CNN-Based Model for Recognizing Street View House Numbers(SVHN)

- Shiwei Yu, Jiaying Zhuang, Xiaomeng Chen, Zixuan Wang, Zidong Xu -

CONTENTS

01

Introduction & Dataset

02

Models & Results

03

Conclusion

01

Introduction & Dataset

Introduction

Our purposes:

- Model development address a subset of digit recognition using the Google Street View House Numbers dataset.
- Practical Applications update map info automatically.

House Numbers (SVHN) Dataset

Dataset

Overview

10 classes, 1 for each digit. Digit '1' has label 1, '9' has label 9 and '0' has label 10 73257 digits for training

• The **format** we use: MNIST-like 32-by-32 images centered around a single character

O2 Models & Results

PCA & KNN

Our expectation:

- It can reduce the problems caused by the disaster of dimensionality (high dimension);
- It can be used to compress data and minimize loss data;
- It can reduce high-dimensional data to low-dimensional for visualization.

After PCA dimensionality reduction, the first 173 features can represent 99% of the original features

PCA & KNN

The PCA results are clustered and presented by KNN:

1 y_tr	<pre>y_true=y_test.tolist()</pre>					
2 y pr	<pre>y_pred=pre_label.tolist()</pre>					
3 prin	<pre>print(classification_report(y_true,y_pred))</pre>					
4 prir	it('Ac	curacy on th	ne test se	et: %.2f'%	accuracy_score(y_	true,y_pred))
		precision	recall	f1-score	support	
	1	0.44	0.84	0.58	5099	
	2	0.54	0.53	0.53	4149	
	3	0.40	0.30	0.34	2882	
	4	0.55	0.57	0.56	2523	
	5	0.47	0.28	0.35	2384	
	6	0.43	0.32	0.37	1977	
	7	0.61	0.35	0.45	2019	
	8	0.35	0.23	0.28	1660	
	9	0.41	0.28	0.33	1595	
	10	0.50	0.37	0.43	1744	
accu	racy			0.47	26032	
macro	avg	0.47	0.41	0.42	26032	
weighted	avg	0.47	0.47	0.45	26032	
Accuracy	on th	he test set:	0.47			

K-Means

Before reducing dimensionality

After reducing dimensionality

We compress the data using **PCA** to a degree that preserves 95% variance of the data and only lost 5%

Only **54** out of 3072 features can preserve 95% of the data, which means SVHN is originally very sparse and most of the data is rather present at a much lower dimension

Pretrained VGG16

CNN
Large-scale Image
Recognition
Pretrained on ImageNet

Architecture:

Input: 3-channel
13 convolutional layers
5 max-pooling layers
3 fully-connected layers
Activation: ReLU & softmax

VGG16 without Fine-Tuning

Remove the "top" portion of the model. Load all the pretrained weights of ImageNet.

Customized fully-connected layers.

Output: 10 classes

VGG16 without Fine-Tuning

Test Acc: 40.13%

Retrain convolutional layers Load less pretrained weights of layers

VGG16 with Fine-Tuning

Take only the first 10 layers.

Freeze the first 8 layers and retrain the last convolutional layer and pooling layer.

VGG16 with Fine-Tuning

Test Acc: 92.42%

ResNet-18

ResNet

ResNet-18-Based

STRUCTURE

Transform: torch.Size([3, 32, 32])

Torchvision.RandomCrop &

RandomRotation

INPUT SHAPE (10,3,28,28)

SELF BLOCK 1

SELF BLOCK 2

SELF BLOCK 3

Layer (type:depth-idx)	Output Shape	Param #
 MyResNet	[10, 10]	
├─Sequential: 1-1	[10, 64, 28, 28]	57. 0
└─Conv2d: 2-1	[10, 64, 28, 28]	1,728
□ BatchNorm2d: 2-2	[10, 64, 28, 28]	128
	[10, 64, 28, 28]	
H-Sequential: 1-2	[10, 128, 14, 14]	
BasicBlock: 2-4	[10, 128, 14, 14]	230, 144
│ └─BasicBlock: 2-5	[10, 128, 14, 14]	295, 424
├─Sequential: 1-3	[10, 256, 7, 7]	200 - 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L-BasicBlock: 2-6	[10, 256, 7, 7]	919,040
L—BasicBlock: 2-7	[10, 256, 7, 7]	1, 180, 672
-AdaptiveAvgPoo12d: 1-4	[10, 256, 1, 1]	 0
├─Linear: 1-5	[10, 10]	2, 570

Total params: 2,629,706 Trainable params: 2,629,706 Non-trainable params: 0

ResNet-18

O3 Conclusion

K-Means 27.7%	 Dimensionality reduction can help only when cluster amounts are large Both models are not performing well (27.61%, 27.7%)
PCA & KNN 49.0%	49% accuracyParameter space of the image is sparse
VGG-16 92.4%	 Fine-tuning can make the model better fit the dataset Utilizing only the first 10 layers performs better in digit detection in our case, probably because the full 16-layer version pretrained on ImageNet focuses more on object detection.
ResNet 95.2%	 Good accuracy despite high loss The losses on both the training and test sets show a decreasing trend → Increase the epochs until early stopping

Reference:

- https://neurohive.io/en/popular-networks/vgg16/
- https://www.learndatasci.com/tutorials/hands-on-transfer-learning-keras/
- https://towardsdatascience.com/transfer-learning-with-vgg16-and-keras-50ea1615 80b4
- https://blog.csdn.net/Grateful Dead424/article/details/124292041
- https://www.researchgate.net/publication/336642248 A Deep Learning Approac
 h for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disea
 se Stages Using Resting-State fMRI and Residual Neural Networks

Thanks for Watching