Week 7: Systems Applications & Inequalities

Student: SA Tutor: Rachel Eglash

October 23, 2025

Session 7.2 Systems of Inequalities

Quick Reference: Graphing Inequalities

Single Linear Inequality

Steps to Graph:

- 1. Write in slope-intercept form if possible: y = mx + b
- 2. Graph the boundary line:
 - Use solid line for \leq or \geq (boundary included)
 - Use dashed line for < or > (boundary not included)
- 3. Choose a test point (often (0,0) if not on the line)
- 4. Shade the region where the inequality is true

System of Linear Inequalities

Steps to Graph:

- 1. Graph each inequality on the same coordinate plane
- 2. The **solution region** is where ALL shaded areas overlap
- 3. The solution region is called the **feasible region**
- 4. Any point in this region satisfies all inequalities

Key Vocabulary:

- Feasible region: the solution set (overlapping shaded area)
- Vertex: corner point where boundary lines intersect
- Bounded: the feasible region is enclosed (finite area)
- Unbounded: the feasible region extends infinitely

Homework 7.2: Systems of Inequalities

Instructions

:

For each problem,

- 1. Graph each inequality carefully (solid vs. dashed lines)
- 2. Identify and shade the feasible region
- 3. Verify with a test point
- 4. Answer interpretation questions

Homework Problem 1: Basic Inequalities

Graph the inequality:

 $y > \frac{3}{4}x - 1$

- Slope: _____
- y-intercept: _____
- Solid or dashed line? _____
- Shade above or below the line? _____

Graph the inequality:

$$y \le -2x + 1$$

- Slope: _____
- y-intercept: _____
- Solid or dashed line? _____
- Shade above or below the line?

Homework Problem 2: Basic System

Graph the system of inequalities:

$$y > 2x - 3$$

$$y \le -x + 4$$

Homework Problem 3: Bounded Inequalities

Graph the compound inequality:

 $0 \le x \le 5$

Graph the compound inequality:

 $0 \leq y \leq 4$

Graph the system of inequalities:

$$\begin{array}{l} 0 \leq x \leq 5 \\ 0 \leq y \leq 4 \end{array}$$

Understanding Check:
What shape will the feasible region be?
Is it bounded or unbounded?
Vertices of Feasible Region:
List all four corner points:
Check: Pick a test point in the feasible region and show that it satisfies both inequalities.
Pick a test point NOT in the feasible region and show that it does NOT satisfy at least one of the inequalities.

Homework Problem 4: Application - Manufacturing

A factory makes tables and chairs.
Each table requires 4 hours of labor. Each chair requires 2 hours of labor.
The factory has <u>at most</u> 20 hours of labor per day.
They must make <u>at least</u> 2 tables per day. They can make at most 6 chairs per day.
Write and graph a system of inequalities.
Variables: $t = \text{number of tables}$ $c = \text{number of chairs}$
System of Inequalities:
1. Labor constraint:
2. Minimum tables:
3. Maximum chairs:
4. Non-negative: $t \ge 0$ and $c \ge 0$ (already implied by context)

Interpretation Questions:
Can they make 3 tables and 4 chairs?
Why or why not?

Can they make 4 tables and 2 chairs?

Why or why not?

What is the maximum number of chairs if they make exactly 2 tables?