MAC0422 - Sistemas Operacionais - 2018 Relatório do EP 3

Danilo Escudero - 10853911 Renan Tiago - 9793606

Primeiramente foi adicionado ao sistema os script de teste disponibilizado. Os scripts encontram-se em /root/script.

ATIVIDADE 1

Para realizar a alteração para worst fit foi necessário alterar o código do arquivo /usr/src/servers/pm/alloc.c. Neste arquivo estava implementado o first fit. A alteração que fizemos faz com que seja feita uma varredura em toda a memória, encontrado todos os buracos disponíveis. Após isso, verificamos qual é o maior buraco disponível para realizar a alocação.

ATIVIDADE 2

Toda a implementação da atividade 2 está no arquivo /root/memstat.c. Para esta atividade usamos a chamada (getsysinfo(PM_PROC_NR, SI_MEM_ALLOC, &pm), sendo o &pm uma struct criada por nós, que recupera as informações necessárias para o EP.

TESTES

```
# ./forkmem 1+1+10 3+6+10 6+6+15 8+15+20 16+15+20 24+8+25
Running 1 MB at t=1 for 10 seconds.
Running 3 MB at t=6 for 10 seconds.
Running 6 MB at t=6 for 15 seconds.
Running 24 MB at t=8 for 25 seconds.
PID 92 computed 0x351c353a
```

Para testar o funcionamento da alocação, utilizamos o script de teste forkmem com os parâmetros mostrados acima. Com essas alocações você pode observar como tudo acontece com base na execução do memstat, que imprime as estatísticas a cada 1 segundo.

N_Holes	Mean		Standard Deviation
22	11806.863	38	53809.320
22	11806.863	38	53809.320
22	11806.863	38	53809.320
22	11806.863	38	53809.320
23	11291.913	38	52667.875
24	10809.167	33	51542.672
24	10809.167	33	51542.672
24	10809.167	33	51542.672
24	10809.167	33	51542.672
24	10809.167	33	51542.672
26	9886.154	33	49133.398
26	9886.154	33	49133.398
27	9291.037	33	47077.113
27	9291.037	33	47077.113
27	9291.037	33	47077.113
26	9659.692	33	47935.727
26	9659.692	33	47935.727
26	9659.692	33	47935.727
26	9659.692	33	47935.727
28	8747.571	33	45091.973
27	9101.407	33	45882.020
27	9101.407	33	45882.020

Perceba que a cada processo alocado, o número de buracos aumenta. Isso ocorre porque na alocação worst fit o SO sempre procurará alocar no maior buraco disponível, fazendo com que haja uma maior fragmentação. Então, haverá mais buracos disponíveis, porém com tamanhos menores. A quantidade de buracos é decrementada se o tamanho do processo a ser alocado for exatamente do mesmo tamanho do maior buraco disponível ou se algum processo é finalizado.

Isso leva à eliminação de todos os grandes blocos de memória, portanto, as solicitações de processos para memória grande não podem ser atendidas eventualmente.