21.3 寄存器(Registers)

寄存器是数字系统常用的逻辑部件,它用来存放 数码或指令等(data storage and data movement)。 它由触发器和门电路组成。一个触发器只能存放一 位二进制数,存放n位二进制时,要n个触发器。

21.3.1 数码寄存器 (Digital register)

仅有寄存数码的功能。通常由D触发器或R-S触发器组成

21.3.2 移位寄存器 (shift register)

不仅能寄存(data storage)数码,还有移位(data shift)的功能。

所谓移位(shift),就是每来一个移位脉冲(shift pulse),寄存器中所寄存的数据就向左或向右顺序移动一位。

按移位方式分类

单向移位寄存器(Unidrectional)

双向移位寄存器(Bidrectional)

1.单向移位寄存器(unidirectional shift register)

四位左移移位寄存器状态表

移位脉冲	Q_3 Q_2 Q_1 Q_0	寄存数码D	移位过程
0	0 0 0 0	1 0 1 1	清零
1	0 0 0 1	0 1 1	左移一位
2	0 0 1 0	1 1	左移二位
3	0 1 0 1	1	左移三位
4	1. 0 1 1		左移四位

并行输出

再继续输入四个移位脉冲,从 Q_3 端串行输出1011数码

2.并行、串行输入/串行输出寄存器

3. 双向移位寄存器: 既能左移也能右移。

4. 集成4位双向移位寄存器

4. 集成4位双向移位寄存器

	输入												输 出			
\overline{CR}	M_1	M_0	CP	$D_{ m SL}$	$D_{ m SR}$	D_0	D_1	D_2	D_3	Q_0	Q_1	Q_2	Q_3	说明 		
0	×	×	×	×	×	X	X	×	X	0	0	0	0	置 0		
1	×	×	0	×	×	X	X	×	X		保	持				
1	1	1	↑	×	×	d_0	d_1	d_2	d_3	d_0	d_1	d_2	d_3	并行置数		
1	0	1	↑	×	1	X	X	×	X	1	Q_0	Q_1	Q_2	右移输入1		
1	0	1	↑	×	0	X	X	×	X	0	Q_0	Q_1	Q_2	右移输入0		
1	1	0	↑	1	×	X	X	×	X	Q_1	Q_2	Q_3	1	左移输入1		
1	1	0	↑	0	×	X	X	×	X	Q_1	Q_2	Q_3	0	左移输入0		
1	0	0	×	×	×	×	X	×	X		保	持				

21.4 计数器(Counters)

计数器是数字电路和计算机中广泛应用的一种逻辑部件,可累计输入脉冲的个数,可用于定时、分频、时序控制(Timing, frequency division and timing control)。

加法(Addition)计数器

(按计数功能)

减法(subtraction)计数器

分类

异步(asynchronous)计数器 (按计数脉冲 同步(synchronous)计数器 引入方式)

- 二进制计数器
- 十进制计数器 (按计数制)
- N进制计数器

21.4.1 二进制计数器

按二进制的规律累计脉冲个数,它也是构成其它进制计数器的基础。要构成 n位二进制计数器,需用 n个具有计数功能的触发器。

1. 异步二进制加法计数器

异步计数器: 计数脉冲C不是同时加到各位触发器 最低位触发器由计数脉冲触发翻转,其他各位触发 器有时需由相邻低位触发器输出的进位脉冲来触发, 因此各位触发器状态变换的时间先后不一,只有在 前级触发器翻转后,后级触发器才能翻转。

三位异步二进制加法计数器

在电路图中J、K悬空表示J、K=1

异步二进制加法器工作波形

每个触发器翻转的时间有先后,与计数脉冲不同步

用D触发器构成三位二进制异步加法器

- 1、各触发器C应如何连接?
- 2、若构成减法计数器C又如何连接?

各D触发器已接成T'触发器,即具有计数功能

2. 同步二进制加法计数器

同步计数器: 计数脉冲同时接到各位触发器, 各触发器状态的变换与计数脉冲同步。

- ★异步二进制加法计数器线路联接简单。
 各触发器是逐级翻转,因而工作速度较慢。
- ★ 同步计数器由于各触发器同步翻转,因此工作速度 快。但接线较复杂。

同步计数器组成原则:

根据翻转条件,确定触发器级间连接方式—找出 J、K输入端的联接方式。

1、4位同步二进制加法计数器 计数脉冲同时加到各位触发器上,当每个到来后触 发器状态是否改变要看*J、K*的状态。

(1) 写方程式

输出方程
$$CO = Q_3^n Q_2^n Q_1^n Q_0^n$$

驱动方程

$$\begin{cases} J_0 = K_0 = 1 \\ J_1 = K_1 = Q_0^n \\ J_2 = K_2 = Q_1^n Q_0^n \\ J_3 = K_3 = Q_2^n Q_1^n Q_0^n \end{cases}$$

状态方程

$$\begin{cases} Q_0^{n+1} = J_0 Q_0^n + \overline{K}_0 Q_0^n = \overline{Q_0^n} \\ Q_1^{n+1} = J_1 \overline{Q_1^n} + \overline{K}_1 Q_1^n = Q_0^n \overline{Q_1^n} + \overline{Q_0^n} Q_1^n \\ Q_2^{n+1} = J_2 \overline{Q_2^n} + \overline{K}_2 Q_2^n = Q_1^n Q_0^n \overline{Q_2^n} + \overline{Q_1^n} Q_0^n Q_2^n \\ Q_3^{n+1} = J_3 \overline{Q_3^n} + \overline{K}_3 Q_3^n = Q_2^n Q_1^n Q_0^n \overline{Q_3^n} + \overline{Q_2^n} Q_1^n Q_0^n Q_3^n \end{cases}$$

(2) 列状态转换真值表

计数		现	态			次	态		输出
脉冲 _ 序号	$Q_3^{\rm n}$	$Q_2^{\rm n}$	$Q_{\rm l}^{^{\rm n}}$	Q_0^{n}	Q_3^{n+1}	$Q_2^{^{\mathrm{n+1}}}$	$Q_{\rm l}^{^{\rm n+l}}$	Q_0^{n+1}	СО
0	0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	1	0	0
2	0	0	1	0	0	0	1	1	0
3	0	0	1	1	0	1	0	0	0
4	0	1	0	0	0	1	0	1	0
5	0	1	0	1	0	1	1	0	0
6	0	1	1	0	0	1	1	1	0
7	0	1	1	1	1	0	0	0	0
8	1	0	0	0	1	0	0	1	0
9	1	0	0	1	1	0	1	0	0
10	1	0	1	0	1	0	1	1	0
11	1	0	1	1	1	1	0	0	0
12	1	1	0	0	1	1	0	1	0
13	1	1	0	1	1	1	1	0	0
14	1	1	1	0	1	1	1	1	0
15	1	1	1	1	0	0	0	0	1

(3)逻辑功能

电路在输入第十六个计数脉冲CP后返回到初始的0000状态,同时进位输出端*CO*输出一个进位信号。因此,该电路为十六进制计数器。

2、集成同步二进制计数器CT74LS161

LD 为同步置数控制端,

CR为异步置 0 控制端,

 CT_{P} 和 CT_{T} 为计数控制端,

 $D_0\sim D_3$ 为并行数据输入端, $Q_0\sim Q_3$ 为输出端,CO为进位输出端。

			输	λ						辅	Ì	出		;K 00
\overline{CR}	\overline{LD}	CT_{P}	CT_{T}	CP	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	CO	说 明
0	×	×	×	X	X	X	X	X	0	0	0	0	0	异步置 0
1	0	×	×	1	d_3	d_2	d_1	d_0	d_3	d_2	d_1	d_0		$CO = CT_{T} \cdot Q_3 Q_2 Q_1 Q_0$
1	1	1	1	1	X	X	X	X		计	数			$CO = Q_3 Q_2 Q_1 Q_0$
1	1	0	×	×	X	X	X	X		保	持			$CO = CT_{T} \cdot Q_3 Q_2 Q_1 Q_0$
1	1	×	0	X	X	×	X	×		保	持		0	

21.3.2 十进制计数器(decimal counter)

十进制计数器:

计数规律: "逢十进一"。它是用四位二进制数表示对应的十进制数, 所以又称为二-十进制计数器。

四位二进制可以表示十六种状态,为了表示十进制数的十个状态,需要去掉六种状态,具体去掉哪六种状态,有不同的安排,这里仅介绍广泛使用 8421编码的十进制计数器。

十进制加法计数器状态表

脉冲数	,	二进制数								
(C)	Q_3	Q_2	Q_1	Q_0	十进制数					
0	0	0	0	0	0					
1	0	0	0	1	1					
2	0	0	1	0	2					
3	0	0	1	1	3					
4	0	1	0	0	4					
5	0	1	0	1	5					
6	0	1	1	0	6					
7	0	1	1	1	7					
8	1	0	0	0	8					
9	1	0	0	1	9					
10	0	0	0	0	0					

1、十进制同步加法计数器

十进制计数器工作波形

2、集成异步十进制计数器CT74LS290

 R_{OA} 和 R_{OB} 为置0输入端, R_{9A} 和 R_{9B} 为置9输入端

——————————————————————————————————————	入			输 出						
$R_{0\mathrm{A}}{\cdot}R_{0\mathrm{B}}$	$S_{9 ext{A}} \cdot S_{9 ext{B}}$	СР	Q_3	Q_2	Q_1	Q_0	说明			
1	0	×	0	0	0	0	置 0			
0	1	×	1	0	0	1	置 9			
0	0	↓		计	数					

3、集成同步十进制计数器CT74LS160

LD 为同步置数控制端,

CR为异步置0控制端,

 CT_P 和 CT_T 为计数控制端,

 $D_0\sim D_3$ 为并行数据输入端, $Q_0\sim Q_3$ 为输出端,

CO为进位输出端。

			输	λ						箱	Ì	出		; 4
\overline{CR}	\overline{LD}	CT_{P}	CT_{T}	СР	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	СО	说 明
0	×	×	×	×	×	X	X	X	0	0	0	0	0	异步置 0
1	0	×	×	1	d_3	d_2	d_1	d_0	d_3	d_2	d_1	d_0		$CO=CT_{\mathrm{T}}\cdot Q_3Q_0$
1	1	1	1	<u> </u>	X	X	X	X		计	数			$CO = Q_{3!}Q_0$
1	1	0	×	×	X	X	X	X		保	持			$CO=CT_{\mathrm{T}}\cdot Q_3Q_0$
1	1	×	0	X	×	×	×	×		保	持		0	

如何构成 N进制计数器

用集成计数器实现任意模值计数器: M为要设计的计数值, N为集成计数器的计数值, 则存在两种情况:

- 1. M<N的情况
 - (1)置零法(反馈归零法);
 - (2)置数法(反馈置数法);
- 2. M>N的情况

利用计数器的级联获得大容量M进制计数器;

1、M<N时

[例]采用CT74LS161构成13进制(base-13)计数器

•置数法:

- ① 写出 S_{M-1} 的二进制代码为: $S_{M-1}=S_{13-1}=S_{12}=1100$
- ② 写出反馈置数函数。由于计数器从0 开始计数,因此,反馈置数函数为: $\overline{LD} = \overline{Q_3Q_2}$
- ③ 画出连线图。

• 置零法

- ① 写出S₁₃的二进制代码, S₁₃=1101;
- ② 写出反馈置零函数。由于异步置0信号为低电平0,因此 $\overline{CR} = \overline{Q_3Q_2Q_0}$;
- ③ 画连线图。

2、M>N时

[例]为由两片CT74LS290级联组成的一百进制异步计数器。(290进行模10 (mod 10)计数,两片组合可以进行模100计数)

由两片CT74LS160级联成的一百进制同步加法计数器 (160进行模10计数,两片组合可以进行模100计数)

由两片4位二进制数加法计数器CT74LS161级联成的五十进制计数器。(161可做模16计数,两片组合进行模256计数,若要实现模50计数,需要通过置数法和置零法。)

由两片CT74LS290构成的二十三进制计数器(290进行模10计数,两片组合可以进行模10计数,若要实现模23计数,需要通过置数法和置零法。)

