Descriptive Statistics and Exploratory Data Analysis

Dean's Faculty and Resident
Development Series
UT College of Medicine Chattanooga
Probasco Auditorium at Erlanger
January 14, 2008

Marc Loizeaux, PhD

Department of Mathematics

University of Tennessee at Chattanooga

What is descriptive statistics?

- Descriptive statistics <u>describes</u> your data.
 - Visual and Numerical

- Inferential statistics <u>draws inferences</u> about a larger population.
 - Estimation and hypothesis testing

The Big Picture

Why descriptive statistics?

- To summarize our data
- To help us get to know our data
- To help us describe our data to an audience
- To help us explore our data.

What is Exploratory Data Analysis?

- "Exploratory data analysis is detective work
 - numerical detective work
 - or counting detective work
 - or graphical detective work"
- John Wilder Tukey,

Exploratory Data Analysis, page 1

Exploring our data

- Gives us an overall view
- Helps us consider basic assumptions
- Helps us spot oddball values
- Helps us avoid embarrassing oversights
- May help us decide on the next step

Visual Descriptions

(Tools for exploring your data visually)

- Charts and Graphs
 - Histogram
 - Dotplot
 - Stem and leaf plot
 - Boxplot
 - Scatterplot
 - And many more

A simple example

Grades on the first exam

84	75	83	48	70	31	39	51	57	68	55
84	89	45	53	55	69	93	54	65	75	78
00	00	04	05	00	FF	EE	11	47	70	
88	90	91	95	88	55	55	41	4/	78	

Numerical Descriptions

- (Univariate, interval data)
- We want to describe.....
 - The central tendency of the data
 - ■What is a center point for the data?
 - ■What is a typical score?
 - The <u>variation</u> of the data?
 - ■How much spread is there to the data?
 - How far apart are the data values from each other?

Measures of Central Tendency

- The mean is the arithmetic average.
 - Easy to calculate, easy to understand
 - The balance point of the data

- The median is the score in the middle.
 - Resistant to extreme scores

Measures of Dispersion

- The range.
 - Easy to calculate and quick
 - Range = high score low score
 - Limited only considers two scores

- The standard deviation.
 - More complicated, but...
 - Indicates a "typical" deviation from the mean

Childhood Respiratory Disease

(playing with the data)

Data available from OzDASL, StatSci.org

- FEV (forced expiratory volume) is an index of pulmonary function that measures the volume of air expelled after one second of constant effort.
- The data: determinations of FEV on 654 children ages 6-22 who were seen in the Childhood Respiratory Desease Study in 1980 in East Boston, Massachusetts. The data are part of a larger study to follow the change in pulmonary function over time in children.

Source:

- Tager, I. B., Weiss, S. T., Rosner, B., and Speizer, F. E. (1979). Effect of parental cigarette smoking on pulmonary function in children. *American Journal* of *Epidemiology*, **110**, 15-26.
- Rosner, B. (1990). Fundamentals of Biostatistics, 3rd Edition. PWS-Kent, Boston, Massachusetts.

Some of the Data

ID	Age	FEV	Height	Sex	Smoker
46951	12	3.082	63.5	Female	Non
47051	13	3.297	65	Female	Current
47052	11	3.258	63	Female	Non
72901	12	2.935	65.5	Male	Non
73041	16	4.27	67	Male	Current
73042	15	3.727	68	Male	Current
73751	18	2.853	60	Female	Non
75852	16	2.795	63	Female	Current
77151	15	3.211	66.5	Female	Non

Descriptive Statistics

	Age	FEV	Height
Mean	9.93	2.64	61.14
Median	10.00	2.55	61.50
Mode	9	3.08	63
Standard Deviation	2.95	0.87	5.70
Range	16	5.00	28
Minimum	3	0.79	46
Maximum	19	5.79	74

Pictures may say more

The ages look like this

And again

One variable, then two...

- A univariate exploration
 - Explore each data column individually
- A multivariate exploration
 - Explore the relationships between two data columns

Consider natural subgroups

Raising more questions?

It starts to make sense

Something else to study?

Forced Expiratory Volume by Height

Differentiating Subgroups

Forced Expiratory Volume: Height and Smoker

Preparing for an Audience

Some Do's

- Pick and choose your graphs
- Include appropriate numbers for your type of data
- Include narrative
 - Does the histogram indicate asymmetry?
 - Are there unexpected values in the data set?
 - Are there special problems you had to deal with to describe the data?

Preparing for an Audience (2)

■ Some Don'ts

- Don't include everything that just confuses us.
- Don't be redundant some graphs say the same thing.
- Don't include descriptors you don't understand (kurtosis?) – ask the chauffeur

Points to Remember

(in no particular order)

- Don't skip the simple stuff!
- Spend time playing with your data.
- Pictures say a lot.
- Describe the spread as well as the center.
- Consider the natural subgroups in your data.

Next Time

- Confidence Intervals,
 Hypothesis Tests,
 and Statistical Significance
- 2 x 2 tables

Monday, February 11