MATH 2418: Linear Algebra

Assignment# 2

Due :09/06, Tuesday, 11:59pm

Term <u>:Fall 2022</u>

[Last Name] [First Name] [Net ID] [Lab Section]

Recommended Problems:(Do not turn in) Sec 1.2: 1, 2,5, 6, 7, 8, 12, 13, 19, 29, 31;

1. Let $\mathbf{u} = (-1, 2, 4)$ and $\mathbf{v} = (-1, 0, -11)$ be two vectors in \mathbb{R}^3 .

Sec 1.3: 1, 2, 3,4, 6, 8.

- (a) Calculate the dot product $\mathbf{u} \cdot \mathbf{v}$. What does it say about the angle between \mathbf{u} and \mathbf{v} ?
- (b) Compute the lengths $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$ of the vectors.
- (c) Let θ be the angle between **u** and **v**. Find $\cos \theta$, where $0 \le \theta \le \pi$.
- (d) Find the unit vector $\hat{\mathbf{u}}$ in the opposite direction of \mathbf{u} .
- (e) Find the vector $\hat{\mathbf{v}}$ in the opposite direction of \mathbf{v} and of length 5.
- (f) Find a vector **w** parallel to **u** that has length 2.
- (g) Find a vector \mathbf{z} in the direction of \mathbf{v} and of length 3.

- 2. For any geometric vectors \mathbf{u} and \mathbf{v} , prove the following using triangle inequality.
 - (a) $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$
 - $(b) \ \left| \|\mathbf{u}\| \|\mathbf{v}\| \right| \le \|\mathbf{u} \mathbf{v}\|$

- 3. (a) Let **u** and **v** be two vectors in \mathbb{R}^3 such that $\|\mathbf{u}\| = 3$ and $\|\mathbf{v}\| = 9$.
 - (i) Find the maximum and minimum possible values of $\mathbf{u} \cdot \mathbf{v}$.
 - (ii) Find the maximum and minimum possible values of $\|\mathbf{u} \mathbf{v}\|$.
 - (b) Let $\mathbf{u} = (1, -3), \mathbf{v} = (2, 4)$ and $\mathbf{w} = (c, d), c, d \in \mathbb{R}$, be three vectors in \mathbb{R}^2 . Find all real values c, d, such that \mathbf{u} and \mathbf{w} are orthogonal, and $\mathbf{v} \cdot \mathbf{w} = 3$.

4. Given a matrix
$$A = \begin{bmatrix} 3 & 4 & 9 \\ 2 & 1 & 2 \\ 0 & 3 & -1 \\ 5 & -9 & -7 \end{bmatrix}$$
 and a vector $\mathbf{x} = \begin{bmatrix} -2 \\ 5 \\ 3 \end{bmatrix} \in \mathbb{R}^3$, calculate $A\mathbf{x}$

- (a) as a linear combination of columns of A.
- (b) with entries as dot products of rows of A and \mathbf{x} .

5. Let
$$A = \begin{bmatrix} 2 & -3 & 1 \\ 2 & 7 & -4 \\ 3 & 9 & 9 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$,

- (a) write the linear system corresponding to the matrix equation $A\mathbf{x} = \mathbf{b}$.
- (b) solve the linear system.
- (c) write your answer in the form $\mathbf{x} = A^{-1}\mathbf{b}$. What is A^{-1} ?

- 6. (a) Prove that the vectors $\mathbf{u} = (2, 1, 0)$, $\mathbf{v} = (1, 0, 3)$, $\mathbf{w} = (0, 1, 1)$ are linearly independent.
 - (b) Prove that the vectors $\mathbf{u} = (2,1,0), \ \mathbf{v} = (4,2,0), \ \mathbf{w} = (0,1,1)$ are linearly dependent.
 - (c) Let \mathbf{u} , \mathbf{v} , \mathbf{w} be three linearly independent vectors, and a, b, c be any three nonzero real numbers. Prove that the vectors $a\mathbf{u}$, $b\mathbf{v}$, $c\mathbf{w}$ are also linearly independent.