PCT/DK20041/000490

new dalim it subminied with letter of 20/05/2005; (with sincendments indicated)

1. A compound of general formula I

wherein

 R_1 is halogen, hydroxy, mercapto, trifluoromethyl, amino, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, C_{1-4} alkylthio, C_{1-6} alkylamino, C_{1-4} alkoxycarbonyl, cyano, - CONH₂ or nitro;

 R_2 is hydrogen, halogen, hydroxy, mercapto, trifluoromethyl, amino, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, C_{1-4} alkylthio, C_{1-6} alkylamino, C_{1-4} alkoxycarbonyl, cyano, -CONH₂, phenyl or nitro;

 R_3 represents one or more, same or different substituents selected from the group consisting of hydrogen, halogen, hydroxy, mercapto, trifluoromethyl, cyano, carboxy, CONH₂, nitro, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkylthio, C₁₋₄ alkoxycarbonyl;

 R_4 is hydrogen, halogen, nitro, R_8 or Y_1R_8 ;

$$Y_1$$
 is -0-, -S-, -S(0)-, -S(0)₂-, -NR_a-, -NR_aC(0)NR_b-, -NR_aC(0)-, -C(0)NR_a-, -C(0)NR_aO-, -C(0)-, -C(0)O-, -NR_aC(0)O-, -S(0)₂NR_a-, -NR_aS(0)₂-;

 R_a , R_b and R_c are the same or different, each representing hydrogen, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{3-8} carbocyclyl, C_{1-12} heterocyclyl or aryl, each of C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{3-8} carbocyclyl, C_{1-12} heterocyclyl or aryl being optionally substituted by one or more, same or different substituents represented by R_7 ;

 $R_8 \text{ is hydrogen, } C_{1\text{-}10} \text{alkyl-} C_{1\text{-}12} \text{heterocyclyl, } C_{1\text{-}10} \text{alkyl-} C_{3\text{-}12} \text{carbocyclyl, } C_{1\text{-}10} \text{alkyl-} C_{2\text{-}10} \text{alkynyl, } C_{2\text{-}10} \text{alkynyl, } C_{3\text{-}12} \text{carbocyclyl or } C_{1\text{-}12} \text{heterocyclyl, } \text{each of } C_{1\text{-}10} \text{alkyl-} C_{1\text{-}12} \text{heterocyclyl, } C_{1\text{-}10} \text{alkyl-} C_{3\text{-}12} \text{carbocyclyl, } C_{1\text{-}10} \text{alkyl, } C_{2\text{-}10} \text{alkynyl, } C_{2\text{-}10} \text{alkynyl,$

 C_{3-12} carbocyclyl or C_{1-12} heterocyclyl being optionally substituted by one or more, same or different substituents represented by R_7 ; R_7 is halogen, hydroxy, mercapto, trifluoromethyl, amino, C_{1-4} alkyl, C_{1-6} 6hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkylthio, C_{1-6} alkylamino, C_{1-4} alkoxycarbonyl, C_{1-9}

 $_6$ hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkylthio, C_{1-6} alkylamino, C_{1-4} alkoxycarbonyl, C_{1-9} trialkylammonium in association with an anion, cyano, azido, nitro, $-S(O)_2NH_2$, $-S(O)_2NR_4R_b$, $-S(O)_2R$, -COOH, $-CONH_2$, $-NR_4C(O)R'$, -CONHR' or -CONRR', wherein R and R' are same or different, each representing hydrogen or C_{1-3} alkyl;

one of R_5 and R_6 is -COOH, -C(O)NHOH, $-C(O)NHNH_2$, Y_2R_9 , $Y_2R_9Y_3R_{10}$, C_{1-6} alkyl- Y_2R_9 , C_{1-6} alkyl- Y_2R_9 , C_{1-6} alkyl- Y_2R_9 , C_{1-6} alkyl- Y_2R_9 , C_{2-6} alkenyl- Y_2R_9 , C_{2-6} alkenyl- Y_2R_9 , C_{3-12} carbocyclyl- Y_2R_9 , Y_3R_{10} , $Y_2R_9-C_{2-6}$ -alkenyl- Y_3R_{10} , C_{3-12} carbocyclyl- Y_2R_9 , C_{3-12} carbocyclyl- Y_2R_9 , Y_3R_{10} , C_{3-12} carbocyclyl- Y_2R_9 , Y_3R_{10} , C_{3-12} carbocyclyl- C_{1-6} -alkyl- Y_2R_9 , C_{3-12} carbocyclyl- C_{1-6} -alkyl- Y_2R_9 , Y_3R_{10} , C_{3-12} carbocyclyl- Y_2R_9 , Y_3R_{10} , Y_2R_9 , Y_3R_{10} ,

with the proviso that when R_5 or R_6 is phenyl, C_{1-5} alkyl or C_{2-3} alkenyl, said R_5 or R_6 is substituted by one or more, same or different substituents represented by R_7 (except three fluorine when R_5 or R_6 is methyl)

with the further proviso that when R_5 or R_6 is -COOH, Y_1 cannot be -NR_a-, -NR_aC(0)NR_b-, -NR_aC(0)- or -NR_aC(0)O-, and R_3 or R_4 cannot be nitro,

with the further proviso that when R_2 is hydrogen, one of R_5 or R_6 is not in the proviso that when R_2 is hydrogen, one of R_5 or R_6 is not in the provisor optionally substituted (C_3 - C_{18} heterocyclyl, C_{1-7} alkyl, C_{2-7} alkenyl, C_{2-7} alkynyl or C_{1-7} alkoxy);

 $Y_2 \text{ is -O-, -S-, -S(O)-, -S(O)}_2\text{-, -NR}_a\text{-, -NR}_a\text{C(O)NR}_b\text{-, -NR}_a\text{C(O)-, -C(O)NR}_a\text{-, -C(O)NR}_a\text{-, -C(O)-, -NR}_a\text{C(O)O-, -NR}_a\text{S(O)}_2\text{-, -OC(O)-, -C(O)O-, -C(O)NR}_a\text{NR}_b\text{-, or -S(O)}_2\text{NR}_a\text{-;}$

 R_9 is C_{1-10} alkyl- C_{1-12} heterocyclyl, C_{1-10} alkyl- C_{3-12} carbocyclyl, C_{1-10} alkyl, C_{2-10} alkynyl, C_{3-12} carbocyclyl, C_{1-12} heterocyclyl, C_{3-12} carbocyclyl- C_{1-10} alkyl, or C_{1-12} heterocyclyl- C_{1-10} alkyl, C_{3-6} carbocyclyl- C_{1-6} alkenyl, C_{3-6} carbocyclyl- C_{2-6} alkynyl, each being optionally substituted by one or more, same or different substituents represented by R_7 ,

with the proviso that when Y_2 is -0-, -NR_a-, -S- or -C(0)0-, and R₉ is C_{1-6} alkyl, said C_{1-6} alkyl is substituted by one or more, same or different substituents represented by R_7

 Y_3 is -O-, -S-, -S(O)-, -S(O)₂-, -NR_a-, -NR_aC(O)NR_b-, -NR_aC(O)-, -C(O)NR_a-; -C(O)NR_aO-, -C(O)-, -NR_aC(O)O-, -NR_aS(O)₂-, -OC(O)- or -C(O)O-;

 R_{10} is C_{1-10} alkyl- C_{1-12} heterocyclyl, C_{1-10} alkyl- C_{3-12} carbocyclyl, C_{1-10} alkyl, C_{2-10} alkynyl, C_{3-12} carbocyclyl or C_{1-12} heterocyclyl, each being optionally substituted by one or more, same or different substituents represented by R_7 ;

or, when one of R_5 or R_6 is the group $-C(O)NR_aR_9$, R_a and R_9 together with the nitrogen atom to which they are attached form a C_{1-12} heterocyclic ring optionally comprising one or more additional heteroatoms selected from the group consisting of O, S and N, optionally substituted with one or more substituents represented by R_7 ;

or a pharmaceutically acceptable salt, solvate, or ester thereof.