GENERACIÓ DE LABERINTS ALEATORIS

En primer lloc calculem el nombre de monedes que ha de tenir el laberint I creem un vector de la mateixa mida que el laberint a on anirem afegint els "candidats*".

Omplim el tauler de parets i afegim en pacman a la posició [0, 0], el fantasma a la posició [costat-1, costat-1] i afegim aquests dos punts al vector de candidats.

Ara toca anar sortejant posicions a on afegirem monedes mentre no superem o igualem el nombre de monedes que hem calculat que havia de tenir el laberint. Per cada posició sortejada busquem dins del vector de candidats la posició més proxima I traçem un camí entre els dos punts, tots els punts entre origen I destí es van afegint al vector de candidats.

D'aquesta manera podem asegurar que com a molt hi hauran 2 components en el laberint finalment com el nostre laberint per considerar-lo valid només pot tenir una component repetim aquest procés mentre el laberint no sigui valid amb ajuda del validador de laberints.

Exemples del funcionament de l'algorisme.

Mostra de 5 laberints generats de forma aleatoria

50x50 (Tots 5 laberints valids al primer intent)

35x35 (Tots 5 laberints valids al primer intent)

20x20 (Tots 5 laberints valids al primer intent)

10x10 (Tots 5 laberints valids al primer intent)

Temps(ms) vs Mida del laberint

Beneficis del algorisme.

Intuitiu.

Alta probabilitat de obtenir un laberint valid al primer intent.

Limitacions del algorisme

Pot haver de repetir-se l'algorisme més d'un cop per obtenir un laberint valid. Un tauler de costat x costat pot no tenir el mateix nombre de monedes.

*Per candidat entenem tot punt que no és paret.

Caràcteristiques rellevants del ordinador CPU → 3.6 GHz (i7 4770) RAM → 20 GB (DDR3)

Oscar Galera I Alfaro