Carlingford High School

Extension 1 Mathematics

Year 12

Half Yearly Exam
Term 4 2016

Time Allowed: 90 minutes

Name:			Class: 12M1
Teacher:	Mr Gong	Ms Kellahan	Mrs Lobejko

- Answer each question in a new booklet.
- Do not work in columns.
- Marks may be deducted for careless or badly arranged work.
- Write in blue or black pen. Diagrams and graphs may be done in pencil.
- Only calculators approved by the Board of Studies may be used.
- There is to be NO LENDING OR BORROWING.
- Reference sheets and the Multiple Choice Answer sheet are attached at the back of the paper and may be removed.

	МС	Q11	Q12	Q13	Mark
Polynomials		/3			/3
Parametrics		/3			/3
Series & Applications		/3		/9	/12
Applications of Calculus		/6	/15_	/4	/25
Total	/10	/15	/15	/13	/53

BLANK PAGE

Section I: Multiple choice Answer on the multiple choice sheet.

Mark

1

1

1. If $f(x) = e^{-x} - 3e^{-3x}$, then f'(x) is:

A.
$$-e^{-x} + 9e^{-3x}$$

B.
$$-e^{-x} - 9e^{-3x}$$

C.
$$e^{-x} + 9e^{-3x}$$

D.
$$-e^{-x} + 3e^{-3x}$$

2. The graph of y = f(x) is shown.

Which of the following could be the graph of y = f'(x)?

Α

В

C

D

3. Solve $2\log_a x - \log_a 4 = 2\log_a 8$

1

- A. ±4
- B. 16
- C. 4
- D. ±16

4. Let $P(x) = 2x^3 - 3x - 7$. Find the remainder when P(x) is divided (x - 2)

- A. 3
- B. -3
- C. 17
- D. -17

5. $\sum_{n=0}^{\infty} 3n^2 - 2n = ?$

1

- 64
- B. 65
- C. 134
- D. 135

The point P(2t, 3t²) lies on the parabola: 6.

1

- A. $4x = 3y^2$ B. $3y = 4x^2$ C. $4y = 3x^2$ D. $3x = 4y^2$

- Which of the following is an expression for the derivative of 5^x? 7.

1

- $x5^{x-1}$
- B. 5^{x-1}
- C. 5^x
- D. 5^xlog_e5
- The equation of the normal to the parabola $x^2 = 4ay$ at the variable point P(2ap, ap²) is given by $x + py = 2ap + ap^3$. 8.

1

How many different values of p are there such that the normal passes through the focus of the parabola?

- Α. 0
- B. 1

- C. 2
- D. 3
- The diagram shows the area under the curve $y = \frac{2}{x}$ from x = 1 to x = d. 9.

1

What value of d makes the shaded area equal to 2?

- Α.
- B.e+1

- C. 2e
- D. e^2
- 10. The three roots of $-x^3 + 2x^2 x = 0$ are α , β and γ .

1

What is $\alpha^2 + \beta^2 + \gamma^2$?

- Α. 10
- B. 6

- C. 4
- D. 2

End of Section I

Section II

Question 11.

Answer in a new booklet.

15 Marks

Differentiate $\ln \sqrt{\frac{1+x}{1-x}}$

2

If $\log_e \frac{b}{c} = 1.25$ what is the value of $\log_e \frac{c}{b}$?

2

 $\int \left(\sqrt{x} + 2\right)^2 dx$

2

Use the principle of mathematical induction to prove that $3^{2n} + 7$ is divisible by 8, d. for positive integers $n \ge 1$

3

Solve $x^3 - 21x^2 + 126x - 216 = 0$, given that the roots are in a geometric e. progression.

3

- The point P(2ap, ap²) lies o the parabola $x^2 = 4ay$ whose focus is at S. The tangent at P given by $y ap^2 = p(x 2ap)$ meets the y –axis at Q. f.
- 1

i) Find the coordinates at Q.

2

ii) Show that ∠SPQ = ∠SQP

End of Question 11.

2

2

The shaded region bounded by $y=e^{x^2}$, y=7 and the y-axis is rotated around the y-axis to form a solid.

- i) Show that the volume of the solid is given by $V = \pi \int_{1}^{7} \log_e y \ dy$.
- ii) Use the trapezoidal rule with 3 function values to approximate the volume of V, correct to 3 decimal places.
- **b.** Find the equation of the normal to the curve $y = e^{2x-1}$ at the point where x = 1, in terms of e.
- **c.** For the function $y = x^2e^x$
 - i) State the domain and range.
 - ii) Find any stationary points and determine their nature.
 - iii) Sketch the curve showing all the main features.

End of Question 12

a. i) Sketch the curve $y = x^3 - 2x^2 - 3x$.

1

3

- ii) Hence find the area bounded by the curve $y = x^3 2x^2 3x$ and the x-axis.
- **b.** For the series $\ln 3 + \ln 6 + \ln 12 + \dots$

i) Show that it is Arithmetic.

1

ii) Find the 10th term.

1

iii) Evaluate $\sum_{n=1}^{10} \ln[3(2^{n+1})]$

3

c. Prove by mathematical induction that $n^2 > 3n + 11$ for n > 5.

4

End of Question 13 End of Exam **BLANK PAGE**

CARLINGFORD HS OVERTURE IN LEARNING

Year 12 Half Yearly HSC Examination

Mathematics Extension 1 2016

Section I – Multiple Choice Answer Sheet

Name			· · · · · · · · · · · · · · · · · · ·	•		
Allow about Select the all completely.				answers the quest	ion. Fill in the respo	onse oval
Sample:	2 + 4 =		(A) 2 A O	(B) 6 B ●	(C) 8 C O	(D) 9 D O
If you think answer.	you have m	nade a mis	stake, put a	a cross through the	incorrect answer an	d fill in the nev
			A	В 👿	c O	D 🔿
-	_				der to be the correct drawing an arrow as t	
Start here						
1.	A O	ВО	CO	DO		
2.	A 🔿	ВО	CO	DO		
3.	A O	ВО	CO	DO		
4.	A O	ВО	CO	DO		
5.	A O	ВО	CO	DO		
6.	A O	ВО	CO	DO		
7.	A O	ВО	CO	DO		
8.	A O	ВО	CO	DO		
9.	A O	ВО	cO	DO		
10.	A O	ВО	СО	DO		

Angle sum identities

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

$$\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi}$$

t formulae

If
$$t = \tan \frac{\theta}{2}$$
, then

$$\sin\theta = \frac{2t}{1+t^2}$$

$$\cos\theta = \frac{1 - t^2}{1 + t^2}$$

$$\tan\theta = \frac{2t}{1-t^2}$$

General solution of trigonometric equations

$$\sin \theta = a$$
, $\theta = n\pi + (-1)^n \sin^{-1} a$

$$\theta = n\pi + (-1)^n \sin^{-1}\theta$$

$$\cos\theta = a$$
,

$$\cos \theta = a$$
, $\theta = 2n\pi \pm \cos^{-1} a$

$$\tan \theta = a$$
,

$$\tan \theta = a$$
, $\theta = n\pi + \tan^{-1} a$

Division of an interval in a given ratio

$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$$

Parametric representation of a parabola

For
$$x^2 = 4ay$$
,

$$x = 2at$$
, $y = at^2$

At
$$(2at, at^2)$$
,

tangent:
$$y = tx - at^2$$

normal:
$$x + ty = at^3 + 2at$$

At
$$(x_1, y_1)$$
,

tangent:
$$xx_1 = 2a(y + y_1)$$

normal:
$$y - y_1 = -\frac{2a}{x_1}(x - x_1)$$

Chord of contact from
$$(x_0, y_0)$$
: $xx_0 = 2a(y + y_0)$

Acceleration

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

Simple harmonic motion

$$x = b + a\cos(nt + \alpha)$$

$$\ddot{x} = -n^2 \left(x - b \right)$$

Further integrals

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

Sum and product of roots of a cubic equation

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$

$$\alpha\beta\gamma = -\frac{d}{a}$$

Estimation of roots of a polynomial equation

Newton's method

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Factorisation

$$a^{2}-b^{2} = (a+b)(a-b)$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

Angle sum of a polygon

$$S = (n-2) \times 180^{\circ}$$

Equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Trigonometric ratios and identities

$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$
 $\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$
 $\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$
 $\cot \theta = \frac{\sin \theta}{\sin \theta}$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Exact ratios

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area of a triangle

$$Area = \frac{1}{2}ab\sin C$$

Distance between two points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Perpendicular distance of a point from a line

$$d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$$

Slope (gradient) of a line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-gradient form of the equation of a line

$$y - y_1 = m(x - x_1)$$

nth term of an arithmetic series

$$T_n = a + (n-1)d$$

Sum to n terms of an arithmetic series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} (a+l)$

nth term of a geometric series

$$T_n = ar^{n-1}$$

Sum to n terms of a geometric series

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 or $S_n = \frac{a(1 - r^n)}{1 - r}$

Limiting sum of a geometric series

$$S = \frac{a}{1 - r}$$

Compound interest

$$A_n = P\bigg(1 + \frac{r}{100}\bigg)^n$$

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x)\sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x) \sec^2 f(x)$

Solution of a quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a}$$
 $\alpha \beta = \frac{c}{a}$

$$\alpha\beta = \frac{c}{a}$$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$

$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C$$

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$

$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \Big[f(a) + f(b) \Big]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Angle measure

 $180^{\circ} = \pi \text{ radians}$

Length of an arc

$$l = r\theta$$

Area =
$$\frac{1}{2}r^2\theta$$

Extension 1 Half	Yearly Solutions	
2015		
Section 1: Multiple Chaice	b) $\ln \frac{b}{c} = 1.25 = \frac{5}{4}$ $e^{54} = \frac{b}{c}$	
1. A 2. D	C = e ⁻⁵ /4.	
3. × B	$I \cdot in = -\frac{5}{4}$	<u>-</u>
4. A 5. D	=-1.25.	
6. C 7. D	(Must have some) (Horking!	
8. B 9. A		
10. D.	c) $\int (\sqrt{x} + 2)^2 dx$	
Section U.	$= \int (x + 4\sqrt{x} + 4) dx$	
Question 11. a) $d/dx \left(\ln \frac{1+x}{1-x} \right)$	$= \chi^2 + \frac{8}{3}\chi^{3/2} + 4\chi + C.$	2
$= \frac{d}{dx} \left(\ln \left(1 + \chi \right)^{\nu_2} - \ln \left(1 - \chi \right)^{\nu_2} \right)$ $= \frac{d}{dx} \left(\frac{1}{2} \ln \left(1 + \chi \right) - \frac{1}{2} \ln \left(1 - \chi \right) \right)$	1 d) Step 1: Prove true for	
$= \frac{1}{2} \times \frac{1}{1+x} - \frac{1}{2} \times \frac{-1}{1-x}$	$h=1$ $3^2+7=16 \text{ which is}$	
$=\frac{1}{2}\left[\frac{1}{1+x}+\frac{1}{1-x}\right]$	divisible by 8.	1
$=\frac{1}{2}\left[\frac{1-7C+1+X}{1-X^2}\right]$	Step 2: Assume true	
$=\frac{1}{2}\left[\frac{2}{1-\chi^2}\right]$	$for n=k.$ $3^{2k} + 7 = 8P \text{ (where P)}$	
= 1-2	$3^{2k} = 8P - 7 \text{integer}.$	

Step 3: Prove true for		$\alpha + \beta + \gamma = \frac{6}{r} + 6 + 6r$	
h=R+1		= 21.	
		$1.6 + 6r + 6r^2 = 21r$	
$3^{2(k+1)} + 7 = 80$ (0 an		$6r^2 - 15r + 6 = 0$.	
$3^{2(K+1)} + 7 = 8Q (Q \text{ an integer})$		$2r^2 - 5r + 2 = 0$,
$3^{2k+2} + 7 = 80$		(2r-i)(r-2)=0	
3 ^{2k} × 3 ² + 7 = 80	ı	$\therefore r = \frac{1}{2} \text{ or } r = 2.$	1
$(8P-7) \times 9 + 7 = 72P-63+7$			
= 72P-56		roots are 6, 3 + 12.	1 .
= 8 (9P-7)	ı		
=8Q		f) i) A+ O x=O.	
(Q = 9P-7)		$y = p(0-2ap) + ap^2$	
		$= -2\alpha p^2 + \alpha p^2$	
.' . truc for n=k+1.		$=-ap^2$	
Since true for n=k+1,			
when true for n=k \$		Q (0, -ap2) (Must be)	<u> </u>
true for n=1, therefore		Hritten as	
true for n > 1.		co-ordinate)
e) $x^3 - 21x^2 + 126x - 216 = 0$.			
Let the root be		11) $SP^2 = (2ap)^2 + (ap^2 - a)^2$	
9, a, ar.		$= 4a^2p^2 + a^2p^4 - 2a^2p^2 + a^2$	
		$= 2a^2p^2 + a^2p^4 + a^2$	
$\alpha\beta X = \frac{9}{7} \times a \times ar$		$= a^{2} (2p^{2} + p^{4} + 1)$	
= a ³		$= a^2 (p^2 + 1)^2$	
$\therefore a^3 = -d/a$		$2.5P = a(p^2+1)$	
= 216		50=50+00	
· . a = 6 .	1	$=a+qp^2$	
		$= \alpha(1+p^2).$	
		SP = SQ	
		. SPQ is an isoscelestriang	c ,
		-'. LSPQ = LSQP (L's opposit	1 1
		= 5000	1.

Question 12.		<i>c</i>)	
		i) D: all real x	
a).i) $y=e^{x^2}$ $lny = lne^{x^2}$ $lny = x^2 lne$		R: y≥0.	1
$lny = lnc^{x^2}$			
$lny = \chi^2 lne$		$11) y = x^2 e^x.$	
$\frac{1}{1000} \cdot 1000 = 1000$		$y' = x^2 e^x + 2xe^x$	
		$y'' = x^2 e^x + 2xe^x + 2xe^x + 2e^x$	
$V = \pi \int_{1}^{1} x^{2} dy$		$= \chi^2 e^{x} + 4xe^{x} + 2e^{x}.$	
=π \ 10gey dy	١.	At $y'=0$ stat. points.	
		$\therefore \ \mathbb{G}^{\mathcal{X}}\left(\mathbf{X}^2 + 2\mathbf{X}\right) = 0$	
11) 4 1 4 7		e*>0	
Iny 0 In4 In7	1	$.' \cdot x^2 + 2x = 0$	
		$\chi(x+2)=0$	
$V = \pi \times \frac{3}{2} \left[0 + \ln 7 + 2 \ln 4 \right]$	1	$\therefore x=0 \text{ or } x=2$	
= 22·235 u ³ .	1.	$y = 0$ or $y = 4e^{-2}$.	
		A + (0,0) y'' = 2	
b) $y = c^{2x-1}$		y" >0	
$y' = 2e^{2x-1}$.' Minimum turning point.	
At $x = 1$ $y' = 2e^{2-1} = 2e$			
y=e		At $(-2, 4e^{-2})$ $y'' = \bar{e}^2(4 - 8 \div 2)$ = $-2e^{-2}$	
m of normal is - 1/2e	١.	y" < 0	
		. Maximum turning point.	<u> </u>
$y-c=-\frac{1}{2}e(x-1)$	ì		
$y = -\frac{1}{2}ex - 1 + e$			
O	1		
$\infty + 2ey - 2e^2 - 1 = 0$.	· · · · · · · · · · · · · · · · · · ·		
<u> </u>			

<u>iii)</u>			
$\ln 12 + (\ln 12 + \ln 2) + (\ln 12 + 2 \ln 2)$		(k+1) > 0 as $5(k) > 0(k+1) > 0$ as $(k) > 0$	1
+		42k-220 as $k25$.	-
$a = \ln 12 d = \ln 2$			
n [6]		Since true for n= k+1 if true	
$S_{10} = \frac{n}{2} \left[2a + (n-1)d \right]$		for n=k & n=6. His	
			1
$=\frac{10}{2} \left[2 \ln 12 + 9 \times \ln 2 \right]$		integer.	
$=5[\ln 144 + \ln 2^{9}]$			
=5 In 73728.	1.		
C). Step 1: Prove true for			
n=6			
n=6 36>3×6+11			···
36 > 29			
true for n=6.	١.		
Step 2: Assume true for			
n=k.			
$5(k): k^2 > 3k + 11$			
$1.k^2 - 3k - 11 > 0$			
Step 3: Prove true for			
n = k + 1.			
$\frac{5(k+1)}{2}$			
$\frac{(k+1)^2-3(k+1)-11>0}{(k+1)^2-3(k+1)-11>0}$			·
$(k^2+0k+1-3k-3-11>0$	 		
$\frac{(k^2-3k-11)+2k+1-3>0}{(k^2-3k-11)+2k+1-3>0}$			
<u>5(k)+2k-2>0</u>			
	<u> </u>		