	Renewable Energy Resources		
Course Code	21EE652	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course objectives:

- (1)To discuss causes of energy scarcity and its solution, energy resources and availability of renewable energy.
- (2) To explain sun earth geometric relationship, Earth Sun Angles and their Relationships.
- (3)To discuss about solar energy reaching the Earth's surface and solar thermal energy applications.
- (4)To discuss types of solar collectors, their configurations and their applications.
- (5)To explain the components of a solar cell system, equivalent circuit of a solar cell, its characteristics and applications.
- (6)To discuss benefits of hydrogen energy, production of hydrogen energy, storage its advantages and disadvantages.
- (7)To discuss wind turbines, wind resources, site selection for wind turbine.
- (8)To discuss geothermal systems, their classification and geothermal based electric power generation
- (9)To discuss waste recovery management systems, advantages and disadvantages.
- (10)To discuss biomass composition, production, types of biomass gasifiers, properties of producer gas benefits.
- (11) To discuss tidal energy resources, energy availability, power generation.
- (12) To explain motion in the sea wave, power associated with sea wave and energy availability and the devices for harnessing wave energy.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

Introduction: Causes of Energy Scarcity, Solution to Energy Scarcity, Factors Affecting Energy Resource Development, Energy Resources and Classification, Renewable Energy – Worldwide Renewable Energy Availability, Renewable Energy in India.

Energy from Sun: Sun- earth Geometric Relationship, Layer of the Sun, Earth – Sun Angles and their Relationships, Solar Energy Reaching the Earth's Surface, Solar Thermal Energy Applications.

Teaching-Learning Process Chalk and Board, Power Point Presentation.

Module-2

Solar Thermal Energy Collectors: Types of Solar Collectors, Configurations of Certain Practical Solar Thermal Collectors, Material Aspects of Solar Collectors, Concentrating Collectors, Parabolic Dish – Stirling Engine System, Working of Stirling or Brayton Heat Engine, Solar Collector Systems into Building Services, Solar Water Heating Systems, Passive Solar Water Heating Systems, Applications of Solar Water Heating Systems, Active Solar Space Cooling, Solar Air Heating, Solar Dryers, Crop Drying, Space Cooling, Solar Cookers, Solar pond.

Solar Cells: Components of Solar Cell System, Elements of Silicon Solar Cell, Solar Cell materials, Practical Solar Cells, I – V Characteristics of Solar Cells, Efficiency of Solar Cells, Photovoltaic panels (series and parallel arrays).

Teaching-Learning Process

Chalk and Board, Power Point Presentation.

Module-3

Hydrogen Energy: Benefits of Hydrogen Energy, Hydrogen Production Technologies, Hydrogen Energy Storage, Use of Hydrogen Energy, Advantages and Disadvantages of Hydrogen Energy, Problems Associated with Hydrogen Energy.

Wind Energy: Windmills, Wind Turbines, Wind Resources, Wind Turbine Site Selection.

Geothermal Energy: Geothermal Systems, Classifications, Geothermal Resource Utilization, Resource Exploration, Geothermal Based Electric Power Generation, Associated Problems, environmental Effects. Solid waste and Agricultural Refuse: Waste is Wealth, Key Issues, Waste Recovery Management Scheme, Advantages and Disadvantages of Waste Recycling, Sources and Types of Waste, Recycling of Plastics.

Teaching-Learning Process

Chalk and Board, Power Point Presentation.

Module-4

Production, Energy Plantation, Biomass **Biomass Energy:** Biomass Gasification, Theory Gasification, Gasifier and Their Classifications, Chemistry of Reaction Process in Gasification, Updraft, Downdraft and Cross-draft Gasifiers, Fluidized Bed Gasification, Use of Biomass Gasifier, Gasifier Biomass Feed Characteristics, Applications of Biomass Gasifier, Cooling and Cleaning of Gasifiers.

Biogas Energy: Introduction, Biogas and its Composition, Anaerobic Digestion, Biogas Production, Benefits

Biogas, Factors Affecting the Selection of a Particular Model of a Biogas Plant, Biogas Plant Feeds and their Characteristics.

Energy: Introduction, Tidal Energy Resource, Tidal Energy Availability, Tidal Power Generation in India, Leading Country in Tidal Power Plant Installation, Energy Availability in Tides, Tidal Power Basin, Turbines for Tidal Power, Advantages and Disadvantages of Tidal Power, Problems Faced in Exploiting Tidal Energy.

Teaching-Learning Process Chalk and Board, Power Point Presentation.

Module-5

Sea Wave Energy: Introduction, Motion in the sea Waves, Power Associated with Sea Waves, Wave Energy Availability, Devices for Harnessing Wave Energy, Advantages and Disadvantages of Wave Power.

Ocean Thermal Energy: Introduction, Principles of Ocean Thermal Energy Conversion (OTEC), Ocean Thermal Energy Conversion plants, Basic Rankine Cycle and its Working, Closed Cycle, Open Cycle and Hybrid Cycle, Carnot Cycle, Application of OTEC in Addition to Produce Electricity, Advantages, Disadvantages and Benefits of OTEC.

Teaching-Learning Process Chalk and Board, Power Point Presentation.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

- (1)Discuss causes of energy scarcity and its solution, energy resources and availability of renewable energy.
- (2)Outline energy from sun, energy reaching the Earth's surface and solar thermal energy applications.
- (3)Discuss types of solar collectors, their configurations, solar cell system, its characteristics and their applications.
- (4)Explain generation of energy from hydrogen, wind, geothermal system, solid waste and agriculture
- (5)Discuss production of energy from biomass, biogas.
- (6) Summarize tidal energy resources, sea wave energy and ocean thermal energy.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration **01 hours**)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Suggested Learning Resources:

Textbook

1. Nonconventional Energy Resources, Shobh Nath Singh, Pearson, 1st Edition, 2015.

Reference Books

- 1. Nonconventional Energy Resources, B.H. Khan, McGraw Hill, 3rd Edition.
- 2. Renewable Energy; Power for a sustainable Future, Godfrey Boyle, Oxford, 3rd Edition, 2012.
- 3. Renewable Energy Sources: Their Impact on global Warming and Pollution, Tasneem Abbasi S.A. Abbasi, PHI,1st Edition, 2011.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Activity Based Learning, Quizzes, Seminars.