Applications of AI/ML

Examples from Industry use cases

Raman Sankaran

Agenda

- ML project lifecycle
- Example 1: Spam detection
- Example 2: Predicting viral sequences
- Example 3: Entity resolution

Applying ML to industrial use cases

- Identify specific business problem, which may benefit from ML
 - No use of ML when simpler deterministic solutions work
 - How often the predictions needed: online vs batch
- What is the specific ML problem:
 - Classification / clustering / ranking / ...
 - How correlated is this to the business problem
- Data
 - Is it easy to collect data for training?
 - Manual collection vs self supervised
 - How to store them efficiently for processing
- Choose models depending on the requirements identified
 - Fast serving may benefit from lighter models
- Serving infrastructures
 - Streaming (Kafka, Flint) or batch
- Continuous Monitoring
- Metrics

Machine learning Project Lifecycle

Image from "<u>Designing Machine Learning Systems</u>", Chip Huyen

Spam Detection

Problem Setup

Context: Social networks, email, user generated content.

Multiple types

- Money Scam
- Misinformation / Fake information
- Commercial spam
- Hateful content
- ...

Problem: Identify if a given content is spam

- Impossible to scale any manual solution to large scale
- Need real time prediction

Text Spam identification

Challenges

- Variable length input
 - Most ML classifiers are designed for fixed length features.
 - LR, SVM: d-dim
 - How to encode the input into fixed length information?
- Multiple variants of same word, typos, ...
- Generic words (stopwords)
- Labelling samples
 - Limited by available manual labelers.
 - Low spam rate in practice

Discussion: approaches?

Prediction protocol: example

Example

Dear Raman, Bank of America is closing your bank account. Please confirm your PIN at [link] to keep your account activated.

1. Tokenize

['Dear', 'Bank', 'of', 'America', 'is', 'closing', 'your', 'bank', 'account', 'Please', 'confirm', 'your', 'PlN', 'at', 'to', 'keep', 'your', 'account', 'activated']

2. Remove Stopwords

['Dear', 'Bank', 'America', 'closing', 'your', 'bank', 'account', 'Please', 'confirm', 'your', 'PIN', 'keep', 'your', 'account', 'activated']

3. Stemming

['dear', 'bank', 'america', 'close', 'your', 'bank', 'account', 'pleas', 'confirm', 'your', 'pin', 'keep', 'your', 'account', 'activ']

Prediction protocol: example

4. Count features

```
{'dear': 1, 'bank': 2, 'america': 1, 'close': 1, 'your': 3, 'account': 2, 'pleas': 1, 'confirm': 1, 'pin': 1, 'keep': 1, 'activ': 1}
```

- 6. Predict the score using trained model
- 7. Arrive at the label using the score.
 - Use the operating threshold for the desired precision level.

Model training

Data - list of labelled examples (spam / non-spam)

Preprocessing - as discussed in the last example

Tokenizing, remove stopwords, stemming, etc.

Featurizing

- Construct vocabulary
- Build count vectors

Model

Learn binary classifiers (LR, SVM, Trees, NNs, etc.)

Improving the model

Spatial correlation

- N grams
 - Concatenate nearby word tokens
 - Vocabulary increases with N.

Distinguishing generic vs specific words

- Scale the counts by a weight
- Inverse document frequency

Illustration - <See Notebook>

Practical considerations

Operating thresholds

- Typical requirements on precision (>90%)
- Also depends on relative importance between recall and precision
- Need to tune the threshold level accordingly

Data drift

- The samples distribution may change with time
- Need to retrain the model in regular intervals

Modern NLP

Word Representations (Embeddings)

- Word2Vec, Glove, d = 300
- f('Man) f('woman') = f('king') f('queen')

Exploit the temporal nature

- Recurrent neural nets
- RNN, LSTM, GRU, etc.

State-of-the-art

- Transformers based: BERT, GPT, LLaMa, LaMDA

Predict Viral Sequences

Next I'm buying Coca-Cola to put the cocaine back in

6:26 AM · Apr 28, 2022

Problem

Viral sequences

- Posts which accumulate very high views
- Definition: Absolute vs relative
- Social media, youtube, etc.

Problem - Given a social media post, predict if it will go viral in the next K days.

Significance

- Correlation between viral and spam
- Improve user experience

Formal setup

Input - for every sample (post)

- Author information
- Post history (timestamps of views, like, share, comment)
 - $H = \{(t_i, z_i) | t_i < t\}$

Prediction problem:

- If the sample will be 'viral' in the next K days
- Samples identified positive may be queued for manual review.

Discussion?

A simple featurizer

Let the current time = t

Construct relative time differences

- Given a sequence S0 = {t0, t1, ..., tn} of views
 - transform them to S1 = {t t_0, t t_1, ..., t- t_n}

Discretization of time differences

- Transform S1 as S2 = {b_0, b_1, ..., bn}
 - Each b_i denotes a time bin (say, hourly)

Fixed length feature

- {b_0: c_0, b_1: c_1, ..., b_n: c_n}

A simple featurizer

Components

- Count features for Views, likes, shares separately.
- Features for the author
 - Demographic
 - Network features
 - how many connections
 - how frequent viral posts
 - How frequent spam posts

Assumptions

- Each view / share / like is independent
- Only statistics over each time window are important.

Model learning

Dataset construction

- Randomly select samples
- For each sample
 - Label each sample as +/-
 - If sample is +
 - Let the virality timestamp = t
 - Choose a timestamp t_f in [t K days, t]
 - Construct the count features for each sample upto time t_f
 - If sample is -
 - Let current time = t
 - Choose any timestamp t_f < t K days
 - Construct count features for each sample upto t_f

Models: LR / SVM / Trees, etc.

Model Evaluation

Metrics of interest

- Recall@k
- Precision@k

Results

- An XGBoost prediction model was used
- At recall level of 50%, the precision was 80%

Reasonable results: Can they be improved?

Limitations

Viral actions -> views

- The proposed model doesn't make use of it

Features correlation

- Counts in a time bin may have correlation with future ones.

How to include these into the prediction model?

Poisson Process

Definition: Counting Process N(t)

- Counts #events upto time t
- $N(t) \ge 0$, Monotone

Homogeneous Poisson process

- Special case of counting process
- For $\lambda > 0$, $N(t) \sim Poisson(\lambda t)$
 - Eg. lambda = 1, t = 1
 - N(1) ~ Poisson(1)
 - N(2) ~ Poisson(1*2)

_

- $P(N(t) = n) = \exp(-\lambda t) (\lambda t)^n / n!$
- $N(t_2)$ $N(t_1)$ ~ Poisson($\lambda(t_2 t_1)$)

Properties

- $E[N(t)] = \lambda t$
- Has independent increments
- Popular for modeling queues

Poisson Process

Limitations of homogeneous Poisson process

- Past events do not influence future events
- Constant rate λ may be limiting the applications.

Non-Homogeneous Poisson Process

- Assume that λ is a function of time, $\lambda(t)$
- $N(t) \sim Poisson(\int_0^t \lambda(t) dt)$

How to model $\lambda(t)$?

- Past events should influence future events
- Influence of an past event should reduce with time

Hawkes Process

Influence model

- $\lambda(t) = \mu + \sum_{i < t} \varphi(t t_i)$
- μ: modeling the event occurring on its own
- $\varphi(t t_i)$
 - model the event happening at t, because of a past event at t_i.
 - Φ should reduce as (t t_i) increases
 - Common choice $\phi(t t_i) = \alpha \exp(-(t t_i))$
- $\lambda(t) = \mu + \alpha \sum_{t_i < t} \exp(-(t t_i))$
 - Parameters : μ>0, 0<α<1

Hawkes Process for virality

Mapping to virality problem

- Separate counts N(t) for number of views, likes, shares, comments, resp.
 - $N(t) = [N_{view}(t), N_{like}(t), N_{share}(t), N_{com}(t)]$
- Should capture interactions
 - Like by an user A causes view by an user B
 - Share by an user A causes share by an user B
- Need separate λ(t) for each type
 - $\lambda(t) = [\lambda_{\text{view}}(t), \lambda_{\text{like}}(t), \lambda_{\text{share}}(t), \lambda_{\text{com}}(t)]$

Hawkes for multiple variates:

- α assumes all previous events have same influence
- Relax this: $\alpha_{i, j}$ should depend on the source and target event types
- $\lambda_{\text{view}}(t) = \mu + \sum_{t_i < t} \alpha_{z(i), \text{ view}} \exp(-(t t_i))$

Hawkes for prediction

Given a sample (post),

- Compute the best parameters μ, α specific to the sample
 - Maximum likelihood estimation
- Now, μ , α may be thought of as a feature representation for the sample
- Combined features
 - Binned counts
 - μ, α
- Train a binary classification model
 - Similar to the previous attempt

Entity Resolution

Problem setup

Real estate transactions

- Agent A, date, value, company, license, contact info, etc.
- Noisy data
 - Lack of an unique identifier for the agent
 - License, contact info typically shared across peers
 - Names misspelled, abbreviated, sub with nicknames, etc.

Problem

- Need a way to attribute a transaction to an agent
- Similar problem: normalize the company names
- Total number of transactions ~ O(Millions)

Solution approaches

Requirements

- Name comparisons: Name 1 == name 2 ?
- Comparison of tuples:
 - (name1, license1, contact1, company1,)
 - (name2, license2, contact2, company2,)
- Not scalable to compare all tuple pairs.

Name comparison

- Word embeddings ???
- Simpler distance measures
 - levenshtein distance
 - Extension for word level
- Hashing based
 - LSH: Locality sensitive hashing

A scalable approach

Goal

- To generate clusters among the tuples
- Issue: can't compare all pairs

Two stages

- Generate macro clusters
 - Lower precision: a cluster may have multiple entities
 - High recall: All records of an entity to fall within the same cluster
- Refine macro clusters
 - Induce a graph across the tuples as nodes
 - Compare all pairs to arrive at edge weights
 - Identify strongly connected components within.

Generating Macro clusters

Attribute driven

- 'Group by' the attributes, say license
- Aggregate the names within a group (licence id-> list names -> cluster the names)
 - Cluster the names
 - Use Levenshtein distance
- Scalable for very large data in spark
- Avoid false positives
 - Qualify each attribute value for clustering
 - Intuition: An attribute mapping to many (say, 100) different names is more likely to generate false positive clusters
 - Entropy based qualification.

Name driven: LSH

- Core idea: higher the similarity of a pair, higher the likelihood that they are hashed to the same bucket.
- A hash bucket represents a macro cluster.
- Possible to derive hash buckets without all pairs comparisons.

Refining Macro clusters

Graph construction

- Nodes: each tuples within a macro cluster
 - Tuple: (name, license, contact, company, ...)
- Edges:
 - Non-weighted have an edge if two tuples share any of the attribute
 - Weighted fraction of attributes shared
 - Learnt model: train a model to predict the similarity of the tuples
 - Requires labelled dataset
 - Model output required to represent P[tuple1 == tuple2]

Graph clustering

Connected components

- Set a threshold W for weights
- Drop all edges whose weight < W
- Identify all connected components (islands) as an entity

Spectral clustering

- An approach for identifying communities
- Given a similarity matrix A
 - Construct Laplacian L = D A
 - D: Diagonal matrix, D_ii = \sum_j A_ij
 - If unweighted A, D_ii represents the degree of node i
 - K-dimensional Embedding for nodes: First K Eigen vectors of L, ordered by eigen value
 - Use k-means on the node embeddings

Questions?

Thank you!