



# CR 82.018

NAVAL CIVIL ENGINEERING LABORATORY Port Hueneme, California

Sponsored by NAVAL FACILITIES ENGINEERING COMMAND

SEADYN: PROGRAMMER'S REFERENCE MANUAL

**April 1982** 

An Investigation Conducted by Dr. R. L. Webster Consulting Engineer Brigham City, Utah

N62474-81-C-9391



Approved for public release; distribution unlimited

MIC FILE COPY

|           |                                             | Symbol         | -      | .E .9               | Ė              | ני אַ      | Ē            |      | 7,5                       | <b>4</b> 5         | 3.5               |                                   |               | 70          | Đ              | æ                 | ;    | f 0z             | <b>K</b> .  | <b>⊌</b> i     | E C            | £ .            | 2            |                     | <b>LL</b><br>   |                                    |                    | 17                | 8                   | 2 8            | _ <u>8</u> °                                                                                                                                                                     |
|-----------|---------------------------------------------|----------------|--------|---------------------|----------------|------------|--------------|------|---------------------------|--------------------|-------------------|-----------------------------------|---------------|-------------|----------------|-------------------|------|------------------|-------------|----------------|----------------|----------------|--------------|---------------------|-----------------|------------------------------------|--------------------|-------------------|---------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | c Messures                                  | To Find        |        | inches              |                | vards      | ajie         |      | sedani aretica            | souare vards       | square miles      | acres                             |               | OUNCES      | ponude         | short tons        |      | fluid ounces     | SUS.        | due Ts         | Sucilians      | Cubic reet     |              |                     | Fahrenheit      | tamperature                        |                    |                   |                     | 6              | 8                                                                                                                                                                                |
|           | rsions from Metri                           | Multiply by    | LENGTH | \$0.0<br>\$0.0      | , e            | <br>       | 9.0          | AREA | 91.0                      | 1.2                | ₹.0               | 2.5                               | MASS (weight) | 0.036       | 2.2            | 1.1               | 1000 | 0.03             | 2.1         | 90.0           | 64.<br>20. 5   | g <del>.</del> | <u>?</u>     | TEMPERATURE (exact) | 9/5 (then       | sdd 32)                            |                    |                   |                     |                | -8                                                                                                                                                                               |
|           | Approximate Conversions from Metric Meaures | When You Know  |        | millimeters         | CHILIMATERIS   | meters     | kilometers   |      | Switch Confidence         | square meters      | square kilometers | hectares (10,000 m <sup>2</sup> ) | ≨             | grams       | kilograms      | tonnes (1,000 kg) |      | milliliters      | liters      | liters         | liters         | cubic meters   | Quoic meters | TEMPE               | Celsius         | temperature                        |                    |                   |                     | # 4            |                                                                                                                                                                                  |
| 53        | 122 '                                       | Symbol Symbol  | . 1    | E I                 | Ē :            | e e        | £ .          |      | , <sub>2</sub>            | ξ E                | z km²             | 产                                 | iei           | о.<br>1 2   | 5<br>8<br>71   |                   | 10   | Ē                | ·           | <b></b>        | - M            | E i            | E            |                     | ပ္ပ<br>ရ        | IG                                 | 16                 | . ,               | E                   | 12             | ,,,,                                                                                                                                                                             |
| ain un    |                                             |                |        |                     | 4              |            | 1            |      |                           |                    | illa              |                                   |               |             |                |                   |      |                  |             |                |                |                |              |                     |                 |                                    |                    | -                 |                     |                | cu<br> <br>                                                                                                                                                                      |
| " "<br> - | ririr'i                                     | ' ' ' <br> 8   | 1" "   | rju                 | ' '            | 'l' '      | <b>'</b> ' ' | 1'}' | '' '                      | 1"                 | ' '               | 11                                |               | <b>' </b> ' | "              | ין ין ין          | '1   | ' ' <sup>1</sup> |             | ן'נ'           | 1"             | 'l'            | ļ'¦'         | <u> </u>            | , <b>į</b> , į, | '!'                                | " "                | " "               | "!"<br>             | <b>!</b> ' '!  |                                                                                                                                                                                  |
|           |                                             |                |        |                     | •              | •          |              |      | 10                        | 3                  |                   |                                   | 15            |             |                |                   | 14   |                  |             |                | 1              | .3             |              |                     |                 | 12                                 |                    |                   | 1                   | 1              | inches                                                                                                                                                                           |
|           |                                             | Symbol         |        | Ę                   | 5              | ε <u>!</u> | G C          | •    | ZE.                       | E 7                | 24.3              | <b>1</b> 2                        | ю             | •           | , Ç            | _                 | f4   |                  | Ē           | Ē              | Ë              | -              | _            | _                   |                 | 12<br>E E                          |                    | ပ္စ               | 1.                  | '<br>          | 96                                                                                                                                                                               |
|           | Metric Measures                             | To Find Symbol |        |                     | cantimeters cm |            | Kilometers   | •    | ters                      |                    | square meters     |                                   | О             | Š           | SUL SUL        | tonnes            | 14   |                  | milliliters |                | miffiliters    | liters 1       | liters       | liters              | liters          | E E                                | KBC()              | Celsius           | temperature         |                | 96                                                                                                                                                                               |
|           | Conversions to Metric Measures              |                | LENGTH | centimeters         | cantimeters    | meters     | Kilometers   | AREA | square centimeters        | square meters      |                   | hecares                           | MASS (weight) | -           | 45 kilograms   | 0.9 tonnes (      | !4   | VOLUME           |             |                |                | _              | _            |                     | liters          | E E                                | APERATURE (exact)  | /9 (after Celsius | racting temperature | ( <del>)</del> | 96                                                                                                                                                                               |
|           | Approximate Conversions to Metric Measures  | To Find        | LENGTH | es *2.5 centimeters | cantimeters    | 0.9 meters | Kilometers   |      | es 6.5 square centimeters | 0.09 square meters | 2.6 square meters | hecares                           | MASS (weight) | -           | 0.45 kilograms | 0.9<br>(4)        |      | VOLUME<br>VOLUME |             | 15 milliliters | 30 milliliters | 0.24           | 0.47         | 0.95                | liters          | S 0.76 cubic meters m <sup>3</sup> | TEMPERATURE (mact) | /9 (after Celsius | racting temperature |                | *1 in a 2.54 (axactly). For other exact conversions and more detailed tables, see NBS 33 Mac. Publ. 286, Units of Weights and Measures, Price \$2.25, SD Catalog No. C13.10.286. |

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Men Date Intered) READ INSTRUCTIONS
BEFORE COMPLETING FORM
RECIPIENT'S CATALOG NUMBER REPORT DOCUMENTATION PAGE CR 82.018 TYPE OF REPORT & PERIOD COVERED FINA! 4 TITLE (and Subtitle) SEADYN: Programmer's Reference Manual Oct 1977 - Sep 1981 6 PERFORMING ORG. REPORT NUMBER S CONTRACT OR GRANT NUMBER(A) Dr. R. L. Webster N62474-81-C-9391 10 PROGRAM ELEMENT PROJECT, YASK AREA & WORK UNIT NUMBERS Consulting Engineer YF59.556.091.01.402 Brigham City, Utah 84302 April 1982 14 MONITORING AGENCY NAME & ADDRESSET different from Controlling Office) IS SECURITY CLASS (of this report) Unclassified 154 DECLASSIFICATION DOWNGRADING 16 DISTRIBUTION STATEMENT (of this Reports Approved for public release; distribution unlimited 12 DISTRIBUTION STATEMENT fol the abstract entered in Bluck 20, of different from Report) 18 SUPPLEMENTARY NOTES 9 KEY WORDS (Continue on reverse side of recreasers and identify by block number Cable dynamics; SEADYN computer model; SEADYN software 10 ASISTRACT - Continue on reverse side of elecation and identify by block number The internal workings of the SEADYN cable, truss, and mooring program are detailed. Descriptions are given of the overall program structure and logic. Storage features, such as COMMON, data files, and variable dimensioning are discussed. Descriptions are given for each of the subroutines and the major variables used. The information provided is intended to

DD FORM 1473 EDITION OF I NOVES IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

augment the general description of the program provided in the User's Manual and Mathematical Models and provide a programmer with assistance in understanding the internal workings of the SEADYII programming. Instructions for converting the program to various machines and for modifying the program are also provided.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

这种是一种,这种是一种,这种是一种,这种是一种,这种是一种,这种是一种,这种是一种,这种是一种,这种是一种,也是一种,也是一种,也是一种,也是一种,也是一种,也可以是一种,也可以是一种,也可以是一种,

## TABLE OF CONTENTS

|      |                                                           | Page |
|------|-----------------------------------------------------------|------|
| 1.0  | INTRODUCTION                                              | 1    |
| 2.0  | PROGRAM STRUCTURE                                         | 2    |
| 3.0  | DESCRIPTIONS OF COMMON STORAGE                            | 5    |
| 4.0  | STORAGE REQUIREMENTS AND VARIABLE DIMENSION               | 14   |
| 5.0  | DATA FILES AND AUXILIARY STORAGE                          | 22   |
| 6.0  | RESTART CAPABILITIES                                      | 26   |
| 7.0  | DESCRIPTIONS OF THE SUBROUTINES                           | 27   |
| 8.0  | DESCRIPTIONS OF MAJOR VARIABLES                           | 46   |
| 9.0  | MACRO-FLOW CHARTS OF THE SUBANALYSES AND SOLUTION OPTIONS | 79   |
| 10.0 | REFERENCES                                                | 88   |



#### 1.0 INTRODUCTION

A PRANTING OF THE PROPERTY OF

The SEADYN computer program is a multifunctional tool for analyzing the structural response of cable, truss, and mooring systems. The purpose of this manual is to document some of the major aspects of the program structure. Program documentation also includes a theoretical manual (Ref 1) and a user's manual (Ref 2). The information contained in this manual is intended for a computer programmer and the more sophisticated user who may find it necessary to get involved with the internal workings of the program.

The SEADYN program traces its pedigree from some early work done by Leonard (Ref 3) through a study project carried out by the Bechtel Corporation for the Electronic Systems Division of the General Electric Company (GE). The end product of that work was a program called NLIN (Ref 4). This author was technical advisor on that project. program began where NLIN left off as part of the author's doctoral project in 1974. It has been under various levels of development since then with sponsorship coming from GE, the Chesapeake Division of the Naval Facilities Engineering Command (CHESDIV), and finally the Naval Civil Engineering Laboratory (NCEL). The support of CHESDIV led to the implementation of the ship mooring capabilities for static and frequency domain solutions in 1976. NCEL support has provided for the pay-out/reel-in capability, the drag amplification calculations for strumming, the viscous relaxation static solution, the bottom limited catenary element, various revisions and improvements in the solution algorithms, and a complete restructuring of the program including the new free-field input format.

A plotting post-processor program which is based on the restart file structure described in this document is also available [5].

#### 2.0 PROGRAM STRUCTURE

THE SEADYN program is composed of a simple main program, which establishes the size of the working storage in COMMON/ACOM/ and numerous subroutines. The heart of the program is found in the SEADYN and MANIPR subroutines. SEADYN is called by the main program and manages the setup of storage partitioning, reading, and deciphering of the free-field input and the initial access to the restart files. Control is then passed to the MANIPR subroutine to manage the actual problem solution through calls to the subanalysis routines.

The programming effort has attempted to maintain modularity in the structure. Major subanalyses are handled in separate groups of subroutines that are called in response to input requests. The overall analysis and the individual solution options have been written to be nearly independent of the type of element used to generate the equations. For example, the element stiffnesses and internal force components are generated from calls to a single controlling routine regardless of the type of analysis being performed. This modularity should prove to be useful if the addition of new subanalyses, solution options, or element types are contemplated.

The program is written entirely in FORTRAN IV (CDC-Extended FORTRAN). Initial developments were on a GE-635 computer with compatibility with a CDC-6600 computer maintained. Since 1977, development has been on a CDC-7600. Some effort has been directed at restructuring to facilitate conversion to ANSI standard FORTRAN-77 and to other machines. Conversions of interim versions have been accomplished on the VAX11/780, PRIME, and DATA GENERAL machines. The major items encountered in conversion include:

- 1. The free-field reader -- uses ENCODE/DECODE uses R-FORMAT character manipulations
- 2. The CDC-program statement in the main program
- 3. End of file checks using IF(EOF) a,b
- 4. The use of character strings in titles, date and time (including Hollerith word lengths)
- 5. Asterisk (\*) comment cards
- 6. Asterisk (\*) and quote (") format delimitors
- 7. The need for double precision on 32-bit word machines
- 8. Seven character subroutine name: RESTART

The global logic structure is represented in Figure 2.1. The relationships of the major subroutines are outlined in Figure 2.2.



Figure 2.1. Macro flow chart for SEADYN.



Figure 2.2 Outline of major subroutine relationships.

## 3.0 DESCRIPTIONS OF COMMON STORAGE

Common storage can be segregated into four categories: working area for variable dimension data, fixed length storage for restart data, scratch storage for communication between subroutines, and special data tables. Each of these are described below.

# 3.1 Working Storage for Variable Dimension Data

COMMON/ACOM/ A(XXXXXX)

The length of the A array is specified in the MAIN program. Partitioning of A into the data arrays needed in the solution is done by the SEADYN and MANIPR subroutines. SEADYN reads the problem description data or restart file to determine the size of the data arrays. SEADYN then passes the first position of each array to MANIPR through its calling sequence. With only two exceptions, /ACOM/ is referred to only indirectly through the subroutine calling sequences. The two exceptions are the MODES and FREQ subanalyses which place the contents of /ACOM/ on a scratch file using RESTART and then use the storage for other purposes./ACOM/ is restored through RESTART upon exit from these subanalyses. The partitioning of /ACOM/ is described in Table 3.1.

## 3.2 Fixed Length Storage for Restart Data

In addition to the element and node data contained in /ACOM/, the essential problem data are contained in a set of common blocks with fixed dimensions. These are arranged in pairs which contain floating point and fixed point data in segregated forms. A separate common block contains all of the logical variables. These blocks are written and read for restart purposes. The segregation is made to facilitate the conversion to machines which use byte-oriented storage with type-dependent word structures.

The use of the common blocks is summarized below. The actual structure of the common blocks is given in Table 3.2.

| /BUOYS/, /IBUOYS/  | Body tables, limit set data, body and limit location data, surface buoy data and related control data |
|--------------------|-------------------------------------------------------------------------------------------------------|
| /CABLE/, /ICABLE/  | Line element data and material tables, fluid data                                                     |
| /CONTRL/, /ICNTRL/ | Basic control information for the solution options                                                    |
| /DSPCON/, /IDSPCN/ | Static imposed displacement data and norm data for static iterative solutions                         |
| /PAYOUT/, /IPAYOT/ | Pay-out/reel-in data                                                                                  |
| /SHIPS/, /ISHIPS/  | Data for ships and static ship loads                                                                  |
| /STRUM/, /ISTRUM/  | Strum string data                                                                                     |
| /TIMED/, /ITIMED/  | Transient response data                                                                               |
| /LOGIC/            | Logical variables used for solution control                                                           |

Table 3.1. /ACOM/ Useage in SEADYN

| Base Definition<br>Through MANIPR |      |            |                  | Secondary Use<br>in FREQ SAO | Secondary Use<br>in MODE SAO |                          |  |
|-----------------------------------|------|------------|------------------|------------------------------|------------------------------|--------------------------|--|
| Variable<br>Name                  | NC,  | Size       | Variable<br>Name | Size                         | Variable<br>Name             | Size                     |  |
| A<br>US                           | 1    | NE         |                  |                              | GMM<br>GKK                   | NF3                      |  |
| DSO                               | 2 3  |            |                  |                              | TGK                          | h(NE3)(NE3+1)<br>NE3,NE3 |  |
| DSR                               | 4    |            |                  |                              | EIGEN                        | NF3,NF3                  |  |
| ES                                | 5    |            |                  |                              | LIVEN                        | แนว                      |  |
| ET                                | 6    |            |                  |                              |                              |                          |  |
| GHA                               | 7    | İ          |                  |                              |                              |                          |  |
| IT                                | 8    | 2,NE       |                  |                              |                              |                          |  |
| DOMP                              | 9    | NE NE      |                  | :<br>}                       |                              |                          |  |
| MAT                               | 10   | Nr.        |                  |                              | ĺ                            |                          |  |
| SIG                               | 111  |            |                  |                              | !                            |                          |  |
| SIGR                              | 12   |            |                  |                              | i                            |                          |  |
| STOR                              | 13   |            |                  |                              | T<br>È                       |                          |  |
| TH                                | 14   | 3,NE       |                  |                              | 1                            |                          |  |
| THR                               | 15   | 3,NE       | CTEN             | COMPLEX(NE)                  | :                            | į                        |  |
| TRNSTR                            | 10   | 3,3,NE     | CIDA             | Cott tex(ne)                 | ì                            |                          |  |
| MEDIUM                            | NCMP | NE NE      |                  |                              | !                            |                          |  |
| DRGAMP                            | NSTM | NE.        |                  | i                            |                              | İ                        |  |
| XC                                | 17   | NN3        |                  |                              | !                            |                          |  |
| NO<br>NO                          | 1 18 | i ma       |                  |                              |                              |                          |  |
| KODFIX                            | 19   | j          | I                |                              | !                            |                          |  |
| DU                                | 1 19 |            | F7               | COMPLEX(NF3)                 | i                            |                          |  |
| F                                 | 1 21 | i i        | ;                | COURTER (NC.2)               | 1                            | į                        |  |
| rc                                | 22   |            | บz               | COMPLEX(NF3)                 |                              |                          |  |
| čP                                | 23   | 3,NN3      | 02.              | Comming                      |                              |                          |  |
| F 1                               | 24   | NN 3       | 2.               | COMPLEX(NF3, 1BEND)          | ]                            |                          |  |
| i i<br>i 2                        | 1 25 | (14)       | <i>"</i>         | (CON BEACUE 3, 10EMP)        |                              | 1                        |  |
| GM                                | 26   | }          | 1                |                              | i                            |                          |  |
| E.                                | 27   | 1          | i<br>I           | 1                            | 1                            | 1                        |  |
| ÜD                                | 1 28 |            | i                |                              |                              |                          |  |
| UDD                               | 29   | · I        |                  |                              | !                            |                          |  |
| 0P                                | 1 30 | i          | !                |                              | 1                            |                          |  |
| OD6                               | 1 30 | i          | Į.               | 1                            | İ                            |                          |  |
| LDDP                              | 32   | •          | 1                |                              | i                            |                          |  |
| 98                                | 3.3  | 1          | <b>!</b>         | i                            |                              |                          |  |
| UDDS                              | 34   |            | 1                | 1                            | 1                            | 1                        |  |
| VF                                | 1.35 |            | 1<br>1           | [                            | 1                            | 1                        |  |
| VW.                               | 36   |            | ]                |                              | 1                            | ]                        |  |
| GK                                | 37   | NF3, IBEND | GK               | NE3, IBEND                   | [                            | 1                        |  |
|                                   |      | 3,         | CGH              | NF3, IBEND moved into Z      |                              |                          |  |

Notes: NE

NN3 = 3 times no. of nodes. NF3 = 3 times (no. of nodes ~ no. of slave nodes). 1BEND = half bandwidth.

= refers to the position parameters computed by SEADYN.

## Table 3.2. Fixed Length Restart Common Blocks

```
COMMON/BUOYS/
1 AABUOY(100), ADM(50), BAMC(50), BLEN(50), BMOM(50), BOMAS(50),
2 BOVOL(50), BSCD(50), BUOKP(3,50), BWND(50), CBUO, CORDLM(50),
3 CYLRMS(50),DBU(50),FBUSR(50),RELFAC(50),SBAMP(50),SGNDLD,
4 TOLIM(50), UBS(50), VIB(3)
 COMMON/IBUOYS/ IAABU(10).
1 IBS(50), IBU(50), IDRB(50), IMPBOD, IMPNOD, IOPT, JANCR(50),
2 JSLP(2,50), KNSTRN, KONECT(10,50), LBODN(50), LIMNOD(50),
3 LIMSET(50), MBLN(50), MEDMB(50), MORBUO, MXBLOC, MXBODY,
4 MXLIMS, MXLLOC, NBLOC, NBUTAB, NCYLB, NLIMS, NLLOC, NMOTN (50)
 COMMON/CABLE/
1 AACAB(100), CABMAS(10), CAMC(10), CURMUL, DIAM(10), E(20, 10),
2 FDEPTH(5), FGAM(5), FLPAR(10,10), FVISC(5), G3(10), STR(20,10),
3 TENULT(10),TT(20,10),TTD(10),TTK(10)
 COMMON/ICABLE/ IAACA(10),
1 IDAMPR, IDRG(10), IFLCOD(10), MATDMP(10), MATT, ME(10), MED(10),
2 MXFLOW, NFLUI, NFLVRY
 COMMON/CONTRL/
. AACON(100), ACCFAC, DELFAC, DERAD, DELTMP, DERR, DMU,
1 EXTRAP, FDIVY, FINC, FLNVY, FRCVY, GRAV, G1, G2, OVRSHT,
2 PARMT, PI, PINC, PSTEP, RATD, RERR, SRCHFC, SSTART
 COMMON/ICNTRL/ IAACL(10),
3 IBEND, IBEND1, IBEND2, IBG, IDIR, IFCNT, IFXFL, IGK, IKNSTN, INC,
4 INDRAG, INVY, IPR, ISTART, IUPDT, JDLD, JDYN, JMPDT, JOVR,
5 KONVRT, KOUNT, KUP, LMITER, MOSTAT, MVB, MVBINC, NBASE, NCONC,
6 NE, NFN, NF3, NFLUID, NFIX, NN, NN3, NPRST, NRUP, NSLAVE,
7 NSTUP, NTYPE, NUMSET, NUP, NXTYPE, MODEI1, MODEI2
 COMMON/DSPCON/
1 AADSP(100), DISPC(30), DISPP(30), HIRSDL, RNORM, RNORMP, RNRMPP,
2 VNORMP, VNPP, VNPPP
COMMON/IDSPCN/ IAADS(10),
1 IDIS(30,3), IDWN, TNUP, ITUP, JSTEPR, LMKEEP, NDISP, NDROP,
2 NFKEEP(30), NODWN, NSLOP
COMMON/PAYOUT/
1 AAPAY(100), AMAXL(5), CURLEN(5), DELT, DLREF(5), DPIMF(5),
2 \text{ ESP}(2,5), PAYV(5), PTMF(5), TFSAV(5), UMVB(15,3), UMVBP(15,3)
COMMON/IPAYOT/ IAAPO(10),
1 JOP(5), JPELT(5), MITNOT, MULMAT(5), MULTIM, NELPOI(5), NGROW(5),
2 NNPOI(5), NOP, NPOVRY(5), NSHRNK(5)
```

#### Table 3.2. (Continued)

#### COMMON/SHIPS/

- 1 AASHP(100), ACCCUR, ACCWND, APROP(3), BLOCK(3), CAD, CPROP(3),
- 2 CR(3),CS(3),CURCOE(20,3,5),CURHED(20),CURNT,CURVEL(5),DRAD,
- 3 FACH(3), FSFRC(3), FSFRW(3), FSLEN(3), FSVEL(3), GAIR, HEAD(3),
- 4 HEDEND, HEDINX, HEDINC, HEDNOW, PROPF (3), RATL (3), SAE (3), SAS (3),
- 5 SBEAM(3), SDRFT(3), SDSPV(3), SFACW(3,3), SHIPK(4,3), SHPKP(3,3),
- 6 SHTRN(3,3,3), SLT(3), SLWL(3), SURFCE, TSAPL(3), VAIR, WAD, WDEPTH(3),
- 7 WIND, WNDCOE(20,3,5), WNDHED(20), WNDVEL(5)

## COMMON/ISHIPS/ IAASHP(10),

- 1 ICR, IFREQ, ISHIP(3), ISHTAP, ISURLD, IUP, KODEC(2), KODEW(2),
- 2 LSHP(3), MXSHIP, SCRNT, NSFILE, NSHIPS, NTHETC, NTHETW, NUMHED, NWIND

#### COMMON/STRUM/

- 1 AASTM(100,CEPS,CRST(30),GKS(3,3),QST(20),RVELN,RVELNP,
- 2 STLEN(20)

## COMMON/ISTRUM/ IAASTM(10),

1 ISTRNG(30), ISTRUP, KSTRNG(20,30), MXSELT, MXSTRG, NSTRNG, NSTRUP

#### COMMON/TIMED/

- 1 AATIM(100), ALPNEW, BETNEW, DALPHA, DBETA, DMAXAB, DMAXP,
- 2 DT, DTH, DTL, DTLL, DTMAX, DTRSRT, DTU, ERR, FTF(3), FTI(15), GAMNEW,
- 3 T, TMAX, TMFRF(3), TMFRM(15), TPARN(20, 20), TRSRT, TZ, UB(15)

#### COMMON/ITIMED/ IAATIM(10),

- 1 IALTR, IB(5), JLF(3), IMTMF(15), IMX, ISIGN1, ISIGN2, ITFCOD(20),
- 2 ITOP, JB(15), KNTRST, MXTFUN, NIXPRN

## 3.3 Scratch Storage Common Blocks

Temporary data or data not required by restart are handled in the following common blocks. Table 3.3 lists the contents.

/CDCAL/ Temporary data for strum string calculations /CHKDAT/ Component check data for element fluid loads /FRQDAT/ Frequency domain interface data /HEDCHR/ Titles and labels for page headings /HEDDAT/ Control data for page headings and working storage for free-field input processing /RETAPE/ Restart file data /SHPLBL/ Contains the ship load title block and labels for the ship load data set in current use /SHPTAP/ Contains the ship dimension data for the ship load data set in current use

## 3.4 Common Blocks for Data Tables

Special purpose data tables are contained in the following common blocks. Table 3.4 lists the contents.

| /COMPNT/ | Component inventory tables               |
|----------|------------------------------------------|
| /SIZE/   | List of common sizes                     |
| /TAPES/  | List of file names                       |
| /TYPES/  | List of numeric codes for input keywords |
| /IFLAG/  | Array of input keywords                  |

The mooring component inventories are contained in arrays which are generated by data statements in the COMPDT Subroutine. An explanation of the entries in the component inventory common block, /COMPNT/, is given below.

| VARIABLE | DESCRIPTION                                                                                                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| АТУРЕ    | Label for each of 6 anchor types. Each label is three 6-character Hollerith words.                                                                                                                |
| ANCTAB   | Storage for anchor data for up to six anchor types (third dimension). The array allows up to 16 anchors of each type, listed in order of increasing weight. Five items are given for each anchor. |

|        | Word Contents                                                                                                                                                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 1 Anchor weight 2-4 Hollerith labels for federal stock number 5 Holding power                                                                                                                                                                      |
|        | The holding power is calculated from the weight and the factors given in HLDFAC.                                                                                                                                                                   |
| NANCR  | An array listing the number of anchors of each type in the inventory.                                                                                                                                                                              |
| втуре  | Label for each of two buoy types. Each label is three 6-character Hollerith words.                                                                                                                                                                 |
| BUOTAB | Storage for buoy data for up to two buoy types. The array allows up to six buoys of each type, listed in order of increasing buoyancy. Seven items are given for each buoy:                                                                        |
|        | Word Contents                                                                                                                                                                                                                                      |
|        | Outside diameter Height Weight                                                                                                                                                                                                                     |
|        | 4 Nominal buoyancy 5 Maximum buoyancy                                                                                                                                                                                                              |
|        | 6-7 Ho': rith label for federal stock number                                                                                                                                                                                                       |
| NBUOY  | An array list to the number of buoys of each type in the inventor                                                                                                                                                                                  |
| HTYFE  | Label for the four hawser types. Each label is three 6-c arrange of lerith words.                                                                                                                                                                  |
| HAWTAB | Storac er data for up to four haswer types.  The strain of up to 23 sizes for each type. The two controls of for each size are the tensile strength and the weight per 100 units of length.                                                        |
| HAWS1Z | A list of the haswer sizes given in increasing order. It is assumed that all four hawser types have the same list of sizes. If no entry is available for a given size, then set the strength to zero and the weight to some small, nonzero number. |
| NHAWS  | The number of howser sizes for each howser type. (Set to 23 for each hawser type.)                                                                                                                                                                 |
| CHAIN  | Storage array for chain data. Presumes onl, one chain type (stud-link chain). The array contains 31 entries for size, strength, and reight per unit length.                                                                                        |
| NCHN   | The number of chain res (31).                                                                                                                                                                                                                      |
| HLDFAC | A list of the holding power factors for the six anchor types. This is the number which multiplies the anchor weight to get the holding power in firm sand.                                                                                         |

The component data presently listed in the inventories assume weights, buoyancies, and strengths are in units of pounds. Lengths and buoy dimensions are in feet. Hawser and chain sizes are in inches.

It would be possible to alter the contents of the inventories by rewriting the COMPDT subroutine. The subroutine is called once each time a component check or design selection is made. It is presently set up to avoid re-calculating entries after the first call. The program uses the items in the arrays to search for the appropriate entries. The appropriate values are then selected, scaled without altering the arrays, and used. Minor changes could be made without changing the calling program. More extensive changes or generalizations may require some modifications (not major) in the calling program.

A listing of the inventories is presented in Appendix D of the User's Manual.

を含まれた。 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、 ・ では、

---

## Table 3.3. Scratch Storage Common Blocks

COMMON/CDCAL/ AMAX,OMS,OMG,RTIN,YSAVE,IST

COMMON/CHKDAT/ NELCK, FELT(3,2), INVFLG

COMMON/FRQDAT/ SPECA, SPECB, DOMG, OMGMN, OMGMN, AMPMN, FRCFAC, FACLEN,

- 1 TIMFAC, IBFG, IUNRES, IDRITR, ICONMS, ICMCHF, IFRQUP, IROLIT
- 2 , NFILEF, NOB, NOH, NOK, NRV, MNOB, MNOH, MNOK, MNRV, ISHPFL, ITCONF, NSOLN,
- B ELL, TMAS, BAM(30), B44S(8), DA(6,6), DB(6,6), DC(6,6), GMU(6,6),
- 4 HDG1(30), RANG(8), WAVEL(30), OMG, NFREQS, NEWCON, NEWRED, VDUM(3),
- 5 DRFTFR(3), TEMP(6,6), GHED, NSRDC, OM2, WVLN, WVAMP, WVSLP, NS3

COMMON/HEDCHR/ IDAY, ITIME, HED(20)

COMMON/HEDDAT/ IPAGE, NLINES, MXLINE, NWORDS, WORDS (100), NHED, NOLINE

COMMON/RETAPE/IRST, NTAPE, NFLILE

COMMON/SHPTAP/ SCALE, TDEPTH, TBLOCK, TSLT, TSAE, TSAS, TSWL, TSB, TSK, 1 TSDSP, TSAP

COMMON/SHPLBL/ SHPCAP(12), WLBL, CLBL, LLBL, VLBL

## Table 3.4. Common Blocks for Data Tables

COMMON/COMPNT/ ATYPE(3,6), ANCTAB(5,16,6), NANCR(6), BTYPE(3,2), BUOTAB(7,6,2), NBUOY(2), HTYPE(3,4), HAWTAB(2,23,4), HAWSIZ(23),

2 NHAWS(4), CHAIN(31,3), NCHN, HLDFAC(6)

COMMON/TAPES/ NIN, NOUT, NTAPE1, NTAPE2., NTAPE9, NTPCHK

COMMON/SIZE/ NINA, NINB, NINRL, NINDSP, NINPO, NINSHP, NINSTM, NINT, 1 NINC, NCOM, IFILE (4), NPRECZ, NINBI, NINCI, NINCLI, NINDSI,

2 NINPOI, NINSHI, NINSTI, NINTMI

## COMMON/TYPES/

- 1 DEAD, ALIVE, DYNAM, TSSS, AMODE, FREQ, CHEK, PLOT, ANEW, FINIS,
- 2 PROB, REST, BLOC, BODY, ELEM, FLOW, FLUI, AINVE, ALIMI, ALINE,
- 3 ALLOC, AMATE, ANODE, ASHIP, ASTRUM, TENS, TFUN, CURR, FIX, FREE,
- 4 AIMPA, AINIT, IKEEP, ALOAD, ALVAR, AMOVE, AMSOL, OUTP, PAYO, SAVE,
- 5 SBUO, SOLU, ASTEP, SURF, ATIME, AWIND, FSOL, SPEC, EXTE, RESU,
- 6 AHEAD, RAND, REGU, DONE, ANCH, ABUOY, ACONF

COMMON/IFLAG/ IFLAGS (60)

## 4.0 STORAGE REQUIREMENTS AND VARIABLE DIMENSION

The amount of computer storage required to successfully execute an analysis case can vary with the number of nodes and elements as well as with the subanalysis options selected. Direct restrictions on the number of nodes and elements are avoided by the use of the implied dimensioning (partitioning) of COMMON/ACOM/. Since the present version of SEADYN uses an in-core solver for both the stiffness equations and the eigenvalue problem, the maximum problem size is restricted by the amount of storage available. The working space for these solutions is the /ACOM/ region. The stiffness equation solution uses the portion of /ACOM/ left after the node and element data. The eigenvalue solution copies /ACOM/ to a scratch file and uses the full length of /ACOM/ (see Section 3.1 and Table 3.1).

The size of /ACOM/ is specified in the main program, which is simply a starter deck to assign a length to /ACOM/ and call SEADYN. Besides the CDC PROGRAM statement, the main program contains:

COMMON/ACOM/ A(xxxxx)
NCOM=XXXXX
CALL SEADYN (NCOM)
STOP
END

The minimum required value for NCOM depends on the problem size, and the subanalysis options selected. The amount of data needed to store the element and node data is computed by:

NBASE=31\*NE + 66\*NN

The global stiffness matrix (GK) begins its storage at NBASE+1. The stiffness matrix storage format is by rows, starting at the diagonal element and going to the half-bandwidth\* (IBEND). Thus, any solution which uses the global stiffness matrix will require at least NBASE + NF3\*IBEND storage locations in /ACOM/ (NF3 was defined in Table 3.1). This amount is required in the MNR, RFB, VRS/VRR, and SLI solution methods. The DYN SAO with the DIM option does not use the global stiffness matrix. (DYN-SLI with moved nodes imposes some special restrictions since more storage is needed for GK, and the moved nodes must be numbered just before the slave nodes. Use of this option is highly discouraged. It is complicated to use correctly and much less efficient than the DIM solution.)

The eigenvalue solution (MCDES) uses the Jacobi method and starts its working storage at the beginning of /ACOM/. It begins with a diagonal mass matrix (GMM) and a compacted version of the stiffness matrix (GKK) which has the full upper triangle of the stiffness matrix. GKK requires \(\frac{1}{2}(NF3)(NF3+1)\) words. Next is a working area which is NF3\*NF3 words. The eigenvectors (NF3 of them) end up here as the TGK array. The eigenvalues follow in the next NF3 locations. The required space is then .5\*NF3\*(3\*NF3+5).

<sup>\*</sup>The half-bandwidth is the largest number computed for any row by subtracting the row number from the number of the rightmost column which contains a nonzero entry plus one.

The frequency domain solution allows for the formation of a consistent mass matrix (CGM) which is created immediately following GK in /ACOM/. Since it is the same size as GK, the storage needed is NBASE+2\*NF3\*IBEND. The FREQ solution uses complex arithmetic. The system coefficient matrix is generated by copying GK and CGM into a prior portion of /ACOM/ in complex format (see Table 3.1).

The variable storage space needed for NCOM is summarized below for each SAO type:

DEAD, LIVE TSSS, DYN

NCOM = NBASE + NF34IB

where IB = IBEND for all but DYN-DIM
IB = 0 for DYN-DIM

MODE

NCOM = .5\*NF3\*(3\*NF3+5)

FREQ

NCOM = NBASE + 2\*NF3\*IBEND

CHEK

NCOM = NBASE

Storage size checks are made at the beginning of each SAO to determine if enough space is available. If not, a message is printed to indicate the space needed, and the run is aborted. Note that for problems using more than one SAO, the largest NCOM must be used.

The CDC version of SEADYN uses single precision logic except for accumulators in the simultaneous equation solvers in the SLVBAN and COMBAN subroutines (see Section 7.0). On machines with word lengths less than 60 bits the program should use double precision on most of the floating point computations. The critical computations are the length changes, stiffness matrix coefficients, and components of the force residual. The most direct and reliable approach to treating double precision is to type all floating point variables double precision. This is most readily done with FORTRAN-77 or IBM-FORTRAN. If this approach is taken, then the variable NPREC2 in the SEADYN subroutine should be set to 2. This establishes the appropriate number of words to be written and read for the restart files. When NPREC2=2 the variables in the COMMON statements of the RESTART subroutine should not be typed double precision.

If it is decided to selectively type the variables double precision some customizing of the variable dimension process will be required. The critical variables (see Section 8.0) are listed below:

ACOM-Cross Reference (Table 3.1)

DS, DSO, DSR, XC, XO, XS, U, UP, US, UD, UDP, UDDP, UDDS,  $F_2$ , GK, DU

## Special Temporary Variables/Subroutine:

CL, CDX/RESIDL

CL, CDX/UPDATE

Since the ACOM cross reference requires the A array partitioning to be expended, the variables NBASE and NINA (SEADYN and MANIPR subroutines) must be increased. In addition it will be necessary to modify the NC/: variables in the SEADYN Subroutine. The least troublesome approach (but storage extravaganc) is to make A double precision and to double NINA and NBASE. Then the NC: variables do not need to be adjusted. If A is typed double precision then NCOM should be doubled since it (like NINA and NBASE) count single precision floating point words.

The arrays which do not depend on the number of nodes or elements have been given fixed dimensions. Should these need to be changed, it will be necessary to make three types of changes. They are:

- 1. Change the dimension of the specific arrays involved. A cross reference between the COMMON involved and the descriptions of the variables in Section 8.0 will clarify which ones need to be changed (see Table 4.1).
- 2. Change the parameter which specifies the maximum number allowed (e.g., MXBODY).
- 3. Change the parameter which specifies the total number of words in the COMMON block (e.g., NINB). This is used by RESTART to determine how many words to read or write.

Care will need to be taken to assure the COMMON statements in all of the affected subroutines are changed. It should be noted that making such changes causes the restart files to be unique and not accessible to other versions of the program or to the compatible SEAPLT graphics program.

Table 4.1 is a list of the array dimension limits with the arrays and parameters involved. Table 4.2 lists other program size restrictions.

Table 4.1. Fixed Dimension Array Data

| Item                              | Limit | Variable<br>Name | Common<br>Size | Arrays<br>Involved                                                                                                                         |
|-----------------------------------|-------|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Rodies in BODY table              | 50    | мхводу           | NINB<br>NINBI  | BAMC(50) BLEN(50) BMOM(50) BOMAS(50) BOVOL(50) BSCD(50) BWND(50) CYLRMS(50) IDRB(50)                                                       |
| Body locations                    | 50    | MXBLOC           | NINB<br>NINBI  | FBUSR(50) SBAMP(50) UBS(50) IBS(50) IBU(50) JSLP(2,50) LBODN(50) MBLN(50) NMOTN(50) BUOKP(3,50)                                            |
| Limit Conditions table            | 50    | MXLIMS           | NINB<br>NINBI  | CORDLM(50) RELFAC(50) TOLIM(50) JANCR(50)                                                                                                  |
| Limit Locations                   | 50    | MXLLOC           | NINBI          | KONECT(10,50) LIMNOD(50) LIMSET(50)                                                                                                        |
| Lines connected to a limited node | 10    |                  | NINBI          | KONECT(10,50)                                                                                                                              |
| Cable material tables             | 10    |                  | NINC<br>NINCI  | CABMAS(10) CAMC(10) DIAM(10) E(20,10) STR(20,10) TT(20,10) G3(10) TENULT(10) TTD(10) TTK(10) IDRG(10) JFLCOD(10) MATDMP(10) ME(10) MED(13) |

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

Table 4.1. (Continued)

| Item                                                                                        | Limit | Variable<br>Name | Common<br>Size  | Arrays<br>Involved                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------|-------|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entries in any material table                                                               | 20    |                  |                 | E(20,10)<br>STR(20,10)<br>TT(20,10)                                                                                                                                                                                                                    |
| Entries in FLUID table (program logic also involved here)                                   | 2     | ·                | NINC            | FDEPTH(5)<br>FGAM(5)<br>FVISC(5)                                                                                                                                                                                                                       |
| Ship/Platform rigid bodies (program logic limits FREQ solution to only one ship)            | 3     |                  | NINSHP          | APROP(3) BLOCK(3) CPROP(3) CR(3) CS(3) CURCOE(20,3,5) WNDCOE(20,3,5) FACH(3) FSFRC(3) FSFRW(3) FSLEN(3) FSUEL(3) HEAD(3) ISH1P(3) LSHP(3) PROPF(3) RATL(3) SAE(3) SAE(3) SAE(3) SDRFT(3) SOSPV(3) SFACW(3) SHPKP(3,3) SLT(3) SLWL(3) TSAP(3) WDEPTH(3) |
| Payout/reel-in ends (must be<br>less than or equal to the<br>number of moved nodes allowed) | 5     |                  | NINPO<br>NINPOI | AMAXL(5) CURLEN(5) DLREF(5) DPTMF(5) ESP(2,5) PAYV(5) PTMF(5) TFSAV(5) JOP(5) JPELT(5) MULMAT(5) NELPOI(5)                                                                                                                                             |

是一个人,他们也是一个人,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们 第一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人的时间,他们也是一个人

Table 4.1. (Continued)

| Item                                                                       | Limit | Variable<br>Name | Common<br>Size          | Arrays<br>Involved                                                                          |
|----------------------------------------------------------------------------|-------|------------------|-------------------------|---------------------------------------------------------------------------------------------|
|                                                                            |       |                  |                         | NGROW(5)<br>NNPOI(5)<br>NPOVRY(5)<br>NSHRNK(5)                                              |
| Moved nodes in DYN or TSSS (Note: the row dimension is 3 times the number) | 5     |                  | NINPO<br>NINT<br>NINTMI | UMVB(15,3)<br>UMVBP(15,3)<br>FTI(15)<br>TMFRM(15)<br>UB(15)<br>IB(5)<br>1MTMF(15)<br>JB(15) |
| Nodal components with imposed displacements in DEAD, LIVE or MODE          | 30    |                  | NINDSP<br>NINDS1        | DSPC(30) DISPP(30) IDIS(30,3) NFKEEP(30)                                                    |
| Strum strings                                                              | 30    |                  | NINSTI                  | ISTRNG(30)<br>KSTRNG(20,30)                                                                 |
| Elements in a strum string                                                 | 20    |                  | NINSTM<br>NINSTI        | QST(20)<br>STLEN(20)<br>KSTRNG(20,30)                                                       |
| Number of flow fields in FLOW                                              | 10    | MXFLOW           | NINC<br>NINCI           | FLPAR(10,10)<br>IFLCOD(10)                                                                  |
| Parameters per flow field                                                  | 10    |                  | NINC                    | FLPAR(10,10)                                                                                |
| Time functions defined by TFUN                                             | 20    | MXTFUN           | NINT<br>NINTHI          | ITFCOD(20)<br>TPARM(20,20)                                                                  |
| Parameters per time function                                               | 20    |                  | NINT                    | TPARM(20,20)                                                                                |
| Load variation sets defined<br>by LOAD/LVAR                                | 3     |                  | NINT<br>NINTHI          | FTF(3)<br>TMFRF(3)<br>ILF(3)                                                                |

Table 4.2. Problem Size Restrictions

| Restriction                                                       | Limit | Comments                                                              |
|-------------------------------------------------------------------|-------|-----------------------------------------------------------------------|
| Ships/platforms in FREQ SAO                                       | 1     | Program logic limit, requires new coding to remove                    |
| Catenary lines of generated nodes                                 | 20    | Array dimensions in INPT,<br>CATGEN, INTLIZ subroutines               |
| Lines connected to a node where anchor holding power CHEK is made | 20    | Array dimensions and counter check in COMCHK subroutine               |
| PROB + REST data sets in any run                                  | 50    | Array dimensions on title cards read in SEADYN and FREINP subroutines |
| Rigid format data sets                                            | 1     | Program logic limitation in FREINP and SHIPIN subroutine              |
| Wave headings on ship motion file                                 | 30    | File format                                                           |
| Wave length on ship motion file                                   | 30    | File format                                                           |
| Roll angles on ship motion file                                   | 8     | File format                                                           |
| Wind velocities on ship motion file                               | 5     | File format                                                           |
| Wind headings on ship load file                                   | 20    | File format                                                           |
| Current velocities on ship load file                              | 5     | File format                                                           |
| Current headings on ship load file                                | 20    | File format                                                           |

The total size of the CDC version of SEADYN is 156,000 (octal) plus the size required by the ACOM COMMON. Selecting NCOM to be 8500 (decimal), the total program size is 176,000 (octal). A reduction in total storage can be achieved by segmenting the program. Input for one approach using the CDC segmented loader is shown below.

TREE SEAPAY-(INPT, SAORD, TRANS, EIGNS, FRQSLN, COMCHK)
GLOBAL BUOYS, CABLE, CDCAL, CHKDAT, COMPNT, CONTRL, DSPCON
PAYOUT, RETAPE, SHIPS, STRUM, HEDDAT, TAPES, SIZE, TYPES

|        | GLOBAL        | IBUOYS, ICABLE, ICHTRL, IDSPCN, | 1PAYOT |
|--------|---------------|---------------------------------|--------|
|        | GLOBAL        | ISHIPS, ISTRUM, ITIMED          |        |
|        | GLOBAI.       | HEDCHR, LOGIC, ACOM             |        |
|        | GLOBAL        | SHPTAP, SHPLBL, IFLAG           |        |
| FRQSIN | GLOBAL<br>END | FRQDAT                          |        |

This approach to segmentation gives a maximum size of 126,000 (octal) plus ACOM. More complex tree structures can be devised to shrink this size but the complicating factor is that the FRQSLN branch of the tree calls the STATIC group of subroutines for wave drift force updates (see Figure 2.2)

# 5.0 DATA FILES AND AUXILIARY STORAGE

# SEADYN uses the following FORTRAN files:

| FILE | FILE    |        |                                                                                                                                                    |
|------|---------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| CODE | NAME    | MODE   | DESCRIPTION                                                                                                                                        |
| 01   |         | binary | Restart file for DEAD SAO output; may be used for input.                                                                                           |
| 02   |         | binary | Restart file for LIVE/TSSS SAO output; may be used for input.                                                                                      |
| 03   |         | binary | Restart file for DYN SAO output; may be used for input.                                                                                            |
| 04   |         | binary | Optional restart input file.                                                                                                                       |
| 05   | NIN     | coded  | System input file; read only by FREINP. Defined in SEADYN and carried in COMMON/TAPES/.                                                            |
| 06   | NOUT    | coded  | System output file; written by various routines, primarily those calling PAGHED (see Section 3.0). Defined in SEADYN and carried in COMMON/TAPES/. |
| 08   | NSRDC   | binary | Ship motion file; read by SHPMOF and SHPRED subroutines.                                                                                           |
| 09   | NTAPE9  | binary | Scratch file for temporary storage of the contents of COMMON/ACON/, etc. in MODE and FREQ SAOs.                                                    |
| 10   |         | binary | Ship load file; written by SHIPIN and read by SHPLDS.                                                                                              |
| 11   |         | binary | FREQ steady state response solutions; written by FRQSLV and read by FRQSLV.                                                                        |
| 12   |         | binary | FREQ RAO outputs; written by FRQSLV and read by FRQRND and FRQREG.                                                                                 |
| 13   | NTPCHK  | binary | Used to pass the contents of COMMON/ACOM/ from FRQSLN to COMCHK for multiple wave heading solutions.                                               |
| 15   | NTAPE 1 | binary | Deciphered card images from free-form input; written by FREINP and read by FFLD.                                                                   |
| 16   | NTAPE2  | coded  | Scratch file for rigid format input data; written by FREINP and read by SHIPIN.                                                                    |
| 20   |         | binary | Mode shape (eigenvectors) output; written by EIGNS.                                                                                                |
|      |         |        |                                                                                                                                                    |

| CODE | FILE<br>NAME | MODE   | DESCRIPTION                                                                                                                                               |
|------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21   |              | binary | Scratch file for mode shape calculations. Used to move the system stiffness matrix to a new position in COMMON/ACOM/ in the needed format. Done in EIGNS. |

## 5.1 Restart File Structure

The SEADYN program creates up to three restart files (one each for the DEAD, LIVE, and DYN subanalyses). Multiple selections of a subanalysis type simply extend the file unless a rewind is signalled by the SAVE data record. A counter (IFILE array) is provided for each of the files to keep track of how many restart records have been written. Each time the file is rewound, the counter for that file is set to zero, and a label record is written. The write statement is:

WRITE(NFILE) (TITLE(I), I=1, NHED), NINA, NPRECZ

Each restart save operation uses the following write statement:

```
WRITE(NTAPE) (A(I),I=1,NINA),(B(I),I=1,NINB),(C(I),I=1,NINC),
(RL(I),I=1,NINRL),(P(I),I=1,NINPO),(T(I),I=1,NINT),
(SH(I),I=1,NINSHP),(DP(I),I=1,NINDSP),(STM(I),I=1,NINSTM),NFILE
,(IAABU(I),I=1,NINBI),(IAACA(I),I=1,NINCI)
,(IAACL(I),I=1,NINCLI),(IAADS(I),I=1,NINDSI)
,(IAAPO(I),I=1,NINPOI),(IAASHP(I),I=1,NINSHI)
,(IAASTM(I),I=1,NINSTI),(IAATIM(I),I=1,NINTMI)
,DLD,WLD,DYN,CHECKR,NOVEL,NOITER,NOFLUD,NOLOAD
,FEEDBK,POUT,REFUP,STEPUP
```

## 5.2 Ship Motion File Structure

The Ship Motion File is organized in logical records. The specific contents of each record will be described below. There are seven distinct record types. The first two records contain data which are independent of wave heading or wavelength. Record types 3 through 7 are dependent on heading and wavelength and are repeated in a nested loop fashion. The overall form is:

|                              |                               | Record<br>Record                               | -           |                                                                          |
|------------------------------|-------------------------------|------------------------------------------------|-------------|--------------------------------------------------------------------------|
| Loop<br>en<br>Wave<br>Length | Loop<br>on<br>Wave<br>Heading | Record<br>Record<br>Record<br>Record<br>Record | 4<br>5<br>6 | <br>(present on<br>first wavelength<br>only for NCEL<br>formatted files) |

The wave headings are assumed to be listed in decreasing order with +180 degrees being the largest allowed. The interpolation routines assume the values given for +180 degrees will be used for -180 degrees; therefore, data for -180 degrees need not be given.

The wavelengths are assumed to be listed in decreasing order (i.e., increasing frequency order).

The individual records of the file are described in terms of the Fortran read/write lists associated with each record.

RECORD 1 NAME 1, NAME 2, NAME 3

Three Hollerith variables providing identifying data.

RECORD 2 (TITO(I), I=1, 12), WORD, WORD 2, WORD 3, ELL, BEAM, DRAFT, TVOL,

TMAS, TPST, 2G, CBV, NOB, (FN(I), I=1, NOB), NOH, (HDG1(I), I=1, NOH),

NOK, (BAM(I), I=1, NOK), VNY, GRAV, NRV, (RANG(I), I=1, NRV),

((GMU(1,J), J=1, 6), I=1,6), ((DC(I,J), J=1,6), I=1,6)

是一种,我们就是一种,我们就是一个人的,我们也是一个人的,我们就是我们的,我们也有这个人的,我们也是一个人的,我们也是一种,我们们也是一个人的,我们们也是一个人的

TITO = Hollerith title consisting of 12 6-character words WORD = length unit label (6-character Hollerith) WORD 2 = force unit label (6-character Hollerith) WORD 3 = moment unit label (6-character Hollerith) ELL = Ship's length (L) BEAM = Beam (L) DRAFT = Draft (L) = Ship's volume; gbtained from (ELL/2)<sup>3</sup> . TVOL TVOL = Ship's mass (FT<sup>L</sup>) 1MAS = Longitudinal distance from c.g. to forward most TPST station; obtained from (ELL/2) . TPST ZG = Vertical distance from water line to c.g., (+ up) (L) CBV = Vertical distance from water line to center of buoyancy (+ up); obtained from ELL . CBV NOB = Number of speeds (SEADYN expects only one) = The Fronde numbers for each speed FN(I) NOH = Number of wave headings HDGI(I) = The wave headings listed in decreasing order starting with 180 degrees and proceeding no further than -180 degrees  $+ \Lambda\theta$ NOK = Number of wavelengths = Nondimensional wavelength in decreasing order, BAM(1) $\lambda = ELL \cdot BAM(I)$ = Fluid viscosity  $(L^{2}T)$ VNY = Gravitational acceleration (LT<sup>-2</sup>) **GRAV** = Number of roll angles NRV = The values of roll anges (radians) listed in RANGE(I) increasing order GMU(I,J)= The nondimensional mass matrix DC(I,J) = The nondimensional hydrostatic restoring matrix

RECORD 3 MM, HDGI(MM), JJ, FN(JJ), LL, BAM(LL)

MM = Heading number

JJ = Speed number

LL = Wavelength number

RECORD 4 ((DA(I,J), J=1,6), I=1,6), ((DB(I,J), J=1,6), I=1,6)

DA(I,J) = The nondimensional added mass matrix for the current combination of heading, speed, and wavelength

DB(I,J) = The nondimensional wave damping matrix

RECORD 5 (BOD(I), BOD(I+3), BEV(I), BEV(I+3), I=1,3)

BOD, BEV = The nondimensional wave force coefficient

RECORD 6 B44S(I), I=1, NRV)

B44S(I) = The nonlinear roll damping terms which are added to the damping matrix depending on the size of the roll angle (nondimensional)

RECORD 7 ((TX(I,J), I=1,7), J=1,7), ((TY(I,J), I=1,7), J=1,7), ((TMI,J), I=1,7), J=1,7), (TP(I), I=1,7)

The complex nondimensional drift force coefficients

## 5.3 Ship Load File Format

The ship load file is set up to be a library of ship characteristics and loading tables. The file contains one logical record for each ship catalogued. It is written in binary form with the following FORTRAN statement:

WRITE(10) NWIND, NETHETW, WNDVEL, WNDHED, WNDCOE, SCALE, NCRNT, NTHETC, CURVEL, CURHED, CURCOE, TDEPTH, TBLOCK, TSLT, TSAE, TSAS, TSWL, TSB, TSD, TSDSP, TSAP, SHPCAP, WLBL, CLBL, LLBL, VLBL

Consult Section 8.0 for descriptions of the variable and Section 3.2 for array sizes.

#### 5.4 Mode Shape File Format

The output of natural frequencies and mode shapes can be output on file 20. The file contains one record for each natural frequency. Each record is written as:

WRITE (20) I, EIGEN(I), FREQ, PERD, (TGK(J,I), J=1,NF3)

where: I = The mode number

EIGEN(I) = The circular frequency (radians/sec)

FREQ = The natural frequency (Hz)

PERD = The natural period

TGK = The eigenvector (mode shape)

NF3 = The number of degrees of freedom

#### 6.0 RESTART CAPABILITIES

The restart files mentioned previously allow for the recovery of data for various configurations of the modeled system. The methods for using this capability are explained in Section 6.0 of the User's Manual. When restart is used in a separate run from the one that created the saved file, the file may be designated as any file code recognized by the system since the file code is given in the input data. The usual procedure is to use codes 01 through 04, as explained in Section 5. It should be recognized that normal execution may require the re-use of some files. By using file code 04 as restart input, the user is guaranteed the file will not be used for output.

The restart procedure reads the title record from the restart file and performs a comparison on the first word if requested. It then spaces down the file to the requested record number by reading each record. The last record read then occupies the COMMON blocks mentioned in Sections 3.1 and 3.2. The restart activity is aborted if the first word comparison fails or if the current size of COMMON/ACOM/ is too small to receive the number of words written when the file was created.

#### 7.0 DESCRIPTIONS OF THE SUBROUTINES

Each of the subroutines is described in this section. Cross references for CALLS and CALLED BY are also given. These cross references omit system library functions and subroutines, such as SQRT, COS, SIN, etc. However, those routines calling EOF, DATE, TIME, and ENCODE/DECODE are indicated since this may be useful in conversion to other mechaines. These particular routines are listed here for convenience:

| CALLS         | SUBROUTINE                        |
|---------------|-----------------------------------|
| EOF           | FREINP, FFLD                      |
| DATE          | SEADYN (results output by PAGHED) |
| TIME          | SEADYN (results output by PAGHED) |
| ENCODE/DECODE | FREINP, SELCTS, SELECT            |

| NAME   | NO. OF<br>ARGS | CALLED<br>BY                | CALLS                              | COMMON USED                                         | DESCRIPTION                                                                                                         |
|--------|----------------|-----------------------------|------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| ADJMAS | 9              | EQTION<br>DYNFBK<br>NRAPIT  | MNPRDT                             | BUOYS<br>CABLE<br>CONTRL<br>LOGIC<br>TAPES<br>TIMED | Adjust nodal force summation for tangential added mass (i.e., remove residual added mass from tangential direction) |
| AMPHAZ | 5              | FREQREG<br>FRQSLV<br>SPONLY |                                    |                                                     | Get response amplitude and phase for a set of complex numbers.                                                      |
| BANDES | 2              | INPT                        |                                    |                                                     | Estimate bandwidth                                                                                                  |
| BNMOVE | 10             | STATIC<br>STPDYN<br>NRAPIT  | TVARY                              | BUOYS CABLE CONTRL DSPCON LOGIC PAYOUT TIMED        | Impose boundary movement for MOVE, SBUO, and fixed nodes for DYN and TSSS.                                          |
| BUODYN | 5              | FRQSLV                      | CVCTRN<br>SPONLY<br>TATT<br>TRNSHP | BUOYS<br>CONTRL<br>FRQDAT<br>SHIPS<br>TAPES         | Compute spherical buoy dynamic coefficients for frequency domain equations.                                         |
| BUOSTF | 4              | STFGEN                      |                                    | BUOYS                                               | Get stiffness matrix for mooring buoys.                                                                             |
| CABTRN | 4              | SHPFIX                      | CROSS                              |                                                     | Get local-to-global transformation matrix for line elements.                                                        |
| CATFRC | 9              | CATSTF<br>CATRES            | PCAFX2                             | TAPES                                               | Computer end forces and stretched length for bottom-limited catenary element.                                       |
| CATGEN | 17             | INPNOD                      |                                    |                                                     | Generate nodes along a catenary curve.                                                                              |
| CATRES | 19             | RESIDL                      | CATPRC<br>CROSS<br>MVPRDT          | BUOYS<br>CABLE<br>CONTRL                            | Compute internal forces for bottom-<br>limited catenary element for force<br>residual.                              |
| CATSTF | 14             | STFGEN                      | CATFRC<br>TATT                     | BUOYS<br>CABLE<br>CONTRL<br>TAPES                   | General stiffness matrix for bottom-limited catenary element.                                                       |

| NAME   | NO. OF ARGS | CALLED<br>BY                         | CALLS                              | COMMON<br>USED                                                         | DESCRIPTION                                                                                   |
|--------|-------------|--------------------------------------|------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| CBLDMP | 12          | FRQSLV                               | CABTRN<br>CXSLVR<br>DRAGO<br>TATT  | CABLE<br>CONTRL                                                        | Calculate linearized damping terms for line elements and assemble into complex system matrix. |
| CCOMIT | 6           | FRQSLV                               |                                    |                                                                        | Form complex matrix triple product and dot product.                                           |
| CD     | 1           | STRUMR<br>SIMP                       |                                    |                                                                        | Function to compute local drag coefficient ratio for strum calculation.                       |
| COMBAN | 8           | FRQSLV<br>SPONLY                     |                                    |                                                                        | Complex simultaneous equation solution using symmetric banded row storage format.             |
| сомснк | 18          | MANIPR                               | FFLD<br>LOUPD<br>PAGHED<br>RESTART | BUOYS CABLE CHKDAT COMPNT CONTRL DSPCON HEDCHR HEDDAT SHIPS SIZE TAPES | Check for component adequacy.                                                                 |
| COMPOT | 1           | INPUT                                |                                    | COMPNT                                                                 | Define, convert, and print component inventory.                                               |
| COMPRP | 13          | UPDATE<br>RESIDL<br>UPDATE           | DMPFRC<br>MPROP                    | CABLE<br>CONTRL<br>PAYOUT                                              | Computer element material properties, strain and load for multimaterial payout element.       |
| CONCNT | 3           | INPT                                 |                                    | BUOYS<br>CONTRL                                                        | Count connections to limited nodes and bodies.                                                |
| CONMAS |             | FRQSLV                               |                                    |                                                                        | Get consistent mass matrix.                                                                   |
| CPLOTR | 41          | MANIPR                               |                                    |                                                                        | Dummy routine for eventual plot interface.                                                    |
| CRCALL | 4           | SHPDEF                               |                                    |                                                                        | Calculate ship's hull resistance coefficient for analytical load functions.                   |
| CROSS  | 3           | CABTRN<br>CATRES<br>STRUMR<br>UPDATE |                                    |                                                                        | Vector cross product.                                                                         |

| NAME   | NO. OF ARGS | CALLED<br>BY               | CALLS                                                                       | COMMON<br>USED                                               | DESCRIPTION                                                                  |
|--------|-------------|----------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|
| CURREN | 2           | LDUPD<br>MANIPR<br>STRUMR  | CURUSR<br>TVARY                                                             | CABLE<br>CONTRL<br>TIMED<br>LOGIC                            | Define components of current for each node.                                  |
| CURUSR | 6           | CURREN                     |                                                                             |                                                              | User subroutine for defining current field.                                  |
| CVCTRN | 8           | FRQREG<br>BUODYN<br>FRQSLV | MLTPLY<br>TMLTPLY                                                           |                                                              | Coordinate transformation on a complex vector.                               |
| CXSLUP | 5           | FRQSLV                     | MVPRDT                                                                      |                                                              | Complex slave update.                                                        |
| CXSLVR | 11          | CBLDMP                     | MLTPLY                                                                      |                                                              | Store complex slave partitions for stiffness or mass matrix.                 |
| DEPCOR | 3           | SHPDEF                     |                                                                             |                                                              | Function to compute depth correction for ship load tables.                   |
| DMPFRC | 10          | COMPRP<br>RESIDL<br>UPDATE |                                                                             | CABLE<br>CONTRL<br>TIMED                                     | Computes damping forces for material damping.                                |
| DRAGCO | 7           | CBLOMP<br>LDUPD            |                                                                             |                                                              | User subroutine for computing drag coefficients.                             |
| DTCALC | 6           | TRANS<br>STPDYN<br>SAORD   | PAGHED                                                                      | CABLE<br>CONTRL<br>HEDDAT<br>TAPES<br>TIMED                  | Estimates upper bound on time step for DIM dynamic solution.                 |
| DYNFBK | 42          | STPDYN<br>NRAPIT           | ADJMAS<br>LOUPD<br>MSTRMS<br>RESIDL<br>SHPFIX<br>SLAVLD<br>STFGEN<br>SLVBAN | BUOYS<br>CABLE<br>CONTRL<br>SHIPS<br>LOGIC<br>TAPES<br>TIMED | Transient solution of residual feedback equations using Newmark Beta Method. |
| EIGNS  | 14          | MODES<br>STRUMR            | JACOBI                                                                      | ACOM                                                         | Set up eigenvalue solution                                                   |
| EQTION | 41          | STPDYN                     | ADJMAS<br>LDUPD<br>MSTRMS<br>RESIDL<br>SHPFIX<br>SLAVLD<br>STFMLT           | BUOYS<br>CONTRL<br>LOGIC<br>TAPES<br>TIMED                   | Form terms of dynamic equation for SLI and DIM solutions.                    |

| NAME   | NO. OF ARGS | CALLED BY                                            | CALLS                                                         | COMMON USED                                                              | DESCRIPTION                                                                                                                                                              |
|--------|-------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR  | 4           | FREINP<br>FFLD                                       |                                                               |                                                                          | Error message processor for free-field reader.                                                                                                                           |
| FFLD   | 5           | SEADYN INPT SAORD FRQFRD COMCHK FRQREG FRQRND MANIPR | ERROR<br>EOF                                                  |                                                                          | Reads binary records processed<br>by the free-field reader.                                                                                                              |
| FREINP | 5           | SEADYN INPT SAORD FRQFRD COMCHK FRQREG FRQRND MANIPR | ERROR<br>EOF                                                  |                                                                          | Reads binary records processed<br>by the free-field reader.                                                                                                              |
| FREINP | 5           | SEADYN                                               | EOF<br>ERROR<br>SELCTS<br>SELECT<br>SHIFT<br>ENCODE<br>DECODE | TAPES                                                                    | Free-field reader decodes free-<br>field records and writes a binary<br>interpretation of the input data.<br>It also copies rigid format data<br>over to a scratch file. |
| FRQFRD | 4           | FRQSLN                                               | PAGHED<br>FFLD                                                | CONTRI. DSPCON FRQDAT HEDDAT TAPES                                       | Read input data for FREQ SAO.                                                                                                                                            |
| FRQREG | 8           | FRQSLN                                               | AMPHA?<br>CVCTRN<br>FFLD<br>PAGHED                            | CONTRL<br>FRQDAT<br>HEDDAT<br>HEDCHR<br>SHIPS<br>TAPES<br>TYPES<br>IFLAG | Calculate regular wave response data for FREQ SAO.                                                                                                                       |

[편편 전환] 1997년 1992년 1일 전환 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 19

-,

Albert In the second

| NAME   | NO. OF ARGS | CALLED<br>BY | CALLS.                                                                                          | COMMON USED                                                                                                           | DESCRIPTION                                                 |
|--------|-------------|--------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| FRQRND | 10          | FRQSLN       | FFLD<br>PAGHED                                                                                  | CABLE CONTRL FRQDAT HEDDAT HEDCHR SHIPS TAPES TYPES IFLAG                                                             | Calculate random response statistics for FREQ SAO.          |
| FRQSLN | 48          | MANJPR       | RESTART<br>STATIC<br>UPDATE                                                                     | ACOM<br>BUOYS<br>CABLE<br>CONTRL<br>SHIPS<br>TIMED<br>TYPES<br>IFLAG<br>FRQDAT<br>HEDDAT<br>HEDDAT<br>HEDCHR<br>TAPES | Controller for the FREQ SAO.                                |
| FRQSLV | 50          | FRQSLN       | AMPHAZ BUODYN CBLDMR CCOMLT COMBAN CONMAS CVCTRN CXSLUP PAGHED SHPRED SFONLY STFGEN TATT TENRSP | BUOYS<br>CONTRL<br>FRQDAT<br>HEDDAT<br>HEDCHR<br>SHIPS<br>TAPES                                                       | Solve for frequency reponses for FREQ SAO and set up RAO's. |
| TNPBOY | 3           | INPT         | PAGHED                                                                                          | BUOYS<br>CONTRL<br>HEDDAT<br>HEDCHR<br>TAPES                                                                          | Input body tables data.                                     |
| INPBLC | 4           | INPT         | PAGHED                                                                                          | BUOYS<br>CONTRL<br>HEDDAT<br>HEDCHR<br>TAPES                                                                          | Input body location data.                                   |

= = ...

| NAME            | NO. OF ARGS | CALLED<br>BY | CALLS            | COMMON USED                                   | DESCRIPTION                                   |
|-----------------|-------------|--------------|------------------|-----------------------------------------------|-----------------------------------------------|
| INPGLT          | 10          | INPT         | PAGHED           | CONTRL<br>HEDDAT<br>HEDCHR<br>TAPES           | Input element data and generate missing data. |
| INPFLD          | 4           | INPT         | PAGHED           | CONTRL<br>HEDDAT<br>HEDCHR<br>TAPES           | Input flow tables.                            |
| INPFLU          | 3           | INPT         | PAGHED           | CONTRL<br>HEDDAT<br>HEDCHR<br>TAPES           | Input fluid data                              |
| INPLIM          | 3           | INPT         | PAGHED           | BUOYS<br>CONTRL<br>HEDDAT<br>HEDCHR<br>TAPES  | Input limit set tables.                       |
| INPLLC          | 3           | INPT         | PAGHED           | BUOYS<br>CONTRI.<br>HEDDAT<br>HEDCHR<br>TAPES | Input limit location data.                    |
| INPMAT          | 2           | INPT         | PAGHED           | CABLE CONTRL HEDDAT HEDCHR LOGIC TAPES        | Input material tables.                        |
| t <b>N</b> PNOD | 10          | INPT         | PAGHED<br>CATGEN | CONTRI. HEDDAT HEDCHR SHIPS TAPES             | Input nodes and lines of nodes.               |
| INPSTM          | 3           | INPT         | PAGHED           | CONTRL HEDDAT HEDCHR TAPES STRUM              | lnput strum string data.                      |

| NAME   | NO. OF ARGS | CALLED<br>BY | CALLS                                                                                                                                                                                                                                                                                  | COMMON USED                                                                 | DESCRIPTION                                                                                             |
|--------|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| INPT   | 42          | MANIPR       | BANDES COMPOT CONCOT FFLD INPBDY INPBLC INPELT INPFLO INPFLU INPLIC INPMAT INPNOD INPSTM INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INPTEN INTILIZ | BUOYS CABLE CONTRL PAYOUT SHIPS STRUM TIMED HEDDAT HEDCHR TAPES TYPES IFLAG | Input new problem data and initia-<br>lize parameters, calculate lengths,<br>added masses, weight, etc. |
| INPTEN | <b>(</b> 4  | INPT         | PAGHED                                                                                                                                                                                                                                                                                 | CONTRL<br>HEDDAT<br>HEDCHR<br>TAPES                                         | Input tension data.                                                                                     |
| INPTIM | 4           | INPT         | PAGHED                                                                                                                                                                                                                                                                                 | CONTRL<br>HEDDAT<br>HEDCHR<br>TAPES<br>TIMED                                | Input time function tables.                                                                             |
| INTL1Z | 45          | TNPT         | UPDATE<br>MPROP                                                                                                                                                                                                                                                                        | BUOYS<br>CABLE<br>CONTRL<br>LOGIC<br>SHIPS<br>TAPES                         | Initialize new problem data, compute lengths and initial tension data.                                  |
| INTLSA | 4           | SAORD        |                                                                                                                                                                                                                                                                                        | BUOYS CABLE CONTRL CHKDAT DSPCON PAYOUT SHIPS STRUM                         | Initialize solution parameters and set defaults of subanalysis options.                                 |

| NAME   | NO. OF<br>ARGS | CALLED<br>BY                                          | CALLS                                                     | COMMON USED                                                | DESCRIPTION                                                               |
|--------|----------------|-------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|
|        |                |                                                       |                                                           | TIMED<br>TYPES<br>IFLAG<br>RETAPE                          |                                                                           |
| INTLWM | 12             | INPT                                                  | PAGHED                                                    | BUOYS<br>CABLE<br>CONTRL<br>LOGIC<br>SHIPS<br>TAPES        | Compute masses and weights for new problem.                               |
| JACOBI | 13             | EIGNS                                                 |                                                           |                                                            | Solves the linear eigenvalue problem using the Jocobi method.             |
| LDNTRP | 13             | SHPLDS                                                |                                                           |                                                            | Table look up for ship's static loads.                                    |
| LDUPD  | 15             | NRAPIT<br>STEP<br>EQTION<br>DYNFBK<br>COMCHK<br>TRANS | CURREN<br>DRAGCO<br>SHPIDS                                | BUOYS CABLE CHKDAT CONTRL PAYOUT SHIPS TIMED LOGIC TAPES   | Compute fluid drag loads on bodies, lines and ships.                      |
| LIMCHK | 10             | RESTDI.<br>STFGEN                                     | TVARY                                                     | BUOYS CABLE CONTRL DSPCON SHIPS TIMED TAPES LOGIC          | Check limit conditions and fix or free components as needed.              |
| HAIN   | N/A            | Ñ/A                                                   | SEADYN                                                    | ACOM                                                       | Main program. Establishes the size of ACOM.                               |
| MANIPK | 42             | SEADYN                                                | COMCHK CPLOTE CURREN FFLD FRQSLN INPT MODES OUTPUT PAGHED | BUOYS CABLE CHKDAT CONTRL DSPCON PAYOUT SHIPS RETAPE STRUM | Manipulative routine to control the execution of the subanalysis modules. |

| NAME   | NO. OF<br>ARGS | CALLED<br>BY                                                       | CALLS SAORD STATIC STRUMR TRANS UPDATE | LOGIC<br>HEDDAT<br>HEDCHR<br>TAPES<br>TIMED<br>SIZE<br>TYPES<br>IFLAG | DESCRIPTION                                                                               |
|--------|----------------|--------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| MASMOD | 13             | PAYUPD                                                             |                                        | BUOYS<br>CABLE<br>CONTRL<br>PAYOUT<br>SHIPS<br>TAPES                  | Make mass and weight adjustments for payout elements.                                     |
| MLTPLY | 9              | CVCTRN CXSLVR SHPFIX SHPSTF SLAVER STFGEN STRUMR TATT              |                                        |                                                                       | Matrix multiply.                                                                          |
| MODES  | 40             | MANIPR                                                             | EIGNS<br>STFGEN                        | ACOM<br>CONTRL<br>DSPCON                                              | Set up and execute MODE SAO-eigenvalue solution.                                          |
| MPROP  | 10             | COMPRP<br>INPMAT<br>INPT<br>RESIDL<br>TENRSP<br>UPDATE             |                                        |                                                                       | Material property table lookup.                                                           |
| MSTRMS | 0              | DYNFBK<br>EQTION<br>NRAPIT                                         |                                        |                                                                       | Dummy routine intended for event-<br>ual use with transient dynamics<br>with slave nodes. |
| MVPRDT | 5              | ADJMAS<br>CATRES<br>CXSLUP<br>SHPLDS<br>SHPSTF<br>SLAVUP<br>STFGEN |                                        |                                                                       | Premultiply a vector by a matrix and get the dot product (square) of the result.          |

| NAME   | NO. OF ARGS | CALLED BY                                                                                                                                                                           | CALLS                                                                                                                | COMMON USED                                                     | DESCRIPTION                                                            |
|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| MRAPIT | 41          | STATIC<br>TRANS                                                                                                                                                                     | ADJMAS BNMOVE DYNFBK COUPD MSTRMS OUTPUT PAGHED RESIDL SERCH1 SHPFIX SLAVLD SLAVLD SLAVUP SLVBAN STFGEN STFMLT TVARY | BUOYS CABLE CONTRL DSPCON SHIPS TIMED LOGIC HEDDAT HEDCHR TAPES | Modified Newton-Raphson solution routine for statics and dynamics.     |
| OUTPUT | 8           | SEADYN<br>MANIPR<br>NRAPIT<br>STEP<br>STATIC<br>TRANS                                                                                                                               | PAGHED<br>RESTART                                                                                                    | CONTRL PAYOUT TIMED HEDDAT HEDCHR TAPES LOGIC SIZE SHIPS        | Output routine for node positions and velocities and element tensions. |
| PAGHED | 0           | COMCHK DTCALC FRQFRD FRQFRD FRQSLN FRQSLV INPBDY INPBLC INPELT INPFLO INPFLU INPFLU INPLIC INPMAT INPMAT INPMOD INPSTM INPT INPTEN INPTEN INPTEN INPTIM MANIPR NRAPIT OUTPUT PAYUPD |                                                                                                                      | HEDDAT<br>REDCHR<br>SIZE<br>TAPES                               | Write page heading for output.                                         |

| NAME     | NO. OF ARGS | CALLED<br>BY                                  | CALLS                                         | COMMON<br>USED                                                                                                                | DESCRIPTION                                                                                                                                                         |
|----------|-------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |             | SAORD<br>SEADYN<br>SHPINP<br>SHPMOF<br>STPDYN |                                               |                                                                                                                               |                                                                                                                                                                     |
| PAYUPD   | 21          | STATIC<br>STPDYN                              | MASMOD<br>PAGHED<br>TVARY                     | CABLE CONTRL PAYOUT TIMED TAPES HEDDAT HEDCHR LOGIC                                                                           | Compute pay-out/reel-in data for changing lengths and mitosis.                                                                                                      |
| PCAFX2   | 14          | CATFRC                                        |                                               |                                                                                                                               | Compute end forces for a catenary element with given end positions.                                                                                                 |
| PSIN     | 1           | STRUMR<br>SIMP                                |                                               |                                                                                                                               | Compute mode shape amplitude for strum drag amplification.                                                                                                          |
| RANDIN   | 3           | TVARY                                         |                                               |                                                                                                                               | Dummy routine for NCEL random signal input.                                                                                                                         |
| RESIDL   | 40          | STEP<br>NRAPIT<br>EQTION<br>DYNFBK            | COMPRP<br>DMPFRC<br>LIMCHK<br>MPROP<br>SHPSTF | BUOYS CABLE CONTRL DSPCON PAYOUT SHIPS STRUM TIMED TAPES LOGIC                                                                | Compute internal nodal point forces (element forces) for the force residual vector. Also updates lengths, tensiou, and material properties for iterative solutions. |
| REST'ART | 5           | SEADYN<br>OUTPUT<br>FRQSLN<br>COMCHK          |                                               | ACOM<br>BUOYS<br>CABLE<br>CONTRL<br>DSPCON<br>PAYOUT<br>TIMED<br>SHIPS<br>STRUM<br>LOGIC<br>SIZE<br>TAPES<br>HEDDAT<br>HEDCHR | Read/write restart data records.                                                                                                                                    |

| NAME   | NO. OF ARGS | CALLED BY | CALLS                                                                                                                       | COMMONUSED                                                                                                  | DESCRIPTION                                                                  |
|--------|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| SAOCUR | 3           | SAORD     |                                                                                                                             | HEDDAT<br>LOGIC<br>TAPES                                                                                    | Process CURR input record.                                                   |
| SAOFOF | 5           | SAORD     | PAGHED                                                                                                                      | CONTRL<br>HEDDAT<br>TAPES                                                                                   | Process FIX/FREE input records.                                              |
| SAOIMP | 0           | SAORD     |                                                                                                                             | BUOYS<br>HEDDAT<br>TAPES                                                                                    | Process IMPA input record.                                                   |
| SAOINI | 6           | SAORD     |                                                                                                                             | HEDDAT<br>TAPES                                                                                             | Process INIT input records.                                                  |
| SAOLOD | 8           | SAORD     |                                                                                                                             | HEDDAT<br>LOGIC<br>TAPES                                                                                    | Process LOAD input records.                                                  |
| SAOLVA | 4           | SAORD     |                                                                                                                             | HEDDAT<br>TAPES                                                                                             | Process LVAR input record.                                                   |
| SAOMOV | 6           | SAORD     |                                                                                                                             | DSPCON<br>HEDDAT<br>TAPES<br>TIMED<br>TYPES                                                                 | Process MOVE input records.                                                  |
| SAOPAY | 3           | SAORD     |                                                                                                                             | HEDDAT<br>LOGIC<br>PAYOUT<br>TAPES                                                                          | Process PAYO input records.                                                  |
| SAORD  | 9           | MANI PR   | DTCALL FFLD INTLSA PAGHED SAOCUR SAOFOF SAOIMP SAOINI SAOLOD SAOLVA SAOMOV SAOPAY SAOSAV SAOSAV SAOSOL SAOSTP SAOSOW SAOTIM | BUOYS CABLE CONTRL CHKDAT DSPCON HEDDAT HEDCHR PAYOUT SHIPS STRUM TAPES TIMED TYPES IFLAG SIZE RETAPE LOGIC | Controlling routine of input and initializing subanalysis option (SAO) data. |

| NAME   | NO. OF ARGS | CALLED BY | CALLS                                                                   | COMMON<br>USED                                                                                                                                                                          | DESCRIPTION                                                                                                                                                                                  |
|--------|-------------|-----------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAOSAV | 4           | SAORD     |                                                                         | HEDDAT<br>TAPES<br>TYPES                                                                                                                                                                | Process SAVE input record.                                                                                                                                                                   |
| SAOSBU | 5           | SAORD     |                                                                         | BUOYS<br>HEDDAT<br>TAPES                                                                                                                                                                | Process SBUO input record.                                                                                                                                                                   |
| SAOSOL | 3           | SAORD     |                                                                         | CONTRL<br>HEDDAT<br>TAPES<br>TIMED                                                                                                                                                      | Process SOLU input record.                                                                                                                                                                   |
| SAOSOW | 1           | SAORD     |                                                                         | HEDDAT<br>SHIPS<br>TAPES                                                                                                                                                                | Process SURF/WIND input records.                                                                                                                                                             |
| SAGSTP | 7           | SAORD     |                                                                         | HEDDAT<br>TAPES<br>TYPES                                                                                                                                                                | Process STEP input record.                                                                                                                                                                   |
| SAOTIM | 4           | SAORD     |                                                                         | HEDDAT<br>TAPES<br>TYPES                                                                                                                                                                | Process TIME input record.                                                                                                                                                                   |
| SEADYN | 1           | MAIN      | DATE<br>FFLD<br>FREINP<br>MANIPR<br>PAGHED<br>RESTART<br>SEAMES<br>TIME | ACOM<br>BUOYS<br>CABLE<br>CDCAL<br>CHKDAT<br>COMPNT<br>CONTRI.<br>DSPCON<br>LOGIC<br>PAYOUT<br>RETAPE<br>SHIPS<br>STRUM<br>TAPES<br>TIMED<br>TYPES<br>IFLAG<br>HEDDAT<br>HEDCHR<br>SIZE | Primary controlling routine. Processes title cards and PROB/REST data records. Call for restart read (if needed) and establishes the variable dimension position of main data items in ACOM. |
| SEAMES | o           | SEADYN    |                                                                         | HEDDAT<br>HEDCHR<br>TAPES                                                                                                                                                               | Prints user information messages at the beginning of output.                                                                                                                                 |

| NAME   | NO. OF ARGS | CALLED<br>BY                       | CALLS                      | COMMON USED                                            | DESCRIPTION                                                                                                                                                                                                                                            |
|--------|-------------|------------------------------------|----------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SELCTS | 1           | FREINP                             | ENCODE                     |                                                        | Interprets the solution option input codes and translates to numeric value.                                                                                                                                                                            |
| SELECT | 2           | FREINP                             | ENCODE                     | TYPES<br>IFLAG                                         | Interpretes the keywords from free-field input and translates to numeric values.                                                                                                                                                                       |
| SERCH1 | 7           | NRAPIT                             |                            |                                                        | Performs linear interpolation for 1D search accelerator for MNR solution.                                                                                                                                                                              |
| SHIPIN | 0           | INPT                               | ·                          | CONTRL<br>SHIPS<br>TAPES<br>SHPTAP<br>SHPLBL           | Reads the static ship load file data placed on file code NTAPE2 as Rigid format data by FREINP and translates it to the ship load file (binary form).                                                                                                  |
| SHPDEF | 3           | SHPINP                             | CRCALC<br>DEPCOR           | HEDDAT<br>HEDCHR<br>SHPLBL<br>SHPTAP<br>TAPES          | Process SHIP input data.                                                                                                                                                                                                                               |
| SHPFIX | 4           | DYNFBK<br>EQTION<br>NRAPIT<br>STEP | CABTRN<br>MLTPLY<br>TMLPLY | BUOYS<br>SHIPS                                         | Adjust residual for ship and mooring buoy constraints. Unless SHIPK data are input, ships are fixed in HEAVE, PITCH, and ROLL for static analyses. Unless more than two line attachments are made to mooring buoys, their ROLL response will be fixed. |
| SHPINP | 3           | INPT                               | PAGHED<br>SHPDEF           | CONTRL HEDDAT HEDCHR SHIPS TAPES                       | Set up for reading ship input data.                                                                                                                                                                                                                    |
| SHPLDS | 2           | LDUPD                              | LDNTRP<br>MVPRDT<br>TRNSHP | CONTRL<br>SHIPS<br>SHPLBL<br>SHPTAP                    | Compute ship static loads.                                                                                                                                                                                                                             |
| SHPMOF | 1           | FRQSLN                             | PAGHED                     | CONTRL<br>FRQDAT<br>HEDDAT<br>HEDCHR<br>SHIPS<br>TAPES | Initialize data from ship motion file.                                                                                                                                                                                                                 |

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

| NAME    | NO. OF<br>ARGS | CALLED<br>BY                                | CALLS                                                                     | COMMON USED                                                                   | DESCRIPTION                                                                                                           |
|---------|----------------|---------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| SHPRED  | 24             | FRQSLV                                      |                                                                           |                                                                               | Read data and interpolate from ship motion file.                                                                      |
| SHPSTF  | 9              | STFGEN<br>RESIDL                            | MLTPLY<br>MVPRDT                                                          | SHIPS                                                                         | Compute and assemble ship stiffness matrix or force residual contribution.                                            |
| SIMP    | 6              | STRUMR                                      | F<br>(PSIN)<br>(CD)                                                       |                                                                               | Simpson rule quadrature. External function F provided in calling sequence.                                            |
| : TMP1D | 18             | STFGEN                                      | MVPRDT<br>TATT                                                            | TAPES                                                                         | Compute stiffness matrix for 1D simplex element (cable/truss) and assemble in global stiffness matrix.                |
| SLAVER  | 10             | STFGEN                                      | MLTPLY                                                                    | •                                                                             | Store stiffness terms for master node rotation.                                                                       |
| SLAVLD  | 7              | DYNFBK<br>EQTION<br>NRAPIT<br>STEP<br>TRANS |                                                                           |                                                                               | Transfer loads at slave nodes to master nodes.                                                                        |
| SLAVUP  | 8              | NRAPIT<br>STEP<br>UPDATE                    | MVPRDT<br>TRANSHP                                                         |                                                                               | Recover/update displacements and positions for slave nodes.                                                           |
| SLVBAN  | 8              | DYNFBK<br>NRAPIT<br>STEP                    |                                                                           |                                                                               | Decompose and solve system of simultaneous linear algebraic equations. Assumes compacted symmetric banded row format. |
| SPONLY  | 11             | BUODYN<br>FRQSLV                            | AMPHAZ<br>COMBAN                                                          |                                                                               | Solve for unrestrained ship response.                                                                                 |
| STATIC  | 46             | MAN I PR<br>FRQSLN                          | BNMOVE<br>NRAPIT<br>OUTPUT<br>PAYUPD<br>STEP<br>STRUMR<br>TVARY<br>UPDATE | CONTRI. DSPCON HEDDAT HEDCHR LOGIC PAYOUT RETAPE SHIPS STRUM SIZE TAPES TIMED | Control the static solutions: DEAD, LIVE, TSSS.                                                                       |

| Maring | 1977 | 1986 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 1987 | 198

是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也不是一个人,我们也不是一个人,我们也不是一个人,也可以是一个人, 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

| NAME   | NO. OF ARGS | RA                                                                        | CALLS                                                                        | COMMON<br>USED                                            | DESCRIPTION                                                          |
|--------|-------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|
| STEP   | 41          | STATIC                                                                    | LDUPD OUTPUT RESIDL SHPFIX SLAVLD SLAVUP SLVBAN STEPAD STEPDP STEPOV         | BUOYS CABLE CONTRL DSPCON HEDCHR HEDDAT LOGIC SHIPS TAPES | Static solution using SLI, RFB, VRS, VRR methods.                    |
| STEPAD | 22          | STEP                                                                      | SLAVUP                                                                       | BUOYS<br>CONTRL<br>DSPCON<br>HEDCHR<br>HEDDAT<br>TAPES    | Makes solution parameter adjustments for the VRS, VRR methods.       |
| STEPDP | 11          | STEP                                                                      |                                                                              | BUOYS CABLE TAPES CONTRL DSPCON TIMED LOGIC SHIPS         | Compute residual ADTM and damping for VRR solution.                  |
| STEPOV | 12          | STEP                                                                      |                                                                              | CONTRL<br>DSPCON<br>TAPES                                 | Adjust for limit overshoot for STEP subroutine.                      |
| STFGEN | 40          | DYNFBK<br>EQTION<br>MODES<br>NRAPIT<br>STEP<br>STPDYN<br>FRQSLV<br>STRUMR | BUOSTF<br>CATSTF<br>LIMSHK<br>MLTPLY<br>MVPRDT<br>SHPSTF<br>SIMPID<br>SLAVER | BUOYS CABLE CONTRL DSPCON PAYOUT SHIPS STRUM TAPES TIMED  | Generate global stiffness matrix.                                    |
| STFMLT | 7           | EQTION<br>NRAPIT                                                          |                                                                              |                                                           | Matrix/vector multiply using compact banded stiffness matrix format. |
| STPDYN | 41          | TRANS                                                                     | BNMOVE<br>DTCALC<br>DYNFBK<br>EQTION<br>PAGHED                               | CONTRL HEDCHR HEDDAT LOGIC PAYOUT                         | Solution routine for DYN SAO. Does SLI, MNR, RFB, and DI solutions.  |

| NAME    | NO. OF ARGS | CALLED<br>BY                                   | CALLS                                                                      | COMMON USED                                                                              | DESCRIPTION                                                                                        |
|---------|-------------|------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|         |             |                                                | PAYUPD<br>STFGEN<br>TVARY                                                  | TAPES<br>TIMED                                                                           |                                                                                                    |
| STRUMR  | 40          | MANIPR<br>STATIC<br>TRANS                      | CD<br>CROSS<br>CURREN<br>EIGNS<br>MLTPLY<br>PSIN<br>SIMP<br>STFGEN<br>TATT | BUOYS<br>CABLE<br>CONTRL<br>LOGIC<br>SIZE<br>STRUM<br>TIMED                              | Estimates drag amplification due to strumming.                                                     |
| TATT    | 8           | CATSIF<br>SIMPID<br>CBLDMP<br>STRUMR<br>FRQSLV | MLTPLY                                                                     |                                                                                          | Coordinate transformation of matrix A with matrix T using the form T A $\mathbf{T}^{\mathbf{I}}$ . |
| TENRSP  | 11          | FRQSLV                                         | MPROP                                                                      | CABLE                                                                                    | Compute components of dynamic tension for FREQ SAO.                                                |
| TFNUSR  | 4           | TVARY                                          |                                                                            |                                                                                          | User written subroutine for time functions.                                                        |
| TM1.PLY | 9           | CVCTRN<br>SHPFIX                               |                                                                            |                                                                                          | Pre-multiply a matrix by a matrix transposed. $C = A^T B$ .                                        |
| TRANS   | 44          | MANIPR                                         | LDUPD<br>NRAPIT<br>OUTPUT<br>SLAVLD<br>STPDYN<br>STRUMR<br>TVARY<br>UPDATE | BUOYS CABLE CONTRL DSPCON HEDCHR HEDDAT LOGIC PAYOUT RETAPE SHIPS SIZE STRUM TAPES TIMED | Controller for transient dynamics (DYN)                                                            |
| PRANSHP | 4           | SHPLDS<br>SLAVUP<br>UPDATE                     |                                                                            |                                                                                          | Compute local-to-global transformation for a given heading.                                        |

| NAME   | NO. OF ARGS | CALLED<br>BY                                                                          | CALLS                                                            | COMMON<br>USED                                           | DESCRIPTION                                                                                                        |
|--------|-------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| TVARY  | 3           | BNMOVE<br>CURREN<br>LIMCHK<br>NRAPIT<br>PAYUPD<br>STATIC<br>STPDYN<br>TRANS<br>UPDATE | RANDIN<br>TFNUSR                                                 | CONTRL<br>TIMED                                          | Compute time variation functions.                                                                                  |
| UPDATE | 41          | MANIPR<br>INPLIZ<br>FRQSLN<br>STATIC<br>TRANS                                         | COMPRP<br>CROSS<br>DMPFRC<br>MRPROP<br>SLAVUP<br>TRNSHP<br>TVARY | BUOYS CABLE CONTRL DSPCON LOGIC PAYOUT SHIPS TAPES TIMED | Update displacements, positions, tensions, strains, and lengths. Get new coordinate transformation data as needed. |

The second of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con

Teg the tests of the action of

## 8.0 DESCRIPTIONS OF MAJOR VARIABLES

This section lists the major variables in alphabetical order and gives a brief description of each. Entries in the ARRAY SIZE indicate the dimension of the array. No entry means a scalar variable. A variable name (e.g., NE) means an array which is mapped to the variable dimension working space of COMMON/ACOM/ through the MANIPR subroutine calling sequence. The length of such arrays are NE (number of elements) or NN3 (three times the number of nodes). The entries under the type column are:

是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也

- R -- for real variable (floating point)
- I -- for integer variable
- C -- for complex variable
- l. -- for logical variable
- H -- for Hollerith word for title or label output

The column named INPUT KEYWORD indicates the input record which provides the initial definition of the variable. RIGID refers to the rigid format input for the ship load file.

| VARIABLE<br>NAME | ARRAY<br>S1ZE | COMMON NAME | ТҮРЕ | DESCRIPTION                                            | INPUT<br>KEYWORD |
|------------------|---------------|-------------|------|--------------------------------------------------------|------------------|
| A                | NE            | ACOM        | R    | Cable element diameters.                               |                  |
| AABUOY           | 100           | BUOYS       | R    | Additional array for future expansion.                 |                  |
| ААСЛВ            | 100           | CABLE       | Ř    | Additional array for future expansion.                 |                  |
| AACON            | 100           | CONTRI.     | R    | Additional array for future expansion.                 |                  |
| AADSP            | 100           | DSPCON      | R    | Additional array for future expansion.                 |                  |
| AAPAY            | 100           | PAYOUT      | R    | Additional array for future expansion.                 |                  |
| AASHP            | 100           | SHIPS       | Ř    | Additional array for future expansion.                 |                  |
| AASTM            | 100           | STRUM       | R    | Additional array for future expansion.                 |                  |
| AATIM            | 100           | TIMED       | R    | Additional array for futire expansion.                 |                  |
| ABUOY            |               | TYPES       | 1    | Numeric code for BUOY keyword = 56                     |                  |
| ACCCUR           |               | SHIPS       | R    | Accumulated surface current load factor for DEAD/LIVE. |                  |
| ACCEAC           |               | CONTRI.     | R    | Accumulated load factor for DEAD/LIVE.                 |                  |
| ACCWND           |               | SHIPS       | R    | Accumulated wind load factor for DEAD/LIVE.            |                  |
| ACONF            |               | TYPES       | 1    | Numeric code for CONF, keyword = 57.                   |                  |
| ADM              | 50            | BUOYS       | R    | Buoyant forces for BODY table.                         | BODY             |
| AHEAD            |               | TYPES       | 1    | Numeric code for HEAD keyword = 51.                    |                  |

| VARIABLE<br>NAME | ARRAY<br>S1ZE | COMMON<br>NAME | ТҮРЕ | DESCRIPTION                                     | INPUT<br>KEYWORD |
|------------------|---------------|----------------|------|-------------------------------------------------|------------------|
| AIMPA            |               | TYPES          | ι    | Numeric code for IMPA keyword = 31.             |                  |
| AINIT            |               | TYPES          | I    | Numeric code for INIT keyword = 32.             |                  |
| . NVE            |               | TYPES          | 1    | Numeric code for INVE keyword = 18.             |                  |
| ALIMI            |               | TYPES          | 1    | Numeric code for LIMI keyword = 19.             |                  |
| ALINE            |               | TYPES          | 1    | Numeric code for LINE keyword = 20.             |                  |
| ALIVE            |               | TYPES          | I    | Numeric code for LIVE keyword = 2.              |                  |
| Alloc            |               | TYPES          | 1    | Numeric code for LLOC keyword = 21              |                  |
| ALOAD            |               | TYPES          | 1    | Numeric code for LOAD keyword = 34.             |                  |
| ALPNEW           |               | TIMED          | R    | Generalized Newmark integra-<br>tion parameter. | TIME             |
| ALVAR            |               | TYPES          | ı    | Numeric code for LVAR keyword = 35.             |                  |
| AMATE.           |               | TYPES          | I    | Numeric code for MATE keyword = 22.             |                  |
| AMAX             |               | CDCAL          | ĸ    | Strum string response parameter.                |                  |
| AMAXI.           | 5             | PAYOUT         | R    | Mitosis lengths for payout elements.            | PAYO             |
| AMODE            |               | TYPES          | 1    | Numeric code for MODE keyword = 5.              |                  |
| AMOVE            |               | TYPES          | ĭ    | Numeric code for MOVE keyword = 36.             |                  |
| AMPMN            |               | FRQDAT         | R    | Cut off wave amplitude for FREQ SAO.            |                  |

| VARIABLE<br>NAME | ARRAY<br>STZE | COMMON NAME | ТҮРЕ | DESCRIPTION                               | INPUT<br>KEYWORD |
|------------------|---------------|-------------|------|-------------------------------------------|------------------|
| AMSOL            |               | TYPES       | 1    | Numeric code for MSOL keyword = 37.       |                  |
| ANCH             |               | TYPES       | l    | Numeric code for ANCH keyword = 55.       |                  |
| ANCTAB           | 5,16,6        | COMPNT      | R    | Inventory anchor property table.          |                  |
| ANEW             |               | TYPES       | 1    | Numeric code for NEW keyword = 9.         |                  |
| ANODE            |               | TYPES       | 1    | Numeric code for NODE keyword = 23.       |                  |
| APROP            | 3             | SHIPS       | R    | Propeller projected area.                 | SHIP             |
| ASHTP            |               | TYPES       | I    | Numeric code for SHIP keyword = 24.       |                  |
| ASTEP            |               | TYPES       | I    | Numeric code for STEP keyword = 43.       |                  |
| ASTRUM           |               | TYPES       | ì    | Numeric code for STRU keyword = 25.       |                  |
| ATIME            |               | TYPES       | 1    | Numeric code for TIME keyword = 45.       |                  |
| ATYPE            | 3,6           | COMPRT      | ĸ    | Inventory anchor type table.              |                  |
| AWIND            |               | TYPES       | 1    | Numeric code for WIND keyword = 46.       |                  |
| вам              | 30            | FRQDAT      | R    | List wavelength from ship motion file.    |                  |
| BAMC             | 50            | BUOYS       | R    | Added mass coefficients for body table.   | ВООУ             |
| BETNEW           |               | TIMED       | R    | Integration parameter, β.                 | TIME             |
| BLEN             | 50            | BUOYS       | R    | Length for cylindrical buoys, body table. | BODY             |
| BLOC             |               | TYPES       | 1    | Numeric code for BLOC keyword ≈ 13.       |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | <u>DESCRIPTION</u>                                                 | INPUT<br>KEYWORD |
|------------------|---------------|-------------|------|--------------------------------------------------------------------|------------------|
| BLOCK            | 3             | SHIPS       | R    | Block coefficient for each ship.                                   |                  |
| ВМОМ             | 50            | BUOYS       | R    | Mass moment of inertia for body table.                             | BODY             |
| ВОДУ             |               | TYPES       | I    | Numeric code for BODY keyword = 14.                                |                  |
| BOMAS            | 50            | BUOYS       | R    | Body mass for body table.                                          |                  |
| BOVOL            | 50            | BUOYS       | R    | Body volume for body table.                                        |                  |
| BSCD             | 50            | BUOYS       | R    | Surface current drag for body table.                               | BODY             |
| BTYPE            | 3,2           | COMPNT      | R    | Inventory buoy type table.                                         |                  |
| BUOKP            | 3,50          | BUOYS       | R    | Body location parameters for checking static response instability. |                  |
| BUOTAB           | 7,6,2         | COMPNT      | R    | Inventory buoy property table.                                     |                  |
| BWND             | 50            | BUOYS       | R    | Wind drag coefficients for surface buoy.                           | BODY             |
| B44S             | 8             | FRODAT,     | R    | Roll damping terms for ship motion file.                           |                  |
| CABMAS           | 10            | CABLE       | Ř    | Mass per unit length for cable materials.                          |                  |
| CAD              |               | SHIPS       | R    | Global current heading in degrees.                                 | SURF             |
| CAMC             | 10            | CABLE       | R    | Line material added mass coefficient.                              | MATE             |
| <b>CBU</b> 0     |               | BUOYS       | R    | Body drag coefficient.                                             |                  |
| CEPS             |               | STRUM       | R    | Strum update parameter.                                            | SOLU             |
| CHAIN            | 31,3          | COMPNT      | R    | Inventory chain property table.                                    |                  |
| CHECKR           |               | rogic       | L    | Component check flag; True means CHEK SAO active.                  |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE     | DESCRIPTION                                                                                                     | INPUT<br>KEYWORD |
|------------------|---------------|-------------|----------|-----------------------------------------------------------------------------------------------------------------|------------------|
| СНЕК             |               | TYPES       | 1        | Numeric code for CHECK key-<br>word = 7.                                                                        |                  |
| CLBL             |               | SHPLBL      | <b>H</b> | Current load label for ship-<br>load file.                                                                      | RIGID            |
| CORDLM           | 50            | BUOYS       | R        | Limit set coordinate for limit table.                                                                           | LIMI             |
| CPROP            | 3             | SHIPS       | R        | Propeller resistance coefficient.                                                                               | SHIP             |
| CR               | 3             | SHIPS       | R        | Longitudinal resistance coefficient.                                                                            | SHIP             |
| CRST             | 30            | STRUM       | R        | Not used at present.                                                                                            |                  |
| cs               | 3             | SHIPS       | R        | Hull wetted surface coefficient.                                                                                | SHIP             |
| CURCOE           | 20,3,5        | SHIPS       | R        | Current load coefficient for ship load tables.                                                                  | RIGID            |
| CURHED           | 20            | SHIPS       | R        | Current headings for ship load tables.                                                                          | RIGID            |
| CURLEN           | 5             | PAYOUT      | R        | Current length of payout element.                                                                               |                  |
| CURMUL           |               | CABLE       | R        | Flow field scale factor.                                                                                        | CURR             |
| CURNT            |               | SHIPS       | R        | Magnitude of surface current.                                                                                   | SURF             |
| CURR             |               | TYPES       | 1        | Numeric code for CURR key-<br>word = 28.                                                                        |                  |
| CY LRMS          | 50            | BUOYS       | R        | Added mass for cylindrical buoy in hody table.                                                                  |                  |
| DA               | 6,6           | FRQDAT      | R        | Ship's added mass matrix from ship motion file.                                                                 |                  |
| DALPHA           |               | TIMED       | R        | Proportional damping multi-<br>plier of mass matrix or<br>alpha integration parameter<br>for VRS/VRR solutions. | solu             |

| VAR I ABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                                                                                       | I NPUT<br>KEYWORD |
|--------------------|---------------|-------------|------|-------------------------------------------------------------------------------------------------------------------|-------------------|
| DB                 | 6,6           | FRQDAT      | R    | Ship's damping matrix from ship motion file.                                                                      |                   |
| DBETA              |               | TIMED       | R    | Proportional damping multi-<br>plier of stiffness matrix<br>or initial pseudo-time step<br>for VRS/VRR solutions. | SOLU              |
| DBU                | 50            | BUOYS       |      | Body diameters for body table.                                                                                    | BODY              |
| DC                 | 6,6           | FRQDAT      | R    | Ship's restoring force matrix from ship motion file.                                                              |                   |
| DEAD               |               | TYPES       | 1    | Numeric code for DEAD keyword = 1.                                                                                |                   |
| DELFAC             |               | CONTRL      | R    | Load factor increment (step size) for DEAD/LIVE.                                                                  |                   |
| DELTMP             |               | CONTRL      | R    | Temporary storage for DELFAC for VRS/VRR solutions.                                                               |                   |
| DERAD              |               | CONTRL      | R    | Degree/radian conversion factor.                                                                                  |                   |
| DERR               |               | CONTRL      | R    | Displacement error tolerance for iterative solutions.                                                             | SOLU              |
| DIAM               | 10            | CABLE       |      | Line material diameters.                                                                                          | MATE              |
| DISPC              | 30            | DSPCON      | R    | Static imposed displace-<br>ment amplitudes in C.                                                                 | MOVE              |
| DISPP              | 30            | DSPCON      | R    | Reference imposed displace-<br>ment amplitudes.                                                                   |                   |
| DLD                |               | LOGIC       | L    | Dead load flag; True means DEAD SAO.                                                                              |                   |
| DLREF              |               | PAYOUT      | R    | Unstretched lengths for payout elements.                                                                          |                   |
| DMAXAB             |               | TIMED       | R    | Magnitude of maximum acceleration increment in DYN SAO.                                                           |                   |
| DMAXP              |               | TIMED       | R    | Previous maximum acceleration in DYN SAO.                                                                         |                   |

是一个时间,我们就是一个时间,我们就是一个时间,我们也不是一个时间,我们就是一个时间,我们就是一个时间,我们也没有一个时间,我们也没有一个时间,我们也没有一个时间 第一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME |   | DESCRIPTION                                 | INPUT<br>KEYWORD |
|------------------|---------------|----------------|---|---------------------------------------------|------------------|
| DMU              |               | CONTRL         | R | Numerical damping coeffi-<br>cient.         | SOLU             |
| DOMG             |               | FRQDAT         | R | Wave frequency increment                    | SPEC             |
| DONE             |               | TYPES          | I | Numeric code for DONE key-<br>word = 54.    | DI DC            |
| DPTMF            | 5             | PAYOUT         | R | Time function increment for payout point.   |                  |
| DRAD             |               | Ships          | R | Degrees per radian.                         |                  |
| DRFTFR           | 3             | FRQDAT         | R | Wave-induced drift force components.        |                  |
| DRGAMP           | NE            | ACOM           | R | Drag amplification factor.                  |                  |
| DS               | NE            | ACOM           | R | Current lengths for ele-                    |                  |
| DSO              | NE            | ACOM           | R | Initial lengths for ele-<br>ments.          | ELEM             |
| DSR              | NE            | ACOM           | R | Reference lengths for ele-<br>ments.        |                  |
| DT               |               | TIMED          | R | Time step.                                  | TIME             |
| DTH              |               | TIMED          | R | Upper bound on time step.                   | 11111            |
| DTL              |               | TIMED          | R | Lower bound on time step.                   |                  |
| DTLL             |               | TIMED          | R | Lower bound on time step in DYN SAO.        |                  |
| DTMAX            |               | TIMED          | R | Upper bound on time step in DYN SAO.        |                  |
| DTRSRT           |               | TIMED          | R | Restart save time interval.                 | SAVE             |
| DTU              |               | TIMED          | R | Reference update time.                      | TIME             |
| DU               | NE            | ACOM           | R | -                                           | - 44661          |
| DYN              |               | LOGIC          | L | Transient dynamic flag; True means DYN SAO. |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                               | INPUT<br>KEYWORD |
|------------------|---------------|-------------|------|-----------------------------------------------------------|------------------|
| E                | 2,10          | CABLE       | R    | Slopes of line segments in material tables.               | •                |
| ELEM             |               | TYPES       | I .  | Numeric code for ELEM key-<br>word = 15.                  |                  |
| ELL              |               | FRQDAT      | R    | Ship's length for nondimensionalized ship motion file.    |                  |
| ERR              |               | ERR         | R    | Not used.                                                 |                  |
| ES               | NE            | ACOM        | R    | Element secant EA in <sup>t</sup> C.                      |                  |
| ESP              | 2,5           | PAYOUT      | R    | Multimaterial payout secant modulii.                      |                  |
| ET               | NE            | ACOM        | R    | Element tangent EA in <sup>t</sup> C.                     |                  |
| EXTE             |               | TYPES       | I    | Numeric code for EXTE key-<br>word = 49.                  |                  |
| EXTRAP           |               | CONTRL      | R    | MNR extrapolation factor.                                 |                  |
| F                | им3           | ACOM        | R    | Nodal loads in <sup>t</sup> C.                            |                  |
| FACH             |               | SHIPS       | R    | Depth correction factor.                                  |                  |
| FACLEN           |               | FRQDAT      | R    | Length conversion factor for ship motion file.            | EXTE             |
| FBUSK            | 50            | BUOYS       | R    | Surface buoy time function value for body locations.      |                  |
| FDEPTH           | 5             | CABLE       | R    | Fluid interface depths.                                   | FLUI             |
| FDIVY            |               | CONTRL      | R    | Inventory conversion factor for line diameters.           | INVE             |
| FEEDBK           |               | LOGIC       | L    | Feedback flag; True means feedback form used, RFB or VRR. |                  |
| FELT             | 3,2           | СНКДАТ      | R    | Fluid loads on a single element for CHEK SAO.             |                  |
| FG               | NN3           | ACOM        | R    | Nodal point gravity loads.                                |                  |
| FGAM             | 5             | CABLE       | R    | Fluid table specific weights.                             | FLUI             |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                                       | INPUT<br>KEYWORD |
|------------------|---------------|-------------|------|-------------------------------------------------------------------|------------------|
| FINC             |               | CONTRL      | R    | Alters the residual added mass correction for TL or UL solutions. |                  |
| FINIS            |               | TYPES       | I    | Numeric code for END key-<br>word = 10.                           |                  |
| FIX              |               | TYPES       | I    | Numeric code for FIX key-<br>word = 29.                           |                  |
| FLNVY            |               | CONTRL      | R    | Inventory conversion factor for buoy diameters and lengths.       | INVE             |
| FLOW             |               | TYPES       | I    | Numeric code for Flow key-<br>word = 16.                          |                  |
| FLPAR            | 10,10         | CABLE       | R    | Flow field table parameters                                       | FLOW             |
| FLUI             |               | TYPES       | I    | Numeric code for FLUI key-<br>word = 17.                          |                  |
| FP               | 3,NN3         | ACOM        | R    | Point loads for load sets.                                        | LOAD             |
| FRCFAC           |               | FRQDAT      | R    | Force conversion factor for ship motion file.                     | EXTE             |
| FRCVY            |               | CONTRL      | R    | Inventory conversion factor for weights and strengths.            | INVE             |
| FREE             |               | TYPES       | 1    | Numeric code for FREE key-<br>word = 30.                          |                  |
| FREQ             |               | TYPES       | I    | Numeric code for FREQ key-<br>word = 6.                           |                  |
| FSFRC            | 3             | SHIPS       | R    | Ship load table conversion factor for current force.              | SHIP             |
| FSFRW            | 3             | SHIPS       | R    | Ship load table conversion for wind force.                        | SHIP             |
| FSLEN            | 3             | SHIPS       | R    | Ship load table conversion factor for length.                     | SHIP             |
| FSOL             |               | TYPES       | I    | Numeric code for FSOL key-<br>word = 47.                          |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | <u>TYPE</u> | DESCRIPTION                                                                                                                                    | INPUT<br>KEYWORD |
|------------------|---------------|----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| FSVEL            | 3             | SHIPS          | R           | Ship load table conversion for velocity.                                                                                                       | SHIP             |
| FTF              | 3             | TIMED          | R           | Time function values for load sets in C.                                                                                                       |                  |
| FTI              | 15            | TIMED          | R           | Time function values for dynamic moving boudary components in C.                                                                               |                  |
| FVISC            | 5             | CABLE          | R           | Fluid table kinematic viscosities.                                                                                                             | FLUI             |
| F1               | NN3           | ACOM           | R           | Nodal point loads from current and wind in C.                                                                                                  |                  |
| F2               | NN3           | ACOM           | R           | Total nodal point loads at<br>the incremental reference<br>state. Also used for itera-<br>tive displacement increment<br>in NRAPIT subroutine. |                  |
| GAIR             |               | SHIPS          | R           | Specific weight of air.                                                                                                                        |                  |
| GAMNEW           |               | TIMED          | R           | Gamma integration parameter.                                                                                                                   | TIME             |
| GHED             |               | FRQDAT         | R           | Global wave heading in degrees.                                                                                                                | HEAD             |
| GK               | NF3,IBEND     | ACOM           | R           | Global incremental stiff-<br>ness matrix stored in banded<br>row form.                                                                         |                  |
| GKS              | 3,3           | SHIPS          | R           | Element stiffness matrix for strum string.                                                                                                     |                  |
| G <sub>N</sub>   | NN3           | ACOM           | R           | Diagonal mass matrix includ-<br>ing residual added mass.                                                                                       |                  |
| GNA              | NE            | ACOM           | , <b>R</b>  | Residual added mass for each element.                                                                                                          |                  |
| GMU              | 6,6           | FRQDAT         | R           | Ship's mass matrix from ship motion file.                                                                                                      |                  |
| GRAV             |               | CONTRL         | R           | Acceleration due to gravity.                                                                                                                   | PROB             |
| Gl               |               | CONTRL         | R           | Kinematic viscosity of first fluid, water.                                                                                                     |                  |

| VARTABLE NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                                   | INPUT<br>KEYWORD |
|---------------|---------------|-------------|------|---------------------------------------------------------------|------------------|
| G2            |               | CONTRL      | R    | Specific weight of first fluid, water.                        |                  |
| G3            | 10            | CABLE       | R    | Weight per unit length of line material.                      | MATE             |
| HAWS12        | 23            | COMPNT      | R    | Inventory hawser sizes.                                       |                  |
| HAWTAB        | 2,23,4        | COMPNT      | R    | Inventory hawser property table.                              |                  |
| HDG1          | 30            | FRQDAT      | R    | Wave headings for ship motion file.                           |                  |
| HEAD          | 3             | SHIPS       | R    | Ship's global heading.                                        |                  |
| HED           | 20            | HEDCHR      | н    | Page heading title.                                           |                  |
| HEDEND        |               | SHIPS       | R    | Surface load total heading change.                            | STEP             |
| HED1#IX       |               | SHIPS       | R    | Upper bound on heading increment.                             |                  |
| HEDINC        |               | SHIPS       | R    | Surface load heading increment.                               | STEP             |
| HEDNOW        |               | SHIPS       | R    | Surface load heading value in C.                              |                  |
| HIRSDL        |               | DSPCON      | R    | VRR control parameter; keeps tract of largest residual found. |                  |
| HLDFAC        | 6             | COMPN'I     | R    | Inventory anchor holding factor table.                        |                  |
| HTYPE         | 3,4           | COMPNT      | R    | Inventory hawser types.                                       |                  |
| IAABU         | 10            | IBUOYS      | I    | Additional array for future expansion.                        |                  |
| TAACA         | 10            | ICABLE      | I    | Additional array for future expansion.                        |                  |
| IAACL         | 10            | ICNTRL      | I    | Additional array for future expansion.                        |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                                           | INPUT<br>KEYWORD |
|------------------|---------------|-------------|------|-----------------------------------------------------------------------|------------------|
| I AADS           | 10            | IDSPCN      |      | Additional array for future expansion.                                |                  |
| I AAPO           | 10            | IPAYOT      | I    | Additional array for future expansion.                                |                  |
| I AASHP          | 10            | ISHIPS      | I    | Additional array for future expansion.                                |                  |
| IAASTM           | 10            | ISTRUM      | 1    | Additional array for future expansion.                                |                  |
| MITAAI           | 10            | ITIMED      | I    | Additional array for future expansion.                                |                  |
| IALTR            |               | ITIMED      | 1    | Alternating acceleration increment flag for DYN SAO.                  |                  |
| IB               | 5             | ITIMED      | I    | List of dynamic moving boundary nodes.                                |                  |
| I BEND           |               | ICNTRL      | I    | Half bandwidth.                                                       |                  |
| I BEND 1         |               | ICNTRL      | I    | Half bandwidth with incre-<br>mental moving boundary.                 |                  |
| 1 BEND 2         |               | ICNTRL      | I    | Half bandwidth without incremental moving boundary.                   |                  |
| IBC              |               | ICNTRL      | 1    | Debug output flag                                                     | OUTP             |
| I BGF            |               | FRQDAT,     | I    | Debug output flag for FRQ SAO.                                        | RESU             |
| 128              | 50            | IBUOYS      | 1    | Time variation codes for surface buoys.                               | SBUO             |
| 180              | 50            | IBUOYS      | I    | Nodes where bodies are located.                                       | BLOC             |
| 1 CNCHF          |               | FRQDAT      | 1    | Component check file flag.                                            | FSOL             |
| 1 CONMS          |               | FRQDAT      | I    | Mass matrix format code.                                              | FSOL             |
| ICR              |               | ISHIPS      | I    | Flag to signal if table lookup is used to get hull resistance factor. |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | TYPE | DESCRIPTION                                                                 | INPUT<br>KEYWORD |
|------------------|---------------|----------------|------|-----------------------------------------------------------------------------|------------------|
| IDAMPR           |               | ICABLE         | 1    | Material damping flag;<br>O means no damping.                               |                  |
| IDAY             |               | HEDCHR         | H    | Character string for date.                                                  |                  |
| IDIR             |               | ICNTRL         | I    | Coordinate number for vertical direction.                                   |                  |
| IDIS             | 30,3          | IDSPCN         | I    | Static displacement variation codes.                                        |                  |
| IDRB             | 50            | IBUOYS         | I    | Drag coefficient codes for bodies.                                          | BODY             |
| IDRG             | 10            | I CABLE        | I    | Drag coefficient codes for line materials.                                  | MATE             |
| IDRITR           |               | FRQDAT         | 1    | Drift force iteration flag.                                                 | FSOL             |
| IDWN             |               | IDSPCN         | I    | VRS/VRR control parameters; signals successive reductions of velocity norm. |                  |
| IFCNT            |               | I CNTRL        | I    | Record counter for frequency domain CHEK data.                              |                  |
| IFILE            | 4             | SIZE           | 1    | Restart file record counters.                                               |                  |
| IFLAGS           | 60            | IFLAG          | H    | Codes for each of the key-<br>words, 4 characters each.                     |                  |
| IFLCOD           | 10            | I CABLE        | I    | Flow field codes.                                                           | FLOW             |
| IFREQ            |               | ISHIPS         | I    | Signals the frequency domain solution to the stiffness matrix routines.     |                  |
| IFRQUP           |               | FRQDAT         | ı    | Iteration option for drift force updates.                                   | FSOL             |
| IFXFL            |               | ICNTRL         | I    | Limit condition flag used to signul constraint code changes.                |                  |
| IGK              |               | ICNTRL         | 1    | Solution format code for stiffness matrix.                                  |                  |

THE CHARGE HAVE THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF

: :=

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                                               | INPUT<br>KEYWORD   |
|------------------|---------------|-------------|------|---------------------------------------------------------------------------|--------------------|
| IKEEP            |               | TYPES       | I    | Numeric code for KEEP key-<br>word = 33.                                  |                    |
| IKNSTN           |               | ICNTRL      | I    | Limit check over-ride flag.                                               |                    |
| ILF              | 3             | ITIMED      | 1    | Load set variation codes.                                                 | LVAR               |
| IMPBOD           |               | IBUOYS      | 1    | Body number for body impact.                                              | IMPA               |
| IMPNOD           |               | IBUOYS      | i    | Node number for body impact.                                              | IMPA               |
| IMTMF            | 15            | ITIMED      | I    | Moving boundary variation codes.                                          | MOVE               |
| IMX              |               | ITIMED      | I    | Number degree of freedom with largest acceleration increment for DYN SAO. |                    |
| INC              |               | ICNTRL      | 1    | Solution increment counter.                                               |                    |
| INDRAG           |               | ICNTRL      | I    | Drag model override flag.                                                 | PROB               |
| INVFLG           |               | СНКДАТ      | I    | Inventory useage flag.                                                    |                    |
| INVP             |               | IDSPCN      | ĭ    | VRS/VRR control parameter.                                                |                    |
| INVY             |               | I CNTRI.    | ı    | Inventory useage flag.                                                    |                    |
| IOPT             |               | IBUOYS      | 1    | Impacting body weight option code.                                        | IMPA               |
| LPAGE            |               | HEDDAT      | 1    | Page counter.                                                             |                    |
| IPR              |               | ICNTRL      | 1    | Number of steps between printouts.                                        | OUTP               |
| 160ET            |               | FRQDAT      | 1    | Roll damping iteration flag.                                              | FSOL               |
| TRR              |               |             | I    | Error return flag; #0 means error.                                        |                    |
| IRST             |               | RETAPE      | 1    | Restart file flag.                                                        | SAVE<br>or<br>REST |
| ISHIP            | 3             | ISHIPS      | 1    | Nodes where ships are located.                                            | SHIP               |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME    | TYPE | DESCRIPTION                                      | input<br>Keyword |
|------------------|---------------|----------------|------|--------------------------------------------------|------------------|
| 1SHPFL           |               | FRQDAT         | 1    | Ship flag for FREQ SAO;<br>O means no ship.      |                  |
| ISHTAP           |               | ISHIPS         | 1    | Flag to signal the use of ship load file.        |                  |
| ISIGNI           |               | ITIMED         | 1    | Alternating response estimates flag for DYN SAO. |                  |
| ISTGN2           |               | ITIMED         | ĭ    | Alternating response estimates flag for DYN SAO. |                  |
| IST              |               | CDCAI,         | I    | Strum string number.                             |                  |
| ISTART           |               | ICNTRL         | 1    | Solution option code; see NSLOP.                 |                  |
| ISTRNG           | 30            | 1 STRUM        | I    | Number of elements in each strum string.         | STRU             |
| ISTRUP           |               | ISTRUM         | I    | Strum update flag.                               |                  |
| ISUR1.D          |               | ISHIPS         | 1    | Wind and surface current load flag.              |                  |
| IT               | 2,NE          | ACOM           | 1    | Element connectivity list                        | ELEM             |
| ITCONF           |               | FRQDAT         | I    | Counter for drift force iterations.              |                  |
| ITFCOD           | 20            | ITIMED         | I    | Time function type code.                         | TFUN             |
| ITIME            |               | HEDCHR         | н    | Character string for time.                       |                  |
| TOP              |               | ITIMED         | 1    | Upper bound flag on time step in DYN SAO.        |                  |
| TUP              |               | IDSPCN         | 1    | VRS/VRR solution parameter.                      |                  |
| lunres           |               | FRQDAT         | I    | Unrestrained motion output flag.                 | RESU             |
| 10P              |               | ISHIPS         | I    | Code for up direction.                           |                  |
| TUPDT            |               | <b>I CNTRL</b> | I    | Counter for configuration updates.               |                  |
| JANCR            | 50            | IBUOYS         | 1    | Limit set fixity codes.                          | LIME             |

| VARTABLE<br>NAME | ARRAY<br>S1ZE | COMMON NAME | TYPE | DESCRIPTION                                                                                   | I NPUT<br>KEYWORD |
|------------------|---------------|-------------|------|-----------------------------------------------------------------------------------------------|-------------------|
| JB               | 15            | 1T1MED      | ľ    | Moved component variation codes.                                                              | MOVE              |
| JUI.D            |               | ICNTRL      | I    | Dead load option flag                                                                         | LVAR              |
| JDYN             |               | ICNTRL      | I    | Dynamic solution option flag.                                                                 | PROB              |
| JMPDT            |               | ICNTRL      | ľ    | Step size control number.                                                                     | solu              |
| JOP              | 5             | IPAYOT      | I    | Node numbers for payout points.                                                               | PAYO              |
| JOVR             |               | ICNTRL      | 1    | Limit set overshoot node.                                                                     |                   |
| JPELT            | 5             | 1PAYOT      | 1    | Element numbers for payout.                                                                   | PAYO              |
| JSLP             | 2,50          | 1BUOYS      | ĭ    | lists connecting elements<br>for cylindrical buoys or<br>defining nodes for mooring<br>buoys. |                   |
| JSTEPR           |               | TDSPCN      | 1    | Number of steps.                                                                              | STEP              |
| KNSTRN           |               | IBUOYS      | I    | Flag to signal if limit locations are defined.                                                |                   |
| KNTPST           |               | ITIMED      | ĭ    | Counter for restart save intervals.                                                           |                   |
| KODEC            | 2             | ISHIPS      | 1    | Variation codes for surface current.                                                          | SURF              |
| KODEw            | 2             | ISHIPS      | r    | Variation codes for wind loads.                                                               | MIND              |
| <b>KOM</b> 5     | NE            | ACOM        | ĭ    | Element type code.                                                                            | ELEM              |
| KONECT           | 10,50         | 1BUOYS      | 1    | Lists elements connecting to each limit location.                                             |                   |
| KÖNVRT           |               | TCNTRI.     | I    | Number of iteration trials.                                                                   | solu              |
| KOUNT            |               | 1 CNTRL     | 1    | Solution iteration counter.                                                                   |                   |
| KSTRNG           | 20,30         | ISTRUM      | 1    | Lists strum string elements up to 20 per string.                                              | STRU              |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME   | TYPE | DESCRIPTION                                                           | INPUT<br>KEYWORD |
|------------------|---------------|---------------|------|-----------------------------------------------------------------------|------------------|
| KUP              |               | ICNTRL        | 1    | Time step increase control parameter in DYN SAO.                      |                  |
| LBODN            | 50            | IBUOYS        | ľ    | List of body numbers of body locations.                               | BLOC             |
| LIMNOD           | 50            | IBUOYS        | I    | List of limit location nodes.                                         | LI.OC            |
| LIMSET           | 50            | IBUOYS        | 1    | List of limit set numbers for limit locations.                        | LI.OC            |
| LLBI.            |               | SHPLBL        | H    | Length label for ship load file.                                      | RIGID            |
| LMITER           |               | ICNTRL        | 1    | Maximum number of iterations per step.                                | solu             |
| LMKEEP           |               | IDSPĊN        | I    | Temporary storage of LMITER for VRS/VRR solutions.                    |                  |
| LSHP             | 3             | ISHIPS        | 1    | Ship load function codes.                                             | SHTP             |
| MAT              | NE            | ACOM          | 1    | List of element material numbers.                                     | ELEM             |
| MATDMP           | 10            | ICABLE        | I    | List of material damping flags; 0 means this material has no damping. |                  |
| MATT             |               | <b>1CABLE</b> | l    | Number of materials defined.                                          |                  |
| MBLN             | 50            | IBUOYS        | 1    | Counters for number of number slave nodes on mooring buoys.           |                  |
| ME               | 10            | ICABLE        | 1    | Number of points in each material table.                              | MATE             |
| MED              | 10            | 1CABLE        | 1    | List of medium codes for material tables.                             | MATE             |
| MED1UM           | NE            | ACOM          | I    | Fluid medium codes for elements.                                      | ELEM             |
| MEDMB            | 50            | IBUOYS        | 1    | List of medium codes for body table.                                  | BODY             |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | ТҮРЕ | DESCRIPTION                                               | Input<br>Keyword |
|------------------|---------------|-------------|------|-----------------------------------------------------------|------------------|
| MITNOT           |               | IPAYOT      | 1    | Mitosis prevention flag.                                  |                  |
| MNOB             |               | FRQDAT      | I    | Maximum number of wave speeds on ship motion file.        |                  |
| MNOH             |               | FRQDAT      | I    | Maximum number of wave head-<br>ings on ship motion file. |                  |
| MNOK             |               | FRQDAT      | 1    | Maximum number of wave lengths on ship motion file.       |                  |
| MNRV             |               | FRQDAT      | 1    | Maximum number of roll angles on ship motion file.        |                  |
| MODE 11          |               | ICNTRL      | I    | Mode shape order flag.                                    | MSOL             |
| MODE12           |               | ICNTRL      | I    | Mode shape output flag.                                   | MSOL             |
| MORBUO           |               | IBUOYS      | I    | Number of mooring buoys.                                  |                  |
| MOSTAT           |               | ICNTRL      | 1    | TSSS flag; 1 - yes, o - no.                               |                  |
| MULMAT           | 5             | ì PAYOT     | I    | Multimaterial flag for payout element.                    |                  |
| MULTIM           |               | IPAYOT      | 1    | Multimaterial payout flag.                                |                  |
| MVB              |               | ICNTRL      | I    | Number of nodes with defined motion in DYN SAO.           |                  |
| MVBINC           | •             | ICNTRL      | I    | Number of incremental moving boundary nodes.              |                  |
| WXBLOC           |               | IBUOYS      | I    | Maximum number of body loca-<br>tions.                    |                  |
| MXBODY           |               | IBUOYS      | I    | Maximum number of bodies in table.                        |                  |
| MXFLOW           |               | ICABLE      | 1    | Maximum number of flow tables.                            |                  |
| MXLIMS           |               | IBUOYS      | I    | Maximum number of limit sets.                             |                  |
| MXLINE           |               | HEDDAT      | I    | Number of lines per page.                                 |                  |
| MXLLOC           |               | IBUOYS      | I    | Maximum number of limit locations.                        |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | TYPE | DESCRIPTION                                                                                    | Input<br>Keyword |
|------------------|---------------|----------------|------|------------------------------------------------------------------------------------------------|------------------|
| MXSELT           |               | YSTRUM         | I    | Maximum number of element per strum string.                                                    |                  |
| MXSHIP           |               | ISHIPS         | I    | Maximum number of ship locations.                                                              |                  |
| MXSTRG           |               | ISTRUM         | 1    | Maximum number of strum strings.                                                               |                  |
| MXTFUN           |               | ITIMED         | I    | Maximum number of time functions.                                                              |                  |
| NANCR            | 6             | COMPNT         | I    | Inventory anchor count.                                                                        |                  |
| NBASE            |               | ICNTRL         | I    | Number of entries in the base portion of ACOM.                                                 |                  |
| NBLOC            |               | IBUOYS         | I    | Number of body locations.                                                                      |                  |
| NBUOY            | 2             | COMPNT         | 1    | Inventory buoy count.                                                                          |                  |
| NCHN             |               | COMPNT         | I    | Inventory chain count.                                                                         |                  |
| NCOM             |               | SIZE           | 1    | Size of ACOM.                                                                                  |                  |
| NCONC            |               | ICNTRL         | I    | Number of concentrated loads (point loads).                                                    |                  |
| NCRNT            |               | ISKIPS         | I    | Number of current tables in ship load file.                                                    |                  |
| NCYLB            |               | IBUOYS         | 1    | Number of cylindrical buoys.                                                                   |                  |
| NDISP            |               | IDSPCN         | I    | Number of static imposed displacement.                                                         |                  |
| NDROP            |               | IDSPCN         | I    | VRS/VRR control parameter; counts down for 3 velocity convergence trials with damping reduced. |                  |
| NE               |               | ICNTRL         | I    | Number of cable/line ele-<br>ments.                                                            |                  |
| NELCK            |               | СНКОАТ         | 1    | Element number being checked.                                                                  |                  |
| NELPO1           | 5             | IPAYOT         | 1    | Element number increment for payout.                                                           | PAYO             |

| VARIABLE NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                                                                | INPUT<br>KEYWORD |
|---------------|---------------|-------------|------|--------------------------------------------------------------------------------------------|------------------|
| NEWCON        |               | FRQDAT      | I    | New configuration flag for drift force updates.                                            |                  |
| NEWRED        |               | FRQDAT      | 1    | Global heading input flag for FREQ SAO.                                                    |                  |
| NFILE         |               | RETAPE      | 1    | Restart file code                                                                          | REST             |
| NFILEF        |               | FRQDAT      | I    | Ship motion file format flag.                                                              | EXTE             |
| NFIX          |               | ICNTRL      | 1    | Number of globally fixed nodes (always 0).                                                 |                  |
| NFKEEP        | 30            | IDSPCN      | I    | Previous nodes component fixity codes for static imposed displacement and moving boundary. |                  |
| NFLUI         |               | ICABLE      | I    | Number of fluids defined.                                                                  |                  |
| NFLVRY        |               | ICABLE      | I    | Flow field variation code                                                                  | CURR             |
| NFLUID        |               | I CNTRL     | I    | Flow field number                                                                          | CURR             |
| NFN           |               | ICNTRL      | I    | Number of active nodes.                                                                    |                  |
| NE3           |               | ICNTRL      | I    | Number of active degrees of freedom.                                                       |                  |
| NFREQS        |               | FRQDAT      | 1    | Counter for the number of frequencies in FREQ SAO.                                         |                  |
| NGROW         | 5             | IPAYOT      | I    | Number of elements available for payout.                                                   | PAYO             |
| NHAWS         | 4             | COMPNT      | I    | Inventory hawser count.                                                                    |                  |
| NHED          |               | HEDDAT      | I    | Number of words in page heading; defined in SEADYN.                                        |                  |
| NIN           |               | TAPES       | I    | Input file code.                                                                           |                  |
| NINA          |               | SIZE        | 1    | Number of words in /ACOM/.                                                                 |                  |
| NINB          |               | SIZE        | 1    | Number of words in /BUOYS/.                                                                |                  |
| NINBI         |               | SIZE        | 1    | Number of words in /IBUOYS/.                                                               |                  |

,一个时间,一个时间,他们就是一个时间,他们就是一个时间,他们也是一个时间,他们的时间,他们的时间,他们的时间,他们也是一个时间,他们的时间,他们的时间,他们也 一个时间,一个时间,他们就是一个时间,他们就是一个时间,他们就是一个时间,他们的时间,他们们就是一个时间,他们们们的时间,他们们们们们们们们们们们们们们们们们的

WAR 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | TYPE | DESCRIPTION                                | I NPUT<br>KEYWORD |
|------------------|---------------|----------------|------|--------------------------------------------|-------------------|
| NINC             |               | SIZE           | 1    | Number of words in /CABLE/.                |                   |
| NINCI            |               | SIZE           | 1    | Number of words in /ICABLE/.               |                   |
| NINCLI           |               | SIZE           | 1    | Number of words in /ICNTRL/.               |                   |
| NINDSI           |               | SIZE           | I    | Number of words in /IDSPCN/.               |                   |
| NINDSP           |               | SIZE           | 1    | Number of words in /DSPCON/.               |                   |
| NINPO            |               | SIZE           | I    | Number of words in /PAYOUT/.               |                   |
| NINPOI           |               | S1ZE           | I    | Number of words in /IPAYGT/.               |                   |
| NINRL            |               | SIZE           | I    | Number of words in /CONTRL/.               |                   |
| NINSHI           |               | SIZE           | I    | Number of words in /ISHIPS/.               |                   |
| N1NSHP           |               | SIZE           | 1    | Number of words in /SHIPS/.                |                   |
| NINSTI           |               | SIZE           | ĭ    | Number of words in /ISTRUM/.               |                   |
| NTNSTM           |               | SIZE           | 1    | Number of words in /STRUM/.                |                   |
| NINT             |               | SIZE           | Ţ    | Number of words in /TIMED/.                |                   |
| NINTMI           |               | SIZE           | I    | Number of words in /ITIMED/.               |                   |
| NIXPRN           |               | ITIMED         | l    | Print override flag for restart.           | SAVE              |
| NL MS            |               | SYOURI         | r    | Number of limit sets.                      |                   |
| NLINES           |               | HEDDAT         | 1    | Output lines counter.                      |                   |
| NLLOC            |               | I BUOYS        | 1    | Number of limit locations.                 |                   |
| NMCTN            | 50            | 1 BUOYS        | 1    | Buoy on surface motion code.               | SBUO              |
| NN               |               | 1 CNTRL        | 1    | Total number of nodes.                     |                   |
| NNPOI            | 5             | IPAYOT         | I    | Not used at present                        |                   |
| NN3              |               | ICNTRL         | 1    | Three times NN.                            |                   |
| NOB              |               | FRQDAT         | ı    | Number of wave speeds on ship motion file. |                   |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | TYPE | DESCRIPTION                                                | INPUT<br>KEYWORD |
|------------------|---------------|----------------|------|------------------------------------------------------------|------------------|
| NODFIX           | NN3           | ACOM           | I    | Node component fixity flags.                               | ALL WORD         |
| NODWN            |               | IDSPCN         | I    | VRS/VRR control parameter.                                 |                  |
| NOFLUD           |               | LOGIC          | Ľ    | Fluid medium flag; True means no fluids.                   |                  |
| NOH              |               | FRQDAT         | 1    | Number of wave headings on ship motion file.               |                  |
| NOITER           |               | LOGIC          | L    | Iteration flag; T means not iterative solution.            |                  |
| NOK              |               | FRQDAT         | I    | Number of wavelengths on ship motion file.                 |                  |
| NOLINE           |               | HEDDAT         | I    | Number of lines is standard output record.                 |                  |
| NOLOAD           |               | LOGIC          | L    | Point load flag; True means no point loads.                |                  |
| NOP              |               | IPAYOT         | I    | Number of payout ends.                                     |                  |
| NOUT             |               | TAPES          | I    | Output file number.                                        |                  |
| NOVEL            |               | LOGIC          | L    | Flow field flag; True means no fluid velocities.           |                  |
| NPOVRY           | 5             | IPAYOT         | I    | Payout time variation codes.                               | PAYO             |
| NPRECZ           |               | SIZE           | 1    | Precision of floating point words; 1 - single, 2 - double. |                  |
| NPRST            |               | ICNTRL         | I    | Preload flag.                                              |                  |
| NRUP             |               | ICNTRL         | I    | Newton-Raphson update code.                                | SOLU             |
| NRV              |               | FRQDAT         | I    | Number of roll angles on ship motion file.                 |                  |
| NSFILE           |               | ISHIPS         | 1    | Ship load file flag.                                       | PROB             |
| NSH1PS           |               | ISHIPS         | 1    | Number of ships.                                           |                  |
| NSHRNK           | 5             | IPAYOT         | 1    | Number of elements available for reel-in                   | PAYO             |

| VARIABLE NAME | ARRAY<br>SIZE | COMMON<br>NAME | TYPE | DESCRIPTION                                                                         | INPUT<br>KEYWORD |
|---------------|---------------|----------------|------|-------------------------------------------------------------------------------------|------------------|
| NSLAVE        |               | I CNTRL        | 1    | Number of slave nodes.                                                              |                  |
| NSLOP         |               | IDSPCN         | I    | Solution option number code;<br>0 - MNR, 1 - SLI, 2 - RFB,<br>3 - VRS/VRR, 5 - DIM. |                  |
| NSOLN         |               | FRQDAT         | I    | Counter for FREQ wave head-<br>ing solutions.                                       |                  |
| NSRDC         |               | FRQDAT         | I    | File code for ship motion file = 8.                                                 |                  |
| NSTRNG        |               | ISTRUM         | I    | Number of strum strings.                                                            |                  |
| NSTRUP        |               | ISTRUM         | I    | Strum update flag.                                                                  |                  |
| NSTUP         |               | ICNTRL         | I    | First step subdivision startup parameter.                                           | STEP             |
| NS3           |               | FRQDAT         | I    | Three times (NN-NSLAVES).                                                           |                  |
| NTAPE         |               | RETAPE         | I    | File code for restart input tape.                                                   | REST             |
| NTAPE 1       |               | TAPES          | I    | File code for binary trans-<br>lation of free-field input<br>= 15.                  |                  |
| NTAPE2        |               | TAPES          | 1    | File code for rigid format input = 16.                                              |                  |
| NTAPE9        |               | TAPES          | I    | File code for file code 09, scratch file.                                           |                  |
| NTHETC        |               | ISHIPS         | I    | Number of current headings in ship load tables.                                     | RIGID            |
| NTHETW        |               | ISHIPS         | 1    | Number of wind headings in ship load tables.                                        | RIGID            |
| NTPCHK        |               | TAPES          | I    | File code for wave heading file for CHEK = 13.                                      |                  |
| NTYPE         |               | ICNTRL         | I    | Numeric code for current SAO keyword.                                               |                  |
| NUMMED        |               | ISHIPS         | I    | Counter for the number of headings evaluated in static heading excursion.           |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | TYPE | DESCRIPTION                                       | Input<br>Keyword |
|------------------|---------------|----------------|------|---------------------------------------------------|------------------|
| NUMSET           |               | ICNTRL         | I    | Number of load sets defined.                      |                  |
| NUP              |               | ICNTRL         | I    | Configuration update flag                         | solu             |
| NWIND            |               | SHIPS          | I    | Number of wind velocity tables on ship load file. | RIGID            |
| NWORDS           |               | HEDDAT         | I    | Number of words in working area for input.        |                  |
| NXTYPE           |               | 1 CNTRL        | I    | Numberic code for the next SAO keyword.           |                  |
| OMG              |               | CDCAL          | R    | Strum string natural frequency.                   |                  |
| OMG              |               | FRQDAT         | R    | Spectrum frequency for FREQ SAO.                  |                  |
| OMGMN            |               | FRQDAT         | R    | Lower bound of spectrum frequency scan            | SPEC             |
| OMGMX            |               | FRQDAT         | R    | Upper bound of spectrum frequency scan.           | SPEC             |
| OMS              |               | CDCAL          | R    | Strum string Strouhal frequency.                  |                  |
| OM2              |               | FRQDAT         | R    | Square of OMG for FRQ SAO.                        |                  |
| OUTP             |               | TYPES          | I    | Numeric code for OUTP key-<br>word = 38.          |                  |
| OVRSHT           |               | CONTRL         | R    | Limit condition overshoot.                        |                  |
| PARMT            |               | CONTRL         | R    | MNR extrapolation parameter.                      | SOLU             |
| PAYO             |               | TYPES          | I    | Numeric code for PAYO key-<br>word = 39.          |                  |
| PAYV             | 5             | PAYOUT         | R    | Payout velocity                                   | PAY0             |
| PI               |               | CONTRL         | R    | PI = 3.1415                                       |                  |
| PINC             |               | CONTRL         | R    | Output interval increment.                        |                  |
| PLUT             |               | TYPES          | I    | Numeric code for PLOT key-<br>word = 8, inactive. |                  |

(2) 大型の関連を表現している。

The state of the state of

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | TYPE | DESCRIPTION                                    | Input<br>Keyword |
|------------------|---------------|----------------|------|------------------------------------------------|------------------|
| POUT             |               | LOGIC          | L    | Payout flag; True means payout active.         |                  |
| PROB             |               | TYPES          | I    | Numeric code for PROB keyword = 11.            |                  |
| PROPF            | 3             | SHIPS          | R    | Propeller force coefficients.                  |                  |
| PSTEP            |               | CONTRL         | R    | Output load level.                             |                  |
| PTMF             | 5             | PAYOUT         | R    | Values of payout time variation functions.     | PAYO             |
| QST              | 20            | STRUM          | R    | Strum string mode shape.                       |                  |
| RAND             |               | TYPES          | I    | Numeric code for RAND key-<br>word = 52.       |                  |
| RANG             | 8             | FRQDAT         |      | Roll angles for ship motion file.              |                  |
| RATD             |               | CONTRL         | R    | Initial size of static load increment.         |                  |
| RATL             | 3             | SHIPS          | R    | Length ratios for ship's current load scaling. |                  |
| REFUP            |               | LOGIC          | L    | Geometric reference update flag.               |                  |
| REGU             |               | TYPES          | 1    | Numeric code for REGU key-<br>word = 53.       |                  |
| RELFAC           | 50            | BUOYS          | R    | Release factor for limit sets.                 | LIMI             |
| RERR             |               | CONTRL         | R    | Residual error tolerance.                      | solu             |
| REST             |               | TYPES          | I    | Numeric code for REST key-<br>word = 12.       |                  |
| RESU             |               | TYPES          | I    | Numeric code for RESU key-<br>word = 50.       |                  |
| RNORM            |               | DSPCON         | R    | Residual norm.                                 |                  |
| RNORMP           |               | DSPCON         | R    | Preceding residual norm.                       |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | түре | DESCRIPTION                                                                                                | INPUT<br>KEYWORD |
|------------------|---------------|----------------|------|------------------------------------------------------------------------------------------------------------|------------------|
| RNRMPP           |               | DSPCON         | R    | Second preceding residual norm.                                                                            |                  |
| RTIN             |               | CDCAL          | R    | Strum string modal scaling factor.                                                                         |                  |
| RVELN            |               | STRUM          | R    | Relative velocity magnitude for strum computation.                                                         |                  |
| RVELNP           |               | STRUM          | R    | Previous relative velocity magnitude for strum computation.                                                |                  |
| SAE              | 3             | SHIPS          | R    | Ship end projected areas.                                                                                  | SHIP             |
| SAS              | 3             | SHIPS          | R    | Ship side project areas.                                                                                   | SHIP             |
| SAVE             |               | TYPES          | I    | Numeric code for SAVE key-<br>word = 40.                                                                   |                  |
| SBAMP            | 50            | BUOYS          | R    | Surface buoy motion amplitudes.                                                                            | SBUO             |
| SBEAM            | 3             | SHIPS          | R    | Ship beams amidships.                                                                                      | SHIP             |
| SBUO             |               | TYPES          | 1    | Numeric code for SBUO key-<br>word = 41.                                                                   |                  |
| SCALE            |               | SHPTAP         | R    | Scale factor for ship load file.                                                                           | RIGID            |
| SDRFT            | 3             | SHIPS          | R    | Ship drafts amidships.                                                                                     | SHIP             |
| SDSPV            | 3             | SHIPS          | R    | Ship volume displacements.                                                                                 | SHIP             |
| SFACW            | 3,3           | SHIPS          | R    | Wind load scale factors for ships.                                                                         |                  |
| SCHOLD           |               | BUOYS          | R    | Gravity load sign; +1.0 for gravity in + coordinate direction, -1.0 for gravity in - coordinate direction. |                  |
| SHPCAP           | 12            | SHPLBL         | н    | Title for ship load file.                                                                                  | RIGID            |
| SHIPK            | 4,3           | SHIPS          | R    | Ship's hydrostatic restor-<br>ing coefficients.                                                            | SHIP             |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                                                                                                                                         | INPUT<br>KEYWORD |
|------------------|---------------|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SHPKP            | 3,3           | SHIPS       | R    | Ship response parameters for checking static response stability.                                                                                                    |                  |
| SHTRN            | 3,3,3         | Ships       | R    | Local to global transformation matrices for each ship.                                                                                                              |                  |
| SIG              | NE            | ACOH        | R    | Element tensions in <sup>t</sup> C.                                                                                                                                 | ELEM or<br>TENS  |
| SIGR             | NE            | ACOM        | R    | Element tensions in RC.                                                                                                                                             |                  |
| SLT              | 3             | SHIPS       | R    | Ship lengths.                                                                                                                                                       | SHIP             |
| SLWL             | 3             | SHIPS       | R    | Ship water line lengths.                                                                                                                                            | SHIP             |
| SOLU             |               | TYPES       | I    | Numeric code for SOLU key-<br>word = 42.                                                                                                                            |                  |
| SPEC             |               | TYPES       | I    | Numeric code for SPEC key-<br>word = 48.                                                                                                                            |                  |
| SPECA            |               | FRQDAT      | R    | Wave spectrum coefficient, A.                                                                                                                                       | SPEC             |
| SPECB            |               | FRQDAT      | R    | Wave spectrum coefficient, B.                                                                                                                                       | SPEC             |
| SRCHFC           |               | CONTRL      | R    | Search factor for ID search accelerator on MNR solution.                                                                                                            | SOLU             |
| SSTART           |               | CONTRL      | R    | First step subdivision parameter.                                                                                                                                   |                  |
| STEPUP           |               | LOGIC       | L    | Increment reference update flag.                                                                                                                                    |                  |
| STLEN            | 20            | STRUM       | R    | Strum string lengths.                                                                                                                                               |                  |
| STN              | NE            | ACOM        | R    | Element strains in <sup>t</sup> C.                                                                                                                                  |                  |
| STI:             | 20,10         | CABLE       | R    | Strain values for material tables.                                                                                                                                  | MATE             |
| SURF             |               | TYPES       | I    | Numeric code for SURF key-<br>word = 44.                                                                                                                            |                  |
| SURFCE           |               | SHIPS       | R    | Vertical coordinate at the water surface, determined by the initial vertical position of the last ship input. Used only when ship restoring coefficients are input. |                  |

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                                       | INPUT<br>KEYWORD |
|------------------|---------------|-------------|------|-------------------------------------------------------------------|------------------|
| T                |               | TIMED       | R    | Time.                                                             |                  |
| TBLOCK           |               | SHPTAP      | R    | Test Ship block coefficient for ship load file.                   |                  |
| TDEPTH           |               | SHPTAP      | R    | Test depth for ship load file.                                    |                  |
| TEMP             | 6,6           | FRQDAT      | R    | Temporary storage array for FREQ SAO.                             |                  |
| TENS             |               | TYPES       | 1    | Numeric code for TENS keyword = 26.                               |                  |
| TENULT           | 50            | CALBE       | R    | Line material ultimate tensions.                                  | MATE             |
| TFSAV            | 5             | PAYOUT      | R    | Temporary storage of payout time functions.                       |                  |
| TFUN             |               | TYPES       | 1    | Numeric code for TFUN key-<br>word = 27.                          |                  |
| TN               | 3,NE          | ACOM        | R    | Direction cosines for each element in C.                          |                  |
| THR              | 3,NE          | ACOM        | R    | Direction casines for each each in C.                             |                  |
| TIMFAC           |               | FRQDAT      | R    | Time conversion factor for ship motion file.                      | EXTE             |
| TMAS             |               | FRQDAT      | R    | Ship's mass for ship motion file.                                 |                  |
| THAX             |               | TIMED       | R    | Maximum time.                                                     |                  |
| TMFRF            | 3             | TIMED       | R    | Point load time variation functions in C.                         |                  |
| TMFRM            | 15            | TIMED       | R    | Moving boundary time variation functions in $^{\rm R}{\rm C}$ .   |                  |
| TOLIM            | 50            | BUOYS       | R    | Limit set tolerances.                                             | LIMI             |
| TPARM            | 20,20         | TIMED       | R    | Time function tables.                                             | TFUN             |
| TRNSTR           | 3,3,NE        | ACOM        | R    | local-to-global transforma-<br>tion matrices for each<br>element. |                  |

e de la company de la company de la company de la company de la company de la company de la company de la comp

=-÷ ·

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | ТҮРЕ | DESCRIPTION                                                               | INPUT<br>KEYWORD |
|------------------|---------------|----------------|------|---------------------------------------------------------------------------|------------------|
| TRSRT            |               | TIMED          | R    | Restart save time.                                                        |                  |
| TSAE             |               | SHPTAP         | R    | Test ship end projected area for ship load file.                          | RIGID            |
| TSAP             |               | SHPTAP         | R    | Test ship propeller pro-<br>jected area for ship load<br>file.            | RIGID            |
| TSAS             |               | SHPTAP         | R    | Test ship size projected area for ship load file.                         | RIGID            |
| TSAPL            | 3             | SHIPS          | R    | Test ship propeller pro-<br>jected areas; used for<br>similarity scaling. |                  |
| TSB              |               | SHPTAP         | R    | Test ship beam for ship load file.                                        | RIGID            |
| TSD              |               | SHPTAP         | R    | Test ship draft for ship load file.                                       | RIGID            |
| TSDSP            |               | SHPTAP         | R    | Test ship displacement for ship load file.                                | RIGID            |
| TSLT             |               | SHPTAP         | R    | Test ship length for ship load file.                                      | RIGID            |
| TSSS             |               | TYPES          | I    | Numeric code for TSSS keyword = 4.                                        |                  |
| TSWL             |               | SHPTAP         | R    | Test ship waterline length for ship load file.                            | RIGID            |
| TT               | 20,10         | CABLE          | R    | Teusion values for material tables.                                       | MATE             |
| TTi)             | 10            | CABLE          | R    | Material damping parameter CA <sub>1</sub> .                              | MATE             |
| ттк              | 10            | CABLE          | R    |                                                                           | MATE             |
| 77.              |               | TIMED          | R    | Time when incremental reference was established.                          |                  |
| U                | NN3           | ACOM           | R    | Nodal displacement increments from incremental reference to C.            |                  |

| VARIABLE<br>NAME | ARRAY<br>S1ZE | COMMON<br>NAME | TYPE | DESCRIPTION                                                      | INPUT<br>KEYWORD |
|------------------|---------------|----------------|------|------------------------------------------------------------------|------------------|
| UB               | 15            | TIMED          | R    | Moving boundary motion amplitudes.                               | MOVE             |
| UBS              | 30            | BUOYS          | R    | Surface buoy motion amplitudes.                                  | SBUO             |
| uD               | NN3           | ACOM           | R    | Nodal point velocities for C.                                    |                  |
| UDD              | NN3           | ACOM           | R    | Nodal point acclerations for C.                                  |                  |
| gaau             | NN3           | ACOM           | R    | Nodal point accelerations for $\mathbb{C}$ .                     |                  |
| UDDS             | NNE           | ACOM           | R    | Nodal point accelerations for incremental reference state.       |                  |
| UDP              | NN3           | ACOM           | R    | Nodal point velocities for $\mathbb{C}$ .                        |                  |
| UMVB             | 15,3          | PAYOUT         | R    | Moving boundary motion data for C.                               |                  |
| UMVBP            | 15,3          | PAYOUT         | R    | Moving $\Delta$ boundary motion data for $C$ .                   |                  |
| UP               | NN3           | ACOM           | R    | Nodal point displacements for $C$ .                              |                  |
| us               | NN3           | ACOM           | R    | Nodal point displacements from C to incremental reference state. |                  |
| VAIR             |               | SHIPS          | R    | Kinematic viscosity of air.                                      |                  |
| VDUM             | 3             | FRQDAT         | R    | Temporary storage vector for FREQ SAO.                           |                  |
| VF               | NN3           | ACOM           | R    | Nodal point components of flow velocity in C.                    |                  |
| VIB              | 3             | BUOYS          | R    | Components of impacting body velocity.                           | IMPA             |
| VLBL             |               | SHPLBL         | , н  | Velocity label for ship load file.                               | RIGID            |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON NAME | TYPE | DESCRIPTION                                       | Input<br>Keyword |
|------------------|---------------|-------------|------|---------------------------------------------------|------------------|
| VNORMP           |               | DSPCON      | R    | Preceding velocity norm for VRS/VRR.              |                  |
| VNPP             |               | DSPCON      | R    | Second preceding velocity norm.                   |                  |
| VNPPP            |               | DSPCON      | R    | Third preceding velocity norm.                    |                  |
| <b>v.</b> .7     | NN3           | ACOM        | R    | Nodal point components of relative velocity in C. |                  |
| WAD              |               | SHIPS       | Ř    | Wind heading in degrees                           | MIND             |
| WAVEL            | 30            | FRQDAT      | R    | Wavelengths from ship motion file.                |                  |
| WDEPTH           | 3             | SHIPS       | R    | Water depth for each ship.                        | SHIP             |
| MIND             |               | SHTPS       | R    | Wind velocity                                     | WIND             |
| WLBL             |               | SHPLBL      | Н    | Wind label for ship load file.                    | RIGID            |
| WLD              |               | I.OGIC      | 1.   | Live load flag; True means<br>LIVE SAO.           |                  |
| WINDCOE          | 20,3,5        | SHIPS       | R    | Wind load coefficients for ship load table.       | RIGID            |
| WNDHED           | 20            | SHIPS       | R    | Wind headings for ship<br>load tables.            | RIGID            |
| WNDVEL           | 5             | SHIPS       | R    | Wind velocities for ship load tables.             | RIGID            |
| WORDS            | 100           | HEDDAT      | R    | Working area for input.                           |                  |
| WVAMP            |               | FRQDAT      | R    | Wave amplitude for current spectrum interval.     |                  |
| WVLN             |               | FRQDAT      | R    | Wave length for current spectrum interval.        |                  |
| WSLP             |               | FRQDAT      | R    | Wave slope for current spectrum interval.         |                  |
| хс               | CNN           | ACOM        | R    | Nodal position coordinates for $C$ .              |                  |

| VARIABLE<br>NAME | ARRAY<br>SIZE | COMMON<br>NAME | TYPE | DESCRIPTION                  | INPUT<br>KEYWORD |
|------------------|---------------|----------------|------|------------------------------|------------------|
| XO               | MN3           | ACOM           | R    | Reference nodal coordinates. |                  |
| YSAVE            |               | CDCAL          | R    | Strum string response, Y/D.  |                  |

## 9.0 MACRO-FLOW CHARTS OF THE SUBANALYSES AND SOLUTION OPTIONS

The following charts outline the overall logic of the major solution options in SEADYN. The relationship of the subanalyses is shown in Figure 2.1. The DEAD, LIVE, and TSSS subanalyses are controlled from the STATIC subroutine. Figure 9.1 outlines that logic. The transient dynamics (DYN) is controlled through the TRANS subroutine. That logic is presented in Figure 9.2. Figure 9.3 describes the MODE subanalysis. The FREQ and CHEK subanalyses are presented in Figures 9.4 and 9.5, respectively. The two static solution routines (NRAPIT and STEP) are outlined in Figures 9.6 and 9.7.



Figure 9.1 Static load options, DEAD/LIVE/TSSS.



Figure 9.2 Transient response option, DYN.



Figure 9.3 Mode subanalysis.



**机器 杨林林的时间,这里是一个人,他们是一个人,他们是一个人,他们们是一个人,他们们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一** 

Figure 9-4. Frequency subanalysis.



The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH

i.

Figure 9-4. Continued.



Figure 9-5. Check subanalysis.



Figure 9-6. MNR logic.



Figure 9.7 Step logic.

## 10.0 REFERENCES

A STATE OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT OF THE ACT O

- 10.1 Naval Civil Engineering Laboratory. Contract Report CR 82.019: SEADYN mathematical models, by R. L. Webster, Consulting Engineer. Brigham City, Utah, Apr 1982. (Contract No. N62474-81-C-9391)
- 10.2 . Technical Note N-1630: SEADYN user's manual, by R. L. Webster and P. Λ. Palo. Port Hueneme, Calif., Apr 1982.
- 10.3 Leonard, J. W. "Curved finite element approximation to nonlinear cables," Paper OTC 1533, Fourth Annual Offshore Technology Conference, Houston, Tex, May 1972.
- 10.4 Dunder, V.F., and F. J. Robl. "NLIN: Nonlinear static and dynamic analysis of submerged cable structures,: Bechtel Corp., San Francisco, Calif., Nov 1973.

10.5 Naval Civil Engineering Laboratory. Contract Report CR 82.016: SEAPLT: A graphics post-processor for the SEADYN program, by R. L. Webster, Consulting Engineer. Brigham City, Utah, Apr 1982. (Contract No. 62474-81-C-9391)