1) Consider the following schema for a Library Database:

BOOK (Book_id, Title, Publisher_Name, Pub_Year)

BOOK_AUTHORS (Book_id, Author_Name)

PUBLISHER (Name, Address, Phone)

BOOK COPIES (Book id, Branch id, No-of Copies)

BOOK_LENDING (Book_id, Branch_id, Card_No, Date_Out, Due_Date)

LIBRARY_BRANCH (Branch_id, Branch_Name, Address)

Write SQL QUERIES to:

- 1. Retrieve details of all books in the library id, title, name of publisher, authors, number of copies in each branch, etc.
- 2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017
- 3. Delete a book in the BOOK table. Update the contents of other tables to reflect this data manipulation operation.
- 4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
- 5. Create a view of all books and its number of copies that are currently available in the Library.

Query to create tables :->

TABLE PUBLISHER

CREATE TABLE PUBLISHER(
PUB_ID INT PRIMARY KEY,
PUB_NAME VARCHAR(20) UNIQUE,
ADDRESS VARCHAR(20),
PHONE INT);

TABLE BOOK

CREATE TABLE BOOK(

BOOK_ID INT PRIMARY KEY,

TITLE VARCHAR(20),

PUBLISHER_NAME VARCHAR(20) REFERENCES PUBLISHER(NAME)ON

DELETE CASCADE,

PUB_YEAR INT);

LIBRARY_BRANCH
CREATE TABLE LIBRARY_BRANCH(
BRANCH_ID INT PRIMARY KEY,
BRANCH_NAME VARCHAR(20),
ADDRESS VARCHAR(30));

BOOK AUTHORS

CREATE TABLE BOOK AUTHORS(

BOOK ID INT,

AUTHOR_NAME VARCHAR(20),

PRIMARY KEY(BOOK_ID, AUTHOR_NAME),

FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID) ON DELETE CASCADE);

BOOK_COPIES

CREATE TABLE BOOK COPIES(

BOOK ID INT, BRANCH ID INT, NO OF COPIES INT,

PRIMARY KEY(BOOK ID, BRANCH ID),

FOREIGN KEY (BOOK ID) REFERENCES BOOK(BOOK ID) ON DELETE

CASCADE,FOREIGN KEY (BRANCH_ID) REFERENCES LIBRARY_BRANCH(BRANCH_ID) ON DELETE CASCADE);

BOOK LENDING

CREATE TABLE BOOK LENDING(

BOOK_ID INT,BRANCH_ID INT,

CARD NO INT.DATE OUT DATE.

DUE_DATE DATE, PRIMARY KEY(BOOK_ID,BRANCH_ID,CARD_NO)

FOREIGN KEY (BOOK ID) REFERENCES BOOK(BOOK ID) ON DELETE CASCADE,

FOREIGN KEY (BRANCH_ID) REFERENCES LIBRARY_BRANCH(BRANCH_ID) ON DELETE CASCADE);

TABLE DATA ENTRY

TABLE BOOK

INSERT INTO BOOK VALUES (001, 'MCGRAW-HILL', 'GANGA', 2001);

INSERT INTO BOOK VALUES (002, 'MY ARTEMIS', 'KVS', 2004);

INSERT INTO BOOK VALUES (003, 'CHEMISTRY VOL 1', 'WESTLAND', 2006);

INSERT INTO BOOK VALUES (004, 'UPRISING', 'RUPA', 2018);

INSERT INTO BOOK VALUES (005, 'CHEMISTRY VOL 2', 'WESTLAND', 2021);

book_id title publisher_name pub_year
+
1 MCGRAW-HILL GANGA 2001
2 MY ARTEMIS KVS 2004
3 CHEMISTRY VOL 1 WESTLAND 2006
4 UPRISING RUPA 2018
5 CHEMISTRY VOL 2 WESTLAND 2021
(5 rows)

TABLE PUBLISHER

```
INSERT INTO PUBLISHER VALUES (501, 'KVS', 'BANGALORE', 9535616745);
INSERT INTO PUBLISHER VALUES (502, 'WESTLAND', PUNE', 8768916745);
INSERT INTO PUBLISHER VALUES (503, 'RUPA', 'BANGALORE', 6478989715);
INSERT INTO PUBLISHER VALUES (504, 'GANGA', 'MUMBAI', 9876985645);
INSERT INTO PUBLISHER VALUES (505, 'HACHETTE', 'MATTUR', 7013458745);
pub_id | pub_name | address | phone
-----+-----
           | BANGALORE | 9535616745
 501 | KVS
 502 | WESTLAND | PUNE
                       8768916745
 503 | RUPA | BANGALORE | 6478989715
 504 | GANGA | MUMBAI | 9876985645
 505 | HACHETTE | MATTUR | 7013458745
 (5 rows)
TABLE LIBRARY_BRANCH
INSERT INTO LIBRARY BRANCH VALUES (101, 'BOOK AXIS', 'BANGALORE');
INSERT INTO LIBRARY BRANCH VALUES (102, 'BOOK SQUARE', 'PUNE');
INSERT INTO LIBRARY BRANCH VALUES (103, 'CLAUS BOOKS', 'MUMBAI');
INSERT INTO LIBRARY BRANCH VALUES (104, 'COMIC CON', 'PUNE');
INSERT INTO LIBRARY BRANCH VALUES (105, 'FANDOM', 'BANGALORE');
branch_id | branch_name | address
-----+-----+-----
   101 | BOOK AXIS | BANGALORE
   102 | BOOK SQUARE | PUNE
   103 | CLAUS BOOKS | MUMBAI
   104 | COMIC CON | PUNE
   105 | FANDOM
                BANGALORE
(5 rows)
TABLE BOOK AUTHORS
INSERT INTO BOOK AUTHORS VALUES (001, 'ASHISH C');
INSERT INTO BOOK_AUTHORS VALUES (002, 'ANEESHA');
INSERT INTO BOOK AUTHORS VALUES (003, 'ADITYA KUL C');
INSERT INTO BOOK AUTHORS VALUES (004, 'SAQUIB M');
INSERT INTO BOOK AUTHORS VALUES (005, 'ARJUN S');
```

book_id | author_name

-----+-----

- 1 | ASHISH C
- 2 | ANEESHA
- 3 | ADITYA KUL C
- 4 | SAQUIB M
- 5 | ARJUN S

(5 rows)

TABLE BOOK COPIES

```
INSERT INTO BOOK_COPIES VALUES (001, 102, 40);
INSERT INTO BOOK_COPIES VALUES (002, 101, 18);
INSERT INTO BOOK_COPIES VALUES (003, 104, 53);
INSERT INTO BOOK_COPIES VALUES (004, 103, 4);
INSERT INTO BOOK_COPIES VALUES (005, 105, 20);
```

book_id | branch_id | no_of_copies

	+	+	-
1	102	40	
2	101	18	
3	104	53	
4	103	4	
5	105	20	

(5 rows)

TABLE BOOK LENDING

INSERT INTO BOOK_LENDING VALUES (001, 101, 5001, '21-SEP-2021', '19-OCT-2021'); INSERT INTO BOOK_LENDING VALUES (002, 102, 5002, '07-JAN-2017', '18-MAY-2017'); INSERT INTO BOOK_LENDING VALUES (003, 102, 5002, '02-FEB-2017', '22-MAR-2020'); INSERT INTO BOOK_LENDING VALUES (004, 102, 5002, '14-MAR-2017', '08-MAY-2019'); INSERT INTO BOOK_LENDING VALUES (005, 104, 5005, '18-JUN-2020', '14-AUG-2021');

book_id | branch_id | card_no | date_out | due_date

```
1 | 101 | 5001 | 2021 | 00 21 | 2021 | 10 16
```

- 1 | 101 | 5001 | 2021-09-21 | 2021-10-19 1 | 102 | 5002 | 2017-01-07 | 2017-05-18
- 2 | 102 | 5003 | 2017-02-02 | 2020-03-22
- 3 | 103 | 5004 | 2016-09-14 | 2021-10-08

```
5 | 104 | 5005 | 2020-06-18 | 2021-08-14
2 | 102 | 5002 | 2017-01-07 | 2017-05-18
3 | 102 | 5002 | 2017-02-02 | 2020-03-22
4 | 102 | 5002 | 2017-03-14 | 2019-05-08
(8 rows)
```

QUERIES:->

Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.

SELECT LB.BRANCH_NAME, B.BOOK_ID,TITLE,
PUBLISHER_NAME,AUTHOR_NAME, NO_OF_COPIES FROM BOOK B, BOOK_AUTHORS
BA, BOOK_COPIES BC, LIBRARY_BRANCH LB
WHERE B.BOOK_ID = BA.BOOK_ID AND BA.BOOK_ID = BC.BOOK_ID AND
BC.BRANCH_ID = LB.BRANCH_ID GROUP BY LB.BRANCH_NAME, B.BOOK_ID, TITLE,
PUBLISHER_NAME, AUTHOR_NAME, NO_OF_COPIES;

```
branch_name | book_id | title | publisher_name | author_name | no_of_copies
3 | CHEMISTRY VOL 1 | WESTLAND
COMIC CON |
                                         | ADITYA KUL C |53
BOOK SQUARE | 1 | MCGRAW-HILL | GANGA
                                        | ASHISH C
                                                  | 40
        5 | CHEMISTRY VOL 2 | WESTLAND | ARJUN S
FANDOM
                                                  | 20
CLAUS BOOKS |
              4 | UPRISING
                           | RUPA
                                    | SAQUIB M | 4
BOOK AXIS
            2 | MY ARTEMIS
                           | KVS
                                   | ANEESHA
(5 rows)
```

Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017

```
SELECT CARD_NO FROM BOOK_LENDING
WHERE DATE_OUT > '01-JAN-2017' AND
DATE_OUT < '01-JUN-2017'
GROUP BY CARD_NO
HAVING COUNT (*) > 3;
card_no
------
5002
(1 row)
```

Delete a book in the BOOK table. Update the contents of other tables to reflect this data manipulation operation.

```
DELETE FROM BOOK WHERE BOOK_ID = 001;
          book_id | title | publisher_name | pub_year
          -----+------+-----+-----
                  2 | MY ARTEMIS
                                  KVS
                                                2004
                  3 | CHEMISTRY VOL 1 | WESTLAND | 2006
                  4 | UPRISING
                                RUPA
                                               2018
                  5 | CHEMISTRY VOL 2 | WESTLAND | 2021
(4 rows)
Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
CREATE VIEW V_PUBLICATION AS
SELECT PUB_YEAR FROM BOOK;
To view it: SELECT * FROM V_PUBLICATION;
pub_year
_____
  2001
  2004
  2006
  2018
  2021
(5 rows)
Create a view of all books and its number of copies that are currently available in the Library.
CREATE VIEW BOOKS AVAILABLE AS
SELECT B.BOOK ID, B.TITLE, C.NO OF COPIES
FROM LIBRARY_BRANCH L, BOOK B, BOOK COPIES C
WHERE B.BOOK\_ID = C.BOOK\_ID AND
L.BRANCH_ID=C.BRANCH_ID;
         book_id |
                   title | no_of_copies
-----+-----
   1 | MCGRAW-HILL |
                           40
   2 | MY ARTEMIS
                   18
```

2) Consider the following schema for Order Database:

5 | CHEMISTRY VOL 2 |

4 | UPRISING

53

20

3 | CHEMISTRY VOL 1 |

(5 rows)

SALESMAN (Salesman_id, Name, City, Commission)
CUSTOMER (Customer_id, Cust_Name, City, Grade, Salesman_id)
ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

Write SQL QUERIES to:

- 1. Count the customers with grades above Bangalore's average.
- 2. Find the name and numbers of all salesmen who had more than one customer.
- 3. List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)
- 4. Create a view that finds the salesman who has the customer with the highest order of a day.
- 5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

Table creation

Salesman

CREATE TABLE SALESMAN(
SALESMAN_ID INT PRIMARY KEY,
NAME CHAR(20) NOT NULL,
CITY CHAR(20) NOT NULL,
COMMISSION NUMERIC(10,2));

Customer

CREATE TABLE CUSTOMER (
CUSTOMER_ID INT PRIMARY KEY,
CUSTOMER_NAME CHAR(20),
CUST_CITY CHAR(20), GRADE INT, SALESMAN_ID INT,
FOREIGN KEY(SALESMAN_ID) REFERENCES SALESMAN (SALESMAN_ID)ON DELETE
CASCADE);

Orders

CREATE TABLE ORDERS (
ORDER_NO INT PRIMARY KEY,
PURCHASE_AMT DECIMAL(10,2),
ORDER_DATE DATE,CUSTOMER_ID INT,
SALESMAN_ID INT,

FOREIGN KEY(SALESMAN_ID) REFERENCES SALESMAN (SALESMAN_ID) ON DELETE CASCADE.

FOREIGN KEY(CUSTOMER_ID) REFERENCES CUSTOMER (CUSTOMER_ID) ON DELETE CASCADE);

TABLE DATA ENTRY

SALESMAN TABLE

INSERT INTO SALESMAN VALUES (1000, 'VARSHA', 'BANGALORE', 8000); INSERT INTO SALESMAN VALUES (1001, 'MOHIT', 'PUNE', 6500); INSERT INTO SALESMAN VALUES (1002, 'RUBIN', 'CHENNAI', 10500); INSERT INTO SALESMAN VALUES (1003, 'SAQUIB', 'BANGALORE', 12000); INSERT INTO SALESMAN VALUES (1004, 'KARTHIK', 'BANGALORE', 18000);

salesman_id	name		city	commi	ssion
		+		+	
1000 VARSHA		BAN	GALORE		8000.00
1001 MOHIT		PUNE		6500.0	00
1002 RUBIN		CHEN	NAI	1050	00.00
1003 SAQUIB		BANG	GALORE	1	2000.00
1004 KARTHII	Κ	BAN	IGALORE		18000.00
(5 rows)					

CUSTOMER TABLE

INSERT INTO CUSTOMER VALUES (1, 'INFOSYS', 'BANGALORE', 2, 1000); INSERT INTO CUSTOMER VALUES (2, 'WIPRO', 'PUNE', 4, 1000); INSERT INTO CUSTOMER VALUES (3, 'ACCENTURE', 'CHENNAI', 3, 1002); INSERT INTO CUSTOMER VALUES (4, 'GOLDMAN SACHS', 'BANGALORE', 2, 1003); INSERT INTO CUSTOMER VALUES (5, 'JP MORGAN', 'BANGALORE', 4, 1002);

```
customer_id | customer_name | cust_city | grade | salesman_id
  2 | WIPRO
                 | PUNE
                                  4 |
                                      1000
    3 | ACCENTURE
                    | CHENNAI
                                       1002
                              | 4|
    4 | GOLDMAN SACHS | BANGALORE | 4 |
                                       1003
    5 | JP MORGAN
                   | BANGALORE | 4 |
                                       1002
    1 | INFOSYS
                  | BANGALORE
                               | 2|
                                       1000
(5 rows)
```

ORDERS TABLE

INSERT INTO ORDERS VALUES (501, 50000, '21-OCT-2021', 1, 1000); INSERT INTO ORDERS VALUES (502, 1000, '05-JUN-2020', 2, 1002); INSERT INTO ORDERS VALUES (503, 300000, '05-JUN-2020', 2, 1003); INSERT INTO ORDERS VALUES (504, 10000, '16-SEP-2019', 3, 1000); INSERT INTO ORDERS VALUES (505, 90000, '12-MAR-2022', 5, 1004);

order_no | purchase_amt | order_date | customer_id | salesman_id

		·+	+
501	50000.00 2021-	10-21 1	1000
502	1000.00 2020-0	06-05 2	1002
503	300000.00 2020	-06-05 2	1003
504	10000.00 2019-	-09-16 3	1000
505	90000.00 2022-	-03-12 5	1004
(5 row	s)		

QUERIES:->

Count the customers with grades above Bangalore's average.

SELECT COUNT (CUSTOMER_ID)

FROM CUSTOMER WHERE GRADE >

(SELECT AVG(GRADE) FROM CUSTOMER

WHERE CUST_CITY = 'BANGALORE');

count

4

(1 row)

Find the name and numbers of all salesmen who had more than one customer.

SELECT NAME, COUNT (CUSTOMER ID)

FROM SALESMAN S, CUSTOMER C

WHERE S.SALESMAN_ID = C.SALESMAN_ID

GROUP BY NAME

HAVING COUNT (CUSTOMER_ID) > 1;

name	C	count
	 +	
VARSHA		2
RUBIN		2
(2 rows)		

List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)

SELECT NAME FROM SALESMAN S, CUSTOMER C WHERE S.SALESMAN_ID = C.SALESMAN_ID AND S.CITY = C.CITY**UNION** SELECT NAME FROM SALESMAN WHERE SALESMAN ID NOT IN (SELECT S1.SALESMAN_ID FROM SALESMAN S1, CUSTOMER C1 WHERE S1.SALESMAN_ID = C.SALESMAN_ID AND S1.CITY = C1.CITY); name KARTHIK **SAQUIB VARSHA MOHIT RUBIN** (5 rows) name **VARSHA**

Create a view that finds the salesman who has the customer with the highest order of a day.

CREATE VIEW SALES_ORDER AS SELECT SALESMAN_ID, PURCHASE_AMT FROM ORDERS WHERE PURCHASE_AMT = (SELECT PURCHASE_AMT FROM ORDERS WHERE ORDER DATE = '05-JUN-2020');

SAQUIB RUBIN (3 rows)

```
salesman_id | purchase_amt
------
1003 | 300000.00
(1 row)
```

Demonstrate the DELETE operation by removing salesman with id 1000. All his Orders must also be deleted.

DELETE FROM SALESMAN WHERE SALESMAN_ID = 1000;

salesman_id name	city co	mmission
+		•
1001 MOHIT	PUNE	6500.00
1002 RUBIN	CHENNAI	10500.00
1003 SAQUIB	BANGALORE	12000.00
1004 KARTHIK	BANGALORE	18000.00
(4 rows)		

3) Consider the schema for Movie Database:

ACTOR (Act_id, Act_Name, Act_Gender)

DIRECTOR (Dir_id, Dir_Name, Dir_Phone)

MOVIES (Mov_id, Mov_Title, Mov_Year, Mov_Lang,

Dir_id) MOVIE_CAST (Act_id, Mov_id, Role)

RATING (Mov_id,Rev_Stars)

Write SQL QUERIES to:

- 1. List the titles of all movies directed by 'DWARKESH'.
- 2. Find the movie names where one or more actors acted in two or more movies.
- 3. List all actors who acted in a movie before 2005 and also in a movie after 2015 (use JOIN operation).
- 4. Find the title of movies and number of stars for each movie that has at least one Rating and find the highest number of stars that movie received. Sort the result by movie title.
- 5. Update rating of all movies directed by 'LANKESH' to 3.

TABLES CREATION

TABLE ACTOR
CREATE TABLE ACTOR (
ACT_ID INT PRIMARY KEY,
ACT_NAME CHAR(20) NOT NULL,
ACT_GENDER CHAR(10));

TABLE DIRECTOR
CREATE TABLE DIRECTOR (
DIR_ID INT PRIMARY KEY,
DIR_NAME CHAR (20),
DIR_PHONE DECIMAL(10,0));

TABLE MOVIES

CREATE TABLE MOVIES (

MOV_ID INT PRIMARY KEY,

MOV_TITLE VARCHAR(20),

MOV_YEAR INT,MOV_LANG CHAR(20),

DIR_ID INT,

FOREIGN KEY (DIR_ID) REFERENCES DIRECTOR (DIR_ID)

ON DELETE CASCADE);

TABLE MOVIE_CAST

CREATE TABLE MOVIE_CAST (
ACT_ID INT, MOV_ID INT,
ROLE CHAR(20),
PRIMARY KEY(ACT_ID, MOV_ID),
FOREIGN KEY(ACT_ID) REFERENCES ACTOR (ACT_ID)
ON DELETE CASCADE,
FOREIGN KEY(MOV_ID) REFERENCES MOVIES (MOV_ID)
ON DELETE CASCADE);

TABLE RATING

CREATE TABLE RATING (
MOV_ID INT, REV_STARS DECIMAL(5,2),
FOREIGN KEY(MOV_ID) REFERENCES MOVIES (MOV_ID)
ON DELETE CASCADE);

TABLE DATA ENTRY

TABLE ACTOR

INSERT INTO ACTOR VALUES (01, 'SAQUIB', 'MALE'); INSERT INTO ACTOR VALUES (02, 'KARTHIK', 'MALE'); INSERT INTO ACTOR VALUES (03, 'ADITYA', 'MALE'); INSERT INTO ACTOR VALUES (04, 'VARSHA', 'FEMALE'); INSERT INTO ACTOR VALUES (05, 'RUPA', 'FEMALE');

act_id act_name	act_gender
+	+
1 SAQUIB	MALE
2 KARTHIK	MALE
3 ADITYA	MALE
4 VARSHA	FEMALE
5 RUPA	FEMALE
(5 rows)	

TABLE DIRECTOR

```
INSERT INTO DIRECTOR VALUES (101, 'SANTOSH', 9684769487);
INSERT INTO DIRECTOR VALUES (102, 'DWARKESH', 9675869487);
INSERT INTO DIRECTOR VALUES (103, 'LANKESH', 7898768909);
INSERT INTO DIRECTOR VALUES (104, 'ASHOK', 9789784206);
INSERT INTO DIRECTOR VALUES (105, 'ASHISH', 9789679780);
```

dir_id dir_name	dir_phone
+	+
101 SANTOSH	9684769487
102 DWARKESH	9675869487
103 LANKESH	7898768909
105 ASHISH	9789679780
104 ASHOK	9789784206
(5 rows)	

TABLE MOVIES

INSERT INTO MOVIES VALUES (1001, 'JAMES BOND', 2002, 'ENGLISH', 101); INSERT INTO MOVIES VALUES (1002, 'SPONGEBOB', 2017, 'ENGLISH', 102); INSERT INTO MOVIES VALUES (1003, 'THANGI GAGI', 2003, 'KANNADA', 102); INSERT INTO MOVIES VALUES (1004, 'BIGIL', 2016, 'TAMIL', 103); INSERT INTO MOVIES VALUES (1005, 'CARS 2', 2019, 'ENGLISH', 103);

TABLE MOVIE CAST

```
INSERT INTO MOVIE_CAST VALUES (1, 1001, 'HERO');
INSERT INTO MOVIE_CAST VALUES (1, 1002, 'PATRICK');
INSERT INTO MOVIE_CAST VALUES (2, 1004, 'SIDE KICK');
INSERT INTO MOVIE_CAST VALUES (2, 1001, 'AGENT');
INSERT INTO MOVIE_CAST VALUES (3, 1005, 'MATER');
```

```
act_id | mov_id |
                 role
-----+-----
  1 | 1001 | HERO
  1 | 1002 | PATRICK
  2 | 1004 | SIDE KICK
  2 | 1001 | AGENT
  3 | 1005 | MATER
(5 rows)
```

TABLE RATING

```
INSERT INTO RATING VALUES (1001, 5);
INSERT INTO RATING VALUES (1002, 9);
INSERT INTO RATING VALUES (1003, 8);
INSERT INTO RATING VALUES (1004, 6);
INSERT INTO RATING VALUES (1005, 9);
```

mov_id rev_stars				
+				
1001	5.00			
1002	9.00			
1003	8.00			
1004	6.00			
1005	9.00			
(5 rows)				

QUERIES:->

List the titles of all movies directed by 'DWARKESH'.

SELECT MOV_TITLE FROM MOVIES M, DIRECTOR D WHERE D.DIR_ID=M.DIR_ID AND DIR_NAME=' DWARKESH ';

mov_title -----**SPONGEBOB** THANGI GAGI (2 rows)

Find the movie names where one or more actors acted in two or more movies.

SELECT MOV_TITLE

FROM MOVIES M, MOVIE CAST MC

WHERE M.MOV ID=MC.MOV ID AND

MC.ACT_ID IN (SELECT ACT_ID FROM MOVIE_CAST

GROUP BY ACT_ID HAVING COUNT(MOV_ID)>=2);

mov_title

JAMES BOND

SPONGEBOB

BIGIL

JAMES BOND

(4 rows)

List all actors who acted in a movie before 2005 and also in a movie after 2015 (use JOIN operation).

SELECT ACT_NAME FROM ACTOR A

INNER JOIN MOVIE_CAST MC ON MC.ACT_ID = A.ACT_ID

INNER JOIN MOVIES M ON MC.MOV_ID = M.MOV_ID

WHERE M.MOV YEAR < 2005 AND ACT NAME IN

(SELECT ACT_NAME FROM ACTOR A

INNER JOIN MOVIE CAST MC ON MC.ACT ID = A.ACT ID

INNER JOIN MOVIES M ON MC.MOV_ID = M.MOV_ID

WHERE $M.MOV_YEAR > 2015$);

act_name

SAQUIB

KARTHIK

(2 rows)

Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.

SELECT MOV_TITLE, REV_STARS
FROM MOVIES M, RATING R
WHERE M.MOV_ID=R.MOV_ID AND
REV_STARS >= 1
ORDER BY MOV_TITLE;

```
mov_title | rev_stars
-----+-----
    BIGIL
                6.00
CARS 2
             9.00
JAMES BOND |
                5.00
    SPONGEBOB |
                     9.00
THANGI GAGI |
                 8.00
(5 rows)
Update rating of all movies directed by 'LANKESH' to 3.
UPDATE RATING
SET REV_STARS = 3
WHERE MOV_ID IN (
SELECT M.MOV_ID
FROM MOVIES M, DIRECTOR D
WHERE M.DIR_ID = D.DIR_ID
AND D.DIR_NAME = 'LANKESH' );
mov_id | rev_stars
-----+-----
 1001 |
         5.00
 1002 |
         9.00
 1003 |
         8.00
 1004 |
         3.00
 1005 |
         3.00
 (5 rows)
```

4. Consider the schema for college database

STUDENT(USN, SName, Address, Phone, Gender)
SEMSEC(SSID, Sem, Sec)
CLASS(USN, SSID)
COURSE(Subcode, Title, Sem, Credits)
IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

Write SQL QUERIES to:

- i. List all the student details studying in fourth semester 'C' section.
- ii. Compute the total number of male and female students in each semester and in each section.
- iii. Create a view of Test1 marks of student with USN '1DS18IS101' in all Courses.
- iv. Calculate the FinalIA (average of best two test marks) and update the Corresponding table for all students.
- v. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding' If FinalIA = 12 to 16 then CAT = 'Average' If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

TABLE CREATION

STUDENT TABLE

CREATE TABLE STUDENT (
USN VARCHAR(15) PRIMARY KEY,
SNAME CHAR(20),
ADDRESS VARCHAR(50),
PHONE DECIMAL(10,0),
GENDER CHAR(10));

SEMSEC TABLE

CREATE TABLE SEMSEC (
SSID VARCHAR(20) PRIMARY KEY,
SEM INT, SEC CHAR(2));

CLASS TABLE

CREATE TABLE CLASS (
USN VARCHAR(20), SSID VARCHAR(20),
FOREIGN KEY (USN) REFERENCES STUDENT (USN)
ON DELETE CASCADE,
FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID)
ON DELETE CASCADE);

COURSE TABLE

CREATE TABLE COURSE (SUBCODE INT PRIMARY KEY, TITLE CHAR (20),SEM INT, CREDITS INT);

IAMARKS TABLE

CREATE TABLE IAMARKS (
USN VARCHAR(20),
SUBCODE INT, SSID VARCHAR(20),
TEST1 INT, TEST2 INT, TEST3 INT,
FINALIA DECIMAL(5,2),
FOREIGN KEY (USN) REFERENCES STUDENT(USN) ON DELETE CASCADE);

TABLE DATA ENTRY

TABLE STUDENT

INSERT INTO STUDENT VALUES ('1DS19IS049', 'ARJUN', 'BANGALORE', 9535616756, 'MALE');

INSERT INTO STUDENT VALUES ('1DS19IS022', 'ADITYA', 'BANGALORE', 7896716657, 'MALE');

INSERT INTO STUDENT VALUES ('1DS19IS017', 'ANEESH', 'MATTUR', 7898676647, 'MALE');

INSERT INTO STUDENT VALUES ('1DS19IS058', 'VARSHA', 'PUNE', 8978916756, 'FEMALE'); INSERT INTO STUDENT VALUES ('1DS19IS007', 'RUPA', 'MANGALORE', 9535616756, 'FEMALE');

```
| address | phone | gender
           sname
 usn
| BANGALORE | 9535616756 | MALE
1DS19IS049 | ARJUN
1DS19IS022 | ADITYA
                          | BANGALORE | 7896716657 | MALE
1DS19IS017 | ANEESH
                           | MATTUR | 7898676647 | MALE
1DS19IS058 | VARSHA
                           | PUNE
                                   | 8978916756 | FEMALE
1DS19IS007 | RUPA
                         | MANGALORE | 9535616756 | FEMALE
(5 rows)
TABLE SEMSEC
INSERT INTO SEMSEC VALUES ('4A01', 4, 'A');
INSERT INTO SEMSEC VALUES ('4C02', 4, 'C');
INSERT INTO SEMSEC VALUES ('8A01', 8, 'A');
INSERT INTO SEMSEC VALUES ('8C03', 8, 'C');
INSERT INTO SEMSEC VALUES ('5A01', 5, 'A');
ssid | sem | sec
----+----+----
4A01 | 4 | A
4C02 | 4 | C
8A01 | 8 | A
8C03 | 8 | C
5A01 | 5 | A
(5 rows)
TABLE CLASS
INSERT INTO CLASS VALUES ('1DS19IS049', '8A01');
INSERT INTO CLASS VALUES ('1DS19IS022', '8A01');
INSERT INTO CLASS VALUES ('1DS19IS017', '4C02');
INSERT INTO CLASS VALUES ('1DS19IS058', '4C02');
INSERT INTO CLASS VALUES ('1DS19IS007', '5A01');
 usn | ssid
----+----
1DS19IS049 | 8A01
1DS19IS022 | 8A01
1DS19IS017 | 4C02
1DS19IS058 | 4C02
1DS19IS007 | 5A01
(5 rows)
```

TABLE COURSE

```
INSERT INTO COURSE VALUES (1, 'DBMS',5,4);
INSERT INTO COURSE VALUES (2, 'PHYSICS',8,3);
INSERT INTO COURSE VALUES (3, 'CHEMISTRY',8,4);
INSERT INTO COURSE VALUES (4, 'CNCS',4,2);
INSERT INTO COURSE VALUES (5, 'PP',5,3);
```

```
subcode | title | sem | credits

-----+

1 | DBMS | 5 | 4

3 | CHEMISTRY | 8 | 4

4 | CNCS | 4 | 2

5 | PP | 5 | 3

(5 rows)
```

TABLE IAMARKS

INSERT INTO IAMARKS VALUES ('1DS19IS049', 2, '8A01', 19, 18, 20, 0); INSERT INTO IAMARKS VALUES ('1DS19IS058', 4, '4C02', 18, 12, 13, 0); INSERT INTO IAMARKS VALUES ('1DS19IS022', 2, '8A01', 14, 16, 18, 0); INSERT INTO IAMARKS VALUES ('1DS19IS007', 1, '5A01', 18, 16, 7, 0); INSERT INTO IAMARKS VALUES ('1DS19IS017', 4, '4C02', 2, 4, 3, 0);

usn subcode	e ssid test1	test2	2 test3 finalia
	+	+	+
1DS19IS049	2 8A01	19	18 20 0.00
1DS19IS058	4 4C02	18	12 13 0.00
1DS19IS022	2 8A01	14	16 18 0.00
1DS19IS007	1 5A01	18	16 7 0.00
1DS19IS017	4 4C02	2	4 3 0.00
(5 rows)			

QUERIES:->

List all the student details studying in 4th sem c sec

SELECT S1.* FROM STUDENT S1, SEMSEC S2, CLASS C WHERE S1.USN = C.USN AND C.SSID = S2.SSID AND S2.SEM = 4 AND S2.SEC = 'C';

usn	sname	address phone gender
	+	+
1DS19	IS017 ANEESH	MATTUR 7898676647 MALE
1DS19	IS058 VARSHA	PUNE 8978916756 FEMALE
(2 rows)	

Compute the total no' of male and female students in each sem and section' SELECT S.GENDER, SS.SEM,SS.SEC,COUNT(GENDER) FROM STUDENT S, SEMSEC SS,CLASS C WHERE S.USN = C.USN AND C.SSID = SS.SSID GROUP BY S.GENDER, SS.SEM,SS.SEC;

GENDER	SEM	SEC	COUNT(GENDER)
FEMALE	4	С	1
MALE	8	A	2
MALE	4	С	1
FEMALE	5	A	1

(5 rows)

Create a view of test1 marks of student usn 1ds19is049 in all subjects

CREATE VIEW IAMARKS_1 AS SELECT SUBCODE, TEST1 FROM IAMARKS WHERE USN = '1DS19IS049';

SELECT * FROM IAMARKS_1;

Calculate the final ia avg of best 2 test marks & update the corresponding finalia marks

UPDATE IAMARKS

 $SET\ FINALIA = (GREATEST(TEST1, TEST2, TEST3) + ((TEST1+TEST2+TEST3) - GREATEST(TEST1, TEST2, TEST3) - LEAST(TEST1, TEST2, TEST3)))/2;$

USN	SUBCODE	SSID	TEST1	TEST2	TEST3	FINALIA
1DS19IS049	2	8A01	19	18	20	19.5
1DS19IS058	4	4C02	18	12	13	15.5
1DS19IS022	2	8A01	14	16	18	17
1DS19IS007	1	5A01	18	16	7	17
1DS19IS017	4	4C02	2	4	3	3.5

(5 rows)

(the logic here is that you find the second highest marks by subtracting the total with the highest marks and the lowest marks)

Categorize the students based on following criteria

If finalia in between 17-20 then 'outstanding'

If in between 12-16 then 'average'

If finalia < 12 then 'weak'

Give these details for 8th sem, a, b and c sec students

SELECT SS.SEC ,S.*,

(CASE WHEN IA.FINALIA BETWEEN 17 AND 20 THEN 'OUTSTANDING'

WHEN IA.FINALIA BETWEEN 12 AND 16 THEN 'AVERAGE'

ELSE 'WEAK' END) AS CAT FROM STUDENT S, SEMSEC SS, IAMARKS IA, COURSE SUB

WHERE S.USN = IA.USN AND SS.SSID = IA.SSID AND

SUB.SUBCODE = IA.SUBCODE AND SUB.SEM = 8;

usn	sname		addre	ess	phone		gender	cat
		+	+		+	+		
1DS19IS049	9 ARJUN	BAN	IGALORE	E 95356	516756	MALE	E OUT	STANDING
1DS19IS022	2 ADITYA	BAN	GALORE	78967	16657	MALE	E OUT	STANDING
(2 rows)								

5. Consider the following database for a banking enterprise

BRANCH(branch-name:string, branch-city:string, assets:real)

ACCOUNT(accno:int, branch-name:string, balance:real)

DEPOSITOR(customer-name:string, accno:int)

CUSTOMER(customer-name:string, customer-street:string,

customer-city:string)

LOAN(loan-number:int, branch-name:string, amount:real)

BORROWER(customer-name:string, loan-number:int)

Write each of the following QUERIES in SQL:

- i. Create the above tables by properly specifying the primary keys and the foreign keys
- ii. Enter at least five tuples for each relation
- iii. Find all the customers who have at least two accounts at the Main branch.
- iv. Find all the customers who have an account at all the branches located in a specific city.
- v. Demonstrate how you delete all account tuples at every branch located in a specific city.
- vi. Find the names of all depositors of a specific branch.
- vii. Find the details of all loan holder of a specific branch.

TABLE CREATION

```
BRANCH
```

CREATE TABLE branch

(branch_name char(15) primary key,

branch_city char(15),

assets numeric(10,2));

ACCOUNT

CREATE TABLE account

(accno int primary key,

branch_name varchar(15),

balance numeric(10,2),

foreign key(branch_name) references branch(branch_name)ON DELETE CASCADE);

DEPOSITOR

CREATE TABLE customer

(customer_name varchar(15) PRIMARY KEY,

customer street varchar(15),

customer_city varchar(15)

);

```
CUSTOMER
CREATE TABLE loan
(loan number int primary key,
branch_name varchar(15),
amount numeric (10,2),
foreign key(branch_name) REFERENCES branch(branch_name) );
LOAN
CREATE TABLE depositor
(customer name varchar(15),
accno int, primary key(customer_name, accno),
foreign key(customer_name) REFERENCES customer(customer_name) on delete cascade,
foreign key(accno) REFERENCES account(accno) on delete cascade);
BORROWER
CREATE TABLE borrower
(customer_name varchar(15),
loan_number int,
primary key(customer_name, loan_number),
foreign key(customer name) REFERENCES customer(customer name),
foreign key(loan_number) REFERENCES loan(loan_number)
);
Tables data entry
insert into branch values
                         ('mgroad', 'bangalore', 20000),
('borivali', 'mumbai', 2000),
('banashankari', 'bangalore', 45000),
('eastwing','bombay',1000),
('indiranagar', 'bangalore', 500);
 branch_name | branch_city | assets
mgroad
             bangalore
                           | 20000.00
borivali
            | mumbai
                          | 2000.00
banashankari | bangalore
                            | 45000.00
eastwing
             bombay
                           | 1000.00
indiranagar
             bangalore
                           | 500.00
(5 rows)
```

```
insert into account values(4, borivali', 50000),
(22, 'indiranagar', 500),
(13, 'indiranagar', 10000),
(45, 'banashankari', 30000),
(12, 'mgroad', 200000),
(15, 'banashankari', 25000);
accno | branch_name | balance
-----+-----
  4 | borivali | 50000.00
  22 | indiranagar | 500.00
       13 | indiranagar | 10000.00
       45 | banashankari | 30000.00
       12 | mgroad
                      | 200000.00
       15 | banashankari | 25000.00
 (6 rows)
insert into customer values('Tarun', 'spooner st.', 'bangalore'),
('saqeeb', 'main road', 'shimoga'), ('arjun', 'biker st.', 'mumbai'),
('john', 'waltress. st', 'bangalore'), ('ashish', 'noName st.', 'bangalore');
customer_name | customer_street | customer_city
-----+-----+-----
Tarun
           spooner st.
                         bangalore
saqeeb
           | main road
                          shimoga
arjun
          biker st.
                       | mumbai
john
          | waltress. st | bangalore
ashish
          | noName st.
                          bangalore
(5 rows)
insert into loan values(1, 'borivali', 20000),(2, 'borivali', 300000),(3, 'mgroad', 4500000),
(4, 'banashankari', 900000),(5, 'mgroad', 400000);
loan_number | branch_name | amount
_____
      1 | borivali
                   | 20000.00
      2 | borivali
                   | 300000.00
      3 | mgroad
                    | 4500000.00
      4 | banashankari | 900000.00
      5 | mgroad
                    | 400000.00
(5 rows)
```

```
insert into depositor values ('Tarun', 22), ('saqeeb', 13), ('arjun', 45), ('john', 12),
('ashish', 4),('arjun', 15);
customer name | accno
----+----
Tarun
           | 22
             13
saqeeb
arjun
             45
john
          | 12
ashish
              4
arjun
             15
(6 rows)
insert into borrower values('Tarun', 2), ('sageeb', 3), ('sageeb', 4), ('john', 5), ('ashish', 1);
customer_name | loan_number
Tarun
                   3
saqeeb
saqeeb
                   4
john
                   5
ashish
                   1
(5 rows)
QUERIES:->
```

Find all the customers who have at least two accounts at the Main branch.

```
SELECT customer_name
FROM depositor d,account a
where a.accno = d.accno and
a.branch_name = 'banashankari'
group by customer_name
having count(*) >= 2;

customer_name
------
arjun
(1 row)
```

Find all the customers who have an account at all the branches located in a specific city.

```
SELECT d.customer_name
FROM account a, branch b, depositor d
WHERE b.branch name=a.branch name AND
a.accno=d.accno AND
b.branch_city='mumbai'
GROUP BY d.customer_name
HAVING COUNT(distinct b.branch_name)=(
SELECT COUNT(branch_name)
FROM branch
WHERE branch_city='mumbai');
customer_name
ashish
(1 row)
Find the names of all depositors of a specific branch.
SELECT distinct d.customer_name
From depositor d, account a
WHERE a.accno=d.accno and a.branch_name='mgroad';
customer_name
john
(1 row)
Find the details of all loan holder of a specific branch.
SELECT distinct b.customer_name
From loan l, borrower b
WHERE l.loan_number=b.loan_number and l.branch_name='mgroad';
customer_name
_____
john
saqeeb
(2 rows)
```

Demonstrate how you delete all account tuples at every branch located in a specific city.

(5 rows)