Homework 4 Report –

Malicious Comments Identification

學號:R06521504 系級:土木所交通組碩二 姓名: 陳譽仁

Problem 1.

RNN:

本次作業所建構出的 RNN model 架構如右圖,分別有一層關掉 trainable 的 embedding layer、兩層 512 單位的 LSTM、一層 256 個 nodes 的 dense 層以及一個輸出層,中間再穿插 BatchNormalization 與 Dropout 層,其中共有 13,420,545 個參數,而可訓練的有 3,808,769 個。處理文字的部分則是先讀入文字、使用 jieba 斷詞、去除停止詞、用 word2vec 訓練一個 word vector,其中選擇 skip-gram 的方式,而將句子輸入模式時使用 PaddingLength = 60。訓練模式時,選擇 adam(lr=0.002)做為 optimizer, batch_size 設為 512, validation set 為 training dataset 的 0.3,讓 model 自己去切。以這個架構在 Kaggle 上的分數為 0.74367 (Private)、0.74450 (Public),訓練過程如下圖,可以發現過程中有一些 overfitting 的情況,可是並不明顯。

BOW+DNN:

本次作業所建構出的 BOW+DNN model 架構如右圖,分別有一層 64 個 nodes 的 dense 層以及一個輸出層,中間再穿插 BatchNormalization 與 Dropout 層,其中共有 2,552,697 個參數,而可訓練的有 2,477,501 個。處理文字的部分則是先讀入文字、使用 jieba 斷詞、去除停止詞、用 word2vec 訓練一個 word vector,其中選擇 skip-gram 的方式,而將句子輸入模式前選擇 PaddingLength = 60,將每個詞轉換為 index 之後再轉換為 BOW 的資料形式,總共記錄超過 37000 個詞。訓練模式時,選擇 adam(lr=0.002)做為 optimizer,batch_size 設為 512, validation set 為 training dataset 的 0.3,讓 model 自己去切。以這個架構在 Kaggle 上的分數為 0.69982 (Private)、 0.70117(Public),訓練過程如次頁圖,可以發現過程到第 2、3 個 epoch 就很難改善模式的 accuracy 了,模式的表現也沒有明顯的變化。

Problem 2.

進行本次作業時並沒有詳細記錄改善模式過程的結果,但是以 RNN 模式為例,在過程中發現以下可以改善模式表現的方式。

- 1. LSTM 與輸出層之間的 DNN 疊太多層會讓模式表現不好,原因可能是在訓練時,模式只會去調整 比較接近輸出層的參數,讓 LSTM 的特性不明顯而使效果變差。
- 2. 兩層 LSTM 比一層 LSTM 的表現還好,原因可能是多層可以抓住更多跨字詞間的資訊。
- 3. 處理文字實有刪除一些比較沒有代表特定意義的停止詞、標點符號以及 Dcard 留言特有的樓層標籤,這樣比較能去除這些資訊的干擾。
- 4. 訓練 word2vec 的時候,發現 size 設太高(超過 300)也會降低模式表現,可能是因為這個模式 overfitting 了。

Problem 3.

本作業測試不做斷詞的 RNN 模式是直接使用第一題描述的 RNN 模式,但是將資料的句子斷成單一字元,將這個資料重新訓練一個 word2vec 模式套入第一題的架構之中,因此兩者的參數量是相同的,差別只在 embedding layer 的權重。訓練過程與第一題對比如下圖,左邊為不斷詞的結果,上傳到 Kaggle 的分數則為 0.71020 (Private)、0.71037 (Public),可以發現還是比 BOW+DNN 好,但是因為不做斷詞沒有辦法反映中文多字為一個詞的特性,因此讓表現變差。

Problem 4.

分別將兩句話輸入第一題描述的模式,結果如下:

	在說別人白痴之前,先想想自己	在說別人之前先想想自己,白痴
RNN	0.73317	0.742571
BOW+DNN	0.49999	0.49999

可以發現 RNN 模式覺得兩句話都是惡意留言,可是看起來比較兇的第二句確實拿到比較高的預測分數,代表 embedding layer 與 LSTM 確實可以捕捉字詞順序的差異,雖然第一句好像還是不太算惡意留言。但是,由於 BOW+DNN 只記錄字詞出現頻率,因此對於 BOW+DNN 模式而言,這兩句話完全沒有差別,所以就得到一樣的預測分數,而且還都預測成非惡意留言。

Problem 5.

按照上課投影片的計算方式進行計算,算式如下。

$$\epsilon_t = \frac{\sum_{n=1}^N u_t^n \delta(f_t(x^n) \neq y^n)}{\sum_{n=1}^N u_t^n}, d_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}, \alpha_t = \ln(d_t), u_{t+1}^n = u_t^n * \exp(-y^n f_t(x^n) \alpha_t)$$

以下的表格就是計算過程,每次迭代所用的分類器都是手動挑錯誤率比較小的分類方式。

n	0	1	2	3	4	5	6	7	8	9		
x^n	0	1	2	3	4	5	6	7	8	9		
y^n	1	-1	1	1	1	-1	-1	1	-1	-1		
$f_1(x^n) = \begin{cases} +1, x^n < 4.5 \\ -1, x^n \ge 4.5 \end{cases}$												
u_1^n	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
$f_1(x^n)$	1	1	1	1	1	-1	-1	-1	-1	-1		
$\delta(f_1(x^n) \neq y^n)$	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000		
$u_1^n * \delta(f_1(x^n) \neq y^n)$	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000		
		ϵ_1 =	= 0.200,	$d_1 = 2$,	$\alpha_1 = 0.0$	<mark>693</mark>						
	$f_2(x^n) = \begin{cases} +1, x^n > 1.5 \\ -1, x^n \le 1.5 \end{cases}$											
u_2^n	0.500	2.000	0.500	0.500	0.500	0.500	0.500	2.000	0.500	0.500		
$f_2(x^n)$	-1	-1	1	1	1	1	1	1	1	1		
$\delta(f_2(x^n) \neq y^n)$	1.000	0.000	0.000	0.000	0.000	1.000	1.000	0.000	1.000	1.000		
$u_2^n * \delta(f_2(x^n) \neq y^n)$	0.500	0.000	0.000	0.000	0.000	0.500	0.500	0.000	0.500	0.500		
		$\epsilon_2 = 0$	$0.313, d_2$	$_2 = 1.48$	$3, \alpha_2 =$	<mark>0.394</mark>						
			$f_3(x^n)$:	$= \begin{cases} +1, x \\ -1, x \end{cases}$	$\frac{n}{n} < 0.5$ $\frac{n}{n} \ge 0.5$							
u_3^n	0.742	1.348	0.337	0.337	0.337	0.742	0.742	1.348	0.742	0.742		
$f_3(x^n)$	1	-1	-1	-1	-1	-1	-1	-1	-1	-1		
$\delta(f_3(x^n) \neq y^n)$	0.000	0.000	1.000	1.000	1.000	0.000	0.000	1.000	0.000	0.000		
$u_3^n * \delta(f_3(x^n) \neq y^n)$	0.000	0.000	0.337	0.337	0.337	0.000	0.000	1.348	0.000	0.000		
		$\epsilon_3 = 0$	0.318, <i>d</i> ₃	$_{3}=1.\overline{46}$	$4, \alpha_3 =$	0.381						

	三次迭代加總: $H(x^n) = sign(\sum_{t=1}^T \alpha_t f_t(x^n))$											
$\alpha_1 * f_1(x^n)$	0.693	0.693	0.693	0.693	0.693	-0.693	-0.693	-0.693	-0.693	-0.693		
$\alpha_2 * f_2(x^n)$	-0.394	-0.394	0.394	0.394	0.394	0.394	0.394	0.394	0.394	0.394		
$\alpha_3 * f_3(x^n)$	0.381	-0.381	-0.381	-0.381	-0.381	-0.381	-0.381	-0.381	-0.381	-0.381		
$\sum_{t=1}^{T} \alpha_t f_t(x^n)$	0.680	-0.082	0.706	0.706	0.706	-0.680	-0.680	-0.680	-0.680	-0.680		
$H(x^n)$	1	-1	1	1	1	-1	-1	-1	-1	-1		
$\delta(H(x^n) \neq y^n)$	0	0	0	0	0	0	0	1	0	0		
錯誤率: <mark>0.1</mark>												

Problem 6.

透過 LSTM 的方式計算,過程如下面的表格。

t	1		x^t							
С	0.00	[0	1	0	3]			
Z	3	z_i	90	z_f	10	Z_{O}	-10			
g(z)	3.00	$f(z_i)$	1.00	$f(z_f)$	1.00	$f(z_o)$	0.00			
c'	3.00	h(c')								

t	2	x^t							
С	3.00	[1	0	1	-2]		
Z	-2	z_i	90	Z_f	10	Z_{O}	90		
g(z)	-2.00	$f(z_i)$	1.00	$f(z_f)$	1.00	$f(z_o)$	1.00		
c'	1.00	h(c')	1.00	y^t		1.00)		

t	3		x^t							
С	1.00	[1	1	1	4]			
Z	4	z_i	190	z_f	-90	Z_{O}	90			
g(z)	4.00	$f(z_i)$	1.00	$f(z_f)$	0.00	$f(z_o)$	1.00			
<i>c'</i>	4.00	h(c')	4.00	y^t		4.0	0			

t	4		x^t							
С	4.00	[0	1	1	0]			
Z	0	z_i	90	z_f	10	Z_{O}	90			
g(z)	0.00	$f(z_i)$	1.00	$f(z_f)$	1.00	$f(z_o)$	1.00			
<i>c'</i>	4.00	<i>h</i> (<i>c</i> ′)	4.00	y^t		4.00)			

t	5		x^t							
С	4.00	[0	1	0	2]			
Z	2	z_i	90	z_f	10	Z_{O}	-10			
g(z)	2.00	$f(z_i)$	1.00	$f(z_f)$	1.00	$f(z_o)$	0.00			
C'	6.00	h(c')	6.00 y^t 0.00							

t	6		x^t							
С	6.00	[0	0	1	-4]			
Z	-4	z_i	-10	z_f	110	Z_{O}	90			
g(z)	-4.00	$f(z_i)$	0.00	$f(z_f)$	1.00	$f(z_o)$	1.00			
c'	6.00	h(c')	6.00	y^t		6.0	0			

t	7		x^t							
С	6.00	[1	1	1	1]			
Z	1	z_i	190	z_f	-90	Z_{O}	90			
g(z)	1.00	$f(z_i)$	1.00	$f(z_f)$	0.00	$f(z_o)$	1.00			
c'	1.00	h(c')	1.00	y^t	.	1.00	0			

t	8		x^t							
С	1.00	[1	0	1	2]			
Z	2	z_i	90	z_f	10	Z_{o}	90			
g(z)	2.00	$f(z_i)$	1.00	$f(z_f)$	1.00	$f(z_o)$	1.00			
<i>c'</i>	3.00	h(c')	3.00	y^t		3.00)			

所以算出來的y表列如下。

t	1	2	3	4	5	6	7	8
y^t	0	1	4	4	0	6	1	3