Francois Rheault, PhD

Medical-image Analysis and Statistical Interpretation (MASI)

Electrical engineering department Vanderbilt University, TN, USA https://my.vanderbilt.edu/masi/

Crash course in Imaging

Intro to image processing

Plan

Understanding Numpy

- Array attribute
- Array indexing
- Array slicing
- Array operations
- Inf vs NaN, overflow
- Array broadcasting
- Concept of masking (binary)
- Morphological operations
- Concept of labelling/segmentation

What is numpy?

NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.

Quantum Computing	Statistical Computing	Signal Processing	Image Processing	Graphs and Networks	Astronomy Processes	Cognitive Psycholog
	$ \angle $	րկի		Des	*	@
QuTiP	Pandas	SciPy	Scikit-image	NetworkX	AstroPy	PsychoPy
PyQuil Qiskit	statsmodels Xarray Seaborn	PyWavelets python-control	OpenCV Mahotas	graph-tool igraph PyGSP	SunPy SpacePy	
Bioinformatics	Bayesian	Mathematical	Chemistry	Geoscience	Geographic	Architecture &
	Inference	Analysis			Processing	Engineering
	merence	Panal y sis			1 Toolsoning	Linginicating
∀	I۸	€-	Ħ		M	■ ≣Ŀ
X	PvStan	×=	Cantera	Pangeo	Shapely	COMPAS
BioPython Scikit-Bio	PyStan PyMC3		Cantera MDAnalysis	Pangeo Simpeg	Shapely GeoPandas	COMPAS City Energy Analyst
BioPython		≭ ≡ SciPy		Pangeo	Shapely	

Attributes:

- **ndim**: number of dimension
- **shape**: number of element in each dimension (4x4x3)
- **size**: total number of element
- dtype: datatype (bool, int, float, double)

Indexing:

- Act of accessing an element
- Starts at 0 (not 1, warning matlab user)
- Knowing where things start & end

Indexing:

- Act of accessing an element
- Starts at 0 (not 1, warning matlab user)
- Knowing where things start & end
 - \circ array[0, 0, 0]?
 - Array[1,1,3]-

Slicing:

- o array[:, :, 1]
- o array[1:3, 1:3, 0]
- o array[::2, 2, 2]

Indexing:

- Act of accessing an element
- Starts at 0 (not 1, warning matlab user)
- Knowing where things start & end
 - \circ array[0, 0, 0]?
 - Array[1,1,3]-

Slicing:

- o array[:, :, 1]
- o array[1:3, 1:3, 0]
- o array[::2, 2, 2]

Operators

- array = array_1 + array_2
 - o array_1 += array_2
- array = array_1 array_2
 - o array_1 -= array_2
- array = array_1 * array_2
 - o array_1 *= array_2
- array = array_1 / array_2
 - o array_1 /= array_2
- array = array_1 ** array_2
 - o array_1 **= array_2

Functions

- array = np.add(array_1, array_2)
- array = np.subtract(array_1, array_2)
- array = np.multiply(array_1, array_2)
- array = np.divide(array_1, array_2)
- array = np.power(array_1, array_2)

np.arange, np.linspace, np.zeros, np.ones, etc. Np.round, np.ceil, np.floor, np.max, np.min, etc. np.sum, np.average, np.std, np.sin, np.cos, etc.

And a ton more!

MASI 9

Understanding Numpy

Limits of the representation

- [1,2,3] /= [0,0,0] -> [inf, inf, inf]
- [0,0,0] /= [0,0,0] -> [nan, nan, nan]
- [255, 1, 1] += 1 -> [256, 2, 2] **OR** [0, 2, 2] (int16/32/64 and float16/32/64 vs int8)
- [0, 10, 10] = 1 -> [-1, 9, 9] **OR** [255, 9, 9] (any int vs uint)

Limits of the representation

- [1,2,3] /= [0,0,0] -> [inf, inf, inf]
- [0,0,0] /= [0,0,0] -> [nan, nan, nan]
- [255, 1, 1] += 1 -> [256, 2, 2] **OR** [0, 2, 2] (int16/32/64 and float16/32/64 vs int8)
- [0, 10, 10] = 1 -> [-1, 9, 9] **OR** [255, 9, 9] (any int vs uint)

```
uint8: (0, 255), int8: (-128, 127)
uint16: (0, 65535), int16: (-32768, -32767)
uint32: (0, 2^32), int32: (--2^32 / 2, -2^32 / 2)
```

uint64: (0, 2^64), int64: (--2^64 / 2, -2^64 / 2)

float16: from -6.550e+04 to 6.550e+04, smallest representable value: 6.103e-05, precision: 1.0e-03 float32: from -3.402e+38 to 3.402e+38, smallest representable value: 1.175e-38, precision: 1.0e-06 float16: from -1.797e+308 to 1.797e+308, smallest representable value: 2.225e-308, precision: 1.0e-015

Broadcasting

Numpy tries to help you by matching dimensions (if possible, sometimes by accident)

Matching in the joint dimension OR empty extra dimension

MASI 12

Understanding Numpy

Masking

- Hidden values of an array using another array (or threshold)
- $array_1[array_1 > 0] = 1$
 - Binarize the array, using a lower threshold of 1
- array_2 *= array_1
 - Set values to 0 using a mask

0	2	3		0	1	1
0	5	0	->	0	1	0
11	0	13		1	0	1

1	2	3
4	5	6
7	8	9

0	2	3
0	5	0
7	0	9

MASI 13

Modify the morphology of a binary array using a binary structure

Erosion vs Dilation

Useful to increase of decrease the size of a mask (measure of certainty) or to improve a mask when using threshold (minimum size of elements)

Segmentation

- Segmentation, labelling, classification, etc.
- Numpy array with integers, all elements with the same value have the same label/class

Pillow (PIL)

This library provides extensive file format support, an efficient internal representation, and fairly powerful image processing capabilities.

ImageIO

Imageio is a Python library that provides an easy interface to read and write a wide range of image data, including animated images, volumetric data, and scientific formats.

Nibabel

This package provides read +/- write access to some common medical and neuroimaging file formats, including: ANALYZE (plain, SPM99, SPM2 and later), GIFTI, NIfTI1, NIfTI2, CIFTI-2, MINC1, MINC2, AFNI BRIK/HEAD, MGH. We can read and write FreeSurfer geometry, annotation and morphometry files (limited support for DICOM)

The various image format classes give full or selective access to header (meta) information and access to the image data is made available via NumPy arrays.

Scipy

SciPy provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems.

Scikit-Image

scikit-image is an open-source image processing library for the Python programming language. It includes algorithms for segmentation, geometric transformations, color space manipulation, analysis, filtering, morphology, feature detection, and more.

Scikit-Learn

Scikit-learn is a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms

Francois Rheault, PhD

Medical-image Analysis and Statistical Interpretation (MASI)

Electrical engineering department Vanderbilt University, TN, USA https://my.vanderbilt.edu/masi/

Crash course in Imaging

Intro to medical image processing

Understanding NIFTI

NIFTI: Neuroimaging Informatics Technology Initiative

Understanding the attributes of NIFTI files, starting with the grid (or data/volume/array)

1) How many elements are present in my grid? **Dimensions** or **Shape**

 $4 \times 5 \times 4$ **vs** $4 \times 4 \times 4$

Understanding NIFTI

Affine Transform

NIFTI: Neuroimaging Informatics Technology Initiative

Spatial Transformations will move the 'simple' grid *somewhere*

By adding a **scaling**, **translation** and **rotation**, now our grid has a real size (mm) and has a position in space (relative to the scanner).

If the grid is sometime called 'voxel space', this new concept is sometime called 'world space' (or 'scanner space', or 'rasmm').

Why switching from world space to voxel space (and vice versa) so important?

- Voxel Space
 - Interpolation of metrics at specific position (see on the right)
 - Counting voxels to estimate volume
- World Space
 - Convex hull to compute precise volume
 - Registration between datasets (see below)

(across session, multi-modalities, inter-subjects, etc.)

Understanding NIFTI

$$L = 3$$

$$L = 2$$

$$L = 1$$

$$L = 0$$

Level 0

Level 1

SNR

A good signal-to-noise ratio makes everything simple

Classic image processing task

- 1. Background vs Cell
 - a. Good contrast?
- 2. Average size of cell (in pixel)
- 3. Cell body = dense
 - a. Local maximal
- 4. Average shape?
 - a. Line vs circle, convex vs concave

Measuring similarity

Compare agreement (intra/inter rater)

1. Are we measuring the same thing: What is the surface covered by windows?

