

CAMADA FÍSICA DA COMPUTAÇÃO

ENGENHARIA DA COMPUTAÇÃO - Rodrigo Carareto - 0#07E4/02

PROJETO 7 - DTMF

Você deve implementar via software um sistema de transmissão do *dual tone multi frequency*, um sinal de áudio utilizado pelas empresas de telefonia para detectar o sinal digitado pelo usuário. O primeiro passo é construir uma rotina que gere um sinal de áudio com duas senoides somadas. Cada tecla digitada pelo usuário deve gerar duas senoides, cujas frequências são definidas de acordo com a tabela a seguir.

	$1209~\mathrm{Hz}$	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	A
$770~\mathrm{Hz}$	4	5	6	\mathbf{B}
$852~\mathrm{Hz}$	7	8	9	\mathbf{C}
$941~\mathrm{Hz}$	X	0	#	D

Esse sinal de áudio deve ser executado pela sua placa de som e captado por outro computador. O computador que receberá o áudio deverá identificar as teclas através da transformada de Fourirer, como descrito adiante.

Você encontrará no Blackboard um arquivo "suaBibSignal" com a classe responsável por gerar o sinal e outras coisas. Deverá instalar também o módulo *sounddevice.*.

A segunda parte é gerar um detector do DTMF. Uma segunda aplicação deve capturar um sinal de áudio gerado por outro computador ou celular, identificar os picos através da transformada de Fourier e outras funções e assim identificar a tecla relativa às duas frequências que compõem o sinal.

Seu código deve:

Lado emissor

- Perguntar ao usuário qual número, entre 0 e 9 ele quer digitar.
- Emitir por alguns segundos as duas frequências relativas ao número escolhido.
- Plotar o gráfico no domínio do tempo duas frequências somadas.
- Plotar o gráfico no domínio da frequência do sinal emitido (transformada de Fourier)
- Opcional: Você poderá também salvar o sinal gerado em um arquivo.

Lado receptor

- Captar o sinal de áudio emitido pela aplicação do emissor através do microfone. Pesquise como usar a biblioteca sounddevice para gravar sons. Não grave silêncio. Inicie a gravação quando o áudio já esteja sendo produzido pelo outro computador ou celular. Quem não estiver presencial, poderá gravar (com o celular) o som produzido pelo computador emissor e reproduzi-lo para que a aplicação de recepção aquisita-lo.
- Fazer o Fourier do sinal captado.
- Identificar os picos.
- Identificar a tecla relativa aos picos e "printar" o número da tecla. Cuidado! A função de identificação de picos identifica a posição do pico no vetor, não a frequência!!!
- Plotar o gráfico no tempo do sinal recebido.
- Plotar o gráfico da transformada de Fourier do sinal recebido.

Entrega

Você poderá apresentar presencialmente seu projeto em funcionamento e depois submeter via exercício no Blackboard, seu código com o nome da dupla, informando que foi apresentado em aula e aceito.

CAMADA FÍSICA DA COMPUTAÇÃO

ENGENHARIA DA COMPUTAÇÃO - Rodrigo Carareto - 0#07E4/02

Você poderá também submeter via exercício no BB seu código e um link com um vídeo de poucos segundos demonstrando o funcionamento das duas aplicações. Filme o usuário escolhendo um valor de tecla, capte o som das senoides sendo produzido pelo computador e o gráfico das senoides e do Fourier. Filme também a outra aplicação captando o som, gerando os gráficos (sinal e Fourier) e identificando os picos e a tecla correspondente. Submeta também os códigos!

Você deverá também preencher a auto avaliação relativa a esse projeto. Mais informações no exercício entrega em seu Blackboard.

Exemplo de saída de um código.

FFT - número 3

msper

3