CS 383: Machine Learning

Prof Adam Poliak
Fall 2024
09/12/2024
Lecture 04

Quiz 2

- 3) high
- 4) zero/one loss
- 5) Case when no training examples have the feature value

Top-Down Decision Tree Algorithm

```
Dataset (X,y)
MakeSubtree(D, F)
 if stopping criteria met
     make a leaf node N
     determine class label/probabilities for N
 else
     make an internal node N
     S = FindBestFeature(D, F)
     for each outcome k of S
        D_k = subset of instances that have outcome k
        N.child[k] = MakeSubtree(D_k, F-S)
 return subtree rooted at N
                                     Why don't we want to use this feature again?
```

Slide: modified from Ameet Soni

Design choice: stopping criteria

1. All the data points in our partition have the same label

2. No more features remain to split on

3. No features are informative about the label

4. Reached (user specified) max depth in the tree

Overfitting

Overfitting

Slide: modified from Jessica Wu Based on slide by David Kauchak (originally by Pedro Domingos)

Overfitting definition

Consider a hypothesis (tree): h

- Training error: *error*_{train}(h)
- Error over all possible data: error_D(h)

9/17/2024 CS383 - ML Slide: modified from Ameet Soni

Overfitting definition

Consider a hypothesis (tree): h

- Training error: *error*_{train}(h)
- Error over all possible data: error_D(h)

A hypothesis *h* **overfits** training data if there exists another hypothesis *h* 's.t.

 $error_{train}(h) < error_{train}(h') AND error_{D}(h) > error_{D}(h')$

Avoiding overfitting in decision trees

• Stop when leaf label reaches a certain fraction (i.e. 95% "yes", 5% "no")

HW2 implementation

Set a maximum depth for the tree

• Set a minimum number of examples in leaf (i.e. if we have a 2-1 split, stop)

How to select "best" features?

X

Color	Shape	Size
red	square	big
blue	square	big
red	circle	small
blue	square	small
red	circle	big

Likes toy?
+
+
-
-
+

How to select "best" features?

X

Color	Shape	Size
red	square	big
blue	square	big
red	circle	big
blue	square	big
red	circle	big

Likes toy?
+
+
-
-
+

Most Informative Feature

Goal: Which feature will allow us to learn the most information

Information Gain – metric from information theory

"the <u>amount of information</u> gained about a <u>random</u>

<u>variable</u> or <u>signal</u> from observing another random variable"

Wikipedia

Entropy

measure of uncertainty in a group of observations

Which feature has the highest IG

X

Color	Shape	Size
red	square	big
blue	square	big
red	circle	small
blue	square	small
red	circle	big

Likes toy?
+
+
-
-
+

Size and entropy

X

Color	Shape	Size
red	square	big
blue	square	big
red	circle	small
blue	square	small
red	circle	big

Likes toy?
+
+
-
-
+

Entropy & Information Gain

Low IG High Entropy High IG Low Entropy

$$p(red) = .7$$

 $p(blue) = .3$

$$p(red) = .4$$

 $p(blue) = .6$

$$p(red) = 0$$

 $p(blue) = 1$

Quantify Entropy

Entropy:
$$\sum_{i}^{c} p_{i} \log(p_{i})$$

$$p(red) = .7$$

 $p(blue) = .3$

$$p(red) = .4$$

 $p(blue) = .6$

$$p(red) = 0$$
$$p(blue) = 1$$

Quantify Entropy

-0.265

-0.292

CS383 - ML

9/17/2024

Quantify Entropy

$$Entropy: -\sum_{i}^{C} p_{i} \log(p_{i})$$

Conditional Entropy

X

Color	Shape	Size
red	square	big
blue	square	big
red	circle	small
blue	square	small
red	circle	big

Likes toy?
+
+
-
-
+

Conditional Entropy

X

Color	Shape	Size
red	square	big
blue	square	big
red	circle	small
blue	square	small
red	circle	big

Likes toy?
+
+
-
-
+

$$H(Y | X = v): \sum_{i}^{C} p(Y_i | X = v) \log(p(Y_i | X = v))$$

Conditional Entropy

$$H(Y | X = v): \sum_{i=1}^{C} p(y_i | X = v) \log(p(y_i | X = v))$$

$$H(Y | X): \sum_{v \in dom(X)}^{|X|} p(X = v)H(Y | X = v)$$

Color	Shape	Size
red	square	big
blue	square	big
red	circle	small
blue	square	small
red	circle	big

Likes toy?
+
+
-
-
+

Information Gain

$$H(Y | X = v): \sum_{i=1}^{C} p(y_i | X = v) \log(p(y_i | X = v))$$

$$H(Y | X): \sum_{v \in dom(X)}^{|X|^i} p(X = v)H(Y | X = v)$$

 $v \in dom(X)$

IG(Y,X):H(Y)-H(Y|X)

Color	Shape	Size
red	square	big
blue	square	big
red	circle	small
blue	square	small
red	circle	big

Likes toy?
+
+
-
-
+