TMDB Analysis

Ameeshi Gupta | Darren Chan | Koh Jia Cheng

AGENDA

Introduction

Problem Statement

Exploratory Data Analysis

Analysis & Observations

Conclusion

Outcome & Insights

Wrangling

Data Collection & Organisation

Machine Learning

Logistics Regression Model

Problem Statement

Will The Film Be Successful?

Film's investor point of view to determine if the production will be <u>profitable</u> & what <u>factors</u> contribute to a film's success

DATA WRANGLING

API Call

Extract and Store in a CSV file

Real Value

Using US Inflation Rate

RegEx & Inline

Clean & Group the data

Budget vs Profit Margin

- → <u>Negative Correlation</u> with Budget and Profit Margin
- → <u>Diminishing Profit Margin</u> as *Budget* increases
- → Budget should be kept to a minimum

Profit by Months

- → September to January less November have the highest release of films
- → <u>June</u>, <u>July</u> & <u>December</u> are months that have a high *Profit*

Average Profit by Genre

- → <u>Dual Genres</u> generally fare better than single *Genre*
- → High Profit does not translate into high Profit Margin
- → <u>Documentary</u> would be a safe choice for profit margin

Number of Films Released in the Top Genres Released:

No. Romance History Film 1

No. Fantasy Adventure Film 66

No. Science Adventure Film 9

Profit by Films' Duration

- → Films longer than >123
 mins fetch higher *Profits*
- → This phenomenon can be observed since early 2000s, having a parabola effect to 2019

Machine Learning

Logistics Regression to predict whether a movie will be profitable based on attributes that are only available prior to it's release.

The Attributes:

- Budget, Popularity,
- Avg_Cast_Var,
- Director Var.
- Production_Var,
- Day_Of_Week,
- Month,
- genre_combo,
- Run Time

Wrangling

Analysis

Machine Learning

Conclusion

Implementation Steps

Data Preparation

1. Generate Dummy Variables

Reference Level: day_of_week_fri, month_apr, genre_combo_Action_

2. Train-Test-Split with Stratify

3. Standardisation

month_Jul	month_Jan	month_Feb
0	1	0
0	0	0

# Sanity Check			
X_train.std()			
budget	1.000153		
popularity	1.000153		
avg_cast_var	1.000153		

Recursive Feature Elimination Cross Validation


```
from sklearn.feature_selection import RFE, RFECV
from sklearn.linear_model import LogisticRegression
#Logistic Regression Model
logreg_model = LogisticRegression(class_weight = 'balanced', random_state = 0)
rfecv = RFECV(estimator=logreg_model, step= 1, cv = 5, scoring='accuracy')
rfecv = rfecv.fit(X_train, y_train)
```

Before

RFECV

Train Shape: (3263, 140) Test Shape: (1088, 140)

Optimal Features: 104

Fit and Model

The Model is <u>0.96</u> right in predicting Profitable Film, which is what we want.

Confusion Matrix

Classification Report

	Precision	Recall	FI-score	Support
0	0.59	0.92	0.72	303
1	0.96	0.75	0.84	785
Accuracy			0.80	1088
Macro Avg	0.77	0.83	0.78	1088
Weighted Avg	0.86	0.80	0.81	1088

Opportunity Lost is better than Money Lost!

ROC and Recall Curve

Good Precision and Recall

Interpreting Result

	Variable	Coefficient	
0	budget	-0.853982	Exρ(-0.85) -> 0.42
1	popularity	-0.299806	
2	avg_cast_var	0.532002	Exρ(0.53) -> 1.69
3	director_var	0.438631	
4	production_var	7.693367	
5	runtime	0.280174	
8	day_of_week_Thu	0.189285	
9	day_of_week_Tue	-0.221630	
10	month_Aug	-0.198156	
11	month_Dec	0.129855	
35	genre_combo_Family_Comedy	1.055084	Exp(1.055) -> 2.87
42	genre_combo_Fantasy_Family	0.835923	
74	genre_combo_Science_Adventure	0.797879	
73	genre_combo_Science_Action	0.795221	

Explanation

- 1. For Categorical, odds ratio is to a referenced Categorical Data
- 2. Numerical is in terms of SD, odds to increase Profitability.
- 3. Matches with EDA insights

Conclusion

Problem Solved - Key Insights from EDA & Modelling

- Production Studio, <u>Director</u> & <u>Cast</u> are Important for Profitability (1 out of top 5)
 - Higher Runtime has a Higher Probability of Profitability (>123 min)
 - Higher Budget does not Translate to Higher Profitability
 - Science & Adventure and Family & Comedy genres are expected to be profitable
 - Release Date can be <u>Dec for higher Profitability.</u>

Additional Learnings

- Regular Expression
- Dummy Variable/ One-Hot Encoding
- Receiver Operating Characteristic (ROC) Curve
- Recursive Feature Elimination Cross Validation (RFECV)
- 5. Importance of Cross-Validation
- 6. Decoding JSON format during the use of an API

Workload Distribution

Ameeshi

- Analysis Production VARs
- Editing of slides
- Filming

Darren

- Runtime Analysis
- Popularity Analysis
- Machine Learning
- Reference Material
- Slides, Visuals and Filming

Jia Cheng

- Data Extraction, Cleaning, Preparation
- Rest of EDA
- Machine Learning
- Slides and Filming

Please checkout our notebook too, there's additional sub questions there.

References

- 1. https://stackoverflow.com/questions/38640109/logistic-regression-python-solvers-defintions
- 2. https://towardsdatascience.com/building-a-logistic-regression-in-python-step-by-step-becd4d56c9c8
- 3. https://medium.com/analytics-vidhya/adjusting-for-inflation-when-analysing-historical-data-with-python-9d-69a8dcbc27
- 4. <a href="https://github.com/YashMotwani/TMDB-Movies-Dataset-Investigation-/blob/master/TMDB Movies Dataset-Investigation-/blob/master/TMDB Movies Dataset-Investiga
- 5. https://medium.com/analytics-vidhya/implementing-linear-regression-using-sklearn-76264a3c073c
- 6. https://towardsdatascience.com/building-a-logistic-regression-in-python-step-by-step-becd4d56c9c8
- 7. https://github.com/jeremy-lee93/dsc-mod-1-project-v2-1-onl01-dtsc-pt-052620
- 8. https://www.justintodata.com/logistic-regression-example-in-python/
- 9. https://stats.stackexchange.com/questions/463690/multiple-regression-with-mixed-continuous-categorical-variables-dummy-coding-s
- 10. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot-precision-recall-curve.html
- 11. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
- 12. https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/

THANK YOU

Do you have any questions?
Please checkout our notebook too, there's additional questions there.

Ameeshi Gupta (AMEESHI001@e.ntu.edu.sg)
Darren Chan Inn Siew (<u>DCHAN025@e.ntu.edu.sg</u>)
Koh Jia Cheng (C200172@e.ntu.edu.sg)

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik and illustrations by Storyset

CZ1115 | AY20/21 S2