Nr identyfikacyjny
spCH –- 2019/2020
(numer porządkowy z kodowania)

Nr identyfikacyjny - wyjaśnienie

sp – szkoła podstawowa, symbol przedmiotu (np. CH - chemia), numer porządkowy wynika z numeru stolika wylosowanego przez ucznia

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z CHEMII dla uczniów szkół podstawowych 2019/2020

TEST ELIMINACJE WOJEWÓDZKIE

•	Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je	Czas
•	Komisji Konkursowej.	pracy:
•	Zadania czytaj uważnie i ze zrozumieniem.	1 0
•	Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.	100
•	Dbaj o czytelność pisma i precyzję odpowiedzi.	120 min.
•	W zadaniach zamkniętych prawidłową odpowiedź zaznacz stawiając znak X na odpowiedniej literze.	
•	Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.	
•	Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.	
•	Obok każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.	
•	Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.	
•	Nie używaj korektora. Jeśli się pomylisz, przekreśl błędną odpowiedź i wpisz poprawną.	
•	Nie używaj pomocy (np. kalkulator), jeżeli nie pozwala na to regulamin konkursu.	
	Powodzenia!	

Wypełnia Komisja Konkursowa po zakończeniu sprawdzenia prac Imię i nazwisko ucznia

Zadanie	1	2	3	4	5	6	7	8	9	10	11	12	13	Razem
Punkty		2	4	6	4	2	2	2	2	_	•	2	4	7 0 14
możliwe do	10	2	4	0	4	2	3	2	3	3	2	3	4	50 pkt
uzyskania														
Punkty														pkt
uzyskane														_

Podpisy członków komisji sprawdzających prace:

- 1. (imię i nazwisko).....(podpis)
- 2. (imię i nazwisko)....(podpis)

Przeczytaj uważnie treści zadań.

B. Masy cząsteczkowe

Zadanie 1 składa się z 10 zadań testowych, w których tylko jedna odpowiedź jest poprawna.

W zadaniach otwartych odpowiedź do zadań rachunkowych powinna być poprzedzona odpowiednimi obliczeniami.

Zadanie 1 (10 pkt)

1.	W cząsteczce węgla	nu wapnia jest następ	ująca liczba elektronó	w:
	A. 48	B. 100	C. 50	D. 34
2.	Ile moli atomów waj	onia potrzeba do otrzy	mania 16,8 g tlenku w	rapnia:
	A. 0,2 mola	B. 0,4 mola	C. 0,3 mola	D. 0,5 mola
3.	Jaka jest łączna liczb fosforanu(V) potasu	5	vorze otrzymanym po	rozpuszczeniu 1 mola
	A. 3 mole	B. 4 mole	C. 5 moli	D. 6 moli
4.	Ile dm ³ CO ₂ w warun metanu:	nkach normalnych wy	dzieli się podczas całk	owitego spalania 3,2 g
	A. $6,72 \text{ dm}^3$	B. $11,2 \text{ dm}^3$	C. $4,48 \text{ dm}^3$	D. $5,6 \text{ dm}^3$
5.	Który z tlenków zaw	viera najwięcej tlenu (j	procent masowych):	
	A. CO ₂	B. SnO ₂	C. SO ₂	D. NO ₂
6.	Woda utleniona to:			
	A. Woda nasycona tB. Wodny roztwór l		zcieńczony roztwór oż dna z wymienionych r	
7.	Wybierz nazwę mon	omeru, z którego otrz	ymano przedstawiony	niżej polimer:
		H — CH —		
	A. $but - 1 - en$	B. but $-2 - en$	C. propen	D. eten
8.	Która z podanych su	bstancji nie reaguje z	roztworem NaOH:	
	A. Smalec	B. Parafina	C. Stearyna	D. Masło
9.	Która z podanych wł CH ₃ OH C ₂ H ₅ O		vzrasta zgodnie z poda C ₄ H ₉ OH	nym kierunkiem?
	A. Gęstość	C. Te	mperatura wrzenia	

D. Rozpuszczalność w wodzie

10. Włókna jedwabiu naturalnego składają się z:A. Estrów B. Celulozy C. Skrobi D. Białka

Zadanie 2 (2 pkt)

Przeanalizuj położenie bromu w układzie okresowym i oceń poprawność poniższych zdań. Wpisz do tabeli literę P, jeśli zdanie uznasz za prawdziwe lub literę F, jeśli uznasz zdanie za fałszywe.

1.	Atom bromu ma 7 elektronów walencyjnych, które znajdują się na trzeciej powłoce	
2.	Brom w tlenkach przyjmuje najwyższą wartościowość równą VII	
3.	Brom jest niemetalem bardziej aktywnym od chloru	
4.	Jon bromkowy ma konfigurację elektronową atomu kryptonu	

Zadanie 3 (4 pkt)

O pierwiastkach X i Y wiadomo, że leżą w trzecim okresie układu okresowego i tworzą związek o wzorze X_nY_m , który między innymi ma zastosowanie w przemyśle kosmetycznym.

Ponadto wiadomo, że

- masa molowa związku wynosi 133,33 g/mol
- jeden ze składników stanowi 79,76% masy molowej
- stosunek molowy pierwiastków X i Y w tym związku wynosi 1 : 3
- a/ Ustal na podstawie obliczeń masy atomowe pierwiastków oraz podaj ich nazwy.
- b/ Zapisz wzór sumaryczny oraz nazwę związku X_nY_{m.}
- c/ Podaj rodzaj wiązania chemicznego występującego w tej cząsteczce.

a/						
Nazwa pierwiastka X:	Nazwa pierwiastka Y:					
b/ Wzór sumaryczny:	Nazwa związku:					
c/ Nazwa wiązania chemicznego:						

Zadanie 4 (6 pkt)

Uczniowie otrzymali mieszaninę trzech soli: NaCl, Na₂SO₄ i NH₄Cl. Z tej mieszaniny pobrano dwie próbki o jednakowych masach.

a/ Jedną próbkę rozpuszczono w wodzie i dodano do niej nadmiar roztworu BaCl₂. Wytrąciło się 1864 mg osadu.

b/ Drugą próbkę ogrzewano do momentu, gdy jej masa przestała się zmieniać. Po ostudzeniu próbkę zważono i stwierdzono, że jej masa zmniejszyła się o 321 mg.

c/ Pozostałość rozpuszczono w wodzie destylowanej i dodano nadmiar rozcieńczonego roztworu AgNO₃. Wytrąciło się 861 mg osadu.

- 1. Napisz równania reakcji w formie cząsteczkowej przebiegających w czasie analizy.
- 2. Oblicz masę NaCl, Na₂SO₄ i NH₄Cl w próbkach poddanych analizie. Wynik podaj w miligramach.

Równania reakcji:	
a/	
b/	
c/	
Obliczenia:	
Odpowiedź: W pobranych próbkach znajdowało się:mg NaCl,mg Na ₂ SO ₄ ,mg NH ₄ Cl	

Zadanie 5 (4 pkt)

Przygotowano dwie probówki z roztworem (NH₄)₂S.

Do pierwszej dodano roztwór NaOH, a do drugiej roztwór HCl.

Uzupełnij poniższe opisy przeprowadzonych doświadczeń.

I probówka:
- przewidywane obserwacje:
- równanie reakcji w formie <u>jonowej skróconej</u> :
II Probówka:
- przewidywane obserwacje:
- równanie reakcji w formie <u>jonowej skróconej</u> :
Zadanie 6 (2 pkt)
Uczeń otrzymał zadanie przelania stężonego roztworu kwasu azotowego (V) z dużej butli szklanej do dwóch mniejszych. Miał do dyspozycji dwa metalowe lejki: glinowy i miedziany.
a/ Którego lejka powinien użyć? Odpowiedź uzasadnij.
b/ Podaj nazwę procesu chemicznego, który to umożliwia i wyjaśnij na czym on polega.
a/ Wybrany lejek:
Uzasadnienie:
b/ Nazwa procesu:
Wyjaśnienie:

Zadanie 7 (3 pkt)

Przygotowano trzy roztwory siarczanu (VI) sodu o różnych stężeniach molowych. Objętość każdego roztworu wynosi 100 cm³. Ponadto wiadomo, że:

- W roztworze A liczba jonów sodu wynosi 1,2 10²²
- W roztworze B masa jonów siarczanowych(VI) wynosi 4,8 g
- W roztworze C łączna liczba jonów wynosi 0,48 mola

Oblicz stężenia molowe roztworów A, B i C z dokładnością do jednego miejsca po przecinku.

Do-twin A	
Roztwór A	
$\mathbf{p} = \mathbf{p} \cdot \mathbf{p}$	
Roztwór B	
Roztwór C	

Zadanie 8 (2 pkt)
Z 250 g wodnego roztworu CuSO ₄ o stężeniu 16% odparowano wodę do sucha.
Oblicz, ile cm 3 wody odparowano, jeżeli sól wykrystalizowała w postaci hydratu o wzorze CuSO $_4$ • $5H_2O$
Zadanie 9 (3 pkt)
20 g cynku wrzucono do roztworu zawierającego 23 g kwasu metanowego. Zapisz równanie
przebiegającej reakcji i oblicz objętość wydzielonego wodoru w warunkach normalnych.
Równanie reakcji:

Zadanie 10 (5 pkt)

a/ Ustal wzór sumaryczny węglowodoru zawierającego 80% węgla, wiedząc, że 0,15 g teg
związku chemicznego zajmuje w warunkach normalnych objętość 112 cm ³ .
b/ Zapisz równanie reakcji spalania całkowitego tego węglowodoru.
c/ Oblicz, ile dm³ powietrza w warunkach normalnych potrzeba do spalenia podanej w zadani
ilości węglowodoru.
110001 11140110 1100101

Zadanie 11 (2 pkt)

Do dwóch probówek z roztworem mydła (stearynian potasu) uczniowie dolali roztwory:

Probówka I – roztwór kwasu etanowego

Probówka **II** – roztwór chlorku wapnia

Zaobserwowali, że w obu probówkach wytrącił się osad.

Zapisz równania zachodzących reakcji w formie cząsteczkowej i zaznacz (\bar) wzory substancji, które się wytrąciły.

I	 												
II	 	. 											

Zadanie 12 (3 pkt)

Spośród podanego zestawu odczynników **podkreśl ten**, który pozwoli na identyfikację podanego związku organicznego. Obok zapisz przewidywane obserwacje.

Związek organiczny	Zestaw odczynników	Obserwacja
Roztwór glukozy	 - Amoniakalny roztwór Ag₂O - Roztwór NaCl - Roztwór CuSO₄ 	
Roztwór białka	 Roztwór NaOH Roztwór Na₂SO₄ Roztwór HNO₃ 	
Kleik skrobiowy	Roztwór K₂SO₄Roztwór KOHJodyna	

Zadanie 13 (4 pkt)

Uzupełnij lub zapisz równania reakcji.

BRUDNOPIS