

DENNA VECKA

Tisdag: Videolektion – frågor och svar från förra veckans uppgifter. Vi tittar också på

formelsamlingen och några härledningar därifrån.

Lös uppgiften BAC 2014:6 som finns längre ner här i veckoplaneringen.

Torsdag: Lös uppgiften BAC 2016:4 som finns längre ner här i veckoplaneringen.

Ta foto och skicka in veckans arbete som inlämningsuppgift.

Fredag: Videolektion – frågestund (kl 15:30). Fortsatt arbete med uppgifter enligt ovan.

NÄSTA VECKA

Mer repetition

BAC 2014:6

Uppgift 6						
			Sida 1/2	Poäng		
År 1972 fann man i urangruvan i Oklo (Gabon, Västafrika) bevis för att en naturlig fissionsreaktor hade existerat tidigare. I gruvans uranförekomster fann man en mindre andel av isotopen uran-235 (U-235) än vad som är normalt och man fann också fissionsprodukter.						
a)	Man antar att det var vatten i den naturliga fissionsreaktorn.					
	Vilken roll kan vatten ha i en fissionsreaktor?			2 poäng		
b)	Kedjereaktionen upphörde när förhållandet					
	$\overline{m_{ ext{U-235}}}$					
	$m_{\rm U}$ understeg 0,03. Eftersom U-235 sönderfaller snabbare än U-238 har detta förhållande minskat ytterligare till det nuvarande värdet 0,0072. Vi antar att det inte förekommer några andra isotoper än U-235 och U-238.					
	i. Bestäm sönderfall	Iskonstanten λ för U-235.		2 poäng		
	ii. Visa att idag är ak 5.8×10^5 Bq.	ctiviteten av U-235 i 1,0 kg uran fr	ån Oklo gruvan	5 poäng		
	iii. När kedjereaktionen upphörde var aktiviteten i 1,0 kg uran $2,4 \times 10^6$ Bq. Hur lång tid har gått sedan kedjereaktionen upphörde?		4 poäng			
c)	En typisk fissionsreaktion är	$^{235}_{92}U + n \rightarrow ^{140}_{Z}Cs + ^{94}_{37}Rt$	n + r. n			
			2			
	i. Best neutroner som frigörs i	\ddot{a} m atomnumret Z för Cs och anta	reaktionen.	3 poäng		
	ii. Bera	ikna energin (i MeV) som frigörs v	vid fissionen.	5 poäng		
d)	d) Den genomsnittliga energin som frigörs vid fissionen av en U-235 kärna är ungefär 200 MeV. När man analyserar isotoperna i Oklo gruvan så uppskattar man att omkring 10 ⁴ kg av Uranium-235 har undergått fission i denna naturliga kärnreaktor.					

Beräkna den totala energin som har frigjorts i den naturliga fissionsreaktorn medan den var aktiv.

4 poäng

Uppgift 6					
	Sida 2/2				
<u>Givet</u> :					
Halveringstiden för uran-235	$7,04 \times 10^8 \text{år}$				
Halveringstiden för uran-238	$4,47 \times 10^9 \text{ år}$				
Atommassan av uran-235	235,0439 u				
Atommassan av uran-238	238,0508 u				
Atommassan av cesium-140	139,9173 u				
Atommassan av rubidium-94	93,9264 u				
Neutronens massa	1,0087 u				
Atommassenheten	$1 \text{ u} = 1,66 \times 10^{-27} \text{ kg} = 931,5 \text{ MeV}/c^2$				
Elektronens massa	$9,11\times10^{-31} \text{ kg}$				
Elementarladdningen	$e = 1,60 \times 10^{-19} \mathrm{C}$				
Ljusets hastighet i vakuum	$c = 3,00 \times 10^8 \text{ m/s}$				

BAC 2016:4

UPPGIFT 4						
		Sida 1/2	Poäng			
Den radioaktiva isotopen kol-14, $^{14}_{ \ 6}$ C , har en halveringstid på 5730 år vilket är lämpligt att använda för vissa arkeologiska dateringar.						
a)	i. Förklara vad som menas med termen "isotop".		1 poäng			
	ii. Ange sammansättningen av kol-14 kärnan.		1 poäng			
b)	b) Neutroner utgör en del av den kosmiska strålningen som bombarderar Jorden från yttre rymden. Kol-14 produceras genom växelverkan av neutroner med kväve i yttre atmosfären. Reaktionsformeln för bildandet av kol-14 är					
	${}_{0}^{1}N + {}_{7}^{14}N \rightarrow {}_{6}^{14}C + {}_{2}^{A}X$.					
	Bestäm A och Z , och identifiera partikeln X .		2 poäng			
c)	Kol-14 sönderfaller genom β^- emission.					
	i. Skriv reaktionsformeln för β^- sönderfall av kol-14.		2 poäng			
	ii. Beräkna den maximala kinetiska energin av en β^- paskapats i ett sådant sönderfall.	artikel som	4 poäng			
d)	Förklara vad som menas med halveringstiden av en radioa	ktiv isotop.	2 poäng			

e) Visa att förhållandet mellan sönderfallskonstanten λ och halveringstiden T_{y_2} av en radioaktiv isotop är givet av: $T_{y_2} = \frac{\ln(2)}{\lambda}$.

3 poäng

f) Levande materia upprätthåller en konstant aktivitetsnivå genom utbyte av kol-14 med atmosfären. Vid döden upphör detta utbyte och aktiviteten börjar avta.

1,00 g av kol i levande materia har idag en aktivitet på 13,6 sönderfall per

Ötzi, ismannen, är en väl bevarad naturlig mumie av en forntida man, upptäckt infrusen i en glaciär i de Italienska alperna år 1991. Aktiviteten hos 1,00 g av kol från Ötzi har blivit uppmätt till 0,121 Bq.

i. Beräkna hur många år sedan som Ötzi dog.

4 poäng

 Ange en faktor som kan påverka noggrannheten av kol-14 datering. 1 poäng

Givet:

Atommassor

Ljushastigheten i vakuum $c = 3,00 \cdot 10^8 \text{ m/s}$

Atommassenheten 1 u = 1,66 · 10⁻²⁷ kg = 931,5 $\frac{\text{MeV}}{c^2}$

Elektronens massa $m_e = 9,11 \cdot 10^{-31} \text{ kg}$

 $M\binom{14}{6}C = 14,003 242 u$

 $M\binom{14}{7}N = 14,003 074 u$