a. Understand the concept of a complex number.

NOTE:

- **♣** A complex number is a number consisting of a real part and an imaginary part.
- A complex number form is $\mathbf{a} + \mathbf{b}i$, where \mathbf{a} is a real part and $\mathbf{b}i$ is an imaginary part. For example: 15 + 2i (15 is a real part and 2i is an imaginary part)
- Properties of complex number:

$$i = \sqrt{-1}$$
 and $i^2 = -1$
 $(-1)^{even\ power} = 1$
 $(-1)^{odd\ power} = -1$

Example 1:

Express the following in terms of *i*:

a.
$$\sqrt{-25}$$

$$= \sqrt{-1(25)}$$

$$= \sqrt{-1}\sqrt{25}$$

$$= 5i \text{ (answer)}$$

b.
$$-\sqrt{-11}$$

$$= -\sqrt{-1(11)}$$

$$= -\sqrt{-1}\sqrt{11}$$

$$= -\sqrt{11}i \text{ (answer)}$$

Example 2:

Simplify i^{10} .

$$i^{10} = i^{2(5)}$$

= $(-1)^5$
= -1 (answer)

Example 3:

Solve
$$-7i^3 + 2i^8$$
.

$$= -7i^2i + 2i^{2(4)}$$

$$= -7(-1)i + 2(-1)^{(4)}$$

$$= 7i + 2(1)$$

$$= 7i + 2 \text{ (answer)}$$

EXERCISE Express each of the following in terms of <i>i</i> :				
$1. \sqrt{-16}$	2. $\sqrt{-7}$	$3 \sqrt{-4}$		
1. \(\) 10	Σ. γ /	J. V 1		
Ans: 4i	Ans:√7i	Ans: -2i		
4. $\sqrt{-10}$	5. √ -49	6. −√−13		
T. V 10	J. V 17	0. V 13		
4 /10:	Ans: 7i	Ans: $\sqrt{-13}i$		
Ans: $\sqrt{10}i$				
	EXERCISE Solve each of the following:			
7. $-1 - 8i - 4 - i$	8. i^{17}	9. $(5i)^3$		
<i>Ans</i> : −5 − 9 <i>i</i>	Ans: i	Ans: -125i		
106(-2+9i)	$11.2 - i^{12}$	125 <i>i</i> 8 <i>i</i>		
4 10 F4:	4 1	4 40		
Ans: $12 - 54i$ 13. i^6	Ans: 1	$ \begin{array}{c c} & Ans: 40 \\ \hline & 15i^3 + 3i^{20} - 6i^{43} \end{array} $		
13. 1	14. 1			
	A 1			
<i>Ans</i> : −1	Ans: -i	<i>Ans</i> : 3 + 7 <i>i</i>		

Calculate the operation of complex number:

- i. Addition
- ii. Subtraction
- iii. Multiplication
- iv. Division
- v. Conjugate

Note and Example: ADDITION

♣ Complex numbers are <u>added</u> by adding the real and imaginary parts of the summands:

$$(a + b i) + (c + d i) = (a + c) + (b + d) i$$
Real part Imaginary part

Example:

$$(2 + 3i) + (-4 + 5i) = (2 + (-4)) + (3 + 5)i$$

= -2 + 8i (answer)

Note and Example: SUBTRACTION

♣ Subtraction of complex number is defined by:

$$(a + b i) - (c + d i) = (a - c) + (b - d) i$$

Example:

$$(2+3i) - (-4+5i) = (2-(-4)) + (3-5)i$$

$$= 6-2i \text{ (answer)}$$

Note and Example: MULTIPLICATION

- The multiplication of two complex numbers a + b i and c + d i is defined as follows: (a + b i)(c + d i) = (ac bd) + (ad + bc)i
- ♣ Multiplying complex numbers works like multiplying two binomials by using the FOIL method. Recall that FOIL means to multiply the First terms, Outside terms, Inside terms and Last terms.
- However you do not need to memorize the above definition as the multiplication can be carried out using properties similar to those of the real numbers and the added property $i^2 = -1$.

Example:

$$(2+5i) (6+3i) = 12 + 6i + 30i + 15 i2$$

$$= 12 + 36i + 15(-1)$$

$$= 12 + 36i - 15$$

$$= -3 + 36i \text{ (answer)}$$

Note and Example: DIVISION

- A division problem is usually given in <u>fraction</u> form. To solve a division problem, we will need to know the <u>conjugate</u> of the denominator.
- ♣ The conjugate of the complex number z = a + bi is defined as $\tilde{z} = a bi$.
- \downarrow \tilde{z} also can be denoted as \bar{z} or z^* .
- ↓ It is simply the same numbers of the complex number but with a different sign between them. For example, the conjugate of 2 + 5i is 2 5i.
- $\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di}$

Example:

$$\frac{2}{2+5i} = \frac{2}{2+5i} \times \frac{2-5i}{2-5i}$$

$$= \frac{4-10i}{4-25i^2}$$

$$= \frac{4-10i}{4-25(-1)}$$

$$= \frac{4-10i}{29}$$

$$= \frac{4}{29} - \frac{10i}{29} \text{ (answer)}$$

EXERCISE Solve:

1.
$$(-7 + 9i) + (2 - 10i)$$
 2. $(5 + 2i) + (3 - 2i)$ 3. $(-2 + 4i) + (3 - 9i)$

 $Ans: -5 - i \qquad Ans: 8 \qquad Ans: 1 - 5i$

4. (8 + 5¢) – (2 + 3¢)	$\int 5. (-2+4i) - (3+9i)$)	6. $(5-2i)-2(3-2i)$	+i)
Ans: 6 + 21	An.	s: -5 - 5 <i>i</i>		Ans: -1 - 4i
7. (1 + 2¢)(6 + 3¢)	8. (3 + 4 <i>i</i>)(3 – 4 <i>i</i>)		9. (4 + \(\decc\)) (4 + \(\decc\))	
Ans: 15		Ans: 25		Ans: 15 + 8i
$10.\frac{6}{1-i}$	$11.\frac{4+3i}{2-3i}$		$12.\frac{1-4i}{2+4i}$	
Ans: 3 + 3		$\frac{-1+18i}{13}$		$Ans: \frac{-7-6i}{10}$

- c. Understand graphical representation of a complex number through Argand Diagram:
 - i. Argand Diagram.
 - ii. Modulus and argument.

Note

- ♣ Argand diagram used to plot a complex number. On the horizontal axis are the real numbers and on the vertical axis are the imaginary numbers.
- Example of an argand diagram:

- **Modulus** of a complex numbers, $|z| = R = \sqrt{a^2 + b^2}$
- **Argument** of a complex numbers, $arg(z) = tan^{-1}(\frac{b}{a})$
- \clubsuit Quadrant position and formula to find arg(z) or θ:

Example 1:

Draw an argand diagram for the following complex numbers:

(answer)

Example 2:

Find the modulus and the argument for z = 3 - 2i.

modulus,
$$|\mathbf{z}| = \sqrt{(3)^2 + (-2)^2}$$

= $\sqrt{13}$ (answer)

argument,
$$arg(z) = tan^{-1}\left(\frac{-2}{3}\right)$$

$$\alpha = -33.69^{\circ}$$

$$\theta = 360^{\circ} - 33.69^{\circ}$$

$$\theta = 326.31^{\circ}$$
 (answer)

- ♣ Note that θ = 360° for the 4th quadrant.
- \blacksquare Ignore the '-ve' sign when you substitute α into formula.

EXERCISE

Draw an Argand Diagram to represent the following complex number:

$$1.2 + 5i$$

$$2.4 - 5i$$

$$3. -3 + 6i$$

$$4. -5 - 2i$$

6. −3

EXERCISE

Find the modulus and the argument for:

7.
$$z = -4 + i$$

$$8. z = 3 + 2i$$

9.
$$z = -3 - 2i$$

$$|z| = \sqrt{17}$$

 $\theta = 165.964^{\circ}$

$$|z| = \sqrt{13}$$
$$\theta = 33.69^{\circ}$$

TOPIC 3: COMPLEX NUMBER

11.
$$z = -1 - i$$

12.
$$z = 2 + 7i$$

$$|z| = 5$$
$$\theta = 53.13^{\circ}$$

$$|z| = \sqrt{2}$$
$$\theta = 225^{\circ}$$

$$|z| = \sqrt{53}$$
$$\theta = 74.055^{\circ}$$

d. Understand Complex Number in other form:

- i. Complex number in Polar form and Exponential form.
- ii. Multiplication and division of complex number in polar form.

Note:

♣ Form of complex number:

Cartesian Form	Polar Form	Exponential Form
Z = a + bi	$Z = z \angle \theta$	$Z = Re^{\theta i}$
	$(\theta \text{ should be in degree})$	(θ should be in radian)

Multiplication and **division** of complex number in polar form:

Multiplication	Division	
Modulus1 × Modulus2 ∠ arg1 + arg2	Modulus1 ÷ Modulus2 ∠ arg1 — arg2	

Example 1:

Change the complex number Z = -3 + 4i to Polar and Exponential form.

$$|\mathbf{z}| = R = \sqrt{(-3)^2 + (4)^2}$$

= $\sqrt{25}$
= 5

$$arg z = tan^{-1} \left(\frac{4}{-3}\right)$$

$$\alpha = -53.13^{\circ}$$

$$\theta = 180^{\circ} - 53.13^{\circ}$$

$$\theta = 126.87^{\circ}$$

♣ Polar Form:

$$Z = |z| \angle \theta$$

$$Z = 5 \angle 126.87^{\circ}$$
 (answer)

♣ Exponential Form:

$$Z=Re^{\theta i}$$

$$\theta in \ radian = \frac{126.87^{\circ} \times \pi}{180}$$

$$= 2.214 \text{ rad}$$

$$Z = 5e^{2.214i}$$
 (answer)

Example 2:

Express $Z = \sqrt{45} \angle 13^{\circ}$ to Exponential form.

$$|z| = \sqrt{45}$$

 $\arg(z), \theta = 13^{\circ}$

4 Exponential Form:

$$Z = Re^{\theta i}$$

$$\theta \text{ in } radian = \frac{13^{\circ} \times \pi}{180}$$

$$= 0.227 \text{ rad}$$

$$Z = \sqrt{45}e^{0.227i} \text{ (answer)}$$

Example 3:

Given $Z_1=6 \angle 25^\circ$ and $Z_2=17 \angle 44^\circ$. Find the value of:

a)
$$Z_1Z_2$$

= $6 \angle 25^{\circ}.17 \angle 44^{\circ}$
= $6 \times 17 \angle 25^{\circ} + 44^{\circ}$
= $102 \angle 69^{\circ}$ (answer)

b)
$$\frac{Z_1}{Z_2}$$

$$= \frac{6 \angle 25^{\circ}}{17 \angle 44^{\circ}}$$

$$= \frac{6}{17} \angle 25^{\circ} - 44^{\circ}$$

$$= \frac{6}{17} \angle -19^{\circ} \text{ (answer)}$$

c)
$$\frac{2Z_1}{Z_1 Z_2}$$

$$= \frac{2(6 \angle 25^\circ)}{6 \angle 25^\circ.17 \angle 44^\circ}$$

$$= \frac{12 \angle 50^\circ}{102 \angle 69^\circ}$$

$$= \frac{2}{17} \angle 50^\circ - 69^\circ$$

$$= \frac{2}{17} \angle - 19^\circ \text{ (answer)}$$

EXERCISE

Express each of the following complex number in polar and exponential form:

1.
$$z = -1 + 5i$$

2.
$$z = -1 - 5i$$

3.
$$z = 3 - 3i$$

PF: $\sqrt{26} \angle 101.31^{\circ}$

EF: $\sqrt{26}e^{1.768i}$

PF: $\sqrt{26} \angle 258.69^{\circ}$

EF: $\sqrt{26}e^{4.515i}$

PF: $\sqrt{18} \angle 315^{\circ}$ EF: $\sqrt{18}e^{5.498i}$

$$4. z = -6 + 4i$$

5.
$$z = -1 - i$$

6.
$$z = 2 + 9i$$

PF: $\sqrt{52} \angle 146.31^{\circ}$ EF: $\sqrt{52}e^{2.554i}$ PF: $\sqrt{2} \angle 225^{\circ}$ EF: $\sqrt{2}e^{3.927i}$

PF: $\sqrt{85} \angle 77.471^{\circ}$ EF: $\sqrt{85}e^{1.352i}$

	EXERCISE			
Find the value of Z_1Z_2 if:				
7. $Z_1 = 3 \angle 15^{\circ}$, $Z_2 = 7 \angle 14^{\circ}$	8. $Z_1 = 10 \angle 115^\circ$, $Z_2 = 2 \angle 140^\circ$	9. $Z_1 = 3 \angle 65^\circ$, $Z_2 = 15 \angle 41^\circ$		
24 200	20 2550			
21 ∠ 29°	20 ∠ 255°	45 ∠ 106°		
	EXERCISE Find the value of $\frac{Z_1}{Z}$ if:			
10. $Z_1 = 3 \angle 15^\circ$, $Z_2 = 7 \angle 14^\circ$	11. $Z_1 = 10 \angle 115^\circ$, $Z_2 = 2 \angle 140^\circ$	12. $Z_1 = 3 \angle 65^\circ$, $Z_2 = 15 \angle 41^\circ$		
3				
$\frac{3}{7} \angle 1^{\circ}$	5 . 250	$\frac{1}{5} \angle 24^{\circ}$		
	5∠ – 25°	5		
EXERCISE				
	Find the value of $\frac{3Z_2}{Z_1Z_2}$ if:			
13. $Z_1 = 3 \angle 15^\circ$, $Z_2 = 7 \angle 14^\circ$	14. $Z_1 = 10 \angle 115^{\circ}$, $Z_2 = 2 \angle 140^{\circ}$	15. $Z_1 = 3 \angle 65^\circ$, $Z_2 = 15 \angle 41^\circ$		
1 ∠ 13°	3			
1213	3/10 ∠165°	1∠17°		
	10			

72