

Exercice 1 Questions de cours

1. (a) Rappeler la définition d'une suite croissante. Une suite (u_n) est dite croissante si : $\forall n \in \mathbb{N}, u_{n+1} \geqslant u_n$.

(b) Rappeler la définition d'une suite majorée. Une suite (u_n) est dite majorée si l'ensemble $A = \{u_n, n \in \mathbb{N}\}$ est majoré, c'est-à-dire si il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, $u_n \leq M$.

(c) Soit (u_n) une suite croissante majorée. Démontrer que (u_n) converge vers $\alpha = \sup_{n \in \mathbb{N}} u_n$.

On définit l'ensemble $A=\{u_n,\ n\in\mathbb{N}\}$. Par définition, α est le plus petit des majorants de A. Soit $\varepsilon>0$ fixé quelconque. Alors $\alpha-\varepsilon$ n'est pas un majorant de A puisque $\alpha-\varepsilon<\alpha$. Donc il existe $n_0\in\mathbb{N}$, tel que $u_{n_0}>\alpha-\varepsilon$.

De plus, (u_n) est croissante donc pour tout $n \ge n_0$, on a $u_n \ge u_{n_0}$. Finalement, on en déduit que pour tout $n \ge n_0$,

$$\alpha - \varepsilon < u_{n_0} \leqslant u_n \leqslant \alpha < \alpha + \varepsilon$$

$$\text{donc} \quad \alpha - \varepsilon < u_n < \alpha + \varepsilon$$

$$\text{donc} \quad \boxed{|u_n - \alpha| < \varepsilon}$$

Donc (u_n) converge vers α .

- 2. Soit (u_n) définie par : $\forall n \in \mathbb{N}, \quad u_n = 1 \sqrt{5n}$.
 - (a) Déterminer le plus petit entier n_0 tel que, pour tout $n \ge n_0$, $u_n < -99$. On cherche le plus petit entier n_0 tel que pour tout $n \ge n_0$,

$$u_n < -99 \quad \Leftrightarrow \quad 1 - \sqrt{5n} < -99$$

$$\Leftrightarrow \quad -\sqrt{5n} < -100$$

$$\Leftrightarrow \quad \sqrt{5n} > 100$$

$$\Leftrightarrow \quad 5n > 10000$$

$$\Leftrightarrow \quad n > 2000$$

$$\Leftrightarrow \quad n \ge 2001$$

donc on en déduit que $n_0 = 2001$.

(b) Montrer, à l'aide de la définition, que (u_n) a pour limite $-\infty$. Soit $A \in \mathbb{R}$, on cherche un entier n_0 tel que pour tout $n \ge n_0$,

$$u_n < A \quad \Leftrightarrow \quad 1 - \sqrt{5n} < A$$

$$\Leftrightarrow \quad \sqrt{5n} < A - 1$$

$$\Leftrightarrow \quad \sqrt{5n} > 1 - A. \quad (\star)$$

Si 1-A<0 (c'est-à-dire si A>1) alors (\star) est satisfaite pour tout $n\in\mathbb{N}$. Si $1-A\geqslant 0$ (c'est-à-dire si $A\leqslant 1$), alors

$$\begin{array}{lll} (\star) & \Leftrightarrow & 5n > (1-A)^2 \\ & \Leftrightarrow & n > \frac{(1-A)^2}{5} \\ & \Leftrightarrow & n \geqslant E\left(\frac{(1-A)^2}{5}\right) + 1. \end{array}$$

Finalement

$$n_0 = \begin{cases} 0 & \text{si } A > 1 \\ E\left(\frac{(1-A)^2}{5}\right) + 1 & \text{si } A \leqslant 1. \end{cases}$$

Exercice 2

Déterminer la limite, si celle-ci existe, des suites (u_n) suivantes :

(a)
$$u_n = \frac{\sqrt{2}n^3 - 4n + 1}{3 + n^2 - 3n^3}$$
.

(a)
$$u_n = \frac{\sqrt{2}n^3 - 4n + 1}{3 + n^2 - 3n^3}$$
.
On a un quotient de deux polynômes en n donc on procède par équivalents ce qui nous donne $u_n \sim \frac{\sqrt{2}n^3}{-3n^3} \sim \frac{\sqrt{2}}{-3}$. Donc (u_n) converge et $\lim_{n \to +\infty} u_n = \frac{\sqrt{2}}{-3}$.

(b)
$$u_n = \sum_{k=1}^n \frac{n}{\sqrt{n+k}}$$
.

$$1 \leqslant k \leqslant n \quad \Rightarrow \quad n+1 \leqslant n+k \leqslant 2n$$

$$\Rightarrow \quad \sqrt{n+1} \leqslant \sqrt{n+k} \leqslant \sqrt{2n} \quad \text{(par croissance de la fonction racine carrée)}$$

$$\Rightarrow \quad \frac{1}{\sqrt{n+1}} \geqslant \frac{1}{\sqrt{n+k}} \geqslant \frac{1}{\sqrt{2n}} \quad \text{(par décroissance de la fonction inverse sur } \mathbb{R}^{+*}\text{)}$$

$$\Rightarrow \quad \frac{n}{\sqrt{n+1}} \geqslant \frac{n}{\sqrt{n+k}} \geqslant \frac{n}{\sqrt{2n}}$$

On somme la dernière inégalité pour k allant de 1 à n, et on obtient

$$\frac{n^2}{\sqrt{n+1}} \geqslant u_n \geqslant \frac{n^2}{\sqrt{2n}}.$$

De plus, on a $\frac{n^2}{\sqrt{2n}} = \frac{n\sqrt{n}}{\sqrt{2}} \xrightarrow[n \to +\infty]{} +\infty.$ Donc on en déduit par théorème de comparaison que $\lim_{n \to +\infty} u_n = +\infty.$

(c)
$$u_n = \sum_{k=1}^{2n+1} \frac{n}{n^2 + k}$$
.

Pour $k \in \{1, 2, \dots, 2n + 1\}$, on a

$$1 \leqslant k \leqslant 2n+1 \quad \Rightarrow \quad n^2+1 \leqslant n^2+k \leqslant n^2+2n+1$$

$$\Rightarrow \quad \frac{1}{n^2+1} \geqslant \frac{1}{n^2+k} \geqslant \frac{1}{n^2+2n+1} \quad \text{(par décroissance de la fonction inverse sur } \mathbb{R}^{+*}\text{)}$$

$$\Rightarrow \quad \frac{n}{n^2+1} \geqslant \frac{n}{n^2+k} \geqslant \frac{n}{n^2+2n+1}$$

On somme la dernière inégalité pour k allant de 1 à 2n+1, et on obtient

$$\frac{n(2n+1)}{n^2+1} \geqslant u_n \geqslant \frac{n(2n+1)}{n^2+2n+1}.$$

De plus, on a
$$\frac{n(2n+1)}{n^2+1} \sim \frac{2n^2}{n^2} \sim 2$$
 et $\frac{n(2n+1)}{n^2+2n+1} \sim \frac{2n^2}{n^2} \sim 2$, donc $\lim_{n \to +\infty} \frac{n(2n+1)}{n^2+1} = \lim_{n \to +\infty} \frac{n(2n+1)}{n^2+2n+1} = 2$.

Donc on en déduit par le théorème des gendarmes que $\lim_{n\to +\infty} u_n = 2$.

(d)
$$u_n = \sqrt{4n^2 - n + 2} - \sqrt{4n^2 + n + 2}$$
.
Pour lever l'indéterminée, on utilise la quantité conjuguée

$$u_n = \sqrt{4n^2 - n + 2} - \sqrt{4n^2 + n + 2}$$

$$= \frac{(\sqrt{4n^2 - n + 2} - \sqrt{4n^2 + n + 2})(\sqrt{4n^2 - n + 2} + \sqrt{4n^2 + n + 2})}{\sqrt{4n^2 - n + 2} + \sqrt{4n^2 + n + 2}}$$

$$u_n = \frac{-2n}{\sqrt{4n^2 - n + 2} + \sqrt{4n^2 + n + 2}},$$

puis on factorise par le terme dominant au numérateur et au dénominateur

$$u_n = \frac{-2n}{\sqrt{n^2 \left(4 - \frac{1}{n} + \frac{2}{n^2}\right)} + \sqrt{n^2 \left(4 + \frac{1}{n} + \frac{2}{n^2}\right)}}$$

$$= \frac{-2n}{n \left(\sqrt{4 - \frac{1}{n} + \frac{2}{n^2}} + \sqrt{4 + \frac{1}{n} + \frac{2}{n^2}}\right)}$$

$$u_n = \frac{-2}{\sqrt{4 - \frac{1}{n} + \frac{2}{n^2}} + \sqrt{4 + \frac{1}{n} + \frac{2}{n^2}}}.$$

Ainsi on en déduit que $\lim_{n \to +\infty} u_n = \frac{-2}{2\sqrt{4}} = \frac{-1}{2}$.

(e)
$$u_n = \frac{5^n - 3^n}{5^n + 3^n}$$
.

$$u_n = \frac{5^n \left(1 - \frac{3^n}{5^n}\right)}{5^n \left(1 - \frac{3^n}{5^n}\right)} = \frac{1 - \left(\frac{3}{5}\right)^n}{1 - \left(\frac{3}{5}\right)^n}.$$

Or, $-1 < \frac{3}{5} < 1$, donc $\lim_{n \to +\infty} \left(\frac{3}{5}\right)^n = 0$. On en déduit que $\lim_{n \to +\infty} u_n = 1$.

(f)
$$u_n = \frac{n^3 + 5n}{4n^2 + \sin(n) + 1}$$
.

$$u_n = \frac{n^3 \left(1 + \frac{5}{n^2}\right)}{n^2 \left(4 + \frac{\sin(n)}{n^2} + \frac{1}{n^2}\right)} = \frac{n \left(1 + \frac{5}{n^2}\right)}{4 + \frac{\sin(n)}{n^2} + \frac{1}{n^2}}$$

Or pour tout $n \in \mathbb{N}^*$, $-1 < \sin(n) < 1$ donc $\frac{-1}{n^2} < \frac{\sin(n)}{n^2} < \frac{1}{n^2}$. Par le théorème des gendarmes, on en déduit donc que $\lim_{n \to +\infty} \frac{\sin(n)}{n^2} = 0$.

On a également $\lim_{n\to +\infty}\frac{5}{n^2}=\lim_{n\to +\infty}\frac{1}{n^2}=0.$ Finalement, cela nous permet de conclure que $\lim_{n\to +\infty}u_n=+\infty.$

Exercice 3 Suite itérative

Soit (u_n) définie par

$$u_0 = -1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = 2\sqrt{u_n + 3}.$

Pour $x \in [-3, +\infty[$, on pose $f(x) = 2\sqrt{x+3}$.

1. Étudier les variations de f sur l'intervalle $[-2, +\infty[$. f est définie, continue et dérivable sur l'intervalle $[-2, +\infty[$. Pour tout $x \in [-2, +\infty[$,

$$f'(x) = \frac{2}{2\sqrt{x+3}} = \frac{1}{\sqrt{x+3}} > 0.$$

Donc f est strictement croissante sur l'intervalle $[-2, +\infty[$.

- 2. Démontrer que la suite (u_n) est croissante. Comme f est croissante on sait d'après le cours que (u_n) est monotone. De plus, $u_0 = -1$ et $u_1 = 2\sqrt{2}$ donc $u_1 > u_0$. On en déduit donc que (u_n) est croissante (et même strictement croissante).
- 3. Démontrer par récurrence que pour tout $n \in \mathbb{N}, -1 \leq u_n \leq 6$. Pour tout $n \in \mathbb{N}$, on pose $\mathcal{P}_n : -1 \leqslant u_n \leqslant 6$. <u>Initialisation</u>: On a $u_0 = -1$ donc $-1 \le u_0 \le 6$. D'où \mathcal{P}_0 est vraie.

<u>Hérédité</u>: On suppose que \mathcal{P}_n est vraie pour un certain rang $n \in \mathbb{N}$ et montrons \mathcal{P}_{n+1} . On a

$$-1\leqslant u_n\leqslant 6$$
 donc
$$f(-1)\leqslant f(u_n)\leqslant f(6)\quad (\text{car }f\text{ est croissante sur }[-2,+\infty[)$$
 donc
$$2\sqrt{2}\leqslant u_{n+1}\leqslant 6.$$

On en déduit donc que $-1 \leqslant u_{n+1} \leqslant 6$ donc que \mathcal{P}_{n+1} est vraie.

Conclusion: Par principe de récurrence, on en déduit que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.

4. Justifier que (u_n) converge vers un réel ℓ , puis déterminer ℓ . La suite (u_n) est croissante et majorée par 6 donc elle converge vers un réel noté ℓ . De plus, comme f est continue sur $[-2, +\infty[$, on en déduit que ℓ est un point fixe de f, c'est-à-dire que ℓ est solution de l'équation suivante

$$f(x) = x \Leftrightarrow 2\sqrt{x+3} = x \Rightarrow 4(x+3) = x^2$$

$$\Rightarrow x^2 - 4x - 12 = 0$$

Le discriminant vaut $\Delta = (-4)^2 - 4 \times (-12) = 16 + 48 = 64 = 8^2$ donc l'équation à deux solutions :

$$x_1 = \frac{4-8}{2} = -2$$
 et $x_2 = \frac{4+8}{2} = 6$.

Or, d'après la question précédente on sait que $\ell \in [-1,6]$ donc comme $x_1 \notin [-1,6]$, on en déduit que $\ell = 6$.

Exercice 4 Suites croisées

Soient (u_n) et (v_n) deux suites définies par $u_0 = 1$, $v_0 = 2$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{2u_n + v_n}{3} \quad \text{et} \quad v_{n+1} = \frac{u_n + 2v_n}{3}.$$

1. Démontrer que $(v_n - u_n)$ est une suite géométrique de raison $\frac{1}{3}$. En déduire que $(v_n - u_n)$ converge et déterminer sa limite. Soit $n \in \mathbb{N}$, on a

$$v_{n+1} - u_{n+1} = \frac{u_n + 2v_n - (2u_n + v_n)}{3} = \frac{v_n - u_n}{3} = \frac{1}{3}(v_n - u_n).$$

Donc $(v_n - u_n)$ est bien une suite géométrique de raison $\frac{1}{3}$.

Ainsi, pour tout $n \in \mathbb{N}$,

$$v_n - u_n = \left(\frac{1}{3}\right)^n (v_0 - u_0) = \left(\frac{1}{3}\right)^n.$$

Comme $-1 < \frac{1}{3} < 1$, on a $\lim_{n \to +\infty} (v_n - u_n) = 0$.

- 2. Pour $n \in \mathbb{N}$, on définit la proposition $\mathcal{P}_n : u_n \leqslant u_{n+1} \leqslant v_{n+1} \leqslant v_n$. On suppose dans cette question que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.
 - (a) Montrer que les suites (u_n) et (v_n) convergent et ont la même limite. Comme on suppose que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie, cela signifie que (u_n) est croissante et que (v_n) est décroissante. De plus, $\lim_{n \to +\infty} (v_n - u_n) = 0$.

Ainsi, les deux suites sont adjacentes donc elles convergent et ont la même limite, que l'on notera ℓ dans la suite.

(b) Montrer que la suite $(u_n + v_n)$ est constante. Soit $n \in \mathbb{N}$. On a

$$u_{n+1} + v_{n+1} = \frac{2u_n + v_n + u_n + 2v_n}{3} = \frac{3(u_n + v_n)}{3} = u_n + v_n.$$

Donc la suite $(u_n + v_n)$ est constante et pour tout $n \in \mathbb{N}$, $u_n + v_n = u_0 + v_0 = 1 + 2 = 3$.

- (c) En déduire la limite des suites (u_n) et (v_n) . Comme (u_n) et (v_n) convergent vers ℓ , on en déduit que $(u_n + v_n)$ converge vers 2ℓ . Or, c'est une suite constante égale à 3, donc finalement $2\ell = 3$, c'est-à-dire $\ell = \frac{3}{2}$.
- 3. Question bonus : Démontrer par récurrence que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.

Initialisation: On a $u_0 = 1$, $v_0 = 2$, $u_1 = \frac{4}{3}$, $v_1 = \frac{5}{3}$, donc $u_0 \leqslant u_1 \leqslant v_1 \leqslant v_0$. D'où \mathcal{P}_0 est vraie. Hérédité: On suppose que \mathcal{P}_n est vraie pour un certain rang $n \in \mathbb{N}$ et montrons \mathcal{P}_{n+1} .

Par hypothèse de récurrence, on a donc $u_n \leqslant u_{n+1} \leqslant v_{n+1} \leqslant v_n$.

Premièrement, cela donne

$$u_{n+2} = \frac{2u_{n+1} + v_{n+1}}{3} = \frac{u_{n+1} + \overbrace{u_{n+1}}^{\leqslant v_{n+1}} + v_{n+1}}{3} \leqslant \frac{u_{n+1} + 2v_{n+1}}{3} = v_{n+2}.$$

Deuxièmement, on a

$$u_{n+2} = \frac{2u_{n+1} + \overbrace{v_{n+1}}^{\geqslant u_{n+1}}}{3} \geqslant \frac{2u_{n+1} + u_{n+1}}{3} = u_{n+1}.$$

Enfin, on a

$$v_{n+2} = \overbrace{\frac{v_{n+1}}{3}}^{\leqslant v_{n+1}} + 2v_{n+1} = \underbrace{v_{n+1} + 2v_{n+1}}_{3} = v_{n+1}.$$

En réunissant ces trois points on en déduit donc que $u_{n+1} \leqslant u_{n+2} \leqslant v_{n+2} \leqslant v_{n+1}$ donc que \mathcal{P}_{n+1} est

<u>Conclusion</u>: Par principe de récurrence, on en déduit que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.