图论作业 (第十周)

PB20000113 孔浩宇

November 8, 2022

Ch6

7.

- (1) 若图中存在两个奇数度的顶点 u, v, 则连接边 uv, 此时图为 Euler 图; 若为 Euler 图, 不操作
- (2) 利用 Fleury 在图中寻找 Euler 回路, 删除 uv, 即得到 Euler 迹。(若原为 Euler 图, 任删去一边)

8.

由EJ算法

- (1) 图 G 中的奇度顶点集合为 $V_0 = \{v_1, v_2, v_3, v_4\}$.
- (2) 由 Dijkstra 算法得

$$dist_G(v_1, v_2) = 4$$
, $dist_G(v_1, v_3) = 5$, $dist_G(v_1, v_4) = 7$.

$$dist_G(v_2, v_3) = 2$$
, $dist_G(v_2, v_4) = 5$, $dist_G(v_3, v_4) = 3$.

(3) 构造加权完全图 K_4

- (4) 得到 K_4 中最小的完备匹配 $\{v_1v_2, v_3v_4\}$,在 G 中将 v_1, v_2 间最短轨道 $P(v_1v_2) = v_1v_7v_2$ 及 v_3, v_4 间最短轨道 $P(v_3v_4) = v_3v_4$ 重复一次得到 Euler 图 G*.
- (5) 在图 G* 中找到 Euler 回路即为最优投递路线。不妨取 v_5 为起点,可得一条 Euler 回路

 $v_5 \ v_1 \ v_6 \ v_2 \ v_3 \ v_4 \ v_3 \ v_7 \ v_2 \ v_7 \ v_1 \ v_7 \ v_4 \ v_5.$

9.

(1) Proof. 不妨设二分图 $G = (X, E, Y), X \cup Y = V(G), X \cap Y = \phi$.

$$\left\{ \begin{array}{ll} \omega(G-X) &= \omega(Y) \leq |X| \\ \\ \omega(G-Y) &= \omega(X) \leq |Y| \end{array} \right. \xrightarrow{\omega(X)=|X|} \left\{ \begin{array}{ll} |X| & \leq |Y| \\ \\ |Y| & \leq |X| \end{array} \right. \Rightarrow \; |X| = |Y|.$$

显然 |G| = 2|X| 为偶数,即证.

(2) 图 6.27 不是 Hamilton 图,因为 $V(G) = \{v_0, v_1, v_6, v_7, v_{10}\} \cup \{v_2, v_3, v_4, v_5, v_8, v_9\}$, 为二分图,且 |G| = 11,故不是 Hamilton 图。

12.

(1) n 为奇数,如图

显然, $(1,2,3,4,\ldots,n-2,n-1,n)$ 为 K_n 的一条 Hamilton 圈。现将圆周上的点的编号依次旋转 $\frac{2k\pi}{n-1}$ $(k=0,1,\ldots,\frac{n-3}{2})$,它们分布对于不重边的 Hamilton 圈:

$$(1,4,2,6,3,8,\ldots,n-1,n-4,n,n-2,1)$$

$$(1,6,4,8,2,10,\ldots,n,n-6,n-2,n-4,1)$$

• • •

$$(1, n-1, n-3, n, n-5, n-2, \ldots, 7, 2, 5, 3, 1)$$

(2) n 为偶数,如图 (在结点 3,结点 5的边上添加结点 4)

显然, $(1,2,3,4,\ldots,n-2,n-1,n)$ 为 K_n 的一条 Hamilton 圈。现将圆周上的点的编号依次旋转 $\frac{2k\pi}{n-2}$ $(k=0,1,\ldots,\frac{n-4}{2})$,它们分布对于不重边的 Hamilton 圈:

$$(1,5,2,4,7,3,\ldots,n-1,n-4,n,n-2,1)$$

$$(1,7,5,4,9,2,\ldots,n,n-6,n-2,n-4,1)$$

. .

$$(1, n-1, n-3, 4, n, n-5, \dots, 8, 2, 6, 3, 1)$$

综上, K_n 共有 $\left[\frac{n-1}{2}\right]$ 个不重边的 Hamilton 圈。

17.

Proof.

(1) 假设存在 $u, v \in V(G)$, 使得

$$\deg(u) + \deg(v) \le \nu - 1$$

取 $G' = G - \{u, v\}$, 此时有

$$|E(G')| \ge m - (\nu - 1)$$

$$= \frac{1}{2}(\nu - 1)(\nu - 2) + 2 - (\nu - 1)$$

$$= \frac{1}{2}(\nu - 2)(\nu - 3) + 1$$

$$> |E(K_{\nu-2})|.$$

显然矛盾, 即 $\forall u, v \in V(G)$, 有

$$deg(u) + deg(v) \ge \nu \Rightarrow G 为 Hamilton 图.$$

(2) 比如构造图 $G = K_{\nu-1} + u$, 连接 u 与 K_n 中任一点, 此时 $m = \frac{1}{2}(\nu - 1)(\nu - 2) + 1$, 但显然不是 *Hamilton* 图.

19.

不妨设这 6 个人顺时针依次为 A,B,C,D,E,F, 解法如图

20.

做 ν 阶无向简单图 G=< V, E> , 其中 $V=\{v|\,v$ 为人群中的成员 } , $E=\{uv|\,u,v\in V,\,u\neq v$ 且 $u,\,v$ 相互认识 } , 则

$$\forall u, v \in V, \deg(u) + \deg(v) \ge \nu - 2.$$

对于不相邻的顶点 u, v, 若 $\exists w \in V, w \neq u, w \neq v, 且wu, wv$ 有一不属于 E (不妨设 $wu \notin E$), 则

w,v合起来认识的人不包括 $u \Rightarrow$ 矛盾.

即

$$\deg(u) + \deg(v) \ge 2(\nu - 2).$$

当 $\nu \geq 3$ 时,有

$$2(\nu-2) \ge \nu-1 \Rightarrow G有Hamilton$$
轨道.

当 $\nu \ge 4$ 时,有

$$2(\nu-2) \ge \nu \Rightarrow G有Hamilton$$
圈.

将人群按 Hamilton 轨道及 Hamilton 圈排列即为所求.

22.

- (1) 1° 从 a 出发,形成轨道 $P_1 = a$.
 - 2° 从 V(G)-a 中, 选取与 a 最近的顶点 d. 形成 $P_2=ad$.
 - 3° 从 V(G)-a,d 中,选取与 d 最近的顶点 e. 形成 $P_3=ade$.
 - 4° 从 V(G)-a,d,e 中, 选取与 e 最近的顶 b. 形成 $P_4=abeb$.
 - 5° 从 V(G)-a,d,e,b 中,选取与 b 最近的顶点 c. 形成 $P_5=abebc$.
 - 6° 得 Hamilton 圈 , H = adebca , W = 26 .
- (2) 1° 求 G 的一颗最小生成树 T.

 2° 将 T 各边加平行边得 G^{*} .

- 3° 从 a 出发,求 G^* 的一条欧拉回路 $C_a=adecedaba$," 抄近路" 访问 G 的各顶点。得 $H_a=adecba,\,W_a=21$ 。
- 4° 从 b 出发,求 G^{*} 的一条欧拉回路 $C_{b}=badecedab$," 抄近路" 访问 G 的各顶点。得 $H_{b}=badecb,\ W_{b}=21$ 。

(3) 1° 求 G 的一颗最小生成树 T.

2° T 中奇度数顶点得集合为 $V_o=b,c,\,V_o$ 的导出子图中总权最小得完备匹配 $M=bc,\,M$ 加入 T 中得 G*.

 3° 在 G^* 中求从 a 出发得一条欧拉回路 $C_a = adecba$

3° 在 G 中,从 a 出发,沿 C_a 中得边按" 抄近路" 走出 Hamilton 圈 $H_a=adecba$. W=21.