Última revisión del o

Utiliza el teorema de Pitágoras para obtener las longitudes de lados de un trángulo isóceles

Nombre del alumno:

Aprendizajes:

🛂 Formula, justifica y usa el teorema de Pitágoras.

Fecha: _______Puntuación: ______

?>10 Run IATEX again to produce the table

Vocabulario

 $\mathbf{Cateto} \to \mathrm{lado}$ que junto con otro forma el ángulo recto de un triángulo rectángulo.

Triángulo rectángulo \rightarrow triángulo que tiene un ángulo recto.

 $\mathbf{Hipotenusa} \to \mathbf{lado}$ opuesto al ángulo recto en un triángulo rectángulo.

Triángulo isósceles

Si $\triangle ABC$ es un triángulo isósceles, entonces

 $\triangle ADC \cong \triangle DBC$

La Hipotenusa

La **hipotenusa** es el lado más largo y está enfrente del ángulo recto (ver Figura ??). Los dos catetos son los lados más cortos que forman el ángulo recto:

Figura 1

Teorema de Pitágoras

El área del cuadrado cuyo lado es la hipotenusa c es igual a la suma de las áreas de los cuadrados cuyos lados son los catetos a y b, como se muestra a continuación:

$$a^2 + b^2 = c^2$$

Figura 2

Encuentra el valor de x en el siguiente triángulo isóceles:

Figura 3

Solución:

Figura 4

Figura 5

Podemos utilizar el teorema de Pitágoras para encontrar un lado faltante. La ecuación del teorema de Pitágoras es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. En este caso, $a=83,\,b=x$ y c=158, Entonces,

$$83^{2} + x^{2} = 158^{2}$$

$$6,889 + x^{2} = 24,964$$

$$x^{2} = 18,075$$

$$x^{2} = \sqrt{18,075}$$

$$x \sim 134.443$$

El extremo de la rampa estará a 134.4 centímetros de la parte trasera del camión.

Ejercicio 1	?? puntos
Encuentra el valor de x en el siguiente triángulo isóceles:	
8 8 8 Figura 6	

Matemáticas 3	Guía 34	3° de Secundaria (2022-2023
Ejercicio 2		?? puntos
Encuentra el valor de x en el si	guiente triángulo isóceles:	
	Figura 9	

Encuentra el valor de x en el siguiente triángulo isóceles:

Guía 34

Figura 12

Solución:

El triángulo isóceles está formado por 2 triángulos congruentes (ver Figura ??). La base de cada triángulo rectángulo es la mitad de la base del triángulo isóceles. Cuando se trata de un triángulo rectángulo podemos utilizar el teorema de Pitágoras para encontrar un lado faltante. La ecuación del teorema de Pitágoras es:

$$c^2 = a^2 + b^2$$

Figura 13

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura $\ref{eq:condition}$). Observa que a y b pueden intercambiarse, pues son catetos.

Figura 14

 $a^2 + b^2 = c^2$ El teorema de Pitágoras $a^2 + 8^2 = 10^2$ Sustituye las longitudes $a^2 + 64 = 100$ Evalua los cuadrados conocidos $a^2 = 100 - 64$ Despejando x

 $a^2 = 36$ Restando

a=6 Calculando la raíz en ambos lados de la ecuación

Figura 15

Como a=6 y a es la mitad de la longitud de x (ver Figura ??), podemos multiplicar para obtener x.

$$x = a \cdot 2$$

$$x = 6 \cdot 2$$

$$x = 12$$

Ejercicio 3	?? puntos
Encuentra el valor de x en el siguiente triángulo isóceles:	
13 12 13 Figura 16	

Viacematicas 9	G dia 91	9 de secundana (2022 2020
Ejercicio 4		?? puntos
Encuentra el valor de x en el sigui	ente triángulo isóceles:	
	x / 5 x 4	
	Figura 20	

Ejercicio 5	?? puntos
Encuentra el valor de x en el siguiente triángulo isóceles:	
$\frac{\sqrt{80}}{8}$ 8 Figura 23	

Encuentra el valor de x en el siguiente triángulo isóceles:

Figura 27

Solución:

Figura 28

El triángulo isóceles está formado por 2 triángulos congruentes (ver Figura ??). La base de cada triángulo rectángulo es la mitad de la base del triángulo isóceles. Cuando se trata de un triángulo rectángulo podemos utilizar el teorema de Pitágoras para encontrar un lado faltante. La ecuación del teorema de Pitágoras es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura ??). Observa que a y b pueden intercambiarse, pues son catetos.

Figura 29

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $4^2 + x^2 = \sqrt{20^2}$ Sustituye las longitudes

 $16 + x^2 = 20$ Evalua los cuadrados conocidos

 $x^2 = 20 - 16$ Despejando x

 $x^2 = 4$ Restando

x=2 Calculando la raíz en ambos lados de la ecuación

Ejercicio 7	?? puntos
Encuentra el valor de x en el siguiente triángulo isóceles:	
8 8 8 Figura 33	

Ejercicio 8	?? puntos
Encuentra el valor de x en el siguiente triángulo:	

Guía $34\,$

Encuentra el valor de x en el siguiente triángulo:

Solución:

Figura 37

El triángulo isóceles está formado por 2 triángulos congruentes (ver figura ??). La base de cada triángulo rectángulo es la mitad de la base del triángulo isóceles.

Cuando se trata de un triángulo rectángulo podemos utilizar el teorema de Pitágoras para encontrar un lado faltante.

La ecuación del teorema de Pitágoras es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa.

Etiquetemos la figura del problema con a, b y c (ver figura ??).

Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $5^2 + 12^2 = x^2$ Sustituye las longitudes

 $25 + 144 = x^2$ Evalua los cuadrados conocidos

 $169 = x^2$ Sumando

13 = x Calculando la raíz en ambos lados de la ecuación

Ejercicio 9	?? puntos
Encuentra el valor de x en el siguiente triángulo isóceles:	paritos
x 3 4 Figura 38	

