M3M6: Applied Complex Analysis (2020)

Problem Sheet 4

Define

$$a(z) = z^2 - 4 + z^{-2}.$$

Problem 1.1 What are the entries of $L[a(z)]^{-1}$?

Problem 1.2 Find the Wiener–Hopf factorisation

$$a(z) = \phi_{+}(z)\phi_{-}(z)$$

where $\phi_{+}(z)$ is analytic inside the unit circle and and $\phi_{-}(z)$ is analytic outside, with $\phi_{-}(\infty) = 1$.

Problem 1.3 Find the UL decomposition

$$T[a(z)] = UL$$

where U is upper-triangular with with 1 on the diagonal and L is lower triangular.

Problem 1.4 What is $T[a(z)]^{-1}$?

Problem 1.5 What is $T[(z^2+3)/(z^2+2)]^{-1}$?

When the winding number is non-trivial, a Toeplitz operator can either be non-invertible or have multiple solutions. This problem sheet explores this.

Problem 2.1 What is the winding number of a(z) = z? Show that

$$T[z]\boldsymbol{u} = \boldsymbol{f}$$

only has a solution if f_0 (the first entry of \mathbf{f}) is zero.

Problem 2.2 What is the winding number of $a(z) = z^{-1}$? What are all solutions to

$$T[z^{-1}]\boldsymbol{u} = \boldsymbol{f}?$$

Problem 2.3 Show that if a(z) has winding number κ it can be written as

$$a(z) = \phi_{+}(z)z^{\kappa}\phi_{-}(z)$$

What are $\phi_{+}(z)$ and $\phi_{-}(z)$ in terms of $\log(a(z)z^{-\kappa})$?

Problem 2.4 Show that if the winding number is κ there exists a

$$T[a(z)] = UPL$$

1

decomposition, where $P = T[z^{\kappa}]$ is a permutation operator.

$$T[1/(2z^2+1)]\boldsymbol{u} = \boldsymbol{e}_0$$

Notice: Due to interruptions in lectures, all remaining problem sheet questions are non-examinable. They are still encouraged to study as they will facilitate understanding for examinable material.

This set of problems investigates the analyticity properties of the half-Fourier transform. Recall the definitions

$$u_{\mathbf{R}}(x) = \begin{cases} u(x) & x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$u_{\rm L}(x) = \begin{cases} u(x) & x < 0 \\ 0 & \text{otherwise} \end{cases}$$

The Fourier transform

$$\hat{u}(s) = \int_{-\infty}^{\infty} u(x) e^{-ixs} dx,$$

and the inverse Fourier transform

$$u(x) = \frac{1}{2\pi} \int_{-\infty + i\gamma}^{\infty + i\gamma} \hat{u}(s) e^{isx} ds$$

where the choice of γ is dictated by the analyticity of $\hat{u}(z)$.

Problem 4.1 Consider f(x) = x. Without computing it, in what strip, if any, is $\hat{f}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover x?

Problem 4.2 Consider $f(x) = \frac{1}{1+e^x}$. Without computing it, in what strip, if any, is $\hat{f}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover x?

Problem 4.3 Consider $f(x) = e^{2x}$. Without computing it, in what strip, if any, is $\widehat{f_R}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover x?

Problem 4.4 Consider f(x) = x. Without computing it, in what strip, if any, is $\widehat{f_L}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover x?

Problem 4.5 Calculate the Fourier transforms in the above problems and confirm your statements.

Problem 4.6 What is the Fourier transform of $\delta(x)$, i.e., the Dirac delta function satisfying

$$\int_{-\infty}^{\infty} \delta(x)g(x) \, \mathrm{d}x = g(0)$$

for smooth test functions g. Where is it analytic?

This set of problems considers extensions of the Wiener-Hopf method to functions that do not decay, degenerate integral equations, and to integro-differential equations. Please be precise on which contour the Riemann-Hilbert problem is solved on and the inverse Fourier transforms taken.

Problem 5.1 The function u(x) is bounded by a polynomial for all $x \ge 0$, including as $x \to \infty$, and satisfies the integral equation for $x \ge 0$,

$$u(x) + \frac{3}{2} \int_0^\infty e^{-|x-t|} u(t) dt = 1 + \alpha x$$

where α is a positive constant. Find u(x) for $x \geq 0$. Hint: set up a Riemann–Hilbert problem on the contour $\mathbb{R} + i\gamma$ where $-1 < \gamma < 0$ is arbitrary.

Problem 5.2 The function u(x) is bounded by a polynomial for all $x \ge 0$, including as $x \to \infty$, and satisfies the integral equation for $x \ge 0$,

$$\int_0^\infty e^{-\alpha|x-t|} u(t) dt = 1 + \alpha x$$

where α is a positive constant. Find u(x) for $x \geq 0$. Hint: If you proceed naïvely, we arrive at a Riemann–Hilbert problem of the form

$$\Phi_{+}(s) - g(s)\Phi_{-}(s) = f(s)$$
 and $\lim_{z \to \infty} (\infty) = 0$

but where $g(\infty) = 0$ instead of $g(\infty) = 1$. This is not in canonical form, but maybe this example is special. Try writing $\Phi(z) = \kappa(z)Y(z)$ as before but allowing different asymptotic behaviour in κ and Y in the different half planes in a way that they cancel out so that $\lim_{z\to\infty} \Phi(z) = 0$:

$$\kappa(z) = \begin{cases} O(z^{-1}) & \text{Im } z > 0\\ O(z) & \text{Im } z < 0 \end{cases}$$

$$Y(z) = \begin{cases} O(1) & \text{Im } z > 0 \\ O(z^{-2}) & \text{Im } z < 0 \end{cases}.$$

Problem 5.3 Consider the integral equation

$$u(t) - \lambda \int_0^\infty e^{-|x-t|} u(t) dt = x$$

where $0 < \lambda < \frac{1}{2}$. Show that, for $x \ge 0$,

$$u(x) = A(\sinh \gamma x + \gamma \cosh \gamma x) + \frac{1}{\gamma^2} \left[x + \left(\gamma - \frac{1}{\gamma} \right) \sinh \gamma x \right]$$

where $\gamma^2 = 1 - 2\lambda$ and A is an arbitrary constant.

Problem 5.4 A bounded, smooth, function u(x) satisfies the integro-differential equation

$$u''(x) - \frac{72}{5} \int_0^\infty e^{-5|x-t|} u(t) dt = 1$$
 for $x \ge 0$

with u(0) = 0.

1) Rewrite the integral equation on the half line in the form:

$$u_{\rm R}''(x) - \frac{72}{5} \int_{-\infty}^{\infty} e^{-5|x-t|} u(t) dt = 1_{\rm R}(x) + \alpha \delta(x) + p_{\rm L}(x)$$

for $\alpha = u'(0)$ and a to-be-specified p(x). Here δ is the Dirac delta function, that is,

$$\int_{-\infty}^{\infty} f(x)\delta(x) \, \mathrm{d}x = f(0).$$

2) Use integration by parts to determine that

$$\widehat{u_{\rm R}''}(s) = -u'(0) - s^2 \hat{u}_{\rm R}(s).$$

What is $\hat{\delta}(s)$? Use these to translate the equation to Fourier space on a contour $s \in \mathbb{R} + i\gamma$. What choices of γ are suitable?

3) Define $\Phi(z)$ in terms of $\widehat{p_L}(z)$ and $\widehat{u_R}(z)$ so that it satisfies the following (non-standard) RH problem

$$\Phi_{+}(s) - \frac{(s^{2} + 9)(s^{2} + 16)}{s^{2} + 25} \Phi_{-}(s) = \alpha + \frac{1}{is}$$

$$\lim_{\substack{z \to \infty \\ \text{Im } z > \gamma}} \Phi(z) = \alpha$$

$$\lim_{\substack{z \to \infty \\ \text{Im } z < \gamma}} \Phi(z) = 0.$$

4) Solve the Riemann–Hilbert problem for Φ . Hint: write $\Phi(z) = \kappa(z)Y(z)$ where

$$\kappa(z) = \begin{cases} O(z) & \text{Im } z > \gamma \\ O(z^{-1}) & \text{Im } z < \gamma \end{cases},$$

$$Y(z) = O(z^{-1}).$$

Hint: Y(z) does not depend on α in the lower-half plane.

5) Recover u(x) by taking the inverse Fourier transform of $\Phi_{-}(s)$.