10 Recursive Sequences.

10_04_The Master_Theorem

<u>Theorem.</u> Suppose T(n) is a function defined on the set of nonnegative integers and satisfies the following recurrence

$$T(n) = a T(n/b) + f(n),$$

where a and b are constants such that $a \ge 1$ and b > 1 and n/b can be thought as either [n/b], the floor of n/b, or $\{n/b\}$, the ceiling of n/b.

- [1] If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- [2] If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a}).$
- [3] If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and sufficient large n, then $T(n) = \Theta(f(n))$.

Example. Suppose T(n) is a function defined on the set of nonnegative integers and satisfies the following recurrence

$$T(n) = 2 T(n/2) + 10 n.$$

Since f(n) = 10 $n = \Theta(n^{\log_b a})$, where b = 2 and a = 2, we, by [1] in the master theorem above, have

$$T(n) = \Theta(n^{\log_b a} \log_2 n) = \Theta(n \log_2 n).$$

<u>Example.</u> Suppose T(n) is a function defined on the set of nonnegative integers and satisfies the following recurrence

$$T(n) = 7 T(n/2) + 5 n^2$$
.

Note that $log_b a \approx 2.803$ when a = 7 and b = 2.

Thus $f(n) = 5 n^2 = O(n^{\log_b a - \epsilon})$ for a constant $\epsilon = 0.1 > 0$.

We, by [2] in the master theorem above, have

$$T(n) \equiv \Theta(n^{\log_b a}) \approx \Theta(n^{2.803}) \neq \Theta(n^3).$$

<u>Example.</u> Suppose T(n) is a function defined on the set of nonnegative integers and satisfies the following recurrence

$$T(n) = 7 T(n/2) + n^3$$
.

Note that $log_b a \approx 2.803$ when a = 7 and b = 2.

Thus $f(n) = n^3 = \Omega(n^{\log_b a + \epsilon})$ for a constant $\epsilon = 0.1 > 0$.

Also $af(n/b) \le cf(n)$ for $c = 15/16 \le 1$ and $n \ge 1$.

we, by [3] in the master theorem above, have

$$T(n) = \Theta(f(n)) = \Theta(n^3).$$