Regression or Classification?

Ankur Garg, Chinmoy Baruah, Sanket Shahane Group - i

Interesting Question

- Two typical types of problems: Regression and Classification
- Classification:
 - Target Variable is categorical. Example: Is it going to rain tomorrow?
- Regression:
 - o Target Variable is numeric. Example: Cost of a house, Temperature prediction
- But there can be one more case

Interesting Question

What if your target variable doesn't belong to just one type.

Should we handle it as a regression problem or a classification problem?

Let's find out.

Bug Priority Prediction

- Bug Priority is an important factor in software maintenance life cycle.
- In Bugzilla, Bug Priority can range from P1 to P5 {P1, P2, P3, P4, P5}.
- These are not simply classes because there is an ordinal relationship.
 - o P1 > P2 > P3 > P4 > P5
- Can be represented as 1, 2, 3, 4, 5. But values are discrete. Not a straightforward regression problem.

Problem Definition

- How to predict Bug Priority?
- Using Regression? as suggested by our base paper. Or as a standard classification problem? Does one method outperform the other?
- What effect does <u>Parameter Tuning</u> have on such methods?

What do we care about

- Conclusions supported by statistical evidence.
- Effect of Hyperparameter tuning.
- Model Complexity.

Literature Review

- Paper "DRONE: Predicting Priority of Reported Bugs by Multi-Factor Analysis"
 - By Yuan Tian, David Lo
 - IEEE SM in 2015
- Treat the bug prediction as a regression problem.

Literature Review - Data Description

- Bug Reports from Eclipse bugzilla.
 - o From 2001-10-10 to 2007-12-14
- ~103k samples. 11 Features (Severity, Date, Description etc.)
- Derived Features.

Literature Review - Data Description

Derived Features:

- Temporal Features: How many bug reports before this bug?
- Author Features: How many bugs before this by this author?
- Product Features: How many bugs before this for this component ?
- Summary: Count Vectors

After feature generation:

- 39 Features (Temporal + Author + Product)
- ~18k sized count vector (Summary)

Literature Review - Methodology

Literature Review - Algorithms & Claims

DRONE, Naive Bayes, SVM, SeverisPrio+

Claims:

- Regression based DRONE better than SVM, SeverisPrio+
- Naive Bayes couldn't run to completion for comparison

Literature Review - Critique

- No statistical evidence/evaluation provided for learner comparison.
- No Parameter Tuning. Off the shelf learners used with default parameters.
- Naive Bayes is fast and has low memory footprint. It should run to completion.

Research Questions

- Does hyper parameter tuning improve the results of classification algorithms?
- Is there statistical evidence to support that DRONE is better than classification algorithms?
- Can Naive Bayes run to completion on the given dataset?

Our Methodology

Comparison of DRONE with - Naive Bayes, Random Forest, SVM

Parameter Tuning

- Differential Evolution for tuning hyperparameters of Random Forest Classifier.
- Parameters tuned:
 - Number of trees, Minimum samples for splitting, Minimum samples in a leaf
- DE parameters:
 - Strategy: 'rand2bin'
 - Frontier Size: 30
 - Mutation (f): (0.5, 1.9)
 - Recombination (crossover): 0.7
 - Max Iterations: 3

Results

Time Taken: 45 mins

Intel i7 8 cores 16 GB RAM

RF1: 46, 13, 1 RF2: 29, 10, 1 RF3: 19, 13, 1

Results

Ankurs-MacBook-Pro:correct_results iankurgarg\$ cat results_for_stats.txt | python stats.py

```
rank ,
              name ,
                       med
                                                               ), 0.20, 0.20, 0.21, 0.21, 0.21
  2 , drone_default , 0 , 0 (
                                                               ), 0.27, 0.27, 0.28, 0.28, 0.29
  3 , drone_v2 , 0 , 0 (
4 , rf_notune , 0 , 0 (
5 , rf_19131 , 0 , 0 (
                                                              ), 0.32, 0.33, 0.33, 0.33, 0.34
                                                          ), 0.38, 0.39, 0.50,
*- ), 0.48, 0.49, 0.50, 0.50, 0.53
                                                              ), 0.38, 0.39, 0.39, 0.40, 0.41
  5 , rf_29101 , 0
                                                            * ), 0.48, 0.49, 0.50, 0.50, 0.51
  5 , rf_46131 , 0 ,
                                                            *-- ), 0.49, 0.50, 0.50, 0.51, 0.54
```

Results - Average F1 Score

Results - Average Precision

Results - Average Recall

Results - Time to train learners

Observations

- Statistically significant change in F1 Score for Random Forest after parameter tuning.
- Random Forest with and without tuning performs better than DRONE
- Simplification of DRONE binning method yields significantly better results than DRONE.

Model Complexity

- From Differential Evolution on RF, selected three parameter settings with similar results (F1 Score = 0.49).
 - Num trees: 46, Min samples Split: 13, Min leaf samples: 1
 - Num trees: 29, Min samples Split: 10, Min leaf samples: 1
 - Num trees: 19, Min samples Split: 13, Min leaf samples: 1
- No Statistical Difference based on T-test on cross validation results.

Model Stability

The chosen one!

- Random Forest after parameter tuning:
 - Num trees: 19, Min samples Split: 13, Min leaf samples: 1

Results - Comparison with DRONE

DRONE				
Class	Precision	Recall	F1 Score	
P1	29.4%	22.4%	25.4%	
P2	20.0%	14.8%	16.99%	
P3	88.7%	79.2%	83.7%	
P4	0.0%	0.0%	0.0%	
P5	6.5%	6.55%	11.8%	
Average	28.9%	36.4%	27.6%	

Random Forest (19, 13, 1)				
Class	Precision	Recall	F1 Score	
P1	34.7%	42.0%	38.1%	
P2	34.8%	32.5%	33.7%	
P3	91.4%	91.6%	91.5%	
P4	37.7%	30.6%	33.8%	
P5	47.2%	48.1%	47.7%	
Average	49.2%	49%	49%	

Answers to Research Questions

1. Does hyper parameter tuning improve the results of classification algorithms?

- Parameter Tuning can have significant impact on results.
- Parameter Tuning may yield unnecessarily complex models.
 - Use statistical tests to choose similar model of simpler complexity.

Answers to Research Questions

- 2. Is there statistical evidence to support that DRONE is better than classification algorithms?
 - Statistical tests important for comparing learners.
 - Random Forest with Parameter tuning performs better than DRONE.
 - No statistical evidence that DRONE is better than standard classification.

Answers to Research Questions

- 3. Can Naive Bayes run to completion on the given dataset?
 - Yes. Infact, Naive Bayes fastest among all algorithms compared.

Thank You