Dataflow Analysis

- Lattice theoretic foundations
 - Partial ordering
 - Meet, Join, Lattice, Chain
- Round robin fixed point iteration
- Function properties
 - Monotonicity
 - Distributivity
- Justification for using fixed-point iteration on dataflow equations
- Meet Over all Paths solution

DataflowAnalysis, Sp03 © BGRyder

1

Lattice Theory

- Partial ordering [
 - Relation between pairs of elements
 - Reflexive $x \square x$
 - Anti-symmetric $x \square y, y \square x \square x = y$
 - Transitive $x \square y, y \square z \square x \square z$
- **Poset** (**Set** S, □)
- 0 Element $0 \square x, \square x \square S$
- 1 Element $1 \ge \square \times \square S$

A poset need not have 0 or 1 element.

DataflowAnalysis, Sp03 © BGRyder

Lattice Theory

• Greatest lower bound (glb)
11, 12 □ poset S, a □ S is glb(l1, l2)
if a □ l1 and a □ l2 then
for any b □ S, b □ l1, b □ l2 □ b □ a

if glb is unique it is called the meet ([]) of l1 and l2.

Least upper bound (lub)
 11, 12 □ poset S, c □ S is lub(l1,l2)
 if c ≥ l1 and c ≥ l2 then
 for any d □ S, d ≥ l1, d ≥ l2 □ c □ d.

if lub is unique is called the join ([]) of l1 and l2.

DataflowAnalysis, Sp03 © BGRyder

Poset Example

| Jub | {a, b, c} |
| Jub | {a, c, c} |
| Jub | {a,

Definition of a Lattice (L, [], [])

- L, a poset under [] such that every pair of elements has a unique glb (meet) and lub (join).
- A lattice need not contain an 0 or 1 element.
- A finite lattice must contain an 0 and 1 element.
- Not every poset is a lattice.
- If a $\square \times \square \times \square$ L, then a is 0 element of L
- If x \[\] a \[\] x \[\] L, then a is 1 element of L

DataflowAnalysis, Sp03 © BGRyder

5

a poset, but not a lattice

There is no lub(3,4) in this poset so it is not a lattice.

DataflowAnalysis, Sp03 © BGRyder

Examples of Lattices

- $H = (2^U, [], [])$ where U is a finite set
 - glb (s1, s2) is (s1 \square s2) which is s1 \square s2
 - lub (s1, s2) is (s1 \square s2) which is s1 \square s2
- $J = (N_1, gcd, lowest common multiple)$
 - partial order relation is integer divide on N_1 n1 | n2 if division is even
 - lub (n1, n2) is n1 \square n2 = lowest common multiple(n1,n2)
 - glb (n1,n2) is n1 \square n2 = greatest common divisor (n1,n2)

DataflowAnalysis, Sp03 © BGRyder

Chain

• A poset C where, for every pair of elements c1, c2 ☐ C, either c1 ☐ c2 or c2 ☐ c1.

e.g., { } [] {a} [] {a,b} [] {a,b,c}

and from the lattice as shown here, 30

1 🛮 2 🖺 6 🖺 30

1 🛮 3 🖺 15 🖺 30

Lattices are used in dataflow analysis to argue the existence of a solution obtainable through fixed-point iteration.

DataflowAnalysis, Sp03 © BGRyder

Round-robin Fixed-point Iteration

- Iterates through nodes of cfg in specific node order, which preserves the partial order of the graph.
- Recall worklist algorithm(per bit) has O(me) work where |E|=e and m is number of dataflow facts in the set.
- Postorder on depth-first spanning tree defines rPostorder which is reverse postorder
 - Ancestor-first node ordering, good for forward dataflow problems
 - rPostorder_number =(| N |+1) postorder_number
 - Postorder is good node ordering for backward dataflow problems

DataflowAnalysis, Sp03 © BGRyder

9

rPostorder Example

control flowgraph

Postorder numbering of depth-first leftmost traversal of cfg rPostorder# is defined as (n+1)-Postorder#

DataflowAnalysis, Sp03 © BGRyder

Round-robin Iteration

```
Form depth-first spanning tree of control flowgraph and derive rPostorder
     numbering for nodes
 change = true
 Initialize REACH(m) = \emptyset, \prod m
 while (change) do
 { change = false
     for (m = 2; m \le n; m++)
     \{ \text{ new = } [ (\text{Reach}(j) ] | \text{pres}(j) ] | \text{dgen}(j) \}
          j = pred(m)
       if (new != REACH(m))
                  then {REACH(m) = new; change = true}
 }
                                Round-robin tends to push dataflow facts
                                as deep as possible on acyclic paths in
                                the flowgraph on each iteration
DataflowAnalysis, Sp03 © BGRyder
                                                                                       11
```

Round-robin Iteration

```
Form depth-first spanning tree of control flowgraph and derive rPostorder
     numbering for nodes
 change = true
 Initialize \overrightarrow{REACH}(m) = \emptyset, []m) O(n)
                                     #iters of while * cost each iteration
 while (change) do
                                     cost for statement ~ cost of all ops
 { change = false
                                     during lifetime of for
     for (m = 2; m \le n; m++)
     \{ \text{ new} = [] ( \text{ Reach}(j) ] | \text{ pres}(j) ] | \text{ dgen}(j) \}
          j = pred(m)
                                                                                iter#4
       if (new != REACH(m))
                 then {REACH(m) = new; change = true}
                                                                                /iter#3
                  d = 3; d+2 = 5
                                              iter#5,
                                                                                iter#2
                                              no change
DataflowAnalysis, Sp03 © BGRyder
                                                                iter#1
```

Cost of Loop Operations

Calculate *for* statement cost over all its iterations:

- 1. 2(n-1) bit vector operations to calculate each node's factor new = [] (Reach(j) [] pres(j) [] dgen(j) and memoize it:
- 2. unions: (#preds(m)-1) for each node m means we do (e n) unions per *for* statement for all nodes;
- 3. rest of *for* is constant number of operations Each while loop iteration costs $(e n) + (2n-2) \square e + n$;

Therefore, entire algorithm costs O(de), (\square O(dn) by assumption for flowgraphs), bit vector operations where d+2 for classical bitvector problems.

Note: this dominates O(e) of calculation of rPostorder numbers and the O(n) of initialization loop.

DataflowAnalysis, Sp03 © BGRyder

13

More Lattice Properties

- Finite length: if every chain in lattice is finite
- Bounded lattice: if lattice contains both 0 and 1 elements
- Distributive lattice: if $\prod x,y,z \prod S$

$$x \square (y \square z) = (x \square y) \square (x \square z)$$

$$x \square (y \square z) = (x \square y) \square (x \square z)$$

• (S, \square) poset, $f: S \longrightarrow S$ is monotonic iff

$$\square$$
 x, y \square S, x \square y \square f(x) \square f(y)

Monotonic functions preserve domain ordering in their range values

DataflowAnalysis, Sp03 © BGRyder

Fixed point theorem - Why it works?

Intutition--

Given a 0 in lattice and monotonic function f, $0 \square f(0)$.

Apply f again and obtain

$$0 \prod f(0) \prod f(f(0)) = f^2(0)$$

Continuing,

0
$$\square$$
 f(0) \square f²(0) \square f³(0) \square ... \square f^k(0) = f^{k+1}(0) for a finite chain lattice.

This is tantamount to saying $\lim_{k \to \infty} f^k(0)$ exists and is called the least fixed point of f,

since
$$f(f^k(0)) = f^k(0)$$

DataflowAnalysis, Sp03 © BGRyder

15

Fixed Point Theorem

Thm: f: S --> S monotonic function on poset (S, \square) with a 0 element and finite length. The *least fixed point* of f is $f^k(0)$ where

```
i. f^{0}(x) = x,
```

ii.
$$f^{i+1}(x) = f(f^{i}(x)), i \ge 0$$
,

iii. $f^k(0) = f(f^k(0))$ and this is the smallest k for which this is true.

- For any p such that f(p)=p, $f^k(0) \sqcap p$.
- Theorem justifies the iterative algorithm for global data flow analysis for lattices & functions with right properties
- Dual theorem exists for 1 element and maximal fixed point for k such that $f^k(1) = f^{k+1}(1)$.

DataflowAnalysis, Sp03 © BGRyder

Application to DFA on CFG

- Cartesian cross product of posets is a poset
 - if (S, \square) is a poset, then $(S \times S \times ... \times S, \square^2)$ is a poset whose partial ordering is component-wise \square

- Cartesian cross product of lattices is a lattice (with an induced partial ordering)
- Monotone function on cross product lattice can be built from monotone functions on each component lattice F(Y1, Y2,..., Yn) = (g₁ (Y1, Y2,...,Yn),..., g_n(Y1, Y2,...,Yn))

where $g_1: (L,L,...,L) \longrightarrow L$ and \prod is component-wise \prod from L

DataflowAnalysis, Sp03 © BGRyder

17

Example - Available Exprs

- lattice is 2^{Exprs} where Exprs is set of all binary expressions in program
- Partial order is [] (subset inclusion) so meet is []
- < Exprs,Exprs,...,Exprs> is 1 element
- $\langle \emptyset, \emptyset, ..., \emptyset \rangle$ is 0 element
- From the data flow equations for AVAIL, we know that if a set of dataflow facts X is true on entry to a flowgraph node n, then f(X) is true on each exit edge of n where

 $f(X) = epres(n) \square X \square egen(n)$

f is called the transfer function for AVAIL

DataflowAnalysis, Sp03 © BGRyder

Example, Available Exprs

- Cross product lattice is
 - $-~(2^{Exprs}~,2^{Exprs}~,...,2^{Exprs}~)$ with n components where n is number of nodes in the cfg and \Box ' is \Box component-wise
- Avail equation at a node can be expressed thusly,

 AVAIL (j) is the solution at entry of node j and f(AVAIL(j)) is solution at exit of node j,

$$g_j = [] f(g_m), m [] Pred(j)$$

 One step of the worklist algorithm maps a potential solution for AVAIL at a node of the cfg to another potential solution for that node

DataflowAnalysis, Sp03 © BGRyder

19

Example, Available Exprs

• Can you show g_i monotone?

$$g_i: (2^{Exprs}, 2^{Exprs}, ..., 2^{Exprs}) --> 2^{Exprs}$$

• Then this induces the monotonicity of F,

$$F = (g_1,...,g_n)$$

- Application of dual of fixed point theorem here to find the maximal fixed point. Iterate down from the 1 element.
 - Initialize \square to \varnothing , all other cfg nodes to Exprs.

DataflowAnalysis, Sp03 © BGRyde

Sketch of Validity Proof of Iterative Algorithm for DFA

- Let Redef (Y₁ⁱ...Y_nⁱ) be result after i steps of the worklist algorithm (per node) for DFA.
 Redef(Y₁ⁱ...Y_nⁱ) = (Y₁ⁱ...Y_{k-1}ⁱ, g_k (Y₁ⁱ...Y_nⁱ), Y_{k+1},...Y_n)
- In the next iteration (i+1st), only 1 component of $Y = (Y_1^i...Y_n^i)$ changes and this component is chosen non-deterministically.
- Recall we have a function defined on the flowgraph: $F(\ Y_1,...,Y_n) = (g_1\ (Y_1,...,Y_n),...,\ g_n(Y_1,...,Y_n)) \ \ where\ g_j: \\ (L,L,\ ...,\ L) --> L \ is \ defined \ by \ the \ dataflow problem$

DataflowAnalysis, Sp03 © BGRyder

21

Sketch of Proof, cont.

- Assume minimal fixed point of F is $F^m(0)$.
- Must show iterative algorithm halts at a fixed point of Redef function, Redefmin, and that this fixed point is meaningful to the data flow problem under solution, namely Redefmin = $F^m(0)$.
- First, show iterates of Redef form a chain.
 0 □' Y¹□' Y²□' Y³□' ... □' Y^k

Therefore, Redefmin = Redef $^k(0)$ for some smallest k, by finiteness of chains on the lattice.

DataflowAnalysis, Sp03 © BGRyde

Sketch of Proof, cont.

Second, let $F^m(0)$ be the minimum fixed point of the data flow function F on the cross product lattice. Show $F^m(0)$ []' Redefmin.

 $F^m(0)$ \square ' Redefmin because Redefmin is also a fixed point of F, but not necessarily its minimal fixed point.

Third, show Redefmin \prod F^m(0) in two steps

- (1) Redef^k(0) \prod F^m(0) for all k and
- (2) Redefmin = Redef^k(0) for large enough k, so for k large enough, Redefmin \square ' $F^m(0)$

Therefore, Redefmin= $F^m(0)$ and the fixed point iterative procedure does find the minimal fixed point on the lattice

DataflowAnalysis, Sp03 © BGRyder

23

Meet Over all Paths solution

- Maximal data flow information desired is obtained by traversing ALL PATHS from □ to n.
- Consider $X_n = \prod_{k=0}^{n} f_Q(0)$, for Q a path in the flowgraph, $Q = e_1, e_2, ..., e_k$ so that

$$\mathbf{X}_{\mathbf{n}} = \prod_{\mathbf{e}_{\mathbf{k}}} \mathbf{f}_{\mathbf{e}_{\mathbf{k}}} \circ \mathbf{f}_{\mathbf{e}_{\mathbf{k}-1}} \circ \dots \circ \mathbf{f}_{\mathbf{e}_{2}} \circ \mathbf{f}_{\mathbf{e}_{1}}(\mathbf{0})$$

$$\mathbf{Q} = \mathbf{e}_{\mathbf{k}} \dots \mathbf{e}_{\mathbf{1}}$$

MOP is best summary of data flow facts possible to compute at compile-time.

DataflowAnalysis, Sp03 © BGRyder