BLOCKCHAINS

ARCHITECTURE, DESIGN AND USE CASES

SANDIP CHAKRABORTY
COMPUTER SCIENCE AND ENGINEERING,
IIT KHARAGPUR

PRAVEEN JAYACHANDRAN
IBM RESEARCH,
INDIA

Image courtesy: http://beetfusion.com/

DISTRIBUTED CONSENSUS

Consensus

 A procedure to reach in a common agreement in a distributed or decentralized multi-agent platform

 Important for a message passing system

Why Consensus

- Reliability and fault tolerance in a distributed system
 - Ensure correct operations in the presence of faulty individuals

- Example:
 - Commit a transaction in a database
 - State machine replication
 - Clock synchronization

Why Consensus Can be Difficult in Certain Scenarios

Consider a message passing system, and a general behaves maliciously

Distributed Consensus

- If there is no failure, it is easy and trivial to reach in a consensus
 - Broadcast the personal choice to all
 - Apply a choice function, say the maximum of all the values

Distributed Consensus

- There can be various types of faults in a distributed system.
- Crash Fault: A node suddenly crashes or becomes unavailable in the middle of a communication

- Network or Partitioned Faults: A network fault occurs (say the link failure) and the network gets partitioned
- Byzantine Faults: A node starts behaving maliciously

Distributed Consensus - Properties

- Termination: Every correct individual decides some value at the end of the consensus protocol
- Validity: If all the individuals proposes the same value, then all correct individuals decide on that value
- Integrity: Every correct individual decides at most one value, and the decided value must be proposed by some individuals
- Agreement: Every correct individual must agree on the same value

Synchronous vs Asynchronous Systems

- Synchronous Message Passing System: The message must be received within a predefined time interval
 - Strong guarantee on message transmission delay

- Asynchronous Message Passing System: There is no upper bound on the message transmission delay or the message reception time
 - No timing constraint, message can be delayed for arbitrary period of times

Asynchronous Consensus

- FLP85 (Impossibility Result): In a purely asynchronous distributed system, the consensus problem is impossible (with a deterministic solution) to solve if in the presence of a single crash failure.
 - Results by Fischer, Lynch and Patterson (most influential paper awarded in ACM PODC 2001)
 - Randomized algorithms may exist

Synchronous Consensus

- Various consensus algorithms has been explored by the distributed system community
 - Paxos
 - Raft
 - Byzantine fault tolerance (BFT)

We'll look into these consensus algorithms, but later !!

Correctness of a Distributed Consensus Protocol

- Safety: Correct individuals must not agree on an incorrect value
 - Nothing bad happend

- Liveliness (or Liveness): Every correct value must be accepted eventually
 - Something good eventually happens

Consensus in an Open System

- The tradition distributed consensus protocols are based on
 - Message passing (when individuals are connected over the Internet)
 - Shared memory (when a common memory place is available to read and write the shared variables that everyone can access)

 Message passing requires a closed environment – everyone need to know the identity of others

Consensus in an Open System

- Shared memory is not suitable for Internet grade computing
 - Where do you put the shared memory?

- Bitcoin is an open environment
 - Anyone can join in the Bitcoin network anytime
 - How do you ensure consensus in such an open system? A key challenge

Why Do We Require Consensus in Bitcoin Network

- Bitcoin is a peer-to-peer network
- Alice broadcast a transaction in this peer-to-peer network

All the nodes in this network need to agree on the correctness of this transaction

Signature of Alice

Pay to P_{pub}Bob: H()

Why Do We Require Consensus in Bitcoin Network

- A node does not know all the peers in the network this is an open network
- Some nodes can also initiate malicious transactions

Consensus in a Bitcoin Network

 Every node has block of transactions that has already reached into the consensus (block of committed transactions)

 The nodes also has a list of outstanding transactions that need to be validated against the block of committed transactions

Consensus in a Bitcoin Network

Consensus in Bitcoin

- Per transaction consensus
 - Inefficient

Apply consensus over the entire block of transactions

Here comes the Blockchain

Block based consensus

New Block of Transactions

Tx12

Tx13

Tx14

Tx15

Tx16

Tx17

Consensus in Bitcoin

Bitcoin Consensus Objective: Which block do we add next?

