

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Thesis & Dissertation (/jspui/handle/123456789/1)
- / Master of Science (/jspui/handle/123456789/2)
- / MS-13 (/jspui/handle/123456789/914)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/960

Title:	Fluctuation Dominated Phase Ordering				
Authors:	Kumar, Rupendra (/jspui/browse?type=author&value=Kumar%2C+Rupendra)				
Keywords:	Fluctuation Phase Ordering Passive Scalars Quantities of Interest Surface Evolution				
Issue Date:	31-Aug-2018				
Publisher:	IISERM				
Abstract:	In this thesis, we study a system of hard-core particles sliding locally down-wards on a fluctuating one-, and two-dimensional surfaces with overall zero tilt. We consider surfaces that evolve according to (i) Kardar-Parisi-Zhang (KPZ), and (ii) Edwards-Wilkinson (EW) dynamics. We find that the surface fluc- tuations lead to large-scale clustering of particles showing a cusp singularity in the scaled two-point correlation function at small arguments, signifying the breakdown of Porod law – a signature of fluctuation-dominated phase ordering.				
URI:	http://hdl.handle.net/123456789/960 (http://hdl.handle.net/123456789/960)				
Appears in	MS-13 (/jspui/handle/123456789/914)				

Collections:

File	Description	Size	Format	
MS13153.pdf (/jspui/bitstream/123456789/960/4/MS13153.pdf)		2.28 MB	Adobe PDF	View/Open (/jspui/bitstream/123456789/960/4/N

Show full item record (/jspui/handle/123456789/960?mode=full)

(/jspui/handle/123456789/960/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.