

In Air

Common Optimization Techniques

Gradient Descent with Momentum

Approach: Finding the moving average of gradients

- Accelerate SGD
- Dampen the turbulence

Moving average of gradients → Simple Moving Average

Computationally expensive procedure

Exponential Average

The Math Behind Exponential Average

1. Compute the gradient gt at time step t.

$$\mathbf{g}_t = \nabla_{\mathbf{w}} L(\mathbf{w})$$

The Math Behind Exponential Average

1. Compute the gradient gt at time step t.

$$\mathbf{g}_{t} = \nabla_{\mathbf{w}} L(\mathbf{w})$$

2. Calculate the moving average based on the previous timestamp value and the current gradient gt.

$$\mathbf{v}_{t} = \beta \mathbf{v}_{t-1} + (1 - \beta) \mathbf{g}_{t}$$

 v_t = Moving Average

 β = Momentum Term

$$\beta$$
 = 0.9 ~ Avg of 10 time stamps ~ $\frac{1}{1-\beta}$

90% - weightage to the previous gradients

10% - weightage to current gradient

The Math Behind Exponential Average

Compute the gradient gt at time step t.

$$\mathbf{g}_t = \nabla_{\mathbf{w}} L(\mathbf{w})$$

2. Calculate the moving average based on the previous timestamp value and the current gradient gt.

$$\mathbf{v}_{t} = \beta \mathbf{v}_{t-1} + (1 - \beta)\mathbf{g}_{t}$$

3. Update the weights w using the moving average and learning rate.

$$w = w - \eta v_t$$

 η = Learning Rate

Nesterov Momentum

Nesterov Momentum

Nesterov refines momentum by looking at gradient or future steps.

The Math Behind Nesterov Momentum

1. Compute the gradient gt at time step t.

$$\mathbf{w}_{\text{lookahead}} = \mathbf{w} - \beta \mathbf{v}_{t-1}$$

The Math Behind Nesterov Momentum

1. Compute the gradient gt at time step t.

$$w_{\text{lookahead}} = w - \beta v_{t-1}$$

2. Compute the gradient gt at the lookahead weight $w_{
m lookahead}$

$$\mathbf{g}_t = \nabla_{\mathbf{w}} L(\mathbf{w}_{\text{lookahead}})$$

The Math Behind Nesterov Momentum

1. Compute the gradient gt at time step t.

$$w_{\text{lookahead}} = w - \beta v_{t-1}$$

2. Compute the gradient gt at the lookahead weight $w_{
m lookahead}$

$$\mathbf{g}_t = \nabla_{\mathbf{w}} L(\mathbf{w}_{\text{lookahead}})$$

3. Repeat steps 3 and 4 (same as SGD with Momentum).

$$\mathbf{v}_{t} = \beta \mathbf{v}_{t-1} + (1 - \beta)\mathbf{g}_{t}$$

$$w = w - \eta v_t$$

Hands-on: GD with Momentum & Nesterov Momentum