

INFORME N°3

MCI Plena Carga

2 DE OCTUBRE DE 2020

VICTORIA BASCUÑÁN SANTANDER Profesor: Cristóbal Galleguillos Ketterer. Profesor: Tomás Herrera Muñoz.

índice

Introducción	2
Consumo específico.	
Gráficos	
Superposición de Curvas.	
Preguntas o hipótesis	
Conclusión	

Introducción

En el presente trabajo se desarrollará el estudio y comprensión de los datos obtenidos por instrumentos de medición para un motor de combustión interna. Con ello se procederá a construir sus respectivas curvas características, compararlas con las que nos entregó el fabricante y sacar conclusión respecto aquellas comparaciones.

Consumo específico.

Datos medidos en laboratorio.

	Valores Medidos									
N°	Velocidad Referencia	Velocidad Real	Carga Freno	Vcomb	tcons	Tamb	Tadm	Taceite	Tesc	Δpadm
	[rpm]	[rpm]	[-]	[cm^3]	[s]	[°C]	[°C]	[°C]	[°C]	[mmH20]
1	1000	1002	4,55	125	99	18	29	72	468	76
2	1100	1102	4,6	125	88	18	29	74	482	79
3	1400	1402	4,84	125	65	18	27	88	550	102
4	1500	1500	4,81	125	62	18	28	91	551	110
5	1600	1598	4,74	125	61	18	29	93	549	116
6	2100	2098	4,27	125	50	20	29	99	530	188
7	2200	2198	3,96	125	50	20	29	99	514	200

Tabla 1.

Para realizar el cálculo de consumo específico en $\frac{gr}{kWh}$ se debe considerar los valores de densidad, volumen del combustible suministrado, tiempo y potencia al freno.

El valor de la densidad se sustrae de la tabla anexo 5.5 de las densidades de los materiales tomando un valor de,

$$\rho = 0.61 \frac{gr}{cm^3}$$

Para el cálculo de potencia al freno se realizará mediante la fórmula,

$$bp = \frac{Carga\:al\:freno*rpm}{K}$$

Donde K corresponde a la constante del dinamómetro teniendo un valor de 268 para el sistema inglés y 200 para el sistema internacional.

Para este caso se calculará la potencia al freno en HP y luego con un factor de conversión se traspasará a kW.

Potencia al Freno HP	Potencia al Freno en kW
22,80	17,00
25,35	18,90
33,93	25,30
36,08	26,90
37,87	28,24
44,79	33,40
43,52	32,45

Tabla 2

Con los valores de volumen y tiempo del combustible de la tabla 1, la densidad entregada en los datos del anexo 5.5 y la potencia al freno calculada de la tabla 2, se puede hacer análisis dimensional para obtener el valor del consumo específico.

$$\frac{\rho \left[\frac{gr}{cm^3}\right] * \frac{V_{comb}}{t_{cons}} \left[\frac{cm^3}{s}\right] * \frac{3600}{1} \left[\frac{s}{h}\right]}{Potencia\ al\ Freno\ kW} = \frac{gr}{kWh}$$

Consumo específico gr/kWh					
163,11					
165,04					
166,92					
164,58					
159,34					
164,36					
169,17					

Tabla 3

Gráficos.

Se pide graficar las curvas de potencia, consumo específico y torque respecto a las rpm. Para ello se tomará los valores de la tabla 1, 2 y 3 y se calculará los torques en cada punto de la siguiente manera:

$$T = \frac{60 * 1000 * bp}{2 * \pi * rpm} Nm$$

Ya calculados los valores, se agrupará los datos de cada factor y se graficarán respecto a las rpm como se menciona anteriormente.

Velocidad	Tours Nu	Determined France on LW	Consumo específico
rpm	Torque Nm	Potencia al Freno en kW	gr/kWh
1002,00	162,21	17,00	163,11
1102,00	163,99	18,90	165,04
1402,00	172,54	25,30	166,92
1500,00	171,48	26,90	164,58
1598,00	168,98	28,24	159,34
2098,00	152,22	33,40	164,36
2198,00	141,17	32,45	169,17

Superposición de Curvas.

Se extraerán datos del anexo 5.2 y se realizará una comparativa con las curvas obtenida con los datos entregados y calculados en él laboratorio.

Potencia Efectiva

RPM	Potencia al Freno en kW	Potencia al Freno en kW
1002	17,00	16
1102	18,90	17
1402	25,30	21
1500	26,90	24
1598	28,24	26
2098	33,40	35
2198	32,45	37

Gráfico 1

Consumo específico

RPM	Consumo específico gr/kWh	Consumo específico gr/kWh		
1002	163,11	218		
1102	165,04	218		
1402	166,92	218		
1500	164,58	218		
1598	159,34	218		
2098	164,36	223		
2198	169,17	228		

Gráfico 2

Torque

RPM	Torque Nm	Torque Nm
1002	162,21	170
1102	163,99	175
1402	172,54	190
1500	171,48	193
1598	168,98	193
2098	152,22	182
2198	141,17	178

Gráfico 3

Se aprecia en las curvas obtenidas con los datos experimentales versus los datos entregados por el fabricante siguen teniendo el mismo comportamiento después de varios años de ser utilizado el mismo motor.

Para el primer gráfico, se puede notar perfectamente que la potencia va aumentando junto con las rpm, de lo cual tiene un comportamiento correcto.

En el segundo, se ve una diferencia bastante notoria donde los consumos específicos difieren demasiado, dejando una brecha muy alta entre ellos. Esto se debe que con el paso del tiempo el motor se ha vuelto menos eficiente, lo que es normal para el tiempo que ha estado en marcha.

Por último, en el gráfico 3 se aprecia que las curvas tienen un mismo comportamiento, donde a medida que las rpm van aumentando el torque lo hace de la misma manera, hasta llegar pick y luego descender, ya que no se necesita mucho torque para mantener la misma velocidad.

Preguntas o hipótesis.

- Si tuviéramos otro combustible funcionando en un motor de combustión interna, ¿Qué tan diferentes serían sus curvas características?
- ¿Cómo se verán afectadas las curvas si se aplicara un turbocompresor al motor?

Conclusión

Aún con el pasar de los años el motor sigue demostrando en los ensayos un excelente comportamiento con las solicitaciones a los que se le somete. Marcando tendencias de curvas características correspondiente a un MCI. También se mostró como toda maquina que tiene su tiempo de trabajo, va disminuyendo su eficiencia como se visualizó en los gráficos comparativos del consumo específico.