Introduction to Transformers

CS60216: Safety Fundamentals for Generative Al

Jan 9th, 2024

Transformers

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer* Google Brain

noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Great Results with Transformers: NMT

Madal	BL	EU	Training Co	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	10 ¹⁸ p		
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19} \mathcal{J}		

[Test sets: WMT 2014 English-German and English-French]

Great Results with Transformers: Rise of LLMs

Today, Transformer-based models dominate LMSYS Chatbot Arena Leaderboard!

Rank 🔺	Model	🙀 Arena Elo 🔺	ii 95% CI ▲	♦ Votes ▲	Organization A	License	Knowledge Cutoff A
1	GPT-4-Turbo-2024-04-09	1258	+4/-4	26444	OpenAI	Proprietary	2023/12
1	GPT-4-1106-preview	1253	+3/-3	68353	OpenAI	Proprietary	2023/4
1	Claude 3 Opus	1251	+3/-3	71500	Anthropic	Proprietary	2023/8
2	Gemini 1.5 Pro API-0409- Preview	1249	+4/-5	22211	Google	Proprietary	2023/11
3	GPT-4-0125-preview	1248	+2/-3	58959	OpenAI	Proprietary	2023/12
6	Meta Llama 3 70b Instruct	1213	+4/-6	15809	Meta	Llama 3 Community	2023/12
6	Bard (Gemini Pro)	1208	+7/-6	12435	Google	Proprietary	Online
7	Claude 3 Sonnet	1201	+4/-2	73414	Anthropic	Proprietary	2023/8

ChatGPT / GPT-4 (OpenAI)

Claude 3 (Anthropic)

Llama 3 (Meta)

[Chiang et al., 2024]

https://web.stanford.edu/class/cs224n/

Transformers have shown promise outside NLP

Protein Folding

[Jumper et al. 2021] aka AlphaFold2!

Image Classification

[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms ResNet-based baselines with substantially less compute.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	-
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	-
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

ML for Systems

[Zhou et al. 2020]: A Transformer-based compiler model (GO-one) speeds up a Transformer model!

Model (#devices)	GO-one (s)	HP (s)	METIS (s)	HDP (s)	Run time speed up over HP / HDP	Search speed up over HDF
2-layer RNNLM (2)	0.173	0.192	0.355	0.191	9.9% / 9.4%	2.95x
4-layer RNNLM (4)	0.210	0.239	0.503	0.251	13.8% / 16.3%	1.76x
8-layer RNNLM (8)	0.320	0.332	OOM	0.764	3.8% / 58.1%	27.8x
2-layer GNMT (2)	0.301	0.384	0.344	0.327	27.6% / 14.3%	30x
4-layer GNMT (4)	0.350	0.469	0.466	0.432	34% / 23.4%	58.8x
0.1 0.11.00.00	0.440	0.562	OOM	0.693	21.7% / 36.5%	7.35x
2-layer Transformer-XL (2)	0.223	0.268	0.37	0.262	20.1% / 17.4%	40x
4-layer Transformer-XL (4)	0.230	0.27	OOM	0.259	17.4% / 12.6%	26.7x
8-layer Transformer-XL (8)	0.350	0.46	OOM	0.425	23.9% / 16.7%	16.7x
Tanapana (a) asa	0.229	0.312	OOM	0.301	26.6% / 23.9%	13.5x
Inception (2) b64	0.423	0.731	OOM	0.498	42.1% / 29.3%	21.0x
AmoebaNet (4)	0.394	0.44	0.426	0.418	26.1% / 6.1%	58.8x
2-stack 18-layer WaveNet (2)	0.317	0.376	OOM	0.354	18.6% / 11.7%	6.67x
4-stack 36-layer WaveNet (4)	0.659	0.988	OOM	0.721	50% / 9.4%	20x
GEOMEAN		-	-		20.5% / 18.2%	15x

Transformer Encoder-Decoder

- Transformer is introduced as an encoder-decoder architecture; later we will see encoder-only & decoder-only transformers
- ♣ Encoder produces a sophisticated representation of the source sequence that the decoder will use to condition its generation process
- Decoder generates one token at the time to produce a target sequence; in the produces, it produces representations that combine the history and a new token

Figure: Jay Alammar

l'hapi334 000 00111000 000 din = Vocat size Hor do you decide the rocat size?

distinct works in date

May be millions!! 40 K Youb [BPE] Sub-words

Figure: <u>Jay Alammar</u>

Each encoder block consists of self-attention & FFNN

Deeper layers get outputs of the previous layers as inputs

Input to each encoder block has the same size as original token embeddings

Figure: <u>Jay Alammar</u>

In the first layer, inputs are static token emeddings

Intuition for attention

The chicken didn't cross the road because it

What should be the properties of "it"?

The chicken didn't cross the road because it was too tired. The chicken didn't cross the road because it was too wide

At this point in the sentence, it's probably referring to either the animal or the street

Intuition of attention

Build up the contextual embedding from a word by selectively integrating information from all the neighboring words

We say that a word "attends to" some neighboring words more than others

Intuition of attention

columns corresponding to input tokens

https://web.stanford.edu/~jurafsky/slp3/

Intuition for Self-attention

Attention is based on key/value/query concept -- analogous to retrieval systems.

When you search for videos on Youtube

- The search engine will map your query (text in the search bar) against a set of keys (video title, description, etc.) associated with candidate videos in their database
- It will then present you the best matched videos (values).

Intuition of attention:

An Actual Attention Head: slightly more complicated

We'll use matrices to project each vector \mathbf{x}_i into a representation of its role as query, key, value:

- query: W^Q
- key: W^K
- value: W^V

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \quad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \quad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

An Actual Attention Head: slightly more complicated

Given these 3 representation of x_i

To compute similarity of current element x, with some prior element

We'll use dot product between q_i and k_j . And instead of summing up x_j , we'll sum up v_j

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \quad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \quad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

Transformers: Self-attention over input

$$\mathbf{q} = \mathbf{e}_{beetle} \quad \mathbf{W}_{\mathbf{q}}$$
$$\mathbf{k} = \mathbf{e}_{beetle} \quad \mathbf{W}_{\mathbf{k}}$$
$$\mathbf{V} = \mathbf{e}_{beetle} \quad \mathbf{W}_{\mathbf{v}}$$

Self-attention over input embeddings

Self-attention over input embeddings

Self-attention over input embeddings

Self-attention over all words (in parallel)

Self-attention over all words (in parallel)

Self-attention: In equations

X

The most important formula in deep learning after 2018

Self-Attention

What is self-attention? Self-attention calculates a weighted average of feature representations with the weight proportional to a similarity score between pairs of representations. Formally, an input sequence of n tokens of dimensions d, $X \in \mathbf{R}^{n \times d}$, is projected using three matrices $W_Q \in \mathbf{R}^{d \times d_q}$, $W_K \in \mathbf{R}^{d \times d_k}$, and $W_V \in \mathbf{R}^{d \times d_v}$ to extract feature representations Q, K, and V, referred to as query, key, and value respectively with $d_k = d_q$. The outputs Q, K, V are computed as

$$Q = XW_Q, \quad K = XW_K, \quad V = XW_V. \tag{1}$$

So, self-attention can be written as,

$$S = D(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_q}}\right)V,$$
 (2)

where softmax denotes a row-wise softmax normalization function. Thus, each element in S depends on all other elements in the same row.

7:38 AM · Feb 10, 2021

Copy link

Scaled dot-product: *more* on this later

Calculating the self-attention output

Try this problem

Softman [1/2, -1/2]

Suppose, you give the following input to your transformer encoder: {flying, arrows} The input embeddings for these two words are [0,1,1,1,1,0] and [1,1,0,-1,-1,1], respectively. Suppose you are trying to represent the first word 'flying' with the help of self-attention in the first encoder. For the first attention head, the query, key and value matrices just take the 2 dimensions from the input each. Thus, the first 2 dimensions define the query vector, and so on. What will be the self-attention output for the word 'flying' corresponding to this attention head. You are using the scaled dot vector.

Try this problem

```
q1: [0,1], k1: [1,1],, v1: [1,0]
q2: [1,1], k2: [0,-1], v2: [-1,1]
a1?
```

Multi-head Attention

Why Multi-head attention?

- What if we want to look in multiple places in the sentence at once?
 - \circ For word i, maybe we want to focus on different j for different reasons?
- We'll define multiple attention "heads" through multiple Q,K,V matrices
- Each attention head performs attention independently
- Then the outputs of all the heads are combined!
- Each head gets to "look" at different things, and construct value vectors differently.

Why Multi-head attention?

Prior work identified three important types of heads by looking at attention matrices

Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned: https://arxiv.org/abs/1905.09418

- Positional heads that attend mostly to their neighbor.
- 2. Syntactic heads that point to tokens with a specific syntactic relation.
- 3. Heads that point to **rare words** in the sentence.

Source: https://theaisummer.com/self-attention/

Multi-Head Attention: In Equations

- Each head might be attending to the context for different purposes
 - Different linguistic relationships or patterns in the context

$$\mathbf{q}_{i}^{c} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{Qc}}; \quad \mathbf{k}_{j}^{c} = \mathbf{x}_{j} \mathbf{W}^{\mathbf{Kc}}; \quad \mathbf{v}_{j}^{c} = \mathbf{x}_{j} \mathbf{W}^{\mathbf{Vc}}; \quad \forall c \quad 1 \leq c \leq h$$

$$\operatorname{score}^{c}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \mathbf{q}_{i}^{c} \cdot \mathbf{k}_{j}^{c}$$

$$\alpha_{ij}^{c} = \operatorname{softmax}(\operatorname{score}^{c}(\mathbf{x}_{i}, \mathbf{x}_{j}))$$

$$\mathbf{head}_{i}^{c} = \sum \alpha_{ij}^{c} \mathbf{v}_{j}^{c}$$

$$\mathbf{a}_{i} = (\mathbf{head}^{1} \oplus \mathbf{head}^{2} ... \oplus \mathbf{head}^{h}) \mathbf{W}^{O}$$

$$\operatorname{MultiHeadAttention}(\mathbf{x}_{i}, [\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}]) = \mathbf{a}_{i}$$

$$\operatorname{https://web.stanford.edu/~jurafsky/slp3/}$$

Multi-head attention

https://web.stanford.edu/~jurafsky/slp3/

...

More on dimensions

Model dimension: *d* (=512)

Query, Key, Value dimensions:

 $d_{\alpha}d_{\kappa}d_{\nu}$ (=64 each)

Projection matrices: $d \times d_{\nu}$ (=

512 x 64 each)

The output at each head: d_{ij}

For "h" (=8) multi-heads: $h\vec{d}$

To project it back to model

dimension: W^{O} : $d \times hd_{u}$

Feed-forward Layer

Problem: Since there are no element-wise non-linearities, selfattention is simply performing a re-averaging of the value vectors.

Easy fix: Apply a feedforward layer to the output of attention, providing non-linear activation (and additional expressive power).

Feed-forward Layer

How to make this work for deep networks?

