Modeling Sequence Data with RNNs, LSTMs

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

March 26th, 2026 | University of Geneva

Road-Map

- ► This lecture:
 - ► Deep Learning cont'd
 - ► More advanced topics:
 - ► Recurrent neural networks and beyond.

Keras & Tensorflow Basics

- ► tensorflow.org
- ► Keras API: https://www.tensorflow.org/guide/keras/sequential_model
- ► Fun data sets to play with: https://www.kaggle.com/datasets
- ► Some "clean" data to play with: https://archive.ics.uci.edu/ml/index.php
- ► Help for debugging Tensorboard: https://www.tensorflow.org/tensorboard

Beyond Vanilla DNN

- ► Not all applications are plain vanilla deep neural nets.
- ▶ There exist situations where more intricate architectures are needed.
- ► Examples:
 - Time-series comparisons, such as estimating how closely related two documents or two stock tickers are.
 - ► Sequence-to-sequence learning, such as decoding an English sentence into French.
 - ► Sentiment analysis, such as classifying the sentiment of tweets or movie reviews as positive or negative.
 - ► Time-series forecasting, such as predicting the future weather at a certain location, given recent weather data.

Example

Given a picture of a ball, can we predict where it will go?

Example

Given a picture of a ball, can we predict where it will go?

A Sequence Modeling Problem: Predict the Next Word

"Today, we are having a class on deep _____"

A Sequence Modeling Problem: Predict the Next Word

"Today, we are having a class on deep learning"

A Sequence Modeling Problem: Audio

A Sequence Modeling Problem: Beethoven

https://www.youtube.com/watch?v=Rvj3Oblscqw

The Perceptron Revisited

 \implies Bias term allows you to shift your activation function to the left or the right

Feed-Forward Nets Revisited

Recurrent Neural Nets

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- ► To model sequences, we need to
 - ► Handle variable-length sequences.
 - ► Track long-term dependencies.
 - Maintain information about the order.
 - Share parameters across the sequence.

- ► Recurrent Neural Networks (RNN) are an approach to sequence modeling problems (Rumelhart et al. (1986)).
- More specifically, given an observation sequence $x = \{x_1, x_2, \dots, x_T\}$ and its corresponding label $y = \{y_1, y_2, \dots, y_T\}$, we want to learn a map $f: x \to y$.

RNN

- ▶ RNNs are a family of neural networks for processing sequential data.
- ▶ A RNN is a neural network that is specialized for processing a sequence of values $x^{(1)}, \ldots, x^{(\tau)}$.
- ▶ Unfold the computational graph of a dynamical system:

Fig. from Goodfellow et al. (2016)

Preview on RNN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Recurrent layers use their own output as input.
 - ► In Figure: A is a recurrent cell
- ► Introduce history or time dependency in NNs.
- ► The only way to efficiently train them is to unroll them.

Feed-Forward Nets Revisited

Handling Individual Time Steps

Neurons With Recurrence

Neurons With Recurrence

Recurrent Neural Networks

► Apply a recurrence relation at every time step to process a sequence:

- ightharpoonup cell state function input old state with weights W
- ► Note: the same function and set of parameters are used at every time step.

RNNs have a **cell state** that is updated **at each time step** as a sequence is proceeded.


```
my_rnn = RNN()
hidden_state = [0, 0, 0, 0]
sentence = ["I", "lowe", "recurrent", "neural"]

for word in sentence:
    prediction, hidden_state = my_rnn(word, hidden_state)

next_word_prediction = prediction
# >>> "networks!"
```



```
my_rnn = RNN()
hidden_state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]

for word in sentence:
    prediction, hidden_state = my_rnn(word, hidden_state)

next_word_prediction = prediction
# >>> "networks!"
```



```
my_rnn = RNN()
hidden_state = [0, 0, 0, 0]

sentence = ["I", "love", "recurrent", "neural"]

for word in sentence:
    prediction, hidden_state = my_rnn(word, hidden_state)

next_word_prediction = prediction
# >>> "networks!"
```

RNN State Update And Output

► Output vector

$$\hat{\boldsymbol{y}}_t = W_{hy}^T h_t$$

► Update hidden state

$$\mathbf{h}_t = \mathsf{tanh}\left(oldsymbol{W_{hh}^{T}} h_{t-1} + oldsymbol{W_{xh}^{T}} \mathbf{x}_t
ight)$$

► Input vector

$$x_t$$

RNN In One Slide

- ▶ RNN models a dynamic system, where the hidden (cell) state h_t is not only dependent on the current observation x, but also relies on the previous hidden state h.
- More specifically, we can represent h_t as $\mathbf{h}_t = \mathbf{f}(\mathbf{h}_{t:1}, \mathbf{x}_t)$ (Eq. 1) where f is a nonlinear (time-invariant) mapping.
- ▶ Thus, h_t contains information about the whole sequence, which can be inferred from the recursive definition in Eq.1.
- ► In other words, RNN can use the hidden variables as a memory to capture long term information from Figare 1: It is a RNN example corresponding extended RNN moil a sequence.
- ▶ Prediction at the time step $t: z_t$

$$egin{aligned} \mathbf{h}_t &= anh \left(W_{hh} \mathbf{h}_{t-1} + W_{xh} \mathbf{x}_t + \mathbf{b}_{\mathbf{h}}
ight) \ z_t &= ext{softmax} \left(W_{hz} \mathbf{h}_t + \mathbf{b}_z
ight) \ \mathcal{L}(\mathbf{x}, \mathbf{y}) &= - \sum y_t \log z_t \end{aligned}$$

Figure 1: It is a RNN example: the left recursive description for RNNs, and the right is the corresponding extended RNN model in a time sequential manner.

RNN: Computation Graph Across Time

 \rightarrow represent as computational graph unrolled across time.

Back-Propagation Through Time

Re-use same weight matrices at every time step!

RNN From Scratch & Tensorflow


```
class MyRNNCell(tf.keras.layers.Layer):
  def init (self, rnn units, input dim, output dim):
    super(MyRNNCell, self).__init__()
    self.W_xh = self.add weight([rnn units, input dim])
    self.W hh = self.add weight([rnn units, rnn units])
    self.W_hy = self.add_weight([output_dim, rnn_units])
    self.h = tf.zeros([rnn units, 1])
  def call(self, x):
    self.h = tf.math.tanh( self.W hh * self.h + self.W xh * x )
    output = self.W hy * self.h
    return output, self.h
```

```
tf.keras.layers.SimpleRNN(rnn_units)
```


Sequence Modeling — Design Criteria

Recall: to model sequences, we need to:

- ► Handle variable-length sequences.
- ► Track long-term dependencies.
- ► Maintain information about order.
- ► Share parameters across the sequence.

 \rightarrow Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria.

Handle Variable Sequence Lengths

The food was great.

VS.

We visited a Pizzeria for lunch.

VS.

We were hungry because we went for sport before eating.

Backpropagation Through Time

Computing the gradient wrt. h_0 involves many factors of $W_{\rm hh}+$ repeated gradient computation!

Backpropagation Through Time

Many values > 1: **Exploding gradients**

 $\label{eq:many_values} \mbox{Many values} < 1: \\ \mbox{Vanishing gradients}$

RNNs with PyTorch

Action required:

 \rightarrow /lectures/day5/code/rnn_lstm_tutorial.ipynb

Recall: RNN Hard to Train

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent blocks suffer from two problems:

- Long-term dependencies do not work well.
 - Difficult to connect two distant parts of the input.
- Magnitude of the signal can get amplified at each recurrent connection.
 - At every time iteration, the gradient can either vanish or explode.
 - ► Very hard to train them.

I grew up in England... and I speak fluent ____

Long Short-Term Memory (LSTM)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- ► Hochreiter & Schmidhuber (1997)
- ► LSTM layers are improved versions of the recurrent layers.
 - They rely on a gated cell to track information throughout many time steps.
 - ► They can learn long-term dependencies.
 - ► They can forget.
- They have an internal state and a structure which is composed of four actual layers.
 - Layers labeled with σ are gates which can block or let information flow.

Long Short-Term Memory (LSTM)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- ► The core of LSTM is a memory unit (or cell) c_t which encodes the information of the inputs that have been observed up to that step.
- ▶ The memory cell c_t has the same inputs $(\mathbf{h}_{t-1}$ and $\mathbf{x}_t)$ and outputs \mathbf{h}_t as a normal recurrent network, but has more gating units which control the information flow.
- ► The input gate and output gate respectively control the information input to the memory unit and the information output from the unit. More specifically, the output h_t of the LSTM cell can be shut off via the output gate.

Fig. from G. Chen (2016)

LSTM Forget Gate

http://www.bioinf.jku.at/publications/older/2604.pdf http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- ► LSTMs follow two paths
 - ► They update their internal state.
 - ► They give an output based on the internal state and the input.
- A gate layer σ decides if we should forget an old part of the internal state.
- Something which has to be replaced by new information.

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

LSTM New State

http://www.bioinf.jku.at/publications/older/2604.pdf http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- ► Once that the layer decided what to forget, it computes:
 - ► What has to replace it, *i*, based on the input and the old state.
 - ► What has to be used to replace it, the candidate value *C*_t
- ▶ The new state C_t can be computed based on the new information.

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

LSTM Output

http://www.bioinf.jku.at/publications/older/2604.pdf http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Based on the new state and the input, the layer can produce a result.
 - ▶ this is the output.
 - ► the same value is also passed to the next iteration.
- ► Why is this so important?
 - Many translation algorithms and voice interpreters are based on small variations of this layer.

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

► Action required:

```
/lectures/day5/code/RNN_intro.ipynb
(see also https://www.tensorflow.
org/guide/keras/rnn)
```

Action Required

- ► /lectures/day5/code/RNN_intro.ipynb (Ozone and stock market time series data).
- ► There is a weather data set from the Max Planck Institute of Biochemistry https://www.bgc-jena.mpg.de/wetter/.
- ▶ Open the notebook demo/05b_Weather_data.ipynb.
- ► Given this time series (Temperature as a function of time), try to make predictions of various time intervals into the future.

Limitations of Recurrent Models

- ► Encoding bottleneck
- ► Slow, no parallelization
- ▶ Not long memory (very long sequences cannot be handled, not even by LSTMs)
- ► Can we go beyond those limitations to process sequential data?

High-level Goal of Sequence Modeling

RNNs: recurrence to model sequence dependencies

- ► Encoding bottleneck
- ► Slow, no parallelization
- ▶ Not long memory (very long sequences cannot be handled, not even by LSTMs)
- Can we go beyond those limitations to process sequential data?

Desired Capabilities

RNNs: recurrence to model sequence dependencies

- ► Continuous stream
- Parallelization
- ► Long memory
- \rightarrow Can we eliminate the need for recurrence entirely (i.e., no need to process the data time-step by time-step)?

Deep Learning for Sequence Modeling: Summary

- 1. RNNs are well suited for sequence modeling tasks.
- 2. Model sequences via a recurrence relation.
- 3. Training RNNs with backpropagation through time.

Questions?

