Churn Prediction Using Machine Learning

What does Churn mean in business?

Churn means customers or users who left the services or migrates to the competitor in the industry. It is very important for any organization to keep its existing customer and attract new ones if one of them fails it is bad for business. The goal is to explore the possibility of machine learning for churn prediction to retain a competitive edge in the industry.

Why it is important to solve the problem?

In highly competitive markets, like gaming, hotel, subscription apps and casino chains operate in, being able to truly understand our customers is crucial to remaining competitive. To do this, we have to analyze the behavior of our customers and understand what are the attributes of people who may churn.

Project Overview

In this Project we will analyse and build a churn model for a "company" called Sparkify. This company provides music streaming services to customers just like Spotify or Pandora.

To utilize the Spark, we need to set up a spark session in the beginning. We

can also do this without actually having a server by using the local cluster.

About our dataset.

There are two datasets that are available: a full dataset of 12GB, that requires the deployment of a cluster to parallelize computation, and a mini-dataset of 128MB. In this repository the focus is on the mini-dataset for now. But due to the nature of this data, we wrote all the code using the Spark Framework to allow easy refactoring on the code to have it run with clusters on a much larger dataset.

Step by step approach.

1. <u>Data Understanding</u>

Included finding missing or random values, understanding the structure of the dataset, understanding column datatypes, finding useful features.

2. <u>Visualization</u>

Everything that can be learned from visualization. This will help to visually understand which features are more suitable for solving the problem.

3. Feature Engineering

At this step, we will select features based on the previous steps and combine them into one data frame.

4.Modeling

We will use four machine learning algorithms: Logistic Regression, Random Forest, Decision tree.

Then we'll compare them based on metrics: Accuracy and F1.

5. Model Evaluation and Validation

At this step, we provide some discussion about the final parameters of the model.

For this project, <u>we have to classify customers who have churned</u>. Not only we will classify these customers but <u>we will build a model that would make predictions</u>.

The approach taken to this problem was to firstly define what churn is. This was <u>defined by using the event of 'Cancellation Confirmation'. If</u> the user cancelled their service, they were defined as churn.

After defining churn, some features were extracted such as gender and level. These features were used and a model was trained and it was used to make predictions.

Snapshot of our dataset.

artist au	uth :	::rstName	gender 1	temInSession	lastName	length	Tevel	location	n method	page	registration	sessionI
	+-	+	·+-·	+		++		+	-++	+		t
Martha Tilston Logged	In	Colin	M	50	Freeman	277.89016	paid	Bakersfield, CA	A PUT	NextSong	1538173362000	2
Five Iron Frenzy Logged	In	Micah	M	79	Long	236.09424	free	Boston-Cambridge	. PUT	NextSong	1538331630000	{
Adam Lambert Logged	In	Colin	M	51	Freeman	282.8273	paid	Bakersfield, CA	A PUT	NextSong	1538173362000	29
Enigma Logged	In	Micah	M	80	Long	262.71302	free	Boston-Cambridge	PUT	NextSong	1538331630000	8
Daft Punk Logged	In	Colin	М	52	Freeman	223.60771	paid	Bakersfield, CA	A PUT	NextSong	1538173362000	29

serId	userAgent	ts	status	song	sessionId
			+		+
30	Mozilla/5.0 (Wind	1538352117000	200	Rockpools	29
9	"Mozilla/5.0 (Win	1538352180000	200	Canada	8
30	Mozilla/5.0 (Wind	1538352394000	200	Time For Miracles	29
9	"Mozilla/5.0 (Win	1538352416000	200	Knocking On Forbi	8
30	Mozilla/5.0 (Wind	1538352676000	200	Harder Better Fas	29

The variables in our dataset.

```
- artist: string (nullable = true)
-- auth: string (nullable = true)
  firstName: string (nullable = true)
  gender: string (nullable = true)
  itemInSession: long (nullable = true)
-- lastName: string (nullable = true)
-- length: double (nullable = true)
-- level: string (nullable = true)
-- location: string (nullable = true)
-- method: string (nullable = true)
-- page: string (nullable = true)
-- registration: long (nullable = true)
-- sessionId: long (nullable = true)
  song: string (nullable = true)
-- status: long (nullable = true)
  ts: long (nullable = true)
  userAgent: string (nullable = true)
 - userId: string (nullable = true)
```

There were 1101 missing userId records in this dataset. For this, we removed the rows where these were missing.

```
[ ] len(df.select(['userId','sessionId','artist','song']).where(df.userId == '').collect())
1101
```

We filter our dataset and extract the features that we will use.

Based on intuition and domain knowledge, we decide not to include the columns for lastName, method, and userAgent in our first-pass modeling for now, since these variables probably do not affect our prediction. We also decide not to include artist, location, song, and status for now. This leaves us with the following columns

user1	song	itemInSession	firstname	datetime		sessionId	length	artist
14	null	0	Grant	21:1	+50719-01-27	141	null	null
14	Love It All	1	Grant	03:0	+50719-01-28	141	169.45587	The Kooks
14	The Damned	2	Grant	01:5	+50719-01-30	141	256.7571	Plasmatics
1	Sincerità © Et J	3	Grant	01:0	+50719-02-02	141	195.94404	Alliance Ethnik
14	Change	4	Grant	07:1	+50719-02-04	141	361.29914	Tears For Fears
14	Heartbreak	5	Grant	11:3	+50719-02-08	141	189.36118	В5
14	null	6	Grant	18:1	+50719-02-08	141	null	null
14	Somebody (Loves Y	7	Grant	16:0	+50719-02-10	141	278.22975	Plies
14	Red Cave	8	Grant	21:1	+50719-02-13	141	298.91873	Yeasayer
14	null	9	Grant	06:0	+50719-02-14	141	null	null
14	null	10	Grant	08:4	+50719-02-15	141	null	null
14	null	11	Grant	09:0	+50719-02-15	141	null	null
14	null	12	Grant	18:0	+50719-02-17	141	null	null
14	I'd Come For You	13	Grant	09:3	+50719-02-18	141	262.81751	Nickelback
14	Fuck Off	14	Grant	10:2	+50719-02-21	141	71.70567	Venetian Snares
14	Transparent Radia	15	Grant	06:0	+50719-02-22	141	153.80853	The Red Crayola
14	Colours Of The Ra	16	Grant	00:3	+50719-02-24	141	319.73832	une Up! vs. Ital
14	Deireadh An Tuath	17	Grant	17:1	+50719-02-27	141	104.56771	Enya
14	The KGB (Intro)	18	Grant	22:0	+50719-02-28	141	54.22975	Binary Star
14	Fingers And Thumb	19	Grant	13:0	+50719-03-01	141	246.46485	Erasure

Some important visualization to derive insights.

The most present states for people who churned.

```
+----+
ದ∍
   |churn|state|count|
            CA 39158
            PA 23708
            TX 22200
            NH 18637
            FL 11427
   only showing top 5 rows
   +----+
    churn | state | count |
            CA
               7613
                4317
            col
            MS
                3839
                3526
            WA
            OH |
                3173
   only showing top 5 rows
```

ML Models used:

Logistic Regression

```
[ ] scores(predictions)

Accuracy Score: 0.7867647058823529
F1 Score: 0.80666666666668
```

[] predictions = train model(df balance)

Random Forest Classifier

scores(predictions rf)

```
[ ] predictions_rf = train_model(df_balance, model='rf')
```

```
Accuracy Score: 0.8007968127490039
F1 Score: 0.8201438848920863
```

- Decision Tree Classifier

- predictions_dt = train_model(df_balance, model='dt')
 scores(predictions_dt)
- Accuracy Score: 0.7754237288135594 F1 Score: 0.792156862745098

Let's check our model scores

```
******Model Scores****
Logistic Regression
Accuracy Score: 0.7877551020408163
F1 Score: 0.7936507936507937
None
Random Forest Classifier
Accuracy Score: 0.8007968127490039
F1 Score: 0.8201438848920863
None
Decision Tree Classifier
Accuracy Score: 0.7754237288135594
F1 Score: 0.792156862745098
None
```

We tried to improve our logistic regression model but it wasn't. This can be solved by extracting more features.

```
preds.filter(preds.label == preds.prediction).count() / preds.count()
0.7466666666666667
scores(preds)
Accuracy Score: 0.746666666666667
F1 Score: 0.774703557312253
```

Thank you.