0	30	5	S			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No._____

文科数学第九次作业解析

$$\begin{cases} x_1 = 2y_1 + 2y_2 + y_3 \\ x_2 = 3y_1 + y_2 + 5y_3 \\ x_3 = 3y_1 + 2y_2 + 3y_3 \end{cases}$$

试将变量生,4,43 由变量×1, ×2, ×3线性表出。

X = AY

其中
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 3 & 1 & 5 \\ 3 & 2 & 3 \end{bmatrix}$$

构版矩阵(A,I)求A-1如下:

	Memo No),	
Mo Tu We Th Fr Sa Su	Date	/	/
因而 [-7 -4 9]			,
$A^{-1} = 6 3 -7$			
[3 2 -4]			
所以,变量灶, Y2, Y3, 由变量X1, X2, X3线性表示为:			1
$\left(y_1 = -7 \times 1 - 4 \times 2 + 9 \times 3 \right)$			
$4y_2 = 6x_1 + 3x_2 - 7x_3$			
$y_3 = 3x_1 + 2x_2 - 4x_3$: .	
	to . Dec		
2.3.3 解下列线性方程组:			
$\int 2x_1 + 3x_2 - x_3 = 8$			
$(1) \qquad \begin{cases} x_1 + x_2 + x_3 = 7 \end{cases}$			
2x2- x3 = 3 对			
解:线性方程组的增广矩阵为版初等行变换:			
		2+0	·(-2)
$A = \begin{vmatrix} 1 & 1 & 1 & 1 \end{vmatrix}$	-1 8		\rightarrow
$\begin{bmatrix} 0 & 2 & -1 & 3 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 \end{bmatrix}$	-1 3]		
	f ,		77
③+②·(-2) ③·(1
0 1 -3 -6 0 1 -3 -6	$\rightarrow 0$		-6
$\begin{bmatrix} 0 & 2 & -1 & 3 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 5 & 15 \end{bmatrix}$	10 0)- 1:	3]

140	1		
	Jana San		
888888888888888888888888888888888888888		20000000	

Memo No._____

(4) $\begin{cases} x_1 - x_3 - 2x_4 - 3x_5 = -2 \\ x_1 - x_2 + 2x_3 + x_4 - x_5 = 4 \\ 2x_1 - 4x_2 + 6x_3 + 4x_4 - 2x_5 = 12 \end{cases}$

解:对线性方程组的增广矩阵做初等变换如下:

方程组解为:

$$\begin{cases} x_1 = x_4 + 2x_5 \\ x_2 = -x_5 & \text{jip}(x_4, x_5) \text{ flating} \end{cases}$$

$$x_3 = 2 - x_4 - x_5$$

(8)
$$\begin{cases} x_1 + 2x_2 + 3x_3 - x_4 = 2 \\ 2x_1 + 4x_2 + 5x_3 - 3x_4 - x_5 = 3 \\ x_1 + 2x_2 + 3x_3 - 3x_4 - 4x_5 = 2 \end{cases}$$

用:对线性方程组增广矩阵做初等变换如F:

Q	2		S)			
Мо	Tu	We	Th	Fr	Sa	Su

Memo	No			
Date		/	/	

$$\tilde{A} = \begin{bmatrix}
1 & 2 & 3 & -1 & 0 & 2 \\
2 & 4 & 5 & -3 & -1 & 3
\end{bmatrix}
\xrightarrow{2 + 0 \cdot (-2)}
0 & 0 & -1 & -1 & -1 & -1 \\
1 & 2 & 3 & -3 & -4 & 2
\end{bmatrix}
\xrightarrow{3 + 0 \cdot (-1)}
0 & 0 & 0 & -2 & -4 & 0$$

$$\underbrace{0} \cdot (-\frac{1}{2}) \quad \begin{bmatrix} 1 & 2 & 3 & 0 & 2 & 2 \\ 0 & 1 & 2 & 3 & 0 & 2 & 2 \\ 0 & 0 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{0} + \underbrace{0} \cdot \underbrace{(-1)} \begin{bmatrix} 1 & 2 & 0 & 0 & 5 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{bmatrix}}_{0} + \underbrace{0} \cdot \underbrace{(-1)}_{0} \begin{bmatrix} 1 & 2 & 0 & 0 & 5 & -1 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{bmatrix}}_{0} + \underbrace{0}_{0} \cdot \underbrace{(-1)}_{0} \underbrace{(-1)}_{0} \begin{bmatrix} 1 & 2 & 0 & 0 & 5 & -1 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{bmatrix}}_{0} + \underbrace{0}_{0} \cdot \underbrace{(-1)}_{0} \underbrace{(-1)}_{$$

因而 3 z Yank(Ā) < 5 , 放线性方程组无务多种且有2个自由未知量。

放线性所程组解为:

$$\begin{cases} x_1 = -2x_2 - 5x_5 - 1 \\ x_3 = x_5 + 1 \end{cases}$$
,其中 x_5 ,其中 x_5 , x_5 为自由未知量。

(11)
$$\begin{cases} x_1 + 3x_2 + x_3 + 2x_4 = 4 \\ 3x_1 + 10x_2 + 2x_3 + x_4 = 6 \\ 2x_1 + 7x_2 + x_3 + 6x_4 = 6 \\ 2x_1 + 5x_2 + 3x_3 + 2x_4 = 10 \end{cases}$$

解:对线性方程组增广矩阵/叔初等**委**换如下:

$$\bar{A} = \begin{bmatrix}
1 & 3 & 1 & 2 & 4 \\
3 & 10 & 2 & 4 & 6 & 9+0\cdot(-2), & 0 & 1 & -1 & -2 & -6 \\
2 & 7 & 1 & 6 & 6 & 9+0\cdot(-2), & 0 & 1 & -1 & 2 & -2 \\
2 & 5 & 3 & 2 & 10
\end{bmatrix}$$

因此 3=rank(A) < 4, 放线性方程组无务多解,且有一个自由未知量.

Ō	3		5)			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	/	/	

故	此小	井方	积	归	倒	出	:
HY.	111	T 1/	11	20	17	1	

$$\begin{cases} x_1 = -4x_3 + 14 \\ x_2 = x_3 - 4 \\ x_4 = 1 \end{cases}$$

$$\frac{1}{x_4} = \frac{1}{x_4}$$

$$\frac{1}{x_4} = \frac{1}{x_4}$$

2.3.4 解下列齐次线性方程组

$$\begin{cases} 2x_1 - 4x_2 + 5x_3 + 3x_4 = 0 \\ 3x_1 - 6x_2 + 4x_3 + 2x_4 = 0 \\ 4x_1 - 8x_2 + 17x_3 + 11x_4 = 0 \end{cases}$$

解:对条数矩阵做初等变换:

因而 2= rank(A)<4,放齐次线性方程组有无务多角,且有工个自由未知量.

$$X_1 = 2 \times_2 + \frac{2}{7} \times_4$$
 , 其中 X_2 , X_4 为自由未知量. $X_3 = -\frac{5}{7} \times_4$

$$\begin{cases} x_1 - x_2 - 2x_3 + 3x_4 + 2x_5 = 0 \\ 3x_1 - 3x_2 - x_3 + 5x_4 - x_5 = 0 \\ 2x_1 - 2x_2 + x_3 + 2x_4 - 3x_5 = 0 \end{cases}$$

解:对系数矩阵放初等变换:

$$A = \begin{bmatrix} 1 & -1 & -2 & 3 & \frac{2}{4} \\ 3 & -3 & -1 & 5 & -1 \\ 2 & -2 & 1 & 2 & -3 \end{bmatrix} \underbrace{ \begin{bmatrix} 0 + 0 \cdot (-3) \\ 0 & 0 & 5 & -4 & -7 \\ 0 & 0 & 5 & -4 & -7 \end{bmatrix}}_{ \begin{bmatrix} 0 + 0 \cdot (+2) \\ 2 & -4 & -7 \end{bmatrix}} \underbrace{ \begin{bmatrix} 1 & -1 & -2 & 3 & \frac{2}{4} \\ 0 & 0 & 5 & -4 & -7 \end{bmatrix}}_{ \begin{bmatrix} 0 + 0 \cdot (+2) \\ 2 & -2 & 1 & 2 & -3 \end{bmatrix}} \underbrace{ \begin{bmatrix} 1 & -1 & -2 & 3 & \frac{2}{4} \\ 0 & 0 & 5 & -4 & -7 \end{bmatrix}}_{ \begin{bmatrix} 0 & 0 & 5 & -4 & -7 \\ -4 & 5 \end{bmatrix}}$$

因而 2= rank(A) < 5, 放弃程组无务多解,且含有3个自由未知量.

所以,齐次线性方程组解为:

$$\begin{cases} x_1 = x_2 - \frac{1}{5}x_4 + \frac{4}{5}x_5 \\ x_3 = \frac{4}{5}x_4 + \frac{7}{5}x_5 \end{cases}$$
, 其中 x_4 , x_5 , x_2 为 自由未知量.

2021.12.72.

[訂]:本次作业主要考查了矩阵求查以及矩阵的初等变换、而线性方程组束的手工程,有手本质上为矩阵的初等变换。

注意事项=

- 1. 矩阵初等变换之间不能使用"="。应该使用"→"表示。
- 2.一般矩阵初等变换要把矩阵化到 简化 阶梯型矩阵
- 3. 矢巨阵求选, 首先判进广该矢巨阵是否可逆, 再求避。