

Numerical Representation and Codes

Exercises Digital Design

Solution vs. Hints:

While not every response provided herein constitutes a comprehensive solution, some serve as helpful hints intended to guide you toward discovering the solution independently. In certain instances, only a portion of the solution is presented.

1 NUM - Number systems

- 1.1 Determine up to what value you can count with numbers coded on:
 - a) 0 to 15
 - b) 0 to 255
 - c) 0 to 1023

- d) 0 to 65535
- e) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-01

- 1.2 Determine up to which value can be counted, with hexadecimal numbers encoded on:
 - a) 0 to 65535

b) 0 to 4'294'967'295 (4 Gbit)

 $num/number\hbox{-} systems\hbox{-} 02$

2 | NUM - Converting from one numbering system to another

2.1	Perform the conversion of the following pure binary numbers in decimal
fori	nat:

a) 6₁₀

c) 74_{10}

e) 255_{10}

b) 15₁₀

d) 11₁₀

num/conversion-01

2.2 Perform the conversion of the following decimal numbers in binary format:

a) 111 1101₂

- c) 1111 1110 0101 1001₂ e) 1001₂

b) 1 0000₂

d) 1 0000 0000₂

num/conversion-02

2.3 Perform the conversion of the following hexadecimal numbers in binary format:

a) 1110₂

- c) 1010 1011 0011 1101₂ e) 10 0011 0100 0110₂

- b) 1 0101 1100₂
- d) 1001 1111 0111₂

num/conversion-03

2.4 Perform the conversion of the following binary numbers in hexadecimal format:

a) A_{16}

c) EB₁₆

e) C_{16}

b) 6₁₆

d) $2F_{16}$

num/conversion-04

2.5 Perform the conversion of the following hexadecimal numbers in decimal format:

a) 13₁₀

c) 564_{10}

e) 42681₁₀

b) 348₁₀

d) 254₁₀

num/conversion-05

2.6 Perform the conversion of the following decimal numbers in hexadecimal format:

1. 80₁₆

3. FE59₁₆

5. 9₁₆

2. 10₁₆

4. D1₁₆

num/conversion-06

3 | NUM - Operation on logical numbers

3.1 Perform the following additions in the binary system:

 $1.\ \ 0010\ \ 1010_2$

3. 1011 0011₂

2. 0110 1001₂

4. 1000 00002

num/operation-01

3.2 Perform the following subtractions in the binary system:

 $1.\ \ 0011\ \ 1010_2$

 $3. 0000 1100_2$

 $2. \ 0011 \ 1010_2$

4. 0111 11112

num/operations-02

3.3 Perform the following multiplications in binary:

 $1.\ \ 0011\ \ 1100_2$

3. 0011 0000₂

2. 0011 1100₂

4. $0110\ 0010_2^2$

num/operation-03

3.4 Perform the following additions in the hexadecimal system:

1. 1300_{16}

3. 1333₁₆

2. 8984₁₆

4. 13534₁₆

num/operation-04

3.5 Determine the binary value of:

 $1. 1001_2$

3. 11100001₂

2. 110001₂

4. 111110000001_2 ; $(2^{n-1}-1)*2^{n+1}+1$

num/operation-05

4 | NUM - Codes

- 4.1 Perform the following additions on BCD encoded numbers:
 - 1. 0100 0100 0100 $_{\mathrm{BCD}}$

3. 1001 0010 $_{\rm BCD}$

2. $0110\ 0011\ 0011_{BCD}$

4. 0001 0000 0000_{BCD}

num/codes-01

4.2 Perform the conversion of the Gray code $1001_{\rm Gray}$ using the recursion formula in the script.

 1110_{2}

num/codes-02

5 | NUM - Representation of signed numbers

- 5.1 Represent the following decimal and pure binary numbers encoded to 8 bits using the sign-size, one's complement, and two's complement methods:
 - $\begin{array}{c} 1. \ \ 0001 \ \ 0010_{s} \\ 0001 \ \ 0010_{1 \mathrm{cl}} \\ 0001 \ \ 0010_{2 \mathrm{cl}} \\ 2. \ \ 1000 \ \ 0011_{s} \\ 1111 \ \ 1100_{1 \mathrm{cl}} \\ 1111 \ \ 1101_{2 \mathrm{cl}} \\ 3. \ \ 0000 \ \ 0000_{s}; 1000 \ \ 0000_{s} \\ 0000 \ \ 0000_{1 \mathrm{cl}}; 1111 \ \ 1111_{1 \mathrm{cl}} \\ 0000 \ \ 0000_{2 \mathrm{cl}} \end{array}$

 $\begin{array}{c} 0001\ 1010_{\rm 1cl} \\ 0001\ 1010_{\rm 2cl} \\ 5.\ 0000\ 1010_{\rm s} \\ 0000\ 1010_{\rm 1cl} \\ 0000\ 1010_{\rm 2cl} \\ 6.\ 1110\ 0100_{s} \\ 1001\ 1011_{\rm 1cl} \end{array}$

 $1001\ 1100_{2cl}$

4. 0001 1010_s

num/representation-01

- $1. \ 1111 \ 1111_2 \\ 2. \ 1000 \ 1000_2$
- $3.\ 0001\ 0000_2$
- 4. FF₁₆

5. BC₁₆
6. 7F₁₆

num/representation-02

5.2 Given the numbers 0001_2 and 1001_2 expressed as two's complement encoded on 4 bits. Represent the same numbers encoded as two's complement on 8 bits.

0000 0001;1111 1001

num/representation-03