Day2

浮躁(fickle)

【问题描述】

阿杰在上班会数学课:"最近有些同学很浮躁……"

早已习惯的你,在想这样一个问题:

共有 n 种竞赛,对于其中任意 i 种竞赛($1 \le i \le n$),有 a_i 个人同时参加,问有多少个人参加了至少一门竞赛?

阿杰还在滔滔不绝, 你却陷入了深思。

【输入格式】

从文件 fickle.in 中读入数据。

输入的第一行包含一个正整数 n,第二行包含 n 个整数 a_i 。n 和 a_i 的含义见问题描述。

【输出格式】

输出到文件 fickle.out 中。

输出一行一个整数,表示至少参加了一门竞赛的人数。

【样例输入】

3

10 3 1

【样例输出】

22

【样例说明】

假设 3 门竞赛分别为数学、物理、化学,你可以理解为有 10 个人参加了数学竞赛, 10 个人参加了物理竞赛, 10 个人参加了化学竞赛, 3 个人同时参加了数学和物理竞赛, 3 个人同时参加了数学和化学竞赛, 3 个人同时参加了物理和化学竞赛, 1 个人同时参加了数学、物理和化学竞赛。可以算出有 22 个人参加了至少一门竞赛。

【子任务】

测试点	n	a₁*n
1	≤3	
2	≤7	≤10³
3	≤10	

4	≤20	
5	≤25	
6	≤100	
7	12000	
8	≤2000	≤10 ⁹
9	4105	
10	≤10⁵	

想象一下(imagine)

【问题描述】

我们高大的老班举起了有半个他那么高的三角板,说:"你们想象一下——"于是你就陷入了想象······

有一棵n个点的树,每个叶子节点上都有一个人,他们按照每秒钟走一条边的速度向树根(节点1)前进。

你可以运用 k 次想象之力,让某一个节点(除了根节点)上的所有人瞬间(耗时为 0)转移到这个节点的父亲上。

你想知道最少需要多少时间,所有人可以到达根节点。

【输入格式】

从文件 imagine.in 中读入数据。

输入的第一行包含两个整数 n,k,含义见问题描述。

接下来 n-1 行,第 i 行一个整数 fa_i ,表示节点 i 的父亲为 fa_i 。

【输出格式】

输出到文件 imagine.out 中。

输出一行一个整数,表示所有人到达根节点最少需要的时间。

【样例1输入】

6 2

1

2

2

2

4

【样例1输出】

1

【样例1说明】

一开始,在节点 3,5,6 上分别有一个人,我们称他们为 A,B,C。

时刻 0,在节点 6运用想象之力,A 到达节点 4。

第1秒, A,B,C 走到节点 2。

时刻 1,在节点 2运用想象之力,A,B,C 到达节点 1,即目的地。 共用时 1 秒。

【样例 2 输入】

3 2

1

【样例 2 输出】

0

【样例2说明】

一开始只有节点 3 上有一个人。

时刻 0,在节点 3运用想象之力,这个人到达节点 2;此时仍然为时刻 0,在节点 2运用想象之力,这个人到达节点 1。

【子任务】

测试点	n	k	特殊性质	
1	≤8		T	
2~4	≤100	≺n		
5~8	≤3000		无	
9		=1		
10	≤500000	/n	树是一条链	
11~20		≺n	无	

超简单(super)

【问题描述】

有一个n面的骰子,第i面的数是 v_i ,朝上的概率是 p_i 。

教室的最后一排有一个人,不停地抛这个骰子,直到**某一面**朝上了两次,就停止抛骰子,但他不知道所有朝上的面的数字的和的期望 E 是多少。

老班一脸嘲讽:"这不是超简单嘛。"

【输入格式】

从文件 super.in 中读入数据。

输入的第一行包含一个正整数 n。

输入的第二行包含 n 个正整数,表示 vi。

输入的第三行包含 n 个非负整数,表示模 998244353 意义下的 p_i ,保证所有 p_i 的和为 1。

 n, v_i, p_i 的含义见问题描述。

【输出格式】

输出到文件 super.out 中。

输出一行一个非负整数 E表示模 998244353 意义下的 E。

【样例输入】

2

1 2

332748118 665496236

【样例输出】

961272344

【样例说明】

骰子共有2个面。

第一面的数为1,朝上的概率为1/3;

第二面的数为 2, 朝上的概率为 2/3。

所有情况列举如下:

第1次朝上的面	第2次朝上的面	第3次朝上的面	朝上的面的和	概率
1	1	/	2	1/9
1	2	1	4	2/27
1	2	2	5	4/27
2	1	1	4	2/27

2	1	2	5	4/27
2	2	/	4	4/9

所以 E=2*1/9+4*2/27+5*4/27+4*2/27+5*4/27+4*4/9=110/27。

【子任务】

测试点	n	v _i ,p _i	
1~4	≤8	4000244252	
5~8	≤50		
9~12	≤100	<998244353	
13~20	≤500		