Тема. Множення вектора на число

<u>Мета:</u> ознайомитися зі способами множення вектора на число, вчитися обчислювати і знаходити графічно добуток вектора на число

Вчитель: Артемюк Н.А.

Пригадайте

- Що таке вектор?
- Які вектори називають колінеарними?
- Що називають довжиною вектора?
- Який вектор буде протилежно напрямленим до даного?

Ознайомтеся з інформацією

Нехай дано ненульовий вектор \overline{a} . На рисунку 1 зображено вектор \overline{AB} , рівний вектору $\overline{a}+\overline{a}$, і вектор \overline{CD} , рівний вектору $(-\overline{a})+(-\overline{a})+(-\overline{a})$. Очевидно, що

$$|\overline{AB}| = 2|\overline{a}| |\overline{AB}| \uparrow \uparrow \overline{a}$$

$$|\overline{CD}| = 3|\overline{a}||\overline{CD} \uparrow \downarrow \overline{a}.$$

Рис. 1

Вектор \overline{AB} позначають $2\overline{a}$ і вважають, що його отримано в результаті множення вектора \overline{a} на число \overline{a} . Аналогічно вважають, що вектор \overline{CD} отримано в результаті множення вектора \overline{a} на число \overline{a} , і записують: $\overline{CD}=-3\overline{a}$.

Добутком вектора $\overline{a}(a_1;a_2)$ на число k (або добутком числа k на вектор \overline{a}) називають вектор k $\overline{a} = k(\overline{a_1;a_2}) = (\overline{ka_1;ka_2})$.

Сформулюймо властивості множення вектора на число. Для будьяких векторів \overline{a} і \overline{b} та чисел k, m:

1)
$$k \overline{a} = \overline{a} k$$
;

2)
$$(km)\overline{a} = k(m\overline{a});$$

3)
$$k\overline{0} = \overline{0}$$
;

4)
$$0\overline{a} = \overline{0}$$
;

5)
$$(k+m)\overline{a} = k\overline{a} + m\overline{a}$$
;

6)
$$k(\overline{a} + \overline{b}) = k\overline{a} + k\overline{b}$$
.

Ці властивості дають змогу перетворювати вирази, які містять суму векторів, різницю векторів і добуток вектора на число, аналогічно тому, як ми перетворюємо алгебраїчні вирази.Наприклад,

$$2(\overline{a} - 3\overline{b}) + 3(\overline{a} + \overline{b}) = 2\overline{a} - 6\overline{b} + 3\overline{a} + 3\overline{b} = 5\overline{a} - 3\overline{b}.$$

Довжина вектора $k \overline{a}$ дорівнює $|k| |\overline{a}|$.

Якщо $\overline{a}\neq 0$, то вектор $k\,\overline{a}$ співнапрямлений із вектором \overline{a} за умови $k\geq 0$ і протилежно напрямлений із вектором \overline{a} , за умови $k\leq 0$.

Якщо $\overline{a} = \overline{0}$ або k = 0, то вважають, що $k \overline{a} = \overline{0}$.

На рисунку 2 зображено вектори \overline{a} , $-2\overline{a}$, $\frac{2}{3}\overline{a}$, $\sqrt{3}\overline{a}$.

Рис. 2. Приклади зміни довжини вектора внаслідок множення на деяке число \boldsymbol{k}

3 означення добутку вектора також випливає, що:

$$1 \cdot \overline{a} = \overline{a};$$

$$-1 \cdot \overline{a} = -\overline{a}.$$

Також з означення випливає, що коли $\overline{b}=k\,\overline{a}$, то вектори \overline{a} і \overline{b} колінеарні.

А якщо вектори \overline{a} і \overline{b} колінеарні, то чи можна подати вектор \overline{b} як добуток $k\overline{a}$? Відповідь дає така **теорема**. Якщо вектори \overline{a} і \overline{b} колінеарні й $\overline{a} \neq 0$, то існує таке число k, що $\overline{b} = k\overline{a}$.

Наслідок 1

Вектори $\overline{a}(a_1;a_2)$ і $\overline{b}(kb_1;kb_2)$ колінеарні.

Наслідок 2

Якщо вектори $\overline{a}(a_1;a_2)$ і $\overline{b}(b_1;b_2)$ колінеарні, причому $\overline{a}\neq 0$, то існує таке число k, що $b_1=ka_1$ і $b_2=ka_2$.

Перегляньте відео за посиланням:

https://youtu.be/zc9_fS9J2Ek

Розв'язування задач

Задача 1

Знайдіть модулі векторів $3\,\overline{m}$ та $-\frac{1}{2}\,\overline{m}$, якщо $|\,\overline{m}\,|=4.$

Розв'язання

$$|3\overline{m}| = 3 \cdot |\overline{m}| = 3 \cdot 4 = 12$$

 $|-\frac{1}{2}\overline{m}| = \frac{1}{2}|\overline{m}| = \frac{1}{2} \cdot 4 = 2$

Відповідь: $|3\overline{m}| = 12, |-\frac{1}{2}\overline{m}| = 2.$

Задача 2

Визначте, співнапрямленими чи протилежно напрямленими ϵ ненульові вектори \overline{a} і \overline{b} , якщо:

1)
$$\overline{b} = 2\overline{a}$$
;

2)
$$\overline{a} = -\frac{1}{3}\overline{b}$$
;

3)
$$\overline{b} = \sqrt{2} \ \overline{a}$$
.

Знайдіть відношення $\frac{|\overline{a}|}{|\overline{b}|}$.

Розв'язання

1)
$$\overline{b} = 2\overline{a} \Rightarrow \overline{b} \uparrow \uparrow \overline{a}, \frac{|\overline{a}|}{|\overline{b}|} = \frac{|\overline{a}|}{|2\overline{a}|} = \frac{|\overline{a}|}{2|\overline{a}|} = \frac{1}{2}$$

2)
$$\overline{a} = -\frac{1}{3}\overline{b} \Rightarrow \overline{b}\uparrow\downarrow\overline{a}, \frac{|\overline{a}|}{|\overline{b}|} = \frac{|-\frac{1}{3}\overline{b}|}{|\overline{b}|} = \frac{\frac{1}{3}|\overline{b}|}{|\overline{b}|} = \frac{1}{3}$$

3)
$$\overline{b} = \sqrt{2} \ \overline{a} \Rightarrow \overline{b} \uparrow \uparrow \overline{a}, \frac{|\overline{a}|}{|\overline{b}|} = \frac{|\overline{a}|}{|\sqrt{2} \ \overline{a}|} = \frac{|\overline{a}|}{\sqrt{2} |\overline{a}|} = \frac{1}{\sqrt{2}} = \frac{1}{2}$$

Відповідь: 1)
$$\overline{b}\uparrow\uparrow\overline{a}$$
, $\frac{|\overline{a}|}{|\overline{b}|}=\frac{1}{2}$; 2) $\overline{b}\uparrow\downarrow\overline{a}$, $\frac{|\overline{a}|}{|\overline{b}|}=\frac{1}{3}$; 3) $\overline{b}\uparrow\uparrow\overline{a}$, $\frac{|\overline{a}|}{|\overline{b}|}=\frac{\sqrt{2}}{2}$.

Задача 3

Дано вектор \overline{a} (– 4; 2). Знайдіть координати векторів $3\overline{a}$, $-\frac{1}{2}\overline{a}$, $\frac{3}{2}\overline{a}$.

Розв'язання

$$3\overline{a} = (\overline{3 \cdot (-4)}; \overline{3 \cdot 2}) = (\overline{-12}; \overline{6})$$

$$-\frac{1}{2}\overline{a} = (\overline{-\frac{1}{2} \cdot (-4); -\frac{1}{2} \cdot 2}) = (\overline{2; -1})$$

$$\frac{3}{2}\overline{a} = (\overline{\frac{3}{2} \cdot (-4); \frac{3}{2} \cdot 2}) = (\overline{-6; 3})$$

Відповідь:
$$3\overline{a} = (\overline{-12;6}); -\frac{1}{2}\overline{a} = (\overline{2;-1}); \frac{3}{2}\overline{a} = (\overline{-6;3}).$$

Пригадайте

- Як можна помножити вектор на число графічно?
- Як можна помножити вектор на число, знаючи його координати?
- Сформулюйте умову колінеарності векторів.

Домашне завдання

- Опрацювати конспект і §9 підручника.
- Розв'язати (письмово) №4, 5
 - **4.** Дано $\bar{b}(-2;6)$. Знайдіть:
 - 1) $3\vec{b}$; 2) $-2\vec{b}$; 3) $\frac{1}{2}\vec{b}$; 4) $-\vec{b}$; 5) $10\vec{b}$; 6) $-5\vec{b}$.
 - **5.** Накресліть вектор $ar{a}$. Побудуйте вектор:
 - 1) $3\vec{a}$; 2) $-\vec{a}$; 3) $-\frac{1}{2}\vec{a}$; 4) $2\vec{a}$; 5) $-3, 5\vec{a}$; 6) $1, 5\vec{a}$.

Фото виконаних робіт надсилайте у HUMAN або на електронну пошту nataliartemiuk.55@gmail.com

Джерела

- Істер О.С. Геометрія: 9 клас. Київ: Генеза, 2017
- Всеукраїнська школа онлайн