Package 'PRECISION.array.subtyping'

October 17, 2022

3
1 3 4 5
rec-

Description

The function gives clustering results from a data frame or matrix by by Self-Organizing Map (SOM), K-Means, or Model-Based Clustering.

2 cluster_other

Usage

```
cluster_other(dat, true_cluster, clust_method = c("SOM", "kmeans", "MNM"),
ncluster = 2, normalize = FALSE,
norm_method = c("quantile", "median", "vsn"), combat = FALSE,
batch = NULL, eliminate = TRUE, eliminate_lv = 6)
```

Arguments

dat	data matrix or data frame, each row corresponds to a probe and each column corresponds to a sample.
true_cluster	numeric vector indicating the true cluster labels corresponding to the samples, prespecified by the user.
clust_method	character string specifying the clustering method to be used. The available options are "SOM", "kmeans" and "MNM".
ncluster	an integer indicating the number of clusters. The default value is 2.
normalize	logical indicator. If normalize = TRUE, the data will be normalized by the chosen normalization method. The default value is normalize = FALSE.
norm_method	character string specifying the normalization method to be used. The available options are "quantile", "median" and "vsn".
combat	logical indicator. If combat = TRUE, ComBat() will be applied after normalization. The default value is combat = FALSE.
batch	numeric vector indicating the batch labels for $ComBat()$, prespecified by the user.
eliminate	logical indicator. If eliminate = TRUE, probes with more than 95% expressions smaller than eliminate_lv. The default value is eliminate = TRUE.
eliminate_lv	default value is 6.

Value

List with the following elements:

clustering	numeric vector indicating the estimated cluster labels corresponding to the samples.
cluster	nclust character string vectors storing the names of samples in each cluster.
ARI	corrected Rand index evaluating the accuracy of clustering results.

Author(s)

Becky Wing-Yan Yuen

References

Yilin Wu*, Becky Wing-Yan Yuen*, Yingying Wei, Li-Xuan Qin^. On data normalization for tumor subtyping with microRNA data, Manuscript.

cluster_pam 3

Examples

```
data("example_data", package = "PRECISION.array.subtyping")
uni_true_cluster = rep(NA,dim(example_data)[2])
uni_true_cluster[which(substr(colnames(example_data),7,7)=="E")] = 1
uni_true_cluster[which(substr(colnames(example_data),7,7)=="V")] = 2
results = cluster_other(dat = example_data, true_cluster = uni_true_cluster, clust_method = "kmeans")
str(results)
```

cluster_pam

Clustering by Partition Around Medoids (PAM)

Description

The function gives clustering results from a data frame or matrix by Partition Around Medoids (PAM) method.

Usage

```
cluster_pam(dat, true_cluster, distance = c("euclidean", "spearman", "pearson"),
ncluster = 2, normalize = FALSE,
norm_method = c("quantile", "median", "vsn"),
combat = FALSE, batch = NULL, eliminate = TRUE,
eliminate_lv = 6)
```

Arguments

dat	data matrix or data frame, each row corresponds to a probe and each column corresponds to a sample.
true_cluster	numeric vector indicating the true cluster labels corresponding to the samples, prespecified by the user.
distance	character string specifying the method to be used for calculating dissimilarities between observations in pam(). The available options are "euclidean", "spearman" and "pearson".
ncluster	an integer indicating the number of clusters. The default value is 2.
normalize	logical indicator. If normalize = TRUE, the data will be normalized by the chosen normalization method. The default value is normalize = FALSE.
norm_method	character string specifying the normalization method to be used. The available options are "quantile", "median" and "vsn".
combat	logical indicator. If combat = TRUE, ComBat() will be applied after normalization. The default value is combat = FALSE.
batch	numeric vector indicating the batch labels for ComBat(), prespecified by the user.
eliminate	logical indicator. If eliminate = TRUE, probes with more than 95% expressions smaller than eliminate_lv. The default value is eliminate = TRUE.
eliminate_lv	default value is 6.

4 cluster_Skmeans

Value

List with the following elements:

clustering numeric vector indicating the estimated cluster labels corresponding to the sam-

ples.

cluster nclust character string vectors storing the names of samples in each cluster.

ARI corrected Rand index evaluating the accuracy of clustering results.

Author(s)

Becky Wing-Yan Yuen

References

Yilin Wu*, Becky Wing-Yan Yuen*, Yingying Wei, Li-Xuan Qin^. On data normalization for tumor subtyping with microRNA data, Manuscript.

Examples

```
data("example_data", package = "PRECISION.array.subtyping")
uni_true_cluster = rep(NA,dim(example_data)[2])
uni_true_cluster[which(substr(colnames(example_data),7,7)=="E")] = 1
uni_true_cluster[which(substr(colnames(example_data),7,7)=="V")] = 2
results = cluster_pam(dat = example_data, true_cluster = uni_true_cluster, distance = "euclidean")
str(results)
```

cluster_Skmeans

Clustering by Sparse K-Means Clustering

Description

The function gives clustering results from a data frame or matrix by sparse k-means clustering.

Usage

```
cluster_Skmeans(dat, true_cluster, ncluster = 2, normalize = FALSE,
norm_method = c("quantile", "median", "vsn"), combat = FALSE,
batch = NULL, eliminate = TRUE, eliminate_lv = 6)
```

Arguments

data matrix or data frame, each row corresponds to a probe and each column

corresponds to a sample.

true_cluster numeric vector indicating the true cluster labels corresponding to the samples,

prespecified by the user.

ncluster an integer indicating the number of clusters. The default value is 2.

example_data 5

normalize	logical indicator. If normalize = TRUE, the data will be normalized by the chosen normalization method. The default value is normalize = FALSE.
norm_method	character string specifying the normalization method to be used. The available options are "quantile", "median" and "vsn".
combat	logical indicator. If combat = TRUE, ComBat() will be applied after normalization. The default value is combat = FALSE.
batch	numeric vector indicating the batch labels for ComBat(), prespecified by the user.
eliminate	logical indicator. If eliminate = TRUE, probes with more than 95% expressions smaller than eliminate_lv. The default value is eliminate = TRUE.
eliminate lv	default value is 6.

Value

List with the following elements:

clustering numeric vector indicating the estimated cluster labels corresponding to the sam-

ples.

nclust character string vectors storing the names of samples in each cluster. cluster

corrected Rand index evaluating the accuracy of clustering results. ARI

Author(s)

Becky Wing-Yan Yuen

References

Yilin Wu*, Becky Wing-Yan Yuen*, Yingying Wei, Li-Xuan Qin^. On data normalization for tumor subtyping with microRNA data, Manuscript.

Examples

```
data("example_data", package = "PRECISION.array.subtyping")
uni_true_cluster = rep(NA,dim(example_data)[2])
uni_true_cluster[which(substr(colnames(example_data),7,7)=="E")] = 1
uni_true_cluster[which(substr(colnames(example_data),7,7)=="V")] = 2
results = cluster_Skmeans(dat = example_data, true_cluster = uni_true_cluster)
str(results)
```

example_data

A data set for running examples in user manual

Description

This data set is the biological-effects-only data with amplification constant 1.6.

Format

A data frame with 3,523 rows by 192 columns.

6 example_data

Details

The data set contains 192 tumor samples (columns) with 3,523 probes (rows).

References

Yilin Wu*, Becky Wing-Yan Yuen*, Yingying Wei, Li-Xuan Qin^. On data normalization for tumor subtyping with microRNA data, Manuscript.

Index