实验04

存储器读写实验

实验目的与要求

• 熟悉存储器组织与总线组成的数据通路

实验原理

- 选定程序段/数据段后, 内存操作方式相同
 - 确定当前使用PC还是AR,然后向PC/AR写入地址
 - 然后进行内存读/写

实验原理——内存的读

• MRD (Memory ReaD)

实验原理——内存的写

• MWR (Memory WRite)

实验原理——字与字节读写

- A0是指地址线的第0位,包括
 - PC, 或
 - AR

W	A0	说明
1	0	字读写
0	0	偶读写
X	1	奇读写

实验步骤

- 数据段字写
 - IN→AR
 - IN→Mem[AR]
- 数据段字读
 - IN→AR
 - Mem[AR]→BUS

- 程序段字节写
 - IN→PC
 - IN→Mem[PC]
 - PC+1
 - IN→Mem[PC]
 -
- 程序段字节读
 - IN→PC
 - Mem[PC]→BUS
 - PC+1
 - Mem[PC]→BUS
 -

实验要求 (以下操作需按顺序)

- 依次向数据存储器的00h-05h地址打入数据05h,04h,03h,02h,01h,00h,分别采用如下方式:
 - 数据值全部使用I/O的低8位进行输入
 - 数据值分别使用I/O的16位进行输入,然后切换总线规则用字方式、从高/低8位方式打入内存
 - 上述2步完成后,依次从数据存储器的00h-05h地址输出数据到I/O显示,并尝试字读取、奇读 取和偶读取
 - 观察AR取值时,内存模块16位数据的显示以及输出到总线的数值
 - 观察总线数据高低位与内存中数据的高低地址存储
- 程序存储器,参考上面的数据存储器的地址和数据要求和方式,但
 - PC的00h值从I/O输入
 - PC大于00h的部分需使用PC+1的方式生成
- ・通过实验
 - 检验AR寄存器可打入的最大值
 - 检验数据存储器的最大有效地址 (存在该地址的存储空间)
 - 检验PC寄存器可打入的最大值
 - 检验PC寄存器通过PC+1操作可到达的最大值