21.11.2018 Julia_NN_aktuell

M

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers
import keras as keras
from keras import models
from keras import layers
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.utils.np utils import to categorical
from keras.wrappers.scikit learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.neural_network import MLPClassifier
from keras import metrics
from sklearn.metrics import mean squared error
from math import sqrt
from sklearn.preprocessing import LabelBinarizer
from sklearn.model selection import StratifiedKFold
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
```

Using TensorFlow backend.

M

In [2]:

```
red = pd.read_csv('data/winequality-red1.csv')
white = pd.read_csv('data/winequality-white1.csv')
```

21.11.2018 Julia_NN_aktuell

M

In [3]:

```
red['quality'].replace(to_replace=[0,1,2,3,4,5], value=1, inplace=True)
red['quality'].replace(to_replace=[6], value=2, inplace=True)
red['quality'].replace(to_replace=[7,8,9,10], value=3, inplace=True)
X red = red[
['fixed acidity',
 'volatile acidity',
 'citric acid',
 'residual sugar',
 'chlorides',
 'free sulfur dioxide',
 'total sulfur dioxide',
 'density',
 'pH',
 'sulphates',
 'alcohol']]
Y_red = red[['quality']]
white['quality'].replace(to replace=[0,1,2,3,4,5], value=1, inplace=True)
white['quality'].replace(to_replace=[6], value=2, inplace=True)
white['quality'].replace(to_replace=[7,8,9,10], value=3, inplace=True)
X_white = white[
['fixed acidity',
 'volatile acidity',
 'citric acid',
 'residual sugar',
 'chlorides',
 'free sulfur dioxide',
 'total sulfur dioxide',
 'density',
 'pH',
 'sulphates',
 'alcohol']]
Y white = white[['quality']]
X red = X red.values
Y_red = Y_red.values
X_{white} = X_{white.values}
Y_white = Y_white.values
number_of_features = 11
```

21.11.2018 Julia_NN_aktuell

H

```
In [14]:
```

```
def rsme(targets, outputs):
    return tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(targets, outputs))))
# Create function returning a compiled network
def create_network():
    network = models.Sequential()
    network.add(layers.BatchNormalization())
    network.add(layers.Dense(units=64, activation='relu'))
    network.add(layers.Dense(units=9, activation = 'relu'))
    network.add(layers.Dense(units=6, activation = 'relu'))
    network.add(layers.Dense(3, activation='softmax'))
    #network.compile(loss='binary_crossentropy', # Cross-entropy
   #
                     optimizer='rmsprop', # Root Mean Square Propagation
                     metrics=['accuracy']) # Accuracy performance metric
    network.compile(loss='sparse categorical crossentropy',
              optimizer='adam',
              metrics=['accuracy', rsme])
    # Return compiled network
    return network
cv = StratifiedKFold(n splits=10, shuffle=True, random state=42)
```

H

In [15]:

H

In [6]:

```
print("BN, One layer Linear with 64 nodes, Relu 9 nodes, and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

BN, One layer Linear with 64 nodes, Relu 9 nodes, and Softmax Red

	precision	recall	f1-score	support	
:	0.69	0.72	0.71	744	
	2 0.52	0.57	0.54	638	
:	0.49	0.28	0.35	217	
micno av	g 0.60	0.60	0.60	1599	
micro av	=				
macro av	g 0. 57	0.52	0.54	1599	
weighted av	g 0.60	0.60	0.59	1599	
I Ilada a					
White	precision	recall	f1-score	support	
:	0.64	0.63	0.64	1640	
	2 0.55	0.66	0.60	2198	
:	0.59	0.37	0.45	1060	
micro av	g 0.59	0.59	0.59	4898	
macro av	g 0.59	0.55	0.56	4898	
weighted av	_	0.59	0.58	4898	

RSME red 0.944987125643071 RSME white

0.9848015139964927

H

In [9]:

```
print("BN, One layer Sigmoid with 64 nodes, relu 9 nodes and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

BN, One layer Sigmoid with 64 nodes, relu 9 nodes and Softmax Red

	ŗ	orecision	recall	f1-score	support
	1	0.65	0.83	0.73	744
	2	0.52	0.52	0.52	638
	3	0.60	0.07	0.12	217
micro av	/g	0.60	0.60	0.60	1599
macro av	/g	0.59	0.47	0.46	1599
weighted av	/g	0.60	0.60	0.57	1599
White					
White	ŗ	orecision	recall	f1-score	support
White	r 1	orecision 0.63	recall 0.58	f1-score 0.60	support 1640
White	•				
White	1	0.63	0.58	0.60	1640
	1 2 3	0.63 0.53 0.58	0.58 0.67 0.34	0.60 0.59 0.42	1640 2198 1060
micro av	1 2 3	0.630.530.58	0.580.670.340.57	0.60 0.59 0.42 0.57	1640 2198 1060 4898
	1 2 3 /g	0.63 0.53 0.58	0.58 0.67 0.34	0.60 0.59 0.42	1640 2198 1060

RSME red 0.9100337580554019 RSME white 0.9710443331885646

M

In [12]:

```
print("BN, One layer Relu with 64 nodes, relu 9 nodes and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y red-prediction red)*(Y red-prediction red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

	One	layer	Relu	with	64	nodes,	relu	9	nodes	and	Softmax
Red											
			preci	ision		recall	f1-9	c	ore :	suppo	ort

	1	0.69	0.81	0.74	744
	2	0.55	0.56	0.56	638
	3	0.59	0.20	0.30	217
micro a	avg	0.63	0.63	0.63	1599
macro a	avg	0.61	0.52	0.53	1599
weighted a	avg	0.62	0.63	0.61	1599
White					
Murce					
Murce		precision	recall	f1-score	support
wurce		precision	recall	f1-score	support
wuice	1	precision 0.65	recall 0.65	f1-score 0.65	support 1640
wurce	1 2	•			
white	_	0.65	0.65	0.65	1640
white	2	0.65 0.56	0.65 0.64	0.65 0.60	1640 2198
micro a	2	0.65 0.56	0.65 0.64	0.65 0.60	1640 2198
	2 3 avg	0.65 0.56 0.60	0.65 0.64 0.43	0.65 0.60 0.50	1640 2198 1060

RSME red 0.9284291328541032 RSME white

M

In [13]:

```
print("BN, One layer Selu with 64 nodes, relu 9 nodes and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

support

ΒN,	One	layer	Selu	with	64	nodes,	relu	9	nodes	and	Softmax
Red											

recall f1-score

precision

	pi ecision	recarr	11-20016	suppor c
1	0.68	0.81	0.74	744
2	0.56	0.52	0.54	638
3	0.58	0.30	0.40	217
,	0.50	0.50	0.40	217
•				
micro avg	0.63	0.63	0.63	1599
macro avg	0.61	0.55	0.56	1599
weighted avg	0.62	0.63	0.61	1599
o o				
White				
White	nnocision	nocall	f1-scopo	cuppont
White	precision	recall	f1-score	support
	·			• •
1	precision 0.66	recall 0.65	f1-score 0.65	support 1640
	·			• •
1	0.66	0.65	0.65	1640
1 2	0.66 0.56	0.65 0.64	0.65 0.60	1640 2198
1 2 3	0.66 0.56 0.59	0.65 0.64 0.43	0.65 0.60 0.50	1640 2198 1060
1 2 3 micro avg	0.66 0.56 0.59 0.60	0.65 0.64 0.43	0.65 0.60 0.50 0.60	1640 2198 1060 4898
1 2 3	0.66 0.56 0.59	0.65 0.64 0.43	0.65 0.60 0.50	1640 2198 1060

RSME red

0.9533028948172204

RSME white

0.9992914657944089

```
M
```

```
In [16]:
```

```
print("BN, One layer Relu with 64 nodes, relu 9 nodes, relu 6 nodes and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

```
BN, One layer Relu with 64 nodes, relu 9 nodes, relu 6 nodes and Softmax Red
```

		precision	recall	f1-score	support
	1	0.66	0.78	0.71	744
	2	0.51	0.52	0.52	638
	3	0.49	0.15	0.23	217
micro	avσ	0.59	0.59	0.59	1599
macro	_	0.55 0.55	0.48	0.49	1599
weighted	avg	0.58	0.59	0.57	1599

White

	precision	recall	f1-score	support
1	0.67	0.65	0.66	1640
2	0.57	0.64	0.60	2198
3	0.58	0.44	0.50	1060
micro avg	0.60	0.60	0.60	4898
macro avg	0.61	0.58	0.59	4898
weighted avg	0.60	0.60	0.60	4898

RSME red 0.9263366737294821 RSME white 1.0011794846167397

Ы

In []: