## Chapter 函数连续

## · 义

/Define/

定义1: 若  $\lim_{x\to x_0} f(x) = f(x_0)$ , 称 y = f(x) 在  $x = x_0$  处连续。

定义2: 设 f(x) 在  $U(x_0,\delta)$  内有定义, $\forall \varepsilon > 0$ , 当  $|x-x_0| < \delta$  时,都有  $|f(x)-f(x_0)| < \varepsilon$ ,称 y=f(x) 在  $x=x_0$  处连续

 $\lim_{x\to x_0} f(x) = A \ \mathbb{Z} X$ :

设 f(x) 在  $\mathring{U}(x_0, \delta_0)$  内有定义, A 是一个确定的常数,  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$ ,  $(\delta \leq \delta_0)$ ,

当  $0<|x-x_0|<\delta$  时,都有  $|f(x)-A|<\varepsilon$ 。

若  $x=x_0$ ,  $|x-x_0|<\delta\Rightarrow |f(x)-A|<arepsilon\Rightarrow f(x_0)=A$   $\Rightarrow \lim_{x\to x_0}f(x)=A$ , f(x) 在  $x=x_0$  处连续。

$$egin{align*} \Leftrightarrow \lim_{x o x_0} f(x) = f(x_0) \ \Leftrightarrow \lim_{x o x_0} [f(x) - f(x_0)] = 0 \end{aligned}$$

令  $x - x_0 = \Delta x$  称为自变量的增量, 即  $x = x_0 + \Delta x$ 。

$$\Leftrightarrow \lim_{\Delta x o 0} [f(x_0 + \Delta x)]$$





 $y = \sqrt{\cos x - 1}$  在定义域内每一点都连续。

/example/  $\lim_{x \to 0} \frac{1 + e^x + \sqrt{1 + x^2}}{\sin x + \cos x + 1}$ 

解: 原式 =  $\frac{1+1+1}{0+1+1} = \frac{3}{2}$ 。

/example/  $\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}$ .

$$=\lim_{x o 0}rac{x-x}{\sin^3x}=\lim_{x o 0}rac{0}{\sin^3x}=\lim_{x o 0}0=0$$
 " "

/solution/

解法一:

LHS. = 
$$\lim_{x \to 0} \frac{\tan x (1 - \cos x)}{\sin^3 x} = \lim_{x \to 0} \frac{x \cdot \frac{1}{2} x^2}{x^3} = \frac{1}{2}$$

解法二:

LHS. = 
$$\lim_{x \to 0} \frac{\sin x (\frac{1}{\cos x} - 1)}{\sin^3 x} = \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3 \cdot \cos x} = \lim_{x \to 0} \frac{x \cdot \frac{1}{2} x^2}{x^3 \cdot 1} = \frac{1}{2}$$

 $(\lim_{x\to 0}\cos x = 1 \neq 0, \cos x \sim 1, x\to 0)$ 

"等价量替换"多次求极限。

/example/  $\lim_{x o 0} (1+x)^{rac{1}{x}}$  。

/solution/

正解:

$$\text{LHS.} = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

$$f(x)$$
  $(a,b)$   $f(x)$   $(a,b)$   $\circ$ 

$$f(x)$$
  $(a,b)$   $x=a$   $x=b$   $f(x)$   $[a,b] \perp$  .

f(x)  $I \perp$   $I \perp$ 

## • 闭区间上连续函数 性质

- 理(最大值与最小值 理)  $f(x)\in C[a,b]$  f(x) [a,b] 上 M  $m_{\circ}$   $\exists x_1,x_2\in [a,b]$   $f(x_1)=M$   $f(x_2)=m$   $\forall x\in [a,b]$   $m\leq f(x)\leq M_{\circ}$ 
  - 。 推论1  $f(x) \in C[a,b]$  f(x) [a,b] 上 。
  - 。 推论2  $f(x) \in C[a,b]$   $R(f) \subseteq [m,M]$ 。
- 理(根存在 理或零点 理)  $f(x) \in C[a,b] \ \ \mbox{且} \ f(a) \cdot f(b) < 0 \qquad \qquad \quad \xi \in (a,b)$   $f(\xi) = 0_{\circ}$
- 理 (介值 理)  $f(x) \in C[a,b]$  且  $f(a) \neq f(b)$  f(a) f(b) C(a) f(b) f(b)

/proof/

要证原结论成立,只要证  $f(\xi)-C=0$  成立,令  $\varphi(x)=f(x)-C$ ,只要  $\varphi(x)=C$  有一个根(1)成立。



$$f(x) o 0$$
, $\lim_{x o x_0}rac{e^{f(x)}-1}{f(x)}=1$ 。 $1\sim x$ ; $x o x_0$ ,有 $f(x) o 0$ , $e^{f(x)}-1\sim f(x)$ 。 $>0$   $a
eq 1$   $e^{x\ln a}-1$   $x\ln a$ 

$$=\lim_{x\to 0}\frac{e^{x\ln a}-1}{x}=\lim_{x\to 0}\frac{x\ln a}{x}=\ln a$$

0

lpha 
eq 0

$$=\lim_{x\to 0}\frac{e^{\alpha\ln(1+x)}-1}{x}=\lim_{x\to 0}\frac{\alpha\ln(1+x)}{x}=\alpha$$

l '

$$a>0 \qquad \qquad \lim_{x o x_0} v(x)=b>0 \qquad \qquad \lim_{x o x_0} u(x)^{v(x)} \qquad \qquad =a^b.$$

$$\begin{split} \text{LHS.} &= \lim_{x \to x_0} e^{v(x) \ln u(x)} \\ &= e^{\lim_{x \to x_0} v(x) \ln u(x)} \\ &= e^{\lim_{x \to x_0} v(x) \cdot \lim_{x \to x_0} \ln u(x)} \\ &= e^{b \ln a} = a^b \end{split}$$

$$\frac{\arcsin x = t}{=} \lim_{t \to 0} \frac{t}{\sin t} = \lim_{t \to 0} \frac{t}{\sin t} = 1$$

$$\frac{\arctan x = t}{=} \lim_{t \to 0} \frac{t}{\tan t} = \lim_{t \to 0} \frac{t}{\tan t} = 1$$

f(x) o 0

$$\frac{\ln(1+f(x))}{\sqrt{1-x}}=1$$
  $\lim_{x o x_0}rac{e^{f(x)}-1}{f(x)}=1$ 

. . .

/solution/

$$\begin{split} \text{HLS.} &= \lim_{x \to 0} \left[ 1 + \left( \frac{a^x + b^x + c^x}{3} - 1 \right) \right]^{\frac{1}{a^x + b^x + c^x} - 1 \cdot \frac{1}{x} \left( \frac{a^c + b^c + c^x}{3} - 1 \right)} \\ &= e^{\lim_{x \to 0} \frac{1}{x} \left( \frac{a^x + b^x + c^x}{3} - 1 \right)} \\ &= e^{\lim_{x \to 0} \frac{1}{3} \left( \frac{a^x - 1}{x} + \frac{b^x - 1}{x} + \frac{c^x - 1}{x} \right)} \\ &= e^{\frac{1}{3} (\ln a + \ln b + \ln c)} \\ &= e^{\frac{1}{3} \ln abc} = (abc)^{\frac{1}{3}} = \sqrt[3]{abc} \end{split}$$

解法二:

$$\begin{split} \text{HLS.} &= \lim_{x \to 0} e^{\frac{1}{x} \ln(\frac{a^x + b^x + c^x}{3})} \quad (1^{\infty}) \\ &= e^{\lim_{x \to 0} \frac{1}{x} \ln[1 + (\frac{a^x + b^x + c^x}{3} - 1)]} \\ &= e^{\lim_{x \to 0} \frac{1}{x} (\frac{a^x + b^x + c^x}{3} - 1)} \\ &= e^{\frac{1}{3} (\ln a + \ln b + \ln c)} = \sqrt[3]{abc} \end{split}$$

Q.E.D.

$$\lim_{x o +\infty} rac{\ln(1+3^x)}{\ln(1+2^x)}$$
o

/solution/

LHS. 
$$= \lim_{x \to +\infty} \frac{\ln 3^{x} (1+3^{-x})}{\ln 2^{x} (1+2^{-x})}$$
$$= \lim_{x \to +\infty} \frac{\ln 3^{x} + \ln(1+3^{-x})}{\ln 2^{x} + \ln(1+2^{-x})}$$
$$= \lim_{x \to +\infty} \frac{x \ln 3 + \ln(1+3^{-x})}{x \ln 2 + \ln(1+2^{-x})}$$
$$= \lim_{x \to +\infty} \frac{\ln 3 + \frac{1}{x} \ln(1+3^{-x})}{\ln 2 + \frac{1}{x} \ln(1+2^{-x})} = \frac{\ln 3}{\ln 2}$$

Q.E.D.

## ・证明题训练

/example/

$$f(x)$$
  $(a,b)$   $a,b$   $\lim_{x o a^+}f(x)=A>0$   $\lim_{x o b^-}f(x)=B<0$   $\xi\in(a,b)$   $f(\xi)=0_\circ$ 

证法一:

不妨令

$$F(x) = \begin{cases} A, & x = a \\ f(x), & x \in (a, b) \\ B, & x = b \end{cases}$$

知 F(x) 在 [a,b] 上连续, 且 F(a)F(b) = AB < 0,

由根的存在定理,  $\exists \xi \in (a,b)$  使  $F(\xi) = 0$ ,  $x \in (a,b)$  时 F(x) = f(x), 故  $f(\xi) = 0$ 。

证法二:

由  $\lim_{x \to a^+} f(x) = A > 0$ ,由保号性,  $\exists \delta_1 > 0$ ,当  $a < x < a + \delta_1 < b$  有 f(x) > 0,取  $a < a_1 < a + \delta_1$ ,有  $f(a_1) > 0$ 。



/example/ 
$$f(x)=rac{x^2-1}{x-1}$$
  $f(x)$ 

/solution/

由 f(x) 在 x=1 处无定义, x=1 为间断点。

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1}$$

$$= \lim_{x \to 1} (x + 1) = 2$$

知 x=1 为可去间断点。

/example/  $f(x) = \tan x$ 

/solution/

由 f(x) 在  $x=k\pi+\frac{\pi}{2}(k\in\mathbb{Z})$  处无定义,在左侧有定义。

$$\lim_{x\to k\pi+\frac{\pi}{2}^-}f(x)=\lim_{x\to k\pi+\frac{\pi}{2}^-}\tan x=+\infty$$

$$\lim_{x\to k\pi+\frac{\pi}{2}^+}f(x)=\lim_{x\to k\pi+\frac{\pi}{2}^+}\tan x=-\infty$$

知  $x = k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$  为第二类间断点 (无穷型间断点)。