

INFORME DE APROBACIÓN DE AYUDANTÍA DE CÁTEDRA SUBDECANATO DE FCI SPA 2024 - 2025

Presentado por: Ing. Mariela Díaz Ponce

INTRODUCCIÓN

La ayudantía de cátedra como estrategia pedagógica en el ámbito universitario, se ha consolidado como una herramienta de significativa relevancia en la formación integral de los estudiantes. Para el Consejo Directivo de la Facultad de Ciencias de la Ingeniería de la Universidad Técnica Estatal de Quevedo, este proceso académico trasciende la simple colaboración en el aula, pues actúa como un mecanismo para fortalecer el aprendizaje, fomentar el sentido de pertenencia y promover la continuidad en los estudios superiores. Al brindar a los estudiantes la oportunidad de interactuar directamente con sus pares y docentes en un contexto más cercano, la ayudantía de cátedra no solo facilita el dominio de los contenidos académicos, sino que también contribuye a la creación de un ambiente educativo más inclusivo y motivador.

Esta dinámica, impacta positivamente en los índices de retención estudiantil, posicionándose como un eje clave para asegurar el éxito académico y la permanencia de los estudiantes en su trayectoria universitaria. Motivo por el cual, en cumplimiento del Reglamento de Ayudantía de Cátedra de la UTEQ, se presenta el informe de aprobación de las horas de ayudantía de cátedra e Investigación de los estudiantes de las carreras de Ambiental, Electricidad, Mecánica y Software que cumplieron a cabalidad con el artículo 30 y 31 que detalla las obligaciones de los ayudantes de cátedra e investigación respectivamente.

EJECUCIÓN DEL PROCESO

En cumplimiento del Reglamento de Ayudantía de Cátedra de la UTEQ, se inició la convocatoria al proceso de participación de Ayudantía de cátedra e Investigación en la Facultad de Ciencias de la Ingeniería, dando como resultado la participación de 22 estudiantes para ayudantías de cátedras y 6 en ayudantía de Investigación donde el 100% cumplió con los requisitos de méritos establecidos en el artículo 17. La ejecución del proceso oposición, ratificó el 100% de aprobación de acuerdo a los artículos 22, 23 y 24 de la normativa en mención.

Se cumplió con el artículo 29 del Reglamento de Ayudantía de Cátedra ejecutando la inducción desde Subdecanato para el desarrollo y seguimiento del proceso de Ayudantía de Cátedra, se socializó la normativa a los estudiantes participantes del proceso, así como las directrices de ejecución del proceso en calidad de ayudantes. Presentando como evidencia el informe mensual de las actividades; los mismos que llevaron un seguimiento riguroso de las horas cumplidas desde el mes de diciembre 2024 hasta el mes de marzo 2025.

El resultado refleja la aprobación del proceso 100% de los ayudantes de cátedra que corresponden a 22 estudiantes (13 de Ambiental, 2 de Electricidad, 1 de Telemática y 6 de Software), con la presentación de los respectivos informes mensuales con evidencias del cumplimiento como lo solicita el artículo 35 de la normativa institucional correspondiente. En la Tabla 1. Horas ejecutadas de Ayudantía de Cátedra, como se detalla a continuación:

HORAS APROBADAS EN EL PROCESO DE AYUDANTÌAS DE CÁTEDRA							
N°	Carrera	Asignaturas	Estudiantes	Horas aprobadas			
1	INGENIERÍA AMBIENTAL	Evaluación de Impactos Ambientales	BRYAN PATRICIO CALLE CEDENO 0503742520 9no	241 horas			
2	INGENIERÍA AMBIENTAL	Abastecimiento y Contaminación del Agua.	ALMEIDA ENRIQUEZ MAYRA GUADALUPE 2300034895 6to	232 horas			
3	INGENIERÍA AMBIENTAL	Métodos numéricos aplicados a la ingeniería ambiental	KEVIN ISMAEL MUÑOZ RODRIGUEZ 0942297094 9no	241 horas			
4	INGENIERÍA AMBIENTAL	PRODUCCIÓN MÁS LIMPIA	LLANOS ESPÍN MARLENE MARISELA 0850688227	250 horas			
5	INGENIERÍA AMBIENTAL	ECOLOGÍA GENERAL	JONATHAN FABRICIO MACIAS BAJANA 2350490187 8vo	159 horas			
6	INGENIERÍA AMBIENTAL	Geomática	ELIAS JOSUE ROMERO ALCIVAR 1250570809 7mo	232 horas			
7	INGENIERÍA AMBIENTAL	Edafología y Contaminación del Suelo	Velásquez Mendoza Nahomy Ruby 0942328865 7mo	256 horas			
8	INGENIERÍA AMBIENTAL	LEGISLACIÓN AMBIENTAL	Almeida Casanova Yenely Mabel 0941373136 5to	244 horas			
9	INGENIERÍA AMBIENTAL	Modelización de la Calidad del Agua	Josselyn Mishel Marín Macías 1250064407 7mo	262 horas			
10	INGENIERÍA AMBIENTAL	Modelización de la Calidad del Aire	Debbie Brisney Vera Cedeño 0932281793 7mo	297 horas			
11	INGENIERÍA AMBIENTAL	Hidrología Ambiental	Hoyos Peñaherrera Andrey Sebastian 1207826213 6to	240 horas			
12	INGENIERÍA AMBIENTAL	Manejo De Cuencas Hídricas	Delgado Bermello Nayeli Carolina 2300876733 7mo	268 horas			
13	INGENIERÍA SOFTWARE	Enfoque a la Ingeniería de Software	Bryan Eduardo Robalino Chuez 1206865725 8vo	244 horas			
14	INGENIERÍA SOFTWARE	Enfoque a la Ingeniería de Software	LUIS AARON REYES PALACIOS 1207027861 8vo	253 horas			
15	INGENIERÍA SOFTWARE	Estructura de Datos	KERLY MIKAELA TRIANA ARRIETA 1208759348, 8vo	244 horas			
16	INGENIERÍA SOFTWARE	Enfoque a la Ingeniería de Software	RAFAEL ALEXANDER NAVAS RIVERA 1250887344 8vo	256 horas			

L

	HORAS APROBADAS EN EL PROCESO DE AYUDANTÌAS DE CÁTEDRA							
N°	Carrera	Asignaturas	Estudiantes	Horas aprobadas				
17	INGENIERÍA SOFTWARE	Metodología de la Investigación	Jean Pierre Morales Vera 1208426823	200 horas				
18	INGENIERÍA EN TELEMÁTICA	CÁLCULO DIFERENCIAL	MIYAKO KUSHIRO MORALES COBENA 1250214887 9no	260 horas				
19	€ENIERÍA EN ELECTRICID	Ecuaciones diferenciales	WILLIAM MAO BELTRAN MARIN 1761149150 8VO	140 horas				
20	INGENIERÍA AMBIENTAL	ODIVERSIDAD Y ÁREAS PROTEGIDA	Kevin Fernando Loor Lucero 1250747951 9no	241 horas				
21	INGENIERÍA SOFTWARE	DRITMOS Y LÓGICA DE PROGRAMA(JOSSELYN JELITZA VERA ZAMBRANO 1207291467 8vo	265 horas				
22	€ENIERÍA EN ELECTRICID	TRIBUCIÓN DE LA ENERGÍA ELÉCTR	REYES JIPA LUIS DAVID 1751500958 8vo	227 horas				

Para el proceso de ayudantía de Investigación, el resultado refleja la aprobación del proceso 100% de los ayudantes de investigación que corresponden a 6 estudiantes (4 de Ambiental y 2 de Mecánica), con la presentación de los respectivos informes mensuales con evidencias del cumplimiento como lo solicita el artículo 35 de la normativa institucional correspondiente. En la Tabla 2. Horas ejecutadas de Ayudantía de Investigación, como se detalla a continuación:

N°	Carrera	Título del Proyecto FOCICYT	Estudiante	Horas aprobadas
1	INGENIERÍA AMBIENTAL	Impacto ambiental de metales tóxicos en granos de maíz (Zea Mays), arroz (Oryza Sativa) y soja (Glycine Max) procedentes de la provincia de Los Ríos	DOLMAN JOSUE GUZMAN ALMENDARIZ 2350774085 9NO	236 horas
2	INGENIERÍA AMBIENTAL	Impacto ambiental de metales tóxicos en granos de maíz (Zea Mays), arroz (Oryza Sativa) y soja (Glycine Max) procedentes de la provincia de Los Ríos	DAMARIS ZULEMA CEVALLOS HERRERA 1250323894 9no	236 horas
3	INGENIERÍA AMBIENTAL	Uso, disponibilidad y calidad del agua subterránea en la microcuenca del río Quevedo	KAREN CAROLINA VERA VELIZ 120807981-2, 9no	241 horas
4	INGENIERÍA AMBIENTAL	Uso, disponibilidad y calidad del agua en la microcuenca del río Quevedo	ANGEL ANDRES CABRERA RODRIGUEZ 1250155437	241 horas
5	INGENIERÍA MECÁNICA	"Diseño mecánico de dispositivos ortopédicos de movilidad para personas con discapacidad física en estado de vulnerabilidad en el Cantón Quevedo".	Arias Holguín Edison Jair 1207920974 7mo	216 horas
6	INGENIERÍA MECÁNICA	"Diseño mecánico de dispositivos ortopédicos de movilidad para personas con discapacidad física en estado de vulnerabilidad en el cantón Quevedo"	CAROLINE LIZETH LOPEZ PONCE 1752168854 8vo	216 horas

CONCLUSIÓN

La aplicación del Reglamento de Ayudantía de Cátedra e Investigación de la UTEQ en la Facultad de Ciencias de la Ingeniería ha demostrado ser una estrategia académica de alto impacto, alcanzando un 100% de cumplimiento en su ejecución y fortaleciendo la permanencia estudiantil. Es una estrategia de acompañamiento que fortalece la acción tutorial, que ha logrado una significativa reducción en los índices de deserción, que aporta a mejorar la proyección de la tasa de titulación de las carreras para que más estudiantes culminen con éxito su formación universitaria.

Además, la asistencia personalizada ha transformado la dinámica pedagógica, brindando un apoyo con mayor énfasis a los estudiantes con dificultad de aprendizaje o con segunda matrícula; un espacio de interacción más cercano y efectivo con sus docentes y pares. Con un 18% de apoyo dirigido a las asignaturas de cálculo y un 82% enfocado en materias profesionalizantes, el programa ha optimizado el aprendizaje, asegurando que los futuros ingenieros cuenten con una sólida base teórica y práctica.

Este proceso ha fortalecido el desarrollo académico, mediante la consolidación de una comunidad universitaria más colaborativa, motivada y comprometida con la excelencia. La ayudantía de cátedra se posiciona, así, como un pilar clave en la formación de profesionales altamente capacitados, asegurando que el conocimiento y la innovación sigan impulsando el crecimiento de la educación superior.

RECOMENDACIONES

Para consolidar el impacto positivo del proceso de ayudantía de cátedra e investigación y aumentar la participación estudiantil, es esencial implementar estrategias innovadoras y adaptativas que optimicen la experiencia de aprendizaje. Se recomienda adoptar un enfoque integral que abarque tres pilares clave: motivación, acompañamiento académico personalizado y fortalecimiento del apoyo en asignaturas críticas.

1 Incentivar la Participación Estudiantil

Considerar la participación de los ayudantes de cátedra que aprobaron el proceso de acuerdo a la normativa, en una de las capacitaciones de las semanas curriculares; que considere una capacitación del uso de Plataformas digitales de aprendizaje: Implementar entornos virtuales de apoyo donde los ayudantes puedan resolver dudas y compartir material complementario.

2 Optimizar el Proceso de Ayudantía de Cátedra e Investigación

Las asignaturas consideradas para el proceso de ayudantía de cátedra deben ser aquellas que históricamente presenta índice elevados de retención que se reportaron en el Informe de Tutorías Académica del periodo que finalizó. : Asignar ayudantes con formación específica en áreas de mayor dificultad, asegurando que los estudiantes reciban un acompañamiento focalizado.

Adicionalmente, se sugiere que el proceso de Ayudantía de Cátedra, sea un proyecto de Investigación que genere conocimiento y su relación con la realidad profesional.

3 Implementación de Estrategias de Acción Tutorial

Aplicar un Análisis de estudiantes en riesgo de deserción en el SGA, mediante técnicas de Power BI, que permita que el docente oriente al Ayudante de Cátedra para asistir a los alumnos con dificultades y diseñar planes de tutoría específicos que refuercen sus habilidades. Que el proceso de ayudantía de cátedra sea implementado en el SGA para una mejor optimización de la aplicación, seguimiento y obtención de los resultados esperados.