Bee-Honey't

Projet 2ème année BTS SN

Dossier Technique Partie EC: Le Brigand Corentin

Session 2020

Dernière modification: 10/06/2020

Presentation generale	4
Cahier des charges	4
Diagramme des exigences	5
Partie EC	5
Choix du Matériel	6
Diagramme de définition des blocs	6
Mise en oeuvre des différents système	7
Balance	7
Matériels	7
Comparaison des capteurs	7
Capteur de Force (50kg Max)	7
Jauge de contrainte	7
Choix effectuer	7
hx711	7
Fonctionnement	8
Procédure de l'étalonnage	8
Validation des résultats	8
Fidélité	8
Protocole	9
Relevé	9
Excentration	10
Protocole	10
Relevé	10
Justesse	10
Protocole	10
Relevé	11
Mesure sur une semaine	11
Protocole	11
Relevé	11
Température et Humidité	11
Matériels	11
Capteur d'humidité et de température : DHT22	11
Mesures d'une trame du DHT22	12
Décodage (Saleae)	12
Validation des résultats	13
Température	13
Protocole	13
Relevé	13

Analyse des résultats	13
Humidité	13
Protocole	13
Relevé	13
Analyse des résultats	13
Pression atmosphérique	14
Matériels	14
Capteur d'humidité et de température : BMP280	14
Validation des résultats	14
Protocole	14
Relevé	14
Analyse des résultats	14
Communication LoRa	15
Matériels	15
The Thing Uno	15
The Things Gateway	15
Fonctionnement	15
Contrainte de fonctionnement	15
Connexion	15
Envoie	15
Intégration	16
Protocole	16
Réalisation du PCB	17
Adressage	17
Schéma Structurel	18
Schéma	18
Description	18
PCB	18
Description	19
Schémas du PCB	19
Schéma des couches du PCB	19
Rendu 3D	20
Nomenclature	21
Annexe	22
Glossaire	22

Présentation générale

Ce document présente un récapitulatif de la partie EC du projet de 2ème année de BTS SN : Bee-Honey't.

Lien vers le cahier des charges : Bee-Honey't.pdf

Cahier des charges

Il s'agit de réaliser un système autonome permettant de connaître à distance certains paramètres d'une ruche afin d'assurer son suivi et d'évaluer la santé des abeilles. Les abeilles subissent une mortalité accrue chaque année, principalement en raison des pesticides présents dans l'environnement, auxquels elles sont particulièrement sensibles. Une mortalité aiguë et anormale d'une colonie d'abeilles peut être un signe d'intoxication aux pesticides et donc d'un environnement pollué. Évaluer la santé des abeilles, c'est donc analyser indirectement la qualité de l'environnement.

Le projet consiste donc à équiper une ruche d'abeilles en y ajoutant des capteurs pour permettre d'obtenir différentes informations telles que la température intérieure, l'humidité, le poids et le comptage des abeilles.

Cet équipement ne doit en aucun cas gêner l'apiculteur dans son travail et les abeilles.

Toute les mesures sont visible à distance sur une interface ordinateur et une application android. L'envoi des donnée se fait via le système LoRa.

Diagramme des exigences

Ce diagramme d'exigence synthétise les exigences du cahier des charges.

Partie EC

La partie EC consiste à mesurer des données sur une et à les envoyer toute les 15 minutes via une communication LoRa. Pour l'acquisition des donnée, une carte "The things uno" est utilisé.

Sur la ruche sont placés plusieurs système de mesure embarqué qui sont :

- Mesure de la masse de la ruche
- Mesure de la pression
- Mesure de la température (intérieur et extérieur)
- Mesure de l'humidité (intérieur et extérieur)
- Mesure du niveau de charge de la batterie (En option)
- Mesure de l'ensoleillement (En option)

Choix du Matériel

Diagramme de définition des blocs

Ce diagramme permet de visualiser les différent élément qui compose le projet

La ruche connecté peut se diviser en trois parties différentes. La Structure, qui comprend la ruche originel sans aucun élément ajouté. L'acquisition qui comprend les différent capteurs qui vont effectuer les mesures. Et l'alimentation qui sera une batterie.

Mise en oeuvre des différents système

Balance

La balance est un point centrale du système Bee-Honey't. Elle permet à l'utilisateur d'estimer la population de la ruche où la quantité de miel produit.

Matériels

Comparaison des capteurs

	Capteur de Force (50kg Max)	Jauge de contrainte
Quantité	1	4
Utilisation	Le capteur se place au centre de la structure	Les 4 capteurs sont placé sur les 4 extrémité de la structure
Montage	Capteur de Force (50kg Max) TEAT Agricultur TOTAL TOTA	AND SECONDANIE AND SECONDANIE

Choix effectuer

Le système choisi est la balance avec 4 jauges de contraintes. Ce système apporte des résultats bien plus juste. En particulier au niveau de l'excentration (voir <u>Validation des résultats</u>)

hx711

Le HX711 est un convertisseur analogique numérique conçu pour des application de mesure de masse. Il est utilisé dans les deux système étudié ci dessu.

Documentation techniques:

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711 english.pdf

Fonctionnement

Une jauges de contrainte peut se comparer à une résistance dont la valeur change lors de sa distorsion.

Une balance avec 4 jauges de contrainte peut se comparer à un pont de Wheatstone dont voici le schéma :

Chacune des résistances représente une jauge de contrainte. La valeur de Vs va évoluer en fonction de la valeur des résistance. On peut déterminer la formule de Vs avec la formule suivante :

$$V_S = V_{cc.}(\frac{R3}{(R1+R3)} - \frac{R4}{(R2+R4)})$$

Procédure de l'étalonnage

Cette procédure permet de déduire le facteur d'étalonnage

- 1. Lancer la balance sans aucun poids dessu.
- 2. Une tare est réalisé
- 3. Poser un Poids connu sur la balance (Dans notre cas 391g)
- 4. Le poids est mesurer
- 5. En fonction de la mesure le facteur d'étalonnage est incrémenté puis la mesure est refaite, l'action se répète jusqu'à obtenir le poids connu.

Le facteur d'étalonnage est enregistré dans l'eeprom de la carte The things uno, il est alors possible de choisir entre faire l'étalonnage où garder l'ancien.

Validation des résultats

La validation du bon fonctionnement d'un balance nécessite de vérifier 3 paramètres qui sont la fidélité, l'excentration et la justesse.

Fidélité

La fidélité permet de vérifier que la balance renvoi bien la même valeur lorsqu'un poids identique est posé.

Protocole

Posez à 10 reprise un poids connu identique au centre de la balance et et relevez les valeurs obtenu. L'action est répétée avec 3 poids connu différents.

Relevé

190	g												
Essai N°	1	2	3	4	5	6	7	8	9	10	Moyenne (g)	Ecart Type (g)	Erreur (g)
Poids mesuré (g)	190	190	195	195	190	193	193	190	190	190	191,6	2,17050 9413	-1,6
390	g												
Essai N°	1	2	3	4	5	6	7	8	9	10	Moyenne (g)	Ecart Type (g)	Erreur (g)
Poids mesuré (g)	390	390	391	395	395	390	392	392	392	390	391,7	1,94650 6843	-1,7
1500	g												
Essai N°	1	2	3	4	5	6	7	8	9	10	Moyenne (g)	Ecart Type (g)	Erreur (g)
Poids mesuré (g)	1500	1510	1500	1500	1501	1500	1500	1505	1500	1504	1502	3,36650 1646	-2

Excentration

L'excentration permet de vérifier que la valeur renvoi bien une valeur correcte suivent le placement du poids sur le socle.

Protocole

Posez un poids connu sur 9 point différent de la balance (Les 4 coins, le centre, les 4 centre des arêtes du socle) et relevez les valeurs obtenu. L'action est répétée avec 2 poids connu différents.

Répartition des 9 points :

Relevé

390	g										
Position N°	1	2	3	4	5	6	7	8	9	Moyenne	Ecart Type
Poids mesuré (g)	380	390	380	390	390	390	395	390	390	388,3333 333	5
1500	g										
Position N°	1	2	3	4	5	6	7	8	9	Moyenne	Ecart Type
Poids mesuré (g)	1510	1500	1490	1500	1500	1500	1500	1500	1500	1500	5

Justesse

La justesse permet de vérifier que la valeur renvoyer par la balance lors d'une évolution du poids dans le temps est correcte.

Protocole

Ajoutez ou enlevez des poids connu au fur et à mesure et relevez les valeurs obtenu. L'action est faite une foi de manière croissante et une autre de manière décroissante.

Relevé

	Croissant		Décroissant				
Poids de référence (g)	Poids mesuré (g)	Erreur (g)	Poids de référence (g)	Poids mesuré (g)	Erreur (g)		
190	190	0	2080	2080	0		
580	580	0	1890	1885	5		
1500	1498	2	1500	1495	5		
1890	1886	4	580	585	-5		
2080	2080	0	190	192	-2		

Mesure sur une semaine

Protocole

Pendant une semaine des mesures ont étaient réalisé à des horaires fixes avec un poids de 1,5kg.

Relevé

	11/05/20	12/05/20	13/05/20	14/05/20	15/05/20	16/05/20	17/05/20	
Dates	20	20	20	20	20	20	20	Moyenne
								1503,28
14h	1501	1500	1504	1500	1501	1500	1510	5714
23h	1504	1510	1501	1510	1504	1501	1500	

Température et Humidité

La température et l'humidité sont mesurés à l'intérieur et à l'extérieur de la ruche. Se sont des valeurs importante pour l'utilisateur qui peut choisir de déplacer ses ruches en fonction de ces paramètres.

Matériels

Capteur d'humidité et de température : DHT22

Le DHT22 est une capteur numérique qui mesure la température et d'humidité. Sa précision annoncé dans la documentation est de 2 à 5 % pour l'humidité et de plus ou moins 0.5°C pour la température. Il s'alimente entre 3,3V et 6V

Documentation techniques:

https://www.gotronic.fr/pj-1052.pdf

Mesures d'une trame du DHT22

Décodage (Saleae)

La mesure de la trame a était faite avec un Saleae. La première partie de la trame correspond à l'humidité, la deuxième à la température et la troisième est correspond à un contrôle. Les donnée sont transmise en hexadécimal. Dans notre cas, nous récupérerons la première et deuxième partie que seront transmise en hexadécimal.

Validation des résultats

Température

Protocole

Pour valider le fonctionnement du DHT22, Un relevé de 10 valeurs a était réalisé à l'intérieur de la ruche. Puis celui ci à était comparer avec un thermomètre de de référence.

Relevé

Dates & heures	06/03/ 2020 14h24	06/03/ 2020 15h04	06/03/ 2020 15h33	06/03/ 2020 15h43	06/03/ 2020 15h56	06/03/ 2020 16h20	11/03/ 2020 08h32	11/03/ 2020 09h25	12/03/ 2020 11h38	12/03/ 2020 14h06	Moyenne	Erreur moyenne
Températur e de référence (°C)	22,95	23,4	23,55	22,9	23,2	30	20,2	20,7	22,8	24,05	23,375	
Températur e mesuré (°C)	23,9	23,4	23,7	23,3	22,6	29,7	20,5	20,6	22,8	24	23,45	-0,075

Analyse des résultats

L'erreur moyenne calculée suite au relevé est assez faible pour valider le fonctionnement et la précision du matériel (Précision annoncée par la documentation technique : +-0.5°C).

Humidité

Protocole

Pour valider le fonctionnement du DHT22, Un relevé de 10 valeurs a était réalisé en extérieur dans la région d'avignon puis a été comparé au donée de la station météo la plus proche.

→ https://www.meteociel.fr/temps-reel/obs-villes.php?code2=7563

Relevé

Dates & heures	08/06/ 2020 12h	08/06/ 2020 13h	08/06/ 2020 14h	08/06/ 2020 15h	08/06/ 2020 16h	08/06/ 2020 17h	08/06/ 2020 18h	08/06/ 2020 19h	08/06/ 2020 20h	08/06/ 2020 21h	Moyen ne
Hygrométrie de référence (%)	42	41	40	36	34	36	37	38	44	45	39,3
Hygrométrie mesuré (%)	45	43	43	39	37	38	40	41	46	47	41,9

Analyse des résultats

L'erreur moyenne calculée suite au relevé est assez faible pour valider le fonctionnement et la précision du matériel (Précision annoncée par la documentation technique : 2 à 5 %).

Pression atmosphérique

La pression atmosphérique est relevée à l'extérieur de la ruche, c'est une donnée qui permet à l'utilisateur d'en savoir plus sur l'environnement actuel de la ruche.

Matériels

Capteur d'humidité et de température : BMP280

Le BMP280 est une capteur numérique qui mesure la pression.

Sa précision annoncé dans la documentation est en moyenne de 0,12 hPa et au maximum de 1 hPa. Il s'alimente entre 1,71V et 3,6V.

Documentation techniques:

https://cdn-shop.adafruit.com/datasheets/BST-BMP280-DS001-11.pdf

Validation des résultats

Protocole

Pour valider le fonctionnement du BMP280, Un relevé de 10 valeurs a était réalisé en extérieur dans la région d'avignon. Les valeur sont ensuite comparé à la pression atmosphérique relevée par les station de météo les plus proche.

→ https://www.meteociel.fr/temps-reel/obs-villes.php?code2=7563

Relevé

Dates & heures	27/03/ 2020 12h	27/03/ 2020 13h	27/03/ 2020 14h	09/04/ 2020 12h	08/04/ 2020 13h	08/04/ 2020 14h	08/04/ 2020 15h	08/04/ 2020 16h	08/04/ 2020 17h	08/04/ 2020 18h	Moyenne	Erreur moyenne
Pression Atmosphérique de référence (Météo Ciel) (Pa)	101270	101290	101260	102650	102580	102500	102460	102400	102360	102370	102114	
Pression Atmosphérique mesuré (Pa)	101298	101280	101170	102600	102530	102457	102412	102348	102326	102282	102070,3	43,7

Analyse des résultats

L'erreur moyenne calculée suite au mesures dépasse la précision donné dans la documentation technique (précision de la documentation : 1 Pa). Cependant, cette erreur est dû au fait que la pression atmosphérique de référence n'est pas relever en même temps et au même endroit que celui dans lequel la mesure est faite car le matériel nécessaire n'était pas disponible. L'erreur observé est donc normal et acceptable dans notre cas.

Communication LoRa

Les mesures faite par les différents capteurs seront ensuite envoyées via une communication LoRa.

Matériels

Dans notre cas nous utiliserons une carte The Thing Uno prévu pour fonctionner avec The Things Gateway.

The Thing Uno

The Things Uno est basé sur l'Arduino Leonardo (et non sur l'Arduino Uno) avec un module Microchip LoRaWAN ajouté.

The Things Gateway

The Things Gateway est la passerel de connexion TTN

Fonctionnement

Le LoRa est un protocole de télécommunication permettant la communication à bas débit, par radio, d'objets à faible consommation électrique communiquant selon la technologie LoRa et connectés à l'Internet via des passerelles.

Contrainte de fonctionnement

La connection d'une carte The Thing Uno à la passerel TTN peut se faire dans un rayon de 10km dans une zone non urbaine.

Connexion

Pour connecter la carte The Things Uno au réseau, il faut indiquer deux paramètre qui sont : ApplicationEUI et l'App Key. Ces paramètres seront spécifiés lors du setup.

Envoie

L'envoi des mesures se fait à l'aide d'un Payload. Ce payload se constitue d'un bit de poids fort et d'un bit de poids faible pour chacune des mesures envoyer. L'envoi du payload se fait ensuite via la fonction ttn.sendBytes(payload, sizeof(payload)); présente dans la bibliothèque TheThingsNetwork.h. L'envoi se fait en Hexadécimal.

Intégration

Protocole

Sens o	Sens de la communication : $Ruche \to TTN$									
Port	Mesure(s)	Unité	Précision	Туре	Taille (en octet)	Période (en secondes)				
1	Masse	Kg	Dixième	Entier	2					
2	Température intérieure	°C	Dixième	Entier	2					
2	Humidité intérieure	%	Entier	Entier	1					
2	Température extérieure	°C	Dixième	Entier	2					
2	Humidité extérieure	%	Entier	Entier	1					
2	Pression atmophérique	hPa	Dixième	Entier	2					
3	Niveau de charge de la batterie	%	Entier	Entier	1					

Date: 13/02/2020

Réalisation du PCB

Adressage

Matériel concerné	Broche Matériel	Broche The Things UNO	Description
DHT22	1 - VDD		Alimentation (3,3V - 6V)
Intérieur	2 - DATA	PD7	Signal
	3 - NULL		Broche non utilisé
	4 - GND		Masse
DHT22	1 - VDD		Alimentation (3,3V - 6V)
Extérieur	2 - DATA	PD6	Signal
	3 - NULL		Broche non utilisé
	4 - GND		Masse
HX711	VCC		Alimentation (2,5V - 5,5V)
	SCK	PD5	Horloge
	DT	PD4	Donnée
	GND		Masse
BMP280	VCC		Alimentation (1,71V - 3,6V)
	GND		Masse
	SCK/SCL	PC0	SCL
	SDA/SDI	PC1	SDA
	CSB		Broche non utilisé
	SDO		Masse / Broche non utilisé
Bouton	vcc		Alimentation 5V
	Signal	8	
The things Uno		Vin	Alimentation (7V - 12V)

Schéma Structurel

Schéma

Description

L'alimentation du PCB se fait en 12V, la partie alimentation est accompagné d'une diode pour protéger les composants. La carte The Things Uno est directement alimenté en 12v (tension d'alimentation donnée dans la documentation technique : 7V à 12V). Deux sortie de la carte The Thing Uno sont utilisé pour alimenter les autres composants. La première sortie sort du 5V et alimente les DHT22 (tension d'alimentation donnée dans la documentation technique : 3,3V à 6V) et le HX711 (tension d'alimentation donnée dans la documentation technique : 2,5V à 5,5V). La deuxième sort du 3,3V et alimente le BMP280 (tension d'alimentation donnée dans la documentation technique : 1,71V à 3,6V).

PCB

Description

Le PCB du projet Bee Honey't se présente sous la forme d'un Shield qui viendra donc s'emboîter sur la carte The Things Uno. L'alimentation du système se fera via le PCB avec une alimentation 12V. Sur le PBC se trouve les connecteur pour brancher les deux DHT22 (Température et humidité), le BMP280 (pression atmosphérique) et le HX711 (Balance). De cette manière, les différents capteurs peuvent être placés comme désiré a des emplacement différent de la ruche, reliés par fils au PCB.

Schémas du PCB

Schéma des couches du PCB

Rendu 3D

Nomenclature

Element	Quantité	Références	Prix Unitaire (€)	Prix (€)
Connecteurs	8			3,05
POWER JACK	1	"+9V <>+12V"	0,72	0,72
Connecteur 4 broches	3	"TEMP. RUCHE","TEMP.EXTERIEURE","HX711"	0,11	0,33
Connecteur ARD008	2	J1,J4	0,5	1
Connecteur ARD006	1	J2	0,5	0,5
Connecteur ARD0010	1	J3	0,5	0,5
Mesures	8			28,27
DHT22	2	"TEMP. RUCHE","TEMP.EXTERIEURE"	4,99	9,98
BMP280	1	"PRESSION"	2,3	2,3
HX711	1	"HX711"	1,71	1,71
Jauge de contrainte	4	"JAUGE E+","JAUGE A-","JAUGE E-","JAUGE A+"	3,57	14,28
The Things Uno	1			48,44
Carte The Things Uno	1	"The Things Uno"	48,44	48,44
РСВ	1			1,82
РСВ	1	PCB	1,82	1,82
Autres	5			0,42
Résistance 1K	3	R1,R2,R3	0,02	0,06
Diode	1	D1	0,03	0,03
Bouton poussoir	1	"TARAGE"	0,33	0,33
TOTAL	23			82

Annexes

<u>Cayenne</u> (9 pages)

Glossaire

- Android : Android est un système d'exploitation mobile fondé sur le noyau Linux et développé par Google
- Convertisseur Analogique Numérique (CAN): permet de traduire une grandeur analogique en une valeur numérique.
- **Etalonnage (balance)** : opération qui concerne les appareils de mesure. Permet de régler un appareil de mesure pour obtenir une valeurs juste.
- Excentration (balance) : L'excentration d'une balance est la différence d'une mesure réalisé sur plusieurs points différents de son plateau.
- Fidélité (balance) : La fidélité d'une balance est le fait qu'elle mesure la bonne valeur.
- **Hexadécimal** : Système de numération positionnel en base 16.
- **Justesse (balance)**: La justesse d'une balance consiste à définir l'erreur lorsque qu'un poids évolutif est posé sur la balance.
- LoRa: protocole de télécommunication permettant la communication à bas débit, par radio, d'objets à faible consommation électrique communiquant selon la technologie LoRa et connectés à l'Internet via des passerelles
- Payload : Désigne les données utiles, par opposition au reste (métadonnées...)
- PCB: Un circuit imprimé est un support, en général une plaque, permettant de maintenir et de relier électriquement un ensemble de composants électroniques entre eux.
- Pont de wheatstone : Instrument permettant de calculer une résistance électrique inconnue en équilibrant deux branches, avec le composant inconnu sur l'une des branches, dans un circuit en pont. On l'utilise également pour la réalisation de jauges de déformation.
- **Pont diviseur de tension** : montage électronique qui permet de diviser une tension d'entrée, constitué de deux résistances en série.
- Population d'une ruche: la population d'une ruche varie au cours de l'année passant de 10 000 individus en période hivernale à plus de 40 000 en pleine saison de production, au printemps.
- Saleae: Analyseurs logiques USB (https://www.saleae.com/fr/)
- Shield: PCB prévu pour s'emboiter par dessu la carte The Thing Uno en assurant la liaison entre les deux.