Multiagent Systems

The Nucleolus

Tomáš Kroupa

2020

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

How to divide the estate among claimants?

- After the death of a man, 3 creditors raise claims
- Depending on the estate, 3 variants of division are proposed

Allocations according to the Talmud rule

Estate/Demand	100	200	300
100	100/3	100/3	100/3
200	50	75	75
300	50	100	150

Table 1: Aumann and Maschler (1985)

From bankruptcy problems to bankruptcy games

Let $N = \{1, ..., n\}$ be the set of claimants.

Definition

A bankruptcy problem is a pair (e, \mathbf{d}) , where $e \geq 0$ is the estate and $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{R}^n_+$ are the demands such that

$$e \leq d_1 + \cdots + d_n$$
.

Definition

A bankruptcy game associated with a bankruptcy problem (e, d) is a coalitional game given by

$$v(A) = \max \{e - d(N \setminus A), 0\}, \quad A \subseteq N.$$

Solving bankruptcy games

Every bankruptcy game is supermodular, which implies that

- The core C(v) is nonempty and
- ullet The Shapley value belongs to $\mathcal{C}(v)$

Example based on Table 1

$$e = 200$$
, $\mathbf{d} = (100, 200, 300)$, and $v(A) = \begin{cases} 200 & A = N, \\ 100 & A = 23, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathcal{C}(v) = \text{conv}\{(100, 100, 0), (100, 0, 100), (0, 200, 0), (0, 0, 200)\}$$
$$\varphi^{S}(v) = \frac{1}{3} \cdot (100, 250, 250)$$

We will study a division rule different from the Shapley value

- It applies to all coalitional games
- It coincides with the Talmud rule for bankruptcy problems
- The idea is that the maximal dissatisfaction of coalitions with an allocation should be minimized

The nucleolus

Measuring excess of coalitions in game ν

The excess of coalition $A \subseteq N$ at allocation $\mathbf{x} \in \mathbb{R}^n$ is

Deminition

Enumerate coalitions A_1, \ldots, A_{2^n} from the highest excess:

$$e(A_1, \mathbf{x}) \geq \cdots \geq e(A_{2^n}, \mathbf{x}).$$

The excess vector is

$$e(\mathbf{x}) \coloneqq (e(A_1, \mathbf{x}), \dots, e(A_{2^n}, \mathbf{x})) \in \mathbb{R}^{2^n}.$$

5

Lexicographic order

The excess vectors whose maximal excess is minimal are preferred.

Definition

For every $\alpha, \beta \in \mathbb{R}^m$, define:

- $\alpha \prec \beta$ if there is $k = 1, \ldots, m$ such that for each j < k, $\alpha_j = \beta_j$ and $\alpha_k < \beta_k$
- $\alpha \leq \beta$ if $\alpha \prec \beta$ or $\alpha = \beta$

The binary relation \leq is a total order on \mathbb{R}^m .

Example

Glove game

$$N = \{1, 2, 3\}$$
 $v(A) = \begin{cases} 1 & A = 12, 13, N, \\ 0 & \text{otherwise.} \end{cases}$

Allocations: $\mathbf{x} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, $\mathbf{y} = (1, 0, 0)$, $\mathbf{z} = (\frac{4}{6}, \frac{1}{6}, \frac{1}{6})$

$$e(y) \prec e(z) \prec e(x)$$

7

Imputations

We seek a lexicographic minimizer of excess vectors e(x) over a set of allocations x in game v. But which set to choose?

- The core? If $\mathbf{x} \in \mathcal{C}(v)$ and $\mathbf{y} \notin \mathcal{C}(v)$, then $e(\mathbf{x}) \prec e(\mathbf{y})$
- But it can happen that $C(v) = \emptyset...$
- We define the set of imputations as

$$\mathcal{I}(v) := \{ \mathbf{x} \in \mathbb{R}^n \mid \underbrace{\mathbf{x}(N) = v(N)}_{\text{Efficiency}}, \quad \underbrace{x_i \geq v(i), \ i \in N}_{\text{Individual rationality}} \}$$

Claim

If v is a superadditive game, then $\mathcal{I}(v) \neq \emptyset$

۶

Example: Imputations in a three-player game

$$\mathcal{I}(v) = \left\{ x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = v(123), \quad x_1, x_2, x_3 \ge 0 \right\}$$

The nucleolus

Definition

Let v be a game with $\mathcal{I}(v) \neq \emptyset$. The nucleolus of v is the set

$$\mathcal{N}(v) \coloneqq \big\{ x \in \mathcal{I}(v) \mid e(x) \leq e(y) \text{ for all } y \in \mathcal{I}(v) \big\}$$

- 1. Is $\mathcal{N}(v)$ nonempty?
- 2. Is $\mathcal{N}(v)$ single-valued?
- 3. How to compute $\mathcal{N}(v)$?

Existence of the nucleolus

Theorem (Schmeidler, 1969)

Let v be a game with $\mathcal{I}(v) \neq \emptyset$. Then $|\mathcal{N}(v)| = 1$.

Properties of the nucleolus

- If $C(v) \neq \emptyset$, then it contains $\mathcal{N}(v)$
- Efficiency
- Symmetry
- Null player property

Example: Solution of the original bankruptcy problem

Example based on Table 1

$$e = 200$$
, $\mathbf{d} = (100, 200, 300)$, and $v(A) = \begin{cases} 200 & A = N, \\ 100 & A = 23, \\ 0 & \text{otherwise.} \end{cases}$

Consider $\mathbf{x} = (50, 75, 75)$ and any $\mathbf{y} \in \mathcal{C}(v)$ to show $e(\mathbf{x}) \leq e(\mathbf{y})$:

				12		
e(A, x)	-50	-75	-75	-125	-125	-50
				$-y_1 - y_2$		

The nucleolus of a two-player game

Example

Consider a superadditive game v with two players:

$$v(12) \ge v(1) + v(2)$$

• The set of imputations is the line segment

$$\mathcal{I}(v) = \{ x \in \mathbb{R}^2 \mid x_1 + x_2 = v(12), \ x_1 \ge v(1), \ x_2 \ge v(2) \}$$

The nucleolus is allocation

$$\left(v(1)+\frac{v(12)-v(1)-v(2)}{2},\ v(2)+\frac{v(12)-v(1)-v(2)}{2}\right)$$

How to compute the nucleolus?

Computing the nucleolus in many classes of games is NP-hard.

Algorithm

Input: Game v such that $\mathcal{I}(v) \neq \emptyset$

- 1. Find $X_1 \subseteq \mathcal{I}(v)$ minimizing the maximal excess
- 2. Find $X_2 \subseteq X_1$ minimizing the second highest excess
- 3. Continue this procedure...
- 4. ... until it yields a single imputation, the nucleolus

Minimizing the maximal excess

LP with variables
$$x = (x_1, ..., x_n), t$$

Minimize
$$t$$
 subject to $e(A, \mathbf{x}) \leq t$, $\emptyset \neq A \subset N$, $\mathbf{x} \in \mathcal{I}(v)$

$$t_1 \coloneqq$$
 the value of the LP $X_1 imes \{t_1\} :=$ the set of optimal solutions

- If X_1 is a singleton, then $X_1 = \mathcal{N}(v)$
- Else put

$$\mathcal{F}_1 := \{A \subset N \mid e(A, \mathbf{x}) = t_1, \ \mathbf{x} \in X_1\}$$

Minimizing the second highest excess

LP with variables
$$m{x}=(x_1,\dots,x_n), t$$

Minimize t

subject to $e(A,m{x}) \leq t, \quad A \notin \mathcal{F}_1, \ \emptyset \neq A \subset N$
 $m{x} \in X_1$

$$t_2 :=$$
 the value of the LP $X_2 imes \{t_2\} :=$ the set of optimal solutions

- If X_2 is a singleton, then $X_2 = \mathcal{N}(v)$
- Else put

$$\mathcal{F}_2 := \{ A \subset N \mid e(A, x) = t_2, \ x \in X_2 \}$$

Minimizing the k-th highest excess

The algorithm stops when X_k is a singleton at step $k \leq 2^n$.

- Each t_i is the i-th highest excess
- Each \mathcal{F}_i is the collection of coalitions with excess t_i
- At each step, \mathcal{F}_i contains at least one new coalition

Summary: Properties of solution concepts

Property/Solution	core	Shapley value	Banzhaf value	nucleolus
Nonemptiness	_	✓	✓	RF .
Efficiency	✓	\checkmark	_	\checkmark
Individual rationality	✓			\checkmark
Symmetry	_	\checkmark	\checkmark	\checkmark
Null player property	✓	\checkmark	\checkmark	\checkmark
Additivity		✓	✓	

This property is true for every superadditive game

References

J. González-Díaz, I. García-Jurado, and M. G. Fiestras-Janeiro.

An Introductory Course on Mathematical Game Theory, volume 115 of Graduate Studies in Mathematics.

American Mathematical Society, 2010.

M. Maschler, E. Solan, and S. Zamir.

Game Theory.

Cambridge University Press, 2013.