MySQL basic SELECT statement - Exercises, Practice, Solution

1. Write a query to display the names (first_name, last_name) using alias name "First Name", "Last Name"

```
SELECT First_Name "First Name" , Last_Name "Last Name" FROM `employees
```

2. Write a query to get unique department ID from employee table.

```
SELECT DISTINCT DEPARTMENT ID FROM `employees`
```

3. Write a query to get all employee details from the employee table order by first name, descending.

```
SELECT * FROM `employees` ORDER BY FIRST NAME DESC
```

4. Write a query to get the names (first_name, last_name), salary, PF of all the employees (PF is calculated as 15% of salary).

```
SELECT First Name, Last Name, salary, salary*.15PF FROM `employees
```

5. Write a query to get the employee ID, names (first_name, last_name), salary in ascending order of salary.

```
SELECT employee_id, first_name, last_name, salary FROM `employees` ORDER BY
salary
```

6. Write a query to get the total salaries payable to employees.

```
SELECT SUM(salary) FROM `employees`
```

7. Write a query to get the maximum and minimum salary from employees table.

```
SELECT MAX(salary), MIN(salary) FROM `employees
```

8. Write a query to get the average salary and number of employees in the employees table.

```
SELECT AVG(salary),COUNT(*) FROM `employees`
```

9. Write a query to get the number of employees working with the company.

```
SELECT COUNT(*) FROM `employees`
```

10. Write a query to get the number of jobs available in the employees table.

```
SELECT COUNT(DISTINCT JOB ID) FROM `employees`
```

11. Write a query get all first name from employees table in upper case.

```
SELECT UPPER (first name as Name) FROM `employees`
```

12. Write a query to get the first 3 characters of first name from employees table

```
SELECT SUBSTR(first name,1,3)FROM `employees`
```

13. Write a query to calculate 171*214+625.

```
SELECT 171*214+625 result
```

14. Write a query to get the names (for example Ellen Abel, Sundar Ande etc.) of all the employees from employees table.

```
SELECT CONCAT(first_name,' ',last_name)"Employee Name" FROM `employees`
```

15. Write a query to get first name from employees table after removing white spaces from both side.

```
SELECT TRIM(first name) FROM `employees`
```

16. Write a query to get the length of the employee names (first_name, last_name) from employees table.

```
SELECT first_name, last_name, LENGTH(first_name) + LENGTH(last_name) 'LENGTH OF
NAME' FROM `employees`
```

17. Write a query to check if the first_name fields of the employees table contains numbers.

```
SELECT * FROM employees WHERE first name REGEXP '[0-9]';
```

18. Write a query to select first 10 records from a table.

```
SELECT employee id, first name FROM `employees` LIMIT 10
```

19. Write a query to get monthly salary (round 2 decimal places) of each and every employee Note: Assume the salary field provides the 'annual salary' information.

```
SELECT first_name, last_name, round(salary/12,2) as 'Monthly Salary'
FROM employees;
```

MySQL Restricting and Sorting data

1. Write a query to display the name (first_name, last_name) and salary for all employees whose salary is not in the range \$10,000 through \$15,000.

```
SELECT first_name,last_name,salary FROM `employees` WHERE salary NOT
BETWEEN 10000 AND 15000;
```

2. Write a query to display the name (first_name, last_name) and department ID of all employees in departments 30 or 100 in ascending order.

```
SELECT first_name, last_name, department_id FROM `employees` WHERE depa
rtment id IN (30,100) ORDER BY department id ASC;
```

3. Write a query to display the name (first_name, last_name) and salary for all employees whose salary is not in the range \$10,000 through \$15,000 and are in department 30 or 100.

<u>SELECT</u> first_name,last_name,salary,department_id FROM `employees` WHERE salary <u>NOT</u> BETW EEN 10000 <u>AND</u> 15000 <u>AND</u> department_id <u>IN</u>(30,100);

4. Write a query to display the name (first_name, last_name) and hire date for all employees who were hired in 1987.

```
<u>SELECT</u> first_name,last_name,hire_date FROM `employees` WHERE YEAR (hire_date)LIKE '1987%'
```

5. Write a query to display the first_name of all employees who have both "b" and "c" in their first name.

```
<u>SELECT</u> FIRST_NAME FROM `employees` WHERE first_name <u>LIKE</u>'%b%' and first_name <u>LIKE</u>'%c %';
```

6. Write a query to display the last name, job, and salary for all employees whose job is that of a Programmer or a Shipping Clerk, and whose salary is not equal to \$4,500, \$10,000, or \$15,000.

<u>SELECT</u> last_name,job_ID,salary FROM employees WHERE job_ID <u>IN('IT_PROG','SH_CLERK')AND</u> s alary <u>NOT IN</u> (4500,10000,15000)

7. Write a query to display the last name of employees whose names have exactly 6 characters.

```
SELECT last_name FROM `employees` WHERE last_name LIKE '_____';
```

8. Write a query to display the last name of employees having 'e' as the third character.

```
SELECT last_name FROM `employees` WHERE last_name LIKE'__e%';
```

9.Write a query to display the jobs/designations available in the employees table.

```
SELECT job_id FROM `employees`;
```

10.Write a query to display the name (first_name, last_name), salary and PF (15% of salary) of all employees

```
SELECT first_name,last_name,salary,salary*.15 PF FROM `employees`;
```

11. Write a query to select all record from employees where last name in 'BLAKE', 'SCOTT', 'KING' and 'FORD'.

```
SELECT * FROM `employees` WHERE last_name IN('BLAKE','SCOTT','KING','FORD');
```

MySQL Aggregate Functions and Group by Exercises, Practice, Solution

- **1.** Write a query to list the number of jobs available in the employees table. SELECT COUNT(DISTINCT job_id) FROM `employees`;;
- **2.** Write a query to get the total salaries payable to employees SELECT SUM(salary)FROM `employees`;
- **3.** Write a query to get the minimum salary from employees table SELECT MIN(salary) FROM 'employees';
- **4.** Write a query to get the maximum salary of an employee working as a Programmer

```
SELECT max(salary) FROM `employees` WHERE job_id =('IT_PROG');
```

5. Write a query to get the average salary and number of employees working the department 90.

```
SELECT <u>AVG</u>(salary), <u>COUNT</u>(employee_id) FROM `employees` WHERE department_id <u>LIKE</u>(90);
```

6. Write a query to get the highest, lowest, sum, and average salary of all employees.

<u>SELECT</u> ROUND (<u>MIN</u>(SALARY),0)AS HIGHSET,ROUND(<u>MIN</u>(SALARY),0)LOWEST,ROUND(<u>AVG</u>(SALARY),0)AVERAGE,ROUND(<u>SUM</u>(SALARY),0) FROM 'employees';

7. Write a guery to get the number of employees with the same job.

```
SELECT job_id,COUNT(*) FROM `employees` GROUP BY job_id;
```

8. Write a query to get the difference between the highest and lowest salaries.

```
\underline{SELECT}\ \underline{MAX}(salary) - \underline{MIN}(salary) AS\ DEFFERENCE\ FROM\ `employees`;
```

9. Write a query to find the manager ID and the salary of the lowest-paid employee for that manager.

\leftarrow T	\rightarrow		∇	manager_id	MIN(salary)
		≩ Copy	Delete	0	24000.00
	<i></i> € Edit	≩ Copy	Delete	102	9000.00
		≩ Copy	Delete	205	8300.00
	<i>⊘</i> Edit	≩ Copy	Delete	145	7000.00
		≩ Copy	Delete	146	7000.00
	<i></i> € Edit	≩ Copy	Delete	108	6900.00
	<i> </i>	≩ Copy	Delete	147	6200.00

<u>SELECT</u> manager_id, <u>MIN</u>(salary)FROM 'employees' WHERE manager_id <u>IS NOT</u> NULL GROUP BY manager_id ORDER BY <u>MIN</u>(salary)DESC;

10.Write a query to get the department ID and the total salary payable in each department.

SELECT department_id,SUM(salary) FROM `employees` GROUP BY department_id;					
$\leftarrow \mid \rightarrow \mid$			\triangledown	department_id	SUM(salary)
	Edit	≩ Copy	Delete	0	7000.00
	Edit	≩≟ Copy	Delete	10	4400.00
	Edit	≩₌ Copy	Delete	20	19000.00
	Edit	≩≟ Copy	Delete	30	24900.00
	Edit	≩ Copy	Delete	40	6500.00

11. Write a query to get the average salary for each job ID excluding programmer.

```
SELECT job id, AVG(salary) AS 'average salary' FROM `employees` WHERE job id!
= 'it_prog' GROUP BY job_id
                           ▼ job_id
                                           AVG(salary)
                             AC ACCOUNT
                                            8300.000000

    Ø Edit  
    ♣ Copy  
    Opelete

                             AC MGR
                                           12000.000000
     🥒 Edit 👫 Copy
                             AD ASST
                                            4400.000000
                    Delete

    Ø Edit  
    ¾ Copy  
    Opelete

                             AD PRES
                                           24000.000000
```

12. Write a query to get the total salary, maximum, minimum, average salary of employees (job ID wise), for department ID 90 only.

```
SELECT job_id, department_id, SUM (salary), MAX (salary), MIN (salary), AVG (salary)
FROM `employees` WHERE department_id=90 GROUP BY job_id
```


13. Write a query to get the job ID and maximum salary of the employees where maximum salary is greater than or equal to \$4000.

```
SELECT job_id, MAX (salary) FROM `employees` GROUP BY job_id HAVING
MAX(salary) >= 4000
```


14. Write a query to get the average salary for all departments employing more than 10 employees.

<u>SELECT</u> department_id,<u>AVG</u>(salary) FROM `employees` GROUP BY department_id HAVING <u>COUNT</u>(*)>10;

department_id	AVG(salary)	COUNT(*)
50	3475.555556	45
80	8955.882353	34

MySQL Subquery - Exercises, Practice, Solution

1. Write a query to find the name (first_name, last_name) and the salary of the employees who have a higher salary than the employee whose last_name='Bull'.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY FROM employees WHERE SALARY > (<u>SELECT</u> salary FROM employees WHERE last_name = 'Bull');

2. Write a query to find the name (first_name, last_name) of all employees who works in the IT department.

<u>SELECT</u> first_name,last_name FROM `employees` WHERE DEPARTMENT_ID <u>IN(SELECT</u> departme nt_id FROM departments WHERE department_name = 'it');

3. Write a query to find the name (first_name, last_name) of the employees who have a manager and worked in a USA based department.

SELECT first_name, last_name FROM employees WHERE manager_id in (select employee_id FRO M employees WHERE department_id IN (SELECT department_id FROM departments WHERE loca tion_id IN (select location_id from locations where country_id='US')))

4. Write a query to find the name (first_name, last_name) of the employees who are managers.

<u>SELECT</u> first_name,last_name FROM `employees` WHERE (employee_id <u>IN(SELECT</u> MANAGER_ID FROM employees));

5. Write a query to find the name (first_name, last_name), and salary of the employees whose salary is greater than the average salary.

<u>SELECT</u> FIRST_NAME,LAST_NAME,SALARY FROM `employees` WHERE salary>(<u>SELECT AVG</u>(salary) FROM employees);

6. Write a query to find the name (first_name, last_name), and salary of the employees whose salary is equal to the minimum salary for their job grade.

<u>SELECT</u> first_name, last_name, salary FROM employees WHERE employees.salary = (<u>SELECT</u> min_salary FROM jobs WHERE employees.job_id = jobs.job_id);

7. Write a query to find the name (first_name, last_name), and salary of the employees who earns more than the average salary and works in any of the IT departments

SELECT FIRST_NAME, LAST_NAME, SALARY FROM `employees` WHERE DEPARTMENT_
ID in (SELECT DEPARTMENT_ID FROM departments WHERE department_name LIK
E'IT%') AND salary > (SELECT AVG (salary) FROM employees)

8. Write a query to find the name (first_name, last_name), and salary of the employees who earns more than the earning of Mr. Bell.

<u>SELECT</u> first_name,last_name,salary FROM `employees` WHERE SALARY >(<u>SELECT</u> salary FROM employees WHERE last_name='bell')ORDER BY FIRST_NAME;

9. Write a query to find the name (first_name, last_name), and salary of the employees who earn the same salary as the minimum salary for all departments.

<u>SELECT</u> * FROM employees WHERE salary =(<u>SELECT MIN</u>(salary) FROM employees);

10.Write a query to find the name (first_name, last_name), and salary of the employees whose salary is greater than the average salary of all departments.

<u>SELECT</u> *FROM `employees` WHERE salary><u>ALL(SELECT AVG(salary)</u>FROM employees GROUP BY DEPARTMENT_ID);

11.Write a query to find the name (first_name, last_name) and salary of the employees who earn a salary that is higher than the salary of all the Shipping Clerk (JOB_ID = 'SH_CLERK'). Sort the results of the salary of the lowest to highest.

<u>SELECT</u> FIRST_NAME,LAST_NAME,JOB_ID ,salary FROM `employees` WHERE salary>ALL (<u>SELECT</u> salary FROM employees WHERE JOB_ID= 'sh_clerk'ORDER by SALARY DESC);

12. Write a query to find the name (first_name, last_name) of the employees who are not supervisors.

<u>SELECT</u> b.first_name,b.last_name FROM employees b WHERE <u>NOT</u> EXISTS (<u>SELECT</u> 'X' FROM a WHERE a.manager_id = b.employee_id);

13. Write a query to display the employee ID, first name, last name, and department names of all employees.

<u>SELECT</u> employee_id, first_name, last_name, (<u>SELECT</u> department_name FROM departments d WHERE e.d epartment_id = d.department_id) department FROM employees e ORDER BY department;

14. Write a query to display the employee ID, first name, last name, salary of all employees whose salary is above average for their departments.

<u>SELECT</u> employee_id,FIRST_NAME,LAST_NAME FROM `employees` WHERE SALARY>(<u>SELECT AVG</u>(salary)FROM employees WHERE DEPARTMENT_ID=employees.DEPARTMENT_ID);

15. Write a query to fetch even numbered records from employees table.;

i	employee_id
2	101
4	103
6	105
8	107

16. Write a query to find the 5th maximum salary in the employees table.

SELECT DISTINCT salary FROM employees ORDER BY salary DESC LIMIT 1 OFFSET 4;

17. Write a query to find the 4th minimum salary in the employees table.

SELECT DISTINCT salary FROM employees ORDER BY salary ASC LIMIT 1 OFFSET 3;

18. Write a query to select last 10 records from a table

<u>SELECT</u> * FROM (<u>SELECT</u> * FROM employees ORDER BY employee_id DESC LIMIT 10) sub ORDE R BY employee_id ASC;

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	EMAIL	PHONE_NUMBER	HIRE_DATE	JOB_ID	SALARY	COMMISSION_PCT	MANAGER_ID	DEPARTMENT_ID
197	Kevin	Feeney	KFEENEY	650.507.9822	1987-09-22	SH_CLERK	3000.00	0.00	124	50
198	Donald	OConnell	DOCONNEL	650.507.9833	1987-09-23	SH_CLERK	2600.00	0.00	124	50
199	Douglas	Grant	DGRANT	650.507.9844	1987-09-24	SH_CLERK	2600.00	0.00	124	50
200	Jennifer	Whalen	JWHALEN	515.123.4444	1987-09-25	AD_ASST	4400.00	0.00	101	10
201	Michael	Hartstein	MHARTSTE	515.123.5555	1987-09-26	MK_MAN	13000.00	0.00	100	20
202	Pat	Fay	PFAY	603.123.6666	1987-09-27	MK_REP	6000.00	0.00	201	20
203	Susan	Mavris	SMAVRIS	515.123.7777	1987-09-28	HR_REP	6500.00	0.00	101	40
204	Hermann	Baer	HBAER	515.123.8888	1987-09-29	PR_REP	10000.00	0.00	101	70
205	Shelley	Higgins	SHIGGINS	515.123.8080	1987-09-30	AC_MGR	12000.00	0.00	101	110
206	William	Gietz	WGIETZ	515.123.8181	1987-10-01	AC_ACCOUNT	8300.00	0.00	205	110

19. Write a query to list the department ID and name of all the departments where no employee is working.

<u>SELECT</u> * FROM departments WHERE department_id <u>NOT IN</u> (<u>select</u> department_id FROM employees);

$\leftarrow T$	→		∇	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
		≩ Copy	Delete	120	Treasury	0	1700
	<i>⊘</i> Edit	≩ Copy	Delete	130	Corporate Tax	0	1700
	<i></i> € Edit	≩ Copy	Delete	140	Control And Credit	0	1700
	<i>⊘</i> Edit	≩ € Copy	Delete	150	Shareholder Services	0	1700

20. Write a query to get 3 maximum salaries.

SELECT DISTINCT salary FROM employees ORDER BY salary DESC LIMIT 3;

21. Write a query to get 3 minimum salaries.

SELECT DISTINCT salary FROM employees ORDER BY salary ASC LIMIT 3;

22. Write a query to get nth max salaries of employees.

<u>SELECT</u> * FROM employees emp1 WHERE (1) = (<u>SELECT COUNT</u>(DISTINCT(emp2.salary)) FROM employ ees emp2 WHERE emp2.salary > emp1.salary);

MySQL JOINS - Exercises, Practice, Solution

1. Write a query to find the addresses (location_id, street_address, city, state_province, country_name) of all the departments.

Hint: Use NATURAL JOIN.

<u>SELECT</u> location_id, street_address, city, state_province, country_name FROM locations NATURAL JOIN countries;

location_id	street_address	city	state_province	country_name
1000	1297 Via Cola di Rie	Roma		Italy
1100	93091 Calle della Testa	Venice		Italy
1200	2017 Shinjuku-ku	Tokyo	Tokyo Prefecture	Japan
1300	9450 Kamiya-cho	Hiroshima		Japan
1400	2014 Jabberwocky Rd	Southlake	Texas	United States of America
1500	2011 Interiors Blvd	South San Francisco	California	United States of America
1600	2007 Zagora St	South Brunswick	New Jersey	United States of America
1700	2004 Charade Rd	Seattle	Washington	United States of America

2. Write a query to find the name (first_name, last name), department ID and name of all the employees.

<u>SELECT</u> first_name, last_name, department_id, department_name FROM employees JOIN departments USING (department_id);

first_name	last_name	department_id	department_name
Steven	King	90	Executive
Neena	Kochhar	90	Executive
Lex	De Haan	90	Executive
Alexander	Hunold	60	IT
Bruce	Ernst	60	IT

3. Write a query to find the name (first_name, last_name), job, department ID and name of the employees who works in London.

first_name	last_name	job_id	department_id	department_name
Susan	Mavris	HR_REP	40	Human Resources

4. Write a query to find the employee id, name (last_name) along with their manager id and name (last_name).

<u>SELECT</u> e.employee_id'Emp_Id' ,e.last_name'Employee',m.employee_id'man_Id',m.last_name 'Man ager'FROM employees e JOIN employees m ON(e.MANAGER_ID = m.EMPLOYEE_ID);

Emp_ld	Employee	man_ld	Manager
101	Kochhar	100	King
102	De Haan	100	King
103	Hunold	102	De Haan
104	Ernst	103	Hunold
105	Austin	103	Hunold
106	Pataballa	103	Hunold

5. Write a query to find the name (first_name, last_name) and hire date of the employees who was hired after 'Jones'.

<u>SELECT</u> e.first_name, e.last_name, e.hire_date FROM employees e JOIN employees A ON (A.last_na me = 'Jones') WHERE A.hire_date < e.hire_date;

first_name	last_name	hire_date
Alana	Walsh	1987-09-21
Kevin	Feeney	1987-09-22
Donald	OConnell	1987-09-23
Douglas	Grant	1987-09-24
Jennifer	Whalen	1987-09-25
Michael	Hartstein	1987-09-26
Pat	Fay	1987-09-27
Susan	Mavris	1987-09-28
Hermann	Baer	1987-09-29
Shelley	Higgins	1987-09-30
William	Gietz	1987-10-01

6. Write a query to get the department name and number of employees in the department.

<u>SELECT</u> department_name AS'<u>Department Name',COUNT(*)</u> AS '<u>NO Employees'</u> FROM departments INNER JOIN employees ON(employees.DEPARTMENT_ID= depart ments.DEPARTMENT_ID) GROUP BY (departments.DEPARTMENT_ID)ORDER BY department_na me;

Department Name	NO Employees
Accounting	2
Administration	1
Executive	3
Finance	6
Human Resources	1
IT	5
N 41 4:	2

7. Write a query to find the employee ID, job title, number of days between ending date and starting date for all jobs in department 90.

<u>SELECT</u> employee_id,job_title,end_datestart_date days FROM job_history NATURAL JOIN jobs WHERE department_id=90;

employ	/ee_id	job_title	days
	200	Administration Assistant	59700
	200	Public Accountant	40530

8. Write a query to display the department ID and name and first name of manager.

<u>SELECT</u> d.department_id,d.department_name,d.manager_id,e.first_name FROM `departments`d I NNER JOIN employees e ON(d.manager_id= e.employee_id);

department_id	department_name	manager_id	first_name
10	Administration	200	Jennifer
20	Marketing	201	Michael
30	Purchasing	114	Den
40	Human Resources	203	Susan
50	Shipping	121	Adam
60	IT	103	Alexander

9. Write a query to display the department name, manager name, and city. <u>SELECT</u> d.department_name,e.first_name,l.city FROM departments d JOIN employees e ON(d.man ager_id=e.employee_id)JOIN locations l USING (location_id);

department_name	first_name	city
Administration	Jennifer	Seattle
Marketing	Michael	Toronto
Purchasing	Den	Seattle
Human Resources	Susan	London
Shipping	Adam	South San Francisco

10. Write a query to display the job title and average salary of employees.

<u>SELECT</u> job_title,<u>AVG</u>(salary) FROM `employees` NATURAL JOIN jobs GROUP BY JOB_TITLE;

job_title	AVG(salary)
Accountant	7920.000000
Accounting Manager	12000.000000
Administration Assistant	4400.000000
Administration Vice President	17000.000000
Finance Manager	12000.000000
Human Resources Representative	6500.000000
Marketing Manager	13000.000000
Marketing Representative	6000.000000
President	24000.000000
Programmer	5760.000000

11. Write a query to display job title, employee name, and the difference between salary of the employee and minimum salary for the job.

<u>SELECT</u> job_title,first_name,salary-min_salary FROM `employees` NATURAL JOIN jobs;

job_title	first_name	salary-min_salary
President	Steven	4000.00
Administration Vice President	Neena	2000.00
Administration Vice President	Lex	2000.00
Programmer	Alexander	5000.00
Programmer	Bruce	2000.00

12. Write a query to display the job history that were done by any employee who is currently drawing more than 10000 of salary.

SELECT jh.* FROM `job_history`jh JOIN employees e ON(jh.employee_id=e.employee_id)WHERE s alary>10000;

EMPLOYEE_ID	START_DATE	END_DATE	JOB_ID	DEPARTMENT_ID
102	1993-01-13	1998-07-24	IT_PROG	60
101	1989-09-21	1993-10-27	AC_ACCOUNT	110
101	1993-10-28	1997-03-15	AC_MGR	110
201	1996-02-17	1999-12-19	MK_REP	20
114	1998-03-24	1999-12-31	ST_CLERK	50

13. Write a query to display department name, name (first_name, last_name), hire date, salary of the manager for all managers whose experience is more than 15 years.

<u>SELECT</u> first_name,last_name,hire_date,salary,(datediff(now(),hire_date))/365 Experience FROM 'departments' d JOIN employees e ON (d.MANAGER_ID=e.EMPLOYEE_ID)WHERE (datediff(now(),hire_date))/365>15;

first_name	last_name	hire_date	salary	Experience
Steven	King	1987-06-17	24000.00	36.3342
Alexander	Hunold	1987-06-20	9000.00	36.3260
Nancy	Greenberg	1987-06-25	12000.00	36.3123
Den	Raphaely	1987-07-01	11000.00	36.2959
Adam	Fripp	1987-07-08	8200.00	36.2767
John	Russell	1987-08-01	14000.00	36.2110
Jennifer	Whalen	1987-09-25	4400.00	36.0603
Michael	Hartstein	1987-09-26	13000.00	36.0575

MySQL Date and Time - Exercises, Practice, Solution

1. Write a query to display the first day of the month (in datetime format) three months before the current month.

SELECT DATE_SUB(DATE_FORMAT(CURDATE(), '%Y-%m01'), INTERVAL 3 MONTH) AS first_day_of_previous_month;

first_day_of_previous_month

2023-07-01

2. Write a query to display the last day of the month (in datetime format) three months before the current month.

<u>SELECT</u> DATE_SUB(DATE_FORMAT(CURDATE(), '%Y-%m-31'), <u>INTERVAL</u> 3 MONTH) AS first_day_of_previous_month;

last_day_of_privious_month

2023-07-31

3. Write a query to get the distinct Mondays from hire_date in employees tables.

<u>SELECT</u> DISTINCT(STR_TO_DATE (CONCAT(YEARWEEK(hire_date),'1'),'%x%v%w')) FROM e mployees;

(STR_TO_DATE (CONCAT(YEARWEEK(hire_date),'1'),'%x%v%w'))

1987-06-08 1987-06-15 1987-06-22 1987-06-29

1987-07-06 1987-07-13

4007.07.00

1987-07-20

1987-07-27 1987-08-03

1987-08-10

4. Write a query to get the first day of the current year.

SELECT DATE_FORMAT(CURDATE(), '%Y-01-01') AS first_day_of_current_year;

first_day_of_current_year

2023-01-01

5. Write a query to get the last day of the current year.

SELECT DATE_FORMAT(CURDATE(), '%Y-01-31') AS first_day_of_current_year;

first_day_of_current_year

2023-01-31

6. Write a query to calculate the age in year.

SELECT TIMESTAMPDIFF (YEAR, '1967-06-08', CURRENT DATE) AS age;

age

56

7. Write a query to get the current date in the following format.

SELECT DATE_FORMAT(CURDATE(),'%M %d, %Y') AS 'Current_date';

Current_date

October 08, 2023

8.Write a query to get the current date in Thursday September 2014 format.

SELECT DATE_FORMAT(NOW(), '%W %M %Y');

DATE_FORMAT(NOW(), '%W %M %Y')

Sunday October 2023

9. Write a query to extract the year from the current date.

SELECT extract(year FROM now());

extract(year FROM now())

2023