IHLT STS Project

Ferran Agulló, Adrián Tormos

Índex

- Preprocessing
- 2 Features
- Regression models
- 4 Explored runs
- 6 Results

2/15

Agulló, Tormos STS Project

- Preprocessing
- 2 Features
- Regression models
- 4 Explored runs
- 5 Results

Preprocessing

- Lowercasing
- 2 Tokenizing
- Removing punctuation
- Tagging parts of speech
- 6 Lemmatizing
- Word sense disambiguation (Lesk algorithm)
- Compute Tf-idf

Preprocessing

- Lowercasing
- 2 Tokenizing
- Removing punctuation
- Tagging parts of speech
- 6 Lemmatizing
- Word sense disambiguation (Lesk algorithm)
- Compute Tf-idf

The original and the results of steps 1, 4, 5, 6 and 7 are stored for each sentence.

Agulló, Tormos STS Project 4 / 15

- Preprocessing
- Peatures
- Regression models
- 4 Explored runs
- Results

Explored lexical features:

- Word, stopword, stem and character n-gram overlaps
- Word n-gram weighted overlap
- Length of longest common substring and subsequence
- Tf-idf cosine similarity
- Machine translation similarity*

Explored lexical features:

- Word, stopword, stem and character n-gram overlaps
- Word n-gram weighted overlap
- Length of longest common substring and subsequence
- Tf-idf cosine similarity
- Machine translation similarity*

Other explored features:

- Sentence length difference
- Number overlap

Explored lexical features:

- Word, stopword, stem and character n-gram overlaps
- Word n-gram weighted overlap
- Length of longest common substring and subsequence
- Tf-idf cosine similarity
- Machine translation similarity*

Other explored features:

- Sentence length difference
- Number overlap

Explored syntactic features:

- Part of speech n-gram overlap
- Dependency overlap
- Difference in amount of phrases*
- Syntactic role similarity*

6/15

Explored lexical features:

- Word, stopword, stem and character n-gram overlaps
- Word n-gram weighted overlap
- Length of longest common substring and subsequence
- Tf-idf cosine similarity
- Machine translation similarity*

Other explored features:

- Sentence length difference
- Number overlap

Explored syntactic features:

- Part of speech n-gram overlap
- Dependency overlap
- Difference in amount of phrases*
- Syntactic role similarity*

Explored semantic features:

- Content n-gram overlap
- Wordnet-based pairwise word similarity
- Wordnet-based weighted pairwise word similarity

Individiual correlations

Correlations between the golden standard and each feature:

Word 1-gram	0.52	Stopw. 4-gram	0.24	Tf-idf cos.	0.73
Word 2-gram	0.39	Stopw. 5-gram	0.22	W-Net L-Ch	0.28
Word 3-gram	0.32	PoS 1-gram	0.02	W-Net 5s L-Ch	0.20
Wgt. W. 1-gram	0.66	PoS 2-gram	0.09	W-Net Path	0.38
Stem 1-gram	0.53	Char. 2-gram	0.69	W-Net 5s Path	0.55
Cont. 1-gram	0.50	Char. 3-gram	0.62	W-Net W. L-Ch	0.45
Cont. 2-gram	0.31	Char. 4-gram	0.58	W-Net W. Path	0.52
Cont. 3-gram	0.32	Char. 5-gram	0.55	Number overlap	0.19
Cont. 4-gram	0.27	Char. 6-gram	0.52	S. length	0.07
Stopw. 1-gram	0.01	Char. 7-gram	0.40	LC Subseq.	0.52
Stopw. 2-gram	0.09	Char. 8-gram	0.49	LC Substr.	0.44
Stopw. 3-gram	0.11	Char. 9-gram	0.47	Dependency	0.43

Agulló, Tormos STS Project 7/15

- Preprocessing
- 2 Features
- Regression models
- 4 Explored runs
- 5 Results

Regression models

- ullet Support Vector Regression (RBF kernel, grid search on C and γ)
- ullet Kernel Ridge Regression (RBF kernel, grid search on lpha and γ)
- AdaBoost (grid search on estimators and learning rate)
- Random Forest (grid search on minimum amount of samples to keep splitting)
- Voting Method (RBF SVR, RBF KRR, AdaBoost, Random Forest and Extra-Trees)

Agulló, Tormos STS Project 9 / 15

- Preprocessing
- 2 Features
- Regression models
- 4 Explored runs
- 6 Results

Lexical run:

- Word n-gram overlap $(n \in \{1,...,3\})$
- ullet Word n-gram weighted overlap (n=1)
- Stopword n-gram overlap $(n \in \{1, ..., 5\})$
- Stem n-gram overlap (n = 1)
- Character n-gram overlap $(n \in \{2, ..., 9\})$
- Length of longest common substring and subsequence
- Tf-idf cosine similarity

Agulló, Tormos STS Project 11 / 15

Lexical run:

- Word n-gram overlap $(n \in \{1,...,3\})$
- Word n-gram weighted overlap (n = 1)
- Stopword n-gram overlap $(n \in \{1, ..., 5\})$
- Stem n-gram overlap (n=1)
- Character n-gram overlap $(n \in \{2, ..., 9\})$
- Length of longest common substring and subsequence
- Tf-idf cosine similarity

Semantic run:

- Content n-gram overlap $(n \in \{1, ..., 4\})$
- Wordnet-based pairwise word similarity (Leacock-Chodrow, Wu-Palmer and path sims.; 1 and 5 best synsets)
- Wordnet-based weighted pairwise word similarity (Leacock-Chodrow, Wu-Palmer and path sims.)

Syntactic run:

- Part of speech n-gram overlap $(n \in \{1, 2\})$
- Dependency overlap

Agulló, Tormos STS Project 12 / 15

Syntactic run:

- Part of speech n-gram overlap $(n \in \{1, 2\})$
- Dependency overlap

Best features run (with and without PCA):

- Word n-gram overlap $(n \in \{1,...,4\})$
- Content n-gram overlap $(n \in \{1, ..., 3\})$
- Stopword n-gram overlap $(n \in \{1,...,5\})$
- ullet Part of speech n-gram overlap $(n \in \{1,2\})$
- Stem n-gram overlap (n=1)
- Character n-gram overlap $(n \in \{2,...,9\})$
- Tf-idf cosine similarity
- Sentence length difference
- Wordnet-based pairwise word similarity (unweighted for 1 and 5 best synsets, weighted for best synset; L-Ch. and path sims.)
- Length of longest common substring
- Number overlap

- Preprocessing
- 2 Features
- Regression models
- 4 Explored runs
- Results

Results

	d	SVR	KRR	AdaB	RF	Voting
Lexical	21	.7423	.7193	.7256	.7539	.7486
Semantic					.7105	
Syntactic	3	.4493	.4200	.4576	.4744	.5075
Best (PCA)						
Best	33	.7444	.7381	.7369	.7685	.7672

Agulló, Tormos STS Project 14 / 15

Comparison with original STS

	d	Score
baer/task6-UKP-run2_plus_postprocessing_smt_twsi	21	.8239
jan_snajder/task6-takelab-syntax	31	.8138
jan_snajder/task6-takelab-simple	14	.8133
baer/task6-UKP-run1	19	.8117
rada/task6-UNT-IndividualRegression	17	.7846
mheilman/task6-ETS-PERPphrases	36	.7834
mheilman/task6-ETS-PERP	36	.7808
baer/task6-UKP-run3_plus_random	22	.7790
ferranagullolopez/ihlt-sts_best-RF	33	.7685
rada/task6-UNT-IndividualDecTree	17	.7677
ferranagullolopez/ihlt-sts_best-VS	33	.7672
yeh/task6-SRIUBC-SYSTEM2	> 18	.7562