Le Dévelopement d'un programme joueur

T.I.P.E 2014

Plan

Introduction

```
Aproche simple
Présentation
Complexité
winner
getWinningPlay
```


Hex

Présentation de l'algorithme Minimax

Présentation de l'algorithme Minimax

Décomposition du minimax

- ▶ getWinningPlay
- winner

winner

Calcul de la compléxité

Compléxité d'un parcours

$$P(n) = \sum_{k=1}^{\left\lceil \frac{n^2}{2} \right\rceil} k$$

$$\implies P(n) = O\left(\left\lceil \frac{n^2}{2} \right\rceil^2\right)$$

$$\implies P(n) = O\left(n^4\right)$$

Compléxité de winner

$$W(n) = nP(n) = O(n^5)$$

getWinninglay

Calcul de la compléxité

Calcul de la compléxité d'un étage

Pour le p-ème étage.

Calcul de la compléxité d'un étage

Pour le p-ème étage. p coups à jouer parmis n^2 cases.

Calcul de la compléxité d'un étage

Pour le p-ème étage. p coups à jouer parmis n^2 cases. \mathcal{A}_p^n noeuds

Calcul de la compléxité d'un étage

Pour le p-ème étage. p coups à jouer parmis n^2 cases. A_n^n noeuds

$$E_p(n) = \mathcal{A}_p^{n^2} n^2$$

$$\implies E_p(n) = \frac{(n^2)!}{(n^2 - p)!} n^2$$

Calcul de la compléxité total

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! W(n)$$

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! W(n)$$

$$M(n) = \sum_{k=1}^{n^2} \left(\frac{(n^2)!}{(n^2 - p)!} n^2 \right) + n^2! \ O(n^5)$$

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! W(n)$$

$$M(n) = \sum_{k=1}^{n^2} \left(\frac{(n^2)!}{(n^2 - p)!} n^2 \right) + n^2! \ O(n^5)$$

$$M(n) = O(n^2! n^4) + (n^2)! O(n^5)$$

$$\implies M(n) = O(n^2! n^5)$$