Rotulações de grafos com restrições nas distâncias Dia da Combinatória — PGMAT-UFC

Universidade Federal do Ceará

Campus Quixadá

Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

5 de fevereiro de 2024

Sumário

- 1. Conceitos Iniciais
- 2. Motivação
- 3. Rotulação-L(2,1)
- 4. Limitantes superiores
- 5. Grafos com grau máximo 3
- 6. Resultados
- 7. Conclusão
- 8. Anexos

- *V*(*G*)
- *E*(*G*)

- *V*(*G*)
- *E*(*G*)
- ullet $\psi_G(e_i)$: função de incidência
 - $\circ \ \psi_G(e_i) = \{v_k v_j\}$
 - $\circ v_k$ e v_j extremos de e_i
 - o incidentes

- *V*(*G*)
- *E*(*G*)
- ullet $\psi_G(e_i)$: função de incidência
 - $\circ \ \psi_G(e_i) = \{v_k v_j\}$
 - $\circ\ v_k$ e v_j extremos de e_i
 - o incidentes
- adjacência

- *V*(*G*)
- *E*(*G*)
- ullet $\psi_G(e_i)$: função de incidência
 - $\circ \ \psi_G(e_i) = \{v_k v_j\}$
 - $\circ\ v_k$ e v_j extremos de e_i
 - o incidentes
- adjacência
- vizinhos

- *V*(*G*)
- *E*(*G*)
- ullet $\psi_G(e_i)$: função de incidência
 - $\circ \ \psi_G(e_i) = \{v_k v_j\}$
 - $\circ v_k$ e v_j extremos de e_i
 - o incidentes
- adjacência
- vizinhos
- e_5 é um laço

- *V*(*G*)
- *E*(*G*)
- ullet $\psi_G(e_i)$: função de incidência
 - $\circ \ \psi_G(e_i) = \{v_k v_j\}$
 - $\circ v_k$ e v_j extremos de e_i
 - o incidentes
- adjacência
- vizinhos
- e_5 é um laço
- e_1 e e_2 são arestas múltiplas

- *V*(*G*)
- *E*(*G*)
- $\psi_G(e_i)$: função de incidência
 - $\circ \ \psi_G(e_i) = \{v_k v_j\}$
 - $\circ v_k$ e v_j extremos de e_i
 - o incidentes
- adjacência
- vizinhos
- e_5 é um laço
- e_1 e e_2 são arestas múltiplas
- *G* é simples se não tem laços nem arestas múltiplas

Distância

- Distância entre dois vértices u e v em um grafo G
- Denotado por $d_G(u, v)$.

$$d_G(v_2, v_4) = 2$$

Vizinhos à distância k

• $N_k(v)$: o conjunto dos vértices à distância k de v

- $N_1(v_1) = \{v_2, v_4, v_5\}$
- $N_2(v_1) = \{v_3, v_6, v_8\}$
- $N_3(v_1) = \{v_7\}$

- Grau de um vértice: número de arestas que incidem no vértice (laços contam duas vezes).
- Denotado por $d_G(u)$.

- Grau de um vértice: número de arestas que incidem no vértice (laços contam duas vezes).
- Denotado por $d_G(u)$.

- $d_G(v_1) = 6$
- $d_G(v_i) = 1$ para $2 \le i \le 7$

- Grau de um vértice: número de arestas que incidem no vértice (laços contam duas vezes).
- Denotado por $d_G(u)$.

- $d_G(v_1) = 6$
- $d_G(v_i) = 1$ para $2 \le i \le 7$
- $\Delta(G)$: Grau máximo de G

- Grau de um vértice: número de arestas que incidem no vértice (laços contam duas vezes).
- Denotado por $d_G(u)$.

- $d_G(v_1) = 6$
- $d_G(v_i) = 1$ para $2 \le i \le 7$
- $\Delta(G)$: Grau máximo de G
- Grafo k-regular: todo vértice tem grau k

- Grau de um vértice: número de arestas que incidem no vértice (laços contam duas vezes).
- Denotado por $d_G(u)$.

- $d_G(v_1) = 6$
- $d_G(v_i) = 1$ para $2 \le i \le 7$
- $\Delta(G)$: Grau máximo de G
- Grafo k-regular: todo vértice tem grau k
- Grafo cúbico = grafo 3-regular

Coloração própria de vértices

- ullet Seja G um grafo sem laços.
- Uma k-coloração própria dos vértices de G é uma atribuição de k cores aos vértices de G de modo que quaisquer dois vértices adjacentes u, v ∈ V(G) possuam cores distintas.

Coloração própria de vértices

- Seja G um grafo sem laços.
- Uma k-coloração própria dos vértices de G é uma atribuição de k cores aos vértices de G de modo que quaisquer dois vértices adjacentes u, v ∈ V(G) possuam cores distintas

- Número cromático de G: o menor inteiro positivo k para o qual G possui uma k-coloração própria de vértices.
 - \circ Denotado por $\chi(G)$

Motivação

• Neste problema, temos um conjunto de transmissores $V = \{v_1, v_2, \dots, v_n\}$ localizados em alguma região geográfica.

• Neste problema, temos um conjunto de transmissores $V=\{v_1,v_2,\ldots,v_n\}$ localizados em alguma região geográfica.

 Gostaríamos de <u>atribuir canais</u> de frequência aos transmissores satisfazendo restrições de interferência e de largura de banda, atendendo algum critério de optimalidade.

- Uma atribuição de frequências ótima minimiza globalmente uma função de custo que depende do objetivo específico do problema.
- Dois possíveis objetivos são:

- Uma atribuição de frequências ótima minimiza globalmente uma função de custo que depende do objetivo específico do problema.
- Dois possíveis objetivos são:
- (1) minimizar uma função de largura de banda sujeita a um nível aceitável de interferência. A largura de banda é geralmente tomada como a diferença entre a maior e a menor frequência utilizadas.

- Uma atribuição de frequências ótima minimiza globalmente uma função de custo que depende do objetivo específico do problema.
- Dois possíveis objetivos são:
 - (1) minimizar uma função de largura de banda sujeita a um nível aceitável de interferência. A largura de banda é geralmente tomada como a diferença entre a maior e a menor frequência utilizadas.
 - (2) minimizar a interferência do sistema (a quantidade de dispositivos que ficarão sem serviço) dada uma atribuição de canais fixa.

- Uma atribuição de frequências ótima minimiza globalmente uma função de custo que depende do objetivo específico do problema.
- Dois possíveis objetivos são:
 - (1) minimizar uma função de largura de banda sujeita a um nível aceitável de interferência. A largura de banda é geralmente tomada como a diferença entre a maior e a menor frequência utilizadas.
 - (2) minimizar a interferência do sistema (a quantidade de dispositivos que ficarão sem serviço) dada uma atribuição de canais fixa.
- Focamos no primeiro objetivo.

Reutilização de Canais

- Se dois transmissores se interferem, podemos atribuir-lhes canais de frequências diferentes.
- Contudo, se possível, gostaríamos de reutilizar canais de frequências aproveitando a natureza espacial da propagação do sinal de rádio que determina que a potência do sinal é uma função de distância.

Definimos interferência como uma função de frequência e distância.

Abordagens

• Pesquisa Operacional

- Técnicas de programação matemática: programação linear inteira, programação por restrições, etc.
- o Metaheurísticas: algoritmos baseados em biologia computacional
- o Técnicas de Inteligência Artificial: redes neurais, etc.

Abordagens

• Pesquisa Operacional

- Técnicas de programação matemática: programação linear inteira, programação por restrições, etc.
- o Metaheurísticas: algoritmos baseados em biologia computacional
- o Técnicas de Inteligência Artificial: redes neurais, etc.

Teoria dos Grafos

- o T-colorings
- $\circ L(h,k)$ -labelings e generalizações
- Radio Labelings
- o dentre outras ...

Problema da Atribuição de Canais e a Rotulação-L(2,1)

O Problema de Atribuição de Canais

Transmissores muito próximos

Em nosso modelo serão conectados por uma aresta

O Problema de Atribuição de Canais

Transmissores próximos o suficiente

Não serão conectados por aresta, mas sua distância será considerada

Modelagem como grafo

Rotulação-L(2,1)

Griggs e Yeh, 1992

Uma rotulação-L(2,1) de um grafo G é uma função $f\colon V(G)\to \mathbb{Z}_{\geq 0}$ que satisfaz:

- $|f(u) f(v)| \ge 2$, se $d_G(u, v) = 1$;
- $|f(u) f(v)| \ge 1$, se $d_G(u, v) = 2$.

Rotulação-L(2,1)

Griggs e Yeh, 1992

Uma rotulação-L(2,1) de um grafo G é uma função $f\colon V(G)\to \mathbb{Z}_{\geq 0}$ que satisfaz:

- $|f(u) f(v)| \ge 2$, se $d_G(u, v) = 1$;
- $|f(u) f(v)| \ge 1$, se $d_G(u, v) = 2$.

O span de uma rotulação-L(2,1) f é

$$\lambda_{2,1}(f) = \max\{|f(u) - f(v)| \colon u, v \in V(G)\}\$$

Número Cromático L(2,1)

Rotulação
$$f$$
 $\lambda_{2,1}(f)=14$

Número Cromático L(2,1)

Rotulação
$$f$$
 $\lambda_{2,1}(f)=14$

Rotulação
$$f'$$

 $\lambda_{2,1}(f') = 4$

Número Cromático L(2,1)

Rotulação
$$f$$
 $\lambda_{2,1}(f)=14$

Rotulação
$$f'$$

 $\lambda_{2,1}(f') = 4$

Número Cromático L(2,1)

 $\lambda_{2,1}(G) = \min\{\lambda_{2,1}(f) \colon f \text{ \'e uma rotulação-}L(2,1) \text{ de }G\}$

Problema da Rotulação-L(2,1)

Determinar $\lambda_{2,1}(G)$ para um grafo G arbitrário.

Problema da Rotulação-L(2,1)

Determinar $\lambda_{2,1}(G)$ para um grafo G arbitrário.

ullet Determinar $\lambda_{2,1}(G)$ é NP-completo (Griggs e Yeh, 1992)

Problema da Rotulação-L(2,1)

Determinar $\lambda_{2,1}(G)$ para um grafo G arbitrário.

- Determinar $\lambda_{2,1}(G)$ é NP-completo (Griggs e Yeh, 1992)
- $\lambda_{2,1}(G)$ já foi determinado para algumas classes de grafos
 - o Caminhos, Ciclos, Rodas e Completos
 - Árvores (algoritmo polinomial)
 - \circ Grafos de Petersen Generalizados P(n,k) com $k \leq 12$

Problema da Rotulação-L(2,1)

Determinar $\lambda_{2,1}(G)$ para um grafo G arbitrário.

- Determinar $\lambda_{2,1}(G)$ é NP-completo (Griggs e Yeh, 1992)
- $\lambda_{2,1}(G)$ já foi determinado para algumas classes de grafos
 - o Caminhos, Ciclos, Rodas e Completos
 - Árvores (algoritmo polinomial)
 - Grafos de Petersen Generalizados P(n,k) com $k \leq 12$
- Limitantes superiores para $\lambda_{2,1}(G)$ já foram estudados para algumas classes:
 - Grafos hipercubos, Grafos de intervalo, Grafos cordais, Grafos exoplanares

Lema

$$\lambda_{2,1}(G) \geq \Delta(G) + 1$$
 para todo grafo G .

Lema

$$\lambda_{2,1}(G) \geq \Delta(G) + 1$$
 para todo grafo G .

Lema

Se G tem uma rotulação-L(2,1) f com span $\Delta(G)+1$, então, todo $\Delta(G)$ -vértice $v\in V(G)$ possui rótulo $f(v)\in\{0,\Delta(G)+1\}$.

Lema

Se G contém um caminho com 3 vértices v_1,v_2,v_3 tal que $d_G(v_1)=d_G(v_2)=d_G(v_3)=\Delta(G)$, então $\lambda_{2,1}(G)\geq \Delta(G)+2$.

Lema

Se G contém um caminho com 3 vértices v_1,v_2,v_3 tal que $d_G(v_1)=d_G(v_2)=d_G(v_3)=\Delta(G),$ então $\lambda_{2,1}(G)\geq\Delta(G)+2.$

Suponha
$$C = \{0,1,2,3,4,5,6\}$$

Corolário

Se $G \in \Delta(G)$ -regular, então $\lambda_{2,1}(G) \geq \Delta(G) + 2$.

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

Griggs e Yeh (1992) verificaram essa conjectura para:

 $\bullet \ \ {\rm Grafos} \ {\rm com} \ \Delta(G) \leq 2$

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

- Grafos com $\Delta(G) \leq 2$
- Todo grafo conexo G com $\Delta(G) \geq (n-1)/2$

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

- Grafos com $\Delta(G) \leq 2$
- Todo grafo conexo G com $\Delta(G) \geq (n-1)/2$
- Todo grafo conexo G com diâmetro 2 (limitante apertado)

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

- Grafos com $\Delta(G) \leq 2$
- Todo grafo conexo G com $\Delta(G) \geq (n-1)/2$
- Todo grafo conexo G com diâmetro 2 (limitante apertado)

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

Griggs e Yeh (1992) verificaram essa conjectura para:

- Grafos com $\Delta(G) \leq 2$
- Todo grafo conexo G com $\Delta(G) \geq (n-1)/2$
- Todo grafo conexo G com diâmetro 2 (limitante apertado)

Essa conjectura continua aberta

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

• Dado G qualquer, qual o maior rótulo usado?

- Seja G um grafo e $\mathcal{L} = \{0, 1, 2, \ldots\}$ um conjunto de rótulos.
- Escolha arbitrariamente um vértice $v \in V(G)$ ainda não rotulado e atribua a v o menor rótulo do conjunto $\mathcal L$ satisfazendo as condições da rotulação-L(2,1).

- Dado G qualquer, qual o maior rótulo usado?
- Para descobrir, vamos contar quantos rótulos estão proibidos no pior caso.

- Cada vizinho x_i proíbe 3 rótulos: $f(x_i)$, $f(x_i) 1$ e $f(x_i) + 1$
- ullet Como v_i tem Δ vizinhos, eles proibem 3Δ rótulos em v_i

- Existem no máximo $\Delta(\Delta-1)$ vértices à distância 2 de v_i
- ullet Cada um desses vértices proíbe 1 rótulo em v_i
- ullet Logo, eles proíbem no total $\Delta(\Delta-1)$ rótulos em v_i

- Total de rótulos proibidos: $3\Delta + \Delta(\Delta 1) = \Delta^2 + 2\Delta$
- Logo, o conjunto de cores $\{0,1,\ldots,\Delta^2+2\Delta\}$ basta.
- $\lambda_{2,1}(G) \leq \Delta^2 + 2\Delta$.

- Seja G um grafo.
- Um subconjunto de vértices $S \subseteq V(G)$ é dito 2-estável se, para quaisquer dois vértices $u, v \in S$, tem-se $d_G(u, v) > 2$.

- Seja G um grafo.
- Um subconjunto de vértices $S \subseteq V(G)$ é dito 2-estável se, para quaisquer dois vértices $u, v \in S$, tem-se $d_G(u, v) > 2$.

- Seja G um grafo.
- Um subconjunto de vértices $S \subseteq V(G)$ é dito 2-estável se, para quaisquer dois vértices $u, v \in S$, tem-se $d_G(u, v) > 2$.

• Um conjunto estável S é maximal se não existe nenhum outro conjunto estável $S' \subseteq V(G)$ tal que $S \subset S'$.

- Seja G um grafo.
- Um subconjunto de vértices $S \subseteq V(G)$ é dito 2-estável se, para quaisquer dois vértices $u, v \in S$, tem-se $d_G(u, v) > 2$.

• Um conjunto estável S é maximal se não existe nenhum outro conjunto estável $S' \subseteq V(G)$ tal que $S \subset S'$.

Segundo Algoritmo [Chang e Kuo 1996]

• Baseado na seguinte ideia: os vértices de um conjunto 2-estável maximal podem receber o mesmo rótulo.

Segundo Algoritmo [Chang e Kuo 1996]

- S_i : conjunto 2-estável maximal (recebem rótulo i) tal que $S_i \subseteq F_i$.
- F_i: conjunto dos vértices não rotulados que estão à distância maior ou igual a 2 dos vértices de S_{i-1}.

- No início, definimos $S_{-1} = \emptyset$
- $F_0 = V(G)$

- Iteração i=0
 - \circ $F_0 = V(G)$
 - $\circ S_0 = \{v_2, v_6, v_{11}, v_{15}, v_{19}, v_{23}\}$

- Iteração i=0
 - \circ $F_0 = V(G)$
 - $\circ S_0 = \{v_2, v_6, v_{11}, v_{15}, v_{19}, v_{23}\}$

• Iteração i=1

$$\circ$$
 $F_1 = \{v_4, v_8, v_9, v_{13}, v_{17}, v_{21}\}$

- Iteração i=1
 - $\circ F_1 = \{v_4, v_8, v_9, v_{13}, v_{17}, v_{21}\}$
 - $\circ S_1 = \{v_9, v_{13}, v_{17}, v_{21}\}$

- Iteração i=1
 - $\circ F_1 = \{v_4, v_8, v_9, v_{13}, v_{17}, v_{21}\}$
 - $\circ S_1 = \{v_9, v_{13}, v_{17}, v_{21}\}$

- Iteração i=2
 - $\circ F_2 = \{v_4, v_8\}$

- Iteração i=2
 - $\circ F_2 = \{v_4, v_8\}$
 - $\circ S_2 = F_2$

- Iteração i=2
 - $\circ F_2 = \{v_4, v_8\}$
 - $\circ S_2 = F_2$

• Iteração i=3

$$\circ F_3 = \{v_{10}, v_{12}, v_{14}, v_{16}, v_{18}, v_{20}, v_{21}, v_{24}\}$$

- Iteração i=3
 - $\circ F_3 = \{v_{10}, v_{12}, v_{14}, v_{16}, v_{18}, v_{20}, v_{21}, v_{24}\}$
 - $\circ S_3 = \{v_{10}, v_{14}, v_{18}, v_{22}\}$

- Iteração i=3
 - $\circ F_3 = \{v_{10}, v_{12}, v_{14}, v_{16}, v_{18}, v_{20}, v_{21}, v_{24}\}$
 - $\circ S_3 = \{v_{10}, v_{14}, v_{18}, v_{22}\}\$

• Iteração i=4

 $\circ F_4 = \{v_1, v_3, v_5, v_7, v_{12}, v_{16}, v_{20}, v_{24}\}$

- Iteração i=4
 - $\circ F_4 = \{v_1, v_3, v_5, v_7, v_{12}, v_{16}, v_{20}, v_{24}\}$
 - \circ $S_4 = \{v_1, v_5, v_{12}, v_{20}\}$

• Iteração i=4

$$\circ F_4 = \{v_1, v_3, v_5, v_7, v_{12}, v_{16}, v_{20}, v_{24}\}$$

$$\circ S_4 = \{v_1, v_5, v_{12}, v_{20}\}\$$

• Iteração i=5

$$\circ$$
 $F_5 = \{v_3, v_7, v_{16}, v_{24}\}$

- Iteração i=5
 - \circ $F_5 = \{v_3, v_7, v_{16}, v_{24}\}$
 - $\circ S_5 = F_5$

- Iteração i=5
 - \circ $F_5 = \{v_3, v_7, v_{16}, v_{24}\}$
 - \circ $S_5 = F_5$

• Ao final, temos uma rotulação-L(2,1) de G.

Teorema [Chang e Kuo 1996]

Para todo grafo G com grau máximo Δ , $\lambda_{2,1}(G) \leq \Delta^2 + \Delta$.

Prova: Seja f a rotulação-L(2,1) obtida em um grafo G após a aplicação do algoritmo. Seja k o maior rótulo usado e $w \in V(G)$ com f(w) = k.

Queremos provar que $k \leq \Delta^2 + \Delta$.

Prova: Seja f a rotulação-L(2,1) obtida em um grafo G após a aplicação do algoritmo. Seja k o maior rótulo usado e $w \in V(G)$ com f(w) = k.

Queremos provar que $k \leq \Delta^2 + \Delta$.

• $I_1 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) = 1 \text{ para algum } y \in S_i\}$,

Prova: Seja f a rotulação-L(2,1) obtida em um grafo G após a aplicação do algoritmo. Seja k o maior rótulo usado e $w \in V(G)$ com f(w) = k.

Queremos provar que $k \leq \Delta^2 + \Delta$.

- $I_1 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) = 1 \text{ para algum } y \in S_i\}$,
- $I_2 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) \le 2 \text{ para algum } y \in S_i\},$

Prova: Seja f a rotulação-L(2,1) obtida em um grafo G após a aplicação do algoritmo. Seja k o maior rótulo usado e $w \in V(G)$ com f(w) = k.

Queremos provar que $k \leq \Delta^2 + \Delta$.

- $I_1 = \{i : 0 \le i \le k-1 \text{ e } d(w,y) = 1 \text{ para algum } y \in S_i\}$,
- $I_2 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) \le 2 \text{ para algum } y \in S_i\},$
- $I_3 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) \ge 3 \text{ para todo } y \in S_i\}.$

Prova: Seja f a rotulação-L(2,1) obtida em um grafo G após a aplicação do algoritmo. Seja k o maior rótulo usado e $w \in V(G)$ com f(w) = k.

Queremos provar que $k \leq \Delta^2 + \Delta$.

- $I_1 = \{i : 0 \le i \le k-1 \text{ e } d(w,y) = 1 \text{ para algum } y \in S_i\}$,
- $I_2 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) \le 2 \text{ para algum } y \in S_i\}$,
- $I_3 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) \ge 3 \text{ para todo } y \in S_i\}.$

Note que $|I_2| + |I_3| = k$.

Prova: Seja f a rotulação-L(2,1) obtida em um grafo G após a aplicação do algoritmo. Seja k o maior rótulo usado e $w \in V(G)$ com f(w) = k.

Queremos provar que $k \leq \Delta^2 + \Delta$.

- $I_1 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) = 1 \text{ para algum } y \in S_i\}$,
- $I_2 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) \le 2 \text{ para algum } y \in S_i\},$
- $I_3 = \{i : 0 \le i \le k-1 \text{ e } d(w,y) \ge 3 \text{ para todo } y \in S_i\}.$

Note que $|I_2| + |I_3| = k$.

O total de vértices à distância no máximo 2 de w é no máximo $\Delta+\Delta(\Delta-1)=\Delta^2.$ Logo, $|I_2|\leq \Delta^2$

Prova: Seja f a rotulação-L(2,1) obtida em um grafo G após a aplicação do algoritmo. Seja k o maior rótulo usado e $w \in V(G)$ com f(w) = k.

Queremos provar que $k \leq \Delta^2 + \Delta$.

- $I_1 = \{i : 0 \le i \le k-1 \text{ e } d(w,y) = 1 \text{ para algum } y \in S_i\}$,
- $I_2 = \{i \colon 0 \le i \le k-1 \text{ e } d(w,y) \le 2 \text{ para algum } y \in S_i\}$,
- $I_3 = \{i : 0 \le i \le k-1 \text{ e } d(w,y) \ge 3 \text{ para todo } y \in S_i\}.$

Note que $|I_2| + |I_3| = k$.

O total de vértices à distância no máximo 2 de w é no máximo $\Delta+\Delta(\Delta-1)=\Delta^2.$ Logo, $|I_2|\leq \Delta^2$

Como $d(w) \leq \Delta$, temos que $|I_1| \leq \Delta$. Logo,

$$\lambda_{2,1}(G) \le k = |I_2| + |I_3| \le \Delta^2 + |I_3|.$$

Prova do Teorema (cont.)

- Lembre que:
 - \circ $F_i=$ conjunto dos vértices não rotulados que estão à distância maior ou igual a 2 dos vértices de S_{i-1}
 - $\circ I_3 = \{i : 0 \le i \le k-1 \text{ e } d(w,y) \ge 3 \text{ para todo } y \in S_i\}.$

Prova do Teorema (cont.)

- Lembre que:
 - \circ $F_i=$ conjunto dos vértices não rotulados que estão à distância maior ou igual a 2 dos vértices de S_{i-1}
 - $\circ I_3 = \{i : 0 \le i \le k-1 \text{ e } d(w,y) \ge 3 \text{ para todo } y \in S_i\}.$
- Para cada $i \in I_3$, $w \notin F_i$ (caso contrário, $S_i \cup \{w\}$ é um subconjunto 2-estável de F_i , contradizendo a maximalidade de S_i)

Prova do Teorema (cont.)

- Lembre que:
 - o $F_i=$ conjunto dos vértices não rotulados que estão à distância maior ou igual a 2 dos vértices de S_{i-1}
 - $\circ I_3 = \{i : 0 \le i \le k-1 \text{ e } d(w,y) \ge 3 \text{ para todo } y \in S_i\}.$
- Para cada $i \in I_3$, $w \notin F_i$ (caso contrário, $S_i \cup \{w\}$ é um subconjunto 2-estável de F_i , contradizendo a maximalidade de S_i)
- Isso implica que d(w,y)=1 para algum vértice $y\in S_{i-1}$; ou seja, $i-1\in I_1$. Assim, $|I_3|\leq |I_1|$. Então

$$\lambda_{2,1}(G) \le k = |I_2| + |I_3| \le |I_2| + |I_1| \le \Delta^2 + \Delta.$$

Seja G grafo com grau máximo Δ . Então:

•
$$\lambda_{2,1}(G) \leq \Delta^2 + 2\Delta$$

[Griggs e Yeh, 1992]

Seja G grafo com grau máximo Δ . Então:

•
$$\lambda_{2,1}(G) \leq \Delta^2 + 2\Delta$$

•
$$\lambda_{2,1}(G) \leq \Delta^2 + \Delta$$

Seja G grafo com grau máximo Δ . Então:

•
$$\lambda_{2,1}(G) \leq \Delta^2 + 2\Delta$$

•
$$\lambda_{2,1}(G) \leq \Delta^2 + \Delta$$

•
$$\lambda_{2,1}(G) \leq \Delta^2 + \Delta - 1$$

Seja G grafo com grau máximo Δ . Então:

•
$$\lambda_{2,1}(G) \leq \Delta^2 + 2\Delta$$

•
$$\lambda_{2,1}(G) \leq \Delta^2 + \Delta$$

•
$$\lambda_{2,1}(G) \leq \Delta^2 + \Delta - 1$$

•
$$\lambda_{2,1}(G) \leq \Delta^2 + \Delta - 2$$

Grafos com grau máximo 3

Grafos com $\Delta(G) = 3$

Resultados conhecidos

 A Conjetura de Griggs e Yeh continua aberta mesmo para grafos com $\Delta(G)=3.$

Resultados conhecidos

- A Conjetura de Griggs e Yeh continua aberta mesmo para grafos com $\Delta(G)=3.$
- Todo grafo hamiltoniano com $\Delta(G)=3$ possui $\lambda_{2,1}(G)\leq 9.$ [Jeong-Hyun Kang, 2008]

Resultados conhecidos

- A Conjetura de Griggs e Yeh continua aberta mesmo para grafos com $\Delta(G)=3.$
- Todo grafo hamiltoniano com $\Delta(G)=3$ possui $\lambda_{2,1}(G)\leq 9$. [Jeong-Hyun Kang, 2008]
- Grafos exoplanares com grau máximo 3 possuem $\lambda_{2,1}(G) \leq 6$. [Li e Zhou, 2013]

Resultados conhecidos

• O grafo de Petersen possui $\lambda_{2,1}(G)=9$ e todos os demais grafos de Petersen generalizados possuem $\lambda_{2,1}(G)\leq 8$. [Georges e Mauro, 2002]

Resultados conhecidos

• O grafo de Petersen possui $\lambda_{2,1}(G)=9$ e todos os demais grafos de Petersen generalizados possuem $\lambda_{2,1}(G)\leq 8$. [Georges e Mauro, 2002]

Conjectura [Georges e Mauro 2002]

Com exceção do grafo de Petersen, todo grafo com $\Delta(G)=3$ possui $\lambda_{2,1}(G)\leq 7$

Resultados conhecidos

• O grafo de Petersen possui $\lambda_{2,1}(G)=9$ e todos os demais grafos de Petersen generalizados possuem $\lambda_{2,1}(G)\leq 8$. [Georges e Mauro, 2002]

Conjectura [Georges e Mauro 2002]

Com exceção do grafo de Petersen, todo grafo com $\Delta(G)=3$ possui $\lambda_{2,1}(G)\leq 7$

• Todos os grafos de Petersen generalizados com $n \leq 12$ vértices possuem $\lambda_{2,1}(G) \leq 7$. [Adams et al.(2006), Y-Z Huang et al.(2012)]

32

Definição

Seja G um grafo e $h \colon E(G) \to \mathbb{N}$ uma função.

Uma h-subdivisão de G, denotada por $G_{(h)}$, é o grafo obtido a partir de G substituindo cada aresta $uv \in E(G)$ por um caminho $P = ux_1x_2\cdots x_{n-1}v$ com n arestas, onde n = h(uv).

Definição

- Seja G grafo, $c \in \mathbb{N}$ e $h \colon E(G) \to \mathbb{N}$ uma função.
- Se $h(e) \geq c$ para toda aresta $e \in E(G)$, então denotamos o grafo $G_{(h)}$ por $G_{(\geq c)}.$
- Se h(e)=c para toda $e\in E(G)$, então denotamos o grafo $G_{(h)}$ por $G_{(c)}$.

Resultados Preliminares

- $\lambda_{2,1}(G_{(c)}) \leq \Delta + 2$ para todo grafo G e para todo $c \geq 4$. [Lü 2012]
- $\lambda_{2,1}(G_{(3)}) \leq \Delta + 2$ para todo grafo G. [Karst et al. 2015]
- $\lambda_{2,1}(G_{(\geq 4)}) \leq 5$ para todo G com $\Delta(G) = 3$ [Mandal e Panigrahi 2017]

Resultados Preliminares

- $\lambda_{2,1}(G_{(3)}) \leq \Delta + 2$ para todo grafo G. [Karst et al. 2015]
- $\lambda_{2,1}(G_{(\geq 4)}) \leq 5$ para todo G com $\Delta(G) = 3$ [Mandal e Panigrahi 2017]
- $\lambda_{2,1}(G_{(\geq 2)}) \leq 8$ para todo G com $\Delta(G) = 3$ [Costa e Luiz 2020]
- $\lambda_{2,1}(G_{(>3)}) \leq 6$ para todo G com $\Delta(G)=3$ [Costa e Luiz 2020]

Resultados

Resultados

Trabalho conjunto com Robertty Costa(Pargo/UFC)

Teorema

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{\geq 3})\leq 5$.

Teorema

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{>8})=4$.

Resultado 1

Teorema [Costa e Luiz 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{\geq 3})\leq 5.$

Resultado 1

Teorema [Costa e Luiz 2022]

Se G é um grafo com $\Delta(G) = 3$, então $\lambda_{2,1}(G_{>3}) \leq 5$.

Ilustração da Demonstração:

- Sejam G e $G_{\geq 3}$ como no enunciado. Supomos G conexo.
- Construímos uma rotulação-L(2,1) $f:V(G_{\geq 3}) \rightarrow \{0,1,2,3,4,5\}$

Resultado 1

Teorema [Costa e Luiz 2022]

Se G é um grafo com $\Delta(G) = 3$, então $\lambda_{2,1}(G_{>3}) \leq 5$.

Ilustração da Demonstração:

- Sejam G e $G_{\geq 3}$ como no enunciado. Supomos G conexo.
- Construímos uma rotulação-L(2,1) $f: V(G_{>3}) \rightarrow \{0,1,2,3,4,5\}$

• Etapa 1: Para todo $v \in V(G_{\geq 3})$ com d(v) = 3, faça f(v) = 0.

• Etapa 1: Para todo $v \in V(G_{\geq 3})$ com d(v) = 3, faça f(v) = 0.

Etapa 2: rotular todos os vértices adjacentes a vértices de grau 3. **Dificuldade:** vértices vizinhos não podem ter cores conflitantes.

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- $\bullet\,$ Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

- Etapa 2: Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Passo 1: Seja G' uma cópia de $G_{>3}$

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Passo 2: Para todo $v \in V(G')$ com d(v) = 3, adicione arestas conectando seus vizinhos, se eles não forem conectados

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Passo 2: Para todo $v \in V(G')$ com d(v) = 3, adicione arestas conectando seus vizinhos, se eles não forem conectados

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Passo 3: Remova todos os vértices $v \text{ com } d_{G'}(v) = 3$

- Etapa 2: Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Passo 3: Remova todos os vértices $v \text{ com } d_{G'}(v) = 3$

- Etapa 2: Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Passo 4: Para cada caminho induzido $P = ux_1x_2...x_nv$, remova seus vértices internos e ligue suas extremidades u e v

- Etapa 2: Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Passo 4: Para cada caminho induzido $P = ux_1x_2...x_nv$, remova seus vértices internos e ligue suas extremidades u e v

- Etapa 2: Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

O grafo resultante é o grafo auxiliar H.

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Observação: H possui $\Delta(G)=3$, logo H não é um ciclo. Além disso, H não é um grafo completo.

- Etapa 2: Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Teorema de Brooks: Se G é um grafo conexo tal que G não é um ciclo nem um grafo completo, então G tem uma coloração própria de vértices com $\Delta(G)$ cores.

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Seja ϕ uma 3-coloração própria de vértices de H com as cores 2,4,5

- Etapa 2: Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Seja ϕ uma 3-coloração própria de vértices de H com as cores 2,4,5

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Para isso, construímos um grafo auxiliar H a partir de $G_{\geq 3}$

Usamos essa coloração própria de vértices de H para rotular os vértices de $G_{\geq 3}$ que são adjacentes a vértices de grau 3 em $G_{\geq 3}$.

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Voltamos ao grafo original trazendo os rótulos.

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Voltamos ao grafo original trazendo os rótulos.

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Problema: alguns vértices adjacentes rotulados nesta etapa podem ter rótulos conflitantes!

- **Etapa 2:** Rotular todos os vértices adjacentes a vértices de grau 3.
- Problema: alguns vértices adjacentes rotulados nesta etapa podem ter rótulos conflitantes!

Atenção: Além disso, ainda restam vértices a serem rotulados. Esses vértices induzem caminhos e serão rotulados na próxima etapa

 Etapa 3: Resolver possíveis conflitos e rotular vértices ainda não rotulados.

- Etapa 3: Resolver possíveis conflitos e rotular vértices ainda não rotulados.
- Considere os caminhos $P=ux_1x_2\cdots x_nv$, onde $d_G(u)=3$, $d_G(v)=3$ e $d_G(x_i)=2$ para todo $1\leq i\leq n$.

Ilustração da Demonstração — Etapa 3

- Etapa 3: Resolver possíveis conflitos e rotular vértices ainda não rotulados.
- Considere os caminhos $P=ux_1x_2\cdots x_nv$, onde $d_G(u)=3$, $d_G(v)=3$ e $d_G(x_i)=2$ para todo $1\leq i\leq n$.

• Lembre que f(u) = f(v) = 0 e $f(x_1)$ e $f(x_n)$ pertencem a $\{2,4,5\}$.

Ilustração da Demonstração — Etapa 3

- Etapa 3: Resolver possíveis conflitos e rotular vértices ainda não rotulados.
- Considere os caminhos $P=ux_1x_2\cdots x_nv$, onde $d_G(u)=3$, $d_G(v)=3$ e $d_G(x_i)=2$ para todo $1\leq i\leq n$.

- Lembre que f(u) = f(v) = 0 e $f(x_1)$ e $f(x_n)$ pertencem a $\{2, 4, 5\}$.
- Sem perda de generalidade, supomos $f(x_1) > f(x_n)$.
- Rotulamos todos os caminhos P em etapas consecutivas por ordem crescente dos seus comprimentos.

• Caso 1: Considere caminho P de comprimento 3.

- Caso 1: Considere caminho P de comprimento 3.
- ullet Os vértices x_1 e x_2 já estão rotulados, mas podem estar em conflito!
 - \circ Isso acontece quando $f(x_1) = 5$ e $f(x_2) = 4$

- Caso 1: Considere caminho P de comprimento 3.
- Os vértices x_1 e x_2 já estão rotulados, mas podem estar em conflito! • Isso acontece quando $f(x_1) = 5$ e $f(x_2) = 4$

• Solução: defina $f(x_2) = 3$.

• Caso 2: Considere caminho P de comprimento 4 com $f(x_1) = 4$.

- Caso 2: Considere caminho P de comprimento 4 com $f(x_1)=4$.
- Os vértices x_1 e x_3 já estão rotulados, com $f(x_1) > f(x_3)$.

- Caso 2: Considere caminho P de comprimento 4 com $f(x_1) = 4$.
- Os vértices x_1 e x_3 já estão rotulados, com $f(x_1) > f(x_3)$.

• Solução: faça $f(x_1) = 3$ e $f(x_2) = 5$.

• Caso 3: Considere caminho P de comprimento 4 com $f(x_1) = 5$.

- Caso 3: Considere caminho P de comprimento 4 com $f(x_1) = 5$.
- Temos dois subcasos, dependendo se $f(x_3) = 4$ ou $f(x_3) = 2$.
- Subcaso 3.1: $f(x_3) = 4$.

- Caso 3: Considere caminho P de comprimento 4 com $f(x_1) = 5$.
- Temos dois subcasos, dependendo se $f(x_3) = 4$ ou $f(x_3) = 2$.
- Subcaso 3.1: $f(x_3) = 4$.

• Solução: faça $f(x_2) = 2$.

- Caso 3: Considere caminho P de comprimento 4 com $f(x_1) = 5$.
- Temos dois subcasos, dependendo se $f(x_3) = 4$ ou $f(x_3) = 2$.
- Subcaso 3.2: $f(x_3) = 2$.

- Caso 3: Considere caminho P de comprimento 4 com $f(x_1) = 5$.
- Temos dois subcasos, dependendo se $f(x_3) = 4$ ou $f(x_3) = 2$.
- Subcaso 3.2: $f(x_3) = 2$.

• **Solução:** faça $f(x_2) = 1$ e $f(x_3) = \{3, 4\} \setminus \{f(c)\}.$

• Existem mais 4 casos e em todos eles, provamos que a rotulação pode ser estendida para o caminho ainda não rotulado.

- Existem mais 4 casos e em todos eles, provamos que a rotulação pode ser estendida para o caminho ainda não rotulado.
 - (i) Caso 4: P com comprimento 5.
 - (ii) Caso 5: P com comprimento 6.
- (iii) Caso 6: P com comprimento 7.

- Existem mais 4 casos e em todos eles, provamos que a rotulação pode ser estendida para o caminho ainda não rotulado.
 - (i) Caso 4: P com comprimento 5.
 - (ii) Caso 5: P com comprimento 6.
- (iii) Caso 6: P com comprimento 7.
- (iv) Caso 7: P com comprimento maior ou igual a 8.

- Existem mais 4 casos e em todos eles, provamos que a rotulação pode ser estendida para o caminho ainda não rotulado.
 - (i) Caso 4: P com comprimento 5.
 - (ii) Caso 5: P com comprimento 6.
- (iii) Caso 6: P com comprimento 7.
- (iv) Caso 7: P com comprimento maior ou igual a 8.

Ao final, podem ocorrer 4 tipos de conflitos entre $f(x_{n-1})$ e $f(x_n)$. Mostramos que cada um deles pode ser resolvido localmente redefinindo alguns rótulos.

• Vértices em verde foram rotulados na Etapa 3.

- Vértices em verde foram rotulados na Etapa 3.
- Problema: Falta rotular caminhos onde um dos extremos possui grau 1.

- Vértices em verde foram rotulados na Etapa 3.
- Problema: Falta rotular caminhos onde um dos extremos possui grau 1.
- Solução: Uma atribuição gulosa de rótulos ao longo da sequência de vértices do caminho resolve esse problema!

- Vértices em verde foram rotulados na Etapa 3.
- Problema: Falta rotular caminhos onde um dos extremos possui grau 1.
- Solução: Uma atribuição gulosa de rótulos ao longo da sequência de vértices do caminho resolve esse problema!

- Vértices em verde foram rotulados na Etapa 3.
- Problema: Falta rotular caminhos onde um dos extremos possui grau 1.
- Solução: Uma atribuição gulosa de rótulos ao longo da sequência de vértices do caminho resolve esse problema!

- Vértices em verde foram rotulados na Etapa 3.
- Problema: Falta rotular caminhos onde um dos extremos possui grau 1.
- Solução: Uma atribuição gulosa de rótulos ao longo da sequência de vértices do caminho resolve esse problema!

Assim, provamos o seguinte resultado:

Teorema [Costa e Luiz 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{\geq 3})\leq 5$.

Assim, provamos o seguinte resultado:

Teorema [Costa e Luiz 2022]

Se
$$G$$
 é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{\geq 3})\leq 5$.

Esse limitante superior é apertado.

Assim, provamos o seguinte resultado:

Teorema [Costa e Luiz 2022]

Se
$$G$$
 é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{\geq 3})\leq 5$.

Esse limitante superior é apertado.

Assim, provamos o seguinte resultado:

Teorema [Costa e Luiz 2022]

Se
$$G$$
 é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{\geq 3})\leq 5$.

Esse limitante superior é apertado.

Teorema [Costa e Luiz 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{\geq 8})=4$.

Teorema [Costa e Luiz 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{>8})=4$.

Esboço da demonstração:

• Prova construtiva semelhante à anterior.

Teorema [Costa e Luiz 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{\geq 8})=4$.

Esboço da demonstração:

- Prova construtiva semelhante à anterior.
- Sabemos que $\lambda_{2,1}(G_{\geq 8}) \geq \Delta(G_{\geq 8}) + 1 = 4.$

Teorema [Costa e Luiz 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{2,1}(G_{>8})=4$.

Esboço da demonstração:

- Prova construtiva semelhante à anterior.
- Sabemos que $\lambda_{2,1}(G_{\geq 8}) \geq \Delta(G_{\geq 8}) + 1 = 4.$
- Para provar a igualdade, basta construir uma rotulação-L(2,1) de $G_{\geq 8}$ com rótulos em $\{0,1,2,3,4\}$.

• Passo 1: Atribuímos 0 a todos os vértices de grau 3

• Passo 1: Atribuímos 0 a todos os vértices de grau 3

 Passo 2: Usando o grafo auxiliar H, rotulamos os vértices adjacentes a vértices de grau 3 com rótulos 2, 3, 4 respeitando as condições da rotulação-L(2,1).

• Passo 3: O grafo induzido pelos vértices não rotulados é uma floresta linear.

• Passo 4: Usando indução no comprimento dos caminhos, mostramos que a rotulação parcial pode ser estendida para os caminhos resultando em uma rotulação-L(2,1) com rótulos 0,1,2,3,4.

Esboço da demonstração

- As sequências 4, 2, 0 ou 0, 2, 4 são "repetíveis"
- ullet Assim, obtemos uma 4-rotulação-L(2,1) de $G_{>8}$

Considerações Finais

Conclusão e Trabalhos Futuros

Em trabalho conjunto com Robertty Costa provamos que, para todo grafo G com $\Delta(G)=3$:

- $\lambda_{2,1}(G_{\geq 2}) \leq 7$
- $\lambda_{2,1}(G_{\geq 3}) \leq 5$ (limitante apertado)
- $\lambda_{2,1}(G_{\geq 6}) = 4$

Conclusão e Trabalhos Futuros

Em trabalho conjunto com Robertty Costa provamos que, para todo grafo G com $\Delta(G)=3$:

- $\lambda_{2,1}(G_{\geq 2}) \leq 7$
- $\lambda_{2,1}(G_{>3}) \leq 5$ (limitante apertado)
- $\lambda_{2,1}(G_{>6}) = 4$

Com base em resultados parciais, propomos a seguinte conjectura.

Conjectura

Com exceção do K_4 , para todo grafo G com $\Delta(G)=3$, tem-se $\lambda(G_{\geq 2})\leq 5$.

Grafo Ruim

Conjecturas

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

- Melhor limitante conhecido: $\lambda_{2,1}(G) \leq \Delta(G)^2 + \Delta(G) 2$
- \bullet Essa conjetura encontra-se aberta mesmo para grafos com $\Delta(G)=3$

Conjecturas

Conjectura de Griggs e Yeh (1992)

Se G é um grafo simples com $\Delta(G) \geq 2$, então

$$\lambda_{2,1}(G) \le \Delta(G)^2$$

- Melhor limitante conhecido: $\lambda_{2,1}(G) \leq \Delta(G)^2 + \Delta(G) 2$
- Essa conjetura encontra-se aberta mesmo para grafos com $\Delta(G)=3$

Conjectura [Georges e Mauro 2002]

Com exceção do grafo de Petersen, todo grafo com $\Delta(G)=3$ possui $\lambda_{2,1}(G)\leq 7$

Obrigado

Referências

- Adams, S. S., Cass, J., Tesch, M., Troxell, D. S., e Wheeland, C. (2007).
 The minimum span of L(2,1)-labelings of certain generalized Petersen graphs. *Discrete Applied Mathematics*, 155: 1314-1325.
- Bondy, J. A. e Murty, U. S. R. (2008). Graph Theory. Springer Publishing Company, Incorporated.
- Brooks, R. L. (1941). On colouring the nodes of a network. *Mathematical Proceedings of the Cambridge Philosophical Society*, 37(2):194-197.
- Calamoneri, T. The L(h, k)-labelling problem: An updated survey and annotated bibliography. Available at: http://www.sers.di.uniroma1.it/~calamo/survey.html, 2014.
- Chang, G. J. e Kuo, D. (1996). The L(2, 1)-labeling problem on graphs. *SIAM Journal on Discrete Mathematics*, 9:309-316.
- Fiala, J., Kloks, T., e Kratochivil, J. (2001). Fixed-parameter complexity of λ -labelings. *Discrete Applied Mathematics*, 113(1):59-72.

Referências

- Georges, J. P. e Mauro, D. W. (2002). On generalized Petersen graphs labeled with a condition at distance two. *Discrete Mathematics*, 259:311-318.
- Gonçalves, D. (2008). On the L(p,1)-labelling of graphs. *Discrete Mathematics*, 308(8):1405-1414.
- Griggs, J. R. e Yeh, R. K. (1992). Labelling graphs with a condition at distance 2. *SIAM Journal on Discrete Mathematics*, 5(4):586-595.
- Hale, W.K. (1980). Frequency assignment: Theory and applications *Proceedings of the IEEE*, 68 (12):1497-1514.
- Huang, Y.-Z., Chiang, C.-Y., Huang, L.-H., e Yeh, H.-G. (2012). On L(2,1)-labeling of generalized Petersen graphs. *Journal of Combinatorial Optimization*, 24:266-279.
- Kang, J.-H. (2008). L(2, 1)-labeling of Hamiltonian graphs with maximum degree 3. *SIAM Journal on Discrete Mathematics*, 22(1):213-230.

Referências

- Konig, D. (1990). Theory of Finite and Infinite Graphs. Birkhauser Boston Inc., Boston.
- Li, X., M.-Hau, V., e Zhou, S. (2013). The L(2, 1)-labelling problem for cubic Cayley graphs on dihedral groups. *Journal of Combinatorial Optimization*, 25:716-736.
- Li, X. e Zhou, S. (2013). Labeling outerplanar graphs with maximum degree three. *Discrete Applied Mathematics*, 161:200-211.

Anexos

• Uma $rotula ilde{cao}$ L(3,2,1) de um grafo G é uma função $f\colon V(G) \to \{0,1,\ldots,k\}$ tal que, para quaisquer dois vértices $u,v\in V(G)$:

- (i) Se $d_G(u, v) = 1$, então $|f(u) f(v)| \ge 3$;
- (ii) Se $d_G(u, v) = 2$, então $|f(u) f(v)| \ge 2$;
- (iii) Se $d_G(u,v)=3$, então $|f(u)-f(v)|\geq 1$.

• Uma rotulação L(3,2,1) de um grafo G é uma função $f\colon V(G)\to \{0,1,\ldots,k\}$ tal que, para quaisquer dois vértices $u,v\in V(G)$:

- (i) Se $d_G(u, v) = 1$, então $|f(u) f(v)| \ge 3$;
- (ii) Se $d_G(u, v) = 2$, então $|f(u) f(v)| \ge 2$;
- (iii) Se $d_G(u,v)=3$, então $|f(u)-f(v)|\geq 1$.
- Introduzida por Liu e Shao em 2004.

• Uma $rotula\~{\it cão}$ L(3,2,1) de um grafo G é uma função $f\colon V(G)\to \{0,1,\ldots,k\}$ tal que, para quaisquer dois vértices $u,v\in V(G)$:

- (i) Se $d_G(u, v) = 1$, então $|f(u) f(v)| \ge 3$;
- (ii) Se $d_G(u, v) = 2$, então $|f(u) f(v)| \ge 2$;
- (iii) Se $d_G(u,v)=3$, então $|f(u)-f(v)|\geq 1$.
- Introduzida por Liu e Shao em 2004.
- Motivação: Problema de atribuição de frequências.

• Uma $rotula\~{\it cão}$ L(3,2,1) de um grafo G é uma função $f\colon V(G)\to \{0,1,\ldots,k\}$ tal que, para quaisquer dois vértices $u,v\in V(G)$:

- (i) Se $d_G(u, v) = 1$, então $|f(u) f(v)| \ge 3$;
- (ii) Se $d_G(u,v)=2$, então $|f(u)-f(v)|\geq 2$;
- (iii) Se $d_G(u,v)=3$, então $|f(u)-f(v)|\geq 1$.
- Introduzida por Liu e Shao em 2004.
- Motivação: Problema de atribuição de frequências.
- Famílias clássicas
 - Caminhos, ciclos, estrelas, bipartidos completos e etc.

Dada uma rotulação L(3,2,1) f de um grafo G:

• *Span*: Maior rótulo k que é atribuido pela rotulação f a um vértice de G.

Grafo G com span 10

Dada uma rotulação L(3,2,1) f de um grafo G:

- *Span*: Maior rótulo k que é atribuido pela rotulação f a um vértice de G.
- Rotulação L(3,2,1) ótima: Possui o menor span possível.

Grafo G com span 10

Grafo G com span 7

Dada uma rotulação L(3,2,1) f de um grafo G:

- *Span*: Maior rótulo k que é atribuido pela rotulação f a um vértice de G.
- Rotulação L(3,2,1) ótima: Possui o menor span possível.
- $\lambda_{3,2,1}(G)$: Span de uma rotulação ótima.

Grafo G com span 10

Grafo G com span 7

Dada uma rotulação L(3,2,1) f de um grafo G:

- *Span*: Maior rótulo k que é atribuido pela rotulação f a um vértice de G.
- Rotulação L(3,2,1) ótima: Possui o menor span possível.
- $\lambda_{3,2,1}(G)$: Span de uma rotulação ótima.

Grafo G com span 10

Grafo G com span 7

- Se G é um grafo com grau máximo Δ , então $\lambda_{3,2,1}(G) \geq 2\Delta + 1$.
- Se G é um grafo com grau máximo Δ , então $\lambda_{3,2,1}(G) \leq \Delta^3 + \Delta^2 + 3\Delta$.

Teorema 1 [Chia et al. 2011]:

Se G é um grafo com grau máximo Δ , então $\lambda_{3,2,1}(G) \leq \Delta^3 + 2\Delta$

Teorema 1 [Chia et al. 2011]:

Se G é um grafo com grau máximo Δ , então $\lambda_{3,2,1}(G) \leq \Delta^3 + 2\Delta$

• Consequência: Grafos com $\Delta(G)=3$ possuem $\lambda_{3,2,1}(G)\leq 33$.

Teorema 1 [Chia et al. 2011]:

Se G é um grafo com grau máximo Δ , então $\lambda_{3,2,1}(G) \leq \Delta^3 + 2\Delta$

- Consequência: Grafos com $\Delta(G)=3$ possuem $\lambda_{3,2,1}(G)\leq 33$.
- Pergunta : Existe algum grafo com $\Delta(G)=3$ que possui $\lambda_{3,2,1}(G)=33$?

Teorema 1 [Chia et al. 2011]:

Se G é um grafo com grau máximo Δ , então $\lambda_{3,2,1}(G) \leq \Delta^3 + 2\Delta$

- Consequência: Grafos com $\Delta(G)=3$ possuem $\lambda_{3,2,1}(G)\leq 33$.
- Pergunta : Existe algum grafo com $\Delta(G)=3$ que possui $\lambda_{3,2,1}(G)=33$?
- ullet Objetivo de Pesquisa: Investigar subdivisões de grafos com $\Delta(G)=3$

Resultados Obtidos

Teorema [Luiz e Florencio 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{3,2,1}(G_{\geq 2})\leq 25$.

Resultados Obtidos

Teorema [Luiz e Florencio 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{3,2,1}(G_{\geq 2})\leq 25$.

Teorema [Luiz e Florencio 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{3,2,1}(G_{\geq 4})\leq 16$.

Resultados Obtidos

Teorema [Luiz e Florencio 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{3,2,1}(G_{\geq 2})\leq 25$.

Teorema [Luiz e Florencio 2022]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{3,2,1}(G_{>4})\leq 16$.

Teorema [Luiz e Santos 2023]

Se G é um grafo com $\Delta(G)=3$, então $\lambda_{3,2,1}(G_{>4})\leq 12$.