3^a Prova de Geometria Analítica e Álgebra Linear - $2021/\mathrm{I}$

Profa. Lana Mara Rodrigues dos Santos

Matrícula: 102026

1. (18 pontos) Utilize o seguinte produto interno não usual do \mathbb{R}^2 nesta questão:

$$\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 - x_1 y_2 - y_1 x_2 + 2y_1 y_2$$

Dados u = (2,0) e v = (2,1):

- (a) calcule o ângulo θ entre os vetores $u \in v$.
- (b) calcule $\text{proj}_u v$, isto é, a projeção do vetor v sobre o vetor u.
- (c) faça $w_1 = u$. Aplique o algoritmo de Gram-Schmidt para obter uma base **ortogonal** $C = \{w_1, w_2\}$ de \mathbb{R}^2 , a partir da base $B = \{u, v\}$.
- 2. (24 pontos) Seja T um operador do \mathbb{R}^3 cuja matriz em relação à base canônica é $A=\begin{bmatrix} -1 & 0 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$.
 - (a) (4 pontos) Mostre que as raízes do polinômio característico de T são $\lambda_1 = -1$ e $\lambda_2 = 2$.
 - (b) (10 pontos) Determine o autoespaço de T associado ao autovalor $\lambda_1=-1$. Determine a dimensão e uma base para este subespaço.
 - (c) (10 pontos) T é diagonalizável? Justifique sua resposta. Em caso afirmativo, determine uma base do \mathbb{R}^3 de autovetores de T.
- 3. (20 pontos) Considere em \mathbb{R}^2 o produto interno usual. Seja a cônica cuja equação na base canônica é:

$$5x^2 - 4xy + 8y^2 - 36 = 0 \tag{*}$$

- (a) (4 pontos) Escreva a equação (*) na forma matricial: $\mathbf{x}^T A \mathbf{x} + b = 0$, em que $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$.
- (b) (6 pontos) Assuma (sem precisar provar) que $v_1 = (2,1)$ é um autovetor de A associado ao autovalor $\lambda_1 = 4$ e $v_2 = (-1,2)$ é um autovetor de A associado ao autovalor $\lambda_1 = 9$. Use estes dados para determinar uma matriz ortogonal P que diagonaliza ortogonalmente a matriz A.
- (c) (10 pontos) Reescreva a equação (*) na forma reduzida (sem termos mistos) e classifique a cônica.

- 4. (20 pontos) Sejam a reta r, interseção dos planos $\pi:-y+z=0$ e $\gamma:x+2y=1$, e o ponto A=(1,0,1).
 - (a) Determine a equação vetorial da reta s que passa por A e intercepta a reta r ortogonalmente.
 - (b) Calcule a distância do ponto A ao plano π .
- 5. (18 pontos) Verifique se as afirmações são verdadeiras ou falsas. Justifique sua resposta.
 - (a) Seja A uma matriz diagonalizável e com polinômio característico $p(x)=(x-2)^2(x+3)$. Então det A=-12.
 - (b) A fórmula $\langle (a,b),(x,y)\rangle = ax + by$ define um produto interno em \mathbb{R}^2 .
 - (c) Seja V um espaço vetorial euclidiano e $u, v \in V$. Se ||u+v|| = ||u-v||, então $u \perp v$.