Customer Personality Analysis Using Clustering Algorithms

The problem

 Customer personality analysis helps businesses to change their products and marketing services based on their customers behaviours.

- This implies cost reductions and improvements in customer satisfaction in different ways:
 - identify customers close to churn by tracking their behaviour over time
 - offering specific add-ones to the right customers
 - Analyzing business processes in terms of improving overall profit

Dataset: Customer Personality Analysis

The dataset includes customers and their attributes:

Year_Birth

Education: education level

Marital_Status

Income: yearly income

Kidhome: Number of children

Teenhome: Number of

teenagers

Recency: last purchase

Complain: in the last 2 years

MntWines: Amount spent on wine in last 2 years

MntFruits: Amount spent on

fruits in last 2 years

MntGoldProds: Amount spent

on gold in last 2 years

NumDealsPurchases:

Number of purchases made with a discount

AcceptedCmp1: 1 if customer accepted the offer in the 1st campaign, 0 otherwise

NumWebPurchases: Number of purchases made through the company's website

NumStorePurchases:
Number of purchases made
directly in stores

Preprocessingthe Dataset

- Original dataset has
 2240 rows and 29
 columns.
- After applying
 preprocessing
 techniques we have
 (2216, 28) .

Remove null values

remove 24 rows that have "income"= null

Feature Engineering

Dimension Reduction using PCA Scaling values using
RobustScaler

Feature Engineering

Reduce **Marital status** to "Partner" and "Single" and Convert **Education** into "Undergraduate", "Graduate", "Postgraduate", and Birth date to age.

Winsorizing some attributes to reduce the effectiveness of outliers.

Add new attribute such as

"Day_with_market", "Total_spent",

"Household_size",

"NumTotalPurchases" and

"ls_parent".

Winsorizing the unbalanced attribute

Exploratory Data Analysis

Percentage of Company's Profit from Products

MntFruits : \$58405

MntFishProducts: \$59896 MntFishProducts: \$83405 MntGoldProds: \$97427 MntMeatProducts: \$370063

MntWines: \$676083

High Correlation

- Total_spent
- Income
- MntWines
- MntMeat
- NumTotalPurchases
- Catalog

- Web
- Cataloge
- Store
- NumTotalPurchases

Dimension Reduction

We performed clustering on a dataset using dimensionality reduction techniques, including correlation-based dimension reduction and PCA-based dimension reduction. Additionally, we conducted clustering on a subset of the dataset, focusing on three specific features that we selected.

Choosing Parameters

We choose k = 4 for KMeans and agglomerative clustering algorithms.

Experimental Results

Our clustering evaluation measure is the silhouette score, which quantifies cluster cohesion and separation. Higher scores indicate better clustering, with values close to 1 indicating well-defined and separated clusters, and values close to -1 indicating overlapping or poorly separated clusters.

- Agglomerative Clustering
- KMeans Clustering
- GaussianMixture

Algorithms	Silhouette Score
PCA + Agg.	0.409
PCA + KM	0.426
PCA + GaussianMix	0.388
CorrReduction + Agg.	0.110
CorrReduction + KM	0.199
CorrReduction + GaussianMix	0.199
FeatureSelection + Agg.	0.274
FeatureSelection + KM	0.333
FeatureSelection + GaussianMix	0.332

Cluster Analysis

Distributions of clustering

Segment Analysis Based On Income and Spending

Customer Segment Analysis based on Education and spending

Customer Segment Analysis based on Household size and spending

Customer Segment Analysis on different products

Customer Segment Analysis based on Complains

Who most often complains about the service (based on K-means clustering)?

What is average number of complains for each cluster?

0.008

0.009

0.012

20

Customer Segment Analysis based on the number of deal purchases

Who most often Number of deals Purchases about the service (based on the K-means clustering)?

What is the average number of deals that accepted by for each cluster? 1.6 4.4 1.5 1.9

Customer Segment Analysis based on the number of web purchases

Who most often purchased by web (based on K-means clustering)?

What is the percentage of Number of web Purchases customers for each cluster?

5.6

6.2

5.4

2.1

Customer Segment Analysis based on the number of store purchases

Who most often purchased by store (based on K-means clustering)?

What is the percentage of Number of store Purchases customers for each cluster?

8.4

7.7

8.5

3.3

Customer Segment Analysis based on the number of catalog purchases

Who most often purchased by catalog (based on K-means clustering)?

What is the percentage of Number of Catalog Purchases customers for each cluster?

5.6

2.9

5.6

0.6

The customer behaviour

Beneficial clients

- High Income: High purchasing power.
- High Spending: Known for high spending habits.
- Average Household Size:
 Average household size of 2.
- Education Level: Majority have graduate/postgraduate education.
- Parenthood Status: Most are not parents, may impact spending habits.

Potential good clients

- High Income: High purchasing power.
- Average Spending: Spending higher than ordinary people, but lower than beneficial clients.
- Household Size: Mostly 2 and 3.
- Purchase Preference: Tend to purchase in store.
- Education Level: Mostly graduate/postgraduate education.
- Parenthood Status: Mostly not parents.

The customer behaviour

Ordinary clients

- **Low** income
- Average spending
- mostly their number of household size is 2 and 3.
- tend to buy products by web.
- They mostly are graduate or postgraduate in education level.
- Mostly they are **parent**.
- seeking for **discounts**

Low-income low-spending clients

- **Low** income
- **Low** spending
- The average number of household size is 3.
- tend to buy products in store.
- They are included people with all level of education.
- Mostly parents.