NeXus Recapitulation and Developments

Mark Könnecke

NeXus International Advisory Committee

October 8, 2010

• A different data format wherever she goes

- A different data format wherever she goes
- Spends lots of time converting formats or writing readers

- A different data format wherever she goes
- Spends lots of time converting formats or writing readers
- Waits even longer to load data from inefficient data formats

- A different data format wherever she goes
- Spends lots of time converting formats or writing readers
- Waits even longer to load data from inefficient data formats
- DA requires N files in different formats, notes, local knowledge

- A different data format wherever she goes
- Spends lots of time converting formats or writing readers
- Waits even longer to load data from inefficient data formats
- DA requires N files in different formats, notes, local knowledge
- Cannot read her collaborators data

- A different data format wherever she goes
- Spends lots of time converting formats or writing readers
- Waits even longer to load data from inefficient data formats
- DA requires N files in different formats, notes, local knowledge
- Cannot read her collaborators data
- Has to keep extra information in yet another form

NeXus Mission

- Definition of a standard data format
 - Rules
 - Validation tools
- Promotion of NeXus
 - Documentation
 - NeXus API
 - Outreach to the scientific community

NeXus Design

- Complete data for typical use
- Extendable, add additional data as you please
- Self describing
- Easy automatic plotting
- Platform independent, public domain, efficient
- Suitable for a wild variety of applications

NeXus Levels

- 1 Physical file format and API for accessing files
- 2 Rules for storing data in files
- 3 Component and application definitions
- 4 NeXus Utilities

Physical File Format

- Portable, self describing, extendable, public domain
- Hierarchical data format, NCSA, HDF-4, later HDF-5
- HDF-5:
 - grouping support
 - on the fly compression
 - reading/writing subsets
 - first dimension appendable
 - Public domain C, F77 access library
 - Used by: NASA, Boing, the weathermen,
- XML for those who wish to edit their data

NeXus API

- NeXus-API hides complex HDF API
- Transparent access to all three supported physical file formats
- ANSI-C implementation
- Bindings: F77, Java, SWIG
- January, 4, 2010: 1311217 files processed at PSI alone
- NEW: first class bindings to C++, python, IDL

NeXus Objects

- Files
- Groups identified by name and a classname beginning with NX
- Scientific data sets
- Attributes
- Links

NeXus Raw Data File Structure

```
entry: NXentry
       sample: NXsample
       instrument: NXinstrument
              source: NX source
              velocity selector: NX velocity selector
              detector: NX detector
                     data[xsize,ysize], signal=1 (1)
       control:NXmonitor
              data
       data: NXdata
              link to (1)
```


NeXus Processed Data File Structure

```
entry:NXentry
sample:NXsample
processing_name:NXprocess
program
version
parameters:NXparameter
raw_file
data:NXdata
data[nx,ny,nz], signal=1
```


• Supports self description and allows short names in components

- Supports self description and allows short names in components
- Name, classname pair allows for multiple components of the same type

- Supports self description and allows short names in components
- Name, classname pair allows for multiple components of the same type
- NXentry allows for multiple datasets in the same file

- Supports self description and allows short names in components
- Name, classname pair allows for multiple components of the same type
- NXentry allows for multiple datasets in the same file
- NXdata supports automatic plotting

- Supports self description and allows short names in components
- Name, classname pair allows for multiple components of the same type
- NXentry allows for multiple datasets in the same file
- NXdata supports automatic plotting
- Take care once when writing, use n times

Scans

- Come in all shapes and sizes
- Captured by rules:
 - Store all varied parameters as arrays of length NP at the appropriate place in the NeXus hierarchy
 - For multi detectors, NP, number of scan points is always the first dimension
 - In NXdata: create links to counts and varied variables

Scan Example 1: rotating sample

```
entry: NXentry
       sample: NXsample
              rotation angle[NP], axis=1 (1)
       instrument: NXinstrument
              detector: NX detector
                     data[NP], signal=1 (2)
       control: NXmonitor
              data[NP]
       data: NXdata
              link to (1)
              link to (2)
```


Scan Example 2: complex scan in Q

```
entry: NXentry
       sample: NXsample
              rotation angle[NP], axis=1 (1)
              phi[NP], axis=1 (2)
              chi[NP], axis=1(3)
              h[NP], axis=1 (4), primary=1
              k[NP], axis=1 (5)
              I[NP], axis=1 (6)
       instrument:NXinstrument
              detector: NX detector
                     data[NP], signal=1 (7)
                     polar angle[NP], signal=1 (8)
       data: NXdata
              link to (1)
              link to (2)
              link to (...)
              link to (8)
```

Scan Example 3: sample rotation, area detector

```
entry: NXentry
       sample: NXsample
              rotation angle[NP], axis=1 (1)
       instrument: NXinstrument
              detector: NX detector
                     data[NP,xsize,ysize],signal=1 (2)
       control: NXmonitor
              data[NP]
       data: NXdata
              link to (1)
              link to (2)
```


Storing Single Data Items

- Units have to specified
- Rules for locating axis

Coordinate Systems

- Polar coordinate system: azimuthal_angle,polar_angle, distance
- McStas Coordinate System
- NXgeomtry for enginnering coordinates and describing shapes

NeXus Component and Application Definitions

- Component definitions: dictionaries of allowed field names for the various NeXus groups
- APPLICATION DEFINITIONS
 - DEFINE WHAT HAS TO BE IN A NEXUS FILE FOR A CERTAIN APPLICATION
 - Defines standards
 - Another view: Contract between file producers and users about what has to be in a NeXus file for a well defined purpose
 - VALIDATION BY NX VALIDATE
- Written in NeXus Definition Language, NXDL

NEW: Available NeXus Application Definitions

NXARCHIVE	$\mathbf{N}\mathbf{X}$ monopd	NXREFSCAN
NXREFTOF	\mathbf{NXsas}	NXSCAN
NXTAS	NXTOFRAW	NXтомо
NXTOMOPHASE	NXXEULER	NXxkappa
NXxnb	NXxrot	NXiqproc
NXTOMOPROC	NXTOFSINGLE	NXDIRECTOF
NXINDIRECTOF	$\mathbf{NX}_{\mathbf{IQPROC}}$	NXLAUETOF
NXSASTOF	\mathbf{NXsqom}	NXTOFRAW
NXTOFSINGLE	NXXAS	NXXASPROC

NeXus Tools

nxbrowse CLI NeXus browser nxtree prints NeXus tree

NXmeta dumps all NeXus meta data

nxtranslate transforms into NeXus

nxvalidate NEW: validates NeXus files

nxextract converts from neXus to ASCII and binary

nxplot NEW: plots any NeXus file

NXplot

NeXus Conversions

Other Systems Using NeXus

- DANSE
- DAVE
- FABLE (ESRF)
- ISAW
- LAMP
- openGenie
- ICAT
- Mantid
- openGDA
- All HDF tools

Who commits to NeXus?

Data Format Challenges

Challenge 1 in science you are supposed to do new, non standard, things. These of course cannot be easily cast into a standard.

Data Format Challenges

- Challenge 1 in science you are supposed to do new, non standard, things. These of course cannot be easily cast into a standard.
- Challenge 2 in order to establish a standard a lot of people need to agree

Data Format Challenges

- Challenge 1 in science you are supposed to do new, non standard, things. These of course cannot be easily cast into a standard.
- Challenge 2 in order to establish a standard a lot of people need to agree
- Challenge 3 a standard requires scarce scientific programming resources for adoption

Chance 1 By using a discoverable data format like NeXus, XML, HDF-5, people can at least figure out what is in the data file.

- Chance 1 By using a discoverable data format like NeXus, XML, HDF-5, people can at least figure out what is in the data file.
- Chance 2 Using predefined names from a dictionary gives meaning to the data in a file.

- Chance 1 By using a discoverable data format like NeXus, XML, HDF-5, people can at least figure out what is in the data file.
- Chance 2 Using predefined names from a dictionary gives meaning to the data in a file.
- Chance 3 Using a shared API reduces learning costs and increases application stability.

- Chance 1 By using a discoverable data format like NeXus, XML, HDF-5, people can at least figure out what is in the data file.
- Chance 2 Using predefined names from a dictionary gives meaning to the data in a file.
- Chance 3 Using a shared API reduces learning costs and increases application stability.
- Chance 4 With NeXus, HDF-5 plus professional programming techniques a DA application can read any file which contains the required data.

- Chance 1 By using a discoverable data format like NeXus, XML, HDF-5, people can at least figure out what is in the data file.
- Chance 2 Using predefined names from a dictionary gives meaning to the data in a file.
- Chance 3 Using a shared API reduces learning costs and increases application stability.
- Chance 4 With NeXus, HDF-5 plus professional programming techniques a DA application can read any file which contains the required data.
- Chance 5 Storing as much data as possible increases the likelihood that the needed data is actually on file, even for unforeseen uses.

- Chance 1 By using a discoverable data format like NeXus, XML, HDF-5, people can at least figure out what is in the data file.
- Chance 2 Using predefined names from a dictionary gives meaning to the data in a file.
- Chance 3 Using a shared API reduces learning costs and increases application stability.
- Chance 4 With NeXus, HDF-5 plus professional programming techniques a DA application can read any file which contains the required data.
- Chance 5 Storing as much data as possible increases the likelihood that the needed data is actually on file, even for unforeseen uses.
- Chance 6 Application Definitions

NeXus Interactions

- Pan Data
- Workshop: HDF5 as hyperspectral data format, January, ESRF
- NeXus workshop at PSI, May
- Upcoming: Data formats for HDR, DESY, end of october

PanData

- European initiative for SSO, a shared data file catalog, DA etc
- Pan Data needs a shared data format in order to make the catalog fly
- Works with NeXus
- Prompted us to have a project plan which we actually executed by now!
- 5.5MM money

HDF5 as hyperspectral data format

- End of January at ESRF, ca 30 participants
- NeXus well received
- Some confusion over a HDF-5 bug in 1.8
- Demand to map imageCIF fully to NeXus in order to benefit from imageCIF ideas
- Missing in NeXus to do full CIF mapping:
 - Scaled data
 - CIF axis specification more accurate
 - Mapping to database concepts

NeXus for Synchrotrons

- Workshop at PSI, 10-12 May
- NeXus seen as HDF-5 with NeXus structures, no interest in API
- Requests:
 - NXsubentry
 - Scaled data
 - Simplified hierarchy for experts
 - Indicate image dimensions
 - Tree based higher level API

Threads Versus NeXus

- Planned: NeXus is threadsafe when each thread has its own NXhandle
- A little work needs to be done to arrive there
- BUT: HDF-5 serialises access, no performance gain!
- Parallel HDF5, PHDF, with a different API
- PHDF requires: MPI, MPI-IO, parallel file system
- A new NeXus file driver for PHDF would be required
- Will only be implemented when the community really wants it

Topics for this NIAC Meeting

- 1 Constitution change: NIAC Tech, Chairman
- 2 Choose new officers
- 3 NXsubentry
- 4 Scaled data
- 5 Coordinate systems
- 6 Next project plan
- Simplified hierarchy, NXmeasurement
- 8 Event data
- 9 muSR NeXus

Constitution Change

- Observation: we make better progress when working in a smaller group of experts
- Suggestion: Divide NIAC into two entities:
 - Full NIAC: votes officers, ratifies project plans, decides general directions
 - Technical subcommittee: decides technical and implementation details, to be reviewed by full NIAC. Members are selected on merit (contributed work) and approved by full NIAC
- Full NIAC meets only any 2 years: requires extending the terms of officers

NXsubentry Rationale

- Suggestion: add NXsubentry group below NXentry with the same structure as NXentry
- Multi-method instrument
 - Especially synchrotrons have instruments which combine multiple techniques in one experiment
 - Current NeXus would require separate NXentries for each technique
 - This becomes unnatural with the additional requirement to store multiple experiments in the same file
 - Combining multiple application definitions in one NX entry would cause name collisions
 - The synchrotron people are willing to do the many links NXsubentry requires
- Add application definition compliant NXsubentries to existing files

NXsubentry

```
sas, NX subentry
       sample: NXsample
       instrument: NXinstrument
              source: NXsource
              velocity selector: NX velocity selector
              detector: NXdetector
                     data[xsize,ysize], signal=1 (1)
       control: NXmonitor
              data
       data: NXdata
              link to (1)
```

entry: NXentry

Scaled Data

- NeXus stronly suggests storing physical values
- Suggestion: allow scaled data for performance or other reasons
- Implement through additional data attributes
- NeXus stores arrays in C storage order
- Suggestion: allow other orders
- Implement through additional data attributes
- NAPI will not implement the transforms

Scaled Data Attributes

- scaling_method: This is the indicator that a transformation of the Vraw data is necessary. Scaling_method can have one the following values:
 - power: Vtrue = p0 + (Vraw/p1)**p2
 - logarithmic: Vtrue = p0 + p1*log(Vraw*p2)
 - polynomial: Vtrue = p0 + p1*Vraw + p2*Vraw*Vraw + p3*Vraw*Vraw*Vraw
 - To be expanded?
 - Or give the formula?
- 0, p1, p2, ... Float attributes as parameters
- scaled units: units after scaling
- Offset, stride

Coordinate Systems

- Another look on coordinate systems
- NeXus:
 - Simple, polar coordinates using angles and distances
 - Absolute McStas coordinates using NXgeometry
- imageCIF
 - Arbitrary axis allowed
 - Contains information to build transformation matrices

Transformation Matrices

$$T = \left(\begin{array}{cccc} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Transformation Matrices

$$T = \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} r11 & r12 & r13 & 0 \\ r21 & r22 & r23 & 0 \\ r31 & r32 & r33 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Combining Transformations

Some Properties

- Transformations can be combined by matrix multiplications
- Individual matrices can be derived by looking at the situation when everything else is 0
- Absolute positions can be obtained by multiplying the resulting matrix with its transpose
- Defines new coordinate systems at components
- CIF contains a duplication: vector, offset scheme

What Use Is This?

- Allows to calculate absolute positions of components in the laboratory coordinate systems
- Can directly convert from a detector coordinate system to vectors in Lab coordinate system
- Calculate things like impact of primary beam on detector, SAS
- Allows arbitray axis to be expressed
- Intuitively describe an instrument with angles and translations and still be able to recover absolute coordinates

Information Required

type rotation or translation
direction vector around which rotated or translated
value The angle of rotation or the length of translation
dependency The order of operations to place a component

Use For NeXus

- Use to document existing axis and polar coordinate system better
- Permits arbitrary axis to be defined
- Allows construction of transformation matrices and gain the advantages of using them
- Allows to express an instrument intuitively as a sequence of translations and rotations AND be able to reconstruct absolute positions
- The objective is to allow a full mapping from imageCIF to NeXus and back

NeXus Axis Mapped

- rotation angle, polar angle, rotate 0 1 0
- azimuthal angle, rotate 0 0 1
- distance, translate 0 0 1
- chi, rotate 0 0 1
- phi rotate, 0 1 0
- NeXus polar coordinate system: rotate azimuthal_angle, rotate polar_angle, translate by distance

Axis Suggestions for NeXus

- NeXus stays with the McStas Laboratory coordinate system
- NeXus strongly encourages to use the named and documented NeXus axis
- Allow attributes type, direction in order to support arbitrary axis
- Add aequatorial_angle as a name to appear in base classes for rotation 1 0 0.
- Add y_translation (translate 0 1 0) and x_translation (translate 1 0 0) to base classes.

Expressing Axis Dependency in NeXus

- Implied: use existing NeXus coordinate system
- dependson attribute pointing to depending axis
- transform field in base classes which becomes a comma separated list of the path to the transformations required to position this component
- Create a special container to hold axis dependencies,
 NXdependency, to collect the dependencies in one place for easy access. This is what CIF does

Dependons Option

```
sample,NXsample
    rotation_angle
    chi (dependson rotation_angle)
    phi (dependson phi)
```


Transform Option

```
sample, NXsample
    rotation_angle
    chi
    phi
    transform = rotation_angle, chi, phi
```


Separate Group Option

```
sample, NXsample
      rotation angle
      chi
      phi
dependency, NXdependency
      sample/chi =
             sample/rotation angle
      sample/phi =
             sample/chi
      instrument/detector/x translation =
             instrument/detector/distance
      instrument/detector/distance =
             instrument/detector/polar angle
```


NXmeasurement

```
entry, NXentry
       measurement, NX measurement
              positions: NX positioner
                     om
                     two theta
              scalars: NX scalar
                     title
                     wavelength
              data: NXdata
                     detector1
                     mca5
```


Ideas for Project Plan 2012

- Refinement of application definitions with communities
 - Collect community feedback
 - Release of NXDL, base classes and application definitions 1.0
- nxvalidate 1.0
- Overhaul of documentation: Manual, NAPI, WWW-site
- OO base classes?
- Higher level NeXus-APIs?

