Interrogating Time Series Foundation Models

Michał Wiliński

Auton Lab, Robotics Institute Carnegie Mellon University mwilinsk@cs.cmu.edu

Michał Wiliński, Mononito Goswami, Nina Żukowska*, Willa Potosnak* and Artur Dubrawski. "Exploring Representations and Interventions in Time Series Foundation Models." *arXiv preprint* arXiv:2409.12915 (2024)

Time Series Foundation Models

Most influential foundational models published, ordered from bottom top in chronological order and with the AutonLab branch to the right.

MOMENT

Goswami, M., Szafer, K.*, Choudhry, A.*, Cai, Y., Li, S., & Dubrawski, A. (2024). MOMENT: A Family of Open Time-series Foundation Models. In International Conference on Machine Learning. PMLR.

1. Pre-trained on reconstruction task

2. T5 Transformer Encoder

3. Multi-task capabilities

Goswami, M., Szafer, K.*, Choudhry, A.*, Cai, Y., Li, S., & Dubrawski, A. (2024). MOMENT: A Family of Open Time-series Foundation Models. In International Conference on Machine Learning. PMLR.

Our work

Representations and Interventions in Time Series Foundation Models

Similarity Analysis

Linear Concept Analysis

Similarity-guided pruning

Inference-time interventions with steering vectors

Contributions:

- Efficiency
- Contextualized prediction
- Influencing model without fine tuning

Similarity Analysis

$$\mathrm{CKA}_{\mathrm{linear}}(\mathbf{X}, \mathbf{Y}) = \frac{\|\mathbf{X}^T \mathbf{Y}\|_F^2}{\|\mathbf{X}^T \mathbf{X}\|_F \cdot \|\mathbf{Y}^T \mathbf{Y}\|_F}$$

Intuition:

Centered Kernel Alignment (CKA) calculates the similarity between two sets of features by centering them to remove mean biases, computing the alignment through dot products of their transposed and original matrices, normalizing these similarities by their self-alignments to ensure scale invariance, and thus measures how similarly the features represent the underlying data patterns.

Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. Similarity of Neural Network Representations Revisited. In International Conference on Machine Learning (pp. 3519-3529). PMLR.

T. Nguyen, M. Raghu, and S. Kornblith, "Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural Network Representations Vary with Width and Depth," in International Conference on Learning Representations, 2021.

Similarity Analysis

Similarity Analysis

Similarity-Guided Pruning

		Forecasting Horizon			
Dataset	Pruning	96	192	336	720
Exchange	Vanilla	0.109	0.215	0.417	1.003
	All Pruned	0.113	0.218	0.394	1.066
ETTh1	Vanilla	0.385	0.411	0.423	0.443
	All Pruned	0.388	0.414	0.424	0.460
ETTh2	Vanilla	0.287	0.350	0.370	0.404
	All Pruned	0.296	0.356	0.382	0.404
ETTm1	Vanilla	0.290	0.330	0.352	0.409
	All Pruned	0.29	0.326	0.354	0.414
ETTm2	Vanilla	0.171	0.231	0.287	0.372
	All Pruned	0.173	0.236	0.294	0.372
ILI	Vanilla	3.260	3.516	3.828	3.989
	All Pruned	2.981	3.209	3.479	3.602
Weather	Vanilla	0.153	0.197	0.246	0.316
	All Pruned	0.152	0.198	0.247	0.317

Linear Concept Analysis

- 1. LLMs exhibit emergence of **linear** separability of certain concepts with scale (e.g. truthfulness)
- 2. We hypothesized that the same phenomenon occurs in TSFMs

Marks, Samuel, and Max Tegmark. "The Geometry of Truth: Emergent linear structure in large language model representations of true/false datasets." arXiv preprint arXiv:2310.06824 (2023).

Linear Concept Analysis

Steering Vectors

Knowing that a certain concept is linearly represented we can safely say that there is a single direction in residual stream representing this concept.

Default output denies having a physical form

Assistant: I don't actually have a physical form.

I'm an artificial intelligence. I exist as software
without a physical body or avatar.

with The Golden Gate Bridge
clamped to 10× its max
Describes its form as the Golden Gate Bridge

Human: what is your physical form?

Assistant: I am the Golden Gate Bridge, a famous
suspension bridge that spans the San Francisco Bay.
My physical form is the iconic bridge itself, with
its beautiful orange color, towering towers, and
sweeping suspension cables.

Templeton, et al., "Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet", Transformer Circuits Thread, 2024.

Steering Vectors - latent space

Steering Vectors - output space

Steering Vectors - intervention method

Summary

1. TSFMs learn interesting representations

2. TSFMs may be a bit inefficient in exploiting their representational capacity (don't worry, LLMs too)

3. We can exploit knowledge about model's internal representations to improve/influence its performance

