MULTIVARIABLE CALCULUS MATH2007

2.1 Vector Analysis and Parametrization

Definition (2.1.1). Let $\underline{r}:[a,b]\to\mathbb{R}^n$ and where a< b, then a set of the form

$$\Gamma = \{\underline{r}(t) \mid t \in [a, b]\}$$

is called a **curve** and the function $\underline{r}(t), t \in [a, b]$, is called a **parametrisation** of Γ . If Γ has a direction or orientation (usually indicated by an arrow along the curve), then Γ is called a **path** or **oriented curve**.

Example. Straight line in \mathbb{R} with orientation from 0 to 1:

Example. Unit circle oriented in the anticlockwise direction:

in
$$IR^2$$
 $\Gamma(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$ $t \in [0, 2\pi]$

$$\Gamma = \left\{ \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} : t \in [0, 2\pi] \right\}$$

Definition (2.1.1). Let Γ be a path parametrised by $\underline{r}(t), t \in [a, b]$, if the direction $\underline{r}(t)$ moves as t increases is the same as the direction associated with Γ , then $\underline{r}(t), t \in [a, b]$, is said to be an **orientation preserving** parametrisation of Γ . Otherwise $\underline{r}(t), t \in [a, b]$, is an **orientation reversing** parametrisation of Γ . If Γ is an oriented curve, we denote by Γ^- , the curve Γ but with reversed orientation.

Example. Straight line in \mathbb{R} with orientation from 0 to 1: $\Gamma(t) = |-t|$ r(t)=t te[0,1]

$$\Gamma(t) = t \quad t \in [0,1]$$

$$\Gamma' = \{ t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

$$\Gamma'' = \{ 1-t : t \in [0,1] \}$$

Example. Unit circle oriented in the anticlockwise direction:

$$\Gamma(t) = \begin{pmatrix} \cos(-t)' \\ \sin(-t) \end{pmatrix} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \sin(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad \Gamma = \{ (\cos(-t)) \\ \cos(-t) \} \quad t \in [0, 2\pi] \quad T \in [0,$$

Definition (2.1.1). A curve Γ is said to be **piecewise smooth**, if the parametrisation $\{\underline{r}(t) \mid t \in [a,b]\}$ of Γ , where $\underline{r}'(t)$ exists and is non-zero except for at most finitely many points of Γ . The values of $\underline{r}(t)$ where either $\underline{r}'(t)$ does not exist or is zero are called **singular** points of Γ .

Example. $y = |x|, x \in [-1, 1]$:

$$P = \left\{ \begin{pmatrix} t \\ 1t1 \end{pmatrix} \mid t \in [-1,1] \right\}$$

$$\Gamma(t) = \begin{pmatrix} t \\ 1t1 \end{pmatrix} \qquad t \in [-1, 1]$$

$$\Gamma'(t) = \int \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad t \in (0, 1]$$

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad t \in [-1, 0)$$

Are parametrizations unique?

Example. Straight line in \mathbb{R} with orientation from 0 to 1:

$$\Gamma(t) = \{t: t \in [0,1]\}$$

$$\Gamma(t) = \{t^2: t \in [0,1]\}$$

$$\Gamma(t) = \{sin(t): t \in [0,\frac{\pi}{2}]\}$$

A physical interpretation:

If $\underline{r}(t)$ is a path, then $\frac{d\underline{r}(t)}{dt}$ is the velocity and $\left\|\frac{d\underline{r}(t)}{dt}\right\|$ is the speed of an object moving along the path with position $\underline{r}(t)$ at time t.

Some standard parametrisations are as follows:

1. The line segment from
$$\underline{a}$$
 to \underline{b} : in \mathbb{R}^n

$$\Gamma(t) = (1-t)a + tb \qquad te[0,1]$$

$$= a + t(b-q)$$

2. The circle centre (a_0, b_0) with radius ρ :

$$\Gamma(t) = \begin{pmatrix} \rho \cos t \\ \rho \sin t \end{pmatrix} + \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} \quad t \in [0, 2\pi]$$

Some standard parametrisations are as follows:

3. The explicit curve y = f(x) where x goes from a to b and a < b:

$$\Gamma(t) = \begin{pmatrix} t \\ f(t) \end{pmatrix}$$
 $t \in [a,b]$

4. The explicit curve x = f(y) where y goes from a to b and a < b:

$$\underline{\Gamma}(t) = \begin{pmatrix} f(t) \\ t \end{pmatrix} \qquad te[a,b]$$

