TEST REPORT

Reference No. WTS15S0933386E

FCC ID 2AFOYLBA-057-AA

Applicant..... Le Shi Zhi Xin Electronic Technology (Tian jin) Limited

Eco-city Tianjin, China

Manufacturer Beijing VR-TIME Technology CO.Ltd

Product Name...... LeVR COOL 1

Model No. : LBA-057-AA

Standards...... FCC CFR47 Part 15 Section 15.247:2014

Date of Receipt sample Sep. 08, 2015

Date of Test Sep. 09, 2015 – Sep. 22, 2015

Date of Issue...... Sep. 23, 2015

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

18

Philo Zhong

Reference No.: WTS15S0933386E Page 2 of 44

2 Test Summary

Test Items	Test Requirement	Result	
	15.205(a)		
Radiated Spurious Emissions	15.209	PASS	
	15.247(d)		
Pand adap	15.247(d)	PASS	
Band edge	15.205(a)	PASS	
20dB Bandwidth	15.247(a)(1)	PASS	
Maximum Peak Output Power	15.247(b)(1)	PASS	
Frequency Separation	15.247(a)(1)	PASS	
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS	
Dwell time	15.247(a)(1)(iii)	PASS	
Maximum Permissible Exposure	1 1207/b)/1)	DACC	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS	

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST	
5	EQUIPMENT USED DURING TEST	7
	5.1 EQUIPMENTS LIST5.2 MEASUREMENT UNCERTAINTY5.3 TEST EQUIPMENT CALIBRATION	
6	RADIATED SPURIOUS EMISSIONS	9
	6.1 EUT OPERATION	
7	BAND EDGE MEASUREMENT	16
	7.1 TEST PROCEDURE	
8	20 DB BANDWIDTH MEASUREMENT	19
	8.1 TEST PROCEDURE	
9	MAXIMUM PEAK OUTPUT POWER	
	9.1 TEST PROCEDURE	
10		
	10.1 TEST PROCEDURE	24
11		
	11.1 TEST PROCEDURE	
12	DWELL TIME	28
	12.1 TEST PROCEDURE	
13	ANTENNA REQUIREMENT	31
14	RF EXPOSURE	32
	14.1 REQUIREMENTS	32
15	PHOTOGRAPHS - MODEL I BA-057-AA TEST SETUP	33

Reference No.: WTS15S0933386E Page 4 of 44

	15.1	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	33
16	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	35
	16.1	MODEL LBA-057-AA EXTERNAL VIEW	35
	16.2	Model LBA-057-AA Internal View	42

Reference No.: WTS15S0933386E Page 5 of 44

4 General Information

4.1 General Description of E.U.T.

Product Name: LeVR COOL 1

Model No.: LBA-057-AA

Model Description: N/A

Operation Frequency: 2402MHz ~ 2480MHz, 79 channels in total

Type of Modulation: GFSK
The lowest oscillator: 24MHz

Antenna installation: PCB printed antenna

Antenna Gain: 0dBi

4.2 Details of E.U.T.

Technical Data: Batteries DC1.5V*2 size AAA

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Reference No.: WTS15S0933386E Page 6 of 44

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, July 12, 2012.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#— Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

	5.1 Equipments L	_ist				
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.14,2015	Sep.13,2016
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.18,2015	Apr.17,2016
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.14,2015	Sep.13,2016
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.18,2015	Apr.17,2016
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.18,2015	Apr.17,2016
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.16,2015	Mar.15,2016
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz EW02014-7		Apr.09,2015	Apr.08.2016
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Sep.14,2015	Sep.13,2016
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.14,2015	Sep.13,2016
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.14,2015	Sep.13,2016
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.14,2015	Sep.13,2016
RF Co	nducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.14,2015	Sep.13,2016
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.14,2015	Sep.13,2016

Reference No.: WTS15S0933386E Page 8 of 44

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Dadiated Courieus Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS15S0933386E Page 9 of 44

6 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705
Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

6.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber Antenna Elevation Varies From 1 to 4 m Turn Table From 0 $^{\circ}$ to 360 $^{\circ}$ 3m 用 **EUT** 0.8m Turn Table Absorbers PC Combining Spectrum AMP Network System Analyzer

The test setup for emission measurement above 1 GHz.

6.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	<u>z</u>	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS15S0933386E Page 12 of 44

6.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

Reference No.: WTS15S0933386E Page 13 of 44

6.5 Summary of Test Results

Test Frequency: 24MHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data(GFSK modulation mode) were reported.

	Receiver						Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
			GF	SK Low	Channel								
268.35	36.87	QP	332	1.5	Н	-13.35	23.52	46.00	-22.48				
268.35	41.36	QP	332	1.9	V	-13.35	28.01	46.00	-17.99				
4804.00	46.15	PK	20	1.8	V	-1.06	45.09	74.00	-28.91				
4804.00	43.52	Ave	20	1.8	V	-1.06	42.46	54.00	-11.54				
7215.00	40.69	PK	318	1.9	Н	1.33	42.02	74.00	-31.98				
7206.00	35.37	Ave	318	1.9	Н	1.33	36.70	54.00	-17.30				
2349.50	45.89	PK	118	1.2	V	-13.19	32.70	74.00	-41.30				
2349.50	39.71	Ave	118	1.2	V	-13.19	26.52	54.00	-27.48				
2374.28	44.16	PK	88	1.7	Н	-13.14	31.02	74.00	-42.98				
2374.28	37.60	Ave	88	1.7	Н	-13.14	24.46	54.00	-29.54				
2483.60	42.54	PK	319	1.2	V	-13.08	29.46	74.00	-44.54				
2483.60	37.46	Ave	319	1.2	V	-13.08	24.38	54.00	-29.62				

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Middle	e Channe	el			
268.35	36.03	QP	95	1.6	Н	-13.35	22.68	46.00	-23.32
268.35	41.21	QP	13	1.5	V	-13.35	27.86	46.00	-18.14
4882.00	45.26	PK	335	1.6	V	-0.62	44.64	74.00	-29.36
4882.00	44.08	Ave	335	1.6	V	-0.62	43.46	54.00	-10.54
7323.00	40.11	PK	264	1.4	Н	2.21	42.32	74.00	-31.68
7323.00	34.05	Ave	264	1.4	Н	2.21	36.26	54.00	-17.74
2332.13	46.68	PK	167	1.1	V	-13.19	33.49	74.00	-40.51
2332.13	37.34	Ave	167	1.1	V	-13.19	24.15	54.00	-29.85
2371.79	44.66	PK	301	1.7	Н	-13.14	31.52	74.00	-42.48
2371.79	36.08	Ave	301	1.7	Н	-13.14	22.94	54.00	-31.06
2486.72	44.54	PK	34	1.1	V	-13.08	31.46	74.00	-42.54
2486.72	36.22	Ave	34	1.1	V	-13.08	23.14	54.00	-30.86

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK High	Channel				
268.35	34.77	QP	219	1.7	Н	-13.35	21.42	46.00	-24.58
268.35	39.99	QP	21	1.4	V	-13.35	26.64	46.00	-19.36
4960.00	46.57	PK	145	1.7	V	-0.24	46.33	74.00	-27.67
4960.00	43.99	Ave	145	1.7	V	-0.24	43.75	54.00	-10.25
7440.00	40.24	PK	169	1.5	Н	2.84	43.08	74.00	-30.92
7440.00	34.01	Ave	169	1.5	Н	2.84	36.85	54.00	-17.15
2310.74	46.85	PK	272	1.7	V	-13.19	33.66	74.00	-40.34
2310.74	39.02	Ave	272	1.7	V	-13.19	25.83	54.00	-28.17
2354.23	42.55	PK	66	1.1	Н	-13.14	29.41	74.00	-44.59
2354.23	38.35	Ave	66	1.1	Н	-13.14	25.21	54.00	-28.79
2492.96	42.37	PK	244	1.8	V	-13.08	29.29	74.00	-44.71
2492.96	37.20	Ave	244	1.8	V	-13.08	24.12	54.00	-29.88

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS15S0933386E Page 16 of 44

7 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: DA 00-705

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

310.200(0

7.1 Test Procedure

Test Mode:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Transmitting and Hopping

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

Test plots

Reference No.: WTS15S0933386E Page 19 of 44

8 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

8.2 Test Result

Modulation	Test Channel	Bandwidth
GFSK	Low	1.024MHz
GFSK	Middle	1.024MHz
GFSK	High	1.024MHz

Test plots

Reference No.: WTS15S0933386E Page 21 of 44

9 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

9.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

	Data	Peak Power(dBm)		
Test Mode	Data Rate	CH00	CH39	CH78
GFSK	1Mbps	0.31	0.56	-0.74

Test plots

Reference No.: WTS15S0933386E Page 24 of 44

10 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 6.0MHz. Sweep = auto;
 Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Modulation	Test Channel	Separation (MHz)	Result
GFSK	Low	1.000	PASS
GFSK	Middle	1.000	PASS
GFSK	High	1.000	PASS

Test plots

Reference No.: WTS15S0933386E Page 27 of 44

11 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

Test Plot: 79 Channels in total

Reference No.: WTS15S0933386E Page 28 of 44

12 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

12.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)	
DH5	1600/79/6*0.4*79*(MkrDelta)/1000	
DH3	1600/79/4*0.4*79*(MkrDelta)/1000	
DH1	1600/79/2*0.4*79*(MkrDelta)/1000	
Remark: Mkr Delta is once pulse time. Only the worst data(DH5)		
were show as follow.		

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
		Low	2.880	0.307	0.4
GFSK	DH5	middle	2.880	0.307	0.4
		High	2.880	0.307	0.4

13 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna, fulfil the requirement of this section.

Reference No.: WTS15S0933386E Page 32 of 44

14 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method 447498 D01 General RF Exposure Guidance v05r02

14.1 Requirements

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

14.2 The procedures / limit

Conducted Peak power(dBm)	Conducted Peak power(mW)	Source-based time- averaged maximum conducted output power(mW)	Minimum test separation distance required for the exposure conditions (mm)	SAR Test Exclusion Thresholds(mW)
0.56	1.14	1.14	5	10

Remark: Max. duty factor is 100%

Calculation formula: Source-based time-averaged maximum conducted output power(mW) =Conducted peak power(mW)*Duty factor

15 Photographs – Model LBA-057-AA Test Setup

15.1 Photograph – Radiation Spurious Emission Test Setup

Below 30MHz at Test Site 2#

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Above 1GHz at Test Site 1#

16 Photographs - Constructional Details

16.1 Model LBA-057-AA External View

Reference No.: WTS15S0933386E Page 36 of 44

Reference No.: WTS15S0933386E Page 37 of 44

Reference No.: WTS15S0933386E Page 38 of 44

Reference No.: WTS15S0933386E Page 41 of 44

16.2 Model LBA-057-AA Internal View

Reference No.: WTS15S0933386E Page 43 of 44

===== End of Report =====