Homework 4

习题6

4.

Note

设总体 $X \sim N_p(\mu, \Sigma)$,其中 $\mu = (\mu_1, \dots, \mu_p)'$ 和 $\Sigma > 0$.假设 x_1, \dots, x_n 为来自p元正态总体X的一组独立同分布的简单随机样本,且n > p.记C为 $k \times p$ 的常数矩阵和r为已知的k维向量,且要求k < q和 $rank(\mathbf{C}) = k$.试给出检验 $H_0: \mathbf{C}\mu = r$ 的检验统计量及其分布.

$$Sol. 考虑似然比统计量 \lambda = \frac{\sup_{C_{\mu}=r} f(x_1, \cdots, x_n)}{\sup_{\mu} f(x_1, \cdots, x_n)},$$

$$\\ \sharp hf(x_1, \cdots, x_n) = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \operatorname{etr} \left\{ -\frac{1}{2} \Sigma^{-1} \left(\sum_{i=1}^n (x_i - \mu)(x_i - \mu)' \right) \right\}$$

$$= \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \operatorname{etr} \left\{ -\frac{1}{2} \sum_{i=1}^n (V + n(\overline{x} - \mu)(\overline{x} - \mu)') \right\}, V$$

$$= \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \operatorname{etr} \left\{ -\frac{1}{2} \sum_{i=1}^n (V + n(\overline{x} - \mu)(\overline{x} - \mu)') \right\}, V$$

$$\exists \psi \in \sum_{i=1}^n (x_i - \overline{x})(x_i - \overline{x})'. \exists \exists \mu_{\text{MLE}} = \overline{x}, \widehat{\Sigma}_{\text{MLE}} = \frac{V}{n}, \exists \mu_{\text{sup}} f(x_1, \cdots, x_n) = \frac{1}{\left(\frac{2e\pi}{n}\right)^{\frac{n\nu}{2}} |V|^{\frac{n}{2}}}.$$

$$\exists \psi \in \sup_{C_{\mu}=r} f(x_1, \cdots, x_n) \exists \psi_{\text{N}}, \forall \xi \in \ln f' = -n \ln |\Sigma| - \operatorname{tr} \left(\Sigma^{-1} (V + n(\overline{x} - \mu)(\overline{x} - \mu)')\right)$$

$$\exists \psi \in \sup_{C_{\mu}=r} f(x_1, \cdots, x_n) = \sup_{C_{\mu}=r} \frac{1}{\left(\frac{2e\pi}{n}\right)^{\frac{n\nu}{2}} |(V + n(\overline{x} - \mu)(\overline{x} - \mu)')|^{\frac{n}{2}}}$$

$$\exists \psi \in \sup_{C_{\mu}=r} \frac{|V|^{\frac{n}{2}}}{|(V + n(\overline{x} - \mu)(\overline{x} - \mu)')|^{\frac{n}{2}}} = \sup_{C_{\mu}=r} \frac{1}{|I_p + nV^{-1}(\overline{x} - \mu)(\overline{x} - \mu)')|^{\frac{n}{2}}}$$

$$\exists \sup_{C_{\mu}=r} \left(1 + n(\overline{x} - \mu)'V^{-1}(\overline{x} - \mu) - t'(C_{\mu} - r),$$

$$\begin{cases} \frac{\partial L}{\partial \mu} = -2V^{-1}(\overline{x} - \mu) - t'(C_{\mu} - r), \\ \frac{\partial L}{\partial \mu} = -2V^{-1}(\overline{x} - \mu) - C't = 0 \end{cases} \right.$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\overline{x}} - r)'(C_{\mu} - r) - t'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\overline{x}} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\overline{x}} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\overline{x}} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\overline{x}} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} - r)'(C_{\mu} - r),$$

$$\exists \psi \in \mathcal{V} = (1 + n(C_{\mu} -$$

设 x_1, \dots, x_n 为来自总体 $X \sim N_p(\mu, \Sigma)$ 的独立同分布的简单随机样本,其中 $\mu = (\mu_1, \dots, \mu_p), \Sigma > 0$ 和n > p.记样本均值为 \overline{x} ,样本离差阵为 \mathbf{V} .考虑下面的假设问题:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_p, \qquad H_1: \mu_1, \cdots, \mu_2, \cdots, \mu_p$$
至少有一对不相等.

令 \mathbf{C} 为 $(p-1) \times p$ 的矩阵,记为

$$\mathbf{C} = egin{pmatrix} 1 & -1 & 0 & \cdots & 0 \ 1 & 0 & -1 & \cdots & 0 \ dots & dots & dots & dots \ 1 & 0 & 0 & \cdots & -1 \end{pmatrix}.$$

则上面的假设等价于

$$H_0: \mathbf{C}oldsymbol{\mu} = \mathbf{0}_{p-1}, \qquad H_1: \mathbf{C}oldsymbol{\mu}
eq \mathbf{0}_{p-1},$$

其中 $\mathbf{0}_{p-1}$ 为p-1的零向量.试求检验 H_0 的似然比统计量及其分布.

$$Sol.$$
 由4.可知Hotelling T^2 统计量 $T^2=n(n-1)(\mathbf{C}\overline{\boldsymbol{x}})'(\mathbf{CVC'})^{-1}(\mathbf{C}\overline{\boldsymbol{x}})\sim T^2(p,n-1,\sqrt{n}\mathbf{C}\boldsymbol{\mu})$. 类似地,
$$\frac{n-p-1}{(n-2)p}T^2\sim F_{p,n-p-1}(\delta)$$
也可作为检验统计量, 其中 $\delta=n(n-1)\boldsymbol{\mu}'\mathbf{C}'(\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}')^{-1}\mathbf{C}\boldsymbol{\mu}$.

8.

Note

对两个p元正态总体 $N_p(\mu_1, \Sigma)$ 和 $N_p(\mu_2, \Sigma)$, Σ 均值向量的检验问题,试用似然比原理导出检验 $H_0: \mu_1 = \mu_2$ 的 似然比统计量及其分布.

Sol. 设 x_1, \dots, x_n 与 $y_1, \dots y_m$ 分别为来自总体 $N_p(\mu_1, \Sigma)$ 与 $N_p(\mu_2, \Sigma)$ 的独立同分布的简单随机样本. $=rac{1}{(2\pi)^{rac{(n+m)p}{2}}|\mathbf{\Sigma}|^{rac{n+m}{2}}}\mathrm{etr}\left\{-rac{1}{2}\mathbf{\Sigma}^{-1}\left(\sum_{i=1}^{n}(m{x}_i-m{\mu}_1)(m{x}_i-m{\mu}_1)'+\sum_{i=1}^{m}(m{y}_i-m{\mu}_2)(m{y}_i-m{\mu}_2)'
ight)
ight\}$ $\lambda = rac{oldsymbol{\mu}_1 = oldsymbol{\mu}_2}{\sup\limits_{n \in \mathbb{N}} f(oldsymbol{x}_1, \cdots, oldsymbol{x}_n, oldsymbol{y}_1, \cdots, oldsymbol{y}_n)} = rac{1}{\left(rac{2e\pi}{2}
ight)^{rac{(n+m)p}{2}}|oldsymbol{V}_{+} + oldsymbol{V}_{+}|rac{n+m}{2}|}.$ 其中 $\mathbf{V}_1 = \sum_{i=1}^n (\boldsymbol{x}_i - \overline{\boldsymbol{x}})(\boldsymbol{x}_i - \overline{\boldsymbol{x}})', \mathbf{V}_2 = \sum_{i=1}^m (\boldsymbol{y}_i - \overline{\boldsymbol{y}})(\boldsymbol{y}_i - \overline{\boldsymbol{y}})'.$ $\ln f' = -(n+m) \ln |\mathbf{\Sigma}| - \operatorname{tr} \left(\mathbf{\Sigma}^{-1} (\mathbf{V}_1 + \mathbf{V}_2) \right) - n(\overline{oldsymbol{x}} - oldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\overline{oldsymbol{x}} - oldsymbol{\mu}) - m(\overline{oldsymbol{y}} - oldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\overline{oldsymbol{y}} - oldsymbol{\mu})$ $\diamondsuit \frac{\partial \ln f'}{\partial \boldsymbol{\mu}} = n(\overline{\boldsymbol{x}} - \boldsymbol{\mu}) + m(\overline{\boldsymbol{y}} - \boldsymbol{\mu}) = 0, \\ \partial \widehat{\boldsymbol{\mu}} = \frac{n\overline{\boldsymbol{x}} + m\overline{\boldsymbol{y}}}{n+m}, \\ \frac{\partial^2 \ln f'}{\partial \boldsymbol{\mu}' \partial \boldsymbol{\mu}} = -(n+m)\mathbf{I}_p < 0,$ 故取 $\mu = \widehat{\mu}$ 时, $\ln f' = -(n+m)\ln|\mathbf{\Sigma}| - \operatorname{tr}\left(\mathbf{\Sigma}^{-1}(\mathbf{V}_1 + \mathbf{V}_2)\right) - \frac{nm}{n+m}(\overline{x} - \overline{y})'\mathbf{\Sigma}^{-1}(\overline{x} - \overline{y})$ 为极大值 $\diamondsuit rac{\partial \ln f'}{\partial oldsymbol{\Sigma}} = -(n+m)oldsymbol{\Sigma}^{-1} + (oldsymbol{V}_1 + oldsymbol{V}_2)oldsymbol{\Sigma}^{-2} + rac{nm}{n+m}(\overline{oldsymbol{x}} - \overline{oldsymbol{y}})(\overline{oldsymbol{x}} - \overline{oldsymbol{y}})'oldsymbol{\Sigma}^{-2} = 0,$ $\widehat{\boldsymbol{\Sigma}} = \frac{\mathbf{V}_1 + \mathbf{V}_2}{n+m} + \frac{nm}{(n+m)^2} (\overline{\boldsymbol{x}} - \overline{\boldsymbol{y}}) (\overline{\boldsymbol{x}} - \overline{\boldsymbol{y}})',$ $\text{ } \mathbb{M} \text{ } \text{ } \text{ } \sup_{\boldsymbol{\mu}_1 = \boldsymbol{\mu}_2} f(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n, \boldsymbol{y}_1, \cdots \boldsymbol{y}_m) = \frac{1}{\left(\frac{2e\pi}{n+m}\right)^{\frac{(n+m)p}{2}} |\mathbf{V}_1 + \mathbf{V}_2 + \frac{nm}{n+m} (\overline{\boldsymbol{x}} - \overline{\boldsymbol{y}}) (\overline{\boldsymbol{x}} - \overline{\boldsymbol{y}})'|^{\frac{n+m}{2}}},$ $\lambda = \frac{1}{|\mathbf{I}_p + \frac{nm}{n+m}(\overline{\boldsymbol{x}} - \overline{\boldsymbol{y}})'(\overline{\boldsymbol{x}} - \overline{\boldsymbol{y}})(\mathbf{V}_1 + \mathbf{V}_2)^{-1}|^{\frac{n+m}{2}}} = \left(1 + \frac{nm}{n+m}(\overline{\boldsymbol{x}} - \overline{\boldsymbol{y}})(\mathbf{V}_1 + \mathbf{V}_2)^{-1}(\overline{\boldsymbol{x}} - \overline{\boldsymbol{y}})'\right)^{-\frac{n+m}{2}}.$ λ 为似然比统计量,讲-已知 $\overline{\boldsymbol{x}} \sim N_p(\boldsymbol{\mu}_1, \overline{\boldsymbol{y}} \sim N_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}/n), \mathbf{V}_1 \sim W_p(n-1, \boldsymbol{\Sigma}), \mathbf{V}_2 \sim W_p(m-1, \boldsymbol{\Sigma}),$ $\mathbb{Z}\sqrt{rac{nm}{n+m}}(\overline{oldsymbol{x}}-\overline{oldsymbol{y}})\sim N_p\left(\sqrt{rac{nm}{n+m}}(oldsymbol{\mu}_1-oldsymbol{\mu}_2),oldsymbol{\Sigma}
ight), \mathbf{V}_1+\mathbf{V}_2\sim W_p(n+m-2,oldsymbol{\Sigma}).$ $rightarrow T^2 = rac{(n+m-2)nm}{n+m} (\overline{oldsymbol{x}} - \overline{oldsymbol{y}}) (\overline{oldsymbol{x}} - \overline{oldsymbol{y}})' \sim T^2 \left(p, n+m-2, \sqrt{rac{nm}{n+m}} (oldsymbol{\mu}_1 - oldsymbol{\mu}_2)
ight)$ 另 $rac{n+m-p-2}{p(n+m-3)}T^2 \sim F_{p,n+m-p-2}(\delta),$ 其中 $\delta = rac{(n+m-2)nm}{n+m}(m{\mu}_1 - m{\mu}_2)'m{\Sigma}^{-1}(m{\mu}_1 - m{\mu}_2).$

11.

Note

某项研究确定运功或膳食补充是否会减缓妇女的骨质流失,研究人员通过光子吸收法测量了实验前和实验1年后骨骼中的矿物质含量.表6.8是对参与该项目实验前25个个体和参与该项目实验1年后24个个体骨骼中的矿物质含量数据,记录了3个骨骼主力侧和非主力侧上矿物质含量,其中 X_1 表示主力侧的桡骨、 X_2 表示桡骨、 X_3 表示主力侧的肱骨、 X_4 表示肱骨、 X_5 表示主力侧的尺骨、 X_6 表示尺骨中矿物质的含量.假设

$$X = (X_1, \cdots, X_6)' \sim N_6(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

- (1)分别绘制实验前数据和实验1年后数据的矩阵散点图;
- (2)给定显著性水平 $\alpha = 0.5$,检验经过实验后骨骼中的矿物质是否有流失?;
- (3)构造均值差95%的同时置信区间和Bonferroni置信区间;
- (4)给定显著性水平 $\alpha=0.5$,分别对实验前和实验后的数据进行独立性检验.首先对随机向量 ${m X}$ 和协方差矩阵 ${m \Sigma}$ 进行如下剖分:

$$oldsymbol{X} = egin{pmatrix} oldsymbol{X}^{(1)} \ oldsymbol{X}^{(2)} \ oldsymbol{X}^{(3)} \end{pmatrix}, \quad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}^{(1)} \ oldsymbol{\mu}^{(2)} \ oldsymbol{\mu}^{(3)} \end{pmatrix}, \quad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} & oldsymbol{\Sigma}_{13} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} & oldsymbol{\Sigma}_{23} \ oldsymbol{\Sigma}_{31} & oldsymbol{\Sigma}_{32} & oldsymbol{\Sigma}_{33} \end{pmatrix},$$

其中 $\boldsymbol{X}^{(1)}=(X_1,X_2)', \boldsymbol{X}^{(2)}=(X_3,X_4)', \boldsymbol{X}^{(3)}=(X_5,X_6)'.$ 考虑如下的检验问题:

$$H_0: \Sigma_{12} = 0, \Sigma_{13} = 0, \Sigma_{23} = 0, \qquad H_1: \Sigma_{12}, \Sigma_{13}, \Sigma_{23}$$
 不全为**0**矩阵.

表6.8骨骼中的矿物质含量数据

X_1	X_2	X_3	X_4	X_5	X_6	X_1	X_2	X_3	X_4	X_5	X_6
1.103	1.052	2.139	2.238	0.873	0.872	1.027	1.051	2.268	2.246	0.869	0.964
0.842	0.859	1.873	1.741	0.590	0.744	0.857	0.817	1.718	1.710	0.602	0.689
0.925	0.873	1.887	1.809	0.767	0.713	0.875	0.880	1.953	1.756	0.765	0.738
0.857	0.744	1.739	1.547	0.706	0.674	0.873	0.698	1.668	1.443	0.761	0.698
0.795	0.809	1.734	1.715	0.549	0.654	0.811	0.813	1.643	1.661	0.551	0.619
0.787	0.779	1.509	1.474	0.782	0.571	0.640	0.734	1.396	1.378	0.753	0.515
0.933	0.880	1.695	1.656	0.737	0.803	0.947	0.865	1.851	1.686	0.708	0.787
0.799	0.851	1.740	1.777	0.618	0.682	0.886	0.806	1.742	1.815	0.687	0.715
0.945	0.876	1.811	1.759	0.853	0.777	0.991	0.923	1.931	1.776	0.844	0.656
0.921	0.906	1.954	2.009	0.823	0.765	0.977	0.925	1.933	2.106	0.869	0.789
0.792	0.825	1.624	1.657	0.686	0.668	0.825	0.826	1.609	1.651	0.654	0.726
0.815	0.751	2.204	1.846	0.678	0.546	0.851	0.765	2.352	1.980	0.692	0.526
0.755	0.724	1.508	1.458	0.662	0.595	0.770	0.730	1.470	1.420	0.670	0.580
0.880	0.866	1.786	1.811	0.810	0.819	0.912	0.875	1.846	1.809	0.823	0.773
0.900	0.838	1.902	1.606	0.723	0.677	0.905	0.826	1.842	1.579	0.746	0.729
0.764	0.757	1.743	1.794	0.586	0.541	0.756	0.727	1.747	1.860	0.656	0.506
0.733	0.748	1.863	1.869	0.672	0.752	0.765	0.764	1.923	1.941	0.693	0.740
0.932	0.898	2.028	2.032	0.836	0.805	0.932	0.914	2.190	1.997	0.883	0.785
0.856	0.786	1.390	1.324	0.578	0.610	0.843	0.782	1.242	1.228	0.577	0.627
0.890	0.950	2.187	2.087	0.758	0.718	0.879	0.906	2.164	1.999	0.802	0.769
0.688	0.532	1.650	1.378	0.533	0.482	0.673	0.537	1.573	1.330	0.540	0.498
0.940	0.850	2.334	2.225	0.757	0.731	0.949	0.900	2.130	2.159	0.804	0.779
0.493	0.616	1.037	1.268	0.546	0.615	0.463	0.637	1.041	1.265	0.570	0.634
0.835	0.752	1.509	1.422	0.618	0.664	0.776	0.743	1.442	1.411	0.585	0.640
0.915	0.936	1.971	1.869	0.869	0.868						

14

Note

自己设计一个模拟例子,编写程序,对6.5.2节介绍的球形检验问题进行模拟研究.