1

Assignment 11

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment11

1 **Problem**

(UGC-june2017,71):

Let **V** be the vector space of polynomials of degree at most 3 in a varible x with coefficients in \mathbb{R} . Let $\mathbf{T}=d/dx$ be the linear transformation of **V** to itself given by differentiation.

Which of the following are correct?

- 1) **T** is invertible
- 2) 0 is an eigenvalue of T
- 3) There is a basis with respect to which the matrix of T is nilpotent.
- 4) The matrix of **T** with respect to the basis $(1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3)$ is diagonal.

2 Solution

Checking whether matrix T is nilpotent	Let $V = P_3(x)$
	$T:V \rightarrow V$
	T(P(x)) = P'(x)
	Standard basis of $P(x) = (1, x, x^2, x^3)$
	differentiating wrt x to find matrix;
	$T(1)=0=a_1x + b_1x + c_1x^2 + d_1x^3$
	$T(x)=1=a_2+b_2x+c_2x^2+d_2x^3$
	$T(x^2) = 2x = a_3 + b_3 x + c_3 x^2 + d_3 x^3$
	$T(x^3) = 3x^2 = a_4 + b_4x + c_4x^2 + d_4x^3$
	Representing T in matrix form;
	$(0 \ 1 \ 0 \ 0)$
	T_{-} 0 0 2 0
	$T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
	$(0 \ 0 \ 0 \ 0)$
	from the above matrix T we can say it is nilpotent matrix.

Checking for eigen value of T	$T = \begin{pmatrix} 0 - \lambda & 1 & 0 & 0 \\ 0 & 0 - \lambda & 2 & 0 \\ 0 & 0 & 0 - \lambda & 3 \\ 0 & 0 & 0 & 0 - \lambda \end{pmatrix}$ $\implies \lambda = 0$
Checking whether T is invertible	Since $\det T = 0$. Therefore T is not invertible
Matrix T is diagonal matrix	Let basis of P(x) be B'= $(1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3)$ Differentiating wrt x; $T(1)=0=a_1x + b_1(1+x) + c_1(1+x+x^2) + d_1(1+x+x^2+x^3)$ $T(1+x)=1=a_2 + b_2(1+x) + c_2(1+x+x^2) + d_2(1+x+x^2x^3)$ $T(1+x+x^2) = 1 + 2x = a_3 + b_3(1+x) + c_3(1+x+x^2) + d_3(1+x+x^2+x^3)$ $T(1+x+x^2+x^3) = 1 + 2x + 3x^2 = a_4 + b_4(1+x) + c_4(1+x+x^2) + d_4(1+x+x^2+x^3)$ $+d_4(1+x+x^2+x^3)$ $T=\begin{pmatrix} 0 & 1 & -1 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ above matrix is not a diagonal matrix
Conclusion	Thus we can conclude Option 2) and 3) are correct.