Федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 2.3.1A «Современные средства получения и измерения вакуума»

Овсянников Михаил Александрович студент группы Б01-001 1 курс ФРКТ

г. Долгопрудный 2021 г.

2.3.1А Современные средства получения и измерения вакуума

Версия 0.2.5 от 05 февраля 2019 года 1

Изучаются принципы получения и измерения вакуума в экспериментальном стенде на основе компактного безмасляного высоковакуумного откачного поста Pfeiffer Vacuum серии HiCube 80 Eco, вакууметров Pfeiffer Vacuum серии DigiLine и вакуумных компонентов типов ISO-K, ISO-F, ISO-KF.

Введение

1. Основные характеристики и области применения вакуума

В физике вакуумом называют состояние газа, при котором характерная длина свободного пробега молекул в газе λ сравнима по порядку величины с характерным линейным размером сосуда d, в котором газ находится. Для воздуха при нормальных условиях $\lambda \sim 10^{-5}$ см, откуда видно, что воздух в жилых помещениях не находится в состоянии вакуума, но, например, внутри пористых материалов, таких как древесина, уже может находиться.

В технике вакуумом называют состояние газа при котором его давление меньше атмосферного ($P < P_{\text{атм}}$). Различают следующие типы вакуума: низкий, когда средняя длина свободного пробега молекул газа значительно меньше характерного линейного размера рассматриваемого объёма, т.е. $\lambda < d$; средний, когда $\lambda \sim d$; высокий (или глубокий), когда $\lambda \gg d$ (рис. 1). Иногда выделяют ещё сверхвысокий вакуум, при котором не происходит заметного изменения свойств поверхности, первоначально свободной от адсорбированного газа, за время, существенное для проведения эксперимента. Газ в состоянии высокого вакуума называется ультраразреженным.

_

 $^{^1}$ По всем вопросам, связанным с работой установки, корректировкой и дополнением описания, предложениями по изменению или улучшению заданий просьба писать по адресу vorona.na@mipt.ru.

 $^{^2}$ Физические условия, определяемые давлением $p=101\,325\,\Pi a$ (760 мм рт. ст., нормальная атмосфера) и температурой $t=273,15\,\mathrm{K}$ (0°C). В различных областях техники условия нормируются стандартами ГОСТ или ISO и могут незначительно отличаться от приведённых значений, что необходимо учитывать при использовании справочных данных или в расчётах.

Рис. 1. Понятие о вакууме

На практике, кроме единицы измерения давления в системе СИ — 1 Паскаль (Па), используются также и внесистемные единицы, такие как Торр, миллибар (мбар), атмосфера и др., связанные следующим образом [1]:

```
1 тех. атм. = 1 кгс/см² = 98,0665 кПа = 0,980665 бар, 1 физ. атм. = 760 Торр = 101,325 кПа = 1,01325 бар, 1 бар = 10^6 дин/см² = 0,1 МПа.
```

Сфера применения вакуумной техники и технологий стремительно расширяется. Вакуум является идеально чистой технологической средой, в которой можно осуществить электрохимические и электрофизические процессы при изготовлении изделий, используемых в различных отраслях промышленности. Новые типы полупроводниковых структур, особо чистые материалы, сплавы, специальные покрытия изготавливаются в вакууме.

Некоторые примеры, позволяющие получить представление о масштабе применения вакуумных технологий:

- В бытовых приборах производство электрических лампочек, напыление защитных покрытий на солнечные батареи, сантехнику и др.
- В пищевой промышленности для лиофилизации (сублимации) продуктов питания и для вакуумной упаковки.
- В машиностроении для нанесения упрочняющих покрытий на режущий инструмент и износостойких покрытий на детали машин, для захвата и транспортировки деталей в автоматических линиях и т.д.

- В полупроводниковой промышленности для производства подложек микрочипов, матриц мониторов, светодиодов и др.
- В нефтехимии в процессах получения дистиллятов масел из парафинов, синтеза сложных эфиров, регенерации растворителей, перегонки нефти и синтезе жирных кислот.
- В металлургии для удаления из расплавленного металла большого количества растворенных в нем газов, что дает возможность получения пластичного материала с высокими механическими свойствами.
- В аналитической промышленности для производства сканирующих электронных микроскопов, используемых в фармакологии для обеспечения качества медикаментов или мобильных систем допинг-контроля в спорте.
- В космической отрасли для создания имитаторов космического пространства и испытания узлов, механизмов и приборов космических аппаратов.

Без вакуумной техники сегодня невозможно представить экспериментальные исследования в области физики плазмы, ударных волн, элементарных частиц и др. Лабораторные установки с вакуумным оборудованием могут быть размещены как на лабораторном столе (как данная установка), так и достигать линейных размеров до 10 км, как Большой адронный коллайдер.

2. Некоторые понятия для работы с вакуумной техникой

Основы процесса откачки и связанные с ним понятия рассмотрим на примере простейшей вакуумной системы (рис. 2).

Предельное остаточное давление (предельный вакуум) $P_{np}[L^{-1}MT^{-2}]^3$ — наименьшее давление газа, которое формируется в процессе откачки в рассматриваемом сечении вакуумпровода (рассматриваемой точке вакуумной системы). Обычно выделяют предельное давление в камере или на входе в насос.

Наибольшее выпускное давление $[L^{-1}MT^{-2}]$ — максимально допустимое давление газа на входе насоса.

_

³ В квадратных скобках указана размерность физической величины в системе LMT (СИ, СГС и др.), в которой за основные величины приняты длина (L), масса (М) и время (Т) [8]. Соотношения между единицами измерения основных величин, приведённых в данном разделе, указаны в прил. Д.

1 — откачиваемый объём, 2 — вакуумный насос, 3 — вакуумпровод (трубка), 4 — впускной патрубок (вход) насоса, 5 — выпускной патрубок (выход) насоса

Рис. 2. Простейшая вакуумная система

Быстрота откачивающего действия (скорость откачки) вакуvмной системы $S[L^3T^{-1}]$ — объем газа, проходящий через рассматриваемое сечение вакуумпровода в единицу времени при текущем давлении в данном сечении:

$$S = dV/dt$$

Следовательно, быстродействие насоса $S_{\rm H}$ определяется как:

$$S_{\rm H} = dV_{\rm H}/dt,\tag{2.1}$$

а эффективная скорость откачки камеры S_o :

$$S_o = dV_o/dt. (2.2)$$

Падение давления вдоль вакуумпровода $\Delta P = P_1 - P_2$ определяется его пропускной способностью (проводимостью) $U[L^3T^{-1}]$: $U = \frac{Q}{P_1 - P_2},$

$$U = \frac{Q}{P_1 - P_2},\tag{2.3}$$

где $Q[L^2MT^{-3}]$ — *поток газа* через вакуумпровод с соответствующими давлениями на концах.

Величина $Z[L^{-3}T]$, обратная проводимости, называется *импедан*сом вакуумпровода:

$$Z = 1/U$$
.

В общем случае указанные величины S, U, Q, Z как и сами давления P_1 и P_2 зависят от времени. Но в конце процесса откачки устанавливается квазистационарный режим, при котором поток газа становится практически постоянным и равным количеству поступающего в систему газа в единицу времени вследствие наличия течей, т.е. нарушения герметичности (в основном в местах механического соединения отдельных узлов вакуумной системы). Для стационарного режима можно записать условие непрерывности потока откачиваемого газа:

$$P_1 S_o = PS = P_2 S_H = Q. (2.4)$$

Из уравнений (2.1)—(2.4) нетрудно получить т.н. *основное уравнение вакуумной техники*, связывающее основные параметры вакуумной системы:

$$\frac{1}{S_o} = \frac{1}{S_H} + \frac{1}{U}. (2.5)$$

Уравнение (2.5) позволяет правильно ориентироваться в выборе средств откачки и вакуумпроводов при конструировании вакуумной системы для любых целей.

Количественной характеристикой течи, является натекание $Q_{\rm H}$ [L^2MT^{-3}], измеряемое при отключенных средствах откачки:

$$Q_{\rm H} = V \frac{(P_{\rm K} - P_{\rm H})}{\Lambda t},\tag{2.6}$$

где V — замкнутый исследуемый объём; $P_{\rm H}$, $P_{\rm K}$ — начальное и конечное давление в объеме; Δt — время между измерениями давления. При наличии течей, нормальной работе средств откачки и отсутствии в системе источников паров или газов, зависимость потока газа через течь от времени $Q_{\rm H}(t)$ носит, как правило, линейный характер.

Для заданного давления P_1 в замкнутом исследуемом объёме допустимым считается натекание:

$$Q_{\rm H} \ll Q = P_1 S_o = P_1 \frac{S_{\rm H} U}{S_{\rm H} + U}. \tag{2.7}$$

Объём при этом считается достаточно герметичным для поставленных задач.

На пропускную способность вакуумпровода существенно влияет режим течения газа, который характеризуется *числом Кнудсена*, равным отношению длины свободного пробега молекул в газе к характерному линейному размеру течения:

$$Kn = \lambda/d$$
.

Данная величина характеризует степень разреженности газового потока:

В гидродинамическом (вязкостном) режиме течения (Kn ≪ 1) различают ламинарные и турбулентные потоки. При ламинарном течении молекулы газа движутся по параллельным траекториям со скоростями, мало отличающимися друг от друга. При турбулентном течении наряду с поступательным движением всей мас-

сы газа, молекулы движутся хаотически со скоростями, подвергающимися случайным изменениям 4 .

- В молекулярном (кнудсеновском) режиме (Кп ≫ 1) течение газа сводится к независимому движению отдельных молекул по прямым линиям в периоды между соударениями главным образом со стенками вакуумпровода.
- В переходном режиме (Кn~1) в системе могут существовать все описанные выше виды течения.

В разных режимах течения пропускная способность вакуумпровода имеет существенно различные зависимости от размера его поперечного сечения.

2.1. Проводимость отверстия в стенке

В кнудсеновском режиме проводимость отверстия радиусом R определяется средним числом молекул, сталкивающихся со стенкой [2]:

$$\nu = \nu_2 - \nu_1 = \frac{1}{4} n_2 \vartheta - \frac{1}{4} n_1 \vartheta = \frac{1}{4} \frac{P_2}{kT} \vartheta - \frac{1}{4} \frac{P_1}{kT} \vartheta = \frac{1}{4} \frac{\vartheta}{kT} (P_2 - P_1), \quad (2.8)$$
 с другой стороны:

$$v = \frac{1}{A} \left(\frac{dN_2}{dt} - \frac{dN_1}{dt} \right) = \frac{1}{A} \left(\frac{d(n_2 V)}{dt} - \frac{d(n_1 V)}{dt} \right) = \frac{(n_2 - n_1)}{A} \frac{dV}{dt} =$$

$$= \frac{1}{A} \left(\frac{P_2}{kT} - \frac{P_1}{kT} \right) \frac{dV}{dt} = \frac{1}{AkT} (P_2 - P_1) U_{\text{OTB}}.$$
(2.9)

где ν — число молекул пролетающих через единицу площади отверстия за единицу времени, A — площадь отверстия, n — концентрация молекул, ϑ — их средняя скорость, T — температура газа, k — постоянная Больцмана, индексы 2, 1 относятся к потокам молекул по разные стороны отверстия.

Из уравнений (2.8) и (2.9) получим выражение для проводимости отверстия:

$$U_{\text{otb}} = \frac{1}{4}A\vartheta = \frac{1}{4}\pi R^2 \sqrt{\frac{8kT}{\pi m}} \sim R^2 \sqrt{\frac{T}{m'}}$$
 (2.10)

где R — радиус отвертия, m — масса молекулы газа.

 $^{^4}$ Режим течения определяется числом Рейнольдса Re = $\rho vl/\eta$ — безразмерной комбинацией характерных параметров текущей жидкости, где l — характерный размер поперечного сечения. По порядку величины Re есть отношение мощности потока кинетической энергии текущего газа к мощности сил трения, обусловленных наличием вязкости [8]. При малых Re (Re < Re $_{\rm kp} \approx 2 \cdot 10^3$) — возможно только ламинарное течение, при больших Re, течение может стать турбулентным.

Для вязкостного режима, формулы проводимости записываются много сложнее, и их рассмотрение выходит за рамки данной работы.

2.2. Проводимость длинного трубопровода

Проводимость длинного трубопровода $(L \gg R)$ в гидродинамическом режиме определяется вязкостными характеристиками газа и может быть получена из формулы Пуазейля (см. напр. лабораторную работу №2.2.5 [3]):

$$U_{\rm rp} = \frac{Q}{P_2 - P_1} = P \frac{\pi R^4}{8\eta L} \sim \frac{R^4}{L} \frac{P}{\sqrt{Tm}},$$
 (2.11)

где P — давление в рассматриваемом сечении трубы (можно рассматривать как среднее по длине вакуумпровода давление $P = (P_1 + P_2)/2$, η — вязкость газа, L — длина трубопровода, R — его радиус.

В молекулярном режиме проводимость определяется взаимодействием молекул газа со стенками и может быть получена из формулы Кнудсена (см. напр. введение к разделу III [3]):

$$U_{\rm Tp} = \frac{Q}{P_2 - P_1} = \frac{4}{3} \frac{R^3}{L} \sqrt{\frac{2\pi kT}{m}} \sim \frac{R^3}{L} \sqrt{\frac{T}{m}}.$$
 (2.12)

Для промежуточных условий проводимость определяется путём интерполяции зависимостей, полученных в вязкостном и молекулярном режимах.

В случае последовательного соединения разных вакуумпроводов, что обычно бывает в реальных установках, их импедансы суммируются, а суммарная проводимость равна:

$$U_{\Sigma} = \frac{1}{Z_{\Sigma}} = \frac{1}{\Sigma Z_i},\tag{2.13}$$

где Z_i — импеданс i-го участка вакуумпровода, Z_Σ — суммарный импеданс вакуумпровода.

Формулы (2.5), (2.10)–(2.13) показывают, что для эффективной откачки вакуумной камеры насосом с заданной скоростью откачки нужно выбирать вакуумпроводы как можно шире и как можно короче. В этом случае $U_{\Sigma} \gg S_{\rm H}$ и из (2.5) получим:

$$S_o = \frac{S_{\rm H} U_{\Sigma}}{S_{\rm H} + U_{\Sigma}} = \frac{S_{\rm H}}{\frac{S_{\rm H}}{U_{\Sigma}} + 1} \approx S_{\rm H}.$$
 (2.14)

С другой стороны выбирать насос с производительностью $S_{\rm H}\gg U_{\Sigma}$ не целесообразно, поскольку в этом случае скорость откачки будет определяться, в основном, проводимостью вакуумпровода:

$$S_o = \frac{S_H U_{\Sigma}}{S_H + U_{\Sigma}} = \frac{U_{\Sigma}}{1 + \frac{U_{\Sigma}}{S_H}} \approx U_{\Sigma}.$$
 (2.15)

Выполнение условия $U_{\Sigma} \gg S_{\rm H}$ особенно существенно в случае высоковакуумной откачки, или кнудсеновском режиме течения.

2.3. Время откачки

Положим, что за промежуток времени dt давление в откачиваемом объёме V_o снижается на dP_1 (рис. 2). Тогда за промежуток времени dt количество газа поступающего в трубку равно S_oP_1dt , а эта же убыль газа в объеме равна V_odP_1 , следовательно:

$$S_0 P_1 dt = -V_0 dP_1 (2.16)$$

Перепишем уравнение (2.16) в виде:

$$dt = -\frac{V_o}{S_o} \frac{dP_1}{P_1}. (2.17)$$

С учетом уравнения (2.5) для изменения давления со временем получим:

$$dt = -V_o \left(\frac{1}{S_H} + \frac{1}{U}\right) \frac{dP_1}{P_1}.$$
 (2.18)

Для вычисления длительности откачки по формуле (2.16) необходимо иметь данные о значении $S_{\rm H}$ при различных давлениях. Для данной установки такие данные приведены в прил. Б.

В случае $S_o = const$, решение уравнения (2.16) существенно упрощается и зависимость давления от времени откачки:

$$P(t) = P_1 \exp\left(-\frac{S_o}{V_o}t\right). \tag{2.19}$$

Постоянная времени откачки $\tau = V_o/S_o$ является мерой эффективности откачной системы.

3. Средства получения вакуума

Существует множество различных типов вакуумных насосов, целесообразность использования которых варьируется в зависимости от условий получения и требуемой глубины вакуума. Одна из возможных классификаций средств откачки приведена на рис. 3. Выделим среди представленных типов те, которые используются в данной лабораторной работе (2.3.1A).

Выделены те группы, насосы которых используются в данной лабораторной работе

Рис. 3. Примерная (далеко не полная) классификация насосов по принципу действия [4]

3.1. Мембранный (диафрагменный) насос

диафрагмембранном насосе две или более гибких мы (1) (рис. 4) жестко закреплены на стенках корпуса (2), образуя герметичные полости изменяемого объема. Диафрагмы приводятся в движение электродвигателем, вращательное движение которого преобразуется в возвратно-поступательное с использованием кривошипно-шатунного механизма (3, 4). С движением диафрагмы синхронизирована работа впускного и выпускного клапанов (5). Откачка осуществляется созданием в полости диафрагмы области пониженного давления, за счет чего в нее через впускной клапан поступает газ из откачиваемого объема или предыдущей ступени откачки. При уменьшении объема полости газ уходит через выпускной клапан.

1 — гибкие диафрагмы, 2 — корпус, 3 — шатун, 4 — коленвал, 5 — впускной и выпускной клапаны

Показаны четыре последовательные фазы работы (a-r) с положением мембраны, впускных и выпускных клапанов

Рис. 4. Конструкция и принцип работы двухступенчатого диафрагменного вакуумного насоса

- Преимущества: отсутствие материалов, загрязняющих рабочий объем насоса и, как следствие, откачиваемый объем: масла, других смазочных веществ, трущихся механизмов; используется для предварительной (форвакуумной откачки) в системах безмасляной (т.н. «сухой») откачки с особым требованием чистоты откачиваемого объема; используется до 4-х последовательных ступеней; низкий уровень шума.
- Недостатки: низкая скорость откачки за счет ограниченной эластичности диафрагмы; низкий предельный вакуум за счет обратного потока воздуха через выпускные клапаны; ограниченность срока службы сроком функционирования диафрагмы.
 - Тип вакуума: средний.

3.2. Турбомолекулярный насос

1 — ротор, 2 — статор, 3 — корпус насоса, 4 — электродвигатель, 5 — нижний шарикоподшипник, 6 — высоковакуумный входной фланец, 7 — выпускной форвакуумный фланец

Рис. 5. Конструкция турбомолекулярного насоса

Откачка в турбомолекулярном насосе (рис. 5) осуществляется за счет соударения частиц газа с быстродвижущимися турбинными лопатками дисков ротора (1) специальной геометрии, которые придают им дополнительный импульс в заданном направлении потока. Между дисками

ротора находятся диски статора (2) с обратно обращенными лопатками, направляющие поток молекул на следующие диски турбины по оптимальной траектории, минимизируя обратный поток (рис. 6). Каждая пара пластин ротора-статора образует одну ступень. Насос состоит из нескольких ступеней расположенных последовательно, каждая последующая ступень имеет меньшие геометрические размеры, что при постоянном потоке газа приводит к постепенному повышению давления до выпускного форвакуумного. Скорость вращения ротора современных турбомолекулярных насосов достигает нескольких десятков тысяч оборотов в минуту.

Рис. 6. Принцип работы турбомолекулярного насоса

- Преимущества: постоянная готовность к работе; быстрый запуск (\sim 10 минут на раскручивание турбины); устойчивость к резкому повышению давления (вплоть до атмосферного); широкий диапазон рабочих давлений (10^{-7} – 10^{-1} Па); примерно одинаковая быстрота действия для большинства газов; используется как в системах «сухой» безмасляной откачки с особым требованием чистоты откачиваемого объема, так и с масляными форвакуумными насосами за счёт минимального обратного потока.
- Недостатки: требуется надежная защита вращающейся турбины от любых механических воздействий (пыли, абразивных частиц, вибраций, частых и резких перепадов давления и т. п.), приводящих к износу подвески ротора и разрушению лопаток турбины.
 - Тип вакуума: высокий.

4. Средства измерения вакуума

Тип вакуумметров выбирается в зависимости от глубины вакуума, требуемого диапазона и рабочих условий (агрессивные среды, вибра-

ции, электромагнитные поля и т. п.). Основные типы вакуумметров, диапазоны давлений, при которых они используются, и принцип действия указаны на рис. 7. Остановимся подробнее на датчиках, использующихся в данной лабораторной работе (2.3.1A).

Выделены те типы, которые используются в лабораторных работах (№№ 2.3.1 [3], 2.3.1A, 2.3.1Б)

Рис. 7. Основные типы вакуумметров

4.1. Терморезисторный вакуумметр (Пирани)

Принцип действия тепловых манометров основан на зависимости теплопроводности газа от давления. Чувствительным элементом терморезисторного датчика (рис. 8) является тонкая металлическая нить накала (вольфрам, платина), помещенная в атмосферу откачиваемого газа. Сопротивление нити зависит от её температуры. Нить включена в одно из плеч мостовой схемы и разогрета до нескольких сотен градусов пропускаемым по ней током. Джоулево тепло, выделяемое нитью, отводится в основном через газовую среду со скоростью, зависящей от коэффициента теплопроводности. В зависимости от способа измерения

вакуумметр работает в режиме (а) поддержания постоянного сопротивления моста (а значит и температуры нити), (б) постоянного напряжения на клеммах A, C моста или (в) постоянного тока через мост. Мост изначально сбалансирован при давлении много ниже рабочего диапазона (сопротивление $R_{\mathcal{S}}$).

 R_H — сопротивление нити накала; R_{δ} —сопротивление балансировки; V_a — вольтметр для измерения напряжения на клеммах A, C в режиме (a); A_{δ} — амперметр для измерения тока разбалансировки моста в режиме (б); V_a — вольтметр для измерения напряжения на клеммах B, D в режиме (в)

Рис. 8. Принципиальная схема терморезисторного вакуумметра (Пирани)

В первом случае (а) напряжение на клеммах A, C моста автоматически подбирается так, чтобы мост всё время оставался сбалансированным при изменении давления и, тем самым, является мерой давления в системе:

$$P \sim V^2 - V_0^2,$$

где V_0 — напряжение на клеммах при начальной балансировке.

Во втором случае (б) мерой давления служит ток разбалансировки моста, в третьем (в) — напряжение на клеммах B, D.

В области низкого вакуума при $\lambda\gg d$ коэффициент теплопроводности перестаёт зависеть от давления, а при давлениях менее 10^{-3} Торр основную роль в процессе теплоотвода начинает играть излучение. Оба эти фактора ограничивают применение данного типа датчиков областью среднего вакуума.

- Преимущества: Практически неограниченный срок службы в неагрессивных средах за счёт низкой степени окисления нити при низких температурах нагрева. Способность выдержать прорыв атмосферы.
- Недостатки: при давлениях более 1 мбар показания существенно зависят от типа газа (рис. 23); тепловая инерция запаздывание показаний при резком изменении давления; необходимость перекалибровки дат-

чика в связи с изменением сопротивления после длительного времени эксплуатации [5].

- Тип вакуума: средний.

4.2. Магнетронный вакуумметр (с холодным катодом)

Измерительный объём магнетронного датчика (рис. 9) находится между катодом и анодом, между которыми приложено напряжение $(\sim 2-6 \text{ kB})$, а также помещен в постоянное магнитное поле $(\sim 0,2-2 \text{ k}\Gamma\text{c})$. Случайным образом возникшие вблизи катода электроны (например, вследствие автоэлектронной эмиссии⁵) будут двигаться к аноду под действием скрещенных электромагнитных полей по удлиненной траектории. При этом повышается вероятность соударения электронов с молекулами откачиваемого газа и их ионизация. Образовавшиеся ионы ускоряются анодно-катодного промежутка в электрическом поле и выбивают из материала катода вторичные электроны (вторичная электронная эмиссия), которые также ионизируют газ, двигаясь к аноду по сложной циклической траектории.

В результате описанного процесса возникает электрический разряд, ток которого в достаточно широком диапазоне зависит от давления. На диапазон измеряемых давлений существенно влияет конструкция магнетронного датчика. В инверсно-магнетроном датчике анодом служит центральный металлический стержень, а катодом — осесимметричная обечайка, магнитное поле создается внешним постоянным кольцевым магнитом (рис. 9).

Рис. 9. Принципиальная схема инверсно-магнетронного вакуумметра и траектории электронов в них

⁵ Автоэлектронная эмиссия — испускание электронов проводящими твёрдыми и жидкими телами под действием внешнего электрического поля.

- Преимущества: Могут включаться в широком диапазоне давлений, т.к. не содержат накаленных деталей и не боятся окисления. Устойчивы к прорыву атмосферы. Применяются в автоматизированных технологических процессах вследствие простоты эксплуатации и нечувствительности к внешним воздействиям.
- Недостатки: Не желательно длительное использование в диапазоне среднего вакуума особенно в атмосфере аргона, т.к. это приводит к распылению материала катода потоком ионов, что, в свою очередь, может стать причиной короткого замыкания и сбоев датчика. Не желательно использование в системах с масляным типом откачки, т.к. углеводороды со временем образуют устойчивую пленку на поверхности катода, которая искажает показания датчика. Является источником магнитного поля, что может влиять на работу других приборов.
 - Тип вакуума: высокий, сверхвысокий.

5. Вакуумные материалы и компоненты

Вакуумные системы, используемые в промышленности, научных исследованиях, лабораторных работах и т.п. обычно состоят из отдельных узлов различной конструкции — вакуумных компонентов. К вакуумным компонентам относятся все составляющие вакуумной установки, необходимые для монтажа вакуумных трубопроводов, например, фланцы, уплотнители, переходники, колена, тройники, крестовины, сильфоны, шланги, краны, затворы, сами вакуумные камеры, электрические и оптоволоконные вводы, диагностические окна, вводы движение и вращения и т.д.

Материалы для таких компонентов должны обладать рядом специальных требований — т. н. вакуумными свойствами, среди которых высокая вакуумная плотность при минимальной толщине, низкое давление насыщенных паров при рабочей температуре, наименьшее возможное газовыделение в вакууме, лёгкость обезгаживания и др. [6]. Поэтому для изготовления вакуумного оборудования и комплектующих обычно используются соответствующим образом подобранные металлы, стекла, керамики, а также специальные резины и пластмассы.

Соединения между компонентами осуществляется с помощью вакуумных уплотнений — герметизированных соединений. Такие уплотнения могут быть классифицированы по их назначению (для электрических токопроводов, для вводов механического движения и др.), по их конструкции (сварные, паянные, фланцевые, штуцерные и др.), по требованиям к герметичности, по материалам, из которых они сделаны и т.п. [7].

Вакуумные компоненты исследуемого экспериментального стенда в основном выполнены из нержавеющей стали и алюминия с использованием быстроразъёмных фланцевых соединений типов ISO-K, ISO-F, ISO-KF с витонным 6 уплотнением. Их основные свойства, типоразмеры и примеры применения приведены в прил. А.

Другой пример использования неразъёмных паянных стеклянных соединений, притёртых кранов с использованием вакуумных смазок и штуцерных уплотнений можно посмотреть в лабораторной работе №2.3.1 Получение и измерение вакуума [3].

6. Вакуумная гигиена

Как показал многолетний опыт работы, высокое качество и надёжность производства электровакуумных приборов, экспериментальных исследований, лабораторных измерений и др. недостижимы, если наряду с установленными правилами по технике безопасности (электробезопасности, пожарной безопасности и т.д.) не соблюдать ряд специальных правил вакуумной гигиены, предусматривающих предохранение приборов от попадания в них разного рода загрязнений (механических частиц, пыли, масел, воды и др.) [5]. Наличие таких загрязнений приводит к нарушению герметичности вакуумных соединений, ухудшению предельного вакуума, увеличению времени откачки, сокращению срока службы откачного и измерительного оборудования. Даже воздух является источником большого количества пыли и влаги, которые заметно снижают вакуумные свойства поверхности.

Применительно к рассматриваемому экспериментальному стенду можно выделить следующий перечень правил:

- Рабочее место и необходимые для работы инструменты должны содержаться в строжайшей чистоте и аккуратности.
- Личная гигиена, особенно чистота рук, должна являться постоянной заботой всех работающих на установке. При работе с открытыми вакуумными поверхностями необходимо использовать латексные перчатки.
- Все открытые вакуумные поверхности и уплотнения после контакта с окружающей средой (в том числе при контакте с руками) перед монтажом на экспериментальный стенд необходимо проверить

⁶ Viton® зарегистрированная торговая марка компании Du Pont — фторэластомер, из которого изготавливаются уплотнения для применения в агрессивных средах.

на наличие загрязнений, царапин, порезов и обезжирить, протирая безворсовой тканью смоченной обезжиривающей жидкостью 7 .

— Вакуумные поверхности всех неиспользуемых в данный момент компонентов должны быть закрыты соответствующими пластиковыми заглушками, а вакуумные уплотнения сложены в герметичные пакеты с замками для их защиты от загрязнений и механических повреждений.

БУ — блок управления ДΗ — диафрагменный насос TMH — турбомолекулярный насос вакуумная камера ШЗ — шиберный затвор MK1-3 — мембранные краны B1 терморезистоный вакууметр комбинированный вакууметр B2 КН - кран-натекатель 3 — заглушка **B1** Д — диафрагма C ПК — сильфон — тройники Ш Ш вакуумный шланг ПК — компьютер

Экспериментальный стенд

Рис. 10. Схема экспериментального стенда

Экспериментальный стенд выполнен на основе компактного безмасляного высоковакуумного откачного поста Pfeiffer Vacuum серии HiCube 80 Eco с диафрагменным и турбомолекулярным насосами, вакуумметров Pfeiffer Vacuum серии DigiLine, и вакуумных быстроразъёмных компонентов (см. прил. А). Управление основными функциями откачного поста, контроль и запись параметров установки осуществляется блоком

-

 $^{^{7}}$ Водные растворы моющих средств, ацетон, этанол и др. в зависимости от загрязнения и типа поверхности.

управления (БУ) через цифровой интерфейс RS-485 с помощью специального программного обеспечения PV TurboViewer⁸. Схема экспериментального стенда и его внешний вид представлены на рис. 10–12.

Вакуумный пост Pfeiffer Vacuum HiCube 80 Eco (PM S03 555 A) выполнен на базе диафрагменного форвакуумного насоса MVP 015 (ДН) и турбомолекулярного насоса HiPace 80 (ТМН). Откачка вакуумной камеры (К) может происходить как двумя насосами (ТМН и ДН) через шиберный затвор (ШЗ) и мембранный кран 1 (МК1), так и только форвакуумным насосом (ДН) по схеме «байпас» (англ. bypass — обходной путь), выполненной на основе вакуумных компонентов: сильфона (С), мембранного крана 2 (МК2), тройников (Т), переходников, шланга (Ш).

Для контроля и измерения давления в вакуумной камере используются цифровой вакууметр РРТ 100 (В1) типа Пирани (терморезисторный) и комбинированный вакуумметр МРТ 100 (В2) типов Пирани (терморезисторный) и холодный катод (инвертированный магнетрон).

Контролированный напуск воздушной атмосферы в камеру осуществляется через кран-натекатель EVN 116 (КН) с регулируемым потоком. Дополнительный выход с краном 3 (МКЗ) закрыт заглушкой (3) и служит для присоединения дополнительного объёма в случае необходимости.

Технические характеристики отдельных узлов экспериментального стенда приведены в прил. Б.

Меры предосторожности

— В области низкого и среднего вакуума выполнять действия с кранами, в результате которых резкий перепад давлений на лопатках работающего турбомолекулярного насоса ТМ составит более 20% запрещено. В частности, при повышении давления в системе до атмосферного необходимо дождаться полной остановки ротора и только потом открыть входной кран. На полной мощности скорость вращения ротор достигает 90000 об/мин (см. прил. 2Б), и резкий перепад давлений на лопатках может привести к разрушениям турбины и самого насоса.

— В области низкого вакуума открывать шиберный затвор при перепаде давлений по обе стороны более 20% **запрещено**. При таком перепаде затвор сильно прижат к корпусу из-за перепада давлений и при попытке его открыть, отпирающий механизм может выйти из строя.

_

 $^{^8}$ В программе имеется краткий раздел помощи с описанием всех необходимых элементов управления. Смотрите меню [?help] на верхней панели окна программы.

- При затягивании струбцин и болтов на фланцах большого диаметра ISO-K, ISO-F (см. прил. 2A) старайтесь избегать перекосов, попарно и постепенно затягивая противоположные крепления в несколько заходов. В процессе откачки можно дополнительно поджать крепления, если ожидаемое давление не достигается. При ослаблении струбцин и болтов для демонтажа деталей также необходимо руководствоваться вышеизложенными правилами.
- При затягивании хомутов на фланцах малого диаметра ISO-KF (см. прил. 1A) необходимо соблюсти баланс между слабым затягиванием, которое может создать течь в системе и излишним перетягиванием, которое может повредить резьбу. В процессе откачки можно дополнительно поджать крепления, если ожидаемое давление не достигается. Придерживайтесь аналогичных рекомендаций при работе с мембранными кранами МК.
- Снабженная счётчиком ручка тонкой регулировки крананатекателя КН является прецизионным механизмом и требует плавного вращения. В противном случае механический счётчик для калибровки течи может сбиться и выйти из строя.
- После завершения работы вакуумный стенд следует оставить в откачанном состоянии для предотвращения попадания внутрь пыли, влаги, и минимизации адсорбирования газов на внутренних поверхностях, что существенно сократит время следующей откачки системы.

Рис. 11. Внешний вид экспериментального стенда (вид спереди-сбоку)

Рис. 12. Внешний вид экспериментального стенда (вид сзади-сбоку)

Обработка экспериментальных данных

- 1. Загрузим данные из файла.
- 2. Зная объём «запертого» в сильфоне воздуха $V_{\rm c}=265$ мл, определим, пользуясь законом Бойля-Мариотта, полный объём установки, высоковакуумной части (камера K), форвакуумной магистрали и самого насоса ТМН.

$$p_0 V_{
m c} + p_{
m пред} V_{
m K} = p_1 (V_{
m c} + V_{
m K}),$$
 $V_{
m K} = V_{
m c} \cdot rac{p_0 - p_1}{p_1 - p_{
m пред}} = 955$ мл,

где $p_0=10^3$ мбар - это атмосферное давление, $p_1=2,2\cdot 10^2$ мбар, $p_{\rm пред}=3,5$ мбар.

Относительные ошибки значений давлений (по паспортам приборов): $\delta_{p_1}=0.05;\;\delta_{p_{\mathrm{npeg}}}=0.15.$

$$\sigma_{V_{
m K}} = V_{
m K} \sqrt{\delta_{p_1}^2 + \delta_{p_{
m npeg}}^2} = \!\! 151$$
 мл.

$$V_{
m K} = (955 \pm 151) \; {
m мл}$$

Аналогично:

$$p_1(V_{\rm c}+V_{\rm K})+p_{\rm пред}V_{\rm маг+нас}=p_2(V_{\rm c}+V_{\rm K}+V_{\rm маг+наc}),$$
где $p_2=1,7\cdot 10^2$ мбар.

Получаем:

$$V_{\text{маг+нас}} = (V_{\text{c}} + V_{\text{K}}) \cdot \frac{p_1 - p_2}{p_2 - p_{\text{пред}}} = 366$$
 мл.

Относительные ошибки: $\delta_{p_1}=\delta_{p_2}=0.05;\ \delta_{p_{\text{пред}}}=0.15.$

$$\sigma_{ ext{mar+hac}} = V_{ ext{mar+hac}} \sqrt{\delta_{p_1}^2 + \delta_{p_2}^2 + \delta_{p_{ ext{npeg}}}^2 + \left(rac{\sigma_{V_{ ext{K}}}}{V_{ ext{K}}}
ight)^2} = 84$$
 мл.

$$V_{ ext{mar}+ ext{Hac}}=(366\pm84)$$
 мл

Тогда общий объем установки: $V_{\rm ycr}=V_{\rm c}+V_{\rm K}+V_{\rm маг+нас}=(265+955+366)$ мл = 1586 мл.

$$\sigma_{V_{
m yct}} = V_{
m yct} \sqrt{\left(rac{\sigma_{V_{
m K}}}{V_{
m K}}
ight)^2 + \left(rac{\sigma_{V_{
m Mar+hac}}}{V_{
m Mar+hac}}
ight)^2} = 342 \;
m MЛ.$$

$$V_{
m yct} = (1586 \pm 342)$$
 мл

3. Оценим эффективную скорость откачки системы форвакуумным насосом в области, где она почти постоянна: из файла возьмем данные зависимости давления в камере K от времени откачки насосом ДН. По зависимости $\ln P(t)$ (график 1) определим постоянную времени откачки τ в диапазоне давлений 10-100 мбар.

$$P(t) = P_0 e^{-\frac{t}{\tau}};$$

$$\ln P = \ln P_0 - \frac{t}{\tau};$$

Используя МНК, получаем следующие значения:

$$k = -\frac{1}{\tau} = -0.058 \text{ c}^{-1};$$

 $\sigma_k = 0.002 \text{ c}^{-1}.$

$$\tau = -\frac{1}{k} = 17.2 \text{ c};$$
 $\sigma_{\tau} = \tau \cdot \frac{\sigma_k}{|k|} = 0.6 \text{ c};$

$$\tau = (17, 2 \pm 0, 6) \text{ c}$$

График 1. По оси абсцисс - время в секундах от начала работы.

Зная объём камеры K установки $V_{\rm K}=955$ мл, рассчитаем эффективную скорость её откачки S_0 :

$$S_0 = \frac{V_{\rm K}}{\tau} = \frac{955}{17.2} \frac{{\scriptscriptstyle MJI}}{{\scriptscriptstyle C}} = 55 \frac{{\scriptscriptstyle MJI}}{{\scriptscriptstyle C}}.$$

$$\sigma_{S_0} = S_0 \sqrt{\left(\frac{\sigma_{V_K}}{V_K}\right)^2 + \left(\frac{\sigma_{\tau}}{\tau}\right)^2} = 9 \frac{\text{MJI}}{\text{c}}.$$

$$S_0 = (55 \pm 9) \frac{\text{MJ}}{\text{c}}$$

Определим суммарную пропускную способность U:

$$\frac{1}{S_0} = \frac{1}{S_{\text{H}}} + \frac{1}{U},$$

где $S_{\rm H}=139~{\rm \frac{MJ}{c}}$ - скорость откачки по паспортным данным насоса.

Отсюда получаем:

$$U = \frac{S_{\text{H}}S_0}{S_{\text{H}} - S_0} = 92 \frac{\text{MJ}}{\text{c}};$$

$$\sigma_U = U \cdot \frac{\sigma_{S_0}}{S_0} = 15 \, \frac{\text{\tiny MJI}}{\text{\tiny c}};$$

$$U = (92 \pm 15) \frac{\text{MJ}}{\text{c}}$$

4. Оценим эффективную скорость откачки системы турбомолекулярным насосом в области, где она почти постоянна: из файла возьмем данные зависимости давления в камере K от времени откачки насосом ТМН. По зависимости $\ln P(t)$ (график 2) определим постоянную времени откачки τ в диапазоне давлений $10^{-5}-10^{-3}$ мбар.

$$P(t) = P_0 e^{-\frac{t}{\tau}};$$

$$\ln P = \ln P_0 - \frac{t}{\tau};$$

Пользуясь МНК, получаем следующие значения:

$$k = -\frac{1}{\tau} = -0.027 \text{ c}^{-1};$$

$$\sigma_k = 0.002 \text{ c}^{-1}.$$

$$\tau = -\frac{1}{k} = 37.0 \text{ c};$$

$$\sigma_{\tau} = \tau \cdot \frac{\sigma_k}{|k|} = 2.8 \text{ c};$$

$$\tau = (37, 0 \pm 2, 8) \text{ c}$$

График 2. По оси абсцисс - время в секундах от начала работы.

Зная объём камеры K установки $V_{\rm K}=955$ мл, рассчитаем эффективную скорость её откачки S_0 :

$$S_0 = \frac{V_{\rm K}}{\tau} = \frac{955}{37} \frac{_{
m M.II}}{^{
m c}} = 26 \frac{_{
m M.II}}{^{
m c}};$$

$$\sigma_{S_0} = S_0 \sqrt{\left(\frac{\sigma_{V_{
m K}}}{V_{
m K}}\right)^2 + \left(\frac{\sigma_{\tau}}{\tau}\right)^2} = 2 \frac{_{
m M.II}}{^{
m c}}.$$

$$S_0 = (26 \pm 2) \frac{\text{MJ}}{\text{c}}$$

Определим суммарную пропускную способность U:

$$\frac{1}{S_0} = \frac{1}{S_{\text{\tiny H}}} + \frac{1}{U},$$

где $S_{\scriptscriptstyle \mathrm{H}} = 67000~\frac{\scriptscriptstyle \mathrm{MJ}}{\scriptscriptstyle \mathrm{C}}$ - скорость откачки по паспортным данным насоса.

Отсюда получаем:

$$U = \frac{S_{\text{H}} S_0}{S_{\text{H}} - S_0} \approx 26 \frac{\text{MJ}}{\text{c}};$$

$$\sigma_U = U \cdot \frac{\sigma_{S_0}}{S_0} = 2 \frac{\text{MJI}}{\text{c}};$$

$$U = (26 \pm 2) \frac{\text{MJI}}{\text{c}}$$

Сравним экспериментальные данные с расчетными значениями:

$$U_{\text{otb}} = \frac{1}{4}\pi R_{\text{otb}}^2 \sqrt{\frac{8RT}{\pi\mu}},$$

где $R_{\text{отв}}$ - радиус отверстия. В нашем случае $R_{\text{отв}} \sim 1$ см.

Тогда:

$$U_{\text{otb}} = \frac{1}{4} \cdot 3,14 \cdot 0,01^2 \sqrt{\frac{8 \cdot 8,314 \cdot 293}{3,14 \cdot 0,029}} = 36,3 \frac{\text{MJ}}{\text{c}}.$$

Как видим, рассчитанные и полученные значения достаточно близки.

5. Определим уровень течей по ухудшению вакуума после перекрытия откачки насосом ТМН. Из файла возьмем данные зависимости давления в камере К от времени натекания после перекрытия откачки шибером ШЗ.

Рассчитаем натекание $Q_{\scriptscriptstyle
m H}$:

$$\begin{split} Q_{\rm H} &= V_{\rm K} \frac{P_{\rm кон} - P_{\rm Haq}}{\Delta t} = 955 \cdot \frac{3 \cdot 10^{-3} - 3,9 \cdot 10^{-5}}{472} \,\, \frac{\rm мл \cdot мбар}{\rm c} \approx 0,006 \,\, \frac{\rm мл \cdot мбар}{\rm c}. \\ Q &= P_1 S_0 \sim 10 \cdot 55 \,\, \frac{\rm мл \cdot мбар}{\rm c} = 550 \,\, \frac{\rm мл \cdot мбар}{\rm c}. \end{split}$$

Как мы видим, для заданного выше диапазона давлений условие $Q_{\rm H} \ll Q$ выполняется.

- 6. Исследуем зависимость мощности турбины ТМН от давления в камере К при создании искусственной течи. Из файла возьмите данные зависимости мощности турбины ТМН от давления в камере К. Построим графики W(P) при увеличении течей (график 3) и их уменьшении (график 4).
 - а) Используем МНК и получаем:

Коэффициент наклона $k=5506~{\rm \frac{BT}{мбар}}$

График 3

б) Аналогично:

Коэффициент наклона $k=6225~{{
m BT}\over{
m m6ap}}$

График 4

7. Оценим число Кнудсена для предельных давлений при форвакуумной и высоковакуумной откачке.

$$\mathrm{Kn} = \frac{\lambda}{d} \sim \frac{kT}{\sqrt{2\pi}r^2 P \sqrt[3]{V_{\mathrm{K}}}},$$

где $r \approx 3 \cdot 10^{-10}$ м - размер молекулы воздуха.

Для форвакуумной откачки получаем $\mathrm{Kn}{\sim}10^{-3}$ - гидродинамический режим течения.

Для высоковакуумной откачки - ${\rm Kn}{\sim}10^3$ - кнудсеновский режим течения.

Вывод

В работе были рассмотрены способы получения и измерения вакуума. В ней были найдены объемы высоковакуумной части установки - $V_{\rm K}=(955\pm151)$ мл, форвакуумной магистрали и ТМН - $V_{\rm Mar+hac}=(366\pm84)$ мл. Также были рассчитаны эффективные скорости откачки и пропускные способности: ДН - $S_0=(55\pm9)\frac{\rm MЛ}{\rm c},\ U=(92\pm15)\frac{\rm MЛ}{\rm c};$ ТМН - $S_0=(26\pm2)\frac{\rm MЛ}{\rm c},\ U=(26\pm2)\frac{\rm MЛ}{\rm c}$. Ошибки связаны с неточностью измерений и несовершенством техники измерений.