Résultats

Étude de similarité acoustique entre différents instruments, techniques de jeux et perception acoustique

En utilisant la représentation scattering

Christian EL HAJJ

Sous la supervision de : Dr. Mathieu lagrange

16/09/2016

1/29

Introduction

Fouille de données dans le domaine de la musique.

- Extractions des informations.
- Recherche plus facile.
- Applications utiles (Spotify, shazam ...).

Le problème qu'on a traité

- Outil de recherche basé sur les extraits musicaux.
- Donner des suggestions en se basant sur :
 - Les instruments.
 - 2 Les modes de jeux.
 - 3 Les jugements perceptifs.

Traitement des descripteurs

Sommaire

Première partie :

Classements en considérant les classes d'instruments et les modes de jeux.

- 1 Base de données
- 2 Algorithme
- 3 Extractions des descripteurs
 - MFCC
 - Scattering
 - Exemple de scattering
- 4 Traitement des descripteurs
- 5 Résultats

La base de donnée SOL

Composée de 25119 fichier qui peux être décomposé en :

- 11 16 classes d'instruments.
- 2 32 classes d'instruments avec variations.
- 3 498 classes de mode de jeux.

Extraits sonores de la base de données

FIGURE - Accordéon , Flute et harpe joué en ordinario

FIGURE – Accordéon jouée en ordinario et accordéon joué en staccato

Algorithme

Base de données

Procédure de calcul:

- Regroupement des fichiers.
- Extractions des descripteurs.
- Traitement des descripteurs.
- Calcul des distances.
- Calculs des métriques de classements.

MFCC

MFCC

Algorithme d'extraction des MFCC:

- Fenêtrage.
- Application de la transformé de Fourier.
- Calcul du log de l'amplitude des fréquences.
- Projection des fréquences vers l'échelle de mel.(échelle logarithmique)
- Application de la transformée en cosinus discrète.
- Troncature de l'espace.
- + Un espace compact et bien descriptif.
- Pertes d'informations relative aux longues variations temporelles.

MFCC

Precision à 5

Presision a
$$k = \frac{nombre \ de \ document \ de \ meme \ classe}{k}$$

MFCC Choix des paramètres

Réglages des paramètres de MFCC		
Descripteurs	Precision à 5	
16 classes d'instruments		
mfcc 12/27	86	
mfcc 27/27	85	
mel	63	
32 classes d'instruments avec variation		
mfcc 12/27	84	
mfcc 27/27	83	
mel	60	
498 classes de mode de jeux		
mfcc 12/27	44	
mfcc 27/27	44	
mel	33	

Scattering

Algorithme de scattering :

- Fenêtrage.
- 2 Moyenne des trames en appliquant un filtre passe bas.
- Restauration des informations perdus en appliquant un banque de filtres d'ondelettes.

Extractions des descripteurs

- Introduction d'une non linéarité en prenant le module.
- Prendre les résultats de l'étape 2 en sortie.
- Répéter les étapes 2 à 4 n fois.
- + Récupérations des informations par l'ajout des étapes.
- Espace de descripteurs à haute dimensionnalité.

exemple de scattering

FIGURE - attaque scattering

FIGURE - vibrato scattering

Résultats

Traitement des descripteurs

MFCC

Base de données

Standardisation.

Scattering

- Standardisation.
- Normaliser les descripteurs (std and median proposé par Vincent LOSTANLEN) :
 - a Eliminer les petites variances.
 - b Diviser par la mediane.

Résultats 1/3

Ranking metrics pour 16 classe d'instruments				
Descripteurs Traitements Precisi				
MFCC	86			
MFCC	Stand.			
scattering	70			
scattering	Stand.	79		
scattering	ng Std and median			

Résultats 2/3

Ranking metrics pour 32 classe d'instruments avec variations			
Descripteurs	Traitements	Pat5	
MFCC	Brut	84	
MFCC	Stand.	85	
scattering	Brut	67	
scattering	Stand.	75	
scattering	Std and median	91	

Résultats 3/3

Ranking metrics pour 498 classes d'instruments avec différentes techniques de jeux			
Descripteurs	Traitements	Pat5	
MFCC	44		
MFCC Stand.			
scattering	Brut	37	
scattering	Stand.	47	
scattering Std and median			

Sommaire

Deuxième partie :

Classements en considérant les jugements perceptifs.

- 1 Introduction
- 2 Base de donnée et algorithme
- 3 Large Margin Nearest Neighboor (LMNN)
- 4 Résultats de LMNN sur les classes physiques d'instruments et mode de jeux
- 5 Résultats de LMNN sur les jugements perceptives

La partie câblé.

- la cochlée et les premier étapes de traitement.
- Aspect physique du son.
- problème traité par le scattering.

La partie cognitive.

- La psychologie du cerveau.
- La culture et l'éducation.
- Solution avec des LMNN basés sur des jugements perceptifs.

base de donnée

- 78 fichiers de différents instruments avec différents mode de jeux.
- Jugement par 32 utilisateurs donnant 32 différents vecteur de labels.

Algorithme

- Extractions des descripteurs pour les 78 fichiers.
- Traitement des descripteurs.
- Introduction d'une méthode d'apprentissage supervisé nécessaire pour la résolution du problème perceptive.
- Calcule des distance Euclidienne deux à deux pour chaque jugements.
- Calcule des métriques de classements pour chaque jugement.
- Movenner sur les résultats des métriques de classements.

LMNN

objectives

- K plus proche voisins appartiennent à la même classe.
- Éloigner les exemples de différents classes d'une certaine marge.
- Trouver la Matrice de manaholobis qui assure ces contraintes

$$D_{M}(\vec{x}_{i}, \vec{x}_{j}) = (\vec{x}_{i} - \vec{x}_{j})^{\mathsf{T}} M(\vec{x}_{i} - \vec{x}_{j}),$$

$$M = L^T L$$

Optimisation à pénalisation double.

FIGURE - Illustration de LMNN par Weinberger

Pénalisation double

Pénalisation double

- Optimisation à pénalisation double.
- $\bullet_{pull}(L) = \sum_{i \leadsto i} ||L(\vec{x_i} \vec{x_i})||^2$

$$\bullet_{\textit{push}}(L) = \sum_{i,j \leadsto i} \sum_{l} (1 - y_{il}) [1 + ||L(\vec{x_i} - \vec{x_j})||^2 - ||L(\vec{x_i} - \vec{x_l})||^2]_+$$

$$\bullet$$
 $\epsilon(L) = (1 - \mu)\epsilon_{pull(L)} + \mu\epsilon_{push}(L)$

SDP(semi definite programming).

LMNN

- LMNN utilisé pour renforcé la précision pour la partie cognitive.
- Efficacité du LMNN testé sur l'aspect physique.

Résultats sans division train test

Résultats de LMNN sur les classes physiques d'instruments et mode de jeux sans division en train test			
descripteurs	p@5 avant LMNN	p@5 après LMNN	
16 classes d'instruments			
mfcc	87	87	
scattering	94	100	
32 classes d'instruments avec variation			
mfcc	85	86	
scattering	91	100	
498 classes de mode de jeux			
mfcc	45	46	
scattering	58	88	

Résultats avec division train test

Résultats de LMNN avec division en train test pour les 16 classes d'instruments			
descripteurs	P@5 avant LMNN	P@5 après LMNN	
Division en 80% for entrainer et 20% pour tester			
mfcc	74	75	
scattering	83	98	
Division en 50% pour en- trainer et 50% pour tester			
mfcc	81	82	
scattering	90	99	

Comparaison entre MFCC et scattering avec même nombre de descripteurs

Égalisations de nombre de descripteurs

- Ajout de 12 descripteurs de delta MFCC
- Ajout de 12 descripteurs de delta delta MFCC
- Création de nouveaux descripteurs en multipliant deux à deux les déscripteurs.
- Extraire les 666 descripteurs de scattering en se basant sur la méthode de Std and median.

Résultats de LMNN sur les MFCC et scattering avec même nombre de descripteurs features p@5 avant LMNN p@5 après LMNN mfcc 58 78 (87) scattering 93 100

Avis moyen

algorithme

- Effectuer un alignements des labels en utilisant 'Normalised Mutual Information' NMI.
- Effectuer une vote majoritaire pour avoir un seul label représentative.
- Calculer les LMNN sur ce vecteur de label.(un seul calcul)
- Projeter vers le nouveau espace (une seul projection).
- Calculer les distances euclidiennes (une seul matrice de distance)

Résultats de LMNN sur les jugements perceptives en effectuant un alignement des labels					
Descripteurs P@5 P@5 après LMNN					
mfcc 56 62					
scattering 44 61					

LMNN par somme des distances

algorithme

- Calculer les LMNN pour chaque jugement.
- Projeter vers le nouveaux espace pour chaque jugement.
- Calculer les distances euclidiennes dans les nouveaux espaces.
- Sommer les distances.

Résultats de LMNN sur les jugements perceptives en sommant les distances			
Descripteurs	P@5	P@5 après LMNN	LMNN sur avis moyen
mfcc	56	60	62
scattering	44	66	61

Somme des distances avec pondérations

algorithme

- Calculer les LMNN pour chaque jugement.
- Projeter vers le nouveaux espace pour chaque jugement.
- Calculer les distances euclidiennes dans les nouveaux espaces.
- Calculer pour chaque jugement une valeur de précision en utilisant (Normalised mutual information NMI)
- Sommer les distances après multiplications respectivement par la précision.

Résultats de LMNN sur les jugements perceptives en sommant les distances après pondération					
features	P@5	P@5 après	LMNN sur avis		
LMNN moyen					
mfcc	56	61	62		
scattering	44	67	61		

Somme sur les distances après normalisation

Algorithme

- Calculer les LMNN pour chaque jugement.
- Projeter vers le nouveaux espace pour chaque jugement.
- Calculer les distances euclidiennes dans les nouveaux espaces.
- Normaliser les distances.
- Sommer les distances normalisées.

Résultats de LMNN sur les jugements perceptives en sommant les distances après normalisation				
features P@5 P@5 après LMNN sur avis LMNN moyer				
mfcc	56	60	62	
scattering	44	67	61	

Conclusion

Conclusion

Les résultats sont très satisfaisants. On a présenté :

- Solutions du problème physique avec une très grande précision.
- Une approche originale pour combiner l'aspect physique et cognitive.

Ouverture

- Une étude approfondie des coefficients de scattering pour un problème bien posé et original.
- Étudier la convergence des résultats pour un plus grand nombre d'experts et d'objets d'études.

CONSERVATOIRE NATIONAL SUPÉRIEUR DE MUSIQUE ET DE DANSE DE PARIS

Beth Logan Mel Frequency Cepstral Coefficients for Music Modeling. 2000

J. Andén and S. Mallat. Multiscale scattering for audio classification.. ISMIR 2011

J. Andén Time and frequency scattering for audio classification. January 7, 2014

Hermann Ludwig Ferdinand von Helmholtz *On the sensations of tone as a physiological basis.* 1895

K. Q. Weinberger, L. K. Saul. *Distance Metric Learning for Large Margin Nearest Neighbor Classification*. Journal of Machine Learning Research (JMLR) 2009

P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell *Distance metric learning, with application to clustering with side-information*. Cambridge, MA, 2002.

Kraskov Alexande and al., *Hierarchical Clustering Based on Mutual Information* Grassberger, Peter (2003)

CONSERVATOIRE NATIONAL SUPÉRIEUR DE MUSIQUE ET DE DANSE DE PARIS

29 / 29