Foundations of Computer Science Comp109

University of Liverpool

Boris Konev

konev@liverpool.ac.uk

Olga Anosova

O.Anosova@liverpool.ac.uk

Part 3. Relations

Comp109 Foundations of Computer Science

Reading

- Discrete Mathematics with Applications S. Epp, Chapter 8.
- Discrete Mathematics and Its Applications K. Rosen, Chapter 9

Contents

- The Cartesian product
- Definition and examples
- Representation of binary relations by directed graphs
- Representation of binary relations by matrices
- Properties of binary relations
- Transitive closure
- Equivalence relations and partitions
- Partial orders and total orders.
- Unary relations

Motivation

■ Intuitively, there is a "relation" between two things if there is some connection between them.

E.g.

- friend of
- *a* < *b*
- \blacksquare m divides n
- Relations are used in crucial ways in many branches of mathematics
 - Equivalence
 - Ordering
- **■** Computer Science

Databases and relations

A database table \approx relation

TABLE 1 Students.			
Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Cartesian product

The *Cartesian product* $A \times B$ of sets A and B is the *set* consisting of all **ordered** pairs (a, b) with $a \in A$ and $b \in B$, i.e.,

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

Note that (a, b) = (c, d) if and only if a = c and b = d.

Sets
$$\{1,2\} = \{2,1\}$$
, but $(1,2) \neq (2,1)$.

Let
$$A = \{1, 2\}$$
 and $B = \{a, b, c\}$. Then
$$A \times B = \{(1, a), (2, a), (1, b), (2, b), (1, c), (2, c)\}.$$

$$B \times A = \{(a, 1), (a, 2), (b, 1), (a, 2), (a, 2), (b, 1), (a, 2), (a, 2), (b, 2), (a, 2), (a, 2), (b, 2), (a, 2), (a,$$

$$B \times B = \{(a,a),(a,b), \dots$$

If A and B are finite, what is $|A \times B|$?

■ Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Then

$$A \times B = \{(1, a), (2, a), (1, b), (2, b), (1, c), (2, c)\}.$$

 $\blacksquare B \times A =$

If A and B are finite, what is $|A \times B|$? $|A| \times |B|$

Binary relation

A binary relation between two sets A and B is a subset R of the Cartesian product $A \times B$, i.e. $R \subseteq A \times B$.

For each $(a, b) \in R$ we can also write aRb.

If A = B, then R is called a binary relation on A.

Example: Family tree

- \blacksquare $R = \{(x, y) \mid x \text{ is a grandfather of } y \} =$
 - ?(Fred, Jane), ...
- $S = \{(x,y) \mid x \text{ is a sister of } y \} =$
 - { (Jane, Fiona), (Jane, Alan), (Fiona, Jane)

Write down the ordered pairs belonging to the following binary relations between $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$:

■
$$U = \{(x, y) \in A \times B \mid x + y = 9\};$$

 $V = \{(x,y) \in A \times B \mid x < y\}.$

Let $A = \{1, 2, 3, 4, 5, 6\}$. Write down the ordered pairs belonging to

$$R = \{(x, y) \in A \times A \mid x \text{ is a divisor of } y \}.$$

Representation of binary relations: directed graphs

- Let A and B be two finite sets and R a binary relation between these two sets (i.e., $R \subseteq A \times B$).
- We represent the *elements* of these two sets as *vertices* of a graph.
- For each $(a, b) \in R$, we draw an *arrow* linking the related elements.
- This is called the *directed graph* (or *digraph*) of *R*.

Consider the relation V between $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$ such that $V = \{(x, y) \in A \times B \mid x < y\}$.

7 digraph of V

Binary relations on a single set

A binary relation between a set A and itself is called a binary relation on A.

To represent a binary relation on A, we use a directed graph with a single set of vertices representing the elements of A.

Example. Consider the relation $V \subseteq A \times A$ where $A = \{1, 2, 3, 4, 5\}$ and

$$V = \{(1,2), (3,3), (5,5), (1,4), (4,1), (4,5)\}.$$

digraph of V

Example: $A = \{1, 2, 3, 4\}$, $R = \{(x, y) \in A \times A \mid x < y\}$

Example: $A = \{1, 2, 3, 4\}$, $R = \{(x, y) \in A \times A \mid x \le y\}$

Example: functional relations

- \blacksquare Recall that a *function* f from a set A to a set B assigns exactly one element of B to each element of A.
 - Gives rise to the relation $R_f = \{(a, b) \in A \times B \mid b = f(a)\}$
- If a relation $S \subseteq A \times B$ is such that for every $a \in A$ there exists at most one $b \in B$ with $(a, b) \in S$, relation S is functional.
- Functions are sometimes introduced through functional relations:
 A functional relation is called a partial function (or partial map).
 If a functional relation is defined for all elements of A, then this relation is a total function (or simply a function).

$$A = \{i \in \mathbb{N} \mid i < 10\}, \ B = \{i \in \mathbb{N} \mid 5 < i < 15\},\ R = \{((x, y) \in A \times B \mid y = 2x)\}$$

Inverse relation

Given a relation $R \subseteq A \times B$, we define the *inverse relation* $R^{-1} \subseteq B \times A$ by

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}.$$

Example. The inverse of the relation "is a parent of" on the set of people is the relation "is a child of".

If you have a digraph representation of a relation, how do you get the inverse? Answer: reverse the arrows.

Example: $A = \{1, 2, 3, 4\}$, $R = \{(x, y) \mid x \le y\}$

Composition of relations

Let $R \subseteq A \times B$ and $S \subseteq B \times C$. The *composition* (or *relative multiplication*) of R and S, denoted by $S \circ R$, is the binary relation between A and C given by

$$S \circ R = \{(a, c) \mid \text{ exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$$

Example: If R is the relation is a sister of and S is the relation is a parent of, then

- $S \circ R$ is the relation "is an aunt of";
- $S \circ S$ is the relation "is a grandparent of".

R: is a sister of

S: is a parent of

 $S \circ R = \{(a, c) \mid \text{ exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$

Alice R Ken and Ken S Alan so Alice $S \circ R$ Alan.

Penny R Sue and Sue S Jane so Penny $S \circ R$ Jane.

Fred S Ken and Ken S Fiona so Fred $S \circ S$ Fiona.

Digraph representation of compositions

DIY Example

A – set of people, B – set of countries

 $R \subseteq A \times A$, R(x, y) represents "x is a friend of y"

 $S \subseteq A \times B$, S(u, v) represents "u visited v"

Create your own example of R, S and both their compositions.

Summary

Attendance code: 168020

- The Cartesian product $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$.
- A binary relation R between two sets A and B is $R \subseteq A \times B$, which can be represented by a digraph.
- Function = functional relation.
- $\blacksquare R^{-1} = \{(b, a) \mid (a, b) \in R\}.$
- $S \circ R = \{(a, c) \mid \text{ exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$