Enumeration of Preferred Extensions in Almost Oriented Digraphs

Serge Gaspers Ray Li

UNSW Sydney, Australia

MFCS 2019

Admissibility:

Admissibility:

Independence:

$$\forall a,b \in S.(a,b) \notin E(G)$$

Admissibility:

Independence:

$$\forall a, b \in S.(a, b) \notin E(G)$$

$$N^-(S) \subseteq N^+(S)$$
.

Admissibility:

Independence:

$$\forall a, b \in S.(a, b) \notin E(G)$$

$$N^-(S) \subseteq N^+(S)$$
.

Admissibility:

Independence:

 $\forall a, b \in S.(a, b) \notin E(G)$

$$N^-(S) \subseteq N^+(S)$$
.

Admissibility:

Independence:

 $\forall a, b \in S.(a, b) \notin E(G)$

$$N^-(S) \subseteq N^+(S)$$
.

Admissibility:

Independence:

 $\forall a, b \in S.(a, b) \notin E(G)$

$$N^-(S) \subseteq N^+(S)$$
.

Admissibility:

Independence:

Defends itself:

$$\forall a, b \in S.(a, b) \notin E(G)$$

$$N^-(S) \subseteq N^+(S)$$
.

Preferred: Maximal among admissible subsets.

Oriented: No 2-cycles.

Oriented: No 2-cycles.

Not Oriented

Oriented: No 2-cycles.

Oriented: No 2-cycles.

Resolution Order: r(G) := # vertices in a 2-cycle.

Existing Results:

At most $3^{n/3}$ preferred extensions, $O^*(3^{n/3})$ enumeration algorithm.

Existing Results:

At most $3^{n/3}$ preferred extensions, $O^*(3^{n/3})$ enumeration algorithm.

. . .

New Results:

 $\mathsf{Recall}\ r(G) := \#\mathsf{vertices}\ \mathsf{in}\ \mathsf{a}\ \mathsf{2}\mathsf{-cycle}$

Define r := r(G)/n.

Existing Results:

At most $3^{n/3}$ preferred extensions, $O^*(3^{n/3})$ enumeration algorithm.

. . .

New Results:

 $\mathsf{Recall}\ r(G) := \#\mathsf{vertices}\ \mathsf{in}\ \mathsf{a}\ \mathsf{2}\mathsf{-cycle}$

Define r := r(G)/n.

• An algorithm based on Monotone Local Search. Running time $\approx O^*((1.48^r \cdot 1.29^{1-r})^n)$.

Existing Results:

At most $3^{n/3}$ preferred extensions, $O^*(3^{n/3})$ enumeration algorithm.

. . .

New Results:

 $\mathsf{Recall}\ r(G) := \#\mathsf{vertices}\ \mathsf{in}\ \mathsf{a}\ \mathsf{2}\mathsf{-cycle}$

Define r := r(G)/n.

- An algorithm based on Monotone Local Search. Running time $\approx O^*((1.48^r \cdot 1.29^{1-r})^n)$.
- A direct branching algorithm for oriented graphs, with a translation result to lift it to a general graph. Running time $\approx O^*((1.52^r \cdot 1.23^{1-r})^n)$.

Existing Results:

At most $3^{n/3}$ preferred extensions, $O^*(3^{n/3})$ enumeration algorithm.

. . .

New Results:

Recall r(G) := # vertices in a 2-cycle

Define r := r(G)/n.

- An algorithm based on Monotone Local Search. Running time $\approx O^*((1.48^r \cdot 1.29^{1-r})^n)$.
- A direct branching algorithm for oriented graphs, with a translation result to lift it to a general graph. Running time $\approx O^*((1.52^r \cdot 1.23^{1-r})^n)$.
- A combinatorial lower bound of

$$\Omega((3^{\frac{r}{3}}3^{\frac{1-r}{6}})^{|V|}) \approx ((1.44^r \cdot 1.20^{1-r})^n)$$

New Results

- Orange: Existing $O^*(3^{n/3})$ algorithm.
- Blue: MLS algorithm, $\approx O^*((1.48^r \cdot 1.29^{1-r})^n)$.
- Green: Branching Algorithm $\approx O^*((1.52^r \cdot 1.23^{1-r})^n)$.
- Red: Combinatorial lower bound, $\Omega((3^{\frac{r}{3}}3^{\frac{1-r}{6}})^n)$.

Parameterized Problem Introduction

Maximal Admissible Subset Enumeration (MASE)

Input: Graph G, set $S \subseteq V(G)$, integer k

Parameter: k

Output: Enumerate all maximal admissible sets $T \subseteq S$ such that

 $|S \setminus T| \le k$.

Parameterized Problem Introduction

Maximal Admissible Subset Enumeration (MASE)

Input: Graph G, set $S \subseteq V(G)$, integer k

Parameter: k

Output: Enumerate all maximal admissible sets $T \subseteq S$ such that

 $|S \setminus T| \le k$.

Theorem

There is an $O^*(2^k)$ algorithm for MASE.

Under SETH, this is optimal.

Parameterized Problem Introduction

Maximal Admissible Subset Enumeration (MASE)

Input: Graph G, set $S \subseteq V(G)$, integer k

Parameter: k

Output: Enumerate all maximal admissible sets $T \subseteq S$ such that

 $|S \setminus T| \le k$.

Theorem

There is an $O^*(2^k)$ algorithm for MASE.

Under SETH, this is optimal.

Theorem

There is an $O^*(2^{\frac{k}{2}})$ algorithm for MASE on oriented graphs.

Under SETH, this is optimal.

Base Case (max degree ≤ 2)

General Graph: $2^{\frac{n}{2}}$

Oriented Graph: $2^{\frac{n}{4}}$

Let $v \in G[S]$ have the maximum number of neighbors.

ullet v has many neighbors: Easy

Let $v \in G[S]$ have the maximum number of neighbors.

- ullet v has many neighbors: Easy
- v has degree ≤ 2 : Easy

Let $v \in G[S]$ have the maximum number of neighbors.

- ullet v has many neighbors: Easy
- v has degree ≤ 2 : Easy
- ullet v has in-degree 0:

(Undefendable) Let $u \in S$ be a vertex such that there exists a vertex $a \in V(G)$, a attacks u and $a \notin N^+(S)$. Then there is no admissible subset of S that contains u so we can safely set $S \leftarrow S \setminus \{u\}$.

Let $v \in G[S]$ have the maximum number of neighbors.

- ullet v has many neighbors: Easy
- v has degree ≤ 2 : Easy
- ullet v has in-degree 0:

(Undefendable) Let $u \in S$ be a vertex such that there exists a vertex $a \in V(G)$, a attacks u and $a \notin N^+(S)$. Then there is no admissible subset of S that contains u so we can safely set $S \leftarrow S \setminus \{u\}$.

Proof.

If u is in our admissible subset then a must be attacked by our admissible subset.

But no subset of S attacks a as S does not attack a itself.

Let $v \in G[S]$ have the maximum number of neighbors.

- ullet v has many neighbors: Easy
- v has degree ≤ 2 : Easy
- v has in-degree 0:

(Undefendable) Let $u \in S$ be a vertex such that there exists a vertex $a \in V(G)$, a attacks u and $a \notin N^+(S)$. Then there is no admissible subset of S that contains u so we can safely set $S \leftarrow S \setminus \{u\}$.

Proof.

If u is in our admissible subset then a must be attacked by our admissible subset.

But no subset of S attacks a as S does not attack a itself.

• v has in-degree 1: Branch on in-neighbor and use **(Undefendable)**.

$O^*(2^{\frac{k}{2}})$ MASE algorithm

Maximal **Oriented** Admissible Subset Enumeration (MASE)

Input: **Oriented** Graph G, set $S \subseteq V(G)$, integer k

Parameter: k

Output: Enumerate all maximal admissible sets $T \subseteq S$ such that

 $|S \setminus T| \le k$.

Direct branching algorithm. First keep applying (Undefendable). Cases:

Case	Requirement to apply	Running Time
Base	S is conflict-free.	Solves in $O^*(1)$ time, returns ≤ 1 set.
1	$G[S]$ has maximum total degree ≤ 2 .	Vector $(2,2), \alpha = \sqrt{2}$.
2	$G[S]$ has maximum total degree ≥ 4 .	Vector $(4,1), \alpha \approx \sqrt{1.91}$.
3	G[S] contains a vertex with total degree 3.	Vector $(2,3), \alpha \approx \sqrt{1.76}$.

Case 3

Case 3: There exists $v \in G[S]$ with total degree 3.

Case 3

Case 3: There exists $v \in G[S]$ with total degree 3. Branch on u:

Case 3

Case 3: There exists $v \in G[S]$ with total degree 3. Branch on u:

Gives a (3,2) branching.

Overall Branching Algorithm

Case	Requirement to apply	
1	$\exists v \in G[S]$ with total degree ≥ 7 .	
2	$\exists v \in G[S]$ with degree $(1,-)$.	
3	$\exists v \in G[S]$ with in-degree $ eq$ out-degree.	
4	G[S] has a weakly connected component where every	
	vertex has degree $(2,2)$.	
5	G[S] has a weakly connected component where every	
	vertex has degree $(3,3)$.	
6	There is a weakly connected component in $G[S]$ where	
	every vertex has in-degree $=$ out-degree.	

Extending to Resolution Order

For FPT: Just set $\mu(I) = \frac{k}{2} + \frac{r(G[S])}{4}$.

Then there is a $O^*(2^{\mu(I)})$ algorithm for MASE on general graphs.

Extending to Resolution Order

Theorem

There is a linear time algorithm that transforms any AF G into an oriented AF G' with |V(G')| = |V(G)| + r(G) + 3 such that there is a bijection between the preferred extensions of G and the preferred extensions of G' that can be applied in linear time.

Extending to Resolution Order

Theorem

There is a linear time algorithm that transforms any AF G into an oriented AF G' with |V(G')| = |V(G)| + r(G) + 3 such that there is a bijection between the preferred extensions of G and the preferred extensions of G' that can be applied in linear time.

Basic idea:

Extending to Resolution Order

Theorem

There is a linear time algorithm that transforms any AF G into an oriented AF G' with |V(G')| = |V(G)| + r(G) + 3 such that there is a bijection between the preferred extensions of G and the preferred extensions of G' that can be applied in linear time.

Basic idea:

So our $O^*(1.23^n)$ algorithm on oriented graphs becomes a $O^*((1.23^{2r}\cdot 1.23^{1-r})^n)$ algorithm on general graphs.

Results So Far

Monotone Local Search Idea

Idea: Suppose we are enumerating extensions of size exactly p. Smartly pick a value $q \geq p$ and randomly sample subsets of size q then apply our parameterized algorithm to these subsets.

Monotone Local Search Idea

Idea: Suppose we are enumerating extensions of size exactly p. Smartly pick a value $q \geq p$ and randomly sample subsets of size q then apply our parameterized algorithm to these subsets.

Problem: Our MASE running time is sensitive to number of vertices in a 2-cycle.

Monotone Local Search Idea

Idea: Suppose we are enumerating extensions of size exactly p. Smartly pick a value $q \geq p$ and randomly sample subsets of size q then apply our parameterized algorithm to these subsets.

Problem: Our MASE running time is sensitive to number of vertices in a 2-cycle.

Solution: Randomly sample separately among vertices in a 2-cycle and vertices in no 2-cycles.

Running Time Analysis

Turns out we can analyze the two parts separately.

Running Time Analysis

Turns out we can analyze the two parts separately.

- Let $B := \mathsf{set}$ of vertices from S that are in at least one 2-cycle.
- Let $D := V(G) \setminus B$.

Running Time Analysis

Turns out we can analyze the two parts separately.

- Let B := set of vertices from S that are in at least one 2-cycle.
- Let $D := V(G) \setminus B$.

Overall Running Time
$$= \mathsf{O}(\mathsf{MLS} \ \mathsf{on} \ B \ \mathsf{with} \ \mathsf{an} \ O^*(2^{\frac{k}{2} + \frac{|S|}{4}}) \ \mathsf{subroutine}) \\ \times \mathsf{O}(\mathsf{MLS} \ \mathsf{on} \ D \ \mathsf{with} \ \mathsf{an} \ O^*(2^{\frac{k}{2}}) \ \mathsf{subroutine})$$

(where S is the size of the candidate set)

MLS Result

O(MLS on B with an $O^*(2^{\frac{k}{2}+\frac{|S|}{4}})$ subroutine) \times O(MLS on D with an $O^*(2^{\frac{k}{2}})$ subroutine)

MLS Result

O(MLS on B with an $O^*(2^{\frac{k}{2}+\frac{|S|}{4}})$ subroutine) \times O(MLS on D with an $O^*(2^{\frac{k}{2}})$ subroutine)

Theorem (Gaspers, Lee 2017)

MLS with an $O^*(b^{|S|}c^k)$ algorithm has running time

$$O^*((1+b-\frac{1}{c})^{n+o(n)})$$

MLS Result

O(MLS on B with an $O^*(2^{\frac{k}{2}+\frac{|S|}{4}})$ subroutine) \times O(MLS on D with an $O^*(2^{\frac{k}{2}})$ subroutine)

Theorem (Gaspers, Lee 2017)

MLS with an $O^*(b^{|S|}c^k)$ algorithm has running time

$$O^*((1+b-\frac{1}{c})^{n+o(n)})$$

Theorem

There is an algorithm for enumeration of preferred extensions with running time

$$\begin{split} O^* \left(\left(2 - \frac{1}{\sqrt{2}} \right)^{|D| + o(n)} \right) \cdot O^* \left(\left(1 + 2^{\frac{1}{4}} - \frac{1}{\sqrt{2}} \right)^{|B| + o(n)} \right) \\ &\approx O^* \left((1.2929)^{|D| + o(n)} \right) \cdot O^* \left((1.4822)^{|B| + o(n)} \right) \end{split}$$

Results So Far

Combinatorial Lower Bounds

On general graphs

Combinatorial Lower Bounds

On general graphs

On oriented graphs instead repeat these

Full Results

Summary

ullet We introduce a parameter r(G) that has an intuitive meaning within the context.

Summary

- We introduce a parameter r(G) that has an intuitive meaning within the context.
- Furthermore, it leads to better results because vertices in oriented graphs with low degree are easily understood.

Summary

- We introduce a parameter r(G) that has an intuitive meaning within the context.
- Furthermore, it leads to better results because vertices in oriented graphs with low degree are easily understood.
- ullet Through some tricks, we can lift results from oriented graphs to results parameterized by r(G).

• Can we close the gap? It suffices to close it for oriented graphs.

- Can we close the gap? It suffices to close it for oriented graphs.
 - Lower bound: $3^{n/6} > 1.2009^n$.

- Can we close the gap? It suffices to close it for oriented graphs.
 - Lower bound: $3^{n/6} > 1.2009^n$.
 - Upper bound: $O(1.2322^n)$.

- Can we close the gap? It suffices to close it for oriented graphs.
 - Lower bound: $3^{n/6} > 1.2009^n$.
 - Upper bound: $O(1.2322^n)$.
- Look at different semantics?

- Can we close the gap? It suffices to close it for oriented graphs.
 - Lower bound: $3^{n/6} > 1.2009^n$.
 - Upper bound: $O(1.2322^n)$.
- Look at different semantics?
- Look into other natural NP-hard problems where we can parameterize by orientedness?

- Can we close the gap? It suffices to close it for oriented graphs.
 - Lower bound: $3^{n/6} > 1.2009^n$.
 - Upper bound: $O(1.2322^n)$.
- Look at different semantics?
- Look into other natural NP-hard problems where we can parameterize by orientedness?

- Can we close the gap? It suffices to close it for oriented graphs.
 - Lower bound: $3^{n/6} > 1.2009^n$.
 - Upper bound: $O(1.2322^n)$.
- Look at different semantics?
- Look into other natural NP-hard problems where we can parameterize by orientedness?

Thank you!