritis (Quail disease), Pullorum Disease, Fowl Typhoid, Botulism, Infectious Coryza, Erysipelas, Avian Pox, Newcastle Disease, Infectious Bronchitis, Quail Bronchitis, Lymphoid Leukosis, Marek's Disease (Visceral Leukosis), Infectious Bursal Disease (Gumboro). In these

5

10

15

20

25

embodiments, the transposon-based vectors may be used in a manner similar to traditional vaccines.

In still other embodiments, one or more transposon-based vectors are administered to an animal for the production of an animal with enhanced growth characteristics and nutrient utilization.

The transposon-based vectors of the present invention can be used to transform any animal cell, including but not limited to: cells producing hormones, cytokines, growth factors, or any other biologically active substance; cells of the immune system; cells of the nervous system; muscle (striatal, cardiac, smooth) cells; vascular system cells; endothelial cells; skin cells; mammary cells; and lung cells, including bronchial and alveolar cells. Transformation of any endocrine cell by a transposon-based vector is contemplated as a part of a present invention. In one aspect of the present invention, cells of the immune system may be the target for incorporation of a desired gene or genes encoding for production of antibodies. Accordingly, the thymus, bone marrow, beta lymphocytes (or B cells), gastrointestinal associated lymphatic tissue (GALT), Peyer's patches, bursa Fabricius, lymph nodes, spleen, and tonsil, and any other lymphatic tissue, may all be targets for administration of the compositions of the present invention.

The transposon-based vectors of the present invention can be used to modulate (stimulate or inhibit) production of any substance, including but not limited to a hormone, a cytokine, or a growth factor, by an animal or a human cell. Modulation of a regulated signal within a cell or a tissue, such as production of a second messenger, is also contemplated as a part of the present invention. Use of the transposon-based vectors of the present invention is contemplated for treatment of any animal or human disease or condition that results from underproduction (such as diabetes) or overproduction (such as hyperthyroidism) of a hormone or other endogenous biologically active substance. Use of the transposon-based vectors of the present invention to integrate nucleotide sequences encoding RNA molecules, such as antisense RNA or short interfering RNA, is also contemplated as a part of the present invention.

Additionally, the transposon-based vectors of the present invention may be used to provide cells or tissues with "beacons", such as receptor molecules, for binding of therapeutic agents in order to provide tissue and cell specificity for the

5

10

15

20

25

therapeutic agents. Several promoters and exogenous genes can be combined in one vector to produce progressive, controlled treatments from a single vector delivery.

The following examples will serve to further illustrate the present invention without, at the same time, however, constituting any limitation thereof. On the contrary, it is to be clearly understood that resort may be had to various embodiments, modifications and equivalents thereof which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the invention.

10 EXAMPLE 1

5

15

20

25

30

Preparation of Transposon-Based Vector pTnMod

A vector was designed for inserting a desired coding sequence into the genome of eukaryotic cells, given below as SEQ ID NO:1. The vector of SEQ ID NO:1, termed pTnMod, was constructed and its sequence verified.

This vector employed a cytomegalovirus (CMV) promoter. A modified Kozak sequence (ACCATG) (SEQ ID NO:13) was added to the promoter. The nucleotide in the wobble position in nucleotide triplet codons encoding the first 10 amino acids of transposase was changed to an adenine (A) or thymine (T), which did not alter the amino acid encoded by this codon. Two stop codons were added and a synthetic polyA was used to provide a strong termination sequence. This vector uses a promoter designed to be active soon after entering the cell (without any induction) to increase the likelihood of stable integration. The additional stop codons and synthetic polyA insures proper termination without read through to potential genes downstream.

The first step in constructing this vector was to modify the transposase to have the desired changes. Modifications to the transposase were accomplished with the primers High Efficiency forward primer (Hef) Altered transposase (ATS)-Hef 5' ATCTCGAGACCATGTGTGAACTTGATATTTTACATGATCTCTTTACC 3' (SEQ ID NO:10) and Altered transposase- High efficiency reverse primer (Her) 5' GATTGATCATTATCATAATTTCCCCAAAGCGTAACC 3' (SEQ ID NO:11, a reverse complement primer). In the 5' forward primer ATS-Hef, the sequence CTCGAG (SEQ ID NO:12) is the recognition site for the restriction enzyme Xho I, which permits directional cloning of the amplified gene. The sequence ACCATG

(SEQ ID NO:13) contains the Kozak sequence and start codon for the transposase and the underlined bases represent changes in the wobble position to an A or T of codons for the first 10 amino acids (without changing the amino acid coded by the codon). Primer ATS-Her (SEO ID NO:11) contains an additional stop codon TAA in addition to native stop codon TGA and adds a Bcl I restriction site, TGATCA (SEQ ID NO:14), to allow directional cloning. These primers were used in a PCR reaction with pTnLac (p defines plasmid, to defines transposon, and lac defines the beta fragment of the lactose gene, which contains a multiple cloning site) as the template for the transposase and a FailSafeTM PCR System (which includes enzyme, buffers, dNTP's, MgCl2 and PCR Enhancer; Epicentre Technologies, Madison, WI). Amplified PCR product was electrophoresed on a 1% agarose gel, stained with ethidium bromide, and visualized on an ultraviolet transilluminator. corresponding to the expected size was excised from the gel and purified from the agarose using a Zymo Clean Gel Recovery Kit (Zymo Research, Orange, CA). Purified DNA was digested with restriction enzymes Xho I (5') and Bel I (3') (New England Biolabs, Beverly, MA) according to the manufacturer's protocol. Digested DNA was purified from restriction enzymes using a Zymo DNA Clean and Concentrator kit (Zymo Research).

Plasmid gWhiz (Gene Therapy Systems, San Diego, CA) was digested with restriction enzymes Sal I and BamH I (New England Biolabs), which are compatible with Xho I and Bcl I, but destroy the restriction sites. Digested gWhiz was separated on an agarose gel, the desired band excised and purified as described above. Cutting the vector in this manner facilitated directional cloning of the modified transposase (mATS) between the CMV promoter and synthetic polyA.

To insert the mATS between the CMV promoter and synthetic polyA in gWhiz, a Stratagene T4 Ligase Kit (Stratagene, Inc. La Jolla, CA) was used and the ligation set up according to the manufacturer's protocol. Ligated product was transformed into E. coli Top10 competent cells (Invitrogen Life Technologies, Carlsbad, CA) using chemical transformation according to Invitrogen's protocol. Transformed bacteria were incubated in 1 ml of SOC (GIBCO BRL, CAT# 15544-042) medium for 1 hour at 37° C before being spread to LB (Luria-Bertani media (broth or agar)) plates supplemented with 100 µg/ml ampicillin (LB/amp plates). These plates were incubated overnight at 37° C and resulting colonies picked to

10

15

20

25

LB/amp broth for overnight growth at 37° C. Plasmid DNA was isolated using a modified alkaline lysis protocol (Sambrook et al., 1989), electrophoresed on a 1% agarose gel, and visualized on a U.V. transilluminator after ethidium bromide staining. Colonies producing a plasmid of the expected size (approximately 6.4 kbp) were cultured in at least 250 ml of LB/amp broth and plasmid DNA harvested using a Qiagen Maxi-Prep Kit (column purification) according to the manufacturer's protocol (Qiagen, Inc., Chatsworth, CA). Column purified DNA was used as template for sequencing to verify the changes made in the transposase were the desired changes and no further changes or mutations occurred due to PCR amplification. For sequencing, Perkin-Elmer's Big Dye Sequencing Kit was used. All samples were sent to the Gene Probes and Expression Laboratory (LSU School of Veterinary Medicine) for sequencing on a Perkin-Elmer Model 377 Automated Sequencer.

Once a clone was identified that contained the desired mATS in the correct orientation, primers CMVf-NgoM IV (5' TTGCCGGCATCAGATTGGCTAT (SEQ ID NO:15); underlined bases denote NgoM IV recognition site) and Syn-polyA-BstE II (5' AGAGGTCACCGGGTCAATTCTTCAGCACCTGGTA (SEQ ID NO:16); underlined bases denote BstE II recognition site) were used to PCR amplify the entire CMV promoter, mATS, and synthetic polyA for cloning upstream of the transposon in pTnLac. The PCR was conducted with FailSafeTM as described above, purified using the Zymo Clean and Concentrator kit, the ends digested with NgoM IV and BstE II (New England Biolabs), purified with the Zymo kit again and cloned upstream of the transposon in pTnLac as described below.

Plasmid pTnLac was digested with NgoM IV and BstE II to remove the ptac promoter and transposase and the fragments separated on an agarose gel. The band corresponding to the vector and transposon was excised, purified from the agarose, and dephosphorylated with calf intestinal alkaline phosphatase (New England Biolabs) to prevent self-annealing. The enzyme was removed from the vector using a Zymo DNA Clean and Concentrator-5. The purified vector and CMVp/mATS/polyA were ligated together using a Stratagene T4 Ligase Kit and transformed into E. coli as described above.

Colonies resulting from this transformation were screened (mini-preps) as describe above and clones that were the correct size were verified by DNA sequence

10

15

20

25

analysis as described above. The vector was given the name pTnMod (SEQ ID NO:1) and includes the following components:

Base pairs 1-130 are a remainder of F1(-) on from pBluescriptil sk(-) (Stratagene), corresponding to base pairs 1-130 of pBluescriptil sk(-).

Base pairs 131 - 132 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 133 -1777 are the CMV promoter/enhancer taken from vector pGWiz (Gene Therapy Systems), corresponding to bp 229-1873 of pGWiz. The CMV promoter was modified by the addition of an ACC sequence upstream of ATG.

Base pairs 1778-1779 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 1780 - 2987 are the coding sequence for the transposase, modified from Tn10 (GenBank accession J01829) by optimizing codons for stability of the transposase mRNA and for the expression of protein. More specifically, in each of the codons for the first ten amino acids of the transposase, G or C was changed to A or T when such a substitution would not alter the amino acid that was encoded.

Base pairs 2988-2993 are two engineered stop codons.

Base pair 2994 is a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 2995 - 3410 are a synthetic polyA sequence taken from the pGWiz vector (Gene Therapy Systems), corresponding to bp 1922-2337 of 10 pGWiz.

Base pairs 3415 - 3718 are non-coding DNA that is residual from vector pNK2859.

Base pairs 3719 - 3761 are non-coding \(\text{DNA} \) DNA that is residual from pNK2859.

Base pairs 3762 - 3831 are the 70 bp of the left insertion sequence recognized by the transposon Tn10.

Base pairs 3832-3837 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 3838 - 4527 are the multiple cloning site from pBluescriptll sk(20), corresponding to bp 924-235 of pBluescriptll sk(-). This multiple cloning site may be used to insert any coding sequence of interest into the vector.

Base pairs 4528-4532 are a residue from ligation of restriction enzyme sites used in constructing the vector.

5

15

Base pairs 4533 - 4602 are the 70 bp of the right insertion sequence recognized by the transposon Tn10.

Base pairs 4603 - 4644 are non-coding \(\lambda \) DNA that is residual from pNK2859.

Base pairs 4645 - 5488 are non-coding DNA that is residual from pNK2859.

Base pairs 5489 - 7689 are from the pBluescriptll sk(-) base vector - (Stratagene, Inc.), corresponding to bp 761-2961 of pBluescriptll sk(-).

Completing pTnMod is a pBlueScript backbone that contains a colE I origin of replication and an antibiotic resistance marker (ampicillin).

It should be noted that all non-coding DNA sequences described above can be replaced with any other non-coding DNA sequence(s). Missing nucleotide sequences in the above construct represent restriction site remnants.

All plasmid DNA was isolated by standard procedures. Briefly, Escherichia coli containing the plasmid was grown in 500 mL aliquots of LB broth (supplemented with an appropriate antibiotic) at 37°C overnight with shaking. Plasmid DNA was recovered from the bacteria using a Qiagen Maxi-Prep kit (Qiagen, Inc., Chatsworth, CA) according to the manufacturer's protocol. Plasmid DNA was resuspended in 500 µL of PCR-grade water and stored at -20°C until used.

EXAMPLE 2

20 Preparation of Transposon-Based Vector pTnMod (CMY/Red)

A vector was designed for inserting a reporter gene (DsRed) under the control of the CMV promoter into the genome of vertebrate cells given below as SEQ ID NO:2. The reporter gene chosen was the DsRed gene, driven by the immediate early cytomegalovirus promoter, to produce a plasmid called pTnCMV/DsRed. The DsRed gene product is a red fluorescent protein from an IndoPacific sea anemone, Discosoma sp., which fluoresces bright red at 558 nm. It is to be understood that the reporter gene, i.e., the DsRed gene, is only one embodiment of the present invention and that any gene of interest may be inserted into the plasmid in place of the DsRed reporter gene in any Experiment described herein.

The vector of SEQ ID NO:2, named pTnMod (CMV/Red), was constructed, and its sequence verified by re-sequencing. SEQ ID NO:2, pTnMod (CMV/Red), includes the following components:

5

10

15

25

Base pairs 1-130 are a remainder of F1(-) on from pBluescriptll sk(-) (Stratagene), corresponding to bp 1-130 of pBluescriptll sk(-).

Base pairs 131 - 132 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 133 -1777 are the CMV promoter/enhancer taken from vector pGWiz (Gene Therapy Systems, corresponding to bp 229-1873 of pGWiz.

Base pairs 1778-1779 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 1780 - 2987 are the coding sequence for the transposase, modified from Tn10 (GenBank accession J01829) by optimizing codons as discussed above.

Base pairs 2988-2993 are two engineered stop codons.

Base pair 2994 is a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 2995 - 3410 are a synthetic polyA sequence taken from the pGWiz vector (Gene Therapy Systems), corresponding to bp 1922-2337 of pGWiz.

Base pairs 3415 - 3718 are non-coding DNA that is residual from vector pNK2859.

Base pairs 3719 - 3761 are non-coding \(\lambda \) DNA that is residual from pNK2859.

Base pairs 3762 - 3831 are the 70 bp of the left insertion sequence recognized by the transposon Tn10.

Base pairs 3832-3837 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 3838 - 4044 are part of the multiple cloning site from pBluescriptll sk(-), corresponding to bp 924-718 of pBluescriptll sk(-).

Base pairs 4045-4048 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 4049-5693 are the CMV promoter/enhancer, taken from vector pGWiz (Gene Therapy Systems), corresponding to bp 229-1873 of pGWiz.

Base pairs 5694-5701 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 5702 - 6617 are the DsRed reporter coding sequence, including polyA sequence, from pDsRedl.1 (Clontech), corresponding to bp 77 - 992 of pDsRedl.1.

5

10

15

20

Base pairs 6618 - 7101 are part of the multiple cloning site from pBluescriptll sk(-), corresponding to bp 718-235 of pBluescriptll sk(-).

Base pairs 7102-7106 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 7107 - 7176 are the 70 bp of the right insertion sequence recognized by the transposon Tn10.

Base pairs 7177 - 7218 are non-coding λ DNA that is residual from pNK2859. Base pairs 7219 - 8062 are non-coding DNA that is residual from pNK2859.

Base pairs 8063 - 10263 are from the pBluescriptll sk(-) base vector 10 (Stratagene, Inc.), corresponding to bp 761-2961 of pBluescriptll sk(-).

It should be noted that all non-coding DNA sequences described above can be replaced with any other non-coding DNA sequence(s).

EXAMPLE 3

15 Preparation of Transposon-Based Vector pTnMod (Oval/Red) - Chicken

A vector was designed for inserting a reporter gene (DsRed) under the control of the ovalbumin promoter, and including the ovalbumin signal sequence, into the genome of a bird. One version of this vector is given below as SEQ ID NO:3. The vector of SEQ ID NO:3, named pTnMod (Oval/Red) - Chicken, includes chicken ovalbumin promoter and signal sequences.

SEQ ID NO:3, pTnMod (Oval/Red) - Chicken, includes the following components:

Base pairs 1-130 are a remainder of F1(-) on from pBluescriptll sk(-) (Stratagene), corresponding to bp 1-130 of pBluescriptll sk(-).

Base pairs 131 - 132 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 133 -1777 are the CMV promoter/enhancer taken from vector pGWiz (Gene Therapy Systems, corresponding to bp 229-1873 of pGWiz.

Base pairs 1778-1779 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 1780 - 2987 are the coding sequence for the transposase, modified from Tn10 (GenBank accession J01829) by optimizing codons as discussed above.

Base pairs 2988-2993 are two engineered stop codons.

20

Base pair 2994 is a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 2995 - 3410 are a synthetic polyA sequence taken from the pGWiz vector (Gene Therapy Systems), corresponding to bp 1922-2337 of pGWiz.

Base pairs 3415 --3718 are non-coding DNA that is residual from vector pNK2859.

Base pairs 3719 - 3761 are non-coding λ DNA that is residual from 10 pNK2859.

Base pairs 3762 - 3831 are the 70 bp of the left insertion sequence recognized by the transposon Tn10.

Base pairs 3832-3837 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 3838 - 4044 are part of the multiple cloning site from pBluescriptll sk(-), corresponding to bp 924-718 of pBluescriptll sk(-).

Base pairs 4045-4049 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 4050 - 4951 contain upstream elements of the (including SDRE, steroid-dependent response element). See GenBank accession number J00895 M24999, bp 431-1332. Base pairs 4952-4959 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 4960 - 5112 are the chicken ovalbumin signal sequence (GenBank accession number J00895 M24999, bp 2996-3148).

Base pairs 5113-5118 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 5119 - 6011 are the DsRed reporter coding sequence, including polyA sequence, from pDsRed1.1 (Clontech), corresponding to bp 100 - 992 of pDsRed1.1.

Base pairs 6012-6017 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 6018 - 6056 are part of the multiple cloning site of the ZeroBlunt Topo cloning vector (Invitrogen), corresponding to bp 337-377 of ZeroBlunt.

Base pairs 6057-6062 are a residue from ligation of restriction enzyme sites used in constructing the vector.

5

20

Base pairs 6063 - 6495 are part of the multiple cloning site from pBluescriptll sk(-), corresponding to bp 667-235 of pBluescriptll sk(-).

Base pairs 6496-6500 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 6501 - 6570 are the 70 bp of the right insertion sequence recognized by the transposon Tn10.

Base pairs 6571 - 6612 are non-coding \(\lambda \) DNA that is residual from pNK2859.

Base pairs 6613 - 7477 are non-coding DNA that is residual from pNK2859.

Base pairs 7478 - 9678 are from the pBluescriptll sk(-) base vector (Stratagene, Inc.), corresponding to bp 761-2961 of pBluescriptll sk(-).

It should be noted that all non-coding DNA sequences described above can be replaced with any other non-coding DNA sequence(s).

EXAMPLE 4

15 Preparation of Transposon-Based Vector pTnMod(Oval/Red) - Quail

A vector was designed for inserting a reporter gene (DsRed) under the control of the ovalbumin promoter, and including the ovalbumin signal sequence, into the genome of a bird given below as SEQ ID NO:4. The vector of SEQ ID NO:4, named pTnMod (Oval/Red) - Quail, has been constructed, and selected portions of the sequence have been verified by re-sequencing.

SEQ ID NO:4, pTnMod (Oval/Red) - Quail, includes the following components:

Base pairs 1-130 are a remainder of F1(-) on from pBluescriptll sk(-) (Stratagene), corresponding to bp 1-130 of pBluescriptll sk(-).

Base pairs 131 - 132 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 133 - 1777 are the CMV promoter/enhancer taken from vector pGWiz (Gene Therapy Systems), corresponding to bp 229-1873 of pGWiz.

Base pairs 1778-1779 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 1780 - 2987 are the coding sequence for the transposase, modified from Tn10 (GenBank accession J01829) by optimizing codons as discussed above.

5

20

25

Base pairs 2988-2993 are two engineered stop codons. Base pair 2994 is a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 2995 - 3410 are a synthetic polyA sequence taken from the pGWiz vector (Gene Therapy Systems), corresponding to bp 1922-2337 of pGWiz.

Base pairs 3415 - 3718 are non-coding DNA that is residual from vector pNK2859.

Base pairs 3719 - 3761 are non-coding 2 DNA that is residual from pNK2859.

Base pairs 3762 - 3831 are the 70 base pairs of the left insertion sequence recognized by the transposon Tn10.

Base pairs 3832-3837 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 3838 - 4044 are part of the multiple cloning site from pBluescriptll sk(-), corresponding to bp 924-718 of pBluescriptll sk(-).

Base pairs 4045-4049 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 4050 - 4934 are the Japanese quail ovalbumin promoter (including SDRE, steroid-dependent response element). The Japanese quail ovalbumin promoter was isolated by its high degree of homology to the chicken ovalbumin promoter (GenBank accession number J00895 M24999, base pairs 431-1332). Some deletions were noted in the quail sequence, as compared to the chicken sequence.

Base pairs 4935-4942 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 4943 - 5092 are the Japanese quail ovalbumin signal sequence. The quail signal sequence was isolated by its high degree of homology to the chicken signal sequence (GenBank accession number J00895 M24999, base pairs 2996-3148). Some deletions were noted in the quail sequence, as compared to the chicken sequence.

Base pairs 5093-5098 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 5099 - 5991 are the DsRed reporter coding sequence, including polyA sequence, from pDsRed1.1 (Clontech), corresponding to bp 100 - 992 of pDsRed 1.1.

5

15

20

Base pairs 5992-5997 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 5998 - 6036 are part of the multiple cloning site of the ZeroBlunt Topo cloning vector (Invitrogen), corresponding to base pairs 337-377 of ZeroBlunt.

Base pairs 6037-6042 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 6043 - 6475 are part of the multiple cloning site from pBluescriptll sk(-), corresponding to bp 667-235 of pBluescriptll sk(-).

Base pairs 6476-6480 are a residue from ligation of restriction enzyme sites used in constructing the vector.

Base pairs 6481 - 6550 are the 70 bp of the right insertion sequence recognized by the transposon Tn10.

Base pairs 6551 - 6592 are non-coding λ DNA that is residual from pNK2859.

Base pairs 6593 - 7457 are non-coding DNA that is residual from pNK2859.

Base pairs 7458 - 9658 are from the pBluescriptll sk(-) base vector (Stratagene, Inc.), corresponding to base pairs 761-2961 of pBluescriptll sk(-).

It should be noted that all non-coding DNA sequences described above can be replaced with any other non-coding DNA sequence(s).

20 EXAMPLE 5

Transfection of Stage X Japanese Quail Eggs with pTnMod(Oval/Red) - Quail via embryo injection

Transgenic Japanese quail were produced by transfecting Stage X embryos and the heritability of the transgene delivered by embryo transfection was established. More specifically, fertile eggs were collected in the morning and placed at 15° C until enough were collected for injection, but were held no longer than 7 days. Stage X embryos (eggs) were assigned to one of two treatment groups. Before treatment, each egg was incubated on its side at room temperature for about 2 hours to allow the embryo to move to "top dead center" (TDC). Each egg was transfected by drilling a 1 mm hole (directly above the embryo) through the shell without penetrating the underlying shell membrane. A 0.5 ml syringe fitted with a 28 gauge needle was used to deliver DNA complexed to a transfecting reagent, i.e. SUPERFECT®, in a 50 µl volume. An adhesive disc was used to seal the hole and provide a label for treatment identification. After all eggs were transfected, they were set in an incubator with the adhesive disc pointing upward for hatching.

5

10

15

25

30

Each bird that hatched was bled at one week of age, DNA was extracted from blood cells, and PCR was conducted using 28s primers as a positive control and primers specific to DsRed. Any bird that was negative was terminated, while positive birds were monitored to determine maintenance of the transgene. Birds consistently positive were maintained until sexual maturity and bred. Positive male and female birds were mated. The eggs of mated hens were hatched and the resulting chicks, the G1 generation, were evaluated to determine if they were transgenic. All G1s resulting from this mating were bled and PCR conducted as described above.

Egg injection: Two treatment groups and one control group were used for this experiment. Vector pTnMod (Oval/Red) in supercoiled form (Treatment 1) and in linear form (Treatment 2) were used to transfect 15 eggs per treatment. To obtain linear DNA for this experiment, pTnMod (Oval/Red) was digested with NgoM IV. column purified, and resuspended in TE buffer.

Each egg was injected with 0.75 μg of DNA complexed with SUPERFECT® in a 1:3 ratio in a total injection volume of 50 μl Hank's Balanced Salt solution (HBSS) was used to bring the volume to 50 μl. The DNA Superfect mixture must be allowed to incubate (for complex formation) at room temperature for 10 minutes prior to injection and must be used within 40 minutes post initial mixing. Eggs were incubated as described above after injection.

Results: In the supercoiled injection group, 2 females and 1 male were identified as PCR positive using primers specific to the DsRed coding sequence. These birds were mated as described above. Blood was taken from the G1 chicks and PCR was conducted. The results showed that the transgene was incorporated into the gametes of these birds. The G1 chicks from these birds were examined on a weekly basis until it was verified that the gene was not present or enough transgenic G1s were obtained to initiate a breeding flock of fully transgenic birds. Eggs from these G1 chicks expressed DsRed protein in the albumin portion of their eggs.

EXAMPLE 6

Intratesticular Injection of Chickens with pTnMod(CMV/Red) (SEQ ID NO:2)

Immature birds of different ages (4, 6, 8, 10, 12, and 14 weeks) were placed under anesthesia and injected in the testes with the construct pTnMod(CMV/Red). A saline solution containing 1-5 µg of purified DNA vector, mixed with SUPERFECT® transfecting reagent (Qiagen, Valencia, CA) in a 1:6 (wt:vol) ratio. The volume of saline was adjusted so that the total volume injected into each testis was 150-200 µl, depending on the age and size of the bird. For the 4- and 6-week-old chickens, 1 µg DNA in 150 µl was injected in each testis, divided into three doses of 50 µl each. For

10

15

20

25

30

the older birds, 200 µl total volume was injected, containing either 3 µg DNA (for 8-week-old birds) or 5 µg DNA (for older birds) per testis. First, one testis was surgically exposed prior to injection. After injection, the incision was sutured, and the sequence was repeated for the alternate testis.

From six to nine months post-surgery, weekly sperm samples were taken from each injected bird, as well as from control birds. Each sperm sample was evaluated for uptake and expression of the injected gene. Samples were evaluated by PCR on whole sperm, within one week after collection.

Approximately 100 male white leghorn chickens, in groups of 5-26, at ages 4, 6, 8, 10, 12, and 14 weeks, were used as this is the age range in which it is expected that the testes are likely to be most "receptive." In this age range, the blood/testis barrier has not yet formed, and there is a relatively high number of spermatogonia relative to the numbers of other cell types, e.g., spermatids, etc. See J. Kumaran et al., 1949. Poultry Sci., vol. 29, pp. 511-520. See also E. Oakberg, 1956. Am. J. Anatomy, vol. 99, pp. 507-515; and P. Kluin et al., 1984. Anat. EmbryoL, vol. 169, pp. 73-78.

The experimental and control males were obtained from commercial sources at one day of age, and maintained in brooders until used. The male birds were housed in temperature-controlled spaces in individual standard caging as they approached maturity. They were given water and standard commercial feed ad lib. They were kept initially in a 23:1 hour light/dark cycle, stepped down at approximately weekly intervals to a 15:8 hour light/dark cycle, as this regimen has been reported to optimize sexual maturity and fertility.

Surgical and DNA Injection Procedures

At the appropriate ages, groups of individual males were starved overnight and then subjected to transgene delivery by direct intratesticular injection of DNA by experienced animal surgeons. Each male was anesthetized with isoflurane via a simplified gas machine.

Various devices and anesthesia machines have previously been described for administering isoflurane (and other gaseous anesthetics) to birds. See Alsage et al., Poultry Sci., 50:1876-1878 (1971); Greenlees et al., Am. J. Vet. Res., vol. 51, pp. 757-758 (1990). However, these prior techniques are somewhat cumbersome and complex to implement. A novel and much simpler system to administer isoflurane (or other gaseous) anesthesia was developed due to the deficiencies in the prior art, a

5

10

15

20

25

system that we found worked well on all ages of chicks. A standard nose cone was placed over the chick's head, similar to the system that has been used for decades to administer ether to mice. A plastic tube approximately 3.5 cm in diameter and 12 cm long was filled with cotton, into which was poured approximately 2 mL isoflurane (Abbott Laboratories, Chicago). The chick's head was placed partially into the cylinder, and was held in place there intermittently throughout the surgery as required to maintain the proper plane of anesthesia, without overdosing.

Each anesthetized bird was positioned on its side on an animal board with cords tractioning the wings and feet to allow access to the testes area. The area was swabbed with 0.5% chlorhexidine, and a 2 cm dorsolateral incision was made in the skin over the testis (similar to the procedure commonly used for caponization). A small-animal retractor was used to spread the last two ribs, exposing the testis. The DNA solution was then mixed with SUPERFECT® (Qiagen) according to the manufacturer's protocol, approximately a 1:6 wt/vol ratio, to a final concentration of 0.01 - 0.05 μg/μl. This resulted in 1 - 5 μg total DNA (in a 150-200 μl volume) being injected into each testis, spread over three injection sites: one at each end of the testis, and one in the middle.

The injection device was a standard 25 gauge, 1/2 inch (1.27 cm) hypodermic needle, attached to a 50, 100, or 200 µl syringe. Approximately 5 mm of the needle tip was bent at a 90 degree angle, to facilitate insertion into the testes. Approximately 50 - 70 µl of the DNA-SUPERFECT® solution was injected into each of three sites per testis. The multiple injections were calculated to suffuse the DNA throughout the whole testis, the idea being to promote contact between DNA and spermatogonia as much as feasible. We estimated that our procedure resulted in the injection of about 100,000 DNA molecules per spermatogonium. The construct used in these tests was a highly potent constitutive modified CMV promoter, operatively linked to the dsRed gene as shown in SEQ ID NO:2.

Following injection, the incision was closed in two layers with 4-0 absorbable suture, and then the contralateral testis was similarly exposed and injected. Following surgery, each bird was returned to its cage to recover. One hundred thirteen males were ultimately used in the experimental regimen to increase the overall likelihood of success, along with 4 control birds (16 weeks 20 old) subjected to sham surgery (with injections containing only the transfection reagent.

68

5

10

15

20

25

Evaluation of Birds

5

10

15

20

25

30

Thus, a total of 113 white leghorn chickens were injected with the DNA vector in groups of 5-26 at varying ages. Fourteen birds were transformed at 4 weeks, 23 birds at 6 weeks; 26 birds at 8 weeks; 23 birds at 10 weeks; 5 birds at 12 weeks; and 22 birds at 14 weeks. Sixteen birds died before they could be sampled, so to date, 97 roosters have been sampled, plus the four controls. Birds were evaluated at 18-24 weeks of age for (a) potential transformation in the sperm, and (b) successful testis transfection. Sperm samples were obtained from each rooster by manual manipulation using standard techniques. The sperm were washed, and their DNA was extracted following the techniques of G. Mann et al., 1993. J. Reprod. Fert., 99:505-12. The samples were then frozen until analyzed. Evaluation was conducted by PCR analysis to detect DNA integration into the sperm, or into any of the testicular cells. Additionally, selected testes were harvested at the end of the sperm sampling period.

Of 97 birds tested, at least 22 showed probable positive results. Positive results were observed at all transformation ages, except for 4 weeks, which was not tested. At least two birds were confirmed positive by PCR of sperm, conducted four months after the initial injection. These results were transient in many cases, however since it was believed that the DsRed gene product used in these initial proof of concept experiments was toxic. Nevertheless, the positive PCR results presumptively demonstrated that the transgene was incorporated into spermatogonia (before puberty), and that it was carried in transgenic sperm. Such sperm could then transmit the gene to subsequent generations, resulting in the production of true, germ-line transgenic "founder" birds.

To further confirm that the DNA had been incorporated into the sperm, and that contaminating vector was not being detected from other sources, it was confirmed through PCR on sperm of experimental birds, and on positive and negative controls that the sperm of the experimental birds lacked DNA encoding the transposase. The design of the preferred transposon-based vector is such that the sequence encoding the transposase is contained in the vector, but is not incorporated into the transformed chromosome. Thus, presence of the exogenous coding sequence, coupled with absence of the transposase gene, is strong evidence for incorporation of the exogenous coding sequence, or transgene.

These results demonstrated proof of concept, as positive PCR results were obtained from the sperm of treated birds. Interpretation of these preliminary results was made more difficult by the fact that the modified CMV promoter used in the experiment was probably too "hot." As the DsRed product is not secreted from the cells, the product built up intracellularly to levels that were toxic, frequently killing the cells. Even this result, of course, means that the transformation was successful. The transgene could not have killed the cells otherwise.

In order to resolve to the problem with toxicity of the DsRed gene product, experiments were conducted using a different reporter gene operably linked to the ovalbumin promoter, so that the transgene was expressed in the egg white. These experiments are provided in Examples 12-15 below.

EXAMPLE 7

Transfection of Male White Leghorn Chickens Using the Vector pTnMod(Oval/Red) -
15 Quail (SEQ ID NO:4) via Testicular Injections

In further experiments conducted on leghorn chickens, it was demonstrated that chickens injected intratesticularly at 8, 10, 12, or 14 weeks of age, had, on average, approximately 40% positive sperm between 6 and 8 months after injection. In other experiments, successful transfection was achieved with chickens injected at 13 weeks of age.

Forty-nine white leghorn roosters approximately 8, 10, 12, or 14 weeks of age were obtained and housed. Birds were identified, wing banded, and assigned to a treatment group. If appropriate (based on testes size and vascularization), one testis was caponized and the entire DNA injection volume was delivered to the remaining testis. Thirty-two males received DNA injections of 5µg DNA/testis at a 1:3 ratio of DNA to SUPERFECT®. The remaining birds were used as controls. After injection, all birds were mated with at least 5 females and observed until sexual maturity and egg-laying began. All eggs collected prior to peak egg production (approximately 24 weeks of age for the hens) were incubated and candled to determine embryo presence. Any embryos identified were incubated to hatch to extract DNA, PCR was conducted, and transgene presence was determined.

Roosters positive for the pTnMod(Oval/Red) - Quail construct were kept to produce F1 offspring (eggs collected at peak production). Offspring from this hatch

5

10

20

25

were bled, DNA extracted from the blood, and PCR conducted using primers specific for the DsRed gene. It was determined that 77% of the offspring were transgenic.

EXAMPLE 8

5 Transfection of Mature Male Japanese Quail using the vector pTnMod(Oval/Red) - Quail (SEQ ID NO:4) via Testicular Injections

Twelve sexually mature males (at approximately 13 weeks of age) underwent surgery for testicular injection as described above for chickens. At 21-28 days of age, the birds were identified, leg banded, debeaked, and separated based on sex. Injections comprised 5 µg/testes of the vector in concentrations 1:3 or 1:10 for SUPERFECT® or a 1:1 ratio with Mirrus. The study consisted of 3 treatment groups with 5 males in the 1:3 DNA:SUPERFECT® group, 3 males in the 1:10 DNA:SUPERFECT® group, and 4 males in the 1:1 Mirrus group. All surgeries were conducted in one day.

Any unincorporated DNA was allowed to clear from the testes by holding the birds for 19 days before mating with females. At 15 weeks of age, 2 age-matched females were housed with each treated male. The presence of the transfected DNA was determined in the fertilized eggs during the second week of egg lay. The subsequent eggs collected from parents producing positively identified transgenic eggs were collected and stored until taken to hatch.

PCR performed on the sperm of quail injected at three months of age indicated successful incorporation of the DsRed transgene into the quail sperm.

EXAMPLE 9

25 Transfection of Immature Male Japanese Quail using the vector pTnMod(Oval/Red) – Quail (SEQ ID NO:4) via Testicular Injections

Approximately 450 quail eggs were set and hatched. At 21-28 days of age, the birds were identified, wingbanded, debeaked, and separated based on sex. At 4 weeks of age, 65 male birds underwent surgery and testicular injections as described above. Injections comprised a control and 2 µg/testes of the vector in varying concentrations (0, 1/3, 1/5, and 1/10) of three different transfection reagents: 1) SUPERFECT®, 2) Mirus/Panvera and 3) Dosper. The study comprised 13 treatment groups with 5 males per group. One transfection reagent was administered per day.

10

15

20

At 7 weeks of age, 2 age-matched females were housed with each treated male. The presence of the transfected DNA was determined in the fertilized eggs during the second week of egg lay. The subsequent eggs collected from parents producing positively identified transgenic eggs were collected and stored until taken to hatch. PCR performed on the sperm of quail injected at four and five weeks of age indicated successful incorporation of the DsRed transgene into the quail sperm.

EXAMPLE 10

Preparation of Transposon-Based Vector pTnMod(Oval/ENT TAG/p146/PA) -

10 Chicken

5

A vector is designed for inserting a p146 gene under the control of a chicken ovalbumin promoter, and a ovalbumin gene including an ovalbumin signal sequence, into the genome of a bird given below as SEQ ID NO:29.

Base pairs 1 - 130 are a remainder of F1(-) ori of pBluescriptII sk(-) 15 (Stratagene) corresponding to base pairs 1-130 of pBluescriptII sk(-).

Base pairs 133 - 1777 are a CMV promoter/enhancer taken from vector pGWiz (Gene Therapy Systems) corresponding to base pairs 229-1873 of pGWiz.

Base pairs 1780 - 2987 are a transposase, modified from Tn10 (GenBank accession number J01829).

20 Base pairs 2988-2993 are an engineered stop codon.

Base pairs 2995 - 3410 are a synthetic polyA from pGWiz (Gene Therapy Systems) corresponding to base pairs 1922-2337 of pGWiz.

Base pairs 3415 - 3718 are non coding DNA that is residual from vector pNK2859.

Base pairs 3719 – 3761 are λ DNA that is residual from pNK2859.

Base pairs 3762 - 3831 are the 70 base pairs of the left insertion sequence (IS10) recognized by the transposon Tn10.

Base pairs 3838 - 4044 are a multiple cloning site from pBlueScriptII sk(-) corresponding to base pairs 924-718 of pBluescriptII sk(-).

Base pairs 4050 - 4951 are a chicken ovalbumin promoter (including SDRE) that corresponds to base pairs 431-1332 of the chicken ovalbumin promoter in GenBank Accession Number J00895 M24999.

Base pairs 4958 - 6115 are a chicken ovalbumin signal sequence and Ovalbumin gene that correspond to base pairs 66-1223 of GenBank Accession Number V00383.1 (The STOP codon being omitted).

Base pairs 6122 - 6271 are a TAG sequence containing a gp41 hairpin loop from HIV I, an enterokinase cleavage site and a spacer (synthetic).

Base pairs 6272 - 6316 are a p146 sequence (synthetic) with 2 added stop codons.

Base pairs 6324 - 6676 are a synthetic polyadenylation sequence from pGWiz (Gene Therapy Systems) corresponding to base pairs 1920 - 2272of pGWiz.

Base pairs 6682 - 7114 are a multiple cloning site from pBlueScriptII sk(-) corresponding to base pairs 667-235 of pBluescriptII sk(-).

Base pairs 7120- 7189 are the 70 base pairs of the right insertion sequence (IS10) recognized by the transposon Tn10.

Base pairs 7190 - 7231 are λ DNA that is residual from pNK2859.

Base pairs 7232 - 8096 are non coding DNA that is residual from pNK2859.

Base pairs 8097 - 10297 are pBlueScript sk(-) base vector (Stratagene, Inc.) corresponding to base pairs 761-2961of pBluescriptll sk(-).

It should be noted that all non-coding DNA sequences described above can be replaced with any other non-coding DNA sequence(s). Missing nucleotide sequences in the above construct represent restriction site remnants.

EXAMPLE 11

Preparation of Transposon-Based Vector pTnMod(Oval/ENT TAG/p146/PA) - Quail

A vector is designed for inserting a p146 gene under the control of a quail ovalbumin promoter, and a ovalbumin gene including an ovalbumin signal sequence, into the genome of a bird given below as SEQ ID NO:30.

Base pairs 1 - 130 are a remainder of F1(-) ori of pBluescriptII sk(-) (Stratagene) corresponding to base pairs 1-130 of pBluescriptII sk(-).

Base pairs 133 - 1777 are a CMV promoter/enhancer taken from vector pGWiz (Gene Therapy Systems) corresponding to base pairs 229-1873 of pGWiz.

Base pairs 1780 - 2987 are a transposase, modified from Tn10 (GenBank accession number J01829).

Base pairs 2988-2993 are an engineered stop codon.

5

15

20

25

Base pairs 2995 - 3410 are a synthetic polyA from pGWiz (Gene Therapy Systems) corresponding to base pairs 1922-2337 of pGWiz.

Base pairs 3415 - 3718 are non coding DNA that is residual from vector pNK2859.

Base pairs 3719 - 3761 are λ DNA that is residual from pNK2859.

Base pairs 3762 - 3831 are the 70 base pairs of the left insertion sequence (IS10) recognized by the transposon Tn10.

Base pairs 3838 - 4044 are a multiple cloning site from pBlueScriptII sk(-) corresponding to base pairs 924-718 of pBluescriptII sk(-).

Base pairs 4050 - 4938 are the Japanese quail ovalbumin promoter (including SDRE, steroid-dependent response element). The Japanese quail ovalbumin promoter was isolated by its high degree of homology to the chicken ovalbumin promoter (GenBank accession number J00895 M24999, base pairs 431-1332).

Bp 4945 - 6092 are a quail ovalbumin signal sequence and ovalbumin gene that corresponds to base pairs 54 - 1201 of GenBank accession number X53964.1. (The STOP codon being omitted).

Base pairs 6097 - 6246 are a TAG sequence containing a gp41 hairpin loop from HIV I, an enterokinase cleavage site and a spacer (synthetic).

Base pairs 6247 - 6291 are a p146 sequence (synthetic) with 2 added stop codons.

Base pairs 6299 - 6651 are a synthetic polyadenylation sequence from pGWiz (Gene Therapy Systems) corresponding to base pairs 1920 - 2272of pGWiz.

Base pairs 6657 - 7089 are a multiple cloning site from pBlueScriptII sk(-) corresponding to base pairs 667-235 of pBluescriptII sk(-).

Base pairs 7095- 7164 are the 70 base pairs of the right insertion sequence (IS10) recognized by the transposon Tn10.

Base pairs 7165 - 7206 are \(\text{DNA} \) that is residual from pNK2859.

Base pairs 7207 - 8071 are non coding DNA that is residual from pNK2859.

Base pairs 8072 - 10272 are pBlueScript sk(-) base vector (Stratagene, Inc.) corresponding to base pairs 761-2961of pBluescriptll sk(-).

5

10

20

It should be noted that all non-coding DNA sequences described above can be replaced with any other non-coding DNA sequence(s). Missing nucleotide sequences in the above construct represent restriction site remnants.

EXAMPLE 12

5

10

15

30

Preparation of Transposon-Based Vector pTnMod(Oval/ENT TAG/ProIns/PA) - Chicken

A vector is designed for inserting a proinsulin gene under the control of a chicken ovalbumin promoter, and a ovalbumin gene including an ovalbumin signal sequence, into the genome of a bird given below as SEQ ID NO:31.

Base pairs 1 - 130 are a remainder of FI(-) ori of pBluescriptII sk(-) (Stratagene) corresponding to base pairs 1-130 of pBluescriptII sk(-).

Base pairs 133 - 1777 are a CMV promoter/enhancer taken from vector pGWiz (Gene Therapy Systems) corresponding to base pairs 229-1873 of pGWiz.

Base pairs 1780 - 2987 are a transposase, modified from Tn10 (GenBank accession number J01829).

Base pairs 2988-2993 are an engineered stop codon.

Base pairs 2995 - 3410 are a synthetic polyA from pGWiz (Gene Therapy 20 Systems) corresponding to base pairs 1922- 2337 of pGWiz.

Base pairs 3415 - 3718 are non coding DNA that is residual from vector pNK2859.

Base pairs 3719 - 3761 are λ DNA that is residual from pNK2859.

Base pairs 3762 - 3831 are the 70 base pairs of the left insertion sequence 25 (IS10) recognized by the transposon Tn10.

Base pairs 3838 - 4044 are a multiple cloning site from pBlueScriptII sk(-) corresponding to base pairs 924-718 of pBluescriptII sk(-).

Base pairs 4050 - 4951 are a chicken ovalbumin promoter (including SDRE) that corresponds to base pairs 431-1332 of the chicken ovalbumin promoter in GenBank Accession Number J00895 M24999.

Base pairs 4958 - 6115 are a chicken ovalbumin signal sequence and ovalbumin gene that correspond to base pairs 66-1223 of GenBank Accession Number V00383.1. (The STOP codon being omitted).

Base pairs 6122 - 6271 are a TAG sequence containing a gp41 hairpin loop from HIV I, an enterokinase cleavage site and a spacer (synthetic).

Base pairs 6272 - 6531 are a proinsulin gene.

Base pairs 6539 – 6891 are a synthetic polyadenylation sequence from pGWiz (Gene Therapy Systems) corresponding to base pairs 1920 - 2272of pGWiz.

Base pairs 6897 - 7329 are a multiple cloning site from pBlueScriptII sk(-) corresponding to base pairs 667-235 of pBluescriptII sk(-).

Base pairs 7335- 7404 are the 70 base pairs of the right insertion sequence (IS10) recognized by the transposon Tn10.

Base pairs 7405 - 7446 are λ DNA that is residual from pNK2859.

Base pairs 7447 - 8311 are non coding DNA that is residual from pNK2859.

Base pairs 8312 - 10512 are pBlueScript sk(-) base vector (Stratagene, Inc.) corresponding to base pairs 761-2961 of pBluescriptll sk(-).

15 It should be noted that all non-coding DNA sequences described above can be replaced with any other non-coding DNA sequence(s). Missing nucleotide sequences in the above construct represent restriction site remnants.

EXAMPLE 13

20 Preparation of Transposon-Based Vector pTnMod(Oval/ENT TAG/ProIns/PA) - Quail

A vector is designed for inserting a proinsulin gene under the control of a chicken ovalbumin promoter, and a ovalbumin gene including an ovalbumin signal sequence, into the genome of a bird given below as SEQ ID NO:32.

25

30

5

10

Base pairs 1 -130 are a remainder of F1(-) ori of pBluescriptII sk(-) (Stratagene) corresponding to base pairs 1-130 of pBluescriptII sk(-).

Base pairs 133 - 1777 are a CMV promoter/enhancer taken from vector pGWiz (Gene Therapy Systems) corresponding to base pairs 229-1873 of pGWiz.

Base pairs 1780 - 2987 are a transposase, modified from Tn10 (GenBank accession number J01829).

Base pairs 2988-2993 are an engineered stop codon.

Base pairs 2995 – 3410 are a synthetic polyA from pGWiz (Gene Therapy Systems) corresponding to base pairs 1922- 2337 of pGWiz.

Base pairs 3415 - 3718 are non coding DNA that is residual from vector pNK2859.

Base pairs 3719 - 3761 are λ DNA that is residual from pNK2859.

Base pairs 3762 - 3831 are the 70 base pairs of the left insertion sequence (IS10) recognized by the transposon Tn10.

Base pairs 3838 - 4044 are a multiple cloning site from pBlueScriptII sk(-) corresponding to base pairs 924-718 of pBluescriptII sk(-).

Base pairs 4050 - 4938 are the Japanese quail ovalbumin promoter (including SDRE, steroid-dependent response element). The Japanese quail ovalbumin promoter was isolated by its high degree of homology to the chicken ovalbumin promoter (GenBank accession number J00895 M24999, base pairs 431-1332). Some deletions were noted in the quail sequence, as compared to the chicken sequence.

Base pairs 4945 - 6092 are a quail ovalbumin signal sequence and ovalbumin gene that corresponds to base pairs 54 - 1201 of GenBank accession number X53964.1. (The STOP codon being omitted).

Base pairs 6093 - 6246 are a TAG sequence containing a gp41 hairpin loop from HIV I an enterokinase cleavage site and a spacer (synthetic).

Base pairs 6247 – 6507 are a proinsulin gene.

Base pairs 6514-6866 are a synthetic polyadenylation sequence from pGWiz (Gene Therapy Systems) corresponding to base pairs 1920-22720f pGWiz.

Base pairs 6867 - 7303 are a multiple cloning site from pBlueScriptII sk(-) corresponding to base pairs 667-235 of pBluescriptII sk(-).

Base pairs 7304- 7379 are the 70 base pairs of the right insertion sequence (IS10) recognized by the transposon Tn10.

Base pairs 7380 - 7421 are λ DNA that is residual from pNK2859.

Base pairs 7422 - 8286 are non coding DNA that is residual from pNK2859.

Base pairs 8287 - 10487 are pBlueScript sk(-) base vector (Stratagene, Inc.) corresponding to base pairs 761-2961of pBluescriptll sk(-).

5

10

15

20

25

It should be noted that all non-coding DNA sequences described above can be replaced with any other non-coding DNA sequence(s). Missing nucleotide sequences in the above construct represent restriction site remnants.

EXAMPLE 14

5

10

15

20

25

Transfection of Immature Leghorn Roosters using a Transpson-based Vector containing a Proinsulin Gene via Testicular Injections

Vectors containing the elements Oval promoter/Oval gene/GP41 Enterokinase TAG/Proinsulin/Poly A (SEQ ID NO:31) and CMV promoter/Oval gene/GP41 Enterokinase TAG/Proinsulin/Poly A (SEQ ID NO:42) were each injected into the testes of 11 week old white leghorn roosters. These birds were held under normal conditions until sexual maturity was reached.

At the time of sexual maturity, each bird was handled and manipulated to obtain sperm. Sperm samples were collected in Hank's Buffered Salt Solution (HBSS) and stored at either -20° C or 4° C until needed. DNA was extracted from sperm using a MoBio Ultra Clean DNA Bloodspin Kit (MoBio laboratories, Solana Beach CA). Fifty microliters of sperm was used in the DNA extraction protocol and the purified genomic DNA cluted in 100 μ l of water. In each PCR reaction, approximately $0.5-0.75~\mu g$ of genomic DNA was used with primers anchored in the entag-1 (5') and the synthetic polyA-2 (3'), which amplify a 685 bp fragment. Five of nine birds gave positive reactions for the presence of the appropriate vector construct. These birds were then mated with normal females.

Birds that did not yield positive results with PCR on the sperm were sacrificed, their testes removed, and DNA extracted using an approximately 25 mg piece of tissue in a Qiagen DNEasy Tissue Kit; purified DNA was eluted in 200 µl water and PCR conducted as described above. Two of these birds gave a very strong, positive PCR reaction.

EXAMPLE 15

30 Transfection of Japanese Quail using a Transposon-based Vector containing a Proinsulin Gene via Oviduct Injections

Two experiments were conducted in Japanese quail using transpson-based vectors containing either Oval promoter/Oval gene/GP41 Enterokinase

TAG/Proinsulin/Poly A (SEQ ID NO:31) or CMV promoter/Oval gene/GP41 Enterokinase TAG/Proinsulin/Poly A (SEQ ID NO:42).

In the first experiment, the Oval promoter/Oval gene/GP41 Enterokinase TAG/Proinsulin/Poly A containing construct was injected into the oviduct of sexually mature quail; three hens received 5 µg at a 1:3 Superfect ratio and three received 10 µg at a 1:3 Superfect ratio. As of the writing of the present application, at least one bird that received 10 µg of DNA was producing human proinsulin in egg white (other birds remain to be tested). This experiment indicates that 1) the DNA has been stable for at least 3 months; 2) protein levels are comparable to those observed with a constitutive promoter such as the CMV promoter; and 3) sexually mature birds can be injected and results obtained without the need for cell culture.

In the second experiment, the transposon-based vector containing CMV promoter/Oval gene/GP41 Enterokinase TAG/Proinsulin/Poly A was injected into the oviduct of sexually immature Japanese quail. A total of 9 birds were injected. Of the 8 survivors, 3 produced human proinsulin in the white of their eggs for over 6 weeks. An ELISA assay described in detail below was developed to detect GP41 in the fusion peptide (Oval gene/GP41 Enterokinase TAG/Proinsulin) since the GP41 peptide sequence is unique and not found as part of normal egg white protein. In all ELISA assays, the same birds produced positive results and all controls worked as expected.

ELISA Procedure: Individual egg white samples were diluted in sodium carbonate buffer, pH 9.6, and added to individual wells of 96 well microtiter ELISA plates at a total volume of 0.1 ml. These plates were then allowed to coat overnight at 4°C. Prior to ELISA development, the plates were allowed warm to room temperature. Upon decanting the coating solutions and blotting away any excess, non-specific binding of antibodies was blocked by adding a solution of phosphate buffered saline (PBS), 1% (w/v) BSA, and 0.05% (v/v) Tween 20 and allowing it to incubate with shaking for a minimum of 45 minutes. This blocking solution was subsequently decanted and replaced with a solution of the primary antibody (Goat Anti-GP41 TAG) diluted in fresh PBS/BSA/Tween 20. After a two hour period of incubation with the primary antibody, each plate was washed with a solution of PBS and 0.05% Tween 20 in an automated plate washer to remove unbound antibody. Next, the secondary antibody, Rabbit anti-Goat Alkaline Phosphatase-conjugated, was diluted in PBS/BSA/Tween 20 and allowed to incubate 1 hour. The plates were then

5

10

15

20

25

subjected to a second wash with PBS/Tween 20. Antigen was detected using a solution of p-Nitrophenyl Phosphate in Diethanolamine Substrate Buffer for Alkaline Phosphatase and measuring the absorbance at 30 minutes and 1 hour.

EXAMPLE 16

5

10

15

20

25

30

Optimization of Intra-oviduct and Intra-ovarian Arterial Injections

Overall transfection rates of oviduct cells in a flock of chicken or quail hens are enhanced by synchronizing the development of the oviduct and ovary within the flock. When the development of the oviducts and ovaries are uniform across a group of hens and when the stage of oviduct and ovarian development can be determined or predicted, timing of injections is optimized to transfect the greatest number of cells. Accordingly, oviduct development is synchronized as described below to ensure that a large and uniform proportion of oviduct secretory cells are transfected with the gene of interest.

Hens are treated with estradiol to stimulate oviduct maturation as described in Oka and Schimke (T. Oka and RT Schimke, J. Cell Biol., 41, 816 (1969)), Palmiter, Christensen and Schimke (J Biol. Chem. 245(4):833-845, 1970). Specifically, repeated daily injections of 1 mg estradiol benzoate are performed sometime before the onset of sexual maturation, a period ranging from 1 - 14 weeks of age. After a stimulation period sufficient to maximize development of the oviduct, hormone treatment is withdrawn thereby causing regression in oviduet secretory cell size but not cell number. At an optimum time after hormone withdrawal, the oviducts of treated hens are injected with the transposon-based vector. Hens are subjected to additional estrogen stimulation after an optimized time during which the transposonbased vector is taken up into oviduct secretory cells. Re-stimulation by estrogen activates the transposon mechanism of the transposon-based vector, causing the integration of the gene of interest into the host genome. Estrogen stimulation is then withdrawn and hens continue normal sexual development. If a developmentally regulated promoter such as the ovalbumin promoter is used, expression of the transposon-based vector initiates in the oviduct at the time of sexual maturation. Intra-ovarian artery injection during this window allows for high and uniform transfection efficiencies of ovarian follicles to produce germ-line transfections and possibly oviduct expression.

Other means are also used to synchronize the development, or regression, of the oviduct and ovary to allow high and uniform transfection efficiencies. Alterations of lighting and/or feed regimens, for example, cause hens to 'molt' during which time the oviduct and ovary regress. Molting is used to synchronize hens for transfection, and may be used in conjunction with other hormonal methods to control regression and/or development of the oviduct and ovary.

EXAMPLE 17

Isolation of Human Proinsulin Using Anti-TAG Column Chromotography

A HiTrap NHS-activated 1 mL column (Amersham) was charged with a 30 amino acid peptide that contained the gp-41 epitope containing gp-41's native disulfide bond that stabilizes the formation of the gp-41 hairpin loop. The 30 amino acid gp41 peptide is provided as SEQ ID NO:23. Approximately 10 mg of the peptide was dissolved in coupling buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 8.3 and the ligand was circulated on the column for 2 hours at room temperature at 0.5 mL/minute. Excess active groups were then deactivated using 6 column volumes of 0.5 M ethanolamine, 0.5 M NaCl, pH 8.3 and the column was washed alternately with 6 column volumes of acetate buffer (0.1 M acetate, 0.5 M NaCl, pH 4.0) and ethanolamine (above). The column was neutralized using 1 X PBS. The column was then washed with buffers to be used in affinity purification: 75 mM Tris, pH 8.0 and elution buffer, 100 mM glycine-HCl, 0.5 M NaCl, pH 2.7. Finally, the column was equilibrated in 75 mM Tris buffer, pH 8.0.

Antibodies to gp-41 were raised in goats by inoculation with the gp-41 peptide described above. More specifically, goats were inoculated, given a booster injection of the gp-41 peptide and then bled. Serum was harvested by centrifugation. Approximately 30 mL of goat serum was filtered to 0.45 uM and passed over a TAG column at a rate of 0.5 mL/min. The column was washed with 75 mM Tris, pH 8.0 until absorbance at 280 nm reached a baseline. Three column volumes (3 mL) of elution buffer (100 mM glycine, 0.5 M NaCl, pH 2.7) was applied, followed by 75 mM Tris buffer, pH 8.0, all at a rate of 0.5 mL/min. One milliliter fractions were collected. Fractions were collected into 200 uL 1 M Tris, pH 9.0 to neutralize acidic factions as rapidly as possible. A large peak eluted from the column, coincident with the application the elution buffer. Fractions were pooled. Analysis by SDS-PAGE

5

10

15

20

25

showed a high molecular weight species that separated into two fragments under reducing condition, in keeping with the heavy and light chain structure of IgG.

Pooled antibody fractions were used to charge two 1 mL HiTrap NHSactivated columns, attached in series. Coupling was carried out in the same manner as that used for charging the TAG column.

Isolation of Ovalbumin-TAG-Proinsulin from Egg White

Egg white from quail and chickens treated by intra-oviduct injection of the CMV-ovalbumin-TAG-proinsulin construct were pooled. Viscosity was lowered by subjecting the aliantoid fluid to successively finer pore sizes using negative pressure filtration, finishing with a 0.22 µM pore size. Through the process, egg white was diluted approximately 1:16. The clarified sample was loaded on the Anti-TAG column and eluted in the same manner as described for the purification of the anti-TAG antibodies. A peak of absorbance at 280 nm, coincident with the application of the elution buffer, indicated that protein had been specifically eluted from the Anti-TAG column. Fractions containing the eluted peak were pooled for analysis.

The pooled fractions from the Anti-TAG affinity column were characterized by SDS-PAGE and western blot analysis. SDS-PAGE of the pooled fractions revealed a 60 kDal molecular weight band not present in control egg white fluid, consistent with the predicted molecular weight of the transgenic protein. Although some contaminating bands were observed, the 60 kDal species was greatly enriched compared to the other proteins. An aliquot of the pooled fractions was cleaved overnight at room temperature with the protease, enterokinase. SDS-PAGE analysis of the cleavage product, revealed a band not present in the uncut material that comigrated with a commercial human proinsulin positive control. Western blot analysis showed specific binding to the 60 kDal species under non-reducing condition (which preserve the hairpin epitope of gp-41 by retaining the disulfide bond). Western analysis of the low molecular weight species that appeared upon cleavage with an anti-human proinsulin antibody, conclusively identified the cleaved fragment as human proinsulin.

30

25

10

15

5

10

15

20

25

30

EXAMPLE 18

Construction of a Transposon-based Transgene for the Expression of a Monoclonal Antibody

Production of a monoclonal antibody using transposon-based transgenic methodology is accomplished in a variety of ways.

- 1) two vectors are constructed: one that encodes the light chain and a second vector that encodes the heavy chain of the monoclonal antibody. These vectors are then incorporated into the genome of the target animal by at least one of two methods: a) direct transfection of a single animal with both vectors (simultaneously or as separate events); or, b) a male and a female of the species carry in their germline one of the vectors and then they are mated to produce progeny that inherit a copy of each.
- 2) the light and heavy chains are included on a single DNA construct, either separated by insulators and expression is governed by the same (or different) promoters, or by using a single promoter governing expression of both transgenes with the inclusion of elements that permit separate transcription of both transgenes, such as an internal ribosome entry site.

The following example describes the production of a transposon-based DNA construct that contains both the coding region for a monoclonal light chain and a heavy chain on a single construct. Beginning with the vector pTnMod, the coding sequences for the heavy and light chains are added, each preceded by an appropriate promoter and signal sequence. Using methods known to one skilled in the art, approximately 1 Kb of the proximal elements of the ovalburnin promoter are linked to the signal sequence of ovalbumin or some other protein secreted from the target tissue. Two copies of the promoter and signal sequence are added to the multiple cloning site of pTnMod, leaving space and key restriction sites between them to allow the subsequent addition of the coding sequences of the light and heavy chains of the monoclonal antibody. Methods known to one skilled in the art allow the coding sequences of the light and heavy chains to be inserted in-frame for appropriate expression. For example, the coding sequence of light and heavy chains of a murine monoclonal antibody that show specificity for human seminoprotein have recently been disclosed (GenBank Accession numbers AY129006 and AY129304 for the light and heavy chains, respectively). The light chain cDNA sequence is provided in SEQ

ID NO:34, whereas the cDNA of the heavy chain is reported as provided in SEQ ID NO:35.

Thus one skilled in the art can produce both the heavy and light chains of a monoclonal antibody in a single cell within a target tissue and species. If the modified cell contained normal posttranslational modification capabilities, the two chains would form their native configuration and disulfide attachments and be substrates for glycosylation. Upon secretion, then, the monoclonal antibody is accumulated, for example, in the egg white of a chicken egg, if the transgenes are expressed in the magnum of the oviduct.

It should also be noted that, although this example details production of a full-length murine monoclonal antibody, the method is quite capable of producing hybrid antibodies (e.g. a combination of human and murine sequences; 'humanized' monoclonal antibodies), as well as useful antibody fragments, known to one skilled in the art, such as Fab, Fc, F(ab) and Fv fragments. This method can be used to produce molecules containing the specific areas thought to be the antigen recognition sequences of antibodies (complementarity determining regions), linked, modified or incorporated into other proteins as desired.

EXAMPLE 19

20 Treatment of rats with a transposon-based vector for tissue-specific insulin gene incorporation

Rats are made diabetic by administering the drug streptozotocin (Zanosar, Upjohn, Kalamazoo, MI) at approximately 200 mg/kg. The rats are bred and maintained according to standard procedures. A transposon-based vector containing a proinsulin gene, an appropriate carrier, and, optionally, a transfection agent, are injected into rats' singhepatic (if using G6P) artery with the purpose of stable transformation. Incorporation of the insulin gene into the rat genome and levels of insulin expression are ascertained by a variety of methods known in the art. Blood and tissue samples from live or sacrificed animals are tested. A combination of PCR, Southern and Northern blots, in-situ hybridization and related nucleic acid analysis methods are used to determine incorporation of the vector-derived proinsulin DNA and levels of transcription of the corresponding mRNA in various organs and tissues of the rats. A combination of SDS-PAGE gels, Western Blot analysis, radioimmunoassay, and ELISA and other methods known to one of ordinary skill in

84

10

15

25

the art are used to determine the presence of insulin and the amount produced. Additional transfections of the vector are used to increase protein expression if the initial amounts of the expressed insulin are not satisfactory, or if the level of expression tapers off. The physiological condition of the rats is closely examined post-transfection to register positive or any negative effects of the gene therapy. Animals are examined over extended periods of time post-transfection in order to monitor the stability of gene incorporation and protein expression.

EXAMPLE 20

10

15

5

Exemplary Transposon-Based Vectors

The following example provides a description of various transposon-based vectors of the present invention and several constructs for insertion into the transposon-based vectors of the present invention. These examples are not meant to be limiting in any way. The constructs for insertion into a transposon-based vector are provided in a cloning vector labeled pTnMCS.

pTnMCS (base vector)

Bp 1 - 130 Remainder of F1 (-) ori of pBluescriptII sk(-) (Stratagene) bp1-130

20 Bp 133 - 1777 CMV promoter/enhancer taken from vector pGWIZ (Gene Therapy Systems) bp2 29-1873

Bp 1783 - 2991 Transposase, from Tn10 (GenBank accession #J01829) bp 108-1316

Bp 2992 - 3344 Non coding DNA from vector pNK2859

Bp 3345 - 3387 Lambda DNA from pNK2859

25 Bp 3388 - 3457 70 bp of IS10 left from Tn10

Bp 3464 - 3670 Multiple cloning site from pBluescriptII sk(-), thru the XmaI site bp924-718

Bp 3671 - 3715 Multiple cloning site from pBluescriptII sk(-), from the XmaI site thru the XhoI site. These base pairs are usually lost when cloning into pTnMCS.bp

30 717-673

Bp 3716 - 4153 Multiple cloning site from pBluescriptII sk(-), from the XhoI site bp672-235

Bp 4159 - 4228 70 bp of IS10 left from Tn10

Bp 4229 - 4270 Lambda DNA from pNK2859

Bp 4271 - 5114 Non-coding DNA from pNK2859

Bp 5115 - 7315 pBluescript sk (-) base vector (Stratagene, Inc.) bp 761-2961

pTnMCS (CMV-prepro-ent-hGH-CPA)

- 5 Bp 1 3670 from vector PTnMCS, bp 1 3670
 - Bp 3676 5320 CMV promoter/enhancer taken from vector pGWIZ (Gene Therapy Systems), bp 230-1864
 - Bp 5326 5496 Capsite/Prepro taken from GenBank accession # X07404, bp 563 733
- 10 Bp 5504 5652 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site
 - Bp 5653 6306 Human growth hormone taken from GenBank accession # V00519, bp 1-654
 - Bp 6313 6720 Conalbumin polyA taken from GenBank accession # Y00407, bp
- 15 10651-11058
 - Bp 6722-10321 from cloning vector pTnMCS, bp 3716-7315

pTnMCS (CMV-CHOVg-ent-ProInsulin-synPA) (SEQ ID NO:41)

- Bp 1 3670 from vector PTnMCS, bp 1 3670
- 20 Bp 3676 5320 CMV promoter/enhancer taken from vector pGWIZ (Gene Therapy Systems), bp 230-1864
 - Bp 5327 -6480 Chicken ovalbumin gene taken from GenBank accession # V00383, bp 66-1219
 - Bp 6487 6636 Synthetic spacer sequence and hairpin loop of HIV gp41 with an
- 25 added enterokinase cleavage site
 - Bp 6637 6897 Human Proinsulin taken from GenBank accession # NM000207, bp 117-377
 - Bp 6898 6942 Spacer DNA, derived as an artifact from the cloning vectors pTOPO Blunt II (Invitrogen) and pGWIZ (Gene Therapy Systems)
- 30 Bp 6943 7295 Synthetic polyA from the cloning vector pGWIZ (Gene Therapy Systems), bp 1920-2271
 - Bp 7296 10895 from cloning vector pTnMCS, bp 3716-7315

pTnMCS (CMV-prepro-ent-ProInsulin-symPA)

- Bp 1 3670 from vector PTnMCS, bp 1 3670
- Bp 3676 5320 CMV promoter/enhancer taken from vector pGWIZ (Gene Therapy Systems), bp 230-1864
- 5 Bp 5326 5496 Capsite/Prepro taken fron GenBank accession # X07404, bp 563 733
 - Bp 5504 5652 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site
 - Bp 5653 5913 Human Proinsulin taken from GenBank accession # NM000207, bp
- 10 117-377
 - Bp 5914 5958 Spacer DNA, derived as an artifact from the cloning vectors pTOPO Blunt II (Invitrogen) and pGWIZ (Gene Therapy Systems)
 - Bp 5959 6310 Synthetic polyA from the cloning vector pGWIZ (Gene Therapy Systems), bp 1920-2271
- 15 Bp 6313 9912 from cloning vector pTnMCS, bp 3716-7315

pTnMCS(Chicken OVep+OVg'+ENT+proins+syn polyA)

- Bp 1 3670 from vector pTnMCS, bp 1 3670
- Bp 3676 4350 Chicken Ovalbumin enhancer taken from GenBank accession
- 20 #\$82527.1 bp 1-675
 - Bp 4357 5692 Chicken Ovalbumin promoter taken from GenBank accession # J00895M24999 bp 1-1336
 - Bp 5699 6917 Chicken Ovalbumin gene from GenBank Accession # V00383.1 bp 2-1220. (This sequence includes the 5'UTR, containing putative cap site, bp 5699-
- 25 5762.)
 - Bp 6924 7073 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site
 - Bp 7074 7334 Human proinsulin GenBank Accession # NM000207 bp 117-377
 - Bp 7335 7379 Spacer DNA, derived as an artifact from the cloning vectors pTOPO
- 30 Blunt II (Invitrogen) and gWIZ (Gene Therapy Systems)
 - Bp 7380 7731 Synthetic polyA from the cloning vector gWIZ (Gene Therapy Systems) bp 1920 2271
 - Bp 7733 11332 from vector pTnMCS, bp 3716 7315

pTnMCS(Chicken OVep+prepro+ENT+proins+syn polyA)

- Bp 1 3670 from cloning vector pTnMCS, bp 1 3670
- Bp 3676 4350 Chicken Ovalbumin enhancer taken from GenBank accession #
- 5 S82527.1 bp 1-675
 - Bp 4357 5692 Chicken Ovalbumin promoter taken from GenBank accession # J00895-M24999 bp 1-1336
 - Bp 5699 5869 Cecropin cap site and Prepro, Genbank accession # X07404 bp 563-733
- 10 Bp 5876 6025 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site
 - Bp 6026 6286 Human proinsulin GenBank Accession # NM000207 bp 117-377
 - Bp 6287 6331 Spacer DNA, derived as an artifact from the cloning vectors pTOPO Blunt II (Invitrogen) and gWIZ (Gene Therapy Systems)
- Bp 6332 6683 Synthetic polyA from the cloning vector gWIZ (Gene Therapy Systems) bp 1920 - 2271
 - Bp 6685 10284 from cloning vector pTnMCS, bp 3716 7315

pTnMCS(Quail OVep+OVg'+ENT+proins+syn polyA)

- 20 Bp 1 3670 from cloning vector pTnMCS, bp 1 3670
 - Bp 3676 4333 Quail Ovalbumin enhancer: 658 bp sequence, amplified in-house from quail genomic DNA, roughly equivalent to the far-upstream chicken ovalbumin enhancer, GenBank accession # S82527.1, bp 1-675. (There are multiple base pair substitutions and deletions in the quail sequence, relative tochicken, so the number of
- 25 bases does not correspond exactly.)
 - Bp 4340 5705 Quail Ovalbumin promoter: 1366 bp sequence, amplified in-house from quail genomic DNA, roughly corresponding to chicken ovalbumin promoter, GenBank accession # J00895-M24999 bp 1-1336. (There are multiple base pair substitutions and deletions between the quail and chicken sequences, so the number of
- 30 bases does not correspond exactly.)
 - Bp 5712 6910 Quail Ovalbumin gene, EMBL accession # X53964, bp 1-1199. (This sequence includes the 5'UTR, containing putative cap site bp 5712-5764.)

Bp 6917 - 7066 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site

Bp 7067 - 7327 Human proinsulin GenBank Accession # NM000207 bp 117-377

Bp 7328 - 7372 Spacer DNA, derived as an artifact from the cloning vectors pTOPO

Blunt II (Invitrogen) and gWIZ (Gene Therapy Systems)

Bp 7373 - 7724 Synthetic polyA from the cloning vector gWIZ (Gene Therapy Systems) bp 1920 - 2271

Bp 7726 - 11325 from cloning vector pTnMCS, bp 3716 - 7315

10 pTnMCS (CHOVep-prepro-ent-hGH-CPA)

Bp 1-3670 from vector PTnMCS, bp 1-3670

Bp 3676 - 4350 Chicken Ovalbumin enhancer taken from GenBank accession # S82527.1, bp 1-675

Bp 4357 - 5692 Chicken Ovalbumin promoter taken from GenBank accession #

15 J00899-M24999, bp 1-1336

Bp 5699 - 5869 Capsite/Prepro taken fron GenBank accession # X07404, bp 563-733 Bp 5877 - 6025 Synthetic spacer sequence and hairpin loop of HIV gp41 with an

added enterokinase cleavage site

Bp 6026 - 6679 Human growth hormone taken from GenBank accession # V00519,

20 bp 1-654

Bp 6686 - 7093 Conalbumin polyA taken from GenBank accession # Y00407, bp 10651-11058

Bp 7095 - 10694 from cloning vector pTnMCS, bp 3716-7315

25 pTnMCS(Quail OVep+prepro+ENT+proins+syn polyA)

Bp 1 - 3670 from cloning vector pTnMCS, bp 1 - 3670

Bp 3676 - 4333 Quail Ovalbumin enhancer: 658 bp sequence, amplified in-house from quail genomic DNA, roughly equivalent to the far- upstream chicken ovalbumin enhancer, GenBank accession #S82527.1, bp 1-675. (There are multiple base pair substitutions and deletions in the quail sequence, relative to chicken so the number of

30 substitutions and deletions in the quail sequence, relative to chicken, so the number of bases does not correspond exactly.)

Bp 4340 - 5705 Quail Ovalbumin promoter: 1366 bp sequence, amplified in-house from quail genomic DNA, roughly corresponding to chicken ovalbumin promoter,

GenBank accession # J00895-M24999 bp 1-1336. (There are multiple base pair substitutions and deletions between the quail and chicken sequences, so the number of bases does not correspond exactly.)

Bp 5712 - 5882 Cecropin cap site and Prepro, Genbank accession # X07404 bp 563-733

Bp 5889 - 6038 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site

Bp 6039 - 6299 Human proinsulin GenBank Accession # NM000207 bp 117-377

Bp 6300 - 6344 Spacer DNA, derived as an artifact from the cloning vectors pTOPO

10 Blunt II (Invitrogen) and gWIZ (Gene Therapy Systems)

Bp 6345 - 6696 Synthetic polyA from the cloning vector gWIZ (Gene Therapy Systems) bp 1920 - 2271

Bp 6698 - 10297 from cloning vector pTnMCS, bp 3716 - 7315

15 PTnMOD

5

Bp 1 - 130 remainder of F1 (-) ori of pBluescriptII sk(-) (Stratagene) bp1-130

Bp 133 - 1777 CMV promoter/enhancer taken from vector pGWIZ (Gene Therapy Systems) bp229-1873

Bp 1783 - 2991 Transposase, modified from Tn10 (GenBank accession #J01829) bp

20 108-1316

Bp 2992 - 2994 Engineered stop codon

Bp 2996 - 3411 Synthetic polyA from gWIZ (Gene Therapy Systems) bp 1922 - 2337

Bp 3412 - 3719 Non-coding DNA from vector pNK2859

Bp 3720 - 3762 Lambda DNA from pNK2859

25 Bp 3763 - 3832 70 bp of IS10 left from Tn10

Bp 3839 - 4045 Multiple cloning site from pBluescriptII sk(-), thru the Xmal site bp 924-718

Bp 4046 - 4090 Multiple cloning site from pBluescriptII sk(-), from the XmaI site thru the XhoI site. These base pairs are usually lost when cloning into pTnMCS, bp

30 717-673

Bp 4091 - 4528 Multiple cloning site from pBluescriptII sk(-), from the XhoI site bp 672-235

Bp 4534 - 4603 70 bp of IS10 left from Tn10

Bp 4604 - 4645 Lambda DNA from pNK2859

Bp 4646 - 5489 Non-coding DNA from pNK2859

Bp 5490 - 7690 pBluescript sk (-) base vector (Stratagene, INC) bp 761-2961

5

pTnMOD (CHOVep-prepro-ent-hGH-CPA)

Bp 1-4045 from vector PTnMCS, bp 1-4045

Bp 4051 - 4725 Chicken Ovalbumin enhancer taken from GenBank accession # S82527.1, bp 1 - 675

Bp 4732 - 6067 Chicken Ovalbumin promoter taken from GenBank accession # J00899-M24999, bp 1-1336

Bp 6074 - 6245 Capsite/Prepro taken fron GenBank accession # X07404, bp 563 - 733

Bp 6252 - 6400 Synthetic spacer sequence and hairpin loop of HIV gp41 with an

15 added enterokinase cleavage site

Bp 6401 - 7054 Human growth hormone taken from GenBank accession # V00519, bp 1-654

Bp 7061 - 7468 Conalbumin polyA taken from GenBank accession # Y00407, bp 10651-11058

20 Bp 7470 - 11069 from cloning vector pTnMCS, bp 3716-7315

pTnMOD (CMV-CHOVg-ent-ProInsulin-synPA) (SEQ ID NO:42)

Bp 1 - 4045 from vector PTnMCS, bp 1 - 4045

Bp 4051 - 5695 CMV promoter/enhancer taken from vector pGWIZ (Gene therapy

25 systems), bp 230-1864

Bp 5702 -6855 Chicken ovalbumin gene taken from GenBank accession # V00383, bp 66-1219

Bp 6862 - 7011 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site

30 Bp 7012 - 7272 Human Proinsulin taken from GenBank accession # NM000207, bp 117-377

Bp 7273 - 7317 Spacer DNA, derived as an artifact from the cloning vectors pTOPO Blunt II (Invitrogen) and pGWIZ (Gene Therapy Systems)

Bp 7318 - 7670 Synthetic polyA from the cloning vector pGWIZ (Gene Therapy Systems), bp 1920-2271

Bp 7672 -11271 from cloning vector pTnMCS, bp 3716-7315

5 pTnMOD (CMV-prepro-ent-hGH-CPA)

Bp 1 - 4045 from vector PTnMCS, bp 1 - 4045

Bp 4051 - 5695 CMV promoter/enhancer taken from vector pGWIZ (Gene therapy systems), bp 230-1864

Bp 5701 - 5871 Capsite/Prepro taken fron GenBank accession # X07404, bp 563 -

10 733

Bp 5879 - 6027 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site

Bp 6028 - 6681 Human growth hormone taken from GenBank accession # V00519, bp 1-654

Bp 6688 - 7095 Conalbumin polyA taken from GenBank accession # Y00407, bp 10651-11058

Bp 7097 - 10696 from cloning vector pTnMCS, bp 3716-7315

pTnMOD (CMV-prepro-ent-ProInsulin-synPA)

- 20 Bp 1 4045 from vector PTnMCS, bp 1 4045
 - Bp 4051 5695 CMV promoter/enhancer taken from vector pGWIZ (Gene therapy systems), bp 230-1864
 - Bp 5701 5871 Capsite/Prepro taken from GenBank accession # X07404, bp 563 733
- 25 Bp 5879 6027 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site
 - Bp 6028 6288 Human Proinsulin taken from GenBank accession # NM000207, bp 117-377
 - Bp 6289 6333 Spacer DNA, derived as an artifact from the cloning vectors pTOPO
- 30 Blunt II (Invitrogen) and pGWIZ (Gene Therapy Systems)
 - Bp 6334 6685 Synthetic polyA from the cloning vector pGWIZ (Gene Therapy Systems), bp 1920-2271
 - Bp 6687-10286 from cloning vector pTnMCS, bp 3716-7315

pTnMOD(Chicken OVep+OVg'+ENT+proins+syn polyA) (SEQ ID NO:43)

Bp 1 - 4045 from cloning vector pTnMOD, bp 1 - 4045

Bp 4051 - 4725 Chicken Ovalbumin enhancer taken from GenBank accession #

5 S82527.1 bp 1-675

Bp 4732 - 6067 Chicken Ovalbumin promoter taken from GenBank accession # J00895-M24999 bp 1-1336

Bp 6074 - 7292 Chicken Ovalbumin gene from GenBank Accession # V00383.1 bp 2-1220. (This sequence includes the 5'UTR, containing putative cap site bp 6074-

10 6137.)

Bp 7299 - 7448 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site

Bp 7449 - 7709 Human proinsulin GenBank Accession # NM000207 bp 117-377

Bp 7710 - 7754 Spacer DNA, derived as an artifact from the cloning vectors pTOPO

15 Blunt II (Invitrogen) and gWIZ (Gene Therapy Systems)

Bp 7755 - 8106 Synthetic polyA from the cloning vector gWIZ (Gene Therapy Systems) bp 1920 - 2271

Bp 8108 - 11707 from cloning vector pTnMCS, bp 3716 - 7315

20 pTnMOD(Chicken OVep+prepro+ENT+proins+syn polyA)

Bp 1 - 4045 from cloning vector pTnMCS, bp 1 - 4045

Bp 4051 - 4725 Chicken Ovalbumin enhancer taken from GenBank accession # S82527.1 bp 1-675

Bp 4732 - 6067 Chicken Ovalbumin promoter taken from GenBank accession #

25 J00895-M24999 bp 1-1336

Bp 6074 - 6244 Cecropin cap site and Prepro, Genbank accession # X07404 bp 563-733

Bp 6251 - 6400 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site

30 Bp 6401 - 6661 Human proinsulin GenBank Accession # NM000207 bp 117-377
Bp 6662 - 6706 Spacer DNA, derived as an artifact from the cloning vectors pTOPO
Blunt II (Invitrogen) and gWIZ (Gene Therapy Systems)

Bp 6707 - 7058 Synthetic polyA from the cloning vector gWIZ (Gene Therapy Systems) bp 1920 - 2271

Bp 7060 - 10659 from cloning vector pTnMCS, bp 3716 - 7315

5 pTnMOD(Quail OVep+OVg'+ENT+proins+syn polyA)

Bp I - 4045 from cloning vector pTnMCS, bp 1 - 4045

Bp 4051 - 4708 Quail Ovalbumin enhancer: 658 bp sequence, amplified in-house from quail genomic DNA, roughly equivalent to the far-upstream chicken ovalbumin enhancer, GenBank accession # \$82527.1, bp 1-675. (There are multiple base pair

substitutions and deletions in the quail sequence, relative to chicken, so the number of bases does not correspond exactly.)

Bp 4715 - 6080 Quail Ovalbumin promoter: 1366 bp sequence, amplified in-house from quail genomic DNA, roughly corresponding to chicken ovalbumin promoter, GenBank accession # J00895-M24999 bp 1-1336. (There are multiple base pair

substitutions and deletions between the quail and chicken sequences, so the number of bases does not correspond exactly.)

Bp 6087 - 7285 Quail Ovalbumin gene, EMBL accession # X53964, bp 1-1199. (This sequence includes the 5'UTR, containing putative cap site bp 6087-6139.)

Bp 7292 - 7441 Synthetic spacer sequence and hairpin loop of HIV gp41 with an

20 added enterokinase cleavage site

Bp 7442 - 7702 Human proinsulin GenBank Accession # NM000207 bp 117-377

Bp 7703 - 7747 Spacer DNA, derived as an artifact from the cloning vectors pTOPO Blunt II (Invitrogen) and gWIZ (Gene Therapy Systems)

Bp 7748 - 8099 Synthetic polyA from the cloning vector gWIZ (Gene Therapy

25 Systems) bp 1920 - 2271

Bp 8101 - 11700 from cloning vector pTnMCS, bp 3716 - 7315

pTnMOD(Quail OVep+prepro+ENT+proins+syn polyA)

Bp 1 - 4045 from cloning vector pTnMCS, bp 1 - 4045

30 Bp 4051 - 4708 Quail Ovalbumin enhancer: 658 bp sequence, amplified inhousefrom quail genomic DNA, roughly equivalent to the far-upstream chicken ovalbumin enhancer, GenBank accession #S82527.1, bp 1-675. (There are multiple

base pair substitutions and deletions in the quail sequence, relative to chicken, so the number of bases does not correspond exactly.)

- Bp 4715 6080 Quail Ovalbumin promoter: 1366 bp sequence, amplified in-house from quail genomic DNA, roughly corresponding to chicken ovalbumin promoter,
- 5 GenBank accession # J00895-M24999 bp 1-1336. (There are multiple base pair substitutions and deletions between the quail and chicken sequences, so the number of bases does not correspond exactly.)
 - Bp 6087 6257 Cecropin cap site and Prepro, Genbank accession # X07404 bp 563-733
- Bp 6264 6413 Synthetic spacer sequence and hairpin loop of HIV gp41 with an added enterokinase cleavage site
 - Bp 6414 6674 Human proinsulin GenBank Accession # NM000207 bp 117-377

 Bp 6675 6719 Spacer DNA, derived as an artifact from the cloning vectors pTOPO

 Blunt II (Invitrogen) and gWIZ (Gene Therapy Systems)
- 15 Bp 6720 7071 Synthetic polyA from the cloning vector gWIZ (Gene Therapy Systems) bp 1920 - 2271
 - Bp 7073 10672 from cloning vector pTnMCS, bp 3716 7315

PTnMod(CMV/Transposase/ChickOvep/prepro/ProteinA/ConpolyA)

- 20 BP 1-130 remainder of F1 (-) ori of pBluescriptII sk(-) (Stragagene) bp 1-130.
 - BP 133-1777 CMV promoter/enhancer taken from vector pGWIZ (Gene Therapy Systems) bp 229-1873.
 - BP 1780-2987 Transposase, modified from Tn10 (GenBank #J01829).
 - BP 2988-2990 Engineered stop codon.
- 25 BP 2991-3343 non coding DNA from vector pNK2859.
 - BP 3344-3386 Lambda DNA from pNK2859.
 - BP 3387-3456 70bp of IS10 left from Tn10.
 - BP 3457-3674 multiple cloning site from pBluescriptII sk(-) bp 924-707.
 - BP 3675-5691 Chicken Ovalbumin enhancer plus promoter from a Topo Clone 10
- 30 maxi 040303 (5' Xmal, 3' BamHI)
 - BP 5698-5865 prepro with Cap site amplified from cecropin of pMON200 GenBank # X07404 (5'BamHI, 3'KpnI)

BP 5872-7338 Protein A gene from GenBank# J01786, mature peptide bp 292-1755 (5'KpnI, 3'SacII)

BP 7345-7752 ConPolyA from Chicken conalbumin polyA from GenBank # Y00407 bp 10651-11058. (5'SacII, 3'XhoI)

5 BP 7753-8195 multiple cloning site from pBluescriptII sk(-) bp 677-235.

BP 8196-8265 70 bp of IS10 left from Tn10.

BP 8266-8307 Lamda DNA from pNK2859

BP 8308-9151 noncoding DNA from pNK2859

BP 9152-11352 pBluescriptII sk(-) base vector (Stratagene, INC.) bp 761-2961

10

15

All patents, publications and abstracts cited above are incorporated herein by reference in their entirety. It should be understood that the foregoing relates only to preferred embodiments of the present invention and that numerous modifications or alterations may be made therein without departing from the spirit and the scope of the present invention as defined in the following claims.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A vector comprising:

- a) a modified transposase gene operably-linked to a first promoter; wherein the nucleic acid sequence 3' to the first promoter comprises the sequence as set forth in SEQ ID NO:13, wherein SEQ ID NO:13 contains the Kozak sequence and a start codon for the transposase, and wherein at least one of the first twenty codons for the transposase gene are modified from the wild-type sequence by changing a nucleotide at a third base position of the codon to an adenine or thymine without modifying the amino acid encoded by the codon, and
- b) one or more genes of interest operably-linked to one or more additional promoters; and wherein the one or more genes of interest and their operably-linked promoters are flanked by transposase insertion sequences recognized by the transposase encoded by the modified transposase gene.
- 2. The vector of claim 1, wherein the modified transposase gene comprises an adenine or thymine at the third position in each of codons 2-10 of the modified transposase gene.
- 3. The vector of claim 1 or 2, comprising the sequence set forth in SEQ ID NO: 1.
- 4. The vector of any one of claims 1 to 3, wherein the transposase is a Tn10 transposase.
- 5. The vector of any one of claims 1 to 4, wherein one gene of interest is operably-linked to a second promoter.
- 6. The vector according to any one of claims 1 to 5, wherein the first promoter and the second promoter are independently selected from the group consisting of a constitutive promoter and an inducible promoter.
- 7. The vector of claim 6, wherein the inducible promoter is selected from the group consisting of an ovalbumin promoter, a conalbumin promoter, a vitellogenin promoter or an ovomucoid promoter.

- 8. The vector according to any preceding claim, further comprising a polyA sequence operably-linked to the transposase gene.
- 9. The vector of claim 8, wherein the polyA sequence is a conalbumin polyA sequence.
- 10. The vector according to any preceding claim, further comprising two stop codons operably-linked to the transposase gene.
- 11. The vector of any one of claims 1 to 4, wherein a first gene of interest is operably-linked to a second promoter and a second gene of interest is operably-linked to a third promoter.
- 12. The vector of any one of claims 1 to 4, wherein a first and a second gene of interest are operably-linked to a second promoter.
- 13. The vector according to any preceding claim, further comprising an enhancer operably-linked to the one or more genes of interest.
- 14. The vector of claim 13, wherein the enhancer comprises at least a portion of an ovalbumin enhancer.
- 15. The vector according to any preceding claim, further comprising an egg directing sequence operably-linked to the one or more genes of interest.
- 16. The vector of claim 15, wherein the egg directing sequence is an ovalbumin signal sequence, an ovomucoid signal sequence or a vitellogenin targeting sequence.
- 17. A method of producing a transgenic animal comprising administering to the animal a vector according to any one of claims 1 to 16.
- 18. The method of claim 17, wherein the vector is administered via an intratesticular, intraarterial, intraoviductal or intraembryonic route.

- 19. The method of claim 17 or 18, wherein the animal is an avian animal.
- 20. The method of claim 19, wherein the avian animal is a chicken or a quail.
- 21. An egg produced by the transgenic avian animal of claim 19 or 20, wherein the egg contains one or more desired proteins encoded by the one or more genes of interest.
- 22. A transgenic sperm produced by the transgenic animal produced according to any one of claims 17 to 20.
- 23. A method for producing a desired protein comprising:
- a) administering to the animal a vector according to any one of claims 1 to 16; and
 - b) isolating the desired protein produced in the animal.
- 24. The method of claim 23, wherein the animal is an egg-laying animal, and the method of administration is intraoviductal, such that the desired protein produced by the at least one gene of interest is isolated from the egg white of eggs laid by the egg-laying animal.
- 25. The method of claim 23 or 24, wherein the vector further comprises a TAG sequence and wherein the desired protein is purified using the TAG sequence.
- 26. The method of claim 25, wherein the TAG sequence comprises: (i) a sequence that encodes a polypeptide that functions as a purification handle; (ii) a cleavage site; and (iii) a polynucleotide spacer.
- 27. The method of claim 25 or 26, wherein the TAG sequence comprises a polynucleotide sequence shown in SEQ ID NO: 22.
- 28. The method of any one of claims 23 to 25, wherein the desired protein is a lytic protein, proinsulin, or a human growth hormone.

- 29. The method according to any one of claims 23 to 28, wherein the vector further comprises a second gene of interest operably-linked to a third promoter and wherein the genes of interest encode antibody polypeptides.
- 30. The vector of claim 7, wherein the inducible promoter comprises the sequence as set forth in SEQ ID NO: 17, SEQ ID NO: 40, or nucleic acids 4050-4938 of SEQ ID NO: 30.
- 31. The vector of claim 15 or 16, wherein the egg directing sequence comprises at least one of the sequences as set forth in SEQ ID NO: 18, nucleic acids 4960-5112 of SEQ ID NO: 3, nucleic acids 4943-5092 of SEQ ID NO: 4, nucleic acids 4958-6115 of SEQ ID NO: 29, or nucleic acids 4945-6092 of SEQ ID NO: 30.
- 32. The vector of claim 8, wherein the polyA sequence comprises at least one of the sequences as set forth in SEQ ID NO: 28, SEQ ID NO: 33, or nucleic acids 2995-3410 of SEQ ID NO: 1.
- 33. The vector according to any one of claims 1 to 16, wherein the modified transposase gene comprises an A or a T at the third position in each of codons 2-10 of the modified transposase gene.
- 34. The method of claim 23, wherein the vector is administered via an intratesticular, intraarterial, intraperitoneal, intravenous, intraoviductal, intraembryonic, nasal, or pronuclear route.

FIGURE 1

FIGHE

3/7

PolyA ProInsulin Gene TAG Ove SS Poly A Transposase

4/7

FIGURE 4

Prolasulin Vit Targ Vit Pro Transposase | Polv A

GIRE

20 10 10 01 01 01 01 01 01 01 01 01 01 01		N. A. C. S. C.	8	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	V 151	ىس ي	
 C*41 750	2 2 3 3 5 5 5 5	ricavy Chain) 3,	Light Sidil	C CASA	<u></u>	

6/7

FIGURE 6

Heavy chain ent Light chain prepro Oval Pro <u></u>

polyA

HIGURE

×

Pail-to-Tai

≌	Oval Pro	Oval SS	Light chain	Poly A	Light chain Poly A Spacer DNA Poly A Heavy Oval SS Oval Pro IS chain	Poly A	Heavy chain	Oval SS	Oval Pro	23
									(Processing of the Control of the Co	2

á

Il-to-Heac

ß.
Poly A
Heavy
Oval SS
Oval Pro
Light chain Poly A Spacer DNA Oval Pro Oval SS Heavy Poly A IS
Poly A
Light cham
IS Oval Pro Oval SS
Oval Pro
ξī.

Appendix A

SEQ ID NO:1 (pTnMod)

5	CTGACGCGCC	CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	GGTGGTTACG	50
	CGCAGCGTGA	CCGCTACACT	TGCCAGCGCC	CTAGCGCCCG	CTCCTTTCGC	100
	TTTCTTCCCT	TCCTTTCTCG	CCACGTTCGC	CGGCATCAGA	TTGGCTATTG	150
	GCCATTGCAT	ACGTTGTATC	CATATCATAA	TATGTACATT	TATATTGGCT	200
	CATGTCCAAC	ATTACCGCCA	TGTTGACATT	GATTATTGAC	TAGTTATTAA	250
10				AGCCCATATA		300
	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC	350
				TTCCCATAGT		
				TATTTACGGT		
				AAGTACGCCC		500
15				ATGCCCAGTA		
				GTATTAGTCA		600
				TGGGCGTGGA		
				TTGACGTCAA		700
				AAATGTCGTA		750
20				ACGGTGGGAG		
				CCTGGAGACG		
				CGATCCAGCC		
				TGCCAAGAGT		
				TGGCTCTTAT		
25				GCTTCCTTAT		
30.0				ATTGACCATT		
				AATCCATAAC		1150
				ATACTCTGTC		
				GGTCCCATTT		
30				TGCCCGCAGT		
20				GTACGTGTTC		
				TCCGAGCCCT		
				CTTGCTCCTA		1400
				CCACCAGTGT		
35				GAGCGTGGAG		
~~				AGCGGCAGAA		
				CAGAGGTAAC		
				TGAGCAGTAC		1650
						1700
40				GACTAACAGA		
70				CCATGTGTGA		1800
				GAATTACACT		1850
				ACTTGACTGT		1900
				CCAAAGCGAG		1950
45				AATCGTCACC		3000
-70				CTTTATCTGT		
				TATTCGTGAG		
				ACGGTCGTTC		2150
				TGTTCAAAGA		
50				ACCGAGTAAC		
.20				CATGGTATAA		
	MMGC1GGG14	COURTINGII	AAGIUGAGIA	AGAGGAAAAG	TACAATATGC	2350
	AGACCTAGGA	GCGGAAAACT	GGAAACCTAT	CAGCAACTTA	CATGATATGT	2400
	CONTRACTOR.	CICARAGACT	TIAGGCTATA	AGAGGCTGAC	TAAAAGCAAT	2450
55	CLAMICICAL	GCCAMATICI	ATTGTATAAA	TCTCGCTCTA	AAGGCCGAAA	2500
دد	DOUGHELLANDS	CONTRACTO	CTCATTGTCA	CCACCCGTCA	CCTAAAATCT	2550
	ACTUMOUGIC	OBCARAGGAG	LCATGGGTTC	TAGCAACTAA	CITACCIGTI	2600
	CAMMALIUGAA	AGRANDON	ACTIGITAAT	ATCTATTCGA	AGCGAATGCA	2650
	GALIGAAGAA	ACCITECEGAG:	ACTIGAAAAG	TCCTGCCTAC	GGACTAGGCC	2700
60	IAUGUCATAG	CUGAACGAGC	AGUTCAGAGC	GTTTTGATAT	CATGCTGCTA	2750
OU	ATCGCCCTGA	TGCTTCAACT	AACATGTTGG	CTTGCGGGCG	TTCATGCTCA	2800
	GAAACAAGGT	TGGGACAAGC	ACTTCCAGGC	TAACACAGTC	AGAAATCGAA	2850

	ACGTACTCTC	AACAGTTCGC	TTAGGCATGG	AAGTTTTGCG	GCATTCTGGC	2900
	TACACAATAA	CAAGGGAAGA	CTTACTCGTG	GCTGCAACCC	TACTAGCTCA	2950
					TAATGATCCA	
	GATCACTTCT	GGCTAATAAA	AGATCAGAGC	TOTAGAGATO	TGTGTGTTGG	3050
5					TGTTGTTTGC	
					CCACTGTCCT	
	TTCCTAATAA	AATGAGGAAA	Traceroora	AMAGACACTO	AGGTGTCATT	3200
					GGATTGGGAA	
	CACAATACACCA	cocarectes	CCATCCCCCTC	COCHOGGGGA	GTACCTCTCT	3200
10					CTCTCTCTCT	
XV						
					TGCTGAAGAA	
					AAAAAAAAA	
					TTGATGCCTA	
15					TTAGAAAGTA	
13					AAACCTTATC	
					TTGAAAAAA	
					CAGCAAATTG	
					AATTCTCGTT	
20					AATCATTAAG	
20					TGAGTTAGCT	
					GCTCGTATGT	
					CAGCTATGAC	
					AACAAAAGCT	
0.0					TCCCCCGGGC	
25					CGAGGGGGG	
					CGCTCACTGG	
					TACCCAACTT	
					ATAGCGAAGA	
A					AATGGCGAAT	
30					AATTTTTGTT	
					AATCCCTTAT	
					CAGTTTGGAA	
					GGGCGAAAAA	
~ ~	CCGTCTATCA	GGGCGATGGC	CCACTACTCC	GGGATCATAT	GACAAGATGT	4550
35	GTATCCACCT	TAACTTAATG	ATTTTTACCA	AAATCATTAG	GGGATTCATC	4600
	AGTGCTCAGG	GTCAACGAGA	ATTAACATTC	CGTCAGGAAA	GCTTATGATG	4650
	ATGATGTGCT	TAAAAACTTA	CTCAATGGCT	GGTTATGCAT	ATCGCAATAC	4700
	ATGCGAAAAA	CCTAAAAGAG	CTTGCCGATA	AAAAAGGCCA	ATTTATTGCT	4750
	ATTTACCGCG	GCTTTTTATT	GAGCTTGAAA	GATAAATAAA	ATAGATAGGT	4800
40	TTTATTTGAA	GCTAAATCTT	CTTTATCGTA	AAAAATGCCC	TCTTGGGTTA	4850
	TCAAGAGGGT	CATTATATTT	CGCGGAATAA	CATCATTTGG	TGACGAAATA	4900
	ACTAAGCACT	TGTCTCCTGT	TTACTCCCCT	GAGCTTGAGG	GGTTAACATG	4950
	AAGGTCATCG	ATAGCAGGAT	AATAATACAG	TAAAACGCTA	AACCAATAAT	5000
	CCAAATCCAG	CCATCCCAAA	TTGGTAGTGA	ATGATTATAA	ATAACAGCAA	5050
45	ACAGTAATGG	GCCAATAACA	CCGGTTGCAT	TGGTAAGGCT	CACCAATAAT	5100
	CCCTGTAAAG	CACCTTGCTG	ATGACTCTTT	GTTTGGATAG	ACATCACTCC	5150
	CTGTAATGCA	GGTAAAGCGA	TCCCACCACC	AGCCAATAAA	ATTAAAAACAG	5200
	GGAAAACTAA	CCAACCTICA	GATATAAACG	CTAAAAAGGC	AAATGCACTA	5250
	CTATCTGCAA	TAAATCCGAG	CAGTACTGCC	GTTTTTTCGC	CCATTTAGTG	5300
50	GCTATTCTTC	CTGCCACAAA	GGCTTGGAAT	ACTGAGTGTA	AAAGACCAAG	5350
	ACCCGTAATG	AAAAGCCAAC	CATCATGCTA	TTCATCATCA	CGATTTCTGT	5400
	AATAGCACCA	CACCGTGCTG	GATTGGCTAT	CAATGCGCTG	AAATAATAAT	5450
					GCTTTTGTTC	
					TCATAGCTGT	
55					CATACGAGCC	
					GCTAACTCAC	
					AACCTGTCGT	
					CGGTTTGCGT	
					GCTCGGTCGT	
60					ATACGGTTAT	
00					AAAAGGCCAG	
	worsensenses to		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	JUSTA S CARSON	Otto Sulles and as a	2200

```
CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT TTTTCCATAG 5950
     GCTCCGCCCC CCTGACGAGC ATCACAAAA TCGACGCTCA AGTCAGAGGT 6000
     GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC 6050
     TCCCTCGTGC GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC 6100
     CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCATAGC TCACGCTGTA 6150
     GGTATCTCAG TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC 6200
     GAACCCCCCC TTCAGCCCCA CCGCTGCGCC TTATCCGGTA ACTATCGTCT 6250
     TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCCACTGGCA GCAGCCACTG 6300
     GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG 6350
    AAGTGGTOGC CTAACTACOG CTACACTAGA AGGACAGTAT TTGGTATCTG 6400
     CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT 6450
     CCGGCAAACA AACCACCGCT GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG 6500
     CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT TGATCTTTTC 6550
     TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTTGG 6600
15
     TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAATTAAAAA 6650
     TGAAGTTITA AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG 6700
     TTACCAATGC TTAATCAGTG AGGCACCTAT CTCAGCGATC TGTCTATTTC 6750
     GTTCATCCAT AGTTGCCTGA CTCCCCGTCG TGTAGATAAC TACGATACGG 6800
     GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC GAGACCCACG 6850
20
    CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG 6900
     AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT 6950
     TGTTGCCGGG AAGCTAGAGT_AAGTAGTTCG CCAGTTAATA GTTTGCGCAA 7000
     CGTTGTTGCC ATTGCTACAG GCATCGTGGT GTCACGCTCG TCGTTTGGTA 7050
     TEGCTTCATT CAGCTCCEGT TCCCAACGAT CAAGGCGAGT TACATGATCC 7100
25
     CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC CGATCGTTGT 7150
     CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC 7200
     ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT 7250
     GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG 7300
     CTCTTGCCCG GCGTCAATAC GGGATAATAC CGCGCCACAT AGCAGAACTT 7350
30
     TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA ACTCTCAAGG 7400
     ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA 7450
     CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA 7500
     CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT 7550
     TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG 7600
35
     TTATTGTCTC ATGAGCGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC 7650
     AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCAC
     SEQ ID NO:2 (PTnMod (CMV/Red))
40
     CTGACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT GGTGGTTACG 50
     CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC 100
     TITCITCCCT TCCTTTCTCG CCACGTTCGC CGGCATCAGA TTGGCTATTG 150
     GCCATTGCAT ACGTTGTATC CATATCATAA TATGTACATT TATATTGGCT 200
45
     CATGTCCAAC ATTACCGCCA TGTTGACATT GATTATTGAC TAGTTATTAA 250
     TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA TGGAGTTCCG 300
     CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC 350
     CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA 400
     GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT AAACTGCCCA 450
50
     CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG 500
     TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA 550
     TGGGACTITC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC 600
     CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG 650
     ACTUACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG 700
55
     TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC 750
     CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG GTCTATATAA 800
     GCAGAGCTCG TTTAGTGAAC CGTCAGATCG CCTGGAGACG CCATCCACGC 850
     TGTTTTGACC TCCATAGAAG ACACCGGGAC CGATCCAGCC TCCGCGGCCG 900
     GGAACGGTGC ATTGGAACGC GGATTCCCCG TGCCAAGAGT GACGTAAGTA 950
    CCGCCTATAG ACTCTATAGG CACACCCCTT TGGCTCTTAT GCATGCTATA 1000
    CTGTTTTTGG CTTGGGGCCT ATACACCCCC GCTTCCTTAT GCTATAGGTG 1050
```

	programaco	TTACCCTATA	aanaraaam	אלונולה על גרולות) על יהולונולה על	ATTGACCACT	3300
					ATGGCTCTTT	
					CTTCAGAGAC	
	TGACACGGAC	TCTGTATTTT	TACAGGATGG	GGTCCCATTT	ATTATTTACA	1250
5	AATTCACATA	TACAACAACG	CCGTCCCCCG	TGCCCGCAGT	TTTTATTAAA	1300
					CGGACATGGG	
					GGTCCCATGC	
					ACAGTGGAGG	
	CCAGACTTAG	GCACAGCACA	ATGCCCACCA	CCACCAGTGT	GCCGCACAAG	1500
10	GCCGTGGCGG	TAGGGTATGT	GTCTGAAAAT	GAGCGTGGAG	ATTGGGCTCG	1550
					GAAGATGCAG	
					TCCCGTTGCG	
					TCGTTGCTGC	
					CTGTTCCTTT	
15	CCATGGGTCT	TTTCTGCAGT	CACCGTCGGA	CCATGTGTGA	ACTTGATATT	1800
	TTACATGATT	CTCTTTACCA	ATTCTGCCCC	GAATTACACT	TAAAACGACT	1850
					AAAACTCTCA	
					AACAAAACAT	
20					TCCACAAAGA	
20					TCGGGAATAC	
	GATGCCCATT	GTACTTGTTG	ACTGGTCTGA	TATTCGTGAG	CAAAAACGAC	2100
	TTATGGTATT	GCGAGCTTCA	GTCGCACTAC	ACGGTCGTTC	TGTTACTCTT	2150
	TATGAGAAAG	correceser	TTCAGAGCAA	TGTTCAAAGA	AAGCTCATGA	2200
					ACCACACCGC	
25						
43					ATCCGTTGAG	
					TACAATATGC	
	AGACCTAGGA	GCGGAAAACT	GGAAACCTAT	CAGCAACTTA	CATGATATGT	2400
	CATCTAGTCA	CTCAAAGACT	TTAGGCTATA	AGAGGCTGAC	TAAAAGCAAT	2450
	CCAATCTCAT	GCCAAATTCT	ATTGTATAAA	TCTCGCTCTA	AAGGCCGAAA	2500
30					CCTAAAATCT	
					CTTACCTGTT	
					AGCGAATGCA	
					GGACTAGGCC	
	TACGCCATAG	CCGAACGAGC	AGCTCAGAGC	GTTTTGATAT	CATGCTGCTA	2750
35	ATCGCCCTGA	TGCTTCAACT	AACATGTTGG	CTTGCGGGCG	TTCATGCTCA	2800
	GAAACAAGGT	TGGGACAAGC	ACTTCCAGGC	TAACACAGTC	AGAAATCGAA	2850
					GCATTCTGGC	
					TACTAGCTCA	
40					TAATGATCCA	
40					TGTGTGTTGG	
	TTTTTTGTGG	ATCTGCTGTG	CCTTCTAGTT	GCCAGCCATC	TGTTGTTTGC	3100
	cccrccccc	TGCCTTCCTT	GACCCTGGAA	GGTGCCACTC	CCACTGTCCT	3150
	TTCCTAATAA	AATGAGGAAA	TTGCATCGCA	TTGTCTGAGT	AGGTGTCATT	3200
					GGATTGGGAA	
45					GTACCTCTCT	
~4~1						
					crerererer	
					TGCTGAAGAA	
	TTGACCCGGT	GACCAAAGGT	GCCTTTTATC	ATCACTTTAA	AAAAAAAAA	3450
	CAATTACTCA	GTGCCTGTTA	TAAGCAGCAA	TTAATTATGA	TTGATGCCTA	3500
50	CATCACAACA	AAAACTGATT	TAACAAATGG	TTGGTCTGCC	TTAGAAAGTA	3550
					AAACCTTATC	
					TTGAAAAAAA	
					CAGCAAATTG	
9.0					AATTCTCGTT	
55	GACCCTGAGC	ACTGATGAAT	CCCCTAATGA	TTTTGGTAAA	AATCATTAAG	3800
	TTAAGGTGGA	TACACATCTT	GTCATATGAT	CCCGGTAATG	TGAGTTAGCT	3850
					GCTCGTATGT	
					CAGCTATGAC	
co					AACAAAAGCT	
60					rcccceesc	
	ATCAGATTGG	CTATTGGCCA	TTGCATACGT	TGTATCCATA	TCATAATATG	4100

	TACATTTATA	TIGGCICATG	TCCAACATTA	CCGCCATGTT	GACATTGATT	4150
			AATCAATTAC			4200
	CATATATGGA	GITCCGCGTT	ACATAACTTA	CGGTAAATGG	ccccccracc	4250
	TGACCGCCCA	ACGACCCCCG	CCCATTGACG	TCAATAATGA	CGTATGTTCC	4300
5			CITTCCATTG			4350
			GCAGTACATC			4400
			TGACGGTAAA			4450
			ACTTTCCTAC		ATCTACGTAT	
						4500
10	TAGTCATCGC	TATTACCATG		ITTGGCAGTA		
10			ACGGGGATTT			4600
		AGTTTGTTT		TCAACGGGAC		4650
		CTCCGCCCCA		TGGGCGGTAG		
			AGCTCGTTTA			
	GAGACGCCAT	CCACGCTGTT	TIGACCICCA	TAGAAGACAC	CGGGACCGAT	4800
15	CCAGCCTCCG	CGGCCGGGAA	CGGTGCATTG	GAACGCGGAT	TCCCCGTGCC	4850
	AAGAGTGACG	TAAGTACCGC		TATAGGCACA		
	TCTTATGCAT	GCTATACTGT	TTTTGGCTTG	GGGCCTATAC	ACCCCCGCTT	4950
			TATAGCTTAG			
		ACCACTCCCC		GATACITTCC		
20			CAACTATCTC			5050
2.17				TATTGGCTAT		5100
		AGAGACTGAC		TATTTTTACA		
		TTTACAAATT		ACAACGCCGT		
				TCCACGCGAA		
***	GTGTTCCGGA	CATGGGCTCT	TCTCCGGTAG	CGGCGGAGCT	TCCACATCCG	5300
25			AGCGGCTCAT			
	CTCCTAACAG	TGGAGGCCAG	ACTTAGGCAC	AGCACAATGC	CCACCACCAC	5400
	CAGTGTGCCG	CACAAGGČCG	TGGCGGTAGG	GTATGTGTCT	GAAAATGAGC	5450
	GTGGAGATTG	GGCTCGCACG.	GCTGACGCAG	ATGGAAGACT	TAAGGCAGCG	5500
			CTGAGTTGTT			
30	GGTAACTCCC		TGTTAACGGT			
			CGCGCCACCA			
			GOGTETTTE			
		CGGTCGCCAC				
				TCCTCCAAGA		
35			TGCGCATGGA			
23			GCGAGGCC			
			CAAGGGCGGC		TCGCCTGGGA	5900
		CCCCAGITCC	AGTACGGCTC	CAAGGTGTAC		5950
	CCGCCGACAT	CCCCGACTAC	AAGAAGCTGT	CCTTCCCCGA	GGGCTTCAAG	6000
	TGGGAGCGCG	TGATGAACTT	CGAGGACGGC	GGCGTGGTGA	CCGTGACCCA	6050
40		CTGCAGGACG		CTACAAGGTG	AAGTTCATCG	6100
	GCGTGAACTT	CCCCTCCGAC	GCCCCCGTAA	TGCAGAAGAA	GACCATGGGC	6150
	TGGGAGGCCT	CCACCGAGCG	CCTGTACCCC	CGCGACGGCG	TGCTGAAGGG	6200
	CGAGATCCAC		AGCTGAAGGA		TACCTGGTGG	
	AGTICAAGIC		GCCAAGAAGC			6300
45			GGACATCACC			6350
		CAGTACGAGC			CTGTTCCTGT	6400
			ATAATCAGCC			6450
			CCCACACCTC			
50	MAIGMAICCA	ALIGHTORIG	TTAACTTGTT	TATTECAGCT	TATAATGGTT	6550
20	ACAAATAAAG	CAATAGCATC	ACAAATTTCA	CAAATAAAGC	ATTTTTTCA	6600
	CTGCATTCTA	Gridreccc	GGGCTGCAGG	AATTCGATAT	CAAGCTTATC	6650
	GATACCGCTG	ACCTCGAGGG	GGGGCCCGGT	ACCCAATTCG	CCCTATAGTG	6700
	AGTCGTATTA	CGCGCGCTCA	CTGGCCGTCG	TTTTACAACG	TCGTGACTGG	6750
e e	GAAAACCCTG	GCGTTACCCA	ACTTAATCGC	CTTGCAGCAC	ATCCCCCTTT	6800
55	CGCCAGCTGC	CCTAATAGCG	AAGAGGCCCG	CACCGATCGC	CCTTCCCAAC	6850
	AGTTGCGCAG	CCTGAATGGC	GAATGGAAAT	TGTAAGCGTT	AATATTTTGT	6900
	TANAATTCGC	GTTAAATTTT	TGTTAAATCA	GCTCATTTTT	TAACCAATAG	6950
	GCCGAAATCG	GCAAAATCCC	TTATAAATCA	AAAGAATAGA	CCGRGRUNG	7000
	GTTGAGTGTT	GUTCCZGTTT	DESCADARSS	de Color Contractions	220222000	7050
60	ACTCCAACGT	Cabaccoca	Barbershine	*****************	ansanarioo i oo	33.00
~	WAGGGGGGGGG	was alles was a w	Summer of the grant	A CAUCINIC A COMM	2 TOULUALIA	1700
	CICCRRRYC	Charleman	ATGTGTATCC	ACCTRARCTT	AATGATTTTT	7.150

					GAGAATTAAC	
	ATTCCGTCAG	GAAAGCTTAT	GATGATGATG	TGCTTAAAAA	CITACTCAAT	7250
					AGAGCTTGCC	
					TATTGAGCTT	
5						
J		TAAAATAGAT				7400
					ATTTCGCGGA	
	ATAACATCAT	TTGGTGACGA	AATAACTAAG	CACTTGTCTC	CTGTTTACTC	7500
	CCCTGAGCTT	GAGGGGTTAA	CATGAAGGTC	ATCGATAGCA	GGATAATAAT	7550
	ACAGTAAAAC	GCTAAACCAA	TAATCCAAAT	CCAGCCATCC	CAAATTGGTA	7600
10					AACACCGGTT	
1.0					GCTGATGACT	
					GCGATCCCAC	
	CACCAGCCAA	AAATTAAA	ACAGGGAAAA	CTAACCAACC	TTCAGATATA	7800
	AACGCTAAAA	AGGCAAATGC	ACTACTATCT	GCAATAAATC	CGAGCAGTAC	7850
15	TGCCGTTTTT	TCGCCCATTT	AGTGGCTATT	CTTCCTGCCA	CAAAGGCTTG	7900
					CAACCATCAT	
					GCTGGATTGG	
					TAAATAAGTG	
~ ~					ATTGCGCGCT	
20	TGGCGTAATC	ATGGTCATAG	CTGTTTCCTG	TGTGAAATTG	TTATCCGCTC	8150
	ACAATTCCAC	ACAACATACG	AGCCGGAAGC	ATAAAGTGTA	AAGCCTGGGG	8200
	TGCCTAATGA	GTGAGCTAAC	TCACATTAAT	TGCGTTGCGC	TCACTGCCCG	8250
					AATCGGCCAA	
					CTTCCTCGCT	
25						
23					GTATCAGCTC	
	ACTCAAAGGC	GGTAATACGG	TTATCCACAG	AATCAGGGGA	TAACGCAGGA	8450
	AAGAACATGT	GAGCAAAAGG	CCAGCAAAAG	GCCAGGAACC	GTAAAAAGGC	8500
	CGCGTTGCTG	GCGTTTTTCC	ATAGGCTCCG	CCCCCCTGAC	GAGCATCACA	8550
	AAAATCGACG	CTCAAGTCAG	AGGTGGCGAA	ACCCGACAGG	ACTATAAAGA	8600
30	marramarram	THECCECCAGG	AAGCTCCCCC	GYGCGCTCTC	CTGTTCCGAC	8650
a- a-					GGAAGCGTGG	
					GTAGGTCGTT	
					CCGACCGCTG	
	CGCCTTATCC	GGTAACTATC	GTCTTGAGTC	CAACCCGGTA	AGACACGACT	8850
35	TATCGCCACT	GGCAGCAGCC	ACTGGTAACA	GGATTAGCAG	AGCGAGGTAT	8900
	GTAGGCGGTG	CTACAGAGTT	CTTGAAGTGG	TGGCCTAACT	ACGGCTACAC	8950
					GTTACCTTCG	
					CGCTGGTAGC	
40					AAAAAGGATC	
40					CAGTGGAACG	
	AAAACTCACG	TTAAGGGATT	TTGGTCATGA	GATTATCAAA	AAGGATCTTC	9200
	ACCTAGATCC	TTTTAAATTA	AAAATGAAGT	TTTAAATCAA	TCTAAAGTAT	9250
	ATATGAGTAA	ACTTGGTCTG	ACAGTTACCA	ATGCTTAATC	AGTGAGGCAC	9300
	CTATCTCAGC	GATCTGTCTA	TTTCGTTCAT	CCATAGTTGC	CTGACTCCCC	9350
45					GCCCCAGTGC	
7.5					TTATCAGCAA	
					TGCAACTTTA	
					GAGTAAGTAG	
	TTCGCCAGTT	AATAGTTTGC	GCAACGTTGT	TGCCATTGCT	ACAGGCATCG	9600
50	TGGTGTCACG	CTCGTCGTTT	GGTATGGCTT	CATTCAGCTC	CGGTTCCCAA	9650
	CGATCAAGGC	GAGTTACATG	ATCCCCCATG	TTGTGCAAAA	AAGCGGTTAG	9700
					GCAGTGTTAT	
					CATGCCATCC	
					CATTCTGAGA	
£ £						
55					ATACGGGATA	
					TGGAAAACGT	
	TCTTCGGGGC	GAAAACTCTC	AAGGATCTTA	CCGCTGTTGA	GATCCAGTTC	10000
	GATGTAACCC	ACTCGTGCAC	CCAACTGATC	TTCAGCATCT	TTTACTTTCA	10050
	CCAGCGTTTC	TGGGTGAGCA	ANAACAGGAA	GGCAAAATGC	CGCAAAAAAG	10100
60					TCCTTTTTCA	
V.V						
	ATATTATTGA	AGCATTTATC	Markaria	TOTEMTHAGE	GGATACATAT	10200

TTGAATGTAT TTAGAAAAAT AAACAAATAG GGGTTCCGCG CACATTTCCC 10250 CGAAAAGTGC CAC 10263

5 SEQ ID NO:3 (PTnMod (Oval/Red) Chicken)

```
CTGACGCGC CTGTAGCGC GCATTAAGCG CGGCGGTGT GGTGGTTACG 50
     CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC 100
     TITCITCCCT TCCTTTCTCG CCACGTTCGC CGGCATCAGA TTGGCTATTG 150
     GCCATTGCAT ACGTTGTATC CATATCATAA TATGTACATT TATATTGGCT 200
10
     CATGTCCAMC ATTACCGCCA TGTTGACATT GATTATTGAC TAGTTATTAA 250
     TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA TGGAGTTCCG 300
     CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC 350
     CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA 400
15
   GGGACTITCC ATTGACGTCA ATGGGTGGAG TATTTACGGT AAACTGCCCA 450
     CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG 500
     TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA 550
     TGGGACTITC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC 600
     CATEGTEATE CEGTTTTESC AGTACATCAA TEGECETEGA TAGCECTTTE 650
   ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG 700
    TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC 750
     CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG GTCTATATAA 800
     GCAGAGCTCG TTTAGTGAAC CGTCAGATCG CCTGGAGACG CCATCCACGC 850
    TGTTTTGACC TCCATAGAAG ACACCGGGAC CGATCCAGCC TCCGCGGCCG 900
25
    GGAACGGTGC ATTGGAACGC GGATTCCCCG TGCCAAGAGT GACGTAAGTA 950
     CCGCCTATAG ACTCTATAGG CACACCCCTT TGGCTCTTAT GCATGCTATA 1000
     CTGTTTTTGG CTTGGGGCCT ATACACCCCC GCTTCCTTAT GCTATAGGTG 1050
     ATGGTATAGC TTAGCCTATA GETGTGGGTT ATTGACCATT ATTGACCACT 1100
    CCCCTATTGG TGACGATACT TTCCATTACT AATCCATAAC ATGGCTCTTT 1150
30
    GCCACAACTA TCTCTATTGG CTATATGCCA ATACTCTGTC CTTCAGAGAC 1200
    TGACACGGAC TCTGTATTTT TACAGGATGG GGTCCCATTT ATTATTTACA 1250
    AATTCACATA TACAACAACG CCGTCCCCCG TGCCCGCAGT TTTTATTAAA 1300
    CATAGCGTGG GATCTCCACG CGAATCTCGG GTACGTGTTC CGGACATGGG 1350
    CTCTTCTCCG GTAGCGGCGG AGCTTCCACA TCCGAGCCCT GGTCCCATGC 1400
    CTCCAGCGGC TCATGGTCGG TCGGCAGCTC CTTGCTCCTA ACAGTGGAGG 1450
    CCAGACTTAG GCACAGCACA ATGCCCACCA CCACCAGTGT GCCGCACAAG 1500
    GCCGTGGCGG TAGGGTATGT GTCTGAAAAT GAGCGTGGAG ATTGGGCTCG 1550
     CACGGCTGAC GCAGATGGAA GACTTAAGGC AGCGGCAGAA GAAGATGCAG 1600
    GCAGCTGAGT TGTTGTATTC TGATAAGAGT CAGAGGTAAC TCCCGTTGCG 1650
40
    GTGCTGTTAA CGGTGGAGGG CAGTGTAGTC TGAGCAGTAC TCGTTGCTGC 1700
    CGCGCGCGCC ACCAGACATA ATAGCTGACA GACTAACAGA CTGTTCCTTT 1750
     CCATGGGTCT TTTCTGCAGT CACCGTCGGA CCATGTGTGA ACTTGATATT 1800
    TTACATGATT CTCTTTACCA ATTCTGCCCC GAATTACACT TAAAACGACT 1850
    CAACAGCTTA ACGTTGGCTT GCCACGCATT ACTTGACTGT AAAACTCTCA 1900
    CTCTTACCGA ACTTGGCCGT AACCTGCCAA CCAAAGCGAG AACAAAACAT 1950
45
    AACATCAAAC GAATCGACCG ATTGTTAGGT AATCGTCACC TCCACAAAGA 2000
    GCGACTCGCT GTATACCGTT GGCATGCTAG CTTTATCTGT TCGGGAATAC 2050
    GATGCCCATT GTACTTGTTG ACTGGTCTGA TATTCGTGAG CAAAAACGAC 2100
    TTATGGTATT GCGAGCTTCA GTCGCACTAC ACGGTCGTTC TGTTACTCTT 2150
    TATGAGAAAG CGTTCCCGCT TTCAGAGCAA TGTTCAAAGA AAGCTCATGA 2200
    CCAATTTCTA GCCGACCTTG CGAGCATTCT ACCGAGTAAC ACCACACCGC 2250
    TCATTGTCAG TGATGCTGGC TTTAAAGTGC CATGGTATAA ATCCGTTGAG 2300
    AAGCTGGGTT GGTACTGGTT AAGTCGAGTA AGAGGAAAAG TACAATATGC 2350
    AGACCTAGGA GCGGAAAACT GGAAACCTAT CAGCAACTTA CATGATATGT 2400
    CATCTAGTCA CTCAAAGACT TTAGGCTATA AGAGGCTGAC TAAAAGCAAT 2450
    CCAATCTCAT GCCAAATTCT ATTGTATAAA TCTCGCTCTA AAGGCCGAAA 2500
    AMATCAGCGC TCGACACGGA CTCATTGTCA CCACCCGTCA CCTAMAATCT 2550
    ACTCAGCGTC GGCAAAGGAG CCATGGGTTC TAGCAACTAA CTTACCTGTT 2600
    GARATTOGAR CACCORRACA ACTIGITART ATCIATTOGA AGOGRATIGA 2650
    GATTGAAGAA ACCTTCCGAG ACTTGAAAAG TCCTGCCTAC GGACTAGGCC 2700
    TACGCCATAG CCGAACGAGC AGCTCAGAGC GTTTTGATAT CATGCTGCTA 2750
```

		*************	2.5.00.00.00.00.00.00			
					TTCATGCTCA	
	GAAACAAGGT	TGGGACAAGC	ACTTCCAGGC	TAACACAGTC	AGAAATCGAA	2850
	ACGTACTCTC	AACAGTTCGC	TTAGGCATGG	AAGTTTTGCG	GCATTCTGGC	2900
	TACACAATAA	CAAGGGAAGA	CTTACTCGTG	GCTGCAACCC	TACTAGCTCA	2950
5					TAATGATCCA	
•					TGTGTGTTGG	
					TGTTGTTTGC	
					CCACTGTCCT	
10					AGGTGTCATT	
10					GGATTGGGAA	
			GGATGCGGTG			3300
	CTCTCTCTCT	CTCTCTCTCT	CTCTCTCTCT	CTCTCGGTAC	CTCTCTCTCT	3350
	CICICICICT	CTCTCTCTCT	CTCTCTCTCT	CGGTACCAGG	TGCTGAAGAA	3400
	TTGACCCGGT	GACCAAAGGT	GCCTTTTATC	ATCACTTTAA	AAAAAAAA	3450
15	CAATTACTCA	GTGCCTGTTA	TAAGCAGCAA	TTAATTATGA	TTGATGCCTA	3500
	CATCACAACA	AAAACTGATT	TAACAAATGG	TTGGTCTGCC	TTAGAAAGTA	3550
					AAACCTTATC	
					TTGAAAAAA	
					CAGCAAATTG	
20			AGCTTTCCTG			3750
<i>2</i> .0						
					AATCATTAAG	
					TGAGTTAGCT	
					GCTCGTATGT	
0.0					CAGCTATGAC	
25					AACAAAAGCT	
	GGAGCTCCAC	CGCGGTGGCG	GCCGCTCTAG	AACTAGTGGA	TCCCCCGGGG	4050
	AGGTCAGAAT	GGTTTCTTTA	CTGTTTGTCA	ATTCTATTAT	TTCAATACAG	4100
	AACAATAGCT	TCTATAACTG	TTTATATAAA	GCTATTGTAT	ATTATGATTG	4150
	TCCCTCGAAC	CATGAACACT	CCTCCAGCTG	AATTTCACAA	TTCCTCTGTC	4200
30	ATCTGCCAGG	CCATTAAGTT	ATTCATGGAA	GATCTTTGAG	GAACACTGCA	4250
	AGTTCATATC	ATAAACACAT	TTGAAATTGA	GTATTGTTTT	GCATTGTATG	4300
					TAAAGCATTC	
					AAAGAAAGTG	
					GCATGCTTCT	
35					TIGTICTCAC	
البيه کب					ACAAGAAGGA	
					TAATAAGCAC	
					TTCCCACATT	
40					AAGCTCAATG	
40					AGTCCTGATG	
	GATTAGCAGA	ACAGGCAGAA	AACACATTGT	TACCCAGAAT	TAAAAACTAA	4800
	TATTTGCTCT	CCATTCAATC	CAAAATGGAC	CTATTGAAAC	TAAAATCTAA	4850
	CCCAATCCCA	TTAAATGATT	TCTATGGCGT	CAAAGGTCAA	ACTTCTGAAG	4900
	GGAACCTGTG	GGTGGGTCAC	AATTCAGGCT	ATATATTCCC	CAGGGCTCAG	4950
45	CGGATCTCCA	TGGGCTCCAT	CGGTGCAGCA	AGCATGGAAT	TTTGTTTTGA	5000
	TGTATTCAAG	GAGCTCAAAG	TCCACCATGC	CAATGAGAAC	ATCTTCTACT	5050
_	GCCCCATTGC	CATCATGTCA	GCTCTAGCCA	TGGTATACCT	GGGTGCAAAA	5100
	GACAGCACCA	GGGAATTCGT	GCGCTCCTCC	AAGAACGTCA	TCAAGGAGTT	5150
					CACGAGTTCG	
50					CAACACCGTG	
w v					GGGACATCCT	
					CACCCCGCCG	
					CAAGTGGGAG	
					CCCAGGACTC	
e e						
55					ATCGGCGTGA	
					GGGCTGGGAG	
					AGGGCGAGAT	
	CCACAAGGCC	CTGAAGCTGA	AGGACGGCGG	CCACTACCTG	GTGGAGTTCA	5650
	AGTCCATCTA	CATGGCCAAG	AAGCCCGTGC	AGCTGCCCGG	CTACTACTAC	5700
60	GTGGACTCCA	AGCTGGACAT	CACCTCCCAC	AACGAGGACT	ACACCATCGT	5750
	GGAGCAGTAC	GAGCGCACCG	AGGGCCGCCA	CCACCTGTTC	CTGTAGCGGC	5800

					*	4.5 Z / 4.5 K 5 A
	CCCCATA		A CICION TIN COOK		GGTTTTACTT	
	COCOMCICIA	ACCUCCCACACA	COROCOCOCO	CATTIGIAGA	ATAAAATGAA	5000
	ACT TENNING	Weet Consess	COTCCCCCTG	AACCTGAAAC	AIMMAIGAN	5900
	LUCHMALICILL	CAMONARANT	COLLIMITOR	AGCTTATAAT	GGTTACAAAT	5950
5	WARRIAN COMMONOMICS	CALCALAMAL	TICACAAAIA	AAGCATTTTT	TTCACTGCAT	6000
٠,	COCCCCCCCC	WCTCGAGAAG	GGUGAATICT	GCAGATATEC	ATCACACTGG	6050
	20000000000000000000000000000000000000	ACCUPACTORS OF THE PROPERTY OF	CUGIACCCAA	TICGCCCTAT	AGTGAGTCGT	6100
	COTTOCOCOCO	CTOMOTOR	madoammaa	AACGICGIGA	CTGGGAAAAC	6150
	COLOGCOL 199	CCCHMCTIME	TOGGETTOGG	GUACATUCCC	CAACAGTTGC	6200
10	CONCOCATORY	TOGGGANTOG	ANAPPOPAAC	TOUCH TICK	TIGTIAAAAT	6250
• 0	TOGGGGGGGAA	TORROWAL OR	ACCURACIONAS	COLLEGERAL	ATAGGCCGAA	6300
	ATCECCAAAA	TOCOTTATA	AFCAGAGGA	TRUBOCOCROCA	TAGGGTTGAG	6400
	TGTTGTTCCA	GTTTGGAACA	AGAGTCCACT	NOMECONOMI NAME ASSETTA	GTGGACTCCA	6450 6450
	ACGTCANAGG	GCGDAADACC	GTCTATCAGG	GCGBTGGCCC	ACTACTCCGG	6500
15	GATCATATGA	CARGATGTGT	ATCCACCTCA	TADTA ATTOA	TTTTACCAAA	2550
~ ~					TAACATTCCG	
					CAATGGCTGG	
	TTATIONATAT	CCCBATACAT	GUIGIOCIIN	TANANCE LACE	TGCCGATAAA	6300
	AAAGGGGAAA	COCKETTIONS	TT & COCCOCCC	TO THE PROPERTY OF A STATE OF THE PARTY OF T	GCTTGAAAGA	6700
20	TARATRARAT	AGATAGGTTT	TATOCOCOGO	APRAMATANA	TTATCGTAAA	5000
***					CGGAATAACA	
	TCATTTGGTG	accasarasc	TANGCACTCA	and the Calabarana	ACTCCCCTGA	5030
	GCTTGAGGGG	TTABCATGAA	GOTOATOAN	ACCACACAALI	TAATACAGTA	8080
	AAACGCTAAA	CCAATAATCC	ABATCCAGCC	TTAKATOORIDER	GGTAGTGAAT	2550
25	GATTATAAAT	AACAGCAAAC	AGTAATGGGC	CANTANCACC	GGTTGCATTG	2050
	GTAAGGCTCA	CCARTARTCC	CEGTANAGCA	CCTTGCTGAT	GACTCTTTGT	7100
	TTGGATAGAC	ATCACTCCCT	GTAATGCAGG	TAAAGCGATC	CCACCACCAG	7150
					TATAAACGCT	
	AAAAAGGCAA	ATGCACTACT	ATCTGCAATA	AATCCGAGCA	GTACTGCCGT	7250
30	TTTTTCGCCC	CATTTAGTGG	CTATTCTTCC	TGCCACAAAG	GCTTGGAATA	7300
	CTGAGTGTAA	AAGACCAAGA	CCCGCTAATG	AAAAGCCAAC	CATCATGCTA	7350
	TTCCATCCAA	AACGATTTTC	GGTAAATAGC	ACCCACACCG	TTGCGGGAAT	7400
	TTGGCCTATC	AATTGCGCTG	TAAAATAAAA	AATCAACAAA	ATGGCATCGT	7450
	TTTAAATAAA	GTGATGTATA	CCGAATICAG	CTTTTGTTCC	CTTTAGTGAG	7500
35	GGTTAATTGC	GCGCTTGGCG	TAATCATGGT	CATAGCTGTT	TCCTGTGTGA	7550
	AATTGTTATC	CGCTCACAAT	TCCACACAAC	ATACGAGCCG.	GAAGCATAAA	7600
	GTGTAAAGCC	TEGEGTECCT	AATGAGTGAG	CTAACTCACA	TTAATTGCGT	7650
					CCAGCTGCAT	
	TAATGAATCG	GCCAACGCGC	GGGGAGAGGC	GGTTTGCGTA	TTGGGCGCTC	7750
40	TTCCGCTTCC	TEGETCACTG	ACTCGCTGCG	CTCGGTCGTT	CGGCTGCGGC	7800
	GAGCGGTATC	AGCTCACTCA	AAGGCGGTAA	TACGGTTATC	CACAGAATCA	7850
	GGGGATAACG	CAGGAAAGAA	CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG	7900
	GAACCGTAAA	AAGGCCGCGT	TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC	7950
a e	CTGACGAGCA	TCACAAAAAT	CGACGCTCAA	GTCAGAGGTG	GCGAAACCCG	8000
45	ACAGGACTAT	AAAGATACCA	GGCGTTTCCC	CCTGGAAGCT	CCCTCGTGCG	8050
	CICICCIGIT	CCGACCCTGC	CGCTTACCGG	ATACCTGTCC	GCCTTTCTCC	8100
					GTATCTCAGT	
	TCGGTGTAGG	TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG	AACCCCCCGT	8200
50	TCAGCCCGAC	CGCTGCGCCT	TATCCGGTAA	CTATCGTCTT	GAGTCCAACC	8250
50	COGTAAGACA	CGACTTATCG	CCACTGGCAG	CAGCCACTGG	TAACAGGATT	8300
	MOCAGAGEGA MEXICAGAGEGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA	AGTGGTGGCC	8350
	1990 TARLINGE	IMCACTAGAA	GGACAGTATT	TGGTATCTGC	GCTCTGCTGA	8400
	ACCAGITAC ACCACCOMO	CalledanaAA	MGAGTTGGTA	GUTUTTGATC	CGGCAAACAA	8450
55	CACACACACA	GUI DELLENATE	ARTITITITY .	1GCAAGCAGC	AGATTACGCG	8500
J.J	ACCOMOMMAN	COMPACT CARACT	MAGAICUTIT	GATUTTITUT	ACGGGGTCTG	8550
	TCAAAAAGGA	Course Canadarae	TOTAL OLIMAN	TENTITIANDER	CATGAGATTA GAAGTTTTAA	0000 0000
	ATCAATCTAA	AGTACACCIA	BOTTONATION	Cancalica bica can	TACCAATGCT	0000
	TAATCAGTGA	GGCACCTATO	からかけらながながらなる	Carling manager	TACCAATGOT TTCATCCATA	6700
60	Chaccaga	delabelateinen Ommeren TRTO	CONTRACTOR A CONTRACTOR	SECTION	AGGGCTTACC	9000
	ATCTGGCCCC	Valuations v	TOATACE	ACACCCACCCC	AGGGCTTACC TCACCGGCTC	9800
		MAN DO LOCKE	* はながいかかい (ない)さ	MORLUCAUGU	LUACUGGUTÇ	8850

```
CAGATTTATC AGCAATAAAC CAGCCAGCCG GAAGGGCCGA GCGCAGAAGT 8900
     GGTCCTGCAA CTTTATCCGC CTCCATCCAG TCTATTAATT GTTGCCGGGA 8950
     AGCTAGAGTA AGTAGTTCGC CAGTTAATAG TTTGCGCAAC GTTGTTGCCA 9000
     TTGCTACAGG CATCGTGGTG TCACGCTCGT CGTTTGGTAT GGCTTCATTC 9050
     AGCTCCGGTT CCCAACGATC AAGGCGAGTT ACATGATCCC CCATGTTGTG 9100
     CAAAAAGCG GTTAGCTCCT TCGGTCCTCC GATCGTTGTC AGAAGTAAGT 9150
     TGGCCGCAGT GTTATCACTC ATGGTTATGG CAGCACTGCA TAATTCTCTT 9200
     ACTGTCATGC CATCCGTAAG ATGCTTTTCT GTGACTGGTG AGTACTCAAC 9250
     CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTTGCCCGG 9300
     CGTCAATACG GGATAATACC GCGCCACATA GCAGAACTTT AAAAGTGCTC 9350
     ATCATTGGAA AACGITCTTC GGGGCGARAA CTCTCAAGGA TCTTACCGCT 9400
     GTTGAGATCC AGTTCGATGT AACCCACTCG TGCACCCAAC TGATCTTCAG 9450
     CATCTTTAC TTTCACCAGC GTTTCTGGGT GAGCAAAAC AGGAAGGCAA 9500
     AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT GAATACTCAT 9550
15
     ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA 9600
     TGAGCGGATA CATAITTGAA TGTATTTAGA AAAATAAACA AATAGGGGTT 9650
     CCGCGCACAT TTCCCCGAAA AGTGCCAC
                                      9678
20
     SEQ ID NO:4 (PTnMod (Oval/Red) Quail)
     CTGACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT GGTGGTTACG 50
     CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC 100
     TTTCTTCCCT TCCTTTCTCG CCACGTTCGC CGGCATCAGA TTGGCTATTG 150
25
     GCCATTGCAT ACGTTGTATC CATATCATAA TATGTACATT TATATTGGCT 200
     CATGTCCAAC ATTACCGCCA TGTTGACATT GATTATTGAC TAGTTATTAA 250
     TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA TGGAGTTCCG 300
     CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC 350
     CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA 400
30
     GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT AAACTGCCCA 450
     CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG 500
     TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA 550
     TGGGACTITC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC 600
     CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG 650
     ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG 700
     TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC 750
     CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG GTCTATATAA 800
     GCAGAGCTCG TTTAGTGAAC CGTCAGATCG CCTGGAGACG CCATCCACGC 850
     TGTTTTGACC TCCATAGAAG ACACCGGGAC CGATCCAGCC TCCGCGGCCG 900
40
     GGAACGGTGC ATTGGAACGC GGATTCCCCG TGCCAAGAGT GACGTAAGTA 950
     COGCCTATAG ACTOTATAGG CACACCCCTT TGGCTCTTAT GCATGCTATA 1000
     CTGTTTTTGG CTTGGGGCCT ATACACCCCC GCTTCCTTAT GCTATAGGTG 1050
     ATGGTATAGC TTAGCCTATA GGTGTGGGTT ATTGACCATT ATTGACCACT 1100
     CCCCTATTGG TGACGATACT TTCCATTACT AATCCATAAC ATGGCTCTTT 1150
45
     GCCACAACTA TCTCTATTGG CTATATGCCA MTACTCTGTC CTTCAGAGAC 1200
     TGACACGGAC TCTGTATTTT TACAGGATGG GGTCCCATTT ATTATTTACA 1250
     AATTCACATA TACAACAACG CCGTCCCCCG TGCCCGCAGT TTTTATTAAA 1300
     CATAGOSTGS GATCTCCACG CSAATCTCGG GTACGTGTTC CGGACATGGG 1350
     CTCTTCTCCG GTAGCGGCGG AGCTTCCACA TCCGAGCCCT GGTCCCATGC 1400
50
     CTCCAGCGGC TCATGGTCGC TCGGCAGCTC CTTGCTCCTA ACAGTGGAGG 1450
     CCAGACTTAG GCACAGCACA ATGCCCACCA CCACCAGTGT GCCGCACAAG 1500
     GCCGTGGCGG TAGGGTATGT GTCTGAAAAT GAGCGTGGAG ATTGGGCTCG 1550
     CACGGCTGAC GCAGATGGAA GACTTAAGGC AGCGGCAGAA GAAGATGCAG 1600
     GCAGCTGAGT TGTTGTATTC TGATAAGAGT CAGAGGTAAC TCCCGTTGCG 1650
     GTGCTGTTAA CGGTGGAGGG CAGTGTAGTC TGAGCAGTAC TCGTTGCTGC 1700
55
     CGCGCGCGCC ACCAGACATA ATAGCTGACA GACTAACAGA CTGTTCCTTT 1750
     CCATGGGTCT TTTCTGCAGT CACCGTCGGA CCATGTGTGA ACTTGATATT 1800
     TTACATGATT CTCTTTACCA ATTCTGCCCC GAATTACACT TAAAACGACT 1850
     CAACAGCTTA ACGTTGGCTT GCCACGCATT ACTTGACTGT AAAACTCTCA 1900
60
     CTCTTACCGA ACTTGGCCGT AACCTGCCAA CCAAAGCGAG AACAAAACAT 1950
     AACATCAAAC GAATCGACCG ATTGTTAGGT AATCGTCACC TCCACAAAGA 2000
```

	אורו בוא מוניה א צורו בי	Caracay do at Autonomorphism	COOSTOOMS	menterion's transmission	TCGGGAATAC	2000
	COMO CONTRA	CORP CONTROL CONTROL	A CONTROVERS	CTTTWICTOI	CAAAAACGAC	2700
	ON A OUGUNA COM	CANCALCALLO	We record to the	INTICOTONG	CARMARCORU	2100
					TGTTACTCTT	
5	TATUMGAAAG	COLLCOCOCCE	TICAGAGCAA	TGTTCAAAGA	AAGCTCATGA	3200
٦	CCAATTTCTA	GUCGACUTTG	CGAGCATICT	ACCGAGTAAC	ACCACACCGC	2250
	TCATTGTCAG	TGATGCTGGC	TTTAAAGTGC	CATGGTATAA	ATCCGTTGAG	2300
	AAGCTGGGTT	GGTACTGGTT	AAGTCGAGTA	AGAGGAAAAG	TACAATATGC	2350
	AGACCTAGGA	GCGGAAAACT	GGAAACCTAT	CAGCAACTTA	CATGATATGT	2400
10	CATCTAGTCA	CTCAAAGACT	TTAGGCTATA	AGAGGCTGAC	TAAAAGCAAT	2450
10	CCAATCTCAT	GCCAAATTCT	ATTGTATAAA	TCTCGCTCTA	AAGGCCGAAA	2500
	AAATCAGCGC	TCGACACGGA	CTCATTGTCA	CCACCCGTCA	CCTAAAATCT	2550
	ACTCAGCGTC	GGCAAAGGAG	CCATGGGTTC	TAGCAACTAA	CTTACCTGTT	2600
	GAAATTCGAA	CACCCAAACA	ACTTGTTAAT	ATCTATTCGA	AGCGAATGCA	2650
	GATTGAAGAA	ACCTTCCGAG	ACTTGAAAAG	TCCTGCCTAC	GGACTAGGCC	2700
15	TACGCCATAG	CCGAACGAGC	AGCTCAGAGC	GTTTTGATAT	CATGCTGCTA	2750
	ATCGCCCTGA	TGCTTCAACT	AACATGTTGG	CTTGCGGGCG	TTCATGCTCA	2800
	GAAACAAGGT	TGGGACAAGC	ACTTCCAGGC	TAACACAGTC	AGAAATCGAA	2850
	ACGTACTCTC	AACAGTTCGC	TTAGGCATGG	AAGTTTTGCG	GCATTCTGGC	2900
	TACACAATAA	CAAGGGAAGA	CTTACTCGTG	GCTGCAACCC	TACTAGCTCA	2950
20					TAATGATČCA	
	GATCACTTCT	GGCTAATAAA	AGATCAGAGC	TCTAGAGATC	TGTGTGTTGG	3050
	TTTTTTGTGG	ATCTGCTGTG	CCTTCTAGTT	GCCAGCCATC	TGTTGTTTGC	3100
	CCCTCCCCC	TGCCTTCCTT	GACCCTGGAA	GGTGCCACTC	CCACTGTCCT	2166
	TICCTAATAA	AATGAGGAAA	TTGCATCGCA	TOTOCOMOTO	AGGTGTCATT	3200
25	CTATTCTGGG	GGGTGGGGTG	GGGCRGCRCACA	CONTROCCO	GGATTGGGAA	2200
200	GBCBLTAGCA	GGCATGCTGG	CONTROCACA	COMMONTAN	GTACCTCTCT	3230
	Cuts Carrier Manuscript	COCATOCIOS	CARCIFICACOCTO	COCTETATOS	CTCTCTCTCT	3300
	CACACACACACA	CICICICICI	CICICICICI	CICICOGIAC	TGCTGAAGAA	3330
	CICICICICI	CICICICICI	CICICICICI	LCG IACLANG	TGCTGAAGAA	3400
30					AAAAAAAA	
20	CAMILACICA	GIGCCIGITA	TAAGCAGCAA	TTAATTATGA	TTGATGCCTA	3500
	MJARJAJAJAA	MAMACIGATI	TAACAAATGG	rregrerace	TTAGAAAGTA	3550
	TATTIGAACA	TTATCTTGAT	TATATTATTG	ATAATAATAA	AAACCTTATC	3600
	CUTATUCAAG	AAGTGATGCC	TATCATTGGT	TGGAATGAAC	TTGAAAAAAA	3650
76	TTAGCCTTGA	ATACATTACT	GGTAAGGTAA	ACGCCATTGT	CAGCAAATTG	3700
35	ATCCAAGAGA	ACCAACTTAA	AGCTTTCCTG	ACGGAATGTT	AATTCTCGTT	3750
					AATCATTAAG	
					TGAGTTAGCT	
	CACTCATTAG	GCACCCCAGG	CTTTACACTT	TATGCTTCCG	GCTCGTATGT	3900
	TGTGTGGAAT	TGTGAGCGGA	TAACAATTIC	ACACAGGAAA	CAGCTATGAC	3950
40	CATGATTACG	CCAAGCGCGC	AATTAACCCT	CACTAAAGGG	AACAAAAGCT	4000
	GGAGCTCCAC	CGCGGTGGCG	GCCGCTCTAG	AACTAGTGGA	TCCCCCGGGG	4050
	AGGTCAGAAT	GGTTTCTTTA	CTGTTTGTCA	ATTCTATTAT	TTCAATACAG	4100
	AACAAAAGCT	TCTATAACTG	AAATATATTT	GCTATTGTAT	ATTATGATTG	4150
	TCCCTCGAAC	CATGAACACT	CCTCCAGCTG	AATTTCACAA	TTCCTCTGTC	4200
45	ATCTGCCAGG	CTGGAAGATC	ATGGAAGATC	TCTGAGGAAC	ATTGCAAGTT	4250
					TGAATGGAGC	
	TATGTTTTGC	AGTTCCCTCA	GAAGAAAAGC	TTGTTATAAA	GCGTCTACAC	4350
	CCATCAAAAG	ATATATTAA	ATATTCCAAC	TACAGAAAGA	TTTTGTCTGC	4400
	TCTTCACTCT	GATCTCAGTT	GGTTTCTTCA	CGTACATGCT	TCTTTATTTG	4450
50	CCTATTTTGT	CAAGAAAATA	ATAGGTCAAG	TCCTGTTCTC	ACTTATCTCC	4500
	TGCCTAGCAT	GGCTTAGATG	CACGTTGTAC	ATTCARGARG	GATCAAATGA	4550
					AGACTAACTA	
					TTTTTCTGTT	
	TTAAGATCCC	ATTATOTICAT	TOTALOTOTA	COTORATOR	ACATGAACAG	4700
55	TATTTCTCAG	TOTTETOTO	ACCARTCOTO	ACCOMPANY A	AGAACTGGCA	475A
	GAAAACACTT	TOTTACCCAG	ARTERACES	CANAGE TO SEE	TCTCCCTTCA	7 (3V 7 0 0 0
	ATCCASASTC	GACCTATTO	TACTACATOR	THE THE PARTY OF	CCATTAAATT	KOEN
	ATTTCTATCC	CCTCAAACCT	Carlo D Republication	ARCCORACCO	GTGGGTGGGT	400A
	CCCCACCCCC	Can a manage of a man	COCCACACACA	AMOROWALCI.	Telefolt elocation	4 D V V
60	Charles a manual control of the cont	PACCAMOUNT.	COLUMBON	rushing market (T.	CCATGGGCTC	*>>>
00	CHOCKSCC	MAGCATOGAA	TITTGCCTTG	AIGTATTCAA	GGAGCTCAAA	5000
	GICCHCCHIG	CUMATGACAA	CATGUTCTAC	TCCCCCTTTG	CCATCTGTCA	5050

```
ACTCTGGCCA TGGTCTCCCT GGGTGCAAAA GACAGCACCA GGGAATTCGT 5100
    GCGCTCCTCC AAGAACGTCA TCAAGGAGTT CATGCGCTTC AAGGTGCGCA 5150
    TOGAGGCCAC COTGAACGGC CACGAGTTCG AGATCGAGGG CGAGGGCGAG 5200
    GGCCGCCCCT ACGAGGGCCA CAACACCGTG AAGCTGAAGG TGACCAAGGG 5250
    CGGCCCCTG CCTTCGCCT GGGACATCCT GTCCCCCCAG TTCCAGTACG 5300
    GCTCCAAGGT GTACGTGAAG CACCCCGCCG ACATCCCCGA CTACAAGAAG 5350
    CTGTCCTTCC CCGAGGGCTT CAAGTGGGAG CGCGTGATGA ACTTCGAGGA 5400
    CGGCGGCGTG GTGACCGTGA CCCAGGACTC CTCCCTGCAG GACGGCTGCT 5450
    TCATCTACAA GGTGAAGTTC ATCGGCGTGA ACTTCCCCTC CGACGGCCCC 5500
    GTAATGCAGA AGAAGACCAT GGGCTGGGAG GCCTCCACCG AGCGCCTGTA 5550
10
    CCCCCCCGAC GCCTCCTGA AGGGCGAGAT CCACAAGGCC CTGAAGCTGA 5600
    AGGACGGCGG CCACTACCTG GTGGAGTTCA AGTCCATCTA CATGGCCAAG 5650
    AAGCCCGTGC AGCTGCCCGG CTACTACTAC GTGGACTCCA AGCTGGACAT 5700
    CACCTCCCAC AACGAGGACT ACACCATCGT GGAGCAGTAC GAGCGCACCG 5750
15
    AGGGCCGCCA CCACCTGTTC CTGTAGCGGC CGCGACTCTA GATCATAATC 5800
    AGCCATACCA CATTTETAGA GGTTTTACTT GCTTTAAAAA ACCTCCCACA 5850
     CCTCCCCCTG AACCTGAAAC ATAAAATGAA TGCAATTGTT GTTGTTAACT 5900
     TOTTTATTGC AGCTTATAAT GGTTACAAAT AAAGCAATAG CATCACAAAT 5950
     TTCACAAATA AAGCATTTT TTCACTGCAT TCTAGTTGTG GCTCGAGAAG 6000
20
    GGCGAATTCT GCAGATATCC ATCACACTGG CGGCCGCTCG AGGGGGGGCC 6050
     CGGTACCCAA TTCGCCCTAT AGTGAGTCGT ATTACGCGCG CTCACTGGCC 6100
     GTCGTTTTAC AACGTCGTGA CTGGGAAAAC CCTGGCGTTA CCCAACTTAA 6150
     TCGCCTTGCA GCACATCCCC CTTTCGCCAG CTGGCGTAAT AGCGAAGAGG 6200
     CCCCCACCGA TCCCCCTTCC CAACAGTTGC GCAGCCTGAA TGGCGAATGG 6250
25
   AAATTGTAAG CGTTAATATT TTGTTAAAAT TCGCGTTAAA TTTTTGTTAA 6300
     ATCAGCTCAT TITTTAACCA ATAGGCCGAA ATCGGCAAAA TCCCTTATAA 6350
     ATCAAAAGAA TAGACCGAGA TAGGGTTGAG TGTTGTTCCA GTTTGGAACA 6400
     AGAGTCCACT ATTAAAGAAC GTGGACTCCA ACGTCAAAGG GCGAAAAACC 6450
     GTCTATCAGG GCGATGGCCC ACTACTCCGG GATCATATGA CAAGATGTGT 6500
30
     ATCCACCTTA ACTTAATGAT TTTTACCAAA ATCATTAGGG GATTCATCAG 6550
     TGCTCAGGGT CRACGAGAAT TAACATTCCG TCAGGAAAGC TTATGATGAT 6600
     GATGTGCTTA AAAACTTACT CAATGGCTGG TTATGCATAT CGCAATACAT 6650
     GCGAAAAACC TAAAAGAGCT TGCCGATAAA AAAGGCCRAT TTRTTGCTAT 6700
     TTACCGCGGC TTTTTATTGA GCTTGAAAGA TAAATAAAAT AGATAGGTTT 6750
35
     TATTGAAGC TAAATCTTCT TTATCGTAAA AAATGCCCTC TTGGGTTATC 6800
     AAGAGGGTCA TTATATTTCG CGGAATAACA TCATTTGGTG ACGAAATAAC 6850
     TAAGCACTTG TCTCCTGTTT ACTCCCCTGA GCTTGAGGGG TTAACATGAA 6900
     GGTCATCGAT AGCAGGATAA TAATACAGTA AAACGCTAAA CCAATAATCC 6950
     AMATCCAGCC ATCCCAMATT GGTAGTGAAT GATTATAMAT AACAGCAMAC 7000
40
     AGTAATGGGC CAATAACACC GGTTGCATTG GTAAGGCTCA CCAATAATCC 7050
     CTGTAAAGCA CCTTGCTGAT GACTCTTTGT TTGGATAGAC ATCACTCCCT 7100
     GTAATGCAGG TAAAGCGATC CCACCACCAG CCAATAAAAT TAAAACAGGG 7150
     AAAACTAACC AACCTTCAGA TATAAACGCT AAAAAGGCAA ATGCACTACT 7200
     ATCTGCAATA AATCCGAGCA GTACTGCCGT TTTTTCGCCC CATTTAGTGG 7250
45
     CTATTCTTCC TGCCACAAG GCTTGGAATA CTGAGTGTAA AAGACCAAGA 7300
     CCCGCTAATG AAAAGCCAAC CATCATGCTA TTCCATCCAA AACGATTTTC 7350
     GGTAAATAGC ACCCACACCG TTGCGGGAAT TTGGCCTATC AATTGCGCTG 7400
     AAAAATAAAT AATCAACAAA ATGGCATCGT TTTAAATAAA GTGATGTATA 7450
     CCGAATTCAG CTTTTGTTCC CTTTAGTGAG GGTTAATTGC GCGCTTGGCG 7500
50
     TAATCATGGT CATAGCTGTT TCCTGTGTGA AATTGTTATC CGCTCACAAT 7550
     TOCACACAAC ATACGAGCCG GAAGCATAAA GTGTAAAGCC TGGGGTGCCT 7600
     ANTGAGTGAG CTAACTCACA TTAATTGCGT TGCGCTCACT GCCCGCTTTC 7650
     CAGTCGGGAA ACCTGTCGTG CCAGCTGCAT TAATGAATCG GCCAACGCGC 7700
     GGGGAGAGGC GGTTTGCGTA TTGGGCGCTC TTCCGCTTCC TCGCTCACTG 7750
     ACTCGCTGCG CTCGGTCGTT CGGCTGCGGC GAGCGGTATC AGCTCACTCA 7600
55
     AAGGCGGTAA TACGGTTATC CACAGAATCA GGGGATAACG CAGGAAAGAA 7850
     CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCGCGT 7900
     TECTEGOGIT TITCCATAGG CTCCGCCCCC CTGACGAGCA TCACAAAAAT 7950
     CGACGCTCAA GTCAGAGGTG GCGAAACCCG ACAGGACTAT AAAGATACCA 8000
60
     GGCGTTTCCC CCTGGAAGCT CCCTCGTGCG CTCTCCTGTT CCGACCCTGC 8050
     CGCTTACCGG ATACCTGTCC GCCTTTCTCC CTTCGGGAAG CGTGGCGCTT 8100
```

```
TCTCATAGCT CACGCTGTAG GTATCTCAGT TCGGTGTAGG TCGTTCGCTC 8150
     CAAGCTGGGC TGTGTGCACG AACCCCCCGT TCAGCCCGAC CGCTGCGCCT 8200
     TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG 8250
     CCACTGGCAG CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG 8300
     COGTOCTACA GAGTTCTTGA AGTGGTGGCC TAACTACGGC TACACTAGAA 8350
     GGACAGTATT TGGTATCTGC GCTCTGCTGA AGCCAGTTAC CTTCGGAAAA 8400
     AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG GTAGCGGTGG 8450
     TTTTTTTTT TGCAAGCAGC AGATTACGCG CAGAAAAAA GGATCTCAAG 8500
     AAGATCCTTT GATCTTTCT ACGGGGTCTG ACGCTCAGTG GAACGAAAAC 8550
     TCACGTTAAG GGATTTTGGT CATGAGATTA TCAAAAAGGA TCTTCACCTA 8600
     GATCCTTTTA AATTAAAAAT GAAGTTTTAA ATCAATCTAA AGTATATATG 8650
     AGTAAACTTG GTCTGACAGT TACCAATGCT TAATCAGTGA GGCACCTATC 8700
     TCAGCGATCT GTCTATTTCG TTCATCCATA GTTGCCTGAC TCCCCGTCGT 8750
     GTAGATAACT ACGATACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA 8800
15
     TGATACCGCG AGACCCACGC TCACCGCCTC CAGATTTATC AGCAATAAAC 8850
     CAGCCAGCCG GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA CTTTATCCGC 8900
     CTCCATCCAG TCTATTAATT GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC 8950
     CAGTTAATAG TTTGCGCAAC GTTGTTGCCA TTGCTACAGG CATCGTGGTG 9000
     TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT CCCAACGATC 9050
20
     AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT 9100
     TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC 9150
     ATGGTTATGG CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG 9200
     ATGCTTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT 9250
     GTATGCGGCG ACCGAGTTGC TCTTGCCCGG CGTCAATACG GGATAATACC 9300
25
     GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA AACGTTCTTC 9350
     GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT 9400
     AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC 9450
     GTTTCTGGGT GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT 9500
     AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT 9550
30
     ATTGAAGCAT TTATCAGGGT TATTGTCTCA TGAGCGGATA CATATTTGAA 9600
     TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT TTCCCCGAAA 9650
     AGTGCCAC
35
     SEQ ID NO:5 (spacer)
     (GPGG) x
     SEQ ID NO:6 (spacer)
     GEGGGEGGEG
40
     SEQ ID NO:7 (spacer)
     GGGGGGGGGGGG
45
     SEQ ID No:8 (spacer)
     GGGGSGGGGGGGGGGG
50
     SEQ ID NO:9 (enterokinase cleavage site)
    DODDOK
```

SEQ ID NO:10 (altered transposase Hef forward primer) ATCTCGAGACCATGTGGAACTTGATATTTTACATGATTCTCTTTACC

SEQ ID NO:11 (altered transposase Her reverse primer) GATTGATCATTATCATAATTTCCCCAAAGCGTAACC

```
SEQ ID NO:12 (Xho I restriction site) CTCGAG

SEQ ID NO:13 (modified Kozak sequence) ACCATG
```

SEQ ID NO:14 (Bcl I restriction site)

10 tgatca

SEQ ID NO:15 (CMVf-NgoM IV primer) TTGCCGGCATCAGATTGGCTAT

15

SEQ ID NO:16 (Syn-polyAr-BstE II primer)
AGAGGTCACCGGGTCAATTCTTCAGCACCTGGTA

20

SEQ ID NO:17 (vitellogenin promoter)

TGAATGTGTT CTTGTGTTAT CAATATAAAT CACAGTTAGT GATGAAGTTG GCTGCAAGCC TGCATCAGTT CAGCTACTTG GCTGCATTTT GTATTTGGTT CTGTAGGAAA TGCAAAAGGT TCTAGGCTGA CCTGCACTTC TATCCCTCTT GCCTTACTGC TGAGAATCTC TGCAGGTTTT 25 ARTTGTTCAC ATTTTGCTCC CATTTACTTT GGAAGATAAA ATATTTACAG AATGCTTATG AAACCTTTGT TCATTTAAAA ATATTCCTGG TCAGCGTGAC CGGAGCTGAA AGAACACATT GATCCCGTGA TTTCAATAAA TACATATGTT CCATATATTG TTTCTCAGTA GCCTCTTAAA TCATGTGCGT TGGTGCACAT ATGAATACAT GAATAGCAAA GGTTTATCTG GATTACGCTC 30 TGGCCTGCAG GAATGGCCAT AAACCAAAGC TGAGGGAAGA GGGAGAGTAT AGTCAATGTA GATTATACTG ATTGCTGATT GGGTTATTAT CAGCTAGATA ACAACTTGGG TCAGGTGCCA GGTCAACATA ACCTGGGCAA AACCAGTCTC ATCTGTGGCA GGACCATGTA CCAGCAGCCA GCCGTGACCC AATCTAGGAA AGCAAGTAGC ACATCAATTT TAAATTTATT GTAAATGCCG TAGTAGAAGT GTTTTACTGT GATACATTGA AACTTCTGGT CAATCAGAAA AAGGTTTTTT 35 ATCAGAGATG CCAAGGTATT ATTTGATTTT CTTTATTCGC CGTGAAGAGA ATTTATGATT GCAAAAAGAG GAGTGTTTAC ATAAACTGAT AAAAAACTTG AGGAATTCAG CAGAAAACAG CCACGTGTTC CTGAACATTC TTCCATAAAA GTCTCACCAT GCCTGGCAGA GCCCTATTCA CCTTCGCT

40

SEQ ID NO:18 (vitellogenin targeting sequence)

ATGAGGGGGATCATACTGGCATTAGTGCTCACCCTTGTAGGCAGCCAGAAGTTTGACATTGGT

45

SEQ ID NO:19 (pl46 protein) KYKKALKKLAKUL

- 50 SEQ ID NO:20 (p146 coding sequence)
 AMATACAMAMAGCACTGAMAMACTGGCAMACTGCTG
- SEQ ID NO:21 (pro-insulin sequence)

 55 TTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGCGGAACGACGC
 TTCTTCTACACACCCCAAGACCCGCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGG
 GGCCCTGGTGCAGGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCTGCAGAAGCGTGGCATTGTGGAA
 CAATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTCTGCAACTAG

60

SEQ ID NO:22 (TAG sequence)

Pro Ala Asp Asp Ala Pro Ala Asp Asp Ala Pro Ala Asp Asp Asp Ala Pro Ala Asp Asp Ala Pro Ala Asp Asp Ala Pro Ala Asp Asp Ala Thr Thr Cys Ile Leu Lys Gly Ser Cys Gly Trp Ile Gly Leu Leu Asp Asp Asp Asp Lys

SEQ ID NO:23 (gp41 epitope) Ala Thr Thr Cys Ile Leu Lys Gly Ser Cys Gly Trp Ile Gly Leu Leu

SEQ ID NO:24 (polynucleotide sequence encoding gp41 epitope)

- 10 Pro Ala Asp Asp Ala Pro Ala Asp Asp Ala Thr Thr Cys Ile Leu Lys Gly Ser Cys Gly Trp Ile Gly Leu Leu Asp Asp Asp Lys
- SEQ ID NO:25 (repeat domain in TAG spacer sequence) 15 Pro Ala Asp Asp Ala

SEQ ID NO:26 (TAG spacer sequence) Pro Ala Asp Asp Ala Pro Ala Asp Asp

SEQ ID NO:27 (Vit pro/Vit targ/TAG/pro-insulin/synthetic polyA) TGAATGTGTT CTTGTGTTAT CAATATAART CACAGTTAGT GATGAAGTTG GCTGCAAGCC TGCATCAGTT CAGCTACTTG GCTGCATTTT GTATTTGGTT CTGTAGGAAA TGCAAAAGGT 25 TCTAGGCTGA CCTGCACTTC TATCCCTCTT GCCTTACTGC TGAGAATCTC TGCAGGTTTT AATTETTCAC ATTTTGCTCC CATTTACTTT GGAAGATAAA ATATTTACAG AATECTTATG AAACCTTTGT TCATTTAAAA ATATTCCTGG TCAGCGTGAC CGGAGCTGAA AGAACACATT GATOCOGTGA TITCAATAAA TACATATGTT CCATATATTG TTTCTCAGTA GCCTCTTAAA TCATGTGCGT TGGTGCACAT ATGAATACAT GAATAGCAAA GGTTTATCTG GATTACGCTC 30 TGGCCTGCAG GAATGGCCAT AAACCAAAGC TGAGGGAAGA GGGAGAGTAT AGTCAATGTA GATTATACTG ATTGCTGATT GGGTTATTAT CAGCTAGATA ACAACTTGGG TCAGGTGCCA GGTCAACATA ACCTGGGCAA AACCAGTCTC ATCTGTGGCA GGACCATGTA CCAGCAGCCA GCCGTGACCC AATCIAGGAA AGCAAGTAGC ACATCAATTT TAAATTTATT GTAAATGCCG TAGTAGAAGT GTTTTACTGT GATACATTGA AACTTCTGGT CAATCAGAAA AAGGTTTTTT ATCAGAGATG CCAAGGTATT ATTTGATTTT CTTTATTCGC CGTGAAGAGA ATTTATGATT GCAAAAAGAG GAGTGTTTAC ATAAACTGAT AAAAAACTTG AGGAATTCAG CAGAAAACAG CCACGTGTTC CTGARCATTC TTCCATARAA GTCTCACCAT GCCTGGCAGA GCCCTATTCA CCTTCGCTAT GAGGGGGATC ATACTGGCAT TAGTGCTCAC CCTTGTAGGC AGCCAGAAGT TTGACATTGG TAGACTGAGA ATGGCAAGAA GAATGAGAAGA TGGTTTGTG AACCAACACC 40 TGTGCGGCTCA CACCTGGTGG AAGCTCTCTA CCTAGTGTGCG GGGAACGAGG CTTCTTCTAC

TETEGRACAA TECTETACCA GCATCTECTC CCTCTACCAGC TEGAGAACTA CTECAACTAG GGCGCCTGGATCCAGATCACTTCTGGCTAATAAAAGATCAGAGCTCTAGAGATCTGTGTTGTTTTT 45 CTGGAAGGTGCCACTCCCACTGTCCTTACTAAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGG TETCATTCTATTCTGGGGGGTGGGGTGGGCAGCACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGG

ACACCCAAGA CCCGCCGGGA GGCAGAGGAC CTGCAGGTGGG GCAGGTGGAG CTGGGCGGGG GCCCTGGTGC AGGCAGCCTG CAGCCCTTGG CCCTGGAGGGG TCCCTGCAGA AGCGTGGCAT

TCTCGGTACCTCTCTC 50

SEQ ID NO:28 (synthetic polyA sequence) GCGCCTGGATCCAGATCACTTCTGGCTAATAAAAGATCAGAGCTCTAGAGATCTGTGTGTTGTTTTT CTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGG TGTCATTCTATTCTGGGGGTGGGGTGGGCAGCACCAGCAAGGGGGAGGATTGGGAAGACAATAGCAGG TCTCGGTACCTCTCTC

SEQ ID NO:29 (pTnMod(Oval/ENT tag/P146/PA) - Chicken)

	amasaaaaa	amama aaaaa	0010011100			
5				CGGCGGGTGT		50
2				CTAGCGCCCG		100
	TTTCTTCCCT	TCCTTTCTCG	CCACGTTCGC	CGGCATCAGA		150
	GCCATTGCAT	ACGTTGTATC	CATATCATAA	TATGTACATT	TATATTGGCT	200
	CATGTCCAAC	ATTACCGCCA	TGTTGACATT	GATTATTGAC	TAGTTATTAA	250
	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA	TGGAGTTCCG	300
10	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC	350
	CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT	AACGCCAATA	400
	GGGACTTTCC	ATTGACGTCA	ATGGGTGGAG	TATTTACGGT		450
				AAGTACGCCC		500
				ATGCCCAGTA		550
15	TGGGACTTTC		GTACATCTAC	GTATTAGTCA		600
				TGGGCGTGGA		650
		ATTTCCAAGT		TTGACGTCAA		700
				AAATGTCGTA		750
		CAAATGGGCG		ACGGTGGGAG		
20						800
20	GCAGAGCTCG			CCTGGAGACG		850
	TGTTTTGACC			CGATCCAGCC		900
		ATTGGAACGC		TGCCAAGAGT		950
		ACTCTATAGG			GCATGCTATA	1000
	CIGITITIEG	CTTGGGGCCT		GCTTCCTTAT		1050
25	ATGGTATAGC	TTAGCCTATA	GGTGTGGGTT	ATTGACCATT	ATTGACCACT	1100
	CCCCTATTGG	TGACGATACT	TTCCATTACT	AATCCATAAC	ATGGCTCTTT	1150
	GCCACAACTA	TCTCTATTGG	CTATATGCCA	ATACTCTGTC	CTTCAGAGAC	1200
	TGACACGGAC	TCTGTATTTT	TACAGGATGG	GGTCCCATTT	ATTATTTACA	1250
	AATTCACATA	TACAACAACG	CCGTCCCCCG	TGCCCGCAGT	AAATTATTTT	1300
30	CATAGCGTGG	GATCTCCACG	CGAATCTCGG	GTACGTGTTC	CGGACATGGG	1350
	CTCTTCTCCG	GTAGCGGCGG	AGCTTCCACA	TCCGAGCCCT	GGTCCCATGC	1400
	CTCCAGCGGC	TCATGGTCGC	TCGGCAGCTC	CTTGCTCCTA	ACAGTGGAGG	1450
	CCAGACTTAG	GCACAGCACA	ATGCCCACCA	CCACCAGTGT	GCCGCACAAG	1500
		TAGGGTATGT		GAGCGTGGAG		1550
35			GACTTAAGGC	AGCGGCAGAA	GAAGATGCAG	
	GCAGCTGAGT	TGTTGTATTC	TGATAAGAGT	CAGAGGTAAC	TCCCGTTGCG	1650
		CGGTGGAGGG		TGAGCAGTAC		1700
	CGCGCGCGCC	ACCAGACATA		GACTAACAGA		1750
	CCATGGGTCT	TTTCTGCAGT	CACCGTCGGA	CCATGTGTGA		1800
40		CTCTTTACCA			TAAAACGACT	1850
~V						
		ACGTTGGCTT		ACTTGACTGT		
		ACTTGGCCGT		CCAAAGCGAG		1950
		GAATCGACCG		AATCGTCACC		
s &		GTATACCGTT		CTTTATCTGT		2050
45	GATGCCCATT	GTACTTGTTG		TATTCGTGAG		2100
	TTATGGTATT	GCGAGCTTCA				2150
	TATGAGAAAG	CGTTCCCGCT	TTCAGAGCAA		AAGCTCATGA	5500
	CCAATTTCTA	GCCGACCTTG	CGAGCATTCT		ACCACACCGC	2250
* *	TCATTGTCAG	TGATGCTGGC	TTTAAAGTGC	CATGGTATAA	ATCCGTTGAG	2300
50	AAGCTGGGTT	GGTACTGGTT		AGAGGAAAAG	TACAATATGC	2350
	AGACCTAGGA	GCGGAAAACT	GGAAACCTAT	CAGCAACTTA	CATGATATGT	2400
	CATCTAGTCA	CTCAAAGACT	TTAGGCTATA	AGAGGCTGAC	TAAAAGCAAT	2450
	CCAATCTCAT	GCCAAATTCT	ATTGTATAAA	TCTCGCTCTA	AAGGCCGAAA	2500
	AAATCAGCGC	TCGACACGGA	CTCATTGTCA	CCACCCGTCA	CCTAAAATCT	2550
55	ACTCAGCGTC	GGCAAAGGAG	CCATGGGTTC	TAGCAACTAA	CTTACCTGTT	2600
	GAAATTCGAA	CACCCAAACA	ACTTGTTAAT	ATCTATTCGA	AGCGAATGCA	2650
				TCCTGCCTAC		
				GTTTTGATAT		
				CTTGCGGGCG		
60				TAACACAGTC		
~ *				AAGTTTTGCG		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 31 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 337000c34 00		www.auawaww	2000

			2.2.35			
	TACACAATAA	CAAGGGAAGA	CTTACTCGTG	GCTGCAACCC	TACTAGCTCA	2950
					TAATGATCCA	3000
	GATCACTTCT	GGCTAATAAA	AGATCAGAGC	TCTAGAGATC	TGTGTGTTGG	3050
~	TTTTTTGTGG	ATCTGCTGTG	CCTTCTAGTT	GCCAGCCATC	TGTTGTTTGC	3100
5			GACCCTGGAA			3150
			TTGCATCGCA			3200
					GGATTGGGAA	3250
			GGATGCGGTG			3300
					CTCTCTCTCT	
10	CTCTCTCTCT	CTCTCTCTCT	CICICICICI	CGGTACCAGG	TGCTGAAGAA	3400
	TTGACCCGGT	GACCAAAGGT	GCCTTTTATC	ATCACTTTAA	AAAAAAAA	3450
	CAATTACTCA	GIGCCIGITA	TAAGCAGCAA	TTAATTATGA	TTGATGCCTA	3500
	CATCACAACA	AAAACTGATT	TAACAAATGG	TIGGTCTGCC	TTAGAAAGTA	3550
	TATTIGAAÇA	TTATCTTGAT	TATATTATTG	ATAATAATAA	AAACCTTATC	3600
15					TTGAAAAAA	3650
					CAGCAAATTG	
					AATTCTCGTT	
					AATCATTAAG	
					TGAGTTAGCT	
20	CACTCATTAG	GCACCCCAGG	CTTTACACTT	TATGCTTCCG	GCTCGTATGT	3900
	TGTGTGGAAT	TGTGAGCGGA	TAACAATTTC	ACACAGGAAA	CAGCTATGAC	3950
					AACAAAAGCT	
					TCCCCCGGGG	
					TTCAATACAG	
25	AACAATAGCT	TCTATAACTC	ARATATATT	COMBOOKS	ATTATGATTG	4150
	TCCCTCGAAC	CATGAACACT	CCTCCACCTC	a a morror a a a	TTCCTCTGTC	4200
	ATCTGCCAGG	CCATTABOTT	ATTOMOGRA		GAACACTGCA	4200
	AGTTCATATC	ATRACONORI	TOTAL SOM	CHARLET Y YEARS	GCATTGTATG	4200
					TAAAGCATTC	
30					AAAGAAAGTG	
2.0	22012 CLOCK CAS TANK	WASHOW LACES	TIMMINITO	THOUTAINES.	GCATGCTTCT	4400
	COTCLOCICI	TOMOTO ANGL	DICMOTIBLE.	TCCTTCACAT	TTGTTCTCAC	4450
	TANEAU CACC	COURTOR	WOWNST WAT	AGGTCACGTC	ACAAGAAGGA	4500
	TCAATCCIG	COTMODWING	CILHBRIBCA	COLLGIAGAL	TAATAAGCAC	4550
35	A CHARA TARAM	AAMMCLICIG	GIUIGIIACI	ACAACCATAG	TAATAAGCAC	4600
55	Notice Control of Street	AMILISCIAMI COMPANIO	IAIGITITCC	ATCTCTAAGG	TTCCCACATT	4650
		AATATTTCCC			AAGCTCAATG	
				CCCATCCAGC	AGTCCTGATG	4750
	TRUTTURE	ACAUGCAGAA	AACACATIGI	TACCCAGAAT	TAAAAACTAA	4800
40	TWITINGTON	CUALICAALC	CAAAAIGGAC	CIAITGAAAC	TAAAATCTAA	4850
	CCCAATCCCA	TTAAATGATT	TCTATGGCGT	CAAAGGTCAA	ACTTCTGAAG	4300
	GGRACCIGIG	GGIGGGICAC	AATICAGGCT	ATATATTCCC	CAGGGCTCAG	4950
	COGRICCAIG	GGUICURICG	GCGCAGCAAG	CATGGAATTT	TGTTTTGATG	5000
	TATTUARGGR	GCTCAAAGTC	CACCATGCCA	ATGAGAACAT	CTTCTACTGC	5050
45	CCCATTGCCA	TCATGTCAGC	TCTAGCCATG	GTATACCTGG	GTGCAAAAGA	5100
	CAGUACUAGG	ACACAGATAA	ATAAGGTTGT	TCGCTTTGAT	AAACTTCCAG	5150
					AAACGITCAC	
					ATGATGTTTA	
	TICGIICAGU	CITGUUAGTA	GACTTTATGC	TGAAGAGAGA	TACCCAATCC	5300
50	TOUCHGARIA	CITGUAGIGI	GIGAAGGAAC	TGTATAGAGG	AGGCTTGGAA	5350
50	CULATORACI	TICAAACAGO	TGCAGATCAA	GCCAGAGAGC	TCATCAATTC	5400
	CIGGGIAGAA	AGTCAGACAA	ATGGAATTAT	CAGAAATGTC	CTTCAGCCAA	5450
	GUTUUGTGGA	TICTCAAACT	GCAATGGTTC	TGGTTAATGC	CATTGTCTTC	5500
	AAAGGACTGT	GGGAGAAAAC	ATTTAACCAT	GAAGACACAC	AAGCAATGCC	5550
5.6	TTTCAGAGTG	ACTGAGCAAG	AAAGCAAACC	TGTGCAGATG	ATGTACCAGA	5600
55	TIGGITTATT	TAGAGTGGCA	TCAATGGCTT	CTGAGAAAAT	GAAGATCCTG	5650
	GAGCTTCCAT	TIGCCAGTGG	GACAATGAGC	ATGTTGGTGC	TGTTGCCTGA	5700
	TGAAGTCTCA	GGCCTTGAGC	AGCTTGAGAG	TATAATCAAC	TTTGAAAAAC	5750
	TGACTGAATG	GACCAGTTCT	AATGTTATGG	AAGAGAGGAA	GATCAAAGTG	5800
~~	TACTTACCTC	GCATGAAGAT	GGAGGAAAAA	TACAACCTCA	CATCTGTCTT	5850
60	AATGGCTATG	GGCATTACTO	ACGTGTTTAG	CTCTTCAGCC	AATCTGTCTG	5900
	GCATCTCCTC	AGCAGAGAGC	CTGAAGATAT	CTCAAGCTGT	CCATGCAGCA	5950
						**

	0200000000	man samas saa	2000202020		C. T. C. T. C. T. C.	***
					CAGCAGAGGC	
					GACCATCCAT	
					CTTCTTTGGC	
					CAGATGACGC	
5					GACGCACCAG	
	CAGATGACGC	AACAACATGT	ATCCTGAAAG	GCTCTTGTGG	CTGGATCGGC	6250
	CTGCTGGATG	ACGATGACAA	AAAATACAAA	AAAGCACTGA	AAAAACTGGC	6300
	AAAACTGCTG	TAATGAGGGC	GCCTGGATCC	AGATCACTTC	TGGCTAATAA	6350
	AAGATCAGAG	CTCTAGAGAT	CTGTGTGTTG	GTTTTTTGTG	GATCTGCTGT	6400
10	GCCTTCTAGT	TGCCAGCCAT	CTGTTGTTTG	CCCCTCCCCC	GTGCCTTCCT	6450
					AAATGAGGAA	
					GGGGTGGGGT	
					AGGCATGCTG	
					TCTCTCTCTC	
15					GGTACCCAAT	
10					TCGTTTTACA	
					CGCCTTGCAG	
					CCGCACCGAT	
20					AATTGTAAGC	
20					TCAGCTCATT	
	TTTTAACCAA	TAGGCCGAAA	TCGGCAAAAT	CCCTTATAAA	TCAAAAGAAT	7000
	AGACCGAGAT	AGGGTTGAGT	GTTGTTCCAG	TTTGGAACAA	GAGTCCACTA	7050
	TTAAAGAACG	TGGACTCCAA	CGTCAAAGGG	CGAAAAACCG	TCTATCAGGG	7100
	CGATGGCCCA	CTACTCCGGG	ATCATATGAC	AAGATGTGTA	TCCACCTTAA	7150
25	CTTAATGATT	TTTACCAAAA	TCATTAGGGG	ATTCATCAGT	GCTCAGGGTC	7200
	AACGAGAATT	AACATTCCGT	CAGGAAAGCT	TATGATGATG	ATGTGCTTAA	7250
	AAACTTACTC	AATGGCTGGT	TATGCATATC	GCAATACATG	CGAAAAACCT	7300
	AAAAGAGCTT	GCCGATAAAA	AAGGCCAATT	TATTGCTATT	TACCGCGGCT	7350
					ATTTGAAGCT	
30					AGAGGGTCAT	
					AAGCACTTGT	
					GTCATCGATA	
					AATCCAGCCA	
					GTAATGGGCC	
35					TGTAAAGCAC	
J. (J.					TAATGCAGGT	
					AAACTAACCA	
					TCTGCAATAA	
40					TATTCTTCCT	
40					CCGCTAATGA	
					GTAAATAGCA	
					AAAATAAATA	
					CGAATTCAGC	
					AATCATGGTC	
45					CCACACAACA	
					ATGAGTGAGC	
					AGTCGGGAAA	
	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	8350
	GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	8400
50	TCGGTCGTTC	GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	AGGCGGTAAT	8450
	ACGGTTATCC	ACAGAATCAG	GGGATAACGC	AGGAAAGAAC	ATGTGAGCAA	8500
					GCTGGCGTTT	
	TTCCATAGGC	TCCGCCCCCC	TGACGAGCAT	CACAAAAATC	GACGCTCAAG	8600
					GCGTTTCCCC	
55					GCTTACCGGA	
~~					CTCATAGCTC	
					AAGCTGGGCT	
	CACACACA COS	The Comment	COSTOLNOSI	CONTROCTOR	ATCCGGTAAC	8850
	マング はんしん こうしんかん かいかん かいかん かいかん かいかん かいかん かいかん かいかん	- ************************************	しょうしゅうしん スペント	- GB (dddbbdl)ない - ののするのののたます	CACTGGCAGC	8900
60					GGTGCTACAG	
UU						
	AGIICIIGAA	areareact.	rapel a pel Caliet d	went mound	GACAGTATTT	2000

```
GGTATCTGCG CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG 9050
     CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTTGTTT 9100
     GCAAGCAGCA GATTACGCGC AGAAAAAAG GATCTCAAGA AGATCCTTTG 9150
     ATCTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT CACGTTAAGG 9200
     GATTITGGTC AIGAGATTAT CAAAAAGGAT CTTCACCTAG AICCTITTAA 9250
     ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA GTAAACTTOG 9300
     TCTGACAGTT ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG 9350
     TCTATTTCGT TCATCCATAG TTGCCTGACT CCCCGTCGTG TAGATAACTA 9400
     CGATACGGGA GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA 9450
     GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACC AGCCAGCCGG 9500
     AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT 9550
     CTATTAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTCGCC AGTTAATAGT 9600
     TTGCGCAACG TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC 9650
     GTTTGGTATG GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGCGAGTTA 9700
15
     CATGATCCCC CATGTTGTGC AAAAAAGCGG TTAGCTCCTT CGGTCCTCCG 9750
     ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA TGGTTATGGC 9800
     AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTTCTG 9850
     TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCGA 9900
     CCGAGTTGCT CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG 9950
20
     CAGAACTITA AAAGTGCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC 10000
     TCTCAAGGAT CTTACCGCTG TTGAGATCCA GTTEGATGTA ACCCACTCGT 10050
     GCACCCAACT GATCTTCAGC ATCTTTACT TTCACCAGCG TTTCTGGGTG 10100
     AGCAAAAACA GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCGACAC 10150
     GGAAATGITG AATACTCATA CTCTTCCTTT TTCAATATTA TTGAAGCATT 10200
     TATCAGGGTT ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA 10250
     ARATRACAA ATAGGGGTTC CGCGCACATT TCCCCGAAAA GTGCCAC
     SEQ ID NO:30 (pTnMod(Oval/ENT tag/P146/PA) - QUAIL)
30
     CTGACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT GGTGGTTACG
     CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC 100
     TTTCTTCCCT TCCTTTCTCG CCACGTTCGC CGGCATCAGA TTGGCTATTG
                                                             150
     GCCATTGCAT ACGTTGTATC CATATCATAA TATGTACATT TATATTGGCT
                                                             200
35
     CATGTCCAAC ATTACCGCCA TGTTGACATT GATTATTGAC TAGTTATTAA 250
     TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA TGGAGTTCCG 300
     CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
     CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA 400
     GGGACTITICC ATTGACGTCA ATGGGTGGAG TATTTACGGT AAACTGCCCA 450
     CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG 500
     TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA
     TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC 600
     CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG 650
     ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG 700
45
    TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC
     CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG GTCTATATAA 800
     GCAGAGCTCG TTTAGTGAAC CGTCAGATCG CCTGGAGACG CCATCCACGC
     TGTTTTGACC TCCATAGAAG ACACCGGGAC CGATCCAGCC TCCGCGGCCG
     GGAACGGTGC ATTGGAACGC GGATTCCCCG TGCCAAGAGT GACGTAAGTA
50
    CCGCCTATAG ACTCTATAGG CACACCCCTT TGGCTCTTAT GCATGCTATA 1000
     CTGTTTTTGG CTTGGGGCCT ATACACCCCC GCTTCCTTAT GCTATAGGTG 1050
     ATGGTATAGC TTAGCCTATA GGTGTGGGTT ATTGACCATT ATTGACCACT 1100
     CCCCTATTGG TGACGATACT TTCCATTACT AATCCATAAC ATGGCTCTTT 1150
     GCCACAACTA TCTCTATTGG CTATATGCCA ATACTCTGTC CTTCAGAGAC 1200
55
     TGACACGGAC TCTGTATTTT TACAGGATGG GGTCCCATTT ATTATTTACA 1250
     AATTCACATA TACAACAACG CCGTCCCCCG TGCCCGCAGT TTTTATTAAA 1300
     CATAGCGTGG GATCTCCACG CGAATCTCGG GTACGTGTTC CGGACATGGG 1350
     CTCTTCTCCG GTAGCGGCGG AGCTTCCACA TCCGAGCCCT GGTCCCATGC 1400
    CTCCAGCGGC TCATGGTCGC TCGGCAGCTC CTTGCTCCTA ACAGTGGAGG 1450
60
    CCAGACTTAG GCACAGCACA ATGCCCACCA CCACCAGTGT GCCGCACAAG 1500
     GCCGTGGCGG TAGGGTATGT GTCTGAAAAT GAGCGTGGAG ATTGGGCTCG 1550
```

	~~ ~~~~~~~		********		~~~~~~~~	
					GAAGATGCAG	
	GCAGCTGAGT	TGTTGTATTC	TGATAAGAGT	CAGAGGTAAC	TCCCGTTGCG	1650
	GTGCTGTTAA	CGGTGGAGGG	CAGTGTAGTC	TGAGCAGTAC	TEGTTGETGE	1700
			ATAGCTGACA			1750
5			CACCGTCGGA			
2						1800
	TTACATGATT	CTCTTTACCA	ATTCTGCCCC			1850
	CAACAGCTTA	ACGTTGGCTT	GCCACGCATT	ACTTGACTGT	AAAACTCTCA	1900
	CTCTTACCGA	ACTTGGCCGT	AACCTGCCAA	CCAAAGCGAG	AACAAAACAT	1950
		GAATCGACCG			TCCACAAAGA	2000
10						
10			GGCATGCTAG			2050
			ACTGGTCTGA			2100
	TTATGGTATT	GCGAGCTTCA	GTCGCACTAC	ACGGTCGTTC	TGTTACTCTT	2150
	TATGAGAAAG	CGTTCCCGCT	TTCAGAGCAA	TGTTCAAAGA	AAGCTCATGA	2200
	CCAATTTCTA	GCCGACCTTG	CGAGCATTCT	ACCGAGTAAC	ACCACACCGC	2250
15	TOATTOTOAG	TONTOCTOCC	THEREMAIN	Carcarana	ATCCGTTGAG	2300
***					TACAATATGC	
					CATGATATGT	
	CATCTAGTCA	CTCAAAGACT	TTAGGCTATA	AGAGGCTGAC	TAAAAGCAAT	2450
	CCAATCTCAT	GCCAAATTCT	ATTGTATAAA	TCTCGCTCTA	AAGGCCGAAA	2500
20	AAATCAGCGC	TCGACACGGA	CTCATTGTCA	CCACCCGTCA	CCTAAAATCT	2550
			CCATGGGTTC			2600
					AGCGAATGCA	
			ACTTGAAAAG			2700
~ -		CCGAACGAGC			CATGCTGCTA	
25	ATCGCCCTGA	TGCTTCAACT	AACATGTTGG	CTTGCGGGGG	TTCATGCTCA	2800
	GAAACAAGGT	TGGGACAAGC	ACTTCCAGGC	TAACACAGTC	AGAAATCGAA	2850
	ACGTACTCTC	AACAGTTCGC	TTAGGCATGG	AAGTTTTGCG	GCATTCTGGC	2900
		-			TACTAGCTCA	
20					TAATGATCCA	
30			AGATCAGAGC			3050
	TTTTTTGTGG	ATCTGCTGTG	CCTTCTAGTT	GCCAGCCATC	TGTTGTTTGC	3100
	CCCTCCCCCC	TGCCTTCCTT	GACCCTGGAA	GGTGCCACTC	CCACTGTCCT	3150
	TTCCTAATAA	AATGAGGAAA	TTGCATCGCA	TTGTCTGAGT	AGGTGTCATT	3200
					GGATTGGGAA	3250
35			GGATGCGGTG			3300
کی جی						
		CTCTCTCTCT		CTCTCGGTAC		3350
	crerererer	crerererer			TGCTGAAGAA	
	TTGACCCGGT	GACCAAAGGT	GCCTTTTATC	ATCACTTTAA	AAATAAAAAA	3450
	CAATTACTCA	GTGCCTGTTA	TAAGCAGCAA	TTAATTATGA	TTGATGCCTA	3500
40	CATCACAACA	AAAACTGATT	TAACAAATGG	TTGGTCTGCC	TTAGAAAGTA	3550
	TATTTGAACA			ATAATAATAA		3600
		AAGTGATGCC			TTGAAAAAA	
			GGTAAGGTAA			3700
4.4			AGCTTTCCTG			3750
45	GACCCTGAGC	ACTGATGAAT	CCCCTAATGA	TTTTGGTAAA	AATCATTAAG	3800
	TTAAGGTGGA	TACACATCTT	GTCATATGAT	CCCGGTAATG	TGAGTTAGCT	3850
	CACTCATTAG	GCACCCCAGG	CTTTACACTT	TATGCTTCCG	GCTCGTATGT	3900
	ጥሬምርምርላል አም	TOTOLOGOA	TAACAATTTC			3950
					AACAAAAGCT	
60						
50					TCCCCCGGGG	
					TTCAATACAG	
	AACAAAAGCT	TCTATAACTG	TTTATATAAA	GCTATTGTAT	ATTATGATTG	4150
	TCCCTCGAAC	CATGAACACT	CCTCCAGCTG	AATTTCACAA	TTCCTCTGTC	4200
					ATTGCAAGTT	
55					TGAATGGAGC	
~ ~					GCGTCTACAC	
					TTTTGTCTGC	
					TCTTTATTTG	
					ACTTATCTCC	
60	TGCCTAGCAT	GGCTTAGATG	CACGTTGTAC	ATTCAAGAAG	GATCAAATGA	4550
					AGACTAACTA	
	Continue of the training of the	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				~ ~

	5 13 8 2 1378 A A A	N 00123 N 03 (*1001)23123001	car magazza	aammaaa aa aa	PRO PROPERTY COLUMN AN ARRAY	
			CCATCTCTAA			
			TGTAACTGAA			
	TATTTCTCAG	TCTTTTCTCC	AGCAATCCTG	ACGGATTAGA	AGAACTGGCA	4750
			AATTAAAAAC			
5			AACTAAAATC			4850
~						
			CAAACTTTTG			
	CCCAATTCAG	GCTATATATT	CCCCAGGGCT	CAGCCAGTGG	ATCCATGGGC	4950
	TCCATCGGTG	CAGCAAGCAT	GGAATTTTGT	TTTGATGTAT	TCAAGGAGCT	5000
			ACAACATGCT			
10			TTCCTAGGTG			
. 0						
	CAGATAAATA	AGGTTGTTCA	CTTTGATAAA	CTTCCAGGAT	TCGGAGACAG	5150
	TATTGAAGCT	CAGTGTGGCA	CATCTGTAAA	TGTTCACTCT	TCACTTAGAG	5200
	ACATACTCAA	CCAAATCACC	AAACAAAATG	ATGCTTATTC	GTTCAGCCTT	5250
			AGAGACATAC			
15						
2.3			ATAGAGGAGG			
	AAACAGCTGC	AGATCAAGCC	AGAGGCCTCA	TCAATGCCTG	GGTAGAAAGT	5400
	CAGACAAACG	GAATTATCAG	AAACATCCTT	CAGCCAAGCT	CCGTGGATTC	5450
	TCANACTGCA	argorcergo	TTAATGCCAT	TGCCTTCABG	GGACTGTGGG	5500
			GACACGCAAA			
20						
£.0			GCAGATGATG			
	AGTGGCATCA	ATGGCTTCTG	AGAAAATGAA	GATCCTGGAG	CTTCCATTTG	5650
	CCAGTGGAAC	AATGAGCATG	TTGGTGCTGT	TGCCTGATGA	TGTCTCAGGC	5700
			AATCAGCTTT			
			AGAGGAAGGT			
25						
23			AACCTCACAT			
	ATTACTGACC	TGTTCAGCTC	TTCAGCCAAT	CTGTCTGGCA	TCTCCTCAGT	5900
	AGGGAGCCTG	AAGATATCTC	AAGCTGTCCA	TGCAGCACAT	GCAGAAATCA	5950
			GTAGGCTCAG			
	a creas a cas are	TTROUGHOUS CONTRACTOR	CCATCCATTC	Citi Citi Citi Citi Citi Citi Citi Citi	man range and	CACA.
30						
SU			TCTTTGGCAG			- 1-11
	CAGATGACGC	ACCAGCAGAT	GACGCACCAG	CAGATGACGC	ACCAGCAGAT	6150
	GACGCACCAG	CAGATGACGC	ACCAGCAGAT	GACGCAACAA	CATGTATCCT	6200
			TCGGCCTGCT			
35			CTGGCAAAAC			
33			AATAAAAGAT			
	TGTTGGTTTT	TTGTGGATCT	GCTGTGCCTT	CTAGTTGCCA	GCCATCTGTT	6400
	GTTTGCCCCT	CCCCCGTGCC.	TTCCTTGACC	CTGGAAGGTG	CCACTCCCAC	6450
			AGGAAATTGC			
AG			GGGGTGGGGC			
40			TECTEGGGAT			
	CTCTCTCTCT	CTCTCTCTCT	CTCTCTCTCT	CTCTCTCTCT	CGGTACCTCT	6650
	CTCGAGGGGG	GGCCCGGTAC	CCAATTCGCC	CTATAGTGAG	TOGTATTACG	6700
			TTACAACGTC			
	CONTROPORTA	mmxxmmcccm	TATAL TOURS	CACCACACACACACACACACACACACACACACACACAC	ADDRESS OF THE STREET	2120
45	G: TWC/CMMC	A LEAST FORES	TGCAGCACAT	CECTETETER	CCMOLIGIGG	0000
48 J			CCGATCGCCC			
	TGAATGGCGA	ATGGAAATTG	TAAGCGTTAA	TATTTTGTTA	AAATTCGCGT	6900
			TCATTTTTTA			
			AGAATAGACC			
ca	1008011100	MACAMONULL	CACTATTARA	GAACGIGGAC	TOCAACGTCA	7050
50	AAGGGCGAAA	AACCGTCTAT	CAGGGCGATG	GCCCACTACT	CCGGGATCAT	7100
	ATGACAAGAT	GTGTATCCAC	CTTAACTTAA	TGATTTTTAC	CAAAATCATT	7150
	AGGGGATTCA	TCAGTGCTCA	GGGTCAACGA	GAATTAACAT	TOCGTCAGGA	7200
	AAGCTTATGA	TGATGATGTG	CTTAAAAACT	ተልጦተያ ለማማኅ	California	7250
	The Water Comment of the Comment of	a Carconsons	AACCTAAAAG	**************************************	JUINIII	7500
5 <i>5</i>	ATTENUE AND A STATE A	ANNUAL CONTRACT	ANCH I AMAMS	MUCLICUGA	CHERRARAS	7300
الما ليا	CAATTTATTG	CIATTTACCG	CGGCTTTTTA	TIGAGCTTGA	AAGATAAATA	7350
			AAGCTAAATC			
	CCTCTTGGGT	TATCAAGAGG	GTCATTATAT	TTCGCGGAAT	AACATCATTT	7450
			CTTGTCTCCT			
	GGGGTTAACA	TGARGCTCAT	CGATAGCAGG	ATEATRATE	KOT KARAKARA	7667
60	MANAGER AND AND A	************	POSSER BOSSE	CALBRAMAR	DOUGHNANGC	7330
QQ.	AMACCAATA	APCCARATCC	AGCCATCCCA	AATTGGTAGT	GAATGATTAT	7600
	AAATAACAGC	AAACAGTAAT	GGGCCAATAA	CACCGGTTGC	ATTGGTAAGG	7650

```
CTCACCAATA ATCCCTGTAA AGCACCTTGC TGATGACTCT TIGTTTGGAT 7700
     AGACATCACT COCTGTAATG CAGGTAAAGC GATCCCACCA CCAGCCAATA 7750
     AAATTAAAAC AGGGAAAACT AACCAACCTT CAGATATAAA CGCTAAAAAG 7800
     GCAAATGCAC TACTATCTGC AATAAATCCG AGCAGTACTG CCGTTTTTC 7850
    GCCCCATTTA GTGGCTATTC TTCCTGCCAC AAAGGCTTGG AATACTGAGT 7900
     GTAAAAGACC AAGACCCGCT AATGAAAAGC CAACCATCAT GCTATTCCAT 7950
     CCAAAACGAT TTTCGGTAAA TAGCACCCAC ACCGTTGCGG GAATITGGCC 8000
     TATCAATTGC GCTGAAAAAT AAATAATCAA CAAAATGGCA TCGTTTTAAA 8050
     TAAAGTGATG TATACCGAAT TCAGCTTTTG TTCCCTTTAG TGAGGGTTAA 8100
10
     TTGCGCGCTT GGCGTAATCA TGGTCATAGC TGTTTCCTGT GTGAAATTGT 8150
     TATCCGCTCA CAATTCCACA CAACATACGA GCCGGAAGCA TAAAGTGTAA 8200
     AGCCTGGGGT GCCTAATGAG TGAGCTAACT CACATTAATT GCGTTGCGCT 8250
     CACTGCCCGC TTTCCAGTCG GGAAACCTGT CGTGCCAGCT GCATTAATGA 8300
     ATCGGCCAAC GCGCGGGAG AGGCGGTTTG CGTATTGGGC GCTCTTCCGC 8350
15
     TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG 8400
     TATCAGCTCA CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT 8450
     AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG 8500
     TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCTGACG 8550
     AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA 8600
20
     CTATAAAGAT ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC 8650
     TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTTCGG 8700
     GAAGCGTGGC GCTTTCTCAT AGCTCACGCT GTAGGTATCT CAGTTCGGTG 8750
     TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC CCGTTCAGCC 8800
     CGACCGCTGC GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA 8850
25
     GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA 8900
     GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA 8950
     CGGCTACACT AGAAGGACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG 9000
     TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAACCACC 9050
     GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA CGCGCAGAAA 9100
30
     AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC 9150
     AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA 9200
     AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT 9250
     CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA 9300
     GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGTTGCC 9350
35
     TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG 9400
     CCCCAGTGCT GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT 9450
     TATCAGCAAT AAACCAGCCA GCCGGAAGGG CCGAGCGCAG AAGTGGTCCT 9500
     GCAACTTTAT CCGCCTCCAT CCAGTCTATT AATTGTTGCC GGGAAGCTAG 9550
     AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG CAACGTTGTT GCCATTGCTA 9600
40
     CAGGCATCGT GGTGTCACGC TCGTCGTTTG GTATGGCTTC ATTCAGCTCC 9650
     GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA 9700
     AGCGGTTAGC TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG 9750
     CAGTGTTATC ACTCATGGTT ATGGCAGCAC TGCATAATTC TCTTACTGTC 9800
     ATGCCATCCG TAAGATGCTT TTCTGTGACT GGTGAGTACT CAACCAAGTC 9850
45
     ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC CCGGCGTCAA 9900
     TACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT 9950
     GGAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG 10000
     ATCCAGTTCG ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT 10050
     TTACTTCAC CAGCGTTTCT GGGTGAGCAA AAACAGGAAG GCAAAATGCC 10100
50
     GCAAAAAGG GAATAAGGGC GACACGGAAA TGTTGAATAC TCATACTCTT 10150
     CCTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG 10200
     GATACATATT TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC 10250
     ACATTTCCCC GAAAAGTGCC AC
55
     SEQ ID NO:31 (pTnMod(Oval/ENT tag/Proins/PA) - Chicken)
     CTGACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT GGTGGTTACG
     CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC 100
60
     TTTCTTCCCT TCCTTCTCG CCACGTTCGC CGGCATCAGA TTGGCTATTG
     GCCATTGCAT ACGITGTATC CATATCATAA TATGTACATT TATATTGGCT 200
                                      124
```

			200			
					TAGTTATTAA	
					TGGAGTTCCG	
					CCCAACGACC	
æ					AACGCCAATA	
5	GGGACTTTCC	ATTGACGTCA	ATGGGTGGAG	TATTTACGGT	AAACTGCCCA	450
	CTTGGCAGTA	CATCAAGTGT	ATCATATGCC	AAGTACGCCC	CCTATTGACG	500
	TCAATGACGG	TAAATGGCCC	GCCTGGCATT	ATGCCCAGTA	CATGACCTTA	550
	TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA	TCGCTATTAC	600
	CATEGTGATG	CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA	TAGCGGTTTG	650
10				TTGACGTCAA		700
	TTTTGGCACC	AAAATCAACG	GGACITTCCA	AAATGTCGTA	ACAACTCCGC	750
	CCCATTGACG	CAAATGGGCG	GTAGGCGTGT	ACGGTGGGAG	GTCTATATAA	800
				CCTGGAGACG		850
				CGATCCAGCC		900
15				TGCCAAGAGT		950
	CCGCCTATAG	ACTCTATAGG	CACACCCCTT	TEGETETTAT	GCATGCTATA	1000
	CTGTTTTTGG	CTTGGGGCCT	ATACACCCCC	GCTTCCTTAT	GCTATAGGTG	3050
	ATGGT&TAGC	TTAGCCTATA	GGTGTGGGTT	ATTGACCATT	ATTOROGE	1100
	CCCCTATTGG	TGACGATACT	TTCCATTACT	AATCCATAAC	Paristandinana.	1150
20	GCCACAACTA	TOTOTATTEG	CTATATGCCA	ATACTOTISTO	CTTCAGAGAC	
	TGACACGGAC	TCTGTATTTT	TACAGGATGG	Character and a	ATTATTTACA	2250
	ANTICACATA	TACARCARC	corrected	TOCCCOATES	TTTTATTAAA	1200
	CATAGOGTOG	GATCTCCACG	CCANTOTOGO	CONTROL CONTROL	CGGACATGGG	1200
	CTCTTCTCCG	GTAGCGGCGG	ACCOMMICCOS	TOTAL STATES	GGTCCCATGC	2220
25	CTCCAGCGGC	TCATGGTCGC	TOGGOVECTO	COMMONMA	ACAGTGGAGG	3.450
	CCAGACTTAG	GCACAGCACA	argreeneere	CONTRACTOR	GCCGCACAAG	3800
					ATTGGGCTCG	
					GAAGATGCAG	
					TCCCGTTGCG	
30	GTGCTGTTAA	CCCTCCAACCC	CACROMACMC	CACACCACAC	TCGTTGCTGC	1920
~ 0	Cacacacaca	7 CC 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	CHOIGINGIC	CAGCAGIAC		1700
	COOCCCCCC	TOURONCE AT	AINGCIGACA	CALLACACA	ACTTGATATT	1750
	CCW17400177	1110100000000	CHCCOLCGGW	GAATTACACT	ACTIGATATI	
	DARCATOATT	NOCITIACCA.	ATTUIGNOVEW	GARITALACT	TAAAACGACT	1850
35	OTTOTALOGO	ACGITOGCII.	CCACGCATT	CCAAAGCGAG	AAAACTCTCA	
27 27	CICIIMCOM	WC11GBCCB1	AMCUTGCCAM	CUAAAGCGAG	AACAAAACAT	1950
	CONTRACTOR	CHAICGACCG	ALIGITAGGI	CTTTATCTGT	TCCACAAAGA	
	CATCOCCA	GIMING COST	ACTICOTO ACTUAL	CITTATCIGI	TOGGGAATAC	2050
	CALCALL CALCALL	GIACIIGIIG	AUTOGICTOR	TATTCGTGAG	CAAAAACGAC	
40	TIMEGRAPHE	COMMODIA	GIUGUACTAC	ACGGTCGTTC	TGTTACTCTT	2150
***	CALL STRUCTURES	CGITCCCCCT	TTCAGAGCAA	TGTTCAAAGA	AAGCTCATGA	2200
	COMMITTUIN COMMITTUIN	GCCGACUTIG	CGAGCATTCT	ACCGAGTAAC	ACCACACEGC	2250
	1 CM11G1CMG	TGATGCTGGC	TTTAAAGTGC	CATGGTATAA	ATCCGTTGAG	
	AAGCTGGGTT	GGIACIGGII	AAGTUGAGTA	AGAGGAAAAG	TACAATATGC	2350
45	AGACUTAGGA	GUGUAAAACT	GGAAACCTAT	CAGCAACTTA	CATGATATGT	2400
**.2	CAILIAGICA	CICAAAGACI	TIAGGCTATA	AGAGGCTGAC	TAAAAGCAAT	2450
				TCTCGCTCTA		2500
				CCACCCGTCA		2550
	ACTCAGCGTC		CCATGGGTTC	TAGCAACTAA	CTTACCTGTT	2600
50	GAAATTCGAA	CACCCAAACA	ACTIGITAAT	ATCTATTCGA	AGCGAATGCA	2650
30	GATTGAAGAA	ACCTTCCGAG	ACTTGAAAAG	TCCTGCCTAC	GGACTAGGCC	2700
	TACGCCATAG	CCGAACGAGC	AGCTCAGAGC	GTTTTGATAT	CATGCTGCTA	2750
	ATCCCCCTGA	TGCTTCAACT	AACATGTTGG	CTTGCGGGGG	TTCATGCTCA	2800
	GAAACAAGGT	TGGGACAAGC	ACTTCCAGGC	TAACACAGTC	AGAAATCGAA	2850
66	ACGTACTCTC	AACAGTTCGC	TTAGGCATGG	AAGITITGCG	GCATTCTGGC	2900
55	TACACAATAA	CAAGGGAAGA	CTTACTCGTG	GCTGCAACCC	TACTAGCTCA	2950
	AAATTTATTC	ACACATGGTT	ACGCTTTGGG	Gaaattatga	TAATGATCCA	3000
	GATCACTTCT	GGCTAATAAA	AGATCAGAGC	TCTAGAGATC	TGTGTGTTGG	3050
	TITTTTTTTGTGG	ATCTGCTGTG	CCTTCTAGTT	GCCAGCCATC	TGTTGTTTGC	3100
cn.	cccrccccc	TECCTTCCTT	GACCCTGGAA	GGTGCCACTC	CCACTGTCCT	3150
60	TTCCTAATAA	AATGACGAAA	TTGCATCGCA	TIGICTGAGT.	AGGTGTCATT	3200
	CTATTCTGGG	GGGTGGGGTG	GGGÇAGCACA	GCAAGGGGGA	GGATTGGGAA	3250

	Canaamacon	accaractica	oantacaara	ASCICIONATIVA PACIA	GTACCTCTCT	3300
					CICICICICI	
					TGCTGAAGAA	
_	TTGACCCGGT	GACCAAAGGT	GCCTTTTATC	ATCACTTTAA	AAAAAAAAA	3450
5	CAATTACTCA	GTGCCTGTTA	TAAGCAGCAA	TTAATTATGA	TTGATGCCTA	3500
	CATCACAACA	AAAACTGATT	TAACAAATGG	TTGGTCTGCC	TTAGAAAGTA	3550
	ana apprenar	ጥልንግግግግርልግ	OPPRATERIES	AATAATAATA	AAACCTTATC	3600
					TTGAAAAAA	
• ^					CAGCAAATTG	
10					AATTCTCGTT	
	GACCCTGAGC	ACTGATGAAT	CCCCTAATGA	TTTTGGTAAA	AATCATTAAG	3800
	TTAAGGTGGA	TACACATCTT	GTCATATGAT	CCCGGTAATG	TGAGTTAGCT	3850
	CACTCATTAG	GCACCCCAGG	CTTTACACTT	TATGCTTCCG	GCTCGTATGT	3900
	TGTGTGGAAT	TGTGAGCGGA	TAACAATTTC	ACACAGGAAA	CAGCTATGAC	3950
15					AACAAAAGCT	
A. W					TCCCCCGGGG	
					TTCAATACAG	
					ATTATGATTG	
	TCCCTCGAAC	CATGAACACT	CCTCCAGCTG	AATTTCACAA	TTCCTCTGTC	4200
20	ATCTGCCAGG	CCATTAAGTT	ATTCATGGAA	GATCTTTGAG	GAACACTGCA	4250
	AGTTCATATC	ATAMACACAT	TTGAAATTGA	GTATTGTTTT	GCATTGTATG	4300
	GAGGTATGTT	TTGCTGTATC	CTCAGAAAAA	AAGTTTGTTA	TAAAGCATTC	4350
					AAAGAAAGTG	
					GCATGCTTCT	
25						
25					TTGTTCTCAC	
					ACAAGAAGGA	
					TAATAAGCAC	
	ACTAACTAAT	AATTGCTAAT	TATGTTTTCC	ATCTCTAAGG	TTCCCACATT	4650
	TTTCTGTTTT	CTTAAAGATC	CCATTATCTG	GTTGTAACTG	AAGCTCAATG	4700
30					AGTCCTGATG	
20					TAAAAACTAA	
					TAAAATCTAA	
					ACTTCTGAAG	
res er					CAGGGCTCAG	
35					TGTTTTGATG	
	TATTCAAGGA	GCTCAAAGTC	CACCATGCCA	ATGAGAACAT	CTTCTACTGC	5050
	CCCATTGCCA	TCATGTCAGC	TCTAGCCATG	GTATACCTGG	GTGCAAAAGA	5100
	CAGCACCAGG	ACACAGATAA	ATAAGGTTGT	TCGCTTTGAT	AAACTTCCAG	5150
					AAACGTTCAC	
40					ATGATGTTTA	
					TACCCAATCC	
					AGGCTTGGAA	
					TCATCAATTC	
					CTTCAGCCAA	
45	GCTCCGTGGA	TTCTCAAACT	GCAATGGTTC	TGGTTAATGC	CATTGTCTTC	5500
	AAAGGACTGT	GGGAGAAAAC	ATTTAAGGAT	GAAGACACAC	AAGCAATGCC	5550
	TTTCAGAGTG	ACTGAGCAAG	AAAGCAAACC	TGTGCAGATG	ATGTACCAGA	5600
	TTGGTTTATT	TAGAGTGGCA	TCAATGGCTT	CTGAGAAAAT	GAAGATCCTG	5650
	CACCTTCCAT	TTGCCACTCG	GACAATGAGC	argerggrac	TGTTGCCTGA	5700
50					TTTGAAAAAC	
50					GATCAAAGTG	
					CATCTGTCTT	
					AATCTGTCTG	
	GCATCTCCTC	AGCAGAGAGC	CTGAAGATAT	CTCAAGCTGT	CCATGCAGCA	5950
55	CATGCAGAAA	TCAATGAAGC	AGGCAGAGAG	GTGGTAGGGT	CAGCAGAGGC	6000
	TGGAGTGGAT	GCTGCAAGCG	TCTCTGAAGA	ATTTAGGGCT	GACCATCCAT	6050
	TOCTOTTOTG	TATCAAGCAC	ATCGCAACCA	ACGCCGTTCT	CTTCTTTGGC	6100
					CAGATGACGC	
	A Market Carlot And and the Control of the Control	Canada tagana	CACATCACCA	ACCAGCAGAT	GACGCACCAG	6200
60						
UU					CTGGATCGGC	
	CTGCTGGATG	ACGATGACAA	ATTTGTGAAC	CAACACCTGT	GCGGCTCACA	6300

	CCTGGTGGAA	GCTCTCTACC	TAGTGTGCGG	GGAACGAGGC	TTCTTCTACA	6350
	CACCCAAGAC	CCGCCGGGAG	GCAGAGGACC	TGCAGGTGGG	GCAGGTGGAG	6400
	CTGGGCGGGG	GCCCTGGTGC	AGGCAGCCTG	CAGCCCTTGG	CCCTGGAGGG	6450
	GTCCCTGCAG	AAGCGTGGCA	TTGTGGAACA	ATGCTGTACC	AGCATCTGCT	6500
5	CCCTCTACCA	GCTGGAGAAC	TACTGCAACT	AGGGCGCCTG	GATCCAGATC	6550
	ACTTCTGGCT	AATAAAAGAT	CAGAGCTCTA	GAGATCTGTG	TGTTGGTTTT	6600
	TTGTGGATCT	GCTGTGCCTT	CTAGTTGCCA	GCCATCTGTT	GITTGCCCCT	6630
	cccccaracc	TTCCTTGACC	CTGGAAGGTG	CCACTCCCAC	TGTCCTTTCC	6700
	TAATAAAATG	AGGAAATTGC	ATCGCATTGT	CTGAGTAGGT	GTCATTCTAT	6750
10	TCTGGGGGGT	GGGGTGGGGC	AGCACAGCAA	GGGGGAGGAT	TGGGAAGACA	6800
					CTCTCTCTCT	
					CTCGAGGGGG	
					CGCGCTCACT	
					GTTACCCAAC	
15				A. C.	TAATAGCGAA	
					TGAATGGCGA	
					TAAATTTTTG	
					AAAATCCCTT	
					TCCAGTTTGG	
20					AAGGGCGAAA	
200					ATGACAAGAT	
					AGGGGATTCA	
					AAGCTTATGA	
25					ATATCGCAAT	
ال ما					CAATTTATTG	
					AAATAGATAG	
					CCTCTTGGGT	
					GGTGACGAAA	
30					GGGGTTAACA	
30					TAAACCAATA	
					AAATAACAGC	
					CTCACCAATA	
					AGACATCACT	
35					AAATTAAAAC	
23					GCAAATGCAC	
					GCCCCATTTA	
					GTAAAAGACC	
					CCAAAACGAT	
40					TATCAATTGC	
40					TAAAGTGATG	
					TTGCGCGCTT	
					TATCCGCTCA	
					AGCCTGGGGT	
3.5					CACTGCCCGC	
45					ATCGGCCAAC	
	GCGCGGGGAG	AGGCGGTTTG	CGTATTGGGC	GCTCTTCCGC	TTCCTCGCTC	8600
					TATCAGCTCA	
	CTCAAAGGCG	GTAATACGGT	TATCCACAGA	ATCAGGGGAT	AACGCAGGAA	8700
	AGAACATGTG	AGCAAAAGGC	CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC	8750
50	GCGTTGCTGG	CGTTTTTCCA	TAGGCTCCGC	CCCCCTGACG	AGCATCACAA	8800
					CTATAAAGAT	
	ACCAGGCGTT	TCCCCCTGGA	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	8900
	CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	8950
					TAGGTCGTTC	
55	GCTCCAAGCT	GGGCTGTGTG	CACGAACCCC	CCGTTCAGCC	CGACCGCTGC	9050
	GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA	GACACGACTT	9100
	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	9150
					CGGCTACACT	
					TTACCTTCGG	
60	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	ACAAACCACC	GCTGGTAGCG	9300
	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	CGCGCAGAAA	AAAAGGATCT	9350

```
CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC AGTGGAACGA 9400
     AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA AGGATCTTCA 9450
     CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT CTAAAGTATA 9500
    TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA GTGAGGCACC 9550
    TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGTTGCC TGACTCCCCG 9600
     TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG CCCCAGTGCT 9650
     GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT TATCAGCAAT 9700
    AAACCAGCCA GCCGGAAGGG CCGAGCGCAG AAGTGGTCCT GCAACTTTAT 9750
     CCGCCTCCAT CCAGTCTATT AATTGTTGCC GGGAAGCTAG AGTAAGTAGT 9800
10
    TCGCCAGTTA ATAGTTTGCG CAACGTTGTT GCCATTGCTA CAGGCATCGT 9850
     GGTGTCACGC TCGTCGTTTG GTATGCTTC ATTCAGCTCC GGTTCCCAAC 9900
     GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA AGCGGTTAGC 9950
     TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG CAGTGTTATC 10000
     ACTCATGGTT ATGGCAGCAC TGCATAATTC TCTTACTGTC ATGCCATCCG 10050
15
    TAAGATGCTT TTCTGTGACT GGTGAGTACT CAACCAAGTC ATTCTGAGAA 10100
     TAGTGTATGC GGCGACCGAG TTGCTCTTGC CCGGCGTCAA TACGGGATAA 10150
     TACCCCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT GGAAAACGTT 10200
     CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG ATCCAGTTCG 10250
     ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT TTACTTTCAC 10300
    CAGCGTTTCT GGGTGAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAAGG 10350
     GAATAAGGGC GACACGGAAA TGTTGAATAC TCATACTCTT CCTTTTTCAA 10400
     TATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT 10450
     TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC ACATTTCCCC 10500
     GAAAAGTGCC AC
                                                            10512
25
     SEQ ID NO:32 (pTnMod(Oval/ENT tag/Proins/PA) - QUAIL)
```

	CTGACGCGCC	CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	GGTGGTTACG	50
30	CGCAGCGTGA	CCGCTACACT	TGCCAGCGCC	CTAGCGCCCG	CTCCTTTCGC	100
	TITCTTCCCT	TCCTTTCTCG	CCACGTTCGC	CGGCATCAGA	TTGGCTATTG	150
	GCCATTGCAT	ACGTTGTATC	CATATCATAA	TATGTACATT	TATATTGGCT	200
	CATGTCCAAC	ATTACCGCCA	TGTTGACATT	GATTATTGAC	TAGTTATTAA	250
	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA	TGGAGTTCCG	300
35	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC	350
	CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT	AACGCCAATA	400
	GGGACTTTCC	ATTGACGTCA	ATGGGTGGAG	TATTTACGGT	AAACTGCCCA	450
	CTTGGCAGTA	CATCAAGTGT	ATCATATGCC	AAGTACGCCC	CCTATTGACG	500
	TCAAIGACGG	TAAATGGCCC	GCCTGGCATT	ATGCCCAGTA	CATGACCTTA	550
40	TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA	TCGCTATTAC	600
	CATGGTGATG	CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA	TAGCGGTTTG	650
	ACTCA CGGGG	ATTTCCAAGT	CTCCACCCCA	TTGACGTCAA	TGGGAGTTTG	700
	TTTTEGCACC	AAAATCAACG	GGACTTTCCA	AAATGTCGTA	ACAACTCCGC	750
	CCCATTGACG	CAAATGGGCG	GTAGGCGTGT	ACGGTGGGAG	GTCTATATAA	800
45	GCAGAGCTCG	TTTAGTGAAC	CGTCAGATCG	CCTGGAGACG	CCATCCACGC	850
	TGTTTTGACC	TCCATAGAAG	ACACCGGGAC	CGATCCAGCC	TCCGCGGCCG	900
	GGAACGGTGC	ATTGGAACGC	GGATTCCCCG	TGCCAAGAGT	GACGTAAGTA	950
	CCGCCTATAG	ACTCTATAGG	CACACCCCTT	TGGCTCTTAT	GCATGCTATA	1000
	CTGTTTTTGG	CTTGGGGCCT	ATACACCCCC	GCTTCCTTAT	GCTATAGGTG	1050
50	ATGGTATAGC	TTAGCCTATA	GGTGTGGGTT	ATTGACCATT	ATTGACCACT	1100
	CCCCTATTGG	TGACGATACT	TTCCATTACT	AATCCATAAC	ATGGCTCTTT	1150
	GCCACAACTA	TCTCTATTGG	CTATATGCCA	ATACTCTGTC	CTTCAGAGAC	1200
	TGACACGGAC	TCTGTATTTT	TACAGGATGG	GGTCCCATTT	ATTATTTACA	1250
	AATTCACATA	TACAACAACG	CCGTCCCCCG	TGCCCGCAGT	TTTTATTAAA	1300
55	CATAGCGTGG	GATCTCCACG	CGAATCTCGG	GTACGTGTTC	CGGACATGGG	1350
	CTCTTCTCCG	GTAGCGGCGG	AGCTTCCACA	TCCGAGCCCT	GGTCCCATGC	1400
	CTCCAGCGGC	TCATGGTCGC	TCGGCAGCTC	CTTGCTCCTA	ACAGTGGAGG	1450
	CCAGACTTAG	GCACAGCACA	ATGCCCACCA	CCACCAGTGT	GCCGCACAAG	1500
	GCCGTGGCGG	TAGGGTATGT	GTCTGAAAAT	GAGCGTGGAG	ATTGGGCTCG	1550
60	CACGGCTGAC	GCAGATGGAA	GACTTAAGGC	AGCGGCAGAA	GAAGATGCAG	1600
	GCAGCTGAGT	TGTTGTATTC	TGATAAGAGT	CAGAGGTAAC	TCCCGTTGCG	1650

128

ATLLIB02 133492.1

```
GTGCTGTTAA CGGTGGAGGG CAGTGTAGTC TGAGCAGTAC TCGTTGCTGC 1700
      CGCGCGCGC ACCAGACATA ATAGCTGACA GACTAACAGA CTGTTCCTTT 1750
     CCATGGGTCI TTTCTGCAGT CACCGTCGGA CCATGTGTGA ACTTGATATT 1800
     TTACATGATT CTCTTTACCA ATTCTGCCCC GAATTACACT TAAAACGACT 1850
     CAACAGCTTA ACGTTGGCTT GCCACGCATT ACTTGACTGT AAAACTCTCA 1900
      CTCTTACCGA ACTTGGCCGT AACCTGCCAA CCAAAGCGAG AACAAAACAT 1950
     AACATCAAAC GAATCGACCG ATTGTTAGGT AATCGTCACC TCCACAAAGA 2000
     GCGACTCGCT GTATACCGTT GGCATGCTAG CTTTATCTGT TCGGGAATAC 2050
     GATGUCCATI GTACTTGTTG ACTGGTCTGA TATTCGTGAG CAARAACGAC 2100
10
     TTATEGTATT GCGAGCTTCA GTCGCACTAC ACGGTCGTTC TGTTACTCTT 2150
     TATGAGAAAG COTTCCCGCT TTCAGAGCAA TGTTCAAAGA AAGCTCATGA 2200
     CCAATTICTA GCCGACCTTG CGAGCATTCT ACCGAGTAAC ACCACACCGC 2250
     TCATTGTCAG TGATGCTGGC TTTAAAGTGC CATGGTATAA ATCCGTTGAG 2300
     AAGCTGGGTT GGTACTGGTT AAGTCGAGTA AGAGGAAAAG TACAATATGC 2350
15
     AGACCTAGGA GCGGAAAACT GGAAACCTAT CAGCAACTTA CATGATATGT 2400
     CATCTAGTCA CTCAAAGACT TTAGGCTATA AGAGGCTGAC TAAAAGCAAT 2450
     CCAATCICAT GCCAAATTCT ATTGTATAAA TCTCGCTCTA AAGGCCGAAA 2500
     AAATCAGCGC TCGACACGGA CTCATTGTCA CCACCCGTCA CCTAAAATCT 2550
     ACTCAGCGTC GGCAAAGGAG CCATGGGTTC TAGCAACTAA CTTACCTGTT 2600
20
     GAAATTCGAA CACCCAAACA ACTTGTTAAT ATCTATTCGA AGCGAATGCA 2650
     GATTGAAGAA ACCTTCCGAG ACTTGAAAAG TCCTGCCTAC GGACTAGGCC 2700
     TACGCCATAG CCGAACGAGC AGCTCAGAGC GTTTTGATAT CATGCTGCTA 2750
     ATCGCCCTGA TGCTTCAACT AACATGTTGG CTTGCGGGGG TTCATGCTCA 2800
     GAAACAAGGT TGGGACAAGC ACTTCCAGGC TAACACAGTC AGAAATCGAA 2850
25
     ACGTACTCTC AACAGTTCGC TTAGGCATGC AAGTTTTGCG GCATTCTGGC 2900
     TACACAATAA CAAGGGAAGA CTTACTCGTG GCTGCAACCC TACTAGCTCA 2950
     AAATTTATTC ACACATGGTT ACGCTTTGGG GAAATTATGA TAATGATCCA 3000
     GATCACTTCT GGCTAATAAA AGATCAGAGC TCTAGAGATC TGTGTGTTGG 3050
     TTTTTTGTGG ATCTGCTGTG CCTTCTAGTT GCCAGCCATC TGTTGTTTGC 3100
30
     CCCTCCCCCG TGCCTTCCTT GACCCTGGAA GGTGCCACTC CCACTGTCCT 3150
     TTCCTAATAA AATGAGGAAA TTGCATCGCA TTGTCTGAGT AGGTGTCATT 3200
     CTATTCTGGG GGGTGGGCTG GGGCAGCACA GCAAGGGGGA GGATTGGGAA 3250
     GACAATAGCA GGCATGCTGG GGATGCGGTG GGCTCTATGG GTACCTCTCT 3300
     CTCTCTCTCT CTCTCTCTCT CTCTCTCTCT CTCTCGGTAC CTCTCTCTCT 3350
35
     CTCTCTCTCT CTCTCTCTCT CGGTACCAGG TGCTGAAGAA 3400
     TTGACCCGGT GACCAAAGGT GCCTTTTATC ATCACTTTAA AAATAAAAAA 3450
     CAATTACTCA GTGCCTGTTA TAAGCAGCAA TTAATTATGA TTGATGCCTA 3500
     CATCACAACA AAAACTGATI TAACAAATGG TTGGTCTGCC TTAGAAAGTA 3550
     TATTTGAACA TTATCTTGAT TATATTATTG ATAATAATAA AAACCTTATC 3600
40
     CCTATCCAAG AAGTGATGCC TATCATTGGT TGGAATGAAC TTGAAAAAAA 3650
     TTAGCCTTGA ATACATTACT GGTAAGGTAA ACGCCATTGT CAGCAAATTG 3700
     ATCCAAGAGA ACCAACTTAA AGCTTTCCTG ACGGAATGTT AATTCTCGTT 3750
     GACCCTGAGC ACTGATGAAT CCCCTAATGA TTTTGGTAAA AATCATTAAG 3800
     TTAAGGTGGA TACACATCTT GTCATATGAT CCCGGTAATG TGAGTTAGCT 3850
45
     CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT 3900
     TGTGTGGAAT TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC 3950
     CATGATTACG CCAAGCGCGC AATTAACCCT CACTAAAGGG AACAAAAGCT 4000
     GGAGCTCCAC CGCGGTGGCG GCCGCTCTAG AACTAGTGGA TCCCCCGGGG 4050
     AGGTCAGAAT GGTTTCTTTA CTGTTTGTCA ATTCTATTAT TTCAATACAG 4100
50
     AACAAAAGCT TCTATAACTG AAATATATTT GCTATTGTAT ATTATGATTG 4150
     TCCCTCGAAC CATGAACACT CCTCCAGCTG AATTTCACAA TTCCTCTGTC 4200
     ATCTGCCAGG CTGGAAGATC ATGGAAGATC TCTGAGGAAC ATTGCAAGTT 4250
     CATACCATAA ACTCATTTGG AATTGAGTAT TATTTTGCTT TGAATGGAGC 4300
     TATGTTTTGC AGTTCCCTCA GAAGAAAAGC TTGTTATAAA GCGTCTACAC 4350
55
     CCATCAAAAG ATATATTAA ATATTCCAAC TACAGAAAGA TTTTGTCTGC 4400
     TCTTCACTCT GATCTCAGTT GGTTTCTTCA CGTACATGCT TCTTTATTTG 4450
CCTATTTTGT CAAGAAAATA ATAGGTCAAG TCCTGTTCTC ACTTATCTCC 4560
     TGCCTAGCAT GGCTTAGATG CACGTTGTAC ATTCAAGAAG GATCAAATGA 4550
     AACAGACTIC IGGICIGITA CAACAACCAI AGIAATAAAC AGACTAACTA 4600
60
     ATAATTGCTA ATTATGTTTT CCATCTCTAA GGTTCCCACA TTTTTCTGTT 4650
     TTAAGATCCC ATTATCTGGT TGTAACTGAA GCTCAATGGA ACATGAACAG 4700
```

	manamana a	*** **********************************				
					AGAACTGGCA	
	GAAAACACTT	TGTTACCCAG	AATTAAAAAC	TAATATTTGC	TCTCCCTTCA	4800
	ATCCAAAATG	GACCTATTGA	AACTAAAATC	TGACCCAATC	CCATTAAATT	4850
	ATTTCTATGG	CGTCAAAGGT	CAAACTTTTG	AAGGGAACCT	gregereger	4900
5					ATCCATGGGC	
~						
					TCAAGGAGCT	
					TTTGCCATCT	
	TGTCAACTCT	GGCCATGGTC	TICCTAGGTG	CAAAAGACAG	CACCAGGACC	5100
	CAGATAAATA	AGGTTGTTCA	CTTTGATAAA	CTTCCAGGAT	TCGGAGACAG	\$150
10	TATTGAAGCT	CAGTGTGGCA	CATCTGTAAA	TGTTCACTCT	TCACTTAGAG	5200
					GTTCAGCCTT	
					CGGAATACTT	
					GTCAACTTTC	
	AAACAGCTGC	AGATCAAGCC	AGAGGCCTCA	TCAATGCCTG	GGTAGAAAGT	5400
15	CAGACAAACG	GAATTATCAG	AAACATCCTT	CAGCCAAGCT	CCGTGGATTC	5450
	TCAAACTGCA	ATGGTCCTGG	THAATGCCAT	TGCCTTCAAG	GGACTGTGGG	5500
					CAGAGTGACT	
					GTTCATTTAA	
~n					CTTCCATTTG	
20					TGTCTCAGGC	
	CTTGAGCAGC	TTGAGAGTAT	AATCAGCTTT	GAAAAACTGA	CTGAATGGAC	5750
	CAGTTCTAGT	ATTATGGAAG	AGAGGAAGGT	CAAAGTGTAC	TTACCTCGCA	5800
	TGAAGATGGA	GGAGAAATAC	AACCTCACAT	CTCTCTTAAT	GGCTATGGGA	5850
	ATTACTGACC	TETTCACCTC	TTCACCCBAT	CTGTCTGGCL	TCTCCTCAGT	5900
25					GCAGAAATCA	
20.0	•					
					AGTGGATGCT	
					TCAAGCACAT	
	CGAAACCAAC	GCCATTCTCC	TCTTTGGCAG	ATGTGTTTCT	CCGCGGCCAG	6100
	CAGATGACGC	ACCAGCAGAT	GACGCACCAG	CAGATGACGC	ACCAGCAGAT	6150
30	GACGCACCAG	CAGATGACGC	ACCAGCAGAT	GACGCAACAA	CATGTATCCT	6200
					GACAAATTTG	
					CTACCTAGTG	
					GGGAGGCAGA	
20					GGTGCAGGCA	
35					TGGCATTGTG	
	GAACAATGCT	GTACCAGCAT	CIGCICCCTC	TACCAGCTGG	AGAACTACTG	6500
	CAACTAGGGC	GCCTGGATCC	AGATCACTTC	TGGCTAATAA	AAGATCAGAG	6550
	CTCTAGAGAT	CTGTGTGTTG	GTTTTTTGTG	GATCTGCTGT	GCCTTCTAGT	6600
					TGACCCTGGA	
40					ATTGCATCGC	
~~						
					GGGGCAGCAC	
					GGGATGCGGT	
	GGGCTCTATG	GGTACCTCTC	TCTCTCTCTC	TCTCTCTCTC	TCTCTCTCTC	6850
	TCTCTCGGTA	CCTCTCTCGA	GGGGGGGCCC	GGTACCCAAT	TCGCCCTATA	6900
45					ACGTCGTGAC	
					CACATCCCCC	
					CGCCCTTCCC	
					GTTAATATTT	
	MACMGIIGCG	CAGCCIGAMI	COLORNIA	TCAGCTCATT	OTTENDED	7150
en						
50					AGACCGAGAT	
					TTAAAGAACG	
	TGGACTCCAA	CGTCAAAGGG	CGAAAAACCG	TCTATCAGGG	CGATGGCCCA	7300
	CTACTCCGGG	ATCATATGAC	AAGATGTGTA	TCCACCTTAA	CTTAATGATT	7350
					AACGAGAATT	
55					AAACTTACTC	
J-J					AAAAGAGCTT	
					TTTTATTGAG	
	CTTGAAAGAT	ATAAAATA	GATAGGTTTT	ATTTGAAGCT	AAATCTTCTT	7600
	TATCGTAAAA	AATGCCCTCT	TGGGTTATCA	AGAGGGTCAT	TATATTTCGC	7650
60	GGAATAACAT	CATTTGGTGA	CGAAATAACT	AAGCACTTGT	CTCCTGTTTA	7700
					GCAGGATAAT	
	and the second section of the Second	~~~~~~~~~~	_ = ===================================			

```
AATACAGTAA AACGCTAAAC CAATAATCCA AATCCAGCCA TCCCAAATTG 7800
     GTAGTGAATG ATTATAAATA ACAGCAAACA GTAATGGGCC AATAACACCG 7850
     GTTGCATTGG TAAGGCTCAC CAATAATCCC TGTAAAGCAC CTTGCTGATG 7900
     ACTCITTGTT TGGATAGACA TCACTCCCTG TAATGCAGGT AAAGCGATCC 7950
     CACCACCAGC CAATAAAATT AAAACAGGGA AAACTAACCA ACCTTCAGAT 8000
     ATAAACGCTA AAAAGGCAAA TGCACTACTA TCTGCAATAA ATCCGAGCAG 8050
     TACTGCCGTT TTTTCGCCCC ATTTAGTGGC TATTCTTCCT GCCACAAAGG 8100
     CTTGGAATAC TGAGTGTAAA AGACCAAGAC CCGCTAATGA AAAGCCAACC 8150
     ATCATGCTAT TCCATCCAAA ACGATTTTCG GTAAATAGCA CCCACACCGT 8200
10
    TGCGGGAATT TGGCCTATCA ATTGCGCTGA AAAATAAATA ATCAACAAAA 8250
     TGGCATCGTT TTAAATAAAG TGATGTATAC CGAATTCAGC TTTTGTTCCC 8300
     TTTAGTGAGG GTTAATTGCG CGCTTGGCGT AATCATGGTC ATAGCTGTTT 8350
     CCTGTGTGAA ATTGTTATCC GCTCACAATT CCACACAACA TACGAGCCGG 8400
     AAGCATAAAG TGTAAAGCCT GGGGTGCCTA ATGAGTGAGC TAACTCACAT 8450
15
     TAATIGCGIT GCGCTCACTG CCCGCTTTCC AGTCGGGAAA CCTGTCGTGC 8500
     CAGCTGCATT AATGAATCGG CCAACGCGCG GGGAGAGGCG GTTTGCGTAT 8550
     TGGGCGCTCT TCCGCTTCCT CGCTCACTGA CTCGCTGCGC TCGGTCGTTC 8600
     GGCTGCGGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAT ACGGTTATCC 8650
     ACAGPATCAG GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA 8700
20
     AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT TTCCATAGGC 8750
     TCCGCCCCCC TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG 8800
     CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC CTGGAAGCTC 8850
     CCTCCTGCGC TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG 8900
CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCATAGCTC ACGCTGTAGG 8950
25
     TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA 9000
     ACCCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC TATCGTCTTG 9050
     AGTCCAACCC GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT 9100
     AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG AGTTCTTGAA 9150
     GTGGTGGCCT AACTACGCT ACACTAGAAG GACAGTATTT GGTATCTGCG 9200
30
     CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG CTCTTGATCC 9250
     GGCAMACAMA CCACCGCTGG TAGCGGTGGT TTTTTTGTTT GCAMGCAGCA 9300
GATTACGCGC AGAMAMAMAG GATCTCAMGA AGATCCTTTG ATCTTTTCTM 9350
     CGGGGTCTGA CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC 9400
     ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA ATTAAAAATG 9450
35
     AAGTTTTAAA TCAATCTAAA STATATATGA GTAAACTTGG TCTGACAGTT 9500
     ACCARTGCTT ARTCAGTGAG GCACCTATCT CAGCGATCTG TCTATTTCGT 9550
     TCATCCATAG TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA 9600
     GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA GACCCACGCT 9650
     CACCGGCTCC AGATTATCA GCAATAAACC AGCCAGCCGG AAGGGCCGAG 9700
40
     CGCAGAAGTG GTCCTGCAAC TITATCCGCC TCCATCCAGT CTATTAATTG 9750
     TTGCCGGGAA GCTAGAGTAA GTAGTTCGCC AGTTAATAGT TTGCGCAACG 9800
     TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTTGGTATG 9850
     GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC 9900
     CATGTTGTGC AAAAAAGCGG TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA 9950
45
     GAAGTAAGTI GGCCGCAGTG TTATCACTCA TGGTTATGGC AGCACTGCAT 10000
     AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTTCTG TGACTGGTGA 10050
     GTACTCAACC AAGTCATTCT GAGAMTAGTG TATGCGGCGA CCGAGTTGCT 10100
     CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG CAGAACTTTA 10150
     AAAGTGCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT 10200
50
     CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT GCACCCAACT 10250
GATCTTCAGC ATCTTTACT TTCACCAGCG TTTCTGGGTG AGCAABAACA 10300
     GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCGACAC GGAAATGTTG 10350
     AATACTCATA CTCTTCCTTT TTCAATATTA TTGAAGCATT TATCAGGGTT 10400
     ATTGTCTCAT GAGCGGATAC ATATTGAAT GTATTTAGAA AAATAAACAA 10450
55
     ATAGGGGTTC CGCGCACATT TCCCCGAAAA GTGCCAC
                                                                10487
```

SEQ ID NO:33 (conalbumin polyA) 60

totgocatty objectoote tycocttoot ogtoactoty aatgtggett ettogotact gccacagcaa gaaataaaat otcaacatot aaatgggttt cotgaggttt ttcaagagto gttaagcaca ttecttcccc ageacceett getgeaggee agtgeragge aecaacttgg

ctactgotgo ccatgagaga aatccagtte aatattttee aaagcaaaat ggattacata tgocotagat octgattaac aggogtttgt attatetagt getttegett cacccagatt atcccattge otoco

5

SEQ ID NO:34 (exemplary antibody light chain sequence)

1 gagetegtga tgacceagae tecatectee etgtetgeet etetgggaga cagagteace
61 ateagttgea gggeaaatea ggacattage aattatttaa aceggratea geagaaacea
121 gatggaactg ttaaacteet gatetactae acateaagat tacaceteagg ggteecatea
10 181 aggtteagtg geagtgggte tggaacagat tattetetea ceatrageaa cetggageaa
241 gaagattttg ceacttactt tetgecaacag ggtaataege tecegtggae gtteggtgga
301 ggcaccaace tggaaateaa aegggetgat getgeaceaa etgtateeat etteceacea
361 tecagtgage agttaacate tggaagtgee teagtegtgt gettettgaa caacttetae
421 cecaaagaca teaatgteaa gtggaagatt gatggeagtg aaegacaaaa tggegteetg
15 481 aacagttgga etgateagga cagcaaagae ageacetaea geatgagea eaceeteaeg
541 tegaccaagg aegagtatga aegacataae ageatataeet gtgaggecae teacaagaca
601 teaactteae ecattgteaa gagetteaae aggaatgagt gttaa

20 SEQ ID NO:35 (exemplary antibody heavy chain sequence)

1 ctcgagteag gacetggeet ggtggcgeec teacagaace tggtcateac ttgcactgte
61 tctgggttt cattaaccag etatggtgta cactgggtte gccagcetee aggaaagggt
121 ctggaatgge tgggagtaat atggactggt agaagcacaa ettataatte ggeteteatg
181 tccagactga gcateagea agacaactee aagagcaag ttttettaaa aatgaacagt
25 241 ctgcaaactg atgacacage catttactae tgtggcagag ggggtetgat tacgteettt
301 getatggaet actggggtea aggaacetea gteacegtet ceteageeaa aacgacacee
361 ccatetgtet atccaetgge ecetggatet getgeceaaa etaacteeat ggtgaceetg
421 ggatgeetgg teaagggeta ttteecetgag ecagtgaeag tgacetggaa etetggatee
481 ctgtccageg gtgtgcacae etteecaget gteetgeagt etgaceteta cactetgage
30 541 ageteagtga etgtccete cagcacetg eceagegaga eegtcacetg eaacgttgee
601 cacceggeea geageaccaa ggtggacaag aaaattgtge ecagggattg tactagt

SEQ ID NO:36 (pTnMCS)

35 1 otgacgogcc otgtagoggc gcattaagog oggegggtgt ggtggttaeg ogcagogtga 61 cogotacact toccagogoc ctagogocog ctoctttogo trocttocct tecttotog 121 chaughtogo oggoatoaga thogotathy gocathycat acythytate cataloataa 181 tetgiacatt tatactggot catgtocasc attacogocs tgftgådatt gattattgad 241 tagttattas tagtastosa tracggagto attagttost agecestata tagagttocq 40 301 ogitacataa citacggtea atggcccgcc tggctgaccg cocaacgacc cocgcccatt 361 gacgicaata aigacgiaig thoccatagi aacgocaata gggactitco atigacgica 421 atgggtggag tatttacggt aaactgocca ottggoagta catcaagtgt atcatatgco 481 aagtacgood cotattgaog toaatgaogg taaaltggood gootggoatt atgoodagta 541 cargacetta tegegaettic chactegeda etacatetac etattaetea tegetattae 45 601 catggtgatg oggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 661 atticcaagt ciccacccca tigacgicaa tigggagtiig tittiggcacc aaaatcaacg 721 ggactttcca aaatgtegta acaactcege cocattgaeg caaatgggeg gtaggegtgt 781 acggtgggag gtotatataa gcagagoteg tittagtgaac egteagateg cetggagaeg

```
841 ccatccacge tgtttttgacc tccatagaag acaccgggac ogatccagec tccgcggccg
      901 ggaacggtgc attggaacgc ggattccccg tgccaagagt gacgtaagta ccgcctatag
      961 actobatage cacaccoott tegetettat geatgetata etgittitige ettggggeet
      1021 atacacece gettecttat getataggtg atggtatage ttagectata ggtgtgggtt
      1081 uttgaccatt attgaccact cocctattgg tgacgatact ttocattact aatocataac
      1141 atggotottt godacaacta tototattgg ctatatgcca atactotgto ottoagagac
      1201 tgacacggac totgtatttt tacaggatgg ggtoccattt attatttaca aattcacats
      1261 racaacaacg ocgicococg igosogragi tittattasa catagoging gaiotocacg
      1321 cgasteregg gracgtgite eggacatgag etetteteeg grageggegg agettecaes
10
      1381 toogageest ggteccatge etccagegge teatggtege togggeagete ettgetecta
      1441 Acagtggagg ccagacttag gcacagcaca atgoccacca ccaccagtgt gccgcacaag
      1501 ncogtggogg tagggtatgt gtotgaaaat gagogtggag attgggotog cacggotgac
      1561 gcagatggaa gacttaaggc agcggcagaa gaagatgcag gcagctgagt tgttgtattc
      1621 tgataagagt cagaggtaac toorgittgog gtgotgttaa cggtggaagg cagtgtagto
15
      1681 tgagcagtac tegitigetge egegegegec accagacata atagcitgaca gactaacaga
      1741 ctgttccttt ccatgggtct tttctgcagt cacogtcgga ccatgtgcga actcgatatt
      1801 tracangant crettraces attrigecor gaartaract taaaargant caacagotta
      1861 acgstggest gecacgeatt acttgactgs aaaactetca etestacega acttggeogs
      1921 aacctgocaa ocaaagogag aacaaaacat aacatcaaac gaatogacog attgttaggt
20
      1981 aatogtcacc tecacaaaga gegacteget gtatacegtt ggcatgetag etttatetgt
      2041 togggcasts ogstgoccst tytacttytt gactyytoty statteytys gcassascys
      2101 ottatggtat tgcgagotto agtogcacta cacggtogtt otgttactot ttatgagaaa
      2161 gogttcccgc titcagagca atgttcaaag aaagctcatg accaatttct agccgacctt
      2221 gegageatte tacegagtaa caccacaceg etestigica gigatgetgg etitaxagtg
25
      2281 costggtata astoogttga gäägötgggt tggtaotggt taagtogagt aagaggaaaa
      2341 gtacaatatg cagacetagg ageggaaaac tggaaaceta teageaactt acatgatatg
      2401 Costcragto actossagao bitaggotat sagaggotga otassagosa tocsatotos
      2461 tgccaaatto tattgtataa atctogotot aaaggcogaa aaaatcagcg otcgacacgg
      2521 actoattgte accaceogte acetaaaate tacteagegt oggeaaagga gocatgggtt
30
     2581 ctagcaacta acttacetgt tgaaattega acaeecaaac aacttgttaa tatetatteg
      2641 aagogaatgo agattgaaga aacottooga gacttgaaaa gtootgoota oggactaggo
      2701 ctacgccata geogaacgag cagetcagag egittigata teatgetget aategeeetg
      2761 Ebgettesae tsacatgitig gettgeggge gtteatgete agasacaagg ttgggacaag
      2821 usettecayy etamemacyt cagamatega maegtaetet emaecaytteg ettaggemitg
35
      2881 gaagtittigo ggoattotigg otacacaata acaagggaag acttactogt ggotgsaacc
      2941 ctactagete aaaatttatt cacacatggt tacgetttgg ggasattatg aggggatege
      3001 tetagagega teegggatet egggaaaage gttggtgace aaaggtgeet titateatea
      3061 otttaasaat sassascast teotoegtgo otgitataag cagcaattaa tiatgatiga
      3121 tgcctacatc acaacaaaaa ctgatttaac aaatggttgg tetgeettag aaagtatatt
40
     3181 tgaacattat ottgattata ttattgataa taataaasac ottatooota tocaagaagt
     3241 gatgootato attggttigga atgaacttiga aaaaaattag oottgaatac attactggta
      330) aggiaaacgo cattgtoago aaattgatoo aagagaacca acttaaagot ttootgacgo
      3361 aatgutaatt otogetgado otgagoadtg atgaatoood taatgattit ggtaaaaato
      3421 attaagttaa ggtggataca catottgtos tatgatocog gtaatgtgag ttagotoact
45
      3481 cattaggear eccaggettt acaetttatg etteeggete gratgitgtg tggaattgtg
      3541 agoggataac aattteacac aggazacago tatgaccatg attacgocaa gogogozatt
      3601 aacoctosot asagggaaca aasgotggag ctccaccgcg gtggcggccg ctctagaact
      3661 agtiggatoco cogggotigoa ggaattogat atcaagotta togatacogo tigacotogag
      3721 ggggggccog gtacccaatt ogcoctatag tgagtogtat tacgggggt cactggcogt
50
      3781 cgttttacaa egtegtgaet gggaaaacee tggegttace caacttaate geettgeage
     3841 scateccet ttegecaget ggegtaatag egaagaggee egeacegate gecettecca
      3901 acagetgogo agootgaatg gogaatggaa attgtaagog ttaatatett getaaaatto
     3961 gogttasatt titigittasat cagotcatti titiaacosat aggoogaast oggosaasto
     4021 cottataaat caaaagaata gaccgagata gggttgagtg ttgttccagt ttggaacaag
55
     4081 agtocactat taaagaacgt ggactocaac gtoaaagggo gaaaaacogt ctatoagggo
     4141 Categororac tactoogiga toatstgaca agatgtgtat coaccttaac tteatgattt
     4201 Etacrassat cattaggggs thratragty chragggtos argagaatta arattergte
     4261 aggaaagett atgatgatga tgtgettaaa aacttaetea atggetggtt atgestateg
     4321 castacatgo gasasaccts assegagettg cogstassas aggocsattt attgotattt
60
     4381 accgeggett tittattgage tigaaagata aataaaatag ataggittia tittgaageta
     4441 aatottottt atogtaamaa atgooctott gggttatoma gagggtomtt atatttegeg
     4501 gaataacato attiggigao gaaataacta agcactigio boolgittae toccotgago
     4561 ttgaggggtt aacatgaagg boatogatag caggataata atacagtaaa acgctasacc
     4621 aataatccaa atccagocat cocaaattyg tagtgaatga ttataaataa cagcaaacag
65
     4681 taatgggcca ataacacceg ttgcattggt aaggctcacc aataatccct gtaaagcacc
     4741 tigotgatga cictitgitt ggatagacat cactecotgt aatgeaggta aagegateec
     4801 accaccagoo aataaaatta aaacagggaa aactaaccaa cottoagata taaacgotaa
     4861 asaggcasat goactactat otgcastasa toogagcagt actgoogttt tttogcocat
```

```
4921 ttagtggcta ttcttcctgc cacaaaggct tggaatactg agtgtaaaag accaagaccc
     4981 graatgaaaa gccaaccatc argctattca tcatcacgat troigtaata gcaccacacc
     5041 Stgetggatt ggetateaat gegetgaaat aataateaae aaatggeate gttaaataag
     5101 "gatgtatac cgatcagett ttgttccctt tagtgagggt taattgegeg ettggegtaa
     5161 heatggreat agetgtttee tgtgtgaaat tgttateege teacaathee acacaacata
     5221 cgagcoggaa gcataaagtg taaagcotgg ggtgcctaat gagtgagcta actcacatta
     5281 attgegtige geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa
     5341 cgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg
     5401 ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag
     5461 geggtaatae ggttateeae agaateaggg gataaegeag gaaagaaeat gtgageaaaa
10
     5521 ggccagcaaa aggccaggaa cogtaaaaag gccgcgttgc tggcgttttt ccataggctc
     5581 cgcccccctg acgageatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca
     5641 ggactatasa gataccaggo gtttccccct ggaagctccc togtgogote toctqttccq
     5701 accordace tracoggata congressor tracoctr caggaagest gacactter
15
     5761 catagoreac gotgtaggta totcagttog gtgtaggtog trogoreeaa gotgggotgt
     5821 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag
     5881 tocaaccogg taagacacga ottatogoca otggcagcag coactggtaa caggattage
     5941 agagegaggt atgtaggegg tgctacagag ttcttgaagt ggtggcctaa ctacggctac
     6001 actagaagga cagtattigg tatetgoget otgetgaage cagttacett eggaaaaaga
20
     6061 jttggtaget ettgateegg caaacaaaec accgetggta geggtggttt ttttgtttge
     6121 magcagraga ttacgegrag aasassagga teteasgasg atcetttgat ettttetacg
     6181 gggtctgacg ctcagtggaa cgaaaactca cgttaaggga tettggtcat gagattatca
     6241 waaaggatet teacetaget eettttaaat taaaaatgaa gttttaaate aatetaaagt
     6301 atatatgagt asacttggtc tgacagttac caatgettaa teagtgagge acetatetea
25
     6361 gogatotgto tatttogtto atocatagtt gootgactoo cogtogtgta gataactaog
     6421 Atacgggagg gottaccate tggccccagt gotgcatga taccgogaga cocacgctca
     6481 coggetecag atttateage aataaaceag ecageoggaa gggeegageg cagaagtggt
     6541 detgeaactt tatcogeete catcoagtet attaattett geogggaage tagagtaagt
     6601 agtrogocag ttaatagttt gogoaaogtt gttgcoattg ctacaggcat ogtggtgtca
6661 ogetogtogt ttggtatgge tteattcage tecggttcce aacgatcaag gegagttaca
30
     6721 tgatececca tgttgtgcaa aaaageggtt ageteetteg gteeteegat egitgteaga
     6781 agtaagttgg cogcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact
     6841 gtcatgccat cogtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga
     6901 gaatagigia igoggogaco gagitgotot igocoggogi caataoggga taataoogog
35
     6961 ccacatagca gaactitaaa agigotoato atiggaaaac gitottoggg gogaaaacto
     7021 toaaggatet tacegetigtt gagateeagt tegatigtaae ceaetegtige acceaactiga
     7081 tetteageat ettttaettt caccageget tetgggtgag caaaaacagg aaggcaaaat
     7141 gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact ottcetttt
     7201 caatattatt gaagcattta toagggttat tgtotoatga goggatacat atttgaatgt
40
     7261 atttagaaaa ataaacaaat aggggtteeg egeacattte eeegaaaagt geeac
     SEQ ID NO:37 (chicken ovalbumin ehancer)
     cogggotgca gaaaaatgco aggtggacta tgaactcaca tocaaaggag
     cttgabetga tacetgattt tetteaaact ggggaaacaa cacaateeca caaaacaget
45
     cagagagaaa ccatcactga tggctacagc accaaggtat gcaatggcaa tccattcgac
     attoatotgt gacotgagos sastgattta tototocatg satggttget totttocoto
     atgaajaggo aatttocaca otcacaatat goaacaaaga caaacagaga acaattaatg
     tgeteettee taatgteaaa attgtagtgg caaagaggag aacaaaatet caagttetga
     gtaggitttta gtgattggat aagaggettt gacctgtgag etcacetgga etteatatee
50
     ttttggataa aaagtgettt tataaettte aggteteega gtetttatte atgagaetgt
     tggtttaggg acagacccac aatgaaatge ctggcatagg aaagggcagc agagcettag
     ctgacctttt cttgggacaa gcattgtcaa acaatgtgtg acaaaactat ttgtactgct
     ttgcacaget gtgctgggca gggcaateca ttgccaceta teccaggtaa cettecaact
     gcaagaagat tgttgcttac tctctctaga
55
     SEQ ID NO:38 (5' untranslated region)
     GTGGATCAACATACAGCTAGAAAGCTGTATTGCCTTTAGCACTCAAGCTCAAAAGACAACTCAGAGTTC
     ACC
60
     SEQ ID NO:39 (putative cap site)
     ACATACAGCTAG AAAGCTGTAT TGCCTTTAGC ACTCAAGCTC AAAAGACAAC TCAGAGTTCA
     SEQ IO NO:40 (fragment of ovalbumin promoter - chicken)
     GAGGTCAGAAT GGTTTCTTTA CTGTTTGTCA ATTCTATTAT TTCAATACAG
65
     AACAATAGCT TCTATAACTG AAATATATTT GCTATTGTAT ATTATGATTG
```

TCCCTCGAAC CATGAACACT CCTCCAGCTG AATTTCACAA TTCCTCTGTC

```
ATCTGCCAGG CCATTAAGTT ATTCATGGAA GATCTTTGAG GAACACTGCA
      AGTTCATATC ATAAACACAT TTGAAATTGA GTATTGTTTT GCATTGTATG
      GAGCTATGTT TTGCTGTATC CTCAGAAAAA AAGTTTGTTA TAAAGCATTC ACACCCATAA AAAGATAGAT TTAAATATTC CAGCTATAGG AAAGAAAGTG
      CGTCTGCTCT TCACTCTAGT CTCAGTTGGC TCCTTCACAT GCATGCTTCT
      TTATTTCTCC TATTTTGTCA AGAAAATAAT AGGTCACGTC TTGTTCTCAC
      TTATGTCCTG CCTAGCATGG CTCAGATGCA CGTTGTAGAT ACAAGAAGGA
      TCAAATGAAA CAGACTTCTG GTCTGTTACT ACAACCATAG TAATAAGCAC
10
     ACTARCTAAT AATTOCTAAT TATGTTTTCC ATCTCTAAGG TTCCCACATT
      TTTCTGTTTT CTTAAAGATC CCATTATCTG GTTGTAACTG AAGCTCAATG
      GANCATGAGE NATATTICCE AGTETTETET CECATECANE AGTECTGATG GATTAGEAGA ACAGGEAGAA ANCACATTGT TACCEAGAAT TAANAACTAA
      TATTTGCTCT CCATTCAATC CAAAATGGAC CTATTGAAAC TAAAATCTAA
15
      CCCAATCCCA TTAAATGATT TCTATGGCGT CAAAGGTCAA ACTTCTGAAG
      GGAACCTGTG GGTGGGTCAC AATTCAGGCT ATATATTCCC CAGGGCTCAG
      SEQ ID NO:41 pTnMCS (CMV-CHOVg-ent-ProInsulin-synPA)
20
      1 ctgacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga
      61 ocyclacact tycoagogoc etagogocog ctootttogo tttottocot tootttotog
      121 ccacgttege eggeateaga tiggetatig gecattgeat acgttgtate catateataa
181 tatgtacatt tatattgget catgteeaac attacegeea tgttgacatt gattattgae
      241 tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
      301 cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
      361 gaogtosata atgaogtatg thoccatagt aaogocasta gggaotttoc attgaogtos
      421 atgggtggag talttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
      481 aagtacgeee cetattgacg teaatgacgg taaatggeee geetggeatt atgeceagta
      541 catgacetta tgggaettte etaettggea gtacatetae gtattagtea tegetattae
601 catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg acceaegggg
30
      661 atttccaagt otccacces tigaogtcaa tigggagttig tittiggcace aasateaacg
      721 gyactttcca azatgtogta acastteege eccattgaeg casatgggeg gtaggegtgt
      781 auggtgggag gtotatataa goagageteg titagtgaac ogtoagateg cotggagaog
      841 ceatcoacgo tgttttgaco tooatagaag acacegggac cgatecageo teegoggoog
35
      901 ggaacggtgc attggaacgc ggattccccg tgccaagagt gacgtaagta ccgcctatag
      961 autotatagg cacacccott tggctottat geatgetata ctgtttttgg cttggggcct
      1021 atacaccece getteettat getataggtg atggtatage ttageetata ggtgtgggtt
1081 attgaccatt attgaccaet eccetatigg tgacgatact ttecattact aatecataac
      1141 Atggotottt godacaacta tototattgg chatatgoda atactotgto ottoagagac
      1201 (gacacggac totgtatttt tacaggatgg ggtcocattt attatttaca aattoacata
      1261 tacascascy cogtococcy tycocycset tittatiaas catagoging gatotocacy
      1321 cgaatotogg gtaogtgtto cggacatggg otottotogg gtagoggogg agottocaca
      1381 trogagorot ggtrocatgo etcoagoggo tratggtogo toggoagoto ottgotoota
1441 acagtggagg craquettag gearagoara atgorracoa craccagtgt gorgoacaag
45
      1501 gcogtggcgg tagggtatgt gtotgaaaat gagcgtggag attgggctcg caeggctgac
      1561 gcagatggaa gacttaaggc agcggcagaa gaagatgcag gcagctgagt tgttgtattc
      1621 tgataagagt cagaggtaac toocgttgog gtgctgttaa oggtggaggg cagtgtagto
      1681 tgagcagtac togttgetge ogegegege accagacata atagetgaca gaetaacaga
      1741 otgotootto ocatgogoot titotgoagt cacegooga coatgoga actogatatt
50
      1801 tracacgact crottracca attorgocco gaatracact taaaacgact caacagotta
      1861 acgstggott godacgdatt acttgäctigt äasactotca otottacoga acttggoogt
      1921 ascrtigicas cossagogag ascasascat ascatosaac gastogacog attgitisgit
1981 satogicaco tocacasaga gogaciogot gistacogit ggostgotag ottlatotgi
      2041 togggosata ogatgoocat tgtacttgtt gactggtotg atattogtga gcaaaaaoga
      2101 ottatggtat tgogagotto agtogoacta caoggtogtt otgttactot ttatgagaaa
      2161 (jegiteooge itteagagea atgiteaaag aaageteatg accaatitet ageegacett
      2221 (rogagcatto tacogagisa caccacacog otoattgtos gtgstgotgg otttaasgtg
2281 rostggtata satocgitgs gasgcigggi tggtaciggi tasgcigagi sagaggasas
      2341 gtacsataty cagacetagg ageggaaaac tggaaaceta teagcaactt acatgatatg
60
      2401 featchages actessages titaggetat aagaggetga etaasagesa teesatetes
      2461 (gocasatto tattgiatas atotogotot sasggorgas sasatosgog otogacaogg
      2521 cotcattito accaeccite acctsaaste tacteagest egicasagia geestigistt
      2581 ctagcascta acttacctgt tgasattcga acacccasac aacttgttsa tatctattcg
      2641 aagogaatgo agattgaaga aaoottooga gacttgaaaa gtootgocta oggactaggo
      2701 ntacgocata googaacgag cagotcagag ogtottgata toatgotgot aatogoodtg
      2761 etgetteaac taacatgitg gettgeggge gitteatgete agaaacaagg tigggacaag
```

```
2821 cacttocagg ctaacacagt cagazatoga aacgtactct caacagttog cttaggcatg
      2881 gaagttttgc ggcattctgg ctacacaata acaagggaag acttactcgt ggctgcaacc
      2941 ctactagete assattratt cacacatggt tacgetttgg ggaaattatg aggggatege
      3001 totagagoga teogggatot ogggammago gttggtgmoo mmaggtgcot tttmtcatom
3061 otttmammat mmmammamt tactomgtgo otgttmtmmg cagomattmm ttmtgattgm
      3121 tgcctacatc acaacaaaaa ctgatttaac aaatggttgg totgccttag aaagtatatt
      3161 tgaacattat cttgattata ttattgataa taataaaaac cttatcocta tccaaqaaqt
      3241 gatgoctate attggttgga atgaacttga aaaaaattag oottgaatac attactggta
      3301 aggtasacge cattgtcage asattgatee aagagaacca acttaaaget ttootgacgg
10
      3361 satgitaatt etogitgase etgageactg atgasteese taatgattit ggtaasaats
      3421 attaagttaa ggtggataca catottgtca tatgateceg gtaatgtgag ttageteact
      3481 cattaggeac cecaggettt acaetttatg etteeggete gratgitgig tggaattgig
      3541 agoggataac aatttoacac aggaaacago tatgaccatg attacgccaa gogogcaatt
      3601 aaccoroact aaagggaaca aaagctggag ctccaccgcg gtggcggccg ctctagaact
15
      3661 agtoggatone cogggeates gattoggetat toggesattog atacogttota togatatest
      3721 aatatgtaca tttatattgg ctcatgtcca acattaccgc catgttgaca ttgattattg
      3781 actagitati astagisati astracgggg teatragite aragecesta taiggagite
      3641 ogegttacat aacttacggt aaatggcoog cotggetgae egeccaacga occoogcoca
      1901 ttgacgtcaa taatgacgta tgttoccata gtaacgccaa tagggacttt ccattgacgt
20
      3961 caatgygtgg agtatttacg gtaaactgcc caettggcag tacatcaagt gtatcatatg
      4021 ccaagtacge cccctattga egteaatgac ggtaaatgge ccgcctggea ttatgcccag
      4081 tacatgacct tatgggactt tectacttgg cagtacatet acgtattagt categotatt
      4141 accatgitga tgcggttttg gcagtacatc aatgggcgtg gatagcggtt tgactcacgg
4201 ggatttccaa gtotccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa
      4261 cgggaettte caasatgteg taacaactee geeccattga egeaaatggg eggtaggegt
25
      4321 gtanggtggg aggtotatat sagcagagot ogtotagtga acogtoagat ogcotggaga
      4391 ogocatobac getgttttga octocataga agacaceggg acegatocag cetecgegge
      4441 cgggsaeggt geattggsae geggatteec cgtgecaaga gtgaegtaag tacegeetat
      4501 agactotata ggcacacco titiggotott atgcatgcta tactgctttt ggcttggggc
30
      4561 ctatacacco cogetteett atgetatagg tgatggtata gettageeta taggtgtggg
      4621 trattgacca trattgacca croccctatt ggtgacgata cttrccatta ctaatccata
      4681 acatggotot tigocacaac tatototati ggotatatgo caatactotg teeticagag
      4741 actgacacgg actotgtatt tttacaggat ggggtcocat ttattattta casattcaca
      4801 tatacascas egeogicoco egigeceges gittitatta ascatagegi gegaceteca
35
      4861 cgcgaatoto gggtacgtgt tocggacatg ggetottoto cggtagegge ggagettoca
      4921 cateegagee etggteseat gestesageg geteatggte geteggeage techtigetes
      4981 taacagtgga ggccagactt aggcacagca caatgcccac caccaccagt gtgccgcaca
      5041 aggccgtggc ggtagggtat gtgtotgaaa atgagcgtgg agattgggct cgcacqqctq
      5101 acgcagatgg asgacttaag gcagcggcag aagaagatgc aggcagctga gttgttgtat
40
      5161 totgataaga gtcagaggta accordetty oggtgetett aacggtggag ggcagtgtag
      5221 totgagoagt actogttgot googogogo coaccagaca taatagotga cagactaaca
      5281 gactgreect treestgggt critterges greacegreg ggardestgg geroestegg
      5341 ogcagcaago atggaatttt gttttgatgt atteaaggag eteaaagtce accatgccaa
      5491 tgagaacato ttotactgoo coattgooat catgtoagot ctagocatgg tatacottggg
45
      5461 tgcaaaagac agcaccagga cacagataaa taaggttgtt cgctttgata aacttccagg
      5521 attoggagac agtattgaag ctoagtgtgg cacalotgta aacgttcact cttcacttag
      5581 agacatrott aaccaaatca ccaaaccaaa tgatgttat togitcagoc ttgccagtag
      5641 actitatgot gaagagagat acceaateet geragaatae tigeagtigtig tgaaggaact
5701 gtatagagga ggettggaac etateaactt teaaseaget geagateaag ceagagaget
50
      5761 catesattee tgggtagasa gteagacasa tggaattate agasatgtee tteageesag
      5821 ctccgtggat totcasactg castggttot ggttastgcc attgtottca asggactgtg
      5881 ggagaaaaca tttaaggatg aagacacaca agcaatgcot ttcagagtga ctgagcaaga
      5941 aagcaaacct gtgcagatga tgtaccagat tggtttattt agagtggcat caatggcttc
      6001 tgagaaaatg aagateotgg agettocatt tgecagtggg acaatgagea tgttggtget
55
      6061 gttgcctgat gaagteteag geettgagea gettgagagt ataateaact ttgaaaaact
      6121 gactgaatgg accagttota atgstatega agagaggaag atcaaagtgt acttaceteg
      5181 Catgaagatg gaggaaaaat acaacctcac atctgtotta atggotatgg gcattactga
      6241 cgtgtttage tetteageca atetgtetgg cateteetea geagagagee tgaagatate
      6301 tcaagetgte catgeageae atgeagaaat caatgaagea ggeagagagg tggtagggte
60
      6361 agcagaggot ggagtggatg ctgcaagcgt ctctgaagaa tttagggctg accatccatt
      6421 cetettetgt atcaageaca tegeaaceaa egeogttete ttetttggea gatgtgttte
     6481 CCGCGGCCAG CAGATGACGC ACCAGCAGAT GACGCACCAG CAGATGACGC ACCAGCAGAT
      6541 gaogoacoag cagatgaogo accagoagat gaogoaacaa catgtatcot gaaaggotot
      6501 tgtggctgga tcggcttgct ggatgacgat gacaaatttg tgaaccaaca cotgtgcggc
65
      5661 tosaganto trottores gasaganto casacatagt grapagagas gasgatott cracacacco
      6721 aagaccegee gggaggeaga ggacetgeag gtggggeagg tggagetggg egggggeeet
     6781 ggtgcaggca gcctgcagcc cttggccctg gaggggtccc tgcagaagcg tggcattgtg
      6841 gaacaatget gtaccageat ergeteeete taecagetgg agaactactg caactaggge
```

```
6901 gdotaaaggg dgaattatog oggongotot agaccaggog ootggatoca gatcacttot
      695) ggctaataaa agatcagagc totagagatc tgtgtgttgg ttttttgtgg åtctgctgtg
      7021 cettetagtt gecagecate tgttgtttge ceeteceeg tgeetteett gaceetggaa
      7081 ggtgccactc ccactgtcct ticctaataa aatgaggaaa tigcatogca tigtctgagt
      7141 aggtgtcatt ctattctggg gggtggggtg gggcagcaca gcaaggggga ggattgggaa
      7201 gacastagea ggeatgetgg ggatgeggtg ggetetatgg gtacetetet etetetetet
      7261 ctetetetet etetetet eteteggtas etetetegag gggggggeegg gtacceaatt
      7321 egecetatag tgagtegtat taegegeget caetggeegt egitttaeaa egtegtgaet
      7381 gggaaaacc tggcgttacc caacttaatc goottgcago acatccccct ttcgccagot
10
      7441 9909taatag ogaagaggoo ogcacogato goodttocca adagttgogo agootgaatg
      7501 gogaatggaa attgtaagog ttaatatttt gttasaatte gogttaaatt titgttaaat
      7561 cagotoattt tttaaccaat aggoogaaat oggoaaaato oottataaat caaaagaata
      7621 gaccgagata gggttgagtg ttgttcoagt tiggaacaag agtccactat taaagaacgt
7681 ggactccaac gtcaaagggc gaaaaaccgt ctatcagggc gatggcccac tactccggga
15
      7741 toatatgaca agatgtgtat ceacettase ttaatgattt ttaccaasat cattaggggs
      7801 ticatcagig cicagggica acgagastia acattocgic aggasagett atgatgatga
      7861 tgtgcttsaa aacttactca stggctggtt atgcatatog caatacatgc gaaaaaccta
      7921 asagagottg cogstassas aggocastit attgotatti acogoggett titattgage
      7981 tigaeagate aeteaaetag ataggittita titigaagota aatottotti atogtaeaaa
20
      80%l abgoodcott gggttatcaa gagggtcatt atatttcgcg gaataacatc atttggtgac
      8101 gasataacta agcacttgto tootgtttac toocctgage ttgaggggtt aacatgaagg
      8181 trategatag caggatasta atacagtasa argetasace sataatecaa atecagerat
      8221 cccaaattgg tagtgaatga ttataaataa cagcaaacag taatgggcca ataacaccgg
      8281 ttgcattggt saggetesce astasteect gtasageace ttgetgatga etetttgttt
25
      8341 ggatagacat cactcoctgt aatgcaggta aagcgatcoc accaccagcc aataaaatta
      8401 aaacagggaa sactasccaa cottoagata taaaogotaa aaaggcasat gcactactat
      8461 Ctgcaataaa teegageagt aetgeegttt tttegeedat ttagtggeta ttetteetge
      8521 cacaaagget tygaatactg agtigtaaaag accaagacee gtaatigaaaa gecaaceate
      8581 atgotattca toatcacgat ttotgtaata gcaccacaco gtgctggatt ggotatcaat
30
      8641 gogotgaaat aataatoaac aaatggcato gttaaataag tgatgtatac ogatoagott
      8701 ttgttccctt tagtgagggt taattgegeg ottggegtaa teatggteat agetgtttee
8761 tgtgtgaaat tgttateege teacaattee acaeascata egageeggaa gestaaagtg
      8821 taaagootgg ggtgootaat gagtgagota actoacatta attgogttgo gotcactgoo
      8881 cgctttccag togggaaacc tgtcgtgcca gctgcattaa tgaatoggcc aacgcgcggg
35
      8941 gagaggoggt tigogtatig ggogototto ogottoctog otcaetgact ogotgogoto
      9001 ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac
      9061 agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa
      9121 cogtasasay googogttgo tggogttttt coataggoto egococootg acgagoatoa
      9181 casasatoga cgotoaagto agaggtggog asaccogaca ggactatasa gataccaggo
      9301 detgteegee ttteteett ogggaagegt ggegetttet eatagetea getgtaggta
40
      9361 teteageteg gtgtaggteg ttegeteesa getgggetgt gtgcacgaac coccegttea
      9421 georgacege tgegeettat ceggtaacta tegtettgag tecaaceegg taagacaega
      9481 cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg
45
      9841 tgotacagag ttottgaagt ggtggcotaa ctacggetac actagaagga cagtatttgg
      9601 tatctgoget etgetgaage cagttacett oggaaaaaga gttggtaget ettgateegg
      9661 caascaasco scogotogta goggtogtot tottgtotogo asgosgosga tracgogosg
      9721 aaaaaaagga totoaagaag atoobttgat ottttotaog gggtotgaog etcagtggaa
      9781 cgasaactoa cgttaaggga tittiggicat gagaltatoa aasaggatoi tcacotagat
9841 cctttasat tasasatgas gttttaasto astotasagt atatatgagt assotiggto
50
      9901 tgacagitae caatgettaa teagtgagge acetatetea gegatetgte tatttegtte
      9961 atccatagtt gootgactoo cogtogtgta gataactacg atacgggagg gottaccato
      10021 tggecccagt getgeaatga tacegegaga eccaegetea eeggeteeag atttateage
      10081 aataaaccag ccageeggaa gageegaaceg cagaagtggt cetgeaacti tateegeete
55
      10141 catecagtet attaattgtt geogggaage tagagtaagt agttogecag ttaatagttt
      10201 gegeaacgtt gttgecattg etacaggeat ogtggtgtea egetegtegt ttggtatgge
      10261 tteatteage teeggtteec aacgateaag gegagttaca tgatecceca tgttgtgcaa
      10321 assagegett ageteetteg gteeteegat egttgteaga agtaagttgg eegeagtgtt
      10381 atcactcatg gttatggcag cactgcataa ttetettaet gteatgccat cegtaagatg
60
      10441 ettttetgtg actggtgagt actcaaccaa gtcattetga gastagtgta tgeggegace
      10501 gagttgetet tgcccggcgt caatacggga taataccgcg ccacatagca gaactttaaa
      10561 agtgeteate attggaaaac gttetteggg gegaaaacte teaaggatet tacegetgtt
      19631 gagatcoagt togatgtaac coactogtgo accoaactga tottoagoat etettacett
      10681 caccagogtt totgggtgag caaaaacagg aaggcaasat googcaasaa agggaataag
65
     10741 ggogacacgg amatgitgam tactcatact citcottitt camtattatt gamgcattta
      10801 tragggttat tgtotcatga goggatacat atttgaatgt atttagaasa atasacasat
      10861 aggggttcog cgcacatttc cccgaaaagt gccac
```

SEQ ID NO:42(pTnMOD (CMV-CHOVg-ent-ProInsulin-synPA))

```
1 otgacgegee enghagegge geattaageg eggegggtgt ggtggttaeg egcaqeqtqa
           61 cogetacaet tgocagegee ctagegeeeg etectitege tricitecet tectiteteg
 5
           121 ccacgitogo eggeateaga tiggetatig gecatigeat aegitgiate catatoataa
181 taigiaeatt talatigget catgiocaac attacegeca igitgacati gattatigae
           241 tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
           301 ogitadataa ottaoggtaa atggoodgoo tegotgacog occaaceace eccepcoatt
           361 gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
10
           421 atgggtggag tatttacggt aaactgccca cttggcagta catcasgtgt atcatatgcc
           481 aagtacgooc cotattgacg toaatgacgg taaatggooc gootggoatt atgoocagta
           541 catgacetta tgggaettte etaettggea gtacatetae gtattagtea tegetattae
           601 catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg
           661 atticesagt ofecaceda tigaegteaa tigggagtitg tittiggeace aasatesaeg
15
           721 ggacttteca asatgtegts acaseteege eccattgacy casatuqqeq qtaqqeqtqt
           781 acggraggag grotatataa goagagotog titagragao cgroagatog corpgagaog
           841 ccatecacge tettteace tecatagaag acacegegae egatecagee teegegegeeg
           901 ggaacggtgc attggaacgc ggattocccg tgccaagagt gacgtaagta ccgcctatag
           161 actoratagg cacaccott tggetertat geatgetata ergtttttgg ertggggeet
20
           1021 atacacocco getteettat getataggtg atggtatage ttagectata ggtgtgggtt
           1081 attgaccatt attgaccact cocctattgg tgacgatact ttccattact aatccataac
           1141 atggctottt gccacaacta tototattgg ctatatgcca atactotgtc ottoagagac
           1201 tgacacggac totgtatutt tacaggatgg ggtcccattt attatttaca aartcacata
           1261 tacascascy cogtococcy tycocycagt terratrasa catagogray gatorocacy
25
           1321 cgaatotogg gtacgtgtto oggacatggg otottotogg gtagoggcgg agottocaca
           1381 teegageest ggteecatge etceagegge teatggtege teggeagete ettgeteeta
           1441 acagtggagg ccagacttag gcacagcaca atgcccacca ccaccagtgt gccgcacaag
           1501 gccgtggcgg tagggtatgt gtctgaaaat gagcgtggag attggggtcg cacggctgac
           1561 gcagatggaa gacttaaggc agcggcagaa gaagatgcag gcagctgagt tgttgtattc
30
           1621 tgataagagt cagaggtaac tocogttgcg gtgctgttaa rggtggaggg cagtgtagtc
           1681 tgagcagtac tegitigetge egegegege accagacata atagetgaca gactaacaga
           1741 cigiteettt ceatgggtet titetgeagt cacegtegga ceatgtgtga acttgatatt
           1801 tracatgatt ctctttacca attotgcocc gaattacact taaaacgact caacagctta
           1861 acgittggett gecaegeatt acttgactgt aaaactetea etettaeega acttggeegt
35
           1921 aacctgccaa ccaaagcgag aacaaaacat aacatcaaac gaatcgaccg attgctaggt
           981 aatogtoaco tooacaaaga gogactogot gtatacogtt ggcatgotag ottiatotgt
           041 togggeaata ogatgoccat tgtacttgtt gactggtotg atattegtga gcaaaaacga
           7101 ottatggtat tgegagette agtegeacta caeggtegtt etgttactet ttatgagala
           2161 gegtteeege titteagagea atgiteaaag aaageteatg accaatitet ageegacett
40
           2221 909agcatte taccgagtaa caccacaccg cteattgtea gtgatgetgg ctttaaagtg
           0281 ccatggtata aatocgttga gaagctgggt tggtactggt taagtcgagt sagaggaaaa
           1341 gtacaatatg cagacctagg agoggaaaac tggaaaccta toagcaactt acatgatatg
1401 toatotagte actoaaagac tttaggotat aagaggotga ctaaaagcaa tocaatotea
           2461 tgccaaattc tattgtataa atctcgctct saaggccgas asaatcageg ctcgacacgg
45
           2521 actoattgto accacoogto acctasaato tactoagogt oggoaxagga gocatgggtt
           2581 ctagcaacta acttacctgt tgaaattega acacceaaac aacttgttaa tatetatteg
           2641 aagogaatgo agattgaaga aacettooga gaettgaaaa gteetgeeta eggaetaggo
           2701 ctacgocata googaacgag cagotoagag ogtottigata teatgotgot aatogoodig
           2761 atgottoaac taacatgitig gettgeggge gitteatgete agaaacaagg ttgggacaag
50
           2821 cacttccagg ctaacacagt cagaaatoga aacgtactct caacagttcg cttaggcatg
           2881 gaagttttgc ggcattctgg ctacacaata acaagggaag acttactcgt ggctgcaacc
2941 ctactagctc aasatttatt cacacatggt tacgctttgg ggaaattatg ataatgatcc
           3001 agatoactte tegectaataa aagateagag etetagagat etgtgtgttg gitttttgtg 3061 gatotgetgt geettetagt tgecageeat etgttgtttg coceteece gtgeetteet
55
           3121 tgaccotgga aggtgccact cocactgtoc tttcctaata aaatgaggaa attgcatcgc
           3181 attstotgag taggtstoat totattotog gaggtsgagt sagglaagdad agdaasgagag
           3241 aggattggga agacaatage aggcatgetg gggatgeggt gggetetatg ggtacetete
           1301 tototototo retetetete retetetete teteteggia cenererete reretete
           2361 tototototo tototototo toggiacoag gigorgaaga arigacoogg igacoaaagg
60
           3421 tyccttttat catcacttta aaaataaaaa acaattactc agtgcctgtt ataagcagca
           3481 attaattatg attgatgeet acateacaac aaaaactgat ttaacaaatg gttggtetge
           3541 cttagaaagt atatttgaac attatcttga ttatattatt gataataata aasaccttat
           2601 coctatocaa gaagtgatgo ctatcattgg ttggaaatgaa cttgaaaaaa attagcottg
           1661 aatacattac Egytäägytä aacyocatty toayoaaatt yatoosayay aacoaactta
65
           2721 aagotttoot gaoggaatgt taaltotogt tgacootgag caotgatgaa toocotaatg
           3781 attttggtaa sastcattaa gttasggtgg stacacatct tgtcatatga tocoggtaat
           3841 gtgagttage teacteatta ggeacceeag getttaeact ttatgettee ggetegtatg
```

	3901	ttgtgtggaa	ttgtgagcgg	atascaattt	cacacaggas	acagctatga	ccatgattac
	3951	gccaagegeg	caattaaccc	teactasagg	gaacasaagc	tggageteca	ccgcggtggc
	4021	ggccgctcta	gaactagtgg	atececeggg	catcagattg	getattggcc	attgcatacg
	4081	ttgtatccat	atcateatat	gtacatttat	attggctcat	gtocascatt	accgccatgt
5					taatcaatta		
					acggtaastg		
	1251	aacgaccccc	gcccattgac	gtcaataatg	acgtatgttc	ccatagtaac	gccaataggg
	3222	SCCECCESEC	gacg ccaaeg	ggrggagcar	ttacggtaaa	craccacre	ggcagtacat
10	4227	torostesto	acacgucaag	racgoodece	attgacgtca	argacggraa	acggeeegee
3.0	4500	Pageaceace	ctattaccat	ontoatone	gactttccta ttttggcagt	curggoagua	catotacgia
	3551	coartroact	cacoronatt	PECSAGLECTC	caccccattg	acaccaacgg	gegeggaeag
	4621	togcaccasa	atcaacogga	ctttccaasa	tgtcgtaaca	actococccc	gagetegete
	4591	atoggggggta	gacatataca	otgogaggte	tatataagca	gagotrottt	agrosancat
15					tttgacctcc		
					ggaacgcgga		
	4861	gtaagtaccg	cctatagact	ctataggcac	accecttigg	ctcttataca	tactatacta
					tecttatget		
					gaccactece		
20	5041	cattactast	ccatascatg	getetttgee	acaactatct	ctattggcta	tatgccaata
	5101	ctctgtcctt	cagagactga	cacggaetet	gtatttttac	aggatggggt	cccatttatt
	5161	atttacaaat	tcacatatac	ascasogoog	toccccgtgc	cogcagtttt	tattaaacat
	5221	agegtgggat	ctccacgcga	atctcgggta	cgtgttccgg	acatgggctc	tteteeggta
25	5281	acaacaasac	ttccacatcc	gagccctggt	cccatgcctc	cagoggctca	tggtcgctcg
25	5341	gcagctcctt	gctcctaaca	gtggaggcca	gacttaggca	cagcacaatg	cccaccacca
	5401	coagegegee	gcacaaggcc	araacaaraa	ggtatgtgtc	tgassatgsg	cgtggagatt
	2497	adacecacac	ggccgacgca	gatggaagac	ttaaggcagc	ggcagaagaa	gatgcaggca
	5521	geegagrege	tgtattctga	raagagreag	aggtaactcc	cartacaata	ctgttaacgg
30	11003	rggagggcag	cgcagecega	gcagracteg	ttgctgccgc	gegegeeee	agacataata
20	0.000	gordanapac	caacagaccg	recertees	toggtetttt	crgcagrcac	caccadasec
	5761	antonachat	accegeegeag	caagcacgga	attttgtttt	gatgtattea	aggagetesa
	5821	catoodtatac	gccaatgaga ctccaatacaa	acacccccca	ctgccccatt caggacacag	Scorenarde	trantracent
	3881	tgataaactt	Craggeger	danacageac	tgaageteag	ratagasast	orge-capet
35	::941	tcactcttca	cttagagaca	toctcaacca	astcaccasa	ccasatosto	tttsttcatt
	6001	cagoettgoe	agtagacttt	atuctuaaga	gagataccca	atcotocoac	aatacttqca
	6051	gtgtgtgsag	gaactgtata	gaggaggett	ggaacctate	aactttcaaa	caqctqcaqa
	6121	tcaagccaga	gageteatea	attoctgggt	agaaagtcag	acasatggsa	ttatcagasa
40	6181	tgtccttcag	ccaageteeg	tggattetea	asctgcsatg	gttctggtta	atgocattgt
40	6241	cttcaeagga	ctgtgggaga	aaacatttaa	ggatgaagac	acacaagcaa	tgcctttcag
	6301	agtgactgag	caagaaagca	aacctgtgca	gatgatgtac	cagattggtt	tatttagagt
	6361	ggcatcastg	gettetgaga	aaatgaagat	cctggagctt	ccatttgcca	gtgggacaat
	6421	gagcatgttg	gtgctgttgc	ctgatgaagt	ctcaggcctt	gagcagettg	agagtataat
45	6481	casetttgaa	aaactgactg	aatggaccag	ttctaatgtt	atggaagaga	ggaagatcaa
40	6541	agrgtactta	cctcgcatga	agatggagga	aaaatacaac	ctcacatetg	tcttaatggc
	5601	catgggcatt	actgacgtgt	tragererre	agccaatctg	totggcatot	cctcagcaga
	0001	gageeegaag	acaccccaag	cegeccaege	agcacatgca	gasaccaseg	aagcaggcag
	6781	agagguggua	gggreageag	aggerggagr	ggatgetgea	agegeetetg	aagaarreag
50	5751 5841	raceastat	artteamann	aveavease	gcacatcgca gacgcaccag	accaacgccg	CECECECEC
• •	6901	Gaccaccac	cagainsing	accagoagac	ascacscosa ascacscosa	cagacgacgc	accaguagat
	6961	atcctgaaag	octettotoo	ctosstcose	ctgctggatg	acostosess.	arttotosso
	7021	caacacctot	gcogctcaca	Cctoutogaa	gctctctacc	tagtotocoo	ggaangangn
	7081	ttettetaca	Cacccaaqac	ccaccadasa	gcagaggacc	tacacataca	gcacgtggac
55	7141	ctgggcgggg	gccctggtgc	aggcageetg	cagcccttgg	ccctqqaqqq	qtccctqcaq
	201	aagcgtggca	ttgtggaaca	atgetgtace	agcatotgot	occtotacca	gotggagaac
	7261	tactgcaact	agggcgccta	aagggggaat	tatogoggco	gototagaco	aggogcotgq
	1321	abocagatca	cttctggcta	ataasagato	agagetetag	agatetgtgt	gttggttttt
en.	7381	tgtggatctg	ctgtgcctte	tagttgccag	ccatctgttg	tttgcccctc	ccccgtgcct
60	7441	tccttgaccc	tggaaggtgc	cactcccact	gtcctttcct	aataaaatga	ggaaattgca
	7501	regeattgte	tgagtaggtg	tcattctatt	ctggggggtg	838 £3838cs	gcacagcaag
	7561	ggggaggatt	9ggaagacaa	tagcaggcat	gctggggatg	cggtgggctc	tatgggtacc
	7601	22222222	retetete	totototote	tetetete	ggtacetete	cccgsggggg
65	7747	adecedats.	ccaattcgcc	cscagtgag	togtattacg	cgcgctcact	ggccgccgtt
****	7801	Concession	Achaetedada	eascucegge	gttacccaac	ctaatcgcct	rgcagcacat
	7861	EEGCGCACCC	toastoomers	atmmasatte	gaggcccgca taagcgttaa	Cugarogece -	LCCCCdadCag
	7921	taaattttta	teaseteases	readamerria	accaatagge	carrefaces.	asstracede
			- madaccago	CORCECTER	ancasta 350	កកិច្ចមនុស្សជំពិន	dagatocott

```
7981 ataaatcaaa agaatagacc gagatagggt tgagtgttgt tccagtttgg aacaagagtc
               3041 eactattaka gaacgiggac tocaacgica aagggogaaa aacegictai cagggogaig
               8101 gcccactact ocgggatoat atgacaagat gtgtatocac ottaacttaa tgattttac
               8161 caaaatcatt aggggattoa toagtgotoa gggtoaaoga gaattaacat toogtoagga
 5
               4221 aagettatga tgatgatgtg ettaaaaaet tacteaatgg etggttatge atategeaat
               4281 acatgogasa ascotasasg agottgooga taasasaggo castotattg ctatttacog
               8341 oggottotta tigagotiga aagataaata aaatagatag gittiatiig aagotaaato
               8401 trotttatog taasaaatgo ootottgggt tatosagagg gtoattatat trogoggast
               8461 ascatoatti ggrgacgasa taactaagca crigtofoct gritactocc etgagettea
10
               8521 ggggttaaca tgaaggtcat cgatagcagg ataataatac aqtaaaacqc tasaccaata
               8581 atccaaatoc agccatocca aattggtagt gaatgattat aaataacagc aaacagtaat
               8641 gggccaataa caccggttgc attggtaagg ctcaccaata atccctgtaa agcaccttgc
               8701 tgatgactot ütgittiggat agacatoact cootgtaatg caggitaaago gatoccacca
               8761 ccagocasta asattasaso agggasasot escrascott cagatatasa ogotasasag
15
               8821 gcaaatgcac tactatetgc aataaatoog agcagtactg cogttttttc gcocatttag
               8881 tggctattet teetgecaca aaggettgga atactgagtg taaaagaeca agaceegtaa
               8941 tgasaageca accateatge tatteateat caegatttet gtaatageac caeacegtge
               9001 tggattgget atcaatgoge tgaaataata atcaacaaat ggcatcgtta aataagtgat
               9061 gratacogat cagotitigt toootitagt gagggttaat tgogogotitg gogtaatoat
20
               9121 ggteataget gttteetgtg tgaaattgtt ateegeteae aatteeaea aacataegag
               9181 coggaagcat aaagtgtaaa gootggggtg cotaatgagt gagotaacto acattaaltg
               9241 ogtigegete actgeceget ticcagiogg gaaaccigic gigecagete cattaatgaa
               9301 toggecaacg cgcggggaga ggcggtttgc grattgggcg ctettecqet tecteqetea
               9361 otgaeteget gegeteggte gitteggetge ggegageggt ateageteae teaaaggegg
25
               9421 taataoggit atccacagaa teaggggata aegeaggaaa gaacatgiga gcaaaaggee
               9481 agcasaagge caggaacogt aasaaggeog cgttgctgge gtttttccat aggetccgcc
               9541 cocotgacga goateacaaa aatogacgot caagtoagag gtggogaaac oogacaggac
               9601 tataaagata coaggegett occootigaa geteoetegi gegeteteet gricegaeee
               V661 tgeogottae eggatadetg teogootite teoetteggg aagegtggeg etteeteata
30
               9721 gotcacgotg taggtatoto agtroggtgt aggtogttog otcoaagetg ggotgtgtgc
               9781 acquaccece egiteagece gaccgotgeg cottateogg taactategt etigagicea
               9841 accoggitaag acacgactia togccactgg cagcagccac tggtaacagg attagcagag
               9901 cgaggtatgt aggoggtget acagagttet tgaagtggtg geetaactae ggetacaeta
               9961 gaaggacagt atttggtate tgegetetge tgaagceagt tacettegga aaaagagutg
35
              10021 gragotottg atcoggcasa casaccaccg ctggtagogg tggttttttt gtttgcaagc
              19081 agcagattac gogcagaaaa asaggatoto aagaagatoo titgatotii totaoggggt
              10141 Ctgacgotta gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcasaaa
              10201 ggatetreac ctagatectt ttaaattaaa aatgaagttt taaancaate taaagtatat
              10261 atgagtasac ttggtotgac agttaccaac gottaatcag tgaggcacot atotcagoga
40
              10321 tetgtetatt tegtteatee atagttgeet gaeteeeegt egtgtagata aetaegatae
              10381 gagagagatt accatetage cecagtagta caatgataee acgagaceca egeteacegg
              10441 ctccagattt atcagemata aaccagecag ceggaaggge egagegeaga agtggteetg
              10501 caacttrate egecterate cagtetatta attgttgeeg ggaagetaga gtaagtagtt
              10561 ogcoagetaa tagettgogo aacgetgetg coartgotac aggoatogog gegecaoget
45
              10621 cgtcgtttgg tatggcttca ttcagctccg gttcccaacg atcaaggcga gctacatgat
              10681 corceatgit gigcaaaaaa goggitaget cetteggice teegategit gicagaagta
              10741 agtrageogo agrattatoa oteatageta rageagoaet geataattet ettaetatea
              10801 tgccatcegt aagatgettt tetgtgaetg gtgagtaete aaccaagtea ttetgagaat
              10861 agtgtatgog gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac
50
              10921 atagoagaac tttaaaaagtg croatcattg gaaaacgttc ttoggggcga aaactotcaa
              1:981 ggatottaco gotgittgaga tocagittoga tytaacocao togitgeacoc aactgatott
              11041 dagcatotut teotitoaco egoguttotg ggitgegosee escaggeegg cesesutgoog
              11101 casasaaggg astaagggcg scaoggaast gitgaatact catactette ettetteast
              11161 attattgaag catttatcag ggttattgto tcatgagogg atacatattt gaatgtattt
55
              11221 agaaaaataa acaaataggg gttccgcgca catttccccg aaaagtgcca c
        SEQ ID NO:43 (pTnMOD(Chicken OVep+OVG'+ENT+proins+syn polyA))
60
                  1 objected object of the contract of the contr
                 121 coacquiego oggoateaga tiggotatig gocatigoat acquigtato cataloataa
                 181 tatgtacatt tatattggot catgtocaac attacogcoa tgttgacatt gattattgac
65
                241 tagitattaa tagitaatdaa tiacggggic attagittoat agcocatata tggagittoog
                301 cgbtacataa cttacggtaa atggcccgcc tggctgaccc cccaacgacc cccgcccatt
                361 gaogtoaata atgaogtatg ticocatagt aacgocaata gggaottteo attgaogtoa
```

	421	atgggtggag	tatttacggt	asactgccca	cttggcagta	catcaagtgt	atcatatgoc
	481	aagtacgccc	cctattgacg	tcaatgacgg	tasatggccc	gootggoatt	atgeceagta
	541	catgacetta	tgggactttc	ctacttggca	gracatetac	gtattagtca	tegetattac
e	601	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagoggtttg	actcacgagg
5	561	atttccaagt	ctccacccca	ctgacgtcaa	tgggagtttg	ttttqqcacc	Possodasses:
	721	ggactttcca	aaatgtogta	acaactcogo	cccattgacg	casatgggcg	gtaggcgtgt
	781	acggtgggag	gtetatataa	gcagagctcg	tttagtgaac	cytoagatog	cctqqagacg
	841	ccatecaege	tgttttgaco	: tccatagaag	acaccgggac	ogatccagcc	teegeggeeg
10	901	ggaacggtgc	attggaacgc	ggattccccg	tgccaagagt	gacgtaagta	cegeetatag
10	961	actotatagg	cacacccctt	tggctcttat	gcatgctata	ctgtttttgg	cttggggcct
	1021	atacaccccc	getteettat	gctataggtg	atggtatage	ttagcctata	ggtgtgggtt
	1081	arrgaccarr	arrgaccact	cccctattgg	tgacgatact	ttecattact	aatccataac
	1211	arggetettt	gocacaacta	tctctattgg	ctatatgcca	atactotgto	cttcagagac
15	.201	cgacacggac	rergrattet	tacaggatgg	ggtcccattt	attatttaca	aattcacata
بده	251	tacaacaacg	ceatecced	Egcccgcagt	ttttattaaa	catagogtgg	gateteeacg
	1351	cgaaccccgg	descarace	cggacatggg	ctetteteeg	atradedacaa	agcttccaca
	2442	reegageeer	agrecesrae	ctccagcggc	tcatggtcgc	toggcagete	cttgctccta
	1.44.1	acagragaagg	CCagacttag	gcacagcaca	stgeceacea	ccaccagtgt	gccgcacaag
20	7.50%	accarage3	ragggrargc	gtctgaaaat	asacaraasa	attgggctcg	cacggctgac
2.17		gcagarggaa	gacttaaggc	agcggcagaa	gaagatgcag	gcagctgagt	tgttgtattc
	1501 1503	cgacaagagt	cagaggraac	tecegttgeg	grgcrgreaa	caataaaada	cagtgtagtc
	7.527	rgageageac.	regregeege	cacacacacc	accagacata	atagetgaca	gactaacaga
	1001	tennennen	ceacgggtet	tttctgcagt	caccarcaga	ccatgtgcga	actogatatt
25	1001	1089080811	cucuccacca	attotgeece	gaattacact	tasaacgact	caacagetta
200	1001	angreggere	gecacgeact	acttgactgt	aaaactctca	ctcttaccga	acttggccgt
	1221	addocycodd	tosaosesas	aacaaaacat	ascaccaaac	gaarcgaccg	arrgrraggr
	2043	torrorsate	crearesada	gcgactcgct	guataccgro	aacacaccaa	cretatotgt
	2101	arentowes.	rear are to	tgtacttgtt	gaccggcccg	acacecgega	gcaaaaacga
30	23.63	acattacaa	trteaman	agtogcacta	cacggreger	cederaceer	ccacgagaaa
	2223	gegereeege	recessares	atgttcaaag caccacaceg	agageccatg	accaatttt	agcogaccet
	2281	costrotata	astocottos	gaagetgggt	booksates	acascacaa	crrcaaagrg
	2341	pracastato	cadacctago	aacaaaaaac aasaccaaac	raderectar	taagecgage	aagaggaaaa
	2401	tcatctagtc	actcaaaga	tttaggctat	casararara	Coagcaacce	tanastara
35	2461	toccaaattc	tattotatas	acctogotot	aagaggccga	a a a a tra a con	cccaacccca
	2521	acteattote	accacconto	acctasastc	tactcaccot	coaceasace	eccessesses
	2581	ctagcaacta	actracerot	tgaaattcga	acacccaasc	aggeddaggd	tatetattea
	0641	aagcgaatgc	agartgaaga	aaccttccga	gacttgaaaa	atectaceta	conscisore
	2701	ctacoccata	qccqaacqaq	cagctcagag	contitoata	restorter	aatemeeeta
40	2761	atgetteaac	taacatqttq	acrtacaaac	gttcatgete	agasagaagg	ttoggacaso
	2821	cacttccagg	ctaacacagt	cagaaatega	ascotactot	caacagttcg	cttagggatg
	2881	gaagttttgc	ggcattetgg	ctacacaata	acaaqqqaaq	acttactcot	nnssperiope
	1941	ctactagete	asaatttatt	cacacatggt	tacqctttqq	qqaaattatq	agoggatege
	5001	totagagoga	teegggatet	cgggaaaagc	gttggtgacc	associacet	tetateatea
45	3061	ctttaaaaat	aaaaaacaat	tactcagtge	ctottataaq	caccaattaa	thatgatega
	3121	tgcctacatc	acaacaaaaa	ctgatttaac	aaatggttgg	totoccttac	saectstatt
	3181	tgaacattat	cttgattata	ttattgaraa	tastasasac	cttatcccta	tccaagaagt
	3241	gatgectate	attggttgga	atgaacttga	pattasassa	ccttqaatac	attactogta
- 1	3301	aggtaaacgc	cattgtcago	aaattgatcc	aagagaacca	acttaaaqct	ttectgaego
50	3361	aatgttaatt	otogttgacc	ctgagcactg	atgaatecec	taatoatttt	ggtasaaatc
	3421	attaagttaa	ggtggataca	catcutgtca	tatgatgggg	qtaatqtqaq	ttageteact
	3481	cattaggcac	cccaggettt	acactttatq	cttccqqctc	gtatottgtg	tagaattata
	3541	agcggataac.	aatttcacac	aggasacage	tatgaccato	attacoccaa	procesant
66	3601	aaccotoact	asagggsaca	aaagctggag	ctccaccgcg'	gtggcggccg	ctctagaact
55	7007	waradawreec.	ccgggctgca	gaaaaatgcc	aggtggacta	tusactusca	tecasaggag
	3721	Cttgacctga	tacctgattt	tottcasact	ggggasacaa	cacsatccca	casascaget
	3781	cagagagaaa	ccatcactga	tggctacagc	accaaqqtat	qcaatqqcaa	tecattegae
	3841	atteatetgt	gacctgagca	asatqattta	tetetecato	aaboottoct	tatttaaate
60	5901	acgaaaaggc	aatttccaca.	ctcscsatat	gcaacaaaga	caaacagaga	acaattaatg
vv	. 951	rgereettee	taatgtcasa	attgtagtgg	¢នងនជូនជូជូនg	aacaaaatct	caagttotga
	4021	graggtttta	gtgattggat	aagaggetet	gacotgtgag	etescetgga	cttcatatoc
	4081	certagataa	aaagtgctbt	tataactttc	aggtotooga	gtetttatte	atoagastor
	4141	rggrrraggg	acagacccac	aatgaaatgo	otgqcataqq	asauggcage	agageettae
65	6.507	orgacortrt.	cttgggacaa	gcattgtcaa	acaatqtqtq	acaaaactat	ttotactoct
90	* 201	Lugcacaget	grgcrgggca	gggcaatcca	ttgccaccta	tcccaggtaa	ccttccaact
	* 3 £ £	gosagaagat -	rgregettae	totototaga	aagettetge	agactgacat	gcatttcaca
	4004	Adradadara	acacotactg	ggaagcacat	ctateateat	aaaaagcagg	caagattttc
	4447	agacccccct	agrggctgaa	atagaagcaa	aagacgtgat	taaaaacaaa	atgaaacaaa
				* 40			

		aaaaatcagt					
		tettgtetta					
		tcacaaaagg					
5	4681	taggaaagta	attetgetta	acagagattg	cagtgatctc	tatgtatgtc	ctgaagaatt
ک.	4743	atgttgtact	tttttacacc	acceceaaac	casacagigo	tttacagagg	tcagaatggt
	4001	ttetttactg	1386018033	ctactattcc	aatacagaac	aacagettet	acaaccgaaa
	4801	tatatttgct	actytacact	acgaccgccc	cccgaaccat	gaacactccc	ccagecgaac
	1000	ttcacaattc	CLCLGCCALC	raccadacca	ccaagccacc	Catggaagat	ceregaggas
10	2224	cactgcaagt	Cuatatuata	aacacacccg	aaattgagta	ccgccccgca	ccgcacggag
λ·U	21 2 2 2 2	ctatgttttg	a a trattaga a	agasasasag	cccgccataa	agcactcaca	DCCATARAAA
		gatagattta agttggctcc					
		tcacgtcttg					
		agaaggatca					
15		aactaataat					
		aaagatccca					
		cttctctccc					
		ccagaattaa					
		aatctaaccc					
20		acctgtgggt					
		atacagctag					
	5761	coatgggctc	catoggogoa	gcsagcatgg	aattttgttt	tgatgtatte	aaggagctca
	5821	aagtocacca	tgccaatgag	aacatcttct	actgccccat	tgccatcatg	teagetetag
A 4		ccatggtata					
25	5941	ttgataaact	tecaggatte	ggagacagta	ttgaagetea	gtgtggcaca	totgtaaacg
		ttcactcttc					
		reageetege					
		agtgtgtgaa					
30		atcaagccag					
20		atgtecttea					
		tetteasagg					
		gagtgactga tggcatcaat					
		tgagcatgtt					
35		tcaactttga					
		asgtgtactt					
		ctatgggcat					
		agagcctgaa					
		gagaggtggt					
40		gggctgacca					
	6901	ttggcagatg	tgtttctccg	cggccagcag	atgacgcacc	agcagatgac	gcaccagcag
	6951	atgacgcacc	agcagatgac	gcaccagcag	atgacgcacc	agcagatgac	gcsacaacat
		gtateetgaa					
4.5		accaacacct					
45		gettetteta					
		agctgggcgg					
		agaagcgtgg					
		actactgcaa ggatccagat					
50		trtgtggate					
~ ~		cttccttgac					
		categeactg					
		agggggagga					
		cetetetete					
55	7741	gggcccggta	cccaattcgc	cctatagtga	gtcgtattac	gegegeteae	tggccgtcgt
	7801	tttacaacgt	cgtgactggg	aaaaccctgg	cgttacccaa	cttastcgcc	ttgcagcaca
	861	tocccctttc	gccagctggc	gtaatagoga	agaggcccgc	accgatcgcc	Cttcccaaca
		gttgcgcagc					
66		ttaaattttt					
60		tataaatcaa					
		ccactattaa					
		ggcccactac					
		ccaaaatcat					
65		aaagettatg					
€.		tacatgcgaa gcggcttttt					
		cttatttate					
		taacatcatt					
			- Din a Steep Book	147		-3	5 . 5 . 5
				122.7			

```
3581 aggigttaac atgaaggtca togatagcag gataataata cagtaaaacg ctaaaccaat
           9641 satocaasto osgodatodo saattiggtag tigastigatta tasataadag osaacagtaa
          8701 tgggccaata acaccggttg cattggtaag gctcaccaat aatccctgta aagcaccttg
          8761 otgatgacto tetgettigga tagacatoac toccegtaat goaggtasag ogatoccaco
5
          1821 accadoraat asaattaaas cagggaasad taaccascot tosgstatas acgotadaas
          1881 ggcaaatgca obactatotg caabaaatoo gagcagtach geogtittit ogcocatita
          4941 gtggctattc ttoctgccac aaaggcttgg aatactgagt gtaaaagacc aagacccgta
          9001 atgassaged ascestesty distrestes tesegatite typestages ecacacegity
           906) otggattggo tatcaatgog otgaaataat aatcaacaa tggcatogit aastaagtga
10
          3121 tgtataccga tcagctittg ttocctttag tgagggttaa ttgcgcgctt ggcgtaatca
          9181 tegitoatago tetitocogo estaces estaces tatocestoa caattocaca caacatacea
          9241 geoggaagea taaagtgtaa ageetggggt geetaatgag tgagetaaet cacattaatt
          9301 gegttgeget eactgeeege titteeagteg ggaaacetgt egtgeeaget geattaatga
           9361 atoggocaac gogogggag aggoggtittg ogtattgggo gotottoogo ttoctogoto
15
          9421 actgactogo tgcgeteggt egiteggetg eggegagegg tatcagetea etcasaggeg
           9481 gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc
          9541 cagcaaaagg ccaggaaccg taaaaaaggcc gcgttgctgg cgtttttcca taggctCcgc
          9601 cuccetgacg agcatcacaa aaatcgaege teaagteaga ggtggegaaa cocgacagga
          9561 ctataaagat accaggogtt teecectoga ageteectog tgcgctetee tgttccgacc
20
          9721 obgodgotta odggatadot grodgottt oboddtogg gaagogtggo gottbotoat
          9781 ageteaeget gtaggtatet bagtteggtg taggtegtte geteeaaget gggetgtgtg
          9841 cargaacce cogttoaged ogacogotge gentratoog gtaactatog tettgagter
          9901 aaccoggtaa gacacgactt atogccactg gcagcagcca ctggtaacag gattagcaga
          4961 gogaggtatg taggoggtge tacagagtte ttgaagtggt ggcotaaeta oggetacaet
25
         19921 agaaggacag tatttiggtat ctgcgctctg ctgaagceag ttaccttcgg aaaaagagtt
          10081 ggtagotott galooggcaa acaaaccace getggtageg gtggtttttt tgtttgcaag
         10141 cagcagatta ogogoagasa sasaggatot caagaagato otttgatott ttotacgggg
         15201 torgaogoto agtigaaoga aaactoaogt taagggattt tiggtostgag attatoaaaa
          19261 aggatettea eetagateet tittaaattaa aaatgaagtt tiaaateaat etaaagtata
30
         10321 talgagtasa ottggtotga cagttaccaa tgottaatoa gtgaggcaco tatotcagog
         10381 atctgtotat ttcgttoate catagttgcc tgactcoccg tcgtgtagat aactacgata
         10441 ogggaggget taccatotgg occcagtget gcaatgatac ogcgagacce acgeteaccg
         10501 gotocsagett tetcagosat assocagoca googgaaggg cogagogosg aagtggtoot
         10561 gcaactttat cogectocat coagtetatt aattgttgee gggaagetag agtaagtagt
35
         10621 togocagita atagittigog caacgitigit gocalitgela caggoalogi ggigloacgo
          10681 tegtegittig gtatggette atteagetee getteeeaac gateaaggeg agtiacatga
         10741 topoccatgt tgtgcamama agoggttago tcottoggte etcogategt tgtcagaagt
         10801 aagtiggoog cagigitato actoatggit atggcagcac igcataatic tottactgic
         10861 atgreaterg taagatgett ttetgtgaet ggtgagtaet caaccaagte attetgagaa
40
         10921 tagtgtatgo ggogaocgag ttgctcttgo ocggogteaa tacgggataa taccgogcca
         10981 catagoagaa otttaaaagt gotoatoatt ggaaaaegtt ottoggggog aaaactetoa
          11041 aggatettae egetgttgag atccagtteg atgtaaccca etcgtgeacc caactgatet
         15101 traggatott thartttear ragingtitet gggtgagraa aaaraggaag graasatger
         11.161 gcasaasagg gastaaggge gacacggass tittigastac testactett cettittess
45
         1,221 tattattgaa gcatttatca gggttattgt ctoatgagog gatacatatt tgaatgtatt
1,281 tagasasata ascasatagg ggttocgogo acatttococ gasaagtgoo ac
```