Mapping Class Groups

D. Zack Garza

Wednesday $30^{\rm th}$ September, 2020

Contents

1	1 Setup	2
	1.1 The Compact-Open Topology	2
	1.1.1 Mapping Spaces	
	1.2 Aside on Analysis	
	1.2.1 Application in Analysis	
	1.3 Aside on Number Theory	
2	2 Path Spaces	4
	2.1 Homotopy and Isotopy in Terms of Path Spaces	4
	2.1.1 Proof	
	2.2 Iterated Path Spaces	
3	3 Defining the Mapping Class Group	6
	3.1 Isotopy	6
	3.2 Self-Homeomorphisms	
	3.3 Definitions in Several Categories	
	3.4 Relation to Moduli Spaces	
4	4 Examples of MCG	10
	4.1 The Plane: Straight Lines	10
	4.2 The Closed Disc: The Alexander Trick	
	4.3 Overview of Big Results	
5	5 Dehn Twists	13
6	6 MCG of the Torus	14
	6.1 Proof	15

$1 \mid \mathsf{Setup}$

- All manifolds:
 - Connected
 - Oriented
 - 2nd countable (countable basis)
 - Hausdorff (separate with disjoint neighborhoods, uniqueness of limits)
 - With boundary (possibly empty)
- Weakly Hausdorff: every continuous image of a compact Hausdorff space into it is closed.
- Compactly generated: sets are closed iff their intersection with every compact subspace is closed.
- Curves: simple, closed, oriented
- For X, Y topological spaces, consider

$$Y^X = C(X, Y) = \text{hom}_{\text{Top}}(X, Y) \coloneqq \{ f : X \to Y \mid f \text{ is continuous} \}.$$

1.1 The Compact-Open Topology

- General idea: cartesian closed categories, require exponential objects or internal homs: i.e. for every hom set, there is some object in the category that represents it
 - Slogan: we'd like homs to be spaces.
- Can make this work if we assume WHCG: weakly Hausdorff and compactly generated.
- Topologize with the compact-open topology \mathcal{O}_{CO} :

$$U \in \mathcal{O}_{\mathrm{CO}} \iff \forall f \in U, \quad f(K) \subset Y \text{ is open for every compact } K \subseteq X.$$

1.1.1 Mapping Spaces

• So define

$$\operatorname{Map}(X,Y) := (\operatorname{hom}_{\operatorname{Top}}(X,Y), \mathcal{O}_{\operatorname{CO}})$$
 where $\mathcal{O}_{\operatorname{CO}}$ is the compact-open topology.

- Can immediately define interesting derived spaces:
 - Homeo(X,Y) the subspace of homeomorphisms
 - $-\operatorname{Imm}(X,Y)$, the subspace of immersions (injective map on tangent spaces)
 - Emb(X,Y), the subspace of embeddings (immersion + diffeomorphic onto image)
 - $-C^{k}(X,Y)$, the subspace of $k\times$ differentiable maps
 - $-C^{\infty}(X,Y)$ the subspace of smooth maps
 - Diffeo(X,Y) the subspace of diffeomorphisms
 - $-C^{\omega}(X,Y)$ the subspace of analytic maps
 - $\operatorname{Isom}(X,Y)$ the subspace of isometric maps (for Riemannian metrics)
 - -[X,Y] homotopy classes of maps

1.2 Aside on Analysis

• If Y = (Y, d) is a metric space, this is the topology of "uniform convergence on compact sets": for $f_n \to f$ in this topology iff

$$||f_n - f||_{\infty,K} := \sup \left\{ d(f_n(x), f(x)) \mid x \in K \right\} \stackrel{n \to \infty}{\to} 0 \quad \forall K \subseteq X \text{ compact.}$$

- In words: $f_n \to f$ uniformly on every compact set.
- If X itself is compact and Y is a metric space, C(X,Y) can be promoted to a metric space with

$$d(f,g) = \sup_{x \in X} (f(x), g(x)).$$

1.2.1 Application in Analysis

• Useful in analysis: when does a family of functions

$$\mathcal{F} = \{f_{\alpha}\} \subset \hom_{\mathrm{Top}}(X, Y)$$

form a compact subset of Map(X, Y)?

• Essentially answered by:

Theorem 1.1(Ascoli).

If X is locally compact Hausdorff and (Y,d) is a metric space, a family $\mathcal{F} \subset \text{hom}_{\text{Top}}(X,Y)$ has compact closure $\iff \mathcal{F}$ is equicontinuous and $F_x \coloneqq \{f(x) \mid f \in \mathcal{F}\} \subset Y$ has compact closure

Corollary 1.2(Arzela).

If $\{f_n\} \subset \hom_{\text{Top}}(X,Y)$ is an equicontinuous sequence and $F_x := \{f_n(x)\}$ is bounded for every X, it contains a uniformly convergent subsequence.

1.3 Aside on Number Theory

- Useful in Number Theory / Rep Theory / Fourier Series:
 - Can take G to be a locally compact abelian topological group and define its Pontryagin dual

$$\widehat{G} := \hom_{\operatorname{TopGrp}}(G, S^1)$$

where we consider $S^1 \subset \mathbb{C}$.

• Can integrate with respect to the Haar measure μ , define L^p spaces, and for $f \in L^p(G)$ define a Fourier transform $\hat{f} \in L^p(\hat{G})$.

$$\widehat{f}(\chi) := \int_C f(x) \overline{\chi(x)} d\mu(x).$$

1 SETUP 3

2 | Path Spaces

• Can immediately consider some interesting spaces via the functor Map (\cdot, Y) :

$$\begin{split} X &= \{ \mathrm{pt} \} \leadsto & \mathrm{Map}(\{ \mathrm{pt} \}, Y) \cong Y \\ X &= I \leadsto & \mathcal{P}Y \coloneqq \{ f : I \to Y \} = Y^I \\ X &= S^1 \leadsto & \mathcal{L}Y \coloneqq \left\{ f : S^1 \to Y \right\} = Y^{S^1}. \end{split}$$

• Adjoint property: there is a homeomorphism

$$\operatorname{Map}(X \times Z, Y) \leftrightarrow_{\cong} \operatorname{Map}(Z, Y^X)$$

$$H: X \times Z \to Y \iff \tilde{H}: Z \to \operatorname{Map}(X, Y)$$

$$(x, z) \mapsto H(x, z) \iff z \mapsto H(\cdot, z).$$

- Categorically, hom $(X, \cdot) \leftrightarrow (X \times \cdot)$ form an adjoint pair in Top.
- A form of this adjunction holds in any cartesian closed category (terminal objects, products, and exponentials)

2.1 Homotopy and Isotopy in Terms of Path Spaces

- Can take basepoints to obtain the base path space PY, the based loop space ΩY .
- Importance in homotopy theory: the path space fibration

$$\Omega Y \hookrightarrow PY \xrightarrow{\gamma \mapsto \gamma(1)} Y$$

- Plays a role in "homotopy replacement", allows you to assume everything is a fibration and use homotopy long exact sequences.
- Fun fact: with some mild point-set conditions (Locally compact and Hausdorff),

$$\pi_0 \operatorname{Map}(X, Y) = \{ [f], \text{ homotopy classes of maps } f : X \to Y \},$$

i.e. two maps f,g are homotopic \iff they are connected by a path in $\mathrm{Map}(X,Y)$.

Picture!

2.1.1 Proof

$$\mathcal{P}\mathrm{Map}(X,Y) = \mathrm{Map}(I,Y^X) \cong \mathrm{Map}(X \times I,Y),$$

and just check that $\gamma(0) = f \iff H(x,0) = f$ and $\gamma(1) = g \iff H(x,1) = g$.

• Interpretation: the RHS contains homotopies for maps $X \to Y$, the LHS are paths in the space of maps.

2.2 Iterated Path Spaces

• Now we can bootstrap up to play fun recursive games by applying the pathspace endofunctor $\operatorname{Map}(I, \cdot)$:

$$\begin{split} \mathcal{P}\mathrm{Map}(X,Y) &\coloneqq \mathrm{Map}(I,Y^X) \\ \mathcal{P}^2\mathrm{Map}(X,Y) &\coloneqq \mathcal{P}\mathrm{Map}(I,Y^X) = \mathrm{Map}(I,(Y^X)^I) = \mathrm{Map}(I,Y^{XI}) \\ &\vdots \\ \mathcal{P}^n\mathrm{Map}(X,Y) &\coloneqq \mathcal{P}^{n-1}\mathrm{Map}(I,Y^{XI}) = \mathrm{Map}(X,Y^{XI^n}). \end{split}$$

• Can interpret

$$\mathcal{P}^2$$
Map $(X, Y) = \mathcal{P}$ Map $(X \times I, Y)$.

as the space of paths between homotopies.

• Interpretation: we can consider paths in the *space* of paths, and paths between homotopies, and homotopies between homotopies, ad infinitum!

This in fact defines a *monad* on spaces: an endofunctor that behaves like a monoid.

Picture, link to infinity categories.

3 Defining the Mapping Class Group

3.1 Isotopy

- Define a homotopy between $f, g: X \to Y$ as a map $F: X \times I \to Y$ restricting to f, g on the ends
 - Equivalently: a path, an element of Map(I, C(X, Y)).
- Isotopy: require the partially-applied function $F_t: X \to Y$ to be homeomorphisms for every t.
 - Equivalently: a path in the subspace of homeomorphisms, an element of $\operatorname{Map}(I,\operatorname{Homeo}(X,Y))$

Picture: picture of homotopy, paths in $\mathrm{Map}(X,Y)$, subspace of homeomorphisms.

3.2 Self-Homeomorphisms

- In any category, the automorphisms form a group.
 - In a general category \mathcal{C} , we can always define the group $\operatorname{Aut}_{\mathcal{C}}(X)$.
 - * If the group has a topology, we can consider $\pi_0 \operatorname{Aut}_{\mathcal{C}}(X)$, the set of path components.
 - * Since groups have identities, we can consider $\operatorname{Aut}^0_{\mathcal{C}}(X)$, the path component containing the identity.
 - So we make a general definition, the extended mapping class group:

$$\mathrm{MCG}^{\pm}_{\mathcal{C}}(X) := \mathrm{Aut}_{\mathcal{C}}(X)/\mathrm{Aut}^{0}_{\mathcal{C}}(X).$$

- Here the \pm indicates that we take both orientation preserving and non-preserving automorphisms.
- Has an index 2 subgroup of orientation-preserving automorphisms, $MCG^+(X)$.
- Can define $MCG_{\partial}(X)$ as those that restrict to the identity on ∂X .

Picture: quotienting out by identity component

3.3 Definitions in Several Categories

• Now restrict attention to

$$\operatorname{Homeo}(X) := \operatorname{Aut}_{\operatorname{Top}}(X) = \left\{ f \in \operatorname{Map}(X, X) \mid f \text{ is an isomorphism} \right\}$$
 equipped with $\mathcal{O}_{\operatorname{CO}}$.

- Taking $\mathrm{MCG}^\pm_{\mathrm{Top}}(X)$ yields homeomorphism up to homotopy Similarly, we can do all of this in the smooth category:

$$Diffeo(X) := Aut_{C^{\infty}}(X).$$

- Taking $MCG_{C^{\infty}}(X)$ yields diffeomorphism up to isotopy
- Similarly, we can do this for the homotopy category of spaces:

$$ho(X) := \{ [f] \in [X, Y] \}.$$

- Taking MCG(X) here yields homotopy classes of self-homotopy equivalences.

3.4 Relation to Moduli Spaces

- For topological manifolds: Isotopy classes of homeomorphisms
 - In the compact-open topology, two maps are isotopic iff they are in the same component of $\pi \operatorname{Aut}(X)$.
- For surfaces: For Σ a genus g surface, $\mathrm{MCG}(S)$ acts on the Teichmuller space T(S), yielding a SES

$$0 \to \mathrm{MCG}(\Sigma) \to T(\Sigma) \to \mathcal{M}_q \to 0$$

where the last term is the moduli space of Riemann surfaces homeomorphic to X.

- T(S) is the moduli space of complex structures on S, up to the action of homeomorphisms that are isotopic to the identity:
 - Points are isomorphism classes of marked Riemann surfaces
 - Equivalently the space of hyperbolic metrics
- Used in the Neilsen-Thurston Classification: for a compact orientable surface, a self-homeomorphism is isotopic to one which is any of:
 - Periodic,
 - Reducible (preserves some simple closed curves), or
 - Pseudo-Anosov (has directions of expansion/contraction)

Picture: \mathcal{M}_q .

4 | Examples of MCG

4.1 The Plane: Straight Lines

• $MCG_{Top}(\mathbb{R}^2) = 1$: for any $f : \mathbb{R}^2 \to \mathbb{R}^2$, take the straight-line homotopy:

$$F: \mathbb{R}^2 \times I \to \mathbb{R}^2$$
$$F(x,t) = tf(x) + (1-t)x.$$

Picture: parameterize line between x and f(x) and flow along it over time.

4.2 The Closed Disc: The Alexander Trick

• $MCG_{Top}(\overline{\mathbb{D}}^2) = 1$: for any $f : \overline{\mathbb{D}}^2 \to \overline{\mathbb{D}}^2$ such that $f|_{\partial \overline{\mathbb{D}}^2} = id$, take

$$F: \overline{\mathbb{D}}^2 \times I \to \overline{\mathbb{D}}^2$$

$$F(x,t) := \begin{cases} tf\left(\frac{x}{t}\right) & \|x\| \in [0,t) \\ x & \|x\| \in [1-t,1] \end{cases}.$$

- This is an isotopy from f to the identity.
- Interpretation: "cone off" your homeomorphism over time:

Figure 1: Image

- Note that this won't work in the smooth category: singularity at origin

4.3 Overview of Big Results

- The word problem in $MCG(\Sigma_q)$ is solvable
- Any finite group is MCG(X) for some compact hyperbolic 3-manifold X.
- For $g \geq 3$, the center of $MCG(\Sigma_g)$ is trivial and $H_1(MCG(\Sigma_g); \mathbb{Z}) = 1$
 - Why care: same as abelianization of the group.

Theorem 4.1(Dehn-Neilsen-Baer).

Let Σ_g be compact and oriented with $\chi(\Sigma_g) < 0$. Then

$$MCG_{\partial}^+(\Sigma_g) \cong Out_{\partial}(\pi_1(\Sigma_g)) \cong_{Grp} \pi_0 ho_{\partial}(\Sigma_g).$$

- For $g \geq 4$, $H_2(MCG(\Sigma_q); \mathbb{Z}) = \mathbb{Z}$
 - Why care: used to understand surface bundles

$$\Sigma_g \longrightarrow E$$

$$\downarrow$$

$$B$$

- Find the classifying space BDiffeo
- Understand its homotopy type, since the homotopy LES yields

$$[S^n, B\text{Diffeo}(\Sigma_g)] \cong [S^{n-1}, \text{Diffeo}(\Sigma_g)]$$

– Theorem (Earle-Ells): For $g \geq 2$, Diffeo₀(Σ_g) is contractible. As a consequence, Diffeo(Σ_g) \twoheadrightarrow Mod(Σ_g) is a homotopy equivalence, and there is a correspondence:

5 Dehn Twists

• $MCG(\Sigma_g)$ is generated by finitely many **Dehn twists**, and always has a finite presentation

Claim: Let $A \coloneqq \left\{z \in \mathbb{C} \ \middle| \ 1 \le |z| \le 2\right\}$, then $\mathrm{MCG}(A) \cong \mathbb{Z}$, generated by the map

$$\tau_0: \mathbb{C} \to \mathbb{C}$$

$$z \mapsto \exp(2\pi i|z|) z.$$

6 MCG of the Torus

Definition 6.0.1 (Special Linear Group).

$$\mathrm{SL}(n, \mathbb{k}) = \left\{ M \in \mathrm{GL}(n, \mathbb{k}) \mid \det M = 1 \right\} = \ker \det_{\mathbb{G}_m}.$$

Definition 6.0.2 (Symplectic Group).

$$\operatorname{Sp}(2n, \mathbb{k}) = \left\{ M \in \operatorname{GL}(2n, \mathbb{k}) \mid M^t \Omega M = \Omega \right\} \le \operatorname{SL}(2n, \mathbb{k})$$

where Ω is a nondegenerate skew-symmetric bilinear form on $\Bbbk.$ Example:

$$\Omega = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}.$$

• There is a natural action of $MCG(\Sigma)$ on $H_1(\Sigma; \mathbb{Z})$, i.e. a homology representation of $MCG(\Sigma)$:

$$\rho: \mathrm{MCG}(\Sigma) \to \mathrm{Aut}_{\mathrm{Grp}}(H_1(\Sigma; \mathbb{Z}))$$
$$f \mapsto f_*.$$

- For a surface of finite genus $g \ge 1$, elements in $im\rho$ preserve the algebraic intersection form, which is a symplectic pairing.
- Thus there is a surjective representation

$$0 \to MCG(\Sigma_g) \twoheadrightarrow \operatorname{Sp}(2g; \mathbb{Z}).$$

- Kernel is the *Torelli group*.
- Every homology class in H_1 can be represented by a (possibly non-simple) loop.
- Algebraic intersection: a bilinear antisymmetric form $\hat{\iota}$ on $H_1(\Sigma_g; \mathbb{Z})$
 - -x is isotropic iff $\iota(x,\cdot)=0$.

Remark 1.

$$\mathrm{SL}(2,\mathbb{Z}) = \left\langle S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\rangle.$$

Note that $S^2 = 1$ and

$$T^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$

Moreover, if $\mathbf{x} = [x_1, x_2] \in \mathbb{Z} \oplus \mathbb{Z}$ and $A \in \mathrm{SL}(2, \mathbb{Z})$, we have $A\mathbf{x} \in \mathbb{Z} \oplus \mathbb{Z}$, i.e. this preserves any integer lattice

$$\Lambda = \left\{ p\mathbf{v}_1 + q\mathbf{v}_2 \mid p, q \in \mathbb{Z} \right\} \cong \left\{ p\omega_1 + q\omega_2 \mid p, q \in \mathbb{Z} \right\} \simeq \left\{ p' + q'\tau \mid p', q' \in \mathbb{Z} \right\}.$$

where the ω_i , τ come from identifying \mathbb{R}^2 with \mathbb{C} , and in the last step we've rescaled the lattice by homothety to align one vector with the x-axis.

Figure 2: Lattice

Remark 2.

For any finite-index subgroup $G \leq \mathrm{SL}(2,\mathbb{Z})$, the orbits/left-quotient $_{G} \setminus^{\mathbb{H}}$ yields a complex curve (i.e. a torus).

Theorem 6.1 (Mapping Class Group of the Torus).

The homology representation of the torus induces an isomorphism

$$\sigma: \mathrm{MCG}(\Sigma_2) \xrightarrow{\cong} \mathrm{SL}(2,\mathbb{Z})$$

6.1 Proof

• For f any automorphism, the induced map $f_*: \mathbb{Z}^2 \to \mathbb{Z}^2$ is a group automorphism, so we can consider the group morphism

$$\tilde{\sigma}: (\operatorname{Homeo}(X, X), \circ) \to (\operatorname{GL}(2, \mathbb{Z}), \circ)$$

$$f \mapsto f_*.$$

• This will descend to the quotient MCG(X) iff

$$\operatorname{Homeo}^0(X,X) \subseteq \ker \tilde{\sigma} = \tilde{\sigma}^{-1}(\operatorname{id})$$

- This holds because any map in the identity component is homotopic to the identity, and homotopic maps induce the equal maps on homology.
- So we have a (now injective) map

$$\tilde{\sigma}: \mathrm{MCG}(X) \to \mathrm{GL}(2, \mathbb{Z})$$

$$f \mapsto f_*.$$

Claim: $\operatorname{im}(\tilde{\sigma}) \subseteq \operatorname{SL}(2,\mathbb{Z}).$

Proof.

- Algebraic intersection numbers in Σ_2 correspond to determinants
- $f \in \text{Homeo}^+(X)$ preserve algebraic intersection numbers.
- See section 1.2
- We can thus freely restrict the codomain to define the map

$$\sigma: \mathrm{MCG}(X) \to \mathrm{SL}(2, \mathbb{Z})$$
$$f \mapsto f_*.$$

Claim: σ is surjective.

- \mathbb{R}^2 is the universal cover of Σ_2 , with deck transformation group \mathbb{Z}^2 .
- Any $A \in SL(2,\mathbb{Z})$ extends to $\tilde{A} \in GL(2,\mathbb{R})$, a linear self-homeomorphism of the plane that is orientation-preserving.

Claim: \tilde{A} is equivariant wrt \mathbb{Z}^2

Proof.

- So \tilde{A} descends to a well-defined map $\psi_{\tilde{A}}$ on $\Sigma_2 := \mathbb{R}^2/\mathbb{Z}^2$, which is still a linear self-homeomorphism
- There is a correspondence

$$\left\{ \begin{array}{c} \text{Primitive vectors in } \mathbb{Z}^2 \right\} \iff \left\{ \begin{array}{c} \text{Oriented simple closed} \\ \text{curves in } \Sigma_2 \end{array} \right\} / \text{homotopy}.$$

• Thus $\sigma([\psi_{\tilde{A}}]) = \tilde{A}$, and we have surjectivity.

Claim: σ is injective.

• Useful fact: $\Sigma_2 \simeq K(\mathbb{Z}^2, 1)$.

Proposition 6.2 (Hatcher 1B.9).

Let X be a connected CW complex and Y a K(G,1). Then there is a map

$$\text{hom}_{\text{Grp}}(\pi_1(X; x_0), \pi_1(Y; y_0)) \to \text{hom}_{\text{Top}}((X; x_0), (Y; y_0)),$$

i.e. every homomorphism of fundamental groups is induced by a continuous pointed map. Moreover, the map is unique up to homotopies fixing x_0 .

• Thus there is a correspondence

$$\left\{ \begin{array}{c} \text{Homotopy classes of} \\ \text{maps } \Sigma_2 \circlearrowleft \end{array} \right\} \iff \left\{ \text{Group morphisms } \mathbb{Z}^2 \circlearrowleft \right\}.$$

- Claim: any element $f \in MCG(\Sigma_2)$ has a representative φ which fixes any given basepoint
- So if $f \in \ker \sigma$, then $f \simeq \varphi \simeq \operatorname{id}$ are homotopic, so $\ker \sigma = 1$.