Lectures Notes

BV functions and sets of finite perimeter

Winter Term 2019/20

Lecture by Giovanni Comi Notes taken by Dennis Schmeckpeper

Version: October 16, 2019

Contents

1	1 Introduction?	2
	1.0 Motivation	 2
	1.1 Measures	 2

Chapter 1

Introduction?

1.0 Motivation

Let's consider

$$\inf \left\{ \int_{\Omega} |\nabla u| dx : u \in W^{1,1}(\Omega), ||u||_{L^{1}} = K > 0 \right\} =: m_{K},$$

where $W^{1,1}(\Omega) := \{u \in L^1(\Omega) : Du \in L^1(\Omega, \mathbb{R}^n)\}$ is the Sobolev space. Then there exists a sequence $(u_j \in W^{1,1}(\Omega))_{j \in \mathbb{N}}$ such that $\|u_j\|_{L^1(\Omega)} = K$ and $\|\nabla u_j\|_{L^1(\Omega)} \to m_K$ for $j \to \infty$. Now, in general this does *not* imply that there is a subsequence $(u_{j_k})_{k \in \mathbb{N}}$ which will convergence even only weakly to an $v \in W^{1,1}(\Omega)$ with $\|v\|_{L^1} = K$ and $\|\nabla v\|_{L^1} = m_k$.

The reason for this is essentially because L^1 is not a (topological) dual of any space, though it is contain in one.

Lacks details

Another example is the *Isoperimetric problem*:

$$\min \{ \sigma_{n-1}(\partial F) : F \text{ with some regularity}, |F| = K > 0 \} =: \gamma_k,$$

where $|F| =: \mathcal{L}^n(F)$ denotes the *n*-dimensional Lebesgue measure.

1.1 Measures

Let X be a non-empty set. We denote by $\mathcal{P}(X)$ (or 2^X) the *power set*, that is, the collection of all subsets of X.

Definition ((outer) measure). A mapping $\mu : \mathcal{P}(X) \to [0, +\infty]$ satisfying

(1) $\mu(\emptyset) = 0$

(2)
$$\mu(A) \le \sum_{k=1}^{\infty} \mu(A_k)$$
 if $A \subset \bigcup_{k=1}^{\infty} A_k$ (σ -subadditivity)

is called an (outer) measure.

Remark. The (outer) measure is not decreasing, that is, for $A \subset B$, where $A, B \in \mathcal{P}(X)$, we have $\mu(A) \leq \mu(B)$.

Definition (Restriction of a measure). If $Y \subset X$, the restriction of μ to Y, denoted by $\mu \, \sqsubseteq \, Y$, is defined as $(\mu \, \sqsubseteq \, Y)(A) := \mu(Y \cap A)$.

Definition (μ -measurable). We call a subset $A \subset X$ μ -measurable if

$$\mu(B) = \mu(B \cap A) + \mu(B \setminus A)$$
 for all $B \subseteq X$.

Remark. This definition is meaningful since *Vitali* found that there exists a set $E \subset \mathbb{R}$ which is not \mathcal{L}^1 -measurable.

Definition (σ -algebra). A subset $\mathfrak{F} \subset \mathcal{P}(X)$ is called a σ -algebra of sets if holds

(1) $\emptyset, X \in \mathfrak{F}$,

- (2) for $A \in \mathfrak{F}$ also $X \setminus A \in \mathfrak{F}$,
- (3) for a family $(A_i \in \mathfrak{F})_{i \in I}$ we have have $\bigcup_{i \in I} A_i \in \mathfrak{F}$.

Theorem. Let μ be a (outer) measure on X, then the restriction to the σ -algebra of μ -measurable sets is σ -additive, that is, if $(A_j)_{j\in I}$ is a (at most) countable disjoint μ -measurable family of subsets of X, then

$$\mu\left(\bigcup_{j\in I}A_{j}\right)=\sum_{j\in I}\mu\left(A_{j}\right).$$

Definition. Here we collect some important definitions

- (1) Let $\mathfrak{C} \subset \mathcal{P}(X)$, we call the smallest σ -algebra containing \mathfrak{C} , the σ -algebra generated by \mathfrak{C}^{\sharp}
- (2) The Borel-algebra on \mathbb{R}^n , denoted by $\mathcal{B}(\mathbb{R}^n)$, is the σ -algebra generated by the family of open sets in \mathbb{R}^n (in the standard topology). The elements of the Borel-algebra are called Borel sets.
- (3) A (outer) measure μ in \mathbb{R}^n is called a *Borel measure* if each Borel sets is μ -measurable.
- (4) A (outer) measure μ in \mathbb{R}^n is called *Borel regular* if for all subsets $A \subseteq \mathbb{R}^n$ there exists a Borel set B such that $A \subseteq B$ and $\mu(A) = \mu(B)$.
- (5) A Borel regular measure μ which is locally finite (e.g. $\mu(K) < \infty$ for all compact subsets $K \subset \mathbb{R}^n$), is called a *Radon measure*.

Theorem. Let μ be a Radon measure on \mathbb{R}^n . We have

- (1) for all $A \subseteq \mathbb{R}^n$ holds $\mu(A) = \inf \{ \mu(U) : U \supset A, U \text{ open} \}$ (outer regularity),
- (2) for all μ -measurable sets B holds $\mu(B) = \sup \{\mu(K) : K \subset B, K \text{ compact}\}\ (inner \text{ regularity}).$

Theorem (Carathéodory's criteria). Let μ be a (outer) measure on \mathbb{R}^n . If for all $A, B \subset \mathbb{R}^n$ that satisfy dist(A, B) > 0 we have $\mu(A \cup B) = \mu(A) + \mu(B)$, then μ is a Borel measure.

Examples.

(1) For $x \in \mathbb{R}^n$ we can define that dirac measure by

$$\delta_x(A) := \begin{cases} 1 & x \in A \\ 0 & x \notin A. \end{cases}$$

This is in fact a Radon measure.

(2) We define the counting measure by

$$\#(E) = \begin{cases} \operatorname{card}(E) & \text{if } E \text{ is finite} \\ +\infty & \text{otherwise.} \end{cases}$$

This measure is Borel regular, but not a Radon measure (since it is clearly not locally finite).

(3) The also have the well-known Lebesque measure defined by

$$\mathcal{L}^{n}(A) := \inf \left\{ \sum_{i=1}^{\infty} \mathcal{L}^{n}(Q_{i}) \mid A \subset \bigcup_{i=1}^{\infty} Q_{i}, \ Q_{i} \text{ cubes} \right\},\,$$

where $\mathcal{L}^n(Q_i)$ is equal to the side length of the cubes Q_i to the n-th power. In particular, we have

$$\mathcal{L}^{1}(A) = \inf \left\{ \sum_{i=1}^{\infty} \operatorname{diam} C_{j} \mid A \subset \bigcup_{i=1}^{\infty} C_{j}, C_{j} \subset \mathbb{R} \right\}$$

and so we can characterize

$$\mathcal{L}^n = \underbrace{\mathcal{L}^1 \times \mathcal{L}^1 \times \cdots \times \mathcal{L}^1}_{n-\text{times}} = \mathcal{L}^{n-1} \times \mathcal{L}^1.$$

 $^{^{\}sharp}$ Here $\mathfrak{C} = \mathrm{Tathfrak}\{C\}$

(4) (Hausdorff measure) Consider $A \subseteq \mathbb{R}^n$, $\alpha \geq 0$, $\delta \in (0, +\infty]$, we define the Hausdorff α -dimensional content of A as

$$\mathcal{H}^{\alpha}_{\delta}(A) := \inf \left\{ \sum_{j \in I} \omega_{\alpha} \left(\frac{\operatorname{diam} C_{j}}{2} \right)^{\alpha} \mid A \subset \bigcup_{j \in I \subset \mathbb{N}} C_{j}, \operatorname{diam} C_{j} \leq \delta, C_{j} \subseteq \mathbb{R}^{n} \right\},\,$$

where the infimum is taking over all the (at most countable) coverings $(C_j \subset \mathbb{R}^n)_{j \in I}$ of A, and set $w_{\alpha} := \frac{\pi^{\frac{\alpha}{2}}}{\Gamma(\frac{\alpha}{2}+1)}$. Since $\mathcal{H}^{\alpha}_{\delta}$ is a not-increasing function in δ the following limit

$$\mathcal{H}^{\alpha}(A) := \lim_{\delta \searrow 0} \mathcal{H}^{\alpha}_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^{\alpha}_{\delta}(A)$$

always exists in the extended real numbers. This limit is defined to be the Hausdorff measure.

Theorem (Hausdorff measure is Borel regular). \mathcal{H}^{α} is a Borel regular measure on \mathbb{R}^{n} for all $\alpha \geq 0$.

Theorem (Basic properties of the Hausdorff measure).

- (1) $\mathcal{H}^0 = \#$
- (2) $\mathcal{H}^1 = \mathcal{L}^1$ on \mathbb{R}
- (3) $\mathcal{H}^{\alpha} \equiv 0$ for all $\alpha > n$ in \mathbb{R}^n .
- (4) $\mathcal{H}^{\alpha}(\lambda A) = \lambda^{\alpha} \mathcal{H}^{\alpha}(A)$ for all $A \subseteq \mathbb{R}^n$ and $\lambda > 0$
- (5) $\mathcal{H}^{\alpha}(L(A)) = \mathcal{H}^{\alpha}(A)$ for all affine isometry $L : \mathbb{R}^n \to \mathbb{R}^n$.

Proof.

(1) Since $\omega_0 = 1$ we have

$$\mathcal{H}^{0}(A) = \lim_{\delta \searrow 0} \inf \left\{ \sum_{j \in I} \left(\frac{\operatorname{diam}(C_{j})}{2} \right)^{0} \mid A \subset \bigcup_{j \in I \subset \mathbb{N}} C_{j}, \operatorname{diam} C_{j} \leq \delta \right\}$$

$$= \lim_{\delta \searrow 0} \inf \left\{ \sum_{j \in I} 1 \mid A \subset \bigcup_{j \in I} C_{j}, \operatorname{diam} C_{j} \leq \delta \right\}$$

$$= \begin{cases} \operatorname{card}(A) & \text{if } A \text{ is finite} \\ \infty & \text{otherwise} \end{cases}$$

(2) We estimate the Lebesgue measure \mathcal{L}^1 from both sides by the Hausdorff measure: Since $\omega_1 = 2 = |(-1,1)|$ we first get

$$\mathcal{L}^{1}(A) = \inf \left\{ \sum_{j \in I} \operatorname{diam} C_{j} \mid A \subset \bigcup_{j \in I} C_{j} \right\}$$

$$\leq \inf \left\{ \sum_{j \in I} \operatorname{diam} C_{j} \mid A \subset \bigcup_{j \in I} C_{j}, \operatorname{diam} C_{j} \leq \delta \right\} = \mathcal{H}^{1}_{\delta}(A),$$

which is true for all $\delta > 0$ so we obtained $\mathcal{L}^1(A) \leq \mathcal{H}^1(A)$.

Now, we define a partition of \mathbb{R} by $J_{k,\delta} := [k\delta, (k+1)\delta]$ for $k \in \mathbb{Z}$ and first fixed $\delta > 0$. These are intervals of diameter δ so for every $j \in I$ we get $\operatorname{diam}(C_j \cap I_{k,\delta}) \leq \delta$. Also we have $\sum_{k \in \mathbb{Z}} \operatorname{diam}(C_j \cap I_{k,\delta}) \leq \operatorname{diam}(C_j, k) \leq \operatorname{diam}(C_j$

$$\mathcal{L}^{1}(A) = \inf \left\{ \sum_{j \in I} \operatorname{diam} C_{j} \mid A \subset \bigcup_{j \in I} C_{j} \right\} \geq \inf \left\{ \sum_{j \in I} \sum_{k \in \mathbb{Z}} \operatorname{diam} (C_{j} \cap I_{k,\delta}) \mid A \subset \bigcup_{j \in I} \bigcup_{k \in \mathbb{Z}} C_{j} \cap I_{k,\delta} \right\}$$

since $\operatorname{diam}(C_j \cap I_{k,\delta}) \leq \delta$ and after relabeling the index sets I and \mathbb{Z} to an index set $I^{(k,\delta)}$ this last expressions reads

$$\cdots = \inf \left\{ \sum_{j \in I^{(k,\delta)}} C_j^{(k)} \mid A \subset \bigcup_{j \in I^{(k,\delta)}} C_j^{(k)}, \operatorname{diam} C_j^{(k)} \le \delta \right\} \ge \mathcal{H}_{\delta}^1.$$

And since this is true for every $\delta > 0$ we arrive at the claim.

(3) **TODO**