

并行程序设计与算法实验

Lab9-CUDA **矩阵转**置

姓名_	XXX
学号	XXX
学院	计算机学院
专业	XXX

1 实验目的

- 熟悉 CUDA 线程层次结构 (grid、block、thread) 和观察 warp 调度行为。
- 掌握 CUDA 内存优化技术 (共享内存、合并访问)。
- 理解线程块配置对性能的影响。

2 实验内容

2.1 CUDA 并行输出

- 1. 创建 n 个线程块, 每个线程块的维度为 $m \times k$ 。
- 2. 每个线程均输出线程块编号、二维块内线程编号。例如:
 - "Hello World from Thread (1, 2) in Block 10!"
 - 主线程输出 "Hello World from the host!"。
 - 在 main 函数结束前,调用 cudaDeviceSynchronize()。
- 3. 完成上述内容,观察输出,并回答线程输出顺序是否有规律。

2.2 使用 CUDA 实现矩阵转置及优化

- 1. 使用 CUDA 完成并行矩阵转置。
- 2. 随机生成 $N \times N$ 的矩阵 A。
- 3. 对其进行转置得到 A^{T} 。
- 4. 分析不同线程块大小、矩阵规模、访存方式 (全局内存访问,共享内存访问)、任务/数据划分和映射方式,对程序性能的影响。
- 5. 实现并对比以下两种矩阵转置方法:
 - 仅使用全局内存的 CUDA 矩阵转置。
 - 使用共享内存的 CUDA 矩阵转置,并考虑优化存储体冲突。

3 实验结果与分析

3.1 CUDA Hello World 并行输出

3.1.1 实验现象

描述实验观察到的现象,例如线程输出的顺序等。可以粘贴部分关键的运行截图或输出文本。

• 回答:

3.1.2 结果分析

线程输出顺序是否有规律?为什么?结合CUDA线程调度机制进行解释。

• 回答:

3.2 CUDA 矩阵转置及优化

3.2.1 不同实现方法的性能对比

1. 展示不同矩阵转置实现(仅全局内存、使用共享内存、优化共享内存访问)在不同矩阵规模(N)和不同线程块大小下的运行时间。可以根据你的实验设置更改表格的矩阵规模、线程块大小。

V 1. /E						
矩阵规模 (N)	线程块大小	全局内存版本	共享内存版本	优化共享内存版本		
512	8×8					
	16×16					
	32×32					
1024	8×8					
	16×16					
	32×32					
2048	8×8					
	16×16					
	32×32					

表 1: 矩阵转置性能对比 (时间单位: ms)

3.2.2 结果分析

1. 根据实验结果,总结线程块大小、矩阵规模对程序性能的影响。哪种配置下性能 最优?为什么?

回答:

2. 讨论任务/数据划分和映射方式对性能的影响。

回答:

注:实验报告格式参考本模板,可在此基础上进行修改;实验代码以 zip 格式另提交;最终提交内容包括实验报告 (pdf 格式) 和实验代码 (zip 压缩包格式)