Discontinuous Galerkin Methods Study and Application to PDEs

Pratik Aghor Abhishek Kumar

Department of Mechanical Engineering Birla Institute of Technology and Science (BITS), Pilani

Study Project Presentation,25th April 2014

Outline

- Introduction
 - Motivation
 - How is it different from Galerkin FEM
- Notations and Preliminaries
 - Notations
- 3 The Hello World of PDEs !- Poissons equation
 - DGM formulation

Outline

- Introduction
 - Motivation
 - How is it different from Galerkin FEM
- 2 Notations and Preliminaries
 - Notations
- The Hello World of PDEs !- Poissons equation
 - DGM formulation

Motivation

- Variants of DGM used to effectively solve diffusion (e.g. the heat eqaution) and pure convection (e.g. in a convection transport equation) problems
- Heat eqn: $\frac{\partial u}{\partial t} \alpha \nabla^2 u$
- Convection Transport Eqn: $\frac{\partial u}{\partial t} + \nabla \cdot (\vec{v}u)$

Outline

- Introduction
 - Motivation
 - How is it different from Galerkin FEM
- 2 Notations and Preliminaries
 - Notations
- The Hello World of PDEs !- Poissons equation
 - DGM formulation

Difference between Galerkin and DGM

Element-wise conservative

Difference between Galerkin and DGM

- Element-wise conservative
- Can support high order local approximation which varies over the mesh

Difference between Galerkin and DGM

- Element-wise conservative
- Can support high order local approximation which varies over the mesh
- Leads to block diagonal mass matrices, even for high order polynomial approximation in time dependent problem

Outline

- Introduction
 - Motivation
 - How is it different from Galerkin FEM
- Notations and Preliminaries
 - Notations
- The Hello World of PDEs !- Poissons equation
 - DGM formulation

Notations used

- Domain is Ω which is a bounded, open set in \mathbb{R}^2 with Lipschitz continuous boundary $\partial\Omega$
- ullet Γ_D on $\partial\Omega$ is the Dirichlet condition prescribed boundary
- ullet Γ_N on $\partial\Omega$ is the Neumann condition prescribed boundary
- $\Gamma_N \cup \Gamma_D = \partial \Omega$ and $\Gamma_N \cap \Gamma_D = \phi$
- P_h is a partition of domain Ω , it numbers N_e partitions in this domain
- $\Omega = \bigcup_{K_i \in P_h} K_i, K_i \cap K_j = \phi, i \neq j$
- Set of edges E_h =set of γ_I , $I = 1, 2...N_{\gamma}$
- $\bullet \ E_h = E_{h,D} \cup E_{h,N} \cup E_{h,int}$

Outline

- Introduction
 - Motivation
 - How is it different from Galerkin FEM
- Notations and Preliminaries
 - Notations
- 3 The Hello World of PDEs !- Poissons equation
 - DGM formulation

DGM Formulation - Poisson's Equation

Poisson's Equation

$$-\Delta u + cf = u \text{ in } \Omega$$

Boundary conditions

- $u = u_o$ on Γ_D
- $\vec{n} \cdot \nabla u = g$ on Γ_N

Weak Formulation

- ullet Multiply PDE by test function v and integrate over Ω
- $\int_{\Omega} (\nabla \cdot \nabla u + cu) v dx = \int_{\Omega} f v dx$
- Decomposing the above integrals into element contributions (unlike classical FEM approach) and integrating by parts:

$$\sum_{K \in P_h} \int_K (\nabla u \cdot \nabla v + cuv) dx - \sum_{K \in P_h} \int_{\partial K} ((\vec{n}) \cdot \nabla u) v ds = \sum_{K \in P_h} \int_K fv dx$$

Boundary integral is defined on each boundary element as follows:

$$\sum_{K \in P_h} \int_{\partial K} (\vec{n} \cdot \nabla u) v ds = \int_{\Gamma_D} (\vec{n} \cdot \nabla u) v ds + \int_{\Gamma_N} (\vec{n} \cdot \nabla u) v ds +$$

$$\sum_{\gamma_{ij} \in E_{h,int}} \int_{\gamma_{ij}} (\vec{n} \cdot \nabla u)_i v_i + (\vec{n} \cdot \nabla u)_j v_j ds$$

Simplifying

• Using
$$ac - bd = 1/2(a+b)(c-d) + 1/2(a-b)(c+d)$$

•

$$\vec{n} \cdot (\nabla u)_i v_i - \vec{n} \cdot (\nabla)_j v_j = \langle \vec{n} \cdot \nabla u \rangle [v] + [vecn \cdot \nabla u] \langle v \rangle$$

Where:Jump is

$$[v] = v_i - v_i$$

and average is

$$\langle v \rangle = \frac{v_i + v_j}{2}$$

Simplifying (Continued)

• An edge lying on Γ_D has

$$[v] = v = v$$

and

$$\langle v \rangle = v$$

•

 Allowing us to combine interior and Dirichlet boundary conditions in one term :

$$\int_{\Gamma_{int}\cup\Gamma_{0}} \langle \vec{n}\cdot\nabla u\rangle[v] + [\vec{n}\cdot\nabla u]\langle v\rangle ds$$

Variational Form

$$\sum_{K \in P_h} \int_K (\nabla u \cdot \nabla v + cuv) dx - \int_{\Gamma_i nt \cup \Gamma_D} \langle \vec{n} \cdot \nabla u \rangle ds = \sum_{K \in P_h} \int_K fv dx + \int_{\Gamma_N} gv ds$$

Variational Form

 $\sum_{K \in P_h} \int_K (\nabla u \cdot \nabla v + cuv) dx - \int_{\Gamma_i nt \cup \Gamma_D} \langle \vec{n} \cdot \nabla u \rangle ds = \sum_{K \in P_h} \int_K fv dx + \int_{\Gamma_N} gv ds$

• Bilnear form :

$$B(u,v) = \sum_{K \in P_h} \int_K (\nabla u \cdot \nabla v + cuv) dx$$

and

$$F(v) = \sum_{K \in P_b} \int_K f v dx + \int_{\Gamma_N} g v ds$$

Variational Form

•

$$\sum_{K \in P_h} \int_K (\nabla u \cdot \nabla v + cuv) dx - \int_{\Gamma_i nt \cup \Gamma_D} \langle \vec{n} \cdot \nabla u \rangle ds = \sum_{K \in P_h} \int_K fv dx + \int_{\Gamma_N} gv ds$$

Bilnear form :

$$B(u,v) = \sum_{K \in P_h} \int_K (\nabla u \cdot \nabla v + cuv) dx$$

and

$$F(v) = \sum_{K \in P_h} \int_K f v dx + \int_{\Gamma_N} g v ds$$

• Also Bilinear form for Boundaries Γ_D and $\Gamma_i nt$ is :

$$J(u,v) = \int_{\Gamma_0 \cup \Gamma_{\rm int}} \langle \vec{n} \cdot \nabla u \rangle [v] ds$$

Variational formulation

 A general discontinuous weak formulation of the Poisson Equation hence reads :

$$B(u, v) - J(u, v) = F(v), \forall v \in H^2(P_h)$$

Introduction of a new linear form

• Observation : $u\in H^1(\Omega)\cap H^2(P_h)$, the jump [u] vanishes on each γ_{ij} : $\int_{\gamma_{ii}}v[u]ds=0, \forall v\in L^2(\gamma_{ij})$

Follows that :

$$\int_{\Gamma_{int}} \langle \vec{n} \cdot \nabla v \rangle [u] ds = 0, \forall v \in H^2(P_h)$$

Dirichlet B.C. applied will give :

$$\int_{\Gamma_D} (\vec{n} \cdot \nabla v) u ds = \int_{\Gamma_D} (\vec{n} \cdot \nabla v) u_0 ds, \forall v \in H^2(P_h)$$

Continued

• The new linear form defined as :

$$J_0(v) = \int_{\Gamma_D} (\vec{n} \cdot \nabla v) u_0 ds, \forall v \in H^2(P_h)$$

• We observe $u = u_0$ on Γ_D ,

$$J(u,v)=J_0(v), \forall v\in H^2(P_h)$$

IMPORTANT

 We will, hence forth, only discuss the discrete formulation of different methods (and assume that the continuous form is similar, with the exception of the domains where the answer for u is searched in)

Global Element Method

•
$$B_{-}(u, v) = B(u, v) - J(u, v) - J(v, u)$$

- $F_{-}(v) = F(v) J_{0}(v)$
- GEM consists of finding $u_h \in V^{hp}$ such that :

$$B_{-}(u,v) = F_{-}(v), \forall v \in V^{hp}$$

Symmetric Interior Penalty Galerkin Method

- Penalty terms added to ensure continuity of solution at the interface of elements
- Let σ be penalty parameter depending on length of edges γ_{ij} and γ and the polynomial degree used in elements i.e $\sigma = \sigma(h, p)$
- Introducing Penalty terms

$$J^{\sigma}(u,v) = \int_{\Gamma_i nt \cup \Gamma_D} \sigma[u][v] ds$$

and

$$J_0^{\sigma}(v) = \int_{\Gamma_D} \sigma u_0 v ds$$

- $B_{-}(u, v)^{\sigma} = B(u, v) J(u, v) J(v, u) + J^{\sigma}(u, v)$
- $F_{-}^{\sigma}(v) = F(v) J_{0}(v) + J_{0}(v)^{\sigma}$

Continued

• SIPG Problem is find $u_h \in V^{hp}$ such that :

$$B_{-}(u,v)^{\sigma}=F_{-}^{\sigma}(v), \forall v\in V^{hp}$$

Discontinuous hp Galerkin FEM - DGM

•
$$B_+(u, v) = B(u, v) - J(u, v) + J(v, u)$$

- $F_+(v) = F(v) + J_0(v)$
- DGM consists of finding $u_h \in V^{hp}$ such that :

$$B_+(u,v) = F_+(v), \forall v \in V^{hp}$$

Non-Symmetric Interior Penalty Galerkin Method (NIPG)

•
$$B_{-}(u, v)^{\sigma} = B(u, v) - J(u, v) + J(v, u) + J^{\sigma}(u, v)$$

- $F_+^{\sigma}(v) = F(v) + J_0(v) + J_0(v)^{\sigma}$
- NIPG Problem is find $u_h \in V^{hp}$ such that :

$$B_+(u,v)^{\sigma}=F_+^{\sigma}(v), \forall v\in V^{hp}$$

References

- Bahriawati, C., and C. Carstensen. "Three MATLAB implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control." Comput. Methods Appl. Math. 5, no. 4 (2005): 333-361.
- Prudhomme, S., F. Pascal, J. T. Oden, and A. Romkes. "Review of a priori error estimation for discontinuous Galerkin methods." (2000).
- Hecht, Frdric, Olivier Pironneau, A. Le Hyaric, and K. Ohtsuka.
 "FreeFem++ manual." (2005).

Numerical Implementation

Open the report.

