STAT 453 PROJECT

Detection of Lung Diseases through image classification

Group 7

Erika Yeonseo Park Jina Yang Ching-Wen Wang

Contents

1

Introduction & Method Description

2

Training

3

Evaluation & Discussion

1. Introduction

- Motivation
- Objective
- Method Description
- Roadmap

Current Situation

COVID-19 Pandemic

Severity

- Easy Spread
- Fatal to Vulnerable &
 Elderly

Confusion in Diagnosis

 similar signs & symptoms to other respiratory disease

Lacking Resources

medical resources vs.
 amount of patients

Early Diagnosis

Accurate Diagnosis

Efficient Diagnosis

Objective

- **Quickly and Accurately** identify lung diseases
- Guide patients for appropriate medical treatment
- Efficient Digital Assistants for Hospitals

Our Project Goal:

- **Accuracy:** 90% +
- high recall in **COVID** & **Viral Pneumonia** class

Hospital wait rooms

Treatment process

Why X-radiation Scans (X-Ray)?

- Detect not only COVID, but "Lung Diseases"
- CT vs. X-ray
 - X-Ray is more available & affordable & faster & high mobility

X-ray is preferable than other imaging modalities for general public!

Images from Dataset

Dataset

Radiography Database

- Gathered from Different Sources + 43 publications
- Contains 21,165 chest X-ray images with 4 classes

Distribution

Class	COVID	Lung Opacity	Viral Pneumonia	Normal	
Number of Images	3,616	6,012	1,345	10,192	
Total	21,165				

Convolutional Neural Network

CNN: Basic & reliable architecture for Image classification

Speciality

- "Feature extraction" layers
- pooling layers

Activation functions between layers

• ReLu: Introduce non-linearity

CNN variants

<u>AlexNet</u>

- 8 layers
 - 5 convolution layers
 - 3 fully connected linear layers

Shortcoming:

- overfitting
- less computational efficiency

VGG (Visual Geometry Group)

- Layers more than AlexNet
 - o small sized conv filters
 - 3 fully connected linear layers

Shortcoming:

- less computational efficiency
- vanishing gradients

ResNet (Residual Network)

- Simplifies Network
 - o small sized conv filters
 - skip layers
 - solve vanishing gradient problem
 - lessen degradation (accuracy saturation)

Shortcoming:

high training error

Activation: **ReLu** ⇒ Nonlinearity & Amplification of learning effects

General Procedure

2. Train

- Pre-processing
- Train
- Evaluation

Pre-processing

1. Augmentation

- random rotation
- random horizontal flipping
- Resizing Images:
 - Matching pre-trained models

2. Standardization

- Mean & std. from:
 - Radiography dataset
 - ImageNet dataset

Pre-processing

3. Splitting the Dataset

- Train $(80\%) \to 16,932$ Images
- Validation (10%) \rightarrow 2,117 Images
- Test $(10\%) \to 2$, 116 Image

Equal portion from each class

Before Transformation

After Transformation

Training: Transfer learning

- Benefit:
 - o **generalized better** with small, imbalance dataset
 - o relatively **faster training** time
 - available for low spec devices
- Pytorch pre-trained CNN models on ImageNet
 Dataset: 1000 class, 1.2 million RGB images
 - AlexNet
 - VGG
 - ResNet

Hyperparameter tuning

	# Layers	Batch size	# Epoch	Optimizer	Fine-tune
AlexNet	5	32, 64, 128, 256	20 ~ 50	Adam / SGD	Freeze/unfree ze gradients for convolution & linear layers
VGG	17, 19				
ResNet	18, 34, 50				

Evaluation

Evaluation Metrics:

- 1. Accuracy Rates
- 2. Precision, Recall, and F1 scores

$$\begin{aligned} & \text{precision} = \frac{\text{true positive}}{\text{true positive} + \text{false positive}} \\ & \text{recall} = \frac{\text{true positive}}{\text{true positive} + \text{false negative}} \\ & F1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \end{aligned}$$

Criterion for Selecting good models:

- High Overall Accuracy on test set
- High Recall rates (specifically for COVID & Viral Pneumonia class)

3. Evaluation & Discussion

- Result tables
- findings and Limitations
- Future works

Results I

(FN)TRUE LABEL is the number of images that are misclassified as "**Normal**" when the real label is **TRUE LABEL** in test set prediction

Model	Hyper Parameters	Train Acc(%)	Test Acc(%)	(FN) COVID	(FN) Viral Pneumonia	(FN) Lung Opacity
AlexNet	FT: 5th conv layr & 3 fc Batch size: 64, epoch: 50	97.87	93.86	5	3	63
VGG19_bn	FT: last 3 conv layers & 6 fc layrs Batch size: 64, epoch: 20	98.12	94.33	6	5	51
ResNet 50	FT: 3rd + 4th layrs (3 blocks each) & last linear layer Batch size: 128, epoch: 20	98.59	95.46	3	6 I	54
Logistic Regression	FT: None Batch size: 64, epoch: 50	60.84	62.24	214	25	197

Results II

Precision/ Recall / F1

Class label \ Model Name	AlexNet		VGG19_bn	Resnet50	
COVID	25.86 / 28.75 /	96.55 / 94.65 /	97.7 / 94.44 /	98.28 / 97.71 /	
	27.23	95.59	96.05	97.99	
Lung Opacity	53.85 / 70.59/	88.78 / 94.22 /	90.38 / 94.31 /	90.71 / 96.42 /	
	61.09	91.42	92.31	93.48	
Normal	88.04 / 67.14 /	95.65 / 93.17 /	95.36 / 93.96	97.43 / 93.99 /	
	76.19	94.39	/94.65	95.68	
Viral Pneumonia 0.0 / NA / NA		96.97 / 95.52 /	96.21 / <u>96.95 /</u>	95.45 / 96.92 /	
		96.24	96.58	96.18	

Model Visualization

GradCam: visualizes for focus region of model's layer when predicting.

Conclusion

• Best Model

o ResNet 50 🕎

Findings & Limitations

- fine tuning
 - o freezing + unfreezing gradients in different layers
- limitations of evaluation
- limitations of hardware devices

Future Work

- Image preprocessing methods
 - lung segmentation
 - o rib cage shadow removal
- Transfer learning
 - fine tuning more layers
 - o models that are pre-trained on X-ray images

Thank You!

Any questions?

ypark258@wisc.edu

cwang553@wisc.edu

jyang633@wisc.edu