EC330 HW2 Solution

Emre Ateş

October 4, 2016

1. (a) Θ , Ω , O

Both A and B are $\Theta(n \log n)$

(b) ω , Ω

To compare $2^{\log n}$ and $(\log n)^2$ we can use L'Hôpital's rule

$$\lim_{n \to \infty} \frac{2^{\log n}}{(\log n)^2} = \lim_{n \to \infty} \frac{2^{\log n} \frac{1}{n \ln 10}}{2(\log n) \frac{1}{n \ln 10}} = \lim_{n \to \infty} \frac{2^{\log n} \frac{1}{n \ln 10}}{2 \frac{1}{n \ln 10}}$$

Since the result is infinity, $2^{\log n}$ rises faster than $(\log n)^2$

(c) ω , Ω

Via the Stirling's approximation, $n! = O\left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n\right)$.

$$\lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{n^n} = \lim_{n \to \infty} \frac{\sqrt{2\pi n}}{e^n} = 0$$

Therefore, n! rises slower than n^n .

(d) ω , Ω

 $\sum_{i=0}^{\infty} \frac{50}{7^i}$ is a constant, therefore *n* rises faster.

(e) o, O

 e^n rises faster than any polynomial.

2.

$$2^{10} < \ln n < \sqrt{2}^{\lg n} < n < n \log n < 4^{\lg n} < n^5 + 7n < (\log n)^{\log n} < 2^n < (n+1)!$$

- $\sqrt{2}^{\log_2 n} = 2^{1/2 \log_2 n} = 2^{\log_2 \sqrt{n}} = \sqrt{n}$
 - Similarly, $4^{\log_2 n} = 2^{\log_2 n^2} = n^2$
- For $n^5 + 7n < \sqrt{2}^{\lg n}$, if we take the derivatives, the polynomial will eventually reach 0 while the other one never will; therefore it rises faster.

• To compare $(\log n)^{\log n}$ and 2^n , let $x = \log n$

$$n = 10^{x}$$
$$(\log n)^{\log n} \stackrel{?}{=} 2^{n}$$
$$x^{x} \stackrel{?}{=} 2^{10^{x}}$$

Taking the logarithm of both sides wouldn't change the equality/inequality

$$\log(x^x) \stackrel{?}{=} \log(2^{10^x})$$
$$x \log x \stackrel{?}{=} 10^x \log 2$$
$$O(x^2) < O(10^x)$$

Therefore, $(\log n)^{\log n} \equiv O(2^n)$.

• For (n+1)!, we can use Stirling's approximation, and take n^n . It is clear that $n^n \equiv \Omega(2^n)$.