Notebook UNTreeCiclo

Contents

1	C+-	+
	1.1	C++ plantilla
	1.2	
	1.3	Create
	1.4	Bitmask
	1.5	Custom Hashing
	1.6	Random
	1.7	Cosas de strings
2	Arb	
	2.1	Centroid Decomposition
	2.2	Hash Tree
	2.3	Heavy Light Decomposition
	2.4	Kruskal Reconstruction Tree
	2.5	LCA Binary Lifting
	2.6	LCA RMQ
	2.7	Sack
	2.8	Virtual Tree
3		ucturas de Datos 11
	3.1	Bit
	3.2	Bit 2D
	3.3	Cartesian Tree
	3.4	Disjoint Set Union
	3.5	Disjoint Sparse Table
	3.6	Dynamic Connectivity Offline
	3.7	DSU Bipartite
	3.8	Dynamic Segment Tree
	3.9	Implicit Treap
		Implicit Treap Father
		Li Chao
		Link Cut Tree
		Link Cut Tree Lazy
		Merge Sort Tree
		MOs Algorithm
		MOs Tree
		MOs Updates
		Ordered set
	3.19	Persistent Segment Tree

	3.20	Persistent Segment Tree Lazy	23
	3.21	Polynomial Updates	24
			24
			25
	3.24	Segment Tree 2D	25
	3.25	Segment Tree Beats	26
	3.26	Sparse Table	28
			28
			28
	3.29	Treap	29
	3.30	Trie Bit	30
	3.31	Two Stacks	30
	3.32	Wavelet Tree	31
4	Fluj	OS DI	32
	4.1		32
	4.2		33
	4.3		34
	4.4		35
	4.5	T T T T	35
	4.6		36
	4.7		36
	4.8		37
	4.9		37
			38
		0 0	39
	4.12	Weighted Matching	40
5	Coo	metria	41
9	5.1		41
	5.2		41
	5.3		43
	5.4		45
	5.5		45
	5.6		45
	5.7	v	46
	5.8		47
	5.9		49
			50
			50
			51
			51
			52

	5.15	Segmentos	58		7.18	Lagrange	76
	5.16	Triangle Union	59		7.19	Logaritmo Discreto	77
					7.20	Miller Rabin	77
6	Gra		60		7.21	Miller Rabin Probabilistico	77
	6.1	2sat	60		7.22	Mobius	78
		Bellman Ford	61		7.23	Number Theoretic Transform	78
	6.3	Block Cut Tree	62		7.24	Pollard Rho	79
	6.4	Bridges Online	62			Simplex	79
	6.5	Camino Mas Corto De Longitud Fija	63			Simplex Int	
	6.6	Clique	63			Totient y Divisores	
	6.7	Cycle Directed	64			Xor Basis	81
	6.8	Cycle Undirected	65		1.20	Aut Dasis	01
	6.9	Dial Algorithm	65	8	Pro	gramacion dinamica	81
		Dijkstra	65		8.1	Aliens Trick	
		Dijkstra Sparse Graphs	66		8.2	Bin Packing	82
		Eulerian Path Directed	66		8.3	Convex Hull Trick	
		Eulerian Path Undirected	66			CHT Dynamic	
		Floyd Warshall	66		8.5	Digit DP	
		Kosaraju			8.6	Divide Conquer	
		kruskal	67		8.7	Edit Distances	
		Prim	67			Kadane 2D	
		Puentes y Puntos	67			Knuth	
		Shortest Path Faster Algorithm	68			LIS	
		<u> </u>	68			SOS	85
	0.20	Tarjan	00		0.11	303	00
7	Mat	tematicas	68	9	Stri	ngs	86
	7.1	Bruijn sequences	68		9.1	Äho Corasick	86
	7.2	Convoluciones	69		9.2	Hashing	86
	7.3	Criba	71		9.3	Hashing 2D	87
	7.4	Chinese Remainder Theorem	71		9.4	KMP	87
	7.5	Divisors	71		9.5	KMP Automaton	87
	7.6	Ecuaciones Diofanticas	72		9.6	Lyndon Factorization	88
	7.7	Exponenciacion binaria	72		9.7	Manacher	88
	7.8	Exponenciacion matricial	73			Minimum Expression	
	7.9	Fast Fourier Transform	73		9.9	Next Permutation	88
	7.10	Fibonacci Fast Doubling	74			Palindromic Tree	
		Fraction	74		9.11	Suffix Array	89
	7.12	Freivalds algorithm	74			Suffix Automaton	
		Gauss Jordan				Suffix Tree	
		Gauss Jordan mod 2				Trie	
		GCD y LCM			-	Trie Bit	-
		Integral Definida				Z Algorithm	
		Inverso modular				El especial	
	1.1	IIIVOIDO IIIOGGIGI	10	1	0.11	ш орости	04

10 Misc

	10.1	Counting Sort	94				
	10.2	Dates	95				
	10.3	Expression Parsing	95				
	10.4	Hanoi	95				
	10.5	K mas frecuentes	96				
	10.6	Prefix3D	96				
	10.7	Ternary Search	96				
11		ría y miscelánea	97				
		Sumatorias	97				
	11.2	Teoría de Grafos	97				
		11.2.1 Teorema de Euler	97				
		11.2.2 Planaridad de Grafos	97				
		11.2.3 Truco del Cow Game	97				
	11.3	Teoría de Números	97				
		11.3.1 Ecuaciones Diofánticas Lineales	97				
		11.3.2 Pequeño Teorema de Fermat	98				
		11.3.3 Teorema de Euler	98				
	11.4	Geometría	98				
		11.4.1 Teorema de Pick	98				
		11.4.2 Fórmula de Herón	98				
		11.4.3 Relación de Existencia Triangular	98				
	11.5	Combinatoria	98				
		11.5.1 Permutaciones	98				
		11.5.2 Combinaciones	98				
		11.5.3 Permutaciones con Repetición	98				
		11.5.4 Combinaciones con Repetición	98				
		11.5.5 Números de Catalan	98				
		11.5.6 Estrellas y barras	99				
		DP Optimization Theory	99				
		Lista de números con mayor cantidad de divisores hasta 10^n	99				
		Games					
	11.9	2-SAT	.00				
_	~						
1	C	++					
1.	1.1 C++ plantilla						
		-					
		<pre>clude <bits stdc++.h=""> ng namespace std;</bits></pre>					
	#de:	fine all(v) v.begin(), v.end()					
	#de:	fine sz(arr) ((int) arr.size())					

```
#define rep(i, a, b) for(int i = a; i < (b); ++i)
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef long long 11;
const char ln = '\n';
#define watch(x) cout<<#x<<"="<<x<'\n'
#define print(arr) for(auto& x:arr)cout<<x<<" ";cout<<"\n
typedef long double ld;
typedef vector<ii> vii;
typedef vector<long long> vl;
typedef pair<ll, ll> pll;
typedef vector<pll> vll;
const int INF = 1e9;
const ll INFL = 1e18;
const int MOD = 1e9+7;
const double EPS = 1e-9;
const ld PI = acosl(-1);
int dirx[4] = \{0, -1, 1, 0\};
int diry[4] = \{-1, 0, 0, 1\};
int dr[] = \{1, 1, 0, -1, -1, -1, 0, 1\};
int dc[] = \{0, 1, 1, 1, 0, -1, -1, -1\};
const string ABC = "abcdefghijklmnopqrstuvwxyz";
void main2(){
int main() {
        ios::sync_with_stdio(false);
        cin.tie(0);
        cout << setprecision(20) << fixed;</pre>
    // freopen("file.in", "r", stdin);
    // freopen("file.out", "w", stdout);
        clock_t start = clock();
        main2();
        cerr<<double(clock()-start)/CLOCKS PER SEC<<" s\n
        return 0;
```

1.2 Librerias

94

```
// En caso de que no sirva #include <bits/stdc++.h>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <sstream>
#include <fstream>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <string>
```

```
1.3 Create
```

```
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <iomanip>
#include <unordered_map>
////
#include <tuple>
#include <random>
#include <chrono>
```

1.3 Create

1.4 Bitmask

derecha (potencia de 2, no el indice)

```
-> Devuelve el bit apagado mas a la
~x & (x+1)
   derecha (potencia de 2, no el indice)
x = x \mid (x+1) -> Enciende el bit apagado mas a la
   derecha
x = x & (x-1)
                -> Apaga el bit encendido mas a la
   derecha
x = x & \sim v
                -> Apaga en x los bits encendidos de y
* Funciones del compilador qcc. Si n es ll agregar el
   sufijo ll, por ej: __builtin_clzll(n).
__builtin_clz(x)
                      -> Cantidad de bits apagados por la
    izguierda
builtin ctz(x)
                      -> Cantidad de bits apagados por la
    derecha. Indice del bit encendido mas a la derecha
__builtin_popcount(x) -> Cantida de bits encendidos
__builtin_ffs(x)
                         -> Posicion del primer bit
   prendido (lsb+1)
* Logaritmo en base 2 (entero). Indice del bit encendido
   mas a la izquierda. Si x es ll usar 63 y clzll(x).
// 0(1)
int lq2(const int &x) { return 31- builtin clz(x); }
* Itera, con indices, los bits encendidos de una mascara.
// O(#bits encendidos)
for (int x = mask; x; x &= x-1) {
        int i = __builtin_ctz(x);
* Itera todas las submascaras de una mascara. (Iterar
   todas las submascaras de todas las mascaras es O(3^n))
// O(2^{(\#bits encendidos)})
for (int sub = mask; ; sub = (sub-1)&mask) {
        // ...
        if (sub == 0) break;
// Ascendente
for(int sub = 0; ; sub = (sub-mask) &mask) {
        // ...
        if (sub == mask) break;
* retorna la siguiente mask con la misma cantidad
   encendida
ll nextMask(ll x) {
        11 c = x \& -x;
        11 r = x + c;
        return (((r ^ x) >> 2) / c) | r;
// optimiza el .count de los bitsets y el popcount
#pragma GCC target("popent")
// Formulas
a \mid b = a \hat{b} + a \& b
```

```
a ^ (a & b) = (a | b) ^ b
b ^ (a & b) = (a | b) ^ a
(a & b) ^ (a | b) = a ^ b
a + b = a | b + a & b
a + b = a ^ b + 2 * (a & b)
a - b = (a ^ (a & b)) - ((a | b) ^ a)
a - b = ((a | b) ^ b) - ((a | b) ^ a)
a - b = ((a | b) ^ b) - (b ^ (a & b))
a - b = ((a | b) ^ b) - (b ^ (a & b))
a ^ b = ^ (a & b) & (a | b)
si (x < y < z) entonces min(x^y, y^z) < (x^z)
```

1.5 Custom Hashing

```
struct custom hash {
        static long long splitmix64(long long x) {
                 x += 0x9e3779b97f4a7c15;
                 x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;

x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
                 return x ^ (x >> 31);
        size_t operator()(long long x) const {
                 static const long long FIXED RANDOM =
                     chrono::steady clock::now().
                    time_since_epoch().count();
                 return splitmix64(x + FIXED RANDOM);
        size_t operator()(const pair<int,int>& x) const {
                 return (size t) x.first * 37U + (size t)
                    x.second;
        size_t operator()(const vector<int>& v) const {
                 size t s = 0;
                 for(auto &e : v)
                         s^=hash<int>()(e)+0x9e3779b9+(s
                             <<6)+(s>>2);
                 return s;
};
unordered_map<long long, int, custom_hash> safe_map; //
   unordered_map or gp_hash_table
safe_map.max_load_factor(0.25);
safe_map.reserve(1024); // potencia de 2 mas cercana
multitest - no usar reserve (por el clear, es pesado)
```

1.6 Random

```
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
    time_since_epoch().count());
u64 xor_hash=rng();

// return random numbers in the range [1,r]
mt19937 rng (chrono::steady_clock::now().time_since_epoch
    ().count());
double rand(double l, double r) {return
    uniform_real_distribution<double>(l, r)(rng);}
int rand(int l, int r) {return uniform_int_distribution<
    int>(l, r)(rng);}
shuffle(all(vector), rng);
```

1.7 Cosas de strings

```
// si el caracter que separa el texto es distinto al
   espacio
// entonces descomentar el segundo parametro y cambiar el
    while por el otro
vector<string> split(const string &s/*, char c */){
        vector<string> v;
        stringstream ss(s);
        string sub;
        while (ss>>sub) v.push_back (sub);
        // while (getline (ss, sub, c)) if (sz (sub)) v.push back
        return v;
string s;
for (char& c:s) c=toupper(c);
for (char& c:s) c=tolower(c);
int n=stoi(s); // string -> int
int n=stoi(s, nullptr, 2); // bin string -> int
double d=stod(s); // string -> double
string s=to string(n); // int -> string
cout << "\U0001F600"; // emojis
Quitar repetidos (lo pongo aca porque no se donde mas
   ponerlo)
sort(all(bs));
bs.resize(unique(all(bs)) - bs.begin());
```

2 Arboles

2.1 Centroid Decomposition

```
// O(n*log(n))
// 1) init(adj,n);
struct CentroidDecomposition{
```

```
.2
Hash Tree
```

```
ARBOLES
```

```
vector<vi> adi:
        vi dad, sz, proc;
        int operator[](int i){return dad[i];}
        void init(vector<vi>& adj2, int n) {
                proc.assign(n, false);
                dad.resize(n);
                sz.resize(n);
                adj=adj2;
                build();
        void build(int v=0, int p=-1) {
                int n=dfsSz(v, p);
                int centroid=dfsCentroid(v, p, n);
                dad[centroid]=p;
                // anadir dfs para el conteo de caminos
                proc[centroid]=true;
                for(int u:adj[centroid]) {
                        if (u==p || proc[u]) continue;
                        build(u,centroid);
        int dfsSz(int v,int p){
                sz[v]=1;
                for(int u:adj[v]){
                        if (u==p || proc[u]) continue;
                         sz[v] += dfsSz(u, v);
                return sz[v];
        int dfsCentroid(int v, int p, int n) {
                for(int u:adj[v]){
                        if (u==p || proc[u]) continue;
                        if(sz[u]>n/2)return dfsCentroid(u
                            , v, n);
                return v;
// para el arbol de centroides
// for (int b=a;b!=-1;b=cd[b])
```

2.2 Hash Tree

};

```
const int MOD=1e9+97;
const int P[2]={998244353,1000000007};
const int Q[2]={1000000033,1000000021};
const int R[2] = {123456789, 987654321};
int add(int a, int b) {return a+b>=MOD?a+b-MOD:a+b;}
int mul(int a, int b) {return ll(a) *b%MOD;}
```

```
int binpow(int a, int b) {
        int res=1;a%=MOD;
        while(b>0){
                if (b&1) res=mul (res, a);
                a=mul(a,a);
                b>>=1;
        return res%MOD;
// O(n), 1-indexed
struct Tree{
        vector<vi> q;
        int n;
        Tree(int n):n(n){q.resize(n+1);}
        void add edge(int u, int v){
                q[u].push back(v);
                q[v].push back(u);
        ii hash(int u, int pre=0) {
                vector<vi> nw(2,vi());
                for(int v:q[u])
                        if(v!=pre){
                                 ii tmp=hash(v,u);
                                 nw[0].push back(tmp.first
                                 nw[1].push_back(tmp.
                                     second);
                ii ans=\{0,0\};
                for(int i=0; i<2; ++i) {
                         int& tmp=(i?ans.second:ans.first)
                         for (int x:nw[i]) tmp=add(tmp,
                            binpow(P[i], x);
                         tmp=add(mul(tmp,Q[i]),R[i]);
                return ans:
        // Isomorphism
        bool iso(Tree& t){
                vi a=get_centers();
                vi b=t.get centers();
                for (int x:a) for (int y:b) if (hash (x) ==t.
                    hash(y))return 1;
                return 0;
        vi get centers(){
                auto du=bfs(1);
                int v=max_element(all(du))-du.begin();
                auto dv=bfs(v);
                int u=max element(all(dv))-dv.begin();
                du=bfs(u);
```

```
vi ans;
                  for(int i=1;i<=n;++i) {</pre>
                          if(du[i]+dv[i]==du[v] && du[i]>=
                              du[v]/2 \&\& dv[i] >= du[v]/2) {
                                   ans.push back(i);
                 return ans;
        vi bfs(int s) {
                  queue<int> q;
                  vi d(n+1, n*2);
                  d[0] = -1;
                  q.push(s);
                  d[s] = 0;
                  while(!q.empty()){
                          int u=q.front();
                          q.pop();
                          for(int v:q[u])
                                   if(d[u]+1<d[v]){
                                            d[v] = d[u] + 1;
                                            q.push(v);
                 return d;
};
```

2.3 Heavy Light Decomposition

```
typedef long long T;
T oper(T a, T b) {return max(a,b);}
T null=-1e18:
struct SegTree{}; // Add Segment tree
// O(nlog(n)) build
// O(log(n)^2) (query - update) path
// O(log(n)) (query - update) subtree, node
// 1) call build(adj,n,root)
struct HLD{
        SegTree st;
        vector<vi> adj;
        vi dad, root, dep, sz, pos;
        int time;
        bool edges=false; // if the values are on edges
           instead of nodes
        void build(vector<vi>& adj2, int n, int v=0) { //
           v is the root
                adi=adi2;
                dad.resize(n);
                root.resize(n);
                dep.resize(n);
```

```
sz.resize(n);
        pos.resize(n);
        root[v]=dad[v]=v;
        dep[v]=time=0;
        dfsSz(v);
        dfsHld(v);
        // vector<T> palst(n);
        // for (int i=0; i< n; ++i) palst [pos[i]]=vals
        // st.build(palst);
        st.build(n);
void dfsSz(int x){
        sz[x]=0;
        for(int& y:adj[x]){
                if (y==dad[x]) continue;
                 dad[y]=x; dep[y]=dep[x]+1;
                 dfsSz(y);
                 sz[x] + = sz[y] + 1;
                 if(sz[y]>sz[adj[x][0]])swap(y,adj
                    [x][0];
void dfsHld(int x) {
        pos[x]=time++;
        for(int y:adj[x]){
                if (y==dad[x]) continue;
                root[y] = (y = adj[x][0]?root[x]:y);
                 dfsHld(y);
// O(log(n)^2)
template <class Oper>
void processPath(int x, int y, Oper op) {
        for(; root[x]!=root[y]; y=dad[root[y]]) {
                 if (dep[root[x]]>dep[root[y]]) swap
                    (x,y);
                 op(pos[root[y]],pos[y]);
        if (dep[x]>dep[y]) swap(x,y);
        op(pos[x]+edges,pos[y]);
void modifyPath(int x, int y, int v) {
        processPath(x,y,[this,&v](int 1, int r){
                 st.upd(l,r,v);
        });
T queryPath(int x, int y) {
        T res=null:
        processPath(x,y,[this,&res](int 1, int r)
```

2.4 Kruskal Reconstruction Tree

```
// Kruskal Reconstruction Tree (KRT)
// the main idea is to build a tree to efficiently answer
    queries
// about the minimum or maximum edge weight between two
// each edge will be represented as a node in the tree.
// query(a,b) = lca(a,b)
// Add LCA
const int maxn = 1e5+5;
const int maxm = 2e5+5;
vector<vi> adi;
// sometimes it is useful
int ver[2*(maxn+maxm)]; // node at position i in euler
int st[maxn+maxm]; // start time of v
int ft[maxn+maxm]; // finish time of v
struct DSU{
        vi p, size;
        vector < bool > roots; // if the graph is a forest
        DSU(int n) {
                p.assign(n,0);
                size.assign(n,1);
                roots.assign(n,true);
                for(int i=0; i<n; ++i)p[i]=i;
        int get(int a) {return (a==p[a]?a:p[a]=get(p[a]))
        // unite node a and node b with the edge m =>
           node m
```

```
void unite(int a, int b, int m) {
    a=get(a);b=get(b);
    if(a==b)return;
    size[m]=size[a]+size[b];
    p[a]=p[b]=m;
    roots[a]=false;
    roots[b]=false;
    adj[m].push_back(a);
    adj[m].push_back(b);
}
```

2.5 LCA Binary Lifting

```
// O(n*log(n)) build
// O(\log(n)) kth, lca, dist
struct LCA{
        vector<vi> up;
        vi dep;
        int n, maxlog;
        void build(vector<vi>& adj, int root) {
                 n=sz(adi):
                 \max \log = ceil(\log 2(n)) + 3;
                 up.assign(n, vi(maxlog, -1));
                 dep.assign(n,0);
                 dfs(adj,root);
                 calc(n);
        void dfs(vector<vi>& adj, int v=0, int p=-1) {
                 up[v][0]=p;
                 for(int u:adj[v]){
                          if (u==p) continue;
                          dep[u]=dep[v]+1;
                          dfs(adi, u, v);
        void calc(int n) {
                 for (int l=1; l<maxlog; ++1) {</pre>
                          for (int i=0; i < n; ++i) {</pre>
                                   if(up[i][l-1]!=-1){
                                           up[i][l]=up[up[i
                                               ][1-1]][1-1];
        // kth ancestor, return -1 if it doesnt exits
        int kth(int u, int k){
                 for (int l=maxlog-1; l>=0; --1) {
                          if (u! = -1) \&\& k\& (1 << 1) 
                                   u=up[u][1];
```

```
    return u;
}

int lca(int a, int b) {
    // if(kth(a, dep[a])!=kth(b, dep[b]))
        return -1; // forest
    a=kth(a, dep[a]-min(dep[a], dep[b]));
    b=kth(b, dep[b]-min(dep[a], dep[b]));
    if(a==b) return a;
    for(int l=maxlog-1; l>=0; --l) {
        if(up[a][l]!=up[b][l]) {
            a=up[a][l];
            b=up[b][l];
        }
    return up[a][0];
}

int dist(int a, int b) {
    return dep[a]+dep[b]-2*dep[lca(a,b)];
}

};
```

2.6 LCA RMQ

```
// Add RMO - Min
typedef int T;
struct Table{
        void build(vector<T>& a);
        int get(int 1, int r);
};
// O(n*log(n)) build
// O(1) lca
struct LCA{
        Table rmg:
        vi time, path, tmp;
        int n,ti;
        void build(vector<vi>& adj, int root) {
                path.clear(); tmp.clear();
                n=sz(adj);ti=0;
                time.resize(n);
                dfs(adj, root);
                rmq.build(tmp);
        void dfs(vector<vi>& adj, int u, int p=-1) {
                time[u]=ti++;
                for(int v:adj[u]){
                        if (v==p) continue;
                         path.push back(u);
                         tmp.push_back(time[u]);
```

```
dfs(adj, v, u);
}

int lca(int a, int b) { // check forest
    if(a==b) return a;
    a=time[a],b=time[b];
    if(a>b) swap(a,b);
    return path[rmq.get(a,b-1)];
};
```

2.7 Sack

```
const int maxn = 1e5+5;
vi adi[maxn];
int ver[2*maxn]; // nodo en la posicion i del euler tour
int len[maxn]; // tamano del subarbol de v
int st[maxn]; // tiempo inicial de v
int ft[maxn]; // tiempo final de v
int pos=0;
// O(n*log(n))
// 1) dfs0(root);
// 2) dfs1(root);
void dfs0(int v=0, int p=-1){
        len[v]=1;
        ver[pos]=v;
        st[v]=pos++;
        for(int u:adj[v]){
                if (u==p) continue;
                dfs0(u,v);
                len[v]+=len[u];
        ver[pos]=v;
        ft[v]=pos++;
bool vis[maxn];
void ask(int v, bool add) {
        if(vis[v] && !add) {
                vis[v]=false;
                // eliminar nodo v
                // ...
        }else if(!vis[v] && add){
                vis[v]=true;
                // anadir nodo v
                // ...
void dfs1(int v=0, int p=-1, bool keep=true) {
        int mx=0, id=-1;
        for(int u:adj[v]){
```

```
2.8 Virtual Tree
```

```
2 ARBOLES
```

```
if (u==p) continue;
        if(len[u]>mx){
                 mx=len[u];
                 id=u;
for(int u:adi[v]){
        if(u!=p && u!=id)
                 dfs1(u,v,0);
if(id!=-1)dfs1(id, v, 1);
for(int u:adj[v]){
        if (u==p || u==id) continue;
        for(int p=st[u];p<ft[u];++p)</pre>
                 ask(ver[p], 1);
ask(v, 1);
// responder las consultas relacionadas con el
   subarbol de v
// ...
if (keep) return;
for (int p=st[v];p<ft[v];++p)</pre>
        ask(ver[p], 0);
```

2.8 Virtual Tree

```
// O(k*log(k))
// 1) build(n, root, adj);
// 2) query (nodes);
LCA q; // Add LCA
int lca(int a, int b) {return g.lca(a,b);};
struct VirtualTree{
        vector<vi> adj,adjVT;
        vector<int> st,ft;
        vector<bool> important;
        int pos=0;
        void build(vector<vi>& adj2, int n, int root) {
                important.assign(n, false);
                adjVT.assign(n,vi());
                st.resize(n);
                ft.resize(n);
                adj=adj2;pos=0;
                dfs(root);
        void dfs(int v, int p=-1) {
                st[v]=pos++;
                for(int u:adj[v]){
                        if (u==p) continue;
                         dfs(u, v);
```

```
ft[v]=pos++;
bool upper(int v, int u) {return st[v] <= st[u] &&
   ft[v]>=ft[u];}
int getRootVirtualTree(vi nodes) {
        sort(all(nodes), [&](int v, int u){
            return st[v] < st[u]; });</pre>
        int m=sz(nodes);
        for(int i=0;i<m-1;++i) {</pre>
                 int v=lca(nodes[i], nodes[i+1]);
                 nodes.push back(v);
        sort(all(nodes), [&](int v, int u){
            return st[v] < st[u]; });</pre>
        nodes.erase(unique(all(nodes)), nodes.end
        for(int u:nodes)adjVT[u].clear();
        vi s;
        s.push back(nodes[0]);
        m=sz(nodes);
        for (int i=1; i < m; ++i) {</pre>
                 int v=nodes[i];
                 while (sz(s) \ge 2 \&\& !upper(s.back()
                    , v)){
                         adjVT[s[sz(s)-2]].
                             push back(s.back());
                         s.pop back();
                 s.push back(v);
        while (sz(s) >= 2) {
                 adjVT[s[sz(s)-2]].push back(s.
                    back());
                 s.pop_back();
        return s[0];
void dfs2(int u, int p=-1){
        if (important[u]) {
                 // pass
        }else{
                 // pass
        for(int v:adjVT[u]) {
                 if (v==p) continue;
                 dfs2(v,u);
void query(vi& nodes) {
        for(int u:nodes)important[u]=true;
        int root=getRootVirtualTree(nodes);
```

```
dfs2(root);
    // cout ans
    for(int u:nodes)important[u]=false;
};
```

3 Estructuras de Datos

3.1 Bit

```
//O(n) build
// O(\log(n)) get, upd
typedef long long T;
struct BIT{
         vector<T> t;
         int n;
         BIT(int _n) {
                  \overline{n} = \underline{n};
                  t.assign(n+1,0);
         void upd(int i, T v) { // add v to ith element
                  for(int j=i+1; j<=n; j+=j&-j)t[j]+=v;
         T get(int i) { // get sum of range [0,i0)
                  T ans=0;
                  for(int j=i; j; j-=j&-j) ans+=t[j];
                  return ans;
         T get(int 1, int r) { // get sum of range [1,r]
                  return get (r+1) -get (l);
};
```

3.2 Bit 2D

3.3 Cartesian Tree

```
// O(n) build
typedef long long T;
struct CartesianTree{ // 1-indexed
        vector<int> 1,r;
        int root, n;
        CartesianTree(vector<T>& a) {
                 reverse(all(a));
                 a.push_back(0);
                 reverse(all(a));
                 int tot=0; n=sz(a)-1;
                 l.assign(n+1,0);
                 r.assign(n+1,0);
                 vector<int> s(n+1,0);
                 vector<bool> vis(n+1, false);
                 for (int i=1; i<=n; ++i) {</pre>
                          int k=tot;
                          while(k>0 && a[s[k-1]]>a[i])k--;
                              // < max heap
                          if (k) r[s[k-1]]=\bar{i};
                          if(k<tot)l[i]=s[k];
                          s[k++]=i;
                          tot=k;
                 for(int i=1;i<=n;++i)vis[l[i]]=vis[r[i</pre>
                     ]]=1;
                 root=0;
                 for (int i=1; i<=n; ++i) {</pre>
                          if(!vis[i])root=i;
};
```

3.4 Disjoint Set Union

```
struct dsu{
        vi p, size;
        int sets.maxSize;
        dsu(int n) {
                p.assign(n,0);
                size.assign(n,1);
                sets = n;
                for (int i = 0; i<n; i++) p[i] = i;
        int find_set(int i) {return (p[i] == i) ? i : (p[
           i] = find_set(p[i]));}
        bool is same set(int i, int j) {return find set(i
           ) == find set(i);
        void unionSet(int i, int j) {
                if (!is_same_set(i, j)) {
                        int a = find set(i), b = find set
                        if (size[a] < size[b]) swap(a, b)
                        p[b] = a;
                        size[a] += size[b];
                        maxSize = max(size[a], maxSize);
                        sets--;
};
```

3.5 Disjoint Sparse Table

```
// lo mismo que sparse table, pero para st opers
// O(n*log(n)) build
// O(1)  get
typedef int T;
T \text{ null} = 0;
T op (T a, T b) {return a^b;}
struct DST {
        vector<vector<T>> pre, suf;
        int k, n;
        DST(vector<T>& a) {
                 n = sz(a);
                 k = log2(n) + 2;
                 pre.assign(k + 1, vectorT>(n));
                 suf.assign(k + 1, vector < T > (n));
                 for (int \dot{j} = 0; (1 << \dot{j}) <= n; ++\dot{j}) {
                          int mask = (1 << j) - 1;
                          T nw = null;
                          for (int i = 0; i < n; ++i) {
                                   nw = op(nw, a[i]);
                                   pre[i][i] = nw;
                                   if((i \& mask) == mask) nw
                                        = null;
```

3.6 Dynamic Connectivity Offline

```
typedef pair<int, int> ii;
struct DSU {
        vector<int> p, size, h;
        int sets;
        void build(int n) {
                 sets=n;
                p.assign(n,0);
                size.assign(n,1);
                 for(int i=0; i<n; ++i)p[i]=i;
        int get(int a) {return (a==p[a]?a:get(p[a]));}
        void unite(int a, int b) {
                a=get(a); b=get(b);
                if (a==b) return;
                if(size[a]>size[b])swap(a,b);
                h.push_back(a);
                size[b] += size[a];
                p[a]=b; sets--;
        void rollback(int s){
                 while (sz(h) > s)  {
                         int a=h.back();
                         h.pop back();
                         size[p[a]]-=size[a];
                         p[a]=a; sets++;
};
// O(q*log(q)*log(n))
enum { ADD, DEL, QUERY };
struct Query { int type, u, v; };
struct DynCon {
        map<ii, int> edges;DSU uf;
        vector<Query> q;
```

```
vector<int> t;
void add(int u, int v) {
        if (u>v) swap (u,v);
        edges [\{u,v\}] = sz(q);
        q.push_back({ADD, u, v});
        t.push back(-1);
void del(int u, int v){
        if(u>v) swap(u,v);
        int i=edges[{u,v}];
        t[i]=sz(q);
        q.push_back({DEL, u, v});
        t.push back(i);
void query() {
        q.push_back({QUERY, -1, -1});
        t.push back(-1);
void dnc(int 1, int r){
        if(r-l==1) {
                 if (q[1].type==QUERY)
                         cout << uf.sets << "\n";
                 return;
        int m=1+(r-1)/2, k=sz(uf.h);
        for(int i=m; i<r; ++i)
                 if(q[i].type==DEL && t[i]<1)
                         uf.unite(q[i].u, q[i].v);
        dnc(1, m);
        uf.rollback(k);
        for(int i=1;i<m;++i)</pre>
                 if(q[i].tvpe==ADD && t[i]>=r)
                         uf.unite(q[i].u, q[i].v);
        dnc(m, r);
        uf.rollback(k);
void init(int n){
        uf.build(n);
        if(!sz(q))return;
        for (int & ti:t) if (ti==-1) ti=sz(q);
        dnc(0, sz(q));
```

3.7 DSU Bipartite

};

```
// Bipartite graph
// get return the leader and the parity of the distance
    to the leader

typedef pair<int, int> ii;
struct DSU{
       vector<int> p,size,len;
       DSU(int n){
```

```
p.assign(n,0);
                 len.assign(n,0);
                 size.assign(n,1);
                 for (int i=0; i < n; ++i) p[i] = i;</pre>
        ii get(int a){
                 if(a==p[a])return {a, 0};
                 ii va=qet(p[a]);
                 p[a]=va.first;
                 len[a] = (len[a] + va.second) %2;
                 return {p[a], len[a]};
        void unite(int a, int b) {
                 ii va=qet(a);
                 ii vb=qet(b);
                 if (va.first==vb.first) return;
                 if(size[va.first]>size[vb.first])swap(va,
                    vb);
                 p[va.first]=vb.first;
                 len[va.first] = (va.second+vb.second+1)%2;
                 size[vb.first]+=size[va.first];
};
```

3.8 Dynamic Segment Tree

```
// O(q*log(n)), q \Rightarrow queries
typedef long long T;
T null=0, noVal=0;
T oper(T a, T b) {return a+b;}
struct Node {
        T val, lz;
        int 1,r;
        Node *pl,*pr;
        Node(int ll, int rr) {
                 val=null:lz=noVal;
                 pl=pr=nullptr;
                 l=11; r=rr;
        void update() {
                 if (r-l==1) return;
                 val=oper(pl->val, pr->val);
        void update(T v){
                 val += ((T)(r-1)) *v;
                 1z+=v;
        void extends(){
                 if(r-l!=1 && !pl) {
                         int m = (r+1)/2;
                          pl=new Node(1, m);
                          pr=new Node(m, r);
```

```
void propagate() {
                 if (r-l==1) return;
                 if(lz==noVal)return;
                 pl->update(lz);
                 pr->update(lz);
                 lz=noVal;
};
typedef Node* PNode;
struct SegTree{
        PNode root;
        SegTree(int 1, int r) {root=new Node(1, r+1);}
        void upd(PNode x, int 1, int r, T v){
                 int 1x=x->1, rx=x->r;
                 if(lx>=r || l>=rx)return;
                 if(lx>=l && rx<=r){
                         x->update(v);
                         return;
                 x->extends();
                 x->propagate();
                 upd(x->pl,l,r,v);
                 upd(x->pr, l, r, v);
                 x->update();
        T get(PNode x, int l, int r) {
                 int 1x=x->1, rx=x->r;
                 if(lx>=r || l>=rx)return null;
                 if(lx>=1 && rx<=r) return x->val;
                 x\rightarrowextends();
                 x->propagate();
                 T vl=qet(x->pl,l,r);
                 T v2=qet(x->pr,l,r);
                 return oper (v1, v2);
        T get(int 1, int r) {return get(root, 1, r+1);}
        void upd(int 1, int r, T v) {upd(root,1,r+1,v);}
} ;
```

3.9 Implicit Treap

```
// Treap => Binary Search Tree + Binary Heap
// 1. create a empty root (PTreap root=nullptr;)
// 2. Append the nodes in order (left -> right)
// PTreap tmp=new Treap(x);
// root=merge(root, tmp);

typedef long long T;
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
```

```
time since epoch().count());
T null = 0;
struct Treap{
        Treap *1, *r; // left child, right child
        u64 prior; // random
        T val, sum, lz; // value, sum subtree, lazy
        int sz; // size subtree
        Treap(T v) {
                l=r=nullptr;
                prior=rng();
                val=sum=v;
                1z=0; sz=1;
         Treap(){
                delete 1;
                delete r;
};
typedef Treap* PTreap;
int cnt(PTreap x) {return (!x?0:x->sz);}
T sum(PTreap x) {return (!x?0:x->sum);}
void update helper(PTreap x, T v) {
        // 1z += v
        // val += v
        // sum += v
// propagate the lazy
void push (PTreap x) {
        if (x &  x->1z) \{ // check x->1z \}
                if (x->1) update helper (x->1, 1);
                if (x->r) update_helper (x->r, 1);
                x -> 1z = 0;
// updates node with its children information
void pull(PTreap x) {
        push (x->1);
        push (x->r);
        x->sz=cnt(x->1)+cnt(x->r)+1;
        x->sum=sum(x->1)+sum(x->r)+x->val;
// Updates node value += v
void upd(PTreap x, T v) {
        if(!x)return;
        pull(x);
        update helper(x, v);
// O(log(n)) divide the treap in two parts
// [count nodes == left], [the rest of nodes]
pair<PTreap, PTreap> split(PTreap x, int left) {
        if(!x)return {nullptr, nullptr};
```

```
push(x);
        if(cnt(x->1)>=left){
                 auto got=split(x->1, left);
                x->l=qot.second;
                pull(x);
                 return {got.first, x};
        }else{
                 auto got=split(x->r, left-cnt(x->1)-1);
                x->r=qot.first;
                 pull(x);
                return {x, got.second};
// O(log(n)) merge two treap
// [nodes treap x ... nodes treap y]
PTreap merge (PTreap x, PTreap y) {
        if(!x)return y;
        if(!y)return x;
        push(x); push(y);
        if (x->prior<=y->prior) {
                x->r=merge(x->r, y);
                 pull(x);
                return x;
        }else{
                 y->l=merge(x, y->l);
                 pull(y);
                return y;
// O(n) print the treap
void dfs(PTreap x) {
        if(!x)return;
        push(x);
        dfs(x->1);
        cout << x -> val << " ";
        dfs(x->r);
```

3.10 Implicit Treap Father

```
// Treap => Binary Search Tree + Binary Heap
// 1. create a empty root (PTreap root=nullptr;)
// 2. Append the nodes in order (left -> right)
// PTreap tmp=new Treap(x);
// root=merge(root, tmp);

// si se edita un treap, se tiene que hacer un pullAll
    hasta la raiz
// si no se hace esto, el treap queda con informacion
    pasada

// si se va a modificar un treap, hacer un pushAll para
    bajar los lazy
```

```
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
   time since epoch().count());
T \text{ null} = 0;
struct Treap{
        Treap *1,*r,*dad; // left child, right child
        u64 prior; // random
T val, sum; // value, sum subtree
        int sz; // size subtree
        Treap(T v) {
                 l=r=dad=nullptr;
                 prior=rnq();
                 val=sum=v;
                 sz=1;
         ~Treap(){
                 delete 1;
                 delete r;
} ;
typedef Treap* PTreap;
int cnt(PTreap x) {return (!x?0:x->sz);}
T sum(PTreap x) {return (!x?0:x->sum);}
// updates node with its children information
void pull(PTreap x) {
        x->sz=cnt(x->1)+cnt(x->r)+1;
        x->sum=sum(x->1)+sum(x->r)+x->val;
        if (x->1) x->1->dad=x; //
        if (x->r) x->r->dad=x; //
// O(log(n)) divide the treap in two parts
// [count nodes == left], [the rest of nodes]
pair<PTreap, PTreap> split(PTreap x, int left){
        if(!x)return {nullptr, nullptr};
        if(cnt(x->1)>=left){
                 auto got=split(x->1, left);
                 if (got.first) got.first->dad=nullptr; //
                 x \rightarrow \hat{1} = got.second;
                 x->dad=nullptr; //
                 pull(x);
                 return {got.first, x};
        }else{
                 auto got=split(x->r, left-cnt(x->1)-1);
                 if (got.second) got.second->dad=nullptr; //
                 x->r=qot.first;
                 x->dad=nullptr; //
                 pull(x);
                 return {x, qot.second};
```

typedef long long T;

```
// O(log(n)) merge two treap
// [nodes treap x ... nodes treap y]
PTreap merge (PTreap x, PTreap y) {
        if(!x)return v;
        if(!y)return x;
        if (x->prior<=y->prior) {
                 x \rightarrow r = merge(x \rightarrow r, y);
                 pull(x);
                 return x;
        }else{
                 y->l=merge(x, y->l);
                 pull(y);
                 return v;
// O(log(n)) propagate the lazy [root->x]
void pushAll(PTreap x) {
        if(!x)return;
        pushAll(x->dad);
        push(x);
// O(log(n)) update the treap [root->x]
void pullAll(PTreap x) {
        if(!x)return;
        pull(x);
        pullAll(x->dad);
// O(log(n)) return the root and the position of x (1-
   indexed)
pair<PTreap, int> findRoot(PTreap x) {
        pushAll(x);
        int pos=cnt(x->1);
        while(x->dad) {
                 PTreap f=x->dad;
                 if (x=f->r) pos+=cnt (f->1)+1;
                 x=f;
        return {x,pos+1};
```

3.11 Li Chao

```
// inf max abs value that the function may take
typedef long long ty;
struct Line {
         ty m, b;
        Line() {}
        Line(ty m, ty b): m(m), b(b) {}
        ty eval(ty x) {return m * x + b;}
};
```

```
struct nLiChao{
        // see coments for min
        nLiChao *left = nullptr, *right = nullptr;
        ty 1, r;
        Line line:
        nLiChao(ty l, ty r): l(l), r(r)
                line = \{0, -inf\}; // change to \{0, inf\};
        // T(Log(Rango)) M(Log(rango))
        void addLine(Line nline) {
                ty m = (1 + r) >> 1;
                bool lef = nline.eval(1) > line.eval(1);
                    // change > to <
                bool mid = nline.eval(m) > line.eval(m);
                   // change > to <
                if (mid) swap(nline, line);
                if (r == 1) return;
                if (lef != mid) {
                        if (!left) {
                                 left = new nLiChao(l, m);
                                 left -> line = nline;
                        else left -> addLine(nline);
                else{
                        if (!right) {
                                 right = new nLiChao(m +
                                    1, r);
                                 right -> line = nline;
                        else right -> addLine(nline);
        // T(Log(Rango))
        ty get(ty x) {
                ty m = (l + r) >> 1;
                ty op1 = -\inf, op2 = -\inf; // change to
                if(l == r) return line.eval(x);
                else if (x < m) {
                        if (left) op1 = left -> get(x);
                        return max(line.eval(x), op1); //
                             change max to min
                else{
                        if (right) op2 = right \rightarrow get(x);
                        return max(line.eval(x), op2); //
```

3.12 Link Cut Tree

```
// 1-indexed
// All operations are O(log(n))
typedef long long T;
struct SplayTree{
        struct Node{
                int ch[2] = \{0, 0\}, p=0;
                T val=0, path=0; // values for path
                T sub=0, vir=0; // values for subtree
                bool flip=0; // values for lazy
        };
        vector<Node> ns:
        SplayTree(int n):ns(n+1){}
        T path(int u) {return (u?ns[u].path:0);}
        T subsum(int u) {return (u?ns[u].sub:0);}
        void push(int x) {
                if(!x)return;
                int l=ns[x].ch[0], r=ns[x].ch[1];
                if(ns[x].flip) {
                         ns[l].flip^=1,ns[r].flip^=1;
                         swap(ns[x].ch[0], ns[x].ch[1]);
                         // if the operation is like a
                            segment tree
                         // check swap the values
                         ns[x].flip=0;
        void pull(int x) {
                int l=ns[x].ch[0],r=ns[x].ch[1];
                push(1); push(r);
                ns[x].path=max({path(1), path(r), ns[x].}
                ns[x].sub=ns[x].vir+subsum(1)+subsum(r)+
                    ns[x].val;
        void set(int x, int d, int y) {ns[x].ch[d]=y;ns[y
            ].p=x;pull(x);}
        void splay(int x) {
```

```
auto dir=[&](int x){
                          int p=ns[x].p;if(!p)return -1;
                          return ns[p].ch[0] == x?0:ns[p].ch
                             [1] == x?1:-1;
                 };
                 auto rotate=[&](int x){
                          int y=ns[x].p, z=ns[y].p, dx=dir(x)
                             , dy = dir(y);
                          set (y, dx, ns[x].ch[!dx]);
                          set (x, !dx, y);
                         if(^{\circ}dy) set (z, dy, x);
                         ns[x].p=z;
                 for(push(x); ~dir(x);) {
                          int y=ns[x].p, z=ns[y].p;
                         push(z);push(y);push(x);
                         int dx=dir(x), dy=dir(y);
                          if(^{\circ}dv) rotate (dx!=dv?x:v);
                          rotate(x);
};
struct LinkCut:SplayTree{
        LinkCut(int n):SplayTree(n){}
        // return the root of us tree
        int root(int u){
                 access (u); splay (u); push (u);
                 while (ns[u].ch[0]) {u=ns[u].ch[0]; push(u)
                 return splay(u),u;
        // return the parent of u
        int parent(int u){
                 access(u); splay(u); push(u);
                 u=ns[u].ch[0];push(u);
                 while (ns[u].ch[1]) {u=ns[u].ch[1]; push(u)
                 return splay(u),u;
        int access(int x) {
                 int u=x, v=0;
                 for(;u;v=u,u=ns[u].p){
                          splay(u);
                         int& ov=ns[u].ch[1];
                         ns[u].vir+=ns[ov].sub;
                         ns[u].vir-=ns[v].sub;
                         ov=v;pull(u);
                 return splay(x), v;
        // reroot the tree with x as root
        void reroot(int x) {
                 access(x); ns[x].flip^=1; push(x);
```

```
// create a edge u->v, u is the child of v
void link(int u, int v){
        reroot (u); access (v);
        ns[v].vir+=ns[u].sub;
        ns[u].p=v;pull(v);
// delete the edge u \rightarrow v, u is the child of v
void cut(int u, int v){
        int r=root(u);
        reroot (u); access (v);
        ns[v].ch[0]=ns[u].p=0;pull(v);
        reroot(r);
// delete the edge u->parent(u)
void cut(int u){
        access(u);
        ns[ns[u].ch[0]].p=0;
        ns[u].ch[0]=0;pull(u);
int lca(int u, int v) {
        if (root (u) !=root (v)) return -1;
        access(u); return access(v);
// return sum of the subtree of u with v as
   father
T subtree(int u, int v) {
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vir+ns[u].val;
        return reroot(r), ans;
T path(int u, int v) {
        int r=root(u);
        reroot (u); access (v); pull (v);
        T ans=ns[v].path;
        return reroot(r), ans;
void set(int u, T val){
        access(u);
        ns[u].val=val;
        pull(u);
```

3.13 Link Cut Tree Lazy

};

```
T sub=0.vir=0.ssz=0.vsz=0; // values for
        bool flip=0;T lz=0; // values for lazy
};
vector<Node> ns;
SplayTree(int n):ns(n+1){}
T path(int u) {return (u?ns[u].path:0);}
T size(int u) {return (u?ns[u].sz:0);}
T subsize(int u) {return (u?ns[u].ssz:0);}
T subsum(int u) {return (u?ns[u].sub:0);}
void push(int x) {
        if(!x)return;
        int l=ns[x].ch[0], r=ns[x].ch[1];
        if(ns[x].flip){
                ns[1].flip^=1,ns[r].flip^=1;
                swap(ns[x].ch[0], ns[x].ch[1]);
                // if the operation is like a
                    segment tree
                // check swap the values
                ns[x].flip=0;
        if(ns[x].lz){ // check the lazy
                // propagate the lazy
                ns[x].sub+=ns[x].lz*ns[x].ssz;
                ns[x].vir+=ns[x].lz*ns[x].vsz;
                // ...
void pull(int x){
        int l=ns[x].ch[0],r=ns[x].ch[1];
        push(1);push(r);
        ns[x].sz=size(1)+size(r)+1;
        ns[x].path=max({path(1), path(r), ns[x].}
           val });
        ns[x].sub=ns[x].vir+subsum(1)+subsum(r)+
           ns[x].val;
        ns[x].ssz=ns[x].vsz+subsize(l)+subsize(r)
           +1;
void set(int x, int d, int y) {ns[x].ch[d]=y;ns[y
    ].p=x;pull(x);
void splay(int x) {
        auto dir=[&](int x){
                int p=ns[x].p;if(!p)return -1;
                return ns[p].ch[0] == x?0:ns[p].ch
                    [1] == x?1:-1;
        auto rotate=[&](int x){
                int y=ns[x].p, z=ns[y].p, dx=dir(x)
                    , dy = dir(y);
                set (y, dx, ns[x].ch[!dx]);
                set (x, !dx, y);
```

```
if(^dy) set(z,dy,x);
                         ns[x].p=z;
                 for(push(x); ~dir(x);) {
                         int y=ns[x].p, z=ns[y].p;
                         push(z); push(y); push(x);
                         int dx=dir(x), dy=dir(y);
                         if (^{\sim}dy) rotate (dx!=dy?x:y);
                         rotate(x);
};
struct LinkCut:SplayTree{
        LinkCut(int n):SplayTree(n){}
        // return the root of us tree
        int root(int u){
                 access (u); splay (u); push (u);
                 while (ns[u].ch[0]) {u=ns[u].ch[0]; push(u)
                 return splay(u),u;
        // return the parent of u
        int parent(int u){
                 access(u); splay(u); push(u);
                u=ns[u].ch[0];push(u);
                while (ns[u].ch[1]) {u=ns[u].ch[1]; push(u)
                return splay(u),u;
        int access(int x){
                int u=x, v=0;
                 for(;u;v=u,u=ns[u].p){
                         splay(u);
                         int& ov=ns[u].ch[1];
                         ns[u].vir+=ns[ov].sub;
                         ns[u].vsz+=ns[ov].ssz;
                         ns[u].vir-=ns[v].sub;
                         ns[u].vsz-=ns[v].ssz;
                         ov=v; pull(u);
                return splay(x), v;
        // reroot the tree with x as root
        void reroot(int x) {
                 access(x);ns[x].flip^=1;push(x);
        // create a edge u->v, u is the child of v
        void link(int u, int v) {
                reroot(u);
                access(v);
                ns[v].vir+=ns[u].sub;
```

```
ns[v].vsz+=ns[u].ssz;
        ns[u].p=v;pull(v);
// delete the edge u \rightarrow v, u is the child of v
void cut(int u, int v){
        int r=root(u);
        reroot(u);
        access(v);
        ns[v].ch[0]=ns[u].p=0;pull(v);
        reroot(r);
// delete the edge u->parent(u)
void cut(int u){
        access(u);
        ns[ns[u].ch[0]].p=0;
        ns[u].ch[0]=0;pull(u);
int lca(int u, int v) {
        if (root (u)!=root (v)) return -1;
        access(u); return access(v);
int depth(int u){
        int r=root(u);
        reroot(r);
        access(u); splay(u); push(u);
        return ns[u].sz-1;
T path(int u, int v) {
        int r=root(u);
        reroot (u); access (v); pull (v);
        T ans=ns[v].path;
        return reroot (r), ans;
void set(int u, T val){
        access(u);
        ns[u].val=val;
        pull(u);
// update the value of the nodes in the path u->v
    with += val
void upd(int u, int v, T val){
        int r=root(u);
        reroot (u); access (v); splay (v);
       // change only the lazy
        // ns[v].val+=val;
        reroot(r);
T comp size(int u) {return ns[root(u)].ssz;}
T subtree size(int u) {
        int p=parent(u);
```

```
Merge Sort Tree
```

};

```
ESTRUCTURAS DE DATOS
```

```
if(!p)return comp_size(u);
        cut(u); int ans=comp_size(u);
        link(u,p); return ans;
T subtree_size(int u, int v){ // subtree of u
   with v as father
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vsz+1;
        return reroot (r), ans;
T comp_sum(int u) {return ns[root(u)].sub;}
T subtree sum(int u) {
        int p=parent(u);
        if(!p)return comp sum(u);
        cut(u); T ans=comp sum(u);
        link(u,p); return ans;
T subtree_sum(int u, int v) { // subtree of u with
    v as father
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vir+ns[u].val; // por el
            reroot
        return reroot(r), ans;
```

3.14 Merge Sort Tree

```
// O(n*log(n)) build
// O(\log(n)^2) get
typedef long long T;
struct SeqTree{
        int size;
        vector<vector<T>> vals;
        void oper(int x) {
                merge(all(vals[2*x+1]), all(vals[2*x+2]),
                     back_inserter(vals[x]));
        SegTree(vector<T>& a) {
                 size=1:
                 while (size<sz(a)) size*=2;</pre>
                 vals.resize(2*size);
                 build(a, 0, 0, size);
        void build(vector<T>& a, int x, int lx, int rx) {
                 if(rx-lx==1) {
                         if(lx<sz(a))vals[x]={a[lx]};
                 int m=(lx+rx)/2;
```

```
build(a, 2*x+1, 1x, m);
                build(a, 2*x+2, m, rx);
                oper(x);
        int get (int 1, int r, int val, int x, int lx, int
           rx) {
                if(lx>=r || l>=rx)return 0;
                if(lx>=1 && rx<=r){
                         return upper bound(all(vals[x]),
                            val) -vals[x].begin();
                int m = (1x+rx)/2;
                int v1=get(l,r,val,2*x+1,lx,m);
                int v2=get(1, r, val, 2*x+2, m, rx);
                return v1+v2;
        int get(int 1, int r,int val) {return get(1,r+1,
           val, 0, 0, size);}
};
```

3.15 MOs Algorithm

```
// O((n+q)*sq), sq=n^{(1/2)}
// 1. fill queries[]
// 2. solve(n);
// 3. print ans[]
int sq;
struct query {int l,r,idx;};
bool cmp(query& a, query& b) {
        int x=a.l/sq;
        if (a.1/sq!=b.1/sq) return a.1/sq<b.1/sq;</pre>
        return (x&1?a.r<b.r:a.r>b.r);
vector<query> queries;
vector<ll> ans;
11 act();
void add(int i); // add a[i]
void remove(int i); // remove a[i]
void solve(int n) {
        sq=ceil(sqrt(n));
        sort(all(queries), cmp);
        ans.assign(sz(queries),0);
        int l=0, r=-1;
        for(auto [li,ri,i]:queries) {
                 while (r<ri) add (++r);</pre>
                 while (1>1i) add (--1);
                 while (r>ri) remove (r--);
                 while (1<1i) remove (1++);</pre>
                 ans[i]=act();
```

3.16 MOs Tree

```
// add LCA
struct LCA{};
vector<vector<int>> adj;
const int maxn=1e5+5;
int ver[2*maxn]; // node at position i in euler tour
int st[maxn]; // start time of v
int ft[maxn]; // finish time of v
int pos=0;
LCA tree;
// O((n+q)*sq), sq=n^{(1/2)}
// 1. build euler tour and lca
// 2. add queries[]
// if(st[a]>st[b])swap(a,b);
// queries.push back({st[a]+1,st[b],i});
// 3. solve(n);
// 4. print ans[]
int sq;
void dfs(int u=0, int p=-1) {
        ver[pos]=u;
        st[u]=pos++;
        for(int v:adj[u]){
                if (v==p) continue;
                dfs(v,u);
        ver[pos] = u;
        ft[u]=pos++;
struct query {int l,r,idx;};
bool cmp (query& a, query& b) {
        int x=a.l/sq;
        if (a.l/sq!=b.l/sq) return a.l/sq<b.l/sq;</pre>
        return (x&1?a.r<b.r:a.r>b.r);
vector<query> queries;
vector<11> ans;
bool vis[maxn];
11 act();
void add(int u); // add node u
void remove(int u); // remove node u
void ask(int u){
        if(!vis[u])add(u);
        else remove(u);
        vis[u]=!vis[u];
void solve(int n) {
```

```
sq=ceil(sqrt(n));
sort(all(queries), cmp);
ans.resize(sz(queries));
   int l=0,r=-1;
for(auto [li,ri,i]:queries) {
        while(r<ri)ask(ver[++r]);
        while(l>li)ask(ver[--l]);
        while(r>ri)ask(ver[r--]);
        while(l<li)ask(ver[l++]);
        int a=ver[l-1],b=ver[r];
        int c=tree.lca(a,b);
        ask(c);
        ans[i]=act();
        ask(c);
}</pre>
```

3.17 MOs Updates

```
// O(q*(s+(n/s)^2)) => O(q*(n^2(2/3))), s=(2*(n^2))^2(1/3) -
    s=n^{(2/3)}
// 1. fill queries[] and upds[]
// dont confuse index in queries with updates, they are
// the struct upd saves the old value and the new value
// 2. solve(n):
// 3. print ans[]
int sq;
struct upd{int i,old,cur;};
struct query {int l,r,t,idx;};
bool cmp(query& a, query& b) {
        int x=a.l/sq;
        if (a.1/sq!=b.1/sq) return a.1/sq<b.1/sq;
        if (a.r/sq!=b.r/sq) return (x&1?a.r<b.r:a.r>b.r);
        return a.t<b.t;</pre>
vector<query> queries;
vector<upd> upds;
vector<ll> ans;
ll act();
void add(int i); // add a[i]
void remove(int i); // remove a[i]
void update(int i, int v, int l, int r){
        // check if the update is with an active element
        if(l<=i && i<=r){
                remove(i);
                // a[i]=v;
                // ...
                add(i);
        // a[i]=v;
        // ...
```

3.18 Ordered set

```
#include <ext/pb ds/assoc container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace qnu pbds;
template<typename T> using ordered_set = tree<T,</pre>
   null_type,less<T>, rb_tree_tag,
   tree order statistics node update>;
template<typename T> using ordered_multiset = tree<T,</pre>
   null_type,less_equal<T>, rb_tree_tag,
   tree order statistics node update>;
// ----- CONSTRUCTOR ----- //
// 1. Para ordenar por MAX cambiar less<int> por greater<
   int>
// 2. Para multiset cambiar less<int> por less equal<int>
       Para borrar siendo multiset:
       int idx = st.order_of_key(value);
       st.erase(st.find_by_order(idx));
       st.swap(st2);
// ----- MĒTHODS ----- //
st.find by order(k) // returns pointer to the k-th
   smallest element
st.order_of_key(x) // returns how many elements are
   smaller than x
st.find by order(k) == st.end() // true, if element does
   not exist
```

3.19 Persistent Segment Tree

```
// O(n*log(n)) build
// O(log(n)) get, set
// O((n+q)*log(n)) memory
```

```
typedef long long T;
struct Node {
        T val;
        int l,r; // saves the range of the node [l,r]
struct SegTree{
        vector<Node> ns;
        vector<int> roots; // roots of the differents
            versions
        T null=0:
        int act=0,size; // act: number of nodes
        T oper(T a, T b) {return a+b;}
        SegTree(vector<T>& a, int n) {
                size=n;
                roots.push back(build(a, 0, size));
        void update(int x) {
                ns[x].val=oper(ns[ns[x].l].val, ns[ns[x].
                    rl.val);
        int newNode(T x){
                Node tmp=\{x, -1, -1\};
                ns.push back(tmp);
                return act++;
        int newNode(int 1, int r){
                Node tmp={null,l,r};
                ns.push back(tmp);
                update(act);
                return act++;
        int build(vector<T>& a, int 1, int r){
                if(r-l==1) {return newNode(a[l]);}
                int m = (1+r)/2;
                return newNode(build(a, l, m), build(a, m,
                     r));
        int set(int x, int i, T v, int l, int r){
                if (r-l==1) return newNode(v);
                int m = (1+r)/2;
                if (i<m) return newNode (set (ns[x].l, i, v,</pre>
                    l, m), ns[x].r);
                else return newNode(ns[x].l, set(ns[x].r,
                     i, v, m, r));
        T get(int x, int lx, int rx, int l, int r) {
                if(lx>=r || l>=rx) return null;
                if(lx>=l && rx<=r) return ns[x].val;</pre>
                int m = (1x+rx)/2;
                T v1=get(ns[x].l, lx, m, l, r);
```

```
T v2=get(ns[x].r, m, rx, l, r);
    return oper(v1,v2);
}

T get(int l, int r, int time) {return get(roots[time], 0, size, l, r+1);}
void set(int i, T v, int time) {roots.push_back(set(roots[time], i, v, 0, size));}
};
```

3.20 Persistent Segment Tree Lazy

```
// O(n*log(n)) build
// O(log(n)) get, upd
// O((n+q)*log(n)) memory
typedef long long T;
struct Node {
                            Node* left = nullptr;
                            Node* right = nullptr;
                            T val = 0, prop = 0;
typedef Node* PNode;
struct PerSegTree {
                            vector<PNode> roots{};
                            vector<T> vec{};
                            int n = 0;
                            T op (T a, T b) {
                                                         return a+b;
                            PNode newKid(PNode& curr) {
                                                         PNode newNode = new Node();
                                                         newNode->left = curr->left;
                                                         newNode->right = curr->right;
                                                         newNode->prop = curr->prop;
                                                         newNode->val = curr->val;
                                                         return newNode;
                            void lazy(int i, int j, PNode& curr) {
                                                         if (!curr->prop) return;
                                                         curr - val + = ((T)(j - i + 1)) * curr - val + (T)(j - i + 1)) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) * curr - val + (T)(j - i + 1) *
                                                                     prop;
                                                         if (i != i) {
                                                                                      curr->left = newKid(curr->left);
                                                                                      curr->right = newKid(curr->right)
                                                                                      curr->left->prop += curr->prop;
                                                                                      curr->right->prop += curr->prop;
                                                         curr->prop = 0;
                            PNode build(int i, int j) {
                                                         PNode newNode = new Node();
```

```
if (i == j) {
                newNode->val = vec[i];
        } else {
                int mid = i + (j - i) / 2;
                PNode leftt = build(i, mid);
                PNode right = build(mid + 1, \dot{j});
                newNode->val = op(leftt->val,
                    right->val);
                newNode->left = leftt;
                newNode->right = right;
        return newNode;
PNode upd (int i, int j, int l, int r, T value,
   PNode& curr) {
        lazy(i, j, curr);
        if (i >= 1 && j <= r) {
                PNode newNode = newKid(curr);
                newNode->prop += value;
                lazy(i, j, newNode);
                return newNode;
        if (i > r || j < l) {
                return curr;
        PNode newNode = new Node();
        int mid = i + (j - i) / 2;
        newNode->left = upd(i, mid, l, r, value,
           curr->left);
        newNode \rightarrow right = upd(mid + 1, j, l, r,
           value, curr->right);
        newNode->val = op(newNode->left->val,
           newNode->right->val);
        return newNode:
T get(int i, int j, int l, int r, PNode& curr) {
        lazy(i, j, curr);
        if (j < l || r < i) {
                return 0;
        if (i >= 1 && j <= r) {
                return curr->val;
        int mid = i + (j - i) / 2;
        return op (get (i, mid, l, r, curr->left),
           get (mid + 1, j, l, r, curr->right));
// public methods
void build(vector<T>& vec) {
        if (vec.empty()) return;
        n = vec.size();
        this->vec = vec;
```

3.21 Polynomial Updates

```
ll gauss(ll x) {return (x*(x+111))/211;}
struct Node{
        11 sum=0; // the nodes value
        11 acum=0; // count completed levels
11 cnt=0; // count of updates +1, +2, +3, ...
        void build(ll v) {
                 acum=cnt=0;
                 sum=v;
        void oper(Node& a, Node& b) {
                 sum=a.sum+b.sum;
                 acum=cnt=0;
        void lazy(ll len, ll acum, ll cnt){
                 sum+= acum*len+gauss(len)* cnt;
                 acum+= acum;
                 cnt+= cnt;
struct SeqTree{
        vector<Node> vals:
        Node null;
        int size;
        SegTree(vector<ll>& a) {
                  size=1;
                 while (size<sz(a)) size*=2;</pre>
                 vals.resize(2*size);
                 build(a, 0, 0, size);
        void build(vector<ll>& a, int x, int lx, int rx) {
                 if(rx-lx==1) {
                          if(lx<sz(a))vals[x].build(a[lx]);</pre>
                          return;
                 int m = (1x+rx)/2;
                 build(a, 2*x+1, 1x, m);
```

```
build(a, 2*x+2, m, rx);
                 vals[x].oper(vals[2*x+1], vals[2*x+2]);
        void propagate(int x, int lx, int rx){
                 if (rx-lx==1) return;
                 if(vals[x].cnt==0)return;
                 int m = (rx+lx)/2;
                 vals[2*x+1].lazy(m-lx, vals[x].acum, vals
                     [x].cnt);
                vals[2*x+2].lazy(rx-m, vals[x].acum+ll(m-
                    lx) *vals[x].cnt, vals[x].cnt);
                 vals[x].acum=vals[x].cnt=0;
        void upd(int 1, int r, 11 v, int x, int lx, int
           rx) {
                 if (rx<=l || r<=lx) return;</pre>
                 if(1<=1x && rx<=r){
                         vals[x].lazy(rx-lx,v*(lx-l),v);
                         return;
                 propagate(x,lx,rx);
                 int m = (lx+rx)/2;
                 upd(1, r, v, 2*x+1, 1x, m);
                 upd(1, r, v, 2 \times x + 2, m, rx);
                 vals[x].oper(vals[2*x+1], vals[2*x+2]);
        ll get(int l, int r, int x, int lx, int rx){
                 if(rx<=l || r<=lx) return null.sum;</pre>
                 if(l<=lx && rx<=r)return vals[x].sum;</pre>
                 propagate(x,lx,rx);
                 int m = (lx+rx)/2;
                 ll v1=get (l, r, 2*x+1, lx, m);
                 11 v2=qet(1,r,2*x+2,m,rx);
                 return v1+v2;
        ll get(int 1, int r){return get(1,r+1,0,0,size);}
        void upd(int 1, int r, 11 v) {upd(1,r+1,v,0,0,size
            );}
        // v es la cantidad de veces que se aplica la
            operacion +1, +2, +3
} ;
```

3.22 Segment Tree Iterativo

```
struct segtree{
    int n; vl v; ll nulo = 0;
    ll op(ll a, ll b) {return a + b;}
    segtree(int n) : n(n) {v = vl(2*n, nulo);}
    segtree(vl &a) : n(sz(a)), v(2*n){
```

3.23 Segment Tree Recursivo

```
typedef long long T;
struct SegTree{
        vector<T> vals, lazy;
        T null=0, nolz=0;
        int size;
        T op (T a, T b) {return a+b;}
        SegTree(vector<T>& a) {
                 size=1:
                 while (size<sz(a)) size*=2;</pre>
                 vals.resize(2*size);
                 lazv.assign(2*size, nolz);
                 build(a, \bar{0}, 0, size);
        void build(vector<T>& a, int x, int lx, int rx) {
                 if(rx-lx==1) {
                         if(lx<sz(a))vals[x]=a[lx];
                          return;
                 int m = (1x+rx)/2;
                 build(a, 2*x+1, 1x, m);
                 build(a, 2*x+2, m, rx);
                 vals[x]=op(vals[2*x+1], vals[2*x+2]);
        void propagate(int x, int lx, int rx){
                 if (rx-lx==1) return;
                 if (lazy[x] == nolz) return;
                 int m = (1x+rx)/2;
                 lazy[2*x+1] += lazy[x];
                 vals[2*x+1] += lazy[x]*((T)(m-lx));
```

```
lazy[2*x+2]+=lazy[x];
                 vals[2*x+2] += lazy[x]*((T)(rx-m));
                 lazv[x]=nolz;
        void upd(int 1, int r, T v,int x, int lx, int rx)
                 if (rx<=l || r<=lx) return;</pre>
                 if(1<=1x && rx<=r){
                          lazv[x]+=v;
                          vals[x] += v*((T)(rx-lx));
                          return:
                 propagate(x,lx,rx);
                 int m = (lx + rx)/2;
                 upd(1, r, v, 2*x+1, 1x, m);
                 upd(1, r, v, 2 \times x + 2, m, rx);
                 vals[x]=op(vals[2*x+1], vals[2*x+2]);
        void set(int i, T v, int x, int lx, int rx){
                 if(rx-lx==1){
                          vals[x]=v;
                          return;
                 propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 if(i<m)set(i,v,2*x+1,lx,m);
                 else set(i, v, 2*x+2, m, rx);
                 vals[x]=op(vals[2*x+1], vals[2*x+2]);
        T get(int 1, int r, int x, int lx, int rx) {
                 if(rx<=l || r<=lx) return null;</pre>
                 if(l<=lx && rx<=r)return vals[x];</pre>
                 propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 T v1=get (1, r, 2*x+1, 1x, m);
                 T v2=get(1,r,2*x+2,m,rx);
                 return op (v1, v2);
        T get(int 1, int r) {return get(1,r+1,0,0,size);}
        void upd(int 1, int r, T v) {upd(1,r+1,v,0,0,size)
        void set(int i, T val){set(i,val,0,0,size);}
} ;
```

3.24 Segment Tree 2D

```
// O(n^2*log(n^2)) build
// O(log(n)^2) get, set
const int N=1000+1;
typedef int T;
T st[2*N][2*N];
```

```
struct SegTree{
         int n,m,neutro=0;
        T op (T a, T b) {return a+b;}
         SegTree(int n, int m): n(n), m(m) {
                  for (int i=0; i<2*n; ++i) for (int j=0; j<2*m
                     ;++j)st[i][j]=neutro;
         SegTree(vector<vector<T>>& a): n(sz(a)), m(n ? sz
             (a[0]) : 0) { build(a); }
        void build(vector<vector<T>>& a) {
                  for (int i=0; i<n; ++i) for (int j=0; j<m; ++j)</pre>
                     st[i+n][j+m]=a[i][j];
                 for (int i=0; i<n; ++i) for (int j=m-1; j>=1; --
                     j) st[i+n][j]=op(st[i+n][j<<1], st[i+n
                     ][j<<1|1]);
                 for (int i=n-1; i>=1; --i) for (int j=0; j<2*m
                     ;++j)st[i][j]=op(st[i<<1][j], st[i
                     <<1|1|[i]);
        void set(int x, int y, T v) {
                  st[x+n][y+m]=v;
                  for(int \bar{j}=y+m; j>1; j>>=1) st[x+n][j>>1]=op(
                     st[x+n][i], st[x+n][i^1]);
                 for(int i=x+n;i>1;i>>=1) for(int j=y+m;j;j
                     >>=1) st[i>>1][j]=op(st[i][j], st[i^1][
                     j]);
        T get (int x0, int y0, int x1, int y1) {
                 T r=neutro;
                 for(int i0=x0+n,i1=x1+n+1;i0<i1;i0>>=1,i1
                     >>=1) {
                          int t[4],q=0;
                          if (i0&1) t [q++]=i0++;
                          if (i1&1) t[q++]=--i1;
                          for (int k=0; k < q; ++k) for (int j0=y0
                              +m, j1=y1+m+1; j0<j1; j0>>=1, j1
                              >>=1) {
                                   if(j0&1) r = op(r, st[t[k])[
                                       j0++1);
                                   if(1&1) r = op(r, st[t]k
                                       ]][-- | 1]);
                 return r;
};
```

3.25 Segment Tree Beats

```
// O(n*log(n)) build
// O(log(n)) get, upd
```

```
// updMax[l,r] \rightarrow ai = max(ai, v)
// updMin[l,r] \rightarrow ai = min(ai, v)
// updAdd[l,r] \rightarrow ai = ai + v
// get[l,r] -> return sum of the range [l,r]
typedef long long T;
T null=0, noVal=0;
T INF=1e18;
struct Node{
         T sum, lazv;
         T max1, max2, maxc;
         T min1, min2, minc;
        void build(T x) {
                 sum=max1=min1=x;
                 maxc=minc=1;
                 lazv=noVal;
                 \max_{2} = -INF;
                 min2=INF;
         void oper(Node& a, Node& b) {
                  sum=a.sum+b.sum;
                 if(a.max1>b.max1) {
                           max1=a.max1;
                           maxc=a.maxc;
                           \max 2 = \max (a.\max 2, b.\max 1);
                  }else if(a.max1<b.max1){</pre>
                          \max 1=b.\max 1;
                           maxc=b.maxc;
                           max2=max(b.max2, a.max1);
                  }else{
                           \max 1=a.\max 1;
                           maxc=a.maxc+b.maxc;
                           \max 2 = \max (a.\max 2, b.\max 2);
                 if(a.min1<b.min1) {</pre>
                           min1=a.min1;
                           minc=a.minc;
                           min2=min(a.min2, b.min1);
                 }else if(a.min1>b.min1){
                           min1=b.min1;
                           minc=b.minc;
                           min2=min(b.min2, a.min1);
                  }else{
                           min1=a.min1;
                           minc=a.minc+b.minc;
                           min2=min(a.min2, b.min2);
struct SeqTree{
         vector<Node> vals;
         int size;
         SegTree(vector<T>& a) {
```

```
size=1;
        while (size<sz(a))size*=2;</pre>
        vals.resize(2*size);
        build(a, 0, 0, size);
void build(vector<T>& a, int x, int lx, int rx) {
        if(rx-lx==1) {
                if(lx<sz(a))vals[x].build(a[lx]);</pre>
                 return:
        int m = (1x+rx)/2;
        build(a, 2*x+1, 1x, m);
        build(a, 2*x+2, m, rx);
        vals[x].oper(vals[2*x+1], vals[2*x+2]);
void propagateMax(T v, int x, int lx, int rx){
        if (vals[x].min1>=v) return;
        vals[x].sum-=vals[x].min1*vals[x].minc;
        vals[x].min1=v;
        vals[x].sum+=vals[x].min1*vals[x].minc;
        if(rx-lx==1){
                vals[x].max1=v;
        }else{
                if(v>=vals[x].max1){
                         vals[x].max1=v;
                 }else if(v>vals[x].max2){
                         vals[x].max2=v;
void propagateMin(T v, int x, int lx, int rx){
        if (vals[x].max1<=v) return;</pre>
        vals[x].sum-=vals[x].max1*vals[x].maxc;
        vals[x].max1=v;
        vals[x].sum+=vals[x].max1*vals[x].maxc;
        if(rx-lx==1){
                vals[x].min1=v;
        }else{
                if(v<=vals[x].min1) {</pre>
                         vals[x].min1=v;
                 }else if(v<vals[x].min2){</pre>
                         vals[x].min2=v;
void propagateAdd(T v, int x, int lx, int rx){
        vals[x].sum+=v*((T)(rx-lx));
        vals[x].lazy+=v;
        vals[x].max1+=v;
        vals[x].min1+=v;
        if (vals[x].max2!=-INF) vals[x].max2+=v;
        if (vals[x].min2!=INF) vals[x].min2+=v;
```

```
void propagate(int x, int lx, int rx){
        if (rx-lx==1) return;
        int m = (1x+rx)/2;
        if(vals[x].lazy!=noVal){
                propagateAdd(vals[x].lazy, 2*x+1,
                     lx. m);
                propagateAdd(vals[x].lazy, 2*x+2,
                     m, rx);
                vals[x].lazv=noVal;
        propagateMin(vals[x].max1, 2*x+1, lx, m);
        propagateMin(vals[x].max1, 2*x+2, m, rx);
        propagateMax(vals[x].min1, 2*x+1, lx, m);
        propagateMax(vals[x].min1, 2*x+2, m, rx);
void updAdd(int 1, int r, T v, int x, int lx, int
   rx) {
        if(lx>=r || l>=rx)return;
        if(lx>=1 && rx<=r){
                propagateAdd(v, x, lx, rx);
                return;
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        updAdd(1, r, v, 2*x+1, 1x, m);
        updAdd(1, r, v, 2 \times x + 2, m, rx);
        vals[x].oper(vals[2*x+1], vals[2*x+2]);
void updMax(int 1, int r, T v, int x, int lx, int
   rx) {
        if(lx>=r || l>=rx || vals[x].min1>v)
        if(lx>=l && rx<=r && vals[x].min2>v){
                propagateMax(v, x, lx, rx);
                return;
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        updMax(1, r, v, 2*x+1, 1x, m);
        updMax(1,r,v,2*x+2,m,rx);
        vals[x].oper(vals[2*x+1], vals[2*x+2]);
void updMin(int 1, int r, T v, int x, int lx, int
   rx) {
        if(lx>=r || l>=rx || vals[x].max1<v)
           return;
        if(lx>=1 && rx<=r && vals[x].max2<v){
                propagateMin(v, x, lx, rx);
                return;
```

```
propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 updMin(l,r,v,2*x+1,lx,m);
                 updMin(l,r,v,2*x+2,m,rx);
                 vals[x].oper(vals[2*x+1], vals[2*x+2]);
        T get(int 1, int r, int x, int lx, int rx){
                 if(lx>=r || l>=rx)return null;
                 if(lx>=1 && rx<=r)return vals[x].sum;</pre>
                 propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 T v1=get (1, r, 2*x+1, 1x, m);
                 T v2=qet(1,r,2*x+2,m,rx);
                 return v1+v2;
        T get(int 1, int r) {return get(1,r+1,0,0,size);}
        void updAdd(int 1, int r, T v) {updAdd(1,r+1,v)
            ,0,0,size);}
        void updMin(int 1, int r, T v) {updMin(1,r+1,v)
            ,0,0,size);}
        void updMax(int 1, int r, T v) {updMax(1,r+1,v)
            ,0,0,size);}
} ;
```

3.26 Sparse Table

```
// O(n*log(n)) build
// 0(1) get
typedef long long T;
T op (T a, T b); // max, min, gcd ...
struct Table{
        vector<vector<T>> st;
        Table(vector<T>& v) {
                 st.clear();
                 int n=v.size();
                 st.push back(v);
                 for(int j=1; (1<<j)<=n;++j) {
                          st.push_back(vector<T>(n));
                          for (int i=0; i+(1<<(i-1))< n; ++i) {
                                   st[j][i]=op(st[j-1][i],st
                                      [\dot{1}-1][\dot{1}+(1<<(\dot{1}-1))];
        T get(int 1, int r) {
                 int j=31- builtin_clz(r-l+1);
                 return op (st[j][l], st[j][r-(1<<j)+1]);
};
```

3.27 Sparse Table 2D

```
// O(n*m*log(n)*log(m)) build
// O(1) get
typedef int T;
const int maxn = 1000, logn = 10;
T st[logn][maxn][logn][maxn];
int lq2[maxn+1];
Top(Ta, Tb); // min, max, gcd...
void build(int n, int m, vector<vector<T>>& a) {
        for (int i=2; i <= max(n, m); ++i) lq2[i] = lq2[i/2]+1;</pre>
        for(int i=0;i<n;++i){</pre>
                 for(int j=0; j<m; ++j)
                          st[0][i][0][j]=a[i][j];
                 for(int k2=1; k2<logn; ++k2)
                          for (int j=0; j+(1<<(k2-1))< m; ++j)
                                  st[0][i][k2][j]=op(st[0][
                                      i][k2-1][j], st[0][i][
                                      k2-1] [\dot{1}+(1<<(k2-1))]);
        for(int k1=1; k1<logn; ++k1)
                 for (int i=0; i<n; ++i)</pre>
                          for(int k2=0; k2<logn; ++k2)
                                  for(int j=0; j<m; ++j)
                                           st[k1][i][k2][i]=
                                               op(st[k1-1][i]
                                               ][k2][j], st[
                                               k1-1 | i+(1<<(
                                               k1-1))][k2][j
                                               1);
T get (int x1, int y1, int x2, int y2) {
        x2++;v2++;
        int a=1g2[x2-x1];
        int b=lq2[y2-y1];
        return op (
                 op(st[a][x1][b][y1],
                          st[a][x2-(1<<a)][b][y1]),
                 op(st[a][x1][b][y2-(1<b)],
                          st[a][x2-(1<<a)][b][y2-(1<<b)])
        );
```

3.28 Sqrt Descomposition

```
// O(n) build
// O(n/b+b) get, set
typedef long long T;
struct SQRT{
    int b; // check b
    vector<T> a,bls;
```

```
SQRT(vector<T>& arr, int n) {
                  b=ceil(sqrt(n));a=arr;
                 bls.assign(b, 0);
                  for(int i=0;i<n;++i) {</pre>
                          bls[i/b]+=a[i];
        void set(int x, int v) {
                  bls[x/b] -= a[x];
                  a[x]=v;
                 bls[x/b] += a[x];
        T get(int r){
                 T res=0;
                  for(int i=0;i<r/b;++i){res+=bls[i];}</pre>
                  for (int i=(r/b)*b;i<r;++i) {res+=a[i];}</pre>
                 return res:
         T get(int 1, int r) {
                  return get(r+1)-get(l);
};
```

3.29 Treap

29

```
// Treap => Binary Search Tree + Binary Heap
// 1. create a empty root (PTreap root=nullptr;)
// 2. Append the nodes in asc order
// PTreap tmp=new Treap(x);
// root=merge(root, tmp);
typedef long long T;
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
   time_since_epoch().count());
T \text{ null} = 0;
struct Treap{
        Treap *1,*r,*dad; // left child, right child
        u64 prior; // random
        T val; // value
        int sz; // size subtree
        Treap(T v) {
                l=r=nullptr;
                prior=rnq();
                val=v;sz=1;
         Treap(){
                delete 1;
                delete r;
};
typedef Treap* PTreap;
int cnt(PTreap x) {return (!x?0:x->sz);}
```

```
// updates node with its children information
void pull(PTreap x) {
         x->sz=cnt(x->1)+cnt(x->r)+1;
         if (x->1) x->1->dad=x;
         if (x->r) x->r->dad=x:
// O(log(n)) divide the treap in two parts
// [nodes value <= key], [nodes value > key]
pair<PTreap, PTreap> split(PTreap x, T key) {
         if(!x)return {nullptr, nullptr};
         if(x->val>key) {
                 auto got=split(x->1, key);
                 x->l=qot.second;
                 pull(x);
                 return {got.first, x};
         }else{
                 auto got=split(x->r, key);
                 x->r=qot.first;
                 pull(\hat{x});
                 return {x, got.second};
// O(log(n)) merge two treap
// if all values in treap x < all values in treap y
PTreap merge (PTreap x, PTreap y) {
        if(!x)return y;
         if(!y)return x;
         if (x->prior<=y->prior) {
                 x \rightarrow r = merge(x \rightarrow r, v);
                 pull(x);
                 return x;
         }else{
                 v \rightarrow l = merge(x, v \rightarrow l);
                 pull(y);
                 return y;
// O(n*log(n))
// Combine two treap into one
PTreap combine (PTreap x, PTreap y) {
         if(!x)return y;
         if(!y)return x;
         if (x->prior<y->prior) swap(x, y);
         auto z=split(y, x->val);
         x \rightarrow r = combine(x \rightarrow r, z.second);
         x->l=combine(z.first, x->l);
         return x;
// O(log(n))
// return kth element - indexed 0
T kth(PTreap& x, int k){
```

```
3.30 Trie Bit
```

```
if(!x)return null;
        if (k==cnt (x->1)) return x->val;
        if (k < cnt(x->1)) return kth(x->1, k);
        return kth (x->r, k-cnt(x->1)-1);
// O(log(n))
// return {index, val}
pair<int, T> lower bound(PTreap x, T key) {
        if(!x)return {0, null};
        if (x->val<kev) {</pre>
                 auto y=lower bound(x->r, key);
                 y.first+=cnt(x->1)+1;
                 return v;
        auto y=lower bound(x->1, key);
        if (y.first==cnt(x->1))y.second=x->val;
        return v;
// O(n) print the treap
void dfs(PTreap x) {
        if(!x)return;
        dfs(x->1);
        cout << x -> val << " ";
        dfs(x->r);
```

3.30 Trie Bit

```
struct node{
int childs[2]{-1, -1};
};
struct TrieBit{
        vector<node> nds;
        vi passNums;
        TrieBit(){
                nds.pb(node());
                passNums.pb(0);
        void insert(int num) {
                int cur = 0;
                for(int i = 30; i >= 0; i--){
                        bool bit = (num >> i) & 1;
                         if (nds[cur].childs[bit] == -1) {
                                 nds[cur].childs[bit] =
                                    nds.size();
                                 nds.pb(node());
                                 passNums.pb(0);
                         passNums[cur]++;
```

```
cur = nds[cur].childs[bit];
                passNums[cur]++;
        void remove(int num){
                int cur = 0:
                for(int i = 30; i >= 0; i--) {
                        bool bit = (num >> i) & 1;
                        passNums[cur]--;
                        cur = nds[cur].childs[bit];
                passNums[cur]--;
        int maxXor(int num) {
                int ans = 0;
                int cur = 0;
                for(int i = 30; i >= 0; i--) {
                        bool bit = (num >> i) & 1;
                        int n1 = nds[cur].childs[!bit];
                        if (n1 != -1 && passNums[n1]) {
                                 ans += (1 << i);
                                 bit = !bit;
                        cur = nds[cur].childs[bit];
                return ans;
};
```

3.31 Two Stacks

```
// tmp.acum = tmp
                                            .val
                                 }else{
                                         // tmp.acum + s1.
                                            top().acum
                                 s1.push(tmp);
                                 s2.pop();
                s1.pop();
        bool get(){
                if(s1.empty() && s2.empty())return false;
                else if(!s1.empty() && s2.empty()){
                        return true; // eval s1.top();
                }else if(s1.empty() && !s2.empty()){
                        return true; // eval s2.top();
                }else{
                        return true; // eval s1.top() +
                            s2.top()
};
```

3.32 Wavelet Tree

```
const int maxn = 1e5+5;
const int maxv = 1e9;
const int minv = -1e9;
// O(n*log(n)) build
// O(\log(n)) kth, lte, cnt, sum
// 1. int a[maxn];
// 2. WaveletTree wt;
// 3. fill a[1;n]
// 4. wt.build(a+1, a+n+1, minv, maxv);
struct WaveletTree { // indexed 1
        int lo, hi;
        WaveletTree *1, *r;
        int *b, bsz, csz;
        11 *c;
        WaveletTree() {
                hi=bsz=csz=0;
                l=r=NULL;
                lo=1:
        void build(int *from, int *to, int x, int y) {
                lo=x, hi=v;
                if (from>=to) return;
                int mid=lo+(hi-lo)/2;
                auto f=[mid] (int x) {return x<=mid;};</pre>
```

```
b=(int*)malloc((to-from+2)*sizeof(int));
        bsz=0:
        b[bsz++]=0;
        c=(ll*)malloc((to-from+2)*sizeof(ll));
        csz=0;
        c[csz++]=0;
        for(auto it=from;it!=to;++it){
                b[bsz] = (b[bsz-1] + f(*it));
                c[csz] = (c[csz-1] + (*it));
                bsz++; csz++;
        if (hi==lo) return;
        auto pivot=stable partition(from, to, f);
        l=new WaveletTree();
        l->build(from, pivot, lo, mid);
        r=new WaveletTree();
        r->build(pivot, to, mid+1, hi);
//kth smallest element in [1, r]
int kth(int 1, int r, int k){
        if(l>r)return 0;
        if(lo==hi)return lo;
        int inLeft=b[r]-b[l-1], lb=b[l-1], rb=b[r
        if (k<=inLeft) return this->l->kth(lb+1, rb
        return this->r->kth(l-lb, r-rb, k-inLeft)
//count of numbers in [l, r] Less than or equal
   to k
int lte(int 1, int r, int k) {
        if(1>r || k<10) return 0;
        if (hi<=k) return r-l+1;</pre>
        int lb=b[l-1], rb=b[r];
        return this->l->lte(lb+1, rb, k)+this->r
           ->lte(l-lb, r-rb, k);
//count of numbers in [l, r] equal to k
int count(int 1, int r, int k){
        if(l>r || k<lo || k>hi) return 0;
        if(lo==hi)return r-l+1;
        int lb=b[l-1], rb=b[r];
        int mid=(lo+hi)>>1;
        if (k<=mid) return this->l->count (lb+1, rb,
        return this->r->count(l-lb, r-rb, k);
//sum of numbers in [l ,r] less than or equal to
ll sum(int l, int r, int k){
        if(1>r || k<10) return 0;
```

4 Flujos

4.1 Blossom

```
// O(|E||V|^2)
struct network {
  struct struct edge { int v; struct edge * n; };
  typedef struct_edge* edge;
  int n;
  struct edge pool[MAXE]; ///2*n*n;
  edge top;
  vector<edge> adi;
  queue<int> q;
  vector<int> f, base, inq, inb, inp, match;
  vector<vector<int>> ed;
  network(int n) : n(n), match(n, -1), adj(n), top(pool),
      f(n), base(n),
                   ing(n), inb(n), inp(n), ed(n, vector<
                      int>(n)) {}
  void add_edge(int u, int v) {
    if(ed[u][v]) return;
    ed[u][v] = 1;
    top->v = v, top->n = adj[u], adj[u] = top++;
    top->v = u, top->n = adj[v], adj[v] = top++;
  int get_lca(int root, int u, int v) {
    fill(inp.begin(), inp.end(), 0);
    while(1) {
     inp[u = base[u]] = 1;
      if(u == root) break;
      u = f[match[u]];
    while(1) {
      if(inp[v = base[v]]) return v;
      else v = f[ match[v] ];
  void mark(int lca, int u) {
    while(base[u] != lca) {
      int v = match[u];
      inb[base[u]] = 1;
```

```
inb[base[v]] = 1;
    u = f[v];
    if(base[u] != lca) f[u] = v;
void blossom contraction(int s, int u, int v) {
  int lca = get lca(s, u, v);
  fill(inb.begin(), inb.end(), 0);
  mark(lca, u); mark(lca, v);
  if(base[u] != lca) f[u] = v;
  if(base[v] != lca) f[v] = u;
  for(int u = 0; u < n; u++)
    if(inb[base[u]]) {
      base[u] = lca;
      if(!inq[u]) {
        inq[u] = 1;
        q.push(u);
int bfs(int s) {
  fill(ing.begin(), ing.end(), 0);
  fill(f.begin(), f.end(), -1);
  for(int i = 0; i < n; i++) base[i] = i;</pre>
  q = queue<int>();
  q.push(s);
  inq[s] = 1;
  while(q.size()) {
    int u = q.front(); q.pop();
    for (edge e = adj[u]; e; e = e -> n) {
      int v = e -> v;
      if (base[u] != base[v] && match[u] != v) {
        if ((v == s) \mid | (match[v] != -1 && f[match[v]])
           ! = -1))
          blossom_contraction(s, u, v);
        else if (f[v] == -1) {
          f[v] = u;
          if (match[v] == -1) return v;
          else if(!inq[match[v]]) {
            inq[match[v]] = 1;
            q.push(match[v]);
  return -1;
int doit(int u) {
  if(u == -1) return 0;
  int v = f[u];
  doit(match[v]);
  match[v] = u; match[u] = v;
  return u != -1;
```

```
4.2 Dinic
```

```
/// (i < net.match[i]) => means match
int maximum_matching() {
   int ans = 0;
   for(int u = 0; u < n; u++)
      ans += (match[u] == -1) && doit(bfs(u));
   return ans;
}
};</pre>
```

4.2 Dinic

```
// O(|E| * |V|^2)
struct edge { ll v, cap, inv, flow, ori; };
struct network {
        ll n, s, t;
        vector<ll> lvl;
        vector<vector<edge>> q;
        network(ll n) : n(n), lvl(n), g(n) {}
        void add edge(int u, int v, ll c) {
                 g[u].push_back({v, c, sz(g[v]), 0, 1});
                 g[v].push_back({u, 0, sz(g[u])-1, c, 0});
        bool bfs() {
                 fill(lvl.begin(), lvl.end(), -1);
                 queue<11> q;
                 [vl[s] = 0;
                 for(q.push(s); q.size(); q.pop()) {
                         ll u = q.front();
                         for(auto &e : q[u]) {
                                 if(e.cap > 0 && lvl[e.v]
                                     == -1) {
                                          lvl[e.v] = lvl[u]
                                              ]+1;
                                          q.push(e.v);
                return lvl[t] != -1;
        11 dfs(ll u, ll nf) {
                if(u == t) return nf;
                11 \text{ res} = 0;
                 for(auto &e : q[u]) {
                         if(e.cap > 0 && lvl[e.v] == lvl[u
                            1+1) {
                                 11 \text{ tf} = \text{dfs(e.v, min(nf, }
                                     e.cap));
                                 res += tf; nf -= tf; e.
                                     cap -= tf;
                                 q[e.v][e.inv].cap += tf;
                                 q[e.v][e.inv].flow -= tf;
                                 e.flow += tf;
                                 if(nf == 0) return res;
```

```
if(!res) lvl[u] = -1;
        return res;
ll \max flow(ll so, ll si, ll res = 0) {
        s = so; t = si;
        while(bfs()) res += dfs(s, LONG LONG MAX)
        return res:
void min cut(){
        queue<11> q;
        vector<bool> vis(n, 0);
        vis[s] = 1;
        for (q.push(s); q.size(); q.pop()) {
                ll u = q.front();
                for(auto &e : q[u]) {
                         if(e.cap > 0 && !vis[e.v
                            ]) {
                                 q.push(e.v);
                                 vis[e.v] = 1;
        vii ans;
        for (int i = 0; i<n; i++) {
                for (auto &e : q[i]) {
                         if (vis[i] && !vis[e.v]
                            && e.ori) {
                                 ans.push_back({i
                                     +1, e.v+1);
        for (auto [x, y] : ans) cout << x << ' '</pre>
           << v << ln:
bool dfs2(vi &path, vector<bool> &vis, int u) {
        vis[u] = 1;
        for (auto &e : g[u]) {
                if (e.flow > 0 && e.ori && !vis[e
                    .v]){
                         if (e.v == t || dfs2(path)
                            , vis, e.v)){
                                 path.push back (e.
                                    v);
                                 e.flow = 0;
                                 return 1;
        return 0;
void disjoint_paths() {
        vi path;
```

4.3 L-R Flow

```
const long long inf = 1LL << 61;</pre>
struct Dinic {
  struct edge {
    int to, rev;
    long long flow, w;
    int id:
  int n, s, t, mxid;
  vector<int> d, flow through;
  vector<int> done;
  vector<vector<edge>> q;
  Dinic() {}
  Dinic(int n) {
    n = _n + 10;
   mxid = 0:
    q.resize(n);
  void add_edge(int u, int v, long long w, int id = -1) {
    edge a = \{v, (int)g[v].size(), 0, w, id\};
    edge b = {u, (int)g[u].size(), 0, 0, -1};//for
       bidirectional\ edges\ cap(b) = w
    q[u].emplace_back(a);
    g[v].emplace_back(b);
    mxid = max(mxid, id);
  bool bfs() {
    d.assign(n, -1);
    d[s] = 0;
    queue<int> q;
    q.push(s);
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (auto &e : q[u]) {
        int v = e.to;
        if (d[v] == -1 \&\& e.flow < e.w) d[v] = d[u] + 1,
           q.push(v);
```

```
return d[t] != -1;
  long long dfs(int u, long long flow) {
    if (u == t) return flow;
    for (int &i = done[u]; i < (int)q[u].size(); i++) {</pre>
      edge &e = q[u][i];
      if (e.w <= e.flow) continue;</pre>
      int v = e.to;
      if (d[v] == d[u] + 1) {
        long long nw = dfs(v, min(flow, e.w - e.flow));
        if (nw > 0) {
          e.flow += nw;
          q[v][e.rev].flow -= nw;
          return nw;
    return 0;
  long long max_flow(int _s, int _t) {
    s = _s;
    t = _t;
    long long flow = 0;
    while (bfs()) {
      done.assign(n, 0);
      while (long long nw = dfs(s, inf)) flow += nw;
    flow_through.assign(mxid + 10, 0);
    for(int i = 0; i < n; i++) for(auto e : q[i]) if(e.id
        >= 0) flow through[e.id] = e.flow;
    return flow;
} ;
//flow through[i] = extra flow beyond 'low' sent through
struct LR_Flow {
  Dinic F;
  int n, s, t;
  struct edge {
    int u, v, l, r, id;
  vector<edge> edges;
 LR Flow() {}
 LR Flow(int n) {
    n = _n + 10;
    s = n - 2, t = n - 1;
    edges.clear();
 void add_edge(int u, int v, int l, int r, int id = -1)
    assert(0 \le 1 \&\& 1 \le r);
    edges.push_back({u, v, l, r, id});
 bool feasible (int s = -1, int t = -1, int L = -1, int
      R = -1) {
```

```
if (L != -1) edges.push_back({_t, _s, L, R, -1});
    F = Dinic(n);
    long long target = 0;
    for (auto e : edges) {
      int u = e.u, v = e.v, l = e.l, r = e.r, id = e.id;
      if (1 != 0) {
        F.add\_edge(s, v, 1);
        F.add edge(u, t, 1);
        target += 1;
      F.add\_edge(u, v, r - l, id);
    auto ans = F.max_flow(s, t);
    if (L !=-1) edges.pop back();
    if (ans < target) return 0; //not feasible</pre>
    return 1;
  int max flow(int s, int t) { //-1 means flow is not
     feasible
    int mx = 1e5 + 9;
    if (!feasible(_s, _t, 0, mx)) return -1;
    return F.max_flow(_s, _t);
  int min flow(int s, int t) { //-1 means flow is not
     feasible
    int mx = 1e9:
    int ans = -1, 1 = 0, r = mx;
    while (1 <= r) {
      int mid = 1 + r >> 1;
      if (feasible(s, t, 0, mid)) ans = mid, r = mid -
      else l = mid + 1;
    return ans;
};
```

4.4 Edmonds Karp

```
// O(V * E^2)
ll bfs(vector<vi> &adj, vector<vl> &capacity, int s, int
t, vi& parent) {
    fill(parent.begin(), parent.end(), -1);
    parent[s] = -2;
    queue<pll> q;
    q.push({s, INFL});

    while (!q.empty()) {
        int cur = q.front().first;
        ll flow = q.front().second;
        q.pop();

        for (int next : adj[cur]) {
            if (parent[next] == -1LL &&
```

```
capacity[cur][next]) {
                                 parent[next] = cur;
                                 11 new flow = min(flow,
                                     capacity[cur][next]);
                                 if (next == t)
                                         return new flow;
                                 q.push({next, new_flow});
        return 0:
11 maxflow(vector<vi> &adj, vector<vl> &capacity, int s,
   int t, int n) {
        11 \text{ flow} = 0;
        vi parent(n);
        ll new flow:
        while ((new_flow = bfs(adj, capacity, s, t,
           parent))) {
                flow += new flow;
                int cur = t;
                while (cur != s) {
                         int prev = parent[cur];
                         capacity[prev][cur] -= new_flow;
                         capacity[cur][prev] += new flow;
                         cur = prev;
        return flow;
```

4.5 Hopcroft Karp

```
// O(|E|*sart(|V|))
struct mbm {
  vector<vector<int>> q;
  vector<int> d, match;
  int nil, l, r;
  /// u \rightarrow 0 to 1, v \rightarrow 0 to r
  mbm(int l, int r) : q(l+r), d(l+l+r, INF), match(l+r, l)
     +r),
                       nil(1+r), l(1), r(r) {}
  void add_edge(int a, int b) {
    q[a].push_back(1+b);
    g[1+b].push_back(a);
 bool bfs() {
    queue<int> q;
    for(int u = 0; u < 1; u++) {
      if (match[u] == nil) {
        d[u] = 0;
```

```
q.push(u);
      } else d[u] = INF;
    d[nil] = INF;
    while(q.size()) {
      int u = q.front(); q.pop();
      if(u == nil) continue;
      for(auto v : q[u]) {
        if(d[match[v]] == INF) {
          d[match[v]] = d[u]+1;
          q.push(match[v]);
    return d[nil] != INF;
  bool dfs(int u) {
    if(u == nil) return true;
    for(int v : q[u]) {
      if(d[match[v]] == d[u]+1 && dfs(match[v])) {
        match[v] = u; match[u] = v;
        return true;
    d[u] = INF;
    return false;
  int max_matching() {
    int ans = 0;
    while(bfs()) {
      for(int u = 0; u < 1; u++) {
        ans += (match[u] == nil && dfs(u));
    return ans;
  void matchs() {
    for (int i = 0; i<1; i++) {
      if (match[i] == l+r) continue;
      cout << i+1 << ' ' << match[i]+1-l << ln;
};
```

4.6 Hungarian

```
#define rep(i, a, b) for(int i = a; i < (b); ++i)
typedef double type;
const type INF_TYPE = LLONG_MAX;
pair<type, vi> hungarian(const vector<vector<type>>> &a) {
    if (a.empty()) return {0, {}};
    int n = sz(a) + 1, m = sz(a[0]) + 1;
    vector<type> u(n), v(m); vi p(m), ans(n - 1);
    rep(i,1,n) {
```

```
i = [0]q
        int i0 = 0; // add "dummy" worker 0
        vector<type> dist(m, INF TYPE); vi pre(m,
        vector<bool> done(m + 1);
        do { // dijkstra
                done[i0] = true;
                int i\bar{0} = p[j0], j1; type delta =
                    INF_TYPE;
                rep(j,1,m) if (!done[j]) {
                         auto cur = a[i0 - 1][j -
                            1] - u[i0] - v[j];
                         if (cur < dist[j]) dist[j</pre>
                             ] = cur, pre[j] = j0;
                         if (dist[j] < delta)</pre>
                            delta = dist[j], j1 =
                             j;
                rep(j,0,m) {
                         if (done[j]) u[p[j]] +=
                             delta, v[i] -= delta;
                         else dist[j] -= delta;
                 i0 = i1;
        } while (p[j0]);
        while (j0) { // update alternating path
                int j1 = pre[j0];
                p[j0] = p[j1], j0 = j1;
rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
return {-v[0], ans}; // min cost
```

4.7 Maximum Bipartite Matching

```
4.8 Minimum Cost Maximum Flow
```

```
٠.
```

```
4 FLUJOS
```

```
return false;
}
int max_matching() {
    int ans = 0;
    fill (match.begin(), match.end(), -1);
    for(int u = 0; u < 1; ++u) {
        fill(seen.begin(), seen.end(), 0)
        ans += dfs(u);
    }
    return ans;
}
void matchs() {
    for (int i = 0; i < r; i++) {
        if (match[i] == -1) continue;
        cout << match[i]+1 << ' ' << i+1
        << ln;
    }
};</pre>
```

4.8 Minimum Cost Maximum Flow

```
// O(|V| * |E|^2 * log(|E|))
template <class type>
struct mcmf {
        struct edge { int u, v, cap, flow; type cost; };
        int n;
        vector<edge> ed;
        vector<vector<int>> q;
        vector<int> p;
        vector<type> d, phi;
        mcmf(int n) : n(n), g(n), p(n), d(n), phi(n) {}
        void add_edge(int u, int v, int cap, type cost) {
                g[u].push_back(ed.size());
                ed.push_back({u, v, cap, 0, cost});
                q[v].push back(ed.size());
                ed.push back({v, u, 0, 0, -cost});
        bool dijkstra(int s, int t) {
                fill(d.begin(), d.end(), INF TYPE);
                fill(p.begin(), p.end(), -1);
                set<pair<type, int>> q;
                d[s] = 0;
                for(q.insert({d[s], s}); q.size();) {
                        int u = (*q.begin()).second; q.
                            erase(q.begin());
                        for(auto v : g[u]) {
                                 auto &e = ed[v];
                                 type nd = d[e.u] + e.cost +
                                    phi[e.u]-phi[e.v];
                                 if(0 < (e.cap-e.flow) &&
                                    nd < d[e.v]) {
```

```
q.erase({d[e.v],
                                             e.v});
                                         d[e.v] = nd; p[e.
                                             v = v;
                                         q.insert({d[e.v],
                                              e.v});
                for(int i = 0; i < n; i++) phi[i] = min(</pre>
                    INF TYPE, phi[i]+d[i]);
                return d[t] != INF TYPE;
        pair<int, type> max flow(int s, int t) {
                type mc = 0;
                int mf = 0;
                fill(phi.begin(), phi.end(), 0);
                while(dijkstra(s, t)) {
                        int flow = INF;
                         for (int v = p[t]; v != -1; v = p[
                             ed[v].u ])
                                 flow = min(flow, ed[v].
                                     cap-ed[v].flow);
                         for (int v = p[t]; v != -1; v = p[
                             ed[v].u ]) {
                                 edge &e1 = ed[v];
                                 edge &e2 = ed[v^1];
                                 mc += e1.cost*flow;
                                 e1.flow += flow;
                                 e2.flow -= flow;
                        mf += flow;
                return {mf, mc};
};
```

4.9 MCMF Vasito

```
void add edge(int s, int t, tf cap, tc cost)
    q[s].push back((edge)\{t,sz(q[t]),0,cap,cost\});
    q[t].push_back((edge) {s,sz(q[s])-1,0,0,-cost});
  pair<tf,tc> get flow(int s, int t) {
    tf flow=0; tc flowcost=0;
    while(1){
      q.push({0, s});
      fill(all(prio), INFCOST);
      prio[s]=0; curflow[s]=INFFLOW;
      while(!q.empty()) {
        auto cur=q.top();
        tc d=cur.first;
        int u=cur.second;
        q.pop();
        if(d!=prio[u]) continue;
        for(int i=0; i<sz(q[u]); ++i) {
          edge \&e=g[u][i];
          int v=e.to;
          if(e.cap<=e.f) continue;</pre>
          tc nprio=prio[u]+e.cost+pot[u]-pot[v];
          if (prio[v]>nprio) {
            prio[v]=nprio;
            q.push({nprio, v});
            prevnode[v]=u; prevedge[v]=i;
            curflow[v]=min(curflow[u], e.cap-e.f);
      if(prio[t] == INFCOST) break;
      for(int i=0;i<n;i++) pot[i]+=prio[i];</pre>
      tf df=min(curflow[t], INFFLOW-flow);
      flow+=df;
      for(int v=t; v!=s; v=prevnode[v]) {
        edge &e=g[prevnode[v]][prevedge[v]];
        e.f+=df; q[v][e.rev].f-=df;
        flowcost+=df*e.cost;
    return {flow, flowcost};
};
```

4.10 L-R MCMF

```
//Works for both directed, undirected and with negative
   cost too
//doesn't work for negative cycles
//for undirected edges just make the directed flag false
//Complexity: O(min(E^2 * V log V, E logV * flow))
using T = long long;
const T inf = 1LL << 61;
struct MCMF {
    struct edge {</pre>
```

```
int u, v;
    T cap, cost; int id;
    edge(int u, int v, T cap, T cost, int id) {
        u = u; v = v; cap = cap; cost = cost; id
            = id;
int n, s, t, mxid; T flow, cost;
vector<vector<int>> q; vector<edge> e;
vector<T> d, potential, flow_through;
vector<int> par; bool neg;
MCMF() {}
MCMF (int n) { // 0-based indexing
    n = n + 10;
    g.assign(n, vector<int> ());
    neg = false; mxid = 0;
void add_edge(int u, int v, T cap, T cost, int id =
   -1, bool directed = true) {
    if(cost < 0) neg = true;</pre>
    q[u].push back(e.size());
    e.push_back(edge(u, v, cap, cost, id));
    g[v].push_back(e.size());
    e.push back(edge(v, u, 0, -cost, -1));
    mxid = max(mxid, id);
    if(!directed) add_edge(v, u, cap, cost, -1, true)
bool dijkstra() {
    par.assign(n, -1);
    d.assign(n, inf);
    priority_queue<pair<T, T>, vector<pair<T, T>>,
        greater<pair<T, T>> > q;
    d[s] = 0;
    q.push(pair<T, T>(0, s));
    while (!q.empty()) {
        int u = q.top().second;
        T nw = q.top().first;
        q.pop();
        if(nw != d[u]) continue;
        for (int i = 0; i < (int)q[u].size(); i++) {</pre>
            int id = q[u][i];
            int v = e[id].v; T cap = e[id].cap;
            T w = e[id].cost + potential[u] -
               potential[v];
            if (d[u] + w < d[v] && cap > 0) {
                d[v] = d[u] + w;
                par[v] = id;
                q.push(pair<T, T>(d[v], v));
    for (int i = 0; i < n; i++) {</pre>
        if (d[i] < inf) d[i] += (potential[i] -
           potential(s));
```

```
for (int i = 0; i < n; i++) {
        if (d[i] < inf) potential[i] = d[i];</pre>
    // return d[t] != inf; // for max flow min cost
    return d[t] <= 0; // for min cost flow</pre>
T send_flow(int v, T cur) {
   if(par[v] == -1) return cur;
    int id = par[v];
    int u = e[id].u; T w = e[id].cost;
    T f = send_flow(u, min(cur, e[id].cap));
    cost += f * w;
    e[id].cap -= f;
    e[id^1].cap += f;
    return f;
//returns {maxflow, mincost}
pair<T, T> solve(int _s, int _t, T goal = inf) {
    s = _s; t = _t;
    flow = 0, cost = 0;
    potential.assign(n, 0);
    if (neg) {
        // run Bellman-Ford to find starting
           potential
        d.assign(n, inf);
        d[s] = 0;
        bool relax = true;
        for (int i = 0; i < n && relax; i++) {</pre>
            relax = false;
            for (int u = 0; u < n; u++) {
                for (int k = 0; k < (int)q[u].size();
                     k++) {
                    int id = q[u][k];
                    int v = e[id].v; T cap = e[id].
                        cap, w = e[id].cost;
                    if (d[v] > d[u] + w && cap > 0) {
                         d[v] = d[u] + w;
                         relax = true;
        for(int i = 0; i < n; i++) if(d[i] < inf)</pre>
           potential[i] = d[i];
    while (flow < goal && dijkstra()) flow +=</pre>
       send flow(t, goal - flow);
    flow_through.assign(mxid + 10, 0);
    for (int u = 0; u < n; u++) {
        for (auto v: q[u]) {
            if (e[v].id >= 0) flow_through[e[v].id] =
                e[v ^ 1].cap;
```

```
return make pair(flow, cost);
//flow through[i] = extra flow beyond 'low' sent through
//it finds the feasible solution with minimum cost
struct LR Flow{
    MCMF \overline{F};
    static const T INF = 1e12;
    // sum of cost should be < INF / 2
    // flow * INF must not overflow in data type
    int n;
    T target;
    LR Flow() {}
   LR_Flow(int _n) {
        n = _n + 10; target = 0;
        F = MCMF(n);
    void add_edge(int u, int v, T l, T r, T cost = 0, int
        id = -1, bool directed = true) {
        assert(0 <= 1 && 1 <= r);
        target += 1;
        F.add_edge(u, v, l, -INF + cost, -1, directed);
            // will try to take this edge first
        F.add edge (u, v, r - 1, cost, id, directed);
    pair<T, T> solve(int s, int t, T goal = inf) {
        auto ans = F.solve(s, t, goal);
        ans.second += INF * target;
        if (abs(ans.second) \geq INF / 2) return \{-1, -1\};
           // not feasible
        return ans;
} ;
```

4.11 Scaling Algorithm

```
// O(|E|^2*log(C)) C = maximum edge weight of the graph
struct MaxFlow {
    static const ll INF = lel8;
    struct Edge {int u,v;ll w;};
    int n, s, t;
    vector<vector<int>> g;
    vector<Edge> ed;
    vector<bool> vis;
    ll flow = 0;
    MaxFlow(int n, int s, int t) : n(n), s(s), t(t), g(n)
        {}
    int add_edge(int u, int v, ll forward, ll backward =
        0) {
        const int id = (int)ed.size();
        g[u].emplace_back(id);
        ed.push_back({u, v, forward});
```

```
q[v].emplace back(id + 1);
        ed.push_back({v, u, backward});
        return id;
    bool dfs(int node, ll lim) {
        if (node == t) return true;
        if (vis[node]) return false;
        vis[node] = true;
        for (int i : q[node]) {
            auto &e = ed[i];
            auto &back = ed[i ^ 1];
            if (e.w >= lim) {
                if (dfs(e.v, lim)) {
                    e.w -= lim;
                    back.w += lim;
                    return true;
        return false;
    ll max flow() {
        for (11 bit = 111 << 62; bit > 0; bit /= 2) {
            bool found = false;
            do {
                vis.assign(n, false);
                found = dfs(s, bit);
                flow += bit * found;
            } while (found);
        return flow;
};
```

4.12 Weighted Matching

```
// O(|V|^3)
typedef int type;
struct matching_weighted {
  int 1, r;
  vector<vector<type>> c;
  matching_weighted(int 1, int r) : 1(1), r(r), c(1,
     vector<type>(r)) {
    assert(1 \le r);
  void add edge(int a, int b, type cost) { c[a][b] = cost
     ; }
  type matching() {
    vector<type> v(r), d(r); // v: potential
    vector<int> ml(l, -1), mr(r, -1); // matching pairs
    vector<int> idx(r), prev(r);
    iota(idx.begin(), idx.end(), 0);
    auto residue = [&](int i, int j) { return c[i][j]-v[j
```

```
]; };
for(int f = 0; f < 1; ++f) {</pre>
  for (int j = 0; j < r; ++j) {
    d[j] = residue(f, j);
    prev[j] = f;
  type w;
  int j, 1;
  for (int s = 0, t = 0;;) {
   if(s == t) {
     1 = s;
      w = d[idx[t++]];
      for (int k = t; k < r; ++k) {
        j = idx[k];
        type h = d[j];
        if (h <= w) {
          if (h < w) t = s, w = h;
          idx[k] = idx[t];
          idx[t++] = j;
      for (int k = s; k < t; ++k) {
        i = idx[k];
        if (mr[j] < 0) goto aug;
    int q = idx[s++], i = mr[q];
    for (int k = t; k < r; ++k) {
      i = idx[k];
      type h = residue(i, j) - residue(i, q) + w;
      if (h < d[i]) {
        d[\dot{1}] = h;
        prev[j] = i;
        if(h == w) {
          if (mr[j] < 0) goto aug;</pre>
          idx[k] = idx[t];
          idx[t++] = i;
  aug: for (int k = 0; k < 1; ++k)
   v[idx[k]] += d[idx[k]] - w;
  int i;
  do {
    mr[j] = i = prev[j];
    swap(j, ml[i]);
  } while (i != f);
type opt = 0;
for (int i = 0; i < 1; ++i)
  opt += c[i][ml[i]]; // (i, ml[i]) is a solution
return opt;
```

};

5 Geometria

5.1 2D Tree

```
// given a set of points, answer queries of nearest point
    in O(log(n))
bool onx(pt a, pt b) {return a.x < b.x;}
bool ony (pt a, pt b) {return a.y < b.y;}
struct Node {
        If x0 = \inf, x1 = -\inf, y0 = \inf, y1 = -\inf;
        Node *first = 0, *second = 0;
        ll distance(pt p) {
                11 x = min(max(x0, p.x), x1);
                11 y = min(max(y0, p.y), y1);
                return norm2 (pt(x, y) - p);
        Node (vector<pt>&& vp) : pp(vp[0]) {
                for (pt p : vp) {
                        x0 = min(x0, p.x);
            x1 = max(x1, p.x);
                        y0 = min(y0, p.y);
            y1 = max(y1, p.y);
                if(vp.size() > 1) {
                         sort(all(vp), x1 - x0 >= y1 - y0
                            ? onx : ony);
                         int m = vp.size() / 2;
                         first = new Node({vp.begin(), vp.
                            begin() + m});
                         second = new Node({vp.begin() + m
                            , vp.end() });
};
struct KDTree {
        Node* root;
        KDTree(const vector<pt>& vp): root(new Node({all(
           {}(({qv
        pair<11, pt> search(pt p, Node *node){
                if(!node->first){
                         // avoid query point as answer
                         // if (p.x == node->pp.x && p.y ==
                             node->pp.y) return {inf, pt()
                         return {norm2 (p-node->pp), node->
                            pp } ;
                Node *f = node -> first, *s = node -> second;
                ll bf = f->distance(p), bs = s ->
                    distance(p);
```

$5.2 \quad 3D$

```
typedef double lf;
struct p3 {
    lf x, y, z;
        {}() & g
        p3(1f x, 1f y, 1f z): x(x), y(y), z(z) {}
    p3 operator + (p3 p) { return \{x + p.x, y + p.y, z + p\}
    p3 \text{ operator} - (p3 p) \{ \text{ return } \{x - p.x, y - p.y, z - p \} \}
    p3 operator * (lf d) { return {x * d, y * d, z * d}; }
    p3 operator / (lf d) { return {x / d, y / d, z / d}; }
        // only for floating point
    // Some comparators
    bool operator == (p3 p) { return tie(x, y, z) == tie(p
        .x, p.y, p.z);
    bool operator != (p3 p) { return !operator == (p); }
        void print() { cout << x << " " << y << " " << z</pre>
            << "\n"; }
        // scale: (newnorm / norm) * p3
};
lf dot(p3 v, p3 w) { return v.x * w.x + v.y * w.y + v.z *
   w.z; }
p3 cross(p3 v, p3 w) {
    return { v.y * w.z - v.z * w.y, v.z * w.x - v.x * w.z
       , v.x * w.y - v.y * w.x };
lf norm2(p3 v) { return dot(v, v); }
lf norm(p3 v) { return sqrt(norm2(v)); }
p3 unit(p3 v) { return v / norm(v); }
// ang(RAD)
double angle(p3 v, p3 w) {
    double cos_theta = dot(v, w) / norm(v) / norm(w);
    return acos (max (-1.0, min (1.0, cos theta)));
// orient s, pqr form a triangle pos: 'up', zero = on,
   neg = 'dow'
lf orient(p3 p, p3 q, p3 r, p3 s){
        return dot(cross((q - p), (r - p)), (s - p));
```

```
// same as 2D but in n-normal direction
lf orient by normal(p3 p, p3 q, p3 r, p3 n) {
        return dot(cross((q - p), (r - p)), n);
struct plane {
    p3 n; lf d; // n: normal d: dist to zero
    // From normal n and offset d
    plane(p3 n, lf d): n(n), d(d) {}
    // From normal n and point P
    plane(p3 n, p3 p): n(n), d(dot(n, p)) {}
    // From three non-collinear points P,Q,R
    plane(p3 p, p3 q, p3 r): plane(cross((q - p), (r - p)
       ), p){}
    // - these work with lf = int
    lf side(p3 p) { return dot(n, p) - d; }
    double dist(p3 p) { return abs(side(p)) / norm(n); }
    plane translate(p3 t) {return {n, d + dot(n, t)}; }
    /// - these require lf = double
    plane shift up (double dist) { return {n, d + dist *
       norm(n) }; }
    p3 proj(p3 p) { return p - n * side(p) / norm2(n); }
    p3 refl(p3 p) \{ return p - n * 2 * side(p) / norm2(n); 
};
struct line3d {
        p3 d, o; // d: dir o: point on line
        // From two points P, Q
        line3d(p3 p, p3 q): d(q - p), o(p){}
        // From two planes p1, p2 (requires lf = double)
        line3d(plane p1, plane p2) {
                d = cross(p1.n, p2.n);
                o = cross(p2.n * p1.d - p1.n * p2.d), d)
                    / norm2(d);
        // - these work with lf = int
        double dist2(p3 p) { return norm2(cross(d, (p - o)
           )) / norm2(d); }
        double dist(p3 p) { return sqrt(dist2(p)); }
        bool cmp_proj(p3 p, p3 q) { return dot(d, p) < dot
            (d, q); }
        // - these require lf = double
        p3 proj(p3 p) { return o + d * dot(d, (p - o)) /
           norm2(d); }
        p3 refl(p3 p) { return proj(p) * 2 - p; }
        p3 inter(plane p) { return o - d * p.side(o) / dot
            (p.n, d); }
        // get other point: pl.o + pl.d * t;
};
double dist(line3d 11, line3d 12) {
        p3 n = cross(11.d, 12.d);
        if(n == p3(0, 0, 0)) return 11.dist(12.o); //
           parallel
```

```
return abs (dot ((12.o - 11.o), n)) / norm(n);
// closest point on 11 to 12
p3 closest on line1(line3d l1, line3d l2) {
        p3 n2 = cross(12.d, cross(11.d, 12.d));
        return 11.0 + 11.d * (dot((12.0 - 11.0), n2)) /
           dot(11.d, n2);
double small_angle(p3 v, p3 w) { return acos(min(abs(dot(v
   (w) / norm(v) / norm(w), 1.0); (v) // 0.90
double angle (plane p1, plane p2) { return small angle (p1.n
   , p2.n); }
bool is_parallel(plane p1, plane p2) { return cross(p1.n,
   p2.n) == p3(0, 0, 0);
bool is perpendicular(plane p1, plane p2) { return dot(p1.
   n, p2.n) == 0; }
double angle(line3d 11, line3d 12) { return small angle(l1
   .d, 12.d); }
bool is parallel(line3d 11, line3d 12) { return cross(11.d
   , 12.d) == p3(0, 0, 0); }
bool is_perpendicular(line3d 11, line3d 12) { return dot(
   11.d, 12.d) == 0;
double angle(plane p, line3d l) { return M PI / 2 -
   small_angle(p.n, l.d); }
bool is parallel(plane p, line3d l) { return dot(p.n, l.d)
    == 0;
bool is_perpendicular(plane p, line3d l) { return cross(p.
   n, 1.d) == p3(0, 0, 0);
line3d perp_through(plane p, p3 o) { return line3d(o, o +
   p.n); }
plane perp_through(line3d 1, p3 o) { return plane(l.d, o);
pair<p3, lf> smallest_enclosing_sphere(vector<p3> p) {
    int n = p.size();
    p3 c(0, 0, 0);
    for (int i = 0; i < n; i++) c = c + p[i];
    c = c / n;
    double ratio = 0.1;
    int pos = 0;
    int it = 100000;
    while (it--) {
        pos = 0;
        for (int i = 1; i < n; i++) {</pre>
            if(norm2(c - p[i]) > norm2(c - p[pos])) pos =
                i;
        c = c + (p[pos] - c) * ratio;
        ratio *= 0.998;
    return {c, sqrt(norm2(c - p[pos]))};
```

5.3 Circulos

```
// add Lines Points
enum {OUT, IN, ON};
struct circle {
        pt center; lf r;
        // (x - xo)^2 + (y - yo)^2 = r^2
        circle(pt c, lf r): center(c), r(r){};
        // circle that passes through abc
        circle(pt a, pt b, pt c) {
                b = b - a, c = c - a;
                assert (cross (b, c) != 0); // no
                    circumcircle if A, B, C aligned
                pt cen = a + rot90(b * norm2(c) - c *
                   norm2(b)) / cross(b, c) / 2;
                center = cen;
                r = norm(a - cen);
        // diameter = segment pg
        circle(pt p, pt q) {
                center = (p + q) * 0.5L;
                r = dis(p, q) * 0.5L;
        int contains(pt &p) {
                lf det = r * r - dis2(center, p);
                if(fabsl(det) <= EPS) return ON;</pre>
                return (det > EPS ? IN : OUT);
        bool in(circle c) { return norm(center - c.center)
            + r <= c.r + EPS; } // non strict
};
// centers of the circles that pass through ab and has
   radius r
vector<pt> centers(pt a, pt b, lf r) {
        if (norm(a - b) > 2 * r + EPS) return {};
        pt m = (a + b) / 2;
        double f = sgrt(r * r / norm2(a - m) - 1);
        pt c = rot 90 (a - m) * f;
        return {m - c, m + c};
vector<pt> inter cl(circle c, line l) {
        vector<pt> s;
        pt p = l.proj(c.center);
        If d = norm(p - c.center);
        if(d - EPS > c.r) return s;
        if (abs(d - c.r) <= EPS) { s.push_back(p); return s</pre>
        d=sqrt(c.r * c.r - d * d);
        s.push_back(p + normalize(l.v) * d);
```

```
s.push back(p - normalize(l.v) * d);
        return s;
vector<pt> inter_cc(circle c1, circle c2) {
        pt dir = c2.center - c1.center;
        lf d2 = dis2(c1.center, c2.center);
        if(d2 <= E0) {
                //assert(fabsl(c1.r - c2.r) > E0);
                return {};
        lf td = 0.5L * (d2 + c1.r * c1.r - c2.r * c2.r)
        1f h2 = c1.r * c1.r - td / d2 * td;
        pt p = c1.center + dir \star (td / d2);
        if(fabsl( h2 ) < EPS) return {p};</pre>
        if(h2 < 0.0L) return {};
        pt dir h = rot 90 (dir) * sqrtl(h2 / d2);
        return {p + dir_h, p - dir_h};
//compute intersection of line through points a and b
   with
//circle centered at c with radius r > 0
vector<pt> circle_line_intersection(pt c, lf r, pt a, pt
   b) {
   vector<pt> ret;
   b = b - a; a = a - c;
   lf A = dot(b, b), B = dot(a, b);
   If C = dot(a, a) - r * r, D = B * B - A * C;
    if (D < -EPS) return ret;</pre>
    ret.push back(c + a + b * (-B + sqrt(D + EPS)) / A);
    if (D > EPS) ret.push back(c + a + b * (-B - sqrt(D))
    return ret;
// circle-line inter = 1, inner: 1 = 0x0 \ 0 = 0=0
vector<pair<pt, pt>> tangents(circle c1, circle c2, bool
   inner) {
        vector<pair<pt, pt>> out;
        if (inner) c2.r = -c2.r; // inner tangent
        pt d = c2.center - c1.center;
        double dr = c1.r - c2.r, d2 = norm2(d), h2 = d2 - c2.r
        if (d2 == 0 || h2 < 0) { assert(h2 != 0); return
           {}; } // (identical)
        for (double s : {-1, 1}) {
                pt v = (d * dr + rot 90 (d) * sqrt (h2) * s)
                    / d2;
                out.push back(\{c1.center + v * c1.r, c2.
                   center + v * c2.r);
```

```
return out; // if size 1: circle are tangent
// circle targent passing through pt p
pair<pt, pt> tangent_through_pt(circle c, pt p){
        pair<pt, pt> out;
        double d = norm2(p - c.center);
        if (d < c.r) return {};
        pt base = c.center - p;
        double w = sqrt(norm2(base) - c.r * c.r);
        pt a = \{w, c.r\}, b = \{w, -c.r\};
        pt s = p + base * a / norm2(base) * w;
        pt t = p + base * b / norm2(base) * w;
        out = \{s, t\};
        return out;
lf safeAcos(lf x) {
        if (x < -1.0) x = -1.0;
        if (x > 1.0) x = 1.0;
        return acos(x);
lf areaOfIntersectionOfTwoCircles(circle c1, circle c2){
        lf r1 = c1.r, r2 = c2.r, d = dis(c1.center, c2.
           center);
        if(d >= r1 + r2) return 0.0L;
        if(d <= fabs1(r2 - r1)) return PI * (r1 < r2 ? r1</pre>
             * r1 : r2 * r2);
        lf alpha = safeAcos((r1 * r1 - r2 * r2 + d * d) /
             (2.0L * d * r1));
        lf betha = safeAcos((r2 * r2 - r1 * r1 + d * d) /
             (2.0L * d * r2));
        lf al = rl * rl * (alpha - sinl(alpha) * cosl(
        lf a2 = r2 * r2 * (betha - sinl(betha) * cosl(
           betha));
        return a1 + a2;
};
lf intertriangle(circle& c, pt a, pt b) { // area of
   intersection with oab
        if(abs(cross((c.center - a), (c.center - b))) <=</pre>
           EPS) return 0.;
        vector<pt> q = \{a\}, w = inter cl(c, line(a, b));
        if(w.size() == 2) for(auto p: w) if(dot((a - p),
            (b - p)) < -EPS) q.push_back(p);
        q.push back(b);
        if(q.size() == 4 \&\& dot((q[0] - q[1]), (q[2] - q
            [1])) > EPS) swap(q[1], q[2]);
        lf s = 0;
        for(int i = 0; i < q.size() - 1; ++i){}
                if(!c.contains(q[i]) || !c.contains(q[i +
                    1])) s += c.r * c.r * min angle((g[i])
                     - c.center), q[i+1] - c.center) / 2;
                else s += abs(cross((g[i] - c.center), (g
```

```
[i + 1] - c.center) / 2);
        return s:
bool circumcircle_contains(vector<pt> tr, pt D) { //
   triange CCW
  pt A = tr[0] - D, B = tr[1] - D, C = tr[2] - D;
 lf norm a = norm2(tr[0]) - norm2(D);
 lf norm b = norm2(tr[1]) - norm2(D);
 lf norm c = norm2(tr[2]) - norm2(D);
 lf det1 = A.x * (B.y * norm c - norm b * C.y);
 lf det2 = B.x * (C.y * norm_a - norm_c * A.y);
 lf det3 = C.x * (A.y * norm_b - norm_a * B.y);
 return det1 + det2 + det3 > E0;
// r[k]: area covered by at least k circles
// O(n^2 \log n) (high constant)
vector<lf> intercircles(vector<circle> c){
        vector<lf> r(c.size() + 1);
        for(int i = 0; i < c.size(); ++i){</pre>
                int k = 1; pt 0 = c[i].center;
                vector<pair<pt, int>> p = {
                         \{c[i].center + pt(1,0) * c[i].r,
                         \{c[i].center - pt(1,0) * c[i].r,
                            0 } } ;
                for(int j = 0; j < c.size(); ++j) if(j !=</pre>
                        bool b0 = c[i].in(c[j]), b1 = c[j]
                            ].in(c[i]);
                        if(b0 && (!b1 || i < j)) ++k;
                        else if(!b0 && !b1){
                                 auto v = inter_cc(c[i], c
                                    [j]);
                                 if(v.size() == 2){
                                         swap(v[0], v[1]);
                                         p.push back({v
                                             [0], 1});
                                         p.push_back({v
                                             [1], -1\});
                                         if (polar cmp (v[1]
                                             -0, v[0] - 0
                                            )) ++k;
                sort(all(p), [&](auto& a, auto& b){
                   return polar_cmp(a.first - 0, b.first
                    - 0); });
                for(int j = 0; j < p.size(); ++j){</pre>
```

5.4 Closest Points

```
// O(nlogn)
pair<pt, pt> closest_points(vector<pt> v) {
        sort(v.begin(), v.end());
        pair<pt, pt> ans;
        1f d2 = INF;
        function<void( int, int )> solve = [&](int 1, int
             r) {
                 if(l == r) return;
                 int mid = (1 + r) / 2;
                lf x_mid = v[mid].x;
                 solve(l, mid);
                 solve (mid + 1, r);
                vector<pt> aux;
                 int p1 = 1, p2 = mid + 1;
                 while (p1 <= mid && p2 <= r) {
                         if(v[p1].y < v[p2].y) aux.
                            push_back(v[p1++]);
                         else aux.push_back(v[p2++]);
                 while(p1 <= mid) aux.push back(v[p1++]);</pre>
                while(p2 <= r) aux.push_back(v[p2++]);</pre>
                 vector<pt> nb;
                 for(int i = 1; i <= r; ++i) {</pre>
                v[i] = aux[i - 1];
                lf dx = (x mid - v[i].x);
                if(dx * dx < d2)
                         nb.push back(v[i]);
                 for(int i = 0; i < (int) nb.size(); ++i){</pre>
                 for(int k = i + 1; k < (int) nb.size();
                    ++k) {
                         lf dy = (nb[k].y - nb[i].y);
                         if(dv * dv > d2) break;
                         lf nd2 = dis2(nb[i], nb[k]);
                         if(nd2 < d2) d2 = nd2, ans = {nb[}
```

```
i], nb[k];;
}
};
solve(0, v.size() -1);
return ans;
}
```

5.5 Convex Hull

```
// CCW order
// if colineal are needed, use > in orient and remove
   repeated points
vector<pt> chull(vector<pt>& p) {
        if(p.size() < 3) return p;</pre>
        vector<pt> r; //r.reserve(p.size());
        sort(p.begin(), p.end()); // first x, then y
        for(int i = 0; i < p.size(); i++) { // lower hull</pre>
                while(r.size() >= 2 && orient(r[r.size()
                    -2], p[i], r.back()) >= 0) r.pop_back
                r.pb(p[i]);
        r.pop back();
        int k = r.size();
        for(int i = p.size() - 1; i >= 0; --i){ // upper
                while (r.size() >= k + 2 \&\& orient(r[r.
                    size() - 2], p[i], r.back()) >= 0) r.
                    pop back();
                r.pb(p[i]);
        r.pop back();
        return r;
```

5.6 Dynamic Convex Hull

```
if (it == se.begin()) return p == *it ? 2
                if (ccw(p, *it, *prev(it))) return 1;
                return ccw(p, *prev(it), *it) ? 0 : 2;
        void insert(pt p) {
                if (is under(p)) return;
                if (it != se.end()) while (next(it) != se
                    .end() and !ccw(*next(it), *it, p))
                        it = se.erase(it);
                if (it != se.begin()) while (--it != se.
                   begin() and !ccw(p, *it, *prev(it)))
                        it = se.erase(it);
                se.insert(p);
};
struct dyn_hull { // 1 -> inside ; 2 -> border
        upper U, L;
        int is inside(pt p) {
                int u = U.is under(p), l = L.is under({-p
                    .x, -p.y);
                if (!u or !1) return 0;
                return max(u, 1);
        void insert(pt p) {
                U.insert(p);
                L.insert(\{-p.x, -p.y\});
        int size() {
                int ans = U.se.size() + L.se.size();
                return ans <= 2 ? ans/2 : ans-2;
};
// farthest_dynamic
vector<vector<pt>> pols;
// log^2(n) amortized (binary mergin)
void add(pt pi) {
    vector<pt> pa = {pi};
        while (sz(pols) \&\& sz(pols.back()) < 2 * sz(pa)) {
        for(pt pi : pols.back()) pa.pb(pi);
                pols.pop back();
        vector<pt> ch = chull(pa);
        pols.pb(ch);
// log^2(n)
lf query(pt &dir){
   lf maxi = LONG_LONG_MIN;
```

5.7 Delaunay

```
// Returns planar graph representing Delaunay's
   triangulation.
// Edges for each vertex are in ccw order.
// Voronoi vertices = the circumcenters of the Delaunay
   triangles.
// O(nlogn)
typedef struct QuadEdge* Q;
struct QuadEdge {
        int id, used;
        pt o;
        Q rot, nxt;
        QuadEdge(int id=-1, pt o=pt(INF,INF)):id(id),used
            (0), o(o), rot(0), nxt(0){}
        Q rev() {return rot->rot;}
        O next() {return nxt;}
        Q prev() {return rot->next()->rot;}
        pt dest() { return rev() ->o; }
};
Q edge(pt a, pt b, int ida, int idb) {
        Q el=new QuadEdge(ida,a);
        O e2=new OuadEdge(idb,b);
        Q e3=new QuadEdge;
        Q e4=new QuadEdge;
        tie(e1->rot,e2->rot,e3->rot,e4->rot)={e3,e4,e2,e1
        tie (e1->nxt, e2->nxt, e3->nxt, e4->nxt) = \{e1, e2, e4, e3
        return e1;
void splice(Q a, Q b){
        swap(a->nxt->rot->nxt,b->nxt->rot->nxt);
        swap(a->nxt,b->nxt);
void del_edge(Q& e, Q ne) {
        splice(e,e->prev()); splice(e->rev(),e->rev()->
            prev());
        delete e->rev()->rot; delete e->rev();
        delete e->rot; delete e;
        e=ne;
Q conn(Q a, Q b) {
        Q = e = e d = (a - d = st(), b - o, a - rev() - sid, b - sid);
```

```
\dot{\infty}
Halfplanes
```

```
splice(e,a->rev()->prev());
                         splice(e->rev(),b);
                        return e;
auto area(pt p, pt q, pt r) { return cross((q-p), (r-q)); }
bool circumcircle contains(vector<pt> tr, pt D) {
                        if (orient(tr[0], tr[1], tr[2]) < 0) reverse(all(
                                   tr));
            pt A = tr[0] - D, B = tr[1] - D, C = tr[2] - D;
            lf norm a = norm2(tr[0]) - norm2(D);

\frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} - \frac{1}{1} - \frac{1}{1} = \frac{1}{1}
            lf norm_c = norm2(tr[2]) - norm2(D);
            lf det1 = A.x * (B.y * norm_c - norm_b * C.y);
            lf det2 = B.x * (C.\bar{y} * norm_a - norm_c * A.y);
            lf det3 = C.x * (A.y * norm b - norm a * B.y);
            return det1 + det2 + det3 > 0;
pair<0,0> build tr(vector<pt>& p, int 1, int r){
                        if(r-1+1<=3){
                                                 Q a=edge(p[1],p[1+1],1,1+1),b=edge(p[1
                                                            +1],p[r],l+1,r);
                                                 if (r-1+\bar{1}==2) return {a,a->rev()};
                                                 splice(a->rev(),b);
                                                 auto ar=area(p[l],p[l+1],p[r]);
                                                 0 c=abs(ar)>EPS?conn(b,a):0;
                                                 if(ar>=-EPS) return {a,b->rev()};
                                                 return {c->rev(),c};
                        int m = (1+r)/2;
                         auto [la,ra]=build_tr(p,l,m);
                         auto [lb,rb]=build tr(p,m+1,r);
                        while(1){
                                                 if(orient(lb->o,ra->o, ra->dest()) > 0)
                                                            ra=ra->rev()->prev();
                                                 else if(orient(lb->o,ra->o,lb->dest()) >
                                                            0) lb=lb->rev()->next();
                                                 else break;
                         Q b=conn(lb->rev(),ra);
                         auto valid=[&](O e) {return orient(e->dest(),b->
                                   dest(),b->0) > 0;};
                        if(ra->o==la->o) la=b->rev();
                        if(lb->o==rb->o) rb=b;
                        while(1){
                                                 Q L=b->rev()->next();
                                                 if(valid(L)) while(circumcircle contains
                                                            ({b->dest(),b->o,L->dest()},L->next()
                                                            ->dest())) del edge(L,L->next());
                                                 Q R=b->prev();
                                                 if(valid(R)) while(circumcircle contains
```

```
({b->dest(),b->o,R->dest()},R->prev()
                    ->dest())) del edge(R,R->prev());
                if(!valid(L)&&!valid(R)) break;
                if(!valid(L)||(valid(R)&&
                    circumcircle contains({L->dest(),L->o,
                    R->o, R->dest()))) b=conn(R,b->rev());
                else b=conn(b->rev(),L->rev());
        return {la,rb};
vector<vector<int>> delaunay(vector<pt> v) {
        int n=v.size(); auto tmp=v;
        vector<int> id(n); iota(all(id),0);
        sort(all(id),[&](int l, int r){return v[l]<v[r
        for (int i = 0; i < n; ++i) v[i] = tmp[id[i]];
        assert (unique (all (v)) == v.end());
        vector<vector<int>> q(n);
        int col=1;
        for (int i = 2; i < n; ++i) col &= abs (area (v[i], v
            [i-1], v[i-2])) <= EPS;
        if(col){
                for (int i = 1; i < n; i++) q[id[i-1]].pb(
                    id[i]),q[id[i]].pb(id[i-1]);
        else{
                Q e=build tr(v, 0, n-1).first;
                vector<Q> edq={e};
                for (int i=0; i < edg.size(); e = edg[i++]) {</pre>
                         for(0 at=e;!at->used;at=at->next
                            ()){
                                 at->used=1;
                                 g[id[at->id]].pb(id[at->
                                     rev()->id]);
                                 edq.pb(at->rev());
        return q;
```

5.8 Halfplanes

```
const lf INF = 1e100;
struct Halfplane {
        pt p, pq; // p: point on line, pq: dir, take left
        lf angle;
        Halfplane() { }
        Halfplane(pt& a, pt& b): p(a), pq(b - a){
                angle = atan21(pq.y, pq.x);
        bool out (const pt& r) { return cross(pq, r - p) <
```

```
-EPS; } // checks if p is inside the half plane
        bool operator < (const Halfplane& e) const {</pre>
           return angle < e.angle; }</pre>
};
// intersection pt of the lines of 2 halfplanes
pt inter(const Halfplane& s, const Halfplane& t) {
        if (abs(cross(s.pq, t.pq)) <= EPS) return {INF,</pre>
        If alpha = cross((t.p - s.p), t.pq) / cross(s.pq)
            t.pq);
        return s.p + (s.pq * alpha);
// O(nlogn) return CCW polygon
vector<pt> hp_intersect(vector<Halfplane>& H) {
        pt box[4] = \{pt(INF, INF), pt(-INF, INF), pt(-INF)\}
           , -INF), pt(INF, -INF)};
        for(int i = 0; i < 4; ++i ) {</pre>
                Halfplane aux(box[i], box[(i + 1) % 4]);
                H.push back(aux);
        sort(H.begin(), H.end());
        deque<Halfplane> dq;
        int len = 0;
        for(int i = 0; i < int(H.size()); ++i){</pre>
                while (len > 1 && H[i].out(inter(dq[len -
                     1], dq[len - 2]))){
                         dq.pop_back();
                         --len:
                while (len > 1 && H[i].out(inter(dq[0],
                    dq[1]))){
                         dq.pop_front();
                         --len;
                if (len > 0 && fabsl(cross(H[i].pq, dq[
                    len - 1].pq)) < EPS){
                         if (dot(H[i].pq, dq[len - 1].pq)
                            < 0.0) return vector<pt>();
                         if (H[i].out(dq[len - 1].p)) {
                                 dq.pop back();
                                 --len;
                         } else continue;
                dq.push back(H[i]);
                ++len;
        while (len > 2 && dq[0].out(inter(dq[len - 1], dq
           [len - 2]))
```

```
dq.pop back();
                --len;
        while (len > 2 && dq[len - 1].out(inter(dq[0], dq
            [1]))){
                dq.pop_front();
                --len;
        if (len < 3) return vector<pt>();
        vector<pt> ret(len);
        for(int i = 0; i + 1 < len; ++i) ret[i] = inter(</pre>
           dq[i], dq[i + 1]);
        ret.back() = inter(dq[len - 1], dq[0]);
        // remove repeated points if needed
        return ret;
// intersection of halfplanes
vector<pt> hp_intersect(vector<halfplane>& b) {
        vector<pt> box = {{inf, inf}, {-inf, inf}, {-inf,
            -inf}, {inf, -inf}};
        for(int i = 0; i < 4; i++) {
                b.push_back(\{box[i], box[(i + 1) % 4]\});
        sort(b.begin(), b.end());
        int n = b.size(), q = 1, h = 0;
        vector<halfplane> c(n + 10);
        for(int i = 0; i < n; i++) {</pre>
                while (q < h \&\& b[i].out(inter(c[h], c[h -
                     11))) h--;
                while (q < h \&\& b[i].out(inter(c[q], c[q +
                    1]))) q++;
                c[++h] = b[i];
                if(q < h && abs(cross(c[h].pq, c[h-1].pq)</pre>
                    ) < EPS) {
                         if(dot(c[h].pq, c[h - 1].pq) <=
                            0) return {};
                         if(b[i].out(c[h].p)) c[h] = b[i];
        while (q < h - 1 \&\& c[q].out(inter(c[h], c[h - 1]))
         )) h--;
        while (q < h - 1 \&\& c[h].out(inter(c[q], c[q + 1]))
          )) q++;
        if(h - q <= 1) return {};
        c[h + 1] = c[q];
        vector<pt> s;
        for(int i = q; i < h + 1; i++) s.pb(inter(c[i], c
            [i + 1]));
        return s;
```

5.9 KD Tree

```
const 11 INF = 2e18;
const int D = 2; // dimension
struct ptd{
        int p[D];
        bool operator != (const ptd &a) const {
                bool ok = 1;
                for (int i = 0; i < D; i++) ok &= (p[i] ==
                     a.p[i]);
                return !ok;
};
struct kd_node{
        ptd p;
        int axis;
        kd_node *left, *right;
};
struct cmp points {
        int axis;
        cmp points() { }
        cmp_points(int x): axis(x){}
        bool operator () (const ptd &a, const ptd &b)
           const {
                return a.p[axis] < b.p[axis];</pre>
};
11 dis2(ptd a, ptd b) {
        ll ans = 0;
        for (int i = 0; i < D; i++) ans += (a.p[i] - b.p[i]
            ]) * 111 * (a.p[i] - b.p[i]);
        return ans;
struct KDTree{
        vector<ptd> arr;
        kd_node* root;
        KDTree (vector<ptd> &vptd): arr(vptd) {
                build(root, 0, sz(vptd) - 1);
    // O(nlogn)
        void build(kd node* &node, int 1, int r) {
                if(1 > r)
                         node = nullptr;
                         return;
                node = new kd_node();
```

```
if(l == r) {
                 node -> p = arr[1];
                 node->left = nullptr;
                 node->right = nullptr;
                 return;
        11 \text{ bAxis} = 0;
        11 \text{ mRange} = 0;
        for (int axis = 0; axis < D; ++axis) {</pre>
                 ll minVal = INF, maxVal = -INF;
                 for (int i = 1; i <= r; ++i) {</pre>
                         minVal = min(minVal, (11)
                             arr[i].p[axis]);
                         maxVal = max(maxVal, (11)
                             arr[i].p[axis]);
                 if (maxVal - minVal > mRange) {
                         mRange = maxVal - minVal;
                         bAxis = axis;
        int mid = (1 + r) / 2;
        nth element(arr.begin() + l, arr.begin()
            + \text{ mid, arr.begin()} + r + 1, \text{ cmp points}
            (bAxis));
        node->p = arr[mid];
        node->axis = bAxis;
        build(node->left, l, mid);
        build(node->right, mid + 1, r);
void nearest(kd node* node, ptd q, pair<ll, ptd>
   &ans){
        if (node == NULL) return;
        if (node->left == NULL && node->right ==
            NULL) {
                 if(!(q != node->p)) return; //
                    avoid query point as answer
                 if (ans.first > dis2(node->p, q))
                     ans = \{dis2(node->p, q), node\}
                     ->p};
                 return;
        int axis = node->axis;
        int value = node->p.p[axis];
        if(q.p[axis] <= value) {</pre>
                 nearest(node->left, q, ans);
                 11 diff = value - q.p[axis];
```

5.10 Lineas

```
// add points operators
struct line {
        pt v; lf c; // v: dir, c: mov y, cross(v, p) = c
        line(pt v, lf c) : v(v), c(c) {}
        line(lf a, lf b, lf c) : v(\{b, -a\}), c(c) {} //
           ax + bv = c
        line(pt p, pt q): v(q - p), c(cross(v, p)) {}
        line(lf m, lf b): v(\{1, m\}), c(b) \{\}
        bool operator < (line 1) { return cross(v, 1.v) >
        bool operator == (line 1) { return (abs(cross(v, 1))
           (v)) <= E0) && c == 1.c; } // abs(c) == abs(1.
           C)
        lf side(pt p) { return cross(v, p) - c; }
        lf dist(pt p) { return abs(side(p)) / norm(v); }
        lf dist2(pt p) { return side(p) * side(p) / (lf)
           norm2(v); }
        line perp through (pt p) { return {p, p + rot90(v)
           }; } // line perp to v passing through p
        bool cmp_proj(pt p, pt q) { return dot(v, p) < dot</pre>
            (v, q); } // order for points over the line
        // use: auto fsort = [&l1] (const pt &a, const pt
           &b) { return 11.cmp proj(a, b); };
        line translate(pt t) { return {v, c + cross(v, t)}
        line shift_left(lf d) { return {v, c + d*norm(v)};
        pt proj(pt p) { return p - rot90(v) * side(p) /
           norm2(v); } // pt proyected on the line
        pt refl(pt p) { return p - rot 90(v) * 2 * side(p)
           / norm2(v); } // pt reflected on the other
           side of the line
```

```
bool has (pt p) { return abs (cross (v, p) - c) <= E0
           ; }; // pt on line
        lf evalx(lf x){
                assert (fabsl(v.x) > EPS);
                return (c + v.v * x) / v.x;
} ;
pt inter ll(line ll, line l2) {
        if (abs(cross(l1.v, l2.v)) <= EPS) return {INF,</pre>
           INF }; // parallel
        return (12.v * 11.c - 11.v * 12.c) / cross(11.v,
           12.v); // floating points
// bisector divides the angle in 2 equal angles
// interior line goes on the same direction as 11 and 12
line bisector(line 11, line 12, bool interior) {
        // assert (cross(11.v, 12.v) != 0); // 11 and 12
           cannot be parallel
        lf sign = interior ? 1 : -1;
        return {12.v / norm(12.v) + 11.v / norm(11.v) *
           sian,
                        12.c / norm(12.v) + 11.c / norm(
                            11.v) * sign;
```

5.11 Manhattan

```
struct pt {
   11 x, y;
// Returns a list of edges in the format (weight, u, v).
// Passing this list to Kruskal algorithm will give the
   Manhattan MST.
vector<tuple<11, 11, 11>> manhattan mst edges(vector<pt>
   ps) {
   vl ids(sz(ps));
        forx(i, sz(ps)) ids[i] = i;
    vector<tuple<11, 11, 11>> edges;
    for (ll rot = 0; rot < 4; rot++) {
                sort(ids.begin(), ids.end(), [&](ll i, ll
            return (ps[i].x + ps[i].y) < (ps[j].x + ps[j]
               ].y);
        });
        map<ll, ll, greater<ll>> active; // (xs, id)
        for(auto i : ids) {
                        for(auto it = active.lower bound(
                           ps[i].x); it != active.end();
```

5.12 Min Circle

```
// minimo circulo que encierra todos los puntos
// Promedio: O(n), Peor: O(n^2)
Circle min_circle(vector<pt> v) {
        random shuffle(v.begin(), v.end()); // shuffle(
            all(vec), rng);
        auto f2 = [\&] (int a, int b) {
                Circle ans(v[a], v[b]);
                 for(int i = 0; i < a; ++ i)</pre>
                if (ans.contains(v[i]) == OUT) ans =
                    Circle(v[i], v[a], v[b]);
                 return ans;
        };
        auto f1 = [&]( int a ){
                 Circle ans (v[a], 0.0L);
                 for(int i = 0; i < a; ++i)
                 if(ans.contains(v[i]) == OUT) ans = f2(i)
                    , a );
                 return ans;
        } ;
        Circle ans (v[0], 0.0L);
        for(int i = 1; i < (int) v.size(); ++i)</pre>
                 if (ans.contains(v[i]) == OUT ) ans = f1(i
                    );
        return ans;
```

5.13 Puntos

```
typedef long double lf;
const lf EPS = 1e-9;
const lf E0 = 0.0L; //Keep = 0 for integer coordinates,
   otherwise = EPS
const lf PI = acos(-1);
struct pt {
        lf x, y;
        pt(){}
        pt(lf a, lf b): x(a), y(b) {}
        pt(lf ang): x(cos(ang)), y(sin(ang)){} // Polar
           unit point: ang(RAD)
        pt operator - (const pt &q) const { return {x - q
            .x , y - q.y \}; }
        pt operator + (const pt &q) const { return {x + q
            .x , y + q.y \}; 
        // pt operator * (pt p) { return \{x * p.x - y * p.
           v, x * p.v + v * p.x; }
        pt operator * (const lf &t) const { return {x * t
            , y * t }; }
        pt operator / (const lf &t) const { return {x / t
            , y / t }; }
        bool operator == (pt p) { return abs(x - p.x) <=</pre>
           EPS && abs(y - p.y) <= EPS; }
        bool operator != (pt p) { return !operator==(p); }
        bool operator < (const pt & q) const { // set /
                if (fabsl(x - q.x) > E0) return x < q.x;
                return y < q.y;
        void print() { cout << x << " " << y << "\n"; }</pre>
};
pt normalize(pt p) {
        lf norm = hypotl(p.x, p.y);
        if(fabsl(norm) > EPS) return {p.x /= norm, p.y /=
            norm };
        else return p;
int cmp(lf a, lf b) { return (a + EPS < b ? -1 : (b + EPS <</pre>
    a ? 1 : 0)); } // float comparator
// rota ccw
pt rot90(pt p) { return {-p.y, p.x}; }
// w(RAD)
pt rot(pt p, lf w) { return {cosl(w) * p.x - sinl(w) * p.y
   , sinl(w) * p.x + cosl(w) * p.v; }
lf norm2(pt p) { return p.x * p.x + p.y * p.y; }
lf norm(pt p) { return hypotl(p.x, p.y); }
lf dis2(pt p, pt q) { return norm2(p - q); }
lf dis(pt p, pt q) { return norm(p - q); }
If arg(pt a) {return atan2(a.y, a.x); } // ang(RAD) a x-
If dot(pt a, pt b) { return a.x * b.x + a.y * b.y; } // x
```

```
= 90 -> cos = 0
If cross(pt a, pt b) { return a.x * b.y - a.y * b.x;  } //
   x = 180 \implies \sin = 0
lf orient(pt a, pt b, pt c) { return cross(b - a, c - a);
   } // AB clockwise = -
int sign(lf x) { return (EPS < x) - (x < -EPS); }</pre>
// p inside angle abc (center in a)
bool in_angle(pt a, pt b, pt c, pt p) {
        //assert(fabsl(orient(a, b, c)) > E0);
        if(orient(a, b, c) < -E0)
                return orient(a, b, p) >= -E0 || orient(a
                    , c, p) <= E0;
        return orient(a, b, p) >= -E0 && orient(a, c, p)
            \leq E0;
lf min_angle(pt a, pt b) { return acos(max((lf)-1.0, min())
   lf)1.0, dot(a, b)/norm(a)/norm(b)));} // ang(RAD)
lf angle(pt a, pt b) { return atan2(cross(a, b), dot(a, b)
   ); } // ang(RAD)
lf angle(pt a, pt b, pt c) { // ang(RAD) AB AC ccw
        If ang = angle(b - a, c - a);
        if (ang < 0) ang += 2 \star PI;
        return ang;
bool half(pt p) { // true if is in (0, 180) (line is x
        // assert (p.x != 0 || p.y != 0); // the argument
           of (0, 0) is undefined
        return p.y > 0 || (p.y == 0 && p.x < 0);
bool half_from(pt p, pt v = \{1, 0\}) {
        return cross(v,p) < 0 \mid \mid (cross(v,p) == 0 && dot(
           v, p) < 0);
// polar sort
bool polar cmp(const pt &a, const pt &b) {
        return make_tuple(half(a), 0) < make_tuple(half(b))</pre>
           ), cross(a,b));
void polar_sort(vector<pt> &v, pt o) { // sort points in
   counterclockwise with respect to point o
        sort(v.begin(), v.end(), [&](pt a,pt b) {
                return make tuple (half (a - o), 0.0, norm2
                    ((a - o))) < make tuple(half(b - o),
                    cross(a - o, b - o), norm2((b - o)));
        });
int cuad(pt p) { // REVISAR
        if(p.x > 0 && p.y >= 0) return 0;
        if(p.x <= 0 && p.y > 0) return 1;
```

```
if(p.x < 0 && p.y <= 0) return 2;
        if(p.x >= 0 && p.y < 0) return 3;
        return -1; // x == 0 \&\& v == 0
bool cmp (pt p1, pt p2) {
        int c1 = cuad(p1), c2 = cuad(p2);
        return c1 == c2 ? p1.y * p2.x < p1.x * p2.y : c1
// O(n*2^d*d)
// Return the max manhattan distance between points with
   d-dimension.
ll max distance manhattan(vector<vi> p, int d) {
        long long ans = 0;
        for (int msk = 0; msk < (1 << d); msk++) {</pre>
                long long mx = LLONG_MIN, mn = LLONG_MAX;
                for (int i = 0; i < n; i++) {</pre>
                        long long cur = 0;
                        for (int j = 0; j < d; j++) {
                                 if (msk & (1 << j)) cur
                                    ;[i][i]q =+
                                 else cur -= p[i][j];
                        mx = max(mx, cur);
                        mn = min(mn, cur);
                ans = max(ans, mx - mn);
        return ans;
ll sd_to_ll(string num, int canDec = 6) {
        string nnum = "";
        bool ok = 0;
        for (int i = 0; i < sz(num); i++) {
                if (num[i] == '.') {
                        ok = 1;
                         continue;
                if (ok) canDec--;
                nnum.pb(num[i]);
        while (canDec--) nnum.pb('0');
        return stoll(nnum);
```

5.14 Poligonos

// add Points Lines Segments Circles

```
// points in polygon(vector<pt>) ccw or cw
enum {OUT, IN, ON};
lf area(vector<pt>& p) {
        lf r = 0.;
        for (int i = 0, n = p.size(); i < n; ++i) {
                r += cross(p[i], p[(i + 1) % n]);
        return r / 2; // negative if CW, positive if CCW
lf perimeter(vector<pt>& p) {
        lf per = 0;
        for (int i = 0, n = p.size(); i < n; ++i) {
                per += norm(p[i] - p[(i + 1) % n]);
        return per;
bool is convex(vector<pt>& p) {
        bool pos = 0, neg = 0;
        for (int i = 0, n = p.size(); i < n; i++) {
                int o = orient(p[i], p[(i + 1) % n], p[(i + 1) % n]
                     + 2) % n]);
                if (o > 0) pos = 1;
                if (o < 0) neg = 1;
        return ! (pos && neg);
int point_in_polygon(vector<pt>& pol, pt& p){
        int wn = 0;
        for(int i = 0, n = pol.size(); i < n; ++i) {</pre>
                lf c = orient(p, pol[i], pol[(i + 1) % n
                if(fabsl(c) <= E0 && dot(pol[i] - p, pol
                    [(i + 1) % n] - p) \le E0) return ON;
                    // on segment
                if(c > 0 && pol[i].y <= p.y + E0 && pol[(</pre>
                    i + 1) % n].y - p.y > E0) ++wn;
                if(c < 0 \&\& pol[(i + 1) % n].y \le p.y +
                    E0 \&\& pol[i].y - p.y > E0) --wn;
        return wn ? IN : OUT;
// O(logn) polygon CCW, remove collinear
int point_in_convex_polygon(const vector<pt> &pol, const
   pt &p){
        int low = 1, high = pol.size() -1;
        while(high - low > 1) {
                 int mid = (low + high) / 2;
                if (orient (pol[0], pol[mid], p) \geq -E0)
                    low = mid;
                else high = mid;
```

```
if (orient(pol[0], pol[low], p) < -E0) return OUT;</pre>
        if (orient (pol[low], pol[high], p) < -E0) return</pre>
            OUT;
        if(orient(pol[high], pol[0], p) < -E0) return OUT</pre>
        if(low == 1 && orient(pol[0], pol[low], p) <= E0)</pre>
             return ON:
        if(orient(pol[low], pol[high], p) <= E0) return</pre>
        if(high == (int) pol.size() -1 && orient(pol[high
            ], pol[0], p) <= E0) return ON;
        return IN;
// convex polygons in some order (CCW, CW)
vector<pt> minkowski(vector<pt> P, vector<pt> O) {
        rotate(P.begin(), min element(P.begin(), P.end())
            , P.end());
        rotate(O.begin(), min element(O.begin(), O.end())
            , Q.end());
        P.push back (P[0]), P.push back (P[1]);
        Q.push back(Q[0]), Q.push back(Q[1]);
        vector<pt> ans;
        size t i = 0, j = 0;
        while (i < P.size() - 2 || j < Q.size() - 2) {
                ans.push back(P[i] + Q[j]);
                lf dt = cross(P[i + 1] - P[i], Q[j + 1] -
                     Q[j]);
                if(dt >= E0 \&\& i < P.size() - 2) ++i;
                if (dt \leq E0 && \dot{1} < Q.size() - 2) ++<math>\dot{1};
        return ans:
pt centroid(vector<pt>& p) {
        pt c{0, 0};
        If scale = 6. * area(p);
        for (int i = 0, n = p.size(); i < n; ++i) {
                c = c + (p[i] + p[(i + 1) % n]) * cross(p)
                    [i], p[(i + 1) % n]);
        return c / scale;
void normalize(vector<pt>& p) { // polygon CCW
        int bottom = min_element(p.begin(), p.end()) - p.
            begin();
        vector<pt> tmp(p.begin() + bottom, p.end());
        tmp.insert(tmp.end(), p.begin(), p.begin()+bottom
           );
        p.swap(tmp);
        bottom = 0;
void remove_col(vector<pt>& p) {
```

```
vector<pt> s;
        for(int i = 0, n = p.size(); i < n; i++) {</pre>
                if(!on segment(p[(i-1+n) % n], p[(i+n) % n]))
                    1) % n], p[i])) s.push_back(p[i]);
        p.swap(s);
void delete_repetead(vector<pt>& p) {
        vector<pt> aux;
        sort(p.begin(), p.end());
        for (pt &pi : p) {
                if (aux.empty() || aux.back() != pi) aux.
                    push back (pi);
        p.swap(aux);
pt farthest (vector<pt>& p, pt v) { // O(log(n)) only
   CONVEX, v: dir
        int n = p.size();
        if(n < 10){
                int k = 0;
                for (int i = 1; i < n; i++) if (dot (v, (p[i
                    ] - p[k])) > EPS) k = i;
                return p[k];
        pt a = p[1] - p[0];
        int s = 0, e = n, ua = dot(v, a) > EPS;
        if(!ua && dot(v, (p[n-1] - p[0])) <= EPS)
           return p[0];
        while(1){
                int m = (s + e) / 2;
                pt c = p[(m + 1) % n] - p[m];
                int uc = dot(v, c) > EPS;
                if(!uc && dot(v, (p[(m - 1 + n) % n] - p[
                    m])) <= EPS) return p[m];
                if(ua && (!uc || dot(v, (p[s] - p[m])) >
                    EPS)) e = m;
                else if(ua || uc || dot(v, (p[s] - p[m]))
                    >= -EPS) s = m, a = c, ua = uc;
                else e = m;
                assert (e > s + 1);
vector<pt> cut (vector<pt>& p, line l) {
        // cut CONVEX polygon by line 1
        // returns part at left of 1.pg
        vector<pt> a;
        for(int i = 0, n = p.size(); i < n; i++) {</pre>
                int d0 = sign(l.side(p[i]));
                int d1 = sign(1.side(p[(i + 1) % n]));
                if(d0 >= 0) q.push_back(p[i]);
                line m(p[i], p[(i + 1) % n]);
```

```
if(d0 * d1 < 0 \&\& !(abs(cross(l.v, m.v)))
                    \leq EPS)){
                         q.push_back((inter_ll(l, m)));
        return q;
// O(n)
vector<pair<int, int>> antipodal(vector<pt>& p) {
        vector<pair<int, int>> ans;
        int n = p.size();
        if (n == 2) ans.push_back(\{0, 1\});
        if (n < 3) return ans;</pre>
        auto nxt = [\&] (int x) \{ return (x + 1 == n ? 0 : x \}
             + 1); };
        auto area2 = [&] (pt a, pt b, pt c) { return cross(
            b - a, c - a); };
        int b0 = 0;
        while (abs(area2(p[n - 1], p[0], p[nxt(b0)])) >
           abs(area2(p[n - 1], p[0], p[b0]))) ++b0;
        for (int b = \bar{b}0, a = 0; \bar{b} != \bar{0} \&\& a <= b0; ++a) {
                ans.push_back({a, b});
                 while (abs(area2(p[a], p[nxt(a)], p[nxt(b
                    )])) > abs(area2(p[a], p[nxt(a)], p[b
                    ]))){
                         b = nxt(b);
                         if (a != b0 || b != 0) ans.
                            push back({a, b});
                         else return ans;
                if (abs(area2(p[a], p[nxt(a)], p[nxt(b)])
                    == abs(area2(p[a], p[nxt(a)], p[b]))
                         if (a != b0 || b != n - 1) ans.
                             push_back({a, nxt(b)});
                         else ans.push back({nxt(a), b});
        return ans;
// O(n)
// square distance of most distant points, prereq: convex
   , ccw, NO COLLINEAR POINTS
lf callipers(vector<pt>& p) {
        int n = p.size();
        lf r = 0;
        for (int i = 0, j = n < 2 ? 0 : 1; <math>i < j; ++i) {
                for(;; j = (j + 1) % n) {
                         r = max(r, norm2(p[i] - p[j]));
                         if(cross((p[(i + 1) % n] - p[i]),
                              (p[(j + 1) % n] - p[j])) <=
                            EPS) break;
```

```
Poligonos
```

```
GEOMETRIA
```

```
return r;
// O(n + m) max_dist between 2 points (pa, pb) of 2
   Convex polygons (a, b)
lf rotating callipers(vector<pt>& a, vector<pt>& b) { //
   REVISAR
        if (a.size() > b.size()) swap(a, b); // <- del or
             add
        pair<ll, int > start = \{-1, -1\};
        if(a.size() == 1) swap(a, b);
        for(int i = 0; i < a.size(); i++) start = max(</pre>
           start, \{norm2(b[0] - a[i]), i\});
        if(b.size() == 1) return start.first;
        for(int i = 0, j = start.second; i < b.size(); ++
           i) {
                for(;; j = (j + 1) % a.size()){
                        r = max(r, norm2(b[i] - a[j]));
                        if(cross((b[(i + 1) % b.size()] -
                             b[i]), (a[(j + 1) % a.size()]
                             - a[j])) <= EPS) break;</pre>
        return r;
lf intercircle(vector<pt>& p, circle c){ // area of
   intersection with circle
        lf r=0.;
        for(int i = 0, n = p.size(); i < n; i++) {</pre>
                int j = (i + 1) % n;
                lf w = intertriangle(c, p[i], p[j]);
                if(cross((p[i] - c.center), (p[i] - c.
                    center) > 0 r += w;
                else r -= w;
        return abs(r);
11 pick(vector<pt>& p) {
        11 boundary = 0;
        for (int i = 0, n = p.size(); i < n; i++) {
                int j = (i + 1 == n ? 0 : i + 1);
                boundary += __gcd((ll)abs(p[i].x - p[j].x
                   ), (ll) abs(p[i].y - p[j].y));
        return abs(area(p)) + 1 - boundary / 2;
// minimum distance between two parallel lines (non
   necessarily axis parallel)
// such that the polygon can be put between the lines
// O(n) CCW polygon
lf width(vector<pt> &p) {
```

```
int n = (int)p.size();
    if (n <= 2) return 0;
    lf ans = inf:
    int i = 0, j = 1;
    while (i < n) {
        while (cross(p[(i + 1) % n] - p[i], p[(j + 1) % n])
           ] - p[j]) >= 0) j = (j + 1) % n;
        line l1(p[i], p[(i + 1) % n]);
        ans = min(ans, 11.dist(p[j]));
        i++;
    return ans;
// O(n) {minimum perimeter, minimum area} CCW polygon
pair<ld, ld> minimum_enclosing_rectangle(vector<pt> &p) {
        int n = p.size();
        if (n <= 2) return {perimeter(p), 0};</pre>
        int mndot = 0;
    lf tmp = dot(p[1] - p[0], p[0]);
        for (int i = 1; i < n; i++) {
                if (dot(p[1] - p[0], p[i]) <= tmp) {</pre>
                        tmp = dot(p[1] - p[0], p[i]);
                        mndot = i;
        ld ansP = inf;
        ld ansA = inf;
        int i = 0, j = 1, mxdot = 1;
        while (i < n) {
                pt cur = p[(i + 1) % n] - p[i];
        while (cross(cur, p[(j + 1) % n] - p[j]) >= 0) j
           = (j + 1) % n;
        while (dot(p[(mxdot + 1) % n], cur) >= dot(p[
           mxdot], cur)) mxdot = (mxdot + 1) % n;
        while (dot(p[(mndot + 1) % n], cur) <= dot(p[
           mndot], cur)) mndot = (mndot + 1) % n;
        line l1(p[i], p[(i + 1) % n]);
        // minimum perimeter
        ansP = min(ansP, 2.0 * ((dot(p[mxdot], cur) / 
           norm(cur) - dot(p[mndot], cur) / norm(cur)) +
           11.dist(p[i])));
        // minimum area
        ansA = min(ansA, (dot(p[mxdot], cur) / norm(cur)
           - dot(p[mndot], cur) / norm(cur)) * 11.dist(p[
           j]));
        i++;
    return {ansP, ansA};
// maximum distance from a convex polygon to another
   convex polygon
lf maximum_dist_from_polygon_to_polygon(vector<pt> &u,
```

```
vector<pt> &v) \{ //O(n) \}
    int n = (int)u.size(), m = (int)v.size();
    lf ans = 0;
    if (n < 3 | | m < 3) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) ans = max(ans,
               dis2(u[i], v[i]));
        return sqrt(ans);
    if (u[0].x > v[0].x) swap(n, m), swap(u, v);
    int i = 0, j = 0, step = n + m + 10;
    while (j + 1 < m \& \& v[j].x < v[j + 1].x) j++;
    while (step--) {
        if (cross(u[(i + 1) % n] - u[i], v[(j + 1) % m] - u[i])
            v[j]) >= 0) j = (j + 1) % m;
        else i = (i + 1) % n;
        ans = max(ans, dis2(u[i], v[j]));
    return sqrt(ans);
pt project_from_point_to_seg(pt a, pt b, pt c) {
    double r = dis2(a, b);
    if (sign(r) == 0) return a;
   r = dot(c - a, b - a) / r;
   if (r < 0) return a;</pre>
   if (r > 1) return b;
   return a + (b - a) * r;
// minimum distance from point c to segment ab
lf pt_to_seg(pt a, pt b, pt c) {
    return dis(c, project_from_point_to_seg(a, b, c));
pair<pt, int> point_poly_tangent(vector<pt> &p, pt Q, int
    dir, int l, int r) {
    while (r - 1 > 1) {
        int mid = (1 + r) >> 1;
        bool pvs = sign(orient(Q, p[mid], p[mid - 1])) !=
        bool nxt = sign(orient(Q, p[mid], p[mid + 1])) !=
            -dir;
        if (pvs && nxt) return {p[mid], mid};
        if (!(pvs || nxt)) {
            auto p1 = point poly tangent(p, Q, dir, mid +
                1, r);
            auto p2 = point_poly_tangent(p, Q, dir, 1,
            return sign(orient(Q, p1.first, p2.first)) ==
                dir ? p1 : p2;
```

```
if (!pvs) {
            if (sign(orient(Q, p[mid], p[l])) == dir) r
               = mid - 1;
            else if (sign(orient(Q, p[l], p[r])) == dir)
               r = mid - 1;
            else l = mid + 1;
        if (!nxt) {
            if (sign(orient(Q, p[mid], p[1])) == dir) 1
               = mid + 1;
            else if (sign(orient(Q, p[l], p[r])) == dir)
               r = mid - 1;
            else l = mid + 1;
    pair<pt, int> ret = {p[1], 1};
    for (int i = 1 + 1; i <= r; i++) ret = sign(orient(Q,
        ret.first, p[i])) != dir ? make pair(p[i], i) :
       ret;
    return ret;
// (ccw, cw) tangents from a point that is outside this
   convex polygon
// returns indexes of the points
// ccw means the tangent from Q to that point is in the
   same direction as the polygon ccw direction
pair<int, int> tangents_from_point_to_polygon(vector<pt>
   &p, pt Q) {
    int ccw = point_poly_tangent(p, Q, 1, 0, (int)p.size
       () - 1).second;
    int cw = point_poly_tangent(p, Q, -1, 0, (int)p.size
       () - 1).second;
    return make pair(ccw, cw);
// minimum distance from a point to a convex polygon
// it assumes point lie strictly outside the polygon
lf dist_from_point_to_polygon(vector<pt> &p, pt z) {
    lf ans = inf;
    int n = p.size();
    if (n <= 3) {
        for (int i = 0; i < n; i++) ans = min(ans,
           pt_{to}(p[i], p[(i + 1) % n], z));
        return ans;
   pair<int, int> dum = tangents_from_point_to_polygon(p
    int r = dum.first;
   int 1 = dum.second;
    if(1 > r) r += n;
    while (1 < r) {
      int mid = (l + r) >> 1;
      lf left = dis2(p[mid % n], z), right= dis2(p[(mid
            + 1) % n], z);
      ans = min({ans, left, right});
```

```
5.14 Poligonos
```

```
5 GEOMETRIA
```

```
if(left < right) r = mid;</pre>
        else l = mid + 1;
    ans = sqrt(ans);
    ans = min(ans, pt_to_seg(p[1 % n], p[(1 + 1) % n], z)
    ans = min(ans, pt to seq(p[1 % n], p[(1 - 1 + n) % n
       ], z));
    return ans;
// minimum distance from a convex polygon to another
   convex polygon
// the polygon doesnot overlap or touch
If dist from polygon to polygon (vector<pt> &p1, vector<pt
   > &p2) { // O(n log n)}
    lf ans = inf;
    for (int i = 0; i < p1.size(); i++) {
        ans = min(ans, dist from point to polygon(p2, p1)
           i]));
    for (int i = 0; i < p2.size(); i++) {</pre>
        ans = min(ans, dist_from_point_to_polygon(p1, p2[
           il));
    return ans;
// it returns a point such that the sum of distances
// from that point to all points in p is minimum
// O(n log^2 MX)
PT geometric median(vector<PT> p) {
        auto tot dist = [\&](PTz) {
            double res = 0;
            for (int i = 0; i < p.size(); i++) res +=
                dist(p[i], z);
            return res;
        } ;
        auto findY = [&](double x)
            double vl = -1e5, vr = 1e5;
            for (int i = 0; i < 60; i++) {
                double ym1 = yl + (yr - yl) / 3;
                double ym2 = yr - (yr - y1) / 3;
                double d1 = tot_dist(PT(x, ym1));
                double d2 = tot_dist(PT(x, ym2));
                if (d1 < d2) vr = vm2;
                else yl = ym1;
            return pair<double, double> (yl, tot_dist(PT(
               x, yl)));
    double x1 = -1e5, xr = 1e5;
    for (int i = 0; i < 60; i++) {
        double xm1 = xl + (xr - xl) / 3;
        double xm2 = xr - (xr - x1) / 3;
```

```
double y1, d1, y2, d2;
        auto z = findY(xm1); y1 = z.first; d1 = z.second;
        z = findY(xm2); y2 = z.first; d2 = z.second;
        if (d1 < d2) xr = xm2;
        else xl = xm1;
    return {xl, findY(xl).first };
// ear decomposition, O(n^3) but faster
vector<vector<pt>> triangulate(vector<pt> p) {
        vector<vector<pt>> v;
        while (p.size() >= 3) {
                for (int i = 0, n = p.size(); i < n; i++)
                        int pre = i == 0 ? n - 1 : i -
                            1;;
                        int nxt = i == n - 1 ? 0 : i +
                        lf ori = orient(p[i], p[pre], p[
                            nxt]);
                        if (ori < 0) {
                                int ok = 1;
                                for (int j = 0; j < n; j
                                    ++) {
                                         if (j == i || j
                                            == pre || j ==
                                             nxt) continue;
                                         vector < pt > tr = {
                                            p[i], p[pre],
                                            p[nxt]};
                                         if (
                                            point_in_polygon
                                            (tr , p[j]) !=
                                             OUT) {
                                                 ok = 0;
                                                 break;
                                if (ok) {
                                         v.push back({p[
                                            pre], p[i], p[
                                            p.erase(p.begin()
                                             + i);
                                         break;
        return v;
// CH DP
```

```
// vecs contains all vectors u -> v that lie within the
   original polygon
sort(vecs.begin(), vecs.end(), cmp);
for (auto [u, v] : vecs)
    for (int s = 0; s < n; s++)</pre>
        dp[s][v] += dp[s][u];
// Suma del area de todos los triangulos de un poligono
int main() {
        int n; cin >> n;
        vector<pt> pts(n);
        forx(i, n) cin >> pts[i].x >> pts[i].y;
        vector<pt> pref(n + 1);
        for(int i = 1; i < n + 1; ++i) {
                pref[i] = pref[i - 1] + pts[i - 1];
        ld totalT = 0;
        for(ll i = 0; i < n; i++) {
                pt p1 = (pts[i] * (ld)i) - pref[i];
                pt p2 = (pref[n] - pref[i + 1]) - (pts[i])
                     * (ld) (n - 1 - i));
                totalT += cross(p1, p2);
        // area = totalT / 2
```

5.15 Segmentos

```
return false:
// intersection bwn segments
set<pt> inter ss(pt a, pt b, pt c, pt d) {
        pt out;
        if (proper_inter(a, b, c, d, out)) return {out};
        set<pt> s;
        if (on_segment(c, d, a)) s.insert(a); // a in cd
        if (on segment(c, d, b)) s.insert(b); // b in cd
        if (on_segment(a, b, c)) s.insert(c); // c in ab
        if (on segment(a, b, d)) s.insert(d); // d in ab
        return s;
If pt to seg(pt a, pt b, pt p) { // p to ab
        if (a != b) {
                line l(a, b);
                if (l.cmp_proj(a, p) && l.cmp_proj(p, b))
                    // if closest to projection = (a, p,
                        return 1.dist(p); // output
                           distance to line
        return min(norm(p - a), norm(p - b)); //
           otherwise distance to A or B
lf seg to seg(pt a, pt b, pt c, pt d) {
        pt dummy;
        if (proper_inter(a, b, c, d, dummy)) return 0; //
            ab intersects cd
        return min({pt_to_seg(a, b, c), pt_to_seg(a, b, d
           ), pt_to_seg(c, d, a), pt_to_seg(c, d, b)});
           // try the 4 pts
int length union(vector<pt>& a) { // REVISAR
        int n = a.size();
        vector<pair<int, bool>> x(n * 2);
        for (int i = 0; i < n; i++) {
               x[i * 2] = \{a[i].x, false\};
               x[i * 2 + 1] = \{a[i].y, true\};
        sort(x.begin(), x.end());
        int result = 0;
        int c = 0:
        for (int i = 0; i < n * 2; i++) {
                if (i > 0 && x[i].first > x[i - 1].first
                   && c > 0) result += x[i].first - x[i]
                   11.first:
                if (x[i].second) c--;
                else c++;
       return result;
```

5.16 Triangle Union

```
// Area of the union of a set of n triangles
// T(n^2 \log n) M(n)
typedef double dbl;
const dbl eps = 1e-9;
inline bool eq(dbl x, dbl v) {
    return fabs(x - y) < eps;
inline bool lt(dbl x, dbl y) {
    return x < y - eps;</pre>
inline bool gt(dbl x, dbl y) {
    return x > y + eps;
inline bool le(dbl x, dbl y) {
    return x < y + eps;</pre>
inline bool ge(dbl x, dbl y) {
    return x > y - eps;
struct ptT{
    dbl x, y;
    ptT() { }
    ptT(dbl x, dbl y): x(x), y(y) {}
    inline ptT operator - (const ptT & p)const{
        return ptT{x - p.x, y - p.y};
    inline ptT operator + (const ptT & p)const{
        return ptT\{x + p.x, y + p.y\};
    inline ptT operator * (dbl a)const{
        return ptT\{x * a, y * a\};
    inline dbl cross(const ptT & p)const{
        return x * p.y - y * p.x;
    inline dbl dot(const ptT & p)const{
        return x * p.x + v * p.v;
    inline bool operator == (const ptT & p)const{
        return eq(x, p.x) && eq(y, p.y);
};
struct LineT{
    ptT p[2];
    LineT(){}
    LineT(ptT a, ptT b):p{a, b}{}
```

```
ptT vec()const{
        return p[1] - p[0];
    ptT& operator [](size_t i){
        return p[i];
};
inline bool lexComp(const ptT & 1, const ptT & r) {
    if(fabs(l.x - r.x) > eps) {
        return 1.x < r.x;</pre>
    else return l.y < r.y;</pre>
vector<ptT> interSeqSeq(LineT 11, LineT 12) {
    if(eq(l1.vec().cross(l2.vec()), 0)){
        if(!eq(11.vec().cross(12[0] - 11[0]), 0))
            return {};
        if(!lexComp(l1[0], l1[1]))
            swap(1\bar{1}[0], 11[1]);
        if(!lexComp(12[0], 12[1]))
            swap(12[0], 12[1]);
        ptT 1 = lexComp(11[0], 12[0]) ? 12[0] : 11[0];
        ptT r = lexComp(11[1], 12[1]) ? 11[1] : 12[1];
        if(1 == r)
            return {1};
        else return lexComp(l, r) ? vector<ptT>{l, r} :
           vector<ptT>();
    else{
        dbl s = (12[0] - 11[0]).cross(12.vec()) / 11.vec
            ().cross(12.vec());
        ptT inter = 11[0] + 11.vec() * s;
        if(ge(s, 0) \&\& le(s, 1) \&\& le((12[0] - inter).dot)
            (12[1] - inter), 0))
            return {inter};
        else
            return {};
inline char get_segtype(LineT segment, ptT other_point) {
    if(eq(segment[0].x, segment[1].x))
        return 0:
    if(!lexComp(segment[0], segment[1]))
        swap(segment[0], segment[1]);
    return (segment[1] - segment[0]).cross(other point -
       segment[0]) > 0 ? 1 : -1;
dbl union_area(vector<tuple<ptT, ptT, ptT> > triangles){
    vector<LineT> segments(3 * triangles.size());
    vector<char> segtype(segments.size());
    for(size t i = 0; i < triangles.size(); i++){
        ptT a, b, c;
```

```
tie(a, b, c) = triangles[i];
    segments[3 * i] = lexComp(a, b) ? LineT(a, b) :
       LineT(b, a);
    seqtype[3 * i] = qet_seqtype(segments[3 * i], c);
    segments[3 * i + 1] = lexComp(b, c) ? LineT(b, c)
        : LineT(c, b);
   seqtype[3 * i + 1] = qet seqtype(segments[3 * i +
        11, a);
    segments[3 * i + 2] = lexComp(c, a) ? LineT(c, a)
        : LineT(a, c);
    seqtype[3 * i + 2] = qet_seqtype(seqments[3 * i +
vector<dbl> k(segments.size()), b(segments.size());
for (size t i = 0; i < segments.size(); i++) {
   if(segtype[i]){
        k[i] = (segments[i][1].y - segments[i][0].y)
           / (segments[i][1].x - segments[i][0].x);
        b[i] = segments[i][0].y - k[i] * segments[i]
           ][0].x;
dbl ans = 0;
for(size t i = 0; i < segments.size(); i++){</pre>
   if(!seatvpe[i])
        continue;
   dbl l = segments[i][0].x, r = segments[i][1].x;
   vector<pair<dbl, int> > evts;
   for (size t j = 0; j < segments.size(); j++) {
        if(!segtype[j] || i == j)
            continue;
        dbl l1 = segments[j][0].x, r1 = segments[j]
           ][1].x;
        if(ge(l1, r) || ge(l, r1))
            continue;
        dbl common l = max(l, ll), common r = min(r, ll)
        auto pts = interSeqSeq(segments[i], segments[
           il);
        if(pts.empty()){
            dbl yl1 = k[j] * common_l + b[j];
            dbl vl = k[i] * common l + b[i];
            if(lt(yl1, yl) == (seqtype[i] == 1)){
                int evt_type = -seqtype[i] * seqtype[
                evts.emplace back(common l, evt type)
                evts.emplace back(common r, -evt type
                   );
        else if(pts.size() == 1u){
            dbl vl = k[i] * common_l + b[i], yll = k[
               j] * common_l + b[j];
```

```
int evt type = -seqtype[i] * segtype[j];
            if(lt(yl1, yl) == (seqtype[i] == 1)){
                evts.emplace_back(common_l, evt_type)
                evts.emplace back(pts[0].x, -evt type
            yl = k[i] * common r + b[i], yll = k[i] *
                 common r + b[i];
            if(lt(yl1, yl) == (seqtype[i] == 1)){
                evts.emplace back(pts[0].x, evt type)
                evts.emplace_back(common_r, -evt_type
        else{
            if(segtype[j] != segtype[i] || j > i){
                evts.emplace back(common 1, -2);
                evts.emplace back (common r, 2);
    evts.emplace back(1, 0);
    sort(evts.begin(), evts.end());
    size t j = 0;
    int balance = 0;
    while(j < evts.size()){</pre>
        size_t ptr = j;
        while(ptr < evts.size() && eq(evts[j].first,</pre>
           evts[ptr].first)){
            balance += evts[ptr].second;
            ++ptr;
        if(!balance && !eq(evts[j].first, r)){
            dbl next_x = ptr == evts.size() ? r :
               evts[ptr].first;
            ans -= seqtype[i] * (k[i] * (next x +
               evts[j].first) + 2 * b[i]) * (next x -
                evts[j].first);
        j = ptr;
return ans/2;
```

6 Grafos

6.1 2sat

```
// O(n+m)
// (x1 or y1) and (x2 or y2) and ... and (xn or yn)
```

```
struct sat2{
        vector<vector<vi>>> q;
        vector<bool> vis, val;
        stack<int> st;
        vi comp;
        int n;
        sat2(int n):n(n),q(2, vector < vi > (2*n)),vis(2*n),
           val(2*n), comp(2*n) {}
        int neg(int x) {return 2*n-x-1;} // get not x
        void make true(int u) {add edge(neg(u), u);}
        void make false(int u) {make true(neg(u));}
        void add or(int u, int v) {implication(neg(u), v);}
             // (u or v)
        void diff(int u, int v) {eq(u, neq(v));} // u != v
        void eq(int u, int v) {
                implication(u, v);
                implication(v, u);
        void implication(int u,int v) {
                add edge(u, v);
                add edge (neg(v), neg(u));
        void add_edge(int u, int v) {
                g[0][u].push_back(v);
                q[1][v].push_back(u);
        void dfs(int id, int u, int t=0) {
                vis[u]=true;
                for(auto &v:q[id][u])
                         if(!vis[v])dfs(id, v, t);
                if (id) comp[u]=t;
                else st.push(u);
        void kosaraju() {
                for(int u=0; u<n; ++u) {
                         if(!vis[u])dfs(0, u);
                         if(!vis[neq(u)])dfs(0, neq(u));
                vis.assign(2*n, false);
                int t=0;
                while(!st.empty()){
                         int u=st.top();st.pop();
                         if(!vis[u])dfs(1, u, t++);
        // return true if satisfiable, fills val[]
        bool check(){
                kosaraju();
                for(int i=0;i<n;++i) {</pre>
```

```
if (comp[i] == comp[neq(i)]) return
                                false:
                            val[i]=comp[i]>comp[neg(i)];
                   return true;
  } ;
  int m,n;cin>>m>>n;
  sat2 s(n);
  char c1, c2;
  for(int a,b,i=0;i<m;++i){</pre>
           cin>>c1>>a>>c2>>b;
           a--;b--;
           if(c1=='-')a=s.neg(a);
           if (c2=='-')b=s.neq(b);
           s.add or(a,b);
  if(s.check()){
           for (int i=0;i<n;++i) cout<<(s.val[i]?'+':'-')<<" "</pre>
           cout << "\n";
  }else cout<<"IMPOSSIBLE\n";</pre>
6.2 Bellman Ford
  // O(V*E)
  vi bellman ford(vector<vii> &adj, int s, int n) {
           vi dist(n, INF); dist[s] = 0;
           for (int i = 0; i<n-1; i++) {
```

```
bool modified = false;
        for (int u = 0; u < n; u + +)
                if (dist[u] != INF)
                         for (auto &[v, w] : adj[u
                             ]){
                                  if (dist[v] <=</pre>
                                     dist[u] + w)
                                     continue;
                                  dist[v] = dist[u]
                                      + w;
                                 modified = true;
        if (!modified) break;
bool negativeCicle = false;
for (int u = 0; u < n; u + +)
        if (dist[u] != INF)
                for (auto &[v, w] : adj[u]){
                         if (dist[v] > dist[u] + w
                             ) negativeCicle = true
return dist;
```

6.3 Block Cut Tree

```
// O(n) build
// bi_connected save the edges
const int maxn = 1e5+5;
int lowLink[maxn] , dfn[maxn];
vector<vector<ii>>> bi connected;
stack<ii> comps;
int ndfn;
void tarjan(vector<vi>& adj, int u=0, int par=-1){
        dfn[u] = lowLink[u] = ndfn++;
        for(auto &v : adj[u]) {
                if (v != par && dfn[v] < dfn[u])
                         comps.push({u, v});
                if (dfn[v] == -1) {
                        tarjan(adj, v, u);
                         lowLink[u] = min(lowLink[u] ,
                            lowLink[v]);
                        if (lowLink[v] >= dfn[u]) {
                                 bi_connected.emplace_back
                                     (vector<ii>());
                                 ii edge;
                                 do{
                                         edge = comps.top
                                             ();
                                         comps.pop();
                                         bi connected back
                                             ().
                                             emplace back (
                                             edge);
                                 }while(edge.first != u ||
                                     edge.second != v);
                                 reverse (all (bi connected.
                                    back()));
                } else if(v != par) {
                        lowLink[u] = min(lowLink[u], dfn
                            [v]);
void init(vector<vi>& adj){
        for(int i=0;i<sz(adj);++i)</pre>
                dfn[i]=-1;
        bi connected.clear();
        comps=stack<ii>();
        ndfn=0;
        tarjan(adj);
```

6.4 Bridges Online

```
vector<int> par, dsu 2ecc, dsu cc, dsu cc size;
int bridges;
int lca iteration;
vector<int> last visit;
void init(int n) {
        par.resize(n);
        dsu 2ecc.resize(n);
        dsu cc.resize(n);
        dsu_cc_size.resize(n);
        lca iteration = 0;
        last visit.assign(n, 0);
        for (int i=0; i<n; ++i) {
                dsu_2ecc[i] = i;
                dsu cc[i] = i;
                dsu_cc_size[i] = 1;
                par[i] = -1;
        bridges = 0;
int find 2ecc(int v) {
        if ( \lor == -1 )
                return -1;
        return dsu_2ecc[v] == v ? v : dsu_2ecc[v] =
           find 2ecc(dsu 2ecc[v]);
int find cc(int v) {
        v = find 2ecc(v);
        return dsu cc[v] == v ? v : dsu cc[v] = find cc(
           dsu cc[v]);
void make root(int v) {
        int root = v;
        int child = -1;
        while ( \lor != -1 ) {
                int p = find 2ecc(par[v]);
                par[v] = child;
                dsu cc[v] = root;
                child = v;
                v = p;
        dsu cc size[root] = dsu cc size[child];
void merge_path (int a, int b) {
        ++lca iteration;
        vector<int> path_a, path_b;
        int lca = -1;
        while (lca == -1) {
                if (a != −1) {
                        a = find_2ecc(a);
```

```
path a.push back(a);
                        if (last visit[a] ==
                            lca iteration) {
                                 lca = a;
                                 break;
                        last visit[a] = lca iteration;
                        a = par[a];
                if (b !=-1) {
                        b = find 2ecc(b);
                        path_b.push_back(b);
                        if (last visit[b] ==
                            lca iteration) {
                                 lca = b;
                                 break:
                        last visit[b] = lca iteration;
                        b = par[b];
        for (int v : path_a) {
                dsu \ 2ecc[v] = lca;
                if (v == lca)
                        break;
                --bridges;
        for (int v : path b) {
                dsu_2ecc[v] = lca;
                if (v == lca)
                        break:
                --bridges;
void add_edge(int a, int b) {
        a = find 2ecc(a);
        b = find 2ecc(b);
        if (a == b)
                return;
        int ca = find cc(a);
        int cb = find cc(b);
        if (ca != cb) {
                ++bridges;
                if (dsu_cc_size[ca] > dsu_cc_size[cb]) {
                         swap(a, b);
                         swap(ca, cb);
                make root(a);
                par[a] = dsu_cc[a] = b;
                dsu cc size[cb] += dsu cc size[a];
        } else {
                merge path(a, b);
```

6.5 Camino Mas Corto De Longitud Fija

```
Modificar operacion * de matrix de esta forma:
En la exponenciacion binaria inicializar matrix ans = b
const 11 INFL = 2e18;
matrix operator * (const matrix &b) {
        matrix ans(this->r, b.c, vector<vl>(this->r, vl(b
            .c, INFL)));
        for (int i = 0; i<this->r; i++) {
                for (int k = 0; k<b.r; k++) {</pre>
                         for (int j = 0; j<b.c; j++) {
                                 ans.m[i][j] = min(ans.m[i]
                                     [j], m[i][k] + b.m[k]
                                    ][j]);
        return ans;
int main() {
        int n, m, k; cin >> n >> m >> k;
        vector<vl> adj(n, vl(n, INFL));
        for (int i = 0; i<m; i++) {</pre>
                ll a, b, c; cin >> a >> b >> c; a--; b--;
                adi[a][b] = min(adj[a][b], c);
        matrix graph(n, n, adj);
        graph = pow(graph, k-1);
        cout << (graph.m[0][n-1] == INFL ? -1 : graph.m[0][
           n-1) << "\n";
        return 0:
```

6.6 Clique

```
/**
  * Credit: kactl
  * Given a graph as a symmetric bitset matrix (without
      any self edges)
  * Finds the maximum clique
  * Can be used to find the maximum independent set by
      finding a clique of the complement graph.
```

```
* Runs in about 1s for n=155, and faster for sparse
    graphs
 * 0 indexed
const int N = 40;
typedef vector<br/>bitset<N>> graph;
struct Maxclique {
  double limit = 0.025, pk = 0;
  struct Vertex {
    int i, d = 0;
 typedef vector<Vertex> vv;
  graph e;
  vv V;
  vector<vector<int>> C;
  vector<int> qmax, q, S, old;
 void init(vv& r) {
    for (auto \& v : r) v.d = 0;
    for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i
       ];
    sort(r.begin(), r.end(), [](auto a, auto b) {
      return a.d > b.d;
    int mxD = r[0].d;
    for (int i = 0; i < sz(r); i++) r[i].d = min(i, mxD)
 void expand(vv& R, int lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
      if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
      g.push back(R.back().i);
      vv T;
      for(auto v : R) if (e[R.back().i][v.i]) T.push back
          (\{v.i\});
      if (sz(T)) {
        if (S[lev]++ / ++pk < limit) init(T);
        int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) +
        C[1].clear(), C[2].clear();
        for (auto v : T) {
          int k = 1;
          auto f = [\&](int i) {
            return e[v.i][i];
          };
          while (any of (C[k].begin(), C[k].end(), f)) k
          if (k > mxk) mxk = k, C[mxk + 1].clear();
          if (k < mnk) T[j++].i = v.i;
          C[k].push_back(v.i);
        if (\dot{j} > 0) T[\dot{j} - 1].d = 0;
        for (int k = mnk; k \le mxk; k++) for (int i : C[k]
           1)
```

```
T[j].i = i, T[j++].d = k;
    expand(T, lev + 1);
} else if (sz(q) > sz(qmax)) qmax = q;
    q.pop_back(), R.pop_back();
}

Maxclique(graph g) : e(g), C(sz(e) + 1), S(sz(C)), old(
    S) {
    for (int i = 0; i < sz(e); i++) V.push_back({i});
}

vector<int> solve() { // returns the clique
    init(V), expand(V);
    return qmax;
}
};
```

6.7 Cycle Directed

```
vector<vi> adj;
vi parent, color;
int cy0, cy1;
bool dfs(int v) {
        color[v]=1;
        for(int u:adj[v]){
                if(color[u]==0){
                         parent[u]=v;
                         if(dfs(u))return true;
                 }else if(color[u]==1){
                         cy1=v;
                         cv0=u;
                         return true;
        color[v]=2;
        return false;
// O(m)
void find cycle(int n) {
        color.assign(n, 0);
        parent.assign(n, -1);
        cv0 = -1;
        for(int v=0; v<n; ++v) {
                if(color[v]==0){
                         if(dfs(v))break;
        if(cv0==-1){
                cout << "IMPOSSIBLE\n";
                return;
        vi cycle;
        cycle.push_back(cy0);
```

6.8 Cycle Undirected

```
vector<vi> adj;
vector<bool> visited;
int cy0,cy1;
vi parent;
bool dfs(int v, int par) {
        visited[v]=true;
        for(int u:adj[v]){
                 if (u==par) continue;
                 if (visited[u]) {
                          cv1=v;
                         cv0=u;
                         return true;
                 parent[u]=v;
                 if (dfs(u,parent[u]))return true;
        return false;
// O(m)
void find_cycle(int n) {
        visited.assign(n, false);
        parent.assign(n, -1);
        cy0 = -1;
        for (int v=0; v<n; ++v) {</pre>
                 if(!visited[v]){
                 if (dfs(v, parent[v]))break;
        if(cy0==-1){
                 cout << "IMPOSSIBLE\n";
                 return;
        vi cvcle;
        cycle.push back(cy0);
        for (int v=cy1; v!=cy0; v=parent[v]) cycle.push_back(
        cycle.push_back(cy0);
        print(cycle);
```

```
6.9 Dial Algorithm
```

```
const int maxn = 2e5+5;
vector<ii> adj[maxn];
// O(n*k+m)
// bfs for edge weights in the range [0, k]
void bfs(int s, int n, int k) {
        vector<queue<int>> qs(k+1, queue<int>());
        vector<bool> vis(n, false);
        vector<int> dist(n, 1e9);
        qs[0].push(s);
        dist[s]=0;
        int pos=0, num=1;
        while(num) {
                while (gs[pos%(k+1)].emptv())pos++;
                int u=qs[pos%(k+1)].front();
                qs[pos%(k+1)].pop();
                num+-;
                if (vis[u]) continue;
                vis[u]=true;
                for(auto [w,v]:adj[u]){
                        if (dist[v]>dist[u]+w) {
                                 dist[v]=dist[u]+w;
                                 qs[dist[v]%(k+1)].push(v)
                                 num++;
```

6.10 Dijkstra

6.11 Dijkstra Sparse Graphs

```
// O(E*log(V))
vl dijkstra(vector<vector<pll>>> &adj, int s, int n) {
        vl dist(n, INFL); dist[s] = 0;
        set<pll> pq;
        pq.insert(pll(0, s));
        while(!pq.empty()){
                pll front = *pq.begin(); pq.erase(pq.
                   begin());
                11 d = front.first, u = front.second;
                for (auto &[v, w] : adj[u]) {
                        if (dist[u] + w < dist[v]){
                                pq.erase(pll(dist[v], v))
                                dist[v] = dist[u] + w;
                                pq.insert(pll(dist[v], v)
                                    );
        return dist;
```

6.12 Eulerian Path Directed

```
const int maxn = 1e5+5;
vector<int> adj[maxn],path;
int out[maxn], in[maxn]; // remember
void dfs(int v) {
        while(!adj[v].empty()){
                 int u=adj[v].back();
                 adj[v].pop_back();
                 dfs(u);
        path.push_back(v);
// n -> nodes, m -> edges, s -> start, e -> end
void eulerian_path(int n, int m, int s, int e) {
        for (int i=0; i < n; ++i) {</pre>
                 if (i==s || i==e) continue;
                 if(in[i]!=out[i]){
                          cout << "IMPOSSIBLE\n";</pre>
                          return;
        if (out[s]-in[s]!=1 || in[e]-out[e]!=1) {
                 cout << "IMPOSSIBLE\n";
                 return;
        dfs(s):
        reverse(path.begin(), path.end());
```

6.13 Eulerian Path Undirected

```
const int maxn = 1e5+5;
const int maxm = 2e5+5;
vector<ii> adj[maxn]; // adj[a].push_back({b, i});
vector<int> path;
int grade[maxn]; // remember
bool vis[maxm];
void dfs(int v) {
        while(!adj[v].empty()){
                 ii x=adj[v].back();
                 adj[v].pop back();
                 if(vis[x.second])continue;
                 vis[x.second]=true;
                 dfs(x.first);
        path.push_back(v+1);
// check if end is equal to start
void eulerian_path(int n, int m, int s){
        for (int i=0; i < n; ++i) {</pre>
                 if(grade[i]%2!=0){
                         cout << "IMPOSSIBLE\n";</pre>
                         return:
        dfs(s):
        if (sz (path) !=m+1) cout << "IMPOSSIBLE\n";</pre>
        else print(path);
```

6.14 Floyd Warshall

```
}
```

6.15 Kosaraju

```
const int maxn = 1e5+5;
// construir el grafo inverso
// remember adj[a]->b, adj_rev[b]->a
vi adj_rev[maxn],adj[maxn];
bool used[maxn];
int idx[maxn]; // componente de cada nodo
vi order, comp;
// O(n+m)
void dfs1(int v){
        used[v]=true;
        for(int u:adj[v])
                 if(!used[u])dfs1(u);
        order.push back(v);
void dfs2(int v){
        used[v]=true;
        comp.push back(v);
        for(int u:adj_rev[v])
                 if(!used[u])dfs2(u);
// returna el numero de componentes
int init(int n){
        for (int i=0; i < n; ++i) if (!used[i]) dfs1(i);</pre>
        for (int i=0; i < n; ++i) used[i] = false;</pre>
        reverse (all (order));
        int i=0;
        for(int v:order) {
                 if(!used[v]){
                         dfs2(v):
                         for(int u:comp)idx[u]=j;
                         comp.clear();
                          j++;
        return j;
```

6.16 kruskal

```
// peso, nodo a, node b
vector<tuple<int,int,int>> edges;
struct DSU{};
// O(m*log(m))
```

6.17 Prim

```
// O(E * log V)
// check: primer parametro de prim
// check: cuando no hay mst
vector<vii> adi;
vi tomado;
priority queue<ii> pq;
void process(int u) {
        tomado[u] = 1;
        for (auto &[v, w] : adj[u]){
                if (!tomado[v]) pq.emplace(-w, -v);
int prim(int v, int n){
        tomado.assign(n, 0);
        process(0);
        int mst_costo = 0, tomados = 0;
        while (!pq.empty()) {
                auto [w, u] = pq.top(); pq.pop();
w = -w; u = -u;
                if (tomado[u]) continue;
                mst costo += w;
                process(u);
                tomados++;
                if (tomados == n-1) break;
        return mst costo;
```

6.18 Puentes y Puntos

```
const int maxn = 1e5+5;
vector<bool> vis;
vi adj[maxn]; // undirected
vi tin, low;
int timer;
void dfs(int u,int p=-1) {
```

```
6.19 Shortest Path Faster Algorithm
```

```
vis[u]=true;
        tin[u]=low[u]=timer++;
        int children=0;
        for(int v:adj[u]){
                 if (v==p) continue;
                 if (vis[v]) low[u] = min(low[u], tin[v]);
                 else{
                         dfs(v,u);
                         low[u]=min(low[u], low[v]);
                         if(low[v]>tin[u]); // u-v puente
                         if(low[v]>=tin[u] && p!=-1); // u
                              punto de articulacion
                          ++children;
        if (p==-1 && children>1); // u punto de
            articulacion
// O(n+m)
void init(int n) {
        timer=0;
        vis.assign(n, false);
        tin.assign(n,-1); low.assign(n,-1);
        for (int i=0; i < n; ++i) {</pre>
                 if(!vis[i])dfs(i);
```

6.19 Shortest Path Faster Algorithm

```
//Algoritmo mas rapido de ruta minima
//O(\tilde{V}*E) peor caso, O(E) en promedio.
bool spfa(vector<vii> &adj, vector<int> &d, int s, int n)
        d.assign(n, INF);
        vector<int> cnt(n, 0);
        vector<bool> inqueue(n, false);
        queue<int> q;
        d[s] = 0;
        q.push(s);
        inqueue[s] = true;
        while (!a.emptv()) {
                int v = q.front();
                q.pop();
                inqueue[v] = false;
                for (auto& [to, len] : adj[v]) {
                         if (d[v] + len < d[to]) {
                                 d[to] = d[v] + len;
                                 if (!inqueue[to]) {
                                         q.push(to);
```

6.20 Tarjan

```
// O(n+m) build graph in g[] and callt()
const int maxn = 2e5 + 5;
vi low, num, comp, q[maxn];
int scc, timer;
stack<int> st;
void t jn (int u) {
        low[u] = num[u] = timer++; st.push(u); int v;
        for(int v: q[u]) {
                 if(num[v] == -1) tjn(v);
                 if(comp[v]==-1) low[u] = min(low[u], low[
                    v]);
        if(low[u] == num[u]) {
                 do\{ v = st.top(); st.pop(); comp[v]=scc;
                 }while(u != v);
                 ++scc;
void callt(int n) {
        timer = scc = 0:
        num = low = comp = vector\langle int \rangle (n, -1);
        for(int i = 0; i<n; i++) if(num[i]==-1) tjn(i);</pre>
```

7 Matematicas

7.1 Bruijn sequences

```
// Given alphabet [0, k) constructs a cyclic string
// of length k^n that contains every length n string as
    substr.
vi deBruijnSeq(int k, int n, int lim) {
```

```
if (k == 1) return {0};
   vi seq, aux(n + 1);
   int cont = 0;
   function<void(int,int)> gen = [&](int t, int p) {
           if (t > n) {
                   if (n % p == 0) for(int i = 1; i

                           if (cont >= lim) return;
                           seq.push back(aux[i]);
                           cont++;
           } else {
                   aux[t] = aux[t - p];
                   qen(t + 1, p);
                   while (++aux[t] < k)
                           if (cont >= lim) return;
                           gen(t + 1, t);
   } ;
   gen(1, 1);
// for (int i = 0; i < n-1; i++) seq.push back(0);
   return seq;
```

7.2 Convoluciones

```
//c[k] = sumatoria (i&j = k, += a[i]*b[j]) AND
   convolution
//c[k] = sumatoria (i|j = k, += a[i]*b[j]) OR
   convolution
// c[k] = sumatoria (i^j = k, += a[i]*b[j]) XOR
   convolution
// c[k] = sumatoria (qcd(i, j) = k, += a[i]*b[j]) GCD
   convolution
// c[k] = sumatoria (lcm(i,j) = k, += a[i]*b[j]) LCM
   convolution
// todas las funciones tienen operaciones con modulo
// si es indexando en 1 entonces se pone un cero al
   principio y listo
template<int MOD> struct mint {
        static const int mod = MOD;
        explicit operator int() const { return v; }
        mint():v(0) {}
        mint(ll v):v(int(v%MOD)) { v += (v<0)*MOD; }
        void build(l1 v) { v = int(v \cdot MOD), v + = (v \cdot 0) \cdot MOD;
        mint& operator+=(mint o) {
                if ((v += o.v) >= MOD) v -= MOD;
                return *this; }
        mint& operator-=(mint o) {
                if ((v -= o.v) < 0) v += MOD;
```

```
return *this: }
        mint& operator *= (mint o) {
                v = int((11)v*o.v%MOD); return *this; }
        friend mint pow(mint a, ll p) { assert(p >= 0);
                return p==0?1:pow(a*a,p/2)*(p&1?a:1); }
        friend mint inv(mint a) { assert(a.v != 0);
           return pow(a, MOD-2); }
        friend mint operator+(mint a, mint b) { return a
        friend mint operator-(mint a, mint b) { return a
        friend mint operator*(mint a, mint b) { return a
           \star = b;
using mi = mint<998244353>;
template<typename T>
void SubsetZetaTransform(vector<T>& v) {
        const int n = v.size(); // n must be a power of 2
        for (int j = 1; j < n; j <<= 1) {</pre>
                for (int i = 0; i < n; i++)
                        if (i & j) v[i] += v[i ^ j];
template<tvpename T>
void SubsetMobiusTransform(vector<T>& v) {
        const int n = v.size(); // n must be a power of 2
        for (int j = 1; j < n; j <<= 1) {</pre>
                for (int i = 0; i < n; i++)
                        if (i & j) v[i] -= v[i ^ j];
template<typename T>
void SupersetZetaTransform(vector<T>& v) {
        const int n = v.size(); // n must be a power of 2
        for (int j = 1; j < n; j <<= 1) {
                for (int i = 0; i < n; i++)
                        if (i & j) v[i ^ j] += v[i];
template<typename T>
void SupersetMobiusTransform(vector<T>& v) {
        const int n = v.size(); // n must be a power of 2
        for (int j = 1; j < n; j <<= 1) {
                for (int i = 0; i < n; i++)
                        if (i & j) v[i ^ j] -= v[i];
vector<int> PrimeEnumerate(int n) {
        vector<int> P; vector<bool> B(n + 1, 1);
        for (int i = 2; i <= n; i++)
                if (B[i]) P.push_back(i);
```

```
for (int j : P) { if (i * j > n) break; B
                   [i * j] = 0; if (i % j == 0) break; }
        return P;
template<tvpename T>
void DivisorZetaTransform(vector<T>& v) {
        const int n = sz(v) - 1;
        for (int p : PrimeEnumerate(n)) {
                for (int i = 1; i * p <= n; i++)
                        v[i * p] += v[i];
template<typename T>
void DivisorMobiusTransform(vector<T>& v) {
        const int n = sz(v) - 1;
        for (int p : PrimeEnumerate(n)) {
                for (int i = n / p; i; i--)
                        v[i * p] = v[i];
template<typename T>
void MultipleZetaTransform(vector<T>& v) {
        const int n = sz(v) - 1;
        for (int p : PrimeEnumerate(n)) {
                for (int i = n / p; i; i--)
                        v[i] += v[i * p];
template<typename T>
void MultipleMobiusTransform(vector<T>& v) {
        const int n = sz(v) - 1;
        for (int p : PrimeEnumerate(n)) {
                for (int i = 1; i * p <= n; i++)
                        v[i] = v[i * p];
template<typename T>
vector<T> AndConvolution(vector<T> A, vector<T> B) {
        SupersetZetaTransform(A);
        SupersetZetaTransform(B);
        for (int i = 0; i < sz(A); i++) A[i] *= B[i];</pre>
        SupersetMobiusTransform(A);
        return A;
template<typename T>
vector<T> OrConvolution(vector<T> A, vector<T> B) {
        SubsetZetaTransform(A);
        SubsetZetaTransform(B);
        for (int i = 0; i < sz(A); i++) A[i] *= B[i];
        SubsetMobiusTransform(A);
```

```
return A:
template<typename T>
vector<T> GCDConvolution(vector<T> A, vector<T> B) {
        MultipleZetaTransform(A);
        MultipleZetaTransform(B);
        for (int i = 0; i < sz(A); i++) A[i] *= B[i];</pre>
        MultipleMobiusTransform(A);
        return A:
template<typename T>
vector<T> LCMConvolution(vector<T> A, vector<T> B) {
        DivisorZetaTransform(A);
        DivisorZetaTransform(B);
        for (int i = 0; i < sz(A); i++) A[i] *= B[i];</pre>
        DivisorMobiusTransform(A);
        return A;
template<typename T>
vector<T> XORConvolution(vector<T> A, vector<T> B) {
        const int n = sz(A);
        auto FWT = [\&] (vector < T > \& v) {
                 for (int len = 1; len < n; len <<= 1) {</pre>
                          for (int i = 0; i < n; i += (len</pre>
                             << 1)) {
                                  for (int j = 0; j < len;
                                      j++) {
                                           T u(v[i + j]);
                                           T w(v[i + j + len
                                              ]);
                                           v[i + j] = u + w;
                                                v[i + j + len
                                               1 = u - w;
        FWT(A); FWT(B);
        for (int i = 0; i < n; i++) A[i] *= B[i];</pre>
        FWT (A);
        T inv_n(inv(T(n)));
        for (int i = 0; i < n; i++) A[i] *= inv n;</pre>
        return A;
void main2(){
        int n;
        cin>>n;
        vector < mi > a(1 << n), b(1 << n);
        for (int x, i=0; i < sz(a); ++i) {cin>>x; a[i].build(x);}
        for (int x, i=0; i < sz(b); ++i) {cin>>x; b[i].build(x);}
        vector<mi> ans=XORConvolution(a,b);
        for(int i=0;i<sz(ans);++i)cout<<ans[i].v<<" ";</pre>
```

7.3 Criba

```
// O(n*log(log(n)))
vector<ll> primes;
vector<bool> is prime;
void criba(ll n) {
        is prime.assign(n+1,true);
        for(ll i=2;i<=n;++i){
                 if(!is prime[i])continue;
                 for(ll j=i*i; j<=n; j+=i) is_prime[j]=false;</pre>
                primes.push back(i);
// 0(sqrt(n)/log(sqrt(n)))
void fact(ll n, map<ll, int>& f) {
        for(int i=0;i<sz(primes) && primes[i]*primes[i]<=</pre>
           n; ++i)
                 while (n%primes[i] == 011) f[primes[i]] ++, n/=
                    primes[i];
        if(n>1)f[n]++;
// O((R-L+1)log(log(R))+sgrt(R)log(log(sgrt(R)))
// R-L+1 <= 1e7, R <= 1e14
void segmentedSieve(long long L, long long R) {
    // generate all primes up to sqrt(R)
    long long lim = sqrt(R) + 3;
    vector<bool> mark(lim + 1, false);
    vector<long long> primes;
    for (long long i = 2; i \le \lim; ++i) {
        if (!mark[i]) {
            primes.emplace_back(i);
            for (long long j = i * i; j <= lim; j += i)
                mark[i] = true;
    vector<bool> isPrime(R - L + 1, true);
    for (long long i : primes)
        for (long long j = \max(i * i, (L + i - 1) / i * i)
           ); j <= R; j += i)
            isPrime[j - L] = false;
    if (L == 1)
        isPrime[0] = false;
```

7.4 Chinese Remainder Theorem

```
/// Complexity: |N|*log(|N|)
```

```
/// Tested: Not yet.
/// finds a suitable x that meets: x is congruent to a_i
   mod n i
/** Works for non-coprime moduli.
Returns {-1,-1} if solution does not exist or input is
    invalid.
Otherwise, returns \{x,L\}, where x is the solution unique
   to mod L = LCM \ of \ mods
pll crt(vl A, vl M) {
        11 n = A.size(), a1 = A[0], m1 = M[0];
        for(ll i = 1; i < n; i++) {</pre>
                11 \ a2 = A[i], \ m2 = M[i];
                11 g = _{gcd(m1, m2)};
                if(a1 \% g != a2 \% g) return {-1,-1};
                11 p, q;
                extended_euclid(m1/g, m2/g, p, g);
                11 \mod = m1 / q * m2;
                q %= mod; p %= mod;
                11 x = ((111*(a1*mod)*(m2/q))*mod*q + (1
                   11*(a2*mod)*(m1/q))*mod*p) % mod; //
                    if WA there is overflow
                a1 = x;
                if (a1 < 0) a1 += mod;
                m1 = mod;
        return {a1, m1};
```

7.5 Divisors

```
// d(n) = (a1+1)*(a2+1)*...*(ak+1)
ll numDiv(map<ll, ll>& f) {
        ll ans=1;
        for(auto [_,pot]:f)ans=mul(ans, (pot+111));
        return ans;
// sigma(n) = (p1^(a1+1)-1)/(p1-1) * (p2^(a2+1)-1)/(p2-1)
    * ... * (pk^{(ak+1)-1)}/(pk-1)
// suma divisores a la xth potencia
11 sumDiv(map<11, 11>& f) {
        11 ans=1, potencia=1;
        for(auto [num, pot]:f) {
                11 p=binpow(num, (pot+111)*potencia)-111;
                ans=mul(ans, mul(p, inv(num-111)));
        return ans;
ll productDiv(map<ll, ll>& f) {
        11 pi=1,res=1;
        for(auto [num, pot]:f) {
                11 p=binpow(num, pot*(pot+111)/211);
```

7.6 Ecuaciones Diofanticas

```
// O(log(n))
ll extended_euclid(ll a, ll b, ll &x, ll &y) {
        11 xx = y = 0;
        11 yy = x = 1;
        while (b) {
                11 q = a / b;
                11 t = b; b = a % b; a = t;
                t = xx; xx = x - q * xx; x = t;
                t = yy; yy = y - q * yy; y = t;
        return a;
// a*x+b*y=c. returns valid x and y if possible.
// all solutions are of the form (x0 + k * b / q, y0 - k
   *b/q
bool find_any_solution (ll a, ll b, ll c, ll &x0, ll &y0,
    ll &g) {
        if (a == 0 and b == 0) {
                if (c) return false;
                x0 = y0 = q = 0;
                return true;
        g = extended euclid (abs(a), abs(b), x0, y0);
        if (c % q != 0) return false;
        x0 \star = c / q;
        y0 \star = c / q;
        if (a < 0) x0 *= -1;
        if (b < 0) v0 \star = -1;
        return true;
void shift solution(ll &x, ll &y, ll a, ll b, ll cnt) {
        x += cnt * b;
        y -= cnt * a;
// returns the number of solutions where x is in the
   range[minx, maxx] and y is in the range[miny, maxy]
11 find_all_solutions(ll a, ll b, ll c, ll minx, ll maxx,
    11 miny, 11 maxy) {
        ll x, y, q;
        if (find_any_solution(a, b, c, x, y, g) == 0)
           return 0;
        if (a == 0 and b == 0) {
```

```
assert(c == 0);
                return 1LL * (maxx - minx + 1) * (maxy -
                    minv + 1):
        if (a == 0) {
                return (maxx - minx + 1) * (miny <= c / b
                     and c / b <= maxy);
        if (b == 0) {
                return (maxy - miny + 1) * (minx <= c / a</pre>
                     and c / a \le maxx);
        a /= q, b /= q;
        ll sign a = a > 0 ? +1 : -1;
        ll sign b = b > 0 ? +1 : -1;
        shift_solution(x, y, a, b, (minx - x) / b);
        if (x < minx) shift solution(x, y, a, b, sign b);</pre>
        if (x > maxx) return 0;
        11 1x1 = x;
        shift_solution(x, y, a, b, (maxx - x) / b);
        if (x > maxx) shift solution (x, y, a, b, -sign b)
           );
        11 rx1 = x;
        shift_solution(x, y, a, b, -(miny - y) / a);
        if (y < miny) shift_solution (x, y, a, b, -sign_a</pre>
        if (y > maxy) return 0;
        11 \ 1x2 = x;
        shift_solution(x, y, a, b, -(maxy - y) / a);
        if (y > maxy) shift_solution(x, y, a, b, sign_a);
        11 \text{ rx2} = x;
        if (1x2 > rx2) swap (1x2, rx2);
        11 lx = max(lx1, lx2);
        11 rx = min(rx1, rx2);
        if (1x > rx) return 0;
        return (rx - lx) / abs(b) + 1;
///finds the first k \mid x + b * k / qcd(a, b) >= val
ll greater or equal than(ll a, ll b, ll x, ll val, ll g)
        1d qot = 1.0 * (val - x) * q / b;
        return b > 0 ? ceil(got) : floor(got);
```

7.7 Exponenciacion binaria

```
n >>= 1;
}
return res % m;
}
```

7.8 Exponenciacion matricial

```
struct matrix {
        int r, c; vector<vl> m;
        matrix(int r, int c, const vector<vl> &m) : r(r),
             c(c), m(m) {}
        matrix operator * (const matrix &b) {
                matrix ans(this->r, b.c, vector<vl>(this
                    ->r, vl(b.c, 0)));
                 for (int i = 0; i<this->r; i++) {
                         for (int k = 0; k<b.r; k++) {
                                 if (m[i][k] == 0)
                                     continue;
                                 for (int j = 0; j<b.c; j
                                     ++) {
                                          ans.m[i][i] +=
                                             mod(m[i][k].
                                             MOD) * mod(b.m)
                                             [k][j], MOD);
                                          ans.m[i][j] = mod
                                              (ans.m[i][j],
                                             MOD);
                 return ans;
};
matrix pow(matrix &b, ll p) {
        matrix ans(b.r, b.c, vector<vl>(b.r, vl(b.c, 0)))
        for (int i = 0; i < b.r; i++) ans.m[i][i] = 1;</pre>
        while (p) {
                 if (p&1) {
                         ans = ans*b;
                 b = b*b;
                p >>= 1;
        return ans;
```

7.9 Fast Fourier Transform

```
///Complexity: O(N log N)
```

```
///tested: https://codeforces.com/gym/104373/problem/E
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define sz (v) ((int)v.size())
#define trav(a, x) for(auto& a : x)
#define all(v) v.begin(), v.end()
typedef vector<ll> vl;
typedef vector<int> vi;
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
        int n = sz(a), L = 31 - builtin clz(n);
        static vector<complex<long double>> R(2, 1);
        static vector<C> rt(2, 1); // (^ 10% faster if
        for (static int k = 2; k < n; k \neq 2) {
                R.resize(n); rt.resize(n);
                auto x = polar(1.0L, acos(-1.0L) / k);
                rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2]
                   * x : R[i/2];
        vi rev(n);
        rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) /
        rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
        for (int k = 1; k < n; k *= 2)
                for (int i = 0; i < n; i += 2 * k) rep(j
                   , 0, k) {
                        // C z = rt[j+k] * a[i+j+k]; //
                            (25% faster if hand-rolled)
                           /// include-line
                        auto x = (double *) & rt[j+k], y =
                            (double *) &a[i+j+k];
                            / exclude-line
                        C z(x[0]*y[0] - x[1]*y[1], x[0]*y
                           [1] + x[1] * y[0]);
                           / exclude-line
                        a[i + j + k] = a[i + j] - z;
                        a[i + j] += z;
vl conv(const vl& a, const vl& b) {
        if (a.empty() || b.empty()) return {};
        vd res(sz(a) + sz(b) - 1);
        int L = 32 - \underline{\text{builtin\_clz}(\text{sz(res)})}, n = 1 << L;
        vector<C> in(n), out(n);
        copy(all(a), begin(in));
        rep(i, 0, sz(b)) in[i].imag(b[i]);
        fft(in);
        trav(x, in) x *= x;
        fft (out);
        vector<ll> resp(sz(res));
        rep(i, 0, sz(res)) resp[i] = round(imag(out[i]) /
```

```
(4.0 * n));
return resp;
}
```

7.10 Fibonacci Fast Doubling

```
// O(log n) muy rapido
// F(2n+1) = F(n)^2 + F(n+1)^2
// F(2n) = F(n+1)^2 - F(n-1)^2
pair<int, int> fib (int n) {
    if (n == 0)
        return {0, 1};

    auto p = fib(n >> 1);
    int c = p.first * (2 * p.second - p.first);
    int d = p.first * p.first + p.second * p.second;
    if (n & 1)
        return {d, c + d};
    else
        return {c, d};
}
```

7.11 Fraction

```
typedef __int128 T;
struct Fraction{
        T num, den;
        Fraction():num(0), den(1){}
        Fraction (T n): num(n), den(1) \{ \}
        Fraction(T n,T d):num(n),den(d) {reduce();}
        void reduce(){
                 // assert (den!=0);
                 T gcd=__gcd(num, den); // <-</pre>
                 num/=gcd, den/=gcd;
                 if (den<0) num=-num, den=-den;</pre>
        Fraction fractional_part() const{ // x - floor(x)
                 Fraction fp=Fraction(num%den,den);
                 if (fp<Fraction(0)) fp+=Fraction(1);</pre>
                 return fp;
        T compare (Fraction f) const { return num*f.den-den*f
        Fraction operator + (const Fraction& f) {return
            Fraction(num*f.den+den*f.num,den*f.den);}
        Fraction operator - (const Fraction& f) {return
            Fraction(num*f.den-den*f.num,den*f.den);}
        Fraction operator * (const Fraction& f) {
                 Fraction a=Fraction(num, f.den);
                 Fraction b=Fraction(f.num,den);
                 return Fraction(a.num*b.num,a.den*b.den);
```

```
Fraction operator / (const Fraction& f) {return *
            this*Fraction(f.den,f.num);}
        Fraction operator += (const Fraction& f) {return *
            this=*this+f;}
        Fraction operator -= (const Fraction& f) {return *
            this=*this-f;}
        Fraction operator *= (const Fraction& f) {return *
            this=*this*f;}
        Fraction operator /= (const Fraction& f) {return *
            this=*this/f;}
        bool operator == (const Fraction& f) const{return
            compare (f) == 0;
        bool operator != (const Fraction& f) const{return
            compare(f)!=0;}
        bool operator >= (const Fraction& f) const{return
            compare (f) \ge 0;
        bool operator <= (const Fraction& f) const{return</pre>
            compare (f) \le 0;
        bool operator > (const Fraction& f)const{return
            compare (f) > 0;
        bool operator < (const Fraction& f)const{return</pre>
            compare (f) < 0;
Fraction operator - (const Fraction& f) {return Fraction(-
   f.num, f.den);}
ostream& operator << (ostream& os, const Fraction& f) {</pre>
   return os<<"("<<(11) f.num<<"/"<<(11) f.den<<")";}
```

7.12 Freivalds algorithm

7.13 Gauss Jordan

```
const int EPS = 1;
```

```
int gauss (vector<vector<int>> a, vector<int> &ans) {
  int n = a.size(), m = a[0].size()-1;
  vector\langle int \rangle where (m, -1);
  for(int col = 0, row = 0; col < m && row < n; ++col) {</pre>
    int sel = row;
    for(int i = row; i < n; ++i)
      if(abs(a[i][col]) > abs(a[sel][col])) sel = i;
    if(abs(a[sel][col]) < EPS) continue;</pre>
    swap(a[sel], a[row]);
    where [col] = row;
    for(int i = 0; i < n; ++i)</pre>
      if(i != row) {
        int c = divide(a[i][col], a[row][col]); ///
            precalc inverses
        for(int j = col; j <= m; ++j)
          a[i][j] = sbt(a[i][j], mul(a[row][j], c));
    ++row;
  ans.assign(m, 0);
  for (int i = 0; i < m; ++i)
    if (where [i] != -1) ans [i] = divide(a[where <math>[i]][m], a
        where[i]][i]);
  for(int i = 0; i < n; ++i) {</pre>
    int sum = 0;
    for (int j = 0; j < m; ++j)
      sum = add(sum, mul(ans[j], a[i][j]));
    if(sum != a[i][m]) return 0;
  for (int i = 0; i < m; ++i)
    if(where[i] == -1) return -1; /// infinite solutions
  return 1;
```

7.14 Gauss Jordan mod 2

```
// O(min(n, m)*n*m)
int gauss (vector < bitset<N> > &a, int n, int m, bitset<</pre>
   N > \& ans)  {
        vector<int> where (m, -1);
        for (int col=0, row=0; col<m && row<n; ++col) {</pre>
                 for (int i=row; i<n; ++i)
                         if (a[i][col])
                                  swap (a[i], a[row]);
                                  break:
                 if (! a[row][col])
                         continue;
                 where [col] = row;
                 for (int i=0; i<n; ++i)
                         if (i != row && a[i][col])
                                  a[i] ^= a[row];
                 ++row;
```

7.15 GCD y LCM

7.16 Integral Definida

```
const int steps = 1e6; // %2==0
double f(double x);
double simpson(double a, double b) {
    double h=(b-a)/steps;
    double s=f(a)+f(b);
    for(int i=1;i<=steps-1;i++) {
        double x=a+h*i;
        s+=f(x)*((i&1)?4:2);
}</pre>
```

```
s*=h/3;
return s;
}
```

7.17 Inverso modular

```
11 mod(ll a, ll m) {
        return ((a%m) + m) % m;
ll modInverse(ll b, ll m) {
        11 x, y;
        ll d = extEuclid(b, m, x, y); //obtiene b*x + m*
            v == d
        if (d != 1) return -1;
                                         //indica error
        // b*x + m*y == 1, ahora aplicamos (mod m) para
           obtener\ b*x == 1 \pmod{m}
        return mod(x, m);
// Otra forma
// O(log MOD)
ll inv (ll a) {
        return binpow(a, MOD-2, MOD);
//Modulo constante
inv[1] = 1;
for (int i = 2; i < p; ++i)
        inv[i] = (p - (p / i) * inv[p % i] % p) % p;
```

7.18 Lagrange

```
const int N = 1e6;
int f[N], fr[N];
void initC() {
  f[0] = 1;
  for(int i=1; i<N; i++) f[i] = mul(f[i-1], i);</pre>
  fr[N-1] = inv(f[N-1]);
  for(int i=N-1; i>=1; --i) fr[i-1] = mul(fr[i], i);
// mint C(int n, int k) { return k<0 || k>n ? 0 : f[n] *
   fr[k] * fr[n-k]; }
struct LagrangePol {
  int n;
  vi y, den, l, r;
  LagrangePol(vector<int> f): n(sz(f)), y(f), den(n), l(n
     ), r(n) \{ / / f[i] := f(i) \}
    // Calcula interpol. pol P in O(n) := deg(P) = sz(v)
       - 1
    initC();
    for (int i = 0; i<n; i++) {
      den[i] = mul(fr[n-1-i], fr[i]);
```

```
if((n-1-i) \& 1) den[i] = mod(-den[i]);
  int eval(int x) { // Evaluate LagrangePoly P(x) in O(n)
   1[0] = r[n-1] = 1;
    for (int i = 1; i<n; i++) l[i] = mul(l[i-1], mod(x -</pre>
    for (int i=n-2; i>=0; --i) r[i] = mul(r[i+1], mod(x -
       i - 1));
    int ans = 0;
    for (int i = 0; i<n; i++) ans = add(ans, mul(mul(l[i</pre>
       ], r[i]), mul(v[i], den[i])));
    return ans;
};
// Para Xs que no sean de [0, N]
/// Complexity: 0(|N|^2)
/// Tested: https://tinyurl.com/v23sh38k
vector<lf> X, F;
lf f(lf x) {
 lf answer = 0;
  for (int i = 0; i < sz(X); i++) {
    lf prod = F[i];
    for(int j = 0; j < sz(X); j++) {
      if(i == j) continue;
      prod = mul(prod, divide(sbt(x, X[j]), sbt(X[i], X[j]))
         ])));
    answer = add(answer, prod);
  return answer;
//given y=f(x) for x [0, degree]
vi interpolation( vi &y ) {
  int n = sz(v);
  vi u = v, ans(n), sum(n);
  ans[0] = u[0], sum[0] = 1;
  for ( int i = 1; i < n; ++i )
    int inv = binpow(i, MOD - 2);
    for ( int j = n - 1; j >= i; --j )
      u[\dot{j}] = \tilde{1}LL * (u[\dot{j}] - u[\dot{j} - 1] + MOD) * inv % MOD;
    for( int j = i; j > 0; --j )
      sum[j] = (sum[j - 1] - 1LL * (i - 1) * sum[j] % MOD
          + MOD) % MOD;
      ans[j] = (ans[j] + 1LL * sum[j] * u[i]) % MOD;
    sum[0] = 1LL * (i - 1) * (MOD - sum[0]) % MOD;
    ans[0] = (ans[0] + 1LL * sum[0] * u[i]) % MOD;
  return ans:
```

7.19 Logaritmo Discreto

```
// O(sgrt(m))
// Returns minimum x for which a \hat{x} \% m = b \% m.
int solve(int a, int b, int m) {
        // if (a == 0) return b == 0 ? 1 : -1; Casos 0^x
        a %= m, b %= m;
        int k = 1, add = 0, q;
        while ((g = gcd(a, m)) > 1)  {
                if (b == k)
                         return add;
                if (b % q)
                         return -1;
                b /= q, m /= q, ++add;
                k = (\tilde{k} * 111 * a / g) % m;
        int n = sqrt(m) + 1;
        int an = 1;
        for (int i = 0; i < n; ++i)
                 an = (an * 111 * a) % m;
        unordered_map<int, int> vals;
        for (int q = 0, cur = b; q \le n; ++q) {
                vals[cur] = q;
                cur = (cur * 111 * a) % m;
        for (int p = 1, cur = k; p \le n; ++p) {
                 cur = (cur * 111 * an) % m;
                if (vals.count(cur)) {
                         int ans = n * p - vals[cur] + add
                         return ans;
        return -1;
```

7.20 Miller Rabin

```
return ret:
11 fpow (ll a, ll b, ll mod) {
        ll ans = 1;
        for (; b; b >>= 1, a = mul(a, a, mod))
                if (b & 1)
                         ans = mul(ans, a, mod);
        return ans:
bool witness (ll a, ll s, ll d, ll n) {
        ll x = fpow(a, d, n);
        if (x == 1 \mid \mid x == n - 1) return false;
        for (int i = 0; i < s - 1; i++) {
                x = mul(x, x, n);
                 if (x == 1) return true;
                 if (x == n - 1) return false;
        return true;
11 \text{ test}[] = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 0\};
bool is prime (ll n) {
        if (n < 2) return false;</pre>
        if (n == 2) return true;
        if (n % 2 == 0) return false;
        11 d = n - 1, s = 0;
        while (d \% 2 == 0) ++s, d /= 2;
        for (int i = 0; test[i] && test[i] < n; ++i)</pre>
                 if (witness(test[i], s, d, n))
                         return false;
        return true;
```

7.21 Miller Rabin Probabilistico

```
using u64 = uint64 t;
using u128 = __uint128_t;
u64 binpower(u64 base, u64 e, u64 mod) {
        u64 \text{ result} = 1;
        base %= mod;
        while (e) {
                if (e & 1)
                         result = (u128) result * base %
                            mod:
                base = (u128)base * base % mod;
                e >>= 1:
        return result;
bool check_composite(u64 n, u64 a, u64 d, int s) {
        u64 x = binpower(a, d, n);
        if (x == 1 | | x == n - 1)
                return false;
```

```
for (int r = 1; r < s; r++) {
                x = (u128)x * x % n;
                if (x == n - 1)
                        return false;
        return true;
};
bool MillerRabin(u64 n, int iter=5) { // returns true if
   n is probably prime, else returns false.
        if (n < 4)
                return n == 2 || n == 3;
        int s = 0;
        u64 d = n - 1;
        while ((d & 1) == 0) {
                d >>= 1;
                s++;
        for (int i = 0; i < iter; i++) {
                int a = 2 + rand() % (n - 3);
                if (check_composite(n, a, d, s))
                        return false;
        return true;
```

7.22 Mobius

```
// 1 if n is 1
// 0 if n has a squared prime factor
// (-1)^k if n is a product of k distinct prime factors
const int N = 1e6+1;
int mob[N];
void mobius() {
        mob[1] = 1;
        for (int i = 2; i < N; i++) {
                mob[i]--;
                for (int j = i + i; j < N; j += i) {
                        mob[j] -= mob[i];
// to count coprime pairs
// ans=n*(n-1)/2
// for(int x:a) {
                for(int y:divisors[a])cnt[y]++;
// ans+= (mobius[v]*cnt[v]*(cnt[v]-1))/2
```

7.23 Number Theoretic Transform

```
const int N = 1 << 20;
const int mod = 469762049; //998244353
const int root = 3;
int lim, rev[N], w[N], wn[N], inv_lim;
void reduce(int &x) { x = (x + mod) % mod; }
int POW(int x, int y, int ans = 1) {
         for (; y; y >>= 1, x = (long long) x * x % mod)
            if (v \& 1) ans = (long long) ans * x % mod;
         return ans:
void precompute(int len) {
         \lim = wn[0] = 1; int s = -1;
         while (lim < len) lim <<= 1, ++s;
         for (int i = 0; i < lim; ++i) rev[i] = rev[i >>
            1 >> 1 | (i & 1) << s;
         const int g = POW(root, (mod - 1) / lim);
         inv_lim = POW(lim, mod - 2);
         for (int i = 1; i < \lim; ++i) wn[i] = (long long)
             wn[i-1] * q % mod;
void ntt(vector<int> &a, int typ) {
         for (int i = 0; i < lim; ++i) if (i < rev[i])</pre>
            swap(a[i], a[rev[i]]);
         for (int i = 1; i < lim; i <<= 1) {</pre>
                  for (int j = 0, t = lim / i / 2; j < i;</pre>
                     ++ \dot{} \dot{}
                 for (int j = 0; j < lim; j += i << 1) {
                          for (int k = 0; k < i; ++k) {
                                   const int x = a[k + j], y
                                        = (long long) a[k + j]
                                        + i] * w[k] % mod;
                                   reduce(a[k + j] += y -
                                       mod), reduce(a[k + j +
                                        i] = x - y);
         if (!typ) {
                  reverse(a.begin() + 1, a.begin() + lim);
                 for (int i = 0; i < lim; ++i) a[i] = (</pre>
                     long long) a[i] * inv lim % mod;
vector<int> multiply(vector<int> &f, vector<int> &q) {
         int n=(int) f.size() + (int) g.size() - 1;
         precompute(n);
         vector<int> a = f, b = q;
         a.resize(lim); b.resize(lim);
         ntt(a, 1), ntt(b, 1);
         for (int i = 0; i < \lim; ++i) a[i] = (long long)
            a[i] * b[i] % mod;
         ntt(a, 0);
         a.resize(n + 1):
         return a;
```

7.24 Pollard Rho

```
//O(n^{(1/4)}) (?)
ll pollard_rho(ll n, ll c) {
        11 x = 2, y = 2, i = 1, k = 2, d;
        while (true) {
                 x = (mul(x, x, n) + c);
                 if (x \ge n) x -= n;
                 d = \underline{\hspace{0.2cm}} gcd(x - y, n);
                 if (d > 1) return d;
                 if (++i == k) v = x, k <<= 1;
        return n;
void factorize(ll n, vector<ll> &f) {
        if (n == 1) return;
        if (is_prime(n)) {
                 f.push back(n);
                 return;
        ild = n;
        for (int i = 2; d == n; i++)
                 d = pollard rho(n, i);
        factorize(d, f);
        factorize (n/d, f);
```

7.25 Simplex

```
// Maximizar c1*x1 + c2*x2 + c3*x3 ...
// Restricciones a11*x1 + a12*x2 <= b1, a22*x2 + a23*x3
   <= b2 ...
// Retorna valor optimo y valores de las variables
// O(c^2*b), O(c*b) - variables c, restricciones b
typedef double lf;
const lf EPS = 1e-9;
struct Simplex{
        vector<vector<lf>>> A;
        vector<lf> B,C;
        vector<int> X,Y;
        lf z;
        int n,m;
        Simplex(vector<vector<lf>> a, vector<lf>> b,
            vector<lf> _c) {
                 A= a; B= b; C= c;
                 n=B.size(); m=C.size(); z=0.;
                 X=vector<int>(m);Y=vector<int>(n);
                 for (int i=0; i<m; ++i) X[i]=i;</pre>
                 for (int i=0; i<n; ++i) Y[i]=i+m;</pre>
```

```
void pivot(int x,int y) {
                   swap(X[v],Y[x]);
                   B[x]/=A[x][v];
                   for (int i=0; i<m; ++i) if (i!=y) A[x][i]/=A[x
                       ][y];
                   A[x][\overline{y}]=1/A[x][y];
                   for (int i=0; i<n; ++i) if (i!=x&&abs(A[i][y])</pre>
                       >EPS) {
                            B[i] -= A[i][y] *B[x];
                            for (int j=0; j < m; ++ j) if (j!=y) A[i][
                                 j] -= A[i][y] *A[x][j];
                            A[i][y] = -A[i][y] * A[x][y];
                   z+=C[v]*B[x];
                   for (int i=0; i<m; ++i) if (i!=y) C[i] -= C[y] *A[</pre>
                       x][i];
                   C[y] = -C[y] *A[x][y];
         pair<lf, vector<lf>> maximize() {
                   while (1) {
                            int x=-1, y=-1;
                            lf mn=-EPS:
                            for (int i=0; i < n; ++i) if (B[i] < mn) mn</pre>
                                =B[i], x=i;
                            if(x<0)break;</pre>
                            for (int i=0; i<m; ++i) if (A[x][i]<-</pre>
                                 EPS) {v=i;break;}
                            // assert (y>=0) \rightarrow y<0, no
                                 solution to Ax<=B
                            pivot(x,v);
                   while (1) {
                            lf mx=EPS:
                            int x=-1, y=-1;
                            for (int i=0; i<m; ++i) if (C[i]>mx) mx
                                 =C[i], v=i;
                            if(y<0)break;</pre>
                            lf mn=1e200;
                            for (int i=0; i<n; ++i) if (A[i][y]>
                                EPS\&\&B[i]/A[i][v]<mn)mn=B[i]/A
                                 [i][y],x=i;
                            // assert (x>=0) -> x<0, unbounded
                            pivot(x,v);
                   vector<lf> r(m);
                   for (int i=0; i<n; ++i) if (Y[i] <m) r[Y[i]] =B[i</pre>
                       ];
                   return {z,r};
};
```

7.26 Simplex Int

```
// Maximizar c1*x1 + c2*x2 + c3*x3 ...
// Restricciones a11*x1 + a12*x2 <= b1, a22*x2 + a23*x3
// Retorna valor optimo y valores de las variables
// O(c^2*b), O(c*b) - variables c, restricciones b (tle)
struct Fraction{};
typedef Fraction lf;
const lf ZERO(0), INF(1e18);
struct Simplex{
         vector<vector<lf>> A;
         vector<lf> B,C;
         vector<int> X,Y;
         lf z;
         int n,m;
         Simplex(vector<vector<lf>> a, vector<lf>> b,
             vector<lf> c) {
                  A=_a; B=_b; C=_c;
                  n=B.size(); m=C.size(); z=ZERO;
                  X=vector<int>(m);Y=vector<int>(n);
                  for (int i=0; i<m; ++i) X[i]=i;</pre>
                  for (int i=0; i < n; ++i) Y[i] = i + m;</pre>
         void pivot(int x,int y) {
                  swap (X[y], Y[x]);
                  B[x]/=A[x][y];
                  for (int i=0; i<m; ++i) if (i!=y) A[x][i] /=A[x
                      ] [y];
                  A[x][y] = Fraction(1)/A[x][y];
                  for(int i=0;i<n;++i)if(i!=x && A[i][y]!=</pre>
                      ZERO) {
                           B[i] -= A[i][y] *B[x];
                           for(int j=0; j<m; ++j) if(j!=y) A[i][
                               j] -= A[i][y] *A[x][j];
                           A[i][v] = -A[i][v] * A[x][v];
                  z+=C[y]*B[x];
                  for (int i=0; i<m; ++i) if (i!=y) C[i] -=C[y] *A[</pre>
                      x][i];
                  C[y] = -C[y] *A[x][y];
         pair<lf, vector<lf>> maximize() {
                  while(1){
                           int x=-1, y=-1;
                           lf mn=ZERO:
                           for (int i=0; i<n; ++i) if (B[i] <mn) mn</pre>
                               =B[i], x=i;
                           if (x<0)break;</pre>
                           for (int i=0; i<m; ++i) if (A[x][i] <</pre>
                               ZERO) { y=i; break; }
                           // assert (y>=0) \rightarrow y<0, no
```

```
solution to Ax<=B
                           pivot(x,y);
                  while (1) {
                           lf mx=ZERO:
                           int x=-1, y=-1;
                           for (int i=0; i<m; ++i) if (C[i]>mx) mx
                               =C[i], v=i;
                           if(y<0)break;</pre>
                           lf mn=INF;
                           for (int i=0; i<n; ++i) if (A[i][y]>
                               ZERO && B[i]/A[i][y] < mn) mn = B[i]
                               ]/A[i][y], x=i;
                           // assert (x>=0) \rightarrow x<0, unbounded
                           pivot(x,v);
                  vector<lf> r(m);
                  for (int i=0; i < n; ++i) if (Y[i] < m) r[Y[i]] = B[i</pre>
                  return {z,r};
         pair<Fraction, vector<Fraction>> maximize int() {
                  while (1) {
                           auto sol=maximize();
                           bool all int=true;
                           for(auto &x:sol.second)all int&=x
                               .fractional_part() == ZERO;
                           if(all int)return sol;
                           Fraction nw b=ZERO:
                           int id=-1;
                           for (int i=0; i < n; ++i) {</pre>
                                    Fraction fp=B[i].
                                        fractional part();
                                    if (fp>=nw_b) nw_b=fp, id=i;
                           vector<Fraction> nw a;
                           for (auto &x:A[id]) nw_a.push_back
                               (-x.fractional_part());
                           A.push back (nw a);
                           B.push back (-nw b);
                           Y.push back (n+m); n++;
};
```

7.27 Totient y Divisores

```
vector<int> count_divisors_sieve() {
   bitset<mx> is_prime; is_prime.set();
   vector<int> cnt(mx, 1);
   is_prime[0] = is_prime[1] = 0;
   for(int i = 2; i < mx; i++) {</pre>
```

```
if(!is prime[i]) continue;
                 cnt[i]++;
                 for(int j = i+i; j < mx; j += i) {</pre>
                         int n = j, c = 1;
                         while ( n\%i == 0 ) n /= i, c++;
                          cnt[i] *= c;
                          is prime[j] = 0;
        return cnt;
vector<int> euler phi sieve() {
        bitset<mx> is prime; is prime.set();
        vector<int> phi(mx);
        iota(phi.begin(), phi.end(), 0);
        is_prime[0] = is_prime[1] = 0;
        for(int i = 2; i < mx; i++) {</pre>
                 if(!is prime[i]) continue;
                 for(int j = i; j < mx; j += i) {</pre>
                         phi[j] -= phi[j]/i;
                         is prime[i] = 0;
        return phi;
ll euler phi(ll n) {
        \overline{l} ans = n;
        for(ll i = 2; i * i <= n; ++i) {</pre>
                 if(n % i == 0) {
                          ans -= ans / i;
                          while(n % i == 0) n /= i;
        if(n > 1) ans -= ans / n;
        return ans;
```

7.28 Xor Basis

8 Programacion dinamica

8.1 Aliens Trick

```
// We binary search for A and find the highest A such
   that c(A) >= K.
// Let the optimal value be Aopt. Then our answer is v(
   Aopt) + \bar{A}optK
int main() {
        int n, k;
        cin >> n >> k;
        int a[n];
        for (int &i : a) { cin >> i; }
         * the maximum sum along with the number of
             subarrays used
         * if creating a subarray penalizes the sum by "
         * there is no limit to the number of subarrays
            you can create
        auto solve lambda = [&](ll lmb) {
                pair<11, 11> dp[n][2];
                dp[0][0] = \{0, 0\};
                dp[0][1] = \{a[0] - lmb, 1\};
                for (int i = 1; i < n; i++) {
                        dp[i][0] = max(dp[i - 1][0], dp[i
                             - 1][1]);
                         dp[i][1] =
```

8.2 Bin Packing

```
int main() {
        ll n, capacidad;
        cin >> n >> capacidad;
        vl pesos(n, 0);
        forx(i, n) cin >> pesos[i];
        vector<pll> dp((1 << n));
        dp[0] = \{1, 0\};
        // dp[X] = \{\#numero de paquetes, peso de min \}
           paquete}
        // La idea es probar todos los subset y en cada
            uno preguntarnos
        // quien es mejor para subirse de ultimo buscando
             minimizar
        // primero el numero de paquetes
        for (int subset = 1; subset < (1 << n); subset++)</pre>
                dp[subset] = \{21, 0\};
                for (int iPer = 0; iPer < n; iPer++) {</pre>
                         if ((subset >> iPer) & 1) {
                                 pll ant = dp[subset ^ (1
                                     << iPer) 1:
                                 11 k = ant.ff;
                                 ll w = ant.ss;
                                 if (w + pesos[iPer] >
                                     capacidad) {
                                          k++;
                                          w = min(pesos[
                                             iPer], w);
```

8.3 Convex Hull Trick

```
// - Me dan las pendientes ordenadas
// Caso 1: Me hacen las querys ordenadas
// O(N + Q)
// Caso 2: Me hacen querys arbitrarias
// O(N + QlogN)
struct CHT {
    // funciona tanto para min como para max, depende del
        orden en que pasamos las lineas
    struct Line {
        int slope, yIntercept;
        Line (int slope, int yIntercept) : slope (slope),
           yIntercept (yIntercept) { }
        int val(int x) { return slope * x + vIntercept; }
        int intersect(Line y) {
            return (y.yIntercept - yIntercept + slope - y
                .slope - 1) / (slope - y.slope);
    } ;
    deque<pair<Line, int>> dq;
    void insert(int slope, int yIntercept) {
        // lower hull \sin m1 < m2 < m3
        // upper hull si si m1 > m2 > m3
        Line newLine(slope, yIntercept);
        while (!dq.empty() && dq.back().second >= dq.back
            ().first.intersect(newLine)) dq.pop_back();
        if (dq.empty()) {
            dq.emplace back(newLine, 0);
            return:
        dg.emplace back(newLine, dg.back().first.
           intersect(newLine));
    int query(int x) { // cuando las consultas son
       crecientes
        while (dq.size() > 1) {
```

8.4 CHT Dynamic

```
// O((N+Q) log N) <- usando set para add y bs para q
// lineas de la forma mx + b
#pragma once
struct Line {
        mutable ll m, b, p;
        bool operator<(const Line& o) const { return m <</pre>
           o.m; }
        bool operator<(11 x) const { return p < x; }</pre>
};
struct CHT : multiset<Line, less<>>> {
        // (for doubles, use inf = 1/.0, div(a,b) = a/b)
        static const ll inf = LLONG MAX;
        static const bool mini = 0; // <---- 1 FOR MIN</pre>
        ll div(ll a, ll b) { // floored division
                return a / b - ((a ^ b) < 0 && a % b); }
        bool isect(iterator x, iterator y) {
                if (y == end()) return x->p = inf, 0;
                if (x->m == y->m) x->p = x->b > y->b?
                    inf : -inf;
                else x->p = div(y->b - x->b, x->m - y->m)
                return x->p >= y->p;
        void add(ll m, ll b) {
                if (mini) { m \star= -1, b \star= -1; }
                auto z = insert(\{m, b, 0\}), y = z++, x =
                while (isect(y, z)) z = erase(z);
                if (x != begin() && isect(--x, y)) isect(
                    x, y = erase(y);
                while ((y = x) != begin() \&\& (--x)->p >=
                    y->p)
```

```
isect(x, erase(y));
}
ll query(ll x) {
    assert(!empty());
    auto l = *lower_bound(x);
    if (mini) return -l.m * x + -l.b;
    else return l.m * x + l.b;
}
};
```

8.5 Digit DP

```
// dp[pos][count of d][limit]
11 dp[20][20][2];
int k,d;
// count numbers <= c with k occurrences of d
ll dfs(string& c, int x=0, int y=0, bool z=0){
        if (dp[x][y][z]!=-1)return dp[x][y][z];
        dp[x][y][z] = (y = = k);
        if(x==(int)c.size()){
                 return dp[x][y][z];
        int limit=9;
        if(!z){
                 limit=c[x]-'0';
        dp[x][v][z]=0;
        for (int i=0; i <= limit; ++i) {</pre>
                 if(z)dp[x][y][z]+=dfs(c, x+1, y+(i==d), z
                 else dp[x][y][z] += dfs(c, x+1, y+(i==d), i
        return dp[x][y][z];
// count (0, m) - count (0, n-1) = count (n, m)
ll query(ll n, ll m){
        string s1=to string(m);
        string s2=to_string(n-111);
        memset(dp, -1, sizeof(dp));
        ll ans=dfs(s1);
        if (n<=011) return ans; // check</pre>
        memset(dp, -1, sizeof(dp));
        return ans-dfs(s2);
```

8.6 Divide Conquer

```
vector<long long> dp before(n), dp cur(n);
long long C(int i, int j);
// compute dp cur[1], ... dp cur[r] (inclusive)
void compute(int 1, int r, int opt1, int optr) {
        if (1 > r)
                return;
        int mid = (1 + r) >> 1;
        pair<long long, int> best = {LLONG MAX, -1};
        for (int k = optl; k <= min(mid, optr); k++) {</pre>
                best = min(best, \{(k ? dp\_before[k - 1] :
                     0) + C(k, mid), k);
        dp cur[mid] = best.first;
        int opt = best.second;
        compute(1, mid - 1, optl, opt);
        compute (mid + 1, r, opt, optr);
int solve() {
        for (int i = 0; i < n; i++)
                dp before[i] = C(0, i);
        for (int i = 1; i < m; i++) {</pre>
                compute (0, n - 1, 0, n - 1);
                dp before = dp cur;
        return dp before[n - 1];
```

8.7 Edit Distances

```
int editDistances(string& wor1, string& wor2) {
         // O(tam1*tam2)
         // minimo de letras que debemos insertar, elminar
              o reemplazar
         // de wor1 para obtener wor2
         11 tam1=wor1.size();
         11 tam2=wor2.size();
         vector\langle vl \rangle dp(tam2+1, vl(tam1+1,0));
         for (int i=0; i<=tam1; i++) dp [0] [i]=i;</pre>
         for (int i=0; i<=tam2; i++) dp[i][0]=i;</pre>
         dp[0][0]=0;
         for (int i=1; i <= tam2; i++) {</pre>
                  for(int j=1; j<=tam1; j++) {</pre>
                            [1] op1 = min(dp[i-1][j], dp[i][j]
                               -11)+1;
                            // el minimo entre eliminar o
                                insertar
                           11 \text{ op2} = dp[i-1][j-1]; //
                               reemplazarlo
```

```
if (wor1[j-1]!=wor2[i-1]) op2++;
                 // si el reemplazo tiene efecto o
                     quedo iqual
                 dp[i][j] = min(op1, op2);
return dp[tam2][tam1];
```

8.8 Kadane 2D

```
int main() {
         11 fil,col;cin>>fil>>col;
         vector<vl> grid(fil, vl(col, 0));
// Algoritmo de Kadane/DP para suma maxima de una matriz
    2D en o(n^3)
         for (int i=0; i<fil; i++) {</pre>
                  for (int e=0; e < col; e++) {</pre>
                           11 num;cin>>num;
                           if (e>0) grid[i][e]=num+grid[i][e
                              -11;
                           else grid[i][e]=num;
         11 maxGlobal = LONG LONG MIN;
         for (int l=0; l < col; l++) {</pre>
                 for(int r=1; r<col; r++) {
                           11 maxLoc=0;
                           for (int row=0; row<fil; row++) {</pre>
                                    if (1>0) maxLoc+=grid[row
                                       ][r]-grid[row][l-1];
                                    else maxLoc+=grid[row][r
                                    if (maxLoc<0) maxLoc=0;</pre>
                                    maxGlobal= max(maxGlobal,
                                       maxLoc);
```

8.9 Knuth

```
// C[b][c] <= C[a][d]
// C[a][c] + C[b][d] <= C[a][d] + C[b][c] where a < b < c
    < d.
int solve() {
        int N;
        ... // read N and input
        int dp[N][N], opt[N][N];
```

```
auto C = [\&] (int i, int j) {
        ... // Implement cost function C.
};
for (int i = 0; i < N; i++) {</pre>
        opt[i][i] = i;
        ... // Initialize dp[i][i] according to
           the problem
for (int i = N-2; i >= 0; i--) {
        for (int j = i+1; j < N; j++) {
                int mn = INT_MAX;
                int cost = C(i, j);
                for (int k = opt[i][j-1]; k <=
                   min(j-1, opt[i+1][j]); k++) {
                        if (mn >= dp[i][k] + dp[k]
                            +1][j] + cost) {
                                 opt[i][j] = k;
                                 mn = dp[i][k] +
                                    dp[k+1][j] +
                                     cost;
                dp[i][j] = mn;
cout << dp[0][N-1] << endl;
```

8.10 LIS

```
// O(n*log(n))
// retorna los indices de un lis
// cambiar el tipo y revisar si permite iquales
typedef int T;
vi lis(vector<T>& a, bool equal) {
        vi prev(sz(a));
        typedef pair<T, int> p;
        vector res;
        for (int i=0; i < sz(a); ++i) {</pre>
                 auto it=lower_bound(all(res), p{a[i],(
                    equal?i:0)});
                 if(it==res.end())res.emplace_back(),it=
                    res.end()-1;
                 *it={a[i],i};
                 prev[i] = (it == res.begin())?0:(it-1)->
                    second;
        int l=sz(res), act=res.back().second;
        vi ans(1);
        while(1--) ans[1] = act, act = prev[act];
        return ans;
```

8.11 SOS

```
const int bits = 23;
int dp[1<<bits];</pre>
// O(n*2^n)
void SOS(){
        for(int i = 0; i < (1 << bits); ++i) dp[i] = A[i</pre>
        // top - down (informacion de las submascaras)
        for(int i = 0; i < bits; ++i){</pre>
                 for(int s = 0; s < (1 << bits); ++s){
                          if(s & (1 << i)){
                                   dp[s] += dp[s ^ (1 << i)
                                      ];
        // bottom - up (informacion de las supermascaras)
        for(int i = 0; i < bits; ++i){</pre>
                 for (int s = (1 << bits) - 1; s >= 0; --s)
                          if(s & (1 << i)){
                                   dp[s ^ (1 << i)] += dp[s
                                      ];
int dp2[1<<bits][bits+1];</pre>
// O(2^n*n^2)
void cnt(){
        vector<int> a;
        for (int x:a) dp2[x][0]++;
        // dp[s][c] = number of s^ai with c bits
        for (int i=0; i < bits; ++i) {</pre>
                 for(int C=i;C>=0;--C){
                          for(int s=0; s<(1<<bits); ++s){
                                   dp2[s^{(1<< i)}][c+1] += dp2[s
                                      ][c];
```

9 Strings

9.1 Aho Corasick

```
// 1) init() trie and add() strings
// 2) build() aho-corasick
// 3) process the text
// 4) dfs to calculate dp
// suf: longest proper suffix that's also in the trie
// dad: closest suffix link that is terminal
// cnt: number of strings that end exactly at node v
const int maxn = 2e5+5;
const int alpha = 26;
vector<int> adj[maxn];
int to[maxn][alpha], cnt[maxn], dad[maxn], suf[maxn], act; //
    not to change
int conv(char ch) {return ((ch>='a' && ch<='z')?ch-'a':ch-
   'A'+26);}
void init(){
        for(int i=0;i<=act;++i){</pre>
                suf[i]=cnt[i]=dad[i]=0;
                adj[i].clear();
                memset(to[i], 0, sizeof(to[i]));
        act=0;
int add(string& s) {
        int u=0;
        for(char ch:s) {
                int c=conv(ch);
                if(!to[u][c])to[u][c]=++act;
                u=to[u][c];
        cnt[u]++;
        return u;
// O(sum(|s|)*alpha)
void build(){
        queue<int> q{{0}};
        while(!q.empty()){
                int u=q.front();q.pop();
                for(int i=0;i<alpha;++i) {</pre>
                         int v=to[u][i];
                         if(!v)to[u][i]=to[suf[u]][i];
                         else q.push(v);
                         if(!u || !v)continue;
                         suf[v]=to[suf[u]][i];
                         dad[v]=cnt[suf[v]]?suf[v]:dad[suf
                            [V]];
```

9.2 Hashing

```
// O(n) build - O(1) get
// 1. prepare() in the main
// 2. hashing<string> hs("hello");
// 3. hs.get(l,r);
// Chars are in [1, BASE)
// BASE is prime or random(lim, MOD-lim)
// If chars are in [0, BASE] then compare the hashes for
   length
// 1000234999, 1000567999, 1000111997, 1000777121,
   1001265673, 1001864327, 999727999, 1070777777
// if hash(multiset 1) == hash(multiset 2) then (r+a1) * (r+
   a2)...(r+an) == (r+b1)*(r+b2)...(r+bn) // (Collision n/a)
   MOD)
const ii BASE(257, 367);
const int MOD[2] = { 1001864327, 1001265673 };
int add(int a, int b, int m) {return a+b>=m?a+b-m:a+b;}
int sbt(int a, int b, int m) {return a-b<0?a-b+m:a-b;}</pre>
int mul(int a, int b, int m) {return ll(a) *b%m;}
11 operator ! (const ii a) { return (ll(a.first) << 32) |</pre>
    a.second:
ii operator + (const ii& a, const ii& b) {return {add(a.
   first, b.first, MOD[0]), add(a.second, b.second, MOD
   [1])};}
ii operator - (const ii& a, const ii& b) {return {sbt(a.
   first, b.first, MOD[0]), sbt(a.second, b.second, MOD
ii operator * (const ii& a, const ii& b) {return {mul(a.
   first, b.first, MOD[0]), mul(a.second, b.second, MOD
   [1])};}
const int maxn = 1e6+5;
ii pot[maxn];
void prepare() { // remember!!!
        pot[0] = ii\{1,1\};
        rep(i,1,maxn) pot[i] = pot[i-1] * BASE;
template <class type>
struct Hashing{
        vector<ii> h;
        Hashing(type& t) {
                h.assign(sz(t)+1, ii\{0,0\});
                rep(i, 1, sz(h)) h[i] = h[i-1] * BASE + ii{
                    t[i-1], t[i-1];
```

9.3 Hashing 2D

```
// Revisar primero los comentarios en hashing!!!
// 1-indexed
const ii BX(3731, 3731), BY(2999, 2999);
const int MOD[2] = { 998244353, 1001265673 };
int add(int a, int b, int m) {return a+b>=m?a+b-m:a+b;}
int sbt(int a, int b, int m) {return a-b<0?a-b+m:a-b;}</pre>
int mul(int a, int b, int m) {return ll(a) *b%m;}
11 operator ! (const ii a) { return (ll(a.first) << 32) |</pre>
    a.second; }
ii operator + (const ii& a, const ii& b) {return {add(a.
   first, b.first, MOD[0]), add(a.second, b.second, MOD
ii operator - (const ii& a, const ii& b) {return {sbt(a.
   first, b.first, MOD[0]), sbt(a.second, b.second, MOD
ii operator * (const ii& a, const ii& b) {return {mul(a.
   first, b.first, MOD[0]), mul(a.second, b.second, MOD
   [1])};}
const int maxn = 1e6+5;
ii PX[maxn], PY[maxn];
void prepare() { // remember!!!
        PX[0] = PY[0] = ii\{1,1\};
        rep(i,1,maxn) {
                 PX[i] = PX[i-1] * BX;
                 PY[i] = PY[i-1] * BY;
template <class type>
struct Hashing2D { // 1-indexed
        vector<vector<ii>>> hs;
        int n, m;
        Hashing2D(vector<type>& s) {
                 n = sz(s), m = sz(s[0]);
                hs.assign(n + 1, vector\langle ii \rangle (m + 1, \{0,0\})
                 rep(i, 0, n) rep(j, 0, m)
                         hs[i + 1][j + 1] = {s[i][j], s[i]}
                            ][j]};
```

9.4 KMP

```
// O(n)
vector<int> phi(string& s){
        int n=sz(s);
         vector<int> tmp(n);
         for (int i=1, j=0; i < n; ++i) {</pre>
                 while(j>0 && s[j]!=s[i])j=tmp[j-1];
                 if(s[i]==s[j])j++;
                 tmp[i]=i;
         return tmp;
// O(n+m)
int kmp(string& s, string& p){
        int n=sz(s), m=sz(p), cnt=0;
        vector<int> pi=phi(p);
         for (int i=0, j=0; i<n; ++i) {</pre>
                 while (j && s[i]!=p[j]) j=pi[j-1];
                 if(s[i]==p[j])j++;
                 if ( j==m) {
                          cnt++;
                           j=pi[j-1];
        return cnt;
```

9.5 KMP Automaton

```
const int maxn = 1e5+5;
const int alpha = 26;
int to[maxn][alpha];
```

9.6 Lyndon Factorization

```
// A string is called simple if it is strictly smaller
   than all its nontrivial cyclic shifts.
// The Lyndon factorization of the string is s = w1 w2
// where all strings wi are simple, and they are in non-
   increasing order
// w1 >= w2 >= ... >= wk
// this factorization exists and it is unique
// O(n)
vector<string> duval(string& s){
        vector<string> factorization;
        int n=sz(s), i=0;
        while(i<n) {</pre>
                int j=i+1, k=i;
                while(j<n && s[k]<=s[j]){
                         if(s[k]<s[j])k=i;
                         else k++;
                         j++;
                while(i<=k) {</pre>
                         factorization.push back(s.substr(
                            i, j-k));
                         i+=j-k;
        return factorization;
```

9.7 Manacher

```
// O(n), par (raiz, izq, der) 1 - impar 0
vi manacher(string& s, int par) {
```

9.8 Minimum Expression

9.9 Next Permutation

```
// O(n)
// 1) find the last i such that ai<ai+1
// 2) find the last i such that ai <ai
// 3) swap i and j, then reverse the segment [i+1, n-1]
string nextPermutation(string& s){
        string ans(s);
        int n=sz(s);
        int i=n-2;
        while(i>=0 && ans[i]>=ans[i+1])i--;
        if(i<0)return "no permutation";</pre>
        int j=n-1;
        while (ans[i]>=ans[j]) j--;
        swap(ans[i], ans[j]);
        int l=i+1, r=n-1;
        while (r>1) swap (ans[r--], ans[l++]);
        return ans;
```

9.10 Palindromic Tree

```
const int alpha = 26;
const char mini = 'a';
// tree.suf: the longest suffix-palindrome link
// tree.dad - tree.to: the parent palindrome by removing
   the first and last character
// node 0 = root with len -1 for odd
// node 1 = root with len 0 for even
struct Node {
    int to[alpha], suf, len, cnt, dad;
    Node (int x, int l = 0, int c = 1): len(x), suf(l),
       cnt(c) {
        memset(to, 0, sizeof(to));
    int& operator [] (int i) { return to[i]; }
};
struct PalindromicTree {
    vector<Node> tree;
        vector<int> palo; // longest suffix-palindrome in
            the position i
    string s;
    int n, last; // max suffix palindrome
    PalindromicTree(string t = "") {
        n = last = 0;
        tree.push_back(Node(-1));
        tree.push_back(Node(0));
                for(char& c:t) add_char(c);
                // Propagate counts up the suffix links
                for(int i=sz(tree)-1;i>=2;i--){
                        tree[tree[i].suf].cnt+=tree[i].
                           cnt;
    int getsuf(int p) {
        while (n - tree[p].len - 1 < 0 || s[n - tree[p].
           len - 1] != s[n])
                        p = tree[p].suf;
        return p;
    void add char(char ch) {
        s.push back(ch);
        int p = getsuf(last), c = ch - mini;
        if (!tree[p][c]) {
            int suf = getsuf(tree[p].suf);
            suf = max(1, tree[suf][c]);
            tree[p][c] = sz(tree);
            tree.push back(Node(tree[p].len + 2, suf, 0))
        last = tree[p][c];
        tree[last].dad = p;
        tree[last].cnt++;n++;
                palo.push back(tree[last].len);
```

} **;**

9.11 Suffix Array

```
// O(n*log(n)) - char in [1, lim)
// sa: is the starting position of the i-th lex smallest
   suffix
// rnk: is the rank (position in SA) of the suffix
   starting at i
// lcp: is the longest common prefix between sa[i] and sa
   [i+1]
auto SuffixArray(string s, int lim=256) {
        s.push_back(0); int n = sz(s), k = 0, a, b;
        vi sa, lcp, rnk(all(s)), y(n), ws(max(n, lim));
        sa = lcp = y, iota(all(sa), 0);
        for (int j = 0, p = 0; p < n; j = max(1, j * 2),
           lim = p) {
                p = j, iota(all(y), n - j);
                rep(i, 0, n) if (sa[i] >= j) y[p++] = sa[i]
                     – j;
                fill(all(ws), 0);
                rep(i, 0, n) ws[rnk[i]]++;
                rep(i,1,lim) ws[i] += ws[i-1];
                for (int i = n; i--;) sa[--ws[rnk[y[i]]]]
                    = y[i];
                swap(rnk, y), p = 1, rnk[sa[0]] = 0;
                rep(i,1,n) a = sa[i - 1], b = sa[i], rnk[
                        (y[a] == y[b] \&\& y[a + j] == y[b]
                           + il) ? p - 1 : p++;
        for (int i = 0, j; i < n - 1; lcp[rnk[i++]] = k)
                for (k \& \& k--, j = sa[rnk[i] - 1]; s[i +
                   k] == s[j + k]; k++);
        reverse(all(lcp));lcp.pop_back();reverse(all(lcp)
        return tuple{sa, rnk, lcp};
```

9.12 Suffix Automaton

```
// prefijos y al marcarlos procesar la cantidad visitando
    los sufijos de los nodos
// contribucion es u.len - u.suf.len, tener en cuenta con
    que len se llego
// puede ser un len2 para manejar eso min(u.len, u.len2)-
   u.suf.len
// a->b->c->b->c
//b->c
template<int alpha = 26>
struct SuffixAutomaton {
        struct Node {
                // array<int, alpha> to; TLE, add -> int
                   conv(char ch)
                map<char, int> to;
                int len = 0, suf = 0;
                bool end = false;
        };
        vector<Node> sa;
        int last = 0;
        ll substrs = 0;
        SuffixAutomaton(string &s) {
                sa.reserve(sz(s) *2);
                last = add node();
                sa[0].suf = -1;
                for (char &c : s) add_char(c);
                for (int p = last; p; p = sa[p].suf) sa[p
                   l.end = 1;
        int add_node() { sa.push_back({}); return sz(sa)
           -1: }
        void add_char(char c) {
                int u = add_node(), p = last;
                sa[u].len = sa[last].len + 1;
                while (p != -1 && !sa[p].to.count(c)) {
                        sa[p].to[c] = u;
                        substrs += p != 0 ? sa[p].len -
                           sa[sa[p].suf].len : 1;
                        p = sa[p].suf;
                if (p !=-1) {
                        int q = sa[p].to[c];
                        if (sa[p].len + 1 != sa[q].len) {
                                int clone = add node();
                                sa[clone] = sa[q];
                                sa[clone].len = sa[p].len
                                    + 1;
                                sa[q].suf = sa[u].suf =
                                    clone;
                                while (p'! = -1 \&\& sa[p].
                                    to[c] == a) {
                                        sa[p].to[c] =
                                            clone;
```

```
p = sa[p].suf;
                } else sa[u].suf = q;
        last = u;
// Aplicaciones
int dfs(int u) { // count
        if(sa[u].cnt!=-1)return sa[u].cnt;
        sa[u].cnt=sa[u].end;
        for(auto [_,v]:sa[u].to) {
                sa[u].cnt+=dfs(v);
        return sa[u].cnt;
void dfs2(int u) { // grade primero
        sa[u].pre--;
        if(sa[u].pre>0) return;
        for(auto [ ,v]:sa[u].to){
                sa[v].cnt2+=sa[u].cnt2;
                dfs2(v);
void dfs2(){
        vector<int> order(sz(sa)-1);
        for (int i=1; i < sz (sa); ++i) order[i-1]=i;</pre>
        sort(order.begin(), order.end(), [&](int
            a, int b) { return sa[a].len > sa[b].
           len; });
        for(auto &i : order) {
                // suf.cnt += i.cnt
int lcs(string& t){
        int u=0,1=0,ans=0;
        for(char c:t){
                while(u && !sa[u].to.count(c)){
                         u=sa[u].suf;
                         l=sa[u].len;
                if(sa[u].to.count(c)){
                         u=sa[u].to[c];
                         1++;
                ans=max(ans, 1);
        return ans;
bool query(string& t){
        int 11=0:
        for(char c:t){
```

```
if(!sa[u].to.count(c))return
                    false:
                 u=sa[u].to[c];
        return true;
void cyclic(string& t) { // dfs(0) primero
        int u=0,1=0;
        int m=sz(t);
        t+=t;
        unordered set<int> s; // vector<bool>
        for(char ch:t) {
                 int c=conv(ch);
                 while(u && !sa[u].to[c]){
                         u=sa[u].suf;
                         l=sa[u].len;
                 if(sa[u].to[c]){
                         u=sa[u].to[c];
                         1++;
                 if(l==m){
                          s.insert(u);
                         if (sa[u].minlen==m) {
                                  u=sa[u].suf;
                                  l=sa[u].len;
                          }else{
                                  1--;
        11 \text{ ans}=0:
        for(int u:s) ans+=sa[u].cnt;
        cout << ans << "\n";
```

9.13 Suffix Tree

};

```
// O(n)
// pos: start of the edge
// len: edge length
// link: suffix link
struct SuffixTree{
    vector<map<char,int>> to;
    vector<int> pos, len, link;
    int size=0, inf=le9;
    string s;

int make(int _pos, int _len) {
        to.push_back(map<char,int>());
        pos.push_back(_len);
        link.push_back(-1);
```

```
return size++;
void add(int& p, int& lef, char c) {
        s+=c;++lef;int lst=0;
        for(;lef;p?p=link[p]:lef--){
                 while (lef>1 && lef>len[to[p][s[sz
                    (s) - lef[]]) {
                         p=to[p][s[sz(s)-lef]], lef
                             -=len[p];
                 char e=s[sz(s)-lef];
                 int& a=to[p][e];
                 if(!q){
                         q=make(sz(s)-lef,inf),
                             link[lst]=p,lst=0;
                 }else{
                         char t=s[pos[q]+lef-1];
                         if (t==c) {link[lst]=p;
                             return; }
                         int u=make(pos[q],lef-1);
                         to[u][c]=make(sz(s)-1,inf
                         );
to[u][t]=q;
                         pos[q] += lef -1;
                         if(len[a]!=inf)len[a]-=
                             lef-1;
                         q=u,link[lst]=u,lst=u;
SuffixTree(string& s){
        make (-1, 0); int p=0, lef=0;
        for (char c:_s) add (p, lef, c);
        add(p,lef,'\$'); // smallest char
        s.pop_back();
int query(string& p){
        for (int i=0, u=0, n=sz(p);;) {
                 if(i==n || !to[u].count(p[i]))
                    return i;
                 u=to[u][p[i]];
                 for (int j=0; j<len[u];++j) {</pre>
                         if(i==n || s[pos[u]+j]!=p
                             [i])return i;
                         i++;
vector<int> sa;
void genSA(int x=0, int Len=0) {
        if(!sz(to[x]))sa.push back(pos[x]-Len);
        else for (auto t:to[x]) genSA(t.second, Len+
```

```
9.14 Trie
```

92

```
9 STRINGS
```

```
};
9.14 Trie
  const int maxn = 2e6+5;
  const int alpha = 26;
  int to[maxn][alpha]; // to[u][c]: node u edge with the
      letter c
  int cnt[maxn]; // count of word ending in this node
  int act; // trie node cound
  int conv(char ch) {return ((ch>='a' && ch<='z')?ch-'a':ch-
      'A'+26);}
  void init(){
          for(int i=0;i<=act;++i){</pre>
                   memset(to[i],0,sizeof(to[i]));
                   cnt[i]=0;
          act=0;
  void add(string& s){
          int u=\bar{0};
          for(char ch:s) {
                   int c=conv(ch);
                   if(!to[u][c])to[u][c]=++act;
                   u=to[u][c];
          cnt[u]++;
```

len[x]);

9.15 Trie Bit

```
void add(int x){
        int u=0;
        for(int i=bits;i>=0;--i){
                int c=conv(x,i);
                if(!to[u][c])to[u][c]=++act;
                cnt[u]++;
                u=to[u][c];
        cnt[u]++;
int mini(int x){
        int u=0, ans=0;
        for(int i=bits;i>=0;--i){
                int c=conv(x,i);
                if(!to[u][c] || cnt[to[u][c]]==0){
                        u=to[u][!c];
                         ans+=(1<<i);
                }else{
                        u=to[u][c];
        return ans;
```

9.16 Z Algorithm

9.17 El especial

```
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 9;
struct ST {
    #define lc (n << 1)
    #define rc ((n << 1) | 1)</pre>
```

```
long long t[4 * N], lazy[4 * N];
  ST() {
    memset(t, 0, sizeof t);
    memset (lazy, 0, sizeof lazy);
  inline void push(int n, int b, int e) {
    if (lazy[n] == 0) return;
    t[n] = t[n] + lazy[n] * (e - b + 1);
    if (b != e) {
      lazv[lc] = lazv[lc] + lazv[n];
      lazy[rc] = lazy[rc] + lazy[n];
    lazy[n] = 0;
  inline long long combine(long long a, long long b) {
    return a + b;
  inline void pull(int n) {
    t[n] = t[lc] + t[rc];
  void upd(int n, int b, int e, int i, int j, int v) {
    push(n, b, e);
    if (j < b | | e < i) return;
    if (i <= b && e <= j) {
      lazy[n] = v; //set lazy
      push(n, b, e);
      return;
    int mid = (b + e) >> 1;
    upd(lc, b, mid, i, j, v);
    upd(rc, mid + 1, e, i, j, v);
    pull(n);
  long long query(int n, int b, int e, int i, int j) {
    push(n, b, e);
    if (i > e | | b > j) return 0; //return null
    if (i <= b && e <= j) return t[n];
    int mid = (b + e) >> 1;
    return combine (query (lc, b, mid, i, j), query (rc, mid
        +1, e, i, j));
}st;
struct node {
  int len, link, firstpos;
  map<char, int> nxt;
vector<node> t;
struct SuffixAutomaton {
  int sz, last;
  vector<int> terminal;
  vector<int> dp;
  vector<vector<int>> a;
  SuffixAutomaton() {}
  SuffixAutomaton(int n) {
```

```
t.clear(); t.resize(2 * n);
    terminal.resize(2 * n, 0);
    dp.resize(2 * n, -1); sz = 1; last = 0;
    q.resize(2 * n);
    t[0].len = 0; t[0].link = -1; t[0].firstpos = 0;
 void extend(char c) {
    int p = last;
    int cur = sz++;
    t[cur].len = t[last].len + 1;
    t[cur].firstpos = t[cur].len;
    p = last;
    while (p != -1 \&\& !t[p].nxt.count(c)) {
      t[p].nxt[c] = cur;
      p = t[p].link;
    if (p == -1) t[cur].link = 0;
    else {
      int q = t[p].nxt[c];
      if (t[p].len + 1 == t[q].len) t[cur].link = q;
      else {
        int clone = sz++;
        t[clone] = t[q];
        t[clone].len = t[p].len + 1;
        while (p != -1 && t[p].nxt[c] == q) {
          t[p].nxt[c] = clone;
          p = t[p].link;
        t[q].link = t[cur].link = clone;
    last = cur;
};
pair<int, int> modifies[N * 2];
int cnt;
namespace lct {
  int par[N * 2], lazy[N * 2], last[N * 2], c[N * 2][2];
  void mark(int x, int v) {
    lazv[x] = last[x] = v;
  void push(int x) {
    if (lazv[x]) {
      if (c[x][0]) {
        mark(c[x][0], lazy[x]);
      if (c[x][1]) {
        mark(c[x][1], lazy[x]);
      lazv[x] = 0;
 bool is root(int x) {
    return c[par[x]][0] != x && c[par[x]][1] != x;
```

```
94
```

```
10 MI
```

```
void rotate(int x) {
    int y = par[x], z = par[y], k = c[y][1] == x;
    if (!is_root(y)) {
      C[z][C[z][1] == y] = x;
    par[c[y][k] = c[x][!k]] = y;
    par[par[c[x][!k] = y] = x] = z;
  void splay(int x) {
    static int st[N];
    int top = 0;
    st[++top] = x;
    for (int i = x; !is root(i); i = par[i]) {
      st[++top] = par[i];
    while (top) {
      push(st[top--]);
    while (!is_root(x)) {
      int y = par[x], z = par[y];
      if (!is root(v)) {
        rotate((c[y][1] == x) == (c[z][1] == y) ? y : x);
      rotate(x);
  void access(int x, int v) {
    int z = 0;
    cnt = 0;
    while (x) {
      splay(x);
      modifies[++cnt] = make pair(t[x - 1].len, last[x]);
      c[x][1] = z;
      mark(x, v);
      z = x;
      x = par[x];
int pos[N];
vector<pair<int, int>> Q[N];
long long ans[N];
int32 t main() {
  ios_base::sync_with_stdio(0);
  cin.tie(0);
  int n, q; cin >> n >> q;
  string s; cin >> s;
  SuffixAutomaton sa(n);
  for (int i = 1; i <= q; i++) {
    int 1, r; cin >> 1 >> r;
    ++1; ++r;
    Q[r].push back({l, i});
  s = "." + s;
```

```
pos[0] = 1;
for (int i = 1; i <= n; ++i) {
  sa.extend(s[i]);
  pos[i] = sa.last + 1;
for (int i = 1; i <= sa.sz; ++i) {</pre>
  lct::par[i] = t[i - 1].link + 1;
for (int i = 1; i <= n; ++i) {</pre>
  st.upd(1, 1, n, 1, i, 1);
  lct::access(pos[i], i);
  int last = 0;
  for (int j = cnt; j > 1; --j) {
    pair<int, int> p = modifies[j];
    if (p.first) {
      if (p.second) {
        st.upd(1, 1, n, p.second - p.first + 1, p.
           second - last, -1);
      last = p.first;
  // st.query(1, 1) = number of distinct substrings
     which lastly occured in starting position 1 for
     prefix [1, i]
  for (auto [1, id]: Q[i]) {
    ans[id] = st.query(1, 1, n, 1, i);
for (int i = 1; i <= q; i++) {
  cout << ans[i] << '\n';
return 0;
```

10 Misc

10.1 Counting Sort

```
// O(n+k)
void counting_sort(vi& a) {
    int n=sz(a);
    int maxi=*max_element(all(a));
    int mini=*min_element(all(a));
    int k=maxi-mini+1;
    vi cnt(k,0);
    for(int i=0;i<n;++i)++cnt[a[i]-mini];
    for(int i=0,j=0;i<k;++i)
        while(cnt[i]--)a[j++]=i+mini;
}</pre>
```

10.2 Dates

```
int dateToInt(int y, int m, int d) {
         return 1461 * (y+4800+(m-14)/12)/4+367 * (m-2-(m-14)
            /12 * 12) / 12 -
                  3*((y+4900+(m-14)/12)/100)/4+d-32075;
void intToDate(int jd, int& y, int& m, int& d) {
         int x, n, i, j; x = jd + 68569;
         n=4*x/146097; x=(146097*n+3)/4;
         i = (4000 * (x+1)) / 1461001; x = 1461 * i / 4 - 31;
         j=80*x/2447; d=x-2447*j/80;
         x=\frac{1}{11}; m=\frac{1}{12}+2-12*x; y=100* (n-49) + i+x;
int DayOfWeek(int d, int m, int y) {
                                         //starting on
    Sunday
         static int ttt[]={0, 3, 2, 5, 0, 3, 5, 1, 4, 6,
             2, 4};
         v = m < 3;
         return (y+y/4-y/100+y/400+ttt[m-1]+d) %7;
```

10.3 Expression Parsing

95

```
// O(n) - eval() de python
bool delim(char c) {return c==' ';}
bool is op(char c){return c=='+' || c=='-' || c=='**' || c
   ==' /' ; }
bool is unary(char c) {return c=='+' || c=='-';}
int priority(char op){
        if (op<0) return 3;</pre>
        if(op=='+' || op=='-') return 1;
        if(op=='*' || op=='/') return 2;
        return -1;
void process op(stack<int>& st, char op){
        if(op<0){
                 int l=st.top();st.pop();
                 switch(-op) {
                         case '+':st.push(1);break;
                         case '-':st.push(-1);break;
        }else{
                 int r=st.top();st.pop();
                 int l=st.top();st.pop();
                 switch(op) {
                         case '+':st.push(l+r);break;
                         case '-':st.push(l-r);break;
                         case '*':st.push(l*r);break;
                         case '/':st.push(l/r);break;
```

```
int evaluate(string& s){
        stack<int> st:
        stack<char> op;
        bool may be unary=true;
        for (int i=0; i < sz(s); ++i) {</pre>
                if (delim(s[i])) continue;
                if(s[i] == '('){
                         op.push('(');
                         may be unary=true;
                 }else if(s[i]==')'){
                         while (op.top()!='('){
                                  process_op(st, op.top());
                                  op.pop();
                         op.pop();
                         may_be_unary=false;
                }else if(is op(s[i])){
                         char cur op=s[i];
                         if (may be unary && is unary (
                             cur op))cur op=-cur op;
                         while(!op.empty() && ((cur_op >=
                             0 && priority(op.top()) >=
                             priority(cur op)) || (cur op <</pre>
                              0 && priority(op.top()) >
                             priority(cur_op)))){
                                  process_op(st, op.top());
                                  op.pop();
                         op.push(cur op);
                         may_be_unary=true;
                }else{
                         int number=0;
                         while(i<sz(s) && isalnum(s[i]))</pre>
                             number=number *10+s[i++]-'0';
                         st.push(number);
                         may be unary=false;
        while(!op.emptv()){
                 process_op(st, op.top());
                op.pop();
        return st.top();
```

10.4 Hanoi

```
// hanoi(n) = 2 * hanoi(n-1) + 1
// hanoi(n, 1, 3)
```

```
vector<int> ans;
void hanoi(int x, int start, int end){
    if(!x)return;
    hanoi(x-1, start, 6-start-end);
    ans.push_back({start, end});
    hanoi(x-1, 6-start-end, end);
}
```

10.5 K mas frequentes

return a;

```
// los k numeros mas frecuentes
// el cero es un valor neutral dentro del vector
// no usarlo en el array original (a[i] > 0, i e [0,n-1])
// el vector guarda {valor, contador}
// pero contador es para el algo, no es la cantidad real
// algoritmo de misra-gries O(k^2)
vector<ii> null(k, {0,0});
vector<ii> init(int v){
        vector<ii> a=null;
        a[0] = \{v, 1\};
        return a;
vector<ii> oper(vector<ii> a, vector<ii> b, int k) {
        for (int i = 0; i < k; ++i) if (b[i].first) {
                int p = -1, q = -1;
                for (int j = 0; j < k; ++j) {
                        if (b[i].first == a[j].first) p =
                        if ([a[j]].first) q = j;
                if (p !=-1) {
                        a[p].second += b[i].second;
                \} else if (q != -1) {
                        a[q] = b[i];
                } else {
                        int mn = b[i].second;
                        for (int j = 0; j < k; ++j) mn =
                            min(mn, a[j].second);
                        for (int j = 0; j < k; ++j) a[j].
                            second -= mn;
                        b[i].second -= mn;
                        for (int j = 0; j < k; ++j) if (!
                            a[i].second) {
                                if (b[i].second > 0) {
                                         a[i] = b[i], b[i]
                                            1.second = 0;
                                } else {
                                         a[j].first = 0;
```

10.6 Prefix3D

```
const int N = 100;
int A[N][N][N];
int preffix[N + 1][N + 1][N + 1];
void build(int n) {
        for (int x = 1; x <= n; x++) {
                for (int y = 1; y <= n; y++) {
                        for (int z = 1; z <= n; z++) {
                                preffix[x][y][z] = A[x -
                                    1][y - 1][z - 1]
                                         + preffix[x - 1][
                                            y][z] +
                                            preffix[x][y -
                                             1][z] +
                                            preffix[x][y][
                                            z - 11
                                         - preffix[x - 1][
                                            y - 1][z] -
                                            preffix[x -
                                            1||y||z - 1| -
                                             preffix[x][y
                                            - 1][z - 1]
                                         + preffix[x - 1][
                                            y - 1 | [z - 1];
11 query(int lx, int rx, int ly, int ry, int lz, int rz){
        ll ans = preffix[rx][ry][rz]
                - preffix[lx - 1][ry][rz] - preffix[rx][
                   ly - 1][rz] - preffix[rx][ry][lz - 1]
                + preffix[lx - 1][ly - 1][rz] + preffix[
                   lx - 1[ry][lz - 1] + preffix[rx][ly -
                    1][lz - 1]
                - preffix[lx - 1][ly - 1][lz - 1];
        return ans:
```

10.7 Ternary Search

```
// O(log((r-1)/eps))
// returna el maximo valor de f(x) en [l,r]
const double eps = 1e-9;
double f(double x);
double ternary(){
```

11 Teoría y miscelánea

11.1 Sumatorias

•
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

•
$$\sum_{i=1}^{n} i^5 = \frac{(n(n+1))^2(2n^2+2n-1)}{12}$$

$$\bullet \ \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

•
$$\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}$$
 para $x \neq 1$

11.2 Teoría de Grafos

11.2.1 Teorema de Euler

En un grafo conectado planar, se cumple que V-E+F=2, donde V es el número de vértices, E es el número de aristas y F es el número de caras. Para varios componentes la formula es: V-E+F=1+C, siendo C el número de componentes.

11.2.2 Planaridad de Grafos

Un grafo es planar si y solo si no contiene un subgrafo homeomorfo a K_5 (grafo completo con 5 vértices) ni a $K_{3,3}$ (grafo bipartito completo con 3 vértices en cada conjunto).

11.2.3 Truco del Cow Game

Dadas restricciones de la forma:

$$x_a - x_b \le d$$

```
int m2=r-(r-1)/3;
    if(f(m1)<f(m2))l=m1; // revisar desempate
    else r=m2;
}
int ans=l,val=f(l);
for(int i=l+1;i<=r;++i){
    int val2=f(i);
    if(val2>val){
        val=val2;
        ans=i;
    }
}
return val;
}
```

podemos transformar cada desigualdad en una arista dirigida:

$$b \to a \quad \text{con peso } d$$

Luego, ejecutando un algoritmo de camino más corto desde un nodo inicial s, obtenemos:

$$dist[i] = \max(x_i - x_s)$$

Nota: Pueden aparecer pesos negativos, por lo que se debe usar Bellman-Ford o SPFA, no Dijkstra.

11.3 Teoría de Números

11.3.1 Ecuaciones Diofánticas Lineales

Una ecuación diofántica lineal es una ecuación en la que se buscan soluciones enteras x e y que satisfagan la relación lineal ax+by=c, donde a, b y c son constantes dadas.

Para encontrar soluciones enteras positivas en una ecuación diofántica lineal, podemos seguir el siguiente proceso:

- 1. Encontrar una solución particular: Encuentra una solución particular (x_0, y_0) de la ecuación. Esto puede hacerse utilizando el algoritmo de Euclides extendido.
- 2. Encontrar la solución general: Una vez que tengas una solución particular, puedes obtener la solución general utilizando la fórmula:

$$x = x_0 + \frac{b}{\operatorname{mcd}(a, b)} \cdot t$$

$$y = y_0 - \frac{a}{\operatorname{mcd}(a, b)} \cdot t$$

donde t es un parámetro entero.

3. Restringir a soluciones positivas: Si deseas soluciones positivas, asegúrate de que las soluciones generales satisfagan $x \ge 0$ y $y \ge 0$. Puedes ajustar el valor de t para cumplir con estas restricciones.

11.3.2 Pequeño Teorema de Fermat

Si p es un número primo y a es un entero no divisible por p, entonces $a^{p-1} \equiv 1 \pmod{p}$.

11.3.3 Teorema de Euler

Para cualquier número entero positivo n y un entero a coprimo con n, se cumple que $a^{\phi(n)} \equiv 1 \pmod{n}$, donde $\phi(n)$ es la función phi de Euler, que representa la cantidad de enteros positivos menores que n y coprimos con n.

11.4 Geometría

11.4.1 Teorema de Pick

Sea un poligono simple cuyos vertices tienen coordenadas enteras. Si B es el numero de puntos enteros en el borde, I el numero de puntos enteros en el interior del poligono, entonces el area A del poligono se puede calcular con la formula:

$$A = I + \frac{B}{2} - 1$$

11.4.2 Fórmula de Herón

Si los lados del triángulo tienen longitudes a, b y c, y s es el semiperímetro (es decir, $s=\frac{a+b+c}{2}$), entonces el área A del triángulo está dada por:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

11.4.3 Relación de Existencia Triangular

Para un triángulo con lados de longitud $a,\,b,\,{\bf y}\,c,$ la relación de existencia triangular se expresa como:

$$b - c < a < b + c$$
, $a - c < b < a + c$, $a - b < c < a + b$

11.5 Combinatoria

11.5.1 Permutaciones

El número de permutaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como P(n,r) y se calcula mediante:

$$P(n,r) = \frac{n!}{(n-r)!}$$

11.5.2 Combinaciones

El número de combinaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como C(n,r) o $\binom{n}{r}$ y se calcula mediante:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

11.5.3 Permutaciones con Repetición

El número de permutaciones de n objetos tomando en cuenta repeticiones se denota como $P_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$P_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \frac{n!}{n_1! n_2! \cdots n_k!}$$

11.5.4 Combinaciones con Repetición

El número de combinaciones de n objetos tomando en cuenta repeticiones se denota como $C_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$C_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \binom{n+k-1}{n} = \binom{n+k-1}{k-1}$$

11.5.5 Números de Catalan

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Los números de Catalan también pueden calcularse utilizando la siguiente fórmula recursiva:

$$C_0 = 1$$

$$C_{n+1} = \frac{4n+2}{n+2}C_n$$

Usos:

• Cat(n) cuenta el número de árboles binarios distintos con n vértices.

- Cat(n) cuenta el número de expresiones que contienen n pares de paréntesis correctamente emparejados.
- Cat(n) cuenta el número de formas diferentes en que se pueden colocar n+1 factores entre paréntesis, por ejemplo, para n=3 y 3+1=4 factores: a,b,c,d, tenemos: (ab)(cd),a(b(cd)),((ab)c)d y a((bc)d).
- Los números de Catalan cuentan la cantidad de caminos no cruzados en una rejilla $n \times n$ que se pueden trazar desde una esquina de un cuadrado o rectángulo a la esquina opuesta, moviéndose solo hacia arriba y hacia la derecha.
- Los números de Catalan representan el número de árboles binarios completos con n+1 hojas.
- $\operatorname{Cat}(n)$ cuenta el número de formas en que se puede triangular un poligono convexo de n+2 lados. Otra forma de decirlo es como la cantidad de formas de dividir un polígono convexo en triángulos utilizando diagonales no cruzadas.

11.5.6 Estrellas y barras

Número de soluciones de la ecuación $x_1 + x_2 + \cdots + x_k = n$.

- Con $x_i \ge 0$: $\binom{n+k-1}{n}$
- Con $x_i \ge 1$: $\binom{n-1}{k-1}$

Número de sumas de enteros con límite inferior:

Esto se puede extender fácilmente a sumas de enteros con diferentes límites inferiores. Es decir, queremos contar el número de soluciones para la ecuación:

$$x_1 + x_2 + \cdots + x_k = n$$

 $con x_i \geq a_i$.

Después de sustituir $x_i' := x_i - a_i$ recibimos la ecuación modificada:

$$(x'_1 + a_i) + (x'_2 + a_i) + \dots + (x'_k + a_k) = n$$

$$\Leftrightarrow x_1' + x_2' + \dots + x_k' = n - a_1 - a_2 - \dots - a_k$$

con $x_i' \ge 0$. Así que hemos reducido el problema al caso más simple con $x_i' \ge 0$ y nuevamente podemos aplicar el teorema de estrellas y barras.

11.6 DP Optimization Theory

Name	Original Recurrence	Sufficient Condition	From	То
CH 1	$dp[i] = min_{j < i} \{dp[j] + b[j] *$	$b[j] \ge b[j+1]$ Option-	$O(n^2)$	O(n)
	$a[i]\}$	ally $a[i] \le a[i+1]$		
CH 2	$dp[i][j] = min_{k < j} \{ dp[i - $	$b[k] \ge b[k+1]$ Option-	$O(kn^2)$	O(kn)
	1][k] + b[k] * a[j]	ally $a[j] \le a[j+1]$		
D&Q	$dp[i][j] = min_{k < j} \{ dp[i - $	$A[i][j] \le A[i][j+1]$	$O(kn^2)$	$O(kn\log n)$
	$1][k] + C[k][j]\}$			
Knuth	dp[i][j] =		$O(n^3)$	$O(n^2)$
	$min_{i < k < j} \{dp[i][k] +$	A[i+1,j]		
	$dp[k][j]\} + C[i][j]$			

Notes:

- A[i][j] the smallest k that gives the optimal answer, for example in dp[i][j] = dp[i-1][k] + C[k][j]
- C[i][j] some given cost function
- We can generalize a bit in the following way $dp[i] = \min_{j < i} \{F[j] + b[j] * a[i]\}$, where F[j] is computed from dp[j] in constant time

11.7 Lista de números con mayor cantidad de divisores hasta 10^n

37.4	// 10 0
Número	# divisores
6	4
60	12
840	32
7560	64
83160	128
720720	240
8648640	448
73513440	768
735134400	1344
6983776800	2304
97772875200	4032
963761198400	6720
9316358251200	10752
97821761637600	17280
866421317361600	26880
8086598962041600	41472
74801040398884800	64512
897612484786617600	103680
	60 840 7560 83160 720720 8648640 73513440 735134400 6983776800 9772875200 963761198400 9316358251200 97821761637600 866421317361600 8086598962041600 74801040398884800

Grundy numbers. For a two-player, normal-play (last to move wins) game on a graph (V, E): $G(x) = \max(\{G(y) : (x, y) \in E\})$, where $\max(S) = \min\{n \ge 0 : n \notin S\}$. x is losing iff G(x) = 0.

Sums of games.

- Player chooses a game and makes a move in it. Grundy number of a position is xor of grundy numbers of positions in summed games.
- Player chooses a non-empty subset of games (possibly, all) and makes moves in all of them. A position is losing iff each game is in a losing position.
- Player chooses a proper subset of games (not empty and not all), and makes moves in all chosen ones. A position is losing iff grundy numbers of all games are equal.
- Player must move in all games, and loses if can't move in some game. A position is losing if any of the games is in a losing position.

Misère Nim. A position with pile sizes $a_1, a_2, \ldots, a_n \geq 1$, not all equal to 1, is losing iff $a_1 \oplus a_2 \oplus \cdots \oplus a_n = 0$ (like in normal nim.) A position with n piles of size 1 is losing iff n is odd.

11.9 2-SAT

2-SAT Rules

$$\begin{split} p &\rightarrow q \equiv \neg p \vee q \\ p &\rightarrow q \equiv \neg q \rightarrow \neg p \\ p &\vee q \equiv \neg p \rightarrow q \\ p &\wedge q \equiv \neg (p \rightarrow \neg q) \\ \neg (p \rightarrow q) \equiv p \wedge \neg q \\ (p \rightarrow q) \wedge (p \rightarrow r) \equiv p \rightarrow (q \wedge r) \\ (p \rightarrow q) \vee (p \rightarrow r) \equiv p \rightarrow (q \vee r) \\ (p \rightarrow r) \wedge (q \rightarrow r) \equiv (p \wedge q) \rightarrow r \\ (p \rightarrow r) \vee (q \rightarrow r) \equiv (p \vee q) \rightarrow r \\ (p \wedge q) \vee (r \wedge s) \equiv (p \vee r) \wedge (p \vee s) \wedge (q \vee r) \wedge (q \vee s) \end{split}$$