PROBLEMA DA PARTIÇÃO

Integrantes: Gabrielle Guarani da Silva e Leonardo Francisco Sehnem dos Santos

Curso: Ciência da Computação

Disciplina: Teoria da Computabilidade e Complexidade

(PARTITION PROBLEM)

Professor: João Batista Souza de Oliveira

DEFINIÇÃO INFORMAL

Dado um conjunto de números inteiros positivos, separar em dois subconjuntos onde a soma de cada subconjunto é igual ao do outro.

DEFINIÇÃO FORMAL

Problema da Partição (Partition Problem) se refere a tarefa de decidir se dado um conjunto S, pode ser dividido em dois subconjuntos, onde a soma de S1 é igual a soma de S2.

EXEMPLO

Dado um subconjunto $S = \{3, 1, 3, 2, 4, 5, 1\}$

Pode-se dividir em dois subconjuntos S1 e S2 onde:

$$S1 = \{3, 2, 4, 1\}$$
 com soma = 10

$$S2 = \{5, 1, 3\} \text{ com soma} = 10$$

EXEMPLO: DIVISÃO JUSTA DE PRESENTES

Contexto

Duas crianças ganharam vários presentes, mas os pais querem garantir que cada uma receba um "valor total" igual de presentes para evitar brigas.

Problema

Os presentes têm valores diferentes (em reais, por exemplo). Como dividir de forma justa?

Ligação com o Partition Problem

Cada presente é um número inteiro (valor). O objetivo é separar os presentes em dois grupos com **soma total igual**.

Exemplo

Presentes com valores: {30, 10, 20, 40}

Divisão ideal: $\{40, 10\}$ e $\{30, 20\}$ \rightarrow ambos somam R\$ 50

EXEMPLO: ARMAZENAMENTO EM DISCOS

Contexto

Você precisa armazenar arquivos com tamanhos variados em dois discos rígidos.

Problema

Distribuir os arquivos de forma que o uso de espaço seja equilibrado entre os dois discos.

Ligação com o Partition Problem

Cada arquivo é um inteiro (tamanho em MB, por exemplo). O objetivo é separar em dois subconjuntos com soma total igual.

Exemplo

Arquivos com tamanhos: {10, 20, 15, 5}

Divisão ideal: $\{20, 5\}$ e $\{10, 15\}$ \rightarrow ambos com 25 MB

EXEMPLO: QUANDO **NÃO** DÁ PARA DIVIDIR IGUALMENTE

Contexto

Duas crianças receberam vários presentes, e os pais querem dividir de forma justa (mesmo valor total para cada uma).

Presentes com valores:

{10, 20, 15}

Soma total:

10 + 20 + 15 = 45 (ímpar)

Problema

Como a soma total é ímpar, **não** é possível dividir exatamente em partes iguais.

• Ligação com o Partition Problem

O problema pergunta se existe ou não uma divisão perfeita (partes iguais).

Neste caso, a resposta é **não**.

QUEM PROVOU SER NP-COMPLETO

 Quem demonstrou?
Richard Karp, um dos pioneiros da teoria da complexidade computacional.

• Quando?

Karp incluiu na classe NP-completos em **1972**, no artigo: "Reducibility Among Combinatorial Problems".

Prova de NP-Completude

- Foi um dos 21 problemas originais usados para definir a classe NP-completos;
- Método: Redução polinomial a partir do problema 3-SAT.

• Isso significa que:

- Não conhecemos algoritmos eficientes (de tempo polinomial) para o problema;
- Se encontrarmos uma solução eficiente, resolveremos todos os problemas de NP;
- Serve como base para provar que outros problemas também são NP-completos (por redução).

REFERÊNCIAS

- https://en.wikipedia.org/wiki/Partition_problem acessado 02/05/2025 às 11:00
- https://www.youtube.com/watch?v=n3LS2p7xoE8 00:00 1:04 acessado 02/05/2025 às 10:30
- Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of Computer Computations. Plenum Press (1972).