Universidade de Santa Cruz do Sul (UNISC) Departamento de Engenharias, Arquitetura e Computação

Curso de Ciência da Computação

Interfaces adaptativas: melhorando a experiência de interação do usuário com o sistema

Mateus Wolkmer de Souza Profa. Dra. Daniela Duarte da Silva Bagatini (Orientadora)

Defesa, julho de 2020

Roteiro

- Introdução
- Problema de pesquisa
- Justificativa
- Objetivo geral
- Metodologia
- Referencial teórico
- Aplicação
- Testes e conclusão
- Referências

Introdução

- Brasileiro utiliza a internet, em média por 9 horas e 29 minutos por dia (HOOTSUITE, WE ARE SOCIAL, 2019).
- 45,6 milhões de pessoas no Brasil (23,9% da população) possuem algum tipo de deficiência (KRONE, 2019).
- 97,8% de websites testados pelas normas da Web Content Accessibility Guidelines (WCAG 2) apresentaram falhas de acessibilidade, com uma média de 59,6 erros por página (KRONE, 2019).

Acessibilidade

1 Bilhão = 10%

de pessoas em todo mundo convivem com alguma forma de deficiência.

No Brasil,

45,6 milhões de pessoas

(23,9% da população total) têm algum tipo de deficiência.

18,6% deficiência visual

7% deficiência motora

5,10% deficiência auditiva

1,40% deficiência mental ou intelectual

71% da população brasileira possui um smartphone e metade das pessoas conectadas acessam a Internet somente pelo celular.

Em um estudo, 97,8% das páginas tiveram falhas detectadas nas WCAG 2, com uma média de 59,6 erros por página

De 2009 a 2017, o uso do leitor de tela móvel aumentou de 12% para 88%.

Ícones: flaticon.com

Fonte: (Krone, 2019)

Introdução

• **Deficiência**: contexto e, a exclusão física, cognitiva e social é o resultado de interações incompatíveis (Microsoft Design, 2016).

Fonte: Persona spectrum (Krone, 2019).

Problema de pesquisa

Como transformar automaticamente interfaces estáticas em interfaces adaptativas para que possam melhorar a experiência do usuário em interação com o sistema?

Fonte: adaptive vs responsive web design (2017).

Objetivo geral

O objetivo principal é propor uma **aplicação capaz de adaptar** áreas de interação do usuário de sistemas variados, transformando-as **de interfaces estáticas em interfaces adaptativas** e buscando aprimorar a **experiência do usuário** em interação com os sistemas.

- Estudo e síntese de padrões globais de acessibilidade e usabilidade;
- ✓ Investigação de trabalhos relacionados;
- ✓ Testes de usabilidade com usuários para encontrar problemas em websites comuns;
- ✓ Desenvolvimento da extensão de browser Boto;
- ✓ Testes de usabilidade com usuários para avaliar a experiências de uso com a extensão.

Justificativa

Âmbito social: bem-estar dos usuários nas aplicações do dia-a-dia; promover melhor uso das interfaces, bem como incluir usuários com limitações motoras e sensoriais, através de adaptações em aspectos fundamentais e estruturais no front-end de *softwares* que venham a ser utilizados.

Âmbito empresarial: conectar dados do usuário ao sistema que ele está utilizando no momento com a interface, como o *Facebook*, por exemplo, tornando-as mais personalizadas e adaptadas.

Âmbito da pesquisa: contribuir para o desenvolvimento de interfaces adaptativas, usáveis e acessíveis, aplicando padrões globais da W3C.

Metodologia

Primeira etapa

Metodologia

Segunda etapa

- **W3C**: World Wide Web Consortium, a principal organização de padronização da Internet. Consórcio internacional com 450 membros com a finalidade de estabelecer padrões para a criação e a interpretação de conteúdos para a Web.
- **WCAG**: Web Content Accessibility Guidelines, diretrizes de acessibilidade para o conteúdo da Web, publicado pela W3C, é parte de uma série de recomendações para acessibilidade para a web.
- **e-MAG**: Diretrizes de acessibilidade publicado pelo governo Brasileiro, seguindo padrões de outros países

- **UI e UX**: O conceito UI representa a interface (física ou digital) com a qual o usuário está interagindo, e UX (*User Experience*) trata de como o usuário se sente ao interagir com um software (HASSENZAHL, 2008).
- Acessibilidade: A Acessibilidade na web, em contexto de IHC, significa que pessoas com limitações podem igualitariamente perceber, entender, navegar e interagir com websites e ferramentas. Também significa que eles podem contribuir igualitariamente sem barreiras (W3C, 2019, tradução livre do autor).
- Usabilidade: o World Wide Web Consortium (W3C) descreve o desenvolvimento focado em usabilidade como "[...] o design de produtos para serem efetivos, eficientes e satisfatórios. [...] Ele inclui aspectos gerais que impactam a todos, e não desproporcionalmente àqueles com deficiências." (W3C, 2019, tradução livre do autor).

Normas da WCAG para uma página web ser considerada acessível:

- **Perceptível**: Usuários devem ser capazes de percebê-lo de alguma maneira, utilizando um ou mais de seus sentidos.
- **Operável**: Usuários devem ser capazes de controlar elementos da UI (botões devem ser clicáveis de alguma maneira mouse, teclado, comando de voz, entre outros).
- Compreensível: O conteúdo deve ser compreensível para os seus usuários.
- **Robusto**: O conteúdo deve ser desenvolvido utilizando padrões de web bem adotados que funcionarão em diferentes browsers, agora e no futuro.

• Interfaces Adaptativas: São interfaces que se modificam, completamente ou parcialmente, em relação ao indivíduo que a está utilizando ou ao contexto de uso. Os computadores é que devem saber se comunicar com os humanos, se adaptando para as necessidades dos seus usuários, e não o contrário (Browne, 2019).

As mudanças geralmente buscam aprimorar a experiência de quem está utilizando a interface, promovendo melhor usabilidade e acessibilidade ao mostrar apenas as informações que são relevantes, reposicionar e reescalar elementos, modificar cores, entre outros aspectos

Apresentação e eventos de entrada → Configurações do teclado → Widgets → Modalidades de entrada e saída → Parâmetros Text to Speech

Estrutura e gramática

→ Alfabeto de gestos

→ Estrutura de agrupamento

Conteúdo e semântica

- → Uso de cores e código de cores
- → Espaçamento entre linhas e letras
- → Tamanho de fonte e zoom
- → Configuração de contraste
- → Teclas de atalho
- → Parâmetros de braile
- → Tamanho e distância dos botões
- → Volume de fala

- → Legendas
- → Nível de simplificação
- → Descrição de áudio
- → Nível de assistência
- → Linguagem natural

Fonte: aspectos adaptáveis de interfaces (Mayer et al., 2016, tradução livre do autor).

Trabalhos relacionados

- A comparative study of systems for the design of flexible user interfaces (Mayer et al., 2016).
- Adaptive interface ecosystems in smart cities control systems (Sánchez et al., 2019).
- Desenvolvimento e teste de componentes de interface acessíveis para um Design System (Krone, 2019).

Artigo	Objetivos	Temas abordados	Conclusões
Mayer et al. (2016)	Comparar siste- mas que adaptam interfaces	UX, interfaces adaptativas, sistema adaptadores de interface	Os sistemas adaptado- res existentes são bem completos, mas são ul- trapassados
Krone (2019b)	Desenvolver e testar um Design System usável e acessível	Design Systems, pa- drões de acessibili- dade, avaliação de acessibilidade	Os testes do Design System desenvolvido foram um sucesso, mas as estatísticas levantadas apontam que ainda há pouca preocupação quanto ao desenvolvimento de aplicações acessíveis
Sánchez et al. (2019)	Transformar a inter- face de um sistema gerenciador de cida- des inteligentes para adaptativa	UX, AIEs, cidades inteligentes	A implementação de uma AIE trouxe maior praticidade e autono- mia à interface, dimi- nuindo a manutenção necessária
Wolkmer e Bagatini (2020)	Adaptar interfaces de websites para torná-las mais aces- síveis por meio de uma extensão para o browser	Interfaces adaptati- vas, User Experi- ence, acessibilidade	A solução desenvolvida proporciona uma expe- riência mais acessível ao tornar as interfa- ces de websites mais perceptíveis, operáveis e compreensivas de acordo com o perfil do usuário

Interfaces Adaptativas

Extensão Color Enhancer

Extensão Dark Reader

Extensão AdBlock

- Extensão para o *browser* Google Chrome.
- Dois módulos:
 - (1) o que manipula os elementos da interface, armazena dados como o perfil do usuário e as configurações definidas por ele. Desenvolvida em Javascript com a framework Node.js;
 - (2) a que exibe a área da extensão em que o usuário irá interagir. Desenvolvida em Javascript com a framework React.js utilizando o Design System Bold (BRIDGE, 2019)

- O Bold (BRIDGE, 2019) é um sistema de design criado em 2019 pela UFSC com o foco em acessibilidade, e disponibiliza vários elementos de interface que seguem os padrões da WCAG em nível AA, respeitando as normas de contraste, cor e espaçamento.
- Testado e validado por usuários no trabalho de Krone (2019), o Bold também apresenta um guia online em são propostas boas práticas a serem seguidas com a sua utilização, e o desenvolvimento de interfaces em geral.

Fonte: recomendação disponível no guia online do Bold.

Fluxo de funcionamento da extensão.

- Após a instalação da extensão, o usuário responde um questionário onde informa dados pessoais que pré-configuram o comportamento da aplicação:
 - 1. Qual o seu nome?
 - 2. Qual a sua idade?
 - 3. Você possui algum problema para enxergar de perto?
 - 4. Você possui alguma deficiência cognitiva?
 - 5. Qual sua mão predominante?

Fonte: captura de tela realizada durante o questionário no Boto.

- A interface principal é organizada em três abas. A primeira aba, "Interface", possui controles para realizar ajustes rápidos na interface:
 - Brilho: clareia ou escurece a interface.
 - Contraste: aumenta ou diminui o contraste da interface.
 - Zoom: aumenta ou diminui o tamanho dos elementos visuais da interface.
 - **Espaçamento**: aumenta o espaçamento entre as letras na interface.
 - **Esconder elementos**: deixa de exibir alguns elementos pré-definidos na interface, como propagandas e imagens.
 - **Esconder elemento específico**: deixa de exibir um elemento específico selecionado pelo usuário, também permite restaurar todos que foram escondidos.

Fonte: captura de tela do Boto.

 A segunda aba, "Perfil", permite ao usuário visualizar e modificar os seus dados previamente definidos no questionário inicial.

Fonte: captura de tela do Boto.

 A última aba, "Extras", possui algumas configurações adicionais que buscam aprimorar a usabilidade de websites.

Fonte: captura de tela do Boto.

Fonte: antes e depois da adaptação de elementos de baixa acessibilidade.

 Por último, função de realizar uma varredura no código-fonte do website ao procurar elementos com propriedades específicas, definidas no código-fonte, a fim de adaptá-los de acordo com os dados informados pelo usuário.

```
<button class="boto_cognitiveDeficiency_severe_hide">?</button>
<button class="boto_cognitiveDeficiency_severe_show">AJUDA</button>
```

Fonte: código-fonte de elementos que interagem com o Boto.

Fonte: antes e depois da adaptação de elementos.

Testes e conclusões

- Participaram 6 pessoas, à partir de convite realizado aos estudantes de primeiro semestre das turmas da disciplina de Aplicações em Computação dos cursos de Bacharelado em Ciência da Computação e Engenharia da Computação da Universidade de Santa Cruz do Sul (UNISC), após uma apresentação do trabalho durante a aula do dia dezesseis de junho de dois mil e vinte, além de convites por conveniência visto a necessidade de atingir diferentes perfis.
- Os testes ocorreram de forma remota através plataforma Google Hangouts. Foi utilizado um *script* para baseado no roteiro proposto por Krug (2014) para guiar os testes.
- Em seguida, alguns relatos coletados durante os testes.

Testes e conclusões

- Letícia (20 anos), estudante de Educação Física e que é mentora em aulas para a terceira idade, foi questionada se ela imaginaria a solução ajudando suas alunas na utilização do computador:
 - "Sim, pelo menos as que convivem comigo, a maioria tem problemas de visão, e elas acham as coisas do computador muito pequenininhas, [...] seria bem interessante para elas sim." (Letícia).
- Ao modificar as opções de zoom e espaçamento, Varna (49 anos), empresária e mãe, que necessita da utilização de óculos para conseguir enxergar coisas muito próximas, relatou:
 - "Bah, muito bom, as vezes as coisas estão muito pequenas, várias vezes eu já deixei de ler coisas pois estavam muito pequenininhas. Agora dá até ver que ela sujou a blusa ali [relata após aumentar o zoom com um vídeo na tela]." (Varna).

 Alguns participantes sugeriram melhorias e novas funcionalidades, mas o comentário de Gustavo (23 anos) deixou bem claro o que sentiu ao testar a aplicação:

"Tudo funciona muito bem. [...] Tu roda e tudo funciona em tempo real, bem limpo, liso, não tem nenhuma travada, as coisas acontecem bem rápido. [...] Eu trabalhei dando aulas de computação para pessoas cegas e com dificuldade de visão, [...] e eu sei de algumas dificuldades que eles tinham, e eu consigo ver essa aplicação sendo realmente útil para eles. Tinha até algumas pessoas que possuíam visão reduzida e eu consigo ver essas barras ajudando muito eles, para ao invés de ter de utilizar algum leitor, conseguirem realmente ler." (Gustavo).

Fonte: captura de tela de teste de usabilidade do Boto com participante Gustavo.

Fonte: captura de tela de teste de usabilidade do Boto com participante Nicolas.

Testes e conclusões

- Os testes de usabilidade realizado com usuários reais foram fundamentais para validar as funcionalidades da aplicação desenvolvida.
- Uma ótima contribuição para garantir melhor acurácia nas adaptações de perfil seria a participação de pessoas com as diversas deficiências que o trabalho busca acolher durante as etapas de desenvolvimento e testes.
- Também ajudaram na detectação de problemas de acessibilidade na própria interface da extensão como o tamanho pequeno das letras do questionário. Ainda foi possível identificar algumas funcionalidades de qualidade de vida que podem ser adicionados na versão pública e garantir uma melhor experiência de uso do software, como a adição de um botão para retornar os controles para "padrão" e uma controle para desativar a extensão sem ter de a desinstalar.

Conclusões

- Os trabalhos reunidos nas bases pesquisadas apontaram que, por mais que a utilização de interfaces adaptativas comprovaram ser uma boa solução para problemas de UX e acessibilidade, poucos estudos e implementações práticas vêm sendo realizadas utilizando a tecnologia.
- O desenvolvimento e a validação do Boto, demonstra ser possível transformar interfaces estáticas em interfaces adaptativas e comprova que existem maneiras baratas e pouco exploradas de promover interfaces mais acessíveis para melhorar a experiência do usuário, proporcionando interação inclusiva e acolhedora.
- Vivemos em um período em que existem muitos problemas sociais complexos enraizados em nossas comunidades, por esta razão é necessário tomarmos consciência que podemos ajudar a amenizá-los através da criação e promoção de soluções que buscam acolher mais e mais pessoas

Conclusões

- Como trabalho futuro sugere-se:
 - Expandir a quantidade de dados recebidos do usuário pelo Boto e a inclusão de novas funcionalidades a fim de acolher pessoas com outras dificuldades como cegueira, surdez, e deficiências intelectuais;
 - Aperfeiçoar a acurácia dos ajustes das configurações do Boto baseados no perfil do usuário a partir de estudos aprofundados de como pessoas com deficiências visuais e/ou cognitivas interagem com as páginas web e suas maiores dificuldades.

Referências

- HOOTSUITE, WE ARE SOCIAL. Digital 2019 Brazil. Disponível em: https://datareportal.com/reports/digital-2019-brazil. Acessado em: julho de 2020.
- MAYER, C., ZIMMERMANN, G., GRGURIC, A., ALEXANDERSSON, J., SILI, M., & STROBBE, C. A comparative study of systems for the design of flexible user interfaces. Journal of Ambient Intelligence and Smart Environments, 8(2), 125-148. 2016.
- SÁNCHEZ, A. J., RODRÍGUEZ, S., DE LA PRIETA, F., & GONZÁLEZ, A. Adaptive interface ecosystems in smart cities control systems. Future Generation Computer Systems, 101, 605-620, 2019.
- KRONE, Caroline. Desenvolvimento e teste de componentes de interface acessíveis para um Design System. Universidade
 Federal de Santa Catarina. Centro de Comunicação e Expressão, 2019.
- W3C. Web Accessibility Initiative (WAI). Disponível em: https://www.w3.org. Acessado em 22 de setembro de 2019.
- Adaptive vs responsive web design A quick footnote for beginners. Disponível em:
 https://uxplanet.org/adaptive-vs-responsive-web-design-eead0c2c28a8. Acessado em 18 de novembro de 2019.

Referências

- HASSENZAHL, M. User experience (ux): Towards an experiential perspective on product quality. In: Proceedings of the 20th Conference on L'Interaction Homme-Machine. New York, NY, USA: ACM, 2008. (IHM '08), p. 11–15. ISBN 978-1-60558-285-6. Disponível em: http://doi.acm.org/10.1145/1512714.1512717.
- BRIDGE. Bold Design System. [S.I.], 2019. Disponível em: < https://bold.bridge.ufsc.br/>. Acesso em: julho de 2020.
- KRUG, S. Não me faça pensar: atualizado: uma abordagem de bom senso à usabilidade web e mobile. Rio de Janeiro: Alta Books, 2014. 198p.

Universidade de Santa Cruz do Sul (UNISC) Departamento de Engenharias, Arquitetura e Computação

Curso de Ciência da Computação

Interfaces adaptativas: melhorando a experiência de interação do usuário com o sistema

Mateus Wolkmer de Souza Profa. Dra. Daniela Duarte da Silva Bagatini (Orientadora)

Defesa, julho de 2020