

Eur päisches
Patentamt

Eur pean
Patent Office

Office eur péen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

02293012.7

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

R C van Dijk

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

Anmeldung Nr:
Application no.: 02293012.7
Demande no:

Anmelde tag:
Date of filing: 06.12.02
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Thomson Licensing S.A.
46, quai A. Le Gallo
92100 Boulogne-Billancourt
FRANCE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Image pickup device

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

H04N5/335

Am Anmelde tag benannte Vertragsstaaten/Contracting states designated at date of
filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

The invention relates to an image pickup device, notably a camera.

- An image pickup device, for instance a still-picture camera or a video camera, has an image sensor, which generates an electrical signal (image signal) describing the light impinging on the image sensor, i.e.
- 5 an image of the scene facing the image sensor.

The image sensor is fed by a pulse pattern generator, which generates driving signals (operating voltages and various clocks) needed for operation of the image sensor.

- Before being processed, the image signal generated by the image
- 10 sensor is amplified at a gain, which is directly or indirectly selected by the user of the image receiver through adjusting means.

Image sensors are generally designed to handle overexposure, up to a value called maximum charge handling capacity Q_{max} , for instance 400 %. At high gain settings, this overexposure capability leads to huge

15 values (at 12 dB, 1 600 %) of the amplified signal, thereby generating unacceptable ringing and streaking. Furthermore, high gain also implies more noise in the amplified signal.

- In order to solve these problems, the invention proposes an image pickup device comprising an image sensor generating an image signal,
- 20 driving means generating a driving signal for the image sensor, an amplifier for amplifying the image signal with a given gain, adjusting means to set the gain and control means to control the power of the driving signal depending on the gain.

As the power of the driving signal (and notably the height of the

25 pulses of the driving signal) determines the maximum generated charge and hence the maximum output signal, control of the power of the driving signal makes it possible to lower the maximum possible signal at high gains, and therefore to reduce ringing and streaking.

- This reduction of the maximum possible signal has no consequence
- 30 for the user at high gains as it relates to overexposed parts, which are supposedly not of interest when the gain is set high.

According to preferred features of the invention :

- a pulse pattern generator includes the driving means ;
 - the pulse pattern generator includes the control means ;
 - a controller comprises the control means ;
- 5 - the driving signal is a storage clock signal or an image clock signal ;
- the image sensor is a CCD imager ;
 - the image pickup device comprises two further image sensors ;
 - the control means sets the height of pulses of the driving signal.

The invention thus proposes an image pickup device comprising an
10 image sensor generating an image signal, driving means generating a signal with pulses for driving the image sensor, an amplifier for amplifying the image signal with a given gain, adjusting means to set the gain and control means to set the pulse height depending on the gain.

15 Preferably, the driving signal is a storage clock signal or an image clock signal.

Other features of the invention appear from the following description made in light of the appended drawings where:

- Figure 1 depicts an embodiment of the invention;
- 20 - Figure 2a to 2c represents various signals involved in the invention.

Figure 1 represents the main elements of a video camera according to the invention. This video camera is a colour video camera with 3 image sensors (3 CCD imagers) and corresponding processing channels,
25 but only 1 image sensor and its corresponding processing channel have been represented for the sake of conciseness. The invention similarly applies to the other 2 channels.

Optical means 2 (here represented as a lens) directs incoming light to CCD imagers (image sensors) through a colour separator 4, and
30 notably to a CCD imager referenced 6.

A pulse pattern generator 12 supplies various operating voltages and clocks (for instance an image clock and a storage clock), generally denominated driving signals Drv, to the CCD imager 6. Thanks to these driving signals Drv provided by the pulse pattern generator 12, the CCD

5 imager 6 generates an image signal Img representing the quantity of light received by the CCD image 6 on each of its pixel element.

The image signal Img is transmitted to an amplifier 8, which outputs an amplified image signal Amp. The amplified image signal Amp is received at a processing stage 10, where it is processed and/or

10 recorded on a medium and/or broadcast to other users. The processing stage 10 also receives amplified signals from the other 2 colour channels (not represented).

The amplifier 8 pre-forms the image signal, for instance by correlated double sampling.

15 The amplifier 8 also provides a gain controlled by gain control signal Gain received from a main controller 16. The main controller 16 generates the gain control signal Gain based on a value UI set by the user through a user interface 14.

Depending on the gain of the amplifier 8 (*i.e.* on the gain control

20 signal Gain, or on the value indicative of the gain UI), the main processor computes a pulse height PH and transmits it to the pulse pattern generator 12.

The pulse height is determined as a decreasing function of the gain. For instance, the pulse height is computed with the following formula:

25 $PH \text{ (Volts)} = 12 - 1/3.G$, where G is the gain in dB.

As an alternative, the pulse height can be selected between a limited number of possible values depending on the gain: 12 V for a gain between 0 dB and 4 dB, 10 V between 4 dB and 10 dB, 8 V for more than 10 dB.

30 The pulse pattern generator 12 generates the driving signals Drv based on the signal PH received from the main controller 16. Notably,

the pulse pattern generator 12 generates an image clock (image gate voltages) for the 3 CCD imagers (and notably for CCD imager 6) with a high level equal to the pulse height PH received from the main controller 16.

- 5 As another possibility which can be combined with the previous one, the storage clock has a pulse height having the value PH, and thus dependent on the gain.

Figure 2a represents variations of the gain of the amplifier 8 in accordance with commands UI for the user.

- 10 Figure 2b represents the corresponding variations of the pulse height signal PH. As mentioned above, the pulse height signal PH is a decreasing function of the gain. Therefore, when the gain increases, the pulse height PH decreases.

- 15 Figure 2c represents the image clock driving signal Drv applied as a voltage to the image gate of the CCD imager 6. The driving signal is a train of pulses whose height is determined by the value PH computed based on the gain. (Figure 2c is explanatory only; its timescale is not realistic.)

- 20 Other embodiments are naturally possible without departing from the scope of the present invention. For instance, the main controller 16 can transmit to the pulse pattern generator 12 a value indicative of the gain of the amplifier 8 and the pulse pattern generator 12 then computes the pulse height of the driving signal(s) based on this value.

- 25 According to another possible variation, the main controller 16 and the pulse pattern generator are made as a single entity, for instance as a single integrated circuit.

CLAIMS

1. Image pickup device comprising :
 - 5 - an image sensor (6) generating an image signal (Img) ;
 - driving means (12) generating a driving signal (Drv) for the image sensor (6) ;
 - an amplifier (8) for amplifying the image signal (Img) with a given gain (Gain) ;
- 10 - adjusting means (14, 16) to set the gain (Gain) ; characterised by control means (12 ; 16) to control the power of the driving signal (Drv) depending on the gain (Gain).
2. Image pickup device according to claim 1, wherein a pulse pattern
15 generator (12) includes the driving means.
3. Image pickup device according to claim 2, wherein the pulse pattern generator (12) includes the control means.
- 20 4. Image pickup device according to claim 1 or 2, wherein a controller (16) comprises the control means.
5. Image pickup device according to any of claims 1 to 4, wherein the driving signal (Drv) is a storage clock signal or an image clock signal.
25
6. Image pickup device according to any of claims 1 to 5, wherein the image sensor (6) is a CCD imager.
7. Image pickup device according to any of claims 1 to 6, comprising
30 two further image sensors.

8. Image pickup device according to any of claims 1 to 7, wherein the control means (12 ; 16) sets the height of pulses of the driving signal (Drv).
- 5 9. Image pickup device comprising :
- an image sensor (6) generating an image signal (Img) ;
 - driving means (12) generating a signal (Drv) with pulses for driving the image sensor (6) ;
 - an amplifier (8) for amplifying the image signal (Img) with a given gain (Gain) ;
 - adjusting means (14, 16) to set the gain (Gain) ;
- 10 characterised by control means (12 ; 16) to set the pulse height (Drv ; PH) depending on the gain (Gain).
- 15 10. Image pickup device according to claim 9, wherein the driving signal (Drv) is a storage clock signal or an image clock signal.

Image pickup device

Abstract

An image pickup device has an image sensor (6) generating an image signal (Img), a pulse pattern generator (12) generating a driving signal (Drv) for the image sensor (6) and an amplifier (8) for amplifying the image signal (Img) with a given gain (Gain). Adjusting means (14, 16) are provided to set the gain (Gain).

The power of the driving signal (Drv) is controlled depending on the gain (Gain). For instance, the pulse height (PH) of the driving signal (Drv) is set depending on the gain (Gain).

Figure 1

THIS PAGE BLANK (USPTO)

BEST AVAILABLE COPY

Fig. 1

BEST AVAILABLE COPY

Fig. 2a

Fig. 2b

Fig. 2c