Transferable and imperceptible Adversarial Attacks on Vision Transformers

Advisor: Ren-Hung Hwang

Reporter: 313834009 陳煒函

Introduction

Introduction

- Vision Transformers (ViTs) have achieved remarkable success in computer vision but remain vulnerable to adversarial attacks.
- Adversarial attacks subtly perturb images to fool models. Two main categories:
 - White-box attacks: attacker knows model details.
 - Black-box attacks: attacker does not know model details.
- Transfer-based attacks use white-box attacks on a local model to generate perturbations that also fool other (black-box) models.
- Existing transfer-based attacks:
 - Input Transformation: uses transformed images to build transferable perturbations.
 - Gradient Regularization: stabilizes gradient updates but struggles with high variance in ViT intermediate blocks.

Contributions

- Proposed a ViT-based adversarial attack method that integrates attack techniques from multiple existing studies.
- Propose a ViT-based adversarial attack method that achieves both high attack success and imperceptible perturbations.
- Compare the robustness of mainstream ViT models against adversarial attacks
- Evaluate whether adversarial examples generated from ViT models can effectively attack CNN models.

Method

ViT-based adversarial attack overview

- Adversarial Attack Objective
 - Input image $x \in \mathbb{R}^{H \times W \times C}$
 - ViT splits x into $N = \frac{H \cdot W}{P^2}$ patches of size P×P×C
 - Model prediction: f(x); Loss: J(x,y;f)
 - Goal: Find x_{adv} s.t. $f(x_{adv}) \neq f(x)$ and $||x x_{adv}||_{\infty} < \epsilon$ (imperceptible)

Transferable Adversarial Attacks on Vision Transformers with Token Gradient Regularization (TGR) overview

- Token Gradient Regularization (TGR)
 - Problem: Large gradient variance → unstable updates → weak attacks
 - Limitation: Traditional methods only regularize input gradients
 - TGR Insight:
 - Focus on token gradients inside ViT
 - Identify extreme tokens (top-k / bottom-k gradients)
 - Zero-out those gradients to reduce variance
 - Effect: More stable and effective attack directions

Transferable Adversarial Attacks on Vision Transformers with Token Gradient Regularization (TGR)

$$g' = TGR(Grads, modules, k, s)$$

$$x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot sgn\{g'\},$$
(1)

Algorithm 1 Token Gradient Regularization **Require:** network structure modules and gradients Grads**Require:** scaling factor s and extreme token number k**Ensure:** the gradient on the input g'for m in modules do if m is MLP or KQV then $Grads[m] \leftarrow Grads[m] * s$ $token \leftarrow extreme(Grads[m], k)$ ⊳ Extreme Tokens on MLP or KQV component for $i = 0 \leftarrow 2k - 1$ do Grads[m][token[i],:] = 0end for **else if** m is Attention then $Grads[m] \leftarrow Grads[m] * s$ $tokens \leftarrow extreme(Grads[m], k)$ Token Pairs on the Attention Map for $i = 0 \leftarrow 2k - 1$ do Grads[m][tokens[i, 0], :, :] = 0Grads[m][:, tokens[i, 1], :] = 0end for end if end for

Enhance the attack success rate of TGR and the imperceptibility of adversarial samples (TGRv1)

- Diverse Input
 - Add cropping, flipping, translation, simulated rotation
- Scale Invariance
 - Add multi-scale zoom
- Logit Margin Loss
 - Using margin-based cross entropy
- Adaptive Step Size
 - Dynamically adjust the step size based on the logits success rate
- Gradient Smoothing (Gaussian)
 - Smoothing the gradient using a Gaussian kernel

Enhance the attack success rate of TGR and the imperceptibility of adversarial samples (TGRv1)

Enhancing the imperceptibility of TGR-generated adversarial examples (TGRv2)

- Diverse Input Transformations
 - Randomly resizes each input image to a size between 224 and 256, then
 resizes it back to 224×224.
 - This disrupts the spatial structure of the input, making the adversarial perturbation harder to detect visually and preventing patterns from becoming too obvious to the human eye.
- Translation-Invariant Gradient
 - Applies a Gaussian smoothing kernel to the gradient, making it more robust to spatial shifts.
 - This restricts the perturbation to only part of the image in each iteration, limiting the extent of visible noise and making the attack more subtle.
- Random Masking
 - Applies a random binary mask (rate = 0.7 by default) to the gradient before updating.
 - This restricts the perturbation to only part of the image in each iteration, limiting the extent of visible noise and making the attack more subtle.

Enhancing the imperceptibility of TGR-generated adversarial examples (TGRv2)

Logit Margin Loss

- Uses Logit Margin Loss instead of standard cross-entropy loss, calculating the difference between the correct class and the highest incorrect class.
- This stabilizes the gradient updates, reducing local oscillations, and helps the attack push the sample away from the correct class more effectively, while maintaining imperceptibility.

Momentum Iterative Optimization

- Incorporates a momentum term into the gradient update process, smoothing the update direction and preventing sharp local perturbations that could cause visible noise.
- Normalizing the gradient before applying momentum further enhances attack stability and robustness.

Enhancing the imperceptibility of TGR-generated adversarial examples

Experiments

Experiment Setup

- Dataset: 1,000 random images from ImageNet (ILSVRC 2012 val set).
- Models:
 - Source models (ViTs): ViT-B/16, PiT-B, CaiT-S/24, Visformer-S
 - Target models (ViTs): DeiT-B, TNT-S, LeViT-256, ConViT-B
 - Target models (CNNs):
 - Undefended: Inc-v3, Inc-v4, IncRes-v2, ResNet-v2-152
 - Defended: Inc-v3ens3, Inc-v3ens4, IncRes-v2adv

Attack Settings

- Baseline attacks: MIM, VMI, TGR
- Metric: Attack Success Rate (ASR) > FID
- Parameters:
 - Perturbation: $\varepsilon = 16$
 - Iterations: T = 10
 - Decay factor: $\mu = 1.0$
 - PatchOut: 130 patches
 - Image size: 224×224
 - Patch size: 16

The attack success rates (%) against VIT models by various transfer-based attacks.

Model	Attack	ViT-B/16	PiT-B	CaiT-S/24	Visformer-S	DeiT-B	TNT-S	LeViT-256	ConViT-B	Avg
ViT-B/16	MIM	100.0%	34.5%	64.1%	36.5%	64.3%	50.2%	33.8%	66.0%	56.1%
	VMI	99.6%	48.8%	74.4%	49.5%	73.0%	64.8%	50.3%	75.9%	67.0%
	PNA	100.0%	45.2%	78.6%	47.7%	78.6%	62.8%	47.1%	79.5%	67.4%
	TGR	99.6%	50.7%	83.3%	55.5%	83.7%	74.0%	58.8%	84.5%	73.8%
	TGRv1	98.7%	80.2%	81.5%	78.0%	80.5%	83.0%	77.2%	82.4%	82.7%
	TGRv2	97.1%	31.1%	41.9%	37.4%	41.1%	41.9%	34.5%	44.5%	46.2%
PiT-B	MIM	24.7%	100.0%	34.7%	44.5%	33.9%	43.0%	38.3%	37.8%	44.6%
	VMI	38.9%	99.7%	51.0%	56.6%	50.1%	57.0%	52.6%	51.7%	57.2%
	PNA	47.9%	100.0%	62.6%	74.6%	62.4%	70.6%	67.3%	61.7%	68.3%
	TGR	59.4%	100.0%	77.9%	87.0%	78.7%	86.8%	81.7%	78.1%	81.2%
	TGRv1	76.7%	99.5%	87.8%	92.2%	90.1%	92.3%	87.5%	90.8%	89.6%
	TGRv2	39.8%	95.0%	43.4%	57.0%	44.8%	51.7%	41.6%	48.3%	52.7%
CaiT-S/24	MIM	70.9%	54.8%	99.8%	55.1%	90.2%	76.4%	54.8%	88.5%	73.8%
	VMI	76.3%	63.6%	98.8%	67.3%	88.5%	82.3%	67.0%	88.1%	78.9%
	PNA	82.4%	60.7%	99.7%	67.7%	95.7%	86.9%	67.1%	94.0%	81.7%
	TGR	93.5%	75.8%	100%	85.5%	99.6%	97.6%	86.4%	99.3%	92.2%
	TGRv1	89.9%	94.6%	99.3%	95.3%	96.4%	97.1%	94.7%	95.7%	95.4%
	TGRv2	59.6%	57.2%	97.1%	65.0%	73.4%	73.5%	57.1%	74.5%	69.7%
Visformer-S	MIM	28.1%	50.4%	41.0%	99.9%	36.9%	51.9%	49.4%	39.6%	49.6%
	VMI	39.2%	60.0%	56.6%	100.0%	54.1%	62.8%	59.1%	54.4%	60.7%
	PNA	35.4%	61.5%	54.7%	100.0%	51.0%	66.3%	64.5%	50.7%	60.5%
	TGR	44.8%	72.3%	66.6%	100.0%	64.5%	78.2%	77.9%	58.4%	70.3%
	TGRv1	72.5%	94.1%	89.9%	100.0%	88.6%	94.4%	90.2%	88.2%	89.7%
	TGRv2	37.6%	50.7%	49.8%	99.1%	49.8%	56.2%	50.6%	48.8%	55.3%

The attack success rates (%) against CNN models by various transfer-based attacks.

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-v2	Inc-v3ens3	Inc-v3ens4	IncRes-v2adv	Avg
ViT-B/16	MIM	31.7%	28.6%	26.1%	29.4%	22.3%	19.8%	16.5%	24.9%
	VMI	43.1%	41.6%	37.9%	42.6%	31.4%	30.6%	25.0%	36.0%
	PNA	42.7%	37.5%	35.3%	39.5%	29.0%	27.3%	22.6%	33.4%
	TGR	49.3%	45.7%	40.0%	43.6%	35.5%	32.6%	58.8%	43.6%
	TGRv1	69.4%	69.0%	64.6%	62.2%	60.1%	59.9%	56.2%	63.1%
	TGRv2	33.8%	34.7%	27.9%	31.0%	34.0%	38.6%	31.1%	33.0%
PiT-B	MIM	36.3%	34.8%	27.4%	29.6%	19.0%	18.3%	14.1%	25.6%
	VMI	47.3%	45.4%	40.7%	43.4%	35.9%	34.4%	29.7%	39.5%
	PNA	59.3%	56.3%	49.8%	53.0%	33.3%	32.0%	25.5%	44.1%
	TGR	69.2%	65.7 %	60.9%	61.0%	42.9%	40.7%	32.9%	53.3%
	TGRv1	78.7%	76.4%	70.8%	68.3%	58.5%	58.6%	52.5%	66.3%
	TGRv2	38.3%	38.1%	29.8%	32.9%	33.0%	36.0%	30.8%	34.1%
CaiT-S/24	MIM	48.4%	42.9%	39.5%	43.8%	30.8%	27.6%	23.3%	36.6%
	VMI	58.5%	50.9%	48.2%	52.0%	38.1%	36.1%	30.1%	44.8%
	PNA	57.2%	51.8%	47.7%	51.6%	38.4%	36.2%	30.1%	44.7%
	TGR	73.5%	67.2%	67.5%	68.0%	56.5%	52.5%	44.2%	61.34%
	TGRv1	89.0%	87.3%	87.0%	84.8%	80.6%	78.8%	76.5%	88.43%
	TGRv2	50.9%	50.4%	43.7%	45.0%	50.7%	53.3%	46.6%	48.7%
Visformer-S	MIM	44.5%	42.5%	36.6%	39.6%	24.4%	20.5%	16.6%	32.1%
	VMI	54.6%	53.2%	48.5%	52.2%	33.0%	32.0%	22.2%	42.2%
	PNA	55.9%	54.6%	46.0%	51.7%	29.3%	26.2%	21.1%	40.6%
	TGR	72.2%	71.7%	62.2%	67.2%	40.9%	35.4%	28.3%	54.0%
	TGRv1	87.6%	88.3%	83.3%	80.0%	70.5%	68.9%	63.3%	77.4%
	TGRv2	48.9%	50.1%	41.5%	44.1%	44.9%	47.8%	39.7%	45.3%

The adversarial exapmples FID score models by various transfer-based attacks.

Model	Attack	FID	
ViT-B/16	TGR	72.96	
	TGRv1	67.91	
	TGRv2	53.70	
PiT-B	TGR	96.77	
	TGRv1	78.70	
	TGRv2	61.02	
CaiT-S/24	TGR	99.50	
	TGRv1	86.37	
	TGRv2	65.92	
Visformer-S	TGR	94.54	
	TGRv1	73.14	
	TGRv2	67.14	

Ablation Study (TGRv1)

Attention	QKV	MLP	ViTs	CNNs	CNNs-adv
-	-	-	73.26	55.9	47.2
✓	-	-	79.18	64.0	54.4
-	✓	-	73.56	56.3	47.0
-	-	✓	78.83	61	52.6
✓	✓	-	78.56	63.3	54.5
✓	-	✓	82.64	67.0	59.4
-	✓	✓	78.76	60.7	52.7
✓	✓	✓	82.7	66.3	58.7

Conclusion

Conclusion

- Analyzed why gradient regularization-based methods have low transferability:
 - They reduce gradient variance only at the input level, but variance in intermediate blocks remains high.
 - This causes models to get stuck in local optima.
- Proposed Token Gradient Regularization (TGRv1):
 - Regularizes gradient variance at each internal block of ViTs.
 - Combined with attack methods proposed in other papers.
 - Uses these regularized gradients to generate transferable adversarial samples.
- Extensive experiments on ViTs and CNNs confirm TGRv1's effectiveness.

Reference

Reference

- Zhang, Jianping, et al. "Transferable adversarial attacks on vision transformers with token gradient regularization." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023.
- Dong, Yinpeng, et al. "Boosting adversarial attacks with momentum." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018
- Wang, Xiaosen, and Kun He. "Enhancing the transferability of adversarial attacks through variance tuning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
- Wei, Zhipeng, et al. "Towards transferable adversarial attacks on vision transformers."
 Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. No. 3. 2022.
- Weng, Juanjuan, et al. "Logit margin matters: Improving transferable targeted adversarial attack by logit calibration." IEEE Transactions on Information Forensics and Security 18 (2023): 3561-3574.

Thanks