Looking Out for Energy Related Multiple Pollutant Legislation

Dallas Burtraw

Resources for the Future

NEMS/AEO Conference March 18, 2003

Background materials at http://www.rff.org/multipollutant

Allocation Schedules under Multipollutant Proposals

Pollutant	S. 556 – Jeffords	S. 2815 – Clear Skies	S. 3135 – Carper	Efficient Levels ¹	2000 Emissions
National A	nnual Allowance Allocatior	ı Caps			
Sulfur	2.25 million tons in 2008.	4.5 million tons in 2010.	4.5 million tons in 2008.	Between 0.9	11.2 million
Dioxide	The SO ₂ cap is split into	3.0 million tons in 2018.	3.5 million tons in 2012.	and 3.1	tons.
(SO_2)	two regions. ²		2.25 million tons in 2015.	million tons.	
Nitrogen	1.51 million tons in 2008.	2.1 million tons in 2008.	1.87 million tons in 2008.	Between 1.0	5.1 million
Oxides		1.7 million tons in 2018.	1.7 million tons in 2012.	and 2.8	tons.
(NO_x)		The NO _x cap is split into		million tons.	
		two regions. ³			
Mercury	5 tons in 2008.	26 tons in 2010.	24 tons in 2008.	Not analyzed.	48 tons.
		15 tons in 2018.	5 to 16 tons in 2012.4		
			Facility-specific		
			limitations also apply. ⁵		
Carbon	2.05 billion tons in 2008. ⁶	None.	2.56 billion tons in $2008.$ ⁷	Not analyzed.	2.6 billion
Dioxide			2.39 billion tons in 2012.8		tons.
(CO_2)					

The full version of this table can be found at www.rff.org/multipollutant/.

⁸ The S. 3135 2012 emissions cap is equal to actual 2001 electricity sector CO₂ emissions. The number we report is EIA's AEO 2002 projection for 2001.

¹ Banzhaf, Burtraw, and Palmer 2002.

² Under S. 556, the western region has a 0.275 million ton cap on SO₂ and the non-western region has a 1.975 million ton cap on SO₂.

³ Under S. 2815, the western region has a 0.538 million ton cap on NO_x and the eastern region has a 1.562 million ton cap on NO_x. The eastern NO_x cap is reduced to 1.162 million tons in 2018.

⁴ Beginning in 2012, the S. 3135 mercury cap is 7% to 21% of the quantity of mercury in delivered coal in 1999 as determined by the administrator.

⁵ For S. 3135, from 2008 to 2011, mercury emissions cannot exceed 50% of the total mercury present in delivered coal at each affected facility. In 2012, the percentage drops to 30%. Also, emissions may not exceed an output-based rate determined by the administrator.

⁶ The CO₂ cap is specified in S. 556 and it approximates 1990 level CO₂ emissions from the electricity sector.

⁷ The S. 3135 2008 allowance cap is equal to 2005 electricity sector CO₂ emissions as projected by EIA in the most recent report as of date of enactment. The number we report is EIA's *AEO* 2002 projection for 2005.

Efficient Emission Levels for SO2 and NOx

Scenario and Key Assumptions

- PM-health modeled only; no ozone benefits
- Examine SO2 and NOx emission fees
- No CO2 or mercury requirements
- Results for 2010
- Title IV SO2, SIP Call NOx baseline
- Pope et al. (1995) for sulfates
- Nitrates as ordinary PM₁₀
- VSL=\$2.25 million (Mrozek and Taylor, 2001)

Marginal Benefits and Costs: SO₂

Marginal Benefits and Costs: NO_X

Value of SO₂ Emission Reductions by State

How SO₂ Reductions Are Achieved

Coal Demand

NO_x & SO₂ Electricity Sector Emissions in 2020

Source: Banzhaf, Burtraw and Palmer, 2002. Public Utilities Fortnightly Multiple Pollutant Legislation

Main Points on Criteria Pollutants

- SO2 and NOx caps for all of the proposals appear justified... there is room for more SO₂ reductions; NO_x reductions about right.
 - Efficient SO_2 fee (\$4,700 \$1,800 per ton) would yield 0.9 3.1 million tons.
 - Efficient NO_X fee (\$1,200 \$700 per ton) would yield 1.0 2.8 million tons.
- Evidence supporting regional caps.
- Ancillary CO₂ reductions.

Mercury

Target (tons/yr):

What does benefit literature say?

MACT~7.4 to Ancillary~25

(current levels in coal burned: ~75)

Timetable:

Help states

Design:

Trading enables tougher goals. Perhaps with...

- Maximum emission rate constraint

(not minimum emission rate reduction), and

- State opt out of trading for local protection

Architecture for Carbon

Principles:

- 1. The fundamental divide: voluntary or binding
- 2. More important to start early than to start large
- 3. More important to end economy-wide than to start there
- 4. Compensation through allocation
- 5. Efficiency is essential if constraints tighten

1. Binding Policy

- A cap provides environmental and economic integrity.
- Voluntary programs have limited possibility in a competitive economy.
- > Sequestration out-of-system has to be limited or carefully prescribed. Otherwise, in-system investments are undermined.

2. Start Early Rather Than Start Big

- Signal to R&D, investment communities, households
- Reward, not punish, early reductions
- Banking builds buy-in to program for firms
- Develop institutions
- *Time to plan* for stricter policy serves as compensation
- Harvest low hanging fruit
- Buy time to learn about science, costs, economic tradeoffs

Carbon Schedules in Electricity Sector

Carbon Cap Schedules in Electricity Sector

All allowances are auctioned. SO_2 and NO_2 caps from S.556, no mercury caps are modeled. $SV=Safety\ Valve$, with annual increase. Multiple Pollutant Legislation

Carbon Schedules in Electricity Sector

All allowances are auctioned. SO_2 and NO_2 caps from S.556, no mercury caps are modeled. $SV=Safety\ Valve$, with annual increase. Multiple Pollutant Legislation

Carbon Targets and Schedules

MODEL	SIMULATION YEAR	2008	2010	2015	2020
Baseline	Emissions (million metric tonnes)	708	7.20	759	787
	Carbon Price (\$ / metric tonne)	000	000	000	000
	Bectricity Price (\$/ MWh.)	81.71	61.87	62.98	64.59
2000 Carbon	Emissions (million metric tonnes)	579	581	583	582
	Carbon Price (\$ / metric tonne)	18.00	38.00	80.00	121.00
	Bectricity Price (\$ / MWh.)	72.28	74.89	90.58	88.03
2008 Carbon	Emissions (million metric tonnes)	654	089	202	706
	Carbon Price (\$ / metric tonne)	00.0	00.00	24.00	71.00
	Bectricity Price (\$/MWh)	66.88	65.72	70.07	76.81
S556 Carbon	Emissions (million metric tonnes)	909	205	909	809
	Carbon Price (\$ / metric tonne)	25.80	64.70	112.50	139.90
	Bectricity Price (\$/MWh)	78.37	80.92	84.99	89.81
S3135 Carbon	Emissions (million metric tonnes)	635	269	285	591
	Carbon Price (\$ / metric tonne)	00'0	0.77	89.68	117.90
	Bectricity Price (\$/ MWh)	71.58	71.29	80.08	85.99
Safety Valve:	Emissions (million metric tonnes)	629	628	720	755
\$25	Carbon Price (\$ / metric tonne)	25.00	25.00	25.00	25.00
	Bectricity Price (\$1 MVM)	71.32	69.82	68.91	70.38
Safety Valve:	Emissions (million metric tonnes)	620	899	969	745
\$26+2%	Carbon Price (\$ / metric tonne)	25.00	28.00	28.70	31.70
	Bectricity Price (\$7 MWh)	72.05	69.70	70.52	71.31
Safety Valve	Emissions (million metric tonnes)	631	659	889	716
\$25+5%	Carbon Price (\$ / metric tonne)	25.00	27.60	35.20	46.25
	Bectricity Price (\$/MWh)	70.80	70.02	71.63	74.10
Safety Valve	Emissions (million metric tonnes)	611	632	674	269
\$25+8%	Carbon Price (\$ / metric tonne)	25.00	29.16	42.86	62.94
	Bectricity Price (\$/MWh)	72.72	72.14	72.79	76.55
Safety Valve	Emissions (million metric tonnes)	800	625	648	989
\$25 + 10%	Carbon Price (\$ / metric tonne)	25.00	30.25	48.71	78.47
	Bectricity Price (\$/ MWh)	72.06	71.35	74.11	79.26
Safety Valve	Emissions (million metric tonnes)	800	615	637	289
\$25 + 12%	Carbon Price (\$ / metric tonne)	25.00	31.38	55.28	97.38
	Bectricity Price (\$/MWh)	72.02	72.91	75.37	81.77
Safety Valve	Emissions (million metric tonnes)	582	588	604	586
\$25 + 14%	Carbon Price (\$ / metric tonne)	25.00	32.49	62.54	120.44
	Bectricity Price (\$7 MWh)	73.53	74.37	77.48	85.53

In all runs, allowances are auctioned. SO_2 and NO_2 caps from S.556, no mercury caps are modeled.

3. Open Architecture: Economy-wide

- Do economy-wide, or it's not worth doing at all
- Capture least cost reductions across sectors

Source: Pizer et al., General and Partial Equilibrium Modeling of Sectoral Policies to Address Climate Change in the United States, in preparation.

4. Compensation through Allocation

- Free distribution of allowances with grandfathering can (over) compensate firms
- Free distribution through output-based allocation undermines asset values and harms many firms
- Auction revenues can compensate households/taxpayers
- A hybrid approach can achieve important compensation goals for affected groups
- ❖ But if allowance price provides incentives, interest group claims for allowances dilute efficiency

Effects on Coal Demand Of Adding Carbon to CSI

- CSI maintains total coal demand (tons), but causes shifts among supply regions
- Adding carbon reduces aggregate demand but lessens regional shift

Mercury constraints not modeled; would strengthen result.

Three Allocation Schemes

- (Au) Auction (Safety Valve)
- (GF) Grandfathering
- (OBA) Output Based Allocation (updating)

Change in Asset Values and Compensation

(1997 \$/MW in 2001; 35 million mtc carbon)

Illustrative Effects on Three Firms

5. Efficiency is essential if constraints have to tighten because costs grow large

Why Allocation Matters to the Cost of Reducing Carbon Emissions

- The loss in economic surplus from inefficient pricing is measured by the difference between willingness to pay (price) and marginal cost.
- How allowances are allocated will affect electricity price.

Inefficiency from $P \neq MC$

Determining Electricity Price

- Total Cost (\$):
 capital + FOM + fuel + VOM + poll.allowances [Au]
- Variable Cost Ordering (\$/MWh):
 fuel + VOM + poll.allowances subsidy [OBA]
- Price (\$/MWh):

Regulated Price = Average Cost = (Total Cost ÷ Production)

=> Price [Au] > Price [GF, OBA]

Competitive Price = Variable Cost

=> Price [Au, GF] > Price [OBA]

Price Effects Vary

(35 million mtC)

Social Cost under Limited & Nationwide Restructuring

(1997 \$ in 2012; required reductions vary to achieve same target)

Raising Revenue from Carbon Policy Can Provide Dramatic Efficiency Gains

There are actually *two* reasons an auction (safety valve) is dramatically more efficient from social perspective:

- 1. Market Imperfections $P \neq MC$ (discussed above)
- 2. Tax/Regulatory Interaction Effects ...if revenues are linked to reducing distortionary taxes!

Annual Asset Value of Emission Allowances

Key Ingredients to Multipollutant Policy

- SO₂ and NO_X caps are justified on benefit-cost.
- Mercury trading, with constraints, can lower costs; benefits not well quantified.
- Architecture is very important for carbon policy.
 - ✓ Start soon rather than start large.
 - ✓ Auction is **less costly** to society, and preserves **asset** values better than output-based allocation.
 - ✓ The auction institution is expandable beyond electricity.
 - ✓ A hybrid allocation approach to balance **compensation** and **efficiency**.

