Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017076

International filing date: 17 November 2004 (17.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-411674

Filing date: 10 December 2003 (10.12.2003)

Date of receipt at the International Bureau: 20 January 2005 (20.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

19.11.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月10日

出 願 番 号 Application Number:

特願2003-411674

[ST. 10/C]:

[JP2003-411674]

出 願 人
Applicant(s):

石塚 剛

特許庁長官 Commissioner, Japan Patent Office 2005年 1月 7日

【書類名】 特許願 【整理番号】 P25615

【提出日】 平成15年12月10日 【あて先】 特許庁長官殿 【国際特許分類】 B02B 3/00

【発明者】

【住所又は居所】 千葉県印西市高花4丁目2番地7棟501号

【氏名】 石塚 剛

【特許出願人】

【識別番号】 500188990

【住所又は居所】 千葉県印西市高花4丁目2番地7棟501号

【氏名又は名称】 石塚 剛

【代理人】

【識別番号】 100066061

【住所又は居所】 東京都港区新橋1丁目18番16号 日本生命新橋ビル3階

【弁理士】

【氏名又は名称】 丹羽 宏之 【電話番号】 03(3503)2821

【選任した代理人】

【識別番号】 100094754

【住所又は居所】 東京都港区新橋1丁目18番16号 日本生命新橋ビル3階

【弁理士】

【氏名又は名称】 野口 忠夫 【電話番号】 03(3503)2821

【手数料の表示】

【予納台帳番号】 011707 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

炊飯前の洗米処理を不要とするための無洗米製造方法であって、精米用ぬか(炒り糠)を研磨材として用い、精米と研磨材を所望の比率で混合した混合原料とし、この混合原料を攪拌羽根を回転して混合攪拌し精米と研磨材を相互に擦り合せて精米の表面に付着している肌糠を含む糠類及び異物を遊離させる混合攪拌工程と、移送手段を介して米と前記糠類及び異物を篩い分ける篩過工程と、米を無洗米に仕上げる分離仕上げ工程とを有し、米から糠類及び異物を分離して無洗米と糠類に分別し、分離後の糠類を回収循環して研磨材として循環使用する分離糠回収循環工程を含むことを特徴とする無洗米製造方法。

【請求項2】

混合攪拌工程は、1)連続加工操作の終盤において槽内の混合原料の表面レベルが所定レベル以下の場合、2)投入量が満杯に至らず槽内の混合原料の表面レベルが所定レベル以下の場合、いずれの場合も、攪拌羽根の回転速度を上げるようにしたことを特徴とする請求項1記載の無洗米製造方法。

【請求項3】

篩過工程は、周面をメッシュ状ネットで形成した傾斜型回転式筒状篩過機を用いて混合 原料中に混在する米と糠類とを規制された回流状態において、規制回流移動中に篩い分け る構成としたことを特徴とする請求項1記載の無洗米製造方法。

【請求項4】

分離仕上げ工程は、篩い分けた後の米の表面に付着残留している微粉等の異物を分離除去する為の工程であって、均等分配機能を有する供給ガイド手段と、ブラッシング清浄化機能を有する筒状回転ブラシ手段と、供給層厚均し及び滞留量調節手段と、更にブラシ清掃用の櫛歯部材とから形成される仕上げユニットを1ステージ乃至2ステージ以上複数ステージ有し、米を逆回転するブラシ上に載置し供給層厚を均しながら滞留量と滞留時間を調節しつつブラシで米を擦るようにして米表面の微粉等の異物を剥離させて清浄化した無洗米製品を取り出すと共に、分離した微粉等の異物を固気分離手段を介して吸引排出する構成としたことを特徴とする請求項1記載の無洗米製造方法。

【請求項5】

篩過工程及び分離仕上げ工程において、米自体への微粉等の異物が再付着するのを防止するため、イオン発生装置からのイオン化工アを送給して静電除去を行うようにした請求項1、3または4のいずれか記載の無洗米製造方法。

【請求項6】

炊飯前の洗米処理を不要とするための無洗米製造装置であって、精米と研磨材を所望の 比率で混合した混合原料を攪拌羽根を回転して混合攪拌する混合攪拌手段と、精米と糠類 が混在する混合原料を移送する移送手段と、米と糠の篩い分けを行う篩過手段と、米の表 面に残留する微粉等の異物を分離除去して無洗米を分別して取り出すことの出来る回転ブ ラシ手段からなる分離仕上げ手段と、分離後の糠類を回収循環して研磨材として循環使用 する分離糠回収循環手段とから構成されることを特徴とする無洗米製造装置。

【請求項7】

混合攪拌手段は、縦形筒状筐体内に垂直回転軸を有し、この垂直回転軸の周りに放射状に複数個、且つ上下に複数段の攪拌羽根を配設し、縦形筒状筐体の底部に開閉弁を備え、 混合原料の槽内レベルに連動する攪拌羽根の回転速度と混合原料の次工程への供給量とを 制御する制御手段から成ることを特徴とする請求項6記載の無洗米製造装置。

【請求項8】

篩過手段は、周面をメッシュ状ネットで形成した傾斜型回転式筒状篩過機であって、該傾斜型回転式筒状篩過機には内部に回転に合せて内容物を一側端から先端に向かって移動させるための軸に沿って斜行する複数のバッフルプレートから形成されるガイドが1条乃至2条以上複数条配設され、混合原料から米と糠類を回流移動しつつ篩い分ける構成としたことを特徴とする請求項6記載の無洗米製造装置。

【請求項9】

【請求項10】

仕上げユニットは、ベースプレートに一側から先方に向かって末広がりの放射状に配設した複数の仕切り板を有すると共に斜めに先下がり傾斜させてなる供給ガイド手段と、該供給ガイド手段の先端下方に接近して配設された横筒状体の周面にブラシを多数植設し、落下する米をブラシ上に載置して下から煽るように回転する筒状回転ブラシ手段を備え、供給される米の量に応じて前記筒状回転ブラシ手段のブラシ先端との間隙を傾斜角度を変えてブラシ上の米の供給層厚を均しながら滞留量及び滞留時間を調節する滞留量調節手段とを具備し、更に前記筒状回転ブラシ手段のブラシを常時清掃する櫛歯状部材とから構成することを特徴とする請求項9記載の無洗米製造装置。

【請求項11】

篩過手段及び分離仕上げ手段に、イオン発生装置からのイオン化エアを送給する送気手段から成る静電除去装置を備えたことを特徴とする請求項6、8または9いずれか記載の無洗米製造装置。

【書類名】明細書

【発明の名称】無洗米製造方法及びその装置

【技術分野】

[0001]

炊飯前の水洗処理を不要とする無洗米を提供可能な無洗米製造方法及びその装置に関する。

【背景技術】

[0002]

炊飯前の水洗処理を不要とする無洗米製造装置としては、水洗処理を加えたものが多く、乾式処理を行うものとしては、例えば、1)構造が簡単でコンパクトであり、従って安価であり、小規模の外食産業、飲食店、ホテル、病院等において使用される洗米装置として好適な無水式洗米装置を提供する目的で、「精米および洗米用介在物供給装置と、精米と洗米用介在物との混合物が入れられる洗米容器と、洗米された純精米と洗米用介在物と米糠とを分離する分離装置から構成され、精米および洗米用介在物供給装置は、洗米容器の上方に、そして分離装置はその下方に、それぞれ配置すると共に、洗米容器の内部には、複数枚の邪魔板を設ける。」という公報が開示されている(例えば、特許文献1参照。)。

[0003]

また、2)米の表面を荒らすことなく精米の表面に発生した酸化層と肌糠及び溝に入り込んだ糠を取り除くことのできる研米洗米装置として、「米投入口と、研米室と、ブラシを埋設した一対の研米板と、研米板を包囲し、米が研米板の外に出ることを防止する研米板カバーと、研米板を駆動する研米板駆動手段と、糠が研米室の外に出ることを防止する研米室カバーと、研米吐出口を有し、米投入口と研米吐出口は研米室を介して連通すると共に、研米板はブラシの先端を対峙かつ近接させ研米室に内装し、研米板カバーに孔を多数穿設する研米洗米装置とすることにより、上下に配されたブラシで精米の表面に発生した酸化層と肌糠及び溝に入り込んだ糠を取り除きかつ、米の表面を荒らすことのない研米洗米装置を得る。」という公報が開示されている(例えば、特許文献2参照。)。

【特許文献1】特開2001-286773号公報

【特許文献2】特開2001-96177号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

然しながら上述の従来例では、例えば、1)の例では、洗米用介在物として天然食品材料の破砕物や押出し微細発泡体を用いるとし、装置の構成から考えても最終的に得られる無洗米の品質に疑問が残る。

[0005]

また、2)の例では、米の表面の糠を取り除く手段としてブラシを用いているが、糠の除去作用、ブラシの汚れなど、作業性、効率など、実用性において、問題がある。

[0006]

本発明は、上述の事情に鑑みて成されたもので、米の表面に付着している肌糠及びその他の異物を取り除く為に、研磨材として、本出願人が発明し特許を取得した精米用ぬか(炒り糠)を用い、混合攪拌工程、篩過工程、及び分離仕上げ工程を有し、使用後の糠類を研磨材として回収循環して使用する分離糠回収循環工程を備え、更に篩過以降の処理工程において、米自体に異物が再付着するのを防止するための静電除去手段を具備する構成とした無洗米製造方法及びその装置を提供することを目的とする。

【課題を解決するための手段】

[0007]

本発明は、下記構成を備えることにより上記課題を解決できるものである。

[0008]

(1)炊飯前の洗米処理を不要とするための無洗米製造方法であって、精米用ぬか(炒

出証特2004-3120337

り糠)を研磨材として用い、精米と研磨材を所望の比率で混合した混合原料とし、この混合原料を攪拌羽根を回転して混合攪拌し精米と研磨材を相互に擦り合せて精米の表面に付着している肌糠を含む糠類及び異物を遊離させる混合攪拌工程と、移送手段を介して米と前記糠類及び異物を篩い分ける篩過工程と、米を無洗米に仕上げる分離仕上げ工程とを有し、米から糠類及び異物を分離して無洗米と糠類に分別し、分離後の糠を回収循環して研磨材として循環使用する分離糠回収循環工程を含む無洗米製造方法。

[0009]

(2)混合攪拌工程は、1)連続加工操作の終盤において槽内の混合原料の表面レベルが所定レベル以下の場合、2)投入量が満杯に至らず槽内の混合原料の表面レベルが所定レベル以下の場合、いずれの場合も、攪拌羽根の回転速度を上げるようにした前項(1)記載の無洗米製造方法。

[0010]

(3) 篩過工程は、周面をメッシュ状ネットで形成した傾斜型回転式筒状篩過機を用いて混合原料中に混在する米と糠類とを規制された回流状態において、規制回流移動中に篩い分ける構成とした前項(1)記載の無洗米製造方法。

[0011]

(4)分離仕上げ工程は、篩い分けた後の米の表面に付着残留している微粉等の異物を分離除去する為の工程であって、均等分配機能を有する供給ガイド手段と、ブラッシング清浄化機能を有する筒状回転ブラシ手段と、供給層厚均し及び滞留量調節手段と、更にブラシ清掃用の櫛歯部材とから形成される離除去する為の工程であって、均等分配機能を有する供給ガイド手段と、ブラッシング清浄化機能を有する筒状回転ブラシ手段と、供給層厚均し及び滞留量調節手段と、更にブラシ清掃用の櫛歯部材とから形成される仕上げユニットを1ステージ乃至2ステージ以上複数ステージ有し、無洗米製品を取り出すと共に、分離した微粉等の異物を固気分離手段を介して吸引排出する構成とした前項(1)記載の無洗米製造方法。

[0012]

(5) 篩過工程及び分離仕上げ工程において、米自体への微粉等の異物が再付着するのを防止するため、イオン発生装置からのイオン化エアを送給して静電除去を行うようにした前項(1)、(3)または(4)のいずれか記載の無洗米製造方法。

[0013]

(6) 炊飯前の洗米処理を不要とするための無洗米製造装置であって、精米と研磨材を所望の比率で混合した混合原料を攪拌羽根を回転して混合攪拌する混合攪拌手段と、精米と糠類が混在する混合原料を移送する移送手段と、米と糠の篩い分けを行う篩過手段と、米の表面に残留する微粉等の異物を分離除去して無洗米を分別して取り出すことの出来る回転ブラシ手段からなる分離仕上げ手段と、分離後の糠類を回収循環して研磨材として循環使用する分離糠回収循環手段とから構成される無洗米製造装置。

[0014]

(7)混合攪拌手段は、縦形筒状筐体内に垂直回転軸を有し、この垂直回転軸の周りに放射状に複数個、且つ上下に複数段の攪拌羽根を配設し、縦形筒状筐体の底部に開閉弁を備え、混合原料の槽内レベルに連動する攪拌羽根の回転速度と混合原料の次工程への供給量とを制御する制御手段から成る前項(6)記載の無洗米製造装置。

[0015]

(8) 篩過手段は、周面をメッシュ状ネットで形成した傾斜型回転式筒状篩過機であって、該傾斜型回転式筒状篩過機には内部に回転に合せて内容物を一側端から先端に向かって移動させるための軸に沿って斜行する複数のバッフルプレートから形成されるガイドが1条乃至2条以上複数条配設され、混合原料から米と糠類を回流移動しつつ篩い分ける構成とした前項(6)記載の無洗米製造装置。

$[0\ 0\ 1\ 6]$

(9)分離仕上げ手段は、篩い分けた後の米の表面に付着残留している微粉等の異物を 分離除去する為の手段であって、米の流れを均等に分配するための仕切り板を有する供給

ガイド手段と、米粒をブラッシングして清浄化する筒状回転ブラシ手段と、米粒の供給層厚均し及び滞留量調節手段と、更にブラシ清掃用の櫛歯部材とから形成される仕上げユニットを1ステージ乃至2ステージ以上複数ステージ備え、無洗米と微粉等の異物を分別し、固気分離手段を介して前記微粉等の異物を吸引排出する手段を備えて成る前項(6)記載の無洗米製造装置。

[0017]

(10) 仕上げユニットは、ベースプレートに一側から先方に向かって末広がりの放射状に配設した複数の仕切り板を有すると共に斜めに先下がり傾斜させてなる供給ガイド手段と、該供給ガイド手段の先端下方に接近して配設された横筒状体の周面にブラシを多数植設し、落下する米をブラシ上に載置して下から煽るように回転する筒状回転ブラシ手段を備え、供給される米の量に応じて前記筒状回転ブラシ手段のブラシ先端との間隙を傾斜角度を変えてブラシ上の米の供給層厚を均しながら滞留量及び滞留時間を調節する滞留量調節手段とを具備し、更に前記筒状回転ブラシ手段のブラシを常時清掃する櫛歯状部材とから構成する前項(9)記載の無洗米製造装置。

[0018]

(11) 篩過手段及び分離仕上げ手段に、イオン発生装置からのイオン化エアを送給する送気手段から成る静電除去装置を備えた前項(6)、(8) または(9) いずれか記載の無洗米製造装置。

【発明の効果】

[0019]

米の表面に付着している肌糠を含む糠類を取り除く為に、研磨材として、本出願人が発明し特許を取得した「精米用ぬか(炒り糠)」(特許第3453127号)を用い、混合攪拌工程、篩過工程、及び分離仕上げ工程を有し、使用後の糠類を回収循環して研磨材とする分離糠回収循環工程を備え、更に篩過以降の処理工程において、米及び除去した異物に対し帯電防止用のイオン化エアを送給する静電除去装置を設け、最終処理後の無洗米に異物が再付着するのを確実に防止する構成とした無洗米製造方法及びその装置を提供することが出来る。

【発明を実施するための最良の形態】

[0020]

以下に本発明に係る無洗米製造方法及びその装置の実施の形態を説明する。

$[0\ 0\ 2\ 1]$

図1は、無洗米製造方法の一例を示すフローチャート、図2は、無洗米製造装置の全体構成の一例を示す模式図、図3は、混合撹拌手段の構造例を示す模式的側面図、(a)は直胴形の槽に平板状の攪拌羽根を角度を付けて取付けた一例を示す側断面模式図、(b)は直胴形の槽に櫛歯類似の丸棒状の攪拌羽根を取付けた一例を示す側断面模式図、(c)は逆円錐形状の槽に櫛歯類似の丸棒状の攪拌羽根を取付けた一例を示す側断面模式図、図4(a)は、篩過手段の構造の一例を示す模式的一部破断側面図、(b)は内部構造例を示すA-A矢視図、図5は、分離仕上げ手段の仕上げユニットの構造及び組合せの一例を示す模式的側面図、図6は、供給ガイド手段と筒状回転ブラシ手段の構成の一例を示す斜視図である。

【実施例】

[0022]

以下、図1のフローチャートに基づいて、本発明に係る無洗米製造方法の一例を説明する。

[0023]

一般に使用されている通常の精米機で処理された精米を準備し(ステップS1)、これに、本出願人が発明し特許取得した「精米用ぬか(炒り糠)(特許第3453127号)」を、所謂研磨材として準備し(ステップS2)、精米とこの研磨材を所望の、例えば、1:1の容積比率で混合した混合原料とし、この混合原料を攪拌羽根3aを回転して混合攪拌し、精米と研磨材を相互に擦り合せて精米の表面に付着している肌糠を含む糠類及び

異物を遊離させる混合攪拌工程(ステップS3)と、この混合攪拌工程において、レベルセンサ8を用いてこのセンサを取付けた所定レベルの高さ(深さ)位置を超えているかどうかを判断し(ステップS4)、所定レベルを超えている(YES)場合は、バケットコンベア、スクリュウコンベア、空気輸送等の移送手段5を介して混合原料中に混在する米と糠類及び異物を篩い分けるための、例えば、周面をメッシュ状ネット6aで形成した傾斜型回転式筒状篩過機6を用いた篩過工程(ステップS5)へ進み、次いで、篩い分け後の米を取り出して(ステップS6)、無洗米に仕上げるための例えば、供給ガイド手段9aと、筒状回転ブラシ手段9bと、供給層厚均し及び滞留量調節手段9cと、更にブラシBェ清掃用の櫛歯部材9d、9d´とから形成される仕上げユニットを1ステージU1乃至2ステージU2以上複数ステージ……Unを有する分離仕上げ工程(ステップS7)へ進み、ここでは、米の表面に付着残留している微粉等の異物を分離・除去して無洗米と糠類に分別して米は無洗米として取り出し(ステップS11)、一方微粉等の異物はサイクロン、またはバッグフィルタ等の固気分離手段13を有する吸引排出手段で排出する(ステップS12)と同時に吸引用ファン13bを通して排気が行われる。

[0024]

一方篩過工程(ステップS5)で、米と分別して篩い分けられた糠類は全量が分離糠回収循環手段を介して回収され、ステップS2の研磨材供給槽1へ戻され、研磨材として再使用される(ステップS9)。劣化が進んだ場合は、サンプルを取り出して新しい研磨材(精米用ぬか(炒り糠))を交換する。古い研磨材は排出、廃棄される(ステップS10)。或いは、一部を回収して、新研磨材を補充する方法でも良い。

[0025]

また、ステップS4で、混合原料レベルが所定レベル以下(NO)の場合は、攪拌羽根3aの回転速度を上げ、原料レベルの高い(深い)押圧力の大なる条件に近似的に合わせるようにする。こうすることで、連続操作の終盤や、処理量が始めから少ない場合の精米と精米用ぬか(炒り糠)からなる研磨材との擦り合う力の減少を防ぎ、限りなく均一な処理を行うことが出来る。

[0026]

尚、この精米用ぬかは高温で炒る加工をした糠であり、限りなく水分を零に近づけた硬質の乾燥した粒状体を呈しているので、臭いも感じられず、精米用研磨材として研磨効果は大きく最適研磨材である。更にこのような性状であるため、メッシュネットの目を通り易く、目詰まりも生じにくいという効果も挙げることが出来る。

[0027]

図2及び図5に示すように、篩過工程及び分離仕上げ工程において、米Ri自体への微粉等の異物paが再付着するのを防止するため、イオン発生装置14aからのイオン化エアaiを送気手段14bで送給して静電除去を行うようにしてある。

[0028]

本実施例における「肌糠」は、精米原料の表面や窪み、溝等に付着した糠を全て含むものである。

[0029]

以下、図面を参照して、無洗米製造装置の構成及び作用について説明する。

[0030]

図2において、1は研磨材供給槽、2は通常の精米機からの精米供給槽であり、この2原料を、本実施例では1:1(容積比)で混合して混合原料を調整するための混合攪拌槽3につながる。この混合攪拌槽3では、回転軸3bに取付けられた攪拌羽根3aが回転駆動部3cの回転駆動により所定の速度で回転する。調整された混合原料がロータリーバルブ等の開閉弁4を介してバケットコンベア、スクリュウコンベア、空気輸送等の移送手段5により篩過機6へ運ばれる。この開閉弁4は、複数枚の羽根を持った回転式であって、回転速度を変えて次工程への供給量を制御可能である。

[0031]

混合攪拌槽 3 の底部からほぼ 1/3 の高さ位置にレベルセンサ 8 を設け、混合原料の槽

出証特2004-3120337

内レベルに連動する攪拌羽根3aの回転速度と混合原料の次工程への供給量とを制御するコントロールユニット等の制御手段8aから成る。

[0032]

レベルセンサ8は、1個とは限らず、2個以上複数設けて、きめ細かい制御も可能である。

[0033]

この混合攪拌槽3の底部にサンプル取り出し用のサンプルコック(図示略)を設け、処理室の温度、湿度等の環境条件や精米原料の性状を考慮して、取り出したサンプルの状態により攪拌速度及び開閉弁4の回転速度(供給量)を決定することが出来る。また、開閉弁4の回転速度(供給量)は回転駆動部3cに連動して作動し、例えば回転駆動部3cの回転速度が遅い時は開閉弁4の回転速度は速い方へ、つまり攪拌混合槽内の内容物の量が多い時は、開閉弁4の回転速度を上げて単位時間当りの排出量(次工程への供給量)を上げる制御を行う。

[0034]

逆に回転駆動部3 c の回転速度が速い時は開閉弁4 の回転速度は遅い方へ、つまり攪拌 混合槽内の内容物の量が少ない時は、開閉弁4 の回転速度を下げて単位時間当りの排出量 (次工程への供給量)を下げる制御を行う。

[0035]

上述の制御は、連続操作の終盤もしくは、何らかの原因で供給量が一定でなくなった場合に作用させるのが普通で、工程の中間では一定にするのが望ましく、また、制御系を自動から手動、手動から自動に切換えることも出来る。

[0036]

尚、混合攪拌槽3は、攪拌羽根3aが先下がりの傘の骨のような形状であるが、図3(a)に示すように、直胴型の槽31に攪拌羽根31aを細い平板の単純なひねり角度のプロペラ状とし内容物を下方へ押し付けるようにゆっくり回転させる羽根形状とした場合や、(b)に示すように、直胴型の槽32に丸棒を用いて粗い櫛歯状の攪拌羽根32aとしても良く、また(c)に示すように、攪拌羽根33aは前記(c)と類似であるが、槽33自体の形状を下方に向かって先細りの逆円錐形状としても良い。

[0037]

他の符号について、31c、32c、33cは回転駆動部、31b、32b、33bは 攪拌羽根を取付けた回転軸、31d、33dは送り出し用の回転羽根である。31e、32e、33eは回転駆動部を槽に取り付けるための台枠である。また、8は、例えば静電 容量式のレベルセンサであって、図中h1、h2、h3に示すように、ほぼ槽の底部から 1/3程度の高さ位置に設けた場合であるが、高さ位置を限定するものではない。

[0038]

次の篩過機6につながる移送手段5は、バケットコンベア、スクリュウコンベア等が一般的であるが空気輸送方式を選定することも出来る。

[0039]

装置を設置する場所が、高さを十分に取れる条件を備えていれば、混合攪拌槽3を一番高い位置に据えて、移送手段は全て重力方式としても良い。

[0040]

図4(a)は、飾過機の構造を示す断面図である。

[0041]

全体構成は、先下りの傾斜型回転式筒状篩過機6であって、主要部は回転部分となる周面をメッシュ状ネットで形成した筒状体6aの内部に回転に合せて内容物を一側から先端に向って送る為のバッフルプレート6dを図示するように斜めに複数枚、例えば、横から見て隙間が開かない程度に配列し(図4(a)参照)、米粒が外側に飛び出さない程度に目の細かいメッシュ状ネットで周面が形成されており、この回転する筒状体6aの内部を回流しながら移動する米粒のみを先方へ順序良く移動するように流れを規制し、同時に米粒より小さな糠類をネットの外側に排出し、篩い分けられた米粒のみが摺動面を有する固

[0042]

この篩過機 6 は、筐体で外装され、少なくともネット状体 6 a が回転作動中にはイオン発生装置よりイオン化エアが供給され、イオン化エア供給口 1 4 c を介して筐体内に送り込まれ内部はイオン化エアで満たされる。米粒、糠類も含めて帯電防止作用により静電除去される。

[0043]

固定された外装6 b とネットで形成した筒状体6 a の回転軸6 h を支持し、筐体6 b の外側に伸長した前記回転軸6 h の先端に駆動伝達部6 e を有し、モータ等の駆動手段6 c に接続されている。

[0044]

また、筐体 6 b の底部は傾斜してネットで形成した筒状体 6 a の外側に篩い分けられた 糠類が分離糠回収循環手段 7 に接続される接続部兼出口部 6 k に集り易い形状となってい る(図 4 (a)参照)。分離糠回収循環手段 7 には分離後の糠の移送量をコントロールす るコントロールユニット 7 a と移送量調節弁 7 b と更に排出糠の受槽 7 c を備えている。

[0045]

6 g はステーであって、ネットで形成した筒状体 6 a の回転時摺動面を備えた固定支持部材 6 mを支持補強するための部材である。

[0046]

5 a は移送手段 5 の原料出口であり、篩過機 6 の供給口につながる。

[0047]

図4(b)は、回転部分となるネットで形成した筒状体 6 a のA - A 矢視図であり、バッフルプレート 6 d がネットで形成した筒状体 6 a の内周面を 3 等分して配置された場合の一例である。本実施例では矢印の右回りを示している。バッフルプレート 6 d の高さ寸法はネットで形成した筒状体 6 a の直径のほぼ 1 / 4 としているが、限定するものではない。

[0048]

図 5 は、分離仕上げ手段 9 を構成する仕上げユニット U 1 ~ U 5 を示す側面模式図である。

[0049]

仕上げユニットU1は、図6に示すように、ベースプレート9Bに一側から先方に向かって末広がりの放射状に配設した複数の仕切り板9Sを有すると共に斜めに先下がり傾斜させてなる供給ガイド手段9aと、該供給ガイド手段9aの先端下方に接近して配設された横筒状体の周面にブラシBrを多数植設し、落下する米RiをブラシBr上に載置して下から煽るように矢印ハの方向に軸9jを中心に回転する筒状回転ブラシ手段9bと、該筒状回転ブラシ手段9bのブラシBrを常時清掃する櫛歯状部材9dと、ネット状体で形成され供給される米Riの量に応じて前記筒状回転ブラシ手段9bのブラシBr先端との間隙を傾斜角度を変えて調節可能とする供給層厚均し及び滞留量調節手段9cとを具備している。

[0050]

供給層厚均し及び滞留量調節手段9cは、支軸9fを支点とし、矢印イ方向に往復動可能な連結アーム9eを介して揺動自在であり、米Riの供給層厚を均しながら滞留量を調節するために矢印口に沿って揺動し傾斜角度を変えてブラシBrの先端との間隙を調節するようになっている。なお、供給層厚均し及び滞留量調節手段9cは各ユニットのそれと連動する機構となっている。

[0051]

尚、図5に示したように、分離仕上げ手段9を構成する仕上げユニットU1~U3は供給される米Riを供給層厚均し及び滞留量調節手段9cの角度を変えてブラシBrとの間隙を調節し、米をやや滞留させ滞留量と滞留時間を調節し、ブラシBr上で踊るような挙動をしつつ徐々にブラシBrの回転(ハの矢印方向)に抗してブラシBrに擦られながら

[0052]

仕上げユニット $U4\sim U5$ は米RiをブラシBrの回転(ハの矢印方向)と同じ側(矢印トの方向)に回転するように運ばれて、前段ステージの $U1\sim U3$ の場合よりもソフトに米の表面をブラッシングしながら仕上げる構成となっている。このステージU4、U5で用いた櫛歯部材は9d2とし、符号を変えてある。

[0053]

本実施例における筒状回転ブラシ手段 9 b のブラシ B r は、その太さ、硬さ、長さ、植設密度において、米粒 R i がブラシ B r 上で踊りながら、擦られながら落下する性状とするのが望ましい。

[0054]

この仕上げユニットU1~U3までのブラッシング方法と仕上げユニットU4、U5の仕上げ方法は、実施例のように組合せて用いても良く、また別個の方法として夫々使い分けても構わない。また、仕上げユニットのステージ段数は、実施例では5段の場合を示したが、これに限定されるものではなく、各種条件に応じて自由に選択、決定できる。

[0055]

また、仕上げユニットを構成する各要素、供給ガイド手段 9 a、筒状回転ブラシ手段 9 b、供給層厚均し及び帯留量調節手段 9 c、櫛歯状部材 9 d、 9 d′は夫々米 R i の送り方向(図 5 中の矢印ホまたはト)、その他の使用条件により、条件に見合った取付位置を選択的に決める必要がある。

[0056]

表面に微粉等の異物 p a が残留した米 R i はブラシ B r 上に落下した瞬間に跳ねるような挙動を示し、微粉等の異物 p a が米 R i から遊離して減圧状態の雰囲気で矢印ニの方向に吸引されて上昇し、吸引排出手段を構成する排気導管 1 3 a を通ってサイクロンまたはバッグフィルタからなる固気分離手段 1 3 で微粉等の異物を排出すると共に、異物分離後のエアは吸引ファン 1 3 b で排気される。

[0057]

また、分離仕上げ手段9は、適正な室の大きさとする為に例えば、隔壁12、12で仕切られ、吸引分離効率を考慮して仕上げされた無洗米の排出口11にはロータリーバルブ等の連続開閉手段11aが設けられている。

[0058]

また、分離仕上げ手段9の底部には吸引ファン13bの吸引力よりも少し小さ目の送風量を供給する送風機15が設けられ、イオン化エア吸入混合器15aを介して分離仕上げ手段9の室内に送風入口部10から送風供給され、室内をイオン化エアで満たすと同時に陰圧状態を維持し米の表面から分離、遊離した微粉等の異物を吸引ファン13bの吸引力により吸引排出するよになっている。

[0059]

尚、静電除去装置はイオン発生装置14aからのイオン化エアaiを送給する送気手段14bから成り、切換弁14d及び逆止弁14fを備えている。

[0060]

仕上げユニットU2~U5の供給ガイド手段が、仕上げユニットU1の供給ガイド手段9aと異なるのは、複数の仕切り板9Sが放射状ではなく、互いにほぼ平行に配設するようになっている部分である。

[0061]

また、 移送手段としては、スクリュウコンベア、バッケトコンベア、空気輸送手段のほかに電磁式やモータ式等の振動式輸送手段も挙げることができる。これらは、設置条件、環境条件を考慮して選定すれば良い。

[0062]

供給手段のベースプレートは、ネット状体で構成しても良い。ネット状体の場合は、供

[0063]

また、ネット状体の素材としては、ステンレススティールの線材のほかに、抗張力において、使用に耐えるものであれば、合成樹脂製の線材を用いることも出来る。

[0064]

更に尚、装置全体の構成としては、突発的な事態に備えて、全体を一斉に停止させ、安全を確保するように安全装置を設けることが出来る。

【産業上の利用可能性】

[0065]

以上説明したように、米の表面に付着している肌糠を含む糠類を取り除く為に、研磨材として、本出願人が発明し特許を取得した「精米用ぬか(炒り糠)」(特許第3453127号)を用い、混合攪拌工程、篩過工程、及び分離仕上げ工程を有し、使用後の糠類を回収して研磨材として循環使用する分離糠回収循環工程を備え、更に篩過以降の処理工程において、米及び除去した異物に対し帯電防止用のイオン化エアを送給する静電除去装置を設け、処理工程において米粒及び無洗米に異物が再付着するのを確実に防止する構成とした無洗米製造方法及びその装置を提供することが出来る。

【図面の簡単な説明】

[0066]

- 【図1】無洗米製造方法の一例を示すフローチャート
- 【図2】無洗米製造装置の全体構成の一例を示す模式図
- 【図3】混合撹拌手段の構造例を示す模式的側面図、(a)直胴形の槽に平板状の攪拌羽根を角度を付けて取付けた一例を示す側断面模式図、(b)直胴形の槽に櫛歯類似の丸棒状の攪拌羽根を取付けた一例を示す側断面模式図、(c)逆円錐形状の槽に櫛歯類似の丸棒状の攪拌羽根を取付けた一例を示す側断面模式図
- 【図4】(a)篩過手段の構造の一例を示す模式的一部破断側面図、(b)内部構造例を示すA-A矢視図
- 【図5】分離仕上げ手段の仕上げユニットの構造及び組合せの一例を示す模式的側面図
- 【図6】供給ガイド手段と筒状回転ブラシ手段の構成の一例を示す斜視図

【符号の説明】

[0067]

- 1 研磨材供給槽
- 2 精米供給槽
- 3 混合攪拌槽
- 3 a 攪拌羽根
- 3 b 回転軸
- 3 c 回転駆動部
- 4 開閉弁
- 5 移送手段
- 6 傾斜型回転式筒状篩過機
- 6 a メッシュ状ネットで形成した筒状体 (ネットで形成した筒状体)
- 6 b 筐体
- 6 c 駆動手段
- 6 d バッフルプレート
- 7 分離糠回収手段
- 8 レベルセンサ
- 9 分離仕上げ手段
- 9 a 供給ガイド手段
- 9 b 筒状回転ブラシ手段

- 9 c 供給層厚均し手段
- 9 d、9 d′ 櫛歯状部材
- 9B ベースプレート
- 9 S 仕切り板
- 10 送風入口部
- Br ブラシ
- 11a 連続開閉弁
- 13 固気分離手段
- 13a 排気導管13a
- 13b 吸引ファン
- 14a イオン発生装置
- 14b 送気手段
- 14c イオン化エア供給口
- 15 送風機
- 15a イオン化エア吸入混合部
- a i イオン化エア
- Ri 米(米粒)
- U1~Un 仕上げユニット
- pa 微粉

【書類名】図面 【図1】

【図2】

【図3】

(b) A-A 矢視 (回転部分)

【要約】

【課題】 研磨材として、本出願人が発明し特許を取得した精米用ぬか(炒り糠)を用い、混合攪拌工程、篩過工程、及び分離仕上げ工程を有し、使用後の糠類を回収する分離糠回収循環工程を備え、篩過以降の処理工程において、米自体に異物が再付着するのを防止するための静電除去手段を具備する構成とした無洗米製造方法及びその装置の提供。

【解決手段】 精米用ぬか(炒り糠)を研磨材として用い、精米と研磨材を所望の比率で混合した混合原料とし、この混合原料を攪拌羽根を回転して混合攪拌し精米と研磨材を相互に擦り合せて精米の表面に付着している肌糠を含む糠類及び異物を遊離させる混合攪拌工程と、糠類及び異物を篩い分ける篩過工程と、米を無洗米に仕上げる分離仕上げ工程とを有し、米から糠類及び異物を分離して無洗米と糠類に分別し、更に分離後の糠類の一部を回収して研磨材に一定比率で混合する分離糠回収工程から成る。

【選択図】

図 1

特願2003-411674

出願人履歴情報

識別番号

[500188990]

1. 変更年月日

2000年 4月24日

[変更理由]

新規登録

住 所 氏 名

千葉県印西市高花4丁目2番地7棟501号

石塚 剛