Two-Sample Tests for Means

Dr Tom Ilvento

Department of Food and Resource Economics

Testing differences between two means or proportions

- We can make a point estimate and a hypothesis of the difference of the two means
- Or a Confidence Interval around the difference of the two means
- With a few twists
- Mean
 - Sigma known or unknown
 - Should we pool the variance?
- Proportions
 - When testing Ho: we need to check if $p_1 = p_2$

3

Overview

- We have made an inference from a single sample mean and proportion to a population, using
 - The sample mean (or proportion)
 - The sample standard deviation
 - Knowledge of the sampling distribution for the mean (proportion)
 - And it matters if sigma is known or unknown; large or small sample; whether the population is distributed normally
- The same strategy will apply for testing differences between two means or proportions
- These will be two independent, random samples
- We will have
 - Sample Estimate (of the difference)
 - · Hypothesized value
 - Standard error
 - Knowledge of a sampling distribution

2

Testing differences between two means or proportions

- We will also need to come up with:
 - An estimator of the difference of two means/ proportions
 - The **standard error** of the sampling distribution for our estimator
- With two sample problems we have two sources of variability and the sampling error must take that into account
- We also must assume the samples are independent random samples

.

The Estimator

- How do I make a comparison of two means or proportions?
 - Ratio of the two if they are equal we will have a ratio near 1.0
 - Difference if they are equal we will have a difference near zero
- A **Difference** is preferred in this case

• For the population $\mu_1 - \mu_2 = 0$

• From the sample $mean_1 - mean_2 = 0$

5

The Standard Error

• For a single mean the standard error looks like this

$$\sigma_{(\overline{x}_1)} = \sqrt{\frac{\sigma_1^2}{n_1}}$$

- Now we are looking at two independent random samples
- And the standard error will look something like this

$$\sigma_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

(

What do we mean by Independent Random Samples?

- Independent samples means that each sample and the resulting variables do not influence the other sample
 - If we sampled the same subjects at two different times we would not have independent samples
 - If we sampled husband and wife, they would not be independent – their responses should be related to each other!
- However, we have a strategy to assess nonindependent samples – paired difference test

Decision Table for Two Means

- Use this table to help in the Difference of Means Test
- Small sample problems require us to assume normal distributions, and we <u>should</u> pool if possible

Targets	Assumptions	Test Statistic
	Independent Random Samples, Sigma Known	Use σ_1 and σ_2 ; and standard normal for comparisons
H	Independent Random Samples, Sigma Unknown	Use s ₁ and s ₂ ; and t-distribution for comparisons
H_0 : $\mu_1 - \mu_2 = D$	Independent Random Samples, Sigma Unknown; we can assume variances are equal	Use t-distribution Use a single estimate of the variance, called a "Pooled Variance"

8

Decision Table for Two Proportions

- Use this table to help in the Difference of Proportions Test
- Large sample problems require that the combination of p*n or q*n > 5

Targets	Assumptions	Test Statistic
H ₀ : p ₁ - p ₂ = D	Independent Random Samples; Large sample sizes (n1 and n2 >50 when p or q > .10); Ho: D = 0	standard normal for comparisons with z; Pool the estimate of P based on the Null Hypothesis
	ndependent Random Samples; Large sample sizes (n1 and n2 >50 when p or q > .10); Ho: D≠ 0	standard normal for comparisons with z;

Example of Difference of Mean: Weight of Pallets of Roof Shingles

- Studies have shown the weight is an important customer perception of quality, as well as a company cost consideration.
- The last stage of the assembly line packages the shingles before placement on wooden pallets.
- The company collected data on the weight (in pounds) of pallets of Boston and Vermont variety of shingles.
- You can try this yourself: Pallet.xls or Pallet.jmp

10

Example of Difference of Mean: Weight of Pallets of Roof Shingles

- What do you see?
- For Boston
 - Mean = 3124.215
 - Median = 3122
 - Std Dev = 34.713
- For Vermont
 - Mean = 3704.042
 - Median = 3704
 - Std Dev = 46.744
- Both look approximately normal
- The variances are very similar

				N Missing	0.000
Distributions TYPE=Vermont					
WEIGHT					
	Quan	tiles		Moments	
· •	100.0%	maximum	3856.0	Mean	3704.042
	99.5%		3846.8	Std Dev	46.744
	97.5%		3804.0	Std Err Mean	2.573
	90.0%		3763.8	upper 95% Mean	3709.104
	75.0%	quartile	3732.0	lower 95% Mean	3698.980
	50.0%	median	3704.0	N	330.000
	25.0%	quartile	3670.0	Sum Wgt	330.000
│ └───── ┤	10.0%		3646.2	Sum	1222334.0
3550 3650 3750 3850	2.5%		3626.0	Variance	2185.032
	0.5%		3579.1	Skewness	0.287
	0.0%	minimum	3566.0	Kurtosis	0.212
				CV	1.262
				N Missing	0.000

П

Example of Difference of Mean: Weight of Pallets of Roof Shingles

- We can clearly see that the mean weight of Vermont shingle pallets is higher
- And the spread of the two types, the variance or standard deviation are not much different
 - The means are different
 - But the spread is not

Example of Difference of Mean: Weight of Pallets of Roof Shingles

Ho:

• Ho:
$$\mu_{v} - \mu_{b} = ?$$

Ha:

• Ha: $\mu_v - \mu_b \neq$? 2-tailed test

Assumptions

large samples; sigma unknown; could pool

Test Statistic

• t* = ?

• Rejection Region

• $\alpha = .05, t_{\alpha/2, d.f.} = ?$

Calculation:

• t* = ?

Conclusion:

13

The Standard Error of the Difference of Two Means

- The Standard Error of the sampling distribution difference of two means is given as:
- The sampling distribution of (mean₁-mean₂) is approximately normal for large samples under the Central Limit Theorem
- It is based on two independent random samples
- We typically use the sample estimates of s₁ and s₂
- And then use the t-distribution for the test

$$\sigma_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$\sigma_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

15

We need to think of the sampling distribution of the difference of two means

- The mean of the sampling distribution for (mean₁-mean₂)
- The sampling distribution center will equal (μ₁ - μ₂)
- The difference is hypothesized = Do
 - We usually designate the expected difference as Do under the the null hypothesis
 - Most often we think of Do = 0; no difference
 - But it could be something else

14

The Test Statistic

The test statistic involves the difference of two means

$$t^* = \frac{(3124.2 - 3704.0) - 0}{(3124.2 - 3704.0) - 0}$$

- Compared to a difference specified by the Null Hypothesis
- Noted as Do
- Divided by the standard error

$$SE = \sqrt{\frac{1204.99}{368} + \frac{2185.03}{330}} = \sqrt{3.2744 + 6.6213} = 3.1457$$

The calculation for our example is:

$$t* = (-579.8 - 0)/3.15 = -184.31$$

Example of Difference of Mean: Weight of Pallets of Roof Shingles

Ho:

На:

Assumptions

Test Statistic

Rejection Region

Calculation:

Conclusion:

• Ho: $\mu_B - \mu_V = 0$

• Ha: $\mu_B - \mu_V \neq 0$ 2-tailed test

• large samples; sigma unknown; could pool

• $t^* = (-579.8 - 0)/3.15$

 \bullet $\alpha = .05$, $t_{.05/2, 603 \text{ d.f.}} = -1.964 \text{ or } 1.964$

• t* = -184.31

• This value is HUGE!!

• Reject Ho: μ_B - μ_V = 0

There is a difference!

17

19

What is the p-value for our test statistic?

- t* = -184
- IT IS HUGE!!!!
- The p-value is smaller than = .05/2
 - p < .001
- Therefore, we reject Ho: $\mu_B \mu_V = 0$

18

To do this test with Excel

- The data needs to be in two columns one for each group
- Data Analysis
 - t-test: two sample assuming unequal variances
 - Pick both variables
 - Note labels or not
 - Specify the difference under a Null Hypothesis
 - Tell Excel where to put the output
- Dress it up

Excel Results

- Look to see that you can find all the information
 - The means
 - The variances
 - The Hypothesized mean difference
 - df
 - The Test Statistic
- Excel gives the critical values and p-values for both a one and two-tailed test

t-Test: Two-Sample Assuming Unequal Variances

	Boston	Vermont
Mean	3124.215	3704.042
Variance	1204.992	2185.032
Observations	368	330
Hypothesized Mean Difference	0	
df	603	
t Stat	-184.321	
P(T<=t) one-tail	0	
t Critical one-tail	1.647385	
P(T<=t) two-tail	0	
t Critical two-tail	1.963906	

$$d.f. = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}{\left(\left(s_1^2/n_1\right)^2/\left(n_1 - 1\right) + \left(s_2^2/n_2\right)^2/\left(n_2 - 1\right)\right)}$$

JMP Results

- Most of the same information is here from JMP
- Plus it gives the confidence interval

t Test					
Vermont-Bos					
Assuming un	equal varian	ces			1
Difference	579.828	t Ratio	184.321		
Std Err Dif	3.146	DF	602.7216		
Upper CL Dif	586.006	Prob > t	0.0000*		
Lower CL Dif	573.650	Prob > t	0.0000*		
Confidence	0.95	Prob < t	1.0000	-800 -400	0 200 600
				000 100	0 200 000

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2, df} S_{(\overline{x}_1 - \overline{x}_2)}$$

$$(3704.04 - 3124.22) \pm 1.964(3.146) = 579.82 \pm 6.18$$

573.65 to 586.01

21

23

What if we were to assume the variances were equal?

- First, you can just assume it it has to be reasonable
 - A ratio of the two variances would be the way to test it
 - The ratio should be about 1
 - with some sampling error
- Our ratio is 2185.032/1204.992 = 1.81

22

If we can assume the variances are equal

- There may be times when we think the difference between the two samples is primarily the means
- But the variances are similar
- In this case we ought to use information from both samples to estimate sigmas
- We will use a t-test and the t distribution and adjust the degrees of freedom
- Assumptions
 - The population variances are equal
 - Random samples selected independently of each other
- Pooling the variances is critical for small sample difference of means problems!

Pooling the Variances

- If we can assume (s₁ = s₂), we should use information from both sample estimates
- First Step: calculate pooled variance using information from both samples
- Step 2: Use the pooled estimate of the variance to calculate the standard error.

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$

Note: the denominator reduces to $(n_1 + n_2 -2)$ which is the d.f. for the t distribution

$$\sigma_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} = \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

What does Pooling do for us?

- Pooling generates a weighted average as the estimate of the variance
- The weights are the sample sizes for each sample
- A pooled estimate is thought to be a better estimate if we can assume the variances are equal
- And our degrees of freedom are larger d.f. = n1 + n2 - 2
- Which means the t-value will be smaller
- Note: if n₁ = n₂, the formula simplifies to (s²₁+s²₂)/2)

25

Excel Assuming Equal Variances

t-Test: Two-Sample Assuming Equal Variances

	Boston	Vermont
Mean	3124.215	3704.042
Variance	1204.992	2185.032
Observations	368	330
Pooled Variance	1668.258	
Hypothesized Mean Difference	0	
df	696	\leftarrow
t Stat	-187.2495	\leftarrow
P(T<=t) one-tail	0	
t Critical one-tail	1.647046	
P(T<=t) two-tail	0	
t Critical two-tail	1.963378	

The d.f. increased

The test statistic changed slightly because the standard error changed when we used a pooled estimate of s²

26

Equal Variances with JMP

• We get the same results with JMP

Small Sample Problem

- Federal regulations require that certain materials, such as children's pajamas, be treated with a flame retardant.
- An evaluation of a flame retardant was conducted at two different laboratories. While there may be measurement error associated with the lab work, we should not expect systematic differences between two laboratories.
- An experiment was designed so that each laboratory received the same number of samples of three different materials - 9 samples per laboratory
- The data are the length of the charred portion of the material.
- Test to see if the there is a difference in the measurements between the two laboratories at α = .01.

Decision Table for Two Means

- Use this table to help in the Difference of Means Test
- Small sample problems require us to assume normal distributions, and we should pool if possible

Targets	Assumptions	Test Statistic
	Independent Random Samples, Sigma Known	Use σ_1 and σ_2 ; and standard normal for comparisons
H B	Independent Random Samples, Sigma Unknown	Use s ₁ and s ₂ ; and t-distribution for comparisons
H_0 : $\mu_1 - \mu_2 = D$	Independent Random Samples, Sigma Unknown; we can assume variances are equal	Use t-distribution Use a single estimate of the variance, called a "Pooled Variance"

JMP Difference of Means Test assuming equal variances

Is this a one or two-tailed test?

Ho: μ_1 - μ_2 = 0 Ha: μ_1 - μ_2 \neq 0

What is the Pooled estimate of the variance?

(.242+.122)/2 = .182

What is the Standard Error?

SQRT(.182/9+.182/9) = .201

• How many degrees of freedom for our test?

9 + 9 - 2 = 16

What is your conclusion?

p-value is < .0001; Reject Ho

Output from JMP

Quantiles		Moments		Stem and Leaf	
100.0% maximum 99.5% 99.5% 90.0% quartile 50.0% quartile 10.0% quartile 10.0% 10.0% minimum	4.3000 4.3000 4.3000 4.1200 3.5250 2.9500 2.4500 2.1700 1.9000 1.9000	Mean Std Dev Std Err Mean upper 95% Mean lower 95% Mean N Sum Wgt Sum Variance Skewness Kurtosis	3.0055556 0.6829626 0.1609758 3.3451849 2.6659262 18 18 54.1 0.4664379 0.3578967	Stem Leaf Count 4 13 2 3 569 3 3 1123 4 2 56778 5 2 233 3 1 9 1	

Quantiles			Moments		
100.0%	maximum	4.3000	Mean	3.533	
99.5%		4.3000	Std Dev	0.492	
97.5%		4.3000	Std Err Mean	0.164	
90.0%		4.3000	upper 95% Mean	3.912	
75.0%	quartile	4.0000	lower 95% Mean	3.155	
50.0%	median	3.5000	N	9.000	
25.0%	quartile	3.1500	Sum Wgt	9.000	
10.0%		2.8000	Sum	31.800	
2.5%		2.8000	Variance	0.242	
0.5%		2.8000	Skewness	0.211	
0.0%	minimum	2.8000	Kurtosis	-0.898	
			CV	13.937	
			N Missing	0.000	

Quantiles		Moments		
100.0%	maximum	3.1000	Mean	2.478
99.5%		3.1000	Std Dev	0.349
97.5%		3.1000	Std Err Mean	0.116
90.0%		3.1000	upper 95% Mean	2.746
75.0%	quartile	2.7000	lower 95% Mean	2.209
50.0%	median	2.5000	N	9.000
25.0%	quartile	2.2500	Sum Wgt	9.000
10.0%		1.9000	Sum	22.300
2.5%		1.9000	Variance	0.122
0.5%		1.9000	Skewness	0.148
0.0%	minimum	1.9000	Kurtosis	0.371
			CV	14.09
			N Missing	0.000

30

Summary

- The difference of means hypothesis test follows a similar format as a single mean or proportion hypothesis:
 - Sample estimate; Standard error; Null and alternative hypotheses
 - Set an alpha level or use a p-value
- The Confidence Interval will be similar as well
- For hypotheses tests, we will be asked if we feel the variances are equal or not – we will pool the variances if yes
- For small sample difference of means problems, when n₁ and n₂ are less than 30.
 - we must be able to assume the variables are distributed approximately normal
 - and we would like to assume the variances are equal