An introduction to univalent foundations and the equivalence principle

Paige Randall North

University of Pennsylvania

 $28~{\rm March}~2022$

Outline

1 Background on type theory and univalent foundations

2 The univalence principle¹

¹jww Ahrens, Shulman, Tsementzis

Outline

1 Background on type theory and univalent foundations

2 The univalence principle²

²jww Ahrens, Shulman, Tsementzis

- 1970s: Martin-Löf introduces his type theory
 - As a self-sufficient foundation of mathematics
 - Well-suited for machine verification

- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

Classical mathematics:

- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

- 1970s: Martin-Löf introduces his type theory
 - As a **self-sufficient** foundation of mathematics
 - Well-suited for machine verification

What does type theory look like?

- In mathematics, statements look like the following:
 - Consider a natural number n. The sum n + n is even.
 - Consider a space X. The cone on X is contractible.
- In type theory, we write this as
 - $n : \mathbb{N} \vdash e(n) : \mathsf{isEven}(n+n)$
 - $\bullet \ \ X : \mathsf{Spaces} \vdash c(X) : \mathsf{isContr}(CX)$
- Type theory provides:
 - natural numbers type \mathbb{N}
 - product type $A \times B$
 - sum type A + B
 - function type $A \to B$
 - a universe type Type
 - a type (!) of equalities $a =_A b$
 - etc

Types	Terms	Product	Equality
Propositions	proofs	^	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	~

Types	Terms	Product	Equality
Propositions	proofs	^	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	~

Types	Terms	Product	Equality
Propositions	proofs	^	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	~

- Everything in type theory respects equality
 - This is the definition of equality in type theory (roughly)

Types	Terms	Product	Equality
Propositions	proofs	^	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	~

- Everything in type theory respects equality
 - This is the definition of equality in type theory (roughly)
- Mathematics in type theory
 - + Interpretation into Xs where equality is interpreted by Y
 - \rightsquigarrow Mathematics in Xs up to Y

Types	Terms	Product	Equality
Propositions	proofs	^	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	~

- Everything in type theory respects equality
 - This is the definition of equality in type theory (roughly)
- Mathematics in type theory
 - + Interpretation into Xs where equality is interpreted by Y
 - \rightsquigarrow Mathematics in Xs up to Y

Types	Terms	Product	Equality
Propositions	proofs	^	=
Sets	elements	×	=
Categories	objects	×	\cong
Spaces	points	×	~

- Everything in type theory respects equality
 - This is the definition of equality in type theory (roughly)
- Mathematics in type theory
 - + Interpretation into Xs where equality is interpreted by Y
 - \rightsquigarrow Mathematics in Xs up to Y

Types	Terms	Product	Equality
Propositions	proofs	^	=
Sets	elements	×	=
Groupoids	objects	×	\cong
Spaces	points	×	~

- Everything in type theory respects equality
 - This is the definition of equality in type theory (roughly)
- Mathematics in type theory
 - + Interpretation into Xs where equality is interpreted by Y
 - \rightsquigarrow Mathematics in Xs up to Y

Different notions of equality

Synthetic vs. analytic equalities

In type theory with the equality type, we always have a ("synthetic") equality type between a, b: D

$$a =_D b$$
.

Depending on the type D, we might also have a type of "analytic" equalities

$$a \simeq_D b$$
.

A univalence principle for this D and this \simeq_D states that

$$(a =_D b) \to (a \simeq_D b)$$

is an equivalence.

Identity of indiscernibles

$$(a = b) \leftarrow (\forall P.P(a) \leftrightarrow P(b))$$

Identity of indiscernibles

$$(a = b) \leftrightarrow (\forall P.P(a) \leftrightarrow P(b))$$

Identity of indiscernibles

$$(a =_D b) \leftrightarrow \left(\prod_{P:D \to \mathsf{Type}} P(a) \simeq P(b) \right)$$

Identity of indiscernibles

Leibniz: two things are equal when they are *indiscernible* (have the same properties).

$$(a =_D b) \leftrightarrow \left(\prod_{P:D \to \mathsf{Type}} P(a) \simeq P(b)\right)$$

• This holds in type theory.

Identity of indiscernibles

$$(a =_D b) \leftrightarrow \left(\prod_{P:D \to \mathsf{Type}} P(a) \simeq P(b)\right)$$

- This holds in type theory.
- Given a univalence principle $(a =_D b) \simeq (a \simeq_D b)$, we find an equivalence principle:

$$(a \simeq_D b) o \left(\prod_{P:D o \mathsf{Type}} P(a) \simeq P(b) \right).$$

Univalence

- We've seen that equality in type theory can be interpreted as notions weaker than classical equality (e.g. isomorphism, paths).
- Voevodsky imported weakness for equality from the interpretation in spaces into type theory by imposing the *Univalence Axiom* (UA):

The canonical function $(A =_{\mathsf{Type}} B) \to (A \simeq B)$ is an equivalence of types, for any types A and B.

- UA is validated by the interpretation into spaces, but not into propositions, sets, or groupoids.
- Instead we **internalize** these notions.

Internalization of classical mathematics into type theory

Internalization of classical mathematics into type theory

• If two types A, B are propositions,

$$(A \simeq B) \simeq (A \leftrightarrow B)$$

• If two types A, B are propositions,

$$(A =_{\text{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)$$

so everything respects bi-implication of propositions.

• If two types A, B are propositions,

$$(A =_{\operatorname{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$(A =_{\operatorname{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects bijection of sets.

• If two types A, B are propositions,

$$(A =_{\operatorname{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$(A =_{\operatorname{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects bijection of sets.

• For types A, B which are structured sets (groups, rings, etc),

$$(A =_{\operatorname{Grp}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects isomorphism of groups (or rings, etc).³

³Coquand-Danielsson 2013

• If two types A, B are propositions,

$$(A =_{\text{Prop}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \leftrightarrow B)$$

so everything respects bi-implication of propositions.

• If A, B are sets,

$$(A =_{\operatorname{Set}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects bijection of sets.

• For types A, B which are structured sets (groups, rings, etc),

$$(A =_{\operatorname{Grp}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \cong B)$$

so everything respects isomorphism of groups (or rings, etc).³

• For univalent categories A, B,

$$(A =_{\text{UCat}} B) \stackrel{UA}{\simeq} (A \simeq B) \simeq (A \simeq B)$$

so everything respects equivalence of univalent categories.⁴

³Coquand-Danielsson 2013

⁴Ahrens-Kapulkin-Shulman 2015

• Voevodsky dreamt of 'univalent mathematics' in which

$$(A =_D B) \simeq (A \simeq_D B)$$

where D is any type of mathematical object (propositions, sets, groups, categories, ∞ -categories, etc) and \simeq_D is the appropriate notion of 'sameness' for that type of objects.

• This would give us an appropriate language in which to study D.

Outline

1 Background on type theory and univalent foundations

2 The univalence principle⁵

⁵jww Ahrens, Shulman, Tsementzis

Signatures

Structures

• Morally, an \mathcal{L} -structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \to \mathsf{Type}$.

Structures

- Morally, an \mathcal{L} -structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \to \mathsf{Type}$.
- In type theory, we define an \mathcal{L} -structure fiberwise.

Structures

- Morally, an \mathcal{L} -structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \to \mathsf{Type}$.
- In type theory, we define an \mathcal{L} -structure fiberwise.
- An $\mathcal{L}_{\mathsf{Cat}}$ -structure \mathcal{C} consists of:

Structures

- Morally, an \mathcal{L} -structure for a signature \mathcal{L} is a Reedy fibrant diagram $\mathcal{L} \to \mathsf{Type}$.
- In type theory, we define an \mathcal{L} -structure fiberwise.

• CO: Type

• An $\mathcal{L}_{\mathsf{Cat}}$ -structure \mathcal{C} consists of:

Then we add axioms.

Proposition

For two \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}$ denotes levelwise equivalence.

Proposition

For two \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}$ denotes levelwise equivalence.

A levelwise equivalence $\mathcal{C} \cong_{\mathcal{L}_{\mathsf{Cat}} - \mathsf{Str}} \mathcal{D}$ consists of:

- $e_O: \mathcal{C}O \xrightarrow{\sim} \mathcal{D}O$
- $x, y : \mathcal{C}O \vdash e_A : \mathcal{C}A(x, y) \xrightarrow{\sim} \mathcal{D}(e_O x, e_O y)$
- $x: \mathcal{C}O, f: \mathcal{C}A(x,x) \vdash e_I: \mathcal{C}I_x(f) \xrightarrow{\sim} \mathcal{D}I_{e_Ox}(e_Af)$
- $x, y, z : \mathcal{C}O, f : \mathcal{C}A(x, y), g : \mathcal{C}A(y, z), h : \mathcal{C}A(x, z) \vdash \mathcal{C}T_{x,y,z}(f, g, h) \xrightarrow{\sim} \mathcal{D}T_{e_Ox,e_Oy,e_Oz}(e_Af, e_Ag, e_Ah)$
- $x, y : \mathcal{C}O, f, g : \mathcal{C}A(x, y) \vdash \mathcal{C}E_{x, y}(f, g) \xrightarrow{\sim} \mathcal{C}E_{e_O x, e_O y}(e_A f, e_A g)$

Proposition

For two \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}$ denotes levelwise equivalence.

A levelwise equivalence $\mathcal{C} \cong_{\mathcal{L}_{\mathsf{Cat}} - \mathsf{Str}} \mathcal{D}$ consists of:

- $e_O: \mathcal{C}O \xrightarrow{\sim} \mathcal{D}O$
- $x, y : \mathcal{C}O \vdash e_A : \mathcal{C}A(x, y) \xrightarrow{\sim} \mathcal{D}(e_O x, e_O y)$
- $x : \mathcal{C}O, f : \mathcal{C}A(x,x) \vdash e_I : \mathcal{C}I_x(f) \xrightarrow{\sim} \mathcal{D}I_{e_Ox}(e_Af)$
- $x, y, z : \mathcal{C}O, f : \mathcal{C}A(x, y), g : \mathcal{C}A(y, z), h : \mathcal{C}A(x, z) \vdash \mathcal{C}T_{x,y,z}(f, g, h) \xrightarrow{\sim} \mathcal{D}T_{e_Ox,e_Oy,e_Oz}(e_Af, e_Ag, e_Ah)$
- $x, y : \mathcal{C}O, f, g : \mathcal{C}A(x, y) \vdash \mathcal{C}E_{x, y}(f, g) \xrightarrow{\sim} \mathcal{C}E_{e_O x, e_O y}(e_A f, e_A g)$

But this is not an equivalence of categories.

Proposition

For two \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}$ denotes levelwise equivalence.

A levelwise equivalence $\mathcal{C} \cong_{\mathcal{L}_{\mathsf{Cat}} - \mathsf{Str}} \mathcal{D}$ consists of:

- $e_O: \mathcal{C}O \xrightarrow{\sim} \mathcal{D}O$
- $x, y : \mathcal{C}O \vdash e_A : \mathcal{C}A(x, y) \xrightarrow{\sim} \mathcal{D}(e_O x, e_O y)$
- $x : \mathcal{C}O, f : \mathcal{C}A(x,x) \vdash e_I : \mathcal{C}I_x(f) \xrightarrow{\sim} \mathcal{D}I_{e_Ox}(e_Af)$
- $x, y, z : \mathcal{C}O, f : \mathcal{C}A(x, y), g : \mathcal{C}A(y, z), h : \mathcal{C}A(x, z) \vdash \mathcal{C}T_{x,y,z}(f, g, h) \xrightarrow{\sim} \mathcal{D}T_{e_Ox,e_Oy,e_Oz}(e_Af, e_Ag, e_Ah)$
- $x, y : \mathcal{C}O, f, g : \mathcal{C}A(x, y) \vdash \mathcal{C}E_{x, y}(f, g) \xrightarrow{\sim} \mathcal{C}E_{e_O x, e_O y}(e_A f, e_A g)$

But this is not an equivalence of categories.

And is it appropriate to call C, \mathcal{D} categories?

Indiscernibility

Definition

Given an \mathcal{L} -structure M, and an object S of \mathcal{L} , we say that two elements x,y:MS are indiscernible if substituting x for y in any object of \mathcal{L} that depends on (i.e. object with a morphism to) S produces equivalent types.

Definition

An \mathcal{L} -structure M is univalent if for any object S of \mathcal{L} , and any x, y : MS, the type of indiscernibilities between x and y is equivalent to the type of equalities between x and y.

Univalent \mathcal{L}_{cat} structures

Let C be a univalent \mathcal{L}_{cat} structure.

Univalent \mathcal{L}_{cat} structures

Let \mathcal{C} be a univalent \mathcal{L}_{cat} structure.

- Any two terms $x : \mathcal{C}O, f : \mathcal{C}A(x,x) \vdash i,j : \mathcal{C}I_x(f)$ are indiscernible.
- \rightarrow Each $\mathcal{C}I_x(f)$ is a proposition.
- \rightarrow Similarly, each $\mathcal{C}T_{x,y,z}(f,g,h), \mathcal{C}E_{x,y}(f,g)$ is a proposition.

Univalent \mathcal{L}_{cat} structures

Let \mathcal{C} be a univalent \mathcal{L}_{cat} structure.

- Any two terms $x : \mathcal{C}O, f : \mathcal{C}A(x,x) \vdash i,j : \mathcal{C}I_x(f)$ are indiscernible.
- \rightarrow Each $\mathcal{C}I_x(f)$ is a proposition.
- \rightarrow Similarly, each $\mathcal{C}T_{x,y,z}(f,g,h), \mathcal{C}E_{x,y}(f,g)$ is a proposition.
- In the axioms for a category, we have that E behaves like equality (is reflexive and a congruence for T, I, E.)
- \rightarrow Univalence at A means that f = g is equivalent to $CE_{x,y}(f,g)$.
- $\rightarrow \mathcal{C}A(x,y)$ is a set.

Univalent \mathcal{L}_{cat} structures

- The indiscernibilities between a, b : CO consist of
 - $\phi_{x\bullet}: \mathcal{C}A(x,a) \cong \mathcal{C}A(x,b)$ for each $x:\mathcal{C}O$
 - $\phi_{\bullet z}: \mathcal{C}A(a,z) \cong \mathcal{C}A(b,z)$ for each $z:\mathcal{C}O$
 - $\phi_{\bullet \bullet} : \mathcal{C}A(a,a) \cong \mathcal{C}A(b,b)$
 - The following for all appropriate w, x, y, z, f, g, h:

$$CT_{x,y,a}(f,g,h) \leftrightarrow CT_{x,y,b}(f,\phi_{y\bullet}(g),\phi_{x\bullet}(h)) \qquad CI_{a}(f) \leftrightarrow CI_{b}(\phi_{\bullet\bullet}(f))$$

$$CT_{x,a,z}(f,g,h) \leftrightarrow CT_{x,b,z}(\phi_{x\bullet}(f),\phi_{\bullet z}(g),h) \qquad CE_{x,a}(f,g) \leftrightarrow CE_{x,b}(\phi_{x\bullet}(f),\phi_{x\bullet}(g),f)$$

$$CT_{a,z,w}(f,g,h) \leftrightarrow CT_{b,z,w}(\phi_{\bullet z}(f),g,\phi_{\bullet w}(h)) \qquad CE_{a,x}(f,g) \leftrightarrow CE_{b,x}(\phi_{\bullet x}(f),\phi_{\bullet x}(g),f)$$

$$CT_{x,a,a}(f,g,h) \leftrightarrow CT_{x,b,b}(\phi_{x\bullet}(f),\phi_{\bullet\bullet}(g),\phi_{x\bullet}(h)) \qquad CE_{a,x}(f,g) \leftrightarrow CE_{b,b}(\phi_{\bullet\bullet}(f),\phi_{\bullet\bullet}(g),f)$$

$$CT_{a,x,a}(f,g,h) \leftrightarrow CT_{b,x,b}(\phi_{\bullet x}(f),\phi_{x\bullet}(g),\phi_{\bullet x}(h))$$

$$CT_{a,a,a}(f,g,h) \leftrightarrow CT_{b,b,b}(\phi_{\bullet\bullet}(f),\phi_{\bullet\bullet}(g),\phi_{\bullet\bullet}(h))$$

Univalent \mathcal{L}_{cat} structures

- The indiscernibilities between a, b : CO consist of
 - $\phi_{x\bullet}: \mathcal{C}A(x,a) \cong \mathcal{C}A(x,b)$ for each $x:\mathcal{C}O$
 - $\phi_{\bullet z}: \mathcal{C}A(a,z) \cong \mathcal{C}A(b,z)$ for each $z:\mathcal{C}O$
 - $\phi_{\bullet\bullet}: \mathcal{C}A(a,a) \cong \mathcal{C}A(b,b)$
 - The following for all appropriate w, x, y, z, f, g, h:

```
CT_{x,y,a}(f,g,h) \leftrightarrow CT_{x,y,b}(f,\phi_{y\bullet}(g),\phi_{x\bullet}(h)) \qquad CI_{a}(f) \leftrightarrow CI_{b}(\phi_{\bullet\bullet}(f))
CT_{x,a,z}(f,g,h) \leftrightarrow CT_{x,b,z}(\phi_{x\bullet}(f),\phi_{\bullet z}(g),h) \qquad CE_{x,a}(f,g) \leftrightarrow CE_{x,b}(\phi_{x\bullet}(f),\phi_{\bullet x}(g),f)
CT_{x,a,z}(f,g,h) \leftrightarrow CT_{b,z,w}(\phi_{\bullet z}(f),g,\phi_{\bullet w}(h)) \qquad CE_{x,z}(f,g) \leftrightarrow CE_{b,x}(\phi_{\bullet x}(f),\phi_{\bullet x}(g),f)
CT_{x,x,a}(f,g,h) \leftrightarrow CT_{x,b,b}(\phi_{x\bullet}(f),\phi_{\bullet \bullet}(g),\phi_{x\bullet}(h)) \qquad CE_{x,x,a}(f,g,h) \leftrightarrow CT_{b,x,b}(\phi_{\bullet x}(f),\phi_{x\bullet}(g),\phi_{\bullet \bullet}(h))
CT_{x,x,a}(f,g,h) \leftrightarrow CT_{b,x,b}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet x}(h))
CT_{x,x,a}(f,g,h) \leftrightarrow CT_{x,x,b}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet x}(h))
CT_{x,x,a}(f,g,h) \leftrightarrow CT_{x,x,b}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet x}(h))
CT_{x,x,a}(f,g,h) \leftrightarrow CT_{x,x,b}(\phi_{\bullet \bullet}(f),\phi_{\bullet x}(g),\phi_{\bullet x}(h))
```

- But this an isomorphism in the usual categorical sense.
- \rightarrow Univalence at O means that x = y is equivalent to $x \cong y$.

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \twoheadrightarrow denotes a very split surjective morphism.

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \twoheadrightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: \mathcal{C}A(x,y) \twoheadrightarrow \mathcal{D}A(Fx,Fy)$ for every $x,y:\mathcal{C}O$
- $FT : \mathcal{C}T(f,g,h) \twoheadrightarrow \mathcal{D}T(Ff,Fg,Fh)$ for all $f : \mathcal{C}A(x,y), g : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE: CE(f,g) \rightarrow DE(Ff,Fg)$ for all f,g: CA(x,y)
- $FI: \mathcal{C}I(f) \to \mathcal{D}I(Ff)$ for all $f: \mathcal{C}A(x,x)$

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \twoheadrightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: \mathcal{C}A(x,y) \to \mathcal{D}A(Fx,Fy)$ for every $x,y:\mathcal{C}O$
- $FT : \mathcal{C}T(f,g,h) \twoheadrightarrow \mathcal{D}T(Ff,Fg,Fh)$ for all $f : \mathcal{C}A(x,y), g : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE: CE(f,g) \rightarrow DE(Ff,Fg)$ for all f,g: CA(x,y)
- $FI: \mathcal{C}I(f) \twoheadrightarrow \mathcal{D}I(Ff)$ for all $f: \mathcal{C}A(x,x)$

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \twoheadrightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: \mathcal{C}A(x,y) \to \mathcal{D}A(Fx,Fy)$ for every $x,y:\mathcal{C}O$
- $FT : \mathcal{C}T(f,g,h) \leftrightarrow \mathcal{D}T(Ff,Fg,Fh)$ for all $f : \mathcal{C}A(x,y), g : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE : CE(f,g) \leftrightarrow DE(Ff,Fg)$ for all f,g : CA(x,y)
- $FI: \mathcal{C}I(f) \leftrightarrow \mathcal{D}I(Ff)$ for all $f: \mathcal{C}A(x,x)$

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \twoheadrightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: \mathcal{C}A(x,y) \twoheadrightarrow \mathcal{D}A(Fx,Fy)$ for every $x,y:\mathcal{C}O$
- $FT : \mathcal{C}T(f,g,h) \leftrightarrow \mathcal{D}T(Ff,Fg,Fh)$ for all $f : \mathcal{C}A(x,y), g : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE: (f=g) \leftrightarrow (Ff=Fg)$ for all $f,g: \mathcal{C}A(x,y)$
- $FI: \mathcal{C}I(f) \leftrightarrow \mathcal{D}I(Ff)$ for all $f: \mathcal{C}A(x,x)$

Main theorem

For two univalent \mathcal{L} -structures S, T,

$$(S =_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}} T) \simeq (S \cong_{\mathcal{L} - \mathsf{Str}}^* T) \simeq (S \twoheadrightarrow T)$$

where $\cong_{\mathcal{L}-\mathsf{Str}}^*$ denotes levelwise equivalence up to indiscernbility and \twoheadrightarrow denotes a very split surjective morphism.

Very surjective morphisms of \mathcal{L}_{cat} -structures

- $FO: \mathcal{C}O \twoheadrightarrow \mathcal{D}O$
- $FA: \mathcal{C}A(x,y) \cong \mathcal{D}A(Fx,Fy)$ for every $x,y:\mathcal{C}O$
- $FT : \mathcal{C}T(f,g,h) \leftrightarrow \mathcal{D}T(Ff,Fg,Fh)$ for all $f : \mathcal{C}A(x,y), g : \mathcal{C}A(y,z), h : \mathcal{C}A(x,z)$
- $FE: (f=g) \leftrightarrow (Ff=Fg)$ for all $f,g: \mathcal{C}A(x,y)$
- $FI: \mathcal{C}I(f) \leftrightarrow \mathcal{D}I(Ff)$ for all $f: \mathcal{C}A(x,x)$

Summary

For every signature \mathcal{L} , we have

- a notion of structure,
- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem.

Summary

For every signature \mathcal{L} , we have

- a notion of structure,
- a notion of indiscernibility within each sort,
- a notion of univalent structures,
- a notion of equivalence,
- a univalence theorem.

The paper includes examples of

- †-categories,
- profunctors,
- bicategories,
- opetopic bicategories,
- ...

Current and future work

- Drop the splitness condition for certain structures.
- Extend to infinite structures.
- Formulate an analogue to the Rezk completion.
- Translate the theory into one about structures which can include explicit functions.
- Explore mathematics within examples.
- Give a model-category-theoretic account.

Thank you!