

Cyber Physical Systems - Discrete Models Exercise Sheet 7 Solution

Alper Ari aa508@uni-freiburg.edu os141@uni-freiburg.de

Onur Sahin

December 5, 2023

Exercise 1: Linear-Time Properties

```
cise 1: Linear-Time Properties

operty P_1:

i \{A_0A_1A_2...|\forall i\in\mathbb{N}\cdot a\in A_i\vee b\in A_i\}

the set of the TS.

ii \{a\}(\{a\}\{a,b\})^\omega

ii \{a\}(\{a\}\{a,b\})^\omega
1. Property P_1:
```

- - iii $\{a\}\emptyset(\{a\}\{a,b\})^{\omega}$
 - iv $T \nvDash P_1$ because not all of the traces satisfy P_1 (example above).
- 2. Property P_2 :
 - $i \{A_0 A_1 A_2 ... | \forall i \in \mathbb{N} \cdot a \in A_i \land b \in A_i\}$
 - (ii) {a,650 -0.25

 - iii) $\{a\}\emptyset(\{a\}\{a,b\})^{\omega}$ v $T \nvDash P_2$ because none of the traces satisfy P_2 (example above).
- 3. Property P_3 :

- $i \{A_0 A_1 A_2 ... | \forall i \in \mathbb{N} \cdot (b \in A_i \longrightarrow \exists j \in \mathbb{N} \cdot j \leq i \land a \in A_j)\}$
- ii $\{a\}(\{a\}\{a,b\})^{\omega}$
- iii {b} q w 0.25
- iv $T \vDash P_3$ because all traces satisfy P_3 .
- 4. Property P_4 :
 - $\mathbf{i} \ \{A_0A_1A_2...|\forall i\in\mathbb{N} \ (a\in A_i\longrightarrow\exists j\in\mathbb{N}\cdot j\geq i\cdot b\in A_j)\} \ \ \mathbf{n}$
 - ii $\{a\}(\{a\}\{a,b\})^{\omega}$
 - iii {asg 0.25
 - iv $T \vDash P_4$ because all traces satisfy P_4 .
- 5. Property P_5 :

- operty P_5 : $\land \exists i \ \{A_0A_1A_2...|\exists i,j,k\in\mathbb{N}\cdot(a\in A_i\wedge a\in A_j\wedge a\in A_k)\wedge(\forall z\in\mathbb{N}/\{i,j,k\})\wedge(i\neq j\neq k)\cdot a\notin A_z\}$
- ii \0)(() \ a \ () \ 0.25
- iii $\{a\}\emptyset(\{a\}\{a,b\})^{\omega}$
- iv $T \nvDash P_5$ because no traces satisfy P_5 .
- 6. Property P_6 :
 - i $\{A_0 A_1 A_2 ... | \exists^{\infty} i \in \mathbb{N} \cdot a \in A_i \Longrightarrow \exists^{\infty} j \in \mathbb{N} \cdot b \in A_i\}$
 - ii $\{a\}(\{a\}\{a,b\})^{\omega}$

iv $T \vDash P_6$ because all traces satisfy P_6 .

7. Property P_7 :

i
$$\{A_0A_1A_2...|\exists i\in\mathbb{N}\cdot\forall j\in\mathbb{N}\cdot j\geq i\cdot a\notin A_j\}$$
 \checkmark

iii
$$\{a\}\emptyset(\{a\}\{a,b\})^\omega$$

iv $T \nvDash P_7$ because no traces satisfy P_7 . \bigvee

(4/4

Exercise 2: Complement of LT-Properties

(a) If $\tau \vDash \neg E$ holds, it follows that $\tau \nvDash E$ holds:

True. Proof by contradiction. Assume $\tau \vDash \neg E \land \tau \vDash E$.

Then it follows that $\tau \in \neg E \land \tau \in E$.

Since the fact that $E \cap \neg E = \emptyset$, the assumption contradicts.

Therefore, if $\tau \vDash \neg E$ holds, it follows that $\tau \nvDash E$ holds.

(b) If $\tau \nvDash \neg E$ holds, it follows that $\tau \vDash E$ holds:

True. Proof by contradiction. Assume $\tau \nvDash E \land \tau \nvDash \neg E$.

Then $\tau \notin E \land \tau \notin \neg E$.

This leads to $\tau \notin (E \cup \neg E)$ which actually means $\tau \notin (2^{AP})^{\omega}$ which is a contradiction.

Therefore, if $\tau \nvDash \neg E$ holds, it follows that $\tau \vDash E$ holds.

(c) If $T \vDash \neg E$ holds, it follows that $T \nvDash E$ holds:

False. A counter example would be $T = \emptyset$ which is a transition system without any traces. In this case the system has no trace which violates both E and $\neg E$.

So, the given statement is false.

(d) If $T \nvDash \neg E$ holds, it follows that $T \vDash E$ holds:

False. A counter example would be T with traces $\{a^{\omega}, b^{\omega}\}$ and property E = "always b".

Here, $T \nvDash \neg E$ is false because one of the traces already satisfies E.

And, $T \vDash E$ is also false because one of the traces already doesn't satisfy E.

So, the given statement is false.

Exercise 3: Invariant checking I

```
U= 2 3
Start:
          元= { 3
           call 1: S=So
                    \pi = \xi \longrightarrow \pi = \xi s_0 \xi
                     U= {} - V = { so }
                     s⊨Φ
                     call 2: S1= S3
                                π={so, s3} → π={so, s3}
                                U= {50,53} -> U = {50,53}
                                call 3 · s'= 52
                                         \pi = \{s_0, s_3\} \longrightarrow \pi = \{s_0, s_3, s_2\}
                                         U= {So, S3} -> U= {So, S3, S2}
                                          s' ⊨ Φ
                                                    π={so, s3, s2} → π= {so, s2, s0}
                                          cally
                                                    U= {S0,53,52}
                                                    70P

T={50,53,50,50} → 7={50,53,52}
                                                    return false
                                          POP

π = {50,53,5ε} → {50,53}

return false
                                  call 5: 51=53
                                            π={so,s3} → π={so,s3,s3}
                                            U = {SO153,52}
                                             1 = { So, S2, S2} → π= {S0, S3}
                                             return false
                                   T={so,s3} -> T={so}
                          pop
π={so} → π={}
                          return false
                call 6:
                          元={3 -> た= {4}
                          Call 7: S' = S_3

\pi = \{S_i\} \longrightarrow \pi = \{S_1, S_3\}
                                   U= { So, S3, S2, S}
                                   Pop π = {s1, s3 } → π = {s1} return dalse
                           Call 8: S' = S_{4}

\pi = \{S_{7}\} \longrightarrow \pi = \{S_{7}, S_{4}\}
                                    U = {SQS3, S2, S1} → U= {S0, S1, S2, S1, S4}
                                     s⊭₫
                                    return true
                            return tive
                return no, TE ESY, S4}
```


Exercise 4: Invariant checking II

Figure 1: Transition system with 3 states if you take away state Sz, it would not be a counter when minimal $=\{s_0,s_1,s_2\}$ and of minimal $=\{s_0,s_2\}$ and of minimal weights