12 Introduction to Sequential Circuits

©Department of Computer Science
University of Victoria

SEQUENTIAL CIRCUITS

We now add memory!

- output depends on both current AND past inputs
- feedback

- the binary information stored in memory elements defines the STATE of the sequential circuit
- * TIMING: if things are not in perfect sequence, we might be looking at the incorrect output
- * NEXT STATE: depends on current state plus current inputs

Synchronous and Asynchronous

synchronous

- > changes in output occur at discrete instants of time
- > there is a clock which synchronizes all circuit elements

* asynchronous

- > behaviour depends on order of input changes
- > does not wait for clock pulses
- > wanting speed, cannot afford to wait for clock signal, control signals from interrupts, etc.

Memory Elements

Flip-Flops, Latches,

→ single bit storage devices

S	R	Q
0	0	unchanged
0	1	goes to 0
1	0	goes to 1

SET / RESET (R - S) Latch

		nor
0	0	1
0	1	0
1	0	0
1	1	0

	5	R	Р	Q	
_	0	0	1	0	stable: Q = 0
	1	0	0	1	set
	0	0	0	1	stable: Q = 1
	0	1	1	0	reset
	0	0	1	0	stable: Q = 0

Another View

IF S = R = 0, then

O to a NOR input makes it an inverter

==> we have 2 inverters in a closed loop

==> whatever is in the system, stays there,

==> keeps circulating

==> we have memory

Details

restrict the inputs so that R=S=1 is not allowed (unstable),

+ then P, Q are always complements of each other

S=1, R=0, \Rightarrow Q' to 0, \Rightarrow Q to 1, \Rightarrow FF is set back to S =R = 0, keeps Q'= 0 and Q = 1 change R to 1 (S=0), \Rightarrow Q to 0, \Rightarrow Q' to 1, \Rightarrow FF is reset back to S =R = 0, keeps Q = 0 and Q'= 1

State Table

Characteristic Equation

S(t)	R(†)	Q(†)	Q+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

map for Q(t+1) or Q+

$$Q(t+1) = S(t) + R'(t)Q(t)$$

Characteristic Equation is:

$$Q^+ = S + R'Q \qquad SR = 0$$

What does the characteristic equation mean?

Characteristic Equation

$$Q^{+} = Q(t + 1) = 5 + R'Q$$
 $SR = 0$

it means:

- (1) next state = 1 IF
 (a) it is set to 1 by putting S to 1 or
 (b) present state = 1 and it is not reset
- (2) SR=0 means S=R=1 is not allowed

CLOCKED R - S Latch

Level-Sensitive R - S Latch

· a clock or enable is necessary to maintain the circuit allowing changes at predetermined discrete moments

- * when enable goes to 1, the S and R inputs are allowed through to set/reset the basic latch
- ❖ 5,R inputs can change while enable is 0, but latch is only activated when enable becomes 1

NAND implementation for SR

nand	0	1
0	1	1
1	1	0

opposite of NOR: LOW CONTROL

 \overline{SR} Latch

Common circuit, as used in the lab

follows primary SR table

С	5	R	Q+
0	×	×	No change
1	0	0	No Change
1	0	1	Q=0
1	1	0	Q=1
1	1	1	Undefined

TOGGLE (T) Flip Flop

T=0, no change

T=1, flip state

$$Q^{+} = T'Q + TQ'$$
$$= T \oplus Q$$

D Flip Flop

- D for DATA
- → transferring data into a FF (typical memory element)

state Q⁺ of FF after clock pulse is equal to the input D before the clock pulse

$$Q + D$$

next state equation

- · Q changes only when clock is high
- · here it shows that it changes after the clock has been high
- D gets changed when clock is low and can be changed many times without any effect (while clock is low)

J K Flip Flops

→ they combine SR and T, eliminating invalid inputs

* when both J and K are O, stable, no change

* when both J and K are 1, it acts as T (toggles)

* when either J or K are 1, but not both, it acts as SR

STATE TABLE FOR J K

Next State Equation - Characteristic Equation

$$Q^+ = \overline{K} Q + J \overline{Q}$$

JK Flip Flop from SR FF (example)

- * when CK = 0, nothing happens
- \Rightarrow when CK=1 and Q = 0, then R = 0

and $S = J \rightarrow$ it will set or stay stable

 \Rightarrow when CK=1 and Q = 1, then S = 0

and R = K \rightarrow it will reset or stay stable

* when J = K = 1, it toggles (flips state)

- · state Q changes short time after trailing edge of clock
- change in state always initiated by clock pulse, not by changes in J or K
- · if clock remains 1 while J=K=1, it keeps flipping
- clock must have time duration shorter than gates propagation when used in feedback loops (difficult)

(use master-slave or edge triggered FF - later)

Characteristic Equations

5-R:
$$Q^+ = \overline{R} Q + S \quad (SR = 0)$$

$$\mathbf{T}: \qquad Q^+ = \overline{T} \ Q + T \ \overline{Q}$$

$$\mathbf{J} - \mathbf{K} : Q^+ = \overline{K} Q + J \overline{Q}$$

Master-Slave J-K FF

- when CK=1, only gates 1 & 2 operate, setting or resetting master FF (Q1)
- when CK=0, only gates 3 & 4 operate, setting or resetting slave FF (Q2)
- · one FF is always isolated and maintains state

Q1 changes at leading edge ,Q2 changes trailing edge

- · master operates at leading edge of clock
- · slave operates at trailing edge of clock
- any changes in J,K primary inputs must occur when the master is isolated (clock=0)
- outputs are read after trailing edge

Direct Inputs

J K flip flop with preset and clear

At power up or at reset, all or part of a sequential circuit usually is initialized to a known state before it begins operation

This initialization is often done outside of the clocked behavior of the circuit, i.e., asynchronously

Latch Problems

- The change in the flip-flop output is delayed by the pulse width which makes the circuit slower
- \clubsuit S and/or R may change while C = 1
 - This behavior is called 1s catching

Flip-Flop Solution

- Use edge-triggering instead of latches or masterslave
- An edge-triggered flip-flop ignores the pulse while it is at a constant level and triggers only during a transition of the clock signal

Edge-Triggered D Flip-Flop

The edge-triggered
D flip-flop is similar to
a master-slave D flip-flop

- It can be formed by:
 - Replacing the first clocked
 S-R latch with a clocked D
 latch or
 - Adding a D input and inverter to a master-slave
 S-R flip-flop

The change of the D flip-flop output is associated with the negative edge at the end of the pulse → called a negative-edge triggered flip-flop

Positive-Edge Triggered D Flip-Flop

Formed by adding inverter to clock input

Latches versus Flip-Flops

Туре	Inputs Sampled	Outputs Valid
Unclocked latch	always	prop. delay from input change
Level sensitive	clock high	prop. delay from input change
Positive edge	Clock Lo-to-Hi	prop. delay from rising edge
flip-flop		
Negative edge	Clock Hi-to-Lo	prop. delay from trailing edge
flip-flop		
Master/slave	Clock Hi-to-Lo	prop. delay from trailing edge
flip-flop		

Standard Symbols for Storage Elements

