

短视频实时分类

参赛队:SSS(原火箭少女101)

周瑶 中山大学

马平川 南开大学

孟天健 匹兹堡大学

比赛难点

- 难点: 为了同时满足准确率和实时性
 - 可能不需要多种模态, 如光流, 音频等
 - 提取视频里面的光流信息需要额外的计算代价

比赛难点

- 难点: 为了同时满足准确率和实时性
 - 可能不需要多种模态, 如光流, 音频等
 - 提取视频里面的光流信息需要额外的计算代价
 - 可能不需要较大的2D或者3D模型
 - 大模型的参数量和flops都比较大

比赛难点

- 难点: 为了同时满足准确率和实时性
 - 可能不需要多种模态, 如光流, 音频等
 - 提取视频里面的光流信息需要额外的计算代价
 - 可能不需要较大的2D或者3D模型
 - 大模型的参数量和flops都比较大

又快又小的高性能视频理解模型

更快更高效的视频解码方案

• 快速高效的视频在线解码方案

- 快速高效的视频在线解码方案
 - 从流行的FFMPEG到GPU解码的NVVL®

	FFMPEG解码	NVVL解码	
读4帧	37.3ms	11.0ms	
读6帧	65.8ms	12.2ms	

Intel® Core™ i7-6700K CPU @ 4.00GHz × 8

[1]https://github.com/NVIDIA/nvvl

跳跃式关键帧解码

- 快速高效的视频在线解码方案
- •数据预处理和数据增强
- 更小更快速的视频理解模型

- 快速高效的视频在线解码方案
- •数据预处理和数据增强
- 更小更快速的视频理解模型
 - 基于性能最好的2D视频理解模型-TSN[2]

Backbone 模型	Top-1 准确率	Inference 时间
ResNet34	90.05%	11.68ms
ResNet50	91.30%	23.48ms
ResNet101	91.37%	30.32ms
Inceptionv3	90.62%	32.46ms
DenseNet121	89.49%	20.12ms
NasNet_mobile	88.04%	25.49ms
Peleenet_exp	88.38%	13.08ms

正确率是使用25帧, 256*256的结果, inference时间是使用4帧的时间

- 快速高效的视频在线解码方案
- •数据预处理和数据增强
- 更小更快速的视频理解模型
- •模型压缩和加速

- 快速高效的视频在线解码方案
- •数据预处理和数据增强
- 更小更快速的视频理解模型
- •模型压缩和加速
 - 视频知识蒸馏의, 使用大模型蒸馏小模型
 - TensorRT异步融合+模型校正
 [3]Distilling the Knowledge in a Neural Network

Student

$$\mathcal{L}_f = \frac{1}{N_f} ((1 - \alpha) \sum_{i}^{C} \sum_{j}^{N_f} H(\sigma(I_{s,ij}), y_i) + \alpha T^2 \sum_{i}^{C} \sum_{j}^{N_f} H(\sigma(I_{s,ij}/T), \sigma(I_{t,ij}/T))),$$

Knowledge

Distillation

Student	Teacher	UCF101	Kinetics400
	w/o	82.55%	63.71%
ResNet-18	ResNet-50	85.41%	64.88%
	ResNet-101	86.71%	65.01%
	Inception-v3	86.66%	65.09%
	w/o	86.57%	70.94%
DagNat 50	ResNet-101	88.02%	71.43%
ResNet-50	Inception-v3	87.84%	71.45%

在学术数据集UCF101和Kinetics上验证有效性

TensorRT

INT8量化

张量合并

自适应平台

动态内存

异步多流

Float32 to INT8

异步模型融合

- 快速高效的视频在线解码方案
- •数据预处理和数据增强
- 更小更快速的视频理解模型
- •模型压缩和加速
- 多标签解决方案

多标签解决方案

- •基于效率考虑,采取了最简单的阈值方案
 - 引入每个短视频最多三个标签的先验, 对于模型输出的logits先取top-3, 再过sigmoid层并使用[0, 0.5, 0.5]的阈值, 使输出的标签在1到3个之间

比赛结果

- 最好提交模型
 - 蒸馏过的ResNet50模型和ResNet152模型异步融合,NVVL读4帧输入, 使用TensorRT进行INT8量化。
- 未来工作
 - 训练更好模型
 - 使用时序融合方案

谢谢大家!