Curso Pytorch Distribuido

Diego Andrade Canosa Roberto López Castro

Índice

- Introducción al curso
- Harware para IA en FT3
- Herramientas de Profiling

- Curso de Introducción a Pytorch Distribuido
 - No introducción a Pytorch (conocimiento previo)
 - No introducción a Machine Learning
- Impartido por:
 - Diego Andrade Canosa (CITIC+UDC)
 - Roberto López Castro (CITIC+UDC)
 - Miembros de un grupo de arquitectura de computadores y HPC
 - Usamos Pytorch para investigación sobre la confluencia del HPC con ML
 - AutoML+HPC
 - Performance-aware pruning techniques and kernels

- Duración (12 horas)
 - 17,18 y 19 de julio de 9.30 a 13.30
- Contenidos básicos:
 - Día 1:
 - Soporte nativo para entrenamiento distribuido en Pytorch
 - Día 2:
 - Herramientas avanzadas de entrenamiento distribuido en Pytorch
 - Lightning, DeepSpeed, otras...
 - Día 3:
 - Herramientas de AutoML, NAS y selección de modelos
 - Ray TUNE, AutoPytorch, otras...

- Soporte nativo de entrenamiento distribuido en Pytorch DÍA 1
 - 2.1 Distributed Data-Parallel Training (Diego)
 - 2.2 RPC-Based Distributed Training (Roberto)
- Herramientas avanzadas de entrenamiento distribuido en Pytorch DÍA 2
 - 3.1 Lightning (Diego)
 - 3.2 DeepSpeed (Roberto)
 - 3.3 Otras herramientas (Diego y Roberto)
- Herramientas y técnicas de AutoML, Network Architecture Search y Selección de Modelos DÍA 3
 - 4.1 Ray TUNE (Diego)
 - 4.2 AutoPytorch (Roberto)
 - 4.3 Otras herramientas (Diego y Roberto)

Why AI is the new electricity por Andrew Ng

- **Motivo 1:** La Inteligencia Artificial (IA) juega y jugará un papel fundamental

Ciclo del Hype de Gartner

- **Motivo 2:** El coste de recursos (computo y memoria) de entrenar nuevos modelos está creciendo aceleradamente

Fuente: https://www.marktechpost.com/2022/07/13/colossal-ai-a-unified-deep-learning-system-for-big-models-seamlessly-accelerates-large-models-at-low-costs-with-hugging-face/

- Motivo 3: El entrenamiento de modelos requiere el uso de recursos computacionales heterogéneos
 - Tarjetas gráficas: Graphic Processing Units (GPUs)
 - Conceptos asociados: GPGPU, CUDA
 - Tienen hw especializado para IA: Tensor Cores, Sparse Tensor Cores
 - Explotado por las librerías especializadas de Nvidia (cudNN, cuBLAS, cuSparseLT, cutlass), usadas a su vez por los frameworks más conocidos de IA (TF, Pytorch)
 - CPUs multinúcleo: Multicores
 - Más lentas para IA que las GPU
 - Tienen hw especializado para IA
 - Principalmente extensiones del juego de instrucciones vectoriales o multimedia del procesador
 - Explotado por librerías especializadas de los fabricantes (<u>Intel OneAPI AI Analytics</u>)
 - Hardware de propósito específico
 - Ejemplo: Tensor Processing Units (TPUs) de Google
 - Computadores (o aceleradores) cuánticos (en desarrollo)

Pytorch domina la innovación en IA

Motivo 4: Pytorch domina el desarrollo innovador en ML

Paper Implementations grouped by framework

tldr;

- El soporte nativo de Pytorch para entornos distribuidos es suficiente en el 90% de los casos
- Para todo lo demás iUsa Pytorch Lightning (o Fabric)!
 - Tecnologías como DeepSpeed o Accelerate exploran los límites del Hardware
- Ray es una navaja suiza

Modelos escalables vs no escalables

- Hay arquitecturas de red que son difícilmente paralelizables
 - Ejemplo RNNs
 - Al ser recurrentes se reduce la posibilidad de paralelizarlas
 - No son paralelizables
 - Tiene dependencias en la dimensión temporal que lo impiden
 - Las redes de atención (*attention networks*) están concebidas para implementar RNNs paralelizables
 - Permiten procesar diferentes partes de la entrada, en paralelo, con distintas cabezas (heads)
 - Cada head utiliza una máscara diferente

Scheme	Number of parameters (billion)	Model- parallel size	Batch size	Number of GPUs	Microbatch size	Achieved teraFIOP/s per GPU	Training time for 300B tokens (days)
ZeRO-3 without Model Parallelism	174.6	1	1536	384	4	144	90
				768	2	88	74
				1536	1	44	74
	529.6	1	2560*	640	4	138	169
			2240	1120	2	98	137
				2240	1	48	140
PTD Parallelism	174.6	96	1536	384	1	153	84
				768	1	149	43
				1536	1	141	23
	529.6	280	2240	560	1	171	156
				1120	1	167	80
				2240	1	159	42

Pipeline-Tensor-Data Parallelism vs Zero3 (sin MP)

Fuente: https://arxiv.org/pdf/2104.04473.pdf

Modelos que requieren gran capacidad de cómputo

- Los modelos de Deep Learning (DL) actuales requieren cada vez más recursos:
 - Memoria
 - Cómputo
 - Entrenamiento
 - Inicial + Fine-tuning
 - Inferencia

Ejemplos de de modelos grandes: Bert

	BERT	RoBERTa	DistilBERT	XLNet
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base: ~110 Large: ~340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base: 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degradation from BERT	2-15% improvement over BERT
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base: 16 GB BERT data Large: 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.
Method	BERT (Bidirectional Transformer with MLM and NSP)	BERT without NSP**	BERT Distillation	Bidirectional Transformer with Permutation based modeling

Fuente: BERT, RoBERTa, DistilBERT, XLNet — which one to use? | by Suleiman Khan, Ph.D. | Towards Data Science

Ejemplos de de modelos grandes: GPT-3

- Llevaría 355 años entrenar este modelo en una sola Tesla V100
 - 4.6 millones de dólares de coste en un proveedor de cloud [fuente]

Entrada/Salida

# Lab	Dataset	Size (TB)	Tokens (trillion)	Notes
1 Google •	Piper monorepo	86TB	<i>37.9T</i>	DIDACT, code only. From 2016 paper.
2 OpenAl	GPT-4	40TB	20T	1T model ∴ 20T tokens. gdb said 40TB.
3 TTI	RefinedWeb	23.2TB	5.0T	CC-only dataset prepared by UAE.
4 DeepMind	MassiveText (ml)	20TB	5.0T	From Retro paper.
5 Google	PaLM 2	13TB	3.6T	From PaLM 2 CNBC report.
6 Google	Infiniset	12.6TB	2.8T	From LaMDA paper.

Table. 2023 largest dataset estimates to Jun/2023. Rounded. Disclosed in **bold.** Determined in *italics*. For similar models, see my *What's in my AI* paper.

Hardware para IA en FT3

Fuente: CESGA - Portal de usuarios

Backends de Pytorch

 Habilitan el uso eficiente del hardware disponible habilitando el uso de los kernels numéricos de los fabricantes

torch.backends.cuda torch.backends.cudnn

torch.backends.mps

torch.backends.mkl

torch.backends.mkldnn

torch.backends.openmp

torch.backends.opt_einsum

torch.backends.xeon

Cada nodo tiene 2 procesadores Intel Xeon 8352Y de 32 cores cada uno -> 64 cores por nodo

Fuente: Procesador Intel® Xeon® Platinum 8352Y y Xeon Platinum - WikiChip

- Varios modelos de GPU:
 - Tesla T4. Arquitectura Turing.
 - Tesla A100. Arquitectura A100.

Arquitectura de la Aoo

- 40 GB de memoria HBM2 (1555 GB/s)
- 40MB de cache L2 (nivel 2). Topología crossbar
- Con la tecnología MIG (Multi-Instance GPU) se puede particionar una A100 en hasta 7 particiones

The **NVIDIA A100 Tensor Core GPU implementation** of the GA100 GPU includes the following units:

- 7 GPCs, 7 or 8 TPCs/GPC, 2 SMs/TPC, up to 16 SMs/GPC, 108 SMs
- 64 FP32 CUDA Cores/SM, 6912 FP32 CUDA Cores per GPU
- 4 Third-generation Tensor Cores/SM, 432 Third-generation Tensor Cores per GPU
- 5 HBM2 stacks, 10 512-bit Memory Controllers

- A100 Streaming Multiprocessor:
- 4 bloques de procesamiento cada uno con
 - 1 x L1 cache
 - 1 x Warp scheduler
 - 16 x INT32 CUDA cores
 - 16 x FP32 CUDA cores
 - 8 x FP64 CUDA cores
 - 8 x Load/Store cores
 - 1 x Tensor core for matrix multiplication
 - 1 x 16K 32-bit register file
- 32 thread blocks por SM

Fuente: NVIDIA A100 | NVIDIA

Rendimiento pico

Peak FP64 ¹	9.7 TFLOPS		
Peak FP64 Tensor Core ¹	19.5 TFLOPS		
Peak FP32 ¹	19.5 TFLOPS		
Peak FP16 ¹	78 TFLOPS		
Peak BF16 ¹	39 TFLOPS		
Peak TF32 Tensor Core ¹	156 TFLOPS 312 TFLOPS ²		
Peak FP16 Tensor Core ¹	312 TFLOPS 624 TFLOPS ²		
Peak BF16 Tensor Core ¹	312 TFLOPS 624 TFLOPS ²		
Peak INT8 Tensor Core ¹	624 TOPS 1,248 TOPS ²		
Peak INT4 Tensor Core ¹	1,248 TOPS 2,496 TOPS ²		

^{1 -} Peak rates are based on GPU Boost Clock.

^{2 -} Effective TFLOPS / TOPS using the new Sparsity feature

A100 vs V100

UNIFIED AI ACCELERATION

BERT Large Inference uses TRT 7.1 for T4/V100, with INT8/FP16 at batch size 256. Pre-production TRT for A100, uses batch size 94 and INT8 with sparsity

Nvidia Tensor Cores

TENSOR CORE 4X4X4 MATRIX-MULTIPLY ACC

Fuente: Tensor Cores: versatilidad para HPC e IA | NVIDIA

Nvidia Tensor Cores (Ampere ver.)

- 1 x A100 Tensor Core ejecuta:
 - 256 x operaciones FMA (fused multiply-add) por ciclo en precisión FP16
 - 8×4×8 mixed-precision MatMul por ciclo

Nvidia Tensor Cores

Fuente: Tensor Cores: versatilidad para HPC e IA | NVIDIA

Nvidia Tensor Cores

Fuente: Tensor Cores: versatilidad para HPC e IA | NVIDIA

Tensor Cores de 3^a generación

- Aceleración para todos los tipos de datos FP16,BF16,TF32,FP64,INT8,INT4 y Binary
 - TF32 es un tipo de dato que emula FP32 con longitud 16
 - Mismo rango -> menor precisión
- Cómputo sparse para dispersión estructurada (2:4)
 - · Dobla el rendimiento de cómputo de TC sin dispersión
- Mixed precision (FP16/FP32) es 2.5x más rápido que Tesla (5x con dispersión)

Nvidia **Sparse** Tensor Cores

Fuente: Working with sparse tensors | TensorFlow Core y Accelerating Inference with

Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT | NVIDIA Technical

Blog

Nvidia **Sparse** Tensor Cores

Fuente: Working with sparse tensors | TensorFlow Core y Accelerating Inference with

Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT | NVIDIA Technical

Blog

Nvidia A100

• Explicación detallada: https://jonathan-hui.medium.com/ai-chips-a100-gpu-with-nvidia-ampere-architecture-3034ed685e6e

- Almacenamiento compartido: Home y Store
- Accesible desde todas las infraestructuras de CESGA
- Localización cableada en las variables de entorno \$HOME y \$STORE
- Límites:
 - HOME: 10 GB y 100.000 ficheros
 - STORE: 500 GB y 300.000 ficheros
- Sólo se hace backup de Home

Directory	Use	User limits	Backup
\$HOME	Store code files Low speed access	10GB 100.000 files	Yes
\$STORE	Store simulations final results Low speed access	500GB 300.000 files	No
\$LUSTRE	Simulation runs High speed access	3TB 200.000 files	No

[ulcesdac@login211-1 dac]\$ cd \$LUSTRE
[ulcesdac@login211-1 dac]\$ pwd
/mnt/lustre/scratch/nlsas/home/ulc/es/dac
[ulcesdac@login211-1 dac]\$ cd \$HOME
[ulcesdac@login211-1 ~]\$ pwd
/home/ulc/es/dac
[ulcesdac@login211-1 ~]\$ cd \$STORE
[ulcesdac@login211-1 dac]\$ pwd
/mnt/netapp2/Store_uni/home/ulc/es/dac
[ulcesdac@login211-1 dac]\$ |

Fuente: CESGA - Portal de usuarios

- · Sistema paralelo de almacenamiento compartido basado en Lustre
- Dividido en 2 pools: NVMe y NLSAS
- Accesible a través de
 - \$LUSTRE: Permanente. Pool NLSAS
 - \$LUSTRE_SCRATCH: Disponible durante la ejecución de los trabajos. Pool NVMe.
- Límites: Hasta 3 TB por usuario y 200.000 ficheros

[ulcesdac@login211-1 dac]\$ cd \$LUSTRE
[ulcesdac@login211-1 dac]\$ pwd
/mnt/lustre/scratch/nlsas/home/ulc/es/dac
[ulcesdac@login211-1 dac]\$ cd \$HOME
[ulcesdac@login211-1 ~]\$ pwd
/home/ulc/es/dac
[ulcesdac@login211-1 ~]\$ cd \$STORE
[ulcesdac@login211-1 dac]\$ pwd
/mnt/netapp2/Store_uni/home/ulc/es/dac
[ulcesdac@login211-1 dac]\$ |

Fuente: <u>CESGA - Portal de usuarios</u>

• Usamos el comando myquota para conocer el espacio disponible

```
[ulcesdac@login211-1 ~]$ myquota
- HOME and Store filesystems:
Filesystem
                                          limit
                                                  files quota limit
                          space
                                  quota
10.117.49.201:/Home_FT2
                          7966M
                                  10005M
                                          10240M
                                                  48959
                                                         100k
                                                                101k
10.117.49.201:/Store_uni 96361M
                                 499G
                                          500G
                                                  280k
                                                         300k
                                                                301k
10.117.49.101:/Home_BD
                                  800G
                                          1024G
                                                         4295m
                                                                4295m
                          3008M
- LUSTRE filesystem:
    Filesystem
                                  limit
                                                  files
                                                                  limit
                   used
                          quota
                                          grace
                                                          quota
/mnt/lustre/scratch
                  12.6G
                             3T
                                   3.5T
                                                  86665 200000
                                                                 240000
```

Fuente: CESGA - Portal de usuarios

Pruebas de rendimiento: archivos grandes

```
[ulcesdac@c206-1 dac]$ cd $HOME
[ulcesdac@c206-1 ~]$ dd if=/dev/zero of=./test1.img bs=1G count=10 oflag=dsync
dd: error writing './test1.img': Disk guota exceeded
4+0 records in
3+0 records out
3221225472 bytes (3.2 GB, 3.0 GiB) copied, 9.29581 s, 347 MB/s
[ulcesdac@c206-1 ~]$ cd $STORE
[ulcesdac@c206-1 dac]$ dd if=/dev/zero of=./test1.img bs=1G count=10 oflag=dsync
10+0 records in
10+0 records out
10737418240 bytes (11 GB, 10 GiB) copied, 21.4888 s, 500 MB/s
[ulcesdac@c206-1 dac]$ cd $LUSTRE
[ulcesdac@c206-1 dac]$ dd if=/dev/zero of=./test1.img bs=1G count=10 oflag=dsync
10+0 records in
10+0 records out
10737418240 bytes (11 GB, 10 GiB) copied, 20.0192 s, 536 MB/s
[ulcesdac@c206-1 dac]$ cd $LUSTRE SCRATCH
[ulcesdac@c206-1 3483424]$ dd if=/dev/zero of=./test1.img bs=1G count=10 oflag=dsync
10+0 records in
10+0 records out
10737418240 bytes (11 GB, 10 GiB) copied, 12.2554 s, 876 MB/s
```


Pruebas de rendimiento: archivos pequeños

```
[ulcesdac@c206-1 dac]$ cd $HOME
[ulcesdac@c206-1 ~]$ dd if=/dev/zero of=./test1.img bs=512 count=50000 oflag=dsync
50000+0 records in
50000+0 records out
25600000 bytes (26 MB, 24 MiB) copied, 9.04545 s, 2.8 MB/s
[ulcesdac@c206-1 ~]$ cd $STORE
[ulcesdac@c206-1 dac]$ dd if=/dev/zero of=./test1.img bs=512 count=50000 oflag=dsync
50000+0 records in
50000+0 records out
25600000 bytes (26 MB, 24 MiB) copied, 8.89278 s, 2.9 MB/s
[ulcesdac@c206-1 dac]$ cd $LUSTRE
[ulcesdac@c206-1 dac]$ dd if=/dev/zero of=./test1.img bs=512 count=50000 oflag=dsync
50000+0 records in
50000+0 records out
25600000 bytes (26 MB, 24 MiB) copied, 26.607 s, 962 kB/s
[ulcesdac@c206-1 dac]$ cd $LUSTRE SCRACTCH
[ulcesdac@c206-1 ~]$ dd if=/dev/zero of=./test1.img bs=512 count=50000 oflag=dsync
50000+0 records in
50000+0 records out
25600000 bytes (26 MB, 24 MiB) copied, 8.74333 s, 2.9 MB/s
```


- Módulos relevantes:
 - Módulos disponibles consultables con el commando: module avail
 - Cargables con el commando: *module load nombre_del_modulo*
 - Módulos relevantes:
 - intel: Diversas herramientas de intel, algunas relacionadas con IA
 - **tensorflow:** Framework de google para IA
 - transformers: Varias herramietnas de IA relacionadas con NLP (procesamiento del lenguaje natural), incluído TensorFlow y Pytorch
 - pytorch: Popular framework de IA
 - torchvision: Conjuntos de datos, y modelos para vision por computador
 - **scikit-learn:** Librería que implementa diversos algoritmos de *Machine Learning*, implementados con numpy, scipy y matplotlib
 - r-keras: API en R para TensorFlow keras

Retos de entrenamientos distribuidos en FT3

- Utilizar el conjunto de herramientas adecuado/deseado
 - Módulos disponibles en el FT3
 - Entornos conda
 - module load cesga/system miniconda3/22.11
- Utilizar el sistema de ficheros más adecuado para almacenar cada componente de un entrenamiento distribuido
 - Entornos CONDA: \$STORE
 - Ficheros de dataset: \$STORE o \$LUSTRE según características
- Evitar pasarnos de la quota diponible en cada sistema de ficheros
 - Visualizable con el comando myquota
 - Elementos que ocupan espacio
 - Entornos conda (espacio + nº ficheros)
 - Conjuntos de datos (espacio + nº ficheros)
 - Puntos intermedios del modelo (parámetros en un punto de entrenamiento)
 - Información de profiling y checkpointing de los modelos
 - Herramientas como Ray generan una gran cantidad de información en cada ejecución

Retos de entrenamientos distribuidos en FT3

- Utilizar el mejor hardware para los entrenamientos
 - CPUs multinúcleo de Intel
 - · Reservar un número adecuado de GPUs
 - Suficiente cantidad de memoria RAM
 - Tener en cuenta el tamaño del modelo + tamaño de batch
 - Utilizar las aceleradores A100 disponibles en el FT3
 - Dos por nodo
 - 40GB por GPU
 - Varios nodos
 - Configurar una estrategia de entrenamiento distribuido adecuada
 - Paralelismo de datos
 - Paralelismo de modelo
 - Paralelismo de tensor
 - Paralelismo de pipeline
 - Estrategias híbridas
 - Estrategias avanzadas

Retos de entrenamientos distribuidos en FT3

- Cargar los datos de forma colaborativa utilizando varios *workers* (trabajadores)
 - Existen formas estándar de hacer disponibles en las herramientas que se verán en este curso
- Asegurarnos de utilizar la versión más eficiente de los kernels computacionales
 - oneDNN (Intel)
 - cuDNN (CUDA)
 - Mixed-precision para activar los Tensor Cores (automatic mixed precision)

Herramientas de Profiling

Herramientas de profiling del uso de recursos

- NVBoard: Es una extensión de jupyterlab que nos permite observar en tiempo real la ocupación de los recursos de la máquina durante la ejecución de un código
 - CPU
 - Memoria
 - I/O
 - Memoria
 - Red
 - GPU
 - Utilización
 - Memoria
 - PCIe throughput

• Vista "machine resources"

• Vista "GPU utilization"

• Vista "GPU memory"

• Vista "GPU memory"

Vista "GPU resources"

• Vista "PCIe resources"

Fuente: https://github.com/rapidsai/jupyterlab-nvdashboard

- TensorBoard es un conjunto de herramientas de visualización para ML
 - Soporte para TF y Pytorch
 - Visualización de la evolución de métricas como: loss y accuracy
 - Visualización del grafo del modelo
 - Visualización de histogramas de pesos, bias y otros tensores mientras evolucionan en el tiempo

 - · Profiling del rendimiento del proceso de entrenamiento

Fuente: Get started with TensorBoard | TensorFlow

- Probar la conexión "local" de un notebook alojado en Google Colab
- Elegir Conectarse a un entorno de ejecución local
- Seguir las instrucciones para conectarse al Jupyter en ejecución en el FT3

- TensorBoard es un conjunto de herramientas de visualización para ML
 - Visualización de la evolución de métricas como: loss y accuracy

Fuente: TensorBoard Scalars: Logging training metrics in Keras | TensorFlow

- TensorBoard es un conjunto de herramientas de visualización para ML
 - Visualización del grafo del modelo

Fuente: Examining the TensorFlow

Graph | TensorBoard

- TensorBoard es un conjunto de herramientas de visualización para ML
 - Profiling del rendimiento del proceso de entrenamiento

Fuente:

tensorboard profiling keras .ipynb - Colaboratory (google.com)

Entorno

- Instalación del entorno. En ft3 con conda unpack
 - Conectarse a ft3
 - Conectarse a login1 (ssh login1)
 - Cd \$STORE
 - git clone https://github.com/diegoandradecanosa/Cesga2023Courses
 - cd Cesga2023Courses/pytorch_dist/scripts
 - ./setupConda.sh
 - Podemos usar el siguiente script para activar el entorno source activateconda.sh

