Class Test 3

23rd September, 2025

Name:		
Time: 40 min	Marks:	/10

Q1. Consider the space $X = \{0, 1, 2, \ldots\}$, equipped with the topology

$$\mathcal{T}\coloneqq\{\emptyset,X\}\cup\{S\mid S\subset\{1,2,3,\dots\}\}\cup\{\{0\}\cup A\mid A\subset\{1,2,3,\dots\}\text{ is cofinite.}\}$$

Prove or disprove the following statements.

- a) (X, \mathcal{T}) is compact.
- b) (X, \mathcal{T}) is first countable.
- c) (X, \mathcal{T}) is second countable.

Show that (X,\mathcal{T}) is homeomorphic to $K=\{0\}\cup\{\frac{1}{n}|n\geq 1\}\subset\mathbb{R}$ with the usual topology. $1\times 3+2=5$

- Q2. Suppose X is a Hausdorff space. Let $B \subset X$ be compact.
 - a) If $x \in X \setminus B$, then show that there exists open neighborhoods $x \in U$ and $B \subset V$ such that $U \cap V = \emptyset$.
 - b) If $A \subset X \setminus B$ is a compact set, then show that there exists open neighborhoods $A \subset U$ and $B \subset V$ such that $U \cap V = \emptyset$. $2\frac{1}{2} + 2\frac{1}{2} = 5$