Transition to Advanced Mathematics

Fall 2021

Practically Perfect Proof

Patrick May

December 31, 2021

Question 11.

Theorem 1.

$$\bigcup_{n \in \mathbb{N}} \left[3 + \frac{1}{n}, 5 - \frac{1}{n} \right] = (3, 5) \tag{1}$$

Proof. First, let $x \in \bigcup_{n \in \mathbb{N}} [3 + \frac{1}{n}, 5 - \frac{1}{n}].$

Then $3 + \frac{1}{n} \le x \le 5 - \frac{1}{n}$ for some $n \in \mathbb{N}$.

Observe that $3 + \frac{1}{n} > 3$ for any $n \in \mathbb{N}$, so then since $x \ge 3 + \frac{1}{n}$, we know x > 3.

Similarly, observe that $5 - \frac{1}{n} < 5$ for any $n \in \mathbb{N}$, so then since $x \le 5 - \frac{1}{n}$, we know x < 5.

Then 3 < x < 5.

Hence $x \in (3, 5)$.

Conversely, let $x \in (3, 5)$.

Then 3 < x < 5.

Let a = x - 3. $a \in \mathbb{R}$ by closure, and a > 0 as x > 3.

Note that since $a \neq 0$, there exists $b \in \mathbb{R}$ that satisfies $b = \frac{1}{a}$.

By the Archimedian Property of Natural numbers, we know there exists some $g \in \mathbb{N}$ such that g > b.

Additionally, if b is a natural number, g = b.

It follows:

$$g \ge b$$

$$\implies \frac{1}{g} \le \frac{1}{b}$$

$$\implies \frac{1}{g} \le \frac{1}{\frac{1}{a}}$$

$$\implies \frac{1}{g} \le a$$

Then there is some fraction of the form $\frac{1}{g}$, where $g \in \mathbb{N}$ such that $\frac{1}{g} \leq a$, where $a \in \mathbb{R}$.

We know 3 < x and $\frac{1}{g} < a$, then $3 + \frac{1}{g} < 3 + a$, hence $3 + \frac{1}{g} \le x$.

Similarly, let c = 5 - x. We know $c \in \mathbb{R}$ by closure, and c > 2 since x > 3.

Then, since $c \neq 0$, we know there exists some $d \in \mathbb{N}$ such that $c = \frac{1}{d}$.

By the Archimedian Property of Natural numbers, we know there exists some natural number h such that h > d.

If d is also a natural number, let h = d.

Then $h \ge d$.

It follows:

$$h \ge d$$

$$\implies \frac{1}{h} \le \frac{1}{d}$$

$$\implies \frac{1}{h} \le \frac{1}{\frac{1}{c}}$$

$$\implies \frac{1}{h} \le c$$

Then,

$$c \ge \frac{1}{h}$$

$$\implies 5 - c \le 5 - \frac{1}{h}$$

$$\implies x \le 5 - \frac{1}{h}$$

If $h \ge g$, let k = h. Otherwise, let k = g.

Then $3 + \frac{1}{k} \le x \le 5 - \frac{1}{k}$ for some $k \in \mathbb{N}$.

Hence $x \in \bigcup_{k \in \mathbb{N}} [3 + \frac{1}{k}, 5 - \frac{1}{k}].$