

USED CARS

ALEX PASHAYEV

OHAD YAEL

DOR NAGAOKER

הנושא שלנו: כלי רכב משומשים מוטיבציה לפרויקט:

שוק רכבי היד שנייה גדל מיום ליום בגלל הקורונה ומחסור בשבבים רשימת ההמתנה לרכבים חדשים רק גדלה וכתוצאה מכך מחירי כלי הרכבים המשומשים עלו בעשרות אחוזים . קשה לחזות מה המחיר בשוק היום ואין זמן מתאים יותר לעשות למידת מכונה לחיזוי מחיר כלי רכב משומשים

מקור המידע**: https://www.cars.com/**

BeautifulSoup,pandas כפריות:

היקף נתונים**:** כ-**70000** נתונים

CRAWLING

```
i in range(1,2):
website="https://www.cars.com/shopping/results/?page="+str(i)+"&page_size=10
response = requests.get(website)
soup=bs(response.content,'html.parser')
cars=soup.find_all('div',attrs={'class':'vehicle-card'})
for car in cars:
    try:
        Name.append(car.find("h2"))
    except:
        Name.append("NaN")
    try:
        Mileage.append(car.find("div",{"class":"mileage"}).get_text())
        Mileage.append("NaN")
    try:
        CountRaiting.append(car.find("span",{"class":"sds-rating_link_sds-b
        CountRaiting.append("NaN")
    try:
        Rating.append(car.find("span",{"class":"sds-rating_count"}).get_tex
        Rating.append("NaN")
    try:
        Price.append(car.find("span",{"class":"primary-price"}).get_text())
        Price.append("NaN")
        link1.append(car.find("a")["href"])
    except:
        link1.append("NaN")
```

כמות סוגי הרכב גדולה מאוד ולכן בחרנו מספר סוגים מובלים

CRAWLING

כמות סוגי הרכב גדולה מאוד ולכן בחרנו מספר סוגים מובלים

בהתחלה יצרנו מערך לכל אחת מהעמודות

מכל רכב שמרנו קישור שמתכו משכנו נתונים נוספים שלא
 הופיעו בעמוד הראשי כמו צבע רכב, סוג דלק ועוד...

DATA TABLE

•	· · · · · · · · · · · · · · · · · · ·	-	The second second						
	Name	Year	Mileage	Count Raiting	Rating	Fuel type	Interior color	Exterior_color	Price
0	Toyota Corolla LE	2019	47,644 mi.	1632.0	4.8	Gasoline	Black	Slate Metallic	\$19,991
1	Toyota Corolla LE	2018	38,971 mi.	272.0	4.6	Gasoline	Ash	Red	\$18,700
2	Toyota Corolla LE	2018	73,147 mi.	245.0	3.4	Gasoline	Black	Tan	\$14,800
3	Toyota Corolla LE	2020	52,955 mi.	1369.0	4.3	Gasoline	-	Silver	\$19,489
4	Toyota Corolla LE	2015	88,010 mi.	929.0	4.7	Gasoline	Ash	Classic Silver Metallic	\$15,985
8848	Tesla Model 3 Long Range	2020	11,122 mi.	29.0	4.6	Electric	Black	Gray	\$60,900
8849	Tesla Model 3 Performance	2019	34,396 mi.	11.0	2.2	Electric	Red	White	\$58,999
8850	Tesla Model 3 Long Range	2020	46,921 mi.	NaN	NaN	Electric	Black	Blue	\$53,999
8851	Tesla Model 3 Long Range	2019	22,720 mi.	130.0	4.2	Electric	Black	Pearl White Multi	\$53,997
8852	Tesla Model 3 Long Range	2018	35,762 mi.	23.0	2.8	Electric	Black	White	\$44,950

8853 rows × 9 columns

זאת הטבלה לפני טיפול בנתונים ויש בה כ- **80000** ערכים

טיפול בנתונים

- הפכנו את משתני סוגי הדלק ל 0: בנזין ו
- $m{9}$ יצרנו עמודה נוספת שמחלק את מחיר הרכב לרמות של מ $m{1}$ עד
- int ו float את העמודות שכוללות מחרוזות של מספרים שינינו ל משתנים מסוג pd.to_numeric
 - **fillna** ביצענו השלמה בכל משתנה סוג דלק שחסר בעזרת
 - נבדק האם יש שורות כפולות
 - היו עמודות שהיינו צריכים לשנות תוכן שלהם לצורך למידת המכונה
 - מחקנו עמודות עם נתונים חסרים

אחרי טיפול בנתונים

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7475 entries, 0 to 8852
Data columns (total 10 columns):
    Column
                   Non-Null Count
                                  Dtype
                                  object
                   7475 non-null
    Name
    Year
                   7475 non-null
                                  int64
 1
    Mileage
                  7475 non-null
                                  float64
    Count Raiting 7475 non-null float64
    Rating
                 7475 non-null
                                 float64
    Fuel type 7475 non-null int64
    Interior color 7475 non-null object
    Exterior_color 7475 non-null object
    Price
                   7475 non-null float64
    bind_price 7475 non-null
                                  int64
dtypes: float64(4), int64(3), object(3)
memory usage: 642.4+ KB
```

אחרי טיפול בנתונים נשארנו עם כ-**70000** ערכים לא כולל עמודות נוספות שיצרנו

EDA

כמו שניתן לראות בגרף כל הרכבים המונעים בעזרת דלק נעים בטווח מחרים של *1* עד *6* ורכבים חשמליים נעים בטווח *7*עד

גרף של מחיר מול מיל גם פה ניתן לראות שככל שהמיל גבוה ככה גם המחיר יורד. ההפרדה שנצורה בגרף היא הפער בין רכבים חשמלים לבין רכבים המונעים בדלק

גרף של מחיר מול שנה וגם פה יש את אותה הפרדה

70000

60000

50000

40000

30000

20000

10000

2000

MACHINE LEARNING

- בלמידת מכונה השתמשנו בספריית sklearn ובאלגוריתמים של רגרסיה ליניארית וברגרסיה לוגיסטית כדי לחזות:
 מחיר על סמך כל הנתונים (רגרסיה רב משתנית).
 קילומטראז' על סמך כל הנתונים (רגרסיה רב משתנית).
 - האם לרכב יש בביקורת יותר מדירוג שלושה כוכבים וחצי או לא**.**
- בשלב הראשוני של למידת המכונה הפכנו משתנים שמים למשתנים קטגורים
 לדוגמא: סוג כלי הרכב, צבע ריפוד, וצבע הרכב
 בעזרת LabelEncoder().fit_transform
 - בשלב השני של למידת המכונה השתמשנו בפונקצית *scale* לצורך נירמול הנתונים

MACHINE LEARNING CONCLUSSIONS

- בשלב השלישי הפרדנו לעמודות מטרה והפעלנו אלגוריתם של רגרסיה ליניארית וגילינו כי:
 - ניתן לחזות מחיר על סמך הנתונים בסבירות גבוהה.

```
In [7]:  X = cars_numeric.copy()
  y = X['Price']
  X = X.drop('Price',axis=1)
  X = X.drop('bind_price',axis=1)
```

```
In [12]:  reg=LinearRegression()
  reg.fit(X_Train,y_Train)
  y_preds=reg.predict(X_Test)
  y_preds
```

Out[12]: array([53102.87083458, 55949.75900482, 21074.81732089, . 19269.19251332, 16462.83981876, 56589.16454528])

MACHINE LEARNING CONCLUSSIONS

.ניתן לחזות קילומטראז' על סמך הנתונים בסבירות נמוכה יחסית.

```
In [15]: N X2 = cars_numeric.copy()
    y2 = X2['Mileage']
    X2 = X2.drop('Mileage',axis=1)
```


MACHINE LEARNING CONCLUSSIONS

בשלב הרביעי הפרדנו לעמודות מטרה והפעלנו אלגוריתם של רגרסיה לוגיסטית וגילינו שאכן ניתן לחזות האם לרכב יש ביקורת גבוהה יותר מ**3.5** כוכבים בסבירות גבוהה

