RENEWABLE ENERGY TECHNOLOGY

Prepared By:

Modified By:

Dr. Md. Rifat Hazari

S M Imrat Rahman

Assistant Professor

Senior Lecturer

Summer 2019-20

American International University-Bangladesh

Solar Thermal Power Technologies Solar Thermal Electricity

Concentration Technologies

Currently four key solar thermal power technologies

Large Scale (> 10MW_e)

Modular (< 50kW_e)

Parabolic Dish

Key Solar Technologies

- Each solar collector technology has its own specific range of practically achievable concentration ratios
- As such, each technology is adapted to one or more types of temperature range and thus power generation cycles

	Concentration	Tracking	Focal Spot	Temperatures
Linear Fresnel	15 – 60	One-Axis	Line	< 500°C
Parabolic Trough	30 - 100	One-Axis	Line	< 600°C
Heliostat Field	500 - 1'000	Two-Axis	Point	< 1200°C
Parabolic Dish	1'000 - 10'000	Two-Axis	Point	< 750°C

Data Source: C. Philibert, 2005

Other technologies do exist, but are significantly less developed

Early Attempts at Solar Power

First power producing solar thermal power plant was built in Egypt in 1913, using parabolic trough technology

- First patent deposited in 1907
- Steam production to drive a 40 kW reciprocating steam engine
- Payback time of 2 years against coal from England at 13 \$/ton

Image Source: Wikipedia, 2012

SEGS Power Plants

- First modern solar thermal power plants, the Solar Energy Generating Systems (or SEGS) were built in California in the 1980s
- Initial built to hedge against high oil/gas prices after the oil crises of the 1970s

SEGS 3-7, Kramer Jct.

Mirror Washing

Parabolic Troughs

Recent CSP Deployment

 Solar thermal power development began in the 1980s with the SEGS. A new "solar renaissance" started in 2006 with new power plants

Spanish Solar Renaissance

- In 2004 a royal decree equalized conditions for CSP and PV plants
- Feed-in tariffs for solar energy were guaranteed, removing some economic barriers to the deployment of solar thermal technology

Image Source: Protermosolar, 2011

- By early 2012, over 1000 MW of solar thermal power had been deployed
- Another 1200 MW are currently under construction
- Over 90% of all CSP plants built are of the parabolic trough type

Commercial Solar Plants

Commercial solar thermal power plants in Spain:

Andasol 1, 2 & 3

Solnova 1, 2 & 4

PS 10 & 20

Puerto Errado II

Solar Thermal Electricity Parabolic Trough Power Plants

Parabolic Trough Plants

- Over 90% of all installed solar thermal power plants are based around the use of parabolic troughs with Rankine-cycles
- The technology was well-proven, making it easier to obtain funding when the second wave of CSP construction started
- Continuous operation of the SEGS plants since 1984
- However, limited innovation in commercial plants...

Types of Trough Plants

Two main types of parabolic trough plant have emerged:

- 'SEGS-type': daytime-peaking, no storage
- 'Andasol-type': day load and evening peak, with storage

Power-plants based around standard steam-cycle technology

- Compatible temperature levels between solar collector and power block
- Lower risk: well understood technology

Plant design strongly affect by local regulation and incentive measures:

- USA: Loan guarantees and tax credits
- > Spain:
 - ✓ Limited to 50MW power block
 - ✓ Limited to 13% fossil co-firing

SEGS – Type Power Plant

- Designed primarily to meet midday peak electricity demands
- Reheat steam cycle used to allow higher cycle efficiency at the low steam temperatures
- Operating temperatures limited by heat transfer fluid

Thermal Oil HTF (heat Transfer

fluid)-System

Medium: Therminol-72

Thermal Stability: 400°C

Power Block

Reheat Rankine-cycle

Steam Temperature: 390°C

Steam Pressure: 100 bar

Andasol – Type Power Plant

- Designed to meet two daily peaks, midday and early evening
- Thermal energy storage tanks used to harness extra energy during daily hours, allowing production to be extended in the evening
- Larger solar field required to charge storage tanks

Molten-Salt Storage

Medium: NaNO₃-KNO₃

Thermal Stability: 580°C

Power Block

Reheat Rankine-cycle

Steam Temperature: 390°C

Steam Pressure: 100 bar

Molten – Salt Storage System

 Thermal energy storage based on molten salts adds complexity to the system, as three separate fluid loops are required

Thermal Oil

- Good heat transfer
- Low freezing point
- No phase-change

Molten Salt

- High heat capacity
- Pre-available product
- Inexpensive
- Chemically inert

Parabolic Trough Plants

 Over 90% of all installed solar thermal power plants are based around the use of parabolic troughs with Rankine-cycles

Parabolic Trough Collector

 A large number of different parabolic collector designs have been proposed but all share a similar structure

Parabolic Trough Collector

- A large number of different parabolic collector designs have been proposed but all share a similar structure
- The central drive pillar provides tracking power and control for the entire solar collector assembly

Output of a Trough Collector

The net energy supplied by a given parabolic trough collector is a function of a number of factors, and can be defined by:

$$\dot{Q}_{tr}^{+} = A_{tr}I_{o} \cdot \varepsilon_{surf} \varepsilon_{cos} \cdot IAM \cdot (1 - f_{shd})(1 - f_{end})$$

 Q_{tr} : thermal power [W] ε_{cos} : cosine effectiveness [-]

 A_{tr} : trough aperture area [m²] f_{shd} : shadowing factor [-]

 I_o : incident beam radiation [W/m²] IAM: incidence angle modifier [-]

 ε_{surf} : surface effectiveness [-] f_{end} : end-loss factor [-]

Cosine Effectiveness

Commercial parabolic troughs employ NS-single-axis tracking, resulting in non-zero incidence angles

$$\varepsilon_{\cos} = \cos\theta_t$$
 with $\cos\theta_t = \sqrt{1 - \cos^2\theta_s \cos^2\gamma_s}$

North-south aligned parabolic troughs give flat efficiency in summer

 Θ_t : Trough Incidence Angle

Image Source: J. Spelling, 2011

Incidence Angle Modifier

- In addition to the basic cosine-effect, other optical losses occur when the incidence angle is non-zero
- The incidence angle modifier (IAM) considers the optical path-length

$$IAM = 1 - a_1 \frac{\theta_t}{\cos \theta_t} + a_2 \frac{\theta_t^2}{\cos \theta_t}$$

Incidence Angle Modifier

- In addition to the basic cosine-effect, other optical losses occur when the incidence angle is non-zero
- The incidence angle modifier (IAM) considers the optical path-length

$$IAM = 1 - a_1 \frac{\theta_t}{\cos \theta_t} + a_2 \frac{\theta_t^2}{\cos \theta_t}$$

LS-2 Collector	Value	
a ₁	0.0159	
a_2	0.1405	

Data Source: Dudley et al., 1994

Unique for each collector design!

Image Source: J. Spelling, 2012

Tube – End Losses

Tube-end losses take into account the fact that the collector has a finite length, leading to a certain inactive length of the collector

$$f_{end} = \frac{l_{focus} \tan \theta_t}{l_{trough}}$$

I_{focus}: Trough Focal Length

 I_{trough} : Entire SCA length

Image Source: Stine, 1987

Image Source: J. Spelling, 2011

Shadowing Losses

 As the collectors are not operated in isolation, the effect of shadowing between rows needs to be taken into consideration:

$$f_{shd} = 1 - \frac{l_{sp}}{w_{tr}} \frac{\cos \theta_z}{\cos \theta_t}$$

 I_{sp} : Spacing between trough rows

 w_{tr} : Parabolic Trough Width

 θ_z : Solar Zenith Angle

MATHMETICAL PROBLEMS

- 1. A solar collector system consists of a receiver with surface area of 0.08 m². The aperture area of the collector is 9 m². The solar radiation from the aperture is 700 W/m² and the radiation received by the receiver is 1500 W/m². (Emissivity, ε =0.5 and Absorptivity, α =0.7) Calculate-
 - 1. Geometric and optical concentration ratio of the system.
 - 2. Maximum temperature that can be achieved on the receiver surface.
 - 3. If the surface temperature is 150°C, calculate the useful energy extracted from the receiver.
- 2. A parabolic through solar thermal power plant (located at 23°S, 18°W) has the following dimensions

Parabolic Trough Width= 1.25m

Through Focal length= 1.5m

Entire length of the collector aperture= 50m

Total aperture area= 128 m²

Separation between two rows= 5m

Surface effectiveness=0.08

Calculate the thermal power supplied by the parabolic through collector at solar noon on 11th February if the incident beam radiation is 500 W/m². A1=.0159, A2=.1405

Renewable Energy Technology

Reference:

- Kalogirou, Soteris A. "Solar energy engineering: processes and systems", Academic Press, 2009.
- Boyle, Godfrey. Renewable energy. OXFORD University press, 2004.
- Jain, Sachin, and Vivek Agarwal. "A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking." *Power Electronics, IEEE Transactions on* 22.5 (2007): 1928-1940.
- Reddy, P. Jayarama. Science technology of photovoltaics. BS publications, 2010.
- Energy Technology, B.B.Parulekar, S.Rao, Khanna Publishers, India.
- J. F. Manwell, Jon G. McGowan, Anthony L. Rogers, "Wind Energy Explained: Theory, Design and Application",
 Wiley