Doble Grado en Informática-Matemáticas

Variable Compleja I

(Curso 2014-2015) Control 1

27-Marzo-2015

1.

(i) Demostrar que

 $|z+w|^2 = |z|^2 + |w|^2 + 2 \mathrm{Re}(z\overline{w})\,\,$ para cualesquiera $\,z,w \in \mathbb{C}.\,$

(ii) Demostrar la identidad del paralelogramo:

 $|z+w|^2+|z-w|^2=2(|z|^2+|w|^2)$ para cualesquiera $z,w\in\mathbb{C}$.

(iii) Obtener el mínimo valor de la expresión $|z-a|^2 + |z-b|^2$, donde a y b son números complejos fijos y z varía en \mathbb{C} .

(2 Puntos)

2.

- (i) Enunciar los conceptos de continuidad y de derivabilidad en un punto de una función compleja de variable compleja. ¿Cuándo una función compleja se dice holomorfa en un abierto?
- (ii) Sea Ω un abierto no vacío de \mathbb{C} y sea $f:\Omega\to\mathbb{C}$ una función continua que no se anula en ningún punto de Ω . Demostrar que si f^2 es holomorfa en Ω , entonces f es holomorfa en Ω .

(2 Puntos)

3.

(i) Enunciar el concepto de función analítica. En este momento, qué relación sabes que existe entre los conceptos:

Función holomorfa y Función analítica.

Justificar razonadamente la respuesta.

- (ii) Estudiar la convergencia de la serie de funciones $\sum_{n\geq 0} z^n$ y determinar su función suma.
- (iii) En conveniente disco con centro 0, expresar las funciones

$$\frac{1}{(1-z)^2}$$
 y $\frac{1}{(1-z)^3}$.

como suma de una serie de potencias centrada en 0.

- (iv) Demostrar que $\sum_{n=1}^{\infty} \frac{n}{2^n} = 2$.
- (v) Verificar que la función $\frac{1}{z}$ es analítica en $\mathbb{C}\setminus\{0\}$.

(4 Puntos)

4.

- (i) Enunciar el Criterio de la mayorante de Weierstrass.
- (ii) Se considera la serie de funciones $\sum_{n\geq 1}f_n(z)$, donde para cada $n\in\mathbb{N}$ la función $f_n:\mathbb{C}\setminus\mathbb{N}\to\mathbb{C}$ está definida por

$$f_n(z) := \frac{1}{(z-n)^2}.$$

Probar que para cada $\rho > 0$ la serie $\sum_{n \geq 1} f_n(z)$ converge absoluta y uniformemente en $D(0,\rho) \setminus \mathbb{N}$. Deducir que la serie $\sum_{n \geq 1} f_n(z)$ converge puntualmente en $\mathbb{C} \setminus \mathbb{N}$.

(2 Puntos)