Лабораторная работа №6

Модель эпидемии

Роман Владимирович Иванов

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Код программы	10
5	Выводы	12

Список таблиц

Список иллюстраций

3.1	Код программы для решения задачи	8
3.2	График изменения I(t) и R(t), если I(0) ≤I*	8
3.3	График изменения S(t), I(t) и R(t), если I(0) ≤I*	9
3.4	График изменения S(t), I(t) и R(t), если I(0) > I*	9

1 Цель работы

Ознакомление с простейшей моделью Эпидемии и ее построение с помощью языка программирования Modelica.

2 Задание

- 1. Построить графики изменения числа особей в каждой из трех групп (восприимчивые к болезни (S), заболевшие люди (I), здоровые люди с иммунитетом (R)), если $I(0) \le I^*$ (число инфицированных не превышает критического значения).
- 2. Построить графики изменения числа особей в каждой из трех групп (восприимчивые к болезни (S), заболевшие люди (I), здоровые люди с иммунитетом (R)), если I(0) > I* (число инфицированных выше критического значения).

3 Выполнение лабораторной работы

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа - это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I*, считаем, что все больные изолированы и не заражают здоровых. Когда I(t) > I*, тогда инфицирование способны заражать восприимчивых к болезни особей.

Скорость изменения числа особей, восприимчивых к болезни S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S, I(t) > I^* \\ 0, I(t) \le I^* \end{cases}$$

Скорость изменения числа инфекционных особей I(t) меняется по следующему закону:

$$\frac{dI}{dt} = \begin{cases} \alpha S - \beta I, I(t) > I^* \\ -\beta I, I(t) \le I^* \end{cases}$$

Скорость изменения числа выздоравливающих особей R(t) меняется по следующему закону:

$$\frac{dI}{dt} = \beta I$$

В нашем случае $\alpha=0.01$ - коэффициент заболеваемости, а β - коэффициент

выздоравливаемости.

Ниже приведен код программы, реализованный на языке программирования Modelica (рис 1. @fig:001)

Рис. 3.1: Код программы для решения задачи

1. Построим графики изменения числа инфекционных особей I(t) и числа выздоравливающих особей R(t), если число инфицированных не превышает критического значения (рис 2. @fig:001)

Рис. 3.2: График изменения I(t) и R(t), если I(0) ≤ I^*

А теперь добавим график изменения числа особей, восприимчивых к болезни

S(t), если число инфицированных не превышает критического значения (рис 3. @fig:001)

Рис. 3.3: График изменения S(t), I(t) и R(t), если I(0) ≤I*

2. Теперь же построим графики изменения числа особей, восприимчивых к болезни S(t), числа инфекционных особей I(t) и числа выздоравливающих особей R(t), если число инфицированных выше критического значения (рис 4. @fig:001)

Рис. 3.4: График изменения S(t), I(t) и R(t), если $I(0) > I^*$

4 Код программы

```
model Epidemic
parameter Real a = 0.01; // коэффициент заболеваемости
parameter Real b = 0.02; // коэффициент выздоровления
parameter Real N = 7451; // общая численность популяции
parameter Real I0 = 51; // количество инфицированных особей в начальный мо-
мент времени
parameter Real R0 = 7; // количество здоровых особей с иммунитетом в начальный
момент времени
parameter Real S0 = N - I0 - R0; // количество восприимчивых к болезни особей в
начальный момент времени
Real S(start=S0); // количество восприимчивых к болезни особей
Real I(start=I0); // количество инфицированных особей
Real R(start=R0); // количество здоровых особей с иммунитетом
equation
//Для случая I(0) <= I*
der(S) = 0;
der(I) = -bI;
der(R) = bI;
//Для случая I(0) > I*
//der(S) = -aS;
//der(I) = aS-bI;
//der(R) = bI;
```

end Epidemic;

5 Выводы

Ознакомился с простейшей моделью Эпидемии, построив для нее графики изменения числа особей в трех группах для двух случаев: $I(0) \le I^*$ и $I(0) > I^*$.