

LINEAR ALGEBRA II

Bo Yu (于波) Dalian University of Technology

线性代数II(B.YU)

Ch. IX Polynomials and Matrices

§1. POLYNOMIALS

By a polynomial over K, we shall mean a formal expression

$$f(t) = a_n t^n + \dots + a_0$$

- Coefficients
- Degree

If
$$a_n \neq 0$$
. $n = deg(f)$

Degree of zero polynomial deg (0) = - 60

- The leading coefficient : Q
- The constant term
- $K[t] = {all polynomials over K}$

§I. POLYNOMIALS

$$(f+g)(f)=\frac{2}{2}(a_k+b_k)f^k$$

$$(b_k=0, k>n)$$

Theorem 1.1. Let f, g be polynomials with coefficients in K. Then

$$deg(fg) = deg f + deg g.$$

$$f(t) = \underbrace{At^{2} + \dots + A_{0}}_{\text{the start by } 1} = \underbrace{\frac{1}{2}}_{\text{the start by } 1} = \underbrace{\frac{1}{2}}_{\text{the start by } 2} \underbrace{\frac{1}{2}}_$$

Theorem 1.2. Let f be a polynomial with complex coefficients, of degree ≥ 1 . Then f has a root in C. Let f be a polynomial with complex coefficients, of degree f be f be a polynomial with complex coefficients, of degree f be f be a polynomial with complex coefficients, of degree f be f be a polynomial with complex coefficients, of degree f be a polynomial with complex coefficients, of degree f be a polynomial with complex coefficients, of degree f be a polynomial with complex coefficients, of degree f be a polynomial with complex coefficients, of degree f be a polynomial with complex coefficients, of degree f be a polynomial with complex coefficients, of degree f be a polynomial with complex coefficients, of degree f be a polynomial with complex coefficients.

Theorem 1.3. Let f be a polynomial with complex coefficients, leading coefficient 1, and $\deg f = n \ge 1$. Then there exist complex numbers $\alpha_1, \ldots, \alpha_n$ such that

monic polynomial
$$f(t) = (t - \alpha_1) \cdots (t - \alpha_n). \qquad f(\alpha_1) = 0$$

The numbers $\alpha_1, \ldots, \alpha_n$ are uniquely determined up to a permutation. Every root α of f is equal to some α_i , and conversely.

$$f(t) = (t - \alpha_1)^{m_1} \cdots (t - \alpha_r)^{m_r}, \text{ multiplicity}$$

$$(1 + \lambda_1)^{m_1} \cdots (t - \alpha_r)^{m_r}, \text{ multiplicity}$$

operators

an operator of V

Let A be a square matrix with coefficients in K. Let $f \in K[t]$, and write

$$f(t) = a_n t^n + \dots + a_0$$

with $a_i \in K$. We define

$$f(A) = a_n A^n + \dots + a_0 I.$$

Example 1. Let $f(t) = 3t^2 - 2t + 5$. Let $A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$. Then

$$f(A) = 3\begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}^2 - \begin{pmatrix} 2 & -2 \\ 4 & 0 \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 2 & -1 \end{pmatrix}.$$

an operator of V cover K?

Theorem 2.1. Let $f, g \in K[t]$. Let A be a square matrix with coefficients in K. Then

$$(f+g)(A) = f(A) + g(A),$$

$$(fg)(A) = f(A)g(A).$$

$$f(b) = a_n t^n + \cdots + a_n$$

$$f(b) = b_n t^n + \cdots + b_n$$

If $c \in K$, then (cf)(A) = cf(A).

Proof.
$$(f+g)(A) = \sum_{k=0}^{max[m,n]} (a_k+b_k) A^k$$

$$f(A)+g(A) = [a_kA^n+\cdots+a_nI] + (b_mA^m+\cdots+b_nI) = \sum_{k=0}^{max[m,n]} (a_k+b_k) A^k$$

$$(cf)(A) = \sum_{k=0}^{\infty} c a_k A^{lc}, c f(A) = c \cdot \sum_{k=0}^{max[m,n]} a_k A^k = \sum_{k=0}^{max[m,n]} c a_k A^k$$

$$(fg)(A) = \sum_{k=0}^{max[m,n]} c a_k A^k, c f(A) = c \cdot \sum_{k=0}^{max[m,n]} a_k A^k = \sum_{k=0}^{max[m,n]} c a_k A^k$$

$$(fg)(A) = \sum_{k=0}^{max[m,n]} c a_k A^k, c f(A) = c \cdot \sum_{k=0}^{max[m,n]} a_k A^k = \sum_{k=0}^{max[m,n]} c a_k A^k$$

$$(fg)(A) = \sum_{k=0$$

Example 2. Let $f(t) = (t-1)(t+3) = t^2 + 2t - 3$. Then

$$f(A) = A^2 + 2A - 3I = (A - I)(A + 3I).$$

Example 3. Let $\alpha_1, \ldots, \alpha_n$ be numbers. Let

$$f(t) = (t - \alpha_1) \cdots (t - \alpha_n).$$

Then

$$f(A) = (A - \alpha_1 I) \cdots (A - \alpha_n I).$$

Theorem 2.2. Let A be an $n \times n$ matrix in a field K. Then there exists a non-zero polynomial $f \in K[t]$ such that f(A) = 0.

Proof. Consider 1, A, A², ..., Aⁿ 6 Method (K)
$$\Rightarrow$$
 N²-dimensional V.S.

They must be L.I., so there exist co, ci,..., che EK, sit.

Co I+ Ci A+...+ Cn2 Aⁿ² = O

Let $f(t) = C_n e^{t^2} + ... + c_i t + c_i$

We have $f(A) = O$

$$\begin{cases} L(V, V) & \text{is} & n^2 - dimensional \\ \cong Method (K) \end{cases}$$

Homework:

- P236: 3, 5,