What Is Claimed Is:

I	1. A method for using a computer system to solve a global inequality
2	constrained optimization problem specified by a function f and a set of inequality
3	constraints $p_i(\mathbf{x}) \le 0$ ($i=1,,m$), wherein f and p_i are scalar functions of a vector
4	$\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method comprising:
5	receiving a representation of the function f and the set of inequality
6	constraints at the computer system;
7	storing the representation in a memory within the computer system;
8	performing an interval inequality constrained global optimization process
9	to compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$
10	subject to the set of inequality constraints;
11	wherein performing the interval inequality constrained global optimization
12	process involves,
13	applying term consistency to a set of relations associated
14	with the global inequality constrained optimization problem over a
15	subbox X , and excluding any portion of the subbox X that violates
16	any of these relations,
17	applying box consistency to the set of relations associated
18	with the global inequality constrained optimization problem over
19	the subbox X , and excluding any portion of the subbox X that
20	violates any of these relations, and
21	performing an interval Newton step for the global
22	inequality constrained optimization problem over the subbox X to
23	produce a resulting subbox Y, wherein the point of expansion of
24	the interval Newton step is a point x.

2. The method of claim 1, wherein applying term consistency to the set of relations involves applying term consistency to the set of inequality 2 3 constraints $p_i(\mathbf{x}) \le 0$ (i=1,...,m) over the subbox \mathbf{X} . The method of claim 1, wherein applying box consistency to the 3. 1 set of relations involves applying box consistency to the set of inequality 3 constraints $p_i(\mathbf{x}) \leq 0$ (i=1,...,m) over the subbox \mathbf{X} . The method of claim 1, 4. 1 2 wherein performing the interval inequality constrained global optimization process involves, 3 keeping track of a smallest upper bound f_bar of the 4 function $f(\mathbf{x})$ at a feasible point \mathbf{x} , 5 6 removing from consideration any subbox X for which $f(\mathbf{X}) > f_bar;$ wherein applying term consistency to the set of relations involves applying 8 9 term consistency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the subbox \mathbf{X} . The method of claim 4, wherein applying box consistency to the 5. 1 set of relations involves applying box consistency to the f_bar inequality 2 $f(\mathbf{x}) \leq f_b ar$ over the subbox \mathbf{X} . 3 The method of claim 1, wherein if the subbox X is strictly feasible 6. $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,...,n)$, performing the interval inequality constrained global optimization process involves: 3 determining a gradient g(x) of the function f(x), wherein g(x) includes components $g_i(\mathbf{x})$ (i=1,...,n); 5

- removing from consideration any subbox for which g(x) is bounded away
- 2 from zero, thereby indicating that the subbox does not include an extremum of
- 3 $f(\mathbf{x})$; and
- 4 wherein applying term consistency to the set of relations involves applying
- term consistency to each component $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox
- 6 **X**.
- 1 7. The method of claim 6, wherein applying box consistency to the
- 2 set of relations involves applying box consistency to each component
- 3 $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox \mathbf{X} .
- 1 8. The method of claim 1, wherein if the subbox X is strictly feasible
- 2 $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,...,n)$, performing the interval inequality constrained global
- 3 optimization process involves:
- determining diagonal elements $H_{ii}(\mathbf{x})$ (i=1,...,n) of the Hessian of the
- 5 function $f(\mathbf{x})$;
- 6 removing from consideration any subbox for which a diagonal element
- 7 $H_n(\mathbf{X})$ of the Hessian over the subbox \mathbf{X} is always negative, indicating that the
- 8 function f is not convex over the subbox X and consequently does not contain a
- 9 global minimum within the subbox X; and
- wherein applying term consistency to the set of relations involves applying
- 11 term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ (i=1,...,n) over the subbox \mathbf{X} .
- 1 9. The method of claim 8, wherein applying box consistency to the
- 2 set of relations involves applying box consistency to each inequality
- 3 $H_{ii}(\mathbf{x}) \ge 0$ (i=1,...,n) over the subbox \mathbf{X} .

1	10. The method of claim 1, wherein if the subbox X is strictly feasible		
2	$(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval Newton step involves:		
3	computing the Jacobian $J(x,X)$ of the gradient of the function f evaluated		
4	with respect to a point x over the subbox X ; and		
5	computing an approximate inverse B of the center of $J(x,X)$,		
6	using the approximate inverse B to analytically determine the system $Bg(x)$,		
7	wherein $g(x)$ is the gradient of the function $f(x)$, and wherein $g(x)$ includes		
8	components $g_i(\mathbf{x})$ $(i=1,,n)$.		
1	11. The method of claim 10, wherein applying term consistency to the		
2	set of relations involves applying term consistency to each component		
3	$(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ to solve for the variable x_i over the subbox \mathbf{X} .		
1	12. The method of claim 10, wherein applying box consistency to the		
2	set of relations involves applying box consistency to each component		
3	$(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ to solve for the variable x_i over the subbox \mathbf{X} .		
1	13. The method of claim 1, wherein performing the interval Newton		
2	step involves performing the Newton step on the John conditions.		
1	14. The method of claim 1,		
2	wherein performing the interval inequality constrained global optimization		
3	process involves,		
4	linearizing the set of inequality constraints to produce a set		
5	of linear inequality constraints with interval coefficients that		
6	enclose the nonlinear inequality constraints, and		

1	preconditioning the set of linear inequality constraints	
2	through additive linear combinations to produce a set of	
3	preconditioned linear inequality constraints; and	
4	wherein applying term consistency to the set of relations involves applying	
5	term consistency to the set of preconditioned linear inequality constraints over the	
6	subbox X .	
1	15. The method of claim 14, wherein applying box consistency to the	
2	set of relations involves applying box consistency to the set of preconditioned	
3	linear inequality constraints over the subbox X .	
1	16. The method of claim 1, wherein applying term consistency	
2	involves:	
3	symbolically manipulating an equation within the computer system to	
4	solve for a term, $g(x'_j)$, thereby producing a modified equation $g(x'_j) = h(\mathbf{x})$,	
5	wherein the term $g(x'_j)$ can be analytically inverted to produce an inverse function	
6	$g^{-1}(\mathbf{y});$	
7	substituting the subbox X into the modified equation to produce the	
8	equation $g(X'_J) = h(X)$;	
9	solving for $X'_{J} = g^{-l}(h(X))$; and	
10	intersecting X'_{j} with the j -th element of the subbox X to produce a new	
11	subbox X^+ ;	
12	wherein the new subbox X^+ contains all solutions of the equation within	
13	the subbox X , and wherein the size of the new subbox X^{+} is less than or equal to	
14	the size of the subbox X .	

1	17. The method of claim 1, wherein performing the interval Newton		
2	step involves:		
3	computing $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f		
4	evaluated as a function of x over the subbox X ; and		
5	determining if $J(x,X)$ is regular as a byproduct of solving for the subbox Y		
6	that contains values of y that satisfy $M(x,X)(y-x) = r(x)$, where		
7	M(x,X) = BJ(x,X), $r(x) = -Bf(x)$, and B is an approximate inverse of the center of		
8	J(x,X).		
1	18. A computer-readable storage medium storing instructions that		
2	when executed by a computer cause the computer to perform a method for using a		
3	computer system to solve a global inequality constrained optimization problem		
4	specified by a function f and a set of inequality constraints $p_i(\mathbf{x}) \le \theta$ ($i=1,,m$),		
5	wherein f and p_i are scalar functions of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method		
6	comprising:		
7	receiving a representation of the function f and the set of inequality		
8	constraints at the computer system;		
9	storing the representation in a memory within the computer system;		
10	performing an interval inequality constrained global optimization process		
11	to compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$		
12	subject to the set of inequality constraints;		
13	wherein performing the interval inequality constrained global optimization		
14	process involves,		
15	applying term consistency to a set of relations associated		
16	with the global inequality constrained optimization problem over a		
17	subbox X, and excluding any portion of the subbox X that violates		
18	any of these relations,		

19	applying box consistency to the set of relations associated	
20	with the global inequality constrained optimization problem over	
21	the subbox X , and excluding any portion of the subbox X that	
22	violates any of these relations, and	
23	performing an interval Newton step for the global	
24	inequality constrained optimization problem over the subbox X to	
25	produce a resulting subbox Y, wherein the point of expansion of	
26	the interval Newton step is a point x.	
1	19. The computer-readable storage medium of claim 18, wherein	
2	applying term consistency to the set of relations involves applying term	
3	consistency to the set of inequality constraints $p_i(\mathbf{x}) \le 0$ $(i=1,,m)$ over the	
4	subbox \mathbf{X} .	
1	20. The computer-readable storage medium of claim 18, wherein	
2	applying box consistency to the set of relations involves applying box consistency	
3	to the set of inequality constraints $p_i(\mathbf{x}) \le 0$ $(i=1,,m)$ over the subbox \mathbf{X} .	
1	21. The computer-readable storage medium of claim 18,	
2	wherein performing the interval inequality constrained global optimization	
3	process involves,	
4	keeping track of a smallest upper bound f_bar of the	
5	function $f(\mathbf{x})$ at a feasible point \mathbf{x} ,	
6	removing from consideration any subbox X for which	
7	$f(\mathbf{X}) > f_bar;$	
8	wherein applying term consistency to the set of relations involves applying	
9	term consistency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the subbox \mathbf{X} .	

5

function $f(\mathbf{x})$;

- The computer-readable storage medium of claim 21, wherein 22. applying box consistency to the set of relations involves applying box consistency 2 to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the subbox \mathbf{X} . 3 The computer-readable storage medium of claim 22, wherein if the 23. 1 subbox X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,...,n)$, performing the interval inequality constrained global optimization process involves: 3 determining a gradient g(x) of the function f(x), wherein g(x) includes 4 5 components $g_i(\mathbf{x})$ (i=1,...,n); removing from consideration any subbox for which g(x) is bounded away 6 from zero, thereby indicating that the subbox does not include an extremum of 7 $f(\mathbf{x})$; and 8 wherein applying term consistency to the set of relations involves applying 9 term consistency to each component $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox 10 X. 11 The computer-readable storage medium of claim 23, wherein 24. applying box consistency to the set of relations involves applying box consistency 2 to each component $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox \mathbf{X} . 3
 - 25. The computer-readable storage medium of claim 18, wherein if the subbox X is strictly feasible (p_i(X) < 0 for all i=1,...,n), performing the interval
 inequality constrained global optimization process involves:
 determining diagonal elements H_{ii}(x) (i=1,...,n) of the Hessian of the

9

components $g_i(\mathbf{x})$ (i=1,...,n).

6	removing from consideration any subbox for which a diagonal element
7	$H_{ii}(\mathbf{X})$ of the Hessian over the subbox \mathbf{X} is always negative, indicating that the
8	function f is not convex over the subbox X and consequently does not contain a
9	global minimum within the subbox X ; and
0	wherein applying term consistency to the set of relations involves applying
1	term consistency to each inequality $H_n(\mathbf{x}) \ge 0$ $(i=1,,n)$ over the subbox \mathbf{X} .

- 26. The computer-readable storage medium of claim 25, wherein
 applying box consistency to the set of relations involves applying box consistency
 to each inequality H_n(x) ≥ 0 (i=1,...,n) over the subbox X.
- The computer-readable storage medium of claim 18, wherein if the subbox **X** is strictly feasible ($p_i(\mathbf{X}) < 0$ for all i=1,...,n), performing the interval Newton step involves:

 computing the Jacobian $\mathbf{J}(\mathbf{x},\mathbf{X})$ of the gradient of the function f evaluated with respect to a point \mathbf{x} over the subbox \mathbf{X} ; and computing an approximate inverse \mathbf{B} of the center of $\mathbf{J}(\mathbf{x},\mathbf{X})$, using the approximate inverse \mathbf{B} to analytically determine the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$, and wherein $\mathbf{g}(\mathbf{x})$ includes
- 28. The computer-readable storage medium of claim 27, wherein
 applying term consistency to the set of relations involves applying term
 consistency to each component (Bg(x))_i = 0 (i=1,...,n) to solve for the variable x_i
 over the subbox X.

1	29.	The computer-readable storage medium of claim 27, wherein	
2	applying box consistency to the set of relations involves applying box consistency		
3	to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ to solve for the variable x_i over the		
4	subbox X.		
1	30.	The computer-readable storage medium of claim 18, wherein	
2	performing th	ne interval Newton step involves performing the interval Newton step	
3	on the John conditions.		
1	31.	The computer-readable storage medium of claim 18,	
2	where	ein performing the interval inequality constrained global optimization	
3	process involves,		
4		linearizing the set of inequality constraints to produce a set	
5		of linear inequality constraints with interval coefficients that	
6		enclose the nonlinear inequality constraints, and	
7		preconditioning the set of linear inequality constraints	
8		through additive linear combinations to produce a set of	
9		preconditioned linear inequality constraints; and	
10	where	ein applying term consistency to the set of relations involves applying	
11	term consiste	ency to the set of preconditioned linear inequality constraints over the	
12	subbox X.		
1	32.	The computer-readable storage medium of claim 31, wherein	
2	applying box	consistency to the set of relations involves applying box consistency	
3	to the set of 1	preconditioned linear inequality constraints over the subbox X.	

- 1 33. The computer-readable storage medium of claim 18, wherein 2 applying term consistency involves:
- 3 symbolically manipulating an equation within the computer system to
- solve for a term, $g(x'_j)$, thereby producing a modified equation $g(x'_j) = h(\mathbf{x})$,
- wherein the term $g(x'_j)$ can be analytically inverted to produce an inverse function
- 6 $g^{-1}(y)$;
- substituting the subbox X into the modified equation to produce the
- 8 equation $g(X'_j) = h(X)$;
- solving for $X'_{J} = g^{-l}(h(X))$; and
- intersecting X'_{j} with the j-th element of the subbox X to produce a new
- 11 subbox X^+ ;
- wherein the new subbox X^+ contains all solutions of the equation within
- the subbox X, and wherein the size of the new subbox X^+ is less than or equal to
- 14 the size of the subbox X.
- 1 34. The computer-readable storage medium of claim 18, wherein
- 2 performing the interval Newton step involves:
- computing J(x,X), wherein J(x,X) is the Jacobian of the function f
- 4 evaluated as a function of x over the subbox X; and
- determining if J(x,X) is regular as a byproduct of solving for the subbox Y
- that contains values of y that satisfy M(x,X)(y-x) = r(x), where
- 7 M(x,X) = BJ(x,X), r(x) = -Bf(x), and B is an approximate inverse of the center of
- 8 J(x,X).
- 1 35. An apparatus that solves a global inequality constrained
- 2 optimization problem specified by a function f and a set of inequality constraints

3	$p_i(\mathbf{x}) \leq 0$ ($i=1,,m$), wherein f and p_i are scalar functions of a vector
4	$\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the apparatus comprising:
5	a receiving mechanism that is configured to receive a representation of the
6	function f and the set of inequality constraints at the computer system;
7	a memory for storing the representation;
8	an interval global optimization mechanism that is configured to perform
9	an interval inequality constrained global optimization process to compute
10	guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$ subject to the
11	set of inequality constraints;
12	a term consistency mechanism within the interval global optimization
13	mechanism that is configured to apply term consistency to a set of relations
14	associated with the global inequality constrained optimization problem over a
15	subbox X, and to exclude any portion of the subbox X that violates any of these
16	relations,
17	a box consistency mechanism within the interval global optimization
18	mechanism that is configured to apply box consistency to the set of relations
19	associated with the global inequality constrained optimization problem over the
20	subbox X, and to exclude any portion of the subbox X that violates any of these
21	relations, and
22	an interval Newton mechanism within the interval global optimization
23	mechanism that is configured to perform an interval Newton step for the global
24	inequality constrained optimization problem over the subbox \mathbf{X} to produce a
25	resulting subbox Y, wherein the point of expansion of the interval Newton step is
26	a point x.

1	36. The apparatus of claim 35, wherein the term consistency	
2	mechanism is configured to apply term consistency to the set of inequality	
3	constraints $p_i(\mathbf{x}) \le 0$ $(i=1,,m)$ over the subbox \mathbf{X} .	
1	37. The apparatus of claim 35, wherein the box consistency	
2	mechanism is configured to apply box consistency to the set of inequality	
3	constraints $p_i(\mathbf{x}) \le 0$ $(i=1,,m)$ over the subbox \mathbf{X} .	
1	38. The apparatus of claim 35,	
2	wherein the interval global optimization mechanism is configured to,	
3	keep track of a smallest upper bound f_bar of the function	
4	$f(\mathbf{x})$ at a feasible point \mathbf{x} , and to	
5	remove from consideration any subbox X for which	
6	$f(\mathbf{X}) > f_bar;$	
7	wherein the term consistency mechanism is configured to apply term	
8	consistency to the f_bar inequality $f(\mathbf{x}) \leq f_bar$ over the subbox \mathbf{X} .	
1	39. The apparatus of claim 38, wherein the box consistency	
2	mechanism is configured to apply box consistency to the f_bar inequality	
3	$f(\mathbf{x}) \leq f_bar$ over the subbox \mathbf{X} .	
1	40. The apparatus of claim 35, wherein if the subbox \mathbf{X} is strictly	
2	feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, the interval global optimization mechanism is	
3	configured to:	
4	determine a gradient $g(x)$ of the function $f(x)$, wherein $g(x)$ includes	

components $g_i(\mathbf{x})$ (i=1,...,n);

5

- 🔅

: 1

- 1 remove from consideration any subbox for which g(x) is bounded away
- from zero, thereby indicating that the subbox does not include an extremum of
- 3 $f(\mathbf{x})$; and
- 4 the term consistency mechanism is configured to apply term consistency to
- 5 each component $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox \mathbf{X} .
- 1 41. The apparatus of claim 40, wherein the box consistency
- 2 mechanism is configured to apply box consistency to each component
- 3 $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox \mathbf{X} .
- 1 42. The apparatus of claim 35, wherein if the subbox \mathbf{X} is strictly
- feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,...,n)$, the interval global optimization mechanism is
- 3 configured to:
- determine diagonal elements $H_{ii}(\mathbf{x})$ (i=1,...,n) of the Hessian of the
- 5 function $f(\mathbf{x})$;
- 6 remove from consideration any subbox for which a diagonal element
- 7 $H_{ii}(\mathbf{X})$ of the Hessian over the subbox \mathbf{X} is always negative, indicating that the
- 8 function f is not convex over the subbox X and consequently does not contain a
- 9 global minimum within the subbox X; and
- the term consistency mechanism is configured to apply term consistency to
- each inequality $H_{ii}(\mathbf{x}) \ge 0$ (i=1,...,n) over the subbox \mathbf{X} .
- 1 43. The apparatus of claim 42, wherein the box consistency
- 2 mechanism is configured to apply box consistency to each inequality
- 3 $H_n(\mathbf{x}) \ge 0$ (i=1,...,n) over the subbox \mathbf{X} .

1	44.	The apparatus of claim 35, wherein if the subbox \mathbf{X} is strictly	
2	feasible $(p_i(\mathbf{X}))$	< 0 for all $i=1,,n$), the interval global optimization mechanism is	
3	configured to perform the interval Newton step by:		
4	computing the Jacobian $J(x,X)$ of the gradient of the function f evaluated		
5	with respect to	a point x over the subbox X; and	
6	compu	ating an approximate inverse B of the center of $J(x,X)$,	
7	using the appr	oximate inverse \mathbf{B} to analytically determine the system $\mathbf{Bg}(\mathbf{x})$,	
8	wherein $g(x)$ is	s the gradient of the function $f(x)$, and wherein $g(x)$ includes	
9	components g	$_{i}(\mathbf{x}) \ (i=1,,n).$	
1	45.	The apparatus of claim 44, the term consistency mechanism is	
2	configured to apply term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ to		
3	solve for the variable x_i over the subbox X .		
1	46.	The apparatus of claim 44, the box consistency mechanism is	
2	configured to apply box consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ to		
3	solve for the v	variable x_i over the subbox \mathbf{X} .	
1	47.	The apparatus of claim 35, wherein the interval Newton	
2	mechanism is	configured to perform the Newton step on the John conditions.	
1	48.	The apparatus of claim 35,	
2	where	in the interval global optimization mechanism is configured to:	
3		linearize the set of inequality constraints to produce a set of	
4		linear inequality constraints with interval coefficients that enclose	
5		the nonlinear inequality constraints, and to	

1	precondition the set of linear inequality constraints through		
2	additive linear combinations to produce a set of preconditioned		
3	linear inequality constraints; and		
4	wherein the term consistency mechanism is configured to apply term		
5	consistency to the set of preconditioned linear inequality constraints over the		
6	subbox X.		
1	49. The apparatus of claim 48, wherein the box consistency		
2	mechanism is configured to apply box consistency to the set of preconditioned		
3	linear inequality constraints over the subbox X.		
1	50. The apparatus of claim 35, wherein the term consistency		
2	mechanism is configured to:		
3	symbolically manipulate an equation within the computer system to solve		
4	for a term, $g(x'_j)$, thereby producing a modified equation $g(x'_j) = h(x)$, wherein		
5	the term $g(x'_j)$ can be analytically inverted to produce an inverse function $g^{-l}(y)$;		
6	substitute the subbox X into the modified equation to produce the equation		
7	$g(\mathbf{X}'_j) = h(\mathbf{X});$		
8	solve for $X'_J = g^{-l}(h(\mathbf{X}))$; and		
9	intersect X'_j with the j -th element of the subbox X to produce a new		
10	subbox X^+ ;		
11	wherein the new subbox X^+ contains all solutions of the equation within		
12	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to		
13	the size of the subbox X.		
1	51. The apparatus of claim 35, wherein the interval Newton		
2	mechanism is configured to:		

6

J(x,X).

compute J(x,X), wherein J(x,X) is the Jacobian of the function f evaluated as a function of x over the subbox X; and to determine if J(x,X) is regular as a byproduct of solving for the subbox Y that contains values of y that satisfy M(x,X)(y-x) = r(x), where M(x,X) = BJ(x,X), r(x) = -Bf(x), and R(x,X) = BJ(x,X) is the Jacobian of the function f evaluated as a function of x over the subbox Y that contains values of Y that satisfy Y is the Jacobian of the function Y as a function of Y that satisfy Y is the Jacobian of the function Y as a function of Y that satisfy Y is the Jacobian of the function Y and Y is the Jacobian of the function Y and Y is the Jacobian of the function Y and Y is the Jacobian of the function Y and Y is the Jacobian of the function Y and Y is the Jacobian of the function Y and Y is the Jacobian of the function Y and Y is the Jacobian of the function Y and Y is the Jacobian of Y and Y is the Jacobian of the function Y is the Jacobian of Y as a function of Y and Y is the Jacobian of Y and Y is the Jacobian of Y as a function of Y is the Jacobian of Y and Y is the Jacobian of Y is the Jacobian of Y and Y is the Jacobian of Y is the Jacobian of Y and Y is the Jacobian of Y and Y is the Jacobian of Y is the Jacobian of Y and Y is the Jacobian of Y is the Jacobia