高等数学(1,2)期末复习题(4)及解答

大题	 1 1	111	四	五	总分
得分					

一、 填空题 (每小题 3 分, 共 30 分) 得 分

2.
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x+1} = \underline{e}$$
.

6. 函数
$$y = x + 2\cos x$$
 在区间 $[0, \frac{\pi}{2}]$ 上的最大值为 $\sqrt{3} + \frac{\pi}{6}$.

7. 设
$$f(x)$$
 连续,且 $\int_0^{x^3-1} f(t)dt = x^4$,则 $f(7) = \frac{8}{3}$.

8.
$$\int_{-1}^{1} (\sin x + \sqrt{1 + \cos^2 x})^2 dx = \underline{4}.$$

9.
$$\int_{1}^{+\infty} \frac{1}{x\sqrt{x}} dx = \underline{2}$$
.

10. 微分方程
$$y' = 2xy$$
的通解为 $y = Ce^{x^2}$.

二、单选题 (每小题 3 分, 共 12 分) 得 分

11. 函数
$$y = \frac{\ln |x|}{x^2 + x - 2}$$
 的无穷间断点是(D).

(A)
$$x = 0$$
; (B) $x = -2$; (C) $x = 1$ π $x = -2$; (D) $x = 0$ π $x = -2$.

12. 若函数
$$f(x)$$
 在点 $x = x_0$ 处取得极小值,则必有 (B).

(A)
$$f'(x_0) = 0$$
; (B) $f'(x_0) = 0$ 或 $f'(x_0)$ 不存在;

(C)
$$f''(x_0) > 0$$
; (D) $f'(x_0) = 0 \perp f''(x_0) > 0$.

- **13.** 函数 f(x) 在 $x = x_0$ 处可微是 f(x) 在 $x = x_0$ 处连续的(B).
- (A) 必要条件;

- (B) 充分条件:
- (C) 充分必要条件;
- (D) 无关条件.
- **14.** 设 f(x) 的一个原函数是 $\sin x$,则 $\int x f'(x) dx = (A)$.
- (A) $x \cos x \sin x + C$; (B) $x \sin x + \cos x + C$;
- (C) $x \cos x + \sin x + C$;
- (D) $x \sin x \cos x + C$.

三、计算题(每小题5分,共30分)

15. 求极限 $\lim_{x\to 0} \frac{\sin x - x \cos x}{\sin^3 x}$.

解: 原式 = $\lim_{x \to 0} \frac{\sin x - x \cos x}{x^3}$

$$= \lim_{x \to 0} \frac{\sin x}{3x}$$

 $=\frac{1}{3}$

 $= \lim_{x \to 0} \frac{x}{3\sin x} \dots$

$$=\frac{1}{3}$$

 $\Re : \frac{dy}{dx} = 2\sin(1-\frac{1}{x})\cdot[\sin(1-\frac{1}{x})]'$

$$= 2\sin(1 - \frac{1}{x}) \cdot \cos(1 - \frac{1}{x}) \cdot (1 - \frac{1}{x})'$$
$$= \frac{1}{x^2}\sin(2 - \frac{2}{x}) \dots$$

$$dy = \frac{1}{x^2} \sin(2 - \frac{2}{x}) dx$$
....

17. 设 y = y(x)由2 $y - xy^2 + e^x = 5$ 所确定,求 $\frac{dy}{dx}$.

解: 方程两边对x求导,得

$$2y' - (y^2 + 2xyy') + e^x = 0...$$

解得:
$$y' = \frac{y^2 - e^x}{2(1 - xy)}$$
.....

18. 计算不定积分
$$\int \frac{\sin x \cos^3 x}{1 + \cos^2 x} dx$$
.

19. 计算定积分
$$\int_{2}^{4} \frac{1}{x\sqrt{x-1}} dx$$
.

20. 求曲线 $y = x^2 D y = 2x$ 所围成的平面图形的面积以及该图形绕 x 轴旋转所得旋转体的体积.

所求面积
$$A = \int_0^2 (2x - x^2) dx = \frac{4}{3}$$
.....

所求体积
$$V = \int_0^2 \pi (4x^2 - x^4) dx = \frac{64}{15} \pi$$
.....

四、解答题(每小题 6 分, 共 18 分) | 得 分 |

21. 求由方程
$$\begin{cases} x = t^2 + 1 \\ y = e^t \end{cases}$$
 表示的函数 $y = y(x)$ 的二阶导数 $\frac{d^2 y}{dx^2}$.

解:
$$\frac{dy}{dx} = \frac{(e^t)'}{(t^2+1)'} = \frac{e^t}{2t}$$
,

$$\frac{d^2 y}{dx^2} = \frac{(\frac{e^t}{2t})'}{(t^2 + 1)'} = \frac{(t - 1)e^t}{4t^3} \circ \dots$$

22. 设
$$f(x)$$
 在 $\left[0, \frac{\pi}{2}\right]$ 上连续,且满足 $f(x) = x \cos x + \int_0^{\frac{\pi}{2}} f(t) dt$,求 $f(x)$.

解: 设
$$C = \int_0^{\frac{\pi}{2}} f(t)dt$$
,则

$$f(x) = x\cos x + C$$

$$C = \int_0^{\frac{\pi}{2}} f(t)dt = \int_0^{\frac{\pi}{2}} (t\cos t + C) \dots$$

$$=\frac{\pi}{2}-1+\frac{\pi}{2}C$$
,

$$C = -1$$

$$f(x) = x \cos x - 1 \dots$$

23. 设
$$f(x)$$
 为连续函数,且适合关系 $f(x) = e^x - \int_0^x (x-t)f(t)dt$, 求 $f(x)$.

解:
$$f(x) = e^x - x \int_0^x f(t)dt + \int_0^x tf(t)dt$$
, 则

$$f'(x) = e^x - \int_0^x f(t)dt,$$

$$f''(x) = e^x - f(x),$$

$$\lambda^2 + 1 = 0 \Rightarrow \lambda = \pm i$$

说
$$y^* = ae^x$$
, 得 $ae^x + ae^x = e^x \Rightarrow a = \frac{1}{2}$,

由

$$f(0) = f'(0) = 1 \Rightarrow C_1 = C_2 = \frac{1}{2}$$

24. 证明: 当x > 1时, $x \ln x > x - 1$.

当x > 1时, $\ln x > 0$,从而f'(x) > 0,

因此 f(x) 在区间[1, + ∞) 单调增加,

即得 $x \ln x > x - 1$

25. 设 f(x) 在[0,1]上连续, $\int_0^1 f(x)dx = 0$, $\int_0^1 x f(x)dx = 0$,证明:

 $\exists c \in (0,1), \notin \int_0^c f(x) dx = cf(c).$

证明: $\Rightarrow F(x) = x \int_0^x f(t)dt - 2 \int_0^x t f(t)dt$,....

由 F(0) = 0, $F(1) = \int_0^1 f(t)dt - 2\int_0^1 tf(t)dt = 0$ 及 f(x) 的连续性知,

F(x)在[0,1]上满足罗尔定理的条件,