

MOVI SHITTER SOVE GUIZZE

6% काण्डापता

SOME EMINENT INDIAN SCIENTISTS

JAGJIT SINGH

March 1966 (Phalguna 1887)

FUNCTIONED BY THE DIRECTOR, PURLICATIONS DIVIDION, DELET-6, AND TRINTED BY THE MANAGER, GOVERNMENT OF INDIA PRESS, FARIDABAD

PREFACE

All the twelve profiles collected in this book were originally published in *The Illustrated Weekly* at various times between August 1960 and July 1965 in the serior *Diment Scientists of India.* They were intended to explain to the lay cutten the bases odeas underlying the pair constitute open and the pair constitute profiles again.

were intended to etypical to the lay citizen the nace ideas uncertying the main scientific achievements of the scientist concerned.

The scientist selected are merely the outcome of the accident thin my own interest lappens to be largely in mathematics and only a few of the allied sciences which are beginning to be permanted with it. There are, no doubt, many eniment scientist of India who have been omitted in this collection. The omission is really due to my analysis you comprehend their work, much less to explain it to others.

It is hoped that the publication of the series in book form will show how Indians from various parts of this sub-continent are contributing to the stream of modern scientific thought. It will also show that the contributions made can bear comparison—with those made anywhere else.

If it helps to spatk in the reader's mind, the thought that the who of the Indian secritists, no matter whether it is done in Calcutts, Bombay, Delhi, Bangalore, Bhubanciwar or elsewhere, is also in some way a unifying force, it will have served its purpose,

JAGJIT SINGH

HOMI JEHANGIR BHABHA'S

Born: October 30, 1909

Education. B.A., Cambridge University, 1930; Ph.D. Cambridge

University, 1934

1941-42 Reader in Theoretical Physics, Indian Institute of

Science, Bangalore

1942-45 Professor, Cosmic Ray Research Unit and Director,

Tata Institute of Fundamental Research, Bombay

1947-1966 Chairman, Atomic Energy Commission, India

1954-1966 Secretary, Department of Atomic Energy, Government of India

President, Indian Science Congress (1951)

President, International Conference on the Peaceful Uses of Atomic Energy (1955)

Member, Scientific Advisory Committee, International Atomic Energy Agency

FELLOW OF THE ROYAL SOCIETY (1941)

Hon, Fellow of the Royal Society, Edinburgh (1957)

DIED: January 24, 1966

AWARDED. Adams Prize (1942)
Hopkins Prize (1948)

PADMA BHUSHAN (1954)

Hon. D.Sc. by several universities in India and abroad

PUBLICATIONS Quantum Theory

Elementary Physical Particles

Cosmic Radiation

H. J. BHABHA

If miracles like Leonardo could occur nowadays, Homi Bhabba might have been one of them. His intellect had almost the meastro's penetrative power as well as versatile sweep. But the exponential growth of the sciences, if not the arts, during the intervening five centuries has long since made impossible a repeat performance of the Leonardesque feat.

Bhabha had the good sense to restrain, in deference to this prolific multiplication of human knowledge, an early lich to take all the sciences and the arts in his stride. Fond of things of beauty and joie de viwe from his boyhood, he took to music and painting, only on make them his second love when he switched over to engineering and technology to please his father; or, a little later, to atomic physics to the delight of his idol, the Nobel Laureste, Dirac. By dint of disciplined and concentrated application of his enormous talents in the field of atomic physics that he chose as his life's metier, he leapt to fame Byron-wise almost overnight with his "easende" theory of cosmic-ray showers. The fame was well deserved because the theory checkaded one of the most puzziling mysteries of cosmic rays—a phenomenon so complex that, though known for about half a century, it is beginning to be understood only today.

To comprehend the mystery Bhabha unrawelled, it is necessary to remark that cosmic rays are now known to be of two kinds. First, there are the primary rays, which are fast-moving, ultra-energetic, sub-microscopic particles like the nuclei of hydrogen atoms or protons accelerated to the speed of light, possibly by stray magnetic fields in interstellar space. When some of them happen to approach the earth and eather our atmosphere, the trespassing particles collide with atoms in the air and, in view of their enormous energies, bread new nuclear particles. These new particles, which also begin to move at great speeds in nearly the same direction as the primaries, are the secondary cosmic rays. They too, in their turn, have beta divided roughly into two classes by the experimental distinction of

8

whether or not they pierce through 10 to 15 cm. of lead, or an equivalent depth of air which, naturally, is much longer. Bhabba's "esseade" theory that won him fame is concerned with the genesis of the non-penetrating or the so-called "soft" component of secondary cosmic rays.

It is in essence a beautiful mathematisation of a multiplication process somewhat akin to the growth of populations arising from a single Adam-Eve pair, but with a number of characteristic features of its own. First, in the "cascade" case, unlike human populations, the generations alternate. That is to say, the members of two successive generations are not of the same kind, as with human beings, but belong, so to speak, to different species. The two "species" are very energied photons or rays of invisible light, on the one hand, and high-speed electrons and their antithesis, the positrons, on the other.

Secondly, the breeding analogue of the process is either the creation of a nuclear twin—an "offspring" pair of electron and positron—by the absorption in material medis like air of a "parent" photon, or, conversely, the generation of an "offspring" photon from a "parent" electron or position colliding with an atomic nucleus and yet persisting after the collision. Thus, while a "parent" photon disappears in the creation process of a nuclear twan, a "parent" electron often survives the birth of an "offspring" photon. Hence the third feature—let, that, after the multiplication process has had its day, all that we may observe experimentally is a population or shower of electrons.

Bhabha's problem then was to evaluate the number of secondary electrons at any given depth of the atmosphere or eny other material on the basis of known laws of quantum mechanics poverning the behaviour of nuclear particles and photons, so that a confrontation of the computed numbers of secondaries with those actually observed might provide a test whether or not the postulated mechanism was at work. But here he faced a difficulty—the capticious breeding behaviour of the "parent" photons and nuclear twans. Although it does depend in a broad way upon their energies as well as the depth of air through which they travel, it is nevertheless a pretty chancy affair. In determining the detailed genealogy of the observed electronic progeny, one has, therefore, perforce to grope one's way

ă.

in a hare of uncertainty in which the only rational course is to resort to probability calculus.

Fortunately, the observable in this case—that is, the number of secondary particles—can only be a whole number like 1, 2, 3, 4...

50, etc. Fortunate because, surprising as it may seem, the single restriction of the observable to the whole number series enables us straightaway to specify the probability of finding a given number of secondaries at any given depth. It happens that such a probability distribution is the well-known Poisson expression. With the knowledge of the probability distribution and certain other simplifying assumptions and approximations, Bhabha was able to reduce to order the immense complexity of the multiplication process and compute the average number of secondaries at any given depth, as well as the possible fluctuations around it.

Despite excellent agreement between theory and observation, Bhabha did not choose to rest on his laurels. For, the agreement extended only to the average number of secondaries and not to the fluctuations from the average, which also are relevant in the interpretation of many experiments. Bhabha realised at once that the "cascade" theory, which he had evolved in collaboration with Heitler, was in fact an oversimplification of an exceedingly complex state of affairs.

To name one such simplification, the Poisson distribution, used to determine the chance of finding 1, 2, 3. number of secondaries at any given depth of the material traversed, results only if it is assumed that each secondary particle originates in complete independence of every other. But, as all of them are, in fact, lineal descendant of the same parent electron generated in a single multiplication cosp, a more accurate one had to be found to take account of the inherent correlation between successive progenies.

Bhabha undertook this formidable task in collaboration with Alladi Ramakrishna and invented a novel method of calculating the required chance. As one would expect, the actual geneis of secondaries is much too complex a process to yield a distribution which could be neatly trapped in a simple formula of a mathematician's making, like that of Poisson initially adopted. Undaunted, Bhabha nevertheless did manage to trap it by calculating what statistician call its higher "moments". This is an artifice which may best be

described as a mathematician's gambit for quarrying a particularly clusive prey by means of a series of roundabout but converging computational routines.

While the experimental verification of the "cascade" though both in its original and reformulated forms naturally excited the cosmic-ray physicists, it had two other fruitful consequences. First, it inspired Bhabba to generalise its mathematical core, so as to make it applicable to a whole class of random processes, of which the shower phenomenon is just an instance. In a fundamental paper published by the Royal Society in 1930, he worked out, in a delightfully rigorous fashion, the generalised mathematical theory of idealised models or imaginary mechanisms that abstract just enough of the basic features of random processes simulated to secure mathematics a foothold.

Such abilit of interest from the physics of the "cascade" care to its mathematics in order to extend the latter's applicational range, or even merely as an exercise in pure abstraction, was evidence of a powerful mathematical streak in Bablab's mental make-up. It had aboven itself time and again in his later work also when, even without any eye to its possible use, the subsequent extension of the mathematical kernel originally devised to explain a physical situation spilled over far beyond those initial needs that mothered its invention in the first instance.

A case in point was his development in the early forties of a complete, but extremely elegant, generalised classical theory of particles, even though classical theories, for reasons to be explained in the sequel, do not have a direct physical application today. The only practical use of this theory, as far as I am aware, has been to refute an idea of Heisenberg about the nature of explosions found in high-energy contineary phenomena.

The second consequence of the "cascade" theory was even mere treatrakable. Since it had established that electrons do not pass through material media without producing showers, Bhabba sentured, with uncanny premodition, to predict that some particles found in cosmic-ray showers, which behaved neither like protons nor like electrons, must be some new kind of nuclear particles, now known under the generic name "meson" adopted at his instance in preference to some others suggested. The study of mesons has dopping

later-day nuclear research and has revealed a wide diversity of them. But, long before the discovery of this proliferation, Bhabha developed what is called the vector theory of the meson, in a Royal Society paper, as early as 1938.

Some years ago, there was a swing towards his theory, and one may hear more of it in the future, especially as the mathematical formalism he developed then still holds good. One other incidental by-product of his analysis of meson decay, which he was the first to point out, was that high velocity of these particles would make them live longer in accordance with the relativity theory, thus providing a direct experimental proof, in the most extreme high-velocity range that we know, of Einstein's prediction that clocks in motion go aslower.

However, the "cascade" theory, in spite of its fundamental importance in cosmic-ray physics and its aftermath of an inspiring piece of pure mathematics, was for Bhabha merely an offshoot of a much wider aim-the advancement of quantum mechanics. This is the new mechanics that had to be devised, as the inadequacy of dynamical laws hitherto regarded as sacrosanct began to dawn on the twentieth-century physicists delving more and more deeply into the interiors of atoms. Two major amendments had to be made in laws. The first was the introduction of corrections required by Einstein's relativity theory, particularly for particles moving with velocities comparable to that of light. The second was the innovation of Planck's famous quantum principle, which postulated that energy exchange takes place not continuously in any amount, but discretely in an integral number of packets of energy, exactly as money always changes hands in an integral number of paise. You may conceivably owe someone, for example, half a paisa, but you cannot physically give it to him, simply because the mint does not make it. The quantum mint does likewise. It forbids deals in fractions of a packet of energy. One packet or none is its minimum counter

Since both the relativistic and quantum amendments were initially superimposed at hec on Newtonian ideas, the original quantum theory became a mishmash of arbitrary rules devised to overcome special difficulties without any overall rationalisation providing cal underpinning of the rules. This defect, however, was

soon remedied and, by 1926, quantum mechanics blossemed into a consistent, unified theory in a variety of forms, of Born, Husenbeck, Schrodinger, Broglie, Dirac and Jordan. These different formulations were in no sense final theories, but, rather, different aspects of a consistent body of law.

However, the quantum rationalisation, such as it was, had been secured at a heavy scarifice—loss of intelligibility. For, it all but obliterated the concrete, readily understood picture of an atom as a miniature planetary system of satellite electrons orbiting around a central nucleus, and replaced it by a purely mathematical construct or formalism whose physical interpretation led to serious language difficulties. As the celebrated mathematician, Hilbert, remarked at the time, it made physics too difficult for the physicists, and virtually excluded the non-mathematicians from comprehending what these mathematical physicists were trying to say.

In spite of their tack of ready intelligibility, the formalisms were a great uccess. In particular that of Dirac, which was the most comprehensive, yielded all the properties of the electron at one blow even in the extreme relativistic domain, which had proved a serious difficulty in the earlier formalisms of Schordinger and others. But even Dirac's equations, for all their miraculous extraction of electronic behaviour, failed to take in their stride other types of elementary particles with spins different from that of an electron or proton. For, many elementary particles, such as the satellite electrons orbiting round their atomic motions, behave as if they were spinishle to the proton of the same time revolving round the sum.

In the case of the earth, we infer the rate of spin from the duration of its direnal rotation. In quantum mechanics, it is measured in terms of a special unit, which ensures that it is either a whole number, like f., or half an odd number, like f. or \$\frac{1}{2}\$. Since the spin of an electron or proton or neutron—the only elementary particles known at the time Dirac formulated his equincians—tappens to be \$\frac{1}{2}\$, they assure a particles, but not for those with a different spin. Although elementary particles, but not for those with a different spin. Although elementary particles with spins other than 0, \frac{1}{2}\$ or 1 have still not been discovered, it nevertheless occurred to many physicists working in the quantum field to device a similar formulants for elementary particles with an

arbitrary spin. Such equations were indeed constructed, but not till three giants of theoretical physics, Dirac, Fierz and Pauli, had pooled their talents. They are, therefore, named after them-the well-known Dirac-Fierz-Pauli or D. F. P. equations.

However, they, too, raised their own crop of tangles into which I cannot go here. This led Bhabha to devise yet another set of equations, which are the heart of what are now known as Bhabhatype theories for particles with any arbitrary spin. While Bhabha's equations (for good and sufficient reasons) are equivalent to D.F.P. equations in the three particular cases corresponding to spins 0, 4 and 1, for every other case of spin greater than I they are basically different. The main difference is that elementary particles with higher spins are capable of several states of spin and mass, instead of having a unique value, as under the D.F.P. equations.

Thus, for example, Bhabha showed that an elementary particle of a spin has two possible values of mass, one of them being three times the other. This may seem to provide a test of their validity. But, as no elementary particle with spin greater than I has yet been discovered, it is not possible to apply it, at any rate for the present. Although this cannot perhaps be construed as meaning that particles of higher spin do not occur in nature, yet it cannot per contra be claimed to favour their possible existence.

One merit of Bhabha's theory, however, is beyond dispute. It bases itself principally on a precise definition and analysis of spin, which enables it to derive the features of particles of any arbitrary spin from well-defined principles rather than from seemingly arbitrary choice. As a result, it provides a logical explanation of why crowds of elementary particles of spins 0, 1, 2, 3 ... exhibit one type of statistical behaviour characteristic of bosons, and those of spins 1. 3. 2. . . quite another characteristic of fermions.

Bhabha also explored the consequences of a novel idea that he had formed to put the quantum theory of mesons on the same footing as that of uncharged or neutral mesons. The idea was that, although all charged particles hitherto observed are found to have the same charge as an electron, charged elementary particles having twice. thrice, or any other integral multiple of the electronic charge may also conceivably exist. He showed that while the assumption resolved certain difficulties in the theory of charged mesons, to establish their

actual existence, one has to look for them in nuclear explosions produced by cosmic rays.

Consequently, study of photographs of nuclear explosions in the

consequency, study or photographs of nuclear expositions in the capeted to reveal or dispote grainfy lates at high altitudes might be expected to reveal or disprove their existence. Since Bhabha made the suggestion, such explosions can also be engineered in the laboratory by the newly constructed particle-accelerators. But the existence of Bhabha-type particles with any integral charge, too, has not yet been revealed either in the naturally occurring cosmic-ray explosions or in the laboratory.

Even though some of Bhabha's mathematical speculations may not have materialised, their underlying mathematical nugget is always like a thing of beauty, a joy for ever-if one can evaluate it. He chose to do battle with his armour of high-powered mathematies in a field where, despite the efforts of a whole phalanx of knightsat-arms like Dirac, Pauli, Heisenberg, Schrodinger and Born, victory is still not in sight, even though a number of significant local successes have been secured. All the formalisms so far devised. including Bhabha-type theories, suffer from a fatal defect in that many of the important problems of physics have no solution. When the formal equations are solved, they lead to what prove to be uncontrollable runaway summation processes. Which is to say that when the sum is evaluated, the formal answer is infinity to a problem that ought to have a finite solution. It is true that, in many cases, a partial sum yields a reasonably close approximation, but it is poor solace to the theoretician who sees in it evidence of a serious logical flaw.

A large amount of study has gone into efforts to remedy this defect, but to no great effoct. This is perhaps why Harsh Chandra, a mathematician of great power and a former collaborator of Bhabbs, tecided to switch over from mathematical physics to pure mathematics. This is also why Fermi, the famous architect of the atom bomb, pooh-pooked the ponderous mathematical apparatus used in some nuclear theories in deriving results that are no better than could be obtained by a sketchy computation of orders of magnitude. It seems that the situation is not likely to improve unless much greater data accumulates to point the way to as revolutionary a revision of the fundamental concepts as that underlying the earlier

mathematical formalisms when they were first mooted, over thirty years ago.

Deterred by these current complexities of the quantum theo Bhabha, too, might perhaps have drifted like his erstwhile collabor, Harish, into pure mathematics or like his shoese hero, Leonar into painting and the fine arts. But, being the inevitable choice the head of our Atomic Energy Commission set up immediat after the attainment of Independence, this redoubtable and as duous cultivator of the atomic land received a heifer worthy of I plough. He had thus to concentrate all his prowess on the mo practical and arduous, if less fundamental, task of preparing the country to tap the atom for its immense, though hidden, treasure energy.

The task indeed was undertaken none too soon. For, our pendable energy capital is running out fast. As he remarked in he Presidential Address to the Geneva Conference on the Peaceft Uses of Atomic Energy, in 1955, "For the full industrialisation of the underdeveloped areas, for the continuation of our civilisation am its further development, atomic energy is not merely an aid; it is at absolute necessity."

Bhabha proved this long-range, absolute need of atomic power in the world and, in particular, in India with some very telling statistics. Using a unit called O, the power generated by burning 33 thousand million tons of coal, Bhabha recalled that the total expenditure of power during 1,850 years since the Christian era, amounted to only 9 O-an average rate of half a Q per century. During the next century, it rose to 5 Q, the actual rate now being 10 Q per century. Since the world's resources of coal, oil and all other fossil fuels are just about 100 O, and the existing rate of 10 O per century is rising steeply, our present civilisation is doomed to peter out in a few centuries, unless entirely new sources of energy are harnessed. But the petering out would be accelerated cataclysmically if the entire present population of the world were to consume energy at the per capita rate now prevailing in the United States. This would catapult the total world consumption to well over 50 O per century, instead of the present 10 Q. If the assumed fuller per capita energy consumption were applied not to the present but to the increased world population, that the demographic flood now under way threatens to

engulf us, we should exhaust the known reserves of fossil fuels in under a century.

If the global prospects of power are so gloomy, ours in India are much gloomier. The total coal reserves of India are estimated to provide an energy equivalent of a little under 2 Q. To this may be added a contribution of about half a Q per century from water-power resources, and an equally fractional amount from oil even if all our present expectations materialise fully. Bhabha calculated that all the pooled power resources of our fossil fuels and hydro-electric resources cannot in our midst sustain for more than a decade the per capital level of energy consumption now prevailing in the U.S.A. The whight of power that is likely to descend on our planet in a century will thus overshadow us in India within barely a decade of our launching out in full industrial flight.

If, in presenting this grim balance-sheet of power, Bhabha scenel to speak like the Jeremiah of an impending cimmerian doom, I hasten to add that, actually, he was the prophet of a new heaven on earth. For he had studied the problem of dispelling the threatmed diskness at our industrial noon more deeply than anyone clse in India, and had found the answer in atomic energy. But, because of the difficult and sophisticated technology involved, it is no simple matter to draw energy for peaceful purposes from the atom in an undependent of the control of the property of the control of point know-how and long-established industries, spent the repain Intensive research before they could open their first atomic power station, Calder Hall, in Cumberland.

Bhabha knew that his period of preparation and gestation would be slightly longer. He hoped to set up his first atomic power station at Tarapur, some 60 miles north of Bombay, in 1968—aithin 13 years of the setting up of the Atomic Energy Establishment at Trombay, of whose massive and multi-purpose respect effort the Tarapur plant would be the first tangible fruit. To be uster, many more of its type as well as other kinds would follow. For Bhabha was busy carrying out the programme that he framed catlier, bearing in view the nature of India's fuel and power reserves, both conventional and atomic, as also the peculiar property of nuclear fuels to regenerate themselves, or to generate new fuels in fooding material fuels to regenerate themselves, or to generate new fuels in fooding material.

He planned to cash in, particularly, on the latter feature by setting up in stages three types of power reactors, which, in addition to producing electricity, would also produce fuel for other reactors. In the first stage, natural uranium, after appropriate purification, would be fed as fuel, and yield, besides energy, a new nuclear fuel (pluto num) for use in the second stage. Plutonium would then become secondary fuel in another type of reactor, and, by surrounding it by thorium, some of the latter would be converted into yet another nuclear fuel (uranium 233) for use in the third stage. Uranium 233, in turn, would be used as a tertiary fuel in still another type of power reactor, in which thorium would again be introduced so as to convert it into more of uranium 233 Since the last process is known to breed more of the tertiary fuel, uranium 233, than it actually consumes, by merely feeding into such a breeder-type reactor additional thorium-of which we have superabundant supplies-its own fuel requirements would be fully assured. It is by a judicious blend of these three types of reactors that Bhabha hoped to amplify our existing power potential from conventional fossil fuels by a factor of thirty or so.

Far-reaching as was Bhabha's dream of atomic power, it had in its upper fringe an as-yet-faintly-perceived visionary gleam which could, in due time have illumined the way out of the impasses of atomic power. Bhabha had already foreseen two of them. First, he realised that even a superabundance of thorium deposits cannot make our power reserves inexhaustible, although they do increase them very considerably. Secondly, he also knew that, if all the power needs of our economy when in full industrial flight were to be derived from atomic energy, as it must, the problem of disposal of the radio-active wastes of the fission process might well be very expensive. For, the amount of such radio-active fission products would equal the fall-out from the explosion in our midst of some half a million atomic bombs per annum. The only way out of both these nightmares of ultimate exhaustion of fuel sources and disposal of wastes is the possibility of putting sunshine, as it were, on tap by making miniature suns here on earth in our midst.

Such a miniaturisation programme is now by no means a mere fantasy. There are reasons to believe that we could simulate the solar process of energy generation—that is, obtain controlled energy by fusion of light atomic nuclei into heavier ones instead of its converse, the fission or breakdown of heavier atomic nuclei into lighter ones, as in atomic bombs as well as in power plants. Since the most likely candidate for fuel in the fusion process is a heavy isotope of hydrogen found in ordinary water, fusions power can rely on an inexhaustible source of supply—the oceans. Besides, because the process does not give rise to radio-active wates, their disposal problem, too, will not arise. Bhabla's cagle eye, therefore, was ever on the look-out in the veritable jungle of literature for signs of any likely breakthrough to fusion power.

Judging from contemporary indications, he had predicted that a break-through to fusion power might possibly ocur within a couple of decades. If and when it did and controlled caregy began to flow from fusion, power would no longer be a problem in India, or, for that matter, anywhere in the world. The realisation of this new version of the age-old dream of perpetual motion was the ultima Thule of Bhabbla's vision of atomic power.

At the time of his sudden death in the air crash on 24th January 1966, Bhabha was still young enough confidently to hope to see descend on earth many of his atomic castles in air including even his absolute uttimate of fusion power. Unfortunately he did not live to see the comm sioning of even his first atomic power plant at Tarapur he had laboured so hard to build. Though foiled by untimely death, he will still be remembered as the chief architect of our atomic energy pullar that bids far to be, in increasing measure, the mainstay of world economy, including ours, in the future.

JAGADISH CHANDRA BOSE

Born: November 30, 1858

Education: B.A., Calcutta University

D.Sc., Cambridge University, 1896

1885-1915 Professor of Physics, Calcutta University
1915 Emeritus Professor. Calcutta University

1917-37 Founder-Director, Bose Research Institut

Calcutta

Died: November 23, 1937

AWARDED: Knighthood (1916)

PUBLICATIONS: Response in the Living and Non-Living

Plant Response
The Motor Mechanism of Plants, etc.

J. C. BOSE

JAGADISH CHANDRA BOSE'S emergence in 1895 as a frontrank experimental physicst was the first real refutation of the myth which Kiphne epitomised with superb poetic aplomb in "The Ballad of East and West":

Oh, East is East, and West is West, and never the twain shall meet.

Till Earth and Sky stand presently at God's great Judgement Seat.

Like all myths, Kipling's, too, had its modicum of rationale. It was the outcome of Western scholars' exclusive preoccupation with Sanskrii literature to the neglect of our ancient science and crafts, Impressed by its religious and philosophical themes of great metaphysical subtlety and mystical insight, they were led to deny the Easterns any aptitude for the methods of exact science, even though acknowledging, and in some cases actually admiring, our flair for paralogical leaps and mystical mediations.

It therefore seemed natural to conclude that, wherever the East and West may chance to meet, this renderwous could not possibly be a science laboratory or a scientific forum like the Royal Society-Nevertheless, when some stale-arts of the Royal Society—men like Lord Raleigh and Kelvin—were confronted with Bore's sudden irruption in their midst, their instant recognition of his genius proved that in the scientific sphere at any rate, even if the antecedent in Kipling's poetics yllogism were denied, its consequent,

But there is neither East nor West, Border, nor Breed, nor Birth, When two strong men stand face to face, though they come from the ends of the corth!

could still be legitimately affirmed.

Bose's strength, or rather skill, that took him at one stroke astride Raleigh and Kelvin lay in his power to bring to bloom even in that bare desert of the Presidency College classroom of Calcutta some very exquisite vignettes of experimental research in a field that Hertz had but recently opened with his discovery of radio wave. It was a domain which at the time was such a terrer incognile that at first the great Hertz himself hesitated to tread it, despite the offer of all-out assistance by his teacher, Helmholtz, not to speak of the attraction of a prize from the Berlin Academy of Sciences.

If it has since been so thoroughly trodden that even a child now tastes the radio for granted, it is only because this midget rides on the shoulders of such giants as Hertz and Bose. They showed how to do, afbeit in a rudimentary fashion, what modern broadcasting stations and the radios in our homes are nowadays doing all the time. For modern broadcasting and all that it implies merely grew out of those embryonic experimental devices which Hertz and Bostimented to reveal the deep connection between light and electricity that Maxwell had predicted twenty years before, on purely theoretical grounds.

Matwell's basis for the predicted connection was indeed as grand a synthesis of optical and electromagnetic phenomena as Newton's laws of motion and gravitation were of the Copernicus-Kepler celestial mechanics. Believing light to be a mere transmission of energy between material bodies, he gave a simple explanation of optical behaviour within the framework of his electromagnetic theory. This theory was a logical extension of Newtonian mechanics, but with one major innovation designed to mitigate the mystery of the action-at-a-distance that Newton's gravitation law invoked.

Newton himself was quite puzzled by it, wondering why two Since the earlier older of space. Since the earlier electrodynamical theory based itself on an analogous attraction (repulsion) law between electric charges, the same mystery naturally pervaded it in equal measure. Maxwell's great leap forward consisted in his replacement of the mystical action-at-a-distance by action-at-contact through the stress and strain of a universally pervading medium called ether. He showed that such an ubiquitout cosmic ocean of ether could carry owaves of varying wave-lengths, just as the waters of the seas and oceans do.

As we know, the sea waves are a manifestation of the periodic lifting and falling of masses of water relative to the earth's centre, or, what amounts to the same thing, of sea water's alternately increasing its potential and kinetic energy in a regular phythm. In an analogous way, Maxwell envisaged "ether" waves as the outcome of periodic alternations of the intensity of electromagnetic forces with regular frequency.

Although ether has not survived the subsequent turmoil in physics that such men as Michelson, Motrey, Einstein, Planck and others let loose with their experiments and interpretations. Maxwell's main result, nevertheless, remains unchallenged to this Agath is that radiant light—the small band of colours from violet to red that we see in a natural spectrum like the rainbow—is but a small segment of an unbroken range of electromagnetic waves extending far beyond what our eyes can see, with wave-lengths both longer and shorter than those of visible light. It begans with red light at one end of the visible spectrum and continues through infra-red to radio waves thousands of metres long. A the other (violet) end, it proceeds through ultra-violet down to X-rays and gamma rays accompanying nuclear changes.

What we need to apprehend these ultra-and infra-visible rays is not some faculty of extra-sensory perception, but the better use of the senses we do have, so that we may learn to see not only with our eyes, but with all our senses, somewhat like Nietzsche's Zarathustra teaching his insteners to hear with their eyes.

This is precisely what Hertz and Bose taught us to do by means of their wondrous appearatus, in spite of Nietrsche's gibe at men like them whom he contemptuously dismissed as that "abornous race of machinits" who have nothing but rough work to perform. But it was precisely his sort of "rough" and "laborious", though inspired, work, rather than refined philosophical speculation, that yielded Bose (to wide diversity of ingenous instruments which could record radiation much shorter than Hertz's long radio waves. He thereby advanced Hertz's eatlier rather qualitative study of them to a pitch of quaritative precision that it had lacked. In particular, he showed that short electromagnetic waves behave exactly as a beam of light docs, both hours amenable to reflection and refraction. He even managed to "polarise" the electromagnetic waves in order to further lay barethetic identity with light rays.

For ordinary or natural light, too, can be made to exhibit the polarisation property, even though unlike its other all ribules, such as direction, intensity and colour, the eye cannot detect it. Thus

a plass or water surface may refuse to reflect natural light at a certain angle of incidence if it has been passed presiously through a cryst. The tournailine. Such light is said to be "polarised". This is a way of saying that the periodic oscillations of the intensity of the hidde electromagnetic forces, of which it is an outward manifestation as which in ordinary or natural light lack any fixed pattern of orier tation, are regimented by the passege of the ray through the materia of the crystal. Boxed discovered a special crystal, menalite, whice regiments electric waves in exactly the same way as tournaline does. beam of light.

By his contrivance of a wide variety of delightfully simple an wonderfully ingenious instruments designed to prove the truder lying unity of electrical and optical beams, Bose gaveus what in hi humility he called "broken glimpses of invisible light". One on sequence of this gift was the uplift in an altogether new dimensior of the communications revolution that the earlier inventions of the communications revolution that the earlier inventions of the properties of the propert

As early as 1895, he demonstrated in a public fecture in Calcutta how feetric waves could travel from his radiator in the lecture room to another 75 feet away, where his receiver managed to pick up enough energy to ring a bell and fire a pistol. To accomplist his mazingly remarkable feat with his feeble madistor, Bose anticipated the lofty antennae of modern wireless telegraphy—a circular metal plate at the top of a 20-foot pole being put in connection with the radiator, and a similar one with the receiving apparatus.

Having made the device work successfully, he did not choose to rest on his laurels. He now began to design an improved version capable of functioning at still greater distance—between the Presidency College and his own house a mile away. But, before he could actualise it, he left for England at the invitation of the Britist Association to attend its Liverpool session.

The British Association meeting at Liverpool—his first public encounter with an English scientific audience—was an immediat success. If ever Julius Caesar's famous description of his own exploit, "Venl, vidl, vicl.", could be applied to so spiritual a pheno-

menon as the winning of human minds, none would come more pat than Bose's conquest of his scientific peers at the Liverpool gathering. As his biographer, Partick Geddes, adminingly records, Bose's paper outlining his researches on electric waves so impressed Lord Kelvin that he' not only broke into the warmest praise, but limped upstairs into the ladies' gallery and shook Mrs. Bose by both hands with glowing congratulations on her husband's brilliant work".

As always, one success begets another, and the Liverpool one rough in its wake an invitation to deliver a sense of Friday Evening Discourses at the Royal Institution. The invitation raised Bose so much in the exteem of the India Office authorities that they immediately granted him there months' extra deputation leave for

the preparation and delivery of the lectures.

It was during the course of these discourses, with his free exhibition of all his appliances, that Bose revealed has characteristically ascetic trait that assonished many and even disappointed a few. The leading British technical journal, The Electric Engineer, for example, expressed surprise "that no secret was at any line made as to its this signalling device's > construction, so that it has been open to all the world to adopt it for practical and possibly money-making purposes." Some British industrialists, whose lucrative offers for the exploitation of his patent rights in the device he unhesitatingly spurned, not unnaturally regretted what they called Bose's "unpractical quiscotism".

But what seemed to them quixotism was for Bose a variation of our ancient ascetic theme in a more modern key. Accricism for Bose did not mean as of old renunciation of life, but voluntary abandomment of only the grosser maternal gains that life's endeavours might bring. He beheved that there is no renunciation unless one continues to earn what one chooses to relinquish, otherwise it is only a case of sour grapes.

It is a most point how far a scientist can nowadays keep himself alof from the more material fruits of his endeavours without mfringing the customary rules of the industrial game. Such great scientists as Kelvin, Marconi, Edison, and others have not hesitarted to guard their legal rights to the profits that are their legitimate due. But Rose, painfully aware of what appeared to him "symptoms of deterioration" even in some scientific men, early tresolved not to seelany precunary advantage from his own inventions. Thus when an American friend, angered by his refusal to agree to a joint exploitation of his improved "coherer" (an instrument for the reception of radi wases). Forthwith patented the invention in his own name in America, Bose, unwilling to use his rights, allowed the patent I lapse.

Perhaps some reasonable regard for his own interests migh have kept him tied to physics, where he would no doubt have in sented many more of those ingenious appliances like his improve coherer which had made him justly famous. For many of the inventions now in universal use in radio industry were beginning to be desised during the early decades of the 20th century, and some of them might well have been of Bose's making. But, seeking so pecuniary gain from his work, he left a field that was still replete with undiscovered nuggets, and ventured into another altogether new-biophysics, or the physics of life.

His descent into biophysics was really a revival of an old and deep-seated interest in animal life that he had shown since his infancy. As a child, he was fond of collecting all kinds of insects, trapping fish from the little road-bridge over the stream of his native village of Rarikkal in East Bengal, and capturing even water-snakes, much to the alarm of his elder sister. As a grown-up student of St. Xavier's College, Calcutta, he spent all his spare cash on animal pets, and all his spare time on their housing and care.

With such fondness for animal life, it is really a wonder that he took to physics at all in preference to zoology. The reason actually is that the Calcutta University in those days did not offer zoology. Instead, physics was its high point because of the brilliant teaching of Father Lafont, the famous Professor of Physics at St. Xavier's. But, even though Bose was captivated by Lafont's instruction and experimentation, he still decided to take to medicine as a career. So great was his passion for the livine.

Unfortunately, after a year's study of medicine in London, he was obliged to give it up because he began to be afflicted with recurrent attacks of a fever that he had contracted earlier during the course of a shooting trip in Assam. It was never really cured and was, retrospectively, suspected to be kala-azar. But, provoked by the odours of the dissecting room, it began to recur with alarming

J. C. BOSE 27

frequency. He was therefore advised to leave medicine and take to science in Cambridge. After what he described as a "perfect orgy of lectures" ranging from embryology and physiology to themistry and physics, he finally settled down to physics, manufy because of the educative and decisive influence of Lord Raleigh's teaching, which complemented his earlier indoctrination into physics by 3 from

After years of research in physics, he was destined to return to his old love, animal life, because he began to notice what appeared to him a complete parallel between the behaviour of inert matter, on the one hand, and fiving matter, on the other. A case in point is the preculiar behaviour of his electric-wave receiver or "coherer", which seemed to show signs of "fattgue" after continuous use, but could be "revived" to its original sensitivity after some "rest". These and many other instances of similitude between the responses of the living and the inert that he discovered encouraged Bose to take up the study of life.

But the phenomenon of life both in plant and animal has been such a mystery that not even the present advanced stage of all the sciences, from physics and chemistry to biology with their sophisticated techniques, is yet equal to the task of unrawelling all the knots in its tangle. At the time of Bose's switch-over some sarty years ago, however, most biologists considered the nature of life quite inequilicable without recourse to a deut ext machina of some sort—God, spirit, purpose, entelechy, nisus, or some similar mystical principle.

We may well appreciate the despair that drove them into such vitalistic mystiesim. For in those days the complexities of the self-organisation of a single cell, not to speak of even the most prumitive organism alive, were so enormous as to render any analysis of inter-cellular events all but hopeless. That is why when Bose deserted physics to study plants and animath he was believed by many embedding the physics to study plants and animath he was believed by many empty standing of the complexities of this new venture. No wonder muy of his findings in the borderland of biophysics were suspected to be of dublous value.

But, nothing daunted, he persevered during the remaining years of his life, despite lack of recognition and encouragement, in his explorations of the frontiers of physics and physiology, trying to obliterate old boundary-lines and establish new points of contact between the domains of the living and the inert. He thus sough to restore the unity of outlook in our world picture that had dis appeared from conscious intellectual life ever since Galileo an Newton expelled animism in medieval seeince.

There remained, no doubt, an unfulfilled longing to bring about the unity of animate and inanimate nature, which had been presen in the older science, but was missing in the new. The urge to satisfy this longing sustained him in the midst of all the criticism that his lophysical work provoked. He thought his inference of a new view of life pulsating in all matter, from rocks and reefs to reeds and rank, from their common susceptibility to fatigue and depression or recovery and exaltation, would help integrate the fragmented sciences.

But Bose's vision of life that was to be his Ariadnes' thread tying up the different sciences was held to be an illusion. He was blammed for having been carried away by a sort of enchantment exercised by verbal ghosts of his own conjuring. For his use of words like "fatigue", "steep," (scalation", "irritability", etc. in recyct of inert and vegetative matter was branded as being as illegitimate as the application of words like "think" to computing machines, or "lby" to aeroplanes, to establish any real similitude between human brains and computers, or between birds and aeroplanes. Arguments on the score of such usage alone are purely linguistic and cut no ier.

Bose, of course, was by no means as naive as his critics tried to make him appear. He was actually trying to imitate some of the characteristic features of animal behaviour in plants and even metals, in the hope that illuminating analogies would emerge between their respective behaviour repertoires. This is exactly what the neurophysiologists are doing today by endeasouring to understand brain function from analories with complex computing machines.

But Bose's wide sweep of application of the analogy idea was traditive. Casting aside the 'cash in hand' of physics that he had so assiduously gathered, he allowed himself to be lared by the "brate music of a dustant drum"—his dream of restoring to scenee the organismic unty that it had lost since the Middle Agre by his new vision of life, even though science had still not evolved the means to implement it to the scale of his contemplation. As a result, the vedict on his biophysical work remains even today as much in reserve as in 1945—eight years after his death, when The Encyclopaedia Britannica biographical note fairly summed it up as "so much in advance of his time that its precise evaluation was not possible to."

What, however, is beyond dispute is Bose's importation into biophysics of the quantitative precision of a physicist. He did so by introducing new experimental methods and inventing many delicate and sensitive instruments for demonstrating the effects of sleep, air, light, food, drugs, fatigue, irritation, etc., in plants, in order to prove a complete parallelism between the responses of plants and animals, and even between plants and inanimate materials like metals.

For example, he invented the crescograph, a supersensitive instrument for recording plast growth by manginiying a small movement as much as ten million-fold. He thur devised a means of overcoming the main hurdle in measuring the extremely slow growth of plants, which move two thousand times slower than the proverbild small. The difficulty arises because if the growth is allowed to accumulate over a period long enough to make it measurable without magnification the effects of external conditions such as fight, warmth, humidity, etc., which cannot be kept constant for that long, become intertwined, with no possibility of unravelling them.

The only course out of the impasse is to devise a way of magnifying the momentary effect induced by the variation of some single factor, while keeping all others constant, so that the result can be measured. Bose thus made it possible in one masterly stroke to apply to biological experiments the usual technique of physical laboratories of varying casual factors one at a time, despite the outcome being a tangled skien of several of them.

This is one instance of how Bose tried in his later years to impregnate physiology with his ideology of physics. Such cross-fertilisation of ideas of two different branches is often frutuli if the time is right in. There is a renowned parallel in the great physiologist Galvani's excrete permeation of physics with physiology, two centuries ago. He, too, it may be crealled, was misted by his vision of a new kind of "animal" electricity by observing the twitching in the muscles of "animal" electricity by observing the twitching in the muscles of

frog's legs suspended on an iron railing by copper hooks. Another countryman of his, Volta, rescued Galvani's theory from the fals start on to which his exploration of the laws of the inanimate nature with the study of the animate had led him. Bose's Volta, who might have compensated the physical slant of his physiology, alas, has yet to appear.

RAJ CHANDRA BOSE

Born: June 19, 1901 Education: M.Sc., Calcutta University

D.Litt., Calcutta University

1930-34 Lecturer in Mathematics, Ashutosh College, Calcutta

Statistician, Indian Statistical Institute, Calcutta

1934-40

1942-49 Statistician, and later, Head of the Department of Statistics, Calcutta University

Visiting Professor, Columbia University, U.S.A. 1947

1949-Professor, North Carolina University, U.S.A.

R. C. BOSE

NE of the more hopeful signs of our times in these distressing O'days of nuclear news is that R. C. Bose should have recently blazed a headline trail in the New York Press as Euler's (pronounced oiler) spoiler merely because he proved a famous conjecture of Euler wrone.

Euler, an 18th century mathematician of genius, had himself spoilt the peace of many in his own and later days. He confounded. for instance, the celebrated atheist philosopher Diderot with an algbraic "proof" of the existence of God at Catherine's court. The story may be apocryphal, but there is nothing apocryphal about his having confounded for nearly two centuries a long succession of mathematicians who, believing him, tried in vain to prove a guest he made about a new species of magic squares.

A magic square, as is well known, is any square array of numbers, all of whose rows and columns add up alike, as for example is the case with Fig. I.

In the new kind of magic squares with which Euler amused himself, he substituted for numbers letters of an alphabet which may be Latin, Greek or any other. Instead of the restriction that the sum of the rows and of the columns should be

Figure 1

the same, he required that no letter should repeat itself in a colu or row. When such is the case, the resultant arrangement of letter. called a Latin square, even though the letters used may be Greek Devanagari.

Suppose we start with three letters of the alphabet, a, b, c. is easy to see that, in all, 19,683 different squares of three rows a columns can be constructed with them. For in all there are nine ce in such a 3 x 3 chessboard, and each cell can be occupied by any o

three letters, a, b, c. There are thus 3×3×3×...nine times 19,683 distinct ways of filling the cells of the board. Each of ways yields an arrangement different from every other, as is n in Fies, II and III.

lot all of are Latin in ense defined -viz.. that etter repeats in either a r a column.

while the and

×.

α	Ъ	ъ		
ь	a	e		
c	c	а		

Figure 11

Figure III

square II) is Latin, the right-hand one (Fig. 111) wherein the letter b ts itself in the first row, is not. It happens that only twelve out total nineteen thousand-odd are Latin, as may be proved a little argument or with much labour by actually writing out e arrangements and scoring those with repeat letters in a row or an or both. Two of the twelve Latin squares happen to be in that being, so to speak, of the same caste, they can be ied to generate an offspring which is more Latin than any of trents. Thus from the following two marriageable or, to use the ematician's lingo, orthogonal Latin squares viz. Figs. IV and V in produce another by superposing the letters of one on the t, as in Fig. VI.

]	Ъ	c	4	B	Y	ad	$\mathfrak{b}_{oldsymbol{eta}}$	сY
	c	a	Y	1	B	bγ	cL	a/s
_	a	ъ	B	Y	ょ	cß	αY	bL

Figure IV Figure V Figure VI

We observe that in the superposed square (Fig. VI) each Latin r combines once, and only once, with each Greek letter That is,

..--

a pair hise a ∞ of by does not recur in the square. This is a the case. In fact, if you take any other pair of 3x3 Latin of the twelve that are theoretically possible, the combine obtained by their superposition will contain at least one pair. That is why when two Latin squares can be unite a way that no pair of letters occurs more than once, the sufficiently remarkable to warrant the christening of the with a new name. It is called a Graceo-Latin square.

Euler was led to delve into the theory of Latin and Graz squares because someone in Catherine's court confionted him problem of arranging 6×6=36 officers of six different ranks a six different regiments in a square, so that each row and would have one and only one officer of each rank and each n

Euler began by considering the simpler problem of as $3\times 3=9$ officers of three different ranks and three different regime 19 in the Gracco-Latin arrange have already cited. For if a,b,c denote the three ranks and the three regiments, the desired arrangement is the one in none of the nine pairs, like a c_c , $c\beta$, $b\beta$, etc., is repeated saw, there is only one such arrangement—wir., the Gracc square of three rows and columns shown in Fig. VI.

By considering Gracco-Latin squares of any number (n): and columns, Euler proved that the desired pattern of ran regiments in square formation is always possible if n is either doubly even, that is, an even number exactly divisible by for 4, 8, 12, etc. But he ran into serious difficulties when n hal to be singly even, that is, an even number not divisible by 4, of the Czarist courtier's problem. Try as he might, he coumake the problem come out right. There was no way of ma Gracco-Latin source of 6 rows and 6 columns.

After extensive trials, he ventured to guess: "I do not be to conclude that it is impossible to produce any complete Gl Latin square of bx6=36 cells, and the same impossibility of to the cases of squares of 10,14...and in general to all single mober of rows and columns." It is this famous conjectur Bose and his collaborators, Shrikhande and Parker, have recoved wrons.

To appreciate the significance of their contribution, it is nece

to recall that, before Bose thought of applying the seminal ideas of his earlier work on "group theory", Galpois fields, "balanced incomplete design" and "finite geometrice" to Euler's problem, all that could be done with it was to write each and every one of the possible square arrangements to see whether or not it compiled with the desired specification. Even in the simplest case of m=2, such a procedure entails an examination of at least 24 squares before one can conclude that no 2×2 Graeco-Latin square is possible. For the next case, n=3 the number of squares to be enumerated rises to 36.2882.

With increasing n, the number of squares to be examined grows that hit was not lill 1501 that a persevering French mathematician, G. Tary, completed the task of exhaustively enumerating all the possible squares of side 6 to prove that Euler's guess for this case at least was indeed true. But, when it came to an examination of squares of side 10, 14, 18, etc., the labour involved in this type of proof by enumeration soared far beyond the range of not merely paper-and-peculi trial, but also of even present-dwd gingital computers,

For example, a recent estimate by Piomkin showed that not even the present estimated age of the universes—a few billion years—would suffice for our fastest electronic computers to run through all possible arrangements of the tymbols of 10×10 Latin equates. Clearly, therefore, no headway could be made towards a solution of the problem in this manner.

But what, one may enquire, lured Bose into Euler's cold recreational exercise of some two centuries ago when he is thrown to like his statistics as plping hot as Lenin his politics or Loyala his religion? The answer is that the topic of Latin and Gracco-Latin squares was warmed into incandescence during the "twentiet, when Bose was still at college, by the celebrated statistician-geneticist, Sir Ronald Fisher. Sir Ronald' showed how the theory of Latin and Gracco-Latin squares could be utilised to resolve one very serious difficulty inherent in experiments pertaining to agriculture, biology, medicine, sociology and the ailled sciences.

The difficulty arises because their outcome is a tangle of interactions of several possible factors of which we seldom have any prior knowledge, so that the usual technique of physical laboratories of varying them one at a time cannot be applied. Consider, for instance, the case of an experiment designed to compare the relative jeld of three different kinds of wheat steeds. If we sow these three raise tree-let us call them a,b,c- in three adjacent plots of equal size, the yield may well be influenced by differences in fertility of the adjacen plots. One way of overcoming the difficulty is to subdivide thee tire experimental area into 3×3 compact plots, formed into 3 reason 3 columns, instead of only three plots in a row.

As we saw, we could awign three varieties, a. b. c, to the cells of such a 3 x 3 square in some nineteen thousand-odd different ways. But of these only 12 Latin square arrangements ensure equal representation to all the three varieties in every row and colorns. Some one of these 12 ways of sowing the varieties selected at random last therefore, to be adopted in order to secure equal appearance of all the varieties in all the rows and colorns, and thus to eliminate any likely bias owing to fertility gradients along rows or colorns or both.

If, on the other hand, we have to rection with yet another conplication, as is the case when we wish to test simultaneously the yield of these three types of seeds in conjunction with the application of three different kinds of fertilisers, say, cc, B, T, we may assign the nine possible pairs of combinations of varieties and fertilisers to the nine cells of our 3×3 squares, according to the Gracco-Lain arrangement. This artiface ensures that each of the nine combinations in question is equally represented, since each pair, like ex, by ary, tele, appears once, and only once. Thus both Latin and Gracco-Latin squares provide excellent designs for rationally planning sgriedultral exercisions to Gertain types.

But varieties of seeds and fertilisers are by no means the only factors that the design of agricultural experiments has to take in its stride. The quantitative levels at which the various fertilisers may be applied is yet another. Even when each fertiliser is tried at only two levels, the number of possible combinations to be tested increases enormously.

Suppose, for example, we wish to test the efficacy of a manufal treatment at only two levels—a large dose or a small one. Clearly, we should need two plots of land to make even a single trial of the experiment. With two alternative manufal treatments, each again applicable at two levels, we should require 2X2=# plots, with

five different manures, the number of test plots required swells to $2\times2\times2\times2\times2=2^5$ = 32.

But the number of possible combinations increases much more ranged when we consider a large number of competing treatments acting at more than two levels. Thus with four different treatments at three different levels of application—any, a large, medium or small dose—there have to be $3\times3\times3\times3=3$ to all yields, even if each comparison is tried only once. Since physical considerations alone, if not limitation of resources, may make the layout of an exprining on such a scale impossible, it is necessary to devise ways of bypassing the inflationary spiral that even a limited diversity of treatments, each applicable at several levels, can let loose.

Of the several ways invented by statisticians to curb the inflation of combinatorial possibilities, the most important are basically of three kinds. Bose has employed all the smoir faire of a gifted mathematician of great power to develop all the three. First, in collaration with Kishen, he showed how some of the most sophisticated ideas of modern algebra and projective geometry could be utilised to evolve what statisticians call "confounded" designs. Three designs are not intended to confound their users, as the name might seem to suggest. They are essentially technical devices prescribing procedures whereby the size or layout of an agricultural experiment may be significantly reduced by defiberately "confounding" (to use the word in its original etymological meaning of "mixing up") some of the factors at play that might otherwise have been kept apart if we had the resources to afford the expregation.

Such "confounding" no doubt does lead to some loss of information with regard to comparisons between the "confounded" factors. But the loss is not material if the experimenter knows in advance, on technical or other grounds, that the contrasts proposed to be sacrificed are either quantitatively negligible, or are such that their knowledge is of no immediate use even if he had it.

In cases where "confounding" is out of bounds because the double, triple and higher-order interactions between the factors at work, do not eval, the experimenter has to resort to the second artifice of what are called bolouxed block designs. Such, for instance, is the case with testing a number of different varieties of seeds. The sole point of the experiment here lies in a comparison of the relative

yields of varieties sown singly, and not in pairs or triplets, as may be the case when testing different manures.

Suppose we have to test any number of different varieties of seeds. At the very least, we have to sow them in as many plots to allow each variety a single representation. In the event, all we car do is to derive mutual differences between the yields of any two varieties. But we can never know how far these differences are innate, and how far a matter of individual soil differences from plot to plot. If we are to isolate the intrinsic differences from those of other factors like fertility variations, we must allow the factors which give rise to them a channe to vary. We do so by replicating the experiment—that is, by repeating it in the same form, but with a different permutation of varieties in the plots. The replications, however, have to be balanced to avoid undue multiplication of trials.

The idea underlying balanced replications is twofold. In the blocks, each with the same number of plots. Secondly, we so assign the varieties in each replication to the individual plots of the block as to secure every possible contrast between pairs of varieties and equal representation in the blocks with minimal replications.

Thus, to test, say, four varieties of seeds, a, b, c, d, we may sow them in two blocks of two plots each, as in Fig. VII.

Block I a b
Block II c d

In this trial, variety a appears in conjunction with variety b in Fig. VII Block I, and variety e in conjunction with variety d in Block II, But the other two possible contrasts involving a, viz., a versus c, and a versus d, cannot occur in the same block if we confine the experiment to this single replication. To give them a place in the experiment set when the production of the product

versa d, cannot occur in the same block if we confine the experiment to this single replication. To give them a place in the experimental setup, we have to undertake at least two additional replactions with a different permutation of varieties in each block, as in Figs. VIII and IN. Such a set of triple replications, each tried is two blocks of two plots is balanced in that every variety, such as a retained equally frequently with the remaining three in the same block of one or other of the three replications.

Figure IX

In this instance, each replication consists of the same number (2) of blocks. It is, however, not always possible to secure such a complete balance as in this rather trivial instance merely contrived to illustrate the idea. The number of varieties to be tested is usually not so accommodating as to allow the same number of blocks in every replication. Thus, with seven varieties under test in blocks of three plots each, we have to be content with aree replications, each consisting of two blocks, and the fourth replication has perfore to consist of a single block, because 7 is not divisible by 3. Such a design, too, is balanced in the sense that it provides equal toportunity to all pairs of contexts in the same block, but is incomplete, since one replication has to make do with lesser blocks than the other three.

Finally, when the number of factors at play is so large as to preclude even one complete trial or replication, as, for instance, might well be the case in an experiment with ten factors each acting at two levels requiring as many as 2°°=1,024 plots—statisticians resort to partial or fractional replication. That is to say, instead of allowing each possible combination of factors a place in the experimental set-up, some are omitted altogether.

Finney was the first to develop the theory of such fractionally replicated designs to provide a rational basis for the pick-and-choose inevitable in experiments threatened with a plethora of casual factors. Bose showed that the self-same ideas of modern algebra and procietive geometry he had employed earlier are the umbilical cord linking Finney's theory of partial replication and his own of balanced incomplete designs.

One consequence of the discovery of this genetic link between the two was a revolutionary innovation in communication theory. It has since been used to effect a major improvement in sending messages on what are known in the U.S.A. as "toll-grade" telephone circuit. All communication systems are a refinement of the telegraph-signaller's practice invented by Marconi whereby he translated every message before its transmission into a sequence of two symbols—dash and a dot—according to a predetermined code, But, owing to the presence of what communication engineers call "noise", a particular symbol which is transmitted, say, as a dash may sometimes be received as a dot, or vice versa. When this happens, the message is said to be in error.

With ordinary transmission rates of 1,500 to 2,000 dashes/dots a second over toll-grade lines, an error normally occurs about one a minute, or once in every transmission of about 100,000 dashes/dots. Under the new system that Bose devised by recourse to the abstract ideas of group theory and projective geometry which he had applied to "balanced", "confounded" and "partially replicated" designs, an error would occur as rarely as once every 300 years. This is whis design has been avidly seized upon by the Lincoln Laboratory at Massachusetts Institute of Technology in Cambridge, Massachusetts

Bose's unification of such a wide diversity of fields stems from the immense power of the geometric "point", which, starting from its lowly textbook beginnings as a disembodied dot having a "position but no magnitude", has grown into a giunt, a vertiable Alts, that now supports the entire mathematical world. It owes this gargantuan growth to the fact that a "point" in some imaginary space of a mathematician's imagination can be made to repressat almost any measurable thing, from the dynamical state of a system of moving particles to that of Fort's business administratic

By representing the former as a point in a multi-dimensional space of a mathematician's making, Hamilton, Jacobi, Gibbs and others virtually turned dynamics into geometry of hyperspects. Fisher followed in their wake by during to represent samples selected at random from a given population as points in such abstract spaces of many dimensions.

When Mshalanobis learnt of Fisher's great advance in sampling theory by the geometric approach, he, the great consissur of statistical taient that he has always been, drove one evening in 1932 to Bose's doorstep to offer him a part-time research appointment in his newly created Statistical Institute in order to apply higher

geometry to solve many sampling problems that still availed solution despite Fisher's amazing breakthrough. Mahalanobis made the offer because he had also found out that Bose was the only researcher in the country who could bend Fisher's bow. For Bose had already made his mark in multi-dimensional geometry with discovery of a remarkable theorem that has now passed into geometry tetthooks as the Bose-Blaschke theorem. He has since overfulfilled Mahalanobis's anticipations, as he has reduced the whole gamet of statistical problems from balanced designs to error-correcting codes to a geometrical problem of autonishing sweep, versatility and power.

Bose calls is the "packing" problem because all the problems which it substantes amount to packing or finding the maximum number of distinct points in a finite abstract space, so that no pre-assigned number, asy, no 6 them are "dependent". For example if n is three, no three of them should be on the same straight line, as otherwise only two of them would determine the line on which the third also less, and they would not be independent of one another. If n is four, no four of them should lie on a plane, to ensure their sedependence, and so on.

Despite the ultimate redemption of his early promise, Bose hesistated to accept Mahalanobis's offer because, quite innocent of statistics at the time, he feared getting into a field where he might be out of his depth. The hesitation speaks volumes for his integrity, as he could not be presunded to take a job unless he was that be could handle it successfully, even though at the time he was badly in need of any extra remuneration that could come his way. For he had still not emerged from the graelling struggle for live-hhood that he had to wage since his early death of his parents, Bose just about managed to acquire college education because of the wholstahips that he won by dust of his brilliance.

It is an ill wind that blows no one any good; but Bose's was kes malignant because it was more exacting. Despite its perioduc threats to blow out his succent academic eater, it did oblige him to acquire quite a considerable. Anouledge of almost all branches of mathematics. He had to study applied mathematics for his MA. examination, as the Delhi University that had granted him a scholar-

ship had at the time no arrangement for teaching pure mathematics for which he had a great passion ever since his school days.

It was to satisfy this urge to learn pure mathematics that is migrated from Delhi to Calcutta almost penniless, and was save from starvation in those dismal days of depression, the late 'twenties only by the generosity of some benefactors till he was able to resum timself by securing a batch of M.A. students to coach. In the result, he had to master all branches of the subject to be able to teach every possible choice that his wards liked to offer. He had once even to dabble in statistics to be able to coach a student.

It was the smattering of statistics that he had thus imbibed which persuaded Bose to accept Mahalanobis's offer. Since that fateful day of his decision up to the year 1949, when he migrated to North Carolina, he remained the acknowledged group leader of a powerful research school of the Statistical Institute whose work has justly won international acclaim.

After his departure abroad, he has pursued statistical research with even greater vigour. His later work on balanced incomplete designs, coding, "packing" and Euler's problems, particularly the latter, has put him in one giant stride alongside the great mathematicians of today.

If despite his loyalty to our cultural heritage he was persuaded to break loose from his old moorings, it was by the greater professional freedom, opportunity and even outright indulgance that American universities more than any other in the world provide. That Bose should have chosen to depart so soon after our own post-Independence scientific boom got under way is indeed a national loss. But it may yet be redeemed, in part at any rate, if the sapliars of combinatorial mathematics that he has now brought from North Carolina for transplantation in our midst, in his old Alma Matte, the Statistical Institute, are nurtured to blossom and bloom by his erstwhile pupils and colleaues.

100

SATYENDRA NATH BOSE

Born : January 1, 1894

Education: M.Sc., Calcutta University, 1915 1916-21 Lecturer, Calcutta University 1921-24 Reader, Dacca University

1924-25 Co-worker of Madame Curie

1925-26 Co-worker of Albert Einstein 1926-45 Professor, Dacca University

1945-56 Khaira Professor, Calcutta University 1957-58 Member of Parliament, Raiva Sabha

1956-58

Vice-Chancellor, Vishwabharati University, Calcutta 1958 National Professor

President of the Indian Science Congress (1944) President, National Institute of Sciences of India

FELLOW OF THE ROYAL SOCIETY (1958)

AWARDED: Meghnad Saha Memorial Gold Medal (National Institute of Sciences) PADMA VIBHUSHAN (1954)

Hon. D.Sc. from several universities PUBLICATIONS : Light Quanta Statistics

Affine Connection Co-efficients, etc.

ship had at the time no arrangement for teaching pure mathematics for which he had a creat passion ever since his school days.

It was to satisfy this urge to learn pure mathematics that he migrated from Delhi to Calcutta almost penniless, and was sared from starvation in those dismal days of depression, the late 'twenties, only by the generosity of some benefactors till he was able to resue himself by securing a batch of M.A. students to coach. In the result, he had to master all branches of the subject to be able to teach every possible choice that his wards liked to offer. He had once even to dabble in statistics to be able to coach, a student.

It was the smattering of statistics that he had thus imbibed which personaled Bose to accept Mahalanobis's offer. Since that fatfel day of his decision up to the year 1949, when he migrate to North Carolina, he remained the acknowledged group leader of a powerful research school of the Statistical Institute whose work has justly won international acclaim.

After his departure abroad, he has pursued statistical research veve greater vigour. His later work on balanced incomplete designs, coding, "packing" and Euler's problems, particularly the latter, has put him in one giant stride alongside the great mathematicians of today.

If despite his loyally to our cultural heritage he was persuaded to break loose from his old moorings, it was by the greater professional freedom, opportunity and even outright indulgence that American universities more than any other in the world provide. That Bose should have choose to depart so soon after our own post-Independence scientific boom got under way is indeed a national loss. But it may yet be redeemed, in part at any rate, if the spidings of combinatorial mathematics that he has now brought from North Carolina for transplantation in our midst, in his old Alma Mater, the Statistical Institute, are autured to blossom and bloom by his entwhile propils and colleagues.

SATYENDRA NATH BOSE

Born: January 1, 1894

Education: M.Sc., Calcutta University, 1915

1916-21 Lecturer, Calcutta University 1921-24 Reader, Dacca University

1924-25 Co-worker of Madame Curie

1925-26 Co-worker of Albert Einstein 1926-45 Professor, Dacca University

1945-56 Khaira Professor, Calcutta University 1952-58 Member of Parliament, Raiva Sabha

1956-58 Vice-Chancellor, Vishwabharati University, Calcutta

1958 National Professor

President of the Indian Science Congress (1944)
President, National Institute of Sciences of India

FELLOW OF THE ROYAL SOCIETY (1958)

AWARDID: Meghnad Saha Memorial Gold Medal

(National Institute of Sciences)
PADMA VIBHUSHAN (1954)

Hon. D.Sc. from several universities

PUBLICATIONS: Light Quanta Statistics

Affine Connection Co-efficients, etc.

S. N. BOSE

N. BOSE is the only physicist whose name is indissoleby
linked with Einstein in all the textbooks of physics. This is
because he hit on a brilliant artifice whose value Einstein immediately
recognised and proclaimed to the scientific world with all the pressign
of his great name.

In Tetrospect, it is now clear that even Einstein could not force the full power and applicational range of Boxe's idea. For Boxe's work, along with its subsequent development by Fermi, provides the basis for dividing all the elementary particles of the newer nuclear physics into two neat categories—the boxons after Boxe and the fermions after Fermi. What manner of work is this that was destined to have so momentous a consequence?

It is simply an amendment whereby the earlier statistical techniques devised by Maxwell and Boltzmann to study the behaviour of crowds of molecules could also be applied to those of photons and electrons. (A photon, by the way, is a light beam when it behaves as a fusiliade of minute bullets rather than as a miniature radio wave.) These statistical techniques had to be invented because, when we consider an ensemble of myriads of molecules of, say, a gas in a chamber, it is impossible to handle the welter of, say, a gas in a chamber, it is impossible to handle the welter of calculations of their individual motions in any other way. Maxwell and Boltzmann, therefore, endeavoured to grasp the motion of the entire assembly of molecules at one blow by a statistical study of the whole group—as, for instance, by computing its arrange energy and identifying it with the measure of gaseous temperature.

The method did succeed in yielding laws of gaseous behaviour with showed themselves as statistical regularities underlying the hurly-burly of large throngs of molecules in random monitor exterly as an actuarial approach precipitates the randomness of individual deaths into the quasi-certainty of a martality table. Naturally, therefore, it was tried on aggregates of still more "quitante" particles—such as photous and electrons—which were beginning to

be freshly discovered during the first decade of the 20th century, but the first laws a fullure as it led to results contrary to experimental observation. Bose detected the flaw responsible for the discrepancy and showed that the Maxwell-Boltzmann method had to be amended in an important way to derive the correct radiation law now known as the "Bose-Einctein" statistics. The essence of Bose's amendment is that no distinction can be made between the individual photons, as Maxwell and Boltzmann had done in the case of gas molecules.

The point is best explained in terms of an analogy. Suppose we have three guests, A, B, and C, and two rooms in which to accommodate them. The total number of dittiner ways in which they could accommodate themselves can easily be seen to be eight. For each nee of the three guests could be in one or other of the two tooms, Room I or Room II. To each guest there thus correspond two distinet ways of accommodation. But, as no anti-crowding law forbids two or more guests from occupying the same room, each of these two ways for three guests can be combined independently to yield in all 2×2×2=8 different ways of accommodating the three guests, as enumerated in the table below:

Room I Nil A B C AB BC CA ABC Room II ABC BC CA AB C A B Nil

Now, if the accommodation process occurred randomly, it would be natural to assume that each of these eight distinct ways was equally probable a priori. Consequently, the probability of Rose and the process of the probability of Rose and the probability of the three guests A, B, and C happened like identical twins to be undistinguishable, the three distinct ways in which Rosen I is occupied by one guest feither A or B or Cl coalesce into one. It is easy to see from the table above that the number of distinct ways of occupation under the new assumption of indistinguishability of the guests reduces to only four, instead of eight, as shown in the table below:

Room I Nil A AA AAA Room II AAA AA A Nil

If the accommodation process occurred randomly as before, the probability of Room I being occupied by one guest would now

be freshly discovered during the first decade of the 20th century, Bott the trist was a failure as it led to results contrary to experimental observation. Bove detected the flaw responsible for the discrepancy and showed that the Maxwell-Boltzmann method had to be amended in an important way to derive the correct radiation law now known as the "Bose-Einstein" statistics. The essence of Bose's amendment is that no distinction can be made between the indirect photons, as Maxwell and Boltzmann had done in the case of gas molecules.

The point is best explained in terms of an analogy. Suppose we have three guests, A, B, and C, and two rooms in which to accommodate them. The total number of distinct ways in which they could accommodate themselves can easily be seen to be eight. For each one of the three guests could be in one or other of the two considerables of the property of the control of the two forms of the three guests could be in one on other of the two distinct ways of accommodation. But, as no anti-crowding law for the property of the same room, each of these two ways for three puests can be combined independently to yield in all 2x2x2=8 different ways of accommodating the three guests, as cummerated in the table below:

Room I Nil A B C AB BC CA ABC Room II ABC BC CA AB C A B Nil

Now, if the accommodation process occurred randomly, it would be natural to assume that each of these eight distinct ways would be natural to assume that each of these eight distinct ways was equally probable a priori. Consequently, the probability of Room I being occupied by one guest (A or B or C) would be thritted as great as it is remaining vacant. But, if the three guests A, B, and C happened like identical twins to be indistinguishable, the three distinct ways in which Room I is occupied by one guest (either A or C) to be a summarious of the summarious of the summarion of the summarion under the new saturaption of indistinguishability of the guests reduces to only four, instead of cinht, as shown in the table below:

Room I Nil A AA AAA Room II AAA AA A Nil

If the accommodation process occurred randomly as before, the probability of Room I being occupied by one guest would now be the same as that of its occupation by none, instead of being thrice as much under the earlier assumption of their distinguishability.

Now the Maxwell-Boltzmann statistical technique is escatially a calculation of the number of ways of assigning the various gas molecules (guests) to different cells (rooms) in space, even though this is no ordinary space, but an abstract one of a mathematician's imagination. When allowance is made for the basic indistinguishability of photons and electrons in contradistinction to the distinguishability of the gas molecules, the result is the new statistics of Bose and Einstein which, when applied to light photons, vields the correct radiation law.

Further, if the guests had to observe in addition an anti-crowding regulation-such as Pauli's principle prescribes for particles like electrons (though not for photons)—the result is what is called Fermi-Dirac statistics. There are thus only two statistical patterns that assemblies of elementary particles seem to follow, which is the basis for their present-day division into two categories—the lorous and the fermions.

If Bose preceded Einstein in his discovery of the "new statistics", he has, in subsequent years, followed him in his researches on what is known as the unified field theory. This theory is the culmination of one of the two grand themes prominent in the history of science since antiquity. There are at bottom only two because matter, according to an ancient well-understood distinction, can exist in two forms-the continuous, like water in a stream, or the discrete, like

the pebbles on its banks.

Owing to the polar antithesis of these two forms, it is assural that science should attempt to explain visual discrete objects in terms of an invisible continuum, or, conversely, the visible continua in terms of indivisible discrete objects. Xenophanes's "All is ons", Aristotle's all-pervasive "substance", cartesian plenum, 17th century ether are cases in point of the former tendency, while Democrital's atoms in the void and present-day nuclear particles illustrate the latter. Unified field theory follows the former tradition in that it seeks to explain all material activity against a single background -that of a continuous "unifed field".

Surprising as it may seem, the field theory took as its springboard the theory of the discrete master, or rather of the gravita5, N. BOSE 47

tional forces between them already known to Kepler and others in the 16th century. Newton discovered their mathematical form, the famous inverse-square law of attraction, which succeeded in explaining the motion of the planets in the sky as well as that of apples in orchards. But this success did nothing to rid the emberrassment felt at the apparent necessity of admitting a mystical actionatdistance which somehow propagated itself instantaneously across the void of space. Newton refused to commit himself as to its nature with his famous dictum: "I frame no hypotheses" ("hypotheses non fingo").

Consequently, duting the 19th century, a movement tentatively developing the idea that properties of continuous space may somehow be determined by its material content of stars, and galaxies began to grow. Gauss, Riemann and others devised the basic mathematical tools which enabled Einstein to make the next major advance since Newton whereby the local properties of both syace and time were shown to be the direct consequence of the evitence of nearby matter, which properties in turn determined the motions of that matter. He thus showed that the law of universal gravitation, though in a slightly modified form, was a consequence of the very structure of space in which the gravitating masses were embedded.

I cannot go iato the details of this extremely complex explanation here. Suffice it to say that it is a sophistaction of the idea that it is impossible to distinguish between a gravitational field and acceleration. For, thanks to the progress of vaiston and section exceleration for, the propers of vaiston and section exceleration. For, thanks to the progress of vaiston end section, this impossibility nowadays is nothing very strange. It shows itself daily in such reports as "the pilot weight half a ton as pulls his plane out of a power dive", or "the commonant remains in a tatte of weightlessness for a while as the descends freely to earth"

Einstein's sophistication of this equivalence of gravity and acceleration was accepted despite the complicated mathematical garb it wore because it predicted three crucial astrophysical phenomena that were later experimentally verified. This success squrred him and his followers on to take the next step forward by trying to include the electromagnetic phenomena also within the ambit of its successive careful as he had absorbed gravitational field into "spacetime" in his general theory of relativity. The programme seemed reasonable as Coulomb's law of electrostatic attraction between discrete electric charges followed the same pattern as that of Newton's gravitation law of discrete masses.

Accordingly, from 1916, Einstein remained largely busy settinup an all-inclusive explanation of energy in all scientific phenomenincluding those of electric, magnetic and gravitational fields. Ut
fortunately, the final outcome, as published in 1933 just before hi
death, did not find support among the leading physicists becaus
the new unified field theory could not specify any crucial experimental tests of its validity, such as the three that proved the earlie
formulation incorporating gravitation alone. On the other hand
force—the so-called "exchange" force between electrons and photons, on the one hand, and atomic nuclei, on the other. It is from
this force that all other forces, whether gravitational, electromagnetic or chemical, seem to arise. The pendulum has thus now swung
rapidly from the "field" nole to the "discrete".

That Bose should have taken to the field theory long after this swing may seem surprising. But, truth to tell, he was attracted quite early by the "logical" simplicity and "aesthetic" legance of its underlying idea, as well as by the opportunity the field theory offers a mathematician of great power to show his mettle. For Bose, who is really a first-class mathematician by initial training and for whom physics is often a peg to hang his mathematical mantle on, can fall an easy prey to the seductions of difficult mathematics for its own dear sake. However, he forbore to publish his early work on field theory because it did not win Einstein's approval.

Not that Bose lacked the courage to go it alone. He had published before this his subsequent paper on "statisties" in the teeth of Einstein's objections even though the famous physicist had bailed his first as a masterly advance. The field theory, on the other hand, was the great master's own preserve where Bose, for some obscure reason, felt like an unwanted interloper. He, therefore, left it severely alone for a long time.

Years later, when Einstein had exhausted all his ingenuity in trying to solve the field equations, Bose returned to the subject, solved the equations of connection, the first part of field theory,

Dr. Bhabha explains to H. R. H. the Duke of Edinburgh the working of a reactor at Trombay

Sir J C. Bose

Sir S. C. Dose in his taborator

Crescograph, an invention of Sir J. C. Bose

Dr. R. C. Bose

Dr S. N. Bose

Dr S. Chandrasekhar

Er 1 B S HALFE

Dr. D S Kothart

Prof. P. C Mahalanohis

Prof. Mahalanobis at home

scientific prose. But it is indeed remarkable that he should equally at home in German and French, and that, too, during early student days.

It was, in fact, this early facility with French that prompt him to approach Madame Cutre in 1926 for permission to we in her laboratory in Paris. Although unknown to Bose she reconsisted his genius because of his classical work on "statistics", second not believe that he knew French so well. Unhappy with the experience of another Indian innocent of French who had be admitted earlier in her laboratory, the grand old garrulous laboratory that poor Bose's intended reply, "Mais ce Madame, je comprends francais asser bien" ("Oh yes, Madam, know French pertty well") froze on the tip of his tomest.

Perhaps young Bose allowed the freeze to occur because of the actuse it offered him to sample the gay Parisian life for a few months unencumbered by any specific obligations save that of free-lact research. However, when he did return to Madame Curie, he amazed her with his devterity in making certain very difficult measurements of what is known as piezoelectric effect—a property exhibited by suitably shaped pieces of quartz under the influence of an abternatus extremt field.

This effect, by the way, has manifold industrial user, such as regulation of clocks to a putch of precision whereby they loss or gain barely a second in a year. I specially mention it here as, outside the narrow circle of his own entwhile research wholar whose experimental work in X-rays and expressing the has directed and often directly inspired, Bose's skill as an experimentalist is not so well known as are his talents as a theoretical physicist. Nevertheless, thus is so great that, but for failing gowight, becould still, in his ray's seventies, run a fair-sured physical laboratory single-handed, except for a mechanic or 1800—as he actually did Dauvillier's for a while, over forty verail zero.

Nor it this experimental ingenity of Bose confined to physical alone. He could be equally at home in a chemical liberatory. In fast, in one of his invipred moments, he had on an elegant chemical process of timpering with the internal structure of a sulphonamide molecule, just to the precise extent of training it into a useful pharmaceutical compound—now used widely as eye-drops and marketed by a well-known Calcutta firm.

If Bose could take in his stride all this manifold activity, it is because he is a close pack of perspicuity and intellectual power. Indeed, he could have advanced mathematical physics much farther than he actually did -- although (heaven knows!) he did advance it for enough to win him a solid international reputation. If this was not greater, the reason is that, while the intellectual power in Bose's pack is versatile, the perspicuity is almost all discerning. Both these gifts have had for him the handscap of a mild Midas touch, Because his versatility enabled him to pick on, say, soil science and biology as readily as on mathematics and physics, he has, over the years, listened to the sirens of his sidelines without first tying himself firmly to the bark of mathematical physics. Because of his incisive discernment that saw through the vanity of life and its ephemeral transitoriness, he early lacked the spur of even scientific ambition that has lashed many inflamed cenii into producies of concentrated effort in some one particular direction. As a result, Bose's motto through life has been that of Jaques in As You Like It :

> Who doth ambition shun And loves to live i' the sun, Seeking the food he eats, And pleas'd with what he gets.

But, again like Jaques, he has all along claimed the right to

.. as large a charter as the wind,

To blow on whom I please.

I have already noted some of the several directions in which it has pleased Boxe's wild west wind to blow. But one such direction in which it has blown more consistently than any other and which deserves pride of place is science popularisation. This is because in a newly independent but industrially under-developed country determined to take off at once in full industrial flight, there is every danger of leadership in scientific research Elling into the hands of what C. P. Snow has called "slide-rule" scientists. Boxe believes that there is no real safeguard against uch a contingency saw wide-spread popularisation of science on a scale such as the Russians have managed to achieve already. This is why he founded a Berarli managed to achieve already. This is why he founded a Berarli

, -

maceutical compound—now used widely as eye-drops and marketed by a well-known Calcutta firm.

If Bose could take in his stride all this manifold activity, it is because he is a close pack of perspicuity and intellectual power. Indeed, he could have advanced mathematical physics much farther than he actually did -although (heaven knows!) he did advance it far enough to win him a solid international reputation. If this was not greater, the reason is that, while the intellectual power in Bose's pack is versatile, the perspiculty is almost all discerning. Both these eifts have had for him the handicap of a mild. Midas touch, Because his sersatility enabled him to pick on, say, soil science and biology as readily as on mathematics and physics, he has, over the years, listened to the sirens of his sidelines without first tying himself firmly to the bark of mathematical physics. Because of his incisive discernment that saw through the vanity of life and its ephemeral transitoriness, he early lacked the spur of even scientific ambition that has lashed many inflamed genii into prodicies of concentrated effort in some one particular direction. As a result, Bose's motto through life has been that of Jaques in As You Like It :

Who doth ambition shun
And loves to live I' the sun,
Seeking the food he eats,
And pleas'd with what he yets.

But, again like Jaques, he has all along claimed the right to

.. as large a charter as the wind,

I have already noted some of the several directions in which it has placed flow's wild west wind to blow. But one such direction in which it has blown more consistently than any other and which descrives pride of place is seence popularisation. This is because in a newly independent but industrially under-developed country determined to take off at once in full industrial flight, there is every danger of leadership in secentific research falling into the hands of what C. P. Snow has called "shde-rule" scientists. Bose believes that there is no real safeguard against such a contingency save wide-spread popularisation of science on a scale such as the Rustians have managed to achieve already. This is why he founded a Bernali

scientific prose. But it is indeed remarkable that he should equally at home in German and French, and that, too, during early student days.

It was, in fact, this early facility with French that prompt him to approach Madame Curie in 1926 for permission to win her laboratory in Paris. Although unknown to Bose she reconsisted his genius because of his classical work on "statistics", st could not believe that he knew French so well. Unhappy with er experience of another Indian innocent of French who had be admitted earlier in her laboratory, the grand old garrulous lab harangued Bose for so long on the need to learn French befor joining the laboratory that poor Bose's intended reply, "Mais ou Madame, je comprends francais asses blem" ("Oh yes, Madam, know French pretty well") froze on the tin of his tomesty.

Perhaps young Bose allowed the freeze to occur because of the accuse it offered him to sample the gay Parisian life for a few months, unencumbered by any specific obligations save that of free-lance research. However, when he did return to Madame Curie, be amazed her with his detterity in making certain very difficult measurements of what is known as piezoelectric effect—a property exhibited by suitably shaped pieces of quartz under the influence of an alternating current field.

This effect, by the way, has manifold industrial uses, such as regulation of clocks to a pitch of precision whereby they lose or gain barely a second in a year. I specially mention it here as, outside the narrow circle of his own cristwhile research scholars whose experimental work in X-rays and crystallography he has directed and often directly inspired, Bose's skill as an experimental to it not so well known as are his talents as a theoretical physicist. Nevertheles, this is so great that, but for failing spesight, he could still, in his early seventies, run a fair-sized physical laboratory ungle-handed, experior a mechanic or two—as he actually did Dauviller's for a whife over forty years ago.

Nor is this experimental ingenuity of Bose confined to physics.

alone. He could be equally at home in a chemical laboratory. In fact, in one of his inspired moments, he hit on an elegant chemical process of tampering with the internal structure of a sufficient molecule just to the precise extent of turning it into a useful pharmolecule just to the precise extent of turning it into a useful pharmolecule just to the precise extent of turning it into a useful pharmolecule just to the precise extent of turning it into a useful pharmolecule just to the precise extent of turning it into a useful pharmolecule.

maceutical compound-now used widely as eye-drops and marketed by a well-known Calcutta firm.

If Bose could take in his stride all this manifold activity, it is because he is a close pack of perspicuity and intellectual power. Indeed, he could have advanced mathematical physics much farther than he actually did -although (heaven knows!) he did advance it far enough to win him a solid international reputation. If this was not greater, the reason is that, while the intellectual power in Bose's pack is versatile, the perspicuity is almost all discerning. Both these gifts have had for him the handicap of a mild Midas touch. Because his versatility enabled him to pick on, say, soil science and biology as readily as on mathematics and physics, he has, over the years, listened to the sirens of his sidelines without first tying himself firmly to the bark of mathematical physics. Because of his incisive discernment that saw through the vanity of life and its ephemeral transitoriness, he early lacked the spur of even scientifie ambition that has lashed many inflamed genii into prodigies of concentrated effort in some one particular direction. As a result. Bose's motto through life has been that of Jaques in As You Like It :

Who doth ambition shun
And loves to live i' the sun,
Seeking the food he eats,
And pleas'd with what he gets.

But, again like Jaques, he has all along claimed the right to

.. as large a charter as the wind, To blow on whom I please.

I have already noted some of the several directions in which it has pleased Boxe's wild west wind to blow. But one such drrection in which it has blown more consistently than any other and which deserves pride of place is science popularisation. This is because in a newly independent but industrially under-developed country determined to take off at once in full industrial flight, there is every danger of leadership in scientific research falling into the hands of what C. P. Snow has called "slide-rule" scientists. Box believes that there is no real safeguard against such a contingency save wide-pread popularisation of science on a scale such as the Russians have managed to achieve already. This is why he founded a Beneal in the control of the co

scientific journal, Bijnan Parichaya, to disseminate scientific knowledge among the common people even before Independence.

This is also why he would perhaps now agree that this profile of his is not wholly a waste of time, as he first thought when I mosted the idea in order to gather some material for it. He seemed to me then so averse to anything that would publicise his name that I thought he had resolved to espouse obscurity very much as St. Francis of Assisi had espoused poverty. It is the strange fate of such genu that the more they seek their brides the more their ladies tend to elude them. Bose with his bozon will no more be obscure than St. Francis of Assisi with his band of Franciscans intent on a "moderate" use of earthy ecods could be poor.

SUBRAHMANYAM CHANDRASEKHAR

October 19, 1910 Born:

M.A., Madras University, 1930 Education :

Ph.D., Cambridge University, 1933

Sc.D., Cambridge University, 1942

1930-34 Government of India Scholar, Cambridge Uni-

versity Fellow, Trinity College, Cambridge University 1933-36

Research Associate, Yerkes Observatory, Chicago 1036-38

Assistant Professor, Chicago University 1938-41 1942-43 Associate Professor, Chicago University

Professor, Chicago University 1944-47

Distinguished Service Professor of Theoretical 1947-52 Astrophysics, Chicago

1952-Morton D. Hull Distinguished Service Professor of Theoretical Astrophysics, Chicago

Editor, Astrophysics Journal 1952-

FELLOW OF THE ROYAL SOCIETY

AWARDED . Bruce Gold Medal of the Astronomical Society of the Pacific (1952)

Gold Medal, Royal Astronomical Society (1953) Rumford Medal, American Academy of Arts and Science (1957)

Royal Medal, Royal Society, London (1962)

PUBLICATIONS: Introduction to the Study of Stellar Structure Principles of Stellar Dynamics

Radiative Transfer

Hydrodynamic and Hydromagnetic Stability 53

S. CHANDRASEKHAR

HENRY JAMES once remarked that, but for the excessive intellectual vivacity of men like Democritus, Archimedes, Galileo, Newton and other eccentric genii whom the example of these men has inflamed, the commonsense ideas derived from our daily life would have lasted us for ever. Dr. Chandraschar is certainly one of these "inflamed" genii. He has shown, contrary to what commonsense may seem to suggest, that stars and atoms are linked by a close ideological bond, so that knowledge of the one is grist to the other.

A case in point is his forecast of the fates of stars, particularly in the last throes of their life, by a study of the behaviour of atoms crushed to smithereens. To bring this feat of intellect to pass, he had, no doubt, to be inspired by great iconoclasts of familiar nectionsmen like Eddington, Dirac, Bohr, Bethe, Milne and others. But, then, how else can one even conceive of the stars, those eternal octernal entities of plain commonsense, to have a varied and eventful life that may one day cease to exist?

The utmost that our everyday experience of the starry heaven may suggest is that the stars are merely other suns, only infinitely more remote. But it can never divine the source of the continuous discharge of the precious flame they pour out incessantly into space. Relying on such experience, Lucretius, for example, wrote in his Nature of Things: "We must believe that sun, moon and stars emit light from fresh and ever fresh supplies rising up."

How the fresh supplies came into being neither Lucretius not any of his scientific successors down to our own day could hardly ever dream. For, before the discovery of nuclear energy bardly twenty years ago, there were only two known sources of heat and fire, both of which we use in our homes. One is chemical combustion and the other gravitation, that is, the fall of materials under their own self-attraction. We resort to the former when we warm ourselves by burning coal or gas, but we tap the latter when we turn

falling torrents, like Niagara, into electricity. Neither of these would enable the sun to shine at its present rate for more than a mere twinkle of its known life.

To take the latter first, it can be proved that, even if the solar material contracted from infinity to its present dimensions, the total gravitational energy released thereby would not last more than twenty million years, whereas the sun is known to have endated energy at its present rate for a least ever since the emergence of life on earth, some 500 million years ago. The combustion source has ence lesser staying power. If this were all the sun could have, it would have been bankrupted in mere millenma. To make the sun draw its daily sustenance of light from either of them, or even both together, it worse than setting Baron Munchausen's bears on Sattan's solitary be for the latter's honey.

This difficulty about the source of solar energy was not resolved till the discovery of atomic energy, which we are just beginning to tap by elaborate artificial means. But, in the sun and stars, it sprouts forth automatically, because, when ordinary matter manages to gravitate together in stellar size, it can remain in equilibrium only by developing high temperatures of millions of degrees in its interior regions in order to acquire the power to withstand the colossal weight of overlying layers. At these temperatures, nuclear reactions—mainly conversion of hydrogen, the nuclear fuel, into helium with release of nuclear energy—begin to occur sontaneously.

It would thus seem that fire and light lie grovelling in all matter, waiting to be kindled by that cosmic incendiary, gravitation, when it manages to herd together a sufficient quantity thereof within the ambit of its sweep. This is why one may, with greater literal truth and less pottic becnee, say that, if life and consciousness are the fever of matter, as Thomas Mann once remarked, the stars and ealusies are its farme.

One part of Chandrasckhar's wast output of work has been concerned with charting the course that these stellar and galactic flames, once ignited, are destined to follow. He has done so by constructing mathematical models based on modern quantum theory of the atom to simulate the behaviour patterns of real stars through the vicissitudes of their life. For example, he has shown that a star like our own son cannot confine to shine for very in its present

steady state. Sooner or later, a time must come when, with the exhaustion of the supply of nuclear fuel in its core, fundamenta structural changes begin to occur deep down in its interior.

One effect of these changes is the shrinkage of its core with a normous distension of its outer envelope. Then, as it grows it size, it will begin to swallow the planets, one by one, commencing with Mercury and ending with our own earth or even Mass. It so, the Koranie vision of a Doomsday when the sun will grill the earth from a distance of a spear and a half might come true unless we choose to advance it by some five billion years by the massed ignition of a sufficient number of those miniature suns, the H-bombe.

However, the distension again is temporary. For such a distended star, with its depleted stocks of nuclear fuel, runs after a time into another series of cataclysms and crises. The reason, as Chandrasekhar has explained, is that a star is not "like a log which burns itself out completely, leaving only ashes or belium in stellar contest". It endeavours to use other materials as substitutes for the exhausted stocks of its nuclear fuel (hydrogen) to replenish the energy it still continues to radiate. In so doing, further internal upsets, like the compression of its inner core, begin to occur.

Chandrasekhar's study of the final spasms of a star's life sparked by such upsets is now a classic. He has shown in a delightfully simple manner that continual compression of the stellar core has its limit beyond which it cannot go. When we compress any-thing, say, an ordinary gas, we eventually reach the limit of its compression when its atoms refuse to interpenetrate one another, or matter how hard we press them. But what cannot be done on earth is not too difficult in the interiors of stars. For at pressures and temperatures such as prevail there the atoms are stripped bare of their electrons and a good deal of such interpenetration does take place.

However, when even the separate identities of individual atomic nuclei are destroyed by further pressure, the nuclei and electrons are packed check by jowl, so that they cannot come any closer. Matter in such a state of complete compression is said to be "degenerate". Degenerate matter, therefore, is the ultimate limit of condensation. Several tons of it could be packed in a mere match-

hos. Such hyperdense material is no Munchausen story. We find it in several white-dwarf stars, of which the most conspicuous is the companion of Sirius.

Charlrasekhar has shown that, when the core of a star becomes depending using thinged atomic nuclei and electrons, all timely packed together, new factors come into play. Then most important effect is that a star loses the power to balance the pressure and arrivational attraction at its periphers by imply adjusting its radius unless the core happens to remain below a certain limiting max. This limit is 1-4 times the max of the sun. 1, therefore, follows that a star secretal-fold more massive than the sun has to lose considerable quantities of matter once it has burn its organisational stocks of nuclear fuel so as to have a core of mass close to the Chandrasebase loss.

Chandraschar has shown how auch a manuer star "can know in advance that it faces an eventual debatel long before it can reach the white-dearf purgatory". As if "aware" of the handrap that its great bolk entails in its relenties march towards the final purgatorial doom, it begins to strip self of its excess mass. It sources where the begins to strip self of its excess mass. It sources where the hecomes a Nessua's shirt on our Herculean star. It will be suffered to the stiff distinguishment will it is completely consumed. The final estimation occurs almost manufaneously when it explodes catastrophically, becoming for a brief while a supernova, that is, a star several bundred entition tenes more luminous than the sun.

Although research nor the internal constitution of stars is a lifetime project, it is only one of the major complex astrophysical professional project, it is only one of the major complex astrophysical professional dilumined by Chandraschar's scinulising intellect. After constitution to the Study of Stellar Structure—which, incidentally, became a best-seller—be took to another field—the distribution of maintain and motion in stellar systems, such as the galaxies like our own Milty Way are

To begin with, he assumed no new laws of nature and attempted, on the basis of ordinary gravitation, to comprehend why stars tend to herd in large clusters as they actually do, as well as many complex kinematical features of our own galasy and other similar extra-galacies systems. In other words, he proceeded to consider how a system

of cosmic "particles" would move under their own selfgravitation.

When the system consists of only two "particles", it is the wellhnown classical Two-Body problem which Newton and, following him, Langrange and Laplace had completely solved. But the introduction of even one additional "particle" in the system makes the problem—the so-called Three-Body problem—so intricate that its solution has defied the accumulated mathematical wisdom of the world. This intricacy is magnified a billion-fold in the case of stellar systems even when one assumes that the billions of the individual stars of which they consist move under no other forces save that of their own gravitation and under no other laws except those of Newtonian dynamics.

To give mathematics a foothold, the gravitational forces are medited to arise from a smoothed-out, idealised distribution of matter in the system, on which the effects of chance stellar encounters are superimposed. Assuming such a distribution, Chandraschar first computes the theoretical path or orbit of a star, ignoring the effect of perturbations caused by stellar encounters. He then proceeds to a more realistic state of affairs by computing the time it takes for these perturbations cumulatively to produce such a marked deviation from the theoretical orbit that it is no longer tenable even as an approximation.

Naturally, the estimation of this time, the time of relatation of a stellar system as it is called, is of paramount importance in stellar dynamics as it specifies the interval within which the effects of stellar encounters can be ignored, thus enabling us to judge the relative importance of stellar encounters in influencing the motions of stars. Although the notion of time-relatation was a development of an older idea of Mawell by Jeans and Schwarzchild, it was Chandraschar who first evaluated it in a completely rigorous manner, in 1941. He has also initiated a new line of attack on the problem by his statistical theory of stellar encounters.

While Chandrasekhar's work has contributed substantially towards the clarification of the peculiarly characteristic aspects of stellar dynamics, he is, nevertheless, aware that the solutions he had obtained were oversimplifications of varyly involved situations, much too deep for gravitation alone to resolve even after recourse o masterly statistical aids of his own invention. He has, therefore, ecently returned to the problem after a somewhat longish interude when he was at work with his customary Calvinist real in another ield to be described in the sequel. He is now busy grafting onto is earlier studies of matter in motion under the influence of graviation alone, the effects of other cosmic forces, mainly electronagnetism and turbulence.

For example, he has shown that the observed properties of the

piral arms of galaxies, like our own Milky Way, could be the outome of the existence of feeble magnetic fields acting on ionised osmic gas clouds. Such studies have lately culminated in a new ranch of physics, Plasma physics, which deals with the behaviour fionised gases-gases of charged elementary particles in magnetic elds. It is to this branch that Chandrasekhar is at the moment evoting a good deal of his attention.

Before switching to Plasma physics, he had essayed yet another omplex problem that was to tax the ingenuity of the physicists so everely that it was not touched for seventy-five years after its initial ormulation till Chandrasekhar took it up. It is the probm of specifying the radiation field in an atmosphere which scatters ght in accordance with well-defined physical laws. It originated

a Lord Raleigh's investigations in 1871 on the illumination and olarisation of the sunlit sky. But the fundamental equations overning Raleigh's particular problem were not even framed, nuch less solved, till Chandrasekhar showed the way, He dealt with the subject as a branch of mathematics with its an characteristic methods and techniques. More than any other f his studies, the work in this field, Radiative Transfer, embodies is own researches on stellar atmospheres, both from the mathetatical point of view of obtaining elegant solutions of complicated

tlegro-differential equations, and in the practical evaluation of bysical quantities, such as the opacity resulting from the negative Surveying the full gamut of Chandrasekhar's research output, ne is awed by the depth of his physical acumen, the range of his

athematical vision, and the sweep of his astronomical knowledge, that it is often difficult to decide whether he is a physicist, a mathe-

matician or an astronomer. My evan solution of the trilemna is simple be is all three at the same time, and one of the best in each

I do not know why he decided to be an astronomer when he could have been as early another Ramanujan or Raman. But. since he elected to be an astronomer. I venture to surmise that perhaps I'ddington's book, The Internal Contiliution of Starswhich he received as an undergraduate essay prize-created in him an abiling interest in stars and galaxies at that early impressionable age. At any rate, when the Madras University in 1930 took notice of this precocious producy by offering him a research scholarship in England in recognition of his having majored with a record number of marks, he joined the hand of famous Cambridge astronomers like I'ddington, Milne, Fowler and others,

In choosing astrophysical research as a metter, he had no doubt profited from the example of his illustrious uncle, Sir. C. V. Raman. who had drifted from college, via a competitive examination, into Government service in a fit of absent-mindedness till his rescue, ten years later, by Asutosh Mukerii. It speaks volumes for Chandrasekhar's research real as also for his amazing self-confidence that he was never tempted by the sirens of "official preferments" even in those dark Satanic days of depression that shook the world during

the late 'twenties.

Not that he was affluent enough to disregard the need to make a living. Quite the contrary. He had, to help make ends meet, often to do odd jobs, such as acting as a beater for pheasant-hunters in Scotland during his earlier research days. Short of funds at times but strong of purpose, he persevered, gathering knowledge at the various European centres of higher learning, such as Gottingen, Liege, Moscow, Leningrad, Paris and Harvard,

Gradually, during the early 'thirties, his fame grew in scientific circles till, in 1936, he lit the astrophysical heaven as a supernova star does a galaxy. He was then on a lecture tour in the Yerkes Observatory of the Chicago University, at the invitation of its brilliant director, Otto Struve, himself the last of a family of astronomers famous through four generations. Struve, who had been commissioned by the Chancellor of his University to scour the world for the best astronomers he could find, lost no time in recogthe "supernova" and grabbed him for the Yerkes Observatory, he has since remained.

handrasekhar evidently decided to settle abroad not because of terial comforts that life in the West holds for those who do, a sort of "sacrifice" to his delyr-Science. For, after spendna six of his most adolescent years in the West, he was Indian to come home for no other purpose save to marry Laithia, set class-mate of his in Presidency College, Madras. If one dage from the letters he worte to his family at the time, he uring the years, missed the "life of love and understanding !could have how at whome?"

Owever, even though now and then in moments of gloom ustration—as during the years of war—be felt that the ice" had not been "worth while", he has not doubted that, "it, he could never have advanced astrophysics to the pitch he y has. He had come to this conclusion even during his t days because of the fate of Ramanujan who, as he said, have doubtless died unknown and unwept had he continued.

I precious five years of life at home".

mainced, therefore, of the need to go abroad in search of edge. Chandrasekhar persuaded his mother that his rendezith destiny lay in the West. One can vouchsafe as much from ling consent to his departure abroad, although, stricken than was with a fell disease, she knew that she would never see him again.

uadrasekhar's dilemma whether 10 soot high in company is foreign "inflamers" or stay relatively pedestrian and be to with his own compatriots has been real. That is why tated for years on end to make his final choice. Even though accepted the Verkes offer in 1936, he did not renounce his nationality in favour of American citizenship till seventeen ater.

is vacilitation can well be imagined. Agreeing with the third was up to us Indians to improve our universities after of education in India", he tried at first to console himself agac visions of "contributing his own small measure to this ment" in the future. Perhaps he was contemplating a time having passed the peak of his form in research as many do,

he could return home to direct and guide a new generation of research workers.

Luckily for astrophysics, his research prowess has not diminished with the years. At fifty five, even his pathematical vision, which usually grows myopic at such an age, has remained as eagle-sharp as ever. With his intellectual powers remaining unimpaired, he could evidently still look forward to many more years of prolife research activity. Perhaps this consciousness of his own undiminished intellectual powers persuaded him to reconcile himself to the prospect of denying to the country of his birth the "contributions" with which he seems to have beguited himself for years—at any rate till the year of decision (1933)—to the greater glory of world science.

The reconciliation, however, did not come easily. Aware of the need to flock and feud with giants of his own genre in the international arena—a man is made by the company be keeps and contests—be did nevertheless try to create an atmosphere of a South Indian home, admittedly synthetic, but yet geniume enough to ward off his nostalgia.

One such attempt was his effort, years ago, to interest his American neighbours in South Indian musto played on the lute by Lalitha. But, instead of winning them over, he was himself wo over in the end, as listening to concerts of orchestral and chamber mustic is now his shirl diversion. If at long last the culture of his adopted land has swallowed him, this has not been without some pretty stiff craquard struggle on his part. It is some confort that he must have regained his peace now that it is all over, even though we may no longer claim him as one of our own.

JOHN BURDON SANDERSON HALDANE

Born: November 5, 1892

Education: M.A., Oxford University
Dr. de L'Université, Paris

1922-32 Reader in Biochemistry, Cambridge

University
1932-36 President, Genetical Society, London

1937-57 Professor of Biometry, London Univer-

sity

1940-49 Chairman, Editorial Board, Daily Worker Editor, Journal of Genetics

1957-61 Professor, Indian Statistical Institute,

1962-64 Director, Genetics and Biometry Labo-

ratory, Bhubaneswar Died : December 1, 1964

FELLOW OF THE ROYAL SOCIETY

AWARDED: Legion of Honour (1937)
Darwin Medal, Royal Society (1952)

Darwin Centenary Medal, Linnaean

Society (1959) Kimber Medal, U.S. National Academy

of Sciences (1961)
Felfrinelli Prize, Accademia Nazionale dei Lincei

Hon. D.Sc., Oxford University

PUBLICATIONS: Science and Ethics
Enzymes

The Causes of Evolution Science and Everyday Life Science in Peace and War New Paths in Genetics Science Advances What is Life?

The Biochemistry of Genetics, etc.

Mendel, all heritable characteristics of organism are transmitted unchanged without "dultion or blending". Necume they are carried by dutinet indivisible particles of heredity now called genes. Although genes have since been found to be actually step complex structures, being ultramicroscopic specks of moleoproteins which can reproduce themselves by copying, they are transmitted from perant to progeny as Individuel mints of heredity so that they behave very much like atoms in chemistry. These atoms of heredity, the genes, are arranged in a very process way in the cells of the host organism. Literally hundreds or thousands of them are wrapped copyther linearly in microscopic practise stilled chromosomes which occur in pairs, one set of chromosomes being derived from the faither and the other from the mother.

Consider, for the sake of simplicity, any organism such as guinea pigs produced by mating yellow with pink-eyed whites. If we call the gene producing the coat colour, Y, there will be located somewhere in the appropriate chromosome pair of the organism two variants of this gene, for it has two sets of chromosomes one each from either parent. Let us call the variant or allele that yields yellow colour Y, and the allele that produces white Y2. All offsprings of the first generation will thus have both the variants Y. and Y2, one from each parent. As it happens, their coat colour will be cream, a half-way house between the two parental colours. If we now breed a second generation by mating together the cream hybrids, then obviously there can be only three kinds of guinea pigs in the second generation, according as the two coat-colour genes in the offspring are both Y1 or both Y2 or one Y1 and Y2. There is clearly no other combination possible. Consequently, the genetic constitution of the second generation population will be fully described by the proportion or percentage of individuals belonging to each kind of genotype. These proportions or relative frequencies are called genotype frequencies.

To compute the genotype frequencies, we observe that each offsping produced by mating creams (Y₁Y₂) receives only one gene from either parent. There are therefore four possibilities in all, viz.

Y₁ from father and Y₁ from mother=Y₁Y₁=yellow
Y₁ from father and Y₂ from mother=Y₂Y₂=cream

J. B. S. HALDANE

In his auto-obituary released at the time of his death, Haldane wrote, "I've been very much of a dabbler, and I'm not ashamed of a Sometimest wonder idly what I might be remembered for a hundred years from now". So will any one who chooses to write about him. For Haldane was an extraordinarily versaille biologist who made original contributions to so many dwerse fields ranging from mathematics to medicine that it is difficult to decide wheren lay his most important scientific achievement. Nevertheless, if a choice must be made, it might be said that he would be remembered most along with R. A. Fisher and S. Wright as one of the three founding fathers of the mathematical theory of organic evolution.

Such permeation of biology by mathematics as Haldane initiated became necessary to remove a certain weakness in Darwin's theory of evolution. As is well known. Darwin was the first to show in a convincing manner that animals and plants living today had not arisen by special creation of each species but by slow descent from very different ones in the past, some of which have left fossils. But, despite a most thorough and objective analysis of the data from all fields of biology to prove organic evolution through natural selection, his theory remained essentially negative. While it did account for the extinction of some forms and persistence of others by the "survival of the fittest", it could throw no light on the "arrival of the fittest". It could not possibly do so because the mechanism of heredity had yet to be discovered. For, as evolution implies change of the hereditary characteristics of species, an adequate explanation of an evolutionary process could not be expressed except in terms of laws of heredity. Although these laws were beginning to be discovered by Mendel at about the same time as Darwin formulated his theory of evolution, it was only around 1900 that they became generally known to biologists.

Haldane based his mathematical theory of evolution on these newly rediscovered laws of Mendelian inheritance. According to Mendel, all heritable characteristics of organism are transmitted by distinct indivisible particles of heredity now called genes. Although genes have since been found to be actually very complex structures, being ultramicroscopic specks of nucleoproteins which can reproduce themselves by copying, they are transmitted from peract to progeny as indivisible units of heredity so that they behave very much like atoms in chemistry. These atoms of heredity, the gract, are arranged in a very precise way in the cells of the host organism. Literally hundreds or thousands of them are wrapped together linearly in microscopic packets called chromosomes which occur in pairs, one set of chromosomes being derived from the father and the other from the mother.

Consider, for the sake of simplicity, any organism such as guinea

pigs produced by mating yellow with pink-eyed whites. If we call the gene producing the coat colour, Y, there will be located somewhere in the appropriate chromosome pair of the organism two variants of this gene, for it has two sets of chromosomes one each from either parent. Let us call the variant or allele that yields yellow colour Y, and the allele that produces white Y2. All offsprings of the first generation will thus have both the variants Y. and Y2, one from each parent. As it happens, their coat colour will be cream, a half-way house between the two parental colours. If we now breed a second generation by mating together the cream hybrids, then obviously there can be only three kinds of guinea pigs in the second generation, according as the two coat-colour genes in the offspring are both Y, or both Y, or one Y, and Y. There is clearly no other combination possible. Consequently, the genetic constitution of the second generation population will be fully described by the proportion or percentage of individuals belonging to each kind of genotype. These proportions or relative frequencies are called genotype frequencies.

To compute the genotype frequencies, we observe that each offspring produced by mating creams (Y₁Y₂) receives only one gene from either parent. There are therefore four possibilities m all. viz.

Y1 from father and Y1 from mother=Y1Y1=vellow

Y1 from father and Y2 from mother=Y1Y2=cream

Y₂ from father and Y₁ from mother=Y₂Y₁=cream Y₂ from father and Y₂ from mother=Y₂Y₂=white. Since it is immaterial for the genotype Y₁Y₂ whether Y₁ is from father or mother, the two permutations Y₁Y₂ and Y₂1 yield only one combination, the genotype Y₁Y₂. Further mating in the population is random, all these four poss are equiprobable. It therefore follows that probabilities quencies of occurrence of these three genotypes Y₁Y₁, Y₁Y₂ are 1. \$\frac{1}{2}\$, \$\frac{1}{2}\$, \$\frac{1}{2}\$, their sum adding un naturally to unity.

It will thus be seen that while the gene probability or freof each affele Y₁ and Y₂ is ½, Y₁ being as likely to occur the probabilities or frequencies of the three genotypes Y,Y₁, Y,Y₂ to which they lead are respectively (3)?, 2(3) (4), (4)? is only a particular case of a very general theorem that old when the gene frequencies do not happen to be equal as in the mentioned illustration. Suppose the gene frequency of Y₁ is number p instead of ½ and that of Y₂ some other number sum of p and q being unity. It can be shown that the frequency the three genotypes Y₁Y₂, Y₂Y₂, Y₃Y₃ if respectively be

p2, 2pq, q2.

Again the sum of the three frequencies, $p^2+2pq+q^{2m}(p+1)$ unity, as it ought to be. If we substitute $\frac{1}{2}$ for p and q in above expressions, we obtain the genotype frequencies $\frac{1}{4}$, $\frac{2}{4}$, $\frac{1}{4}$ and $\frac{1}{4}$

Now, if no other influence such as migration or selection i venes and the individuals mate randomly, the population will turally remain stable with respect to both gene and genotype frequest. There is no inherent tendency for its genetal propertie change from generation to generation and therefore no evolur Dut, in a natural environment other influences do appear, fact, the gene as well as genotype frequencies are continually she during successive generations under several pressures. Am them the most important are four. First, there is the muta-pressure due to recurrent change of a given sort in the gene. I although genes are normally transmitted unchanged, they are although genessare normally transmitted unchanged, they are and then spontaneously altered or mutated by are uncontrolls microchemical accidents. Having occurred, the mutation per and is transmitted. Secondly, there is the immigration press.

due to introduction of different heredity by the influx of outsiders from without. Thirdly, there is the selection pressure due to any systematic cause by which the gene tends to increase or decrease in frequency without either mutation or immigration. Differential mortality, differential rate of attainment of maturity, differential mating, differential fecundity and differential emigration are such causes. Fourth, there is the pressure of random fluctuations due to accidents of sampling. For, in actual practice the gametes (the biologists' term to denote either sperms or eggs), that transmit genes to the next generation, carry only a sample of the genes in the parent population. Consequently, unless the sample is very large, the gene frequencies are liable to change between one generation and the next.

Haldane worked out mathematically the effects produced by pressures of various kinds such as those listed above. Consider, for example, the effects of selection, that is, the differing "fitness" of the individuals in the population to breed the next generation.

If these differences of "fitness" are in any way associated with the presence or absence of a particular gene in the individual's genetype. then selection operates on that gene. As a result, its frequency in the offspring is not the same as in the parents, since the parents of different genotypes pass on their genes unequally to the next generation. In this way, selection causes a change of gene frequency and consequently also of genotype frequency,

Haldane devised a neat way of measuring the "fitness" of the genotypes to breed their kind and thus the intensity of selection pressure. Suppose the selection acts against the gene Y2. As a result, one of two things may happen. Either the genotype Y₂Y₂ may be discriminated against or both the genotypes Y₁Y₂ as well as Y2Y2 which carry Y2. If the coefficient of fitness of an unaffected genotype is taken as I, that of a discriminated genotype may be taken as I-s where s is some positive proper fraction. Let us assume for the sake of simplicity that only one genotype Y₂Y₂ is discriminated against. Then the initial genotype frequencies or probabilities as well as their fitness to breed the next generation will be: Genotynes .. Y,Y, Y.Y.

Initial frequencies .. 2pq Coefficient of fitness (1-s) As a result the frequencies of the three genotypes in the generation will be in the proportion $p^2: 2pq: q^2(1-s)$, each proportion is the product of the original generation quency and its corresponding coefficient of fitness. To o these proportions into their corresponding frequencies or 1 billities all we need do is to multiply each one of these three nu

by the same normalising factor, $\frac{1}{1-sq^2}$, in order to ensure the sum of the three frequencies adds to one. The genotype frequencies the two cenerations will therefore be as follows:

This is typical of the way in which it is possible to compel requencies of genotypes in the next generation after allowing the various kinds of pressures. There are, of course, many plications ignored in our illustration. For example, the of certain genes called recessives may be wholly masked by presence of their more dominant associates or alleles. Thus is substitute pure-breeding black and blue rabbits for the yellow white guinea pigs of our earlier example, the effect of Y₁, the tends of the property of their matigs will all black. For each offspring receives Y₁ from one parent and from the other and the genotype Y₁Y₂ is all black, the alleled domination sover Y₂.

Now, although both the genotypes Y₁Y₁ and Y₁Y₂ black, their breeding behaviour is entirely different even in ref of the colour of their progeny. While the offsprings of Y will be all black, those of Y₁Y₂ will be three-fourth black cone-fourth black. Likewise, further complications arise who great in question happens to be sex-linked, that is, appears in 1 particular chromosome of the organism which determines its 1 and case in point is the gene that produces harmophiliars, that

bogs whose blood clots very slowly and who, therefore, are apt to bleed to death even when slightly bruised. This is by no means the end. For, different genes located in different chromosomes or even in the same may also be linked in the sense that the hereditary transmission of one includes or eveloues the other. Incidentally, Halowawas the first to discover, from data published by others, this phenomenon of gene linkage in vertebrates when he was still in his teens. Then again a single character may depend for its existence on the presence of several dominant genes like colour in Lathynes which trequires the presence of two genes. And so one

To enable mathematics to take account of some of these maniby resort to mattre digebra, differential and integral equations, etc. the final aim in each case being the computation of the genotype frequencies in the next generation. For, if we succeed in deriving them, we can always calculate the change in gene frequency from one generation to another and thus measure the effect of selection or other kinds of pressure on gene frequency from one generation to another.

As a result of these mathematical investigations, Haldane was able to derive many interesting results among them the effect of various influences like those of selection, mutation, competition, etc. on the genetical qualities of populations. Thus, he showed that the effect of selection is often balanced by that of mutation. For instance, in the case of haemophilia gene Haldane computed that something less than one-third, perhaps one-fourth, of all such genes are wised out in each generation because of the tendency of haemophiliaes to die young. Consequently, there must be some source from which they are replaced. For if not, a diminution of 25 per cent per generation would require the entire male population of England to be haemophiliaes at the time of the Norman Conquest. Since this could not be the case, haemophilia genes must be arising spontaneously by mutation at a rate equal to that at which they are being wiped out to keep the frequency of haemophiliaes at a constant level. He also showed that, under certain conditions, the number of generations required for a given change in population is inversely proportional to the intensity of selection. As a corollry, he deduced that selection is rapid when populations contain a

ad through a wild population under constant observationinants, wever, he did not remain content with merely finding made

wever, he did not remain content with merely finding mat explanations of known facts like the prevalence of domin He also computed theoretically the changes in the charal tlations exposed to various kinds of pressures which exesued confirm or deny. Many of his theoretical prediction the been verified by actually observing the alterations indoupulation by its exposure to natural selection under controll

toe been verified by actually observing the alterations indoe pulation by its exposure to natural selection under control most. This was done with populations of flies by Dubin towiet Union, by Dobzhansky in the United States, Kalm and and Teissier in France. His theory has this bad it attu of experimental confirmation. We can therefore read, its theory that the main motive force of organic colution been natural selection, even though the actual steps, by abit als come to differ from their parents, are due to caus an selection. Consequently, evolution could follow oil paths chalked out by other influences like mutation, competite.

been natural selection, even though the actual mode of cause and selection. Consequently, evolution could follow out paths chalked out by other influences like mutation, congrete.

itle these results of Haldane's mathematical explorations is 10 f genetics were of great value to the specialists, they jield he lay citizen even a richer bonus which is therefore more 100 our present purpose. For, he was provoked to proside the current abuse of genetics to support proposals for sty changes in the structure of society, such as the compulsory tion of the "unful" and explusion or extermination of them upure" or "contaminated" heredity, subish by the way, is a classe to popularisation, he demolished with denastating effert a composition of the "actual to the computer" or "contaminated" heredity.

nee popularisation, he demolished with denastating state of myths of the race manies. Thus, it is often eximed half that, since the poor breed faster than the rich, this edit-rith rate will lead to the "degeneration" of the population upon the result of the population of the popula

.

isione ciculcinary farricits or infitury that may not or campor her explored. foresaw, long before it became obvious to everybody he present proliferation of elementary particles of

of genes also as miniature intracellular organs, controlling nical processes within the cell, even though the control so erved is generally remote. It may, for example, be exercised the production of prosthetic group of enzymes, the minute ces that catalyse biochemical reactions within the cellse Haldane's own picturesque analogy-"the machine tools"

, that nothing in nature is really "elementary"-only ntities are more "elementary" than others. He therefore

ell workshop where highly individual craftsmen are at workd his surmise on the fact that chromosomes and, therefore nstituent genes, appear to be built of material well adapted lytic functions of several different kinds, for, there is reason ve that they are particularly concerned in the synthesis of es of moderate size. However, since they also synthesise

of themselves, there should be some way of bringing these ctions together. To do so, it would appear to be necessary re the chemical isolation of a gene-a task demanding ig to Haldane "the combination of pertinacity, patience hnical skill which characterized Mme Curie and is perhaps equent (though exceedingly rare) in women than men". To

ch a breakthrough to the structure of gene, Haldane, as a of the great founder of biochemistry, Prof. Hopkins, whose n-command he was for ten years at Cambridge, advocated the fate of individual molecules and atoms within the gene ver its microstructure and functions, just as we use "tracer" nowadays to explore other complex chemical structures.

interesting aside on Haldane's genetical work is the curious that while dialectical materialism led Haldane to his dualest on of a gene both as a putatively "indivisible" atom of bertwell as a complex structure performing specific though still inknown functions within the cell, he was never convinced

ing breathlessness. In botany, his most important work me jointly on an ornamental plant, Primula sinenati, where he is that one of the genes responsible for its colour acted by ag the acidity of the petal sap. In mathematical statistics, itsed an elegant way of calculating certain expressions called ints of the binomial distribution. In cosmology, he made ber of brilliant suggestions in connection with the work of filine, the author of kinematic relativity, who tried to work out tology on a priori grounds from the single assumption of homogeneity, viz., the uniform distributions of galaxies in a observed by any local observer. In particular, Haldane was it to ask the cosmological question "is space-time simply

without cutting them up, much less killing them. In physione discovered that when he drank ammonium chloride soluthe developed various symptoms of severe acid poisoning

led?", though like all major cosmological questions it is not unswered. In medicine, he discovered effective treatments anus and convulsions. In abiogenesis, he speculated on gin of life. He showed how self-reproducing molecules ould have arisen in the past to enable life to make its debut, d neuclotides in solution, a suitable enzyme and probably a regy source are available. In zoology, he had a dig at the ks for their singular lack of attention to the most obvious renoes between different animals, viz., one of size. In his little essay entitled On Being The Right Size, he showed by the a remarkably simple arithmetical calculation why "a

to a remarkably simple arithmetical calculation why "a uld not be as large as a hippopotamus or a whale as small tring". He performed here an amazing act of creativity is "bisociation"—by tying together a whole gamut of subjects ology and acronauties to social polity and engineering in Aritadne's thread. Here the social polity and engineering in Aritadne's thread the social polity and engineering in coalissed. He could do so because of his extraordinary of the fundamentals of physical, chemical and life

DISCOVERED THAT WHEN HE GLARK STREETHER CHRONICS SOLE developed various symptoms of severe acid poisoning breathlessness. In botany, his most important work i jointly on an ornamental plant, Primula sinensis, where he

hat one of the genes responsible for its colour acted by the acidity of the petal sap. In mathematical statistics, ed an elegant way of calculating certain expressions called

is of the binomial distribution. In cosmology, he made r of brilliant suggestions in connection with the work of ine, the author of kinematic relativity, who tried to work out logy on a priori grounds from the single assumption of omogeneity, viz., the uniform distributions of galaxies in observed by any local observer. In particular, Haldane was to ask the cosmological question "Is space-time simply

1?", though like all major cosmological questions it is not swered. In medicine, he discovered effective treatments

ius and convulsions. In abiogenesis, he speculated on n of life. He showed how self-reproducing molecules uld have arisen in the past to enable life to make its debut, neuclotides in solution, a suitable enzyme and probably a gy source are available. In zoology, he had a dig at the 3 for their singular lack of attention to the most obvious inces between different animals, siz., one of size. In his tle essay entitled On Being The Right Size, he showed by to a remarkably simple arithmetical calculation why "a ld not be as large as a hippopotamus or a whale as small ing". He performed here an amazing act of creativitys "bisociation" - by tying together a whole gamut of subjects logy and aeronautics to social polity and engineering in ane was particularly adept at handling such "rendez-Ariadne's thread.

oblems, where many thought streams from different coalesced. He could do so because of his extraordinary the fundamentals of physical, chemical and life

DATILAT SINGH KOTHARI

July 6, 1906 Born:

M.Sc., Allahabad University Education : Ph. D., Cambridge University

Professor of Physics, Delhi University 1934-48 Scientific Adviser, Ministry of Defence, 1948-61

Government of India Chairman, University Grants Commission 1961.

President, Indian Physical Society

Vice-President, National Institute of Sciences of India AWARDID .

PADMA BIRLSBAN, 1962 PUBLICATIONS:

Nuclear Explosions and Their Effects

Numerous Papers on Statistical Thermo-

dynamics, Theory of White Dwarf Stars, etc.

a boy of nine when he came in contact for the first time to Indian crew of a cargo vessel on a short voyage from 100 Dunkirk. He became an Indian citizen in 1960 and deveself to assisting the development of science in this rapidly sing country.

chose India because he had loved India and Indiansever since

self to assisting the development of science in this rapidly sing country,
e main lesson he held out to us was that scientific
ce does not necessarily depend on elaborate and expensive
ents but that worthwhile contributions may get be made
hods no more elaborate than visual observation and
trithmetics. Such off-Deat opinions of Haldadane coupled with

her provocations plunged him time and again into controvery we homeland too. But that is because he could neer suffer ee either injustice or bureaucratic obstruction. Like the Christ in Dostoyevsky's The Benthers Karamagov, Haldan 23s facing the Grand Inquisitor in order to hinder him.

DALILAT SINGH KOTHARI

Born : July 6, 1906

1948-61 Government of India

1961.

President, Indian Physical Society

AWARDID:

Vice-President, National Institute of Sciences of India Papier Rin Grav. 1962 PLBLICATIONS * Nuclear Explosions and Their Effects

Chairman, University Grants Commission

1934.48

PAucation : M.Sc., Allahabad University

Ph. D., Cambridge University

Professor of Physics, Delhi University

Scientific Adviser, Ministry of Defence,

D. S. KOTHARI

physics, the daughter of astronomy, descended fro earth along Galileo's inclined plane, its own offsprin is now ascending from earth to heaven on Jacob relear thought. Rutherford and Bohr conceived it. Saha, Chandrasckhar and Kothari put in position t to the heavenly climb. er roofile's it will be shown how, taking his oue fron

or prome" it will be snown now, taking insc use the del-Bohr atomic model as a miniature planetary system lectrons oribiting round a much heavier nucleus o a postulated the conditions under which atoms are used to relevant the conditions under which atoms are used to relevant the progressive dissociation of substances well-known progressive dissociation of substances de heatings—the substance turning into a gas, the gas omposing into those of simpler compounds, the latter se of constituent elements until, finally, the molecules its are broken into atoms—Saha naturally concluded acting would disrupt the atoms themselves into ions d electrons. For the heat energy would now begin of the outer cleertons from their "atomic dwellings" is land between the atoms."

the atoms, can sufficient pressure not push them in the atom ? For despite its microscopic size, there eaking, as much vacuity whith the atom as in the 1. If we choose to represent the central nucleus of e size of an ordinary period, the outermost electrons it would extend on the same scale to the size of a 000 cm.), the whole system having been magnified a fold. On the other hand, if we reduced the stellar same extent as we have magnified the atomic, the

nearest stars would be apart to the same extent (1,000 cm.) as the outermost electrons and the nucleus.

This is why there is practically no limit to the compressibility of matter, provided only we could press it hard enough to break the barrier of electronic stells surrounding the atomic nucleus. If, nevertheless, while compressing anything—say, an ordinary gas—we seem soon to reach the limit of its compression when it is liquefied or solidified, the reason is not that a liquid or solid is basically any less incompressible than a gas, but that the pressure required to reach the next stage of atom-crushing compression is beyond our powers of makine.

By daring to attirm that under the duress of sufficient pressure about the electrons so firmly tied to their atomic nucleus could be cast addft and moorkess into the vacant immensities within the atom itself, Kothari laid the foundations of a new theory of pressure ionisation. For it was at the time an act of considerable scientific plack to imagine that the atoms need not first be smashed thoroughly by heating them up to a few million degrees before the liberated electrons could be souezed into the atomic volt.

The difficulty, as Sir Arthur Eddington wrote in 1936, lay in the curious relation of ionisation to pressure. At ordinary pressures, the ionisation actually decreases with increating pressure, thus obscuring its dominant role in inducing ionisation at extremely high pressures. Kothari was the first to visualise that pressure alone, unaided by heat, could suffice to smash the atoms. He calculated that, even in completely "cold" matter, this atom-breaking pressure is of the order of some hundred million pounds per square inch—after many times as great as that exercised at the centre of the earth by the weight of 4,000 miles of its overlying core, mantle, rock and all.

By comparison, our own necks only bear the feather-weight of a few odd miles of atmospheric gas equal to a column of water barrly 34 feet high. However, a pressure force that cannot be contrived anywhere on earth is not too difficult to obtain inside the stars. There is a class of stars known as white dwarfs within which such enormous pressures do actually prevail, so that the atoms there are crushed like inflated balloons in a top-heavy casket. As a result, the separate identities of their atomic nuclei and statilite

D. S. KOTHA

oldern physics, the daughter of astronomy, descender went to earth along Gailleo's inclined plane, its own off hysics, is now ascending from earth to heaven on i of nuclear thought. Rutherford and Bohr conceiv which Saha, Chandrasekhar and Kothari put in posit possible the heavenly climb.

I another profile* it will be shown how, taking his cut itherford-Bohr atomic model as a miniature planetary is cliffie efectors oribiting round a much heavier nucles, Saha postulated the conditions under which atom do fit their outer electrons, leaving them truncated or is ing the well-known progressive dissociation of substructional continued heating—the substance turning into a gas, the ules decomposing into those of simpler compounds, the into those of constituent elements until, finally, the mole elements are broken into atoms—Saha naturally conductive heating would disrupt the atoms themselves into nattached electrons. For the heat energy would now to some of the outer electrons from their "atomic dwellings atoms of the outer electron from their "atomic dwellings atoms."

at, if too much heat diverts the electrons into the vaberseen the atoms, can sufficient pressure not push tose within the atom? For despite its microscopic size, it sitively speaking, as much vacuity within the atom as in ellar void. If we choose to represent the central nucleus mb y the size of an ordinary period, the outermost electring round it would extend on the same scale to the sir (about 1,000 cm.), the whole system having been if the best of the sir of the size of the size

se to the same extent as we have magnified

get-armour deeper than when the charge is in actual contact with the slog was made some 150 years ago. But that the penetration is sustly greater when the cavity is lined by a thin metal is a very recent discovery. When such a metal-explosive system, the so-called "shaped-harge" projectile, is fired, the detonation of the explosive charge shoots out the cavity metal of the liner in the form of a fart-moving jet-abs known as Munroe jet-which is trailed behind by the relatively slow-moving slog. When the faster Munroe jetimpligas on the target-armour, it generates a pressure of a few million pounds per square inch. Under such a pressure-squeeze, the target armour and provides an easy run-through for the incoming jet, no matter whether the armour is made of steel or stanite.

This is the well-known hollow-charge principle which was made use of by the Germans, British and Americans during the last war when they developed on its basis their respective Panzerschrecks, Parts and Bazookas designed to pierce exceptionally thick armours. While Birkholf, MacDoughall, Penh and Taylor have worked out the mathematics of the armour penetration of the "shaped-charge" Projectiles, Kothari has applied his pressure to instain on theory to adjute the various of metals of the liners under the stress of explosive loads.

That Kothari was led from the metallurgy of stars to that of projecties is a result of our National Government's taking to heart a lexon that even the West learnt only under the dures of World War II. It is that a scientist who ventures to speculate in a spirit of disinterested enquiry without any thought of its applicational positional can, by a lively, informal and paradoxical exchange of ideas with the professional administrators of the war machine, bring about some very spectraular successes. In the wake of a stream of such success, there gree up a new kind of omnibus, if sprawling, saxivity, called Operations Research, which sought to apply science in the service of war in an entirely novel way.

Application of science to invent new weapons of war or improve those already in existence is, of course, nothing new. It began long ago, even before Archimedes made catapults for the Greeks of Syracuse to resist the Roman invaders. But, during the last World War, it also began to be used more consistently and

nds and sand-dunes, a subject that was sparked to life by Rommel's moaign in the North African desert.

It cannot possibly provide here even a worm's-eye view—a bird to compten of the vast and complex research output of our efence Science Organisation under Kothan's taxing turtelage. I'm Jy for the reason that harely a small fraction of it is "unclassified" in Jy for the reason that harely a small fraction of it is "unclassified" and the reason that harely a small fraction of it is "unclassified" to the state is the uner sanctum. Nevertheless, "unclassified" papers on a variety rabipets—such as the "shaped-charge" projectiles already menoned—alone suffice to show the multi-spangled flag flying atop the effectoe Science wagon that Kothari chariotered with commendable includit know-how for more than a decade. The spangles are amough an next vignettes of studies as varied and diverse as those a ballistics, electronics, environmental physiology, metallurgy, acident proneness of men and machines, soil stability, food preservation, corrosion, desert afforestation, aeronauties, gas turbines.

Considering that all this behavior of acidivity had to be systain—

d on a stender ration of honey—we provide a mere quarter of i paisa for every rupes spent by other advanced countries—one wonders how Kothari managed to go so far with so little. But then Kothari has a remedy for lack of resources—resourceful thiaking! Possessing a thorough understanding of the science and the design principles underlying modern weapons, Kothari has, by diat of hard thinking, greatly mitigated the handicap that lack of material resources can otherwise be.

It may surprise some that an astrophysicist like Kothari should have taken to defence science research even in penetrime. For, astronomers and astrophysicists are notoriously pacifist and easily frastrated when required to carry grist to the mill of Mars. If Kothari seems to be the exception that breaks the rule, it is because he juderation that he need of a newly independent nation to sheet-another its defence on the latent knowledge of science and technology. He was further fortified by the knowledge that, in our case at any Take, "defence" would, by no semantic confusion of which Drwell spoke, be allowed to become a camouflage for the conquest and colonisation of weaker neighbours. Lest an unsympathic criefic be indicated to dub such a belief as a naive post-facto rationalisation of a pariforite jingo. I basten to remind him that, paradoxucal as it may seem,

sands and sand-dunes, a subject that was sported to life by Romand's

campaign in the North African descrit.

I cannot possibly provide here even a wear says view as left.

sees too much—of the vast and complex 'meanth output of our Defence Science Organization under Kother's traing success, and only for the reason that barrely a small fraction of a is "medical-feet" and, therefore, available to outsiders without impact wars in the inner sanctum. Nevertheless, "unclassified" papers on a suitage of subjects—such as the "shaped-charge" projects as a sainty neutroned—alone suffice to show the multi-spanight data fairs train to

of subjects—such as the "thaped-charge" projection already meationed—alone suffice to show the multi-typesfied for \$\frac{1}{2}\tilde{\text{times}} \text{ file} and the projection of the pro

Considering that all this beehive of activity had to be waitained on a slender ration of honey—we provide a more quarter of a pairs for every rupee spent by other advanced countries—one wonders how Kothari managed to go so far with so little. But then Kothari has a remedy for lack of resources—resourceful thinking i Possessing a thorough understanding of the science and the design principles underlying modern weapons, Kothari has, by diar hard thinking, greatly mitigated the handicap that lack of material resources can otherwise be.

It may surprise some that an astrophysicist like Kothari should have taken to defence science research even in peacetime. For, astronomers and astrophysicists are notoriously pacifist and easily fruitated when required to carry grist to the mill of Mars. If Kotharisems to be the exception that best trule, it is because he understood the need of a newly independent nation to sheet-anchor its defence on the latest knowledge of science and technology. He was further fortified by the knowledge that, in our case at any rate, "defence" would, by no semantic configuration of a due to the desired to the science and the configuration of a current and colonisation of a current and colonisation of a critic be included.

on of a patriotic

deliberately to optimise the effectiveness of weapons of war already in use. As a result, virtually a new science of weapon economism was born, designed to assess the efficiency of any given weaponsystem considered as a warhead in interrelation with all the relevant factors governing its use.

It was natural that Free India should take heed of this innovation and establish its own Defence Science Organisation on a basis broad enough to handle the problem of awarweapon management and evaluation. Kothari, till his elevation as Chairman of the University Grants Commission a few years ago, has been the briad behind this Organisation ever since its inneption. In his expuely as Scientific Adviser to the Defence Minister, he was the main motive force driving the Defence Ministry's Technical Development Establishments as well as it each of I laboratories designed to

(a) provide a reasonably correct choice between competing weapon-systems;

(b) suggest continual improvement in weapons; and

(c) conduct research in the development and design of new as well as older existing weapons with a view to their indicenous manufacture.

Such work is no mere armchar scientific speculation, now and the releved by laboratory gudget manipulation. It is the outcome of genuine teamwork between the scientists and the service officer who provide the necessary "user experience and orientation." For, as Kothari in appreciation of the soldier's point of view his remarked, even though a weapon—or any defence equipment, for that matter—preembles in many ways a complex precision scientification and the service of the transfer of the transfer of the properties of the properti

For example, a labellated uses to the following strong of party, in the desire of Ray plants, as uncertainly atmost other things, with the latering of weapons and explained under the durings of the heat as well as said and discourant. It also dead with other problems, as he as the attendance propositions of facine waves in density than a the atmost and party of the explainment of the explai

Such Pascalesque discerament does not come by mere technical proficiency in manipulating either the metrical symbols or their material counterparts, the intricate synchrotrons of nuclear physics. It stems rather from devoted and prolonged meditations that take hold upon the stars above even to the needect of life here below.

Kothari began his ruminations on the starry heavens very early in life, and, in his first upward starings, he, like Thales before him, did not always heed the hidden pitfalls that beset his own down-to-earth existence. But, unlike Thales, he was too deep and genule to be provoked by the jibes of philistines into dreaming to turn to any mercenary account his enormous talents by cornering a market, or even winning administrative power by resources to the honourable modern excedient of competitive examination.

I doubt if he suspected then those talents of his. But his teacher, Saha, clearly saw what Kothari himself in his humality could not perceive. Indeed, Suha, who foresaw that Kothari alone among his band of hight boys could bench his bow and in due time wear his mantle, had little difficulty in keeping him off the temphations of Cwil Service because of the existence of a profoundly ascelle streak in his make-up. That streak runs to this day, expressing itself not merely in an abstinence usual in a run-of-the-mill tentofaller, but, more importantly, in a total negation of the acquisitive impulse that comes natural only to those who live a life of contented and ungrasping prudence out of some deep inner conviction in a purpose more serious than conspicuous consumption, tattus and prestige. It is this spirit of dedication that promoted Kothari to me.

for long hours every day as Head of the Defence Science Organisation for over a decade in a virtually honorary capacity, earning his meager keep as Professor of Physics in Delhi University, a position he retained throughout the period. He thus killed two birds with he retained throughout the period. He thus killed two birds with non-atone-satisfying his sown upge of selless service while keeping his links with the academic garden where his scientific falents had rippend into fuller bloom. He done told me that, but for the inspiration that these links provided, the Hercules of administration would long ago have stifled him, very much as the giant Antaeus was strangled in mid-air, cut off from his main source of strength, his mother Terra.

If Kothari's Terra, the Delhi University, has nourished him

 Kothan's own personal masterpiece in defence science research is work dedicated to the cause of reace.

This work, Nuclear Explosions and Their Effects—which monthan any other contribution of the Defence Science Organisation is Kothari's own handwork—was undertaken at the instance of Nehru, who made the suggestion in the hope that such a study would be of "some use in directing people's mind to the decading prospect in the nuclear age and to the dangers of continuing nuclear tet explosions". That Kothari achieved the objective Nehru set him is obvious from the fact that the only two other great nations besides ourselves who are not members of the nuclear club—Germany and Japan—have had the book translated, and that progressive circles even in the U.K., and the U.S.A. have congratulated us on its publication.

In his book, Kothari takes us beyond the invisible barrier where man's immense journey from remote pre-Cambrian beginnings may come to an abrupt end. By a careful, though naked, direct and unadorned organisation of the objective facts, but without the emotional tone or tint of moral indignation, Kothari conjurier vistas of a possible apocalypse so morosely violent and furidly tragic that we are, as if by a traumatic recoil, jerked into sense and samity. Rarely has amyone made such an effective practical use of so unprabilical a discipline as astrophysics as has Kothari in his Nuclear Explosions and Their Effects.

It is perhaps nothing but a coincidence that he should have made his scientified debut by applying nuclear physics to the study of stars, and then, some twenty years later, climated it by a reverse application of the same knowledge to those terrestrial starlets of our own making—the hydrogen bombs. In doing so, he is not perturbed by any qualms that he has in any way "tampered" with the universe or made nature "unnatural"—a spectre that has begun to haunt so many atomic scientists of our generation. On the contrary, he may well solace himself that he has only drawn ancew from our newer nuclear knowledge a moral which Pascal, with uncanny insigh, sensed at the very threshold of the modern era in science. "There is nothing which we cannot make natural", Pascal wrote, "and there is nothing natural that we cannot destroy", not excepting even our planetary abode.

Such Pascalesque discernment does not come by mere technical proficiency in manipulating either the metrical symbols or their material counterparts, the intricate synchrotrons of nuclear physics,

it stems rather from devoted and prolonged meditations that take hold upon the stars above even to the neglect of life here below. Kothari began his ruminations on the starry heavens very early in life, and, in his first upward starings, he, like Thales before him, did not always heed the hidden pitfalls that beset his own honourable modern expedient of competitive examination.

down-to-earth existence. But, unlike Thales, he was too deen and gentle to be provoked by the libes of philistines into dreaming to turn to any mercenary account his enormous talents by cornering a market, or even winning administrative power by recourse to the I doubt if he suspected then those talents of his. But his teacher. Saha, clearly saw what Kothari himself in his humility could not perceive. Indeed, Saha, who foresaw that Kothari alone among his band of bright boys could bend his bow and in due time wear his mantle, had little difficulty in keeping him off the temptations of Civil Service because of the existence of a profoundly ascetic streak in his make-up. That streak runs to this day, expressing itself not merely in an abstinence usual in a run-of-the-mill tectotaller, but, more importantly, in a total negation of the acquisitive impulse that comes natural only to those who live a life of contented and ungrasping prudence out of some deen inner conviction in a purpose more serious than conspicuous consumption, status and prestire. It is this spirit of dedication that prompted Kothari to work

for long hours every day as Head of the Defence Science Organisation for over a decade in a virtually honorary capacity, earning his meagre keep as Professor of Physics in Delhi University, a position he retained throughout the period. He thus killed two birds with one stone-satisfying his own urge of selfless service while keeping his links with the academic garden where his scientific talents had ripened into fuller bloom. He once told me that, but for the inspiration that these links provided, the Hercules of administration would long ago have stifled him, very much as the giant Antaeus was strangled in mid-air, cut off from his main source of strength, his mother Terra. If Kothari's Terra, the Delhi University, has nourished him

all this while, it is because Kothari himself had given her the necsary wherewithal by putting her on the scientific map. For, surpring as it may seem, before Kothari's arrival there in 1935, Del University, despite its location in the capital, was a backwater the teaching of physics. Saha, who almost drove him out of Allah bad into Delhi, did so in sheer disgust at his failure to persuade the administrative sultans of the Allahabad Senate to at least allo Kothari three of the artear increments that he should have care doing valuable astrophysical research in Cambridge during the early 'thrities'.

Kothari, though indifferent to the increments, reconciled him self to parting company with Sain because, lured by the mas of distant drums, he could never imagine that the metropolis of realm that was the "brightest" jewel in the British Empire would harbour such an all-cry-no-wool type of antediluvian university But institutions, in the long run, become what the men behind ther choose to make them. It was, therefore, but natural that, in cours of time, Delhi's fame as a centre of physical fearning should hat grown by leaps and bounds, especially as Kothari won, almost at first sight, the full confidence and unstituted support of his Vice-Chancellor, the celebrated educationist Sir Maurice Gwent.

I will not dwell on what Kothari did to secure for Delhi a place in the scientific sun—for here the result speaks for the deed. But I cannot forbear from mentioning that he, the unpractical astrophysicist, was practical enough to lure there at least one pure mather matician, Dr. Auluck, to the study of physics, with the result that the two together found an excellent use for Ramanujan's famous theory of partition; of numbers—an otherwise pretty useless study. I have chosen the adjective "pretty" deliberately for, as Ruskin remarked, the prettiest "things in the world are the most useless 'peacocks and lilies for instance". I might have added to Ruskin's list Ramanujan's partition theory, but the Kothari-Aduck use of it in determining the sizes of broken-down fragments of long chain of molecules in high polymers—that is, new fuels and fabrics his untons—invalidates its inclusion now.

Kothari, of course, would be the last to regret the exclusion, otherwise he would not have provided its raison d'être. For though a

believer in fundamental research of the purest ray screen, he does not share the pessimism of those who counsel that "pure" science should remain for ever pure, a thing to be enjoyed rather than used for fear that use may, by some Micawberian chance in reverse gear, turn into abuse. As one accustomed to resolving stern defence dilemmas in his capacity as an erstwhile Scientific Adviser, Kothari knows that the risk will always be there, but that it has to be faced. The Greek developed science as a philosopher's delicit, sourn-

ing all application as almost a desceration. They ended in the blind alley of inane Platonic contemplation. The practical Romans, who followed in their wake, made the opposite error of being too obsessed with results to blide their time. They wanted to turn prematurely their baby ideas into their beasts of burden. Not knowing that their finest investment lay in putting milk into those babies, they, too, drew a mighty blank—a millennia of intellectual Cummeria and durkness.

It is only during the last three hundred years that we have gradually begun to understand that science is the bonus derived from pleasurable work inspired by disinterested intellectual curiosity, but unhampered by any inhibition about cashing in on the outcome even at the risk of the harvest containing some chaft, if not stony grt, along with the grain. We may congratulate ourselves that the future of science in our universities now lies to a great extent in the hands of a savant who has thoroughly imbibed this lesson that two milleanis of human history holds for us. all this while, it is because Kothari himself had given her the new wherewithal by putting her on the scientific map. For, is ing as it may seem, before Kothari's arrival there in 1933, I University, despite its location in the capital, was a backs: the teaching of physics. Saha, who almost drove him out of M bad into Delhi, did so in sherr disgust at his failure to penuladimistrative sultrus of the Allahabad Senate to at leaf Kothari three of the arrear increments that he should have doing valuable astrophysical research in Cambridge date early 'thirties."

Kothari, though indifferent to the increment, recoself to parting company with Saha because, hard by
of distant drums, he could never imagine that the me
realm that was the "brightest" jewel in the British T
harbour such an all-cry-no-wood type of anteddaBut institutions, in the long run, become what the m
choose to make them. It was, therefore, but notes
of time, Delhi's fame as a centre of physical lett
grown by leaps and bounds, especially as Ke
at first sight, the full confidence and unstitute!
Chancellor, the celebrated cluestionist Si M

رابد

I will not dwell on what Kothari did to in the scientific sun—for here the result special commot forbeat from mentioning that he, sicist, was practical enough to lure their matician, Dr. Auluck, to the study of the two together found an excellent theory of partition of numbers—as I have chosen the adjective "pretty" marked, the prettiest "things in peacocks and lifes for instance". Itst Ramanijan's partition their in determining the sizes of L.

K. S. KRISHNAN

CIR K. S. KRISHNAN won his scientific spurs by opening D peep-holes into the interiors of molecules. One such peephole was provided by his collaboration in the discovery of the Raman Effect (C. V. Raman was his mentor and guide at the time). Another was the invention of an ingenious experimental technique to establish correlations between the magnetic properties of crystals and their internal architecture. A third was the mapping of the energy distribution of electrons in graphite crystals. Lest one should imagine that all this was the pastime of a curious mind, with little or no practical consequence, I must hasten to add that the present flood of synthetics—from dyes and drugs, paints and plastics to fuels and fabrics-is the outcome of a deeper knowledge of the solid state of matter acquired through these and allied techniques. The precise arrangement of the constituent atoms or molecules in solid matter, the forces that bind them, and details of their geometrical configuration-a study of all these aspects is necessary to obtain theoretical clues required in synthesising new molecules expressly tailored to yield almost any desired behaviour pattern,

Although exploring the structure of molecules is a task complex enough to absorb a lifetime of research, it was only one of the many branches of science mastered and enriched by Krishnan. Thus, even when he was in the thick of important experimental work as Raman's collaborator, he agreed to assist Arnold Sommerfeld in the preparation of his book on an entirely different subject, namely modern developments in wave mechanics—the great German physicist had come to Calcutta to give lectures on it.

The material he gathered was no mere hift reproduction of Sommerfeld's talks. Krishnan worked it out in such an independent and original way, supplying new and elegant mathematical proofs, that Sommerfeld offered to publish the book under joint authorship which, however, Krishnan declined.

This work was all the more remarkable not only because it

KARIAMANIKKAM SRINIVASA KRISHNAN

Born: December 4, 1898 Education:

M.A., Madras University

D.Sc., Madras University

1928-33 Reader in Physics, Dacca University

1933-42

Mahendralal Sircar Research Professor, Calcut

University

1942-47 Professor and Head of the Department of Physic

Calcutta University 1947-61 Director, National Physical Laboratory

1947-61 Member, Atomic Energy Commission Died : June 13, 1961

President, Indian Science Congress (1949)

Chairman, Board of Research in Nuclear Sciences

Chairman, Indian National Committee for International Geophysical Year

Vice-President, International Union of 'Pure and Applied Physics' Vice-President, International Council of Scientific Union (1955-57)

FELLOW OF THE ROYAL SOCIETY (1940) AWARDED:

Liege University Medal (1937)

Krishna Rajendra Jubilee Gold Medal (1941)

Knighthood (1946)

PADMA BHUSHAN (1954)

Bhatnagar Memorial Award (1958)

K. S. KRISHNAN

IR K. S. KRISHNAN won his scientific spurs by opening peep-holes into the interiors of molecules. One such peepe was provided by his collaboration in the discovery of the Raman cet (C. V. Raman was his mentor and guide at the time). Aner was the invention of an ingenious experimental technique to ablish correlations between the magnetic properties of crystals I their internal architecture. A third was the mapping of the agy distribution of electrons in graphite crystals. Lest one should sgine that all this was the pastime of a curious mind, with little or practical consequence, I must hasten to add that the present od of synthetics-from dyes and drugs, paints and plastics to fuels d fabrics-is the outcome of a deeper knowledge of the solid te of matter acquired through these and allied techniques. The xise arrangement of the constituent atoms or molecules in solid itter, the forces that bigd them, and details of their ecometrical ofiguration-a study of all these aspects is necessary to obtain coretical clues required in synthesising new molecules expressly fored to yield almost any desired behaviour pattern.

Although exploring the structure of molecules is a task coma enough to absorb a lifetime of research, it was only one of the any branches of science mastered and enriched by Krishnan. ius, even when he was in the thick of important experimental work Raman's collaborator, he agreed to assist Arnold Sommerfeld the preparation of his book on an entirely different subject, mely modern developments in wave mechanics—the great German ysicist had come to Calcutta to give lectures on it.

The material he gathered was no mere hi-fi reproduction of mmerfeld's talks. Krishnan worked it out in such an independent d original way, supplying new and elegant mathematical proofs, at Sommerfeld offered to publish the book under joint authorship hich, however, Krishnan declined.

This work was all the more remarkable not only because it

Since Krishnan preferred the excitement of a quest to its quarry, his motto naturally was that of Ulysses:

To follow knowledge like a sinking star Be) and the utmost bound of human thought.

No wonder, then, that he was often more thrilled with the offshoof many of his investigations for which he could find no great u I particularly recall his mentioning to me one day how a by-proot of purely mathematical interest, throws up by one of his invest; thous, moved him ever so much more deeply than the physics of t situation he had analysed. This was because of a profound math matical streak in his mental make-up.

It is indeed so profound that he would have shone as a math matician had he not proved even a greater genius in experiment physics. For he had a feel particularly for what he called "good mathematics which flascinated him for two reasons. First, bocaus "good" mathematics had "a certain simplicity, elegance and ineviability which make it easier to get it across to an intelligent math matician". Secondly, because "this simplicity and elegance of goo mathematics make it eminently applicable to other brancher o science". Like Browning's Abt Vogler, Krishnan firmly believe that in mathematics at any rate

There shall never be one good lost !

He recalled how at a conference of mathematicians, some thirly years ago, someone posed the question whether an abstruse branch of mathematics like the partitioning of a number does find any application at all. The questioner chose the instance in the certain that the partitioning of a number being an abstruse branch even in the theory of numbers, which is the "purest" and therefore the least useful branch of mathematics, it was extremely unlikely to have any application. And yet, surprisingly, came the answer from one of the members in the audience that it had in fact been applied in the tudy of splicing telephone cables.

Because of this faith in the ultimate utility of all "good" mathematics, Krishnan considered the positivist antithesis between "pure" and "applied" mathematics to be false. Indeed he went a step

See also page 120 for further elucidation.

further and branded a similar opposition between science and technology as even more Iallacious. For science originated from a spirit of disinterested enquiry fostered by the Platonic ideal of contemplation on the one hand and the Benedictine ideal of the dignity of manual work on the other. The marriage of the two ensured that work illumined by intellectual and moral vision became a joy and delight overcoming its weariness, fatigue and drudgery. Once science grew out of such pleasurable work, inspired by disinterested intellectual curiosity, it paved the way for all the technological advances that followed in its wake.

Krishnae, like Whitehead before him, was therefore never tired of extolling the purely cultural and aesthetic values of technological education. He did so one in grand style on a memorable occasion—the annual dinner of the National Academy of Sciences in Washington. He was specially flown over in 1955 from New Delhi to America to be its star speaker, a rare privilege be had shared with only such extalled notables as the Presidents of the Royal Societies of Britain, the Netherlands and Sweden. Many in the distinguished gathering, as the famous physicist Van Vleck who was among those mentioned, thought that he would talk about culture—the intangible unstical berings of the East. They were, however, refreshing to find that, avoiding the beaten path, Krishnan gave them a discourse on the cultural and aesthetic values of the chinal education.

That Krishman, a scientist of the purent brood, should have bose sensitive to the anethetic and columnal implications of science and technology stemmed from his deep and abiding interest in literature and philosophy. This interest saved him from becoming what Nietzache calls an inverted cripple, that is, someone who lacks all save one thing, of which he has too much, nothing but one great eye, car, belly or mouth. The escape is indeed a marvel as such crippledom in reverse gear is becoming increasingly rampant nowadays on account of the ever-widening range of knowledge requiring more and more specialisation.

sit was this precious but rare faculty of Krishnan of never losing sit of the work when in the midst of a minute examination of the trees that moved our late Prime Minister to sav and sixtleth burbday: "What is remarkable a rerat ceientie has

a whole man with an integrated personality." He had the capacity to drive home a moral as well as disarm a critic with a single mot juste or at most a conte juste on at of his vast repertoire. It is so vast that Nehru once remarked that he did not remember meeting Krishnan on any occasion when he had not told him some new story.

I have space here to repeat only one such story with which is silenced a carping critic who supbraided Dr. Bhabha (during a meeting at which the late Prime Minister himself presided) for locating the Atomic Energy Reactor at Trombay, near Bombay, without proper investigation into the pros and cons of all the available sites. Krishnan recalled the story of a student of the great mathematician, Jacobi, who was so belogged by the wide range of eatilier researches on his subject that he did not know where to begin his own. One day he ventured to sak his master for advice. Jacobi exploded, "For heaven's sake begin somewhere, anywhere! If your father had waited to investigate all the girls before deciding to marry one, there would have been no you, much less any of your research!"

Such telling humour, Gallie wit and quick repartee were the outcome of a razor-sharp intellect steeped in diverse fields besides science—history, philosophy, linguistics and literature. It is remarkable that, in the midst of his preoccupation with physics, chemistry, mathematics, teaching, administration and research, he found it possible to do more than his share of Valmiki and Voltaire. But greater still was the cultivation of his own mother tongue, Tamil, of which he was a distinguished writer. There were two reasons for his devotion to it. First, he recognised the need for the development of as clear, precise and direct a prosestyle in the Indian languages today as the early Fellows of the Royal Society gave to the English language three hundred years ago. In commending the "close, naked and natural" prose style of these early scientific writers, Krishnan went to the heart of our language problem of scientific and general use.

It is the creation of a live language capable of expressing preisely and without ambiguity the new thoughts of a writer in a novel age, and not merely a dictionary of technical terms with which alone some of our language enthusiasts seem to be concerned. Believing that example was better than precept, Krishnan showed how one of our languages-Tamil-could be fashioned into an instrument of communication of real power.

His second reason for the study of Tamil lay in his strong nationalism. He once told me that at the very threshold of his scientific career he considered it rather unbecoming to go abroad in search of Western learning. He even took to writing his scientific papers in Tamil. While time mellowed some of these excesses of his nationalistic temper, he continued till the end to preserve intact a hard inner core of sturdy independence which often induced him to act the Hamoden in his university campus. This independent spirit urged him time and again, often at grave personal risk, to swim against the tide, sometimes to resist someone's linguistic fad, at other times someone's pressure to lend the prestice of his name to imperialisms of various sorts-both indigenous and foreign. On occasions like these, something inside the centle and suave savant snapped and he turned into a fighter prepared to go it alone. For though Krishnan was a living embodiment of a way of life that combined humility and peace with a forgiving understanding, he firmly believed that just causes must be fought for, if that is the only way to uphold them. With such a credo underlying his conduct it is no accident that Krishnan's life was a pursuit of virtue and vinan with equal vigour.

PRASANTA CHANDRA MAHALANOBIS

Born: June 29, 1893

Education: B.Sc. (Hons.). Calcutta University, 1912

M.A., Cambridge University, 1915

1915-22 Professor of Physics, Calcutta University

1922-45 Head of Physics Department, Calcutta University

1971. Director, Indian Statistical Institute, Calcutta

1945-47 Head of Post-Graduate Statistics Department

Calcutta University

1945-48 Principal, Presidency College, Calcutta

1948-Emeritus Professor, Calcutta University

19.19. Hon, Statistical Adviser, Government of India 1955-

India

Member, Planning Commission, Government of

Founder-Editor, SANKHYA, Indian Journal of Statistics (1933-) Vice-President, Biometric Society (1947)

Chairman, U.N. Sub-Commission of Statistical Sampling (1947-51)

President, Indian Science Congress (1950) Chairman, ECAFE Conference of Statisticians (1952)

Chairman, U.N. Statistical Commission (1954)

Hon. President, International Statistical Institute (1957-)

FELLOW OF THE ROYAL SOCIETY (1945) Fellow of the World Academy of Art and Science

ó

Fellow of the King's College, Cambridge University

Fellow of the Indian Academy of Sciences

Weldon Medal and Prize, Oxford University (1944) Sarbadhikari Medal, Calcutta University (1957) Hon, D.Sc. from several universities 96

P. C. MAHALANOBIS

If a great scientific movement of the size of patting a country on the statistical world map could be attributed to a single individual, he is unquestionably Mahalanobia. He took to statistics as a side line some fetty-five years ago when he was a professor of physics at the Presidency College, Calcutu, and when statistics as a separate ducipline was not known anywhere, let alone in India. No doubt Karl Pearson, Edgeworth, Gosset and others had aftready been at work. But statistics had not yet come of age even in England as the epoch-making work of R. A. Fisher and his followers of whom Mahalanobia was one of the earliest had not commenced till the early twenties.

Mahilanobis, who had gone to Cambridge in 1913 to study physics and mathematics, returned to India two years later with copies of Karl Pearson's journal Biometrica and Biometric Tables. These publications gave him his first glimpse of the new vistas in statistics that were just beginning to appear. It has since opened many of his own. There is no space here to dwell on them all. But one may perhaps be permitted to holist him with a well-aimed sampling petard devised according to his own prescription. If we take as our sampling fearne any of the internationally recognised modern monographs or textbooks on advanced statistics, we will find in their author index. Mahilanobis's name linked with at least three major developments. They are: Mahilanobis 'datance', his contributions to the design of experiments, and his theory and practice of large-scale sample surveys.

Consider first Mahalanobis "distance". It is in some ways an analogue of the distance of our daily use. In ordinary parlance distance is the measure of the sprantion between any two geographical locations in any space such as that of the graph paper on our desk or the surface of the earth on which we live or the three-dimensional perceptible space around us. It statistical counters should mutatic mutanda be a measure of "separation" between

a whole man with an integrated personality." He had the capacity to drive home a moral as well as disarm a critic with a single mot fusie or at most a conte juste out of his vast repertoire. It is so vast that Nehru once remarked that he did not remember meeting Krishnan on any occasion when he had not told him some new story.

I have space here to repeat only one such story with which the silenced a carping critic who supbraided Dr. Bhabha (during a meeting at which the late Prime Minister himself presided) for locating the Atomic Energy Reactor at Trombay, near Bombay, without proper investigation into the pros and cons of all the available sites. Krishnan recalled the story of a student of the great mathematician, Jacobi, who was so befogged by the wide range of earlier researches on his subject that he did not know where to begin his own. Or day he ventured to ask his master for advice. Jacobi explode "For heaven's sake begin somewhere, anywhere! If your fat' had waited to investigate all the girls before deciding to marry of there would have been no you, much less any of your research

Such telling humour. Gallie wit and quick repartee we outcome of a razor-sharp intellect steeped in diverse fields science-history, philosophy, linguistics and literature. It is able that, in the midst of his preoccupation with physics, c mathematics, teaching, administration and research, it possible to do more than his share of Valmiki an But greater still was the cultivation of his own me Tamil, of which he was a distinguished wr two reasons for his devotion to it. First, he rece for the development of as clear, precise and direct . Indian languages today as the early Fellows of gave to the English language three hundred . mending the "close, naked and natural" proscientific writers, Krishnan went to the hear lem of scientific and general use. . It is the creation of a live language

An.

cisely and without ambiguity the new novel age, and not merely a dictic which alone some of our language e Believing that example was better gether in a well-defined segment of its own, there are a few Q-points that appear in the P-cluster and vice versa. In other words, the fore and tail ends of the two clusters of P- and O-points overlap to a more or less extent. As a result some border-line cases do arise when an individual represented by a point in this region of overlap might be misclassified if we tried to infer his category (pygmy or Nordic) from his height measurement alone. All we can do in such cases is to adopt some of the statistical criteria devised by statisticians to minimise the probability of such a misclassification. If this minimal probability of a wrong inference is some positive proper fractioner, the two populations may be deemed to overlap to the extent of 100 or per cent. Thus if the two groups overlap completely-cent per cent overlap- a is clearly one. Contrariwise, when they are completely distinct with no overlap at all ccis zero. We may therefore reasonably measure the extent of separation or divergence between the two populations by the index $(1-\alpha)$. For the index assumes its maximum value I when the two groups are completely distinct with no overlap of ex =0. Likewise, its minimum value is zero when the two groups are completely identical with cent per cent overlap or ce=1. In this respect Mahalanobis "distance" is a sophistication of the classical tests of significance. While the classical tests say that two groups differ significantly. Mahalanobis "distance" measures the extent of that difference.

any two populations in any ensemble of populations we may choose to study.

Consider, for the sake of definiteness, two populations, one African pygmics and the other of Nordie swedes. If we a interested in only one attribute, say, their stature, we will find th individuals of both populations vary. Some are tall, sor medium, while still others are short. It may well be that a few of the taller pyemics are taller than some swedish dwarfs. Neverthele despite such overlaps of stature there is some sense in the claithat the Nordic swedes as a group are taller than the Africa pyemies. If so, we may legitimately wish to enquire how far apaor how "distant" the two populations as a whole are in tespor of their stature. If we choose to measure the "distance" betwee them by the difference between the mean heights of the two popula tions as our common-sense at first sight may suggest, we encounte a serious difficulty when we proceed to consider some other attri butes of our population such as weight, girth, head length, etc., se that we now have a set of several sample means like those of stature, weight, girth, etc., instead of a single one. The problem then arises as to how we may construct a single measure of "separation" from so many sample mean differences. Mahalanobis invented a neat way of solving it.

To understand the underlying rationale of his solution consider two samples of, say, 100 pygmies and 200 Nordie swedze whose heights we have measured. If we take on a straight line a point whose distance from a fixed origin is the height of an individual, we may represent this individual by such a point. The 100 individual no one sample will then be represented by a cluster of 100 P-point like P₁, P₂, P₃₀, ..., P₃₀ and 200 individuals in the other by another cluster of 200 Q-points like Q₁, Q₂, ..., Q₁₀₀, ..., Q₂₀ (Fig. I). Although points of each sample cluster tend to flock to

her in a well-defined segment of its own, there are a few Q-points it appear in the P-cluster and vice versa. In other words, the e and tail ends of the two clusters of P- and Q-points overlap a more or less extent. As a result some border-line cases do se when an individual represented by a point in this region of erlap might be misclassified if we tried to infer his category (pygmy Nordie) from his height measurement alone. All we can do in ch cases is to adopt some of the statistical criteria devised by atisticians to minimise the probability of such a misclassification. If is minimal probability of a wrong inference is some positive oper fraction a, the two populations may be deemed to overlap the extent of 100 or per cent. Thus if the two groups overlap ampletely-cent per cent overlap- a is clearly one. Contrariwise, hen they are completely distinct with no overlap at all cais zero, We lay therefore reasonably measure the extent of separation or ivergence between the two populations by the index (1-- at). For he index assumes its maximum value I when the two groups are ompletely distinct with no overlap or a =0. Likewise, its miniium value is zero when the two groups are completely identical ith cent per cent overlap or a=1. In this respect Mahalanobis distance" is a sophistication of the classical tests of significance. While the classical tests say that two groups differ significantly. Jahalanobis "distance" measures the extent of that difference. Take, for the sake of simplicity, two groups or populations

awing two attributes, say, stature and weight. We could again operent any individual of our populations by a point on a two-finensional chart such as a graph paper instead of a one-dimensional straight line. On this chart we draw two straight lines OX and OY inclined at any angle as shown in Fig. 2. If we measure a length OM along OX equal to the stature of any individual and from M draw a length MP, parallel to OY but equal in length to his weight, we may represent the individual by the point P, on our two-dimensional chart exactly as we represented him earlier on a und-dimensional straight line OX. We again have a cluster of P-points P₁, P₂, ..., P₁₀₀ and another cluster of Q-points Q₁, Q₂, ..., Q₃₀₀ with a certain amount of overlap. It is obvoict that so long a two two clusters overlap there will always be a chance of an unclassified individual being misclassified. As before, the minimum attainable

probability of wrong classification being α an appropriate measure of the separation between the two groups is the index $(1-\alpha)$.

Fig. 2.

If we consider three attributes of the populations, say, stature, weight and girth, the cluster of P- and Q-points will now be in three-dimensional space. But the two clusters will have as before a certain overlap with a certain consequential minimal probability (α) of meass-sidectaion. The "separation" or divergence between the two groups can again be measured by the index ($i-\alpha$). The extension of this procedure to include still more multivariate populations, that is, populations, that is, portions having more than three attributes is similar even if a graphical representation of clusters is no longer available.

Although we have defined "distance" by recourse to the minimal probability or of misclassification due to overlap of different clusters of sample "points", it is possible to represent it also as a geometrical distance between points on a chart or in space. Thus suppose we plot in Fig. 2 a point P whose X-coordinate is the mean stature and Y-coordinate the mean weight of pyemies. Let O represent the corresponding point with mean values of the swedes. It has been shown rigorously that we can represent the Mahalanobis "distance" or the separation between the two populations by the cometrical distance PO on the chart, if we remove certain arbitrariness in preparing our chart. For, in our chart we took the axes OX and OY at any angle and we measured the two attributes stature and weight in any units. To remove the latter, we observe that we can replace any given set of measurements, say, the stature of 100 pygmies in our sample by two measures, one the mean to represent their central tendency, and the other their standard deviation to represent their spread or within-sample variation. The ratio of these two measures being a pure number will obviously be the same, no matter in what units, inches, feet, centimetres, etc. we choose to measure the stature. We may therefore measure the mean values of the sample attributes as ratios of their respective standard deviations, that is, in standard deviation units and thus make them independent of the scale of measurement.

To remove the arbitrarmers of the angle between the two axes, Mahalanobis observed that the chief obstacle in the way of measuring the amount of divergence or generalised "distance" between statistical groups arises from the correlation between the attributes, that is, the tendency of the attributes (status and weight in this

case) to go hand in hand. Statisticians measure it by an index called the coefficient of correlation (r) which may take any value within the range —1 to 1. To overcome the difficulty, how sugarised transformation of the observed values of the two, say, character, stature and weight into a system of statistically independent variations having nil correlation. Thus, if we replace the two measures is and w of stature and weight respectively of an individual in our group by two others x and y, where x=ax+bw and y=cx+dw it is possible to determine the values of x, b, c and d in such a way that correlation between x and y is zero while that between 8 and w is not.

An equivalent way of doing the same thing is to incline the two area we originally adopted for our graphical representation at that particular angle whose coince is equal to r, the occificant of correlation between a and w. If we now measure along two area inclined at this angle means of stature and weight in standard deviation units for each group, we get a set of points whose mutual distances on the chart will equal (except for a scale factor) Mahalanobis seneralised "distance" based on two characters.

To illustrate, consider the study of Bhils from four different regions, viz., Panchamahal, Rajpipla, Khandesh and Maharashtra, made by Majumdar and Rao at Mahalanobis's instance. It was based on two measurements (head length and breadth) of four samples, one of each group. If we plot the sample means of length and breadth measured in standard deviation units on an oblique set of axes inclined at an angle of 81 degrees whose cosine equals 0.15, the computed value of the coefficient of correlation between length and breadth, we obtain a plot of four groups as shown in Fig. 3. The actual geometrical distance between the plotted points is also the Mahalanobis "distance" which measures the extent of overlap between the groups. Consequently, the actual distance on the chart is also a measure of the probability or of wrong classification. Small distances on the chart correspond to greater overlap between the two groups concerned and therefore greater probability or of misclassification and large distances to small probability. Thus distant groups on the chart like Khandesh and tra are really remote as neighbouring groups like

Fig. 3

Khandesh and R jpipla are really akin in a statistically significant sense as well.

The value of Mahalanobis generalised "distance" stems from the fact that in many disciplines such as biometry, anthropology, psychology, econometrics, geology, social research, etc., we have to search for significant patterns between groups of measurements obtained. We are not concerned with the attributes of any single individual in any group but with the characteristics of a group as a whole vis-a-vis other groups, that is, their interrelationship. Mahalanobis "distance" provides a fruitful way of ordering groups in a few constellations, those having the maximum overlap flocking together and those with lesser overlap remaining apart. Such a patterning of groups suggests valuable clues to their evolution-how they come to be what they are. But its significance in statistical theory is better appreciated if we recall that Mahalanobis managed to generalise Student's t-test wa his "distance" or what is called the D2-statistic some seven years before. Hotelling devised his Tstatistic to do for multivariate populations what Students' t-statistic did for the univariate ones. It is therefore no mere accident that the sampling distribution of Mahalanobis "distance"—D2 is closely connected with that of Hotelline's T.

At about the time (1925) Mahalanobis first formulated his concept of generalised "distance", he also began work which in course of time was to culminate into what is nowadays called the design of experiments. For by sheer chance he found himself struggling with "errors" in some agricultural field experiments in which a number of varieties of paddy had been sown in parallel plots repeated in the same order in several blocks. "Error" in this context is not what we ordinarily call "mistake" with all its unpleasant connotations. It is simply an omnibus name for all the variations from whatever source which exists among the results of independent experiments that are intended to be identical but cannot be. Thus, in the case of paddy yields of the six varieties that Mahalanobis examined at the time, he had to reckon with the variation in yields due to the varying fertility of the plots on which they were grown. He sought to eliminate its effects by crude graduation-a technique that Neyman revived independently several years later. But the most fruitful consequence of his research at the time was that the celebrated statistician Ronald Fisher who read Mahalanobis's paper sent him his own earlier ones on the design of agricultural experiments to control error.

The leit maif of Fisher's work was to recue agricultural field trials from the blind alley into which they had fallen because of their disregard of a basic difference between experiments performed in the field and the laboratory. The difference arises because the outcome of field experiments is a tangle of interactions of several possible factors of which we seldom have any prior knowledge. In coassequence the conduct of a field trail under the certis purbur condition usually assumed to hold in physical laboratories becomes all but impossible in field experiments. This is why evaluation of seeds, fertulisers, pesticides, etc., on the basis of "attaitical" arguments, reared on ill-disignal experiments with little regard for control of "cross" can be flagrantly illogical. Fisher solved the problem of design for an important though limited class of agricultural experiments. Moreover, he reduced the method to a mere

routine which any one could apply by recourse to the basic tables he produced. Mahalanobis was the first convert to Fisherian view of statistics who sought not only to apply his methods in India but also to extend and amplify them.

At the time Fisher developed his methods for improving the design of experiments, his approach was frankly technological. He was not concerned at the time with philosophical rationalisations of his techniques as he was to do later when he set himself to explore and extirnate what he called the "underworld" of probability logic that underlay the process of scientific inference. He had then set himself the task of analysing experimental data, and devising those improvements in statistical methods which promised to make such analysis more thorough and comprehensive. That is, he was concerned with formulating techniques which were superior to the more conventional ones in the concrete sense of extracting from the data more "information" on the subjects under enquiry, and therefore leading to estimates of higher precision and to more sensitive tests of significance. He was the first to emphasise that planning of agricultural experiments is an economic question requiring a balance between cost on the one hand and precision and reliability of estimates on the other. He also showed that very often subsequent manipulation of experimental data by recourse to the most elaborate statistical refinements could increase the precision by only a few per cent, whereas a different design involving little or no additional cost and experimental labour could increase the precision by a factor of two, five or even more and could also supply information, in addition, on relevant supplementary questions on which the original design was completely blank.

Mahalanobis led the movement for the introduction of these new and revolutionary methods of experimental design in India. To this end he wrote (in collaboration) a score of "Statistical Notes for Agriculture Workers" wherein these methods along with other innovations devised in his own Statistical Luboratory at Calcutta were presented as pre-fabricated procedures ready for direct application. These are the methods now well known as Latin square or Gracoc-Latin square arrangements and randomised and "conflounded" designs that I have already described in the profile

of R. C. Bose† whom Mahalanobis discovered and diverted from pure mathematics to applied statistics with mutual benefit to both.

But Mahalanobis's own personal contribution lay mostly in two principal directions. First, it consisted in a more extensive permeation of his theory and practice of large-scale sampling with Fisherian ideology so that the survey may yield either estimates of preassigned precision at minimal cost or those of minimal error within a pre-cribed cost. Secondly, it del him to invent in 1958 a new tool of great versatility and power called Fractile Graphic Analysis (FGA) for interpreting the data collected in the course of several rounds of the National Sample Survey conducted by him.

To appreciate the significance of his work on sampling theory and practice, we may mention that sampling is selection of a part of an aggregate of material in such a way as to represent the whole. But when the "whole" is scattered over a sub-continent of the size of Indian Union or even one of its States as is the case when we wish to infer, say, the area or yield of various crops by observing a sample of plots, we cannot pick up our sample as casually as a merchant takes a handful of grain from a sack he is about to buy or a doctor draws a few drops of his patient's blood for diagnostic test. For, the material, that is, the plot yields or acreage under cultivation to be sampled is neither well-mixed nor located at one readily accessible site as both blood and grain of our illustrations are. When, therefore, we have to estimate one or more parameters of a population which is both extremely hetrogeneous as well as widely scattered over space and very often in time too as for example is the case with per capita income of a country, the question of sample design becomes of paramount importance. For, with an ill-designed plan one may literally burn his sampling candle at both ends, that is, burst the budget and yet produce outrageously inaccurate estimates

In a memorable paper on Large-scale Sample Surveys published in the Philosophical Transactions of the Royal Society (1945) Mahlanobis developed his theory of large-scale sample surveys based on his earlier experience of actual surveys designed to estimate the area and yield of a number of crops like paddy and jute in Bogal and wheat and sugar-cane in U.P. He began by recalling the wife

known fact of sampling theory that the (unknown) mean value of the attribute of any given population may be estimated by taking a random sample of size n^4 is not a way that every item of the population has equal chance of inclusion in the sample. If then we computed the sample mean 1^m and its standard deviation s^4 the true mean would be in the range $(m \pm 2 \frac{s}{\sqrt{n}})$ with odds 24:1 in favour

or, in the range $(m\pm 3\frac{1}{\sqrt{n}})$ with odds 499: 1 in favour and so on. In other words, the margin of error is simply a suitable multiple of $-\frac{3}{n}$ depending on the degree of confidence with which we wish to make the assertion. It therefore follows that we should expect the sampling error to decrease inversely as \sqrt{n} , the square root of the size of our sample. Mahalanobis, however, found that the actual decrease in agricultural surveys was much smaller so that the gain in precision by increasing the size of the plots sampled was appreciably less than that expected on the basis of ordinary sampling theory. He correctly ascribed this deviation between actuality and anticipation to the fact that the proportious of land sown with a particular crop (or the yields of a crop) in plots in the same neighbourhood are not statistically independent but are highly correlated as the same neighbourhood are not statistically independent but are highly correlated in the control of the same neighbourhood are not statistically independent but are highly correlated in the control of the same neighbourhood are not statistically independent but are highly correlated in the control of the same neighbourhood are not statistically independent but are highly correlated in the same neighbourhood are not statistically independent but are highly correlated in the same neighbourhood are not statistically independent but are highly correlated in the same neighbourhood are not statistically independent but are highly correlated in the same neighbourhood are not statistically independent but are highly correlated in the same neighbourhood are not statistically independent but are highly correlated in the same neighbourhood are not statistically independent but are highly correlated in the same neighbourhood are not not statistically neighbourhood are not assume that the same neighbourhood are not not statistically independent but are a same neighbourhood are not not statistically neighbourhood are not not not not not neighbourhood ar

Thus the condition assumed in sampling theory that any group

of individuals has the same chance of being selected as any other group of the same size no longer obtains. For selection of, say, five plots in one neighbourhood is like selecting a sample of two telephone subscribers by selecting one at random and then taking the four who follow him in the directory. When such is the case, it is no longer true that the sampling error of the mean is $\frac{1}{\sqrt{n}}$ times the standard deviation of the sample. Since the ways of securing such equiprobability of selection of plots in agricultural surveys are prohibitives costly in money if not at time too, Mahalanobis investigated in detail the complication caused by this feature of correlation between sampled units. He showed by theoretical reason-mg supplemented by his empirical experience of actual surveys in the past how one may compute the sampling error (e) of the sample estimate under conditions such as usually grevall in agricultural surveys.

The computation is essentially an intricate exercise in combinatorial mathematics. But its underlying idea is simple; indeed the same as in all sampling problems. It is merely the calculation of the number of different ways in which a specified number of items can be either picked up or permuted from a given group or aggregate having regard to certain prescribed constraints on our choice. For the calculation of the sampling error (e) of the estimate of any population parameter is really a statement of the confidence expressed as probability with which we may assert that its actual (unknown) value does not differ from the sampling estimate by more than a preassigned multiple of e. And the probability of any event is simply a ratio of two different sets of combinations like, for example, the probability of at least one ace in a bridge hand. It is simply the ratio a/b, where a is the number of combinations in which 13 cards picked out of 52 contain at least one ace and b is the number of all combinations in which 13 cards can be picked

out of 52 irrespective of whether they contain an ace or not. Having in this way computed the sampling error inherent in the various sampling schemes of agricultural surveys he proceeded to specify the likely cost function (c) of such schemes. His problem

then became one of the following two:

(i) Given a value of c, to choose a scheme of sampling which required, among other things, determination of the partition pattern of the total area into grids, each with its own number of basic cells so as to minimise, o

or alternatively. (ii) Given e, to choose the foregoing entities so as to

minimise c.

He showed that both questions yield practically the same answer, that is, the same grid pattern and the same set of values of size and density of the grids over the different zones into which the whole area to be covered may be divided. But his preoccupation with sampling errors did not make him oblivious to other (non-sampling)

sources of error in such surveys like errors due to the human factor. sought to check them by various devices like that of interpenenetwork of samples (that is, the same sampling units being

by two independent observers for cross-check) and other All in all he showed that the conduct of a largescale sample is something of an engineering project so that it might well be called "statistical engineering". It is true that for a fuller understanding of his theory of sampling designs one needs mathematics that is a bit stiff. But it is no stiffer than that required to design a high-speed aeroplane; quite the contrary. If the difficulty of understanding the intricate mathematics underlying the design of a sample survey is an argument against its use, it is well to recall that it is equally fuffic trying to design a high-speed aeroplane without mathematics and a lot more dangerous. For a baddy designed aeroplane will only kill a few plots and passengers. But false ideas about our food crops and aereage may lead to the death of millions as the Bengal Famine of [943 demonstrated not so long ago.

However, his latest innovation mentioned earlier, viz., Fractile Graphical Analysis designed to present sampling data collected during the course of National Sample Survey in a more meanineful way is mathematically much simpler and therefore easier to understand. Its value springs from the fact that it neatly resolves a difficulty encountered in comparing socio-economic conditions of a group of people at two different epochs or of two groups of people at the same epoch. Such comparisons, if made, in the usual way are apt to be meaningless. Consider, for example, the pattern of expenditure of a population at two different epochs. If we compare the mean expenditure on foodstuffs, clothes, education, etc., of different income groups, we are in effect comparing expenditure measured in two different currencies as the purchasing power of money has meanwhile altered. Index numbers of various kinds devised to keep track of changes in complex patterns such as cost of living are not of much use in restoring parity to our comparison. But we can do so by first dividing the population into equivalent fractional or fractile groups and then comparing the proportion spent on each item by each fractile group. Thus we first rank the individuals in our population sample in ascending order of their total expenditure. Next we bundle them in any number of equal groups so as to include a fixed percentage, say, ten per cent of the total included in the sample. Then the first fractional or fractile group will consist of ten per cent of the poorest, the second group those of the ten per cent of the next poorest, and so on for the tenth group of the richest ten per cent. If we now compare the proportions of expenditure on foodstuffs, clothes, education, etc., of each of the ten fractile groups at two different epochs, the altered purchasing power of money is of no consequence.

If the aforementioned sample of Mahalanobis's contributions in the field of statistics seems to a student of his complete works unduly biased, it is because the sampling frame, viz., the international textbooks and monographs used to sample it give short shrift to an immense variety of his other statistical output. They omit to mention it because it is merely the application of well-known routine statistical procedures (with suitable amendments as required) to a number of concrete practical problems even though many of the problems themselves are a far cry from routine. A case in point is his statistical study of the areal and time distribution of rainfall in relation to floods in Orissa rivers. It enabled him to controvert the suggestion made in 1926 by a committee of expert engineers to raise the embankments of the Bahimini river by several feet to prevent future floods. Mahalanobis could do so because his statistical study of rainfall in the past sixty years showed that the abnormal rise of the river in 1926 could reasonably be ascribed to exceptionally heavy rainfall in the catchment area and not to any rise in its bed as the committee had imagined,

Such continual resort to ready-made procedures in preference to what he once called "sterile intellectual acrobatics" springs from his firm conviction that statistics like engineering is an applied science. Its sole ration d'être is the help it can give in solving a concrete problem. No doubt (he would himself hasten to add) statistics must rely on mathematical theory even as engineering has to. But he is never fired of warning his collaborators in the Indian Statistical Institute of which he has been the permanent Director ever since its inception that while practical work without adequate theoretical foundations will be inefficient, too crudite theory with little or no prospect of practical application will be estentatious. It is, however, not always easy to keep in practice the delicate balance between theory and practice. He himself has had hard time of it doing so in the Statistical Institute. In his efforts to restrain the so-called mathematical "excesses" of some of his erstwhile collaborators he may have occasionally crossed the taxuable line of balance with the consequence that a few of

them, who like R. C. Bose are really pure mathematicians thinly disguised as statisticians, felt obliged to emigrate abroad to find their metier. But by and large he did succeed in giving a strongly practical slamt to the statistical output of his team of scientific workers in the Institute.

If the foregoing thumb-nail sketch of Mahalanobis, the scientist, is confined exclusively to a few highlights of his work in statistics only, it is because he made his most original contributions in this branch of science rather than any other. He has, of course, done many more things than mere statistics. He has, for example, participated in the social, cultural and intellectual movements in Bengal associated with the names of Raja Ram Mohan Roy and Rabindra Nath Tagore-being a fluent speaker and writer of Bengali. He has found time even to explore the ancient Indian Jaina dialectic of Savadvadva to show "certain interesting resemblances" of that school to "the probabilistic and statistical view of reality" sparked by recent developments in quantum physics. He has delved deeply into economic theory developing econometric models known as Mahalanobis's two and four sector models for determining optimum investments in different sectors of the national economy. But above all it is his work on national planning as one of Nehru's brain trust on questions of economic growth and development that took most of his time after Independence. It culminated in his draft outline of the Second Five Year Plan that he submitted to the Government of India in 1956.

While all these and other outputs of his prodicious labours will no doubt scent to him, a man of action and affairs that he is, more important, his claim to fame as a scientist will rest largely on this contributions to stabilized theory some of which it have outlined above. When all the sound and farry of controverness that he as raised by his use (or abuse) of statistics to promote his ideas on national planning in developing countries is stilled in due course, it will be evid of thim: I be became in his wors little of the state of the broke with the indust radiation because the school he founded was rearted by a typically un-ledian accent on action rather than contempolation.

CHANDRASEKHARA VENKATA RAMAN

Born: November 7, 1888
Education: M.A. Medere He

1943-

Education M.A., Madras University, 1907

1917-33 Palit Professor of Physics, Calcutta University
 1933-43 Director, Indian Institute of Science, Bangalore

Founder-Director, Raman Research Institute, Ban-

galore
1948- National Professor

President, Indian Science Congress (1928)
President, Indian Academy of Sciences (1934-)

FELLOW OF THE ROYAL SOCIETY

Corresponding member, Soviet Academy of Sciences (1947)
Foreign Associate, Paris Academy of Sciences (1949)

Hon. Fellow of several scientific academies

Awarded: Knighthood (1929) Mateuchi Medal, Rome (1929)

Nobel Prize (1930)
Hughes Medal, Royal Society (1930)
Franklin Medal, Philadelphia Institute (1951)

BHARAT RATNA (1954) International Lenin Prize (1957) Hon. Ph.D., Freiburg University

Hon. Ph.D., Freiburg University

Hon. D.Sc., from several universities in India and
abroad

abroad

Publications: Molecular Diffraction of Light

Mechanical Theory of Bowed Strings and Diffraction of X-rays

tt2

Theory of Musical Instruments
Physics of Crystals, etc.

C. V. RAMAN

THRITY-FIVE years ago when Dr. Chandraschbara Venkata Raman recented his Nobel Praze at Stockholm, he repeated at the presentation certemony the experiment that had earned him the award. It was a demonstration of what is now called the Raman effect on a number of figuids, one of which happened to be alcohol. The same evening, at the banquet held in his honour, the hosts offered him a drink which the vegetarian and tectotaller scientist naturally refused. Thereupon, one of them reproached him for being unfared to alcohol, saying, "You delighted us in the morning with a demonstration of Raman effect on alcohol. Why not continue the pleasure by a reciprocal exhibition of alcoholic effect on Raman T."

While the effect of drink on man has been known since Bacchus taught him the secret of wine, the converse Raman effect could not even be imagined without the discovery of a hitherto unobserved attibute of light. That radiant light, "the eternal coeternal beam", was for us our "rising world of waters, dark and deep" we know. But that it could exert pressure like a rocketing bullet is difficult to appreciate in everyday hie as no apple of an eye has ever been dented by a shaft of light. Nevertheless, what is an imperceptible Basamer touch for the eye is a smashing hit for the invisible molecules and atoms of liquids through which a light beam may tract.

The first to suggest that a beam of light could also act as a fauilidad of minute bullets was Albert Einstein. It was indeed a paradoxical notion at the time, quite out of tune with the usual a Maxwellian idea of radiant light as a sort of radio wave only act as billion times shorter. It did not, therefore, gain full credence till is billion times shorter. It did not, therefore, gain full credence till is some 25 years later when Raman, by a series of superbe experience actually gave an ocular demonstration of a tangible buller effect of lieth beam.

One such effect had been predicted by Smekal some five years before Raman produced it in his laboratory at Calcutta. Smekal reasoned that when a beam of light of one pure colour, say, the green

effect thus makes it possible to map out the levels of possible energy gains of the molecules and atoms of the substance, from which it is but a step to infer the details of its molecular and atomic structure. In other words, here is a technique for exploring the interiors of molecules and atoms. Such an exploration was possible even before Raman's discovery but it required recourse to a process called infra-red spectroscopy whose employment presented great experimental difficulties and risks of error on account of its dependence on measurements of invisible infra-red rays by their heat effect. By substituting measurement of the colour modifications visible rays, the alternative Raman spectroscopy provides a superbly easy experimental technique. This is why the Raman instruments are now extremely useful tools of the physico-chemical workshop and an essential equipment of the research laboratories of all progressive universities and industries. Because of their rapid spread the internal structures of tens of thousands of compounds have been investigated by their use.

One consequence of the use of such molecular and atoms probing machines as the Raman spectroscope, electron microscope and ultra-centrifuge is that the knowledge acquired through them has shown the way to synthesise more and more artificial molecules—many of them vital to industry and science. Indeed, a whole crop of new industries such as colour photography, plasties and synthetic subber has sprouted during the past few decades from our deeper understanding of the interior build of molecules and atoms. Today, not only many of the fabrics we were alor thany of the colours we enjoy, the fuels we use and the drugs we consume have been develoned in this way.

Raman himself has been more interested in synthetic diamonds that is synthetic drugs. His followers claim that this extraordinary interest is purely scientific because diamond is an ideal substance for the study of the solid state by means of its Raman spectrum. But it seems to me that it stems equally from the aestheric appeal of its glitter and sparkle. For Raman is also an artist in his appreciation of light, colour and form. He is as apt to be fured by the lustre of gems as by the mystery of their internal architecture. For him reading a messparer in a dark room by means of his own "blue" diamond under invisible ultra-violet translation is even more exciting diamond under invisible ultra-violet translation is even more exciting

the world in the domain of physics during the 'twenties, one will appreciate what a rare honour such an invitation was.

Nevertheless, these early researches on musical instruments were no Ninth Symphonies of colour and form that came later and won for him world-wide accision. How could they be, indeed, conducted as they were by a professional finance officer of the Government of India in such spare time as the could scrape from his official chores? For when Raman came of age, over 55 years ago, scentific research as a whole-time career was not heard of in this country. Raman, therefore, like most bright students of his day, drifted from college wa a competitive examination into government service almost in a fit of absent-imidentes. But he seems to have regretted the choice of his meter sufficiently to jump at the very first opportunity of a change that came has way ten jears later with. Sir Autosh Mookerjee's offer of the newly created Palit Professorship of Physics in Calcutts Unitersity.

The surrender of what he called the "preferments of office" in favour of the "pursuit of knowledge" would have made him at least think twice, especially as he was already 29, at a time when most research workers are usually past the peak of their form. But he assures us that while Sir Astitosh's offer of the Professorship to an "unknown government official" was an "act of great courage", his own acceptance thereof was without demuc—"just a case of following his own inclinations". All homage to Sir Astitosh's discreting eve which saved from obscurity this sem of rourest ave scene.

than the deduce il troduces

It is again Cuto over the r an excasion fo determine the reflected, and r by their ught :

Venue reflectin. sun shines and In fact, a full. shade on water

ka-observed him the series to culminate L

he had combin studying the il the cello, the mridangam.

Raman ha nevitable acce days he worked later he posed t tion-papers that University, O off-beat probler the candidates. for want of time

was so fascinate Harish for his : Lest this e earlier acoustic.

mination exerci found and origin German Physic.

S. RAMANUJAN

R AMANUJAN was a pure mathematician of the highest order, queen of mathematics even as mathematics is the queen of the sciences. It is a branch that is as old as Pythagoras and Euclid. The reason is that, long before the dawn of civilisation, man had learnt to count and had become familiar with integers, that is, whole numbers like 1, 2, 3, 4, 5 and so on. From such familiarity it is a natural step to look for general properties pertaining not to any specific number but to entire classes of integers, and that is the heart of the theory of numbers. For this theory does not concern itself with any particular number (example: 2 divides 6 exactly) but takes in its stride whole classes of integers (example: 2 divides all even integers exactly). However, very often such general statements about classes of whole numbers, though for the most part easy to understand, require for their proof the deepest resources of present-day mathematics like the modern theory of functions which goes beyond the integers. from which it takes its rise as far as topology goes beyond high school geometry from which it springs.

Take, for instance, Goldbach's conjecture that every even integer greater than two is the sum of two primes, talk in, numbers have gn od divsors. Thus, 4 is the sum of the two primes 2 and 2, 6 of the primes 3 and 3, 8 of the primes 3 and 5, and so on. But any number of such illustrative examples whereby Goldbach made his guess do not prove that this statement is true for all even numbers, although no one has yet found an instance to disprove th. A proof of his statement is still beyond the accumulated mathe-

process with the world. The nearest approach so far made is that of the Stalla Price winner Vinogradow, who, using methods traceable matily to the work of Ramanujan and his collaborators, has been able to show that every large integer can be written as the sum of at most four primes (example 43=2+5+17+19).

Another similar problem which is easy to formulate and

MEGHNAD SAHA

Born: October 6, 1893

Education M.A., Calcutta University

Born :

D.Sc., London University

1921-23 Khaira Professor of Physics, Calcutta University

1923-38 Professor of Physics, Allahabad University

Palit Professor of Physics, Calcutta University 1952-56 Emeritus Professor of Physics, Calcutta Univer-

sity

1955-56

Director, Indian Association for the Cultivation of Science. Calcutta

1952-56 Member of Parliament, Lok Sabha

1955-56 Founder and Director, the Institute of Nuclear Physics, Calcutta

Died: February 16, 1956

President, Indian Science Congress (1934)

President, National Institute of Sciences (1937-38) Member, University Commission (1949)

Chairman, Calendar Reform Committee, Government of India

FILIOW OF THE ROYAL SOCIETY (1927) Fellow of the American Academy of Arts and Science Fellow of the Astronomical Societies of America and France Carnegie Travelling Fellow (1936)

PUBLICATIONS: A Treatise on the Theory of Relativity
On a Physical Theory of the Solar Corona

A Treatise on Heat
A Treatise on Modern Physics
My Experiences in Russia

125

M. N. SAHA

O NE of India's most precious gifts to world science during the 20th century has been the epoch-making Saha equation relating to stellar spectra. Men had gazed at the stars for centuries, but even the wisest of them could make out little of their mystery. If they were inspired by the glory of the heavens, as was St. Paul, they hazarded the guess:

There is one glory of the sun, and another glory of the moon, and another glory of the stars: for one star differeth from another star in glory, (I Corinthians XV, 41)

If they were appalled by its immensity, as was Pascal, they gave in to a sense of bewilderment after the fashion of the nurvery thyme:

> Twinkle, twinkle, little star, How I wonder what you are!

But towards the second half of the last century astronomers. They began to ctamine celestial bodies not only with the help of telescopes but with that of glass prisms and gratings and thereby opened up new vistas in astronomy, when starlight passes through a prism it decomposes into its constituent colours exactly as sunlight does to make a rainbow. What we see after starlight or sunlight has paved through a prism is known as the spectrum. The rainbow formed by the refraction of sunlight in raindrops is the most beautiful natural spectrum that we know.

Although the spectra of stars are only stellar radiations separated into their constituent colours by prisms and gratings, they recold in detail the manifold glory of the stars of which St. Paul had only a faint premonution. For the decomposed stellar light appears as a band of bright (or dark) lines on a dark for coloured background. The lines are like cipher messages which, if properly decoded, give

3

us an idea of the celestial fires. To understand these messages, we must learn the syntax of the spectral language. The hard core of this syntax is that profound amalgan of atomic theory and empirical observation called quantum mechanics. Although Rutherford and Bohr were the pioners in this field, it was Saha who first attempted to apply its principles to decipher the hieroglyphiae of the stellar spectra.

Rutherford and Bohr had already established the now well-known concept of an atom as a minature planetary system consisting of a number of electrons orbiting round a much heaver central nucleus of protons. But, unlike the planets, the satellite electrons in this subatomic planetary would do not always stay in the same orbit for all time. They often jump suddenly from one orbit to another and, under appropriate conditions, even leave the orbit for good and all. As all the transitions of the orbiting electrons in the dames of stars leave their finger-prints in the form of spectral lines, it is but natural that the immense number of such possible transitions should give rise to a corresponding diversity in the spectra of stars. Saha called to order this bewidering complexity of stellar spectra by providing a natural explanation of their origin.

His explanation of the origin of stellar spectra has all the inevitability and naturalness of a truly fundamental contribution. He recalled the progressive dissociation of substances with continued heating-the substance turning into a gas, the gas molecules decomposing into those of simpler compounds, the latter again into those of the constituent elements, until finally the molecules of the elements are decomposed into atoms. What could be more natural than that the atoms themselves should begin to disintegrate, with the loss of some of their outer electrons, under the stimulus of still further heating. Saha therefore suggested that at the very high temperatures-of the order of 6000°C or more-prevailing in stellar atmospheres, many of the constituent atoms of a star must be truncated with a good many of their outer satellite electrons torn off, (This process of atomic truncation, with loss of satellite electrons. is called ionisation, and the truncated atom an ion) Stellar atmospheres were thus merely gaseous mixtures of freed electrons and atoms both truncated and whole,

Saha's next sten was to apply to such a mixture the well-known

laws of the kinetic theory of gases and thermodynamics which he happened to be teaching his students at the time. Now the kinetic theory of gases envisages a gas as a swarm consisting of an immense number of particles moving at random. But a study of such a welter of individual motions being impossible, the theory confines itself to a statistical examination of the average features of the entire assembly of particles instead of their individual attributes.

Applying the statistical reasoning of the kinetic theory and the laws of thermodynamics to a gaseous mixture of free electrons, ions and atoms. Saha argued that, for atoms of any given element, truncation or ionisation was promoted not only by high temperatures but also by low pressures. At high temperatures the process of an atom's dissociation into an electron and its truncated remnant goes on of its own accord until a halance is obtained between the rate of dissociation and the rate of recombination. Reduction of pressure by lessening the chances of encounter between truncated remnants and free electrons diminishes the rate of recombination. while leaving the rate of ionisation unchanged. It thus fosters ionisation. Saha's equation is only a mathematisation of these ideas, enabling calculation of the degree of ionisation in a stellar atmosphere, given its pressure, temperature and the energy required to detach from the atom each of its successive electrons. His equation is thus the first concrete formulation of the deep connection between a star and an atom that is the leit motif of present-day astrophysics. It has no doubt been amended in important detail by the work of Fowler, Milne and others; but all subsequent progress in this field is merely an claboration of the original and seminal ideas of Saba

If Saha's linking of stars and atoms seems too remole from such down-to-earth problems as the transmission of radio wave, conduction of flames, formation of ares and explosive reactions. Thus all long-distance radio transmission using high-frequency waves depends on what is called the "Kennelly-Heaviside" layer-a region in the earth's atmosphere beyond the stratosphere, estending from heights of approximately 40 up to 400 miles. At these the stratesphere electrons. The resultant ionisation of their outer electrons. The resultant ionisation of the air there

makes it an electrically conducting sphere completely surrounding the earth, for a flow of current is merely a stream of freed electrons. It is because of its electrical conductivity that such a layer can reflect radio waves back to earth. While the existence of such a layer makes long-distance radio transmission possible at all, it has also the awkward consequence of "fading" which disturbs the reception of radio broadcasts. The study of the propagation of radio waves through the ionited upper atmosphere with which Saha was occupied in later years had thus more immediate technological possibilities.

Although the stars, atoms and ions remained Saha's main concern, their remoteness from everyday the did not turn him into an ivory tower recluse. Quite the contrary Like Bernal, Haldane and Joliot Curie, he fostered among his colleagues an awareness of the social function of science. According to him, the main task of scientists in independent India was the widespread dissemination of technical know-how at all levels in order to estapult our economy on to the "take-60" stare.

if the state why as he grew older and became an established national figure, he turned more and more to problems of education, industrialisation, national planning, river vailey projects, socialism, and agricultural cooperatives. Almost every month, in the joint of Science and Culture, that he edited for years, he wrote on one or other of these subjects, now and then lashing out surously at independent industrialists who gobbled up "enormous profits" for "prastice and other industries who took ways farge chunks of our wealth. He had little patience even with a national Government which they up with all this "capitalisties" exploitation and did not dare more up up to "horarded wealth; ashay leveltery, and gold lying with the Indian Princes and rich magnates for investment in profitable national Government.

In his eagerness to make the country neh queskly he scarcely deguised his admiration for the Draconnon measures whereby the Soviet rulers transformed a feudal, agrecultural country into a highly industrialized modern state, despite what he thought were far greater initial handlessy than those we had to face at the d not independence. Nor did he conceal his contempt for the Octation overlaaded with humanous?

electorates, which "must perforce first do things demanded by them" rather than "discuss far-off schemes with experts and scientists".

No wonder all these diatribes against capitalism and democracy made Saha unopoular in many circles. Some even accused him of "fellow-travelling." If he found it hard to contain his criticism of the powers that be, it was because the chill penury that he had known at first hand in his early days could never repress his noble have-not rage even in his more affluent later years. He passionately longed to bring that affluence which he earned for himself by dint of his intellect and industry to one and all of his countrymen.

For him this was no utopian dream but a firm conviction born out of knowledge of the power of new technology and science to lift us out of the slough of poverty on to a new heaven of prosperity. But more than mere material prosperity he also hoped for a fuller blossoming of indigenous scientific talent, a good deal of which he knew was running to seed under the blight of poverty and other

handicaps.

Saha himself had escaped such a deadening effect by a bair's breadth. But for the generosity of a medical practitioner of his village, Ananta Kumar Das, which gave him his first footbold on the educational ladder, he might well have been one among those in elonous obsecutiv whom Gray Jamented.

> But knowledge to their eyes her ample page. Rich with the spoils of time did ne'er unroll....

However, the all men of mission, he was in too great a hurry to sufficient heed to the Himalayan obstacles that stood in the way of bringing to earth his technological paradise. It is doubtful if he had clearly sized up the enormous difficulties that the endeavour to achieve the Second and Third Plan targets of industrialisation (by no means extravagant by his standards) has brought in his wake even though many of them spring from that great weakness of ourse-technical backwardness—which Saha as a scientist was the first to perceive and emphasise. He also had an inadequate appreciation—handleaps under which a democratic regime has to work

its ideals.

is easy to suggest a short shrift for them but I doubt if he

himself would have tolerated many of the constraints of such a shortshrifting programme. With his Hampdon-like independence he would certainly have revolted against the rigid intellectual regimentation that authoritarian regimes are wont to enforce. That is why his greatest single stricture was the abject kow tow of the German scientists before Hitler, and his greatest single applause, the Royal Society President's firm resistance of George III's rejection of the design of Franklin's lightning conductor because of the latter's "rebel" associations.

If he forbore to rap his Soviet comrades, it was because of a genuine belief, notwithstanding stories of Lysenko's persecution of Soviet biologists publicised by Julian Huxley, John Langdon-Davies and others, that the Soviet politicians, out of respect for their scientists, exercised far greater self-restraint in deciding matters requiring scientific and technological knowledge than their counterparts anywhere else. However that may be, one thing is certain. Had he himself to live under the duress of an authoritarian regime requiring a suffender of his convictions, not all its gifts and cajolery could have persuaded him to be

One wrong more to man, one more insult to God!

It was perhaps a union of this "sea-green" incorruptibility with manense and versatile intellectual powers that endeared Saha even to ordinary men and women in Calcutta where he lived from 1938 onwards. One proof of this endearment was his election in 1951 to the Lok Sabha by a large majority. The election was indeed a personal victory for he contested as an independent candidate, refusing to accept a party ticket in order to guard his integrity.

As a Member of the Lok Sabha he never ceased to fight for causes dear to him, the dearest of them all being the immediate development of heavy industries in the country. It is a pity that he should have died just at the threshold of the Second Five-Year Plan which embodied many of his progressive ideas and which was designed to usher in an era of heavy industrialisation that he longed electorates, which "must perforce first do thin rather than "discuss far-off schemes with e

No wonder all these dustribes against e cracy made Saha unpopular in many circles him of "fellow-travelling". If he found it criterum of the powers that be, it was because he had known at first hand in his early day his noble have-not rage even in his more affl passionately longed to bring that affluence himself by dust of his intellect and industry t countrymen.

For him this was no utopian dream but a out of knowledge of the power of new technifit us out of the slough of poverty on to a new! But more than mere material prosperity he als blossoming of indigenous scientific talent, a jhe knew was running to seed under the blight a handicans.

Saha himself had escaped such a deadenir breadth. But for the generosity of a medical village, Ananta Kumar Das, which gave him his educational ladder, he might well have been or elorious obscurity whom Gray lamented:

> But knowledge to their eyes her c. Rich with the spoils of time did :

However, like all men of mission, he was in pay sufficient heed to the Himalayan obstacles it of bringing to earth his technological paradise, had clearly streed up the enormous difficult to achieve the Second and Third Plar no means extravagant by his stands though many of them spring nical backwardness—which ceive and emphasise. He of the handicaps under which cre to maintain its fields.

It is easy to suggest "

himself would have tolerated many of the constraints of such a shortshanting programme. With his Hampden-like independence he would certainly have revolted against the rigid intellectual regimentation that authoritarian regimes are wont to enforce. That is why his greatest single stricture was the abject known or the German scientists before Hitter, and his greatest single applause, the Royal Society President's firm resistance of George III's rejection of the design of Franklin's lightning conductor because of the latter's "rebel" association.

If he forbore to rap his Soviet comtades, it was because of a graune belief, notwithstanding stories of Lysenko's persecution of Soviet biologists publicised by Julian Huxley, John Langdon-Davies and others, that the Soviet politicians, out of respect for their scientists, exercised far greater self-restraint in deciding matters requiring scientific and technological knowledge than their counterparts anywhere else. However that may be, one thing is certain. Had he himself to live under the duress of an authoritarian regime requiring a surrender of his convictions, not all its gifts and cajolery could have nexauded him to be

One wrong more to man, one more insult to God!

It was perhaps a union of this "sea-green" incorrupibility with immense and verstille intellectual powers that endocard Saha even to ordinary men and women in Calcutta where he lived from 1938 oawards. One proof of this endocarment was his election in 1951 to the Lok Sahab by a large majority. The election was indeed a personal victory for the contested as an independent candidate, refusing to accept a party treket in order to guard his integrity.

As a Member of the Lok Sabha he never ceased to fight for causes dear to him, the dearest of them all being the immediate development of heavy industries in the country. It is a pity that he should have died just at the threshold of the Second Five-Year Plan which embodied many of his progressive ideas and which was designed to wher in an era of heavy industrialisation that he longed so much to see.

