LES TAMPONS DE L'ORGANISME

I) <u>GÉNÉRALITÉS</u>:

1) LES ACIDES ET LES BASES:

- Acide AH :substance qui peut céder un ou plusieurs protons H+.
- Base A-: substance qui peut capter un ou plusieurs protons H+.
- potentiel hydrogène d'une solution aqueuse d'acide ou de base: $pH = -log_{10} [H+]$
- Pour un mélange acide faible et base conjuguée le potentiel hydrogène ou pH est fonction du pk et des concentrations en acide et base selon la relation:

$$pH = pk_a + log_{10} \frac{[A^-]}{[AH]}$$

relation de Henderson-Hasselbach

pH < 7 : solution acide pH > 7: solution basique pH = 7: solution neutre

pH=7.4: solution physiologique

2) LES SOLUTIONS TAMPON:

a) Définition:

Mélange d'un acide faible et de sa base conjuguée

Mélange d'une base faible et de son acide conjugué

Rôle d'une solution tampon

minimiser les variations de pH \rightarrow Le pH du milieu reste \pm stable quand on rajoute une petite quantité d'acide ou de base.

on défini le pouvoir tampon par:

$$T = \left| \frac{\Delta x}{\Delta p H} \right| \begin{array}{c} \text{nombre de moles d'acide ou de base} \\ \text{Rajoutée } \textit{I litre de solution} \end{array}$$

$$\text{Variation du ph} \qquad \Delta p H = p H_f - p H_i$$

Plus un tampon est efficace plus la valeur de T est élevée

b) Mode d'action d'un tampon:

Soit une solution tampon AH/A-, de volume V,et de concentrations respectives Ca et Cb

Le pH initial du tampon : pHi = pka + log(Cb/Ca)

Ajout de x mol d'acide H+ : une partie de A- agit pour neutraliser les H+ rajouté Les tampons agissent instantanément dès qu'un acide ou une base est rajouté.

Nombre de moles initial (mol)
$$C_b \lor x \qquad C_a \lor$$
 Nombre de moles final (mol) $C_b \lor x \qquad (C_a \lor) + x$ Concentration finale $C_b - \frac{x}{V} \qquad C_a + \frac{x}{V}$

Le pH final du tampon : $pH_f = pk_a + log_{ia} \frac{C_b - \frac{x}{V}}{C_a + \frac{x}{V}}$

c) Ajout d'un acide à une solution de base pure:

La solution1: 2l de soude NaOH de pHi = 7,4 contient 0,5 . 10⁻⁶ mol de OH. On rajoute 9 mmol de HCl à cette solution.

Les OH- présents en solution tamponnent les H+ rajoutés selon la réaction suivante:

$$OH + H^+ \longrightarrow H_2O$$

La quantité de H+ restante en solution = $9 \cdot 10^{-3} \text{ mol} - 0.5 \cdot 10^{-6} \text{ mol} = 8,999 \cdot 10^{-3} \text{ mol}$ Concentration finale en H+: [H+] = $8,999 \cdot 10^{-3} \cdot 10^{-3}$

$$T = \begin{vmatrix} 4,5 \\ -5,1 \end{vmatrix} = 0,88$$

Soit 0,88 mmol de H+ rajoutée à 1L de solution fait baisser le pH d'une unité

La solution 2: 2I d'un tampon AH/A- de pka = 6,8 et Ca = 12mmol/I et Cb = 48mmol/I

$$pH_i = 6.8 + log_{10} \frac{48}{12} = 7.4$$

On rajoute 9 mmol de HCl à la solution, la base intervient pour neutraliser l'acide Concentrations finales C'b = 48 9/2= 43,5mmol/l C'a = 12 + 9 /2= 16,5mmol/l

$$pHf = 6,8 + (43,5/16,5) = 7,22$$

$$pH = pHf$$
 $pHi = 7,22$ 7,4 = 0,18

$$T = \left| \frac{4,5}{-0,18} \right| = 25$$

Soit 25 mmol de H^+ rajoutées à 1L de solution fait baisser le pH d'une unité d) Efficacité d'un tampon:

- le **pouvoir tampon T** est un indicateur. Il renseigne sur la capacité d'une solution tampon à lutter contre les changements de pH
- plus un tampon est efficace plus la valeur de T correspondante est élevée
- plus ∆pH est petit plus la valeur de T sera élevé, ∆pH est influencé par: Proportion entre acide et base conjugués:

Si C a \approx Cb, le rapport CblCareste \approx 1 \Rightarrow le pH varie peu

LE POUVOIR D'UN TAMPON EST MAXIMAL LORSQUE Ca \approx Cb <=> $pH \approx PKa$

Concentration du couple acide-base

Si Ca et Cb sont élevées, X/V sera négligeable / Ca et Cb \Rightarrow le rapport Cb/Ca variera peu \Rightarrow le pH variera peu

UN TAMPON EST D'AUTANT PLUS EFFICACE QUE LA CONCENTRATION DU TAMPON (ACIDE + BASE) EST ÉLEVÉE

II) LES ACIDES ET LES BASES DAN S L'ORGANISME :

1)LES PH DE L'ORGANISME :

Les solutions physiologiques ont des pH différents:

- les sécrétions gastriques pH≈ 1
- pH urinaire entre 4,5 et 8,5
- le liquide céphalorachidien a un pH entre 7,9 et 8,1
- le milieu intracellulaire en moyenne pH de 7<pH du milieu extracellulaire

Le maintien du pH à une valeur ± stable est un élément essentiel pour l'équilibre et le bon fonctionnement de l'organisme

exemple des protéines:

√ du pH du milieu ⇒ structure tertiaire ⇒ √ Activité enzymatique ⇒ Perturbation des canaux membranaires et de l'excitabilité cellulaire.

Le pH cellulaire est le plus crucial à maintenir, à cause des réactions chimiques qui s'y déroulent mais pas mesurable directement mais en équilibre avec le pH plasmatique, donc on suit le pH du sang.

Variations physiologiques:

En moyenne le plasma a un pH de 7,4 ± 0,02

sang artériel de 7,38 à 7,42 /Sang veineux de 7,36 à 7,41

alimentation, métabolisme, Médicaments, maladie, effort physique... → Production ou consommation de protons/→ Fluctuation du pH (diminution ou augmentation)

Variations pathologiques: sang artériel pH< 7,38 /sang veineux pH < 7,36

Variations compatibles avec la vie :7 < pH < 7,8

2) LES SOURCES DE BASES ET D'ACIDES DANS L'ORGANISME :

Etat physiologique normal:

- Acides aminé et acides gras alimentaires, produits du métabolisme des aliments ingérés→Production de H+
- La production d'H+ à partir de CO₂ et de H₂O est la source d'acide la plus importante, par l'intermédiaire de l'acide carbonique H₂CO₃:

 $CO_2+ H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^{+}+ HCO_3^{-}$

Une molécule de glucose → 6 molécules de CO₂

En cas de pathologie:

- diabète → acides cétoniques
- diarrhée ou troubles rénaux → diminution des bicarbonates HCO₃ -
- insuffisance respiratoire → hypoventilation → accumulation de CO₂

Peu d'aliments ingérés sont basifiants et le métabolismes apporte peu de bases. >>>Le système de défense de l'organisme est axé surtout sur l'élimination d'acidités

3) MÉCANISMES DE RÉGULATION DU pH DANS L'ORGANISME :

Pour maintenir le pH à une valeur normale, l'organisme procède de deux façons

- Neutraliser (tamponner) les acides ou bases en excès
- C'est le rôle des tampons de l'organisme: substances libres dans le plasma, dans le cytoplasme des cellules...
- Ils agissent instantanément, mais ils sont rapidement saturables, donc action à court terme seulement
- -Évacuer (éliminer) de l'organisme acides ou bases en excès

Rôle assuré par les organes régulateurs : le poumon et le rein

- Le poumon agit en second lieu et prends en charge la majoritédes perturbations de l'équilibre acide-base
- Le rein agit tardivement et assure le reste de la régulation

III) LES TAMPONS DE L'ORGANISME :

-Les phosphates:
$$H_2PO_4^-/HPO_4^{2-}$$
 pk_a = 6,8

tampon très efficace car:

$$\frac{HPO_4^{2-}}{H_2PO_4^{-}} = 4$$

Rôle important dans le rein

Rôle moins important dans le sang car s'y trouve à 1mmol/l

-Les protéines: protéines intracellulaires et protéines plasmatiques (75g/l)

Excellents tampons: groupements acides et groupements basiques en même temps

• Le groupement carboxyle —COOH libère des ions H⁺

• Le groupement amine —NH2 capte des H+

$$R-NH_2 + H^{+} \rightarrow R-NH_3 +$$

- -L'hémoglobine: tampon intracellulaire, 150g/l de sang, existe sous deux formes:
- HbO ₂ Hémoglobine oxydée pKa = 6,60 HbH Hémoglobine réduite pKa = 7,83
- Agit en tant que protéine avec son groupement NH2
- Et agit aussi en combinaison avec la respiration

dans le poumon l'hémoglobine réduite capte un O2 en libérant un H+

$$HbH + O_2 \rightarrow HbO_2 + H^+$$

dans les tissus l'oxyhémoglobine libère un O2 en captant un H+ du métabolisme $HbO_2 - + H^+ \rightarrow HbH + O_2$

-Le tampon bicarbonate: H2CO3 / HCO3- pka= 6,1 essentiellement dans le plasma À l'ajout d'un acide:

HCO $_3$ - + H+ <-> H $_2$ CO 3 \leftarrow -> H $_2$ O + CO $_2$ (dissout) anhydrase carbonique

H₂CO₃ est en équilibre avec CO₂ et H₂O via l'anhydrase carbonique

$$pH = pk_a + log_{10} \frac{[HCO_3^-]}{[CO_2]}$$

Or, $[CO_2]$ dissout est proportionnelle à PCO_2 , selon la loi de Henry: $[CO_2]$ = a . PCO_2

$$pH = pk_a + log_{10} \frac{[HCO_3^-]}{a \cdot PCO_2}$$

a : coefficient de solubilité du CO2

A 37 a= 0,03mmol/l.mmHg ou a= 0,23mmol/l.kPa.

P CO₂ étant dépendante de la respiration, une de la ventilation ⇒ pH

- Hyperventilation⇒ ↓ PCO2 ⇒ ↓ [CO2] ⇒ ↑ rapport [bicarbonate] / [CO2] ⇒ ↑ pH
- Hypoventilation ⇒ ↑ PCO2 ⇒ ↑ [CO2] ⇒ ↓ rapport [bicarbonate] / [CO2] ⇒ ↓ pH

La respiration contrôle le rapport [bicarbonate] / [CO2] via la PCO2

Compensation de [CO₂] par le milieu extérieur <-> TAMPON OUVERT

[A] ou [B] rapidement modifiée par échange avec l'extérieur

Le bicarbonate est le seul tampon ouvert

Les autres tampons sont fermés : [A] + [B] = constante

-Les constantes du tampon bicarbonate :

pour un pH sanguin de 7,4 [HCO3-] = 24mmol/l

$$pH = pk_a + log_{10} \frac{[HCO_3^-]}{[CO_2]}$$
 \longrightarrow [CO₂] =1,2mmol/l et P_{CO2}= 40mm Hg
$$\frac{[HCO_3^-]}{[CO_2]} = 20$$

- [HCO₃] = 20[CO₂] → Tampon plus disposé à tamponner un excès d'acide
- $\frac{[HCO_3^-]}{[CO_2]} \gg 1$ Pouvoir tampon assez faible
- [HCO₃⁻] + [CO₂] = 25,2 mmol/l
 Efficace grâce à sa concentration
- $\frac{[HCO_3^-]}{[CO_2]}$ $\frac{variable\ par\ la\ ventilation}{et\ par\ l'actiondu\ rein\ aussi}$ Efficacité grâce au caractère ouvert

IV) LES ORGANES RÉGULATEURS :

1- LE POUMON: LA VENTILATION:

Intervient rapidement (quelques min) après l'action du tampon et concerne le CO2

une $\searrow pH \Rightarrow \nearrow ryt$ me et amplitude respiratoire (yperventilation) $\Rightarrow \searrow PCO_2$ donc $\searrow CO_2$ plasmatique $\Rightarrow pH \nearrow et$ se rapproc e de la normale

Le poumon évacue du CO₂ accompagné d'eau comportant les H⁺ en excès

 $HCO_3 - + H+ \leftarrow > H_2CO_3 \leftarrow > H_2O + CO_2$ (dissout)

L'élimination de H+ se fait au prix de l'élimination d'ions bicarbonates de l'organisme.

une $\nearrow pH \Rightarrow \searrow ryt$ me et amplitude respiratoire (ypoventila) $\Rightarrow \nearrow PCO2$ donc $\nearrow CO2$ plasmatique $\Rightarrow pH \searrow$ et se rapproc e de la normale Une $pH \Rightarrow$ stimulation des centres respiratoires

2- LE REIN:

- régulation plus tardive, quelques heures à quelques jours
- plus puissante que celle du poumon
- agit essentiellement sur HCO3-.

[HCO₃⁻] + [CO₂] = 25,2 mmol/l
 Efficace grâce à sa concentration

CO₂ (et H₂O) formés en excès dans le plasma et non évacués, entrent dans le rein

Le rein élimine l'acidité en excès tout en régénérant le bicarbonate

V) ANOMALIES DU PH:

VARIATIONS PATHOLOGIQUES:

Déséquilibres de l'équilibre acido-basique :

État acido-basique normal

$$[CO_2]$$
 = 1,2mmol/l
Soit P_{CO2} = 40mmHg pH du sang artériel = 7,4
 $[HCO_3^-]$ =24mmol/l

État acido-basique pathologique

1- ACIDOSE:

acidose respiratoire: ↑ PCO2 > 42mmHg

- hypoventilation due à une insuffisance respiratoire (asthme)
- dysfonctionnement du système nerveux central, ou maladie neuromusculaire

acidose métabolique:

∨ concentration bicarbonate

Pas de rapport avec la ventilation ou > de [toute autre base fixe] ou > de [tout acide fixe]

- diarrhée aigue abondante
- acidocétose diabétique: production d'acide fixe (diabète sucré)

C'est une diminution du pH. Pour le sang artériel pH < 7,38

2- ALCALOSE:

C'est une augmentation du pH. Pour le sang artériel pH > 7,42 alcalose respiratoire $\searrow PCO_2 < 38$ mmHg

- en cas d'embolie pulmonaire ⇒ respiration rapide
- en cas atteinte des centres respiratoires, anxiété, altitude

alcalose métabolique *≯ bicarbonates* (concentration)

pas de rapport avec ventilation

ou ≯ de [toute autre base fixe] ou ↘ de [tout acide fixe]

- en cas de perfusion excessive de bicarbonates
- en cas de vomissements importants

VI) INTERPRÉTATION DES DONNÉES DE pH DIAGRAMME DE DAVENPORT :

• Il y a plusieurs paramètres à prendre en compte pour la régulation de

l'équilibre acidobasique :

- les bicarbonates sanguins
- la PCO2 dans le sang
- Les autres tampons fixes
- Pour chaque tampon Δ[base] ou Δ[acide]
- Nécessité de réunir ces différents paramètres dans un même repère afin de suivre l'évolution du

→ Δ de pH

pH dans différentes situations.

- Il s'agit de diagrammes donnant l'évolution de [HCO3], en fonction du pH
- · La représentation la plus utilisée est celle de DAVENPORT

-Troubles métaboliques purs

Une perturbation des acides fixes à l'origine de variation de pH (PCO₂ constante)

- On assimile le sang à une solution avec une certaine P_{CO2}:
 - ✓ on rajoute l'acide fixe
 - ✓ et on note l'évolution du pH et de [HCO₃-]
- [HCO3-] varie en fonction du pH de façon exponentielle selon:

$$[HCO_3^-] = \alpha P_{CO2}. 10^{pH-6.1}$$

Pour une valeir donnée de PCO $_2$ la courbe de Δ de [HCO3-] en fonction du pH est appelée **courbe isobare**

• Il existe une courbe isobare différente pour chaque valeur PCO2 ⇒ Famille d'isobares parallèles

-Troubles respiratoires purs

Une perturbation du CO2 à l'origine de la variation de pH (acides fixes constants, surtout les protéines)

- · On assimile le sang à une solution avec une certaine [acide fixe]:
 - ✓ on rajoute le CO₂
 - ✓ et on note l'évolution du pH et de [HCO₃-]
- [HCO₃-] varie en fonction du pH de façon linéaire
- Pour une valeur donnée de [acides fixes] la courbe de ∆ de [HCO3-] /pH est appelée droite d'équilibration du CO₂
- Il existe une **droite d'équilibration** différente pour chaque valeur de [acides fixes] ⇒ **Famille de droites d'équilibration**

- Prise pH du sang = premier indicateur sur l'existence d'un trouble
- · mesure les gaz du sang
- report des valeurs trouvées sur le diagramme de Davenport
- Interprétation des données:

bleu: acidose respiratoire jaune alcalose respiratoire vert: acidose métabolique rouge: alcalose métabolique

- un trouble métabolique sera compensé par le poumon
- un trouble respiratoire sera compensé par le rein

Résumé des différents troubles acido-basique et leurs compensations

Acidose respiratoire	≯a PCO₂	
Acidose métabolique	$\searrow [HCO_3^-]$	∖a PCO₂
Alcalose respiratoire	Na PCO ₂	>[HCO ₃]
Alcalose métabolique	>[HCO ₃]	≯a PCO₂

Principe de la compensation:

Dans le rapport $\frac{(RCO_3^-)}{aPCO_2}$ variation du terme non concerné par la perturbation, dans le même sens que le terme qui est en cause dans cette perturbation $\frac{(RCO_3^-)}{aPCO_3^-}$. Résultat : rétablir le rapport $\frac{|HCO_3^-|}{aPCO_2}$ à sa valeur normale

Exemple de problème respiratoire: Hyperventilation

- · baisse de Pco2 a provoqué une alcalose respiratoire.
 - ⇒ Le point représentatif de l'état acido-basique du patient s'est déplacé sur la DNE vers un pH basique
- Ensuite intervient la régulation rénale = élimination de HCO3
 - ⇒ le point représentatif se déplace sur la même isobare vers des [HCO3] plus faibles

- Le pH est ramené à sa valeur normale
- il s'agit seulement d'une compensation, qui ne règle pas le problème respiratoire, car on ne revient pas sur le point normal du diagramme de

Ressources: Diapos du professeur de Biophysique Hjiyej

Mise en page : Filali Mohamed (étudiant de la promo médecine 2022)