1. BasiCNN

My chosen architecture consists of three convolutional blocks followed by a flattening operation and two fully connected layers. The network accepts 3-channel RGB images with a resolution of 160×160 pixels.

2. ResNet18

3. Regularized CNN

I picked the CNN model for adding regularization. A Dropout Layer with a rate of 0.5 was added before the final linear layer. Dropout randomly deactivates a fraction of neurons during training, which helps reduce overfitting.

Also, some added augmentation was added to the training data, which includes:

- RandomResizedCrop
- RandomHorizontalFlip
- RandomRotation
- ColorJitter

Testing Accuracy: 65.1%

Comparison between Basic CNN and Regularized CNN

Training Loss: Although the training loss was slightly higher compared to the non-regularized version (due to the added noise from dropout and augmentation), it showed a more gradual and stable decrease.

Validation Loss: The validation loss remained lower and more stable across training epochs, with less evidence of overfitting.

Final Test Accuracy: The regularized model achieved higher test accuracy.

4. Transfer Learning

I chose the ResNet 18 model for finetuning on CIFAR10 database.

a. ResNet18 on CIFAR10

Testing Accuracy: 82.9%

b. CIFAR10 with pre-trained ResNet weights

