Assignment 1 (efficient computation of Cook's distance). We have seen a measure of the influence of the k-th observation over the regression coefficient. This measure, Cook's distance, is defined as

$$C_k = \frac{1}{ps^2} ||\hat{y} - \hat{y}_{-k}||^2,$$

where $\hat{y}_{-k} = X\hat{\beta}_{-k}$ and $\hat{\beta}_{-k}$ is the estimator of β without the k-th observation. It seems like one would need n+1 regressions in order to calculate C_1, \ldots, C_n . We shall see that one can get the C_k 's using only the complete regression on (y, X) by means of the formula

$$C_k = \frac{r_k^2 h_{kk}}{p(1 - h_{kk})},\tag{1}$$

where r_k is the k-standardised residual and h_{kk} is the k-th diagonal element of the hat matrix $H = X(X^TX)^{-1}X^T$.

Let x_k^T be the k-th row of X, so that $x_k \in \mathbb{R}^p$ and

$$X^T = (x_1, \dots, x_n)_{p \times n}.$$

Denote X_{-k} the $n \times p$ matrix whose l-th row is x_l^T if $l \neq k$ and whose kth row is $0 \in \mathbb{R}^p$. In symbols

$$X_{-k}^T = (x_1, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_n).$$

In this exercise, you can use the identity

$$(x_1, \dots, x_n)$$
 $\begin{pmatrix} z_1^T \\ \vdots \\ z_n^T \end{pmatrix} = \sum_{i=1}^n x_i z_i^T \in \mathbb{R}^{p \times q},$

where $x_i \in \mathbb{R}^p, z_i \in \mathbb{R}^q, i = 1, \dots, n$.

Moreover, for compatible matrices A, B and C,

$$row_j(AB) = row_j(A) \cdot B,$$

$$\operatorname{col}_k(AB) = A \cdot \operatorname{col}_k(B)$$

$$(ACB)_{i,k} = row_i(A) \cdot C \cdot col_k(B),$$

where $\operatorname{row}_{j}(A)$ represents the j-th row of A, as a row (rather than column) vector, $\operatorname{col}_{k}(B)$ represents the k-th column of B, as a column vector, and "·" is the usual matrix product.

- (i). Show that $X_{-k}^T X_{-k} = X^T X x_k x_k^T$.
- (ii). (a) Show the Sherman–Morrison formula

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u},$$

where $A_{n\times n}$ is invertible and $u,v\in\mathbb{R}^n$ satisfy $v^TA^{-1}u\neq -1$.

(b) Deduce that

$$(X_{-k}^T X_{-k})^{-1} = \left(I + \frac{1}{1 - h_{kk}} (X^T X)^{-1} x_k x_k^T\right) (X^T X)^{-1}.$$

(iii). Show that

(a)
$$X_{-k}^T y = X^T y - y_k x_k$$
,

(b)
$$x_k^T (X^T X)^{-1} X_{-k}^T y = (1 - h_{kk}) y_k - e_k$$

and conclude that

$$\hat{\beta}_{-k} = \hat{\beta} - \frac{e_k \left(X^T X \right)^{-1} x_k}{1 - h_{kk}}.$$

(iv). Lastly, show that $\|\hat{y} - \hat{y}_{-k}\|^2 = h_{kk}e_k^2/(1 - h_{kk})^2$, and conclude (1).

Assignment 2. Consider the cement data (n = 13). The residual sum of squares (RSS) for all the models containing the intercept are given below.

model	RSS	model	RSS	model	RSS
	2715.8	1 2	57.9	1 2 3 -	48.11
1	1265.7	1 - 3 -	1227.1	12 - 4	47.97
-2	906.3	1 4	74.8	$1 - 3 \ 4$	50.84
3 -	1939.4	-23-	415.4	$-\; 2\; 3\; 4$	73.81
4	883.9	-2 - 4	868.9		
		34	175.7	$1\ 2\ 3\ 4$	47.86

Calculate the analysis of variance table when adding x_4 , x_3 , x_2 and x_1 to the model in this order and test which terms should be included in the model at significance level $\alpha = 0.05$. Are the conclusions the same as in slide 407?

Assignment 3 (automatic model selection). Consider again the cement data from the course. The residual sum of squares (RSS) as well (some of!) the values of Mallows' C_p for the models containing the intercept are as follows:

model	RSS	C_p	model	RSS	C_p	model	RSS	C_p
	2715.8					1 2 3 -		
			1 - 3 -	1227.1	197.94	12-4	48.0	
1	1265.7	202.39	1 4	74.8	5.49	1 - 3 4	50.8	
- 2	906.3		- 23 -	415.4	62.38	- 234	73.8	7.325
3 -	1939.4	314.90	- 2 - 4	868.9	138.12			
4	883.9	138.62	34	175.7	22.34	$1\ 2\ 3\ 4$	47.9	5

a) Use forward selection and backward elimination to choose a model for the data. Include significant variable at 5% using the F-test

$$F = \frac{\text{RSS}(\hat{\beta}_{L}) - \text{RSS}(\hat{\beta}_{L \cup \{j\}})}{\text{RSS}(\hat{\beta}_{full})/(13 - 5)}$$

in order to decide whether the j-th variable is significant.

b) Mallows C_p is defined as (see slide 423)

$$C_p = \frac{\mathrm{RSS}_p}{s^2} + 2p - n.$$

Note that s^2 is the estimator of the variance σ^2 under the full model.

- i) Calculate the missing values of C_p in the table, and explain how one uses this criterion for model selection.
- ii) Which models would be chosen by forward selection, backward elimination, and Mallows' C_p ? Are the three models same?

Assignment 4 (AIC and Gaussian linear models).

Show that the AIC criterion for a gaussian linea model and a response vector of size n with p covariates can be written as

$$AIC = n \log \hat{\sigma}^2 + 2p + const.$$

where σ^2 is the unknown variance of the model and $\hat{\sigma}^2 = RSS_p/n$ is the MLE estimator for σ^2 .

Assignment 5 (Cross validation and number of parameters).

Using the fact that

$$\hat{\beta}_{-j} = \hat{\beta} - \frac{(y_j - \hat{y}_j)(X^t X)^{-1} x_j}{1 - h_{ij}},$$

show that

$$CV = \sum_{j=1}^{n} (y_j - x_j^t \hat{\beta}_{-j})^2$$
 (2)

can be written as

$$CV = \sum_{j=1}^{n} \frac{(y_j - x_j^t \hat{\beta})^2}{(1 - h_{jj})^2}.$$
 (3)

What is the advantage of using the formula (3) over the formula (2)?