Formelsammlung Physik 2

Tim Hilt

22. Juni 2018

Inhaltsverzeichnis

T	3cn	wingun	_
	1.1	Forme	Izeichen
	1.2	Forme	ln
		1.2.1	Allgemein
			k_{Ges} , wenn Federn parallel
			k_{Ges} , wenn Federn seriell
			Eigenkreisfrequenz
			Umrechnung $f \ / \ T$
			Allgemeine Schwingungsdgl
			Drehmoment
		1.2.2	Ungedämpfte Systeme
		1.2.2	Kriterium für harmonische Schwingung:
			Weg-Zeit-Funktion ungedämpfter Systeme
			Schwingungsdauer ungedämpft
			Maximale Geschwindigkeit im Schwingvorgang
			Kreisfrequenz ungedämpft
			Hookesches Gesetz
			Hookesches Gesetz bei Drehbewegungen
			U-Rohr
			Schwingungsdgl am U-Rohr
		1.2.3	Gedämpfte Systeme
			Abklingfunktion
			Kreisfrequenz gedämpft
			Abklingkoeffizient
			Dämpfungskonstante
			Schwingungszeit gedämpft
			Reibkonstante
			Logarithmisches Dekrement
			Güte
			Schwingungsenergie
			Energieverlust
			Aperiodischer Grenzfall
		1.2.4	Erzwungen schwingende Systeme
•	۸.		_
2	Aku		,
	2.1		lzeichen
	2.2		anten
	2.3	Forme	
			Schallgeschwindigkeit

			Schallintensitätspegel	 	 6
			Summe mehrerer gleich lauter Schallpegel	 	 6
			Summe mehrerer unterschiedlich lauter Schallquellen	 	 6
			Schallpegeldifferenz:	 	 6
			Schallintensität	 	 6
			Schallintensität Halbkugel	 	 6
			Schallintensität Kugel		7
			Schallkennimpedanz / Wellenwiderstand		7
			Schalldruckamplitude		7
			Umrechnung vom Effektivwert		7
			Dopplereffekt		7
			Machscher Kegel		7
			Machzahl		7
			Ab wann Überschallknall?		7
3	Wel	len			8
	3.1	Formelzeichen		 	 8
	3.2	Formeln		 	 8
4		nende Wellen			9
	4.1				9
	4.2				9
	4.3	Formeln			9
			Schallgeschwindigkeit		9
			Länge der Saite/des Rohres (gleiche Enden)	 	 9
			Länge der Saite/ des Rohres (ungleiche Enden)		10
			Länge einfachster Fall (gleiche Enden)		10
			Länge einfachster Fall (ungleiche Enden)	 	 10
			Grundschwingung/Wellenlänge gleiche Enden	 	 10
			Grundschwingung ungleiche Enden	 	 10
			Frequenzverhältnis	 	 10
			Wellenzahl	 	 10
			Wellengeschwindigkeit	 	 10
_					
5	Opt				11
	5.1				11
	5.2				11
	5.3	Formeln		 	 12
			Zusammenhang Frequenz / Ausbreitungsgeschwindigk		12
			Abstand berechnen (Radarpistole u.A.)		12
			Frequenzverschiebung		12
			Geschwindigkeit Zielfahrzeug		12
		Frequenzversc	hiebung beim Dopplereffekt		12
			Optischer Dopplereffekt		12
			Violett- / Rotverschiebung		12
			Reflexionsgrad R		12
			Transmissionsgrad T		12
			Transmissionsgrad durch Medium	 	 12

5.3.1	Entspiegelung	13
	Brechungsindex von Entspiegelungsschicht	13
	Gangunterschied zwischen den beiden Schichten	13
5.3.2	Brechung	13
	Umrechnungen	13
	Ausbreitungsgeschwindigkeit im Medium	13
	Grenzwinkel der Totalreflexion	13
	Brewsterwinkel	13

Abbildungsverzeichnis

5.1	Farbspektrum																													11	
J. <u>T</u>	i di bopcitti di li	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•

1 Schwingungen

1.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
f	Frequenz	Hz
\overline{T}	Schwingungsdauer	s
ω_0	Winkelgeschwindigkeit (ungedämpftes System)	s^{-1}
ω_d	Winkelgeschwindigkeit (gedämpftes System)	s^{-1}
\overline{k}	Federkonstante	$\frac{N}{m}$
\overline{x}	Auslenkung	\overline{m}
\overline{D}	Dämpfungskonstante	(Einheitenlos)
δ	Abklingkoeffizient	s^{-1}
b	Reibkonstante	$\frac{kg}{s}$
$\overline{F_E}$	Anregende Kraft	N
E_v/E_n	Energie davor / Energie danach	
\overline{J}	Massenträgheitsmoment	$kg*m^2$
φ	Drehwinkel	Bogenmaß
M	Drehmoment	Nm

1.2 Formeln

1.2.1 Allgemein

 k_{Ges} , wenn Federn seriell $\ldots \qquad \ldots \qquad \frac{1}{k_{Ges}} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \cdots + \frac{1}{k_n}$

Eigenkreisfrequenz $\omega = 2\pi * f = \frac{2\pi}{T}$

 $\mbox{Allgemeine Schwingungsdgl} \qquad \dots \qquad \dots \qquad m*\ddot{x} + b*\dot{x} + k*x = F_E$

Drehmoment $\dots M = k * J = F * x$ (wobei x die Länge des Hebelarms darstellt)

1.2.2 Ungedämpfte Systeme

Kriterium für harmonische Schwingung: $\frac{x}{F}$, bzw. $\frac{\varphi}{M}$ muss linear sein!

Weg-Zeit-Funktion ungedämpfter Systeme $\dots x(t) = x_m * \cos(\omega t + \varphi_0)$

Maximale Geschwindigkeit im Schwingvorgang $y_{\max} = x_m * \omega_0$ v_{\min} ist immer = 0!

Amplitude x_m $x_m = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_0}\right)^2}$

Kreisfrequenz ungedämpft $\ldots \ldots \omega_0 = \sqrt{\frac{k}{m}}$ Und bei Drehbewegungen: $\omega_0 = \sqrt{\frac{k}{J}}$

Hookesches Gesetz $F_s = k * x$

Hookesches Gesetz bei Drehbewegungen $\dots M = k * \varphi$

U-Rohr

1.2.3 Gedämpfte Systeme

Abklingfunktion $x_m = x_0 * e^{-\delta * t}$

Kreisfrequenz gedämpft $\ldots \ldots \omega_d = \sqrt{\omega_0^2 - \delta^2} = \omega_0 \sqrt{1 - D^2}$

Schwingungszeit gedämpft $T_D = \frac{2\pi}{\sqrt{\omega_0^2 - \delta^2}} = \frac{T_0}{\sqrt{1 - D^2}}$

Güte $Q = \frac{\pi}{\delta * T} = \frac{1}{2D}$

Schwingungsenergie $\qquad \qquad E = \frac{1}{2} * c * x^2$

Energieverlust $\frac{\Delta E}{E} = 1 - \frac{E_n}{E_v} = 1 - \frac{\frac{1}{2} c x_1^2}{\frac{1}{2} c x_0^2}$ Kann noch gekürzt werden! $1 - \frac{x_1^2}{x_0^2}$

Aperiodischer Grenzfall

$$D = 1$$

$$\delta = \omega_0$$

$$b = 2m * \omega_0$$

1.2.4 Erzwungen schwingende Systeme

2 Akustik

2.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
\overline{f}	Frequenz	Hz
L	Schallpegel	dB
c	Ausbreitungsgeschwindigkeit	$\frac{m}{s}$
λ	Wellenlänge	m
\overline{I}	Schallintensität	$\frac{W}{m^2}$
\overline{P}	Schallleistung	\overline{W}
\overline{A}	Oberfläche (Kugelwelle)	m^2
\overline{Z}	Wellenwiderstand/Schallkennimpedanz	$\frac{kg}{m^2s}$
ρ	Dichte	$\frac{kg}{m^3}$
p	Schalldruckamplitude	Pa
Ma	Machzahl	Einheitenlos

2.2 Konstanten

$$I_0 = 10^{-12} \ \frac{W}{m^2}$$

2.3 Formeln

 ${\sf Schallgeschwindigkeit} \qquad \qquad c = \lambda * f$

Wichtigste Formel für Rechnung mit Schallwellen!

Summe mehrerer unterschiedlich lauter Schallquellen $L_{\Sigma} = 10*\log(10^{L_1/10}+10^{L_2/10}+10^{L_3/10}+\cdots+10^{L_n/10})$

Beispiel:

$$L_1 = 90dB, L_2 = 80dB, L_3 = 65dB$$

$$L_{\sum} = 10 * \log(10^9 + 10^8 + 10^{6.5})$$

$$L_{\Sigma} = 90.426dB$$

Schallpegeldifferenz:

$$\Delta L = L_2 - L_1$$
$$= 10 \log \left(\frac{I_2}{I_1}\right)$$

Und bei unterschiedlichem Radius/Abstand:

$$=20\log\left(\frac{r1}{r2}\right)$$

wobei L_2 der größere beider Werte ist

Bei allen fahrenden / mit der Erde verbundenen Schallquellen gilt $A=2\pi r^2$. Dies entspricht der Oberfläche einer Halbkugel. Dementsprechend gilt für alle fliegenden oder in der Luft aufgehängten Schallquellen $A=4\pi r^2$

Schallintensität Halbkugel $I = \frac{P}{2\pi * r^2}$

 ${\sf Schalldruckamplitude} \qquad \dots \qquad p = Z*\omega*x$

Dopplereffekt

Ruhender Empfänger, bewegter Sender: $f_E = f_S \frac{1}{1 \mp rac{v_S}{c}}$

Runder Sender, bewegter Empfänger: $f_E = f_S \left(1 \pm rac{v_E}{c}
ight)$

Bewegter Sender, bewegter Empfänger: $f_E = f_S \frac{c \pm v_E}{c \mp v_S}$

Oberes Zeichen: Annäherung; Unteres Zeichen: Entfernung

Machscher Kegel $\sin\left(\frac{\alpha}{2}\right) = \frac{c}{v_S} = \frac{1}{Ma}$

3 Wellen

3.1 Formelzeichen

$\lambda = \dots $			Wellenlänge
Umrechung von Bogensekunden in Grad:	$0^{\circ}0^{\circ}$ Wert	Danach is	t Wert für weitere
Berechnungen nutzbar			

3.2 Formeln

4 Stehende Wellen

4.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
λ	Wellenlänge	m
ρ	Dichte	$\frac{kg}{m^3}$
f	Frequenz	Hz
l	Länge	m
k	Anzahl d. Wellenbäuche	Wellen/m
\overline{p}	Luftdruck	Pa
κ	Isentropenexponent; $\frac{c_p}{c_v}$	Einheitenlos

4.2 Konstanten

Menschlicher Hörbereich: 16 - 20000Hz

4.3 Formeln

$$\text{Schallgeschwindigkeit} \qquad \ldots \\ c = \sqrt{\frac{\kappa*p}{\rho_T}} = 331 \frac{m}{s} * \sqrt{\frac{273K + \cdots \circ C}{273K}}$$

Länge der Saite/des Rohres (gleiche Enden)
$$l=(k+1)*\frac{\lambda}{2}=(k+1)*\frac{c}{2f}$$
 $k\in 0,1,2,\ldots$

Länge der Saite/ des Rohres (ungleiche Enden) $l=(2k+1)*\frac{\lambda}{4}=(2k+1)*\frac{c}{4f}$ $k\in 0,1,2,\ldots$ " 1. Harmonische" \equiv " Grundschwingung" \equiv " 0. Oberschwingung"
Länge einfachster Fall (gleiche Enden) $ l = \frac{\lambda}{2} = \frac{c}{2f_0}$ Gilt nur für Grundschwingung!
Länge einfachster Fall (ungleiche Enden) $ l = \frac{\lambda}{4} = \frac{c}{4f_0}$ Gilt nur für Grundschwingung!
${\sf Grundschwingung/Wellenlänge\ gleiche\ Enden}\qquad \ldots \qquad f = \frac{c}{4*l}; \lambda = 4*L$
Grundschwingung ungleiche Enden $\qquad \qquad \qquad \qquad f = rac{c}{2*l}; \lambda = 2*L$
Frequenzverhältnis
Wellenzahl $ k = \frac{2\pi}{\lambda} = \frac{\omega}{c} $
Wellengeschwindigkeit

5 Optik

5.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
λ	Wellenlänge	m
c	Lichtgeschwindigkeit	$\frac{m}{s}$
f	Frequenz	Hz
\overline{R}	Reflexionsgrad	Gibt reflektierten Anteil
\overline{T}	Transmissionsgrad	Gibt transmittierten Anteil

5.2 Konstanten

$$c_0 = 3 * 10^8 \frac{m}{s}$$

Wellenlängenempfindlichkeit des Auges: $400-750 \ nm$

Abbildung 5.1: Farbspektrum und menschlicher Sehbereich

5.3 Formeln

Abstand berechnen (Radarpistole u.Ä.) $s = \frac{c*t}{2}$ Aus Formel der Kinetik $v = \frac{s}{t}$

Frequenzverschiebung $\Delta f = \frac{2*f_s*v}{c} = \frac{2*v}{\lambda_s}$

Frequenzverschiebung beim Dopplereffekt

Annäherung ightarrow höhere Frequenz / kleinere Wellenlänge ightarrow Violett-Verschiebung

 ${\sf Entfernung} \quad \to \quad {\sf niedrigere} \,\, {\sf Frequenz} \,\, / \,\, {\sf gr\"{o}} \\ {\sf Bere} \,\, {\sf Wellenl\"{a}nge} \quad \to \quad {\sf Rot-Verschiebung}$

Optischer Dopplereffekt $f_E = f_S * \sqrt{\frac{c \pm v}{c \mp v}}$

Violett- / Rotverschiebung $\lambda_E = \lambda_S * \sqrt{\frac{1 \mp \frac{v}{c}}{1 \pm \frac{v}{c}}}$ Oberes Zeichen: Annäherung; Unteres Zeichen: Entfernung

Reflexionsgrad R $R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$

Gibt jeweils nur **einen** Übergang an!

Falls Medium nicht transparent gilt mit dieser Formel der Absorptionsgrad

5.3.1 Entspiegelung

Brechungsindex von Entspiegelungsschicht	$\dots \dots $
Gangunterschied zwischen den beiden Schich	nten $\Delta x = 2*n_2*d$

5.3.2 Brechung

Umrechnungen
$$\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = \frac{c_1}{c_2} = \frac{\lambda_1}{\lambda_2}$$
 Von dünn nach dicht \to zum Lot hin; von dicht nach dünn \to vom Lot weg
$$c_n = \frac{c_0}{n}$$
 Ausbreitungsgeschwindigkeit im Medium

Grenzwinkel der Totalreflexion
$$\sin\alpha = \frac{n_1}{n_2}$$
 Von dichtem nach dünnem Medium

Brewsterwinkel
$$\tan \alpha = \frac{n_2}{n_1}$$

Gilt jeweils, wenn vollständig polarisierter Winkel gefragt ist 90° zwischen reflektiertem und gebrochenem Strahl

Der reflektierte Strahl ist vollständig linear polarisiert, der transmittierte Anteil wird vorwiegend parallel polarisiert.