Medias de Posição e Dispersão: Percentis, Quartis e Boxplot

Gilberto Pereira Sassi

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Estatística

24 de maio de 2016

1/13

berto Sassi (UFF) Medidas Descritivas 24 de maio de 2016

Medidas Descritivas – Variável Quantitativa

Medidas de Posição

Valor representativo e/ou valor típico

Tabela 1: Medidas de Posição.

Média	Percentil
Moda	1° Quartil
Mediana	3° Quartil

Medidas de Dispersão Avalia como os dados se distribuem.

Tabela 2: Medidas de Dispersão.

Variância	Amplitude
Desvio Padrão	Intervalo Interquartil
Desvio Médio	

Medidas de Posição

Média
$$\bar{x} = \frac{x_1 + x_2 + \cdots + x_n}{n}$$

Moda Valor mais frequente de uma variável quantitativa discreta

Mediana Posição central dos dados ordenados $x_{(1)} \leq \cdots \leq x_{(n)}$:

$$md(x) = \begin{cases} X_{(\frac{n}{n})}, & \text{se } n \text{ \'e impar} \\ \frac{X_{(\frac{n}{n})} + X_{(\frac{n}{n}+1)}}{2}, & \text{se } n \text{ \'e par} \end{cases}$$

Medidas de Dispersão

$$s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n - 1} = \frac{\sum_{i=1}^n x_i^2 - n \cdot \bar{x}^2}{n - 1}$$

Desvio Padrão

$$s=\sqrt{s^2}$$

Desvio Médio

$$dm = \frac{|x_1 - \bar{x}| + \cdots |x_n - \bar{x}|}{n}$$

Amplitude

 $A = \max - \min$, em que max é o maior valor e min é o menor valor presente na amostra

Considere as notas de uma turma de estatística com 10 aluno.

4.47	5.81	9.69	6.91	7.11
9.78	8.08	3.95	9.42	7.92

Média
$$\bar{x} = \frac{4,47+5,81+9,69+7,11+9,78+8,08+3,95+9,42+7,92}{10} = 7,314$$

Mediana Dados Ordenados:

Variância
$$\sum_{i=1}^{10} x_i^2 = 573,93, \ \bar{x}^2 = 53,49 \ \text{e } s^2 = \frac{573,93-10\cdot53,49}{9} = 4,33$$

Desvio Padrão
$$s = \sqrt{s^2} = \sqrt{4,33} = 2,08$$

Desvio Médio
$$dm = \frac{|4,47-7,314|+\cdots+|7,92-7,314|}{10} = 1,664$$

Percentil

O percentil de ordem $p \cdot 100$ (0 < p < 1) é o valor que ocupa a posição $p \cdot (n+1)$ dos dados.

Notação: q(p) é o percentil de ordem $p \cdot 100$.

- q(0, 25): 1° Quartil com notação Q₁
- q(0,5): 2° Quartil ou Mediana com notação Q_2 ou md(x)
- q(0,75): 3° Quartil com notação Q₃

Considere as notas de estatística para três turmas na Tabela 3.

Tabela 3: Notas para as três turmas de Estatística.

Turma	Notas							
Α	6	8	5	4	6	5	7	7
В	6	10	2		6	4	9	10
С	0	7	7	8	7	7	6	

Na Tabela 4 ordenamos os dados presentes na Tabela 3.

Tabela 4: Notas em ordem crescente para as três turmas de Estatística.

Turma		Notas						
А	^x (1) 4	<i>x</i> (2) 5	<i>x</i> (3) 5	^x (4) 6	<i>x</i> (5) 6	<i>x</i> (6) 7	<i>x</i> (7) 7	^X (8) 8
В	<i>x</i> (1)	^x (2) 2	^x (3) 4	^x (4) 6	<i>x</i> (5) 6	<i>x</i> (6) 9	<i>x</i> (7) 10	^X (8) 10
С	<i>x</i> (1) 0	<i>x</i> (2) 6	<i>x</i> (3) 7	<i>x</i> (4) 7	<i>x</i> (5) 7	<i>x</i> (6) 7	<i>x</i> (7) 8	

Turma A 1° Quartil posição
$$0,25 \cdot (8+1) = 2,25$$
 e $Q_1 = \frac{x_{(2)} + x_{(3)}}{2} = \frac{5+5}{2} = 5$

2° **Quartil** posição
$$0.5 \cdot (8+1) = 4.5$$
 e $Q_2 = \frac{x_{(4)} + x_{(5)}}{2} = \frac{6+6}{2} = 6$

3° Quartil posição
$$0.75 \cdot (8+1) = 6.75$$
 e $Q_3 = \frac{x_{(6)} + x_{(7)}}{2} = \frac{7+7}{2} = 6$

Turma B 1° Quartil posição
$$0,25 \cdot (8+1) = 2,25$$
 e $Q_1 = \frac{x_{(2)} + x_{(3)}}{2} = \frac{2+4}{2} = 3$

2° Quartil posição
$$0.5 \cdot (8+1) = 4.5$$
 e $Q_2 = \frac{x_{(4)} + x_{(5)}}{2} = \frac{6+6}{2} = 6$

3° **Quartil** posição
$$0,75\cdot(8+1)=6,75$$
 e $Q_3=\frac{x_{(6)}+x_{(7)}}{2}=\frac{9+10}{2}=9,5$

Turma C 1° **Quartil** posição
$$0,25 \cdot (7+1) = 2$$
 e $Q_1 = X_{(2)} = 6$

2° **Quartil** posição
$$0, 5 \cdot (7+1) = 4$$
 e $Q_2 = x_{(4)} = 7$

3° **Quartil** posição
$$0.75 \cdot (7+1) = 6$$
 e $Q_3 = X_{(6)} = 7$

Observe que o primeiro, segundo o terceiro quartis podem ser usados para analisar a variabilidade e assimetria dos dados. A diferença Q_3-Q_1 avalia como os dados se distribuem e é denominado de *intervalo interquartil*.

Figura 3: Turma C

Boxplot

O primeiro, o segundo e o terceiro quartil podem ser apresentados visualmente usando o gráfico um diagrama chamado *boxplot*.

Figura 4: Boxplot

Ponto exterior menor que LI

em que $LS = Q_3 + 1, 5 \cdot (Q_3 - Q_1)$, $LI = Q_1 - 1, 5 \cdot (Q_3 - Q_1)$. Se um valor está entre LI e LS, este é chamado de valor Adjacente. Por outro, se um valor é maior que LS ou menor LI, este é chamado de ponto exterior e temo indícios de que o valor é atípico.

Vamos fazer o boxplot para as notas finais da A de estatística apresentado anteriormente.

- $Q_1 = 5$, $Q_2 = 6$ e $Q_3 = 7$;
- $Q_3 Q_1 = 2$;
- $LS = Q_3 + 1, 5 \cdot (Q_3 Q_1) = 10;$
- $LI = Q_1 1, 5 \cdot (Q_3 Q_1) = 2;$

Figura 5: Boxplot – Turma A.

Considere as notas finais já ordenadas de uma turma de estatística com 12 alunos:

										<i>x</i> ₍₁₁₎ 5.84	x ₍₁₂₎ 10
--	--	--	--	--	--	--	--	--	--	-------------------------------	-------------------------

1° **Quartil** Posição: $0,25\cdot(12+1)=3,25$ em que 12 é tamanho da amostra. Como 3,25 não é um número inteiro, usamos o valor na posição 3 e 4 e tiramos uma média:

$$Q_1 = \frac{x_{(3)} + x_{(4)}}{2} = \frac{3,41 + 3,83}{2} = 3,62$$

2° **Quartil** Posição: $0,5\cdot(12+1)=6,5$ em que 12 é tamanho da amostra. Como 6,5 não é um número inteiro, usamos o valor na posição 6 e 7 tirando uma média:

$$Q_2 = \frac{x_{(6)} + x_{(7)}}{2} = \frac{4,08+4,19}{2} = 4,135$$

 3° Quartil Posição: $0,75 \cdot (12+1) = 9,75$ em que 12 é tamanho da amostra. Como 9,75 não é um número inteiro, usamos o valor na posição 9 e 10 tirando uma média:

$$Q_3 = \frac{x_{(9)} + x_{(10)}}{2} = \frac{5+5,55}{2} = 5,275$$

Exemplo – continuação

- $Q_1 = 3,62, Q_2 = 4,135 \text{ e } Q_3 = 5,275;$
- $LS = Q_3 + 1, 5 \cdot (Q_3 Q_1) = 7,7575;$
- $LI = Q_1 1.5 \cdot (Q_3 Q_1) = 1.1375.$

Figura 6: Boxplot de notas finais.

