DISTRIBUIRANI ALGORITMI I SISTEMI

Autor izvorne prezentacije: Prof. Jennifer Welch

Read/Write deljene promenljive

- U jednom atomskom koraku procesor može
 - da očita vrednost promenljive ili
 - da upiše novu vrednost u promenljivu
 - ali ne može da izvrši obe operacije istovremeno!

Algoritam sa ceduljicama (Bakery Algorithm)

- □ To je algoritam za
 - međusobno isklučivanje
 - bez trajnog zaključavanja
- koristi 2n deljenih read/write promenljivih
 - Bulove prom. Choosing[i]: inicijalno false, u koje upisuje p; a čitaju ih drugi
 - Celi br. Number [i]: inicijalno 0, u koje upisuje p; a čitaju ih drugi

Algoritam sa ceduljicama

Kod za ulaznu sekciju:

```
Choosing[i] := true
Number[i] := max{Number[0], ..., Number[n-1]} + 1
Choosing[i] := false
for j := 0 to n-1 (except i) do
    wait until Choosing[j] = false
    wait until Number[j] = 0 or
        (Number[j],j) > (Number[i],i)
endfor
```

Kod za izlaznu sekciju:

```
Number[i] := 0
```

Algoritam sa ceduljicama obezbeđuje međusobno isključivanje

```
Lema (3.5): Ako je p_i u kritičnoj sekciji i Number[k] \neq 0 (k \neq i), onda (Number[k],k) > (Number[i],i).
```

Dokaz: Razmotrimo dva slučaja:

 p_i u KS i Number[k] \neq 0

Algoritam sa ceduljicama obezbeđuje međusobno isključivanje

```
Lema (3.5): Ako je p_i u kritičnoj sekciji i Number[k] \neq 0 (k \neq i), onda (Number[k],k) > (Number[i],i).
```

Dokaz: Razmotrimo dva slučaja:

```
p<sub>i</sub> -jevo najnovije
čitanje Number[k];
```

Slučaj 1: vraća 0

Slučaj 2: (Number[k],k) > (Number[i],i)

 p_i u KS i Number[k] \neq 0

p_iu KS i Number[k] ≠ 0

Znači p_k bira broj u ovom intervalu, pogleda p_i -jev broj, i izabira veći broj.

 Se dokazuje korišćenjem argumenata sličnih onima za Slučaj 1.

Međusobno isključivanje za algoritam sa ceduljicama

- □ **Lema (3.6):** Ako je p_i u kritičnoj sekciji, onda Number[i] > 0.
 - Dokaz je na osnovu neposredne indukcije.
- □ **Međusobno isključivanje:** Predpos. da su p_i i p_k istovremeno u KS.
 - □ Po Lemi 3.6, oba imaju Number > 0.
 - Po Lemi 3.5,
 - \blacksquare (Number[k],k) > (Number[i],i) i
 - \blacksquare (Number[i],i) > (Number[k],k)

Međusobno isključivanje za algoritam sa ceduljicama

- □ **Lema (3.6):** Ako je p_i u kritičnoj sekciji, onda Number[i] > 0.
 - Dokaz je na osnovu neposredne indukcije.
- □ **Međusobno isključivanje:** Predpos. da su p_i i p_k istovremeno u KS.
 - \blacksquare Po Lemi 3.6, oba imaju Number > 0.
 - Po Lemi 3.5,
 - \blacksquare (Number[k],k) > (Number[i],i) i
 - (Number[i],i) > (Number[k],k)

Algoritam sa ceduljicama: Nema trajnog zaključavanja

- □ Pred. radi kontradikcije da postoji blokiran procesor.
- Blokirani procesori čekaju u Liniji 5 ili 6 (iskazi čekanja), ne čekaju dok biraju broj.
- □ Neka je p_i blokiran procesor sa najmanjim parom (Number[i],i).
- □ Bilo koji procesor koji ulazi u krit. sekc. nako što je p_i izabrao svoj broj, bira veći broj.
- Svaki procesor sa manjim brojem konačno ulazi u KS (ne ostaje blokiran) i izlazi iz nje.
- □ Zato p; ne može da čeka u Liniji 5 ili 6.

Algoritam sa ceduljicama: Nema trajnog blokiranja

- Pred. radi kontradikcije da postoji blokiran procesor.
- Blokirani procesori čekaju u Liniji 5 ili 6 (iskazi čekanja), ne čekaju dok biraju broj.
- \square Neka je p_i blokiran procesor sa najmanjim parom (Number[i],i).
- □ Bilo koji procesor koji ulazi u krit. sekc. nako što je p; izabrao svoj broj, bira veći broj.
- Svaki procesor sa manjim brojem konačno ulazi u KS (ne ostaje blokiran) i izlazi iz nje. Zato p_i ne može da čeka u Liniji 5 ili 6.

Prostorna složenost algoritma sa cedunjicama

- □ Broj deljenih promenljivih je 2n
- Choosing su Bulove promenljive
- Number promenljive su neograničene
- Da li je moguće da algoritam koristi manje deljenog prostora?

ME algoritam: Ograničen prostor, 2procesora

Koristi 3 binarne read/write deljene promenljive:

- \square $\mathbb{W} [0]$: inicijalno 0, u nju upisuje p_0 a čita je p_1
- \square \mathbb{W} [$\mathbb{1}$] : inicijalno 0, u nju upisuje p_1 a čita je p_0
- Priority: inicijalno 0, oba procesora je čitaju i pišu

ME algoritam bez međusobnog blokiranja (ND = No Deadlock)

- Krećemo sa ograničenim algoritmom za 2
 procesora i ND uslovom, zatim proširujemo na
 NL uslov, i na kraju proširujemo na n procesora.
- Neke ideje iz algoritma sa 2 procesora:
 - svaki procesor ima deljenu Bul. prom. W [i] koja ukazuje da li on želi da uđe υ KS
 - p₀ uvek ima prednost u odnosu na p₁; asimetričan kod

ME algoritam bez međusobnog blokiranja

Kod za ulaznu sekciju p_0 :

```
1    .
2    .
3    W[0] := 1
4    .
5    .
6    wait until W[1] = 0
```

Kod za izlaznu sekciju p_0 :

```
7 . 8 \quad W[0] := 0
```

ME algoritam bez međusobnog blokiranja

Kod za ulaznu sekciju p₁:

```
1  W[1] := 0
2  wait until W[0] = 0
3  W[1] := 1
4  .
5  if (W[0] = 1) then goto Line 1
6  .
```

Kod za izlaznu sekciju p_1 :

```
7 . 8 \quad W[1] := 0
```

Diskusija ME algoritam bez međusobnog blokiranja

- Obezbeđuje međusobno isključivanje: procesori koriste W promenljive da bi ovo obezbedili
- Obezbeđuje da nema međusob. blokiranja (vežba)
- Ali nije fer (moguće trajno zaključavanje)
- Ispravka ovog nedostatka: procesori naizmenično dobijaju veći prioritet:
 - deljena promenljiva Priority, oba procesora je čitaju i pišu

ME algoritam bez međusobnog i bez trajnog blokiranja

Kod za ulaznu sekciju:

```
1  W[i] := 0
2  wait until W[1-i] = 0 or Priority = i
3  W[i] := 1
4  if (Priority = 1-i) then
5   if (W[1-i] = 1) then goto Line 1
6  else wait until (W[1-i] = 0)
```

Kod za izlaznu sekciju:

```
7 Priority := 1-i
8 W[i] := 0
```


- Korisno za pokazivanje da nema trajnog zaključa.
- Ako jedan proc. ikad uđe u ostatak za uvek, drugi proc. ne može biti trajno zaključan (starved).
 - Npr: Ako p_1 uđe u ostatak za uvek, onda će p_0 uvek videti W[1] = 0.
- Znači, bilo koje međusobno blokiranje bi blokiralo oba proc.

- Pred. radi kontradikcije da je došlo do među. blok.
- Pret. da Priority ostaje na 0 nakon što su se oba proc. blokirali u svojim ulaznim sekcijama.

- Pred. radi kontradikcije da je došlo do među. blok.
- Pret. da Priority ostaje na 0 nakon što su se oba proc. blokirali u svojim ulaznim sekcijama.

- Pred. radi kontradikcije da je došlo do među. blok.
- Pret. da Priority ostaje na 0 nakon što su se oba proc. blokirali u svojim ulaznim sekcijama.

 p_1 ne dopire do Lin. 6, blokiran u Lin. 2 sa W[1] = 0, čeka da W[0] bude 0

- Pred. radi kontradikcije da je došlo do među. blok.
- Pret. da Priority ostaje na 0 nakon što su se oba proc. blokirali u svojim ulaznim sekcijama.

- Pred. radi kontradikcije da je došlo do među. blok.
- Pret. da Priority ostaje na 0 nakon što su se oba proc. blokirali u svojim ulaznim sekcijama.

Analiza ME algoritma: nema trajnog zaključavanja

- \square Pred. radi kontradikcije da je p_0 trajno zaključan.
- Pošto nema među. blokiranja, p₁ ulazi u KS beskonačno često.
- Prvi put kad p_1 izvrši Lin. 7 u izlaznoj sekciji nakon što je p_0 blok. na ulazu, Priority se blokira na 0.

- \square Pred. radi kontradikcije da je p_0 trajno blokiran.
- Pošto nema među. blokiranja, p₁ ulazi u KS beskonačno često.
- Prvi put kad p_1 izvrši Lin. 7 u izlaznoj sekciji nakon što je p_0 blok. na ulazu, Priority se blokira na 0.

- \square Pred. radi kontradikcije da je p_0 trajno blokiran.
- Pošto nema među. blokiranja, p₁ ulazi u KS beskonačno često.
- Prvi put kad p_1 izvrši Lin. 7 u izlaznoj sekciji nakon što je p_0 blok. na ulazu, Priority se blokira na 0.

- \square Pred. radi kontradikcije da je p_0 trajno blokiran.
- Pošto nema među. blokiranja, p₁ ulazi u KS beskonačno često.
- Prvi put kad p_1 izvrši Lin. 7 u izlaznoj sekciji nakon što je p_0 blok. na ulazu, Priority se blokira na 0.

- \square Pred. radi kontradikcije da je p_0 trajno blokiran.
- Pošto nema među. blokiranja, p₁ ulazi u KS beskonačno često.
- Prvi put kad p_1 izvrši Lin. 7 u izlaznoj sekciji nakon što je p_0 blok. na ulazu, Priority se blokira na 0.

ME algoritam za n procesora

- □ Da li postoji mutex algoritam sa ograničenim prostorom za *n* veće od 2 procesora?
- □ Da!
- Na osnovu pojma stabla za turnir: zamislimo potpuno binarno stablo sa n-1 čvorova
 - stablo je semo ideja! ono ne predstavlja kanale za slanje poruka
- Svakom čvoru stabla se pridružuje kopija algoritma za 2 procesora
 - uključuje zasebne kopije 3 deljene promenljive

Stablo za turnir (Tournament Tree)

ME algoritam sa stablom za turnir

- Svaki proc. počinje ulaznu sekciju u određenom listu (dva proc. po listu)
- Proc. ide na sledeći nivo stabla posle pobede
 u utakmici 2-proc. za tekući čvor stabla:
 - □ na levoj strani, igra ulogu p₀
 - 🗖 na desnoj strani, igra ulogu p
- Kada proc. pobedi u utakmici za koren stabla, on ulazi u KS.

Još o Alg. sa stablom za turnir

- □ Kod u knjizi je rekurzivan.
- \square p_i počinje u čvoru $2^k + \lfloor i/2 \rfloor$, igra ulogu p_{i mod 2}, gde je $k = \lceil \log n \rceil 1$.
- □ Posle pobede u čvoru v, "KS" za čvor v je
 - ulazni kod za sve čvorove na putanji od predka čvora, a to je $\lfloor v/2 \rfloor$, do korena
 - prava kritična sekcija
 - □ izlazni kod za sve čvorove na putanji od korena do [v/2]

Analiza Alg. sa stablom za turnir

- Korektnost: zasniva se na korekt. algoritma za 2 procesora i strukturi turnira:
 - Projekcija prihvatljivog izvršenja alg. sa turnirom na određen čvor stabla daje prihvatljivo izvršenje alg. za 2 proc.
 - ME uslov alg. sa turnirom sledi iz ME usova alg. za 2 proc. u korenu stabla.
 - NL uslov za alg. sa turnirom sledi iz NL uslova za algoritme za 2 proc. u svim čvorovima stabla
- Prostorna složenost: 3n Bulovih read/write deljenih promenljivih.