Лабораторная работа №1 ЗНАКОМСТВО С ОСНОВНЫМИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫМИ ПРИБОРАМИ И ОПРЕДЕЛЕНИЕ ИХ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК

Цель работы: ознакомиться с основными видами электроизмерительных приборов; изучить их классификацию, условные обозначения на шкалах приборов по ГОСТ 23217-78; научиться определять метрологические характеристики измерительных приборов.

Теоретические сведения

Приборы, с помощью которых измеряются различные электрические величины: ток, напряжение, сопротивление, мощность и т. д., — называются электрическими измерительными приборами. Существуют большое количество различных электроизмерительных приборов.

По принципу действия электроизмерительные приборы подразделяются на следующие основные типы:

- 1. **Приборы магнитоэлектрической системы**, основанные на принципе взаимодействия катушки с током и внешнего магнитного поля, создаваемого постоянным магнитом.
- 2. Приборы электродинамической системы, основанные на принципе электродинамического взаимодействия двух катушек с токами, из которых одна неподвижна, а другая подвижна.
- 3. **Приборы электромагнитной системы**, в которых используется принцип взаимодействия магнитного поля неподвижной катушки с током и подвижной железной пластинки, намагниченной этим полем.
- 4. **Тепловые измерительные приборы**, использующие тепловое действие электрического тока. Нагретая током проволока удлиняется, провисает, и вследствие этого подвижная часть прибора получает возможность повернуться под действием пружины, выбирающей образовавшуюся слабину проволоки.
- 5. **Приборы индукционной системы**, основанные на принципе взаимодействия вращающегося магнитного поля с токами, индуктированными этим полем в подвижном металлическом цилиндре.
- 6. **Приборы электростатической системы**, основанные на принципе взаимодействия подвижных и неподвижных металлических пластин, заряженных разноименными электрическими зарядами.
- 7. **Приборы термоэлектрической системы**, представляющие собой совокупность термопары с каким-либо чувствительным прибором, например магнитоэлектрической системы. Измеряемый ток, проходя через термопару, способствует возникновению термотока, воздействующего на магнитоэлектрический прибор.
- 8. Приборы вибрационной системы, основанные на принципе механического резонанса вибрирующих тел. При заданной частоте тока наиболее интенсивно

вибрирует тот из якорьков электромагнита, период собственных колебаний которого совпадает с периодом навязанных колебаний.

9. Электронные измерительные приборы — приборы, измерительные цепи которых содержат электронные элементы. Они используется для измерений практически всех электрических величин, а также неэлектрических величин, предварительно преобразованных в электрические.

По типу отсчетного устройства различают аналоговые и цифровые приборы. В аналоговых приборах измеряемая или пропорциональная ей величина непосредственно воздействует на положение подвижной части, на которой расположено отсчетное устройство. В цифровых приборах подвижная часть отсутствует, а измеряемая или пропорциональная ей величина преобразуется в числовой эквивалент, регистрируемый цифровым индикатором.

Отклонение подвижной части у большинства электроизмерительных механизмов зависит от значений токов в их катушках. Но в тех случаях, когда механизм должен величины, не являющейся прямой измерения функцией тока (сопротивления, индуктивности, емкости, сдвига фаз, частоты и т. д.), необходимо сделать результирующий вращающий момент зависящим от измеряемой величины и не зависящим от напряжения источника питания. Для таких измерений применяют механизм, отклонение подвижной части которого определяется только отношением токов в двух его катушках и не зависит от их значений. Приборы, построенные по общему принципу, называются логометрами. Возможно построение логометрического механизма любой электроизмерительной системы с характерной особенностью отсутствием механического противодействующего момента, создаваемого закручиванием пружин или растяжек.

Ниже приведены условные обозначения электроизмерительных приборов в соответствии с ГОСТ 23217-78.

Таблица 1 – Обозначения принципа действия прибора

Наименование	Номер	Обозна-	Наименование	Номер	Обозна-
	по МЭК	чение		по МЭК	чение
	51			51	
Магнитоэлектрический прибор с подвижной рамкой	F-1		Электродинамический логометр	F-10	\Rightarrow
Магнитоэлектрический логометр с подвижными рамками	F-2	$\widehat{}$	Ферродинамический логометр	F-11	
Магнитоэлектрический прибор с подвижным магнитом	F-3	→	Индукционный прибор	F-12	\odot
Магнитоэлектрический логометр с подвижным магнитом	F-4	*	Индукционный логометр	F-13	\bigcirc
Электромагнитный прибор	F-5	\w/	Магнитоиндукционный прибор		Θ
Электромагнитный поляризованный прибор	F-6	(in	Тепловой прибор с нагреваемой проволокой	F-14	
Электромагнитный логометр	F-7	X	Биметаллический прибор	F-15	

Электродинамический прибор	F-8	=	Электростатический прибор	F-16	÷
Ферродинамический прибор	F-9		Вибрационный (язычковый) прибор	F-17	Ψ

Таблица 2 – Обозначения рода тока

Наименование	Номер по	Обозна-	Наименование	Номер по	Обозна-
	МЭК 51	чение		МЭК 51	чение
Постоянный ток	B-1		Трехфазный ток (общее		\sim
Переменный однофазный ток	B-2	>	обозначение)	B-4	~
Постоянный и переменный ток	B-3	7	Трехфазный ток при неравномерной нагрузке фаз	B-5	\approx

Таблица 3 – Обозначения класса точности, прочности изоляции, положения прибора, влияющих величин

Наименование	Номер по МЭК 51	Обозна- чение	Наименование	Номер по МЭК 51	Обозна- чение
Класс точности при нормировании погрешности в процентах от диапазона измерения, например 1,5	E-1	1,5	Прибор применять при вертикальном положении шкалы	D-1	
Класс точности при нормировании погрешности в процентах от длины шкалы, например 1,5	E-2	1,5	Прибор применять при горизонтальном положении шкалы	D-2	
Испытательное напряжение 500B	C-1	$\langle \rangle$	Прибор применять при наклонном положении шкалы (например под углом 60°) относительно горизонтальной плоскости	D-3	500
Измерительная цепь изолирована от корпуса и испытана на напряжение, например 2кВ	C-2	⟨ 2]	Направление ориентировки прибора в земном магнитном поле	D-7	2 0
Прибор испытанию прочности изоляции не подлежит	C-3	\$	Внимание! Смотри дополнительные указания в паспорте и инструкции по эксплуатации	F-33	<u></u>

Электроизмерительные приборы классифицируются и по роду измеряемой ими величины:

- для измерения напряжения (вольтметры, милливольтметры, гальванометры);
- для измерения тока (амперметры, миллиамперметры, гальванометры);
- для измерения мощности (ваттметры);
- для измерения энергии (электрические счетчики);
- для измерения угла сдвига фаз (фазометры);

- для измерения частоты тока (частотомеры);
- для измерения сопротивлений (омметры).

Таблица 4 – Обозначения единиц измерения, их кратных и дольных значений

Наименование	Номер по МЭК 51	Обозначение	Наименование	Номер по МЭК 51	Обозначение
Килоампер	A-1	kA	Градусы угла сдвига фаз		φ°
Ампер	A-2	A	Коэффициент мощности		cos φ
Миллиампер	A-3	mA	Коэффициент реактивной мощности		sin φ
Микроампер	A-4	μΑ	Мегаом	A-18	ΜΩ
Киловольт	A-5	kV	Килоом	A-19	kΩ
Вольт	A-6	V	Ом	A-20	Ω
Милливольт	A-7	mV	Миллиом	A-21	mΩ
Микровольт	A-8	μV	Микром		μΩ
Мегаватт	A-9	MW	Милливебер		mWb
Киловатт	A-10	kW	Микрофарад		mF
Ватт	A-11	W	Пикофарад		pF
Мегавар	A-12	Mvar	Генри		Н
Киловар	A-13	kvar	Миллигенри		mH
Bap	A-14	var	Микрогенри		μН
Мегагерц	A-15	MHz	Тесла	A-22	T
Килогерц	A-16	kHz	Милли теста	A-23	mT
Герц	A-17	Hz	Градус стоградусной температурной шкалы	A-24	°C

Метрологическими характеристиками называются технические характеристики, определяющие свойства измерительных приборов и оказывающие влияние на результаты и на погрешности измерений. Они предназначены для оценки технического уровня и качества средства измерений.

Основные метрологические характеристики измерительных приборов:

- 1. Диапазон показаний область значений шкалы, ограниченная начальным и конечным значениями шкалы. Наибольшее и наименьшее значения измеряемой величины, отмеченные на шкале, называют начальным и конечным значениями шкалы прибора.
- 2. Диапазон измерений область значений измеряемой величины с нормированными допускаемыми погрешностями средства измерений. Верхний и нижний пределы измерения ограничивают диапазон измерений прибора.
- 3. **Цена деления шкалы** C разность значений величины, соответствующих двум соседним отметкам шкалы.
- 4. **Чувствительность** измерительного прибора S отношение изменения сигнала на выходе измерительного прибора к вызывающему его изменению измеряемой величины.

Абсолютная чувствительность прибора определяется по формуле:

$$S = \frac{dY}{dX} \approx \frac{\Delta Y}{\Delta X} \,. \tag{1}$$

Абсолютная чувствительность связана с ценой деления следующим соотношением:

$$S = \frac{1}{C}. (2)$$

- 5. **Порог чувствительности** собой минимальное значение изменения измеряемой величины, которое может показать прибор.
- 6. **Вариация показаний измерительного прибора** разность показаний прибора в одной и той же точке диапазона измерений при плавном подходе "справа" и подходе "слева" к этой точке.
- 7. **Градуировочная характеристика прибора** зависимость между значениями величин на выходе и входе средства измерений, представленная в виде формулы, таблицы или графика.
- 8. **Точность**, количественной оценкой которой является **погрешность**. По способу выражения погрешности делятся на абсолютные, относительные и приведенные. Гостированное значение приведенной погрешности называется **классом точности прибора** γ , который представляет собой это отношение абсолютной погрешности прибора ΔX к максимальному определяемому с помощью данного прибора значению измеряемой величины X_{max} .

Абсолютную погрешность ΔX прибора можно определить по формуле:

$$\Delta X = \frac{\gamma \cdot X_{\text{max}}}{100\%} \,. \tag{3}$$

Порядок выполнения работы

Для выданного преподавателем измерительного прибора определить:

- 1. Назначение прибора;
- 2. Принцип действия;
- 3. Род тока;
- 4. Класс точности, положение прибора, прочность изоляции, влияющие величины;
 - 5. Основные метрологические характеристики.

Содержание отчета

1.	Наименование прибора:
	Назначение
3.	Принцип действия:
	Род тока:
	Диапазон измерений:
	Диапазон показаний:
	Цена деления шкалы:
8.	Чувствительность:
9.	Класс точности:
10	.Абсолютная погрешность:
	.Положение шкалы и прибора:
12	Пропросте изолении.

Контрольные вопросы

- 1. Перечислите основные классификации электроизмерительных приборов?
- 2. Что такое логометр?
- 3. Перечислите основные метрологические характеристики измерительных приборов?
- 4. Расскажите определения основных метрологических характеристик?
- 5. Как зная класс точности прибора определить его погрешность?