

Yappy

Команда **GO_HACK**

Задача №15 - Сервис текстового поиска по медиаконтенту

Команда **GO_HACK**

Александр Валясин

- MLOps
- GlowByte (Sber)
- @alexander_zxcc

Кирилл Богатырёв

- Backend developer
- ex-Yandex
- @fizzzgen

Богдан Онищенко

- Data Scientist
- Sber
- @yourbg000

Никита Молчанов

- Data Scientist
- Sber
- @lusm554

Денис Самаркин

- Data Engineer,
 Data Scientist
- Sber
- @DenisSamarkin

Уникальность решения:

Решение GO_HACK:

Комбинирует визуальный и АІ-текстовый поиск:

- 1 Визуальный поиск по самому часто встречающейся сцене на видео.
- Текстовый ищет по ключевым словам в описании, транскрибации аудио, по надписям/субтитрам и символам в видео.
- 3 Это позволяет быстро находить наиболее релевантные видео по запросу.

Подробнее: gitlab.com/fizzzgen/video-indexer

GO_DEMO?

0.2511475086212158s. 0.07930827140808105s. on vector search. 0.1477830410003662s. on embedding.

Distance:

0.6183792948722839

Distance:

В этом блоге мы собрали лучшие новости о спорте.

Distance: 0.61963951587677

В этом блоге мы собрали тысячи цитат, которые хотели бы услышать сами.

Distance:

Скорость работы:

avg: 35 sec

avg: 0.3 sec

api/search

api/index

Архитектура веб-сервиса

ML-инструменты:

O] mT5_multilingual_XLSum

Многоязычная модель для автоматического суммирования текстов. Суммируем текст на EN + RU.

O2 Ruclip-vit-base-patch16-384

Используем для генерации эмбеддингов из текстов и изображений с одинаковым размером. Из-за широкого применения модели, одновременно не перегружаем архитектуру и получаем когерентные эмбеддинги.

O3 EasyOCR – cyrillic_g2

Модель OCR для распознавания кириллического текста из изображений. После оптимизации показала лучшие результаты.

EasyOCR – CRAFT

Модель для детекции текстов в изображениях, отдельных символов и текстовых областей.

04 Whisper

Модель для автоматического распознавания речи в текст. Одна модель для распознавания, перевода, определения языка. Также работаем в основном на RU+EN.

Почему Т5:

Model	XNLI	PAWS-X	WikiAnn-NER	XQuAD	MLQA	TyDiQA-GoldP
mBERT	65.4	81.9	62.2	64.5	61.4	59.7
XLM	69.1	80.9	61.2	59.8	48.5	43.6
InfoXLM	81.4	-	-	-	73.6	-
X-STILTs	80.4	87.7	64.7	77.2	72.3	76.0
XLM-R	79.2	86.4	65.4	76.6	71.6	65.1
VECO	79.9	88.7	65.7	77.3	71.7	67.6
RemBERT	80.8	87.5	70.1	79.6	73.1	77.0
mT5-Small	67.5	82.4	50.5	58.1	54.6	36.4
mT5-Base	75.4	86.4	55.7	67.0	64.6	59.1
mT5-Large	81.1	88.9	58.5	77.8	71.2	68.4
mT5-XL	82.9	89.6	65.5	79.5	73.5	77.8
mT5-XXL	<u>85.0</u>	90.0	<u>69.2</u>	<u>82.5</u>	<u>76.0</u>	<u>82.0</u>

Почему RUCLIP:

Dataset	ruCLIP Base [vit-base-patc h32-224]	ruCLIP Base [vit-base-patc h16-224]	ruCLIP Large [vit-large-pat ch14-224]	ruCLIP Base [vit-base-patc h32-384]	ruCLIP Large [vit-large-pat ch14-336]	ruCLIP Base [vit-base-patc h16-384]	CLIP [vit-base-patc h16-224] original
Food101	0.765	0.827	0.840	0.851	0.896	0.890	0.901
CIFAR10	0.917	0.922	0.927	0.934	0.943	0.942	0.953
CIFAR100	0.716	0.739	0.734	0.745	0.770	<u>0.773</u>	0.808
Birdsnap	0.347	0.503	0.567	0.434	0.609	<u>0.612</u>	0.664
SUN397	0.683	0.721	0.731	0.721	0.759	0.758	0.777
Stanford Cars	0.697	0.776	0.797	0.766	0.831	0.840	0.866
DTD	0.690	0.734	0.711	0.703	0.731	<u>0.749</u>	0.770
MNIST	0.963	0.974	0.949	0.965	0.949	0.971	0.989
STL10	0.957	0.962	0.973	0.968	0.981	0.974	0.982
PCam	0.827	0.823	0.791	0.835	0.807	<u>0.846</u>	0.830
CLEVR	0.356	0.360	0.358	0.308	0.318	<u>0.378</u>	0.604

Почему EasyOCR:

Библиотека / критерий	Работает из коробки*	Распознавание ru / en	Скорость на CPU	Предобработка изображений*	Лицензия
<u>EasyOCR</u>	Да	Хорошее	<u>Быстрая</u>	<u>Минимальная</u>	Apache-2.0
Tesseract OCR	Нет	Хорошее	Быстрая	Тщательная настройка	Apache-2.0
PaddleOCR	Нет	Умеренное. Нацелена на восточноазиатские языки	Умеренная	Умеренная	Apache-2.0
Keras-OCR	Да	Хорошее	Требует настройки	Умеренная	MIT

^{*}Работает из коробки - легко устанавливается, настраивается, доступная документация, имеет Python API.
*Предобработка изображений - требуется минимальная предобработка изображений для распознавания

разных шрифтов, цветов на разных фонах.

Почему EasyOCR: заключение

EasyOCR:

- 1. Работает из коробки, минимальная настройка
- 2. Качественно распознает и обнаруживает символы на ru, en
- 3. Удобно настраивается в соотношении качество скорость
- 4. В разы ускоряется на GPU
- 5. Доступная лицензия, open source, популярный и поддерживаемый проект

Почему не другие:

- 1. PaddleOCR необходима настройка, нацелен преимущественно на восточноазиатские языки
- 2. Tesseract OCR требует тщательной настройки, подходит для более глубокого контроля над процессом распознавания
- 3. Keras-OCR отличный выбор для работы с Keras и TensorFlow, подходит больше для дообучения моделей
- 4. Облачные сервисы Google Cloud Vision OCR, AWS Textract, OCR.Space строронние API, закрытый код, платная подписка, ПО недружественных стран

Почему Whisper:

Библиотека / критерий	Легка в использовании	Распознавание ru / en	Скорость на CPU	Предобработка видеофайлов*	Распознает музыку
Whisper	<u>Да</u>	<u>Отличное</u>	<u>Быстрая</u>	Не требуется	Да
speechbrain	Нет	Хорошее	Быстрая	Требуется WAV	Нет
Google Speech-to-Text	Нет	Умеренное.	Средняя	Требуется WAV	Нет
Amazon Transcribe	Нет	Умеренное	Требует настройки	Требуется WAV	Нет

Сводка результатов по 10 000 случайных запросов.

Case	Elasticsearch (QPS)	LanceDB (QPS)
FTS: Serial	399.8	<u>468.9</u>
FTS: Concurrent	<u>1539.0</u>	528.9
Vector search: Serial	11.9	<u>54.0</u>
Vector search: Concurrent	50.7	<u>71.6</u>

- 1. Среди всех конкурентов HNSW/RHNSW (PQ), IVF и FLAT IVF-PQ дает максимальный прирост скорости, но меньший recall при увеличении числа векторов(**). Вычисление этого индекса можно ускорить на GPU и тонко настроить его/поиск.
- 2. Единственная БД с IVF-PQ.
- 3. Единственная БД у которой все индексы disk-based (*) + zero-copy data access(*).
- 4. Встроенная (**бессерверная**) специализированная архитектура, созданная с нуля. Нужна **минимальная** настройка.

№ 1 Скорость поиска на 1М датасете

Без индекса -1.98s

С индексом -200 nprobes 0.075s

Создание индекса 04 min 17 sec ("CUDA")

Качество поиска на 1М датасете

refine_factor = 10 Датасет 1М Размерность 512 T4 GPU Индекс IVF-PQ

Достоинства веб-сервиса:

Сэмплирование:

Выбираем самый репрезентативный фрейм по косинусному расстоянию.

В итоге обрабатываем всего 1 кадр, слабо теряя в качестве.

Высокая скорость:

Индексация в ~10х раз быстрее, поиск в ~2х раз быстрее регламента на посредственном железе без GPU.

Раздвоенный поиск:

Ищем **одновременно по Alтексту и содержимому** в видео.

Это дало **лучшие результаты** по сравнению с комбинированными векторами.

Повышенная точность:

Суммаризируем весь текст, помимо препроцессинга для однородности. Получившиеся эмбединги получаются когерентными из-за одной CLIP-модели.

Автономность:

Redis для **кэширование эмбеддингов** запросов.

Независим от внешних АРІ.

Все модели **установлены локально** и их легко заменить на аналоги в пайплайне.

Масштабируемосты

Целевой язык - русский. Модели зафайнтюнены на нем. Также модели хорошо работают с английском и других языках.

Решение можно значительно ускорить используя GPU: все модели и индекс IVF-PQ перенести на GPU.

Недостатки веб-сервиса:

Отсутствие ранжирования:

Отсутствие шаффла между визуальными и текстовыми эмбеддингами. Мы предлагаем добавить в пайплайн еще одну модель в начало для классификации запроса - визуального или текстового. Потенциально это может ускорить сервис.

Похожим решением будет добавить модель в самый конец пайплайна для шаффла результатов.

Хранение без репликации:

В LanceDB оптимизирована для работы на диске и без сервера. Предлагаем использовать S3 для хранения и на операции write. Для операций read предлагаем использовать реплику LanceDB в файловой системе. LanceDB легко интегрируется в облако, но нет собственных блокировок.

Сложный контент:

Мы берем 1 кадр из содержания видео и 7 для OCR. "Тяжелые" мультимодальные модели выдадут лучший результат для видео, в котором много разнородных эвентов и они все важны для понимания происходящего на видео.

Взвешенный поиск:

Размывается смысл в итоговом векторе, если складывать Al-текст и содержимое воедино. Веса не помогли. Предлагаем оставить в продакшене FTS поиск по описаниям и включить его в шаффлмодель/модель классификации.

Спасибо за внимание. ~Команда GO_HACK.

