Merge Sort

Algorithms & Data Structures ITCS 6114/8114

Dr. Dewan Tanvir Ahmed
Department of Computer Science
University of North Carolina at Charlotte

Outline and Reading

- □ Divide-and-conquer paradigm (§4.1.1)
- Merge-sort (§4.1.1)
 - Algorithm
 - Merging two sorted sequences
 - Merge-sort tree
 - Execution example
 - Analysis
- Summary of sorting algorithms (§4.2.1)

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - ullet Divide: divide the input data $oldsymbol{S}$ in two disjoint subsets $oldsymbol{S}_1$ and $oldsymbol{S}_2$
 - Recur: solve the subproblems associated with S_1 and S_2
 - lacksquare Conquer: combine the solutions for $oldsymbol{S}_1$ and $oldsymbol{S}_2$ into a solution for $oldsymbol{S}$
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divideand-conquer paradigm
- Like heap-sort
 - □ It has $O(n \log n)$ running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

```
Algorithm mergeSort(S, C)
   Input sequence S with n elements, comparator C
   Output sequence S sorted according to C
   if S.size() > 1
      (S₁, S₂) ← partition(S, n/2)
      mergeSort(S₁, C)
      mergeSort(S₂, C)
   S ← merge(S₁, S₂)
```

Merging Two Sorted Sequences

```
Algorithm merge (A, B)
  Input sequences A and B with n/2 elements each
  Output sorted sequence of A U B
  S ← empty sequence
  if A.first().element() < B.first().element()</pre>
        S.insertLast(A.remove(A.first()))
     else
        S.insertLast(B.remove(B.first()))
  while ¬A.isEmpty()
     S.insertLast(A.remove(A.first()))
  while ¬B.isEmpty()
     S.insertLast(B.remove(B.first()))
  return S
```

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Merge

□ Recursive call, ..., base case, merge

Merge

□ Recursive call, ..., merge, merge

Merge

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence
- $^{-}$ The overall amount of work done at the nodes of depth $m{i}$ is $m{O}(m{n})$
 - lacktriangle we partition and merge 2^i sequences of size $n/2^i$
 - $lue{}$ we make 2^{i+1} recursive calls

Thus, the total running time of merge-sort is $O(n \log n)$

T has exactly 2ⁱ nodes at each depth i. This implies that the overall time spent at all the nodes at depth i is O(2ⁱ. n/2ⁱ), which is O(n)

Analysis of Merge-Sort

Merge-sort and Recurrence Equation

- Let, T(n): the worst-case running time of input size n.
 - $\ \square$ Since merge-sort is recursive, we can characterize the function T(n) by recursive equation

$$\Box T(n) = \begin{cases} b & \text{if } n = 1 \\ T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lceil \frac{n}{2} \right\rceil) + cn & \text{otherwise} \end{cases}$$
Where $b > 0$ and $c > 0$

Find its **closed-form** characterization (does not involve T(n) itself).

We restrict n is a power of 2.

Merge-sort and Recurrence Equation

$$T(n) = \begin{cases} b & \text{if } n = 1 \\ T(n/2) + T(n/2) + cn & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} b & \text{if } n = 1 \\ 2T(n/2) + cn & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} b & \text{if } n = 1 \\ 2(2T(n/2^2) + cn/2) + cn & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} b & \text{if } n = 1 \\ 2^2T(n/2^2) + 2cn & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} b & \text{if } n = 1 \\ 2^3T(n/2^3) + 3cn & \text{otherwise} \end{cases}$$

Merge-sort and Recurrence Equation

After applying this eq. i times

$$T(n) = \begin{cases} b & if \ n = 1 \\ 2^{i}T(n/2^{i}) + icn & otherwise \end{cases}$$

To stop,
$$T(n) = b$$
 when $n = 1$
 $T(n) = 2^{\log n} T(n/2^{\log n}) + (\log n) cn$
 $= nT(\frac{n}{n}) + cn \log n$
 $= nT(1) + cn \log n$
 $= nb + cn \log n$
 $T(n)$ is $O(n \log n)$

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	♦ slow♦ in-place♦ for small data sets (< 1K)
insertion-sort	$oldsymbol{O}(oldsymbol{n}^2)$	♦ slow♦ in-place♦ for small data sets (< 1K)
heap-sort	$O(n \log n)$	fast in-place for large data sets (1K — 1M)
merge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)

Reference

- Algorithm Design: Foundations, Analysis, and Internet Examples. Michael T.
 Goodrich and Roberto Tamassia. John Wiley & Sons.
- Introduction to Algorithms. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein.