### PRACTICE PAPER

### **MATHEMTICS** Extended Part

# Module 2 (Algebra and Calculus)

## Question-Answer Book

Time allowed: 1.5 hours

Name:\_\_\_\_\_\_/100

School:\_\_\_\_\_\_/200

#### Instructions

- 1. This paper must be answered in English.
- 2. Unless otherwise specified, all working must be clearly shown.
- 3. Unless otherwise specified, numerical answers must be exact.
- 4. This paper is for **internal use** only.
- 5. All questions are collected from AL/CE/DSE past papers, reference site: https://www.dse.life/ppindex/m2/

1. (1997-CE-A MATH 2 #07(Modified)) Let  $T_n = (n^2 + 1)(n!)$  for any positive integer n. Prove, by mathematical induction, that

$$\sum_{k=1}^{n} T_k = n[(n+1)!]$$

| for any positive integer $n$ . | (6 marks) |
|--------------------------------|-----------|
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |
|                                |           |

(8 marks)

2. (1988-HL-GEN MATHS #07(Modified)) Let

$$A_n = 1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1}n^2$$

and

$$B_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

where n is a positive integer.

- (a) Show, by mathematical induction, that  $A_n = (-1)^{n-1}B_n$  for all positive integer n.
- (b) Hence, or otherwise, find  $\sum_{n=1}^{2m} A_n$  and  $\sum_{n=1}^{2m+1} A_n$ .

| F4 Level 5 M2 mock paper | Time limit: 1 hr 30 mins |
|--------------------------|--------------------------|
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |

| 3. | (2017-DSE-MATH-EP(M2) #02) Let $(1+ax)^8 = \sum_{k=0}^8 \lambda_k x^k$ and $(b+x)^9 = \sum_{k=0}^9 \mu_k x^k$ , where $a$ and $b$ are constants. It is given that      |           |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
|    | $(b+x)^3 = \sum_{k=0}^{\infty} \mu_k x^k$ , where $a$ and $b$ are constants. It is given that $\lambda_2 : \mu_7 = 7 : 4$ and $\lambda_1 + \mu_8 + 6 = 0$ . Find $a$ . | (6 marks) |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |
|    |                                                                                                                                                                        |           |  |  |

- 4. (1989-HL-GEN MATHS #05(Modified))
  - (a) Find the solution of  $\sin x \sin 2x + \sin 3x = 0$  for  $0 < x < 2\pi$ .
  - (b) Let  $f(\theta) = \sin 2\theta + \sin \theta + \cos \theta$ .
    - i. Express  $f(\theta)$  in terms of p, where  $p = \sin \theta + \cos \theta$ .
    - ii. Using (i) and the method of completing the square, find the smallest value of  $f(\theta)$ . For  $0 < \theta < \pi$ , find also the value of  $\theta$  such that  $f(\theta)$  attains its smallest value.

| (18 marks) |
|------------|
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |

| F4 Level 5 M2 mock paper | Time limit: 1 hr 30 mins |
|--------------------------|--------------------------|
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |

5. (1984-HL GEN MATHS #05(Modified))

- (a) Express  $\cot 4\theta$  in terms of  $\cot \theta$ . Hence solve the equation  $x^4 4x^3 6x^2 + 4x + 1 = 0$ . (Give your answers in terms of  $\pi$ .)
- (b) i. If  $\cos \theta \cos \phi = a$  and  $\sin \theta \sin \phi = b$   $(b \neq 0)$ , show that

$$\frac{1}{2}(2-a^2-b^2) = \cos\theta - \phi \text{ and } \frac{-a}{b} = \tan\frac{\theta + \phi}{2}.$$

ii. Solve the system of equations

$$\begin{cases} \cos \theta - \cos \phi = 1\\ \sin \theta - \sin \phi = \sqrt{3} \end{cases}$$

where  $0 \le \theta \le 2\pi$  and  $0 \le \phi \le 2\pi$ .

| (18 marks) |
|------------|
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |

| F4 Level 5 M2 mock paper | Time limit: 1 hr 30 mins |
|--------------------------|--------------------------|
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |

| erms of $h$ . Hence, find $f'(1)$ from first principles. | (6 mar |
|----------------------------------------------------------|--------|
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |

| 7. | (PP-DSE-MATH-EP(M2) #07) Let $f(x) = e^x(\sin x + \cos x)$ .           |           |  |
|----|------------------------------------------------------------------------|-----------|--|
|    | (a) Find $f'(x)$ and $f''(x)$ .                                        |           |  |
|    | (b) Solve for $x$ when $f''(x) - f'(x) + f(x) = 0$ , where $x$ is real | number.   |  |
|    |                                                                        | (8 marks) |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |
|    |                                                                        |           |  |

8. (1996-CE-A MATH 1 #06) Find the equations of the two tangents to the curve  $C: y = \frac{6}{x+1}$  which are parallel to the line x + 6y + 10 = 0. (7 marks)

#### 9. (1994-CE-A MATH 1 #12)



In figure 3, two rods OP and OQ are hinged at O. The lengths of OP and OQ are 4 m and 5 m respectively. The end O is pushed upwards at a constant rate of  $\frac{1}{2}$  ms<sup>-1</sup> along a fixed vertical axis, and the ends P and Q move along a horizontal rail. R is the projection of O on the rail. At time t seconds, OR = x m and  $\angle OPQ = \theta$  where  $0 < \theta < \frac{\pi}{2}$ .

- (a) i. Express x in terms of  $\theta$ .
  - ii. Hence find the rate of change of  $\theta$  with respect to t in terms of  $\theta$ .
- (b) Let PR = y m, RQ = z m.
  - i. Express  $\frac{dy}{dt}$  and  $\frac{dz}{dt}$  in terms of  $\theta$ .
  - ii. Hence find the rate of change of PQ with respect to t when  $\theta = \frac{\pi}{6}$ , giving your answer correct to 3 significant figures.
- (c) i. Find the value of  $\theta$  such that the area of  $\triangle OPR$  is a maximum.
  - ii. By considering the value of  $\angle OQR$ , find the value of  $\theta$  such that the area of  $\triangle ORQ$  is a maximum, giving your answer correct to 3 significant figures.

(23 marks)

| F4 Level 5 M2 mock paper | Time limit: 1 hr 30 mins |
|--------------------------|--------------------------|
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |

| F4 Level 5 M2 mock paper | Time limit: 1 hr 30 mins |
|--------------------------|--------------------------|
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |

| F4 Level 5 M2 mock paper | Time limit: 1 hr 30 mins |
|--------------------------|--------------------------|
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |
|                          |                          |