DM 20

Répartition des nombres premiers

On note \mathbb{P} l'ensemble des nombres premiers. Pour tout $n \in \mathbb{N}$, on note $\mathbb{P}_n = \{ p \in \mathbb{P} / 0 \le p \le n \}$. Pour tout $n \in \mathbb{N}$, on note $\pi(n)$ le cardinal de \mathbb{P}_n .

Partie I :
$$\pi(n) = O\left(\frac{n}{\ln n}\right)$$
.

- $\mathbf{1}^{\circ}$) Soit $m \in \mathbb{N}^{*}$. En développant $(1+1)^{2m+1}$ par la formule du binôme de Newton, montrer que $\binom{2m+1}{m+1} \le 4^m$.
- $\prod_{p \in (\mathbb{P}_{2m+1} \setminus \mathbb{P}_{m+1})} p \text{ divise le coefficient binomial } \binom{2m+1}{m+1}.$ 2°) Pour tout $m \in \mathbb{N}^*$, montrer que le produit
- **3°)** Montrer que, pour tout $n \in \mathbb{N}^*$, $\prod_{p \in \mathbb{P}_n} p \leq 4^n$.
- **4**°) En utilisant le fait que, pour tout $z \in \mathbb{C}$, $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$, montrer que, pour tout $m \in \mathbb{N}^*$, $m! > \left(\frac{m}{\rho}\right)^m$.
- **5°)** Montrer que, pour tout $n \ge 2$, $\pi(n)! \le 4^n$, puis que $\pi(n) \ln \pi(n) \pi(n) \le n \ln 4$.
- **6°)** On souhaite montrer que, pour tout $n \geq 3$, $\pi(n) \leq e \frac{n}{\ln n}$. Pour cela on raisonne par l'absurde, en supposant qu'il existe un entier $n_0 \ge 3$ tel que $\pi(n_0) > e \frac{n_0}{\ln n_0}$.
- **6.a**: Montrer que la fonction $x \mapsto x \ln x x$ est strictement croissante sur $[1, +\infty[$. **6.b**: En déduire que $\frac{e \ln 4}{e} < \frac{\ln(\ln n_0)}{\ln n_0}$.
- **6.c**: Montrer que la fonction $x \mapsto \frac{\ln x}{x}$ est majorée par $\frac{1}{e}$.
- **6.d**: Conclure.

Partie II: une formule de Legendre

Lorsque $n \in \mathbb{N}^*$, on sait qu'il existe une unique famille $(w_p)_{p \in \mathbb{P}}$ d'entiers naturels telle que $n = \prod_{p \in \mathbb{P}} p^{w_p}$. Pour tout $p \in \mathbb{P}$, on notera $w_p = v_p(n)$: c'est la valuation p-adique de

l'entier n.

On considère un entier $n \geq 2$ et un nombre premier p.

Pour tout entier naturel k, on note $U_k = (p^k \mathbb{Z}) \cap [1, n] : U_k$ est l'ensemble des multiples de p^k qui sont compris entre 1 et n.

On note également $\Omega_k = \{a \in \{1, \dots, n\} / v_p(a) = k\}.$

- 7°) Justifier qu'il existe un plus petit entier $k_0 \ge 0$ tel que $n < p^{k_0}$. Montrer que $k_0 \ge 1$ et expliciter k_0 en fonction de n et p.
- 8°) Montrer que, pour tout $k \in \{0, \dots, k_0 1\}$, l'ensemble U_{k+1} est strictement inclus dans U_k et que pour $k \ge k_0$ on a $U_k = \emptyset$.
- **9°)** Prouver que $\Omega_0, \ldots, \Omega_{k_0-1}$ constituent une famille de parties non vides qui partitionnent l'ensemble $\{1, \ldots, n\}$.
- 10°) Montrer que $v_p(n!) = \sum_{k \in \mathbb{N}} k |\Omega_k|$, où $|\Omega_k|$ désigne le cardinal de l'ensemble Ω_k .

En déduire la formule de Legendre : $v_p(n!) = \sum_{k>1} \left\lfloor \frac{n}{p^k} \right\rfloor$.

Partie III: un théorème de Mertens

- 11°) Prouver que pour tout $p \in \mathbb{P}$, $\frac{n}{p} 1 < v_p(n!) \le \frac{n}{p} + \frac{n}{p(p-1)}$.
- $\mathbf{12^{\circ}}) \quad \text{En déduire que } n \sum_{p \in \mathbb{P}_n} \frac{\ln p}{p} \sum_{p \in \mathbb{P}_n} \ln p < \ln n! \leq n \sum_{p \in \mathbb{P}_n} \frac{\ln p}{p} + n \sum_{p \in \mathbb{P}_n} \frac{\ln p}{p(p-1)}.$
- 13°) Pour tout $r \in \mathbb{N}^*$, montrer que $\sum_{m=2^{r-1}+1}^{2^r} \frac{\ln m}{m(m-1)} \le \frac{r}{2^r} \ln 2.$
- **14°)** Montrer que, pour tout $x \in]0,1[, \sum_{r=1}^{+\infty} rx^{r-1} = \frac{1}{(x-1)^2}.$
- 15°) Montrer que $\sum_{m=2}^{+\infty} \frac{\ln m}{m(m-1)} \le \ln 4.$
- **16°)** a) Pour tous $u \in [0,1]$ et $N \in \mathbb{N}^*$, montrer que $\sum_{k=1}^{N} (-1)^{k+1} \frac{u^k}{k} = \int_0^1 u \frac{1 (-ut)^N}{1 + ut} dt$.
- **16.b)** En déduire que, pour tout $u \in [0, 1]$, $\ln(1 + u) = \sum_{k=1}^{+\infty} (-1)^{k+1} \frac{u^k}{k}$.

- **16.c)** En déduire que, pour tout $u \in [0, 1]$, $u \frac{u^2}{2} \le \ln(1 + u) \le u$.
- **16.d)** Montrer que, pour tout $n \in \mathbb{N}^*$, $1 \frac{1}{2n} \le n \ln\left(1 + \frac{1}{n}\right) \le 1$ et $\ln\left(1 + \frac{1}{n}\right) \ge \frac{1}{2n}$.
- 17°) Montrer que, pour tout entier $n \geq 2$, il existe un réel $\theta_n \in [0,1]$ tel que : $\ln n! = n \ln n n + 1 + \theta_n \ln n$.
- 18°) Prouver que, pour tout $n \ge 2$, $\ln n (1 + \ln 4) \le \sum_{n \in \mathbb{P}_n} \frac{\ln p}{p}$.
- 19°) Prouver que, pour tout $n \ge 2$, $\sum_{p \in \mathbb{P}_n} \frac{\ln p}{p} \le \ln n + \ln 4$.

En déduire le théorème de Mertens : $\sum_{p \in \mathbb{P}_n} \frac{\ln p}{p} = \ln n + O(1)$.

Partie IV: un théorème de Tchebychev

20°) On considère la suite $(u_n)_{n\geq 3}$ définie par $u_n = \left(\sum_{k=2}^{n-1} \frac{1}{k \ln k}\right) - \ln \ln n$.

Montrer que $u_{n+1} - u_n = \frac{1}{2n^2 \ln n} + o(\frac{1}{n^2 \ln n}).$

En déduire qu'il existe un réel ℓ tel que $\sum_{k=2}^{n-1} \frac{1}{k \ln k} = \ln(\ln n) + \ell + o(1)$.

21°) Si $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ sont deux suites de réels et si pour $n\geq 1$ on pose

$$A_n = \sum_{k=1}^{n} a_k$$
, montrer que, pour tout $N \ge 2$, $\sum_{n=1}^{N} a_n b_n = A_N b_N + \sum_{n=1}^{N-1} A_n (b_n - b_{n+1})$.

En posant, pour tout $n \in \mathbb{N}$ avec $n \geq 2$, $\psi(n) = \sum_{p \in \mathbb{P}_n} \frac{\ln p}{p}$, en déduire que, pour tout

$$n \ge 3$$
, $\sum_{n \in \mathbb{P}} \frac{1}{p} = \frac{\psi(n)}{\ln n} + \sum_{k=2}^{n-1} \psi(k) \frac{\ln(1 + \frac{1}{k})}{(\ln k)(\ln(k+1))}$.

22°) Prouver que $\psi(k) \frac{\ln(1+\frac{1}{k})}{\ln k \ln(k+1)} = \frac{1}{k \ln k} + O\left(\frac{1}{k \ln^2 k}\right).$

En déduire qu'il existe une constante $\lambda \in \mathbb{R}$ telle que $\sum_{p \in \mathbb{P}_n} \frac{1}{p} = \ln(\ln n) + \lambda + o(1)$.

23°) Montrer que pour tout $n \ge 2$ on a $\sum_{p \in \mathbb{P}_n} \frac{1}{p} = \frac{\pi(n)}{n} + \sum_{k=1}^{n-1} \frac{\pi(k)}{k(k+1)}$.

En déduire le théorème de Tchebychev : s'il existe une constante réelle c telle que $\pi(n) \sim c \frac{n}{\ln n}$, montrer que c=1.