Solution to Exercise 0 - Model Theory (1), 80616

October 21, 2025

Let $L = \{P\}$ a language where P is unary relation. Define,

$$\varphi_n = \exists x_0 \dots \exists x_n \left(\bigwedge_{i \le n} P(x_i) \land \bigwedge_{i < j \le n} x_i \ne x_j \right), \quad \psi_n = \exists x_0 \dots \exists x_n \left(\bigwedge_{i \le n} \neg P(x_i) \land \bigwedge_{i < j \le n} x_i \ne x_j \right)$$

and let $T = \{\varphi_n, \psi_n \mid n < \omega\}.$

We will show that $\operatorname{cl}_{\vdash} T$ is ω -categorical.

Proof. Let $\mathcal{M} \models T$ be some model. It can be proved by direct induction that $|P^{\mathcal{M}}| = \omega$ as well as $|\neg P^{\mathcal{M}}| = \omega$. Let us construct $f : \omega \to M$ such that $f(n) \in P^{\mathcal{M}}$ for any $n < \omega$. $\mathcal{M} \models \varphi_0 \iff \mathcal{M} \models \exists x \, P(x)$ then let f(0) be such witness. Let us assume that $f \upharpoonright n$ is defined, then $\mathcal{M} \models \varphi_{n+1}$, then by the pigeonhole principle there is some $a \in \mathcal{M}$ such that $a \notin f''n$, and let f(n+1) = a. For the sake of convenience let us redefine f as $2 \times \omega \to M$ injective function such that f(0,n) is the same as f(n) and $f(1,n) \notin P^{\mathcal{M}}$. By CSB we can assume that f is bijection as well, and by the selection of \mathcal{M} as an arbitrary model of T we can deduce that for any $\mathcal{M}, \mathcal{N} \models T, \mathcal{M} \cong \mathcal{N}$ by composition of functions as was constructed. \square

Let $L = \{c_n \mid n < \omega\}$ be language consists of constant symbols. Let us define the theory $T = \{c_i \neq c_j \mid i < j < \omega\}$. We will show that there are countably many non-isomorphic countable models of T, and that T is complete.

Proof. Let us define the model \mathcal{M}_n such that $M=\omega$ and,

$$c_i^{\mathcal{M}} = i + n$$

for any $i < j < \omega$,

$$c_i^{\mathcal{M}} = i + n \neq j + n = c_j^{\mathcal{M}}$$

therefore $\mathcal{M}_n \models T$. $\mathcal{M}_n \models k \neq c_i$ for all $i < \omega$, in particular $\mathcal{M}_n \models \exists x \ x \neq c_i$. It is implied that also,

$$\mathcal{M}_n \models \exists x_0 \dots \exists x_{k-1} \left(\bigwedge_{i < j < k} x_i \neq x_j \land x_i \neq c_l \right) = \varphi_l^k$$

for all $l < \omega$. Finally, $\mathcal{M}_n \not\models \varphi_l^k$ for any k > n, we deduce that $\mathcal{M}_n \not\cong \mathcal{M}_m$ for any $n \neq m$.

We move to show that T is complete. Let us assume toward a contradiction that φ is a sentence such that $\varphi \notin T$ and $T \cup \{\varphi\}$ is consistent. By construction of Henkin models we can deduce that $\mathcal{M}_0 \models \varphi$, but \mathcal{M}_0 is minimal, namely if $\mathcal{N} \models T$ then $\mathcal{M}_0 \subseteq \mathcal{N}$, then by definition $T \models \varphi$, a contradiction.

We will show that $T=\operatorname{Th}(\mathbb{N},+,\cdot)$ has 2^{\aleph_0} non-isomorphic countable models.

Proof. Observe the fact that numbers are definable in T, by formula as such,

$$\varphi_n(x) = \forall y \ x \cdot y = \overbrace{y + \dots + y}^{n \text{ times}}$$

If $\mathcal{M} \models T$ then we denote by \underline{n} the single element of M that fulfills φ_n .

By the fact that $\exists x \ \varphi_n(x) \in T$ it follows that $\{\underline{n} \mid n < \omega\} \subseteq M$ for any such model.

Let us define an explicit model of T, $M = \mathbb{N}(\mu_n)$ where $n \in \mathbb{N}$ and μ_n is primitive root of unity of order n, namely,

$$\mathcal{M} \models (\forall m < n, \ \mu_n^m \neq \underline{1}) \land \mu_n^n = \underline{1}$$

when power is notation for repeated use of \cdot symbol. This is a first-order sentence with parameters.

This cannot work as this sentence is false in T.

Maybe using vector spaces over \mathbb{Q} ? We first need to prove that $\mathbb{Q} \models T$. But $\mathbb{N} \models \neg \exists x, x \cdot x = \underline{2}$.

Let $\epsilon_0 = \omega$ and $\epsilon_{n+1} = \mathcal{P}(\epsilon_n)$, this generates a recursive sequence of elements of different cardinality such that they are all infinite. This won't work as well.

Last try, let us define $M=2\times\omega$ and let $\{n\}\times\omega$ act as the given model $(\mathbb{N},+,\cdot)$ within its domain, for $n\in 2$. $T\models \forall x,y,\ (x+y=y+x\wedge x\cdot y=y\cdot x)$ then it suffices to define the operations $\langle 0,n\rangle+\langle 1,m\rangle$ and $\langle 0,n\rangle\cdot\langle 1,m\rangle$. Let $f:\omega^2\to\omega$ be some bilinear form, and define the function symbols such that,

$$\langle 0, n \rangle + \langle 1, m \rangle = \langle 1, f(n, m) \rangle$$

The dot product symbol is defined by decomposition to plus symbols chain in $\{1\} \times \mathbb{N}$. Consider the model countable $\mathcal{M}_f = (M, +, \cdot)$ as defined, we claim that $\mathcal{M} \models T$.

Let $\kappa \geq \omega$ be some cardinal and let L be some language. Let T be a κ -categorical L-theory such that it has no finite models. We will show that T can be incomplete.

Solution. Let $L = \{c_{\alpha} \mid \alpha < \delta\} \cup \{P\}$ for $\kappa < \delta$, where c_{α} is a constant symbol and P is unary relation.

$$T = \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \delta\} \cup \{P(c_{\alpha}) \mid \alpha < \delta\}$$

It follows from the definition of T that if $\mathcal{M} \models T$ then $|M| \ge \delta > \kappa$, therefore there are no models of T of cardinality κ , then the theory is vacuously complete.

Just take $\kappa = \omega$ and L and T from question 1, we saw that T is ω -categorical and has no finite models. We also know that if $\mathcal{M} \models T$ and $|M| > \kappa$ then $|P^{\mathcal{M}}|, |\neg P^{\mathcal{M}}| \ge \omega$, and therefore it is possible that $|P^{\mathcal{M}}| = |M|$ or $|P^{\mathcal{M}}| < |M|$, then T cannot be complete.

Let $T=\operatorname{Th}(\mathbb{Q},\leq)$ be DLO.

We will show that T is not $\kappa\text{-categorical}$ for some uncountable cardinal $\kappa.$

Proof. The key here is similar to question 4, we can define $P(x) \iff x \le c$ for some arbitrary value. This is equivalent to the theory of 4 and 1, and we just talked about why this is not necessarily κ -categorical.