Лабораторная работа 3

Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей.

Цель лабораторной работы: изучение способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.

Задание:

Выберите набор данных (датасет) для решения задачи классификации или регрессии.

С использованием метода train_test_split разделите выборку на обучающую и тестовую. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.

Произведите подбор гиперпараметра К с использованием GridSearchCV и/или RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Желательно использование нескольких стратегий кросс-валидации. Сравните метрики качества исходной и оптимальной моделей.

Ввод [1]:

```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder

goal_column='Gender'
%matplotlib inline
sns.set(style="ticks")

# скроем предупреждения о возможных ошибках для лучшей читаемости
import warnings
warnings.filterwarnings('ignore')
```

```
Ввод [2]:
```

```
data = pd.read_csv('./GenderDataSet.csv')
data.head()
```

Out[2]:

	Favorite Color	Favorite Music Genre	Favorite Beverage	Favorite Soft Drink	Gender
0	Cool	Rock	Vodka	7UP/Sprite	F
1	Neutral	Hip hop	Vodka	Coca Cola/Pepsi	F
2	Warm	Rock	Wine	Coca Cola/Pepsi	F
3	Warm	Folk/Traditional	Whiskey	Fanta	F
4	Cool	Rock	Vodka	Coca Cola/Pepsi	F

Ввод [3]:

data.shape

Out[3]:

(66, 5)

Удаление пропусков

Удалим колонки, содержащие пустые значения

Ввод [4]:

```
data = data.dropna(axis=1, how='any')
data.head()
```

Out[4]:

	Favorite Color	Favorite Music Genre	Favorite Beverage	Favorite Soft Drink	Gender
0	Cool	Rock	Vodka	7UP/Sprite	F
1	Neutral	Hip hop	Vodka	Coca Cola/Pepsi	F
2	Warm	Rock	Wine	Coca Cola/Pepsi	F
3	Warm	Folk/Traditional	Whiskey	Fanta	F
4	Cool	Rock	Vodka	Coca Cola/Pepsi	F

Ввод [5]:

data.shape

Out[5]:

(66, 5)

Проверим что пропуски отсутствуют

Ввод [6]:

Кодирование категориальных признаков

```
Ввод [7]:
```

```
le = LabelEncoder()
for col in data.columns:
    column_type = data[col].dtype
    if column_type == 'object':
        data[col] = le.fit_transform(data[col])
        print(col)
```

Favorite Color Favorite Music Genre Favorite Beverage Favorite Soft Drink Gender

Разделение выборки на обучающую и тестовую

Разделим данные на целевой столбец и признаки

Ввод [8]:

```
X = data.drop(goal_column, axis=1)
X
```

Out[8]:

	Favorite Color	Favorite Music Genre	Favorite Beverage	Favorite Soft Drink
0	0	6	3	0
1	1	2	3	1
2	2	6	5	1
3	2	1	4	2
4	0	6	3	1
61	0	6	3	1
62	0	2	0	1
63	1	2	1	2
64	0	6	5	1
65	0	0	0	1

66 rows × 4 columns

Ввод [9]:

```
Y = data[[goal_column]]
Y
```

Out[9]:

	Gender
0	0
1	0
2	0
3	0
4	0
61	1
62	1
63	1
64	1
65	1

66 rows × 1 columns

```
BBOG [10]:

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state)

BBOG [11]:

print("X_train:", X_train.shape)
print("X_test:", X_test.shape)
print("Y_train:", Y_train.shape)
print("Y_test:", Y_test.shape)

X_train: (49, 4)
X_test: (17, 4)
Y_train: (49, 1)
Y_test: (17, 1)
```

Обучение модели с произвольным гиперпараметром

```
Bвод [12]:

cli_1 = KNeighborsClassifier(n_neighbors=32)
cli_1.fit(X_train, Y_train)
target1_0 = cli_1.predict(X_train)
target1_1 = cli_1.predict(X_test)
accuracy_score(Y_train, target1_0), accuracy_score(Y_test, target1_1)

Out[12]:
(0.6122448979591837, 0.29411764705882354)
```

Построение и оценка качества модели

```
scores = cross_val_score(KNeighborsClassifier(n_neighbors=2), X, Y, cv=3) scores

Out[13]:
array([0.63636364, 0.54545455, 0.63636364])

Усредненное значение метрики ассигасу для 3 фолдов

Ввод [14]:
np.mean(scores)
```

Подбор гиперпараметра

0.606060606060606

Ввод [13]:

Произведем подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации

Ввод [15]:

```
n_range = np.array(range(1, 50, 2))
tuned_parameters = [{'n_neighbors': n_range}]
n_range
```

Out[15]:

```
array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49])
```

Ввод [16]:

```
%%time
clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5, scoring='accur
clf_gs.fit(X, Y)
clf_gs.best_params_
```

```
CPU times: user 479 ms, sys: 2.94 ms, total: 482 ms Wall time: 481 ms

Out[16]:
{'n neighbors': 25}
```

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данных:

Ввод [17]:

```
plt.plot(n_range, clf_gs.cv_results_["mean_train_score"]);
```


Очевидно, что для K=1 на тренировочном наборе данных мы находим ровно ту же точку, что и нужно предсказать, и чем больше её соседей мы берём — тем меньше точность. Посмотрим на тестовом наборе данных

Ввод [18]:

```
plt.plot(n_range, clf_gs.cv_results_["mean_test_score"]);
```


Проверим получившуюся модель:

Ввод [19]:

```
cl1_2 = KNeighborsClassifier(**clf_gs.best_params_)
cl1_2.fit(X_train, Y_train)
target2_0 = cl1_2.predict(X_train)
target2_1 = cl1_2.predict(X_test)
accuracy_score(Y_train, target2_0), accuracy_score(Y_test, target2_1)
```

Out[19]:

(0.6938775510204082, 0.47058823529411764)

Ввод []: