THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1510 Calculus for Engineers (Fall 2021) Homework 1

Deadline: September 25 at 23:00

Name:	Student No.:
Class:	
in academic wo	at I am aware of University policy and regulations on honesty k, and of the disciplinary guidelines and procedures applications of such policy and regulations, as contained in the website k.edu.hk/policy/academichonesty/
Signature	Date

General Guidelines for Homework Submission.

- Please submit your answer to Gradescope through the centralized course MATH1510A-I in Blackboard.
- In Gradescope, for each question, please indicate exactly which page(s) its answer locates. Answers of incorrectly matched questions will not be graded.
- Late submission will NOT be graded and result in zero score. Any answers showing evidence of plagiarism will also score zero; stronger disciplinary action may also be taken.
- Points will only be awarded for answers with sufficient justifications.
- All questions in **Part A** along with some selected questions in **Part B** will be graded. Question(s) labeled with * are more challenging.

Part A:

- 1. Without using L'Hôpital's rule, evaluate the following limits of sequences. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.
 - (a) $\lim_{n \to \infty} (\sqrt{n^2 + n} \sqrt{n^2 1})$
 - (b) $\lim_{n \to \infty} \frac{\sin(n) + \cos(n^2)}{n 100}$

2. Let

$$f(x) = \begin{cases} \frac{1}{x} \tan \frac{x}{2} & \text{if } -1 < x < 0; \\ \frac{|x-1|}{2x-2} & \text{if } 0 < x < 1; \\ \frac{x^2 - 4x + 3}{x^2 + 2x - 3} & \text{if } x > 1. \end{cases}$$

Then find each of the following limits or state that it does not exist. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so, and determine the correct sign.

- (a) $\lim_{x \to 0^-} f(x);$
- (b) $\lim_{x \to 0^+} f(x);$
- (c) $\lim_{x \to 0} f(x)$.
- (d) $\lim_{x\to 1} f(x)$;

Part B:

- 3. (a) Let $f(x) = \frac{1}{\sqrt{5-4x-x^2}}$. Express the domain and range of f in interval notation.
 - (b) Let $f(x)=x^2-1,\ g(x)=\frac{1}{3}\log_2 x.$ Express the domain and range of $g\circ f$ in interval notation.

- 4. Let $\gamma(t)=(x(t),y(t))=(3\cos 2t-1,3\sin 2t+2),\,t\in\mathbb{R}$ be a curve.
 - (a) Write down an equation of the curve in terms of x and y without t.
 - (b) Sketch the curve in xy-plane, and indicate the direction for t increasing with an arrow.

- 5. Without using L'Hôpital's rule, evaluate the following limits. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.
 - (a) $\lim_{x\to 3} \frac{\sqrt{x+1}-2}{4-\sqrt{5x+1}};$
 - (b) * $\lim_{x \to 8} \frac{x^2 7x 8}{\sqrt[3]{x} 2}$;

- 6. Without using L'Hôpital's rule, evaluate the following limits. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.
 - (a) $\lim_{x \to +\infty} \left(1 + \frac{2}{4x 1} \right)^x$ (b) $\lim_{x \to +\infty} \left(\frac{2x 1}{2x + 1} \right)^x$

7. * Let $\{a_n\}$ be the sequence defined by the recursive relation

$$a_1 = \sqrt{6}$$
 and $a_{n+1} = \sqrt{6 + a_n}$ for all postive integer n .

Given that $\lim_{n\to\infty} a_n$ exists and equals c. Find the value of c.

- 8. * The following statements are both false. Give one counterexample for each of them.
 - (a) If $\lim_{n \to +\infty} a_n = 0$, $\lim_{n \to +\infty} b_n = +\infty$, then $\lim_{n \to +\infty} a_n b_n = 0$.
 - (b) If f(x) > 0 for all $x \in \mathbb{R}$ and $\lim_{x \to 0} f(x)$ exists, then $\lim_{x \to 0} f(x) > 0$.