CSC352 HW7

Alex Zhang

March 2023

Question 1

- 1. The relative error for \mathbf{Q} is 2.
- 2. The relative error for ${f R}$ is 1.036.
- 3. The relative error for $\mathbf{Q} * \mathbf{R}$ is 1.1194e 15.

I'm surprised with the first two relative errors. For \mathbf{Q} 's relative error, it should be 0 ideally, but I got 2, which shows there is a difference between true \mathbf{Q} , and calculated \mathbf{Q} . For \mathbf{R} , I think it still should be 0 for $\|0\|_p = 0$. Base on the two relative errors, I think for HouseHolder QR, \mathbf{Q} and \mathbf{R} are not accurate. However, the relative error for $\mathbf{Q} * \mathbf{R}$ is really small so their product is accurate. Based on this small relative error, we can also conclude that QR factorization using HouseHolder is stable.

Question 2

- 1. For QR factorization with HouseHolder, the distance is 8.6905e 16.
- 2. For QR factorization with modified Gram-Schmidt, the distance is 1.

The distance using HouseHolder is very small and therefore reasonable. However, the result for using mgs is quiet big. One reason is when doing Gram-Schmidt process, calculating matrix \mathbf{Q} involves multiplication and normalization. This process will make \mathbf{Q} not be strictly orthonormal matrix, and the result will be affected then.