# Theory on level attraction

Yutong Zhao
July 15<sup>th</sup> 2019

#### Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material

ZHIWEI GUO, 1,3 HAITAO JIANG, 1,3 YUNHUI LI,1 HONG CHEN, 1,\* AND G. S. AGARWAL<sup>2</sup>



$$\tilde{S}_{in} = S_{in} \cdot e^{i\omega t}$$

$$\tilde{a}_1 = a_1 \cdot e^{i\omega t}$$

$$\tilde{a}_2 = a_2 \cdot e^{i\omega t}$$

$$\tilde{a}_2 = a_2 \cdot e^{i\omega t}$$

# **Dynamic equations**



 $\Gamma_{1,2}$  - dissipative loss / intrinsic damping (Origin from Ohmic loss [1])

 $\gamma_{1,2}$  - radiative loss / extrinsic damping (Origin from structure [1])

 $\phi = kl$  - phase difference from the separation l and wave number k

[1]. Sun, Yong, et al. "Experimental demonstration of a coherent perfect absorber with PT phase transition." Physical review letters 112.14 (2014): 143903.

The dynamic equation becomes:

$$i\omega a_1 = (i\omega_1 - \Gamma_1 - \gamma_1)a_1 + i\sqrt{\gamma_1}S_{in} + i(k + ie^{-i\phi}\sqrt{\gamma_1\gamma_2})a_2$$
  
 $i\omega a_2 = (i\omega_2 - \Gamma_2 - \gamma_2)a_2 + i(k + ie^{-i\phi}\sqrt{\gamma_1\gamma_2})a_1$ 

The solution of the amplitude:

$$\begin{split} a_1 &= \frac{-i\sqrt{\gamma_1}S_{in}}{(i(\omega_1 - \omega) - \Gamma_1 - \gamma_1) + \frac{(k + i\sqrt{\gamma_1\gamma_2})^2}{(i(\omega_2 - \omega) - \Gamma_2 - \gamma_2)}} \\ a_2 &= \frac{-\sqrt{\gamma_1}S_{in}(k + i\sqrt{\gamma_1\gamma_2})}{(i(\omega_1 - \omega) - \Gamma_1 - \gamma_1)(i(\omega_2 - \omega) - \Gamma_2 - \gamma_2) + (k + i\sqrt{\gamma_1\gamma_2})^2} \end{split}$$

$$a_1 = \dfrac{ ext{dirving}}{ ext{bright atom} + \dfrac{ ext{coupling}}{ ext{dark atom}}}$$
  $a_2 = \dfrac{ ext{dirving}}{ ext{(bright atom)(dark atom)} + ext{coupling}}$ 

The reflection and transmission relation

$$r = \frac{i(\sqrt{\gamma_1} a_1)}{S_{in}}$$

$$t = e^{-i\phi} + \frac{i(\sqrt{\gamma_1} e^{-i\phi} a_1)}{S_{in}}$$
(1 driving term)

$$r = \frac{i(\sqrt{\gamma_1} a_1)}{S_{in}}$$

$$t = e^{-i\phi} + \frac{i(\sqrt{\gamma_1} e^{-i\phi} a_1)}{S_{in}}$$
(1 driving term)

$$S_{11} = \frac{\gamma_{1}}{(i(\omega - \omega_{1}) + \Gamma_{1} + \gamma_{1}) + \frac{(\kappa + i\sqrt{\gamma_{1}\gamma_{2}}e^{i\phi})^{2}}{i(\omega - \omega_{2}) + \Gamma_{2} + \gamma_{2}}}$$

$$S_{21} = 1 - \frac{\gamma_{1}}{(i(\omega - \omega_{1}) + \Gamma_{1} + \gamma_{1}) + \frac{(\kappa + i\sqrt{\gamma_{1}\gamma_{2}}e^{i\phi})^{2}}{i(\omega - \omega_{2}) + \Gamma_{2} + \gamma_{2}}}$$

$$r = \frac{i\left(\sqrt{\gamma_1}a_1 + \sqrt{\gamma_2}e^{-i\phi}a_2\right)}{S_{in}}$$
 (2 driving term) 
$$t = e^{-i\phi} + \frac{i\left(\sqrt{\gamma_1}e^{-i\phi}a_1 + \sqrt{\gamma_2}a_2\right)}{S_{in}}$$

 $e^{-i\phi} = i$  Coherent / near field coupling  $e^{-i\phi} = 1$  Dissipative / far field coupling



C: capacitors on Hyperbolic Metamaterials (HMM) This changes the k in HMM, therefore  $e^{i\phi}$ 

Field distribution measurement setup



Fig. 4. Schematic of the structure to realize a long range EIT. Bright atom, dark atom and the unit of HMM are enlarged in the left, respectively.

Long distance EIT has been achieved





#### Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings

Wei Tan, <sup>1,a)</sup> Yong Sun, <sup>2</sup> Zhi-Guo Wang, <sup>2,1</sup> and Hong Chen<sup>2</sup> <sup>1</sup>Beijing Computational Science Research Center, Beijing 100084, China <sup>2</sup>Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, China

# (a) Near-field coupling $\begin{array}{c|c} |a_1\rangle & \kappa & |a_2\rangle \\ \hline \gamma_1 & 7_2 & \Gamma_1 & \gamma_2 & 7_2 \\ \hline |g_1\rangle & e^{-ikd} & |g_2\rangle \\ \hline Far-field interaction \\ \end{array}$

# **Dynamic equations**

$$\frac{d\tilde{a}_{1}}{dt} = \begin{bmatrix} \omega_{1} & \mathbf{g} \\ (i\omega_{1} - \Gamma_{1} - \gamma_{1}) \tilde{a}_{1} + i\sqrt{\gamma_{1}}\tilde{S}_{+} + i\left(\kappa + i\sqrt{\gamma_{1}\gamma_{2}}e^{-i\phi}\right) \tilde{a}_{2} \\ \frac{d\tilde{a}_{2}}{dt} = \begin{bmatrix} (i\omega_{2} - \Gamma_{2} - \gamma_{2}) \tilde{a}_{2} + i\sqrt{\gamma_{2}}\tilde{S}_{+} \\ \omega_{2} \end{bmatrix} + i\left(\kappa + i\sqrt{\gamma_{1}\gamma_{2}}e^{-i\phi}\right) \tilde{a}_{1} \\ \omega_{2} \end{bmatrix}$$
Additional driving term

ously in this region: on one hand, the overlapping of strong and localized evanescent fields leads to near-field coupling; also interacts with another resonator. The near-field coupling leading to energy level splitting has been well explained by

on the other hand, the resonator couples to the external electromagnetic fields and re-radiates propagating wave, which also interacts with another resonator. The near-field coupling analogy with the molecular orbital diagram. The far-field coupling alters the linewidth of radiation and also varies the splitting. Specific cases with various d are shown in

$$\tilde{a}_1 = \frac{ig\sqrt{\gamma_2}\tilde{S}_+}{\boxed{w_1 \boxed{w_2} + g^2}} - \frac{\sqrt{\gamma_1}\tilde{S}_+}{\boxed{\omega_1} + \frac{g^2}{\boxed{w_2}}}$$

$$\tilde{a}_2 = \frac{ig\sqrt{\gamma_1}\tilde{S}_+}{\boxed{w_1 \boxed{w_2} + g^2}} - \frac{\sqrt{\gamma_2}\tilde{S}_+}{\boxed{\omega_2} + \frac{g^2}{\boxed{w_1}}}$$



#### Why the sign of $\kappa$ change

more flexible ways of tailoring lineshapes. We note that the cause of the sign change of  $\kappa$  is different from that in Refs. 25 and 26 which is the result of modified Coulomb interactions. Here, it attributes to the competition between intra-cell and inter-cell interactions. Numerical simulations are performed with a finite-integration-technique based EM solver (CST Microwave Studio). As shown in Fig. 3(a), the reflection spectrum for the sample with s = 3.8 mm has the similar lineshape with the model exhibited in Fig. 2. As s decreases to 1.8 mm, the splitting frequencies of the superradiant and subradiant modes get closer. With a further decrease of s, the superradiant mode moves to lower frequency while the subradiant mode moves to higher frequency, accompanied by a sign change of asymmetry parameter q of the Fano resonance. 27,28 Numerical fittings using Eqs. (1)–(4) are shown in Fig. 3(b). The fitted parameters (with the unit of GHz) are



Problem of this model : Reflection

### Equivalent to YIPU's model

Calculated Agarwal's Model (1 driving term)



Experiment &

Simulation setup

Calculated Chen Hong's Model (2 driving terms)

Calculated Chen Hong's Model (2 driving term without coupling)

 $i\phi = 1.545\pi$ 



## Conclusion

- 1. Line shape of the level attraction can be explained in two different point of views.
  - Dissipative coupling (1 driving term)
  - Superposition of two Lorentzian resonance (2 driving term)
- 2. Currently, these models have difficulties explaining the reflection of the system.

#### Parameter I used for calculations

```
\gamma_1 \approx 700 \, MHz
\gamma_2 \approx 14 \, MHz
\Gamma_1 \approx 10.2 \, MHz
\Gamma_2 \approx 2.5 \, MHz
\kappa \, (J \, in \, YIPU's \, model \,) = 14 \, MHz
\omega_1 \approx 2.5 \, GHz
\omega_2 \approx 2.6 - 2.8 \, GHz
```