

Aula 2 Séries Temporais -Parte I - Definições, Avaliação e Componentes

- Série Temporal é um conjunto de observações sobre uma variável alvo (ou de interesse) ordenadas no tempo
- Os períodos de tempo de uma série temporal são regulares, isto é, as unidades de tempo das observações variam em períodos uniformes
- Exs:
 - De hora em hora
 - De minuto em minuto
 - De ano em ano
 - ...

Figura 3. Variação das vendas de automóveis no Brasil

http://www.ilos.com.br/web/wp-content/uploads/2011/02/2011_02_imagem_04.jpg

 Vários conjuntos de dados do mundo real são registrados em um formato de série temporal

Exs:

- Variação da temperatura a cada hora do dia
- Vendas mensais de uma empresa
- Valores de fechamento diários do IBOVESPA
- Resultado de um eletroencefalograma
- ..

- Uma das principais tarefas quando se tem dados representados em séries temporais é a tarefa preditiva, isto é, prever o valor futuro (regressão) ou prever se haverá uma alta ou uma baixa no valor futuro em relação ao valor atual (classificação)
- O foco da disciplina será na previsão do valor futuro
- Exemplos de aplicações com predição de valor futuro
 - Previsão da quantidade de vendas de produtos
 - Indicadores de valores de ações
 - Aumento da temperatura ou devastação em ecossistemas
 - Previsão de demanda de energia elétrica
 - ...

Para que se possa prever o valor futuro, é preciso identificar padrões não aleatórios da variável de interesse na série temporal, para que a observação do comportamento passado (padrões) possam permitir fazer previsões sobre o futuro, orientando a tomada de decisões

Definição

- Uma série temporal é uma sequência $\{y_t\}$ de valores que podem ser mensurados períodos de tempo específicos t
- Normalmente os valores de t são discretos e correspondem a sequência naturais e uniformes no horizonte de tempo
 - Minutos
 - Horas
 - Dias
 - Semanas
 - Meses
 - Anos
 - ...

• Os modelos preditivos analisam as observações de uma série temporal $\{y_t\}$ para descobrir padrões regulares que ocorreram no passado de forma a prever o provável comportamento da série no futuro

 Suponha que t é o índice do período de tempo atual (ou último período), e que k (tamanho da janela) correspondende aos últimos valores conhecidos ou últimos valores que devem ser utilizados para fazer a predição

Portanto, o objetivo de um modelo preditivo é

$$f_{t+1} = F(y_t, y_{t_{t-1}}, \dots, y_{t-k+1})$$

 Para desenvolver um modelo preditivo, portanto, precisamos selecionar uma função F que melhor realiza as predições dos valores futuros de acordo com a série temporal que queremos analisar

- ullet Em algumas situações, pode-se querer gerar predições para um período à frente do período t+1
 - Ex: predizer as vendas de um produto para um ano inteiro

• Para isso é feito um **processo recursivo de previsões** dos períodos anteriores até se obter a previsão do período f+h, na qual h é o período de tempo desejado e $h \ge 1$

$$f_{t+h} = F(f_{t+h-1}, f_{t+h-2}, \dots, f_{t+1}, y_t, t_{t-1}, \dots, y_{t-k+1})$$

Avaliação de Modelos de Séries Temporais

Para escolher um modelo de previsão apropriado e para analisar o quão bem a previsão de valores irá se comportar na prática, é necessário analisar o modelo de previsão

Avaliação de Modelos de Séries Temporais

 Intuitivamente, as medidas de avaliação irão avaliar o quanto o valor predito é diferente do valor real

Avaliação de Modelos de Séries Temporais

 Intuitivamente, as medidas de avaliação irão avaliar o quanto o valor predito é diferente do valor real

Erro de Predição

• Dadas observações y_t de uma série temporal e as previsões correspondentes f_t para os últimos k períodos de tempo, o **Erro de Predição** do período t, $t=1,2,\ldots,k$ é definido como

$$e_t = y_t - f_t$$

Erro de Predição Percentual

Já o Erro de Predição Percentual no período t é dado por:

$$e_t^P = \frac{y_t - f_t}{y_t} \times 100$$

 A predição de erro percentual é independente da escala na qual as observações são medidas e, portanto, é mais "real", especialmente para comparar os erro gerados em diferentes séries temporais

Erro de Predição

Medidas de Distorção

- Índices de distorção são utilizados para considerar as k avaliações de um modelo
- Erro Médio (Mean Error (ME)):

$$ME = \frac{\sum_{t=1}^{k} e_t}{k}$$

• Erro Médio Percentual (Mean Percentage Error):

$$MPE = \frac{\sum_{t=1}^{k} e_t^P}{k}$$

 Idealmente um modelo bom seria o modelo cujo ME ou MPE seja próximo a 0

Problemas Medidas Distorção

- O erro médio de **a** e **c** é 0 e o erro médio de **b** é 3
- Entretanto, apesar da distorção ser nula, os modelos a e c não são equivalentes, uma vez que a gerar erro menores comparados com c → a seria um modelo preferido

Problemas Medidas Distorção

Medidas de Dispersão

- Os problemas das medidas de distorção podem ser solucionados com medidas de dispersão
- Desvio Médio Absoluto (Mean Absolute Deviation MAD)

$$MAD = \frac{\sum_{t=1}^{k} |e_t|}{k} = \frac{\sum_{t=1}^{k} |y_t - f_t|}{k}$$

 Erro Percentual Absoluto Médio (Mean Absolute Percentage Error - MAPE)

$$MAPE = \frac{\sum_{t=1}^{k} |e_t^P|}{k}$$

Medidas de Dispersão

• Erro Quadrático Médio (Meas Squared Error (MSE))

$$MSE = \frac{\sum_{t=1}^{k} e_t^2}{k} = \frac{\sum_{t=1}^{k} (y_t - f_t)^2}{k}$$

- O MSE é uma função quadrática
- Funções quadráticas são mais fáceis de serem otimizadas

Medidas de Dispersão

Erros de Desvio Padrão (Standar Deviation of Errors - SDE)

$$SDE = \sqrt{\frac{\sum_{t=1}^{k} e_t^2}{k}} = \sqrt{\frac{\sum_{t=1}^{k} e_t^2}{k}}$$

- O MSE tende amplificar o efeito de granders erros
- Portanto, o SDE é introduzido para obter uma medida na mesma escala das observações originais

Componentes de uma Série Temporal

 Pode-se distinguir na série temporal, componentes que podem ser úteis nas previsões

- Esses componentes são:
 - Tendência (trend)
 - Sazonalidade (seasonality)
 - Ruído aleatório (random noise)

Tendência

 Um componente de tendência descreve um comportamento médio ao longo do tempo

- Esse comportamento pode ser
 - Crescente
 - Decrescente
 - Estacionário

Tendência

Exemplo de tendência crescente

https://www.dtreg.com/uploaded/pageimg/TsTrend_1.jpg

<u>Tendência</u>

Exemplo de tendência decrescente

http://nsidc.org/sites/nsidc.org/files/images/asina/20070904_augtrend.jpg

Tendência

Exemplo de tendência estacionária

Transformed Time Series for Passengers

https://www.dtreg.com/uploaded/pageimg/TsTrendAndAmplitude_1.jpg

Média Móvel

- A média móvel (moving average) m_t(h) com parâmetro h em um tempo t é definido como é média aritmética de h observações consecutivas das séries temporais {y_t}
- Pode ser utilizada para identificar tendência, removendo da série flutuações aleatória e componentes de sazonalidade
- É possível computar diferentes valores da média móvel, dependendo da posição do índice t na sequencia das h observações consecutivas utilizadas para calcular a média

Média Móvel

Média móvel centrada (centered moving average), na qual t é
o ponto médio das observações, e assumindo que h é impar é
dada por

$$m_t(h) = \frac{y_{t+(h-1)/2} + y_{t+(h-1)/2-1} \cdots y_{t-(h-1)/2}}{h}$$

Média móvel não centrada (noncentered moving average)

$$m_t(h) = \frac{y_t + y_{t-1} + \cdots + y_{t-(h+1)}}{h}$$

Média Movel Centrada

Média Móvel

Exemplo de suavização com média móvel considerando não centrada h=5

Comparativa entre média móvel centrada e não centrada com h=5

Sazonalidade

 Sazonalidade corresponde a variações nos valores da série temporal as quais se repetem ao longo de tempo e em intervalos uniformes

São também conhecidas por ciclos naturais

Sazonalidade

http://cdn2.hubspot.net/hub/64283/file-15465931-png/images/

time-series-data-best-suited-for-data-driven-forecasting-methods-resized-600.png

Sazonalidade

http://farm8.staticflickr.com/7108/7593920758_1a84d6f191_z.jpg

Ruído Aleatório

• É uma variação irregular nos valores de uma série temporal

 Valor que foge a uma tendência ou sazonalidade da série temporal

Ruído Aleatório

Ruído Aleatório

Material Complementar

• 4 - ANÁLISE DE SÉRIES TEMPORAIS

http://www.inf.ufsc.br/~marcelo.menezes.reis/Cap4.pdf

Imagem do Dia

