Cryptanalysis

Elliptic Curves and Lattices

John Manferdelli JohnManferdelli@hotmail.com

© 2004-2020, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Elliptic Curves

Motivation:

- Full employment act for mathematicians
- Elliptic curves over finite fields have an arithmetic operation
- Index calculus doesn't work on elliptic curves.
- Even for large elliptic curves, field size is relatively modest so arithmetic is faster

_

- Use this operation to define a discrete log problem.
- To do this we need to:
 - Define point addition and multiplication on an elliptic curve
 - Find an elliptic curve whose arithmetic gives rise to large finite groups with elements of high order
 - Figure out how to embed a message in a point multiplication.
 - Figure out how to pick "good" curves.

Rational Points

- Bezout
- Linear equations
- $x^2+5y^2=1$
- $y^2 = x^3 ax b$
 - Disconnected: $y^2 = 4x^3 4x + 1$
 - Connected: a= 7, b=-10
 - Troublesome: a=3, b=-2
- Arithmetic
- D= $4a^3-27b^2$
- Genus, rational point for g>1
- Mordell
- $Z_{n[1]}xZ_{n[2]}$, n[2]|n[1], n[2]|(p-1)

Equation solving in the rational numbers

- Linear case: Solve ax+by=c or, find the rational points on the curve C: f(x,y)= ax+by-c=0.
 - Clearing the fractions in x and y, this is equivalent to solving the equation in the integers. Suppose (a,b)=d, there are x, yîZ: ax+by=d. If d|c, say c=d'd, a(d'x)+b(d'y)=d'd=c and we have a solution. If d does not divide c, there isn't any. We can homogenize the equation to get ax+by=cz and extend this procedure, here, because of z, there is always a solution.
- Quadratic (conic) case: solve $x^2+5y^2=1$ or find the rational points on the curve C: $g(x,y)=x^2+5y^2-1=0$.
 - (-1,0)îC. Let (x,y) be another rational point and join the two by a line: y= m(x+1). Note m is rational. Then $x^2+5(m(x+1))^2=1$ and $(5m^2+1)$ x^2+2 $(5m^2)x+(5m^2-1)=0 \rightarrow x^2+2$ $[(5m^2)/(5m^2+1)]$ $x+[(5m^2-1)/(5m^2+1)]=0$. Completing the square and simplifying we get $(x+(5m^2)/(5m^2+1))^2=[25m^4-(25m^4-1)]/(5m^2+1)^2=1/(5m^2+1)^2$. So $x=\pm(1-5m^2)/(5m^2+1)$ and substituting in the linear equation, $y=\pm(2m)/(5m^2+1)$. These are all the solutions.
- Cubic case is more interesting!

Bezout's Theorem

- Let deg(f(x,y,z))=m and deg(g(x,y,z))=n be homogeneous polynomials over C, the complex numbers and C₁ and C₂ be the curves in CP², the projective plane, defined by:
 - $C_1 = \{(x,y,z): f(x,y,z)=0\}; and,$
 - $C_2 = \{(x,y,z): g(x,y,z)=0\}.$
- If f and g have no common components and D=C₁∩C₂, then ∑_{xεD} I(C₁ ∩ C₂,x)=mn.
- I is the intersection multiplicity. This is a fancy way of saying that (multiple points aside), there are mn points of intersection between C₁ and C₂. There is a nice proof in Silverman and Tate, Rational Points on Elliptic Curves, pp 242-251. The entire book is a must read.
- A consequence of this theorem is that two cubic curves intersect in nine points.

Elliptic Curve Preliminaries -1

- Let K be a field. char(K) is the characteristic of K which is either 0 or p^n for some prime p, n>0.
- $F(x,y) = y^2 + axy + by + cx^3 + dx^2 + ex + f$ is a general cubic.
- F(x,y) is non-singular if $F_x(x,y)$ or $F_y(x,y) \neq 0$. If char(K) \neq 2,3, F(x,y)=0 is equivalent to y^2 = x^3 +ax+b which is denoted by $E_{\kappa}(a, b)$ and is called the Weierstrass equation.
- Note that the intersection of a line (y=mx+d) and a cubic, $E_{\kappa}(a,b)$ is 1, 2 or 3 points.
- Idea is: given 2 points, P,Q on a cubic, the line between P and Q generally identifies a third point on the cubic, R.
- Two identical points on a cubic generally identify another point which is the intersection of the tangent line to the cubic at the given point with the cubic.
- The last observation is the motivation for defining a binary operation (addition) on points of a cubic.

Elliptic Curve Preliminaries - 2

- We are most interested in cubics with a finite number of points.
- Cubics over finite fields have a finite number of points (duh).
- $E_{K}(a,b)$ is an elliptic equation over the "affine plane."
- It is often easier to work with elliptic equations over the "projective plane". The projective plane consists of the points (a,b,c) (not all 0) and (a,b,c) and (ad,bd,cd) represent the same point.
 - The map (x,y,1)→(xz,yz,z) sets up a 1-1 correspondence between the affine plane (plus the "infinities") and the projective plane.
 - $E_K(a,b)$ is $zy^2 = x^3 + axz^2 + bz^3$. Note these are homogeneous equations.
 - The points (x,y,0) are called the line at infinity.
 - The point at infinity, (0,1,0) is the natural "identity element" O and its introduction is less "ad hoc."

Elliptic Curves

- A non-singular Elliptic Curve is a curve, having no multiple roots, satisfying the equation: $y^2=x^3+ax+b$.
 - The points of interest on the curve are those with rational coordinates which can be combined using the "addition" operation.

These are called "rational points."

Graphic by Richard Spillman

Multiple roots

- Here is the condition that the elliptic curve, E_R(a, b): y²=x³+ax+b, does not have multiple roots.
- Set $f(x,y) = y^2 x^3 ax b = 0$.
 - At a double point, $f_x(x,y)=f_y(x,y)=0$; so $f_x(x,y)=-(3x^2+a)$, $f_y(x,y)=2y$. Thus $y=0=x^3+ax+b$ and $0=(3x^2+a)$ have a common zero.
 - Substituting a= $-3x^2$, we get $0=x^3-3x^3+b$, b= $2x^3$, $b^2=4x^6$. Cubing, a= $-3x^2$, we get $a^3=-27x^6$. So $b^2/4=a^3/(-27)$ or $27b^2+4a^3=0$. Thus, if $27b^2+4a^{31}0$, then $E_R(a, b)$ does not have multiple roots.
- We define the "discriminant" as D= -16(27b²+4a³).

Elliptic curve addition

 The addition operator on a non-singular elliptic curve maps two points, P and Q, into a third "P+Q". Here's how we construct "P+Q" when P≠Q.

Construct straight line through P and Q which hits E at R.

 P+Q is the point which is the reflection of R across the x-axis.

Graphic by Richard Spillman

Addition for points P, Q in $E_R(a, b)$ - 1

- Suppose we want to add two distinct points P and Q lying on the curve $E_R(a, b)$: $y^2=x^3+ax+b$, where $P=(x_1, y_1)$ and $Q=(x_2, y_2)$ with $P\neq Q$, then $P+Q=R=(x_3, y_3)$.
- Suppose $x_1 \neq x_2$, here is the computation: Join P and Q by the line y=mx+u. $m=(y_2-y_1)/(x_2-x_1)$. $u=(mx_1-y_1)=(mx_2-y_2)$. Substituting for y(=mx+u) into $E_R(a, b)$, we get $(mx+u)^2=y^2=x^3+ax+b$; so $0=x^3-m^2x+(a-2mu)x+b-u^2$. x_1, x_2, x_3 are the roots of this equations so $m^2=x_1+x_2+x_3$. and $x_3=m^2-x_1-x_2$. $P*Q=(x_3, -y_3)$ and substituting back into the linear equation, we get: $-y_3=m(x_3)+u$. So $y_3=-mx_3-u=-m(x_3)-(mx_1-y_1)=m(x_1-x_3)-y_1$.
- To summarize, if P≠Q (and x₁≠x₂):
 - $x_3 = m^2 x_1 x_2$
 - $y_3 = m(x_1 x_3) y_1$
 - $m = (y_2-y_1)/(x_2-x_1)$

Multiples in Elliptic Curves 1

- P+P (or 2P) is defined in terms of the tangent to the cubic at P.
- Construct tangent to P and reflect the point in y at which it intercepts the curve (R) to obtain 2P.
- P can be added to itself k times resulting in a point Q = kP.

Graphic by Richard Spillman

Addition for points P, Q in $E_R(a, b)$ - 2

- Suppose we want to add two distinct points P and Q lying on the curve $E_R(a, b)$: $y^2=x^3+ax+b$, where $P=(x_1, y_1)$ and $Q=(x_2, y_2)$ and $x_1=x_2$.
- Case 1, $y_1 \neq y_2$: In this case, $y_1 = -y_2$ and the line between P and Q "meet at infinity," this is the point we called O and we get P+Q=O. Note Q=-P so -(x,y)=(x,-y).
- Case 2, $y_1=y_2$ so P=Q: The slope of the tangent line to $E_R(a, b)$ at (x_1, y_1) is m. Differentiating $y^2=x^3+ax+b$, we get 2y $y'=3x_2+a$, so $m=(3x_1^2+a)/(2y_1)$. The addition formulas on the previous page still hold.

Addition in $E_R(a, b)$ - summary

- Given two points P and Q lying on the curve E_R(a, b): y²=x³+ax+b, where P=(x₁, y₁) and Q=(x₂, y₂) with P≠Q, then P+Q=R=(x₃, y₃) where:
- If $x_1 \neq x_2$, $m = (y_2 y_1)/(x_2 x_1)$, and
 - $x_3 = m^2 x_1 x_2$
 - $y_3 = m(x_1 x_3) y_1$
- If $x_1=x_2$ and $y_1\neq y_2$, then $y_1=-y_2$ and P+Q=O, Q= -P
- If $x_1=x_2$ and $y_1=y_2$, then P=Q, R=2P, m= $(3x_1^2+a)/(2y_1)$, and
 - $x_3 = m^2 x_1 x_2$
 - $y_3 = m(x_1 x_3) y_1$

Point multiplication in $E_R(a, b)$

- By using the doubling operation just defined, we can easily calculate P, 2P, 4P, 8P,..., 2eP and by adding appropriate multiples calculate nP for any n.
- If nP=O, and n is the smallest positive integer with this property, we say P has order n.
- Example:
 - The order of P=(2,3) on $E_R(0,1)$ is 6.
 - 2P=(0,1), 4P= (0,-1), 6P=O.

Example of Addition and Element Order

- E(-36,0): $y^2=x^3-36x$. P=(-3, 9), Q=(-2,8).
- P + Q = $(\lambda^2 x_1 x_2, \lambda(x_1 x_3) y_1)$ $\lambda = \frac{y_2 - y_1}{x_2 - x_1}, P \neq Q.$ $\lambda = \frac{3x_1^2 + a}{2y_1}, P = Q.$
- P+Q= (x_3,y_3) =(6,0)
- 2P=(25/4,-35/8)
- Note growth of denominators

Proof of group laws

- From the formulas and definitions it is easy to see the operation "+" is commutative, O acts like an identity and if P= (x,y), -P= (x,-y) with P+(-P)= O.
- Associativity is the only law that's hard to verify. We could use the formulas to prove it but that's pretty ugly.
 - There is a shorter poof that uses the following result: Let C, C₁, C₂ be three cubic curves. Suppose C goes through eight of the nine intersection points of C₁∩C₂, then C also goes through the ninth intersection point.

Associativity

- If P and Q are points on an elliptic curve, E, let P*Q denote the third point of intersection of the line PQ and E.
- Now let P, Q, R be points on an elliptic curve E. We want to prove (P+Q)+R=P+(Q+R). To get (P+Q), form P*Q and find the intersection point, between P*Q and E and the vertical line through P*Q; this latter operation is the same as finding the intersection of P*Q, O (the point at infinity) and E. To get (P+Q)+R, find (P+Q)*R and the vertical line, the other intersection point with E is (P+Q)+R. A similar calculation applies to P+(Q+R) and it suffices to show (P+Q)*R=P*(Q+R). O,P,Q,R, P*Q, P+Q, Q*R, Q+R and the intersection of the line between (P+Q), R and E lie on the two cubics:
 - C₁: Product of the lines [(P,Q), (R,P+Q), (Q+R, O)]
 - C₂: Product of the lines [(P,Q+R), (P+Q,O), (R,Q)]
- The original curve E goes through eight of these points, so it must go through the ninth [(P+Q)*R]. Thus the intersection of the two lines lies on E and (P+Q)*R= P*(Q+R).
- This proof will seem more natural if you've taken projective geometry. You
 could just slog out the algebra though.

Mordell and Mazur

- Mordell: Let E be the elliptic curve given by the equation E: y²=x³ + ax² + bx +c and suppose that D(E)=-4a³c+a²b²-4b³-27c²+18abc¹0. There exist r points P₁, P₂, ..., P₂ such that all rational points on E are of the form a₁P₁+ ... +a₂P₂ where aᵢεZ.
- Mazur: Let C be a non-singular rational cubic curve and C(Q) contain a point of order m, then 1<m≤10 or m=12. In fact, the order of the group of finite order points is either cyclic or a product of a group of order 2 with a cyclic group of order less than or equal to 4.

Fermat's Last Theorem

- $x^n+y^n=z^n$ has no non-trivial solutions in Z for n>2.
- It is sufficient to prove this for n=p, where p is an odd prime.
- Proof (full version will be on HW):
 - 1. Suppose $A^p+B^p=C^p$, (A,B,C)=1.
 - 2. E_{AB} : $y^2 = x(x+A^p)(x+B^p)$
 - 3. Wiles: E_{AB} is modular.
 - 4. Ribet: E_{AR} is too weird to be modular.
 - 5. Fermat was right.

Why elliptic curves might be valuable in crypto

- Consider E: $y^2 = x^3 + 17$. Let $P_n = (A_n/B_n, C_n/D_n)$ be a rational point on E. Define $ht(P_n) = max(|A_n|, |B_n|)$.
- Define $P_1 = (2,3)$, $P_2 = (-1,4)$ and $P_{n+1} = P_n + P_1$.

n	ht(P _n)
1	2
2	1
3	4
4	2
5	4
6	106
7	2228

n	ht(P _n)
8	76271
9	9776276
10	3497742218
20	8309471981636130322638066614339972215969861310

• In fact, $ht(P_n) \cong (1.574)^{ns}$, $ns=n^2$.

Example from Silverman, A Friendly Introduction to Number Theory.

Points on elliptic curves over Fq

- The number of points N on $E_q(a,b)$ is the number of solutions of $y^2=x^3+ax+b$.
- For each of q x's there are up to 2 square roots plus O, giving a maximum of 2q+1. However, not every number in F_q has a square root. In fact, N= q+1+ $\sum_x \chi(x^3+ax+b)$, where χ is the quadratic character of F_q .
- Hasse's Theorem: $|N-(q+1)| \le 2\sqrt{q}$ where N is the number of points
- $E_q(a,b)$ is supersingular if N=(q+1)-t, t=0,q, 2q, 3q or 4q.
- The abelian group formed by addition in $E_q(a,b)$ does not need to be cyclic, although it often is; it can always be decomposed into cyclic groups. In fact, if G is the Elliptic group for $E_q(a,b)$.
- Theorem: G=P_p Z/Zp^a x Z/Zp^b.
- Example: E₇₁(-1,0). N= 72, G is of type (2,4,9).

$E_{71}(-1, 0)$ – Spot the Group

• There are 72 points on the curve. Can you spot (2, 4, 9). Points:

Order Poi	int Order	Point	Order	Point	Order	Point
[1]	O [18]	(14, 48)	[12]	(40, 29)	[18]	(53, 24)
[2] (0,	0) [3]	(19, 38)	[36]	(41, 62)	[36]	(54, 28)
[2] (1,	0) [3]	(19, 33)	[36]	(41, 9)	[36]	(54, 43)
[9] (2, 1	19) [36]	(21, 62)	[18]	(42, 8)	[12]	(55, 31)
[9] (2, 5	52) [36]	(21, 9)	[18]	(42, 63)	[12]	(55, 40)
[18] (3,	38) [18]	(23, 28)	[36]	(43, 21)	[6]	(56, 41)
[18] (3,	33) [18]	(23, 43)	[36]	(43, 50)	[6]	(56, 30)
[9] (4,4	1 2) [36]	(27, 42)	[36]	(45, 49)	[4]	(60, 10)
[9] (4,2	29) [36]	(27, 29)	[36]	(45, 22)	[4]	(60, 61)
[18] (5,	7) [12]	(32, 54)	[36]	(46, 37)	[36]	(61, 2)
[18] (5, 6	64) [12]	(32, 17)	[36]	(46, 34)	[36]	(61, 69)
[6](9,6	62) [36]	(33, 7)	[18]	(47, 51)	[6]	(63, 8)
[6] (9,	9) [36]	(33, 64)	[18]	(47, 20)	[6]	(63, 63)
[36] (12,	56) [18]	(35, 58)	[18]	(49, 38)	[36]	(64, 27)
[36] (12,	15) [18]	(35, 13)	[18]	(49, 33)	[36]	(64, 44)
[4] (13,	14) [9]	(37, 8)	[12]	(51, 16)	[36]	(65, 28)
[4] (13,	57) [9]	(37, 63)	[12]	(51, 55)	[36]	(65, 43)
[18] (14,	23) [12]	(40, 42)	[18]	(53, 47)	[2]	(70, 0)

JLM 20101208 23

Addition for points P, Q in $E_p(a, b)$

- P+O=P
- If P=(x, y), then P+(x, -y)=O. The point (x, -y) is the negative of P, denoted as –P.
- 3. If $P=(x_1, y_1)$ and $Q=(x_2, y_2)$ with $P\neq Q$, then $P+Q=(x_3, y_3)$ is determined by the following rules:
 - $x_3 = \lambda^2 x_1 x_2 \pmod{p}$
 - $y_3 = \lambda (x_1 x_3) y_1 \pmod{p}$
 - $\lambda = (y_2 y_1)/(x_2 x_1) \pmod{p}$ if $P \neq Q$
 - $-\lambda = (3(x_1)^2 + a)/(2y_1) \pmod{p}$ if P=Q
- 4. The order of P is the smallest positive number n: nP=O

Point multiplication in $E_p(a, b)$

```
Note:
• E: y^2 = x^3 + 17 \pmod{101} or E_{101}(0,17)
                                                                93^2 = 23^3 + 17 = 64 (101)
    - x_3 = m^2 - x_1 - x_2 \pmod{p}
                                                                74^2 = 54^3 + 17 = 22 (101)
    - y_3 = m(x_1 - x_3) - y_1 \pmod{p}
                                                                41<sup>2</sup>= 29<sup>3</sup>+17=65 (101)
     - m=(y_2-y_1)/(x_2-x_1) (mod p) if P\neq Q
                                                                372= 413+17=56 (101)
    - m=(3(x<sub>1</sub>)<sup>2</sup>+a)/(2y<sub>1</sub>) (mod p) if P=Q
                                                                88^2 = 35^3 + 17 = 64 (101)
• (23,93)+(54,74)= (29, 41)
           m = (74-93)/(54-23) = -19/31 = 82 \times 88 = 45
    - x_3 = 45^2 - 23 - 54 = 29 (101)
   - y_3 = 45 \times (23-29)-93) = 41
• 2 \times (41, 37) = (35, 88)
         m = (3 \times 41^2 + 0)/(2 \times 37) = 94/74 = 94 \times 86 = 4
    - x_3 = 4^2 - 82 = 35
         y_3 = 4 \times (41-35)-37 = -13 = 88 (101)
```

JLM 20101208 25

Elliptic Curve (Characteristic = 2)

- For K of characteristic 2, define $j(E) = (a_1)^{1/2}/\Delta$
- If $j(E) \neq 0$:

$$- -P = (x_1, y_1 + x_1)$$

$$- P+Q = (x_3, y_3)$$

$$- P \neq Q$$

•
$$x_3 = ((y_1+y_2)/(x_1+x_2))^2 + (y_1+y_2)/(x_1+x_2) + x_1+x_2+a$$
,

•
$$y_3 = ((y_1+y_2)/(x_1+x_2))(x_1+x_3) + x_3 + y_1$$

$$-P=Q$$

•
$$x_3 = x_1^2 + b/x_1^2$$
,

•
$$y_3 = x_1^2 + (x_1 + y_1/x_1)x_3 + x_3$$

If
$$j(E) = 0$$
:
- $-P = (x_1, y_1+c)$
- $P+Q = (x_3, y_3)$
- $P \neq Q$
 $x_3 = ((y_1+y_2)/(x_1+x_2))^2 + x_1 + x_2$
 $y_3 = ((y_1+y_2)/(x_1+x_2))(x_1+x_3)+c+$
 y_1
- $P = Q$
 $x_3 = (x_1^4+a^2)/c^2$, $P = Q$
 $y_3 = ((x_1^2+a)/c)(x_1+x_3)+c+y_1$

Structure of the Elliptic Curve Group on $E_p(a,b)$ - 1

E₁₁(1, 6)[y²= x³ + 1 x + 6 (mod 11)]. D: -7, 2 is primitive (mod 11). D=4a³+27b² (mod p). 13 points on curve; G, cyclic.

Order		Point			
[1]			0		
[13]	(2,	4)		
[13]	(2,	7)		
[13]	(3,	5)		
[13]	(3,	6)		
[13]	(5,	2)		
[13]	(5,	9)		
[13]	(7,	2)		
[13]	(7,	9)		
[13]	(8,	8)		
[13]	(8,	3)		
[13]	(1	0,	2)		
[13]	(1	0,	9)		

```
Powers

(1) (5, 2)
(2) (10, -9)
(3) (7, 9)
(4) (3, 5)
(5) (8, 8)
(6) (2, 4)
(7) (2, 7)
(8) (8, 3)
(9) (3, 6)
(10) (7, 2)
(11) (10, 9)
(12) (5, 9)
(13)
```

Structure of the Elliptic Curve Group on $E_p(a,b)$ - 2

• E₃₁(1, 6). D: -23, 3 is primitive (31). 32 points on curve. Not cyclic!

Order P	oint	Order	P	oint	,
[1]	0	[16]	(19,	8)	
[16] (1,	16)	[16]	(19,	23)	
[16] (1,	15)	[4]	(20,	20)	
[8] (2,	27)	[4]	(20,	11)	
[8] (2,	4)	[16]	(21,	9)	
[4] (3,	25)	[16]	(21,	22)	
[4] (3,	6)	[16]	(24,	20)	
[2] (9,	0)	[16]	(24,	11)	
[16] (12,	17)	[16]	(25,	30)	
[16] (12,	14)	[16]	(25,	1)	
[8] (14,	25)	[2]	(26,	0)	
[8] (14,	6)	[2]	(27,	0)	
[16] (17,	10)	[8]	(28,	10)	
[16] (17,	21)	[8]	(28,	21)	
[16] (18,	20)	[8]	(30,	29)	
[16] (18,	11)	[8]	(30,	2)	

JLM 20101208 28

Structure of the Elliptic Curve Group on $E_p(a,b)$ - 3

 $E_p(a, b) y^2 = x^3 + ax + b \pmod{p}$. D= $4a^3 + 27b^2 \pmod{p}$.

Cyclic

```
\overline{E_{29}(0, 17)}. D: -3, <2> (29). 30 points. G: (2,24). E_{31}(0, 17). D: -11. <3> (31). 43 points. G: (1, 24). E_{101}(0, 17). D: -12. <2> (101). 102, points. G: (4, 9). E_{311}(0, 17). D: -137. <17> (311). 312 points. G: (14, 133). E_{29}(1, 6). D: -14. <2> (29). 38 points. G: (2, 4). E_{47}(1, 6). D: -12. <5> (47). 52 points. G: (0, 10). E_{101}(1, 6). D: -62. <2> (101). 112 points. G: (0, 39). E_{1217}(0, 17). D: -714. <3> (1217). 1218 points. G: (2, 5).
```

Not cyclic

 $E_{31}(1, 6)$. D: -23. <3>(31). 32 points. (1, 6) has order 16.

Group order and Hasse

- #E_q(a,b)= q+1-t
 j²- [t]j+q=0
 |t|≦√2q
- $G(E_p(a,b)) = Z_n \times Z_m$, n|m, n|p-1. Used proving endomorphisms.
- Let E be an elliptic curve over K and n a positive integer. If char(K) does not divided n or is 0, then E[n]= Z_n x Z_n.
- Twist: m: $a_2 = m^2 a_1$, $b_2 = m^3 b_1$.
 - $\#E_p(a_1,b_1)+\#E_p(a_2,b_2) = p+2$

Point counting

- Group order calculations are critical for curve selection and algorithm safety. The number of points on the curve is the size of the group so counting points is important. There are several methods:
 - Baby Step Giant Step: Explained in next slide.
 - Schoof: O(lg⁸(p)). Beyond the scope of this lecture.
 Determines t (mod I) for I, prime and I£I_{max}, where P_I I >4√p.
 - 3. SEA: Schoof-Elkies-Atkins. Further beyond the scope of this lecture.

Elliptic Curve Discrete Log Problem

- Let C be an elliptic curve, E(a,b): y²=x³+ax+b, over a finite field K with elliptic group, G. Given P, Q in the group with P=nQ, find n.
- Elliptic Curve crypto system is precisely analogous to discrete log systems using arithmetic over finite fields.
 - Discovered by Koblitz and Miller
- Note in computing kP over $E_p(a,b)$, we can write k as powers of 2 and multiply P by k in $Ig(k)Ig(p)^3$ time. For example, $40P = (2^5 + 2^3)P$

JLM 20101208

Baby step, giant step

- Want to find m: O= [m]P. There is a general attack just like in DLP called the Baby Step – Giant Step Attack. It takes O(vn) where n is the order of the group.
- The attack:
 - M=ceiling(√n). m=aM+b is the order of P.
 - 2. To find a, b note (O-[b]P)=[a][M]P.
 - 3. Compute R_b = O-[b]P, b=1,2,...,M. Store (b, O-[b]P) sorted by second element.
 - 4. Giant step: $S_a = [a][M]P$, a = 1,2,...,M check table if
 - 5. $S_a=R_b$, m=aM+b.

Special Attacks on discrete log in Eq(a,b)

- MOV Attack (Menezes, Okamoto, Vanstone).
 - Idea: map the ECDLP to the DLP in an extension field.
- In the case of MOV, if n is the order of a point (hence it divides the number of points on the curve) and n|q^k-1, the ECDLP can be mapped into the DLP in GF(q^k).
 - To avoid this attack, we need to make sure the DLP in $GF(q^l)$ is as hard as the ECDLP in $E_q(a,b)$. This is guaranteed to happen of $l>k^2/(lg(k)^2)$, so we can avoid this attack if the smallest $l: q^l=1$ (mod n) satisfies $l>k^2/(lg(k)^2)$.
- Another attack: An anomalous curve satisfies $\#E_q(a,b)=q$. This group is cyclic and allows an easy embedding in the DLP problem in the additive group of F_q . To avoid this, make sure the number of points on the elliptic curve is not q.

JLM 20101208 34

Diffie Hellman over ECC

- Alice and Bob chose a finite field F_α and an elliptic curve E
- The key will be taken from a random point P over the elliptic curve (e.g. - the x coordinate).
- Alice and Bob choose a point B that does not need to be secret
 - B must have a very large order
- Alice chooses a random a and compute aB∈E
- Bob chooses a random b and compute bB∈E
- Alice and Bob exchange the computed values
- Alice, from bB and a can compute P= abB
- Bob, from aB and b can compute P= abB

Elliptic curve El Gamal

- There are several ways in which the ECDLP can be embedded in a cipher system.
 - One method begins by selecting an Elliptic Curve, $E_p(a,b)$, a point G on the curve and a secret number k which will be the private key.
 - The public key is G and P_A where P_A = kG. Think of G as the generator in the discrete log problem.
 - A message is encrypted by converting the plaintext into a number m, selecting a random number r, and finding a point on the curve P_m corresponding to m. We explain how to do this in the next slide.
 - The ciphertext consists of two points on the curve {rG, P_m+r P_A}
 - To decipher, multiply the first point by k and subtract the result from the second point: $P_m+rP_A-k(rG)=P_m+r(kG)-k(rG)=P_m$.

Embedding m in $E_q(a,b)$

- There is no deterministic way.
- Assume q= p^r and we want to embed with a probability of failure not to exceed 2^{-k}.
- Message is m and $0 \le m \le M$. $q \ge M\kappa$.
- For $a^{r-1}p^{r-1}+...+a_1p+a_0=x_a=m\kappa+j$.
- For j= 0, try to solve $y^2=x_a^3+ax_a+b$ by evaluating Legendre symbol. Can do this with probability ½. If this succeeds, use it. Otherwise try j=1,...
- Given x_a , we can recover m by writing $x_a = m\kappa + j$ and discarding j.
- $P_m = (x_a, y)$.

Putting it all together: EC El Gamal

- Curve: E₈₈₃₁(3,45)
- G=(4,11),a=3, A=aG=(413,1808)
- b=8, B=bG= (5415, 6321)
- P= (5, 1743)
- Bob sends Alice:
 - [B, P+ 8A]= [(5415,6321), (6626,3576)]
- Alice decrypts as:
 - -3 (5415, 6321) = (673, 146)
 - P = (6626,3576) (673,146) = (6626,3576) + (673,-146) = (5,1743)

JLM 20101208

Putting it all together: ECDH

- Curve: E₇₃₁₁(1,7206)
- G=(3,5)
- Alice picks a=12 sends aG= (1794,6375)
- Bob picks b= 23, sends bG= (3861,1242)
- Bob computes 23(1794, 6375)= (1472, 2098)
- Alice computes 12 (3861,1242)= (1472, 2098)

Picking Curves

- Curves are selected at random subject to resistance to known attacks like Hellman-Pohlig-Silver and Pollard rho.
 - 1. $\#E(F_q)$ should be divisible by a large prime, n.
 - 2. $\#E(F_q)$ should not be q
 - 3. n should not divide q^k-1
- Method of selecting curves
 - Select a,b at random with (4a³+27b²)≠0
 - Calculate N= #E(F_q).
 - Factor N and verify 1, 2, 3 above.
 - If the coefficients are selected at random, the order of the curves are uniformly distributed (Lenstra).

Curve selection

- Given p and a parameter S, generate an acceptable E.
 - 1. Generate random a,bεF_p.
 - 2. If ⊿=0 go to 1.
 - 3. Determine $N = \#E_p(a,b)$
 - 4. If $E_p(a,b)$ is anomolous (p=N), go to 1.
 - 5. If $E_p(a,b)$ is subject to MOV attack, there is an $I < lg(p)^2 / (lg(lg(p))^2 : p^l = 1 \pmod{N}$, go to 1.
 - 6. Factor N, if it takes too long, go to 1.
 - 7. If N=sxr, s \leq S return E_p(a,b)
 - 8. Go to 1.

ECC Point Operation Costs and modular operations

Parameters

- I= inverse cost in GF(p).
- S= square cost GF(p).
- M= multiply cost GF(p)

Ор	Cost	Modular Op	Cost
2P	I+2S+2M	Add, Sub	O(lg(n))
P+Q	I + S+ 2M	Multiply	O(lg(n) ²)
2P+Q	2I + 2S + 2M	Invert	O(lg(n) ²)
P+Q, P-Q	I+2S+4M	Exp	O(lg(n) ³)

ECC vs RSA performance analysis

- n= [lg(p)] (for EC), N= [lg(p)] for DLP.
- The cost to break DLP with best known algorithm (IC) is $c_{DLP}(N) = \exp(c_0 N^{1/3} \ln(N \ln(2))^{2/3})$.
- The cost to break ECDLP with best known algorithm (IC) is $c_{\text{ECDLP}}(n) = 2^{n/2}$.
- n= $b(N^{1/3}) \ln(N(\ln(2))^{2/3}, b=2c_0/\ln(2)^{2/3}\sim4.91$
- The number of key bits (for equivalent security) in the DLP case grows as the cube of the number of bits for the ECDLP case. This has a key size and performance implication.

JLM 20101208

Pollard Rho Method for ECC vs. Factoring by Number Field Sieve

Key size	MIPS-Years	Key size	MIPS-Years
150 bits	$3.8x10^{10}$	512 bits	3x10 ⁴
205 bits	7.1x10 ¹⁸	768 bits	2x10 ⁸
234 bits	1.6x10 ²⁸	1024 bits	3x10 ¹¹
		1280 bits	3x10 ¹⁴
		1536 bits	$3x10^{16}$
 Elliptic Curve Logarithms 		2048 bits	$3x10^{20}$
Using Pol	lard Rho Method		

 Integer Factoring Using Number Field Sieve

Observations on ECC

- Asymmetry between encryption and decryption is reduced (4:1)
- NIST recommendations for key size to provide "equivalent" security (bits in key).

ECC	RSA	AES
163	1024	
256	3072	128
384	7680	192
521	15360	256

JLM 20101208 45

NIST Curves

- Use prime fields F_p with $p=2^{192}-2^{64}-1$, $p=2^{224}-2^{96}+1$, $p=2^{256}-2^{224}+2^{192}+2^{96}-1$, $p=2^{384}-2^{128}-2^{96}+2^{32}-1$, $p=2^{521}-1$ or binary fields F_q with $q=2^{163}$, 2^{233} , 2^{283} , 2^{409} , 2^{571} .
- $\#E_p(a,b)=q+1-t$, $|t| \le 2 \lor q$ and t is called the trace of E. $E_q(a,b)$ has rank 1 or 2, that is: $E_q(a,b) \sim Z_{n[1]} x Z_{n[2]}$ and $n[2] \mid n[1]$, $n[2] \mid (q-1)$.
- If n[2] = 1, $E_a(a,b) \sim Z_{n1} = \{kP: 0 < k < n[1]\}$ and P is a generator.
- $E_q(a_1, b_1) \sim E_q(a_2, b_2)$ if $a_1 = u^4 a_2$ and $b_1 = u^4 b_2$.
- E_q, q= pⁿ is supersingular if p|t. Field represented as polynomial or normal basis.

El Gamal Signature

- Bob has a private key x and a public key <g,X>: X= g^x in a group G.
 To sign m, given a map f: G → Z_{|G|}:
 - 1. Bob generates a random a: 1≦a<|G|. A= gª.
 - 2. Bob computes $B_{\varepsilon}Z_{|G|}$: m=xf(A)+Ba (mod |G|).
 - 3. $\operatorname{Sig}_{Bob}(m) = (A,B)$
- To verify check that the signature is right, verify that X^{f(A)}A^B=g^m.

EC El Gamal Signature

- Bob has a private key x and a public key <g,X>: X= g^x in a group G.
 To sign m, given a map f: G → Z_{|G|}:
 - Bob generates a random a: 1≦a<|G|. A= g^a.
 - 2. Bob computes $B_{\varepsilon}Z_{|G|}$: m=xf(A)+Ba (mod |G|).
 - 3. $\operatorname{Sig}_{Bob}(m) = (A,B)$
- To verify check that the signature is right, verify that Xf(A)AB=gm.

Factoring using Elliptic Curves

- Let E_n(a,b) be an elliptic curve with (4a³+27b², n)=1 and let P₁, P₂ be two rational points whose denominators are prime to n. Then O ≠ P₁+P₂εE has denominators prime to n iff there is no prime p|n such that P₁+P₂ = O (mod p).
- Lenstra's Algorithm. Choose 2 bounds B, K.
 - 1. (n,6)=1, $n\neq m^r$
 - 2. Choose random b, x_1 , y_1 between 1 and n
 - 3. $c = y_1^2 + x_1^3 bx_1 \pmod{n}$
 - 4. $(n,4b^3+27c^2)=1$
 - 5. k = LCM(1,2,...,K)
 - 6. Compute $kP=(a_k/d_k^2,b_k/d_k^3)$, if at any point can't succeed, n is composite.
 - 7. D=(d_k,n). If D=1, go to 5 and bump K or go to 2 and select new curve.

Factoring using elliptic curves - example

- Factor n=4453.
- Use E: $y^2 = x^3 + 10x 2 \pmod{m}$.
- Initial point: $P_1 = (1,3)$.
- 2P=(4332, 3230).
- To calculate 3P:
 - m=(3230-3)/(4332-1)=3227/4331.
- (4331, 4453)=61.
- 4453= 61x73.

Factoring using elliptic curves - example

- Factor m=1938796243.
- Use E: $y^2 = x^3 Ax + A \pmod{p}$. A= 1,2,...
- Initial point: P₁= (1,1), P_{n+1}= (n+1)P_n.
- For A=7, (w_{16}, m) = 37409. m= 37409 x 51827.
- $a_i = a^{(r1 \ r2 \ ... \ ri)}, g_i = (a_n 1, m).$

Divisors

- D= $\sum_i a_i[P_i]$, $a_i \in Z$
- $deg(D) = \sum_{i} a_{i}$
- sum(D)= $\sum_{j} a_{j}P_{j}$
- sum: Div⁰(E) → E(K).
- $f= u_P^r g: ord_P(f)=r, div(f)= S_{P \in E(K)} ord_P(f) [P]$
- Div⁰(E)/(principal divisors) is isomorphic to E(K)
- Let E be an elliptic curve and f a function on E that is ≠0 then
 - 1. f has only finitely many poles and zeros
 - 2. deg(div(f))=0
 - 3. If f has no poles or zeros it is constant

Pairings

- $E[n]\subseteq E(K)$, e_n : $E[n] \times E[n] \rightarrow \mu_n$
- TεE[n], f: div(f)= n[T]-n[∞]
- Choose T' ϵ E[n²]: nT'=T: div(g)= $S_{R\epsilon E[n]}([T'+R]-[R])$
- div(f₀n)=div(gⁿ)
- Let $S \in [n]$, $P \in E(K)$ then $g(P+S)^n = f(n(P+S)) = f(nP) = g(P)^n$
 - Thus $g(P+S)/g(P) \varepsilon \mu_n$ and is independent of P.
- Define $e_n(S,T)=g(P+S)/g(P)$, then
 - e_n: E[n] x E[n] $\rightarrow \mu_n$
 - e_n is binlinear, non-degenerate.
 - $e_n(\sigma S, \sigma T) = \sigma e_n(S, T)$
 - $e_n(\alpha S, \alpha T) = e_n(S,T)^{deg(\alpha)}$ if a is separable.

Lattices

- Definition: Let $\langle v_1, ..., v_k \rangle$ be linearly independent vectors in K^n . K is often the real numbers or complex numbers. The lattice, L is L= $\{v: v=a_1v_1+...+a_kv_k\}$, where $a_i \in Z$.
- Area parallel-piped formed by <v₁, ..., v_n> is |det(v₁, ..., v_n)|.
- Shortest vector problem: Given the lattice L, find the shortest non-zero v, ||v||=I, vεL.

Reduced Basis

- $\langle v_1, v_2 \rangle$ is reduced if
 - $||v_2|| \le |v_1||$; and,
 - $-1/2||v_1||^2 \le (v_1, v_2) \le 1/2||v_1||^2$.

Reduced

Not

Gauss again

Let <v₁, v₂> be a basis for a two dimensional lattice L in R². The following algorithm produces a reduced basis.

```
for(;;) {
    if(||v<sub>1</sub>||>||v<sub>2</sub>||)
        swap v_1 and v_2;
    t= [(v_1, v_2)/(v_1, v_1)]; // [] is the "closest integer"
        function
    if(t==0)
        return;
    v<sub>2</sub> = v_2-tv<sub>1</sub>;
    }
```

• $\langle v_1, v_2 \rangle$ is now a reduced basis and v_1 is a shortest vector in the lattice.

JLM 20101208

LLL

- Definition: B= $\{b_1, ..., b_n\}$, L in Rⁿ. $m_{i,j} = (b_i, b_j^*)/(b_j^*, b_j^*)$. $b_i^* = b_i^* \sum_{j=1}^{i-1} m_{i,j} b_j^*$. B is reduced if
 - 1. | m_{i,j}|≦1/2; 1≦j<i≦n
 - 2. $||b_i^*||^2 (3/4-m_{i,i-1}^2)||b_{i-1}^*||^2$.
- Note $b_1^*=b_1$.

LLL algorithm

```
b_1*=b_1; k=2;
for (i=2; i \le n; i++) {
     b_i *= b_i;
     for(j=1; j<i; j++)
                                                                      RED(k, k-1)
      \{ m_{i,j} = (b_i, b_j *)/B_j;
           b_i*=b_i-m_{i,j}b_j*;B_i=(b_i*,b_i*);
                                                                      if(|m_{k,1}|) > 1/2) {
                                                                            r = d1/2 + m_{k,1}t;
for(;;) {
                                                                            b_{\nu} = b_{\nu} - r b_{1};
     RED(k, k-1);
                                                                            for(j=1; j<1;j++) {
     if (B_k < (3/4 - m_{k,k-1}^2) B_{k-1}) {
                                                                                  \mathbf{m}_{k,i} = \mathbf{m}_{k,i} - \mathbf{r} \mathbf{m}_{1,i};
           m = m_{k,k-1}; B = B_k + m^2 B_{k-1}; m_{k,k-1} = m B_{k-1}/B;
                                                                                  m_{k,1} = m_{k,1} - r;
           B_k = B_{k-1}B_k/B; B_{k-1} = B; swap (b_k, b_{k-1});
                                                                            }
           if (k>2) swap (b_k, b_{k-1});
           for(i=k+1; ifn;i++)
           \{ t = m_{i,k}; m_{i,k}; = m_{i,k-1} - mt; \}
                m_{i,k-1} = t + m_{k,k-1} m_{i,k}; }
           k = max(2, k-1);
           if (k>n) return (b_1, b_n);
```

JLM 20101208

58

LLL Theorem

• Let L be the n-dimensional lattice generated by $\langle v_1, ..., v_n \rangle$ and I the length of the shortest vector in L. The LLL algorithm produces a reduced basis $\langle b_1, ..., b_n \rangle$ of L.

- 1. $||b_1|| \le 2^{(n-1)/4} D^{1/n}$.
- 2. $||b_1|| \le 2^{(n-1)/2}|$.
- 3. $||b_1|| ||b_2|| \dots ||b_n|| \le 2^{n(n-1)/4} D$.
- If ||b_i||²≤C algorithm takes O(n⁴ lg(C)).

Attack on RSA using LLL

- Attack applies to messages of the form "M xxx" where only "xxx" varies (e.g.- "The key is xxx") and xxx is small.
- From now on, assume M(x)=B+x where B is fixed
 - |x| < Y.
 - Not that $E(M(x))=c=(B+x)^3 \pmod{n}$
 - $f(x) = (B+x)^3 c = x^3 + a_2x^2 + a_1x + a_0 \pmod{n}$.
- We want to find x: f(x)=0 (mod n), a solution to this, m, will be the corresponding plaintext.

Attack on RSA using LLL

To apply LLL, let:

v₁= (n, 0, 0, 0),
v₂= (0, Yn, 0, 0),
v₃= (0, 0, Y²n, 0),
v₄= (a₀, a₁Y, a₂Y², a₃Y³)

When we apply LLL, we get a vector, b₁:

||b₁|| ≤ 2^(3/4) |det(v₁, v₂, v₃, v₄)| = 2^(3/4) n^(3/4) Y^(3/2) Equation 1.

Let b₁= c₁v₁ + ...+ c₄v₄= (e₀, Ye₁, Y²e₂, Y³e₃). Then:

e₀ = c₁n+c₄a₀

 $- e_1 = c_2 n + c_4 a_1$

 $- e_2 = c_3 n + c_4 a_2$

 $-e_3=c_4$

Attack on RSA using LLL

- Now set $g(x) = e_3x^3 + e_2x^2 + e_1x + e_0$.
- From the definition of the e_i , c_4 f(x) = g(x) (mod n), so if m is a solution of f(x) (mod n), $g(m) = c_4$ f(m) = 0 (mod n).
- The trick is to regard g as being defined over the real numbers, then the solution can be calculated using an iterative solver.
- If $Y < 2^{(7/6)} n^{(1/6)}$, $|g(x)| \le 2||b_1||$.
- So, using the Cauchy-Schwartz inequality, ||b₁||≤2⁻¹n.
- Thus |g(x)| < n and g(x) = 0 yielding 3 candidates for x.
- Coppersmith extended this to small solutions of polynomials of degree d using a d+1 dimensional lattice by examining the monic polynomial f(T)= 0 (mod n) of degree d when |x|≤n¹/d.

Example attack on RSA using LLL

- p= 757285757575769, q= 2545724696579693.
- n= 1927841055428697487157594258917.
- B= 200805000114192305180009190000.
- $c= (B+m)^3$, $0 \pm m < 100$.
- $f(x)=(B+x)^3-c=x^3+a_2x^2+a_1x+a_0 \pmod{n}$.
 - $a_2 = 602415000342576915540027570000$
 - $-a_1$ = 1123549124004247469362171467964
 - $-a_0 = 587324114445679876954457927616$
 - $v_1 = (n,0,0,0)$
 - $v_2 = (0,100n,0,0)$
 - $v_3 = (0,0,10^4 \text{n},0)$
 - $v_4 = (a_0, a_1 100, a_2 10^4, 10^6)$

Example attack on RSA using LLL

- Apply LLL, b₁=
 - $-308331465484476402v_1 + 589837092377839611v_2 +$
 - $-316253828707108264v_3 + (-1012071602751202635)v_4 =$
 - (246073430665887186108474, -577816087453534232385300, 405848565585194400880000, -1012071602751202635000000)
- g(x)= (-1012071602751202635) t³ + 40584856558519440088 t² + (-57781608745353442323853) t +246073430665887186108474.
- Roots of g(x) are 42.0000000, (-.9496±76.0796i)
- The answer is 42.

End

JLM 20101208 65

Endomorphisms

- Endomorphisms are homomorphisms from E(K) → E(K) that can be represented by rational functions.
 - If $a(x,y)=(r_1(x), r_2(x)y), r_1(x)=p(x)/q(x)$. deg(a)= max(deg(p), deg(q)).
 - The endomorphism, a, is separable, if $r'(x)^{10}$.
 - If a is separable deg(a)= #ker(a).
 - If a is not separable deg(a)> #ker(a).
- If f_p is the Frobenius map, it is an endomorphism of degree p and f_p is not separable.
 - $ker(f_p-1)=\#E_p$. f_p-1 is a separable endomorphism.
 - Let E be an elliptic curve over F_p , $a = q+1-\#E_p = q+1-\deg(\ker(f_p-1))$. $f_p^2-af_p+q=0$.

Shanks and Menstre

- Input: $E_q(a,b)$, $\#E_q(a,b)=q+1-t$, $|t| \le 4 < q$.
- Output: Bound on t. $O(q^{1/4}+e)$.
 - 1. Pick random point P on $E_q(a,b)$, |P|>4<q.
 - 2. Q=[q+1]P
 - 3. $Q_1 = Q + floor[2q]P$
 - 4. t'= t+ floor[2q], note 0≦t' ≦4q
 - 5. $m = ceiling(2q^{1/4})$
 - 6. Baby step: [j]P
 - 7. Giant step: Q₁-[i][m]P
 - 8. t'= im+j, i,j<m. This bounds $\#E_{\alpha}(a,b)$.
- Menstre: either a curve or its twist has a point with order >4q

Endomorphisms continued

- Endomorphism are maps that preserve the "addition" operation between an elliptic curve group and itself. That is j(P+Q)= j(P)+j(Q). We care about endomorphisms that preserve O: j (O)= O. These are called isogonies.
- There are two very important endomophisms:
 - Frobenius: $j(x,y)=(x^p, y^p)$
 - Point multiplication: j(x,y)=[n](x,y).
- For $E_K(a,b)$, define $\Delta = (-16)(4a^3+27b^2)$. (For singular curves $\Delta = 0$) and define the j-invariant $E_p(a,b)$, $j(E) = \frac{1728}{\Delta}$.

Isomorphic Curves and the j-invariant

- Let K be a field and K* its algebraic closure. $E_K(a,b)$ and $E_K(a',b')$ are isomorphic if r,s,t ε K, u ε K*: the transformations (x,y) \rightarrow (x',y') given by $x=u^2x'+r$, $y=u^3y'+su^2x'+t$, take $E_K(a,b)$ to $E_K(a',b')$.
- Recall D= (-16)($4a^3+27b^2$). (For singular curves $\Delta=0$) and define the j-invariant $E_p(a,b)$, $j(E)=1728/\Delta$.
- Theorem: Let $E_1=E_K(a,b)$ and $E_2=E_K(a',b')$ be two elliptic curves.
 - 1. If E_1 and E_2 are isomorphic, they have the same j-invariant.
 - 2. If $j(E_1)=j(E_2)$, there is a m: $a_2=\mu^4a_1$, $b_2=\mu^6b_1$.
 - 3. If two curves have the same j-invariant, they are isomorphic over the algebraic closure, K*.

JLM 20101208

The Division Polynomials

- [m] $(x,y)=(q_m(x,y)/y_m(x,y)^2, w_m(x,y)/y(x,y)^3)$
- We can calculate these polynomials recursively:
 - $y_0(x,y) = 0; y_1(x,y) = 0.$
 - then $y_{2m+1}(x,y) = y_{m+2}(x,y)y_m^3 + y_{m-1}(x,y)y_{m+1}^3$.
 - $f_m = xy_m^2 y_{m+1}y_{m-1}$
 - $w_m = 1/(4y)(y_{m+2}y_{m-1}^2 y_{m-2}y_{m+1}^2)$
- Let E be an elliptic curve, the endomorphism of E given by multiplication by n has degree n².
- (x,y)=P ε E[m] is the subgroup of torsion points whose order divides
 m: [m]P=0.

Preliminary DSA

- Bob has a private key x and a public key <g,X>: X= g^x in a group G. To sign m, given a map f: G → Z_{|G|}:
 - 1. Bob generates a random a: 1≦a<|G|. A= g^a.
 - 2. Bob computes $B_{\varepsilon}Z_{|G|}$: m= -xf(A)+Ba (mod |G|).
 - 3. $\operatorname{Sig}_{Bob}(m) = (A,B)$
- To verify compute u= mB⁻¹ (mod |G|), v=f(A)B⁻¹ (mod |G|) and w=g^uX^v.
 Verify that w=A.

ECDSA

- D=(q, a,b,P,n,h). nh= $\#E_q(a,b)$. Private key d, message m.
- Signature (r,s)
 - 1. Select k**ε**[1,n-1]
 - 2. Compute $kP=(x_1, y_1)$. Convert x_1 to integer x_1 .
 - 3. Compute $r = x_1 \pmod{n}$. If r = 0 goto 1.
 - 4. Compute e=H(m).
 - 5. $s= k^{-1}(e+dr) \pmod{n}$. If s=0, goto 1.

Verify

- Check r,s [1,n-1]. Compute e=H(m).
- 2. Compute $w= s^{-1} \pmod{n}$. $u_1 = ew \pmod{n}$. $u_2 = rw \pmod{n}$.
- 3. Compute $X = u_1 P + u_2 Q$. If X = O, reject.
- 4. Convert x_1 of X to integer x_1 . Compute $v = x_1$ (mod n).
- 5. If (v=r) accept signature.

ECIES

- Input D=(q, a, b, P, n, h), public key Q, plaintext m.
- ENC, MAC, DEC are standard "symmetric key" functions. KDF is key derivation function (also standard).
 - 1. Pick kε[1, n-1].
 - 2. Compute R= kP, Z=hkQ. If Z=O, go to 1.
 - 3. $(k[1], k[2]) = KDF(x_7, R)$.
 - 4. $c = ENC_{k1}(m)$, $t = MAC_{k[2]}(c)$.
 - 5. return (R, c, t)