Lezione 20: esercizi suggeriti

Esercizio 1. Si consideri il sistema lineare autonomo a tempo continuo

$$\begin{cases} \dot{x}(t) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases} \qquad F = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, H = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \quad \alpha \in \mathbb{R}.$$

Si costruisca, se possibile, uno stimatore dello stato in modo che l'errore di stima converga a zero come combinazione lineare dei modi $e^{-t}\sin(t)$, $e^{-t}\cos(t)$, e^{-t} .

Esercizio 2. Si consideri il sistema lineare autonomo a tempo discreto

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases} F = \begin{bmatrix} 0 & 2 & -2 \\ 0 & -1 & 1 \\ 2 & 0 & 2 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}.$$

Si porti il sistema in forma di Kalman di osservabilità e si determini, se esiste, uno stimatore dead-beat dello stato del sistema.

Esercizio 3. Si consideri il sistema lineare autonomo a tempo continuo

$$\begin{cases} \dot{x}(t) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases} F = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}, H = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}.$$

Si costruisca, se possibile, uno stimatore dello stato in modo che l'errore di stima converga a zero come combinazione lineare dei modi e^{-t} , te^{-t} .

Esercizio 4. Si consideri il sistema lineare autonomo a tempo continuo

$$\begin{cases} \dot{x}(t) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases} F = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, H = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \alpha \in \mathbb{R}.$$

Si discuta la rivelabilità del sistema al variare di α . Per $\alpha = -1$ si costruisca, se possibile, uno stimatore dello stato il cui guadagno L allochi gli autovalori di F + LH in -1, -2, -3.

Soluzioni

Esercizio 1. Il sistema è osservabile per cui lo stimatore richiesto esiste. Il guadagno dello stimatore è $L = \begin{bmatrix} -4 & -5 & -5 \end{bmatrix}^{\mathsf{T}}$.

Esercizio 2. Usando il cambio base $T_K = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (non unico) applicato al sistema duale (F^\top, H^\top) si ottiene la forma di Kalman di osservabilità $F_K = \begin{bmatrix} 0 & 2 & 0 \\ -1 & 1 & 0 \\ \hline -2 & 2 & 0 \end{bmatrix}$, $H_K = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ (non unica). I guadagni $L = \begin{bmatrix} \alpha & 1/2 - \alpha & -1 - \alpha \end{bmatrix}^\top$, $\alpha \in \mathbb{R}$, posizionano tutti gli autovalori in zero.

Esercizio 3. Il sistema non è osservabile, ma il sottosistema non osservabile ha un autovalore in -1 per cui il problema ha soluzione. Il guadagno dello stimatore desiderato è $L = \begin{bmatrix} -9 & -6 & 0 \end{bmatrix}^{\top}$.

Esercizio 4. Il sistema è rivelabile se e solo se $\alpha < 0$. Lo stimatore richiesto esiste e ha guadagno $L = \begin{bmatrix} 0 & -7 & -12 \end{bmatrix}^{\mathsf{T}}$.