Министерство науки и высшего образования Российской Федерации Санкт-Петербургский Политехнический Университет Петра Великого

Институт кибербезопасности и защиты информации

ЛАБОРАТОРНАЯ РАБОТА № 3

по дисциплине «Теоретико-числовые методы в криптографии»

Выполнил: студент группы

4851003/80801 С.А. Ляхова

<подпись>

Проверил: доцент, к.т.н. Е.Ю. Павленко

<подпись>

1. Формулировка задания

Каждое из ниже указанных чисел разложить на множители:

- 1. ро-методом Полларда.
- 2. (р-1)-методом Полларда.
- 3. Методом непрерывных дробей.
- 1) 16735883892800965609
- 2) 547799480356544148151229176273569217093
- 3) 8865116458635882797984106624500078996713144623635846360400789 177520228258163291

В отчёте привести:

1. В случае результативного завершения работы программы: результат разложения.

2. Для ро-метода Полларда:

- 2.0. Параметры алгоритма (использованное отображение, начальное значение (несколько, если их пришлось менять)).
- 2.1. При результативном завершении работы первые 5 и последние 5 значений a, b, НОД(a b, n), число итераций, время работы программы, выводы (объяснение результативного завершения).
- 2.2. При работе программы более нескольких часов первые 5 и последние (на момент прерывания программы) 5 значений а, b, НОД(а b, n), число выполненных итераций, время, затраченное на их выполнение, расчетное время, оставшееся до завершения работы (через оценку сложности алгоритма), выводы (объяснение нерезультативного завершения).

3. Для (р-1)-метода Полларда:

- 3.1 Базу разложения (первоначальную, измененную (если потребовалось изменение, обосновать необходимость изменения)).
 - 3.2 Значения показателей 1_i.

- 3.3 При результативном завершении работы основание а, при котором выполнено разложение (несколько, если потребовалось изменять основание).
- 3.4 При невозможности найти разложение более нескольких часов основание а, при котором выполнено разложение (несколько, если потребовалось изменять основание), число выполненных итераций (одна итерация прогон алгоритма с одним основанием а), время, затраченное на их выполнение, расчетное время, оставшееся до завершения работы (через оценку сложности алгоритма), выводы (объяснение нерезультативного завершения).

4. Для метода непрерывных дробей:

- 4.1 При результативном завершении работы:
- 4.1.1 Базу разложения (первоначальную, измененную (если потребовалось изменение, обосновать необходимость изменения)), при большом объеме базы число элементов в базе и ее последний элемент, критерии исключения элементов из базы.
- 4.1.2 Числители P_i подходящих дробей, использованных при разложении, для D-гладких значений $(P_i)^2 \pmod{n}$, при большом объеме данных 5 значений P_i и $(P_i)^2 \pmod{n}$.
- 4.1.3 Векторы показателей для D-гладких значений $(P_i)^2 \pmod{n}$, при большом объеме данных 5 векторов, соответствующих значениям $(P_i)^2 \pmod{n}$ из предыдущего пункта.
- 4.1.4 Метод, использованный для поиска линейно-зависимых векторов (если была использована готовая процедура указать, из какой библиотеки).
 - 4.1.5 Значения s и t.
 - 4.2 При невозможности найти разложение более нескольких часов:
 - 4.2.1 Данные по пп. 4.1.1—4.1.3 на момент прерывания программы.
- 4.2.2 Расчетное необходимое число гладких чисел (P_i)^2 (mod n) и время, необходимое для их поиска.

4.3 Выводы (объяснение результатов работы).

2. Теоретические сведения

Задача разложения составного числа на множители формулируется так: для данного положительного целого числа п найти его каноническое разложение $n=p_1^{a_1}\cdot p_2^{a_2}\,...\cdot p_s^{a_s}$, где рі — попарно различные простые числа, аі > 1.

На практике не обязательно находить каноническое разложение числа n. Достаточно найти его разложение на два нетривиальных сомножителя: $n=pq,\ 1 .$

Пусть $B = \{p_1, p_2, \dots, p_s\}$ — множество различных простых чисел. Назовем множество В базой разложения. Целое число назовем В-гладким, если все его простые делители являются элементами множества В.

1. р-Метод Полларда

Алгоритм:

Вход. Число n, начальное значение c, функция f, обладающая сжимающими свойствами.

Выход. Нетривиальный делитель p числа n.

- 1. Положить $a \leftarrow c, b \leftarrow c$.
- 2. Вычислить $a \leftarrow f(a) \pmod{n}, b \leftarrow f(b) \pmod{n}, b \leftarrow f(b) \pmod{n}$.
- 3. Найти $d \leftarrow \text{HOД}(a b, n)$.
- 4. Если 1 < d < n, то положить $p \leftarrow d$ и результат: p. При d = n результат: «Делитель не найден»; при d = 1 вернуться на шаг 2.

Сложность алгоритма: $O(\sqrt[4]{n})$

2. (р-1)-Метод Полларда

Алгоритм:

Вход. Составное число n.

Выход. Нетривиальный делитель p числа n.

- 1. Выбрать базу разложения $B = \{p_1, p_2, ..., p_s\}$.
- 2. Выбрать случайное целое $a, 2 \le a \le n-2$, и вычислить $d \leftarrow \text{HOД}(a, n)$. При $d \ge 2$ положить $p \leftarrow d$ и результат: p.
- 3. Для i = 1, 2, ..., s выполнить следующие действия.
 - 3.1 Вычислить $l \leftarrow \left[\frac{\ln n}{\ln p_i}\right]$.
 - 3.2 Положить $a \leftarrow a^{p_i^l} \pmod{n}$.
- 4. Вычислить d ← НОД (a-1, n).
- 5. При d=1 или d=n результат: «Делитель не найден». В противном случае положить $p \leftarrow d$ и результат: p.

Сложность алгоритма: $O(B * log B * (log n)^2)$

3. Метод непрерывных дробей

Данный метод является вариацией алгоритма Диксона*, в котором в качестве чисел s_i выбираются числители подходящих дробей для непрерывной дроби числа \sqrt{n} .

Был применен метод разложения квадратного корня (который является квадратичной иррациональностью) в бесконечную дробь, не требующего высокой точности вычисления корня. Для получения наборов линейно зависимых векторов *е* был реализован метод исключения Гаусса.

Алгоритм

Вхо δ . Составное число m.

Выход. Нетривиальный делитель p числа m.

- 1. Построить базу разложения $B=\{p_0,p_1,\dots,p_h\}$, где $p_0=-1$ и p_1,\dots,p_h попарно различные простые числа, по модулю которых m является квадратичным вычетом.
- 2. Берутся целые числа u_i , являющиеся числителями подходящих дробей к обыкновенной непрерывной дроби, выражающей число \sqrt{m} . Из этих числителей выбираются h+2 чисел, для которых абсолютно наименьшие вычеты u_i^2 по модулю m являются B-гладкими:

$$u_i^2 mod \ m = \prod_{j=0}^h p_j^{a_{ij}} = v_i,$$

где $\alpha_{ij} \geq 0$. Также каждому числу u_i сопоставляется вектор показателей $(\alpha_{i0},\alpha_{i1},...,\alpha_{ih})$.

- 3. Найти методом Гаусса такое непустое множество $K \subseteq \{1,2,...,h+1\}$, что $\bigoplus_{i \in K} e_i = 0$, где \bigoplus операция исключающее ИЛИ, $e_i = (e_{i1},e_{i2},...,e_{ih})$, $e_{ij} \equiv \alpha_{ij} \ (mod\ 2), 0 \leq j \leq h$.
- 4. Положить $x \leftarrow \prod_{i \in K} u_i \ mod \ m, \ y \leftarrow \prod_{j=1}^h p_j^{\frac{1}{2} \sum_{i \in K} \alpha_{ij}} \ mod \ m.$ Тогда $x^2 \equiv y^2 \ (mod \ m).$
- 5. Если $x \not\equiv y \pmod{m}$, то положить $p \leftarrow \gcd(x y, m)$ и выдать результат: p. В противном случае вернуться на шаг 3 и поменять множество K.

Временная сложность алгоритма: $O(\exp{(2*\sqrt{\ln{(n)}(\ln(\ln{(n))})})})$ Объем базы разложения: $h \approx O(\exp{(\frac{2}{3}*\sqrt{\ln{(n)}(\ln(\ln{(n))})})})$

3. Результаты работы

В результате выполнения лабораторной работы были реализованы три алгоритма разложения чисел на множители.

Результаты разложения приведены в таблицах ниже:

р-метод Полларда
 Результаты работы для первого числа n = 16735883892800965609:

n	p	q	f(x)	С	Число итераций
16735883892800965609	2978456267	5618979227	$x^2+1 \pmod{n}$	2	22068

i	a	b	НОД(а-b,n)
1	26	698	1
2	698	237389175098	1
3	487226	956508730157756382	1
4	237389175098	15813493505184678849	1
5	3899386648052104123	6062757303659634892	1
•••			•••
22064	3857531528175848832	3999941129058439638	1
22065	5956269886358653816	15531430238931673527	1
22066	12451997804181098917	6649237267778822551	1
22067	5810495192901313296	12805804528760661792	1
22068	9523442906851112025	11990343567530179249	2978456267

Время прошедшее с момента запуска: 42.8194 secs

Результат: 16735883892800965609 = 5618979227 * 2978456267

Результаты работы для второго числа n = 547799480356544148151229176273569217093:

Для второго числа результативного завершения после 8 часов работы и не было, что, видимо, означает, что были подобраны неудачные начальное значение и функция f(x). Программа была запущена с несколькими другими начальными значениями, но по прошествии более часа работа завершена также не была. Скорее всего, все попытки зацикливались, так и не получив верное a-b.

Результаты работы для входных данных $f(x)=x^2+22 \pmod{n}$, c=2:

i	a	b	НОД
			(a-
			b,n)
1	5	26	1
2	26	458330	1
3	677	44127887745906175987802	1
4	458330	131218766814689339124291034	1
		36157960687	
5	210066388901	576700323401902286206253484	1
		64705074578	
•••	•••	•••	
77558	497922154718667168858794048	199679482795315117314876105	1
556	380265620355	403566128386	
77558	217893873859411735558528437	526945209478586257237639048	1
557	354658559392	99939675767	
77558	176981086363785478647758477	343215223957288101879975832	1
558	770471186730	21286203578	
77558	534429091047268705387897198	311430943887048753490097897	1
559	112735747775	590647432840	
77558	250097687134856656916366185	419060529847001956096628794	1
560	047643035445	078558796364	

Теоретическая сложность

 $O(\sqrt[4]{n}) = > O(\sqrt[4]{547799480356544148151229176273569217093}) = 88378834775$

Время прошедшее с момента запуска: ≈ 8 часов.

Количество операций на момент завершения: 77558560

Время на одну итерацию: $\frac{28800}{77558560} \approx 0.37$ мс

Теоретическое время работы алгоритма: 8,838 · 10^9 · 0.37 мс ≈ 378 дней

Результаты работы для третьего числа n = 886511645863588279798410662450007899671314462363584636040078917752 0228258163291:

Для третьего числа программа также не нашла нетривиальные множители по истечении 3 часов, что, по-видимому, также говорит о неудачно взятых начальных данных c=2, $f(x)=x^2+22$.

i	a	b	Н
			О
			Д
1	26	698	1
2	698	237389175098	1
3	487226	317573053824067846130658083466	1
		3554696424259898	
4	237389175098	882512012099317232508256755790	1
		817633398382454388034707271785	
		1382470169446826978	
5	56353620453708903309626	593668754432530789409477115996	1
		217553407222225446450936030587	
		1935264086507450500	
	•••		•••
122	237612995875524138483267615129	192944336854839439737757683165	1
603	183132842800073184704930283214	311964647025399536498616535873	
45	2124165156015933874	0154727711282831820	
122	873117172459947298666451187723	106906372305047885674210127368	1
603	450234449753126329489163322029	936307907486884923068363671522	
46	514403364546407531	466169748131357702	
122	630266705408664297522722380318	406423579157037541666229738630	1
603	334968469546547166125638062653	924328151872457006472853943076	
47	3595336733021852572	455540109348284507	

122	469385616265693170231431732875	859777721949223208851427488599	1
603	850250680917141080586367078874	070430099180897474747132547890	
48	5194568616020459066	6503768118903574310	
122	688892934869913103813162158901	884432553553759681546936811903	1
603	361636132334977726112347663684	900963533730912829667066015374	
49	405293610755666962	0236077097837724651	

Теоретическая сложность

$$O(\sqrt[4]{n}) = 54565873429571684545$$

Время прошедшее с момента запуска: ≈ 3 часов.

Количество операций на момент завершения: 12260349

Время на одну итерацию: $\frac{10800}{12260349} \approx 0.88$ мс

Теоретическое время работы алгоритма: 54565873429571684545*0.88 мс \approx $1,523*10^9$ лет

• (р-1)-метод Полларда

Случайное целое а = 2, база разложения увеличивается на каждой итерации алгоритма на одно простое число.

Результаты работы для первого числа n = 16735883892800965609:

i	p_i	l_i
1	2	63
2	3	40
3	4	31
4	5	27
5	7	22
33820	398471	3
33821	398473	3

33822	398477	3
33823	398491	3
33824	398509	3

Время прошедшее с момента запуска: 8.00912 secs

Результат: 16735883892800965609 = 5618979227 * 2978456267

Результаты работы для второго числа n = 547799480356544148151229176273569217093:

i	p_i	l_i
1	2	128
2	3	81
3	5	55
4	7	45
5	11	37
•••	•••	
2430	21379	8
2431	21383	8
2432	21391	8
2433	21397	8
2434	21401	8

Время прошедшее с момента запуска: 0.745076 secs

Результат: 547799480356544148151229176273569217093 =

32813290267639542253 * 16694439231434948281

Результаты работы для третьего числа n = 886511645863588279798410662450007899671314462363584636040078917752 0228258163291:

i	p_i	l_i
1	2	
2	3	
3	5	
4	7	
5	11	
•••		
10814950	194934197	9
10814951	194934203	9
10814952	194934217	9
10814953	194934221	9
10814954	194934253	9

Время, прошедшее с момента запуска – 4 часа.

В связи со слишком большой разрядностью числа, выяснить результат его факторизации не удалось. Исходя из этого, можно сказать, что сложность алгоритма не получится высчитать, т.к. для её расчёта нужно знать наибольшее число базы разложения, которое нет возможности узнать.

Сравнивая данное число с прошлым, имеющим в 2 раза меньше разрядов, можно сделать вывод, что алгоритм будет работать на несколько порядков дольше, чем с прошлым числом.

Сложность алгоритма: $B * \ln B * (\ln N)^2 = 99991 \times 11.51 \times 32630.52 \approx 122959669953151$

Время одной итерации: $\frac{2268072 \text{ мс}}{1097} \approx 2067.52 \text{ мс}$

Расчетное время до завершения:

 $122959669953151 \times 2067.52 \; \mathrm{Mc} \approx 2.54 * 10^{17} \mathrm{часов} \approx 2.9 * 10^{13} \mathrm{лет}$

• Метод непрерывных дробей

Для всех предложенных чисел не был получен верный ответ или время вычисления было достаточно велико. Возможно, данное явление связано с особенностями языка Python, а именно реализацией словаря, потому что база формируется достаточно долго даже для первых 200 простых чисел.

Т.к. для заданных чисел получить верный ответ не удалось, алгоритм был проверен на Примере 6.12 из учебного пособия.

Разложим на множители методом непрерывных дробей число n=21299881. Результаты работы алгоритма:

$$B = \{-1, 2, 3, 5, 7, 11, 19\}$$

$$P_{i} \{27691, 50767, 1389169, 12814433311, 2764443209657, 20276855015255, 127498600693396, 2390521616955537\}$$

$$ei \{[1, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1, 0], [0, 0, 0, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 1, 0, 0]\}$$

$$s = 21196679$$

 $t = 18480$
 $21299881 = 5531 * 3851$

Результат верный.

Результаты работы для первого числа n = 16735883892800965609:

 $23460358914252332, 1866633337989835123, 1882666171109809355961...\}$

s = 63762425652672t = 63762425652672

По истечению 3 часов работы программа выдала результат «Делитель не найден». Возможно, это связано с объемом базы разложения.

Результаты работы для второго числа n = 547799480356544148151229176273569217093:

Объем базы разложения, рассчитанной по формуле $h \approx 623442$:

$$B = [-1, 3, 17, 29, 31, 41, 47, 53, 67, 79, 83, 89, 97, 107, 113, 131, 157, 167, \dots]$$

Сложность алгоритма:
$$O\left(\exp\left(2*\sqrt{\ln(n)\left(\ln(\ln(n))\right)}\right)\right) \approx 2,42*10^{17}$$

Время одной итерации: $\frac{10800}{5625}$ мс ≈ 1.92 мс

Расчетное время до завершения:

$$2.42 * 10^{17} * 1.92$$
 мс $\approx 4.65 * 10^{17}$ часов $\approx 1.47 * 10^7$ лет

Результаты работы для третьего числа n =

886511645863588279798410662450007899671314462363584636040078917752 0228258163291:

Объем базы разложения, рассчитанной по формуле $h \approx 801858025$:

$$B = [-1, 5, 11, 19, 23, 31, 41, 43, 71, 73, 89, 107, 113, 137, 139, 149, 167, ...]$$

Сложность алгоритма:
$$O\left(\exp\left(2*\sqrt{\ln(n)\left(\ln(\ln(n))\right)}\right)\right) \approx 5.16*10^{26}$$

Расчетное время до завершения:

$$5,16*10^{26}*1,92$$
 мс $\approx 9,91*10^{26}$ часов $\approx 3,14*10^{16}$ лет

4. Вывод

В результате выполнения данной лабораторной работы было реализовано три алгоритма разложения чисел на простые множители. Из вычислений видно, что задача факторизации оказалась невыполнимой для чисел большого порядка. Реализованным алгоритмам удалось найти верный ответ лишь для первых двух чисел. Третье число оказалось большим для всех алгоритмов.

Также не удалось получить ответ для чисел варианта за конечное время методом непрерывных дробей.

Данная работа показывает, что вычислительные мощности оказались малы для решения задачи факторизации. Однако, используя компьютер с

большой вычислительной мощностью, и возможно более разумно реализованный алгоритм, можно получить результаты. Именно на этом принципе основаны многие алгоритмы современной криптографии.

Приложение 1

```
from alg evklida import gcd us
from timeit import default_timer as timer
def rohP(n, c):
    a = c
    b = c
    i = 1
    while 1:
       a = func(a, n)
       b = func(b, n)
       b = func(b, n)
        d = gcd_us(a - b, n)
        print(i, ". a: ", a, "; b: ", b, "; НОД: ", d)
        if d == n:
           return -1
        if d != 1:
           break
        i += 1
        if i == 6:
            input()
    return d
def func(x, n):
    return ((x * x) + 22) % n
num = int(input())
start = int(input())
t = timer()
while 1:
   res = rohP(num, start)
    if res != -1:
       break
    start += 1
print("Total elapsed: {:g} secs\n".format(timer() - t))
```

Приложение 2

```
from math import log as ln
from alg_evklida import gcd_us, simple
from timeit import default_timer as timer
def roh1P(num):
    i = 1
    p = 2
    a = 2
    d = gcd_us(a, num)
    if d > \overline{1}:
        return d
    else:
        while 1:
            l = int(ln(num) / ln(p))
            print(i, ". Basa:", p, "; l_i:", l)
            a = pow(a, pow(p, 1), num)
            d = gcd us(a - 1, num)
            if d != 1 and d != num:
                return d
            p += 1
            if p > 5:
                while simple(p) != 0:
                   p += 1
                if p > 10000:
                    print(p)
            i += 1
num = int(input())
t = timer()
delit = roh1P(num)
print("Total elapsed: {:g} secs\n".format(timer() - t))
print(num, "=", delit, "*", num / delit)
```

```
import mpmath
# проверить s на гладкость
def check_smoothness(s, B):
    list_alph = []
    list alph.append(0)
    while (s \& 1) == 0:
        s >>= 1
        list alph[0] += 1
    for i in range(2, len(B)):
        temp = B[i]
        list alph.append(0)
        while (s % temp == 0):
            s /= temp
            list alph[len(list alph) - 1] += 1
    if (s == 1):
        return list alph
    return False
# сделать бинарный вектор
def make binvector (vector):
   bin vector = 0
    for i in range(len(vector)):
       bin vector |= ((vector[i] % 2) << (len(vector) - 1 - i))</pre>
    return bin vector
# найти В-гладкие числители подходящих дробей
def make base B(n, B, h 2):
   mpmath.mp.dps = 100000
    q = mpmath.mp.sqrt(n)
    P \min 1 = 1
    P 0 = int(q)
    list P = []
    cur a = P 0
    q = 1 / (q - cur a)
    cur a = int(q)
   matrix = []
   bin matrix = {}
    list alph = check smoothness((P 0 * P 0) % n, B)
    if (list alph != False):
        matrix.append(list alph)
        list P.append(P 0)
    j = 0
    P \min 2 = P \min 1
    Pmin^1 = P^0
    while (len(list P) < h 2):
        P_i = P_min_1 * cur_a + P_min_2
        list_alph = check_smoothness((P_i * P_i) % n, B)
        if (list_alph != False):
            vector = [0]
            vector.extend(list_alph)
            bin_vector = make_binvector(vector)
            matrix.append(vector)
```

```
bin matrix.update({j: bin vector})
            j += 1
            list P.append(P i)
        else:
            list alph = check smoothness(abs(((P i * P i) % n) - n), B)
            if (list alph != False):
                vector = [1]
                vector.extend(list alph)
                bin vector = make binvector(vector)
                matrix.append(vector)
                bin matrix.update({j: bin vector})
                j += 1
                list P.append(P i)
        P \min 2 = P \min 1
        P \min 1 = P i
        q = 1 / (q - cur a)
        cur a = int(q)
    return list P, matrix, bin matrix
# исключить одинаковые элементы из списка
def exclude same elements(list elem):
    i = 0
    while (i < len(list elem)):
        val = list elem[i]
        count = list elem.count(val)
        if (count & \overline{1}) == 1:
            count -= 1
        came in = False
        for j in range (count):
            list elem.remove(val)
            came in = True
        if (came_in == True):
            i -= 1
        i += 1
    return list elem
# найти нулевую сумму векторов
# метод Гаусса
def gauss method (bin matrix):
    dict_vec_sum = {}
    for i in range(len(bin matrix)):
        dict vec sum.update({i: [i]})
    key = max(bin matrix, key=bin matrix.get)
    max val = bin matrix[key]
   bit = 1
    while (bit < max val):</pre>
       bit <<= 1
    if (bit > max_val):
        bit >>= 1
    while (len(bin matrix) > 1):
        key = min(bin matrix, key=bin matrix.get)
        if (bin matrix[key] == 0):
            return exclude same elements(dict vec sum[key])
```

```
key = max(bin matrix, key=bin matrix.get)
        max val = bin matrix.pop(key)
        while (bit & max val) == 0:
            bit >>= 1
        for i in bin matrix.keys():
            if (bin matrix[i] & bit) == 0:
                continue
            bin matrix[i] ^= max val
            dict vec sum[i].extend(dict vec sum[key])
            dict vec sum[i] = exclude same elements(dict vec sum[i])
        dict vec sum.pop(key)
    return False
# символ Якоби
def JacobiSymbol(a, n):
    g = 1
    while a != 0:
        k = 0
        while a & 1 == 0:
            k += 1
            a = a >> 1
        if k \& 1 != 0 and (n % 8 == 3 \text{ or } n % 8 == 5):
            g *= -1
        if a % 4 == 3 and n % 4 == 3:
            g *= -1
        c = a
        a = n % c
        n = c
    return g
# прочитать базу простых чисел
def read primes (primes, h, num):
    with open (primes) as file:
        text = file.read()
    from file = text.split(',')
    num list = []
    for n in range(1000000):
        if (len(num list) < h):</pre>
            temp = int(from file[n])
            if (JacobiSymbol(num, temp) == 1):
                num list.append(temp)
        else:
            return num list
# НОД
def gcd(a, b):
    return a if b == 0 else gcd(b, a % b)
# метод непрерывных дробей
def fraction method(n, h):
    B = \lceil -1 \rceil
   B.extend(read primes("primes.txt", h, n))
   h = len(B) - 1
   print("h:", h)
   print("base:", B)
    ret = make_base_B(n, B, h + 2)
```

```
list P = ret[0]
    print("P_i:", list_P)
    matrix = ret[1]
    print("Bin vectors:", matrix)
    bin matrix = ret[2].copy()
    print("Bin matrix:", bin_matrix)
    sum_vectors_idx = gauss_method(bin_matrix)
    print("sum_vectors_idx", sum_vectors_idx)
    # считаем ѕ
    s = 1
    for i in sum_vectors_idx:
       s *= list_P[i]
    s %= n
    print("s = ", s)
    # считаем t
    t = 1
    for i in range(1, len(B)):
        deg sum = 0
        for j in sum vectors idx:
           deg sum += matrix[j][i]
        deg sum >>= 1
        t *= pow(B[i], deg sum)
    t %= n
    print("t = ", t)
    if (s % n == t % n) or (s % n == (t % n) - n):
       print("Error!")
       return
    result = gcd(abs(s - t), n)
    print("Result: {} = {} * {}".format(n, result, n // result))
# 164023
# 850441
# 16735883892800965609
num = int(input())
h = int(input())
fraction method(num, h)
```