

软件故障预测调研

霍茵桐

2020/12/23 Workshop

Failure could happen anywhere

- Failure could happen in large systems
 - Severity
 - Complexity

A general solution

- 1. Select feature
- 2. Encode feature
- 3. Choose model
- 4. Training and evaluation

- What does the paper focus on?
 - Forecast the occurrence of outages before they actually happen.
 - Diagnose the root cause after the outages indeed occur.
- Motivation
 - Most of the current work only consider a single system and ignore the related systems that could have an impact when predicting outages.
- Approach
 - Build a global watcher for predicting and diagnosing outages of a cloud system.

Framework

- Bayesian network for outage diagnosis
- Gradient boosting tree for outage prediction
- Data source
 - Alert signal intensity

- How to detect relationship between alerting signals and outages?
 - FCI-algorithm
- FCI-algorithm
 - Build a directed acyclic graph (DAG) with causal relationship.
 - Generate the connectivity between the alerting signals and outages.

- Predictor: Gradient boosting tree-based model
 - XGBoost

$$\mathcal{L} = \sum_{t=1}^{T} l(y_t, \hat{y}_t) + \lambda \sum_{k=1}^{K} \Omega(||f_k||)$$
 input
$$\hat{y}_t = \sum_{k=1}^{K} f_k(\mathcal{A}_t), f_k \in F$$
 output
$$0/1$$

- Experiment setups
 - Dataset
 - Microsoft cloud system
 - Training data: 8,000 samples in 24hrs * 365 days (time step: one hour)
 - Evaluation: service and component outages that occurred frequently in last year
 - Imbalance data
 - SMOTE strategy

Experimental results

Baselines:

- Simple Spike: threshold-based
- SVM: all signals serves as input features
- PLR: all signals serves as input features
- AirAlert Related:Use Bayesian to find most relavant signals for prediction
- AirAlert Full: based on XGBoost classifier

Table 1: Comparison of different methods for component-level outage prediction.

		Outage	35.2	90 90	Outage	V-22-0 492	Outage			
	(Storage Location)			(Physical Networking)			(Storage Streaming)			
	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score	
Simple Spike	61.65	100.00	76.28	73.71	67.71	70.58	61.52	100.00	76.18	
PLR	70.02	92.71	79,78	67.72	83.33	74.72	63.23	91.67	74.84	
SVM	65.65	95.83	77.92	63.13	88.54	73.71	58.62	88.64	70.57	
AirAlert Related	65.31	100.00	79.01	63.33	98.95	77.25	62.34	100.00	76.80	
AirAlert Full	71.11	100.00	83.17	69.07	100.00	81.71	63.75	98.99	77.86	

Table 2: Comparison of different methods for service-level outage prediction.

	Outage (Website Application)			Outage (Cloud Network)			Outage (Microsoft Cloud System Operation)			
	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score	
Simple Spike	5.73	11.83	7.72	4.47	67.74	8.39	7.27	29.03	11.63	
PLR	61.18	54.17	57.46	26.27	60.52	36.64	20.36	35.17	25.79	
SVM	66.41	88.54	75.89	6.89	88.42	12.78	26.90	22.50	24.50	
AirAlert Related	92.18	85.63	88.78	62.08	47.65	53.92	72.40	77.96	75.08	
AirAlert Full	82.75	76.74	79.63	75.93	67.07	71.22	72.59	50.15	59.32	

Case Study

Diagnose component-level outage

08/03

2:00PM

Time

08/03

5:00PM

08/03

9:00PM

08/03

7:00AM

08/03

11:00AM

Diagnose service-level outage

- What does the paper focus on?
 - Predict node failure in cloud service systems
- Challenges
 - Complicated failure causes
 - Complex failure-indicating signals
 - Highly imbalanced data

Framework

- MemoryUsage
- DiskSectorError
- ServiceError
- IOResponse

Temporal features

- UpdateDomain
- RackLocation
- LoadBalanceGroup
- OSBuildGroup

...

Spatial features

 Framework LambdaMART Phase 2 Training Phase 1 Training LSTM Output Vector Temporal Data (Healthy) Fanking Ranking Training Concat Model RandomForest Node Spatial Output Data Data Vector Input Vector

Nodes

Experiment setups

- Dataset
 - Microsoft cloud service system
 - Each dataset contains over half a million of physical cloud computing nodes
 - Feature data is collected six hours before the class label data is collected
- Imbalance data
 - Select healthy nodes with a 1:20 sample rate

Experimental results

The effectiveness of MING

	MING			Logistic Regression (LR)		SVM		Random Forest			LSTM				
	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
Dataset 1	92.3%	64.2%	75.7%	69.8%	48.3%	57.1%	66.9%	53.4%	59.4%	71.6%	51.1%	59.6%	76.2%	52.3%	62.0%
Dataset 2	90.1%	67.3%	77.0%	78.6%	34.7%	48.1%	54.8%	61.1%	57.8%	80.6%	58.3%	67.7%	61.7%	60.4%	61.0%
Dataset 3	94.7%	59.1%	72.8%	59.7%	51.3%	55.2%	76.2%	44.6%	56.3%	76.3%	47.4%	58.5%	80.3%	46.3%	58.7%
Average	92.4%	63.5%	75.2%	69.4%	44.8%	53.5%	66.0%	53.0%	57.8%	76.2%	52.3%	61.9%	72.7%	53.0%	60.6%

The effectiveness of the ensemble model

	Temporal+Spatial (MING)			Tempora	al only (L	STM)	Spatial only (Random Forest)			
	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	
Dataset 1	92.3%	64.2%	75.7%	70.6%	36.2%	47.9%	66.5%	49.3%	56.6%	
Dataset 2	90.1%	67.2%	77.0%	63.8%	46.7%	53.9%	72.1%	54.7%	62.2%	
Dataset 3	94.7%	59.1%	72.8%	51.4%	39.6%	44.7%	79.6%	39.1%	52.4%	
Average	92.4%	63.5%	75.2%	61.9%	40.8%	48.8%	72.7%	47.7%	57.1%	

- What does the paper focus on?
 - Forecast whether an incident will happen in the near future based on alert data in real time.

Challenges

- Practical alert data contains tens of attributes.
- Not all alerts before an incident are helpful for prediction.
- An interpretable prediction is needed.

- Framework
 - Identify features
 - Bypass noisy alerts via Multi-Instance Learning (MIL)
 - Build a classification model
- Data source
 - Alert data content and their statistics.

Identify features

Time	Content	Server	Service	Severity	Type	Others
2020-02-03 08:24:11	Authentication failure for SNMP request from host P13.	P10	EPAY	3	Network	
2020-02-03 08:25:34	Can't get Weblogic queue (EPAYAPP). Timeout.	P31	EPAY	2	Middleware	
2020-02-03 08:26:04	The utilization of file system /home/etl441 is 82%, exceeding 80%.	P72	EPAY	2	OS	
2020-02-03 08:26:51	Business success rate is 88%, lower than 90%.	P2	EPAY	1	Application	

Textual features

Statistical features

- Alert count
- Window time
- Inter-arrival time
- Others (domain knowledge)

- Reduce the influence of noisy alerts
 - Multi-instance learning (MIL)

The instance window with less helpful alerts -> smaller weight

- Build a classification model
 - Gradient boosting tree-based model (XGBoost)
 - SMOTE for handling imbalance data

Experimental results

Approach		eWarn			AirAler	t	TF-	IDF-LS	TM	F	P-Grow	th	1	W/o MI	L
System	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
S1	0.86	0.82	0.84	0.46	0.82	0.59	0.93	0.73	0.82	0.08	0.05	0.06	0.36	0.80	0.50
S2	0.86	0.97	0.91	0.81	0.94	0.87	0.80	0.88	0.84	0.25	0.22	0.23	0.82	0.97	0.89
S3	0.61	0.83	0.70	0.41	0.24	0.31	0.23	0.76	0.35	0.05	0.09	0.07	0.50	0.67	0.57
S4	0.92	0.84	0.88	0.34	0.81	0.48	0.58	0.39	0.46	0.16	0.27	0.20	0.97	0.52	0.68
S5	0.75	0.86	0.80	0.34	0.29	0.32	0.14	0.31	0.19	0.12	0.25	0.17	0.71	0.39	0.51
S6	0.96	1.00	0.98	0.21	1.00	0.35	0.91	1.00	0.95	1.00	0.05	0.09	0.96	1.00	0.98
S7	0.73	0.71	0.72	0.65	0.53	0.59	0.67	0.73	0.69	0.00	0.00	0.00	0.36	0.76	0.49
S8	0.56	0.92	0.69	0.22	1.00	0.36	0.17	1.00	0.30	0.13	0.10	0.11	0.60	0.61	0.63
S9	0.92	0.98	0.95	0.53	1.00	0.69	0.92	0.98	0.95	0.03	0.02	0.02	0.91	0.98	0.95
S10	0.70	0.79	0.76	0.55	0.86	0.67	0.52	0.90	0.66	0.53	0.06	0.11	0.51	0.92	0.66
S11	0.81	0.69	0.75	0.28	0.57	0.37	0.25	0.52	0.34	0.01	0.06	0.01	0.41	0.53	0.46
Average	77 <u>2</u>	76. <u>24</u>	0.82	22		0.51	_	10/3/2	0.60	9 <u>2</u> 9	%/ <u>2//</u> 6	0.10		22	0.66

- What does the paper focus on?
 - Find effective combinations from high-dimensional issue reports

0		170				.5		
Time	Country	DataCenter	Disk	Hardware	Version	Customer	ClinetOS	
2019-04-01 00:32	USA	DC1	SSD	Dell	1.0	A Inc.	Linux	
2019-04-01 05:11	Australia	DC3	SSD	Dell	1.1	B Inc.	Win7	
2019-04-01 04:45	USA	DC2	HDD	Dell	1.0	Company X	Linux	
2019-04-02 14:32	India	DC6	HDD	Lenovo	5.0	Company Y	Win8.1	
2019-04-02 13:24	Australia	DC3	SSD	Dell	1.2	B Inc.	Win8.1	
2019-04-03 08:53	Australia	DC3	SSD	Lenovo	5.1	B Inc.	Linux	
2019-04-03 12:05	UK	DC1	Hybrid	Hp	3.0	Company Z	Linux	

- Challenges
 - Huge search space
 - High efficiency requirement

- Framework
 - Encode the incident identification problem into a combinatorial optimization problem
 - Solve the optimization problem
 - Cluster the similar results

- Data source
 - High-dimensional issue reports

- Encoding
 - Quantify the significance of the increasing trend
 - Measure the number of issues before and after the change points
 - Given combination C,

$$R(x) = p_{a(x)} \ln \frac{p_{a(x)}}{p_{b(x)}} = \frac{p_{a(x)}$$

Find attribute combinations with large values of objective function

- Meta-heuristic Searching
 - Find a series of effective combinations

- Incident clustering
 - Compute distance between two combination C_1 , C_2 and corresponding time series t_1 , t_2

$$d(C_1, C_2) = \frac{(J(C_1, C_2) + \cos(t_1, t_2))}{2}$$

Apply hierarchical clustering algorithm

• Experimental results in real-world dataset

Datasat			# Incidents	s	
Dataset	MID	iDice	NSGA-2	MOEA/D	RS
A1	13	8	4	6	4
A2	18	12	3	4	2
A3	13	-	2	3	3
A4	16	9	7	13	4
A5	17	-	1	3	2
A6	22	20	4	8	4
B1	10	9	5	6	3
B2	5	6	3	3	3
B3	9	_	4	10	1
B4	15	10	4	5	1
B5	7	8	3	4	3
B6	5	5	4	3	0

- What does the paper focus on?
 - Build an AlOps solution for predicting node failures for a large-scale cloud computing platform
- Pipeline

Feature engineering

	Mon	itoring Data/	Variable		Encoding	ML
	Feat	ure Category	Types	Features (#)	Technique	Algorithm
	equency	Alerts/	Time	1,675	Back-	Random
• Cha	ange ratio	temporal	series		tracking	forest
		Spatial	Categorical	9	Target encoding	LSTM
		Build	Categorical	5	Target encoding	LSTM
			Ordinal	3	Normalization	All

Data type

- Time-series: back-tracking
- Categorical: target-encoding
- Ordinal: normalization

- Model training
 - LSTM
 - Random forest
 - MING (combines previous two)
- Data sampling
 - Gapped sampling technique

Failed

07/01 08/08

X hours

08/08

08/10 09/30

Experimental results

✓ Oversampling technique performs well

✓ Random forest-based models have lowest computational cost

	MING		LSTM		RF		
	Oversampling	Gapped	Oversampling	Gapped	Oversampling	Gapped	
Training (sec)	3,159	1,202	6,875	1,358	94	40	
Testing (sec)	151	208	293	349	2	2	

- What does the paper focus on?
 - Predict latent error and localize faults for microservice applications by learning system trace logs
 - Whether a latent error occurs
 - Relevant microservice
 - fault type

Challenges

- Application logs contain limited information for failure diagnosis
- System logs produced by infrastructure systems cover failures within the cloud infrastructure

Framework

- Fault injection
 - Multi-instance faults
 - Configuration faults
 - Asynchronous interaction faults
- Execution Control

- Training
 - Use Pearson correlation coefficient to select features

- Feature prediction
 - Random forest
 - KNN
 - MLP

Experimental results

		Sock Shop												
Methods		Faulty Microservice			Fault Type									
	Recall	Precision	F1	FPR	Top1	Top3	Top5	Recall	Precision	F1				
MEPFL-RF	0.949	0.997	0.973	0.015	0.864	0.943	1.000	0.926	0.863	0.893				
MEPFL-KNN	0.961	0.997	0.978	0.013	0.891	0.965	1.000	0.967	0.925	0.946				
MEPFL-MLP	0.982	0.998	0.990	0.009	0.933	0.972	1.000	0.952	0.983	0.967				
Approach in [40]	N/A	N/A	N/A	N/A	0.340	0.748	1.000	0.618	0.375	0.467				

Summary and Comparison

MODEL	Utility	Feature source	Scene
AirAlert	Predict outage Diagnose root cause	Alerting signal intensity	Cloud service system
MING	Predict node failure	Node data (temporal, spatial)	Cloud service system
eWarn	Forecast incident	Alert data (content, stats)	Cloud service system
MID	Identify incident	Issue reports	Large-scale cloud service system
AlOps solution	Predict failure	Alert, spatial, build data	Ultra-Large-Scale Cloud Computing Platform
MEPFL	Predict error Localize fault	System trace log	Microservice application

Challenges

- Choose feature
 - What kind of data we want to use?
- Encode feature
 - How we can encode these feature?
- Choose model
 - How to choose a classification model?
- Training
 - Imbalance data
 - Can we run the experiment in real-world dataset?

Thank you!

