Person Detection in Aerial Images

Name & Roll No. (Member 1): Pranav Deep Indrakanti (S20201010007)

Abstract:

To detect human presence in aerial imagery. Variety of applications available, particularly in the area of Search and Rescue Operations(SAR ops)

Motivation:

- India ranks 89th in disaster management according to the World Risk Index (WRI) 2020, even lower than Sri Lanka, Bhutan & Maldives.
- Search and Rescue Missions (SAR) missions in India are generally limited to Coast Guard or military operations only. (ISRO's intervention in SAR missions has been a very recent trend, but mostly in case of high profile military operations like Indo-China border rescue missions etc.)
- Local bodies(say Municipality) which have more statistics and information about the region have very limited resources and/or access to execute SAR missions during calamities or otherwise.
- But all is not gloomy, as the procurement & setup cost of UAVs has significantly decreased.
- However, automation in this domain is more/less not explored(Indian context).
- To start with, I want to detect persons in aerial images in imagery that has been captured during calamity-like scenarios.

Datasets Details (HERIDAL DATASET) [1]

Patch Data

Positive and Negative Samples

Image Size: 81 * 81

Channels: 3

+ve Images : ~29,000 -ve Images : ~32,000

Images are taken with a high resolution camera on the DJI Phantom 3,

vertically at a 50 m altitude with the selected

Actual Data

Image Size : 4000 * 3000

Channels: 3

No. of Images: ~1500

Note: The dataset originally contains Train and Test images - But I've merged all of them and made my own splits as the splits they gave were skewed

Train, Val, Test - 64%, 18%, 18%

Models Used:

- 1) Classification (using Patch Data)
 - a) Machine Learning SVM
 - b) Deep Learning Custom Network
- 2) Detection using Actual Images
 - a) YOLO v5

Deep Learning Network [3]

Figure 1. Classification network architecture

Tweaks to the above model

Changed final Activation fn. To sigmoid instead of softmax

Trainable params: 522,561

Epochs = 20

Batch Size = 32

Loss Fn. = Binary Cross Entropy

Optimizer = Adam

Used Dropout Layer - 0.5

This network is used for classification of patch data

YOLO v5 [2]

Q: Why this model?

- a) It has a **distributed aspect ratio** which makes it more robust for various aspect ratios
- b) **Automatic new anchors** The model can generate new anchors if the given anchors < threshold
- c) It uses models like K-Means, Genetic Algorithm to generate anchors
- d) Uses a **Dense Network** with Body, Head and Neck
- e) **Head** captures most of the major features
- f) Neck captures the minor features
- g) Data Augmentation:
- h) a) High degree of scaling augmentation
- i) b) Good Color-Space Augmentation
- j) Image Size (pixel) is the same as that of the image size thereby increasing the volume of the batch.
- k) This increases variation
- Overall, this architecture makes the computation(time+memory) very efficient.

Results (Classification)

	Linear SVM	Polynomial SVM	DL Classifier
Training Accuracy	100%	96.7 %	98.769 %
Validation Accuracy	NA	NA	98.86 %
Testing Accuracy	76.35 %	83.65 %	98.86 %
Precision	61.5 %	77.9 %	98.68 %
Recall	73.8%	69.7 %	97.36 %

SVM Confusion Matrices

Linear SVM

Polynomial SVM

DL Model's Plots

YOLO v5Hyper Parameters for Yolo v5

Learning Rate	0.01	
No. of Epochs	200	
Batch_Size	16	
Optimizer	SGD (+Momentum)	
Momentum	0.937	
Weight Decay	0.0005	

Plots:

Outputs:

Conclusion:

Very good performance for the classifier. Objection Detection's performance is performing poorly. Image size (4000,3000) was a huge problem. Dividing the image into blocks of 4-5 and implementing RetinaNET can be a future scope

References:

- 1) Dunja Božić-Štulić, Željko Marušić, Sven Gotovac: Deep Learning Approach on Aerial Imagery in Supporting Land Search and Rescue Missions, International Journal of Computer Vision, 2019. <u>Link</u>
- 2) Official Implementation of YOLO v5 Link
- 3) Kundid Vasić, M.; Papić, V. Multimodel Deep Learning for Person Detection in Aerial Images. Electronics 2020, 9, 1459. Link