FORMAL LANGUAGES AND AUTOMATA, 2025 FALL SEMESTER

Lec 08. More on regular language & Context-free grammar

Eunjung Kim

WHEN L IS REGULAR, SO IS Prefix(L)?

Given two strings $x, w \in \Sigma^*$, x is a prefix of w if w = xy for some $y \in \Sigma^*$. For a language $L \subseteq \Sigma^*$, let $Prefix(L) = \{x \in \Sigma^* : x \text{ is a prefix of } w \in L\}$.

If L is regular, Prefix(L) is regular

Let M be an DFA with L = L(M). Notice that

 $w \in L$ can be written as w = xy if and only if $\hat{\delta}(q_0, x) = q$ for some state $q \in Q$ such that

Figure 1.43, Sipser 2012

When L is regular, so is Prefix(L)?

Let M be an DFA with L = L(M). Then

$$Prefix(L) = \bigcup_{q \in Q \text{ such that....}} L_q$$

where $L_q = \{x \in \Sigma^* : \hat{\delta}(q_0, x) = q\}.$

- If L_q is regular, then Prefix(L) is regular (why?)
- Is L_q regular?
- properPrefix(L) be the set of all proper prefixes of some $w \in L$; x is a proper prefix of w if w = xy for some $y \in \Sigma^+$.
- Is properPrefix(L) regular?

WHEN L IS REGULAR, SO IS Suffix(L)?

Given two strings $x, w \in \Sigma^*$, x is a suffix of w if w = yx for some $y \in \Sigma^*$. For a language $L \subseteq \Sigma^*$, let $Suffix(L) = \{x \in \Sigma^* : x \text{ is a suffix of } w \in L\}$.

If L is regular, Suffix(L) is regular

Let reverse(L) be the set of all strings each of which is a reversal w^R of some string $w \in L$.

- If L is regular, reverse(L) is regular as well; homework.
- Suffix(L) can be obtained by applying ???? and ???? operations on L.

QUOTIENT L/a **FOR** $a \in \Sigma$

Given a language L over Σ and a symbol $a \in \Sigma$, the quotient of L by a denoted as L/a is the language

$$\{x \in \Sigma^* : xa \in L\}.$$

Is L/a regular?

Figure 1.43, Sipser 2012

- For a state $q \in Q$, if $x \in L_q$ satisfies $xa \in L$ for some x, then for all $y \in L_q$ we have $ya \in L$.
- That is, $L_q \subseteq L/a$ or $L_q \cap L/a = \emptyset$.
- How to tell if $L_q \subseteq L/a$?

The Language $a \setminus L$ for $a \in \Sigma$

Given a language L over Σ and a symbol $a \in \Sigma$, the language $a \setminus L$ is defined as

$$\{x \in \Sigma^* : ax \in L\}.$$

Is $a \setminus L$ regular?

Idea: Express $a \setminus L$ using the operations we examined so far to immediately conclude.

- Fix a DFA M and a state $s \in Q$.
- Let P_s be the set of all string $w \in L$ such that the accepting computation history of w visits the state s.
- Is P_s regular?

Figure 1.43, Sipser 2012

First approach.

- For any string w, $w \in P_s$ if and only if it can be written as w = xy with $\hat{\delta}(q_0, x) = s$ and $\hat{\delta}(s, y) \in F$.
- That is $P_s = L_s \cdot A_s$, where L_q and A_q are defined for all $q \in Q$ as

$$L_q = \{x \in \Sigma^* : \hat{\delta}(q_0, x) = q\}.$$

$$A_q = \{x \in \Sigma^* : \hat{\delta}(q, x) \in F\}.$$

Is any one of L_q and A_q regular?

Second approach: use Myhill-Nerode Theorem.

MYHILL-NERODE THEOREM

L is regular if and only if the number of equivalence classes of \equiv_L is finite.

Idea: use the DFA M recognizing L to identify the equivalence relation \equiv_{P_s} , (or a refinement of it) of finite index.

- For $T \subseteq Q$ and $q \in T$, let $L_{T,q}$ be the set of all strings w such that the computation history of w on M visits precisely the states in T and end in q.
- $\Sigma^* = \dot{\bigcup}_{T \subset Q, q \in T} L_{T, q}$ (disjoint union).
- We want to argue that any strings $x, y \in L_{T,q}$ are indistinguishable by P_s .
- This shows that P_s has finitely many equivalent classes, thus regular.

Second approach: use Myhill-Nerode Theorem

MYHILL-NERODE THEOREM, IN ACTION

 P_s is regular if for any $T \subseteq Q$ and $q \in T$,

- any $x, y \in L_{T,a}$ are indistinguishable by P_s , or equivalently
- for any $x, y \in L_{T,q}$ and for any $z \in \Sigma^*$, $xz \in P_s$ if and only if $yz \in P_s$.

What are the key property of z which will make $xz \in P_s$ (or not) for $x \in L_{T,a}$?

Second approach: use Myhill-Nerode Theorem

MYHILL-NERODE THEOREM, IN ACTION

 P_s is regular if for any $T \subseteq Q$ and $q \in T$,

- any $x, y \in L_{T,q}$ are indistinguishable by P_s , or equivalently
- for any $x, y \in L_{T,q}$ and for any $z \in \Sigma^*$, $xz \in P_s$ if and only if $yz \in P_s$.

What are the key property of z which will make $xz \in P_s$ (or not) for $x \in L_{T,q}$?

- whether $\hat{\delta}(q, z) \in F$ or not: this determines whether $xz \in L$ or not.
- whether $s \in T$ or not.
- **B** whether s is visited during the computation history of $\hat{\delta}(q, z)$ or not.

A BIT MORE EXOTIC LANGUAGE

Fix a DFA M. The set of all strings w such that the (accepting) computation history of w visits all the state of M, is it regular?

EVEN MORE EXOTIC LANGUAGE

- Why do we care about the second approach using Myhill-Nerode theorem when the first approach seems much simpler?
- Even more exotic language. Fix two states s_1 , s_2 of a DFA M. Let P_{s_1,s_2} be the set of strings $w \in L$ whose computation history visits each of s_1 , s_2 exactly once.
- Is P_{s_1,s_2} regular?

WHAT WE LEARNED SO FAR

- Finite (state) automata: a machine with limited memory.
- Nondeterministic FA has the extra feature of making multiple transitions in parallel and ϵ -transition. Conversions between DFA and NFA possible (no added power).
- Regular expression: describes the 'shape' of a regular language directly.
- Conversion between regular expression and NFA using Generalized NFA.
- The class of regular languages is closed under various operations.
- Pumping lemma as a tool to prove that a language is nonregular.
- Myhill-Nerode Theorem as a powerful characterization of regular languages.
- Büchi's Theorem as another characterization of regular language using logic.
- One can prove various properties of NFA/DFA and regular language combining the tools we learned.

Context-Free Language

13 / 22

EXPRESSING PALINDROMES

- A string w is a palindrome if and only if $w = w^R$.
- The set of palindromes (e.g. over {0,1}) is not regular, so one cannot use a regular expression or NFA to describe the language.
- Recursive definition:
 - **II** Base case: ϵ , 0 and 1 are palindromes.
 - 2 Induction: if w is a palindrome, then 0w0 and 1w1 are palindromes.
- Any word generated in this way is a palindrome.
- Conversely, any palindrome can be generated in this way: a word of the form $x \cdot w \cdot y$ with $x, y \in \Sigma$ is a palindrome (if and) only if x = y and w is a palindrome.

EXPRESSING PALINDROMES

- Recursive definition:
 - **I** Base case: ϵ , 0 and 1 are palindromes.
 - 2 Induction: if w is a palindrome, then 0w0 and 1w1 are palindromes.
- Definition by rules.
 - \mathbb{I} $S \rightarrow \epsilon$.
 - $S \rightarrow 0$.
 - $S \rightarrow 1$.
 - 4 $S \rightarrow 0S0$.
 - $S \rightarrow 1S1.$
- Any word generated using the above rules is a palindrome.
- Conversely, any palindrome can be generated using the above rules.

CONTEXT-FREE GRAMMARS (CFG)

DEFINITION OF CONTEXT-FREE GRAMMAR

There are four component of CFG $G = (V, \Sigma, R, S)$.

- A finite set of nonterminals, often called the variables and denoted by V.
- 2 A finite set of terminals (equivalently, alphabet) Σ .
- A finite set of rules R (often called substitution rules/ production rules) in the form

$$X \rightarrow \gamma$$
,

where

- X is a variable; $X \in V$.
- γ is a string of terminal and nonterminal symbols; $\gamma \in (\Sigma \cup V)^*$.
- 4 A unique nonterminal symbol, often denoted as *S*, called the start symbol.

A quadruple $G = (V, \Sigma, R, S)$ is a context-free grammar (CFG) if the four components are as above.

EXPRESSING PALINDROMES

- Consider the grammar $G_{pal} = (\{S, \}, \{0, 1\}, R, S)$, where R is the five production rules below.
 - \mathbf{I} $S \rightarrow \epsilon$.
 - $S \rightarrow 0$.
 - $3 S \rightarrow 1.$
 - 4 $S \rightarrow 0S0$.
 - **5** S → 1S1.
 - 6 (or equivalently, we write all the <u>bodies</u> of rules sharing the same <u>head</u>) $S \rightarrow \epsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1$.
- Observe: a word over {0,1} is a palindrome if and only if it can be derived from S, that is, by a recursively substituting a variable using one of the substitution rules.
- In other words, the language of palindromes over $\{0,1\}$ is precisely the language of the grammar G_{pal} , denoted as $L(G_{pal})$.

EXPRESSING MSO-FORMULAE ON STRINGS USING "RULES"

Recall that we defined Mso-formula on Σ -strings as a well-formed strings such that

Definition by rules.

1.
$$\varphi \rightarrow x = x \mid x \in X \mid x < x \mid P_a(x)$$
 (for each $a \in \Sigma$).
2. $\varphi \rightarrow (\varphi)$.
3. $\varphi \rightarrow \varphi \land \varphi \mid \varphi \lor \varphi$.
4. $\varphi \rightarrow \exists x \varphi \mid \forall x \varphi \mid \exists X \varphi \mid \forall X \varphi$
5. $x \rightarrow x_1 \mid x_2 \mid x_3 \mid \cdots$.
6. $X \rightarrow X_1 \mid X_2 \mid X_3 \mid \cdots$.

- Any string generated using the above rules is an Mso-formula.
- Conversely, any Mso-formula can be generated using the above rules.

DERIVATION

Consider a CFG $G = (V, \Sigma, R, S)$, $u, v, w \in (\Sigma \cup V)^*$ (a string of terminals and nonterminals) and a variable (nonterminal) $A \in V$.

YIELD, DERIVE, DERIVATION

- We say that uAv yields uwv, written uAv ⇒_G uwv, if G has the rule
 A → w; put another way, uwv is obtained by substituting a variable in
 the string uAv by the body of a rule whose head is the said variable.
- We say that u derives v, written $u \Rightarrow_G^* v$. if u = v or there is a sequence u_1, \ldots, u_k for some $k \ge 1$ such that

$$u \Rightarrow_G u_1 \Rightarrow_G \cdots \Rightarrow_G u_k \Rightarrow_G v$$

and the sequence is called a derivation.

We omit the subscript G in \rightarrow_G and \Rightarrow_G if the CFG under consideration is clear in the context.

DERIVATION BY EXAMPLE

We want to describe, as CFG,

- ullet all arithmetic expressions with + and imes
- over the variables of the form $(a \cup b)(a \cup b \cup 0 \cup 1)^*$.

Consider the following CFG $G_{ari} = (\{E, I\}, \{a, b, 0, 1, +, \times, (,)\}, R, E)$, where R consists of the following rules

- \mathbf{I} $E \rightarrow I$
- $E \rightarrow E + E$
- $E \rightarrow E \times E$
- $E \rightarrow (E)$
- **5** *I* → *a*
- $6 I \rightarrow b$
- **7** *I* → *I*a
- 8 $I \rightarrow Ib$
- 9 I → I0
- $I \rightarrow I1$

CONTEXT-FREE LANGUAGE

For a CFG $G = (V, \Sigma, R, S)$, the language of G, denoted by L(G) is the set of all strings consisting of terminals (only) that have derivations from the start symbol, i.e.

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}.$$

A language is said to be context-free if it is the language of a context-free grammar. A context-free languages is often abbreviated as CFL.

SOME REMARKS ON CFG

- In general, the rule of a grammar has the form u → v with both u and v are strings of terminals and nonterminals.
- A grammar is context-free if the head *u* is a nonterminal (variable) in all the rules; we do not need to consider the context.
- Different restrictions on the grammar define the hierarchy of formal languages.

Class	Languages	Automaton	Rules	Word Problem	Example
type-0	recursively enumerable	Turing machine	no restriction	undecidable	Post's corresp. problem
type-1	context sensitive	linear-bounded TM	$\begin{array}{c} \alpha \to \gamma \\ \alpha \le \gamma \end{array}$	PSPACE- complete	$a^nb^nc^n$
type-2	context free	pushdown automaton	$A ightarrow \gamma$	cubic	a^nb^n
type-3	regular	NFA / DFA	$A \to a \text{ or}$ $A \to aB$	linear time	a^*b^*

Figure 1: Chomsky Hierarchy

Figure 1, Lecture note on 15-411: Compiler Design, CMU, 2023