练习题

无采用自然 = 进制码为下列对象偏码。分别需要几位码元 120个人 2 ¹ = 128 > 120
(1) 120个人 2 ¹ =128 > 120 需要7位 (2) 9000个汉字 2 ¹³ =8192 2 ¹⁴ =16384 :.2 ¹³ <9000 < 2 ¹⁴ 需要14位 (3) 8位电话号码 2 ²⁶ =67/08864 2 ^{2]} =13421]728 需要7位 (4) 汽车短昭 1首位英河田 后5位英河田成十进制数)
(1) 120个人 2 ¹ =128 > 120 需要7位 (2) 9000个汉序 2 ¹³ =8192 2 ¹⁴ =16384 (3) 8位电话号码。 2 ²⁶ =67/08864 2 ^{2]} =13421728 需要27位 (4) 汽车距昭 1 首位英河田 1 后5位英河田 1 6 5位英河田 1 6 5位
2 ¹ =128 >120 需要7位 (2) 9000个汉字 2 ¹³ =8192 2 ¹⁴ =16384 :.2 ¹³ < 9000 < 2 ¹⁴ 需要14位 (3) 8位电话号码 2 ²⁶ =67/08864 2 ^{2]} =13421728 需要27位 (4) 汽车距昭 1 首位英列语田 后5位英文18田成十世刊数)
(2) 9000个汉字 2 ¹³ :8192 2 ¹⁴ :16384 :.2 ¹³ <9000<2 ¹⁴ 零零(4位 (3) 8位电话号码 2 ²⁶ =67/08864 2 ²⁷ :13421728 零零27位 (4) 汽车距昭 1 首位英列语田 后5位英文18田成十世刊数)
2 ¹³ =8192 2 ¹⁴ =16384 1.2 ¹³ <9000<2 ¹⁴ 零要14位 13)8位电话号码 2 ²⁶ =67/08864 2 ²⁷ =134217728 零要27位 (4)汽车距据1首位英列运用.后5位英列3组成十进列数)
13) 8位电话号码 2 ²⁶ =67/08864 2 ²⁷ =134217728 零型27位 (4) 汽车距昭 1首位英列5田 后5位英列3田成十进列数)
(4) 岩丘电话号码 2 ²⁶ =67/08864 2 ²⁷ =13421]728 零電河位 (4) 岩车版昭 1首位英河阳 后5位英河阳成十进列数)
2*6=67/08864 2*1=134217728 需要27位 (4) 汽车炬服, 首位英河流田, 后5位英河流田, 大田利数)
(4) 汽车版昭, 首位英文汽田, 后5位英文18组成十进到数)
(4) 7.7 15 10 (BIDKX 34 1 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1
MADE 12 WING 65 36 X 26 - 1 (2) 103 15
Z50=10]3741824 Z*1=2147483648 常要引证
练习1.10 转换下列各数 要求转换后除持原精度
(1-125)10 = (1-00)10
(00 0 01 00 0) sassibile = (111 11 00) 2
(0/10.10/0) \$37638/BCP = (1.100/)>
A 9.4

1.3 将下列各式写成按权展开式: ↩

$$(352.6)_{10}=3\times10^{2}+5\times10^{1}+2\times10^{0}+6\times10^{-1}$$

$$(101.101)_{2}=1\times2^{2}+1\times2^{0}+1\times2^{-1}+1\times2^{-3}$$

$$(54.6)_{8}=5\times8^{1}+54\times8^{0}+6\times8^{-1}$$

$$(13A.4F)_{16}=1\times16^{2}+3\times16^{1}+10\times16^{0}+4\times16^{-1}+15\times16^{-2}$$

1/6 转换下列各数,要求转换后保持原精度:

解: (1.125) 10=(1.0010000000) 10 ——小数点后至少取 10 位

 $(0010\ 1011\ 0010)_{2421BCD} = (111111100)_{2}$

——先将 2421BCD 码转换成十进制数(252)₁₀,再转换成二进制数。

(0110.1010) _{余3循环 BCD 码}= (1.1110) ₂

——余 3 循环 BCD 码中的 1 和 0 没有权值意义,因此先转换成十进制数(1.9) $_{10}$,得出原精度为 10^{-1} ,转换的二进制的小数位 $k \ge 3.3$,因此至少取 4 位。

- 2.3 对下列函数, 说明对输入变量的哪些取值组合其输出为1?
- (1) F(A,B,C) = AB + BC + AC
- (2) F (A,B,C) =(A+B+C)(\bar{A} + \bar{B} + \bar{C})
- (3) $F(A,B,C) = (\overline{A}B + \overline{B}C + A \overline{C})AC$

解:本题可用真值表、化成最小项表达式、卡诺图等多种方法求解。

- (1) F输出1的取值组合为: 011、101、110、111。
- (2) F输出1的取值组合为: 001、010、011、100、101、110。

第2页共8页

第2章习题答案

(3) F 输出 1 的取值组合为: 101。

2.4 试直接写出下列各式的反演式和对偶式。↩

(1)
$$F(A,B,C,D,E)=[(A B+C) \cdot D+E] \cdot B \leftarrow$$

<

(2) $F(A,B,C,D,E)=AB+ \overline{C} \overline{D}+BC+ \overline{D}+ \overline{C}E+\overline{B}+\overline{E}$

4

(3) $F(A,B,C) = A B + C AB C \leftarrow$

解: (1) \overline{F} =[(\overline{A} +B) • \overline{C} + \overline{D}] • \overline{E} + \overline{B} ← F'=[(\overline{A} + \overline{B}) • \overline{C} + \overline{D}] • \overline{E} +B←

 \leftarrow

(2) \overline{F} =(\overline{A} + \overline{B})(C+D) • (\overline{B} + \overline{C}) • D • (C+ \overline{E}) • \overline{B} • \overline{E} ← \overline{F} '=(A+B)(\overline{C} + \overline{D}) • (\overline{B} +C) • \overline{D} • (\overline{C} +E) • \overline{B} • \overline{E} ←

 \leftarrow

(3) $\overline{F} = (A+B) \cdot \overline{C} + A + \overline{B} + C \leftarrow$

 \leftarrow

$$F'=\overline{(A+B)\cdot C+A+B}$$

2.5 用公式证明下列等式: ↩

(1) \overline{A} \overline{C} + \overline{A} \overline{B} +BC+ \overline{A} \overline{C} \overline{D} = \overline{A} +BC \leftarrow

(2) $AB+\overline{A}C+(\overline{B}+\overline{C})D=AB+\overline{A}C+D$

(3) \overrightarrow{BC} $\overrightarrow{D}+\overrightarrow{B}$ $\overrightarrow{CD}+\overrightarrow{ACD}+\overrightarrow{AB}$ \overrightarrow{C} $\overrightarrow{D}+\overrightarrow{A}$ $\overrightarrow{BCD}+\overrightarrow{B}$ \overrightarrow{C} $\overrightarrow{D}+\overrightarrow{BCD}=\overrightarrow{BC}+\overrightarrow{B}$ $\overrightarrow{C}+\overrightarrow{BD}$

← _____

(4) $\overrightarrow{A} \overrightarrow{B} \overrightarrow{C} + \overrightarrow{BC} + \overrightarrow{BC} + \overrightarrow{DC} \overrightarrow{D} + \overrightarrow{A} \overrightarrow{BD} = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D} \leftarrow$

```
证明: ←
(1) \overrightarrow{A} \overrightarrow{C}+ \overrightarrow{A} \overrightarrow{B}+\overrightarrow{B}C+ \overrightarrow{A} \overrightarrow{C} \overrightarrow{D}
                                                       —— A C D 被 A C 削去←
= \overline{A}(\overline{B} + \overline{C}) + BC \leftarrow
= ABC+BC
                                                           -削去互补因子↩
= A+BC←
(2) AB+ AC+(B+ C) D←
=AB + \overline{AC} + \overline{BC}D + BC
                                                         一增加冗余因子 BC,为了削去 B\overline{CD} 中的 B\overline{C} ←
=AB+ AC+D←
(3) BC D+B CD+ACD+ AB C D+ A BCD+B C D+BCD
= BC D+BD+ACD+ AB C D+ BCD+B C D ——B CD 与 BCD 合并成 BD←
= BC D+BD+ACD+ AB C D+ BCD+B C ——BD 与 B C D 削去互补因子←
= BC D+BD+ACD+ BCD+B C
                                                     --- AB C D 被 B C 削去←
                                                             —— BC D 与 BCD 合并←
= BC+BD+ACD+B C
= BC+BD+CD+ACD+B C
                                                             ——增加 CD, 可削去 ACD←
= BC+B C+BD←
(4)A B C+BC+BC D+A BD←
=A \ \overline{B} \ \overline{C} (\overline{BC} + BC \ \overline{D}) + \overline{A} + B + \overline{D}
                                                                 --BC+BC D 削去互补因子←
=A \ \overline{B} \ \overline{C} (\overline{B} + \overline{C} + \overline{D}) + \overline{A} + B + \overline{D} \in A
=A \overline{B} \overline{C} +A \overline{B} \overline{C} \overline{D} + \overline{A} +B + \overline{D}
=A B C+ A+B+ D
= \overline{A} + B + \overline{C} + \overline{D} \leftarrow
```

(1)
$$F(A,B,C)=\sum_{m}(0,1,2,4,5,7)$$

解: $F=\overline{B}+\overline{A}\overline{C}+AC$
 $OC=\frac{OC=\frac{OC}{1}}{1}$ $OC=\frac{OC}{1}$ OC

(2) $F(A,B,C,D)=\sum_{m}(0,2,5,6,7,9,10,14,15) \leftarrow$

解: F=A B CD+ A B D+ ABD+BC+C D←

Ц

CD AB∈	00←	01←	11←	10↩
00€	14	√J	←	10-
01←□		1←	1←	14
11←	↩		[1←]	1←
10←□	←	10	←7	1←

(3) F(A,B,C,D)= $\sum_{m}(0,1,4,7,9,10,13) + \sum_{\phi}(2,5,8,12,15)$

2.14 己知: $F_1(A,B,C)=\sum_m(1,2,3,5,7)+\sum_{\phi}(0,6)$, $F_2(A,B,C)=\sum_m(0,3,4,6)+\sum_{\phi}(2,5)$, 求 $F=F_1\oplus F_2$ 的最简与或式

解: F=A+ B

BC					BC	 			
A	00	01	11	10	A	00	01	11	10
0	φ	1	1	1	0	1		1	ϕ
1		1	1	φ	⊕ 1	1	φ		1

	A BC	00	01	11	10
=	0	ϕ	1	0	ϕ
	1	1	φ	1	ϕ

4.2 分析图 P4.2 电路的逻辑功能。 ↔

教材3.2

解: (1)从输入端开始,逐级推导出函数表达式。 🛩

 $F_1 = A \oplus B \oplus C$

 $F_2 = A(B \oplus C) + BC = \overline{A} \overline{B}C + \overline{A}B \overline{C} + \overline{A}BC + ABC \leftarrow$

(2)列真值表。 ↩

1 +			
Α	В	C← F 1	F 2€
0	0	0← 0	0←
0	0	1← 1	1←
0	1	0← 1	1←
0	1	1← 0	1←
1	0	0← 1	0←
1	0	1← 0	0←
1	1	0 →0	0←
1	1	1 ← 1	1←

(3)确定逻辑功能。假设变量 $A \times B \times C$ 和函数 $F_1 \times F_2$ 均表示一位二进制数,那么,由真值表可知,该电路实现了一位全减器的功能。

A、B、C、F1、F2分别表示被减数、减数、来自低位的借位、本位差、本位向高位的借位。

教材3.3

教材3.4

4.4 设 ABCD 是一个 8421BCD 码,试用最少与非门设计一个能判断该 8421BCD <u>码是否</u>大于等于 5 的电路,该数大于等于 5,F= 1;否则为 0。←

解: (1)列真值表₽

A	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

A	В	С	D	F
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Ø
1	0	1	1	Ø
1	1	0	0	Ø
1	1	0	1	Ø
1	1	1	0	Ø
1	1	1	1	Ø

(2)写最简表达式←

 $F = A + BD + BC = \overline{A \cdot BD \cdot BC}$

3. $(3)F(A,B,C,D) = \sum m(2,5,6,8,9,12) + \sum \phi(0,4,7,10)$

解: 函数的卡诺图如下所示:

画逻辑电路,如下图所示:

解: F(ABC)=A $\overline{B}+B$ $\overline{C}+$ $\overline{A}C$ \vdash

40.0

献血电路设计题3.9

■ 人的血型有 A、B、AB、0 四种。输血时输血者的血型与受血者的血型必须符合图 P3.4 中箭头指示的授受关系。试设计一个逻辑电路,判断输血者与受血者的血型是否符合上述规定。

解:设00代表血型A、01代表血型B、10代表血型AB、11代表血型O。输血者的血型用逻辑变量WX表示,受血者的血型用YZ表示,则由图中所指示的授受关系,列真值表:

W	X	Y	Z	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$F = \overline{W} \overline{Z} + X \overline{Y} Z + W X + Y \overline{Z}$

741s138+与门实现:

741s138+或门实现

3.10

3.10 电话室对3种电话编码控制,按紧急次序排列优先权高低是:火警电话、急救电话、普通电话,分别编码为11,10,01。试设计该编码电路。←

解: 日收火警为A, 急救为B, 普通为C, 列真值表为: ↔

A	В	C↔	F 1	F 2€€
0	0	0←	Φ	Φ↔
0	0	1←	0	1←
0	1	0←	1	0←
0	1	1←	1	0←
1	0	0←	1	1←
1	0	1←	1	1←
1	1	0←	1	1←
1	1	1←	1	1€

 \leftarrow

BC					
A	00	01	11	10	
0	Φ	1			
1	Ы	_1	1	1	
•	$F_2 = A + \overline{B}$				

3.11 试将2/4译码器扩展成4/16译码器

3.12

3.12 试用74138设计一个多输出组合网络,它的输入是4位二进制码ABCD,输出为: ←

F₁: ABCD是4的倍数。←

F₂: ABCD比2大。 ←

F₃: ABCD在8~11之间。←

F₄: ABCD不等于0。 ←

解:由题意,各函数是4变量函数,故须将74138扩展为4-16线译码器,让A、B、C、D分别接

4-16线译码器的地址端 A₃、A₂、A₁、A₀, 可写出各函数的表达式如下:

 \leftarrow

$$\begin{split} F_1(A,B,C,D) &= \sum m(0,4,8,12) \\ &= \overline{\overline{\mathbf{m}}_0} \ \overline{\overline{\mathbf{m}}_4} \ \overline{\overline{\mathbf{m}}_8} \ \overline{\overline{\mathbf{m}}}_{12} \\ &= \overline{\overline{\mathbf{Y}}_0} \ \overline{\overline{\mathbf{Y}}_4} \ \overline{\overline{\mathbf{Y}}_8} \ \overline{\overline{\mathbf{Y}}}_{12} \end{split} \qquad \begin{split} F_2(A,B,C,D) &= \overline{\sum} m(0,1,2) \\ &= \overline{\mathbf{m}}_0 \ \overline{\mathbf{m}}_1 \ \overline{\mathbf{m}}_2 \\ &= \overline{\overline{\mathbf{Y}}_0} \ \overline{\overline{\mathbf{Y}}_1} \ \overline{\overline{\mathbf{Y}}_2} \end{split} \qquad \in & \\ & = \overline{\mathbf{Y}}_0 \ \overline{\overline{\mathbf{Y}}_1} \ \overline{\overline{\mathbf{Y}}_2} \end{split} \qquad \qquad \in & \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \end{split} \qquad \qquad \in & \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \end{split} \qquad \qquad \in & \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \end{split} \qquad \qquad \in & \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in & \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in & \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_0 \ \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad = \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad = \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad = \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad \in \\ & = \overline{\mathbf{Y}}_1 \ \overline{\mathbf{Y}}_2 \qquad \qquad = \overline{\mathbf{Y}}_1$$

$$\begin{split} F_3(A,B,C,D) &= \sum m(8,9,10,11) & F_4(A,B,C,D) = \overline{m}_0 \\ &= \overline{\overline{m}_8 \ \overline{m}_9 \ \overline{m}_{10} \ \overline{\overline{m}}_{11}} &= \overline{\overline{Y}_0} \\ &= \overline{\overline{\overline{Y}_8} \ \overline{\overline{Y}_9} \ \overline{\overline{Y}}_{10} \ \overline{\overline{Y}}_{11}} \end{split}$$

实现电路如下图所示: ↩

_____(3)F(A,B,C,D)=A BC+B CD+AC D← 解: ←

3.13 (3)(4)

$$(4)F(A,B,C,D) = \sum m(0,3,12,13,14) + \sum \phi(7,8).$$

解: 函数有 4 个输入变量 ,而 74151 的地址端只有 3 个,即 A_2 、 A_1 、 A_0 ,故须对函数的卡诺图进行降维,即降为 3 维。

AB	00	01	11	10	
00	1		1		
01			Ø		
11	1	1		1	
10	Ø				

BO	C 00	01	11	10
$^{\rm A}_{0}$	D	D	0	0
1	0	0	D	1

令A=A₂ 、B=A₁ 、C=A₀ 则: $D_0 = D_7 = \overline{D}$, $D_1 = D$, $D_6 = 1$, $D_2 = D_3 = D_4 = D_5 = 0$ 。 相应的电路图如下图所示:

3.14 (1)

3.14 用%74153 实现下列函数:

$$(1)F(A,B,C,D) = \sum m(1,2,4,7,15)_{\circ}$$

解: (1) 函数有 4 个输入变量 ,而½74153 的地址端只有 2 个,即 A_1 、 A_0 ,故须对函数的卡诺图进行降维,即降为 2 维。

BC	00	01	11	10
0	D	$\overline{\mathrm{D}}$	D	D
1	0	0	D	0

电路图如下:

3.16 设 A=A₃A₂A₁A₀,B=B₃B₂B₁B₀ 均为 8421BCD 码。试用 74283 设计一个 A、B 的求和电路。(可用附加器件) ←

解:设 CO S₃S₂S₁S₀为 A、B 的二进制和,则当 CO=1 或 S₃S₂S₁S₀>1001 时,须加 0110 修正项进行调整,计算结果为 C₄C₃C₂C₁C₀。←

3. 19 设 $A=A_3A_2A_1A_0$, $B=B_3B_2B_1B_0$ 是两个 4 位二进制数。试用 7485 和 74157(四二选— MUX)构成一个比较电路并能将其中大数输出。试画出逻辑图。

3.20 试用 7485 设计一个三个数的判断电路。要求能够判断三个 4位二进制数 A、B、C是否相等, A是否最大, A是否最小, 并分别给出"三个数相等""A最大""A最小"的输出信号(可附加必要的门电路)。

【分析解答题】试用两个4位数值比较器组成三个数的判断电路,要求能够判断三个四位二进制数 A(a3a2a1a0), B(b3b2b1b0), C(c3c2c1c0)是否相等, A是否最大, A是否最小, 并分别给出"三个数相等"、"A最大"、"A最小"的输出信号。可以附加必要的门电路。

4.1 基本触发器的逻辑符号与输入波形如图 P5.1 所示。试作出 Q、 \overline{Q} 的波形。

4.5(c,e,h)

 \leftarrow

4.7 5.8 维阻 D 触发器构成的电路如图 P5.8 所示,试作 Q 端波形。←

解:特征方程为: $Q^{n+1}=D=\overline{Q}^n$,Q端波形如图 P5.8 所示。 \leftarrow

 \leftarrow

$$Q^{n+1} = D = \overline{Q}^n$$

 $Q^{n+1} = D = \overline{Q}^n$ 解:特征方程为: $Q^{n+1} = D = \overline{Q}^n \oplus A$

, Q端波形如图 P5.10 所示。

4.10

4.14 5.17 试作出图 P5.17 电路中 Q₁、Q₂ 的波形。←

 \forall

解:特征方程为: $Q_1^{n+1} = [\overline{Q_1}^n] \cdot (CP \oplus Q_2) \downarrow$, $Q_2^{n+1} = [\overline{Q_2}^n] \cdot Q_1 \downarrow$, Q 端波形如图 P5.17 所

示。↩

 \forall

4.18

解:特征方程为: $Q_1^{n+1} = [\overline{Q_1^n}] \cdot CP_1$, $Q_2^{n+1} = [Q_1^n \cdot \overline{Q_2^n}] \cdot CP_2$, Q 端波形如图 P5.18 所示。 Q_1 和 Q_2 对于 CP_2 都是 4 分频,即 $\frac{f_{Q_1}}{f_{CP_2}} = \frac{1}{4}$, $\frac{f_{Q_2}}{f_{CP_2}} = \frac{1}{4}$

解:输出 \mathbf{u}_0 是对输入 \mathbf{u}_1 的4分频,而采用1个DFF可实现2分频,故实现电路如图P5.20所示。

5.9 用 JKFF 设计符合下列条件的同步计数器电路。

当 X=0 时为 M=5 的加法计数器, 其状态为 0, 1, 2, 3, 4。

当 X=1 时为 M=5 的减法计数器, 其状态为 7, 6, 5, 4, 3。

解: 所设计电路应为 Mealy 型。有输入控制信号 X。

1) 列状态转移表:

X	Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	0	1
1	1	1	1	1	1	0	0
1	1	1	0	1	0	1	0
1	1	0	1	1	0	0	0
1	1	0	0	0	1	1	0
1	0	1	1	1	1	1	1

5.9 2) 求激励方程:

$$Q_3^{n+1} = Q_2^n Q_1^n \overline{Q_3^n} + (Q_2^n + Q_1^n)Q_3^n$$
 所以 $J_3 = Q_2^n Q_1^n$, $K_3 = \overline{Q_2^n + Q_1^n}$

$$Q_2^{n+1} = (\bar{X}Q_1^n + X\bar{Q}_1^n)\bar{Q}_2^n + (\bar{X}Q_1^n + \bar{X}\bar{Q}_1^n)Q_2^n$$

所以
$$J_2 = \overline{X}Q_1^n + X \overline{Q}_1^n = X \oplus Q_1^n$$
, $K_2 = \overline{X}Q_1^n + \overline{X} \overline{Q}_1^n = X \oplus Q_1^n$

$$Q_1^{n+1}$$
=(\overline{Q}_3^n+X) \overline{Q}_1^n+X $\overline{Q}_3^nQ_1^n$ 所以 $J_1=\overline{Q}_3^n+X$, $K_1=\overline{X}$ \overline{Q}_3^n

- **6.13** 用四个 DFF 设计以下电路: ←
- (1) 异步二进制减法计数器。↩
- (2) 在(1) 的基础上用复"0"法构成 M=13 的异步计数器。←

解: (1) ↩

5.12

(2) 状态转移图: ↩

反馈状态为0011,此状态为过渡态,在状态编码表中该状态不出现。←

解: 伏态转移表:

\mathbf{Q}_3	\mathbf{Q}_2	Q_1	Q ₀		
0	0	0	0 ←	\vdash	
0	0	1	1	置 3	
0	1	0	0		_
0	1	1	1	置 7	+
1	0	0	0		_
1	0	1	1	置 11	
1	1	0	0		
1	1	1	1 –	置 15	
M=8	2		+]	<u> </u>	к,
TAT (,				

5.16

解: 74161 (1) 的 \overline{Q}_3 接至 74161 (2) 的 CP, 两 74161 为异步级联, 反馈状态为 (4C) $_{H}$ =76,又利用异步清 0 端, 所以 $_{H}$ =76。

解:由逻辑电路图和 SR 触发器特性方程

$$Q^{n+1} = S + RQ^{n}$$

$$SR = O(约束条件)$$

可列出表达式

$$Q_0^{n+1} = \overline{Q_1^n} + \overline{Q_1^n} Q_0^n = \overline{Q_1^n}$$

$$Q_1^{n+1} = Q_0^n + Q_0^n Q_1^n = Q_0^n$$

设初态为 $Q_1 = Q_0 = 0$,列出真值表如表题解 5.5.4 所示。继而画出波形图,如图题解 5.5.4 所示。

表题解 5.5.4

CP序列	$A_1(Q_1)$	$A_0(Q_0)$	φ_3	φ_2	φ_1	Ο (φο
0	0	0	1	1 0=	10X+ 15 1= 19	0 (0
1	0	1	1	1	0	1

逻辑电路如图题 5.5.6 所示,已知 CP和 X的波形,试画出 Q1和 Q2的波形。触发器 的初始状态均为0。 图题 5.5.6

5.28 分析图 6.28 电路, 试写出其编码表及模长。

图 P6.38

解:分析两个 74194 级联成 8 位右移寄存器。取第二个 74194 的 Q_0 反馈给第一片 74194 的 Q_0 反馈给第一片 74194 的 Q_0 Q_0

序号	Q_0	Q_1	Q_2	Q_3	Qo'	Z
启动	0	0	0	0	0	0
1	1	0	0	0	0	0
2	1	1	0	0	0	0
3	1	1	1	0	0	0
4	1	1	1	1	0	0
5	1	1	1	1	1	1
6	0	1	1	1	1	1
7	0	0	1	1	1	1
8	0	0	0	1	1	1
9	0	0	0	0	1	1

因此 M=10。

5.29 试写出图 P5.17 的 74194 输出端的编码表及数据选择器输出端 F 处的序列信号。

解: $M_1 = Q_1 Q_2Q_3$, $D_{SR} = Q_3 Q_2$ 。状态编码表为:

Q_0	Q_1	Q_2	Q_3	M_1	D_{SR}	74151 选择	F
						的数据端	
0	0	0	0	0	1	D_0	0
1	0	0	0	0	1	D_4	1
1	1	0	0	0	1	D_6	0
1	1	1	0	0	0	\mathbf{D}_7	0
0	1	1	1	0	1	\mathbf{D}_3	0
1	0	1	1	0	1	\mathbf{D}_5	0
1	1	0	1	0	0	D_6	1
0	1	1	0	0	0	D_3	0
0	0	1	1	0	1	D_1	1
1	0	0	1	1	0	D_4	1

F 处的序列为: 0100001011。

解: $\overline{CR} = \overline{Q_3Q_1}$,

\mathbf{Q}_3	Q_2	Q_1	Q ₀	74151 选择	F
				的数据端	
0	0	0	0	D0	1
0	0	0	1	D0	1
0	0	1	0	D1	1
0	0	1	1	D1	1
0	1	0	0	D2	0
0	1	0	1	D2	0
0	1	1	0	D3	0
0	1	1	1	D3	1
1	0	0	0	D4	1
1	0	0	1	D4	0

F 处的序列信号为: 1111000110。

解: 74194的 M_1M_0 =01,处于右移的工作状态。 D_{SR} 取自 74151的输出。 题 6.41的状态转移表

/C 0.11 H3 // C 0.11								
Q_0	Q_1	Q_2	Q_3	74151 选择	$D_{SR}(Y)$			
				的数据端				
0	0	0	0	D_0	1			
1	0	0	0	D_4	0			
0	1	0	0	D_2	1			
1	0	1	0	D_5	1			
1	1	0	1	D_{6}	1			
1	1	1	0	D_7	0			
0	1	1	1	D_3	1			
1	0	1	1	D_5	0			
0	1	0	1	D_2	0			
0	0	1	0	D_1	1			
1	0	0	1	D_4	1			
1	1	0	0	D_{6}	0			
0	1	1	0	D_3	0			
0	0	1	1	D_1	0			
0	0	0	1	D_0	1 –			

*Q*₀处的序列信号为: 01110100110001。

6.3 请选用最小容量的 PROM 完成 "NUPT" (使用 ASIC 码)四个字母的存储,并画出内部与门、或门阵列结构示意图。

6.4 请选用最小容量的 PROM 设计一个 3-8 线译码器, 并画出内部与门、或门阵列结构示意图。

