WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/62, 15/56, 15/55 C12N 15/53, 1/19, 11/16 // (C12N 1/19, C12R 1:865)

(11) International Publication Number:

WO 94/01567

(43) International Publication Date:

20 January 1994 (20.01.94)

(21) International Application Number:

PCT/EP93/01763

A1

(22) International Filing Date:

7 July 1993 (07.07.93)

(30) Priority data:

92202080.5 8 July 1992 (08.07.92) EP (34) Countries for which the regional

or international application was filed:

NL et al. 14 December 1992 (14.12.92) EP

92203899.7 14 December 1 (34) Countries for which the regional or international application was filed:

NL et al.

(71) Applicant (for AU BB CA GB IE LK MN MW NZ SD only):
UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4 4BQ (GB).

(71) Applicant (for all designated States except AU BB CA GB IE LK MN MW NZ SD US): UNILEVER N.V. [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KLIS, Franciscus, Maria [NL/NL]; Benedenlangs 102, NL-1025 KL Amsterdam (NL). SCHREUDER, Maarten, Pleun [NL/NL]; Rode Kruislaan 1220, NL-1111 XB Diemen (NL). TOSCHKA, Holger, York [NL/NL]; Coornhertstraat 77, NL-3132 GB Vlaardingen (NL). VERRIPS, Cornelis, Theodorus [NL/NL]; Hagedoorn 18, NL-3142 KB Maassluis (NL).
- (74) Agent: VAN DER TOORREN, Johannes; Unilever N.V., Patent Division, P.O. Box 137, NL-3130 AC Vlaardingen (NL).
- (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PROCESS FOR IMMOBILIZING ENZYMES TO THE CELL WALL OF A MICROBIAL CELL BY PRODUCING A FUSION PROTEIN

(57) Abstract

A method is provided for immobilizing an enzyme, comprising immobilizing the enzyme or a functional part thereof to the cell wall of a microbial cell using recombinant DNA techniques. The enzyme is immobilized by linking it to the C-terminal part of a protein that ensures anchoring in the cell wall. Also provided is a recombinant polynucleotide comprising a structural gene encoding an enzyme protein, a part of a gene encoding the C-terminal part of a protein capable of anchoring in a eukaryotic or prokariotic cell wall, as well as a signal sequence, in addition to a chimeric protein encoded by the recombinant polynucleotide and a vector and a microorganism containing the polynucleotide. The microorganism is suitable for carrying out enzymatic processes on an industrial scale.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Benin	IE	Ireland	PL	Poland
BR	Brazil	IT	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic	: , —	of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	ΚZ	Kazakhstan	SI	Slovenia
a .	Côte d'Ivoire	ü	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	iii	Luxembourg	TD	Chad
cs	Czechoslovakia	ĹŸ	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	ML	Mali	UZ	Uzbekistan
ES	Spain	MN	Mongolia	٧N	Vict Nam
PI	Finland				

PROCESS FOR IMMOBILIZING ENZYMES TO THE CELL WALL OF A MICROBIAL CELL BY PRODUCING A FUSION PROTEIN.

The present invention is in the field of conversion processes using immobilized enzymes, produced by genetic engineering.

Background of the invention

In the detergent, personal care and food products industry there is a strong trend towards natural ingredients of these products and to environmentally acceptable production processes. Enzymic conversions are very important for fulfilling these consumer demands, as these processes can be completely natural. Moreover enzymic processes are very specific and consequently will produce minimum amounts of waste products. Such processes can be carried out in water at mild temperatures and atmospheric pressure. However enzymic processes based on free enzymes are either quite expensive due to the loss of enzymes or require expensive equipment, like ultramembrane systems to entrap the enzyme.

Alternatively enzymes can be immobilized either physically or chemically. The latter method has often the disadvantage that coupling is carried out using non-natural chemicals and in processes that are not attractive from an environmental point of view. Moreover chemical modification of enzymes is nearly always not very specific, which means that coupling can affect the activity of the enzyme negatively. Physical immobilization can comply with consumer demands, however also physical immobilization may affect the activity of the enzyme in a negative way. Moreover, a physically immobilized enzyme is in equilibrium with free enzyme, which means that in continuous reactors, according to the laws of thermodynamics, substantial losses of enzyme are unavoidable.

There are a few publications on immobilization of enzymes to microbial cells (see reference 1). The present invention provides a method for immobilizing enzymes to cell walls of microbial cells in a very precise way. Additionally, the immobilization does not require any chemical or physical coupling step and is very efficient. Some extracellular proteins are known to have special functions which they can perform only if they remain bound to the cell wall of the host cell. Often this type of

protein has a long C-terminal part that anchors it in the cell wall. These C-terminal parts have very special amino acid sequences. A typical example is anchoring via C-terminal sequences enriched in proline (see reference 2). Another mechanism to anchor proteins in cell walls is that the protein has a glycosyl-phosphatidyl-inositol (GPI) anchor (see reference 3) and that the C-terminal part of the protein contains a substantial number of potential serine and threonine glycosylation sites.

O-Glycosylation of these sites gives a rod-like conformation to the C-terminal part of these proteins. Another feature of these manno-proteins is that they seem to be linked to the glucan in the cell wall of lower eukaryotes, as they cannot be extracted from the cell wall with SDS, but can be liberated by glucanase treatment.

Summary of the invention

The present invention provides a method for immobilizing an enzyme, which comprises the use of recombinant DNA techniques for producing an enzyme or a functional part thereof linked to the cell wall of a host cell, preferably a microbial cell, and whereby the enzyme or functional fragment thereof is localized at the exterior of the cell wall. Preferably the enzyme or the functional part thereof is immobilized by linking to the C-terminal part of a protein that ensures anchoring in the cell wall.

In one embodiment of the invention a recombinant polynucleotide is provided comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, said part encoding at least the C-terminal part of said anchoring protein. Preferably the polynucleotide further comprises a sequence encoding a signal peptide ensuring secretion of the expression product of the polynucleotide. Such signal peptide can be derived from a glycosyl-phosphatidyl-inositol (GPI) anchoring protein, α-factor, α-agglutinin, invertase or inulinase, α-amylase of Bacillus, or a proteinase of lactic acid bacteria. The DNA sequence encoding a protein capable of anchoring in the cell wall can encode α-agglutinin, AGA1, FLO1 or the Major Cell
Wall Protein of lower eukaryotes, or a proteinase of lactic acid bacteria. The recombinant polynucleotide is operably linked to a promoter, preferably an inducible

promoter. The DNA sequence encoding a protein providing catalytic activity can encode a hydrolytic enzyme, e.g. a lipase, or an oxidoreductase, e.g. an oxidase. Another embodiment of the invention relates to a recombinant vector comprising a polynucleotide as described above. If such vector contains a DNA sequence encoding a protein providing catalytic activity, which protein exhibits said catalytic activity when present in a multimeric form, said vector can further comprise a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter.

A further embodiment of the invention relates to a chimeric protein encoded by a polynucleotide as described above.

Still another embodiment is a host cell, preferably a microorganism, containing a

15 polynucleotide as described above or a vector as described above. If the protein
providing catalytic activity exhibits said catalytic activity when present in a multimeric
form, said host cell or microorganism can further comprise a second polynucleotide
comprising a structural gene encoding the same protein providing catalytic activity
combined with a sequence encoding a signal peptide ensuring secretion of the

20 expression product of said second polynucleotide, said second polynucleotide being
operably linked to a regulatable promoter, preferably an inducible or repressible
promoter, and said second polynucleotide being present either in another vector or in
the chromosome of said microorganism. Preferably the host cell or microorganism has
at least one of said polynucleotides integrated in its chromosome. As a result of

25 culturing such host cell or microorganism the invention provides a host cell,
preferably a microorganism, having a protein as described above immobilized on its
cell wall. The host cell or microorganism can be a lower eukaryote, in particular a
yeast.

The invention also provides a process for carrying out an enzymatic process by using an immobilized catalytically active protein, wherein a substrate for said catalytically active protein is contacted with a host cell or microorganism according to the invention.

Brief Description of the Figures

Figure 1: DNA sequence of the 6057 bp HindIII fragment containing the complete AGα1 gene of S. cerevisiae (see SEQ ID NO: 1 and 2). The position of the unique NheI site and the HindIII site used for the described constructions is specified in the

5 header.

Figure 2: Schematic presentation of the construction of pUR2969. The restriction sites for endonucleases used are shown. Abbreviations used: AG-alpha-1: Gene expressing α -agglutinin from S. cerevisiae

amp: B-lactamase resistance gene

10 PGKp: phosphoglyceratekinase promoter

PGKt: terminator of the same gene.

Figure 3: α-Galactosidase activity of S. cerevisiae MT302/1C cells and culture fluid transformed with pSY13 during batch culture:

A: U/l α -galactosidase per time; the OD₅₃₀ is also shown

B: α-galactosidase activity of free and bond enzyme expressed in U/OD₅₃₀.
Figure 4: α-Galactosidase activity of S. cerevisiae MT302/1C cells and culture fluid transformed with pUR2969 during batch culture:

A: U/l α -galactosidase per time; the OD₅₃₀ is also shown

B: α-galactosidase activity of free and bond enzyme expressed in U/OD₅₃₀.

20 <u>Figure 5</u>: Western analysis with anti α-galactosidase serum of extracellular fractions of cells of exponential phase (OD₅₃₀=2). The analyzed fractions are equivalent to 4 mg cell walls, (fresh weight):

A: MT302/1C expressing α -galactosidase,

lane 1, growth medium

25 lane 2, SDS extract of isolated cell walls

lane 3, glucanase extract of SDS extracted cell walls;

B: MT302/1C expressing α-Gal-AGα1 fusion protein,

lane 1, growth medium

lane 2, SDS extract of isolated cell walls

30 lane 3, glucanase extract of SDS-extracted cell walls

lane 4: Endo-H treated glucanase extract.

Figure 6: Immunofluorescent labelling (anti α-galactosidase) of MT302/1C cells in the exponential phase (OD₅₃₀=2) expressing the α -Gal- α -agglutinin fusion protein. Phase micrograph of intact cells A: overview B: detail. Figure 7: Schematic presentation of the construction of pUR2970A, pUR2971A,

5 pUR2972A, and pUR2973. The restriction sites for endonucleases used are indicated in the figure. PCR oligonucleotide sequences are mentioned in the text.

Abbreviations used:

AGa1 cds:

coding sequence of a-agglutinin

a-AGG=AGa1:

Gene expressing α -agglutinin from S. cerevisiae

amp: B-lactamase resistance gene

Pgal7=GAL7:

GAL7 promoter

10 lipolase: lipase gene of Humicola

invSS:

SUC2 signal sequence

a-MF: prepro-α-mating factor sequence a-gal:

α-galactosidase gene

LEU2d: truncated promoter of LEU2 gene;

LEU2 gene with complete promoter sequence. LEU2:

Figure 8: DNA sequence of a fragment containing the complete coding sequence of lipase B of Geotrichum candidum strain 335426 (see SEQ ID NO: 11 and 12). The sequence of the mature lipase B starts at nucleotide 97 of the given sequence. The

coding sequence starts at nucleotide 40 (ATG).

Figure 9: Schematic presentation of the construction of pUR2975 and pUR2976. The restriction sites for endonucleases used are shown. Abbreviations used:

20 a-AGG: Gene expressing α-agglutinin from S. cerevisiae

amp: B-lactamase resistance gene

Pgal7=GAL7:

GAL7 promoter

invSS: SUC2 signal sequence

a-MF: prepro-α-mating factor sequence

LEU2d: truncated promoter LEU2 gene

lipolase:

lipase gene of Humicola

lipaseB gene of Geotrichum candidum. lipaseB:

25 Figure 10: Schematic presentation of the construction of pUR2981 and pUR2982. The restriction sites for endonucleases used are shown. Abbreviations used:

a-AGG=AG-alpha 1: Gene expressing α -agglutinin from S. cerevisiae

mucor lipase:

lipase gene of Rhizomucor miehei

2u:

2μm sequence

Pgal7 = GAL7:

GAL7 promoter

SUC2 signal sequence

a-MF: prepro-α-mating factor sequence lipolase: lipase gene of Humicola

amp: B-lactamase resistance gene; LEU2d: truncated promoter LEU2 gene

LEU2: LEU2 gene with complete promoter sequence. Figure 11: DNA sequence (2685 bases) of the 894 amino acids coding part of the *FLO1* gene (see SEQ ID NO: 21 and 22), the given sequence starts with the codon for the first amino acid and ends with the stop codon.

Figure 12: Schematic presentation of plasmid pUR2990. Some restriction sites for endonucleases relevant for the given cloning procedure are shown.

Figure 13: Schematic presentation of plasmid pUR7034.

Figure 14: Schematic presentation of plasmid pUR2972B.

Figure 15: Immunofluorescent labelling (anti-lipolase) of SU10 cells in the exponential phase (OD₅₃₀=0.5) expressing the lipolase/ α -agglutinin fusion protein.

10 A: phase micrograph B: matching fluorescent micrograph

Detailed description of the invention

The present invention provides a method for immobilizing an enzyme, comprising immobilizing the enzyme or a functional part thereof to the cell wall of a host cell, preferably a microbial cell, using recombinant DNA techniques. In particular, the C-terminal part of a protein that ensures anchoring in the cell wall is linked to an enzyme or the functional part of an enzyme, in such a way that the enzyme is localized on or just above the cell surface. In this way immobilized enzymes are obtained on the surface of cells. The linkage is performed at gene level and is characterized in that the structural gene coding for the enzyme is coupled to at least part of a gene encoding an anchor-protein in such a way that in the expression product the enzyme is coupled at its C-terminal end to the C-terminal part of an anchor-protein. The chimeric enzyme is preferably preceded by a signal sequence that ensures efficient secretion of the chimeric protein.

- 25 Thus the invention relates to a recombinant polynucleotide comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, said part encoding at least the C-terminal part of said anchoring protein. The length of the C-terminal part of the anchoring protein may vary. Although the entire structural
- 30 protein could be used, it is preferred that only a part is used, leading to a more efficient exposure of the enzyme protein in the medium surrounding the cell. The

anchoring part of the anchoring protein should preferably be entirely present. As an example, about the C-terminal half of the anchoring protein could be used. Preferably, the polynucleotide further comprises a sequence encoding a signal peptide ensuring secretion of the expression product of the polynucleotide. The signal peptide can be derived from a GPI anchoring protein, α-factor, α-agglutinin, invertase or inulinase, \alpha-amylase of Bacillus, or a proteinase of lactic acid bacteria. The protein capable of anchoring in the cell wall is preferably selected form the group of α -agglutinin, AGA1, FLO1 (flocculation protein) or the Major Cell Wall Protein of lower eukaryotes, or a proteinase of lactic acid bacteria. The polynucleotide of the invention is preferably operably linked to a promoter, preferably a regulatable promoter, especially an inducible promoter. The invention also relates to a recombinant vector containing the polynucleotide as described above, and to a host cell containing this polynucleotide, or this vector. In a particular case, wherein the protein providing catalytic activity exhibits said catalytic activity when present in a multimeric form, such as may be the case with oxidoreductases, dimerisation or multimerisation of the monomers might be a prerequisite for activity. The vector and/or the host cell can then further comprise a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter. Expression and secretion of the second polynucleotide after expression and secretion of the first polynucleotide will then result in the formation of an active multimer on the exterior of the cell wall. The host cell or microorganism preferably contains the polynucleotide described

above, or at least one of said polynucleotides in the case of a combination, integrated in its chromosome.

The present invention relates in particular to lower eukaryotes like yeasts that have very stable cell walls and have proteins that are known to be anchored in the cell 30 wall, e.g. α-agglutinin or the product of gene FLO1. Suitable yeasts belong to the genera Candida, Debaryomyces, Hansenula, Kluyveromyces, Pichia and Saccharomyces. Also fungi, especially Aspergillus, Penicillium and Rhizopus can be used. For certain applications also prokaryotes are applicable.

For yeasts the present invention deals in particular with genes encoding chimeric enzymes consisting of:

- 5 a. the signal sequence e.g. derived from the α -factor-, the invertase-, the α -agglutinin- or the inulinase genes;
 - structural genes encoding hydrolytic enzymes such as α-galactosidase, proteases, peptidases, pectinases, pectylesterase, rhamnogalacturonase, esterases and lipases, or non-hydrolytic enzymes such as oxidases; and
- 10 c. the C-terminus of typically cell wall bound proteins such as α-agglutinin (see reference 4), AGA1 (see reference 5) and FLO1 (see the non-prior published reference 6).

The expression of these genes can be under the control of a constitutive promoter, but more preferred are regulatable, i.e. repressible or inducible promoters such as the

- 15 GAL7 promoter for Saccharomyces, or the inulinase promoter for Kluyveromyces or the methanol-oxidase promoter for Hansenula.
 - Preferably the constructs are made in such a way that the new genetic information is integrated in a stable way in the chromosome of the host cell.
- The invention further relates to a host cell, in particular a microorganism, having the chimeric protein described above immobilized on its cell wall. It further concerns the use of such microorganisms for carrying out an enzymatic process by contacting a substrate for the enzyme with the microorganism. Such a process may be carried out e.g. in a packed column, wherein the microorganisms may be supported on solid particles, or in a stirred reactor. The reaction may be aqueous or non-aqueous. Where
- 25 necessary, additives necessary for the performance of the enzyme, e.g. a co-factor, may be introduced in the reaction medium.
 - After repeated usage of the naturally immobilized enzyme system in processes, the performance of the system may decrease. This is caused either by physical denaturation or by chemical poisoning or detachment of the enzyme. A particular
- feature of the present invention is that after usage the system can be recovered from the reaction medium by simple centrifugation or membrane filtration techniques and that the thus collected cells can be transferred to a recovery medium in which the

cells revive quickly and concomitantly produce the chimeric protein, thus ensuring that the surface of the cells will be covered by fully active immobilized enzyme. This regeneration process is simple and cheap and therefore will improve the economics of enzymic processes and may result in a much wider application of processes based on immobilized enzyme systems.

However, by no means the present invention is restricted to the reusability of the immobilized enzymes.

The invention will be illustrated by the following examples without the scope of the invention being limited thereto.

10

EXAMPLE 1 Immobilized α -galactosidase/ α -agglutinin on the surface of S.

The gene encoding α-agglutinin has been described by Lipke et al. (see reference 4). The sequence of a 6057 bp HindIII insert in pTZ18R, containing the whole AGα1 gene is given in Figure 1. The coding sequence expands over 650 amino acids, including a putative signal sequence starting at nucleotide 3653 with ATG. The unique NheI site cuts the DNA at position 988 of the given coding sequence within the coding part of amino acid 330, thereby separating the α-agglutinin into an N-terminal and a C-terminal part of about same size.

- Through digestion of pUR2968 (see Figure 2) with NheI/HindIII a 1.4 kb fragment was released, containing the sequence information of the putative cell wall anchor. For the fusion to α-galactosidase the plasmid pSY16 was used, an episomal vector based on YEplac 181, harbouring the α-galactosidase sequence preceded by the SUC2 invertase signal sequence and placed between the constitutive PGK promoter and
- 25 PGK terminator. The Styl site, present in the last nine base-pairs of the open reading frame of the α-galactosidase gene, was ligated to the Nhel site of the AGαl gene fragment. To ensure the in frame fusion, the Styl site was filled in and the 5' overhang of the Nhel site was removed, prior to ligation into the Styl/ HindIII digested pSY13 (see Figure 2).
- To verify the correct assembly of the new plasmid, the shuttle vector was transformed into E. coli JM109 (recAl supE44 endAl lisdR17 gyrA96 relAl thi *(lac-proAB) F [traD36 proAB+ lacI lacZ*M15]) (see reference 7) by the transformation protocol

described by Chung et al. (see reference 8). One of the positive clones, designated pUR2969, was further characterized, the DNA isolated and purified according to the Quiagen protocol and subsequently characterized by DNA sequencing. DNA sequencing was mainly performed as described by Sanger et al. (see reference 9), and Hsiao (see reference 10), here with the Sequenase version 2.0 kit from United States Biochemical Company, according to the protocol with T7 DNA polymerase (Amersham International plc) and [35S]dATPαS (Amersham International plc: 370 MBq/ml; 22 TBq/mmol).

This plasmid was then transformed into S. cerevisiae strain MT302/1C according to
the protocol from Klebe et al. (see reference 11).
Yeast transformants were selected on selective plates, lacking leucine, on with 40 μl
(20mg/ml DMF). X-α-Gal (5-bromo-4-chloro-3-indolyl-α-D-glucose, Boehringer
Mannheim) was spread, to directly test for α-galactosidase activity (see reference 12).
To demonstrate the expression, secretion, localization and activity of the chimeric
protein the following analyses were performed:

1. Expression and secretion

S. cerevisiae strain MT302/1C was transformed with either plasmid pSY13 containing the α-galactosidase gene of Cyamopsis tetragonoloba or plasmid pUR2969 containing the α-galactosidase/α-agglutinin fusion construct. During batch culture α-galactosidase activities were determined for washed cells and growth medium. The results are given in Figure 3 and Figure 4. The α-galactosidase expressed from yeast cells containing plasmid pSY13 was almost exclusively present in the growth medium (Figure 3A), whereas the α-galactosidase-α-agglutinin fusion protein was almost exclusively cell associated (Figure 4A). Moreover, the immobilized, cell wall-associated, α-galactosidase-α-agglutinin fusion enzyme had retained the complete activity over the whole incubation time, while the secreted and released enzyme lost about 90% of the activity after an incubation of 65 hours. This indicates, that the immobilization of the described enzyme into the cell wall of yeast protects the enzyme against inactivation, presumably through proteinases, and thereby increases the stability significantly.

30 Further insight into the localization of the different gene products was obtained by Western analysis. Therefore, cells were harvested by centrifugation and washed in 10

mM Tris.HCl, pH 7.8; 1 mM PMSF at 0°C and all subsequent steps were performed

at the same temperature. Three ml isolation buffer and 10 g of glass beads were added per gram of cells (wet weight). The mixture was shaken in a Griffin shaker at 50% of its maximum speed for 30 minutes. The supernatant was isolated and the glass beads were washed with 1 M NaCl and 1 mM PMSF until the washes were

- clear. The supernatant and the washes were pooled. The cell walls were recovered by centrifugation and were subsequently washed in 1 mM PMSF.
- Non-covalently bound proteins or proteins bound through disulphide bridges were released from cell walls by boiling for 5 minutes in 50 mM Tris.HCl, pH 7.8; containing 2 % SDS, 100 mM EDTA and 40 mM \(\beta\)-mercaptoethanol. The SDS-
- extracted cell walls were washed several times in 1 mM PMSF to remove SDS. Ten mg of cell walls (wet weight) were taken up in 20 l 100 mM sodium acetate, pH 5.0, containing 1 mM PMSF. To this, 0.5 mU of the β-1,3-glucanase (Laminarase; Sigma L5144) was used as a source of β-1,3-glucanase) was added followed by incubation for 2 hours at 37 °C. Subsequently another 0.5 mU of β-1,3-glucanase was added,
- followed by incubation for another 2 hours at 37 °C.

 Proteins were denatured by boiling for 5 minutes preceding Endo-H treatment. Two mg of protein were incubated in 1 ml 50 mM potassium phosphate, pH 5.5, containing 100 mM \(\textit{B-mercaptoethanol}\) and 0.5 mM PMSF with 40 mU Endo-H (Boehringer) for 48 hours at 37 °C. Subsequently 20 mU Endo-H were added
- followed by 24 hours of incubation at 37 °C.

 Proteins were separated by SDS-PAGE according to Laemmli (see reference 13) in 2.2.-20% gradient gels. The gels were blotted by electrophoretic transfer onto Immobilon polyvinylidene-difluoride membrane (Millipore) as described by Towbin et al. (see reference 14). In case of highly glycosylated proteins a subsequently mild
- periodate treatment was performed in 50 mM periodic acid, 100 mM sodium acetate, pH 4.5, for several hours at 4 °C. All subsequent incubations were carried out at room temperature. The blot was blocked in PBS, containing 0.5% gelatine and 0.5% Tween-20, for one hour followed by incubation for 1 hour in probe buffer (PBS, 0.2% gelatine, 0.1% Tween-20) containing 1:200 diluted serum. The blot was subsequently washed several times in weeking buffer (PBS, 0.2% at its 0.5% The containing 1:200 diluted serum.
- washed several times in washing buffer (PBS; 0.2% gelatine; 0.5% Tween-20) followed by incubation for 1 hour in probe-buffer containing ¹²⁵I-labelled protein A

(Amersham). After several washes in washing buffer, the blot was air-dried, wrapped in Saran (Dow) and exposed to X-omat S film (Kodak) with intensifying screen at -70 °C. An Omnimedia 6cx scanner and the Adobe Photoshop programme were used to quantify the amount of labelled protein. The results of the various protein isolation 5 procedures from both transformants are given in Figure 5. While for the transformants comprising the pSY13 plasmid the overall mass of the enzyme was localized in the medium, with only minor amounts of enzyme more entrapped than bond in the cell wall (Figure 5A) -which could completely be removed by SDS extraction- the fusion protein was tightly bound to the cell wall; with only small amounts of α -galactosidase/ α -agglutinin delivered into the surrounding culture fluid or being SDS extractable. In contrast to the laminarinase extraction of cell walls from cells expressing the free α -galactosidase, where no further liberation of any more enzyme was observed, identical treatment of fusion enzyme expressing cells released the overall bulk of the enzyme. This indicates that the fusion protein is intimately associated with the cell wall glucan in S. cerevisiae, like α -agglutinin, while α -galactosi-15 dase alone is not. The subsequently performed EndoH treatment showed a heavy glycosylation of the fusion protein, a result, entirely in agreement with the described extended glycosylation of the C-terminal part of α -agglutinin. 2. Localization

Immunofluorescent labelling with anti-α-galactosidase serum was performed on intact cells to determine the presence and distribution of α-galactosidase/α-agglutinin fusion protein in the cell wall. Immunofluorescent labelling was carried out without fixing according to Watzele et al. (see reference 15). Cells of OD₅₃₀=2 were isolated and washed in TBS (10 mM Tris.HCl, pH 7.8, containing 140 mM NaCl, 5 mM EDTA
and 20 μg/ml cycloheximide). The cells were incubated in TBS + anti-α-galactosidase serum for 1 hour, followed by several washings in TBS. A subsequent incubation was carried out with FITC-conjugated anti-rabbit IgG (Sigma) for 30 minutes. After washing in TBS, cells were taken up in 10 mM Tris.HCl, pH 9.0, containing 1 mg/ml p-phenylenediamine and 0.1 % azide and were photographed on a Zeiss 68000 microscope. The results of these analysis are given in Figure 6, showing clearly that the chimeric α-galactosidase/α-agglutinin is localized at the surface of the yeast cell. Buds of various sizes, even very small ones very uniformly labelled, demonstrates that

the fusion enzyme is continuously incorporated into the cell wall throughout the cell cycle and that it instantly becomes tightly linked.

3. Activity

To quantitatively assay α-galactosidase activity, 200 μl samples containing 0.1 M sodium-acetate, pH 4.5 and 10 mM p-nitrophenyl-α-D-galactopyranoside (Sigma) were incubated at 37 °C for exactly 5 minutes. The reaction was stopped by addition of 1 ml 2% sodium carbonate. From intact cells and cell walls, removed by centrifugation and isolated and washed as described, the α-galactosidase activity was calculated using the extinction coefficient of p-nitrophenol of 18.4 cm²/mole at 410 nm.

One unit was defined as the hydrolysis of 1 μmole substrate per minute at 37 °C.

Table 1. Distribution of free and immobilized α-galactosidase activity in yeast cells

α-Galactosidase activity (U/g F.W. cells) 15 Expressed Growth Intact Isolated protein medium cells cell walls α-galactosidase 14.7 0.37 0.01 αGal/αAGG fusion protein 0.54 13.3 10.9

Transformed MT302/1C cells were in exponential phase (OD₅₃₀=2). One unit is defined as the hydrolysis of 1 μmole of p-nitrophenyl-α-D-galactopyranoside per minute at 37 °C.

The results are summarized in Table 1. While the overall majority of α-galactosidase was distributed in the culture fluid, most of the fusion product was associated with the cells, primarily with the cell wall. Taking together the results shown in Figures 3 to 6 and in Table 1, it could be calculated that the enzymatic α-galactosidase activity of the chimeric enzyme is as good as that of the free enzyme. Moreover, during stationary phase, the activity of the α-galactosidase in the growth medium decreased, whereas the activity of the cell wall associated α-galactosidase α-agglutinin fusion

remained constant, indicating that the cell associated fusion protein is protected from inactivation or proteolytic degradation.

N.B. The essence of this EXAMPLE was published during the priority year by M.P. Schreuder et al. (see reference 25).

EXAMPLE 2A Immobilized *Humicola* lipase/α-agglutinin on the surface of S. cerevisiae. (inducible expression of immobilized enzyme system)

The construction and isolation of the 1.4 kb Nhel/HindIII fragment containing the Cterminal part of α-agglutinin has been described in EXAMPLE 1. Plasmid pUR7021
contains an 894 bp long synthetically produced DNA fragment encoding the lipase of
Humicola (see reference 16 and SEQ ID NO: 7 and 8), cloned into the
EcoRI/HindIII restriction sites of the commercially available vector pTZ18R (see
Figure 7). For the proper one-step modification of both the 5' end and the 3' end of
the DNA part coding for the mature lipase, the PCR technique can be applied.
Therefore the DNA oligonucleotides lipo1 (see SEQ ID NO: 3) and lipo2 (see SEQ
ID NO: 6) can be used as primers in a standard PCR protocol, generating an 826 bp
long DNA fragment with an EagI and a HindIII restriction site at the ends, which can
be combined with the larger part of the EagI/HindIII digested pUR2650, a plasmid
containing the α-galactosidase gene preceded by the invertase signal sequence as described earlier in this specification, thereby generating plasmid pUR2970A (see
Figure 7).

. ,

PCR oligonucleotides for the in-frame linkage of *Humicola* lipase and the C-terminus of α agglutinin.

a: PCR oligonucleotides for the transition between SUC2 signal sequence and the N-terminus of lipase.

primer lipol: 5'-GGG GCG GCC GAG GTC TCG CAA GAT CTG GA-3'

lipase: 3'-TAA GCA GCT CTC CAG AGC GTT CTG GAC CTG TTT-5'

(non-coding strand, see SEQ ID NO: 4)

b: PCR oligonucleotides for the in frame transition between C-terminus of lipase and C-terminal part of α-agglutinin.

- Through the PCR method a NheI site will be created at the end of the coding sequence of the lipase, allowing the in-frame linkage between the DNA coding for lipase and the DNA coding for the C-terminal part of α-agglutinin. Plasmid pUR2970A can then be digested with NheI and HindIII and the 1.4 kb NheI/HindIII fragment containing the C-terminal part of α-agglutinin from plasmid pUR2968 can be combined with the larger part of NheI and HindIII treated plasmid pUR2970A, resulting in plasmid pUR2971A. From this plasmid the 2.2 kb EagI/HindIII fragment can be isolated and ligated into the EagI- and HindIII-treated pUR2741, whereby plasmid pUR2741 is a derivative of pUR2740 (see reference 17), where the second EagI restriction site in the already inactive Tet resistance gene was deleted through
 NruI/SaII digestion. The SaII site was filled in prior to religation. The ligation then results in pUR2972A containing the GAL7 promoter, the invertase signal sequence, the chimeric lipase/α-agglutinin gene, the 2 μm sequence, the defective Leu2 promoter and the Leu2 gene. This plasmid can be used for transforming S. cerevisiae and the transformed cells can be cultivated in YP medium containing galactose as an
- 40 inducer without repressing amounts of glucose being present, which causes the expression of the chimeric lipase/α-agglutinin gene.

The expression, secretion, localization and activity of the chimeric lipase/ α -agglutinin can be analyzed using similar procedures as given in EXAMPLE 1.

In a similar way variants of *Humicola* lipase, obtained via rDNA techniques, can be linked to the C-terminal part of α -agglutinin, which variants can have a higher stability during (inter)esterification processes.

EXAMPLE 2B Immobilized Humicola lipase/α-agglutinin on the surface of S. cerevisiae (inducible expression of immobilized enzyme system)

EXAMPLE 2A describes a protocol for preparing a particular construct. Before carrying out the work it was considered more convenient to use the expression vector described in EXAMPLE 1, so that the construction route given in this EXAMPLE 2B differs on minor points from the construction route given in EXAMPLE 2A and the resulting plasmids are not identical to those described in EXAMPLE 2A. However, the essential gene construct comprising the promoter, signal sequence, and the structural gene encoding the fusion protein are the same in EXAMPLES 2A and 2B.

1. Construction

The construction and isolation of the 1.4 kb NheI/HindIII fragment encoding the Cterminal part of α-agglutinin cell wall protein has been described in EXAMPLE 1.
The plasmid pUR7033 (resembling pUR7021 of EXAMPLE 2A) was made by
treating the commercially available vector pTZ18R with EcoRI and HindIII and
ligating the resulting vector fragment with an 894 bp long synthetically produced
DNA EcoRI/HindIII fragment encoding the lipase of Humicola (see SEQ ID NO: 7
and 8, and reference 16).

For the fusion of the lipase to the C-terminal, cell wall anchor-comprising domain of α-agglutinin, plasmid pUR7033 was digested with EagI and HindIII, and the lipase coding sequence was isolated and ligated into the EagI- and HindIII-digested yeast expression vector pSY1 (see reference 27), thereby generating pUR7034 (see Figure 13). This is a 2μm episomal expression vector containing the α-galactosidese gene

30 13). This is a 2μm episomal expression vector, containing the α-galactosidase gene described in EXAMPLE 1, preceded by the invertase (SUC2) signal sequence under the control of the inducible GAL7 promoter.

Parallel to this digestion, pUR7033 was also digested with EcoRV and HindIII, thereby releasing a 57 bp long DNA fragment, possessing codons for the last 15 carboxyterminal amino acids. This fragment was exchanged against a small DNA fragment, generated through the hybridisation of the two chemically synthesized deoxyoligonucleotides SEQ ID NO: 9 and SEQ ID NO: 10. After annealing of both DNA strands, these two oligonucleotides essentially reconstruct the rest of the 3' coding sequence of the initial lipase gene, but additionally introduce downstream of the lipase gene a new NheI restriction site, followed by a HindIII site in close vicinity, whereby the first three nucleotides of the NheI site form the codon for the last amino 10 acid of the lipase. The resulting plasmid was designated pUR2970B. Subsequently, this construction intermediate was digested with EagI and NheI, the lipase encoding fragment was isolated, and, together with the 1.4 kb NheI/HindIII fragment of pUR2968 ligated into the EagI- and HindIII-cut pSY1 vector. The outcome of this 3point-ligation was called pUR2972B (see Figure 14), the final lipolase- α -agglutinin 15 yeast expression vector.

This plasmid was used for transforming S. cerevisiae strain SU10 as described in reference 17 and the transformed cells were cultivated in YP medium containing galactose as the inducer without repressing amounts of glucose being present, which causes the expression of the chimeric lipase/ α -agglutinin gene.

20 2. Activity

25

To quantify the lipase activity, two activity measurements with two separate substrates were performed. In both cases, SU10 yeast cells transformed with either plasmid pUR7034 or pSY1 served as control. Therefore, yeast cell transformants containing either plasmid pSY1 or plasmid pUR7034 or plasmid pUR2972B were grown up for 24h in YNB-glucose medium supplied with histidine and uracil, then diluted 1:10 in YP-medium supplied with 5% galactose, and again cultured. After 24h incubation at 30°C, a first measurement for both assays was performed.

The first assay applied was the pH stat method. Within this assay, one unit of lipase activity is defined as the amount of enzyme capable of liberating one micromole of fatty acid per minute from a triglyceride substrate under standard assay conditions (30 ml assay solution containing 38 mM olive oil, considered as pure trioleate, emulsified with 1:1 w/w gum arabic, 20 mM calcium chloride, 40 mM sodium chloride, 5 mM

Tris, pH 9.0, 30°C) in a radiometer pH stat apparatus (pHM 84 pH meter, ABU 80 autoburette, TTA 60 titration assembly). The fatty acids formed were titrated with 0.05 N NaOH and the activity measured was based on alkali consumption in the interval between 1 and 2 minutes after addition of putative enzyme batch. To test for immobilized lipase activity, 1 ml of each culture was centrifuged, the supernatant was saved, the pellet was resuspended and washed in 1 ml 1 M sorbitol, subsequently again centrifuged and resuspended in 200µl 1 M sorbitol. From each type of yeast cell the first supernatant and the washed cells were tested for lipase activity.

10 A: Lipase activity after 24h (LU/ml)

		cell bound	culture fluid
	pSY1	5.9	8.8
	pUR7034	24.1	632.0
	pUR2972B-(1)	18.7	59.6
15	pUR2972B-(2)	24.6	40.5

B: Lipase activity after 48h (LU/ml)

30

		cell bound	culture fluid	OD660
	pSY1	6.4	4.3	⁻ 40
20	pUR7034	215.0	2750.0	
	pUR2972B-(1)	37.O ~	87.0	-40
	pUR2972B-(2)	34.0	82.0	⁻ 40

The rest of the yeast cultures was further incubated, and essentially the same separation procedure was done after 48 hours. Dependent on the initial activity measured, the actual volume of the sample measured deviated between 25µl and 150µl.

This series of measurements indicates, that yeast cells comprising the plasmid coding for the lipase- α -agglutinin fusion protein in fact express some lipase activity which is associated with the yeast cell.

30

An additional second assay was performed to further confirm the immobilization of activity of lipase on the yeast cell surface. Briefly, within this assay, the kinetics of the PNP (=paranitrophenyl) release from PNP-butyrate is determined by measurement of the OD at 400 nm. Therefore, 10 ml cultures containing yeast cells with either pSY1, pUR7034 or pUR2972B were centrifuged, the pellet was resuspended in 4 ml of buffer A (0.1 M NaOAc, pH 5.0 and 1 mM PMSF), from this 4 ml 500µl was centrifuged again and resuspended in 500 µl PNB-buffer (20 mM Tris-HCl, pH 9.0, 20 mM CaCl2, 25 mM NaCl), centrifuged once again, and finally resuspended in 400µl PNB buffer. This fraction was used to determine the cell bound fraction of lipase.

The remaining 3500µl were spun down, the pellet was resuspended in 4 ml A, to each of this, 40µl laminarinase (ex mollusc, 1.25 mU/µl) was added and first incubated for 3 hours at 37°C, followed by an overnight incubation at 20°C. Then the reaction mixture, still containing intact cells, were centrifuged again and the supernatant was used to determined the amount of originally cell wall bound material released through laminarinase incubation. The final pellet was resuspended in 400µl PNP buffer, to calculate the still cell associated part. The blank reaction of a defined volume of specific culture fraction in 4 ml assay buffer was determined, and than the reaction was started through addition of 80µl of substrate solution (100 mM PNP-butyrate in methanol), and the reaction was observed at 25°C at 400 nm in a spectrophotometer.

		cell bound	activity in	laminarinase	laminarinase	
25	- 03/4		the medium		extracted cells	OD660
25	pUR7034	0.001 (116µl)		0.028	0.000	2.6
		0.293 (220µl)		0.076	0.985	2.36
		0.494 (143µl)	0.021	0.170	0.208	2.10

^{*} unless otherwise mentioned, the volume of enzyme solution added was 20µl

This result positively demonstrates that a significant amount of lipase activity is immobilized on the surface yeast cell, containing plasmid pUR2972B. Here again,

incorporation took place in such a way, that the reaction was catalyzed by cell wall inserted lipase of intact cells, indicated into the exterior orientated immobilization. Furthermore, the release of a significant amount of lipase activity after incubation with laminarinase again demonstrates the presumably covalent incorporation of a heterologous enzyme through gene fusion with the C-terminal part of α-agglutinin.

3. Localization

The expression, secretion, and subsequent incorporation of the lipase- α -agglutinin fusion protein into the yeast cell wall was also confirmed through immunofluorescent labelling with anti-lipolase serum essentially as described in EXAMPLE 1, item

10 2. Localization.

As can be seen in Figure 15, the immunofluorescent stain shows essentially an analogous picture as the α-galactosidase immuno stain, with clearly detectable reactivity on the outside of the cell surface (see Figure 15 A showing a clear halo around the cells and Figure B showing a lighter circle at the surface of the cells), but neither in the medium nor in the interior of the cells. Yeast cells expressing pUR2972B, the *Humicola* lipase-α-agglutinin fusion protein, become homogeneously stained on the surface, indicating the virtually entire immobilization of a chimeric enzyme with an α-agglutinin C-terminus on the exterior of a yeast cell. In the performed control experiment SU10 yeast cells containing plasmid pUR7034 served as a control and here, no cell surface bound reactivity against the applied anti-lipase serum could be detected:

In a similar way variants of *Humicola* lipase, obtained via rDNA techniques, can be linked to the C-terminal part of α -agglutinin, which variants can have a higher stability during (inter)esterification processes.

25

EXAMPLE 3 Immobilized Humicola lipase/α-agglutinin on the surface of S. cerevisiae (constitutive expression of immobilized enzyme system)

Plasmid pUR2972 as described in EXAMPLE 2 can be treated with EagI and HindIII and the about 2.2 kb fragment containing the lipase/ α -agglutinin gene can be isolated. Plasmid pSY16 can be restricted with EagI and HindIII and between these sites the 2.2 kb fragment containing the lipase/ α -agglutinin fragment can be ligated resulting in pUR2973. The part of this plasmid that is involved in the production of

the chimeric enzyme is similar to pUR2972 with the exception of the signal sequence. Whereas pUR2972 contains the SUC2-invertase-signal sequence, pUR2973 contains the α-mating factor signal sequence (see reference 18). Moreover the plasmid pUR2973 contains the Leu2 marker gene with the complete promoter sequence, instead of the truncated promoter version of pUR2972.

EXAMPLE 4 Immobilized Geotrichum lipase/α-agglutinin on the surface of S. cerevisiae

The construction and isolation of the 1.4 kb NheI/HindIII fragment comprising the C-terminal part of AG α -1 (α -agglutinin) gene has been described in EXAMPLE 1. 10 For the in-frame gene fusion of the DNA coding for the C-terminal membrane anchor of α -agglutinin to the complete coding sequence of Geotrichum candidum lipase B from strain CMICC 335426 (see Figure 8 and SEQ ID NO: 11 and 12), the plasmid pUR2974 can be used. This plasmid, derived from the commercially available 15 pBluescript II SK plasmid, contains the cDNA coding for the complete G. candidum lipase II on an 1850 bp long EcoRI/XhoI insert (see Figure 9). To develop an expression vector for S. cerevisiae with homologous signal sequences, the N-terminus of the mature lipase B was determined experimentally by standard techniques. The obtained amino acid sequence of "Gln-Ala-Pro-Thr-Ala-Val..." is in 20 complete agreement with the cleavage site of the signal peptidase on the G. candidum lipase II (see reference 19). For the fusion of the mature lipase B to the S. cerevisiae signal sequences of SUC2 (invertase) or α -mating factor (prepro- α MF) on one hand and the in-frame fusion to the 3' part of the AGa1 gene PCR technique can be used. The PCR primer lipo3 (see SEQ ID NO: 13) can be constructed in such a way, that the originally present Eagl site in the 5'-part of the coding sequence (spanning codons 5-7 of the mature protein) will become inactivated without any alteration in the amino acid sequence. To facilitate the subsequent cloning procedures, the PCR primer can further contain a new Eagl site at the 5' end, for the in-frame ligation to SUC2 signal sequence or prepro-αMF sequence, respectively. The corresponding PCR primer lipo4 (see SEQ

ID NO: 16) contains an extra NheI site behind the nucleotides coding for the

C-terminus of lipase B, to ensure the proper fusion to the C-terminal part of α-agglutinin.

PCR oligonucleotides for the in frame linkage of G. candidum lipase II to the 5 SUC2 signal sequence and the C-terminal part of α -agglutinin.

- N-terminal transition to either prepro aMF sequence or SUC2 signal sequence. EagI primer lipo3: 5'-GGG GCG GCG GCG GAG GCC CCA AGG 10 lipaseII:
- 3'-GAC CGG GTC CGG GGT GCC GCC AGA GAG TTA-5' (non-cod. strand, see SEQ ID NO: 14))
- b: C-terminal fusion to C part of α -agglutinin 15

5'-CA AAC TTT GAG ACT GAC GT (cod. strand) CTC TAC GGT TAA AAC-3' 20 3'-C TGA CTG CAA TTA GAG ATG CCA CGATCG CCCC-5' primer lipo4: (for the part of the lipase coding strand see SEQ ID NO: 15) NheI

The PCR product with the modified ends can be generated by standard PCR protocols, using instead of the normal Ampli-Taq polymerase the new thermostable VENT polymerase, which also exhibits proofreading activity, to ensure an error-free DNA template. Through digestion of the formerly described plasmid pUR2972 with Eagl (complete) and NheI (partial), the Humicola lipase fragment can be exchanged against the DNA fragment coding for lipase B, thereby generating the final S. 30 cerevisiae expression vector pUR2975 (see Figure 9).

The Humicola lipase-α-agglutinin fusion protein coding sequence can be exchanged against the lipase B/α -agglutinin fusion construct described above by digestion of the described vector pUR2973 with EagI/HindIII, resulting in pUR2976 (see Figure 9).

EXAMPLE 5 35 Immobilized Rhizomucor miehei lipase/α-agglutinin on the surface of S. cerevisiae

The construction and isolation of the 1.4 kb Nhel/HindIII fragment encoding the C-terminal part of α -agglutinin has been described in EXAMPLE 1. The plasmid pUR2980 contains a 1.25 kb cDNA fragment cloned into the SmaI site of commercially available pUC18, which (synthetically synthesizable) fragment encodes

the complete coding sequence of triglyceride lipase of Rhizomucor miehei (see reference 20), an enzyme used in a number of processes to interesterify triacylglycerols (see reference 21) or to prepare biosurfactants (see reference 22). Beside the 269 codons of the mature lipase molecule, the fragment also harbours codons for the 24 amino acid signal peptide as well as 70 amino acids of the propeptide. PCR can easily be applied to ensure the proper fusion of the gene fragment encoding the mature lipase to the SUC2 signal sequence or the prepro α-mating factor sequence of S. cerevisiae, as well as the in-frame fusion to the described NheI/HindIII fragment. The following two primers, lipo5 (see SEQ ID NO: 17) and lipo6 (see SEQ ID NO: 20), will generate a 833 bp DNA fragment, which after Proteinase K treatment and digestion with EagI and NheI can be cloned as an 816 bp long fragment into the EagI/NheI digested plasmids pUR2972 and pUR2973, respectively (see Figure 7).

- 15 lipo5: 5'-CCC GCG GCC GCG AGC ATT GAT GGT GGT ATC-3'
 lipase (non-cod. strand): 3'-TCG TAA CTA GCA CCA TAG-5'
 (for the part of the lipase non-coding strand see SEQ ID NO: 18)
- 20
 lipase (cod. strand): 5'-AAC ACA GGC CTC TGT ACT-3'
 Lipo6: 3'-TTG TGT CCG GAG ACA TGA CGATCGCGCC-5'
- Nhel (for the part of the lipase coding strand see SEQ ID NO: 19)

These new S. cerevisiae expression plasmids contain the GAL7 promoter, the invertase signal sequence (pUR2981) or the prepro-α-mating factor sequence (pUR2982), the chimeric Rhizomucor miehei lipase/α-agglutinin gene, the 2 μm sequence, the defective (truncated) Leu2 promoter and the Leu2 gene. These plasmids can be transformed into S. cerevisiae and grown and analyzed using protocols described in earlier EXAMPLES.

EXAMPLE 6 Immobilized Aspergillus niger glucose oxidase/GPI anchored cell wall proteins on the surface of S. cerevisiae

Glucose oxidase (β-D:oxygen 1-oxidoreductase, EC 1.1.3.4) from Aspergillus niger catalyses the oxidation of β-D-glucose to glucono-δ-lactone and the concomitant reduction of molecular oxygen to hydrogen peroxide. The fungal enzyme consists of a homodimer of molecular weight 150,000 containing two tightly bound FAD co-factors.

Beside the use in glucose detection kits the enzyme is useful as a source of hydrogen peroxide in food preservation. The gene was cloned from both cDNA and genomic libraries, the single open reading frame contains no intervening sequences and encodes a protein of 605 amino acids (see reference 23).

With the help of two proper oligonucleotides the coding part of the sequence is adjusted in a one-step modifying procedure by PCR in such a way that a fusion gene product will be obtained coding for glucose oxidase and the C-terminal cell wall anchor of the FLO1 gene product or α-agglutinin. Thus, some of the plasmids described in former EXAMPLES can be utilized to integrate the corresponding sequence in-frame between one of the signal sequences used in the EXAMPLES and the Nhel/HindIII part of the AGα1 gene.

Since dimerisation of the two monomers might be a prerequisite for activity, in an alternative approach the complete coding sequence for glucose oxidase without the GPI anchor can be expressed in S. cerevisiae transformant which already contains the fusion construct. This can be fulfilled by constitutive expression of the fusion construct containing the GPI anchor with the help of the GAPDH or PGK promoter for example. The unbound not-anchored monomer can be produced by using a DNA construct comprising an inducible promoter, as for instance the GAL7 promoter.

20

EXAMPLE 7 Process to convert raffinose, stachyose and similar sugars in soy extracts with α-galactosidase/α-agglutinin immobilized on yeasts

The yeast transformed with plasmid pUR2969 can be cultivated on large scale. At regular intervals during cultivation the washed cells should be analyzed on the presence of α-galactosidase activity on their surface with methods described in EXAMPLE 1. When both cell density and α-galactosidase activity/biomass reach their maximum, the yeast cells can then be collected by centrifugation and washed. The washed cells can then be added to soy extracts. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration should be above 1 g/l. The temperature of the soy extract should be < 8 °C to reduce the metabolic activity of the yeast cells. The conversion of raffinose and stachyose can be analyzed with HPLC methods and after 95 % conversion of these sugars the yeasts

cells can be removed by centrifugation and their α -galactosidase activity/g biomass can be measured. Centrifugates with a good activity can be used in a subsequent conversion process, whereas centrifugates with an activity of less then 50 % of the original activity can be resuscitated in the growth medium and the cells can be allowed to recover for 2 to 4 hours. Thereafter the cells can be centrifuged, washed and subsequently be used in a subsequent conversion process.

EXAMPLE 8 Production of biosurfactants using *Humicola* lipase/α-agglutinin immobilized on yeasts.

The yeast transformed with plasmid pUR2972 or pUR2973 can be cultivated on large 10 scale. At regular intervals during cultivation the washed cells can be analyzed on the presence of lipase activity on their surface with methods described in EXAMPLE 1. When both cell density and lipase/biomass reache their maximum, the yeast cells can be collected by centrifugation and washed. The washed cells can be suspended in a small amount of water and added to a reactor tank containing a mix of fatty acids, preferably of a chain length between 12-18 carbon atoms and sugars, preferably glucose, galactose or sucrose. The total concentration of the water (excluding the water in the yeast cells) might be below 0.1 %. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration is above 1 g/l. The tank has to be kept under an atmosphere of N₂ and CO₂ in order to avoid oxidation of the (unsaturated) fatty acids and to minimize the metabolic activity of the yeasts. The temperature of mixture in the tank should be between 30-60 °C, depending on type of fatty acid used. The conversion of fatty acids can be analyzed with GLC methods and after 95 % conversion of these fatty acids the yeasts cells can be removed by centrifugation and their lipase activity/g biomass can be measured. Centrifugates with a good activity can be used in a subsequent conversion process, whereas centrifugates with an activity of less then 50 % of the original activity can be resuscitated in the growth medium and the cells can be allowed to recover for 2 to 8 hours. Thereafter the cells can be centrifuged again, washed and used in a subsequent 30 conversion process.

EXAMPLE 9 Production of special types of triacylglycerols using *Rhizomucor* miehei lipase/a-agglutinin immobilized on yeasts.

The yeast transformed with plasmid pUR2981 or pUR2982 can be cultivated on a large scale. At regular intervals during cultivation the washed cells can be analyzed on 5 the presence of lipase activity on their surface with methods described in EXAMPLE 1. When both cell density and lipase/biomass reach their maximum, the yeast cells can be collected by centrifugation and washed. The washed cells can be suspended in a small amount of water and can be added to a reactor tank containing a mix of various triacylglycerols and fatty acids. The total concentration of the water (excluding the water in the yeast cells) might be below 0.1 %. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration is above 1 g/l. The tank has to be kept under an atmosphere of N_2 and CO_2 in order to avoid oxidation of the (unsaturated) fatty acids and to minimize the metabolic activity of the yeasts. The temperature of mixture in the tank should be between 30-70 °C, depending on types of triacylglycerol and fatty acid used. The degree of interesterification can be analyzed with GLC/MS methods and after formation of at least 80 % of the theoretical value of the desired type of triacylglycerol the yeasts cells can be removed by centrifugation and their lipase activity/g biomass can be measured. Centrifugates with a good activity can be used in a subsequent conversion process, 20 whereas centrifugates with an activity of less then 50 % of the original activity is resuscitated in the growth medium and the cells should be allowed to recover 2 to 8 hours. After that the cells can be centrifuged, washed and used in a subsequent interesterification process.

Baker's yeasts of strain MT302/1C, transformed with either plasmid pSY13 or plasmid pUR2969 (described in EXAMPLE 1) were deposited under the Budapest Treaty at the Centralbureau voor Schimmelcultures (CBS) on 3 July 1992 under provisional numbers 330.92 and 329.92, respectively.

EXAMPLE 10 Immobilized *Humicola* lipase/FLO1 fusion on the surface of *S. cerevisiae*

Flocculation, defined as "the (reversible) aggregation of dispersed yeast cells into flocs" (see reference 24), is the most important feature of yeast strains in industrial

fermentations. Beside this it is of principal interest, because it is a property associated with cell wall proteins and it is a quantitative characteristic. One of the genes associated with the flocculation phenotype in S. cerevisiae is the FLO1 gene. The gene is located at approximately 24 kb from the right end of chromosome I and the DNA sequence of a clone containing major parts of FLO1 gene has very recently been determined (see reference 26). The sequence is given in Figure 11 and SEQ ID NO: 21 and 22. The cloned fragment appeared to be approximately 2 kb shorter than the genomic copy as judged from Southern and Northern hybridizations, but encloses both ends of the FLO1 gene. Analysis of the DNA sequence data indicates that the putative protein contains at the N-terminus a hydrophobic region which confirms a signal sequence for secretion, a hydrophobic C-terminus that might function as a signal for the attachment of a GPI-anchor and many glycosylation sites, especially in the C-terminus, with 46,6 % serine and threonine in the arbitrarily defined C-terminus (aa 271-894). Hence, it is likely that the FLO1 gene product is localized in an orientated fashion in the yeast cell wall and may be directly involved in the process of interaction with neighbouring cells. The cloned FLO1 sequence might therefore be suitable for the immobilization of proteins or peptides on the cell surface by a different type of cell wall anchor.

Recombinant DNA constructs can be obtained, for example by utilizing the DNA coding for amino acids 271-894 of the *FLO1* gene product, i.e. polynucleotide 811-2682 of Figure 11. Through application of two PCR primers pcrflo1 (see SEQ ID NO: 23) and pcrflo2 (see SEQ ID NO: 26) *NheI* and *HindIII* sites can be introduced at both ends of the DNA fragment. In a second step, the 1.4 kb *NheI/HindIII* fragment present in pUR2972 (either A or B) containing the C-terminal part of α-agglutinin can be replaced by the 1.9 kb DNA fragment coding for the C-terminal part of the FLO1 protein, resulting in plasmid pUR2990 (see Figure 12), comprising a DNA sequence encoding (a) the invertase signal sequence (*SUC2*) preceding (b) the fusion protein consisting of (b.1) the lipase of *Humicola* (see reference 16) followed by (b.2) the C-terminus of FLO1 protein (aa 271-894).

25

PCR oligonucleotides for the in frame connection of the genes encoding the *Humicola* lipase and the C-terminal part of the *FLO1* gene product.

- primer pcrflol 5'- GAATTC GCT AGC AAT TAT GCT GTC AGT ACC 3'

 **THE PROOF OF THE PROOF OF THE
- 10 FLO1 coding strand 5'-AATAA AATTCGCGTTCTTTTTACG 3'
 primer pcrflo2: 3'-TTAAGCGCAAGAAAATGC TTCGAACTCGAG 5'
 HindIII
- (for the part of the coding strand see SEQ ID NO: 25) 15
 - Plasmid pUR2972 (either A or B) can be restricted with *NheI* (partial) and *HindIII* and the *NheI/HindIII* fragment comprising the vector backbone and the lipase gene can be ligated to the correspondingly digested PCR product of the plasmid containing the *FLOI* sequence, resulting in plasmid pUR2990, containing the *GAL7* promoter,
- 20 the S. cerevisiae invertase signal sequence, the chimeric lipase/FLO1 gene, the yeast 2 μm sequence, the defective Leu2 promoter and the Leu2 gene. This plasmid can be transformed into S. cerevisiae and the transformed cells can be cultivated in YP medium including galactose as inductor.
- The expression, secretion, localization and activity of the chimeric lipase/FLO1 protein can be analyzed using similar procedures as given in Example 1.

LITERATURE REFERENCES:

- Monsan, P., Combes, D. (1988) "Enzyme stabilization by immobilization"; in
 Meth. in Enzymol. Vol. <u>137</u> 584-598.
 - Kok, J. (1990) "Genetics of proteolytic systems of lactic acids bacteria" FEMS Microbiol. Rev. 87 15-54.
 - 3. Conzelmann, A., Fankhauser, C., Desponds, C. (1990) "Myoinositol gets incorporated into numerous membrane glycoproteins of *S. cerevisiae*: Incorporation is dependent on phosphomannomutase" (SEC53). EMBO 2 653 661.
 - 4. Lipke, P.,N., Wojciechowicz, D., Kurjan, J. (1989) "AGα1 is the structural gene for the Saccharomyces cerevisiae α-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating" Mol. Cell. Biol. 9 3155-3165.

- 5. Roy, A., Lu, C.F., Marykwas, D., Lipke, P., Kurja, J. (1991) "The AGA1 gene product is involved in cell surface attachment of the S. cerevisiae cell adhesion glycoprotein a-agglutinin", Mol. Cell. Biol. 11 4196-4206.
- 6. Teunissen, A.W.R.H., van den Berg, J.A., Steensma, H.Y. (1993) "Physical localization of the flocculation gene *FLO1* on chromosome I of *S. cerevisiae*, Yeast 2 (1) 1-10.
- 7. Yanisch Perron, C., Viera, J., Messing, J. (1985) "Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13 mp18 and pUC19 vectors." Gene 33 103-119.
- 8. Chung, C. T., Niemela, S. L., Miller, R. H. (1989) "One step preparation of competent E. coli: Transformation and storage of bacterial cells in the same solution" Proc. Natl. Acad. Sci. USA 86 2172-2175.
 - 9. Sanger, F., Nicklen, S., Coulson, A. R. (1977) "DNA sequencing with chain terminating inhibitors" Proc. Natl. Acad. Sci. USA 74 5463-5467.
- 15 10. Hsiao, K. (1991) "A fast and simple procedure for sequencing double stranded DNA with Sequenase" Nucl. Acids Res. 19 2787.
 - Klebe, R.J.J., Harriss, V., Sharp, Z.D., Douglas, M.G. (1983) "A general method for polyethylene glycol induces genetic transformation of bacteria and yeast" Gene 25 333-341.
- Overbeeke, N., Fellinger, A. J., Toonen, M. Y., van Wassenaar, P. D., Verrips, C. T. (1989) "Cloning and nucleotide sequence of the α-galactosidase gene from Cyamopsis tetragonoloba" Plant Mol. Biol. 13 541-550.
 - 13. Laemmli, U. K. (1970) "Cleavage of structural proteins during the assembly of heads of bacteriophage T4." Nature 227 680-685.
- 25 14. Towbin, H. Steahelin, T., Gordon, J. (1979) "Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications" Proc. Natl. Acad. Sci. USA 76 4350-4354.
 - 15. Watzele, M., Klis, F., Tanner, W. (1988) "The immunological and molecular characterization of α-agglutinin from S. cerevisiae" EMBO J. 7 1483-1488
- 30 16. Boel, E., Huge-Jensen, B., Brown, J. D. (1989) "Humicola lipase and process for the production of recombinant Humicola lipases" EP-A1-0 305 216.

10

20

25

30

- 17. Verbakel, J.M.A. (1991) "Heterologous gene expression in the yeast Saccharomyces cerevisiae" PhD thesis, Rijksuniversiteit Utrecht, The Netherlands
- Kurjan, J., Herskowitz, I. (1982) "Structure of a yeast Pheromone Gene (MFα): A
 putative α-Factor precursor contains four tandem copiers of mature α-factor" Cell
 30 933-943.
- Shimada, Y., Sugihara, A., Tominaga, Y., Iizumi, T., Tsunasawa, S. (1989) "cDNA molecular cloning of Geotrichum candidum lipase" J. Biochem. <u>106</u> 383-388.
- Boel, E., Huge-Jensen, B., Christensen, M., Thim, L., Fiil, N. (1988) "Rhizomucor miehei Triglyceride Lipase is Synthesized as a Precursor" Lipids, Vol.<u>23</u>, No 7, 701-706.
- 21. Schuch, R., Mukherjee, K.D. (1988) in "World conference on Biotechnology for the fat and oil industry" ISBN 0-935315-21-7, 328-329.
- 22. Kosaric, N., Cairus, W.L., Gray, N.C.C. (editors) (1987) "Biosurfactants and Biotechnology" Marcel Dekker Inc., New York, Vol. 25.
- 15 23. Frederick, K.R., Tung, J., Emerik, R.S., Masiarz, F.R., Chamberlain, S.H., Vasavada, A., Rosenberg, S. (1990) "Glucose oxidase from Aspergillus niger". J. Biol. Chem., Vol. 265, No.7, 3793-3802.
 - 24. Johnston, J.R., Reader, H.P. (1983) "Genetic control of flocculation" in 'Yeast Genetics, Fundamental and applied aspects', Spencer, J.F.T. (Editor), ISBN 0-540-90793-9, p. 205-224.
 - 25. Schreuder, M.P., Brekelmans, S., Van den Ende, H., Klis, F.M. (1993) "Targeting of a Heterologous Protein to the Cell Wall of Saccharomyces cerevisiae" Yeast 2 399-409
 - 26. Teunissen, A.W.R.H., Holub, E., Van der Hucht, J., Van Den Berg, J.A., Steensma, H.Y. (1993) "Sequence of the Open reading frame of the FLO1 Gene from Saccharomyces cerevisiae" YEAST 9 423-427.
 - 27. Harmsen, M.M., Langedijk, A.C., Van Tuinen, E., Geerse, R.H.; Raue, H.A., Maat, J. (1993) Effect of a pmr1 disruption and different signal sequences on the intracellular processing and secretion of Cyamopsis tetragonoloba α-galactosidase

by Saccharomyces cerevisiae Gene 125 115-123

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Unilever N.V.
 - (B) STREET: Weena 455
 - (C) CITY: Rotterdam
 - (E) COUNTRY: The Netherlands
 - (F) POSTAL CODE (ZIP): NL-3013 AL
 - (A) NAME: Unilever PLC
 - (B) STREET: Unilever House Blackfriars
 - (C) CITY: London
 - (E) COUNTRY: United Kingdom
 - (F) POSTAL CODE (ZIP): EC4P 4BQ
 - (A) NAME: Franciscus Maria KLIS
 - (B) STREET: Benedenlangs 102
 - (C) CITY: Amsterdam
 - (E) COUNTRY: The Netherlands
 - (F) POSTAL CODE (ZIP): NL-1025 KL
 - (A) NAME: Maarten Pleun SCHREUDER
 - (B) STREET: Rode Kruislaan 1220
 - (C) CITY: Diemen
 - (E) COUNTRY: The Netherlands
 - ' (F) POSTAL CODE (ZIP): NL-1111 XB
 - (A) NAME: Holger York TOSCHKA
 - (B) STREET: Coornhertstraat 77
 - (C) CITY: Vlaardingen
 - (E) COUNTRY: The Netherlands
 - (F) POSTAL CODE (ZIP): NL-3132 GB
 - (A) NAME: Cornelis Theodorus VERRIPS
 - (B) STREET: Hagedoorn 18
 - (C) CITY: Maassluis
 - (E) COUNTRY: The Netherlands
 - (F) POSTAL CODE (ZIP): NL-3142 KB
- (ii) TITLE OF INVENTION: Enzymic Processes based on naturally immobilized enzymes that can easily be separated and regenerated

11111	NIIMBED	OR	SEQUENCES:	26
	MODEL	Or.	SECUENCES	20

- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6057 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Saccharomyces cerevisiae
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3653..5605
 - (D) OTHER INFORMATION: /function= "sexual agglutinisation" /product= "alpha-agglutinin"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

60	CGAGAATATG	TGACGGAAAA	GATACTGAAA	AGGGGGAAAA	TAAGGGAGGC	AAGCTTTAGG
120	CTTCCTGCCT	CAAATCGAGG	GTTAAAAGGT	AGCTTTACCC	CAACTTTTAG	GAGCAGGGAG
180	TTGAATTGAG	AGAACAGTGC	ATTACGCCCA	CGGAAGGTTT	TTAGTAGTAC	TTGTCTGATT
240	TTATATATGA	TTCAGTAGCC	AAAATTTACA	CAATGGAAGA	ACGGGAAAGA	TTCTCGGGAC
300	CTATGGGAAT	ATGAGCTGAA	ATAATGTCCC	TTATAAGTAG	AGCCACGTCT	AATGCTGCCA
360	TCTGAATTGT	TAGTTTAACA	ATTAACTCTT	TATATATTAC	GTTCATTGTA	TTATGACGCA
420	TATATCAGGT	TTAAGTCTAT	GATCGCTTAG	ATTTTTTAT	AACTTTTTGA	TTTATAAAAT
480	GAATTAGTAT	TTAAATACAG	ATGAGTATAT	TTCGTTAAAT	ATCATAATTG	TTTTTCATTC

CATTTGCAGT	CACGAAAAGG	GCCGTTTCAT	AGAGAGTTTT	CTTAATAAAG	TTGAGGGTTT	540
CCGTGATAGT	TTTGAGGGGT	TGTTTGAACT	AGATTTACGC	TTACCTTTCA	ACTGATTAAT	600
TTTTTCAGCG	GGCTTATCAT	AATCATCCAT	CATAGCAGTC	TTTCTGGACT	TCGTCGAGGA	660
CTGGCTTTCT	GAATTTTGAC	GGTCCCTATT	AGCTCCAGTT	GGAGGAATTG	AGTTACCTAC	720
AACTGGCAAG	AGGTCTTTGT	TTGGATTCAA	AATAGGACTT	TGTGGTAGCA	GTTTGGTTTT	780
ATTCAATCTA	AAGATATGAG	AAACAGGTTT	TAAGTAAATC	GATACTATTG	TACCAATGTT	840
TAGCTCCAAT	TCCTCCAAAA	CGGTGGGATC	TAATTTTGTG	TTCATTTCTA	TTAGTGGCAA	900
CTCTCCGTCC	AGTACTGATT	TTAAAGATTC	AAAAGTTATC	GCGTTTGATA	TACGAGACGT	960
TTTCGTTAAT	GACAGCAATC	TCCAATACAT	CAGTGTTTTA	TCTCTTAAGT	CAGGATTATT	1020
TTCGTGATCG	GTGCATCCTT	TTAATAAATC	CATACAAAGT	TCTTCAGTTT	CCTTTGTAGG	1080
ATTTCTGATG	AAGAATTTTA	TTGCTGAGTT	CAGAATGGAA	AATTGCACTT	CTAGCGTCTC	1140
ATTAAACATG	TTTGAGGAAA	AAACTCTAAA	TAACTCCAGG	TAGTTTGGAA	TTACATCCGA	1200
ATATTGCGTT	ATTATCCAGA	TCATAGCGTT	TTTTGATTCA	GGTTCCTGTA	CAACTTCAGT	1260
GTGTTTGACT	AGTTCTGTTA	CGTTTGCTTT	AAAATTATTG	GGATATTTCC	TCAAAATATT	1320
TCTGAAAACC	GAAATAATCT	CCTGGACGAC	ATAATCAACA	CCGAATTCTA	ACAAATCTAG	1380
TAGCACAGCG	ACACAATCGT	GTACAGAGTC	TTCATCTAGC	TTAACAGCGA	GATTACCAAT	1440
GGCTCTGACT	GATTTCCTTG	ACATTTGAAT	ATCAATATCT	GTAGCATATT	GTTCCAACTC	1500
TTCTAGAATT	CTTGGTAATG	TTTCCTTGTT	AGCTAAAAGA	TATAAACACT	CTAATTTCGT	1560
GTCTTTGATG	TATATGGGGT	CATTGTACTC	GATGAAAAA	TACGAAATGT	CTAGCCTGAG	1620
TAGAGATGAC	TCCCTACTCA	ATAAAAGAAG	AATAACGTTT	CTTAATACTA	AAAATTGTAA	1680
TTCAGGCGGC	TTATCTAACA	AAGCTATTAC	AGAGTTAGAT	AGCTTTTCGG	CTAGAGTTTC	1740
TTTGATGACG	TCAACATAAT	TCAACAAGTA	CATGATGAAT	TTTAAAGAGT	TCAACACTAC	1800
GTATGTGTTT	ACTTGTTGCA	GGTACGGTAA	AGCTAGTTCG	ATCATTTCAT	GGGTATCCAA	1860

ATAATGCTGC	GGCACAACCG	AAGTCGTCAA	AACTTCCAAA	ACAGTAGCCT	TATTCCACTC	1920
ATTTAATTCG	GGTAAAAGTT	CTAGCATGTC	AAAAGCGAGT	TCCAAGGGAA	TCCTGAAGGT	1980
TCCATGTTAG	CGTTTTTTC	GTGAATGGAA	TATAAAGTAT	GTAATGCAGC	TACAATGACT	2040
TCTGGAGAGC	TCGACTGTGC	CTTTACAATG	TCATGTAGAA	TGCTTGATAA	CCCCAATACC	2100
CTTTCATGAT	CAATTTCATC	TAAATCCAAC	AGTGCGTAAA	TTGCTGTCCT	CGTCACTTGT	2160
TCAGGTGGAG	ACTTGTGATT	TACCAATGAA	ATGATACAGT	CGAAGGCCTG	ATCAGATAGC	2220
TCTTTCACCG	GGACTAATAC	CAGAGTTCTT	AGTGCCATTA	TTTGTAACTT	TTCATCTCTG	2280
CTTTTGAAAT	CGTCCATTAT	AAATGGCAAA	GCCTCTCTGG	CCTGCTGAGG	TTTTAATGCG	2340
CCGATCACCC	TAATATACTC	ATGGCAAATT	CTTTTCACTT	CTAGATCATC	TTCAATTTGC	2400
CAAAATTTCA	AGAGCTCAGA	AAACAGAAGG	GACATTTCGC	CATAGTTTCC	TAGAACCAAA	2460
TTGGCGATAA	TTTTTCTCAG	AGCATTTTTC	CTTCTTGTTA	TATTCGATTT	AAACTTTTTT	2520
ACTCCAAAAT	GTTGCAGATC	TGTGACGATT	TCATTTGCTT	TATATCTGGC	AAAAACTTTT	2580
TGATCGGACA	TAAGCGAAAT	ACGTCCTATT	AATGAAGTGA	ATGTTCTTGC	TGTATTCCCT	2640
TCTTGTGCAG	TAGATTAATT	CTGTTTCCAG	GCTGCGATAC	TTTGATACCC	AATACTAAAA	2700
GTTGATGATT	TGAACGATCT	CCTATTTCCT	CGCACATTTT	TGGAGCGATA	CCCGGAAGAC	2760
AGAATCGCGA	TGTTAAGAAA	ATAGTTCTGA	TGGCACTAAA	GAGATCATGA	TTAAGGAAAG	2820
GTAAGTGATA	TGCATGAATG	GGAATAGGCT	TTCGAACTTG	ACGATTTAGT	TCCTTATTTC	2880
TATCCATCTA	ATCCTCCAAC	TTCAATAGGC	CTTATCTAGC	TCAGAGCAGT	ATTTAATTGA	2940
GAATAGTAGC	TTAATTGAAA	CCTTACTAAA	AAAGTGTATG	GTTACATAAG	ATAAGGCGTT	3000
AAGAAGAGTA	TACATATGCA	TTATTCATTA	CCAAGACCAC	TATGAATAGT	AATACCATAT	3060
TTAGCTTTTG	AAACTCATGT	TTTCTATTGT	GTTGTTTCAA	ATTCCTCTGT	TAGGCTCAAT	3120
TTAGGTTAAT	TAAATTATAA	AAAAATATAA	AAAATAAAGA	AAGTTTATCC	ATCGGCACCT	3180
CAATTCAATG	GAGTAAACAG	TTTCAACACT	GAGTGGTGAA	ACATTGAACA	ACTACATGCA	3240

GTI	TCCC	GCC	ACGA	\GGC#	AG 1	GTAG	GTCC	T TI	GTCC	TTTA	CGC	TTTC	TTT	TGC	AGGTCA	AT 3300	O
TGA	TGAC	CTA	ATTA	GGAA	GG I	'AGAA	GCCG	C TC	CAGO	TCAA	TA?	AGGA!	ATG	CTAA	lgggta	.C 3360)
TCG	CCTT	TGG	TGTT	TTAC	CA I	'ACAA	TGGC	A GC	TTTA	TGTC	ACI	TCAT	тст	TCAG	TAACG	G 3420)
CGC	TTAA	ATA	TTCC	CAAA	AA C	GTTA	CAAT	G GA	ATTG	TTTG	ATC	ATGI	AAC	GAAA	TGCAA	T 3480)
CTT	CTAA	AAA	AAAA	.GCCA	TG T	GAAT	CAAA	A AA	AGAT	TCCT	TTI	'AGCA	TAC	TATA	aatat	G 3540)
CAA	Aatg	ccc	TCTA	TTTA	TT C	TAGT	AATC	G TC	CATT	CTCA	TAT	CTTC	CTT	ATAT	CAGTC	G 3600)
CCT	CGCT	TAA	TATA	GTCA	GC A	Caaa	AGGA	A CA	ACAA	TTCG	CCA	GTTT	TCA		TG et 1	3655	•
ጥጥር	ساس	TTT	ርጥር	222	ን ጥጥ	2 (2007)	oma	maa.	cene.	mmm	maa	55				2502	
		Phe														3703	
			5					10					15				
TCT	GCT	ATA	AAT	ATC	AAC	GAT	ATC	ACA	TTT	TCC	AAT	TTA	GAA	ATT	ACT	3751	
Ser	Ala	Ile	Asn	Ile	Asn	Asp		Thr	Phe	Ser	Asn	Leu	Glu	Ile	Thr		
		20					25					30					
CCA	CTG	ACT	GCA	AAT	AAA	CAA	CCT	GAT	CAA	GGT	TGG	ACT	GCC	ACT	TTT	3799	
Pro		Thr	Ala	Asn	Lys	Gln	Pro	Asp	Gln	Gly	Trp	Thr	Ala	Thr	Phe		
	35					40					45						
GAT	TTT	AGT	ATT	GCA	GAT	GCG	TCT	TCC	ATT	AGG	GAG	GGC	GAT	GAA	TTC	3847	
Asp	Phe	Ser	Ile	Ala	Asp	Ala	Ser	Ser	Ile	Arg	Glu	Gly	Авр	Glu	Phe		
50					55					60					65		
ACA	TTA	TCA	ATG	CCA	CAT	GTT	TAT	AGG	ATT	AAG	CTA	TTA	AAC	TCA	TCG	3895	
		Ser															
	•			70					75					80			
CAA	ACA	GCT	ACT	ATT	TCC	TTA	GCG	GAT	GGT	ACT	GAG	GCT	TTC	AAA	TGC	3943	
		Ala															
			85			:,		90					95				
TAT	GTT	TCG	CAA	CAG	GCT	GCA	TAC	ттс	ТАТ	GAA	ጥ ፈ ፈ	እ ርጥ	Д Счт	ጥጥር	ACA	3991	
		Ser														3331	
		100					105		-			110			-		

	ACT															4039
Cys	Thr 115	Ala	Gln	Asn	Asp	Leu 120	Ser	Ser	Tyr	Asn	Thr 125	Ile	Asp	Gly	Ser	
	ACA															4087
	Thr	Phe	Ser	Leu	Asn 135	Phe	Ser	Asp	Gly	_	Ser	Ser	Tyr	Glu	-	
130					133					140					145	
GAG	TTA	GAA	AAC	GCT	AAG	TTT	TTC	AAA	TCT	GGG	CCA	ATG	CTT	GTT	AAA	4135
Glu	Leu	Glu	Asn		Lys	Phe	Phe	Lys		Gly	Pro	Met	Leu		Lys	
				150					155					160		
CTT	GGT	AAT	CAA	ATG	TCA	GAT	GTG	GTG	AAT	TTC	GAT	CCT	GCT	GCT	TTT	4183
Leu	Gly	Asn	Gln	Met	Ser	Asp	Val	Val	Asn	Phe	Asp	Pro	Ala	Ala	Phe	
			165			•		170					175			
ACA	GAG	AAT	GTT	TTT	CAC	TCT	GGG	CGT	TCA	ACT	GGT	TAC	GGT	TCT	TTT	4231
Thr	Glu	Asn	Val	Phe	His	Ser	Gly	Arg	Ser	Thr	Gly	Tyr	Gly	Ser	Phe	
		180					185					190				
GAA	AGT	TAT	CAT	TTG	GGT	ATG	TAT	TGT	CCA	AAC	GGA	TAT	TTC	CTG	GGT	4279
Glu	Ser	Tyr	His	Leu	Gly	Met	Tyr	Сув	Pro	Asn	Gly	Tyr	Phe	Leu	Gly	
	195					200					205					
GGT	ACT	GAG	AAG	ATT	GAT	TAC	GAC	AGT	TCC	AAT	AAC	AAT	GTC	GAT	TTG	4327
Gly	Thr	Glu	Lys	Ile	Asp	Tyr	Asp	Ser	Ser	Asn	Asn	Asn	Val	Asp	Leu	
210					215					220					225	•
GAT	TGT	TCT	TCA	GTT	CAG	GTT	TAT	TCA	TCC	AAT	GAT	TTT	AAT	GAT	TGG	4375
Asp	Cys	Ser	Ser	Val	Gln	Val	Tyr	Ser	Ser	Asn	Asp	Phe	Asn	Авр	Trp	
				230					235					240		
TGG	TTC	CCG	CAA	AGT	TAC	AAT	GAT	ACC	AAT	GCT	GAC	GTC	ACT	TGT	TTT	4423
	Phe															
			245					250					255			
GGT	AGT	AAT	CTG	TGG	ATT	ACA	СТТ	GAC	GAA	AAA	CTA	TAT	GAT	GGG	GAA	4471
	Ser															*
_		260					265	-		_		270	_	_		
					, · ,			_								
	TTA															4519
net	Leu 275	rrp	AGT	ASN	wrg	280	GID	ser	rea	PFO	285	usu	AqT	ASII	THE	

ATA	GAT	CAT	GCG	TTA	GAA	TTT	CAA	TAC	ACA	TGC	CTT	GAT	ACC	ATA	GCA	4567
Ile	Asp	His	Ala	Leu	Glu	Phe	Gln	Tyr	Thr	Cys	Leu	Asp	Thr	Ile	Ala	
290					295					300				•	305	
												GAA				4615
Asn	Thr	Thr	Tyr		Thr	Gln	Phe	Ser		Thr	Arg	Glu	Phe		Val	
				310					315					320		
TAT	CAG	GGT	CGG	AAC	CTC	GGT	ACA	GCT	AGC	GCC	AAA	AGC	TCT	TTT	ATC	4663
Tyr	Gln	Gly	Arg	Asn	Leu	Gly	Thr	Ala	Ser	Ala	Lys	Ser	Ser	Phe	Ile	
			325	•				330					335			
												AGT				4711
Ser	Thr		Thr	Thr	qaA	Leu		Ser	Ile	Asn	Thr	Ser	Ala	Tyr	Ser	
		340					345					350				
ACT	GGA	TCC	ATT	TCC	ACA	GTA	GAA	ACA	GGC	AAT	CGA	ACT	ACA	TCA	GAA	4759
												Thr				
	355					360					365					
GTG	ATC	AGT	CAT	GTG	GTG	ACT	ACC	AGC	ACA	AAA	CTG	TCT	CCA	ACT	GCT	4807
	Ile	Ser	His	Val		Thr	Thr	Ser	Thr	_	Leu	Ser	Pro	Thr		
370					375					380					385	
ACT	ACC	AGC	CTG	ACA	ATT	GCA	CAA	ACC	AGT	ATC	TAT	TCT	ACT	GAC	TCA	4855
	_				_					_		Ser	_		_	
				390					395					400		
												GAA				4903
Asn	Ile	Thr		Gly _.	Thr	Asp	Ile		Thr	Thr	Ser	Glu		Ile	Ser	
			405					410					415			
GAT	GTG	GAA	ACC	ATT	AGC	AGA	GAA	ACA	GCT	TCG	ACC	GTT	GTA	GCC	GCT	4951
												Val				
		420					425					430				
					•							ACT				4999
Pro		Ser	Thr	Thr	Gly		Thr	Gly	Ala	Met		Thr	Tyr	Ile	Pro	
	435				.:	440					445					
CAA	<u> </u>	ACA	TCC	ጥርም	ጥ ርጥ	ም ፓር	GCA	ACA	ATC	AAC	AGC	ACA	CCA	ATA	ATC	5047
												Thr				
450					455					460					465	

ጥርጥ	ጥሮአ	ጥሮአ	CCN	ረ ሞን	- Children	C22	1.00	man	a.m	COM	man.	3 000	CTC	220	CMC.	E00E
					TTT Phe											5095
per	261	Ser	ATA	470	File	GIU	THE	ser	475	WIG	ser	116	AGI	480	Agi	
				470					4/3					400		
CAC	ACT	GAA	AAT	ATC	ACG	AAT	ACT	GCT	GCT	GTT	CCA	TCT	GAA	GAG	CCC	5143
		_			Thr											
			485					490					495			
ACT	TTT	GTA	AAT	GCC	ACG	AGA	AAC	TCC	TTA	AAT	TCC	TTC	TGC	AGC	AGC	5191
Thr	Phe	Val	Asn	Ala	Thr	Arg	Asn	Ser	Leu	Asn	Ser	Phe	Cys	Ser	Ser	
		500					505					510				
					CCC											5239
Lys		Pro	Ser	Ser	Pro	Ser	Ser	Tyr	Thr	Ser		Pro	Leu	Val	Ser	
	515					520					525					
mco.	~	maa	CM3	200				~~>							mem	r207
					AAA Lys											5287
530	Leu	per	vai	Ser	535	Int	rea	Leu	Sei	540	ser	Pne	THE	PEG	545	
					J					340					545	
GTG	CCA	ACA	TCT	AAT	ACA	TAT	ATC	AAA	ACG	GAA	AAT	ACG	GGT	TAC	TTT	5335
Val	Pro	Thr	Ser	Asn	Thr	Tyr	Ile	Lys	Thr	Glu	Asn	Thr	Gly	Tyr	Phe	
				550					555					560		
GAG	CAC	ACG	GCT	TTG	ACA	ACA	TCT	TCA	GTT	GGC	CTT	AAT	TCT	TTT	AGT	5383
Glu	His	Thr	Ala	Leu	Thr	Thr	Ser	Ser	Val	Gly	Leu	Asn	Ser	Phe	Ser	
			565					570					575			
				•	TCT											5431
GIU	THE	580	Leu	ser	Ser	GIN	_	Thr	rys	TTE	Asp		Pne	Leu	vai	
		360					585					590				
TCA	TCC	TTG	ATC	GCA	TAT	CCT	тст	עיבוע	GCA	TCA	GGA	AGC	CAA	ጥ ር፡	TCC	5479
					Tyr											• • • • • • • • • • • • • • • • • • • •
	595				-4-	600					605					
													•			
GGT	ATC	CAA	CAG	AAT	TTC	ACA	TCA	ACT	TCT	CTC	ATG	ATT	TCA	ACC	TAT	5527
Gly	Ile	Gln	Gln	Asn	Phe	Thr	Ser	Thr	Ser	Leu	Met	Ile	Ser	Thr	Tyr	
610					615					620					625	
					• • •			•								
GAA	GGT	AAA	GCG	TCT	ATA	TTT	TTC	TCA	GCT	GAG	CTC	GGT	TCG	ATC	TTA	5575
Glu	Gly	Lys	Ala		Ile	Phe	Phe	Ser	Ala	Glu	Leu	Gly	Ser		Ile	
				630					635					640		

TTT	CTG	CTT	TTG	TCG	TAC	CTG	CTA	TTC	TAAAAC	GGT	ACTGTAC	AGT	5622
Phe	Leu	Leu	Leu	Ser	Tyr	Leu	Leu	Phe					
			645					650				•	
ТАСТ	יאר)אי	ጥር ነ	ልሮሞሮር	י מממי	ים בי	CCAI	2 mm 2	TTTC	ነውጥ ፖን ምን ን			GGCTCTT	TT T 5682
			10100	rrun 1		·	WIIN	. 110	FIICAIAA	. 111	ITCATCCT	GGCTCTT	FTT 5682
TTCT	TCAA	CC 1	ATAGI	TAAA	T GO	GACAG	TTCA	TAI	CTTAAAC	TCI	CTAATAA?	CTTTTCT	AGT 5742
TCTT	ATCC	TT :	rtccg	TCTC	A CC	GCAG	ATTT	TAT	CATAGTA	TTA	AATTTAT	ATTTTGT	rcg 5802
TAAA	AAGA	AA A	AATTI	GTGA	G CG	TTAC	CGCT	CGI	TTCATTA	ccc	GAAGGCT	GTTTCAGT	TAG 5862
ACCA	CTGA	TT I	\AGTA	AGTA	G AI	GAAA	TAAA	TTC	ATCACCA	TGA	AAGAGTT	CGATGAG	AGC 5922
TACT	TTTT	CA F	ATGC	TTAA	C AG	CTAA	.ccgc	CAT	TCAATAA	TGT	TACGTTC	TCTTCATT	CT 5982
GCGG	CTAC	GT 1	TATCT	AACA	A GA	.GGTT	TTAC	TCT	CTCATAT	CTC	ATTCAAA	TAGAAAGA	AC 6042
ATAA	TCAA	AA A	GCTT	,									6057

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 650 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Phe Thr Phe Leu Lys Ile Ile Leu Trp Leu Phe Ser Leu Ala Leu

1 5 10 15

Thr Pro Leu Thr Ala Asn Lys Gln Pro Asp Gln Gly Trp Thr Ala Thr 35 40 45

Phe Asp Phe Ser Ile Ala Asp Ala Ser Ser Ile Arg Glu Gly Asp Glu 50 55 60

Phe 65		Leu	Ser	Met	Pro 70		Va]	Tyr	Arg	Ile 75		Leu	Leu	Asn	Ser 80
Ser	Gln	Thr	Ala	Thr 85		Ser	Leu	Ala	Asp 90		Thr	Glu	Ala	Phe 95	Lys
Сув	Tyr	Val	Ser		Gln	Ala	Ala	Tyr 105	Leu	Tyr	Glu	Asn	Thr 110		Phe
Thr	Cys	Thr 115	Ala	Gln	Asn	Asp	Leu 120		Ser	Tyr	Asn	Thr 125	Ile	Asp	Gly
Ser	Ile 130	Thr	Phe	Ser	Leu	Asn 135	Phe	Ser	Asp	Gly	Gly 140	Ser	Ser	Tyr	Glu
Tyr 145	Glu	Leu	Glu	Asn	Ala 150	Lys	Phe	Phe	Lys	Ser 155	Gly	Pro	Met	Leu	Val 160
Lys	Leu	Gly	Asn	Gln 165	Met	Ser	Asp	Val	Val 170	Asn	Phe	Asp	Pro	Ala 175	Ala
Phe	Thr	Glu	Asn 180	Val	Phe	His	Ser	Gly 185	Arg	Ser	Thr	Gly	Tyr 190	Gly	Ser
Phe	Glu	Ser 195	Tyr	His	Leu	Gly	Met 200	Tyr	Cys	Pro	Asn	Gly 205	Tyr	Phe	Leu
Gly	Gly 210	Thr	Glu	Lys	Ile	Asp 215	Tyr	Asp	Ser	Ser	Asn 220	Asn	Asn	Val	Asp
Leu 225	Asp	Cys	Ser		Val 230	Gln	Val	Tyr	Ser	Ser 235	Asn	Asp	Phe		Asp 240
Trp	Trp	Phe	Pro	Gln 245	Ser	Tyr	Asn	Asp	Thr 250	Asn	Ala	Asp	Val	Thr 255	Сув
Phe	Gly		Asn 260	Leu	Trp	Ile	Thr	Leu 265	Asp	Glu	Lys		Tyr 270	Asp	Gly
Glu :		Leu 275	Trp	Val	Asn'		Leu 280	Gln	Ser	Leu :		Ala . 285	Asn	Val .	Asn
	Ile 290	Asp	His	Ala		Glu 295	Phe	Gln	Tyr		Cys :	Leu .	Asp	Thr :	Ile

Ala 305		Thr	Thr	Туг	Ala 310	Thr	Gln	Phe	ser	Thr 315		Arg	Glu	Phe	11e
Val	Tyr	Gln	Gly	Arg 325	Asn	Leu	Gly	Thr	330		Ala	Lys	Ser	Ser 335	
Ile	Ser	Thr	Thr 340	Thr	Thr	Asp	Leu	Thr 345		Ile	Asn	Thr	Ser 350		Tyr
Ser	Thr	Gly 355	Ser	Ile	Ser	Thr	Val 360	Glu	Thr	Gly	Asn	Arg 365	Thr	Thr	Ser
Glu	Val 370	Ile	Ser	His	Val	Val 375	Thr	Thr	Ser	Thr	198 380	Leu	Ser	Pro	Thr
Ala 385	Thr	Thr	Ser	Leu	Thr 390	Ile	Ala	Gln	Thr	Ser 395	Ile	Tyr	Ser	Thr	Asp
Ser	Asn	Ile	Thr	Val 405	Gly	Thr	yab	Ile	His 410	Thr	Thr	Ser	Glu	Val 415	Ile
Ser	Asp	Val	Glu 420	Thr	Ile	Ser	Arg	Glu 425	Thr	Ala	Ser	Thr	Val 430	Val	Ala
Ala	Pro	Thr 435	Ser	Thr	Thr	Gly	Trp 440	Thr	Gly	Ala	Met	Asn 445	Thr	Tyr	Ile
Pro	Gln 450	Phe	Thr	Ser	Ser -	Ser 455	Phe	Ala	Thr	Ile	Asn 460	Ser	Thr	Pro	Ile
Ile 465	Ser	Ser	Ser	Ala	Val 470	Phe	Glu	Thr	Ser	Asp 475	Ala	Ser	Ile	Val	Asn 480
Val	His	Thr	Glu	Asn 485	Ile	Thr	Asn	Thr	Ala 490	Ala	Val	Pro	Ser	Glu 495	Glu
Pro	Thr	Phe	Val 500	Asn	Ala	Thr	Arg	Asn 505	Ser	Leu	Asn	Ser	Phe 510	Cys	Ser
Ser	Lys	Gln 515	Pro	Ser	Ser	Pro	Ser 520	Ser	Tyr	Thr	Ser	Ser 525	Pro	Leu	Val
Ser	Ser 530	Leu	Ser	Val	Ser	Lys 535	Thr	Leu	Leu	Ser	Thr 540	Ser	Phe	Thr	Pro

Ser Val Pro Thr Ser Asn Thr Tyr Ile Lys Thr Glu Asn Thr Gly Tyr 545 550 555 560

Phe Glu His Thr Ala Leu Thr Thr Ser Ser Val Gly Leu Asn Ser Phe 565 570 575

Ser Glu Thr Ala Leu Ser Ser Gln Gly Thr Lys Ile Asp Thr Phe Leu 580 585 590

Val Ser Ser Leu Ile Ala Tyr Pro Ser Ser Ala Ser Gly Ser Gln Leu 595 600 605

Ser Gly Ile Gln Gln Asn Phe Thr Ser Thr Ser Leu Met Ile Ser Thr 610 615 620

Tyr Glu Gly Lys Ala Ser Ile Phe Phe Ser Ala Glu Leu Gly Ser Ile 625 630 635 640

Ile Phe Leu Leu Ser Tyr Leu Leu Phe 645 650

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer lipol
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GGGGCGCCG AGGTCTCGCA AGATCTGGA

(2)	INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 33 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
,	vii) IMMEDIATE SOURCE:	
	(B) CLONE: Part non-coding strand lipase	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
TTTC	TCCAGG TCTTGCGAGA CCTCTCGACG AAT	33
(2)	INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 32 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
(vii) IMMEDIATE SOURCE:	

- (B) CLONE: Part coding strand lipase
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

TTCGGGTTAA TTGGGACATG TCTTTAGTGC GA

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: primer lipo2

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CCCCAAGCTT AAGGCTAGCA AGACATGTCC CAATTAACCC	4
(2) INFORMATION FOR SEQ ID NO: 7:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 894 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Humicola lanuginosa	
(ix) FEATURE:	
(A) NAME/KEY: CDS	
(B) LOCATION: 72884	
(D) OTHER INFORMATION: /product= "lipase"	
(ix) FEATURE:	
(A) NAME/KEY: mat_peptide	
(B) LOCATION: 72881	
(D) OTHER INFORMATION: /product= "lipase"	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
GAATTCGTAG CGACGATATG AGGAGCTCCC TTGTGCTGTT CTTTGTCTCT GCGTGGACGG	60
CCTTGGCCAC G GCC GAG GTC TCG CAA GAT CTG TTT AAC CAG TTC AAT CTC	110
Ala Glu Val Ser Gln Asp Leu Phe Asn Gln Phe Asn Leu	
1 5 10	
TTT GCA CAG TAT TCT GCT GCC GCA TAC TGC GGA AAA AAC AAT GAT GCC	158
Phe Ala Gln Tyr Ser Ala Ala Ala Tyr Cys Gly Lys Asn Asn Asp Ala	
15 20 25	

CCA	GCT	GGT	ACA	AAC	ATT	ACG	TGC	ACG	GGA	AAT	GCC	TGC	CCC	GAG	GTA	206
Pro	Ala	Gly	Thr	Asn	Ile	Thr	Сув	Thr	Gly	Asn	Ala	Cys	Pro	Glu	Val	
30					35					40				• .	45	
											GAA					254
Glu	Lys	Ala	Asp		Thr	Phe	Leu	Tyr		Phe	Glu	Asp	Ser	_	Val	
				50					55					60		
GGC	GAT	GT/C	BOO	ccc	mm.c	Cell (II)	~~m	COL	030	220	ACG	330	222	mmc.	>	201
											Thr					302
1			65	1		200	222.14	70	nop	11011		non	75	Deu	110	
GTC	CTC	TCT	TTC	CGT	GGC	TCT	CGT	TCC	ATA	GAA	AAC	TGG	ATC	GGA	AAT	350
											Asn					
		80				•	85					90				
CTT	AAC	TTC	GAC	TTG	AAA	GAA	ATA	AAT	GAC	ATT	TGC	TCC	GGC	TGC	AGG	398
Leu		Phe	Asp	Leu	Lys	Glu	Ile	Asn	Asp	Ile	Сув	Ser	Gly	Cys	Arg	
	95					100					105					
003	~~															
											GTA					446
110	urs	Asp	GIY	Pne	115	ser	ser	rrp	Arg		Val	Ala	Asp	Thr		
					113					120					125	
AGG	CAG	AAG	GTG	GAG	GAT	GCT	GTG	AGG	GAG	CAT	ccc	GAC	TAT	CGC	GTG	494
											Pro					
				130	_				135			_	-	140		
GTG	TTT	ACC	GGA	CAT	AGC	TTG	GGT	GGT	GCA	TTG	GCA	act	GTT	GCC	GGA	542
Val	Phe	Thr	Gly	His	Ser	Leu	Gly	Gly	Ala	Leu	Ala	Thr	Val	Ala	Gly	
			145					150					155			
											GTG					590
Ala	Asp	160	Arg	GIĀ	Asn	GIÀ		Asp	Ile	Asp	Val		Ser	Tyr	Gly	
		100					165					170				
GCC	ccc	CGA	GTC	GGA	AAC	AGG	GCT	ጥጥጥ	GCA	GAA	ттс	CTG	ACC	GTA	CAG	638
Ala																
	175	•		-		180					185					
ACC	GGC	GGT	ACC	CTC	TAC	CGC	ATT	ACC	CAC	ACC	AAT	GAT	ATT	GTC	CCT	686
Thr	Gly	Gly	Thr	Leu	Tyr	Arg	Ile	Thr	His	Thr	Asn	Asp	Ile	Val	Pro	
190					195					200					205	

AGA	CTC	CCG	CCG	CGC	GAG	TTC	GGT	TAC	AGC	CAT	TCT	AGC	CCA	GAG	TAC	734
Arg	Leu	Pro	Pro	Arg	Glu	Phe	Gly	Tyr	Ser	His	Ser	Ser	Pro	Glu	Tyr	
				210					215					220		
TGG	ATC	AAA	TCT	GGA	ACC	CTT	GTC	CCC	GTC	ACC	CGA	AAC	GAC	ATC	GTG	782
Trp	Ile	Lys	Ser	Gly	Thr	Leu	Val	Pro	Val	Thr	Arg	Asn	Asp	Ile	Val	
		-	225					230			_		235			
AAG	ATA	GAA	GGC	ATC	GAT	GCC	ACC	GGC	GGC	AAT	AAC	CAG	CCT	AAC	ATT	830
Lys	Ile	Glu	Gly	Ile	Asp	Ala	Thr	Gly	Gly	Asn	Asn	Gln	Pro	Asn	Ile	
		240					245	-	_			250				
															•	
CCG	GAT	ATC	CCT	GCG	CAC	CTA	TGG	TAC	TTC	GGG	TTA	ATT	GGG	ACA	TGT	878
Pro	Asp	Ile	Pro	Ala	His	Leu	Trp	Tyr	Phe	Gly	Leu	Ile	Gly	Thr	Cys	
	255					260	-	-		-	265		•		-	
CTT	TAGI	GCGZ	AG C	TT												894
Leu																
270																

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 270 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Ala Glu Val Ser Gln Asp Leu Phe Asn Gln Phe Asn Leu Phe Ala Gln
1 5 10 15

Tyr Ser Ala Ala Ala Tyr Cys Gly Lys Asn Asn Asp Ala Pro Ala Gly
20 25 30

Thr Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro Glu Val Glu Lys Ala
35 40 45

Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser Gly Val Gly Asp Val 50 55 60

Thr 65	Gly	Phe	Leu	Ala	Leu 70	Asp	Asn	Thr	Asn	Lys 75		Ile	Val	Leu	Ser 80
Phe	Arg	Gly	Ser	Arg 85	Ser	Ile	Glu	Asn	Trp 90		Gly	Asn	Leu	Asn 95	Phe
Asp	Leu	Lys	Glu 100	Ile	Asn	Asp	Ile	Cys 105		Gly	Сув	Arg	Gly 110	His	Asp
Gly	Phe	Thr 115	Ser	Ser	Trp	Arg	Ser 120	Val	Ala	Asp	Thr	Leu 125	Arg	Gln	Lys
Val	Glu 130	Asp	Ala	Val	Arg	Glu 135	His	Pro	Asp	Tyr	Arg 140	Val	Val	Phe	Thr
Gly 145	His	Ser	Leu	Gly	Gly 150	Ala	Leu	Ala	Thr	Val 155	Ala	Gly	Ala	Asp	Leu 160
Arg	Gly	Asn	Gly	Tyr 165	Asp	Ile	Asp	Val	Phe 170	Ser	Tyr	Gly	Ala	Pro 175	Arg
Val	Gly	Asn	Arg 180	Ala	Phe	Ala	Glu	Phe 185	Leu	Thr	Val	Gln	Thr 190	Gly	Gly
Thr	Leu	Tyr 195	Arg	Ile	Thr	His	Thr 200	Asn	Asp	Ile	Val	Pro 205	Arg	Leu	Pro
Pro	Arg. 210		Phe	Gly ~	Tyr	Ser 215	His	Ser	Ser	Pro	Glu 220	Tyr	Trp	Ile	Lys
Ser 225	Gly	Thr	Leu	Val	Pro 230	Val	Thr	Arg		Asp 235	Ile	Val	Lys	Ile	Glu 240
Gly	Ile	Asp	Ala	Thr 245	Gly	Gly	Asn	Asn	Gln 250	Pro	Asn	Ile	Pro	Asp 255	Ile
Pro	Ala	His	Leu 260	Trp	Tyr	Phe	Gly	Leu 265	Ile	Gly	Thr	Сув	Leu 270		

(2)	INFORMATION	FOR	SEO	ID	NO:	9:
-----	-------------	-----	-----	----	-----	----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

ATCCCTGCGC ACCTATGGTA CTTCGGGTTA ATTGGGACAT GTCTTGCTAG CCTTA

55

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 59 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

AGCTTAAGGC TAGCAAGACA TGTCCCAATT AACCCGAAGT ACCATAGGTG CGCAGGGAT

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1828 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Geotrichum candidum

		(B) S	TRAI	N: C	MICC	335	426								
	(ix) FE	ATUR	E:												
		(A) N	AME/	KEY:	CDS						*				
		(B) L	OCAT	ION:	40.	.173	1								
		(D) O	THER	INF	ORMA	TION	: /p	rodu	ct=	"lip	ase"				
	(ix) FE	ATUR	E:												
					KEY:	_		tide								
		(B) L	OCAT	ION:	40.	.96									
	(ix) FE	ATUR	E:									•			
	,	•			KEY:	mat	рер	tide								
					ION:		_									
					INF				rodu	ct=	"lip	ase"				
				/g	ene=	"li	pB"									
	(xi) SE	QUEN	CE D	ESCR:	IPTI	ON:	SEQ	ID N	0: 1	1:					
					_											
AAT	rogg	CAC	GAGA	TTCC	TT T	GATT	TGCA	A CT	GTTA.							54
												Val	Ser :	Lys :		
				•	•					,	-19			•	-15	
TTT	TTT	TTG	GCT	GCG	GCG	CTC	AAC	GTA	GTG	GGC	ACC	TTG	GCC	CAG	GCC	102
															Ala	
				-10					-5	-				1		
				,	•											
ccc	ACG	GCC	GTT	CTT	AAT	GGC	AAC	GAG	GTC	ATC	TCT	GGT	GTC	CTT	GAG	150
Pro	Thr	Ala	Val	Leu	Asn	Gly	Asn	Glu	Val	Ile	Ser	Gly	Val	Leu	Glu	
		5					10					15				
GGC	AAG	Cum	CDT	NCC.	TTC	220	CCN	3.00	003	EN/rem	~~	C2.C	~~~		omm.	100
					Phe											198
	20					25	011		110	1110	30	p	110		441	
GGT	GAC	TTG	CGG	TTC	AAG	CAC	ccc	CAG	CCT	TTC	ACT	GGA	TCC	TAC	CAG	246
Gly	Asp	Leu	Arg	Phe	Lys	His	Pro	Gln	Pro	Phe	Thr	Gly	Ser	Tyr	Gln	
35					40					45					50	
					GAC											294
Gly	Leu	Lys	Ala	Asn	Asp	Phe	Ser	Ser	Ala	Сув	Met	Gln	Leu	Asp	Pro	
				55					60					65		

GGC	AAT	GCC	TTT	TCT	TTG	CTT	GAC	AAA	GTA	GTG	GGC	TTG	GGA	AAG	ATT	342
Gly	Asn	Ala	Phe	Ser	Leu	Leu	Asp	Lys	Val	Val	Gly	Leu	Gly	Lys	Ile _	
			70					75					80			
					AGA											390
Leu	Pro	Asp	Asn	Leu	Arg	Gly	Pro	Leu	Tyr	Asp	Met	Ala	Gln	Gly	Ser	
		85					90					95	•			
													-	000	0.000	438
					GAC											430
val	100	Met	Wall	GIU	Asp	105	Leu	TAT	reu	Well	110	Pne	arg	PLO	nia	
	100					103					110					
GGC	ACC	AAG	CCT	GAT	GCT	AAG	CTC	ccc	GTC	ATG	GTT	TGG	ATT	TAC	GGT	486
					Ala											
115		-		•	120	. •				125		-		-	130	
GGT	GCC	TTT	GTG	TTT	GGT	TCT	TCT	GCT	TCT	TAC	CCT	GGT	AAC	GGC	TAC	534
Gly	Ala	Phe	Val	Phe	Gly	Ser	Ser	Ala	Ser	Tyr	Pro	Gly	Asn	Gly	Tyr	
				135					140					145		
							•									
GTC	AAG	GAG	AGT	GTG	GAA	ATG	GGC	CAG	CCT	GTT	GTG	TTT	GTT	TCC	ATC	582
Val	Lys	Glu	Ser	Val	Glu	Met	Gly	Gln	Pro	Val	Val	Phe		Ser	Ile	
			150		•			155					160			
															3.00	630
					CCC											630
ven	ıyı	165	THE	GIY	Pro	TYE	170	Fue	Leu	GIÅ	GIĀ	175	VIG	116	1111	
		103					170					1,5				
GCT	GAG	GGC	AAC	ACC	AAC	GCT	GGT	CTG	CAC	GAC	CAG	CGC	AAG	GGT	CTC	678
				***	Asn											
	180	•		•		185	•			•	190	_	•	-		
GAG	TGG	GTT	AGC	GAC	AAC	ATT	GCC	AAC	TTT	GGT	GGT	GAT	ccc	GAC	AAG	726
Glu	Trp	Val	Ser	Asp	Asn	Ile	Ala	Asn	Phe	Gly	Gly	Asp	Pro	Asp	Lys	
195					200					205					210	
GTC	ATG	ATT	TTC	GGT	GAG	TCC	GCT	GGT	GCC	ATG	AGT	GTT	GCT	CAC	CAG	774
Val	Met	Ile	Phe	Gly	Glu	Ser	Ala	Gly	Ala	Met	Ser	Val	Ala	His	Gln	
				215	:				220					225		
				•	्र											
					GGT											822
Leu	Val	Ala	Tyr	Gly	Gly	Asp	Asn	Thr	Tyr	Asn	Gly	Lys	Gln	Leu	hue	

															TCT	870
His	Ser	Ala	Ile	Leu	Gln	Ser	Gly	Gly	Pro	Leu	Pro	Tyr	Phe	Asp	Ser	
		245					250					255		•		
		•														
															GCC	918
Thr		Val	Gly	Pro	Glu	Ser	Ala	Tyr	Ser	Arg	Phe	Ala	Gln	Tyr	Ala	
	260					265					270					
		GAC														966
	Cys	Asp	Thr	Ser		Ser	Asp	Asn	Asp		Leu	Ala	Сув	Leu	Arg	
275					280					285					290	
200	220	maa	300	~~~												
		TCC														1014
Ser	гÀя	Ser	ser		vaı	Leu	His	Ser		Gln	Asn	Ser	Tyr		Leu	
				295					300					305		
AAG	GAC	CTG	ىلىشىل	CCT	CTC	CTIC	CCT	~ N N	mar.c	- Colores	cca	man	ccm		202	1000
		Leu														1062
-1-			310	Cly	Dea	Deu	FIO	315	Liie	Leu	GTÅ	rne	320	PIO	Arg	
								21,					320			
ccc	GAC	GGC	AAC	ATT	ATT	ccc	GAT	GCC	GCT	TAT	GAG	СТС	TAC	CCC	AGC	1110
		Gly														2220
		325					330			-3-		335	-2-			
																•
GGT	AGA	TAC	GCC	AAG	GTT	CCC	TAC	ATT	ACT	GGC	AAC	CAG	GAG	GAT	GAG	1158
Gly	Arg	Tyr	Ala	Lys	Val	Pro	Tyr	Ile	Thr	Gly	Asn	Gln	Glu	Asp	Glu	
	340					345					350					
GGT	ACT	ATT	CTT	GCC	CCC	GTT	GCT	ATT	AAT	GCT	ACC	ACT	ACT	CCC	CAT	1206
Gly	Thr	Ile	Leu	Ala	Pro	Val	Ala	Ile	Asn	Ala	Thr	Thr	Thr	Pro	His	
355					360					365					370	
		AAG														1254
Val	Lys	Lys	Trp	Leu	Lys	Tyr	Ile	Cys	Ser	Gln	Ala	Ser	Asp	Ala	Ser	
				375					380					385		
		CGT														1302
ren	Asp	Arg		Leu	Ser	Leu	Tyr		Gly	Ser	Trp	Ser		Gly	Ser	
			390					395					400			
CCA	TT TT		» ~~							=						
		CGC														1350
LIO		Arg	INF	етА	тте			ATA	Leu	Thr			Phe	Ĺys	Arg	
		405					410					415				

		GCC														1398
Ile	Ala	Ala	Ile	Phe	Thr	Asp	Leu	Leu	Phe	Gln	Ser	Pro	Arg	Arg	Val	
	420					425					430					
ATG	CTT	AAC	GCT	ACC	AAG	GAC	GTC	AAC	CGC	TGG	ACT	TAC	CTT	GCC	ACC	1446
Met	Leu	Asn	Ala	Thr	Lys	Asp	Val	Asn	Arg	Trp	Thr	Tyr	Leu	Ala	Thr	
435					440				_	445		_			450	
CAG	CTC	CAT	AAC	CTC	GTT	CCA	TTT	TTG	GGT	ACT	TTC	CAT	GGC	AGT	GAT	1494
Gln	Leu	His	Asn	Leu	Val	Pro	Phe	Leu	Gly	Thr	Phe	His	Gly	Ser	Asp	
				455					460				_	465	_	
CTT	CTT	TTT	CAA	TAC	TAC	GTG	GAC	CTT	GGC	CCA	TCT	TCT	GCT	TAC	CGC	1542
		Phe														
			470		_		_	475	_				480	•	-	
CGC	TAC	TTT	ATC	TCG	TTT	GCC	AAÇ	CAC	CAC	GAC	ccc	AAC	GTT	GGT	ACC	1590
Arg	Tyr	Phe	Ile	Ser	Phe	Ala	Asn	His	His	Asp	Pro	Asn	Val	Gly	Thr	
		485					490					495				
AAC	CTC	CAA	CAG	TGG	Gat	ATG	TAC	ACT	GAT	GCA	GGC	AAG	GAG	ATG	CTT	1638
Asn	Leu	Gln	Gln	Trp	Asp	Met	Tyr	Thr	Asp	Ala	Gly	Lys	Glu	Met	Leu	
	500					505					510					
		· •														
CAG	ATT	CAT	ATG.	ATT	GGT	AAC	TCT	ATG	AGA	ACT	GAC	GAC	TTT	AGA	ATC	1686
Gln	Ile	His	Met	Ile	Gly	Asn	Ser	Met	Arg	Thr	Asp	Asp	Phe	Arg	Ile	
515					520					525					530	
	•					*										
GAG	GGA	ATC	TCG	AAC	TTT	GAG	TCT	GAC	GTT	ACT	CTC	TTC	GGT	TAAT	CCCATT	1738
Glu	Gly	Ile	Ser	Asn	Phe	Glu	Ser	Asp	Val	Thr	Leu	Phe	Gly			
				535					540					545		
TAGO	AAGI	TT T	GTGT	ATTT	C AA	GTAT	ACCA	GTI	GATG	TAA	TATA	TCAA	TA G	ATTA	CAAAT	1798
TAAT	TAGI	GA A	AAAA	AAAA	A AA	AAAA	AAAC	!				Ç				1828
												•				

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 563 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

	(X)	.) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0: 1	2:				
Met -19		Ser	Lys	Ser -15		Phe	Leu	Ala	Ala -10		Leu	Asn	Val	Val -5	Gly
Thr	Leu	Ala	Gln 1		Pro	Thr	Ala 5		Leu	Asn	Gly	Asn 10	Glu	Val	Ile
Ser	Gly 15	Val	Leu	Glu	Gly	Lys 20	Val	Asp	Thr	Phe	Lys 25	Gly	Ile	Pro	Phe
Ala 30	Asp	Pro	Pro	Val	Gly 35	Asp	Leu	Arg	Phe	Lys 40	His	Pro	Gln	Pro	Phe 45
Thr	Gly	Ser	Tyr	Gln 50	Gly	Leu	Ļys	Ala	Asn 55	Asp	Phe	Ser	Ser	Ala 60	Cys
Met	Gln	Leu	Asp 65	Pro	Gly	Asn	Ala	Phe 70	Ser	Leu	Leu	Asp	Lys 75	Val	Val
Gly	Leu	Gly 80	Lys	Ile	Leu	Pro	Asp 85	Asn	Leu	Arg	Gly	Pro 90	Leu	Tyr	Asp
Met	Ala 95	Gln	Gly	Ser	Val	Ser 100	Met	Asn	Glu	Asp	Cys 105	Leu	Tyr	Leu	Asn
Val 110	Phe	Arg	Pro	Ala	Gly 115	Thr	Lys	Pro	Asp	Ala 120	Lys	Leu	Pro	Val	Met 125
Val	Trp	Ile	Tyr	Gly 130	Gly	Ala	Phe	Val	Phe 135	Gly	Ser	Ser	Ala	Ser 140	Tyr
Pro	Gly	Asn	Gly 145	Tyr	Val	Lys	Glu	Ser 150	Val	Glu	Met	Gly	Gln 155	Pro	Val
Val	Phe	Val 160	Ser	Ile	Asn	Tyr	Arg 165	Thr	Gly	Pro	Tyr	Gly 170	Phe	Leu	Gly
Gly	Asp 175	Ala	Ile	Thr		Glu 180	Gly	Asn	Thr	Asn	Ala 185	Gly	Leu	His	Asp

Gln Arg Lys Gly Leu Glu Trp Val Ser Asp Asn Ile Ala Asn Phe Gly

Gly	Asp	Pro	Asp	Lys 210	Val	Met	Ile	Phe	Gly 215	Glu	Ser	Ala	Gly	Ala 220	Met
Ser	Val	Ala	His 225	Gln	Leu	Val	Ala	Tyr 230	Gly	Gly	Asp	Asn	Thr 235	Tyr	Asn
Gly	Lys	Gln 240	Leu	Phe	His	Ser	Ala 245	Ile	Leu	Gln	Ser	Gly 250	Gly	Pro	Leu
Pro	Tyr 255	Phe	Asp	Ser	Thr	Ser 260	Val	Gly	Pro	Glu	Ser 265	Ala	Tyr	Ser	Arg
Phe 270	Ala	Gln	Tyr	Ala	Gly 275	Cys	Asp	Thr	Ser	Ala 280	Ser	Asp	Asn	Ąsp	Thr 285
Leu	Ala	Cys	Leu	Arg 290	Ser	Lys	Ser	Ser	Asp 295	Val	Leu	His	Ser	Ala 300	Gln
Asn	Ser	Tyr	Asp 305	Leu	Lys	Asp	Leu	Phe 310	Gly	Leu	Leu	Pro	Gln 315	Phe	Leu
Gly	Phe	Gly 320	Pro.	Arg	Pro	Asp	Gly 325	Asn	Ile	Ile	Pro	Asp 330	Ala	Ala	Tyr
Glu	Leu 335	Tyr	Arg	Ser	Gly	Ar g 340	Tyr	Ala	Lys	Val	Pro 345	Tyr	Ile	Thr	Gly
Asn 350	Gln	Glu	Asp	Glu -	Gly 355	Thr	Ile	Leu	Ala	Pro 360	Val	Ala	Ile	Asn	Ala 365
Thr	Thr	Thr	Pro	His 370	Val	Lys	Lys	Trp	Leu 375	Lys	Tyr	Ile	Cys	ser 380	Gln
Ala	Ser	Asp	Ala 385	Ser	Leu	Asp	Arg	Val 390	Leu	Ser	Leu	Tyr	Pro 395	Gly	Ser
Trp	Ser	Glu 400	Gly	Ser	Pro	Phe	Arg 405	Thr	Gly	Ile	Leu	Asn 410	Ala	Leu	Thr
Pro	Gln 415	Phe	Lys	Arg	lle	Ala 420	Ala	Ile	Phe	Thr	Asp 425	Leu	Leu	Phe	Gln
Ser 430	Pro	Arg	Arg	Val	Met	Leu	Asn	Ala		Lys	Asp	Val	Asn	Arg	Trp

Thr Tyr Leu Ala Thr Gln Leu His Asn Leu Val Pro Phe Leu Gly Thr
450 455 460

Phe His Gly Ser Asp Leu Leu Phe Gln Tyr Tyr Val Asp Leu Gly Pro 465 470 475

Ser Ser Ala Tyr Arg Arg Tyr Phe Ile Ser Phe Ala Asn His His Asp 480 485 490

Pro Asn Val Gly Thr Asn Leu Gln Gln Trp Asp Met Tyr Thr Asp Ala 495 500 505

Gly Lys Glu Met Leu Gln Ile His Met Ile Gly Asn Ser Met Arg Thr 510 525 520

Asp Asp Phe Arg Ile Glu Gly Ile Ser Asn Phe Glu Ser Asp Val Thr
530 535 540

Leu Phe Gly

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - · (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer lipo3
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

. ,

GGGGCGCCG CGCAGGCCCC AAGGCGGTCT CTCAAT

	·	
(2) INFORM	NATION FOR SEQ ID NO: 14:	
(i) S	EQUENCE CHARACTERISTICS:	
	(A) LENGTH: 30 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
(ii) M	OLECULE TYPE: DNA (genomic)	
(vii) I	MMEDIATE SOURCE:	
	(B) CLONE: Part non-coding strand lipaseII	
(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
ATTGAGAGAC	CGCCGTGGGG CCTGGGCCAG	3
(2) INFORM	NATION FOR SEQ ID NO: 15:	
(i) S	EQUENCE CHARACTERISTICS:	
	(A) LENGTH: 38 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
(ii) M	OLECULE TYPE: DNA (genomic)	
(vii) I	MMEDIATE SOURCE:	
	(B) CLONE: Part coding strand lipaseII	
(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
CAAACTTTGA	GACTGACGTT AATCTCTACG GTTAAAAC	3
(2) INFORM	NATION FOR SEQ ID NO: 16:	
(i) S	SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMME	DIATE SOURCE:	
(B)	CLONE: primer lipo4	
(xi) SEQU	ENCE DESCRIPTION: SEQ ID NO: 16:	
CCCCGCTAGC ACC	CGTAGAGA TTAACGTCAG TC	32
(2) INFORMATIO	ON FOR SEQ ID NO: 17:	
(i) SEQUI	ENCE CHARACTERISTICS:	
(A)	LENGTH: 30 base pairs	
(B)	TYPE: nucleic acid	
(C)	STRANDEDNESS: single	
(D)	TOPOLOGY: linear	
(ii) MOLEC	CULE TYPE: DNA (genomic)	
(vii) IMMEI	DIATE SOURCE:	
(B)	CLONE: primer lipo5	
(xi) SEQUE	ENCE DESCRIPTION: SEQ ID NO: 17:	
cccccccccc cci	AGCATTGA TGGTGGTATC	30
(2) INFORMATIO	ON FOR SEQ ID NO: 18:	
•		
(i) SEQUI	ENCE CHARACTERISTICS:	
(A)	LENGTH: 18 base pairs	
· ·	TYPE: nucleic acid	
(C)	STRANDEDNESS: single	
(D)	TOPOLOGY: linear	
(ii) MOLEC	CULE TYPE: DNA (genomic)	
(vii) IMMEI	DIATE SOURCE:	
(B)	CLONE: Part non-coding strand lipase	
(xi) SEQUE	ENCE DESCRIPTION: SEQ ID NO: 18:	

GATACCACGA TCAATGCT 18

(2) 3	INFORMATION	FOR	SEQ	ID	NO:	19:
-------	-------------	-----	-----	----	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Part coding strand lipase
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

AACACAGGCC TCTGTACT

18

(2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE_SOURCE:
 - (B) CLONE: primer lipo6
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CCGCGCTAGC AGTACAGAGG CCTGTGTT

28

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2685 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

				•												
	(vi)	ORI	GINA	AL SO	URCE	::										
		(<i>P</i>	(A) OF	RGANI	SM:	Saco	haro	myce	es ce	erevi	Lsiae	•				
•	(Vii)			ATE S												
		(1	s) (1	LONE :	pri	105						•				
	(ix)	FEF	TURE	2:												
	, ,			ME/F	ŒY:	CDS										
		(E	3) LC	CATI	ON:	12	2685									
		(1) 01	THER	INFO	RMAT	CION	rq\	rodu	ct= '	'Floo	cula	atio	n pro	otein	•
				/ge	ene=	"FLO	01"									
		CD6	3777337	- TO . TO T			N87	י ספי	rn M	٠. · · · ·	1.					
	(XI)) SEÇ	SOEM	CE DE	SOCK	LIIL	JN: 2	. ya	או עו	J. Z.	•					
ATG	ACA	ATG	CCT	CAT	CGC	TAT	ATG	TTT	TTG	GCA	GTC	TTT	ACA	CTT	CTG	48
				His												
1				5					10					15		
				GTG												96
Ala	Leu	Thr		Val	Ala	Ser	Gly		Thr	Glu	Ala	Cys		Pro	Ala	
			20	:				25			,		30			
GGC	CAG	AGG	AAA	AGT	GGG	ATG	AAT	ATA	AAT	TTT	TAC	CAG	TAT	TCA	TTG	144
				Ser												
_		35	_		_		40					45				
				ACA												192
Lys		Ser	Ser	Thr	Tyr		Asn	Ala	Ala	Tyr		Ala	Tyr	Gly	Tyr	
	50			•	•	55					60					
GCC	ጥሮል	מממ	ACC	AAA	ርሞል	CCT	ጥርጥ	GTC	CCA	GGA	CAA	ACT	GAT	ATC	TCG	240
				Lys												
65		-4-		-2-	70				•	75			•		80	
ATT	GAT	TAT	AAT	ATT	CCC	TGT	GTT	AGT	TCA	TCA	GGC	ACA	TTT	CCT	TGT	288
Ile	Asp	Tyr	Asn	Ile	Pro	Cys	Val	Ser	Ser	Ser	Gly	Thr	Phe	Pro	Cys	
				85					90					95		
	033	~~~	~ ~ ~	TO C	W 2 TT	CC 3	220	ma-c	CCT	mcc.	777	CCF	እጥሮ	GC T	CCT	336
				TCC Ser												550
110	GT11	Giu	100	267	TYL	GIÅ	uoii	105	GIY	~ya	د ر ـ	~~1	110	1		

TGT TCT AAT AGT CAA GGA ATT GCA TAC TGG AGT ACT GAT TTA TTT GGT

Cys Ser Asn Ser Gln Gly Ile Ala Tyr Trp Ser Thr Asp Leu Phe Gly

125

120

TTC	ጥልጥ	አ ርጥ	ACC	CCA	ארא	220	CTA	ACC	CTA	GNA	ΣΤС	ACA	GGT	ТАТ	ጥጥ	432
								Thr								
LIIG	-	1111	1111	PIO	1111		AGI	1111	Dea	GIU	140		4-1	-1-		
	130					135					140					
מידיים	CCA	CCA	CAG	ACG	ርርጥ	ጥርጥ	ጥልሮ	ACA	ተጥር	AAG	ىلسلسل	GCT	ACA	GTT	GAC	480
								Thr								
	PIO	PIO	GIII	THE		Ser	ıyı	1111	Fire	155	F.11C	aru	****	* 42	160	
145					150					TDO					100	
GAC	TCT	GCA	ATT	CTA	TCA	GTA	GGT	GGT	GCA	ACC	GCG	TTC	AAC	TGT	TGT	528
								Gly								
				165			1	1	170					175	•	
GCT	CAA	CAG	CAA	CCG	CCG	ATC	ACA	TCA	ACG	AAC	TTT	ACC	ATT	GAC	GGT	576
								Ser							_	
			180					185					190			
ATC	AAG	CCA	TGG	GGT	GGA	AGT	TTG	CCA	CCT	AAT	ATC	GAA	GGA	ACC	GTC	624
Ile	Lys	Pro	Trp	Gly	Gly	Ser	Leu	Pro	Pro	Asn	Ile	Glu	Gly	Thr	Val	
		195					200					205				
TAT	ATG	TAC	GCT	GGC	TAC	TAT	TAT	CCA	ATG	AAG	GTT	GTT	TAC	TCG	AAC	672
Tyr	Met	Tyr	Ala	Gly	Tyr	Tyr	Tyr	Pro	Met	Lys	Val	Val	Tyr	Ser	Asn	
	210					215					220					
GCT	GTT	TCT	TGG	GGT	ACA	CTT	CCA	ATT	AGT	GTG	ACA	CTT	CCA	GAT	GGT	720
Ala	Val	Ser	Trp	Gly	Thr	Leu	Pro	Ile	Ser	Val	Thr	Leu	Pro	Asp	Gly	
225					230					235					240	
	-															
ACC	ACT	GTA	AGT	GAT	GAC	TTC	GAA	GGG	TAC	GTC	TAT	TCC	TTT	GAC	GAT	768
Thr	Thr	Val	Ser	Asp	Asp	Phe	Glu	Gly	Tyr	Val	Tyr	Ser	Phe	Asp	Asp	
				245					250					255		
GAC	CTA	AGT	CAA	TCT	AAC	TGT	ACT	GTC	CCT	GAC	CCT	TCA	AAT	TAT	GCT	816
Asp	Leu	Ser	Gln	Ser	Asn	Cys	Thr	Val	Pro	Asp	Pro	Ser	Asn	Tyr	Ala	
٠			260					265					270			
GTC	AGT	ACC	ACT	ACA	ACT	ACA	ACG	GAA	CCA	TGG	ACC	GGT	ACT	TTC	ACT	864
Val	Ser	Thr	Thr	Thr	Thr	Thr	Thr	Glu	Pro	Trp	Thr	Gly	Thr	Phe	Thr	
		275			.:,		280					285				
					•											
TCT	ACA	TCT	ACT	GAA	ATG	ACC	ACC	GTC	ACC	GGT	ACC	AAC	GGC	GTT	CCA	912
Ser	Thr	Ser	Thr	Glu	Met	Thr	Thr	Val	Thr	Gly	Thr	Asn	Gly	Val	Pro	
	290					295					300					

															CTA	960
Thr	Asp	Glu	Thr	Val	Ile	Val	Ile	Arg	Thr	Pro	Thr	Ser	Glu	Gly	Leu	
305					310					315				•	320	
	•					CCA										1008
Ile	Ser	Thr	Thr		Glu	Pro	Trp	Thr		Thr	Phe	Thr	Ser	Thr	Ser	
				325					330					335		
a cm	CNC	CTOTO	300	3.00	3.000	3.00	663	3.00			~~~					
						ACT										1056
****	GIG	AGI	340	1111	116	Thr	GIÀ	345	ASII	GIŸ	GIN	Pro	350	Asp	GIU	
			240					343					330			
ACT	GTG	ATT	GTT	ATC	AGA	ACT	CCA	ACC	AGT	GAA	GGT	CTA	ATC	AGC	ACC	1104
						Thr										
		355			_		360				2	365				
	·															
ACC	ACT	GAA	CCA	TGG	ACT	GGT	ACT	TTC	ACT	TCT	ACA	TCT	ACT	GAA	ATG	1152
Thr	Thr	Glu	Pro	Trp	Thr	Gly	Thr	Phe	Thr	Ser	Thr	Ser	Thr	Glu	Met	
	370					375					380					
ACC	ACC	GTC	ACC	GGT	ACT	AAC	GGT	CAA	CCA	ACT	GAC	GAA	ACC	GTG	ATT	1200
Thr	Thr	Val	Thr	Gly	Thr	Asn	Gly	Gln	Pro	Thr	Asp	Glu	Thr	Val	Ile	
385					390					395					400	
						AGT										1248
Val	Ile	Arg	Thr		Thr	Ser	Glu	Gly	Leu	Val	Thr	Thr	Thr	Thr	Glu	
				405					410					415		
CCA	TCC	i cm	ccm	3.0m	mmm		5 00									
						ACT										1296
	*- P	1111	420	1111	rne	Thr	set	425	ser	THE	GIU	Met		THE	vai	
			120					423					430			
ACT	GGA	ACC	AAT	GGC	TTG	CCA	ACT	GAT	GAA	ACT	GTC	ATT	СТТ	GŤC	AAA	1344
						Pro										2344
	-	435		•			440					445			-1-	
ACT	CCA	ACT	ACT	GCC	ATC	TCA	TCC	AGT	TTG	TCA	TCA	TCA	TCT	TCA	GGA	1392
						Ser										
	450					455					460				•	
					. ;											
CAA	ATC	ACC	AGC	TCT	ATC	ACG	TCT	TCG	CGT	CCA	ATT	ATT	ACC	CCA	TTC	1440
Gln	Ile	Thr	Ser	Ser	Ile	Thr	Ser	Ser	Arg	Pro	Ile	Ile	Thr	Pro	Phe	
465					470					475					480	

TAT	CCT	AGC	AAT	GGA	ACT	TCT	GTG	ATT	TCT	TCC	TCA	GTA	ATT	TCT	TCC	1488
Tyr	Pro	Ser	Asn	Gly	Thr	Ser	Val	Ile	Ser	Ser	Ser	Val	Ile	Ser	Ser	
				485					490				•	495		
TCA	GTC	ACT	TCT	TCT	CTA	TTC	ACT	TCT	TCT	CCA	GTC	ATT	TCT	TCC	TCA	1536
Ser	Val	Thr	Ser	Ser	Leu	Phe	Thr	Ser	Ser	Pro	Val	Ile	Ser	Ser	Ser	
			500					505					510			
GTC	ATT	TCT	TCT	TCT	ACA	ACA	ACC	TCC	ACT	TCT	ATA	TTT	TCT	GAA	TCA	1584
Val	Ile	Ser	Ser	Ser	Thr	Thr	Thr	Ser	Thr	Ser	Ile	Phe	Ser	Glu	Ser	
		515					520					525				
тст	AAA	TCA	TCC	GTC	ATT	CCA	ACC	AGT	АСТ	TCC	ACC	тст	GGT	TCT	TCT	1632
					Ile											
001	530	501	561	***	110	535		Jei	<i>-</i>	001	540		1			
	550					333					340					
CAG	NGC.	CAA	a.cc	ልርጥ	TCA	CCT	CCT	ጥርጥ	CTC	ጥርጥ	ش(س	TCC	ىلىكىلى	de de la constante de la const	ATC	1680
					Ser											
545	Ber	GIU	1111	Ser	550	VÍG	GLY	Ser	AGI	555	Der	Der	ber	1110	560	
343					330					333					300	
di C≁ti	ጥርጥ	CDD	TCA	TCA	AAA	TI CTI	COTT	202	ጥአጥ	ஸ்கேர்	ጥርጥ	TCA	ጥሮል	ጥጥል	CCA	1728
															_	1,20
ser	ser	GIU	261		Lys	Ser	PFO	Thr		ser	per	ser	ser		PLO	
				565					570					575		
ത്തന	CEE	***	200		202	202	200	G3.C	633	3 CM	com	man	man.	mm x	CCN	1776
					ACA											1770
Leu	Vai	Inr		ALA	Thr	THE	Ser		GIU	THE	WIG	ser		reu	PEO	
			580					585					590			
		300	3.0m			3.00	200		~ >>		3 am	mma	com	300	CTC	1024
				-	AAA											1824
Pro	Ala		Thr	Thr	Lys	Tnr		GIU	GIN	Thr	Thr		Vai	THE	vai	
		595					600					605				
																1000
					CAT											1872
Thr		Cys	Glu	Ser	His		Cys	Thr	Glu	Ser		Ser	Pro	Ala	Ile	
-	610					615					620					
				_					CCC	CTC	ACA	ACA	GAG	ידעיד	ACC	1920
					GTT											
Val					Val					Val					Thr	
					Val 630											
Val					Val					Val					Thr	
Val 625	Ser	Thr	Ala	Thr	Val 630	Thr	Val	Ser	Gly	Val 635	Thr	Thr	Glu	Tyr	Thr 640	1968
Val 625 ACA	Ser TGG	Thr	Ala	Thr	Val 630	Thr	Val ACA	Ser GAG	Gly ACA	Val 635 ACA	Thr AAG	Thr	Glu	Tyr AAA	Thr 640 GGG	1968

ACA	ACA	GAG	CAA	ACC	ACA	GAA	ACA	ACA	AAA	CAA	ACC	ACG	GTA	GTT	ACA	2016
Thr	Thr	Glu	Gln	Thr	Thr	Glu	Thr	Thr	Lys	Gln	Thr	Thr	Val	Val	Thr	
			660					665					670	•		
	TCT							_								2064
He	Ser		Cys	Glu	Ser	Asp	Val	Cys	ser	гля	Thr	A1A 685	ser	Pro	ATS	
		675					000					003				
ATT	GTA	TCT	ACA	AGC	ACT	GCT	ACT	ATT	AAC	GGC	GTT	ACT	ACA	GAA	TAC	2112
Ile	Val	Ser	Thr	Ser	Thr	Ala	Thr	Ile	Asn	Gly	Val	Thr	Thr	Glu	Tyr	
	690					695					700					
	ACA															2160
	Thr	Trp	Cys	Pro		Ser	Thr	Thr	Glu		Arg	Gln	Gln	Thr		
705					710					715					720	
CTA	GTT	ACT	GTT	ACT	TCC	TGC	GAA	TCT	GGT	GTG	TGT	TCC	GAA	ACT	GCT	2208
	Val															
				725					730					735		
TCA	CCT	GCC	ATT	GTT	TCG	ACG	GCC	ACG	GCT	ACT	GTG	AAT	GAT	GTT	GTT	2256
Ser	Pro	Ala		Val	Ser	Thr	Ala		Ala	Thr	Val	Asn	_	Val	Val	
			740					745					750			
ACG	GTC	TAT	CCT	ACA	TGG	AGG	CCA	CAG	ACT	GCG	AAT	GAA	GAG	TCT	GTC	2304
Thr	Val	Tyr	Pro	Thr	Trp	Arg	Pro	Gln	Thr	Ala	Asn	Glu	Glu	Ser	Val	
		755					760					765				
	TCT			•	-											2352
Ser	Ser	Lys	Met	Asn	Ser		Thr	Gly	Glu	Thr		Thr	Asn	Thr	Leu	
	770					775					780					
GCT	GCT	GAA	ACG	ACT	ACC	AAT	ACT	GTA	GCT	GCT	GAG	ACG	ATT	ACC	AAT	2400
	Ala															
785					790					795					800	
	GGA															2448
Thr	Gly	Ala	Ala	_	Thr	Lys	Thr	Val		Thr	Ser	Ser	Leu		Arg	
				805					810					815		
TCT	AAT	CAC	GCT	GAA	ACA	CAG	ACG	GCT	TCC	GCG	ACC	GAT	GTG	ATT	GGT	2496
	Asn														_	
			820					825				_	830			

CAC	AGC	AGT	AGT	GTT	GTT	TCT	GTA	TCC	GAA	ACT	GGC	AAC	ACC	AAG	AGT	2544
-	Ser															
		835					840				-	845	•	_		
CTA	ACA	AGT	TCC	GGG	TTG	AGT	ACT	ATG	TCG	CAA	CAG	CCT	CGT	AGC	ACA	2592
Leu	Thr	Ser	Ser	Gly	Leu	Ser	Thr	Met	Ser	Gln	Gln	Pro	Arg	Ser	Thr	
	850					855					860					
CCA	GCA	AGC	AGC	ATG	GTA	GGA	TAT	AGT	ACA	GCT	TCT	TTA	GAA	ATT	TCA	2640
Pro	Ala	Ser	Ser	Met	Val	Gly	Tyr	Ser	Thr	Ala	Ser	Leu	Glu	Ile	Ser	
865					870					875					880	
							•									
ACG	TAT	GCT	GGC	AGT	GCA	ACA	GCT	TAC	TGG	CCG	GTA	GTG	GTT	TAA		2686
Thr	Tyr	Ala	Gly	Ser	Ala	Thr	Ala	Tyr	Trp	Pro	Val	Val	Val			
				885					890					895		

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 894 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Met Thr Met Pro His Arg Tyr Met Phe Leu Ala Val Phe Thr Leu Leu
1 5 10 15

Ala Leu Thr Ser Val Ala Ser Gly Ala Thr Glu Ala Cys Leu Pro Ala 20 25 30

Gly Gln Arg Lys Ser Gly Met Asn Ile Asn Phe Tyr Gln Tyr Ser Leu 35 40 45

Lys Asp Ser Ser Thr Tyr Ser Asn Ala Ala Tyr Met Ala Tyr Gly Tyr 50 55 60

Ala Ser Lys Thr Lys Leu Gly Ser Val Gly Gly Gln Thr Asp Ile Ser 65 70 75 80

Ile Asp Tyr Asn Ile Pro Cys Val Ser Ser Ser Gly Thr Phe Pro Cys
85 90 95

Pro	Gln	Glu	Asp 100	Ser	Tyr	Gly	Asn	Trp 105	Gly	Cys	Lys	Gly	Met 110	Gly	Ala
Cys	Ser	Asn 115	Ser	Gln	Gly	Ile	Ala 120	Tyr	Trp	Ser	Thr	Asp 125	Leu	Phe	Gly
Phe	Tyr 130	Thr	Thr	Pro	Thr	Asn 135	Val	Thr	Leu	Glu	Met 140	Thr	Gly	Tyr	Phe
Leu 145	Pro	Pro	Gln	Thr	Gly 150	Ser	Tyr	Thr	Phe	Lys 155	Phe	Ala	Thr	Val	А вр 160
Asp	Ser	Ala	Ile	Leu 165	Ser	Val	Gly	Gly	Ala 170	Thr	Ala	Phe	Asn	Сув 175	Сув
Ala	Gln	Gln	Gl n 180	Pro	Pro	Ile	Thr	Ser 185	Thr	Asn	Phe	Thr	Ile 190	Asp	Gly
Ile	Lys	Pro 195	Trp	Gly	Gly	Ser	Leu 200	Pro	Pro	Asn	Ile	Glu 205	Gly	Thr	Val
Tyr	Met 210	Tyr	Ala	Gly	Tyr	Tyr 215	Tyr	Pro	Met	Lys	Val 220	Val	Tyr	Ser	Asn
Ala 225	Val	Ser	Trp	Gly	Thr 230	Leu	Pro	Ile	Ser	Val 235	Thr	Leu	Pro	Asp	Gly 240
Thr	Thr	Val	Ser	Asp 245_	_	Phe	Glu	Gly	туг 250	Val	Tyr	Ser	Phe	Asp 255	Asp
Asp	Leu	Ser	Gln 260	Ser	Asn	Cys	Thr	V al 265	Pro	Asp	Pro	Ser	As n 270	Tyr	Ala
Val	Ser	Thr 275	Thr	Thr	Thr	Thr	Thr 280	Glu	Pro	Trp	Thr	Gly 285	Thr	Phe	Thr
Ser	Thr 290	Ser	Thr	Glu	Met	Thr 295	Thr	Val	Thr	Gly	Thr 300	Asn	Gly	Val	Pro
Thr 305	Asp	Glu	Thr	Val	Ile 310	Val	Ile	Arg	Thr	Pro 315	Thr	Ser	Glu	Gly	Leu 320
Ile	Ser	Thr	Thr	Thr	Glu	Pro	Trp		Gly	Thr	Phe	Thr	Ser	Thr	Ser

Thr	Glu	Val	Thr 340		Ile	Thr	Gly	Thr 345		Gly	Gln	Pro	350		Glu
Thr	Val	Ile 355		Ile	Arg	Thr	Pro 360		Ser	Glu	Gly	Leu 365		Ser	Thr
Thr	Thr 370	Glu	Pro	Trp	Thr	Gly 375		Phe	Thr	Ser	Thr 380		Thr	Glu	Met
Thr 385	Thr	Val	Thr	Gly	Thr 390	Asn	Gly	Gln	Pro	Thr 395	Asp	Glu	Thr	Val	11e 400
Val	Ile	Arg	Thr	Pro 405	Thr	Ser	Glu	Gly	Leu 410	Val	Thr	Thr	Thr	Thr 415	
Pro	Trp	Thr	Ġly 420	Thr	Phe	Thr	Ser	Thr 425	Ser	Thr	Glu	Met	Ser 430	Thr	Val
Thr	Gly	Thr 435	Asn	Gly	Leu	Pro	Thr 440	Asp	Glu	Thr	Val	Ile 445	Val	Val	Lys
Thr	Pro 450	Thr	Thr	Ala	Ile	Ser 455	Ser	Ser	Leu	Ser	Ser 460	Ser	Ser	Ser	Gly
Gln 465	Ile	Thr	Ser	Ser	Ile 470	Thr	Ser	Ser	Arg	Pro 475	Ile	Ile	Thr	Pro	Phe 480
Tyr	Pro	Ser	Asn	Gly 485	Thr	Ser	Val	Ile	Ser 490	Ser	Ser	Val	Ile	Ser 495	Ser
Ser	Val	Thr	Ser 500	Ser	Leu	Phe	Thr	Ser 505	Ser	Pro	Val	Ile	Ser 510	Ser	Ser
Val	Ile	Ser 515	Ser	Ser	Thr	Thr	Thr 520	Ser	Thr	Ser	Ile	Phe 525	Ser	Glu	Ser
Ser	Lys 530	Ser	Ser	Val	Ile	Pro 535	Thr	Ser	Ser	Ser	Thr 540	Ser	Gly	Ser	Ser
Glu 54 5	Ser	Glu	Thr	Ser	Ser 550	Ala	Gly	Ser	Val	Ser 55 5	Ser	Ser	Ser	Phe	Ile 560
Ser	Ser	Glu	Ser	Ser 565	Lys	Ser	Pro	Thr	Tyr 570	Ser	Ser	Ser	Ser	Leu 575	Pro

Leu	Val	Thr	Ser 580		Thr	Thr	Ser	Gln 585		Thr	Ala	Ser	Ser 590		Pro
Pro	Ala	Thr 595	Thr	Thr	Lys	Thr	Ser 600		Gln	Thr	Thr	Leu 605		Thr	Val
Thr	Ser 610		Glu	Ser	His	Val 615		Thr	Glu	Ser	1le 620	Ser	Pro	Ala	Ile
Val 625		Thr	Ala	Thr	Val 630	Thr	Val	Ser	Gly	Val 635		Thr	Glu	Tyr	Thr 640
Thr	Trp	Cys	Pro	Ile 645	Ser	Thr	Thr	Glu	Thr 650		Lys	Gln	Thr	Lys 655	Gly
Thr	Thr	Glu	Gln 660	Thr	Thr	Glu	Thr	Thr 665	Lys	Gln	Thr	Thr	Val 670	Val	Thr
Ile	Ser	Ser 675	Cys	Glu	Ser	Asp	Val 680	Суз	Ser	Lys	Thr	Ala 685	Ser	Pro	Ala
Ile	Val 690	Ser	Thr	Ser	Thr	Ala 695	Thr	Ile	Asn	Gly	Val 700	Thr	Thr	Glu	Tyr
Thr 705	Thr	Trp	Сув	Pro	Ile 710	Ser	Thr	Thr	Glu	Ser 715	Arg	Gln	Gln	Thr	Thr 720
Leu	Val	Thr	Val	Thr 725		Cys	Glu	Ser	Gly 730	Val	Cys	Ser	Glu	Thr 735	Ala
Ser	Pro	Ala	Ile 740	Val	Ser	Thr	Ala	Thr 745	Ala	Thr	Val	Asn	Asp 750	Val	Val
Thr	Val	Tyr 755	Pro	Thr	Trp	Arg	Pro 760	Gln	Thr	Ala	Asn	Glu 765	Glu	Ser	Val
Ser	Ser 770	Lys	Met	Asn	Ser	Ala 775	Thr	Gly	Glu	Thr	Thr 780	Thr	Asn	Thr	Leu
11a 185	Ala	Glu	Thr	Thr	Thr 790	Asn	Thr	Val	Ala	Ala 795	Glu	Thr	Ile	Thr	Asn 800
hr.	Gly	Ala	Ala	Glu	Thr	Lvs	Thr	Va l	Val	Thr	Ser	Ser	Leu	Ser	Ara

Ser Asn His Ala Glu Thr Gln Thr Ala Ser Ala Thr Asp Val Ile Gly 820 825 830

His Ser Ser Ser Val Val Ser Val Ser Glu Thr Gly Asn Thr Lys Ser 835 840 845

Leu Thr Ser Ser Gly Leu Ser Thr Met Ser Gln Gln Pro Arg Ser Thr 850 855 860

Pro Ala Ser Ser Met Val Gly Tyr Ser Thr Ala Ser Leu Glu Ile Ser 865 870 875 880

Thr Tyr Ala Gly Ser Ala Thr Ala Tyr Trp Pro Val Val 885 890

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer pcrflol
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GAATTCGCTA GCAATTATGC TGTCAGTACC

30

(2) INFORMATION FOR SEQ ID NO: 24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:	
(B) CLONE: Part non-coding sequence FLO1	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
AGTGGTACTG ACAGCATAAT TTGA	24
(2) INFORMATION FOR SEQ ID NO: 25:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 24 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vii) IMMEDIATE SOURCE:	
(B) CLONE: Part coding sequence FLO1	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
AATAAAATTC GCGTTCTTTT TACG	24
(2) INPORTANTAN DAR GRO IN NO. 36	
(2) INFORMATION FOR SEQ ID NO: 26:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 31 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vii) IMMEDIATE SOURCE:	
(B) CLONE: primer pcrflo2	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
GAGCTCAAGC TTCGTAAAAA GAACGCGAAT T	31

CLAIMS

- A method for immobilizing an enzyme, comprising the use of recombinant DNA techniques for producing an enzyme or a functional part thereof linked to the cell wall of a host cell, preferably a microbial cell, and whereby the enzyme or functional fragment thereof is localized at the exterior of the cell wall.
- 2. The method of claim 1, wherein the enzyme or the functional part thereof is immobilized by linking to the C-terminal part of a protein that ensures anchoring in the cell wall.
- 3. A recombinant polynucleotide comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, said part encoding at least the C-terminal part of said anchoring protein.
- 4. The polynucleotide of claim 3, further comprising a sequence encoding a signal peptide ensuring secretion of the expression product of the polynucleotide.
- 5. The polynucleotide of claim 4, wherein the signal peptide is derived from a protein selected from the group consisting of glycosyl-phosphatidyl-inositol (GPI) anchoring protein, α-factor, α-agglutinin, invertase or inulinase, α-amylase of Bacillus, and proteinases of lactic acid bacteria.
- 6. The polynucleotide of any of claims 3-5, wherein the protein capable of anchoring in the cell wall is selected from the group consisting of α-agglutinin, AGA1, FLO1, Major Cell Wall Protein of lower eukaryotes, and proteinases of lactic acid bacteria.
- 7. The polynucleotide of any of claims 3-6, operably linked to a promoter, preferably an inducible promoter.

- 8. The polynucleotide of any of claims 3-7, wherein the protein providing catalytic activity is a hydrolytic enzyme, e.g. a lipase.
- 9. The polynucleotide of any of claims 3-7, wherein the protein providing catalytic activity is an oxidoreductase, e.g. an oxidase.
- 10. A recombinant vector comprising a polynucleotide as claimed in any of claims 3-9.
- 11. The recombinant vector of claim 10, wherein the protein providing catalytic activity exhibits said catalytic activity when present in a multimeric form, said vector further comprising a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter.
- 12. A chimeric protein encoded by a polynucleotide as claimed in any of claims 3-9.
- 13. A host cell, preferably a microorganism, containing a polynucleotide as claimed in any of claims 3-9 or a vector as claimed in claim 10 or 11.
- 14. A host cell, preferably a microorganism, containing a polynucleotide as claimed in any of claims 3-9 or a vector as claimed in claim 10, wherein the protein providing catalytic activity exhibits said catalytic activity when present in a multimeric form, said microorganism further comprising a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter and said second polynucleotide being present either in another vector or in the chromosome of said microorganism.

- 15. The host cell or microorganism of claim 13 or 14, having at least one of said polynucleotides integrated in its chromosome.
- 16. A host cell, preferably a microorganism, having a protein as claimed in claim 12 immobilized on its cell wall.
- 17. The host cell or microorganism of any of claims 13-16, which is a lower eukaryote, in particular a yeast.
- 18. A process for carrying out an enzymatic process by using an immobilized catalytically active protein, wherein a substrate for said catalytically active protein is contacted with a host cell or microorganism as claimed in any of claims 13-17.

.

FIGURE 1, 1/4

1/24

DNA SEQUENCE OF ALPHA-AGGLUTENIN:

1	AAGCTTTAGG	TAAGGGAGGC	AGGGGGAAAA	GATACTGAAA
41	TGACGGAAAA	CGAGAATATG	GAGCAGGGAG	CAACTTTTAG
81	AGCTTTACCC	GTTAAAAGGT	CAAATCGAGG	CTTCCTGCCT
121	TTGTCTGATT	TTAGTAGTAC	CGGAAGGTTT	ATTACGCCCA
161	AGAACAGTGC	TTGAATTGAG	TTCTCGGGAC	ACGGGAAAGA
201	CAATGGAAGA	AAAATTTACA	TTCAGTAGCC	TTATATATGA
241	AATGCTGCCA	AGCCACGTCT	TTATAAGTAG	ATAATGTCCC
281	ATGAGCTGAA	CTATGGGAAT	TTATGACGCA	GTTCATTGTA
321	TATATATTAC	ATTAACTCTT	TAGTTTAACA	TCTGAATTGT
361	TTTATAAAAT	AACTTTTTGA	ATTTTTTTAT	GATCGCTTAG
401	TTAAGTCTAT	TATATCAGGT	TTTTTCATTC	ATCATAATTG
441	TTCGTTAAAT	ATGAGTATAT	TTAAATACAG	GAATTAGTAT
481	CATTTGCAGT	CACGAAAAGG	GCCGTTTCAT	AGAGAGTTTT
521	CTTAATAAAG	TTGAGGGTTT	CCGTGATAGT	TTTGAGGGGT
561	TGTTTGAACT	AGATTTACGC	TTACCTTTCA	ACTGATTAAT
601	TTTTTCAGCG	GGCTTATCAT	AATCATCCAT	CATAGCAGTC
641	TTTCTGGACT	TCGTCGAGGA	CTGGCTTTCT	GAATTTTGAC
681	GGTCCCTATT	AGCTCCAGTT	GGAGGAATTG	AGTTACCTAC
721	AACTGGCAAG	AGGTCTTTGT	TTGGATTCAA	AATAGGACTT
761	TGTGGTAGCA	GTTTGGTTTT	ATTCAATCTA	AAGATATGAG
801	AAACAGGTTT	TAAGTAAATC	GATACTATTG	TACCAATGTT
841	TAGCTCCAAT	TCCTCCAAAA	CGGTGGGATC	TAATTTTGTG
881	TTCATTTCTA	TTAGTGGCAA	CTCTCCGTCC	AGTACTGATT
921	TTAAAGATTC	AAAAGTTATC	GCGTTTGATA	TACGAGACGT
961	TTTCGTTAAT	GACAGCAATC	TCCAATACAT	CAGTGTTTTA
1001	TCTCTTAAGT	CAGGATTATT	TTCGTGATCG	GTGCATCCTT
1041	TTAATAAATC	CATACAAAGT	TCTTCAGTTT	CCTTTGTAGG
1081	ATTTCTGATG	AAGAATTTTA	TTGCTGAGTT	CAGAATGGAA
1121	AATTGCACTT	CTAGCGTCTC	ATTAAACATG	TTTGAGGAAA
1161	AAACTCTAAA	TAACTCCAGG	TAGTTTGGAA	TTACATCCGA
1201	ATATTGCGTT	ATTATCCAGA		
1241	GGTTCCTGTA	CAACTTCAGT	GTGTTTGACT	
1281	CGTTTGCTTT	AAAATTATTG	GGATATTTCC	TCAAAATATT
1321	TCTGAAAACC	GAAATAATCT		ATAATCAACA
1361	CCGAATTCTA	ACAAATCTAG	TAGCACAGCG	ACACAATCGT
1401	GTACAGAGTC	TTCATCTAGC	TTAACAGCGA	GATTACCAAT
1441	GGCTCTGACT	GATTTCCTTG	ACATTTGAAT	ATCAATATCT
1481	GTAGCATATT	GTTCCAACTC	TTCTAGAATT	CTTGGTAATG
1521	TTTCCTTGTT	= '		CTAATTTCGT
1561	GTCTTTGATG	TATATGGGGT	CATTGTACTC	GATGAAAAA
		•		

FIGURE 1, 2/4

1601	TACGAAATGT	CTAGCCTGAG	TAGAGATGAC	TCCCTACTCA
1641	ATAAAAGAAG	AATAACGTTT	CTTAATACTA	AAAATTGTAA
1681	TTCAGGCGGC	TTATCTAACA	AAGCTATTAC	AGAGTTAGAT
1721	AGCTTTTCGG	CTAGAGTTTC	TTTGATGACG	TCAACATAAT
1761	TCAACAAGTA	CATGATGAAT	TTTAAAGAGT	TCAACACTAC
1801	GTATGTGTTT	ACTTGTTGCA	GGTACGGTAA	AGCTAGTTCG
1841	ATCATTTCAT	GGGTATCCAA	ATAATGCTGC	GGCACAACCG
1881	AAGTCGTCAA	AACTTCCAAA	ACAGTAGCCT	TATTCCACTC
1921	ATTTAATTCG	GGTAAAAGTT	CTAGCATGTC	AAAAGCGAGT
1961	TCCAAGGGAA	TCCTGAAGGT	TCCATGTTAG	CGTTTTTTTC
2001	GTGAATGGAA	TATAAAGTAT	GTAATGCAGC	TACAATGACT
2041	TCTGGAGAGC	TCGACTGTGC	CTTTACAATG	TCATGTAGAA
2081	TGCTTGATAA	CCCCAATACC	CTTTCATGAT	CAATTTCATC
2121	TAAATCCAAC	AGTGCGTAAA	TTGCTGTCCT	CGTCACTTGT
2161	TCAGGTGGAG	ACTTGTGATT	TACCAATGAA	ATGATACAGT
2201	CGAAGGCCTG	ATCAGATAGC	TCTTTCACCG	GGACTAATAC
2241	CAGAGTTCTT	AGTGCCATTA	TTTGTAACTT	TTCATCTCTG
2281	CTTTTGAAAT	CGTCCATTAT	AAATGGCAAA	GCCTCTCTGG
2321	CCTGCTGAGG	TTTTAATGCG	CCGATCACCC	TAATATACTC
2361	ATGGCAAATT	CTTTTCACTT	CTAGATCATC	TTCAATTTGC
2401	CAAAATTTCA	AGAGCTCAGA	AAACAGAAGG	GACATTTCGC
2441	CATAGTTTCC	TAGAACCAAA	TTGGCGATAA	TTTTTCTCAG
2481	AGCATTTTTC	CTTCTTGTTA	TATTCGATTT	AAACTTTTTT
2521	ACTCCAAAAT	GTTGCAGATC	TGTGACGATT	TCATTTGCTT
2561	TATATCTGGC	AAAAACTTTT	TGATCGGACA	TAAGCGAAAT
2601	ACGTCCTATT	AATGAAGTGA	ATGTTCTTGC	TGTATTCCCT
2641	TCTTGTGCAG	TAGATTAATT	CTGTTTCCAG	GCTGCGATAC
2681	TTTGATACCC	AATACTAAAA	GTTGATGATT	TGAACGATCT
2721	CCTATTTCCT	CGCACATTTT	TGGAGCGATA	CCCGGAAGAC
2761	AGAATCGCGA	TGTTAAGAAA	ATAGTTCTGA	TGGCACTAAA
2801		TTAAGGAAAG		-
2841		TTCGAACTTG		TCCTTATTTC
2881		ATCCTCCAAC		
2921		ATTTAATTGA	- · ·	TTAATTGAAA
2961		AAAGTGTATG		
3001		TACATATGCA		7
3041		AATACCATAT		AAACTCATGT
3081		GTTGTTTCAA		TAGGCTCAAT
3121		TAAATTATAA		
3161		ATCGGCACCT		
3201	TTTCAACACT		ACATTGAACA	
3241	GTTTCCCGCC	ACGAGGCAAG	TGTAGGTCCT	TTGTCCATTT

FI	GURE	1,	3/4

3281	CGCTTTGTTT	TGCAGGTCAT	TGATGACCTA	ATTAGGAAGG
3321	TAGAAGCCGC	TCCAGCTCAA	TAAGGAAATG	CTAAGGGTAC
3361	TCGCCTTTGG	TGTTTTACCA	TACAATGGCA	GCTTTATGTC
3401	ACTTCATTCT	TCAGTAACGG	CGCTTAAATA	TTCCCAAAAA
3441	CGTTACAATG	GAATTGTTTG	ATCATGTAAC	GAAATGCAAT
3481	CTTCTAAAAA	AAAAGCCATG	TGAATCAAAA	AAAGATTCCT
3521	TTTAGCATAC	TATAAATATG	CAAAATGCCC	TCTATTTATT
3561	CTAGTAATCG	TCCATTCTCA	TATCTTCCTT	ATATCAGTCG
3601	CCTCGCTTAA	TATAGTCAGC	ACAAAAGGAA	CAACAATTCG
3641	CCAGTTTTCA	AAATGTTCAC	TTTTCTCAAA	ATTATTCTGT
3681	GGCTTTTTTC	CTTGGCATTG	GCCTCTGCTA	TAAATATCAA
3721	CGATATCACA	TTTTCCAATT	TAGAAATTAC	TCCACTGACT
3761	GCAAATAAAC	AACCTGATCA	AGGTTGGACT	GCCACTTTTG
3801	ATTTTAGTAT	TGCAGATGCG	TCTTCCATTA	GGGAGGGCGA
3841	TGAATTCACA	TTATCAATGC	CACATGTTTA	TAGGATTAAG
3881	CTATTAAACT	CATCGCAAAC	AGCTACTATT	TCCTTAGCGG
3921	ATGGTACTGA	GGCTTTCAAA	TGCTATGTTT	CGCAACAGGC
3961	TGCATACTTG	TATGAAAATA	CTACTTTCAC	ATGTACTGCT
4001	CAAAATGACC	TGTCCTCCTA	TAATACGATT	GATGGATCCA
4041	TAACATTTTC	GCTAAATTTT	AGTGATGGTG	GTTCCAGCTA
4081	TGAATATGAG	TTAGAAAACG	CTAAGTTTTT	CAAATCTGGG
4121	CCAATGCTTG	TTAAACTTGG	TAATCAAATG	TCAGATGTGG
4161	TGAATTTCGA	TCCTGCTGCT	TTTACAGAGA	ATGTTTTTCA
4201	CTCTGGGCGT	TCAACTGGTT	ACGGTTCTTT	TGAAAGTTAT
4241	CATTTGGGTA	TGTATTGTCC	AAACGGATAT	TTCCTGGGTG
4281	GTACTGAGAA	GATTGATTAC	GACAGTTCCA	ATAACAATGT
4321	CGATTTGGAT	TGTTCTTCAG	TTCAGGTTTA	TTCATCCAAT
4361	GATTTTAATG	ATTGGTGGTT	CCCGCAAAGT	TACAATGATA
4401	CCAATGCTGA	CGTCACTTGT	TTTGGTAGTA	ATCTGTGGAT
4441	TACACTTGAC	GAAAAACTAT	ATGATGGGGA	AATGTTATGG
	GTTAATGCAT			
4521		GTTAGAATTT		
4561		ACTACGTACG	=	
4601		TTGTTTATCA	-	
4641		AAGCTCTTTT		
4681		ATAAACACTA	- · ·	
4721		TAGAAACAGG		
4761		TGTGGTGACT		
4801		ACCAGCCTGA		
4841		ACTCAAATAT	-	
4881		AGAAGTGATT		AAACCATTAG
4921	CAGAGAAACA	GCTTCGACCG	TIGIAGCCGC	TCCAACCTCA

FIGURE 1, 4/4

4/24

4961	ACAACTGGAT	GGACAGGCGC	TATGAATACT	TACATCCCGC
5001	AATTTACATC	CTCTTCTTTC	GCAACAATCA	ACAGCACACC
5041	AATAATCTCT	TCATCAGCAG	TATTTGAAAC	CTCAGATGCT
5081	TCAATTGTCA	ATGTGCACAC	TGAAAATATC	ACGAATACTG
5121	CTGCTGTTCC	ATCTGAAGAG	CCCACTTTTG	TAAATGCCAC
5161	GAGAAACTCC	TTAAATTCCT	TCTGCAGCAG	CAAACAGCCA
5201	TCCAGTCCCT	CATCTTATAC	GTCTTCCCCA	CTCGTATCGT
5241	CCCTCTCCGT	AAGCAAAACA	TTACTAAGCA	CCAGTTTTAC
5281	GCCTTCTGTG	CCAACATCTA	ATACATATAT	CAAAACGGAA
5321	AATACGGGTT	ACTTTGAGCA	CACGGCTTTG	ACAACATCTT
5361	CAGTTGGCCT	TAATTCTTTT	AGTGAAACAG	CACTCTCATC
5401	TCAGGGAACG	AAAATTGACA	CCTTTTTAGT	GTCATCCTTG
5441	ATCGCATATC	CTTCTTCTGC	ATCAGGAAGC	CAATTGTCCG
5481	GTATCCAACA	GAATTTCACA	TCAACTTCTC	TCATGATTTC
5521	AACCTATGAA	GGTAAAGCGT	CTATATTTTT	CTCAGCTGAG
5561	CTCGGTTCGA	TCATTTTTCT	GCTTTTGTCG	TACCTGCTAT
5601	TCTAAAACGG	GTACTGTACA	GTTAGTACAT	TGAGTCGAAA
5641	TATACGAAAT	TATTGTTCAT	AATTTTCATC	CTGGCTCTTT
5681	TTTTCTTCAA	CCATAGTTAA	ATGGACAGTT	CATATCTTAA
5721	ACTCTAATAA	TACTTTTCTA	GTTCTTATCC	TTTTCCGTCT
5761	CACCGCAGAT	TTTATCATAG	TATTAAATTT	ATATTTTGTT
5801	CGTAAAAAGA	AAAATTTGTG	AGCGTTACCG	CTCGTTTCAT
5841	TACCCGAAGG	CTGTTTCAGT	AGACCACTGA	TTAAGTAAGT
5881	AGATGAAAAA	ATTTCATCAC	CATGAAAGAG	TTCGATGAGA
5921	GCTACTTTTT	CAAATGCTTA	ACAGCTAACC	GCCATTCAAT
5961	AATGTTACGT	TCTCTTCATT	CTGCGGCTAC	GTTATCTAAC
6001	AAGAGGTTTT	ACTCTCTCAT	ATCTCATTCA	AATAGAAAGA
6041	ACATAATCĂA	AAAGCTT 60)57	

d,

SUBSTITUTE SHEET

ALPHA GALACTOSIDASE ACTIVITY MT302/1c WITH pSY13

ALPHA GALACTOSIDASE ACTIVITY MT302/1c WITH pSY13

SUBSTITUTE SHEET

7/24

ALPHA GALACTOSIDASE ACTIVITY MT302/1c WITH pUR2969

ALPHA GALACTOSIDASE ACTIVITY MT302/1c WITH pUR2969

SUBSTITUTE SHEET

Fig. 5.

Fig. b. (1/2)

(2/2)

10/24

SUBSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

FIGURE 8, 1/2

14/24

DNA SEQUENCE OF LIPASE B:

1	. AATTCGGCAC	GAGATTCCTT	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) (III) (III) (III)
41				A CTGTTAATCA
81	·			
121				
161				
201		- 00014110000		0-00-01-00
241				
241				
321				
361				
		0-10-1-000		
401	ATGAGGACTG			424444
441	CACCAAGCCT			
481	TACGGTGGTG			
521	CTGGTAACGG			
561	GCCTGTTGTG			
601	TATGGATTCT			4010100001
641	ACACCAACGC		GACCAGCGCA	AGGGTCTCGA
681	GTGGGTTAGC	GACAACATTG	CCAACTTTGG	TGGTGATCCC
721	GACAAGGTCA		TGAGTCCGCT	GGTGCCATGA
761	GTGTTGCTCA	CCAGCTTGTT	GCCTACGGTG	GTGACAACAC
801	CTACAACGGA		TCCACTCTGC	CATTCTTCAG
841	TCTGGCGGTC	CTCTTCCTTA	CTTTGACTCT	ACTTCTGTTG
881	GTCCCGAGAG	TGCCTACAGC	AGATTTGCTC	AGTATGCCGG
921	ATGTGACACC	AGTGCCAGTG	ATAATGACAC	TCTGGCTTGT
961	CTCCGCAGCA	AGTCCAGCGA	TGTCTTGCAC	AGTGCGCAGA
1001	ACTCGTATGA	TCTTAAGGAC	CTGTTTGGTC	TGCTCCCTCA
1041	ATTCCTTGGA	TTTGGTCCCA	GACCCGACGG	CAACATTATT
1081	CCCGATGCCG	CTTATGAGCT	CTACCGCAGC	GGTAGATACG
1121	CCAAGGTTCC	CTACATTACT	GGCAACCAGG	AGGATGAGGG
1161	TACTATTCTT		CTATTAATGC	TACCACTACT
1201	CCCCATGTTA	AGAAGTGGTT		
1241	CTTCTGACGC			CGCTCTACCC
1281	CGGCTCTTGG			
1321	CTTAATGCTC			
1361				
	GCTTAACGCT		TCAACCGCTG	
1441	GCCACCCAGC	TCCATAACCT	CGTTCCATTT	
1481	TCCATGGCAG	TGATCTTCTT		
1521	TGGCCCATCT		GCCGCTACTT	TATCTCGTTT
1561	GCCAACCACC	ACGACCCCAA	CGTTGGTACC	AACCTCCAAC

WO 94/01567 PCT/EP93/01763

FIGURE 8, 2/2

FIGURE 8, 2/2	15/24	
1601 AGTGGGAT	AT GTACACTGAT GCA	GGCAAGG AGATGCTTCA
1641 GATTCATA	IG ATTGGTAACT CTA	TGAGAAC TGACGACTTT
1681 AGAATCGA	GG GAATCTCGAA CTT	TGAGTCT GACGTTACTC
1721 TCTTCGGT	TA ATCCCATTTA GCA	AGTTTTG TGTATTTCAA
1761 GTATACCA	ST TGATGTAATA TAT	CAATAGA TTACAAATTA
1001 3		· ·

1801 ATTAGTGAAA AAAAAAAA AAAAAAAC 1828

SUBSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

WO 94/01567 PCT/EP93/01763

FIGURE 11, 1/2

19/24

DNA SEQUENCE OF FLO1:

-	3 mg 3 g 3 3 mg g	CTCATCGCTA	TATGTTTTTG	GCAGTCTTTA
1	ATGACAATGC CACTTCTGGC	ACTAACTAGT	GTGGCCTCAG	GAGCCACAGA
41	GGCGTGCTTA	CCAGCAGGCC	AGAGGAAAAG	TGGGATGAAT
81 121	ATAAATTTTT	ACCAGTATTC	ATTGAAAGAT	TCCTCCACAT
161	ATTCGAATGC	AGCATATATG	GCTTATGGAT	ATGCCTCAAA
201	AACCAAACTA	GGTTCTGTCG	GAGGACAAAC	TGATATCTCG
	ATTGATTATA	ATATTCCCTG	TGTTAGTTCA	TCAGGCACAT
241 281	TTCCTTGTCC	TCAAGAAGAT	TCCTATGGAA	ACTGGGGATG
321	CAAAGGAATG	GGTGCTTGTT	CTAATAGTCA	AGGAATTGCA
361	TACTGGAGTA	CTGATTTATT	TGGTTTCTAT	ACTACCCCAA
401	CAAACGTAAC	CCTAGAAATG	ACAGGTTATT	TTTTACCACC
441	ACAGACGGGT	TCTTACACAT	TCAAGTTTGC	TACAGTTGAC
481	GACTCTGCAA	TTCTATCAGT	AGGTGGTGCA	ACCGCGTTCA
521	ACTGTTGTGC	TCAACAGCAA	CCGCCGATCA	CATCAACGAA
561	CTTTACCATT	GACGGTATCA	AGCCATGGGG	TGGAAGTTTG
601	CCACCTAATA	TCGAAGGAAC	CGTCTATATG	TACGCTGGCT
641	ACTATTATCC	AATGAAGGTT	GTTTACTCGA	ACGCTGTTTC
681	TTGGGGTACA	CTTCCAATTA	GTGTGACACT	TCCAGATGGT
721	ACCACTGTAA	GTGATGACTT	CGAAGGGTAC	GTCTATTCCT
761	TTGACGATGA	CCTAAGTCAA	TCTAACTGTA	CTGTCCCTGA
801	CCCTTCAAAT	TATGCTGTCA	GTACCACTAC	AACTACAACG
841	GAACCATGGA	CCGGTACTTT	CACTTCTACA	TCTACTGAAA
881	TGACCACCGT	CACCGGTACC	AACGGCGTTC	CAACTGACGA
921	AACCGTCATT	GTCATCAGAA	CTCCAACCAG	TGAAGGTCTA
961	ATCAGCACCA	CCACTGAACC	ATGGACTGGC	ACTTTCACTT
1001	CGACTTCCAC	TGAGGTTACC	ACCATCACTG	GAACCAACGG
1041	TCAACCAACT	GACGAAACTG	TGATTGTTAT	CAGAACTCCA
1081	ACCAGTGAAG	GTCTAATCAG	CACCACCACT	GAACCATGGA
1121	CTGGTACTTT	CACTTCTACA	TCTACTGAAA	TGACCACCGT
1161	CACCGGTACT	AACGGTCAAC	CAACTGACGA	AACCGTGATT
1201	GTTATCAGAA	CTCCAACCAG	TGAAGGTTTG	GTTACAACCA
1241	CCACTGAACC	ATGGACTGGT		CGACTTCCAC
1281		ACTGTCACTG	GAACCAATGG	CTTGCCAACT
1321	GATGAAACTG	TCATTGTTGT	CAAAACTCCA	
1361				GACAAATCAC
1401	CAGCTCTATC	ACGTCTTCGC		TACCCCATTC
1441	TATCCTAGCA	ATGGAACTTC		
1481			TCTCTATTCA	
1521		TCCTCAGTCA		
1561	TCCACTTCTA	TATTTTCTGA	ATCATCTAAA	TCATCCGTCA

FIGURE 11, 2/2

1601	TTCCAACCAG	TAGTTCCACC	TCTGGTTCTT	CTGAGAGCGA
1641	AACGAGTTCA	GCTGGTTCTG	TCTCTTCTTC	CTCTTTTATC
1681	TCTTCTGAAT	CATCAAAATC	TCCTACATAT	TCTTCTTCAT
1721	CATTACCACT	TGTTACCAGT	GCGACAACAA	GCCAGGAAAC
1761	TGCTTCTTCA	TTACCACCTG	CTACCACTAC	AAAAACGAGC
1801	GAACAAACCA	CTTTGGTTAC	CGTGACATCC	TGCGAGTCTC
1841	ATGTGTGCAC	TGAATCCATC	TCCCCTGCGA	TTGTTTCCAC
1881	AGCTACTGTT	ACTGTTAGCG	GCGTCACAAC	AGAGTATACC
1921	ACATGGTGCC	CTATTTCTAC	TACAGAGACA	ACAAAGCAAA
1961	CCAAAGGGAC	AACAGAGCAA	ACCACAGAAA	CAACAAAACA
2001	AACCACGGTA	GTTACAATTT	CTTCTTGTGA	ATCTGACGTA
2041	TGCTCTAAGA	CTGCTTCTCC	AGCCATTGTA	TCTACAAGCA
2041	CTGCTACTAT	TAACGGCGTT	ACTACAGAAT	ACACAACATG
2121	GTGTCCTATT	TCCACCACAG	AATCGAGGCA	ACAAACAACG
2161	CTAGTTACTG	TTACTTCCTG	CGAATCTGGT	GTGTGTTCCG
2201	AAACTGCTTC	ACCTGCCATT	GTTTCGACGG	CCACGGCTAC
2241	TGTGAATGAT	GTTGTTACGG	TCTATCCTAC	ATGGAGGCCA
2241	CAGACTGCGA	ATGAAGAGTC	TGTCAGCTCT	AAAATGAACA
2321	GTGCTACCGG	TGAGACAACA	ACCAATACTT	TAGCTGCTGA
2361	AACGACTACC	AATACTGTAG	CTGCTGAGAC	GATTACCAAT
2401	ACTGGAGCTG	CTGAGACGAA	AACAGTAGTC	ACCTCTTCGC
2441	TTTCAAGATC	TAATCACGCT	GAAACACAGA	CGGCTTCCGC
2481	GACCGATGTG	ATTGGTCACA	GCAGTAGTGT	TGTTTCTGTA
2521	TCCGAAACTG	GCAACACCAA		AGTTCCGGGT
2561	TGAGTACTAT	GTCGCAACAG		
2601	CAGCATGGTA	GGATATAGTA		
2641	ACGTATGCTG	GCAGTGCAAC		CCGGTAGTGG
2681	TTTAA 268	5-		

Fig. 12. CONSTRUCTION OF PUR2990

PCR with oligonucleotides pcrflo1 & pcrflo2 Isolate 1950 bp fragment cut with Nhel and HindIII ligate into HindIII/NheI (p) digested pUR2972

Fig. 13.

Fig.14.

٠,

Fig.15.

International Application No

	and address representation of the second					
	L CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) ⁶					
	to International Patent . 5 C12N15/6 C12N1/19		Dassification and IPC	2N15/53 5)		
II. FIELDS	SEARCHED					
		Minimum Docum	estation Searched	<u></u>		
Classificat	tion System		Classification Symbols			
Int.Cl	. 5	C12N				
		Documentation Searched other to the Extent that such Documents	than Minimum Documentation are Included in the Fields Searched ⁸			
	III. DOCUMENTS CONSIDERED TO BE RELEVANT? Category Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No.13					
Category o	Citation of Do	cument, 11 with indication, where appropri	ate, of the relevant passages 12	Relevant to Claim No.13		
X	SCIENCES vol. 89 pages 27 JOSEPH A anchorin external see the	INGS OF THE NATIONAL AC S OF USA. April 1992, WASHINGTO 713 - 2717 A. FRANCISCO ET AL 'T ng of beta-lactamase to I surface of Escherichi whole document	N US ransport and the	1-4,7-8, 10, 12-13, 15-16,18		
	JOURNAL OF BACTERIOLOGY vol. 171, no. 9, September 1989, pages 4569 - 4576 GEORGE ET AL 'The hydophobic domain of cytochrome b5 is capable of anchoring beta-galactosidase in Escherichia coli membranes' * the whole article especially page 4569 lines 6-20 *			1-4, 12-13, 16,18		
		٠.	-/			
"A" doc con "E" earl filli "L" doc whi citx "O" doc oth	"I." document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another chation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "A" document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "A" document member of the same patent family					
IV. CERTI	FICATION					
Date of the	te of the Actual Completion of the International Search Date of Mailing of this International Search Report 0 1 -10- 1993					
International	Searching Authority EUR PEA	N PATENT OFFICE	Signature of Authorized Officer LE CORNEC N.D.R.	,		

III. DOCUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	<u> </u>
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
		1-4
X	JOURNAL OF CELL BIOLOGY vol. 107, September 1988, pages 865 - 876	. 1
ļ	SCOTT W. HIEBERT ET AL 'Cell surface expression of glycosylated, nonglycosylated, and truncated forms of a cytoplasmic protein pyruvate kinase' see the whole document	
x	WO,A,8 907 140 (COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION) 10 August 1989 see page 5, line 30 - page 6, line 22 see page 12, line 13 - line 19	1-4
A	JOURNAL OF BIOLOGICAL CHEMISTRY. vol. 265, no. 6, 25 February 1990, BALTIMORE US pages 3161 - 3167	
	cecil C. CHEN ET AL 'Complete nuleotide sequence of the Steptococcal C5a peptidase of Streptococcus pyogenes' see the whole document	
A	CHEMICAL ABSTRACTS, vol. 102, no. 3, 21 January 1985, Columbus, Ohio, US; abstract no. 18728c, EMR,SCOTT D. ET AL 'Invertase beta-galactosidase hybrid proteins fail to be transported from the endoplasmic reticulum in Saccharomyces cerevisiae' page 176; column L; see abstract	
A	& MOLECULAR AND CELLULAR BIOLOGY vol. 4, πο. 11, 1984, WASHINGTON US pages 2347 - 2355	1,3
A	MOLECULAR AND CELLULAR BIOLOGY vol. 8, no. 4, April 1988, WASHINGTON US pages 1709 - 1714 S. VIJAYA ET AL 'Transport to the cell surface of a peptide sequence attached to the truncated C terminus of an N-terminally anchored integral membrane protein' see the whole document	1,3

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

ΕP 9301763 SA 76719

This amer. lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

28/09/93

	Patent document cited in search report	Publication date	Paten men	t family sbcr(s)	Publication date
	WO-A-8907140	10-08-89	AU-A- EP-A-	3045389 0398944	25-08-89 28-11-90
					:
		•			
		ž _t			
ا					

FORM POOP

US006027910A

United States Patent [19]

Klis et al.

í

[11] Patent Number:

6,027,910

[45] Date of Patent:

Feb. 22, 2000

[54] PROCESS FOR IMMOBILIZING ENZYMES TO THE CELL WALL OF A MICROBIAL CELL BY PRODUCING A FUSION PROTEIN

[75] Inventors: Franciscus M Klis, Amsterdam; Maarten P Schreuder, Diemen, both of Netherlands; Holger Y Toschka, Reken, Germany; Cornelis T Verrips, Maassluis, Netherlands

[73] Assignee: Unilever Patent Holdings B.V., Vlaardingen, Netherlands

[21] Appl. No.: 08/362,525

[22] PCT Filed: Jul. 7, 1993

[86] PCT No.: PCT/EP93/01763

§ 371 Date: Feb. 27, 1995

§ 102(e) Date: Feb. 27, 1995

[87] PCT Pub. No.: WO94/01567

PCT Pub. Date: Jan. 20, 1994

[30] Foreign Application Priority Data

435/71.1, 71.2, 172.1, 252.1, 252.3, 252.33, 320.1, 183, 69.9, 189, 195, 198, 41, 172.3

[56] References Cited

U.S. PATENT DOCUMENTS

٠,

FOREIGN PATENT DOCUMENTS

8907140 8/1989 WIPO.

OTHER PUBLICATIONS

Pelham, H. R. B. "Control of protein exit from endoplasmic reticulum" Ann. Rev. Cell Biol. 5, 1-23, 1989.

Martineau et al. "A Genetic System to Elicit and Monitor Antipep . . . " Bio/technology 9, 170-172, Feb. 1991.

Lipke et al. AGα1 is the structural gene for the Saccaromyces cervisiae α-agglutinin, ..., Mol. and Cell. Biol. 9 (8), 3155-3165, Aug. 1989.

Francisco, Joseph A.; Proceedings of the National Academy of Sciences of USA; vol. 89; Apr. 1992; Washington, US; pp. 2713–2717.

George et al; Journal of Bacteriology; vol. 171; No. 9; Sep. 1989; pp. 4569-4576.

Hiebert, Scott W. et al; Journal of Cell Biology; vol. 107; Sep. 1988; pp. 865-876.

Chen, Cecil C. et al; Journal of Biological Chemistry; vol. 265; No. 6; Feb. 25, 1990; Baltimore US; pp. 3161–3167. EMR, Scott D. et al; Chemical Abstracts; vol. 102; No. 3; Jan. 21, 1985; Columbus, Ohio, US; abstract No. 18728c. S. Vijaya et al; Molecular and Cellular Biology; vol. 8; No. 4; Apr. 1988; Washington, US; pp. 1709–1714.

Primary Examiner—Eric Grimes
Assistant Examiner—Nashaat T. Nashed
Attorney, Agent, or Firm—Cushman Darby & Cushman IP
Group of Pillsbury Madison & Sutro

[57] ABSTRACT

A method is provided for immobilizing an enzyme, comprising immobilizing the enzyme or a functional part thereof to the cell wall of a microbial cell using recombinant DNA techniques. The enzyme is immobilized by linking it to the C-terminal part of a protein that ensures anchoring in the cell wall. Also provided is a recombinant polynucleotide comprising a structural gene encoding an enzyme protein, a part of a gene encoding the C-terminal part of a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, as well as a signal sequence, in addition to a chimeric protein encoded by the recombinant polynucleotide and a vector and a microorganism containing the polynucleotide. The microorganism is suitable for carrying out enzymatic processes on an industrial scale.

17 Claims, 24 Drawing Sheets

FIG. IA

1	AAGCTTTAGG	TAAGGGAGGC	AGGGGGAAAA	GATACTGAAA
41	TGACGGAAAA	CGAGAATATG	GAGCAGGGAG	CAACTTTTAG
81	AGCTTTACCC	GTTAAAAGGT	CAAATCGAGG	CTTCCTGCCT
121	TTGTCTGATT	TTAGTAGTAC	CGGAAGGTTT	ATTACGCCCA
161	AGAACAGTGC	TTGAATTGAG	TTCTCGGGAC	ACGGGAAAGA
201	CAATGGAAGA	AAAATTTACA	TTCAGTAGCC	TTATATATGA
241	AATGCTGCCA	AGCCACGTCT	TTATAAGTAG	ATAATGTCCC
281	ATGAGCTGAA	CTATGGGAAT	TTATGACGCA	GTTCATTGTA
321	TATATATTAC	ATTAACTCTT	TAGTTTAACA	TCTGAATTGT
361	TTTATAAAAT	AACTTTTTGA	ATTTTTTTAT	GATCGCTTAG
401	TTAAGTCTAT	TATATCAGGT	TTTTTCATTC	ATCATAATTG
441	TTCGTTAAAT	ATGAGTATAT	TTAAATACAG	GAATTAGTAT
481	CATTTGCAGT	CACGAAAAGG	GCCGTTTCAT	AGAGAGTTTT
521	CTTAATAAAG	TTGAGGGTTT	CCGTGATAGT	TTTGAGGGGT
561	TGTTTGAACT	AGATTTACGC	TTACCTTTCA	ACTGATTAAT
601	TTTTTCAGCG	GGCTTATCAT	AATCATCCAT	CATAGCAGTC
641	TTTCTGGACT	TCGTCGAGGA	CTGGCTTTCT	GAATTTTGAC
681	GGTCCCTATT	AGCTCCAGTT	GGAGGAATTG	AGTTACCTAC
721	AACTGGCAAG	AGGTCTTTGT	TTGGATTCAA	AATAGGACTT
761	TGTGGTAGCA	GTTTGGTTTT	ATTCAATCTA	AAGATATGAG
801	AAACAGGTTT	TAAGTAAATC	GATACTATTG	TACCAATGTT
841	TAGCTCCAAT	TCCTCCAAAA	CGGTGGGATC	TAATTTTGTG
881	TTCATTTCTA	TTAGTGGCAA	CTCTCCGTCC	AGTACTGATT
921	TTAAAGATTC	AAAAGTTATC	GCGTTTGATA	TACGAGACGT
961	TTTCGTTAAT	GACAGCAATC	TCCAATACAT	CAGTGTTTTA
1001	TCTCTTAAGT	CAGGATTATT	TTCGTGATCG	GTGCATCCTT
1041	TTAATAAATC.	CAȚACAAAGT	TCTTCAGTTT	CCTTTGTAGG
1081	ATTTCTGATG	AAGAATTTTA	TTGCTGAGTT	CAGAATGGAA
1121	AATTGCACTT	CTAGCGTCTC	ATTAAACATG	TTTGAGGAAA
1161	AAACTCTAAA	TAACTCCAGG	TAGTTTGGAA	TTACATCCGA
1201	ATATTGCGTT	ATTATCCAGA	TCATAGCGTT	TTTTGATTCA
1241	GGTTCCTGTA	CAACTTCAGT	GTGTTTGACT	AGTTCTGTTA
1281	CGTTTGCTTT	AAAATTATTG	GGATATTTCC	TCAAAATATT
1321	TCTGAAAACC		CCTGGACGAC	
1361	CCGAATTCTA		TAGCACAGCG	
1401	GTACAGAGTC	TTCATCTAGC	TTAACAGCGA	GATTACCAAT
1441			ACATTTGAAT	ATCAATATCT
1481			TTCTAGAATT	
1521			TATAAACACT	
1561	GTCTTTGATG	TATATGGGGT	CATTGTACTC	GATGAAAAA

FIG.IB

1601	ፐል ቦርል ል ልጥርጥ	CTAGCCTGAG	TAGAGATGAC	TOCOTTA OTICA
1641	ATAAAAGAAG	AATAACGTTT	CTTAATACTA	TCCCTACTCA AAAATTGTAA
1681	TTCAGGCGGC	TTATCTAACA	AAGCTATTAC	
1721	AGCTTTTCGG	CTAGAGTTTC	TTTGATGACG	AGAGTTAGAT TCAACATAAT
1761	TCAACAAGTA	CATGATGAAT	TTTAAAGAGT	
1801	GTATGTGTTT	ACTTGTTGCA	GGTACGGTAA	TCAACACTAC
1841	ATCATTTCAT	GGGTATCCAA	ATAATGCTGC	AGCTAGTTCG
1881	AAGTCGTCAA	AACTTCCAAA	ACAGTAGCCT	GGCACAACCG
1921	ATTTAATTCG	GGTAAAAGTT	CTAGCATGTC	TATTCCACTC
1961	TCCAAGGGAA	TCCTGAAGGT	TCCATGTTAG	AAAAGCGAGT
2001	GTGAATGGAA	TATAAAGTAT	GTAATGCAGC	CGTTTTTTTC
2001	TCTGGAGAGC	TCGACTGTGC	CTTTACAATG	TACAATGACT
2041	TGCTTGATAA	CCCCAATACC		TCATGTAGAA
2121	TAAATCCAAC	AGTGCGTAAA	CTTTCATGAT	CAATTTCATC
2161	TCAGGTGGAG		TTGCTGTCCT	CGTCACTTGT
2201	CGAAGGCCTG	ACTTGTGATT ATCAGATAGC	TACCAATGAA	ATGATACAGT
2241	CAGAGTTCTT		TCTTTCACCG	GGACTAATAC
2241	CTTTTGAAAT	AGTGCCATTA	TTTGTAACTT	TTCATCTCTG
2321		CGTCCATTAT	AAATGGCAAA	GCCTCTCTGG
2361	CCTGCTGAGG	TTTTAATGCG	CCGATCACCC	TAATATACTC
	ATGGCAAATT	CTTTTCACTT	CTAGATCATC	TTCAATTTGC
2401	CAAAATTTCA	AGAGCTCAGA	AAACAGAAGG	GACATTTCGC
2441	CATAGTTTCC	TAGAACCAAA	TTGGCGATAA	TTTTTCTCAG
2481	AGCATTTTC	CTTCTTGTTA	TATTCGATTT	AAACTTTTTT
2521	ACTCCAAAAT	GTTGCAGATC	TGTGACGATT	TCATTTGCTT
2561	TATATCTGGC	AAAAACTTTT	TGATCGGACA	TAAGCGAAAT
2601	ACGTCCTATT	AATGAAGTGA	ATGTTCTTGC	TGTATTCCCT
2641	TCTTGTGCAG	TAGATTAATT	CTGTTTCCAG	GCTGCGATAC
2681	TTTGATACCC	AATACTAAAA	GTTGATGATT	TGAACGATCT
2721	CCTATTTCCT	CGCACATTTT	TGGAGCGATA	CCCGGAAGAC
2761	AGAATCGCGA	TGTTAAGAAA	ATAGTTCTGA	TGGCACTAAA
2801	GAGATCATGA	TTAAGGAAAG	GTAAGTGATA	TGCATGAATG
2841	GGAATAGGCT	TTCGAACTTG	ACGATTTAGT	TCCTTATTTC
2881			TTCAATAGGC	CTTATCTAGC
2921		ATTTAATTGA		TTAATTGAAA
2961		AAAGTGTATG	-	ATAAGGCGTT
3001	AAGAAGAGTA			CCAAGACCAC
3041		AATACCATAT		AAACTCATGT
3081		GTTGTTTCAA		
3121	TTAGGTTAAT		AAAAATATAA	
3161		ATCGGCACCT		GAGTAAACAG
3201	TTTCAACACT		ACATTGAACA	
3241	GTTTCCCGCC	ACGAGGCAAG	TGTAGGTCCT	TTGTCCATTT

FIG. IC

			• •	
3281	CGCTTTGTTT	TGCAGGTCAT	TGATGACCTA	ATTAGGAAGG
3321	TAGAAGCCGC	TCCAGCTCAA	TAAGGAAATG	CTAAGGGTAC
3361	TCGCCTTTGG	TGTTTTACCA	TACAATGGCA	GCTTTATGTC
3401	ACTTCATTCT	TCAGTAACGG	CGCTTAAATA	TTCCCAAAAA
3441	CGTTACAATG	GAATTGTTTG	ATCATGTAAC	GAAATGCAAT
3481	CTTCTAAAAA	AAAAGCCATG	TGAATCAAAA	AAAGATTCCT
3521	TTTAGCATAC	TATAAATATG	CAAAATGCCC	TCTATTTATT
3561	CTAGTAATCG	TCCATTCTCA	TATCTTCCTT	ATATCAGTCG
3601	CCTCGCTTAA	TATAGTCAGC	ACAAAAGGAA	CAACAATTCG
3641	CCAGTTTTCA	AAATGTTCAC	TTTTCTCAAA	ATTATTCTGT
3681	GGCTTTTTTC	CTTGGCATTG	GCCTCTGCTA	TAAATATCAA
3721	CGATATCACA	TTTTCCAATT	TAGAAATTAC	TCCACTGACT
3761	GCAAATAAAC	AACCTGATCA	AGGTTGGACT	GCCACTTTTG
3801	ATTTTAGTAT	TGCAGATGCG	TCTTCCATTA	GGGAGGGCGA
3841	TGAATTCACA	TTATCAATGC	CACATGTTTA	TAGGATTAAG
3881	CTATTAAACT	CATCGCAAAC	AGCTACTATT	TCCTTAGCGG
3921	ATGGTACTGA	GGCTTTCAAA	TGCTATGTTT	CGCAACAGGC
3961	TGCATACTTG	TATGAAAATA	CTACTTTCAC	ATGTACTGCT
4001	CAAAATGACC	TGTCCTCCTA	TAATACGATT	GATGGATCCA
4041	TAACATTTTC	GCTAAATTTT	AGTGATGGTG	GTTCCAGCTA
4081	TGAATATGAG	TTAGAAAACG	CTAAGTTTTT	CAAATCTGGG
4121	CCAATGCTTG	TTAAACTTGG	TAATCAAATG	TCAGATGTGG
4161	TGAATTTCGA	TCCTGCTGCT	TTTACAGAGA	ATGTTTTCA
4201	CTCTGGGCGT	TCAACTGGTT	ACGGTTCTTT	TGAAAGTTAT
4241	CATTTGGGTA	TGTATTGTCC	AAACGGATAT	TTCCTGGGTG
4281	GTACTGAGAA	GATTGATTAC	GACAGTTCCA	ATAACAATGT
4321	CGATTTGGAT	TGTTCTTCAG	TTCAGGTTTA	TTCATCCAAT
4361	GATTTTAATG	ATTGGTGGTT	CCCGCAAAGT	TACAATGATA
4401	CCAATGCTGA	CGTCACTTGT	TTTGGTAGTA	ATCTGTGGAT
4441	TACACTTGAC	GAAAAACTAT	ATGATGGGGA	AATGTTATGG
4481	GTTAATGCAT	TACAATCTCT	ACCCGCTAAT	GTAAACACAA
4521	TAGATCATGC	GTTAGAATTT	CAATACACAT	GCCTTGATAC
4561	CATAGCAAAT	ACTACGTACG	CTACGCAATT	CTCGACTACT
4601		TTGTTTATCA		
4641		AAGCTCTTTT		
4681		ATAAACACTA		
4721		TAGAAACAGG		
4761 4801		TGTGGTGACT		
4841		ACCAGCCTGA		
4881		ACTCAAATAT		
4921	-	AGAAGTGATT		
ュンムエ	CAGAGAAACA	GCTTCGACCG	TIGIAGCCGC	TCCAACCTCA

FIG. ID

ACAACTGGAT	GGACAGGCGC	TATGAATACT	TACATCCCGC
AATTTACATC	CTCTTCTTTC	GCAACAATCA	ACAGCACACC
AATAATCTCT	TCATCAGCAG	TATTTGAAAC	CTCAGATGCT
TCAATTGTCA	ATGTGCACAC	TGAAAATATC	ACGAATACTG
CTGCTGTTCC	ATCTGAAGAG	CCCACTTTTG	TAAATGCCAC
GAGAAACTCC	TTAAATTCCT	TCTGCAGCAG	CAAACAGCCA
TCCAGTCCCT	CATCTTATAC	GTCTTCCCCA	CTCGTATCGT
CCCTCTCCGT	AAGCAAAACA	TTACTAAGCA	CCAGTTTTAC
GCCTTCTGTG	CCAACATCTA	ATACATATAT	CAAAACGGAA
AATACGGGTT	ACTTTGAGCA	CACGGCTTTG	ACAACATCTT
CAGTTGGCCT	TAATTCTTTT	AGTGAAACAG	CACTCTCATC
TCAGGGAACG	AAAATTGACA	CCTTTTTAGT	GTCATCCTTG
ATCGCATATC	CTTCTTCTGC	ATCAGGAAGC	CAATTGTCCG
GTATCCAACA	GAATTTCACA	TCAACTTCTC	TCATGATTTC
AACCTATGAA	GGTAAAGCGT	CTATATTTTT	CTCAGCTGAG
CTCGGTTCGA	TCATTTTTCT	GCTTTTGTCG	TACCTGCTAT
TCTAAAACGG	GTACTGTACA	GTTAGTACAT	TGAGTCGAAA
TATACGAAAT	TATTGTTCAT	AATTTTCATC	CTGGCTCTTT
TTTTCTTCAA	CCATAGTTAA	ATGGACAGTT	CATATCTTAA
ACTCTAATAA	TACTTTTCTA	GTTCTTATCC	TTTTCCGTCT
CACCGCAGAT	TTTATCATAG	TATTAAATTT	ATATTTTGTT
CGTAAAAAGA	AAAATTTGTG	AGCGTTACCG	CTCGTTTCAT
TACCCGAAGG	CTGTTTCAGT	AGACCACTGA	TTAAGTAAGT
AGATGAAAA	ATTTCATCAC	CATGAAAGAG	TTCGATGAGA
GCTACTTTTT	CAAATGCTTA	ACAGCTAACC	GCCATTCAAT
AATGTTACGT	TCTCTTCATT	CTGCGGCTAC	GTTATCTAAC
AAGAGGTTTT	ACTCTCTCAT	ATCTCATTCA	AATAGAAAGA
ACATAATCAA	AAAGCTT 60)57	
	AATTTACATC AATAATCTCT TCAATTGTCA CTGCTGTTCC GAGAAACTCC TCCAGTCCCT CCCTCTCCGT GCCTTCTGTG AATACGGGTT CAGTTGGCCT TCAGGGAACG ATCGCATATC GTATCCAACA AACCTATGAA CTCGGTTCGA TCTAAAACGG TATACGAAAT TTTTCTTCAA ACTCTAATAA CACCGCAGAT CGTAAAAAGA TACCCGAAGG AGATGAAAAA GCTACTTTTT AATGTTACGT AAGAGGTTTTT	AATTTACATC AATAATCTCT TCATCAGCAG TCAATTGTCA ATGTGCACAC CTGCTGTTCC ATCTGAAGAG GAGAAACTCC TTAAATTCCT TCCAGTCCCT CATCTTATAC CCCTCTCCGT AAGCAAAACA GCCTTCTGTG CCAACATCTA AATACGGGTT ACTTTGAGCA CAGTTGGCCT TAATTCTTTT TCAGGGAACG AAAATTGACA ATCGCATATC CTTCTTCTGC GTATCCAACA GAATTTCACA AACCTATGAA GGTAAAGCGT CTCGGTTCGA TCATTTTTCT TCTAAAACGG GTACTGTACA TATACGAAAT TATTGTTCAT TTTTCTTCAA CCATAGTTAA ACTCTAATAA TACTTTTCTA CACCGCAGAT TTTATCATAG CGTAAAAAGA AAAATTTGTG TACCCGAAGG CTGTTTCAGT AAGATGAAAAA ATTTCATCAC GCTACTTTTT CAAATGCTTA AATGTTACGT TCTCTTCATT AATGTTACGT TCTCTTCATT AAGAGGTTTT ACTCTCTCAT	AATTTACATC AATAATCTCT TCATCAGCAG TATTTGAAAC TCAATTGTCA ATGTGCACAC TGAAAATATC CTGCTGTTCC ATCTGAAGAG CCCACTTTTG GAGAAACTCC TTAAATTCCT TCTGCAGCAG TCCAGTCCCT CATCTTATAC GTCTTCCCCA AAGCAAAACA TTACTAAGCA GCCTTCTGTG CCAACATCTA AATACGGGTT ACTTTGAGCA CACGGCTTTG CAGTTGGCC TAAATTCTTT AGTGAAACAG GCCTTCTGTG CCAACATCTA ATACATATAT CAGGTTGCCT TAATTCTTTT AGTGAAACAG CACGGCTTTG CAGTTGGCCT TAATTCTTTT AGTGAAACAG AAAATTGACA CCTTTTTAGT ATCGGAAACA ATCGCATATC CTTCTTCTGC ATCAGGAAGC GTATCCAACA GAATTTCACA TCAACTTCTC AACCTATGAA GGTAAAAGCGT TCTAAAACGG GTACTGTACA GTTAGTACAT TTTTCTTCAA CCATAGTTAA ACTCTTATC CACCGCAGAT TTTATCATAG TATTACATAG AACCTATGA AAAATTTCTC CACCGCAGAG TTTATCATAG TATTAAAATTT CGTAAAAAGA AAAATTTGTG AGCGTTACCG AGATGAAAAA ATTTCATCAC CATGAAAAGA GCTACTTTTT CAAATGCTTA ACAGCTAACC AAGGTTACCA AAGAGGTTTT CAAATGCTTA ACAGCTAACC AAGGTTACCA AAGAGGTTTT CTCTTCATT CTGCGGCTAC AAGAGGTTTT ACTCTCTCAT ATCTCATTCA

Feb. 22, 2000

Sheet 7 of 24

6,027,910

FIG.4B

FIG. 5A

FIG.5B

. ,

FIG. 6A

FIG. 6B

FIG.8A

1	AATTCGGCAC	GAGATTCCTT	TGATTTGCAA	CTGTTAATCA
41	TGGTTTCCAA	AAGCTTTTTT	TTGGCTGCGG	CGCTCAACGT
81	AGTGGGCACC	TTGGCCCAGG	CCCCCACGGC	CGTTCTTAAT
121	GGCAACGAGG	TCATCTCTGG	TGTCCTTGAG	GGCAAGGTTG
161	ATACCTTCAA	GGGAATCCCA	TTTGCTGACC	CTCCTGTTGG
201	TGACTTGCGG	TTCAAGCACC	CCCAGCCTTT	CACTGGATCC
241	TACCAGGGTC	TTAAGGCCAA	CGACTTCAGC	TCTGCTTGTA
281	TGCAGCTTGA	TCCTGGCAAT	GCCTTTTCTT	TGCTTGACAA
321	AGTAGTGGGC	TTGGGAAAGA	TTCTTCCTGA	TAACCTTAGA
361	GGCCCTCTTT	ATGACATGGC	CCAGGGTAGT	GTCTCCATGA
401	ATGAGGACTG	TCTCTACCTT	AACGTTTTCC	GCCCCGCTGG
441	CACCAAGCCT	GATGCTAAGC	TCCCCGTCAT	GGTTTGGATT
481	TACGGTGGTG	CCTTTGTGTT	TGGTTCTTCT	GCTTCTTACC
521	CTGGTAACGG	CTACGTCAAG	GAGAGTGTGG	AAATGGGCCA
561	GCCTGTTGTG	TTTGTTTCCA	TCAACTACCG	TACCGGCCCC
601	TATGGATTCT	TGGGTGGTGA	TGCCATCACC	GCTGAGGGCA
641	ACACCAACGC	TGGTCTGCAC	GACCAGCGCA	AGGGTCTCGA
681	GTGGGTTAGC	GACAACATTG	CCAACTTTGG	TGGTGATCCC
721	GACAAGGTCA	TGATTTTCGG	TGAGTCCGCT	GGTGCCATGA
761	GTGTTGCTCA	CCAGCTTGTT	GCCTACGGTG	GTGACAACAC
801	CTACAACGGA	AAGCAGCTTT	TCCACTCTGC	CATTCTTCAG
841	TCTGGCGGTC	CTCTTCCTTA	CTTTGACTCT	ACTTCTGTTG
881	GTCCCGAGAG	TGCCTACAGC	AGATTTGCTC	AGTATGCCGG
921	ATGTGACACC	AGTGCCAGTG	ATAATGACAC	TCTGGCTTGT
961	CTCCGCAGCA	AGTCCAGCGA	TGTCTTGCAC	AGTGCGCAGA
1001	ACTCGTATGA	TCTTAAGGAC	CTGTTTGGTC	TGCTCCCTCA
1041	ATTCCTTGGA	TTTGGTCCCA	GACCCGACGG	CAACATTATT
1081	CCCGATGCCG	CTTATGAGCT	CTACCGCAGC	GGTAGATACG
1121	CCAAGGTTCC	CTACATTACT	GGCAACCAGG	AGGATGAGGG
1161	TACTATTCTT	GCCCCCGTTG	CTATTAATGC	TACCACTACT
1201	CCCCATGTTA	AGAAGTGGTT	GAAGTACATT	TGTAGCCAGG
1241	CTTCTGACGC	TTCGCTTGAT	CGTGTTTTGT	CGCTCTACCC
1281	CGGCTCTTGG	TCGGAGGGTT	CACCATTCCG	CACTGGTATT
1321	CTTAATGCTC	TTACCCCTCA		ATTGCTGCCA
1361	TTTTCACTGA	TTTGCTGTTC	CAGTCTCCTC	GTCGTGTTAT
1401	GCTTAACGCT	ACCAAGGACG	TCAACCGCTG	GACTTACCTT
1441	GCCACCCAGC	TCCATAACCT	CGTTCCATTT	TTGGGTACTT
1481	TCCATGGCAG		TTTCAATACT	ACGTGGACCT
1521	TGGCCCATCT		GCCGCTACTT	TATCTCGTTT
1561	GCCAACCACC	ACGACCCCAA	CGTTGGTACC	AACCTCCAAC

FIG.8B

1601	AGTGGGATAT	GTACACTGAT	GCAGGCAAGG	AGATGCTTCA
1641	GATTCATATG	ATTGGTAACT	CTATGAGAAC	TGACGACTTT
1681	AGAATCGAGG	GAATCTCGAA	CTTTGAGTCT	GACGTTACTC
1721	TCTTCGGTTA	ATCCCATTTA	GCAAGTTTTG	TGTATTTCAA
1761	GTATACCAGT	TGATGTAATA	TATCAATAGA	TTACAAATTA
1801	ATTAGTGAAA	AAAAAAAAA	AAAAAAAC 1	L828

a AGG Eag I pUR2972 9568bps via Eag1/HindIII insert replacement in pUR2973 ori MB1 PCR reaction with lipo3 & lipo4 NheI partial/EagI digestion of PCR product FIG. 9 pURŻ976 GAL7-prepro a-MF-lipaseB -C - terminus-a-AGG Kpn1,1585 XhoI, 676 XhoI, 1828 KpnI, 1843 a - AGG lipaseB M.SS Ipase B HindIII,51 4759, EcoRI / EagI,107 lacZ LGAL7 inv.SS pUR 2975 10396bps pUR2974 4759bps lac Z Asori MB1

FIG. IIA

1	ATGACAATGC	CTCATCGCTA	TATGTTTTTG	GCAGTCTTTA
41	CACTTCTGGC	ACTAACTAGT	GTGGCCTCAG	GAGCCACAGA
81	GGCGTGCTTA	CCAGCAGGCC	AGAGGAAAAG	TGGGATGAAT
121	ATAAATTTTT	ACCAGTATTC	ATTGAAAGAT	TCCTCCACAT
161	ATTCGAATGC	AGCATATATG	GCTTATGGAT	ATGCCTCAAA
201	AACCAAACTA	GGTTCTGTCG	GAGGACAAAC	TGATATCTCG
241	ATTGATTATA	ATATTCCCTG	TGTTAGTTCA	TCAGGCACAT
281	TTCCTTGTCC	TCAAGAAGAT	TCCTATGGAA	ACTGGGGATG
321	CAAAGGAATG	GGTGCTTGTT	CTAATAGTCA	AGGAATTGCA
361	TACTGGAGTA	CTGATTTATT	TGGTTTCTAT	ACTACCCCAA
401	CAAACGTAAC	CCTAGAAATG	ACAGGTTATT	TTTTACCACC
441	ACAGACGGGT	TCTTACACAT	TCAAGTTTGC	TACAGTTGAC
481	GACTCTGCAA	TTCTATCAGT	AGGTGGTGCA	ACCGCGTTCA
521	ACTGTTGTGC	TCAACAGCAA	CCGCCGATCA	CATCAACGAA
561	CTTTACCATT	GACGGTATCA	AGCCATGGGG	TGGAAGTTTG
601	CCACCTAATA	TCGAAGGAAC	CGTCTATATG	TACGCTGGCT
641	ACTATTATCC	AATGAAGGTT	GTTTACTCGA	ACGCTGTTTC
681	TTGGGGTACA	CTTCCAATTA	GTGTGACACT	TCCAGATGGT
721	ACCACTGTAA	GTGATGACTT	CGAAGGGTAC	GTCTATTCCT
761	TTGACGATGA	CCTAAGTCAA	TCTAACTGTA	CTGTCCCTGA
801	CCCTTCAAAT	TATGCTGTCA	GTACCACTAC	AACTACAACG
841	GAACCATGGA	CCGGTACTTT	CACTTCTACA	TCTACTGAAA
881	TGACCACCGT	CACCGGTACC	AACGGCGTTC	CAACTGACGA
921	AACCGTCATT	GTCATCAGAA	CTCCAACCAG	TGAAGGTCTA
961	ATCAGCACCA	CCACTGAACC	ATGGACTGGC	ACTTTCACTT
1001	CGACTTCCAC	TGAGGTTACC	ACCATCACTG	GAACCAACGG
1041	TCAACCAACT	GACGAAACTG	TGATTGTTAT	CAGAACTCCA
1081	ACCAGTGAAG	GTCTAATCAG	CACCACCACT	GAACCATGGA
1121	CTGGTACTTT	CACTTCTACA	TCTACTGAAA	TGACCACCGT
1161	CACCGGTACT	AACGGTCAAC	CAACTGACGA	AACCGTGATT
1201	GTTATCAGAA	CTCCAACCAG	TGAAGGTTTG	GTTACAACCA
1241	CCACTGAACC	ATGGACTGGT	ACTTTTACTT	CGACTTCCAC
1281	TGAAATGTCT	ACTGTCACTG	GAACCAATGG	CTTGCCAACT
1321			CAAAACTCCA	
1361		TTTGTCATCA		· · ·
1401		ACGTCTTCGC		-
1441		ATGGAACTTC		
1481	TTTCTTCCTC	AGTCACTTCT		CTTCTTCTCC
1521	AGTCATTTCT	TCCTCAGTCA		TACAACAACC
1561	TCCACTTCTA	TATTTTCTGA	ATCATCTAAA	TCATCCGTCA

FIG.IIB

1601	TTCCAACCAG	TAGTTCCACC	TCTGGTTCTT	CTGAGAGCGA
1641	AACGAGTTCA	GCTGGTTCTG	TCTCTTCTTC	CTCTTTTATC
1681	TCTTCTGAAT	CATCAAAATC	TCCTACATAT	TCTTCTTCAT
1721	CATTACCACT	TGTTACCAGT	GCGACAACAA	GCCAGGAAAC
1761	TGCTTCTTCA	TTACCACCTG	CTACCACTAC	AAAAACGAGC
1801	GAACAAACCA	CTTTGGTTAC	CGTGACATCC	TGCGAGTCTC
1841	ATGTGTGCAC	TGAATCCATC	TCCCCTGCGA	TTGTTTCCAC
1881	AGCTACTGTT	ACTGTTAGCG	GCGTCACAAC	AGAGTATACC
1921	ACATGGTGCC	CTATTTCTAC	TACAGAGACA	ACAAAGCAAA
1961	CCAAAGGGAC	AACAGAGCAA	ACCACAGAAA	CAACAAAACA
2001	AACCACGGTA	GTTACAATTT	CTTCTTGTGA	ATCTGACGTA
2041	TGCTCTAAGA	CTGCTTCTCC	AGCCATTGTA	TCTACAAGCA
2081	CTGCTACTAT	TAACGGCGTT	ACTACAGAAT	ACACAACATG
2121	GTGTCCTATT	TCCACCACAG	AATCGAGGCA	ACAAACAACG
2161	CTAGTTACTG	TTACTTCCTG	CGAATCTGGT	GTGTGTTCCG
2201	AAACTGCTTC	ACCTGCCATT	GTTTCGACGG	CCACGGCTAC
2241	TGTGAATGAT	GTTGTTACGG	TCTATCCTAC	ATGGAGGCCA
2281	CAGACTGCGA	ATGAAGAGTC	TGTCAGCTCT	AAAATGAACA
2321	GTGCTACCGG	TGAGACAACA	ACCAATACTT	TAGCTGCTGA
2361	AACGACTACC	AATACTGTAG	CTGCTGAGAC	GATTACCAAT
2401	ACTGGAGCTG	CTGAGACGAA	AACAGTAGTC	ACCTCTTCGC
2441	TTTCAAGATC	TAATCACGCT	GAAACACAGA	CGGCTTCCGC
2481	GACCGATGTG	ATTGGTCACA	GCAGTAGTGT	TGTTTCTGTA
2521	TCCGAAACTG	GCAACACCAA	GAGTCTAACA	AGTTCCGGGT
2561	TGAGTACTAT	GTCGCAACAG	CCTCGTAGCA	CACCAGCAAG
2601	CAGCATGGTA	GGATATAGTA		AGAAATTTCA
2641	ACGTATGCTG	GCAGTGCAAC	AGCTTACTGG	CCGGTAGTGG
2681	TTTAA 268	5		

FIG.12

Feb. 22, 2000

PCR with oligonucleotides pcrflo1 & pcrflo2 Isolate 1950 bp fragment cut with Nhel and HindIII ligate into HindIII/ NheI (p) digested pUR2972

FIG. 13

FIG. 14

FIG. 15A

FIG. 15B

PROCESS FOR IMMOBILIZING ENZYMES TO THE CELL WALL OF A MICROBIAL CELL BY PRODUCING A FUSION PROTEIN

The present invention is in the field of conversion 5 processes using immobilized enzymes, produced by genetic engineering.

BACKGROUND OF THE INVENTION

In the detergent, personal care and food products industry there is a strong trend towards natural ingredients of these products and to environmentally acceptable production processes. Enzymic conversions are very important for fulfilling these consumer demands, as these processes can be completely natural. Moreover enzymic processes are very specific and consequently will produce minimum amounts of waste products. Such processes can be carried out in water at mild temperatures and atmospheric pressure. However enzymic processes based on free enzymes are either quite expensive due to the loss of enzymes or require expensive equipment, like ultra-membrane systems to entrap the enzyme.

Alternatively enzymes can be immobilized either physically or chemically. The latter method has often the disadvantage that coupling is carried out using non-natural chemicals and in processes that are not attractive from an environmental point of view. Moreover chemical modification of enzymes is nearly always not very specific, which means that coupling can affect the activity of the enzyme negatively. Physical immobilization can comply with consumer demands, however also physical immobilization may affect the activity of the enzyme in a negative way. Moreover, a physically immobilized enzyme is in equilibrium with free enzyme, which means that in continuous reactors, according to the laws of thermodynamics, substantial losses of enzyme are unavoidable.

There are a few publications on immobilization of enzymes to microbial cells (see reference 1). The present invention provides a method for immobilizing enzymes to 40 cell walls of microbial cells in a very precise way. Additionally, the immobilization does not require any chemical or physical coupling step and is very efficient. Some extracellular proteins are known to have special functions which they can perform only if they remain bound 45 to the cell wall of the host cell. Often this type of protein has a long C-terminal part that anchors it in the cell wall. These C-terminal parts have very special amino acid sequences. A typical example is anchoring via C-terminal sequences enriched in proline (see reference 2). Another mechanism to 50 anchor proteins in cell walls is that the protein has a glycosyl-phosphatidyl-inositol (GPI) anchor (see reference 3) and that the C-terminal part of the protein contains a substantial number of potential serine and threonine glycosylation sites. O-Glycosylation of these sites gives a rod-like 55 conformation to the C-terminal part of these proteins. Another feature of these manno-proteins is that they seem to be linked to the glucan in the cell wall of lower eukaryotes, as they cannot be extracted from the cell wall with SDS, but can be liberated by glucanase treatment.

SUMMARY OF THE INVENTION

The present invention provides a method for immobilizing an enzyme, which comprises the use of recombinant DNA techniques for producing an enzyme or a functional 65 part thereof linked to the cell wall of a host cell, preferably a microbial cell, and whereby the enzyme or functional

fragment thereof is localized at the exterior of the cell wall. Preferably the enzyme or the functional part thereof is immobilized by linking to the C-terminal part of a protein that ensures anchoring in the cell wall.

In one embodiment of the invention a recombinant polynucleotide is provided comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, said part encoding at least the C-terminal part of said anchoring protein. Preferably the polynucleotide further comprises a sequence encoding a signal peptide ensuring secretion of the expression product of the polynucleotide. Such signal peptide can be derived from a glycosyl-phosphatidyl-inositol (GPI) anchoring protein, a-factor, a-agglutinin, invertase or inulinase, α-amylase of Bacillus, or a proteinase of lactic acid bacteria. The DNA sequence encoding a protein capable of anchoring in the cell wall can encode a-agglutinin, AGAI (a-agglutinin) FLO1 (flocculation protein) or the Major Cell Wall Protein of lower eukaryotes, or a proteinase of lactic acid bacteria. The recombinant polynucleotide is operably linked to a promoter, preferably an inducible promoter. The DNA sequence encoding a protein providing catalytic activity can encode a hydrolytic enzyme, e.g. a lipase, or an oxidoreductase, e.g. an oxidase. Another embodiment of the 25 invention relates to a recombinant vector comprising a polynucleotide as described above. If such vector contains a DNA sequence encoding a protein providing catalytic activity, which protein exhibits said catalytic activity when present in a multimeric form, said vector can further comprise a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter.

A further embodiment of the invention relates to a chimeric protein encoded by a polynucleotide as described

Still another embodiment is a host cell, preferably a microorganism, containing a polynucleotide as described above or a vector as described above. If the protein providing catalytic activity exhibits said catalytic activity when present in a multimeric form, said host cell or microorganism can further comprise a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter, and said second polynucleotide being present either in another vector or in the chromosome of said microorganism. Preferably the host cell or microorganism has at least one of said polynucleotides integrated in its chromosome. As a result of culturing such host cell or microorganism the invention provides a host cell, preferably a microorganism, having a protein as described above immobilized on its cell wall. The host cell or microorganism can be a lower eukaryote, in particular a yeast.

The invention also provides a process for carrying out an enzymatic process by using an immobilized catalytically active protein, wherein a substrate for said catalytically active protein is contacted with a host cell or microorganism according to the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1: DNA sequence of the 6057 bp HindIII fragment containing the complete AGa1 gene of S. cerevisiae (see

SEQ ID NO: 1). The position of the unique NheI site and the HindIII site used for the described constructions is specified in the header.

FIG. 2: Schematic presentation of the construction of pUR2969. The restriction sites for endonucleases used are 5 shown. Abbreviations used: AG-alpha-1: Gene expressing α-agglutinin from S. cerevisiae

amp: β-lactamase resistance gene

PGKp: phosphoglyceratekinase promoter

PGKt: terminator of the same gene.

FIG. 3: α-Galactosidase activity of S. cerevisiae MT302/1C cells and culture fluid transformed with pSY13 during batch culture:

A: U/I α-galactosidase per time; the OD₅₃₀ is also shown 15
 B: α-galactosidase activity of free and bond enzyme expressed in U/OD₅₃₀.

FIG. 4: \(\alpha\)-Galactosidase activity of \(S.\) cerevisiae MT302/1C cells and culture fluid transformed with pUR2969 during batch culture:

A: U/l α-galactosidase per time; the OD₅₃₀ is also shown

B: α -galactosidase activity of free and bond enzyme expressed in U/OD₅₃₀.

FIG. 5: Western analysis with anti α -galactosidase serum of extracellular fractions of cells of exponential phase (OD₅₃₀=2). The analyzed fractions are equivalent to 4 mg cell walls, (fresh weight):

A: MT302/1C expressing α-galactosidase,

lane 1, growth medium

lane 2, SDS extract of isolated cell walls

lane 3, glucanase extract of SDS extracted cell walls;

B: MT302/1C expressing α-Gal-AGα1 fusion protein, lane 1, growth medium

lane 2, SDS extract of isolated cell walls

lane 3, glucanase extract of SDS-extracted cell walls

lane 4: Endo-H treated glucanase extract.

FIG. 6: Immunofluorescent labelling (anti α -galactosidase) of MT302/1C cells in the exponential phase (OD₅₃₀=2) expressing the α -Gal- α -agglutinin fusion 40 protein.

Phase micrograph of intact cells A: overview B: detail. FIG. 7: Schematic presentation of the construction of pUR2970A, pUR2971A, pUR2972A, and pUR2973. The restriction sites for endonucleases used are indicated in the figure. PCR oligonucleotide sequences are mentioned in the text.

Abbreviations used: AGa1 cds: coding sequence of α-agglutinin

a-AGG=AGa1: Gene expressing α-agglutinin from S. cerevisiae

amp: β-lactamase resistance gene

lipolase: lipase gene of Humicola

a-MF: prepro-α-mating factor sequence

Pgal7=GAL7: GAL7 promoter

invSS: SUC2 signal sequence

a-gal: α-galactosidase gene

LEU2d: truncated promoter of LEU2 gene;

LEU2: LEU2 gene with complete promoter sequence.

FIG. 8: DNA sequence of a fragment containing the complete coding sequence of lipase B of Geotrichum candidum strain 335426 (see SEQ ID NO: 11). The sequence of the mature lipase B starts at nucleotide 97 of the given 65 sequence. The coding sequence starts at nucleotide 40 (ATG).

FIG. 9: Schematic presentation of the construction of pUR2975 and pUR2976. The restriction sites for endonucleases used are shown. Abbreviations used:

a-AGG: Gene expressing \alpha-agglutinin from S. cerevisiae

amp: β-lactamase resistance gene

invSS: SUC2 signal sequence

LEU2d: truncated promoter LEU2 gene

Pgal7=GAL7: GAL7 promoter

a-MF: prepro-a-mating factor sequence

lipolase: lipase gene of Humicola

lipaseB: lipaseB gene of Geotrichum candidum.

FIG. 10: Schematic presentation of the construction of pUR2981 and pUR2982. The restriction sites for endonucleases used are shown. Abbreviations used:

a-AGG=AG-alpha 1: Gene expressing α -agglutinin from S. cerevisiae

mucor lipase: lipase gene of Rhizomucor miehei

Pgal7=GAL7: GAL7 promoter

a-MF: prepro-α-mating factor sequence

amp: β-lactamase resistance gene;

2u: 2 µm sequence

invSS: SUC2 signal sequence

lipolase: lipase gene of Humicola

LEU2d: truncated promoter LEU2 gene

LEU2: LEU2 gene with complete promoter sequence.

FIG. 11: DNA sequence (2685 bases) of the 894 amino acids coding part of the FLO1 gene (see SEQ ID NO: 21), the given sequence starts with the codon for the first amino acid and ends with the stop codon.

FIG. 12: Schematic presentation of plasmid pUR2990.

Some restriction sites for endonucleases relevant for the

given cloning procedure are shown.

FIG. 13: Schematic presentation of plasmid pUR7034.

FIG. 14: Schematic presentation of plasmid pUR2972B.

FIG. 15: Immunofluorescent labelling (anti-lipolase) of SU10 cells in the exponential phase (OD₅₃₀=0.5) expressing the lipolase/-α-agglutinin fusion protein.

A: phase micrograph B: matching fluorescent micrograph

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method for immobilizing an enzyme, comprising immobilizing the enzyme or a functional part thereof to the cell wall of a host cell, preferably a microbial cell, using recombinant DNA techniques. In particular, the C-terminal part of a protein that ensures anchoring in the cell wall is linked to an enzyme or the functional part of an enzyme, in such a way that the enzyme is localized on or just above the cell surface. In this way immobilized enzymes are obtained on the surface of 55 cells. The linkage is performed at gene level and is characterized in that the structural gene coding for the enzyme is coupled to at least part of a gene encoding an anchor-protein in such a way that in the expression product the enzyme is coupled at its C-terminal end to the C-terminal part of an anchor-protein. The chimeric enzyme is preferably preceded by a signal sequence that ensures efficient secretion of the chimeric protein.

Thus the invention relates to a recombinant polynucleotide comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, said part encoding at least the C-terminal part of

said anchoring protein. The length of the C-terminal part of the anchoring protein may vary. Although the entire structural protein could be used, it is preferred that only a part is used, leading to a more efficient exposure of the enzyme protein in the medium surrounding the cell. The anchoring 5 part of the anchoring protein should preferably be entirely present. As an example, about the C-terminal half of the anchoring protein could be used. Preferably, the polynucleotide further comprises a sequence encoding a signal peptide nucleotide. The signal peptide can be derived from a GPI anchoring protein, \alpha-factor, \alpha-agglutinin, invertase or inulinase, a-amylase of Bacillus, or a proteinase of lactic acid bacteria. The protein capable of anchoring in the cell wall is preferably selected form the group of α-agglutinin, 15 AGA1, FLO1 (flocculation protein) or the Major Cell Wall Protein of lower eukaryotes, or a proteinase of lactic acid bacteria. The polynucleotide of the invention is preferably operably linked to a promoter, preferably a regulatable promoter, especially an inducible promoter.

The invention also relates to a recombinant vector containing the polynucleotide as described above, and to a host cell containing this polynucleotide, or this vector. In a particular case, wherein the protein providing catalytic activity exhibits said catalytic activity when present in a 25 multimeric form, such as may be the case with oxidoreductases, dimerisation or multimerisation of the monomers might be a prerequisite for activity. The vector and/or the host cell can then further comprise a second polynucleotide comprising a structural gene encoding the 30 same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter. 35 to the reusability of the immobilized enzymes. Expression and secretion of the second polynucleotide after expression and secretion of the first polynucleotide will then result in the formation of an active multimer on the exterior of the cell wall. The host cell or microorganism preferably contains the polynucleotide described above, or at least one 40 of said polynucleotides in the case of a combination, integrated in its chromosome.

The present invention relates in particular to lower eukaryotes like yeasts that have very stable cell walls and have proteins that are known to be anchored in the cell wall, e.g. a-agglutinin or the product of gene FLO1. Suitable yeasts belong to the genera Candida, Debaryomyces, Hansenula, Kluyveromyces, Pichia and Saccharomyces. Also fungi, especially Aspergillus, Penicillium and Rhizopus can be used. For certain applications also prokaryotes 50 are applicable.

For yeasts the present invention deals in particular with genes encoding chimeric enzymes consisting of:

- invertase-, the \alpha-agglutinin- or the inulinase genes;
- b. structural genes encoding hydrolytic enzymes such as α-galactosidase, proteases, peptidases, pectinases, pectylesterase, rhamnogalacturonase, esterases and lipases, or non-hydrolytic enzymes such as oxidases; 60
- c. the C-terminus of typically cell wall bound proteins such as α-agglutinin (see reference 4), AGA1 (see reference 5) and FLO1 (see the non-prior published reference 6).

The expression of these genes can be under the control of a constitutive promoter, but more preferred are regulatable,

i.e. repressible or inducible promoters such as the GAL7 promoter for Saccharomyces, or the inulinase promoter for Kluyveromyces or the methanol-oxidase promoter for Hansenula.

Preferably the constructs are made in such a way that the new genetic information is integrated in a stable way in the chromosome of the host cell.

The invention further relates to a host cell, in particular a microorganism, having the chimeric protein described above ensuring secretion of the expression product of the poly- 10 immobilized on its cell wall. It further concerns the use of such microorganisms for carrying out an enzymatic process by contacting a substrate for the enzyme with the microorganism. Such a process may be carried out e.g. in a packed column, wherein the microorganisms may be supported on solid particles, or in a stirred reactor. The reaction may be aqueous or non-aqueous. Where necessary, additives necessary for the performance of the enzyme, e.g. a co-factor, may be introduced in the reaction medium.

After repeated usage of the naturally immobilized enzyme 20 system in processes, the performance of the system may decrease. This is caused either by physical denaturation or by chemical poisoning or detachment of the enzyme. A particular feature of the present invention is that after usage the system can be recovered from the reaction medium by simple centrifugation or membrane filtration techniques and that the thus collected cells can be transferred to a recovery medium in which the cells revive quickly and concomitantly produce the chimeric protein, thus ensuring that the surface of the cells will be covered by fully active immobilized enzyme. This regeneration process is simple and cheap and therefore will improve the economics of enzymic processes and may result in a much wider application of processes based on immobilized enzyme systems.

However, by no means the present invention is restricted

The invention will be illustrated by the following examples without the scope of the invention being limited thereto.

EXAMPLE 1

Immobilized α-Galactosidase/α-Agglutinin on the Surface of S. cerevisiase.

The gene encoding a-agglutinin has been described by Lipke et al. (see reference 4). The sequence of a 6057 bp HindIII insert in pTZ18R, containing the whole AGa1 gene is given in FIG. 1. The coding sequence expands over 650 amino acids, including a putative signal sequence starting at nucleotide 3653 with ATG. The unique NheI site cuts the DNA at position 988 of the given coding sequence within the coding part of amino acid 330, thereby separating the α-agglutinin into an N-terminal and a C-terminal part of about same size.

Through digestion of pUR2968 (see FIG. 2) with NheI/ a. the signal sequence e.g. derived from the α-factor-, the 55 HindIII a 1.4 kb fragment was released, containing the sequence information of the putative cell wall anchor. For the fusion to a-galactosidase the plasmid pSY16 was used, an episomal vector based on YEplac 181, harboring the α-galactosidase sequence preceded by the SUC2 invertase signal sequence and placed between the constitutive PGK promoter and PGK terminator. The Styl site, present in the last nine base-pairs of the open reading frame of the a-galactosidase gene, was ligated to the NheI site of the AGa1 gene fragment. To ensure the in frame fusion, the Styl site was filled in and the 5' overhang of the NheI site was removed, prior to ligation into the Styl/HindIII digested pSY13 (see FIG. 2).

To verify the correct assembly of the new plasmid, the shuttle vector was transformed into E. coli JM109 (recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi ▲(lac-proAB) F' [traD36 proAB* lacl4 lacZ▲M15]) (see reference 7) by the transformation protocol described by Chung et al. (see 5 reference 8). One of the positive clones, designated pUR2969, was further characterized, the DNA isolated and purified according to the Quiagen protocol and subsequently characterized by DNA sequencing. DNA sequencing was mainly performed as described by Sanger et al. (see reference 9), and Hsiao (see reference 10), here with the Sequenase version 2.0 kit from United States Biochemical Company, according to the protocol with T7 DNA polymerase (Amersham International plc) and [35S]dATPαS (Amersham International plc: 370 MBq/ml; 22 TBq/mmol).

This plasmid was then transformed into *S. cerevisiae* strain MT302/1C according to the protocol from Klebe et al. (see reference 11).

Yeast transformants were selected on selective plates, lacking leucine, on with 40 μl (20 mg/ml DMF). X-α-Gal 20 (5-bromo-4-chloro-3-indolyl-α-D-glucose, Boehringer Mannheim) was spread, to directly test for α-galactosidase activity (see reference 12). To demonstrate the expression, secretion, localization and activity of the chimeric protein the following analyses were performed:

1. Expression and Secretion

S. cerevisiae strain MT302/1C was transformed with either plasmid pSY13 containing the α-galactosidase gene of Cyamopsis tetragonoloba or plasmid pUR2969 containing the \alpha-galactosidase/\alpha-agglutinin fusion construct. Dur- 30 ing batch culture \alpha-galactosidase activities were determined for washed cells and growth medium. The results are given in FIG. 3 and FIG. 4. The α-galactosidase expressed from yeast cells containing plasmid pSY13 was almost exclusively present in the growth medium (FIG. 3A), whereas the 35 α-galactosidase-α-agglutinin fusion protein was almost exclusively cell associated (FIG. 4A). Moreover, the immobilized, cell wall-associated, a-galactosidase-aagglutinin fusion enzyme had retained the complete activity over the whole incubation time, while the secreted and 40 released enzyme lost about 90% of the activity after an incubation of 65 hours. This indicates, that the immobilization of the described enzyme into the cell wall of yeast protects the enzyme against inactivation, presumably through proteinases, and thereby increases the stability sig- 45 nificantly. Further insight into the localization of the different gene products was obtained by Western analysis. Therefore, cells were harvested by centrifugation and washed in 10 mM Tris.HCl, pH 7.8; 1 mM PMSF at 0° C. and all subsequent steps were performed at the same tem- 50 perature. Three ml isolation buffer and 10 g of glass beads were added per gram of cells (wet weight). The mixture was shaken in a Griffin shaker at 50% of its maximum speed for 30 minutes. The supernatant was isolated and the glass beads were washed with 1M NaCl and 1 mM PMSF until the 55 washes were clear. The supernatant and the washes were pooled. The cell walls were recovered by centrifugation and were subsequently washed in 1 mM PMSF.

Non-covalently bound proteins or proteins bound through disulphide bridges were released from cell walls by boiling 60 for 5 minutes in 50 mM Tris.HCl, pH 7.8; containing 2% SDS, 100 mM EDTA and 40 mM β-mercaptoethanol. The SDS-extracted cell walls were washed several times in 1 mM PMSF to remove SDS. Ten mg of cell walls (wet weight) were taken up in 20 l 100 mM sodium acetate, pH 65 5.0, containing 1 mM PMSF. To this, 0.5 mU of the β-1,3-glucanase (Laminarase; Sigma L5144) was used as a

source of β -1,3-glucanase) was added followed by incubation for 2 hours at 37° C. Subsequently another 0.5 mU of β -1,3-glucanase was added, followed by incubation for another 2 hours at 37° C.

Proteins were denatured by boiling for 5 minutes preceding Endo-H treatment. Two mg of protein were incubated in 1 ml 50 mM potassium phosphate, pH 5.5, containing 100 mM β-mercaptoethanol and 0.5 mM PMSF with 40 mU Endo-H (Boehringer) for 48 hours at 37° C. Subsequently 20 mU Endo-H were added followed by 24 hours of incubation at 37° C.

Proteins were separated by SDS-PAGE according to Laemmli (see reference 13) in 2.2.-20% gradient gels. The gels were blotted by electrophoretic transfer onto Immobilon polyvinylidene-difluoride membrane (Millipore) as described by Towbin et al. (see reference 14). In case of highly glycosylated proteins a subsequently mild periodate treatment was performed in 50 mM periodic acid, 100 mM sodium acetate, pH 4.5, for several hours at 4° C. All subsequent incubations were carried out at room temperature. The blot was blocked in PBS, containing 0.5% gelatine and 0.5% Tween-20, for one hour followed by incubation for 1 hour in probe buffer (PBS, 0.2% gelatine, 0.1% Tween-20) containing 1:200 diluted serum. The blot was subsequently washed several times in washing buffer (PBS; 0.2% gelatine; 0.5% Tween-20) followed by incubation for 1 hour in probe-buffer containing 125 I-labelled protein A (Amersham). After several washes in washing buffer, the blot was airdried, wrapped in Saran (Dow) and exposed to X-omat S film (Kodak) with intensifying screen at -70° C. An Omnimedia 6cx scanner and the Adobe Photoshop programme were used to quantify the amount of labelled protein. The results of the various protein isolation procedures from both transformants are given in FIG. 5. While for the transformants comprising the pSY13 plasmid the overall mass of the enzyme was localized in the medium, with only minor amounts of enzyme more entrapped than bond in the cell wall (FIG. 5A)—which could completely be removed by SDS extraction—the fusion protein was tightly bound to the cell wall; with only small amounts of α-galactosidase/αagglutinin delivered into the surrounding culture fluid or being SDS extractable. In contrast to the laminarinase extraction of cell walls from cells expressing the free a-galactosidase, where no further liberation of any more enzyme was observed, identical treatment of fusion enzyme expressing cells released the overall bulk of the enzyme. This indicates that the fusion protein is intimately associated with the cell wall glucan in S. cerevisiae, like α-agglutinin, while α-galactosidase alone is not. The subsequently performed EndoH treatment showed a heavy glycosylation of the fusion protein, a result, entirely in agreement with the described extended glycosylation of the C-terminal part of α-agglutinin.

Localization

Immunofluorescent labelling with anti-α-galactosidase serum was performed on intact cells to determine the presence and distribution of α-galactosidase/α-agglutinin fusion protein in the cell wall. Immunofluorescent labelling was carried out without fixing according to Watzele et al. (see reference 15). Cells of OD₅₃₀=2 were isolated and washed in TBS (10 mM Tris.HCl, pH 7.8, containing 140 mM NaCl, 5 mM EDTA and 20 μg/ml cycloheximide). The cells were incubated in TBS+anti-α-galactosidase serum for 1 hour, followed by several washings in TBS. A subsequent incubation was carried out with FITC-conjugated anti-rabbit IgG (Sigma) for 30 minutes. After washing in TBS, cells were taken up in 10 mM Tris.HCl, pH 9.0, containing 1

10

mg/ml p-phenylenediamine and 0.1% azide and were photographed on a Zeiss 68000 microscope. The results of these analysis are given in FIG. 6, showing clearly that the chimeric α -galactosidase/ α -agglutinin is localized at the surface of the yeast cell. Buds of various sizes, even very small ones very uniformly labelled, demonstrates that the fusion enzyme is continuously incorporated into the cell wall throughout the cell cycle and that it instantly becomes tightly linked.

3. Activity

To quantitatively assay α -galactosidase activity, 200 μ l samples containing 0.1M sodium-acetate, pH 4.5 and 10 mM p-nitrophenyl- α -D-galactopyranoside (Sigma) were incubated at 37° C. for exactly 5 minutes. The reaction was 15 stopped by addition of 1 ml 2% sodium carbonate. From intact cells and cell walls, removed by centrifugation and isolated and washed as described, the α -galactosidase activity was calculated using the extinction coefficient of p-nitrophenol of 18.4 cm²/ μ mole at 410 nm. One unit was 20 defined as the hydrolysis of 1 μ mole substrate per minute at 37° C.

TABLE 1

Distribution of free and imm	nobilized a-gr	alactosidas	e activity in					
	α-Galactosidase activity (U/g F.W. cells)							
Expressed protein	Growth medium	Intact cells	Isolated cell walls					
α-galactosidase αGal/αAGG fusion protein	14.7 0.54	0.37 13.3	0.01 10.9					

Transformed MT302/1C cells were in exponential phase (OD $_{530}$ = 2). One unit is defined as the hydrolysis of 1 μ mole of p-nitrophenyl- α -D-galactopyranoside per minute at 37° C.

The results are summarized in Table 1. While the overall majority of α -galactosidase was distributed in the culture 40 fluid, most of the fusion product was associated with the cells, primarily with the cell wall. Taking together the results shown in FIGS. 3 to 6 and in Table 1, it could be calculated that the enzymatic α -galactosidase activity of the chimeric enzyme is as good as that of the free enzyme. Moreover,

N.B. The essence of this EXAMPLE was published during the priority year by M. P. Schreuder et al. (see reference 25).

EXAMPLE 2A

Immobilized Humicola Lipase/α-Agglutinin on the Surface of S. cerevisiae. (inducible expression of immobilized enzyme system)

The construction and isolation of the 1.4 kb Nhel/HindIII fragment containing the C-terminal part of α-agglutinin has been described in EXAMPLE 1. Plasmid pUR7021 contains an 894 bp long synthetically produced DNA fragment encoding the lipase of Humicola (see reference 16 and SEQ ID NO: 7 and 8), cloned into the EcoRI/HindIII restriction sites of the commercially available vector pTZ18R (see FIG. 7). For the proper one-step modification of both the 5' end and the 3' end of the DNA part coding for the mature lipase, the PCR technique can be applied. Therefore the DNA oligonucleotides lipol (see SEQ ID NO: 3) and lipo2 (see SEQ ID NO: 6) can be used as primers in a standard PCR protocol, generating an 826 bp long DNA fragment with an EagI and a HindIII restriction site at the ends, which can be combined with the larger part of the Eagl/HindIII digested pUR2650, a plasmid containing the α-galactosidase gene preceded by the invertase signal sequence as described earlier in this specification, thereby generating plasmid pUR2970A (see FIG. 7).

PCR oligonucleotides for the in-frame linkage of Humicola lipase and the C-terminus of α agglutinin.

a: PCR oligonucleotides for the transition between SUC2 signal sequence and the N-terminus of lipase.

during stationary phase, the activity of the α -galactosidase in the growth medium decreased, whereas the activity of the cell wall associated α -galactosidase α -agglutinin fusion

b: PCR oligonucleotides for the in frame transition between C-terminus of lipase and C-terminal part of α -agglutinin.

remained constant, indicating that the cell associated fusion 65 protein is protected from inactivation or proteolytic degradation.

Through the PCR method a NheI site will be created at the end of the coding sequence of the lipase, allowing the in-frame linkage between the DNA coding for lipase and the

DNA coding for the C-terminal part of α-agglutinin. Plasmid pUR2970A can then be digested with NheI and HindIII and the 1.4 kb Nhel/HindIII fragment containing the C-terminal part of α -agglutinin from plasmid pUR2968 can be combined with the larger part of NheI and HindIII treated 5 plasmid pUR2970A, resulting in plasmid pUR2971A. From this plasmid the 2.2 kb Eagl/HindIII fragment can be isolated and ligated into the Eagl- and HindIII-treated pUR2741, whereby plasmid pUR2741 is a derivative of pUR2740 (see reference 17), where the second EagI restric- 10 tion site in the already inactive Tet resistance gene was deleted through Nrul/Sall digestion. The Sall site was filled in prior to religation. The ligation then results in pUR2972A containing the GAL7 promoter, the invertase signal sequence, the chimeric lipase/\alpha-agglutinin gene, the 2 \(\mu\mathrm{n}\) 15 sequence, the defective Leu2 promoter and the Leu2 gene. This plasmid can be used for transforming S. cerevisiae and the transformed cells can be cultivated in YP medium containing galactose as an inducer without repressing amounts of glucose being present, which causes the expres- 20 sion of the chimeric lipase/a-agglutinin gene.

The expression, secretion, localization and activity of the chimeric lipase/α-agglutinin can be analyzed using similar procedures as given in EXAMPLE 1.

In a similar way variants of Humicola lipase, obtained via 25 rDNA techniques, can be linked to the C-terminal part of α -agglutinin, which variants can have a higher stability during (inter)esterification processes.

EXAMPLE 2B

Immobilized Humicola Lipase/\alpha-Agglutinin on the Surface of S. cerevisiase (inducible expression of immobilized enzyme system)

EXAMPLE 2A describes a protocol for preparing a 35 particular construct. Before carrying out the work it was considered more convenient to use the expression vector described in EXAMPLE 1, so that the construction route given in this EXAMPLE 2B differs on minor points from the construction route given in EXAMPLE 2A and the resulting 40 plasmids are not identical to those described in EXAMPLE 2A. However, the essential gene construct comprising the promoter, signal sequence, and the structural gene encoding the fusion protein are the same in EXAMPLES 2A and 2B.

1. Construction

The construction and isolation of the 1.4 kb Nhel/HindIII fragment encoding the C-terminal part of α-agglutinin cell wall protein has been described in EXAMPLE 1. The plasmid pUR7033 (resembling pUR7021 of EXAMPLE 2A) was made by treating the commercially available vector 50 pTZ18R with EcoRI and HindIII and ligating the resulting vector fragment with an 894 bp long synthetically produced DNA EcoRI/HindIII fragment encoding the lipase of Humicola (see SEQ ID NO: 7 and 8, and reference 16).

For the fusion of the lipase to the C-terminal, cell wall 55 anchor-comprising domain of α -agglutinin, plasmid pUR7033 was digested with Eagl and HindIII, and the lipase coding sequence was isolated and ligated into the Eagl- and HindIII-digested yeast expression vector pSY1 (see reference 27), thereby generating pUR7034 (see FIG. 13). This is 60 a 2 μ m episomal expression vector, containing the α -galactosidase gene described in EXAMPLE 1, preceded by the invertase (SUC2) signal sequence under the control of the inducible GAL7 promoter.

Parallel to this digestion, pUR7033 was also digested with 65 EcoRV and HindIII, thereby releasing a 57 bp long DNA fragment, possessing codons for the last 15 carboxyterminal

amino acids. This fragment was exchanged against a small DNA fragment, generated through the hybridisation of the two chemically synthesized deoxyoligonucleotides SEQ ID NO: 9 and SEQ ID NO: 10. After annealing of both DNA strands, these two oligonucleotides essentially reconstruct the rest of the 3' coding sequence of the initial lipase gene, but additionally introduce downstream of the lipase gene a new Nhel restriction site, followed by a HindIII site in close vicinity, whereby the first three nucleotides of the NheI site form the codon for the last amino acid of the lipase. The resulting plasmid was designated pUR2970B. Subsequently, this construction intermediate was digested with Eagl and Nhel, the lipase encoding fragment was isolated, and, together with the 1.4 kb Nhel/HindIII fragment of pUR2968 ligated into the EagI- and HindIII-cut pSY1 vector. The outcome of this 3-point-ligation was called pUR2972B (see FIG. 14), the final lipolase-α-agglutinin yeast expression

This plasmid was used for transforming S. cerevisiae strain SU10 as described in reference 17 and the transformed cells were cultivated in YP medium containing galactose as the inducer without repressing amounts of glucose being present, which causes the expression of the chimeric lipase/ α -agglutinin gene.

2. Activity

To quantify the lipase activity, two activity measurements with two separate substrates were performed. In both cases, SU10 yeast cells transformed with either plasmid pUR7034 or pSY1 served as control. Therefore, yeast cell transformants containing either plasmid pSY1 or plasmid pUR7034 or plasmid pUR2972B were grown up for 24 h in YNB-glucose medium supplied with histidine and uracil, then diluted 1:10 in YP-medium supplied with 5% galactose, and again cultured. After 24 h incubation at 30° C., a first measurement for both assays was performed.

The first assay applied was the pH stat method. Within this assay, one unit of lipase activity is defined as the amount of enzyme capable of liberating one micromole of fatty acid per minute from a triglyceride substrate under standard assay conditions (30 ml assay solution containing 38 mM olive oil, considered as pure trioleate, emulsified with 1:1 w/w gum arabic, 20 mM calcium chloride, 40 mM sodium chloride, 5 mM Tris, pH 9.0, 30° C.) in a radiometer pH stat apparatus (pHM 84 pH meter, ABU 80 autoburette, TTA 60 titration assembly). The fatty acids formed were titrated with 0.05N NaOH and the activity measured was based on alkali consumption in the interval between 1 and 2 minutes after addition of putative enzyme batch. To test for immobilized lipase activity, 1 ml of each culture was centrifuged, the supernatant was saved, the pellet was resuspended and washed in 1 ml 1M sorbitol, subsequently again centrifuged and resuspended in 200 µl 1M sorbitol. From each type of yeast cell the first supernatant and the washed cells were tested for lipase activity.

A: Lipase activity after 24 h (LU/ml)

	cell bound	culture fluid			
pSY1	5.9	8.8			
pUR7034	24.1	632.0			
pUR2972B-(1)	18.7	59.6			
pUR2972B-(2)	24.6	40.5			

	cell bound	culture fluid	OD660
pSY1	6.4	4,3	-40
pUR7034	215.0	2750.0	⁻⁴⁰
pUR2972B-(1)	37.0	87.0	-40
pUR2972B-(2)	34.0	82.0	-40

13

essentially the same separation procedure was done after 48 hours. Dependent on the initial activity measured, the actual volume of the sample measured deviated between 25 µl and

This series of measurements indicates, that yeast cells 15 comprising the plasmid coding for the lipase-\alpha-agglutinin fusion protein in fact express some lipase activity which is associated with the yeast cell.

An additional second assay was performed to further confirm the immobilization of activity of lipase on the yeast cell surface. Briefly, within this assay, the kinetics of the PNP (=paranitrophenyl) release from PNP-butyrate is determined by measurement of the OD at 400 nm. Therefore, 10 ml cultures containing yeast cells with either pSY1, pUR7034 or pUR2972B were centrifuged, the pellet was resuspended in 4 ml of buffer A (0.1M NaOAc, pH 5.0 and 25 1 mM PMSF), from this 4 ml 500 µl was centrifuged again and resuspended in 500 µl PNB-buffer (20 mM Tris-HCl, pH 9.0, 20 mM CaCl2, 25 mM NaCl), centrifuged once again, and finally resuspended in 400 μ l PNB buffer. This fraction was used to determine the cell bound fraction of lipase.

The remaining 3500 μ l were spun down, the pellet was resuspended in 4 ml A, to each of this, 40 μ l laminarinase (ex molluse, 1.25 mU/µl) was added and first incubated for 3 hours at 37° C., followed by an overnight incubation at 20° C. Then the reaction mixture, still containing intact cells, 35 were centrifuged again and the supernatant was used to determined the amount of originally cell wall bound material released through laminarinase incubation. The final pellet was resuspended in 400 µl PNP buffer, to calculate the still cell associated part. The blank reaction of a defined volume of specific culture fraction in 4 ml assay buffer was determined, and than the reaction was started through addition of 80 μ l of substrate solution (100 mM PNP-butyrate in methanol), and the reaction was observed at 25° C. at 400 nm in a spectrophotometer.

wall was also confirmed through Immunofluorescent labelling with anti-lipolase serum essentially as described in EXAMPLE 1, item 2. Localization.

As can be seen in FIG. 15, the Immunofluorescent stain shows essentially an analogous picture as the α-galactosidase immuno stain, with clearly detectable reactivity on the outside of the cell surface (see FIG. 15 A showing a clear halo around the cells and FIG. B showing a lighter circle at the surface of the cells), but neither in the medium nor in the interior of the cells. Yeast cells expressing The rest of the yeast cultures was further incubated, and 10 pUR2972B, the Humicola lipase-\alpha-agglutinin fusion protein, become homogeneously stained on the surface, indicating the virtually entire irmnobiLization of a chimeric enzyme with an \alpha-agglutinin C-terminus on the exterior of a yeast cell. In the performed control experiment SU10 yeast cells containing plasmid pUR7034 served as a control and here, no cell surface bound reactivity against the applied anti-lipase serum could be detected.

In a similar way variants of Humicola lipase, obtained via rDNA techniques, can be linked to the C-terminal part of a-agglutinin, which variants can have a higher stability during (inter)esterification processes.

EXAMPLE 3

Immobilized Humicola Lipase/a-Agglutinin on the Surface of S. cerevisiae (constitutive expression of immobilized enzyme system)

Plasmid pUR2972 as described in EXAMPLE 2 can be treated with Eagl and HindIII and the about 2.2 kb fragment containing the lipase/ α -agglutinin gene can be isolated. Plasmid pSY16 can be restricted with Eagl and HindIII and between these sites the 2.2 kb fragment containing the lipase/\alpha-agglutinin fragment can be ligated resulting in pUR2973. The part of this plasmid that is involved in the production of the chimeric enzyme is similar to pUR2972 with the exception of the signal sequence. Whereas pUR2972 contains the SUC2-invertase-signal sequence, pUR2973 contains the α-mating factor signal sequence (see reference 18). Moreover the plasmid pUR2973 contains the Leu2 marker gene with the complete promoter sequence, instead of the truncated promoter version of pUR2972.

EXAMPLE 4

Immobilized Geotrichum Lipase/a-Agglutinin on the Surface of S. cerevisiae

The construction and isolation of the 1.4 kb NheI/HindIII fragment comprising the C-terminal part of AGa-1

	cell bound activity*	activity in the medium	laminarinase extract	laminarinase extracted cells	OD660
pSY1	0.001 (116 µl)	0.001	0.028	0.000	2.6
pUR7034	0.293 (220 µl)	0.446	0.076	0.985	2.36
pUR2972B-(1)	0.494 (143 µl)	0.021	0.170	0.208	2.10

*unless otherwise mentioned, the volume of enzyme solution added was 20 μ l

This result positively demonstrates that a significant amount of lipase activity is immobilized on the surface yeast cell, containing plasmid pUR2972B. Here again, incorporation took place in such a way, that the reaction was catalyzed by cell wall inserted lipase of intact cells, indicated into the exterior orientated immobilization. Furthermore, the release of a significant amount of lipase activity after incubation with laminarinase again demonstrates the presumably covalent incorporation of a heterologous enzyme through gene fusion with the C-terminal part of α-agglutinin.

Localization

The expression, secretion, and subsequent incorporation of the lipase-\alpha-agglutinin fusion protein into the yeast cell (α-agglutinin) gene has been described in EXAMPLE 1. For the in-frame gene fusion of the DNA coding for the C-terminal membrane anchor of \alpha-agglutinin to the complete coding sequence of Geotichum candidum lipase B from strain CMICC 335426 (see FIG. 8 and SEQ ID NO: 11 and 12), the plasmid pUR2974 can be used. This plasmid, derived from the commercially available pBluescript II SK plasmid, contains the cDNA coding for the complete G. candidum lipase II on an 1850 bp long EcoRI/XhoI insert (see FIG. 9).

To develop an expression vector for S. cerevisiae with homologous signal sequences, the N-terminus of the mature lipase B was determined experimentally by standard techniques. The obtained amino acid sequence of "Gln-Ala-Pro-Thr-Ala-Val..." is in complete agreement with the cleavage site of the signal peptidase on the G. candidum lipase II (see reference 19).

For the fusion of the mature lipase B to the S. cerevisiae 5 signal sequences of SUC2 (invertase) or a-mating factor (prepro-aMF) on one hand and the in-frame fusion to the 3' part of the AGa1 gene PCR technique can be used. The PCR primer lipo3 (see SEQ ID NO: 13) can be constructed in such a way, that the originally present Eagl site in the 5'-part 10 of the coding sequence (spanning codons 5-7 of the mature protein) will become inactivated without any alteration in the amino acid sequence. To facilitate the subsequent cloning procedures, the PCR primer can further contain a new Eagl site at the 5' end, for the in-frame ligation to SUC2 signal sequence or prepro-aMF sequence, respectively. The corresponding PCR primer lipo4 (see SEQ ID NO: 16) contains an extra Nhel site behind the nucleotides coding for the C-terminus of lipase B, to ensure the proper fusion to the C-terminal part of \alpha-agglutinin.

PCR oligonucleotides for the in frame linkage of G. candidum lipase II to the SUC2 signal sequence and the C-terminal part of α-agglutinin.

a: N-terminal transition to either prepro aMF sequence or SUC2 signal sequence.

The Humicola lipase-α-agglutinin fusion protein coding sequence can be exchanged against the lipase B/α-agglutinin fusion construct described above by digestion of the described vector pUR2973 with Eagl/HindIII, resulting in pUR2976 (see FIG. 9).

EXAMPLE 5

Immobilized Rhizomucor miehei Lipase/a-Agglutinin on the Surface of S. cerevisiae

The construction and isolation of the 1.4 kb Nhel/HindIII fragment encoding the C-terminal part of α -agglutinin has been described in EXAMPLE 1. The plasmid pUR2980 contains a 1.25 kb cDNA fragment cloned into the Smal site of commercially available pUC18, which (synthetically synthesizable) fragment encodes the complete coding sequence of triglyceride lipase of *Rhizomucor miehei* (see reference 20), an enzyme used in a number of processes to interesterify triacylglycerols (see reference 21) or to prepare biosurfactants (see reference 22). Beside the 269 codons of the mature lipase molecule, the fragment also harbours codons for the 24 amino acid signal peptide as well as 70

b: C-terminal fusion to C part of α-agglutinin

amino acids of the propeptide. PCR can easily be applied to

The PCR product with the modified ends can be generated by standard PCR protocols, using instead of the normal Ampli-Taq polymerase the new thermostable VENT polymerase, which also exhibits proofreading activity, to ensure an error-free DNA template. Through digestion of the formerly described plasmid pUR2972 with Eagl (complete) and NheI (partial), the Humicola lipase fragment can be exchanged against the DNA fragment coding for lipase B, thereby generating the final S. cerevisiae expression vector pUR2975 (see FIG. 9).

ensure the proper fusion of the gene fragment encoding the mature lipase to the SUC2 signal sequence or the prepro α-mating factor sequence of *S. cerevisiae*, as well as the in-frame fusion to the described Nhel/HindlII fragment. The following two primers, lipo5 (see SEQ ID NO: 17) and lipo6 (see SEQ ID NO: 20), will generate a 833 bp DNA fragment, which after Proteinase K treatment and digestion with Eagl and NheI can be cloned as an 816 bp long fragment into the Eagl/NheI digested plasmids pUR2972 and pUR2973, respectively (see FIG. 7).

10

These new S. cerevisiae expression plasmids contain the GAL7 promoter, the invertase signal sequence (pUR2981) or the prepro- α -mating factor sequence (pUR2982), the chimeric Rhizomucor miehei lipase/ α -agglutinin gene, the 2 μ m sequence, the defective (truncated) Leu2 promoter and 5 the Leu2 gene. These plasmids can be transformed into S. cerevisiae and grown and analyzed using protocols described in earlier EXAMPLES.

EXAMPLE 6

Immobilized Aspergillus niger Glucose Oxidase/ GPI Anchored Cell Wall Proteins on the Surface of S. cerevisiae

Glucose oxidase (β -D:oxygen 1-oxidoreductase, EC 1.1.3.4) from Aspergillus niger catalyses the oxidation of β -D-glucose to glucono- δ -lactone and the concomitant reduction of molecular oxygen to hydrogen peroxide. The fungal enzyme consists of a homodimer of molecular weight 150,000 containing two tightly bound FAD co-factors. Beside the use in glucose detection kits the enzyme is useful as a source of hydrogen peroxide in food preservation. The gene was cloned from both cDNA and genomic libraries, the single open reading frame contains no intervening sequences and encodes a protein of 605 amino acids (see reference 23).

With the help of two proper oligonucleotides the coding part of the sequence is adjusted in a one-step modifying procedure by PCR in such a way that a fusion gene product will be obtained coding for glucose oxidase and the C-terminal cell wall anchor of the FLO1 gene product or α -agglutinin. Thus, some of the plasmids described in former EXAMPLES can be utilized to integrate the corresponding sequence in-frame between one of the signal sequences used in the EXAMPLES and the NheI/HindIII part of the AGO1 gene.

Since dimerisation of the two monomers might be a prerequisite for activity, in an alternative approach the complete coding sequence for glucose oxidase without the GPI anchor can be expressed in S. cerevisiae transformant which already contains the fusion construct. This can be fulfilled by constitutive expression of the fusion construct containing the GPI anchor with the help of the GAPDH or PGK promoter for example. The unbound not-anchored monomer can be produced by using a DNA construct comprising an inducible promoter, as for instance the GAL7 promoter.

EXAMPLE 7

Process to Convert Raffinose, Stachyose and Similar Sugars in Soy Extracts with α-Galactosidase/α-Agglutinin Immobilized on Yeasts

The yeast transformed with plasmid pUR2969 can be cultivated on large scale. At regular intervals during cultivation the washed cells should be analyzed on the presence of α -galactosidase activity on their surface with methods described in EXAMPLE 1. When both cell density and α -galactosidase activity/biomass reach their maximum, the yeast cells can then be collected by centrifugation and 60 washed. The washed cells can then be added to soy extracts. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration should be above 1 g/l The temperature of the soy extract should be <8° C. to reduce the metabolic activity of the yeast cells. The conversion of raffinose and stachyose can be analyzed with HPLC methods and after 95% conversion of these sugars the yeasts

cells can be removed by centrifugation and their α -galactosidase activity/g biomass can be measured. Centrifugates with a good activity can be used in a subsequent conversion process, whereas centrifugates with an activity of less then 50% of the original activity can be resuscitated in the growth medium and the cells can be allowed to recover for 2 to 4 hours. Thereafter the cells can be centrifuged, washed and subsequently be used in a subsequent conversion process.

EXAMPLE 8

Production of Biosurfactants Using Humicola Lipase/α-Agglutinin Immobilized on Yeasts.

The yeast transformed with plasmid pUR2972 or pUR2973 can be cultivated on large scale. At regular intervals during cultivation the washed cells can be analyzed on the presence of lipase activity on their surface with methods described in EXAMPLE 2. When both cell density and lipase/biomass reache their maximum, the yeast cells can be collected by centrifugation and washed. The washed cells can be suspended in a small amount of water and added to a reactor tank containing a mix of fatty acids, preferably of a chain length between 12-18 carbon atoms and sugars, preferably glucose, galactose or sucrose. The total concentration of the water (excluding the water in the yeast cells) might be below 0.1%. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration is above 1 g/l. The tank has to be kept under an atmosphere of N₂ and CO₂ in order to avoid oxidation of the (unsaturated) fatty acids and to minimize the metabolic activity of the yeasts. The temperature of mixture in the tank should be between 30-60° C., depending on type of fatty acid used. The conversion of fatty acids can be analyzed with GLC methods and after 95% conversion of these fatty acids the yeasts cells can be removed by centrifugation and their lipase activity/g biomass can be measured. Centrifugates with a good activity can be used in a subsequent conversion process, whereas centrifugates with an activity of less then 50% of the original activity can be resuscitated in the growth medium and the cells can be allowed to recover for 2 to 8 hours. Thereafter the cells can be centrifuged again, washed and used in a subsequent conversion process.

EXAMPLE 9

Production of Special Types of Triacylglycerols using *Rhizomucor miehei* Lipase/α-Agglutinin Immobilized on Yeasts.

The yeast transformed with plasmid pUR2981 or pUR2982 can be cultivated on a large scale. At regular intervals during cultivation the washed cells can be analyzed on the presence of lipase activity on their surface with methods described in EXAMPLE 1. When both cell density and lipase/biomass reach their maximum, the yeast cells can be collected by centrifugation and washed. The washed cells can be suspended in a small amount of water and can be added to a reactor tank containing a mix of various triacylglycerols and fatty acids. The total concentration of the water (excluding the water in the yeast cells) might be below 0.1%. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration is above 1 g/l. The tank has to be kept under an atmosphere of N2 and CO2 in order to avoid oxidation of the (unsaturated) fatty acids and to minimize the metabolic activity of the yeasts. The temperature of mixture in the tank should be between

30-70° C., depending on types of triacylglycerol and fatty acid used. The degree of interesterification can be analyzed with GLC/MS methods and after formation of at least 80% of the theoretical value of the desired type of triacylglycerol the yeasts cells can be removed by centrifugation and their lipasc activity/g biomass can be measured. Centrifugates with a good activity can be used in a subsequent conversion process, whereas centrifugates with an activity of less then 50% of the original activity is resuscitated in the growth hours. After that the cells can be centrifuged, washed and used in a subsequent interesterification process.

Baker's yeasts of strain MT302/1C, transformed with either plasmid pSY13 or plasmid pUR2969 (described in EXAMPLE 1) were deposited under the Budapest Treaty at

primers perflo1 (see SEQ ID NO: 23) and perflo2 (see SEQ ID NO: 26) Nhel and HindIII sites can be introduced at both ends of the DNA fragment. In a second step, the 1.4 kb Nhel/HindIII fragment present in pUR2972 (either A or B) containing the C-terminal part of \alpha-agglutinin can be replaced by the 1.9 kb DNA fragment coding for the C-terminal part of the FLO1 protein, resulting in plasmid pUR2990 (see FIG. 12), comprising a DNA sequence encoding (a) the invertase signal sequence (SUC2) preceding (b) medium and the cells should be allowed to recover 2 to 8 10 the fusion protein consisting of (b.1) the lipase of Humicola (see reference 16) followed by (b.2) the C-terminus of FLO1 protein (aa 271-894).

> PCR oligonucleotides for the in frame connection of the genes encoding the Humicola lipase and the C-terminal part of the FLO1 gene product.

```
5'- GAATTC GCT AGC AAT TAT GCT GTC AGT AAC - 3'
primer perflol
                                   FLO1 gene (non-coding strand)
(for the part of the non-coding strand, see SEQ ID NO: 24)
FLO1 coding strand
                         5'-AATAA AATTCGCGTTCTTTTTACG - 3'
                                 primer pcrflo2:
                               3'-TTAAGCGCAAGAAAATGC TTCGAACTCGAG - 5'
                                              HindIII
(for the part of the coding strand, see SEQ ID NO: 25)
```

the Centraalbureau voor Schimmelcultures (CBS) on Jul. 3, 1992 under provisional numbers 330.92 and 329.92, respectively.

EXAMPLE 10

Immobilized Humicola Lipase/FLO1 Fusion on the Surface of S. cerevisiae

Flocculation, defined as "the (reversible) aggregation of dispersed yeast cells into flocs" (see reference 24), is the most important feature of yeast strains in industrial fermentations. Beside this it is of principal interest, because it is a property associated with cell wall proteins and it is a 40 quantitative characteristic. One of the genes associated with the flocculation phenotype in S. cerevisiae is the FLO1 gene. The gene is located at approximately 24 kb from the right end of chromosome I and the DNA sequence of a clone containing major parts of FLO1 gene has very recently been 45 determined (see reference 26). The sequence is given in FIG. 11 and SEQ ID NO: 21 and 22. The cloned fragment appeared to be approximately 2 kb shorter than the genomic copy as judged from Southern and Northern hybridizations, but encloses both ends of the FLO1 gene. Analysis of the 50 DNA sequence data indicates that the putative protein contains at the N-terminus a hydrophobic region which confirms a signal sequence for secretion, a hydrophobic C-terminus that might function as a signal for the attachment of a GPI-anchor and many glycosylation sites, especially in the 55 C-terminus, with 46.6% serine and threonine in the arbitrarily defined C-terminus (aa 271-894). Hence, it is likely that the FLO1 gene product is localized in an orientated fashion in the yeast cell wall and may be directly involved in the process of interaction with neighbouring cells. The 60 cloned FLO1 sequence might therefore be suitable for the immobilization of proteins or peptides on the cell surface by a different type of cell wall anchor.

Recombinant DNA constructs can be obtained, for example by utilizing the DNA coding for amino acids 65 271-894 of the FLO1 gene product, i.e. polynucleotide 811-2682 of FIG. 11. Through application of two PCR

Plasmid pUR2972 (either A or B) can be restricted with NheI (partial) and HindIII and the NheI/HindIII fragment comprising the vector backbone and the lipase gene can be ligated to the correspondingly digested PCR product of the plasmid containing the FLO1 sequence, resulting in plasmid pUR2990, containing the GAL7 promoter, the S. cerevisiae invertase signal sequence, the chimeric lipase/FLO1 gene, the yeast 2 μm sequence, the defective Leu2 promoter and the Leu2 gene. This plasmid can be transformed into S. cerevisiae and the transformed cells can be cultivated in YP medium including galactose as inductor.

The expression, secretion, localization and activity of the chimeric lipase/FLO1 protein can be analyzed using similar procedures as given in Example 1. LITERATURE REFERENCES:

- 1. Monsan, P., Combes, D. (1988) "Enzyme stabilization by immobilization"; in Meth. in Enzymol. Vol 137 584-598.
- 2. Kok, J. (1990) "Genetics of proteolytic systems of lactic acids bacteria" FEMS Microbiol. Rev. 87 15-54.
- 3. Conzelmann, A., Fankhauser, C., Desponds, C. (1990) "Myoinositol gets incorporated into numerous membrane glycoproteins of S. cerevisiae: Incorporation is dependent on phosphomannomutase" (SEC53). EMBO 9 653-661.
- 4. Lipke, P., N., Wojciechowicz, D., Kurjan, J. (1989) "AGa1 is the structural gene for the Saccharomyces cerevisiae a-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating" Mol. Cell. Biol. 9 3155-3165.
- 5. Roy, A., Lu, C. F., Marykwas, D., Lipke, P., Kurja, J. (1991) "The AGA1 gene product is involved in cell surface attachment of the S. cerevisiae cell adhesion glycoprotein a-agglutinin", Mol. Cell. Biol. 11 4196-4206.
- 6. Teunissen, A. W. R. H., van den Berg, J. A., Steensma, H. Y. (1993) "Physical localization of the flocculation gene FLO1 on chromosome I of S. cerevisiae, Yeast 9 (1) 1-10.
- 7. Yanisch Perron, C., Viera, J., Messing, J. (1985) "Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13 mp18 and pUC19 vectors." Gene 33 103-119.

- Chung, C. T., Niemela, S. L., Miller, R. H. (1989) "One step preparation of competent E. coli: Transformation and storage of bacterial cells in the same solution" Proc. Natl. Acad. Sci. USA 86 2172-2175.
- Sanger, F., Nicklen, S., Coulson, A. R. (1977) "DNA sequencing with chain terminating inhibitors" Proc. Natl. Acad. Sci. USA 74 5463-5467.
- Hsiao, K. (1991) "A fast and simple procedure for sequencing double stranded DNA with Sequenase" Nucl. Acids Res. 19 2787.
- Klebe, R. J. J., Harriss, V., Sharp, Z. D., Douglas, M. G. (1983) "A general method for polyethylene glycol induces genetic transformation of bacteria and yeast" Gene 25 333-341.
- 12. Overbeeke, N., Fellinger, A. J., Toonen, M. Y., van Wassenaar, P. D., Verrips, C. T. (1989) "Cloning and 15 nucleotide sequence of the α-galactosidase gene from Cyamopsis tetragonoloba" Plant Mol. Biol. 13 541–550.
- Laemmli, U. K. (1970) "Cleavage of structural proteins during the assembly of heads of bacteriophage T4." Nature 227 680-685.
- Towbin, H. Steahelin, T., Gordon, J. (1979) "Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications" Proc. Natl. Acad. Sci. USA 76 4350-4354.
- Watzele, M., Klis, F., Tanner, W. (1988) "The immunological and molecular characterization of α-agglutinin from S. cerevisiae" EMBO J. 7 1483–1488.
- Boel. E., Huge-Jensen, B., Brown, J. D. (1989) "Humicola lipase and process for the production of recombinant Humicola lipases" EP-A1-0 305 216.
- Verbakel, J. M. A. (1991) "Heterologous gene expression on the yeast Saccharomyces cerevisiae" PhD thesis, Rijksuniversiteit Utrecht, The Netherlands
- Kurjan, J., Herskowitz, I. (1982) "Structure of a yeast Pheromone Gene (MFα): A putative α-Factor precursor contains four tandem copiers of mature α-factor" Cell 30 35 933-943.

- Shimada, Y., Sugihara, A., Tominaga, Y., Iizumi, T., Tsunasawa, S. (1989) "cDNA molecular cloning of Geotrichum candidum lipase" J. Biochem. 106 383-388.
- 20. Boel, E., Huge-Jensen, B., Christensen, M., Thim, L., Fiil, N. (1988) "Rhizomucor miehei Triglyceride Lipase is Synthesized as a Precursor" Lipids, Vol.23, No 7, 701-706.
- Schuch, R., Mukherjee, K. D. (1988) in "World conference on Biotechnology for the fat and oil industry" ISBN 0-935315-21-7, 328-329.
- Kosaric, N., Cairus, W. L., Gray, N. C. C. (editors) (1987) "Biosurfactants and Biotechnology" Marcel Dekker Inc., New York, Vol. 25.
- Frederick, K. R., Tung, J., Emerik, R. S., Masiarz, F. R., Chamberlain, S. H., Vasavada, A., Rosenberg, S. (1990)
 "Glucose oxidase from Aspergillus niger". J. Biol. Chem., Vol. 265, No. 7, 3793-3802.
- Johnston, J. R., Reader, H. P. (1983) "Genetic control of flocculation" in 'Yeast Genetics, Fundamental and applied aspects', Spencer, J. F. T. (Editor), ISBN 0-540-90793-9, p. 205-224.
- Schreuder, M. P., Brekelmans, S., Van den Ende, H., Klis, F. M. (1993) "Targeting of a Heterologous Protein to the Cell Wall of Saccharomyces cerevisiae" Yeast 9 399-409.
- 26. Teunissen, A. W. R. H., Holub, E., Van der Hucht, J., Van Den Berg, J. A., Steensma, H. Y. (1993) "Sequence of the Open reading frame of the FLO1 Gene from Saccharomyces cerevisiae" YEAST 9 423-427.
- Harmsen, M. M., Langedijk, A. C., Van Tuinen, E., Geerse, R. H.; Raue, H. A., Maat, J. (1993) Effect of a pmr1 disruption and different signal sequences on the intracellular processing and secretion of Cyamopsis tetragonoloba α-galactosidase by Saccharomyces cerevisiae Gene 125 115-123.

60

120

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (iii) NUMBER OF SEQUENCES: 26
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6057 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (b) ioroboot. Itmedi
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Saccharomyces cerevisiae
 - (ix) PEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3653..5605
 - (D) OTHER INFORMATION: /function= "sexual agglutinisation" /product= "alpha-agglutinin"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AAGCTTTAGG TAAGGGAGGC AGGGGGAAAA GATACTGAAA TGACGGAAAA CGAGAATATG

GAGCAGGGAG CAACTTTTAG AGCTTTACCC GTTAAAAGGT CAAATCGAGG CTTCCTGCCT

TTGTCTGATT TTAGTAGTAC CGGAAGGTTT ATTACGCCCA AGAACAGTGC TTGAATTGAG 180

TTCTCGGGAC ACGGGAAAGA CAATGGAAGA AAAATTTACA TTCAGTAGCC TTATATATGA	
AATGCTGCCA AGCCACGTCT TTATAAGTAG ATAATGTCCC ATGAGCTGAA CTATGGGAAT	
TTATGACGCA GTTCATTGTA TATATATTAC ATTAACTCTT TAGTTTAACA TCTGAATTGT	
TTTATAAAAT AACTITTTGA ATTTTTTTAT GATCGCTTAG TTAAGTCTAT TATATCAGGT	
TITTTCATTC ATCATAATTG TTCGTTAAAT ATGAGTATAT TTAAATACAG GAATTAGTAT	480
CATTTGCAGT CACGAAAAGG GCCGTTTCAT AGAGAGTTTT CTTAATAAAG TTGAGGGTTT	540
CCGTGATAGT TTTGAGGGGT TGTTTGAACT AGATTTACGC TTACCTTTCA ACTGATTAAT	600
TTTTTCAGCG GGCTTATCAT AATCATCCAT CATAGCAGTC TTTCTGGACT TCGTCGAGGA	660
CTGGCTTTCT GAATTTTGAC GGTCCCTATT AGCTCCAGTT GGAGGAATTG AGTTACCTAC	720
AACTGGCAAG AGGTCTTTGT TTGGATTCAA AATAGGACTT TGTGGTAGCA GTTTGGTTTT	780
ATTCAATCTA AAGATATGAG AAACAGGTTT TAAGTAAATC GATACTATTG TACCAATGTT	840
TAGCTCCAAT TCCTCCAAAA CGGTGGGATC TAATTTTGTG TTCATTTCTA TTAGTGGCAA	900
CTCTCCGTCC AGTACTGATT TTAAAGATTC AAAAGTTATC GCGTTTGATA TACGAGACGT	960
TITCGTTAAT GACAGCAATC TCCAATACAT CAGTGTTTTA TCTCTTAAGT CAGGATTATT	1020
TTCGTGATCG GTGCATCCTT TTAATAAATC CATACAAAGT TCTTCAGTTT CCTTTGTAGG	1080
ATTTCTGATG AAGAATTTTA TIGCTGAGTT CAGAATGGAA AATTGCACTT CTAGCGTCTC	1140
ATTAAACATG TTTGAGGAAA AAACTCTAAA TAACTCCAGG TAGTTTGGAA TTACATCCGA	1200
ATATTGCGTT ATTATCCAGA TCATAGCGTT TTTTGATTCA GGTTCCTGTA CAACTTCAGT	1260
GTGTTTGACT AGTTCTGTTA CGTTTGCTTT AAAATTATTG GGATATTTCC TCAAAATATT	1320
TOTGAAAACC GAAATAATCT CCTGGACGAC ATAATCAACA CCGAATTCTA ACAAATCTAG	1380
TAGCACAGCG ACACAATCGT GTACAGAGTC TTCATCTAGC TTAACAGCGA GATTACCAAT	1440
GGCTCTGACT GATTTCCTTG ACATTTGAAT ATCAATATCT GTAGCATATT GTTCCAACTC	1500
TTCTAGAATT CTTGGTAATG TTTCCTTGTT AGCTAAAAGA TATAAACACT CTAATTTCGT	1560
GTCTTTGATG TATATGGGGT CATTGTACTC GATGAAAAAA TACGAAATGT CTAGCCTGAG	1620
TAGAGATGAC TCCCTACTCA ATAAAAGAAG AATAACGTTT CTTAATACTA AAAATTGTAA	1680
TTCAGGCGGC TTATCTAACA AAGCTATTAC AGAGTTAGAT AGCTTTTCGG CTAGAGTTTC	1740
TTTGATGACG TCAACATAAT TCAACAAGTA CATGATGAAT TTTAAAGAGT TCAACACTAC	1800
GTATGTGTTT ACTTGTTGCA GGTACGGTAA AGCTAGTTCG ATCATTTCAT GGGTATCCAA	1860
ATAATGCTGC GGCACAACCG AAGTCGTCAA AACTTCCAAA ACAGTAGCCT TATTCCACTC	1920
ATTTAATTCG GGTAAAAGTT CTAGCATGTC AAAAGCGAGT TCCAAGGGAA TCCTGAAGGT	1980
TCCATGTTAG CGTTTTTTTC GTGAATGGAA TATAAAGTAT GTAATGCAGC TACAATGACT	2040
TCTGGAGAGC TCGACTGTGC CTTTACAATG TCATGTAGAA TGCTTGATAA CCCCAATACC	2100
CTTTCATGAT CAATTTCATC TAAATCCAAC AGTGCGTAAA TTGCTGTCCT CGTCACTTGT	2160
TCAGGTGGAG ACTTGTGATT TACCAATGAA ATGATACAGT CGAAGGCCTG ATCAGATAGC	2220
	2280
	2340
	2400
CAAAATTTCA AGAGCTCAGA AAACAGAAGG GACATTTCGC CATAGTTTCC TAGAACCAAA	2460
TTGGCGATAA TITTTCTCAG AGCATTITTC CTTCTTGTTA TATTCGATTT AAACTTTTTT	2520
ACTCCAAAAT GTTGCAGATC TGTGACGATT TCATTTGCTT TATATCTGGC AAAAACTTTT	2580

TGATC	GGAC	A TA	AGCG	TAAA	ACG'	TCCT:	ATT A	AATG/	A AGTY	GA A	IGTT	CTTG	C TG	TATTCCC	T 2640
TCTTG	TGCA	G TAG	GATT	AATT	CTG	rttco	CAG (CTG	CGATA	AC T	PTGA:	FACC	C AA	PACTAAA	A 2700
GTTGA	TGAT:	TG/	AACG/	ATCT	CCT	ATTT	CCT C	GCAC	CATT	er re	GAG	GAT	A CCC	GGAAGA	.C 2760
AGAAT	CGCGI	1 TG	PAAT	AAA	ATAC	TTCT	rga 1	'GGC	CTA	LA GI	GATO	CATG	A TT	AAGGAAA	G 2820
GTAAG	rgat <i>i</i>	TGC	ATG	ATG	GGAA	TAGO	CT T	TCGA	ACTI	rg ac	GATT	TAGI	TCC	TTATT	C 2880
TATCC	ATCTA	ATC	CTCC	AAC	TTCA	LATAC	GC C	TTAT	CTAG	ic to	AGAG	CAGI	' ATT	TAATTG	A 2940
GAATA	TAGO	TTA	ATTG	AAA	CCTT	ACTA	AA A	AAGT	GTAT	G GT	TACA	TAAG	ATA	AGGCGT	T 3000
AAGAA	AGTA	TAC	ATAT	GCA	TTAT	TCAT	TA C	CAAG	ACCA	C TA	TGAA	TAGI	' AAT	'ACCATA'	T 3060
TTAGCT	TTTG	AAA	CTCA	TGT	TTTC	TATT	GT G	TTGT	TTCA	IA A	TCCT	CTGT	TAG	GCTCAA	r 3120
TTAGGT	TAAT	TAA	ATTA	AAT	AAAA	ATAT	'AA A	AAAT	AAAG	A AA	GTTT	ATCC	ATC	GGCACC!	r 3180
CAATTO	AATG	GAG	TAAA	CAG	TTTC	AACA	CT G	AGTG	GTGA	A AC	ATTG	AACA	ACT	acatgc:	3240
GTTTCC	CGCC	ACG	AGGC.	AAG	TGTA	GGTC	CT T	TGTC	CATT	T CG	CTTT	GTTT	TGC	AGGTCAT	3300
TGATGA	CCTA	ATT	AGGA	AGG	TAGA	AGCC	GC T	CCAG	CTCA	А ТА	AGGA	AATG	CTA	AGGGTAG	3360
TCGCCT	TTGG	TGT	TTTA	CCA '	TACA	ATGG	CA G	CTTT.	ATGT	C AC	TTCA	TTCT	TCA	GTAACGG	3420
CGCTTA	AATA	TTC	CCAA	AAA (CGTT	ACAA'	TG G	AATT	STTT	G AT	CATG'	TAAC	GAA	ATGCAAT	3480
CTTCTA	AAAA	AAA	AGCCI	ATG :	rgaa:	rcaa.	AA AA	AAGA:	PTCC1	r TT	rage:	ATAC	TAT	AAATATG	3540
CAAAAT	GCCC	TCT	ATTT/	ATT (CTAG	TAAT	CG TO	CAT	CTC	A TA	CTTC	CTT	ATA:	ICAGTC G	3600
CCTCGC	TTAA	TAT	AGTC!	AGC 1	ACAAZ	\AGG)	AA C	ACA	ATTCO	G CC	\GTT1	FTCA		ATG Met 1	3655
TTC AC	r TT	CTC Leu	Lys	ATI	ATI	CTC	TGG Trp	Leu	TTI Phe	TCC Ser	TTC Lev	GCA Ala	Let	GCC Ala	3703
TCT GCT Ser Ala	r ATA a Ile 20	: Asr	ATC	AAC ABD	GAT Asp	ATC Ile	Thr	TTI Phe	TCC Ser	AAT Asn	TTA Leu 30	ı Glu	ATT	ACT Thr	3751
CCA CTC Pro Leu 35	ı Thr	GCA	AAT Asn	AAA Lys	CAA Gln 40	Pro	GAT Asp	CAA Gln	GGT	TGG Trp 45	Thr	GCC	ACT Thr	Phe	3799
GAT TTT Asp Phe 50	AGT Ser	ATT Ile	GCA Ala	GAT Asp 55	Ala	TCT	TCC Ser	ATT	AGG Arg 60	GAG Glu	GGC Gly	GAT Asp	GAA Glu	TTC Phe 65	3847
ACA TTA	TCA Ser	ATG Met	CCA Pro 70	CAT His	GTT Val	TAT Tyr	AGG Arg	ATT Ile 75	AAG Lys	CTA Leu	TTA Leu	AAC Asn	TCA Ser 80	Ser	3895
CAA ACA Gln Thr	GCT Ala	ACT Thr 85	ATT	TCC Ser	TTA Leu	GCG Ala	GAT Asp 90	GGT Gly	ACT Thr	GAG Glu	GCT Ala	TTC Phe 95	AAA Lys	TGC Cys	3943
TAT GTT Tyr Val	TCG Ser 100	CAA Gln	CAG Gln	GCT Ala	GCA Ala	TAC Tyr 105	Leu	TAT Tyr	GAA Glu	AAT Asn	ACT Thr 110	ACT Thr	TTC Phe	ACA Thr	3991
TGT ACT Cys Thr 115	Ala	CAA Gln	AAT Asn	GAC Asp	CTG Leu 120	TCC Ser	TCC Ser	TAT Tyr	AAT Asn	ACG Thr 125	ATT Ile	GAT Asp	GGA Gly	TCC Ser	4039
ATA ACA Ile Thr 130	TTT	TCG Ser	CTA Leu	AAT Asn 135	TTT Phe	AGT Ser	GAT Asp	GGȚ Gly	GGT Gly 140	TCC Ser	AGC Ser	TAT Tyr	GAA Glu	TAT Tyr 145	4087
GAG TTA Glu Leu	GAA Glu	AAC Asn	GCT Ala 150	AAG Lys	TTT Phe	TTC Phe	AAA Lys	TCT Ser 155	GGG Gly	CCA Pro	ATG Met	CTT Leu	GTT Val 160	AAA Lys	4135
CTT GGT	AAT	CAA	ATG	TCA	GAT	GTG	GTG	AAT	TTC	GAT	сст	GCT	GCT	TTT	4183

												-co	ntı	nue	<u>a</u>	
Leu	Gly	/ As:	n Gl 16		t Se	r As	p Va 17		l Ası	n Phe	e As	p Pro	o Al 17		a Phe	,
ACA Thr	GA0	AA: Asi 180	ı Va	T TT l Ph	T CA e Hi	C TC	T GG r Gl; 18:	y Ar	T TC	A ACT	r GG	T TAG y Ty: 190	- G1	T TC y Se	T TTT r Phe	4231
GAA Glu	AGT Ser 195	Ty	CA'	TTC s Le	G GG u Gl	T ATO	t Ty	r TGT r Cys	CC2	A AAC	GG2 1 Gly 205	Ty:	r TT	C CT	G GGT u Gly	4279
GGT Gly 210	ACT Thr	GAC Glu	AAC Ly	G AT	F GA B As ₁ 21:	y Ty	C GAO	C AGT	TCC Ser	AAT Asn 220	Asr	AAT Asn	GTC	C GA' l As _l	TTG Leu 225	4327
GAT Asp	TGT Cys	TCT Ser	TC!	Val	Gli	G GT7	TAT	TCA Ser	TCC Ser 235	Asn	GAT Asp	TTI Phe	AA!	F GAS D Asp 240	TGG Trp	4375
TGG Trp	TTC Phe	CCG	Glr 245	Ser	TAC Ty	AAT Asn	GAT ABÇ	ACC Thr 250	Asn	GCT Ala	GAC Asp	GTC Val	Thi 255	Су	TTT Phe	4423
								qaA							GAA Glu	4471
Met	TTA Leu 275	TGG Trp	GTT Val	AAT Asn	GCA Ala	Leu 280	Gln	TCT Ser	CTA Leu	CCC Pro	GCT Ala 285	Asn	GT# Val	AAC Asn	ACA Thr	4519
ATA Ile 290	GAT Asp	CAT His	GCG Ala	TTA Leu	GAA Glu 295	Phe	CAA Gln	TAC Tyr	ACA Thr	TGC Cys 300	CTT Leu	GAT Asp	ACC Thr	ATA Ile	GCA Ala 305	4567
AAT . Asn	ACT Thr	ACG Thr	TAC Tyr	GCT Ala 310	ACG Thr	CAA Gln	TTC Phe	TCG Ser	ACT Thr 315	ACT Thr	AGG Arg	GAA Glu	TTT	Ile 320	GTT Val	4615
TAT (CAG Gln	GGT Gly	CGG Arg 325	AAC Asn	CTC Leu	GGT Gly	ACA Thr	GCT Ala 330	AGC Ser	GCC Ala	AAA Lys	AGC Ser	TCT Ser 335	TTT Phe	ATC Ile	4663
Ser '	Thr	Thr 340	Thr	Thr	Asp	Leu	Thr 345	AGT Ser	Ile	Asn	Thr	Ser 350	Ala	Tyr	Ser	4711
Thr (Gly 355	Ser	Ile	Ser	Thr	Val 360	Glu	ACA Thr	Gly	Asn	Arg 365	Thr	Thr	Ser	Glu	4759
Val 1 370	Ile	Ser	His	Val	Val 375	Thr	Thr	AGC Se <u>r</u>	Thr	180	Leu	Ser	Pro	Thr	Ala 385	4807
								ACC Thr								4855
Asn 1	Ile	Thr	Val 405	Gly	Thr	Asp	Ile	CAC His 410	Thr	Thr	Ser	Glu	Val 415	Ile	Ser	4903
ASP V	/al	GAA Glu 420	ACC Thr	ATT Ile	AGC Ser	AGA Arg	GAA Glu 425	ACA Thr	GCT Ala	TCG Ser	ACC Thr	GTT Val 430	GTA Val	GCC Ala	GCT Ala	4951
ro T	hr 135	TCA Ser	ACA Thr	ACT Thr	GGA Gly	TGG Trp 440	ACA Thr	GGC Gly	GCT Ala	Met	AAT Asn 445	ACT Thr	TAC Tyr	ATC Ile	CCG Pro	4999
								ACA Thr	Ile.							5047
CT T	CA	rca :	Ala	GTA Val 470	TTT Phe	GAA Glu	ACC Thr	TCA Ser	GAT Asp 475	GCT Ala	TCA Ser	ATT Ile	GTC Val	AAT Asn 480	GTG Val	5095
AC A	CT (GAA .	AAT	ATC	ACG	aat	ACT	GCT (GCT (GTT (CCA	TCT	GAA	GAG	ccc	5143

								_			_	_				
His	Thr	Glu	Asn 485	Ile	Thr	Asn	Thr	Ala 490		Val	Pro	Ser	Glu 495		Pro	
ACT Thr	TTT Phe	GTA Val 500	AAT Asn	GCC Ala	ACG Thr	AGA Arg	AAC Asn 505	Ser	TTA Leu	AAT Asn	TCC	TTC Phe 510	TGC Cys	AGC Ser	AGC Ser	5191
AAA Lys	CAG Gln 515	CCA Pro	TCC Ser	AGT Ser	CCC Pro	TCA Ser 520	TCT Ser	TAT Tyr	ACG Thr	TCT Ser	TCC Ser 525	CCA Pro	CTC Leu	GTA Val	TCG Ser	5239
TCC Ser 530	CTC Leu	TCC Ser	GTA Val	AGC Ser	AAA Lys 535	ACA Thr	TTA Leu	CTA Leu	AGC Ser	ACC Thr 540	AGT Ser	TTT Phe	ACG Thr	CCT Pro	TCT Ser 545	5287
GTG Val	CCA Pro	ACA Thr	TCT Ser	AAT Asn 550	ACA Thr	TAT Tyr	ATC Ile	AAA Lys	ACG Thr 555	GAA Glu	AAT Asn	ACG Thr	GGT Gly	TAC Tyr 560	TTT Phe	5335
GAG Glu	CAC His	ACG Thr	GCT Ala 565	TTG Leu	ACA Thr	ACA Thr	TCT Ser	TCA Ser 570	GTT Val	GGC Gly	CTT Leu	AAT Asn	TCT Ser 575	TIT Phe	AGT Ser	5383
GAA Glu	ACA Thr	GCA Ala 580	CTC Leu	TCA Ser	TCT Ser	CAG Gln	GGA Gly 585	ACG Thr	AAA Lys	ATT Ile	GAC Asp	ACC Thr 590	TTT Phe	TTA Leu	GTG Val	5431
Ser.	TCC Ser 595	TTG Leu	ATC Ila	GCA Ala	TAT Tyr	CCT Pro 600	TCT Ser	TCT Ser	GCA Ala	TCA Ser	GGA Gly 605	AGC Ser	CAA Gln	TTG Leu	TCC Ser	5479
GGT : Gly : 610	ATC Ile	CAA Gln	CAG Gln	Asn :	TTC Phe 615	ACA Thr	TCA Ser	ACT Thr	Ser	CTC Leu 620	ATG Met	ATT Ile	TCA Ser	ACC Thr	TAT Tyr 625	5527
GAA (Glu (GT Sly	AAA Lys	Ala :	TCT . Ser :	ATA Ile	TTT Phe	TTC Phe	Ser	GCT Ala 635	GAG Glu	CTC Leu	GGT :	Ser	ATC Ile 640	ATT Ile	5575
TTT (eu :	Leu 1	ITG Leu : 545	rcg : Ser :	FAC	CTG (Leu 1	TTC Phe 650	TAAA	ACGG	GT A	CTGT	ACAG	T		5622
'AGT	CAT	rg ac	TCG	LAAT	A TA	CGAAI	ATTA	TTG	TTCA	TAA :	rttr	CATC	CT G	GCTC'	ITTTT	5682
TCTI	CAAC	CC A	'AGT'	[AAA]	r GG	ACAG:	TCA	TAT	CTTA	AAC :	rcta:	ATAA:	EA C	TTTT:	CTAGT	5742
CTTA	TCC:	rr ri	rccg1	CTC	CC	GCAG#	TTT	TATO	CATAC	STA ?	rtaa.	ATTT	AT A	rrtr(STTCG	5802
AAAA	AGAJ	AA AA	TTTC	TGAG	CG.	TACC	GCT	CGT	PTCA?	CTA C	CCG	AAGGO	T G	rttc.	agtag	5862
CCAC	TGAT	TT A	GTA	GTAG	ATC	GAAA	LAAT	TTC	ATCA	CA 1	rgaai	AGAGT	T C	GATG	AGAGC	5922
ACTT	TTT	CA AZ	TGCT	TAAC	AGO	CTAAC	CGC	CĂT	CAAT	CAA 1	'GTT	ACGTI	C T	TTC/	ATTCT	5982
CGGC	TACO	T TA	TCTA	ACAA	GAC	GTTI	TAC	TCT	TCAT	TAT C	TCAT	TCA	A T	GAA	GAAC	6042
TAAT	CAA	LA AG	CTT													6057

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 650 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Phe Thr Phe Leu Lys Ile Ile Leu Trp Leu Phe Ser Leu Ala Leu 1 5 10' 15

Ala Ser Ala Ile Asn Ile Asn Asp Ile Thr Phe Ser Asn Leu Glu Ile 20 25

Thr Pro Leu Thr Ala Asn Lys Gln Pro Asp Gln Gly Trp Thr Ala Thr 35 40

_																_
Ph	e As 5	p Ph O	ie S	er	Ile	Ale		p Al	a Se	r Se	er I.	le Ar 6		u Gl	y As	p Glu
Pho 6	e Th	r Le	eu S	er	Met	Pro 70	Hi	s Va	l Ty	r Ai		le Ly 75	s Le	u Le	u As	n Ser 80
Se	Gl:	n Th	ır A	la	Thr 85	Ile	Se	r Le	u Al		ip G1	ly Th	r Gl	u Al	a Ph	e Lys 5
Су	ту	. Va	1 Se	er 00	Gln	Glr	Al	a Al	а Ту 10	r Le 5	u Ty	r Gl	u Ası	n Th		r Phe
Thr	Суг	Th 11	.т А.1 5	la	Gln	Asn	Asj	P Le	u Se 0	r Se	r Ty	r Ası	n Thi	r Il	e Ası	Gly
Ser	130	: Th	r Ph	1e	Ser	Leu	As:	n Ph	e Se	r As	p G1	y Gly		Se	ту	- Glu
Tyr 145	Glu	Le	u Gl	lu .	Asn	Ala 150	Lys	s Ph	e Ph	e Ly	s Se 15	r Gly 5	Pro	Me	: Leu	Val 160
Lys	Leu	Gl	y As	n	Gln 165	Met	Sez	: Ası	Va.	l Va 17		n Phe	a Asp	Pro	Ala 175	
Phe	Thr	Glı	u As 18	n '	Val	Phe	His	Sei	Gly 185	y Ar	g Se	r Thr	Gly	Tyr 190		Ser
Phe	Glu	Ser 195	с Ту 5	rı	His	Leu	Gly	7 Met 200		c Cy	s Pr	o Asn	Gly 205		Phe	Leu
Gly	Gly 210	Thi	r Gl	u 1	Lys	Ile	Asp 215	Туг	Asp	Se	r Se	r Asn 220		Asn	Val	Asp
Leu 225	Asp	Сує	3 Se	r S	Ser	Val 230	Gln	Val	Туг	Sei	235	r Asn 5	Asp	Phe	Asn	Авр 240
Trp	Trp	Phe	Pr		31n 245	Ser	Tyr	Авп	Asp	250		n Ala	Asp	Val	Thr 255	Сув
Phe	Gly	Ser	26	n I	Leu '	Trp	Ile	Thr	Leu 265		Glu	ı Lys	Leu	Туг 270	Asp	Gly
G1u	Met	Leu 275	Tr	ρV	al :	Asn	Ala	Leu 280		Ser	Leu	ı Pro	Ala 285	Asn	Val	Asn
Thr	Ile 290	Asp	Hi	в А	la i	Leu	Glu 295	Phe	Gln	Tyr	Thr	Сув 300	Leu	Asp	Thr	Ile
Ala 305	Asn	Thr	Th	r T	yr i	Ala 310	Thr	Gln	Phe	Ser	Thr 315	Thr	Arg	Glu	Phe	Ile 320
Val	Tyr	Gln	Gly	7 A 3	rg 1 25	Asn	Leu	Gly	Thr	Ala 330	Ser	Ala	Lys	Ser	Ser 335	Phe
Ile	Ser	Thr	Th:	T	hr 1	thr	Asp	Leu	Thr 345	Ser	Ile	Asn	Thr	Ser 350	Ala	Tyr
Ser	Thr	Gly 355	Ser	: 1	le 8	Ser	Thr	Val 360	Glu	Thr	Glý	Asn	Arg 365	Thr	Thr	Ser
Glu	Val 370	Ile	Ser	н	is V	/al	Val 375	Thr	Thr	Ser	Thr	180	Leu	Ser	Pro	Thr
Ala 385	Thr	Thr	Ser	L	eu 1	hr 190	Ile	Ala	Gln	Thr	Ser 395	Ile	Tyr	Ser	Thr	Авр 400
				4	05					410		Thr			415	
Ser	Asp	Val	Glu 420	T	hr I	le :	Ser	Arg	Glu 425	Thr	Ala	Ser	Thr	Val 430	Val	Ala
Ala :	Pro	Thr 435	Ser	T	hr T	hr (Gly	Trp 440	Thr	Gly	Ala	Met	Asn 445	Thr	Tyr	Ile
	450					•	455					Авп 460				
le :	Ser	Ser	Ser	A)	la V 4	al 1 70	ed?	G1u	Thr	Ser	Asp 475	Ala	Ser	Ile		Asn 480

Val His Thr Glu Asn Ile Thr Asn Thr Ala Ala Val Pro Ser Glu Glu 485 \$490\$

Pro Thr Phe Val Asn Ala Thr Arg Asn Ser Leu Asn Ser Phe Cys Ser 500 505 510

Ser Lys Gln Pro Ser Ser Pro Ser Ser Tyr Thr Ser Ser Pro Leu Val 515 520 525

Ser Ser Leu Ser Val Ser Lys Thr Leu Leu Ser Thr Ser Phe Thr Pro
530 540

Ser Val Pro Thr Ser Asn Thr Tyr Ile Lys Thr Glu Asn Thr Gly Tyr 545 550 555 560

Phe Glu His Thr Ala Leu Thr Thr Ser Ser Val Gly Leu Asn Ser Phe 565 570 575

Ser Glu Thr Ala Leu Ser Ser Gln Gly Thr Lys Ile Asp Thr Phe Leu 580 585 590

Val Ser Ser Leu Ile Ala Tyr Pro Ser Ser Ala Ser Gly Ser Gln Leu 595 600 605

Ser Gly Ile Gln Gln Asn Phe Thr Ser Thr Ser Leu Met Ile Ser Thr 610 615 620

Tyr Glu Gly Lys Ala Ser Ile Phe Phe Ser Ala Glu Leu Gly Ser Ile 625 630 635

Ile Phe Leu Leu Leu Ser Tyr Leu Leu Phe 645 650

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer lipol
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GGGGGGGCG AGGTCTCGCA AGATCTGGA

29

- (2) INFORMATION FOR SEQ ID NO: 4: "
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Part non-coding strand lipase
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

TTTGTCCAGG TCTTGCGAGA CCTCTCGACG AAT

33

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

<pre>(vii) IMMEDIATE SOURCE: (B) CLONE: Part coding strand lipase</pre>											
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:											
TTCGGGTTAA TTGGGACATG TCTTTAGTGC GA	32										
(2) INFORMATION FOR SEQ ID NO: 6:											
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear											
(ii) MOLECULE TYPE: DNA (genomic)											
(vii) IMMEDIATE SOURCE: (B) CLONE: primer lipo2											
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:											
CCCCAAGCTT AAGGCTAGCA AGACATGTCC CAATTAACCC											
(2) INFORMATION FOR SEQ ID NO: 7:											
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 894 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear											
(ii) MOLECULE TYPE: DNA (genomic)											
(vi) ORIGINAL SOURCE: (A) ORGANISM: Humicola lanuginosa											
<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 72884 (D) OTHER INFORMATION: /product= "lipase" (ix) FEATURE:</pre>											
(A) NAME/KEY: mat_peptide(B) LOCATION: 72881(D) OTHER INFORMATION: /product= "lipase"											
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:											
GAATTCGTAG CGACGATATG AGGAGCTCCC TTGTGCTGTT CTTTGTCTCT GCGTGGACGG											
CCTTGGCCAC G GCC GAG GTC TCG CAA GAT CTG TTT AAC CAG TTC AAT CTC Ala Glu Val Ser Gln Asp Leu Phe Asn Gln Phe Asn Leu											
1 5 10											
TTT GCA CAG TAT TCT GCT GCC GCA TAC TGC GGA AAA AAC AAT GAT GCC Phe Ala Gln Tyr Ser Ala Ala Ala Tyr Cys Gly Lys Asn Asn Asp Ala 15 20 25	158										
CCA GCT GGT ACA AAC ATT ACG TGC ACG GGA AAT GCC TGC CCC GAG GTA Pro Ala Gly Thr Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro Glu Val 30 45	206										
GAG AAG GCG GAT GCA ACG TTT CTC TAC TCG TTT GAA GAC TCT GGA GTG Glu Lys Ala Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser Gly Val 50 60	254										
GGC GAT GTC ACC GGC TTC CTT GCT CTA GAC AAC ACG AAC AAA TTG ATC Gly Asp Val Thr Gly Phe Leu Ala Leu Asp Asn Thr Asn Lys Leu Ile 65 70 75	302										
GTC CTC TCT TTC CGT GGC TCT CGT TCC ATA GAA AAC TGG ATC GGA AAT Val Leu Ser Phe Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile Gly Asn 80 85 90	350										
CTT AAC TTC GAC TTG AAA GAA ATA AAT GAC ATT TGC TCC GGC TGC AGG Leu Asn Phe Asp Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly Cys Arg	398										

							•	-continued										
	95	5				100					105							
GGA Gly 110	Hie	GAC Asp	GGC Gly	TTC Phe	Thr	Ser	AGC Ser	TGG	AGG Arg	TCT Ser 120	Val	GCC	GAT Asp	ACC The	TTA Leu 125	446		
AGG Arg	Gln	AAG Lye	GTG Val	GAG Glu 130	GAT Asp	GCT	GTG Val	AGG Arg	GAG Glu 135	CAT	CCC Pro	GAC Asp	TAT Tyr	CGC Arg 140		494		
GTG Val	TTT Phe	Thr	GGA Gly 145	CAT	AGC Ser	TTG Leu	GGT Gly	GGT Gly 150	GCA Ala	TTG Leu	GCA Ala	ACT Thr	GTT Val 155	GCC Ala	GGA Gly	542		
GCA Ala	GAC Asp	CTG Leu 160	CGT Arg	GGA Gly	AAT Asn	GGG Gly	TAT Tyr 165	GAC Asp	ATC Ile	GAC Asp	GTG Val	TTT Phe 170	TCA Ser	TAT Tyr	GGC Gly	590		
						AGG Arg 180										638		
ACC Thr 190	GGC Gly	GGT Gly	ACC Thr	CTC Leu	TAC Tyr 195	CGC Arg	ATT Ile	ACC Thr	CAC His	ACC Thr 200	AAT Asn	GAT Asp	ATT Ile	GTC Val	CCT Pro 205	686		
AGA Arg	CTC Leu	CCG Pro	CCG Pro	CGC Arg 210	GAG Glu	TTC Phe	GGT Gly	TAC Tyr	AGC Ser 215	CAT His	TCT Ser	AGC Ser	CCA Pro	GAG Glu 220	TAC Tyr	734		
TGG Trp	ATC Ile	AAA Lys	TCT Ser 225	GGA Gly	ACC Thr	CTT Leu	GTC Val	CCC Pro 230	GTC Val	ACC Thr	CGA Arg	AAC Asn	GAC Asp 235	ATC Ile	GTG Val	782		
AAG Lys	ATA Ile	GAA Glu 240	GGC Gly	ATC Ile	GAT Asp	GCC Ala	ACC Thr 245	GGC Gly	GGC Gly	AAT Asn	AAC Asn	CAG Gln 250	CCT Pro	AAC Asn	ATT Ile	830		
Pro	GAT Asp 255	ATC Ile	CCT Pro	GCG Ala	CAC His	CTA Leu 260	TGG Trp	TAC Tyr	TTC Phe	GGG Gly	TTA Leu 265	ATT Ile	GGG Gly	ACA Thr	TGT Cys	878		
CTT Leu 270	TAGT	GCGA	AG C	TT												894		

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 270 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (*i) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Ala Glu Val Ser Gln Asp Leu Phe Asn Gln Phe Asn Leu Phe Ala Gln 1 15

Tyr Ser Ala Ala Ala Tyr Cys Gly Lys Asn Asn Asp Ala Pro Ala Gly $20 \\ 25 \\ 30$

Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser Gly Val Gly Asp Val 50 55 60

Phe Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile Gly Asn Leu Asn Phe 85 90 95

Asp Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly Cys Arg Gly His Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Gly Phe Thr Ser Ser Trp Arg Ser Val Ala Asp Thr Leu Arg Gln Lys

120 Val Glu Asp Ala Val Arg Glu His Pro Asp Tyr Arg Val Val Phe Thr 130 140 Gly His Ser Leu Gly Gly Ala Leu Ala Thr Val Ala Gly Ala Asp Leu 145 \$150\$Arg Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser Tyr Gly Ala Pro Arg 165 170 175Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr Val Gin Thr Gly Gly 180 185 190 Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile Val Pro Arg Leu Pro 195 200 205 Pro Arg Glu Phe Gly Tyr Ser His Ser Ser Pro Glu Tyr Trp Ile Lys 210 220 Ser Gly Thr Leu Val Pro Val Thr Arg Asn Asp Ile Val Lys Ile Glu 225 230230235 Gly Ile Asp Ala Thr Gly Gly Asn Asn Gln Pro Asn Ile Pro Asp Ile 245 \$250\$Pro Ala His Leu Trp Tyr Phe Gly Leu Ile Gly Thr Cys Leu 260 265 270 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (vii) IMMEDIATE SOURCE: (B) CLONE: primer (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: ATCCCTGCGC ACCTATGGTA CTTCGGGTTA ATTGGGACAT GTCTTGCTAG CCTTA 55 (2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 59 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (vii) IMMEDIATE SOURCE: (B) CLONE: primer (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: AGCTTAAGGC TAGCAAGACA TGTCCCAATT AACCCGAAGT ACCATAGGTG CGCAGGGAT (2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1828 base pairs (B) TYPE: nucleic acid
(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA.

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Geotrichum candidum
- (B) STRAIN: CMICC 335426

	_
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 401731	
(D) OTHER INFORMATION: /product= "lipase"	
<pre>(ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 4096</pre>	
(ix) FEATURE:	
<pre>(A) NAME/KEY: mat_peptide (B) LOCATION: 971728 (D) OTHER INFORMATION: /product= "lipese" /gene= "lipes"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
AATTCGGCAC GAGATTCCTT TGATTTGCAA CTGTTAATC ATG GTT TCC AAA AGC Met Val Ser Lys Ser -19 -15	54
TTT TTT TTG GCT GCG GCG CTC AAC GTA GTG GGC ACC TTG GCC CAG GCC Phe Phe Leu Ala Ala Ala Leu Asn Val Val Gly Thr Leu Ala Gln Ala -10 -5 1	02
CCC ACG GCC GTT CTT AAT GGC AAC GAG GTC ATC TCT GGT GTC CTT GAG Pro Thr Ala Val Leu Asn Gly Asn Glu Val Ile Ser Gly Val Leu Glu 5 10 15	50
GGC AAG GTT GAT ACC TTC AAG GGA ATC CCA TTT GCT GAC CCT CCT GTT Gly Lys Val Asp Thr Phe Lys Gly Ile Pro Phe Ala Asp Pro Pro Val 20 25 30	98
GGT GAC TTG CGG TTC AAG CAC CCC CAG CCT TTC ACT GGA TCC TAC CAG Gly Asp Leu Arg Phe Lys His Pro Gln Pro Phe Thr Gly Ser Tyr Gln 35 40 45 50	46
GGT CTT AAG GCC AAC GAC TTC AGC TCT GCT TGT ATG CAG CTT GAT CCT Gly Leu Lys Ala Asn Asp Phe Ser Ser Ala Cys Met Gln Leu Asp Pro 55 60 65	94
GGC AAT GCC TIT TCT TTG CTT GAC AAA GTA GTG GGC TTG GGA AAG ATT Gly Asn Ala Phe Ser Leu Leu Asp Lys Val Val Gly Leu Gly Lys Ile 70 75 80	42
CTT CCT GAT AAC CTT AGA GGC CCT CTT TAT GAC ATG GCC CAG GGT AGT Leu Pro Asp Asn Leu Arg Gly Pro Leu Tyr Asp Met Ala Gln Gly Ser 95 90 95	90
GTC TCC ATG AAT GAG GAC TGT CTC TAC CTT AAC GTT TTC CGC CCC GCT Val Ser Met Asn Glu Asp Cys Leu Tyr Leu Asn Val Phe Arg Pro Ala 100 105 110	38
GGC ACC AAG CCT GAT GCT AAG CTC CCC GTC ATG GTT TGG ATT TAC GGT Gly Thr Lys Pro Asp Ala Lys Leu Pro Val Met Val Trp Ile Tyr Gly 125 120 125	
GGT GCC TTT GTG TTT GGT TCT TCT GCT TCT T	14
GTC AAG GAG AGT GTG GAA ATG GGC CAG CCT GTT GTG TTT GTT TCC ATC Val Lys Glu Ser Val Glu Met Gly Gln Pro Val Val Phe Val Ser Ile 150 155 160	2
AAC TAC CGT ACC GGC CCC TAT GGA TTC TTG GGT GGT GAT GCC ATC ACC Asn Tyr Arg Thr Gly Pro Tyr Gly Phe Leu Gly Gly Asp Ala Ile Thr 165 170 175	0
GCT GAG GGC AAC ACC AAC GCT GGT CTG CAC GAC CAG CGC AAG GGT CTC Ala Glu Gly Asn Thr Asn Ala Gly Leu His Asp Gln Arg Lys Gly Leu 180 185 190	8
GAG TGG GTT AGC GAC AAC ATT GCC AAC TTT GGT GGT GAT CCC GAC AAG Glu Trp Val Ser Asp Asn Ile Ala Asn Phe Gly Gly Asp Pro Asp Lys 195 200 205 210	6
GTC ATG ATT TTC GGT GAG TCC GCT GGT GCC ATG AGT GTT GCT CAC CAG 77 Val Met Ile Phe Gly Glu Ser Ala Gly Ala Met Ser Val Ala His Gln 215 220 225	4

.

-continued CTT GTT GCC TAC GGT GGT GAC AAC ACC TAC AAC GGA AAG CAG CTT TTC 822 Leu Val Ala Tyr Gly Gly Asp Asn Thr Tyr Asn Gly Lys Gln Leu Phe CAC TCT GCC ATT CTT CAG TCT GGC GGT CCT CTT CCT TAC TTT GAC TCT His Ser Ala Ile Leu Gln Ser Gly Gly Pro Leu Pro Tyr Phe Asp Ser 245 870 ACT TCT GTT GGT CCC GAG AGT GCC TAC AGC AGA TTT GCT CAG TAT GCC Thr Ser Val Gly Pro Glu Ser Ala Tyr Ser Arg Phe Ala Gln Tyr Ala 918 GGA TGT GAC ACC AGT GCC AGT GAT AAT GAC ACT CTG GCT TGT CTC CGC 966 Gly Cys Asp Thr Ser Ala Ser Asp Asn Asp Thr Leu Ala Cys Leu Arg 275 280 285 290 AGC AAG TCC AGC GAT GTC TTG CAC AGT GCG CAG AAC TCG TAT GAT CTT 1014 Ser Lys Ser Ser Asp Val Leu His Ser Ala Gln Asn Ser Tyr Asp Leu 295 300 305 300 AAG GAC CTG TTT GGT CTG CTC CCT CAA TTC CTT GGA TTT GGT CCC AGA Lys Asp Leu Phe Gly Leu Leu Pro Gln Phe Leu Gly Phe Gly Pro Arg 1062 CCC GAC GGC AAC ATT ATT CCC GAT GCC GCT TAT GAG CTC TAC CGC AGC Pro Asp Gly Asn Ile Ile Pro Asp Ala Ala Tyr Glu Leu Tyr Arg Ser 325 GGT AGA TAC GCC AAG GTT CCC TAC ATT ACT GGC AAC CAG GAG GAT GAG 1158 Gly Arg Tyr Ala Lys Val Pro Tyr Ile Thr Gly Asn Gln Glu Asp Glu GGT ACT ATT CTT GCC CCC GTT GCT ATT AAT GCT ACC ACT ACT CCC CAT 1206 Gly Thr Ile Leu Ala Pro Val Ala Ile Asn Ala Thr Thr Thr Pro His GTT AAG AAG TGG TTG AAG TAC ATT TGT AGC CAG GCT TCT GAC GCT TCG 1254 Val Lys Lys Trp Leu Lys Tyr Ile Cys Ser Gln Ala Ser Asp Ala Ser 380 CTT GAT CGT GTT TTG TCG CTC TAC CCC GGC TCT TGG TCG GAG GGT TCA 1302 Leu Asp Arg Val Leu Ser Leu Tyr Pro Gly Ser Trp Ser Glu Gly Ser CCA TTC CGC ACT GGT ATT CTT AAT GCT CTT ACC CCT CAG TTC AAG CGC Pro Phe Arg Thr Gly Ile Leu Ana Ala Leu Thr Pro Gln Phe Lys Arg 1350 ATT GCT GCC ATT TTC ACT GAT TTG CTG TTC CAG TCT CCT CGT CGT GTT Ile Ala Ala Ile Phe Thr Asp Leu Leu Phe Gln Ser Pro Arg Arg Val 420 425 430 ATG CTT AAC GCT ACC AAG GAC GTC AAC CGC TGG ACT TAC CTT GCC ACC 1446 Met Leu Asn Ala Thr Lys Asp Val Asn Arg Trp Thr Tyr Leu Ala Thr CAG CTC CAT AAC CTC GTT CCA TIT TTG GGT ACT TTC CAT GGC AGT GAT 1494 Gln Leu His Asn Leu Val Pro Phe Leu Gly Thr Phe His Gly Ser Asp CTT CTT TTT CAA TAC TAC GTG GAC CTT GGC CCA TCT TCT GCT TAC CGC Leu Leu Phe Gln Tyr Tyr Val Asp Leu Gly Pro Ser Ala Tyr Arg . 470 475 480 1542 CGC TAC TTT ATC TCG TTT GCC AAC CAC CAC CAC CCC AAC GTT GGT ACC ARG Tyr Phe Ile Ser Phe Ala Asn His His Asp Pro Asn Val Gly Thr 485 490 495 1590

GAG GGA ATC TCG AAC TTT GAG TCT GAC GTT ACT CTC TTC GGT TAATCCCATT 1738
Glu Gly Ile Ser Asn Phe Glu Ser Asp Val Thr Leu Phe Gly
535 540 545

1638

AAC CTC CAA CAG TGG GAT ATG TAC ACT GAT GCA GGC AAG GAG ATG CTT Asn Leu Gln Gln Trp Asp Met Tyr Thr Asp Ala Gly Lys Glu Met Leu 500 505 510

CMG ATT CAT ATG ATT GGT AAC TCT ATG AGA ACT GAC GAC TTT AGA ATC Gln lle His Met Ile Gly Asn Ser Met Arg Thr Asp Asp Phe Arg Ile 515 520 525 530

TAGCAAGTTT TGTGTATTTC AAGTATACCA GTTGATGTAA TATATCAATA GATTACAAAA 1798
TAATTAGTGA AAAAAAAAAA AAAAAAAAAC 1828

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 563 amino acids
 - (B) TYPE: amino acio
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Met Val Ser Lys Ser Phe Phe Leu Ala Ala Ala Leu Asn Val Val Gly -19 -15 -10

Thr Leu Ala Gln Ala Pro Thr Ala Val Leu Asn Gly Asn Glu Val Ile 1 5 $$

Ser Gly Val Leu Glu Gly Lys Val Asp Thr Phe Lys Gly Ile Pro Phe 15 20 25

Ala Asp Pro Pro Val Gly Asp Leu Arg Phe Lys His Pro Gln Pro Phe 30 40 45

Thr Gly Ser Tyr Gln Gly Leu Lys Ala Asn Asp Phe Ser Ser Ala Cys 50 55 60

Met Gln Leu Asp Pro Gly Asn Ala Phe Ser Leu Leu Asp Lys Val Val 65 70 75

Gly Leu Gly Lys Ile Leu Pro Asp Asn Leu Arg Gly Pro Leu Tyr Asp $80 \hspace{1cm} 85 \hspace{1cm} 90 \hspace{1cm}$

Met Ala Gln Gly Ser Val Ser Met Asn Glu Asp Cys Leu Tyr Leu Asn 95 \$100\$

Val Phe Arg Pro Ala Gly Thr Lys Pro Asp Ala Lys Leu Pro Val Met 110 115 120 120

Val Trp Ile Tyr Gly Gly Ala Phe Val Phe Gly Ser Ser Ala Ser Tyr 130 $$135\$

Pro Gly Asn Gly Tyr Val Lys Glu Ser Val Glu Met Gly Gln Pro Val 145 \$150\$

Val Phe Val Ser Ile Asn Tyr Arg Thr Gly Pro Tyr Gly Phe Leu Gly 160 165 170

Gly Asp Ala Ile Thr Ala Glu Gly Asm Thr Asn Ala Gly Leu His Asp 175 180 185

Gln Arg Lys Gly Leu Glu Trp Val Ser Asp Asn Ile Ala Asn Phe Gly 190 195 200 205

Gly Asp Pro Asp Lys Val Met Ile Phe Gly Glu Ser Ala Gly Ala Met 210 215 220

Ser Val Ala His Gln Leu Val Ala Tyr Gly Gly Asp Asn Thr Tyr Asn 225 230 235

Gly Lys Gln Leu Phe His Ser Ala Ile Leu Gln Ser Gly Gly Pro Leu 240 245 250

Pro Tyr Phe Asp Ser Thr Ser Val Gly Pro Glu Ser Ala Tyr Ser Arg 255 260 265

Phe Ala Gln Tyr Ala Gly Cys Asp Thr Ser Ala Ser Asp Asn Asp Thr 270 275275

Leu Ala Cys Leu Arg Ser Lys Ser Ser Asp Val Leu Hie Ser Ala Gln 290 295 300

Asn Ser Tyr Asp Leu Lys Asp Leu Phe Gly Leu Leu Pro Gln Phe Leu 305 310 315

Gly Phe Gly Pro Arg Pro Asp Gly Asn Ile Ile Pro Asp Ala Ala Tyr 325

Glu Leu Tyr Arg Ser Gly Arg Tyr Ala Lys Val Pro Tyr Ile Thr Gly 335

Asn Gln Glu Asp Glu Gly Thr Ile Leu Ala Pro Val Ala Ile Asn Ala 355

Thr Thr Thr Pro His Val Lys Lys Trp Leu Lys Tyr Ile Cys Ser Gln 370

Ala Ser Asp Ala Ser Leu Asp Arg Val Leu Ser Leu Tyr Pro Gly Ser 385

Trp Ser Glu Gly Ser Pro Phe Arg Thr Gly Ile Leu Asn Ala Leu Thr 400

Pro Gln Phe Lys Arg Ile Ala Ala Ile Phe Thr Asp Leu Leu Phe Gln 415

Ser Pro Arg Arg Val Met Leu Asn Ala Thr Lys Asp Val Asn Arg Trp 430

Thr Tyr Leu Ala Thr Gln Leu His Asn Leu Val Pro Phe Leu Gly Thr 450

Phe His Gly Ser Asp Leu Leu Phe Gln Tyr Tyr Val Asp Leu Gly Pro
465 470 475

Ser Ser Ala Tyr Arg Arg Tyr Phe Ile Ser Phe Ala Asn His His Asp 480 485 490

Pro Asn Val Gly Thr Asn Leu Gln Gln Trp Asp Met Tyr Thr Asp Ala 495 505

Asp Asp Phe Arg Ile Glu Gly Ile Ser Asn Phe Glu Ser Asp Val Thr 530 535 540

Leu Phe Gly

- (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer lipo3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GGGGGGGCG CGCAGGCCCC AAGGCGGTCT CTCAAT

36

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Part non-coding strand lipaseII
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

ATTGAGAGAC CGCCGTGGGG CCTGGGCCAG

(2) INFO	RMATION FOR SEQ ID NO: 15:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vii)	IMMEDIATE SOURCE: (B) CLONE: Part coding strand lipaseII	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
CAAACTTT	GA GACTGACGTT AATCTCTACG GTTAAAAC	38
(2) INFO	RMATION FOR SEQ ID NO: 16:	
(i)	SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 32 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
,,,,		
	MOLECULE TYPE: DNA (genomic)	
(*11)	IMMEDIATE SOURCE: (B) CLONE: primer lipo4	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
CCCCGCTAC	SC ACCGTAGAGA TTAACGTCAG TC	32
(2) INFOR	RMATION FOR SEQ ID NO: 17:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vii)	IMMEDIATE SOURCE: (B) CLONE: primer lipo5	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
cccccccc	G CGAGCATTGA TGGTGGTATC	30
(2) INFOR	MATION FOR SEQ ID NO: 18:	
(±)	SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vii)	IMMEDIATE SOURCE:	
	(B) CLONE: Part non-coding strand lipase	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
GATACCACG	A TCAATGCT	18
(2) INFOR	MATION FOR SEQ ID NO: 19:	
(i)	SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18 base pairs	
	(B) TYPE: nueleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vii) IMMEDIATE SOURCE: (B) CLONE: Part coding strand lipase</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
AACACAGGCC TCTGTACT	18
(2) INFORMATION FOR SEQ ID NO: 20:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vii) IMMEDIATE SOURCE: (B) CLONE: primer lipo6	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
CCGCGCTAGC AGTACAGAGG CCTGTGTT	28
(2) INFORMATION FOR SEQ ID NO: 21:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2685 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) ORIGINAL SOURCE:(A) ORGANISM: Saccharomyces cerevisiae	
(vii) IMMEDIATE SOURCE: (B) CLONE: pYY105	
(ix) FEATURE:	
(A) NAME/KEY: CDS (B) LOCATION: 12685	
(D) OTHER INFORMATION: /product= "Flocculation protein nFLO1"	"/gene=
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
ATG ACA ATG CCT CAT CGC TAT ATG TTT TTG GCA GTC TTT ACA CTT CTG Met Thr Met Pro His Arg Tyr Met Phe Leu Ala Val Phe Thr Leu Leu 1 5 10 15	48
GCA CTA ACT AGT GTG GCC TCA GGA GCC ACA GAG GCG TGC TTA CCA GCA	96
Ala Leu Thr Ser Val Ala Ser Gly Ala Thr Glu Ala Cys Leu Pro Ala 20 25 30	
GGC CAG AGG AAA AGT GGG ATG AAT ATA AAT TTT TAC CAG TAT TCA TTG Gly Gln Arg Lys Ser Gly Met Asn Ile Asn Phe Tyr Gln Tyr Ser Leu 35 40	144
AAA GAT TCC TCC ACA TAT TCG AAT GCA GCA TAT ATG GCT TAT GGA TAT	192
Lys Asp Ser Ser Thr Tyr Ser Asn Ala Ala Tyr Met Ala Tyr Gly Tyr 50 55 60	•24
GCC TCA AAA ACC AAA CTA GGT TCT GTC GGA GGA CAA ACT GAT ATC TCG	240
Ala Ser Lys Thr Lys Leu Gly Ser Val Gly Gly Gln Thr Asp Ile Ser 65 70	
ATT GAT TAT AAT ATT CCC TGT GTT AGT TCA TCA GGC ACA TTT CCT TGT Ile Asp Tyr Asn Ile Pro Cys Val Ser Ser Ser Gly Thr Phe Pro Cys 85 90 95	288
CCT CAA GAA GAT TCC TAT GGA AAC TGG GGA TGC AAA GGA ATG GGT GCT	336
Pro Gln Glu Asp Ser Tyr Gly Asn Trp Gly Cys Lys Gly Met Gly Ala 100 105 . 110	336

	 						 con	tin	ued	
		Ser			TAC Tyr					384
					ACC Thr					432
					ACA Thr					480
					GGT Gly					528
					TCA Ser 185					576
					CCA Pro					624
					CCA Pro					672
					ATT					720
					GGG Gly					768
					GTC Val 265					816
					GAA Glu					864
5er					GTC Val					912
					AGA Arg					960
					ACT Thr					1008
					ACC Thr 345					1056
ACT Thr					ACC Thr					1104
					TTC Phe					1152
ACC Thr 385					CAA Gln	Thr 395				1200
GTT Val										1248
CCA Pro										1296

.

												·con	tin	ued		
	GGA Gly		Asn												AAA Lys	1344
	CCA Pro 450														GGA Gly	1392
	ATC Ile															1440
	CCT Pro															1488
Ser	GTC Val	Thr	Ser 500	Ser	Leu	Phe	Thr	Ser 505	Ser	Pro	Val	Ile	Ser 510	Ser	Ser	1536
Val	ATT Ile	Ser 515	Ser	Ser	Thr	Thr	Thr 520	Ser	Thr	Ser	Ile	Phe 525	Ser	Glu	Ser	1584
Ser	AAA Lys 530	Ser	Ser	Val	Ile	Pro 535	Thr	Ser	Ser	Ser	Thr 540	Ser	Gly	Ser	Ser	1632
Glu 545	AGC Ser	Glu	Thr	Ser	Ser 550	Ala	Gly	Ser	Val	Ser 555	Ser	Ser	Ser	Phe	Ile 560	1680
Ser	TCT	Glu	Ser	Ser 565	Lys	Ser	Pro	Thr	Tyr 570	Ser	Ser	Ser	Ser	Leu 575	Pro	1728
Leu	GTT Val GCT	Thr	Ser 580	Ala	Thr	Thr	Ser	Gln 585	Glu	Thr	Ala	Ser	Ser 590	Leu	Pro	1776
Pro	Ala	Thr 595	Thr	Thr	Lys	Thr	Ser 600	Glu	Gln	Thr	Thr	Leu 605	Val	Thr	Val	1872
Thr	Ser 610	Сув	Glu	Ser	His	Val 615	Сув	Thr	Glu	Ser	11e 620	Ser	Pro	Ala	Ile	1920
Val 625	Ser	Thr	Ala	Thr	Val 630	Thr	Val	Ser	Gly	Val 635	Thr	Thr	Glu	Tyr	Thr 540	1968
Thr	Trp	Сув	Pro	Ile 645	Ser	Thr	Thr	Glu	Thr 650	Thr	Lys	Gln	Thr	Lys 655	Gly	2016
Thr	Thr	Glu	Gln 660	Thr	Thr	Glu	Thr	Thr 665	Lys	Gln	Thr	Thr	Val 670	Val	Thr	2064
Ile	Ser	Ser 675	Сув	Glu	Ser	Авр	Val 680	Cys	Ser	Lys	Thr	Ala 685	Ser	Pro	Ala	2112
Ile	Val 690	Ser	Thr	Ser	Thr	Ala 695	Thr	Ile	Asn	Gly	Val 700	Thr	Thr	Glu	Tyr	2160
Thr 705	Thr	Trp	Сув	Pro	11e 710	Ser	Thr	Thr	Glu	Ser 715	Arg	Gln	Gln	Thr	Thr 720	2208
Leu	Val	Thr	Val	Thr 725	Ser	Сув	Glu	Ser	Gly 730	Val	Сув	Ser	Glu	Thr 735	Ala	2256
	Pro															

G GTC								2304
TCT Ser 770								2352
GCT Ala								2400
 GGA Gly	 	 		 				2448
TAAT Asn								2496
AGC Ser								2544
ACA Thr 850								2592
 GCA Ala								2640
 TAT Tyr	 	 	 	 	 		TAA	2685

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 894 amino acids(B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Met Thr Met Pro His Arg Tyr Met Phe Leu Ala Val Phe Thr Leu Leu 1 5 10 15

Ala Leu Thr Ser Val Ala Ser Gly Ala Thr Glu Ala Cys Leu Pro Ala 20 $2\overline{5}$ 30

Gly Gln Arg Lys Ser Gly Met Asn Ile Asn Phe Tyr Gln Tyr Ser Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Lys Asp Ser Ser Thr Tyr Ser Asn Ala Ala Tyr Met Ala Tyr Gly Tyr $50 \\ 0 \\ 0 \\ 0$

Ala Ser Lys Thr Lys Leu Gly Ser Val Gly Gly Gln Thr Asp Ile Ser 65 70 75 80

Ile Asp Tyr Asn Ile Pro Cys Val Ser Ser Ser Gly Thr Phe Pro Cys 85 90 95

Pro Gln Glu Asp Ser Tyr Gly Asn Trp Gly Cys Lys Gly Met Gly Ala 100 105 110

Cys Ser Asn Ser Gln Gly Ile Ala Tyr Trp Ser Thr Asp Leu Phe Gly 115 120 125

Phe Tyr Thr Thr Pro Thr Asn Val Thr Leu Glu Met Thr Gly Tyr Phe 130 140

Leu Pro Pro Gln Thr Gly Ser Tyr Thr Phe Lys Phe Ala Thr Val Asp 145 150 155

Asp Ser Ala Ile Leu Ser Val Gly Gly Ala Thr Ala Phe Asn Cys Cys

Ala	Gln	Gln	_,	165					170					175	
Ala	Gln	Gln													
			180	Pro	Pro	Ile	Thr	Ser 185	Thr	Asn	Phe	Thr	Ile 190	Asp	Gly
Ile	Lys	Pro 195	Trp	Gly	Gly	Ser	Leu 200	Pro	Pro	Asn	Ile	Glu 205	Gly	Thr	Val
Tyr	Met 210	Tyr	Ala	Gly	Tyr	Tyr 215	Tyr	Pro	Met	Lys	Val 220	Val	Tyr	Ser	Asn
Ala 225	Val	Ser	Trp	Gly	Thr 230	Leu	Pro	Ile	Ser	Val 235	Thr	Leu	Pro	Asp	Gly 240
Thr	Thr	Val	Ser	Asp 245	Asp	Phe	Glu	Gly	Tyr 250	Val	Tyr	Şer	Phe	Asp 255	Asp
Авр	Leu	Ser	Gln 260	Ser	Asn	Сув	Thr	Val 265	Pro	Asp	Pro	Ser	Asn 270	Tyr	Ala
Val	Ser	Thr 275	Thr	Thr	Thr	Thr	Thr 280	Glu	Pro	Trp	Thr	Gly 285	Thr	Phe	Thr
Ser	Thr 290	Ser	Thr	Glu	Met	Thr 295	Thr	Val	Thr	Gly	Thr 300	Asn	Gly	Val	Pro
Thr 305	Asp	Glu	Thr	Val	Ile 310	Val	Ile	Arg	Thr	Pro 315	Thr	Ser	Glu	Gly	Leu 320
Ile	Ser	Thr	Thr	Thr 325	Glu	Pro	Trp	Thr	Gly 330	Thr	Phe	Thr	Ser	Thr 335	Ser
Thr	Glu	Val	Thr 340	Thr	Ile	Thr	Gly	Thr 345	Asn	Gly	Gln	Pro	Thr 350	Asp	Glu
Thr	Val	Ile 355	Val	Ile	Arg	Thr	Pro 360	Thr	Ser	Glu	Gly	Leu 365	Ile	Ser	Thr
Thr	Th <i>r</i> 370	Glu	Pro	Trp	Thr	Gly 375	Thr	Phe	Thr	Ser	Thr 380	Ser	Thr	Glu	Met
Thr 385	Thr	Val	Thr	Gly	Thr 390	Asn	Gly	Gln	Pro	Thr 395	Авр	Glu	Thr	Val	11e 400
Val	Ile	Arg	Thr	Pro 405	Thr	Ser	Glu	Gly	Leu 410	Val	Thr	Thr	Thr	Thr 415	Glu
			420		Phe			425					430		
		435			Leu		440					445			
	450				Ile	455					460				
465					11e 470					475					480
				485	Thr				490					495	
			500					505					510		Ser
		515					520					525			Ser
	530					535					540				Ser
545					550				•	· 555					11e 560
				565					570					575	
Leu	Val	Thr	Ser 580		The	Thr	Ser	Gln 585		Thr	Ala	Ser	Ser 590	Leu	Pro

Pro Ala Thr Thr Lys Thr Ser Glu Gln Thr Thr Leu Val Thr Val Thr Ser Cys Glu Ser His Val Cys Thr Glu Ser Ile Ser Pro Ala Ile 610 620 Val Ser Thr Ala Thr Val Thr Val Ser Gly Val Thr Thr Glu Tyr Thr 625 630 635 640 Thr Trp Cys Pro Ile Ser Thr Thr Glu Thr Thr Lys Gln Thr Lys Gly 645 650 655 Thr Thr Glu Gln Thr Thr Glu Thr Thr Lys Gln Thr Thr Val Val Thr 660 665 Ile Ser Ser Cys Glu Ser Asp Val Cys Ser Lys Thr Ala Ser Pro Ala 675 680 685 Ile Val Ser Thr Ser Thr Ala Thr Ile Asn Gly Val Thr Thr Glu Tyr $690 \hspace{0.5cm} 695 \hspace{0.5cm} 700 \hspace{0.5cm}$ Thr Thr Trp Cys Pro Ile Ser Thr Thr Glu Ser Arg Gln Gln Thr Thr 705 710 720 Leu Val Thr Val Thr Ser Cys Glu Ser Gly Val Cys Ser Glu Thr Ala 725 730 Ser Pro Ala Ile Val Ser Thr Ala Thr Ala Thr Val Asn Asp Val Val 740 745 750 Thr Val Tyr Pro Thr Trp Arg Pro Gln Thr Ala Asn Glu Glu Ser Val 755 $$ 760 $$ 765 Ser Ser Lys Met Asn Ser Ala Thr Gly Glu Thr Thr Thr Asn Thr Leu 770 780 Ala Ala Glu Thr Thr Thr Asn Thr Val Ala Ala Glu Thr Ile Thr Asn 785 790 800 Thr Gly Ala Ala Glu Thr Lys Thr Val Val Thr Ser Ser Leu Ser Arg 805 \$810Ser Asn His Ala Glu Thr Gln Thr Ala Ser Ala Thr Asp Val Ile Gly $820 \\ \hspace*{1.5cm} 825 \\ \hspace*{1.5cm} 830 \\ \hspace*{1.5cm}$ His Ser Ser Ser Val Val Ser Val Ser Glu Thr Gly Asn Thr Lys Ser 835 840 845 Leu Thr Ser Ser Gly Leu Ser Thr Met Ser Gin Gln Pro Arg Ser Thr 850 855 Pro Ala Ser Ser Met Val Gly Tyr Ser Thr Ala Ser Leu Glu Ile Ser 865 870 875 Thr Tyr Ala Gly Ser Ala Thr Ala Tyr Trp Pro Val Val Val 885

- (2) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: primer perfiol
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GAATTCGCTA GCAATTATGC TGTCAGTACC

- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs

64

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Part non-coding sequence FLO1
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

AGTGGTACTG ACAGCATAAT TTGA

24

- (2) INFORMATION FOR SEQ ID NO: 25:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE: (B) CLONE: Part coding sequence FLO1
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

24

- AATAAAATTC GCGTTCTTTT TACG
- (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid
 - STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer pcrflo2
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

GAGCTCAAGC TTCGTAAAAA GAACGCGAAT T

31

- 1. A method for immobilizing an enzyme comprising 45 recombinantily producing an enzyme or a functional fragment thereof linked to the exterior of a host cell, said method comprising localizing the enzyme or functional fragment thereof at the exterior of the cell wall of a fungus by linking the enzyme or the functional part thereof to the anchoring part of a cell wall anchoring protein, which anchoring part 50 is derivable from the C-terrmal part of said anchoring protein.
- 2. A method according to claim 1 in which said fungus is a yeast.
- from the group consisting of yeasts belonging to the genera Candida, Debaryomyces, Hansenula, Kluyveromyces, Pichia and Saccharomyces, and molds belonging to the genera Aspergillus, Penicillium and Rhizopus.
- 4. A fungus containing an expressible first polynucleotide 60 comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding at least a C-terminal portion of an anchoring protein capable of anchoring in the cell wall of said fungus, said part encoding ar least the anchoring part of said anchoring protein, said 65 first polynucleotide being present either in a vector or in the chromosome of said fungus.

- 5. The fungus of claim 4, further comprising a sequence encoding a signal peptide, said sequence being operably linked to said first polynucleotide such that the translation product of said first polynucleotide is secreted to the cell wall of said fungus.
- 6. The fungus of claim 5, wherein the signal peptide is derived from a protein selected from the group consisting of glycosyl-phosphatidyl-inositol (GPI) anchoring protein, α-factor, α-agglutinin, a-agglutinin, invertase or inulinase of yeasts, a-amylase of Bacillus, and proteinases of lactic acid bacteria.
- 7. The fungus of claim 4, wherein the protein capable of 3. The method of claim 1, in which said fungus is selected 55 anchoring in the cell wall of said fungus is selected from the group consisting of a-agglutinin, a-agglutinin, flocculation protein, and Major Cell Wall Protein of a fungus.
 - 8. The fungus of claim 4, wherein the protein providing catalytic activity is selected from the group consisting of a hydrolytic enzyme and an oxido-reductase.
 - 9. The fungus of claim 8 wherein said hydrolytic enzyme
 - 10. The fungus of claim 8 wherein said protein providing catalytic activity is an oxidase.
 - 11. The fungus of claim 4, wherein the protein providing catalytic activity exhibits said catalytic activity when present in a multimeric form, said fungus further comprising a

second polynucleotide comprising a structural gene encoding said protein providing catalytic activity operably linked to a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide which is operably linked to a regulatable promoter.

12. The fungus of claim 11, wherein said second polynucleotide is present either in a separate vector than the first polynucleotide or is present in the chromosome of said fungus.

13. The fungus of claim 4, having at least one of said 10 polynucleotides integrated in its chromosome.

14. The fungus of claim 4, having said protein providing catalytic activity immobilized at the exterior of its cell wall.

15. The fungus of claim 4, which is a yeast.

16. A process for carring out an enzymatic process by using an immobilized catalytically active protein, wherein a substrate for said catalytically active protein is contacted with the fungus of claim 4.

17. A process according to claim 16 in which the fungus is a yeast.

+ + + + +