GAUSSIAN RANDOM FIELDS

Aplicación a Datos Agrícolas: Superficie, Producción y Rendimiento

Estadística Espacial

Luna Turpo Rosmery

17 de septiembre de 2025

Contenido

- Introducción y Objetivos
- Datos y Metodología
- Análisis de Normalidad
- Parámetros del Campo Gaussiano
- 5 Fundamentos Matemáticos
- 6 Simulaciones del Campo Gaussiano
- Visualizaciones del Análisis
- Validación del Modelo
- Resultados y Análisis
- Conclusiones

Introducción

Análisis Gaussiano Funcional

El análisis gaussiano funcional es una técnica estadística que permite modelar datos multivariados usando distribuciones normales multivariadas, particularmente útil para:

- Modelar relaciones complejas entre variables
- Generar simulaciones realistas
- Predecir comportamientos futuros

Aplicación Agrícola

En este estudio analizamos datos agrícolas peruanos para entender las relaciones entre superficie cultivada, producción y rendimiento.

Objetivos del Análisis

- Caracterizar las distribuciones de variables agrícolas clave
- Modelar las relaciones entre superficie, producción y rendimiento
- Simular escenarios agrícolas usando campos gaussianos
- Validar la calidad del modelo estadístico
- Generar predicciones para diferentes escenarios

Descripción de los Datos

Fuente de Datos

Base de datos agrícola con **165,711** observaciones iniciales y **127** variables.

Variables Principales Analizadas

- P217_SUP_ha: Superficie cultivada (hectáreas)
- P219_CANT_1: Producción total (kilogramos)
- P220_1_PRE_KG: Precio por kilogramo
- P220_1_VAL: Valor total de producción
- P204_NOM: Tipo de producto agrícola

Preparación de Datos

Proceso de Limpieza

- Filtrado de valores faltantes y valores extremos
- 2 Restricción: 0 < superficie < 1000 hectáreas
- 3 Cálculo de rendimiento = producción / superficie
- Transformación logarítmica para normalización

Resultado Final

71,854 observaciones válidas para el análisis gaussiano.

Transformaciones Aplicadas

Variables Transformadas

$$log_superficie = ln(superficie_ha)$$
 (1)

$$log_produccion = ln(produccion_kg)$$
 (2)

$$log_rendimiento = ln\left(\frac{produccion_kg}{superficie_ha}\right)$$
(3)

Justificación

La transformación logarítmica es común en datos agrícolas porque:

- Reduce la asimetría de las distribuciones
- Estabiliza la varianza
- Mejora la normalidad de los datos

Tests de Normalidad

Cuadro: Resultados de Tests de Normalidad

00000 -0.0428 00000 0.7253 00000 0.1271
)

Interpretación

- P-valores = 0 indican desviación de normalidad estricta
- log_rendimiento tiene menor asimetría (0.1271)
- log_superficie es casi simétrica (-0.0428)
- El gran tamaño muestral hace los tests muy sensibles

Selección de Variables

Variables Seleccionadas para el Campo Gaussiano

- Variable 1: log_superficie
- Variable 2: log_rendimiento

Criterios de Selección

- Menor asimetría en las distribuciones
- Relevancia agronómica: superficie y rendimiento son fundamentales
- Interpretabilidad de resultados
- Calidad de la aproximación normal

Parámetros Estimados

Vector de Medias

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_{\text{log_superficie}} \\ \mu_{\text{log_rendimiento}} \end{pmatrix} = \begin{pmatrix} -1,1828 \\ 5,8980 \end{pmatrix} \tag{4}$$

Desviaciones Estándar

$$\sigma_{\text{log_superficie}} = 1,9079$$
 (5)

$$\sigma_{\text{log_rendimiento}} = 2,4148$$
 (6)

Correlación Bivariada

$$\rho = -0.2657$$

Correlación negativa moderada entre log(superficie) y

Interpretación de Parámetros

Significado Agronómico

- Media $\log_{\text{superficie}} = -1.18$: La superficie típica es $e^{-1.18} \approx 0.31$ hectáreas
- Media log_rendimiento = 5.90: El rendimiento típico es $e^{5,90} \approx 365 \text{ kg/ha}$
- Correlación negativa: A mayor superficie, menor rendimiento por hectárea

Implicaciones

La correlación negativa sugiere posibles deseconomías de escala o diferencias en intensidad de cultivo entre parcelas pequeñas y grandes.

Matriz de Covarianza

Matriz de Covarianza Estimada

$$\mathbf{\Sigma} = \begin{pmatrix} \sigma_{\log_\text{superficie}}^2 & \sigma_{\log_\text{superficie,log_rendimiento}} \\ \sigma_{\log_\text{superficie,log_rendimiento}} & \sigma_{\log_\text{rendimiento}}^2 \end{pmatrix}$$
 (7)

$$\mathbf{\Sigma} = \begin{pmatrix} 3,640 & -1,225 \\ -1,225 & 5,831 \end{pmatrix} \tag{8}$$

Estructura de Dependencia

La covarianza negativa (-1.225) confirma la relación inversa entre superficie y rendimiento logarítmicos.

Distribución Normal Bivariada

Función de Densidad

La función de densidad de probabilidad del campo gaussiano bivariado es:

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}(\mathsf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathsf{x} - \boldsymbol{\mu})\right)$$
(9)

donde $x = (x_1, x_2)^T$ representa log(superficie) y log(rendimiento).

Parámetros Clave

- μ : Vector de medias
- Σ: Matriz de covarianza
- $|\Sigma|$: Determinante de la matriz de covarianza

Interpretación Geométrica

Elipse de Concentración

La distribución normal bivariada forma elipses de concentración donde:

- ullet Centro: Vector de medias μ
- ullet Orientación: Determinada por los vectores propios de Σ
- ullet Forma: Determinada por los valores propios de Σ

En Nuestro Caso

- Centro en (-1.18, 5.90)
- Correlación negativa genera elipse inclinada
- Mayor variabilidad en log(rendimiento)

Estrategia de Simulación

Distribución Gaussiana Bivariada

$$\mathsf{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

Escenarios Simulados

- Escenario Base: 2,000 simulaciones con parámetros estimados
- $oldsymbol{2}$ Escenario Conservador: 500 simulaciones con $oldsymbol{\mu} imes 0,9$ y $oldsymbol{\Sigma} imes 0,8$
- **3** Escenario Optimista: 500 simulaciones con $\mu \times 1,1$ y $\Sigma \times 1,2$

Método

Utilizamos la función myrnorm del paquete MASS en R para generar muestras de la distribución normal multivariada.

Interpretación de Escenarios

Escenario Conservador

- Medias reducidas en 10 %: menor productividad esperada
- Varianza reducida en 20 %: menor incertidumbre
- Representa condiciones adversas (sequía, plagas, etc.)

Escenario Optimista

- Medias aumentadas en 10 %: mayor productividad esperada
- Varianza aumentada en 20 %: mayor incertidumbre
- Representa condiciones favorables (tecnología, clima óptimo)

Aplicación Práctica

Estos escenarios permiten evaluación de riesgos y planificación agrícola bajo diferentes condiciones.

Distribuciones Marginales

Gráficos de Densidad

- Histogramas: Distribución observada de log(superficie) y log(rendimiento)
- Curva roja: Densidad empírica (kernel density)
- Curva azul punteada: Distribución normal teórica
- Interpretación: Evaluación visual de la aproximación normal

Hallazgo Visual

La transformación logarítmica mejora considerablemente la aproximación a la normalidad, especialmente para log(superficie).

Q-Q Plots (Gráficos Cuantil-Cuantil)

Metodología Q-Q

- Compara cuantiles observados vs. cuantiles teóricos normales
- Línea recta: Perfecta normalidad
- Desviaciones: Indican apartamiento de normalidad

Interpretación

- log_superficie: Sigue aproximadamente la línea recta (buena normalidad)
- log_rendimiento: Ligeras desviaciones en las colas
- Ambas variables son adecuadas para el modelo gaussiano

Campo Gaussiano Bivariado

Visualización del Campo

- Puntos rojos: Datos observados (71,854 observaciones)
- Puntos azules: Simulaciones del campo gaussiano (2,000)
- Patrón: Evaluación visual del ajuste del modelo

Resultado

Las simulaciones reproducen adecuadamente el patrón de dispersión y la correlación negativa observada en los datos reales.

Contornos de Densidad

Análisis de Contornos

- Contornos rojos: Densidad de datos observados
- Contornos azules: Densidad de simulaciones gaussianas
- Comparación: Evaluación de la similitud de patrones

Interpretación

La superposición de contornos confirma que el modelo gaussiano captura correctamente la estructura de dependencia bivariada.

Mapa de Calor de Densidad

Función de Densidad

- Colores cálidos: Mayor densidad de probabilidad
- Colores fríos: Menor densidad de probabilidad
- Puntos blancos: Observaciones reales superpuestas

Insights

- La máxima densidad se concentra cerca de las medias estimadas
- La forma elíptica confirma la correlación bivariada
- Las observaciones se concentran en las regiones de alta densidad teórica

Tests de Bondad de Ajuste

Test de Kolmogorov-Smirnov

Comparación entre datos observados y simulaciones:

- log_superficie: p-valor = 0.000016
- \log _rendimiento: p-valor ≈ 0

Interpretación

- P-valores muy pequeños indican diferencias detectables
- Resultado esperado dado el gran tamaño muestral (71,854 obs.)
- Tests muy sensibles con muestras grandes
- La aproximación gaussiana sigue siendo útil para simulación

Evaluación Visual del Modelo

Métodos de Validación Visual

- Q-Q Plots: Comparación cuantil-cuantil con distribución normal
- 2 Histogramas: Densidad observada vs. densidad teórica normal
- Gráficos bivariados: Dispersión de datos vs. simulaciones
- Ontornos de densidad: Comparación de patrones bivariados
- Mapas de calor: Visualización de la función de densidad

Resultado General

Las visualizaciones muestran una aproximación razonable del modelo gaussiano a los datos agrícolas, especialmente en las regiones centrales de la distribución.

Matriz de Correlación - Variables Originales

Correlaciones Importantes

Análisis de correlaciones entre variables originales (superficie, producción, rendimiento, precio):

- Permite entender relaciones económicas
- Identifica variables redundantes o complementarias
- Orienta decisiones de política agrícola

Insight Clave

La correlación negativa entre superficie y rendimiento sugiere que las explotaciones más grandes tienden a tener menor intensidad productiva por hectárea.

Aplicaciones del Modelo

Usos Prácticos del Campo Gaussiano

- Planificación Agrícola: Simulación de resultados bajo diferentes estrategias
- 2 Análisis de Riesgo: Evaluación de probabilidades de eventos extremos
- Políticas Públicas: Modelado de impactos de intervenciones
- Seguro Agrícola: Cálculo de primas basado en distribuciones de riesgo
- Investigación: Generación de datos sintéticos para estudios

Limitaciones del Modelo

Limitaciones Identificadas

- Normalidad: Los datos no siguen perfectamente una distribución normal
- Linealidad: El modelo asume relaciones lineales en escala logarítmica
- Estacionaridad: No considera cambios temporales en parámetros
- Independencia: No modela dependencias espaciales entre parcelas

Recomendaciones

- Considerar modelos de mezcla de gaussianas
- Incorporar efectos espaciales y temporales
- Explorar transformaciones alternativas
- Validar en submuestras por región o tipo de cultivo

Resumen de Resultados

Logros Principales

- Modelo gaussiano bivariado exitosamente ajustado a 71,854 observaciones
- Parámetros estimados: $\mu = (-1,18,5,90), \ \rho = -0,27$
- 3 escenarios de simulación implementados (base, conservador, optimista)
- 2,000 simulaciones principales más 1,000 simulaciones de escenarios
- Validación completa con múltiples métodos estadísticos y visuales

Conclusiones Principales

Hallazgos Clave

- La transformación logarítmica mejora significativamente la normalidad
- Existe una relación inversa moderada entre superficie y rendimiento
- Sel modelo gaussiano proporciona una aproximación útil para simulación
- Los escenarios permiten análisis de sensibilidad efectivo

Valor Agregado

Este análisis proporciona una base sólida para la toma de decisiones en el sector agrícola peruano mediante simulación estadística robusta.

Trabajo Futuro

Extensiones Propuestas

- Análisis Temporal: Incorporar series de tiempo para capturar tendencias
- Efectos Espaciales: Modelar autocorrelación geográfica
- Variables Adicionales: Incluir clima, tipo de suelo, tecnología
- Modelos No-Paramétricos: Explorar alternativas más flexibles
- Se Aplicación por Cultivos: Análisis específico por tipo de producto

Meta Final

Desarrollar un sistema de apoyo a decisiones basado en simulación gaussiana para el sector agrícola.

¿Preguntas?

Análisis Gaussiano Funcional Datos Agrícolas

Gracias por su atención