

#### Parameters we can change

- Number of communities (80)
- Average people per community (100)
- Probability of connection within community (0.15)
- Probability of connection between communities (0)
- Probability of connection with source (1)
- Size of population in source (50000)

#### Parameters we can change

- Number of days of source infection (730)
- Trial start day (100)
- Trial duration (400)
- Enrollment and vaccination day (100)
- Enrollment probability (0.75)
- Vaccination probability (0.5)
- Vaccine efficacy (0.6)
- Average incubation period (10)

#### Parameters we can change

- Incubation period ~ Γ(shape=3.11, rate=0.32)
- Infection period  $\sim \Gamma(\text{shape}=1.13, \text{ rate}=0.226)$
- Infection rate  $\beta = 0.01$
- $R_0 = 0.7019$

## $R_0$ as a function of $\beta$



In the source population,  $\beta$  is the instantaneous rate of infection of a susceptible person S by an infectious person I:

$$\frac{dS}{dt} = -\beta S \frac{I}{N}$$

N is the whole population, so  $p_I = \frac{I}{N}$  is the fraction of the population infectious.

Assuming t to be counting days, the probability for an individual to become infected on a given day is  $\beta \times p_I$ .

In the community populations,  $\beta$  is the probability to be infected by your infectious neighbour. Let i,j be individuals in the network, and let  $\mathcal{N}(i)$  be the set of neighbours of i. The probability for individual i to become infected on a given day (by one of their neighbours) is

$$\sum_{j \in \mathcal{N}(i)} \beta \; \mathsf{Prob}(j \; \mathsf{infected})$$

Assuming a homogeneous population, we could write this as

$$\sum_{j \in \mathcal{N}(i)} \beta \; \mathsf{Prob}(j \; \mathsf{infected}) = \beta \sum_{j \in \mathcal{N}(i)} p_I$$
$$= \beta \times \mathsf{length}(\mathcal{N}(i)) \times p_I$$
$$> \beta \times p_I$$

Hitchings chose  $R_{\rm eff}=0.61$ , length $(\mathcal{N}(i))=50$  and  $t_{\rm inf}=2.94$  (Mean infectious period in presence of daily probability detection 0.2) to define

$$eta = R_{ ext{eff}}/ ext{length}(\mathcal{N}(i))/t_{ ext{inf}} = 0.01$$

from

$$R_{\mathsf{eff}} = \int_0^{t_{\mathsf{inf}}} \beta \; \mathsf{length}(\mathcal{N}(i)) dt$$

- So, there are different values for  $\beta$  because one was chosen to match a particular choice of infection parameters (2017, 2018) and one was chosen to give a background input (2018).
- On top of having different values in the 2018 work, the  $\beta$ s also have different meanings (or contexts): the "random mixing" in the source population equates to "one interaction at a time". Individuals in the communities, on the other hand, have multiple (static) interactions.
- I propose we define  $\beta$  to be the probability to be infected by your neighbour, and add a term f() in  $\frac{dS}{dt} = -f()\beta S\frac{I}{N}$  to account for average connectivity in the source population.

## Summary of methods

|                        | Instant   | Staggered   | Ring |
|------------------------|-----------|-------------|------|
| Binary (fixed window)  | iRCT/cRCT | FR-40/FA/TS | Ring |
| Binary (moving window) | _         | FR-end      |      |
| Time to event          | iRCT/cRCT |             |      |

## Summary of methods

| Method | Vaccination day(s) | Vaccination probability | End point |
|--------|--------------------|-------------------------|-----------|
| iRCT   | 100                | 0.5                     | Trial end |
| cRCT   | 100                | 0.5                     | Trial end |
| FR-end | 100, 140,,460      | 0.5                     | Trial end |
| FR-40  | 100, 140,,460      | 0.5                     | 40 days   |
| FA     | 100, 140,,460      | Adaptive                | 40 days   |
| TS     | 100, 140,,460      | Adaptive                | 40 days   |
| Ring   | 100 onwards        | 0.5                     | 40 days   |

#### Enrollment and follow up



# Frequentist adaptive (FA) and Bayesian adaptive (Thompson sampling, TS)

- b = number of participants per stage = variable
- j = stage number = 1, ..., J
- J = total number of stages
- $T = \text{total number of participants} = \sum_{j=1}^{J} b_j \neq Jb$  ?
- $c = \text{exponent for stage } j = \frac{jb}{2T} \rightarrow \frac{\sum_{i=1}^{j} b_i}{2T}$  ?
- Calculate:
  - $p_0$  = probability uninfected control
  - $p_1 = \text{probability uninfected} | \text{vaccine} |$
- Using:
  - FA (MLE): successes/(successes+fails)
  - TS: Uniform prior Beta(1,1); posterior Beta(1+successes,1+fails)
- Define allocation probability  $\pi_1$  as:
  - FA (MLE):  $\frac{R}{R+1}$  where  $R = \sqrt{\frac{p_1}{p_0}}$
  - TS:  $\frac{\Pr(p_1 > p_0)}{\Pr(p_1 > p_0) + \Pr(p_1 < p_0)} = \Pr(p_1 > p_0)$

## Results: mean (standard deviation) for 500 simulations

| Method | Cases    | Vaccinations | Vaccinated cases | Cases/<br>vaccination | Power | Type<br>I er-<br>ror | Vaccine<br>efficacy |
|--------|----------|--------------|------------------|-----------------------|-------|----------------------|---------------------|
| iRCT   | 125 (35) | 3000 (38)    | 23.9 (8.2)       | .042 (.012)           | 0.92  | 0.046                | .57 (.11)           |
| cRCT   | 170 (58) | 3001 (57)    | 15.5 (7)         | .057 (.019)           | 0.97  | 0.65                 | .81 (.13)           |
| FR-end | 192 (52) | 2998 (38)    | 15.9 (6.3)       | .064 (.017)           | 0.76  | .048                 | .52 (.14)           |
| FR-40  | 192 (52) | 2998 (38)    | 15.9 (6.3)       | .064 (.017)           | 0.12  | 0.052                | .29 (.47)           |
| FA     | 193 (53) | 2997 (38)    | 15.9 (6.4)       | .065 (.018)           | 0.15  | 0.052                | .3 (.53)            |
| TS     | 183 (53) | 3780 (1100)  | 16.4 (6.6)       | .058 (.046)           | 0.034 | 0.012                | .32 (.49)           |
| Ring   | 161 (39) | 541.3 (99)   | 18.8 (8.2)       | .3 (.033)             | 0.88  | 0.068                | .59 (.13)           |

'Primary endpoint': a 'success' is 'not infected', and 'fail' is a person who is infected, at the end of the trial for iRCT, cRCT, and FR-end, and 40 days after treatment for FR-40, FA, TS, and Ring.

Power = fraction of p values < 0.05 for vaccine efficacy = 0.6.

Type I error = fraction of p values < 0.05 for vaccine efficacy = 0.

$$p = \mathsf{dnorm}(Z); \ Z = \frac{p_1 - p_0}{\sqrt{\sigma_0 + \sigma_1}}; \ \sigma_i = \frac{p_i(1 - p_i)}{N_i}; \ \mathsf{N}_i = \mathsf{successes}_i + \mathsf{fails}_i.$$

## Power plots (75% enrollment, total duration of 500 days)



#### Ring vaccination trial, Ebola ça suffit, BMJ, 2015

- Randomisation to immediate or 21-day-delay vaccination
- Uses WHO contact tracing record (https://www.who.int/csr/resources/publications/ebola/contact-tracing-during-outbreak-of-ebola.pdf)
- Contacts and contacts of contacts
- Ring enrolled if 60% not currently enrolled
- Outcome = time to event (Cox proportional hazards model)
- Target: 190 rings, average size 50 (=9500 people), to get 90% power for VE=0.7
- Follow up at 3, 14, 21, 42, 63, and 84 days
- Secondary analyses: deaths, and infection of non-enrolled ring members

## Ring vaccination trial, interim results, 2015 (Henao-Restrepo et al., Lancet)

- Outcome = binary at least 10 days post randomisation
- Randomised to vaccination and 21-day-delay vaccination
- In 111 days, 90 clusters randomised. 48 (4123) vaccinated, 42 (3528) not
- After ten days, no cases among vaccinated, 16 among not vaccinated.
- Case confirmed through PCR (Ebola response team)
- " $\alpha$  spending strategy"

## Ring vaccination trial, final results, 2017 (Henao-Restrepo et al., Lancet)

- Outcome = binary at least 10 days post randomisation
- In 122 days, 98 clusters randomised. 51 (2119/4539) vaccinated, 47 (2041/4557) not
- 19 unrandomised rings, 1677/2745 vaccinated.
- No cases of vaccinated after 10 days, vs. 23 unvaccinated.

## Ring vaccination (trial), 2017 (Gsell et al., Lancet)

- Outcome = binary at 21 days
- In 35 days, 1510 people were vaccinated (303 children; 307 front-line workers)
- Four rings, with numbers 715, 75, 484, and 385
- Time from inclusion to vaccination given: between 0 and 10 days
- Follow up at 30 minutes, and 3, 14, and 21 days

#### To do

- Discuss what temporal information we have and how we use it.
- Change enrollment so that it's more realistic. Ask Ben: what's realistic?
- Chris: what's the VOI for adaptive vs time to event?
- Revise the definition of  $\pi$  (e.g. include c, following development of enrollment schedule, which will allow the definition of j, b, J and T).
- Account for drift/trends in allocation probability calculation and final evaluation. The trend is coming from the source population's infection trajectory.
- Redesign the source population dynamics so that it depends in some way on our population's dynamics.
- Re Hitchings: why the source? Why the parameters and the community sizes?
- What are good parameters for communities and ebola dynamics?

## Source population



## iRCT (5 samples)



## cRCT (5 samples)



## FR-iRCT (5 samples)



## FA-iRCT (5 samples)



## TS-iRCT (5 samples)



## Ring (5 samples)



## How many results do we get with a 40-day endpoint?

