```
In [3]: # HO:연속적인 값이 임의적이다. H1: 연속적인 값이 임의적이 아니다 연관이었다.
        import pandas as pd
        from statsmodels.sandbox.stats.runs import runstest 1samp
        data=pd.DataFrame(data,columns=['product'])
        data['label']=data['product'].map({'a':0,'b':1})
        runstest 1samp(data['label'], cutoff=.5, correction=True)
Out[3]: (-1.2539054635675788, 0.20987636894228046)
        !pip install mlxtend
In []: from mlxtend.frequent patterns import apriori,association rules
        import pandas as pd
        from mlxtend.preprocessing import TransactionEncoder
        # 지지도: 얼마나 자주?
        # 신뢰도: 얼마나 자주 함께?
        # 향상도: 우연이 아닌 관계?
In []: dataset=[['Apple', 'Beer', 'Rice', 'Chicken',],
                ['Apple', 'Beer', 'Rice'],
                ['Apple','Beer'],
               ['Apple', 'Bananas'],
                ['Milk', 'Beer', 'Rice', 'Chicken'],
                ['Milk', 'Beer', 'Rice'],
               ['Milk', 'Beer'],
               ['Apple', 'Bananas']]
        te=TransactionEncoder()
        te ary=te.fit transform(dataset)
        print(te.columns )
        df=pd.DataFrame(te ary,columns=te.columns )
        apriori(df,min_support=0.6,use_colnames=True)
        frequent itemsets=apriori(df,min support=0.3,use colnames=True)
        frequent itemsets['length']=frequent itemsets['itemsets'].apply(lambda x:len(x))
        print(frequent itemsets)
```

```
['Apple', 'Bananas', 'Beer', 'Chicken', 'Milk', 'Rice']
           support
                         itemsets length
             0.625
                          (Apple)
             0.750
                           (Beer)
        1
                                        1
             0.375
                           (Milk)
                                        1
             0.500
                           (Rice)
                                        1
             0.375 (Beer, Apple)
                                        2
             0.375
                    (Beer, Milk)
                                        2
                    (Beer, Rice)
             0.500
                                        2
In [17]: df=pd.read csv("https://raw.githubusercontent.com/ADPclass/ADP book ver01/main/data/groceries.csv")
In []: df split=df.iloc[:,0].str.split(',',expand=True)
         df_split_ary=df_split.values
         groceries=[]
         for i in range(len(df split ary)):
             groceries.append(list(filter(None, df_split_ary[i])))
         print(groceries)
In [ ]: te=TransactionEncoder()
         te ary=te.fit transform(groceries)
         print(te.columns )
         df=pd.DataFrame(te_ary,columns=te.columns_)
         apriori(df,min support=0.6,use colnames=True)
         frequent_itemsets=apriori(df,min_support=0.01,use_colnames=True)
         frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x:len(x))
         print(frequent itemsets)
In [26]: association rules(frequent itemsets,metric="confidence",min threshold=0.3)
```

_			г	_	_	п	
()	ш	+		-)	h	-	=
U	u		I.	_	U	Л.	

]:		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	representativity	leverage	conviction	zhangs_metric
	0	(beef)	(other vegetables)	0.052471	0.193512	0.019727	0.375969	1.942869	1.0	0.009574	1.292384	0.51217′
	1	(beef)	(root vegetables)	0.052471	0.109010	0.017389	0.331395	3.040058	1.0	0.011669	1.332612	0.708220
	2	(beef)	(whole milk)	0.052471	0.255542	0.021253	0.405039	1.585018	1.0	0.007844	1.251271	0.389532
	3	(berries)	(other vegetables)	0.033252	0.193512	0.010270	0.308869	1.596118	1.0	0.003836	1.166909	0.38632€
	4	(berries)	(whole milk)	0.033252	0.255542	0.011796	0.354740	1.388187	1.0	0.003299	1.153733	0.289254
	•••											
	120	(yogurt, soda)	(whole milk)	0.027354	0.255542	0.010474	0.382900	1.498382	1.0	0.003484	1.206381	0.341968
	121	(yogurt, tropical fruit)	(whole milk)	0.029286	0.255542	0.015152	0.517361	2.024564	1.0	0.007668	1.542474	0.521334
	122	(whole milk, tropical fruit)	(yogurt)	0.042302	0.139516	0.015152	0.358173	2.567255	1.0	0.009250	1.340679	0.637444
	123	(yogurt, whipped/sour cream)	(whole milk)	0.020744	0.255542	0.010881	0.524510	2.052539	1.0	0.005580	1.565664	0.52366′
	124	(whole milk, whipped/sour cream)	(yogurt)	0.032235	0.139516	0.010881	0.337539	2.419361	1.0	0.006383	1.298921	0.606209

125 rows × 14 columns

```
rules=association_rules(frequent_itemsets,metric="lift",min_threshold=1)
rules['antecedent_len']=rules['antecedents'].apply(lambda x:len(x))
rules[(rules['antecedent_len']>=2)&(rules['confidence']>=0.4)&(rules['lift']>=3)]
```

Out[27]:

:		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	representativity	leverage	conviction	zhangs_metric
	420	(citrus fruit, root vegetables)	(other vegetables)	0.017694	0.193512	0.010372	0.586207	3.029300	1.0	0.006948	1.949012	0.681957
	492	(tropical fruit, root vegetables)	(other vegetables)	0.021049	0.193512	0.012304	0.584541	3.020692	1.0	0.008231	1.941197	0.683334

▼ 1. 지지도 (Support)

정의:

A와 B가 동시에 등장하는 거래의 비율 (전체 거래 수 대비, A와 B가 함께 나타난 비율)

$$\operatorname{Support}(A\Rightarrow B)=P(A\cap B)$$

해석:

- A와 B가 얼마나 자주 함께 나타나는가를 보여줌
- 너무 낮으면 → 통계적으로 의미 없는 규칙일 가능성 있음

예시:

• 예: "우유와 시리얼"의 지지도가 0.2 → 전체 거래의 20%에서 둘 다 구매됨

▼ 2. 신뢰도 (Confidence)

정의:

A가 발생했을 때, B도 발생할 조건부 확률 (즉, A를 산 사람이 B도 샀을 확률)

$$\operatorname{Confidence}(A\Rightarrow B)=rac{P(A\cap B)}{P(A)}=P(B|A)$$

해석:

- A를 산 고객 중에서, 얼마나 많은 사람이 B도 샀는지
- 마케팅, 추천 시스템에서 **"A 산 고객에게 B도 추천 가능성 높음"**을 의미

예시:

• Confidence = 0.8 → 우유 산 사람 중 80%가 시리얼도 샀음

▼ 3. 향상도 (Lift)

정의:

B가 독립적으로 발생할 확률 대비, A를 조건으로 B가 얼마나 더 많이 발생하는가

$$\operatorname{Lift}(A\Rightarrow B)=rac{P(B|A)}{P(B)}=rac{\operatorname{Confidence}(A\Rightarrow B)}{P(B)}$$

해석:

- 1보다 크면: A를 샀을 때 B를 살 가능성이 일반보다 높음 → 긍정적 연관
- 1보다 작으면: A와 B는 오히려 함께 잘 안 나옴 → 부정적 연관
- 1이면: A와 B는 독립 → 관련 없음

예시:

- Lift = 1.5 → B 구매 확률이 A를 샀을 때 1.5배 높아짐
- Lift = 0.7 → 오히려 A 샀을 때 B는 더 안 사는 경향

▼ 표로 요약

지표	수식	의미 요약	값 해석
Support	$P(A\cap B)$	A와 B 동시에 나타날 확률	높을수록 규칙이 유의미
Confidence	$\frac{P(A \cap B)}{P(A)}$	A가 주어졌을 때 B의 확률	높을수록 신뢰할 만한 규칙
Lift	(P(B	A)}{P(B)})	독립적 확률 대비 얼마나 더 높은지