2.3 Lasso Rigression / l'-regularization

Civen sample points $\chi'' = \chi'' \in \mathbb{R}^{7}$ form the sample matrix $\chi = \left(\begin{array}{c} \chi'' \\ \chi'' \end{array} \right) = \left(\begin{array}{c} \chi'' \\ \chi'' \end{array} \right) = \left(\begin{array}{c} \chi'' \\ \chi'' \end{array} \right)$

The Least Absolute Shrinkage and Selection Operator (lasso) refers to $\beta = \alpha \gamma \beta \min ||y-x^T\beta||^2 + \lambda \|\beta\|,$ where $|\beta|| = |\beta|| + \cdots + |\beta_p|, >0.$

 $f_{i}(\beta) = ||y - x^{T}\beta||^{2} = (y - x^{T}\beta)^{T}(y - x^{T}\beta)$ $= \beta^{T} x^{T} x \beta - 2 y^{T} x^{T}\beta + y^{T} y$ $= \sum_{sym. pos. semi-def} ||y - x^{T}\beta||^{2}$

f is a convex, smooth function.

$$f_2(\beta) = 11\beta 11_1 = 1\beta_1 1 + \cdots + 1\beta_p 1$$

 f_2 is a convex (HW), continuous
but not differentiable function.

2.3.1 Moth Rep.

Let f: D(f)CR"->R

Def: A vector $S \in \mathbb{R}^n$ is called a subgradient of f cet $X_0 \in D(f)$ if $f(y) \geq f(x) + S^T(y-x_0)$ for all $y \in D(f)$

The set of all the subgradients of fat Xo is called the subdifferential of fat Xo, denoted by $\partial f(Xo)$, i.e.

$$\partial f(x_0) = \left\{ S \in \mathbb{R}^n : S \text{ is a subgraclient of } \right.$$

Example: We compute the subolifferentiale

of FiR-R, f(x) = |x|.

For
$$X_0>0$$
, SER is a subgrachient of f cot X_0 , det of subgrachient $|X_0|+S(y-X_0)$ $\forall y \in \mathbb{R}$

$$\begin{cases} (-s) \times 0 \\ -| \leq s \leq | \end{cases}$$

Thus for
$$x_0>0$$
, $2f(x_0)=\{1\}$

For $x_0<0$, (exercise) $2f(x_0)=\{-1\}$

At $x_0=0$, $s\in\mathbb{R}$ is a subgradient of f at 0

but of subgrad $|y|\geq |x_0|+s(y-x_0)$ by $e\mathbb{R}$
 $|y|\geq |y|\geq |x_0|+s(y-x_0)$ by $e\mathbb{R}$
 $|y|\geq |x_0|+s(y-x_0)$
 $|x_0|+s(y-x_0)$
 $|x_0|+s(y-x_0)$

Lemma: Let $X_0 \in \mathbb{R}^n$ (1) $\partial_f(x)$ is a closed convex set (2) $\partial_f(x) + \partial_f(x) = \partial_f(x) + \partial_f(x)$ where $\partial_f(x) + \partial_f(x) = \{s_1 + s_2 : s_1 \in \partial_f(x), s_2 \in \partial_f(x)\}$

(3) If $f \in C'$ is convex, $\partial f(x) = \{\nabla f(x)\}$ (4) If f is convex and $\partial f(x) = \{s\}$, then f is differentiable at X_0 and $\nabla f(X_0) = s$.