Lab 3: Dijsktra's algorithm

HackMD: https://hackmd.io/@KentShen/Hy2F6Pgv5

實驗場景

- 輸入網路拓樸資料及起點
- 輸出shortest-path tree
- Python 3.8.10

Dijkstra's algorithm: example

		D(v) I	$D(\mathbf{w})$	D(x)	D(y)	D(z)
Ste) N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		5,u) 11,W	∞
2	uwx	6,w			11,W	14,x
3	uwxv				10,V	14,x
4	uwxvy					(12,y)
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

拓樸檔案

topo.py

- Define a class named Topo
- Member variables:
 - numNodes: the number of nodes in the topology
 - links[<A>][]: if larger than 0, there is a link from node <A> to node
 - EX: links[2][3] = 5: the cost of link from node 2 to node 3 is 5
 - links[<A>][] is equal to links[][<A>]

sp.py

```
from topo import Topo
import numpy as np
start = 0
myTopo = Topo('input.txt')
N = np.zeros((myTopo.numNodes, 1))
D = np.zeros((myTopo.numNodes, 1))
p = np.zeros((myTopo.numNodes, 1))
```

```
for i in range(myTopo.numNodes):
  D[i] = -1
  p[i] = -1
  N[i] = -1
N[0] = start
D[start] = 0
p[start] = start
# TODO: your codes here
for i in range(1, myTopo.numNodes):
  print(int(p[i]), '-->', i, 'cost = ', int(D[i]))
```

成果繳交

• 繳交檔案:sp.py

• 繳交時間: July 2, 2022