Test 2.

Problem 1. Время между появлением автобусов имеет экспоненциальное распределение с $\lambda=1$ (функция плотности p(t)=exp(-t) при t>0). Вася приходит на остановку и ждет до первого автобуса. Допустим он ждал T минут. На следующий день он ждет автобуса в течение времени T. Какова вероятность того, что за это время придет автобус?

Problem 2. Let $X_n = X \cdot 1_{X \le n}$. In what sense (as., in L^2 , in probability, in law) does the sequence $\{X_n\}$ converge? What is the limit? Consider two cases:

- a. $X \sim N(0; 1)$ (standard normal distribution).
- b. $X = 2^T$ where T is the time of the first head in the infinite sequence of coin tosses.

Problem 3. У Маши — неправильная монетка (орел выпадет с вероятностью 0.6), у Светы — правильная. Маша и Света одновременно подкидывают свои монетки до тех пор, пока у кого-то из них орлов не накопится на два больше, чем у подружки. Побеждает в этой игре набравшая больше орлов. Какова вероятность того, что Маша выиграет?

Hints: Пусть $B_t = M_t - S_t$ — баланс числа орлов, т.е. преимущество Маши над Светой в момент времени t. Какие значения и с какими вероятностями принимает ΔB_t ? При каком a случайный процесс a^{B_t} будет мартингалом?