

Information Processing Letters 102 (2007) 236–241

www.elsevier.com/locate/ipl

State explosion in almost-sure probabilistic reachability

François Laroussinie a, Jeremy Sproston b,*,1

a Lab. Spécification & Vérification, ENS de Cachan & CNRS UMR 8643, 61, av. Pdt. Wilson, 94235 Cachan Cedex, France
 b Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy

Received 22 July 2005; received in revised form 1 November 2006; accepted 18 January 2007

Available online 27 January 2007

Communicated by D. Basin

Abstract

We show that the problem of reaching a state set with probabilist 1 in probabilistic—nondeterministic systems operating in parallel is EXPTIME-complete. We then show that this probabilistic reachability problem is EXPTIME-complete also for probabilistic timed automata.

© 2007 Published by Elsevier B.V.

Keywords: Probabilistic systems; Model checking; Computational complexity; Formal methods; Timed automata

1. Introduction

Model checking is an automatic method for guaranteeing that a mathematical model of a system satisfies a formula representing a desired property [4]. Many reallife systems, such as multimedia equipment, communication protocols, networks and fault-tolerant systems, exhibit probabilistic behavior, leading to the study of probabilistic model checking of probabilistic and stochastic models (for an overview, see [12]). We often incorporate nondeterministic choice in probabilistic models, resulting in formalisms akin to Markov decision processes [15]. Furthermore, formalisms such as probabilistic timed automata [11,9] (an extension of Markov decision processes with clock variables, as in timed au-

The description of a probabilistic system is usually given in terms of interacting sub-systems composed in parallel, or by models referring to variables; an example is the system description language of the probabilistic model-checking tool PRISM [8]. However, the number of system states is exponential in the size of such a description: this is known as the state-explosion problem, and is the main practical limitation of model checking. In this paper, we show that the problem "does there exist a way of resolving the nondeterministic choice of the system such that a set of states is reached with probability 1?" is EXPTIME-complete both for a set of probabilistic systems operating in parallel and for probabilistic timed automata. A positive answer to this almostsure (or qualitative) probabilistic reachability problem establishes that the probabilistic system can guarantee an event (such as the completion of a task) with probability 1. The reachability problem is a fundamental sub-problem of model checking, and, analogously, the

tomata [2]) can represent models in which nondeterminism, probability and timing information coexist.

^{*} Corresponding author.

E-mail addresses: fl@lsv.ens-cachan.fr (F. Laroussinie), sproston@di.unito.it (J. Sproston).

Supported in part by Miur project Firb-Perf and EEC project Crutial.

almost-sure probabilistic reachability problem is a fundamental sub-problem of probabilistic model checking. Hence, the EXPTIME lower bounds shown in this paper apply to *all* probabilistic model-checking problems for the systems we consider.

A similar result has been shown by Littman [14] in the context of probabilistic propositional planning, which involves the solution of a probabilistic reachability problem on a concisely-described Markov decision process. Littman's result relies on the reduction of the two-player game G_4 to reachability on a Markov decision process described in the sequential-effect trees notation. Our approach is instead to reduce the acceptance problem on linearly-bounded alternating Turing machines to the almost-sure probabilistic reachability problem, both on probabilistic systems operating in parallel and on probabilistic timed automata, in a similar manner to the reductions in [13,1].

Preliminaries. An Alternating Turing Machine (ATM) [3] is a tuple $\mathcal{A} = (Q, Q_{\vee}, Q_{\wedge}, \Gamma, \delta, q_0, q_{acc})$, with a set $Q = Q_{\vee} \cup Q_{\wedge}$ of states partitioned into disjunctive states Q_{\lor} and conjunctive states Q_{\land} , an initial state $q_0 \in Q$, an accepting state $q_{acc} \in Q_{\vee}$, a tape alphabet $\Gamma = \{a, b\}$, and a transition relation $\delta \subseteq Q \times$ $\Gamma \times Q \times \Gamma \times \{-1, 1\}$. A configuration of A is a triple $\alpha = (q, i, w)$ where $q \in Q$ is the current state, $w \in \Gamma^*$ is a word describing the tape content, and $0 < i \le |w|$ is the position of the head on the tape. The symbol written in the ith cell of the tape is denoted by w(i). An ATM moves like a usual nondeterministic Turing machine: for example, if $\alpha = (q, i, w), w(i) = a$ and $(q, a, q', b, \varepsilon) \in$ δ , then \mathcal{A} may move from α to $\alpha' = (q', i', w')$, where w' is w updated by writing b in position i, and i' is $i + \varepsilon$ (with $i + \varepsilon > 0$). We say that α' is a *successor* of α . We also assume that A has only one reachable configuration (q, i, w) for which $q = q_{acc}$, and that i = 1 and $w = a^n$.

A *run* of \mathcal{A} from some configuration α_0 is a tree, the root of which corresponds to α_0 , and where every node corresponding to α has a child node for each successor α' of α . For $k \in \mathbb{N}$, a run rooted at some disjunctive configuration α is *accepting in k steps* if and only if its state is q_{acc} or $k \ge 1$ and at least *one* of its children is accepting in k-1 steps. A run rooted at some conjunctive configuration α is accepting in k steps if and only if $k \ge 1$ and *all* of its children is accepting in k-1 steps (and there is at least one child). A word v is accepted by \mathcal{A} if and only if there exists some k such that the run from $(q_0, 1, v)$ is accepting in k steps. We say that \mathcal{A} is *linearly-bounded* (LB-ATM) on v if all configurations (q, i, w) in the run of \mathcal{A} have $|w| \le |v|$. The problem

of acceptance of a LB-ATM, which we denote by LB-ATM-ACCEPT, is written as:

Input An ATM \mathcal{A} and a word $v \in \Gamma^*$ such that \mathcal{A} is linearly-bounded on v.

Output YES if and only if A accepts v, No otherwise.

A classical result says that the problem LB-ATM-ACCEPT is EXPTIME-complete [3]. In the following, we assume, as in [5], that along a single branch of a run of an LB-ATM, no configuration is repeated; thus every branch is finite. This assumption does not change the complexity issues: one can easily reduce an instance (\mathcal{A}, v) of LB-ATM-ACCEPT to some instance (\mathcal{A}', v') where \mathcal{A}' avoids repetitions by inserting on the tape a counter (encoded in binary) whose value is bounded by $2^{|v|} \cdot |Q| \cdot |v|$ (the maximum number of distinct configurations along the run). Then \mathcal{A}' simulates the moves of \mathcal{A} and increases the counter by 1 for every simulated move of \mathcal{A} .

2. Concurrent Markov decision processes

A (discrete) probability distribution over a countable set Q is a function $\mu: Q \to [0, 1]$ such that $\sum_{q \in Q} \mu(q) = 1$. For a possibly uncountable set Q', let Dist(Q') be the set of distributions over countable subsets of O'. A distribution μ will occasionally be denoted by $\{q \mapsto \mu(q) \mid q \in Q \text{ and } \mu(q) > 0\}$. Given the distributions μ_1, \ldots, μ_k over the sets Q_1, \ldots, Q_k , respectively, the independent product $\mu_1 \otimes \cdots \otimes \mu_k$ is defined as $\{(q_1, ..., q_k) \mapsto \mu_1(q_1) \cdot ... \cdot \mu_k(q_k) \mid (q_1, ..., q_k) \in$ $Q_1 \times \cdots \times Q_k$. A Markov decision process (MDP) $M = (\Sigma, S, D)$ comprises a set Σ of actions, a set S of states, and the transition relation $D \subseteq S \times \Sigma \times \mathsf{Dist}(S)$. The transitions from state to state of an MDP are performed in two steps: given that the current state is s, the first step concerns a nondeterministic selection of an triple $(s, a, \mu) \in D$ associated with s; the second step comprises a probabilistic choice, made according to the distribution μ of the chosen triple, as to which state to make the transition (that is, we move to a state $s' \in S$ with probability $\mu(s')$). We often write $s \xrightarrow{a}_{\mu}$ instead of $(s, a, \mu) \in D$; when $\mu = \{s' \mapsto 1\}$, we write $s \stackrel{a}{\rightarrow} s'$. An MDP is finite if Σ , S and D are finite sets. Unless stated otherwise, we henceforth assume that MDPs are

A finite path is a finite sequence $s_0 \xrightarrow{a_0}_{\mu_0} s_1 \xrightarrow{a_1}_{\mu_1} \dots \xrightarrow{a_{n-1}}_{\mu_{n-1}} s_n$ of consecutive transitions followed by a state, such that $\mu_i(s_{i+1}) > 0$ for all i < n. An infinite path is an infinite sequence $s_0 \xrightarrow{a_0}_{\mu_0} s_1 \xrightarrow{a_1}_{\mu_1} \dots$ of consecutive transitions, such that $\mu_i(s_{i+1}) > 0$ for all

 $i \in \mathbb{N}$. A state s is reached along the path if there exists $i \in \mathbb{N}$ such that $s = s_i$. An adversary of an MDP is a partial function mapping finite paths to triples $(s, a, \mu) \in$ D, such that s is the state at the end of the path [7,17]. In the standard way, we define the probability measure $Prob_s^A$ over measurable sets in the set of paths generated by adversary A from state s [10]. Given $F \subseteq S$, let Reach $_{\rm s}^A(F)$ be the set of paths generated by A from s along which a state in F is reached. For an MDP $M = (\Sigma, S, D)$, an initial state $\bar{s} \in S$, and a set $F \subseteq S$ of final states, the almost-sure reachability problem for MDPs (MDP-ASR) consists in checking the existence of an adversary of M that assigns probability 1 to reaching F from \bar{s} , and can be solved in polynomial time in the size of M, independently of the transition probabilities (see, for example, [6]). Formally, MDP-ASR is written as:

Input An MDP M, an initial state \bar{s} , and a set of final states F.

Output YES if and only if there exists an adversary A of M such that $Prob_{\bar{s}}^A\{\mathsf{Reach}_{\bar{s}}^A(F)\}=1$, No otherwise.

A concurrent Markov decision process (CMDP) $\mathcal{M} = (\mathsf{M}_1, \dots, \mathsf{M}_k)$ is a k-tuple of Markov decision processes. The flattening of the concurrent Markov decision process \mathcal{M} is a Markov decision process (Σ, S, D) , where $\Sigma = \Sigma_1 \cup \dots \cup \Sigma_k, S = S_1 \times \dots \times S_k$, and D is the set of all triples $((s_1, \dots, s_k), a, \mu)$ from $S \times \Sigma \times \mathsf{Dist}(S)$ such that $\mu = \mu_1 \otimes \dots \otimes \mu_k$, where, for each $1 \leq i \leq k$, either $(s_i, a, \mu_i) \in D_i$ or $(a \notin \Sigma_i \text{ and } \mu_i = \{s_i \mapsto 1\})$ [16]. For a concurrent Markov decision process $\mathcal{M} = (\mathsf{M}_1, \dots, \mathsf{M}_k)$ with the flattening $\mathsf{M} = (\Sigma, S, D)$, an initial state $(\bar{s}_1, \dots, \bar{s}_k) \in S$ and a set of final states $F \subseteq S$ of \mathcal{M} , the almost-sure reachability problem for CMDPs (CMDP-ASR) is similar to MDP-ASR, but checks for the existence of an adversary on the flattening of the CMDP:

Input A CMDP \mathcal{M} , an initial state \bar{s} , and a set of final states F.

Output YES if and only if there exists an adversary A of the flattening M of \mathcal{M} such that $Prob_{\bar{z}}^{A}\{\mathsf{Reach}_{\bar{z}}^{A}(F)\}=1$, No otherwise.

Theorem 2.1. The problem CMDP-ASR is EXPTIME-complete.

Proof. An EXPTIME algorithm is obtained by applying standard polynomial time algorithms for MDP-ASR [6] over the (exponential) flattening of the CMDP

in question. It remains to show the EXPTIME-hardness of CMDP-ASR. Let $v \in \Gamma^n$ and $\mathcal{A} = (Q, Q_{\vee}, Q_{\wedge}, \Gamma, \delta, q_0, q_{acc})$ be an LB-ATM. We define a CMDP $\mathcal{M}_{\mathcal{A},v} = (\mathsf{M}^{\mathsf{cntrl}}, \mathsf{M}_1, \dots, \mathsf{M}_n)$ which models the run of \mathcal{A} over v:

- For each $1 \le i \le n$, the MDP M_i models the ith tape cell. The state set is $S_i = \{s_a^i, s_b^i\}$, and the initial state is s_a^i if v(i) = a, and s_b^i otherwise. The alphabet is $\Sigma_i = (\delta \times \{i\}) \cup \{(a,i),(b,i)\}$. For each transition $t = (q, e, q', e', \varepsilon) \in \delta$ such that $i + \varepsilon \in \{1, \ldots, n\}$, there is a transition $s_e^i \xrightarrow{t,i} s_{e'}^i$ in D_i to simulate the behavior of t. Furthermore, for each $e \in \{a, b\}$, there is a transition $s_e^i \xrightarrow{e,i} s_e^i$ in D_i to indicate the current value of the cell.
- The MDP $\mathsf{M}^{\mathsf{cntrl}} = (\varSigma^{\mathsf{cntrl}}, S^{\mathsf{cntrl}}, D^{\mathsf{cntrl}})$ models the control part of \mathcal{A} . The alphabet is $\varSigma^{\mathsf{cntrl}} = (\delta \times \{1, \dots, n\}) \cup (\{a, b\} \times \{1, \dots, n\})$, and the state set is $S^{\mathsf{cntrl}} = (Q \times \{1, \dots, n\}) \cup (Q_{\wedge} \times \{1, \dots, n\} \times \delta)$. The initial state is $(q_0, 1)$. The transition relation D^{cntrl} is defined as follows:
 - For each $q \in Q_{\vee}$, each $1 \le i \le n$, and each $t \in \delta$, a transition $(q, i) \xrightarrow{t, i} (q', i + \varepsilon)$ is included in D^{cntrl} if $t = (q, e, q', e', \varepsilon)$ and $i + \varepsilon \in \{1, \dots, n\}$.
 - For each $q \in Q_{\wedge}$, each $1 \le i \le n$ and each $e \in \{a,b\}$ such that the set $T_{q,i,e} = \{(q,e,q',e',\varepsilon) \in \delta \mid i+\varepsilon \in \{1,\ldots,n\}\}$ is nonempty, we have a transition $(q,i) \stackrel{e,i}{\longrightarrow} \mu_{(q,i,e)}$ in D^{cntrl} , where $\mu_{(q,i,e)}$ is the distribution (with equal probabilities) over the states (q,i,t) for all $t \in T_{q,i,e}$. Then we add transitions $(q,i,t) \stackrel{t,i}{\longrightarrow} (q',i+\varepsilon)$ to D^{cntrl} according to the definition of t.

The size of $\mathcal{M}_{\mathcal{A},v}$ is $O(n \times |Q| \times |\delta|)$, including the probabilities represented as the ratio of two integers encoded in binary, and the reduction can be done in logarithmic space. Now we show that \mathcal{A} accepts v if and only if CMDP-ASR returns YES for $\mathcal{M}_{\mathcal{A},v}$ with the initial state $((q_0,1),s_{v(1)}^1,\ldots,s_{v(n)}^n)$, and the set containing the single final state $((q_{acc},1),s_a^1,\ldots,s_a^n)$. As the problem LB-ATM-ACCEPT is EXPTIME-hard, this will suffice to show the EXPTIME-hardness of CMDP-ASR.

In the following, for a given word $w \in \Gamma^n$, we write \mathbf{s}_w instead of $s^1_{w(1)}, \ldots, s^n_{w(n)}$. Let $\mathbf{M}_{\mathcal{A},v} = (\Sigma, S, D)$ be the flattening of the CMDP $\mathcal{M}_{\mathcal{A},v}$. Our first task is to construct a modified, action-less version of $\mathbf{M}_{\mathcal{A},v}$, denoted by $\overline{\mathbf{M}} = (\overline{S}, \overline{D})$, so that we are better able to relate the transitions of $\mathcal{M}_{\mathcal{A},v}$ with those of \mathcal{A} . Intuitively, we obtain $\overline{\mathbf{M}}$ by removing intermediate states of the form $((q,i,t),\mathbf{s}_w)$ from $\mathbf{M}_{\mathcal{A},v}$. Let $\overline{S}_N \subseteq S$ be the

set of states of $\mathcal{M}_{\mathcal{A},v}$ which have the component $\mathsf{M}^{\mathsf{cntrl}}$ in a state in the set $Q_{\vee} \times \{1, \dots, n\}$, and similarly let $\overline{S}_P \subseteq S$ be the set of states for which M^{cntrl} is in a state in $Q_{\wedge} \times \{1, \dots, n\}$. Then let $\overline{S} = \overline{S}_N \cup \overline{S}_P$. The transition relation $\overline{D} \subseteq \overline{S} \times \text{Dist}(\overline{S})$ is defined as follows. For states $((q,i),\mathbf{s}_w) \in \overline{S}_N$, for each transition $((q,i),\mathbf{s}_w) \xrightarrow{t,i}$ $((q', i'), \mathbf{s}_{w'})$ of D we have $((q, i), \mathbf{s}_w) \rightarrow ((q', i'), \mathbf{s}_{w'})$ in \overline{D} . For states $((q, i), \mathbf{s}_w) \in \overline{S}_P$, observe that in $M_{\mathcal{A}, v}$ we have transitions $((q, i), \mathbf{s}_w) \xrightarrow{w(i), i}_{\mu} ((q, i, t), \mathbf{s}_w),$ and, from $((q, i, t), \mathbf{s}_w)$, there is a unique transition $((q,i,t),\mathbf{s}_w) \xrightarrow{t,i} ((q',i'),\mathbf{s}_{w'}), \text{ where } q', i' \text{ and } w'$ depend on t. In \overline{M} we skip the intermediate state $((q, i, t), \mathbf{s}_w)$ and consider a transition $((q, i), \mathbf{s}_w) \rightarrow_{\overline{\mu}}$ such that $\overline{\mu}((q',i'),\mathbf{s}_{w'})$ equals $\mu((q,i,t),\mathbf{s}_w)$ if there is a transition t such that $((q, i, t), \mathbf{s}_w) \rightarrow ((q', i'), \mathbf{s}_{w'})$, and 0 otherwise. We can verify that, for all states $s \in \overline{S}$ and any $F \subseteq \overline{S}$, CMDP-ASR returns YES for $\mathcal{M}_{A,v}$, s and F if and only if MDP-ASR returns YES for \overline{M} , s and F.

Note that we can obtain an isomorphism between the configurations of \mathcal{A} and the states of $\overline{\mathbf{M}}$, which relates a configuration (q,i,w) of \mathcal{A} to a state $((q,i),\mathbf{s}_w)$ of $\overline{\mathbf{M}}$. For configurations (q,i,w) and (q',i',w'), we have that (q',i',w') is a successor of (q,i,w) if and only if $((q,i),\mathbf{s}_w) \to_{\mu} ((q',i'),\mathbf{s}_{w'})$. Because no configuration is repeated along a branch of a run of \mathcal{A} (see p. 237), the MDP $\overline{\mathbf{M}}$ is acyclic (i.e., there does not exist a finite path $s_0 \xrightarrow[]{a_0} \mu_0 \ s_1 \xrightarrow[]{a_1} \mu_1 \cdots \xrightarrow[]{a_{n-1}} \mu_{n-1} \ s_n$ of $\overline{\mathbf{M}}$ such that $s_0 = s_n$). Hence $\overline{\mathbf{M}}$ has no infinite path.

Next, we introduce the *alternating reachability* problem (ALT-REACH) on \overline{M} . First we consider the variant in k steps (ALT-REACH-k):

Input An MDP M, a partition of the states of M into *disjunctive states* S_{\lor} and *conjunctive states* S_{\land} , an initial state s, and a set of final states F.

Output YES if and only if:

- $s \in S_{\lor}$ and either $s \in F$ or $k \ge 1$ and there exists a transition $s \to_{\mu} s'$ such that ALT-REACH-(k-1) returns YES on M, S_{\lor} , S_{\land} , s', and F;
- $s \in S_{\wedge}$, $k \geqslant 1$, and, for all states $s' \in S$, we have that $s \rightarrow_{\mu} s'$ implies that ALT-REACH-(k-1) returns YES on M, S_{\vee} , S_{\wedge} , s', and F;

and No otherwise.

Then the answer to ALT-REACH is YES if and only if there exists some k such that the corresponding instance of ALT-REACH-k is positive. We apply the problem ALT-REACH by letting the set of disjunctive and conjunctive states considered be equal to \overline{S}_{N} and \overline{S}_{P} , respectively. From the acyclic property of \overline{M} , we have

that the problem MDP-ASR outputs YES on \overline{M} , s and F if and only if ALT-REACH outputs YES on \overline{M} , \overline{S}_N , \overline{S}_P , s and F.² We claim that the following statements are equivalent:

- (1) CMDP-ASR returns YES on input $\mathcal{M}_{\mathcal{A},v}$, $((q_0, 1), \mathbf{s}_v)$, and $((q_{acc}, 1), \mathbf{s}_{a...a})$;
- (2) MDP-ASR returns YES on input \overline{M} , $((q_0, 1), \mathbf{s}_v)$, and $((q_{acc}, 1), \mathbf{s}_{a...a})$;
- (3) ALT-REACH returns YES on input \overline{M} , $((q_0, 1), \mathbf{s}_v)$, and $((q_{acc}, 1), \mathbf{s}_{a...a})$;
- (4) LB-ATM-ACCEPT returns YES on input A and v.

The equivalence of statements (1) and (2) (statements (2) and (3), respectively) follows from the arguments relating CMDP-ASR and MDP-ASR (MDP-ASR and ALT-REACH, respectively) given above. The equivalence of statements (3) and (4) follows from the aforementioned isomorphism between configurations of $\mathcal A$ and states of $\overline{\mathbb M}$. Hence, the CMDP-ASR problem and the acceptance problem for LB-ATM are equivalent, and thus the CMDP-ASR problem is EXPTIME-hard. \square

3. Probabilistic timed automata

In this section, we study the complexity of the almost-sure probabilistic reachability problem for probabilistic timed automata. We use standard notation from (probabilistic) timed automata, such as *clock valua*tions val: $\mathcal{X} \to \mathbb{R}_{\geq 0}$ which are mappings from the set of clocks \mathcal{X} to the set of non-negative real numbers $\mathbb{R}_{\geq 0}$, and clock constraints $\Psi_{\mathcal{X}}$ over \mathcal{X} . A probabilistic timed automaton (PTA) $P = (L, \mathcal{X}, prob)$ [11,9] is a tuple consisting of a finite set L of locations, a finite set \mathcal{X} of clocks, and a finite set $prob \subseteq L \times \Psi_{\mathcal{X}} \times$ $Dist(2^{\mathcal{X}} \times L)$ of probabilistic edges. A probabilistic edge $(l, g, p) \in prob$ is a triple containing (1) a source l location, (2) a guard g, and (3) a probability distribution p which assigns probability to pairs of the form (X, l') for some clock reset X and target location l'. The semantics of P is the action-less, infinitestate Markov decision process M[P] = (S, D). The state set $S = L \times \mathbb{R}^{\mathcal{X}}_{\geq 0}$ comprises location-valuation pairs. The transition relation D is defined as the smallest set such that $((l, val), \delta, \mu) \in D$ if there exist $\delta \in \mathbb{R}_{\geq 0}$ and a probabilistic edge $(l, g, p) \in prob$ such that (1) $val + \delta \models g$ and (2) for each $(l', val') \in S$, we have $\mu(l', val') = \sum_{X \subset \mathcal{X} \& val' = (val + \delta)[X:=0]} p(X, l').$

² The proof can be done directly on the number of steps of the accepting runs, which is the same in both problems.

Let $\mathbf{0} \in \mathbb{R}^{\mathcal{X}}_{\geqslant 0}$ be the clock valuation which assigns 0 to all clocks in \mathcal{X} . For a probabilistic timed automaton $\mathsf{P} = (L, \mathcal{X}, prob)$, an initial location $\bar{l} \in L$, and a set $L_F \subseteq L$ of *final locations*, the *almost-sure reachability problem for PTAs* consists in checking the existence of an adversary that assigns probability 1 to reaching L_F from $(\bar{l}, \mathbf{0})$. Formally, PTA-ASR is the problem written as:

Input A PTA P, an initial location \bar{l} , and a set of final locations L_F .

Output YES if and only if there exists an adversary A of M[P] such that $Prob_{(\bar{l},\mathbf{0})}^A\{\mathsf{Reach}_{(\bar{l},\mathbf{0})}^A(L_F\mathbb{R}_{\geqslant 0}^{\mathcal{X}})\}$ = 1, No otherwise.

Kwiatkowska et al. [11] show that the problem PTA-ASR can be solved in exponential time in the size of P using a variant of the *region graph* technique for timed automata [2]. We now show that this bound is optimal.

Theorem 3.1. The problem PTA-ASR is EXPTIME-complete.

Proof. Given that an EXPTIME algorithm has been presented previously, it remains to show the EXPTIME-hardness of PTA-ASR. Let $\mathcal{A} = (Q, [0]Q_{\vee}, [0]Q_{\wedge}, [0]\Gamma, [0]\delta, [0]q_{0}, [0]q_{acc})$ be an LB-ATM and v be a word of length n. We define a PTA $P_{\mathcal{A},v} = (L, \mathcal{X}, prob)$ which models the run of \mathcal{A} over v. Then we let $L = (Q \times \{1, \ldots, n\}) \cup \{\bar{l}, l_F\}$, and $\mathcal{X} = \{x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n, y\}$. The contents of the tape of \mathcal{A} are encoded by the relative values of the clocks $x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n$: cell i contains a if $x_i = \bar{x}_i$, and b if $x_i < \bar{x}_i$. Clock y is used to ensure the elapse of time.

The probabilistic edge relation prob of $P_{A,v}$ is obtained in a similar way to the transition relation of the CMDP of the proof of Theorem 2.1, as we now explain. The idea is that probabilistic edges emulate the transitions of A: in particular, the guards of probabilistic edges from a given location (q, i) can test whether the current tape symbol is a or b by checking whether $x_i = \bar{x}_i$ or $x_i < \bar{x}_i$, respectively. Furthermore, the writing of a symbol in a tape cell can be replicated by clock resets: for example, to represent the writing of a in cell i, we reset clocks x_i and \bar{x}_i to 0 (so that $x_i = \bar{x}_i$), whereas to write b we reset only x_i (so that $x_i < \bar{x}_i$). The target locations of the probabilistic edges are derived from the target states of the transition of A involved in the definition of the probabilistic edge, and by the associated movement of the tape head.

In a location (q, i) derived from a disjunctive ATM state (that is, $q \in Q_{\vee}$), there will be a nondeterminis-

tic choice between probabilistic edges, each of which is derived from a transition of A from a, and each of which will assign probability 1 to a single outcome. In contrast, in a location (q, i) derived from a conjunctive ATM state (that is, $q \in Q_{\wedge}$), there are at most two probabilistic edges, one of which has a guard testing whether the current tape symbol is a (using $x_i = \bar{x}_i$, as above), the other testing for b (using $x_i < \bar{x}_i$). The probabilistic branching is done (with equal probability) over the various outcomes derived from the outgoing transitions of q labeled with a or b, respectively. To the guard of each probabilistic edge, we add the constraint y > 0 to force some time to elapse, in order to ensure that a clock reset of $\{x_i\}$ encodes the writing of b in cell j. Finally, we add the probabilistic edge $(\bar{l}, y > 0, \{X_v, (q_0, 1) \mapsto 1\})$, where $X_v = \{x_i \mid$ v(i) = b \cup {v}, to encode the initialization of the input word v on the tape, and also the probabilistic edge $((q_{acc}, 1), \bigwedge_{i=1}^{n} (x_i = \bar{x}_i), \{\emptyset, l_F \mapsto 1\}).$

The size of the PTA $P_{\mathcal{A},v}$ is linear in $|\mathcal{A}| \cdot |v|$: we have $|L| = |Q| \cdot |v| + 2$, $|\mathcal{X}| = 2 \cdot |v| + 1$, and the size of the probabilistic edge set prob—including the probabilities encoded in binary—is bounded by $2 \cdot |v| \cdot |\delta|$. The reduction can be done in logarithmic space. Then \mathcal{A} accepts v if and only if PTA-ASR returns YES on the input PTA $P_{\mathcal{A},v}$, the initial location \bar{l} , and the set $\{l_F\}$ comprising the single final location l_F . Hence PTA-ASR is EXPTIME-hard. \square

References

- L. Aceto, F. Laroussinie, Is your model checker on time? On the complexity of model checking for timed modal logics, Journal of Logic and Algebraic Programming 52–53 (2002) 7–51.
- [2] R. Alur, D.L. Dill, A theory of timed automata, Theoretical Computer Science 126 (2) (1994) 183–235.
- [3] A.K. Chandra, D. Kozen, L.J. Stockmeyer, Alternation, Journal of the ACM 28 (1) (1981) 114–133.
- [4] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.
- [5] C. Courcoubetis, M. Yannakakis, The complexity of probabilistic verification, Journal of the ACM 42 (4) (1995) 857–907.
- [6] L. de Alfaro, Computing minimum and maximum reachability times in probabilistic systems, in: Proc. of the 10th Int. Conf. on Concurrency Theory (CONCUR'99), in: Lecture Notes in Computer Science, vol. 1664, Springer, 1999, pp. 66–81.
- [7] S. Hart, M. Sharir, A. Pnueli, Termination of probabilistic concurrent program, ACM Trans. Program. Lang. Syst. 5 (3) (1983) 356–380.
- [8] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM: A tool for automatic verification of probabilistic systems, in: Proc. of the 12th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'06), in: Lecture Notes in Computer Science, vol. 3920, Springer, 2006, pp. 441– 444.

- [9] H.E. Jensen, Model checking probabilistic real time systems, in: Proc. of the 7th Nordic Workshop on Programming Theory, vol. 86, Chalmers Institute of Technology, 1996, pp. 247–261.
- [10] J.G. Kemeny, J.L. Snell, A.W. Knapp, Denumerable Markov Chains, second ed., Graduate Texts in Mathematics, Springer, 1976.
- [11] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic verification of real-time systems with discrete probability distributions, Theoretical Computer Science 286 (2002) 101–150.
- [12] M.Z. Kwiatkowska, Model checking for probability and time: from theory to practice, in: Proc. of the 18th IEEE Symposium on Logic in Computer Science (LICS 2003), IEEE Computer Society, 2003, pp. 351–360.
- [13] F. Laroussinie, Ph. Schnoebelen, The state-explosion problem from trace to bisimulation equivalence, in: Proc. of the 3rd Int. Conf. on Foundations of Software Science and Computation

- Structures (FoSSaCS 2000), in: Lecture Notes in Computer Science, vol. 1784, Springer, 2000, pp. 192–207.
- [14] M.L. Littman, Probabilistic propositional planning: Representations and complexity, in: Proc. of the 14th National Conf. on Artificial Intelligence and the 9th Innovative Applications of Artificial Intelligence Conf. (AAAI/IAAI'97), AAAI Press/MIT Press, 1997, pp. 748–754.
- [15] M.L. Puterman, Markov Decision Processes, J. Wiley & Sons, 1994.
- [16] R. Segala, N.A. Lynch, Probabilistic simulations for probabilistic processes, Nordic Journal of Computing 2 (2) (1995) 250–273.
- [17] M.Y. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in: Proc. of the 16th Anual Symp. on Foundations of Computer Science (FOCS'85), IEEE Computer Society Press, 1985, pp. 327–338.