OEMP 3 Part 2

```
clc
clear
format shortG
% minimum beam dimension is 1/4 in
% multiple for loop, iterating from 1/4 in to 1 ft on each dimension
rangeSquare = linspace((0.25/12),1,50); % [ft]
% rangeMoment = linspace(0,27.25,100); % [ft]
% rangeSquare = 0.5;
% rangeSquare2 = 0.25;
rho = 276.48; % [lb/ft^3] titanium
L = 27.25;
w = 2001;
% momentTest = zeros(1,1);
% for k = rangeMoment
     w = 2001;
     L = 27.25;
     A = 0.13485;
      momentTest(end+1) = (1/6) * (((-w / L) * k^3) + (3 * w * k^2) -
(3 * w * k * L) + (w * L^2) - ((rho * A * (L - k)^2)/2);
% end
% momentTest
% max(momentTest)
base = zeros(1,1);
height = zeros(1,1);
area = zeros(1,1);
moment = zeros(1,1);
inertia = zeros(1,1);
dist = zeros(1,1);
centerWidthI = zeros(1,1);
flangeWidthI = zeros(1,1);
flangeHeightI = zeros(1,1);
centerHeightI = zeros(1,1);
areaI = zeros(1,1);
areaM = zeros(1,1);
areaF = zeros(1,1);
momentI = zeros(1,1);
inertiaI = zeros(1,1);
inertiaF = zeros(1,1);
distI = zeros(1,1);
dy = zeros(1,1);
heightI = zeros(1,1);
ShearForceI = zeros(1,1);
ShearForceS = zeros(1,1);
ShearStressS = zeros(1,1);
ShearStressI = zeros(1,1);
totalHeightI = zeros(1,1);
costI = zeros(1,1);
```

```
costS = zeros(1,1);
FSShearI = zeros(1,1);
FSShearS = zeros(1,1);
YS vec = [5040000 10080000 5040000 16560000 17280000]; % [lb/ft^2]
rho_vec = [169.344 489.024 525.312 490.752 276.48]; % [lb/ft^3]
cost vec = [8.03 8.07 53.78 29.63 115.36]; % [$/lb]
% yield strength of titanium in lb/ft^2
titanium_YS = 17280000; % [lb/ft^2]
steel4130_YS = 10080000; % [lb/ft^2]
bestSquare = zeros(1,11);
squareVec = zeros(1,11);
bestIBeam = zeros(1,13);
for c = 1:length(YS_vec)
         for centerWidth = linspace((0.25/12), 0.5, 50)
                  for flangeWidth = linspace((0.5/12),1,50)
                          for flangeHeight = linspace((0.25/12),0.25,50)
                                   for centerHeight = linspace((0.25/12),1-
(2.*flangeHeight),50)
                                            centerWidthI(end+1) = centerWidth;
                                           flangeWidthI(end+1) = flangeWidth;
                                           flangeHeightI(end+1) = flangeHeight;
                                           centerHeightI(end+1) = centerHeight;
                                           areaI(end+1) = (centerWidth * centerHeight) + (2 *
  (flangeHeight * flangeWidth));
                                           areaM(end+1) = centerWidth * centerHeight;
                                           areaF(end+1) = flangeHeight * flangeWidth;
                                           heightI(end+1) = (centerHeight + (2 *
  flangeHeight)) / 2;
                                           totalHeightI(end+1) = centerHeight + (2 *
  flangeHeight);
                                           dy(end+1) = (centerHeight / 2) + (flangeHeight /
  2);
                                           momentI(end+1) = (1/6) * (((-w / L) * (0)^3) +
  (3 * w * (0)^2) - (3 * w * (0) * L) + (w * L^2)) - ((rho_vec(1,c) * L)) + (w * L^2)) + (w * L^2)) + (w * L^2)) - ((rho_vec(1,c) * L)) + (w * L^2)) + (w *
  areaI(end) * (L - (0))^2/2;
                                           inertiaF(end+1) = (flangeWidth *
  flangeHeight^3)/12;
                                           inertiaI(end+1) = 2 * (inertiaF(end) + areaF(end)
  * dy(end)^2);
                                           ShearForceI(end+1) = (w * L)/2 - ((rho vec(1,c) *
  areaI(end)) * L);
                                           ShearStressI(end+1) = (ShearForceI(end)/(8 *
  inertiaI(end) * centerWidth)) * ((flangeWidth * totalHeightI(end)^3)
  - (flangeWidth * centerHeight^3) + (centerWidth * centerHeight^3));
                                           costI(end+1) = (areaI(end) * L * rho_vec(1,c)) *
  cost vec(1,c);
                                   end
                          end
```

```
end
        end
       FSShearI = YS_vec(1,c)./abs(ShearStressI);
       bendStressI = (-momentI .* heightI) ./ inertiaI;
       FSI = YS_vec(1,c)./abs(bendStressI);
        matrixI = [centerWidthI' centerHeightI' flangeWidthI'
  flangeHeightI' areaI' momentI' inertiaI' heightI' bendStressI' FSI'
 FSShearI' costI' ShearStressI'];
        matrixI(1,:) = [];
       holderMI = matrixI((matrixI(:,10) >= 1.5 & matrixI(:,11) >=
  1.5),:);
        % potentialI = holderMI((holderMI(:,10) <= 1.53),:); % all</pre>
  combinations in the FS range
        lowestAI = min(holderMI(:,12));
        [~,ind] = min(abs(holderMI(:,12)-lowestAI));
       bestIBeam(end+1,:) = holderMI(ind,:);
       for i = rangeSquare
                for j = rangeSquare
                         area(end+1) = i * j; % rectangular cross section
                         base(end+1) = i; % arbitrary choice but okay as long as
  consistent
                        height(end+1) = j;
                         % maximum bending moment is at the origin
                         moment(end+1) = (1/6) * (((-w / L) * (0)^3) + (3 * w *
  (0)^2 - (3 * w * (0) * L) + (w * L^2) - ((\text{rho vec}(1,c) * \text{area}(\text{end}))
  * (L - (0))^2)/2);
                         inertia(end+1) = (i * j^3)/12;
                         dist(end+1) = j/2; % distance is just half of height (from
 centroid to edge)
                         ShearForceS(end+1) = (w * L)/2 - ((rho_vec(1,c) * L)
 areaI(end)) * L);
                         ShearStressS(end+1) = (3/2) * (ShearForceS(end)/
area(end));
                         costS(end+1) = (area(end) * L * rho_vec(1,c)) *
  cost vec(1,c);
                end
        end
       FSShearS = YS_vec(1,c)./abs(ShearStressS);
       bendStress = (-moment .* dist) ./ inertia;
        FS = YS vec(1,c)./abs(bendStress);
       matrix = [base' height' area' moment' inertia' dist' bendStress'
 FS' FSShearS' costS' ShearStressS'];
       matrix(1,:) = [];
        holderM = matrix((matrix(:,8) >= 1.5 \& matrix(:,9) >= 1.5),:);
       potential = holderM((holderM(:,8) <= 1.53),:); % all combinations</pre>
  in the FS range
        lowestArea = min(potential(:,3));
        [~,indAREA] = min(abs(potential(:,3)-lowestArea));
        squareVec(end+1,:) = potential(indAREA,:);
        lowestAS = min(holderM(:,10));
        [~,indS] = min(abs(holderM(:,10)-lowestAS));
       bestSquare(end+1,:) = holderM(indS,:);
```

end bestIBeam bestSquare squareVec bestIBeam = Columns 1 through 6 0 0 0 0.08631 0.18648 0.020833 0.82738 0.98044 2.3592e+05 0.020833 0.92092 1 0.039541 0.098267 2.4147e+05 0.98044 0.08631 0.18648 0.020833 0.82738 2.3592e+05 0.92177 0.02551 0.066799 0.020833 0.94898 2.4344e+05 0.020833 0.93963 0.74575 0.030187 0.064599 2.4358e+05 Columns 7 through 12 0 0 0 0 0.035427 0.5 -3.3296e+06 1.5137 2.5796 6910.1 0.018248 0.5 -6.6162e+06 1.5235 4.8607 3641.3 0.5 -3.3296e+06 0.035427 1.5137 2.5796 6910.1 0.011168 0.5 -1.09e+07 1.5193 7.5319 2475.3 0.01059 0.5 -1.1501e+07 1.5025 7.8347 2393.8 Column 13 1.9538e+06 2.0738e+06 1.9538e+06 2.1986e+06 2.2056e+06 bestSquare = Columns 1 through 6

0

0

0

0

0

0

0.40051	1	0.40051	2.2246e+05	0.033376
0.5 0.22066	0.98002	0.21625	2.3405e+05	0.017308
0.49001				
0.40051 0.5	1	0.40051	2.2246e+05	0.033376
0.14073 0.49001	0.98002	0.13792	2.3897e+05	0.011039
0.14073	0.96003	0.13511	2.3915e+05	0.010377
0.48002				
Columns 7 th	rough 11			
0	0	0	0	0
-3.3327e+06	1.5123	56.536	14841	89146
-6.6261e+06	1.5213	61.053	8013.4	1.651e+05
-3.3327e+06	1.5123	56.536	14841	89146
-1.0608e+07	1.5611		_	2.5888e+05
		63.969		
-1.1063e+07	1.562	65.389	5006.4	2.6426e+05
squareVec =				
Columns 1 th	rough 6			
0	rough 6	0	0	0
0	0			
0 0 0.40051		0 0.40051	0 2.2246e+05	0.033376
0	0			
0 0 0.40051 0.5	0 1 0.98002	0.40051	2.2246e+05	0.033376
0 0.40051 0.5 0.20068 0.49001 0.34056	0	0.40051	2.2246e+05	0.033376
0 0.40051 0.5 0.20068 0.49001	0 1 0.98002 0.98002	0.40051	2.2246e+05 2.1194e+05	0.033376
0 0.40051 0.5 0.20068 0.49001 0.34056	0 1 0.98002	0.40051 0.19667 0.33376	2.2246e+05 2.1194e+05 1.8255e+05	0.033376 0.015741 0.026713
0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004 0.16071	0 1 0.98002 0.98002	0.40051 0.19667 0.33376	2.2246e+05 2.1194e+05 1.8255e+05	0.033376 0.015741 0.026713
0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004	0 1 0.98002 0.98002 0.90009	0.40051 0.19667 0.33376 0.14466	2.2246e+05 2.1194e+05 1.8255e+05 2.3855e+05	0.033376 0.015741 0.026713 0.0097662
0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004 0.16071	0 1 0.98002 0.98002 0.90009 0.8801	0.40051 0.19667 0.33376 0.14466	2.2246e+05 2.1194e+05 1.8255e+05 2.3855e+05	0.033376 0.015741 0.026713 0.0097662
0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004 0.16071	0 1 0.98002 0.98002 0.90009 0.8801	0.40051 0.19667 0.33376 0.14466	2.2246e+05 2.1194e+05 1.8255e+05 2.3855e+05	0.033376 0.015741 0.026713 0.0097662
0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004 0.16071 0.44005	0 1 0.98002 0.98002 0.90009 0.8801	0.40051 0.19667 0.33376 0.14466 0.14144	2.2246e+05 2.1194e+05 1.8255e+05 2.3855e+05 2.3875e+05	0.033376 0.015741 0.026713 0.0097662 0.00913
0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004 0.16071 0.44005 Columns 7 th	0 1 0.98002 0.98002 0.90009 0.8801 rough 11	0.40051 0.19667 0.33376 0.14466 0.14144	2.2246e+05 2.1194e+05 1.8255e+05 2.3855e+05 2.3875e+05	0.033376 0.015741 0.026713 0.0097662 0.00913
0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004 0.16071 0.44005 Columns 7 th	0 1 0.98002 0.98002 0.90009 0.8801 rough 11 0 1.5123 1.5278	0.40051 0.19667 0.33376 0.14466 0.14144	2.2246e+05 2.1194e+05 1.8255e+05 2.3855e+05 2.3875e+05	0.033376 0.015741 0.026713 0.0097662 0.00913
0 0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004 0.16071 0.44005 Columns 7 th 0 -3.3327e+06 -6.5976e+06 -3.3486e+06	0 1 0.98002 0.98002 0.90009 0.8801 rough 11 0 1.5123 1.5278 1.5051	0.40051 0.19667 0.33376 0.14466 0.14144 0 56.536 76.531 67.851	2.2246e+05 2.1194e+05 1.8255e+05 2.3855e+05 2.3875e+05 0 14841 21150 2.5694e+05	0.033376 0.015741 0.026713 0.0097662 0.00913 0 89146 1.3171e+05 74280
0 0.40051 0.5 0.20068 0.49001 0.34056 0.49001 0.16071 0.45004 0.16071 0.44005 Columns 7 th	0 1 0.98002 0.98002 0.90009 0.8801 rough 11 0 1.5123 1.5278	0.40051 0.19667 0.33376 0.14466 0.14144	2.2246e+05 2.1194e+05 1.8255e+05 2.3855e+05 2.3875e+05	0.033376 0.015741 0.026713 0.0097662 0.00913 0 89146 1.3171e+05

Published with MATLAB® R2020a