Position-specific scoring matrices (PSSM)

Jacques van Helden https://orcid.org/0000-0002-8799-8584

Aix-Marseille Université, France Theory and Approaches of Genome Complexity (TAGC)

> Institut Français de Bioinformatique (IFB) http://www.france-bioinformatique.fr

Introduction

- In the biological literature, the binding specificity of a transcription factor is often represented with a consensus string, which can be strict (e.g. CAGTGggg) or include some ambiguous residues (e.g. CACGTW).
- This representation is convenient to speak about a TF binding specificity, but it is by no way operational to predict TFBS.
- We describe in the following slides the theoretical grounds of the most commonly used representation models for transcription factor binding specificity: position-specific scoring matrices (TFBM).

Consensus representation

- The TRANSFAC database contains 8 binding sites for the yeast transcription factor Pho4p
 - 5/8 contain the core of high-affinity binding sites (CACGTG)
 - 3/8 contain the core of medium-affinity binding sites (CACGTT)
- The IUPAC ambigous nucleotide code allows to represent variable residues.
- 15 letters to represent any possible combination between the 4 nucleotides (24 1=15).
- This representation however gives a poor idea of the relative importance of residues.

R06098	\TCA cacgtg gga\
R06099	\GGC CACGTG CAG\
R06100	\TGA cacgtg ggT\
R06102	\CAG CACGTG GGG\
R06103	\TTC CACGTG CGA\
R06104	\ACG CACGTT GGT\
R06097	\CAG CACGTT TTC\
R06101	\TAC CACGTT TTC\
Cons	nnVCACGTKBDn

1110	10 ambinuara	
_		nucleotide code
Α	Α	A denine
С	С	Cytosine
G	G	G uanine
Т	T	T hymine
R	A or G	pu R ine
Υ	C or T	p Y rimidine
W	A or T	W eak hydrogen bonding
S	G or C	Strong hydrogen bonding
M	A or C	aMino group at common position
K	G or T	Keto group at common position
Н	A, C or T	not G
В	G, C or T	not A
V	G, A, C	not T
D	G, A or T	not C
N	G , A , C or T	aNy

Regulatory Sequence Analysis

From alignments to weights

Building a position-specific scoring matrix from a collection of sites

Alignment of Pho4p binding sites (TRANSFAC annotations)

R06098	T	С	A	С	A	С	G	T	G	G	G	Α
R06099	G	G	С	С	A	С	G	T	G	C	Α	G
R06100	T	G	А	С	A	С	G	T	G	G	G	T
R06102	С	А	G	С	A	С	G	T	G	G	G	G
R06103	T	Т	С	С	A	С	G	T	G	C	G	A
R06104	A	С	G	С	A	С	G	T	T	G	G	T
R06097	С	А	G	C	A	C	G	T	T	T	T	C
R06101	Т	А	С	С	A	С	G	T	T	T	T	С

Count matrix (TRANSFAC matrix F\$PHO4_01)

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12
A	1	3	2	0	8	0	0	0	0	0	1	2
С	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
Т	4	1	0	0	0	0	0	8	3	2	2	2
Sum	8	8	8	8	8	8	8	8	8	8	8	8

Tom Schneider's sequence logo

(generated with Web Logo http://weblogo.berkeley.edu/logo.cgi)

Residue count matrix

Count matrix (TRANSFAC matrix F\$PHO4_01)

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	3	2	0	8	0	0	0	0	0	1	2
С	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
Т	4	1	0	0	0	0	0	8	3	2	2	2
Sum	8	8	8	8	8	8	8	8	8	8	8	8

Tom Schneider's sequence logo

(generated with Web Logo http://weblogo.berkeley.edu/logo.cgi)

Frequency matrix

Pos	1	2	3	4	5	6	7	8	9	10	11	12
A	0,13	0,38	0,25	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,13	0,25
С	0,25	0,25	0,38	1,00	0,00	1,00	0,00	0,00	0,00	0,25	0,00	0,25
G	0,13	0,25	0,38	0,00	0,00	0,00	1,00	0,00	0,63	0,50	0,63	0,25
Т	0,50	0,13	0,00	0,00	0,00	0,00	0,00	1,00	0,38	0,25	0,25	0,25
Sum	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

$$f_{i,j} = \frac{n_{i,j}}{\sum_{i=1}^{A} n_{i,j}}$$

A alphabet size (=4) $n_{i,j,}$ occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j

PHO4

Corrected frequency matrix

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

1st option: identically distributed pseudo-weight

$$f'_{i,j} = \frac{n_{i,j} + k/A}{\sum_{i=1}^{A} n_{i,j} + k}$$

2nd option: pseudo-weighst distributed according to residue priors

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

alphabet size (=4)
occurrences of residue i at position j
prior residue probability for residue i
relative frequency of residue i at position j
pseudo weight (arbitrary, 1 in this case)
corrected frequency of residue i at position j

Weight matrix (Bernoulli model)

Prior	Pos	1	2	3	4	5	6	7	8	9	10	11	12
0.325	Α	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
0.175	C	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
0.175	G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
0.325	T	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
1.000	Sum	-0.37	-0.02	-1.02	-4.94	-5.55	-4.94	-4.94	-5.55	-3.08	-1.13	-2.03	0.19

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{r=1}^{A} n_{r,j} + k}$$

$$W_{i,j} = \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

A alphabet size (=4) $n_{i,j}$ occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f_{i,j}$ corrected frequency of residue i at position j $W_{i,j}$ weight of residue i at position j

The use of a weight matrix relies on Bernoulli assumption

If we assume, for the background model, an independent succession of nucleotides (Bernoulli model), the weight W_S of a sequence segment S is simply the sum of weights of the nucleotides at successive positions of the matrix $(W_{i,j})$.

In this case, it is convenient to convert the PSSM into a weight matrix, which can then be used to assign a score to each position of a given sequence.

Properties of the weight function

$$W_{i,j} = \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k} \qquad \sum_{i=1}^{A} f'_{i,j} = 1$$

- The weight is
 - positive when $f'_{i,j} > p_i$ (favourable positions for the binding of the transcription factor)
 - negative when $f'_{i,j} < p_i$ (unfavourable positions)

Regulatory Sequence Analysis

Information content

Shannon uncertainty

- Shannon uncertainty
 - Hs(j): uncertainty of a column of a PSSM
 - Hg: uncertainty of the background (e.g. a genome)
- Special cases of uncertainty (for a 4 letter alphabet)
 - min(H)=0
 - No uncertainty at all: the nucleotide is completely specified (e.g. p={1,0,0,0})
 - □ H=1
 - Uncertainty between two letters (e.g. p={0.5,0,0,0.5})
 - max(H) = 2 (Complete uncertainty)
 - One bit of information is required to specify the choice between each alternative (e.g. p={0.25,0.25,0.25,0.25}).
 - Two bits are required to specify a letter in a 4-letter alphabet.
- R_{sec}
 - Schneider (1986) defines an information content based on Shannon's uncertainty.
- R*_{seq}
 - For skewed genomes (i.e. unequal residue probabilities),
 Schneider recommends an alternative formula for the information content.
 - This is the formula that is nowadays used.

$$H_s(j) = -\sum_{i=1}^{A} f_{i,j} \log_2(f_{i,j})$$

$$H_g = -\sum_{i=1}^A p_i \log_2(p_i)$$

$$R_{seq}(j) = H_g - H_s(j) \qquad R_{seq} = \sum_{i=1}^{n} R_s$$

$$R_{seq}^*(j) = \sum_{i=1}^A f_{i,j} \log_2 \left(\frac{f_{i,j}}{p_i}\right)$$
 $R_{seq}^* = \sum_{j=1}^w R_{seq}^*(j)$

Information content of a PSSM

Prior	Pos	1	2	3	4	5	6	7	8	9	10	11	12
0.325	Α	-0.12	0.05	-0.06	-0.08	0.97	-0.08	-0.08	-0.08	-0.08	-0.08	-0.12	-0.06
0.175	С	0.08	0.08	0.25	1.50	-0.04	1.50	-0.04	-0.04	-0.04	0.08	-0.04	0.08
0.175	G	-0.04	0.08	0.25	-0.04	-0.04	-0.04	1.50	-0.04	0.68	0.45	0.68	0.08
0.325	Т	0.19	-0.12	-0.08	-0.08	-0.08	-0.08	-0.08	0.97	0.05	-0.06	-0.06	-0.06
1.000	Sum	0.11	0.09	0.36	1.29	0.80	1.29	1.29	0.80	0.61	0.39	0.47	0.04

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

$$I_{i,j} = f'_{i,j} \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

$$I_{j} = \sum_{i=1}^{A} I_{i,j}$$

$$I_{matrix} = \sum_{j=1}^{w} \sum_{i=1}^{A} I_{i,j}$$

A alphabet size (=4) $n_{i,j}$, occurrences of residue i at position j w matrix width (=12) p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f'_{i,j}$ corrected frequency of residue i at position j $W_{i,j}$ weight of residue i at position j $I_{i,j}$ information of residue i at position j

Information content I_{ii} of a cell of the matrix

- For a given cell of the matrix
 - □ I_{ij} is positive when $f'_{ij} > p_i$ (i.e. when residue i is more frequent at position j than expected by chance)
 - \Box I_{ij} is negative when $f'_{ij} < p_i$
 - \Box I_{ii} tends towards 0 when f'_{ii} -> 0

because $limit_{x\to 0} (x ln(x)) = 0$

Information content as a function of residue frequency

Information content as a function of residue frequency (log scale)

Information content of a column of the matrix

- For a given column i of the matrix
 - The information of the column (I_j) is the sum of information of its cells.
 - \Box I_i is always positive
 - If I_j is 0 when the frequency of all residues equal their prior probability $(f_{ij}=p_i)$
 - \Box I_i is maximal when
 - the residue i_m with the lowest prior probability has a frequency of 1
 (all other residues have a frequency of 0)
 - and the pseudo-weight is null (k=0).

$$I_{j} = \sum_{i=1}^{A} I_{i,j} = \sum_{i=1}^{A} f'_{i,j} \ln \left(\frac{f'_{i,j}}{p_{i}} \right)$$

$$i_m = \operatorname{arg\,min}_i(p_i) \qquad k = 0$$

$$\operatorname{max}(I_j) = 1 \cdot \ln\left(\frac{1}{p_i}\right) = -\ln(p_i)$$

Schneider logos

- Schneider & Stephens(1990) propose a graphical representation based on his previous entropy (H) for representing the importance of each residue at each position of an alignment. He provides a new formula for Rseq
 - Hs(j) uncertainty of column j
 - Rseq(j) "information content" of column j (beware, this definition differs from Hertz' information content)
 - e(n)correction for small samples (pseudo-weight)
- Remarks
 - This information content does not include any correction for the prior residue probabilities (pi)
 - This information content is expressed in bits.
- Boundaries
 - min(Rseq)=0 equiprobable residues
 - max(Rseq)=2 perfect conservation of 1 residue with a pseudo-weight of 0,
- Sequence logos can be generated
 - from aligned sequences on the Weblogo server http://weblogo.berkeley.edu/logo.cgi
 - □ From matrices or sequences on enologos http://www.benoslab.pitt.edu/cgi-bin/enologos/enologos.cgi

$$H_s(j) = -\sum_{i=1}^{A} f_{ij} \log_2(f_{ij})$$

$$R_{seq}(j) = 2 - H_s(j) + e(n)$$

$$h_{ij} = f_{ij}R_{seq}(j)$$

Information content of the matrix

- The total information content represents the capability of the matrix to make the distinction between a binding site (represented by the matrix) and the background model.
- The information content also allows to estimate an upper limit for the expected frequency of the binding sites in random sequences.
- The pattern discovery program consensus (developed by Jerry Hertz) optimises the information content in order to detect over-represented motifs.
- Note that this is not the case of all pattern discovery programs: the gibbs sampler algorithm optimizes a log-likelihood.

$$P(site) \le e^{-I_{matrix}}$$

- Hertz and Stormo (1999). Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15: 563-77. PM 15

Information content: effect of prior probabilities

- The upper bound of I_i increases when p_i decreases
- The information content, as defined by Gerald Hertz, has thus no upper bound.

References - PSSM information content

- Seminal articles by Tom Schneider
 - Schneider, T.D., G.D. Stormo, L. Gold, and A. Ehrenfeucht. 1986. Information content of binding sites on nucleotide sequences. J Mol Biol 188: 415-431.
 - Schneider, T.D. and R.M. Stephens. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18: 6097-6100.
 - Tom Schneider's publications online
 - http://www.lecb.ncifcrf.gov/~toms/paper/index.html
- Seminal article by Gerald Hertz
 - Hertz, G.Z. and G.D. Stormo. 1999. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15: 563-577.
- Software tools to draw sequence logos
 - Weblogo
 - http://weblogo.berkeley.edu/logo.cgi
 - Enologos
 - http://biodev.hgen.pitt.edu/cgi-bin/enologos/enologos.cgi