TABLE OF CONTENTS

1
2
2
3
5
6
6
7
7
7
8
8
8
10
10
11
11
11
11
12
12
13

2.8 RINGWORM	14
2.8.1 CLINICAL SIGNS OF RINGWORM	14
2.9 PINK EYE DISEASE	14
2.9.1 CLINICAL SIGNS OF OINK EYE DISEASE	15
2.10 CLASSIFICATION OF CATTLE DISEASE USING COLOR	
TEXTURE FATURES	15
2.11 ARTIFICIAL NEURAL NETWORK (ANNs)	18
CHAPTER 3 CATTLE DISEASE DETECTION USING SVM	19
3.1 MATLAB	19
3.2 STARTING MATLAB	20
3.3 HARDWARE REQUIREMENTS	23
3.3.1 GSM SIM800A MODULE	23
3.3.2 USB to UART CONVERTER	24
3.3.3 ADAPTER	25
CHAPTER 4 DESIGN AND IMPLEMENTATION	27
4.1 FLOW DIAGRAM	27
4.2 TEXTURE FEATURE EXTRACTION N	28
4.3 COLOR FEATURE EXTRACTION	28
4.4 SUPPORT VECTOR MACHINE (SVM)	29
4.5 HISTOGRAM STRETCHING TO ENHANCE THE CONTRAST	33
4.6 CONTRAST STRETCHING	34
4.7 SOBEL EDGE DETECTION	36
4.8 PROPOSED ALGORITHM FLOW	38
4.8.1 CALCULATED VALUES OF VARIOUS PARAMETERS	40
CHAPTER 5 RESULTS AND DISCUSSION	41
5.1 CASE STUDY 1	43
5.2 CASE STUDY 2	44

CHAPTER 6 CONCLUSION AND FUTURE SCOPE	46
6.1 CONCLUSION	46
6.2 FUTURE SCOPE	46
REFERENCES	47
APPENDIX A	49
A.1 MATLAB CODE FOR LOADING DATABASE IMAGES	49
A.2 MATLAB CODE FOR PROCESSING THE TEST IMAGE	53
A.3 MATLAB CODE FOR REALTIME APPLICATION	57
A.4 MATLAB CODE FOR CLASSIFICATION OF TEST IMAGE USING	61
MULTISVM	
A.5 MATLAB CODE FOR SENDING MESSAGE VIA GSM MODULE	63

LIST OF FIGURES

Figure 1.1 Cattle seen by naked eye	Z
Figure 2.1 Pie chart for total distribution of available livestock in India	5
Figure 2.2 State wide distribution of total available cattle population	6
Figure 2.3 Foot and Mouth disease	12
Figure 2.4 Cattle with Mastitis disease	13
Figure 2.5 Ringworm disease on cattle skin	14
Figure 2.6 Cattle infected by Pink eye disease	15
Figure 2.7 Proposed block diagram for classification of disease	16
Figure 3.1 Block diagram	19
Figure 3.2 The Graphical interface to MATlab workspace	21
Figure 3.3 GSM SIM800A module	24
Figure 3.4 USB to UART (a) Connecting cable (b) Converter	25
Figure 3.5 12V- 2A Adapter	26
Figure 4.1 Flowchart	27
Figure 4.2 Green color hyperplane separating two classes of red squares and blue circles	31
Figure 4.3 Finding an optimal hyperplane	32
Figure 4.4 The structured histogram of the image	34
Figure 4.5 Image used for contrast stretching	35
Figure 4.6 Histogram of the image	35
Figure 4.7 image after applying Histogram stretching	36
Figure 4.8 Sobel mask	37
Figure 4.9 Algorithm flow	38
Figure 4.10 (a) Normal foot image (b) Diseased foot image	38
Figure 4.11 Grayscale image of (a) Normal foot (b) Diseased foot	39
Figure 4.12 Adaptive Histogram image of (a) Normal foot (b) Diseased foot	39

Figure 5.1 Images considered as Database	
Figure 5.2 Image of ulcer disease	
Figure 5.3 Result shown for the test image considered in case study 1	
Figure 5.4 Image of normal eye	
Figure 5.5 Result shown for the test image considered in case study 2	