第四章(拉普拉斯变换及 s 域分析)

一、选择题

是()

1. 求 e ^{at} u(t) 的拉口	夭变换为 ()	0		
$A_{s} - \frac{1}{s+a}$ 2. $\frac{1}{s}e^{-2s}$ 的拉氏道	$B \cdot \frac{1}{s+a}$ 逆变换为 ()。		$-\frac{1}{s-a}$	$D, \frac{1}{s-a}$
A 、 $\delta(t$ -2) 3. 对于连续时间	B、δ(t+2]系统,系统稳定			D、 $u(t+2)$
\mathbf{A} 、 $\int_0^\infty ig h(t- au)ig d au$ 4. 属于系统稳定	0 −∞		v −∞	D. $\int_{-\infty}^{t} h(\tau) d\tau < \infty$
	. ,		. ,	点落于 s 左半平面 点落于 s 右半平面
5. 若 $F(s) = L[f]$	$\left[\left(t \right) \right] = \frac{\left(s+2 \right) \left(s \right)}{s \left(s+1 \right) \left(s \right)}$	(+3) $(+6)$ $(+6)$)和ƒ(∞)分别为	为 ()
A. 0, 1;	B. 0, 0;	C. 1, 0;	D.1、1;	
6. 求 $te^{-at}u(t)$ 的拉	立氏变换为()		
$A\frac{1}{(s+a)^2}$	$B. \ \frac{1}{(s+a)^2}$	C. $\frac{1}{s^2 + 1}$	$\frac{1}{s^2}$ D. $\frac{1}{s^2}$	<u> </u>
7. 使系统 <i>H</i> (s)=	$=\frac{1}{s+1-K}$ 稳定的	的 <i>K</i> 值范围是()	
A. $K \ge -1$	B. <i>K</i> < 1	C. <i>K</i> >	1 D1	$1 \le K \le 1$
8. 象函数 $\frac{3s+1}{s^2+5s}$	$\frac{0}{+6}$ 的初值为()		
A. 0	В. 3	C. $\frac{5}{3}$	D. $\frac{8}{5}$	

9. 若一连续时间二阶系统的系统函数H(s)的共轭极点在虚轴上,则它的h(t)应

二、填空题

- **1.** 请写出*te*^{-2t}的拉普拉斯变换_____。
- **2.** 请写出 $\frac{1}{s^2+1}$ 的拉氏逆变换_____。
- 3. $\frac{s-1}{(s+1)^2}$ 的拉氏逆变换为_____。
- **4.** 求 $F(s) = \frac{10(s+2)^2}{s(s+5)}$ 拉氏反变换原函数的初值______和终值____。
- **5.** 系统函数 $H(s) = 1 + \frac{4}{s+1} \frac{5}{s+2}$ 的零点分别是_____、____。
- **6.** 如图电路,系统函数 $H(s) = \frac{V(s)}{F(s)} = \frac{s^2 + 5}{s^2 + 2s + 5}$,则电容 C 为_____F 和电感 L 为

- 7. $\bar{x}F(s) = \frac{2s-6}{(s+2)(s+5)}$ 拉氏反变换原函数的初值_____和终值____。
- **8.** 系统函数 $H(s) = 1 \frac{21}{s+2} + \frac{24}{s+3}$ 的零点分别是____、____。
- **9.** 如图电路,系统函数 $H(s) = \frac{V(s)}{F(s)} = \frac{10}{s^2 + 2s + 10}$,则电容 C 为_____F 和电感 L

为 H。

10. 求 $F(s) = \frac{6(s+2)(s+1)}{s(s+3)}$ 拉氏反变换原函数的初值_____和终值____。

- **11.** 系统函数 $H(s) = 1 + \frac{8}{s+2} \frac{13}{s+3}$ 的零点分别是_____、____。
- **12.** 如图电路,系统函数 $H(s) = \frac{V(s)}{F(s)} = \frac{5}{s^2 + 2s + 5}$,则电容 C 为_____F 和电感 L

- **13.** 求 $F(s) = \frac{s+3}{(s+1)(s+2)}$ 拉氏反变换原函数的初值_____和终值____。
- **14.** 系统函数 $H(s) = 1 + \frac{3}{s+1} \frac{14}{s+5}$ 的零点分别是_____、____。
- **15.** 如图电路,系统函数 $H(s) = \frac{V(s)}{F(s)} = \frac{5s}{s^2 + 5s + 1}$,则电容 C 为_____F 和电感 L 为_____H。

- **16.** 系统函数 $H(s) = \frac{s[(s-1)^2+1]}{(s+1)^2(s^2+4)}$,则其极点有____。
- 17. 系统函数 $H(s) = 1 + \frac{3}{s+1} \frac{14}{s+5}$ 的零点分别是 2 和_____。
- **18.** 如图电路,系统函数 $H(s) = \frac{V(s)}{F(s)} = \frac{5}{s^2 + 2s + 5}$,则电容 C 为____F 和电感 L 为____H。

三、分析计算题

- 1. 系统的微分方程 2y''(t) + 6y'(t) + 4y(t) = f'(t) + 5f(t),当初始状态 $y(0_{-}) = 2$, $y'(0_{-}) = 1$ 时,求零输入响应 $y_{zi}(t)$ 。
- **2.** 电路如图所示,已知 R_1 =30 Ω , R_2 =10 Ω ,L=0.1 H,C=1000 μF,并设电容上原有电压 ν (0)= V_0 =100 V,试用拉普拉斯法求电流 i_L 。

- **3.** 给定系统微分方程y''(t) + 5y'(t) + 6y(t) = f(t),若激励 $f(t) = e^{-t}u(t)$,初始状态 $y(0^-) = 1$, $y'(0^-) = 2$ 。试用拉普拉斯变换法求系统的全响应。 提示: y''(t)的拉氏变换为 $s^2Y(s) - sy(0^-) - y'(0^-)$;y'(t)的拉氏变换为 $sY(s) - y(0^-)$ 。
- **4.** 给定系统微分方程 y''(t) + 7y'(t) + 10y(t) = 2f'(t) + f(t), t > 0, 求:
 - 1) 系统函数及冲激响应;
- 2)若激励 $f(t) = e^{-t}u(t)$,初始状态 $y(0^-) = 5$, $y'(0^-) = 3$,求系统零输入响应,零状态响应,完全响应。
- 5. 计算下列各信号的单边拉氏变换。

(1)
$$f(t) = \delta(t) - e^{-2t} \varepsilon(t)$$

(2)
$$f(t) = \varepsilon(t) - 2\varepsilon(t-1) + \varepsilon(t-2)$$

(3)
$$f(t) = e^{-t} \sin 2t \cdot \varepsilon(t)$$

6. 如图电路系统,其中 f(t)为输入电压,试求 i(t)为输出电流时的系统的冲激响应 h(t)和阶跃响应 g(t)。

- 7. 已知系统阶跃响应为 $g(t) = (1 e^{-2t})\varepsilon(t)$,若 $y(t) = (1 e^{-2t} te^{-2t})\varepsilon(t)$ 为输出响应,试求激励信号f(t)。
- **8.** 如图所示电路已达稳态,t=0 开关打开,求零输入响应 $u_{\rm C}(t)$ 。

- 9. 给定系统微分方程 y''(t) + 5y'(t) + 4y(t) = 2f'(t) + 5f(t), t > 0, 求:
 - 1) 系统函数及冲激响应;
- 2)若激励 $f(t) = e^{-2t}u(t)$,初始状态 $y(0^-) = 2$, $y'(0^-) = 5$,求系统零输入响应,零状态响应,完全响应。
- **10.** 如图为 t>0 时的电路,已知 $u_{\rm C}(0)=10{\rm V}$, $i_{\rm L}(0)=2{\rm A}$,求零输入响应 $u_{\rm C}(t)$ 和 $i_{\rm L}(t)$ 。

$$1H\begin{cases} 1\Omega \\ 1\Pi \\ IF \end{cases} 3\Omega$$

- 11. 给定系统微分方程 y''(t) + 3y'(t) + 2y(t) = 4f'(t) + 3f(t), t > 0, 求:
 - 1) 系统函数及冲激响应;

- 2) 若激励 $f(t) = e^{-3t}u(t)$,初始状态 $y(0^-) = -2$, $y'(0^-) = 3$,求系统零输入响应,零状态响应,完全响应。
- **12.** 电路如图所示,设电容上原有电压 U_0 =100V,电源电压 U_S =200V, R_1 =30 Ω , R_2 =10 Ω ,L=0.1H,C=1000 μ F。求开关 S 合上后电感中的电流 i_L 。

- **13.** 给定系统微分方程 y''(t) + 4y'(t) + 3y(t) = f'(t) + 5f(t), t > 0, 求:
 - 1) 系统函数及冲激响应;
- 2)若激励 $f(t) = e^{-2t}u(t)$,初始状态 $y(0^-) = 1$, $y'(0^-) = 2$,求系统零输入响应,零状态响应,完全响应。
- **14.** 已知因果系统的系统函数 $H(s) = \frac{s+1}{s^2 + 5s + 6}$, 求当输入信号 $f(t) = e^{-3t}u(t)$ 时,系统的输出 y(t)
- **15.** 如下图 5 所示, t=0以前开关位于"1", 电路已进入稳定状态, t=0时开关从"1"倒向"2", 求电流i(t)的表达式。

16. 如图所示电路,已知元件参数及初始条件为: $C = 1F, L = 0.5H, R_1 = 1\Omega, R_2 = \frac{1}{5}\Omega, u_c\left(0^-\right) = 5V, i_L\left(0^-\right) = 4A, e\left(t^-\right) = 10u\left(t^-\right)V$ 画出 s 等效电路图:

u(t) 为系统响应,求系统函数H(s) 及冲激响应h(t); 求 R_2 上的全响应电压u(t)。

17. 已知电路系统如图所示,其中,电容初始电压为 $u_{\scriptscriptstyle C}(0^{\scriptscriptstyle -})=3V$,电感初始电流

为 $i_L(0^-)=1A$,激励为i(t),响应为 $i_L(t)$,试:

- (1) 画出 S 域运算等效电路;
- (2) 求系统函数H(s);
- (3) 求 $i_{\iota}(t)$ 的零输入响应。

- 18. 一反馈系统如图所示:
- (1) 求系统函数H(s);
- (2) 要使得系统稳定,求 K 的取值范围。

- 19. 电路元件参数激励及初始条件如图所
- 示,试:
- (1) 画出运算等效电路;

- (2) 求系统函数H(s)及单位冲激响应h(t);
- (3) 求响应电流i(t)。
- **20.** 在 t=0 时刻,将信号 e(t)加到下图的电路系统中(开关 S 合上),已知: $R=1\Omega, C=2F$,电容上的起始电压 $u_C(0^-)=0.5V$ 。
 - (1) 试做出 t>0 时的 S 等效电路图;
 - (2) 试求电容电压 $u_c(t)$ 的零输入响应和零状态响应。

