SAMPLING AND STATISTICAL INFERENCE Up to now, much of the course material has been concerned with the theory and methods of Probability (I.E. models for random ness) We now move toward the study of some of the concepts and SAMPLING: The process of gathering data from Several ferformances of a random experiment is called Sampling. The individual items of data are termed observations The collection of observations is termed a SAMPLE Prior to getting the numerical values of the observations, each individual "OBSERVATION-TO-BE" has the potential for variability, and we regard each "OBSERVATION- TO -BE" as a random variable, We shall be mainly concerned with observations on a Single VARIABLE (I.E. UNIVARIATE STATISTICS.)

Before the observations in a sample are made, we have in mind to observe X, n times

or alternating to observe X, Xz, -- Xn When these n random vars are indept and identically distriber (i.i.d.) the term RANDOM SAMPLE is used to refer to the n observations on the random var. X. Thus if the distrib of X in the prop. is characterized by PDF f(x), we have the following DEFN: He r. vars X, X, -, Xn have a joint PDF $f(\bar{x}_i, \bar{x}_i, - \bar{x}_n) = \pi f(\alpha_i)$ where $f(\cdot)$ is the common PDF of Ii, then the r. vars $\{X_i\}$ are said to constitute a random sample of size N from the population characterized by $f(\cdot)$. One of the central problems in Statistics is to determine the form of the density f(.) from the observatione $x_1, x_2, ---, x_n$ whe shall see that in many instances, f(.) is a known function of certain unknown haraneters Θ and our task then becomes that of finding good estimates for Θ . estinates for O. hope of students were Normally District (but 1,0 unknown) then we should alternt to estimate 1,0 unknown) which are the Mean & Std Devns characterizing the propulation. STATISTICAL INF. is concerned with making statements concerning the propulation on the brasis of SAMPLE OBSERVATIONS.

It is customary to subdivide the main study areas of stall Inf. as follows: I Estimation
How should we provide an estimate for a certain char, of a popula.

-e.g. mean
How do we choose among alternative estimates. ____ ----How do we determine whether our observations are consistent with certain assumptions — or HYPOTHESES about the population.

—eg the assumption that blood pressures are Normally distrib. Decision Theory

We have some process which we rewish to control.

Observations are taken and resulting from an analysis of thee observations, an action follows to keep the process in control eg. Machine filling commodity into containers The contains filled hackages are examined feriodically and action may follow.

In this course, no time for in depth study of these areas

in remains time shall conc. on the theory of applicant

of the more common of neefed statuted procedures. NOTE Some terminology: STATISTIC

A statistic is any known function of observable random variables — does not involve any unknown eg. random sample: X1, X2, --- , Xn from dietrib with $\nabla = \frac{\sum X_i}{n} ; \frac{\sum (x_i - \overline{x})^2}{n-1}$ $\frac{X_1 + X_2}{2}$ are all STATISTICS

 $\chi^{\omega_J} - \chi^{(I)}$

19 July 19 Jul

But $X - \mu$ or $\frac{\chi_{(h)} - \chi_{(j)}}{\chi_{(h)}}$ are not statistics unless M, o are known.

SAMPLE MOMENTS

Common examples of statistics are the Sample moments about origin.

$$M_1' = \frac{\sum x_i}{n} = x$$
 $M_2' = \frac{\sum x_i^2}{n}$
 $M_1' = \frac{\sum x_i^2}{n}$

Corresponding sommets about sample mean are

$$M_1 = 0 = \frac{\tilde{z}(\alpha - \bar{x})}{n}$$

 $M_2 = \frac{1}{n} \sum (x_i - \overline{x})^2$

$$M_r = \frac{1}{\pi} \sum_{i=1}^{\infty} (x_i - \overline{x})^r$$

It is useful to find the Expected value of these Sample Monte Corresponding population monte exist.

$$E(M'_1) = E(\bar{X})$$

$$= E(\bar{X}_{L_1}) = L_1 Z E X_{L_1}$$

$$= L_2 X_{L_1}$$

$$= L_1 X_{L_2}$$

$$= L_2 X_{L_1}$$

$$= L_1 X_{L_2}$$

$$= L_2 X_{L_1}$$

$$= L_1 X_{L_2}$$

$$= L_2 X_{L_2}$$

$$= L_1 X_{L_2}$$

$$= L_1 X_{L_2}$$

$$= L_2 X_{L_2}$$

$$= L_1 X_{L_2}$$

$$= L_1 X_{L_2}$$

$$= L_2 X_{L_2}$$

$$= L_1 X_{L_2}$$

$$= L_$$

The Sample mounts about the origin are said to be UNB IASED

Sample Monte about Sample mean $E(M_2) = E\left[\pm \hat{z} \left(c_i - \bar{x} \right)^i \right]$ $= \pm \left[\sum_{i=1}^{\infty} x_{i}^{2} - n(x)^{2} \right]$ $= \frac{1}{n} \left\{ \sum_{i=1}^{n} E(x_i^2 - n E(x_i^2)^2 \right\}$ = \frac{1}{2} \n(\frac{1}{2} + \mu^2) - nE(\frac{1}{2})^2 $\frac{1}{n^2} = \left(\sum_{i=1}^n X_i\right)^2$ EX $= \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1$ = \ \= \ \\ \EX; + 2 \ \ \ \(\ \ \ \ \ \) $=\frac{1}{n^2}\left\{n\left(\sigma^2+\mu^2\right)+n\left(n-1\right)\mu^2\right\}$ $=\frac{1}{n}\left\{ \sigma^{-1}+\lambda^{2}+n\mu^{2}-k^{2}\right\}$ = M2 + 5 $= \frac{1}{\pi} \left\{ n \left(\sigma^2 + \mu^2 \right) - n \mu^2 - \sigma^2 \right\}$ E(M2) = 7-1 $E(\overline{X})^{2} = Var(\overline{X})^{2} +$ $= \frac{2}{\pi} + \mu^{2}$ ALT! TO * Parlier work Var(Ea, I, = Za; Var I; + dy An estimator

An estimator for a provide an estimate for that parameter.

estimate for that parameter.

e.g. it seems sensible (intuitive) to use

X as an estimate of per and M2 as " " M2

But $E(M_2) = \frac{M-1}{M} \mu_2$ and because of this M_2 is said to be a BIASED estimator of μ_2 . (But T is untreased estimator of μ)

UNBIASED ESTIMATOR OF MZ

Nould be $Z(x_i - \overline{x})^T$

- shall refer to this as the SAMPLE VARIANCE and denote it by 52

It is imported that you understand the duffer on between the moments of the productible: The Pop. Monte of " " Sample obs: The Sample "

Poh Monto

11 = 0⁻¹

j

Mr

Sample Moments

 $m_1' = \overline{x}$

 $M_2 = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2$

 $M_r = \frac{1}{2} \left(x_i + \frac{1}{2} \right)^r$

SAMPLING FROM A NORMAL DISTRIB The r.v. X ~ N(M, o') V(X) = 02 Suffice we have a random sample of n obs from this distrib Intulue estimators for μ and σ^2 are \overline{X} for μ and σ^2 and σ^2 Now X = SXi is a STATISTIC and thus is a random variable - Thus it has a probability distrib. In this context of Saufling, the first distrib of X is termed. The SAMPLING DISTRIB OF X What is the sampling distribute of X? - X ~ N(力, 完 INTERVAL ESTIMATE FOR I Thus P[[x -M > 1.96 Th or P[|X-m/ < 1.96 5] = 0.95

We can write this as P[-1.96 = X - M] = 0.95 P[-X-1.96 = X - M] = 0.95 P[-X-1.96 = X - M] = 0.95 P[X-1.96 = X - M] = 0.95

1.9. The prob that I lies in this RANDOM INTERVAL is 95% - the ends of the interval are random vars. Once the observations are made, X assumes a value (lets assume of known)

Some interval Such as 100,9 -> 110.1 the fredominant school of thought in STATS But FIXED INTERVAL with prob 0.95 M hier in this MHA 3 because in is either in the fixed interval or not, To avoid any such conclusion being drawn, the follow terminology is used: CONFIDENCE INTERVAL COEFFICIENT - Yutter than finds. Thus if of is known, the expression for the 95% conf. interval for u in the sase of Sampling from a Normal Prot Dutil is

X + 1.96 F

SAMPLING FROM A GENERAL PROB DISTRIB Suppose the mean of the probe distrib is the

Randon sample of size n salected Suppose n is quite lawge

By the C. L. Theorem, the Sampling Distrib of X will be affered Normal with mean in some and " var of?

1.6 X ~ N(M, of) for large n

be known, the approx 95% Conf Int

X + 1.96 Vm

(SAMPLING FROM A NORMAL DISTRIB.) INDEPENDENCE OF X AND 52

SAMPLING DISTRIBUTION OF 52

Can we find a conf. interval for of just as we did for. In the case of M, we used our knowledge of the Sampling Distrib of X, the estimator for M. Thus we should try to find the sampling distrib of 52 Let X1, X2 -- X be a random sample from N(4,5) We introduce new random vars Y, Y2 ---, Yh by means of a linear transformation of X1, X2....Xn $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{$ $\underbrace{Y}_{\underline{A}} = \underbrace{P}_{\underline{A}} \underbrace{X}_{\underline{A}}$ The Matrix is an ORTHOGONAL MATRIX) $PP^{T} = P^{T}P = I$ Det P = 1 Notice that $E(Y_i) = \sqrt{n} \sum EX_i = \sqrt{n} EX_i = \sqrt{n} \mu$ $E(Y_i) = 0$

 $E(Y_i) = 0 \qquad \text{for } \forall i > 1$ $V(Y_i) = \sigma^2 \qquad \forall i$ $(\text{ov}(Y_i, Y_i) = 0 \qquad \forall i \neq j'$

A NOTE ON ORTHOGONAL MATRICES
DEFN A, on nxn matrix is ORTHOGONAL il
$A^{-1} = A'$
$\Rightarrow AA' = A'A = I$
=) A orthogonal if Sum of Squares of elts of each row = 1
and the sum of products of corresponding etts
and the sum of products of corresponding etts in deferent rows = D
Some Properties of Orthogonal A
DROOF: det A = det A' for any A
Now det A A' = (det A) (det A') = (det A)
$1 = det(I) = (det A)^{-1}$
=> det A = 1
2) Sufficie Y = AX when X is (nxi) vector
$\frac{Proof:}{ZY_i} = Y'Y = (AX)'AX$
$= \chi' A' A \chi$
$= \chi' \perp \chi$
Y = AX is termed an orthogonal linear transformation
7 = HA 15 Cerment an orthogonal theory Wahrformation
If X is a vandom vector, the Jacobian of the inverse transpe
$\frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} = \frac{\partial \left(x_{1} + x_{2} - x_{n} \right)}{\partial \left(x_{1} + x_{2} - x_{n} \right)} $
X = A'Y
$ \mathcal{I} = \mathcal{D} \otimes \mathcal{N} = 1$

The joint PDF of Y, Y2 --- Yn is $g(y_1,y_2-,y_n) = f(x_1,x_2-,x_n)/J/$ extension of the earlier result that we quoted .

- where the Xi's must be replaced in terms of Yis. Now $J = \frac{\sigma(x_1, x_2, \dots, x_n)}{\sigma(y_1, y_2, \dots, y_n)}$ - the Jacobian of X writ Y Since P is orthogonal $Y = P X \Rightarrow P^{T}Y = R^{T}PX = X$ Thus J = Det PT = 2 Det P = 1 Thus $g(y_1, y_2, \dots, y_n) = (\frac{1}{\sqrt{2\pi}})^n e^{-\frac{1}{2\sigma_1}(x_1 - \mu)^2}$ Where we must replace x_i 's in terms of y_i 's Now $\frac{1}{2}(x; -\mu)^2 = (x - \mu)^T(x - \mu)$ when $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} h \\ h \end{bmatrix}$ $= (2C - \mu)^T P^T P (2 - \mu)$ $= \left[P(x-\mu) \right]^{\top} P(x-\mu)$ Now P(x-h) = Px-Ph $\frac{x-h}{y-1} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \sqrt{h}h \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Thus $X = (y_1 - \sqrt{n}p)^2 + \sum_{i=1}^{n} y_i^2$ M. 1.14 (Y, ~ N(\n\n, o) Y: ~ N(0,0); i>1 NOTE Y, Y2 -- Yn are all indeft

Thus
$$g(y_1, y_2, \dots, y_n) = (\sqrt{2\pi})^n e^{-\frac{1}{2\sigma_1}(y_1 - \sqrt{n}\mu)^2 + \sum_{i=2}^n y_i^2}$$

$$= \sqrt{2\pi} e^{-\frac{1}{2\sigma_1}(y_1 - \sqrt{n}\mu)^2} e^{-\frac{1}{2\sigma_2}(y_1 - \sqrt{n}\mu)^2 + \sum_{i=2}^n y_i^2}$$

$$= \sqrt{2\pi} e^{-\frac{1}{2\sigma_1}(y_1 - \sqrt{n}\mu)^2} e^{-\frac{1}{2\sigma_2}(y_1 - \sqrt{n}\mu)^2 + \sum_{i=2}^n y_i^2}$$

= 2 4,

Now
$$\sum_{i=1}^{n} x_i^n = x^T x = x^T P^T P x$$

$$= (Px)^T P x$$

$$= y^T y$$

$$\sum_{i=1}^{n} x_i^2 - y_i^2 = \sum_{i=1}^{n} y_i^2$$

and using $y_1 = \sqrt{n} \times y$

$$\sum_{i=1}^{n} x_i^2 - n(\overline{x})^2 = \sum_{i=1}^{n} y_i^2$$

1. E.
$$\frac{\tilde{\chi}}{\tilde{\chi}} (x_i - \bar{x})^2 = \frac{\tilde{\chi}}{2} J_i^2$$

$$\overline{I}_{hus} = \underbrace{\frac{\pi}{5}}_{i=1} \underbrace{\left(\frac{y_i}{5}\right)^2}_{2i} = \underbrace{\frac{\pi}{5}}_{2i} \underbrace{\left(\frac{y_i}{5}\right)^2}_{2i}$$

But yis ~ N(O,I) and the yi are all indept So that $\sum_{i=1}^{\infty} \left(\frac{y_i}{\sigma} \right)^2 - \sum_{i=1}^{\infty} \left(\frac{y_i}{\sigma} \right)^2 = \sum_{i=1}^{\infty$

So that
$$\leq \frac{\sqrt{1}}{1-1}$$

Thus
$$\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{\sigma^2} = \frac{(n-1)s^2}{\sigma^2} \sim \sqrt{\frac{2}{n-1}}$$

Furthermore, because all the Yi's are indept, this quantity is indept of $X = \frac{y_1}{\sqrt{h}}$

(Usually expressed as X and 52 are indept)

EXPECTED VALUE OF SAMPLE STANDARD DEVIATION. WHEN SAMPLING FROM A NORMAL DISTRIBUTION.

First, Suppose
$$X$$
 is $\tau_n^{\zeta_n}$; We will evaluate $E[\sqrt{X}]$

$$E[\sqrt{X}] = \int_0^\infty x^{\frac{1}{\gamma}} \int_0^\infty \frac{1}{\Gamma(\frac{n+1}{\gamma})} \left(\frac{x}{2}\right)^{\frac{n+1}{\gamma}-1} e^{-\frac{2\zeta}{\gamma}} \frac{1}{2} dx$$

$$= \sqrt{2} \frac{\Gamma(\frac{n+1}{\gamma})}{\Gamma(\frac{n+1}{\gamma})} \int_0^\infty \frac{1}{\Gamma(\frac{n+1}{\gamma})} \left(\frac{x}{2}\right)^{\frac{n+1}{\gamma}-1} e^{-\frac{2\zeta}{\gamma}} \frac{1}{2} dx$$

$$= \sqrt{2} \frac{\Gamma(\frac{n+1}{\gamma})}{\Gamma(\frac{n+1}{\gamma})}$$

THIS IS RELEVANT TO THE EVALUATION OF E(S),

BECAUSE (n-1) S' IS \(\frac{1}{n-1} \)

LET'S DENOTE THIS BY X

THUS $E\left[\sqrt{X}\right] = E\left[\sqrt{\frac{n-1}{\sigma^{-1}}}S\right] = \sqrt{2}\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$

AND 50, $E[S] = \sigma \sqrt{\frac{\Gamma(n)}{n-1}} \frac{\Gamma(n)}{\Gamma(n-1)}$

FOR LARGE VALUES OF M, E(S) IS VERY CLOSE TO S,
BUT EVEN FOR SMALL VALUES OF M, IT'S QUITE CLOSE.

 $\frac{e.q. \ m=4}{\Gamma(s)} = \sigma \sqrt{\frac{2}{3}} \frac{\Gamma(2)}{\Gamma(\frac{3}{2})} = \sigma \sqrt{\frac{2}{3}} \frac{1}{(\frac{1}{2})\pi} = 0.9213 \ \sigma$

For n = 25 $E(s) = 0.99 \sigma$

	RETURN TO FIND CONF. INT FOR OT
	We now know that $\frac{(n-1)s^2}{s}$
Commission of the control of the con	Choose some conf. level e.g. $95\% = (1-\alpha)100\%$
***************************************	Suppose a denotes \simeq H for h^2
♥ Managaria a sa a	Suffrose a denotes of ht for him.
Control of the Contro	$P\left[a \in \frac{(n-1)s^2}{s^2} \in V\right] = \frac{1-s}{s}$
the our last est	A
The second secon	Thus $P[t] \geq \frac{\sigma}{(n-1)s^2} \geq t$ $= (1-x)^a$
	or $P\left(\frac{n-1}{s}\right) \leq \left(\frac{n-1}{s}\right) \leq 1-x$
	·
	(± 5n-1)
	(一至, 17-1)
and the second of the second o	f
	The interval $\left(\frac{(n-1)s^2}{\sqrt{r}}\right)$
And the second of the second o	1-7-3n-1 = 5n-1
Magazine to an experience years as:	is termed the 100(1-x) % conf. int for or
The first think was assumed to the second se	
	LATER (P.17)
· .	LATER (P.17)

The second secon

Mark the Company of t

A Section of the section of the section of