Chapter 3

Chapter 3 - Free-fall and Projectile Motion

Free-fall

- * constant acceleration -> g = 9.8 m/s² 10 m/s² is close enough in most cases
- * can be positive or negative depending on your perspective
- * otherwise use the constant acceleration equations we have.

Vertical Motion of Free-Fall Object						
	Time	Vertical	Vertical	Delta y	Vertical	Vertical
						Acceleratio
		Position, y	Position, y		Velocity	n
	(s)	(cm)	(m)	(m)	(m)'s)	(m/s ²)
	0.00	15.80	1.417		\	
	0.04	15.45	1.386	-0.031	-0.78	
	0.08	14.90	1.336	-0.049	-1.23	-11.21
	0.12	14.20	1.274	-0.063	-1.57	-8.41
	0.16	13.30	1.193	-0.081	-2.02	-11.21
	0.20	12.25	1.099	-0.094	-2.35	-8.41
	0.24	11.05	0.991	-0.108	-2.69	-8.41
	0.28	9.60	0.861	-0.130	-3.25	-14.01
	0.32	8.05	0.722	-0.139	-3.48	-5.61
	0.36	6.25	0.561	-0.161	-4.04	-14.01
					Average	
					Acceleratio	
					n	-10.16

* A person drops a ball off a 100 m cliff, and it falls with an acceleration of 9.8 m/s/s, find the final time and final velocity of the ball when it hits the ground.

How could I word the description of the problem above?

- * If I drop a ball from a 100 m high cliff, how long is it in the air? And how fast is it travelling when it hits the ground?
- * How long would it take for a ball to drop 100 m with no resistance starting from stand still (rest) and how fast is it traveling when it hits the ground?

What if I threw the object down to start with at 10 m/s initially?

quadratic equation -> more wath -> more bad

Recall Quiz: If it takes 3.5 seconds for an object you drop to hit the ground, then how high are you above the ground?

An object thrown straght up.

$$V = 0 m/s$$
 $V = 3 m/s$
 $V = 13 m/s$
 $V = 23 m/s$
 $V = 25 m/s$
 $V = 20 m/s$

-> yf= yi + Vit + jat? non long? $V_{L} = V_{i} + at$ 0 m/2 + 23 m/2 - 9.8 m/2 Om/= +23m/ -9.8m/2 + -23 2-23 -23m/5 = -9.8m/2. + $V_f = 0 m + 23 m_s \cdot (2.35) + \frac{1}{2} (-9.8 m_s^2) (2.355)^2$ c = 54.05m - 76.95m f = 26.9 m = 27 m

Two dimensional projectile motion

Paths are in the shape of parabolas

Vertical rompour tompour component

of velocity

Velocity is a vector quantity

· length of the arrow is proportioned to size of the quantitury · direction of the arrow is the direction of the quantity.

everything stourts however fail e all land at exectly the some time, independent of Vx. f Vy=30 mg, how far from the boxen of diff does the object land? no acceleration E in X-direction $X_f = 30 \text{ m/s}$.5.5 s = 165 m

completely horizontal initial Velocity · fact horizontal sprud o short travel time beend on initial height $\Delta x = range$ Completely vertical initial velocity · Zero horizontal relocity > no tange no horizontal travel & long travel time in the air

Maximum range • medium travel time • medium horizontal spend

Know:
$$t = 10$$
 want: height = If $1 = \frac{1}{2} (+9.8 \text{m/s}^2) (10 \text{s})^2$
 $1 = 0$ $1 = 500 \text{ m}$ height

3. If I throw the ball ball downwards with an initial velocity on 10 m/s and it takes 10 seconds to hit the ground, then how fast is it going when it gets there? How high is the ledge?

we know: We want:

$$V_f = 10 \text{ s}$$
 $V_f = 10 \text{ s}$
 $V_f = 10 \text{ m/s}$
 $V_f = 10 \text{ m/s}$

4. If I throw a ball horizontally from a 50m cliff, how long will it take to land?

What would be the travel time if I dropped it?

If I throw a ball horizontally from a 50 m cliff and a friend measures that ball landed 40 m from the base of the cliff, what was the initial velocity with which I threw the ball?

We know:
$$y_i = 0m$$

$$y_f = 50m$$

$$a_y = +9.8my_2$$

$$y_{iy} = 0my_5$$

$$x_f = 40m$$

$$y_i = 0$$