Deep Session 1차시 ORIENTATION

CONTENTS

/ 01

/ 02

/ 03

ORIENTATION

DEEP LEARNING

텐서

- -수업방식
- -스터디
- -커리큘럼

- 딥러닝배경

-딥러닝툴

-딥러닝데이터셋

-텐서

세미나

매주 목요일(18:00 ~ 20:00) * 4/13, 4/20는 중간고사 기간으로 수업 X 장소 : 지하 1층 B107-2호 강의는 매 주차 녹화를 통해 YOUTUBE에 업로드 예정

스터디

매 주 한 명씩 번갈아 가며 세미나 내용 Review 과제 수행 후 발표 및 어려운 점 상의 활동사진, 활동내용, 참여인원을 포함한 스터디 보고서 작성

과제

세미나 시작 하루 전(매주 수요일 11:59PM) 까지 과제 완성본 GitHub에 제출

Q&A

커뮤니티→ 'Q&A' 게시판을 통해 언제든지 질문 가능 스터디 시간 외에 궁금증이 생겼을 때 Q&A 게시판 적극 활용! 질문 방법은 게시판 예시 참조

청강기간

3월 9일 ~ 3월 30일 (4주간) 본인이 끝까지 학회 활동에 성실히 참여할 수 있는지 판단하는 기간(매주 세미나·스터디 참가, 과제 제출) 성실한 참여가 어려울 것 같다고 느껴지면 하차 가능 단, 청강 기간이 끝난 후 책임감을 갖고 참여해야 함

상품

청강기간 후 학회에 남아있는 학회원들께 굿즈 제공 과제 완성도, 참여도 등을 종합하여 우수자 선정

홈페이지

세션 세미나 자료 다운로드 & 매 주 과제 수행 후 업로드 https://cms.kookmin.ac.kr/kmu-dna/index.do

카카오톡 채널(플러스 친구)

각종 질문, 건의 사항 문의 https://pf.kakao.com/_xoCYFxj

인스타그램, 페이스북

학회 및 세션 관련 공지, 매주 세미나 요약

인스타그램 : https://www.instagram.com/kmu_dna/

페이스북: https://www.facebook.com/kookmin.bigdata.dna2013/

유튜브

실시간 강의 녹화 (매주 링크 제공)

https://www.youtube.com/channel/UCQ7D2s-rUVBHpDDRzSkkgxg

ORIENTATION

스터디

멘토			월1		
신기섭	류병하	이은지	정환승	강민수	김지민
			화1		
김지은	이수인	송유나	황원택	신기성	강성현
			화2		
이서연	임형빈	신재웅	이연수	성진솔	주현민
			수1		
김현조	김예향	황건하	김서령	이지안	김민진
			수2		
김채원	김해우	이용렬	박민희	최민지	노명진
			수3		
이현준	문대한	원대인	김종민	배지환	박종은
			금1		
천예은	남현서	김승혁	이상준	이동근	김시은

ORIENTATION 커리큘럼

차시	날짜	내용	발표자
1	03/09	딥러닝 툴 설치, 텐서	신기섭
2	03/16	선형회귀, MLP, 인공신경망, Back propagation	김채원
3	03/23	딥러닝 관련 학습 기법들	신기섭
4	03/30	CNN 기초	천예은
5	04/06	CNN 심화 1(LeNet, AlexNet, VGG)	이서연
6	04/27	CNN 심화 2(GoogLeNet, ResNet)	김지은
7	05/04	RNN 기초(Tokenization, Embedding)	이현준
8	05/11	RNN 심화(RNN, LSTM, GRU, Seq2Seq)	김현조
9	05/18	Attention, Transformer	신기섭
10	05/25	Other Topics	이현준

딥러닝

인공지능 : 인간의 학습능력, 추론능력, 지각능력, 그 외에 인공적으로 구현한 컴퓨터 프로그램 또는 이를 포함한 컴퓨터 시스템

머신러닝: 경험을 통해 자동으로 개선하는 컴퓨터 알고리즘의 연구

딥러닝: 여러 비선형 변환기법의 조합을 통해 높은 수준의 추상화를 시도하는 기계 학습 알고리즘의 집합

전통적인 머신러닝 vs 딥러닝

머신러닝: 사람이 직접 특징(feature)을 추출 → 정형 데이터 형태로 바꾸어 모델링

Feature extraction

Classification

Output

Machine Learning

딥러닝: 사람이 특징(feature) 추출에 관여 X → 비정형 데이터까지 알아서 모델링

Not Car Feature extraction + Classification Output Input

Deep Learning

Input

딥러닝 정의

2개 이상의 Hidden Layer을 지닌 다층 신경망

딥러닝 기본 구조

여러 개의 레이어를 가지고 있는 MLP(Multi-Layer Perceptron) 이미지 관련 분야에서 많이 사용되는 CNN(Convolutional Nerual Network) 텍스트와 같은 시계열 분야에서 많이 사용되는 RNN(Recurrent Neural Network)

딥러닝 응용 task

1. 이미지 분류

- 이미지가 주어졌을 때 그에 대한 라벨을 예측
- 2015년 이후로 이미지를 분류하는 ImageNet 대회에서 인간의 능력(95%)보다 더 뛰어난 성능을 보이는 딥러닝 모델이 발전(97%)

2. 객체 탐지

- 이미지 및 비디오 속에 포함돼 있는 물체에 대해 해당 물체가 어떤 물체인지를 분류하는 문제와 물체의 위치를 찾아내는 문제
- 자율주행 자동차, CCTV 등에 도입

Classification

CAT

Object Detection

CAT, DOG, DUCK

딥러닝 응용 task

- 3. 텍스트 분야
- 기계 번역, 문장 분류, 질의 응답 시스템, 개체명 인식 등
- RNN 모델의 한계
 - → 2017년 Transformer Model 연구의 시작으로 인간의 성능을 넘어서는 Language Model 개발

4. GAN

- 데이터를 예측하는 것을 넘어 데이터를 직접 생성하는 모델
- 인간의 눈으로 구분하지 못할 정도의 고품질의 데이터를 생성 ex) Deepfake, Style Transfer

CUDA(Computed Unified Device Architecture)

GPU에서 병렬 처리를 수행하는 알고리즘을 각종 프로그래밍 언어에 사용할 수 있도록 해주는 GPGPU 기술 파이토치, 텐서플로우 등 대다수의 딥러닝 프레임 워크에서 GPU를 사용하려면 CUDA를 설치해야 함! * GPGPU(General-Purpose computing on Graphics Processing Units)

CuDNN(nvidia CUDA Deep Neural Network Library)

딥러닝 모델을 위한 GPU 가속화 라이브러리의 기초 요소와 같은 일반적인 루틴을 빠르게 이행할 수 있도록 해주는 라이브러리 파이토치, 텐서플로우 모두 지원하며 반드시 CUDA와 함께 설치!

CUDA 사용법 in Pytorch

torch module을 GPU를 이용해 계산할 수 있는지 파악하고 device를 할당하는 코드

torch.cuda.is_available(): GPU를 이용해 계산할 수 있는지 파악

torch.device('cuda') : device에 GPU를 할당 torch.device('cpu') : device에 CPU를 할당

```
import torch

if torch.cuda.is_available():
    DEVICE = torch.device('cuda')

else:
    DEVICE = torch.device('cpu')

print('torch:', torch.__version__, 'device:', DEVICE)
```

torch: 1.13.1 device: cuda

■ 딥러닝 학습의 전체적인 과정

BATCH SIZE : 파라미터를 업데이트할 때 계산되는 데이터의 개수

MINI-BATCH : 데이터를 batch size 씩 나눈 1개의 부분 ITERATION : 한 개의 mini-batch를 이용해 학습하는 횟수

EPOCH : 전체 데이터를 이용해 학습을 진행한 횟수

batch size = 32 epoch = 10 (사용자 정의 hyperparameter) (전체 데이터가 640개일 경우)

32개 데이터로 1개의 mini-batch 구성 1 epoch당 20회의 iteration 총 200번 반복해서 학습 진행

DEEP LEARNING

딥러닝 툴

Dataset

ImageNet

MNIST

CIFAR 10

- 세상의 모든 객체를 인식하고 overfitting 문제를 극복하고자 고안
- 22만개의 카테고리와 1400만 장의 이미지가 모두 주석으로 표기
- ILSVRC라는 이미지 인식 경진대회로 컴퓨터 비전 분야가 매우 큰 발전
- 0부터 9까지의 숫자들로 이루어진 손글씨 데이터
- 60,000개의 Training 이미지와 10,000개의 Test 이미지(28X28픽셀)
- Yann Lecun 교수가 고안한 것으로 784 피처의 1-D numpy 배열
- 10개의 서로 다른 클래스에 각각 6,000개의 32X32 컬러 이미지
- 비행기, 자동차, 새, 고양이, 사슴, 개, 개구리, 말, 배, 트럭

그 외 데이터: torchvision.datasets — Torchvision 0.8.1 documentation (pytorch.org)

torchvision.datasets

Pytorch에서 연구용으로 자주 이용하는 데이터 모든 데이터셋은 torch.utils.data.Dataset의 하위 클래스

- → torch.utils.data.DataLoader을 통해 데이터 불러오기 가능
- → torch.multiprocessing을 사용해 여러 샘플을 병렬로 불러옴

텐서 테**人**

텐서(Tensor)

데이터를 표현하는 단위 NumPy의 배열과 비슷한 다차원 배열

스칼라(Scalar): 하나의 값을 표현할 때 1개의 수치로 표현(상숫값) 벡터(Vector): 하나의 값을 표현할 때 2개 이상의 수치로 표현(1차원)

행렬(Matrix): 2개 이상의 벡터 값을 통합해 구성된 값(2차원)

텐서(Tensor): 3차원 이상의 배열

텐서 **테**사

텐서의 종류

torch.tensor: tensor를 생성하는 함수

자료형	CPU 텐서	GPU 텐서
32비트 부동소수점	torch.FloatTensor	torch.cuda.FloatTensor
64비트 부동소수점	torch.DoubleTensor	torch.cuda. DoubleTensor
16비트 부동소수점	torch.HalfTensor	torch.cuda. HalfTensor
8비트 정수(부호 없음)	torch. ByteTensor	torch.cuda.ByteTensor
8비트 정수(부호 있음)	torch.CharTensor	torch.cuda. CharTensor
16비트 정수(부호 있음)	torch. ShortTensor	torch.cuda.ShortTensor
32비트 정수(부호 있음)	torch.IntTensor	torch.cuda. IntTensor
64비트 정수(부호 있음)	torch. LongTensor	torch.cuda.LongTensor

텐서 메소드

Pytorch에서 tensor를 다루는 방법이 numpy와 유사

1	2	3
4	5	6
7	8	9
10	11	12

tensor 생성 및 형상 확인

```
t = torch.tensor([[1,2,3], [4,5,6],
                [7,8,9], [10,11,12]])
print(t.dim()) # t의 차원 수 반환
print(t.shape) # tensor의 형상(shape) 반환
print(t.size()) # .shape와 동일
torch.Size([4, 3])
torch.Size([4, 3])
```

tensor 인덱싱 & 슬라이싱

```
print(t[0,1]) # 의덱상
print(t[:2, 1:]) # 슬라이상
tensor(2)
tensor([[2, 3],
       [5, 6]])
```

텐서 테**서**

텐서 사칙연산

	+, -, *, /	내장 메소드
덧셈	torch.tensor() + torch.tensor()	torch.add(tensor1, tensor2)
뺄셈	torch.tensor() - torch.tensor()	torch.sub(tensor1, tensor2)
곱셈	torch.tensor() * torch.tensor()	torch.mul(tensor1, tensor2)
나눗셈	torch.tensor()/torch.tensor()	torch.div(tensor1, tensor2)

사칙연산은 각 요소 별(element-wise)로 계산, 행렬 곱 연산은 torch.matmul(tensor1, tensor2)로 계산

Broadcasting

서로 다른 크기의 텐서를 연산할 때 자동적으로 사이즈를 맞춰줌 ex) scalar(1,) + vector(1, 2) [3] + [[1, 2]] = [[3, 3]] + [[1, 2]] = [[4, 5]]

평균, 합계

1	2	3
4	5	6
7	8	9
10	11	12

```
t = torch.FloatTensor([[1,2,3], [4,5,6],
                [7,8,9], [10,11,12]])
print(t.mean())
                     # 전체 원소에 대한 평균
print(t.mean(dim=0)) # 열에 대한 평균
print(t.mean(dim=-1)) # -1(1)차원에 대한 평균
tensor(6.5000)
tensor([5.5000, 6.5000, 7.5000])
tensor([ 2., 5., 8., 11.])
```

```
print(t.sum()) # 전체 원소에 대한 합계
print(t.sum(dim=0)) # 열에 대한 합계
print(t.sum(dim=-1))
                  # -1(1)차원에 대한 합계
tensor(78.)
tensor([22., 26., 30.])
tensor([ 6., 15., 24., 33.])
```

최대, 최소

```
print(t.max())
                    # 전체 원소에 대한 최댓값
print(t.max(dim=0)[0])
                   # 열을 기준으로 최댓값 구함
print(t.max(dim=0)[1])
                   # 열을 기준으로 최댓값의 위치를 구함
print(t.argmax())
                    # 전체 원소 중 최댓값의 위치를 구함
tensor(12.)
tensor([10., 11., 12.])
tensor([3, 3, 3])
tensor(11)
```

```
|print(t.min())
                    # 전체 원소에 대한 최솟값
print(t.min(dim=0)[0])
                    # 열을 기준으로 최솟값 구함
print(t.min(dim=0)[1])
                    # 열을 기준으로 최솟값의 위치를 구함
print(t.argmin())
                    # 전체 원소 중 최솟값의 위치를 구함
tensor(1.)
tensor([1., 2., 3.])
tensor([0, 0, 0])
tensor(0)
```

텐삿

View(Reshape)

Shape를 바꿔줌

Squeeze, Unsqueeze

```
t = t.squeeze()
t.unsqueeze(1)
```

- Squeeze 기존에 (4 X 1) 이였던 t를 1을 제거하여 벡터로 변환 ex) (3, 1, 4) -> (3, 4)
- Unsqueeze 벡터였던 t를 다시 (4 X 1)의 텐서로 변환 ex) (3, 4) -> (3, 4, 1)

Concatenate

x = torch.tensor([[1,2],[3,4]])y = torch.tensor([[5,6],[7,8]])

X 2 3 4

5 6 8

torch.cat([x, y], dim=0) # dim = 0이 늘어날

torch.cat([x, y], dim=1) # dim = 10/ 늘어남

1	2	5	6
3	4	7	8

stack

Concatnate를 좀 더 편하게 해줌

```
x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
z = torch.tensor([5, 6])
torch.stack([x, y, z]) # dim=0, 0차원을 기준으로 stack
torch.stack([x, y, z], dim=1) # dim=1, 1차원을 기준으로 stack
```

torch.stack([x, y, z]) → torch.cat([x.unsqueeze(0), y.unsqueeze(0), z.unsqueeze(0)], dim=0)

X

4

5 6

Z

-dim = 0

1	2
3	4
5	6

- dim = 1

1	3	5
2	4	6

텐서 **텐**서

Type Casting

Type을 바꿔줌

```
torch.LongTensor([1, 2, 3, 4]).float() # FloatTensor로 변환
torch.FloatTensor([1., 2., 3., 4.]).int() # IntTensor로 변환
torch.ByteTensor([True, False, False, True]).float() # LongTensor로 변환
torch.ByteTensor([True, False, False, True]).float() # FloatTensor로 변환
```

In-place operation

변수에 할당하지 않아도 바로 저장

```
x.mul(2) # 실행 결과가 변수에 저장되지 않음
x.mul_(2) #_ 추가 시, 메모리에 새로 선언하지 않고 정답값에 바로 넣음
```

Ones & Zeros

입력값의 shape과 동일하게 0/1로 가득찬 tensor 생성

```
x = torch.tensor([[0, 1, 2], [2, 1, 0]])
torch.ones_like(x)
torch.zeros_like(x)
tensor([[0, 0, 0],
        [0, 0, 0]])
```


ones_like

1	1	1
1	1	1

zeros_like

0	0	0
0	0	0

- device가 다른 텐서끼리는 서로 연산 불가
- device를 통일해서 수행해야 error가 나지 않기 때문에 사용

과제

- 1. 조 별로 조이름과 조장, 발표 순서 정하기
- 2. 스터디 보고서 작성해서 홈페이지에 업로드하기

②2023 D&A Deep Session 1차人 THANK YOU

2023.03.09