Comparison tables: BBOB 2009 noisy testbed in 10-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [13, 8]. The experimental set-up is described in [12].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [12] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 10-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	POP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	22.6	160	28	1.4	140		6.1	3.5	21	41	640	П	5	14	18		2.9	2.9	45	480		5.1 I	1.9	6.7
	1e-05	21	120	24	1.3	130		5.1	5.9	18	31	510	П	4.1	11	16		2.3	2.4	35	280		4.3	1.6	5.7
	1e-04	20	110	22	1.3	130		4.6	5.6	16	26	440	П	3.9	6.6	15		2.1	2.5	31	250		3.9	1.4	5.3
9116	$\frac{\mathbf{auss}}{1e-03}$	19.4	68	19	1.2	110		4	2.2	14	21	360	1	3.7	8.3	13	28e-3/4e3	1.9	1.8	22	220		3.3	1.3	4.5
moderate Cause	1e-02	18.5	72	15	1.2	98		3.3	1.8	13	16	280	П	3.3	6.9	11	870	1.6	1.5	18	150		2.8	1.1	4
	-	18	51	11	П	45		2.2	1.4	10	11	180	П	က	5.1	8.3	20	1.1	1.2	12	96		2.5	1	3.3
by dimension	$\frac{1}{16+00}$	4	130	30	3.4	81		7.8	4.2	34	27	380	4.1	11	13	19		က	3.7	25	140	36e-1/1e6	6.5	3.9	11
divided	1e+01	2.6	20	17	2.9	53	36e+0/3e3	5.4	က	30	16	25	4	13	8.1	11	1	2.1	3.1	6.8	13	2200	5.1	4.6	12
his value	1e + 02	0.1	4.5	6.4	20	7.1	840	13	6.9	180	5.8	6.1	45	3.9	5.7	5.5	Н	15	15	5.3	5.5	3.1	11	10	12
+	1e + 03		1	1		1	1	1	П	Н	П	1	П	1	1	1	П	П	П	Н	П	П	1	1	Н
inction evaluations to reach	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 2: 10-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	30.4	120	20	1.7	63		4.5	5.6	22	59	470		56	10	14		550	4.5	270	440		3.6	5.3	ಬ
		1e-05	26.5	100	17	1.4	61		4	2.3	18	24	400	П	7.2	8.9	13		150	2.7	300	220		3.2	3.6	4.6
		1e-04	23.9	91	17	1.3	25		3.8	2.5	17	22	370	П	4.9	8.3	13		81	2.1	320	210		ಣ	$^{2.6}$	4.5
		1e-03	22.6	28	15	1.2	41		3.2	1.9	15	18	310	-	4.3	7.3	12		48	1.7	340	190		2.7	2.1	4.1
	moderate unif	1e-02	20.8	64	13	1.1	37		2.9	1.6	13	14	250	-	3.8	6.1	11	13e-2/4e3	30	1.5	360	140		2.3	2.1	3.7
	e mode	1e-01	17.6	52	11		27		2.6	1.3	12	11	200	1.1	3.3	5.1	9.5	460	6	1.3	420	66		2.1	7	3.4
dimension	102 Sphere	1e+00	4.08	130	30	3.2	73		7.1	4	34	26	390	4.2	10	13	21	П	7.9	4	1800	86	33e-1/1e6	6.1	7.6	11
this value divided by	C	1e+01	2.57	69	17	2.9	51	34e+0/3e3	4.9	3.1	31	18	45	4.3	13	7.2	11	П	3.5	က	9.1	13	3100	4.1	6.1	12
is value		1e + 02	0.1	3.7	8.9	31	5.8	640	8.5	11	190	5.7	4.8	40	4.9	4.4	5.1	П	18	15	4.7	7.1	6.2	6	6.3	12
		1e+03	0.1	1	1	1	1	-1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	-	1	п
inction evaluations to reach		$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 3: 10-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median function value and the median number of

cuan number			Δ ftarget	ERT_{best}/D	S [15]	AMaLGaM IDEA [4]	avg NEWUOA [23])AcG [9]	BFGS [22]	MA-ES [14]	MA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	AMaLGaM IDEA [4]	MA-LS-Chain [19]	[eum] [16]	NEWUOA [23]	(1+1)-ES $[1]$	[9] O	PSO_Bounds [7]	Monte Carlo [3]	CMA-ES [21]	SNOBFIT [17]	arcia) [10]
ana me me			Δft	$ERT_{ m l}$	ALPS	AMaLGal	avg NEW	BayEDAcG	BFG	BIPOP-CMA-ES	(1+1)-CMA-ES	DAS							2				PSO_B	Monte	IPOP-SEP-CMA-ES	SNOB	VNS (Garcia)
crion value			1e-07	36.4	-	380	39e-6/8e3	29	1	4.2	18e-6/1e4	•		•	20	2.7	1e3	30	170	15e-5/6e3	4.1e5	•			3.5	7.7	ĸ
a mi			1e-05	36.3		230	1500	28	-	3.1	710	٠			7.5	2.7	200	17	20	1100	7800	٠		-	2.7	5.5	oc cc
e median iii		L		36.3														11							2.3	2.7	13
is given un		moderate Cauchy	1e-03	36	2.5e4	30	25	49	1	2.2	23	2.4e5	150	71e-4/1e5	1.4	2.7	7.4	8.6	13	92	46	1.9e4	40e-3/1e5		1.9	1.4	26
Italics		mode	1e-02	14.1	96	19	8.9	80	2.2	4.2	9	1100	7.5	1500	1.9	6.9	9.3	15	14	50	7.8	2300	4.6e4	-	3.6	-	TC CC
103, 111	ension	Sphere	1e-01	12.6	75	16	1.8	62	2.9	3.6	2.5	39	17	280	1.4	7.1	7.4	12	14	5.2	1.9	280	1500			-	
$\sim pest^{out}$	led by dime	103 S	1e+00	4.7	110	27	2.9	99	6.5	6.1	3.6	22	21	350	3.4	17	12	18		3.6	3.6	1500	110	36e-1/1e6	5.6	2.2	9.4
ייי / דיוי	ue divie		1e+01	2.62	29	17	က	44	12	5.5	3.4	21	17	37	3.8	25	7.5	10	-	2.3	3.4						
CYCESS T	this val		1e+02	0.1	4.9	4.4	31	5.6	230	9.3	9.7	22	14	4.6	45	6.3	4.4	7.3	1	15	12	5.5	3.4	5.3	10	3.8	13
) amma gi	o reach		1e+03	0.1	1	1	П	П	1	1	П	1	1	П	П	1	1	П	П	1	П	П	П	П	П	П	_
table 3. 10-D, running time excess En_1/En_1 E_{est} on 1/103, in trans. Is given the median inner rance and the ine-median	function evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 4: 10-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

104 Rosenbrock moderate Gauss

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-0.7	2200	110	1		•		1.2		28e-6/9e5		67e-8/1e5	14	٠	1.4	17			21e-6/1e6	•		٠	2.8	٠	40
	1e-05	2080	51	1		•		1.2		1900		40	11		1.5	18			1200	•	63e-1/1e5	٠	က	·	42
	1e-04	2020	33	1		•		1.2		180		34	6.1	٠	1.5	18			390	٠	200	٠	က		44
SSI	1e-03	1940	21	1		•		1.3	46e-2/1e4	28		28	6.4	39e-1/300	1.5	19			99		730		3.2		45
derate Gal	1e-02	1840	16	1	67e-2/8e3			1.3	80	23		22	2.5	2.8	1.5	20		55e-2/5e3	32	59e-1/1e5	770		3.3	٠	46
nprock mo	1e-01	1660	14	1	22			1.3	19	7.2	70e-1/2e3	17	2.6	1.4	1.6	21		47	6.6	430	400		3.6	13e+0/500	51
104 LOSE	1e+00	666	14	1.4	7.1	97e-1/2e3		1.8	5.5	2.1	30	18	1.6	П	2.5	34		4.6	5.2	400	099	٠	5.7		54
	1e+01	45.3	32	5.8 8.0	1	47		3.6	2.8	15	11	26	1.6	1.8	2.9	5.7	61e+0/4e3	7.2	1.8	9.4	7.1		1.3	18	22
		23.4												1.9								26e+1/1e6			
	1e+03	4.81	49	10	Н	24	12e+3/1e3	3.5	2.2	17	11	72	7	6.9	5.7	7.5	3.8	П	2.5	7.8	21	0029	3.1	6.1	7.9
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 5: 10-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

105 Rosenbrock moderate unif

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	7970	42	1.2		•		П		24e-5/8e5	٠				2.8				71e-5/1e6	٠	٠	·	٠	٠	4900
	1e-05	7820	19	1.2				П		1400					8.8				1800						1200
	1e-04	7730	14	1.2		٠		П		250				٠	8. 8.				300	-				-	800
	1e-03	7420	12	1.2	88e-2/8e3			1	55e-2/1e4	54					2.9				170						730
erate unii	1e-02	7260	6.9	1.2	16			1	20	17			32e-2/1e4		2.9				45		75e-1/1e5		72e-1/1e4		650
orock moderate uni	1e-01	7010	5.3	1.2	3.7	-		1	4.4	2.6			6.4	70e-1/300	က	52e-1/5e4		52e-1/5e3	10	65e-1/1e5	200		20		300
ent	1e+00	2150	10	3.9	5.1	83e-1/2e3		2.9	4.5	3.1	76e-1/2e3			1	9.2	160		10	8.7	300	320	-	32	16e+0/500	310
	1e+01	95	16	2.3	2.5	18		1	1.8	18	3.4	45	1.2	1.6	1.2	5.2	70e+0/4e3	11	1.7	80	86		-	11	18
	1e+02	32.8	17	2.6	1.7	8.8		1.1	2.4	11	3.5	54	1.3	1.5	1.8	က	25	1.2	1	220	16	32e+1/1e6	1.4	4.6	29
	1e+03	3.11	74	13	1.9	42	20e+3/1e3	4.8	3.7	33	18	120	2.9	11	6	12	7	1	3.6	15	27	7500	5.4	14	11
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 6: 10-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	937		620				1.2				٠			810	32				٠			П		4.2
	1e-05	897		430		•		1.2		-		•			340	14				•		-	Н	-	4.3
	1e-04	874	-	340				1.2							210	11			57e-4/1e6	•			1		4.4
chy	1e-03	820	12e-3/5e5	210	13e-2/9e3			1.2	51e-2/1e4	16e-3/1e6			48e-3/1e4		06	8.2		11e-2/7e3	1.7e4		-		-1		4.5
lerate Cau	1e-02	819	1500	98	160	٠		1.1	170	4e3		•	88		46	6.5		26	370	62e-1/1e5	٠	٠	-	٠	4.6
brock mod	1e-01	771	140	45	19			1	40	29	67e-1/2e3		8.1	42e-1/300	17	4.9		14	61	1800			1		4.8
106 Rosenbrock moderate Cauchy	1e+00	342	140	35	5.4	11e+0/2e3		1.7	24	9.9	82	43e-1/1e5		5.4	21	5.7		7.5	18	1900	65e-1/1e5		7	70e-1/500	11
•	1e+01	28.8	47	8.6	1.3	100	44e+0/4e3	2.9	3.5	11	17	160	1	2.6	4.4	8.3	61e+0/4e3	1.6	2.4	13	320		2.1	14	4.6
	1e+02	12.8	47	2.6	-1					13	10	140	1.5	3.3	4.5	7.3	24	1.3	2.3	11	37	32e+1/1e6	2.3	9.3	5.3
	1e+03	3.44	72	13	1.5	36	71	5.3	3.5	21	16	140	2.6	8.6	7.1	11	5.3	1	2.7	8.6		1e4			11
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 7: 10-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	1e-07	1430 E	98	7 9.4 AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	. BFGS [22]	1 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	. DASA [18]	. DEPSO [11]	24	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	5.8 MA-LS-Chain [19]	. MCS (Neum) [16]	. NEWUOA [23]	(1+1)-ES [1]	0 1e3 PSO [6]	. PSO_Bounds [7]	. Monte Carlo [3]	2 13 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	0 960 VNS (Garcia) [10]
	1e-04 $1e-05$		19 26	0 9.7								2 28			5	6.9 6.3				.0 3.			9.5 8.2		110 200
				12 1		32e-3/2e3		1	-			40 3			45 3	7.7		•		260 23	59e-2/1e5	•	12 9.		65 11
ssnı	1e-02	521	11	14		50		П				37			53	2.8					1300		14		42
107 Sphere Gauss	1e-01	387	∞	15		4.5		1			97e-2/2e3	30			42	6.9			19e-1/1e6	270	260		16		36
107	1e+00	225	9	13	15e+0/7e3	4		П	11e+0/1e4	11e+0/4e5	13		13e+0/1e4	17e+0/500	26	6.1	87e-1/4e3	23e+0/4e3	6.3e4	260	240	30e-1/1e6	16	13e+0/500	27
	1e+01	94.5				က	33e+0/1e3	1	230	1.1e4	2.7	9.5	230	22	3.9	2.2	28	130	240	460	84	38	12	11	28
	1e + 02	0.1	5.1	3.5	32	4.2	009	17	180	3e3	4.1	3.5	130	5.1	-1	6.1	П	15	200	4.9	4.4	4.2	17	7.9	12
	1e+03	0.1	1	1	1	1	1	1	1	-	1	1	1	1	1	-	1	1	1	-	1	1	1	-	-
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 8: 10-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	20 20		108	11	108 Sphere unif	innif					
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	16-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT}_{ m best}/{ m D}$	0.1	0.1	1e3	3140	4760	7750	10900	13600	17900	30800	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	1	2.6	1.2	460	12e-1/5e5						ALPS [15]
AMaLGaM IDEA	1	5.2	19	33	77	82	320	28e-4/1e6	٠		AMaLGaM İDEA [4]
avg NEWUOA	П	1400	27e+0/7e3								avg NEWUOA [23]
BayEDAcG	Н	5.7	21e+0/2e3		·						BayEDAcG [9]
BFGS	Н	240	40e+0/800								BFGS [22]
BIPOP-CMA-ES	1	180	1	1	1	1	1	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	380	30	13e+0/1e4							(1+1)-CMA-ES [2]
DASA	П	4600	640	10e+0/4e5					•	•	DASA [18]
DEPSO	П	28	29	18e+0/2e3							DEPSO [11]
EDA-PSO	1	4.4	94	450	99e-1/1e5			•	•	•	EDA-PSO [5]
full NEWUOA	1	3300	140	29e+0/1e4							full NEWUOA [23]
GLOBAL	1	3.9	19e+0/500					•	•		GLOBAL [20]
iAMaLGaM IDEA	П	5.9	18	61	97	160	1300	1100	62e-4/1e6		iAMaLGaM IDEA [4]
MA-LS-Chain	1	5.5	1.1	240	24e-1/5e4			•	•	•	MA-LS-Chain [19]
MCS (Neum)	П		27	18e+0/4e3							MCS (Neum) [16]
NEWUOA	Н		28e+0/4e3								NEWUOA [23]
(1+1)-ES	П		92	54e-1/1e6							(1+1)-ES [1]
PSO	П		190	17e+0/1e5		٠			•	•	PSO [6]
PSO_Bounds	П	4.7	120	11e+0/1e5							PSO_Bounds [7]
Monte Carlo	н	9	4.1	34e-1/1e6	٠						Monte Carlo [3]
IPOP-SEP-CMA-ES	П	47	45	15e+0/1e4							IPOP-SEP-CMA-ES [21]
SNOBFIT	П	5.1	21e+0/500	•		٠			•	•	SNOBFIT [17]
VNS (Garcia)	Н	12	48	4300	13e-1/5e6						VNS (Garcia) [10]

Table 9: 10-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

THIS OF THE OF THE OTHER OF THE OTHER	200		arac ariana	5		,					
					109 Sphe	re Cauchy					
Δ ftarget	1e + 03	1e+02	1e + 01	1e+00	1e-01	1e-01 $1e-02$	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	0.1	0.1	2.79	28.6	49.9	82.4		146	179	242	$_{ m ERT_{best}/D}$
ALPS	1	2.3	89	57	1.4e5	20e-2/5e5				-	ALPS [15]
AMaLGaM IDEA	1	4.9	16	4.1	12	43	53	28	91	160	AMaLGaM IDEA [4]
avg NEWUOA	1	20	11	38	670	31e-2/7e3					avg NEWUOA [23]
$_{ m BayEDAcG}$	П	2.9	43	11	11	17	21	19	17	35e-7/2e3	ñ
BFGS	1	440	270	49	28	17	12	9.7	6.6	7.3	BFGS [22]
BIPOP-CMA-ES	1	13	4.7	1.1	1.1	1.1	1.1	1.1	1.2	1.2	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	13	8.9	53	1400	30e-2/1e4					(1+1)-CMA-ES [2]
DASA	П	150	1600	26e-1/5e5			٠				DASA [18]
DEPSO	П	6.1	17	7.5	46	87e-3/2e3					DEPSO [11]
EDA-PSO	1	4.1	39	1.1e4	13e-1/1e5						EDA-PSO [5]
full NEWUOA	1	33	27	24	2900	34e-2/1e4					full NEWUOA [23]
GLOBAL	_	7.3	13	6.3	35e-2/300						GLOBAL [20]
iAMaLGaM IDEA	П	5.1	8.3	2.1	10	54	130	190	270	450	iAMaLGaM IDEA [4]
MA-LS-Chain	1	5.3	10	4.5	9.2	180	3200	28e-4 /5e4			MA-LS-Chain [19]
MCS (Neum)	1	П	1	19	73	200		180	320	240	MCS (Neum) [16]
NEWUOA	_	16	12	22	57e-2/4e3						NEWUOA [23]
(1+1)-ES	1	12	5.9	7.7	1900	42e-3/1e6					(1+1)-ES [1]
PSO	-	5.1	160	4100	10e-1/1e5						PSO [6]
PSO_Bounds	П	22	2600	31e-1/1e5		٠					PSO_Bounds [7]
Monte Carlo	-	5.9	2400	29e-1/1e6	٠						Monte Carlo [3]
IPOP-SEP-CMA-ES	П	6	4.8	1	1	Н	1	1	Н	-	IPOP-SEP-CMA-ES [21]
SNOBFIT	-	4.8	6.5	18	140	85e-2/500					SNOBFIT [17]
VNS (Garcia)	1	12	11	1.6	1.5	1.4	1.3	1.3	1.3	1.3	VNS (Garcia) [10]

Table 10: 10-D, running time excess ERT/ERT_{best} on f_{110} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	7 Δ ftarget	田	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	nan	•	٠	•	•	٠	٠	•	•	•	•	٠	•	•	٠		٠		•	٠	•		•	
	1e-05	nan		•		٠		•		٠		٠		•				٠		٠		٠		٠	
	1e-04	nan		•		٠		•		٠		٠		•		•		•		٠		٠		٠	
	1e-03	nan		•		•		56e-1 $/1e6$		•								•				•			
anss	1e-02	1.64e7	27e-1/5e5	•				1				•				٠		٠		•		•		•	
110 Rosenbrock Gauss	1e-01	7.03e6	1					2.3																	160-1 /606
IIO Kose	1e+00	3.32e6	1	70e-1/1e6		11e+0/2e3		4.9				87e-1/1e5			61e-1/1e6	75e-1/5e4				14e+0/1e5	27e+0/1e5		95e-1/1e4		9
	1e+01	1120	15	6.5		4.3		1			28e+0/2e3	83			20	7.4				610	370		13		30
	1e + 02	141	6.1	1.1	16e + 2/7e3	3.9		П	69e+1/1e4	79e+1/4e5	5.7	12	27e+2/1e4		4.3	က	45e+1/4e3	83e+1/4e3	14e+1/1e6	17	370	26e+1/1e6	7.6	43e+1/500	96
	1e + 03	35.2	8.2	1.6	620	4.8	19e+3/700	1.3	220	1.3e4	2.8	15	1300	41e+2/400	1	3.2	29	100	570		210	1600	1.1	12	0 1
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Carcia)

Table 11: 10-D, running time excess ERT/ERT_{hest} on f_{111} , in italics is given the median final function value and the median number of

is value divided by dimension		$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	nan				•				•														•	
		1e-05	nan	•	•		•		•		•		•		•		•		•		•		•		•	
		1e-04	nan		•		•				•		•				•		•		•		•		•	
		1e-03	nan		•				٠										•				•		•	
	4	1e-02	nan				•				•														•	
	ck uni	1e-01	nan		•		٠		•		٠		•		•		•		•		•		•		٠	
l, in real	111 Rosenbrock unif	1e+00	nan		80e - 1/1e6		٠		70e-1/1e6		٠		•		•	86e - 1/1e6	٠.		•		•		•		٠	
d by dimensi	, 111	1e+01	8290	21e+0/5e5	16		39e+1/2e3		1				17e+1/1e5			35	42e+0/5e4				76e+1/1e5			11e+1/1e4		23e+0/6e6
value divide		1e+02	1950	3.8	3.7	10e + 3/7e3	15		1			21e+2/2e3	120			11	5.6	20e+2/4e3		54e+1/1e6	730	85e+1/1e5	30e+1/1e6	9.2		130
o reach this		1e+03	384	1.8	9	260	1.5	14e+3/500	1.1	25e+2/1e4	19e+2/4e5	24	45	94e+2/1e4	56e+2/400	4.6	1	33	74e+2/4e3	340	250	180	59	13	28e+2/500	34
function evaluations to reach this value divided by dimension		$\Delta { m ft}$ arget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 12: 10-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

function evaluations to reach this value divided by dimension	s to read	ch this value	divided by	dimension	5 100m	30					
Afternat	10+03	10+09	10+01	112 Kose j	15 ± 00	ucny	10.03	0 01	о Д	10.07	46.0000
${ m ERT}_{ m best}/{ m D}$	3.71	14.9	88.4	1160	1610	1740	1820	1890	1950	2040	${ m ERT}_{ m best}/{ m D}$
ALPS	56	37	30	1500	17e-1/5e5						ALPS [15]
AMaLGaM IDEA	11	5.9	9.9	300	250	240	230	230	220	210	AMaLGaM İDÉA [4]
avg NEWUOA	1.5	2.2	10	86	71	42e-1/8e3					avg NEWUOA [23]
BayEDAcG	31	20	23	85e-1/2e3	-						BayEDAcG [9]
BFGS	2900	24e+2/2e3				·					BFGS [22]
BIPOP-CMA-ES	4.6	20	1.2	1	1	1.1	1.1	1.1	1.1	1.1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	3.6	4.5	8.1	48e-1/1e4	-						(1+1)-CMA-ES [2]
DASA	23	61	320	31e-1/6e5		•				-	DASA [18]
DEPSO	15	8.4	15	88e-1/2e3		·					DEPSO [11]
EDA-PSO	120	120	300	93e-1/1e5		-		-			EDA-PSO [5]
full NEWUOA	2.7	က	4.6	32e-1/1e4	-						full NEWUOA [23]
GLOBAL	8.9	3.7	2.5	78e-1/300							GLOBAL [20]
iAMaLGaM IDEA	6.4	4.1	2.2	390	340	320	310	330	320	310	iAMaLGaM IDEA [4]
MA-LS-Chain	9.7	6.1	2.9	280	56e-1/5e4	•	٠			•	MA-LS-Chain [19]
MCS (Neum)	4.3	37	66e+0/4e3		-						MCS (Neum) [16]
NEWUOA	1	1	27	81e-1/5e3							NEWUOA [23]
(1+1)-ES	3.7	2.7	7.4	092	70e-2/1e6						(1+1)-ES [1]
PSO		530	1400	10e+0/1e5		•				-	PSO [6]
PSO_Bounds		51	1.6e4	16e+0/1e5							PSO_Bounds [7]
Monte Carlo	8100	33e+1/1e6	-							-	Monte Carlo [3]
IPOP-SEP-CMA-ES		2.6	1	1.2	1	-1	1	1	1	П	IPOP-SEP-CMA-ES [21]
SNOBFIT		8.9	40	21e+0/500				-		•	SNOBFIT [17]
VNS (Garcia)	10	4.3	1.2	4.9	3.7	3.6	3.4	3.3	3.3	3.5	VNS (Garcia) [10]

Table 13: 10-D, running time excess ERT/ERT_{best} on f_{113} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	11200	83	1.6				П							3.9	65									0069
		1e-05	10900	72	1.6				П							4.1	29		•							7100
		1e-04	10900	72	1.6		-		П							4.1	29		•				-			7100
		1e-03	10900	72	1.6		-		Н							4.1	29		-				•			7100
	Gauss	1e-02	10900	43	1.4				П							4.1	29		٠							7100
	113 Step-ellipsoid Gauss	$1\bar{e}$ -01	10300	7.3	1.2				П				21e-1/1e5			3.4	16				70e-1/1e5			23e-1/1e4		360
dimension	113 Step	1e+00	2760	5.9	2.9		40e-1/2e3		Н	32e+0/1e4	25e+0/4e5	10e+0/2e3	73		٠	4.7	7	23e+0/4e3		87e-1/1e6	510	23e+0/1e5	10e+0/1e6	17		64
e divided by		1e+01	447	2.4	1.8	40e+0/7e3	2.3	14e+1/1e3	П	320	1.4e4	6.3	58	50e+0/1e4	34e+0/600	3.1	2.2	130	39e+0/4e3	1200	150	1500	4200	7.4	29e+0/500	14
his valu		1e + 02	15.3	3.3			က		Н	52	260	3.1	24	100	3.2	1.1	7	12	47	37	2.8	2.1	3.4	16	4.2	2.3
reach t		1e + 03	0.1	2.6	1.7	4.9	1.9	110	4	5.8	092	1.7	2.6	8.6	1.9	1.8	1.9	1	32	22	1.8	1.8	2.2	3.2	2.5	1.4
tunction evaluations to reach this value divided by dimension		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 14: 10-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

icaton evaluations to reach		on real	uns value divided by dimension	unicusion 114 Step-ellipsoid unif	ollinsoi	d unif					
Afternot	10±03	1o±03	10±01		16-01	10-03	10.03	10.01	10.05	10-07	Afternot
EBT, /D	0.1	30.7	3660	12800	33100	38600	39000	39000	39000	40600	ERT, /D
ALPS	2.7	23	9.7	170-1/505	0						AL PS [15]
AMSLCSM IDEA	. e	o c	- h	11	. 08	130	120	130	120	. 081	AMal.GaM IDEA [4]
AMALORM IDEA	0.5	1 0		11	3	0	0	0	0	207	AMADGAM IDDA [4]
avg NEWUOA	100	240	82e+0/7e3								avg NEWUOA [23]
${ m BayEDAcG}$	1.7	18	66e+0/5e3								BayEDAcG [9]
BFGS	49	83	15e+1/800								BFGS [22]
BIPOP-CMA-ES	4.1	6.1	П	-1	1	1	1	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	110	89	40e+0/1e4								(1+1)-CMA-ES $[2]$
DASA	96	370	1800	28e+0/4e5					٠		DASA [18]
DEPSO	2.3	38	79e+0/2e3								DEPSO [11]
EDA-PSO	77	820	180	55e+0/1e5					•		EDA-PSO [5]
full NEWUOA	180	140	77e+0/1e4								full NEWUOA [23]
GLOBAL	2.3	2.3	68e+0/400	•							GLOBAL [20]
iAMaLGaM IDEA	1.8	31	12	20	29	180	180	180	180	170	iAMaLGaM IĎEÁ [4]
MA-LS-Chain	2.7	1.4	10	67e-1/5e4							MA-LS-Chain [19]
MCS (Neum)	1	20	39e+0/4e3								MCS (Neum) [16]
NEWUOA	32	110	88e+0/4e3								NEWUOA [23]
(1+1)-ES	110	61	2e3	16e+0/1e6							(1+1)-ES [1]
PSO	1.7	510	70e+0/1e5								PSO [6]
PSO_Bounds	2.1	200	49e+0/1e5								PSO_Bounds [7]
Monte Carlo	2.2	П	520	11e+0/1e6							Monte Carlo [3]
IPOP-SEP-CMA-ES	2.1	120	39e+0/1e4	-							IPOP-SEP-CMA-ES [21]
SNOBFIT	2.4	2.8	51e+0/500	-							SNOBFIT [17]
VNS (Garcia)	1.4	170	190	42e-1/5e6							VNS (Garcia) [10]

Table 15: 10-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta ext{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDÉA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	1280		4.2		•		5.6				-			14			-	-	-		-	Н	•	65
	1e-05	1260		4.3				5.4				-			14					-			П	•	64
	1e-04	1260		4.3		•		5.4							14			•					П		64
	1e-03	1260		4.3		-		5.4				-		٠	14					-		-	Н		64
Canchy	1e-02	1230		4.3				ت ت							13	59e-2/5e4							1		56
. Piosuillo		859	61e-2/5e5	3.6	24e-1/7e3	٠		6.9		•	12e-1/2e3	19e-1/1e5	13e-1/1e4		4.4	260		·	88e-2/1e6	•		·	П	·	38
115 Ston	1e+00	290	490	3.9	390	40e-1/2e3		4.5	21e-1/1e4	77e-1/5e5	16	4800	140	56e-1/500	1.5	42	12e+0/4e3	41e-1/4e3	2900	32e-1/1e5	64e-1/1e5	11e+0/1e6	1	16e+0/500	13
iae aiviaea i	1e+01	39.8	11	1.8	4.2	11	11e+1/2e3	П	12	8300	7	27	3.7	4.1	1.4	3.7	300	19	17	640	1400	6.6e4	Н	68	1.9
DA CITTO	1e + 02	3.81	14	4.3	5.6	9.6	1400	77	7.7	140	6.5	5.2	7	6.1	2.8	3.8	1	2.4	1.6	2.6	က	13	77	4.8	6.5
	1e+03	0.1	2.1	7	7	1.9	150	4.5	4	35	1.9	77	16	2.4	1.9	1.9	П	11	7.3	1.7	1.9	1.9	3.2	2.3	1.4
tunction evaluations to reach this value divided by different and the Stop	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 16: 10-D, running time excess ERT/ERT_{best}, on f_{116} , in italics is given the median function value and the median number of

function evaluations to reach this value divided by dimension	is to reach th	nis value divi	ded by dime	nsion							
			,	116 Ellipsoid Gauss	id Gauss						
$\Delta { m ftarget}$	1e + 03	1e+02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\text{ERT}_{ ext{best}}/ ext{D}$	105	1650	7140	10600	10900	11300	11600	11900	12300	16700	${ m ERT_{best}/D}$
ALPS	4.8	ಬ	15	160	15e-1/5e5						ALPS [15]
AMaLGaM IDEA	П	1	1	1	1	П	П	П	П	1	AMaLGaM IDEA [4]
avg NEWUOA	926	35e+2/7e3									avg NEWUOA [23]
BayEDAcG	16	18	68e + 1/2e3							•	BayEDAcG [9]
BFGS	10e+3/800										BFGS [22]
BIPOP-CMA-ES	5.1	2.2	1.3	1.3	1.6	1.7	1.7	1.7	1.7	1.3	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	130	86e+1/1e4									(1+1)-CMA-ES [2]
DASA	6200	10e+2/4e5								•	DASA [18]
DEPSO	13	18	63e+1/2e3	-							DEPSO [11]
EDA-PSO	150	390	200	46e+1/1e5				-			EDA-PSO [5]
full NEWUOA	1400	25e+2/1e4									full NEWUOA [23]
GLOBAL	31e+2/500										GLOBAL [20]
iAMaLGaM IDEA	1.7	2.5	2.8	2.7	က	3.4	3.5	3.5	3.7	2.8	iAMaLGaM IDEA [4]
MA-LS-Chain	5.2	15	33	30e+0/5e4					٠	•	MA-LS-Chain [19]
MCS (Neum)	45	99e+1/4e3									MCS (Neum) [16]
NEWUOA	28e+2/4e3									•	NEWUOA [23]
(1+1)-ES	330	28e+1/1e6									(1+1)-ES [1]
PSO	530	890	59e+1/1e5								PSO [6]
PSO_Bounds	240	820	46e+1/1e5								PSO_Bounds [7]
Monte Carlo	530	40e+1/1e6									Monte Carlo [3]
IPOP-SEP-CMA-ES	46	16	17e+1/1e4								IPOP-SEP-CMA-ES [21]
SNOBFIT	9.3	18e + 2/500						-			SNOBFIT [17]
VNS (Garcia)	87	54	1400	12e+0/5e6							VNS (Garcia) [10]

Table 17: 10-D, running time excess ERT/ERT_{best} on f_{117} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

value divided by difficultions of unif	$1e+01$ $1e+00$ $1e-01$ $1e-02$ $1e-03$ $1e-04$ $1e-05$ $1e-07$ $\Delta ftarget$	22800 39900 48900 62600 65400 68700 71700 79400 ERT $_{\rm best}/{\rm D}$	12e+1/5e5 ALPS [15]	6.5 13 30 100 $31e-3/1e6$	avg NEWUOA [23]	BayEDAcg [9]	BFGS [22]	1 1 1 1 1 BIPOP-CMA-ES [14]	7 (1+1)-CMA-ES [2]	5 DASA [18]	DEPSO [11]		[nj · · · · · · · · · · · · · · · · · · ·	GLOBAL [20]	9.5 14 24 51 110 33e-3/1e6 iAMaLGaM IDEA [4]	4 MA-LS-Chain [19]			θ	5 PSO [6]	5		4 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	
soid unif	le-01 1e-02							1 1																	
$117 \mathrm{Ellipsc}$	1e+00 1e-		-			•			-			•		-		•		-		-		-		•	
Jump for policy	1e+01	22800	12e+1/5e5	7				1							9.2										
	1e+02	10100	160	4.2				-	25e+2/1e4	15e+2/4e5		97e+1/1e5	62e+2/1e4		11	36e+1/5e4	20e+2/4e3	51e+2/4e3	61e+1/1e6	18e+2/1e5	19e+2/1e5	35e+1/1e6	15e+2/1e4		
	1e+03	2240	1.2	2.3	46e+2/7e3	28e+2/2e3	14e+3/500	П	65	1400	39e + 2/2e3	53	64	38e + 2/400	4	1.1	5.5	27	96	130	180	13	21	33e+2/500	
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	

Table 18: 10-D, running time excess ERT/ERT_{best} on f_{118} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	806		34		•		1.8		•		•			140					-			1.4	-	П
	1e-05	207		20		•		1.9		-		•			59					•		•	1.5	•	1
	1e-04	651		12		•		7		-		•			54					•		•	1.5	•	1
	1e-03	610		12		•		7							30								1.5		1
>	1e-02	530		9.6				2.1							18	64e-2/5e4							1.7		1
118 Ellipsoid Cauchy	1e-01	434	30e-1/5e5	4.4				2.2					48e-1/1e4		5.1	780							1.8		1
118 Ellips	1e+00	324	2.2e4	2.9	37e-1/9e3	•		2.2	13e+0/1e4		٠	•	430	16e+0/1e3	2.2	130		99e-1/5e3	16e+0/1e6	54e+0/1e5	٠	٠	2.1	٠	н
•	1e+01	135	260	1.3	17	٠		3.2	350	58e+0/7e5	72e+0/2e3	29e+0/1e5	14	20	-	16		22	5e4	1e4	63e+0/1e5	٠	3.4	٠	1.7
	1e + 02	31.2	40	3.6	3.2	59e+1/2e3		5.6	18	4900	61	72	1	5.3	2.8	12	65e+1/4e3	3.9	150	2300	1700	34e+1/1e6	7.8	40e+1/500	4.3
	1e+03	10.6	34	4.8	1	86	71e+2/2e3	6.2	2.7	110	14	52	1	3.8	3.7	6.7	140	1.2	4.9	6.7	18	2200	5.6	16	7.1
	$\Delta \mathrm{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 19: 10-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	ERT_{hest}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4e4		1.1				-							2.5										
	1e-05	30100		1.2		-		1		٠					2.4										
	1e-04	17900	43e-5/5e5	1.3				1				64e-4/1e5			3.5	49e-5/5e4							54e-4/1e4		10e-4/7e6
Gauss	1e-03	3650	44	3.9				1				180			13	9.1				38e-2/1e5			20		2900
119 Sum of different powers Gauss	1e-02	1120	11	8.3		67e-3/2e3		1		-		83			24	9.3				380	28e-1/1e5		7.1		180
ı of differe	1e-01	497	œ	14		4.1		1		٠	80e-2/2e3	110			38	8.8		٠	13e-1/1e6	330	2800	14e-1/1e6	13	٠	41
$119~\mathrm{Sum}$	1e+00	312	4.1	8.5	65e-1/7e3	2.6		1	31e-1/1e4	33e-1/4e5	9.9	83	55e-1/1e4	54e-1/600	10	3.2	56e-1/4e3	60e-1/4e3	4.6e4	230	890			52e-1/500	18
	1e+01	12.8	3.4	2.1	200	9.9	13e+0/2e3	1	87	1100	5.9	4.6	160	8.7	1.4	1.7	18	120	44	1.4	260	7.5	34	9.7	2.6
	1e + 02	0.1	2.9	2.7	22	2.2	270	7.5	99	750	2.2	2.7	120	3.4	3.1	4	1	11	170	3.3	3.1	3.1	7.1	4.3	က
	1e+03	0.1	1	1	П	П	1.7	1	п	-	1:1	П	1	1	1	1	1	П	1.5	1	1.1	-	1	1	1
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 20: 10-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	2.5e5						-				•				•						•			
	1e-05	1.27e5						П				•				•									
	1e-04	93000		•				П				•		•		•		•							
rs unif	1e-03	43900	•	32e-3/1e6	•	٠		Н		•		•		•	47e-3/1e6	•		•		•					
t powe	1e-02	15700		130				Н							290										
120 Sum of different powers unif	1e-01	7460	62e-2/5e5	39	·	٠		Н	·			47e-1/1e5			86	10e-1/5e4			23e-1/1e6	48e-1/1e5		•			63e-2/6e6
$120~\mathrm{Sum}$	1e+00	3990	48	16	97e-1/7e3	77e-1/2e3	15e+0/800	1	63e-1/1e4	46e-1/4e5	63e-1/2e3	160	99e-1/1e4	79e-1/500	29	18	81e-1/4e3	11e+0/4e3	3700	350	61e-1/1e5	15e-1/1e6	52e-1/1e4	69e-1/500	380
	1e + 01	47.1	1.7	6.4	160	13	260	4.1	64	460	21	330	310	2.3	15	-	59	150	46	330	220	71	86	4.1	26
	1e + 02	0.1	2.8	1.9	440	2.8	110	17	220	43	2.5	2.8	440	2.3	2.8	5.1	1	180	220	3.2	2.6	2.7	2100	3.1	က
	1e + 03	0.1	1	1	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1	П	П	П	П	П	П
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 21: 10-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

tanction evaluations to reach this value divided by annotation powers Cauchy 121 Sum of different powers Cauchy	1e + 01	148 368 694 999 1820 E	9.6 81 256-2/565	3.2 11 30 44 32 39 46 43 f	2.1 150 $76e-2/7e3$ av	8.6 22 30	400 570 $10e+o/2e3$ BFGS [22]	1.1	4 41 $49e-2/1e4$ (1+:	580 26e-1/5e5 .	4.6	2.3 9400 14 <i>e</i> -1/1 <i>e</i> 5	10 140 $55e-2/1e4$ ful	3.8 18 11e-1/300	1.6 3.4 21	2.7 2.5 4.8 43 <i>28e-3/5e4</i> MA-LS-Chain [19]	7.1 22e-1/4e3	3.4 220 $11e-1/4e3$	3.3 54	1.7	20e-1/1e5	9.6	П	3.5 4.4 26e-1/500 SNOBFIT [17]	3 3.5 1.6 1.4 1.1 1 1 VNS (Garcia) [10]
121	1e + 01	7.24			2.1	8.6	220	1.1	4	580	4.6	2.3	10	3.8	1.6	2.5	7.1	3.4	3.3	1.7	4.9	9.6	П	4.4	3,57
TI CVALLACIUS OU ICACII U	Δ ftarget 1e+03 1	D 0.1	1.1	74 1	П	1	1	1	(1+1)-CMA-ES 1	1	1	1	full NEWUOA 1	GLOBAL 1	AaLGaM IDEA 1	AA-LS-Chain 1	MCS (Neum) 1	NEWUOA 1	(1+1)-ES 1	PSO 1	PSO_Bounds 1	Monte Carlo 1	IPOP-SEP-CMA-ES 1	SNOBFIT 1	/NS (Garcia) 1

Table 22: 10-D, running time excess ERT/ERT $_{\rm best}$ on f_{122} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

122 Schaffer F7 Gauss

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	81700		5.4				П							7										
	1e-05	43900		2.3				П							3.4										
	1e-04	17600		4.2				П							7.7										
	1e-03	14100		ro				П							8.6										
77 Gauss	1e-02	9790	12e-2/5e5	6.2	٠			П	٠			•		•	11	•		•		·		٠			24e-2/7e6
122 Schaffer F7 (1e-01	3320	069	10	٠	85e-2/2e3		П	٠			16e-1/1e5		•	27	56e-2/5e4		•		25e-1/1e5	24e-1/1e5	٠	14e-1/1e4		2.9e4
122	1e+00	1160	17	4.2	42e-1/7e3	2.4	82e-1/2e3	Н	40e-1/1e4	38e-1/4e5	27e-1/2e3	200	49e-1/1e4	50e-1/600	11	17	37e-1/4e3	47e-1/4e3	19e-1/1e6	610	580	20e-1/1e6	18	49e-1/500	150
	1e+01	5.53	1.9	1.7	28	1.4	140	1.7	24	350	3.8	3.4	65	2.4	1	1.2	3.3	45	20	1.7	4.1	5.8 8.0	39	4.2	3.7
	1e + 02	0.1	1.3	1.3	3.7	1.2	11	П	1.5	Н	1.1	1.1	10	1.1	1.1	1.3	1	2.5	П	1.1	н	1.2	1.1	П	н
	1e + 03	0.1	1	П	П	-	п	П	П	П	1	П		П	1	П	-	П	1	-	-	1	1	-	1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 23: 10-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IĎEÁ [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	1.03e6		•		•		П		•		•		•				•		•					
		1e-05	3.33e5		•		•		1		•		•		•		•		•		•		•			
		1e-04	1.99e5		٠		•		1		•		٠		•		٠		•		٠		•			
		1e-03	1.29e5		٠		•		1		•		٠		•		٠		•		٠		•			
	77 unif	1e-02	66500						1																	
on	123 Schaffer F7 unif	1e-01	38900		68e - 2/1e6	•	•		-1		•		•			85e-2/1e6	•		•		•		•		•	
this value divided by dimension	123	1e+00	9440	15e-1/5e5	34	68e-1/7e3	57e-1/2e3	87e-1/900	1	48e-1/1e4	37e-1/4e5	50e-1/2e3	48e-1/1e5	60e-1/1e4	53e-1/400	79	19e-1/5e4	47e-1/4e3	64e-1/4e3	25e-1/1e6	43e-1/1e5	56e-1/1e5	20e-1/1e6	44e-1/1e4	53e-1/500	15e-1/6e6
divided		1e+01	3.99	2.4	က	180	9.3	150	18	140	290	64	3.7	350	22	5.9	-1	37	190	92	2.8	6.1	3.1	160	5.4	350
is value		1e + 02	0.1	1.1	1.9	1.3	1.1	11	2.5	1.2	2.7	1.2	1.3	91	1	1.3	1.3	Н	31	17	1.3	1.1	1.1	1.6	1.1	
		1e + 03	0.1	1	1	П	1	1	1	Т	1	1	1	1	1	1	1	н	1	1	1	П	Н	П	П	П
nction evaluations to reach		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 24: 10-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	A	ALPS [15]	4 AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	3 iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	/1e4 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		13700 33100		7.9 7.4				1 1							17 8.6								5.3 86e-6/1e4		
	1e-04 1e		-	10				1							27								2.2		64e-5/6e6
anchy	1e-03	5290		7.6		74e-3/2e3		1				-		•	26	-		•		-		٠	1.5	•	520
r F7 C	1e-02	3430		4.6		8.7		1						-	17			-				-	1.5	-	46
mension 124 Schaffer F7 Canchy	1e-01	1050	99e-2/5e5	4.9		2.7		1	19e-1/1e4		97e-2/2e3				16	62e-2/5e4			93e-2/1e6				2.3		8.6
value divided by difficusion 124 Scl		61.4	7200	6.7	24e-1/7e3	10	89e-1/2e3	1	2400	31e-1/5e5	20	31e-1/1e5	23e-1/1e4	33e-1/500	12	130	25e-1/4e3	34e-1/4e3	1.2e4	27e-1/1e5	34e-1/1e5	22e-1/1e6	5.5	28e-1/500	1.5
ane an	1e+01	3.73	2.8	2.2	12	2.8	460	1.8	6				9.5	3.2	1.5	1.7	П	11	8.9	1.3	2.4	2.2	1.8	7	4.1
II CIIIS V	1e + 02	0.1	1.2	1.3	3.5	1.3	6.9	2.1	3.3	П	1.4	1.2	П	1.3	1.1	1.3	П	20	8.6	1.4	П	1.3	1.3	1.5	-1
o lear	1e + 03	0.1	1	1	1	П	1	1	1	П	1	1.1	1	1	1	1	1	1	1	1	1	1	1	1	1
iniction evaluations to reach tins	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 25: 10-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IĎEÁ [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	6.44e5		٠				П				٠								•					
		1e-05	6.4e5	•	•		•		П		•		•		•		•		•		•		•		•	•
		1e-04	6.38e5				•		П																	
	Gauss	1e-03	2.97e5						1							37e - 3/1e6										•
)	125 Griewank-Rosenbrock Gauss	1e-02	1.05e5	12e-2/5e5	42e-3/1e6				П				12e-2/1e5		•	130	10e-2/5e4	25e-3/4e3			•	17e-2/1e5		22e-2/1e4		298/8-99 7
nension	riewank-F	1e-01	0.1	3.4e7	1.1e6	19e-2/7e3	24e-2/2e3	97e-2/3e3	5 e5	40e-2/1e4	40e-2/4e5	41e-2/2e3	7e6	20e-2/1e4	69e-2/500	1.9e6	8.5e5	1	22e-2/4e3	25e-2/1e6	21e-2/1e5	1.5e7	28e-2/1e6	7.3e5	58e-2/500	2.2e7
d by di	125 G	1e+00	0.1	490	160	39	220	4.1e4	110	3e3	8.9e4	290	310	240	1200	110	170	н	84	3e3	250	320	1400	88	380	300
adivida		1e+01	0.1	1.1	1.1	5.9	1.1	1.7	П	-	2.9	1.1	-	8.6	1.3	1.2	1.1	-	3.8	1	1.1	1.2	-	1	1.1	1.4
hic valu		1e + 02	0.1	1	1	1	1	-	П	1	-	1	1	1	1	П	1	-	П	1	П	1	П	1	-	-
reach t		1e+03	0.1	1	1	1	1	1	П	1	-	1	1	-	1	-	-	-	1	1	П	1	1	1	-	П
inction exalgations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 26: 10-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

126 Griewank-Rosenbrock unif

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	nan		•		•		•		•		•		•		•									
	1e-05	nan		•				•				•				•		•				•		•	
	1e-04	nan		•		•		•				•				•									
nnif	1e-03	nan		•		•		•				•				•									
senbrock	1e-02	nan		11e-2/1e6	•	٠		84e-3/7e5	•	•	•	41e-2/1e5		•	13e-2/1e6	•	25e-3/4e3	٠		•		٠		•	
126 Griewank-Rosenbrock unif	1e-01	0.1	21e-2/5e5	4.9e7	89e-2/7e3	59e-2/2e3	11e-1/1e3	3.9e6	53e-2/1e4	47e-2/4e5	77e-2/2e3	1.5e7	75e-2/1e4	78e-2/500	3.3e7	22e-2/5e4	1	66e-2/4e3	30e-2/1e6	34e-2/1e5	61e-2/1e5	31e-2/1e6	41e-2/1e4	73e-2/500	16e-2/7e6
$126~\mathrm{Gri}$	1e+00	0.1	510	220	4.9e4	310	1.6e4	870	4500	1.1e5	1e3	2600	7.1e4	1500	200	190	П	1.2e4	0089	950	1.5e5	980	1.3e4	029	1.8e4
_	1e + 01	0.1	Т	1.3	9.4	1.1	6.1	1	Н	1.2	1.1	1	28	1.1	1.3	1.1	Н	29	Н	1.3	Н	1.1	1.1	1.2	1.4
	1e+02	0.1	1	-	-	1	-	-	-	-	-	-	1	П	1	-	1	-	1	П	1	-	1	-	-
	1e + 03	0.1	1	1	1	1	1	1	1	П	1	1	-	1	1	1	-	1	1	-	-	1	1	1	П
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	$_{ m DASA}$	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 27: 10-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Aftaroot	H	ALPS [15]	AMaLGaM İDÉA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	10-07	2.11e5		34		•		П							21							•			
	16-05	2.08e5		34		٠		1		٠		٠		٠	21	٠		٠		•				•	
	16-04	2.06e5	-	34				1				•			22	•						-			
Conchy	16-03	1.35e5		25		ē		П	٠	٠		•		-	23	•		-		·		·	34e-3/1e4	·	96e-4/7e6
197 Chiouzank-Rosonbrock Cauchy	16-02	70-01		5.5		٠		П				-			15	-	25e-3/4e3						1.8		93
rioment B	115 WALIN-11 16-01	0.1	17e-2/5e5	1.3e5	20e-2/7e3	21e-2/2e3	11e-1/2e3	8.5e4	39e-2/1e4	46e-2/4e5	33e-2/2e3	29e-2/1e5	23e-2/1e4	68e-2/500	4e5	19e-2/5e4	-	25e-2/4e3	19e-2/1e6	32e-2/1e5	40e-2/1e5	33e-2/1e6	3.7e4	65e-2/500	3.8e5
107	10+00	0.1	370	150	40	240	5.8e4	54	200	5.8e4	280	92	69	880	90	130	1	42	820	220	530	1200	47	250	220
	16+01	0.1	1	1		1.2	09	1	п	10	1.1	1.1		1.1	1	1.1	-	2.4	2.2	1.1		1.1	1	-	1.4
N 000	10+09	0.1	1	1	-	1	1	П	П	1	1	П	П	1	1	П	1	1	П	П	П	П	1	П	1
TOBOT	16+03	0.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	П	1	П	п
1000000000000000000000000000000000000	Aftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 28: 10-D, running time excess ERT/ERT_{best} on f_{128} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	52900	1	1.6				1.8				27			3.3	П							2.8		14
		1e-05	38300	1	2.1				2.4			15e+0/2e3	37			4.4	1.2							3.8		13
		1e-04	29300	1.2	8.7				3.2			1	48		٠	5.8	1.6						٠	ъ		10
		1e-03	29200	1.1	2.8				3.2			1	48		٠	5.7	1.6						٠	ъ		-1
	Jauss	1e-02	14400	7	5.4		-		6.4			П	26			11	3.1							10		11
J	128 Gallagher Gauss	1e-01	14000	1.9	5.4		93e-1/2e3		9.9		•	1	100			11	က	13e+0/4e3	٠	16e-1/1e6	•		20e-1/1e6	4.9		9.1
l by dimension	128 C	1e+00	13800	1.7	5.1	21e+0/7e3	2.2			15e+0/1e4	91e-1/4e5		100	23e+0/1e4	22e+0/500	9	2.9	4.1		120	16e+0/1e5	19e+0/1e5	1100	3.2	22e+0/500	6
value divided		1e+01		3.8	22	32	2.6	57e+0/2e3	н	25	400	5.2	310	22	8.6	14	4.1	14	24e+0/4e3	36	230	220	11	11	4	31
		1e + 02	0.1	1	П	П	П	1	П	П	П	1	П	-	П	1	П		1	1	П	-	П	1	-	1
to reac		1e+03	0.1	1	П	П	-	-	П	П	-	1	П	1	П	1	П	П	П	1	П	1	П	1	П	П
function evaluations to reach this		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	$_{ m DASA}$	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 29: 10-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

$\begin{array}{ccc} \Delta \mathrm{ftarget} & \mathrm{1e+03} \\ \mathrm{ERT}_{\mathrm{best}} / \mathrm{D} & 0.1 \\ \mathrm{ALPS} & 1 \\ \mathrm{AMaLGaM\ IDEA} & 1 \end{array}$										100	
	Ť	$^{e+02}$	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	10-01	Δ ttarget
PS 1 M IDEA 1		0.1	5400	1.36e5	1.41e5	1.42e5	1.43e5	1.44e5	1.45e5	1.47e5	${ m ERT_{best}/D}$
aM IDEA 1		1	7	26	23e-1/5e5						ALPS [15]
		1	12	6.1	14	23	23	23	31	100	AMaLGaM IDEA [4]
EWUOA 1		-	39e+0/7e3								avg NEWUOA [23]
DAcG 1		1	30e+0/2e3								BayEDAcG [9]
rGS 1		1	46e+0/900								BFGS [22]
-CMA-ES 1		1	П	1	1	1	1	1	П	1	BIPOP-CMÀ-ES [14]
CMA-ES 1		1	18e+0/1e4								(1+1)-CMA-ES [2]
ASA 1		1	360	13e+0/4e5							DASA [18]
PSO 1		1	5.5	24e+0/2e3							DEPSO [11]
A-PSO 1		1	260	20e+0/1e5							EDA-PSO [5]
full NEWUOA 1		-	41e+0/1e4								full NEWUOA [23]
DBAL 1		1	28e+0/400								GLOBAL [20]
am IDEA 1		1	12	18	47	100	66	66	86	97	iAMaLGaM IDEA [4]
MA-LS-Chain 1		1	1.7	5.3	48e-1/5e4						MA-LS-Chain [19]
MCS (Neum) 1		-	21e+0/4e3								MCS (Neum) [16]
WUOA 1		1	39e+0/4e3								NEWUOA [23]
(1+1)-ES 1		-	21	110	56e-1/1e6						(1+1)-ES $[1]$
SO 1		1		18e+0/1e5							PSO [6]
PSO_Bounds 1		-	260	26e+0/1e5							PSO_Bounds [7]
e Carlo 1		1		32	20e-1/1e6						Monte Carlo [3]
IPOP-SEP-CMA-ES 1		-	13	22e+0/1e4							IPOP-SEP-CMA-ES [21]
BFIT 1		1	27e+0/500								SNOBFIT [17]
VNS (Garcia) 1		-	42	69	72e-2/7e6						VNS (Garcia) [10]

Table 30: 10-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

130 Gallagher Cauchy

	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	7330		20		٠		9.4							21								1		19
	1e-05	7220		20				9.2							12	15e-5/5e4							1		20
	1e-04	7150	-	20		-		9.6	-				-		11	15	-	14e-1/4e3					-		20
chy	1e-03	7090	-	19		-		9.6						٠	8.4	5.2		8.7	18e-3/1e6	٠		٠	-	٠	20
agher Caucl	1e-02	7050	62e-3/5e5	19	41e-2/7e3	•		2.6	51e-2/1e4		19e-1/2e3		12e-2/1e4	50e-2/600	1.8	3.9		8.8	460	25e-1/1e5	٠		1	•	20
130 Galls	1e-01 $1e-02$	3750	29	35	8.6	20e-1/2e3		18					5.1	П	1.5	7.1		∞	24	190		21e-1/1e6	1.9	28e-1/500	38
	1e+00	588	6	170	9	23	10e+0/2e3	34	6.5	30e-1/5e5	10	089	8.3	1	4.4	19	30e-1/4e3	11	4.6	089	69e-1/1e5	2.4e4	11	12	210
	1e+01	48.1	6.7	∞	1.9	17	100	4.9	2.5	590	8.3	380	6.7	П	1	4.7	32	2.6	1.7	180	770	160	2.3	2.5	26
	1e + 02	0.1	1	1	П	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	П	1	1	1
	1e + 03	0.1	1	1	1	1	1	1	1	П	1	1	1	1	1	1	1	1	П	П	1	-	1	П	1
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

References

- [1] Anne Auger. Benchmarking the (1+1)-ES with one-fifth success rule on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2453–2458.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2467–2472.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2485–2490.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noisy black-box optimization benchmarking. In Rothlauf [24], pages 2351–2358.
- [5] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [24], pages 2263–2268.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [24], pages 2269–2274.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [24], pages 2275–2280.
- [8] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2009.
- [9] Marcus R. Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noisy function testbed. In Rothlauf [24], pages 2383–2388.
- [10] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noisy BBObenchmark 2009 testbed. In Rothlauf [24], pages 2367–2374.
- [11] José García-Nieto, Enrique Alba, and Javier Apolloni. Particle swarm hybridized with differential evolution: black box optimization benchmarking for noisy functions. In Rothlauf [24], pages 2343–2350.
- [12] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [13] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009.
- [14] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2397–2402.

- [15] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noisy testbed.
- [16] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 988.
- [17] Waltraud Huyer and Arnold Neumaier. Benchmarking of SNOBFIT on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 987.
- [18] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noisy function testbed. In Rothlauf [24], pages 2375–2382.
- [19] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noisy functions. In Rothlauf [24], pages 2359–2366.
- [20] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 985.
- [21] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2441–2446.
- [22] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2415–2420.
- [23] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2429–2434.
- [24] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.