

Arrhythmia signatures with empirical mode decomposition

Ashwin Sundar

Mentors: Dr. Jeffrey La Belle, Dr. Mark Spano, and Dr. Heather Ross

Results

RMS Deviations

		# of	
Symbol	Meaning	patient	# of data
		records	sets
!	Ventricular flutter wave	1	42
(AFIB	Atrial fibrillation	7	78
(AFL	Atrial flutter	3	36
(B	Ventricular bigeminy	13	171
(BII	2° heart block	1	5
(IVR	Idioventricular rhythm	2	4
(NOD	Nodal (A-V junctional) rhythm	3	7
(SVTA	Supraventricular tachyarrhythmia	7	26
(T	Ventricular trigeminy	12	77
(VFL	Ventricular flutter	1	6
(VT	Ventricular tachycardia	12	54
Α	Atrial premature beat	27	319
E	Ventricular escape beat	2	30
F	Fusion of ventricular and normal beat	17	136
L	Left bundle branch block beat	4	82
N	Normal sinus rhythm	38	397
R	Right bundle branch block beat	6	132
S	Supraventricular premature beat	1	2
V	Premature ventricular contraction	36	593
X	Non-conducted P-wave (blocked APB)	5	86
Data sourc	e: MIT-BIH Arrhythmia Database		

Abstract

- Physiological signals tend to be short, nonlinear, and nonstationary; time-frequency analysis is not always suitable
- Empirical mode decomposition (EMD) is intuitive and stays in the time domain
- ECG signals of select cardiac conditions were windowed, decomposed, and averaged to create average mode functions
- Signal differences between conditions were calculated, which can be used to create unique signatures for each signal

Discussion

- EMD tends to segregate noise into early modes, and baseline drift into later modes
- Mode function 3 seems to differentiate signals the most effectively

Broader Impacts

- Easy to implement in a low-power environment, where Fourier transforms are difficult to calculate
- Signatures could be used to identify artifacts without relying on physician annotations
- Future work could focus on calculating inter- and intra-patient signal stability with EMD

References

Huang, N. E., Shen, Z., Long et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society, 903-995.

Rilling, G. (2007). Empirical Mode Decomposition. Retrieved from http://perso.ens-lyon.fr/patrick.flandrin/emd.html

Acknowledgments

I want to thank Dr. Jeffrey La Belle, Dr. Mark Spano and Dr. Heather Ross for their guidance. I would also like to thank my family for their support in my education.