Système digital

J. Giet

J. Qian

E. Studnia

L. Willems

Mardi 17 janvier 2017

- Horloge
- 2 Microprocesseur
- Assembleur
- Performances

Le programme Python gérant l'horloge procède comme suit :

- Ecrire dans un fichier clock-init.byte le temps initial
- 2 Lancer le simulateur sur la netlist du microprocesseur en lui passant :
 - La ROM : le code binaire de notre horloge compilé à partir d'un code assembleur
 - La RAM : le fichier clock-init.byte
- 3 Récupérer la sortie du simulateur i.e. le contenu des registres

- Le microprocesseur se base sur une architecture MIPS :
 - Le processeur lit dans la ROM le code de l'instruction à effectuer puis sélectionne la bonne instruction au moyen d'une série de MUX.
 - il sélectionne les registres modifiés par l'instruction de la même manière.
- il possède en tout 16 registres codé sur 4 bits.

Nom	Format	Syntaxe	fonction
li	L	li r, immediate	Remplace la valeur dans le registre r par immediate
addiu		addiu rd, rs, immediate	Met dans le registre rd la valeur R[rs]+immediate
bne	1	bne rs, rt, offset	Si R[rs] != R[rt], alors on se déplace de offset vers le bas
sltu	R	sltu rd, rs, rt	Si R[rs] < R[rt], alors R[rd] prend la valeur 1, 0 sinon
srlv	R	srlv rd, rs, rt	décale de R[rt] la valeur de R[rs] et met le tout dans rd
and	R	and rd, rs, rt	Met dans rd, R[rs] and R[rt]
or	R	or rd, rs, rt	Met dans rd, R[rs] or R[rt]
j	J	j adre	Va à l'adresse adre

bits	31 28	27 24	23 20	19 16	15 0
L	opcode	. 0	. 0	r	immediate
R	opcode	rs	rt	rd	0
1	opcode	rs	0	rd	immediate
J	opcode	0	0	0	immediate

registre	Utilisation		
0	années		
1	années mod 4		
2	années mod 100		
3	années mod 400		
4	mois		
5	jour		
6	heure		
7	minute		
8	sec on des		
9	5546 = 0101010110101		
10 11 12 13	opérations logiques		

- Afin d'optimiser le processeur, on a modifié MiniJazz :
 - On autorise l'importation de registres en entier
 - opérations de base (And, Or, Xor, Mux) directement sur des nappes de 32 bits

On est passé de 20 000 lignes à 2 000 lignes dans la Net-List.

• En mode rapide, la montre fait 5 minutes en 10 secondes, contre un ratio proche de l'unité, avant la modification.

Horloge Microprocesseur Assembleur Performances

Merci pour votre attention