DACD LAB 6

CED19I027

1) 4X1 Multiplexer

A multiplexer should be designed in such a way that if S1,S2 are the select lines and I0,I1,I2,I3 are the data input lines ,then the output Y should be as shown in the truth table below:

S2	S1	Y
0	0	10
0	1	l1
1	0	12
1	1	13

Y=(S2)'(S1)'(I0) + (S2)'(S1)(I1) + (S2)(S1)'(I2) + (S2)(S1)(I3)

2) 1X4 Demultiplexer

A Demultiplexer should be designed in such a way that for select line S0,S1 and outputs Y0,Y1,Y2,Y3 and E is enable.Truth Table for this is given below:

E	S1	S0	Y0	Y1	Y2	Y3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	I	0	0	0
1	0	1	0	I	0	0
1	1	0	0	0	I	0
1	1	1	0	0	0	I

Y0=(E)(S1)'(S0)'(I)

Y1=(E)(S1)'(S0)(I)

Y2=(E)(S1)(S0)'(I)

Y3=(E)(S1)(S0)(I)

3) Given logic:

- Output X will equal A when control inputs B and C are the same.
- X will remain HIGH when B and C are different.

Truth table for the above logic is as follows:

А	В	С	Х
1	0	0	1
0	0	0	0
1	1	1	1
0	1	1	0
1	0	1	1
0	0	1	1
0	1	0	1
1	1	0	1

On using K-maps and finding an equation, we get the minimum equation as:

$$X = A + XOR(B,C)$$

